Discussiones MathematicaeGraph Theory xx (xxxx) 1–red18

3

DECOMPOSITION OF COMPLETE GRAPHS INTO FORESTS WITH SEVEN EDGES

6	Daniel Banegas
7	University of Minnesota Duluth
8	$Duluth,\ MN,\ USA$
9	e-mail: baneg003@d.umn.edu
10	AND
11	Bryan Freyberg
12	University of Minnesota Duluth
13	Duluth, MN, USA
14	e-mail: frey0031@d.umn.edu
15	Abstract
16	Let K be a graph and G a subgraph of K. If $E(K)$ can be partitioned
17	into edge-disjoint copies of G , we call the partition a G -decomposition of K
18	and say that G decomposes K . There are 47 forests with exactly 7 edges
19	We prove that every one decomposes the complete graph K_n if and only i
20	$n \equiv 0 \text{ or } 1 \pmod{7}.$
21	Keywords: Graph decomposition, forests, ρ -labeling.
22	2020 Mathematics Subject Classification: 05C51.

3 1. Introduction

A G-decomposition of a graph K is a set of mutually edge-disjoint subgraphs of K which are isomorphic to a given graph G. If such a set exists we say that K allows a G-decomposition, and if $K \cong K_n$ we sometimes call the decomposition a G-decompositions are a longstanding topic in combinatorics, graph theory,

and design theory, with roots tracing back to at least the 19th century. The work of Rosa and Kotzig in the 1960s on what are now known as graph labelings laid the foundation for the modern treatment of such problems. Using adaptations

41

of these labelings alongside techniques from design theory, numerous papers have since been published on G-decompositions. This work is a natural continuation of Freyberg and Peters' recent paper on decomposing complete graphs into forests with six edges [4]. Their paper also includes a summary of G-decompositions for graphs G with less than 7 edges.

Every connected component of a forest with 7 edges is a tree with 6 or less edges. All such trees are cataloged in Figure 1. We use the naming convention $\mathbf{T}_{\mathbf{j}}^{\mathbf{i}}$ to denote the i^{th} tree with j vertices. For each tree $\mathbf{T}_{\mathbf{j}}^{\mathbf{i}}$, the names of the vertices, v_t for $1 \leq t \leq j$, will be referred to in the decompositions described in Section 3. The next theorem gives the necessary conditions for the existence of a G-decomposition of K_n when G is a graph with 7 edges.

Theorem 1. If G is a graph with 7 edges and a G-decomposition of K_n exists, then $n \equiv 0, 1, 7, or 8 \pmod{14}$.

45 **Proof.** If a G-decomposition exists, then $7 \mid \binom{n}{2}$ which immediately implies $n \equiv 0, 1, 7, \text{ or } 8 \pmod{14}$.

In this article, we only consider simple graphs without isolated vertices. There are 47 non-isomorphic forests with 7 edges. Section 2 treats all 47 forests when $n \equiv 0$ or 1 (mod 14). Section 3 applies to all the forests when $n \equiv 7$ or 8 (mod 14) with the lone exception of $F \cong \mathbf{T_7^{11}} \sqcup \mathbf{T_2^1}$, which is solved for those values of n in Section 4.

```
52 2. n \equiv 0 \text{ or } 1 \pmod{14}
```

In this section, we use established graph labeling techniques to construct the G-decompositions of K_n when $n \equiv 0$ or $1 \pmod{14}$.

Definition (Rosa [7]). Let G be a graph with m edges. A ρ -labeling of G is an injection $f:V(G)\to\{0,1,2,\ldots,2m\}$ that induces a bijective length function $\ell:E(G)\to\{1,2,\ldots,m\}$ where

$$\ell(uv) = \min\{|f(u) - f(v)|, 2m + 1 - |f(u) - f(v)|\},\$$

for all $uv \in E(G)$.

Rosa showed that a ρ -labeling of a graph G with m edges and a cyclic Gdecomposition of K_{2m+1} are equivalent, which the next theorem shows. Later,
Rosa, his students, and colleagues began considering more restrictive types of ρ labeling to address decomposing complete graphs of more orders. Definitions of
these labelings and related results follow.

Figure 1.: Trees with less than 7 edges

- Theorem 2 (Rosa [7]). Let G be a graph with m edges. There exists a cyclic G-decomposition of K_{2m+1} if and only if G admits a ρ -labeling.
- Definition (Rosa [7]). A σ -labeling of a graph G is a ρ -labeling such that $\ell(uv) = |f(u) f(v)|$ for all $uv \in E(G)$.
- Definition (El-Zanati, Vanden Eynden [2]). A ρ or σ -labeling of a bipartite graph G with bipartition (A, B) is called an *ordered* ρ or σ -labeling and denoted ρ^+ , σ^+ , respectively, if f(a) < f(b) for each edge ab with $a \in A$ and $b \in B$.
- Theorem 3 (El-Zanati, Vanden Eynden [2]). Let G be a graph with m edges which has a ρ^+ -labeling. Then G decomposes K_{2mk+1} for all positive integers k.
- Definition (Freyberg, Tran [5]). A σ^{+-} -labeling of a bipartite graph G with m edges and bipartition (A, B) is a σ^{+} -labeling with the property that $f(a) f(b) \neq m$ for all $a \in A$ and $b \in B$, and $f(v) \notin \{2m, 2m-1\}$ for any $v \in V(G)$.
- Theorem 4 (Freyberg, Tran [5]). Let G be a graph with m edges and a σ^{+-} labeling such that the edge of length m is a pendant. Then there exists a Gdecomposition of both K_{2mk} and K_{2mk+1} for every positive integer k.
- Figure 3 gives a σ^{+-} -labeling of every forest with 7 edges. The vertex labels of each connected component with k vertices are given as a k-tuple, (v_1, \ldots, v_k) corresponding to the vertices v_1, \ldots, v_k given in Figure 1. We leave it to the reader to infer the bipartition (A, B).
- Example 5. A σ^{+-} -labeling of $\mathbf{T}_{6}^{6} \sqcup 2\mathbf{T}_{2}^{1}$ is shown in Figure 2. The vertices labeled 1, 2 and 9 belong to A, and the others belong to B. The lengths of each edge are indicated on the edge.

Figure 2.: σ^{+-} -labeling of $\mathbf{T_6^6} \sqcup 2\mathbf{T_2^1}$

The labelings given in Figure 3 along with Theorem 4 are enough to prove the following theorem.

Forest	Vertex Labels
$\mathrm{T}_7^1\sqcup\mathrm{T}_2^1$	$(0,6,1,5,2,9,7) \sqcup (3,4)$
$egin{array}{c} oldsymbol{7} oldsymbol{7} oldsymbol{7} oldsymbol{1} oldsymbol{1$	$(9,2,5,1,6,0,3) \sqcup (8,7)$
$\mathbf{T_7^2} \sqcup \mathbf{T_2^1}$	$(9,2,5,1,6,0,4) \sqcup (8,7)$
$egin{array}{c} oldsymbol{ iny T_7^4} \sqcup oldsymbol{ iny T_2^1} \end{array}$	$(5,1,4,2,9,6,7) \sqcup (10,11)$
$\mathbf{T}_7^5 \sqcup \mathbf{T}_2^1$	$(3, 8, 1, 4, 2, 5, 7) \sqcup (9, 10)$
$\mathbf{T_7^8} \sqcup \mathbf{T_2^1}$	$(7,8,1,6,0,4,3) \sqcup (9,11)$
$\mathbf{T_7^9} \sqcup \mathbf{T_2^1}$	$(8,1,6,3,4,5,7) \sqcup (9,10)$
$\mathrm{T}_7^{10}\sqcup\mathrm{T}_2^1$	$(6,1,5,3,8,4,7) \sqcup (9,10)$
$\mathrm{T}_7^6\sqcup\mathrm{T}_2^1$	$(5,11,9,10,6,12,7) \sqcup (8,1)$
$\mathbf{T_7^7} \sqcup \mathbf{T_2^1}$	$(4,8,1,6,0,5,3) \sqcup (9,10)$
$\mathbf{T}_6^1\sqcup\mathbf{T}_3^1$	$(0,6,1,5,2,9) \sqcup (11,10,12)$
$\mathbf{T}_6^2\sqcup\mathbf{T}_3^1$	$(3,6,1,8,4,0) \sqcup (10,9,11)$
$\mathbf{T}_6^3\sqcup\mathbf{T}_3^1$	$(5,11,9,12,7,10) \sqcup (1,8,4)$
$\mathbf{T}_6^4\sqcup\mathbf{T}_3^1$	$(3,8,4,1,6,7) \sqcup (10,9,11)$
$\mathbf{T}_6^5\sqcup\mathbf{T}_3^1$	$(5,1,8,3,4,7) \sqcup (10,9,11)$
$\mathbf{T}_6^6 \sqcup \mathbf{T}_3^1$	$(4,1,8,5,6,7) \sqcup (10,9,11)$
$\mathbf{T}_5^1\sqcup\mathbf{T}_4^1$	$(0,6,1,5,2)\sqcup(9,8,10,3)$
$\mathbf{T}_5^2 \sqcup \mathbf{T}_4^1$	$(7,1,8,5,6) \sqcup (0,4,2,3)$
$\mathbf{T}_5^2 \sqcup \mathbf{T}_4^2$	$(7,1,8,4,6) \sqcup (10,9,11,12)$
$\mathbf{T}_5^3\sqcup\mathbf{T}_4^1$	$(6,0,3,4,5) \sqcup (8,7,9,2)$
$\mathrm{T}_5^1\sqcup\mathrm{T}_4^2$	$(4,8,1,7,2) \sqcup (10,9,11,12)$
$\mathrm{T}_5^3\sqcup\mathrm{T}_4^2$	$(6,0,3,4,5) \sqcup (8,9,2,7)$
$\mathbf{T^1_6} \sqcup 2\mathbf{T^1_2}$	$(0,6,1,5,2,9) \sqcup (8,10) \sqcup (3,4)$
$\mathbf{T_6^2} \sqcup 2\mathbf{T_2^1}$	$(3,6,1,8,4,0) \sqcup (5,7) \sqcup (9,10)$
$\mathbf{T_6^5} \sqcup 2\mathbf{T_2^1}$	$(4,1,8,3,5,7) \sqcup (0,2) \sqcup (9,10)$
$\mathbf{T_6^4} \sqcup 2\mathbf{T_2^1}$	$(5, 8, 4, 1, 6, 7) \sqcup (0, 2) \sqcup (9, 10)$
$\mathbf{T_6^3} \sqcup 2\mathbf{T_2^1}$	$(5,11,9,12,7,10) \sqcup (8,1) \sqcup (0,4)$
$\mathbf{T_6^6} \sqcup 2\mathbf{T_2^1}$	$(4,1,8,5,6,7) \sqcup (2,3) \sqcup (9,11)$
$\mathbf{T}_5^1\sqcup\mathbf{T}_3^1\sqcup\mathbf{T}_2^1$	$(0,6,1,5,2) \sqcup (8,10,9) \sqcup (11,4)$
$\mathrm{T}_5^2\sqcup\mathrm{T}_3^1\sqcup\mathrm{T}_2^1$	$(7,1,8,5,6) \sqcup (10,9,11) \sqcup (0,4)$
$\mathbf{T}_5^3\sqcup\mathbf{T}_3^1\sqcup\mathbf{T}_2^1$	$(6,0,3,4,5) \sqcup (1,8,7) \sqcup (9,11)$

$2\mathbf{T_4^1} \sqcup \mathbf{T_2^1}$	$(0,6,1,5) \sqcup (2,9,7,10) \sqcup (3,4)$
$\mathbf{T}_4^1\sqcup\mathbf{T}_4^2\sqcup\mathbf{T}_2^1$	$(11, 9, 10, 7) \sqcup (4, 0, 5, 6) \sqcup (8, 1)$
$2\mathbf{T_4^2} \sqcup \mathbf{T_2^1}$	$(4,0,5,6) \sqcup (10,9,11,12) \sqcup (8,1)$
$\mathbf{T_4^1} \sqcup 2\mathbf{T_3^1}$	$(0,6,1,5)\sqcup(8,10,9)\sqcup(11,4,7)$
$\mathbf{T_4^2} \sqcup 2\mathbf{T_3^1}$	$(4,0,5,6)\sqcup(1,8,7)\sqcup(11,9,12)$
$\boxed{ \mathbf{T_4^1} \sqcup \mathbf{T_3^1} \sqcup 2\mathbf{T_2^1} }$	$(0,6,1,5)\sqcup(8,10,7)\sqcup(11,4)\sqcup(2,3)$
$\boxed{ \mathbf{T_4^2} \sqcup \mathbf{T_3^1} \sqcup 2\mathbf{T_2^1} }$	$(4,0,5,6) \sqcup (11,9,12) \sqcup (2,3) \sqcup (8,1)$
$\mathbf{T_5^1} \sqcup 3\mathbf{T_2^1}$	$(0,6,1,5,2)\sqcup(10,3)\sqcup(9,7)\sqcup(11,12)$
$T_5^2 \sqcup 3T_2^1$	$(6,1,8,4,7)\sqcup(3,5)\sqcup(9,12)\sqcup(10,11)$
$\mathbf{T_5^3} \sqcup 3\mathbf{T_2^1}$	$(3,0,4,5,6) \sqcup (8,1) \sqcup (10,11) \sqcup (9,7)$
$3\mathbf{T_3^1} \sqcup \mathbf{T_2^1}$	$(0,6,1)\sqcup(4,8,5)\sqcup(2,9,7)\sqcup(10,11)$
$\mathbf{T_4^1} \sqcup 4\mathbf{T_2^1}$	$(0,6,1,5)\sqcup(9,2)\sqcup(8,10)\sqcup(4,7)\sqcup(11,12)$
$\mathbf{T_4^2} \sqcup 4\mathbf{T_2^1}$	$(4,0,5,6) \sqcup (2,3) \sqcup (9,11) \sqcup (8,1) \sqcup (10,7)$
$2\mathbf{T_3^1} \sqcup 3\mathbf{T_2^1}$	$(0,6,1)\sqcup (4,8,5)\sqcup (10,3)\sqcup (9,7)\sqcup (11,12)$
$\mathbf{T_3^1} \sqcup 5\mathbf{T_2^1}$	$(0,6,1)\sqcup(8,4)\sqcup(2,5)\sqcup(10,3)\sqcup(9,7)\sqcup(11,12)$

Figure 3.: σ^{+-} -labelings for forests with 7 edges

Theorem 6. Let F be a forest with 7 edges. There exists an F-decomposition of K_n whenever $n \equiv 0$ or $1 \pmod{14}$.

 88 **Proof.** The proof follows from Theorem 4 and the labelings given in Figure 3. \blacksquare

```
3. n \equiv 7 \text{ or } 8 \pmod{14}
```

In this section, we use our own constructions based on the same edge length definition as in the previous section. The first one addresses the $n \equiv 7 \pmod{14}$ 91 92

Definition. Let G be a graph with 7 edges. A (1-2-3)-labeling of 3G is an assignment f of the integers $\{0, \ldots, 20\}$ to the vertices of 3G such that 94

1. $f(u) \neq f(v)$ whenever u and v belong to the same connected component, 95

and

96

97

98

100

101

102

103

105

106

107

108

109

110

111

112

113

114

115

116

117

2.

$$\bigcup_{uv \in E(3G)} \{ (f(u) \bmod 7, f(v) \bmod 7) \} = \bigcup_{i=0}^6 \bigcup_{j=1}^3 \{ (i, i+j \bmod 7) \}.$$

Notice that the second condition of a (1-2-3)-labeling says that 3G contains exactly 7 edges of each of the lengths 1, 2, and 3. Furthermore, no two edges of the same length have the same end labels when reduced modulo 7. A (1-2-3) labeling of every forest with 7 edges with the exception of $\mathbf{T}_7^{11} \sqcup \mathbf{T}_2^1$ is given in Figure 7. This exceptional forest does not admit such a labeling and is dealt with in Section 4.

Theorem 7. Let G be a bipartite graph with 7 edges. If 3G admits a (1-2-3)labeling and G admits a ρ^+ -labeling, then G decomposes K_{14k+7} for every $k \geq 1$. 104

Proof. Let n = 14k + 7 and notice that K_n has $|E(K_n)| = (7k + 3)(14k + 7)$ edges, which can be partitioned into 14k + 7 edges of each of the lengths in $\{1, 2, \dots, 7k + 3\}$. We will construct the G-decomposition in two steps. First, we use the 1-2-3-labeling to identify all the edges of lengths 1, 2, and 3 accounting for 3(2k+1) copies of G. Then, we use the ρ^+ -labeling to identify edges of the remaining lengths in 7k(2k+1) copies of G. In total, the decomposition consists of $|E(K_n)|/7 = (7k+3)(2k+1)$ copies of G.

Let f_1 be a (1-2-3)-labeling of 3G and identify this graph as a block B_0 . Then develop B_0 by 7 modulo n. Since the order of the development is $\frac{n}{7} = 2k + 1$ and there are 7 edges of each of the lengths 1, 2, and 3 in B_0 , we have identified 3(2k+1) copies of G containing all 14k+7=n edges of each length 1, 2, and 3. Notice (2) of Definition 3 ensures no edge has been counted more than once in the development.

Let $f_2:V(G)\to\{0,\ldots,14\}$ be a ρ^+ -labeling of G with associated vertex 118 partition (A, B). For i = 1, 2, ..., k, identify blocks $B_i \cong G$ with vertex labels ℓ

 $_{120}$ such that

$$\ell(v) = \begin{cases} f_2(v), & \text{if } v \in A \\ f_2(v) + 3 + 7(i-1), & \text{if } v \in B \end{cases}$$

Notice that the i^{th} block contains exactly one edge of each length $7i-3, 7i-2, \ldots$, and 7i+3. This is because every edge ab has length

$$\ell(b) - \ell(a) = f_2(b) - f_2(a) + 3 + 7(i-1)$$

and $f_2(b) - f_2(a)$ is a length in $\{1, \ldots, 7\}$. Developing each block B_i by 1 yields 14k+7 copies of G per block and accounts for 14k+7 edges of each of the lengths $4, 5, \ldots,$ and 7k+3.

Since we have identified

$$3(2k+1) + k(14k+7) = (7k+3)(2k+1)$$

edge-disjoint copies of G, the proof is complete.

To address the $n \equiv 8 \pmod{14}$ case, we define the following labeling.

Definition. Let G be a graph with 7 edges. A 1-rotational (1-2-3)-labeling of 4G is an assignment f of $\{0,\ldots,20\}\cup\infty$ to the vertices of 4G such that

131 1. $f(u) \neq f(v)$ whenever u and v belong to the same connected component, and

2.

$$\bigcup_{uv \in E(4G)} \{ (f(u) \bmod 7, f(v) \bmod 7) \} = \bigcup_{i=0}^6 \bigcup_{j=1}^3 \{ (i, i+j \bmod 7), (i, \infty) \}.$$

Notice that the second condition of a 1-rotational (1-2-3)-labeling says that 134 ^{4}G contains exactly 7 edges of each of the lengths 1, 2, 3, and ∞ . Furthermore, no two edges of the same length have the same end labels when reduced modulo 136 7. A 1-rotational (1-2-3)-labeling of every forest with 7 edges with the exception of $\mathbf{T_7^{11}} \sqcup \mathbf{T_2^{1}}$ is given in Figure 8.

Theorem 8. Let G be a bipartite graph with 7 edges. If 4G admits a 1-rotational (1-2-3)-labeling and G admits a ρ^+ -labeling, then G decomposes K_{14k+8} for every $k \geq 1$.

141 **Proof.** Let n = 14k + 8 and notice that K_n has $|E(K_n)| = (7k + 4)(14k + 7)$ 142 edges, which can be partitioned into 14k + 7 edges of each of the lengths in 143 $\{1, 2, ..., 7k + 3, \infty\}$. We will construct the G-decomposition in two steps. First,

we use the 1-rotational (1-2-3)-labeling to identify all the edges of lengths 1, 2, 3, 144 and ∞ accounting for 4(2k+1) copies of G. Then, we use the ρ^+ -labeling to 145 identify edges of the remaining lengths in 7k(2k+1) copies of G. In total, the 146 decomposition consists of $|E(K_n)|/7 = (7k+4)(2k+1)$ copies of G. Let f_1 be a 147 1-rotational (1-2-3)-labeling of 4G and identify this graph as a block B_0 . Then 148 develop B_0 by 7 modulo n-1. Since the order of the development is $\frac{n-1}{7}=2k+1$ 149 and there are 7 edges of each of the lengths 1, 2, 3 and ∞ in B_0 , we have identified 150 4(2k+1) copies of G containing all 14k+7=n-1 edges of each length 1, 2, 3 151 and ∞ . Notice (2) of Definition 3 ensures no edge has been counted more than 152 once in the development. 153

Let $f_2: V(G) \to \{0, \dots, 14\}$ be a ρ^+ -labeling of G with associated vertex partition (A, B). For i = 1, 2, ..., k, identify blocks $B_i \cong G$ with vertex labels ℓ 156

$$\ell(v) = \begin{cases} f_2(v), & \text{if } v \in A \\ f_2(v) + 3 + 7(i-1), & \text{if } v \in B \end{cases}$$

Notice that the i^{th} block contains exactly one edge of each length $7i-3, 7i-2, \ldots$ and 7i + 3. This is because every edge ab has length 158

$$\ell(b) - \ell(a) = f_2(b) - f_2(a) + 3 + 7(i-1)$$

and $f_2(b) - f_2(a)$ is a length in $\{1, \ldots, 7\}$. Developing each block B_i by 1 yields 14k+7 copies of G per block and accounts for 14k+7 edges of each of the lengths 160 $4, 5, \ldots, \text{ and } 7k + 3.$ 161

Since we have identified

154

162

164

$$4(2k+1) + k(14k+7) = (7k+4)(2k+1)$$

edge-disjoint copies of G, the proof is complete. 163

We are now able to state the main theorem of this section.

Theorem 9. Let F be a forest with 7 edges and $F \ncong \mathbf{T}_{7}^{11} \sqcup \mathbf{T}_{2}^{1}$. There exists an F-decomposition of K_n whenever $n \equiv 7$ or 8 (mod 14) and $n \geq 21$. 166

Proof. If $n \equiv 7 \pmod{14}$, a (1-2-3)-labeling of 3F can be found in Figure 7. 167 On the other hand, if $n \equiv 8 \pmod{14}$, then a 1-rotational (1-2-3)-labeling of 168 4F can be found in Figure 8. In either case, a ρ^+ -labeling of F can be found in Figure 3 (recall that a σ^{+-} -labeling is a ρ^{+} -labeling). The result now follows 170 from Theorems 7 and 8.

Example 10. We illustrate the constructions in the previous two theorems by finding an F-decomposition of K_{35} and K_{36} for the forest graph $F \cong \mathbf{T_6^6} \sqcup \mathbf{T_3^1}$.

Here are excerpts from the preceding tables for ${f T}_6^6\sqcup {f T}_3^1$

Labeling Type	Labelings
Labeling Type	0
σ^{+-}	$(4,1,8,5,6,7) \sqcup (10,9,11)$
	$(0,2,1,3,4,5) \sqcup (12,11,14)$
7 (mod 14)	$(4,6,8,9,5,7) \sqcup (14,12,15)$
	$(0,3,1,4,5,6) \sqcup (11,8,7)$
	$(1,2,0,3,4,5) \sqcup (11,8,\infty)$
8 (mod 14)	$(2, \infty, 3, 4, 5, 6) \sqcup (12, 13, 15)$
o (mod 14)	$(6,7,8,4,5,\infty) \sqcup (11,12,15)$
	$(11, 10, 8, 12, 13, 7) \sqcup (9, 6, 4)$

Figure 4.: Labelings for $\mathbf{T}_6^6 \sqcup \mathbf{T}_3^1$

The ρ^+ labelings obtained by stretching the σ^{+-} labeling are bottommost labelings in the following generating presentations and are developed by 1.

Figure 5.: A σ^{+-} -labeling of $F \cong \mathbf{T_6^6} \sqcup \mathbf{T_3^1}$ (left) and generating presentations for the F-decomposition of K_n where n=35 (middle) and n=36 (right)

```
4. \mathbf{T_7^{11}} \sqcup \mathbf{T_2^1} -decompositions of K_n for n \equiv 7, 8 \pmod{14}
177
     We begin this case by constructing K_n for n \equiv 7 or 8 (mod 14) and n \geq 21 using
178
     joined copies of K_{22}, K_{21}, and K_{14}. Recall, the join of two graphs G_1 and G_2 is
179
     the graph obtained by adding an edge \{g_1, g_2\} for every vertex g_1 \in V(G_1) and
180
     every vertex of g_2 \in V(G_2).
181
          Let t be a positive integer and join t-1 copies of K_{14} with each other and a
182
     lone copy of K_{21}. The resulting graph is K_{14(t-1)+21} \cong K_{14t+7}. So we can think
183
     of K_{14t+7} as K_t whose t "vertices" consist of t-1 copies of K_{14} and 1 copy of K_{21}
184
     and whose edges are the join between them. From now on, we will refer to these
185
     "vertices" as nodes. Similarly, K_{14t+8} can be constructed as K_t whose nodes are
186
     t-1 copies of K_{14} and 1 copy of K_{22} and whose edges are the join between them.
187
           We show that \mathbf{T_7^{11}} \sqcup \mathbf{T_2^1} decomposes K_n for n \equiv 7 or 8 (mod 14) by proving
188
     K_{22}, K_{21}, K_{14}, K_{22,14}, K_{21,14}, and K_{14,14} are each \mathbf{T_7^{11}} \sqcup \mathbf{T_2^1}-decomposable. Notice
189
     that these 6 graphs make up the nodes and edges of the K_t representations of
190
     K_{14t+7} and K_{14t+8} stated in the constructions above.
191
     The proof of the next theorem was obtained by manipulating a K_{1,7}-decomposition
     of K_{22} by Cain in [1].
     Theorem 11. \mathbf{T}_{\mathbf{7}}^{\mathbf{11}} \sqcup \mathbf{T}_{\mathbf{2}}^{\mathbf{1}} decomposes K_{21} and K_{22}.
194
     Proof. Figures 8 and 9 show T_7^{11} \sqcup T_2^{1}-decompositions of K_{21} and K_{22}, respec-
195
     tively.
196
     Theorem 12. \mathbf{T_7^{11}} \sqcup \mathbf{T_2^1} decomposes K_{n,7} for all n \geq 2.
197
     Proof. Take the partite set of n nodes to be \mathbb{Z}_n and color them white. Then,
198
     take the other partite set of 7 nodes to be \mathbb{Z}_7 and color them black. Notice that
199
     |E(K_{n,7})| = |\mathbb{Z}_n \oplus \mathbb{Z}_7| = 7n. So let us refer to edges of K_{n,7} as elements of \mathbb{Z}_n \oplus \mathbb{Z}_7
200
     and vice versa. Note that since n \ge 2, (1,0) \ne (0,0).
201
202
     Now, let E_i = (i,0) + \{(0,0),(1,1),(1,2),\ldots,(1,6)\} for each i \in \mathbb{Z}_n and F_i be
203
     the subgraph induced by E_i. Since each F_i contains a path (i,0) which is vertex
204
     disjoint from the star centered at the white i+1, it must be isomorphic to \mathbf{T}_{7}^{11} \sqcup \mathbf{T}_{2}^{1}.
205
206
     Suppose that there exist distinct i, j \in \mathbb{Z}_n such that E_i \cap E_j \neq \emptyset. But then we have
207
     that (i,0)=(j,0) or (i+1,a)=(j+1,b) for some a,b\in\mathbb{Z}_7, which is impossible.
208
     So all distinct E_i's are pairwise disjoint, and therefore all distinct F_i's are pairwise
209
     edge-disjoint. Lastly, \bigcup_{i \in \mathbb{Z}_n} E_i = \langle (1,0) \rangle + [\{(0,0)\} \cup [(1,0) + \langle (0,1) \rangle] \setminus \{(1,0)\}] =
210
     \langle (1,0) \rangle + \langle (0,1) \rangle = \langle (1,0), (0,1) \rangle = \mathbb{Z}_n \oplus \mathbb{Z}_7. Therefore, \bigcup_{i \in \mathbb{Z}_n} F_i = K_{n,7}.
211
212
```

Thus, $\{F_i \mid i \in \mathbb{Z}_n\}$ is a $\mathbf{T}_7^{11} \sqcup \mathbf{T}_2^1$ -decomposition of $K_{n,7}$. Furthermore, This

decomposition is generated by developing the white nodes of F_0 by 1.

Figure 6.: A generating presentation of the $\mathbf{T}_7^{11} \sqcup \mathbf{T}_2^1$ -decomposition of $K_{n,7}$

```
215 Corollary 13. T_7^{11} \sqcup T_2^1 decomposes K_{22,14}, K_{21,14}, and K_{14,14}.
```

```
Proof. \mathbf{T}_{7}^{11} \sqcup \mathbf{T}_{2}^{1} decomposes K_{7,7} and K_{8,7} by Theorem 12. K_{14,14} can be expressed as the edge-disjoint union of four copies of K_{7,7}, K_{21,14} can be expressed as the edge-disjoint union of six copies of K_{7,7}, and K_{22,14} can be expressed as the edge-disjoint union of two copies of K_{8,7} and four copies of K_{7,7}. Therefore, \mathbf{T}_{7}^{11} \sqcup \mathbf{T}_{2}^{1} decomposes them all.
```

Theorem 14. $\mathbf{T_7^{11}} \sqcup \mathbf{T_2^1}$ decomposes K_{14t+7} and K_{14t+8} where t is a positive integer.

223 **Proof.** $\mathbf{T_7^{11}} \sqcup \mathbf{T_2^1}$ decomposes K_{14} by Theorem 4, $K_{22,14}$, $K_{21,14}$, and $K_{14,14}$ by 224 Corollary 13, and lastly K_{22} , K_{21} by Theorem 11.

Therefore, $\mathbf{T_7^{11}} \sqcup \mathbf{T_2^1}$ decomposes the join of (t-1) copies of K_{14} with each other and 1 copy of K_{21} , which is isomorphic to K_{14t+7} . Similarly $\mathbf{T_7^{11}} \sqcup \mathbf{T_2^1}$ decomposes the join of (t-1) copies of K_{14} with each other and 1 copy of K_{22} which is isomorphic to K_{14t+8} .

Decomposition of complete graphs into forests with seven edges 13

$_{230}$ 5. (1-2-3)-labelings and 1-rotational (1-2-3)-labelings

Forest	(1.2.2) labeling	Forest	(1.2.2) labeling
Forest	(1-2-3)-labeling $(0, 1, 2, 4, 6, 9, 12) \sqcup (13, 14)$	Forest	(1-2-3)-labeling $(12, 9, 6, 4, 2, 1, 7) \sqcup (14, 15)$
m1 m1	$(0,1,2,4,0,9,12) \sqcup (13,14)$ $(3,4,7,9,10,13,15) \sqcup (8,5)$	$\mathbf{T}_7^3\sqcup\mathbf{T}_2^1$	$(12, 9, 0, 4, 2, 1, 7) \sqcup (14, 13)$ $(15, 13, 10, 9, 7, 4, 11) \sqcup (8, 5)$
$\mathbf{T_7^1} \sqcup \mathbf{T_2^1}$	$(3,4,7,9,10,13) \sqcup (6,3)$ $(8,11,12,10,7,5,6) \sqcup (1,3)$	17 1 12	$(8, 11, 12, 10, 7, 5, 13) \sqcup (1, 3)$
	$(0,1,12,10,1,0,0) \sqcup (1,0)$ $(0,1,2,4,6,9,3) \sqcup (16,19)$		$(8, 6, 4, 2, 1, 9, 7) \sqcup (14, 15)$
$\mathbf{T}_7^2 \sqcup \mathbf{T}_2^1$	$(15, 13, 10, 9, 7, 4, 14) \sqcup (17, 18)$	$\mathbf{T}_7^4 \sqcup \mathbf{T}_2^1$	$(8, 10, 9, 7, 4, 11, 13) \sqcup (12, 15)$
-72	(6, 5, 7, 10, 12, 11, 8) \sqcup (18, 15)	-72	$(9, 12, 10, 7, 5, 11, 13) \sqcup (12, 13)$
	(2, 4, 6, 9, 12, 8, 7) \sqcup (11, 14)		$(1, 2, 4, 6, 8, 5, 9) \sqcup (12, 15)$
$\mathbf{T_7^5} \sqcup \mathbf{T_2^1}$	$(0,2,3,6,5,1,4) \sqcup (8,7)$	$\mathbf{T}_7^8 \sqcup \mathbf{T}_2^1$	$(4,7,9,10,11,8,13) \sqcup (1,3)$
' *	$(0,3,5,4,1,8,7) \sqcup (16,15)$	' -	$(5, 7, 10, 12, 11, 6, 13) \sqcup (1, 4)$
	$(8, 6, 4, 2, 5, 9, 7) \sqcup (12, 14)$		$(7, 6, 4, 2, 8, 9, 5) \sqcup (12, 14)$
$\mathbf{T}_7^9 \sqcup \mathbf{T}_2^1$	$(1, 3, 2, 0, 5, 4, 6) \sqcup (10, 12)$	$\mathbf{T_7^{10}} \sqcup \mathbf{T_2^1}$	$(2, 3, 4, 7, 0, 5, 6) \sqcup (9, 12)$
	$(9, 8, 7, 10, 4, 11, 5) \sqcup (12, 13)$		$(7, 8, 5, 4, 9, 10, 11) \sqcup (0, 2)$
	$(2,4,6,8,7,9,12) \sqcup (13,14)$		$(2, 4, 6, 9, 12, 1, 8) \sqcup (14, 15)$
$\mathbf{T_7^6} \sqcup \mathbf{T_2^1}$	$(0, 2, 3, 4, 7, 6, 5) \sqcup (8, 10)$	$\mathbf{T_7^7} \sqcup \mathbf{T_2^1}$	$(5, 6, 3, 2, 0, 7, 4) \sqcup (8, 9)$
	$(0, 3, 5, 8, 9, 4, 1) \sqcup (12, 14)$		$(0,3,5,4,7,1,8) \sqcup (12,14)$
	$(1, 2, 4, 6, 9, 12) \sqcup (13, 14, 15)$		$(1, 2, 4, 6, 9, 5) \sqcup (13, 14, 15)$
$\mathbf{T}^1_6 \sqcup \mathbf{T}^1_3$	$(3, 4, 7, 9, 10, 13) \sqcup (5, 8, 6)$	$\mathbf{T}^2_6 \sqcup \mathbf{T}^1_3$	$(13, 10, 9, 7, 4, 11) \sqcup (5, 8, 6)$
	$(11, 12, 10, 7, 5, 6) \sqcup (3, 1, 4)$		$(11, 12, 10, 7, 5, 13) \sqcup (3, 1, 4)$
	$(0, 1, 2, 4, 6, 5) \sqcup (16, 13, 14)$		$(1, 2, 5, 4, 6, 7) \sqcup (16, 14, 13)$
$\mathbf{T}_6^3 \sqcup \mathbf{T}_3^1$	$(8, 6, 3, 2, 0, 4) \sqcup (14, 12, 15)$	$\mathbf{T}_6^4 \sqcup \mathbf{T}_3^1$	$(8,6,9,3,2,4) \sqcup (14,12,15)$
	$(7,4,5,3,0,6) \sqcup (10,8,11)$		$(4,5,6,3,0,1) \sqcup (11,8,7)$
l	$(0, 2, 4, 7, 1, 5) \sqcup (12, 11, 13)$		$(0,2,1,3,4,5) \sqcup (12,11,14)$
$\mathbf{T}_6^5 \sqcup \mathbf{T}_3^1$	$(7,6,3,2,8,9) \sqcup (14,12,15)$	$\mathbf{T}_6^6 \sqcup \mathbf{T}_3^1$	$(4,6,8,9,5,7) \sqcup (14,12,15)$
	$(4,3,5,6,0,1) \sqcup (11,8,7)$		$(0,3,1,4,5,6) \sqcup (11,8,7)$
m1 m1	$(2,4,6,9,12) \sqcup (16,15,14,13)$	m2 m1	$(12, 9, 6, 4, 11) \sqcup (17, 16, 15, 14)$
$\mathbf{T}_5^1 \sqcup \mathbf{T}_4^1$	$(3,4,7,9,10) \sqcup (11,12,15,13)$	$\mathbf{T}_5^2 \sqcup \mathbf{T}_4^1$	$(9,7,4,3,6) \sqcup (11,12,15,13)$
	$(12, 10, 7, 5, 6) \sqcup (18, 15, 17, 20)$		(6, 5, 7, 10, 3) \sqcup (18, 15, 17, 20)
m2 m2	$(4,6,9,11,8) \sqcup (16,15,18,14)$	m3 m1	$(13, 15, 16, 18, 14) \sqcup (11, 9, 6, 7)$
$\mathbf{T}_5^2 \sqcup \mathbf{T}_4^2$	$(9,7,4,3,6) \sqcup (16,17,20,15)$	$\mathbf{T}_5^3 \sqcup \mathbf{T}_4^1$	$(14, 17, 16, 20, 15) \sqcup (9, 7, 4, 3)$
	(6,5,7,10,3) \sqcup (9,12,11,15)		$(9, 12, 10, 11, 15) \sqcup (4, 6, 5, 7)$
$\mathbf{T}_5^1 \sqcup \mathbf{T}_4^2$	$(7,6,9,11,8) \sqcup (16,15,13,14)$	$\mathbf{T}_5^3 \sqcup \mathbf{T}_4^2$	$(13, 15, 16, 18, 14) \sqcup (11, 9, 12, 6)$
15 14	$(9, 7, 4, 3, 5) \sqcup (16, 17, 20, 15)$ $(4, 6, 5, 7, 10) \sqcup (9, 12, 11, 15)$	15 14	$(18, 17, 16, 20, 15) \sqcup (9, 7, 10, 4)$ $(10, 12, 11, 14, 15) \sqcup (4, 6, 5, 7)$
	$(1, 2, 4, 6, 9, 12) \sqcup (13, 14) \sqcup (8, 7)$		$(10, 12, 11, 14, 10) \sqcup (4, 0, 0, 7)$ $(1, 2, 4, 6, 9, 5) \sqcup (13, 14) \sqcup (8, 7)$
$T_6^1 \sqcup 2T_2^1$	$(3,4,7,9,10,13) \sqcup (8,6) \sqcup (12,15)$	$T_6^2 \sqcup 2T_2^1$	$(13, 10, 9, 7, 4, 11) \sqcup (8, 6) \sqcup (12, 15)$
160212	(11, 12, 10, 7, 5, 6) \sqcup (1, 4) \sqcup (17, 15)	16 2 2 1 2	$(11, 12, 10, 7, 5, 13) \sqcup (1, 4) \sqcup (17, 15)$
	$(0, 1, 2, 4, 7, 5) \sqcup (9, 6) \sqcup (8, 10)$		$(1, 2, 5, 4, 6, 7) \sqcup (13, 14) \sqcup (12, 15)$
$T_6^3 \sqcup 2T_2^1$	(8, 6, 3, 2, 0, 4) ⊔ (5, 7) ⊔ (12, 13)	$T_6^4 \sqcup 2T_2^1$	(8,6,9,3,2,4) \sqcup (12,14) \sqcup (18,15)
	$(6,4,5,3,0,8) \sqcup (13,14) \sqcup (18,15)$	0 2	$(4,5,6,3,0,1) \sqcup (8,7) \sqcup (16,14)$
	$(0, 2, 4, 7, 1, 5) \sqcup (11, 13) \sqcup (12, 15)$		$(0, 2, 1, 3, 4, 5) \sqcup (12, 14) \sqcup (18, 19)$
$T_6^5 \sqcup 2T_2^1$	$(7, 6, 3, 2, 8, 9) \sqcup (11, 12) \sqcup (1, 4)$	$T_6^6 \sqcup 2T_2^1$	$(4, 6, 8, 9, 5, 7) \sqcup (12, 15) \sqcup (11, 14)$
	$(4, 3, 5, 6, 0, 1) \sqcup (8, 7) \sqcup (12, 14)$		$(0, 3, 1, 4, 5, 6) \sqcup (8, 11) \sqcup (14, 15)$
	$(2, 4, 6, 9, 12) \sqcup (13, 14, 15) \sqcup (18, 19)$		$(12, 9, 6, 4, 11) \sqcup (17, 16, 15) \sqcup (0, 1)$
$\mathbf{T}_5^1 \sqcup \mathbf{T}_3^1 \sqcup \mathbf{T}_2^1$	$(3, 4, 7, 9, 10) \sqcup (12, 15, 13) \sqcup (1, 2)$	$T_5^2 \sqcup T_3^1 \sqcup T_2^1$	$(9, 7, 4, 3, 6) \sqcup (12, 15, 13) \sqcup (18, 19)$
	$(12, 10, 7, 5, 6) \sqcup (20, 17, 15) \sqcup (1, 4)$		$(6, 5, 7, 10, 3) \sqcup (20, 17, 15) \sqcup (1, 4)$
	$(13, 15, 16, 18, 14) \sqcup (9, 6, 7) \sqcup (2, 4)$		$(4, 6, 9, 12) \sqcup (16, 15, 14, 13) \sqcup (19, 20)$
$\mathbf{T}_5^3 \sqcup \mathbf{T}_3^1 \sqcup \mathbf{T}_2^1$	$(14, 17, 16, 20, 15) \sqcup (3, 4, 7) \sqcup (11, 13)$	$2T_4^1 \sqcup T_2^1$	$(9, 7, 4, 3) \sqcup (11, 12, 15, 13) \sqcup (16, 17)$
	$(9, 12, 10, 11, 15) \sqcup (6, 5, 7) \sqcup (0, 2)$		$(12, 10, 7, 5) \sqcup (18, 15, 17, 20) \sqcup (9, 11)$
_, _, .	$(11, 9, 6, 7) \sqcup (16, 15, 13, 14) \sqcup (1, 4)$	2 .	$(18, 15, 13, 14) \sqcup (11, 9, 12, 6) \sqcup (1, 2)$
$\mathbf{T}_4^1 \sqcup \mathbf{T}_4^2 \sqcup \mathbf{T}_2^1$	$(5, 3, 4, 7) \sqcup (16, 17, 20, 15) \sqcup (0, 2)$	$2T_4^2 \sqcup T_2^1$	$(18, 17, 20, 15) \sqcup (9, 7, 10, 4) \sqcup (2, 3)$
	$(4,6,5,7) \sqcup (9,12,11,15) \sqcup (0,3)$		$(11, 12, 14, 15) \sqcup (4, 6, 5, 7) \sqcup (17, 19)$
mloml	$(16, 15, 14, 13) \sqcup (0, 3, 5) \sqcup (12, 9, 6)$	m2om1	$(11, 9, 12, 6) \sqcup (18, 15, 13) \sqcup (0, 1, 2)$
$T_4^1 \sqcup 2T_3^1$	$(11, 12, 15, 13) \sqcup (10, 9, 7) \sqcup (16, 18, 20)$	$T_4^2 \sqcup 2T_3^1$	$(9, 7, 10, 4) \sqcup (18, 17, 20) \sqcup (1, 3, 2)$
	$(18, 15, 17, 20) \sqcup (10, 11, 14) \sqcup (6, 5, 7)$		$(11, 12, 14, 15) \sqcup (4, 6, 7) \sqcup (17, 19, 20)$
mlmloml	$(8, 6, 9, 11) \sqcup (0, 1, 2) \sqcup (16, 19) \sqcup (18, 15)$	m2mlaml	$(11, 9, 12, 6) \sqcup (0, 1, 2) \sqcup (18, 15) \sqcup (13, 14)$
$T_4^1 \sqcup T_3^1 \sqcup 2T_2^1$	$(8, 10, 7, 9) \sqcup (18, 17, 20) \sqcup (11, 14) \sqcup (2, 3)$	$\mathbf{T_4^2} \sqcup \mathbf{T_3^1} \sqcup 2\mathbf{T_2^1}$	$(9,7,10,4) \sqcup (18,17,20) \sqcup (11,13) \sqcup (2,3)$
	$(13, 11, 12, 14) \sqcup (17, 19, 20) \sqcup (6, 7) \sqcup (8, 5)$		$(11, 12, 14, 15) \sqcup (17, 19, 20) \sqcup (8, 6) \sqcup (1, 3)$
	$(2, 4, 6, 9, 12) \sqcup (13, 14) \sqcup (18, 19) \sqcup (0, 1)$ $(3, 4, 7, 9, 10) \sqcup (13, 15) \sqcup (1, 2) \sqcup (8, 5)$		$(11, 9, 6, 4, 12) \sqcup (16, 15) \sqcup (8, 10) \sqcup (2, 3)$ $(6, 7, 4, 3, 9) \sqcup (13, 15) \sqcup (18, 19) \sqcup (8, 5)$
$T_5^1 \sqcup 3T_2^1$	$(6, 5, 7, 10, 12) \sqcup (17, 20) \sqcup (8, 11) \sqcup (1, 3)$	$T_5^2 \sqcup 3T_2^1$	$(3, 5, 7, 10, 6) \sqcup (17, 20) \sqcup (8, 11) \sqcup (0, 1)$
	$(4, 9, 15, 8, 16) \sqcup (1, 11) \sqcup (3, 12) \sqcup (2, 6)$		$(3, 3, 7, 10, 0) \sqcup (17, 20) \sqcup (8, 11) \sqcup (0, 1)$ $(12, 8, 15, 9, 16) \sqcup (2, 11) \sqcup (0, 5) \sqcup (3, 13)$
	(13, 15, 16, 18, 14) \sqcup (9, 6) \sqcup (2, 4) \sqcup (5, 7)		$(12, 0, 10, 0, 10) \Box (2, 11) \Box (0, 0) \Box (0, 10)$ $(18, 15, 13) \Box (11, 9, 6) \Box (0, 1, 2) \Box (16, 19)$
$T_5^3 \sqcup 3T_2^1$	(14, 17, 16, 20, 15) \sqcup (4, 7) \sqcup (11, 13) \sqcup (5, 6)	$3T_3^1 \sqcup T_2^1$	$(18, 17, 20) \sqcup (9, 7, 10) \sqcup (1, 3, 2) \sqcup (11, 14)$
	$(9, 12, 10, 11, 15) \sqcup (6, 7) \sqcup (0, 2) \sqcup (3, 4)$		$(11, 12, 14) \sqcup (4, 6, 7) \sqcup (17, 19, 20) \sqcup (8, 5)$
	$(9, 6, 4, 2) \sqcup (13, 14) \sqcup (18, 19) \sqcup (0, 1) \sqcup (10, 12)$		$(16, 15, 18, 13) \sqcup (9, 6) \sqcup (2, 4) \sqcup (5, 7) \sqcup (0, 1)$
$T_4^1 \sqcup 4T_2^1$	$(9, 7, 4, 3) \sqcup (13, 15) \sqcup (1, 2) \sqcup (8, 5) \sqcup (16, 17)$	$T_4^2 \sqcup 4T_2^1$	$(16, 17, 20, 14) \sqcup (4, 7) \sqcup (11, 13) \sqcup (5, 6) \sqcup (1, 3)$
-42	$(10, 7, 5, 6) \sqcup (17, 20) \sqcup (8, 11) \sqcup (1, 3) \sqcup (9, 12)$		$(9, 12, 10, 11) \sqcup (6, 7) \sqcup (0, 2) \sqcup (3, 4) \sqcup (8, 5)$
	$(11, 9, 6) \sqcup (0, 1, 2) \sqcup (18, 15) \sqcup (16, 19) \sqcup (17, 20)$		$(0,1,2) \sqcup (18,15) \sqcup (9,11) \sqcup (16,19) \sqcup (5,6) \sqcup (10,7)$
$2T_3^1 \sqcup 3T_2^1$	$(9,7,10) \sqcup (1,3,2) \sqcup (17,18) \sqcup (11,14) \sqcup (8,5)$	$T_3^1 \sqcup 5T_2^1$	$(1,3,2) \sqcup (17,18) \sqcup (9,7) \sqcup (11,14) \sqcup (8,5) \sqcup (16,13)$
	$(11,12,14) \sqcup (4,6,7) \sqcup (19,20) \sqcup (13,15) \sqcup (3,5)$		$(4,6,7) \sqcup (12,14) \sqcup (3,5) \sqcup (13,15) \sqcup (17,20) \sqcup (18,19)$

Figure 7.: (1-2-3)-labelings

Forest	1-rotational (1-2-3)-labeling	Forest	1-rotational (1-2-3)-labeling
	$(0, 1, \infty, 2, 4, 5, 3) \sqcup (12, 15)$		$(3, 5, 4, 2, \infty, 8, 1) \sqcup (12, 15)$
$\mathbf{T_{7}^{1}}\sqcup\mathbf{T_{2}^{1}}$	$(0, 2, 5, \infty, 6, 4, 1) \sqcup (10, 11)$	$\mathbf{T}^3_7 \sqcup \mathbf{T}^1_2$	$(4, 6, \infty, 5, 2, 0, 18) \sqcup (10, 11)$
' 2	$(5, 7, \infty, 3, 6, 9, 10) \sqcup (13, 14)$	7 2	$(10, 9, 6, 3, \infty, 0, 7) \sqcup (12, 14)$
	$(\infty, 4, 7, 10, 8, 6, 5) \sqcup (16, 15)$		$(5, 6, 8, 10, 7, 4, 9) \sqcup (0, 1)$
	$(3, 5, 4, 2, \infty, 1, 6) \sqcup (9, 10)$		$(1, 2, 4, 5, 8, 0, \infty) \sqcup (11, 13)$
	$(0, 2, 5, \infty, 6, 4, 1) \sqcup (10, 11)$		$(4, \infty, 5, 2, 3, 8, 6) \sqcup (16, 13)$
$\mathbf{T}_7^2 \sqcup \mathbf{T}_2^1$		$\mathbf{T}_{7}^{4}\sqcup\mathbf{T}_{2}^{1}$	
' -	$(5, 7, \infty, 3, 6, 9, 8) \sqcup (13, 14)$		$(6, 7, \infty, 10, 13, 8, 5) \sqcup (19, 20)$
	$(\infty, 4, 7, 10, 8, 6, 1) \sqcup (12, 15)$		$(11, 10, 7, 4, 1, 8, 12) \sqcup (13, 15)$
	$(5, 4, 2, 3, 6, 0, 1) \sqcup (9, \infty)$		$(8, 5, 4, 2, 0, 6, \infty) \sqcup (11, 13)$
,	$(2, 5, \infty, 6, 4, 8, 11) \sqcup (16, 13)$		$(3, 2, 5, \infty, 8, 1, 6) \sqcup (16, 13)$
$\mathbf{T}_7^5 \sqcup \mathbf{T}_2^1$	$(10, \infty, 7, 8, 11, 5, 6) \sqcup (12, 13)$	$\mathbf{T}_7^8 \sqcup \mathbf{T}_2^1$	$(5, 7, \infty, 3, 4, 8, 6) \sqcup (13, 14)$
	$(4, 7, 10, 8, 5, 11, 12) \sqcup (13, 15)$		$(\infty, 4, 7, 10, 8, 1, 12) \sqcup (13, 15)$
	$(1, 2, 4, 5, 7, 0, 3) \sqcup (8, 11)$		$(1, 2, 4, 6, 0, 3, 5) \sqcup (8, 11)$
m9m1	$(11, \infty, 6, 4, 5, 8, 12) \sqcup (10, 13)$	m10 m1	$(11, \infty, 6, 5, 8, 2, 12) \sqcup (13, 15)$
$\mathbf{T_7^9} \sqcup \mathbf{T_2^1}$	$(6, 7, \infty, 10, 2, 8, 5) \sqcup (9, 12)$	$\mathbf{T_7^{10}} \sqcup \mathbf{T_2^1}$	$(6, 7, \infty, 10, 8, 4, 5) \sqcup (11, 12)$
	(11, 10, 8, 5, 6, 12, 7) ⊔ (16, 13)		(11, 10, 8, 5, 12, 13, 7) \sqcup (9, 6)
	$(5, 4, 2, 0, 1, 3, 6) \sqcup (9, \infty)$		$(5, 4, 2, 3, 6, \infty, 0) \sqcup (8, 7)$
$\mathbf{T_7^6} \sqcup \mathbf{T_2^1}$	$(4, 6, \infty, 1, 2, 12, 13) \sqcup (8, 11)$	$\mathbf{T_7^7}\sqcup\mathbf{T_2^1}$	$(13, 12, \infty, 6, 4, 10, 1) \sqcup (8, 11)$
17 - 12	$(10, \infty, 7, 5, 3, 6, 9) \sqcup (13, 15)$	17 - 12	$(10, \infty, 7, 6, 9, 2, 5) \sqcup (13, 15)$
	$(5, 8, 10, 11, \infty, 7, 4) \sqcup (9, 12)$		$(5, 8, 10, 7, 4, 9, 11) \sqcup (16, 19)$
	$(3, 5, 4, 2, \infty, 1) \sqcup (13, 12, 15)$		$(\infty, 2, 4, 5, 8, 0) \sqcup (11, 13, 12)$
	$(0, 2, 5, \infty, 6, 4) \sqcup (8, 11, 10)$		$(6, \infty, 5, 2, 3, 8) \sqcup (13, 16, 15)$
$\mathbf{T}_6^1 \sqcup \mathbf{T}_3^1$		$\mathbf{T}^2_6\sqcup\mathbf{T}^1_3$	
	$(5,7,\infty,3,6,9) \sqcup (13,14,15)$		$(6, 3, \infty, 7, 5, 4) \sqcup (13, 14, 15)$
	$(\infty, 4, 7, 10, 8, 6) \sqcup (17, 16, 15)$		$(8, 10, 7, 4, \infty, 12) \sqcup (18, 15, 13)$
	$(5, 4, 2, 3, 6, 0) \sqcup (9, \infty, 11)$		$(5, 4, 7, 2, 1, 3) \sqcup (8, 11, \infty)$
	$(4, 6, \infty, 12, 13, 1) \sqcup (11, 8, 7)$		$(12, \infty, 8, 6, 4, 5) \sqcup (13, 10, 7)$
$\mathbf{T}_6^3 \sqcup \mathbf{T}_3^1$		$\mathbf{T}_6^4 \sqcup \mathbf{T}_3^1$	
	$(10, \infty, 7, 6, 9, 5) \sqcup (16, 15, 13)$		$(10, \infty, 2, 7, 8, 5) \sqcup (19, 16, 14)$
	$(5, 8, 10, 7, 4, 11) \sqcup (16, 19, 17)$		$(11, 10, 12, 8, 5, 6) \sqcup (16, 13, 14)$
	$(1, 2, 4, 5, 0, 3) \sqcup (8, 11, 14)$		$(1, 2, 0, 3, 4, 5) \sqcup (11, 8, \infty)$
m5 m1	$(11, \infty, 6, 4, 8, 5) \sqcup (10, 13, 12)$	m6 m1	$(2, \infty, 3, 4, 5, 6) \sqcup (12, 13, 15)$
$\mathbf{T}_6^5 \sqcup \mathbf{T}_3^1$	$(6, 7, \infty, 3, 8, 5) \sqcup (9, 12, 15)$	$\mathbf{T}_6^6 \sqcup \mathbf{T}_3^1$	$(6, 7, 8, 4, 5, \infty) \sqcup (11, 12, 15)$
1			
	$(11, 10, 8, 6, 12, 7) \sqcup (13, 16, \infty)$		$(11, 10, 8, 12, 13, 7) \sqcup (9, 6, 4)$
1	$(5, 4, 2, \infty, 1) \sqcup (11, 13, 12, 15)$		$(\infty, 2, 4, 5, 0) \sqcup (11, 13, 12, 15)$
$\mathbf{T}_5^1 \sqcup \mathbf{T}_4^1$	$(0, 2, 5, \infty, 6) \sqcup (8, 11, 10, 12)$	$\mathbf{T}_5^2 \sqcup \mathbf{T}_4^1$	$(6, \infty, 5, 2, 1) \sqcup (8, 11, 10, 12)$
-54	$(5, 7, \infty, 3, 6) \sqcup (16, 13, 14, 15)$	-54	$(6, 3, \infty, 7, 1) \sqcup (16, 13, 14, 15)$
	$(\infty, 4, 7, 10, 8) \sqcup (17, 16, 15, 13)$		$(10, 7, 4, \infty, 5) \sqcup (17, 16, 15, 13)$
	$(\infty, 2, 4, 3, 0) \sqcup (11, 13, 12, 15)$		$(0, 2, 1, 3, 4) \sqcup (11, 8, \infty, 6)$
	$(6, \infty, 5, 2, 1) \sqcup (10, 12, 11, 15)$	21	$(2, \infty, 3, 4, 5) \sqcup (9, 12, 13, 15)$
$\mathbf{T}_5^2 \sqcup \mathbf{T}_4^2$	$(6, 3, \infty, 7, 1) \sqcup (12, 14, 13, 15)$	$\mathbf{T}_5^3 \sqcup \mathbf{T}_4^1$	$(4, 7, 5, 6, \infty) \sqcup (11, 12, 15, 14)$
	$(\infty, 4, 7, 10, 1) \sqcup (17, 16, 13, 15)$		$(0,3,1,5,6) \sqcup (16,13,11,10)$
	$(10, 13, \infty, 8, 11) \sqcup (1, 2, 3, 4)$		$(0, 2, 3, 4, 5) \sqcup (20, 10, 11, 10)$
$\mathbf{T}_5^1 \sqcup \mathbf{T}_4^2$	$(15, 13, 12, 9, 7) \sqcup (3, \infty, 4, 5)$	$T_5^3 \sqcup T_4^2$	$(2, \infty, 3, 4, 5) \sqcup (12, 13, 14, 15)$
, ,	$(11, 12, 15, 14, 13) \sqcup (4, 7, 5, \infty)$	3 4	$(4, 7, 8, 5, \infty) \sqcup (10, 12, 11, 15)$
	$(3, 4, 6, 9, \infty) \sqcup (8, 10, 12, 7)$		$(0, 3, 1, 4, 6) \sqcup (16, 13, 11, \infty)$
	$(3, 5, 4, 2, \infty, 1) \sqcup (19, 20) \sqcup (12, 15)$		$(\infty, 2, 4, 5, 8, 0) \sqcup (18, 20) \sqcup (12, 13)$
	$(0, 2, 5, \infty, 6, 4) \sqcup (17, 18) \sqcup (8, 11)$	1	$(13, \infty, 5, 2, 3, 8) \sqcup (9, 6) \sqcup (16, 15)$
$T_6^1 \sqcup 2T_2^1$	$(5, 7, \infty, 3, 6, 9) \sqcup (13, 14) \sqcup (0, 1)$	$T_6^2 \sqcup 2T_2^1$	$(6, 3, \infty, 7, 5, 4) \sqcup (13, 14) \sqcup (0, 1)$
	$(\infty, 4, 7, 10, 8, 6) \sqcup (16, 15) \sqcup (2, 3)$		$(15, 17, 14, 11, \infty, 19) \sqcup (8, 6) \sqcup (1, 4)$
	$(3, 2, 4, 5, 0, 1) \sqcup (18, 15) \sqcup (11, 14)$		$(5,4,7,2,1,3) \sqcup (8,11) \sqcup (18,\infty)$
$T_6^5 \sqcup 2T_2^1$	$(5, \infty, 6, 4, 8, 11) \sqcup (10, 13) \sqcup (19, 20)$	$T_6^4 \sqcup 2T_2^1$	$(12, \infty, 8, 6, 4, 5) \sqcup (0, 3) \sqcup (10, 13)$
" -	$(8, 7, \infty, 3, 5, 6) \sqcup (16, 19) \sqcup (12, 15)$	0 2	$(10, \infty, 2, 7, 8, 5) \sqcup (9, 6) \sqcup (16, 19)$
	$(7, 10, 8, 6, 11, 12) \sqcup (16, 13) \sqcup (9, \infty)$		$(11, 10, 12, 8, 5, 6) \sqcup (13, 14) \sqcup (0, 2)$
	$(5, 4, 2, 3, 6, 0) \sqcup (9, 12) \sqcup (11, \infty)$		$(1, 2, 0, 3, 4, 5) \sqcup (\infty, 15) \sqcup (8, 11)$
1	$(4, 6, \infty, 12, 13, 15) \sqcup (0, 1) \sqcup (8, 11)$	1	$(11, \infty, 2, 3, 5, 6) \sqcup (13, 15) \sqcup (19, 20)$
$T_6^3 \sqcup 2T_2^1$	$(10, \infty, 7, 6, 9, 5) \sqcup (13, 15) \sqcup (1, 2)$	$T_6^6 \sqcup 2T_2^1$	$(6, 7, 8, 4, 5, \infty) \sqcup (18, 19) \sqcup (12, 15)$
	$(5, 8, 10, 7, 4, 11) \sqcup (17, 19) \sqcup (9, \infty)$		(11, 10, 8, 12, 13, 7) \sqcup (18, 20) \sqcup (9, 6)
	$(10, 13, \infty, 8, 11) \sqcup (3, 2, 4) \sqcup (16, 15)$		$(8, \infty, 13, 10, 9) \sqcup (3, 2, 4) \sqcup (14, 15)$
$\mathbf{T}_5^1 \sqcup \mathbf{T}_3^1 \sqcup \mathbf{T}_2^1$	$(15, 13, 12, 9, 7) \sqcup (10, \infty, 5) \sqcup (11, 14)$	$\mathbf{T}_5^2 \sqcup \mathbf{T}_3^1 \sqcup \mathbf{T}_2^1$	$(7, 9, 12, 13, 8) \sqcup (10, \infty, 5) \sqcup (11, 14)$
-532	$(11, 12, 15, 14, 13) \sqcup (4, \infty, 7) \sqcup (0, 3)$	-532	$(11, 12, 15, 18, 14) \sqcup (4, \infty, 7) \sqcup (0, 3)$
	$(3, 4, 6, 9, \infty) \sqcup (8, 10, 12) \sqcup (5, 7)$		$(9, 6, 4, 3, 8) \sqcup (19, 17, 15) \sqcup (13, 14)$
	$(2, \infty, 3, 4, 5) \sqcup (12, 13, 15) \sqcup (16, 19)$		$(1, \infty, 16, 18) \sqcup (11, 13, 12, 15) \sqcup (4, 5)$
m3m11	$(0, 2, 1, 3, 4) \sqcup (8, \infty, 6) \sqcup (18, 15)$	om11	$(2, 5, \infty, 6) \sqcup (8, 11, 10, 12) \sqcup (9, 7)$
$T_5^3 \sqcup T_3^1 \sqcup T_2^1$	$(4, 7, 5, 6, \infty) \sqcup (11, 12, 15) \sqcup (0, 1)$	$2T_4^1 \sqcup T_2^1$	$(0, \infty, 3, 6) \sqcup (16, 13, 14, 15) \sqcup (5, 7)$
			$(10, 7, 4, \infty) \sqcup (17, 16, 15, 13) \sqcup (1, 3)$
	$(8, 10, 12, 13, 7) \sqcup (9, 6, 4) \sqcup (17, 18)$		
1	$(11, 9, \infty, 1) \sqcup (10, 12, 13, 15) \sqcup (4, 5)$		$(18, 16, 19, \infty) \sqcup (10, 12, 13, 15) \sqcup (3, 6)$
$\mathbf{T}_4^1 \sqcup \mathbf{T}_4^2 \sqcup \mathbf{T}_2^1$	$(2,5,\infty,6) \sqcup (8,11,10,13) \sqcup (9,7)$	$2T_4^2 \sqcup T_2^1$	$(1, \infty, 12, 6) \sqcup (8, 11, 10, 13) \sqcup (4, 5)$
42	$(0, \infty, 17, 20) \sqcup (12, 14, 13, 15) \sqcup (8, 6)$	2	$(0, \infty, 3, 4) \sqcup (12, 14, 13, 15) \sqcup (8, 6)$
	$(10, 7, 4, \infty) \sqcup (17, 16, 13, 15) \sqcup (1, 3)$		$(9, 7, 10, 4) \sqcup (17, 16, 13, 15) \sqcup (1, 3)$
	$(11, 13, 12, 15) \sqcup (9, \infty, 1) \sqcup (2, 4, 5)$		$(18, 16, 19, \infty) \sqcup (13, 12, 15) \sqcup (5, 3, 6)$
m11	$(8, 11, 10, 12) \sqcup (19, \infty, 6) \sqcup (0, 2, 5)$	m21	$(1, \infty, 12, 6) \sqcup (8, 11, 13) \sqcup (3, 4, 5)$
$T_4^1 \sqcup 2T_3^1$	$(0, \infty, 3, 6) \sqcup (16, 13, 14) \sqcup (8, 7, 5)$	$T_4^2 \sqcup 2T_3^1$	$(0, \infty, 3, 4) \sqcup (0, 11, 10) \sqcup (0, 1, 0)$ $(0, \infty, 3, 4) \sqcup (12, 14, 13) \sqcup (6, 8, 7)$
1	$(0, \infty, 3, 0) \sqcup (10, 13, 14) \sqcup (0, 7, 3)$ $(17, 16, 15, 13) \sqcup (\infty, 4, 7) \sqcup (0, 3, 1)$		$(9, 7, 10, 4) \sqcup (12, 14, 13) \sqcup (6, 8, 7)$
	(11, 10, 10, 15) (0, 4, 1) (0, 0, 1)		
1	$(11, 13, 12, 15) \sqcup (9, \infty, 1) \sqcup (4, 5) \sqcup (16, 18)$		$(18, 16, 19, \infty) \sqcup (13, 12, 15) \sqcup (3, 5) \sqcup (17, 20)$
$T_4^1 \sqcup T_3^1 \sqcup 2T_2^1$	$(8, 11, 10, 12) \sqcup (19, \infty, 6) \sqcup (2, 5) \sqcup (16, 14)$	$T_4^2 \sqcup T_3^1 \sqcup 2T_2^1$	$(1, \infty, 12, 6) \sqcup (8, 11, 13) \sqcup (4, 5) \sqcup (17, 18)$
32	$(8, 10, 7, 4) \sqcup (0, \infty, 11) \sqcup (16, 17) \sqcup (9, 6)$	32	$(3, \infty, 4, 7) \sqcup (12, 14, 13) \sqcup (8, 6) \sqcup (1, 2)$
	$(5,7,8,6) \sqcup (20,17,\infty) \sqcup (13,14) \sqcup (1,2)$		$(9, 7, 10, 4) \sqcup (17, 16, 13) \sqcup (1, 3) \sqcup (14, 15)$
	$(4, 1, \infty, 13, 10) \sqcup (2, 3) \sqcup (16, 15) \sqcup (9, 11)$		$(1, \infty, 13, 10, 7) \sqcup (2, 3) \sqcup (16, 15) \sqcup (9, 11)$
mlom1	$(5, \infty, 10, 11, 13) \sqcup (4, 7) \sqcup (0, 2) \sqcup (9, 12)$	m2	$(5, \infty, 10, 11, 16) \sqcup (4, 7) \sqcup (0, 2) \sqcup (9, 12)$
$T_5^1 \sqcup 3T_2^1$	$(7, \infty, 4, 5, 8) \sqcup (17, 19) \sqcup (0, 3) \sqcup (12, 14)$	$T_5^2 \sqcup 3T_2^1$	$(6, 4, 5, 8, \infty) \sqcup (17, 19) \sqcup (0, 3) \sqcup (12, 14)$
I	$(7, 8, 6, 9, \infty) \sqcup (11, 10) \sqcup (0, 0) \sqcup (12, 11)$ $(7, 8, 6, 9, \infty) \sqcup (13, 14) \sqcup (1, 3) \sqcup (19, 20)$		$(7, 8, 6, 9, 11) \sqcup (13, 14) \sqcup (1, 3) \sqcup (19, 20)$
	$(1, 0, 0, 3, \infty) \sqcup (13, 14) \sqcup (1, 3) \sqcup (13, 20)$ $(1, \infty, 13, 5, 7) \sqcup (2, 3) \sqcup (16, 15) \sqcup (9, 11)$		$(11, 13, 12, 15) \sqcup (9, \infty, 1) \sqcup (2, 4, 5)$
	$(1, \infty, 13, 5, 7) \sqcup (2, 3) \sqcup (10, 13) \sqcup (9, 11)$ $(0, 3, 1, 4, \infty) \sqcup (2, 5) \sqcup (9, 7) \sqcup (10, 13)$		$(11, 13, 12, 13) \sqcup (9, \infty, 1) \sqcup (2, 4, 3)$ $(8, 11, 10, 12) \sqcup (19, \infty, 6) \sqcup (0, 2, 5)$
$T_5^3 \sqcup 3T_2^1$		$T_4^1 \sqcup 2T_3^1$	
-5-012	$(12, 11, 13, 14, \infty) \sqcup (17, 19) \sqcup (5, 7) \sqcup (9, 6)$		$(0, \infty, 3, 6) \sqcup (16, 13, 14) \sqcup (8, 7, 5)$
	$(5, 8, 11, 6, 7) \sqcup (13, 14) \sqcup (2, \infty) \sqcup (19, 20)$		$(17, 16, 15, 13) \sqcup (\infty, 4, 7) \sqcup (0, 3, 1)$
	$(9, \infty, 8, 6) \sqcup (12, 15) \sqcup (16, 17) \sqcup (1, 2) \sqcup (19, 20)$		$(8, \infty, 9, 5) \sqcup (12, 15) \sqcup (16, 17) \sqcup (1, 2) \sqcup (3, 4)$
m1	$(5, \infty, 13, 14) \sqcup (9, 6) \sqcup (0, 2) \sqcup (1, 4) \sqcup (17, 19)$	$m_{2} + am_{1}$	$(15, 13, 14, \infty) \sqcup (9, 6) \sqcup (0, 2) \sqcup (1, 4) \sqcup (17, 19)$
$T_4^1 \sqcup 4T_2^1$	$(0, \infty, 4, 3) \sqcup (10, 7) \sqcup (16, 18) \sqcup (2, 5) \sqcup (11, 14)$	$T_4^2 \sqcup 4T_2^1$	$(0, \infty, 3, 4) \sqcup (10, 7) \sqcup (16, 18) \sqcup (2, 5) \sqcup (11, 14)$
	$(18, 20, 17, \infty) \sqcup (4, 5) \sqcup (12, 14) \sqcup (8, 10) \sqcup (0, 1)$		$(17, 20, 18, 19) \sqcup (4, 5) \sqcup (12, 14) \sqcup (8, 10) \sqcup (0, 1)$
—	$(8, \infty, 9) \sqcup (13, 12, 15) \sqcup (4, 5) \sqcup (16, 18) \sqcup (1, 2)$		
1			$(8, \infty, 9) \sqcup (12, 15) \sqcup (4, 5) \sqcup (16, 18) \sqcup (1, 2) \sqcup (19, 20)$
$2T_3^1 \sqcup 3T_2^1$	$(19, \infty, 6) \sqcup (11, 10, 12) \sqcup (2, 5) \sqcup (18, 20) \sqcup (1, 4)$	$T_3^1 \sqcup 5T_2^1$	$(5, \infty, 13) \sqcup (9, 6) \sqcup (0, 2) \sqcup (18, 20) \sqcup (1, 4) \sqcup (17, 19)$
3 2	$(11, \infty, 14) \sqcup (10, 7, 4) \sqcup (16, 17) \sqcup (0, 2) \sqcup (1, 3)$	3 2	$(11, \infty, 14) \sqcup (4, 7) \sqcup (16, 17) \sqcup (2, 5) \sqcup (8, 10) \sqcup (0, 3)$
	$(20, 17, \infty) \sqcup (14, 13, 15) \sqcup (5, 7) \sqcup (9, 6) \sqcup (0, 1)$		$(20, 17, \infty) \sqcup (13, 14) \sqcup (5, 7) \sqcup (10, 11) \sqcup (0, 1) \sqcup (8, 6)$

Figure 8.: 1-rotational (1-2-3)-labelings

²³¹ 6. $\mathbf{T_7^{11}} \sqcup \mathbf{T_2^{1}}$ -decompositions of K_{21} and K_{22}

Element	Graph	Element	Graph
G_1	$(15, 14, 16, 17, 18, 19, 20) \sqcup (0, 2)$	G_2	$(13, 15, 16, 17, 18, 19, 20) \sqcup (0, 6)$
G_3	$(8, 16, 12, 17, 18, 19, 20) \sqcup (9, 3)$	G_4	$(8, 17, 9, 11, 18, 19, 20) \sqcup (16, 0)$
G_5	$(8, 18, 9, 11, 13, 19, 20) \sqcup (0, 1)$	G_6	$(8, 19, 10, 11, 12, 13, 20) \sqcup (0, 15)$
G_7	$(8,1,9,10,11,12,13) \sqcup (18,7)$	G_8	$(1,2,9,10,11,12,13) \sqcup (14,7)$
G_9	$(0,3,2,6,11,12,13) \sqcup (8,7)$	G_{10}	$(0,4,2,3,11,12,13) \sqcup (8,9)$
G_{11}	$(0,5,2,3,4,12,13) \sqcup (9,10)$	G_{12}	$(1,6,2,4,5,12,13) \sqcup (15,7)$
G_{13}	$(1,7,2,3,4,5,6) \sqcup (0,14)$	G_{14}	$(3, 8, 4, 5, 6, 14, 20) \sqcup (12, 15)$
G_{15}	$(4,9,5,6,14,15,20) \sqcup (16,7)$	G_{16}	$(15, 10, 4, 5, 6, 16, 20) \sqcup (0, 18)$
G_{17}	$(15, 11, 0, 5, 6, 16, 20) \sqcup (17, 1)$	G_{18}	$(14, 12, 0, 11, 17, 18, 20) \sqcup (8, 2)$
G_{19}	$(16, 13, 0, 11, 12, 17, 20) \sqcup (1, 19)$	G_{20}	$(1,14,2,3,4,5,6) \sqcup (20,7)$
G_{21}	$(1,15,2,3,4,5,6) \sqcup (19,7)$	G_{22}	$(1,16,2,3,4,5,6) \sqcup (17,7)$
G_{23}	$(0,17,2,3,4,5,6) \sqcup (11,14)$	G_{24}	$(1, 18, 2, 3, 4, 5, 6) \sqcup (10, 14)$
G_{25}	$(0,19,2,3,4,5,6) \sqcup (13,14)$	G_{26}	$(0, 20, 2, 3, 4, 5, 6) \sqcup (10, 11)$
G_{27}	$(9,7,0,10,11,12,13) \sqcup (1,3)$	G_{28}	$(10, 8, 0, 11, 12, 13, 15) \sqcup (1, 4)$
G_{29}	$(11, 9, 0, 12, 13, 16, 19) \sqcup (1, 5)$	G_{30}	$(12, 10, 0, 3, 13, 17, 18) \sqcup (1, 20)$

Figure 10.: A ${\bf T_7^{11}} \sqcup {\bf T_2^{1}}\text{-decomposition of }K_{21}$

Element	Graph	Element	Graph
G_1	$(15, 14, 16, 17, 18, 19, 20) \sqcup (0, 2)$	G_2	$(13, 15, 16, 17, 18, 19, 20) \sqcup (0, 6)$
G_3	$(8, 16, 12, 17, 18, 19, 20) \sqcup (9, 3)$	G_4	$(8, 17, 9, 11, 18, 19, 20) \sqcup (16, 0)$
G_5	$(8, 18, 9, 11, 13, 19, 20) \sqcup (0, 1)$	G_6	$(8, 19, 10, 11, 12, 13, 20) \sqcup (0, 15)$
G_7	$(8,1,9,10,11,12,13) \sqcup (6,\infty)$	G_8	$(1,2,9,10,11,12,13) \sqcup (14,7)$
G_9	$(0,3,2,6,11,12,13) \sqcup (8,7)$	G_{10}	$(0,4,2,3,11,12,13) \sqcup (8,9)$
G_{11}	$(0,5,2,3,4,12,13) \sqcup (9,10)$	G_{12}	$(1,6,2,4,5,12,13) \sqcup (15,7)$
G_{13}	$(1,7,2,3,4,5,6) \sqcup (13,\infty)$	G_{14}	$(3, 8, 4, 5, 6, 14, 20) \sqcup (12, 15)$
G_{15}	$(4,9,5,6,14,15,20) \sqcup (16,7)$	G_{16}	$(15, 10, 4, 5, 6, 16, 20) \sqcup (0, 18)$
G_{17}	$(15, 11, 0, 5, 6, 16, 20) \sqcup (17, 1)$	G_{18}	$(14, 12, 0, 11, 17, 18, 20) \sqcup (8, 2)$
G_{19}	$(16, 13, 0, 11, 12, 17, 20) \sqcup (1, 19)$	G_{20}	$(1,14,2,3,4,5,6) \sqcup (20,7)$
G_{21}	$(1,15,2,3,4,5,6) \sqcup (19,7)$	G_{22}	$(1,16,2,3,4,5,6) \sqcup (17,7)$
G_{23}	$(0,17,2,3,4,5,6) \sqcup (11,14)$	G_{24}	$(1, 18, 2, 3, 4, 5, 6) \sqcup (10, 14)$
G_{25}	$(0,19,2,3,4,5,6) \sqcup (13,14)$	G_{26}	$(0, 20, 2, 3, 4, 5, 6) \sqcup (10, 11)$
G_{27}	$(9,7,0,10,11,12,13) \sqcup (20,\infty)$	G_{28}	$(10, 8, 0, 11, 12, 13, 15) \sqcup (1, 4)$
G_{29}	$(11, 9, 0, 12, 13, 16, 19) \sqcup (1, 5)$	G_{30}	$(12, 10, 0, 3, 13, 17, 18) \sqcup (1, 20)$
G_{31}	$(0,\infty,1,2,3,4,5)\sqcup(18,7)$	G_{32}	$(14, \infty, 15, 16, 17, 18, 19) \sqcup (1, 3)$
G_{33}	$(7, \infty, 8, 9, 10, 11, 12) \sqcup (0, 14)$		

Figure 11.: A ${\bf T_7^{11}} \sqcup {\bf T_2^{1}}\text{-decomposition of }K_{22}$

Design Name	Graph Decomposition	Design Name	Graph Decomposition
	$(0,1,2,4,6,9,12) \sqcup (13,14)$		$(12, 9, 6, 4, 2, 1, 7) \sqcup (14, 15)$
m1 m1	$(3,4,7,9,10,13,15) \sqcup (8,5)$	m ² m ¹	$(15, 13, 10, 9, 7, 4, 11) \sqcup (8, 5)$
$\mathbf{T_7^1}\sqcup\mathbf{T_2^1}$	$(8,11,12,10,7,5,6) \sqcup (1,3)$	$\mathbf{T}^3_7 \sqcup \mathbf{T}^1_2$	$(8,11,12,10,7,5,13) \sqcup (1,3)$
	$(0,4,9,15,8,16,7) \sqcup (1,11)$		$(16, 8, 15, 9, 4, 0, 6) \sqcup (1, 11)$
	$(0,1,2,4,6,9,3) \sqcup (16,19)$		$(8,6,4,2,1,9,7) \sqcup (14,15)$
$m^2 \cup m^1$	$(15, 13, 10, 9, 7, 4, 14) \sqcup (17, 18)$	m4 + m1	$(8, 10, 9, 7, 4, 11, 13) \sqcup (12, 15)$
$\mathbf{T_7^2}\sqcup\mathbf{T_2^1}$	$(6,5,7,10,12,11,8) \sqcup (18,15)$	$\mathbf{T_7^4} \sqcup \mathbf{T_2^1}$	$(9, 12, 10, 7, 5, 11, 13) \sqcup (1, 4)$
	$(7, 16, 8, 15, 9, 4, 12) \sqcup (1, 11)$		$(7,15,9,4,0,8,6) \sqcup (1,11)$
	$(2,4,6,9,12,8,7) \sqcup (11,14)$		$(1,2,4,6,8,5,9) \sqcup (12,15)$
$\mathbf{T_7^5} \sqcup \mathbf{T_2^1}$	$(0,2,3,6,5,1,4) \sqcup (8,7)$	$\mathbf{T}_7^8\sqcup\mathbf{T}_2^1$	$(4,7,9,10,11,8,13) \sqcup (1,3)$
17 12	$(0,3,5,4,1,8,7) \sqcup (16,15)$	17 12	$(5,7,10,12,11,6,13) \sqcup (1,4)$
	$(4,9,15,8,12,6,7) \sqcup (1,11)$		$(0,4,9,15,8,12,6) \sqcup (1,11)$
	$(8,6,4,2,5,9,7) \sqcup (12,14)$		$(7,6,4,2,8,9,5) \sqcup (12,14)$
	$(1,3,2,0,5,4,6) \sqcup (10,12)$	$\mathbf{T}_7^{10}\sqcup\mathbf{T}_2^1$	$(2,3,4,7,0,5,6) \sqcup (9,12)$
$\mathbf{T_7^9}\sqcup\mathbf{T_2^1}$	$(9, 8, 7, 10, 4, 11, 5) \sqcup (12, 13)$	170 12	$(7,8,5,4,9,10,11) \sqcup (0,2)$
	$(7, 15, 9, 4, 13, 8, 6) \sqcup (1, 11)$		$(6,15,9,4,8,11,7) \sqcup (2,12)$
	$(2,4,6,8,7,9,12) \sqcup (13,14)$		$(2,4,6,9,12,1,8) \sqcup (14,15)$
$\mathrm{T}_7^6\sqcup\mathrm{T}_2^1$	$(0,2,3,4,7,6,5) \sqcup (8,10)$	$\mathbf{T}_7^7 \sqcup \mathbf{T}_2^1$	$(5,6,3,2,0,7,4) \sqcup (8,9)$
$1_{\tilde{7}} \sqcup 1_{\tilde{2}}$	$(0,3,5,8,9,4,1) \sqcup (12,14)$	$17 \sqcup 1\overline{2}$	$(0,3,5,4,7,1,8) \sqcup (12,14)$
	$(4, 9, 15, 8, 12, 7, 16) \sqcup (1, 11)$		$(4,9,15,8,12,18,7) \sqcup (1,11)$
	$(1, 2, 4, 6, 9, 12) \sqcup (13, 14, 15)$		$(1, 2, 4, 6, 9, 5) \sqcup (13, 14, 15)$
$m1 \cup m1$	$(3,4,7,9,10,13) \sqcup (5,8,6)$	$m^2 + m^1$	$(13, 10, 9, 7, 4, 11) \sqcup (5, 8, 6)$
$\mathbf{T}_6^1\sqcup\mathbf{T}_3^1$	$(11, 12, 10, 7, 5, 6) \sqcup (3, 1, 4)$	$\mathbf{T}_6^2 \sqcup \mathbf{T}_3^1$	$(11, 12, 10, 7, 5, 13) \sqcup (3, 1, 4)$
	$(0,4,9,15,8,16) \sqcup (1,11,2)$		$(0,4,9,15,8,12) \sqcup (1,11,2)$
	$(0,1,2,4,6,5) \sqcup (16,13,14)$		$(1,2,5,4,6,7) \sqcup (16,14,13)$
$\mathrm{T}^3_6\sqcup\mathrm{T}^1_3$	$(8,6,3,2,0,4) \sqcup (14,12,15)$	$\operatorname{T}_6^4\sqcup\operatorname{T}_3^1$	$(8,6,9,3,2,4) \sqcup (14,12,15)$
16 13	$(7,4,5,3,0,6) \sqcup (10,8,11)$	16 □ 13	$(4,5,6,3,0,1) \sqcup (11,8,7)$
	$(7,0,4,9,15,12) \sqcup (1,11,2)$		$(7,0,6,4,9,12) \sqcup (1,11,2)$
	$(0,2,4,7,1,5) \sqcup (12,11,13)$		$(0,2,1,3,4,5) \sqcup (12,11,14)$
$\mathrm{T}_6^5\sqcup\mathrm{T}_3^1$	$(7,6,3,2,8,9) \sqcup (14,12,15)$	$\mathbf{T}_6^6\sqcup\mathbf{T}_3^1$	$(4,6,8,9,5,7) \sqcup (14,12,15)$
16 13	$(4,3,5,6,0,1) \sqcup (11,8,7)$	$1_{ar{6}} \sqcup 1_{ar{3}}$	$(0,3,1,4,5,6) \sqcup (11,8,7)$
	$(8,0,4,9,6,7) \sqcup (1,11,2)$		$(4,0,8,5,6,7) \sqcup (1,11,2)$
	$(2,4,6,9,12) \sqcup (16,15,14,13)$		$(12, 9, 6, 4, 11) \sqcup (17, 16, 15, 14)$
$\mathbf{T}_5^1\sqcup\mathbf{T}_4^1$	$(3,4,7,9,10) \sqcup (11,12,15,13)$	$\mathrm{T}_5^2\sqcup\mathrm{T}_4^1$	$(9,7,4,3,6) \sqcup (11,12,15,13)$
$15 \cup 14$	$(12, 10, 7, 5, 6) \sqcup (18, 15, 17, 20)$		$(6,5,7,10,3) \sqcup (18,15,17,20)$
	$(4,9,15,8,16) \sqcup (2,11,1,5)$		$(16, 8, 15, 9, 12) \sqcup (2, 11, 1, 6)$
	$(4,6,9,11,8) \sqcup (16,15,18,14)$		$(13, 15, 16, 18, 14) \sqcup (11, 9, 6, 7)$
$\mathbb{T}^2 \cup \mathbb{T}^2$	$(9,7,4,3,6) \sqcup (16,17,20,15)$	m3 m1	$(14, 17, 16, 20, 15) \sqcup (9, 7, 4, 3)$
$\mathbf{T}_5^2 \sqcup \mathbf{T}_4^2$	$(6,5,7,10,3) \sqcup (9,12,11,15)$	$\mathbf{T}_5^3 \sqcup \mathbf{T}_4^1$	$(9, 12, 10, 11, 15) \sqcup (4, 6, 5, 7)$
	$(16, 8, 15, 9, 12) \sqcup (10, 1, 11, 6)$		$(5,1,10,11,6) \sqcup (16,8,15,9)$
	$(7,6,9,11,8) \sqcup (16,15,13,14)$		$(13, 15, 16, 18, 14) \sqcup (11, 9, 12, 6)$
$m1 \cup m2$	$(9,7,4,3,5) \sqcup (16,17,20,15)$	$\mathbf{T}_5^3\sqcup\mathbf{T}_4^2$	$(18, 17, 16, 20, 15) \sqcup (9, 7, 10, 4)$
$\mathbf{T}_5^1 \sqcup \mathbf{T}_4^2$	$(4,6,5,7,10) \sqcup (9,12,11,15)$		$(10, 12, 11, 14, 15) \sqcup (4, 6, 5, 7)$
	$(16, 8, 15, 9, 5) \sqcup (10, 1, 11, 6)$		$(5,1,10,11,6) \sqcup (16,8,14,15)$
	$(1,2,4,6,9,12) \sqcup (13,14) \sqcup (8,7)$	$\mathbf{T_6^2} \sqcup 2\mathbf{T_2^1}$	$(1,2,4,6,9,5) \sqcup (13,14) \sqcup (8,7)$
m1 + om1	$(3,4,7,9,10,13) \sqcup (8,6) \sqcup (12,15)$		$(13, 10, 9, 7, 4, 11) \sqcup (8, 6) \sqcup (12, 15)$
$\mathbf{T_6^1} \sqcup 2\mathbf{T_2^1}$	$(11, 12, 10, 7, 5, 6) \sqcup (1, 4) \sqcup (17, 15)$		$(11, 12, 10, 7, 5, 13) \sqcup (1, 4) \sqcup (17, 15)$
	$(0,4,9,15,8,16) \sqcup (1,11) \sqcup (3,12)$		$(0,4,9,15,8,12) \sqcup (1,11) \sqcup (5,14)$
	•		•

Design Name	Graph Decomposition	Design Name	Graph Decomposition
	$(0,1,2,4,7,5) \sqcup (9,6) \sqcup (8,10)$		$(1,2,5,4,6,7) \sqcup (13,14) \sqcup (12,15)$
${f T}^{f 3}_{f 6}\sqcup 2{f T}^{f 1}_{f 2}$	$(8,6,3,2,0,4) \sqcup (5,7) \sqcup (12,13)$	$T_6^4 \sqcup 2T_2^1$	$(8,6,9,3,2,4) \sqcup (12,14) \sqcup (18,15)$
	$(6,4,5,3,0,8) \sqcup (13,14) \sqcup (18,15)$	$\mathbf{T_6^2} \sqcup 2\mathbf{T_2^2}$	$(4,5,6,3,0,1) \sqcup (8,7) \sqcup (16,14)$
	$(7,0,4,9,15,12) \sqcup (1,11) \sqcup (5,14)$		$(7,0,6,4,9,12) \sqcup (1,11) \sqcup (5,14)$
	$(0, 2, 4, 7, 1, 5) \sqcup (11, 13) \sqcup (12, 15)$		$(0,2,1,3,4,5) \sqcup (12,14) \sqcup (18,19)$
m5 om1	$(7,6,3,2,8,9) \sqcup (11,12) \sqcup (1,4)$	m6 om1	$(4,6,8,9,5,7) \sqcup (12,15) \sqcup (11,14)$
${f T}_{f 6}^{f 5}\sqcup 2{f T}_{f 2}^{f 1}$	$(4,3,5,6,0,1) \sqcup (8,7) \sqcup (12,14)$	$\mathbf{T_6^6} \sqcup 2\mathbf{T_2^1}$	$(0,3,1,4,5,6) \sqcup (8,11) \sqcup (14,15)$
	$(8,0,4,9,6,7) \sqcup (1,11) \sqcup (5,14)$		$(4,0,8,5,6,7) \sqcup (1,11) \sqcup (3,12)$
	$(2,4,6,9,12) \sqcup (13,14,15) \sqcup (18,19)$		$(12, 9, 6, 4, 11) \sqcup (17, 16, 15) \sqcup (0, 1)$
$\mathrm{T}_5^1\sqcup\mathrm{T}_3^1\sqcup\mathrm{T}_2^1$	$(3,4,7,9,10) \sqcup (12,15,13) \sqcup (1,2)$	m2 m1 m1	$(9,7,4,3,6) \sqcup (12,15,13) \sqcup (18,19)$
$\mathbf{T}_{5}^{1} \sqcup \mathbf{T}_{3}^{2} \sqcup \mathbf{T}_{2}^{2}$	$(12, 10, 7, 5, 6) \sqcup (20, 17, 15) \sqcup (1, 4)$	$\mathbf{T}_5^2 \sqcup \mathbf{T}_3^1 \sqcup \mathbf{T}_2^1$	$(6,5,7,10,3) \sqcup (20,17,15) \sqcup (1,4)$
	$(4, 9, 15, 8, 16) \sqcup (11, 1, 5) \sqcup (3, 12)$		$(16, 8, 15, 9, 12) \sqcup (1, 11, 2) \sqcup (0, 5)$
	$(13, 15, 16, 18, 14) \sqcup (9, 6, 7) \sqcup (2, 4)$		$(4, 6, 9, 12) \sqcup (16, 15, 14, 13) \sqcup (19, 20)$
$\mathrm{T}^3_5\sqcup\mathrm{T}^1_3\sqcup\mathrm{T}^1_2$	$(14, 17, 16, 20, 15) \sqcup (3, 4, 7) \sqcup (11, 13)$	om1 m1	$(9,7,4,3) \sqcup (11,12,15,13) \sqcup (16,17)$
15 113 112	$(9, 12, 10, 11, 15) \sqcup (6, 5, 7) \sqcup (0, 2)$	$2\mathbf{T_{4}^{1}} \sqcup \mathbf{T_{2}^{1}}$	$(12, 10, 7, 5) \sqcup (18, 15, 17, 20) \sqcup (9, 11)$
	$(5,1,10,11,6) \sqcup (8,15,9) \sqcup (4,12)$		$(9, 15, 8, 16) \sqcup (2, 11, 1, 5) \sqcup (12, 7)$
	$(11, 9, 6, 7) \sqcup (16, 15, 13, 14) \sqcup (1, 4)$		$(18, 15, 13, 14) \sqcup (11, 9, 12, 6) \sqcup (1, 2)$
$\mathrm{T}^1_4\sqcup\mathrm{T}^2_4\sqcup\mathrm{T}^1_2$	$(5,3,4,7) \sqcup (16,17,20,15) \sqcup (0,2)$	orr2 rr1	$(18, 17, 20, 15) \sqcup (9, 7, 10, 4) \sqcup (2, 3)$
$1_{4}^{\perp} \sqcup 1_{4}^{\perp} \sqcup 1_{2}^{\perp}$	$(4,6,5,7) \sqcup (9,12,11,15) \sqcup (0,3)$	$2\mathbf{T_4^2} \sqcup \mathbf{T_2^1}$	$(11, 12, 14, 15) \sqcup (4, 6, 5, 7) \sqcup (17, 19)$
	$(16, 8, 15, 9) \sqcup (10, 1, 11, 6) \sqcup (0, 4)$		$(11, 1, 5, 6) \sqcup (16, 8, 14, 15) \sqcup (0, 9)$
	$(16, 15, 14, 13) \sqcup (0, 3, 5) \sqcup (12, 9, 6)$		$(11, 9, 12, 6) \sqcup (18, 15, 13) \sqcup (0, 1, 2)$
$T_4^1 \sqcup 2T_3^1$	$(11, 12, 15, 13) \sqcup (10, 9, 7) \sqcup (16, 18, 20)$	$\mathbf{T_4^2} \sqcup 2\mathbf{T_3^1}$	$(9,7,10,4) \sqcup (18,17,20) \sqcup (1,3,2)$
14 1 2 13	$(18, 15, 17, 20) \sqcup (10, 11, 14) \sqcup (6, 5, 7)$		$(11, 12, 14, 15) \sqcup (4, 6, 7) \sqcup (17, 19, 20)$
	$(2,12,3,11) \sqcup (8,1,7) \sqcup (4,0,5)$		$(16, 8, 14, 15) \sqcup (11, 1, 6) \sqcup (9, 0, 4)$
	$(8,6,9,11) \sqcup (0,1,2) \sqcup (16,19) \sqcup (18,15)$	$\mathbf{T}_4^2 \sqcup \mathbf{T}_3^1 \sqcup 2\mathbf{T}_2^1$	$(11, 9, 12, 6) \sqcup (0, 1, 2) \sqcup (18, 15) \sqcup (13, 14)$
$\mathbf{T_4^1} \sqcup \mathbf{T_3^1} \sqcup 2\mathbf{T_2^1}$	$(8, 10, 7, 9) \sqcup (18, 17, 20) \sqcup (11, 14) \sqcup (2, 3)$		$(9,7,10,4) \sqcup (18,17,20) \sqcup (11,13) \sqcup (2,3)$
14 13 212	$(13, 11, 12, 14) \sqcup (17, 19, 20) \sqcup (6, 7) \sqcup (8, 5)$		$(11, 12, 14, 15) \sqcup (17, 19, 20) \sqcup (8, 6) \sqcup (1, 3)$
	$(0,5,1,7) \sqcup (3,10,2) \sqcup (4,13) \sqcup (16,6)$		$(4,0,5,6) \sqcup (8,1,9) \sqcup (3,12) \sqcup (17,7)$
	$(2,4,6,9,12) \sqcup (13,14) \sqcup (18,19) \sqcup (0,1)$	$\mathbf{T}_{5}^{2}\sqcup 3\mathbf{T}_{2}^{1}$	$(11, 9, 6, 4, 12) \sqcup (16, 15) \sqcup (8, 10) \sqcup (2, 3)$
$T_5^1 \sqcup 3T_2^1$	$(3,4,7,9,10) \sqcup (13,15) \sqcup (1,2) \sqcup (8,5)$		$(6,7,4,3,9) \sqcup (13,15) \sqcup (18,19) \sqcup (8,5)$
15 1 312	$(6,5,7,10,12) \sqcup (17,20) \sqcup (8,11) \sqcup (1,3)$		$(3,5,7,10,6) \sqcup (17,20) \sqcup (8,11) \sqcup (0,1)$
	$(4, 9, 15, 8, 16) \sqcup (1, 11) \sqcup (3, 12) \sqcup (2, 6)$		$(12, 8, 15, 9, 16) \sqcup (2, 11) \sqcup (0, 5) \sqcup (3, 13)$
	$(13, 15, 16, 18, 14) \sqcup (9, 6) \sqcup (2, 4) \sqcup (5, 7)$		$(18, 15, 13) \sqcup (11, 9, 6) \sqcup (0, 1, 2) \sqcup (16, 19)$
$T_5^3 \sqcup 3T_2^1$	$(14, 17, 16, 20, 15) \sqcup (4, 7) \sqcup (11, 13) \sqcup (5, 6)$	$3T_3^1 \sqcup T_2^1$	$(18, 17, 20) \sqcup (9, 7, 10) \sqcup (1, 3, 2) \sqcup (11, 14)$
15 1 31 ₂	$(9, 12, 10, 11, 15) \sqcup (6, 7) \sqcup (0, 2) \sqcup (3, 4)$	$3T_3 \sqcup T_2$	$(11, 12, 14) \sqcup (4, 6, 7) \sqcup (17, 19, 20) \sqcup (8, 5)$
	$(5, 1, 10, 11, 6) \sqcup (9, 15) \sqcup (4, 12) \sqcup (0, 7)$		$(11, 1, 6) \sqcup (16, 8, 14) \sqcup (9, 0, 4) \sqcup (10, 3)$
	$(9,6,4,2) \sqcup (13,14) \sqcup (18,19) \sqcup (0,1) \sqcup (10,12)$		$(16, 15, 18, 13) \sqcup (9, 6) \sqcup (2, 4) \sqcup (5, 7) \sqcup (0, 1)$
$\mathbf{T_4^1} \sqcup 4\mathbf{T_2^1}$	$(9,7,4,3) \sqcup (13,15) \sqcup (1,2) \sqcup (8,5) \sqcup (16,17)$	$\mathbf{T^2_4} \sqcup 4\mathbf{T^1_2}$	$(16, 17, 20, 14) \sqcup (4, 7) \sqcup (11, 13) \sqcup (5, 6) \sqcup (1, 3)$
1 ₄ \(\text{\pi}\) 41 ₂	$(10,7,5,6) \sqcup (17,20) \sqcup (8,11) \sqcup (1,3) \sqcup (9,12)$		$(9, 12, 10, 11) \sqcup (6, 7) \sqcup (0, 2) \sqcup (3, 4) \sqcup (8, 5)$
	$(9, 15, 8, 16) \sqcup (1, 11) \sqcup (3, 12) \sqcup (2, 6) \sqcup (0, 5)$		$(10, 1, 11, 5) \sqcup (9, 15) \sqcup (4, 12) \sqcup (0, 7) \sqcup (8, 3)$
	$(11, 9, 6) \sqcup (0, 1, 2) \sqcup (18, 15) \sqcup (16, 19) \sqcup (17, 20)$		$(0,1,2) \sqcup (18,15) \sqcup (9,11) \sqcup (16,19) \sqcup (5,6) \sqcup (10,7)$
$2T_3^1 \sqcup 3T_2^1$	$(9,7,10) \sqcup (1,3,2) \sqcup (17,18) \sqcup (11,14) \sqcup (8,5)$	$\mathbf{T^1_3} \sqcup 5\mathbf{T^1_2}$	$(1,3,2) \sqcup (17,18) \sqcup (9,7) \sqcup (11,14) \sqcup (8,5) \sqcup (16,13)$
$2\mathbf{T_3^1} \sqcup 3\mathbf{T_2^1}$	$(11, 12, 14) \sqcup (4, 6, 7) \sqcup (19, 20) \sqcup (13, 15) \sqcup (3, 5)$		$(4,6,7) \sqcup (12,14) \sqcup (3,5) \sqcup (13,15) \sqcup (17,20) \sqcup (18,19)$
	$(11,1,6) \sqcup (16,8,14) \sqcup (0,9) \sqcup (10,3) \sqcup (17,13)$		$(16, 8, 14) \sqcup (1, 11) \sqcup (0, 9) \sqcup (10, 3) \sqcup (17, 13) \sqcup (2, 7)$

Figure 9.: (1-2-3)-labelings

References

- [1] P. Cain, Decomposition of complete graphs into stars, *Bull. Austral. Math. Soc.* **10** (1974), 23–30. https://doi.org/10.1017/S0004972700040582
- 235 [2] S. I. El-Zanati, C. Vanden Eynden, On the cyclic decomposition of complete graphs into bipartite graphs, *Australas. J. Combin.*, **24**, 2001, 209–219.
- [3] S. I. El-Zanati, C. Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, *Math. Slovaca*, **59**, 2009, 1–18.
- [4] B. Freyberg, R. Peters, Decomposition of complete graphs into forests with six edges, *Discuss. Math. Graph Theory*, In-press (34), (2024).
- [5] B. Freyberg, N. Tran, Decomposition of complete graphs into bipartite unicyclic graphs with eight edges, *J. Combin. Math. Combin. Comput.*, **114**, (2020), 133–142.
- ²⁴⁴ [6] D. Froncek, M. Kubesa, Decomposition of complete graphs into connected unicyclic bipartite graphs with seven edges, *Bull. Inst. Combin. Appl.*, **93**, (2021), 52–80.
- [7] A. Rosa, On certain valuations of the vertices of a graph, In: Theory of
 Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris, 1967,
 349–355.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/