

Business Models and Reference Architecture for IIoT **Business Models – Part 2**

Dr. Sudip Misra

Professor

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

Email: smisra@sit.iitkgp.ernet.in

Website: http://cse.iitkgp.ac.in/~smisra/ Research Lab: <u>cse.iitkgp.ac.in/~smisra/swan/</u>

Business Oppurtunities in IIoT

- > Entrepreneurship theory:
 - > Asset-driven opportunities
 - > Service innovations that aid manufacturing
 - > Service-driven opportunities targeted at end users
 - Information infrastructure ownership
- > Transaction cost theory:
 - ➤ Non-ownership contracts
 - > Performance contracts

Components of IIoT Business Models

- Value proposition
- Value capturing mechanism
- Value network
- > Value communication

IIoT Business Models: Types

- > IIoT business models can be divided into following categories:
 - Cloud-based Business Model
 - Service-Oriented Business Model
 - Process-Oriented Business Model

Cloud-Based Business Model

- Customers do not purchase software, platform or infrastructure
- Instead, they lease the cloud computing resources temporarily

- Cloud-based BMs comprise manifold offerings
 - Processing power
 - Data storage
 - > Virtualization of the operating system online

- > Infrastructure-as-a-Service (laaS) model
 - > Aim at providing required hardware and software online in the cloud

- > Platform-as-a-Service (PaaS) model
 - Open toward external parties
 - Provide development-oriented platforms
 - > Facilitate the development of applications
 - > Facilitate the integration of applications into existing solutions
- > Software-as-a-Service (SaaS) model
 - ➤ Offer online capable and customized applications

- > Partner network
 - Risk reduction
 - > Synergies due to economies of scale
 - Shared usage of resources
- Value configuration
 - > Development of cloud services and applications
 - > Establishment of partner network

- Core competencies
 - > IT resources
 - Software infrastructure
 - > Knowhow
- > Relationships
 - Community networks
 - > Forums

- Value proposition
 - Processing power
 - Data storage
 - Virtualization of the operating system
 - Development oriented platforms
 - Integration of applications
 - Applications

- > Distribution channels
 - On demand
- > Target customers
 - > Educational institutions
 - Startups
 - Independent software vendors
 - Small and medium-sized enterprises

- Cost structure
 - > Cost reduction
 - > Initial costs for installation
 - Service costs
- Revenue model
 - Pay-per-use
 - Subscription fees
 - Advertisement

Service Oriented Business Model

- Offers
 - primarily utilization
 - > Analysis of data
 - aggregation of data
- > Example:
 - Medical environment

- Offered to a mass market on demand through infrastructures and platforms established by Cloud-based BMs
- Provides to customers
 - Self-service interface
 - Automated services
- > Target customers
 - ➤ Mass market

- > Partner network
 - > Community
 - > Infrastructure providers
 - Platform developers
- > Distribution channels
 - > Platforms
 - On demand

- Value configuration
 - ➤ Maintenance and further development of
 - **▶** Platforms
 - > Infrastructures
 - > Applications
- Relationships
 - Self-service interface
 - Automated services

- Value proposition
 - Utilization of data
 - > Analysis of data
 - Aggregation of data
- Core competencies
 - > Platforms
 - > Data analysis methods
 - > Data

- Cost Structure
 - > Initial establishment costs
 - > Variable instead of fixed costs

- Revenue Model
 - Collected data
 - Direct and indirect monetization of data

Process Oriented Business Model

- Process optimization resulting in
 - Reduced downtimes
 - > increased machine availability
- Optimize processes within a company and across company boarders
- Optimize data analyzed by Service-oriented BMs
- Results in reduced downtimes due to the eliminated delivery times

Process Oriented Business Model (Contd.)

- Value configuration
 - ➤ Master complex production processes
 - Various production technologies
- Core competencies
 - > Platforms
 - > Data
 - > 3D printers

Process Oriented Business Model (Contd.)

- Value proposition
 - Reduced downtimes
 - > Increased machine availability
- > Target customers
 - ➤ Machine and plant engineering industry

Process Oriented Business Model (Contd.)

- Cost structure
 - > Initial establishment costs

- Revenue model
 - Licenses
 - > Higher prices possible

IIoT Business Model: Flow

IIoT Business Model: Flow (Contd.)

- Cloud-based BMs aim at providing an infrastructure
- Companies operating a Service-oriented BM employ Cloudbased BMs to gather data and information
 - > Analyze and sell as a service
- Analyzed and prepared data help companies with a Processoriented BM to optimize process flows

IIoT Business Model: Challenges

- Security and data privacy
 - > Physical and virtual worlds combine at a large scale
- > Need security frameworks for entire cyber physical stack
 - > device-level authentication and application security
 - > system-wide
 - > Assurance
 - ➤ Resiliency
 - ➤ Incidence response models

IIoT Business Model: Challenges (Contd.)

- Lack of interoperability
- Increase complexity
- > Increase cost
- Need for seamless data sharing between machines and other physical systems from different manufacturers

IIoT Business Model: Challenges (Contd.)

- > Uncertain return on investments on new technologies
- > Immature or untested technologies
- Lack of data governance rules across geographic boundaries
- Shortage of digital talent

References

- [1] Michael Ehret & Jochen Wirtz (2017) Unlocking value from machines: business models and the industrial internet of things, Journal of Marketing Management, 33:1-2, 111-130
- [2] Technical report on Industrial Internet of Things: Unleashing the Potential of Connected Products and Services, World Economic Forum, In collaboration with Accenture, January 2015
- [3] Weinberger, M., Bilgeri, D. & Fleisch, E. (2016). IoT business models in an industrial context. *Special Issue: Industrial Internet of Things supporting Factory Automation / Jürgen Beyerer, Thomas Usländer. at Automatisierungstechnik*, 64(9), pp. 699-706.
- [4] Sylwia Gierej, The Framework of Business Model in the Context of Industrial Internet of Things, Procedia Engineering, Volume 182, 2017, Pages 206-212, ISSN 1877-7058
- [5] Arnold, Christian & Kiel, Daniel & Voigt, Kai-Ingo. (2016). How the Industrial Internet of Things changes business models in different manufacturing industries. International Journal of Innovation Management.
- [6] Arnold, Christian, Daniel Kiel, and Kai-Ingo Voigt. "Innovative Business Models for the Industrial Internet of ThingsInnovative Geschäftsmodelle für Industrie 4.0." BHM Berg-und Hüttenmännische Monatshefte 162.9 (2017): 371-381.

Thank You!!

