

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

EXEMPLAR 2014

MEMORANDUM

MARKS: 150

This memorandum consists of 13 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum.
- Assuming answers/values in order to solve a problem is NOT acceptable.

QUESTION 1

1.1	As the number of days that an athlete trained increased, the time	√ explanation	
	taken to run the 100m event decreased.		
	OR		
	The fewer number of days an athlete trained, the longer the time he		
	took to complete the 100m sprint.		
	OR		
	The greater number of days an athlete trained, the shorter the time		
	he ran the 100m sprint.		(1)
1.2	(60; 18,1)	✓	
			(1)
1.3	a = 17,81931464	$\checkmark \checkmark a$	
	b = -0.070685358	\checkmark b	
	$\hat{y} = -0.07x + 17.82$	√ equation	
			(4)
1.4	$\hat{y} \approx -0.07(45) + 17.82$	✓ substitution	
	≈ 14,67 seconds	✓ answer	
	1 1,07 seconds		(2)
1.5	r = -0.74 (-0.740772594)	$\checkmark \checkmark r$	
			(2)
1.6	There is a moderately strong relationship between the variables.	√ moderately	
		strong	
			(1)
			[11]

2.1	170	✓ grounding a ✓ plotting at u limits ✓ smooth sha of curve	pper
	, ,		(3)
2.2	$40 \le t < 60$	✓ class	(2)
			(1)
2.3	(96; 164) ∴ 172 – 164 = 8 learners	√164 √8	(2)
2.4	Frequency: 25; 44; 60; 28; 9; 6 Mean = $\frac{25 \times 10 + 44 \times 30 + 60 \times 50 + 28 \times 70 + 9 \times 90 + 6 \times 110}{172}$ = $\frac{8000}{172}$ = 46,51 hours	✓ frequency ✓ midpoints	(4) [10]

3.1	K(7;0)	✓ answer
		(1)
3.2	$x_{-1} + 7$ $y_{-1} + 3$	
	$1 = \frac{x_M + 7}{2}$ and $1 = \frac{y_M + 3}{2}$	✓ x
	$\therefore M(-5;-1)$	✓ y
		(2)
3.3	$\frac{1}{m} - \frac{3-1}{3}$	✓ substitution
	$m_{PM} = \frac{3-1}{7-1} \\ = \frac{1}{3}$	
	$=\frac{1}{2}$	√answer (2)
2.4		(2)
3.4	$\tan P\hat{S}K = m_{PM} = \frac{1}{3}$ $P\hat{S}K = \tan^{-1}\left(\frac{1}{3}\right) = 18,43^{\circ}$	$\checkmark \tan P\hat{S}K = m_{PM}$
	$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & & \\ & & & & $	
	$PSK = tan^{-1} \left(\frac{1}{3} \right) = 18,43^{\circ}$	✓ PŜK
	$\therefore \theta = 180^{\circ} - 90^{\circ} - 18,43^{\circ} = 71,57^{\circ}$	$\checkmark \theta$
2.5		(3)
3.5	$\cos 71,57^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$	(a a mus at matic
		✓ correct ratio
	$PS = \frac{3}{\cos 71,57^{\circ}}$	✓ PS as subject
	= 9,49 units	✓ answer
	OR	(3)
	PK 3	
	$\sin 18,43^\circ = \frac{PK}{PS} = \frac{3}{PS}$	✓ correct ratio
		✓ PS as subject
	$PS = \frac{3}{\sin 18,43^{\circ}}$	' I S as subject
	= 9,49 units	✓ answer
	= 9,19 times	(3)
3.6	N(x; -2x + 17)	\checkmark N in terms of x
	$m_{TN} = m_{PM}$ (TN PM)	✓ equal gradients
	$m_{TN} = m_{PM}$ (TN PM) -2x + 17 - 5 - 1	
	$\frac{1}{x-(-1)} = \frac{1}{3}$	✓ substitution
	-6x + 36 = x + 1	
	-7x = -35 $ x = 5$	$\checkmark x$ -value
	y = -2(5) + 17 = 7	✓ y -value
	$\therefore y - 2(3) + 17 = 7$ $\therefore N(5;7)$	(5)
	OR	, ,

NSC – Grade 12 Exemplar – Memorandum

	1000 Grade 12 Exemplai Memorandum	
	$m_{TM} = \frac{1}{3}$ (TN PM) equation of TM:	✓ m _{TM}
	$y - y_1 = \frac{1}{3}(x - x_1)$ $y - 5 = \frac{1}{3}(x - (-1))$ $y - 5 = \frac{1}{3}x + \frac{1}{3}$ $y = \frac{1}{3}x + c$ $5 = \frac{1}{3}(-1) + c$ $y = \frac{1}{3}x + 5\frac{1}{3}$ $y = \frac{1}{3}x + \frac{1}{3}$ $y = \frac{1}{3}x + \frac{1}{3}$	
	$y = \frac{1}{3}x + 5\frac{1}{3}$	✓ equation of TM ✓ equating
	$-2x+17 = \frac{1}{3}x+5\frac{1}{3}$ $-2\frac{1}{3}x = -11\frac{2}{3}$ $x = 5$ $y = -2(5) + 17 = 7$ $N(5 + 7)$	$\checkmark x$ -value $\checkmark y$ -value (5)
3.7.1	$\therefore N(5;7)$ $y = 5$	✓ equation (1)
3.7.2	A(a; 5) T A(a; 5) 45° Q(1; 1) 45° 135° T	$\checkmark m_{AQ} = 1 \text{ or}$
	gradient of AQ = $\tan 45^{\circ}$ or $\tan 135^{\circ}$ = 1 or -1 $m_{AQ} = \frac{5-1}{a-1} = \pm 1$ $\therefore a - 1 = 4 \text{ or } -4$ $\therefore a = 5 \text{ or } -3$	√ mAQ = -1 ✓ substitution into gradient formula ✓ x-value ✓ y-value (5)

Copyright reserved

[22]

4.1	M(-1;-1)	✓ answer
		(1)
4.2	$m_{NT} = \frac{2-1}{3-4} = -1$ $\therefore m_{AT} = 1 \qquad \text{(radius } \perp \text{ tangent)}$ $y-1 = 1(x-4)$ $y = x-3$	\checkmark m_{NT} \checkmark m_{AT} \checkmark reason \checkmark substitution of m and (4; 1) \checkmark equation (5)
4.3	$MR \perp AB$ (line from centre to midpt of chord) $MB^2 = MR^2 + RB^2$ (Theorem of Pythagoras) $9 = (\frac{\sqrt{10}}{2})^2 + RB^2$	$\checkmark MR \perp AB$ $\checkmark MB = 3$
	$9 = (\frac{13}{2})^{2} + RB$ $RB^{2} = \frac{13}{2}$ $RB = \sqrt{\frac{13}{2}}$	✓ substitution into Theorem of Pythagoras
	$AB = 2\left(\sqrt{\frac{13}{2}}\right) = \sqrt{26} units$	✓ AB in surd form (4)
4.4	$MN^{2} = (-1 - 3)^{2} + (-1 - 2)^{2}$ $= 16 + 9$ $= 25$ $MN = 5 \text{ units}$	✓ substitution into distance formula ✓ answer (2)
4.5	$r = 5 - 3 = 2 \text{ units}$ ∴ $(x - 3)^2 + (y - 2)^2 = 4$ ∴ $x^2 + y^2 - 6x - 4y + 9 = 0$	✓r ✓substitution into circle equation ✓equation (3) [15]

5.1.1	$-\sin \alpha$	✓ reduction
	$=-(-\frac{4}{5})=\frac{4}{5}$	✓ answer (2)
5.1.2	$(-4)^{2} + b^{2} = 5^{2}$ $b^{2} = 25 - 16 = 9$ $b = -3$ $\cos \alpha = \frac{-3}{5}$	✓ <i>b</i> = -3
	(-3;-4)	✓answer (2)
5.1.3	$\sin (\alpha - 45^{\circ})$ $= \sin \alpha \cos 45^{\circ} - \cos \alpha \sin 45^{\circ}$ $= -\frac{4}{5} \cdot \frac{1}{\sqrt{2}} - (-\frac{3}{5}) \cdot \frac{1}{\sqrt{2}}$ $= -\frac{1}{5\sqrt{2}}$ OR	✓ expansion $ \sqrt{\frac{1}{\sqrt{2}}} $ ✓ answer in simplest form (3)
	$\sin (\alpha - 45^\circ)$ $= \sin \alpha \cos 45^\circ - \cos \alpha \sin 45^\circ$ $= -\frac{4}{5} \cdot \frac{\sqrt{2}}{2} - (-\frac{3}{5}) \cdot \frac{\sqrt{2}}{2}$ $= -\frac{\sqrt{2}}{10}$	✓ expansion $ \sqrt{\frac{\sqrt{2}}{2}} $ ✓ answer in simplest form (3)
5.2.1	$LHS = \frac{8\sin x \cdot \cos x}{\sin^2 x - \cos^2 x}$ $= \frac{4(2\sin x \cdot \cos x)}{\sin^2 x - \cos^2 x}$	$\sqrt{\sin x}$ $\sqrt{\cos x}$ $\sqrt{\cos^2 x}$
	$=\frac{4\sin 2x}{-(\cos^2 x - \sin^2 x)}$	✓ 4 sin 2 <i>x</i> ✓ factorise
	$=\frac{4\sin 2x}{-\cos 2x}$	$\sqrt{-\cos 2x}$
5.2.2	$= -4 \tan 2x$ Undefined when $\cos 2x = 0$ or $\tan 2x = \cos 2x$	(6)
3.2.2	Undefined when $\cos 2x = 0$ or $\tan 2x = \infty$: $x = 45^{\circ}$ and $x = 135^{\circ}$	✓ 45° ✓ 135°

5.3	$1 - 2\sin^{2}\theta + 4\sin^{2}\theta - 5\sin\theta - 4 = 0$ $2\sin^{2}\theta - 5\sin\theta - 3 = 0$ $(2\sin\theta + 1)(\sin\theta - 3) = 0$ $\therefore \sin\theta = -\frac{1}{2} \text{or } \sin\theta = 3 \text{ (no solution)}$ $\therefore \theta = 210^{\circ} + 360^{\circ}k \text{or } \theta = 330^{\circ} + 360^{\circ}k ; k \in \mathbb{Z}$	\checkmark 1-2sin ² θ \checkmark standard form \checkmark factors \checkmark no solution \checkmark 210° \checkmark 330° \checkmark + 360°k; k ∈ Z
	OR $\therefore \theta = 210^{\circ} + 360^{\circ}k \text{ of } \theta = 30^{\circ} + 360^{\circ}k \text{ ; } k \in \mathbb{Z}$	(7) [22]

6.1	$b=\frac{1}{-}$	✓ value of b	
	$b-\frac{1}{2}$		(1)
6.2	$A(30^{\circ}; 1)$	√ 30°	
		✓ 1	
			(2)
6.3	$x = 160^{\circ}$	$\checkmark x = 160^{\circ}$	
			(1)
6.4	$h(x) = 2\cos(x - 30^\circ) + 1$		
	$y \in [-1; 3]$	✓ critical values	
	OR	✓ notation	
	$-1 \le y \le 3$		(2)
			[6]

7.1	Draw CD ⊥ AB	✓ construction
	In ΔACD:	
	$\sin A = \frac{CD}{L}$: $CD = b \cdot \sin A$	✓ sin A
	$\sin A = \frac{1}{b}$ $\therefore CD = b \cdot \sin A$	✓ making CD the
		subject
	In ΔCBD:	
	$\sin B = \frac{CD}{}$: $CD = a \cdot \sin B$ A D B	√ sin B
	a	
	$\therefore b \cdot \sin A = a \cdot \sin B$	$\checkmark b$. sin A = a. sin B
	$\therefore \frac{\sin A}{a} = \frac{\sin B}{b}$	v = 0.3 sm A = 0.3 sm B
	$\frac{a}{a} - \frac{b}{b}$	(5)
7.2.1	$\hat{SPQ} = 180^{\circ} - 2x$ (opp $\angle s$ of cyclic quad)	$\checkmark \hat{SPQ} = 180^{\circ} - 2x$
	$P\hat{S}Q + P\hat{Q}S = 2x$ (sum of $\angle s$ in Δ)	(S/R)
	$P\hat{S}Q = P\hat{Q}S = x$ (\(\angle s\) opp equal sides)	(
		✓ reason (2)
7.2.2	$\frac{\sin \hat{SPQ}}{\sin \hat{PSQ}} = \frac{\sin \hat{PSQ}}{\sin \hat{PSQ}}$	(2)
	$\frac{\sin \theta}{SO} = \frac{\sin \theta}{PO}$	✓ substitution into
	$\frac{\text{SQ}}{\sin(180^\circ - 2x)} = \frac{\text{PQ}}{\sin x}$	correct formula
	\mathbf{SQ} k	$\sqrt{\sin 2x}$
	$SQ = \frac{k \sin 2x}{\sin x}$	✓ SQ subject
	$\sin x$ $k(2\sin x.\cos x)$	$\sqrt{2\sin x \cdot \cos x}$
	$SQ = \frac{\sin x}{\sin x \cdot \cos x} = 2k \cos x$	(4)
	OR	
	$SQ^2 = PQ^2 + PS^2 - 2PQ.PS.\cos S\hat{P}Q$	✓ substitution into
	$=k^2+k^2-2.k.k.\cos(180^\circ-2x)$	correct formula
	$=2k^2+2k^2\cos 2x$	$\sqrt{-\cos 2x}$
	$= 2k^2 + 2k^2(2\cos^2 x - 1)$ = $4k^2\cos^2 x$	$\sqrt{2\cos^2 x - 1}$
	$= 4k \cos x$ $SQ = 2k \cos x$	✓ simplification (4)
7.2.3	3	(4)
	$\tan y = \frac{b}{k}$	✓ tan ratio
	$k = \frac{3}{}$	
	$\kappa = \frac{1}{\tan y}$	✓ <i>k</i> subject and substitution
	so_{2} so_{3} so_{3}	Substitution
	$SQ = 2\cos x \left(\frac{3}{\tan y}\right)$	
	\therefore 6 cos x	(2)
	$=\frac{\cos x}{\tan y}$	[13]
	/	

8.1	the angle subtended	by the chord in the alternate segment	✓ correct theorem
			(1)
8.2.1	$\hat{B}_{1} = \hat{E}_{1} = 68^{\circ}$	(tan chord theorem)	$\checkmark \hat{E}_1 = 68^{\circ}$
	1 1		✓ reason
			(2)
8.2.2	$\hat{E}_{1} = \hat{B}_{3} = 68^{\circ}$	(alt ∠s; AE BC)	$\checkmark \hat{B}_3 = 68^\circ (S/R)$
	1 3		(1)
8.2.3	$\hat{D}_{1} = \hat{B}_{3} = 68^{\circ}$	(ext ∠ of cyclic quad)	$\checkmark \hat{D}_1 = 68^{\circ}$
	1 3		✓ reason
			(2)
8.2.4	$\hat{E}_2 = 20^\circ + 68^\circ$	$(\operatorname{ext} \angle \operatorname{of} \Delta)$	
	= 88°		$\checkmark \hat{E}_2 = 88^\circ (S/R)$
			(1)
8.2.5	$\hat{C} = 180^{\circ} - 88^{\circ}$	(opp ∠s of cyclic quad)	√ Ĉ =92°
	= 92°		✓ reason
			(2)
			[9]

9.1	$\hat{\mathbf{D}}_{A} = \hat{\mathbf{A}} = x \qquad \text{(tan cl}$	nord theorem)	$\checkmark \hat{\mathbf{A}} = x$
	$\frac{D_4 - H - x}{4}$ (tall of	lord theorem)	✓ reason
	$\hat{\mathbf{A}} = \hat{\mathbf{D}}_2 = x \qquad (\angle \mathbf{s} \text{ op}$	op equal sides)	$\checkmark \hat{A} = \hat{D}_2 = x$
	$R = D_2 = x \qquad (2s o)$	op equal sides)	(S/R)
			(3)
9.2	$\hat{\mathbf{M}}_1 = 2x \qquad (\text{ext } \angle$	(of Δ $)$ or (∠ at centre = 2∠ at circum $)$	$\checkmark \hat{\mathbf{M}}_1 = 2x (\mathrm{S/R})$
	$\hat{MDE} = 90^{\circ}$ (radiu	s ⊥ tan)	\checkmark MDE = 90°
	$\hat{\mathbf{M}}_2 = 90^{\circ} - 2x$		(S/R)
	$\hat{E} = 180^{\circ} - (90^{\circ} + 90^{\circ} - 2x)$ $= 2x$	(sum of \angle s in \triangle MDE)	$\checkmark \hat{E} = 2x$
		rse tan chord theorem)	✓ reason
0.2			(4)
9.3	$\hat{M}_3 = 90^{\circ}$	$(EM \perp AC)$	$\mathbf{\hat{M}}_3 = 90^{\circ}$
	$\hat{ADB} = 90^{\circ}$	(∠ in semi-circle)	\checkmark ADB = 90° (S/R)
	∴ FMBD a cyclic quad	(ext \angle of quad = int opp \angle) OR	√ reason (3)
	$\hat{EMC} = 90^{\circ}$	(EM ⊥ AC)	$\checkmark \hat{EMC} = 90^{\circ}$
	$\hat{ADB} = 90^{\circ}$	(∠ in semi-circle)	$\checkmark \hat{ADB} = 90^{\circ} (S/R)$
	∴ FMBD a cyclic quad	(opp ∠s of quad supp)	✓ reason
0.4	$DC^2 = MC^2 - MD^2$	(The engage of Druth engage)	(3)
9.4	$= (3BC)^{2} - (2BC)^{2}$	(Theorem of Pythagoras) (MB = MD = radii)	✓ Th of Pythagoras ✓ substitution
	$=9BC^2-4BC^2$,	$\checkmark 9BC^2 - 4BC^2$
	$=5BC^2$		(3)
9.5	In $\triangle DBC$ and $\triangle DFM$:		
	$\hat{D}_4 = \hat{D}_2 = x$	(proven in 9.1)	$\checkmark \hat{D}_4 = \hat{D}_2$
	$\hat{B}_1 = \hat{F}_2$	(ext ∠ of cyclic quad)	$\checkmark \hat{B}_1 = \hat{F}_2$
	$\hat{\mathbf{C}} = \hat{\mathbf{M}}_2$		✓ reason
	∴ΔDBC ΔDFM (∠; ∠; ∠	∠)	\hat{C} \hat{M} \hat{C}
			$\checkmark \hat{\mathbf{C}} = \hat{\mathbf{M}}_2 \text{ or}$ $(\angle; \angle; \angle)$
			$(\angle; \angle; \angle) \tag{4}$
9.6	DM _ DC	(ΔDBC ΔDFM)	
	$\overline{\text{FM}} - \overline{\text{BC}}$		✓ S
	$=\frac{\sqrt{5}BC}{}$		
	BC		✓ answer
	$= \frac{\sqrt{5BC}}{BC}$ $= \sqrt{5}$		(2)
			[19]

12 NSC – Grade 12 Exemplar – Memorandum

QUESTION 10

10.1

Construction: Join DC and BE and heights k and h

$$\frac{\text{area } \Delta ADE}{\text{area } \Delta DEB} = \frac{\frac{1}{2}.AD.k}{\frac{1}{2}.DB.k} = \frac{AD}{DB}$$
 (equal heights)

$$\frac{\text{area } \Delta ADE}{\text{area } \Delta DEC} = \frac{\frac{1}{2}.AE.h}{\frac{1}{2}.EC.h} = \frac{AE}{EC}$$
 (equal heights)

But Area $\triangle DEB = Area \triangle DEC$ (same base, same height)

$$\therefore \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEB}} = \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEC}}$$

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

✓ construction

$$\checkmark \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEB}} = \frac{\text{AD}}{\text{DB}}$$

✓ reason

$$\checkmark \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEC}} = \frac{\text{AE}}{\text{EC}}$$

✓ Area $\triangle DEB = Area$ $\triangle DEC$ (S/R)

 $\frac{\text{area } \Delta ADE}{\text{area } \Delta DEB} = \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}$

(6)

Copyright reserved

Please turn over

10.2.1	AB AC	$\sqrt{\frac{AB}{AB}} = \frac{AC}{AB}$ (S/R)
	$\frac{1}{BE} = \frac{1}{CD} \qquad (Prop Th; BC \mid \mid ED)$	$\frac{\sqrt{BE}}{BE} = \frac{10}{CD}$ (S/R)
		✓ substitution
	$\frac{1}{3} = \frac{3}{\text{CD}}$	
	\therefore CD = 9 units	✓ answer
10.2.2		(3)
10.2.2	$\frac{DG}{GA} = \frac{FD}{FE}$ (Prop Th; FG EA)	$\sqrt{\frac{DG}{GA}} = \frac{FD}{FE} (S/R)$
		GA FE
	$\frac{9-x}{3+x} = \frac{3}{6}$	✓ substitution
	3+x 6 $54-6x=9+3x$	✓ simplification
	-9x = -45	1
	x = 5	✓ answer
10.00		(4)
10.2.3	In \triangle ABC and \triangle AED:	^ .
	is common	✓ Â is common
	$\hat{ABC} = \hat{E}$ (corres $\angle s$; $BC \mid \mid ED$)	$\checkmark A\hat{B}C = \hat{E} (S/R)$
	$\hat{ACB} = \hat{D}$ (corres $\angle s$; BC ED)	\checkmark AĈB = \hat{D} (S/R)
	$\triangle ABC \mid \mid \mid \triangle AED (\angle, \angle, \angle)$	or $(\angle; \angle; \angle)$
	$\therefore \frac{BC}{BC} = \frac{AC}{BC}$	$\checkmark \frac{BC}{ED} = \frac{AC}{AD}$
	ED AD	ED AD
	$\frac{BC}{9} = \frac{3}{12}$	
	$BC = 2\frac{1}{4}$ units	✓ answer
	4	(5)
10.2.4	$\frac{1}{2}$ AC.BC. $\sin A\hat{C}$ B	✓ use of area rule
	$\frac{\text{area } \Delta ABC}{\text{area } \Delta CED} = \frac{\frac{1}{2} AC.BC.\sin A\hat{C}B}{\frac{1}{2} AC.BC.\sin A\hat{C}B}$	✓ correct
	area $\triangle GFD = \frac{1}{2}GD.FD.\sin \hat{D}$	sides and angles
	$\frac{1}{2}(3)(2\frac{1}{4})\sin\hat{D}$	✓ substitution of
	$= \frac{\frac{2}{2}(3)(2\frac{2}{4})\sin D}{1} \qquad \text{(corres } \angle \text{s; BC} \mid \mid \text{ED)}$	values
	$= \frac{\frac{1}{2}(3)(2\frac{1}{4})\sin \hat{D}}{\frac{1}{2}(4)(3)\sin \hat{D}}$ (corres \(\angle s; BC \ ED)) $= \frac{9}{16}$	$\checkmark \sin A\hat{C}B = \sin \hat{D}$
	2	(S/R)
	$=\frac{7}{16}$	✓ answer
	10	(5)
		[23]

TOTAL: 150