

Старшие гомотопические группы Доклад на семинар по геометрической топологии

Драчов Ярослав

Московский физико-технический институт

19 ноября 2020 г.

Путём в пространстве X называют непрерывное отображение $f\colon I\to X$, где I — это единичный интервал [0,1]. Петлёй с базовой точкой x_0 называется путь, для которого $f(0)=f(1)=x_0\in X$.

Путём в пространстве X называют непрерывное отображение $f\colon I\to X$, где I— это единичный интервал [0,1]. Петлёй с базовой точкой x_0 называется путь, для которого $f(0)=f(1)=x_0\in X$.

Определение

Гомотопия путей в X — это семейство отображений $f_t\colon I \to X$, $0\leqslant t\leqslant 1$, таких, что

- 1. Конечные точки $f_t(0) = x_0$ и $f_t(1) = x_1$ не зависят от t.
- 2. Связанное отображение $F: I \times I \to X$ определённое соотношением $F(s,t) = f_t(s)$ непрерывно.

Фундаментальной группой $\pi_1(X,x_0)$ мы называли группу классов гомотопической эквивалентности петель с операцией умножения $[f][g]=[f\cdot g]$, где

$$f \cdot g(s) = \begin{cases} f(2s), & 0 \leqslant s \leqslant \frac{1}{2}, \\ g(2s-1), & \frac{1}{2} \leqslant s \leqslant 1. \end{cases}$$

Определение $\pi_n(X)$ Аналогия с $\pi_1(X)$

Можно обобщить конструкцию фундаментальной группы $\pi_1(X)$ на случай «n-мерных петель» — сфер S^n с определённой базовой точкой x_0 .

Определение $\pi_n(X)$ Аналогия с $\pi_1(X)$

Пусть I^n — единичный n-куб, произведение n копий интервала [0,1]. Граница ∂I^n пространства I^n — подпространство, состоящее из точек, с хотя бы одной координатой равной 0 или 1.

Пусть I^n — единичный n-куб, произведение n копий интервала [0,1]. Граница ∂I^n пространства I^n — подпространство, состоящее из точек, с хотя бы одной координатой равной 0 или 1.

Определение

Для пространства X с базовой точкой $x_0 \in X$, определим $\pi_n(X,x_0)$ как множество гомотопических классов отображений $f:(I^n,\partial I^n)\to (X,x_0)$, где гомотопии f_t должны удовлетворять условию $f_t(\partial I^n)=x_0$ для всех t. Определение расширяется на случай n=0, если взять I^0 точкой и ∂I^0 пустым множеством. Так, $\pi_0(X,x_0)$ — множество компонент связности X.

Если $n \geqslant 2$, операция суммирования в $\pi_n(X, x_0)$, обобщая операцию умножения в π_1 , определяется как

$$(f+g)(s_1,s_2,\ldots,s_n) = \begin{cases} f(2s_1,s_2,\ldots,s_n), & s_1 \in \left[0,\frac{1}{2}\right], \\ g(2s_1-1,s_2,\ldots,s_n), & s_1 \in \left[\frac{1}{2},1\right]. \end{cases}$$

Если $n\geqslant 2$, операция суммирования в $\pi_n(X,x_0)$, обобщая операцию умножения в π_1 , определяется как

$$(f+g)(s_1,s_2,\ldots,s_n) = \begin{cases} f(2s_1,s_2,\ldots,s_n), & s_1 \in [0,\frac{1}{2}], \\ g(2s_1-1,s_2,\ldots,s_n), & s_1 \in [\frac{1}{2},1]. \end{cases}$$

Ясно, что эта сумма однозначно определена на гомотопических классах. Т. к. только первая координата вовлечена в операцию суммирования, такие же доводы, как и для π_1 показывают, что $\pi_n(X,x_0)$ — это группа с постоянной функцией, отображающей I^n в x_0 , в качестве единичного элемента и обратными элементами, задаваемыми

$$-f(s_1, s_2, \ldots, s_n) = f(1 - s_1, s_2, \ldots, s_n).$$

Аддитивная запись для груповой операции используется потому, что $\pi_n(X,x_0)$ — абелевы для $n\geqslant 2$. А именно, $f+g\simeq g+f$ с гомотопией, изображённой на рисунке.

Коммутативность $\pi_n(X)$ для $n\geqslant 2$ Аддитивная запись

Гомотопия начинает с уменьшения областей определения f и g до меньших подкубов I^n , с областью снаружи этих подкубов, отображающихся в базовую точку.

Коммутативность $\pi_n(X)$ для $n\geqslant 2$ Аддитивная запись

После того, как это сделано, у нас появляется возможность переставить два подкуба куда угодно, пока они остаются разъединёнными, поэтому если $n \geqslant 2$, они могут при такой перестановке обойти друг друга и поменяться местами.

Коммутативность $\pi_n(X)$ для $n\geqslant 2$ Аддитивная запись

После этого для завершения гомотопии, области определения f и g могут быть расширены до их начальных размеров. Весь этот процесс может быть проведён, используя только координаты s_1 и s_2 , оставляя остальные координаты фиксироованными.

Отображения $(I^n,\partial I^n) \to (X,x_0)$ — это то же самое, что и отображения факторпространства $I^n/\partial I^n=S^n$ на X, переводящие базовую точку $s_0=\partial I^n/\partial I^n$ в x_0 . Это означает, что мы можем также рассматривать $\pi_n(X,x_0)$ как гомотопические классы карт $(S^n,s_0) \to (X,x_0)$, где гомотопии — это отображения одного вида $(S^n,s_0) \to (X,x_0)$.

В такой интерпретации $\pi_n(X,x_0)$, сумма f+g — это композиция $S^n \xrightarrow{c} S^n \vee S^n \xrightarrow{f \vee g} X$, где c сжимает экватор S^{n-1} в S^n в точку и мы выбираем базовую точку s_0 так, чтобы она лежала в этой S^{-1} .

Далее покажем, что если X — линейно связное пространство, то для различных x_0 их гомотопические группы $\pi_n(X,x_0)$ всегда дают изоморфные группы $\pi_n(X,x_0)$, как и для π_1 , поэтому в таком случае разрешено написание $\pi_n(X)$ для $\pi_n(X,x_0)$.

Дан путь $\gamma\colon I\to X$ из $x_0=\gamma(0)$ в другую базовую точку $x_1=\gamma(1)$, мы можем сопоставить каждому отображению $f\colon (I^n,\partial I^n)\to (X,x_1)$ новое отображение $\gamma f\colon (I^n,\partial I^n)\to (X,x_0)$ сужая область определения f до меньшего концентрического куба в I^n , после чего, помещая путь γ на каждом радиальном сегменте оболочки между этим меньшим кубом и ∂I^n .

Гомотопии γ или f в отображениях связывающих ∂I или ∂I^n , соответственно, влекут гомотопию γf в отображениях $(I^n,\partial I^n) \to (X,x_0)$. Ещё три важных свойства:

- 1. $\gamma(f+g) \simeq \gamma f + \gamma g$,
- 2. $(\gamma \eta) f \simeq \gamma (\eta f)$,
- 3. $1f \simeq f$, где 1 обозначает тривиальный путь.

Гомотопии 2 и 3 очевидны. Для 1, мы сперва деформируем f и g так, чтобы они были постоянными на правой и левой сторонах I^n , соответственно. Получившиеся отображения мы можем назвать f+0 и 0+g, затем мы вырезаем все более широкий средний кусок от $\gamma(f+0)+\gamma(0+g)$, пока это не превратится в $\gamma(f+g)$:

Гомотопии 2 и 3 очевидны. Для 1, мы сперва деформируем f и g так, чтобы они были постоянными на правой и левой сторонах I^n , соответственно. Получившиеся отображения мы можем назвать f+0 и 0+g, затем мы вырезаем все более широкий средний кусок от $\gamma(f+0)+\gamma(0+g)$, пока это не превратится в $\gamma(f+g)$:

Явная формула для этой гомотопии:

$$egin{aligned} h_t(s_1,s_2,\ldots,s_n) &= \ &= egin{cases} \gamma(f+0) \left((2-t)s_1,s_2,\ldots,s_n
ight), & s_1 \in \left[0,rac{1}{2}
ight], \ \gamma(0+g) \left((2-t)s_1+t-1,s_2,\ldots,s_n
ight), & s_1 \in \left[rac{1}{2},1
ight]. \end{aligned}$$

Отсюда имеем $\gamma(f+g) \simeq \gamma(f+0) + \gamma(0+g) \simeq \gamma f + \gamma g$.

Если мы определим преобразование смены базовой точки $\beta_\gamma\colon\pi_n(X,x_1)\to\pi_n(X,x_0)$ как $\beta_\gamma\left([f]\right)=[\gamma f]$, то, т. к. $\gamma(f+g)\simeq\gamma f+\gamma g$, то β_γ — гомоморфизм.

Если мы определим преобразование смены базовой точки $eta_\gamma\colon \pi_n(X,x_1) o \pi_n(X,x_0)$ как $eta_\gamma\left([f]\right) = [\gamma f]$, то, т. к. $\gamma(f+g) \simeq \gamma f + \gamma g$, то β_γ — гомоморфизм. В то же время из условий $(\gamma \eta)f \simeq \gamma(\eta f)$, $1f \simeq f$ следует, что β_γ — изоморфизм с обратным элементом $\beta_{\overline{\gamma}}$, где $\overline{\gamma}$ это обратный к γ путь, $\overline{\gamma} = \gamma(1-s)$.

Если мы определим преобразование смены базовой точки $\beta_{\gamma}\colon \pi_n(X,x_1) \to \pi_n(X,x_0)$ как $\beta_{\gamma}\left([f]\right) = [\gamma f]$, то, т. к. $\gamma(f+g) \simeq \gamma f + \gamma g$, то β_{γ} — гомоморфизм. В то же время из условий $(\gamma \eta)f \simeq \gamma(\eta f)$, $1f \simeq f$ следует, что β_{γ} — изоморфизм с обратным элементом $\beta_{\overline{\gamma}}$, где $\overline{\gamma}$ это обратный к γ путь, $\overline{\gamma} = \gamma(1-s)$. Поэтому, если X линейно связное пространство, различные базовые точки одного и того же пространства доставляют нам изоморфные группы $\pi_n(X,x_0)$, что может быть кратко записано как $\pi_n(X)$.