Applicant: Nathan S. Lowis et al Serial No.:09/409,644 Filed: October 1, 1999 Page: 2

electrical path through the regions of the conductive organic material and the regions of the compositionally different conductive material, and wherein the sensing area is in direct contact with a vapor comprising an analyte to be detected, wherein the compositionally different conductive material is selected from the group consisting of an inorganic conductor, a carbon black, and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal, a metal alloy, a metal oxide, a superconductor, or a combination thereof and wherein the inorganic conductor has an electrical conductivity that decreases as the temperature increases; and

an apparatus in electrical communication with the conductive leads for detecting a change in the sensing area between the at least two conductive leads when contacted with an analyte.

- 99. (Reiterated) The sensor according to claim 98, wherein the conductive organic material is selected from the group consisting of a polyaniline, an emeraldine salt of polyaniline, a polypyrrole, a polythiophene, a polyEDOT, and derivatives thereof.
- 100. (Reiterated) The sensor according to claim 98, wherein the compositionally different conductive material is carbon black.
- 101. (Reiterated) The sensor according to claim 98, further comprising an insulator or plasticizer.



Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page : 3

102. (Reiterated) The sensor of claim 98, wherein the conductive organic material is an emeraldine salt of polyaniline and the compositionally different conductive material is carbon black.

103. (Reiterated) The sensor of claim 98, wherein the conductive organic material is a doped polyaniline and the compositionally different conductive material is carbon black.

104. (Twice Amended) A sensor, comprising: at least two conductive leads;

a sensing area comprising alternating interpenetrating regions of a conductive organic material and a conductive material compositionally different than the conductive organic material disposed between and in electrical communication with the at least two conductive leads, wherein the sensing area provides an electrical path through the regions of the conductive organic material and the regions of the compositionally different conductive material, and wherein the sensing area is in direct contact with a vapor comprising an analyte to be detected, wherein the compositionally different conductive material is selected from the group consisting of an organic conductor, an orgánic complex, an inorganic conductor and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal, a metal alloy, a metal oxide, or a superconductor, or a combination thereof and wherein the inorganic conductor has an electrical conductivity that decreases as the temperature increases; and

Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page: 4

an apparatus in electrical communication with the conductive leads for detecting a change in the sensing area between the at least two conductive leads when contacted with an analyte.

105. (Twice Amended) A sensor, comprising: at least two conductive leads;

a sensing area comprising dispersed regions of a conductive organic material and a conductive material compositionally different than the conductive organic material wherein the dispersed regions provide interpenetrating regions of the conductive organic material and a conductive material compositionally different than the conductive organic material, the sensing area disposed between and in electrical communication with the at least two conductive leads, wherein the sensing area provides an electrical path through the regions of the conductive organic material and the regions of the compositionally different conductive material, and wherein the sensing area is in direct contact with a vapor comprising an analyte to be detected, wherein the compositionally different conductive material is selected from the group consisting of an organic conductor, an organic complex, an inorganic conductor and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal, a metal alloy, a metal oxide, or a superconductor, or a combination thereof and wherein the inorganic conductor has an electrical conductivity that decreases as the temperature increases; and



Applicant: Nathan S. Le Serial No.: 09/409,644 Filed : October 1, 1999

Page : 5

an apparatus in electrical communication with the conductive leads for detecting a change in the sensing area between the at least two conductive leads when contacted with an analyte.

106. (Reiterated) A sensor, comprising: at least two conductive \[ \]eads;

a sensing area comprising alternating interpenetrating regions of a polyaniline or an emeraldine salt of polyaniline and a conductive material compositionally different than the polyaniline or emeraldine salt of polyaniline disposed between, and in electrical communication with, the at least two conductive leads, wherein the sensing area provides an electrical path through the alternating interpenetrating regions of polyaniline or emeralding salt of polyaniline and the conductive material compositionally different than the polyaniline or emeraldine salt of polyaniline; and

an apparatus in electrical communication with the conductive leads for detecting a change in the sensing area between the at least two conductive leads when contacted with an analyte.

107. (Twice Amended) The sensor of claim 106, wherein the conductive material compositionally different than the polyaniline or emeraldine salt of polyaniline is selected from the group consisting of an organic conductor, an organic complex, an inorganic conductor, and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal, a metal alloy, a metal oxide, an oxidized metal, a superconductor, and any combination thereof.



Applicant: Nathan S. Le Serial No.: 09/409,644 Filed : October 1, 1999

Page

A sensor array comprising: 108. (Twice Amended) a plurality of sensors, wherein at least one sensor comprises:

at least two conductive leads;

a sensing area comprising alternating interpenetrating regions of a conductive organic material and a conductive material compositionally different than the conductive organic material disposed between and in electrical communication with the at least two conductive leads, wherein the sensing area provides an electrical path through the alternating interpenetrating regions of the conductive organic material and the regions of the compositionally different conductive material, wherein the sensing farea is in direct contact with a vapor comprising an analyte to be detected, wherein the compositionally different conductive material is selected from the group consisting of an organic conductor, an organic complex, an inorganic conductor and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal, a metal alloy, a metal oxide, or a superconductor, or a combination thereof and wherein the inorganic conductor has an electrical conductivity that decreases as the temperature increases.

109. (Reiterated) The sensor array according to claim 108, wherein the sensor array comprises a plurality of sensors each comprising regions of a conductive organic material and regions of a conductive material compositionally different than the conductive organic material wherein the conductive organic material of at least one sensor is different from the conductive organic material of at least one other sensor.



Applicant: Nathan S. Lewis et al Serial No.: 09/409,644

Filed : October 1, 1999

Page: 7

110. (Reiterated) The sensor array according to claim

108, wherein the compositionally different conductive material is an inorganic conductor.



- 113. (Reiterated) The sensor array according to claim 108, wherein the conductive organic material is selected from the group consisting of a polyaniline, an emeraldine salt of polyaniline, a polypyrrole, a polythiophene, and a polyEDOT, and the conductive material compositionally different than the conductive organic material is selected from the group consisting of Ag, Au, Cu, Pt, carbon black, and AuCu.
- 114. (Reiterated) The sensor array according to claim 108 or 113, further comprising a temperature control apparatus in thermal communication with at least one sensor.
- or 113, further comprising an apparatus for detecting a change selected from the group consisting of resistance, conductance, impedance, and capacitance in the electrical properties of at least one sensor.



Applicant: Nathan S. Lewis et al Serial No.: 09/409,644 Filed: October 1, 1999

Page: 8

116. (Reiterated) The sensor array according to claim 115, further comprising a temperature control apparatus in thermal communication with at least one sensor.

- 117. (Twice Amended) The sensor array according to claim 110, wherein the inorganic conductor is selected from the group consisting of Ag, Au, Cu, Pt, and AuCu.
- 118. (Amended) The sensor array according to claim 108, wherein the compositionally different conductive material is carbon black.
- 119. (Reiterated) The sensor array according to claim
  108, wherein the compositionally different conductive material
  is an organic conductor.
- 120. (Amended) The sensor array according to claim 108, wherein the conductive material compositionally different than the conductive organic material is a member selected from the group consisting of an organic conductor, an inorganic conductor, and a mixed inorganic/organic conductor.
- 121. (Amended) The sensor array according to claim 108, wherein the conductive material compositionally different than the conductive organic material is a member selected from the group consisting of a metal, a metal alloy, a metal oxide, an organic complex, a superconductor, and a mixed inorganic/organic conductor.

Applicant : Nathan S. L Serial No.: 09/409,644 : October 1, 1999 Filed

Page : 9

The sensor/array according to claim 122. (Reiterated) 108, wherein the compositionally different conductive material is a particle.



123. (Amended) The sensor array according to claim 159, wherein the compositionally different conductive material of each of the sensors in the plurality of sensors comprises a conductive organic material.

126. (Twice Amended)

A sensor array comprising:

a plurality of sensors, wherein at least one sensor comprises:

at least two conductive feads;



a sensing area comprising alternating interpenetrating regions of a conductive organic material and a conductive material compositionally different than the conductive organic material disposed between, and in electrical communication with, the at least two conductive leads; wherein the sensing area provides an electrical path through the regions of the conductive organic material and the regions of the compositionally different conductive material, wherein the sensing area is in direct contact with a vapor comprising an analyte to be detected, wherein the compositionally different conductive material is selected from the group consisting of an organic conductor, an organic complex, an inorganic conductor, and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal having electrical conductivity that decreases as the temperature increases, a metal alloy, a metal oxide, or a superconductor, or a combination thereof; and

Applicant: Nathan S. Lewis et al Serial No.: 09/409,644

Filed : October 1, 1999

Page: 10

a measuring apparatus electrically coupled to the at least two conductive leads for detecting a change in the sensing area when contacted with an analyte.

127. (Amended) A sensor array comprising:

a plurality of sensors wherein at least one sensor comprises alternating interperetrating regions of a conductive organic material and regions of a compositionally different conductive material wherein the sensors are in direct contact with a vapor comprising an analyte to be detected; and

means, electrically coupled to the plurality of sensors, for detecting a change in the plurality of sensors when contacted with an analyte.

128. (Twice Amended)

A sensor array system comprising:

a plurality of sensors, wherein at least one sensor comprises:

at least two conductive leads;

a sensing area comprising alternating interpenetrating regions of a conductive organic material and a conductive material compositionally different than the conductive organic material disposed between and in electrical communication with the at least two conductive leads, wherein the sensing area provides an electrical path through the regions of the conductive organic material and the regions of the compositionally different conductive material, wherein the sensing area is in direct contact with a vapor comprising an analyte to be detected, wherein the compositionally different conductive material is selected from the group consisting of an organic conductor, an organic complex, an inorganic conductor



Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page : 11

and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal, a metal alloy, a metal oxide, or a superconductor, or a combination thereof and wherein the inorganic conductor has an electrical conductivity that decreases as the temperature increases;

a measuring apparatus that detects a change in the electrical properties of the at least one sensor, wherein the at least one sensor is in communication with the measuring apparatus; and

a computer comprising a resident algorithm, wherein the computer processes the change in the electrical properties.

129. (Reiterated) The sensor array system according to claim 128, wherein the measuring apparatus is an electrical measuring device.

- 130. (Reiterated) The sensor array system according to claim 128, wherein the compositionally different conductive material is an inorganic conductor.
- 131. (Reiterated) The sensor array system according to claim 128, wherein the plurality of sensors each comprise regions of a conductive organic material and regions of a conductive material compositionally different than the conductive organic material.
- 132. (Reiterated) The sensor array system according to claim 131, wherein the conductive organic material of at least one sensor is different from the conductive organic material of at least one other sensor.



Applicant: Nathan S. Lewis et al

Serial No.:09/409,644 Filed : October 1, 1999

Page : 12

133. (Amended) The sensor array system according to claim
131, wherein the conductive organic material of the plurality of
sensors are compositionally the same.

- 134. (Reiterated) The sensor array system according to claim 128, wherein the change in electrical properties is selected from the group consisting of impedance, conductance, capacitance, inductance, and resistance in the sensors.
- 135. (Reiterated) The sensor array system according to claim 128, wherein the conductive organic material is selected from the group consisting of a polyaniline, an emeraldine salt of polyaniline, a polypyrrole, a polythiophene, and a polyEDOT, and the conductive material compositionally different than the conductive organic material is selected from the group consisting of Ag, Au, Cu, Pt, carbon black, and AuCu.
- 136. (Reiterated) The sensor array system according to claim 128 or 135, further comprising a temperature control apparatus in thermal communication with at least one sensor.
- 137. (Reiterated) The sensor array system according to claim 128 or 135, wherein the change in electrical properties is a change in an electrical impedance.
- 138. (Reiterated) The sensor array system according to claim 137, further comprising a temperature control apparatus in thermal communication with at least one sensor.



Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page : 13

139. (Amended) The sensor array system according to claim 130, wherein the inorganic conductor is a member selected from the group consisting of Ag, Au, Cu, Pt, and AuCu.

- 140. (Amended) The sensor array system according to claim 128, wherein the compositionally different conductive material is carbon black.
- 141. (Reiterated) The sensor array system according to claim 128, wherein the compositionally different conductive material is an organic conductor.
- 142. (Twice Amended) The sensor array system according to claim 128, wherein the conductive material compositionally different than the conductive organic material is selected from the group consisting of an organic conductor, an inorganic conductor, and a mixed inorganic/organic conductor.
- 143. (Twice Amended) The sensor array system according to claim 128, wherein the conductive material compositionally different than the conductive organic material is selected from the group consisting of a metal, a metal alloy, a metal oxide, an organic complex, a superconductor, and a mixed inorganic/organic conductor.
- 144. (Reiterated) The sensor array system according to claim 128, wherein the compositionally different conductive material is a particle.



Applicant: Nathan S. Dewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page: 14

145. (Reiterated) The sensor array system according to claim 128, wherein each of the sensors comprises a conductive organic material.

146. (Reiterated) The sensor array system according to claim 128, wherein the conductive organic material is an organic polymer.

147. (Reiterated) The sensor array system according to claim 128, wherein the resident algorithm is a member selected from the group consisting of principal component analysis, Fisher linear analysis, neural networks, genetic algorithms, fuzzy logic, pattern recognition, and combinations thereof.

148. (Amended) A system for identifying a microorganism, the system comprising:

a measuring apparatus;

a sensor array comprising a plurality of sensors in communication with the measuring apparatus, wherein at least one sensor comprises:

at least two conductive leads;

a sensing area comprising alternating regions of a conductive organic material and a conductive material compositionally different than the conductive organic material disposed between and in electrical communication with the at least two conductive leads, wherein the sensing area provides an electrical path through the regions of the conductive organic material and the regions of the compositionally different conductive material, and wherein the sensing area is in direct contact with a vapor comprising a biomarker to be detected; and

Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page : 15

a computer comprising a resident algorithm;

wherein the measuring apparatus is capable of detecting a response from each sensor in the array wherein the responses are indicative of the presence of a biomarker of a microorganism and the computer is capable of assembling the responses into a response profile whereby the computer associates the response profile indicative of the biomarker with a microorganism for microorganism identification.

149. (Reiterated) The system for identifying a microorganism in accordance with claim 148, wherein the resident algorithm of the computer is a member selected from the group consisting of principal component analysis, Fisher linear analysis, neural networks, genetic algorithms, fuzzy logic, pattern recognition, and combinations thereof.

150. (Reiterated) The system for identifying a microorganism in accordance with claim 148, further comprising the steps of:

providing an information storage device coupled to the measuring apparatus; and

storing information in the information storage device.

151. (Reiterated) The system for identifying a microorganism in accordance with claim 148, wherein the measuring apparatus includes a digital-analog converter.

Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page : 16

152. (Twice Amended) A system for detecting an analyte in a sample, comprising:

a substrate having a plurality of sensors wherein at least one sensor comprises:

at least two conductive leads;

a sensing area comprising alternating interpenetrating regions of a conductive organic material and a conductive material compositionally different than the conductive organic material disposed between, and in electrical communication with, the at least two conductive leads, wherein the sensing area provides an electrical path through the regions of the conductive organic material and the regions of the compositionally different conductive material such that the at least one sensor provides a response that varies according to the presence of an analyte in contact with it, wherein the sensing area is in direct contact with a vapor comprising an analyte to be detected, wherein the compositionally different conductive material is selected from the group consisting of an organic conductor, an organic complex, an inorganic conductor and a mixed inorganic/organic conductor, wherein the inorganic conductor is a metal, a metal alloy, a metal oxide, or a superconductor, or a combination thereof and wherein the inorganic conductor has an electrical conductivity that decreases as the temperature increases;

a detector operatively associated with the plurality of sensors, for measuring the response of the plurality of sensors when contacted with the sample;

a sample delivery unit for delivering the sample to be tested to the plurality of sensors; and

Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page : 17

an information storage and processing device configured to store an ideal response for a predetermined analyte and to compare the response of the plurality of sensors with the stored ideal response, to detect the presence of the analyte in the sample.

153. (Reiterated) The system in accordance with claim 152, wherein the information storage and processing device is configured to store ideal responses for a plurality of predetermined analytes; and

the information storage and processing device further is configured to compare the response of the plurality of sensors with the plurality of stored ideal responses, to detect the presence of each analyte in the sample.

- 154. (Reiterated) The system in accordance with claim
  152, wherein the sample is a liquid and the sample delivery unit
  comprises:
- a flow passage interconnecting the substrate comprising the plurality of sensors with a mixture containing the liquid;
- a gas-permeable, liquid-impermeable shield interposed in the flow passage; and
- a device for extracting vapor from the liquid and for delivering the extracted vapor along the flow passage to the substrate comprising the plurality of sensors via the flow passage.



Applicant: Nathan S. Lewis et al Serial No.:09/409,644 Filed: October 1, 1999

Page : 18

155. (Reiterated) The system in accordance with claim
152, wherein the sample is gaseous and the sample delivery unit
comprises:

a gas flow passage; and

a pump for pumping the gaseous sample to the substrate comprising the plurality of sensors via the gas flow passage.

156. (Reiterated) The system in accordance with claim 152, wherein the sample is a vapor extracted from a solid and the sample delivery unit comprises:

a vapor flow passage; and

a pump for pumping the vapor extracted from the solid to the substrate comprising the plurality of sensors via the vapor flow passage.

157. (Reiterated) The system in accordance with claim 152, wherein the detector detects a member selected from the group consisting of electromagnetic energy, optical properties, resistance, capacitance, inductance, impedance, and combinations thereof.

158. (Reiterated) The system in accordance with claim
152, wherein at least one other sensor in the plurality of
sensors comprises a member selected from the group consisting of
a surface acoustic wave sensor; a quartz microbalance sensor; a
conductive composite; a chemiresistor; a metal oxide gas sensor;
a conducting polymer sensor; a dye-impregnated polymer film on
fiber optic detector; a polymer-coated micromirror; an
electrochemical gas detector; a chemically sensitive fieldeffect transistor; a carbon black-polymer composite; a micro-

Applicant: Nathan S. Lewis et al

Serial No.: 09/409,644 : October 1, 1999 Filed

Page : 19

electro-mechanical system device; and a micro-opto-electro-

Please add the following new glaim:

(New)

mechanical system device.

The sensor array of claim 108, wherein the

Attorney's Docket No.: 06618-894001 / CIT 2883

at least one sensor is a plurality of sensors. --