BME TMIT 2022

14/14 Németh Gábor

Összefoglaló és ráadás

Logika, típusok, algebra és kategóriák

Logika, típusok, algebra és kategóriák

logika (bizonyításelmélet)	típuselmélet	algebra (részbenrendezés)	kategórielmélet
$A true \vdash A true$	$a:A \vdash a:A$	$A \leq A$	$id: A \longrightarrow A$
$A true \vdash B true$ $B true \vdash C true$ $A true \vdash C true$	$a: A \vdash b: B$ $b: B \vdash c: C$ $a: A \vdash c: C$	$A \le B$ $B \le C$ $A \le C$	$f: A \longrightarrow B$ $g: B \longrightarrow C$ $g \circ f: A \longrightarrow C$
$A \& B \ true \vdash A \ true$ $A \& B \ true \vdash B \ true$ $C \ true \vdash A \ true$ $C \ true \vdash B \ true$ $C \ true \vdash A \& B \ true$	$x: A \times B \vdash fst \ x: A$ $x: A \times B \vdash snd \ x: B$ $x: C \vdash a: A$ $x: C \vdash b: B$ $x: C \vdash (a,b): A \times B$	$A^{A}B \le A$ $A^{B} \le B$ $C \le A, C \le B$ $C \le A^{B}$	$A \times B$

Egy utolsó paradoxon

Curry paradoxon Löb tétele

Curry paradoxonja

Tegyük fel, hogy a doboz tartalma igaz.

Ha igaz, akkor elfogadjuk, amit állít: ha a doboz tartalma igaz, akkor a Mikulás létezik.

Ebből, és abból a feltevésből, hogy a doboz tartalma igaz, logikusan következik, hogy a Mikulás létezik.

Ha ennek a doboznak a tartalma igaz,

1942

akkor létezik
Mikulás.

Beláttuk, hogy abból a feltételből, hogy "a doboz tartalma igaz" következik, hogy "a Mikulás létezik".

Ez viszont pontosan az, amit a doboz tartalma állít.

Tehát a doboz igazat állít!

Akkor viszont valóban létezik a Mikulás.

Főszereplők

Peano aritmetika

- Peano aritmetika (PA)
 - állításokat mond számokról
 - ha PA mond valamit, azt bizonyításnak mondjuk
- tapasztalataink szerint PA helyes
 - ▶ ha mond valamit, arról mindig kiderül, hogy igaz

$$^{\vartriangle}_{\vartriangle}{}^{\vartriangle}_{\vartriangle}$$

Gödel

- Gödel rájött, hogyan lehet PA-nak kérdéseket feltenni saját magáról
 - megmutatta, hogy PA helyessége inkonzisztenciáját vonná maga után

De talán speciális esetekben belátható PA helyessége...

Löb tétel

Martin Hugo Löb belátta (1955), hogy

Ha PA bizonyítja, hogy "Ha PA bizonyítja 'X', akkor X", akkor PA bizonyítja X-et.

$$\Box(\Box P \to P) \to \Box P$$

ex_0: Loeb

Köszönöm a figyelmet!

