Robotics: Assignment II

Forward Kinematics and Inverse Kinematics

Due: 2021/11/15 13:00 pm(GMT+8)

Consider the ER-7 robot arm shown in the following figures:

Top View

PART A (25%)

- (1) According to ER-7 arm, draw the link coordinate diagram using D-H convention in Craig version from lecture slides page 34. (10%)
- (2) Find the kinematics parameters of ER-7 and fill the table below: (15%)

Joint	α_{i-1} (°)	a_{i-1} (mm)	d_i (mm)	θ_i
1				$ heta_1$
2				$ heta_2$
3				$ heta_3$
4				$ heta_4$
5				$ heta_5$

PART B (30%)

Derive transformation matrices for each consecutive link, and also the transformation matrices T_0^5 (from frame 5 to frame 0).

Note: This should be revised to list all the transformation matrix, i.e. $T_{BASE}^1, T_1^2, T_2^3, T_3^4, T_4^5, T_{BASE}^5$ or $T_{BASE}^{BASE}, T_1^2, T_2^3, T_3^4, T_4^5, T_{BASE}^5$.

PART C (45%)

(1) Derive the inverse kinematics for ER-7. Given the target pose of the gripper tip $(x, y, z, \phi, \theta, \psi)$ with respect to the base coordinate, calculate $(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5)$. For the transformation from the base to the gripper tip, please refer to Inverse Kinematic slides. Let's assume the target is reachable in elbow-up configuration, and that the gripper tip pose is always vertically downward. (30%)

(2) Based on the previous question, please calculate $(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5)$ with the

following target poses. The translation parameters (x, y, z) are in millimeter, and the rotation parameters (ϕ, θ, ψ) are in radian. (15%)

(a)
$$(x, y, z, \phi, \theta, \psi) = (600, 100, 0, \pi/4, 0, \pi)$$

(b)
$$(x, y, z, \phi, \theta, \psi) = (600, 100, 100, \pi/4, 0, \pi)$$

(c)
$$(x, y, z, \phi, \theta, \psi) = (600, -100, 100, -\pi/4, 0, \pi)$$

PART D (10%) bonus

Consider the following robot arm which is consist of a revolute joint and prismatic joint:

- (1) Find the DH representation the same as Part A (1) (6%)
- (2) For all DH parameters $(a_{i-1}, a_{i-1}, d_i, \theta_i)$, which two parameters are actuator joint (varying parameters)? (4%)

Submission

Please convert your report into a PDF file, submit to the NTU COOL.

Name your PDF file as <STUDENT_ID>_HW2.pdf. For example, R10345678_HW2.pdf

Please make your work follow this format:

- Use A4 paper.
- Staple the pages together and put your name and student ID on the top of the first page.
- If you use a scanned copy, please write legibly. (Maybe more than usual.

 TAs are not very good at reading cursive writing.)