Syllable count judgments and temporal organization of articulatory gestures

Anisia Popescu* and Ioana Chitoran

Clillac-ARP, Université Paris Diderot - Paris VII,

anisia.popescu@univ-paris-diderot.fr*, ioana.chitoran@univ-paris-diderot.fr

1. Introduction: Liquids - a special class

1. Sesquisyllables (Lavoie & Cohn 1999)

	Liquid	Rhotic	Nasal	Stop
Tense vowel	1σ < feel < 2σ	1σ < beer < 2σ	beam = 1σ	peak = 1σ
Diphthong	1σ < file < 2σ	1σ < fire < 2σ	$time = 1\sigma$	$bite = 1\sigma$
Lax vowel	fill = 1σ	$car = 1\sigma$	$bin = 1\sigma$	pit = 1σ

Table 1: Syllable count judgments as a function of nucleus type and coda consonant (liquid vs. non liquid) – Lavoie & Cohn 1999

- Variability attributed to acoustic rime duration (Tilsen & Cohn 2016)
- Higher syllable count judgments (SCJ): associated with longer rime durations (Tilsen & Cohn 2016)

2. Coordination patterns

- Coda liquids: pattern differently than coda nasals and stops (Marin & Pouplier 2010)
- Acoustic effect: significant vowel shortening in CVCC vs. CVC

	CVC vs. CVCC	Vowel duration
Lateral coda	gull <i>vs. gulp</i>	duration $/\Lambda/g_{ull} > duration /\Lambda/g_{ulp}$
Rhotic coda	bar vs. bard	$duration /ai/_{bar} > duration /ai/_{bard}$
Nasal coda	ten vs. tent	duration /e/ten ≈ duration /e/tent
Stop coda	gas vs. gasp	$duration/æ/_{gas} \approx duration/æ/_{gasp}$

Table 2: Vowel duration in CVC-CVCC pairs as a function of coda consonant

2. Questions and Predictions

Theoretical question:

• Is there a shared representation for speech motor control and phonological knowledge?

Experimental question:

• Do consonant-specific coordination patterns influence speakers' intuitions about SCJ?

	If CVC SCJ	CVCC SCJ	If CVC SCJ	CVCC SCJ	If CVC SCJ	CVCC SCJ
		\rightarrow		\rightarrow		
Liquid coda	1σ	1σ	1.5 σ	1.5σ	2σ	-
_	feel	field	feel	field	_	
Nasal coda	1σ	1.5σ	1 .5 σ	-	2σ	-
	pain	pained	-		_	
Stop coda	1σ	1.5σ	1 .5 σ	-	2σ	-
_	peak	peaked	_		_	

Table 3: Predictions for CVCC syllable count judgments based on judgments given for CVC tokens (based on Tilsen & Cohn 2016 and Marin & Pouplier 2010)

4. Results I: Rime duration

Linear mixed models (fixed factor: Coda_C, random factors: Speaker, Item, Lex_freq)

- Strong effect of coda consonant $(p=.025) \rightarrow \text{higher degree of vowel shortening in CVC1C2 for liquid C1}$ than nasal or stop C1 (Figure 1 left)
- Longer rime duration in the case of nasal and stop clusters (Figure 1 right)

Figure 1: $VC1_{cluster}/VC1_{singleton}$ (left) and VC1C2/VC1 (right) as a function of coda consonant type (liquid vs. nasal/stop)

3. Methodology

Two independent sequential tasks:

- Following Tilsen & Cohn 2016
- 7 **T**; 11 **T** undergraduate students at the University of Chicago
- 1. Production task

Carrier	I say now.	
phrase		
	(CV) - CVC - CVCC	
Target	Tense vowel + Liquid coda	
	fee – feel – field, tie – tire - tired	
Controls	(1) Tense vowel + nasal/stop coda	
	Zoo – zoom – zoomed, pea – peak - peaked	
	(2) Lax vowel + liquid/nasal/stop coda	
	gull – gulp, ten – tent, miss - mist	
	(3) Unambiguous disyllabic words	
	bacon, public, unite	

2. SCJ task

5. Results II: Syllable Count Judgments

- CVC: Higher than 1 SCJ (SCJ=1.5, SCJ=2) given exclusively to tense/diphthong + coda liquid tokens (confirms Tilsen & Cohn 2016)
- CVCC: High inter-speaker variability, different strategies
- Reaction time: Longer RT for cluster vs. singleton and for liquids vs. nasals /stops (p=.02, p=.03)
- $\log \text{ values}) \rightarrow \text{liquids form a special class}$

Figure 2: SCJ reaction times (seconds) for different types of coda C1 (lateral, nasal, rhotic ou stop) and coda complexity(cluster vs. singleton)

8. References

- (1) LAVOIE L.,M., COHN, A., (1999). Sesquisyllables of English: the Structure of vowel-liquid syllables. In Proceedings of the XIVth International Congress of Phonetic Sciences 109-112
- (2)MARIN S., POUPLIER, M., (2010). Temporal Organization of Complex Onsets and Codas in American English: Testing the Predictions of a Gestural Coupling Model. Motor Control, 14, 380-407
- (3) TILSEN S., COHN, A., (2016). Shared representations underlie metaphonological judgments and speech motor control, Laboratory Phonology, 7(1): 14, 1-13

6. Results III: Correlation between Duration and SCJ

Ordinal cumulative regression model (Fix.F: Duration, Rand.F: Complexity, Morphology, Lex_freq)

- Total rime duration is a good predictor for SCJ (p < 0.0001): SCJ > 1 associated to longer rimes
- Two strategies: correlation between degree of V shortening and SCJ value

Strategy:	CVC	CVCC	Degree of V shortening		
	SCJ	SCJ			
NO SCJ	1 (1.5)	1 (1.5)	high for CVCC		
CHANGE					
SCJ CHANGE	1 (1.5)	1.5 (2)	low for CVCC		
Table 4 : Observed strategies showing SCJ and V shortening correlation					

7. Conclusion

- Consonant-specific coordination patterns have an influence on speakers' SCJ
- Results suggest a common representation for speech motor control and metalinguistic judgments
- Future work: Confirm results with articulatory data