Les vecteurs III

Produit scalaire:

Nous avons vu comment additionner (/soustraire) les vecteurs entre eux et la multiplication d'un vecteur par un scalaire. Nous allons voir Une autre opération faisant intervenir 2 vecteurs appelée produit scalaire. C'est une opération permettant de multiplier 2 vecteurs entre eux.

<u>Définition algébrique du produit scalaire:</u>

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \qquad \vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

Le produit scalaire de \mathbf{u} par \mathbf{v} , noté $\mathbf{u} \cdot \mathbf{v}$, est donné par :

$$\vec{u} \cdot \vec{v} = u_1 \times v_1 + u_2 \times v_2$$

Plus formellement :
$$ec{u} \cdot ec{v} = \sum_{i=1}^N u_i imes v_i$$

Définition géométrique du produit scalaire :

Soit 2 vecteurs u et v tels que représenté sur le schéma.

Le produit scalaire de \mathbf{u} par \mathbf{v} est :

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\theta)$$

Propriétés du produit scalaire:

Soit 2 vecteurs u et v.

- Le produit scalaire est commutatif :
- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Distributif vis à vis de l'addition vectorielle : $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- Associatif vis à vis de la multiplication scalaire : $\vec{u} \cdot (k\vec{v}) = k(\vec{u} \cdot \vec{v})$

Exemples:

Soit
$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 et $\vec{v} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

Soit
$$\|\vec{u}\| = 5$$

Soit
$$\|\vec{u}\|=5$$
 , $\|\vec{v}\|=6$ et $\theta=45$

$$\vec{u} \cdot \vec{v} = 3 \times 2 + 1 \times (-2) = 4$$

$$\vec{u} \cdot \vec{v} = 5 \times 6 \times \cos(45^\circ) = 15\sqrt{2}$$

Algèbre

Les vecteurs II

Propriété géométrique du produit scalaire:

$$\vec{u} \cdot \vec{v} > 0$$

$$\vec{u} \cdot \vec{v} = 0$$

$$\vec{u} \cdot \vec{v} < 0$$

- Quand θ appartient à [0; π /2[(π /2 = 90°, et la valeur est exclut) alors $\mathbf{u} \cdot \mathbf{v}$ est positif.
- Quand $\theta = \pi/2$, alors $\mathbf{u} \cdot \mathbf{v}$ est **nul**.
- Quand θ supérieur à π/2, alors u·v est négatif.

Remarquons que le signe du produit scalaire traduit si les vecteurs pointent dans la même direction ou des directions opposées.

Orthogonalité de vecteur:

Un résultat intéressant du produit scalaire de 2 vecteurs est que si celui-ci est nul alors que les 2 vecteurs ne sont pas nuls, les vecteurs sont orthogonaux l'un à l'autre (c'est-à-dire qu'ils ont un angle de 90° entre eux).

Plus simplement si $\mathbf{u} \neq \mathbf{0}$ et $\mathbf{v} \neq \mathbf{0}$, alors si $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$, \mathbf{u} et \mathbf{v} sont orthogonaux.

Exemples:

Soit
$$\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 et $\vec{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$

$$\vec{u} \cdot \vec{v} = 3 \times (-1) + 1 \times 3 = 0$$

Soit w et z tels que sur le schéma :

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(90^\circ) = 0$$

méthode

