VOLUME 5 NOMOR 1, JANUARI 2024

p - ISSN: 2715 - 9590

e - ISSN : 2716 - 263X

JOURNAL

DIPUBLIKASI OLEH:

PROGRAM STUDI D4 AKUNTANSI KEUANGAN UNIVERSITAS LOGISTIK DAN BISNIS INTERNASIONAL

HOME CURRENT ARCHIVES ANNOUNCEMENTS ABOUT + Q SEARCH

Ruang Lingkup

Ruang Lingkup

Ruang Lingkup **Land Journal** adalah tentang Akuntansi yang meliputi :

- 1. Akuntansi
- 2. Kredit
- 3. Analisis Keuangan
- 4. Manajemen Pelaporan
- 5. Statistik
- 6. Akuntansi Logistik
- 7. Audit
- 8. Perpajakan
- 9. Penganggaran
- 10. Perbankan
- 11. Keuangan Internasional
- 12. Etika Akuntansi
- 13. Sistem Informasi Akuntansi

Dengan artikel yang memiliki sitasi primer dan tidak pernah dipublikasikan secara online atau versi cetak sebelumnya.

ABOUT -

HOME / Editorial Team

HOME

Editorial Team

CURRENT

ARCHIVES

EDITOR IN CHIEF

Rima Sundari, SE., M.Ak., Ak., CA. (SINTA ID : 6645696) - Universitas Logistik dan Bisnis Internasional

ANNOUNCEMENTS

MANAGING EDITOR

M. Rizal Satria, SE., M.Ak., Ak., CA. (SINTA ID : 6645697) - Universitas Logistik dan Bisnis Internasional

EDITORIAL BOARDS

<u>Rukmi Juwita, SE., M.Si., Ak., CA.</u> (SINTA ID : <u>6108152</u>) – Universitas Logistik dan Bisnis Internasional

<u>Dewi Selviani, SS., M.Pd.</u> (SINTA ID : <u>6175442</u>) – Universitas Logistik dan Bisnis Internasional

<u>Khairaningrum Mulyanti, Spd., M.Pd.</u> (SINTA ID : <u>6645695</u>) – Universitas Logistik dan Bisnis Internasional

<u>Jaka Maulana, SE., M.Ak., Ak., CA., CPSAK.</u> (SINTA ID : <u>6645690)</u> – Universitas Logistik dan Bisnis Internasional

 $\underline{Marismiati, SE,, M.Si.} \ (SINTA\ ID: \underline{6645760}) - Universitas\ Logistik\ dan\ Bisnis\ Internasional$

 $\underline{\text{Ade Pipit Fatmawati, SE., M.Pd.}} (\text{SINTA ID}: \underline{6645700}) - \text{Universitas Logistik dan Bisnis Internasional}$

INFORMASI

RUANG LINGKUP

Q SEARCH

SUBMISSIONS

TIM EDITORIAL

MITRA BESTARI

HAK CIPTA DAN LISENSI

ETIKA PUBLIKASI

PETUNJUK REVIEW

PROSES PEER REVIEW

KONTAK

PERNYATAAN AKSES TERBUKA

KEBIJAKAN PLAGIARISME

KEBIJAKAN PENGARSIPAN

PETUNJUK MENULIS

BIAYA PUBLIKASI

HOME CURRENT ARCHIVES ANNOUNCEMENTS ABOUT → Q SEARCH

Mitra Bestari

PEER REVIEWER

Dr. Indra Firmansyah, SE., MM., Ak., CA. (SINTA ID : 6716858) - Universitas Logistik dan Bisnis Internasional

<u>Dr. Cahyat Rohyana, SE., MM.</u> (SINTA ID : <u>6716868</u>) - Universitas Logistik dan Bisnis Internasional

Ruslina Lisda, SE., M.Si., Ak.,CA. (SINTA ID : 6168188) - Universitas Pasundan

 $\underline{\text{Dida Farida Latipatul Hamdah., SE., M.Si., Ak., CA.}} (SINTA \ ID: \underline{6003896}) - Universitas \ Garut$

INFORMASI

RUANG LINGKUP

SUBMISSIONS

TIM EDITORIAL

MITRA BESTARI

HAK CIPTA DAN LISENSI

ETIKA PUBLIKASI

PETUNJUK REVIEW

PROSES PEER REVIEW

KONTAK

PERNYATAAN AKSES TERBUKA

KEBIJAKAN PLAGIARISME

KEBIJAKAN PENGARSIPAN

PETUNJUK MENULIS

BIAYA PUBLIKASI

FINANCING (NPF) TERHADAP NET OPERATING MARGIN (NOM) PADA BANK UMUM SYARIAH YANG TERDAFTAR DI OTORITAS JASA KEUANGAN (OJK)

Dewi Selviani Yulientinah, Raihani Nurjannah Khatami 55-68

PDF (BAHASA INDONESIA)

ANALISIS FINANCIAL DISTRESS DENGAN METODE ALTMAN Z-SCORE SEBELUM DAN SETELAH PANDEMI COVID-19 PADA PERUSAHAAN SUB SEKTOR TRANSPORTASI UMUM YANG TERDAFTAR DI BURSA EFEK **INDONESIA PERIODE 2019-2020**

Jaka Maulana, Nabila Alkautsaria Sukwana 69-83

PDF (BAHASA INDONESIA)

PENGARUH TOTAL ASET TERHADAP LABA BERSIH PADA BANK UMUM SYARIAH YANG TERDAFTAR DI OTORITAS JASA KEUANGAN

khairaningrum Mulyanti, Muhammad Husaen 84-92

PDF (BAHASA INDONESIA)

PENGARUH RETURN ON ASSET (ROA) DAN NET PROFIT MARGIN (NPM) TERHADAP PERTUMBUHAN LABA PADA PERUSAHAAN SUB SEKTOR OTOMOTIF DAN KOMPONEN YANG TERDAFTAR DI BURSA EFEK INDONESIA

Rukmi Juwita, Mawar Novita Pardosi

93-107

PDF (BAHASA INDONESIA)

PENGARUH TOTAL ASET DAN TINGKAT HUTANG TERHADAP TARIF PAJAK EFEKTIF DI PERUSAHAAN BUMN YANG TERCATAT PADA BURSA EFEK INDONESIA

Ade Pipit Fatmawati, Eunike Aprillia

108-116

PDF (BAHASA INDONESIA)

PENGARUH PERANAN AUDITOR INTERNAL TERHADAP PENCEGAHAN KECURANGAN PADA DIREKTORAT METROLOGI KEMENTERIAN PERDAGANGAN REPUBLIK INDONESIA

MUHAMMAD RIZAL SATRIA, Nina Lestarina

117-127

PDF (BAHASA INDONESIA)

PENGARUH PARTISIPASI PENYUSUNAN ANGGARAN TERHADAP KINERJA MANAJERIAL PADA PT JASA MARGA (PERSERO) Tbk CABANG PURBALEUNYI BANDUNG

CHRISTINE ELISABETH, Toto Suwarsa

128-138

PDF (BAHASA INDONESIA)

PENGARUH APLIKASI E - FILING TERHADAP KEPATUHAN PELAPORAN SPT TAHUNAN WAJIB PAJAK ORANG PRIBADI PADA PEGAWAI HONDA ASTRA MOTOR CABANG BANDUNG

Rima Sundari, Prety Diawati, Dina Khairunnisa

139-151

PDF (BAHASA INDONESIA)

PENGARUH AUDIT INTERNAL TERHADAP PENEKANAN RISIKO KECURANGAN PADA PT POS FINANSIAL INDONESIA

Cahyat Rohyana, Moch Taufiq Fajar Rahmadina, Marismiati Marismiati

152-158

PDF (BAHASA INDONESIA)

PENGARUH AUDIT OPERASIONAL TERHADAP SISTEM AKUNTANSI PENJUALAN PADA PT. CARDIG LOGISTIK INDONESIA

Dr Indra Firmansyah Indra, Elok Melinia Dian Rahayu

159-168

GREEN SUPPLY CHAIN: MODEL ERP UNTUK KOPERASI KECIL DALAM MENGURANGI BIAYA OPERASIONAL

Riani Tanjung, Ariska Yuni Rahmawati, Desak Made Sri Geby Anti

169-176

PDF (BAHASA INDONESIA)

ANALISIS BIAYA RISIKO PROSES PRODUKSI TEH : MITIGASI DENGAN METODE FAILURE MODE AND EFFECT ANALYSIS DAN FAULT TREE ANALYSIS

Agus Purnomo, Syafrianita Syafrianita, Muhammad Fikri Pratama

177-185

PDF (BAHASA INDONESIA)

PENGARUH PAJAK HOTEL, PAJAK RESTORAN, DAN PAJAK HIBURAN TERHADAP PENDAPATAN ASLI DAERAH KABUPATEN GARUT

Dida Farida Latipatul Hamdah, Resa Sri Wahyuni

186-193

PDF (BAHASA INDONESIA)

PENGARUH PENGENDALIAN INTERNAL DAN GOOD CORPORATE GOVERNANCE TERHADAP KUALITAS LAPORAN KEUANGAN PADA PDAM TIRTAWENING KOTA BANDUNG

Marismiati Marismiati, Karina Afriliana

194-202

PDF (BAHASA INDONESIA)

PENGARUH PENGENDALIAN INTERNAL TERHADAP PENCEGAHAN KECURANGAN (FRAUD) PADA BANK BJB CABANG SUKAJADI

toto suwarsa, Christine Sianipar

203-214

PDF (BAHASA INDONESIA)

e -ISSN : 2715-9590 | p-ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal. v5i1

ANALISIS BIAYA RISIKO PROSES PRODUKSI TEH: MITIGASI DENGAN METODE FAILURE MODE AND EFFECT ANALYSIS DAN FAULT TREE ANALYSIS

Agus Purnomo¹, Syafrianita², Muhammad Fikri Pratama³

Magister Manajemen Logistik, Universitas Logistik Dan Bisnis Internasional¹ email : aguspurnomo@ulbi.ac.id¹

Manajemen Transportasi, Universitas Logistik Dan Bisnis Internasional² email : syafrianita@ulbi.ac.id²

Mahasiswa S.Tr. Logistik Bisnis, Universitas Logistik Dan Bisnis Internasional³ email: pratamafikri692@gmail.com³

ABSTRACT

The increasing percentage of tea that failed quality control tests in the last four months of 2023 at PTPN VIII caused significant losses to the Company, both material and corporate image. Thus, the problem of this research is what are the risks in producing tea and how to mitigate risks in tea production activities at PTPN VIII. Meanwhile, this research aims to identify risks that arise in tea manufacturing activities and design mitigation actions to improve risks to minimize the company's loss costs due to production that fails quality control. The Risk Priority Number value shows that there are 14 risks in producing tea at PTPN VIII, however, based on Pareto analysis, 7 main risks can be identified which are the focus of research for mitigation efforts. The use of the Fault Tree Analysis method succeeded in finding the root cause of this main risk, namely smoke entering the drying trough, smoke entering the drying machine, overfired, the grinding product being too fine, over-oxidation, contaminated tea powder, and the grinding product was too coarse. Furthermore, analysis of improvements based on the root cause of this problem is estimated to be able to reduce the total cost of the Company's losses due to tea that failed quality control for 4 months by IDR. 11,827,120,069,-

Keywords: Risk, FMEA, FTA, RPN, Production Process

PENDAHULUAN

Salah satu komoditi perkebunan yang paling penting bagi ekonomi Indonesia adalah teh. Tahun 2021, ekspor teh Indonesia sebanyak 42,7 ribu ton dengan nilai US\$ 89,2 juta, turun sekitar 15% dari tahun sebelumnya. Pada tahun 2021, Indonesia memiliki 102.078 ha perkebunan teh, dengan Jawa Barat menyumbang 77,76% dari total. Pengelolaan perkebunan teh di Jawa Barat oleh berbagai pihak, termasuk perkebunan besar milik swasta, perkebunan rakyat, dan perkebunan negara. PT. Perkebuanan Nusantara VIII, atau PTPN VIII, adalah salah satu perusahaan milik negara yang mengelola hasil teh di Jawa Barat (Badan Pusat Statistik Indonesia, 2021).

Kantor pusat Bandung akan menguji sampel teh untuk kualitas, termasuk densitas, tampilan, tekstur, aroma, dan rasa, sebelum PTPN VIII menjual teh ke pembeli. Dalam proses produksi, terdapat risiko yang dapat menyebabkan teh tidak memenuhi standar kualitas karena penggunaan api yang terlalu besar atau campuran teh dengan bahan lain seperti batu, rumput, kayu, dll. Risiko yaitu kegagalan produksi barang atau jasa yang tidak sesuai dengan standar yang ditetapkan perusahaan. Manajemen risiko dapat mengurangi risiko ini. (Subramanian et al, 2022). Memerinci adanya risiko yang mungkin terjadi, menganalisis akibat dan kemungkinan terjadinya risiko, dan juga memberikan tanggapan untuk risiko agar menjamin tujuan prioritas suatu aktivitas dapat dicapai adalah tujuan dari manajemen risiko. Metode manajemen risiko yang banyak diimlementasikan yaitu Failure Mode and Effect Analysis (FMEA) dan Fault Tree Analysis (FTA) (Wang et al, 2021).

e –ISSN : 2715-9590 | p–ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal.v5i1

Tabel 1 menunjukkan data dari Agustus hingga Nopember 2023 yang menunjukkan jumlah produk gagal uji kualitas yang cenderung meningkat setiap bulan.

Tabel 1 Produk Teh Gagal Uji Kualitas Tahun 2023

Bulan	Jumlah Produk	Total Produksi	Persentasi
	Gagal QC (Kg)	(Kg)	Produk gagal
Agustus	150.780	2.513.000	6%
September	153.720	2.135.000	7,2%
Oktober	158.630	1.982.875	8%
Nopember	159.350	1.897.023	8,4%

Teh yang gagal uji Quality Control (QC) menyebabkan kerugian perusahaan karena teh harus dibuang sehingga akan menimbulkan kerugian perusahaan sebesar Rp. 19.000,-/kg sesuai dengan harga rata rata teh pada 2023, Dilain sisi dengan terjadinya produk gagal QC, Perusahaan tidak dapat memenuhi semua permintaan pelanggan karena adanya teh yang gagal QC sehingga dapat mengecewakan konsumen karena pesanannya tertunda.

Mengacu pada uraian sebelumnya, permasalahan penelitian ini dapat dirumuskan yaitu faktor apa saja yang menjadi risiko dalam memproduksi teh dan bagaimana memitigasi risiko dalam kegiatan produksi teh di PTPN VIII. Sedangkan tujuan penelitian ini adalah mengidentifikasi risiko-risiko yang timbul pada kegiatan manufaktur teh dan merancang tindakan mitigasi untuk perbaikan terhadap risiko guna meminimasi biaya kerugian Perusahaan akibat produksi yang gagal *quality control*.

METODE PENELITIAN

Penelitian ini menggunakan metode *Failure Mode and Effect Analysis* (FMEA) yaitu metode terstruktur untuk menemukan dan mencegah mode kegagalan sebanyak mungkin dengan skala prioritas. Metode ini dapat digunakan untuk menganalisis mode kegagalan baik pada produk maupun proses (Belu et al, 2019). Dalam hal untuk mengidentifikasi mode risiko kegagalan dan tingkat keparahan, metode FMEA melakukan perhitungan dengan *Risk Priority Number* (RPN). Untuk memperoleh Nilai RPN yaitu dengan cara mangalikan rating severity (1-10), occurrence (1-10) dan detection (1-10). (Subriadi & Najwa, 2020).

Berdasarkan penggolongan dari hasil perhitungan RPN, maka dilanjutkan menggunakan *Fault Tree Analysis* (FTA). FTA dilakukan dengan pendekatan *top down*, dimulai dari adanya asumsi kegagalan atau kerugian (biaya atau lainnya), selanjutnya dijelaskan penyebab-penyebab kejadian puncak sampai pada sumber kegagalan (*root cause*), serta diidentifikasi risiko yang berperan terhadap terjadinya kegagalan (Shafiee et al. 2019).

Dengan demikian langkah-langkah penggunaan metode FMEA dan FTA di dalam penelitian ini dapat dirinci, yaitu:

- 1. Mengidentifikasi proses produksi teh di PTPN VIII. Langkah pertama adalah mempelajari dan mengidentifikasi alur dari setiap aktivitas pada kegiatan produksi teh di PTPN VIII.
- 2. Identifikasi risiko pada proses produksi. Mengidentifikasi risiko yang ada pada setiap aktivitas pada proses produksi teh di PTPN VIII, dengan melakukan wawancara dengan pihak terkait.
- 3. Penilaian risiko menggunakan metode FMEA. Dengan berhasilnya diidentifikasi risiko selanjutnya para para *expert* akan memberikan penilaian tentang *Severity, Occurrence*, dan *Detection* dengan kriteria mengacu pada Tabel 2, Tabel 3 dan Tabel 4 (Shafiee et al, 2019).

e –ISSN : 2715-9590 | p–ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal.v5i1

Tabel 2. Skala Severity

Rating	Dampak	Severity		
1	Tidak ada	Tidak ada efek		
2	Sangat minor	Sistim bekerja dengan minimal gangguan		
3	Minor	Sistim dioperasikan dengan beberapa penurunan performansi		
4	Sangat rendah	Sistim bekerja terhadap penurunan secara nyata dari performansi		
5	Rendah	Sistim beroperasi tanpa rusak ringan		
6	Sedang	Sistim telah beroperasi namun terdapat kerusakan ringan		
7	Tinggi	Sistim bekerja dengan kerusakan		
8	Sangat tinggi	Sistim operasi dengan gagal merusak tanpa mengorbankan		
		keselamatan.		
9	Berbahaya	Keparahan dengan tingkat yang tinggi dan mempengaruhi kegiatan		
	peringatan	gatan sistim secara aman.		
10	Berbahaya tanpa	Keparahan dengan tingkat yang sangat tinggi tanpa adanya		
	adanya peringatan pemberitahuan dan mempengaruhi kegiatan sistim secara aman.			

Sedangkan penilaian *occurrence* berdasarkan kekerapan terjadinya kecacatan mengacu pada Tabel 3.

Tabel 3. Skala Occurrence

Rating	Kemungkinan Occurrence	Kemungkinan failure	
10	Sangat Tinggi (ST): failure yang hampir tidak bisa	>1 dari 2	
	dihindari		
9	Tinggi (T): failure yang berulang-ulang	1 dari 3	
8		1 dari 8	
7		1 dari 20	
6	Sedang (S): failure yang jarang-jarang	1 dari 80	
5		1 dari 400	
4		1 dari 2000	
3	Rendah (R): failure yang relatif rendah	1 dari 15000	
2		1 dari 150000	
1			

Sementara *Detection* adalah sebuah kendali proses guna memindai secara spesifik akar penyebab dari kegagalan mengacu pada Tabel 4.

Tabel 4. Skala Detection

Rating	Detection	Kemungkinan Temuan dari Perangkat Pemeriksa			
10	Ketidakpastian Mutlak (KM)	Tidak ada perangkat pemeriksa dapat memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			
9	Sangat Kecil (SK)	Sangat kecil kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> berikutnya			
8	Kecil (K)	Kecil kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			
7	Sangat Rendah (SR)	Sangat rendah kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> berikutnya			
6	Rendah (L)	Rendah kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			
5	Sedang (S)	Sedang kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			
4	Sangat Sedang (SS)	Sangat sedang kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			
3	Tinggi (T)	Tinggi kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			
2	Sangat Tinggi (ST)	Sangat tinggi kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			
1	Hampir Tidak Pasti (HT)	Hampir pasti kemampuan perangkat pemeriksa memindai penyebab <i>failure</i> dan kaidah <i>failure</i> selanjutnya.			

4. Menentukan nilai Risk Priority Number (RPN) = Severity x Occurance x Detection

e –ISSN : 2715-9590 | p–ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal. v5i1

5. Mencari sumber penyebab dari risiko prioritas dengan metode FTA. Risiko yang berada pada interval 80% kumulatif RPN selanjutnya dijadikan prioritas utama yang mengaplikasikan metode FTA didasarkan dari 20% untuk total risiko yang ada (Liu et al, 2013).

6. Analisis perbaikan. Berdasarkan sumber penyebab risiko yang ada pada metode FTA maka diberikan usulan perbaikan untuk dapat mencegah atau meminimalisir risko tersebut dan analisis biaya risiko kegagalan.

HASIL DAN PEMBAHASAN

Failure Mode And Effect Analysis (FMEA)

1) Penentuan Risiko

Tahap awal dilakukan pada Metode FMEA adalah mengidentifikasi potensi *failure mode* atau mengidentifikasi jenis-jenis risiko kegagalan. Tabel 5 menjelaskan hasil identifikasi *potential failure mode* pada aktifitas manufaktur di PT Perkebunan Nusantara VIII.

Tabel 5 Identifikasi Risiko

Kode	Risiko	Keterangan
R1	Pucuk Teh Rusak /	Pucuk teh dapat rusak atau memar akibat tertekan, terinjak, terbanting
	Memar	dll. Pucuk teh yang rusak menyebabkan terjadinya oksidasi dini yang membuat warna bubuk teh nantinya terlalu kecoklatan (<i>brownish</i>).
R2	Monorail Macet	Ketika monorail yang digunakan untuk mengangkut teh macet, maka teh harus diangkut manual yang memakan waktu lebih lama dan dapat membuat pucuk teh menjadi layu dan kemerahan, sehingga rasa seduhan teh nantinya akan terlau <i>soft</i> atau <i>thin</i> .
R3	Asap Masuk ke Withering trough	Asap tungku pembakaran yang masuk ke <i>Withering trough</i> akan mencemari pucuk teh yang nantinya bubuk teh akan menjadi berbau asap (<i>smoky</i>).
R4	Pelayuan pucuk tidak merata	Pelayuan yang tidak merata membuat adanya pucuk yang telalu layu dan kurang layu, karena adanya hamparan teh yang masih menggumpal atau menumpuk, mengakibatkan rusaknya rasa air seduhan teh nantinya.
R5	Hasil gilingan terlalu kasar	Partikel bubuk teh hasil pengilingan terlalu kasar, terlihat dari partikel bubuk teh yang berukuran besar (<i>flaky open</i>)
R6	Hasil gilingan terlalu halus	Partikel bubuk teh hasil pengilingan terlalu halus, terlihat dari partikel bubuk teh yang berukuran kecil, membuat terlalu banyaknya bubuk teh <i>powdery</i> dan <i>dusty</i>
R7	Bubuk teh terkontaminasi.	Pada proses penggilingan seringkali bubuk teh tercecer sehingga terkontaminasi dengan kotoran seperti debu,batu kerikil dll
R8	Over oksidasi	Kondisi dimana bubuk teh mengalami oksidasi yang berlebih, diakibatkan oleh terjadinya proses ganda, terlalu lama, hamparan teh terlalu tipis, hal ini mengakibatkan kecacatan pada hasil seduhan teh nantinya seperti <i>dull, thin, soft</i> .
R9	Under Fermented	Kondisi dimana bubuk teh belum mencapai kondisi optimal pada proses oksidasi, karena proses yang terlalu cepat, hal ini dapat menyebabkan seduhan teh menjadi <i>light, dan greenish</i> .
R10	Overfired	Overfired terjadi ketika kadar air pada bubuk teh telalu rendah, karena suhu yang terlalu tinggi, proses yang terlalu lama, atau hamparan bubuk teh terlau tipis yang mengakibatkan hasil akhirnya teh memili rasa dan aroma yang gosong.
R11	Bubuk teh kurang matang	Bubuk teh memiliki kadar air terlalu banyak, karena suhu yang terlalu rendah, hal ini dapat mengakibatkan bubuk the yang kurang kering, rentan berjamur, dan membuat rasa seduhan menjadi <i>stewed</i> .
R12	Asap masuk ke mesin pengering	Terjadi kebocoran pada mesin pengering sehingga asap mencemari pucuk teh dan nantinya bubuk teh akan menjadi berbau asap (<i>smoky</i>)
R13	Bubuk teh tercampur saat proses sortasi.	Bubuk teh yang berjatuhan saat proses sortasi dan keteledoran pegawai menyebabkan tercampurnya bubuk teh dengan dengan bubuk teh yang berbeda jenis.
R14	Kemasan sack yang menggelembung.	Pada proses pengemasan, dapat terjadi gelembung karena pekerja lalai ketika menunggu bubuk teh untuk dimasukkan ke dalam kemasan. Hal ini terjadi karena gagal menekan udara keluar dari kemasan, yang pada

e –ISSN : 2715-9590 | p–ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal. v5i1

Tabel 5 Identifikasi Risiko

Kode	Risiko	Keterangan			
		gilirannya menjadikan kemasan menggelembung dan menghasilkan			
		partikel bubuk teh yang lebih kecil.			

2) Menghitung Nilai Severity (S), Occurrence (O) dan Detection (D) dan RPN Setelah identifikasi risiko sebelumnya, input akan dimasukkan ke dalam perhitungan FMEA, yang akan memberikan pembobotan pada nilai Ketegangan (S), Kebenaran (O), dan Pencegahan (D). Tiga orang responden yaitu kepala departemen Teknik dan Pengolahan, karyawan departemen pengendalian kualitas, dan karyawan departemen logistik komoditi, dipilih untuk mendiskusikan penyebab kegagalan yang mungkin terjadi. Berdasarkan nilai Severity (S), Occurence (O), dan Detection (D) selanjutnya dihitung Risk Priority Number (RPN) dengan cara RPN = Severity X Occurance X Detection yang disajikan pada Tabel 6.

Tabel 6. Hasil perhitungan RPN

Kode	Risiko	s Hasıl	0	D	RPN	%	%
Houe	Hisino					, 0	kumulatif
R3	Asap Masuk ke Withering						
	trough	8,3	7,0	6,3	369,4444	19,40	19,40
R12	Asap masuk ke mesin						
	pengering	8,3	6,3	5,3	281,4815	14,78	34,18
R10	Overfired	7,7	6,3	4,3	210,4074	11,05	45,23
R6	Hasil gilingan terlalu halus	5,7	6,3	5,7	203,3704	10,68	55,90
R8	Over Oksidasi	7,7	5,7	4,3	188,2593	9,88	65,79
R7	Bubuk teh terkontaminasi						
	saat proses pengilingan.	4,0	5,0	7,7	153,3333	8,05	73,84
R5	Hasil gilingan terlalu kasar	3,7	5,3	6,0	117,3333	6,16	80,00
R13	Bubuk teh tercampur saat						
	proses sortasi.	3,3	2,3	9,3	72,59259	3,81	83,81
R1	Pucuk Teh Rusak / Memar	1,7	6,3	6,7	70,37037	3,69	87,51
R11	Bubuk teh kurang matang	3,0	5,0	4,3	65	3,41	90,92
R4	Pelayuan pucuk tidak						
	merata	2,3	3,7	7,0	59,88889	3,14	94,06
R14	Kemasan sack yang						
	menggelembung.	4,3	3,3	3,3	48,14815	2,53	96,59
R9	Under Fermented	1,3	5,7	6,3	47,85185	2,51	99,11
R2	Monorail Macet	1,3	1,7	7,7	17,03704	0,89	100
	Total				1904,5	100	

Pengklasifikasian prioritas RPN berdasarkan Pareto

Berdasarkan perhitungan dan pengurutan nilai RPN pada risiko dari yang terkecil hingga terbesar yang telah dilakukan selanjutnya data tersebut disajikan kedalam diagram pareto pada Gambar 1.

Gambar 1. Pareto Risk Priority Number (RPN)

Pada Tabel 6 dan Gambar 1 dapat ditetapkan priritas utama (kelas A) yang menunjukkan 80% kumulatif risiko paling kritis berdasarkan nilai RPN secara berurutan adalah R3, R12, R10, R6, R8, R7 dan R5.

Fault Tree Analysis (FTA)

Setelah menyelesaikan perhitungan RPN, terdapat 7 risiko yang masuk kedalam prinsip pareto 20%-80% yang akan dianalisis lebih lanjut untuk mengetahui akar permasalahan yang dapat menyebabkan risiko kegagalan terjadi. Penerapan metode ini dilakukan dengan membuat diagram pohon *mode* kegagalan potensial terjadinya risiko kegagalan yang dapat terjadi. Peneliti melakukan wawancara dengan kepala bagian produksi dan kepala bagian teknik dan pengolahan tentang penyebab dari risiko yang ada pada proses produksi the. Hasil FTA disajikan pada Gambar 2 s.d. Gambar 7, dengan singkatan FT adalah *Fault Tree*.

(1) Asap Masuk ke *Withering trough* Pengering

Gambar 2. FT Asap Masuk ke Withering trough Pengering

(2) Asap Masuk Ke Mesin

Gambar 3. FT Asap Masuk Ke Mesin

(3) Overfired

Gambar 4. FT Overfired halus

(4) Hasil Gilingan Terlalu Halus

Gambar 5. FT Hasil gilingan terlalu

e –ISSN : 2715-9590 | p–ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal. v5i1

(5) Over Oksidasi

Gambar 6. FT Overoksidasi

(6) Bubuk Teh terkontaminasi

Gambar 7. FT Bubuk teh terkontaminasi

(7) Hasil Gilingan Terlalu Kasar

Gambar 8. FT Hasil gilingan terlalu kasar

Berdasarkan hasil FTA maka terdapat 7 kesalahan dengan RPN tertinggi yang didapat dari metode FMEA pada proses produksi, yaitu:

- 1) Asap kayu bakar yang berlebih. Asap hasil dari pembakaran bahan bakar kayu pada proses pengeringan dan pelayuan dapat mencemari teh dan merusak kualitas teh menjadi cacat mutu (*smoky*) dimana hal ini merugikan perusahaan. Asap berlebih dapat terjadi karena kualitas kayu yang rusak atau sudah lembab, basah, dan berjamur, selain itu juga karena penggunaan kayu yang berlebihan.
- 2) Penyimpanan kayu bakar tidak sesuai standar. Peyimpanan kayu bakar tidak memiliki sop khusus yang mengatur hal tersebut sehingga tidak ada pengecekan kondisi kayu, dan penyimpanan serta pengambilan kayu dilakukan secara acak membuat adanya kemungkinan kayu yang tersimpan terlalu lama dan menjadi lembab atau berjamur yang nantinya menghasilkan asap yang berlebih saat dibakar.
- 3) Kondisi mesin tidak optimal. Kondisi mesin yang tidak optimal diantaranya saat proses pengeringan dan pelayuan terjadi kebocoran pada heater yang menyebabkan bubuk teh tercemar asap pembakaran, saat proses penggilingan pisau roll yang tumpul dan setelan roll yang longgar membuat hasil gilingan terlalu kasar yang membuat kualitas bubuk teh tidak sesuai standar (flaky open).
- 4) Kelalaian pegawai. Kelalaian pegawai yang tidak menjalankan tugasnya sesuai sop yang ada seperti saat proses pengeringan dimana setingan temperature terlalu tinggi, hamparan bubuk teh

e -ISSN : 2715-9590 | p-ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal. v5i1

saat pengeringan terlalu tipis, dan proses pengeringan yang dilakukan terlalu lama, membuat rusaknya kualitas bubuk teh menjadi *dry, fired*, dan *burnt*. Pada proses penggilingan setingan rpm yang terlalu tinggi, bubuk teh yang dimasukan terlalu sedikit membuat hasil gilingan terlalu halus tidak sesuai standar (*dusty*). Pada proses oksidasi proses oksidasi yang dilakukan terlalu lama, hamparan teh yang terlalu tipis menyebabkan over oksidasi yang merusak warna dan aroma the.

- 5) Penanganan bahan baku yang tidak baik saat penerimaan barang. Penanganan bahan baku saat penerimaan barang yang tidak mematuhi sop yang ada seperti, pengisian rajutan yang terlalu padat dan pucuk teh yang terbanting atau terinjak saat proses bongkar muat dapat merusak pucuk menjadi mudah hancur saat digiling, sehingga hasil gilingan tidak sesuai standar karena terlalu halus dan dapat menyebabkan over oksidasi karena pucuk yang rusak kadar airnya sudah berkurang.
- 6) Kebersihan lingkungan dan alat produksi kurang terjaga. Kebersihan lingkungan dan alat produksi kurang terjaga membuat adanya kemungkinan kotoran yang ada di lingkungan dan alat produksi mencemari bubuk teh sehingga bubuk teh yang terkontaminasi tersebut akan rusak kualitasnya.

Analisis Perbaikan

Penanganan atau pencegahan terjadinya risiko kegagalan produk pada proses manufaktur teh di PTPN VIII dapat dianalisis perbaikiannya dengan cara berikut ini:

- 1) Pengawasan penggunaan bahan bakar kayu dan pembuatan prosedur standar operasional prosedur (SOP) untuk penyimpanan kayu bakar. Mengawasi penggunaan kayu bakar agar tidak berlebihan dan memastikan kayu yang digunakan kering. Untuk melakukan ini, lakukan sop untuk menyimpan kayu bakar dan gunakan sistem first in first out (FIFO) untuk mencegah kayu bakar menjadi lembab karena terlalu lama disimpan. Dengan menggunakan metode FIFO ini, kayu bakar yang pertama disimpan di Gudang harus segera digunakan, dengan demikian kerusakan akibat usia penyimpanan dapat diminimalkan. Dengan cara ini, kayu tidak akan lapuk, lembab, atau berjamur karena terlalu lama disimpan (Dewi dan Azizah, 2022).
- 2) Membuat jadwal perawatan mesin. Buat jadwal perawatan mesin secara berkala untuk melacak seluruh fasilitas, termasuk mesin, alat produksi, dan sebagainya. Dengan menjadwalkan perawatan yang tepat, Anda dapat meningkatkan produktivitas dan mempertahankan tingkat fungsional produk dalam jangka panjang (Yuli & Nita, 2022).
- 3) Memberikan pelatihan kerja untuk meningkatkan kemampuan dan pengetahuan pegawai dan mengurangi kesalahan. Menurut Kurniasari et al. (2018), pelatihan kerja dapat membantu karyawan meningkatkan kemampuan, ketrampilan, perilaku dan juga pengetahuan, sehingga dapat menghasilkan tingkat produktivitas yang lebih tinggi dan tingkat kesalahan yang lebih rendah..
- 4) Melakukan *briefing* dan memperketat pengawasan tentang implementasi standar operasi prosedur kegiatan manufaktur, melindungi lingkungan dan peralatan kerja yang bersih, serta memasang stiker atau poster tentang SOP di tempat produksi. *Briefing* merupakan proses membahas hal-hal yang ada akan datang atau yang belum terjadi. Komunikasi yang baik harus digunakan oleh pimpinan agar kinerja perusahaan yang diharapkan dapat dicapai. Briefing, biasanya berlangsung singkat, dilakukan untuk memastikan bahwa karyawan memahami semua informasi yang terkait dengan tugas dan tanggung jawab mereka sehingga mereka dapat melakukan pekerjaan mereka sesuai dengan prosedur kerja (Hsb & Ramadhany, 2023).

Analisis Biaya Risiko Proses Produksi Teh

Analalisis perbaikan untuk pencegahan terjadinya risiko kegagalan produk pada proses produksi teh di PTPN VIII, diestimasi dapat menghilangkan Biaya Risiko proses produksi teh.

Biaya kerugian Perusahaan akibat teh yang gagal QC adalah sebesar Rp. 19.000,-/kg, sehingga total kerugian Perusahaan selama 4 bulan adalah Rp. 11.827.120.069,- (Tabel 8). Dengan demikian, jika perbaikan dilakukan dalam proses produksi teh maka biaya kerugian selama 4 bulan ke depan dapat dihilangkan. Selain itu juga perusahaan dapat memenuhi semua permintaan sehingga pelanggan merasa puas dengan kualitas produk juga puas dengan ketepatan waktu pengiriman produk yang merek pesan.

e –ISSN : 2715-9590 | p–ISSN : 2716-263X

Volume 5 Nomor 1, Januari 2024

DOI: https://doi.org/10.47491/landjournal. v5i1

Tabel 8. Produk Teh Gagal Uji Kualitas dan Biaya Kerugian

Bulan	Jumlah Produk	Kerugian (Rp.)	
	Gagal QC (Kg)		
Agustus	150.780	2.864.820.000	
September	153.720	2.920.680.069	
Oktober	158.630	3.013.970.000	
Nopember	159.350	3.027.650.000	

KESIMPULAN

Kesimpulan penelitian ini yang didasarkan pada pengolahan data dan pembahasan yaitu:

- 1. Analisis Pareto terhadap nilai RPN dapat mengidentifikasi 7 risiko utama dari 14 risiko yang ada dalam memproduksi teh di PTPN VIII. Akar penyebabnya diidentifkasi menggunakan metode FTA yaitu Asap Masuk ke *Withering trough*, Asap masuk ke mesin pengering, *Overfired*, Hasil gilingan terlalu halus, *Over* Oksidasi, Bubuk teh terkontaminasi, dan hasil gilingan terlalu kasar.
- 2. Perbaikan yang dilakukan untuk penanganan dan pencegahan terjadinya risiko kegagalan produk diestimasi dapat mereduksi biaya total kerugian Perusahaan akibat teh yang gagal QC selama 4 bulan sebesar Rp. 11.827.120.069,-

Saran pengembangan lebih lanjut untuk penelitian ini yaitu menggunakan fuzzy AHP model untuk menilai risiko sebelum menggunakan FMEA.

REFERENSI

- Badan Pusat Statistik Indonesia. 2021. "Statistic Teh Indonesia 2021." Katalog/Catalog: 5504001, ISSN: 1978-9912
- Belu, N., Ionescu, L. M., & Rachieru, N. (2019). Risk-cost model for FMEA approach through Genetic algorithms A case study in automotive industry. *IOP Conference Series: Materials Science and Engineering*, 564, 012102. https://doi.org/10.1088/1757-899x/564/1/012102
- Dewi, R. A., & Fahriza N.A. (2022). Analisis Tata Letak Dan Penerapan Sistem First In First Out Pada Gudang Barang Jadi Studi Kasus: PT. SAMCON. *Jurnal Ilmiah Wahana Pendidikan*, 8 (10): 264–70. https://Doi.Org/10.5281/Zenodo.6800387
- Hsb, K., & Ramadhany, S. (2023). Pengaruh Briefing Dan Pengawasan Terhadap Kualitas Kerja Karyawan Pada PT. Telkom Indonesia Datel Ciputat. *Dynamic Management Journal*, 7(1): 15. Https://Doi.Org/10.31000/Dmj.V7i1.7201
- Kurniasari, R., Oktiani & Ramadhanti G. (2018). Pelatihan Kerja Dalam Usaha Meningkatkan Kinerja Karyawan Baru Pada PT Kusumatama Mitra Selaras Jakarta. *Widya Cipta*, 2(2): 239–46
- Liu, C.-T., Hwang, S.-L., & Lin, I-K. (2013). Safety Analysis of Combined FMEA and FTA with Computer Software Assistance Take Photovoltaic Plant for Example. *IFAC Proceedings Volumes*, 46(9), 2151–2155. https://doi.org/10.3182/20130619-3-ru-3018.00370
- Shafiee, M., Enjema, E., & Kolios, A. (2019). An Integrated FTA-FMEA Model for Risk Analysis of Engineering Systems: A Case Study of Subsea Blowout Preventers. *Applied Sciences*, 9(6), 1192. https://doi.org/10.3390/app9061192
- Subramanian, R., Swapnesh Taterh, Singh, D., & Lee, H.-N. (2022). Efficient Fine Tuned Trapezoidal Fuzzy-Based Model for Failure Mode Effect Analysis Risk Prioritization. *IEEE Access*, 10, 50037–50046. https://doi.org/10.1109/access.2022.3172513
- Subriadi, A. P., & Najwa, N. F. (2020). The consistency analysis of failure mode and effect analysis (FMEA) in information technology risk assessment. *Heliyon*, 6(1), e03161. https://doi.org/10.1016/j.heliyon.2020.e03161
- Yuli S. & Nita M. (2022). Perencanaan Penjadwalan Preventive Maintenance Mesin Pounch Dengan Critical Path Method Di PT. Grafika Nusantara. *INSOLOGI: Jurnal Sains Dan Teknologi*, 1 (1): 01–10. https://Doi.Org/10.55123/Insologi.VIII.105.
- Wang, W., Ma, Y., & Liu, S. (2021). A Z-number integrated weighted MULTIMOORA method for risk prioritization in FMEA. *Journal of Intelligent & Fuzzy Systems*, 41(2), 2523–2537. https://doi.org/10.3233/jifs-200678

