

Beyond Euclidean Distance Matrices

Cem Ates Musluoglu, Adam James Scholefield LCAV - School of Computer and Communication Sciences - EPFL - Lausanne, Switzerland

1. Problem statement

Study of the properties of matrices containing the distance between points \mathbf{x}_i and linear varieties $\mathcal{F}_j = \left\{\mathbf{f}: \mathbf{f} = \mathbf{p}_j + \sum \mathbf{v}_j^\ell t_\ell \right\}$ of dimension

k and reconstruction of the configuration based on distance measurements.

Key terms: Euclidean distance, linear varieties

2. Distance matrix

For linear varieties \mathcal{F}_j , we assume $\mathbf{p}_j^T \mathbf{v}_j^\ell = 0$ and $||\mathbf{v}_j^\ell||^2 = 1$, $1 \le \ell \le k$. The chosen metric to compute the distance between two linear varieties \mathcal{F} and \mathcal{G} given by the parametric pairs (\mathbf{p}, Φ) and (\mathbf{q}, Ψ) is:

$$d(\mathcal{F}, \mathcal{G}) = \min_{\mathbf{f} \in \mathcal{F}, \mathbf{g} \in \mathcal{G}} ||\mathbf{f} - \mathbf{g}||^2 = ||C(\mathbf{p} - \mathbf{q})||^2,$$

where rows of C form an orthonormal basis for $\mathcal{N}(\Phi^T) \cap \mathcal{N}(\Psi^T)$. This metric makes the distances invariant to rigid motion of the whole configuration.

Symbol	Notation	Corresp. Matrix
\mathbf{x}_i	Point i	$X \in \mathbb{R}^{d \times n}$
\mathcal{F}_{j}	Linear variety j	_
\mathbf{p}_j		$P \in \mathbb{R}^{d \times m}$
\mathbf{v}_j^ℓ	ℓ -th direction vector for linear variety j	$V_{\ell} \in \mathbb{R}^{d \times m}$
d_{ij}	Distance between point i and linear variety j	$D \in \mathbb{R}^{n \times m}$

In the special case of distance between points $\{x_i\}_{1 \leq i \leq n}$ and linear varieties $\{\mathcal{F}_j\}_{1 \leq j \leq m}$, the distance matrix can be written as:

$$D = \operatorname{edm}(X, P) - \sum_{\ell=0}^{k} (X^{T} V_{\ell})^{\circ 2}$$

 $D=\mathrm{edm}(X,P)-\sum_{\ell=1}(X^TV_\ell)^{\circ 2},$ where $\mathrm{edm}(X,P)$ contains the distances between the columns of Xand the columns of P.

3. Completing the distances

The measurements are modeled by $D=M\circ (D+Z)$, where M corresponds to a mask matrix putting to 0 missing measurements and Z represents the additive measurement noise. How to estimate the true values?

Theorem 1. $rank(D) \le d+1+\binom{d+1}{2}$, where d is the dimension of the ambient space.

Proposed method: Applying the singular value decomposition to \widetilde{D} , we construct a low-rank approximation based on the result of

Theorem 1: $\widehat{D} = \sum_{i} \widetilde{\sigma}_{i} \widetilde{\mathbf{u}}_{i} \widetilde{\mathbf{w}}_{i}$. The procedure is iterated by alternating

between the low-rank approximation and forcing the known entries,

i.e. where the mask is non-zero.

Estimation error for growing number of linear varieties (left) and probability of missing measurements (right).

4. Reconstructing the configuration

Proposed method: The point on linear variety j where the minimum distance with point i is obtained is $\widetilde{\mathbf{p}}_{ij} = \mathbf{p}_j + \Phi_j \Phi_j^T \mathbf{x}_i$, therefore, the distance matrix can be decomposed to n different EDMs, and the problem is translated to EDM completion.

Decomposition procedure.

Step 1: Estimate the vectors $\widetilde{\mathbf{p}}_{ij}$ for a fixed i using EDM completion. The results are better when we know the distance between points x_i .

Step 2: For a fixed j, every estimate $\widehat{\mathbf{p}}_{ij}$ of $\widetilde{\mathbf{p}}_{ij}$ should be on the same linear variety, therefore, we find the best fitting linear variety minimizing: $E_i ||N_j(\widehat{\mathbf{p}}_{ij} - \mathbf{p}_i^{\text{avg}})||^2|$, where the rows of N_j are the orthonormal vectors normal to the linear variety and $\mathbf{p}_i^{\text{avg}}$ is the average of the estimates over i.

email: cem.musluoglu@epfl.ch adam.scholefield@epfl.ch

Example with 2 planes. For each cluster, we fit the plane minimizing the previous expectation.

Estimation error for growing number of linear varieties.

m: Number of Linear Varieties

References:

web: lcav.epfl.

[1] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6): 12–30, 2015.

[2] Miranda Krekovic, Ivan Dokmanic, and Martin Vetterli. Omnidirectional bats, point-to-plane distances, and the price of uniqueness. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3261-3265. leee, 2017.

[3] Arthur M DuPré and Seymour Kass. Distance and parallelism between flats in rn. Linear Algebra and its Applications, 171:99–107, 1992.