Avaliação da medição para o desafio 2.5

Anderson Queiroz do Vale — Aziel Martins de Freitas Júnior — Jean Paulo Silva Rodrigo Formiga Farias

22 julho 2020

Introdução

Este trabalho foi realizado com intuito de analisar os resultados obtidos da corrida de revezamento utilizando o método de análise de variância (ANOVA). Esse método é um procedimento usado para comparar a distribuição de três ou mais grupos em amostras independentes. Ele também é uma forma de resumir um modelo de regressão linear através da decomposição da soma dos quadrados para cada fonte de variação no modelo e, utilizando o teste F, testar se a hipótese de qualquer fonte de variação no modelo é igual a zero.

Coleta dos dados

Os dados coletados foram retirados de 4 computadores distintos, como mostra a tabela abaixo.

Table 1: Características dos computadores.

	Máquina 1 (Rodrigo)	Máquina 2 (Aziel)	Máquina 3 (Anderson)	Máquina 4 (Jean)
Processador	i7-8550U	i5-8300H	i3-8130U	i5-9400F
Memória	8 GB RAM	8 GB RAM	6 GB RAM	16 GB RAM
GPU	GTX 1050	GTX 1050	MX 920	GTX 1650

A partir das medições foi possível extrair os tempos dos quatro robôs nas corridas de testes. O tempo, em segundos, é resultado do percurso total de corrida concluído por cada robô individualmente para cada computador distinto, como mostra a Tabela 2. Os robôs são classificados como RAJA 1, RAJA 2, RAJA 3 e RAJA 4, e o número das máquinas são equivalentes o da Tabela 1.

Table 2: Tempos na corrida de revezamento.

Máquina	RAJA	Teste	Tempo (s)	Máquina	RAJA	Teste	Tempo (s)
1	1	1	16.83	3	1	1	16.35
1	1	2	16.74	3	1	2	16.29
1	1	3	16.81	3	1	3	16.4
1	2	1	17.51	3	2	1	17.8
1	2	2	17.75	3	2	2	17.87
1	2	3	17.73	3	2	3	17.77
1	3	1	22.32	3	3	1	22.27
1	3	2	21.52	3	3	2	21.39
1	3	3	21.6	3	3	3	20.37
1	4	1	19.97	3	4	1	19.46
1	4	2	19.62	3	4	2	19.68
1	4	3	19.8	3	4	3	21.54

Máquina	RAJA	Teste	Tempo (s)	Máquina	RAJA	Teste	Tempo (s)
2	1	1	16.35	4	1	1	16.39
2	1	2	16.31	4	1	2	16.38
2	1	3	16.32	4	1	3	16.29
2	2	1	17.71	4	2	1	17.71
2	2	2	17.72	4	2	2	17.72
2	2	3	17.72	4	2	3	17.72
2	3	1	21.34	4	3	1	21.51
2	3	2	21.53	4	3	2	22.24
2	3	3	21.49	4	3	3	21.68
2	4	1	19.68	4	4	1	19.58
2	4	2	21.12	4	4	2	19.65
2	4	3	19.75	4	4	3	19.71

A avaliação do sistema de medição resultou nas tabelas acima e uma representação gráfica, que são explicados abaixo.

Interpretação da avaliação do sistema de medição

O "Total Gage R&R" calculado para a variabilidade no estudo (%StudyVar) foi de 19,17%, como mostra a Tabela 3. Segundo Automotive Industry Action Group (AIAG), no qual diz que o percentual de aceitabilidade do processo pode ser entre 10%-30% dependendo da aplicação, pode-se afirmar que o estudo da análise da variabilidade do sistema de corrida de revezamento pode ser aceito. A variação entre medidas mais expressiva se dá pelo item "Part-to-part", medindo 98,14%, relacionado aos objetos medidos, encontra-se próxima dos 100%. O "Number of Distinct Categories" encontrado foi 7, e está acima do valor aceitável de 2.

Table 3: Total gage $R \mathcal{E} R$

	StdDev	StudyVar	%StudyVar
Total Gage R&R	0.4475435	2.685261	19.17
Repeatability	0.4475435	2.685261	19.17
Reproducibility	0.0000000	0.000000	0.00
Máquina	0.0000000	0.000000	0.00
Part-To-Part	2.2909039	13.745424	98.14
Total Variation	2.3342099	14.005260	100.00

Componentes da variação

A variabilidade recebe contribuição inexpressiva da repetição dos testes bem como dos computadores utilizados no teste, o que demonstra consistência aceitável do sistema de medição.

Figure 1: Componentes da variação

Variância por máquina

Este gráfico indica a variância nos tempos na avaliação em cada uma das máquinas. Os valores são próximos e estão dentro de uma faixa aceitável, delimitada pelas linhas horizontais vermelhas, exceto pela Máquina 3, que apresentou problemas de hardware que acabaram sendo traduzidos na simulação.

Figure 2: Variância por máquina

Gráfico de tempo médio por avaliador

Este gráfico indica as médias nos sistemas de medição, que são os *avaliadores*, e seu comportamento é bastante similar em todos eles. Os RAJA 3 e 4 são os que percorrem um trajeto curvilíneo e com velocidade deliberadamente menor e por isso apresentam um tempo médio maior os outros.

Figure 3: Tempo médio por avaliador

Tempo por cada RAJA

As medidas de tempo para cada RAJA estão aglomeradas verticalmente de modo a exibir como as medições se dispersam em cada um dos sistemas de medição. Nota-se a similaridade entre este gráfico e o anterior nos pontos onde há maior densidade de medições.

Figure 4: Tempo por RAJA

Tempo por máquina

As medidas de tempo para cada um dos RAJA estão representadas na vertical bem como o valor médio, representado pela linha horizontal azul. O teste pode ser considerado bom se a amplitude das medidas em cada máquina for similar, bem como a horizontalidade da linha. As amplitudes das medições são devidas aos objetos testados e não instrumentos de medição utilizados.

Figure 5: Tempo por máquina

Interação entre os avaliadores

Este gráfico é uma sobreposição dos gráficos anteriores, a fim de ilustrar a semelhança entre os valores das médias para cada RAJA.

Figure 6: Interação entre os avaliadores