CS & IT

ENGINEERING

Discrete mathematics Set theory

Lecture No.9

SATISH YADAV SIR

TOPICS TO BE COVERED

(G, X) is called group. salgebric

1) a E G, b E G a x b E G (closed)

3) at e = a = e * a. [Identity]
Ly identity element

4)
$$\alpha \neq \bar{\alpha} = e = \bar{\alpha} + \alpha$$
.

Solutions

Closed .:

aeg beg.

afz, bfz, atbfz.

$$(2+(-a)=0)$$

$$-3+(-(-3)=0$$

$$-3+(-(-3))=0$$

4)
$$a \times d = 1$$

$$\left(\frac{1}{a}d^2\right)$$

$$(A, X) A = \left\{ \frac{2}{2} \mid n \in Z \right\}.$$

2)
$$2^{9}X(2^{6}X2^{c}) = (2^{9}X2^{6})X2^{c}$$

$$3) \quad \lambda^{a} \times \lambda^{0} = \lambda^{a}$$

4)
$$a^{\alpha} \times a^{-\alpha} = a^{\alpha}$$

$$(R.*)$$
 $a*b = ab$
 7

$$\left(\frac{ab}{2}\right)*c = a*\left(\frac{bc}{2}\right)$$

$$\frac{ab}{2} \times c$$

3)
$$\alpha \neq e = \alpha$$
.

 $\alpha \neq e = \alpha$.

 $\alpha \neq e = \alpha$.

 $\alpha \neq e = \alpha$.

4)
$$a \neq \overline{a} = e$$

$$\frac{a \cdot \overline{a}}{2} = e$$

$$\frac{a \cdot \overline{a}}{2} = 2$$

$$\overline{a} = 4$$

$$\overline{a} = 4$$

$$\overline{a} = 4$$

$$\overline{a} = 6$$

$$(A = \{ 10n | n \in 2\})$$
 $(A, +)$
 $(A, +)$
 $(X + y = X + y + 1)$

$$\begin{cases}
A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \\
(A, +) \begin{cases} |o(+)| |o(-1)| |o(0)| |o(1)| |o(2)| |o(2)| |o(2)| |o(2)| \\
(A, +) \end{cases} & (set, +)
\end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n \in Z \end{cases} & (set, +) \end{cases}$$

$$(A = \begin{cases} |on| |n$$

$$|0(a+b)| = |0(a+b)| = |0(a+b)| = |0(a+b+c)| = |0(a+b+c)$$

$$\frac{3}{4} = \frac{10(a)}{10(a)} + \frac{10(a)}{10(a)} = \frac{10(a)}{10(a)} =$$

Group.

Infinite Group.

eq: (2,+) (Q+0,x) finite group:

(set, operation)

© a b c d L table

2)
$$(^{\circ}X(-^{\circ}X)) = (^{\circ}X-^{\circ})X$$

 $(^{\circ}X-^{\circ}) = -^{\circ^{2}}X$
 $-^{\circ^{2}}$
 $-^{\circ^{2}}$

3) identity:

$$a * 2 = a.$$

Try to find identity in ans.

$$A = \{1, \omega, \omega^2\}$$
(A, X) $\omega^3 = 1$.

$$a * b = (a+b) \mod 6$$

⊕ 6	0	1	2	3 4 5	+ ,	5
0	0	1	2_	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3.	3	4	5	0	1	٦
4	4	5	0	1	2	3
55	5	0	1	2	3	4.

1) Closed.

2) Associative $(3 \oplus 65) \oplus 62 = 3 \oplus 6(5 \oplus 62)$ $2 \oplus 62 = 3 \oplus 6($ $= 3 \oplus 6($ $= 3 \oplus 6($ $= 3 \oplus 6($

Subavoup.

- 1) HSG.
- 2) H should also be a group.
 - A) closed.
 - B) Associative.
 - c) identity.
 - d) Invense

⊕6	0	1	2.	3 3 4 5	4	5
0	0	1	٤	3	+	5
ュ	1	2	3	4	5	0
2	2	3	4	5	0	1
7	3		5	0	1	<u>2</u>
4	4	5	0	1	ح	3
5	5	0	1	2	. 3	4.

2)
$$0 12$$
 $(+2) \mod 6$
 $0 0 12$ $3 \mod 6$
 $1 1 2 3$ $= 3$

IEH, 2EH, IE62 & H.

it is not closed.

not Group.

not subgroup.

H= {0,2,4]. (0 D62) D64. 0 86 (2864) Closed/ Associative identity. Invene His subgroup of G.

Every Group contains à Trivial subgroup.

- 1) e = 9

- 2) G is subgroup of itself.

 - (2) G = G.

 (2) G should be Grown.

Lagrange's Thm. if H is subgroup of G then | H will divide | G | (but vice vena. (s not True)

$$H = \{0, 2, 4\}$$
 $G = \{0, 1, 2, 3, 4, 5\}$

$$|H|=3$$
 $\frac{6}{3} \in 2$

Ans: 42.

Enponential:

$$a' = a$$
.

 $a^2 - a + a$.

 $a^3 = a + a$.

 $a + a + a$.

 $a + a + a$.

Subgroup & cyclicGroup is also cyclicGroup

⊕ ¢	0	1	2 2 3	3 (4 ,	5
0	0	1	2	3	+	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5		1	
4	4	5	0	1	2	3
5	5	0	1	2	3	4.

I has generated. 1,2,3,4,5,0 In fact I has generated. all elements in Group. hence 1 is called Generator of the Group.

Group contains Valic Group.

⊕ 6	0	1	2 2 3	3	4	,5
0	0	1	2	3	+	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5		1	
4	4	5	0	1	ح	3
5	5	•	1	2		4.

$$\begin{array}{r}
 1 = 1 \\
 1 = 1 \\
 1 = 2 \\
 1 = 2 \\
 1 = 2 \\
 1 = 2 \\
 1 = 2 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\
 1 = 3 \\$$

5 is also Generator.

⊕ ¢	0	1 1 2 3	2	3 4	4 (5
0	0	1	2	3	+	5
1	1	2	3	4	5 (0
2	2	3	4	5	0	1
3	3	4	5	0	1	5
4	4	5	0	1	2	3
5 .	5	0	1	2	3	4.

5 = 5
52=5*5
5 ³ = 5 ² * 5
= 4 * 5
54= 3 * 5
= 2.
5 = 2 × 5 = 1
56=1 * 5

0	1	2_	3	2	-
1				1	>
	2	3	4	5	0
2	3	4	5	0	1
5		5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4.
	5	4 5	3 T S 4 5 O	5501	4 5 0 1 2

