

Why town on theory?

Most MLIDS problems involve high din.
data sets & complicated algorithm. Without
abstract theory it is hard to tell whitis
going on? & which method is better/more

Why Kernel methods?

efficient.

Kernel methods such as support vector machines (SVM;) neve the state of the art until 2015! They are fairly simple & have alot of theoretial support. They also unity alot of existing methods under the same framework.

1.1 :	Review of functional Analysis
	We will start with the very booker, ie, the defor
	We will start with the vong booker, ie, the deformable on way through
	metric spaces, Banach spaces, & Hilbert spaces. Along the word I will recall some useful resul
	Along the way I will recall some useful result without frout. It is helpful to have Kreyszig or other functional analysis books nearby.
	or other functional analysis books nearby.
	Deb. A set X is called a (real) vector
	space it it is closed under the operations
	of addition & scalar multiplication, ie.
	$X_1 + X_2 \in X \qquad \forall \ X_{1,1}X_2 \in X$
	XXEX HXEX & X EIR
	We would say X is a complex vector field if me alow de Cinstend.
	examples include:
	· IR" equipped with the usual sum & scalar many
	$\overrightarrow{x} + \overrightarrow{A} = (\alpha x'' \alpha x^{s'} \cdot \alpha x'')$ $\overrightarrow{x} + \overrightarrow{A} = (\alpha x'' \alpha x^{s'} \cdot \alpha x'')$
	· C([a(b]) equipped with (x+y)(t) = x(t)+y(t) Yt [a(b)
(3)	$(\alpha x)(f) = \alpha \cdot x(f)$

. 1 Burach Spaces	1.1
Def (Norm) A real valued function	
11.11: X -> IR on a vector space X is called a norm it it satisfies the following four	
a norm it it satisfies the following four	
(1) X > 0 (iff) $(2) X = 0 <= > X = 0$	
$(2) x = 0 \iff X = 0$	
(3) ax = a · x , + a &	
(4) x+x' \(x + x' \(\text{Triangle ineq.} \)	
eefs: The Enclidean norm on IR"	
o the shell dead that the	
$\ \underline{X}\ := \left(\sum_{j=1}^{n} x_{j} ^{2}\right)^{1/2}$	
The L2-born on C((a,b))	
x : = (
The la-norm on real sequences	
The lament on real sequences x := (\sum_{i=1}^{\infty} x_i ^p) p	
space that is also complete. That is, all	
Cauchy sequences have a limit in X	
Det: A Banach space Xisa Normed vector space that is also complete. That is, all Cauchy sequences have a limit in X. Wotation (X,1.1)	4

	Recall that $\{X_j\}_{j=1}^{\infty} \subset X$ is called a Canchy sequence if $\forall E \geq 0$, there exists $N > 0$ s.t. $\ X_j - X_k\ \leq E$, for all $j, k > N$.
	Completeness is not trivial to guarantee. For example, the space C([acb]) equippe with the L2-norm is not complete!
	Hint: You can construct a Cauchy sey. the converges to a discontinuous function.
See The	However, every normed vector space can be completed in a (essentially) unique was Thm: Let (X, 1:11) be a normed space.
z.s-z • (.veyszig)	Then there is a Banach space \hat{X} & an isometry \hat{A} from \hat{X} to a subspace \hat{W} of \hat{X} which is dense in \hat{X} . The space \hat{X} is unique up
	to isometries ie, if x is mother ampletion X & X are isometric!
3	Todo: Look up the def n of isometry & dense subsets.

· Isometries presence distures: $\|x - x'\|_{X} = \|Ax - Ax'\|_{\widehat{Y}}$ · WcXis dense if w = x. eg. of Banach Spaces. · Enclidan space equipped with p-norms P>1. (R", 11. llp) • L²([a16]) spage of (equivalence (6 sses of) square integrable functions [2([a1p]) = { f: [a1p] -> 18 [| f| f| [1 ([a, p]) < +00) 11 fll [[([a/p2) = (2 p 1 f(4)|2/4)] · C([a16]) equipped with the sup worm || f|| a := sup | f(+) |

