

Columnar Databases for Analytics

K V Subramaniam

Computer Science and Engineering

Hadoop Available Storage Types

HDFS and it's limitations

HDFS is good for batch processing (scans over big files)

Limitations

- Not good for record lookup
- Not good for incremental addition of small batches
- Not good for updates

HIVE and it's limitations

- Doesn't store data
 - Uses HDFS or Hbase as actual store
- Provides an SQL Interface for querying data
- Data must be Structured: definite schema

Limitations

- Not good for record lookup
- Not good for incremental addition of small batches
- Not good for updates
- Not good for unstructured/semistructured data

Hbase and Cassandra

- Built on the BigTable data model
- different in architecture

Advantages

- Fast record lookup
- Record level insertion
- Support for updates (Hbase creates new versions)
- Support for unstructured/semistructured data

Chang, Fay, et al. "Bigtable: A distributed storage system for structured data." ACM Transactions on Computer Systems (TOCS) 26.2 (2008): 4.

Use case for different storage types

- HDFS
 - Unstructured data
 - Writes: no updates, only appends
 - Read entire file and analyze
- Hive
 - Structured data
 - Analytics via SQL
- HBase/Cassandra
 - Unstructured data
 - Arbitrary writes
 - Analytics

Exercise

Which of these could be stored in HDFS, Hive or Hbase?

Parsed transaction logs of user activity in a website where relevant fields from the log have been extracted

Unparsed transaction logs of user activity

Database of users and friends at a social website, which is periodically analyzed for social networking analysis

Solution

Which of these could be stored in HDFS, Hive or Hbase?

Parsed transaction logs of user activity in a website where relevant fields from the log have been extracted: **HIVE**

Unparsed transaction logs of user activity: **HDFS**

Database of users and friends at a social website, which is periodically analyzed for social networking analysis: **HBASE**

Columnar Storage

Motivational Example – storage in DBMS

Row Key	Info:height	Info:age	School:House	School:sports
HarryPotter	4.5ft	11	Gryffindor	Quidditch
Voldemort	7ft	50	Slytherin	

- Row storage: DB is stored as a single file, one row per line
- Column storage: each column is a separate file, one value per line
- For using data, we need to perform an I/O to load data from disk
- Which method does less I/O for
 - Analyzing the relationship between age and earnings
 - Column storage
 - Adding a new row or read a row
 - Row storage

History

PES UNIVERSITY

- The first use of dbs were for transactions
 - Read a person's bank balance
 - Update bank balance
 - Row storage used since more efficient for transactions
- Column dbs
 - Became popular with Big Data systems
 - More efficient for analytics, particularly if db is large
 - To handle unstructured data

Unstructured data

STRUCTURED VS. UNSTRUCTURED DATA

Structured Data High Degree of organization, such as a relational database Column Value Patient Date of Birth 02/13/1972 Date Admitted 02/05/2014 Unstruction Informusing "The pain, sheada history experi

Unstructured Data

Information that is difficult to organize using traditional mechanisms

"The patient came in complaining of chest pain, shortness of breath, and lingering headaches...smokes 2 packs a day... family history of heart disease...has been experiencing similar symptoms for the past 12 hours...."

- How can the unstructured data above be stored in a structured relational db?
- How can it be stored in a unstructured db?

https://www.slideshare.net/perficientinc/ibm-watson-content-analytics-discover-hidden-value-in-your-unstructured-data

Unstructured data

Customer id	Visit id	Date	
		2-Oct 2017	
Customer id	Visit id	Symptom id	Symptom
		1	Chest pain
		2	Headache

Structured db

Customer id	Visit id	Info
		Date: {2-Oct 2017} Symptoms: {Chest pain, Headache}

Unstructured db: simpler, more efficient

Hbase and Cassandra Data Model

Hbase/Cassandra

- Hbase
 - Distributed column oriented database built on top of HDFS
 - Data is logically organized as rows/columns of a table
- Cassandra
 - Distributed database peer to peer built by facebook
 - Inspired by Dynamo DB
 - Same data model as Hbase inspired by BigTable

Data Model – BigTable

Key-Value pairs

Column Families

HBase schema consists of several *Tables*

Each table consists of a set of *Column Families*

Columns are not part of the schema

HBase has **Dynamic Columns**

Because column names are encoded inside the cells

Different cells can have different columns

"School" column family has different columns in different cells

Name	Data
HarryPotter	Info:{height:"4.5ft", age: "11@2011"} School:{House:"Gryffindor", Sports:"Quidditch"}
Voldemort	Info:{height:"7ft", age: "50"} School:{House:"Syltherin", Role:"Prefect"}

Data Model – BigTable

Row Key	Data
HarryPotter	Info:{height:"4.5ft", age: "11@2011"} School:{House:"Gryffindor", Sports:"Quidditch"}
Voldemort	Info:{height:"7ft", age: "50"} School:{House:"Syltherin", Role:"Prefect@1980, DarkLord 1995"}

Different types of data into different column families

Single column may have different values at different timestamps

Column family named "anchor"

Data Model – BigTable

Key

Byte array
Serves as the primary key
for the table
Indexed for fast lookup

Column Family

Has a name (string)
Contains one or more related columns

Column

Belongs to one column family
Included inside the row
familyName:columnNa
me

	y named "Con Row key	teTisne Stamp	Column "content s:"	Column "a	nchor:"
/ key	"com.apac he.ww w"	t12	" <html></html>		
ıp		t11.	" <html></html>		
		t10		"anchor:apache .com"	"APACH E"
æ		t15		"anchor:cnnsi.co m"	"CNN"
		t13		"anchor:my.look.	"CNN.co m"
n	"com.cnn.w ww"	t6	" <html> "</html>		
ow nnNa		t5	" <html></html>		
		t3	" <html>"</html>		

Data Model – BigTable

Version number for each

Version Number

Unique within each key

By default → System's timestamp

Data type is Long

Value (Cell)

Byte array (Hbase only)

th row Row key	Time Stamp	Column "content s:"	Column "a	nchor:"
	t12	" <html></html>		va
"com.apac he.ww w"	t11	" <html></html>		
	t10		"anchor:apache".com"	"APACH E"
	t15		"anchor:cnnsi.co m"	"CNN"
"com.cnn.w ww"	t13		"anchor:my.look.	"CNN.co m"
	t6	" <html>"</html>		
	t5	" <html></html>		
	t3	" <html>"</html>		

Hbase Architecture

Hbase Architecture – Master Slave

Region

- A subset of a table's rows, like horizontal range partitioning
- Automatically done

RegionServer (many slaves)

- Manages data regions
- Serves data for reads and writes (*using a log*)
- Like datanode of HDFS

Master

- Responsible for coordinating the slaves
- Assigns regions, detects failures
- Admin functions
- Line namenode of HDFS

Regions and region servers

Keys: [M-T)

Keys: [C-F)

Start with a single region and then master monitors load and splits into multiple regions

Refer https://www.mapr.com/blog/in-depth-look-hbase-architecture

Keys: [A-C)

Read/Write Operation

Cassandra Architecture

Cassandra Architecture – peer to peer architecture

- Differences from Hbase
 - Request coordination over a partitioned dataset – no Master
 - Ring membership and failure detection no Master
 - Local persistence (storage) engine does not rely on HDFS
- Cqlsh for performing queries

Hbase usage

Hbase: Creating a new table

Column family name

```
hbase(main):001:0> create 'test', 'data'
0 row(s) in 0.9810 seconds
```

Table name

Hbase inserting data


```
Row key
hbase(main):003:0> put 'test', 'row1', 'data:1', 'value1'
hbase(main):004:0> put 'test', 'row2', '/ata:2', 'value2'
hbase(main):005:0> put 'test', 'row3', data:3', 'value3'
                    Column
                                                  Value
                     name
```

Hbase: retrieving data

Getting a specific row

```
hbase(main):006:0> get 'test', 'row1'

COLUMN

CELL

data:1

1 row(s) in 0.0240 seconds

hbase(main):007:0> scan 'test'

ROW

COLUMN+CELL

row1

COLUMN+CELL

column=data:1, timestamp=1414927084811, value=value1
```

All rows

THANK YOU

K V Subramaniam

Dept. of Computer Science and Engineering

subramaniamkv@pes.edu