Math 411 Spring 2016 Homework #8

Due March 29, Tue in class

- 1. Textbook, 3.D, page 88: 1, 9, 10;
- 2. Recall that C[a,b] denotes the vector space of real-valued continuous functions on the real interval [a,b]. Let $T:C[a,b]\to C[a,b]$ be defined by $T(f(t))=e^t\cdot f(t)$. Show that T is linear and bijective, and thus an isomorphism. (You may assume that e^t is continuous on \mathbb{R} .)
- 3. Let $T: V \to W$ be a linear map, where V and W are finite-dimensional vector spaces with $\dim(V)$ being odd. Prove that the null space of T and the range of T are not isomorphic.
- 4. Let the map $T : \mathbb{P}_2(\mathbb{R}) \to \mathbb{P}_2(\mathbb{R})$ be T(p) = p' 2p, where the prime represents the derivative. Show that T is a linear map, and find the matrix representation of T with respect to the standard basis $\{1, t, t^2\}$. Also determine the null space, range, nullity, and rank of T.

More practice problems: Do not submit

- 1. Textbook, 3.C, page 78: 6;
- 1. Textbook, 3.D, page 88: 3, 11, 12;