T319 - Introdução ao Aprendizado de Máquina: *Regressão Linear (Parte III)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- No tópico anterior, falamos sobre o vetor gradiente.
- Aprendemos dois algoritmos que usam o vetor gradiente para a resolução de problemas de otimização.
 - *Gradiente ascendente* para problemas de *maximização*.
 - Gradiente descendente para problemas de minimização.
- Falamos sobre as três versões do gradiente descendente e as comparamos:
 - Batelada
 - Estocástico
 - Mini-batch
- Neste tópico, discutiremos o quão importante é o ajuste do passo de aprendizagem, α .

- Conforme nós vimos antes, no gradiente descendente, o negativo do vetor gradiente, $-\nabla f(x)$, dá a direção de decrescimento mais rápido de uma função a partir de um ponto e sua magnitude indica a taxa de variação da função nessa direção.
- Porém, ele não nos informa a distância até o ponto de máximo.

$$a \leftarrow a - \alpha \frac{\partial J_e(a)}{\partial a}$$

- Portanto, para andarmos na direção apontada pelo vetor gradiente, usamos uma porcentagem do seu valor.
- Essa porcentagem é dada pelo *passo de* aprendizagem, α , que é sempre um valor maior do que zero.

$$a \leftarrow a - \alpha \frac{\partial J_e(a)}{\partial a}$$

- O passo de aprendizagem controla o quão "grande" ou "pequena" é a atualização aplicada aos pesos do modelo em cada iteração do processo de treinamento.
- Ou seja, ele determina o tamanho do passo dado na direção oposta à indicada pelo vetor gradiente.
- Porém, qual deve ser o tamanho desse passo?

Portanto, como veremos, a escolha do passo de aprendizagem é muito importante para o aprendizado de um modelo de ML.

- O passo de aprendizagem é um hiperparâmetro que influencia diretamente o desempenho e a convergência do algoritmo do gradiente descendente.
 - Hiperparâmetros: são parâmetros que não são aprendidos durante o treinamento do modelo, mas que influenciam seu aprendizado.
- Valores muito pequenos podem resultar em treinamento lento, enquanto valores muito grandes podem causar divergência.
- Em geral, a escolha do passo é feita empiricamente por meio de experimentação.
- Uma regra empírica para exploração do passo de aprendizagem é usar a seguinte sequência (ajuste manual):

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, ...

Passo de aprendizado pequeno

- Caso o passo de aprendizagem seja muito pequeno, a convergência do algoritmo será muito lenta.
- No exemplo abaixo, com $\alpha = 2 \times 10^{-6}$, o algoritmo atinge o ponto de mínimo, i.e., converge, após mais de 250 épocas.
 - Passos muito curtos, fazem com que o algoritmo caminhe vagarosamente em direção ao mínimo global da função de erro.

Passo de aprendizado grande

- Caso o passo seja grande, o algoritmo pode nunca convergir.
- Se o passo for grande, *mas não tão grande assim*, o algoritmo pode ficar "*pulando*" ou "*oscilando*" *de um lado para o outro da superfície de erro* até que, por sorte, ele converge.
 - No exemplo abaixo, com $\alpha=1.8\times10^{-4}$, o algoritmo oscila inicialmente, mas acaba convergindo após 20 épocas.

Passo de aprendizado grande

feedback positivo → estouro da precisão numérica

- Em outros casos, quando o passo é *muito grande*, a cada época, o algoritmo "pula" para um valor mais alto do que o anterior e, assim, acaba divergindo.
- Ou seja, ao invés de se aproximar do ponto de mínimo a cada época, ele *se distancia dele*.

Passo de aprendizado grande

feedback positivo → estouro da precisão numérica

- Nesse caso ocorre um ciclo de feedback positivo onde a cada época os valores dos gradientes e, consequentemente, dos pesos se tornam maiores e maiores até que ocorra o estouro da representação numérica.
 - Problema que ocorre quando uma variável não pode mais representar um valor, pois ele é maior do que o intervalo que ela pode armazenar.

Passo de aprendizado ideal

- Portanto, o valor do passo de aprendizagem deve ser explorado para se encontrar um valor ideal que acelere a convergência de forma estável, ou seja, sem oscilações.
- O exemplo abaixo, com $\alpha=10^{-4}$, o algoritmo converge de forma estável para o *mínimo global* em apenas 3 épocas.

- Nem sempre iremos conseguir plotar a superfície de erro e de contorno para analisarmos o treinamento e o desempenho de um modelo.
- Por exemplo, quando tivermos três atributos, a superfície de erro terá quatro dimensões, tornando sua análise mais difícil.
- Assim, em geral, usamos a curva do erro (i.e., EQM) em função das iterações de treinamento para analisar o aprendizado de um modelo.

- A figura ao lado mostra o comportamento esperado quando o passo tem o tamanho ideal.
- A *convergência* nesse caso é *rápida*.
 - O erro diminui rapidamente nas primeiras épocas (ou iterações).
 - Conforme o treinamento continua, o erro se estabiliza e exibe uma redução suave (i.e., mais lenta).
 - A convergência é atingida quando o erro se torna praticamente constante ao longo das épocas, indicando que os pesos não são mais atualizados, pois o mínimo da função foi atingido.
 - Por exemplo, o treinamento pode ser encerrado quando o erro entre duas épocas consecutivas for menor do que um valor pré-definido (e.g., 1e-5).

- A figura mostra o caso onde o *passo de aprendizagem é muito pequeno*.
- Nesse caso, a convergência é muito lenta.
- Após várias épocas de treinamento, o erro ainda não se estabilizou.
- Levaria *muito tempo* para que o modelo atingisse o *ponto de mínimo*.

- A figura mostra o caso onde o *passo de aprendizagem é muito grande*.
- Nesse caso, ocorre divergência.
- Ou seja, o erro aumenta mais e mais ao longo do treinamento, indicando que o algoritmo está se distanciando do ponto de mínimo.
- Se o treinamento continuar, os gradientes e pesos podem se tornar tão grandes que ocorre o estouro da representação numérica.

- A figura mostra o caso onde o passo de aprendizagem é grande, mas não tão grande assim.
- Nesse caso, o *erro oscila* entre valores grandes e pequenos.
- Por ventura, a convergência pode ocorrer após algumas épocas.

Melhorando a convergência das versões estocásticas

Gradiente descendente estocástico (SGD)

- As versões estocásticas do gradiente descendente, i.e., SGD e mini-batch (principalmente quando MB é pequeno), têm um caminho irregular para o ponto de mínimo.
- Além disso, quando as amostras do conjunto de treinamento estão contaminadas com ruido, eles podem não convergir para o mínimo (i.e., oscilam ao redor dele).

Melhorando a convergência das versões estocásticas

Gradiente descendente estocástico (SGD)

- Esses problemas *impactam* o *desempenho do modelo* e deixam o *treinamento lento* e, possivelmente, *instável*.
- Entretanto, existem *técnicas para minimizar* esses problemas, deixando essas versões do GD *mais comportadas*.
- As mais conhecidas envolvem o *ajuste do passo de aprendizagem* e/ou do *termo de atualização dos pesos*.

Ajuste do passo de aprendizagem

- Redução gradual (ou decaimento) do passo de aprendizagem diminui gradualmente o passo de aprendizagem ao longo do treinamento.
- A redução da taxa de aprendizagem faz com que as atualizações dos pesos se tornem cada vez menores à medida que o treinamento progride, o que pode melhorar (ou forçar) a convergência.

$$a(i+1) = a(i) - \alpha(i) \nabla \widehat{J}_e(a(i)),$$

onde i é número da iteração de atualização atual e $\nabla \widehat{J}_e$ (a(i)) é a estimativa do vetor gradiente.

- Essa é a técnica mais simples das que veremos, mas precisamos encontrar os hiperparâmetros que dão a taxa ideal de redução do passo de aprendizagem.
- Veremos a seguir um exemplo de como ela funciona.

Técnicas mais comuns para a redução gradual

- As três técnicas mais comuns para a *redução gradual* do passo de aprendizagem são:
 - Decaimento por etapas ou degraus: reduz o passo de aprendizagem inicial, α_0 , de um fator, τ , a cada número pré-definido de iterações, β . Um valor típico para reduzir a taxa de aprendizado é de $\tau=0.5$ a cada β de iterações.
 - **Decaimento exponencial**: é dado pela equação $\alpha(i) = \alpha_0 e^{-ki}$, onde α_0 , k e i são passo de aprendizagem inicial, a taxa de decrescimento e o número da iteração de atualização atual, respectivamente.
 - **Decaimento temporal**: é dado pela equação $\alpha(i) = \frac{\alpha_0}{(1+ki)}$ onde α_0 , k e i têm o mesmo significado que no decaimento exponencial.
- Entretanto, percebam que ainda temos que encontrar os valores ideais para os *hiperparâmetros* α_0 , τ , β e k.

Ajuste do termo de atualização dos pesos

 O termo momentum adiciona a média do histórico de estimativas do vetor gradientes, ν, à equação de atualização dos pesos, tornando as atualizações menos ruidosas, e, consequentemente, acelerando a convergência do algoritmo.

$$\mathbf{v}(i) = \mu \mathbf{v}(i-1) + (1-\mu)\nabla \widehat{J}_e(\mathbf{a}(i)),$$

$$\mathbf{a}(i+1) = \mathbf{a}(i) - \alpha \mathbf{v}(i).$$

onde $\nabla \widehat{J_e}\left(\boldsymbol{a}(i)\right)$ é a *estimativa do vetor gradiente* e μ , chamado de *coeficiente de momentum*, determina a quantidade de estimativas anteriores que são consideradas no cálculo da média.

- O passo de aprendizagem é constante.
- A *desvantagem* é que nós precisamos encontrar as valores ideais dos *hiperparâmetros* α e μ .

Ajuste dos pesos e de seu termo de atualização

- Na variação adaptativa, o passo de aprendizagem é ajustado adaptativamente de acordo com a inclinação da superfície de erro.
- Além disso, usa passos de aprendizagem diferentes para cada peso do modelo, os atualizando de forma independente de acordo com a inclinação da superfície na direção dos pesos.
- Pode ser *combinado com o termo momentum* para ajustar o termo de atualização dos pesos, melhorando ainda mais a convergência.
- Uma vantagem é que na maioria dos casos, não é necessário se ajustar manualmente nenhum hiperparâmetro como no caso das técnicas de redução gradual e termo momentum.
- As técnicas mais conhecidas são RMSProp, AdaGrad e Adam.

Exemplo de redução programada com GDE

- O caminho com
 decaimento gradual
 também não é regular
 para o ponto de
 mínimo.
- Ele apresenta algumas mudanças de direção ao longo do caminho.
- O passo não influencia na direção, apenas no tamanho do deslocamento.

Exemplo de redução programada com GDE

- Porém, a oscilação em torno do mínimo é bastante reduzida devido à diminuição gradual do passo de aprendizagem, α.
- Conseguimos visualizar melhor o efeito da redução de α nas figuras que mostram os elementos do vetor gradiente.

Exemplo de redução programada com GDE

• Conclusão: um passo de aprendizagem que tem seu valor reduzido ao longo das iterações de treinamento permite que que versões estocásticas do gradiente descendente se estabilizem próximo ao ponto de mínimo global.

Tarefas

- Quiz: "T319 Quiz Regressão: Parte III" que se encontra no MS Teams.
- Exercício Prático: Laboratório #4.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Vídeo explicando o laboratório: Arquivos -> Recordings -> Laboratório #4
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.

Obrigado!

When someone asks why you never stops talking about machine learning

IF IF IF IF IF IF IF WE!

Albert Einstein: Insanity Is Doing the Same Thing Over and Over Again and Expecting Different Results

Machine learning:

FIGURAS

gradiente negativo: $a_1=a_1^{
m inicial}+\alpha \nabla J_e(a_1)$ a_1 aumenta e se aproxima do mínimo

gradiente positivo: $a_1=a_1^{
m inicial}-\alpha \nabla J_e(a_1)$ a_1 diminiu e se aproxima do mínimo

 $J_e(a)$

 $J_e(\boldsymbol{a})$

Gradiente Descendente a₂ Estocástico a₁

