

A Level · OCR · Physics

28 mins

Structured Questions

Diagnostic Methods in Medicine

Medical Tracers / Gamma Camera / PET Scans

Easy (1 question) /5 Medium (3 questions) /23 **Total Marks** /28 Scan here to return to the course

or visit savemyexams.com

Easy Questions

1 (a)	The medical tracer technetium-99m is used in imaging organs such as the brain.
	Explain the advantages of using technetium-99m for this purpose.
	[2]
	(2 marks)
(b)	A gamma-camera uses powerful computers and sophisticated software to produce three- dimensional images of the patient's organ.
	Name and describe the remaining three main components of the gamma camera.
	[3]
	(3 marks)

Medium Questions

1 (a)	Fluorine-18 is a common radioactive isotope used in positron emission tomography (PET). Fluorine-18 emits positrons. A patient is injected with a radiopharmaceutical containing fluorine-18.		
	Describe how a PET scanner is used to locate an area of increased activity within the patient.		
	[4]		
	(4 marks)		
(b)	The half-life of fluorine-18 is 110 minutes.		
	Calculate the time t in minutes for the activity of the radiopharmaceutical to decrease to 30% of its initial activity.		
	<i>t</i> = minutes [3]		
	(3 marks)		

(c)	PET scanners are not available in all hospitals. This is because fluorine-18 requires expensive on-site particle accelerators and fluorine-18 has a very small 'shelf-life'. Suggest the impact this may have on the treatment and diagnosis of patients in the country.
	[1]
	(1 mark)
2	The medical tracer fluorine-18 is used in positron emission tomography (PET). Fluorine-18 is a beta-plus emitter with a short half-life.
	Describe how the fluorine-18 nuclei are located in a patient using a PET scanner.
	[4]
	(4 marks)

3 (a)	The nuclear reaction below shows how the isotope of fluorine-18 ($^{18}_{9}$ F) is made from the
	isotope of oxygen-18 ($^{18}_{8}\mathrm{O}$).

$${}^{18}_{8}O + {}^{1}_{1}p \rightarrow {}^{18}_{9}F + {}^{1}_{0}n + \gamma$$

The oxygen-18 nucleus is **stationary** and the proton has kinetic energy of 0.25 × 10^{-11} J. The binding energy of the $^{18}_{\ 8}O$ nucleus is 2.24 × 10^{-11} J and the binding energy of the $^{18}_{\ 9}F$ nucleus is 2.20×10^{-11} J. The proton and the neutron have zero binding energy.

- i) Explain why a high-speed proton is necessary to trigger the nuclear reaction shown above.
- ii) Estimate the minimum wavelength λ of the gamma ray photon (γ).

$$\lambda$$
 = m [3]

iii) Fluorine-18 is a positron emitter. Name a medical imaging technique that uses fluorine-18 and state one benefit of the technique.

[2]

(7 marks)

[2]

(b)	Describe how the components of a computerised axial tomography (CAT) scanner can produce high-quality images of the internal structures of a patient.
	[4]
	(4 marks)