Assume that the thermal diffusivity of a thin metal rod $\alpha^2 = 2$ and the length of the rod is 3 cm. Assume that the left and right ends of the rod are held at 10°C and 100°C, respectively. Also assume that the initial temperature distribution f(x) is a linear function. Find the temperature u(x,t) of the rod at any time t>0.

ANS. The
$$f(x) = 10 + 30x$$
 and $u(x,t) = f(x)$

Now assume that the rod in Problem 1 has initial temperature distribution f(x) = 30 if 0 < x < 3. Also suppose that the left end of the rod is kept at 45°C and the right end of the rod is kept at 15°C This problem can be broken into two problems. Indicate how this is done by completing the following table:

	Initial Temp	Temp at $x = 0$	Temp at $x = L$
This Problem	30	45	15
=			
Steady State	45 -10x	45	15
+			
Transient	10x - 15	0	0

3. Find the temperature u(x,t) of the rod in Problem 2 for t>0

ANS. The steady state solution is $u_{\text{steady}}(x) = -10x + 45$. The transient solution is The solution is u(x,t) = -10x + 45. $u_{\text{steady}}(x) + u_{\text{transient}}(x,t)$ where $u_{\text{transient}}(x,t)$ is the solution of the ends in ice water problem with initial temperature 10x - 15. We seek a sine series $\sum_{1}^{\infty} b_n \sin(\frac{n\pi}{3}x)$ for 10x - 15 on [0,3] and then $u_{\text{transient}}(x,t) =$ $\sum_{1}^{\infty} b_n \sin(\frac{n\pi}{3}x) e^{-2(n\pi/3)^2 t}$ The only thing that remains to be done is to find the b_n which is a straightforward calculation:

$$b_{n} = \frac{1}{3} \int_{-3}^{3} f_{o}(x) \sin\left(\frac{n\pi}{3}x\right) dx$$

$$= \frac{2}{3} \int_{0}^{3} (10x - 15) \sin\left(\frac{n\pi}{3}x\right) dx$$

$$= -\frac{2}{3} \frac{3}{n\pi} \left(\left[(10x - 15) \cos\left(\frac{n\pi}{3}x\right) \right]_{0}^{3} - \int_{0}^{3} 10 \cos\left(\frac{n\pi}{3}x\right) dx \right)$$

$$= -\frac{2}{n\pi} \left(\left[(10x - 15) \cos\left(\frac{n\pi}{3}x\right) \right]_{0}^{3} \right)$$

$$= -\frac{2}{n\pi} \left(15 \cos(n\pi) + 15 \right)$$

4. For the rod in Problem 2, the approximate temperature at $x = \sqrt{2}$ for large t.

ANS. Approximately $-10\sqrt{2} + 45$

©2009 by Moses Glasner