## Marginalization and Conditioning (without proof)

- Let  $X \sim \mathcal{N}(\mu, \Sigma)$  and partition X as  $[X_1, X_2]^T$  where  $X_1$  is  $m \times 1$  and  $X_2$  is  $(n m) \times 1$ .
- We similarly have  $\mu = [\mu_1, \mu_1]^T$  and  $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$  where  $\Sigma_{11}$  is  $m \times m$  matrix and so on ..

**Marginalization property:** The m-dimensional marginal distribution of  $\mathbf{X_1}$  is  $\mathcal{N}(\mu_1, \Sigma_{11})$  and  $\mathbf{X_2}$  is  $\mathcal{N}(\mu_2, \Sigma_{22})$ 

**Conditioning property:** The m-dimensional conditional distribution of  $X_1$  given  $X_2 = x_2$  is

$$\mathcal{N}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x_2} - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}).$$

Note the decrease in variance which does not depend on  $x_2$ .

### Towards Bivariate Gaussians

- Suppose  $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$  and  $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ . Also suppose  $X_1$  and  $X_2$  are independent.
- ightharpoonup For  $\mathbf{x} = [x_2, x_2]^T$ , we have

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_{1}}(x_{1})f_{X_{2}}(x_{2})$$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}}e^{-\left(\frac{(x_{1}-\mu_{1})^{2}}{2\sigma_{1}^{2}} + \frac{(x_{2}-\mu_{2})^{2}}{2\sigma_{2}^{2}}\right)}$$

$$= \frac{1}{(2\pi)\sqrt{det(\Sigma)}}e^{\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T}\Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}}$$

where 
$$\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$$
 and hence **X** is bivariate Gaussian.

In general, a vector composed of independent Gaussians is a Gaussian vector. The converse is not true: a vector of dependent Gaussian components need not be Gaussian vector (EX 5.35 in probabilitycourse.com).

#### **Bivariate Gaussians**

In general,  $X_1$  and  $X_2$  need not be independent in which case we have a general bivariate Gaussian

$$\mathbf{X} = [X_1, X_2]^T \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 where  $\boldsymbol{\mu} = [\mu_1, \mu_2]^T$  and  $\boldsymbol{\Sigma} = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$ 

- Show that Bivariate Gaussian is closed under marginalization,i.e.,  $X_1 \sim \mathcal{N}(\mu_1, \Sigma_{11})$  and  $X_2 \sim \mathcal{N}(\mu_2, \Sigma_{22})$ .
- Show that Bivariate Gaussian is closed under conditioning. (For proof see Theorem 5.4, probabilitycourse.com).
- This means that Given  $X_2 = x_2$ , one can show that  $f_{X_1|X_2}(x_1|x_2)$  is Gaussian.
- These two properties make multivariate Gaussians as efficient modelling tools and the handy in Gaussian processes and Bayesian optimization.

## Some Bivariate gaussian pdfs



# Some Bivariate gaussian pdfs



# Markov Chains

### Introduction to Stochastic processes

- Stochastic process  $\{X(t), t \in T\}$  is a collection of random variables defined such that for every  $t \in T$  we have  $X(t): \Omega \to \mathcal{S}$ .
- These random variables could be dependent and need not have identical distribution.
- ightharpoonup T is the parameter space (often resembles time) and  $\mathcal S$  is the state space.
- ▶ When *T* is countable, we have a discrete time process.
- ► If T is a subset of real line, we have a continuous time process.
- State space could be integers or real numbers

## **Examples of Stochastic Processes**

- ightharpoonup Sequence  $\{X_i\}$  of i.i.d random variables.
- ▶ General random walk: If  $X_1, X_2, ...$  is a sequence i.i.d of random variables, then  $S_n = \sum_{i=1}^n X_i$  is a random walk.
- ▶ 1D Random walks can have positive, negative or no drift depending on the sign of E[X].
- A trajectory of 2D random walk



https://upload.wikimedia.org/wikipedia/commons/f/f3/Random\_walk\_

2500 animated syg

## **Examples of Stochastic Processes**

- ▶ Weiner process:  $\{X(t), t \ge 0\}$  is a Weiner process if
  - 1. for every t > 0,  $X(t) \sim \mathcal{N}(0, t)$ .
  - 2. Often called as Brownian Motion as it was used by Robert Brown to describe motion of particle suspended in liquid.
  - 3. It is a scaling limit of a random walk (zoomed out BM).
  - 4. Trajectories are continuous but not differntiable (Financial modeling)
  - 5. Limit of Functional CLT (CLT for Stochastic processes)



### **Examples of Stochastic Processes**

▶ Gaussian Process: A continuous time stochastic process  $\{X_t, t \in T\}$  is a gausssian process if and only if for any finite set of indices  $t_1, \ldots, t_k$ ,  $[X_{t_1}, \ldots, X_{t_k}]$  is a multivariate Gaussian vector.



 $\{X_n, n \geq 0\}$  is a martingale if  $E[X_{n+1}|X_1, \dots, X_n)] = X_n$ . (Applications in Finance, Optimal Stopping, pricing)