# Transformada Z



#### Temas a tratar

- Introducción y definición de TZ.
- Relación entre TL y TZ.
- Relación entre TF y TZ.
- Mapeos s-z.
- Sistemas discretos y TZ.
- TZ inversa.



# Objetivos

- Utilizar la transformada Z como herramienta para obtener la función de transferencia de un sistema de tiempo discreto.
- Obtener la respuesta en frecuencia de sistemas de tiempo discreto.
- Analizar las limitaciones de las transformaciones conformes utilizadas.

## Papel de la TZ

 La Transformada Z juega un papel muy importante en la representación y el análisis de sistemas de tiempo discreto y coeficientes constantes (LTI).



#### Tiempo continuo

# Ecuaciones diferenciales

$$dy^{p}(t)/dt = f(dy^{p-1}(t)/dt,..., y(t), dx^{q}(t)/dt, ..., x(t))$$



Tiempo discreto

Ecuaciones en diferencias o de recurrencia

$$y[n] = f'(y[n-p], ..., y[n-1], x[n-q], ..., x[n])$$

# Ecuaciones diferenciales

Ecuaciones diferenciales

Transformada de Laplace

Razón de polinomios en *s* 

# Repaso TL

Transformada de Laplace  $\mathcal{L}(s)$ (con  $s = \sigma + j\omega$ )



Función de transferencia |H(s)|.



Análisis de estabilidad.





Ecuaciones diferenciales

Transformada de Laplace

Razón de polinomios en *s* 

Ecuaciones en diferencias

$$y[n] = f'(y[n-p], ..., y[n-1], x[n-q], ..., x[n])$$

Ecuaciones diferenciales

Transformada de Laplace

Razón de polinomios en *s* 









# La transformada Z nos permite

- Trabajar las ecuaciones en diferencias como ecuaciones algebraicas.
- Representar las funciones de transferencia de sistemas discretos como diagramas de polos y ceros en el plano z.
- Transformar secuencias, representen o no respuestas impulsivas de sistemas (señales).

#### Notas históricas

- 1744: la idea básica de la TZ ya era conocida por Laplace.
- 1947: es re-introducida por W. Hurewicz para resolver ecuaciones en diferencias lineales con coeficientes constantes (sistemas de control con datos muestreados para radar).
- 1952: Ragazzini y Zadeh, de la Universidad de Columbia, la bautizan con su denominación actual.

Desde el punto de vista matemático también puede verse como una serie de Laurent.



HurewicZ

#### Definición

• La TZ de una secuencia x[n] se define como:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

donde  $z \in \mathbb{C}$ 

#### Notación

$$X(z) = Z\{x[n]\}$$

## Ejemplo 1: Secuencia general



$$x[n] = [\cdots \ 0 \ 1.5 \ 1 \ 2 \ 2 \ 2 \ 1.5 \ 0 \ \cdots]$$

$$X(z) = 1.5z^{1} + 1 + 2z^{-1} + 2z^{-2} + 2z^{-3} + 1.5z^{-4}$$

## Ejemplo 2: secuencia causal

• Dado:

$$x[n] = [1 \quad -2 \quad 3 \quad 0 \quad 4 \quad -1]$$

• Su transformada Z será:

$$X(z) = 1 - 2z^{-1} + 3z^{-2} + 4z^{-4} - 1z^{-5}$$

#### Transformada Z unilateral

Para secuencias causales...

#### TZ unilateral...

$$X(z) = \sum_{n=0}^{\infty} x[n]z^{-n}$$

- Cuando la suma converge, define una función de z.
- A la función X(z) así formada se la denomina Transformada Z unilateral de x[n].

#### TZ unilateral...

Sea por ejemplo, la secuencia:

$$x[n] = \delta[n-2],$$

entonces  $x[2] = \delta[0] = 1$ , y x[n] = 0 para  $n \neq 2$ ; luego:

$$X(z) = z^{-2}$$

y, en general:

$$\delta[n-k] \longleftrightarrow z^{-k}$$

### Propiedades de la TZ

#### • Unicidad:

— Para cada secuencia x[n] corresponde una única transformada X(z).

## Propiedades de la TZ

#### Linealidad:

- Para una secuencias x[n] y y[n] con transformadas X(z) y Y(z), entonces a a x[n] + b y[n] le corresponde una transformada a X(z) + b Y(z) con a,  $b \in \mathbb{R}$ .

## Propiedades de la TZ

#### • Convolución:

 $-\operatorname{Si} X(z)$ , Y(z) y H(z) son las TZ de x[n], y[n] y h[n] entonces la TZ de:

$$y[n] = x[n] *h[n]$$
, es  $Y(z) = X(z)H(z)$ 

# Teorema del Desplazamiento

# Teorema del desplazamiento

- Dada x[n], se forma la secuencia  $x_1[n] = x[n-1]$ , obtenida desplazando x[n] en una unidad de tiempo.
- Expresando la TZ de  $x_1[n]$  en función de la TZ de x[n]:

$$X_{1}(z) = x_{1}[0] + x_{1}[1]z^{-1} + ... + x_{1}[n]z^{-n} + ...$$

$$= x[-1] + x[0]z^{-1} + x[1]z^{-2} + ...$$

$$= x[-1] + z^{-1}\{x[0] + x[1]z^{-1} + ...\}$$

# Teorema del desplazamiento

#### Es decir que:

$$X_1(z) = x[-1] + z^{-1} \{x[0] + x[1] z^{-1} + ...\}$$

# Teorema del desplazamiento

• Es decir que:

$$X_{1}(z) = x[-1] + z^{-1} \{x[0] + x[1] z^{-1} + \dots\}$$

$$X(z)$$

• Entonces:

$$X_1(z) = x[-1] + z^{-1}X(z)$$

#### Resumiendo

$$x[n] \leftrightarrow X(z)$$

$$x[n-1] \leftrightarrow z^{-1}X(z) + x[-1]$$

#### Generalizando

$$x[n] \leftrightarrow X(z)$$

$$x[n-m] \leftrightarrow z^{-m} X(z)$$

Siempre que x[n] sea causal

#### Temas a tratar

- Introducción y definición de TZ.
- Relación entre TL y TZ.
- Relación entre TF y TZ.
- Mapeos s-z.
- Sistemas discretos y TZ.
- TZ inversa.



# ¿Y si no partimos de la definición? Otro Enfoque

(más intuitivo)

#### Otro enfoque...

• Un muestreador es un dispositivo esencial en sistemas discretos. Consta de un interruptor que se cierra a intervalos generalmente regulares "leyendo" la entrada en determinados instantes t=nT



Muestreador

#### Otro enfoque...

 Si se toma la salida del muestreador como un tren de impulsos ponderados entonces podemos escribir:

$$x^*(t) = \delta_T(t)x(t)$$
 con  $\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$ 

## Otro enfoque...

• Se puede considerar al muestreador como un modulador del tren de impulsos unitarios mediante la entrada x(t):



$$x^{*}(t) = \sum_{n=-\infty}^{+\infty} x(t)\delta(t-nT) = \sum_{n=-\infty}^{+\infty} x(nT)\delta(t-nT)$$

## Otro enfoque...

 Tomando la transformada de Laplace de la ecuación del muestreador:



## Otro enfoque...

 Tomando la transformada de Laplace de la ecuación del muestreador:

$$X^*(s) = \mathcal{L}\lbrace x^*(t)\rbrace = \sum_{n=-\infty}^{+\infty} x(nT)e^{-nTs}$$

Y definiendo  $e^{-sT} = z^{-1}$  (Retardo en el dominio temporal)

$$X(z) = Z\{x^*(t)\} = \sum_{n=-\infty}^{+\infty} x(nT)z^{-n}$$

## Otro enfoque...

$$X(z) = Z\{x^*(t)\} = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

## Relación entre TZ y TL...

- La TZ, X(z), de una secuencia x(nT) no es otra cosa que la TL de la señal muestreada  $x^*(t)$  con  $e^{sT}$  sustituida por la variable z.
- Esto define un mapeo entre el plano S y el plano Z denominado mapeo ideal:

$$s = \ln(z/T)$$

## Relación entre TZ y TL...



Plano S Plano Z

#### Temas a tratar

- Introducción y definición de TZ.
- Relación entre TL y TZ.
- Relación entre TF y TZ.
- Mapeos s-z.
- Sistemas discretos y TZ.
- TZ inversa.



## Relación con otras transformadas...

TF

## Relación con otras transformadas...



## Repaso TL

Transformada de Laplace  $\mathcal{L}(s)$ (con  $s = \sigma + j\omega$ )



Función de transferencia |H(s)|.



Análisis de estabilidad.





## Relación con otras transformadas...



#### Relación con otras transformadas...



• La TZ de x[n] es función de z compleja:



• La TZ de x[n] es función de z compleja:

$$X(z) = Z\{x[n]\} = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$X(\rho e^{j2\pi f}) = \sum_{n=-\infty}^{+\infty} x[n] \left(\rho e^{j2\pi f}\right)^{-n}$$

En forma equivalente.

$$X(\rho e^{j2\pi f}) =$$

$$= \sum_{n=-\infty}^{+\infty} \left[ x[n] \rho^{-n} \right] e^{-j2\pi fn}$$

• En forma equivalente:

$$X(\rho e^{j2\pi f}) = \sum_{n=-\infty}^{+\infty} \left[ x[n] \rho^{-n} \right] e^{-j2\pi fn}$$
$$= TF \left\{ x[n] \cdot \rho^{-n} \right\}$$

En forma equivalente

$$X(\rho e^{j2\pi f}) = \sum_{n=-\infty}^{+\infty} \left[x[n]\rho^{-n}\right] e^{-j2\pi fn}$$

$$= TF\left\{x[n].\rho^{-n}\right\}$$

Exponencial real

¿Qué ocurre para distintos valores de ho ?

• Como caso particular, cuando  $\rho$  =1 o en forma equivalente |z| =1:

$$X(z)\big|_{z=e^{j2\pi f}}=TF\left\{x[n]\right\}$$





#### Resumen de las relaciones entre transformadas



## Convergencia

- La convergencia depende de  $\rho$  ya que puede forzar a la secuencia original a convertirse en otra que tenga TF.
- Si para x[n] no existe la TF, puede existir la TF de  $\rho^{-n}x[n]$  para determinados valores de  $\rho$  y tener TZ.
- Puede decirse también que depende de los valores de z. Esto nos permite hablar de regiones de convergencia.

#### Temas a tratar

- Introducción y definición de TZ.
- Relación entre TL y TZ.
- Relación entre TF y TZ.
- Mapeos s-z.
- Sistemas discretos y TZ.
- TZ inversa.



# Transformaciones Conformes S—→Z



## **Transformaciones Conformes**

Transformación "ideal"

- Transformación de Euler
- Transformación Bilineal

• La transformación de Euler aproxima la derivada de una función continua dy/dt por un cociente incremental:

$$\left[ \frac{dy}{dt} \right] = \left[ \frac{y[n] - y[n-1]}{T} \right]$$

T: período de muestreo

De modo que:

$$L\left\lceil \frac{dy}{dt} \right\rceil = sY(s)$$

se transforma en:

$$Z \left\lceil \frac{dy}{dt} \right\rceil \stackrel{\sim}{=} Z \left\lceil \frac{y[n] - y[n-1]}{T} \right\rceil = \frac{\left(1 - z^{-1}\right)Y[z]}{T}$$

De lo anterior se deduce que el mapeo entre el plano S y el plano Z queda definido por:

$$s = \frac{\left(1 - z^{-1}\right)}{T}$$

$$s = \frac{\left(1 - z^{-1}\right)}{T}$$

• Esta transformación puede ser utilizada únicamente en el mapeo de sistemas tipo pasa bajo, con frecuencias de corte bajas, ya que no cumple con todas las condiciones de mapeo.



Plano S Plano Z

#### Transformación Bilineal

$$s = \frac{2(1 - z^{-1})}{T(1 + z^{-1})}$$

#### Transformación Bilineal



Plano S Plano Z

## Transformación Bilineal



#### Temas a tratar

- Introducción y definición de TZ.
- Relación entre TL y TZ.
- Relación entre TF y TZ.
- Mapeos s-z.
- Sistemas discretos y TZ.
- TZ inversa.



## Ecuaciones de Recurrencia

• Cualquier ecuación diferencial ordinaria y de coeficientes constantes :

$$A_p y^{(p)}(t) + ... + A_1 y'(t) + A_0 y(t) = B_q x^{(q)}(t) + ... + B_0 x(t)$$

donde y(t) es la salida frente a un estímulo x(t), puede expresarse mediante una ecuación de recurrencia de la forma:

$$y[n] = \sum_{i=1}^{p} a_i y[n-i] + \sum_{j=0}^{q} b_j x[n-j]$$

• Partiendo la función de transferencia del sistema, esta se puede expresar en términos de la transformada Z:

$$H(z) = \frac{\sum_{j=0}^{q} b_{j} z^{-j}}{1 - \sum_{i=1}^{p} a_{i} z^{-i}}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{j=0}^{q} b_j z^{-j}}{1 - \sum_{i=1}^{p} a_i z^{-i}}$$

$$Y(z) - \sum_{i=1}^{p} a_i Y(z) z^{-i} = \sum_{j=0}^{q} b_j X(z) z^{-j}$$

 $Y(z) = \sum_{i=1}^{p} a_i Y(z) z^{-i} + \sum_{j=0}^{q} b_j X(z) z^{-j}$ 

• Si anti-transformamos la ecuación:

$$Y(z) = \sum_{i=1}^{p} a_i Y(z) z^{-i} + \sum_{j=0}^{q} b_j X(z) z^{-j}$$

Obtenemos:

$$y[n] = \sum_{i=1}^{p} a_i y[n-i] + \sum_{j=0}^{q} b_j x[n-j]$$

# Funciones de Transferencia de Sistemas Discretos

### **Sistemas Discretos**

- Sistemas Autorregresivos(AR).
- Sistemas Moving Average (MA).
- Sistemas ARMA.

### Sistemas AR

 Su salida en un instante depende del valor actual de la entrada y de los valores anteriores de la propia salida

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0}{\left(a_0 + a_1 z^{-1} + \dots + a_p z^{-p}\right)}$$

#### Sistemas MA

 Su salida depende solamente del valor actual de la señal de entrada y sus valores anteriores.

$$H(z) = \frac{Y(z)}{X(z)} = b_0 + b_1 z^{-1} + \dots + b_q z^{-q}$$

#### Sistemas ARMA

• Son los más generales, donde la salida depende de valores anteriores de la entrada y de la propia salida.

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\left(b_0 + b_1 z^{-1} + \dots + b_q z^{-q}\right)}{\left(a_0 + a_1 z^{-1} + \dots + a_p z^{-p}\right)}$$

## Sistemas ARMA



#### Temas a tratar

- Introducción y definición de TZ.
- Relación entre TL y TZ.
- Relación entre TF y TZ.
- Mapeos s-z.
- Sistemas discretos y TZ.
- TZ inversa.



## El Problema de la Inversión

Dada una X(z):

¿Cómo hallar la secuencia x[n] asociada?

## El Problema de la Inversión

- Fórmula de Inversión
- Desarrollo en serie de potencias
- Uso de tablas

#### Fórmula de Inversión

• La secuencia x[n] se obtiene resolviendo una integral de contorno por aplicación del teorema de los residuos.

$$x[n] = \frac{1}{2\pi j} \oint_{c} X(z) z^{n-1} dz$$

• Frecuentemente esta metodología es muy compleja y por lo tanto poco utilizada.

## Desarrollo en serie e inspección

Se desarrolla

$$X(z) = \sum_{n=0}^{\infty} x(nT)z^{-n} =$$

$$= x[0] + x[T]z^{-1} + x[2T]z^{-2} + \dots$$

• y se obtienen los valores de x[n] por inspección

## **Tablas**

• En este método se intenta expresar la función X(z) como una suma:

$$X(z) = X_1(z) + ... + X_k(z)$$

donde  $X_1(z), ..., X_k(z)$  son funciones con transformadas inversas conocidas:

$$x_1[n], ..., x_k[n]$$

• Si X(z) puede expresarse así, su transformada inversa x[n] será la suma:

$$X[n] = x_1[n] + \dots + x_k[n]$$

## Bibliografía recomendada

 Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, 1989.

Kwakernaak: Cap. 8

• Sinha: Cap. 6