LE STRUTTURE IN LEGNO

Esercizio guidato

Il caso di studio: soppalco in legno

In una abitazione privata, si vuole realizzare un soppalco in parte di un soggiorno esistente.

La nuova struttura avrà una superficie di 4,2x3,2 m² e sarà sostenuta da quattro pilastri posti alle estremità.

Il soppalco sarà realizzato con una struttura composta da travi e travetti in legno massiccio di conifera, con classe di resistenza C24, e assito di spessore 4 cm, con finitura in listelli di legno di spessore 1 cm.

Progettare e verificare gli elementi resistenti.

Il caso di studio: soppalco in legno

Dal momento che la struttura è realizzata in un ambiente interno, si assume la classe di servizio 2 e i carichi vengono assunti di lunga durata.

Elementi da progettare

Pilastri sforzo normale

Schema soppalco

Resistenze di calcolo

Resistenza di calcolo =
$$\frac{k_{mod} \cdot f_{x,k}}{\gamma_M}$$

	Durata del carico		Valori di <i>k_{mod}</i> Classe di servizio		
Classe di durata del carico		Esempi di carico			
			1 e 2	3	
Permanente	più di 10 anni	Peso proprio, permanenti non rimovibili	0.60	0,50	
Lunga durata	6 mesi ÷ 10 anni	Permanenti rimovibili, variabili di magazzini e depositi	0,70	0,55	
Media durata	1 settimana ÷ 6 mesi	Carichi variabili di edifici	0,00	0,65	
Breve durata	meno di 1 settimana	Neve fino a $q_{\rm sk}=2$ kN/m ²	0,90	0,70	
Istantaneo	_	Vento e azioni eccezionali	1,00	0,90	

Stati limite ultimi	γ _м
Combinazioni fondamentali	
Legno massiccio Legno lamellare incollato Pannelli di particelle o di fibre Compensato Unioni	1,50 1,45 1,50 1,40 1,50
Combinazioni eccezionali	1,00
Stati limite di esercizio	1,00

Classi di resistenza		C14	C16	C18	C20	C22	C24	
		Resistenze [N/mm²]						
flessione	$f_{m,k}$	14	16	18	20	22	24	
trazione parallela alla fibratura	$f_{t,0,k}$	8	10	11	12	13	11	
trazione perpendicolare alla fibratura	f _{t,90,k}	0,4	0,5	0,5	0,5	0,5	0,5	
compressione parallela alla fibratura	$f_{c,0,k}$	16	17	18	19	20	21	
compressione perpendicolare alla fibratura	f _{c,90,k}	2,0	2,2	2,2	2,3	2,4	2.5	
taglio	$f_{\nu,k}$	1,7	1,8	2,0	2,2	2,4	2,5	

Resistenze di calcolo

Sforzo normale

$$f_{n,0,d} = \frac{k_{mod} \cdot f_{n,0,k}}{\gamma_M} = \frac{0.7 \cdot 21}{1.5} = 9.8 \frac{N}{mm^2}$$

<u>Flessione</u>

$$f_{m,d} = \frac{k_{mod} \cdot f_{m,k}}{\gamma_M} = \frac{0.7 \cdot 24}{1.5} = 11.2 \frac{N}{mm^2}$$

Taglio

$$f_{v,d} = \frac{k_{mod} \cdot f_{v,k}}{\gamma_M} = \frac{0.7 \cdot 2.5}{1.5} = 1.17 \frac{N}{mm^2}$$

Procedimento

Calcolo TRAVI SECONDARIE

Calcolo TRAVI PRINCIPALI

L'ordine con cui vengono calcolati gli elementi segue quello di «scarico»: la travi secondarie scaricano il peso sulle principali, che a loro volta scaricano il peso sui pilastri.

Il carico distribuito
dell'impalcato che
grava su ogni singolo
travetto è quello
compreso nella
superficie definita
dalla mezzeria dei
travetti.

Si ipotizza che i travetti abbiano sezione pari a 12x16 cm².

ANALISI DEI CARICHI per mq di solaio

G1 Perm. strutturale Tauolato
$$0.04 \times 4.6 = 0.18 \text{ kN/m}^2$$

Travelli $0.12 \times 0.16 \times 3.8 = 0.09 \text{ kN/m}^2$
G2 Perm. non strutturale Pavimento $0.01 \times 4.2 = 0.04 \text{ kN/m}^2$

Q Accidentale: 2 KN/m2

Per il calcolo della trave secondaria: G1 = 0,27 kN/m² G2 = 0,04 kN/m² Q = 2,00 kN/m²

COMBINAZIONE FONDAMENTALE

$$fa = 1/3G_1 + 1/5G_2 + 1/5Q =$$

$$= 1/3 \cdot 0/27 + 1/5 \cdot 0/04 + 1/5 \cdot 2 = 0/35 + 0/06 + 3 = 3/41 \frac{KN}{m^2}$$

Per determinare il carico agente su ciascun travetto, si moltiplica Fd per l'interasse dei travetti.

CALCOLO DELLE SOLLECITAZIONI

Il Momento è massimo nella mezzaria del travetto, mentre il Taglio è massimo agli appoggi.

VERIFICA DELLA TRAVE SECONDARIA

$$\mathcal{T}_{m} = \frac{M}{N} = \frac{349 \cdot 10^{6} \, \text{N mm}}{512 \cdot 10^{3} \, \text{mm}^{3}} = 6.81 \, \frac{\text{N}}{\text{mm}^{2}} < \text{fm,d} \rightarrow \text{OK}$$

$$\mathcal{T}_{m} = \frac{M}{N} = \frac{3.49 \cdot 10^{6} \, \text{N mm}}{512 \cdot 10^{3} \, \text{mm}^{3}} = 6.81 \, \frac{\text{N}}{\text{mm}^{2}} < \text{fm,d} \rightarrow \text{OK}$$

$$\mathcal{T}_{m} = \frac{M}{N} = \frac{349 \cdot 10^{6} \, \text{N mm}}{512 \cdot 10^{3} \, \text{mm}^{3}} = 6.81 \, \frac{\text{N}}{\text{mm}^{2}} < \text{fm,d} \rightarrow \text{OK}$$

La sezione inizialmente ipotizzata (12x16 cm²) è quindi confermata.

Il carico distribuito
dell'impalcato che
grava sulle travi
principali è definito
dall'area di
influenza, definita
dalla mezzeria tra le
due travi.

Si ipotizza che le travi abbiano sezione pari a 12x36 cm².

ANALISI DEI CARICHI per mq di solaio

Per il calcolo della trave principale: $G1 = 0.37 \text{ kN/m}^2$

 $G2 = 0.04 \text{ kN/m}^2$

 $Q = 2,00 \text{ kN/m}^2$

COMBINAZIONE FONDAMENTALE

Per determinare il carico agente su ciascuna trave, si moltiplica Fd per la metà dell'interasse delle travi.

CALCOLO DELLE SOLLECITAZIONI

Come nel caso delle travi secondarie, anche qui il momento è massimo nella sezione centrale, mentre il taglio lo è in corrispondenza degli appoggi.

VERIFICA DELLA TRAVE PRINCIPALE

$$\mathcal{T}_{m} = \frac{M}{W} = \frac{12.48 \cdot 10^{6} \, \text{N·mm}}{2592 \cdot 10^{3} \, \text{mm}^{3}} = 4.81 \frac{\text{N}}{\text{mm}^{2}} < f_{m,d} \Rightarrow \text{ok}$$

$$\mathcal{T}_{m} = \frac{M}{W} = \frac{12.48 \cdot 10^{6} \, \text{N·mm}}{2592 \cdot 10^{3} \, \text{mm}^{3}} = 4.81 \frac{\text{N}}{\text{mm}^{2}} < f_{m,d} \Rightarrow \text{ok}$$

$$\mathcal{T}_{m} = \frac{M}{W} = \frac{12.48 \cdot 10^{6} \, \text{N·mm}}{2592 \cdot 10^{3} \, \text{mm}^{3}} = 4.81 \frac{\text{N}}{\text{mm}^{2}} < f_{m,d} \Rightarrow \text{ok}$$

La sezione inizialmente ipotizzata (12x36 cm²) è quindi confermata.

Calcolo pilastri

Il soppalco è sorretto da quattro pilatri posti agli spigoli.
L'area di influenza di ciascun pilastro è quindi pari a un quarto della superficie totale dell'impalcato.

Calcolo pilastri

Si ipotizza che i pilastri abbiano sezione pari a 12x12 cm².

ANALISI DEI CARICHI per mq di solaio

Per il calcolo del pilastro:

$$G1 = 0.37 \text{ kN/m}^2$$

 $G2 = 0.04 \text{ kN/m}^2$
 $Q = 2.00 \text{ kN/m}^2$

Calcolo pilastri

CALCOLO DELLE SOLLECITAZIONI

VERIFICA

Si conferma la sezione (12x12 cm²) ipotizzata per i pilastri.