

Exact Solutions > Ordinary Differential Equations > Second-Order Linear Ordinary Differential Equations > Legendre Equation, Special Case 2

19.
$$(1-x^2)y_{xx}'' - 2xy_x' + \nu(\nu+1)y = 0$$
.

Legendre equation, special case 2; ν is an arbitrary number. The case $\nu = n$ where n is a nonnegative integer is considered in 2.18.

The substitution $z = x^2$ leads to the hypergeometric equation. Therefore, with |x| < 1 the solution can be written as:

$$y = C_1 F\left(-\frac{\nu}{2}, \frac{1+\nu}{2}, \frac{1}{2}; x\right) + C_2 x F\left(\frac{1-\nu}{2}, 1+\frac{\nu}{2}, \frac{3}{2}; x\right),$$

where $F(\alpha, \beta, \gamma; x)$ is the hypergeometric series (see equation 2.22).

References

Abramowitz, M. and Stegun, I. A. (Editors), *Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables*, National Bureau of Standards Applied Mathematics, Washington, 1964.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Legendre Equation, Special Case 2

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0219.pdf