Nonparametric regression function estimation with non compactly supported bases.

Fabienne Comte MAP5, Université Paris Descartes

joint with: V. Genon-Catalot (MAP5, Université Paris Descartes)

Freiburg, Feb.27-Mar 2 2018, 13th Probability and Statistics Days

The problem

Standard regression model

$$Y_i = b(X_i) + \varepsilon_i, \quad i = 1, \dots, n$$
 (1.1)

with

$$(\varepsilon_i)_{1 \leq i \leq n}$$
 i.i.d. centered with variance σ_{ε}^2 (noise)

and

$$(X_i)_{1 \le i \le n}$$
 i.i.d. with density f , (explanatory)

and

$$(X_i)_{1 \le i \le n}$$
 independent of $(\varepsilon_i)_{1 \le i \le n}$

Observations $(Y_i, X_i)_{1 \le i \le n}$.

Aim: Nonparametric estimation of b(.)

Projection estimator

Let $(\varphi_j)_{0 \leq j \leq m-1}$ an orthonormal basis in $\mathbb{L}^2(A, dx)$, $A \subset \mathbb{R}$,

$$\langle \varphi_j, \varphi_k \rangle = \int_A \varphi_j(x) \varphi_k(x) dx = \delta_{j,k}.$$

Look for

$$\widehat{b}_m = \sum_{j=0}^{m-1} \widehat{a}_j \varphi_j$$

where

 $(\widehat{a}_j)_{0 \le j \le m-1}$ are computed from the observations $(Y_i, X_i)_{1 \le i \le n}$.

Quotient estimators

Nadaraya-Watson or quotient estimators are not exactly of this type, r = bf, principle

$$\widetilde{b}_{m,m'} = \frac{\widehat{r}_m}{\widehat{f}_{m'}}$$

$$\widehat{r}_{m} = \sum_{j=0}^{m-1} \widehat{c}_{j} \varphi_{j}, \ \widehat{c}_{j} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} \varphi_{j}(X_{i}), \quad \widehat{f}_{m'} = \sum_{j=0}^{m'-1} \widehat{d}_{j} \varphi_{j}, \ \widehat{d}_{j} = \frac{1}{n} \sum_{i=1}^{n} \varphi_{j}(X_{i})$$

Quotient can be performed coefficient by coefficient:

$$\widetilde{\widetilde{b}}_{m,m'} = \sum_{i=0}^{m-1} \widetilde{a}_i \varphi_i, \ \widetilde{a}_i = \frac{1}{n} \sum_{i=1}^n \frac{Y_i \varphi_i(X_i)}{\widehat{f}_{m'}(X_i)}$$

Least squares estimator

Let

$$S_m = \operatorname{span}(\varphi_0, \ldots, \varphi_{m-1}) = \left\{ t = \sum_{j=0}^{m-1} a_j \varphi_j, a_j \in \mathbb{R} \right\},$$

and consider the least squares estimator

$$\widehat{b}_m = \arg\min_{t \in \mathcal{S}_m} \gamma_n(t), \quad \gamma_n(t) = \frac{1}{n} \sum_{i=1}^n [\mathbf{Y}_i - \mathbf{t}(\mathbf{X}_i)]^2.$$

Works as if a_0, \ldots, a_{m-1} parameters in the linear model

$$Y_i \approx a_0 \varphi_0(X_i) + \cdots + a_{m-1} \varphi_{m-1}(X_i) + \varepsilon_i$$

for which you compute the least squares estimator with classical formula.

Formula of the LS estimator

$$\widehat{b}_{m} = \sum_{j=0}^{m-1} \widehat{a}_{j} \varphi_{j}, \quad \widehat{\vec{a}}_{(m)} := \begin{pmatrix} \widehat{a}_{0} \\ \vdots \\ \widehat{a}_{m-1} \end{pmatrix} = \begin{pmatrix} {}^{t}\widehat{\Phi}_{m} \widehat{\Phi}_{m} \end{pmatrix}^{-1} \widehat{\Phi}_{m} \overrightarrow{\mathscr{Y}}, \quad (1.2)$$

where

$$\vec{\mathscr{Y}} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \quad \widehat{\Phi}_m = (\varphi_j(X_i))_{1 \leq i \leq n, 0 \leq j \leq m-1} \quad n \times m \text{ matrix}$$

provided that

$${}^t\widehat{\Phi}_m \,\widehat{\Phi}_m$$
 is invertible.

Existing results

Questions are:

- Risk of the estimator for fixed m
- Selection of adequate model m from the data, \widehat{m}
- Risk of the adaptive estimator, $\widehat{b}_{\widehat{m}}$

Baraud (2000) **fixed design**, Baraud (2002) **random design** studied these questions but for compactly supported bases, assumption

$$\forall x \in A$$
, $0 < f_{\min} \le f(x) \le f_{\max} < +\infty$.

Three norms in the problem:

- Empirical norm $||t||_n^2 = \frac{1}{n} \sum_{i=1}^n t^2(X_i),$
- $\mathbb{L}^2(A, f(x)dx)$ -norm, $||t||_f^2 = \int_A t^2(x)f(x)dx = \mathbb{E}[||t||_n^2]$ for t with support A,
- $\mathbb{L}^2(A, dx)$ -norm, $||t||^2 = \int_A t^2(x) dx$.

Associated models

- Extension to dependent models : $X_{i+1} = b(X_i) + \varepsilon_{i+1}$, Baraud et al. (2001).
- Extension to **drift estimation** : $dX_t = b(X_t)dt + \sigma(X_t)dW_t$, Comte, Genon-Catalot and Rozenholc (2007)
- Extension of regression strategy to other models
 - Survival function estimation in presence of interval censoring
 - Hazard rate estimation in presence of right censoring.
 - Conditional density estimation ...

Non compactly supported bases

What happens if the basis has support \mathbb{R} or \mathbb{R}^+ ?

Non compact support, what for?

- Laguerre and Hermite basis are convenient, with nice properties,
- Laguerre basis is natural if $X_i > 0$, Hermite basis is natural for diffusion models.
- For extension to indirect problem, where support is unknown,
- For extension to error-in-variables models, as compactly supported bases lead to non integrable Fourier transforms

Examples of compactly supported bases, A = [0, 1]

Classical compactly supported bases are:

- Histograms $pp_j^{(0)}(x) = \sqrt{m}\mathbf{1}_{[j/m,(j+1)/m[}(x)$, for j = 0, ..., m-1; piecewise polynomials with degree r;
- Compactly supported wavelets;
- Trigonometric basis with odd dimension m, $t_0(x) = \mathbf{1}_{[0,1]}(x)$ and $t_{2j-1}(x) = \sqrt{2}\cos(2\pi j x)\mathbf{1}_{[0,1]}(x)$, and $t_{2j}(x) = \sqrt{2}\sin(2\pi j x)\mathbf{1}_{[0,1]}(x)$ for $j = 1, \dots, (m-1)/2$.

All these collections satisfy $\|\sum_{j=0}^{m-1} \varphi_j^2\|_\infty \leq c_\varphi^2 m$

 $(c_{\varphi}^2=1 \text{ for histograms and trigonometric basis, } c_{\varphi}^2=r+1 \text{ for p.p.})$ Nested (in general or for $m=2^k$ for increasing values of k).

The bases: compact support or not

Laguerre basis, $A = \mathbb{R}^+$.

Laguerre polynomials (L_j) and Laguerre functions (ℓ_j) are given by

$$L_j(x) = \sum_{k=0}^{j} (-1)^k {j \choose k} \frac{x^k}{k!}, \qquad \ell_j(x) = \sqrt{2} L_j(2x) e^{-x} \mathbf{1}_{x \ge 0}, \quad j \ge 0.$$

The collection $(\ell_j)_{j\geq 0}$ constitutes a complete orthonormal system on $\mathbb{L}^2(\mathbb{R}^+)$, and is such that (see Abramowitz and Stegun (1964)):

$$\forall j \geq 0, \ \forall x \in \mathbb{R}^+, \ |\ell_j(x)| \leq \sqrt{2}.$$
 (2.3)

$$(S_m = \operatorname{span}\{\ell_0, \dots, m-1\})_m$$
 is nested,

(2.3) implies that
$$\|\sum_{i=0}^{m-1}\ell_j^2\|_{\infty} \le c_{\varphi}^2 m$$
 with $c_{\varphi}^2=2$.

Hermite basis, $A = \mathbb{R}$.

Hermite polynomials and Hermite functions of order j for $j \ge 0$:

$$H_j(x) = (-1)^j e^{x^2} \frac{d^j}{dx^j} (e^{-x^2}), \quad h_j(x) = c_j H_j(x) e^{-x^2/2}, \quad c_j = (2^j j! \sqrt{\pi})^{-1/2}$$

The sequence $(h_j, j \ge 0)$ is an orthonormal basis of $\mathbb{L}^2(\mathbb{R}, dx)$. We have

$$||h_i||_{\infty} \le \Phi_0, \qquad \Phi_0 \simeq 1,086435/\pi^{1/4} \simeq 0.8160,$$
 (2.4)

so that the Hermite basis satisfies $\|\sum_{j=0}^{m-1}h_j^2\|_\infty \leq c_\phi^2 m$ with $c_\phi^2 = \Phi_0^2$.

The collection of models is nested.

No support condition for the first basic result

Proposition

Let $(X_i,Y_i)_{1\leq i\leq n}$ be observations drawn from model (1.1) and denote by $b_A=b\mathbf{1}_A$. Assume that $b_A\in\mathbb{L}^2(A,f(x)dx)$ and that $\widehat{\Psi}_m$ is invertible. Consider the least squares estimator \widehat{b}_m of b, given by (1.2). Then

$$\mathbb{E}\left[\|\widehat{b}_m - b_A\|_n^2\right] \le \inf_{t \in S_m} \left[\int (b_A - t)^2(x) f(x) dx \right] + \sigma_{\varepsilon}^2 \frac{m}{n}, \quad (3.5)$$

where f denotes the common density of the X_i 's.

Proof of Proposition 1. Let Π_m be the orthogonal projection (for the scalar product of \mathbb{R}^n) on the sub-space $\{(t(X_1), \ldots, t(X_n)), t \in S_m\}$ of \mathbb{R}^n . Then

$$\|\widehat{b}_{m} - b_{A}\|_{n}^{2} = \|\Pi_{m}b - b_{A}\|_{n}^{2} + \|\widehat{b}_{m} - \Pi_{m}b\|_{n}^{2}$$
$$= \inf_{t \in S_{m}} \|t - b_{A}\|_{n}^{2} + \|\widehat{b}_{m} - \Pi_{m}b\|_{n}^{2}$$

Now we have:

$$\mathbb{E}\left[\|\widehat{b}_m - \Pi_m b\|_n^2\right] = \sigma_{\varepsilon}^2 \frac{m}{n}.$$
 (3.6)

By taking expectation of (3.6),

$$\mathbb{E}\left[\|\widehat{b}_{m} - b_{A}\|_{n}^{2}\right] \leq \inf_{t \in S_{m}} \|t - b_{A}\|_{f}^{2} + \mathbb{E}\left[\|\widehat{b}_{m} - \Pi_{m}b\|_{n}^{2}\right]. \tag{3.7}$$

Plug (3.6) in (3.7), to obtain Proposition 1.

Note that:

- The result is general and holds for any basis support,
- The variance term is **exactly** equal to $\sigma_{\varepsilon}^2 m/n$, and this does not depend on the basis.

The bias tends to zero when *m* grows to infinity.

Lemma

If $(\varphi_j)_{j\geq 0}$ is an orthonormal basis of $\mathbb{L}^2(A,dx)$ such that, for all $j\geq 0$, $\int \varphi_j^2(x)f(x)dx<+\infty$, f is bounded on A and $\forall x\in A$, f(x)>0. Then $\inf_{t\in S_m}\|b_A-t\|_f^2$ tends to 0 when m tends to infinity.

The bias is **getting small** when *m* grows, but the variance **increases**.

 \Rightarrow a compromise has to be found, by relevant choice of m.

Comparison with density estimation (1)

Why is it important to **notice the equality:**

$$\mathbb{E}(\|\widehat{b}_m - b_A\|_n^2) = \mathbb{E}(\inf_{t \in S_m} \|t - b_A\|_n^2) + \sigma_{\varepsilon}^2 \frac{m}{n}.$$

By comparison with density estimation where

$$\widehat{f}_m = \sum_{i=0}^{m-1} \widehat{c}_i \varphi_i \text{ with } \widehat{c}_j = \frac{1}{n} \sum_{i=1}^n \varphi_i(X_i),$$

satisfies

$$\mathbb{E}(\|\widehat{f}_{m}-f\|^{2}) = \|f-f_{m}\|^{2} + \frac{\sum_{j=0}^{m-1} \mathbb{E}\left[\varphi_{j}^{2}(X_{1})\right]}{n} - \frac{\|f_{m}\|^{2}}{n}$$

$$\leq \inf_{t \in S_{m}} \|f-t\|^{2} + \frac{\sum_{j=0}^{m-1} \mathbb{E}\left[\varphi_{j}^{2}(X_{1})\right]}{n}.$$

Comparison with density estimation (2)

For all the bases,

$$\|\sum_{j=0}^{m-1} \varphi_j^2\|_{\infty} \leq c_{\varphi}^2 m \quad \Rightarrow \quad \sum_{j=0}^{m-1} \mathbb{E}\left[\varphi_j^2(X_1)\right] \leq c_{\varphi}^2 m$$

 $\sum_{j=0}^{m-1} \varphi_j^2 = m$, for histograms and trigonometric polynomials with odd dimension,

 \Rightarrow the bound can be **sharp**.

For the Laguerre basis: $\sum_{j=0}^{m-1} \varphi_j^2(0) = 2m$ However, it holds for **Hermite and Laguerre** bases that

$$\sum_{i=0}^{m-1} \mathbb{E}\left[\varphi_j^2(X_1)\right] \leq c_{\varphi}^2 \sqrt{\mathsf{m}}.$$

Questions to solve

- Bound an integrated $\mathbb{L}^2(A, f(x)dx)$ -risk instead of the empirical risk
- Model selection and use of the bases properties.

Starts with a control of $\|\widehat{\Psi}_m - \Psi_m\|_{op}$

where
$$\widehat{\Psi}_m = \frac{1}{n} {}^t \widehat{\Phi}_m \widehat{\Phi}_m = \left(\frac{1}{n} \sum_{i=1}^n \varphi_i(X_i) \varphi_k(X_i) \right)_{0 \le j, k \le m-1}$$
,

$$\Psi_m := \mathbb{E}\left(\widehat{\Psi}_m\right) = \left(\langle \varphi_j, \varphi_k \rangle_f\right)_{0 \le j, k \le m-1} = \left(\int_A \varphi_j(x) \varphi_k(x) f(x) dx\right)_{0 \le j, k \le m-1}$$

and, for M a matrix, $\|M\|_{op}$ is the operator norm, $\|M\|_{op}^2 = \lambda_{\max}(MM')$. If M is symmetric positive definite, $\|M\|_{op} = \lambda_{\max}(M)$.

Deviation result

Key tool: matricial Bernstein deviation inequality from Tropp (2015).

Proposition

Let X_1, \ldots, X_n be i.i.d. with common density f such that $||f||_{\infty} < \infty$.

Assume that the $(\varphi_j)_{0\le j\le m-1}$ are such that $\|\sum_{j=0}^{m-1}\varphi_j^2\|_\infty\le c_\varphi^2m$. Then for all u>0

$$\mathbb{P}\left[\|\Psi_m - \widehat{\Psi}_m\|_{\mathrm{op}} \geq u\right] \leq 2m \exp\left(-\frac{nu^2/2}{c_{\varphi}^2 \, m\left(\|f\|_{\infty} + u/3\right)}\right).$$

The result encompasses all possible classical bases, whether compactly supported or not.

Selection of m

Collection of nested spaces S_m : $S_m \subset S_{m'}$ for $m \leq m'$ such that, for each m, the basis $(\varphi_0, \ldots, \varphi_{m-1})$ of S_m satisfies

$$\|\sum_{j=0}^{m-1} arphi_j^2\|_\infty \leq c_{arphi}^2 m$$
 for $c_{arphi}^2 > 0$ a constant.

 $\widehat{\mathcal{M}}_n$ is a random collection of models defined by

$$\widehat{\mathcal{M}}_n = \left\{ m \in \{1, 2, \dots, n\}, m(\|\widehat{\Psi}_m^{-1}\|_{\operatorname{op}}^2 \vee 1) \le 4\mathfrak{c} \frac{n}{\log(n)} \right\}, \quad (4.8)$$

with
$$\mathfrak{c} = \left(6 \wedge \frac{1}{\|f\|_{\infty}}\right) \frac{1}{48 \, c_{\varphi}^2}$$
.

Theoretical counterpart

$$\mathcal{M}_{n} = \left\{ m \in \{1, 2, \dots, n\}, m \left(\|\Psi_{m}^{-1}\|_{\text{op}}^{2} \vee m \right) \le \mathfrak{c} \frac{n}{\log(n)} \right\}, \quad (4.9)$$

Selecting

$$\widehat{m} = \arg\min_{m \in \widehat{\mathcal{M}}_n} \left\{ -\|\widehat{b}_m\|_n^2 + \kappa \sigma_{\varepsilon}^2 \frac{m}{n} \right\}$$

follows from standard ideas:

- Squared bias term $||b_A b_m^f||_f^2 = ||b_A||_f^2 ||b_m^f||_f^2$ where b_m^f is the $\mathbb{L}^2(A, f(x)dx)$ -orthogonal projection of b on S_m .
 - $||b_A||_f^2$ unknown but does not depend on m;
 - $||b_m^f||_f^2 = \mathbb{E}[||b_m^f||_n^2].$
 - $\Rightarrow -\|\widehat{b}_m\|_n^2$ approximates the squared bias, up to an additive constant,
- $\sigma_{\varepsilon}^2 m/n$ has the variance order.

The procedure aims at performing an automatic bias-variance tradeoff.

Theorem

Let $(X_i, Y_i)_{1 \le i \le n}$ be observations from model (1.1). Assume that:

- for each m, the basis of S_m satisfies $\|\sum_{j=0}^{m-1} \varphi_j^2\|_{\infty} \le c_{\varphi}^2 m$ for $c_{\varphi}^2 > 0$ a constant.
- $||f||_{\infty} < +\infty$,
- $\mathbb{E}(\varepsilon_1^6) < +\infty$ and $\mathbb{E}[b^4(X_1)] < +\infty$.

Then, there exists a numerical constant κ_0 such that for $\kappa \geq \kappa_0$, we have

$$\mathbb{E}\left[\|\widehat{b}_{\widehat{m}} - b_A\|_f^2\right] \le C \inf_{m \in \mathcal{M}_n} \left(\inf_{t \in S_m} \|b_A - t\|_f^2 + \sigma_{\varepsilon}^2 \frac{m}{n}\right) + \frac{C'}{n}$$

where C is a numerical constant and C' is a constant depending on f, b, σ_{ϵ} .

What is new here?

- General result with no support constraint
- Standard moment conditions
- Random collection of models $\widehat{\mathcal{M}}_n$

Remark: $\widehat{\mathcal{M}}_n \Rightarrow \text{Limitation of the models considered in the collection for selection, corresponds to a kind of$ **cutoff for inversion of** $<math>\widehat{\Psi}_m$. $\widehat{\mathcal{M}}_n$ limitation in **reachable values of** m.

Remains to be done:

- Estimate σ_{ε}^2 in the penalty,
- Estimate $||f||_{\infty}$ in the collection of models
- Calibration of κ.

Application to compactly supported bases

If A compact, one can assume

$$\forall x \in A, 0 < f_0 \le f(x) \le f_1 < +\infty$$

• $b \in \mathbb{L}^2(A, dx)$ can be assumed (not so strong as A compact) and

$$f \leq f_1 \Rightarrow ||t - b_A||_f^2 \leq f_1 ||t - b_A||^2.$$

We can prove

$$f \ge f_0 > 0 \Rightarrow \|\Psi_m^{-1}\|_{\text{op}} \le 1/f_0.$$

So we can take

$$\mathcal{M}_{\mathbf{n}} = \{ m \in \{1,\ldots,n\}, m \leq c'(f_0)n/\log(n) \} = \widehat{\mathcal{M}_{\mathbf{n}}}.$$

Weak constraint on $m \in \mathcal{M}_n$ and standard rates on Besov spaces $(n^{-2\alpha/(2\alpha+1)})$.

Application to non compact A

 $A = \mathbb{R}^+$ and Laguerre basis and $A = \mathbb{R}$ and Hermite basis.

We still have

Lemma

For all $m \in \mathbb{N}$, Ψ_m is invertible, and for all $m \le n$, $\widehat{\Psi}_m$ is invertible.

but:

Proposition

Assume that $\inf_{a \le x \le b} f(x) > 0$ for some interval [a,b] in the Hermite case and with 0 < a < b in the Laguerre case. Then there exists a constant c^* such that, for all m,

$$\|\Psi_m^{-1}\|_{\text{op}}^2 \ge c^* m.$$
 (6.10)

Proposition

Consider the Laguerre or the Hermite basis. Assume that

- $f(x) \ge c/(1+x)^k$ for $x \ge 0$ in the Laguerre case;
- or $f(x) \ge c/(1+x^2)^k$ for $x \in \mathbb{R}$ in the Hermite case.

Then for m large enough, $\|\Psi_m^{-1}\|_{op} \leq Cm^k$.

Simulations show that $\|\Psi_m^{-1}\|_{op}$ grows very fast and $\widehat{\mathcal{M}}_n$ is small.

If f is as in the Proposition, then

$$m \in \mathcal{M}_n \Rightarrow m^{2k+1} \lesssim n/\log(n)$$
.

Consider $A = \mathbb{R}^+$, Laguerre basis and Sobolev-Laguerre space:

$$b_A \in W^s(R) = \{h \in \mathbb{L}^2(\mathbb{R}^+, dx), \sum_{j \geq 0} j^s a_j^2(h) \leq R\},$$

with $a_j(h) = \langle h, \ell_j \rangle$, and that $f \leq f_1$. Then

$$\inf_{t\in S_m}\|b_A-t\|_f^2\lesssim m^{-s}.$$

Compromise: squared bias m^{-s} – variance m/n: $\mathbf{m}_{\text{opt}} = n^{1/(s+1)}$. Resulting rate $n^{-s/(s+1)}$ reached only if

$$\mathbf{m}_{\mathrm{opt}}^{2k+1} \le n/\log(n)$$
 i.e. if $s > 2k$.

Remark. If b_A is a combination of Γ functions, then rate $\log(n)/n$ can be reached by the adaptive estimator.

Laguerre and Hermite bases

About the order of $\|\Psi_m^{-1}\|_{\text{op}}$

Figure: Laguerre basis. $\log(m) \mapsto \log(\|\Psi_m^{-1}\|_{\text{op}})$, density of X given by $f_k(x) = (k-1)/(1+x)^k \mathbf{1}_{x \ge 0}$, k=2 (blue x marks), k=3 (red solid), k=4 (yellow dashdots) and k=5 (purple dashed). **Estimated slope regression coefficients:** 2.09 - 3.16 - 4.21 - 5.58

Extension to dependent models

• Autoregressive model.

$$X_{i+1} = b(X_i) + \varepsilon_{i+1}, \quad (\varepsilon_i)_{i \geq 0}$$
 i.i.d., centered with variance σ_{ε}^2 ,

with X_0 is independent of the sequence $(\varepsilon_i)_{i\geq 0}$.

$$\widehat{b}_m = \arg\min_{t \in S_m} \overline{\gamma}_n(t), \quad \text{with } \overline{\gamma}_n(t) = \frac{1}{n} \sum_{i=1}^n t^2(X_i) - 2X_{i+1}t(X_i).$$

• Diffusion model.

Observations with sampling interval Δ , $(X_{i\Delta})_{1 \le i \le n}$, from the diffusion process

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad X_0 \sim \eta.$$

Dependent models

Set

$$Y_{i\Delta} = rac{X_{(i+1)\Delta} - X_{i\Delta}}{\Delta}, \quad Z_{i\Delta} = rac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} \sigma(X_s) dW_s$$
 and $R_{i\Delta} = rac{1}{\Delta} \int_{i\Delta}^{(i+1)\Delta} [b(X_s) - b(X_{i\Delta})] ds.$

The regression equation writes:

$$\mathbf{Y}_{i\Delta} = b(X_{i\Delta}) + Z_{i\Delta} + R_{i\Delta},$$

where $\bullet Z_{i\Delta}$ plays the role of the **noise**,

R_{i∆} is an additional residual term to take into account.

$$\widehat{b}_m = \arg\min_{t \in S_m} \left[\frac{1}{n} \sum_{i=1}^n t^2(X_{i\Delta}) - 2Y_{i\Delta}t(X_{i\Delta}) \right]$$

In both models

- Only **one** process is observed X_i or $X_{i\Delta}$, i = 0, 1, ..., n
- Under conditions on $b(\cdot)$ or on $b(\cdot)$ and $\sigma(\cdot)$ and on the initial condition,
 - There is a strictly stationary solution (with stationary density denoted by f)
 - which is **geometrically** β -mixing.
- ▲ Model selection can be done similarly
- ▲ The main theorem can be extended to both contexts,
- ▲ The matricial deviation inequality can be extended in the mixing framework.

Proposition (Mixing matrix deviation inequality)

Let $(X_i)_i$ be a strictly stationary and geometrically β -mixing process:

$$\beta_k \le c e^{-\theta k}$$
 for some constants $c > 0, \theta > 0$,

with marginal density f and assume that

- $\mathbb{E}(X_1^{8/3}) < +\infty$ in the Hermite basis,
- $\mathbb{E}(1/X_1^2) < +\infty$ in the Laguerre basis.

Then for all u > 0

$$\mathbb{P}\left[\|\Psi_m - \widehat{\Psi}_m\|_{\mathrm{op}} \geq u\right] \leq 2m \exp\left(-\frac{nu^2/2}{\mathsf{a} m(1 + \log(n)u)}\right) + \frac{c}{\mathsf{n}^4},$$

where **a** is a constant depending on the β_k and the moments.

Figure: Beam of the proposals \widehat{b}_m for m=1 to m_{max} in the Laguerre basis. Function b(x)=2x+1, n=1000, density $f_k(x)=(k-1)/(1+x)^k\mathbf{1}_{x\geq 0}$.

Figure: The estimator associated to previous beams, as selected by the procedure, $\widehat{b}_{\widehat{m}}$. Function b(x)=2x+1, n=1000, density $f_k(x)=(k-1)/(1+x)^k\mathbf{1}_{x\geq 0}$.

Figure: 25 estimated curves in Laguerre basis (dotted -green/grey), the true in bold (red), n = 1000, b(x) = 2x + 1 and different laws for the design.

Figure: 25 estimated curves in Laguerre basis (dotted -green/grey), the true in bold (red), n = 1000, $b(x) = 4x/(1+x^2)\mathbf{1}_{x\geq 0}$ and different laws for the design.

Figure: 25 estimated curves in Hermite basis (dotted -green/grey), the true in bold (red), n = 1000, $b(x) = 2x^2$ and different laws for the design.

Conclusion

- Least squares procedure for nonparametric regression function estimation is simple and powerful
- The procedure we propose is general and rely on a random collection of models
- Laguerre and Hermite basis are of simple use but have specific properties
- Theoretical results generalize existing ones for non compactly supported bases
- Still remaining questions: can the bias be improved by the weight? Rates and optimality?

Thank you!

Conclusion

- Least squares procedure for nonparametric regression function estimation is simple and powerful
- The procedure we propose is general and rely on a random collection of models
- Laguerre and Hermite basis are of simple use but have specific properties
- Theoretical results generalize existing ones for non compactly supported bases
- Still remaining questions: can the bias be improved by the weight? Rates and optimality?

Thank you!

Selected references

Baraud, Y. (2000) Model selection for regression on a fixed design. *Probab. Theory Related Fields* **117**, 467-493.

Baraud, Y. (2002) Model selection for regression on a random design. *ESAIM Probab. Statist.* **6**, 127-146.

Baraud, Y., Comte, F. and Viennet, G. (2001a) Adaptive estimation in autoregression or β -mixing regression via model selection. *Ann. Statist.* **29**, 839-875.

Comte, F., Genon-Catalot, V. and Rozenholc, Y. (2007) Penalized nonparametric mean square estimation of the coefficients of diffusion processes. *Bernoulli* **13**. 514-543.

Tropp, J. A. (2015).

An introduction to matrix concentration inequalities.

Found. Trends Mach. Learn., 8(1-2):1-230.

Viennet, G. (1997). Inequalities for absolutely regular processes: application to density estimation. *Probab. Theory Relat. Fields* **107**, 467-492.