- 1. **Axiom.** If A is a set then A is also an object. In particular, given two sets A and B, it is meaningful to ask whether A is also an element of B.
- 2. **Axiom (Empty set).** There exists a set ϕ , known as the empty set, which contains no elements, i.e., for every object x we have $x \notin \phi$.
- 3. **Axiom (Replacement).** Let A be a set. For any object $x \in A$, and any object y, suppose we have a statement P(x,y) pertaining to x and y, such that for each $x \in A$ there is at most one y for which P(x,y) is true. Then there exsists a set $\{y : P(x,y) \text{ is true for some } x \in A\}$, such that for any object z,

$$z \in \{y : P(x,y) \text{ is true for some } x \in A\}$$

 $\Leftrightarrow P \text{ is true for some } x \in A.$

(De Morgan laws) We have $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$ and $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

And we use *cardinality* to describe the counts of the elements in a set.

Equality of functions. Two functions f, g with the same domain and rage are said to be equal, if and only if for every $x \in X$, f(x) = g(x).

Let's look at the function $f: \phi \to X$, from the empty set to an arbitrary set X. We can say that for every X, there's only one empty function.

Lemma (Composition is associative). Let $f: Z \to W$, $g: Y \to Z$, $h: X \to Y$ be functions. Then $f \circ (g \circ h) = (f \circ g) \circ h$.

A function is one-to-one(or injective) if

$$f(x) = f(x') \Rightarrow x = x'$$

A function is *onto*(or *surjective*) if

$$\forall y \in Y, \exists x \in X such that f(x) = y$$

If f is both onto and one-to-one, then it's *bijective*.

If f is bijective, then for every $y \in Y$, there is exactly one x such that f(x) = y. This value of x is denoted as $f^{-1}(y)$. Thus f^{-1} is a function from Y to X, the reverse of f.