Econ 6190 Problem Set 9

Fall 2024

- 1. Let $X \sim \text{binomial}(5, \theta)$ with θ unknown. Consider testing $\mathbb{H}_0 : \theta = \frac{1}{2}$ versus $\mathbb{H}_1 : \theta > \frac{1}{2}$.
 - (a) Consider test alpha that rejects \mathbb{H}_0 if and only if all "successes" are observed. Derive the power function of this test. Calculate its type I error. Express its type II error as a function of θ where $\theta > \frac{1}{2}$.
 - (b) Consider an alternative test beta that rejects \mathbb{H}_0 if we observe X = 3, 4, or 5. Write down the power function of this test. Calculate its type I error. Express its type II error as a function of θ where $\theta > \frac{1}{2}$.
 - (c) Between tests alpha and beta, which test has a smaller type I error? Which test has a smaller type II error? Which test would you prefer?
- 2. Take the model $X \sim N(\mu, \sigma^2)$ with σ^2 unknown. A sample of size n = 4 yields $\sum_{i=1}^4 X_i = 40$, $\sum_{i=1}^4 (X_i \bar{X})^2 = 48$, where \bar{X} is the sample average.
 - (a) Propose a test for testing \mathbb{H}_0 : $\mu = 9$ and \mathbb{H}_1 : $\mu \neq 9$ given significance value $\alpha = 5\%$. What is the critical value? Can you reject the null? Draw a graph of the distribution of your statistic if the null hypothesis is correct and indicate the rejection region.
 - (b) Do the same for $\mathbb{H}_0: \mu = 7$ and $\mathbb{H}_1: \mu > 7$ given significance value $\alpha = 5\%$.
- 3. Take the model $X \sim N(\mu, 4)$. We want to test the null hypothesis \mathbb{H}_0 : $\mu = 20$ against \mathbb{H}_1 : $\mu > 20$. A sample of n = 16 independent realizations of X was collected, and the sample mean $\bar{X} = 20.5$.
 - (a) Propose a test with size α equal to 1%. What is the condition for rejecting \mathbb{H}_0 for this test?
 - (b) What is the p value of this test?
 - (c) What is the condition for rejecting \mathbb{H}_0 with $\alpha = 1\%$ if we increase the size of the sample to n = 25?
 - (d) We want a test with power 90% if $\mu = 21$. What is the size of the sample n needed for that? Explain briefly how n affects the power of the test.
 - (e) Now consider the two-sided test \mathbb{H}_0 : $\mu = 20$ against \mathbb{H}_1 : $\mu \neq 20$. Write down the power function of the test if $\mu = 21$. Compare with (d). Do you need a larger or smaller n in order to achieve 90% power?

- 4. [Hansen 13.11] You have two samples (Madison and Ann Arbor) of monthly rents paid by n individuals in each sample. You want to test the hypothesis that the average rent in the two cities is the same. Construct an appropriate test.
- 5. [Hansen 13.13] You design a statistical test of some hypothesis \mathbb{H}_0 which has asymptotic size 5% but you are unsure of the approximation in finite samples. You run a simulation experiment on your computer to check if the asymptotic distribution is a good approximation. You generate data which satisfies \mathbb{H}_0 . On each simulated sample, you compute the test. Out of B=50 independent trials you find 5 rejections and 45 acceptances.
 - (a) Based on the B=50 simulation trials, what is your estimate \hat{p} of p, the probability of rejection?
 - (b) Find the asymptotic distribution for $\sqrt{B}(\hat{p}-p)$.
 - (c) Test the hypothesis that p = 0.05 against $p \neq 0.05$. Does the simulation evidence support or reject the hypothesis that the size is 5%?
- 6. One very striking abuse of hypothesis testing is to choose size α after seeing the data and to choose them in such a way as to force rejection (or acceptance) of a null hypothesis. To see what the **true** Type I and Type II error probabilities of such a procedure are, calculate size and power of the following two trivial tests:
 - (a) Always reject \mathbb{H}_0 , no matter what data are obtained. (equivalent to the practice of choosing the α level to force rejection of \mathbb{H}_0)
 - (b) Always accept \mathbb{H}_0 , no matter what data are obtained. (equivalent to the practice of choosing the α level to force acceptance of \mathbb{H}_0)
- 7. [Final exam, 2021 fall] Suppose $X \sim N(\mu, \sigma^2)$ where both μ and σ^2 are unknown. We hope to use a random sample $\{X_i, i = 1 \dots n\}$ drawn from X to test hypothesis: $\mathbb{H}_0 : \mu = \mu_0$ for some $\mu_0 \in \mathbb{R}$ against $\mathbb{H}_1 : \mu \neq \mu_0$.
 - (a) Let $\beta = (\mu, \sigma^2)$. Write down the log likelihood of β under \mathbb{H}_0 .
 - (b) The unconstrained MLE of β is $\hat{\beta} = (\bar{X}_n, \hat{\sigma}^2)$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$. Derive the likelihood ratio statistic LR_n for testing $\mathbb{H}_0: \mu = \mu_0$ vs $\mathbb{H}_1: \mu \neq \mu_0$. Simplify as much as you can.
 - (c) Show the likelihood ratio test based on $LR_n > c$ for some c is equivalent to |T| > b for some b, where $T = \frac{\bar{X}_n \mu_0}{\sqrt{\frac{\hat{\sigma}^2}{n}}}$.