Notes on Computability Theory Edward Kim

Contents

1	Undecidibility	2
	1.1 Halting Problem	4
	1.2 Undecidibility of First-Order Logic	4
	1.3 Undecidibility of Arithmetic	
2	Peano Arithmetic and its Models	
	2.1 Encoding Proofs into PA	
3	Gödel's Incompleteness Theorems	
	Gödel's Incompleteness Theorems 3.1 Gödel's First Incompleteness Theorem	
	3.2 Rosser's Trick and Self-Referential Statements	
4	Some Recursion Theory	
5	Arithmetic Hierarchy	9
	5.1 Definability of sets in \mathbb{N}	,
	5.2 Turing Reducibility and Degrees	10

1 Undecidibility

1.1 Halting Problem

Given any register program P consisting of a finite alphabet (\mathbb{A}), we can assign a code to represent the program through a Gödel numbering scheme. Let ξ_P be the Gödel number of P. Since we have a finite alphabet and every program can be represented as a finite string of symbols, the number of possible programs must be countable. Thus, the set $\Pi = \{\xi_P | P \text{ is a valid program over } \mathbb{A}\}$ is a countable set. Checking the syntax of programs is computable through a set of rules governing said syntax. Thus, it must be said that Π is a computable set. We now arrive at on of the cornerstone theorems in Computability Theory:

Theorem 1.1. (Halting Problem)

The set $\Pi'_{halt} = \{\xi_P | P \text{ is a valid program over } \mathbb{A} \text{ and } \xi_P \to halt\}$ is not computable.

Proof. Suppose that there existed a program P_0 which decided this set. Then for all P

$$P_0: \xi_P \to \square \text{ if } P: \xi_P \to halt$$

$$P_0: \xi_P \to \eta \text{ for some } \eta \neq \square \text{ if } P: \xi_P \to \infty$$

Create any program P_1 that does the direct opposite of P_0 :

$$P_0: \xi_P \to \infty \text{ if } P: \xi_P \to halt$$

 $P_0: \xi_P \to halt \text{ if } P: \xi_P \to \infty$

Now suppose we plugged in P_1 into itself, then $P_1:\xi_P\to\infty$ iff $P_1:\xi_P\to halt$. This is a contradiction.

Lemma 1.1. The set $\Pi_{halt} = \{\xi_P | P \text{ is a valid program over } \mathbb{A} \text{ and } \square \to halt\}$ is not computable.

Lemma 1.2. Π_{halt} is recursively enumerable.

Proof. Enumerate through n=1,2,3... and generate all programs whose Gödel numbers are $\leq n$. Run each one for at most n steps with input \square . If a program in the list halts within that time, enumerate the program.

We can think of the halting set through a different lens. Let φ_e denote the e^{th} program. We can also enumerate the domains of $\varphi_0, \varphi_1, \ldots$ through a similar tactic as the above lemma. Let W_0, W_1, \ldots denote the domains of these functions. Since not all of these functions are total, we see that $W_e \subseteq \mathbb{N}$. The halting set can be described as $K = \{x | x \in W_x\}$. This is akin to taking all programs which halt on their own Gödel number.

1.2 Undecidibility of First-Order Logic

Theorem 1.2. (Church's Theorem) Let φ be a first-order sentence. Then the set $\{\varphi \mid \vdash \varphi\}$ of valid first-order sentences is not computable.

1.3 Undecidibility of Arithmetic

- 2 Peano Arithmetic and its Models
- 2.1 Encoding Proofs into PA

3 Gödel's Incompleteness Theorems

Theorem 3.1. (Fixed Point Theorem) Suppose Φ is a set of sentences such that $PA \subseteq \Phi$. For every formula $\psi(x)$ with one free variable, there is a sentence φ such that

$$\Phi \vdash \varphi \leftrightarrow \psi(n^{\varphi})$$

Intuitively, the theorem states that there exists a formula in arithmetic φ such that φ proves that it has property ψ .

Proof. Let us define a computable function $F: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by the following:

$$F(n,m) = \begin{cases} n^{\psi(\bar{m})} & \text{if } n \text{ is the code for } \psi \\ 0 & \text{otherwise} \end{cases}$$

We see that this function gives us the code for the formula where \bar{m} replaces the free variable in ψ . Since this is a computable function, it is representable in PA. We were that PA allows us to encode finite sequences with natural numbers by the β -function encoding scheme.

Now suppose that F is represented by the formula $\alpha(x,y,z)$ where $\alpha(x,y,z)$ says that F(x,y)=z. Define

$$\beta(x) := \forall z (\alpha(x, x, z) \to \psi(z))$$
$$\varphi := \forall z (\alpha(\bar{n^{\beta}}, \bar{n^{\beta}}, z) \to \psi(z))$$

 φ states that ψ holds at $\beta(\bar{n^{\beta}})$. Now let us check if $\varphi \to \psi(\bar{n^{\beta}})$.

Since $PA \vdash \alpha(\bar{n^{\beta}}, \bar{n^{\beta}}, \bar{n^{\varphi}}), \ \Phi \vdash \alpha(\bar{n^{\beta}}, \bar{n^{\beta}}, z) \to z = \bar{n^{\varphi}} \text{ since } n^{\beta(\bar{n^{\beta}})} = \bar{n^{\varphi}}.$

Thus, $\Phi \vdash \forall z (\alpha(\bar{n^{\beta}}, \bar{n^{\beta}}, z) \to \psi(z)) \to \psi(\bar{n^{\varphi}})$ which is exactly $\Phi \vdash \varphi \to \psi(\bar{n^{\beta}})$.

Conversely, since F is representable in Φ , $\Phi \vdash \exists^{=1}\alpha(\bar{n^{\beta}}, \bar{n^{\beta}}, z)$. The previous tells us that $\Phi \vdash \alpha(\bar{n^{\beta}}, \bar{n^{\beta}}, z) \to z = \bar{n^{\gamma}}$.

Since $\psi(\bar{n^{\varphi}})$ is the hypothesis, we get that $\Phi \vdash \psi(\bar{n^{\varphi}}) \to \forall z(\alpha(\bar{n^{\beta}}, \bar{n^{\beta}}, z) \to \psi(z))$ which is exactly $\Phi \vdash \psi(\bar{n^{\beta}}) \to \varphi$.

We can use the Fixed Point Theorem to show Tarski's Theorem.

Theorem 3.2. (Tarski's Theorem) $Th(\mathbb{N})$ is not definable within $Th(\mathbb{N})$.

Proof. Suppose there existed a formula in arithmetic θ such that $\mathbb{N} \models \theta(\bar{n^{\varphi}})$ iff $\mathbb{N} \models \varphi$. Consider the sentence for $\neg \theta(x)$. By Fixed Point Theorem, there exists a formula φ such that

$$PA \vdash \varphi \leftrightarrow \neg \theta(\bar{n^{\varphi}})$$

But then, by definition,

$$\mathbb{N} \vDash \varphi \leftrightarrow \neg \theta(\bar{n^{\varphi}})$$

Thus, $\mathbb{N} \models \varphi$ iff $\mathbb{N} \models \theta(\bar{n^{\varphi}})$ iff $\mathbb{N} \models \neg \varphi$ which contradicts the consistency of $Th(\mathbb{N})$. Thus, $\{\bar{n^{\varphi}} : \mathbb{N} \models \varphi\}$ is not definable.

3.1 Gödel's First Incompleteness Theorem

Suppose that we had a computable theory $PA \subseteq \Phi$. Since this theory extends PA, we can encode finite sequences as numbers within \mathbb{N} . This even includes finite proofs which are just sequences of formula which themselves can be encoded as sequences. Let $(\theta_1, \theta_2, ..., \theta_k)$ be a sequence of proofs. Then to tell whether $(\theta_1, \theta_2, ..., \theta_k)$ is a proof from Φ is computable (check if each steps comes from the previous ones or from Φ inductively). Thus, to tell whether a number is the code of a proof from Φ is computable. We illustrate this by the following function:

$$P(n,m) \leftrightarrow n$$
 is the code of a proof of φ and $m = n^{\varphi}$

By the observations above P is a computable function and thus representable in PA. Let $\xi(n, m)$ be the formula representing P in Φ

Observe that the set $n^{\varphi}: \Phi \vdash \varphi$ is exactly described by a Σ_1^0 statement of the form:

$$\exists x \xi(x, n^{\varphi})$$

Now let us use Fixed Point Theorem to create a formula which states that the property: I am not provable.

$$\Phi \vdash \varphi \leftrightarrow \neg \exists x \xi(x, n^{\varphi})$$

Theorem 3.3. (Gödel's First Incompleteness Theorem) Suppose $PA \subseteq \Phi$ is a computable and consistent theory. Then there exists a sentence in arithmetic φ such that $\Phi \not\vdash \varphi$ and $\Phi \not\vdash \neg \varphi$. Thus, PA is incomplete.

Proof. Suppose that $\Phi \vdash \varphi$. Then $PA \vdash \exists x \xi(x, \bar{n^{\varphi}})$. So $\Phi \vdash \neg \varphi$. This contradicts the consistency of Φ . A similar argument can be made for $\Phi \vdash \neg \varphi$.

Hence, if Φ is consistent, then $\Phi \not\vdash \varphi$ and so $PA \vdash \neg \exists \xi(x, n^{\overline{\varphi}})$ so the Σ_1^0 sentence holds in \mathbb{N} .

Gödel's Second Incompleteness Theorem is derived by noticing the following claim:

<u>Claim:</u> The theorem "If $PA \subseteq \Phi$ and Φ is consistent, then $\Phi \not\vdash \varphi$ and $\Phi \vdash \varphi \leftrightarrow \bar{n^{\varphi}}$ is not provable in Φ " is provable in PA.

In other words, Gödel's First Incompleteness Theorem can be proved within PA.

Theorem 3.4. (Gödel's Second Incompleteness Theorem) Suppose $PA \subseteq \Phi$, Φ is consistent and computable then $\Phi \not\vdash CON(\Phi)$.

Proof. Suppose that we encode $CON(\Phi)$ be a formula that states that there exists no code for a program which provides a proof that 0 = 1. From the previous result, we see that

$$\Phi \vdash$$
 "If Φ is consistent, then $\Phi \not\vdash \varphi$ "

but this is precisely,

 $\Phi \vdash$ "If Φ is consistent, then φ "

from our Gödel sentence. Hence, if Φ is consistent, then (since $\Phi \not\vdash \varphi$),

 $\Phi \not\vdash$ " Φ is consistent"

In particular, $PA \not\vdash CON(PA)$. However, then $PA \cup \neg CON(PA)$ is a consistent theory. Since $PA \cup \neg CON(PA)$ is consistent, by Gödel's Completeness Theorem, there exists a model \mathcal{M} such that $\mathcal{M} \models PA \cup \neg CON(PA)$. It follows that \mathcal{M} is also a non-standard model of PA since $\mathcal{M} \models PA$. In addition, there must be a proof from PA that leads to the conclusion of PA's inconsistency. If PA were consistent, then every number $n \in \mathbb{N}$ would encode a valid well-founded finite proof in PA. Since PA is consistent, no proofs in the initial segment of \mathcal{M} would code the proof of a statement ψ and its negation $\neg \psi$. Thus, it must be said that the proof must exist in the non-standard portion of \mathcal{M} . Thus, a non-standard elements a must encode the proof of $\neg CON(PA)$.

3.2 Rosser's Trick and Self-Referential Statements

Let $PA \subseteq \Phi$ be a computable and consistent theory. Define the Rosser Sentence to be represented by the following computable function:

R(x,y) = "x codes for a proof of y and for any code z < x, z does not encode a proof of $\neg y$ " Let φ be a formula such that, by the Fixed Point Theorem,

$$\Phi \vdash \varphi \leftrightarrow \neg \exists x R(x, \bar{n^{\varphi}})$$

 φ states that if there exists a Φ -proof of me then there exists an even smaller Φ -proof of my negation.

Theorem 3.5. (Gödel-Rosser Theorem) Let $PA \subseteq \Phi$ be a computable and consistent theory and let φ be defined as above. Then $\Phi \not\vdash \varphi$ and $\Phi \not\vdash \neg \varphi$.

Proof. Suppose that $\Phi \vdash \varphi$. Then let n be the smallest code encoding a proof of φ . Since Φ is consistent, we see that $\Phi \not\vdash \neg \varphi$. However, by PA axioms,

$$PA \vdash \forall z (z < \bar{m} \rightarrow z = \bar{0} \lor z = \bar{1} \lor \dots \lor z = \bar{m} - 1)$$

Thus, through PA, we can verify computably that every code less than n does not match a proof of $\neg \varphi$. Thus, there exist no smaller proofs of $\neg \varphi$. However, this is exactly $\Phi \vdash \neg \varphi$.

Now suppose that $\Phi \vdash \neg \varphi$. Then, by a similar argument, let n be the smallest code representing the proof of $\neg \varphi$. By consistency of Φ , no smaller code z < n can encode a proof for φ . This can be systematically checked through PA. Thus,

$$PA \vdash z$$
 does not code a proof of φ if $z < n$

Suppose that $z \geq n$ then:

$$PA \vdash (\exists n \leq z) \ n \text{ codes a proof of } \neg \varphi$$

Thus,

 $PA \vdash (\forall z)z$ does not code a proof of $\varphi \lor (\exists n \leq z) \ n$ codes a proof of $\neg \varphi$ $PA \vdash (\forall z) \neg (n \text{ codes a proof of } \varphi \land (\exists z < y) \ n \text{ does not code a proof of } \neg \varphi)$

However, this forces PA to prove that:

 $PA \vdash \text{If } x \text{ is a proof of } \varphi \text{ from } \Phi, \text{ then } x \text{ has a smaller proof of } \neg \varphi \text{ from } \Phi$

Therefore, $\Phi \vdash \varphi$. These results both contradict the consistency of Φ .

Theorem 3.6. (Rosser) If $PA \subseteq \Phi$ is a computable and consistent, there are formulas φ_1 and φ_2 such that $\Phi \cup \{\varphi_1\} \not\vdash \varphi_2$ and $\Phi \cup \{\varphi_2\} \not\vdash \varphi_1$.

Proof. Let φ_1 be the formula which states that for any Φ -proof of φ_1 , there is a smaller Φ -proof of $\neg \varphi_1$. Also, let φ_2 be a formula which states that for any $(\Phi \pm \varphi_1)$ -proof of φ_2 , there exists a smaller $(\Phi \pm \varphi_1)$ -proof of $\neg \varphi_2$. We know from Rosser's Trick that $\Phi \not\vdash \varphi_1$ and $\Phi \not\vdash \neg \varphi_1$. For the sake of contradiction, suppose that $\Phi \pm \varphi_1 \vdash \varphi_2$. We deduce that $\Phi \vdash \pm \varphi_1 \rightarrow \varphi_2$. Thus, PA can encode the proof of $\pm \varphi_1 \rightarrow \varphi_2$ through a natural number since there exists a valid finite proof of Φ . Thus,

$$PA \vdash$$
 " There is a proof of $\pm \varphi_1 \rightarrow \varphi_2$ "

PA can computably check through all smaller numbers (proofs).

<u>Case 1:</u> There exists a smaller Φ -proof of $\pm \varphi_1 \rightarrow \neg \varphi_2$.

Then there exists two possibilities:

Possibility 1: Same boolean version of φ_1 appears twice. Then we have $\varphi_1 \to \varphi_2$ and $\varphi_1 \to \neg \varphi_2$. Then $\overline{\Phi} \vdash (\varphi_1 \to \neg \varphi_2) \land (\varphi_1 \to \varphi_2)$. This is a contradiction. thus, $\overline{\Phi} \vdash \neg \varphi_1$. This is impossible by our previous analysis (Rosser's Trick).

Possibility 2: Otherwise: $\varphi_1 \to \varphi_2$ and $\neg \varphi_1 \to \neg \varphi_2$. Thus $\Phi \vdash \varphi_1 \leftrightarrow \varphi_2$. By our Case 1 assumption, $PA \vdash \varphi_2$. Thus, $PA \vdash \varphi_1$. This is again impossible by our previous analysis.

<u>Case 2:</u> There does not exist a smaller proof of $\pm \varphi_1 \rightarrow \varphi_2$.

Then by inspection of the smaller numbers less than our smaller proof, we conclude that

$$PA \vdash$$
 "There is a Φ -proof of $\pm \varphi_1 \rightarrow \varphi_2$ with no smaller proof of $\pm \varphi_1 \rightarrow \neg \varphi_2$ "

However, this is exactly $PA \vdash \neg \varphi_2$. Thus, $\Phi \pm \varphi_1 \vdash \neg \varphi_2$. From our original assumption that $\Phi \pm \varphi_1 \vdash \varphi_2$, we have that $\Phi \pm \varphi_1$ is inconsistent. Thus, $\Phi \vdash \varphi_1$ or $\Phi \vdash \neg \varphi_1$. This contradicts our previous analysis once again.

Theorem 3.7. (Rosser) There exist sentences φ_1 and φ_2 such that

$$PA + CON(PA + \varphi_1) \not\vdash CON(PA + \varphi_2)$$

 $PA + CON(PA + \varphi_2) \not\vdash CON(PA + \varphi_1)$

4 Some Recursion Theory

Theorem 4.1. $(S_n^m$ -Theorem) Given m,n, there is a primitive recursive, one-to-one function $S_n^m(e,x_1,...,x_n)$ such that

$$\varphi_{S_n^m(e,x_1,...,x_n)}(y_1,...,y_m) = \varphi_e(x_1,...,x_n,y_1,...,y_m)$$

The S_n^m -Theorem intuitively states that data can be incorporated into a program. However, data can encode programs themselves, and thus incorporating them into a program could be seen as incorporating subroutines.

Theorem 4.2.

5 Arithmetic Hierarchy

Definition Let φ be a formula in first-order arithmetic. φ is called Δ_0 if it contains only bounded quantifiers. In other words, φ is of the form $\exists (x \leq t)\theta(x,y)$ or $\forall (x \leq t)\theta(x,y)$. These are shorthand for all $\exists x(x \leq t \land \theta(x,y))$ and $\forall x(x \leq t \rightarrow \theta(x,y))$ respectively.

Definition We classify a first-order arithmetic formula ψ as Σ_n^0 if it is of the form $\exists x\theta$ where θ is a Π_{n-1}^0 formula. Likewise, we classify ψ as Π_n^0 if it is of the form $\forall x\theta$ where θ is a Σ_{n-1}^0 formula.

Definition We classify a formula as Δ_n^0 if there exists a Σ_n^0 -formula ψ_1 and a Π_n^0 -formula ψ_2 that are both equivalent to the formula.

Because we can add redundant quantifiers, Σ_n^0 formulas can be classified as Σ_m^0 formulas and Π_n^0 formulas can be classified as Π_m^0 where m > n.

In other words, a Σ_1^0 formula is equivalent to a formula that begins with an existential quantifer and alternates between \exists and \forall n-1 times. Π_1^0 is defined similarly. Also, we notice that a formula ρ is Π_n^0 if $\neg \rho$ is Σ_n^0 .

5.1 Definability of sets in \mathbb{N}

Suppose we had a set X that is defined by some formula in first-order arithmetic φ . Then, by defintion of definability, we would have the following result:

$$a \in X \leftrightarrow \mathbb{N} \vDash \varphi(\bar{a})$$

Let φ be a Δ_0 formula, the subset of natural numbers $\{n : \varphi(n)\}$ is computable. This follows from the defintion of φ being bounded. This allows us to test a finite number of natural numbers to conclude whether the formula holds for any n. Thus, it follows that:

<u>Claim:</u> For any Σ_1^0 formula ψ , the set $\{n:\psi(n)\}$ is recursively enumerable. The converse holds as well.

Proof. Suppose that φ is a Σ_1^0 formula of the form:

$$\varphi := \exists x_1 ... \exists x_k \theta(x_1, ..., x_k)$$

where θ is a Δ_0 formula. To enumerate through all witnesses, enumerate through all tuples $(x_1, ..., x_k)$ and output any that satisfy θ . Conversely, suppose that a set is recursively enumerable. We will prove that this set can be described by a Σ_1^0 -formula. Since the set is r.e, there exists a program which enumerates through all elements of this set. However, we know that the steps of these computations can be captured by PA through the β -function. However, the formula representing the graph of the function is bounded and we can formulate a formula that says that there exists a parameters to the function that encode such a computation of a program. This is precisely a Σ_1^0 -formula.

From the above result, it follows that a Π_1^0 formula defines a co-recursively enumerable set.

5.2 Turing Reducibility and Degrees

Definition A relation or function on \mathbb{N} is computable relative to $X \subseteq \mathbb{N}$ if there exists an algorithm to compute the relation/function in a register machine augmented by the operation which returns membership information about X.

Definition If set Y is computable relative to X, then Y is Turing reducible to X or $Y \leq_T X$.

This is synonymous to an Oracle Turing Machine.

We also see that Turing reducibility gives us a partial order since

$$X \leq_T X$$
$$(X \leq_T Y) \land (Y \leq_T Z) \to X \leq_T Z$$

Definition Two sets X, Y are Turing equivalent if $X \leq_T Y$ and $Y \leq_T X$. This is denoted by $X \equiv_T Y$. The equivalence classes are deemed Turing degrees (or degrees of unsolvability).

<u>Claim:</u> If X is computable from R and R is computable, then X is computable

Proof. If the program X is guarenteed to halt when consulting R and R will always give an answer, then X is guarenteed to be computable.

Definition Let $\mathcal{K}^X = \{x | x \in W_x^X\}$ be the jump of X or X'. This set is equivalent to the halting set of the oracle machine assigned to X. Let $X^{(n)}$ denote the n^{th} jump of X where $X^{(0)} = X$ and $X^{(n+1)} = (X^{(n)})'$

Theorem 5.1. (Post) If A is any r.e set then $A \leq_T K$

Proof. Let prove that there exists a recursive function f such that

$$x \in A \leftrightarrow f(x) \in \mathcal{K} \leftrightarrow f(x) \in \mathcal{W}_{f(x)}$$

By S_m^n theorem, let f be a recursive function such that

$$\mathcal{W}_{f(x)} = \begin{cases} \omega & \text{if } x \in A \\ \emptyset & \text{otherwise} \end{cases}$$

Then we see that:

- $x \in A \to \mathcal{W}_{f(x)} = \omega \to f(x) \in \mathcal{W}_{f(x)} \to \mathcal{W}_{f(x)} \in \mathcal{K}$
- $f(x) \in \mathcal{K} \to f(x) \in \mathcal{W}_{f(x)} \to \mathcal{W}_{f(x)} \neq \emptyset \to x \in A$

Definition A set A is Σ_n^0 -complete if it is Σ_n^0 and for every Σ_n^0 set B, $B \leq_T A$. Π_n^0 -complete sets are defined similarly.

Theorem 5.2. for n > 1 the following are equivalent

- 1. S is Σ_n^0
- 2. S is recursively enumerable relative to some Π_{n-1}^0 set.

3. S is recursively enumerable relative to some Δ_n^0 set.

Proof. $1 \to 2$: This follows from the fact that a Σ_n^0 formula can be written as $\exists x_1 \theta(\bar{y}, x_1)$ where $\theta(x_1, \bar{y})$ is a Π_{n-1}^0 formula. Thus, we can test for each potential witness (\bar{y}, a) , if $\theta(\bar{y}, a)$ is satisfiable by asking the if $\bar{y} \in R$ where R is the set defined by θ .

- $2 \to 3$: This follows since any Π^0_{n-1} set is a Δ^0_n (add redundent quantifiers) and any tuple of relations each Π^0_{n-1} or Σ^0_{n-1} can be replaced by a single Δ^0_n set(?).
- $3 \to 1$: Suppose that S is computably enumerable relative to A where A is a Δ_n^0 set. Let $\Phi(x,y)$ be a partial function using an oracle machine attached to A. We can computably enumerate S by testing values on Φ . In other words, $S = W_e^A$. If we can enumerate $a \in \mathbb{N}$, then there exists a halting computation c (according to the oracle machine) such that at certain points $q_1, ..., q_k$ when queried to A give values $v_1, ..., v_k$ when given then input a. We see that the statement $q_i \in A$ can be described by a Σ_n^0 formula. Also, $q_i \notin A \leftrightarrow q_i \in \neg A$ is also a Σ_n^0 statement. \square

Theorem 5.3. (Post's Theorem)

- i. $B \in \Sigma_{n+1}^0$ if and only if it is recursively enumerable in some Σ_n^0 or some Π_n^0 ;
- ii. $\emptyset^{(n)}$ is a complete Σ_n^0 set;
- iii. $B \in \Sigma_{n+1}^0 \leftrightarrow B$ is recursively enumerable in $\emptyset^{(n)}$;
- iv. $B \in \Delta_{n+1}^0 \leftrightarrow B \leq_T \emptyset^{(n)}$.

Proof. i. The proof is similar to one given in Theorem 5.2

- ii. We proceed by induction. We know that by 5.1 that the case for n=1 is true. Assume that the assumption holds for some n. Now suppose we have a Σ_{n+1}^0 set P. We know that we can transform this set can be expressed by $P(\vec{x}) = \exists y R(\vec{x}, y)$ where $R \in \Pi_n^0$. Thus, R is recursively enumerable relative to a Π_n^0 statement. We can easy use $\neg R$ as an oracle to achieve the same results (simply ask if the elements you seek is not in $\neg R$). By that token, R is recursively enumerable to a Σ_n^0 statement B. However, by our induction hypothesis, we know that $B \leq_T \emptyset^{(n)}$. Thus, P is recursively enumerable to $\emptyset^{(n)}$. By a relativized verison of 5.1, we see that $P \leq_T \emptyset^{(n+1)}$. Now $\emptyset^{(n+1)}$ is also a Σ_{n+1}^0 set as well since $\emptyset^{(n+1)}$ is recursively enumerable to $\emptyset^{(n)}$ (by Turing jump). However, by induction, $\emptyset^{(n)}$ is a Σ_n^0 set. By part (i), it must be said that $\emptyset^{(n+1)}$ is a Σ_{n+1}^0 set.
- iii. If $B \in \Sigma_{n+1}^0$ then B is recursively enumerable in some Π_n^0 set. However, if we take the negation of this set, we can compute B by using a Σ_n^0 set which, by part (ii), is computable by $\emptyset^{(n)}$.
- iv. If $B \in \Delta^0_{n+1}$ then $B, \bar{B} \in \Sigma^0_{n+1}$. Thus, B, \bar{B} is recursively enumerable $\emptyset^{(n)}$ and so $B \leq_T \emptyset^{(n)}$.

Theorem 5.4. If A is recursively approximatable iff Δ_2^0 iff $R \leq_T \mathcal{K}$