Name BProteo_Abaumannii_WP_000042456.1	Species Acinetobacter baumannii	TaxID Lineage 470 Bacteria>Proteobacteria	DomArch.Pfa DciA	nm DomArch.MobiDBLite NA	DUF721 range Length (aa)	DciA group Gram stain Group 3 N-term -
BSpiroc_Linterrogans_WP_000650726.1 BProteo_Nmeningitidis_WP_002257648.1	Leptospira interrogans Neisseria meningitidis	171 Bacteria>Spirochaetes 487 Bacteria>Proteobacteria	DciA DciA	NA NA	154 18-103 140 14-79	Group 3 N-term -
BProteo_Babortus_WP_002963653.1 BProteo_Paeruginosa_WP_003120896.1 BProteo_Rgroup_WP_003509079.1	Pseudomonas aeruginosa Rhizobium/Agrobacterium group	234 Bacteria>Proteobacteria 286 Bacteria>Proteobacteria 227290 Bacteria>Proteobacteria	DciA DciA	NA NA	175 12-110 131 5-74 173 15-114	Group 3 N-term - Group 3 N-term - Group 3 N-term -
BProteo_Ngonorrhoeae_WP_003688269.1 BActino_Scoelicolor_WP_003975057.1	Neisseria gonorrhoeae Streptomyces coelicolor	485 Bacteria>Proteobacteria 1883 Bacteria>Actinobacteria	DciA DciA	NA consensus disorder prediction+consensus disorder prediction+consensus disorder prediction	140 14-79 190 73-161	Group 3 N-term - Group 4 Center +
BProteo_Pmirabilis_WP_004244106.1 BProteo_Rprowazekii_WP_004596839.1 BProteo_Vparahaemolyticus_WP_005480837.1	Proteus mirabilis Rickettsia prowazekii Vibrio parahaemolyticus	583 Bacteria>Proteobacteria 782 Bacteria>Proteobacteria 670 Bacteria>Proteobacteria	DciA DciA	NA NA consensus disorder prediction	172 20-98 108 12-97 151 11-85	Group 3 N-term - Group 1 Whole - Group 3 N-term -
BProteo_Hinfluenzae_WP_005693258.1 BFusoba_Fnecrophorum_WP_005956359.1 BChlamy_Pacanthamoebae_WP_006340294.1	Haemophilus influenzae Fusobacterium necrophorum Parachlamydia acanthamoebae	727 Bacteria>Proteobacteria 859 Bacteria>Fusobacteria 83552 Bacteria>Chlamydiae	DciA DciA DciA	NA NA	104 14-93 99 13-85 112 22-109	Group 1 Whole - Group 1 Whole - Group 2 C-term variable (n/a)
BActino_Cefficiens_WP_006768689.1 BActino_Blongum_WP_008783054.1	Corynebacterium efficiens Bifidobacterium longum	152794 Bacteria>Actinobacteria 216816 Bacteria>Actinobacteria	DciA DciA	consensus disorder prediction+consensus disorder prediction NA	193 81-168 156 55-141	Group 2 C-term + Group 2 C-term +
BActino_Rjostii_WP_009476748.1 BChlamy_Ctrachomatis_WP_009871537.1	Rhodococcus jostii Chlamydia trachomatis	1827 Bacteria>Actinobacteria 813 Bacteria>Chlamydiae	DciA DciA	consensus disorder prediction+consensus disorder prediction+consensus disorder prediction NA	188 77-163 116 41-113	Group 2 C-term + Group 2 C-term variable (n/a)
BSpiroc_Tpallidum_WP_010881454.1 BProteo_Lpneumophila_WP_010948302.1 BProteo_Cburnetii_WP_010957403.1	Treponema pallidum Legionella pneumophila Coxiella burnetii	160 Bacteria>Spirochaetes446 Bacteria>Proteobacteria777 Bacteria>Proteobacteria	DciA DciA	consensus disorder prediction+consensus disorder prediction NA NA	145 29-90 140 3-89 114 36-101	Group 3 N-term - Group 3 N-term - Group 2 C-term -
BActino_Savermiltilis_WP_010985745.1 BCyanob_Gviolaceus_WP_011141578.1	Streptomyces avermiltilis Gloeobacter violaceus	1883 Bacteria>Actinobacteria 33072 Bacteria>Cyanobacteria	DciA DciA	consensus disorder prediction+consensus disorder prediction+consensus disorder prediction NA	181 67-155 180 5-93	Group 2 C-term + Group 3 N-term -
BProteo_Bbacteriovorus_WP_011165754.1 BProteo_Bhenselae_WP_011180388.1 BActino_Msmegmatis_WP_011726604.1	Bdellovibrio bacteriovorus Bartonella henselae Mycolicibacterium smegmatis	959 Bacteria>Proteobacteria 38323 Bacteria>Proteobacteria 1772 Bacteria>Actinobacteria	DciA DciA	NA NA consensus disorder prediction+consensus disorder prediction	131 15-102 166 12-110 194 83-169	Group 3 N-term - Group 3 N-term - Group 2 C-term Positive (acid fast
BActino_Mulcerans_WP_011738409.1 BThermo_Tpetrophila_WP_011942798.1	Mycobacterium ulcerans Thermotoga petrophila	1809 Bacteria>Actinobacteria 93929 Bacteria>Thermotogae	DciA DciA	consensus disorder prediction+consensus disorder prediction NA	187 75-162 101 4-90	Group 2 C-term Positive (acid fast
BProteo_Asuccinogenes_WP_012073745.1 BProteo_Rrickettsii_WP_012151389.1 BElusim_Eminutum_WP_012414187.1	Actinobacillus succinogenes Rickettsia rickettsii Elusimicrobium minutum	67854 Bacteria>Proteobacteria 783 Bacteria>Proteobacteria 423605 Bacteria>Elusimicrobia	DciA DciA	NA NA NA	110 13-97 107 12-98 98 34-97	Group 1 Whole - Group 1 Whole - Group 2 C-term -
BChloro_Cthalassium_WP_012499396.1 BSpiroc_Bcrocidurae_WP_012538193.1	Chloroherpeton thalassium Borrelia crocidurae	100716 Bacteria>Chlorobi 29520 Bacteria>Spirochaetes	DciA DciA	NA NA	97 10-96 99 9-96	Group 1 Whole -
BDictyo_Dthermophilum_WP_012547832.1 BGemmat_Gaurantiaca_WP_012682303.1 BDeferr_Dacetiphilus_WP_013009384.1	Dictyoglomus thermophilum Gemmatimonas aurantiaca Denitrovibrio acetiphilus	14 Bacteria>Dictyoglomi 173480 Bacteria>Gemmatimonadetes 118000 Bacteria>Deferribacteres	DciA s DciA DciA	NA NA NA	160 21-91 103 12-98 147 21-84	Group 3 N-term - Group 1 Whole - Group 3 N-term -
BProteo_Nsalsuginis_WP_013553388.1 BProteo_Mmethanica_WP_013816973.1	Nitratifractor salsuginis Methylomonas methanica	269261 Bacteria>Proteobacteria 421 Bacteria>Proteobacteria	DciA DciA	NA NA	153 6-75 154 23-90	Group 3 N-term -
BProteo_Tcyclica_WP_013834763.1 BThermo_Tindicus_WP_013908751.1 BProteo_Maustralicum_WP_015318768.1	Thiomicrospira cyclica Thermodesulfatator indicus Mesorhizobium australicum	147268 Bacteria>Proteobacteria 171695 Bacteria>Thermodesulfobact 68287 Bacteria>Proteobacteria	DciA teria DciA DciA	NA NA NA	143 15-79 159 4-90 166 12-110	Group 3 N-term - Group 3 N-term - Group 3 N-term -
BSynerg_Ffastidiosum_WP_015556932.1 BProteo_Vcholerae_WP_032481231.1 BActino_Catynicum_WP_038603888.1	Fretibacterium fastidiosum Vibrio cholerae Corvnebacterium atvoicum	651822 Bacteria>Synergistetes 666 Bacteria>Proteobacteria	DciA DciA	consensus disorder prediction+consensus disorder prediction NA consensus disorder prediction	176 30-113 157 12-90 206 94-181	Group 4 Center - Group 3 N-term -
BActino_Catypicum_WP_038603888.1 BProteo_Bpseudomallei_WP_038794713.1 BAcidob_Pmethylaliphatogenes_WP_041976151	Burkholderia pseudomallei Pyrinomonas methylaliphatogenes	191610 Bacteria>Actinobacteria 28450 Bacteria>Proteobacteria 454194 Bacteria>Acidobacteria	DciA DciA DciA	NA NA	206 94-181 159 22-105 158 8-90	Group 2 C-term + Group 3 N-term - Group 3 N-term -
BProteo_Kmichiganensis_WP_045781360.1 BProteo_Smarcescens_WP_049188024.1	methylaliphatogenes Klebsiella michiganensis Serratia marcescens	1134687 Bacteria>Proteobacteria 615 Bacteria>Proteobacteria	DciA DciA	NA NA	171 19-97 171 26-98	Group 3 N-term - Group 4 Center -
BProteo_Pluminescens_WP_049582384.1 BProteo_Movis_WP_063513593.1 BActino_Calutamicum_WP_074493017.1	Photorhabdus luminescens Moraxella ovis Corvnebacterium glutamicum	29488 Bacteria>Proteobacteria 29433 Bacteria>Proteobacteria 1718 Bacteria>Actinobacteria	DciA DciA	NA NA consensus disorder prediction+consensus disorder prediction	172 27-98 172 53-108 178 66-153	Group 4 Center - Group 4 Center - Group 2 C-term +
BActino_Cglutamicum_WP_074493017.1 BActino_Mtuberculosis_WP_077585554.1 BVerruc_Pdebontii_WP_078816175.1	Mycobacterium tuberculosis Prosthecobacter debontii	1718 Bacteria>Actinobacteria 1773 Bacteria>Actinobacteria 48467 Bacteria>Verrucomicrobia	DciA DciA	consensus disorder prediction+consensus disorder prediction consensus disorder prediction+consensus disorder prediction+consensus disorder prediction NA	178 66-153 187 59-146 141 51-138	Group 2 C-term + Group 2 C-term Positive (acid fast Group 2 C-term -
BProteo_Pmultocida_WP_083003370.1 BFibrob_Fintestinalis_WP_083545550.1 BPlanct_Ppiriforme_WP_092049429.1	Pasteurella multocida Fibrobacter intestinalis Planctomicrobium piriforme	747 Bacteria>Proteobacteria 28122 Bacteria>Fibrobacteres 1576369 Bacteria>Planctomycetes	DciA DciA	NA NA	101 12-93 113 29-112 116 19-107	Group 1 Whole - Group 2 C-term - Group 1 Whole Negative (but uni
BPlanct_Ppiriforme_WP_092049429.1 BProteo_Cmirabilis_WP_099620986.1 BAcidob_Belongata_WP_103932439.1	Caulobacter mirabilis Bryocella elongata	1576369 Bacteria>Planctomycetes 69666 Bacteria>Proteobacteria 863522 Bacteria>Acidobacteria	DciA DciA DciA	NA NA NA	116 19-107 182 37-122 104 20-88	Group 1 Whole Negative (but uni Group 4 Center - Group 3 N-term -
BActino_Bindicum_WP_110444323.1 BBacter_Pdenticola_WP_118866996.1 BBacter_Ddubosii_WP_123613775.1	Bifidobacterium indicum Prevotella denticola Duncaniella dubosii	1691 Bacteria>Actinobacteria 28129 Bacteria>Bacteroidetes 2518971 Bacteria>Bacteroidetes	DciA DciA DciA	NA NA NA	165 55-140 96 8-95 96 12-95	Group 4 Center + Group 1 Whole - Group 1 Whole -
BDeferr_Gthiophilus_WP_128465527.1 BProteo_Mxanthus_WP_140863302.1	Geovibrio thiophilus Myxococcus xanthus	139438 Bacteria>Deferribacteres 34 Bacteria>Proteobacteria	DciA DciA	NA NA	146 5-84 101 8-94	Group 3 N-term - Group 1 Whole -
BProteo_Salpina_WP_183109841.1 BNitros_Nmoscoviensis_WP_187299312.1	Sphingomonas alpina Nitrospira moscoviensis	653931 Bacteria>Proteobacteria 42253 Bacteria>Nitrospirae	DciA DciA	consensus disorder prediction+consensus disorder prediction consensus disorder prediction	184 26-11 155 14-99	Group 4 Center - Group 3 N-term -