Summary in Graph

<u>Exam Summary (GO Classes Test Series 2024 | Algorithms | Test 2)</u>

Qs. Attempted:	15 5 + 10	Correct Marks:	18 4+14
Correct Attempts:	11 4+7	Penalty Marks:	2 0+2
Incorrect Attempts:	4	Resultant Marks:	16

EXAM RESPONSE EXAM STATS FEEDBACK

Technical

Q #1 Multiple Choice Type Award: 1 Penalty: 0.33 Algorithms

Let S(n) be

$$S(n) = S(n/2) + \log(n).$$

What will be asymptotic bound on S(n)?

- A. $\Theta(n \log n)$
- B. $\Theta(\log n)$
- C. $\Theta(\log \log n)$
- D. $\Theta\left((\log n)^2\right)$

Your Answer: D Correct Answer: D Correct Discuss

Multiple Choice Type Award: 1 Penalty: 0.33 Algorithms

Let T(n) = T(an) + T(bn) + n, where a + b < 1.

What will be asymptotic bound on T(n)?

- A. $\Theta(n)$
- B. $\Theta\left(n^2\right)$
- C. $\Theta(n \log n)$
- D. $\Theta((a+b)\log n)$

Your Answer: A | Correct Answer: A | Correct | Discuss

Q #3 Multiple Choice Type Award: 1 Penalty: 0.33 Algorithms

Let T(n) be

$$T(n) = 16T(n/4) + n^2(\log n)^3$$

What will be asymptotic bound on T(n)?

- A. $\Theta\left(n^2(\log n)^3\right)$
- B. $\Theta\left(n^2(\log n)^4\right)$
- C. $\Theta\left(n^3 \log n\right)$
- D. $\Theta\left(n^3(\log n)^3\right)$

Your Answer: B Correct Answer: B Correct Discuss

Q #4 Multiple Choice Type Award: 1 Penalty: 0.33 Algorithms

Let T(n) be

$$T(n) = 64T(n/4) + 8^{\log_2 n}$$

What will be asymptotic bound on T(n)?

- A. $\Theta\left(n^3(\log n)^3\right)$
- B. $\Theta\left(n^3\right)$
- C. $\Theta\left(n^3 \log n\right)$
- D. $\Theta\left(n^4\right)$

Your Answer: C Correct Answer: C Correct Discuss

Q #5 Multiple Select Type Award: 1 Penalty: 0 Algorithms

Let T(n) = 2T(n/2) + O(n), where "O" is big-oh. What will be asymptotic bound on T(n)?

- A. $\Theta(n)$
- B. $\Theta(n \log n)$
- C. $\Theta\left(n^2\right)$
- D. $O\left(n^3\right)$

Your Answer: B;D | Correct Answer: D | Incorrect | Discuss

Q #6 Multiple Choice Type Award: 2 Penalty: 0.67 Algorithms

Let T(n) be

$$T(n) = T(\sqrt{n}) + \log \log n$$

What will be asymptotic bound on T(n)?

- A. $\Theta(\log n)$
- B. $\Theta((\log \log n)^2)$
- C. $\Theta(\log \log \log n)$
- D. $\Theta(\log \log \log \log n)$

Your Answer: B Correct Answer: B Correct Discuss

Q #7 Multiple Choice Type Award: 2 Penalty: 0.67 Algorithms

Let T(n) be

$$T(n) = 2T(\sqrt{n}) + \log n$$

What will be asymptotic bound on T(n)?

- A. $\Theta(\log n)$
- B. $\Theta(\log \log n)$
- C. $\Theta(\log n \log \log n)$
- D. $\Theta(n \log n)$

Your Answer: C Correct Answer: C Correct Discuss

Q #8 | Multiple Choice Type | Award: 2 | Penalty: 0.67 | Algorithms

Let T(n) be

$$T(n)=n^2+T(n/2)+T(n/4)$$

What will be asymptotic bound on T(n)?

- A. $\Theta\left(n^2\right)$
- B. $\Theta\left(n^3\right)$
- C. $\Theta\left(n^4\right)$
- D. $\Theta\left(n^2 \log n\right)$

Your Answer: A Correct Answer: A Discuss

Q #9 Multiple Choice Type Award: 2 Penalty: 0.67 Algorithms

Let

$$T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$$

What will be asymptotic bound on T(n)?

- A. $\Theta(\sqrt{n}\log n)$
- B. $\Theta(\log \log n)$
- C. $\Theta(n \log \log n)$
- D. $\Theta(\sqrt{n}\log\log n)$

Your Answer: C

Correct Answer: C

Discuss

Q #10 **Multiple Choice Type** Award: 2

Correct

Penalty: 0.67

Algorithms

Let T(n) be

$$T(n) = \left\{ egin{aligned} 2T(n/2) + 8T(n/4) + n^2 & ext{ if } n \geq 4 \ 1 & ext{ if } n \leq 3 \end{aligned}
ight.$$

What will be asymptotic bound on T(n)?

- A. $\Theta\left(n^2 \log n\right)$
- B. $\Theta\left(n^2\right)$
- $\mathsf{C}.\;\Theta\left(n^3\right)$
- D. $\Theta\left(n^3 \log n\right)$

Your Answer: D

Correct Answer: A

Incorrect

Discuss

Multiple Choice Type

Award: 2

Penalty: 0.67

Algorithms

Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

- $T(x,c) = \Theta(x)$ for $c \le 2$,
- ullet $T(c,y)=\Theta(y)$ for $c\leq 2$, and
- $T(x,y) = \Theta(x) + T(x,y/2)$
- A. $\Theta(\log n)$
- B. $\Theta(n)$
- C. $\Theta(n \log n)$
- D. $\Theta\left(n\log^2 n\right)$

Your Answer: B

Correct Answer: C

Incorrect

Discuss

0 #12 Multiple Choice Type Award: 2 Penalty: 0.67 Algorithms

Consider mutually recursive definitions of T(a, b) and S(c, d):

$$T(x,c) = \Theta(x)$$
 for $c \leq 2$

$$T(x,y) = \Theta(x) + S(x,y/2),$$

$$S(c,y) = \Theta(y)$$
 for $c \leq 2$, and

 $S(x,y) = \Theta(y) + T(x/2,y)$

Select the correct asymptotic complexity of an algorithm with run-time T(n, n).

- A. $\Theta(\log n)$.
- B. $\Theta(n)$.
- C. $\Theta(n \log n)$.

D.
$$\Theta\left(n\log^2 n\right)$$
.

Your Answer: B Correct Answer: B Correct Discuss

Q #13 Multiple Choice Type Award: 2 Penalty: 0.67 Algorithms

A list of n arrays, each of length n, is passed to an algorithm like merge-sort. The algorithm recursively divides a set of arrays into two parts until there are only two arrays.

If there are two arrays, then, as a base case, the algorithm combines or merges both in cost of O(p+q) where p and q are sizes of arrays.

What will be the time complexity recurrence relation of such algorithm?

Let T(n) be time taken for n arrays.

A.
$$T(n) = 2T(n/2) + n^2$$

B.
$$T(n) = 2T(n/2) + n$$

C.
$$T(n)=2T(n/2)+n^3$$

D. None of these

Your Answer: A Correct Answer: D Incorrect Discuss

Q #14 Multiple Select Type Award: 2 Penalty: 0 Algorithms

Consider a recurrence relation.

$$T(n) = lpha T(n/2) + n^2.$$

Let $a \geq 1$ be an integer.

Which of the following is/are true?

A. For
$$lpha > 4, T(n) = heta\left(n^{\lg lpha}
ight)$$

B. For
$$lpha=4, T(n)= heta\left(n^2\lg n
ight)$$

C. For
$$lpha < 4, T(n) = heta\left(n^2
ight)$$

D. For all values of $lpha, T(n) = heta\left(n^2 \lg n
ight)$

Your Answer: A;B;C Correct Answer: A;B;C Correct Discuss

Q #15 Multiple Choice Type Award: 2 Penalty: 0.67 Algorithms

Let T(n) be

$$T(n) = 2T\left(rac{n}{2}
ight) + rac{n}{\lg n}$$

T(2) = 1

What will be asymptotic bound on T(n)?

A.
$$\Theta\left(n^2(\log n)\right)$$

B.
$$\Theta\left(n(\log n)^2\right)$$

C.
$$\Theta(n \log \log n)$$

D.
$$\Theta\left(n^2\log\log n\right)$$

Your Answer: C Correct Answer: C Correct Discuss

You're doing Great!

<u>Copyright & Stuff</u>

https://gateoverflow.in/quiz/results.php