Asymptotický rast funkcií¹

Teoretická časť

Definície a vety

Symboly $O, o, \Theta, \prec, \sim$

- Def.: $f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
- Def.: Funkcia f je asymptoticky kladná, ak platí $\exists n_0, \forall n > n_0 \ f(n) > 0$.
- Def.: $f(n) = O(g(n)) \Leftrightarrow \exists C > 0 \ \exists n_0 : \forall n > n_0 \ |f(n)| \leq C \cdot |g(n)|$
- \bullet Pre asymptoticky kladné funkcie f, g možno zjednodušiť predošlú definíciu.

Def.: $f(n) = O(g(n)) \Leftrightarrow \exists C \ \exists n_0 \in \mathbb{N} : \forall n > n_0 \ f(n) \leq C \cdot g(n)$

- Tvr.: $f(n) = o(g(n)) \Rightarrow f(n) = O(g(n))$
- Vo všeobecnosti neplatí opačná implikácia: Čo znamená, že $f(n) \neq o(g(n))$?

Buď $\not\exists \lim_{n\to\infty} \frac{f(n)}{g(n)}$, alebo $\lim_{n\to\infty} \frac{f(n)}{g(n)} \neq 0$.

Takže, napr. platí $2n^2 + 33n - 1000 = O(n^2)$, ale $\lim_{n \to \infty} \frac{2n^2 + 33n - 1000}{n^2} = 2$, čiže $2n^2 + 33n - 1000 \neq 3n - 1000 = 0$ $o(n^2)$.

Neexistencia limity je demonštrovaná nasledujúcim príkladom: $n \sin n + 5 = O(n)$ (pre $n_0 = 5$ a C=2), ale limita $\lim_{n\to\infty}\frac{n\sin n+5}{n}=\lim_{n\to\infty}\sin n+\frac{5}{n}$ neexistuje. • Def.: $f(n)=\Theta(g(n))\Leftrightarrow \exists C_1>0, C_2>0\ \exists n_0: \forall n>n_0$

$$C_1 \cdot |g(n)| \le |f(n)| \le C_2 \cdot |g(n)|$$

 \bullet Pre asymptoticky kladné funkcie f,g možno definíciu formulovať nasledovne:

Def.:
$$f(n) = \Theta(g(n)) \Leftrightarrow \exists C_1 > 0, C_2 > 0 \; \exists n_0 : \forall n > n_0$$

$$C_1 \cdot g(n) \le f(n) \le C_2 \cdot g(n)$$

- Tvr.: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = a \neq 0 \Rightarrow f(n) = \Theta(g(n))$
- Def.: $f(n) \prec g(n) \Leftrightarrow f(n) = o(g(n))$
- Def.: $f(n) \sim g(n) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

Ostatné symboly - Ω, ω

V literatúre nebývajú definované jednoznačne, preto si treba preveriť ich význam pred samotným štúdiom.

Staršia definícia symbolu Ω :

• Def.: $f(n) = \Omega(q(n)) \Leftrightarrow q = o(f)$.

V ďalšom sa tento spôsob nebude uvažovať!

V novšej literatúre sa používa v tomto význame symbol ω :

- Def.: $f(n) = \omega(g(n)) \Leftrightarrow g = o(f)$
- Def.: $f(n) = \Omega(g(n)) \Leftrightarrow \exists C > 0 \ \exists n_0 \in \mathbb{N} : \forall n > n_0 \ C \cdot |g(n)| \le |f(n)|$
 - \bullet Pre asymptoticky kladné funkcie f,g možno zjednodušiť predošlú definíciu.
 - Def.: $f(n) = \Omega(g(n)) \Leftrightarrow \exists C > 0 \ \exists n_0 : \forall n > n_0 \ C \cdot g(n) \leq f(n)$
- Tvr.: $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$
- Tvr.: $f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n)) \& f = \Omega(g(n))$
- Def.: $f \approx q \Leftrightarrow f(n) = \Theta(q(n))$

	limita			" C, n_0 "		
množinový zápis	0	ω		O	Ω	Θ
relačný zápis	\prec	\succ	~			\asymp

 $^{^{1}}$ verzia 20100923-1028

Niektoré ďalšie definície a vzťahy

- Odstránenie absolútnej hodnoty: $|x| < a \in \mathbb{R}_0^+ \Leftrightarrow -a < x < a$
- Def.: $\lim_{n\to\infty} f(n) = a \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0 \ \exists n_0(\varepsilon) \in \mathbb{N} : \forall n > n_0(\varepsilon) \ |f(n) a| < \varepsilon$
- Def.: $\lim_{n\to\infty} f(n) = +\infty \Leftrightarrow \forall K > 0 \ \exists n_0(K) \in \mathbb{N} : \forall n > n_0(K) \ |f(n)| > K$
- Stirlingova formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

• L'Hospitalovo pravidlo: pre limity typu $0/0, \infty/\infty$ Tvr.: f, g diferencovateľné, existuje $\lim_{n\to\infty} \frac{f'(n)}{g'(n)}$, potom existuje $\lim_{n\to\infty} \frac{f(n)}{g(n)}$ a rovná sa $\lim_{n\to\infty} \frac{f'(n)}{g'(n)}$.

V praxi sa občas vyskytne nutnosť použiť L'Hospitalovo pravidlo viackrát, t.j. derivujeme čitateľa a menovateľa dovtedy, kým sme schopní vypočítať príslušnú limitu.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)} = \lim_{n \to \infty} \frac{f''(n)}{g''(n)} = \dots$$

• "Veta o dvoch policajtoch" (O minoritnej a majoritnej funkcii):

$$ak \ f(n) \le g(n) \le h(n) \ \& \lim_{n \to \infty} f(n) = \lim_{n \to \infty} h(n) = a, \ tak$$

 $\lim_{n \to \infty} g(n) \ existuje \ a \ rovn\acute{a} \ sa \ tie\check{z} \ a.$

• Hierarchia funkcií:

$$A \cdot \ln^{\gamma} \ln n \prec B \cdot \ln^{\delta} n \prec C \cdot n^{\beta} \prec D \cdot \alpha^n \prec E \cdot n! \prec F \cdot n^n$$
, kde $\alpha > 1, \beta, \gamma, \delta > 0, A, ..., F \neq 0$ čo znamená

$$A \cdot (\ln(\ln(n)))^{\gamma} \prec B \cdot (\ln(n))^{\delta} \prec C \cdot D \cdot n^{\beta} \prec E \cdot \alpha^n \prec F \cdot n! \prec n^n$$
, kde $\alpha > 1, \beta, \gamma, \delta > 0, A, ..., F \neq 0$

Dôkaz: Použijeme L'Hospitalovo pravidlo a fakt, že konštanty A, \dots, F možno vyňať pred limitu: (v dôkaze ich nebudeme uvažovať)

limitu: (v dokaze ich nebudeme dvazovat)
$$\lim_{n\to\infty}\frac{\ln^{\gamma}(\ln n)}{\ln^{\delta}n}=\lim_{n\to\infty}\frac{\gamma\ln^{\gamma-1}(\ln n)\cdot\frac{1}{\ln n}\cdot\frac{1}{n}}{\delta\ln^{\delta-1}(n)\cdot\frac{1}{n}}=\frac{\gamma}{\delta}\lim_{n\to\infty}\frac{\ln^{\gamma-1}(\ln n)}{\ln^{\delta}n}=\\ =\frac{\gamma}{\delta}\cdot\frac{\gamma-1}{\delta}\lim_{n\to\infty}\frac{\ln^{\gamma-2}(\ln n)}{\ln^{\delta}n}=\ldots=\frac{\gamma}{\delta}\cdot\frac{\gamma-1}{\delta}\cdot\ldots\cdot\frac{\gamma-(k-1)}{\delta}\lim_{n\to\infty}\frac{\ln^{\gamma-k}(\ln n)}{\ln^{\delta}n}.$$
 Raz sa stane $\gamma-k\leq 0$ a tým výpočet limity končí. V čitateli je konštanta a v menovateli zostáva

$$= \frac{\gamma}{\delta} \cdot \frac{\gamma - 1}{\delta} \lim_{n \to \infty} \frac{\ln^{\gamma - 2}(\ln n)}{\ln^{\delta} n} = \dots = \frac{\gamma}{\delta} \cdot \frac{\gamma - 1}{\delta} \cdot \dots \cdot \frac{\gamma - (k - 1)}{\delta} \lim_{n \to \infty} \frac{\ln^{\gamma - k}(\ln n)}{\ln^{\delta} n}$$

$$\lim_{n\to\infty} \frac{\ln^{\delta} n}{n^{\beta}} = \lim_{n\to\infty} \frac{\delta \ln^{\delta-1} n \cdot \frac{1}{n}}{\beta n^{\beta-1}} = \frac{\delta}{\beta} \lim_{n\to\infty} \frac{\ln^{\delta-1} n}{n^{\beta}} =$$

$$= \frac{\delta}{\beta} \cdot \frac{\delta - 1}{\beta} \lim_{n \to \infty} \frac{\ln^{\delta - 2} n}{n^{\beta}} = \dots = \frac{\delta}{\beta} \frac{\delta - 1}{\beta} \cdot \dots \cdot \frac{\delta - (k - 1)}{\beta} \lim_{n \to \infty} \frac{\ln^{\delta - k} n}{n^{\beta}}.$$

 $\ln^{\delta} n \cdot \ln^{k-\gamma}(\ln n), \text{ ktor\'e ide } k + \infty. \text{ Preto plat\'i: } \ln^{\gamma}(\ln n) \prec \ln^{\delta}, \text{ pre } \gamma, \delta > 0.$ $\lim_{n \to \infty} \frac{\ln^{\delta} n}{n^{\beta}} = \lim_{n \to \infty} \frac{\delta \ln^{\delta-1} n \cdot \frac{1}{n}}{\beta n^{\beta-1}} = \frac{\delta}{\beta} \lim_{n \to \infty} \frac{\ln^{\delta-1} n}{n^{\beta}} =$ $= \frac{\delta}{\beta} \cdot \frac{\delta-1}{\beta} \lim_{n \to \infty} \frac{\ln^{\delta-2} n}{n^{\beta}} = \dots = \frac{\delta}{\beta} \frac{\delta-1}{\beta} \cdot \dots \cdot \frac{\delta-(k-1)}{\beta} \lim_{n \to \infty} \frac{\ln^{\delta-k} n}{n^{\beta}}.$ Raz sa stane $\delta - k \le 0$ a tým výpočet limity končí. V čitateli je konštanta a v menovateli zostáva $n^{\beta} \cdot \ln^{k-\delta} n, \text{ ktor\'e ide } k + \infty. \text{ Preto plat\'i: } \ln^{\delta} n \prec n^{\beta}, \text{ pre } \delta, \beta > 0.$ $\lim_{n \to \infty} \frac{n^{\beta}}{\alpha^{n}} = \lim_{n \to \infty} \frac{\beta \cdot \beta^{n-1}}{\alpha^{n} \cdot \ln \alpha} = \frac{\beta}{\ln \alpha} \lim_{n \to \infty} \frac{n^{\beta-1}}{\alpha^{n}} =$ $= \frac{\beta}{\ln \alpha} \cdot \frac{\beta-1}{\ln \alpha} \lim_{n \to \infty} \frac{n^{\beta-2}}{\alpha^{n}} = \dots = \frac{\beta}{\ln \alpha} \cdot \frac{\beta-1}{\ln \alpha} \cdot \dots \cdot \frac{\beta-(k-1)}{\ln \alpha} \lim_{n \to \infty} \frac{n^{\beta-k}}{\alpha^{n}}.$ Raz sa stane $\beta - k \leq 0$ a tým výpočet limity končí. V čitateli je konštanta a v menovateli zostáva

$$\lim_{n\to\infty} \frac{n^{\beta}}{\alpha^n} = \lim_{n\to\infty} \frac{\beta \cdot \beta^{n-1}}{\alpha^n \cdot \ln \alpha} = \frac{\beta}{\ln \alpha} \lim_{n\to\infty} \frac{n^{\beta-1}}{\alpha^n} =$$

$$=\frac{\beta}{\ln \alpha}\cdot\frac{\beta-1}{\ln \alpha}\lim_{n\to\infty}\frac{n^{\beta-2}}{\alpha^n}=\ldots=\frac{\beta}{\ln \alpha}\cdot\frac{\beta-1}{\ln \alpha}\cdot\ldots\cdot\frac{\beta-(k-1)}{\ln \alpha}\lim_{n\to\infty}\frac{n^{\beta-k}}{\alpha^n}$$

 $\alpha^n \cdot n^{k-\beta}$, ktoré ide k $+\infty$. Preto platí: $n^{\beta} \prec \alpha^n$, pre $\beta > 0$, $\alpha > 1$.

Použijeme Stirlingovu formulu a vetu o minoritnej a majoritnej funkcii.

$$\lim_{n\to\infty} \frac{\alpha^n}{n!} = \lim_{n\to\infty} \frac{\alpha^n}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = \lim_{n\to\infty} \frac{(\alpha e)^n}{\sqrt{2\pi n} \cdot n^n}.$$

Platí: $\frac{1}{\sqrt{2\pi n}\cdot\left(\frac{n}{e}\right)^n} \leq \frac{(\alpha \cdot e)^n}{\sqrt{2\pi n}\cdot n^n} \leq \left(\frac{\alpha \cdot e}{n}\right)^n \leq \frac{\alpha \cdot e}{n}$, pre $n \geq \alpha \cdot e$. Limity "krajných "funkcií sú rovné 0, preto platí $\alpha^n \prec n!$.

Opät použijeme Stirlingovu formulu a L'Hospitalovo pravidlo ...

Opat pouzijeme Stiringovu formulu a L'Hospitalovo pravidio ...
$$\lim_{n\to\infty}\frac{n!}{n^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n}{n^n}=\lim_{n\to\infty}\frac{\sqrt{2\pi n}}{e^n}=\sqrt{2\pi}\lim_{n\to\infty}\frac{\sqrt{n}}{e^n}=\sqrt{2\pi}\lim_{n\to\infty}\frac{\frac{1}{2}n^{-\frac{1}{2}}}{e^n}=\frac{\sqrt{2\pi}\lim_{n\to\infty}\frac{1}{\sqrt{n}e^n}}{1+\frac{n}{2}n^n}=0. \text{ Preto } n! \prec n^n.$$

- $\bullet \lim_{n\to\infty} (1+\frac{a}{n})^n = e^a$
- Tvr.: $0 < f(n) \le g(n) \le h(n) \& f(n) \sim h(n) \Rightarrow g(n) \sim f(n), g(n) \sim h(n)$
- Tvr.: $0 < f(n) \le g(n) \le h(n) \& f(n) = \Theta(h(n)) \Rightarrow$

$$g(n) = \Theta(f(n)), g(n) = \Theta(h(n))$$

• Derivácie vybraných funkcií:

- (f(x) + g(x))' = f'(x) + g'(x), (f(x) g(x))' = f'(x) g'(x)
- $(c \cdot f(x))' = c \cdot f'(x)$, $(x^n)' = n \cdot x^{n-1}$, $(x^\alpha) = \alpha \cdot x^{\alpha-1}$, $\alpha \in \mathbb{R}$
- $(\ln(x))' = \frac{1}{x}$, $(e^x)' = e^x$, $(a^x)' = a^x \ln a$, $(\log_a x)' = \frac{1}{x \ln a}$
- zložená funkcia: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$
- súčin: $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- podiel: $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{g^2(x)}$

• Integrály vybraných funkcií:

- Substitučná metóda: vychádza z derivácie zloženej funkcie, t.j. $f(g(x))' = f'(g(x)) \cdot g'(x)$. Preto
 - $\int f(g(x)) \cdot g'(x) dx = F(g(x) + C, \text{ kde } F(x) \text{ je primitívna funkcia k } f, \text{ t.j. } F = \int f.$

Pri výpočte sa zavedie substitúcia t = g(x), dt = g'(x) dx a integrál sa prevedie na $\int f(t) dt = F(t) + c$. Spätným prechodom k premennej x dostávame výsledok F(g(x)) + C.

• Metóda per-partes: vychádza zo vzťahu pre deriváciu súčinu dvoch funkcií, t.j. $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$.

Preto

$$\int f(x) \cdot g'(x) \, \mathrm{d}x = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, \mathrm{d}x.$$

Pri výpočte sa integrovaná funkcia napíše v tvare $u \cdot v'$, kde u a v' sú zvolené tak, že k v' vieme nájsť primitívnu funkciu v a následne použijeme vzťah $\int u \cdot v' = u \cdot v - \int u' \cdot v$.

- $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$ $\int (f(x) g(x)) dx = \int f(x) dx \int g(x) dx$
- $\int c \cdot f(x) dx = c \cdot \int f(x) dx$
- $\int x^n dx = \frac{x^{n+1}}{n+1} + C$, pre $n \neq -1$ $\int \frac{1}{x} dx = \ln|x| + C$
- $\int e^x dx = e^x + C$ $\int a^x dx = \frac{a^x}{\ln a}, \ a > 0, \ a \neq 1$

Praktické výpočty $O, \Omega, \Theta, o, \prec, \sim, \approx$

3

- f = o(g): vypočítať $\lim_{n \to \infty} \frac{f(n)}{g(n)}$. Ak existuje a je nulová, tak f = o(g).
- $f = \Omega(g)$:
 - ak $f = \omega(g)$, tak $f = \Omega(g)$,
 - ekvivalentné s overovaním g = O(f),
 - $\bullet\,$ nájdenie C, n_0 z definície pomocou odhadov zdola.
- f = O(g):
 - buď použiť tvrdenie, ak f = o(g), tak f = O(g),
 - $\bullet\,$ alebo pomocou odhadov zhora nájsť $C,\,n_0$ z definície

- $f \sim g$: vypočítať $\lim_{n \to \infty} \frac{f(n)}{g(n)}$. Ak existuje a rovná sa 1, tak $f \sim g$.
- $f \prec g$: ekvivalentné s overovaním f = o(g)
- $f \approx g$: ekvivalentné s overovaním $f = \Theta(g)$
- $f = \Theta(g)$:
 - vypočítať $\lim_{n\to\infty} \frac{f(n)}{g(n)}$. Ak existuje a je nenulová, tak $f=\Theta(g)$,
 - ekvivalentné s overovaním f = O(g) a $f = \Omega(g)$,
 - pomocou odhadov zdola nájsť C_1, n_1 , pomocou odhadov zhora nájsť C_2, n_2 , potom C_1, C_2 a $n_0 = \max\{n_1, n_2\}$ sú parametre z definície.

Odhady $\sum_{i=1}^{n} f(i)$

- Neklesajúce (rastúce), nerastúce (klesajúce) funkcie:
- f(i) možno odhadnúť obdĺžnikom so stranami "so súradnicami"i, i+1; f(i), f(i), t.j. obsah je f(i). Pre neklesajúce funkcie na intervale [i, i+1] je takto odhadnutý obsah f(i) menší rovný ako $\int_i^{i+1} f(x) dx$, pre nerastúce na [i, i+1] zase väčší rovný.
- f(i) možno tiež odhadnúť obdĺžnikom so "so súradnicami" i-1, i; f(i), f(i), t.j. obsah je f(i). Pre neklesajúce funkcie na intervale [i-1, i] je obsah f(i) väčší rovný ako $\int_{i-1}^{i} f(x) dx$, pre nerastúce na [i-1, i] menší rovný.
 - neklesajúca funkcia na [0,n+1]:

$$\int_{0}^{n} f(x) dx \le \sum_{i=1}^{n} f(i) \le \int_{1}^{n+1} f(x) dx.$$

• nerastúca funkcia na [0,n+1]:

$$\int_{1}^{n+1} f(x) dx \le \sum_{i=1}^{n} f(i) \le \int_{0}^{n} f(x) dx.$$

- Problémy:
 - Funkcia nie je ani neklesajúca ani nerastúca:
 rozdeliť na monotónne podintervaly, na ktorých je neklesajúca, či nerastúca a aplikovať predošlý výpočet na každý z takýchto podintervalov.

- Integrál vychádza nekonečno:
 vynechať tie podintervaly, ktoré spôsobujú problém a nahradiť ich priamo odhadovanou hodnotou f(i), napr. ∑i 1/i problematický je interval [0,1], preto horné ohraničenie pre nerastúcu funkciu dostaneme ako f(1) + ∫₁ⁿ f(x).
- Určenie asymptotického rastu výsledku:

- ak
$$\lim_{n\to\infty} F(n) = +\infty$$
, $\lim_{n\to\infty} \frac{F(n+1)}{F(n)} = 1$, tak $\sum \sim F(n)$
- ak $\lim_{n\to\infty} F(n) = +\infty$, $\lim_{n\to\infty} \frac{F(n+1)}{F(n)} \neq 0$, tak $\sum = \Theta(F(n))$
- $a = 1$: $\sum \sim F(n)$
- $a \neq 1$: $\sum = \Theta(F(n))$

- ak $\lim_{n\to\infty} F(n) = a \in \mathbb{R}$, tak $\Sigma = \Theta(1)$.
- ak $\lim_{n\to\infty} F(n) = +\infty$, $\lim_{n\to\infty} \frac{F(n+1)}{F(n)} = +\infty$ alebo $\lim_{n\to\infty} \frac{F(n+1)}{F(n)} = 0$, tak nemožno použiť túto metódu.

Odhady
$$\sum_{i=1}^{\sqrt[k]{n}} f(i)$$

- Postupujeme ako v predošlom prípade len $\sqrt[k]{n}$ nahrádzame $[\sqrt[k]{n}]$ (dolná) celá časť. Dostávame ohraničenia ako funkciu $[\sqrt[k]{n}]$
- Použitím nerovností $\sqrt[k]{n} 1 < [\sqrt[k]{n}] \le \sqrt[k]{n}$ dostaneme horné i dolné ohraničenie ako funkciu $\sqrt[k]{n}$. **Pozor!** Ak dosádzame do výrazu V(x), ktorý predstavuje klesajúcu (nerastúcu) funkciu s argumentom $[\sqrt[k]{n}]$, napr. $\frac{1}{[\sqrt[k]{n}]}$, tak treba dosádzať opačne, čiže platí $V(\sqrt[k]{n}) \le V(\sqrt[k]{n} 1)$.
- Použitím tohto faktu máme, že pre
 - neklesajúcu funkciu f s nerastúcou primitívnou funkciou F:

$$F(\sqrt[k]{n}) - F(0) \le \sum_{i=1}^{\lfloor \sqrt[k]{n} \rfloor} f(i) \le F(\sqrt[k]{n}) - F(1).$$

- neklesajúcu funkciu f s neklesajúcou primitívnou funkciou F:

$$F(\sqrt[k]{n}-1) - F(0) \le \sum_{i=1}^{[\sqrt[k]{n}]} f(i) \le F(\sqrt[k]{n}+1) - F(1).$$

- nerastúcu funkciu f s neklesajúcou primitívnou funkciou F:

$$F(\sqrt[k]{n}) - F(1) \le \sum_{i=1}^{\lfloor \sqrt[k]{n} \rfloor} f(i) \le F(\sqrt[k]{n}) - F(0).$$

- nerastúcu funkciu f s nerastúcou primitívnou funkciou F:

$$F(\sqrt[k]{n}+1) - F(1) \le \sum_{i=1}^{\lfloor \sqrt[k]{n} \rfloor} f(i) \le F(\sqrt[k]{n}-1) - F(0).$$

- Určenie rastu:
 - $\lim_{n\to\infty} F(n) = +\infty$ a $\lim_{n\to\infty} \frac{F(n+1)}{F(n)} = 1$, tak $\sum \sim F(\sqrt[k]{n})$ - $\lim_{n\to\infty} F(n) = +\infty$ a $\lim_{n\to\infty} \frac{F(n+1)}{F(n)} = a \neq 0$, tak $\sum = \Theta(F(\sqrt[k]{n}))$ - $\lim_{n\to\infty} F(n) = a \in \mathbb{R}$, tak $\sum = \Theta(1)$.
- $$\begin{split} \bullet & (\lfloor x \rfloor)^n \sim x^n \sim (\lceil x \rceil)^n, \, \text{pre } n > 0 \\ & x 1 < \lfloor x \rfloor \leq x \text{ a } (x 1)^n \sim x^n, \\ & \text{keďže } \lim_{x \to \infty} \frac{(x 1)^n}{x^n} = \left(\lim_{x \to \infty} \frac{x 1}{x}\right)^n = 1 \\ & x \leq \lceil x \rceil < x + 1 \text{ a } (x + 1)^n \sim x^n, \\ & \text{keďže } \lim_{x \to \infty} \frac{(x + 1)^n}{x^n} = \left(\lim_{x \to \infty} \frac{x + 1}{x}\right)^n = 1 \end{split}$$

Použila sa veta o limite zloženej funkcie.

- $\ln(\lfloor x \rfloor) \sim \ln x \sim \ln(\lceil x \rceil)$, keďže $\ln(x-1) \sim \ln x \sim \ln(x+1)$. (Ukáže sa to pomocou L'Hospitalovho pravidla.)
- ak $f \sim \hat{f}$, $g \sim \hat{g}$, tak $f \cdot g \sim \hat{f} \cdot \hat{g}$ Proste $\lim \frac{f \cdot g}{\hat{f} \cdot \hat{g}} = (\lim \frac{f}{\hat{f}}) \cdot (\lim \frac{g}{\hat{g}}) = 1 \cdot 1 = 1$. (Veta o limite súčinu.)

Cvičenia

- 1. Dokážte nasledujúce tvrdenia (symboly O, Ω, Θ sú definované cez " ε, n_0 "):
 - (a) ak f(n) = o(q(n)), tak f(n) = O(q(n))
- (a') Zistite, či platí opačné tvrdenie, t.j. ak f(n) = O(g(n)), tak f(n) = o(g(n)). Ak nie, nájdite funkcie pre ktoré to neplatí.
- (b) ak $f = \Theta(g)$ práve vtedy, keď f = O(g) & g = O(f)
- (c) ak $f = \Omega(g)$ práve vtedy, keď g = O(f)
- (d) ak $\lim_{n\to\infty} \frac{f(n)}{g(n)} = a \neq 0$, tak $f \in \Theta(g)$
- (e) Dokážte tranzitívnosť symbolov $O,\Theta,\Omega,\sim,\prec,\asymp,o,\omega,$ t.j.
 - ak f = O(g) & g = O(h), tak f = O(h),
 - ak $f = \Theta(g)$ & $g = \Theta(h)$, tak $f = \Theta(h)$,
 - ak $f = \Omega(g)$ & $g = \Omega(h)$, tak $f = \Omega(h)$,
 - ak f = o(g) & g = o(h), tak f = o(h),
 - ak $f = \omega(g)$ & $g = \omega(h)$, tak $f = \omega(h)$,
 - ak $f \prec g \ \& \ g \prec h$, tak $f \prec h$,
 - ak $f \sim g \& g \sim h$, tak $f \sim h$,
 - ak $f \asymp g \ \& \ g \asymp h,$ tak $f \asymp h,$
- (f) ak $0 < f(n) \le g(n) \le h(n)$ & $f(n) \sim h(n)$, tak $g(n) \sim f(n)$, $g(n) \sim h(n)$

(h) ak
$$0 < f(n) \le g(n) \le h(n)$$
 & $f(n) = \Theta(h(n))$, tak $g(n) = \Theta(f(n))$, $g(n) = \Theta(h(n))$

• 2. Ukážte nasledujúce vzťahy:

(a)
$$x^2 = o(x^5)$$

(b)
$$\sin(x) = o(x)$$

(c)
$$\sin(x) = O(1)$$

(d)
$$14,709\sqrt{x} = o(x/2 + 7\cos x)$$

(e)
$$1/x = o(1)$$

(f)
$$2^n = o(n!)$$

(e)
$$1/x = o(1)$$
 (f) $2^n = o(n!)$
(g) $x^3 + 5x^2 + 77\cos x = O(x^5)$ (h) $\frac{1}{1+x^2} = O(1)$

(h)
$$\frac{1}{1+r^2} = O(1)$$

(i)
$$n = o(2^n)$$

(j)
$$\ln \ln n = o(\ln n)$$

(k)
$$23 \ln x = o(x^{0.02})$$

• 3. Dokážte, že (nájsť C_1, C_2, n_0 , či C, n_0)

(a)
$$(x+1)^2 = \Theta(3x^2)$$

(b)
$$\frac{x^2+5x+7}{5x^3+7x+2} = \Theta\left(\frac{1}{x}\right)$$

(a)
$$(x+1)^2 = \Theta(3x^2)$$
,
(b) $\frac{x^2+5x+7}{5x^3+7x+2} = \Theta\left(\frac{1}{x}\right)$
(c) $x^4 - 13x^3 + 22x^2 - 17x - 100 = \Theta(x^4)$,

(d)
$$2x^3 + x^2 + 7x + 10 = \Theta(x^3)$$

(e)
$$x^5 - 7x^3 + 10x^4 - 100x^2 + 90x + 300 = O(x^6)$$
,

(f)
$$x^4 - 100x^3 - 20x^2 - 15x + 1000 = \Omega(x^2)$$

• 4. Zistite, či platí:

(a)
$$\sqrt{7 + \sqrt{3x}} = \Theta(x^{1/4})$$
, (b) $\left(1 + \frac{3}{x}\right)^x = \Theta(1)$,
(c) $(x^2 + 3x + 2)^4 \sim x^8$, (d) $x^3(\ln \ln x)^3 = o(x^3 \ln x)$,
(e) $\frac{(\sqrt{x} + 1)^3}{x^2 + 1} = o(1)$, (f) $\sqrt{\ln x + 1} = \Omega(\ln \ln x)$

(b)
$$\left(1 + \frac{3}{x}\right)^x = \Theta(1)$$

(c)
$$(x^2 + 3x + 2)^4 \sim x^8$$
,

(d)
$$\dot{x}^3 (\ln \ln x)^3 = o(x^3 \ln x),$$

(e)
$$\frac{(\sqrt{x}+1)^3}{x^2+1} = o(1)$$

(f)
$$\sqrt{\ln x + 1} = \Omega(\ln \ln x)$$

• 5. Usporiadajte v relácii ≺ nasledujúce funkcie:

(a) $\ln \ln n$, n, $\ln n$, 2^n , n!,

(b)
$$2^{\sqrt{n}}$$
, $e^{\ln n^3}$, $n^{3,01}$, 2^{n^2} ,

(c)
$$n^{1,6}$$
, $\ln n^3 + 1$, $\sqrt{n!}$, $n^{3 \ln n}$,

(d)
$$n^3 \ln n$$
, $(\ln \ln n)^3$, $n^5 2^n$, $(n+4)^{12}$

• 6. Rozhodnite o vzťahu (O, Ω, Θ, o) :

(a)
$$\sin x$$
, 1

(b)
$$x^2 + 7 \ln x + e^{\ln x}$$
, x^3

(c)
$$x^3 + 55x^2 + \ln x^2$$
, x^5 (d) $x^{\ln x}$, x^{100}

(d)
$$x^{\ln x}$$
, x^{100}

• 7. Odhadnite sumy:

(a)
$$\sum_{i=1}^{n} i^2$$
,

(b)
$$\sum_{i=1}^{n} i^k$$
, $k > 0$,

(c)
$$\sum_{i=1}^{n} \sqrt[3]{i}$$

(d)
$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}}$$

(a)
$$\sum_{i=1}^{n} i^{2}$$
, (b) $\sum_{i=1}^{n} i^{k}$, $k > 0$, (c) $\sum_{i=1}^{n} 3\sqrt{i}$, (d) $\sum_{i=1}^{n} \frac{1}{\sqrt{i}}$, (e) $\sum_{i=1}^{n} i^{k}$, $k < 0$ (Pozor $k = -1$), (f) $\sum_{i=1}^{\sqrt{n}} \frac{1}{\sqrt{i}}$, (g) $\sum_{i=1}^{n} \ln i$, (h) $\sum_{i=1}^{n} \frac{1}{(x-5,5)^{2}}$,

(f)
$$\sum_{i=1}^{\sqrt{n}} \frac{1}{\sqrt{i}}$$
,

(i)
$$\sum_{i=1}^{\sqrt{n}} (\ln i + i)$$

(n)
$$\sum_{i=1}^{n} \frac{1}{(x-5,5)^2}$$

(i)
$$\sum_{i=1}^{\sqrt{n}} (\ln i + i)$$
,

(j)
$$\sum_{i=1}^{n} \left(\frac{1}{j} + \frac{3}{j^2} + \frac{4}{j^3} \right)$$

Riešené príklady

Príklad

 $Dok\acute{a}\check{z}te$, $\check{z}e\ 13x^7 - 10x^6 - 22x^5 + 100x^4 + 1024x^3 - 23x^2 + 8x + 65536 = <math>O(x^7)$.

Riešenie:

Potrebujeme nájsť C > 0 a x_0 také, že pre každé $x > x_0$ bude platiť:

$$|13x^7 - 10x^6 - 22x^5 + 100x^4 + 1024x^3 - 23x^2 + 8x + 65536| \le C|x^7|.$$

Použijeme vzťahy $|a+b| \le |a| + |b|$ a $|a-b| \le |a| + |b|$.

T.j. $P := |13x^7 - 10x^6 - 22x^5 + 100x^4 + 1024x^3 - 23x^2 + 8x + 65536| \le |13x^7| + |10x^6| + |22x^5| + |100x^4| + |1024x^3| + |23x^2| + |8x| + |65536|.$

Pre $x \ge 0$ môžeme absolútne hodnoty odstrániť. Pre $x \ge 1$ zase možno x^k , k < 7 nahradiť priamo x^7 .

Preto $P \le 13x^7 + 10x^7 + 22x^7 + 100x^7 + 1024x^7 + 23x^7 + 8x^7 + 65536x^7 \le (13 + 10 + 22 + 100 + 1024 + 23 + 8 + 65536)x^7 = 66736x^7$.

Záver: pre C = 66736 a $x_0 = \max\{0, 1\} = 1$ platí $13x^7 - 10x^6 - 22x^5 + 100x^4 + 1024x^3 - 23x^2 + 8x + 65536 = O(x^7)$.

iný spôsob riešenia

Predpokladáme, že

- 1. od x_1 je $13x^7 10x^6 22x^5 + 100x^4 + 1024x^3 23x^2 + 8x + 65536 \ge 0$. Výraz prepíšeme napr. takto $10x^7 + (x^7 10x^6) + (x^7 22x^5) + (x^7 23x^2) + \dots$, čo je pre $x \ge 10$ a $x^2 \ge 22$ a $x^5 \ge 23$ určite väčšie rovné 0. Preto $x_1 = 10$.
- 2. od x_2 je $x^7 \ge 0$, t.j. $x_2 = 0$.

Tieto 2 podmienky nám zabezpečia, že v odhadoch nebudeme musieť uvažovať absolútne hodnoty. Následne odhadujeme zhora pre $x>x_1,x_2$. Z bodu 2. možno vynechať členy so zápornými koeficientami, ktoré nám znižujú hodnotu výrazu. Dostávame $P \le 13x^7 + 100x^4 + 1024x^3 + 65536$. Potom pre x>10,0,1 máme $P \le 13x^7 + 100x^7 + 1024x^7 + 65536x^7 = 66673$, $x_0=\max\{10,0,1\}$. **Záver:** pre $x_0=10$ a C=66673 máme $P=O(x^7)$.

Príklad

$$Dokážte, že 13x^7 - 10x^6 - 22x^5 + 100x^4 + 1024x^3 - 23x^2 + 8x + 65536 = \Omega(x^7).$$

Riešenie:

Opäť sa zbavíme absolútnych hodnôt, ako v predošlom príklade. Potom pre $x \geq 0, 1, 10$ odhadujeme zdola:

 $13x^7-10x^6-22x^5+100x^4+1024x^3-23x^2+8x+65536\geq 13x^7-10x^6-22x^54-23x^2\geq 13x^7-10x^6-22x^6-23x^6=12x^7+x^7-55x^6.$ (Pre nezáporné x sme sa zbavili výrazov s kladnými koeficientami, ktoré nám zvyšovali hodnotu výrazu a pre $x\geq 1$ sme nahrádzali všetky mocniny v členoch so zápornými koeficientami x^6 , čím sme znižovali hodnotu výrazu.) V prípade, že $x^7-55x^6\geq 0$, môžeme v odhade aj tento člen vynechať, t.j. ak $x\geq 55$, tak $P\geq 12x^7$.

Záver: Pre C = 12 a $n_0 = \max\{10, 0, 1, 55\} = 55$ máme $P = \Omega(x^7)$.

Príklad

$$Dokážte, že\ 13x^7 - 10x^6 - 22x^5 + 100x^4 + 1024x^3 - 23x^2 + 8x + 65536 = \Theta(x^7).$$

Riešenie:

Pomocou výsledkov z predošlých 2 príkladov máme, že napr. pre $C_1 = 12$, $x_{01} = 55$ je $P = \Omega(x^7)$ a pre $C_2 = 66673$ a $x_{02} = 10$ máme $P = O(x^7)$. Preto pre $C_1 = 12$, $C_2 = 66673$ a $x_0 = \max\{55, 10\} = 55$ máme $P = \Theta(x^7)$.

Príklad

Dokážte, že platí:
$$x^5 - 100x^4 + 20x^3 - 200x^2 - 10x - 50 = \Omega(x^2)$$
.

Riešenie:

Označme $P:=x^5-100x^4+20x^3-200x^2-10x-50$. Postupujeme úplne rovnako, ako keby sme odhadovali $P = \Omega(x^5)$, pretože ak už raz budeme mať, že $C|x^5| \leq |P|$, tak pre x > 1 bude tiež platif $C|x^2| \le C|x^5| \le |P|$.

Čiže, opäť sa zbavíme absolútnych hodnôt, napríklad takto: $P = (\frac{1}{4}x^5 - 100x^4) + 20x^3 + (\frac{1}{4}x^5 - 100x^4)$ $(200x^2) + (\frac{1}{4}x^5 - 10x) + (\frac{1}{4}x^5 - 50)$. Ak každý z výrazov bude nezáporný, tak určite P bude nezáporné. Toto nastane pre $x \ge 200$, $x \ge 0$, $x^3 \ge 800$, $x^4 \ge 40$ a $x^5 \ge 200$, t.j. pre $x \ge 200$.

Ďalej pre $x \ge 1,200$ odhadujeme zdola. Platí $P \ge x^5 - 100x^4 - 200x^2 - 10x - 50 \ge x^5 - (100 + 200 + 10 + 50)x^4 = x^5 - 360x^4$. Zvolíme 0 < C < 1. $P \ge Cx^5 + (1 - C)x^5 - 360x^4$. Ak $(1-C)x^5-360x^4\geq 0$, tak môžeme tento výraz vynechať v odhadoch zdola. To bude pre $x\geq \frac{360}{1-C}$. Preto pre pevne zvolené 0 < C < 1 a $x_0 = \max\{200, \frac{360}{1-C}\}$ máme $|P| \geq C|x^5|$. Nakoniec pre $x \geq 1, x_0$ máme C a max $\{x_0, 1\}$, ktoré nám zabezpečí, že $P = \Omega(x^2)$. Keď za C zvolíme napr. $\frac{1}{2}$, tak x_0 bude rovné 720.

Príklad

Dokážte, že ak f = o(g), tak f = O(g).

Riešenie:

Vyjdeme z definície symbolu o, t.j. $f = o(g) \Leftrightarrow \exists \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

Z definície limity pre funkciu $\frac{f}{g}$ platí:

$$\forall \varepsilon > 0, \ \exists n_0(\varepsilon) : \forall n > n_0(\varepsilon) \ |\frac{f(n)}{g(n)} - 0| < \varepsilon, \ \text{t.j.} \ \left|\frac{f(n)}{g(n)}\right| = \frac{|f(n)|}{|g(n)|} < \varepsilon, \ |f(n)| \le \varepsilon |g(n)|.$$

Aby sme dostali konkrétne C a n_0 , tak pevne zvolíme ε , napr. 1, k nemu máme $n_0 = n_0(\varepsilon)$.

Príklad

 $Dok\acute{a}\check{z}te$, $\check{z}e$ ak $\lim_{n\to\infty}\frac{f(n)}{g(n)}=a>0$, tak $f=\Theta(g)$. (Pre funkcie f,g od istého N_0 kladné.)

Riešenie:

Vyjdeme z definície limity, t.j.

$$\forall \varepsilon > 0, \exists n_0(\varepsilon): \forall n > n_0(\varepsilon), \left| \frac{f(n)}{g(n)} - a \right| < \varepsilon.$$

 $\forall \, \varepsilon > 0, \, \exists \, n_0(\varepsilon) \colon \forall \, n > n_0(\varepsilon), \, \left| \frac{f(n)}{g(n)} - a \right| < \varepsilon.$ Odstránením absolútnej hodnoty máme, že $-\varepsilon < \frac{f(n)}{g(n)} - a < \varepsilon, \, \text{t.j.}$

$$a - \varepsilon < \frac{f(n)}{g(n)} < a + \varepsilon$$
. Pre $n \ge N_0$ možno nerovnosť násobiť $g(n)$, čiže $(a - \varepsilon)g(n) < f(n) < (a + \varepsilon)g(n)$.

Aby sme dostali konkrétne C_1, C_2, n_0 , tak opäť pevne zvolíme ε , tentokrát tak, aby $a - \varepsilon > 0$. Potom $C_1 = a - \varepsilon$, $C_2 = a + \varepsilon$ a $n_0 = \max\{n_0(\varepsilon), N_0\}$.

Príklad

 $\label{eq:definition} Dok\acute{a}\check{z}te,\ \check{z}e\ ak\ {\rm lim}_{n\to\infty}\,\frac{f(n)}{g(n)}=a\neq 0,\ tak\ f=\Theta(g).$

Riešenie:

Vyjdeme z definície limity, t.j.

$$\forall \varepsilon > 0, \exists n_0(\varepsilon) : \forall n > n_0(\varepsilon), \left| \frac{f(n)}{g(n)} - a \right| < \varepsilon.$$

Použijeme vzťah $|a| - |b| \le |a - b|$, t.j. $|\frac{f(n)}{g(n)}| - |a| \le |\frac{f(n)}{g(n)}| - a| < \varepsilon$. Odstránením absolútnej hodnoty máme, že $-\varepsilon < \left|\frac{f(n)}{g(n)}\right| - |a| < \varepsilon$, t.j.

$$|a| - \varepsilon < \left| \frac{f(n)}{g(n)} \right| = \frac{|f(n)|}{|g(n)|} < |a| + \varepsilon$$
. Prenásobíme nerovnosť $|g(n)|$, čiže $(|a| - \varepsilon)|g(n)| < |f(n)| < (|a| + \varepsilon)|g(n)|$.

Aby sme dostali konkrétne C_1, C_2, n_0 , tak opäť pevne zvolíme ε , tentokrát tak, aby $|a| - \varepsilon > 0$. Potom $C_1 = |a| - \varepsilon$, $C_2 = |a| + \varepsilon$ a $n_0 = n_0(\varepsilon)$.

Príklad

Dokážte, že ak $f = \Omega(g)$ a $g = \Omega(h)$, tak $f = \Omega(h)$, t.j. tranzitívnosť symbolu Ω .

Riešenie:

Z definície symbolu Ω máme:

$$C_1 > 0$$
 a $n_{01} \in \mathbb{N}$ také, že $\forall n > n_{01} \ C_1 \cdot |g(n)| \le |f(n)|$, $C_2 > 0$ a $n_{02} \in \mathbb{N}$ také, že $\forall n > n_{02} \ C_2 \cdot |h(n)| \le |g(n)|$.

Preto $|f(n)| \ge C_1 \cdot |g(n)| \ge C_1 \cdot C_2 \cdot |h(n)|$, pre $n > \max\{n_{01}, n_{02}\}$.

Záver: Hľadané $C = C_1 \cdot C_2$ a $n_0 = \max\{n_{01}, n_{02}\}$.

Príklad

Usporiadajte nasledujúce funkcie podľa asymptotického rastu, t.j. v relácii \prec : $n^{\ln n}$, $(\ln n)^n$, $4^{\frac{n}{2}}$, $\sqrt[5]{n!}$.

Riešenie:

Skúsme upraviť všetky funkcie v tvare mocnín e:

$$\begin{split} n^{\ln n} &= (e^{\ln n})^{\ln n} = e^{\ln^2 n}, \\ (\ln n)^n &= e^{n \cdot \ln \ln n}, \\ 4^{\frac{n}{2}} &= e^{\ln 4 \cdot \frac{n}{2}} = e^{n \cdot \ln 2}, \\ \sqrt[5]{n!} &= e^{\frac{1}{5} \ln n!} = e^{\frac{1}{5} \left(\ln \left(\sqrt{2\pi n} \left(\frac{n}{e}\right)^n\right)\right)} = e^{\frac{1}{5} \left(\ln \sqrt{2\pi n} + \ln \left(\frac{n}{e}\right)^n\right)} = e^{\frac{1}{5} \left(\frac{1}{2} (\ln 2 + \ln \pi + \ln n) + n \ln \frac{n}{e}\right)} = \\ &= e^{\frac{1}{5} \left(\frac{1}{2} (\ln 2 + \ln \pi + \ln n) + n (\ln n - \ln e)\right)} = e^{\frac{1}{5} n \ln n - \frac{1}{5} n + \frac{1}{10} \ln n + \frac{\ln 2\pi}{10}}. \end{split}$$

Nie je ťažké vidieť, že limity exponentov, keď $n \to \infty$ sú rovné $+\infty$ a možno ich usporiadať podľa relácie \prec (o) - stačí porovnávať signifikantné členy (prečo?). Za týchto predpokladov platí, že $f \prec g \Rightarrow e^f \prec e^g$. ($\lim \frac{e^f}{e^g} = \lim e^{f-g} = \lim e^{g(-1+\frac{f}{g})}$. Limita exponentu je podľa vety o súčine funkcií rovná $-\infty$, keďže $\lim g = +\infty$ a $\lim (-1 + \frac{f}{g}) = -1 + 0 = -1$. Pomocou vety o limite zloženej funkcie pre e^x dostávame, že výsledná limita je rovná 0, keďže $\lim_{x\to-\infty}e^x=0$.)

$$\ln^2 n$$
, $n \cdot \ln \ln n$, $\ln 2 \cdot n$, $\frac{1}{5} n \ln n - \frac{1}{5} n + \frac{1}{10} \ln n + C$, kde $C := \frac{1}{10} \ln 2\pi$

Priamo z hierarchie funkcií máme, že $\ln^2 n \prec \ln 2 \cdot n.$

 $Z \ln 2 \prec \ln \ln n$ platí $n \cdot \ln 2 \prec n \cdot \ln \ln n$.

Opäť z hierarchie funkcii vyplýva $\ln \ln n \prec \ln n$, preto $n \ln \ln n \prec \frac{1}{5} n \ln n$.

Záver: $n^{\ln n} \prec 4^{\frac{n}{2}} \prec (\ln n)^n \prec \sqrt[5]{n!}$.

Príklad

Zistite asymptotický rast funkcie $f(n) = \sum_{i=1}^{n} \frac{1}{i^2}$.

Riešenie:

$$\int_{1}^{n+1} g(x) dx \le \sum_{i=1}^{n} g(i) \le \int_{0}^{n} g(x) dx$$

Funkcia $g(x) = \frac{1}{x^2}$ je na intervale $(0, \infty)$ klesajúca. Preto pre odhad platí: $\int_1^{n+1} g(x) \, \mathrm{d}x \le \sum_{i=1}^n g(i) \le \int_0^n g(x) \, \mathrm{d}x.$ Primitívna funkcia k funkcii g(x) je rovná $G(x) := -\frac{1}{x} + C$ (použije sa vzorec pre x^{-2}).

Vidíme, že nie je definovaná v bode 0, preto by sa hodnota integrálu s hranicou 0 počítala ako limita sprava (0⁺) a jej hodnota by bola nekonečno, čiže horná hranica by nám nedala odpoveď v závislosti od n, bola by stále rovná $+\infty$.

Preto upresníme odhad:

$$\int_{1}^{n+1} g(x) \, \mathrm{d}x \le \sum_{i=1}^{n} g(i) \le g(1) + \int_{1}^{n} g(x) \, \mathrm{d}x.$$

Po dosadení do vzťahu máme:

$$\left[-\frac{1}{x}\right]_{1}^{n+1} = 1 - \frac{1}{n+1}, \qquad g(1) + \left[-\frac{1}{x}\right]_{1}^{n} = 1 + 1 - \frac{1}{n} = 2 - \frac{1}{n}.$$

Platí: $\frac{1}{2} \le 1 - \frac{1}{n+1} \le \sum_{i=1}^{n} \frac{1}{i^2} \le 2 - \frac{1}{n} \le 2$, pre $n \ge 1$. Preto $f(n) = \Theta(1)$.

Zistite asymptotický rast funkcie $f(n) = \sum_{i=1}^{n} \ln i$.

Riešenie:

Funkcia $g(x) = \ln x$ je na intervale $(0, \infty)$ rastúca. Preto pre odhad platí:

$$\int_0^n g(x) \, dx \le \sum_{i=1}^n g(i) \le \int_1^{n+1} g(x) \, dx.$$

Primitívnu funkciu k ln x možno dostať pomocou metódy per-partes:

$$\int \ln x \, \mathrm{d}x = \begin{vmatrix} f = \ln x & g' = 1 \\ f' = \frac{1}{x} & g = x \end{vmatrix} = x \ln x - \int x \frac{1}{x} \, \mathrm{d}x = x \ln x - x + C$$
 Hoci primitívna funkcia nie je definovaná v 0, existuje konečná jednostranná limita $\lim_{x \to 0^+} x \ln x = 1$

 $\lim_{x\to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x\to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x\to 0^+} x = 0$. Preto môžeme predošlý vzorec použiť priamo pre od-

Jednoduchší spôsob (nebude sa musieť pomocou L'Hospitalovho pravidla počítať limita) vyjde, ak jednoducho v dolnom odhade pre interval (0,1) použijeme priamo funkčnú hodnotu v bode 1, čiže ln $1 + \int_1^n g(n)$. Výpočet sa bude líšiť od predošlého o nejakú konštantu C.

Dolná hranica: $\int_0^n \ln x \, dx = [x \ln x - x]_0^n = (n \ln n - n) - \lim_{x \to 0^+} (x \ln x - x) = n \ln n - n$.

Horná hranica:

To the interior.
$$\int_{1}^{n+1} \ln x \, dx = [x \ln x - x]_{1}^{n+1} = (n+1) \ln(n+1) - (n+1) + 1 = n \ln(n+1) - n + \ln(n+1).$$
Takže:

$$n \ln n - n \le \sum_{i=1}^{n} \ln i \le n \ln(n+1) - n + \ln(n+1).$$

Vidíme, že obe strany sa "podobajú" na $n \ln n - n$. Ak sa nám podarí dokázať, že horná a dolná hranica je v relácii \sim s touto funkciou, tak podľa vety o dvoch policajtoch môžeme tvrdiť, že aj $f(n) = \sum_{i=1}^{n} \ln i$ je v relácii ~ s funkciou $n \ln n - n$.

Dolná hranica sa priamo rovná $n \ln n - n$, čiže podiel je rovný 1 a limita konštantnej postupnosti zloženej zo samých jednotiek je tiež 1.

Pre hornú hranicu vypočítame

(každý člen v limite vydelíme výrazom $n \ln n$ a použijeme $\lim_{n\to\infty} \frac{\ln(n+1)}{\ln n} = 1$):

$$\lim_{n \to \infty} \frac{n \ln(n+1) - n + \ln(n+1)}{n \ln n - n} = \lim_{n \to \infty} \frac{\frac{\ln(n+1)}{\ln n} - \frac{1}{\ln n} + \frac{1}{n} \cdot \frac{\ln(n+1)}{\ln n}}{1 - \frac{1}{\ln n}} = 1.$$

Záver: $f(n) \sim n \ln n - n$.

Poznámka 1: Vypočítaný vzťah predstavuje základný odhad Stirligovho vzorca pre n!, keďže $\ln n! = \sum_{i=1}^{n} \ln i \sim n \ln n - n = n \ln n - n \ln e = n \ln \left(\frac{n}{e}\right)^{n} = \ln \left(\frac{n}{e}\right)^{n}.$

Poznámka 2: Pre reláciu ~ sú podstatné len signifikantné členy porovnávaných funkcií. Preto k $n \ln n - n$ možno pripočítať akúkoľvek funkciu, ktorá je v asymptoticky menšia ako $n \ln n$ a dostaneme iné "riešenie úlohy".

Príklad

Zistite asymptotický rast funkcie $f(n) = \sum_{i=1}^{\sqrt{n}} \frac{1}{\sqrt{2i}}$.

Riešenie: $f(n) = \sum_{i=1}^{\sqrt{n}} \frac{1}{\sqrt[3]{2i}} = \sum_{i=1}^{\lfloor \sqrt{n} \rfloor} \frac{1}{\sqrt[3]{2i}}, \text{ kde } \lfloor x \rfloor \text{ je dolná celá časť z } x. \text{ Podľa definície, je to najväčšie celé}$

číslo menšie rovné x, čiže $x-1<\lfloor x\rfloor\leq x$. Funkcia $g(n):=\frac{1}{3\sqrt{2n}}$ je na $(0,\infty)$ klesajúca. Primitívna funkcia k funkcii g je

$$G(x) := \int g(x) \, \mathrm{d}x = \int 2^{-\frac{1}{3}} x^{-\frac{1}{3}} \, \mathrm{d}x = 2^{-\frac{1}{3}} \frac{x^{\frac{2}{3}}}{\frac{2}{3}} + C = \frac{3}{2^{\frac{4}{3}}} x^{\frac{2}{3}} + C.$$

Táto funkcia je definovaná v 0, preto nebudú žiadne problémy s intervalom (0, 1).

Pre odhad f(n) máme:

$$\int_{1}^{\lfloor \sqrt{n} \rfloor + 1} g(x) \, \mathrm{d}x \le f(n) \le \int_{0}^{\lfloor \sqrt{n} \rfloor} g(x) \, \mathrm{d}x.$$

Po dosadení máme:

$$G(\lfloor \sqrt{n} \rfloor + 1) - G(1) \leq f(n) \leq G(\lfloor \sqrt{n} \rfloor) - G(0)$$

Funkcia G je rastúca, preto keď nahradíme v jej argumente výskyt $\lceil \sqrt{n} \rceil$ hodnotami menšími, či väčšími, tak sa jej hodnota patrične zmení, čiže zmenší alebo zväčší sa. Takže:

$$G(\sqrt{n} - 1 + 1) - G(1) \le G(\lfloor \sqrt{n} \rfloor + 1) - G(1) \le f(n) \le G(\lfloor \sqrt{n} \rfloor) - G(0) \le G(\sqrt{n}) - G(0)$$
$$G(\sqrt{n}) - G(1) \le f(n) \le G(\sqrt{n}) - G(0),$$

t.j.

$$\begin{array}{l} \frac{3}{2^{\frac{4}{3}}}(\sqrt{n})^{\frac{2}{3}} - \frac{3}{2^{\frac{4}{3}}} \leq f(n) \leq \frac{3}{2^{\frac{4}{3}}}(\sqrt{n})^{\frac{2}{3}} \\ \frac{3}{2^{\frac{4}{3}}}n^{\frac{1}{2} \cdot \frac{2}{3}} - \frac{3}{2^{\frac{4}{3}}} = \frac{3}{2^{\frac{4}{3}}}n^{\frac{1}{3}} - \frac{3}{2^{\frac{4}{3}}} \leq f(n) \leq \frac{3}{2^{\frac{4}{3}}}n^{\frac{1}{3}}. \end{array}$$

Záver: $f(n) \sim \frac{3}{2\frac{4}{3}} n^{\frac{1}{3}} = \frac{3}{2\frac{4}{3}} \sqrt[3]{n}$.

Príklad Určte asymptotický rast sumy

$$\sum_{i=1}^{\sqrt{n}} (i + \ln i) = \sum_{i=1}^{\lfloor \sqrt{n} \rfloor} (i + \ln i).$$

Riešenie:

 $f(x) := x + \ln x$, $f'(x) = 1 + \frac{1}{x} > 0$, pre $x \in \mathbb{R}^+$, teda f(x) je rastúca na $(0, \infty)$. Hranice: $k := |\sqrt{n}|$

$$\int_0^k (x + \ln x) \, \mathrm{d}x \le \sum_{i=1}^k (i + \ln i) \le \int_1^{k+1} (x + \ln x) \, \mathrm{d}x$$

(per partes)

$$F(x) = \int (x + \ln x) dx = \frac{1}{2}x^2 + x \ln x - x + C$$

Dolná hranica: hoci F(x) nie je v bode 0 definovaná, ale je spojitá v bode 0, preto ju možno tzv. spojite dodefinovať. Druhý spôsob ako sa vyhnúť problémom s nulovou hranicou je $1 + \ln 1 +$ $\int_1^k (x+\ln x)\,\mathrm{d}x = 1 + \tfrac12 k^2 + k\ln k - k - \tfrac12 + 1 = \tfrac12 k^2 + k\ln k - k + \tfrac32 \text{ Výsledky sa budú líšiť o konštantu,}$ čo v tomto prípade nemá vplyv na asymptotický rast. (2. odhad by mal byť presnejší.)

Horná hranica: $\frac{1}{2}(k+1)^2 + (k+1)\ln(k+1) - (k+1) - \frac{1}{2} + 1 = \frac{1}{2}k^2 + k + \frac{1}{2} + k\ln(k+1) + \ln(k+1) - k - 1 - \frac{1}{2} + 1 = \frac{1}{2}k^2 + k\ln(k+1) + \ln(k+1)$.

Dosadíme $\lfloor \sqrt{n} \rfloor$ za k:

$$D := \frac{1}{2}(\lfloor \sqrt{n} \rfloor)^2 + \lfloor \sqrt{n} \rfloor \ln(\lfloor \sqrt{n} \rfloor) - \lfloor \sqrt{n} \rfloor$$

Dolnú hranicu odhadneme zdola tak, že do rastúcich funkcii $\frac{1}{2}x^2$ a $x \ln x$ dosadíme $\sqrt{n} - 1$ a do klesajúcej funkcie -x dosadíme \sqrt{n} .

$$D \ge \frac{1}{2} \left(\sqrt{n} - 1 \right)^2 + \left(\sqrt{n} - 1 \right) \ln(\sqrt{n} - 1) - \sqrt{n} = \frac{1}{2} n - 2\sqrt{n} + \frac{1}{2} + \sqrt{n} \ln(\sqrt{n} - 1)$$

Všetky funkcie vystupujúce v hornej hranici sú rastúce, preto do nich dosádzame priamo \sqrt{n} , aby sme ju odhadli zhora.

$$H \le \frac{1}{2}n + \sqrt{n}\ln(\sqrt{n} + 1) + \ln(\sqrt{n} + 1).$$

Preto platí:

$$\frac{1}{2}n + \sqrt{n}\ln(\sqrt{n} - 1) - 2\sqrt{n} + \frac{1}{2} \le \sum_{i=1}^{\sqrt{n}} (i + \ln i) \le \frac{1}{2}n + \sqrt{n}\ln(\sqrt{n} + 1) + \ln(\sqrt{n} + 1).$$

Signifikantná funkcia v odhadoch je $\frac{1}{2}n$. Pre spresnenie odhadu možno ešte dodať člen $\sqrt{n} \ln \sqrt{n} =$ $\frac{1}{2}\sqrt{n}\ln n$.

Záver: $\sum_{i=1}^{\sqrt{n}} (i + \ln i) \sim \frac{1}{2} n + \frac{1}{2} \sqrt{n} \ln n$.