● 1회차

[서술형 1] 7

[서술형 2] (1)
$$-\frac{3}{8}$$
 (2) $-\frac{\sqrt{7}}{4}$

[서술형 3] 9

01
$$\sqrt[3]{4} \times \sqrt[3]{16} = \sqrt[3]{4} \times 16$$

= $\sqrt[3]{64}$
= $\sqrt[3]{4}$
= $(\sqrt[3]{4})^3$
= 4

02 ㄱ. 81의 네제곱근 중 실수인 것은
$$-\sqrt[4]{81} = -\sqrt[4]{3^4} = -3, \sqrt[4]{81} = \sqrt[4]{3^4} = 3$$
이므로 그 개수는 2이다.

$$c. \sqrt{(-25)^2} = 25$$
이므로 $\sqrt{(-25)^2}$ 의 제곱근 중 실수인 것은 -5 , 5이다.

따라서 옳은 것은 ㄱ, ㄴ이다.

Lecture n제곱근

n이 2 이상의 정수일 때, 실수 a의 n제곱근 중 실수인 것은 다음과 같다.

	a>0	a=0	a<0
n이 홀수	$\sqrt[n]{a}$	0	$\sqrt[n]{a}$
n이 짝수	$\sqrt[n]{a}, -\sqrt[n]{a}$	0	없다.

오답 피하기

지수법칙이 성립하기 위한 지수의 범위에 따른 밑 a의 조건은 다음과 같다.

지=	<u>^</u>	자연수	정수	유리수	실수
밑	a	$a\neq 0$	$a\neq 0$	a>0	a>0

04
$$a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 5$$
의 양변을 제곱하면 $(a^{\frac{1}{2}})^2 + 2a^{\frac{1}{2}} \times a^{-\frac{1}{2}} + (a^{-\frac{1}{2}})^2 = 25$ $a + 2 + a^{-1} = 25$ $\therefore a + a^{-1} = 23$

05
$$\log_5 7 - 2 \log_5 \frac{1}{5} - \log_5 35 = \log_5 \frac{7}{35} - 2 \log_5 \frac{1}{5}$$

 $= \log_5 \frac{1}{5} - 2 \log_5 \frac{1}{5}$
 $= -\log_5 \frac{1}{5}$
 $= -\log_5 5^{-1}$
 $= 1$

06 밑의 조건에서
$$x-1>0$$
, $x-1\ne 1$
 $x>1$, $x\ne 2$
∴ $1< x< 2$ 또는 $x>2$ ······ ①
진수의 조건에서 $-x^2+5x-4>0$ 이므로
 $x^2-5x+4<0$, $(x-1)(x-4)<0$
∴ $1< x< 4$ ····· ①
①, ①의 공통 범위를 구하면
 $1< x< 2$ 또는 $2< x< 4$
따라서 정수 x 의 값은 3이다

07 이차방정식의 근과 계수의 관계에 의하여
$$\alpha+\beta=3$$
, $\alpha\beta=-3$ $\therefore 2^{(4-a)(4-\beta)}=2^{16-4(\alpha+\beta)+\alpha\beta}=2^{16-4\cdot 3+(-3)}=2$

Lecture 이차방정식의 근과 계수의 관계 이차방정식 $ax^2+bx+c=0$ 의 두 근을 α , β 라 할 때 (1) $\alpha+\beta=-\frac{b}{a}$ (2) $\alpha\beta=\frac{c}{a}$

08
$$\log_3 5 = a$$
에서 $\frac{1}{\log_5 3} = a$ $\therefore \log_5 3 = \frac{1}{a}$ $\log_2 5 = b$ 에서 $\frac{1}{\log_5 2} = b$ $\therefore \log_5 2 = \frac{1}{b}$

Lecture 로그의 밑의 변화

a>0, $a\neq1$, b>0, $b\neq1$, c>0, $c\neq1$ 일 때

$$(1) \log_a b = \frac{\log_c b}{\log_c a} \qquad (2) \log_a b = \frac{1}{\log_b a}$$

$$(2)\log_a b = \frac{1}{\log_b a}$$

09
$$\log 356 = \log(3.56 \times 10^2) = 2 + \log 3.56$$

 $= 2 + 0.5514 = 2.5514$
이므로 $a = 2.5514$
 $-1.4486 = 0.5514 - 2 = \log 3.56 - \log 10^2$
 $= \log 3.56 - \log 100 = \log \frac{3.56}{100}$
 $= \log 0.0356$
이므로 $b = 0.0356$
 $\therefore a + b = 2.5514 + 0.0356 = 2.5870$

- **10** 지진의 규모가 5.7인 지진의 에너지를 E_1 이라 하면 $\log E_1 = 1.5 \times 5.7 + 11.4 = 19.95$ 또 지진의 규모가 3.7인 지진의 에너지를 E_2 라 하면 $\log E_2 = 1.5 \times 3.7 + 11.4 = 16.95$ 이때 $\log E_1 - \log E_2 = 19.95 - 16.95 = 3$ 이므로 $\log \frac{E_1}{E_2} = 3$ $\therefore \frac{E_1}{E_2} = 10^3 = 1000$ 따라서 지진의 규모가 5.7인 지진의 에너지는 지진의 규모가 3.7인 지진의 에너지의 1000배이다.
- **11** 함수 $y=2^{x-1}+1$ 에서 밑 2는 1보다 크므로 함수 $y=2^{x-1}+1$ 은 증가함수이다. 따라서 x=3일 때 최댓값은 $M=2^2+1=5$ x=-1일 때 최솟값은 $m=2^{-2}+1=\frac{5}{4}$ $M+m=5+\frac{5}{4}=\frac{25}{4}$

- **12** 함수 $y = \log_2 x$ 의 그래프를 x축의 방향으로 a만큼. y축의 방향으로 b만큼 평행이동하면 $y-b=\log_2(x-a)$ $\therefore y = \log_2(x-a) + b$ $y = \log_2(8x - 4)$ 에서 $y = \log_2 8\left(x - \frac{1}{2}\right) = \log_2\left(x - \frac{1}{2}\right) + \log_2 8$ $=\log_2\left(x-\frac{1}{2}\right)+3$ 이때 ①과 ①의 그래프가 일치하므로 $a = \frac{1}{2}, b = 3$ $\therefore 2a+b=2\cdot\frac{1}{2}+3=4$
- **13** 진수의 조건에서 x+1>0.5-x>0 $\therefore -1 < x < 5 \qquad \cdots$ $2\log_5(x+1) \leq \log_5(5-x)$ 에서 $\log_5(x+1)^2 \le \log_5(5-x)$ 이때 밑 5는 1보다 크므로 $(x+1)^2 \le 5-x$ $x^2+2x+1 \le 5-x$, $x^2+3x-4 \le 0$ $(x+4)(x-1) \le 0$ $\therefore -4 \le x \le 1$ \bigcirc (그의 공통 범위를 구하면 $-1 < x \le 1$ 따라서 정수 x는 0. 1로 그 개수는 2이다
- **14** ① $-345^{\circ} = 360^{\circ} \times (-1) + 15^{\circ}$ $(2) -15^{\circ} = 360^{\circ} \times (-1) + 345^{\circ}$ $315^{\circ} = 360^{\circ} \times 0 + 15^{\circ}$ (4) 375° = 360° × 1+15° $(5)735^{\circ} = 360^{\circ} \times 2 + 15^{\circ}$ 따라서 각을 나타내는 동경이 나머지 넷과 다른 하나 는 ②이다.

오답 피하기

 $360^{\circ} \times n + \alpha^{\circ}$ (n은 정수)에서 α° 는 보통 $0^{\circ} \le \alpha^{\circ} < 360^{\circ}$ 인 것을 택한다.

15 종이의 넓이는 $\frac{1}{2} \cdot 18^2 \cdot \frac{8}{9} \pi - \frac{1}{2} \cdot 9^2 \cdot \frac{8}{9} \pi = 144 \pi - 36 \pi = 108 \pi$

16
$$\overline{OP} = \sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$$
이므로 $\sin \theta = \frac{-\sqrt{3}}{2} = -\frac{\sqrt{3}}{2}, \cos \theta = \frac{-1}{2} = -\frac{1}{2}$ $\therefore 4 \sin \theta \cos \theta = 4 \cdot \left(-\frac{\sqrt{3}}{2}\right) \cdot \left(-\frac{1}{2}\right) = \sqrt{3}$

17
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta, \cos\left(\frac{3}{2}\pi + \theta\right) = \sin\theta,$$
 $\tan(\pi - \theta) = -\tan\theta$ \therefore (주어진 식) $= \cos\theta + \sin\theta - \tan\theta$

[서술형 1] 이차방정식의 근과 계수의 관계에 의하여 $\log_2 a + \log_2 b = 6$, $\log_2 a \times \log_2 b = 4$

$$\begin{aligned}
& \therefore \log_{a} b + \log_{b} a \\
&= \frac{\log_{2} b}{\log_{2} a} + \frac{\log_{2} a}{\log_{2} b} \\
&= \frac{(\log_{2} a)^{2} + (\log_{2} b)^{2}}{\log_{2} a \times \log_{2} b} \\
&= \frac{(\log_{2} a + \log_{2} b)^{2} - 2\log_{2} a \times \log_{2} b}{\log_{2} a \times \log_{2} b} \\
&= \frac{6^{2} - 2 \times 4}{4} = 7
\end{aligned}$$

채점 기준	배점
	2점
$2\log_a b + \log_b a$ 의 값을 구할 수 있다.	4점

Lecture 곱셈 공식의 변형

(1)
$$a^2+b^2=(a+b)^2-2ab=(a-b)^2+2ab$$

(2) $a^3+b^3=(a+b)^3-3ab(a+b)$
(3) $a^3-b^3=(a-b)^3+3ab(a-b)$

[서술형 2]
$$(1)\sin\theta + \cos\theta = \frac{1}{2}$$
의 양변을 제곱하면 $\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{4}$ $1 + 2\sin\theta\cos\theta = \frac{1}{4}, 2\sin\theta\cos\theta = -\frac{3}{4}$ $\therefore \sin\theta\cos\theta = -\frac{3}{8}$

채점 기준	배점
$\bullet \sin \theta \cos \theta$ 의 값을 구할 수 있다.	
$2\sin^2\theta-\cos^2\theta$ 의 값을 구할 수 있다.	4점

[서술형 3] a>0이고 최댓값은 2, 최솟값은 -2이므로 a=2 b>0이고 주기가 $\frac{2}{3}\pi$ 이므로 $\frac{2\pi}{b}=\frac{2}{3}\pi$ $\therefore b=3$

 $\therefore y=2\sin(3x-c)$

이때 주어진 함수의 그래프가 점 (0,2)를 지나므로 $2=2\sin(-c)$, $-\sin c=1$

$$\sin c = -1 \qquad \therefore c = \frac{3}{2}\pi \ (\because 0 < c < 2\pi)$$

$$\therefore \frac{abc}{\pi} = \frac{2 \cdot 3 \cdot \frac{3}{2}\pi}{\pi} = 9$$

채점 기준	
1 a, b의 값을 구할 수 있다.	3점
② <i>c</i> 의 값을 구할 수 있다.	
	1점