GPU Cluster Usage Tutorial

--How to make caffe and enjoy tensorflow on Torque

Yunfeng Wang

wangyf11@mail.ustc.edu.cn

PBS and Torque

- PBS: Portable Batch System, computer software that performs job scheduling
- versions of PBS
 - i. OpenPBS: original open source version
 - ii. Torque: A fork of OpenPBS
 - iii. PBS Pro: the commercial version of PBS
- Torque: Terascale Open-source Resource and QUEue Manager, a distributed resource manager providing control over batch jobs and distributed compute nodes
- All commands of Torque are compatible with PBS

Basic info about cluster

- TorqueServer: 192.168.17.240, 8 cores
- GPU cluster: 192.168.6.[101-107], aliased as Gpu101-Gpu107,
 32 cores each node
- Shared data disks and home dir

```
[yunfeng@torqueServer ~]$ lsb_release -a # Check distro info
LSB Version: :core-4.0-amd64:core-4.0-noarch:graphics-4.0-am
Distributor ID: CentOS
Description: CentOS release 6.3 (Final)
Release: 6.3
Codename: Final
[yunfeng@torqueServer ~]$ cat /proc/cpuinfo #Get num of CPU
```

Workflow of run job in Torque

- First login to torqueserver, then debug on Gpu107
- Since everything is OK, write the script and send your task to queue
- Wait
- Check your results and errors

Login to cluster

Register an account

You need a ssh client, which has been included in XShell, cgywin and Linux.

```
$MY-PC ssh yunfeng@192.168.17.240
Last login: Fri Nov 11 10:38:16 2016 from 192.168.102.198
[yunfeng@torqueServer ~]$ df -h
Filesystem
            Size Used Avail Use% Mounted on
            985G 393G 543G 42% /home
/dev/sdb1
/dev/sdc1
            1.8T 865G 868G 50% /data
          8.1T 7.3T 415G 95% /data0
/dev/sdd1
192.168.6.101:/data1 1.3T 770G 561G 58% /data1
192.168.6.102:/data2 1.3T
               447G
                   883G 34% /data2
```

tips: SSH without password

```
$ ssh-keygen #Simply type enter all the way down
$ ssh-copy-id -i yunfeng@192.168.17.240 # Enter password
$ ssh yunfeng@192.168.17.240 #No password needed since now!
```

tips: Use aliases to speed up workflow

```
$ echo "alias ssh240='ssh yunfeng@192.168.17.240'" >> ~/.bashrc
$ source ~/.bashrc
$ ssh240 # Same as 'ssh yunfeng@192.168.17.240'
```

tips: Some utilities to improve your shell experience

- 1. oh-my-zsh
- 2. tmux
- 3. ipython

Login to Gpu107 to debug your Caffe

```
[yunfeng@torqueServer ~]$ ssh Gpu107
Last login: Fri Nov 11 11:02:43 2016 from torqueserver
[yunfeng@Gpu107 ~]$ nvidia-smi
```

0000:04:00.0 Off 22MiB / 11519MiB				
0000:05:00.0 Off 22MiB / 11519MiB			Tesla 23C	
 0000:84:00.0 Off 9106MiB / 11519MiB			Tesla 48C	
0000:85:00.0 Off 22MiB / 11519MiB			Tesla 24C	
0000:8A:00.0 Off 2181MiB / 11519MiB			Tesla 34C	_
 0000:8B:00.0 Off 8349MiB / 11519MiB			Tesla 47C	
0000:8E:00.0 Off 4404MiB / 11519MiB		96W	Tesla 40C	
 + 0000:8F:00.0		147W	Tesla	7 N/A

1. Copy compiled caffe to your dir

```
[yunfeng@Gpu107 ~]$ mkdir /data2/yunfeng
[yunfeng@Gpu107 ~]$ cd /data2/yunfeng
[yunfeng@Gpu107 ~]$ cp -r /opt/caffe-master .
[yunfeng@Gpu107 ~]$ mv caffe-master caffe
```

2. Write shell script to run your job

```
# /home/yunfeng/run_mnist.sh Example script of running mnist
cd /data3/yunfeng/caffe
./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh
```

3. Debug and check everything is OK

```
[yunfeng@Gpu107 ~]$ cd ~
[yunfeng@Gpu107 ~]$ chmod +x run_mnist.sh
[yunfeng@Gpu107 ~]$ ./run_mnist.sh
```

Cluster types

Submit your job to queue

1. go to head node, write pbs script

```
# /home/yunfeng/run mnist.pbs configuration file of your job
#PBS -N run mnist #Name of your job
#PBS -o /home/yunfeng/run_mnist.out #the file stdout will writ
#PBS -e /home/yunfeng/run mnist.err #the file stderr will writ
#PBS -l nodes=1:gpus=1:S #cluster type to use
#PBS -r y #run the job immediately or not
## Put out debug info, don't modify this part
cd $PBS O WORKDIR
echo Time is `date`
echo Directory is $PWD
echo This job runs on following nodes:
cat $PBS NODEFILE
## The name of script to run main job
./run mnist.sh
```

2. Submit job and check status

```
[yunfeng@torqueServer ~]$ qsub run_mnist.pbs # Send job to queu
[yunfeng@torqueServer ~]$ chk_gpu # Check the status of your job
```

```
[yunfeng@torqueServer ~]$ vi run_mnist.pbs
yunfeng@torqueServer ~]$ chk_gpu
Jobid
       User
                   JobName
                                        Req_parm
                                                        Start_time
                                                                           S Run_time
                                                                                         Alloc_GPUS
4126
                   conv1_0.004_96
                                        1:apus=2:D
                                                                           R 283:21:39
                                                                                         Gpu103-gpu/3/2
        liuyj
                                                        20161028 22:43:28
4179
       liuyj
                                        1:gpus=2:D
                                                        20161101 22:36:09 R 236:00:29
                                                                                        Gpu103-gpu/5/4
                   myjob1
4240
       liuyj
                                        1:apus=2:M
                                                        20161105 11:23:04 R 151:25:14
                                                                                        Gpu107-gpu/7/6
                   conv1_hard
4299
        zhangyh
                   T_Step_B
                                        1:gpus=2:M
                                                        20161107 22:03:25 R 80:11:25
                                                                                         Gpu107-gpu/3/2
4314
        huangjl
                                        1:qpus=2:M
                                                        20161108 10:31:20 R 80:16:31
                                                                                         Gpu105-gpu/1/0
                   lstm_train
                                                                                         Gpu102-gpu/1
4316
                                        1:apus=1:5
                                                        20161108 10:38:51 R 76:51:11
                   IFCNN_Q22
        vann
4324
                   caffe_train_dog_rand 1:apus=2:D
                                                                                         Gpu103-gpu/1/0
        fw092
                                                        20161108 20:34:40 R 70:13:49
4340
                                                                                         Gpu104-gpu/5/4
                   IFCNN_end2end_Q32
                                        1:gpus=2:D
                                                        20161109 10:33:47 R 31:41:36
        yann
4345
                                        1:apus=1:5
                                                        20161109 17:21:15 R 49:27:14
        liuyj
                   conv1_hard
                                                                                         Gpu102-apu/2
                                                        20161109 17:23:27 R 49:25:01
4346
        liuyj
                   conv1_hard
                                        1:qpus=1:S
                                                                                         Gpu102-gpu/0
4348
                                        1:gpus=2:D
        fanhz
                   net2_13
                                                        20161109 23:15:39 R 28:44:13
                                                                                         Gpu104-gpu/1/0
4351
        huangjl
                   lstm train01
                                        1:gpus=2:M
                                                        20161110 10:18:12 R 32:30:06
                                                                                         Gpu107-gpu/5/4
4357
        zenalh
                                        1:gpus=1:5
                                                        20161110 18:05:59 R 24:42:26
                                                                                         Gpu101-apu/0
                   zenalhjob2
4358
                                                        20161110 18:19:23 R 24:29:03
        zenglh
                   zenglhjob3
                                        1:gpus=1:5
                                                                                         Gpu101-gpu/1
4361
        fengxy
                                        1:gpus=6:M
                                                        20161110 21:25:25 R 21:22:26
                                                                                         Gpu105-gpu/7/6/5/4/3/2
                   test_lr
                   lrelu_alexnet_01
4362
                                        1:gpus=2:D
                                                        20161110 21:27:43 R 21:20:34
                                                                                         Gpu104-gpu/3/2
        yangjw
4363
                   net2_14
                                        1:gpus=2:D
        fanhz
                                                        20161110 21:43:07 R 14:19:37
                                                                                         Gpu104-gpu/7/6
4367
                   net2_15
                                        1:qpus=2:D
                                                        20161110 21:54:01 R 05:20:56
                                                                                         Gpu103-gpu/7/6
        fanhz
4397
        liyao
                   Barc-29
                                        1:gpus=1:5
                                                        20161111 15:05:08 R 03:43:17
                                                                                         Gpu101-gpu/3
4398
                   Barc-33
        liyao
                                        1:gpus=1:S
                                                        20161111 15:05:12 R 03:43:16
                                                                                         Gpu102-gpu/3
4399
                   jointveafru_vaacp
                                        1:apus=2:M
                                                        20161111 15:08:10 R 03:40:05
                                                                                         Gpu106-gpu/1/0
        housh
4401
        yangjw
                   elu_alexnet
                                        1:gpus=4:M
                                                        20161111 15:11:29 R 03:36:46
                                                                                         Gpu106-gpu/5/4/3/2
4406
                                                                                         Gpu106-gpu/7/6
        housh
                   jointvegfru_vggcpv2 1:gpus=2:M
                                                        20161111 15:24:03 R 03:24:12
4408
        housh
                   jointaircrafts_vggcp 1:gpus=2:M
                                                        20161111 15:29:34 R 03:18:44
                                                                                         Gpu107-gpu/1/0
4411
        sunshy
                   train_idx
                                        1:gpus=1:S
                                                        20161111 15:48:50
                                                                           R 02:59:36
                                                                                         Gpu101-gpu/2
4412
                   IFCNN_ph22_Q32
                                        1:gpus=1:5
                                                        20161111 16:30:11 0
        yann
4413
                   IFCNN_ph22_Q37
                                        1:gpus=1:5
                                                        20161111 16:30:20
                                                                           Q
        yann
4415
                   train_ucf
                                        1:qpus=1:S
                                                        20161111 17:51:36 Q
        liux
GPU used detail:
              1 2 3 4 5 6 7
         0 1
GPU101: [x][x] | [x][x]
GPU102: [x][x] | [x][x]
GPU103: [x][x] | [x][x][x][x][x][x]
GPU104: [x][x] \mid [x][x][x][x][x][x]
GPU105: [x][x] | [x][x][x][x][x][x]
GPU106: [x][x] | [x][x][x][x][x][x]
GPU107: [x][x] | [x][x][x][x][x][x]
Type S:{Gpu101,Gpu102}; D:{Gpu103,Gpu104}; M:{Gpu105,Gpu106,Gpu107}
```

Total 28 jobs.

yunfeng@torqueServer:~

Other useful pbs commands

```
[yunfeng@torqueServer ~]$ qstat # Show status of pbs jobs
[yunfeng@torqueServer ~]$ qhold job_id # Hold pbs jobs
[yunfeng@torqueServer ~]$ qrls job_id #Release hold of jobs
[yunfeng@torqueServer ~]$ qel job_id # Delete job
[yunfeng@torqueServer ~]$ pbsnodes # Show staus of nodes
```

How to run Tensorflow on Cluster?

1. Use system tensorflow (version:0.10.0)

```
[yunfeng@Gpu107 ~]$ ipython
Python 2.7.5 (default, Nov 20 2015, 02:00:19)
Type "copyright", "credits" or "license" for more information
In [1]: import tensorflow as tf
In [2]: tf.__version__
Out[2]: '0.10.0'
```

2. Or install lastest version of tensorflow for yourself

```
$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflc
$ pip install --user --upgrade $TF_BINARY_URL
```

3. Write your command in shell script and then submit it, just like the example above

How to prepare data for my experiment?

1. Use scp to copy your data to cluster

```
$ scp -r my_data/ yunfeng@192.168.17.240:/data3/yunfeng/
```

2. Since data disks are shared, you can then use your data in code

```
# example.py
data_dir = '/data3/yunfeng/my_data'
result = my_func(data_dir)
```

How to check logs of my job

Normally, we can only see log when job finished. However, we can

1. Use >> or tee to

```
# run_mnist.sh
...
./examples/mnist/train_lenet.sh >> my_mnist_log
```

```
# run_mnist.sh
...
#Please check the manual of tee to fully use it.
./examples/mnist/train_lenet.sh | tee my_mnist_log
```

2. Use tensorflows' tensorboard to check the result

```
$ tensorboard --logdir=path/to/log-directory
```

Docs location

https://github.com/vra/docs-and-slides

Q&A