Informatica Teorica

Massimo Perego

Contents

Introduzione				2
1	Teoria della Calcolabilità			4
	1.1	Notaz	ione	4
		1.1.1	Funzioni	4
		1.1.2	Prodotto Cartesiano	6
		1.1.3	Funzione di Valutazione	7
	1.2	Sistem	ni di Calcolo	7
	1.3	Poten	za Computazionale	8
	1.4	Relazioni di Équivalenza		
		1.4.1	Partizione indotta dalla relazione di equivalenza	9
		1.4.2	Classi di equivalenza e Insieme quoziente	9
	1.5	*		
		1.5.1	Isomorfismi	10
		1.5.2	Cardinalità finita	11
		1.5.3	Cardinalità infinita	11
		1.5.4		13

Introduzione

Si "contrappone" all'informatica applicata, ovvero qualsiasi applicazione dell'informatica atta a raggiunger uno scopo, dove l'informatica è solamente lo strumento per raggiungere in maniera efficace un obiettivo.

Con "informatica teorica" l'oggetto è l'informatica stessa, si studiano i fondamenti della disciplina in modo rigoroso e scientifico. Può essere fatto ponendosi delle questioni fondamentali: il cosa e il come dell'informatica, ovvero cosa è in grado di fare l'informatica e come è in grado di farlo.

Cosa: L'informatica è "la disciplina che studia l'informazione e la sua elaborazione automatica", quindi l'oggetto sono l'informazione e i dispositivi di calcolo per gestirla; scienza dell'informazione. Diventa lo studio come risolvere automaticamente un problema. Ma tutti i problemi sono risolvibili in maniera automatica? Cosa è in grado di fare l'informatica?

La branca dell'informatica teorica che studia cosa è risolvibile si chiama **Teoria della Calcolabilità**, studia cosa è calcolabile per via automatica. Spoiler: non tutti i problemi sono risolvibili per via automatica, e non potranno mai esserlo per limiti dell'informatica stessa. Cerchiamo una caratterizzazione generale di cosa è calcolabile e cosa no, si vogliono fornire strumenti per capire ciò che è calcolabile. La caratterizzazione deve essere fatta matematicamente, in quanto il rigore e la tecnica matematica permettono di trarre conclusioni sull'informatica.

Come: Una volta individuati i problemi calcolabili, come possiamo calcolarli? Il dominio della Teoria della Complessità vuole descrivere le risoluzione dei problemi tramite mezzi automatici in termini di risorse computazionali necessarie. Una "risorsa computazionale" è qualsiasi cosa che viene consumata durante l'esecuzione per risolvere il problema, come pos-

sono essere elettricità o numero di processori, generalmente i parametri più importanti considerati sono tempo e spazio di memoria. Bisognerà definire in modo preciso cosa si intende con "tempo" e "spazio". Una volta fissati i parametri bisogna definire anche cosa si intende con "risolvere efficientemente" un problema, in termini di tempo e spazio.

La teoria della calcolabilità dice quali problemi sono calcolabili, la teoria della complessità dice, all'interno dei problemi calcolabili, quali sono risolvibili efficientemente.

Capitolo 1

Teoria della Calcolabilità

1.1 Notazione

1.1.1 Funzioni

Funzione: Una funzione f dall'insieme A all'insieme B è una legge che dice come associare a ogni elemento di A un elemento di B. Si scrive

$$f:A\to B$$

E chiamiamo A dominio e B codominio. Per dire come agisce su un elemento si usa f(a) = b, b è l'immagine di a secondo f (di conseguenza a è la controimmagine).

Per definizione di funzione, è possibile che elementi del codominio siano raggiungibili da più elementi del dominio, ma non il contrario. Possiamo classificare le funzioni in base a questa caratteristica:

- Iniettiva: $f: A \to B$ è iniettiva sse $\forall a, b \in A, a \neq b \implies f(a) \neq f(b)$
- Suriettiva: $f: A \to B$ è suriettiva sse $\forall b \in B, \exists a \in A: f(a) = b$: un altro modo per definirla è tramite l'insieme immagine di f, definito come

$$\operatorname{Im}_f = \{ b \in B : \exists a, f(a) = b \} = \{ f(a) : a \in A \}$$

Solitamente $\operatorname{Im}_f \subseteq B$, ma f è suriettiva sse $\operatorname{Im}_f = B$;

• Biettiva: $f:A\to B$ è biettiva sse è sia iniettiva che suriettiva, ovvero

$$\forall a, b \in A, a \neq b: \quad f(a) \neq f(b) \\ \forall b \in B, \exists a \in A: \quad f(a) = b \quad \Longrightarrow \quad \forall b \in B, \exists ! a \in A: f(a) = b$$

Inversa: Per le funzioni biettive si può naturalmente associare il concetto di "inversa": dato $f: A \to B$ biettiva, si definisce inversa la funzione $f^{-1}: B \to A$ tale che $f^{-1}(b) = a \Leftrightarrow f(a) = b$.

Composizione di funzioni: Date $f: A \to B$ e $g: B \to C$, f composto g è la funzione $g \circ f: A \to C$ definita come $g \circ f(a) = g(f(a))$. Generalmente non commutativo, $f \circ g \neq g \circ f$, ma è associativo.

Funzione identità: Dato l'insieme A, la funzione identità su A è la funzione $i_A: A \to A$ tale che $i_A(a) = a, \forall a \in A$.

Un'altra possibile definizione per l'inversa diventa:

$$f^{-1} \circ f = i_A \wedge f \circ f^{-1} = i_B$$

Funzioni Parziali: Se una funzione $f: A \to B$ è definita per $a \in A$ si indica con $f(a) \downarrow$ e da questo proviene la categorizzazione: una funzione è **totale** se definita $\forall a \in A$, **parziale** altrimenti (definita solo per qualche elemento di A).

Insieme Dominio: Chiamiamo **dominio** (o campo di esistenza) di f l'insieme

$$\mathrm{Dom}_f = \{ a \in A | f(a) \downarrow \} \subseteq A$$

Quindi se $\mathrm{Dom}_f = A$ la funzione è totale, se $\mathrm{Dom}_f \subsetneq A$ allora è una funzione parziale.

Totalizzazione: Si può totalizzare una funzione parziale f definendo una funzione a tratti $\overline{f}:A\to B\cup\{\bot\}$ tale che

$$\overline{f}(a) = \begin{cases} f(a) & a \in \text{Dom}_f(a) \\ \bot & \text{altrimenti} \end{cases}$$

Dove \bot è il **simbolo di indefinito**, per tutti i valori per cui la funzione di partenza f non è definita. Da qui in poi B_\bot significa $B \cup \{\bot\}$.

Insieme delle funzioni: L'insieme di tutte le funzioni che vanno da A a B si denota con

$$B^A = \{f : A \to B\}$$

La notazione viene usata in quanto la cardinalità di B^A è esattamente $|B|^{|A|}$, con A e B insiemi finiti.

Volendo includere anche tutte le funzioni parziali:

$$B_{\perp}^{A} = \{f : A \to B_{\perp}\}$$

Le due definizioni coincidono, $B^A = B_{\perp}^A$, ma quest'ultima permette di mettere in evidenza che tutte le funzioni presenti sono totali o totalizzate.

1.1.2 Prodotto Cartesiano

Chiamiamo prodotto cartesiano l'insieme

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Rappresenta l'insieme di tutte le coppie ordinate di valori in A e B. In generale non è commutativo, a meno che A=B.

Può essere esteso a n-uple di valori:

$$A_1 \times \cdots \times A_n = \{(a_1, \dots, a_n) | a_i \in A_i\}$$

Il prodotto di n volte lo stesso insieme verrà, per comodità, indicato come

$$A \times \cdots \times A = A^n$$

Proiettore: Operazione "opposta", il proiettore *i*-esimo è una funzione che estrae l'*i*-esimo elemento di una tupla, quindi è una funzione

$$\pi_i: A_1 \times \cdots \times A_n \to A_i \text{ t.c. } \pi_i(a_1, \dots, a_n) = a_i$$

La proiezione sull'asse in cui sono presenti i valori dell'insieme a_i .

1.1.3 Funzione di Valutazione

Dati $A, B \in B_{\perp}^{A}$ si definisce funzione di valutazione la funzione

$$\omega: B_{\perp}^A \times A \to B$$
 t.c. $\omega(f, a) = f(a)$

Prende una funzione f e la valuta su un elemento a del dominio. Si possono fare due tipi di analisi su questa funzione:

- Fisso a e provo tutte le f, ottenendo un benchmark di tutte le funzioni su a
- Fisso f e provo tutte le a del dominio, ottenendo il grafico di f

1.2 Sistemi di Calcolo

Vogliamo modellare teoricamente un **sistema di calcolo**; quest'ultimo può essere visto come una black box che prende in input un programma P, dei dati x e calcola il risultato y di P su input x. La macchina restituisce y se è riuscita a calcolare un risultato, \bot (indefinito) se è entrata in un loop.

Quindi, formalmente, possiamo definire un sistema di calcolo come una funzione

$$\mathcal{C}: \mathrm{PROG} \times \mathrm{DATI} \to \mathrm{DATI}_{\perp}$$

Possiamo vedere un sistema di calcolo come una funzione di valutazione:

- ullet i dati x corrispondono all'input a
- il programma P corrisponde alla funzione f

Formalmente, un programma $P \in PROG$ è una sequenza di regole che trasformano un dato input in uno di output, ovvero l'espressione di una funzione secondo una sintassi

$$P: \mathrm{DATI} \to \mathrm{DATI}_{\perp}$$

e di conseguenza $P \in \mathrm{DATI}^{\mathrm{DATI}}_{\perp}$. In questo modo abbiamo mappato l'insieme PROG sull'insieme delle funzioni, il che ci permette di definire il sistema di calcolo come la funzione

$$\mathcal{C}: \mathrm{DATI}^{\mathrm{DATI}}_{\perp} \times \mathrm{DATI} \to \mathrm{DATI}$$

Analoga alla funzione di valutazione. Con $\mathcal{C}(P,x)$ indichiamo la funzione calcolata da P su x dal sistema di calcolo \mathcal{C} , che viene detta **semantica**, ovvero il suo "significato" su input x.

Il modello solitamente considerato quando si parla di calcolatori è quello di **Von Neumann**.

1.3 Potenza Computazionale

Indicando con

$$C(P,): DATI \to DATI$$

la funzione che viene calcolata dal programma P (semantica di P).

La **potenza computazionale** di un calcolatore è definita come l'insieme di tutte le funzioni che quel sistema di calcolo è in grado di calcolare, ovvero

$$F(\mathcal{C}) = \{\mathcal{C}(P, \underline{\ }) | P \in PROG\} \subseteq DATI_{\perp}^{DATI}$$

Ovvero, l'insieme di tutte le possibili semantiche di funzioni calcolabili con il sistema C. Stabilire il carattere di quest'ultima inclusione equivale a stabilire $\cos a \ pu \delta \ fare \ l'informatica$:

- se $F(\mathcal{C}) \subsetneq \mathrm{DATI}^{\mathrm{DATI}}_{\perp}$ allora esistono compiti non automatizzabili
- se $F(\mathcal{C}) = \mathrm{DATI}_{\perp}^{\mathrm{DATI}}$ allora l'informatica $pu\grave{o}$ fare tutto

Calcolare funzioni vuol dire risolvere problemi *in generale*, a ogni problema è possibile associare una funzione soluzione che permette di risolverlo automaticamente.

Un possibile approccio per risolvere l'inclusione è tramite la **cardinalità** (funzione che associa ogni insieme al numero di elementi che contiene) dei due insiemi. Potrebbe però presentare dei problemi: è efficace solo quando si parla di insiemi finiti. Ad esempio, l'insieme dei numeri naturali contiene l'insieme dei numeri pari $\mathbb{P} \subsetneq \mathbb{N}$, ma $|\mathbb{N}| = |\mathbb{P}| = \infty$.

Serve una diversa definizione di cardinalità che considera l'esistenza di infiniti più densi di altri.

1.4 Relazioni di Equivalenza

Dati due insiemi A, B, una relazione binaria R è un sottoinsieme $R \subseteq A \times B$ di coppie ordinate. Data $R \subseteq A^2$, due elementi sono in relazione sse $(a,b) \in R$. Indichiamo la relazione tra due elementi anche con la notazione infissa aRb.

Una classe importante di relazioni è quella delle relazioni di equivalenza: una relazione $R\subseteq A^2$ è una relazione di equivalenza sse rispetta le proprietà di

- riflessività: $\forall a \in A, (a, a) \in R$
- simmetria: $\forall a, b \in A, (a, b) \in R \Leftrightarrow (b, a) \in R$
- transitività: $\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \implies (a, c) \in R$

1.4.1 Partizione indotta dalla relazione di equivalenza

A ogni relazione di equivalenza $R \subseteq A^2$ si può associare una **partizione**, ovvero un insieme di sottoinsiemi $A_i \subseteq A$ tali che

- $\forall i \in \mathbb{N}^+, A_i \neq \emptyset$
- $\forall i, j \in \mathbb{N}^+$, se $i \neq j$ allora $A_i \cap A_j = \emptyset$
- $\bigcup_{i \in \mathbb{N}^+} A_i = A$

La relazione R definita su A^2 induce una partizione $\{A_1, A_2, \dots\}$ su A.

1.4.2 Classi di equivalenza e Insieme quoziente

Dato un elemento $a \in A$, chiamiamo classe di equivalenza di a l'insieme

$$[a]_R = \{b \in A | (a, b) \in R\}$$

Ovvero, tutti gli elementi in relazione con a, chiamato **rappresentante** della classe.

Si può dimostrare che

• non esistono classi di equivalenza vuote, per riflessività

- dati $a, b \in A$, allora $[a]_R \cap [b]_R = \emptyset$, oppure $[a]_R = [b]_R$, i due elementi o sono in relazione o non lo sono
- $\bigcup_{a \in A} [a]_R = A$

L'insieme delle classi di equivalenza, per definizione, è una partizione indotta da R su A, detta **insieme quoziente** di A rispetto ad R, denotato con A/R.

1.5 Cardinalità

1.5.1 Isomorfismi

Due insiemi A e B sono **isomorfi** (equi-numerosi) se esiste una biezione tra essi, denotato come $A \sim B$. Chiamando \mathcal{U} l'insieme di tutti gli insiemi, la relazione $\sim \grave{\mathrm{e}} \sim \subseteq \mathcal{U}^2$.

Dimostriamo che \sim è una relazione di equivalenza:

- riflessività: $A \sim A$, la biezione è data dalla funzione identità i_A
- simmetria: $A \sim B \Leftrightarrow B \sim A$, la biezione è data dalla funzione inversa
- transitività: $A \sim B \wedge B \sim C \implies A \sim C$, la biezione è data dalla composizione delle funzioni usate per $A \sim B$ e $B \sim C$

Dato che \sim è una relazione di equivalenza, permette di partizionare l'insieme $\mathcal U$, risultando in classi di equivalenza contenenti insiemi isomorfi, ovvero con la stessa cardinalità. Possiamo quindi definire la **cardinalità** come l'insieme quoziente di $\mathcal U$ rispetto alla relazione \sim .

Questo approccio permette il confronto delle cardinalità di insiemi infiniti, basta trovare una funzione biettiva tra i due insiemi per poter affermare che sono isomorfi.

1.5.2 Cardinalità finita

La prima classe di cardinalità è quella delle cardinalità finite. Definiamo la seguente famiglia di insiemi:

$$J_n = \begin{cases} \emptyset & \text{se } n = 0\\ \{1, \dots, n\} & \text{se } n > 0 \end{cases}$$

Un insieme A ha cardinalità finita sse $A \sim J_n$ per qualche $n \in \mathbb{N}$; in tal caso possiamo scrivere |A| = n. La classe di equivalenza $[J_n]_{\sim}$ identifica tutti gli insiemi di \mathcal{U} contenenti n elementi.

1.5.3 Cardinalità infinita

L'altra classe di cardinalità è quella delle **cardinalità infinite**, ovvero gli insiemi non in relazione con J_n . Si possono dividere in **numerabili** e **non numerabili**.

Insiemi numerabili

Un insieme A è numerabile sse $A \sim \mathbb{N}$, ovvero $A \in [\mathbb{N}]_{\sim}$. Vengono anche detti **listabili**, in quanto è possibile elencare tutti gli elementi dell'insieme A tramite una funzione f biettiva tra \mathbb{N} e A; grazie ad f possiamo elencare gli elementi di A, formando l'insieme

$$A = \{f(0), f(1), \dots\}$$

Ed è esaustivo, in quanto elenca tutti gli elementi di A.

Questi insiemi hanno cardinalità \aleph_0 (aleph).

Insiemi non numerabili

Gli insiemi non numerabili sono insiemi a cardinalità infinita ma non listabili, sono "più fitti" di \mathbb{N} ; ogni lista generata non può essere esaustiva.

Il più noto tra gli insiemi non numerabili è l'insieme \mathbb{R} dei numeri reali.

Teorema 1.5.1. L'insieme \mathbb{R} non è numerabile ($\mathbb{R} \nsim \mathbb{N}$)

Dimostrazione. Suddividiamo la dimostrazione in 3 punti:

- 1. dimostriamo che $\mathbb{R} \sim (0,1)$
- 2. dimostriamo che $\mathbb{N} \nsim (0,1)$
- 3. dimostriamo che $\mathbb{R} \not\sim \mathbb{N}$

Per dimostrare che $\mathbb{R} \sim (0,1)$ serve trovare una biezione tra \mathbb{R} e (0,1). Usiamo una rappresentazione grafica:

- disegnare una semicirconferenza di raggio 1/2, centrata in 1/2, quindi con diametro 1
- disegnare la perpendicolare al punto da mappare che interseca la circonferenza
- disegnare la semiretta passante per il centro ${\cal C}$ e l'intersezione precedente

L'intersezione tra asse reale (parallela al diametro) e semiretta finale è il punto mappato.

Questo approccio permette di dire che \mathbb{R} è isomorfo a qualsiasi segmento di lunghezza maggiore di 0. La stessa biezione vale anche sull'intervallo chiuso [0,1] (e di conseguenza qualsiasi intervallo chiuso), usando la "compattificazione" $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ e mappando 0 su $-\infty$ e 1 su $+\infty$.

Continuiamo dimostrando che $\mathbb{N} \not\sim (0,1)$: serve dimostrare che l'intervallo (0,1) non è listabile, quindi che ogni lista manca di almeno un elemento. Proviamo a "costruire" un elemento che andrà a mancare. Per assurdo, sia $\mathbb{N} \sim (0,1)$, allora possiamo listare gli elementi di (0,1) come

0.
$$a_{00}$$
 a_{01} a_{02} ...
0. a_{10} a_{11} a_{12} ...
0. a_{20} a_{21} a_{22} ...

dove con a_{ij} indichiamo la cifra di posto j dell'i-esimo elemento della lista.

Costruiamo il numero $c = 0.c_0c_1...$ tale che

$$c_i = \begin{cases} 2 & \text{se } a_{ii} \neq 2\\ 3 & \text{se } a_{ii} = 2 \end{cases}$$

Viene costruito "guardando" le cifre sulla diagonale principale, apparterrà sicuramente a (0,1) ma differirà per almeno una posizione (quella sulla diagonale principale) da ogni numero presente all'interno della lista. Questo è assurdo sotto l'assunzione che (0,1) è numerabile, quindi abbiamo provato che $\mathbb{N} \not\sim (0,1)$.

Il terzo punto $\mathbb{R} \not\sim \mathbb{N}$ si dimostra per transitività.

Più in generale, non si riesce a listare nessun segmento di lunghezza maggiore di 0.

Questa dimostrazione (punto 2 in particolare) è detta **dimostrazione per** diagonalizzazione.

L'insieme \mathbb{R} viene detto **insieme continuo** e tutti gli insiemi isomorfi a \mathbb{R} si dicono continui a loro volta.

Gli insiemi continui hanno cardinalità \aleph_1 .

1.5.4 Insieme delle Parti