INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ECN 104 Digital Logic Design

Spring 2023

Tanmoy Pramanik

http://ece.iitr.ac.in/tanmoy_pramanik

Acknowledgment: Content mostly taken from many textbooks

Need for error detection & correction

- Physical world is non-ideal; there are always chances of error that can flip data bits
 - During storage in memory, some bit may flip due to noise
 - During read/write there may be errors bit may be written incorrectly or read incorrectly
 - Error may happen due to the transmission/reception of bits across a network
- Without a check for the correctness of data received for processing, all systems will become unreliable.
- However, any error correction or detection will incur additional overhead, in systems with a high degree of reliability, error correction/detection may be avoided.
- Also, if an application can be tolerant to a small number of errors, then such techniques may be avoided.

Simplest error detection scheme – Parity b

Generate and store the parity bit along with data

Table 3.3
Even-Parity-Generator Truth Table

Three-Bit Message			Parity Bit		
x	y	z	P		
0	0	0	0		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	1		
1	0	1	0		
1	1	0	0		
1	1	1	1		

• Fails for more than 1-bit flip

• There is no scope for correction

Generator

(a) 3-bit even parity generator

Checker (C=1 if there is an error)

(b) 4-bit even parity checker

Hamming Code

• More complex error correction techniques create multiple parity check bits that are stored along with the data.

• Each check bit is for a group of data bits. From such check bits, errors can be detected and corrected to a limited extent.

• Most common technique is known as "Hamming Code" named after R.W. Hamming

Hamming Code - example

- Add k parity bit to the n bit data word
- Store (n + k) bits instead of n bits, bit positions are numbered in sequence from 1 to (n + k)
- Positions numbered as power of 2 are reserved for parity bits.

Example: 8-bit data (or code) word, 11000100, add 4 parity bits as follows

Bit position: 1 2 3 4 5 6 7 8 9 10 11 12
$$P_1$$
 P_2 1 P_4 1 0 0 P_8 0 1 0 0

Parity bits are P1, P2, P4 & P8 in positions (1,2,4,8) respectively.

Hamming Code – generate the check bits

Example: 8-bit data word, 11000100, add 4 parity bits as follows

Bit position: 1 2 3 4 5 6 7 8 9 10 11 12 P_1 P_2 1 P_4 1 0 0 P_8 0 1 0 0

 $P_1 = XOR \text{ of bits } (3, 5, 7, 9, 11) = 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 = 0$

 $P_2 = XOR \text{ of bits } (3, 5, 7, 10, 11) = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0 \longrightarrow 3,6,7,10,11$

 $P_4 = XOR \text{ of bits } (5, 6, 7, 12) = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

 $P_8 = XOR \text{ of bits } (9, 10, 11, 12) = 0 \oplus 1 \oplus 0 \oplus 0 = 1$

So the stored data in memory would be:

0 0 1 1 1 0 0 1 0 0 Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

Hamming Code – verify the data

Example: 8-bit data word, 11000100, after storing becomes,

When the data is read back from memory, following checks are done:

$$C_1 = \text{XOR of bits } (1, 3, 5, 7, 9, 11)$$

 $C_2 = \text{XOR of bits } (2, 3, 6, 7, 10, 11)$
 $C_4 = \text{XOR of bits } (4, 5, 6, 7, 12)$
 $C_8 = \text{XOR of bits } (8, 9, 10, 11, 12)$

Make $C = C_8C_4C_2C_1$, the any non-zero C will indicate error and the error-bit position is given by the number C.

Hamming Code – correcting errors

Bit position:	1	2	3	4	5	6	7	8	9	10	11	12	
	0	0	1	1	1	0	0	1	0	1	0	0	No error
	1	0	1	1	1	0	0	1	0	1	0	0	Error in bit 1
	0	0	1	1	0	0	0	1	0	1	0	0	Error in bit 5

 $C_1 = XOR \text{ of bits } (1, 3, 5, 7, 9, 11)$

 $C_2 = XOR \text{ of bits } (2, 3, 6, 7, 10, 11)$

 $C_4 = XOR \text{ of bits } (4, 5, 6, 7, 12)$

 $C_8 = XOR \text{ of bits } (8, 9, 10, 11, 12)$

	C_8	C_4	C_2	C_1
For no error:	0	0	0	0
With error in bit 1:	0	0	0	1
With error in bit 5:	0	1	0	1

Deciding the number of check bits

- For k check bits, the number C will range from 0 to $2^k 1$.
- Out of a total 2^k values, C = 0 is usually reserved to indicate no error.
- Remaining $2^k 1$ values should be able to uniquely indicate bit positions within a (n+k) bit data word.
- Choose k such that, $2^k 1 \ge n + k \Rightarrow 2^k 1 k \ge n$

Table 7.2 *Range of Data Bits for k Check Bits*

Number of Check Bits, k	Range of Data Bits, n
3	2–4
4	5–11
5	12–26
6	27–57
7	58–120

• The grouping is decided by which binary bits contribute to 1 at a particular position

Single Error Correction Double Error Detection (SECDED)

- Add a parity bit on top of the 12-bit code: $001110010100P_{13}$
- Once the code is fetched, check C and the parity P over all 13 bits.

```
If C = 0 and P = 0, no error occurred.
```

If $C \neq 0$ and P = 1, a single error occurred that can be corrected.

If $C \neq 0$ and P = 0, a double error occurred that is detected, but that cannot be corrected.

If C = 0 and P = 1, an error occurred in the P_{13} bit.

(Note that C is the 4-bit number as before and P is just 1-bit)

There are similar schemes DECTED, TECQED etc.

Hamming Distance

- The minimum number of bits changed between two code words in a set is defined as the Hamming distance of that set
- Let C_i and C_j be any two code words in a particular encoding scheme. Hamming distance d_{ij} is the number of bits changed from C_i to C_j .

$$C_i = 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 C_i = 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1$$
 $\Rightarrow d_{ij} = 3$

• *Hamming distance* for the whole encoding scheme is gives as:

$$d = \min(d_{ij})$$
 for all possible (i, j) , but with $i \neq j$

Hamming Distance for ECC

- Hamming noted the following observations from the analysis of code distances,
 - A minimum distance of at least two or higher is needed to detect single errors.
 - Since the number of errors $E \ll (d_{min-1})/2$, a minimum distance of three is needed for single error correction.
 - Greater distances will provide detection and/or correction of more number of errors.
- Verify with our simple parity-bit-based error detection

Simple parity bit scheme

If D is the minimum Hamming distance between code words, we can detect up to (D-1)-bit errors

http://web.mit.edu/6.02/www/f2006/handouts/bits_ecc.pdf

Hamming Code Scheme

If D is the minimum Hamming distance between code words, we can correct up to

$$\left|\frac{D-1}{2}\right|$$
 - bit errors

http://web.mit.edu/6.02/www/f2006/handouts/bits_ecc.pdf