Instructor:Prof. Brendan Kochunasbkochuna@umich.eduGSIs:Qicang Shengicangsh@umich.edu

Course Description:

This course is designed for graduate students who are developing the methods, and using the tools, of scientific computing in their research. With the increased power and availability of computers to perform massively scaled simulations, computational science and engineering as a whole has become an integral part of research that complements experiment and theory. This course will teach students the necessary skills to be effective computational scientists and how to produce work that adheres to the scientific method. A broad range of topics will be covered including: software engineering best practices, computer architectures, computational performance, common algorithms in engineering, solvers, software libraries for scientific computing, uncertainty quantification, verification and validation, and how to use all the various tools to accomplish these things.

Course Objective

Upon successful completion of the course students shall be able to

- develop and run software in Linux,
- write code in multiple languages,
- use compilers and Makefiles,
- write their own linear solver
- compile and use third party libraries,
- work in software projects with other individuals,
- develop version controlled software,
- implement automated testing in a software project,
- increase the computational performance of their software
- write code that uses MPI and/or OpenMP parallelism,
- perform simulations on high-performance computing resources,
- debug programs more efficiently

Grading (4 credit hours):

Lecture Quizzes	10%
Homework	15%
Lab	40%
Project	35%

Format for Synchronous Participation:

Bi-weekly Lectures on M/W 2:00 PM - 3:30 PM, 1303 EECS Weekly Lab on F 9:00 AM - 11:00 AM, GGBL 2517

Guidelines for Asynchronous Participation

- Deadlines for asynchronous participation will be same as synchronous participation.
- Lecture Recordings will be uploaded to Canvas shortly after the lecture is given.

Office Hours:

Office hours' time and format will be determined by a class poll. Following the first lecture.

Policies

- Deliverables for assignments must be completed in the appropriate format. Format for assignment deliverables will be given on a case by case basis. Expected formats are:
 - o Typed documents
 - Source code
 - o LaTeX
 - o Program output
 - Repository commits
 - Canvas quizzes
- Late Assignments
 - o Late homework assignments are penalized with a 5-day half-life
 - o Late lab assignments are penalized with a 7-day half-life
 - o Late project deliverables are penalized with a **3-day half-life**
- Honor code: https://elc.engin.umich.edu/honor-council/
- NO POLICY IS PERMANENT
 - o If a policy is not working for the class, I'm open to discussing it and changing it.

Inclusion Statement:

It is my intention that students from all backgrounds and perspectives will be well served by this course, and that the diversity that students bring to this class will be viewed as an asset. I welcome individuals of all ages, backgrounds, beliefs, ethnicities, genders, gender identities, gender expressions, national origins, religious affiliations, sexual orientations, socioeconomic background, family education level, ability – and other visible and nonvisible differences. All members of this class are expected to contribute to a respectful, welcoming, and inclusive environment for every other member of the class. Your suggestions are encouraged and appreciated. In addition, I will gladly honor your request to address you by an alternate name or gender pronoun. Please advise me of this preference early in the semester so that I may make appropriate changes to my records. If you have any questions or concerns regarding Diversity, Equity, and Inclusion you may contact the DEI leads in your home department https://www.engin.umich.edu/about/diversity/faculty/dei-department-leads/

Students Requiring Accommodations:

Students that have documented disabilities and require academic accommodations should make an appointment to discuss their needs with the course instructor. Students must contact the Services for Students with Disabilities, ssd.umich.edu to verify their eligibility for appropriate accommodations.

Student Resources:

If you require additional resources please contact the Office of Student Support and Accountability, ossa.engin.umich.edu or engin.support@umich.edu.

In addition, if you or someone you know is feeling overwhelmed, depressed, and/or in need of support, services are available. You can learn more about the broad range of confidential mental health services available on campus via caps.umich.edu/mitalk

Course Technology Resources

- Canvas (this is the main resource): https://umich.instructure.com/courses/386862
- Zoom for Videoconferencing: https://its.umich.edu/communication/videoconferencing/zoom
 - o Remote attendees are not required to have a camera
- VPN for remotely connecting to campus resources: https://its.umich.edu/enterprise/wifi-networks/vpn/getting-started
- CAEN Virtual Linux Desktop for Lab: https://caenfaq.engin.umich.edu/linux-login/how-do-i-connect-to-a-caen-linux-computer-remotely
- Windows SSH Clients:
 - o PuTTY https://www.putty.org/
 - MobaXterm https://mobaxterm.mobatek.net/
- HPC Resources through ARC-TS Great Lakes: https://arc-ts.umich.edu/greatlakes/
- Instructional Material: https://www.lib.umich.edu/

Lecture Recording

Course lectures will have audio/video recorded and made available to other students in this course. As part of your participation in this course, you may be recorded. If you do not wish to be recorded, please contact Prof. Kochunas the first week of class to discuss alternative arrangements.

Lecture Recording Distribution

Students may not record or distribute any class activity without written permission from the instructor, except as necessary as part of approved accommodations for students with disabilities. Any approved recordings may only be used for the student's own private use.

Course Schedule

Date	<u>Lecture</u>	Lab	Topic
08/31	1	Lab	Course Overview & Introduction to Linux
09/02	2		Programming Languages: C, C++, Fortran
09/04		1	Introduction to Linux
09/09	3	1	Scripting with Bash and Python
09/11	2	2	Scripting
09/14	4	_	Elements of Development: Configuring, Compiling, Linking
09/16	5		Tools of the Trade: Version Control, Dev. Env
09/18		3	Introduction to Great Lakes and Git
09/21	6		Algorithms for Linear Algebra
09/23	7		Sci. Computing Libs: BLAS, LAPACK, PETSc, Trilinos
09/25	-	4	Working with Third Party Libraries
09/28	8		Object-Oriented Programming, Design Patterns, UML
09/30	9		Software Engineering Practices & Development Workflows
10/02		5	Workflows in Practice
10/05	10		Serial and Parallel Architectures
10/07	11		Performance and Serial Optimization
10/09		6	Micro-Benchmarks and Measuring Performance
10/12	12		Parallel Programming Models
10/14	13		OpenMP
10/16		7	Parallel Computing: OpenMP
10/19	14		The Message Passing Interface I
10/21	15		The Message Passing Interface II
10/23		8	Parallel Computing: MPI
10/26	16		•
10/28	17		Class Selected Module 1
10/30		9	
11/02	18		
11/04	19		Class Selected Module 2
11/06		10	
11/09	20		
11/11	21		Class Selected Module 3
11/13		11	
11/16	22		
11/18	23		Class Selected Module 4
11/20		12	
11/23			
11/25	THANKSGIVING BREAK		
11/27			
11/30*	24†		Special Topic / Term Project Presentations
12/02*	25		Term Project Presentations
12/04*		OPEN LAB - Work on Term Projects	
12/07*	26		Term Project Presentations

^{*} Remote † Subject to change

Optional Course Modules

Optional Course Modules				
Topic			Description	
CDII	Lecture 1		Heterogeneous Architectures	
GPU Parallelism	Lecture 2		Programming models for GPUs	
Paramensin		Lab	Hardware Abstraction with Kokkos	
Testing,	Testing, Lecture 1 Testing, Verification, and Validation		Testing, Verification, and Validation	
Testing,	Lecture 2		How to write a Unit Test	
Testing		Lab	Automated Testing Infrastructure	
Data and	Lecture 1		Data Format Libraries: HDF5, NetCDF, SILO	
Mesh	Lecture 2		Mesh Libraries: Libmesh, Exodus, others	
Libraries		Lab	Working with Data Libraries	
Package	Lecture 1		Package and Dependency Management with Spack	
Management	Lecture 2		Containers: Docker and Singularity	
& Containers		Lab	Spack and Singularity on Great Lakes	
Drythan for	Lecture 1		Using Jupyter Notebooks with HPC	
Python for HPC	Lecture 2		Packages for Scientific Computing	
Lab		Lab	TBD	
Debugging	Debugging Lecture 1 Debugging: DDT, GDB, and Valgrind		Debugging: DDT, GDB, and Valgrind	
and Profiling Lecture 2 Performance: MAP, HPCToolKit, TAU		Performance: MAP, HPCToolKit, TAU		
Tools Lab		Lab	Make it work; Make it fast Debug and Optimize	
	Lecture 1		QA, deployment, copyrights, and licensing	
Misc. Topics	Lecture 2		Visualization Tools and Best Practices	
		Lab	Working with Paraview	

Anticipated Homework Assignments

HW	Description	Supporting	Due
		Lectures	Date
1	LaTeX and Programming in C/C++ and Fortran	1,2	09/18
2	Using scientific software libraries for sparse linear algebra	1,4,6,7	10/12
3	Draft Project Proposal and TBD	8,10,11	10/30
4	Maybe		

Anticipated Lab Assignments

Lab	Description	Supporting Lectures	Due Date
1	Hands on walkthrough of Linux.	1	09/09
2	Bash and Python Scripting	1,3	09/21
3	Hands on walkthrough of Great Lakes	1,4	09/23
4	Working with LAPACK and PETSc	1,4,7	10/05
5	Perform a workflow and setup basic git and CMake	1,5,8,9	10/07
6	Computer performance.	1,4,10,11	10/19
7	OpenMP simulated annealing parallel programming.	1,4,6,10,14	10/26
8	MPI simulated annealing parallel programming.	1,4,6,10,15,16	11/02

Project Assignments

Deliverable	Description D		
Proposal	3-5 page document	10/30	
Presentation	10-20 minute presentation	12/02—12/07	
Report	10-20 page typed document	12/18	

Associated Readings and General References:

Lecture	Topic			
1	None			
2	Modern Fortran			
	C/C++ programmer's reference			
2	Bash Quick Start Guide			
3	Learning Python			
4	None			
5	<u>Pro Git</u>			
	Finite Difference Methods			
	Finite Element Methods			
	The Method of Weighted Residuals and Variational Principles			
	Multigrid Methods			
6	Matrix Analysis Vol. 1 and Vol. 2			
	<u>Iterative Methods for Sparse Linear Systems</u>			
	Model Reduction and Approximation			
	Accuracy and Reliability of Scientific Computing			
	Accuracy and Stability of Numerical Algorithms			
	LAPACK User's Guide			
7	ScaLAPACK User's Guide			
/	Numerical Recipes in Fortran (Online PDF)			
	Numerical Recipes in C (Online PDF)			
	Scientific Software Design: The Object-Oriented Way			
8	The Unified Modeling Language			
	<u>Design Patterns</u>			
0	Code Complete			
9	Agile Development in the Real World			
10-11	Numerical Linear Algebra for High-Performance Computers			
10-11	Performance Optimization of Numerically Intensive Codes			
12	Patterns for Parallel Programming			
	Parallel Processing for Scientific Computing			
13	Using OpenMP			
14	<u>Using MPI</u>			
15	<u>Using Advanced MPI</u>			