VE472 Lecture 3

Jing Liu

UM-SJTU Joint Institute

Summer

Random full rank matrix

linearly independent rows or/and linearlt independent columns

n很大时,几种方法差不多,且error不大。但是error都在逐渐增大

Vandermonde matrix

roughly share the same accuracy. But they loose precision very quickly.

Theorem 0.1

QR decomposition

Let \mathbf{A} be a matrix of $m \times n$ with $m \ge n$. Suppose \mathbf{A} is full rank. Then there is a matrix \mathbf{Q} of $m \times n$ with orthonormal columns, $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$, and an upper triangular matrix \mathbf{R} of $n \times n$ with positive diagonals $r_{ii} > 0$ such that $\mathbf{A} = \mathbf{Q}\mathbf{R}$.

In general, the theorem replies on the idea of projection.

Q: Why is this theorem useful in terms of dealing with a big data matrix X?

see notes

Vandermonde matrix

Random full rank matrix

In most of the times, QR is more stable

Vandermonde-like matrix

• QR is no question the slowest!

```
>> clear all
>> n = 1000; X = rand(n, 100); y = randn(n, 1);
tic; for i = 1:10000
    XX = transpose(X)*X; yy = transpose(X)*y;
    [L, U] = lu(XX); bhat = U\setminus(L\setminus yy);
end; toc;
tic; for i = 1:10000
    XX = transpose(X)*X; yy = transpose(X)*y;
    C = chol(XX, 'lower');
    bhat = transpose(C)\(C\yy);
end; toc;
tic; for i = 1:10000
    [Q, R] = qr(X); bhat = R \setminus (transpose(Q)*y);
end; toc;
Elapsed time is 3.266948 seconds.
Elapsed time is 2.457167 seconds.
Elapsed time is 44.321296 seconds. stable but slow
```

Theorem 0.2 (Singular Value Decomposition)

Let **A** be a rank k matrix of $m \times n$ with $m \ge n$, then we have $\sigma_1 \ge \cdots \ge \sigma_k > 0$ k linearly independent columns

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$$

eigenvectors of X^TX

where ${f U}$ and ${f V}$ are orthogonal matrices of size m imes m and n imes n, respectively.

Q: Why is this theorem useful in terms of dealing with a big data matrix \mathbf{X} ?

• SVD is faster than QR, but a magnitude slower than LU or Cholesky .

```
>> n = 1000; X = rand(n, 100); y = randn(n, 1);
tic; for i = 1:10000
    XX = transpose(X)*X; yy = transpose(X)*y;
    C = chol(XX, 'lower');
    bhat = transpose(C)\(C\yy);
end; toc;
tic:for i = 1:10000
    [Q, R] = qr(X); bhat = R \setminus (transpose(Q)*y);
end; toc;
tic; for i = 1:10000 compact svd
    [U, S, V] = svd(X, 'econ');
    s = diag(S); s = 1./s; inverse of S
    bhat = V*diag(s)*transpose(U)*y;
end; toc;
Elapsed time is 2.521359 seconds.
Elapsed time is 45.891408 seconds.
                                     faster than QR, slower
Elapsed time is 19.551785 seconds.
                                     than I U
```

Vandermonde matrix

• Recall the stability of linear model can be studied using the eigenvalues of

$$\mathbf{X}^{\mathrm{T}}\mathbf{X}$$

having small eigenvalues indicate columns are nearly linearly dependent.

• Using SVD gives us the stability of our model given the data as a byproduct.

capper
$$\kappa = \frac{\max \sigma_i}{\min \sigma_i} \quad \text{samllest non zero sv}$$

Increasing κ as n increases by construction

true random

n变大·sv变多·k更容易变大

Increasing relative error

k变大 \cdot relative error变大 (numerical error cumulate -> unstable)

虽然在增大但 是k<100依然 可以接受

Really big κ

extreme case

Really big κ really big relative error

Decreasing κ as n increases for a fixed k

Only having really big κ is problematic

Increasing rapidly κ as k increases for a fixed n

big error

A more complex data is more problematic than a large data

large number of column may lead to large error

ullet So far we have considered the data matrix ${f X}$ that is full rank when solving

$$\underset{\mathbf{b} \in \mathbb{R}^{k+1}}{\arg\min} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$

- Q: What happens when A is rank deficient or "close" to being rank deficient?
 - Such problems often arise with big data, e.g. extracting signals from noisy data, digital image restoration as well as big prediction or classification.

Theorem 0.3

Let $\sigma_{\min} > 0$ denote the smallest singular value of \mathbf{X} and $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$ be the singular value decomposition of \mathbf{X} . If \mathbf{b} minimises $\|\mathbf{y} - \mathbf{X} \mathbf{b}\|$, then

can have large norm change 'y' a bit, 'b' may change a lot
$$\|\mathbf{b}\| \geq \frac{\left|\mathbf{u}^{\mathrm{T}}\mathbf{b}\right|}{\sigma_{min}}$$
 $\|\mathbf{v}^{\mathrm{T}}\mathbf{b}\|$

where \mathbf{u} is the last column of \mathbf{U} . Furthermore changing \mathbf{y} to $\mathbf{y} + \delta \mathbf{y}$ can induce a change of $\delta \mathbf{b}$ to \mathbf{b} , where $\|\delta \mathbf{b}\|$ is as large as $\|\delta \mathbf{v}\| / \sigma_{min}$.

Q: What does the last theorem tell us if A is nearly rank deficient?

Theorem 0.4

Let X be a rank r matrix of $n \times (k+1)$ with $n \ge k+1$. If r < k+1, then there is an n-r dimensional set of vectors $\mathbf{b} \in \mathbb{R}^{k+1}$ that solve the following k+1-r

$$rg \min_{\mathbf{b} \in \mathbb{R}^{k+1}} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$$
 where $\mathbf{y} \in \mathbb{R}^n$

Furthermore, the singular value decomposition of X can be written as

$$\mathbf{A} = egin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix} egin{bmatrix} \mathbf{\Sigma}_{r imes r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix}^\mathrm{T}, \quad \textit{where } \mathbf{U}_1 \textit{ and } \mathbf{V}_1 \textit{ have } r \textit{ columns,} \end{cases}$$

and all the minimisers take the following form

$$\mathbf{b} = \mathbf{V}_1 \mathbf{\Sigma}_{r \times r}^{-1} \mathbf{U}_1^{\mathrm{T}} \mathbf{y} + \mathbf{V}_2 \mathbf{z}, \qquad \textit{for any } \mathbf{z} \in \mathbb{R}^r.$$

Q: Which of those minimisers shall we use as the best b?