Question 1

If Q is an $n \times n$ orthogonal matrix, then $Q^{\top}Q = QQ^{\top} = I_n$ where I_n is the $n \times n$ identity matrix.

Part A

Let Q_1 and Q_2 be orthogonal matrices. Then,

$$\begin{aligned} (Q_1 Q_2)^\top (Q_1 Q_2) &= Q_2^\top Q_1^\top Q_1 Q_2 = Q_2^\top Q_2 = I_n \\ &= (Q_1 Q_2) (Q_1 Q_2)^\top = Q_1 Q_2 Q_2^\top Q_1^\top = Q_1 Q_1^\top = I_n. \end{aligned}$$

Hence, Q_1Q_2 must be orthogonal.

Part B

Suppose Q^{\top} is an orthogonal matrix. Then,

$$(Q^{\top})^{\top}Q^{\top} = QQ^{\top} = I_n$$

= $Q^{\top}(Q^{\top})^{\top} = Q^{\top}Q = I_n$.

As such, Q^{\top} must be orthogonal. Subsequently, if Q is an orthogonal matrix (where its column form an orthonormal basis), then its rows must also form an orthonormal basis.

Proof: Suppose Q is made up of column vectors $\overrightarrow{\mathbf{q}}_i$ for each column $i = 1, \dots, n$. If Q is an $n \times n$ orthogonal matrix, then

$$Q^{\top}Q = \begin{pmatrix} -\overrightarrow{\mathbf{q}}_{1}^{\top} - \\ \vdots \\ -\overrightarrow{\mathbf{q}}_{n}^{\top} - \end{pmatrix} \begin{pmatrix} \begin{vmatrix} & & & | \\ \overrightarrow{\mathbf{q}}_{1} & \cdots & \overrightarrow{\mathbf{q}}_{n} \\ | & & | \end{pmatrix} = \begin{pmatrix} 1 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix} = I_{n}.$$

Since the columns $\vec{\mathbf{q}}_i$ form an orthonormal basis of \mathbb{R}^n , the value of the diagonal entries (i,i) is $\langle \vec{\mathbf{q}}_i^{\top}, \vec{\mathbf{q}}_i \rangle = 1$ and the value of all other entries (i,j) where $i \neq j$ is $\langle \vec{\mathbf{q}}_i^{\top}, \vec{\mathbf{q}}_j \rangle = 0$. Thus, $||\vec{\mathbf{q}}_i|| = ||\vec{\mathbf{q}}_i^{\top}|| = 1$ for all rows i.

Part C

Let
$$Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
. Then, $Q^{\top} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. As such,
$$QQ^{\top} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$= \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \sin \theta \cos \theta - \sin \theta \cos \theta & \sin^2 \theta + \cos^2 \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= Q^{\top}Q$$

$$= \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$= \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & -\cos \theta \sin \theta + \sin \theta \cos \theta \\ -\sin \theta \cos \theta + \sin \theta \cos \theta & \sin^2 \theta + \cos^2 \theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= I_2.$$

Thus, $Q = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ is an orthogonal matrix. This special matrix is known as the rotational matrix. Let $\vec{\mathbf{v}} = \begin{pmatrix} x \\ y \end{pmatrix}$ be a vector on the Cartesian plane. Applying Q to a vector $\vec{\mathbf{v}}$ will rotate it counterclockwise by θ .

$$Q\vec{\mathbf{v}} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix}$$

For example, let $\vec{\mathbf{v}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ be a vector on an xy-plane. We can flip the vector across y-axis by rotating the $\vec{\mathbf{v}}$ by $\theta = \pi$.

$$-\vec{\mathbf{v}} = \begin{pmatrix} \cos \pi & -\sin \pi \\ \sin \pi & \cos \pi \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1(\cos \pi) - 0(\sin \pi) \\ 1(\sin \pi) + 0(\cos \pi) \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Part D

By definition, the norm of a vector $\vec{\mathbf{x}} \in \mathbb{R}^n$ is given by $||\vec{\mathbf{x}}|| = \sqrt{\langle \vec{\mathbf{x}}, \vec{\mathbf{x}} \rangle} = \sqrt{\vec{\mathbf{x}}^\top \vec{\mathbf{x}}}$. If Q is an orthogonal matrix, then:

$$\begin{aligned} ||Q\vec{\mathbf{x}}|| &= \sqrt{\langle Q\vec{\mathbf{x}}, Q\vec{\mathbf{x}}\rangle} \\ &= \sqrt{(Q\vec{\mathbf{x}})^{\top}(Q\vec{\mathbf{x}})} \\ &= \sqrt{\vec{\mathbf{x}}^{\top}Q^{\top}Q\vec{\mathbf{x}}} \\ &= \sqrt{\langle \vec{\mathbf{x}}, \vec{\mathbf{x}}\rangle} \\ &= ||\vec{\mathbf{x}}||. \end{aligned}$$

Question 2

Refer to section %% Question 2 in the math425hw4.m file for the relevant code.

Parts A and B

See snippets provided under % 2(a) and % 2(b). The results are saved in variable named x_{gauss_n} and x_{qr_n} for the respective $n \times n$ Hilbert matrices and the computation method. The results are omitted here for brevity.

Part C

By subtracting the expected values for $\vec{\mathbf{x}}_n^*$ for the respective $n \times n$ Hilbert matrices, we can find the error between the computed and expected solutions $\Delta \vec{\mathbf{x}}_n^*$. For the purpose of illustration, we can use the norm to see how the difference grows, as it also disregards the alternating signs for each entries.

$$n = 5 n = 10 n = 20$$

$$||\vec{\mathbf{x}}^* - \vec{\mathbf{x}}^*_{\text{Gauss},n}|| 1.6234... \times 10^{-12} 1.5150... \times 10^{-04} 12.9343...$$

$$||\vec{\mathbf{x}}^* - \vec{\mathbf{x}}^*_{\text{QR},n}|| 4.6829... \times 10^{-12} 7.5286... \times 10^{-05} 59.1000...$$

Here, we can see that the method using Gaussian elimination suffers from numerical instability greatly, especially with ill-conditioned matrices such as the Hilbert matrix. At the cost of complexity, the QR factorization approach is more stable and produces far more reliable results for larger n.

Question 3

Refer to section %% Question 3 in the math425hw4.m file for the relevant code.