Ejercicios 4 - Segunda Parte

- Identifica qué espacios vectoriales son isomorfos entre sí y encuentra un isomorfismo entre ellos
 - (a) \mathbb{R}^7
 - (b) \mathbb{R}^{15}
 - (c) $M_3(\mathbb{R})$ (matrices 3×3 con entradas en \mathbb{R}).
 - (d) $M_{3,5}(\mathbb{R})$ (matrices 3×5 con entradas en \mathbb{R}).
 - (e) $\mathbb{R}[x]_{\leq 6}$.
 - (f) $\mathbb{R}[x]_{\leq 8}$.
 - (g) $\mathbb{R}[x]_{\leq 14}$.
- 2. Encuentra los valores de λ para los cuales la aplicación

$$f \colon \mathbb{R}[x]_{\leq 3} \quad \to \quad \mathbb{R}[x]_{\leq 3}$$
$$p(x) \quad \mapsto \quad xp(x)' - \lambda p(x)$$

no es isomorfismo (aquí p(x)' denota la derivada de p(x)).

- 3. Para la aplicación lineal f del ejercicio anterior, encuentra su matriz coordenada $c_{\mathcal{B},\mathcal{B}}$ donde $\mathcal{B} := \{1, x, x^2, x^3\}$.
- 4. Considera la matriz

$$A := \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

y la aplicación lineal

$$f \colon M_2(\mathbb{R}) \to M_2(\mathbb{R})$$

 $X \mapsto AX - XA.$

Encuentra bases para el núcleo y la imagen de f.

5. Considera la aplicación lineal

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (x - y, y - z, x + y + z),$

y las bases $\mathcal{B}_1 := \{(1,0,0), (0,1,0), (0,0,1)\}, \mathcal{B}_2 := \{(1,1,0), (0,1,1), (1,0,1)\}.$ Para esta aplicación lineal y estas bases encuentra todas las matrices involucradas en la fórmula del cambio de bases para matrices coordenadas

$$c_{\mathcal{B}_2,\mathcal{B}_2}(f) = c_{\mathcal{B}_2,\mathcal{B}_1}c_{\mathcal{B}_1,\mathcal{B}_1}(f)c_{\mathcal{B}_2,\mathcal{B}_1}^{-1}$$

y comprueba que la fórmula se cumple.

6. Considera la aplicación lineal

$$f \colon \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^3$$

 $p(x) \mapsto (p(0), p(1), p(2))$

Encuentra la matriz coordenada $c_{\mathcal{B}',\mathcal{B}}(f)$ donde $\mathcal{B}:=\{1,x,x^2\}$ y $\mathcal{B}':=\{(1,0,0),(0,1,0),(0,0,1)\}$. Comprueba que para $v:=1+x+x^2$ se cumple que

$$c_{\mathcal{B}'}(f(v)) = c_{\mathcal{B}',\mathcal{B}}(f)c_{\mathcal{B}}(v).$$

- 7. Encuentra la fórmula de una aplicación lineal $f\colon \mathbb{R}^3\to\mathbb{R}^3$ que cumpla (todas) las siguientes condiciones
 - (a) $(1,0,1) \in \ker f$.
 - (b) $(1,0,0) \in f(\mathbb{R}^3)$.
 - (c) f(0,0,1) = (1,0,0).
 - (d) (0,1,0) es un vector propio de valor propio 2 de f.