

FOUNDATIONS OF STATISTICAL ANALYSIS & MACHINE LEARNING

Amric Trudel

amric.trudel@epita.fr

COURSE PROGRAM

Structure

PREPARATION	Data exploration				
	Data preprocessing				
DECDESSION	Linear regression with one variable				
REGRESSION					
CLASSIFICATION	Classification model assessment				
	k-NN, Decision Tree, SVM				
CLUSTERING	k-means, hierarchical clustering				
DIMENSIONALITY REDUCTION	Principal Components Analysis				
ALL NOTIONS	Final assignment				

LOGISTIC REGRESSION

Model definition

• Probability of belonging to class 1:

$$p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

CLASSIFICATION MODEL TRAINING

Log loss

• Loss function of a classifier (higher accuracy when closer to zero):

$$LogLoss = -\frac{1}{n} \sum_{i=1}^{n} Y_i log(\hat{p}(x_i)) + (1 - Y_i) log(1 - \hat{p}(x_i))$$

li	$P(x_i)$	li
1	0.85	1
1	0.43	0
0	0.12	0
1	0.62	1
0	0.51	1
0	0.22	0
:	:	:

 V_{i} $\hat{n}(v_{i})$ \hat{V}_{i}

Confusion matrix

Y_i	\widehat{Y}_i	
1	1	TP
1	0	FΝ
0	0	Z
1	1	TP
0	1	FP
0	0	TN
•	:	:

Classification metrics

Classification metrics

$$\frac{\text{Precision}}{\text{How many selected}} = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

$$\frac{\text{TP}}{\text{Items are relevant?}}$$

Classification metrics

Classification metrics

$$\begin{array}{l} \text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}} \\ \text{items are relevant?} \end{array}$$

$$\begin{array}{l} \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \\ \text{How many relevant} \\ \text{items are selected?} \end{array}$$

$$\begin{array}{l} \text{F1-score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \end{array}$$

and recall

Classification metrics

$$\begin{array}{c} Accuracy \\ What is the proportion \\ of correct predictions? \end{array} = \frac{TP + TN}{TP + TN + FP + FN} \\ \begin{array}{c} Precision \\ How many selected \\ items are relevant? \end{array} = \frac{TP}{TP + FP} \\ \begin{array}{c} How many relevant \\ items are selected? \end{array} = \frac{TP}{TP + FN} \\ \begin{array}{c} Precision \times Recall \\ Precision \times Recall \\ \hline Precision + Recall \end{array}$$

and recall

Receiver Operating Characteristic (ROC)

- ROC curve: plot of true positive rate vs. false positive rate.
- Area Under the Curve (AUC): metric that represents the quality and performance of a classifier.

Python implementation

• Computing the confusion matrix:

```
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, y_pred)
```

• Computing the accuracy, the precision, the recall:

```
from sklearn.metrics import accuracy_score, precision_score, recall_score
accuracy_score(y_test, y_pred)
precision_score(y_test, y_pred)
recall_score(y_test, y_pred)
f1_score(y_test, y_pred)
```

Python implementation

Plotting the ROC curve:

```
from sklearn.metrics import roc_curve
y_score = y_proba[:,1]
FP_rate, TP_rate, threshold = roc_curve(y_test, y_score)
plt.plot(FP_rate, TP_rate)
```

Computing the AUC:

```
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test, y_score)
```

K-fold Cross Validation

- We saw in the lecture on multiple linear regression that we should use a (hold out) validation set to evaluate model alternatives in order to choose the best one.
- The issue with using a hold out validation set of about 25% is that it "wastes" about 25% of the data.
- There is a more sophisticated way: K-fold cross-validation

K-fold Cross Validation

K-fold Cross Validation

Fitting and scoring a model with cross-validation:

K-fold Cross Validation

Procedure:

- Choose a metric you want to optimize (accuracy, precision, recall, f1)
- Perform k-fold cross validation on each candidate model
- Average the scores obtained among all folds for each model
- Pick the best model
- Retrain that model (with the same hyperparameters) on the entire training dataset
- Measure the generalization error with the test set (that you should still keep aside)

CLASSIFICATION ASSESSMENT

Example of implementation

- Data set: user profiles and sales information
- Objectives:
 - Train a logistic regression to predict purchase based on profile information
 - Assess the performance

	User ID	Gender	Age	EstimatedSalary	Purchased	
1	15624510	Male	19	19000	no	
2	15810944	Male	35	20000	no	
3	15668575	Female	26	43000	no	
4	15603246	Female	27	57000	no	
5	15804002	Male	19	76000	no	
6	15728773	Male	27	58000	no	
7	15598044	Female	27	84000	no	
8	15694829	Female	32	150000	yes	
9	15600575	Male	25	33000	no	
10	15727311	Female	35	65000	no	
11	15570769	Female	26	80000	no	
12	15606274	Female	26	52000	no 1	1
13	15746139	Male	20	86000	no	
		122121				

CLASSIFICATION ASSESSMENT

Student practice

- Data set: breast cancer diagnosis based on tumor characteristics
- Objectives:
 - Work again on previous subject
 - Assess and compare the models

mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	tumor type
14.69	13.98	98.22	656.1	0.10310	0.18360	0.14500	0.06300	0.2086	0.07406	benign
13.17	18.66	85.98	534.6	0.11580	0.12310	0.12260	0.07340	0.2128	0.06777	malignant
12.95	16.02	83.14	513.7	0.10050	0.07943	0.06155	0.03370	0.1730	0.06470	benign
18.31	18.58	118.60	1041.0	0.08588	0.08468	0.08169	0.05814	0.1621	0.05425	malignant
15.13	29.81	96.71	719.5	0.08320	0.04605	0.04686	0.02739	0.1852	0.05294	malignant
16.16	21.54	106.20	809.8	0.10080	0.12840	0.10430	0.05613	0.2160	0.05891	malignant
19.19	15.94	126.30	1157.0	0.08694	0.11850	0.11930	0.09667	0.1741	0.05176	malignant
18.08	21.84	117.40	1024.0	0.07371	0.08642	0.11030	0.05778	0.1770	0.05340	malignant

Foundations of Statistical Analysis & Machine Learning – Amric Trudel– EPITA