Introduction to Metabolomics

Introduction to metabolomics

What is it and what are its applications?

mpd39@cam.ac.uk

Focus of the two sessions:

The aim of this course is to provide an overview of the applications, laboratory equipment and online bioinformatic portals for metabolomics research.

Plant Bias – all techniques transferable to other organisms

Introduction to metabolomics – part 1:

09:30 – 10:00 – **Introduction to metabolomics** – what is it and what are its applications?

10:00 – 11:00 – **overview of techniques** – targeted and non-targeted metabolomics (metabolite extraction procedures, equipment – GC-MS, HPLC-PDA-MS)

11:00 - 11:20 - coffee break

11:20-12:30 – how to identify a metabolite – online practical

12:30 - 13:30 - lunch

Introduction to metabolomics – part 2:

13:30 – 14:00 – **Introduction to chemometrics** – how to analyse many metabolites

14:00 – 15:00 – online practical involving multivariate statistics

15:00-15:15 – tea break

15:15-15:45 – **metabolic mapping** – identifying proteins and genes associated with your metabolites

15:45-17:00 – **online practical** - **metabolic mapping** – identifying proteins and genes associated with your metabolites

What is the metabolome?

 Total quantitative collection of chemical compounds (metabolites) present in an organism eg. sugars, amino acids, phenolics, lipids

Not proteins or peptides

Highly complex

Thorough and unbiased assessment of all metabolites within an organism

Complexity

Physically and chemically complex

Large range of molecular weights 10's to 100's MW (and size) Polar and non-polar metabolites Volatiles

Variation in number of known metabolites per species

Yeast Saccharomyces cerevisiae (584)

E. coli (436)

Plant kingdom (up to 200 000)

Human (2900)

Very wide concentration range

mM to sub-pM

Temporal changes - flux

What is the metabolome?

TRANSCRIPTOMICS

PROTEOMICS

METABOLOMICS

"Metabolomics" first appeared in the literature in 1998 (Fiehn et al. 2007. Metabolomics)

Fig. 1 Number of publications per year based on ISI Web-of-Science database query using the search phrases metabolom* OR metabonom*

Measuring many metabolites is nothing new, but...the *scale* of the analysis is

Rather than look at individual reactions to understand an organism (*reductionist theory*) an attempt is made to measure the whole system (*systems biology*)

Why study the metabolome? – direct link between genetic and environmental signals

Why study the metabolome?

- •Need to understand metabolites and metabolic pathways before we can exploit them
- •Metabolic status of cells provides a clearer indication of health than mRNA or proteins
- Advance systems biology

Applications

Trait development in crops

eg, salt and drought tolerance; defence; photoprotection

Genetic engineering

safety – substantial equivalences

High value products – cosmetics; medicine

Plant disease biomarkers

Plant **population / evolutionary** studies

Biofuels

Biomarkers for:

Disease drug intervention environmental stress

Nutrigenomics

Personal health assessments

Personalised medicine

Metabolic engineering

Why study the metabolome?

Examples of early applications:

Diagnosis of coronary heart disease using metabonomics

Brindle, J.T. et al.(2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 8, 1439-1444.

Metabolite profiling for plant functional genomics

Arabidopsis thaliana – model species. Quantified and identified many metabolites and related different genotypes to their metabolic profiles (by GC-MS) Fiehn et al.(2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157-1161.

Why is this application important in natural systems?

Natural selection (traits related to fitness eg, survival, reproduction)

Local adaptation (variation in traits)

Very little is known about variation in such metabolic traits – how do we measure them?

Techniques used in measuring the metabolome

Dunn et al. 2005

Sample collection STOP metabolism

- Cold methanol
- Hot Ethanol or Methanol
- Freeze clamping for plants
- Liquid nitrogen (-196'C)

How to get metabolites out of the cell Solvent extraction and storage

- Methanol (hot or cold)
- Methanol/chloroform/water
- Hot ethanol
- Ball milling or grinding with mortar/pestle
- Store at -80'C

Detecting metabolites – Metabolic Fingerprinting

High throughput screening for metabolic phenotypes

Mass Spectrometry (MS)

Nuclear Magnetic Resonance (NMR) Fourier Transform Infra Red (FT-IR)

Metabolite fingerprinting

Detecting metabolites – Metabolic Profiling

High Performance Liquid Chromatography (HPLC) – Photodiode array (PDA) – Mass spectrometry (MS)

The mirror crack'd: the intense blue colour of *Ophrys speculum* is produced by both chemical and structural means

Silvia Vignolini^{1,2}, Matthew P. Davey¹, Julia Tratt³, Svante Malmgren⁴, Richard Bateman³, Paula Rudall³, Ullrich Steiner², and Beverley J. Glover¹

New Phytologist in press

MS/MS

cyanidin 3-(3-malonyl glucoside) 534.90 448.9 (-malonyl) 287.04 (-hexose and malonyl)

Metabolic Profiling - Gas Chromatography (GC) - Flame Ionisation Detector (FID)

Mass (Bin) (1000's)

Output files – can you see the difference?

Need multivariate statistics

codes	2 day accl	2 day accl	2 day accl	2 day accl	2 day acc	2 day accl	2 day acc						
	_	Helin	_	Helin	Helin	Helin	Helin	Helin	Helin	Helin	Helin		Sample name (100's)
pop 59	0.008				0.0128		0.0223						
60	0.000				0.0120	0.0067	0.0052			0.0073			
60.5	0				0	0.0007			_	0			
61	0		_		0	0		_		0	_		
61.1	0			0	0				_	0			
61.2	0		0	0	0			0.0011	0.0008	0	0		
61.3	0	0	0.0016	0	0	0.0012	0	0.0025	0.0034	0	0.0009		
61.4	0	0	0.0014	0	0	0.0013	0	0	0.0023	0	0		
61.5	0	0	0	0	0.0518	0.026	0.0514	0.0789	0.135	0	0.0922		
61.6	0.1223	0	0.0483	0	0.0564	0.1332	0	0	0.0529	0.0727	0.0617		
61.7	0.0542	0.0629	0.03	0.0427	0	0.0704	0	0.0914	0.1323	0.0437	0		
61.8	0.1164	0.023	0.0419	0.063	0.0456	0.0964	0	0	0.185	0	0.1583		
61.9	0	0.0406	0.1193	0.1481	0.1525	0.0937	0.0777	0	0.0427	0	0		
62	12.0269	5.7907	8.0946	8.7906	9.8656	9.3396	5.5138	17.1029	14.9041	14.5248			
62.1	0.0102	0	0.0359	0.0153	0.0083	0.0116	0.0112	0.022	0.0094	0.0234	0.0136	—	Intensity
62.2	0.025	0	0	0.0112		0.0276	0	0	0.0579	0.0365			•
62.3	0	0.0118	0.0356	0	0.0237	0.0471	0.01	0	0.0123	0.0231	0		Total Ion Counts
62.4	0.0198	0.0132	0.0418	0.0425		0.0479	0.0139	0.0727	0.0238	0.0495			(10001)
62.5	0	0.0066	0.03	0.0122		0.036			0	0.0317	0.0467		(1000's)
62.6	0	_		0.0298	0.0134				0.0367	0			,
62.7	0.0139	0.0033		0.0114	0			0.0649	0.0094	0			
62.8	0.0104	0.009		0.0139				0.0315	0.0088				
62.9	0		0.0048	0.013					0	0			
63	0.0803	0.0337	0.0665	0.067	0.0718		0.0386		0.0973	0.106			
63.1	0.006	0.0047	0.0042	0.0042	0.0059		0		0.0077	0.0063			
63.2	0.0038			0.0031	0.004	0.0036			0.0128	0			
63.3	0.0058	0.0025		0.003			0.0035		0.0098				
63.4	0.0105	0.0026		0.0055	0.0109				0.0235		_		
63.5	0		0	0	0				0.0077	0.007			
63.6	0			0					0.0111	0.0058			
63.7	0	_		0	0.0017	0.011			0.0049				
63.8	0.0059			0.0031	0.004				0.0104	0.0094			
63.9	0.0021	0.001	0.0028	0.0027	0.0016					0.0044			
64	0.1049	0.0463	0.0792	0.0779	0.0873		0.048	0.1639	0.1225	0.1366			

Multivariate Data Analysis

Unsupervised

Principal Component Analysis (PCA)

Supervised

Partial Least Squares

-Discriminant Analysis (PLS-DA)

Trygg et al. 2007

Metabolite matches and mapping based on mass matching

Large number of online databases for metabolite and network mapping

Updated yearly in Nucleic Acids Research Galperin and Fernández-Suárez 2012

Brown et al. 2009

KEGG is the most widely used/known site for metabolic mapping – there are errors but getting better!

Another common site is MAPMAN

Eg. Search mass 504.159

COMPOUND: C00794

Help

lla - u	neip	mi									
Entry	C00794 Compound										
Name	D-Sorbitol; D-Glucitol; L-Gulitol; Sorbitol										
Formula	C6H14O6										
Mass	182.079										
Structure	OH -OH -OH -OH OH C00794										
	Mol file KCF file DB search Jmol KegDraw										
Remark	Same as: D00096 (BRITE hierarchy)										
Reaction	RO0874 RO0875 RO1697 RO1787 RO2865 RO2866 RO2867 RO2868 RO2925 RO2926 RO5820 RO7346										
Pathway	PATH: ko00051 Fructose and mannose metabolism PATH: ko00052 Galactose metabolism PATH: ko01100 Metabolic pathways PATH: ko02010 ABC transporters PATH: ko02060 Phosphotransferase system (PTS)										
Enzyme	1.1.1.14 1.1.1.15 1.1.1.21 1.1.1.289 1.1.99.21 1.1.99.28 2.7.1.1 2.7.1.69 3.1.3.50 3.2.1.22										
Other DBs	CAS: 50-70-4 PubChem: 4052 ChEBI: 17924 KNApSAcK: C00001173 3DMET: B04724 NIKKAJI: J2.299C										
KCF data	Show										

Can overlay transcriptomic and proteomic data – very complex!

MetExplore and CytoScape

Summary

- Metabolomics logical progression of genomic and post-genomic science
- Diverse range of applications especially trait identification
- •Range of fingerprinting and profiling techniques
- Large datasets require multivariate statistics
- •Large number of online databases for metabolite identification and mapping

Overview of techniques

Targeted and non-targeted metabolomics (metabolite extraction procedures, equipment GC-MS, HPLC-PDA-MS)