

计算机网络

第五章 数据链路层

网络空间安全学院 2025年5月

用户的应用需求:访问北邮主页

- ◆ 应用层: 这是一个WWW应用
- ◆ 传输层: TCP提供了一个可靠的逻辑通道
- ◆ 网络层:通过路由选择,确定了一条主机-主机 的路径
- ◆ 每一步: 相邻节点(主机-路由器、路由器-路由器)之间的数据传输如何实现?

→ 数据链路层负责

数据链路层的作用?

[Kurose]

TCP/IP协议栈

TCP/IP协议栈对于数据链路层和物理层没有规定

教学要求及内容

- ◆ 掌握数据链路层的功能和实现的技术要点
 - > 数据成帧方法
 - ▶ 差错检测方法: CRC校验
 - > 编址方法
- ◆ 了解数据链路层的协议实例
 - > PPP

内容提要

- ◆ 5.1 数据链路层的功能及服务
- ◆ 5.2 数据链路层的成帧原理
- ◆ 5.3 差错检测与纠错技术
- ◆ 5.4 数据链路层的编址
- ◆ 5.5 数据链路层的协议实例
- ◆ 5.6 数据链路层的安全隐患

为什么需要数据链路层?

- ◆ 物理信道是不可靠的!
 - > 噪声的干扰可能导致数据传输差错
 - 需要进行差错检测和纠正
 - 发送方的速率可能大于接收方的速率, 从而导致数据丢失
 - 需要进行流量控制
- ◆ 数据链路层实现相邻主机/路由器间的可靠的 数据传输

数据链路层的信道类型

◆ 点到点信道

- > 一条信道上只有两台设备
- > 独占信道
- > 一对一通信
- > 本章学习
- ◆ 广播信道
 - > 多个设备共享一条公共信道
 - > 一对多通信
 - > 需要解决信道竞争 (N
 - ► LAN采用
 - ▶ 在第6章学习

网络层: 主机-主机通信

主机H₁向H₂发送数据

数据链路层: 点到点通信

主机H₁向H₂发送数据

数据链路层的功能

➡流量控制:可以发送多少数据?

➡差错控制: 如何发现传输差错并纠正?

➡访问控制: 谁能发送?

数据链路层的主要功能

- ◆ 链路管理
 - 数据链路的建立、维护和释放,以提供面向连接的服务
- ◆ 封装成帧
 - > 将网络层的数据(如IP包)加上首部和尾部,组成帧
- ◆ 差错控制
 - ▶ 检查物理层的传输差错,并纠正错误
- ◆ 流量控制
 - > 防止发送方发送太快而淹没接收方
- ◆ 透明传输
 - > 允许网络层的数据包含任何比特串
- ◆ 链路寻址: 给网卡编址(物理地址/硬件地址)

数据链路层的服务

- ◆ 无确认的无连接服务
 - > 只发送不确认
 - ▶ 适合于低误码率的信道,如LAN
- ◆ 有确认的无连接服务
 - > 接收方收到数据后要回送确认
 - ▶ 适合于误码率相对较高的不可靠信道,如WLAN
- ◆ 面向连接的服务
 - 在发送数据之前首先要建立连接,确保数据传输的 可靠性
 - WAN采用

链路和数据链路

- ◆ 链路 (link): 是一条无源的点到点的物理线路 段,中间没有任何其他的交换结点
 - ▶ 链路是一条路径的组成部分
- ◆ 数据链路 (data link):链路+数据链路层协议
 - > 不同的链路可能采用不同的协议

数据链路层协议一般由网卡实现

◆ 网卡

- ▶ 网络适配器: NIC
- 一般实现数据链路层 协议和物理层协议

数据链路和帧

◆ 帧:数据链路层处理的数据单元

结点 B 结点A IP 包 网络层 IP包 取出 数据 无差错 帧 帧 链路层 1010.....0110 物理层 1010... ... 0110 链路 结点A 结点 B 接收 发送 数据 帧 帧 链路层 链路

数据链路和帧

◆ 数据链路层像个数字管道 在这条数字管道上传输的数据单位是帧

> 早期的数据通信协议曾叫作通信规程 (procedure)。因此在数据链路层,规程和 协议是同义词。

内容提要

- ◆ 5.1 数据链路层的功能及服务
- ◆ 5.2 数据链路层的成帧原理
- ◆ 5.3 差错检测与纠错技术
- ◆ 5.4 数据链路层的编址
- ◆ 5.5 数据链路层的协议实例
- ◆ 5.6 数据链路层的安全隐患

什么是成帧?

- ◆ 在上层数据的前后分别添加首部和尾部,就构成了一个帧
- ◆ 首部和尾部的一个重要作用就是进行帧定界 (帧同步),即标记帧的开始和结束

成帧方法:字符计数法

- ◆ 在帧中增加一个长度字段,表示帧的总字节数
- ◆ 早期的DDCMP协议使用

◆ 问题: 一旦帧长度字段出错, 无法再恢复同步!

成帧方法:字符填充法(1)

- ◆ 采用固定的字符作为帧首部和尾部
- ◆ 示例: IBM的BISYNC协议
 - ▶ 帧首字符: SOH (0x01)
 - ▶ 帧尾字符: EOT (0x04)

成帧方法:字符填充法(2)

- ◆ **透明传输**: 帧的数据中可以包含任何字符,即可以出现 与帧首、帧尾相同的字符 (不能限制上层的数据!)
- ◆ 字符填充: 一旦数据中出现和帧首/尾字符相同的字符, 则填充转义字符,以进行区别 缺点: 依赖于字符集
- ◆ 转义字符: DLE (0x10)

经过字节填充后发送的数据

成帧方法: 零比特填充法

- ◆ 帧的长度为任意比特数
- ◆ 不依赖于字符集
- ◆ 帧首尾标志: 0111 1110
- ◆ 透明传输:零比特填充
 - ▶ 当帧中的数据出现连续5个1时,在其后插入一个0

01111110

万025年春

成帧方法: 物理层编码违例法

- ◆ 物理层编码有冗余
 - ▶ 曼彻斯特编码:码元中间的跳变表示0和1
 - 中间无跳变的码元即是冗余码元,可以表示帧的 开始和结束
 - > 无需填充!

Manchester

内容提要

- ◆ 5.1 数据链路层的功能及服务
- ◆ 5.2 数据链路层的成帧原理
- ◆ 5.3 差错检测与纠错技术
- ◆ 5.4 数据链路层的编址
- ◆ 5.5 数据链路层的协议实例
- ◆ 5.6 数据链路层的安全隐患

什么是差错控制?

- ◆ 由于噪声的影响, 数据在传输过程中可能会产 生比特差错: 1->0, 0->1, 增加、删除1个比特
- ◆ 误码率 BER (Bit Error Rate): 在一段时间内, 传输错误的比特占所传输比特总数的比率
- ◆ 差错种类
 - > 单比特差错

- > 突发差错
- ◆ 差错控制
 - 差错检测:发现传输差错

差错纠正:恢复正确数据

单比特差错与突发差错

◆ 单比特差错: 只有1个比特错误

0 changed to 1

◆ 突发差错:两个比特或更多比特发生错误 Length of burst

差错检测方法: 奇偶校验

- ◆ 检错码: 发送方在传输的数据中加入校验信息, 接收方通过计算可以发现传输差错
- ◆ 奇偶校验码
 - > 1个校验比特

▶ 偶校验:加入校验位后,1的个数为偶数

▶ 检错能力:如果发生错误的比特总数为奇数个,能发现

差错检测方法:循环冗余校验

- ◆ CRC (Cyclic Redundancy Code) , 又称为多项 式编码
- ◆ 把被处理的数据块看做是一个n阶的二进制多项式: a₀x₀ + a₁x₁ + ··· + a_{n-1}x_{n-1}
 - ▶ 如10110101对应的多项式是: x⁷ + x⁵ + x⁴ + x² + 1
- ◆ 采用模二除法计算校验码
- ◆ 生成多项式G(x): 发送方和接收方约定, 作为 除数
- ◆ 校验码:余数

CRC的计算方法

- ◆ 若生成多项式G(x)为r+1个比特,即最高阶为r,则在待校验数据后面增加r个0
- ◆ 采用模二除法, 除以G(x)
 - > 对应比特异或
 - > 不进位、不借位
- ◆ 余数即是所求的校验码
- ◆ 将余数附在数据之后发送到信道上

CRC的计算示例

- ◆ 待校验数据: 101001
- 生成多项式 $G(x)= x^3 + x^2 + 1$
- ♦ 被除数: 101001 000
- ◆ 除数: 1101
- ◆ 余数: 001
- ◆ 发送的数据: 101001001
- ◆ 接收方:
 - 用收到的数据比特串除以G(x), 余数=0,则认为传输正确; 否则,认为传输有差错

CRC的标准

- ◆ CRC-12码: 传送6位字符串
- ◆ CRC-16码: 传送8位字符, 美国采用
- ◆ CRC-CCITT码:传送8位字符,HDLC采用
- ◆ CRC-32码: LAN采用
- ◆ 常用的CRC标准生成多项式:
 - ightharpoonup CRC-16: $X^{16}+X^{15}+X^2+1$
 - $ightharpoonup CRC(CCITT): X^{16} + X^{12} + X^5 + 1$
 - ightharpoonup CRC-32: $X^{32}+X^{26}+X^{23}+X^{16}+X^{12}+X^{11}+X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$

CRC的硬件实现方法

了解

◆ 移位寄存器+异或门电路

Output (15bits)

- \bullet G(x)=x⁵+x⁴+x²+1
- ◆ 初始时移位寄存器C₀~C₄清0
- ◆ 10个信息位发送之后,断开A接通B,发送5位校验和, 并将C₀~C₄清零,为下次发送做好准备

差错纠正方法

◆ 重传(ARQ协议)

- > 发送方发送完一帧数据后,启动一个定时器
- > 接收方发现错误后, 丢弃收到的数据帧
- > 发送方定时器超时,重发数据帧

◆ 纠错码

- 校验码足够长,不但能够检测出差错,而且能够发现差错的位置,直接恢复原始数据
- > 汉明码(Hamming code,海明码),能纠正一比特错误

差错纠正: 纠错码

- ◆ 汉明距离(Hamming Distance): 两个帧之间不同 比特位的数目。
 - ▶ 例: 00000000和00110011的汉明距离为4
 - ▶ 如果把两个帧的汉明距离为d,则需要d个单比特错误就可以把一个帧转换为另一个帧
 - ▶ 为了检查出d个单比特错误, 需要使用汉明距离为d+1的编码;
 - ▶ 为了纠正d个单比特错误, 需要使用汉明距离为2d+1的编码。

合法编码1 非法编码1

合法编码2

d+1

- ◆ 设计纠错码
 - > 要求: m个信息位, r个校验位, 纠正单比特错误
 - ▶ 对 2^m 个有效信息中的任何一个,有n个与其距离为1的无效信息,因此有 $(n+1)2^m \le 2^n$
 - \rightarrow 利用n=m+r, 得到 $m+r+1 \leq 2^r$
 - 全给定m,可得出能纠正单比特错误的校验位数目的下界

自阅

- ◆ 校验位从左边开始编号,从1开始
- ◆ 位号为2的幂的是校验位,其余是信息位
- ◆ 每个校验位的取值,要使得包括自己在内的一些位的的奇偶值为 偶数,涉及位与当前校验位号的二进制表示的1位置相同

Char.	ASCII	Check bits												
		Λ		x_1	x_2	1	x_3	0	0	1	x_4	0	0	0
Н	1001000	00110010000		1	2	3	4	5	6	7	8	9	10	11
a	1100001	10111001001		•	_	0	7		0	'	U	J	10	• • •
m	1101101	11101010101	30											
m	1101101	11101010101	x_1			1		1		1		1		1
i	1101001	01101011001												
n	1101110	01101010110	x_2			2			2	2			2	2
ġ	1100111	11111001111												
•	0 100000	10011000000	x_3					4	4	4				
Ċ	1100011	11111000011												
Ō	1101111	00101011111	x_{4}									8	8	8
d	1100100	11111001100	4											
е	1100101	00111000101												
	Örder of	f bit transmission												

汉明码的计算示例

自阅

- ◆ 校验位从左边开始编号,从1开始
- ◆ 位号为2的幂的是校验位,其余是信息位
- ◆ 每个校验位的取值,要使得包括自己在内的一些位的的奇偶值为 偶数,涉及位与当前校验位号的二进制表示的1位置相同

要发送数据: 101101 按 $m+r+1 \le 2^r$,最 少需要r=4个校验位

数据位	1	2	3	4	5	6	7	8	9	10
符号	P_1	P_2	D_1	P_3	D_2	D_3	D_4	P_4	D_5	D_6
取值			1		0	1	1		0	1

 $P_1 \oplus D_1 \oplus D_2 \oplus D_4 \oplus D_5 = 0, P_1 = D_1 \oplus D_2 \oplus D_4 \oplus D_5 = 0$

数据位	0001	0010	001	0100	0101	0110	0111	1000	10(1)	1010
符号	P_1	P_2	D_1	P_3	D_2	D_3	D_4	P_4	D_5	D_6
取值	0		1		0	1	1		0	1

 $P_2 \oplus D_1 \oplus D_3 \oplus D_4 \oplus D_6 = 0, \ P_2 = D_1 \oplus D_3 \oplus D_4 \oplus D_6 = 0$

)	数据位	0001	0(1)	0(1)	0100	0101	011	0(1)	1000	1001	1(1)
	符号	P_1	P_2	D_1	P_3	D_2	D_3	D_4	P_4	D_5	D_6
	取值	0	0	1		0	1	1		0	1

汉明码的计算示例

自阅

- ◆ 校验位从左边开始编号,从1开始
- ◆ 位号为2的幂的是校验位,其余是信息位
- ◆ 每个校验位的取值,要使得包括自己在内的一些位的的奇偶值为 偶数,涉及位与当前校验位号的二进制表示的1位置相同

要发送数据: 101101 按 $m+r+1 \le 2^r$,最 少需要r=4个校验位

数据位	1	2	3	4	5	6	7	8	9	10
符号	P_1	P_2	D_1	P_3	D_2	D_3	D_4	P_4	D_5	D_6
取值			1		0	1	1		0	1

$$P_3 \oplus D_2 \oplus D_3 \oplus D_4 = 0$$
, $P_3 = D_2 \oplus D_3 \oplus D_4 = 0$

P_4	\oplus	D_5	\oplus	D_6	=	0,
P_4	=	D_5	\bigoplus	D_6	=	1

数据位	0001	0010	0011	0100	0101	0110	0111	1 000	1001	1)10
符号	P_1	P_2	D_1	P_3	D_2	D_3	D_4	P_4	D_5	D_6
取值	0	0	1	0	0	1	1	1	0	1

内容提要

- ◆ 5.1 数据链路层的功能及服务
- ◆ 5.2 数据链路层的成帧原理
- ◆ 5.3 差错检测与纠错技术
- ◆ 5.4 数据链路层的编址
- ◆ 5.5 数据链路层的协议实例
- ◆ 5.6 数据链路层的安全隐患

物理地址

- ◆ 数据链路层的地址又称为物理地址或硬件地址
- ◆ 每个网络接口(网卡)一个地址
- ◆ 示例: MAC (媒体访问控制/介质访问控制) 地址
 - ► LAN内使用
 - ▶ 48位,以16进制表示
 - ➤ 前24位为生产厂商标识OUI(Organizationally Unique Identifier)
 - ▶ 后24位为由厂商设定的内部编号

地址转换

- ◆ 地址解析协议: ARP(Address Resolution Protocol)
 - > 将IP地址转换为MAC地址

ARP缓存表

C:\Users\chengli>arp -a

接口: 192.168.0.101 --- 0xe Internet 地址 物型 192.168.0.1 78-192.168.0.255 ff-

物理地址 **78-54-2e-e2-f9-24**

ff-ff-ff-ff-ff-ff

类 动 静态

- ◆ LAN的每个站点都有一个ARP缓存表,记录 MAC地址与IP地址的映射关系
- ◆ 在LAN内发送IP包之前,源节点广播ARP请求, 包含目的节点的IP地址
- ◆ 目的节点将自己的MAC地址放到ARP响应中, 单播发送给源节点
- ◆ 源节点将ARP映射关系加入ARP表
- ◆ ARP缓存表会定时删除无用的内容

A 广播ARP请求

我是 192.31.65.16, 硬件地址是 00-00-C0-15-AD-18 我想知道主机 192.31.65.5的硬件地址

我是 192.31.65.5 硬件地址是 00-06-2B-00-EE-0A

ARP响应 192.31.65.16 Y 00-00-C0-15-AD-18 00-06-2B-00-EE-0A

跨子网的数据传输过程

◆ 源主机A和目的主机B不在同一个子网

A-R: 源IP 111.111.111.111 目的IP 222.222.222.222

源MAC 74-29-9C-E8-FF-55 目的MAC E6-E9-00-17-BB-4B

R-B: 源IP 111.111.111 目的IP 222.222.222

源MAC 1A-23-F9-CD-06-9B 目的MAC 49-BD-D2-C7-56-2A

[Kurose]

IP地址 vs. MAC地址

Frame	Source IP	Source Eth.	Destination IP	Destination Eth.
Host 1 to 2, on CS net	IP1	E1	IP2	E2
Host 1 to 4, on CS net	IP1	E1	IP4	E3
Host 1 to 4, on EE net	IP1	E4	IP4	E6

IP1 IP4

内容提要

- ◆ 5.1 数据链路层的功能及服务
- ◆ 5.2 数据链路层的成帧原理
- ◆ 5.3 差错检测与纠错技术
- ◆ 5.4 数据链路层的编址
- ◆ 5.5 数据链路层的协议实例
 - > PPP 协议
- ◆ 5.6 数据链路层的安全隐患

PPP协议

- ◆ 点对点协议(Point-to-Point Protocol)
- ◆ 用户使用电话线接入因特网时使用
 - > 用户与ISP之间的通信协议

PPP协议的特点

RFC 1661,1662,1663

- ◆ 简单
- ◆ 面向连接
- ◆ 支持多种网络层协议
- ◆ 支持多种类型的物理链路
- ◆ 提供了建立数据链路连接、用户认证、帧头压缩 协商等多种能力
- ◆ PPP取消了HDLC的下列功能:
 - 差错恢复(只检错不纠错)
 - > 流量控制
 - ▶ 序号

PPP的三个子层

PPPoE: PPP over Ethernet

PPP的帧格式: PPPoE

- ◆ 面向字符, 即整个帧的长度为字节的整数倍
- ◆ 地址:FF表示任意站点
- ◆ 控制: 03表示无编号帧
- ◆ 协议:表示数据部分是哪个协议的数据包,例如LCP、NCP、IP、IPX、AppleTalk.....
- ◆ FCS: 采用CRC-16

「谢1

PPPoE的透明传输

- ◆字符填充
 - ▶ 转义字符: 0x7D
 - \rightarrow 0x7E \rightarrow 0x7D 0x5E
 - \rightarrow 0x7D \rightarrow 0x7D 0x5D
 - 在ASCII码控制字符(≤0x20)前面也要加上 0x7D

拨号上网时, PPP的工作过程

2025年春

PPP身份认证: PAP 或 CHAP

自阅

PAP: Password Authentication Protocol

Remote router (Santa Cruz)

Hostname: santacruz Password: boardwalk PAP 2-way handshake

Central-site router (HQ)

Hostname: santacruz Password: boardwalk

- ◆ 密码明文传输
- ◆ 用户控制尝试 登录的次数

CHAP: Challenge Handshake Authentication Protocol

Remote router (Santa Cruz)

Hostname: santacruz Password: boardwalk

CHAP
3-way handshake
Challenge
Response
Accept/reject

Central-site router (HQ)

Hostname: santacruz Password: boardwalk

- ◆ ISP 路由器发送 Challenge消息,包 含一个由MD5计算 出的值
- ◆ 用户根据Challenge 值产生响应
- ◆ 密码加密传输
- ◆ 登录次数由ISP控制

内容提要

- ◆ 5.1 数据链路层的功能及服务
- ◆ 5.2 数据链路层的成帧原理
- ◆ 5.3 差错检测与纠错技术
- ◆ 5.4 数据链路层的编址
- ◆ 5.5 数据链路层的协议实例
 - PPP协议
 - ► <u>HDLC协议</u>
- ◆ 5.6 数据链路层的安全隐患

HDLC协议

- ◆ 高级数据链路控制规程(High-Level Data Link Control)
- ◆ 面向比特的协议,支持全双工传输
- ◆ 提供面向连接的服务
- ◆ 采用零比特填充方式实现透明传输
- ◆ 采用ARQ协议实现差错控制和流量控制
- ◆ 应用场合:
 - 广域网、LAN的LLC子层协议等

2025年春

内容提要

- ◆ 5.1 数据链路层的功能及服务
- ◆ 5.2 数据链路层的成帧原理
- ◆ 5.3 差错检测与纠错技术
- ◆ 5.4 数据链路层的编址
- ◆ 5.5 数据链路层的协议实例
- ◆ 5.6 数据链路层的安全隐患

ARP欺骗

2025年春

◆ 伪造IP地址和MAC地址,发送虚假的ARP请求/响应报文,导致LAN内的其他主机在ARP缓存表中记录错误的信息,从而将IP包发送给假冒主机

第五章小结

- ◆ 数据链路层的功能及服务
- ◆ 数据链路层的技术要点
 - 成帧及透明传输:字符填充、比特填充、物理层 编码违例法
 - ▶ 差错控制: CRC的原理、汉明码的功能
 - ➤ MAC地址和ARP的功能
- ◆ 数据链路层协议实例
 - ▶ HDLC的特点和成帧
 - PPP的应用场合、成帧

版权说明

- ◆ 本讲义中有部分图片来源于下列教材所附讲义:
 - ➤ Andrew S. Tanenbaum, Computer Networks, Fourth Edition, 清华大学出版社(影印版), 2004, 引用时标记为[Tanenbaum];
 - 》 谢希仁, 计算机网络, 第五版, 电子工业出版社, 2008年1月,引用时标记为[谢];
 - ➤ Behrouz A. Forouzan, Data Communications and Networking, Fourth Edition, McGraw-Hill Higher Education, 2007年1月, 引用时标记为[Forouzan]
 - ▶ James F. Kurose, Keith W. Ross著, 陈鸣译, 计算机网络: 自顶向下方法, 机械工业出版社, 2009, 引用时标记为[Kurose];
 - ▶ 部分图片来源于网络,未找到确切来源,引用时标记为[来源于网络]。

本章勘误表(1)

页码	位置	原文	更正
165	标题5.1.2下第4行	事后也不用解释逻辑连接	事后也不用 <mark>释放</mark> 逻辑连接
166	第4行	识别比特流信息	识别 <mark>帧首部和帧尾部</mark> 信息
169	第1行	奇偶校验只可检查单个错误	奇偶校验只可检查单个 <mark>比特</mark> 错误
169	第6行	$D(x) = 1x_7 + 0x_6 + 1x_5 + 1x_4 + 0x_3 + 1$	$D(x)=1x^{7}+0x^{6}+1x^{5}+1x^{4}+0x^{3}+1x^{2}+0$
		$x_2 + 0x + 1$	x+1
170	标题5.3.2下第9行	若行和列同时出现偶数	若行和列同时出现偶数 <mark>个错误</mark>
171	第12行	1011进行汉明编码(奇数)	1011进行汉明编码(<mark>奇校验</mark>)

2025年春 60

本章勘误表(2)

页码	位置	原文	更正
172	图5-9下第1行	广播地址是48个连续1组成	广播地址是48个连续1组成的比
		的字符串	特串
172	标题5.4.2下第2行	是获取网络中节点物理地址	是获取网络中节点物理地址的一
		的一个TCP/IP	个TCP/IP <mark>协议</mark>
173	第2行	每个接收节点都把该帧的	每个接收节点都把该帧的ARP分
		ARP分组传递给它的父节点	组传递给 <mark>网络层</mark>
176	第2行	并要求采用拉回方式重发	并要求采用 <mark>回退N步(Go-Back-N)</mark>
			方式重发
176	表5-1中,S类型的	RNR	删去, S 类型帧无应答要求
	"应答"列(第3-	RNR	
	6行)	REJ	
2025年春		SREJ	61

本章勘误表(3)

页码	位置	原文	更正
176	表5-1中,第4行的"控 制字段各位"列	1001P/FN(R)	1010 P/F N(R)
176	表5-1中,第5行的"控 制字段各位"列	1010P/FN(R)	1001 P/F N(R)
177	图5-14	无符号帧	无 <mark>编号</mark> 帧
177	图5-15		参见本讲义p59-60 图
178	第10行	帧中最大接收单元(MRU) 的默认值为1500字节	帧中最大传送单元(MTU) 的默认值为1500字节

2025年春 62

本章勘误表(4)

页码	位置	原文	更正
179	图5-18下第1行	标志字段F为0x7E(0x表示	标志字段F为0x7E(0x表示十
		7E)	六进制)
182	第6行	PPP是最常用的面向位的	PPP是最常用的 <mark>面向字符</mark> 的数
		数据链路层协议	据链路层协议

2025年春 63