EE-559 - Deep learning

3.4. Multi-Layer Perceptrons

François Fleuret
https://fleuret.org/ee559/
Tue Oct 30 07:08:22 UTC 2018

For flexibility, we will separate the linear operators and the non-linearities in different blocks in our figures.

We can combine several "layers":

With $x^{(0)} = x$,

$$\forall l = 1, ..., L, \ x^{(l)} = \sigma \left(w^{(l)} x^{(l-1)} + b^{(l)} \right)$$

and $f(x; w, b) = x^{(L)}$.

We can combine several "layers":

With $x^{(0)} = x$,

$$\forall l = 1, ..., L, \ x^{(l)} = \sigma \left(w^{(l)} x^{(l-1)} + b^{(l)} \right)$$

and $f(x; w, b) = x^{(L)}$.

Such a model is a Multi-Layer Perceptron (MLP).

Note that if σ is a linear transformation,

$$\forall x \in \mathbb{R}^N, \ \sigma(x) = \alpha x + \beta \mathbb{I}$$

with $\alpha, \beta \in \mathbb{R}$, we have

$$\forall l = 1, ..., L, \ x^{(l)} = \alpha w^{(l)} x^{(l-1)} + \alpha b^{(l)} + \beta \mathbb{I},$$

Note that if σ is a linear transformation,

$$\forall x \in \mathbb{R}^N, \ \sigma(x) = \alpha x + \beta \mathbb{I}$$

with $\alpha, \beta \in \mathbb{R}$, we have

$$\forall l = 1, ..., L, \ x^{(l)} = \alpha w^{(l)} x^{(l-1)} + \alpha b^{(l)} + \beta \mathbb{I},$$

and the whole mapping is an affine transform

$$f(x; w, b) = A^{(L)}x + B^{(L)}$$

where $A^{(0)} = \mathbb{I}, B^{(0)} = 0$ and

$$\forall I < L, \begin{cases} A^{(I)} = \alpha w^{(I)} A^{(I-1)} \\ B^{(I)} = \alpha w^{(I)} B^{(I-1)} + \alpha b^{(I)} + \beta \mathbb{I} \end{cases}$$

Note that if σ is a linear transformation,

$$\forall x \in \mathbb{R}^N, \ \sigma(x) = \alpha x + \beta \mathbb{I}$$

with $\alpha, \beta \in \mathbb{R}$, we have

$$\forall l = 1, ..., L, \ x^{(l)} = \alpha w^{(l)} x^{(l-1)} + \alpha b^{(l)} + \beta \mathbb{I},$$

and the whole mapping is an affine transform

$$f(x; w, b) = A^{(L)}x + B^{(L)}$$

where $A^{(0)} = \mathbb{I}$, $B^{(0)} = 0$ and

$$\forall I < L, \begin{cases} A^{(I)} = \alpha w^{(I)} A^{(I-1)} \\ B^{(I)} = \alpha w^{(I)} B^{(I-1)} + \alpha b^{(I)} + \beta \mathbb{I} \end{cases}$$

Consequently, the activation function should be non-linear, or the resulting MLP is an affine mapping with a peculiar parametrization.

The two classical activation functions are the hyperbolic tangent

$$x \mapsto \frac{2}{1 + e^{-2x}} - 1$$

The two classical activation functions are the hyperbolic tangent

$$x\mapsto \frac{2}{1+e^{-2x}}-1$$

and the rectified linear unit (ReLU)

$$x \mapsto \max(0, x)$$

Universal approximation

$$f(x) = \sigma(w_1 x + b_1)$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2)$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3)$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

$$f(x) = \sigma(w_1x + b_1) + \sigma(w_2x + b_2) + \sigma(w_3x + b_3) + \dots$$

This is true for other activation functions under mild assumptions.

Extending this result to any $\psi \in \mathscr{C}([0,1]^D,\mathbb{R})$ requires a bit of work.

Extending this result to any $\psi \in \mathscr{C}([0,1]^D,\mathbb{R})$ requires a bit of work.

First, we can use the previous result for the sin function

$$\forall A > 0, \epsilon > 0, \ \exists N, \ (\alpha_n, a_n) \in \mathbb{R} \times \mathbb{R}, n = 1, \dots, N,$$

s.t.
$$\max_{x \in [-A,A]} \left| \sin(x) - \sum_{n=1}^{N} \alpha_n \sigma(x - a_n) \right| \le \epsilon.$$

Extending this result to any $\psi \in \mathscr{C}([0,1]^D,\mathbb{R})$ requires a bit of work.

First, we can use the previous result for the sin function

$$\begin{aligned} \forall A>0, \epsilon>0, \ \exists N, \ (\alpha_n,a_n)\in \mathbb{R}\times \mathbb{R}, n=1,\ldots,N, \\ \text{s.t.} \ \max_{x\in [-A,A]} \left|\sin(x)-\sum_{n=1}^N \alpha_n \sigma(x-a_n)\right| \leq \epsilon. \end{aligned}$$

And the density of Fourier series provides

$$\begin{split} \forall \psi \in \mathscr{C}([0,1]^D,\mathbb{R}), \delta > 0, \exists M, (v_m,\gamma_m,c_m) \in \mathbb{R}^D \times \mathbb{R} \times \mathbb{R}, m = 1,\ldots,M, \\ \text{s.t.} \ \max_{x \in [0,1]^D} \left| \psi(x) - \sum_{m=1}^M \gamma_m \sin(v_m \cdot x + c_m) \right| \leq \delta. \end{split}$$

So, $\forall \xi > 0$, with

$$\delta = \frac{\xi}{2}, A = \max_{1 \leq m \leq M} \max_{x \in [0,1]^D} \left| v_m \cdot x + c_m \right|, \text{ and } \epsilon = \frac{\xi}{2 \sum_m \left| \gamma_m \right|}$$

we get, $\forall x \in [0,1]^D$,

$$\left| \psi(x) - \sum_{m=1}^{M} \gamma_m \left(\sum_{n=1}^{N} \alpha_n \sigma(v_m \cdot x + c_m - a_n) \right) \right|$$

$$\leq \underbrace{\left| \psi(x) - \sum_{m=1}^{M} \gamma_m \sin(v_m \cdot x + c_m) \right|}_{\leq \frac{\xi}{2}}$$

$$+ \underbrace{\sum_{m=1}^{M} |\gamma_m| \left| \sin(v_m \cdot x + c_m) - \sum_{n=1}^{N} \alpha_n \sigma(v_m \cdot x + c_m - a_n) \right|}_{\leq \frac{\xi}{2 \sum_{m} |\gamma_m|}}$$

$$\psi: [0,1]^D o \mathbb{R}$$

with a mapping of the form

$$x \mapsto \omega \cdot \sigma(wx + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$,

$$\psi:[0,1]^D\to\mathbb{R}$$

with a mapping of the form

$$x \mapsto \omega \cdot \sigma(w x + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$, *i.e.* with a one hidden layer perceptron.

$$\psi:[0,1]^D\to\mathbb{R}$$

with a mapping of the form

$$x \mapsto \omega \cdot \sigma(w x + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$, *i.e.* with a one hidden layer perceptron.

This is the universal approximation theorem.

$$\psi: [0,1]^D o \mathbb{R}$$

with a mapping of the form

$$x \mapsto \omega \cdot \sigma(wx + b),$$

where $b \in \mathbb{R}^K$, $w \in \mathbb{R}^{K \times D}$, and $\omega \in \mathbb{R}^K$, *i.e.* with a one hidden layer perceptron.

This is the universal approximation theorem.

A better approximation requires a larger hidden layer (larger K), and this theorem says nothing about the relation between the two. We will come back to that later

