Avalon MM-Master

1. Avalon-MM Master

Signal Types

Classical Transfer Scenarios

Classical One

Master Interface Burst Transfer

Burst Write

Burst Read

FROM: https://blog.csdn.net/chen495277820/article/details/79068877

1. Avalon-MM Master

Signal Types

Some Signals that I have used in the MINI-PROJECT of CS-473 is shown in the Table

信号类型	宽度	方向	描述
read read_n	1	输出	读请求信号。如果该信号存在,那么需要 readdata
write write_n	1	输出	写请求信号。如果该信号存在。那么需要 writedata
address	1-32	输出	指定byte地址。
readdata	8,16,32,64,128,256,5121024	输入	读过程读出的数据
writedata	8,16,32,64,128,256,5121024	输出	写过程从总线上传输过来的数据,数据的宽度需要和 readdata 的 宽度相同。
byteenable byteenable_n	1,2,48,16,32,64,128	输出	读写过程中字节使能信号。在读过程中指定那些字节的信号能够 被读取,在写过程中指定哪些字节能够被写入。
waitrequest waitrequest_n	1	输入	使主接口等待总线完成工作。在等待过程中保持控制信号不变
readdatavalid readdatavalid_n	1	输入	用于流水式读取过程。表示在信号线上是否出现了需要的信号
burstcount	1-32	输出	用于表示突发传输的次数
resetrequest resetrequest_n	1	输出	复位请求

Classical Transfer Scenarios

Avalon MM-Master 1

Classical One

- 传输在第一个时钟上升沿开始,在第一个周期 address, byteenable 和 read 或者 write 信号有.
- 如果 waitrequest 信号被置位,那么主接口需要等待传输,并保持信号不变。传输在 waitrequest 信号失效后的第一个时钟上升沿结束

- 1.第一个时钟上升沿,主设备提供address, byteenable信号,置位read, 开始一次读传输。
- 2.在第二个时钟上升沿锁存readdata。并可以开始其他传输过程。图中read信号清零,置位write, writedata, address信号,开始一个写传输。3.第三个时钟上升沿结束写传输,清除所有信号,随时可以开始新的传输过
- 3. 第三个时钟上升沿结束写传输,清除所有信号,随时可以开始新的传输过程。
- 4. 开始新的写传输过程,用waitrequest信号延时。net/chen495277820

Master Interface Burst Transfer

- burstcount 信号表示了突发传输的长度。
- 主接口只给一次地址, 其余地址由从借口进行推算。
- 突发传输只有完成了规定次数的传输才能够停止

Burst Write

主接口需要给 address , writedata , write , byteenable 和 burstcount 信号来开始突发写传输。 writedata 信号在在第一个时钟上升沿被获取。在整个传输过程中需要保持 address 和 burstcount 信号不变

- 可以通过 write 信号来暂停读传输。
- 当 waitrequest 信号被置位时,主接口需要保持 address , writedata , write 和 byteenable 不变

Burst Read

Avalon MM-Master 2

- 1.第一个时钟上升沿,主设备提供address, data, byteenable, burstcount 置位write, 开始写传输。整个过程中address和burstcount不变。
- 2. 在waitrequest为低后的第一个时钟上升沿写入数据。
- 3.4. 可以用write, waitrequest信号暂停传输过程。两者的暂停有区别。
- 5. 传输达到burstcount规定数目后结束burst传输过程。et/chen 495277820

主接口突发读传输是流传输的一种形式。主接口需要给 address , read 和 burstcount 信号来开始突发读传输。当 waitrequest 信号无效时,地址读写结束。传输过程中, readdatavalid 信号可以暂停传输。主接口没法停止突发读传输过程。

- 在 readdatavalid 置位时, 主接口需要读取 readdata
- 在读写地址时, byteenable 信号需保持不变

- 1.第一个时钟上升沿,主设备提供address, burstcount, 置位read, 开始读传输。
- 2. 在waitrequest清零后的第一个时钟上升沿无效read, address, burstcount。
- 4.5.8.9. readdatavalid置位的时钟上升沿锁存readdata。直到读到的数据个数和burstcount相同后结束burst传输。图 Sdm. net chem 9527820

Avalon MM-Master 3