

ONLINE SHOP FOR SHOES

	Team Name: Project Sandal									
Group Members										
S No.	Name	Roll No.								
1	Jayannthan PT	205001049								
2	Kishaanth S	205001054								
3	Koushik Viswanath S	205001055								

Entity Relational Model

Entity Relational Model Customer Entity

Entity Relational Model Address Entity

Entity Relational Model Shoe Details Entity

Entity Relational Model Order Entity

Entity Relational Model Order History Entity

Entity Relational Model With Relations

Entity Relational Model TO Relational Schema

Entity Relational Model TO Relational Schema Customer Relation

Customer_ID Phone_Number

Entity Relational Model TO Relational Schema <u>Customer Relation</u>

Primary Key: Customer_ID **Functional Dependencies:**

Customer_ID -> First_Name, Last_Name, DOB, Email, Password

Primary Key: Customer_ID, Phone_Number

Entity Relational Model TO Relational Schema Address Relation

Address								
AddressID	Customer_ID	Door_No	Street	Town/City	District	State	Country	Pincode

Entity Relational Model TO Relational Schema Address Relation

Address								
AddressID	Customer_ID	Door_No	Street	Town/City	District	State	Country	Pincode

Primary Key: AddressID, Customer_ID **Functional Dependencies:**

AddressID -> Door_No,Street,Town/City,District,State,Country,Pincode

Entity Relational Model TO Relational Schema Shoe Details Relation

Shoe_Details									
Product_ID	Product_Name	Description	Size	Type	Sex	Color	Availability	Price	Discount

Entity Relational Model TO Relational Schema Shoe Details Relation

Shoe_Details									
Product_ID	Product_Name	Description	Size	Type	Sex	Color	Availability	Price	Discount

Primary Key: Product_ID **Functional Dependencies:**

- Product_ID -> Product_Name, Description, Size, Type, Sex, Color, Availability, Price, Discount
- Product_ Name -> Type, Sex

Entity Relational Model TO Relational Schema Orders Relation

Orders									
<u>OrderID</u>	Product_ID	AddressID	Quantity	Price	Ordered_Date	Estimated Delivery_Date	Total_Price	Shipping_Price	Order_Status

Entity Relational Model TO Relational Schema Orders Relation

Orders									
<u>OrderID</u>	Product_ID	AddressID	Quantity	Price	Ordered_Date	Estimated Delivery_Date	Total_Price	Shipping_Price	Order_Status

Primary Key: Order_ID, Product_ID

Functional Dependencies:

- Order_ID -> Address_ID, Ordered_Date, Estimated_Delivery_Date, Total_Price, Shipping_Price, Order_Status
- Order_ID, Product_ID -> Quantity, Price

Entity Relational Model TO Relational Schema Order_History Relation

Orders_History										
<u>OrderID</u>	Product_ID	AddressID	Quantity	Price	Ordered_Date	Delivery_Date	Total_Price	Shipping_Price	Feedback	Rating

Entity Relational Model TO Relational Schema Order_History Relation

Primary Key: Order_ID, Product_ID

Functional Dependencies:

- Order_ID, Product_ID -> Quantity, Price, Feedback, Rating
- Order_ID -> Address_ID, Ordered_Date, Delivery_Date, Total_Price, Shipping_Price

Entity Relational Model TO Relational Schema

Entity Relational Model TO Relational Schema

Relational Schema

Relational Schema – Normalization

Relational Schema -Normalization Customer Relation

First, find the minimal cover of the FDs, which includes the FDs

Customer_ID --> First_Name

Customer_ID --> Last_Name

Customer_ID --> DOB

Customer_ID --> Email

Customer_ID --> Password

The table is in 2NF already

Table already in 3NF

First, find the minimal cover of the FDs, which includes the FDs

AddressID --> Door_No

AddressID --> Street

AddressID --> Town/City

AddressID --> District

AddressID --> State

AddressID --> Country

AddressID --> Pincode

AddressID --> Customer_ID

The table is in 2NF already

Table already in 3NF

Relational Schema -Normalization <u>Shoe Details Relation</u>

Shoe_Details									
Product_ID	Product_Name	Description	Size	Type	Sex	Color	Availability	Price	Discount

First, find the minimal cover of the FDs, which includes the

FDs

Product_ID --> Product_Name

Product_ID --> Description

Product ID --> Sex

Product_ID --> Color

Product_ID --> Availability

Product_ID --> Price

Product_ID --> Discount

Product_Name --> Type

Product_Name --> Size

The table is in 2NF already

Relational Schema -Normalization Shoe Details Relation

Shoe_Details									
Product_ID	Product_Name	Description	Size	Type	Sex	Color	Availability	Price	Discount

Initially Shoe_Details is the original table with the original functional dependencies.

In each round we check the FDs one by one to see if there is a violation of 3NF (there is a partial or transitive dependency where the RHS includes non-key attributes). If yes, we decompose the table into two.

Round1: checking table Shoe_Details

The table is not in 3NF.

Product_Details = (Product_Name,Type,Size), with FDs:

Product_Name --> Type,Size

Shoe_Details = (Product_ID,Product_Name,Description,Sex,Color,Availability,Price,Discount), with FDs:

Product_ID --> Product_Name, Description, Sex, Color, Availability, Price, Discount

Round2: checking table Product_Details

***** The table is in 3NF already, send it to output *****

Round3: checking table Shoe_Details

***** The table is in 3NF already, send it to output *****

Relational Schema -Normalization Shoe Details Relation

Orders									
<u>OrderID</u>	Product_ID	AddressID	Quantity	Price	Ordered_Date	Estimated Delivery_Date	Total_Price	Shipping_Price	Order_Status

First, find the minimal cover of the FDs, which includes the FDs

Order_ID --> Address_ID

Order_ID --> Ordered_Date

Order_ID --> Estimated_Delivery_Date

Order_ID --> Total_Price

Order_ID --> Shipping_Price

Order_ID --> Order_Status

Order_ID,Product_ID --> Quantity

Order_ID,Product_ID --> Price

The relation is not in 2NF

Orders									
<u>OrderID</u>	Product_ID	AddressID	Quantity	Price	Ordered_Date	Estimated Delivery_Date	Total_Price	Shipping_Price	Order_Status

Initially Orders is the original table:

Round1: checking table Orders

The table is not in 2NF.

The FD [Order_ID --> Address_ID] is a partial dependency (i.e., LHS is a proper subset of some CK), the table is split into:

Orders =

(Order_ID,Address_ID,Ordered_Date,Estimated_Delivery_Date,Total_Price,Shipping_Price,Order_Status), with FDs:

Order_ID --> Address_ID,Ordered_Date,Estimated_Delivery_Date,Total_Price,Shipping_Price,Order_Status Purchases = (Order_ID,Product_ID,Quantity,Price), with FDs:

Order_ID,Product_ID --> Quantity,Price

Round2: checking table Orders

**** The table is in 2NF already, send it to output ****

Round3: checking table Purchases

***** The table is in 2NF already, send it to output *****

Purchases

Purchases

Both relations are already in 3NF

Orders_History											
OrderID	Product_ID	AddressID	Quantity	Price	Ordered_Date	Delivery_Date	Total_Price	Shipping_Price	Feedback	Rating	

First, find the minimal cover of the FDs, which includes the

FDs

Order_ID,Product_ID --> Quantity

Order_ID,Product_ID --> Price

Order_ID,Product_ID --> Feedback

Order_ID,Product_ID --> Rating

Order_ID --> Address_ID

Order_ID --> Ordered_Date

Order_ID --> Delivery_Date

Order_ID --> Total_Price

Order_ID --> Shipping_Price

The relation is not in 2NF

Orders_History										
<u>OrderID</u>	Product_ID	AddressID	Quantity	Price	Ordered_Date	Delivery_Date	Total_Price	Shipping_Price	Feedback	Rating

Initially Order_History is the original table:

Round1: checking table Order_History

The table is not in 2NF.

The FD [Order_ID --> Address_ID] is a partial dependency (i.e., LHS is a proper subset of some CK), the table is split into:

Order_History = (Order_ID,Address_ID,Ordered_Date,Delivery_Date,Total_Price,Shipping_Price), with FDs:

Order_ID --> Address_ID,Ordered_Date,Delivery_Date,Total_Price,Shipping_Price

Purchased = (Order_ID,Product_ID,Quantity,Price,Feedback,Rating), with FDs:

Order_ID,Product_ID --> Quantity,Price,Feedback,Rating

Round2: checking table Order_History

***** The table is in 2NF already, send it to output *****

Round3: checking table Order_History

***** The table is in 2NF already, send it to output *****

Attributes

Purchased

Both relations are already in 3NF

Normalized Relational Schema

Normalized Relational Schema

Final Relational Schema

