

Date 29/01/2025

Location S/MIME Certificate WG – CA/Browser Forum

Author Jan Klaussner

bundesdruckerei.

Why E-Mail?

Cryptographic Dependencies (non-exhaustive)

- S/MIME uses CMS for cryptography
- CMS is used in many other protocols
- Almost all also use X.509 certificates
- Migrating CMS solves issue for all others

PQC E-Mail - Goals

- Prototype targets agencies and businesses
- Use case which is widely used in real world application
- Usage of S/MIME
- Integration in Microsoft Outlook (Windows)
- FOSS

Interesting sidenote: In specific configurations, the FOSS we modified is currently to secure classified information

The Inevitable - Hybrids

BSI, ANSSI et al. require combination of classic and PQC mechanisms^[1]

Trust in Mathematical Security?

New approaches still need more review (see SIKE)

Trust in Implementation?

New complex algorithms prone to implementation faults (see EUCLEAK)

An efficient key recovery attack on SIDH

Wouter Castryck^{1,2} and Thomas Decru¹

¹ imec-COSIC, KU Leuven, Belgium
² Vakgroep Wiskunde: Algebra en Meetkunde, Universiteit Gent, Belgium

EUCLEAK

Side-Channel Attack on the YubiKey 5 Series and Breaking Infineon ECDSA Implementation o

Thomas Roche

NinjaLab, Montpellier, France thomas@ninjalab.io

September 3^{rd} , 2024

[1] ENISA "Postquantum cryptography: integration study" 2022; for Germany: BSI (Federal Office for Information Security) "Migration to Post Quantum Cryptography: Recommendations for action by the BSI, ver.1.0, 31 May 2021; France: ANSSI "ANSSI views on the Post-Quantum Cryptography transition", 30 March 2022; Spain: Centro Criptografico 'Nacional, "CCN-TEC 009. Recommendations for a safe post-quantum transition" (2022).

How to Hybrid

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Needs additional user interaction

e.g. Parallel PKIs, Double Signing High effort, high chance of errors

Solution for every Protocol and Service

Every Protocol with own flavor Synchronization is hard, "Adapter" required

Algorithm as combination of algorithms

Can be used directly in all Protocols without friction

Organisation/ Application Layer

Encryption

Hybrid not possible with existing standards/drafts

Protocol Layer

Signatures

Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)

Crypto Layer

Certificates

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Hybrid not possible with existing standards/

Signatures

Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)

Certificates

X.509 Isara Catalyst (ITU-T X.509 10/2019)
Related Certificates (draft-ietf-lamps-cert-binding-for-multi-auth)

hierarchical signing

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Hybrid not possible with existing standards/drafts

Signatures

Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)

non-hierarchical, linked signatures

Certificates

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Hybrid not possible with existing standards/drafts

Signatures

Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)

one additional key/signature as X.509 extension

Certificates

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Hybrid not possible with existing standards/drafts

Signatures

Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)

two certificates linked cryptographically by X.509 extension

Certificates

Organisation/ **Application Layer**

Protocol Layer

Crypto Layer

Encryption

Hybrid not possible with existing standar

Signatures

Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)

Current e-mail clients expect only one signature/certificate per sender

- Update Crypto-Lib
- Change clients to handle multiple signatures
- Change clients to handle multiple certificates

Certificates

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Current e-mail clients expect only **one** signature per sender

- Update Crypto-Lib
- Change clients to handle multiple signatures with one certificate

Encryption

Hybrid not possible with existing standa

Signatures

Counter Signatures in CMS (RFC-5652) Multiple Signatures in CMS (RFC-5752)

Certificates

13

Hybrid PQC in Protocol Layer - Example

"The experimentation presented several challenges. Firstly, there were issues with the mail server processing a new email format. Existing email plugins, policies, or anti-malware systems might modify message headers or block emails due to unrecognised formats. Some systems may even issue warnings to recipients about unknown senders. These issues stemmed from the hybridised S/MIME content type and attachment extensions, leading to downstream complications."

Securing digital communications between the Banque de France & the Monetary Authority of Singapore Quantum-safe experiment report, November, 2024

Teil der Bundesdruckerei-Gruppe 🗖 .

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Combiner function for hybrid KEMs (draft-ounsworth-cfrg-kem-combiners)

Signatures

Composite ML-DSA (draft-ietf-lamps-pq-composite-sigs)
Intelligent Composed Algorithms (iacr 2021/813)

Certificates

Composite ML-DSA (draft-ietf-lamps-pq-composite-sigs)
Composite ML-KEM (draft-ietf-lamps-pq-composite-kem)
Intelligent Composed Algorithms (iacr 2021/813)

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Combiner function for hybrid KEMs (draft-ounsworth-cfrg-kem-combiners)

Signatures

Composite ML-DSA (draft-ietf-lam

Intelligent Composed Algorithms (iacr 2021/813)

Certificates

Composite ML-DSA (draft-ietf-lamps-pq-composite-sigs)

Composite ML-KEM (draft-ietf-lamps-pq-composite-kem)

Intelligent Composed Algorithms (iacr 2021/813)

Teil der Bundesdruckerei-Gruppe

Combine arbitrary

number of keys to one

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Combiner function for hybrid KEMs (documents)

Signatures

Composite ML-DSA (draft-ietf-lamps Intelligent Composed Algorithms (ia

(i)

Compound key/signature consisting of one ML-DSA and one traditional key/signature

Signatures are weakly linked, AND combiner

Certificates

Composite ML-DSA (draft-ietf-lamps-pq-composite-sigs)

Composite ML-KEM (draft-ietf-lamps-pq-composite-kem)

Intelligent Composed Algorithms (iacr 2021/813)

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Combiner function for hybrid KEMs (draft-ounsworth-cfrg-kem-combiners)

Signatures

Composite ML-DSA (draft-ietf-lamp Intelligent Composed Algorithms (i

Compound key consisting of one ML-KEM and one traditional key

Certificates

Composite ML-DSA (draft-ietf-lams-pq-composite-sigs)

Composite ML-KEM (draft-ietf-lamps-pq-composite-kem)

Intelligent Composed Algorithms (iacr 2021/813)

Organisation/ Application Layer

Protocol Layer

Crypto Layer

Encryption

Combiner function for hybrid KEMs combiners)

Signatures

Composite ML-DSA (draft-ietf-lamp: Intelligent Composed Algorithms (ia

Certificates

Composite ML-DSA (draft-ietf-lampy-ps

Composite ML-KEM (draft-ietf-lar s-pq-composite-kem)

Intelligent Composed Algorithms (iacr 2021/813)

Compound key consisting of arbitrary number of keys (Signature and KEM)

Compound Signature consisting of arbitrary number of signatures

Signatures can have AND/OR/K-of-N combiner

Organisation/ Application Layer

Protocol Layer

Crypto Layer

No significant changes in e-mail-client required

Update Crypto-Lib

Encryption

Combiner function for hybrid KEMs (combiners)

Signatures

Composite ML-DSA (draft-ietf-lamps-pq-composite-sigs)
Intelligent Composed Algorithms (iacr 2021/813)

Certificates

Composite ML-DSA (draft-ietf-lamps-pq-composite-sigs)
Composite ML-KEM (draft-ietf-lamps-pq-composite-kem)
Intelligent Composed Algorithms (iacr 2021/813)

PQC Mail Client

PQC Integration for MS-OutlookMicrosoft Cryptography API: Next Generation

system wide integration of proprietary signature and encryption modules by mapping of OID to DLL with standardized ABI

other native applications and tools are PQ-safe (e.g. AD, Edge, Word, VPN)

no access to algorithm parameters
no modification outside crypto module possible
> no CMS parsing for KEMs

PQC Integration for MS-OutlookGNU Privacy Guard

integration via Outlook plugin

GnuPG-components also in other operating systems usable

usable for existing GnuPG VSDesktop for classified communication

additional installation

Post Quantum Secure E-Mail Client S/MIME Implementation based on GnuPG

Achieved

- ✓ tested plugin for Microsoft Outlook
- ✓ certificate/key import in Kleopatra (PKCS#12)
- √ file encryption/signature via Kleopatra
- √ X.509/CMS parsing: Composites, ICAs, Single
- √ low level integration of liboqs (PQC cryptolib)
- ✓ User Application does not need to change.

Open topics

- combine Signature and KEM keys in one certificate
- FOSS release by Bundesdruckerei

modifications for prototype

15/01/2025

15/01/2025

PQC Certificate Management System

PQC Certificate Management System

Cryptographic Schemes

- ECDH, RSA encryption
- ML-KEM (Kyber, NIST Draft FIPS 203)
- ECDSA, RSA signature
- ML-DSA (Dilithium, NIST Draft FIPS 204)
- SLH-DSA (Sphincs+, NIST Draft FIPS 205)
- LMS, XMSS (NIST SP 800-208)

Plain/Hybrid/Mixed PKIs

- Composite Signatures/KEMs (IETF Drafts)
- Intelligent Composed Algorithms (AND, OR, K-of-N)
- Certificate issuance via Certificate Management Protocol
- Revocation: Certificate Revocation List

PQC Subscriber Client

Presets of Root/SubCA combinations, e.g.

- LMS -> ML-DSA+ECDSA
- ML-DSA+ECDSA-> ML-DSA+ECDSA
- SLH-DSA -> SLH-DSA
- ...many more

Open Topics

- Proof of possession
- HSM support

X.509 stuff

Select Root/SubCA

Select your algorithm

Yet to Solve

Automatic Distribution of Encryption Key

15/01/2025

2

Today

- 1. user A sends signed mail with **one** Certificate
- 2. User B can extract A's public key from its certificate and verify the signed mail
- 3. User B can use A's public key to encrypt a mail and sends it back
- 4. User A can decrypt B's mail

With PQC

PQC algorithms can not both sign and encrypt

- only signature certificate can be distributed
- separate encryption certificate is needed
- manual distribution is cumbersome

Solution 1 – Application Layer: Send two certificates

- support by each application needed
- experience shows its prone to errors

Solution 2 – Protocol Layer ISARA Catalyst

- ✓ one certificate
- ✓ specified (although not intended this way)
- ✓ usable with ICA and Composite keys
- needs adapter code to separate keys

Solution 3 – Crypto Layer:

Extension for Intelligent Composed Algorithms

- ✓ one compound key combining signature key(s) and encryption key(s)
- ✓ one certificate
- specification required

Hybrid PQC E-Mail Prototype

- ✓ Hybrids on crypto level are easy to integrate
- user experience remains simple

t.b.d.

 automatic encryption key distribution

Thank you.

Jan Klaussner

Bundesdruckerei GmbH Innovations

email: jan.klaussner@bdr.de

Phone: + 49 (0) 151 - 56001986

Please note: This presentation is the property of Bundesdruckerei GmbH. All of the information contained herein may not be copied, distributed or published, as a whole or in part, without the approval of Bundesdruckerei GmbH. © 2025 by Bundesdruckerei GmbH

