EPF - Lausanne

Contrôle de géométrie analytique N°3

Durée : 1 heure 40 minutes Barème sur 15 points

NOM:	
	Groupe
PRENOM:	

1. Dans le plan muni d'un repère orthonormé d'origine O, on donne les points A(8,0) et P(9,0), ainsi que le cercle $\gamma_1(\Omega_1,r_1)$ de diamètre OA.

On considère les cercles $\gamma\left(\Omega,r\right)$ orthogonaux à γ_{1} au point A.

On note p la polaire du point P par rapport à γ et d la droite passant par le point O, de direction $\overrightarrow{\Omega\Omega_1}$.

Déterminer l'équation cartésienne du lieu des points $\,M\,,$ intersection de $\,d\,$ et $\,p\,$ lorsque le cercle $\,\gamma\,$ varie.

(Ne fait pas partie du sujet du test 3 de cette année : Montrer que ce lieu est une hyperbole. Déterminer son centre, les foyers et les équations cartésiennes de ses asymptotes.)

4.5 pts

Réponse:
$$\frac{(x-4)^2}{16} - \frac{y^2}{4} - 1 = 0$$

- 2. Dans le plan muni d'un repère orthonormé d'origine $\,O\,,$ on considère l'ensemble $\,\mathcal{F}\,$ des ellipses de grand axe horizontal
 - dont le centre Ω appartient à la droite g: y = x + 1,
 - d'excentricité $e = \frac{1}{2}$,
 - ullet et tangentes à l'axe Oy.
 - a) Déterminer l'équation cartésienne, dépendante d'un paramètre, de la famille $\,\mathcal{F}\,.$
 - b) Déterminer l'ellipse de la famille \mathcal{F} qui a pour foyer de plus grande abscisse le point $F(9, y_F)$; donner son équation cartésienne.

3.5 pts

$$R\'{e}ponse: a) \mathcal{F} : \frac{(x-\lambda)^2}{\lambda^2} + \frac{(y-\lambda-1)^2}{\frac{3}{4}\lambda^2} - 1 = 0 , \lambda \in \mathbb{R}^*$$

b) $\lambda = 6$ (seule solution)

- 3. Dans le plan, on donne trois points Ω_1 , P et Q et un segment de longueur δ . On considère deux cercles $\gamma_1(\Omega_1, r_1)$ et $\gamma_2(\Omega_2, r_2)$ satisfaisant les conditions suivantes :
 - la polaire p du point P par rapport à γ_1 passe par Q,
 - p est l'axe radical de γ_1 et γ_2 ,
 - le cercle γ_2 est de rayon $r_2 = \delta$.
 - a) Construire rigoureusement (règle, équerre, compas), sur la donnée graphique ci-jointe, les deux cercles $\gamma_1(\Omega_1, r_1)$ et $\gamma_2(\Omega_2, r_2)$.

Indication : faire une figure d'étude du problème résolu.

3 pts

b) Relativement à un repère orthonormé du plan, on donne les trois points Ω_1 , P et Q et la longueur δ :

$$\Omega_1(1, 2), \qquad P(\frac{11}{5}, 2), \qquad Q(\frac{8}{3}, 4) \qquad \delta = 1.$$

Déterminer les équations cartésiennes des cercles γ_1 et γ_2 , donner la solution pour laquelle Ω_2 est à coordonnées entières.

4 pts

Réponse: b)
$$\gamma_1$$
: $(x-1)^2 + (y-2)^2 - 2 = 0$ et γ_2 : $(x-4)^2 + (y-2)^2 - 1 = 0$

 Q_{+}

Donnée graphique pour l'exercice 3.a)

 Ω_1 +

P