Red Black Trees

Prof. Zheng Zhang

Harbin Institute of Technology, Shenzhen

RED-BLACK TREES

• Red-black trees:

- > Binary search trees augmented with node color
- Properties Properties
- First: describe the properties of red-black trees
- Then: prove that these guarantee $h = O(\lg n)$
- Finally: describe operations on red-black trees

RED-BLACK PROPERTIES

• The red-black properties:

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
 - Note: this means every 'real' node has 2 children
- 3. The root is always black
- 4. If a node is red, both children are black
 - Note: can't have 2 consecutive reds on a path
- 5. Every path from node to descendent leaf contains the same number of black nodes

RED-BLACK TREES

- Put example on board and verify properties:
 - 1. Every node is either red or black
 - 2. Every leaf (NULL pointer) is black
 - 3. The root is always black
 - 4. If a node is *red*, both children are black
 - 5. Every path from node to descendent leaf contains the same number of black nodes
- black-height: # black nodes on path to leaf
 - \triangleright Label example with h and bh values

HEIGHT OF RED-BLACK TREES

• What is the minimum black-height of a node with height h?

A: a height-h node has black-height $\geq h/2$

Theorem: A red-black tree with n internal nodes has height $h \le 2 \lg(n+1)$

How do you suppose we'll prove this?

- o Prove: *n*-node RB tree has height $h \le 2 \lg(n+1)$
- Claim: A subtree rooted at a node x contains at least $2^{bh(x)}$ 1 internal nodes
 - Proof by induction on height h
 - Base step: x has height 0 (i.e., NULL leaf node) What is bh(x)?

- o Prove: *n*-node RB tree has height $h \le 2 \lg(n+1)$
- Claim: A subtree rooted at a node x contains at least $2^{bh(x)}$ 1 internal nodes
 - Proof by induction on height h
 - \triangleright Base step: x has height 0 (i.e., NULL leaf node)
 - \Box What is bh(x)?
 - □ A: 0
 - □ So ... subtree contains $2^{bh(x)}$ 1
 - $= 2^0 1$
 - = 0 internal nodes (TRUE)

- Inductive proof that subtree at node x contains at least $2^{bh(x)}$ 1 internal nodes
 - Inductive step: x has positive height and 2 children
 - Each child has black-height of bh(x) or bh(x)-1 (Why?)
 - The height of a child = (height of x) 1

- Inductive proof that subtree at node x contains at least $2^{bh(x)}$ 1 internal nodes
 - Inductive step: x has positive height and 2 children
 - Each child has black-height of bh(x) or bh(x)-1 (Why?)
 - □ The height of a child = (height of x) 1
 - So the subtrees rooted at each child contain at least 2^{bh(x)-1} 1 internal nodes
 - Thus subtree at x contains at least

$$(2^{bh(x)-1} - 1) + (2^{bh(x)-1} - 1) + 1$$

= $2 \cdot 2^{bh(x)-1} - 1 = 2^{bh(x)} - 1$ nodes

• Thus at the root of the red-black tree:

$$n \ge 2^{bh(root)} - 1$$
 (Why?)
 $n \ge 2^{h/2} - 1$ (Why?)
 $\lg(n+1) \ge h/2$ (Why?)
 $h \le 2 \lg(n+1)$ (Why?)

Thus
$$h = O(\lg n)$$

Property 4: If a node is red, both children are black

Property 5: Every path from node to descendent leaf contains the same number of black nodes.

RB TREES: WORST-CASE TIME

- So we've proved that a red-black tree has
 O(lg n) height
- \circ Corollary: These operations take $O(\lg n)$ time:
 - Minimum(), Maximum()
 - Successor(), Predecessor()
 - > Search()
- Insert() and Delete():
 - \triangleright Will also take O(lg n) time
 - > But will need special care since they modify tree

RED-BLACK TREES: AN EXAMPLE

• Color this tree:

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- o Insert 8:
 - Where does it go?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- Insert 8:
 - Where does it go?
 - What color should it be?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

• Insert 8:

- Where does it go?
- What color should it be?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- *Insert 11:*
 - Where does it go?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- *Insert 11:*
 - Where does it go?
 - What color?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- *Insert 11:*
 - Where does it go?
 - > What color?
 - Can't be red! (#4)

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

• *Insert 11:*

- Where does it go?
- What color?
 - Can't be red! (#4)
 - Can't be black! (#5)

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- *Insert 11:*
 - Where does it go?
 - > What color?
 - Solution: recolor the tree

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- *Insert 10:*
 - Where does it go?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

- *Insert 10:*
 - Where does it go?
 - What color?

- 1. Every node is either red or black
- 2. Every leaf (NULL pointer) is black
- 3. The root is always black
- 4. If a node is red, both children are black
- 5. Every path from node to descendent leaf contains the same number of black nodes

• *Insert 10:*

- ➤ Where does it go?
- > What color?
 - □ A: no color! Tree is too imbalanced
 - Must change tree structure to allow recoloring
- Goal: restructure tree inO(lg n) time

RED-BLACK TREES: ROTATION

• Our basic operation for changing tree structure is called *rotation*:

- Does rotation preserve inorder key ordering?
- What would the code for **rightRotate()** actually do?

ROTATION (TRIVIAL)

ROTATION (TRIVIAL)

Insert ={25, 27, 30, 12, 11, 18, 14, 20, 15, 22}

ROTATION₊₁(TRIVIAL)

(g) Insert 14

(h) Insert 20

ROTATION (TRIVIAL)

ROTATION (TRIVIAL) 将A顺时针旋转,

将A顺时针旋转,成为B的右子树,而原来B的右子树 成为A的左子树。

LL型(顺)

(a) LL型的旋转

将A逆时针旋转,成为B的左子树,而原来B的左子树成为A的右子树。

RR型(逆)

(b) RR型的旋转

ROTATION (TRIVIAL)

(2) 绕 C,将 A 顺时针旋转, C_R 作为 A 的左子树。

ROTATION (TRIVIAL)

(1) 绕 C, 将 B 顺时针旋转, C_R 作为 B 的左子树;

(2) 绕 C,将 A 逆时针旋转, C_L 作为 A 的右子树。

RED-BLACK TREES: ROTATION

- Answer: A lot of pointer manipulation
 - > x keeps its left child
 - y keeps its right child
 - > x's right child becomes y's left child
 - > x's and y's parents change
- What is the running time?

ROTATION EXAMPLE

• Rotate left about 9:

ROTATION EXAMPLE

• Rotate left about 9:

RED-BALCK TREES: INSERTION

- Insertion: the basic idea
 - Insert x into tree, color x red
 - \triangleright Only *RB* property 4 might be violated (if p[x] red)
 - ☐ If so, move violation up tree until a place is found where it can be fixed
 - \triangleright Total time will be $O(\lg n)$

Property 4. If a node is red, both children are black

```
rbInsert(x)
  treeInsert(x);
  x->color = RED;
  // Move violation of #3 up tree, maintaining #4 as invariant:
  while (x!=root && x->p->color == RED)
  if (x->p == x->p->p->left)
       y = x-p-p-right;
       if (y->color == RED)
             x->p->color = BLACK;
             y->color = BLACK;
             x->p->color=RED;
             x = x->p->p;
              //y->color == BLACK
       else
             if (x == x->p->right)
                  x = x - p;
                  leftRotate(x);
             x->p->color = BLACK;
             x->p->color=RED;
             rightRotate(x->p->p);
         // x->p == x->p->p->right
  else
        (same as above, but with
        "right" & "left" exchanged)
```

```
rbInsert(x)
  treeInsert(x);
  x->color = RED;
  // Move violation of #3 up tree, maintaining #4 as invariant:
  while (x!=root && x->p->color == RED)
  if (x->p == x->p->p->left)
       y = x-p-p-right;
       if (y->color == RED)
            x->p->color = BLACK;
            y->color = BLACK;
                                                     Case 1:uncle is RED
            x->p->color=RED;
            x = x->p->p;
             //y->color == BLACK
       else
            if (x == x->p->right)
                  x = x - p;
                  leftRotate(x);
            x->p->color = BLACK;
            x->p->color = RED;
            rightRotate(x->p->p);
        // x->p == x->p->p->right
  else
       (same as above, but with
       "right" & "left" exchanged)
```

```
if (y->color == RED)
    x->p->color = BLACK;
    y->color = BLACK;
    x->p->p->color = RED;
    x = x->p->p;
```

- o Case 1: "uncle" is red
- \circ In figures below, all Δ 's are equal-black-height subtrees

Change colors of some nodes, preserving #5: all downward paths have equal b.h.

The while loop now continues with *x*'s grandparent as the new *x*

```
if (y->color == RED)
    x->p->color = BLACK;
    y->color = BLACK;
    x->p->p->color = RED;
    x = x->p->p;
```

- o Case 1: "uncle" is red
- \circ In figures below, all Δ 's are equal-black-height subtrees

Same action whether *x* is a left or a right child

if (x == x->p->right)
 x = x->p;
 leftRotate(x);
// continue with case 3 code

- o Case 2:
 - "Uncle" is black
 - Node x is a right child
- Transform to case 3 via a left-rotation

Transform case 2 into case 3 (*x* is left child) with a left rotation This preserves property 5: all downward paths contain same number of black nodes

x->p->color = BLACK; x->p->p->color = RED; rightRotate(x->p->p);

- o Case 3:
 - "Uncle" is black
 - Node x is a left child
- Change colors; rotate right

Perform some color changes and do a right rotation Again, preserves property 5: all downward paths contain same number of black nodes