CSE160: Computer Networks

Lecture #12 – IP Addressing

2020-10-06

Professor Alberto E. Cerpa

Last Time

- Focus
 - How do we make routing scale?

- Inter-domain routing
 - Hierarchical Routing
 - ASes and BGP
 - Routing Policies

Application
Presentation
Session
Transport
Network
Data Link
Physical

This Lecture

Focus

– How do we make routing scale?

IP Addressing

- Address formats
- Hierarchy, Classful Addresses
- Classless Inter-Domain Routing
- Subnets and Aggregation

Application
Presentation
Session
Transport
Network
Data Link
Physical

Scalability Concerns

- Routing burden grows with size of an internetwork
 - Size of routing tables
 - Volume of routing messages
 - Amount of routing computation

- To scale to the size of the Internet, apply:
 - Use of structural hierarchy (AS/BGP)
 - Hierarchical addressing
 - Route aggregation

Scalability Concerns

- Use of structural hierarchy, i.e. BGP routing
 - Size of routing tables
 - Pros: reduces the size of the routing tables for many routers inside the AS. If IP address outside AS, route through BGP border router.
 - Cons: size of routing tables in the border routers still huge!
 - Volume of routing messages
 - Pros: allows routing algorithms to scale by running multiple types of algorithms at different levels of the hierarchy, i.e. reduces the size of the graph.
 - Cons: size of routing messages at the border router still big.
 - Amount of routing computation
 - Pros: smaller graph size, implies reduced routing computation for the majority of routers.
 - <u>Cons</u>: border router still have to calculate routes to potentially billions of destination IP addresses (end2end connectivity)!

Humans Location Naming Structure

- How do humans deal with scalability complexity for worldwide locations?
- We use hierarchical <u>naming</u>
 - Street number and name, city name, zip code, country name, continent, planet (future?!)
 - Close neighbors should have similar addresses.
 E.g. 345 Pine St., Merced, CA 95341 and 347 Pine St., Merced, CA 95341
 - The further you move from the source address, the more different your address should be.
 - In order to get to a location, the further away you are, the least detail information you need. E.g.: first state, then city, then street name/number.

Postal Service Routing

- How does the Postal Service deal with worldwide parcel routing?
- It uses multi-level hierarchical routing based on hierarchical naming
 - Merced resident sends a letter with full destination address,
 e.g. 210 W 57th St., New York, NY 10019.
 - Local Merced USPS employee put in the East Coast bin.
 She does not know how to route to NY.
 - Airport USPS Employee sorts East Coast bin and put NY letter into the appropriate plane.
 - Letter arrives to JFK, and it is put in the Manhattan bin.
 - USPS Manhattan gets it and put it in the Central Park bin.
 - Central Park Office gives it to employee who delivers the letter in his route.

IP Addresses

- Reflect location in topology; used for scalable routing
 - Unlike "flat" Ethernet addresses
- Interfaces on same network share prefix
 - Prefix administratively assigned (IANA or ISP)
 - Addresses globally unique
- Routing only advertises entire networks by prefix
 - Local delivery in a single "network" doesn't involve router
 - (will make "network" precise later on)

Getting an IP address (recap)

- Old fashioned way: sysadmin configured each machine
- Dynamic Host Configuration Protocol (DHCP)
 - One DHCP server with the bootstrap info
 - Host address, gateway/router address, subnet mask, ...
 - Find it using broadcast
 - Addresses may be leased; renew periodically
- "Stateless" Autoconfiguration (in IPv6)
 - Get rid of server reuse Ethernet addresses for lower portion of address (uniqueness) and learn higher portion from routers

Address Resolution Protocol (ARP recap)

- On a single link, need Ethernet addresses to send a frame ... source is a given, but what about destination?
 - Requires mapping from IP to MAC addresses
- ARP is a dynamic approach to learn mapping
 - Node A sends broadcast query for IP address X
 - Node B with IP address X replies with its MAC address
 M
 - A caches (X, M); old information is timed out (~15 mins)
 - Also: B caches A's MAC and IP addresses, other nodes refresh

CSE160 L12 IP Addressing (10)

Cerpa, Fall 2020 © UCM

IP Addresses

- IPv4 uses 32-bit addresses
- Written in "dotted quad" notation
 - Four 8-bit numbers separated by dots

Classful IP Addressing

 Originally, IP addresses came in fixed size blocks with the class/size encoded in the highorder bits

- Class A: 0.0.0.0 127.255.255.255 (0000 0000 = 0 0111 1111 = 127)
- Class B: 128.0.0.0 191.255.255.255(10000000 = 128 11000000 = 192)
 - Class C: 192.0.0.0 223.255.255.255 (1100.0000 = 192 1110.0000 = 224)

IPv4 Assignment Circa 1982

This is an ARPANET assignment

Image in public domain

Network Example

Network number: 128.98.0.0

Updated Forwarding Routine

- Used to be "look up destination address for next hop"
- Now addresses have network and host portions:
 - If host: if <u>destination network</u> is the same as the <u>host</u> <u>network</u>, then <u>deliver locally</u> (without router). Otherwise send to the router.
 - If router: look up destination network in routing table to find next hop and send to <u>next router</u>. If destination network is directly attached then <u>deliver locally</u>.
- (Note that it will get a little more complicated later)
- How does the router knows it has to deliver locally?
 - It has same network address than one of its interfaces!
 - How does a host send a packet to the router?

How to send a packet to a router?

Classless Inter-Domain Routing (CIDR)

- Generalize class A, B, C into prefixes of arbitrary length; now must carry prefix length with address
- Addresses are allocated in blocks called prefixes
 - Address in an L-bit prefix have the same top L bits
 - There are 2^{32-L} addresses aligned on 2^{32-L} boundary

IP Prefixes

- Written in "IP address/length" notation
 - Address is lowest address in the prefix, length is prefix bits
 - E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
 - So a /24 ("slash 24") is 256 addresses, and a /32 is one address

IP Prefixes (2)

- More specific prefix
 - Has longer prefix, hence a smaller number of IP addresses
- Less specific prefix
 - Has shorter prefix, hence a lager number of IP address

Public/Private Addresses

- Public IP addresses, e.g., 18.31.0.1
 - Valid destination on the global Internet
 - Must be allocated to you before you use
 - Mostly exhausted ... time for IPv6!
- Private IP addresses
 - Can be used freely within private networks (home, small company)
 - 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
 - Need public IP address(es) and NAT to connect to global Internet

Private Addresses

- Private block of IP address for:
 - Computers not connected to the Internet (e.g. factory machines for process control)
 - Computers behind a NAT/firewall (e.g. your home computers)
- Three non-overlapping ranges of IPv4 address for private networks
- These addresses are not routed on the Internet, so no coordination with an IP address registry
- For IPv6 they are called unique local address (ULAs), with routing prefix fc00::/7

Name	CIDR block	Address range	Total addresses	Classful description	
24-bit block	10.0.0.0/8	10.0.0.0 – 10.255.255.255	16,777,216	Single Class A	
20-bit block	172.16.0.0/12	2 172.16.0.0 – 172.31.255.255 1,048,576 16 Class		16 Class B blocks	
16-bit block	192.168.0.0/16	192.168.0.0 – 192.168.255.255	65,536	256 Class C blocks	

Allocating Public IP Addresses

- Follows a hierarchical process
 - IANA delegates to regional bodies (RIRs)
 - RIRs delegate to companies in their region
 - Companies assign to their customers/computers (DHCP)

IPv6 Address

Routing prefix (48 bits or more) SubnetID (16 bits or fewer) InterfaceID (64 bits)

- Unicast and anycast address format (for others consult your textbook)
 - Network prefix (routing and subnet id combined) is the most significant 64 bits
 - Routing prefix may vary, a larger prefix size means a smaller subnet id size
 - The 64-bit interface identifier is either:
 - Automatically generated from the MAC address using modified EUI-64 format
 - Obtained from a DHCPv6 server
 - Automatically established randomly
 - Assigned manually
 - 128 bits written in 16-bit hexadecimal chunks
 - Still hierarchical, just more levels

IP Forwarding

- Addresses on one network belong to the same prefix
- Node uses a table that lists the next hop for IP prefixes

Prefix	Next Hop	
192.24.0.0/18	D	
192.24.12.0/22	В	
A		
B	C	_

Longest Matching Prefix

- Prefixes in the table might overlap!
 - Combines hierarchy with flexibility
- Longest matching prefix forwarding rule:
 - For each packet, find the longest prefix that contains the destination address, i.e., the most specific entry
 - Forward the packet to the next hop router for that prefix

Longest Matching Prefix Example

IP Address Work Slide

- Route to B = 192.00011000.000011xx.xxxxxxxx
- 192.24.6.0 = 192.00011000.0000110.00000000
- 192.24.14.32 = 192.00011000.00001110.00010000
- 192.24.54.0 = 192.00011000.00110110.00000000

Longest Matching Prefix Example (2)

Host/Router Distinction

In the Internet:

- Routers do the routing, know way to all destinations
- Hosts send remote traffic (out of prefix) to nearest router

Host Forwarding Table

- Give using longest matching prefix
 - 0.0.0.0/0 is a default route that catches all IP addresses

Prefix	Next Hop	
My network prefix	Send to that IP	
0.0.0.0	Send to my router	

Flexibility of Longest Matching Prefix

- Can provide default behavior, with less specifics
 - Send traffic going outside an organization to a border router (gateway)
- Can provide special case behavior, with more specifics
 - For performance, economics, security, ...

Performance of Longest Matching Prefix

- Uses hierarchy for a compact table
 - Benefits from less specific prefixes
- Lookup more complex than table
 - Used to be a concern for fast routers
 - Not an issue in practice these days

Prefixes and Hierarchy

- IP prefixes already help to scale routing, but we can go further
 - Routers can change prefix lengths without affecting hosts!
 - We can use a less specific (smaller) IP prefix as a name for a region

Subnets and Aggregation

Two use cases for adjusting the size of IP prefixes; both reduce routing table

1. Subnets

 Internally split one large prefix into multiple smaller ones

2. Aggregation

Externally join multiple smaller prefixes into one large prefix

Subnets

Internally split up one IP prefix

Subnetting – Mechanism

- Split up one network number into multiple physical networks by taking part of the host number as subnet ID
- 'AND' operation between IP and mask
- Helps allocation efficiency -- can hand out subnets
- Rest of internet does not see subnet structure
 - subnet is purely internal to network
 - aggregates routing info

Subnetted address

Subnet ID

Network number

Host ID

Subnet Example

Updated Forwarding Routine

Used to know network from address (class A, B, C)

- Now need to "search" routing table for right subnet
 - If host: easy, just substitute "subnet" for "network"
 - If router: search routing table for the subnet that the destination belongs to, and use that to forward as before

(Note that it will get a little more complicated)
 later :-)

Aggregation

Externally join multiple separate IP prefixes

- 192.24.0.0/21 = 192.24.00000xxx.x
- 192.24.8.0/21 = 192.24.00001xxx.x
- 192.24.16.0/20 = 192.24.0001xxxx.x
- 192.24. 0.0/20 = 192.24.0000xxxx.x

192.24.0.0/20 = 192.24.0000xxxx.x

192.24.0.0/19 = 192.24.000xxxxx.x

Aggregation Example

 X and Y routes can be aggregated because they form a bigger contiguous range.

- But aggregation isn't always possible. Why?
 - can only aggregate power of 2

IP Forwarding Revisited

- Routing table now contains routes to "prefixes"
 - IP address and length indicating what bits are fixed
- Now need to "search" routing table for longest matching prefix, only at routers
 - Search routing table for the prefix that the destination belongs to, and use that to forward as before
 - There can be multiple matches; take the longest prefix (why?)
- This is the IP forwarding routine used at routers.

Scalability Concerns

Size of routing tables

- Hierarchical routing: reduces the size of the routing tables for many routers inside the AS.
- Hierarchical naming and route aggregation: reduce the size of the routing tables at the border routers.

Volume of routing messages

- Hierarchical routing: routing messages are fewer, since fewer routes need to be updated in a smaller graph (AS).
- Hierarchical naming and route aggregation: routing messages are fewer by transmitting fewer aggregating entries.

Amount of routing computation

- Hierarchical routing: smaller graph size, implies reduced routing computation for all routers.
- Hierarchical naming and route aggregation: border router needs to calculate fewer routes to aggregate destinations (block of IPs addresses).

Key Concepts

- Hierarchical address allocation helps routing scale
 - Addresses are constrained by topology
 - Only need to advertise and compute routes for networks
 - Hide internal structure within a domain via subnets
 - Keep host simple and let routers worry about routing
- The combination of both hierarchical routing and naming to provide topological and address structure is the secret to scale to very large number of nodes!