I) تعریف

- . لتكن \overrightarrow{AC} , \overrightarrow{AB} متجهتين غير منعدمتين (1
- (AB) ليكن H المسقط العمودي لـ C على
- (AC) المسقط العمودي لـ B على K
 - \overrightarrow{AC} و \overrightarrow{AB} و \overrightarrow{AB}

 $=\overline{AC}.\overline{AK}$

 $= AB.AC.\cos(BAC)$

 $\overrightarrow{AB}.\overrightarrow{AC}=0$ أِذَا كَانَتُ إِحْدَى المُتَحَهِّتِينَ \overrightarrow{AB} أَوْ \overrightarrow{AC} فَإِنْ أَكِانَتُ إِحْدَى المُتَحَهِّتِينَ

II) خاصیات

(AB) على D' المسقط العمودي لـ D على $\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.\overrightarrow{C'D'}$ لدينا

Н

الاحظة:

من اجل حساب AB.CD نسقط إحدى المتجهتين على الأخرى ونمر من المتجهات إلى لقياس الجبري ،مع الإحتفاظ بالنقط التي أسقطنا عليها ، ونعوض النقط التي أسقطناها بمساقطها .

- نرمز لـ $\overrightarrow{AB}.\overrightarrow{AB}$ بالرمز \overrightarrow{AB}^2 ويسمى المربع السلمي .
 - $\overrightarrow{AB}^2 = AB^2$ لدينا (**b**

 $\overrightarrow{AB}.\overrightarrow{CD} = AB.CD$

- : التحهتان \overrightarrow{AB} و مستقيميتين ولهما نفس المنحى فإن $(\mathbf{a}(3)$
- نات التجهتان متعاكسان فإن : \overrightarrow{CD} مستقیمیتین ولهما منحیان متعاكسان فإن : (\mathbf{b})
- AB.CD = -AB.CDنقول إن المتحهتين \overrightarrow{AB} و \overrightarrow{CD} متعامدتان إذا وفقط إذا كان كن المستقمان (\mathbf{a} (4
 - $\overrightarrow{AB} \perp \overrightarrow{CD}$ و (CD) متعامدين . ونكتب (CD)
 - $\overrightarrow{AB}.\overrightarrow{CD} = 0$ لدينا $\overrightarrow{AB} \perp \overrightarrow{CD}$ تكافئ (**b**
 - ا إذا كانت النقط A و B و D مستقيمية فإن $oldsymbol{5}$
 - $\overrightarrow{AB}.\overrightarrow{CD} = \overrightarrow{AB}.\overrightarrow{CD}$ \overline{C} \overline{D}
 - لتكن \vec{v} و \vec{v} متجهتين ولتكن A و B لتكن \vec{v} لتكن \vec{v} لتكن (a (b
 - $\overrightarrow{AC} = \overrightarrow{v}$, $\overrightarrow{AB} = \overrightarrow{u}$

 $ec{u}.ec{v} = \|ec{u}\|.\|ec{v}\|$: إذا كانت $ec{v}$ و $ec{v}$ مستقيميتين ولهما نفس المنحى فإن

اذا کانت التجهتان $ec{v}$ و $ec{v}$ مستقیمیتین ولهما منحیان متعاکسان فإن :

- $\vec{u}.\vec{v} = -\|\vec{u}\|.\|\vec{v}\|$
- $\vec{u}.\vec{v} = 0$ تكافئ $\vec{u} \perp \vec{v}$ (f
 - $\vec{u}.\vec{v} = \vec{v}.\vec{u}$ (* **(g**
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- $\vec{u} \cdot (\vec{v} \vec{w}) = \vec{u} \cdot \vec{v} \vec{u} \cdot \vec{w}$
- $(\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha (\vec{u} \cdot \vec{v})$
- $(\vec{u} + \vec{v})^2 = \vec{u}^2 + \vec{v}^2 + 2\vec{u}.\vec{v}$
- $(\vec{u} \vec{v})^2 = \vec{u}^2 + \vec{v}^2 2\vec{u}.\vec{v}$
- $(\vec{u} + \vec{v}) \cdot (\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2$

III) تطبيقات الجداء السلمي

1) علاقة الكاشى .

: ليكن (ABC) مثلثا لدينا

 $AB^2 = CA^2 + CB^2 - 2CA \cdot CB \cdot \cos \hat{C}$

2) مبرهنة المتوسط

igl[ABigr] مثلثا و I منتصف القطعة مثلثا و

العلاقات المترية في مثلث قائم الزاوية .

H و BC منتصف A' مثلثا قائم الزاوية في A و A' منتصف (ABC)

: لدينا . (BC) على المسقط العمودي لـ A

- (علاقة فتاغورس) $AB^2 + AC^2 = BC^2$ (*
 - $BA^2 = \overline{BH}.\overline{BC} = BH.BC$ (*
 - $CA^2 = \overline{CH}.\overline{CB} = CH.CB$ (*
- $AH^2 = -\overline{HB}.\overline{HC} = HB.HC$ (*
 - $AA' = \frac{1}{2}BC$ (*

C: ليكن (ABC) مثلثا قائم الزاوية في A لدينا (b

 $\frac{\sin \hat{A}}{BC} = \frac{\sin \hat{B}}{AC} = \frac{\sin \hat{C}}{AB}$

