CONTROL SYSTEMS LAB 2 REPORT

TEAM MEMBERS

Name	ID
Ramy Ahmed El Sayed	19015649
Basel Ahmed Awad	19015513
Youssef Ahmed Saeed Zaki	19016903
Ahmed Rabea Salem Ali	19015229
Omar Mohamed Elsayed Metmwah	19016082
Yosef Ashraf Yosef	19016910
Abdelmoneim Hany Abdelmoneim Mohamed	19017359
Zyad Samy Ramadan	19015720
Abdelrahman Fathy Lawaty	19015920
Marwan Mahmoud Ibrahim Mohamed	19016621

DEVICES USED

PT 326 PROCESS TRAINER

OSCILLOSCOPE

EXPERIMENT RESULTS

Due to the processor trainer being damaged, we managed to salvage one reading, which isn't entirely correct due to the noise and error.

Reading was done at temperature = 80C

Variables	Measured values
Kopt	16.67
V _{out}	12V
e _{ss}	1V
Calculated V _{10%}	1.2V
Calculated V _{90%}	10.8V
Measured V _{10%}	Couldn't identify (Faulty device)
Measured V _{90%}	11.2V
Measured t10%	Couldn't identify (Faulty device)
Mp	13.6V

GRAPHS

Since we only managed to get one reading, so it was impossible to get the graph

Theoretically, it should look like this:

EFFECT OF INCREASING THE GAIN ON STEADY STATE ERROR

As the gain increases the value of the steady state error decreases due to them being inversely proportional.

$$K \propto \frac{1}{e_{ss}}$$

OPTIMAL GAIN

$$K_{opt} = \frac{K}{6} = \frac{100}{6} = 16.7$$

THE VALUE OF THE GAIN THAT CAUSES THE OSCILLATED ERROR AND THE FREQUENCY OF OSCILLATIONS

Couldn't be measured due to the given circumstances.

THE ZIEGLER-NICHOLS METHOD

Since we couldn't calculate the frequency, we can only calculate the Proportional only control gain:

$$K_c = \frac{K}{2} = \frac{100}{2} = 50$$

Values are quite varying and inaccurate due to the errors caused by the faulty system.