Aufgabe 1: Eigenwerte und Eigenvektoren

Bestimmen Sie die Eigenvektoren und Eigenwerte der Matrizen

a)
$$\begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$$
 b) $\begin{pmatrix} -2 & 0 & 3 \\ 2 & 4 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

Lösung:

- a) $(1,1)^{\mathbf{T}}$ ist EV zum EW 2 und $(-1,3)^{\mathbf{T}}$ ist EV zum EW -2
- b) $(-21,6,7)^{\mathbf{T}}$ ist EV zum EW -3, $(0,1,0)^{\mathbf{T}}$ ist EV zum EW 4 und $(3,-2,3)^{\mathbf{T}}$ ist EV zum EW 1.

Aufgabe 2: Elementare Abbildungen

Bestimmen Sie die Eigenvektoren und Eigenwerte der folgenden elementaren Abbildungen von \mathbb{R}^2 nach \mathbb{R}^2 ohne Rechnen, indem Sie sich die Lösungen geometrisch überlegen:

- a) Projektion auf die x-Achse
- b) Spiegelung an der y-Achse

Lösung:

- a) Alle Punkte auf der x-Achse bleiben bei der Projektion fest. Somit ist zum Beispiel der Vektor (1,0) ein Eigenvektor zum Eigenwert 1. Da die Projektion nicht umkehrbar ist $(\det=0)$ und die Determinante das Produkt der zwei Eigenwerte ist, muss 0 der zweite Eigenwert sein. Als Eigenvektor kann man dazu zum Beispiel (0,1) wählen.
- b) Offensichtlich bleiben alle Punkte auf der y-Achse fest (Eigenvektor (0,1) mit Eigenwert 1) und die Vektoren der x-Achse (1,0) werden mit -1 multipliziert.

Aufgabe 3: Differentiation

Wir betrachten den Vektorraum \mathbb{F} der beliebig oft differentierbaren Funktionen f(x) zusammen mit der Ableitungsabbildung:

$$\frac{d}{dx}: \mathbb{F} \longrightarrow \mathbb{F}$$

$$f(x) \longmapsto \frac{d}{dx} f(x)$$

Bestimmen Sie alle Eigenvektoren $f(x) \in \mathbb{F}$ und die zugehörigen Eigenwerte $\lambda \in \mathbb{R}$ dieser Abbildung. Hinweis: Mit Matrizen können Sie hier nicht arbeiten, da dieser Vektorraum unendlich dimensional ist!

Lösung:

Eine Funktion f(x) ist ein Eigenvektor zum Eigenwert λ falls

$$\frac{d}{dx}f(x) = \lambda f(x)$$

gilt, was für $f(x) = e^{\lambda x}$ mit $\lambda \in \mathbb{R}$ zutrifft. Da es unendlich viele Zahlen aus \mathbb{R} gibt, hat die obige Abbildung auch unendlich viele Eigenvektoren und Eigenwerte.

Aufgabe 4: Grenzwert von Matrizenpotenzen

Für welche Werte von $\beta \in \mathbb{R}$ gilt

$$\lim_{n\to\infty} \left[\frac{1}{2} \left(\begin{array}{cc} 1 & \beta \\ 1 & -1 \end{array}\right)\right]^n = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

Lösung:

Die Bedingung, damit der Grenzwert gegen Null konvergiert ist, dass für alle Eigenwerte $|\lambda| < 1$ gelten muss. Die Matrix

$$\frac{1}{2} \left(\begin{array}{cc} 1 & \beta \\ 1 & -1 \end{array} \right)$$

besitzt das charakteristische Polynom

$$P(\lambda) = \lambda^2 - \frac{\beta + 1}{4}$$

mit den Eigenwerten

$$\lambda_{1,2} = \pm \sqrt{\frac{\beta+1}{4}}$$

Mit dem positiven Vorzeichen erhalten wir die Ungleichung

$$\sqrt{\frac{\beta+1}{4}} < 1$$

womit wir $\beta < 3$ erhalten. Und mit negativem Vorzeichen erhalten wir schrittweise

$$-\frac{\beta+1}{4}<1$$

$$\frac{\beta+1}{4}>-1$$

$$\beta>-5$$

Somit konvergiert die Potenz für $-5 < \beta < 3$.

Aufgabe 5: Formel für die Fibonacci-Folge

Die Fibonacci-Folge mit Startwerten $a_1=1$ und $a_2=1$ wird rekursiv durch

$$a_{n+2} = a_{n+1} + a_n \quad \text{für } n \ge 1 \tag{1}$$

definiert. Oder als Matrizenmultiplikation geschrieben:

$$\begin{pmatrix} a_{n+2} \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
 (2)

Führen Sie analog zum Beispiel aus der Vorlesung eine Diagonalisierung durch, mit dem Ziel, eine geschlossene Formel für die n-te Fibonacci-Zahl a_n zu erhalten.

Lösung:

In einem ersten Schritt berechnen wir die Eigenwerte und Eigenvektoren der Matrix:

$$x_1 = \begin{pmatrix} \frac{2}{1+\sqrt{5}} \\ 1 \end{pmatrix}$$
 mit Eigenwert $\lambda_1 = \frac{1+\sqrt{5}}{2}$ $x_2 = \begin{pmatrix} \frac{2}{1-\sqrt{5}} \\ 1 \end{pmatrix}$ mit Eigenwert $\lambda_2 = \frac{1-\sqrt{5}}{2}$

Danach bilden wir die Matrix, die in den Spalten die Eigenvektoren hat, berechnen die Inverse davon und definieren die Matrix D (Eigenwerte in der Diagonalen):

$$S = \begin{pmatrix} \frac{2}{1+\sqrt{5}} & \frac{2}{1-\sqrt{5}} \\ 1 & 1 \end{pmatrix}$$

$$S^{-1} = \frac{1}{5} \begin{pmatrix} \sqrt{5} & \frac{(\sqrt{5}+1)\sqrt{5}}{2} \\ -\sqrt{5} & \frac{(\sqrt{5}-1)\sqrt{5}}{2} \end{pmatrix}$$

$$D = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{pmatrix}$$

Die ursprüngliche Matrix lässt sich dann darstellen als

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) = S \cdot D \cdot S^{-1}$$

nach Anwendung der Potenz n folgt schrittweise:

$$A^{n} = S \cdot D^{n} \cdot S^{-1}$$

$$= \frac{1}{5} \begin{pmatrix} \frac{2}{1+\sqrt{5}} & \frac{2}{1-\sqrt{5}} \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n} & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n} \end{pmatrix} \cdot \begin{pmatrix} \sqrt{5} & \frac{(\sqrt{5}+1)\sqrt{5}}{2} \\ -\sqrt{5} & \frac{(\sqrt{5}-1)\sqrt{5}}{2} \end{pmatrix}$$

nach Multiplikation und Anwendung der Gleichung (2) erhält man das Ergebnis für die n-te Fibonacci-Zahl

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Aufgabe 6: lineare, homogene Differentialgleichung

Gegeben ist die Differentialgleichung zweiter Ordnung

$$y''(x) + y'(x) - 20y(x) = 0$$

zusammen mit den Anfangsbedingungen y(0) = 5 und y'(0) = -1. Lösen Sie diese Differentialgleichung mit Hilfe der Eigenwertmethode aus der Vorlesung:

- a) Formulieren Sie die Gleichung zuerst als Matrizengleichung $\vec{y}' = \mathbf{A} \cdot \vec{y}$ erster Ordnung
- b) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix A
- c) Geben Sie die allgemeine und spezielle Lösung der Differentialgleichung an

Lösung:

a) Mit $y_1 := y(x)$ und $y_2 := y'(x)$ erhalten wir die Matrizengleichung

$$\begin{pmatrix} y_1'(x) \\ y_2'(x) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 20 & -1 \end{pmatrix} \cdot \begin{pmatrix} y_1(x) \\ y_2(x) \end{pmatrix}$$
$$\frac{d \vec{y(x)}}{dx} = \mathbf{A} \cdot \vec{y(x)}$$

b) ${\bf A}$ besitzt die folgenden Eigenvektoren mit den zugehörigen Eigenwerten

$$\vec{v_1} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 zum Eigenwert $\lambda_1 = 4$

$$\vec{v_2} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}$$
 zum Eigenwert $\lambda_1 = -5$

somit sind die zwei Basislösungen gegeben durch

$$e^{4x} \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 und $e^{-5x} \cdot \begin{pmatrix} -1 \\ 5 \end{pmatrix}$

c) Eine allgemeine Lösung erhalten wir durch Linearkombination der Basislösungen

$$\vec{y_a}(x) = C_1 \cdot e^{4x} \cdot \begin{pmatrix} 1\\4 \end{pmatrix} + C_2 \cdot e^{-5x} \cdot \begin{pmatrix} -1\\5 \end{pmatrix}$$

wobei C_1 und C_2 aus $\mathbb R$ beliebig. Für die spezielle Lösung (inkl. Randbedingungen) muss nun gelten

$$\vec{y_a}(0) = \begin{pmatrix} 5 \\ -1 \end{pmatrix} = C_1 \cdot \begin{pmatrix} 1 \\ 4 \end{pmatrix} + C_2 \cdot \begin{pmatrix} -1 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

Damit erhalten wir die Konstanten mit

$$\begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 4 & 5 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 8/3 \\ -7/3 \end{pmatrix}$$

und damit die Lösung des Problems

$$y(x) = y_1(x) = \frac{8}{3} \cdot e^{4x} + \frac{7}{3} \cdot e^{-5x}$$