Solución Tema 1

1.

Sean $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $f(x,y) = (x^2 - y, y + e^x), g: \mathbb{R}^2 \to \mathbb{R}$ diferenciable y $h = g \circ f$. El polinomio de Taylor de orden 2 de h en (0,0) es:

$$p(x,y) = 2x - y + x^2 + 3xy + 2y^2.$$

- (a) Calcular q(0,1) y $\nabla q(0,1)$
- (b) Calcular, si existe,

$$\lim_{(x,y)\to(0,0)} \frac{h(x,y)}{\|(x,y)\|}$$

a) Notemos primero que f(0,0)=(0,1), luego h(0,0)=g(f(0,0))=g(0,1). Como el polinomio de Taylor coincide con con h en (0,0), tenemos:

$$g(0,1) = h(0,0) = p(0,0) = 0$$

Para calcular $\nabla g(0,1)$ derivamos la expresión $h=g\circ f$ respecto de x y de y usando regla de la cadena:

$$\nabla h(0,0) = \nabla g(f(0,0)) \cdot Df(0,0) = \nabla g(0,1) \cdot Df(0,0) \tag{1}$$

Necesitamos calcular $\nabla h(0,0)$ y Df(0,0). Para el primero, sabemos que las derivadas primeras de h coinciden con las de p en (0,0):

$$\nabla p(x,y) = (2 + 2x + 3y, -1 + 3x + 4y),$$

$$\nabla h(0,0) = \nabla p(0,0) = (2,-1)$$

Por otro lado,

$$Df(x,y) = \begin{pmatrix} 2x & -1 \\ e^x & 1 \end{pmatrix}, \quad Df(0,0) = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$

Juntando todo, si llamamos $(a, b) = \nabla g(0, 1)$ la igualdad 1 nos queda:

$$(2,-1) = (a,b) \cdot \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = (b,-a+b) \Longrightarrow (a,b) = (3,2)$$

b) Si llamamos p_1 al polinomio de Taylor de orden 1 de h en (0,0), podemos escribir $h(x,y) = p_1(x,y) + R_1(x,y)$ donde $R_1(x,y)$ es el resto. El límite que queremos calcular queda:

$$\lim_{(x,y)\to(0,0)}\frac{h(x,y)}{\|(x,y)\|} = \lim_{(x,y)\to(0,0)}\frac{p_1(x,y)}{\|(x,y)\|} + \frac{R_1(x,y)}{\|(x,y)\|}$$

Por propiedad del resto, sabemos que el término con \mathbb{R}_1 tiende a cero. Basta ver si existe el límite del término con p_1 . Calculemos primero $p_1(x,y)$:

$$p_1(x,y) = h(0,0) + \nabla h(0,0) \cdot (x,y)$$

= 0 + (2,-1) \cdot (x,y) = 2x - y

El límite nos queda:

$$\lim_{(x,y)\to(0,0)} \frac{p_1(x,y)}{\|(x,y)\|} = \lim_{(x,y)\to(0,0)} \frac{2x-y}{\sqrt{x^2+y^2}}$$

Mirando por la recta y = x:

$$\lim_{x \to 0} \frac{x}{\sqrt{2x^2}} = \lim_{x \to 0} \frac{x}{\sqrt{2}|x|} = \begin{cases} \frac{1}{\sqrt{2}} & \text{si } x \to 0^+\\ -\frac{1}{\sqrt{2}} & \text{si } x \to 0^- \end{cases}$$

Por lo tanto este límite no existe y tampoco existe el límite original.

2.

Sea
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 definida por $f(x,y) = e^{xy-1} - \frac{1}{2}x^2 - \frac{1}{2}y^2$.

- (a) Analizar la existencia de máximos y mínimos locales y puntos silla de f en \mathbb{R}^2 .
- (b) Analizar la existencia de extremos absolutos de f en la región

$$D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 2\}.$$

a) Como f es diferenciable en todo \mathbb{R}^2 , buscamos puntos críticos mirando dónde se anula ∇f :

$$\nabla f(x,y) = (ye^{xy-1} - x, xe^{xy-1} - y)$$

$$\left\{ \begin{array}{l} ye^{xy-1}-x=0 \\ xe^{xy-1}-y=0 \end{array} \right. \rightarrow \left\{ \begin{array}{l} ye^{xy-1}=x \\ xe^{xy-1}=y \end{array} \right. \quad \begin{array}{l} \text{Si } x=0 \text{ resulta } y=0 \text{ y viceversa.} \\ \rightarrow (0,0) \text{ es solución.} \\ \text{Supongamos desde ahora que } x,y\neq 0. \end{array} \right.$$

Dividiendo las ecuaciones resulta: $\frac{y}{x} = \frac{x}{y} \Longrightarrow y^2 = x^2 \Longrightarrow y = \pm x$ • Si $y = -x \Longrightarrow -xe^{-x^2-1} = x \Longrightarrow -e^{-x^2-1} = 1$ y eso es absurdo.

• Si $y = x \Longrightarrow xe^{x^2-1} = x \Longrightarrow e^{x^2-1} = 1 \Longrightarrow x^2 - 1 = 0 \Longrightarrow x = \pm 1$

• Si
$$y = -x \Longrightarrow -xe^{-x^2-1} = x \Longrightarrow -e^{-x^2-1} = 1$$
 y eso es absurdo.

• Si
$$y = x \Longrightarrow xe^{x^2-1} = x \Longrightarrow e^{x^2-1} = 1 \Longrightarrow x^2 - 1 = 0 \Longrightarrow x = \pm 1$$
 $\Longrightarrow (1,1), (-1,-1)$ son solución.

Los puntos críticos son: (0,0),(1,1),(-1,-1). Usamos el Criterio del Hessiano para determinar si son o no extremos:

$$Hf(x,y) = \begin{pmatrix} y^2 e^{xy-1} - 1 & e^{xy-1}(1+yx) \\ e^{xy-1}(1+yx) & x^2 e^{xy-1} - 1 \end{pmatrix}$$

$$Hf(0,0) = \begin{pmatrix} -1 & e^{-1} \\ e^{-1} & -1 \end{pmatrix}, det(Hf(0,0)) = 1 - \frac{1}{e^2} > 0,$$

$$Hf(\pm 1, \pm 1) = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, det(Hf(\pm 1, \pm 1)) = -4 < 0$$

Por el Criterio, resulta (0,0) máximo local y $(\pm 1,\pm 1)$ puntos silla.

b) La región D es un disco de radio $\sqrt{2}$. Como es compacto y f es continua, por Weierstrass existen máximo y mínimo absolutos de f sobre D.

Si miramos en el interior de D, los candidatos son aquellos puntos donde se anule ∇f y ya los calculamos antes; el único de esos tres en el interior de D es el (0,0).

Miramos ahora en el borde de D, $\partial D = \{x^2 + y^2 = 2\}$. Definiendo $g(x,y) = x^2 + y^2$, el borde se escribe como $\partial D = \{(x,y) : g(x,y) = 2\}$. Usamos Multiplicadores de Lagrange para buscar candidatos sobre ∂D :

$$\nabla g = (2x, 2y)$$
 solo se anula en $(0, 0)$, pero $(0, 0) \notin \partial D$.

Miramos entonces soluciones al sistema:

$$\left\{ \begin{array}{l} \nabla f(x,y) = \lambda \nabla g(x,y) \\ g(x,y) = 2 \end{array} \right. \left\{ \begin{array}{l} ye^{xy-1} - x = \lambda 2x \\ xe^{xy-1} - y = \lambda 2y \\ x^2 + y^2 = 2 \end{array} \right. \left\{ \begin{array}{l} ye^{xy-1} = x(2\lambda + 1) & \text{(I)} \\ xe^{xy-1} = y(2\lambda + 1) & \text{(II)} \\ x^2 + y^2 = 2 & \text{(III)} \end{array} \right.$$

Si x = 0, en (I) resulta y = 0 (y viceversa mirando (II)). Del mismo modo, si $\lambda = -\frac{1}{2}$, de (I) y (II) resulta x, y = 0. Como (0,0) no satisface (III), lo descartamos.

Supongamos desde ahora que $x, y \neq 0, \lambda \neq -\frac{1}{2}$ (para poder hacer lo siguiente): dividiendo las ecuaciones (I) y (II) queda

$$\frac{y}{x} = \frac{x}{y} \Longrightarrow y^2 = x^2 \Longrightarrow y = \pm x$$

• Si $y=\pm x$, mirando en (III) queda $2x^2=2\Longrightarrow x^2=1\Longrightarrow x=\pm 1$. Luego, los candidatos del borde son (1,1),(-1,-1),(1,-1),(-1,1).

Evaluamos en f todos los candidatos y comparamos:

$$f(0,0) = e^{-1}$$
, $f(1,1) = f(-1,-1) = 0$, $f(1,-1) = f(-1,1) = e^{-2} - 1$

Por lo tanto, (0,0) es máximo absoluto y (1,-1) y (-1,1) son mínimos absolutos de f sobre D.

3.

Calcular las siguientes integrales

(a)
$$\int_0^1 \int_{y^3}^1 y^2 sen(x^2) dx dy$$
.

- (b) $\iiint_E xz \ dV$ donde E es el sólido delimitado por el plano 4x+y+2z=2 en el primer octante.
- a) Como no podemos calcular una primitiva de $sen(x^2)$ respecto de x, cambiemos el orden de integración. Para eso, hay que describir la región como de tipo I:

Usando Fubini para cambiar el orden de integración, resulta:

$$\int_{0}^{1} \int_{y^{3}}^{1} y^{2} sen(x^{2}) dx dy = \int_{0}^{1} \int_{0}^{\sqrt[3]{x}} y^{2} sen(x^{2}) dy dx$$

$$= \int_{0}^{1} \left(\frac{y^{3}}{3} sen(x^{2}) \right) \Big|_{y=0}^{y=\sqrt[3]{x}} dx = \int_{0}^{1} \frac{x}{3} sen(x^{2}) dx$$
(sustituyendo $u = x^{2}$)
$$= \left(\frac{-cos(x^{2})}{6} \right) \Big|_{x=0}^{x=1} = \frac{-cos(1) + 1}{6}$$

b) En el primer octante tenemos $x, y, z \ge 0$. Despejando y en la ecuación del plano, nos queda $0 \le y \le 2 - 4x - 2z$. Veamos entonces cómo se

4

relacionan x, z: en el plano (x, z) (es decir, tomando y = 0) la región está delimitada por la recta 4x + 2z = 2 en el primer cuadrante

Luego, podemos expresar la integral como:

$$\iiint_E xz \ dV = \int_0^{\frac{1}{2}} \int_0^{1-2x} \int_0^{2-4x-2z} xz dy dz dx
= \int_0^{\frac{1}{2}} \int_0^{1-2x} (xzy) \Big|_{y=0}^{y=2-4x-2z} dz dx = \int_0^{\frac{1}{2}} \int_0^{1-2x} xz (2-4x-2z) dz dx
= \int_0^{\frac{1}{2}} \int_0^{1-2x} 2zx (1-2x) - 2xz^2 \ dz dx = \int_0^{\frac{1}{2}} \left(z^2 x (1-2x) - \frac{2}{3} xz^3 \right) \Big|_{z=0}^{z=1-2x} dx
= \int_0^{\frac{1}{2}} x (1-2x)^3 - \frac{2}{3} x (1-2x)^3 \ dx = \int_0^{\frac{1}{2}} \frac{1}{3} x (1-2x)^3 dx
= \frac{1}{3} \int_0^{\frac{1}{2}} x - 6x^2 + 12x^3 - 8x^4 \ dx = \frac{1}{3} \left(\frac{x^2}{2} - 2x^3 + 3x^4 - \frac{8x^5}{5} \right) \Big|_{x=0}^{x=\frac{1}{2}} = \frac{1}{240}$$

4.

Sea $F: \mathbb{R}^3 \to \mathbb{R}^3$,

$$F(x, y, z) = \left(\frac{zx^3}{3} + zy^2x, xy^2e^{x^2}, -2xyze^{x^2}\right).$$

Calcular

$$\iiint_D div(F)dV,$$

donde D es la región encerrada por las superficies $z=x^2+y^2$ y $z=6-2x^2-2y^2$.

Calculemos primero la función

$$div(F) = F_x + F_y + F_z = zx^2 + zy^2 + 2xye^{x^2} - 2xye^{x^2} = z(x^2 + y^2)$$

■ Para calcular la *sombra* de la región sobre el plano (x,y), veamos dónde se intersecan las superficies:

$$\begin{cases} z = x^2 + y^2 & \longrightarrow x^2 + y^2 = 6 - 2(x^2 + y^2) \\ z = 6 - 2(x^2 + y^2) & \longrightarrow 3(x^2 + y^2) = 6 \\ \longrightarrow x^2 + y^2 = 2 \end{cases}$$

Es decir, el sólido D se escribe como:

$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 2, x^2 + y^2 \le z \le 6 - 2(x^2 + y^2)\}$$

Haciendo un cambio a coordenadas cilíndricas

$$\begin{cases} x = r\cos(\theta) \\ y = r sen(\theta) \end{cases} \text{ la región se describe como } \begin{cases} 0 \le r \le \sqrt{2} \\ 0 \le \theta \le 2\pi \\ r^2 \le z \le 6 - 2r^2 \end{cases}$$

Aplicando el Teorema de Cambio de Variables, la integral queda:

$$\begin{split} &\iiint_D z(x^2+y^2)dV(x,y,z) = \int_0^{2\pi} \int_0^{\sqrt{2}} \int_{r^2}^{6-2r^2} zr^2 \cdot r \ dz dr d\theta \\ &= 2\pi \int_0^{\sqrt{2}} \left(r^3 \frac{z^2}{2} \right) \Big|_{z=r^2}^{z=6-2r^2} dr = \pi \int_0^{\sqrt{2}} r^3 ((6-2r^2)^2 - (r^2)^2) dr \\ &= \pi \int_0^{\sqrt{2}} 36r^3 - 24r^5 + 3r^7 \ dr = \pi \left(9r^4 - 4r^6 + \frac{3r^8}{8} \right) \Big|_{r=0}^{r=\sqrt{2}} = 10\pi \end{split}$$