FCC REPORT

(Bluetooth)

Applicant: i-Mobile Technology Corporation

Address of Applicant: 3F #8 Alley 15 Lane 120 Sec. 1 Neihu Road, Neihu District,

Taipei City 114, Taiwan

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: IB-10

Trade mark: @mobile

FCC ID: XZO-IB10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 24 Nov., 2016

Date of Test: 24 Nov., 2016 to 16 Jan., 2018

Date of report issued: 17 Jan., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCISE161105102

2 Version

Version No.	Date	Description
00	17 Jan., 2018	Original

Tested by: 17 Jan., 2018

Test Engineer

Reviewed by: Date: 17 Jan., 2018

Project Engineer

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
	TEST SUMMARY	
4		
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION 5.2 GENERAL DESCRIPTION OF E.U.T. 5.3 TEST ENVIRONMENT AND TEST MODE 5.4 DESCRIPTION OF SUPPORT UNITS 5.5 MEASUREMENT UNCERTAINTY. 5.6 LABORATORY FACILITY 5.7 LABORATORY LOCATION 5.8 TEST INSTRUMENTS LIST	5 6 6 6
6	TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS 6.3 CONDUCTED OUTPUT POWER 6.4 20DB OCCUPY BANDWIDTH 6.5 CARRIER FREQUENCIES SEPARATION 6.6 HOPPING CHANNEL NUMBER 6.7 DWELL TIME 6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE 6.9 BAND EDGE 6.9.1 Conducted Emission Method 6.9.2 Radiated Emission Method 6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method 6.10.2 Radiated Emission Method 6.10.2 Radiated Emission Method	
7	TEST SETUP PHOTO	
8	EUT CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result					
Antenna Requirement	15.203/15.247 (c)	Pass					
AC Power Line Conducted Emission	15.207	Pass					
Conducted Peak Output Power	15.247 (b)(1)	Pass					
20dB Occupied Bandwidth	15.247 (a)(1)	Pass					
Carrier Frequencies Separation	15.247 (a)(1)	Pass					
Hopping Channel Number	15.247 (a)(1)	Pass					
Dwell Time	15.247 (a)(1)	Pass					
Spurious Emission	15.205/15.209	Pass					
Band Edge 15.247(d) Pass							
Pass: The EUT complies with the essential require	Pass: The EUT complies with the essential requirements in the standard.						

Project No.: CCISE1611051

5 General Information

5.1 Client Information

Applicant:	i-Mobile Technology Corporation
Address:	3F #8 Alley 15 Lane 120 Sec. 1 Neihu Road, Neihu District, Taipei City 114, Taiwan
Manufacturer/ Factory:	i-Mobile Technology Corporation
Address:	3F #8 Alley 15 Lane 120 Sec. 1 Neihu Road, Neihu District, Taipei City 114, Taiwan

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	IB-10
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	1.68 dBi
Power supply:	Rechargeable Li-ion Battery DC10.8V/3400mAh x 2
AC adapter :	Model: ATS065S-P160
	Input: AC100-240V, 50/60Hz, 1.4A
	Output: DC 16V, 4.07A

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz		
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz		
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz		
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz		
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz		
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz		
							•••		
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz		
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz		
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz		
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz		
19	19 2421MHz 39 2441MHz 59 2461MHz								
Remark: Cl	nannel 0, 39 &78	3 selected fo	or GFSK, π/4-D	QPSK and 8	BDPSK.				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 5 of 54

5.3 Test environment and test mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test Modes:					
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.				
Hopping mode:	Keep the EUT in hopping mode.				
Remark	GFSK (1 Mbps) is the worst case mode.				

Report No: CCISE161105102

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)			
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)			
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)			
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)			
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)			
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)			

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE161105102

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radia	Radiated Emission:									
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017				
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017				
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017				
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017				
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017				
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017				
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017				
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017				
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017				
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017				
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
12	Coaxial Cable	N/A	N/A	CCIS0018	04-01-2016	03-31-2017				
13	Coaxial Cable	N/A	N/A	CCIS0020	04-01-2016	03-31-2017				

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017			
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an internal antenna which permanently attached, and the best case gain of the antenna is 1.68 dBi.

6.2 Conducted Emissions

T (D)	E00 B (45 0 0);	5.007				
Test Requirement:	FCC Part 15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto				
Limit:	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log	arithm of the frequency.				
Test setup:	Reference	Plane				
Test procedure:	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
i ost procedure.	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Hopping mode					
Test results:	Pass					
	l .					

Measurement Data:

Line:

Trace: 3

Site

: CCIS Shielding Room : FCC PART 15.247 QP LISN(RS) LINE : Tablet PC Condition

EUT Model IB-10 Test Mode : BT mode

Power Rating: AC120/V60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark

emark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu∀	<u>ab</u>	
1	0.186	41.40	0.73	10.76	52.89	64.20	-11.31	QP
1 2	0.186	27.74	0.73	10.76	39.23	54.20	-14.97	Average
3	0.198	40.74	0.73	10.76	52.23	63.71	-11.48	QP
3 4 5 6	0.230	36.87	0.73	10.75	48.35	62.44	-14.09	QP
5	0.230	23.37	0.73	10.75	34.85	52.44	-17.59	Average
6	0.277	17.88	0.74	10.74	29.36	50.90	-21.54	Average
7 8 9	8.592	26.14	0.72	10.88	37.74	50.00	-12.26	Average
8	8.869	34.89	0.72	10.89	46.50	60.00	-13.50	QP
9	11.933	31.01	0.71	10.92	42.64	60.00	-17.36	QP
10	17.661	20.65	0.70	10.92	32.27	50.00	-17.73	Average
11	18.232	31.70	0.70	10.92	43.32	60.00	-16.68	QP
12	24.142	22.49	0.70	10.88	34.07	50.00	-15.93	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Site

: CCIS Shielding Room : FCC PART 15.247 QP LISN(RS) NEUTRAL : Tablet PC Condition

EUT IB-10 Model Test Mode : BT mode Power Rating : AC120V/60Hz

Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: YT

Remark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu√	dB	
1	0.154	46.29	0.70	10.78	57.77	65.78	-8.01	QP
2	0.154	32.03	0.70	10.78	43.51	55.78	-12.27	Average
3	0.190	26.39	0.66	10.76	37.81			Average
4	0.194	41.51	0.66	10.76	52.93	63.84	-10.91	QP
5	0.226	37.64	0.66	10.75	49.05	62.61	-13.56	QP
1 2 3 4 5 6 7 8 9	0.226	23.41	0.66	10.75	34.82	52.61	-17.79	Average
7	0.277	33.50	0.65	10.74	44.89	60.90	-16.01	QP
8	5.683	20.62	0.70	10.83	32.15	50.00	-17.85	Average
9	8.105	35.60	0.70	10.86	47.16	60.00	-12.84	QP
10	8.546	25.87	0.69	10.88	37.44	50.00	-12.56	Average
11	18.039	20.50	0.69	10.92	32.11	50.00	-17.89	Average
12	18.820	35.84	0.69	10.92	47.45	60.00	-12.55	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
	GFSK mode					
Lowest	2.24	21.00	Pass			
Middle	2.39	21.00	Pass			
Highest	1.95	21.00	Pass			
	π/4-DQPSK mode					
Lowest	3.53	21.00	Pass			
Middle	3.96	21.00	Pass			
Highest	3.47	21.00	Pass			
	8DPSK mode					
Lowest	3.77	21.00	Pass			
Middle	4.14	21.00	Pass			
Highest	3.74	21.00	Pass			

Test plot as follows:

Modulation mode: GFSK

Date: 8.DEC.2016 04:32:06

Lowest channel

Date: 8.DEC.2016 04:33:22

Date: 8.DEC.2016 04:33:59

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.DEC.2016 04:36:40

Lowest channel

Date: 8.DEC.2016 04:37:21

Middle channel

Date: 8.DEC.2016 04:37:59

Highest channel

Date: 8.DEC.2016 04:41:16

Lowest channel

Date: 8.DEC.2016 04:40:48

Middle channel

Date: 8.DEC.2016 04:40:18

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)			
rest channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	1048	1356	1312	
Middle	1052	1356	1316	
Highest	1048	1360	1336	

Test plot as follows:

Modulation mode: GFSK

Date: 8.DEC.2016 09:38:56

Lowest channel

Date: 8.DEC.2016 09:41:42

Date: 8.DEC.2016 09:44:09

Middle channel

Highest channel

Modulation mode: π/4-DQPSK

Date: 8.DEC.2016 09:52:15

Lowest channel

Date: 8.DEC.2016 09:50:05

Middle channel

Date: 8.DEC.2016 09:48:00

Highest channel

Date: 8.DEC.2016 12:05:37

Lowest channel

Date: 8.DEC.2016 12:06:57

Middle channel

Date: 8.DEC.2016 12:08:20

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
	GFSK					
Lowest	1088	701.33	Pass			
Middle	1000	701.33	Pass			
Highest	1008	701.33	Pass			
	π/4-DQPSK mode					
Lowest	1004	906.67	Pass			
Middle 1008		906.67	Pass			
Highest 1008		906.67	Pass			
	8DPSK mode					
Lowest	1000	890.67	Pass			
Middle	1000	890.67	Pass			
Highest	1000	890.67	Pass			

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)		
GFSK	1052	701.33		
π/4-DQPSK	1360	906.67		
8DPSK	1336	890.67		

Test plot as follows:

Modulation mode: GFSK

Modulation mode: π/4-DQPSK

Date: 8.DEC.2016 10:04:55

Date: 8.DEC.2016 10:10:37

Lowest channel

Date: 8.DEC.2016 10:05:54

Date: 8.DEC.2016 10:06:57

Date: 8.DEC.2016 10:09:58

Date: 8.DEC.2016 10:08:37

Highest channel

Highest channel

Date: 8.DEC.2016 10:11:32

Lowest channel

Date: 8.DEC.2016 10:12:27

Middle channel

Date: 8.DEC.2016 10:13:10

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 8.DEC.2016 10:16:05

Date: 8.DEC.2016 10:21:29

Date: 8.DEC.2016 10:23:41

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.12800		
GFSK	DH3	0.26880	0.4	Pass
	DH5	0.31403		
π/4-DQPSK	2-DH1	0.12800		
	2-DH3	0.27072	0.4	Pass
	2-DH5	0.31232		
	3-DH1	0.12800		
8DPSK	3-DH3	0.26592	0.4	Pass
	3-DH5	0.31317		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.400*(1600/(2*79))*31.6=128.00ms DH3 time slot=1.680*(1600/(4*79))*31.6=268.80ms DH5 time slot=2.944*(1600/(6*79))*31.6=314.03ms

Test plot as follows:

Modulation mode: GFSK

Modulation mode: $\pi/4$ -DQPSK

Date: 8.DEC.2016 11:08:55

Date: 8.DEC.2016 11:10:51

Date: 8.DEC.2016 11:09:41

Date: 8.DEC.2016 11:10:18

Date: 8.DEC.2016 11:11:24

Date: 8.DEC.2016 11:11:57

DH5

2-DH5

Date: 8.DEC.2016 11:12:34

3-DH1

Date: 8.DEC.2016 11:13:02

3-DH3

Date: 8.DEC.2016 11:13:33

3-DH5

Report No: CCISE161105102

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

	-					
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode and hopping mode					
Test results:	Pass					

Test plot as follows:

GFSK

Lowest Channel

Date: 8.DEC.2016 10:43:55

Date: 8.DEC.2016 10:52:49

No-hopping mode

Hopping mode

Highest Channel

Date: 8.DEC.2016 11:05:46

Date: 8.DEC.2016 11:09:51

No-hopping mode

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

Date: 8.DEC.2016 10:48:25

Date: 8.DEC.2016 10:59:44

No-hopping mode

Hopping mode

Highest Channel

Date: 8.DEC.2016 11:06:56

Date: 8.DEC.2016 11:10:58

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 8.DEC.2016 10:49:47

Date: 8.DEC.2016 11:02:05

No-hopping mode

Hopping mode

Highest Channel

Date: 8.DEC.2016 11:07:41

Date: 8.DEC.2016 11:12:28

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Toot Doguiromant	ECC Dort 45 O	Cootion 4	- 200	and 15 005				
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	2.3GHz to 2.5GHz							
Test Distance:	3m	.		5514		1		
Receiver setup:	Frequency	Detecto	or			VBW Remark		
	Above 1GHz	Peak		1MHz	3MHz		Peak Value	
	_	RMS		1MHz	3MHz		Average Value	
Limit:	Frequen	су	Limit (dBuV/m @3m)			Remark		
	Above 1GHz		54.00			Average Value		
Test setup:	12			74.00		Peak Value		
	Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver							
Test Procedure:	ground at a determine the second at a determine the second antenna, who tower. 3. The antenna ground to de horizontal are measureme 4. For each surand then the and the rotal maximum results. The test-recults Specified Bases. If the emission limit specifies EUT would be second and the second and the rotal maximum results.	3 meter cane position as set 3 meter has set 3 meter has meter had vertical nt. spected er eantenna vertable was eading. seiver system and width we fon level of ed, then testee had be reported newould be	waried by the Esting of the Esting of the Inc.	r. The table was en highest radial away from the ed on the top of the ed on the top of the ed on the EUT was ed from 0 degreed as set to Peak aximum Hold I EUT in peak moduld be stoppherwise the emplement of the ed on the ed o	ter to foo for the fie antenna from 1 dees to 3 deed and dees to 3 deed and dees to 3	rence-rable-habur mereld strea are songed to 1 mete 860 degrees that degrees the table that degrees the table that degrees the table table that degrees the table t	receiving eight antenna ters above the ength. Both set to make the its worst case r to 4 meters grees to find the on and allower than the eak values of the id not have , quasi-peak or	
Test Instruments:	Refer to section			·				
Test mode:	Non-hopping m	node						
Test results:	Passed							

GFSK mode

Test channel: Lowest

Horizontal:

Site

Condition EUT : IB-10 : DH1-L Mode Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Peter REMARK :

ייייייייייייייייייייייייייייייייייייייי	E		Antenna Factor						Remark	
-	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		-
	2390.000 2390.000									

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition

EUT : IB-10 : DH1-L Mode Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Peter REMARK :

THURST	n :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹		d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	16.46	23.68	4.69	0.00	44.83	74.00	-29.17	Peak
2	2390.000	7.46	23.68	4.69	0.00	35.83	54.00	-18.17	Average

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC Condition

EUT Model : IB-10 Test mode : DH1-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Peter REMARK :

ReadAntenna Cable Preamp Limit Over Loss Factor Level Line Limit Remark Freq Level Factor MHz dB dBuV/m dBuV/m dBuV dB/m 0.00 45.84 74.00 -28.16 Peak 0.00 36.26 54.00 -17.74 Average 2483.500 17.33 23.70 4.81 2483.500 7.75 23.70 4.81

Vertical:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition

EUT Model : IB-10
Test mode : DH1-H Mode
Power Rating : AC120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Peter

REMARK

	Freq MHz		Antenna Factor							
		dBuV	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
1	2483.500	21.15	23.70	4.81	0.00	49.66	74.00	-24.34	Peak	
2	2483.500	7.78	23.70	4.81	0.00	36.29	54.00	-17.71	Average	

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet PC : IB-10 : 2DH1-L Mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: Peter

REMARK

PHILTITAL									
	Freq		Antenna Factor						
-	MHz	dBu₹		dB	<u>ab</u>	dBuV/m	dBuV/m	dB	
1	2390.000					45.07			
2	2390.000	7.43	23.68	4.69	0.00	35.80	54.00	-18.20	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition EUT

Model : IB-10 Test mode : 2DH1-L Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Peter REMARK :

	Freq		Antenna Factor						
ì	MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2390,000 2390,000								

Test channel: Highest

Horizontal:

Frequency (MHz)

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC

EUT Model : IB-10
Test mode : 2DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Peter
REMMARK

Huni:55%

REMARK

	Freq	ReadAntenna Freq Level Factor							
2	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	 -
	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition

EUT : IB-10 : 2DH1-H Mode Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Peter REMARK:

Huni:55%

Freq		Antenna Factor						
MHz	dBu₹		<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
2483.500 2483.500								

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet PC : IB-10 : 3DH1-L Mode EUT Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Peter REMARK :

EMAKI	:	Read	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000					44.55 35.81			

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet PC Condition

EUT Model : IB-10 Test mode : 3DH1-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5 C

Huni:55%

Test Engineer: Peter REMARK :

רידשוונים		Antenna Factor			Remark	
	MHz	<u>dB</u> /π		 	 	_
1 2	2390.000 2390.000					

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet PC : IB-10 : 3DH1-H Mode Condition

EUT Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Peter REMARK:

Huni:55%

1 2

7.5	Fr	eq		Antenna Factor							
	<u>N</u>	Hz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
				23.70 23.70						Peak Average	

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet PC : IB-10 EUT : 1B-10
Test mode : 3DH1-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Peter
REMARK : Model

Huni:55%

1 2

М	: 11									
	Freq		Antenna Factor						Remark	
	MHz	dBu∇		<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		_
	2483,500 2483,500									

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and DA00-705					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Non-hopping mode					
Test results:	Pass					

Test plot as follows:

GFSK

Lowest channel

Date: 8.DEC.2016 12:11:07

π/4-DQPSK

Lowest channel

Date: 8.DEC.2016 12:14:31

30MHz~25GHz

Middle channel

Date: 8.DEC.2016 12:12:03

30MHz~25GHz

Middle channel

Date: 8.DEC.2016 12:15:27

30MHz~25GHz

Highest channel

Date: 8.DEC.2016 12:13:19

30MHz~25GHz

Highest channel

Date: 8.DEC.2016 12:16:14

30MHz~25GHz

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

30MHz~25GHz

8DPSK

Lowest channel

Date: 8.DEC.2016 12:20:00

30MHz~25GHz

Date: 8.DEC.2016 12:20:59

30MHz~25GHz

Highest channel

Date: 8.DEC.2016 12:21:55

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M						-	
Test Requirement:	FCC Part 15 C		209				
Test Method:	ANSI C63.10: 2						
Test Frequency Range:	9 kHz to 25 GH	Z					
Test Distance:	3m	T			1		
Receiver setup:	Frequency	Detector	r	RBW	VBV	V Remark	
	30MHz-1GHz	Quasi-pea	oeak 120kHz 3		300kl		
	Above 1GHz	Peak	k 1MHz 3I		3MH		
		RMS		1MHz	3MH		
Limit:	Frequenc		Limi	it (dBuV/m @	⊉3m)	Remark	
	30MHz-88N	ИHz		40.0		Quasi-peak Value	
						Quasi-peak Value	
	216MHz-960MHz 46.0 Quasi-pe						
	960MHz-1GHz 54.0 Quasi-peak						
	Above 1GHz 54.0 Average Value						
	7.551515			74.0		Peak Value	
	7/////	urn 0.8m	v 4m		Amplifier Con	Antenna Tower Search Antenna RF Test Receiver Antenna Tower	

Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : Tablet PC Condition

EUT : LB-10
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK :

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	dB/m	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	73.103	56.64	9.52	1.59	29.69	38.06	40.00	-1.94	QP
2	119.856	53.27	10.30	2.17	29.39	36.35	43.50	-7.15	QP
3	199.986	52.82	11.30	2.87	28.83	38.16	43.50	-5.34	QP
1 2 3 4	528.246	46.59	16.76	3.77	29.04	38.08	46.00	-7.92	QP
	721.726	45.71	19.58	4.26	28.58	40.97	46.00	-5.03	QP
6	815.968	44.13	19.99	4.30	28.13	40.29	46.00	-5.71	QP

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : Tablet PC Model : IB-10
Test mode : BT Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
RFM@RV

REMARK

	Freq		Antenna Factor					Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /π	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	166.651	52.06	8.84	2.64	29.08	34.46	43.50	-9.04	QP
2	199.986	52.73	11.30	2.87	28.83	38.07	43.50	-5.43	QP
3	237.476	56.41	11.72	2.83	28.61	42.35	46.00	-3.65	QP
4	269.428	53.63	12.53	2.86	28.50	40.52	46.00	-5.48	QP
2 3 4 5 6	414.722	50.55	15.23	3.12	28.81	40.09	46.00	-5.91	QP
6	721.726	47.05	19.58	4.26	28.58	42.31	46.00	-3.69	QP

Above 1GHz:

Te	st channel:		Lowest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	48.38	30.85	6.80	41.81	44.22	74.00	-29.78	Vertical
4804.00	49.69	30.85	6.80	41.81	45.53	74.00	-28.47	Horizontal
Test channel:			Lowest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	38.27	30.85	6.80	41.81	34.11	54.00	-19.89	Vertical
4804.00	37.46	30.85	6.80	41.81	33.30	54.00	-20.70	Horizontal

Te	st channel		Middle		Level:		Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	49.52	31.20	6.86	41.84	45.74	74.00	-28.26	Vertical	
4882.00	48.77	31.20	6.86	41.84	44.99	74.00	-29.01	Horizontal	
Te	Test channel:			Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	39.56	31.20	6.86	41.84	35.78	54.00	-18.22	Vertical	
4882.00	38.25	31.20	6.86	41.84	34.47	54.00	-19.53	Horizontal	

Te	st channel:		Highest		Level:		Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	49.51	31.63	6.91	41.87	46.18	74.00	-27.82	Vertical
4960.00	48.77	31.63	6.91	41.87	45.44	74.00	-28.56	Horizontal
Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	38.26	31.63	6.91	41.87	34.93	54.00	-19.07	Vertical
4960.00	39.49	31.63	6.91	41.87	36.16	54.00	-17.84	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.