

February 1984 Revised February 1999

MM74HCT00 Quad 2 Input NAND Gate

General Description

The MM74HCT00 is a NAND gates fabricated using advanced silicon-gate CMOS technology which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. This device is input and output characteristic and pin-out compatible with standard 74LS logic families. All inputs are protected from static discharge damage by internal diodes to $\rm V_{CC}$ and ground.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices.

These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL, LS pin-out and threshold compatible
- Fast switching: t_{PLH}, t_{PHL}=14 ns (typ)
- Low power: 10 µW at DC
- High fan out, 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HCT00M	M14A	14-Lead Small Outline Integrate Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
MM74HCT00SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT00MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Logic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (V_{IN}) -1.5 to V_{CC} +1.5VDC Output Voltage (V_{OUT}) –0.5 to V_{CC} +0.5VClamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) ±25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±50 mA Storage Temperature Range (T_{STG}) -65°C to +150°C

Power Dissipation (P_D) (Note 3)

S.O. Package only Lead Temperature (T_L)

(Soldering 10 seconds)

260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage	0	V_{CC}	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t_r, t_f)		500	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

 $V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units	
Symbol		Conditions	Тур		Guaranteed L	Units		
V _{IH}	Minimum HIGH Level			2.0	2.0	2.0	V	
	Input Voltage							
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V	
	Input Voltage							
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage	$II_{OUT}I = 20 \mu A$	V_{CC}	V _{CC} -0.1	V _{CC} -0.1	V _{CC} -0.1	V	
		$II_{OUT}I = 4.0 \text{ mA}, V_{CC} = 4.5V$	4.2	3.98	3.84	3.7	V	
		$II_{OUT}I = 4.8 \text{ mA}, V_{CC} = 5.5V$	5.2	4.98	4.84	4.7	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$						
	Voltage	$II_{OUT}I = 20 \mu A$	0	0.1	0.1	0.1	V	
		$II_{OUT}I = 4.0 \text{ mA}, V_{CC} = 4.5V$	0.2	0.26	0.33	0.4	V	
		$II_{OUT}I = 4.8 \text{ mA}, V_{CC} = 5.5V$	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.05	±0.5	±1.0	μΑ	
	Current	V_{IH} or V_{IL}						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND,		1.0	10	40	μΑ	
	Supply Current	$I_{OUT} = 0 \mu A$						
		V _{IN} = 2.4V or 0.5V (Note 4)	0.18	0.3	0.4	0.5	mA	

600 mW

500 mW

Note 4: This is measured per input with all other inputs held at V_{CC} or ground.

AC Electrical Characteristics

 $V_{CC} = 5.0V$, $t_r = t_r = 6$ ns, $C_L = 15$ pF, $T_A = 25$ °C (unless otherwise noted)

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PLH} , t _{PHL}	Maximum Propagation Delay		14	18	ns

AC Electrical Characteristics

 $V_{CC} = 5.0V \pm 10\%$, $t_r = t_f = 6$ ns, $C_L = 50$ pF (unless otherwise noted)

Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	$T_A = -55 \text{ to } 125^{\circ}\text{C}$	Units
Cymbol			Тур		Guaranteed L	imits	Jillo
t _{PLH} , t _{PHL}	Maximum Propagation Delay		18	23	29	35	ns
t _{THL} , t _{TLH}	Maximum Output Rise & Fall Time		8	15	19	22	ns
C _{PD}	Power Dissipation Capacitance	(Note 5)	30				pF
C _{IN}	Input Capacitance		5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14LD, TSSOP, JEDEC MO-153, 4.4MM WIDE

NOTES

- A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABJREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 11 10 9 8 14 13 12 INDEX AREA 0.250 ± 0.010 (6.350±0.254) PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320(7.620 - 8.128) 0.065 0.145 - 0.200 0.060 (1.524) 4° TYP Optional (1.651) (3.683 - 5.080)95°±5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508)0.125 - 0.150 $\overline{(3.175 - 3.810)}$ $\overline{(1.905 \pm 0.381)}$ (7.112)-MIN 0.014 - 0.023 TYP $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)} \text{ TYP}$ (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)} \text{ TYP}$ $0.325 ^{\,+\,0.040}_{\,-\,0.015}$

14-Line Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

8.255 + 1.016

N14A (REV.F)

www.fairchildsemi.com