1 Nelineární algebraické rovnice

Budeme se zabývat hledáním kořene x_* dané funkce f v situaci, kdy nejsme schopni jej analyticky spočítat. Existují dva typy metod:

- "intervalové": Začneme s intervalem [a, b], ve kterém je umístěn kořen, a pak jej postupně zkracujeme. Metody: bisekce, regula falsi, . . .
- "bodové": začneme v bodě x_0 (nebo více) a postupně konstruujeme další aproximace kořenu, například pomocí derivací: Newtonova metoda a její modifikace, metoda sečen, fixed-point

V tomto cvičení se budeme věnovat pouze bisekci a Newtonově metodě jako zástupcům intervalových a bodových metod. (Metodě fixed-point se budeme věnovat v domácím úkolu.)

1.1 Funkční proměnné v MATLABu

Abychom mohli uchopit funkci jako proměnnou, budeme využívat následující syntaxi:

f =
$$@(x) x.^2 - 4*x + 1;$$
 g = $@(x) \sin(pi*x);$ kde $f = x^2 - 4x + 1$ a $g = \sin(\pi x).$

Potom můžeme tyto funkce použít jako vstupní parametr jiné funkce, například:

[x,iter]=bisection(f,a,b,tol,sol)

[x,iter]=newton(f,fd,x0,tol,sol)

[x,iter]=newton_convergence(f,fd,x0,tol)

kde f je zadaná funkce, fd její derivace a sol je hledaný kořen zadané funkce. Tolerance je určená proměnnou tol.

Je možné také rovnou psát funkce f = Q(x) ... do argumentu, např.:

 $[x, iter] = bisection(@(x) x.^4 - 1,0,10,1e-8,1)$

1.2 Metoda bisekce a Newtonova metoda

V celé této kapitole budeme pracovat s těmito funkcemi:

$$f(x) = x^{2} + x - 6,$$

$$g(x) = x^{3},$$

$$h(x) = 1.2 + 2x^{2} - x - e^{-x}.$$

Naším úkolem je spočítat všechny kořeny pomocí bisekce a Newtonovy metody

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}. (1)$$

Úloha 1. Dříve, než začneme příklady počítat pomocí bisekce nebo Newtonovy metody, je dobré si rozmyslet, jak budeme pro jednotlivé funkce volit počáteční body a intervaly.

Může vést u funkcí f, g, h různá volba intervalů nebo počátečních bodů k různým výsledkům?

Úloha 2. Porovnejme rychlost konvergence bisekce a Newtonovy metody na všech třech příkladech.

 $Využijte\ funkce\$ bisection a newton. $Toleranci\ zvolte\ 1e-8$. $Pokud\ vás\ zajímá\ průběh\ a\ jednotlivé\ aproximace\ řešení\ Newtonovou\ metodou,\ použijte\ funkci\$ newton_convergence

1.3 Asymptotický řád konvergence

Definice 1. Nechť posloupnost bodů $\{x_n\}$ získaná iterační metodou konverguje k x. Pak řekneme, že konverguje s řádem p, pokud pro nějaká $p \in \mathbb{R}$ a $C \in (0, \infty)$ platí

$$\lim_{k \to \infty} \frac{|x - x_{k+1}|}{|x - x_k|^p} = C.$$

Pro p=1 požadujeme navíc $C \in (0,1)$ a poté řekneme, že metoda konverguje lineárně. Pokud p=2, pak metoda konverguje kvadraticky.

Můžete si rozmyslet, že každá metoda může konvergovat jen s jedním řádem p a navíc $p \ge 1$.

Linearita metody bisekce O metodě bisekce víme, že kořen x_* spojité funkce f(x) se nachází někde v intervalu [a,b]. Největší možná chyba v k-tém kroku je proto $e_k = \frac{1}{2}|b_k - a_k|$. Také je okamžitě vidět, že $e_{k+1} = \frac{1}{2}e_k$. Metoda bisekce tedy konverguje lineárně s konstantou $C = \frac{1}{2}$.

Rozdíl mezi lineární a kvadratickou konvergencí ilustruje následující úloha:

Úloha 3. Kolik potřebujeme iterací bisekce na to, abychom odhad chyby e_k zmenšili alespoň o řád? A o 7 řádů?

Newtonova metoda za určitých předpokladů konverguje kvadraticky. Pokud by platilo, že

$$|x - x_{k+1}| = |x - x_k|^2$$

a chyba $|x-x_0|=0.1$, kolik potřebujeme iterací na to, abychom chybu zmenšili o řád? A o 7 řádů?

1.4 Podrobněji k Newtonově metodě

Nyní si odvodíme i nějaké postačující podmínky pro konvergenci Newtonovy metody.

Uloha 4. Ukažte, zda bude Newtonova metoda konvergovat v následujících případech:

- a) Nechť $f \in \mathcal{C}^{\infty}$ je ryze konvexní rostoucí spojitě diferencovatelná funkce, nechť má nějaký kořen x_* .
- b) Co by se změnilo pro $f \in \mathcal{C}^{\infty}$ rostoucí a ryze konkávní, klesající a ryze konvexní, klesající a ryze konkávní.
- c) Co by se v jednotlivých případech změnilo, kdyby $f \in \mathcal{C}^{\infty}$ byla rostoucí či klesající a konvexní či konkávní místo na \mathbb{R} jen na intervalu $[x_*, x_0]$ (resp. $[x_0, x_*]$)?

Úloha 5 (Navíc). Umíte zdůvodnit, proč někdy a za jakých podmínek konverguje Newtonova metoda pomaleji než kvadraticky?

[Hint: Vratte se k případu funkce g.]

Úloha 6. Newtonova metoda občas selhává. Odhalte problémy, které nastanou, zvolíme-li $x_0 = 1$ pro funkce definované následujícími předpisy

a)
$$f(x) = 2x - x^2$$
,

b)
$$f(x) = \begin{cases} -(-x)^{1/2} & x < 0, \\ x^{1/2} & x \ge 0. \end{cases}$$