

1
2
3
4
5
6
7 UNITED STATES DISTRICT COURT
8 EASTERN DISTRICT OF WASHINGTON
9 AT SPOKANE

10 NEIL HENRICKSEN and MAURITA
11 HENRICKSEN,

12 Plaintiffs,

13 v.

14 CONOCOPHILLIPS COMPANY,

15 Defendant.

16 NO. CV-07-224-JLQ

17 MEMORANDUM IN SUPPORT OF
18 PLAINTIFFS' CONSOLIDATED
19 RESPONSE TO DEFENDANT'S
20 VARIOUS MOTIONS TO STRIKE
21 PLAINTIFFS' EXPERT WITNESSES
22 AND MOTIONS FOR SUMMARY
23 JUDGMENT

24 TO THE HONORABLE COURT:

25 Come now, Plaintiffs, Neil and Maurita Henricksen, and file this
26 Memorandum in Support of Plaintiff's Consolidated Response to
27 Defendant's Various Motions to Strike Plaintiffs' Expert Witnesses and
28 Motions for Summary Judgment. To avoid unnecessarily burdening the

1 Court with repetitive argument and authority, Plaintiffs submit this brief in
2 response to the following motions:

3

- 4 1. Motion to Exclude Causation Opinions Based Upon
5 Unreliable Epidemiological Evidence;
- 6 2. Motion to Exclude Plaintiffs' Expert Frank Gardner;
- 7 3. Motion in Limine to Limit the Testimony of Plaintiffs' Treating
8 Physicians;
- 9 4. Motion to Exclude Plaintiffs' Expert Marco Kaltofen;
- 10 5. Motion to Exclude Plaintiffs' Expert William Sawyer

11 Also, because the same issues raised by these motions to exclude
12 expert testimony are the bases for ConocoPhillips's Motion for Summary
13 Judgment on General Causation and Motion for Summary Judgment on
14 Specific Causation, this response will address ConocoPhillips' motions
15 for summary judgment as well.

16 In support of this consolidated response, Plaintiffs would
17 respectfully show the Court as follows.

18

19 I. Introduction

20

21 One of the few matters in science that has reached the level of
22 virtual certainty is that exposure to benzene causes acute myelogenous
23

1 leukemia (“AML”). There is no rational dispute of this point in science or
2 in this case. As early as 1977, the Occupational Safety and Health
3 Administration found that the scientific evidence “conclusively
4 establish[ed] that benzene causes leukemia.” BEN 112 at 170377.¹
5 ConocoPhillips’ own corporate representative acknowledges that
6 benzene causes AML. See Deposition of Jennifer Galvin at 234.
7

8 It is equally beyond dispute that gasoline contains benzene, see
9 Deposition of Jennifer Galvin at 163, 168, and that Neil Henricksen was
10 exposed to benzene while loading and unloading gasoline for
11 ConocoPhillips Corporation (“ConocoPhillips”). While ConocoPhillips
12 has conveniently destroyed most records of the benzene content of its
13 gasoline during the time Mr. Henricksen was exposed to its product,
14 ConocoPhillips’ own Material Safety Data Sheets (“MSDS”) indicate that
15 ConocoPhillips’ gasoline contained as much as 4.9% pure benzene.
16 See, e.g., CONCO 5004 at 1. Consequently, there is no dispute that Mr.
17 Henricksen was exposed to benzene vapors while working with
18 ConocoPhillips’ gasoline, and it should come as no surprise that
19

20
21
22
23
24
25
26

¹ See accompanying Declaration of Counsel for all exhibits referenced herein.

1 Plaintiffs' expert witnesses have reached the rational conclusion that Mr.
2 Henricksen's AML was caused by this exposure.
3

4 Nevertheless, ConocoPhillips filed a series of motions to strike the
5 testimony of Plaintiffs' expert witnesses, arguing that insufficient
6 evidence supports both the general and specific causation opinions of
7 Plaintiffs' experts. ConocoPhillips' contentions are based primarily on
8 the absurd suggestion that there is no scientifically reliable proof that
9 gasoline causes AML. ConocoPhillips' argument is little more than a
10 cheap parlor trick intended to divert the Court's attention from the true
11 nature of this suit, which is that Mr. Henricksen was exposed to
12 substantial amounts of benzene from ConocoPhillips' gasoline. That
13 ConocoPhillips has resorted to misdirection is indicative of its awareness
14 that it has no defense against the universally accepted fact that the
15 benzene to which Mr. Henricksen was exposed causes the very disease
16 he contracted.

21 **II. Factual Background**

22 Contrary to ConocoPhillips' repeated mischaracterizations, this is a
23 benzene exposure case. From 1976 to 1983, Mr. Henricksen
24 transported gasoline and diesel fuel exclusively from a ConocoPhillips
25

1 terminal by tanker truck to fuels stations in the Spokane, Washington
2 area. See Deposition of Neil Henricksen at 217-18. Mr. Henricksen re-
3 loaded his tanker truck at the ConocoPhillips terminal between 2 and 5
4 times each day. *Id.* at 194. On average, Mr. Henricksen worked 5 or 6
5 days a week in 10 to 12 hour shifts and loaded his tanker truck at the
6 ConocoPhillips facility 25 to 30 times per week. *Id.* Approximately half
7 of the fuel loads from the ConocoPhillips terminal were diesel and half
8 were gasoline. *Id.* at 242-43.
9

10 During the entire time Mr. Henricksen transported fuel from the
11 ConocoPhillips terminal, Mr. Henricksen drove a top-loading truck that
12 was filled through a hatch in the top of the tank. *Id.* at 178-80. Unlike
13 other terminals where Mr. Henricksen had worked, the ConocoPhillips
14 terminal did not have a vapor recovery system to prevent exposure to
15 the gasoline fumes. *Id.* at 181. Additionally, the ConocoPhillips terminal
16 was not an “open” terminal such that fumes would easily dissipate. *Id.* at
17 178-81. Instead, it was a “closed” terminal with a roof and partial walls
18 on two of the four sides similar to the terminal depicted in Exhibit 5. *Id.*
19 In addition, Mr. Henricksen regularly spilled ConocoPhillips’ gasoline on
20 his skin. *Id.* at 192-96.
21
22
23
24
25
26

1 In August 2003, Neil Henricksn was diagnosed with acute
2 myelogenous leukemia at the age of 61. There is no dispute in the
3 scientific community or this case that exposure to benzene causes AML,
4 and there is no dispute that the ConocoPhillips gasoline that Mr.
5 Henrickson loaded and unloaded for 8 years contained benzene.
6 Consequently, this case is one of the rare toxic tort cases in which there
7 is no dispute that the plaintiff was exposed to a toxin and contracted a
8 disease that the toxin is known to cause.
9

10 **III. Standard of Review**

11 **A. The *Daubert* Standard.**

12 Admissibility of scientific evidence is governed by Federal Rule of
13 Evidence 702. Under the Supreme Court's interpretation of Rule 702 in
14 *Daubert*, expert testimony is admissible if it is relevant and reliable.
15 *Daubert v. Merrell Dow Pharms., Inc.*, 509 U.S. 579, 587-89, 113 S.Ct.
16 2786 (1993) ("*Daubert I*"). Expert's opinion is relevant if the knowledge
17 underlying it has a "valid ... connection to the pertinent inquiry." *Kumho*
18 *Tire Co. v. Carmichael*, 526 U.S. 137, 149, 119 S. Ct. 1167 (1999)
19 (quoting *Daubert I*, 509 U.S. 579, 592, 113 S. Ct. 2786). Scientific
20 evidence is reliable if it is grounded in the methods of science. *Id.* at
21

1 595-96, 113 S. Ct. 2786. It is the role of the district court to serve as a
2 "gatekeeper," excluding bad science that lacks sufficient indicia of
3 reliability to be admissible. *Daubert v. Merrell Dow Pharms., Inc.*, 43
4 F.3d 1311, 1316 (9th Cir. 1995) ("*Daubert II*").
5

6 Here, the only objection raised by ConocoPhillips is that the
7 proffered testimony of Plaintiffs' experts is unreliable. In determining
8 whether an expert's opinion is reliable, the focus is on the expert's
9 principles and methodology, not the conclusions. *Id.* The Supreme
10 Court provided four non-exclusive factors to consider as part of the
11 Court provided four non-exclusive factors to consider as part of the
12 reliability analysis:
13

- 14 1. whether the scientific theory or technique can be (and has
15 been) tested;
- 16 2. whether the theory or technique has been subjected to peer
17 review and publication;
- 18 3. whether a particular technique has a known potential rate of
19 error; and
- 20 4. whether the theory or technique is generally accepted in the
21 relevant scientific community.
22
- 23
- 24
- 25
- 26

1 *Daubert I*, 509 U.S. at 593-94, 113 S. Ct. 2786. Because there are
2 innumerable types of experts and expertise, these factors “may or may
3 not be pertinent in assessing reliability, depending on the nature of the
4 issue, the expert’s particular expertise and the subject of his testimony.”
5

6 *Kumho Tire Co.*, 526 U.S. at 150, 119 S. Ct. 1167.
7

8 **B. *Daubert* and the Right to a Jury Trial.**

9 In performing a *Daubert* analysis, the Court must remain mindful
10 that “*Daubert* makes the district court a gatekeeper, not a fact finder.”
11 *U.S. v. Sandoval-Mendoza*, 472 F.3d 645, 654 (9th Cir. 2006). When
12 credible, qualified experts disagree, the parties are entitled to have jury
13 determine whether the plaintiff has met its burden of proof. U.S. CONST.
14 amend. VII; *Sandoval-Mendoza*, 472 F. 3d at 653. The role of the Court
15 is to determine whether the proffered expert testimony is reliable “without
16 interfering with the jury’s role as trier of fact” See Stephen Breyer,
17 *Introduction to REFERENCE MANUAL ON SCIENTIFIC EVIDENCE* at 4 (2nd ed.
18 2000).

19 Consequently, the gatekeeping function of the Court is not to
20 determine which expert witness is correct. “Vigorous cross-examination,
21 presentation of contrary evidence, and careful instruction on the burden
22 of proof are the hallmarks of a sound scientific evidentiary system.”
23 *Id.* at 10.

1 of proof" remain the "appropriate means of attacking shaky but
2 admissible evidence." *Daubert I*, 509 U.S. at 596, 113 S. Ct. 2786. As
3 the Ninth Circuit has noted:

4 A trial court's determination that the proffered testimony
5 of one expert witness is reliable and helpful does not
6 necessarily mean that *the contradictory testimony of another
7 witness, concerning the same subject matter but using a
8 different methodology*, is not also reliable and helpful.

9

10 If two contradictory expert witnesses [can offer
11 testimony that is reliable and helpful], both are admissible,
12 and it is the function of the finder of fact, not the trial court, to
13 determine which is the more trustworthy and credible.

14 *Dorn v. Burlington Northern Santa Fe R.R.*, 397 F.3d 1183, 1195 (9th Cir.

15 2005) (quoting WEINSTEIN'S FEDERAL EVIDENCE § 702.05[3], at 702-80.12
16 to 702-80.13). Instead, "A court may admit somewhat questionable
17 testimony if it falls within 'the range where experts might reasonably
18 differ, and where the jury must decide among the conflicting views'"

19 *S.M. v. K.M.*, 262 F.3d 914, 921 (9th Cir. 2001) (citing *Daubert*, 509 U.S.
20 at 596, 113 S. Ct. 2786). In short, the Court "must respect the jury's
21 constitutionally specified role" as the finder of facts. See Stephen
22 Breyer, *Introduction to REFERENCE MANUAL ON SCIENTIFIC EVIDENCE* at 4
23 (2nd ed. 2000).

1 **IV. Plaintiffs' Experts are Highly Qualified Scientists**

2 As an initial matter, it is worth noting that ConocoPhillips does not
3 contend that Plaintiffs' experts lack the necessary qualifications to give
4 the opinions offered in this case. This is most likely because the training
5 and experience of these experts is unassailable and because
6 ConocoPhillips cannot afford for the Court to question how such
7 imminently qualified scientists could be so blatantly wrong in their
8 scientific analysis that their opinions are not even admissible before a
9 jury. Instead, as demonstrated below, *Daubert* and its progeny were
10 never intended to preclude expert witness of this caliber from presenting
11 to a jury the same opinions these experts would have in their scientific
12 practices.

13 **A. Peter Infante**

14 Peter Infante is the managing member and President of Peter F.
15 Infante Consulting, L.L.C., in Falls Church, Virginia. Dr. Infante received
16 his Ph.D from the University of Michigan, Department of Epidemiology, in
17 1973. Soon after receiving his doctorate, Dr. Infante began his long and
18 distinguished career as an Epidemiologic Consultant for the World
19 Health Organization in Washington, D.C., and then continued his work
20

1 as an epidemiologist in Ohio before becoming the Acting Chief of the
2 Biometry Section of the National Institute for Occupational Safety and
3 Health, Center for Disease Control, in Cincinnati, Ohio, where he
4 focused on occupational epidemiological studies and investigations to
5 determine associations between exposure to toxic substances and
6 cancer, among other things.
7

8
9 In 1978, Dr. Infante moved to Washington, D.C., where he
10 assumed the position of Director of the Office of Carcinogen
11 Identification and Classification for the Department of Labor. From 1983
12 to 2002, he was the Director of the Office of Standards Review in the
13 Occupational Safety and Health Administration. His was the primary
14 agency responsible for reviewing existing OSHA standards and making
15 recommendations for modifications based on risk assessments and
16 epidemiologic, toxicologic, and industrial hygiene data. His office was
17 also responsible for regulation of toxic substances in the workplace.
18

19
20 In 2002, Dr. Infante began his consulting firm where he consults in
21 occupational and environmental health. Dr. Infante also serves as an
22 Adjunct Professor of Environmental and Occupational Heath at The
23 George Washington University.
24

1 Dr. Infante has served in numerous advisory and consultant
2 positions including serving as a member on the WHO Expert Committee
3 on the Evaluation of the Carcinogenic Risk of Chemicals in Humans and
4 the National Academy of Sciences Subcommittee to revise Emergency
5 Exposure Guidance Levels for Benzene and Ethylene Oxide.
6 Additionally, Dr. Infante has received several awards for his research,
7 notably a special commendation from the National Institute for
8 Occupational Safety and Health for research contributions toward
9 understanding the toxicology of Benzene and Beryllium, and a Special
10 Achievement Award from the U.S. Department of Labor.
11

12 Dr. Infante is a member of the American College of Epidemiology,
13 American Conference of Governmental Industrial Hygienists, and
14 American Public Health Association. He is the author or co-author of
15 numerous publications including Leukemia in Benzene Workers,
16 Benzene and Leukemia, Benzene Toxicity: Studying a Subject to Death,
17 and Health Effects of Gasoline Vapors: Benzene. Dr. Infante has spent
18 most of his formidable career studying the health effects of Benzene
19 exposure to humans and has become one of the nation's, if not the
20
21
22
23
24
25
26

1 world's, leading authorities on the subject. See Curriculum Vitae of Dr.
2 Peter Infante.

3

4 **B. William Sawyer**

5 Dr. William R. Sawyer is the Chief Toxicologist at Toxicology
6 Consultants & Assessment Specialists, Inc., in Skaneateles, New York.
7 Dr. Sawyer received his Ph.D. in toxicology from Indiana University
8 School of Medicine in 1988. He began his distinguished career as the
9 Chief Toxicologist of Onondaga County Department of Health in
10 Syracuse, New York, where he was responsible for municipal and civil
11 risk assessment, the evaluation of environmental exposures, and where
12 he advised and communicated with the Office of the Environment/County
13 executive and legislative subcommittees with respect to public health
14 and environmental health issues. In 1993, Dr. Sawyer became the
15 laboratory director of EXPRESSLAB, Inc. He also spent several years
16 as the Associate Editor of *Practical Reviews in Forensic Medicine and*
17 *Sciences*. In addition to acting as Chief Toxicologist for Toxicology
18 Consultants & Assessment Specialists, Inc, Dr. Sawyer also currently
19 serves as an assistant professor at SUNY Upstate Medical University
20 and is a member of the Editorial Advisory Board for The Forensic
21

1 Board for The Forensic Examiner.

2 Dr. Sawyer is board certified in forensic medicine, toxicology, and
3 pharmacology. Dr. Sawyer has been a speaker at several seminars
4 where he has given presentations on several topics regarding toxicology,
5 including a presentation on "Evaluating Toxic Exposures after Daubert,"
6 "The Medical Aspects of Toxic Exposure Assessments," and
7 "Fundamentals of Medical Toxicology." Dr. Sawyer has also authored or
8 co-authored numerous publications, abstracts, treaties and editorial
9 publications, including one entitled "A Fatal Case of Benzene Poisoning
10 & Special Discussion by Drs. Sawyer & Rigle."

11

12 **C. Marco Kaltofen**

13 After obtaining his degree in civil engineering, Marco Kaltofen,
14 P.E., began his career as a chemist for the New England Aquarium in
15 Boston where he traced the environmental fate of petroleum drilling
16 wastes and the fate of pollutants in the oceans. In 1984, Mr. Kaltofen
17 became a project coordinator for Greenpeace International in London
18 where he was responsible for environmental program research and field
19 sampling. Four years later, Mr. Kaltofen founded the Citizens'
20 Environmental Laboratory in Boston where he served as Laboratory
21
22
23
24
25
26

1 Director, performing engineering and chemical quality evaluations of
2 contaminated sites in addition to managing the nationally recognized
3 nonprofit organization. Also in 1988 Mr. Kaltofen accepted the position
4 of President of Boston Chemical Data Corporation where he provides
5 technical support for environmentally-related organizations as well as
6 performing environmental investigations onsite and via computerized
7 chemical and engineering information systems. Mr. Kaltofen conducts
8 extensive onsite investigations in the U.S. and internationally.
9

10
11 Mr. Kaltofen has realized many professional achievements
12 throughout his accomplished career, including the review of industrial air
13 monitoring data for total hydrocarbons and benzene, with calculation of
14 human exposure to benzene as well as the design and completion of
15 sampling efforts to complete indoor air quality studies for gasoline-
16 related volatile organic compounds.
17
18

19 **D. Frank Gardner**
20

21 Frank Gardner received his M.D. from Northwestern University
22 Medical School in Chicago, Illinois. In 1949, Dr. Gardner began his
23 career as an Instructor in Medicine at Harvard Medical School and
24 Associate in Medicine at Peter Bent Brigham Hospital, both in Boston.
25
26

1 Two years later, he became an Associate Hematologist at Boston Lying-
2 In Hospital and continued throughout the next several years to study,
3 teach, and practice hematology as an Attending Hematologist,
4 Consultant in Hematology and Professor of Medicine. In 1966, Dr.
5 Gardner accepted the position of Director of the Hematology Research
6 Laboratory at Presbyterian University of Pennsylvania Medical Center in
7 Philadelphia, Pennsylvania. While there, he continued to serve as a
8 Professor of Medicine and Consultant in Hematology. In 1969, Dr.
9 Gardner became the Director of Medicine at Presbyterian until 1975
10 when he moved to Galveston, Texas to lead the Hematology-Oncology
11 Division at The University of Texas Medical Branch ("UTMB") as its
12 Director as well as a Professor of Medicine. In 1990, Dr. Gardner
13 became a Clinical Professor of Medicine in the Division of Hematology-
14 Oncology in Galveston where he continues to serve in this capacity. Dr.
15 Gardner is board certified in Internal Medicine and licensed in several
16 states.

17 Throughout his accomplished career, Dr. Gardner served as a
18 board member or chairman of numerous committees and societies,
19 including the American Society of Hematology, the National Cancer
20

1 Institute, American National Red Cross, an the Biohazards Committee of
2 UTMB. As an author or co-author, Dr. Gardner has been published in
3 countless medical journals, his articles focusing primarily on diseases of
4 the blood, diseases of the marrow, and the study and treatment of
5 leukemia.

6

7 **V. The Opinions of Plaintiffs' Experts Are Well Supported by**
Scientific Reasoning and Literature.

8

9 What is truly remarkable about this case is that there are so few
10 disputed facts. Unlike the allegation in *Daubert* that Bendectin causes
11 birth defects, there is absolutely no dispute that benzene causes AML.
12 There is also no dispute that ConocoPhillips' gasoline contained
13 benzene and that Mr. Henricksen was exposed to benzene from
14 ConocoPhillips' gasoline. The only disputes that appear to exist are
15 whether a plaintiff must prove that a particular source of benzene is
16 capable of causing AML and whether the amount of benzene to which
17 Mr. Henricksen was exposed was sufficient to cause his AML. As
18 demonstrated below, neither dispute warrants the exclusion of testimony
19 from Plaintiffs' experts.

1 **A. Proof of Causation in Toxic Tort Cases**

2 Causation in a toxic tort case is generally discussed in terms of
3 general and specific causation. *In Re Hanford Nuclear Reservation Lit.*,
4 292 F.3d 1124, 1133 (9th Cir. 2002). General causation refers to
5 “whether the substance at issue had the capacity to cause the harm
6 alleged.” *Id.* Specific causation refers to whether a particular
7 individual’s injury resulted from exposure to a toxin. *Id.*

8 Plaintiffs in toxic tort cases often turn to epidemiology to prove
9 causation. “The field of epidemiology addresses the incidence,
10 distribution and etiology (causation) of disease in human populations by
11 comparing individuals exposed to a particular agent to unexposed
12 individuals to determine whether exposure increases the risk of disease.”
13 *In re Silicone Gel Breast Implants Products Liab. Lit.*, 318 F.Supp.2d
14 879, 892 (C.D. Cal. 2004). Scientists use “relative risk,” also referred to
15 as “standard mortality ratio” or “odds ratio,” to identify an association
16 between exposure to a chemical and a disease.

17 For example, if a study found that 10 out of 1000 women with
18 breast implants were diagnosed with breast cancer and 5 out
19 of 1000 women without implants (the “control” group) were
20 diagnosed with breast cancer, the relative risk of implants is
21 2.0, or twice as great as the risk of breast cancer without

1 without implants. This is so, because the proportion of
2 women in the implant group with breast cancer is 0.1
3 (10/1000) and the proportion of women in the non-implant
4 group with breast cancer is 0.05 (5/1000). And 0.1 divided by
0.05 is 2.0.

5 *Id.*

6 A relative risk of 1.0 suggests there is no association between the
7 chemical and the disease because the same number of people exposed
8 to the chemical were diagnosed with the disease as those not exposed
9 to the chemical. A relative risk in excess of 1.0, however, demonstrates
10 that those exposed to the chemical are more likely to contract a given
11 disease than those who were not exposed to a chemical. “Where the
12 study properly accounts for potential confounding factors and concludes
13 that exposure to the agent is what increases the probability of
14 contracting the disease, the study has demonstrated *general causation*—
15 that exposure to the agent is capable of causing [the illness at issue] in
16 the general population.” *In re Bextra and Celebrex Mktg. Sales*
17 *Practices and Prod. Liab. Litig.*, 524 F. Supp. 2d 1166, 1172-73 (N.D.
18 Cal. 2007) (quoting *In re Silicone Gel Breast Implants Products Liab. Lit.*,
19 318 F.Supp.2d at 893).

1 Epidemiology studies are also probative of specific causation. If
2 the relative risk is greater than 2.0, exposure to the chemical more than
3 doubles the risk of developing the disease. That is,
4

5 When the relative risk is 2.0, the alleged cause is
6 responsible for an equal number of cases of the disease as
7 all other background causes present in the control group.
8 Thus, a relative risk of 2.0 implies a 50% probability that the
9 agent at issue was responsible for a particular individual's
10 disease. This means that a relative risk that is greater than
11 2.0 permits the conclusion that the agent was more likely
12 than not responsible for a particular individual's disease.

13 *Id.* (quoting *In re Silicone Gel Breast Implants Products Liab. Lit.*, 318
14 F.Supp.2d at 893). Consequently, a plaintiff may meet his burden of
15 proving causation by relying on epidemiology studies that establish the
16 relative risk of developing a disease as a result of exposure to a toxin is
17 more than 2.0. *Id.*

18 In this case, the toxin at issue is benzene and the disease in
19 question is acute myelogenous leukemia. Although ConocoPhillips
20 contends that the true toxin at issue is gasoline, the argument is of little
21 import. There is no real question in the scientific community that
22 exposure to benzene is capable of causing AML. And, whether the toxin
23 is gasoline or benzene, numerous epidemiological studies establish a
24
25
26

1 greater than 2.0 relative risk that exposure causes AML. Consequently,
2 there can be little doubt that sufficient scientific evidence supports the
3 causation opinions of Plaintiffs' expert witnesses.
4

5 **B. General Causation**

6 **1. Benzene is A Known Cause of Acute Myelogenous**
7 **Leukemia.**

8 The need for ConocoPhillips to argue that Plaintiffs must prove that
9 gasoline causes AML is evident from the overwhelming evidence
10 establishing that the benzene component of gasoline is uniquely
11 carcinogenic. As the report from Dr. Peter Infante establishes, benzene
12 has been known to be a powerful bone marrow toxin for more than 100
13 years.² Beginning in the 1920s, cases of benzene-induced leukemia
14 were continually reported in the scientific literature, the first reported
15 case of benzene-related acute leukemia appeared in 1928.³ During the
16
17
18
19
20
21
22

24 ² Winslow, C.E.A., Dr., PH, Summary of the National Safety Council Study of Benzol Poisoning;
25 Journal of Industrial Hygiene (1927).

26 ³ Expert Report of Peter F. Infante, November 29, 2007 ("Infante First Report"), at 4.

1 period from 1930 through the 1970s, hundreds of cases of benzene-
2 induced leukemia were reported in the published scientific literature.⁴
3

4 In 1977, Plaintiffs' expert witness, Dr. Peter Infante, conducted the
5 first cohort study of benzene exposed workers while working for NIOSH.
6 In this study, Dr. Infante collaborated with other scientists to analyze the
7 incidence of leukemia among workers manufacturing a rubberized food
8 wrap known as Pliofilm. The results of this study showed that workers
9 exposed to benzene were more than five times likely to contract
10 leukemia than the general population.⁵ Follow-up studies performed on
11 the same cohort of individuals have also demonstrated a significant
12 increase in the risk of death from leukemia among those exposed to
13 benzene.⁶

14 Since the initial publication of the Pliofilm study, numerous other
15 studies have confirmed that exposure to benzene significantly increases
16 the risk of contracting leukemia, specifically AML. For example, in 1978
17

18
19
20
21
22
23
24
⁴ Infante First Report at 4-5.

25
26
27
⁵ Infante PF, et al. (1977) Leukemia in benzene workers. *Lancet*, ii: 76-78.

1 a study of 594 Dow Chemical workers found that workers exposed to
2 benzene were 3.75 times more likely to contract myelogenous leukemia
3 than non-exposed workers.⁷ Similarly, a later study regarding the same
4 group of workers demonstrated that those workers exposed to benzene
5 had a 4-fold increased risk of contracting myelogenous leukemia.⁸
6 Other studies have also shown that exposure to benzene substantially
7 increases the risk of developing AML.

8 To date, the largest epidemiological studies assessing the risk of
9 benzene-induced leukemia have involved exposed workers in China,
10 which have been conducted over the last 15 years. In these studies,
11 researchers from the U.S. National Cancer Institute and from the
12 Institute of Occupational Medicine in China have evaluated the incidence
13 of disease among more than 74,000 workers who were occupationally
14 exposed to benzene and compared the incidence of leukemia to more
15

16
17
18
19
20
21
22 ⁶ See, e.g., Rinsky RA, et al. (2002) Benzene exposure and hematopoietic mortality: A long-
23 term epidemiologic risk assessment. Am. J. Indust. Med. 42, 474-480 (showing a standard mortality
rate of 2.56 for exposed workers).

24 ⁷ Ott GM, et al. (1978) Mortality among Individuals Occupationally Exposed to Benzene. Arch
25 Env Health 33, 3-10.

1 leukemia to more than 35,000 workers who had no occupational
2 exposure to benzene. The results of these massive studies
3 demonstrated 3.1 relative risk of contracting AML among benzene-
4 exposed workers.⁹

5 It is not surprising, therefore, that as early as 1977, OSHA
6 declared that there is “conclusive evidence that benzene is a leukemia
7 causing agent.” See BEN 112 at 170376, 170377. By 1987, OSHA
8 believed that that the link between benzene exposure and leukemia
9 could no longer be “seriously challenged.” BEN 227 at 85035. The
10 evidence that benzene causes leukemia is so strong that it is one of a
11 limited number of substances classified by the National Toxicology
12 Program of the Department of Health and Human Services as a “known
13 human carcinogen,” similar to tobacco smoke and asbestos. Given the
14 overwhelming evidence, even ConocoPhillips’s corporate representative
15 admits that benzene causes AML. See Deposition of Jennifer Galvin at
16 234.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
553340
553341
553342
553343
553344
553345
553346
553347
553348
553349
553350
553351
553352
553353
553354
553355
553356
553357
553358
553359
553360
553361
553362
553363
553364
553365
553366
553367
553368
553369
553370
553371
553372
553373
553374
553375
553376
553377
553378
553379
553380
553381
553382
553383
553384
553385
553386
553387
553388
553389
553390
553391
553392
553393
553394
553395
553396
553397
553398
553399
553400
553401
553402
553403
553404
553405
553406
553407
553408
553409
553410
553411
553412
553413
553414
553415
553416
553417
553418
553419
553420
553421
553422
553423
553424
553425
553426
553427
553428
553429
553430
553431
553432
553433
553434
553435
553436
553437
553438
553439
553440
553441
553442
553443
553444
553445
553446
553447
553448
553449
553450
553451
553452
553453
553454
553455
553456
553457
553458
553459
553460
553461
553462
553463
553464
553465
553466
553467
553468
553469
553470
553471
553472
553473
553474
553475
553476
553477
553478
553479
553480
553481
553482
553483
553484
553485
553486
553487
553488
553489
553490
553491
553492
553493
553494
553495
553496
553497
553498
553499
553500
553501
553502
553503
553504
553505
553506
553507
553508
553509
553510
553511
553512
553513
553514
553515
553516
553517
553518
553519
553520
553521
553522
553523
553524
553525
553526
553527
553528
553529
553530
553531
553532
553533
553534
553535
553536
553537
553538
553539
5535310
5535311
5535312
5535313
5535314
5535315
5535316
5535317
5535318
5535319
5535320
5535321
5535322
5535323
5535324
5535325
5535326
5535327
5535328
5535329
5535330
5535331
5535332
5535333
5535334
5535335
5535336
5535337
5535338
5535339
55353310
55353311
55353312
55353313
55353314
55353315
55353316
55353317
55353318
55353319
55353320
55353321
55353322
55353323
55353324
55353325
55353326
55353327
55353328
55353329
55353330
55353331
55353332
55353333
55353334
55353335
55353336
55353337
55353338
55353339
553533310
553533311
553533312
553533313
553533314
553533315
553533316
553533317
553533318
553533319
553533320
553533321
553533322
553533323
553533324
553533325
553533326
553533327
553533328
553533329
553533330
553533331
553533332
553533333
553533334
553533335
553533336
553533337
553533338
553533339
553533340
553533341
553533342
553533343
553533344
553533345
553533346
553533347
553533348
553533349
553533350
553533351
553533352
553533353
553533354
553533355
553533356
553533357
553533358
553533359
553533360
553533361
553533362
553533363
553533364
553533365
553533366
553533367
553533368
553533369
553533370
553533371
553533372
553533373
553533374
553533375
553533376
553533377
553533378
553533379
553533380
553533381
553533382
553533383
553533384
553533385
553533386
553533387
553533388
553533389
553533390
553533391
553533392
553533393
553533394
553533395
553533396
553533397
553533398
553533399
5535333100
5535333101
5535333102
5535333103
5535333104
5535333105
5535333106
5535333107
5535333108
5535333109
5535333110
5535333111
5535333112
5535333113
5535333114
5535333115
5535333116
5535333117
5535333118
5535333119
5535333120
5535333121
5535333122
5535333123
5535333124
5535333125
5535333126
5535333127
5535333128
5535333129
5535333130
5535333131
5535333132
5535333133
5535333134
5535333135
5535333136
5535333137
5535333138
5535333139
5535333140
5535333141
5535333142
5535333143
5535333144
5535333145
5535333146
5535333147
5535333148
5535333149
5535333150
5535333151
5535333152
5535333153
5535333154
5535333155
5535333156
5535333157
5535333158
5535333159
5535333160
5535333161
5535333162
5535333163
5535333164
5535333165
5535333166
5535333167
5535333168
5535333169
5535333170
5535333171
5535333172
5535333173
5535333174
5535333175
5535333176
5535333177
5535333178
5535333179
5535333180
5535333181
5535333182
5535333183
5535333184
5535333185
5535333186
5535333187
5535333188
5535333189
5535333190
5535333191
5535333192
5535333193
5535333194
5535333195
5535333196
5535333197
5535333198
5535333199
5535333200
5535333201
5535333202
5535333203
5535333204
5535333205
5535333206
5535333207
5535333208
5535333209
5535333210
5535333211
5535333212
5535333213
5535333214
5535333215
5535333216
5535333217
5535333218
5535333219
5535333220
5535333221
5535333222
5535333223
5535333224
5535333225
5535333226
5535333227
5535333228
5535333229
5535333230
5535333231
5535333232
5535333233
5535333234
5535333235
5535333236
5535333237
5535333238
5535333239
5535333240
5535333241
5535333242
5535333243
5535333244
5535333245
5535333246
5535333247
5535333248
5535333249
5535333250
5535333251
5535333252
5535333253
5535333254
5535333255
5535333256
5535333257
5535333258
5535333259
5535333260
5535333261
5535333262
5535333263
5535333264
5535333265
5535333266
5535333267
5535333268
5535333269
5535333270
5535333271
5535333272
5535333273
5535333274
5535333275
5535333276
5535333277
5535333278
5535333279
5535333280
5535333281
5535333282
5535333283
5535333284
5535333285
5535333286
5535333287
5535333288
5535333289
5535333290
5535333291
5535333292
5535333293
5535333294
5535333295
5535333296
5535333297
5535333298
5535333299
5535333300
5535333301
5535333302
5535333303
5535333304
5535333305
5535333306
5535333307
5535333308
5535333309
553533331

1 **2. This is a Benzene Exposure Case.**

2 The significance of ConocoPhillips' acknowledgement that
3 benzene is a known cause of AML cannot be overstated. There is also
4 no question that the ConocoPhillips gasoline Mr. Henricksen loaded into
5 his tanker truck for eight years contained benzene. Again,
6 ConocoPhillips' corporate representative admitted that its gasoline
7 contains benzene. See Deposition of Jennifer Galvin at 168. According
8 to Ms. Galvin, ConocoPhillips's gasoline contained 1-2% benzene. *Id.*
9 Additionally, ConocoPhillips's MSDS sheets indicate that
10 ConocoPhillips's gasoline contains between 0.1 and 4.9% benzene. *Id.*
11 at 169-70; see, e.g., CON 5004; CON 5005.
12

13 Consequently, ConocoPhillips' admission that benzene causes
14 AML is a concession that a significant constituent of its product is
15 capable of causing the exact disease Mr. Henricksen contracted. In
16 other words, despite its contorted efforts to avoid the obvious,
17 ConocoPhillips has conceded general causation. There is no rational
18
19
20
21
22
23
24

25 ⁹ Yin S-N, et al. (1996) An Expanded Cohort Study of Cancer Among Benzene-exposed
26 Workers in China. Env Health Perspect, Vol. 4, Supp 6.

1 dispute that the benzene in ConocoPhillips' gasoline is capable of
2 causing Mr. Henricksen's AML.
3

4 Faced with indisputable evidence of the conspicuous danger that
5 its product poses, ConocoPhillips engages in strained effort to sidestep
6 liability for the damage it has caused by arguing that Plaintiffs not only
7 bear the burden of proving that benzene causes AML, but must also
8 prove that the particular source of benzene is capable of causing AML.
9 According to ConocoPhillips, Plaintiffs' experts cannot opine that
10 benzene in gasoline causes AML unless they first prove that gasoline
11 causes AML. This argument is nothing more than the perennial "ever
12 narrowing box defense:" no matter how strong the evidence is that a
13 toxin causes disease, ConocoPhillips will argue that the evidence is
14 unreliable because it does not match the specific minutia of the present
15 case.
16

17

18 **3. The Court Should Not Engage in a Factual
19 Determination as to Which Party's Experts are
20 Correct.**

21 The first fundamental flaw in ConocoPhillips' argument is that a
22 precise match between the circumstance of a case and the body of
23 scientific evidence is not necessary for an expert's opinion to be
24

1 admissible. Regardless of the source of benzene, the scientific literature
2 establishes that benzene causes AML. Even if ConocoPhillips were
3 correct that there is no literature establishing that benzene from gasoline
4 causes AML, it is perfectly reasonable (and reliable) for Plaintiffs' expert
5 to infer that benzene from gasoline is also capable of causing AML when
6 there is no question that benzene from various sources causes the same
7 disease.

8 The true goal of ConocoPhillips's argument is not to preclude the
9 admission of junk science before the jury, but to obtain a fact finding
10 from the Court that the benzene in its gasoline did not cause Mr.
11 Henricksen's disease. At best, ConocoPhillips' argument that benzene
12 from gasoline is somehow different from benzene from every other
13 source of benzene regulate by OSHA is a potential basis for cross-
14 examining Plaintiffs' experts; it does not establish that the opinion of
15 Plaintiffs' experts that benzene from whatever source is capable of
16 causing AML is so wildly inaccurate that a jury cannot even consider it.

17 In short, ConocoPhillips asks the Court to utilize the *Daubert*
18 analysis as a mechanism for choosing between the competing theories
19 regarding causation and make a factual determination as to which is
20

1 correct. But, this is exactly the type of flawed *Daubert* analysis that the
2 Supreme Court and the Ninth Circuit have expressly prohibited. Even if
3 there was some debate in the scientific evidence regarding whether
4 benzene causes AML, “Vigorous cross-examination, presentation of
5 contrary evidence, and careful instruction on the burden of proof” remain
6 the “appropriate means of attacking shaky but admissible evidence.”
7 *Daubert I*, 509 U.S. at 596, 113 S. Ct. 2786. “If two contradictory expert
8 witnesses [can offer testimony that is reliable and helpful], both are
9 admissible, and it is the function of the finder of fact, not the trial court, to
10 determine which is the more trustworthy and credible.” *Dorn*, 397 F.3d
11 at 1195. Consequently, the Court should admit expert testimony that
12 falls within the range of where reasonable experts may differ and permit
13 the jury to decide among the conflicting views. *S.M.*, 262 F.3d at 921.
14 Otherwise, the Court would invade the constitutionally specified role of
15 the jury in resolving factual disputes. See Stephen Breyer, *Introduction*
16 to **REFERENCE MANUAL ON SCIENTIFIC EVIDENCE** at 4 (2nd ed. 2000).
17
18
19
20
21
22
23
24
25
26

1 **4. Substantial Evidence Establishes that Benzene**
2 **from Gasoline Causes AML.**

3 The second flaw in ConocoPhillips's argument is that it is simply
4 wrong in its assertion that there is no scientifically reliable evidence
5 showing that benzene in gasoline is capable of causing AML. Of
6 particular importance is the study conducted by the Pennsylvania
7 Department of Health ("PADOH") in 2000 of the cancer incidence in a
8 community residing at the site of a gasoline spill where approximately
9 50,000 gallons of gasoline leaked from underground storage tanks,
10 migrating underground and exposing local residents to benzene
11 vapors.¹⁰ In the most recent update of the study, cancer incidence
12 among the members of the gasoline exposed community showed that
13 these individuals were 5.56 times more likely to contract AML than an
14 unexposed population.¹¹

15 ConocoPhillips finds multiple faults in the results reported in this
16 study. For one, ConocoPhillips contends that the risk of leukemia found
17
18

19
20
21
22
23
24 ¹⁰ Pennsylvania Department of Health, Bureau of Epidemiology. (December 2001) Tranguch
25 Gasoline Spill Report, Hazelton, Pennsylvania ("PADOH 2001"); Pennsylvania Department of Health,
26 Bureau of Epidemiology. (December 2003) Tranguch Cancer Incidence Study, Updated Through
 2002 ("PADOH 2003").

1 in this study is “not clear.” This, however, is simply inaccurate. The
2 556% increased risk of AML found in the community was statistically
3 significant at a 95% confidence interval. ConocoPhillips also cites a
4 study conducted by Patel et al.¹² in 2004 to suggest that the data does
5 not show a doubling of the risk of AML among the exposed population.
6 What ConocoPhillips neglects to mention, though, is that the study
7 conducted by the PADOH followed the residences for seven years more
8 than the Patel 2004 study and identified an additional AML, which was
9 statically significant and elevated the relative risk of AML to a 5.6-fold
10 increase.¹³

11 ConocoPhillips’s quibbles with the results demonstrated in the
12 PADOH study is further belied by the multiple other studies that confirm
13 that benzene from gasoline causes leukemia, specifically AML. For
14 example, in 2005 a study was published by Terry et al. regarding the
15

16
17
18
19
20
21
22
23
24
25
26

¹¹ PADOH 2003.

¹² Patel AS, et al. (2004) Risk of cancer as a result of community exposure to gasoline vapors. Arch Environ Health, 59: 497-503 (“Patel 2004”).

¹³ Infante First Report at 22; Compare Patel 2004 with PADOH 2003.

1 incidence of leukemia among gas station attendants.¹⁴ The study
2 involved 811 cases of adult leukemia and 637 controls. The results of
3 this study showed that gasoline station attendants employed more than 1
4 year had an 80% increased risk of contracting AML. Even more
5 significantly, the data showed that employees in the “petroleum industry
6 or manufacturing petroleum products” who were employed more than 1
7 year had a 620% greater likelihood of contracting AML, indicating a
8 significantly elevated risk of AML among those exposed to petroleum
9 products.¹⁵

10
11
12
13 Multiple additional studies also demonstrate that a large body of
14 scientific literature supports the proposition that benzene in gasoline is
15 capable of causing AML. In the 1993 study performed by Jakobsson et
16 al. on the incidence of cancer in Sweden, gas station attendants HAD a
17 much higher chance of contracting AML than do other members of the
18
19

20
21
22
23
24
25 ¹⁴ Terry PD, et al. (2005) Occupation, hobbies, and acute leukemia in adults. Leukemia Res 29, 1117-1130 (“Terry 2005”).

26 ¹⁵ Terry 2005.

1 population.¹⁶ This study showed that male petrol station attendants
2 were 3.6 times more likely to contract AML. In 1990, analogous results
3 were found by Flodin et al.¹⁷ In this case-control study, 86 cases of
4 AML were compared 172 control individuals. Those with occupational
5 exposure to gasoline showed a 2.7-fold increased risk of developing
6 AML.
7

8 Other studies further demonstrate that benzene in gasoline causes
9 AML. For one, Shu 1988¹⁸ demonstrated a significant association
10 between maternal occupational exposure to gasoline during pregnancy
11 and an elevated risk of AML among their children. Additionally, Steffan
12 et al. 2004¹⁹ demonstrates a 7.7-fold increased risk of AML among
13 children who lived near a repair garage or a petrol station.
14
15

16 Jakobsson et al. (1993) Acute Myeloid Leukemia Among Petrol Station Attendants. Arch Environ Health 48, 255-259 ("Jakobsson 1993").

17 Flodin, U et al. (1990) Acute myeloid leukemia and background radiation in an expanded case-referent study. Arch Env Health 45, 364-366 ("Flodin 1990").

18 Shu XO, et al. (1988) A population-based case-control study of childhood leukemia in Shanghai. Cancer 62, 635-643.

1 ConocoPhillips' excessive concern for inconsequential details and
2 willingness to misrepresent the findings in scientific literature are further
3 demonstrated by its criticisms of these additional studies reflecting that
4 benzene in gasoline causes AML. ConocoPhillips first criticizes the
5 Jakobsson 1993 study by arguing that Jakobsson used flawed
6 methodology as expressed in a letter to the editor by Swane in 1996.
7 However, it fails to inform the Court that in the same issue of the journal,
8 Jakobsson et al. rebutted each and every criticism leveled by Swane and
9 again concluded that "our interpretation of the data does not go further
10 than our findings: benzene exposure from petrol increased the risk of
11 AML for petrol station attendants."²⁰
12

13 ConocoPhillips also criticizes Terry 2005 because the data does
14 not show a doubling of the risk for AML among gas station attendants.
15 However, ConocoPhillips cannot deny that Terry demonstrates a
16 significantly elevate 80% increase in the risk of AML and also a dose-
17 response relationship between exposure to benzene from gasoline and
18

19 Steffan C et al. (2004) Acute childhood leukemia and environmental exposure to potential
20 sources of benzene and other hydrocarbons; a case-control study. Occup Environ Med 61, 773-778.

1 AML. As the data demonstrate, the odds ratio for AML among gas
2 station attendants with less than one year of employment was 1.4 while
3 the odds ratio for employees with more than one year of employment
4 was 1.8. Additionally, it is undeniable that Terry 2005 showed that
5 employees in the “petroleum industry or manufacturing petroleum
6 products” who were employed more than 1 year had a 620% greater
7 likelihood of contracting AML, indicating a significantly elevated risk of
8 AML among those exposed to petroleum products.²¹

12 ConocoPhillips’ criticisms of the studies produced by Plaintiffs’
13 experts are equally unpersuasive. ConocoPhillips faults the Shu study
14 because it is not a study involving occupational exposure and does not
15 account for exposures *not related to leukemia*; however, the substance
16 of these criticisms is unclear. The import of the Shu 1988 study is that
17 the small doses of benzene from gasoline that were passed through the
18 placenta to a fetus were sufficient to cause AML. Additionally, it is a
19 matter of common sense that accounting for exposures that do not

25 ²⁰Jakobsson, Robert et al., Letter to the Editor, (1996) (“Jakobsson 1996”).

26 ²¹Terry 2005.

1 cause AML will not affect the results of a study attempting to determine
2 what does cause AML.

3 ConocoPhillips also criticize the findings in Steffan 2004 because
4 the author notes that the possibility of “recall bias” existed in questioning
5 the participants about whether they lived near repair garages or petrol
6 stations. What ConocoPhillips fails to mention is that the authors
7 specifically addressed this concern. In noting that the presence of a
8 neighboring garage or petrol station near a child’s home is “quite
9 unambiguous,” the authors determined that recall bias should have a
10 “limited over or under declaration.”

11 Finally, ConocoPhillips criticizes the Flodin 1990 study because
12 the confidence interval for the reported result was only 90%, instead of
13 the preferred 95%. This effectively means if the study were repeated,
14 the same results should be reached 90% of the time. In other words, the
15 odds that the results were reached merely by chance were just 10%.
16 While there is no doubt that increased certainty is preferred, this slight
17 variance in certainty has little consequence in a legal proceeding in
18 which the burden of proof is simply “more likely than not.” In fact, it is
19 remarkable that ConocoPhillips could suggest that the Court should
20
21
22
23
24
25
26

1 wholly disregard the results of this study when it is clear that the
2 scientific community thought the study of sufficient merit to publish it in a
3 peer reviewed journal. The purpose of the *Daubert* analysis is to
4 exclude evidence that is not founded in good science, not to exclude
5 evidence that the scientific community relies on in the everyday practice
6 of the relevant field.

7
8 The opinion that benzene in gasoline is capable of causing
9 leukemia is further supported by evidence showing significant genotoxic
10 effects as a result of very low exposure to benzene from gasoline vapor.
11 Significant elevations in damage to the DNA in leukocytes (white blood
12 cells) has been shown to result from exposure to benzene in gasoline.²²
13 This is important because leukemia is a cancer of the blood or bone
14 marrow that is characterized by an abnormal proliferation of blood
15 cells, usually white blood cells. In particular, AML is a cancer of the
16 myeloid line of white blood cells. DNA damage in these white blood cells
17
18
19
20
21
22

23
24 ²² See, e.g., Hogstedt B, et al. (1991) Gasoline pump mechanics had increased frequencies
25 and sizes of micronuclei in lymphocytes stimulated by pokeweed mitogen. *Mutat Res* 263, 51-55
26 ("Hogstedt 1991"); Oesch F, et al. (1995) DNA single strand break analysis in mononuclear blood
cells of petrol pump attendants. *Ind Arch Occup Environ Health* 67, 35-39 ("Oesch 1995"); Santos-
Mello R. (1992) Cytogenetic studies on gas station attendants. *Muat Res* 280, 285-290 ("Santos-Mello
1992").

1 cells has been demonstrated at benzene exposures as low as 0.1
2 ppm.²³ Of particular importance, multiple studies have shown DNA
3 damage among petrol pump attendants exposed to gasoline,²⁴ leading
4 one group of scientists to conclude that the significant increase in DNA
5 damage among gasoline pump mechanics is “probably caused by the
6 benzene content of the gasoline.”²⁵ These adverse effects on DNA
7 from exposure to benzene in gasoline are consistent with the results of
8 animal studies showing chromosomal damage in mice at exposures as
9 low as 40 ppb and 100 ppb.²⁶

10
11 At best, ConocoPhillips’ nitpicking is a matter for cross-
12 examination. Again, the only issue before the Court is whether the
13 opinions of Plaintiffs’ expert witnesses are sufficiently reliable to admit to
14 a jury. As the Ninth Circuit has recognized, one significant indicia of
15
16
17
18

19
20
21 ²³ Nilsson RI, et al. (1996) Genotoxic effects in workers exposed to low levels of benzene
22 from gasoline. Am J Ind Med 30, 317-324.

23
24 ²⁴ Hogstedt 1991; Oesch 1995; Santo-Melo 1992.

25
26 ²⁵ Hogstedt 1991.

27
28 ²⁶ Au WW, et al. (1991) Chromosome aberrations in lymphocytes of mice after sub-acute
29 low-level inhalation exposure to benzene. Mutat Res 260, 219-224; Ward JB, et al. (1992) The
30
31

1 reliability is whether expert's opinion arose "naturally and directly out of
2 research [the expert] conducted independent of the litigation." *Daubert*
3 *II*, 43 F.3d 1317. Here, Dr. Infante reached the conclusion that benzene
4 from gasoline can cause AML long before this litigation began. In 1993,
5 Dr. Infante and Dr. Phillip Enterline were asked by the American
6 Petroleum Institute to review three recent studies²⁷ regarding the risk of
7 leukemia among gasoline exposed workers as part of the International
8 Symposium on the Health Effects of Gasoline in 1991. In his review, Dr.
9 Infante noted that the studies showed an elevated risk of leukemia
10 among gasoline-exposed workers and concluded that this elevated risk
11 is "probably related to the benzene content of gasoline."²⁸ Similarly, Dr.
12 Enterline noted that all three of the studies reviewed showed an excess
13 of leukemia "particularly acute myelogenous leukemia" among gasoline
14
15
16
17
18
19

20 mutagenic effects of low level sub-acute inhalation exposure to benzene in CD-1 mice. Mutat Res
21 268, 49-57.

22 27 Wong O, et al. (1993) Health Effects of Gasoline Exposure: II. Mortality Patterns of
23 Distribution Workers in the United States. Environ Health Perspect 101, 63-76; Schnatter AR, et al.
24 (1993) A Retrospective Mortality Study among Canadian Petroleum Marketing and Distribution
25 Workers. Env Health Perspec 101, 85-99; Ruston L. (1993) A 39-Year Follow-up of the U.K. Oil
Refinery and Distribution Center Studies: Results for Kidney Cancer and Leukemia. Environ Health
Perspect 101, 77-84.

26 28 Infante PF. (1993) State of the science on the carcinogenicity of gasoline with particular
reference to cohort mortality study results. Environ Health Perspect 101, 105-109.

1 distribution workers and concluded that "there is evidence of a
2 relationship between gasoline exposure and acute myelogenous
3 leukemia and it is possible that this is due to the benzene content of
4 gasoline."²⁹ The reliability of these opinions is especially strong given
5 that these opinions are contrary to the interests of the organization for
6 which the opinions were given.

7 Even though the majority of the scientific literature cited above
8 occurred after the most recent Monograph published by the International
9 Agency for Research on Cancer ("IARC"), IARC concluded in 1989 that
10 gasoline is a "possible carcinogen to humans." Since that time, the
11 wealth of information cited above has only strengthened the causal
12 association between benzene in gasoline and AML. Given the recent
13 studies showing a strong correlation between AML and exposure to
14 benzene in gasoline (well in excess of a doubled risk), and the data
15 establishing the genotoxic effect of low exposures to benzene from
16 gasoline vapor, it is absurd for ConocoPhillips to argue that there is no
17
18
19
20
21
22
23
24

25
26 ²⁹ Enterline PE. (1993) Review of new evidence regarding the relationship of gasoline
exposure to kidney cancer and leukemia. Environ Health Perspect 101, 101-103.

1 reliable basis underlying the opinion of Plaintiffs' experts that benzene
2 from gasoline is capable of causing AML.
3

4 **C. Specific Causation**

5 The evidence relied on by Plaintiffs' experts in their opinion
6 that Mr. Henricksen's AML was caused by his exposure to benzene from
7 ConocoPhillips' gasoline is equally substantial. It is well established in
8 the scientific literature that a doubling of the risk for AML occurs at very
9 low doses of benzene. In fact, because benzene is a mutagenic
10 carcinogen, there is no known level at which AML does not occur.
11 Nevertheless, the dose reconstruction analysis performed by Dr. Sawyer
12 and Mr. Kaltofen establish that Mr. Henricksen's exposure was far in
13 excess of any minimum level needed to show that his AML was caused
14 by exposure to benzene from ConocoPhillips' product.
15
16

17 **1. A Dose Calculation is Not Necessary for A Cancer-
18 Causing Mutagen Such as Benzene.**

19 Throughout its briefing, ConocoPhillips repeatedly asserts the
20 general tenet of toxicology that "the dose makes the poison," citing
21 Bernard D. Goldstein and Mary Sue Henifin, *Reference Guide on*
22 *Toxicology*, in REFERENCE MANUAL ON SCIENTIFIC EVIDENCE 403 (2nd ed.
23
24
25
26

1 2000). There is no question that this proposition is generally true.
2 However, ConocoPhillips' selective citation to this article is misleading.
3

4 As with any general proposition, there are exceptions to the tenant
5 that "the does makes the poison." In fact, the same article cited by
6 ConocoPhillips also provides that:
7

8 Certain genetic mutations, such as those leading to cancer . .
9 .., are believed to occur without any threshold. In theory, the
10 cancer-causing mutation to the genetic material of the cell
11 can be produced by any one molecule of certain chemicals.
12 The no threshold model led to the development of the one hit
13 theory of cancer risk, in which each molecule of a cancer-
14 causing chemical has some finite possibility of producing the
15 mutation that leads to cancer. This risk is very small, since it
16 is unlikely that any one molecule of a potentially cancer-
17 causing agent will reach that one particular spot in a specific
18 cell and result in the change that then eludes the body's
19 defenses and leads to a clinical case of cancer. However,
20 the risk is not zero.

21 *Id.* at 407-08. Consequently, while causation in a toxic tort case typically
22 requires evidence of exposure to a level of the toxin capable of causing
23 harm, the analysis is inapplicable to "substances that exert toxicity by
24 causing mutations leading to cancer." *Id.* at 426.

25 This is exactly the position that OSHA has taken in its regulation of
26 workplace carcinogens such as benzene, which has been upheld by the

1 D.C. Circuit Court. See 29 C.F.R. § 1990.143(h) (“No determination will
2 be made that a “threshold” or “no-effect” level of exposure can be
3 established for a human population exposed to carcinogens in general,
4 or to any specific substance”); *Public Citizen Health Research Group v.*
5 *Tyson*, 796 F.2d 1479, 1498 (D.C. Cir. 1986). As OSHA noted in 1977,
6 the best available scientific evidence indicates that no safe level for
7 exposure to a carcinogen, including benzene, can be established to
8 exist.” CON 5032 at 22517. OSHA’s position is based, in part, on a
9 statement from NIOSH that “It is not possible at the present time to
10 establish an exposure level at which benzene may be regarded to be
11 without danger.” *Id.* at 22521.
12
13 Even OSHA’s current required limits for benzene exposure in the
14 workplace recognize that lack of any threshold at which benzene does
15 not cause leukemia. Since 1987, OSHA has limited benzene exposure
16 to 1 ppm on an 8-hour time-weighted average and 5 ppm for short-term
17 exposure limit. BEN 227 at 34460. OSHA set this limit because it was
18 “the lowest feasible level for industry in general,” and encouraged
19 employers to achieve exposures below 0.5 ppm if possible. *Id.* at 34461.
20 However, even at this level, OSHA recognizes that there will be excess
21
22
23
24
25
26

1 excess deaths from leukemia resulting from benzene exposure.
2 According to OSHA's estimation, there will be "95 excess leukemia
3 deaths per 1000 exposed employees *for working lifetime* of exposure to
4 10 ppm benzene and *10 excess deaths per 1000 at 1 ppm.*" *Id.* at
5 34463 (emphasis added). This translates into a relative risk of
6 contracting leukemia at 2.43 even at OSHA's current required benzene
7 exposure limit.³⁰

8
9 In short, the best scientific evidence available establishes that
10 there is no safe level of exposure to benzene. Instead, as with other
11 mutagenic carcinogens, the cancer-causing mutations can occur at any
12 level. Consequently, the general maxim that "the dose makes the
13 poison" is simply inapplicable in determining whether benzene caused
14 Mr. Henricksen's AML.

15
16
17
18 **2. Benzene Causes AML at Extremely Low Doses and**
19 **Low Levels**

20
21 Even if there is some no-effect level of exposure to benzene, Dr.
22 Infante's report establishes that extremely low exposures to benzene
23 more than double the risk of contracting AML. According to Dr. Infante,
24

25
26
27
28
29
30 Infante First Report at 8.

1 a significantly elevated risk of AML exists at cumulative exposures³¹ to
2 benzene as low as 1.5 ppm-years and 6.7 ppm-years and significantly
3 increased risk of contracting leukemia exists at average exposure
4 levels³² as low as 0.2 ppm and 0.8 ppm. Dr. Infante's opinion is well
5 supported by epidemiological studies.
6
7

8 In Hayes 1997, the investigators analyzed the dose-response
9 resulting from an enormous cohort of more than 74,000 Chinese workers
10 who were exposed to benzene. In this study, the scientists observed
11 that those exposed to average benzene levels of less than 10 ppm
12 showed a 3.2-fold increased risk of contracting AML.³³ Although the
13 study does not explicitly state the cumulative dose at which these results
14 showed a 3.2 relative risk, the authors reported to the State of California
15
16
17
18
19
20
21

22
23 ³¹ The cumulative exposure figure of ppm-years is calculated by multiplying the 8-hour time-
24 weighted average exposure experienced by a person by the number of years of exposure.
25

26 ³² The average exposure figure is calculated simply by averaging a person's exposure over
time.

27 ³³ Hayes RB, et al. (1997) Benzene and the dose-related incidence of hematologic
28 neoplasms in China. J Natl Cancer Inst 89, 1065-1071 ("Hayes 1997").

1 California that this risk occurred at just 6.7 ppm-years.³⁴

2 Numerous other studies also establish a greater than doubling of
3 the risk of AML at very low levels of benzene exposure. For instance, in
4 2001, Gray et al. published a case-control study on petroleum industry
5 workers and found a 7-fold increased risk of contracting leukemia at
6 exposure intensities as low as 0.8 – 1.56 ppm.³⁵ The authors also
7 evaluated the data for leukemia subtypes. For AML, exposure to a
8 maximum intensity level of just 0.6 ppm to 4.8 ppm revealed a 5.71 odds
9 ratio for AML. Even when the data for this range of exposure was
10 compared to the data from individuals exposed to benzene but less than
11 0.6 ppm, the odds ratio for AML was 4.79.³⁶ This data shows a readily
12 apparent association between low intensity exposures to benzene and
13 AML.³⁷ Finally, the analysis of cumulative benzene exposure also
14 showed a very high relative risk for leukemia at very low levels of
15

21
22 ³⁴ See California Environmental Protection Agency, Office of Environmental Health Hazard
23 Assessment. (2001) Public Health Goal for Benzene in Drinking Water (citing Hayes 1997).

24 ³⁵ Gray C, et al. (2001) Lympho-haematopoietic Cancer and Exposure to Benzene in the
25 Australian Petroleum Industry. Monash University and Deakin University ("Gray 2001").

26 ³⁶ Id.

1 exposure. At just 1.44 ppm-years, workers showed a 4.1 relative risk for
2 leukemia, and at 2.78 ppm-years, workers showed a 4.7 relative risk for
3 leukemia.³⁸

5 Glass et al. also conducted a series of case-control studies on the
6 same population of Australian refinery workers, which also demonstrated
7 an increased risk of leukemia from low cumulative exposures to
8 benzene. In 2003, Glass et al. reported that cumulative exposures of
9 more than 8 ppm-years resulted in a more than 7-fold increase in
10 leukemia. The authors also noted that the data established that the “risk
11 of leukemia was increased at cumulative exposures above 2 ppm-years
12 and with intensity of exposure of the highest exposed job over 0.8 ppm.”
13 From these data, the authors concluded that “no evidence was found of
14 a threshold cumulative exposure below which there was no risk.”³⁹

15
16
17
18
19
20 The group of studies arising from PADOH investigation of the large
21

22
23
24
25
26 ³⁷ Infante First Report at 10.

³⁸ Gray 2001.

³⁹ Glass DC, et al. (2003) Leukemia risk associated with low-level benzene exposure. *Epid*
14, 569-577.

1 large gasoline spill in Pennsylvania also provided compelling, and
2 particularly relevant, evidence that very low doses of benzene cause
3 AML. As one paper noted, the Agency for Toxic Substances and
4 Disease Registry (“ASTDR”) estimate the cumulative benzene exposure
5 for the residents of the homes at issue to be just 0.03 ppm-years over 3
6 years.⁴⁰ The highest cumulative dose experienced by these residents
7 was 2 ppm-years. These estimates were generated by data collected by
8 the PADOH prior to remediation of the site. Despite this exceedingly low
9 exposure to benzene from gasoline, Patel 2004 observed a 4.4 relative
10 risk of leukemia, and the PADOH, which followed the community for 7
11 years longer than Patel et al., noted a 5.56 relative risk for AML. From
12 this information Patel et al. concluded that their study provided support
13 for the growing body of evidence that low-level benzene exposure
14 causes leukemia.

15

16

17

18

19

20 **3. Neil Henricksen Was Exposed to Substantial**
21 **Amounts of Benzene From ConocoPhillips’s**
22 **Gasoline.**

23

24

25

26

40 Patel 2004.

Given the extraordinarily low level of benzene required to double the risk of contracting AML, there can be little doubt that the dose suffered by Mr. Henricksen was more than sufficient to double his risk of contracting AML. As Dr. Sawyer and Mr. Kaltofen demonstrate, Mr. Henricksen suffered a cumulative dose of benzene in excess of 8 ppm-years. Although each doctor utilized a different methodology and relied on different studies, the results reached by Dr. Sawyer and Mr. Kaltofen are remarkably similar.

i. Dr. Sawyer Accurately Estimated Mr. Henricksen's Cumulative Benzene Exposure.

First, ConocoPhillips' criticisms of Dr. Sawyer's dose calculation are extraordinarily disingenuous. To calculate Mr. Henricksen's benzene exposure, Dr. Sawyer first determined the amount of time Mr. Henricksen spent loading his truck with gasoline. Relying on his interview with Mr. Henricksen, Dr. Sawyer determined that Mr. Henricksen top-loaded his truck 25 to 30 times per week and each event took 30 to 45 minutes, "sometimes longer." Taking the means of these two ranges, Dr. Sawyer determined that Mr. Henricksen spent 1031.2 minutes each week loading his tanker truck with fuel (i.e. 27.5 loading events lasting approximately 37.5 minutes). This is the equivalent of

1 17.2 hours per week, which is 43% of a 40-hour work week, or 29.9% of
2 Mr. Henricksen's usual 55 to 60 hour work week.
3

4 Although Mr. Henricksen testified that he worked 55-60 hours a
5 week, Dr. Sawyer determined the percentage of time spent loading his
6 truck based on a 40-hour work week because cumulative dose estimates
7 are made by averaging the dose to a toxin over a standard 40-hour work
8 week, which is the generally accepted benchmark in time weighted
9 average calculations. By making this estimate, Dr. Sawyer assumes that
10 Mr. Henricksen had no exposure to benzene other than what occurred
11 during the loading of his vehicle, which substantially underestimates his
12 actual exposure. Dr. Sawyer does not account for the benzene
13 exposure Mr. Henricksen would have received while unloading his truck,
14 from the fumes created by occasional spills, or from dermal absorption of
15 benzene that occurred when Mr. Henricksen came in contact with
16 ConocoPhillips' gasoline. Consequently, despite ConocoPhillips'
17 objections, Dr. Sawyer's dose estimate is extremely conservative.
18
19
20
21
22
23
24
25
26

1 To determine the amount of exposure Mr. Henricksen received for
2 the 43% of a 40-hour work week he spent loading his truck with gasoline,
3 Dr. Sawyer turned to peer-reviewed published literature to obtain an
4 estimate of the benzene exposure that occurs during the top loading of a
5 gasoline tanker without any vapor recovery system in a closed terminal.
6 For this data, Dr. Sawyer turned to the results published in 1999 by
7 Kawai et al.⁴¹ In this study, the authors measured the mean benzene
8 exposure levels during the loading of a tanker truck with gasoline, which
9 the authors found to be 5.2 ppm. Dr. Sawyer chose this study because,
10 like Mr. Henricksen, it involved the top-loading of gasoline without vapor
11 recovery.

12 Moreover, the benzene content of the gasoline studied in Kawai
13 1999 ranged from 1.15% to 1.62% across the different brands and
14 0.91% to 2.08% by location. This benzene content is very similar to the
15 benzene content in ConocoPhillips' gasoline. Moreover, ConocoPhillips'
16 corporate representative concedes that ConocoPhillips' gasoline
17 contains 1-2% benzene. See Deposition of Jennifer Galvin at 168. This

24 _____
25
26 ⁴¹ See Kawai T, et al. (1991) Exposure to vapors of benzene and other aromatic solvents in

1 is also consistent with ConocoPhillips' MSDS forms, which indicate that
2 ConocoPhillips gasoline contains between 1 and 4.9% benzene. CON
3 5004, CON 5005. In its motion to strike Dr. Sawyer's testimony
4 ConocoPhillips faults Dr. Sawyer for relying on this study because it
5 believes that the gas transported by Mr. Henricksen contained only 1%
6 benzene. However, given the evidence above, ConocoPhillips cannot
7 reasonably deny that Dr. Sawyer has a valid basis for determining that
8 the benzene content of the gasoline measured in Kawai 1999 was
9 reasonably similar to the benzene content of ConocoPhillips' gasoline.⁴²
10
11
12
13
14

15 From this data, Dr. Sawyer was able to estimate the cumulative
16 benzene dose Mr. Henricksen received while loading ConocoPhillips
17 gasoline in his tanker truck. Mr. Henricksen was exposed to 5.2 ppm of
18 benzene for 43% of a 40-hour work week, which yields an 8-hour time
19

20
21 tank truck loading and delivery. Bull. Envirn. Contam. Toxicology 46, 1-8 ("Kawai 1999").
22
23

24 42 Oddly, ConocoPhillips also criticizes Dr. Sawyer for assuming that ConocoPhillips'
25 gasoline contains 2% benzene. This objection is founded on an assumption made in Dr. Sawyer's
26 report and restated in his deposition. However, this assumption had absolutely no bearing on Dr.
Sawyer's dose calculation. The benzene content assumed in Dr. Sawyer's calculation is the content
reflected in Kawai 1999, which ranged from 1.15% to 1.62% across the different brands and 0.91% to
2.08% by location. This content is almost precisely the 1-2% benzene content that ConocoPhillips'
corporate representative testified was in ConocoPhillips' gasoline. See Deposition of Jennifer Galvin

1 weighted average of 2.24 ppm TWA (i.e. 5.2 ppm x .43 = 2.24).
2 However, because Mr. Henricksen actually delivered diesel fuel 50% of
3 the time, which does not result in as significant benzene exposures as
4 gasoline, his actual exposure over a 40-hour work week was 1.12 ppm
5 TWA (i.e. $\frac{1}{2}$ of 2.24 ppm TWA). Because Mr. Henricksen delivered
6 ConocoPhillips gasoline for 8 years, his cumulative dose to benzene
7 from this activity was 8.9 ppm-years (i.e. 1.12 ppm TWA x 8 years).

8
9
10 ConocoPhillips does not fault the method of calculations used by
11 Dr. Sawyer in reaching this estimate. Instead, ConocoPhillips attempts
12 to discredit Dr. Sawyer's dose calculation by attacking the data he relied
13 on in making the calculations. First, ConocoPhillips argues that Dr.
14 Sawyer erred in his estimate of the amount of time Mr. Henricksen spent
15 loading his truck. ConocoPhillips contends that Mr. Henricksen loaded
16 his truck, at most 21 times per week, not 27.5 times per week.
17 ConocoPhillips is simply wrong. The testimony from Mr. Henricksen
18 cited by ConocoPhillips actually provides as follows:
19
20
21

22
23
24
25
26 at 168. It is hard to imagine how Dr. Sawyer could have found a more accurate study to rely on in
making his calculations in this case.

1 Q: And during a given week working of Husky, how many
2 different offload, offloading events on average would
3 you have?

4 A: It was just, for Husky, it's hard to say, two to five, you
5 know.

6 Q: Two to five per what?

7 A: That's how many loads I would haul. So that's how
8 many unloads I would do a day.

9 Q: Two to five per day?

10 A: Yeah.

11 Q: How many days per week?

12 A: I pretty much worked 5 ½, 6 days a week.

13 Q: So if we do the math, that gets us somewhere near like
14 25 to 30 offloading events per week, do you agree with
15 that or not agree with that?

16 A: Yeah, that would be - -

17 Q: Is that about right?

18 A: Yes.⁴³

19
20 Instead, of demonstrating that Dr. Sawyer's factual assumption were
21 wrong, ConocoPhillips establishes that Dr. Sawyer accurately estimated
22

23
24
25 43 See Exhibit B to ConocoPhillips' Motion to Exclude the Testimony of Plaintiff's Expert
26 William Sawyer at 193-94. ConocoPhillips also cites the Court to p. 231, l.1-6, but this exchange
merely confirms Mr. Henricksen's prior estimate that he delivered between 2 and 5 loads a day while
he was delivering ConocoPhillips' gasoline.

1 that Mr. Henricksen delivered between 25 and 30 loads a week, the
2 mean of which is 27.5.
3

4 ConocoPhillips also criticizes Dr. Sawyer for relying on the
5 exposure data for the short-term task based samples reported in
6 Kawai 1999, suggesting that Dr. Sawyer testified that his reliance on this
7 data was erroneous. Again, the actual testimony cited by ConocoPhillips
8 establishes that ConocoPhillips' complaint is specious. The first
9 reference to Dr. Sawyer's deposition simply establishes that Dr. Sawyer
10 relied on the measurements of benzene exposure during top-loading and
11 multiplied that number by 43% to obtain a time weighted average
12 exposure for Mr. Henricksen.⁴⁴
13

14 In the second deposition reference cited by ConocoPhillips, Dr.
15 Sawyer simply states that it would be erroneous to calculate a time
16 weighted average based on the task based measurement "unless the
17 only exposure the individual had" was during that task.⁴⁵ What
18 ConocoPhillips fails to recognize is that the assumption Dr. Sawyer
19

20

21
22
23
24
25 ⁴⁴ See Exhibit A to ConocoPhillips' Motion to Exclude the Testimony of Plaintiff's Expert
William Sawyer at 174:1-10.
26

1 made in his calculation is precisely that the only exposure Mr.
2 Henricksen suffered was while loading gasoline in his tanker. More
3 importantly, ConocoPhillips apparently fails to appreciate that this
4 assumption *underestimates* Mr. Henricksen's exposure because there is
5 no question that he was also exposed to benzene while unloading the
6 gasoline and when the gasoline spilled on his clothing, which are not
7 accounted for in Dr. Sawyer's calculation. In other words, Dr. Sawyer
8 has not assumed that Mr. Henricksen was exposed to benzene for his
9 entire 55 to 60 hour work week, but calculated a time weighted average
10 based on the fraction of time he loaded gasoline into his truck and
11 assumed that he had no exposure for the remaining 40.3 hours of his
12 work week.

13 Next, ConocoPhillips faults Dr. Sawyer for failing to subtract Mr.
14 Henricksen's vacation time from his dose calculation. Without any
15 citation, ConocoPhillips claims that Mr. Henricksen took 3 weeks of
16 vacation each year for 8 years and that Dr. Sawyer should have,
17 therefore, assumed that Mr. Henricksen was only exposed for 7 years.
18

24
25
26 45 See Exhibit A to ConocoPhillips' Motion to Exclude the Testimony of Plaintiff's Expert

1 ConocoPhillips' argument tests the bounds of credibility. For one, even if
2 Mr. Henricksen took a 3-week vacation each year, he worked 7.538
3 years, not 7 years. If this, number is substituted into Dr. Sawyer
4 calculation, the resulting cumulative exposure is 8.44 ppm-years as
5 opposed to 8.9 ppm-years. Moreover, the body of peer-reviewed studies
6 from which Mr. Henricksen's benzene exposure was calculated do not
7 subtract out vacation time;" instead, simply calculate the a worker's
8 cumulative exposure by multiplying the number of years worked by the
9 8-hour time weighted average.

10 ConocoPhillips also contends that Dr. Sawyer's opinions are
11 unreliable because he utilized the arithmetic mean benzene exposure
12 from the Kawai 1999 study as opposed to the geometric mean. Again,
13 ConocoPhillips incorrectly argues that Dr. Sawyer admitted that this was
14 an error. While Dr. Sawyer admitted that using the geometric mean
15 would be a more appropriate method for determining the "central values"
16 experienced by the drivers in Kawai 1999, he did not testify that relying
17 on the arithmetic mean was an error.
18

19
20
21
22
23
24
25
26 William Sawyer at 182:20-25.

1 Instead, he noted that the purpose of using a geometric mean is to
2 suppress the effect of high “outlier” values. However, Mr. Henricksen’s
3 exposure was, in fact, a high outlier exposure. Unlike most exposures in
4 an open or roofed terminal, Mr. Henricksen’s exposure occurred in an
5 unusually enclosed terminal with a roof and partial walls on two sides.
6 See Deposition of Neil Henricksen at 178-81; Exhibit 5. Relying on a
7 geometric mean in this case would, therefore, underestimate Mr.
8 Henricksen’s true exposure.

9 Additionally, this argument has little practical significance to Dr.
10 Sawyer’s calculation. Even if the geometric mean from Kawaii 1999
11 were used, Mr. Henricksen’s cumulative exposure to benzene was 4.9
12 ppm-years, which is substantially higher than the dose required to
13 double the risk of contracting AML. With either calculation, ample
14 evidence exists establishing that the benzene from ConocoPhillips’
15 gasoline caused Mr. Henricksen’s AML.

16 Finally, ConocoPhillips faults Dr. Sawyer for relying on the
17 “Canadian agency driver” dose calculations reported in Verma 1998 in
18 determining Mr. Henricksen’s benzene dose, as opposed to the lower
19 calculations for terminal drivers. This argument is strange given the
20

1 pages of arguments that Dr. Sawyer erred in relying on the data
2 presented in Kawai 1999 for his calculations. In reality, although Dr.
3 Sawyer cited Verma 1998 in his report, he did not rely on Verma 1998
4 for his does estimate. This was because Verma's calculations were
5 based on open terminal top-loading, which would have significantly
6 underestimated Mr. Henricksen's actual exposure. To estimate Mr.
7 Henricksen's dose based on the data in Verma would require a
8 conversion factor estimating the difference between benzene levels in
9 top-loading operations in an open terminal and the same operations in a
10 closed terminal, which is exactly what Mr. Kaltofen did in his estimations
11 of Mr. Henricksen's dose. Remarkably, either method of calculating Mr.
12 Henricksen's cumulative benzene dose results in virtually the same
13 result.

14 In the end, ConocoPhillips' tepid criticisms of Dr. Sawyer's dose
15 calculations are nothing more than cross-examination material. Despite
16 every effort, ConocoPhillips has not shown that Dr. Sawyer's calculations
17 are wrong, or even slightly inaccurate. As demonstrated above, Dr.
18 Sawyer dose estimate is well founded on valid data and unquestioned
19 methodology. Consequently, ConocoPhillips' motion to exclude his
20
21
22
23
24
25
26

1 exclude his testimony must be denied.

2

3 **ii. Mr. Kaltofen's Cumulative Dose Calculations are**
4 **Also Accurate and Remarkably Similar to Dr.**
5 **Sawyer's Calculations.**

6 ConocoPhillips next criticizes the dose calculation of Mr. Kaltofen.
7 Although Mr. Kaltofen used a different method for estimating Mr.
8 Henricksen's cumulative dose, his results are virtually identical to Dr.
9 Sawyer's. As with its other complaints, ConocoPhillips' objections to Mr.
10 Kaltofen's testimony are flimsy and unpersuasive when stripped of their
11 misdirection.

12

13 For his dose calculation, Mr. Kaltofen turned to peer-reviewed
14 literature to obtain an initial estimate of Mr. Henricksen's time weighted
15 average exposure while loading ConocoPhillips gasoline. Mr. Kaltofen
16 determined that an appropriate assumed time weighted average for
17 tanker truck operators loading gasoline was 0.38 ppm based on the
18 results of two studies. Of particular significance to Mr. Kaltofen's
19 assumption were the results published in Verma 2004.⁴⁶ In this study,

20

21

22

23

24

25

26 ⁴⁶ Verma, DK. (2004) A Simultaneous Job- and Task-Based Exposure Evaluation of Petroleum Tanker Drivers to Benzene and Total Hydrocarbons. J. Occupational and Environ. Hygiene ("Verma 2004").

1 tanker truck drivers working shifts longer than 8 hours, experienced time
2 weighted average exposures to benzene between 0.25 ppm and 0.48
3 ppm.⁴⁷ As Mr. Kaltofen testified, his estimate of 0.38 was chosen, in
4 large part, because it fell within this range of potential time weighted
5 averages.

6 Additionally, Mr. Kaltofen's estimate is supported by the results in
7 Irving & Grumbles 1979.⁴⁸ In that study, the authors similarly measured
8 the benzene exposure for top loading a tanker truck without vapor
9 recovery and determined that for an 8-hour work day consisting of 4
10 tanker loads of fuel, workers were exposed to a 0.38 ppm.⁴⁹ This was
11 consistent with the range of time weighted averages found by Verma
12 2004 and supportive of Mr. Kaltofen's determination of the 0.38 point
13 within that range.

14 ConocoPhillips' first complaint with regard to Mr. Kaltofen's opinion
15 is that Mr. Kaltofen committed some great gaffe by citing Irving &
16

17
18
19
20
21
22
23
24
25
26
⁴⁷ Verma 2004 at 729, 735.

⁴⁸ Irving, W.S., et al., "Benzene Exposures During Gasoline Loading at Bulk Marketing Terminals," Am. Indus. Hygiene Assn (1979) ("Irving & Grumbles 1979").

1 Grumbles 1979 in his report and relying primarily on Verma 2004 at his
2 deposition. ConocoPhillips' contentions are misguided. At no time did
3 Mr. Kaltofen change his opinion or disavow any reliance on Irving &
4 Grumbles. As he stated in his deposition, Mr. Kaltofen relied primarily on
5 Verma 2004 because the data in that study was adjusted for standard
6 temperature and pressure.⁵⁰ Nevertheless, he also relied on the results
7 from Irving & Grumbles 1979 as further support for his determination that
8 0.38 was an appropriate estimation. Essentially, ConocoPhillips
9 contends that Mr. Kaltofen's opinion in this regard is unreliable because
10 it is supported in multiple peer-reviewed papers.

11 ConocoPhillips also complains that Mr. Kaltofen erred in relying on
12 the data from Verma 2004. For one, ConocoPhillips alleges that Mr.
13 Kaltofen erred by assuming that the tanker truck drivers in Verma 2004
14 were top loaders when, in fact, some of the drivers loaded gasoline from
15 the bottom. Apparently, ConocoPhillips fails to recognize that even if this
16 allegation is true it only establishes that Mr. Kaltofen's estimates are
17
18

19
20
21
22
23
24
25
26
⁴⁹ Irving & Grumbles 1979 at 472.

1 conservative because it is well established that bottom-loading creates
2 substantially less benzene exposure than top loading.⁵¹ ConocoPhillips
3 also suggests that Mr. Kaltofen misunderstood Verma 2004 and should
4 have relied on the exposure limits of 0.12 reported in Verma 2004
5 instead of the time weighted averages. ConocoPhillips' contention is
6 odd given that Verma 2004 stated that the exposure limit should be
7 adjusted for workers such as Mr. Henricksen who worked more than 8
8 hours per day.⁵²

12 From this 0.38 time weighted average estimate, Mr. Kaltofen is
13 able to calculate Mr. Henricksen's benzene dose based on the other
14 factors in Mr. Henricksen's career. Because the tanker drivers in Verma
15 2004 loaded gasoline approximately 80% of the time and Mr. Henricksen
16 loaded gasoline approximately 50% of the time, Mr. Kaltofen first
17 adjusted the 0.38 estimate by 5/8 to determine Mr. Henricksen's time
18 weighted average for the actual percentage of time he spent loading

21

22

23 ⁵⁰ See Exhibit to ConocoPhillips' Motion to Exclude the Testimony of Marco Kaltofen at 40-41.

24

25 ⁵¹ See, e.g., Irving & Grumbles 1979 at 472; Verma, Dave K., "Hydrocarbon Exposures at
26 Petroleum Bulk terminals and Agencies" at 648, Am. Indus. Hyg. Assn. J. (1992) ("Verma 1992")

1 loading gasoline, which resulted in a time-weighted average of 0.2375-
2 ppm. Mr. Kaltofen next multiplied this figure by his estimate that Mr.
3 Henricksen worked for seven years, resulting in a cumulative dose
4 estimate of 1.6625 ppm-years. As with Dr. Sawyer, Mr. Kaltofen's dose
5 calculations are very conservative because they assume that Mr.
6 Henricksen's only exposure to benzene from ConocoPhillips gasoline
7 was during loading and because he assumed that Mr. Henricksen
8 worked only 7 years instead of the 8 years reflected in his deposition.
9

10 ConocoPhillips' primary complaint with respect to the final step in
11 Mr. Kaltofen;s analysis. Because Plaintiffs' experts learned that the data
12 in the Verma 2004 study was based on measurements taken primarily at
13 open facilities with no roof or walls,⁵³ it drastically underestimated Mr.
14 Henricksen's cumulative exposure because the terminal where he
15 loaded ConocoPhillips' gasoline was roofed and had two partial walls,
16 which substantially reduced the dissipation of the benzene vapors and
17 increased Mr. Henricksen's exposure by hampering the natural
18

19

20

21

22

23

24

25 52 Verma 2004 at 735.

26

53 See Deposition of William Sawyer at 23-25.

1 ventilation.⁵⁴ To estimate this increased exposure, Mr. Kaltofen again
2 turned to peer-reviewed literature to determine a ratio of exposure
3 between open and closed terminals.

5 In 1987, Swedish scientists determined such a ratio in Nordlinder
6 1987.⁵⁵ In this study, the authors compared the benzene exposure
7 levels and found that benzene levels in “enclosed” terminals were 5
8 times higher than benzene levels in open terminals.⁵⁶ These enclosed
9 terminals where higher benzene levels were observed are described as
10 “buildings which give rise to less effective natural ventilation . . .”⁵⁷
11 Because the building where Mr. Henricksen loaded ConocoPhillips'
12 gasoline was uniquely “enclosed,” Mr. Kaltofen reasonably relied on this
13 data for the open/closed terminal ratio needed to accurately reflect Mr.
14 Henricksen’s exposure. In fact, given the unusual amount of enclosure
15 at the ConocoPhillips terminal, this ratio in all likelihood underestimates
16
17
18
19

20
21
22
23
24
25
26
⁵⁴ Nordlinder 19

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
55610
55611
55612
55613
55614
55615
55616
55617
55618
55619
55620
55621
55622
55623
55624
55625
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
55641
55642
55643
55644
55645
55646
55647
55648
55649
55650
55651
55652
55653
55654
55655
55656
55657
55658
55659
55660
55661
55662
55663
55664
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
55680
55681
55682
55683
55684
55685
55686
55687
55688
55689
55690
55691
55692
55693
55694
55695
55696
55697
55698
55699
556100
556101
556102
556103
556104
556105
556106
556107
556108
556109
556110
556111
556112
556113
556114
556115
556116
556117
556118
556119
556120
556121
556122
556123
556124
556125
556126
556127
556128
556129
556130
556131
556132
556133
556134
556135
556136
556137
556138
556139
556140
556141
556142
556143
556144
556145
556146
556147
556148
556149
556150
556151
556152
556153
556154
556155
556156
556157
556158
556159
556160
556161
556162
556163
556164
556165
556166
556167
556168
556169
556170
556171
556172
556173
556174
556175
556176
556177
556178
556179
556180
556181
556182
556183
556184
556185
556186
556187
556188
556189
556190
556191
556192
556193
556194
556195
556196
556197
556198
556199
556200
556201
556202
556203
556204
556205
556206
556207
556208
556209
556210
556211
556212
556213
556214
556215
556216
556217
556218
556219
556220
556221
556222
556223
556224
556225
556226
556227
556228
556229
556230
556231
556232
556233
556234
556235
556236
556237
556238
556239
556240
556241
556242
556243
556244
556245
556246
556247
556248
556249
556250
556251
556252
556253
556254
556255
556256
556257
556258
556259
556260
556261
556262
556263
556264
556265
556266
556267
556268
556269
556270
556271
556272
556273
556274
556275
556276
556277
556278
556279
556280
556281
556282
556283
556284
556285
556286
556287
556288
556289
556290
556291
556292
556293
556294
556295
556296
556297
556298
556299
556300
556301
556302
556303
556304
556305
556306
556307
556308
556309
556310
556311
556312
556313
556314
556315
556316
556317
556318
556319
556320
556321
556322
556323
556324
556325
556326
556327
556328
556329
556330
556331
556332
556333
556334
556335
556336
556337
556338
556339
556340
556341
556342
556343
556344
556345
556346
556347
556348
556349
556350
556351
556352
556353
556354
556355
556356
556357
556358
556359
556360
556361
556362
556363
556364
556365
556366
556367
556368
556369
556370
556371
556372
556373
556374
556375
556376
556377
556378
556379
556380
556381
556382
556383
556384
556385
556386
556387
556388
556389
556390
556391
556392
556393
556394
556395
556396
556397
556398
556399
556400
556401
556402
556403
556404
556405
556406
556407
556408
556409
556410
556411
556412
556413
556414
556415
556416
556417
556418
556419
556420
556421
556422
556423
556424
556425
556426
556427
556428
556429
556430
556431
556432
556433
556434
556435
556436
556437
556438
556439
556440
556441
556442
556443
556444
556445
556446
556447
556448
556449
556450
556451
556452
556453
556454
556455
556456
556457
556458
556459
556460
556461
556462
556463
556464
556465
556466
556467
556468
556469
556470
556471
556472
556473
556474
556475
556476
556477
556478
556479
556480
556481
556482
556483
556484
556485
556486
556487
556488
556489
556490
556491
556492
556493
556494
556495
556496
556497
556498
556499
556500
556501
556502
556503
556504
556505
556506
556507
556508
556509
556510
556511
556512
556513
556514
556515
556516
556517
556518
556519
556520
556521
556522
556523
556524
556525
556526
556527
556528
556529
556530
556531
556532
556533
556534
556535
556536
556537
556538
556539
556540
556541
556542
556543
556544
556545
556546
556547
556548
556549
556550
556551
556552
556553
556554
556555
556556
556557
556558
556559
556560
556561
556562
556563
556564
556565
556566
556567
556568
556569
556570
556571
556572
556573
556574
556575
556576
556577
556578
556579
556580
556581
556582
556583
556584
556585
556586
556587
556588
556589
556590
556591
556592
556593
556594
556595
556596
556597
556598
556599
556600
556601
556602
556603
556604
556605
556606
556607
556608
556609
556610
556611
556612
556613
556614
556615
556616
556617
556618
556619
556620
556621
556622
556623
556624
556625
556626
556627
556628
556629
556630
556631
556632
556633
556634
556635
556636
556637
556638
556639
556640
556641
556642
556643
556644
556645
556646
556647
556648
556649
556650
556651
556652
556653
556654
556655
556656
556657
556658
556659
556660
556661
556662
556663
556664
556665
556666
556667
556668
556669
556670
556671
556672
556673
556674
556675
556676
556677
556678
556679
556680
556681
556682
556683
556684
556685
556686
556687
556688
556689
556690
556691
556692
556693
556694
556695
556696
556697
556698
556699
556700
556701
556702
556703
556704
556705
556706
556707
556708
556709
556710
556711
556712
556713
556714
556715
556716
556717
556718
556719
556720
556721
556722
556723
556724
556725
556726
556727
556728
556729
556730
556731
556732
556733
556734
556735
556736
556737
556738
556739
556740
556741
556742
556743
556744
556745
556746
556747
556748
556749
556750
556751
556752
556753
556754
556755
556756
556757
556758
556759
556760
556761
556762
556763
556764
556765
556766
556767
556768
556769
556770
556771
556772
556773
556774
556775
556776
556777
556778
556779
556780
556781
556782
556783
556784
556785
556786
556787
556788
556789
556790
556791
556792
556793
556794
556795
556796
556797
556798
556799
556800
556801
556802
556803
556804
556805
556806
556807
556808
556809
556810
556811
556812
556813
556814
556815
556816
556817
556818
556819
556820
556821
556822
556823
556824
556825
556826
556827
556828
556829
556830
556831
556832
556833
556834
556835
556836
556837
556838
556839
556840
556841
556842
556843
556844
556845
556846
556847
556848
556849
556850
556851
556852
556853
556854
556855
556856
556857
556858
556859
556860
556861
556862
556863
556864
556865
556866
556867
556868
556869
556870
556871
556872
556873
556874
556875
556876
556877
556878
556879
556880
556881
556882
556883
556884
556885
556886
556887
556888
556889
556890
556891
556892
556893
556894
556895
556896
556897
556898
556899
556900
556901
556902
556903
556904
556905
556906
556907
556908
556909
556910
556911
556912
556913
556914
556915
556916
556917
556918
556919
556920
556921
556922
556923
556924
556925
556926
556927
556928
556929
556930
556931
556932
556933
556934
556935
556936
556937
556938
556939
556940
556941
556942
556943
556944
556945
556946
556947
556948
556949
556950
556951
556952
556953
556954
556955
556956
556957
556958
556959
556960
556961
556962
556963
556964
556965
556966
556967
556968
556969
556970
556971
556972
556973
556974
556975
556976
556977
556978
556979
556980
556981
556982
556983
556984
556985
556986
556987
556988
556989
556990
556991
556992
556993
556994
556995
556996
556997
556998
556999
556100
556101
556102
556103
556104
556105
556106
556107
556108
556109
556110
556111
556112
556113
556114
556115
556116
556117
556118
556

1 the true exposures suffered by Mr. Henricksen. Based on this peer-
2 reviewed estimate, Mr. Kaltofen finally determined that Mr. Henricksen's
3 cumulative dose to benzene was approximately 8.3125 ppm-years (i.e.
4 1.6625 ppm-years x 5).

5 ConocoPhillips lodges multiple complaints regarding Mr. Kaltofen's
6 reliance on the ratio described in Nordlinder 1987. For one,
7 ConocoPhillips complains that Nordlinder 1987 is not an appropriate
8 study to rely on because the benzene content in Swedish gasoline his
9 higher than the benzene content in ConocoPhillips' gasoline. This,
10 again, is an effort at misdirection. Mr. Kaltofen does not rely on
11 Nordlinder 1987 to establish the amount of Mr. Henricksen's benzene
12 exposure. He relies on Nordlinder 1987 to show the ratio between
13 benzene levels at open and enclosed terminals. Whether the benzene
14 content the gasoline at issue were 1% or 10%, the ratio between open
15 and enclosed terminals would remain the same. The amount of benzene
16 in the gasoline tested by the authors in Nordlinder 1987 would be
17 relevant only if Mr. Kaltofen used the data from that study to estimate the
18 amount of exposure experienced by Mr. Henricksen.

1 Finally, ConocoPhillips argues that Mr. Kaltofen failed to account
2 for several minute factors that may have influenced the results of
3 Nordlinder 1987, such the extent of enclosure at the enclosed terminals.
4 However, as with every other complaint leveld by ConocoPhillips, these
5 complaints regarding this level of minute detail do not bear on the
6 admissibility of Mr. Kaltofen's opinion. At best, these types of complaints
7 may provide some material for cross-examination, not the wholesale
8 exclusion of Mr. Kaltofen's testimony. As shown above, Mr. Kaltofen's
9 opinions are well founded in peer-reviewed data and calculated based
10 on unquestioned methodology. Therefore, Mr. Kaltofen's testimony is
11 admissible.

12

13

14

15

16 **4. Neil Henrickson's Dose of Benzene from**
17 **ConocoPhillips' Gasoline Was Sufficient to Cause**
18 **His AML.**

19 Given the overwhelming evidence outlined above, it is not
20 surprising that all four of Plaintiffs' retained expert witnesses and one of
21 Mr. Henricksen's treating physicians have all come to the conclusion that
22 Mr. Henricksen's AML was caused by exposure to benzene from
23 ConocoPhillips' gasoline. As multiple courts have determined, a plaintiff
24 may prove specific causation by relying on epidemiology studies that
25

1 establish a relative risk of developing a disease as a result of exposure
2 to a toxin that is greater than 2.0. See, e.g., *In re Bextra and Celebrex*
3 *Mktg. Sales Practices and Prod. Liab. Litig.*, 524 F. Supp. 2d 1166,
4 1172-73 (N.D. Cal. 2007) *In re Silicone Gel Breast Implants Products*
5 *Liab. Lit.*, 318 F.Supp.2d 879, 8923 (C.D. Cal. 2004). Here, the reports
6 of Drs. Infante and Sawyer list numerous peer-reviewed epidemiological
7 studies showing that exposure to benzene causes AML at very low
8 levels and low doses, whether the source of the benzene is gasoline or
9 some other product. The relative risks found as a result of exposure to
10 benzene published in the peer-reviewed literature include 2.7,⁵⁸ 3.2,⁵⁹
11 3.6,⁶⁰ 5.6,⁶¹ and 6.2.⁶²

16 Even though it is not necessary to establish a dose of a genotoxic
17 agent such as benzene to prove that it is a causative factor in an illness
18 so strongly linked with exposure, the peer-reviewed literature shows that

20 _____
21
22 ⁵⁸ Flodin 1990.

23 ⁵⁹ Hayes 1997.

24 ⁶⁰ Jakobsson 1993.

25 ⁶¹ PADOH 2003.

1 these exceedingly high relative risks exist at doses far below the dose
2 estimates of Dr. Sawyer and Mr. Kaltufen. The authors of Hayes 1997
3 demonstrated a 3.2 relative risk of contracting AML at just 6.7 ppm-
4 years. Similarly, Gray 2001 showed a 5.71 relative risk for contacting
5 AML at exposure levels of 0.8 to 4.8 ppm. This same study showed a
6 4.1 relative risk for leukemia at just 1.44 ppm-years and a 4.7 relative
7 risk at just 2.78 ppm-year. Likewise, Glass 2003 showed a 7-fold
8 increased risk of leukemia for at more than 8 ppm-years, causing the
9 authors to conclude that the “risk of leukemia was increased at
10 cumulative exposures above 2 ppm-years and with intensity of exposure
11 of the highest exposed job over 0.8 ppm.” Finally, the PADOH 2000
12 study demonstrated a 5.56 relative risk of contracting AML from no more
13 than 2 ppm-years of benzene resulting from exposure to gasoline fumes.
14
15
16
17

18
19
20 The combined weight of these studies and the universal
21 acceptance that benzene is capable of causing the disease Mr.
22 Henricksen developed amply demonstrate Mr. Henricksen’s cumulative
23
24

25
26 62 Terry 2005.

1 exposure to more than 8 ppm-years of benzene from ConocoPhillips'
2 gasoline was a cause of his AML.
3

4

5 **5. Dr. Frank Gardner's Opinions Are Reliable and
Admissible and The Opinion of Mr. Henricksen's
Treating Physician that Mr. Henricksen's AML was
caused by Benzene Exposure is Uniquely Reliable**

6

7 Moreover, this evidence that Mr. Henricksen's cumulative
8 exposure to benzene was far in excess of the dose required to double
9 his risk of AML demonstrates the flaw in ConocoPhillips' motion to
10 exclude Dr. Frank Gardner. Contrary to ConocoPhillips' contention, Dr.
11 Gardner no where asserts that a particular AML may be caused at any
12 dose of benzene.⁶³ Instead, based on his knowledge of the scientific
13 evidence, Dr. Gardner correctly noted that benzene, including benzene
14 from gasoline, causes AML at extremely low doses. Moreover, Dr.
15 Gardner correctly assumed that, as a bulk fuel transporter, Mr.
16 Henricksen would suffer extraordinarily high exposures as part of his job.
17 Unlike the cases cited by ConocoPhillips in which no dose estimate was
18
19
20

21

22

23

24

25 ⁶³ ConocoPhillips also argues that Dr. Gardner's opinion should be struck because there is
26 no epidemiological evidence that gasoline causes AML. Because the fallacies of this argument are
addressed elsewhere in the brief, they will not be repeated here.

1 was ever provided,⁶⁴ here Dr. Gardner's estimation that Mr.
2 Henricksen's exposure was sufficient to cause disease was verified by
3 two highly qualified experts.

5 Essentially, ConocoPhillips argues that Dr. Gardner should be
6 excluded for making the assumption that Mr. Henricksen's exposure was
7 sufficient to cause AML based on his extensive background and
8 knowledge, even though that assumption ultimately proved to be true
9 when tested by the other retained experts in this case. ConocoPhillips'
10 argument for excluding the causation testimony of Mr. Henricksen's
11 diagnosing physician, Dr. John Caton. In his deposition, Dr. Caton
12 testified that he believed Mr. Henricksen's AML was caused by his
13 exposure to benzene. As with Dr. Gardner, ConocoPhillips faults Dr.
14 Caton's opinion because he did not have a specific dose calculation
15 before reaching his opinion. However, Dr. Caton's opinion is not based
16 on a specific cumulative dose calculation, but on the universal
17 knowledge that gasoline contains benzene, benzene causes AML at very
18 low doses, and tanker truck drivers such as Mr. Henricksen are exposed
19
20
21
22
23
24

25
26⁶⁴ See, e.g., *Castellow v. Chevron USA*, 97 F. Supp. 2d 780, 791-92 (S.D. Tex. 2000).

1 exposed to high levels of benzene in their work. It is unclear what
2 portion of *Daubert* that ConocoPhillips relies on for its assertion that the
3 Court should exclude testimony based on assumptions that ultimately
4 prove to be true.

5

6 VI. Summary Judgment

7

8 In its motions for summary judgment, ConocoPhillips again argues
9 that Plaintiffs cannot produce any evidence of general or specific
10 causation. As amply demonstrated above, ConocoPhillips is wrong in
11 this contention. There is virtually no doubt in the scientific community
12 that benzene causes AML, and there is no dispute that ConocoPhillips's
13 gasoline contains gasoline. ConocoPhillips' argument that there is no
14 evidence that gasoline causes AML is a red-herring that should be
15 rejected by the Court.

16 Additionally, for ConocoPhillips to prevail on either its *Daubert*
17 motions or its motions for summary judgment, it must convince the Court
18 to make an impermissible factual finding. At most, ConocoPhillips'
19 briefing establishes that qualified, credible experts disagree. Under the
20 *Daubert* standard, FED. R. CIV. P. 56, and the 7th Amendment, these
21 factual disputes remain the province of the jury. The Court should not
22

1 supplant the role of the jury by resolving which expert's testimony is
2 correct.

3 In short, because the general and specific causation testimony of
4 Plaintiffs' expert witnesses is credible, ConocoPhillips is wrong in its
5 contention that Plaintiff can produce no evidence to support the claim
6 that Mr. Henricksen's AML was caused by his exposure to
7 ConocoPhillips' gasoline. The testimony of these experts is some
8 evidence with regard to both general and specific causation. Because a
9 fact issue remains on these issues, both of ConocoPhillips' motions for
10 summary judgment must be denied. FED. R. CIV. P. 56.

11 **VII. Conclusion and Prayer**

12 For the foregoing reasons, Plaintiffs respectfully request that the
13 Court deny each motion to exclude expert testimony and each motion for
14 summary judgment filed by ConocoPhillips. Plaintiffs also request all
15 other relief to which they are entitled.

DATED this 13th day of June, 2008.

PEPPLE JOHNSON CANTU & SCHMIDT
PLLC

/s/ Jackson Schmidt

Jackson Schmidt, WSBA 16848
Pepple Johnson Cantu & Schmidt
1501 Western Avenue, Suite 600
206.625.1711 / 206.625.1627 Fax
jacksonschmidt@pics.com

SIMON, EDDINS AND GREENSTONE
Jeffrey B. Simon
David C. Greenstone
3232 McKinney Avenue, Suite 610
Dallas, TX 75204
214.276.7680 / 214.276.7699 Fax

Attorneys for Plaintiff

CERTIFICATE OF SERVICE

I hereby certify that on this date I electronically filed the foregoing document with the Clerk of Court using the CM/ECF system, which will send notification of such filing to the following attorneys of record who are CM/ECF participants:

Ari Y. Brown and Glenn S. Draper
ari@bergmanlega.com; glenn@bergmanlegal.com;
Kristina@bergmanlegal.com

David Greenstone and Jeffrey Simon
dgreenstone@seqlaw.com; jsimon@seqlaw.com;
cchapman@seqlaw.com

Co-Counsel for Plaintiffs

Christopher N. Weiss and Gloria S. Hong
cweiss@stoel.com; gshong@stoel.com; cmcastro@stoel.com;
SEA Docket@stoel.com

Stephen Dillard and Brett Young
sdillard@fulbright.com; byoung@fulbright.com
Counsel for Defendant ConocoPhillips Company

DATED this 13th day of June, 2008, at Seattle, Washington.

/s/ Dawn Anderson
Dawn Anderson, Legal Assistant
Pepple Johnson Cantu & Schmidt PLLC
1501 Western Avenue, Suite 600
Seattle, WA 98101
206.625.1711 / 206.625.1627 Fax
Dawnanderson9@pics.com