# บทที่ 2 กระบวนการทางวิทยาศาสตร์ข้อมูล

## หัวข้อหลัก

- กระบวนการทางวิทยาศาสตร์ข้อมูล คือแนวทางการแก้ไขปัญหาที่ระบุสิ่งที่ต้องทำ ลำดับขั้นตอน รวมไปถึงรูปแบบ การดำเนินงาน เพื่อให้ได้ผลลัพธ์ที่ตอบโจทย์ปัญหาทางวิทยาศาสตร์ข้อมูลได้ดีที่สุด
- Cross Industry Standard Process for Data Mining (CRISP-DM) คือ กระบวนการทางวิทยาศาสตร์ข้อมูล รูปแบบหนึ่งที่ได้รับการยอมรับมากที่สุดในปัจจุบัน
- กระบวนการทางวิทยาศาสตร์ข้อมูล เป็นกระบวนการแบบทำซ้ำ (iterative process) ซึ่งโดยทั่วไปประกอบด้วย
  กิจกรรมหลัก 5 อย่าง คือ (1) การทำความเข้าใจปัญหาเชิงธุรกิจและข้อมูล (2) เตรียมข้อมูล (3) พัฒนาโมเดลโดยใช้
  อัลกอริทึมการเรียนรู้ (4) ทดสอบประสิทธิภาพของโมเดลที่พัฒนาขึ้น (5) นำโมเดลไปใช้งานจริง

การค้นหารูปแบบและความสัมพันธ์ที่มีประโยชน์ที่แฝงอยู่ในชุดข้อมูล เป็นกระบวนการที่ประกอบด้วยการทำกิจกรรม หลัก 5 อย่างแบบวนซ้ำ จนกว่าจะได้ผลลัพธ์เป็นโมเดลที่สามารถนำไปใช้ตอบปัญหาทางวิทยาศาสตร์ข้อมูลได้ กระบวนการ วิทยาศาสตร์ข้อมูลมีกิจกรรมหลักที่เกี่ยวข้องทั้งหมด 5 อย่าง ดังนี้ คือ (1) การทำความเข้าใจปัญหา (2) การเตรียมข้อมูล (3) การพัฒนาโมเดลการเรียนรู้ (4) การทดสอบประสิทธิภาพของโมเดล (5) การนำโมเดลไปใช้งานจริง

ในช่วงหลายปีที่ผ่านมา มีกระบวนการวิทยาศาสตร์ข้อมูล ที่ถูกคิดค้นขึ้นมาหลากหลายรูปแบบ เช่น CRISP-DM [2], KDD [3] และ SEMMA [4] เป็นต้น ในบรรดากระบวนการเหล่านี้ รูปแบบที่ดูจะได้รับความนิยมที่สุดก็คือ CRISP-DM ดังแสดง ในรูปที่ 2.1



รูปที่ 2.1 กรอบการทำเหมืองข้อมูล CRISP-DM

จากรูปที่ 2.1 จะเห็นว่า ข้อมูล (Data) ถือได้ว่าเป็นหัวใจหลักของการดำเนินกิจกรรมต่าง ๆ ของโครงการ กิจกรรมหลัก ใน CRISP-DM ได้แก<sup>่</sup> การทำความเข้าใจธุรกิจ (Business understanding) การทำความเข้าใจข้อมูล (Data understanding) การเตรียมข้อมูล (Data preparation) การสร้างโมเดล (Modeling) การประเมินประสิทธิภาพของโมเดล (Evaluation) และ การนำโมเดลไปใช้งานจริง (Deployment) ซึ่งในการดำเนินกิจกรรมเหล่านี้ อาจจะต้องมีการทำซ้ำ (iterative executions) ในบางขั้นตอนหรือทุกขั้นตอน จนกว่าจะได้โมเดลที่มีประสิทธิภาพอยู่ในระดับที่ต้องการ

ในปัจจุบัน หากกล่าวถึง วิทยาศาสตร์ข้อมูล คนส่วนใหญ่จะให้ความสนใจเกือบทั้งหมดไปที่ขั้นตอนของการสร้างโมเดล โดยใช้เทคนิคการทำเหมืองข้อมูล การเรียนรู้ของเครื่องจักร หรือปัญญาประดิษฐ์ ซึ่งอยู่ในขั้นตอนที่ 3 ของกระบวนการทั้งหมด ของการทำวิทยาศาสตร์ข้อมูล ซึ่งอาจจะทำให้เกิดความคลาดเคลื่อนเกี่ยวกับธรรมชาติของโครงการด้านวิทยาศาสตร์ข้อมูลได้ เพราะในความเป็นจริง นักวิทยาศาสตร์ข้อมูลที่มีประสบการณ์ต่างทราบดีว่า ขั้นตอนที่ใช้เวลามากที่สุดของการทำงาน ไม่ใช่ กิจกรรมการสร้างโมเดล แต่เป็นกิจกรรมการเตรียมข้อมูล ส่วนขั้นตอนที่ใช้เวลามากเป็นอันดับสองรองลงมาก็คือ การทำความ เข้าใจปัญหาของธุรกิจและข้อมูล

ในรายวิชานี้ เราจะใช้กระบวนการวิทยาศาสตร์ข้อมูลแบบทั่วไป ที่ไม่ขึ้นกับโดเมนหรือเครื่องมือทางวิทยาศาสตร์ข้อมูล ใด ๆ ดังรูปที่ 2.2



จากรูปที่ 2.2 กระบวนการวิทยาศาสตร์ข้อมูลโดยทั่วไป จะประกอบด้วยขั้นตอน ดังต่อไปนี้คือ

- 1. รวบรวมความรู้ตั้งต้น (Prior Knowledge)
  - ก. การทำความเข้าใจธุรกิจ (Business understanding)
  - ข. การทำความเข้าใจข้อมูล (Data understanding)
- 2. การเตรียมข้อมูล (Data preparation)
- 3. การสร้างโมเดล (Modeling)
  - การสร้างโมเดลโดยใช้อัลกอริทึมเรียนรู้รูปแบบและความสัมพันธ์ต่าง ๆ ในชุดข้อมูลฝึกฝน
     (Building model using algorithms on training data)
  - ข. การทดสอบประสิทธิภาพของโมเดลบนชุดข้อมูลทดสอบ(Applying model and performance evaluation on test data)
- 4. การนำไปใช้งานริง (Deployment)
- 5. ความรู้และการกระทำ (Knowledge and actions)

เพื่อให้เข้าใจได้ง่ายขึ้น เราจะทำความเข้าใจกระบวนการวิทยาศาสตร์ข้อมูลโดยทั่วไป จากกรณีตัวอย่าง เกี่ยวกับธุรกิจ การให้สินเชื่อสำหรับลูกค้ารายย่อย ซึ่งต้องการหาอัตราดอกเบี้ยการให้สินเชื่อที่เหมาะสมกับลูกค้าแต่ละราย

## 2.1 การรวบรวมความรู้ตั้งต้น

สิ่งที่จะต้องทำในขั้นตอนแรกของวิทยาศาสตร์ข้อมูล ก็คือการรวบรวมความรู้ตั้งต้นที่จำเป็น ได้แก่ ปัญหาทางธุรกิจที่ต้องการ แก้ไข บริบทในเชิงธุรกิจที่เกี่ยวข้อง และข้อมูลที่จำเป็นต้องใช้ในการแก้ปัญหา

## 2.1.1 กำหนดวัตถุประสงค์

การกำหนดปัญหา ถือว่าเป็นขั้นตอนที่สำคัญที่สุดในกระบวนการวิทยาศาสตร์ข้อมูล และจำเป็นอย่างยิ่งที่จะต้องกำหนดปัญหา ให้ชัดเจนถูกต้อง ก<sup>่</sup>อนที่จะเริ่มดำเนินการในขั้นต่อไป

จากกรณีตัวอย่าง ของการให้สินเชื่อสำหรับลูกค้ารายย่อย หลังจากที่นักวิทยาศาสตร์ข้อมูลได้พูดคุยกับผู้ใช้แล้วพบว่า ปัญหาที่ธุรกิจต้องการแก้ไข สามารถอธิบายได้ ดังนี้คือ

ถ้าเรามีข้อมูลเกี่ยวกับอัตราดอกเบี้ยสินเชื่อและคะแนนเครดิตของผู้กู้ยืมในอดีต, เราสามารถสร้างโมเดล สำหรับทำนายอัตราดอกเบี้ยที่เหมาะสมของผู้กู้ยืมรายใหม่จากคะแนนเครดิตได้หรือไม่

#### 2.1.2 บริบทในเชิงธุรกิจ

ในระหว่างกระบวนการวิทยาศาสตร์ข้อมูล จะมีรูปแบบและความสัมพันธ์แฝงต่าง ๆ มากมาย ถูกค้นพบ แต่รูปแบบแฝงที่ ค้นพบส่วนใหญ่จะไม่ใช่รูปแบบที่มีนัยสำคัญ เป็นหน้าที่ของนักวิทยาศาสตร์ข้อมูลในการคัดกรองรูปแบบแฝงที่ค้นพบ โดย คงเหลือไรว้แต่รูปแบบที่มีนัยสำคัญในทางสถิติและเกี่ยวข้องกับปัญหาที่ต้องการแก้ไข ดังนั้นนักวิทยาศาสตร์ข้อมูล จึง จำเป็นต้องศึกษาหาความรู้เกี่ยวกับธุรกิจ บริบทของงานและกระบวนการทางธุรกิจที่สร้างข้อมูลขึ้นมา

จากกรณีตัวอย่าง นักวิทยาศาสตร์ข้อมูลจะต้องทำความเข้าใจภาพกว้างของธุรกิจการให้สินเชื่อ และรายละเอียด เกี่ยวกับกระบวนการในการสมัคร และกำหนดดอกเบี้ยที่เหมาะสม

## 2.1.3 ข้อมูล

ในขั้นตอนนี้ นักวิทยาศาสตร์ข้อมูลจะต้องสำรวจข้อมูลทั้งหมดที่สามารถใช้ในการตอบโจทย์ของโครงการได้ โดยจะต้องกำหนด และพิจารณาปัจจัยที่เกี่ยวข้อง เช่น แหล่งข้อมูล คุณภาพของข้อมูล ปริมาณข้อมูล และสิทธิ์ในการนำข้อมูลมาใช้ เป็นต้น

จากกรณีตัวอย่างการให้สินเชื่อ นักวิทยาศาสตร์ข้อมูล ได้สำรวจและสรุปข้อมูลที่เกี่ยวข้องกับการทำนายอัตราดอกเบี้ย จากคะแนนเครดิตของผู้สมัครขอรับสินเชื่อได้ 3 อย่าง คือ รหัสผู้ขอสินเชื่อ (Borrow ID), คะแนนเครดิต (Credit Score), อัตรา ดอกเบี้ย (Interest Rate %) โดยสามารถเก็บรวบรวมตัวอย่างข้อมูลได้ 10 ตัวอย่าง ดังในตารางที่ 2.1



ชุดข้อมูล (Dataset) ในตารางที่ 2.1 จะถูกนำไปใช้ในการสร้างและทดสอบโมเดล ในขั้นตอนต่อไป เมื่อได้โมเดลที่ ต้องการแล้ว ในขั้นตอนการนำไปใช้งานจริง ค่าของคะแนนเครดิตจะถูกป้อนเป็นฟีเจอร์อินพุท (input features) ของโมเดล เมื่อโมเดลได้รับค่าอินพุท ก็จะให้เอาท์พุทเป็นค่าอัตราดอกเบี้ยสินเชื่อที่เหมาะสมออกมา ดังแสดงในรูปที่ 2.3



รูปที่ 2.3 โมเดลที่ได้จะสามารถทำนายอัตราดอกเบี้ยที่เหมาะสม จากคะแนนเครดิตของข้อมูลใหม่ได้

## 2.2 การเตรียมข้อมูล

การเตรียมข้อมูล เป็นขั้นตอนที่ใช้เวลานานที่สุดในกระบวนการวิทยาศาสตร์ข้อมูล เนื่องจาก โดยปกติชุดข้อมูลที่รวบรวมมาได้ จะอยู่ในรูปแบบที่ไม่เหมาะกับการประมวลผลของอัลกอริทึมทางวิทยาศาสตร์ข้อมูล ซึ่งส่วนใหญ่ต้องการอินพุทที่มีโครงสร้าง แบบตาราง โดยแต่ละแถวคือหนึ่ง instance และแต่ละคอลัมน์คือ attribute

กรรมวิธีที่ใช้ในการเตรียมข้อมูลมีหลายวิธี เช่น การเติมค่าที่หายไปด้วยค่าเฉลี่ย ค่าแปลงค่าให้อยู่ในช่วงมาตรฐาน การ จัดการค่าผิดปกติ (outliers), การคัดเลือกฟีเจอร์ (feature selection), และการสุ่มตัวอย่างข้อมูล (data sampling)

## 2.2.1 การสำรวจชุดข้อมูล (Data Exploration)

ก่อนที่จะเริ่มเตรียมข้อมูล ส่วนใหญ่เราจำเป็นต้องทำการสำรวจข้อมูลในเชิงลึกเพื่อทำความเข้าใจเกี่ยวกับชุดข้อมูลให้ดียิ่งขึ้น การสำรวจข้อมูล (data exploration หรือ exploratory data analysis) คือการทำความเข้าใจเกี่ยวกับข้อมูลเบื้องต้น โดย การประยุกต์ใช้เครื่องมือพื้นฐานสำหรับการวิเคราะห์ข้อมูล เช่น สถิติพรรณนา (descriptive statistics) และการทำให้เห็นเป็น ภาพ (data visualization) เป็นต้น

ตัวอย่างของสถิติพรรณนาที่นิยมนำมาใช้ในการทำความเข้าใจเกี่ยวกับคุณลักษณะของชุดข้อมูล ได้แก่ ค่าเฉลี่ย (mean), ค่ามัธยฐาน (median), ฐานนิยม (mode), ค่าเบี่ยงเบนมาตรฐาน (standard deviation), พิสัย (range)

ตัวอย่างของการทำให้เห็นเป็นภาพที่นิยมใช้ในการสำรวจชุดข้อมูล ได้แก่ กราฟแท่ง (bar chart), แผนภูมิการกระจาย (scatter plot), แท่งความถี่ (histogram)

จากกรณีตัวอย่าง เราสามารถใช้ scatter plot มาช่วยในการทำความเข้าใจเกี่ยวกับชุดข้อมูลตัวอย่างได้ดังรูปที่ 2.4 จากรูปแผนภูมิ จะเห็นได้ว่า ความสัมพันธ์ระหว่าคะแนนเครดิต กับอัตราดอกเบี้ยมีลักษณะแปรผกผัน กล่าวคือ ยิ่งคะแนน เครดิตสูง อัตราดอกเบี้ยที่เหมาะสมก็จะต่ำลง



รูปที่ 2.4 การใช้แผนภูมิการกระจาย (scatter plot) เพื่อทำความเข้าใจคุณลักษณะของชุดข้อมูลเบื้องต้น

# 2.2.2 การเตรียมข้อมูลก่อนเริ่มดำเนินการสร้างโมเดล (Pre-processing)

คุณภาพของข้อมูล มีผลต่อประสิทธิภาพของโมเดลที่ได้จากการเรียนรู้มาก หากเราป้อนข้อมูลที่มีคุณภาพต่ำ (เช่น มีข้อมูล ซ้ำซ้อน ไม่ครบถ้วน) ให้กับอัลกอริทีมการเรียนรู้ ก็จะเป็นไปได้ยากมากที่โมเดลที่ได้จะมีประสิทธิภาพสูง ดังนั้น ก่อนที่จะทำ การสร้างโมเดล เราจึงจำเป็นต้องใช้กระบวนการทำความสะอาดข้อมูล ทำให้ข้อมูลมีคุณภาพและอยู่ในรูปแบบที่เหมาะกับการ นำไปใช้สร้างโมเดลเสียก่อน การ pre-process ข้อมูลที่มักนำมาใช้ มีดังนี้คือ

- การกำจัดเรกคอร์ดซ้ำ (elimination of duplicate records)
- การแยกค่าผิดปกติ (outliers)
- การทำค**่าของแอทริบิวต์ให้อยู่ในรูปแบบ/ช**่วงมาตรฐาน (standardization of attribute values)
- การแทนค่าที่ขาดหายไป (substitution of missing values)
- การคัดเลือกฟีเจอร์ (feature selection)

#### 2.3 การสร้างโมเดล (Modeling)

โมเดล คือ ตัวแทนอย่างย่อ (abstract representation) ของข้อมูลและความสัมพันธ์ต่าง ๆ ในชุดข้อมูล

โมเดลถูกสร้างขึ้น โดยการรันอัลกอริทึมการเรียนรู้บนชุดข้อมูล เพื่อค้นหาและสกัดรูปแบบที่มีนัยสำคัญ จากชุดข้อมูล ในปัจจุบัน มีอัลกอริทึมการเรียนรู้ต่าง ๆ ให้เลือกใช้มากมาย ทั้งในรูปแบบของโปรแกรมสำเร็จรูป และในรูปแบบโปรแกรมมิ่ง ไลบารี่ ในรายวิชานี้ เราจะศึกษาหลักการ กลไกการทำงาน วิธีการปรับแต่ง และรูปแบบของปัญหาที่เหมาะกับการนำไปใช้งาน ของอัลกอริทึมที่เป็นที่นิยมใช้ในทางปฏิบัติ

ขั้นตอนในการสร้างโมเดล มีดังต่อไปนี้ คือ

- (1) สร้างชุดข้อมูลฝึกฝน (training dataset) และ ชุดข้อมูลทดสอบ (testing dataset)
- (2) เลือกอัลกอริทึมการเรียนรู้ที่เหมาะสมกับปัญหา
- (3) ประเมินประสิทธิภาพของโมเดล

## 2.3.1 สร้างชุดข้อมูลฝึกฝน และ ชุดข้อมูลทดสอบ

เพื่อให้การประเมินประสิทธิภาพของโมเดลที่สร้างขึ้น มีความเที่ยงตรงแม่นยำ ข้อมูลที่ใช้สำหรับประเมินประสิทธิภาพของ โมเดลจะต้องเป็นข้อมูลที่ไม่เคยถูกป้อนให้กับโมเดลมาก่อน ดังนั้น ก่อนเริ่มการฝึกฝน (model training) เราต้องแยกข้อมูล ออกเป็นสองส่วนคือ ข้อมูลส่วนแรกใช้สำหรับการฝึกฝน และ ส่วนที่สองใช้สำหรับการทดสอบประเมินประสิทธิภาพ ซึ่งในทาง ปฏิบัติ มีหลักการแบ่งคือ ให้สุ่มเลือก 2 ใน 3 (หรือประมาณ 70%) ของข้อมูลทั้งหมด เป็นข้อมูลสำหรับฝึกฝน และข้อมูลที่ เหลืออีก 1 ใน 3 เป็นข้อมูลสำหรับทดสอบประสิทธิภาพของโมเดล

จากกรณีตัวอย่าง เราจะแบ่งชุดข้อมูลของเราออกเป็น ชุดข้อมูลฝึกฝนขนาด 7 เรกคอร์ด และชุดข้อมูลทดสอบขนาด 3 เรกคอร์ด ดังแสดงในตารางที่ 2.2 และ 2.3 ตามลำดับ

ตารางที่ 2.2 ชุดข้อมูลฝึกฝน (training dataset)

| , ,       |              |                   |  |  |  |  |
|-----------|--------------|-------------------|--|--|--|--|
| Borrow ID | Credit Score | Interest Rate (%) |  |  |  |  |
|           | X            | у                 |  |  |  |  |
| 01        | 500          | 7.31              |  |  |  |  |
| 02        | 600          | 6.70              |  |  |  |  |
| 03        | 700          | 5.95              |  |  |  |  |
| 05        | 800          | 800 5.40          |  |  |  |  |
| 06        | 800          | 5.70              |  |  |  |  |
| 08        | 550          | 7.00              |  |  |  |  |
| 09        | 650          | 6.50              |  |  |  |  |

ตารางที่ 2.3 ชุดข้อมูลทดสอบ (testing dataset)

| Borrow ID | Credit Score | Interest Rate (%) |  |  |
|-----------|--------------|-------------------|--|--|
|           | Х            | у                 |  |  |
| 04        | 700          | 6.40              |  |  |
| 07        | 750          | 5.90              |  |  |
| 10        | 825          | 5.70              |  |  |

## 2.3.2 เลือกอัลกอริทึมการเรียนรู้ที่เหมาะสมกับปัญหา

คำถามทางธุรกิจและข้อมูลที่มี จะเป็นตัวกำหนดงานทางวิทยาศาสตร์ข้อมูล (การจัดกลุ่ม, การแบ่งประเภท, การวิเคราะห์การ ถดถอย และอื่น ๆ) ที่สามารถนำมาใช้ได้ เมื่อกำหนดชนิดงานทางวิทยาศาสตร์ข้อมูลที่ต้องทำได้แล้ว นักวิทยาศาสตร์ข้อมูล จะต้องเลือกอัลกอริทึมที่เหมาะสมจากหลากหลายอัลกอริทึมที่มีอยู่ของประเภทงานดังกล่าว เช่น งานการแบ่งประเภท (classification task) มีอัลกอเริทึมการเรียนรู้อยู่หลายชนิด เช่น ต้นไม้ของการตัดสินใจ (decision trees) เครือข่ายประสาท เทียม (neural networks), และ k-NN เป็นต้น

สำหรับกรณีตัวอย่าง เราต้องการทำนายค่าอัตราดอกเบี้ยที่เหมาะสม เมื่อทราบคะแนนเครดิตของผู้ขอสินเชื่อ ซึ่ง ในทางคณิตศาสตร์ โมเดลที่เราต้องการหาจะรับค่าอินพุทเป็นตัวเลขคะแนนเครดิต และให้ค่าเอาท์พุทเป็นตัวเลขอัตราดอกเบี้ย ( $f: X \rightarrow y$ ) งานลักษณะนี้ เรียกว่า การวิเคราะห์การถดถอย (regression problem) ดังนั้น เราจะต้องเลือกอัลกอริทึม สำหรับสร้างโมเดลการถดถอย ซึ่งมีหลากหลายตัว เช่น linear regression, neural network เป็นต้น

เพื่อให้เข้าใจได้ง่ายขึ้น สมมติว่า เราเลือกสร้างโมเดลด้วย linear regression หรือ การถดถอยเชิงเส้น ซึ่งมีรูปแบบ สมการทั่วไปของโมเดลคือ

$$y = wX + b$$

เมื่อ

y คือค่าเอาท์พุท หรือ ตัวแปรตาม (dependent variable)

X คือค่าอินพุท หรือ ตัวแปรต้น (independent variable)

w คือค่าสัมประสิทธิ์ของสมการ (coefficients)

b คือจุดตัดแกน y (y-intercept)

หากพิจารณาจากสมการของโมเดล linear regression จะพบว่า การทำนายค่า y (อัตราดอกเบี้ย) เราต้องทราบค่า w, X และ b ซึ่ง X เราทราบแล้วเพราะเป็นค่าอินพุทฟีเจอร์ ดังนั้นสิ่งที่เรายังไม่ทราบก็คือ ค่าสัมประสิทธิ์ **W** และ ค่า **b** นั่นเอง

ค่า W และ b สามารถหาได้โดยการหาเส้นตรงที่เข้ากับข้อมูลได้ดีที่สุด (มีความคลาดเคลื่อนในการทำนายค่า y น้อย ที่สุด) ซึ่งสำหรับชุดข้อมูลกรณีศึกษาของเรา พบว่า เส้นตรงที่ต้องการหา มีค่า w = 6/100000 และ ค่า b = 0.1 ดังในสมการ

$$y = \frac{-6}{1000}X + 10$$

หากนำสมการเส้นตรงที่ได้ไปวาดบนกราฟร่วมกับจุดข้อมูล จะได้ดังรูปที่ 2.5 จากรูปเห็นได้อย่างชัดเจนว่า เส้นตรงซึ่งก็ คือโมเดลของเราได้สกัดเอาคุณลักษณะสำคัญของชุดข้อมูลฝึกฝนออกมาได้ดีพอสมควร กล่าวคือ สมการเส้นตรงที่ได้บอกเรา ว่า ค่าของอัตราดอกเบี้ยซึ่งเป็นตัวแปรตาม มีค่าแปรผกผันกับค่าของคะแนนเครดิต



รูปที่ 2.5 โมเดลการถดถอยเชิงเส้น ที่ได้จากการเทรน

#### 2.3.3 ประเมินประสิทธิภาพของโมเดล

โมเดลที่มีคุณภาพดี คือโมเดลที่สามารถทำนายค่าของจุดข้อมูลที่ไม่เคยเห็นมาก่อนได้ ในทางเทคนิคเรียกคุณสมบัตินี้ว่า (*generalization*) วิธีประเมินว่าโมเดลที่สร้างขึ้นสามารถทำนายค่าของจุดข้อมูลใหม่ได้หรือไม่ ทำได้โดยใช้ชุดข้อมูลทดสอบ (test datasets) ที่ได้แบ่งไว้ก่อนที่จะเริ่มเทรนโมเดล ในการหาค่าความคลาดเคลื่อน ซึ่งวิธีการวัดค่าความคลาดเคลื่อนมีหลาย วิธี เช่น RMSE (Root Mean Squared Errors) MAE (Mean Absolute Errors)

วิธีการวัดค<sup>่</sup>าความคลาดเคลื่อนที่เหมาะสม จะขึ้นอยู่กับเป้าหมายของผู้ใช้งาน ดังนั้นในการทำงานจริง นักวิทยาศาสตร์ ข้อมูลจะต้องศึกษาเป้าหมายทางธุรกิจของผู้ใช้ให้เข้าใจอย่างถ่องแท้ เพื่อจะได้เลือกใช้ตัววัดค<sup>่</sup>าที่เหมาะสม

จากกรณีตัวอย่าง เราจะประเมินประสิทธิภาพโดยการวัดค่าความผิดพลาด (prediction errors) บนชุดข้อมูลทดสอบ ในตารางที่ 2.3 ผลการวัดค่าความผิดพลาดด้วย ค่า RMSE (ค่าเฉลี่ยของรากที่สองของผลรวมของกำลังสองของค่าความ ผิดพลาด) แสดงในตารางที่ 2.4

ตารางที่ 2.4 การประเมินประสิทธิภาพของโมเดลบนชุดข้อมูลทดสอบ

| Borrow | Credit | Interest Rate | คำทำนายอัตรา           | Errors | Squared Errors |
|--------|--------|---------------|------------------------|--------|----------------|
| ID     | Score  | (%)           | ดอกเบี้ยที่ได้จากโมเดล |        |                |
|        | X      | у             | y= (-6/1000)X+ 10      |        |                |
| 04     | 700    | 6.40          | 5.8                    | -0.6   | 0.36           |
| 07     | 750    | 5.90          | 5.5                    | -0.4   | 0.16           |
| 10     | 825    | 5.70          | 5.05                   | -0.65  | 0.4225         |

RMSE (Root Mean Squared Error)

$$=\frac{1}{3}\sqrt{(0.36+0.16+0.4225)}$$

= 0.324

## 2.4 การนำไปใช้งานจริง (Deployment)

ผลลัพธ์ที่ได้จากกระบวนการทางวิทยาศาสตร์ข้อมูล จะต้องถูกนำไปหลอมรวมเข้ากับกระบวนการทางธุรกิจ (business process) ซึ่งส่วนมากจะอยู่ในรูปแบบแอพลิเคชั่นซอฟต์แวร์ สิ่งที่ต้องคำนึงถึงในขั้นตอนนี้ ได้แก่ ความพร้อมในการนำไปใช้ใน ระบบจริง (production system) การผสานเข้ากับระบบงานอื่น (technical integration) เวลาตอบสนอง (response time) การอัพเดตโมเดล (model refresh) การส่งต่อผลลัพธ์ไปยังผู้ใช้งาน (assimilation)

### 2.5 ความรู้และการกระทำ (Knowledge and Actions)

กระบวนการทางวิทยาศาสตร์ข้อมูลเริ่มต้นด้วย ความรู้ตั้งต้น (Prior Knowledge) และจบลงด้วยความรู้แจ้งที่เพิ่มเติมขึ้น ซึ่ง ได้มาจากกระบวนการเรียนรู้จากข้อมูลแบบทำซ้ำ นักวิทยาศาสตร์ข้อมูลจะต้องคัดสรรความรู้ใหม่ที่มีนัยสำคัญ และนำไปใช้ใน การตัดสินใจ หรือการกระทำอื่น ๆ ที่เป็นประโยชน์ในเชิงธุรกิจ

#### แบบฝึกหัด

- 1. กระบวนการทางวิทยาศาสตร์ข้อมูลคืออะไร และมีกี่ขั้นตอน
- 2. นักวิทยาศาสตร์ข้อมูล ใช้วิธีอะไรในการทำความเข้าใจกระบวนการทางธุรกิจและข้อมูล
- 3. ในทางปฏิบัติ ขั้นตอนใดในกระบวนการทางวิทยาศาสตร์ข้อมูล ที่ต้องใช้เวลาในการดำเนินการมากที่สุด เพราะเหตุใด
- 4. จงยกตัวอย่างเทคนิคที่ใช้ในการทำความสะอาดข้อมูลก่อนการประมวลผล
- 5. ทำไมจึงต้องแบ่งชุดข้อมูลออกเป็น ชุดข้อมูลฝึกฝน (training dataset) และชุดข้อมูลทดสอบ (testing dataset)
- 6. จากกรณีตัวอย่างการสร้างโมเดลเพื่อทำนายค่าอัตราดอกเบี้ยที่เหมาะสม นอกจาก linear regression algorithm แล้ว เราสามารถใช้อัลกอริทึมใดในการเรียนรู้จากข้อมูลสำหรับปัญหานี้ (ระบุอย่างน้อย 2 อัลกอริทึม)
- 7. การประเมินประสิทธิภาพของโมเดล ควรใช้เกณฑ์ใดในการประเมิน และใครควรเป็นผู้กำหนดเกณฑ์การประเมิน

#### เอกสารอ้างอิง

- [1] Bala Deshpande, Vijay Kotu. *Data Science*. 2<sup>nd</sup> Edition, Morgan Kaufmann, 2018.
- [2] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. SPSS Inc. ดึงเอกสารจาก <a href="mailto:ftp://ftp.software.ibm.com/software/analytics/spss/support/Modeler/Documentation/14/UserManual/CRISP-DM.pdf">ftp://ftp.software.ibm.com/software/analytics/spss/support/Modeler/Documentation/14/UserManual/CRISP-DM.pdf</a>
- [3] Fayyad U, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. *Al Magazine*. 1996;17(3):37–54.
- [4] SAS Institute. (2013). Getting started with SAS enterprise miner 12.3.