Metody numeryczne – wyniki, laboratorium nr 6, grupa 6

Wyznaczanie zer wielomianu metodą siecznych

Ad 1.

Rysunek 1: Wykres funkcji $f(x) = (x-1.2)(x-2.3)(x-3.3)^2$ oraz jej pochodnej f'(x) w przedziale $x \in [0.9, 3.7]$

Ad 3.

k	x_{k+1}	ε_{k+1}	$f(x_{k+1})$
1	1.13177	0.131769	0.374736
2	1.18111	0.0493456	0.0948721
3	1.19784	0.0167279	0.0105107
4	1.19993	0.00208415	0.000358444
5	1.2	$7.35846e{-05}$	1.43563e-06
6	1.2	$2.95904e{-07}$	$1.97418e{-10}$

k	x_{k+1}	ε_{k+1}	$f(x_{k+1})$
1	2.63105	0.88105	0.212
2	2.43208	0.198968	0.122586
3	2.1593	0.272784	-0.17563
4	2.31995	0.160652	0.0214606
5	2.30246	0.0174929	0.00269569
6	2.29994	0.00251296	-6.13175e-05
7	2.3	5.58899e - 05	1.65087e - 07
8	2.3	1.5007e - 07	$1.00372e{-11}$

⁽a) Pierwsze miejsce zerowe: x = 1.2 (dla $x_0 = 0.9, x_1 = 1.0$)

(b) Drugie miejsce zerowe: x = 2.3 (dla $x_0 = 1.7, x_1 = 1.75$)

1 1	I	1	1	1 1		1		i i
k	x_{k+1}	ε_{k+1}	$f(x_{k+1})$		14	3.30058	0.000355037	$6.9551e{-07}$
1	3.51916	0.130842	0.135802		15	3.30036	0.000219611	2.65747e - 07
2	3.45319	0.0659641	0.0609795		16	3.30022	0.000135798	1.01527e - 07
3	3.39943	0.0537603	0.0239082		17	3.30014	$8.39552e{-05}$	$3.87845e{-08}$
4	3.36476	0.0346713	0.00966736		18	3.30008	$5.18976e{-05}$	$1.48155e{-08}$
5	3.34123	0.0235366	0.00378918		19	3.30005	$3.20784 \mathrm{e}{-05}$	$5.65929e{-09}$
6	3.32605	0.0151721	0.00148075		20	3.30003	$1.98271\mathrm{e}{-05}$	$2.16172e{-09}$
7	3.31632	0.00973224	0.000572969		21	3.30002	$1.22544e{-05}$	$8.25718e{-10}$
8	3.31018	0.00614271	0.000220855		22	3.30001	$7.57385e{-06}$	$3.154e{-10}$
9	3.30633	0.00385286	$8.48219e{-05}$		23	3.30001	$4.68098e{-06}$	$1.20473e{-10}$
10	3.30392	0.00240241	3.25142e - 05		24	3.3	$2.89304e{-06}$	$4.60167e{-11}$
11	3.30243	0.00149333	1.24463e - 05		25	3.3	$1.78801\mathrm{e}{-06}$	$1.75769e{-11}$
12	3.3015	0.000926181	4.76059e - 06		26	3.3	$1.10505e{-06}$	$6.71378e{-12}$
13	3.30093	0.00057368	1.81991e - 06		27	3.3	$6.82963 \mathrm{e}{-07}$	$2.56444e{-12}$

⁽c) Trzecie miejsce zerowe: x = 3.3 (dla $x_0 = 3.7$, $x_1 = 3.65$)

Tabela 1: Tabele przybliżeń miejsc zerowych wyszukiwanych niemodyfikowaną metodą siecznych; w kolumnach kolejno: k – numer iteracji, x_{k+1} – nowe przybliżenie miejsca zerowego w danej iteracji, ε_{k+1} – różnica między dwoma ostatnimi przybliżeniami, $f(x_{k+1})$ – wartość funkcji w punkcie x_{k+1} .

k	x_{k+1}	ε_{k+1}	$f(x_{k+1})$
1	3.25065	0.399349	0.0047475
2	3.32054	0.0698935	0.000913445
3	3.30675	0.0137991	9.65125e - 05
4	3.30297	0.00377639	1.85962e-05
5	3.30161	0.00136042	5.44866e-06
6	3.30091	0.000694918	1.7565e-06
7	3.30054	0.00037378	6.13227e - 07
8	3.30032	0.000215585	2.21348e-07
9	3.3002	0.000127248	8.17992e-08
10	3.30012	7.66162e - 05	3.06083e - 08
11	3.30007	4.65704e-05	1.15467e-08
12	3.30005	2.84972e - 05	4.37654e-09
13	3.30003	1.75031e-05	1.6638e - 09
14	3.30002	1.07765e - 05	$6.33659e{-10}$
15	3.30001	6.64457e - 06	$2.416e{-10}$
16	3.30001	4.10062e-06	9.21802e-11
17	3.3	2.53205e-06	3.51855e-11
18	3.3	1.56403e-06	$1.34339e{-11}$
19	3.3	$9.66291e{-07}$	5.12996e-12
		-	

$\mid k$	$ x_{k+1}$	ε_{k+1}	$f(x_{k+1})$
1	3.24179	0.408215	0.00651669
2	3.31242	0.0706299	0.000329644
3	3.30056	0.0118593	6.49539e - 07
4	3.3	0.000560219	$3.87543e{-11}$
5	3.3	5.18779e - 06	$1.67059e{-12}$
6	3.3	4.46132e-07	$4.17323e{-13}$

(b) Punkty startowe: $x_0=3.7, \, x_1=3.65,$ iloraz różnicowy obliczany z krokiem $\Delta x=0.001$

Tabela 2: Tabele przybliżeń **dwukrotnego miejsca zerowego** x=3.3, wyszukiwanego **modyfikowaną metodą siecznych**; w kolumnach kolejno: k – numer iteracji, x_{k+1} – nowe przybliżenie miejsca zerowego w danej iteracji, ε_{k+1} – różnica między dwoma ostatnimi przybliżeniami, $f(x_{k+1})$ – wartość funkcji w punkcie x_{k+1} . Wyniki uzyskano przy użyciu typu double.

Komentarz

• Z czego wynika tak znaczna różnica iteracji **modyfikowanej metody siecznych** przy różnych wartościach Δx ? \Rightarrow im mniejsze Δx , tym iloraz różnicowy dokładniej przybliża pochodną: patrz rys. 2.

Rysunek 2: Wykres pochodnej f'(x) wyznaczonej analitycznie (czerwona linia ciągła) wraz z oszacowaniami przy pomocy ilorazu różnicowego w dwóch przypadkach kroku Δx . Dla $\Delta x = 0.1$ punkty wyraźnie odstają od analitycznej pochodnej.

⁽a) Punkty startowe: $x_0 = 3.7$, $x_1 = 3.65$, iloraz różnicowy obliczany z krokiem $\Delta x = 0.1$

• Dlaczego modyfikowana metoda siecznych szybciej znajduje pierwiastki wielokrotne, niż jej niemodyfikowana wersja? \Rightarrow Problem pierwiastka wielokrotnego funkcji f(x) zostaje sprowadzony do problemu pierwiastka jednokrotnego funkcji u(x): patrz rys. 3.

Rysunek 3: Wykres funkcji $u(x) = \frac{f(x)}{f'(x)}$