Ain Shams University, Faculty of Engineering,

ECE212: Digital Design

Arithmetic and Logical Unit Design Project

Table of Contents

ALU Code	 	
3		
Testbench	 	
6		
Waveforms:	 	
7		
Circuit Schematics	 	
10		

ALU Code

```
4-bit ALU
       sel
                      Operation
                                                           Unit
       0000
                      increment a
       0001
                      decrement a
       0010
                      transfer b
       0011
                      increment b
                                                           Arithmetic
       0100
                      decrement b
       0101
                      transfer a
       0110
                      add a and b
       0111
                      multiply a by 2
       1000
                      complement a (1s complement)
       1001
                      complement b
       1010
                      AND
       1011
                      OR
       1100
                      XOR
                                                           Logic
       1101
                      XNOR
       1110
                      NAND
       1111
                      NOR
library ieee;
use ieee.std_logic_1164.all; use
ieee.std logic signed.all;
entity ALU
is port(
      a,b,sel: IN STD LOGIC VECTOR(3 downto 0);
y : out STD LOGIC VECTOR (4 downto 0)
); end
ALU;
architecture Alu of Alu is
begin
process(a,b,sel)
Variable yav : STD LOGIC VECTOR(4 downto 0);
-- variable to hold the output in arithmetic operations
variable ylv : STD LOGIC VECTOR(3 downto
0);
-- variable to hold the output in logic operations
variable temp : STD_LOGIC_VECTOR(4 downto 0);
begin
```

```
if (sel = "0000") then
                                 --Increment a
           temp(4 downto 0) := ("00000" + a + "0001");
           yav := temp;
    elsif (sel = "0001") then -- decrement a temp(4
downto 0) := ("00000" + a + "1111");
           yav := temp;
          yav := ("00000" + b);
     elsif (sel = "0010") then
     elsif (sel = "0011") then
                                 -- increment b
           temp(4 downto 0) := ("00000" + b + "0001");
           yav := temp;
    elsif (sel = "0100") then
                          -- decrement b
temp(4 downto 0) := ("00000" + b + "1111");
           yav := temp;
     yav := "00000" + a;
     elsif (sel = "0110") then
                                 -- Add a and b
           temp(4 downto 0) := ("00000" + a + b);
           yav := temp;
     elsif (sel = "0111") then -- multiply (a) by 2 or shift left 1 bit
           temp(4 downto 0) := ("00000" + a + a);
           yav := temp;
                -- Logic Operations
     ylv := NOT a;
     ylv := NOT b;
    elsif (sel = "1010") then -- a AND b
    ylv := (a AND b);
    elsif (sel = "1011") then -- a OR b
ylv := (a OR b);
```

Testbench

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL; use
ieee.std logic signed.all;
ENTITY tst IS
END tst;
ARCHITECTURE behavior OF tst IS
COMPONENT Alu PORT ( sel : IN
std logic vector(4 downto 0)
    );
END COMPONENT;
      --Inputs
     signal sel : std logic vector(3 downto 0) := (others => '0');
signal a : std logic vector(3 downto 0) := (others => '0');
signal b : std logic vector(3 downto 0) := (others => '0');
      --Outputs
      signal y : std logic vector(4 downto 0);
BEGIN uut: Alu
PORT MAP (
sel => sel,
a => a, b => b, v => v
      );
  -- Stimulus process
stim proc: process begin
    a <= "1000"; -- input a to change b <=
"1011"; -- input b to change
    sel <= "0000";
wait for 100 ns;
    for i in 0 to 15 loop
for 100 ns;
     end loop;
---- wait;
end process;
END;
```

Waveforms:

₹ sel[3:0]	0000 0001	X 0010 X 0011	X 0100 X 0101	0110 / 0111 / 10	00 \ 1001	X 1010 X 1011	X 1100 X 1101	<u> 1110 </u>
a[3:0]				0111				
6 b[3:0]				0111				
y[4:0]	01000 00110	00111 01000	00110 00111	01110	01000	00111	00000 01111	01000

sel[3:0] a[3:0] b[3:0]	0000 0001 0010	0011 × 0100 × 0101	X 0110 X 0111 X	1000 \ 1001	1010 1011	1100 1101	1110 \ 1111
			1000				
№ b[3:0]			1000				
y [4:0]	11001 / 10111 / 11000 / 1	1001 × 10111 × 11000	X 10000 X	00111	01000	00000 01111	00111

■ sel[3:0]	0000 0001 0010 0011	0100 0101	0110 \ 0111 \ 1000 \ 1001	1010 \ 1011	X 1100 X 1101	1110 \ 1111
a[3:0]			0000			
¥ b[3:0]	(1000			
¥ y[4:0]	00001 \(\) 11111 \(\) 11000 \(\) 11001	10111 00000	11000 00000 01111 00111	00000 0	1000 \ 00111	01111 00111

sel[3:0]	0000 0001	0010 0011	0100 0101	0110 0111 1000 1001	1010 1011	1100 1101	1110 1111
a[3:0]				0111			
				0000			
y[4:0]	01000 × 00110	00000 00001	X 11111 X 00	0111 / 01110 / 01000 / 01111	X 00000 X 00	0111 (01000	01111 \ 01000

¾ sel[3:0] ¾ a[3:0]	0000 0001	0010 0011	0100 0101	0110 0111	1000 \ 1001	X 1010 X 1011	(1100)	1101 / 1110 / 1111
				011	1			
b [3:0]				011	1			
y[4:0]	01000 00110	00111 01000	00110 (00111)	01110	01000	00111	00000	01111 01000

sel[3:0]	0000	0001	0010	0011	X 0100	X 0101	X 011	0 X	0111	1000)_X	1001	10	10_)	1011	χ_	1100	X 1101	Χ.	1110	X 1111
a[3:0] b[3:0]									0	111											
									0	011						I					
y[4:0]	01000	00110	00011	00100	00010	00111	010	10	01110	0100	0 \	01100	000	11	00111	X	00100	01011	X	01100	01000

sel[3:0]	0000 0001	0010 0011	0100 0101	X 0110 X 0111 X 1000 X	1001 × 1010 × 10	11 / 1100	(1101)	1110 / 1111
a[3:0] b[3:0]				0111				
				1111				
y [4:0]	01000 00110	11111 00000	11110 00111	00110 01110 01000	00000 00111 01	111 01000	(00111)	01000 00000

Circuit Schematics

The full design of 4 bits ALU With sign extension

The increase and decrease of A circuit design

A buffer of 5 input bus

The design of 3 input NAND gate

Bus of 4 for two input mux

Bus of 5 for two input mux

The Design of the two input Multiplexer using transmission gates and Inverters

The design of two input XNOR gate using transmission gates and Inverters

The design of two input XOR gate using transmission gates and Inverters

The Design of two input NAND gate

The Design of two input NOR gate

The Design of two input OR using NOR gate and Inverter

The design of transmission gate

The one Bit Logic unit

The four(4) Bits logic unit

The design of the inverter

Transfer and increase B

The design of Half Adder

The design of the full adder (using Two Half Adders)

The design of buffer

The design of (transfer and increase b)

The design of decrease (b) && transfer (a)

The design of AND gate using NAND and Inverter

The design of increase and decrease a

The design of add a&b (a+b) and (the 2*a)

11.7 GHZ

37

3.34GHZ

Printed on by cadence

Page 1 of 1