DS313: Statistical Foundations of Data Science Assignment No: 6

Course Instructor: Siddhartha Sarma

Date: 26 Apr 2025

Submission deadline: 9 May 2025, 10 AM

Related topics:

• Random vectors and their distributions

• Estimation: MMSE, LMSE, Maximum-likelihood and MAP

Notations:

- $\mathbf{E}[X]$, Var(X) denote the expectation and variance of random variable X, respectively.
- $N(\mu, \sigma)$ denotes Gaussian distribution with mean μ and standard deviation $\sigma > 0$.

Instructions & Information:

• You must include a table similar to the one below on the front page of your submission to indicate the page numbers of the answer to the assignment questions.

Question no.	1	2	3	4	5	6	7	8	9	10
Page no.										

1. For any two random variables X, Y, show that

$$\frac{\sqrt{\operatorname{Var}(X+Y)}}{\sqrt{\operatorname{Var}X} + \sqrt{\operatorname{Var}Y}} \le 1.$$

Can the above expression be generalised for more than two random variables?

- 2. Let $[X \ Y]^T$ be a mean zero Gaussian vector with correlation matrix $\begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$, $|\rho| < 1$.
 - (a) Express $\Pr(X \leq 1|Y)$ in terms of ρ, Y and the standard normal CDF.

1

(b) Find $\mathbf{E}[(X - Y)^2 | Y = y]$.

- 3. Let X, Y be zero-mean independent random variables with variances σ_X^2 , σ_Y^2 , respectively. Consider the sum Z = aX + (1-a)Y, $0 \le a \le 1$.
 - (a) Find a that minimizes the variance of Z.
 - (b) Find MMSE, LMSE of (i) Z given X, (ii) Z given Y, (iii) X given Z, and (iv) Y given Z.
- 4. For any two random variables X, Y with $\mathbf{E}[X^2] < \infty$, show that $\mathrm{Var}(X) = \mathrm{Var}(\mathbf{E}[X|Y]) + \mathbf{E}[\mathrm{Var}(X|Y)]$.
- 5. Show that if Σ is the correlation matrix of the random vector $\mathbf{X} = [X_1, X_2, \dots, X_N]^T$ and its inverse exists, then

$$\mathbf{E}[\mathbf{X}^T \mathbf{\Sigma}^{-1} \mathbf{X}] = N,$$

where $(.)^T$ denotes transpose of a vector. Recall that correlation matrix is

- 6. The best linear predictor of Y with respect to X_1 and X_2 is equal to $a + bX_1 + cX_2$, where a, b, and c are chosen to minimize $\mathbf{E}[(Y (a + bX_1 + cX_2))^2]$. Determine a, b, and c.
- 7. Let X = 1/(1 + U), where U is uniformly distributed over the interval [0, 1] Find the MMSE and LMSE of X and compare their mean-square errors.
- 8. The best quadratic predictor of Y with respect to X is $a + bX + cX^2$, where a, b, and c are chosen to minimize $\mathbf{E}[(Y (a + bX + cX^2))^2]$. Determine a, b, and c.
- 9. The time to failure of a bulb is an exponential random variable X with an unknown parameter λ . By testing 80 bulbs, it was observed that 62 of them lasted more than 200 hours. Find the ML estimate of λ .
- 10. Derive an expression to calculate the MAP estimate of the parameter μ if the samples are drawn from $N(\mu, 1)$ and μ is exponentially distributed with parameter λ .

Some questions were taken from the following books

- Papoulis & Pillai, "Probability, Random Variables and Stochastic Processes", McGraw Hill, 4th Ed
- Sheldon Ross, "A first course in Probability", 8th Ed
- Lecture notes of Prof. Hajek, University of Illinois Urbana-Champaign