Topics: Normal distribution, Functions of Random Variables

- 1. The time required for servicing transmissions is normally distributed with μ = 45 minutes and σ = 8 minutes. The service manager plans to have work begin on the transmission of a customer's car 10 minutes after the car is dropped off and the customer is told that the car will be ready within 1 hour from drop-off. What is the probability that the service manager cannot meet his commitment?
 - A. 0.3875
 - B. 0.2676
 - C. 0.5
 - D. 0.6987

Ans: B

- 2. The current age (in years) of 400 clerical employees at an insurance claims processing center is normally distributed with mean μ = 38 and Standard deviation σ =6. For each statement below, please specify True/False. If false, briefly explain why.
 - A. More employees at the processing center are older than 44 than between 38 and 44.

Ans:
$$PR(X > 44) = 1 - PR(X \le 44)$$

 $Z = (X - 44) = (X - 38) / 65$
 $PR(X \le 44) = PR(Z \le (44 - 38) / 6) = PR(Z \le 1) = 84.13\%$
Probability that employees will be greater than age of $44 = 100 - 84.13 = 15.86\%$
Probability of number of employees between $38 - 44$ years of age
 $= PR(X < 44) - 0.5 = 84.13 - 0.5 = 34.13$

B. A training program for employees under the age of 30 at the center would be expected to attract about 36 employees.

```
Ans: Z = (X - 44) = (30 - 38) / 6

PR(X \le 30) = PR(Z \le (30 - 38) / 6) = PR(Z \le -1.33) = 9.12\%

Number of employees with probability 0.912 of them being under age 30

= 0.0912 * 400 = 36.48 i.e., 36 employees
```

3. If $X_1 \sim N(\mu, \sigma^2)$ and $X_2 \sim N(\mu, \sigma^2)$ are *iid* normal random variables, then what is the difference between 2 X_1 and $X_1 + X_2$? Discuss both their distributions and parameters.

Ans: We know that if $X \sim N(\mu 1, \sigma 1^2)$, and $Y \sim N(\mu 2, \sigma 2^2)$ are two independent random variables then $X + Y \sim N(\mu 1 + \mu 2, \sigma 1^2 + \sigma 2^2)$, and $X - Y \sim N(\mu 1 - \mu 2, \sigma 1^2 + \sigma 2^2)$. Similarly if Z = aX + bY, where X and Y are as defined above, i.e., Z is linear combination of X and Y, then $Z \sim N(a\mu 1 + b\mu 2, a^2\sigma 1^2 + b^2\sigma 2^2)$

Therefore in the question

$$2X1^{\sim} N(2 \text{ u}, 4 \text{ s}^{2})$$
 and $X1+X2^{\sim} N(\mu + \mu, \text{s}^{2} + \text{s}^{2})^{\sim} N(2 \text{ u}, 2\text{s}^{2})$ $2X1-(X1+X2) = N(4\mu, 6 \text{ s}^{2})$

- 4. Let $X \sim N(100, 20^2)$. Find two values, a and b, symmetric about the mean, such that the probability of the random variable taking a value between them is 0.99.
 - A. 90.5, 105.9
 - B. 80.2, 119.8
 - C. 22, 78
 - D. 48.5, 151.5
 - E. 90.1, 109.9

Ans: The Probability of getting value between a and b should be 0.99.

So the probability of not getting value will be 1 - 0.99 = 0.01

The Probability towards left from a = -0.005 (ie., 0.01/2).

The Probability towards right from b = +0.005 (ie., 0.01/2).

By finding the Standard Normal Variable Z (Z Value), we can calculate the X values.

$$Z=(X-\mu)/\sigma$$

For Probability 0.005 the Z Value is -2.57 (from Z Table).

$$Z * \sigma + \mu = X$$

$$Z(-0.005)*20+100 = -(-2.57)*20+100 = 151.5$$

$$Z(+0.005)*20+100 = (-2.57)*20+100 = 48.5$$

So, option D is correct.

- 5. Consider a company that has two different divisions. The annual profits from the two divisions are independent and have distributions $Profit_1 \sim N(5, 3^2)$ and $Profit_2 \sim N(7, 4^2)$ respectively. Both the profits are in \$ Million. Answer the following questions about the total profit of the company in Rupees. Assume that \$1 = Rs. 45
 - A. Specify a Rupee range (centered on the mean) such that it contains 95% probability for the annual profit of the company.
 - B. Specify the 5th percentile of profit (in Rupees) for the company
 - C. Which of the two divisions has a larger probability of making a loss in a given year?

Ans: let profit i. then $P_1 \sim N(\mu_1, \sigma_{2^1})$; $P_2 \sim N(\mu_2, \sigma_{2^2})$, with $(\mu_1, \sigma_1) = (5, 3)$ and $(\mu_2, \sigma_2) = (7, 4)$.

(A) Annual Profit is $P = P_1 + P_2 \sim N(\mu_1 + \mu_2, \sigma_{12} + \sigma_{22})$ in \$ Million.

Denote
$$\mu = \mu_1 + \mu_2 = 12$$
, $\sigma^2 = \sigma_{1^2} + \sigma_{2^2} = 25$

We require k_1 , k_2 such that P r $[k_1 \leq \, P - 12 \leq \, k_2] = 0.95$

$$\Longrightarrow$$
 Pr[$k_1/5 \le Z \le k_2/5$] = 0.95; where $Z = \frac{p-12}{9} \sim N$ (0, 1).

From the symmetry of distribution we can take $k_1 = -k_2$

⇒ Pr[-
$$k_2/5 \le Z \le k_2/5$$
] = 0.95 => $\varphi(\frac{k2}{5})$ - $\varphi(\frac{-k2}{5})$ = 0.95

$$\Rightarrow$$
2 \oplus ($\frac{k^2}{5}$)= 1 + 0.95 = 1.95 \Rightarrow k₂ = 9.7998. the range in Million \$ is $I = [12 - 9.7998, 12 + 9.7998] = [2.20018, 21.79982]$
The range in rupee will be 45 × 1,000,000 × $I = [99008103, 98099187]$ rupees . [1 million = 1,000,000]

- (B) If the 5-th percentile in million dollar is ξ , then, $Pr[P \le \xi] = 0.05$ $\Rightarrow Pr[Z \le \frac{12-\xi}{5}] = 0.05 \Rightarrow \xi = 12 + 5 \times \Phi^{-1}(0.05) = 3.775732$ In rupee it will be $\xi \times 45 \times 1,000,000 = 169907934$.
- (C) See, Pr[P1 < 0] = 0.04779035 > Pr[P2 < 0] = 0.04005916. So, first division has greater chance of losing.