Chapter 1

DPO graph rewriting approach

Given a rule $L \stackrel{l}{\longleftrightarrow} K \stackrel{r}{\rightarrowtail} R$ and a graph G, the DPO approach to graph rewriting is to commute the following diagram

in which both squares are pushouts.

The morphisms in this diagram are:

- ullet m: is a homomorphism detection algorithm. In the diagram, m is a single homomorphism, non-deterministically detected, but ideally, the algorithm should return all possible homomorphisms from L to G. It is calculated.
 - A second view of such morphism is that it is the set of arrows that maps $a\mapsto b, a\in L, b\in G.$
- l, l', r, r' are all inclusions (supose that each one of them can be generically identified by $\phi: S \to T$). ϕ can be defined as the identities of the elements of the graph $T \setminus S$, and the inverse morphism $\phi^{-1}: T \nrightarrow S$ is a partial morphism that excludes nodes and edges in $T \setminus S$.
- k, m': are morphisms derived from m. k has the arrows of m which the source is removed by l^{-1} removed, along with the target of such arrows. m' adds arrows to k, with source in the elements of $R \setminus K$ and target in the elements of $H \setminus D$.

These are all structure preserving. Two conditions impede the transformation to be applied:

- dangling condition: If after the deletion of a node, an edge is left "dangling", i.e. the node deleted was the source or target of an edge that was not removed.
- \bullet identification condition: if an element is both deleted and maintained.

Chapter 2

Representation and algorithms

2.1 Graph

A graph is represented by two sets V of vertices and E of edges. Each element must have an numerical identity. Edges must contain also a pair of node identites that are the source and target of an edge.

A morphism between graphs is represented by two lists of pairs: node and edge identities. The first element is the source of the morphism and the second element is the target of the morphism. one of them can be \bot (Nothing), meaning that the element is created (when in the source) or deleted (when in the target). For the DPO approach, the source of each pair must be unique, except for \bot . This morphism allows to describe a span $L \stackrel{l}{\leftarrow} K \stackrel{r}{\rightarrowtail} R$ as follows.

- L are all sources s that are mapped to \bot ($s \mid s \mapsto \bot$), plus all that are maintained ($s \mid s \mapsto s$).
- R are all targets t that are mapped from \bot $(t | \bot \mapsto t)$, plus all that are maintained $(t | t \mapsto t)$.
- K are all item that are maintained $(k \mid k \mapsto k)$.
- l are all pairs that the target is \bot $((s, \bot) \mid s \mapsto \bot)$.
- r are all pairs which the source if $\bot ((\bot, t) | \bot \mapsto t)$.