Data Structures and Algorithms

Data Structures and Algorithms

Lecture 10 – The AVL Tree
Miao Zhang

Binary Search Tree – Best Case

- \triangleright All BST operations are O(d), where d is tree depth
- > minimum d is d log₂N for a binary tree with N nodes
 - > What is the best case tree?
 - **►** What is the worst case tree?
- > So, the best case running time of BST operations is O(log N)

Binary Search Tree – Worst Case

- \triangleright Worst case running time is O(N)
 - ➤ What happens when you Insert elements in ascending order?
 - ➤ Insert: 2, 4, 6, 8, 10, 12 into an empty BST
 - >Problem: Lack of "balance":
 - >compare depths of left and right subtrees
 - **►** Unbalanced degenerate tree

Balanced and unbalanced BST

Approaches to balancing trees

- > Don't balance
 - ➤ May end up with some nodes very deep
- > Strict balance
 - The tree must always be balanced perfectly
- > Pretty good balance
 - > Only allow a little out of balance
- > Adjust on access
 - > Self-adjusting

Balancing Binary Search Trees

➤ Many algorithms exist for keeping binary search trees balanced

- ➤ Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
- > Splay trees and other self-adjusting trees
- > B-trees and other multiway search trees

AVL Trees

- > An AVL tree is a binary search tree with a *balance* condition.
- > AVL tree *approximates* the ideal tree (completely balanced tree).
- > AVL Tree maintains a height close to the minimum.

Definition:

An AVL tree is a binary search tree such that for any node in the tree, the height of the left and right subtrees can differ by at most 1.

AVL Trees

AVL - Good but not Perfect Balance

- > AVL trees are height-balanced binary search trees
- **Balance factor of a node**
 - height(left subtree) height(right subtree)
- ➤ An AVL tree has balance factor calculated at every node
 - ➤ For every node, heights of left and right subtree can differ by no more than 1
 - > Store current heights in each node

Node Heights

height of node = h balance factor = h_{left}-h_{right}

Node Heights after Insert 7

Which One is an AVL Tree

(a) an AVL tree; (b) not an AVL tree (unbalanced nodes are darkened)

Properties

- The depth of a typical node in an AVL tree is very close to the optimal *log N*.
- > Consequently, all searching operations in an AVL tree have logarithmic worst-case bounds.
- An update (insert or remove) in an AVL tree could destroy the balance. It must then be rebalanced before the operation can be considered complete.
- ➤ After an insertion, only nodes that are on the path from the insertion point to the root can have their balances altered.

Insert and Rotation in AVL Trees

- ➤ Insert operation may cause balance factor to become 2 or -2 for some node
 - > only nodes on the path from insertion point to root node have possibly changed in height
 - > So after the Insert, go back up to the root node by node, updating heights
 - ➤ If a new balance factor (the difference h_{left}-h_{right}) is 2 or 2, adjust tree by *rotation* around the node

Insertions in AVL Trees

Let the node that needs rebalancing be α .

There are 4 cases:

- Outside Cases (require single rotation) :
 - 1. Insertion into left subtree of left child of α .
 - 2. Insertion into right subtree of right child of α .
- Inside Cases (require double rotation) :
 - 3. Insertion into right subtree of left child of α .
 - 4. Insertion into left subtree of right child of α .

The rebalancing is performed through four separate rotation algorithms.

Balancing Operations: Rotations

- ➤ Case 1 and case 2 are symmetric and require the same operation for balance.
 - Cases 1, 2 are handled by single rotation.
- > Case 3 and case 4 are symmetric and require the same operation for balance.
 - Cases 3, 4 are handled by *double rotation*.

Single Rotation

- ➤ A single rotation switches the roles of the parent and child while maintaining the search order.
- ➤ Single rotation handles the outside cases (i.e. 1 and 2).
- > We rotate between a node and its child.
 - ➤ Child becomes parent. Parent becomes right child in case 1, left child in case 2.
- > The result is a binary search tree that satisfies the AVL property.

Single right rotation

Outside Case Completed

AVL property has been restored!

Single rotation to fix case 1: Rotate right

(a) Before rotation

(b) After rotation

Single rotation to fix case 2: Rotate left

(a) After rotation

(b) Before rotation

Single rotation fixes an AVL tree after insertion

Single rotation fixes an AVL tree after insertion of 1

(a) Before rotation

(b) After rotation

Analysis

- > One rotation suffices to fix cases 1 and 2.
- > Single rotation preserves the original height:
 - The new height of the entire subtree is exactly the same as the height of the original subtree before the insertion.
- Therefore it is enough to do rotation only at the first node, where imbalance exists, on the path from inserted node to root.
- \triangleright Thus the rotation takes O(1) time.
- > Hence insertion is O(logN)

Double Rotation

- > Single rotation does not fix the inside cases (3 and 4).
- These cases require a *double* rotation, involving three nodes and four subtrees.

Double rotation: first rotation

Double rotation: second rotation

Double rotation: second rotation

right rotation complete

Double rotation fixes AVL tree after the insertion of 5

(a) Before rotation

(b) After rotation

Example of Insertions in an AVL Tree

Example of Insertions in an AVL Tree

Single rotation (outside case)

Double rotation (inside case)

Example
 Suppose that we've inserted 3, 2, 1, 4, 5, 6, 7, 16
 We'll insert 15, 14, 13, 12, 11, 10, 8, 9

Node declaration for AVL trees


```
template <class Comparable>
class AvlTree;
template <class Comparable>
class AvlNode
{
  Comparable element;
  AvlNode *left;
  AvlNode *right;
   int height;
  AvlNode (const Comparable & theElement, AvlNode *lt,
           AvlNode *rt, int h = 0)
     : element( theElement ), left( lt ), right( rt ),
               height( h ) { }
   friend class AvlTree<Comparable>;
};
```

Height


```
template class <Comparable>
int AvlTree<Comparable>::height( AvlNode<Comparable>
  *t) const
{
  return t == NULL ? -1 : t->height;
}
```

Insertion


```
/* Internal method to insert into a subtree.
* x is the item to insert.
* t is the node that roots the tree.
*/
template <class Comparable>
void AvlTree<Comparable>::insert( const Comparable & x, AvlNode<Comparable> * & t ) comparable
  if( t == NULL ) // find the position to insert
    t = new AvlNode<Comparable>( x, NULL, NULL );
  else if (x < t->element) // the inserted value is less then the current node,
    insert( x, t->left );// then insert it as the left child of the node
    if( height( t->left ) - height( t->right ) == 2 )//if insertion leads unbalance
      if (x < t-> left-> element)// case 2, insert as left child of the left subtre
           rotateWithLeftChild( t ); //do right rotation
      else
          doubleWithLeftChild(t);//case4 insert as the right child of the left subt
  else if( t->element < x ) // the inserted value is less then the current node
      insert(x, t->right); //then insert it as the right child of the node
      if(height(t->right) - height(t->left) == 2) //if insertion causes unbalar
          if( t->right->element < x ) // case 1, insert as r child of the r subtree
            rotateWithRightChild( t );
         else
            doubleWithRightChild(t); }//case 3, insert as the 1 child of the r subt
   else
       ; // Duplicate; do nothing
   t->height = max( height( t->left ), height( t->right ) ) + 1;
```

Single Left Rotation


```
/**
 * Rotate binary tree node with left child.
 * For AVL trees, this is a single rotation for case 1.
 * Update heights, then set new root.
 */
template <class Comparable>
void AvlTree<Comparable>::rotateWithLeft
                                            \BF= -2
 AvlNode<Comparable> * & k2 ) const
   AvlNode<Comparable> *k1 = k2->right;
                                                      BF = 0
   k2-right = k1-left;
   k1->left = k2:
   k2->height = max( height( k2->left ), height( k2->right ))+1;
   k1->height = max(height(k1->left), k2->height)) + 1;
   k2 = k1:
```

Single right rotation


```
/**
 * Rotate binary tree node with left child.
 * For AVL trees, this is a single rotation for case 1.
 * Update heights, then set new root.
 */
template <class Comparable>
void AvlTree<Comparable>::rotateWithLeftChild(
 AvlNode<Comparable> * & k2 ) const
                                       3、2
   AvlNode<Comparable> *k1 = k2->left;
   k2->left = k1->right;
   k1->right = k2;
   k2->height = max( height( k2->left ), height( k2->right ))+1;
   k1->height = max(height(k1->left), k2->height)) + 1;
   k2 = k1:
```

Double Rotation


```
/**
 * Double rotate binary tree node: first left child.
 * with its right child; then node k3 with new left child.
 * For AVL trees, this is a double rotation for case 2.
 * Update heights, then set new root.
 */
template <class Comparable>
void AvlTree<Comparable>::doubleWithLeftChild(
  AvlNode<Comparable> * & k3 ) const
   rotateWithRightChild( k3->left );
   rotateWithLeftChild( k3 );
```

Balance Factor

Balance Factor = The height of the left tree - The height of the right tree.

And then, The unbalanced state of the tree could be represented as the following picture.

- 1. BF > 1,The value of the new node is smaller than the value of the left node.
- 2. BF > 1, The value of the new node is larger than the value of the left node.
- 3. BF < -1, The value of the new node is smaller than the value of the right node.
- 4. BF < -1, The value of the new node is larger than the value of the right node.

In each state of the tree, We have to conduct the rotation like this:

- 1. Right rotation (pivot is the B)
- 2. Left rotation (pivot is the D) and Right rotation.(pivot is the B)
- 3. Right rotation (pivot is the D) and Left rotation.(pivot is the B)
- 4. Left rotation (pivot is the B)

AVL Tree Deletion

> Similar but more complex than insertion

> Rotations and double rotations needed to rebalance

➤ Imbalance may propagate upward so that many rotations may be needed.

Deletion Example 1

Cont'd

For deletion, after rotation, we need to continue tracing upward to see if AVL-tree property is violated at other node.

Pros and Cons of AVL Trees

Arguments for AVL trees:

- 1. Search is O(log N) since AVL trees are always balanced.
- 2. Insertion and deletions are also O(logn)
- 3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:

- 1. Difficult to program & debug; more space for balance factor.
- 2. Asymptotically faster but rebalancing costs time.
- 3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
- 4. May be OK to have O(N) for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

exercise

Note: Balance factor=h(right subtree)-h(left subtree)

insert 1,30, 32, 35

Balance not ok

(Balance factor of -2 is not allowed)

Balance not ok

Homework

- > Please refer to Icourse, Huawei Cloud.
- > Due date for quiz: 23:30 2022/5/5
- **➤** Due date for homework: 23:30 2022/5/8
- > Due data for online lab assignment: 2022/5/8 23: 30
- > Due data for offline lab assignment: 2022/5/8 18:00