CS151 Intro to Data Structures

Tree Traversals

Announcements

- Exam next week
- Expect grade emails this week
- HW5 and Lab7 due next Friday (Nov 1st after exam)

Outline

- BST review
 - Search
 - Insert
- BST Remove
- Binary Search Tree Traversals
 - In order
 - Pre order
 - Post order
- Array based Trees

A binary tree is **full** (proper) if every node has 0 or 2 children

A binary tree is **complete** if all levels are completely filled (zero or two children) except possibly the last level and all the nodes are as left side as possible

A binary tree is **perfect** if all internal (non-leaf) nodes have 2 children and all the leaf nodes are at the same depth or same level.

Full, complete, perfect?
A binary tree is **full** (proper) if every node has 0 or 2 children
A binary tree is **complete** if all levels are completely filled (zero or two children)
except possibly the last level and all the nodes are as left side as possible
A binary tree is **perfect** if all internal (non-leaf) nodes have 2 children and all the leaf nodes are at the same depth or same level.

A

Binary Search Trees

Definition:

At each node with value k

Left subtree contains only nodes
 with value lesser than k

Right subtree contains only nodes
 with value greater than k

Both subtrees are a binary search tree

INSERT Review

Binary Search Trees: Insertion

Insertion must maintain the properties of a BST!

Insert: <u>150</u>

Binary Search Trees: Insertion

Insertion must maintain the properties of a BST!

Insert: 64

Complexity?
O(log n)

Remove review

Deleting a leaf node

Deletion must maintain the properties of a BST!

Delete: <u>150</u>

Deleting a node with one child

Deletion must maintain the properties of a BST!

Delete: <u>70</u>

Deleting a node with 2 children

Deletion must maintain the properties of a BST!

Delete: <u>80</u>

At each node with value k

- Left subtree contains only nodes
 with value lesser than k
- Right subtree contains only nodes with value **greater** than **k**
- Both subtrees are a binary search tree

Deleting a node with 2 children

Deletion must maintain the properties of a BST!

Delete: <u>80</u>

Replace deleted node with either:

- 1. Smallest value in right subtree
- 2. Largest value in left subtree

Binary Search Trees: Deletion

Complexity?

Case I: Removing a **leaf node**O(log n)

Case 2: Removing a **node with one child**O(log n)

Case 3: Removing a **node with two children** O(log n)

Tree Traversals

Binary Tree Traversals

Traversal visits all nodes in a tree in some order

Inorder:

left subtree, current, right subtree will print "in order" (increasing values)

Preorder:

current, left subtree, right subtree

Postorder:

left subtree, right subtree, current

In Order Traversal

- 1. Move left until you reach a node without a left child
- 2. Print the current node
- 3. Move right

Inorder Example 1

Inorder Example 2

Larger tree (Height > 1)

- Process entire left subtree first
 - bottom most left node
 - current
 - bottom most right node

Inorder Example 2

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11, 12

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11, 12

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11, 12

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15

What would the in-order traversal be here? left subtree, current, right subtree

2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15

What would the in-order traversal be here? left subtree, current, right subtree

What would the in-order traversal be here? left subtree, current, right subtree

What would the in-order traversal be here? left subtree, current, right subtree

What would the in-order traversal be here? left subtree, current, right subtree

What would the in-order traversal be here? left subtree, current, right subtree

What would the in-order traversal be here? left subtree, current, right subtree

What would the in-order traversal be here? left subtree, current, right subtree

In Order Traversal Implementation

Pre Order Traversal

- 1. Print the current node
- 2. Move left
- 3. Move right

Pre order Example 1

What would the pre-order traversal be here? current, left subtree, right subtree

Preorder

Current, left, right

Preorder

• 7, 4, 2, 3, 6, 5, 12, 9, 8, 11, 19, 15, 20

Post Order Traversal

- 1. Move left
- 2. Move right
- 3. Print the current node

Post order Example 1

What would the pre-order traversal be here? left subtree, right subtree, current

Postorder

Left, right, current

Postorder

• 3, 2, 5, 6, 4, 8, 11, 9, 15, 20, 19, 12, 7

Interface you will implement in homework

Performance of BST

	BST balanced	BST worst
search	O(logn)	O(n)
insert	O(logn)	O(n)
remove	O(logn)	O(n)
min/max	O(logn)	O(n)

Array-based Implementation

- BinaryTrees can be implemented in different ways
 - Linked nodes what you'll do in your homework
 - Array

Array-based Implementation

- Number nodes level-by-level, left-to-right
- f(root) = 0
- $\bullet f(l) = 2f(p) + 1$
- $\bullet f(r) = 2f(p) + 2$
- Numbering is based on all positions, not just occupied positions

Array-based Binary Tree

 The numbering can then be used as indices for storing the nodes directly in an array

• f(root) = 0

 $\bullet \ f(l) = 2f(p) + 1$

 $\bullet f(r) = 2f(p) + 2$

Array-based Binary Tree

 The numbering can then be used as indices for storing the nodes directly in an array

Array-based Binary Tree

What would the underlying array look like for this tree?

$$f(root) = 0$$

 $f(1) = 2*f(p) + 1$
 $f(r) = 2*f(p) + 2$

Now, let's insert 75. Where should it go?

Array Based Trees

Runtime complexity?

- Search?
- Insert?
- Remove?

Memory complexity?

Summary

BST:

- Data laid out for efficient search (by construction)
- Balanced BSTS have logarithmic operations

Tree traversals:

- in order, pre order, post order

Array Based Trees:

- implemented with underlying array rather than linked nodes
- Same runtime complexity