PhysH308

Spinning stuff!

Flywheel propulsion I

- Given a big, spherical space station, how long must you spin a flywheel to rotate the space station by a constant amount?
- Use conservation of angular momentum! You don't need $\overrightarrow{L}=\mathbf{I}\overrightarrow{\omega}$ yet, only $L=I\omega$.
- Find the energy used for the rotation.

(Total
$$\Delta E = \Delta E_{station} + \Delta E_{fw} \approx \Delta E_{fw} - \text{why?}$$
)

(note: torque was applied to both masses - how do we know?)

Inertia tensor

• In general: $\overrightarrow{L} = I\overrightarrow{\omega}$ where I is the *Inertia Tensor!*

$$I_{xx} = m \sum \left(y^2 + z^2 \right)$$

$$I_{xy} = I_{yx} = -m \sum xy$$

• (Note this works for any choice of $\overrightarrow{\omega}$ and \mathscr{O})

Inertia tensor

• In general: $\overrightarrow{L} = \mathbf{I}\overrightarrow{\omega}$ where \mathbf{I} is the *Inertia Tensor!*

$$I_{xx} = m \sum (y^2 + z^2)$$

$$I_{xy} = I_{yx} = -m \sum xy$$

• (Note this works for any choice of $\overrightarrow{\omega}$ and \mathscr{O})

Principal axes:

• I can be diagonalized by choosing the right $\begin{pmatrix} \hat{e}_x, \hat{e}_y, \hat{e}_z \end{pmatrix} = \begin{pmatrix} \hat{x}, \hat{y}, \hat{z} \end{pmatrix}$

- In this case, $I_{ii} = \lambda_i$ where λ_i are the roots of the equation $\det \left(\mathbf{I} \mathbf{1} \lambda \right) = 0$
- Solving $(\mathbf{I} \lambda_i \mathbf{1}) \hat{e}_i = 0$ gives \hat{e}_i .

Moment of inertia practice

• Given a simple array of masses, practice calculating $\overrightarrow{L} = \mathbf{I}\overrightarrow{\omega}$

Moment of inertia practice

• Given a simple array of masses, practice calculating $\overrightarrow{L} = \overrightarrow{\mathbf{I}}\overrightarrow{\omega}$

After 10.22

ullet Given a shape, find ${f I}$, diagonalize it, and find the principal axes

