Diskrete Wahrscheinlichkeitstheorie – Aufgabenblatt 8

Beachten Sie: Soweit nicht explizit angegeben, sind Ergebnisse stets zu begründen!

Hausaufgaben: Abzugeben bis zum 19.06.2013 um 12:00

Vereinfachen Sie Terme soweit wie möglich. Unnötig komplizierte Antworten werden nicht gewertet.

Aufgabe 8.1

Bestimmen Sie die Konstante c so, dass es sich bei $f(x) = \frac{c}{1+x^2}$ um eine Dichte über \mathbb{R} handelt.

Hinweis: Verwenden Sie die Substitution $x = \tan \phi$ für $\phi \in (-\pi/2, \pi/2)$.

Aufgabe 8.2 3P+5P

Seien Φ und Θ unabhängige ZVn mit Φ gleichverteilt auf $[-\pi, \pi)$ und Θ gleichverteilt auf [0, 1].

Dann ist durch $G(\Phi, \Theta) := \{(x, y) \in \mathbb{R}^2 \mid x \cdot \cos \Phi + y \cdot \sin \Phi = \Theta\}$ eine zufällige Gerade im \mathbb{R}^2 beschrieben, wobei Θ den Abstand der Gerade vom Ursprung angibt.

- (a) Für ein festes $r \in [0, \infty)$ sei $K_r = \{(x, y) \in \mathbb{R}^2 \mid \sqrt{x^2 + y^2} = r\}.$
 - Bestimmen Sie die W'keit $\Pr[G(\Phi,\Theta) \cap K_r \neq \emptyset]$.
- (b) Für ein festes $\rho \in [0, \pi]$ sei $L_{\rho} = \{(\cos \alpha, \sin \alpha) \in \mathbb{R}^2 \mid \alpha \in [-\rho/2, \rho/2)\}.$

Bestimmen Sie wiederum die W'keit $\Pr[G(\Phi, \Theta) \cap L_{\rho} \neq \emptyset\}].$

Hinweis: Zeichnen Sie sich für festes Θ die Extremfälle auf, in denen $G(\Phi,\Theta)$ den Kreisbogen L_{ρ} noch schneidet.

Aufgabe 8.3 4P+3P

(a) Bei einer Wahl mit drei Parteien können die möglichen Wahlausgänge durch die Menge

$$\Omega := \{ (p_1, p_2, p_3) \in [0, 1]^3 \mid p_1 + p_2 + p_3 = 1 \}$$

beschrieben werden. Wir nehmen auf Ω eine Gleichverteilung an.

Bestimmen Sie die W'keit, dass eine Partei die absolute Mehrheit $A := \{(p_1, p_2, p_3) \in \Omega \mid \exists i \in [3] : p_i > 1/2\}$ erringt.

Hinweis: Stellen Sie Ω und A als Mengen im \mathbb{R}^2 dar.

(b) Wie (a) nur jetzt mit vier Parteien. Hinweis: Das Volumen eines regulären Tetraeders mit Kantenlänge a ist $\frac{\sqrt{2}}{12} \cdot a^3$.

Aufgabe 8.4 1P+2P

Zeigen Sie entsprechend zu TA 7.3, dass auch folgende Ereignisse in $\mathcal{Z}(Q)$ enthalten sind:

- (a) "Es kommt zu höchstens drei fehlerhaften Übertragungen."
- (b) "Immer wenn eine Nachricht fehlerhaft übertragen wird, ging diese Nachricht mindestens einmal verloren."

Sie sollten folgende Integrale von Hand bestimmen können. (Quelle: Übungsblätter 9 und 10 aus Analysis für Informatiker WS2011.)

$$\int_{1}^{5} (3x+2)^{1/2} dx. \qquad \int_{-1/4}^{3/4} x \arcsin(x^2) (1-x^4)^{-1/2} dx \qquad \int_{2}^{5/4} (1+(1+x)^{1/2})^{-1} dx.$$

$$\int_{0}^{\infty} (3x^2-4x+5)e^{-x} dx. \qquad \int_{x^2+y^2 \le 1} (x^2+y^2) dx dy. \qquad \int_{|x|+|y| \le 1} (x^2+y^2) dx dy.$$

Tutoraufgaben: Besprechung in Woche vom 17.06.2013.

Aufgabe 8.1

Sie haben ein neuartiges Antiviren-Programm namens an TiWiD entwickelt. Ein herkömmliches Antiviren-Programm erkennt einen Virus mit W'keit 0.6. Sie behaupten, dass an TiWiD einen Virus mit W'keit 0.8 erkennt. Zu Testzwecken wird ein Computer n Viren ausgesetzt.

- a) Zeigen Sie mit dem zentralen Grenzwertsatz, dass man n und m so wählen kann, dass die beiden folgenden Bedingungen beide erfüllt sind.
 - (i) Wenn Ihre Behauptung wahr ist, ist die W'keit, dass weniger als m Viren erkannt werden, kleiner 0.01.
 - (ii) Wenn an TiWiD wie ein herkömmliches Antiviren-Programm einen Virus nur mit W'keit 0.6 erkennt, ist die W'keit, dass m oder mehr Viren erkannt werden, kleiner 0.01.
- b) Bestimmen Sie ein möglichst kleines n und das entsprechende m, sodass beide Bedingungen erfüllt sind.

Aufgabe 8.2

Häufig betrachtet man n parallel verlaufende, unabhängige Instanzen desselben Experiments, wobei die Dauer einer jeden Instanz zufällig verteilt ist. Dann interessiert man sich für den Zeitpunkt, wann die ersten k Experimente beendet sind. Dies wird als Ordnungsstatistik bezeichnet. Formal:

Seien X_1, X_2, \dots, X_n unabhängige stetige ZVn mit identischer Verteilung; für $k \in [n]$ gebe die ZV $X_{(k)}$ den k-kleinsten Wert in der Sequenz (X_1, X_2, \dots, X_n) an.

Mit F(t) sei die Verteilungsfunktion der den X_i zugrundeliegenden Verteilung bezeichnet.

- (a) Stellen Sie die Verteilungsfunktion von $X_{(n)} = \max\{X_1, \dots, X_n\}$ und $X_{(1)} = \min\{X_1, \dots, X_n\}$ mit Hilfe von F dar.
- (b) Bestimmen Sie nun die Verteilungsfunktion von $X_{(k)}$ für beliebiges $k \in [n]$.

Betrachten sie hierfür der ZV $S_t := \sum_{j=1}^n I_{[X_j \leq t]}$ $(t \in \mathbb{R})$.

Aufgabe 8.3

Die Gammafunktion $\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt$ tritt in verschiedenen Formeln auf, z.B. beträgt der Oberflächeninhalt der Einheitskugel im \mathbb{R}^n gerade $2\frac{\pi^{n/2}}{\Gamma(n/2)}$. Wir betrachten $\Gamma(z)$ im Folgenden nur für $z \in (0, \infty)$.

- (a) Zeigen Sie, dass $\Gamma(1/2) = \sqrt{\pi}$. Betrachten Sie hierfür eine ZV $X \sim \mathcal{N}(0,1)$ und bestimmen Sie die W'keit $\Pr[X > 0]$.
- (b) Stellen Sie $\Gamma(n)$ und $\Gamma(n+1/2)$ für $n \in \mathbb{N} \setminus \{0\}$ ohne Verwendung der Gammafunktion dar. (Zeigen Sie: $\Gamma(z+1) = z \cdot \Gamma(z)$.)
- (c) Seien nun die ZVn X_1, \ldots, X_n unabhängig mit $X_i \sim \mathcal{N}(0, 1)$.

Bestimmen Sie die Dichte, den Erwartungswert und die Varianz von $S := X_1^2 + X_2^2 + \ldots + X_n^2$.

Bemerkung: Die Verteilung von S wird als Chi-Quadrat-Verteilung bezeichnet und wird später in der Vorlesung eine Rolle bei der Schätzung der Varianz spielen.