Simpson
Paradox in
Covid-19 case
fatality rates:
a mediation
analysis of
age-related
causal effect

Stefano Gualtieri

Introduction

A Causal View

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

Stefano Gualtieri

Julius von Kugelgen, Luigi Gresele, Bernhard Scholkopf

Introduction

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

> Stefano Gualtieri

Introduction

A Causal View

What is the paradox?

- CFRs are lower in *Italy* than in *China* for all age groups
- total CFR is higher in Italy

Higher CFRs for older people in both countries

A first statistical explanation

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

Gualtieri

Introduction

A Causal Viev

- Statistical correlation between the country of reporting and the number of confirmed cases per age group
- Italy recorded a much higher proportion of confirmed cases in older patients

Assumptions

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

Gualtieri

Introductio

A Causal View

Variables:

- C: country, categorical variable
- A: age group, ordinal variable
- M: mortality, binary variable
- Causal sufficiency

TCE

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

Gualtier

Introduction

A Causal View

"What would be the effect on mortality of changing country from China to Italy"

Total Causal Effect

$$TCE_{Ch \rightarrow It} = \mathbb{E}[M|do(C = Italy)] - \mathbb{E}[M|do(C = China)]$$

$$TCE_{0\to 1} = \sum_{a} [P(M=1|A=a,C=1)P(A=a|C=1)$$

 $-P(M=1|A=a,C=0)P(A=a|C=0)] = 2\%$

TCE

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

> Stefano Gualtier

Introduction

A Causal View

The results correspond to the difference of the total CFRs reported in the last column of this table:

Table 1: Comparison of case fatality rates (CFRs) by age group for Italy and China (deaths/confirmed cases in brackets). Lower CFRs are highlighted in bold. Sources: Wu and McGoogan (2020) and Istituto Superiore di Sanità (2020).

Age	0–9	10–19	20-29	30–39	40-49	50-59	60–69	70–79	≥ 80	Total
Italy	0% (0/43)	0%	0%	0% (0/470)	0.1 % (1/891)	0.2% (3/1,453)	2.5% (37/1,471)	6.4% (114/1,785)	13.2 % (202/1,532)	4.3%
China	0%	0.2%	0.2%	0.2% (18/7,600)	0.4%	1.3% (130/10,008)	3.6% (309/8,583)	8% (312/3,918)	14.8%	2.3% (1,023/44,672)

We would like to isolate the **direct** effect of *country* on *mortality*

Mediation Analysis: CDE

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

> Stefano Gualtieri

Introduction

A Causal View

"For 50-59-year-olds, is it safer to get the disease in China or Italy?"

Controlled direct effect

$$CDE_{0\to 1}(a) = \mathbb{E}[M|do(C = 1, A = a)] - \mathbb{E}[M|do(C = 0, A = a)]$$

$$CDE_{0\to 1}(a) = P(M = 1 | C = 1, A = a) - P(M = 1 | C = 0, A = a)$$

We would like to measure the direct effect at the *population* level

Mediation Analysis: NDE

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

> Stefano Gualtieri

Introduction

A Causal View

"For the Chinese case demographic, would it have been better to take the Italian approach instead"

Natural direct effect

$$NDE_{0\to 1} = \mathbb{E}[M_{A(0)}|do(C=1)] - \mathbb{E}[M_{A(0)}|do(C=0)]$$

A(0) is the counterfactual distribution of Age had Country been equal to China

$$NDE_{0\to 1} = \sum_{a} P(A = a | C = 0)[P(M = 1 | A = a, C = 1)$$

$$-P(M = 1 | A = a, C = 0)] = -0.8\%$$

Mediation Analysis: NIE

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

> Stefano Gualtieri

Introduction

A Causal View

"How would the overall CFR in China change if the case demographic had instead been that from Italy while keeping all else (the CFRs) the same?"

Natural indirect effect

$$NIE_{0\to 1} = \mathbb{E}[M_{A(1)}|do(C=0)] - \mathbb{E}[M_{A(0)}|do(C=0)]$$

Where A(1) refers to the counterfactual distribution of Age had Country been Italy

$$NIE_{0\to 1} = \sum_{a} P(M = 1|A = a, C = 0)$$

$$[P(A = a | C = 1) - P(A = a | C = 0)] = 3.3\%$$

Final Considerations

Simpson Paradox in Covid-19 case fatality rates: a mediation analysis of age-related causal effect

> Stefano Gualtier

Introduction

A Causal View

When switching the Country from China to Italy we obatined:

- *NDE* < 0
- \blacksquare NIE > 0

This reflects the effect of the mediator (Age) on Mortality and it is consistent with the lower CFRs for age group in Italy