Semesterarbeit Teil 2

AWD FS 2018

Simon Egli [simon.egli@students.ffhs.ch]

1 Inhaltsverzeichnis

2 Abbildungsverzeichnis	4
3 Tabellenverzeichnis	4
4 Vorbereitung	5
5 Konzept	6
5.1 Einleitung	6
5.2 Ausgangslage	6
5.3 Vorbereitung	6
5.3.1 Globale Erfüllungskriterien	6
5.3.2 Arbeitspakete	7
5 Realisierung	8
6.1 Arbeitspaket «Funktionsgraphen anzeigen»	8
6.1.1 Quellcode	8
6.1.2 Resultat	8
6.2 Arbeitspaket «Mehrere Funktionsgraphen in derselben Grafik»	9
6.2.1 Analyse	9
6.2.2 Quellcode	9
6.2.3 Resultat	9
6.3 Arbeitspaket «Forschungsdaten als CSV bereitstellen»	10
6.3.1 Analyse	10
6.3.2 Quellcode	10
6.3.3 Resultat	10
6.4 Arbeitspaket «Balkendiagramme»	12
6.4.1 Analyse	12
6.4.2 Quellcode	12
6.4.3 Resultat	12
6.5 Arbeitspaket «Tortendiagramme»	13
6.5.1 Analyse	13
6.5.2 Quellcode	13
6.5.3 Resultat	13
6.6 Arbeitspaket «Histogramme»	14
6.6.1 Analyse	14

6.6.2	Quellcode	14
6.6.3	Resultat	14
6.7 A	rbeitspaket «Kann-Ziel»	15
6.7.1	Analyse	15
6.7.2	Quellcode	15
6.7.3	Resultat	15
6.8 A	Nuswertung	16

2 Abbildungsverzeichnis

Figure 1: Darstellung der Sinus Funktion	8
Figure 2: Darstellung der Sinus und Cosinus Funktion	
Figure 3: Häufigkeit der Ereignisse pro Jahr	
Figure 4: Flächenvisualisierung Vulkangrösse und Erdbeben-Magnitude	
Figure 5: Verteilung über die geografische Breite	14
Figure 6: Örtliche Analyse der Datensätze	15
3 Tabellenverzeichnis	
Table 1: Definition der Arbeitspakete	7
Table 2 [.] Metadaten der CSV Dateien	11

4 Vorbereitung

Dieses Dokument beinhaltet die Lösung der Semesterarbeit Teil 2. Das gestellte Problem wird nach dem Ansatz «Think first, then act» gelöst.

Erst nach der theoretischen Konzeption sollen Python Funktionen implementiert werden. Die so geschaffenen Quellcode-Referenzen werden wie folgt dargestellt:

```
from PythonDatei import *
print( funktion( parameter ) )
```

Unter Berücksichtigung des Dateipfads, können diese kopiert und eigenständig ausgeführt werden.

Als Arbeitsumgebung (IDE) wird Visual Studio Code verwendet:

https://code.visualstudio.com/

Um Python entwickeln zu können, wird die von Microsoft zur Verfügung gestellte Extension verwendet:

https://marketplace.visualstudio.com/items?itemName=ms-python.python

Zudem wird der Funktionsumfang der IDE mit der Extension Code Runner erweitert:

https://marketplace.visualstudio.com/items?itemName=formulahendry.code-runner

Wichtige Erkenntnisse und Hinweise werden dargestellt als:

Dies ist ein wichtiger Hinweis.

5 Konzept

Um die Aufgabenstellung effizient zu lösen, soll die Arbeit in übersichtliche Arbeitspakete unterteilt werden.

5.1 Einleitung

Eine möglichst realistische Aufgabenstellung ist wünschenswert. Aus diesem Grund sollen öffentliche Forschungsdaten visualisiert werden. Im experimentellen Verfahren sollen mögliche Relationen zwischen Vulkanismus und Erdbeben grafisch erstellt werden.

5.2 Ausgangslage

Als Grundlage werden globale Daten folgender U.S Staatsorganisation herangezogen, welche wenn möglich verwendet werden:

The Smithsonian Institution: https://volcano.si.edu

U.S. Geological Survey: https://earthquake.usgs.gov

Um den Rahmen der Arbeit nicht zu sprengen, muss auf den spannendsten Teil, die Interpretation der Ergebnisse, verzichtet werden.

5.3 Vorbereitung

Unter Berücksichtigung der Aufgabenstellung, des Modulplans und den Richtlinien für die Semesterarbeit wird folgende Planung aufgestellt.

5.3.1 Globale Erfüllungskriterien

- In Python geschrieben
- Graphen werden mittels matplotlib erzeugt
- Unit Tests sind nicht erforderlich
- Dokumentation ist zugleich dieses Dokument
- Alle relevanten Arbeitsabläufe und Resultate sind dokumentiert

5.3.2 Arbeitspakete

Die gestellte Aufgabe wird in folgende Arbeitspakete unterteilt:

Nr.	Name	Erfüllungskriterien				
1	Funktionsgraphen	Die Sinus-Funktion wird als Grafik dargestellt Mindestens eine volle Periode ist ersichtlich				
	anzeigen	X- und Y-Achse sind beschriftet				
		Grafik wird angezeigt				
2	Mehrere Funktionsgraphen	Die Sinus- und Cosinus-Funktion wird als Grafik dargestellt				
	in derselben Grafik	Mindestens eine volle Periode ist ersichtlich				
		X- und Y-Achse sind beschriftet				
		Grafik wird angezeigt				
3	Forschungsdaten als CSV	Seismologische Forschungsdaten liegen als CSV bereit				
	bereitstellen	Eruptionsdaten liegen als CSV bereit				
4	Balkendiagramme	Geeignete Daten zur Gegenüberstellung identifiziert				
		Achsen sind beschriftet				
		Titel ist vorhanden				
		Grafik wird angezeigt				
5	Tortendiagramme	Geeignete Daten zur Gegenüberstellung identifiziert				
		Die Anteile der jeweiligen Gruppen sind ersichtlich				
		Alle Tortendiagramm-Anteile sind beschriftet				
		Grafik wird angezeigt				
6	Histogramme	Geeignete Daten zur Gegenüberstellung identifiziert				
		Achsen sind beschriftet				
		Titel ist vorhanden				
		Grafik wird angezeigt				
7	Kann-Ziel	Weitere, spezielle Diagramme				

Table 1: Definition der Arbeitspakete

6 Realisierung

Im Folgenden werden die Arbeitspakete implementiert und dokumentiert.

Eine Detailgetreue Dokumentation der einzelnen Python Implementation sprengt den Rahmen von zwei bis drei A4 Seiten Text (1500 Wörter). Aus diesem Grund enthalten die Python Dateien aussagekräftige Inline-Dokumentationen.

6.1 Arbeitspaket «Funktionsgraphen anzeigen»

Gemäss dem Arbeitspaket wurde die Sinus-Funktion als Grafik abgebildet.

6.1.1 Quellcode

Der Quellcode befindet sich in der Datei «SEgli_02_Sinus_Graph.py» im Anhang.

6.1.2 Resultat

Figure 1: Darstellung der Sinus Funktion

6.2 Arbeitspaket «Mehrere Funktionsgraphen in derselben Grafik»

Der Hauptunterschied in Bezug zum Arbeitspaket 1 ist, dass hier zwei Graphen gezeichnet werden sollen.

6.2.1 Analyse

Der Source Code aus dem Arbeitspaket kann als Grundlage verwendet werden. Um die Unterscheidbarkeit der beiden Arbeitspakete zu gewährleisten, wird diese Aufgabe in einer neuen Quellcode-Datei eingepflegt. Gemäss Dokumentation, kann die Methode «plot» mehrmals aufgerufen werden, um mehrere Graphen innerhalb eines Diagramms darzustellen.

6.2.2 Quellcode

Der Quellcode befindet sich in der Datei «SEgli_02_Sinus_Cosinus_Graph.py» im Anhang.

```
from SEgli_02_Sinus_Cosinus_Graph import *
show_sin_cos_graph()
```

6.2.3 Resultat

Sinus and Cosinus curve

Figure 2: Darstellung der Sinus und Cosinus Funktion

6.3 Arbeitspaket «Forschungsdaten als CSV bereitstellen»

Ziel: Bereitstellung der CSV Dateien.

6.3.1 Analyse

Beide vorgängig eruierten Institutionen bieten einen Webservice, mit dessen Hilfe historische sowie Echtzeit-Daten abgefragt werden können:

The Smithsonian Institution: https://volcano.si.edu/database/webservices.cfm

U.S. Geological Survey: https://earthquake.usgs.gov/fdsnws/event/1

Die oben verlinkten Webservices können genutzt werden, um kostenlos Daten abzufragen und im CSV Format bereit zu stellen.

6.3.2 Quellcode

Der Quellcode zu dieser Aufgabe wurde nicht in Python implementiert und wird als nicht relevant eingestuft.

6.3.3 Resultat

Die Daten vom Smithsonian Institute liegen als «Eruption.csv», diejenigen vom U.S Geological Survey als «Earthquake.csv» vor.

Der Datensatz vulkanischer Aktivitäten und Ausbrüche beinhaltet ausschliesslich Ereignisse des Holozäns.

Der seismographische Datensatz enthält ausschliesslich signifikante Ereignisse. Der Begriff "signifikant" wurde durch das U.S Geological Survey wie folgt definiert: https://earthquake.usgs.gov/earthquakes/browse/significant.php

Die CSV Dateien beinhalten folgende Metadaten:

Eruption.csv		Earthquake.csv	
Number	Numeric	Date	DateTime
Name	String	Time	DateTime
Country	String	Latitude	Numeric
Region	String	Longitude	Numeric
Туре	String	Туре	String
Activity Evidence	String	Depth	Numeric
Last Known Eruption	String	Depth Error	String
Latitude	Numeric	Depth Seismic Stations	String
Longitude	Numeric	Magnitude	Numeric
Elevation (Meters)	Numeric	Magnitude Type	String
Dominant Rock Type	String	Magnitude Error	String
Tectonic Setting	String	Magnitude Seismic Stations	String
		Azimuthal Gap	String
		Horizontal Distance,	String
		Horizontal Error	String
		Root Mean	String

Table 2: Metadaten der CSV Dateien

Um die Datensätze verwenden zu können, müssen diese weiter aufbereitet werden. Zum Beispiel sollen alle seismographischen Datensätze mit nuklearem Ursprung ausgeschlossen werden. Dazu sind erweiterte Filterfunktionen notwendig, die in Teilaufgabe 1b nicht implementiert wurden. Aus diesem Grund wird das Modul Pandas verwendet um CSV Daten zu lesen.

6.4 Arbeitspaket «Balkendiagramme»

Ziel: Bereitstellung der Balkendiagramme.

6.4.1 Analyse

Die Datensätze aus Arbeitspaket 3 werden genutzt um eine Gegenüberstellung mittels Balkendiagram zu erstellen.

In einem Fenster sollen zwei Diagramme gezeigt werden, die ausgehend vom Jahr 1965 die Anzahl Ereignisse pro Jahr ausweisen.

6.4.2 Quellcode

Der Quellcode befindet sich in der Datei « SEgli_02_Count_By_Year.py» im Anhang.

```
from SEgli_02_Count_By_Year import *
show_count_by_year()
```

6.4.3 Resultat

Figure 3: Häufigkeit der Ereignisse pro Jahr

6.5 Arbeitspaket «Tortendiagramme»

Ziel: Bereitstellung der Tortendiagramme.

6.5.1 Analyse

Die Datensätze aus Arbeitspaket 3 werden genutzt um eine Gegenüberstellung mittels Tortendiagramm zu erstellen.

In einem Fenster sollen zwei Diagramme gezeigt werden, die einerseits die Magnitude eines Erbebens (aufgerundet auf ganze Zahlen) und andererseits die Höhe der Vulkane (aufgerundet auf 1000 Meter) gruppiert in einem Tortendiagram darstellen.

6.5.2 Quellcode

Der Quellcode befindet sich in der Datei «SEgli_02_Elevation_Vs_Magnitude.py» im Anhang.

6.5.3 Resultat

Elevation in meters (round up)

Figure 4: Flächenvisualisierung Vulkangrösse und Erdbeben-Magnitude

6.6 Arbeitspaket «Histogramme»

Ziel: Bereitstellung der Histogramme.

6.6.1 Analyse

Zwei Histogramme sollen im selben Fenster dargestellt werden. Diese zeigen die Häufigkeit der Ereignisse (einerseits Erbeben, andererseits Vulkanausbrüche) hinsichtlich ihrer geografischen Breite.

6.6.2 Quellcode

Der Quellcode befindet sich in der Datei « SEgli_02_Latitude_Histogram.py» im Anhang.

```
from SEgli_02_Latitude_Histogram import *
show_histograms_by_latitude()
```

6.6.3 Resultat

Figure 5: Verteilung über die geografische Breite

6.7 Arbeitspaket «Kann-Ziel»

6.7.1 Analyse

Die vorangegangenen Histogramme sind spannend. Ereignisse beider Quellen scheinen eine ähnliche Verteilung auf den Breitengraden aufzuweisen.

Im Folgenden soll diese Annahme gestärkt werden, in dem die Ortsangaben beider Datenquellen als Karte dargestellt werden.

6.7.2 Quellcode

Der Quellcode befindet sich in der Datei « SEgli_02_Map.py» im Anhang.

Zur Ausführung muss das Modul "Basemap" installiert werden. Zum Zeitpunkt der Erstellung kann das Modul wie folgt installiert werden:

★ conda install -c conda-forge basemap=1.0.8.dev0

Anschliessend kann folgender Quellcode ausgeführt werden um die Karte zu generieren:

6.7.3 Resultat

Volcanic areas (red) Earthquakes (blue)

Figure 6: Örtliche Analyse der Datensätze

6.8 Auswertung

Die Aufgabenstellung war umfangreich. Zusätzlicher Aufwand war nötig, um die CSV Dateien bereitzustellen. Dieser Mehraufwand war jedoch einkalkuliert. Die korrekte Anwendung der einzelnen Diagramme benötigte einiges an Nachforschung. Schlussendlich konnten die Aufgaben erfolgreich umgesetzt werden.

Aufgrund der fehlenden Erfahrung in der Python Programmierung konnte der zeitliche Rahmen von 8h nicht ganz eingehalten werden.

Der effektive Inhalt dieses Dokumentes umfasst 1403 Wörter, was weniger als drei Seiten Text entspricht. Somit wurde das gestellte Kriterium bezüglich Dokumentationsumfang erfüllt.