Structure and Stability Theorems in Topological Data Analysis

Master's Final Thesis

Author: Gonzalo Ortega Carpintero

Advisor (UPM): Jaime Santos Rodríguez

Advisor (UAM): Luis Guijarro Santamaría

Thursday, July 3, 2025

Contents

- Preliminaries
 - Persistent homology
 - Bottleneck distance
- Structure Theorem
- Stability Theorems
 - Interleaving Stability Theorem
 - Hausdorff Stability Theorem
 - Gromov-Hausdorff Stability Theorem
- 4 Vectorizations
 - Persistence landscapes
 - Persistence images
 - Euler curves

Figure: Four step filtration of a simplicial complex K.

Persistent homology

Definition (Persistence module)

Let $\mathbb F$ be a field and let T be a totally ordered set. Let $V=\{V_t\}_{t\in T}$ be a collection of F-vector spaces. A T-indexed **persistence module** is a pair (V,π) such that $\pi=\{\pi_{s\leq t}\}$ is a collection of linear maps $\pi_{s\leq t}\colon V_s\to V_t$ that verifies that for all $r,s,t\in T$,

$$\pi_{r\leq s}\circ\pi_{s\leq t}=\pi_{r\leq t}.$$

Persistent homology

Definition δ -interleaved modules

Let $(V,\pi),(W,\theta)$ be two persistence modules and let $\delta>0$. V and W are δ -interleaved if there exists two persistence module morphisms $\phi\colon V\to W_\delta$ and $\psi\colon W\to V_\delta$ such that the following diagrams commute:

Persistent homology

Definition (Interleaving distance)

Let (V, π) and (W, θ) be two tame persistence modules. The **interleaving distance** between them is defined as

$$d_{\text{int}}(V, W) := \inf\{\delta > 0 \mid V \text{ and } W \text{ are } \delta\text{-interleaved}\}.$$

Persistent homology

Definition (Barcode)

A **barcode** B is a finite multiset of intervals. That is, a collection $\{(I_i, m_i)\}$ of intervals I_i with multiplicities $m_i \in N$, where each interval I_i is either finite of the form (a, b] or infinite of the form (a, ∞) . Each interval I_i is named to be a **bar** of B. The first number, a is named the **birth** of the barcode and is second number is its **death**.

Figure: Barcodes associated to the previous filtration.

Bottleneck distance

Definition (Persistence diagram)

Let I be a countable multiset. A *persistence diagram* is a function $D:I\to\mathbb{R}^2_<$.

Bottleneck distance

Definition (Persistence diagram)

Let I be a countable multiset. A *persistence diagram* is a function $D:I\to\mathbb{R}^2_<$.

Definition (Partial mathing)

Let $D_1: I_1 \to \mathbb{R}^2_{<}$ and $D_2: I_2 \to \mathbb{R}^2_{<}$ be persistence diagrams. A partial matching between D_1 and D_2 is the triple (I_1', I_2', f) such that $f: I_1' \to I_2'$ is a bijection with $I_1' \subseteq I_1$ and $I_2' \subseteq I_2$.

Definition (p-cost)

Let $D_1:I_1\to\mathbb{R}^2_<$ and $D_2:I_2\to\mathbb{R}^2_<$ be persistence diagrams. Let (I_1',I_2',f) be a partial matching between them. If $p<\infty$, the p-cost of f is defined as

$$\mathsf{cost}_p(f) := (\sum_{i \in I_1'} d_{\infty}(D_1(i), D_2(f(i)))^p + \sum_{i \in I_1 \setminus I_1'} d_{\infty}(D_1(i), \Delta)^p + \sum_{i \in I_2 \setminus I_2'} d_{\infty}(D_2(i), \Delta)^p)^{\frac{1}{p}}.$$

For $p = \infty$, the ∞ -cost of f is defined as

$$\mathsf{cost}_\infty(f) := \max\{\sup_{i \in I_1'} d_\infty(D_1(i), D_2(f_i)), \sup_{i \in I_1 \setminus I_1'} d_\infty(D_1(i), \Delta), \sup_{i \in I_2 \setminus I_2'} d_\infty(D_2(i), \Delta)\}.$$

Bottleneck distance

Definition (Wasserstein distance)

Let D_1, D_2 be persistence diagrams. Let $1 \le p \le \infty$. Define

$$\tilde{\omega}_p(D_1, D_2) = \inf\{ \cosh_p(f) : f \text{ is a partial matching between } D_1 \text{ and } D_2 \}.$$

Let \emptyset denote the unique persistence diagram with empty indexing set. Let $(\mathsf{Dgm}_p, \omega_p)$ be the space of persistence diagrams D that satisfy $\tilde{\omega}_p(D,\emptyset) < \infty$ modulo the equivalence relation $D_1 \sim D_2$ if $\tilde{\omega}_p(D_1,D_2) = 0$. The metric ω_p is called the p-Wasserstein distance.

Figure: Wasserstein distance between two persistence diagrams.

Contents

- Preliminaries
 - Persistent homology
 - Bottleneck distance
- Structure Theorem
- Stability Theorems
 - Interleaving Stability Theorem
 - Hausdorff Stability Theorem
 - Gromov-Hausdorff Stability Theorem
- 4 Vectorizations
 - Persistence landscapes
 - Persistence images
 - Euler curves

Structure Theorem

Theorem

Let (V,π) be a persistence module. There exist a barcode $Bar(V,\pi)$, with $\mu \colon Bar(V,\pi) \longrightarrow \mathbb{N}$, the multiplicity of the barcode intervals, such that there is a unique direct sum decomposition

$$V \cong \bigoplus_{I \in \mathsf{Bar}(V)} \mathbb{F}(I)^{\mu(I)}.$$

Contents

- Preliminaries
 - Persistent homology
 - Bottleneck distance
- 2 Structure Theorem
- Stability Theorems
 - Interleaving Stability Theorem
 - Hausdorff Stability Theorem
 - Gromov-Hausdorff Stability Theorem
- 4 Vectorizations
 - Persistence landscapes
 - Persistence images
 - Euler curves

Stability Theorems

Interleaving Stabiltiy Theorem

Theorem

There is an isometry between a persistence module with the interleaving distance and its barcode with the bottleneck distance. That is, given two persistence modules V and W, it holds that

$$d_{int}(V, W) = d_{bot}(Bar(V), Bar(W)).$$

Stability Theorems

Hausdorff Stability Theorem

Theorem

Let X be a triangulable space, and $f,g\colon X\to\mathbb{R}$ continuous tame functions. Then,

$$d_{\mathrm{bot}}(D(f),D(g))\leq d_{\mathsf{H}}(D(f),D(g))\leq \|f-g\|_{\infty}.$$

Stability Theorems

Gromov-Hausdorff Stability Theorem

Theorem

Let (X,d_X) , (Y,d_Y) be finite metric spaces. Then, for any $k\in\mathbb{N}$,

$$d_{\mathrm{bot}}(D_k(\mathcal{R}(X,d_X)),D_k(\mathcal{R}(Y,d_Y))) \leq d_{\mathrm{GH}}((X,d_X),(Y,d_Y)).$$

Contents

- Preliminaries
 - Persistent homology
 - Bottleneck distance
- Structure Theorem
- Stability Theorems
 - Interleaving Stability Theorem
 - Hausdorff Stability Theorem
 - Gromov-Hausdorff Stability Theorem
- 4 Vectorizations
 - Persistence landscapes
 - Persistence images
 - Euler curves

Persistence landscapes

Definition (Rank function)

The **rank function** of a persistence module V is the function $\delta \colon \mathbb{R}^2 \to \mathbb{R}$ given by

$$\lambda(b,d) = egin{cases} eta_b^d & ext{if } b \leq d, \ 0 & ext{otherwise.} \end{cases}$$

Definition (Rank function)

The **rank function** of a persistence module V is the function $\delta \colon \mathbb{R}^2 \to \mathbb{R}$ given by

$$\lambda(b,d) = egin{cases} eta_b^d & ext{if } b \leq d, \ 0 & ext{otherwise}. \end{cases}$$

Definition (Persistence landscape)

A **persistence landscape** is a function $\lambda \colon \mathbb{N} \times \mathbb{R} \to \overline{\mathbb{R}}$, defined as

$$\lambda(k,t) := \sup\{m \ge 0 \mid \beta^{t-m,t+m} \ge k\}.$$

Figure: Persistence landscape of a persistence diagram.

Persistence images

Definition (Persistence surface)

The **persistence surface** associated to D, by f and ϕ_u is a function $\rho_D \colon \mathbb{R}^2 \to \mathbb{R}$ defined as

$$\rho_D(z) := \sum_{u \in T(D)} f(u) \phi_u(z).$$

Persistence images

Definition (Persistence surface)

The **persistence surface** associated to D, by f and ϕ_u is a function $\rho_D \colon \mathbb{R}^2 \to \mathbb{R}$ defined as

$$\rho_D(z) := \sum_{u \in T(D)} f(u) \phi_u(z).$$

Definition (Persistence image)

Let D be a persistence diagram with an associated persistence surface ρ_D . The **persistence** image of D by ρ_D is the collection ρ of **pixels**

$$I(\rho_D)_p \coloneqq \iint_p \rho_B dy dx.$$

Figure: Algorithm pipeline to transform data into a persistence image.

Euler curves

Definition

Let K be a simplicial complex, and let K^p be its p-skeleton. The **Euler characteristic** of K is the alternating sum of the number of cells in its dimension

$$\chi(K) := \sum_d (-1)^d \#(K^d).$$

Euler curves

Definition

Let K be a simplicial complex, and let K^p be its p-skeleton. The **Euler characteristic** of K is the alternating sum of the number of cells in its dimension

$$\chi(K) := \sum_d (-1)^d \#(K^d).$$

Definition

Let K be a simplicial complex. Let $f: K \to \mathbb{R}$ be a filtration function. The **Euler** characteristic curve is a function that assign an Euler characteristic χ for each filtration level $t \in \mathbb{R}$.

$$ECC(K, t) := \chi(K_t),$$

where $K_t = f^{-1}(-\infty, t]$.