Cálculo Integral - Actividad 4

Resolver los siguientes ejercicios de forma analítica y comprobar los resultados con Python.

Hallar la derivada de las siguientes funciones:

1.
$$y = \ln(ax + b)$$

8.
$$y = \log(\frac{2}{\pi})$$

15.
$$y = \frac{2}{e^x}$$

2.
$$y = \ln(ax^2 + b)$$

$$9. \ y = \ln\left(\frac{x^2}{1+x^2}\right)$$

$$16. \ s = e^{\sqrt{t}}$$

$$3. \ y = \ln\left(ax + b\right)^2$$

10.
$$y = \ln\left(\sqrt{9 - 2x^2}\right)$$

17.
$$z = b^{2y}$$

$$4. \ y = \ln\left(ax^n\right)$$

11.
$$y = \ln\left(ax\sqrt{a+x}\right)$$

18.
$$u = se^s$$

5.
$$y = \ln(x^3)$$

12.
$$y = x \ln(x)$$

19.
$$v = \frac{e^u}{u}$$

$$6. \ y = \ln\left(x\right)^3$$

13.
$$y = 10^{nx}$$

7.
$$y = \ln(2x^3 - 3x^2 + 4)$$

14.
$$y = e^{x^2}$$

20.
$$y = \frac{\ln(x)}{x}$$

En los problemas 21 a 30 hallar el valor de $\frac{dy}{dx}$ para el valor dado de x.

21.
$$y = \ln(x^2 + 2)$$
; $x = 4$

25.
$$y = \frac{\ln(x^2)}{x}$$
; $x = 4$

28.
$$y = 10^{\sqrt{x}}$$
; $x = 4$

22.
$$y = \log(4x - 3)$$
; $x = 2$

23. $y = x \ln (\sqrt{x+3}); x = 6$

26.
$$y = \frac{e^{\frac{x}{2}}}{x+1}$$
; $x = 1$

29.
$$y = \left(\frac{3}{x}\right)^x$$
; $x = 3$

24.
$$y = xe^{-2x}$$
; $x = \frac{1}{2}$

27.
$$y = \log \sqrt{25 - 4x}$$
; $x = 5$

27.
$$y = \log \sqrt{25 - 4x}$$
; $x = 5$ 30. $y = \frac{x^3 \sqrt{x^2 + 9}}{\sqrt[3]{20 - 3x}}$; $x = 4$