Particle spectrograph

Wave operator and propagator

0	0	<u>t1</u> 2
$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
t 1	$\frac{ikt_1}{\sqrt{2}}$	0

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$\tau_0^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$	$\tau_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} = 0 \partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}t^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#_{1}}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_1^{\#_1}\alpha\beta + ik \ \sigma_1^{\#_2}\alpha\beta == 0$		3

O == +0;	$\partial_{\beta}\partial_{\alpha}l$: $\equiv \partial_{\beta}\partial'$ l	-
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta}==0$	1
$\tau_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_1^{\#_1}\alpha\beta + ik \ \sigma_1^{\#_2}\alpha\beta == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0 \partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta} \sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \sigma_{2}^{\#1}\alpha\beta == 0$	$t_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0 \ -i(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2\partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\ \ \delta}$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 I k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau_{\chi}^{\lambda}$ -	
	$4 \mathbb{I} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/appropriately	200000000000000000000000000000000000000	17

_	$\sigma_1^{\#1}$	6	$ au_1^{\#1}$	$\sigma_{1^-lpha}^{\#1}$	$\sigma_{1^{-}\alpha}^{\#2}$	$ au_{1}^{\#1}$	$\tau_{1}^{\#2}$
$\sigma_{1}^{\#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$\sigma_{1}^{#2} + \alpha^{\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\tau_1^{\#1} + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	- kr5+2h
$\sigma_{1}^{\#2} +^{lpha}$	0	0	0	$-\frac{1}{\sqrt{2} \; (k^2 \; r_5 + 2 k^4 r_5)}$	$\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$	0	$\frac{i(6k^2 r_5)}{\sqrt{2} k(1+2k^2)}$
$\tau_{1}^{\#1} + ^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} + \alpha$	0	0	0	$\frac{i}{k r_5 + 2 k^3 r_5}$	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5}{(1+2k^2)^2}$

1		- #1	$\dagger^{\alpha\beta}$
r5 t1	$f^{\theta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\tau_{2}^{\#1}$ $\sigma_{2}^{\#1}$	$t^{lphaeta\chi}$
$k^{r}S + 2k^{-r}S$ $\sqrt{2}k(1+2k^{2})^{2}r_{S}t_{1}$ (1.	ction	$f_{1^-}^{\#2}$	0
2	$-4 \omega'_{\beta}^{\theta}$ $-4 \omega'_{\beta}^{\theta}$ $\alpha' + 3 \delta$ $\alpha'' + 3 \delta$ $\alpha'' + 2 \delta$ $(\delta_{\alpha} \omega^{\alpha})^{\alpha}$ $(\lambda, z] d\beta$	$f_{1}^{\#1}$	0
Kr5+2K" r	$\sigma_{\alpha\beta\chi} + \omega_{\alpha}^{\ \theta} - 4 \omega_{\alpha}^{\ \theta} \partial_{i} f^{\alpha i} + 4 \omega_{i}^{\ \theta} \partial^{j} f^{\alpha} - 2 \partial_{i} f^{\alpha} \partial_{i} f^{\alpha} + 4 \omega_{i}^{\ \theta} \partial^{j} f^{\alpha} - 2 \partial_{i} f^{\alpha} \partial_{i} f^{\alpha} \partial_{i} f^{\alpha} \partial_{i} f^{\alpha} \partial_{i} f^{\alpha} \partial_{i} \partial_$	$\omega_{1}^{\#1}{}_{\alpha\beta} \ \ \omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta} \ \ \omega_{1}^{\#1}{}_{\alpha} \ \ \ \omega_{1}^{\#2}{}_{\alpha} \ \ f_{1}^{\#1}{}_{\alpha} \ \ f_{1}^{\#2}{}_{\alpha}$	0 0 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\omega_{1^-}^{\#1}{}_{\alpha}$	0
	$\begin{array}{c} \alpha \\ \alpha \\ \alpha \\ \beta \end{array}$ $\begin{array}{c} \alpha \\ \alpha \\ \beta \end{array}$ $\begin{array}{c} \alpha \\ \beta \\ \alpha \\ \beta \end{array}$ $\begin{array}{c} \alpha \\ \beta \\ \alpha \\ \beta \end{array}$ $\begin{array}{c} \alpha \\ \beta \\ \alpha \\ \alpha \end{array}$	$f_1^{\#1}\!$	$-\frac{ikt_1}{\sqrt{2}}$
	$\alpha \beta + \omega^{c}$	$\omega_1^{\#_2^2}$	$-\frac{t_1}{\sqrt{2}}$
	Quadratic (free) action $S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \frac{1}{6} t_1 (2 \omega^{\alpha\prime} \alpha \omega^{\alpha\prime} \omega$	$\omega_1^{\#1}{}_+\alpha\beta$	$\omega_{1}^{\#1} + \alpha^{\beta} k^{2} r_{5} - \frac{t_{1}}{2} - \frac{t_{1}}{\sqrt{2}} - \frac{i^{k}t_{1}}{\sqrt{2}}$
- -	Quadr S == ∫∫		$\omega_1^{\#1} + \alpha^{\beta}$

ı								
$f_{1^-}^{\#2}$	0	0	0	<i>آ لا د</i> ً <u>ا</u> ع	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	
$f_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0	0	0	0	0	
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$	
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	
$\omega_{1}^{\#2}_{+\alpha\beta}\ f_{1}^{\#1}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0	2 #1
$\omega_1^{\#1}{}_+^{lpha}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	,,#1 £#1 £#2
	$\omega_1^{\#1} + \alpha eta$	$\omega_1^{\#2} + ^{\alpha \beta}$	$f_1^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#_{1}} +^{lpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} +^{\alpha}$	#,

 $\sigma_{2-\alpha\beta\chi}^{\#1}$

0

0

 $\sigma_{0}^{#1} + \tau_{0}^{#1} + \tau_{0}^{#1} + \tau_{0}^{#2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{$

0

 $\sigma_{0}^{#1}$

0

0

 $2i\sqrt{2}k$ $(1+2k^2)^2t_1$

 $\frac{1}{(1+2k^2)^2t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

Massive and massless spectra

(No massive particles)

Unitarity conditions

 $r_5 < 0 \&\& t_1 < 0 || t_1 > 0$