BR-322501

AD-A278 422

0

65pp

This document has been approved for public telegies and sale; its distribution is unlimited

(

TOTO QUALITY INCLUDING

94 4 22 002

NOT TO BE REMOVED FROM THE LIBRARY

United Kingdom Atomic Energy Authority

HARWELL

Fortran subroutines for finding polynomial zeros

K.Madsen and J.K.Reid
Computer Science and Systems Division
AERE Harwell, Oxfordshire
February 1975

FORTRAN SUBROLITINES FOR FINDING POLYNOMIAL ZEROS

by

K. Madsen* and J.K. Reid

ABSTRACT

In this report we present subroutines for finding all the roots of a polynomial and bounds on their errors. To find the zeros we use the algorithm of Madsen (1973) and to find error bounds we use the work of Peters and Wilkinson (1971) with some significant modifications. Both the real and complex cases are treated.

Computer Science and Systems Division, A.E.R.E. Harwell, Didcot, Oxford, England.

February, 1975

HL.75/1172 (C.13)

Acceción (Control of the Control of

(i)

^{*} Institute for Numerical Analysis, Technical University of Denmark, 2800 Lyngby, Denmark.

${\tt CONTENTS}$

		Page No.
1.	Introduction	1
2.	Finding the roots in the complex case	2
3.	Error estimation	6
4.	Changes to the algorithms in the real case	13
5.	Description of Fortran subroutines	15
6.	Test results and comparisons with other methods	18
7.	Appendix. Specification sheets and listings	23
8.	References.	65

ISBN-0-70-580215-9

1. Introduction

In this report we consider the problem of finding all the zeros of the polynomial

$$f(z) = a_0 + a_1 z + ... + a_n z^n$$
 (1.1)

and estimating error bounds for them. To find the set of zeros we use the algorithm of Madsen (1973), which we have found to compare favourab with other algorithms. For error estimation we apply Rouche's theorem as recommended by Peters and Wilkinson (1971), but with some difference in detail. Both of these algorithms are a little simpler in the case where the polynomial has complex coefficients, so we describe the algorithms for this case in sections 2 and 3 and the modifications for a real case in section 4.

We believe that our code is in accord with the ANSI standard, havir checked it with Bell Telephone Laboratories' Fortran verifier (Ryder, 1973) and run our test programs with array subscript checking. describe this code in section 5 and in an appendix give specification sheets, and listings (produced by the Bell Laboratories verifier, so the include cross references). For the Harwell subroutine library we have made a small number of changes in order to shorten the argument lists, at the expense of a departure from ANSI standard. We have decided again including a single-length version in the library because the IBM 370/16 has a very short single-length word (6 hexadecimal digits, so that numbers just greater than unity are held to about I part in 10^6) but ha double-length hardware which executes very little slower than the single length hardware. Some results obtained with the library subroutines, together with comparisons with other algorithms are given in section 6. Our code (listed in section 7) contains comments suitable for machine processing which detail the changes needed for the single-length and

Harwell library versions.

We would like to acknowledge the help of M.J.D. Powell in carefully checking a draft of this report and making several valuable suggestions.

2. Finding the roots in the complex case

We use the algorithm of Madsen (1973) to find the root of minimal or near-minimal modulus and then use forward deflation to construct a polynomial of degree n-1 whose roots are the remaining roots of the original polynomial. The process is repeated until approximations to all the roots have been found. Wilkinson (1963) has shown that forward deflation is stable provided a large root is not accepted before a much smaller one. Our algorithm does not guarantee that the moduli of the roots are strictly increasing but our experience has always been that they are found in roughly increasing order. A version with the composite deflation of Peters and Wilkinson (1971), which should be stable no matter in which order the zeros are found, was tried but it did not give more accurate results. In any case it is not clear how to apply the composite deflation when two complex conjugate roots of a real polynomial have been found so that deflation by a real quadratic factor is wanted.

It remains necessary to describe Madsen's (1973) algorithm in detail and we will consider its application to the original polynomial. The general strategy of the algorithm is that, given an iterate z_k , a tentative step dz_k is found and the next iterate z_{k+1} is taken at the best point (in the sense of |f(z)|) encountered in a short search of values on the line through z_k and z_k+dz_k . Because the search may sometimes yield no better value than that at z_k we may sometimes have $z_{k+1}=z_k$ and in this case ensure that the next tentative step is shorter and in a different direction. The inclusion of searches ensures rapid convergence to multiple roots and reliable convergence when difficulties are

encountered. Such a search is, however, wasteful if we are so near a simple root that Newton's iteration is reliable and fast. We have therefore devised a test (given by inequality (2.7)) which normally ensures this. While the algorithm performs searches we say it is in stage 1; otherwise it is in stage 2, performing straightforward Newton iteration. It begins in stage 1, which we now describe.

The tentative step dz_k is found with the help of stored values of z_k , $f(z_k)$, $f'(z_k)$, z_{k-1} and the previous tentative step dz_{k-1} . If the last iteration was successful $(z_k \neq z_{k-1})$ then the Newton correction

$$n_k = -f(z_k)/f'(z_k)$$
 (2.2)

is calculated and the next tentative step is taken as

$$dz_{k} = \begin{cases} n_{k} & \text{if } |n_{k}| \le 3|z_{k}-z_{k-1}| \\ 3|z_{k}-z_{k-1}|e^{i\theta} n_{k}/|n_{k}| & \text{otherwise} \end{cases}$$
 (2.3a)

where θ is chosen (rather arbitrarily) as $\arctan(3/4)$. If the last step was unsuccessful $(z_k = z_{k-1})$ then we take the tentative step to be

$$dz_k = -\frac{1}{2} e^{i\theta} dz_{k-1}$$
. (2.3c)

After a successful iteration we normally expect to want to take a Newton step (2.3a), but we include the alternative (2.3b) because accidently coming near to a stationary point of f(z) is likely to make the Newton step ridiculously large. We include a change of direction in (2.3b) because if a saddle point is being approached the direction n_k may be a worse search direction than almost any other. After an unsuccessful iteration we want to change the search direction to one likely to be successful and reduce the step size; this leads to formula (2.3c). Its repeated use is sure to yield a descent direction.

Once the tentative step has been found we test the inequality

$$|f(z_k+dz_k)| < |f(z_k)|. \qquad (2.4)$$

If this is satisfied then we calculate the numbers

$$|f(z_{\nu}+p dz_{\nu})|, p=1,2,...,n$$
 (2.5)

continuing for as long as these are strictly decreasing. If inequality (2.4) does not hold than we calculate the numbers

$$|f(z_k + dz_k/2^p)|$$
, p=0,1,2, $|f(z_k + \frac{1}{2}e^{i\theta} dz_k)|$ (2.6)

again continuing until the sequence ceases to decrease. In all cases we take z_{k+1} to be the best point found. Note that if there is a true multiple zero of multiplicity m or if we are a fair distance from a cluster of m zeros then z_k+mn_k will be a very good estimate of the solution and will be found by our search. In fact we get quadratic convergence to a multiple zero. Note also that when an iteration fails following a search to the end of sequence (2.6), the choice (2.3c) leads to a step likely to be in a direction of decreasing |f(z)|.

To complete our description of stage I we need to specify starting iterates. We take these to be

$$z_{0} = 0$$

$$dz_{0} = \begin{cases} -f(0)/f'(0) & \text{if } f'(0)=0 \\ 1 & \text{otherwise} \end{cases}$$

$$z_{1} = \frac{1}{2} \min_{k>0} \left(\left| \frac{a_{0}}{a_{k}} \right|^{1/k} \right) \frac{dz_{0}}{|dz_{0}|}.$$
(2.7)

The iteration really starts from z_1 but we have to include z_0 and dz_0 because they are needed for choosing the tentative step dz_1 . This choice of z_1 is used because its modulus is certainly less than that of any root of f(z) and it is in the direction of steepest descent of |f(z)| from the

i

origin. It is therefore likely that we will converge to a root of nearminimal modulus.

We do not make our main test for switching to stage 2 (straightforward Newton iteration) until a stage 1 search has led to the choice $z_{k+1} = z_k + dz_k$. This is obviously sensible and has the added virtue that we should (correctly) avoid the switch when converging to a multiple root. The test itself is based on the Kantorowitz theorem (see, for example, Ostrowski (1966)) which states that if K_0 is the circle with centre $z_k + n_k$ and radius $|n_k|$ where n_k is the Newton step (2.2) then the conditions

$$\begin{cases}
f(z_k) f'(z_k) \neq 0 \\
2|f(z_k)| \max_{z \in K_0} |f''(z)| \leq |f'(z_k)|^2
\end{cases}$$
(2.8)

ensure the convergence of Newton's iteration starting from $\mathbf{z}_{\mathbf{k}}$. This leads us to test the inequality

$$2|f(z_k)||f'(z_{k-1}) - f'(z_k)| \le |f'(z_k)|^2 |z_{k-1}-z_k|$$
 (2.9)

Of course this is not equivalent to test (2.8) because we have replaced $\max_{z \in K_0} |f''(z)| \text{ by a rather crude difference approximation but we } z \in K_0$ nevertheless expect it usually to predict correctly that straightforward Newton iteration will be satisfactory. We check inequality (2.9) at every step in stage 2 and switch back to stage 1 if it is violated. We also check the inequality (2.4) and if this is violated return to stage 1

beginning by modifying the tentative step with formula (2.3c) as in stage 1.

We complete this section by describing our convergence criterion. We terminate if a stage 1 search or a stage 2 iteration leads to a new iterate \boldsymbol{z}_{k+1} different from \boldsymbol{z}_k and yet such that the inequality

$$|z_{k+1} - z_k| < \varepsilon |z_{k+1}| \tag{2.10}$$

holds where ϵ is the largest number such that to machine accuracy l+ ϵ = l. We also terminate if the condition

$$|f(z_{k+1})| = |f(z_k)| \le 16n|a_0|\varepsilon$$
 (2.11)

holds. The expression $16n|a_0|\epsilon$ is a generous overestimate of the final roundoff made in calculating f(z) at the root of smallest modulus and we expect that such accuracy will be attainable. The normal convergence pattern is that $|f(z_k)|$ decreases until well below $16n|a_0|\epsilon$ and then roundoff errors cause a new iterate $z_{k+1}=z_k$ to be taken so that (2.11) is satisfied. If such accuracy is unattainable then the step will decrease steadily because of the application of (2.3c) until (2.10) is satisfied. This combination of convergence criteria means that we are certain to obtain a good solution and almost certain to obtain the best possible. Furthermore this result is usually obtained with only one more iteration than is necessary to get this good accuracy.

3. Error estimation

We seek to estimate error bounds for all the roots produced by the algorithm of the previous section. We base our algorithm on that of Peters and Wilkinson (1971) and will follow their notation. The most significant difference is that they look for non-overlapping discs each of which contains precisely the same number of exact and approximate roots, whereas we allow overlapping discs. This is because it can happen that one root is well determined although it is inside the best disc obtainable for another (ill-determined) root. We therefore look for a separate disc for each root and take its centre to be at the calculated root itself. This also allows a very simple form of output to the user since

all that is required is a radius for each root.

We suppose that we have approximate roots α_i , i=1,2,...,n. Then the polynomial

$$P(z) = a_n \prod_{i=1}^{n} (z-\alpha_i)$$
 (3.1)

should agree with the original polynomial (1.1), but because the roots are not exact there will be an error

$$Q(z) = P(z) - f(z)$$
. (3.2)

Now Rouché's theorem states that if P(z) and Q(z) are analytic functions in and on the closed curve C and the inequality

$$|Q(z)| < |P(z)| \tag{3.3}$$

holds on C then P(z) and P(z)-Q(z) have the same number of zeros inside C. We apply this here by looking for circles with centres α_i , $i=1,2,\ldots,n$ on which condition (3.3) holds. The following theorem shows that there is no need to worry about the overlapping of some of these discs.

Theorem 1 If condition (3.3) holds on each of the circles centre α_i , radius r_i , i=1,2,...,n, then the roots ϕ_i of f(z) may be ordered so that

$$|\alpha_{i} - \phi_{i}| \le r_{i}, \quad i=1,2,...,n$$
 (3.4)

<u>Proof</u> Regard the perimeters of the circles as dividing the plane into a set of non-overlapping regions R_i , each of which is the intersection of a subset of the set of discs that the circles enclose and their complements. A simple case is illustrated in Figure 1. Let R_{k_i} be the region containing α_i , $i=1,2,\ldots,n$. Note that a region may contain more than one α_i so that there may be coincidences among the k_i (e.g. $k_1=k_2=3$ in Figure 1). The set of regions R_{k_i} , $i=1,2,\ldots,n$ together contain all the

Figure 1 Four circles centre α_i dividing plane into seven regions R_i

roots α_i of P(z) and each R_{k_i} has a boundary on which condition (3.3) holds so contains exactly the same number of roots of f(z) as of P(z). Therefore the regions R_{k_i} (i=1,2,...,n) contain all the roots of f(z) and these may be ordered so that R_{k_i} contains ϕ_i (i=1,2,...,n). The result now follows since each R_{k_i} is contained in the disc centre α_i radius r_i .

Being able to use overlapping discs leads to simplifications in coding and sometimes to much better error bounds. This improvement is illustrated by the example shown in Figure 1, where α_1 and α_2 are quite ill-conditioned but α_3 and α_4 are not. The procedure of Peters and Wilkinson would have forced us to regard all four α_i as a cluster and to enclose them in a single disc. This would have made little difference to the bounds for α_1 and α_2 but would have significantly worsened the bounds

for α_3 and α_4 . Another illustration of this point is given in §6 with an example using our code.

We now suppose that the error polynomial is

$$Q(z) = \sum_{i=0}^{n} \varepsilon_{i} z^{i}$$
 (3.5)

and describe how to find a suitable circle for a typical root. For simplicity of notation let us imagine that the roots are reordered so that the one for which we are seeking a circle is α_1 and $|\alpha_1 - \alpha_1|$ increases monotonically with i. Rouche's condition (3.3) is satisfied on a circle centre α_1 and radius r if the inequality

$$\sum_{i=0}^{n} |\varepsilon_{i}| (r+|\alpha_{1}|)^{i} < |a_{n}| \prod_{i=1}^{n} (|\alpha_{i}-\alpha_{1}| - r)$$
 (3.6)

holds. If m is such that

$$|\alpha_{m} - \alpha_{1}| < r < |\alpha_{m-1} - \alpha_{1}| \tag{3.7}$$

(we ignore the case $r = |\alpha_i - \alpha_l|$ for some i because clearly inequality (3.6) cannot be satisfied in this case) then we may rewrite inequality (3.6) in the form

$$k(r) < \prod_{j=1}^{m} \left(r - |\alpha_{j} - \alpha_{j}| \right)$$
 (3.8)

where k(r) is given by the equation

$$k(r) = \frac{\sum_{i=0}^{n} |\varepsilon_{i}| (r+|\alpha_{1}|)^{i}}{|a_{n}| \prod_{i=m+1}^{n} (|\alpha_{i}-\alpha_{1}|-r)} . \tag{3.9}$$

Peters and Wilkinson (1971) solve the equation

$$(1.1) k(0) = (r_1 - \max_{1 \le i \le m} |\alpha_i - \alpha_i|)^m$$
 (3.10)

and then check whether r_1 satisfies inequalities (3.7) and (3.8). Almost always inequality (3.8) holds because

- (i) the right hand side of (3.10) underestimates the corresponding expression in (3.8),
- (ii) the safety factor (1.1) has been introduced
- and (iii) k(r) is nearly constant in the usual case where the roots α_i , $i=1,2,\ldots,m$ are well separated from the rest.

They give no recommendation for dealing with the case where r_1 does not satisfy (3.8), but presumably intend that an iteration should be set up with 0 and r_1 in (3.10) being replaced by r_i and r_{i+1} . This yields a montonically increasing sequence, so that we must eventually either satisfy inequality (3.8) or break the right-hand inequality (3.7) necessitating a new start with a greater value for m. Actually Peters and Wilkinson take the centre of their circle to be $\overline{\alpha} = \sum_{i=1}^{\infty} \alpha_i / m$ rather than α_1 and this means that the right-hand side of (3.10) is quite a good estimate of the right-hand side of (3.8) so that the procedure gives a realistic radius r without very much computation. Unfortunately this is not the case with α_1 in use, except when m=1 and we have sometimes obtained solutions such that the right-hand side of (3.8) exceeds the left by factors as big as 1,000. We have therefore decided to use an iteration based directly on (3.8). Given an iterate r_j we seek a new iterate such that

$$(1.05) k(r_j) < \prod_{i=1}^{m} (r_{j+1} - |\alpha_i - \alpha_i|) < (1.1) k(r_j).$$
 (3.11)

In view of inequality (3.7) it seems sensible to start with $r_0 = |\alpha_m - \alpha_1|$ rather than Wilkinson and Peters' $r_0 = 0$. To solve (3.11) we use the method of bisection because m is usually small so that function evaluations are cheap, no great accuracy is required in view of the slack in (3.11),

and suitable initial upper and lower bounds are available in r_j and the Peters and Wilkinson overestimate obtained from the analogue of equation (3.10). Typically between four and seven iterates are required.

Peters and Wilkinson suggest that r_{j+1} should be checked directly in (3.8) but a simple test often avoids any need for this. If the inequality

$$\left(\frac{r_{j+1} + |\alpha_1|}{r_j + |\alpha_1|} / \frac{|\alpha_{m+1} - \alpha_1| - r_{j+1}}{|\alpha_{m+1} - \alpha_1| - r_j}\right)^n \le 1.05$$
(3.12)

holds then it follows from the definition (3.9) that the inequality

$$k(r_{j+1}) \le 1.05 \ k(r_j)$$
 (3.13)

also holds. From this last inequality and the first inequality (3.11) we deduce that r_{i+1} satisfies inequality (3.8).

Rounding errors occur when the coefficients of P(z) are calculated, but can be reduced by multiplying out the factors $(z-\alpha_i)$ in order of increasing $|\alpha_i|$. We therefore use the same order as that in which they were calculated. If bounds e_i on the errors were available we could work with the error polynomial $\sum\limits_{i=0}^{z} (|\epsilon_i|+e_i)z^i$ in place of the polynomial (3.5) and obtain strict bounds on the errors in the calculated roots. We hoped to use the running error analysis of Peters and Wilkinson for this purpose, but unfortunately found that it sometimes gave gross overestimates, as explained in the last paragraph of this section. We therefore have ignored this source of error, relying on such errors being reflected in larger coefficients ϵ_i in the polynomial Q(z). It should be noted that the sequence of constructed polynomials $\prod_{i=1}^{z} (z-\alpha_i)$, $r=1,2,\ldots,n$ is not identical with the sequence of deflated polynomials used when finding the roots because we perform the multiplication in the same order as that in which the roots were found. Therefore errors produced by the

multiplication are likely to show in enlarged coefficients ϵ_i . Not bounding these errors means that our bounds are not strict bounds, but they are more realistic. In none of our tests did the actual errors exceed the estimated bounds.

It is straightforward to allow for the effects of uncertainties in the original coefficients by working with the error polynomial $\sum_{i=0}^{\Sigma} \left(\left|e_{i}\right| + b_{i}\right) \text{ where } b_{i}, i=0,1,\ldots,n, \text{ are bounds on these errors.}$ This we do in our subroutine.

We complete this section by explaining why the running error analysis of Peters and Wilkinson for the coefficients of $\prod\limits_{i=1}^{n}(z-\alpha_i)$ sometimes gives very pessimistic results. If the computed product r $\prod\limits_{i=0}^{n}(z-\alpha_i)$ is $\sum\limits_{i=0}^{n}b_i^{(r)}z^i$ then they generate coefficients $f_i^{(r)}$ from the recurrences.

$$f_{0}^{(1)} = f_{1}^{(1)} = 0$$

$$f_{0}^{(r+1)} = |\alpha_{r+1}| f_{0}^{(r)} + |b_{0}^{(r+1)}|$$

$$f_{1}^{(r+1)} = f_{1-1}^{(r)} + |\alpha_{r+1}| f_{1}^{(r)} + |\alpha_{r+1}| |b_{1}^{(r)}| + |b_{1}^{(r+1)}|$$

$$i=1,2,...,r$$

$$f_{-1}^{(r+1)} = f_{r+1}^{(r+1)} = 0$$

to yield bounds $2^{-t}f_i^{(n)}$ for the coefficients of P(z) if floating-point computation with t binary places is used. This can sometimes lead to very pessimistic bounds since the recurrence (3.14) fails to distinguish properly between $\Pi(z-\alpha_i)$ and $\Pi(z+|\alpha_i|)$. In fact the recurrence (3.14) is obtained by bounding the corresponding recurrence

$$e_{i}^{(r+1)} = e_{i-1}^{(r)} - \alpha_{r+1} e_{i}^{(r)} - \epsilon_{1} \alpha_{r+1} b_{i}^{(r)} - \epsilon_{2} b_{i}^{(r+1)}$$
 (3.15)

Such bounds are particularly unrealistic in such a case as $f(z)=z^n-1 \text{ since the numbers } f^{(r)} \text{ grow with } r \text{ in much the same way as the recurrence for generating the coefficients of } (z+1)^n \text{ and these coefficients are } ^nCr,r=0,1,...,n$ In fact the recurrence (3.14) has some added terms when compared with the recurrence for the coefficients of $(z+1)^n$.

4. Changes to the algorithms in the real case

The only change made to our root-finding algorithm in the case where f(z) has real coefficients is that once a complex root has been found it is either perturbed into a real root or its conjugate is taken as another root in this ensures that each deflated polynomial is also real and that work is saved for genuinely complex roots. Once a complex root $\alpha_k = x_k + iy_k$ has been found we evaluate $f(x_k)$ and use Peters and Wilkinson's (1971) running error analysis to bound the roundoff error made in this evaluation. The recurrence used for evaluating $f(x_k)$ is given by the equations

$$\begin{cases}
s_{n} = a_{n} \\
s_{i} = x_{k}s_{i+1}+a_{i}, & i=n-1,...,0 \\
f(x_{k}) = s_{0}
\end{cases}$$
(4.1)

and the corresponding running error analysis is given by the equations

$$g_{n} = 0$$

$$g_{i} = |x_{k}|(g_{i+1}^{+}|s_{i+1}^{-}|) + |s_{i}^{-}|, i=n-1,...,0$$
(4.2)

to yield the bound ϵg_0 for the error in $f(x_k)$ where ϵ is the relative floating-point accuracy. If the inequality

$$|s_0| < 2\varepsilon g_0 + |f(\alpha_k)|$$
 (4.3)

holds (where $f(\alpha_k)$ is the computed value at α_k), we take x_k to be a real root and deflate with it. Otherwise we deflate with the complex conjugate pair $x_k \pm iy_k$. It is very important that the case where we have a simple

real root well separated from the other roots should not be taken as a complex pair because a double deflation in such a case would be disastrous. We therefore consider this case and suppose that φ_k is such a real root and α_k is the (complex) approximation to it found by the algorithm. x_k (real part of α_k) is a better approximation to φ_k in the sense that the inequality

$$|\phi_{\mathbf{k}} - \mathbf{x}_{\mathbf{k}}| \leq |\phi_{\mathbf{k}} - \alpha_{\mathbf{k}}| \tag{4.4}$$

holds since φ_k is real. Further the exact value f(z) behaves like a constant times $(z\!-\!\varphi_k)$ if z is near $\varphi_k.$ It is therefore reasonable to expect that the inequality

$$|f(x_k)| \le |f(\alpha_k)|$$
 (4.5)

holds between the corresponding exact values. We therefore expect \mathbf{x}_k to be at least as good a root as $\mathbf{\alpha}_k$ so that it is virtually certain that inequality (4.3) will hold, since $\mathbf{\epsilon g}_0$ is a rigorous upper bound on the round-off error in computing $\mathbf{f}(\mathbf{x}_k)$ and may also be taken (slightly incorrectly) as a bound on the error in computing $|\mathbf{f}(\mathbf{\alpha}_k)|$.

A disadvantage of the test (4.3) is that we may decide we have a real root when a complex conjugate pair is the true position. We feel that this disadvantage is quite slight because it is reasonable to regard any point for which inequality (4.3) holds as a good approximate root.

The only change to the error bounding algorithm is that once a bound for a complex root has been found, this bound is also used for its complex conjugate.

5. Description of Fortran subroutines

In this section we describe the Fortran subroutines themselves. a short section because we have included rather full comments in the code itself, since we believe that this provides the most convenient form of documentation. Specification sheets and listings of the code are given in section 7. The specification sheets document all three versions (doubleand singe-length standard Fortran and double-length IBM Fortran). listings are of the standard Fortran double-length versions and contain specially coded comments detailing changes needed for the other versions. We have been using a simple preprocessor (written in standard Fortran) to convert from one version to another. Where a statement differs between versions we preceded the genuine (double-length standard) statement by the alternative version or versions modified by the insertion of C in column 1, / in column 72, and the letter I or S (for IBM version or single-length version) in column 71.

The listings used are those produced by the Bell Telephone
Laboratories' Fortran verifier because they include cross-references which are
very helpful when reading the code. They consist of lists of all the
identifiers and labels in lexographical order together with the statement
numbers of all references to them and the following coded information
for each identifier:

TYPE:

Col 1: E if explicitly typed

Col 2:

I for integer

R for real

D for double precision

C for complex L for logical

H for Hollerith

USE:

FA for arithmetic statement function argument

FN for function

E for external subroutine or function

GT for assigned "go to" variable

IF for intrinsic function

SN for subroutine

V for variable

ATTRIBUTES: Col 1: C if in COMMON

Col 2: E if an EQUIVALENCE Col 3: A if a dummy argument

Col 4: S if value set by program unit

Col 5: S if scalar A if array

Col 6: if array then number of dimensions

Because double-length complex facilities are not available in standard Fortran we do not use any complex variables, although the arguments A,R and E may be regarded as COMPLEX*16 (or COMPLEX for the single-length version) on the IBM 360/370 series. All complex variables are written as arrays of length two and all complex arrays are written as 2-dimensional arrays whose first dimension is two. This leads to the code being almost as easy to read as if the complex facilities were used. Complex division is more complicated than can be written conveniently as in-line code so we have taken this out of line to the subroutines PAO6ED/7ED.

We begin by describing the versions for complex polynomials, that is PAO6AD/BD/CD/DD/ED.

The main call is to a short routine PAO6AD which calls PAO6BD to find the roots and PAO6CD to find error bounds. PAO6DD and PAO6ED are short subroutines for polynomial evaluation and complex division, respectively. The time taken to find error bounds is usually about 25% of that taken to find the roots themselves but can rise to as much as 100% when there are many multiple roots. Because of this overhead we felt it was desirable for the user to be allowed to call PAO6BD directly and instructions about how to do this are included in the specification sheet. When calling PAO6CD (instruction 9 of PAO6AD) the work-space provided by the user is divided into the four areas required by PAO6CD. Also PAO6AD checks for zero leading coefficients and sets dummy error bounds to correspond, since PAO6CD assumes that the leading coefficient is non-zero.

The algorithm used by PAO6BD to find the roots has already been explained in section 2 with the minor exceptions of the inclusion of tests for zero leading coefficients (roots at infinity), tests for zero trailing coefficients (roots at zero) and the scaling of all deflated polynomials so that the largest coefficient has modulus approximately equal to the reciprocal of the modulus of the smallest non-zero coefficient. We implicitly assumed in section 2 that leading and trailing coefficients were non-zero and the inclusion of scaling minimizes the likelihood of underflow or overflow. To avoid additional roundoff we scale by a power of the floating-point base. For speed of execution (in function calls rather than basic arithmetic) we use single-length working for scaling and for finding the initial iterate. Also we avoid time-wasting evaluations of the moduli of complex numbers by working with the squares of the moduli or the sums of the absolute values of the real and imaginary parts. Subroutines PAO6DD and PAO6ED, called from several places in PAO6BD, should be regarded as part of PAO6BD. PAO6DD evaluates a complex polynomial at a complex point and finds the square of the modulus of the result. is a simple subroutine for complex division. The arguments of PAO6DD and PA06ED are explained in comments at the heads of each subroutine. 0ther coding details of PAO6BD are explained in comments.

Subroutine PAO6CD, which finds the error bounds using the algorithm of section 3, again makes use of single-length arithmetic whenever possible. In particular we found that CABS executes significantly faster than its double-precision equivalent (which in any case is not standard FORTRAN). Therefore the error polynomial is held in single-length, the function k(r) given by equation (3.9) is calculated in single-length and all the Rouché tests are performed in single-length. The details of the code are explained in comments.

We have tried to make the code for the case with real coefficients, namely subroutines PAO7AD-PAO7ED, resemble that for the complex case as much as possible, using the same labels and the same comments wherever this is appropriate. The only significant change in PAO7AD lies in the way the work-array W is subdivided when PAO7CD is called. The only significant changes in PAO7BD lie in the code for deflation (instructions 138-166), which is much more complicated because we need to test for a real root and need to include code for deflation with a pair of complex conjugate roots. The code for polynomial evaluation (in PAO7DD) is longer because we make use of the fact that the coefficients are real and treat separately the case where the point of evaluation is real. The main changes in PAO7CD are

- (i) Recognising complex roots when forming the polynomial $\Pi(z-\alpha_i)$ and multiplying them in as a complex conjugate pair to preserve real coefficients (instructions 18-28). It is assumed that conjugate pairs are adjacent in array R.
- (ii) Much more complicated code (instructions 39-59) for finding distances from the I^{th} root to all the rest. This code avoids calling CABS to find the distances between two real roots and so is much faster where most roots are real.
- (iii) Using the same error bound for a complex root and its conjugate (instructions 114-115).

6. Test results and comparisons with other methods

Our original reason for providing a new routine for the Harwell library was that the existing routine PAO1 sometimes gave incorrect answers. The new routine (PAO7) is able to get answers all of which have good accuracy in about half the time. We did not pursue the error in PAO1.

We have compared our algorithm with that of Jenkins and Traub (1970) in two ways. First we compared the Algol-W code given by Madsen (1973) with an Algol-W version of the code of Jenkins (1969) and found Madsen's to be 4 to 5 times faster. The required changes from Algol-60 to Algol-W are very minor. Next we compared our Fortran code with a rather free translation into Fortran of Jenkins code. We did not try to make a literal translation but rather to use his ideas to produce efficient Fortran code. The resulting program executed between 2 and 4 times slower than ours. A further advantage of our algorithm is that it is simpler and so the code is less bulky (the object code being about $^{2/3}$ as long). accuracy of the roots produced by the two algorithms was very comparable except in the last test shown in Table 1 (Jenkins' 6th example) where we obtained much smaller errors (all less than 2x10⁻¹⁴) because the roots of modulus 0.9 were not all found before those of modulus 1 and therefore illconditioned deflated polynomials were not generated. To compare the error bounds with those of Jenkins we ran the examples documented in his In his 6th example our bounds were much better simply because the roots had been found so much more accurately. In his 5th example (a complex polynomial of degree 21 having roots of multiplicities 1,2 and 3) several of his bounds were quite unrealistic and our bounds were all better. most of them by factors over 100 and three (or seven if multiplicities are included) by factors over 1,000. In the remaining examples the differences between the bounds were not severe.

Special purpose subroutines exist in the Harwell library for solving real cubic and quadratic equations (PAO3A/AD and PAO5A/AD, respectively). They use direct methods involving only the extraction of square and cube roots but sometimes they lose accuracy through unnecessary cancellation. We had hoped that a direct call of PAO7BD might be nearly as fast so that

we could withdraw the special purpose subroutines, but the speed difference is by a factor of about 7. It is hoped that better versions of PAO3A/AD and PAO5A/AD will be written for the library in due course. Extra tests for ensuring reliability are likely to slow down the programs a little, but it seems likely that good programs significantly faster than PAO7BD can be written for these special cases.

To test our subroutines we read in sets of roots and a relative error level. We used extended precision arithmetic to construct the corresponding polynomial and then made pseudo-random perturbations to its coefficients at the required relative level. The polynomial and its errors were then handed to our subroutines. This enables us to check the actual errors against the computed error discs. We began by using all the polynomials of Jenkins (1969) and about as many others from local sources, but eventually reduced our test set to those shown in Table 1 (and a few trivial ones designed to explore corners in our code) because the remainder showed no useful additional information. We used the same test data for the real case by adding an additional root consisting of the complex conjugate of any complex root.

Our test results are summarised in Table 1. For each example we show the errors and error bounds obtained for the first and last root found and one intermediate one. This gives the reader an indication of our success in finding the roots in order and we have been able to choose the intermediate root displayed so that the three roots together indicate the full range of conditioning. We also show the times (370/168 secs) for a call of PAO6BD/7BD (roots only) and PAO6AD/7AD (roots and bounds). It can be seen that finding the bounds usually involves quite a small overhead. The last two cases are exceptional because of the large number of roots which required discs containing many other roots. Such cases are relatively slow

because we try to find a disc with only one root, then try with two, and so on.

It was the complex version of the last example which led us to abandon finding disjoint discs, because some of the roots (e.g. (0,0.9)) are so ill-conditioned that the best disc obtainable covers all the roots. Therefore if we insist on distinct discs all that can be obtained is one disc for all the roots. By using overlapping discs, however, we obtained 12 good error bounds of which two are displayed in Table 1.

The real versions of the third and the last examples led us to abandon Peters' and Wilkinsons' running error analysis on the computed polynomial $P(z) = \Pi(z-\alpha_r)$. In the last example all the roots are well conditioned but the bounds for the errors in computing P(z) were so pessimistic that each disc contained all the roots. Example 3 was less dramatic but all the error bounds came to about 10^{-8} instead of about 10^{-14} .

TABLE 1

Test	Roots	Pert.			Complex version	_				Real version		•
	5000	level	Order	Time	Root	Bound	Error	Order	Time	Root	Bound	Error
-	(1,10-6),2x(-1,10-6) (2,10-8),2x(-2,10-8) 5,2x3,-10	0	10	.024	(-1,10-6) 3 -10	5.4E-8 2.6E-7 4.9E-15	3.0E-10 3.8E-10 1.1E-15	91	.028	(-1,0) 3 -10	7.6E-4 4.7E-7 9.2E-15	1.2E-6 4.6E-9 2.2E-15
2	±1,±1.5,±2,±2,5,,±4 ±4,1,±4,2,±4.3,,±4,7	10-15	28	1.7	1.5	1.1E-11 1.2E-3 3.1E-5	1.8E-13 2.2E-4 4.8E-6	87	.12	1.5 4.3	1.36-11	5.4E-14 1.6E-4 2.8E-6
	Jenkins 1*: randomly chosen coefficients*	10-13	18	.067	(.158,1) (209,900) (885,.302)	7.0E-8 6.7E-14 1.7E-9	1.4E-8 3.1E-15 1.1E-10	36	90.	(587,.482) (.579,72) (-377,398)	8.8E-14 7.7E-14 3.1E-14	4.8E-15 4.6E-15 6.0E-15
4	2 ⁱ , i= -6,-5,-4,,13	0	20	.050	2-6 22 212	2.1E-16 1.7E-18 4.2E-13 4.8E-14 1.0E-10 1.3E-11	1E-16 1.7E-18 2E-13 4.8E-14 .0E-10 1.3E-11	20	.037	2-6 22 2-13	2.3E-16 4.9E-13 6.1E-11	1,7E-18 4.0E-14 8,2E-12
vs	10-7, 4x1, 3x2, 2x3, 4 (an expansion of Jenkins 4)	10-10	11	.028	10-7 2 4	3.1E-17 7.5E-2 1.3E-5	8.8E-18 1.8E-2 2.6F-6	1.	.e]4 .c.3	10-7 2 4	2.2E-17 8.3E-2 9.0E-6	2.3E-18 2.7E-2 3.2E-6
9	106,8,9,10,,15	0	6	710. 910.	11 14 106	3.3E-7 1.9E-7 5.7E-10	1.3E-9 7.7E-10 4.4E-11	æ	.012	1.1 14 106	3.2E-7 1.8E-7 5.7E-10	5.5E-13 4.3E-10 4.4E-11
	5x0.1, 10x1, 2,3,4,5,6	10-15	20	.08	0.1 1 3	9.0E-4 2.9E-1 7.9E-9	2.9E-4 8.4E-2 3.1E-10	50	2.0.	0.1	6.3E-4 2.8E-1 1.1E-9	3.96-5 8.36-2 4.36-11
∞	Jenkins 6*: equally spaced on semi- circles centre origin radii .9/1 (left/right half planes)	1D-14	31	.37	(0,.9) (-,7794,.4500) (1,0)	2.0E-0 1.8E-3 8.4E-8	2.7E-2 1.7E-4 1.5E-8	09	.28	(8803,-1.871) (.3090,9511) (4500,.7794)	1.76-13 3.16-14 1.6E-13	1,1E-15 6,0E-15 5,5E-15

* In these cases roots were input to 3/4 significant decimals. 7. Appendix. Specification sheets and listings

Harwell Subroutine Library

PA06AD/BD

1. Purpose

To find all the roots of a complex polynomial

$$a_1 + a_2 x + ... + a_{n+1} x^n$$

and error bounds for these roots.

2. Argument List

CALL PA06AD(A,N,R,E,W,S,NP1,LW) (double-length standard)
CALL PA06AD(A,N,R,E,W,NP1,W) (single-length standard)
CALL PA06AD(A,N,R,E,W) (IBM)

- is a DOUBLE PRECISION (REAL for the single-length version) array of dimensions (2,n+1) which must be set by the user so that the real and imaginary parts of a_i are held in A(1,i), A(2,i). It is unaltered by the subroutine. For the IBM version A may be a COMPLEX*16 array of length n+1.
- N is an INTEGER variable containing the degree n of the polynomial. Its value must be positive.
- R is a DOUBLE PRECISION (REAL for the single-length version) array of dimensions (2,n) used to return the roots. These are held with real and imaginary parts in R(1,i), R(2,i), i=1,2,...,n. The dummy value (1D70,1D70) is returned for each infinite root (corresponding to a zero leading coefficient). For the IBM version R may be a COMPLEX*16 array of length n.
- E. is a REAL array of dimension at least (n+1) which must be set by the user to error bounds on the coefficients, or to zero if these are accurate to machine precision. On exit the first n locations contain approximate bounds on the moduli of the errors in the roots.
- W is a DOUBLE PRECISION (REAL for the single-length version) work array of dimensions (2,LW).

NP1 (standard versions only) is an INTEGER which must be set to n+1.

-10-

LW (standard versions only) is an INTEGER which must be set to at least 5n/4+2 (or 3n/2+2 for the single-length version).

3. Alternative Entry

The error analysis part of a call to PAO6AD takes typically about 20% of its time. If speed is important and error bounds are not wanted then a call of the form

or CALL PA06BD(A,N,R,W,NP1) (standard versions)
(CALL PA05BD(A,N,R,W) (IBM version)

should be made. The arguments are the same as those of the main call, but W need have length only (2,n+1).

4. Method

The roots are found by the algorithm of Madsen (BIT(1973) $\underline{13}$, 71-75), the principal features of which are Newton iteration followed by deflation. The error bounds are found by the application of Rouché's theorem as recommended by Wilkinson (J.Inst.Maths Applics.(1971) $\underline{8}$, 16-35) except that discs are always taken with centres on the approximate roots and errors in multiplying out the polynomial $\Pi(x-R(I))$ are ignored. The disc for each root is such that it contains exactly the same number of approximate roots R(I) as exact roots of the true polynomial. Note that in the case of true multiple roots the corresponding approximate roots may be quite well separated but each will lie in the disc of all the others and their mean will be a good estimate of the true multiple root.

PA07AD/BD

1. Purpose

To find all the roots of a real polynomial

$$a_1+a_2x+...+a_{n+1}x^n$$

and error bounds for these roots.

2. Argument List

CALL PAO7AD(A,N,R,E,W,S,NP1,LW) (double-length standard)
CALL PAO7AD(A,N,R,E,W,NP1,LW) (single-length standard)
CALL PAO7AD(A,N,R,E,W) (IBM)

- A is a DOUBLE PRECISION (REAL for the single-length version) array of length at least (n+1) which must be set by the user to contain the coefficients and is unaltered by the subroutine.
- N is an INTEGER variable containing the degree n of the polynomial.

 Its value must be positive.
- R is a DOUBLE PRECISION (REAL for the single-length version) array of dimensions (2,n) used to return the roots. These are held with real and imaginary parts in R(1,i),R(2,i),i=1,2,...,n. The dummy value (1D70,0D0) is returned for each infinite root (corresponding to a zero leading coefficient). For the IBM version R may be a COMPLEX*16 array of length n.
- E is a REAL array of dimension at least (n+1) which must be set by the user to error bounds on the coefficients, or to zero if these are accurate to machine precision. On exit the first n locations contain approximate bounds on the moduli of the errors in the roots.
- W is a DOUBLE PRECISION (REAL for the single-length version) work array of length LW.
- S (double-length standard version only) is a REAL work array of dimensions (2,LW), which may be equivalenced with W.

NP1 (standard versions only) is an INTEGER which must be set to n+1.

LW (standard versions only) is an INTEGER which must be set to 3n/2+2 (or 3n+2 for the single-length version).

3. Alternative Entry

The error analysis part of a call to PAO7AD takes typically about 20% of its time. If speed is important and error bounds are not wanted then a call of the form

should be made. The arguments are the same as those of the main call, but W need have length only n+1.

Method

The roots are found by the algorithm of Madsen (BIT(1973) $\underline{13}$,71-75), the principal features of which are Newton iteration followed by deflation. The error bounds are found by the application of Rouché's theorem as recommended by Wilkinson (J.Inst.Maths Applics.(1971) $\underline{8}$, 16-35) except that discs are always taken with centres on the approximate roots and errors in multiplying out the polynomial $\Pi(x-R(I))$ are ignored. The disc for each root is such that it contains exactly the same number of approximate roots R(I) as exact roots of the true polynomial. Note that in the case of true multiple roots the corresponding approximate roots may be quite well separated but each will lie in the disc of all the others and their mean will be a good estimate of the true multiple root.

i

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	18	181	18
	5 M=M-1 C IF(ABS(A(1,M+1))+ ABS(A(2,M+1)).EQ.O.O .AND. M.GT.O)GO TO 5 IF(DABS(A(1,M+1))+DABS(A(2,M+1)).EQ.O.O .AND. M.GT.O)GO TO 5 C N2=N/2	C IF(M.GE.1)CALL PAO6CD(A,M,M+1,R,E,W,W(1,N+2),W,W(1,N2+2)) C IF(M.GE.1)CALL PAO6CD(A,M,M+1,R,E,W,W(1,N+2),W,W(1,N+2)) IF(M.GE.1)CALL PAO6CD(A,M,M+1,R,E,W,S(1,N+2),S,S(1,N+2)) C SET DUMMY DISCS CORRESPONDING TO INFINITE ROOTS IF(M.EQ.N)GO TO 20	CI 0 E(I)= ABS(R(1,I))+ ABS(R(2,I)) 10 E(I)=DABS(R(1,I))+DABS(R(2,I)) 20 CONTINUE RETURN END
1 2 6 4 5	9 - 0	0 0 0	N 441040

PROGRAM UNIT	LI NS	L	PA06AD								
ARGUMENTS	4 S	•	z	~	w	3	\$		I dN	3	
NAME	TYPE	USE	USE ATTRIBUTES REFERENCES	REFERE	NCES						
⋖	E O	>	A A2	Ħ	7	4	←	6			
3ABS	الله	IF		_	13						
ш	n1 04	>	ASAI		m	6	13				
—	-	>	SS	21	13						
3	-	>	.s •₹	-1	7	m					
Σ	-	>	22	עי	9	_	6	10	11	12	
z	H	>	S	-4	•••	4	ī	œ	6	CI	~
NP 1	н	>	S A	-1	.7	m					
42	~	>	SS	89	٥٠						
PA0690		S		·r							
PAOSCO		S		6							
œ	<u>C</u>	>		-	7	1	6	13			
S	m K	>	A A2	-4	m	6					
x	Cu	>	A A2	-	, ~	4	σ				
10				12	13						
20				01	14						
ĸ				9	~						

```
DUATING STAGEZ. DIVZ IS TRUE. IF THE SEARCH WITH STEP-LENTHS
DZ.DZ.ZZ.ZZ... IS IN USE AND .FALSE. IF THE SEARCH WITH STEPS DZ.Z*DZ....
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    UATA RIG/1.270/9SMALL/1.E-70/9ASS/16./.EPS/2.32-16/
BIG,SMALL ARE MUMBERS NEAR OVERFLUM/UNDERFLUM LIMITS. BASE IS THE BASE
                                       2221
                                                                                                                                                                                                                                                                    WHEN (M-N) ZEROS ARE FOUND, A(1), ..., A(N+1), WILL HOLD THE COEFFICIENTS OF THE DEFLATED POLYNOMIAL. RUDT(N+1),...,RODT(M) WILL HOLD THE ZEROS FOUND. A1(1), ..., A1(N) WILL HOLD THE COEFFICIENTS OF THE DERIVATIVE OF THE DEFLATED POLYNOMIAL. RODT(1),...,RODT(N),A1(N+1),...,A1(M+1) HOLD COEFFICIENTS OF THE DRIGINAL POLYNOMIAL.
                                                                                                                                                                             ALL THE ABOVE ARRAYS HOLD COMPLEX VARIABLES AND COMPLEX ARRAYS AND WILL BE REFERRED TO IN COMMENTS AS SUCH, WITH ND MENTION OF THE FIRST
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      JUMBER AHICH LEAVES UNITY UNCHANGED IN THE FLOATING-POINT ARITHMETIC
                                       REAL ZO(2), FOZ(2), Z(2), DZ(2), FIZ(2), FZ(2), W(2),

IFW(2), A(2,MPI), AI(2,MPI), ROOT(2,M), DZK(2)

DOUGLE PRECISION ZO(2), FOZ(2), Z(2), DZ(2), FIZ(2), FZ(2), W(2),
                                                                                                              1FW(2),A(2,1),A1(2,1),ROOT(2,M),DZK(2)
DOUBLE PRECISION 20(2),FOZ(2),Z(2),DZ(2),FIZ(2),FZ(2),W(2),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               OF THE FLOATING POINT ARITHMETIC IN USE. EPS IS THE SMALLEST
                                                                                                                                                                                                                                                                                                                                                                                                                                                            LOGICAL STAGE1, DIVZ
STAGET IS . TRUE. PURING STAGET OF THE ITERATION AND .FALSE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              DATA RIG/1.E70/, SMALL /1.E-70/, PASE /16./, EPS/1.E-6/
                                                                                                                                                       1FW(2),4(2,MP1),A1(2,MP1),R001(2,M),DZK(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  STORE ORIGINAL POLYNOWIAL IN A AND IN ROOT.
                                                                                                                                                                                                                                                                                                                                                                                                                                          DOUBLE PRECISION FOOFFOFFFA PAGEDOUNI
                   SUBRUUTINE PAGGBU(A1, M, ROOT, A, MPI)
SUBROUTINE PACEBO(A1, M,ROOT, A)
                                                                                                                                                                                                                                                                                                                                                                                                                  REAL FO FF FF FA PANSOD 021
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SSMALL=SORT(SMALL)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ROOT(1, I) = A1(1, I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ROOT (2,1)=41(2,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ALDGE=ALGG(PASE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 A(1,1)=A1(1,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        A(2,3)=A1(2,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                M'1=1 01 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          IS IN USE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1=X+1
                                                                                                                                                                                                                                   SUBSCRIPT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IN USE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ں ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ں
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ں ں ں
                                                \cup \cup \cup
                                                                                                                                                                                        00000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             6 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          115
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              % ~ ∞
                                                                                                                                                                                                                                                                                                                                                                                                                                              m 4
                                                                                                                                           14 N
```

-29-

į

A(1,1)=A1(1,3)

į

```
C CALCULATION OF THE TENTATIVE STEP DZ AND WHETHER IN STAGEI.
C THIS IS WHEKE THE ITERATION STARTS IF THE PREVIOUS ONE WAS SUCCESSFUL.
120 U=PAO6DD(Z,F1Z,N ,A!)
                                                                                                                                                                                                                                                                                                                                                                                                                    S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               S
                                                                                                                  R SI
                                                   THE FOLLOWING QUANTITIES ARE HELD AT THE START OF EACH ITERATION 2 IS THE CURRENT POINT, F=CABS(F(Z))**2
ZO IS THE LAST POINT, FOZ=F'(ZG), FO=CABS(F(ZO))**2
RO=3*CABS(Z-ZO)
DZ IS THE LAST TENTATIVE STEP IF THE LAST ITERATION WAS SUCCESSFULE LSE IS THE REQUIRED NEXT TENTATIVE STEP. ON FIRST ITERATION IT SET TO Z.
                                                                                                                                                                                        SET INITIAL ITERATES AND QUANTITY USED IN THE CONVERGENCE TEST.
                                                                                                                                                            FF=CABS(F(ZT)) ** 2 WHERE ZT IS THE LAST TENTATIVE POINT.
                                                                                                                                                                                                                                                                                                                                                                                                  Z(2)=0.
IF( ABS(F0Z(1))+ ABS(F0Z(2)).LE.O.)GO TO 100
IF(DABS(F0Z(1))+DABS(F0Z(2)).LE.O.)GO TO 100
                                                                                                                                                                                                                                                                                                                                                                                                                                                             CALL PA06ED(A(1,N1),A(1,N),Z)
U=0.5*T/( APS(Z(1))+ ABS(Z(Z)))
U=0.5*T/(QAPS(Z(1))+DAPS(Z(Z)))
                           FMIN#FO# (FLUAT (N) #16. #EPS )##2
                                                                                                                                                                                                                                                                 U=A(1,K)**2+A(2,K)**2
IF (U.EQ.O.) GOTO 80
U=ALOG(UO/U)/FLDAT(2*(N1-K))
20(2)=0.
F0=A(1,N1)**2+A(2,N1)**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    F=PA0600(Z+FZ+N+1+A)
                                                                                                                                                                                                                                                                                                           IF (U.LT.T) T=U
                                                                                                                                                                                                                                                                                                                                                        FOZ (1 )= A (1 ,N)
                                                                                                                                                                                                                                                                                                                                                                      F0Z(2)=A(2,N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 Z=-A(N1)/A(N)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         U*(1)Z=(1)Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Z(2)=Z(2)*U
                                                                                                                                                                                                                                                   DO 80 K=1,N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        02(1)=2(1)
                                                                                                                                                                                                                                                                                                                             CONTINUE
                                                                                                                                                                                                                                                                                                                                           T=EXP(T)
                                                                                                                                                                                                                                                                                                                                                                                      Z(1)=1.
                                                                                                                                                                                                                                     T=8 1G
                                                                                                                                                                                                          FF=F0
                                                                                                                                                                                                                       U0=F0
                                                                                                                                                                                                                                                                                                                            80
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C1 00
                                          0000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                O
52 53
                                                                                                                                                                                                         68
                                                                                                                                                                                                                                                                                                                                                                                                                                                              69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            11
```

i

```
S
                                                                                                                                                                                                                                                                                                                                                                                           S
                                                                                                                                                                                                                                                                                                                                                                                                                    2 /
                                                                                                                                                                                                                                                     C FIND NEXT POINT IN THE ITERATION. THIS IS WHERE THE ITERATION STARTS C IF THE PREVIOUS ONE WAS UNSUCCESSFUL.
                                                                                                                                                                                                                                                                                                                                                       Z(2)=20(2)+02(2)
IF EITHER PART UF Z IS SMALL REPLACE BY ZERO TO AVOID UNDERFLOWS
IF ( ASS(Z(1)) LT.EPS* ABS(Z(2)))Z(1)=0.
IF(DAUS(Z(1)) LT.EPS* DARS(Z(2))Z(1)=0.
IF( ABS(Z(2)) LT.EPS* DARS(Z(2))Z(1)=0.
IF( DAUS(Z(2)) LT.EPS* DARS(Z(2))Z(2)=0.
IF( DARS(Z(2)) LT.EPS* DARS(Z(2))Z(2)=0.
                                   F2=(F0Z(1)-F1Z(1))**2+(F0Z(2)-F1Z(2))**2)/

[ (Z0(1)-Z(1))**2+(Z0(2)-Z(2))**2)

STAGE1=F*F2/U.GT.U*0.25 .UR. F.NE.FF

R= ARS(DZ(1))+ ARS(DZ(2))

R=DABS(DZ(1))+DARS(DZ(2))
                                                                                                             DZ1=DZ(1)
DZ(1)=(DZ1*1.8-DZ(2)*2.4)*RO/R
DZ(2)=(DZ1*2.4+DZ(2)*1.8)*RO/R
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    IF (.NOT.STAGEL) GOTO 240
                                                                                                                                                                            02(1)= 021*1.8-D2(2)*2.4
02(2)= 021*2.4+02(2)*1.8
                                                                                                 IF(R.LE.RO#3.)60 TO 150
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                359INNING OF STAGE! SEARCH.
                        CALL PAGGED(FZ,F1Z,DZ)
IF (U.S.D.O.) GOTO 140
                                                                                                                                                                                                                                                                                                                                                                                                                                                             F=PA0500 (2, FZ, N+1, A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       180 IF (DIV2) GOTO 190 W(1)=W(1)+DZ(1)
                                                                                                                                                                                                                                                                                                                                             (1)=20(1)+32(1)
                                                                                                                                                                                                    STAGE 1= .TRUE .
                                                                                                                                                                                                                 F02(1)=F12(1)
F02(2)=F12(2)
                                                                                                                                                                                                                                                                                                                    02K(1)=02(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            DIV2=F.GE.FO
                                                                                                                                                                                                                                                                                                                                DZK(2)=07(2)
              DZ =-FZ/F1Z
                                                                                                                                                                                                                                                                              Z0(1) = Z(1)
Z0(2) = Z(2)
FC= F
                                                                                                                                                    GOTO 150
D21=D2(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                     W(1)=Z(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 (2)2=(2)M
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FF=F
                                                                                                                                                                 1+0
                                                                                                                                                                                                                  150
                                                                                                                                                                                                                                                                               160
            ں
                                                                         ပ
                                                                                                                                                                                                                                          G
                                                                                                                                                                                                                                                                                                                                                                      ပပ
                                                                                    79
80
80
81
                                                                                                                                                                                                                                                                                                                                                       100
                                                                                                                                                                                                                                                                              94
95
95
95
96
99
                                                                                                                                                                                                                                                                                                                                                                                                                       102
103
104
105
106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    111.
                                                                                                                                                                                                                                                                                                                                                                                               101
```

•

```
RO= AHS(20(1)-Z(1))+ AHS(20(2)-Z(2))
RO=DAHS(20(1)-Z(1))+DAHS(20(2)-Z(2))
                                                                                                                                                                                                                                                                                                                                                    IF(F.LE.FMIN)GO TO 270
DZ(1)=DZK(1)*(-0.3)-DZK(2)*(-0.4)
DZ(2)=DZK(1)*(-0.4)+DZK(2)*(-0.3)
STAGF1=,TRUF.
GCTC 160
                                                                                                                                    IF (DIV2-AND-(J-EQ-3)) GDTD 220
IF (J-LE-N) GOTD 180
GOTD 240
                                                                                                                                                                                                                                                                                                      RI= ARS(Z(1)) + AES(Z(2))
RI=DARS(Z(1)) +DARS(Z(2))
IF(RO LT FPS*R1)GD TO 270
IF (F-LT-FO) GOTO 120
                                                                                                                                                                DZ1=DZ(1)
DZ(1)=DZ1+0.6-DZ(2)+0.8
                                                                                                                                                                                    DZ(2)=DZ1*0.8+DZ(2)*0.6
                                               W(2)=ZO(2)+DZ(2)
FA=PAO6PD(W,FW,N+1,A)
IF (FA,GE,F) GOTD 240
                                                                                                                                                                                                      Z(2)=Z0(2)+DZ(2)
F=PAO6DD(Z,FZ,N+1,A)
OF STAGE1 SEARCH
                                                                                                                                                                                                                                                               CONVERGLNCE TEST.
I+(F.LT.FO)SO TO 250
2(1)=20(1)
                 DZ(1)=DZ(1)*0.5
DZ(2)=DZ(2)*0.5
W(1)=Z0(1)+DZ(1)
                                                                                                                                                                                             (1)=ZU+(1)0Z=(1)Z
W(2)=W(2)+DZ(2)
GUTU 200
                                                                                                                                                                                                                                                                                                                                                                                                                 DEAL WITH N=1 CASE
                                                                                                                                                                                                                                                                                                                                                                                                                        Z=-A(2)/A(1)
                                                                                      F2(1)=FW(1)
F2(2)=FW(2)
                                                                                                                                                                                                                                                                                               7 (2)=20(3)
                                                                                                        Z(1)=M(1)
                                                                                                                   (2)M=(2)Z
                                                                                                                           1=1+1
                                                                                                                                                                                                                                                                                                                                              F=F0
                                                                             FEFA
                                                                                                                                                                                                                          C END
                                                                                                                                                                                                                                              34T
                                                                                                                                                                                                                                    0- Z
                                                                                                                                                                                                                                                                                                       C250
                   0 61
                                                          200
                                                                                                                                                                  55.0
 135
                                                                                                                                                                                                                                                                           136
137
138
                                                                                                                                                                                                                                                                                                                                             142
                                                                                                                                                                                                                                                                                                                                                                142
                                                                                                                                                                                                                                                                                                                                  171
```

i

643	0 9 0	260 CALL PAG6ED(A(1,2),A(1,1),2) GD TD 290
150	C 26FL 270	C DEFLATE, STORE ROOT, RESTORE COEFFICIENT OF ORIGINAL POLY AND REDUCE N 270 DO 280 K=2.N
52		A(1 • K) = A(1 • K - 1) + Z(1) - A(2 • K - 1) + Z(2) + A(1 • K) A(2 • K) = A(1 • K - 1) + Z(2) + A(2 • K - 1) + Z(2) + A(1 • K)
180	0 62	A1(1,N) =ROOT(1,N)
54		A1(2,N)=R001(2,N)
55		ROD1(1,N)=Z(1)
56		RODT(2,N)=Z(2)
57		Z=Z1
58		IF(N-1)310,260,40
59	310	RETURN
09		END

ARGUMENTS	'n	A 1	x	ROOT	∢	MP I				
NAME	TYPE	USE AT	ATTRIBUTES	REFERENCE	ces					
∢	O Pi	>	A SA 2	1 21 49	2 2 2 2	10 41 58	11 42 44	11 4 6 12 14 12	16 44 69	81 85 87
AL 06	m R	Z.		118 7	134 38	148 60	151	152		
AL 068 A1	α C	>>	SSASAS	-	86.4	01	111	13	71	15
BASE	or or	>>	SS	i ru a	2	39 6 K	0	, y		
DABS	a w	.))	. ສ ເ	32	64	8 9	2,0	82	101
01V2 07	יינו	>>	\$\$; , 4 ··	109	110	126	6.8	4	ď
3		•	, ,	88	89 114	115	97	98	65	888
02K 021	ED ≣D	>>	5A1 5\$	130	97 84 131	98	144 86 86	145 88	68	8
EPS P P	~ α C	> 4 >	SS	1 0	53	101	102	140	40	9
FA FF FLOAT		> >>#	າ ທະນຸ	120 120 12 12 12 12 12 12 12 12 12 12 12 12 12	134 118 44 44	136 119 81 83	141 120 106 60	142	143	5
M M M M M M M M M M M M M M M M M M M	4 U U U	>>>>	SS A1 SS 1	W 71 57 75 75 75 75 75 75 75 75 75 75 75 75	143 118 75 52	121 79 53	122 105 54	121 55	122 96	134
F02 F12 F2	m m 0 0 &	>>>	SA1 A1 SS	80	145 147 81	79	68 80	92	92	93

 PAOGRD

PRICE AM UNIT

THIS **PAGE** IS MISSING IN ORIGINAL DOCUMENT

36,-37

```
IG AND CR MAY BE DYNAMICALLY GOULYALENCED WITH SFPARATE PARTS OF W
REAL A(1,NP1),R(2,N),W(2,NP1),C(2)

DOUBLE PRECISION A(2,NP1),R(2,N),W(2,NP1),C(2)

REAL E(NP1),F(NP1),CR(N),Z(2),AI(2),IG(N)

W IS A WORK SPACE ARRAY OF LENGTH N+1 USED TO HOLD THE COEFFICIENTS

OF THE POLYNOWIAL FORMED FROM THE CALCULATED ROOTS.

F IS A WORK SPACE ARRAY OF LENGTH N+1 USED TO HOLD THE COEFFICIENTS

OF THE ERROR POLYNOMIAL.

IG IS A WORK SPACE ARRAY OF LENGTH N USED TO LINK TOGETHER THE ROOTS

IN A GROUP. THE FIRST IS IG!, IG(K) FOLLOWS K AND THE LAST IS I.

OTHER ROOTS HAVE IG(K)=0.

CR IS A WORKSPACE ARRAY OF LENGTH N USED TO HOLD DISTANCES FROM ROOT IT

TO TH REST.
                                                                                                                                                                                                                                                                      S
                                                                                                                                                                                                                                                                               DATA EPS/2.3E-16/,BIG/1.E70/
BIG IS A NUMBER NEAR THE OVERFLOW LIMIT. EPS IS THE SMALLEST
NUMBER WHICH LEAVES UNITY UNCHANGED IN THE FLOATING-POINT ARITHMETIC
                                                                                                                                                                                                                                                                                                                                                                                                              MULTIPLY OUT THE POLYNOMIAL FORMED FROM THE CALCULATED ROOTS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          W(1,J+1)=C(1)*W(1,J)-C(2)*W(2,J)+W(1,J+1)
W(2,J+1)=C(1)*W(2,J)+C(2)*W(1,J)+W(2,J+1)
SUBROUTINE PAGGCD(A,N,NP1,R,E,W,F,IG,CR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            10 W(2,J+1)*C(1)*W(2,J)+C(2)*W(1,J)+I
C
C FIND COEFFICIÊNTS OF ERROR POLYNOMIAL
                                                                                                                                                                                                                                                            DATA EPS/1.E-6/,816/1.E70/
                                                                                                                                                                                                                                                                                                                                                           FACT=1.05**(1./FLNAT(N))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Z(1)=A(1,11)-W(1,1)

Z(2)=A(2,11)-W(2,1)
                                                                                                                                                                                                                                                                                                                                                                                                                                 W(1,1)=A(1,N1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                     W(2,1)=A(2,N1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          AI(2)=A(2,II)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                C(1)=-R(1,11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            AI(1)=A(1,II)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C(2)=-R(2,II)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1,1=UU 01 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     DO 20 I=1,NI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      DO 10 I=1,N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          W(1,1+1)=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          W(2,I+1)=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        I -2+N=I I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          J-1+1-0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              I I=N1-1
                                                                                                                                                                                                                                                                                                                                                                            1+N=1N
                                                                                                                                                                                                                                                                                                                                         IN USE.
                    ပပ
                                                                                                                                                0000000
                                                                                                                                                                                                                                                                                                                   υU
                                                                                                                                                                                                                                                                                                                                                                                                                 J
                                                                                                                                                                                                                                                                                                                                                                                              ပ
                                                                                                                                                                                                                                                                                                                                                         10 40
```

i

```
F(I)=CABS(CMPLX(Z(1),Z(2)))+AMAX1(E(II),CABS(CMPLX(AI(1),AI(2)))
                                                                                                                                                                                                      C INITIALIZATION STATEMENTS WHICH ARE ALSO NEEDED WHEN M IS INCREASED
                           30 IG(I)=0
C
C MAIN ERROR-BOUNDING LOOP STARTS HERE AND EXTENDS TO THE END
C DF THE SUBROUTINE IF FINDS A BOUND FOR ROOT I.
DO 130 I=1.N
                                                                                                                                                                                                                                                               C TEST ROUCHE CONDITION WITH RADIUS RAD.
                                                                                                                                                                                   CR(K)=CABS(CMPLX(Z(1),Z(2)))
                                                                                                                                                                                                                                             S=CABS(CMPLX(Z(1),Z(2)))+D
                                                                                                                                                                                                                                                                                                                BTM=CABS4CMPLX(Z(1),Z(2)))
                                                                                                                                    C FIND DISTANCES TO OTHER ROOTS
                                                                                                                                                                                                                                                                                                                                                                         IFIDMIN-LE-DISTIGN TO 80
                                                                                                                                                                                                                                                                                                                                                      IF(IG(K).NE.O.)GD TO 70
BTM=BTM*(DIST-RAD)
                                                                                                                                                                                                                                                                                                                                                                                                               PROU=PROD*(RAD-DIST)
CONTINUE
                                                                                                                                                                2(1)=R(1,K)-C(1)
                                                                                                                                                                                                                                                                                                                                  TOP=S *TOP + F (K+1)
                                                                                                                                                                          Z(2)=R(2,K)-C(2)
                                                                                                                                                                                                                                                                                             (1)=A(1,N1)
                                                                                                                                                                                                                                                                                                      Z(2)=A(2,N1)
                                                                                                                                                       DO 32 K=1,N
                 DO 30 I=1,N
IG(1)=0
                                                                                                                                                                                                                                                                                                                         00 80 K=1.N
                                                                                                        C(1)=R(1,1)
                                                                                                                 C(2)=R(2,1)
                                                                                                                                                                                                                                                                                                                                             DIST=CR(K)
                                                                                                                                                                                                                          Z(1)=C(1)
Z(2)=C(2)
                                                                                                                                                                                                                                                                                                                                                                                  DMIN=DIST
                                                                                                                                                                                                                                                                                                                                                                                                    GO TO 80
                                                                                     I G(I)=-1
                                                                                                                                                                                                                 DMIN=816
                                                                                                                                                                                                                                                                                   PROD=1.
           1*EPS)
                                                                                               I G I = I
                                                                                                                            D=0
                                                                                                                                                                                                                                                                                                                                                                                             一
木
2
                                                                                                                                                                                    ر
د ع
                                                                                                                                                                                                                                                                                                                                                                                                               23
                                                                                                                                                                                                                                                                                            252 252 24
                                                                  35
34
37
                                                                                                                                                                                                                                                                          44 45
```

```
IF(RAD.GE.DMIN)GD TD 100
IF( S*((DMIN-JLDR)/(DMIN-RAD)). LE.FACT*OLDS)GD TD 110
                                                                IF (M.EQ.1)50 TO 98
RM=0+(I.1*TR)+*(I.0/FLUAT(M))
C BISECTION LUOP. RL AND RM HULD UPPER AND LOWER ROUNDS.
B3 RAD=(RL+RM)/2.
                                                                                                                                                           IF(PROD.GE.1.10*T9)GO TO 94
IF(RAJ.GE.DMIN)GC TO 100
IF(PROD.GT.1.05*TP)GO TO 98
RL=RAD.
                                                                                                                                                                                                                                                                                                                                     C STORE ERRCR BOUND AND RESET IG
110 E(1)=RAD
120 K=IG1
IF(8T%-E0.0.0)GO TO 100
TR= ABS(TOP/BTM)
IF(PROD.GE.TB)GO TO 110
                                                                                                                                PROD=PROD*(RAD-CR(K))
                           C FIND A NEW TRIAL RADIUS.
                                                                                                                                                                                                                                                                                                                                                                              IG(K)=0.
IF(K.NE.I)G0 TO 120
CONTINU:
                                                                                                                                          K=1F1X(IG(K))
IF(K.GT.0)G0 T0 90
                                                                                                                                                                                                                                                                                                                                                                     ISI = IFIX (16(161))
                                                                                                                                                                                                                                                                                            IG(L)=FLGAT(IG1)
                                                                                                                                                                                                                                                                         ADD ROOT TO GROUP
                                                                                                      RAD=(RL+RM)/2.
PROD=1.
                                                                                                                                                                                                                           S=S+RAD-MLDR
                                             OLDR=RAD
                                                                                                                                                                                                                                                                                                                       GD TD 40
                                                                                                                                                                                                GO TO 83
                                                                                                                                                                                                                   GC TO 83
                                                                                                                                                                                                                                                       60 10 45
                                                                                                                                                                                                          RM=RAD
                                                                                                                                                                                                                                                                                                                                                                                                          RETURN
                                                       RL=RAD
                                                                                                                                                                                                                                                                                                               D=DMIN
                                                                                                                        K=161
                                                                                                                                                                                                                                                                                                     IG1=L
                                                                                                                                                                                                                                                                                   M-M+I
                                                                                                                                                                                                                                                                                                                                                                                                  130
                                                                                                                                  8
                                                                                                                                                                                                           46
                                                                                                                                                                                                                            93
                                                                                                                                                                                                                                                                                   88
88
89
89
90
                                                                                                                                                                                                                                                                                                                                                   64
65
67
68
```

•

PROGRAM UNIT	UNIT	n.	PAG6CD									
ARGUMENTS	S	∢	z	Idn	œ	w	3		u.	91	క	
NAME	TYPE	USE	ATTR IBUTES	REFERENCES	VCES							
⋖	E D	>	A A2	7	~	7	3 0	17	25	23	54	
4	•	,		40	47							
ABS	o⊄ 0	<u>+</u> >		61	÷	t						
AMAX1		u -	140	ر بر ج	17	77	67					
BIG	e e	· >	SS	7 4	39							
87₩	œ	>	SS	4	(A)	. 09	19					
υ	0 11	>	SAL	2	13	<u> </u>	17	8 1	32	33	36	
				E.	07	17						
CARS	с Ш	Z		52	38	7.4	84					
CMPLX	ت س	<u>.</u>		25	38	4 .2						
క	<u>~</u>	>	ASAI	, - 4	æ	38	51	72				
٥	or	>	SS	34	42	43	99	89	68			
DIST	~	>	\$\$	51	53	25	ያ የ	58				
OM I N		>	SS	36	24	55	16	83	84	8		
w	ex ttr	>	ASAI	~	m	25	91					
EP S		>	\$\$	4	25							
u.	or u	>	ASA1	-	143	5 2	44	20				
FACT	œ	>	\$\$	ĸ	ħΰ							
FLOAT	or.	1		ď	68	87						
.	-	>	58	6	9	11	12	15	16	19	20	
				(1) (4)	54	25	97	27	82	ጽ	31	
		•		32	ლ : ლ :	16	95					
	→ c	<u>-</u> >	1737	٠,	٠ ٢	;	6	í	,	,	ç	
2		>	****	76	n	7) 1	7 1	ก	6 .	5	
161	-	>	SS	31	1	87	88	92				
11	,	>	SS	21	13	14	20	21	22	2	24	
				25				ı I	}	}		
٠ ٦	-	>	SS	16	17	18						
ر د	-	>	S.	ii)	16					•		
¥		>	SS	3) (3)	36	37	38	64	0 ;	21	52	
				26	1	12	73	7.	26	\$	95	
ٔ ب		>	SS	26	8.1	88						
X.	H	>	25	62	29	84.	86					

56	31	1 8 0 7
82 44	5 % % 5 K	38
0 3	2 8 6 4 7 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 11 2
9 51	48 86 87 27 27 27 27 27 27 27 27 27 27 27 27 27	7 0 9 8 4 7 0 9 8
5 2	10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	6 4 12 8 C
4 8 4 0 1 8 4	113 113 128 138 148 159 159	611 611 811 82 82 82
3 m m m m m m m m m m m m m m m m m m m	65 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 7 4 6 7 11 7 12 7 12 7 12 7 12 7 12 7 12 7
2 4 4 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4
4 4 N N N N N	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SAI
> >>>	>>> >>>>	·>> >
н ннск	 	(σ') α (1) ω
N N 1 N 1 O L D R O L D R O L D S	PAUD RAD S TTB	TOP

ITS MODULUS			41
79.		10	12
MI.A.		Φ	11
*N1,4) Q,8,400(Z,FZ,N1,4) Q,8,400(Z,V) E),4(Z,N1),P,Q,R,X ERS COEFICIENTS IN FZ AND THE SQUA		13	10 10 10 5
10.4) A0600 A0600 A0600 A0600 FZ A1		101	0 0 II 0 0 4
PAO6DD(Z,FZ,NI) ON FUNCTION P40, ON Z(2),FZ(2), OMPLEX NUMBERS POLYNOMIAL CO T Z IS SET IN CTION VALUE. I+1) I+1)	NCES	~~~~	104r6450
PA06DD 1 A (2.10) 1 A (2.10)	REFERENCES		ころころここの
UNCTION PRECISI PRECISI PRECISI ONTAIN C COMPLEX VALUE A D AS FUN 11) 11) 12) P*Y+A(2*) P*Y+A(2*) 04	ATTRIBUTES	A A A A A A A A A A A A A A A A A A A	SS
REAL FUNC DOUBLE PR REAL 2(2) DOUBLE PR 2 AND FZ CONT A CONTAINS CO POLYNOMIAL VA N=Z(1) Y=Z(1) Y=Z(1) P=A(1,1) O=A(2,1) DO 10 1=1 R=P*X-Q*Y Q=Q*X+P*Y P=R FZ(1) =P FZ(1) =P	USE A	>>>>	> " > > > >
CC C A C C C I S L C C I S L C C C C C C C C C C C C C C C C C C	TYPE		
2 647000000000000000000000000000000000000	NAME	N I F	PA0600 Q X X X X X X X X X X X X X X X X X X X

s s	\$											
							-					
, D, E						0	•	6			,	_
3 A1 • C						න ග	r kn	ဆ	æ	2	6	•
0+€ 0 = - A / B 0 = - A / B						4 α	: M3	۱ م	_	. œ	30	K
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00					S	~ 4	. UI	r.	9	~	2	m
2014 01VIS	/E				REFERENCES							
PAGED(4,8,0) 8(2),9(2),0,41,C,C CISION A(2),8(2),C COMPLEX DIVISION 11+ A8S(8(2)) 1+DA8S(8(2))	1*0)/			3			, _	r-i	7	w i	-	~
SUBROUTINE PAO6ED(A,B,Q) REAL A(2),B(2),Q(2),U,A1,C,D,E DOUBLE PRECISION A(2),B(2),Q(2),U,A1,C,D,E EMENTS THE COMPLEX DIVISION Q=-A/B U= ABS(B(1))+ ABS(B(2)) A1=A(1) C=B(1)/U	U=B(2)/U E=-(C*C+D*D)*U Q(1)=(A1*C+A(2)*D)/E Q(2)=(A(2)*C-A1*D)/E RETURN			æ	ATTR IBUTES	A 1	33 A A1	SS	S	S	ASA1	SS
SUBROUTINE REAL A(2), B DOUBLE PREC EMENTS THE U= ABS(B(1) U=DABS(B(1) A1=A(1)	C + C + D + C + C + D + C + C + D + C + C		PAOKED		TTRIB	⋖″	`≪	U)	,	•	٩	•
SUBROUTING REAL A(2) DOUBLE PRODUCE PR	D=B(Z)/U E=-(C*C+ Q(1)=(A1 Q(Z)=(A(ო <u>S</u>	d	∢	USE A	> :	> >	>	>	H >	· >	>
S S S		U	11		TYPE	<u>ක</u> (ייט ייט	0 3	ລ	n	ניי נ	CI E
	·	_	NO ES	STN	į.							
→ ⋈ (m 4 m)	9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1	PROGRAM UNIT	ARGUMENTS	NAME	4 :	- E	ں ،	۵	DA9S	ם ת	· ⊃

C SUBROUTINE PAOTAD(A,N,R,E,W,NPI,LW) SUBROUTINE PAOTAD(A,N,R,E,W) SUBROUTINE PAOTAD(A,N,R,E,W) C REAL A(NPI),W(LWI,R(E,N) C DOUBLE PRECISION A(NPI),W(LWI,R(Z,N) C REAL E(NPI) C REAL E(NPI) C ALL PAOTAD(A,N,R,W) C ALL PAOTAD(A,N,R,W) C CALL PAOTAD(A,N,R,W) C NEAL E(NPI) C ALL PAOTAD(A,N,R,W) C NEAL E(NPI) C ALL PAOTAD(A,N,R,W) C NEAL E(NPI) C ALL PAOTAD(A,N,R,W) C NEAL E(NPI) C CALL PAOTAD(A,N,R,W) C NEAL E(N,R,R,W) C NEAL E(NPI) C NEAL E(NI) C NEAL E(NI) C NEAL E(NI) C NEAL E(NI) C NEAL E(NI)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	71	/1	1/1		W1	1 8	M W W W W W W W W W		
	SUBROUTINE PAOTAD(A,N,R,E,W,NPI,LW) SUBROUTINE PAOTAD(A,N,R,E,W) SUBROUTINE PAOTAD(A,N,R,E,W,S,NPI,LW) REAL A(NPI, W(!M,R,E,W)	DOUBLE PRECISION A(N), M(1), M(2,N)	REAL E(NP1) REAL E(1)		CALL PAO7BD(A,N,R,W,N+1) CHECK FOR ZERO LEADING COEFFICIENTS M=N+1	ABS(A(M+1)),EQ.0.0 .AND. M.GT.0)GD	M.GT.0360	IF(M.GE.1)CALL PAOTCD(A,M,M+1,R,E,W,W(N+2) IF(M.GE.1)CALL PAOTCD(A,M,M+1,R,E,W,W(N+2) IF(M.GE.1)CALL PAOTCD(A,M,M+1,R,E,W,S(1,N+1))		
	00 0	ى ر	υu	U	U	in U	υ		້ ບ ີ	23

PROGRAM UNIT	UNIT	PA	PA07AD								
AR GUMENTS	٥	<	z	α	ш	3	S		NP 1	3	
NAME	TYP E	USE A	USE ATTRIBUTES REFERENCES	REFERE	NCES						
A DABS	m ni O U	> ₩	A A1		13 2	4	-	5			
ш Р	۵. ن	>:	ASAI	-	m	5	13				
ž.	 -	> >	^ ∀	17	5 2	ю					
X :	—	>	SS	ß	9	7	σ	10	11	12	
2 2	⊷ ⊷	> >	v •		27	4 (rv	90	Φ.	20	
N2 N	• ••	> >	? SS	→ ¢¢	40	ń					
PA078D PA07CD		N N		40							
œ	ů.	>		-	2	4	6	13			
S	ST.	>	A A2	-	m	ŗ		1			
3	O.	>			~	4	6				
10				12	13						
5 0				10	14						
'n				s	7						

Z(2)=0. IF(ABS(A(N1)).LE.SSMALL)GO TO 290 IF(DARS(A(N1)).LE.SSMALL)GO TO 290 ZG(1)=0. TEST FOR ZEROS AT INFINITY IF(DABS(A(1)).GT.0.)GO TO 40 IF(DABS(A(1)).GT.0.)GO TO 40 DO 30 I=1,N O A(1)=A(1+1) RUDT(1,N)=BIG ROT(2,N)=0. FMIN=F0+(FLUAT(N)+16.+EPS)++2 TEST FOR ZEROS AT (0..C.) Z(1)=0. A1(K)=A(K)+FLOAT(N1-K) U=DABS(A(K))
IF(U=LE=0=)GO TO 50
IF (U=GT=U1) U1=U
IF (U=LT=U2) U2=U IF (N.GT.0) GOTO 20 GOTO 310 IF (N.LE.1) GOTO 260 U=SQRT(U1) *SQRT(U2) I=-ALOG(U)/ALOGB SCALE THE CREFFICIENTS A (N1)=A (N1) *U U1=0. U2=RIG DO 50 K=1.NI U= ARS(A(K)) DO 70 K=1,N A(K)=A(K)*U F0=4(N1)**2 A(I)=A1(J) J=J-1 U=BASE**I CONTINUE 20(2)=0. NI=N+1 50 2 30 **4** 2002 ں ں ပ ں ں O

S

S

13

115 116 117 118 122 23 24 S

Ų

1

9 7

25 26 27

```
C CALCULATION OF THE TENTATIVE STEP DZ AND WHETHER IN STAGEL.
C THIS IS WHERE THE ITERATION STARTS IF THE PREVIOUS ONE WAS SUCCESSFUL.
120 U=PAOTDO(Z,F1Z,N ,A1)
IF (U.EQ.O.) GOTO 140
C DZ=-FZ/F1Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  S
                                                                                                                                                       S
                                                                                                                                                                                                             S
                                                      8 ₩
                                                     DZ IS THE LAST TENTATIVE STEP IF THE LAST ITERATION WAS SUCCESSFUL
ELSE IS THE REQUIRED NEXT TENTATIVE STEP. ON FIRST ITERATION IT
SET TO 2.
THE FOLLOWING QUANTITIES ARE HELD AT THE START OF EACH ITERATION Z IS THE CURRENT POINT, F=CABS(F(Z))++2 ZO IS THE LAST POINT, FOZ=F*(ZO), FO=CABS(F(ZO))++2 RO=3+CABS(Z-ZO)
                                                                                                                          SET INITIAL ITERATES AND QUANTITY USED IN THE CONVERGENCE TEST.
                                                                                                FF=CARS(F(ZT)) ++2 WHERE ZT IS THE LAST TENTATIVE POINT.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          CALL PAOTED(FZ,FIZ,DZ)
FZ={(FOZ(1)-FIZ(1))**2+(FOZ(2)-FIZ(2})**2)/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ((20(1)-2(1))**2+(20(2)-2(2))**2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 STAGE1=F#F2/U.GT-U#0.25 .OR. F.NE.FF
R= ABS(DZ(1))+ ABS(DZ(2))
R=DABS(DZ(1))+DABS(DZ(2))
                                                                                                                                                                                                                                                                                                                                                    IF(A(N).LT.0.)Z(1)=-Z(1)
                                                                                                                                                                                                                                                  U=ALOG(UO/U)/FLDAT(N1-K)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           IF(RaLEaRO*3a)GD TO 150
D21=D2(1)
                                                                                                                                                                                                                                      IF (U.EQ.O.) GDTD 80
                                                                                                                                                                                                                                                                                                                                                                                            F=PAO7DD(Z,FZ,N+1,A)
R0=0.5+T
                                                                                                                                                                                                                                                                 IF (U.LT.T) T=U CONTINUE
                                                                                                                                                     UC= ABS(A(N1))
UO=DARS(A(N1))
                                                                                                                                                                                                          U= ABS(A(K))
U=DABS(A(K))
                                                                                                                                                                                             DC 80 K=1,N
                                                                                                                                                                                                                                                                                                            FOZ (1)=A(N)
                                                                                                                                                                                                                                                                                                                                                                   02(1)=2(1)
                                                                                                                                                                                                                                                                                                                                       Z(1)=0.5*T
                                                                                                                                                                                                                                                                                                                         F0Z(2)=0.
                                                                                                                                                                                                                                                                                              T=E XP (T)
                                                                                                                                         FF=F0
                                                                                                                                                                                T=81G
                                                                                                                                                                                                                                                                                  80
  00000000000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ပ
                                                                                                                                                                                                             U
                                                                                                                                                                                                                         67
68
68
69
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              27.
                                                                                                                                                                    65
                                                                                                                                         5
```

```
S
                                                                                                                                                                                                                                                                15
                                                                                                                 C FIND NEXT POINT IN THE ITERATION. THIS IS WHERE THE ITERATION STARTS C IF THE PREVIOUS ONE WAS UNSUCCESSFUL.

160 ZO(1)=Z(1)

ZO(2)=Z(2)
                                                                                                                                                                                                  Z(1)=Z0(1)+DZ(1)
Z(2)=Z0(2)+DZ(2)
IF EITHER PART OF Z IS SMALL REPLACE BY ZERO TO AVOID UNDERFLOWS
IF( ABS(Z(1))-LT-EPS* ABS(Z(2)))Z(1)=0.
IF( ABS(Z(1))-LT-EPS*DABS(Z(2))Z(1)=0.
IF( ABS(Z(2))-LT-EPS*DABS(Z(1))Z(2)=0.
IF( DABS(Z(2))-LT-EPS*DABS(Z(1))Z(2)=0.
D2(1)=(D21*1.8-D2(2)*2.4)*R0/R
D2(2)=(D21*2.4+D2(2)*1.8) #R0/R
                                                                                                                                                                                                                                                                                                                                      IF (.NDT.STAGE1) GOTO 240
C REGINNING OF STAGE1 SEARCH.
                   GOTO 150
DZ1=DZ(1)
DZ(1)= DZ1*1.8-DZ(2)*2.4
DZ(2)= DZ1*2.4+DZ(2)*1.8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FA=PA07DD(W,FW,N+1,A)
IF (FA,GE,F) GOTO 240
                                                                                                                                                                                                                                                                                                             F=P A0700 (2, FZ, N+1, A)
                                                                                                                                                                                                                                                                                                                                                                        DIV2=F.GE.FO
O IF (DIV2) GOTO 190
W(1)=W(1)+D2(1)
W(2)=W(2)+D2(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                            W(1)=20(1)+DZ(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         W(2)=20(2)+02(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                     DZ(1)=02(1)*0.5
DZ(2)=0Z(2)*0.5
                                                                    STAGE1=.TRUE.
FOZ(1)=F1Z(1)
                                                                                            F02(2)=F12(2)
                                                                                                                                                                             DZK(1)=DZ(1)
                                                                                                                                                                                        DZK(2)=DZ(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      F2(1)=FW(1)
                                                                                                                                                                                                                                                                                       H(1)=Z(1)
                                                                                                                                                                                                                                                                                                   W(2)=2(2)
                                                                                                                                                                                                                                                                                                                                                                                                                         GOTO 200
                                                                                                                                                                  F0=F
                                                                                                                                                                                                                                                                                                                           FF=F
                                                                                                                                                                                                                                                                                                                                                                                       180
                                                                                150
                                    140
                                                                                                                                                                                                                                                                                                                                                                                                                                     190
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     200
                                                                                                         ပ
                                                                                                                                                                                                                            ပပ
27
27
27
27
27
27
27
20
30
30
                                                                                                                                                                                                                                                                                                                                                              96
97
98
98
100
100
100
100
100
100
100
100
                                                                                                                                           82
84
85
86
88
                                                                                                                                                                                                                                                                                     93 93 95 95 95 95
                                                                                                                                                                                                                                                   89
```

```
Z
                                                                                                                                                                                                                                                                                                                                                                                                                               S
                                                                                                                                             2 /
                                                                                                                                                                                                                     S
                                                                                                                                                                                                                                                                                                                                                                         DEFLATE, STORE ROOT, RESTORE COEFFICIENT OF ORIGINAL POLY AND REDUCE 70 A1(N)=ROOT(1,N) ROOT(1,N) ROOT(2,N)=0.
ROOT(2,N)=0.
IF(2(2),E0.0.)GU TO 277 SC AC= ABS(2(1))
                                                                              DZ(1)=DZ1*0.6-DZ(2)*0.8

DZ(2)=DZ1*0.8+DZ(2)*0.6

Z(1)=Z0(1)+DZ(1)

Z(2)=Z0(2)+DZ(2)

F=PAO?DD(2,FZ,N+1,A)

DDF STAGE1 SEARCH

NO= ABS(Z0(1)-Z(1))+ APS(Z0(2)-Z(2))

RO=DABS(Z0(1)-Z(1))+DABS(Z0(2)-Z(2))
                                                                                                                                                                                                                                                                               DZ(1)=DZK(1)*(-0.3)-DZK(2)*(-0.4)
DZ(Z)=DZK(1)*(-0.4)+DZK(2)*(-0.3)
STAGE1=.TRUE.
GOTO 160
                           J=J+1
IF (DIV2.AND.(J.EQ.3)) GOTO 220
IF (J.LE.N) GOTO 180
GOTO 240
                                                                                                                                                                                                        Z(2)=Z0(2)

R1= ABS(Z(1))+ ABS(Z(2))

R1=DABS(Z(1))+DABS(Z(2))

IF(R0-LT-EPS*R1)G0 T0 270

IF (F-LT-F0) G0T0 120

F=F0
                                                                                                                                                240 RU-L...
C
C
C CONVERGENCE TEST.
IF(F.LT.FO)GO TO 250
Z(1)=Z^(1)
'''=ZO(2)
                                                                                                                                                                                                                                                                      IF(F.LE.FMIN)GO TO 270
                                                                                                                                                                                                                                                                                                                        C
C DEAL WITH NEL CASE
260 Z(1)=_A(2)/A(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                        AC=DABS(2(1))
G=0.
FZ(2)=FW(2)
Z(1)=W(1)
Z(2)=W(2)
                                                                     (1)20=120
                                                                                                                                  C END
C2 40
                                                                                                                                                                                                                    C2 50
2 50
                                                                                                                                                                                                                                                                                                                                                                                     270
                                                                       220
                                                                                                                                                                                                                                                                                                                                                                 ں ں
                                                                                                                                                                                                                                                                                                                                                                                                                               ں
                                                                                                                                                                                                                             1127
1128
1130
1131
1134
1134
                                                                                                                                                                                                                                                                                                                                                                                      138
139.
140
141
136
                                                                                                                                                                                                                                                                                                                                                                                                                                        142
                                                                                                                                                      123
                                                                                                                                                                                     124
125
126
```

•

8	/s	•					
FC=A(1) DO 275 K=Z*N1 FD=FC*Z(1)+A(K) C G=AC*(G+ ARS(FC))+ ABS(FD) G=AC*(G+DABS(FC))+DABS(FD) 275 FC=FD	<u>.</u>		C DEFLATION WITH A PAIR OF COMPLEX CONJUGATE ROOTS 283 ROOT(2.N)=Z(2)	RR=0. SS=0. PP=+2{1}-2{1} QG=2(1)**2+2(2)**2	N=N-1 DO 287 K=1,N TT=A(K)-PP*RR-QQ*SS A(K)=TT SS=RR	287 RR=TT 290 A1(N)=RODT(1,N) RODT(1,N)=Z(1) RODT(:,N)=-Z(2)	300 N=N-1 IF(N-1)310,260,40 310 RETURN
144 145 146 147	149	151 152 153	155	156 158 159	160 161 162 163	165 165 167 168	170

PROGRAM UNIT	i S	∀	PA0780							
ARGUMENTS	1.5	A I	Σ	R 00T	∢	Š	1 dk			
NA M	TYPE	USE A	ATTR IBUTES	REFERENCE	NCES					
∢	0	>	ASA1	# 9 # # # # # # # # # # # # # # # # # #	39 93 57	10 42 106	13 45 122	15 48 136	17 51 144	823
AC AL DG AL DGR	::: u: C) & &	> " >	SS SS	, n, r r	14° 8	53				
A1 BASE BIG		> >>	ASA1 SS SS	164 168 188	3 7 18	10 35 26	12	4	38	\$9
DAAS DIV2 DMINI	ה ה ה	H >H	SS	15 123 145	28 127 97	142 142 98	48 147 114	51	70	&
70 20	e e	> >	SA1 SA1	100 120 120 2	61 77 102 121 85	62 78 103 132 86	67 104 133	70 86 105	72 87 117	73 86 118
021 EPS 1	O 740	> >#>	\$ 55	11 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	72 119 46	13	90	128	149	\$
# # # # # # # # # # # # # # # # # # #		> >>>#>:			122 122 144 146 13 146 13	124 107 145 147 69 53	108 108 147 148	93 130 148	94 131 149	16.59
£ 2.0	200	>>>	81 88 85	el el el	106 63 45	109 67 46	110 93 47	109 84	110	122

	115 53 163 24 24 93	53	140	37 69 106	16
1.53 35	1 62 52 E	. &	139	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8
881 155 34	113 50 161 21 63 140	2 4 5 5 5 5 5 5	138	34 65 104	89
80 80 150	26 11 11 13 60 13 13 13 13	106	165 123 134	3 3 3 4 4 6 4 6 4 6 6 4 6 6 6 6 6 6 6 6	88
68 68 149 16	152 152 192 193 138	66 42	118 1168 1164 1164 164	10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	87
58 67 147 13	13 36 151 151 8 18 50 122	38 65 162 162	157 167 162 73 149 162	163 30 33 41 41	83
149 57 65 69 143	10 28 14 10 10 11 11 11 15	527 63 158 159	166 156 171 128 128 6 6 721	162 23 33 31 31 40	82
130 22 68 11	127 100 100 100 100 100 100 100 100 100 10	2014 2014 2016 2016 2016 2016 2016 2016 2016 2016	1 0 1 1 0 0 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	28 4 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	89
SA1 SS SS SS	000 4 4 000 000	S		SS	
>>>>	>> >>>	> 40>>>	> >>>>H#>>>	>>> >>> >	
m# m co≪c∺	म्ब स्थ्य स्था स्था स्था स्था	H 0 00 a	ה מגמגת שווו ה ה סגמגגת מה	מ מממם מ	
F02 F12 F2 6	74 ##Z	N1 PA0700 PA07700 PP	RNOT RR RO SMALL SNGL SORT SS STAGE1	- ¥ 2 1 1 2 1 4 -	

```
DOUBLE PRECISION A(MPI), R(2,N), W(NPI), C,RS,RP

REAL E(NPI), F(NPI), CR(N), 1G(N)

W IS A WORKSPACE ARRAY OF LENGTH N+1 USED TO HOLD THE COEFFICIENTS

OF THE POLYNOMIAL FORMED FROM THE CALCULATED ROOTS.

F IS A WORKSPACE ARRAY OF LENGTH N+1 USED TO HOLD THE COEFFICIENTS

OF THE ERROR POLYNOMIAL.

IG IS A WORKSPACE ARRAY OF LENGTH N USED TO LINK TOGETHER THE ROOTS

IN A GROUP. THE FIRST IS IG1, IG(K) FOLLOWS K AND THE LAST IS I.

OTHER ROOTS HAVE IG(K)=0.

CR IS A WORKSPACE ARRAY OF LENGTH N USED TO HOLD DISTANCES FROM ROOT I
                                                                                                                                                                                                                                        S
                                  S
                                                                                                                                                                                                                                    DATA EPS/1.52-6 /.BIG/1.ETO/
DATA EPS/2.3E-16/.BIG/1.0E7O/
BIG IS A NUMBER NEAR THE CVERFLOW LIMIT. EPS IS THE SMALLEST
NUMBER WHICH LEAVES UNITY UNCHANGED IN THE FLOATING-POINT ARITHMETIC
                 IG AND CR MAY BE DYNAMICALLY EQUIVALENCED WITH SEPARATE PARTS OF W REAL A(NPI), R(2,N), W(NPI), C,RS,RP
                                                                                                                                                                                                                                                                                                                                                                           MULTIPLY DUT THE POLYNOMIAL FORMED FROM THE CALCULATED RODIS
SUBROUTINE PAOTCH (A, N, NP1, R, E, W, F, IG, CR)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            [F(R(2,II).NE.0.)G0 T0 12
                                                                                                                                                                                                                                                                                                                       F ACT=1.05**(1./FL0AT(N))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  RP=R(1, II) **2+R(2, II) **2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 H(J+5)=W(J+5)-RS#W(J+1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (D) 3 + d 2 + ( 2 + D) 3 = ( 2 + D) 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (つ) 34 リー( 1+つ) 31( 1+つ) 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                RS=R(1, II)+R(1, II)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     IF(J.EQ.0)G0 T0 16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1,1=tt 01 00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   10 16 JJ=1,I
                                                                                                                                                                                                                                                                                                                                                                                        DO 5 I=1,N1
                                                                                                                                                                                                                                                                                                                                                                                                                         W(1)=A(N1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                =R(1,11)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              J=1+1=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 GD TO 18
                                                                                                                                                                                                                                                                                                                                                                                                        M(I)=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CONTINUO
                                                                                                                                                                                                                                                                                                                                                                                                                                                               1-11-1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   J=I-11
                                                                                                                                                                                                                                                                                                                                           N 1 = N + I
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    [+]=
                                                                                                                                                                                                                                                                                                                                                                                                                                             ī
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      15
                                                                                                                                                                                                                                                                       ں ں ں
                                                                                                                   00000000
                  υU
                                                                                                                                                                                                                                                                                                                                                         ပပ
                                                                                                                                                                                                                                                                                                                                                                                                           in
                                                                                                                                                                                                                                                                                                                                                                                                                                                             8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              16
113
119
119
22
22
                                                  2 6
                                                                                                                                                                                                                                                                                                                         in 40
                                                                                                                                                                                                                                                                                                                                                                                           786
                                                                                                                                                                                                                                                                                                                                                                                                                                            110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              14
```

```
C
C INITIALIZATION STATEMENTS WHICH ARE ALSO NEEDED WHEN M IS INCREASED
43 DMIN=BIG
                                                                                 30 IG(I)=0.
C
C MAIN ERROR-ROUNDING LOOP STARTS HERE AND EXTENDS TO THE END
C OF THE SUBROUTINE IF FINDS A BOUND FOR ROOT I.
                                                      F(I)= ABS(A(II)-W(I))+AMAX1(E(II),ARS(A(II))#EPS)
F(I)=DABS(A(II)-W(I))+AMAX1(E(II),ABS(SNGL(A(II)))#EPS)
DO 30 I=1,N
                 C FIND COEFFICIENTS OF ERROR POLYNOMIAL DG 20 I=1.NI
                                                                                                                                                                    C.
C FIND DISTANCES TO OTHER ROOTS
                                                                                                                                                                                                                                                                                                     RI=R(1,K)-R(1,1)
IF(R2,E0,0,)G0 TO 37
CR(K)=CABS(CMPLX(R1,R2))
                                                                                                                                                                                                                                                        CR(K) = CARS (CMPLX(RI, R2))
                                                                                                                                                                                                         IF(R2.EQ.O.)GD TO 34
CRI=CABS(CMPLX(R1,R2))
                                                                                                                                                                                                                                                                                                                                                                                1F(K.LE.N)G0 T0 36
        IF(I.LE.N)GO TO 8
                                                                                                                                                                                                                                      R1=R(1,K)-R(1,1)
R2=R(2,K)-R(2,1)
                                                                                                                                                                                                                                                                                                                                                              CR(K)=ABS(RI)
                                                                                                                                                                                                                                                                                                                                   CR(K+1)=CR(K)
                                                                                                                                                                                                                           OD 32 K=1,N
                                                                                                                                                                                                                                                                                     CRI=ABS(R1)
                                                                                                                                                                                       R1=R(1,1)
                                                                                                                                                                                                                                                                                              RZ=R(2+K)
                                                                                                                                                                                                 R2=R(2,1)
                                            I I=N+2-I
                                                                                                                                                                                                                                                                  60 TO 45
                                                                                 IG(I)=0.
                                                                                                                                         IG(I)=-1
                                                                                                                                                  I=191
                                                                                                                                                                                                                                                                                                                                             X # X + 1
                                                                                                                                                                                                                                                                                                                                                                        K =K+1
                                                                                                                                                           0=0
                                                                                                                      I=I
                                                                                                                                MIL
                                                                                                                                                                                                                                                                            *
||
                                                       023
20
                                                                                                                                                                                                                                                         32
                                                                                                                                                                                                                                                                            #
                                                                                                                                                                                                                                                                                              36
                                                                                                                                                                                                                                                                                                                                                              33
                                                                                                                                15
                                                                                                                                                                                       9
27
                                     33
                                                                32
```

S

1+1=1

13

į

```
IF (M.EQ.1)GD TO 98
RM=D+(1.1*TR)**(1.6/FLDAT(M))
BISECTION LOOP. RL AND RM HOLD UPPER AND LOWER BOUNDS.
RAD=(RL+RM)/2.
C TEST ROUCHE CONDITION WITH RADIUS RAD.
                                                                                                                                                                                                                                                                                                            IF(K.GT.0)G0 TO 90
IF(PROD.GE.1.10*TB)G0 TO 94
IF(RAD.GE.DMIN)G0 TO 100
                                                                                                                                                                                                                                                                                                                                          IF(PROD.GT.1.05*TB)GO TO 98
RL=RAD
                                                                          IF(IG(K)*NE.0.)GO TO 70
BTM=BTM*(DIST-RAD)
IF(DMIN.LE.DIST)GO TO 80
DMIN=DIST
                                                                                                                                                                                                                                                                                                                                                                                                   IF (RAD, GE DMIN)GO TO 100
                                                                                                                                                    IF(BTM-EQ.0.0)GO TO 100
TB= ARS(TOP/BTM)
IF(PROD-GE-TB)GO TO 110
C FIND A NEW TRIAL RADIUS.
                                                                                                                                                                                                                                                                                         PROD=PROD*(RAD-CR(K))
                                                                                                                          GO TO 80
PROD=PROD*(RAD-DIST)
                                              DO 80 K=1,N
TOP=S*TOP+F(K+1)
                            BTM= ABS(A(N1))
                                      BTM=DABS(A(N1))
                                                                                                                                                                                                                                                                                                    K=1F1X(16(K))
                                                                                                                                                                                                                       RAD=0+1.1*TB
                                                                                                                                                                                                                                                                                                                                                                                         S=S+RAD-OLDR
                                                                DIST=CR(K)
                                                                                                                                                                                                    OLDR=RAD
RL=RAD
                                                                                                                                           CONTINUE
         TOP=F(1)
                                                                                                                                                                                                                                                                                                                                                             GO TO 83
                                                                                                                                                                                                                                                                                                                                                                                GC TO 85
                                                                                                                                                                                                                                                                      PR00=1.
                 PR00=1.
                                                                                                                                                                                            0105=S
                                                                                                                                                                                                                                                                                                                                                                       RM=RAD
                                                                                                                                                                                                                                                                                  K = 161
                                                                                                                 ر
۲≡
                                                                                                                                    28
                                                                                                                                                                                                                                                                                                                                                                       46
                                                                                                                                                                                                                                                                                                                                                                                          98
                                                                                                                                                                                                                                                                                           8
                                                                                                                                                                                                                                                     ၁ မွ
                            v
                                                                                                                                                                                                                                                             86
87
89
89
90
91
93
94
95
                                                                 80
                                                                                                                                                                                                     81
82
83
84
85
                                              89
67
         63
```

```
101 IF( S*( [DMIN-OLDR)) , LE , FACT*OLDS) GD TO 110

C ADD RCOT TO GROUP

103 100 M=M+1

104 IG(L) = LOAT (IG1)

105 GD TO 40

C STORE ERROR BOUND AND RESET IG

C STORE ERROR BOUND AND RESET IG

110 E(1) = RAD

120 K=IG1

111 IG(K, ME .) GD TO 120

112 IF(R .) E(1)

124 IE 1+1

125 IE 1+1

130 I= I+1

141 IF(I, LE, N) GD TO 31

111 IF(I, LE, N) GD TO 31

111 IF(I, LE, N) GD TO 31

112 IF(I, LE, N) GD TO 31

113 IF(I, LE, N) GD TO 31

114 ETURN

115 IF(I, LE, N) GD TO 31

116 IE 1+1

117 RETURN

118
```

PRUGRAM UNIT	UNIT	α.	PA07CD								
ARGUMENTS	15	∢	2	NPI	œ	ш	3		ıL.	16	క
NAME	TYPE	USE	ATTRIBUTES	REFERENCES	NCES						
•	G G	>	A A1	-	7	σ	31	65			
ABS	e ec	₩		31	64	57	78				
AMAX1	œ	IF		31							
918	3'	>	SS	4	09						
BTS	د	>	SS	9	2	11	18				
U	Ģ	>	\$\$	7	13	16					
CABS	m &	Z U.		77	46	53					
CMPLX	S B C	H F		42	3	m m					
క	ď	>	ASAI	-	E	46	in S	4	57	8	68
2 2	œ	>	\$\$	4.2	5.4	61					
۵	œ	>	\$8	6 0	61	62	83	85	106		
DABS	E D	1		31	65						
DIST	œ	>	SS	99	2	11	72	75			
NI WO	œ	>	SS	9	7	۲,	Q -	100	101	108	
ш	m ex	>	ASA1	-	m	31	108	114			
EPS	ø,	>	\$\$	4	31						
u.	a, m	>	ASAI		m	31	63	67			
FAC T	œ	>	SS	S	101						
FLOAT	œ	u.		យ	85	104					
H	-	>	·	۳	œ	01	1	14	15	ଷ	21
				22	27	28	6.	9	31	33	e e
				34	36	37	36	0	44	£	<u>.</u>
				108	112	113	114	115	116	117	
IFIX	-	1		06	110						
16	in K	>	ASAI	-	m	33	36	69	9	Š	110
ı	1		,	111	;		,	;			
ICI	H	>	SS	37	88	104	105	501	110		
11		>	SS	11	13	13	18	19	36	31	
7	1	>	SS	15	91	22	23	72	25		
3	H	>	SS	14	15	21	22				
¥	H	>	25	43	‡	45	4	48	50	เร	'n
				24	55	24	. 85	59	99	19	õ
				90	73	88	89	06	16	18	111
				112							
ب	H	>	SS	73	104	105					

32							9		83						57	53					31																					
8						*	33		8	8					ន	25					15																					
28			9			25	61		83	101					 	50			46		53																					
•			62			8	18	113	8	001					67	44	101		95		16																					
103	117		11			87	13	<u>.</u>	81	66					46	٠. 4	66		8 2		σ		103													•						
80 57 E	99	~	6	101		79	21	000	75	16	96	4	52	23	77	75	90		83	7.9	20		100	108				92										101				
8 7 7	65	٠,	7	66	101	75	~	45	2	66	86	86	19	13	45	7	67		79	24	٠:	16	63	101	18	112	116	24	27	31	33	117	44	4	26	57	g.	9	10%	œ	15	28
35 1	40	-	9	81	80	99		74	29	6 3	8 2	85	.34	e4	30	4	61	31	3)	63	-	71	77	46	1 ?	109	113	2.1	17	53	35	# . EG	6 43	41	20	25	5¢	4	63	~	59	11
SS S		ν 8	\$8	SS	\$\$	\$\$	A AZ		SS		25	\$\$	E.S	SS	SS	5.5	SS		SS	SS	ASA1										,											
>>		>	>	>	>	>	>		>		>	>	>	>	>	>	>	L	>	>	>																					
 		~	I	œ.	Ø,	œ	C)		~		~	œ	O W	r C	α	c /	ϫ	6 ′	o	~	E C																					
* 2		NP 1	N.	סרטא	01.25	PROD	œ		44.5		RL	A.M.	ďď	45	81	R.2.	S	SNGL	TB	401	3	10	100	110	12	120	130	16	13	20	30	31	32	26	36	37	&	7	•	S.	70	æ

74 76 98 99	TOD(2,FZ,N1,A) FUNCTION PAOTOD(Z,FZ,N1,A) ((N1),P,Q,R,5,T Z(2),FZ(2),A(N1),P,Q,R,S,T LEX NUMBERS. (ON VALUE. 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30 10 30
71 96 91 97 94	2) (2,F) 4(1) 4(1) 30 30 30 4+1)
3 8 8 9 9 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	REAL FUNCTION PAO7DD(2,FZ,N1,A) OCUBLE PRECISION FUNCTION PAO7DD(Z,FZ,N1,A) REAL Z(2),FZ(2),A(N1),P,Q,R,S,T DOUBLE PRECISION Z(2),FZ(2),A(N1),P,Q,R,S,T Z AND FZ CONTAIN COMPLEX NUMBERS. A CONTAINS REAL POLYNOMIAL COEFFICIENTS. A CONTAINS REAL POLYNOMIAL COEFFICIENTS. POLYNOMIAL VALUE AT Z IS SET IN FZ AND THE SQUA IS RETURNED AS FUNCTION VALUE. N=N1-1 T=A(1) IF(2).EQ.0.0.0.0.0.TO P=Z(1)+2+Z(2)**2) R=O. IF(N.EQ.1)60 TO 20 DO 10 K=2,N S=R R=T T=P*R+Q*S+A(K) FZ(1)=Z(1)*T+Q*R+A(N+1) FZ(1)=Z(2)=Z(2)*T GO TO 50 O P=Z(1) FZ(1)=T F
	C C C P C C C C C C C C C C C C C C C C
9 8 9 4 9 4 9 8 9 9 8 9 9 9 9 9 9 9 9 9	n a mamar manus mana mana mana mana mana mana mana man
an en en en	

PROGRAM UNIT	UNIT	ď	PA0755							
ARGUMENTS	ν	7	F2	Z	⋖					
NAME	TYP E	USE	USE ATTRIBUTES	REFERENCES	NCES					
<	e G	>	A A1	,	2	4		14	19	
F2	Q iii	>	ASA1		ત	14	5	20	21	22
H	I	>	SS	8 1	19					
¥	H	>	SS	ပ္	13					
z		>	نې م	m	0	2	14	18		
ï	H	>	S A	-	7	m				
a		>	\$\$	(~1	•	13	17	13		
PA0700		Z U	V)		22					
σ		>	SS	CJ	7	13	14			
œ		>	\$\$	7	œ	11	12	13	14	
S		>	SS	۲۷	11	13				
-	E C)	>	2.2	eJ	4	12	13	14	13	16
7		>	A Al	-	2	44 1	•	_	71	12
01				01	13					
20				6	14					
30				'n	17					
64				a 7	19					
50				16	22					

		·	
ш •		6	۰ ۰ ۰ ۰
1) 11.C.D.E 3(2).Q(2).U.Al.C.D.E ISION Q=-A/B		ໝ	σ. η. α. α. α. φ. 40
, D, E , Q (2), U		4	8977 884
**************************************		NCES 2	40100 FUM
7ED(A +0(2) ON A(ON A(PLEX ABS(B ABS(B) 1+D)/	o		440000044
	PA07£D A 8	ATT?IBUTES A Al	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUBROUTIN REAL A(2) DCUBLE PR DCUBLE PR IMPLEMENTS TH U= ABS(R(U=DABS(B(A1=A(1) C=B(1)/U D=B(2)/U E=-(C*C+D Q(1)=(A1* Q(2)=(A1* PRETURN	9 4 94	USE AT	>>>> +>>
ະ ບຸບບໍ່ ບ	UNIT .	~	
1 12 E420L860 II	PROGRAM U ARGUMENTS	NA ME	A1 DD D D D D D D D D D D D D D D D D D D

S

S

References

- M.A. Jenkins (1969). Three-stage variable-shift iterations for the solution of polynomial equations with a posteriori error bounds for the zeros. Stanford Report CS 138.
- M.A. Jenkins and J.F. Traub (1970). A three-stage variable-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer. Math. 14, 252-263.
- K. Madsen (1973). A root-finding algorithm based on Newton's method. BIT 13, 71-75.
- A.M. Ostrowski (1966). Solution of equations and systems of equations. Academic Press.
- G. Peters and J.H. Wilkinson (1971). Practical problems arising in the solution of polynomial equations. J. Inst. Maths. Applics., 8, 16-35.
- B.G. Ryder (1973). The FORTRAN verifier: user's guide. Computing science technical report # 12, Bell Telephone Laboratories.
- J.H. Wilkinson (1963). Rounding errors in algebraic processes. HMSO.