MACHINE LEARNING MODEL

COMPARISON BASED ON SOME METRICS

Safa ORHAN Eyüp USTA

Computer Engineering Student Computer Engineering Student

Istanbul Kultur University Istanbul Kultur University

Istanbul, Turkey Istanbul, Turkey

I. PAPER IMPLEMENTATION

1. Comparison of Classification Algorithms for Detection of Phishing Websites

K-Nearest Neighbors: # of neighbors = 5, weights = uniform, algorithm = auto

Paper Accuracy: 94.81% --- Our Accuracy: 93.72%

Multilayer Perceptron: Hidden Layers = 30, max iterations = 3000

Paper Accuracy: 97.22% --- Our Accuracy: 95.41%

Multilayer Perceptron: Hidden Layers = 150, max iterations = 1000

Paper Accuracy: 90.28% --- Our Accuracy: 96.98%

Multilayer Perceptron: Hidden Layers = 100, max iterations = 1000

Paper Accuracy: 96.71% --- Our Accuracy: 97.04%

Random Forest: # of estimators = 7, max depth = 11, criteria = entropy

Paper Accuracy: 95.25% --- Our Accuracy: 95.17%

Random Forest: # of estimators = 7, max depth = 8, criteria = entropy

Paper Accuracy: 89.16% --- Our Accuracy: 95.38%

SVC: C = 1.0, kernel = linear

Paper Accuracy: 92.71% --- Our Accuracy: 92.67%

SVC: C = 1.0, kernel = polynomial, degree = 1

Paper Accuracy: 92.57% --- Our Accuracy: 92.58%

SVC: C = 1.0, kernel = polynomial, degree = 2

Paper Accuracy: 93.88% --- Our Accuracy 94.21%

2. Predicting phishing websites based on self-structuring neural network

Features = having_IP_Address', 'URL_Length', 'having_At_Symbol', 'Prefix_Suffix', 'Abnormal_URL', 'SFH', 'HTTPS_token', 'Iframe', 'RightClick', 'popUpWidnow', 'having_Sub_Domain', 'Request_URL', 'URL_of_Anchor', 'Redirect', 'age_of_domain', 'DNSRecord', 'web_traffic', 'Result'

	Ours	Papers
Epoch: 50	56.09%	91.32%
Epoch: 100	87.52%	92.33%
Epoch: 200	89.07%	93.07%
Epoch: 500	90.90%	93.45%
Enoch: 1000	-92.72%	94.07%

3. Automated Prediction of Phishing Websites Using Deep Convolutional Neural Network

Accuracy of Paper: 99.3%

Accuracy that we found: 55.43%

4. Phishing Website Detection Using Effective Classifiers and Feature Selection Techniques

Category	Feature Name	Value
Address bar	Having IP Address	1,0
	Having long url	1,0,-1
	Uses ShortningService	0,1
	Having '@' Symbol	0,1
	Double slash redirecting	0,1
	Having Prefix Suffix	-1,0,1
	Having Sub Domain	-1,0,1
	SSLfinal State	-1,1,0
	Domain registration Length	0,1,-1
	Favicon	0,1
	Is standard Port	0,1
	Uses HTTPS token	0,1
	Request URL	1,-1
	Abnormal URL anchor	-1,0,1
Abnormality	Links in tags	1,-1,0
	SFH	-1,1
	Submitting to email	1,-1
	Abnormal URL	1,0
	Redirect	0,1
HTML-JavaScript	on mouseover	0,1
	RightClick	1,-1
	popUpWindow	-1,1
	Iframe	0,1
Domain On DNS R Web tra Page Ra Google I Links pointing	Age of domain	-1,0,1
	on DNS Record	1,0
	Web traffic	-1,0,1
	Page Rank	-1,0,1
	Google Index	0,1
	Links pointing to page	1,0,-1
	Statistical report	1,0

PERFORMANCE OF CLASSIFIERS FOR ADDRESS BAR BASED FEATURES ONLY

Naive Bayes: 89.59% Paper: 89.95%

Decision Tree: 90.32% Paper: 90.19%

PERFORMANCE OF CLASSIFIERS FOR ABNORMAL BASED FEATURES ONLY

Naive Bayes: 72.20% Paper: 88.45%

Decision Tree: 87.63% Paper: 89.05%

PERFORMANCE OF CLASSIFIERS FOR JAVASCRIPT and HTML BASED FEATURES

ONLY

Naive Bayes: 56.01% Paper: 54.12%

Decision Tree: 57.43% Paper: 58.02%

PERFORMANCE OF CLASSIFIERS FOR DOMAIN BAR BASED FEATURES ONLY

Naive Bayes: 69.88% Paper: 80.35%

Decision Tree: 72.74% Paper: 81.55%

Voting Classifier

Models used:

Accuracy = 92.82%

Support Vector Machine, K-Nearest Neighbors, BNaive Bayes, Random Forest, Decision Tree

Accuracy = 96.89

II. DEEP LEARNING WITH TENSORFLOW

```
Optimizers = 'sgd', 'rmsprop', 'adam', 'adadelta', 'adagrad', 'adamax', 'nadam', 'ftrl'

Loss = 'binary_crossentropy', 'categorical_crossentropy', 'hinge', 'squared_hinge', 'huber'

Activation = 'softplus', 'softsign', 'selu', 'elu', 'exponential', 'tanh', 'sigmoid', 'relu'

A. Results of the Deep Network:

Flatten(input_shape = (17,)

Dense(32, kernel_regularizer=l2(0.0001), activation='sigmoid')

Dense(64, activation='sigmoid')

Dense(32,activation='sigmoid')

Dense(1,activation='sigmoid')

loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'], epochs = 1000
```

Categorical Features:

```
Flatten(input_shape = (17,2)

Dense(32, kernel_regularizer=l2(0.0001), activation='sigmoid')

Dense(64, activation='sigmoid')

Dense(32,activation='sigmoid')

Dense(1,activation='sigmoid')

loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'], epochs = 1000

Accuracy = 72.02%
```

B. Recurrent Neural Networks:

Model 1:

```
keras.layers.LSTM(128, activation='relu',return_sequences=True, input_shape=(1,30))
keras.layers.Dropout(0.2)
keras.layers.Dropout(0.2)
keras.layers.Dense(250,activation='relu')
keras.layers.Dense(1,activation='sigmoid')

Accuracy = 97.17%

loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']

Epoch Number = 250
```


Model 2:

keras.layers.SimpleRNN(64, activation='relu',return_sequences=True, input_shape=(1,30)) keras.layers.Dropout(0.2)

keras.layers. SimpleRNN (128, activation='relu')

keras.layers.Dropout(0.2)

keras.layers.Dense(128,activation='relu')

keras.layers.Dense(128,activation='relu')

keras.layers.Dense(1,activation='sigmoid')

loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']

Accuracy = 96.54%

Epoch Number = 75

Model 3:

```
keras.layers.GRU(64, activation='relu',return_sequences=True, input_shape=(1,30))
keras.layers.Dropout(0.2)
keras.layers.Dropout(0.2)
keras.layers.Dense(128,activation='relu')
keras.layers.Dense(128,activation='relu')
keras.layers.Dense(1,activation='relu')
keras.layers.Dense(1,activation='sigmoid')
loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy']
Accuracy = 95.11%
Epoch Number = 75
```


