Supplementary Information

Prioritizing non-carbon dioxide removal mitigation strategies could reduce the negative impacts

associated with large-scale reliance on negative emissions

Jeffrey Dankwa Ampah ^{1,2}, Chao Jin ^{1*}, Haifeng Liu ^{2*}, Sandylove Afrane ¹, Humphrey Adun ³, David

Morrow ⁴, David T. Ho ^{5*}

¹ School of Environmental Science and Engineering, Tianjin University, 300072 Tianjin, China

² State Key Laboratory of Engines, Tianjin University, 300072 Tianjin, China

³ Energy Systems Engineering Department, Cyprus International University, Haspolat-Lefkosa, Mersin

10, Turkey

⁴ Institute for Carbon Removal Law and Policy, American University, Washington, NW DC 20016, USA

⁵ Department of Oceanography, University of Hawaii at Mānoa, 1000 Pope Road, Honolulu, Hawaii

96822, USA

*Corresponding authors: haifengliu@tju.edu.cn; jinchao@tju.edu.cn; hoehawaii.edu

Number of pages: 36

Number of figures: 2

Number of Tables: 27

S1

Contents

Lis	st of S	upplementary Figures	2
Lis	st of S	upplementary Tables	2
1.	CD	R description	4
2.	Sup	plementary Result	5
2	2.1	BECCS Vs DACCS	5
	2.2	Impact of subjecting land use emissions to constraint	
	2.3	Effect of socio-economic pathway	
3.	Mo	del parameterization and underlying equations for demand and supply	14
4.	Ref	erences	35
Li	st o	f Supplementary Figures	
		Enhanced weathering supply curves for GCAM regions(a)	28
_		Enhanced weathering supply curves for GCAM regions (b)	
Li	st o	f Supplementary Tables	
		supprementally rules	
		Description of CDR approaches	
		Energy-based comparison between 1 Gt-DACCS and 1 Gt-BECCS scenarios	
		Emission/sequestration-based results between 1 Gt-DACCS and 1 Gt-BECCS scenarios	
		Land/water/fertilizer results between 1 Gt-DACCS and 1 Gt-BECCS scenarios	
		Energy-based comparison between constrained and unconstrained land use emissions scenar Emission/sequestration-based results between constrained and unconstrained land use	108 8
		is scenarios	a
		Land/water/fertilizer results between constrained and unconstrained land use emissions	5
		S	10
		Energy-based comparison between SSP1, 2, and 5	
		Emission/sequestration-based results between SSP1, 2, and 5	
Tak	ole S 1	0 Land/water/fertilizer results between SSP1, 2, and 5	13
Tak	ole S 1	1 Fraction of CO ₂ captured by transformation technologies	14
Tak	ole S 1	2 Primary energy transformation technologies default cost assumptions (1975\$/GJ)	15
		3 Electricity technology capacity factors	
		4 Electricity technology capture fractions (portion of CO ₂ emissions that are captured)	
		5 Electricity technology retirement parameters	
		6 Industrial energy use default efficiencies	
		7 Carbon storage resource supply curve points (2005\$/tCO ₂)	
		8 Calibration values for the CO ₂ removal sector (MtC)	
Tak	ole S 1	9 CO ₂ capture rates for DAC and process heat DAC technology	26

Table S 20 Parametrizations for DACCS Technologies.	27
Table S 21 Enhanced Weathering Cost Adder	29
Table S 22 Electrical energy inputs for enhanced weathering	29
Table S 23 Electrical Energy Input Derivation for DORCS paired with reverse osmosis desalination	30
Table S 24 Non-fuel costs of DORCS	30
Table S 25 Non-energy cost assumptions for DORCS paired with reverse osmosis desalination	32
Table S 26 GCAM Assumptions for Direct Ocean Capture.	32
Table S 27 Biochar supply and demand assumptions	32

1. CDR description

Table S1 provides a brief description of the various CDR approaches investigated in this study

Table S 1 Description of CDR approaches

CDR approach	Description
AR	Involves planting new forests or restoring previously forested
	areas to increase carbon uptake and storage in vegetation and
	soils through natural processes like photosynthesis and
	biomass accumulation
BECCS	Bioenergy with carbon capture and storage. Biomass
	feedstocks are grown, harvested and used for energy
	production in power plants or as biofuels. The CO2 emissions
	from biomass combustion are captured before release and
	permanently stored underground
DACCS	Direct air carbon capture and storage. CO2 is chemically
	extracted directly from ambient air and concentrated. The
	captured CO2 gas is then transported and injected into secure
	geological storage sites
ERW	Enhanced rock weathering. Natural chemical weathering of
	silicate rocks that absorb CO2 is enhanced by grinding and
	distributing minerals like basalt. This accelerates natural
	reactions fixing CO2 into stable carbonates.
	NB: ERW is similar to Ocean Alkalinity Enhancement (OAE)
	but the former occurs on land while the latter occurs in
	oceans
Biochar	Biomass like crop residues or wood is heated without oxygen
	via pyrolysis to produce a stable solid carbon-rich material
	called biochar. When added to soils, biochar can provide
	long-term carbon storage and other agronomic benefits

Direct ocean removal with capture and storage. CO_2 is chemically captured from seawater. The extracted CO_2 is transported and injected into the deep ocean at depths greater than 1000 m for secure storage

2. Supplementary Result

2.1 BECCS Vs DACCS

In our main scenario, the 1 Gt novel CDR is by DACCS only. In Tables S1-S3, we investigate the implications on our results if we had chosen BECCS instead.

Table S 2 Energy-based comparison between 1 Gt-DACCS and 1 Gt-BECCS scenarios

Indicator	1 Gt-DACCS	1 Gt-BECCS
Cumulative primary		
energy consumption		
from 2025-2050 (EJ) ^a		
Fossil fuel	1617.18	1623.12
Renewables	1609.49	1599.36
Nuclear	394.61	387.77
Cumulative final		
energy consumption		
from 2025-2050 (EJ)		
Coal and natural gas	355.48	330.13
Refined liquids	867.29	860.88
Electricity and	1258.29	1252.28
hydrogen		
Biomass	228.10	226.61

Marginal abatement 2749 2856

cost of carbon by

2050 (\$/tCO₂)

Table S 3 Emission/sequestration-based results between 1 Gt-DACCS and 1 Gt-BECCS scenarios

Indicator	1 Gt-DACCS	1 Gt-BECCS
Cumulative positive		
CO ₂ emissions from		
2050 (GtCO ₂ /yr)		
Building	7.98	8.00
Industry	38.22	37.96
Power	23.64	23.96
Transport	37.42	37.23
Cumulative positive		
non-CO2 emissions		
by 2050 (GtCO ₂ e/yr)		
Methane	36.66	36.79
Nitrous oxides	17.88	17.85
Fluorinated gases	7.17	7.18
Cumulative net		
negative CO ₂		
emissions from 2025-		
2050 (GtCO ₂ /yr)		
LUC	17.75	17.88

a: Results based on GCAM's 'primary energy consumption' whiles what is reported in main paper is based on 'primary energy consumption with CCS'. Both are reported in terms of direct equivalence but both queries from GCAM produce slightly different results.

Table S 4 Land/water/fertilizer results between 1 Gt-DACCS and 1 Gt-BECCS scenarios

Indicator	1 Gt-DACCS	1 Gt-BECCS
Cumulative land		
allocation from 2025-		
2050 (Mkm²)		
Bioenergy crops	15.48	15.29
Crops	62.32	62.22
Cumulative water		
consumption from		
2025-2050 (km ³)		
Bioelectricity CCS	0	6.90
CDR (DACCS)	13.13	0
Bioenergy crops	401.01	390.21
Electricity generation	830.84	828.89
Cumulative fertilizer	107.38	105.97
demand from 2025-		
2050 (MtN)		

2.2 Impact of subjecting land use emissions to constraint

In our main scenario, carbon emissions from land use are priced at an increasing fraction of the carbon price from fossil fuel and industry (See Method). We test this against another pathway where emissions from land use is not subjected to any form of constraint (Tables S4-6). All results are based on the 1 Gt scenario.

Table S 5 Energy-based comparison between constrained and unconstrained land use emissions scenarios

Indicator	Constrained	Unconstrained
Cumulative primary		
energy consumption		
from 2025 to net zero		
CO2 year (EJ)		
Fossil fuel	1555.51	1374.73
Renewables	1197.46	1243.96
Nuclear	275.51	309.21
Cumulative final		
energy consumption		
from 2025 to net zero		
CO2 year (EJ)		
Coal and natural gas	221.56	278.63
Refined liquids	772.61	738.11
Electricity and	947.27	988.43
hydrogen		
Biomass	221.56	207.55
Marginal abatement	1185	1713
cost of carbon by net		
zero CO2 year		
(\$/tCO ₂)		

Table S 6 Emission/sequestration-based results between constrained and unconstrained land use emissions scenarios

Indicator	Constrained	Unconstrained
Cumulative positive		
CO ₂ emissions from		
2025 to net zero CO2		
year (GtCO ₂ /yr)		
Building	7.86	6.82
Industry	32.98	31.48
Power	22.59	19.21
Transport	34.26	32.46
Cumulative positive		
non-CO ₂ emissions		
from 2025 to net zero		
CO2 year		
(GtCO ₂ e/yr)		
Methane	31.98	31.13
Nitrous oxides	15.07	15.01
Fluorinated gases	6.21	6.15
Cumulative net		
negative CO ₂		
emissions from 2025		
to net zero CO2 year		
(GtCO ₂ /yr)		
LUC	14.24	-5.71ª

a: Implies a net positive emission (higher LUC emissions than LUC sequestration)

Table S 7 Land/water/fertilizer results between constrained and unconstrained land use emissions scenarios

Indicator	Constrained	Unconstrained
Cumulative land		
allocation from 2025		
to net zero CO2 year		
(Mkm²)		
Bioenergy crops	11.71	14.51
Crops	53.22	62.10
Cumulative water		
consumption from		
2025 to net zero CO2		
year (km³)		
CDR (DACCS)	9.06	12.48
Bioenergy crops	285.45	233.39
Electricity generation	654.83	673.61
Cumulative fertilizer	79.15	81.03
demand from 2025 to		
net zero CO2 year		
(MtN)		

2.3 Effect of socio-economic pathway

In our main scenario, scenarios are based on SSP2. We test this against two other SSPs (1 and 5) (Tables S7-9). All results are based on the 1 Gt scenario.

Table S 8 Energy-based comparison between SSP1, 2, and 5

Indicator	SSP1	SSP2	SSP5
Cumulative primary			
energy consumption			
from 2025-2050 (EJ)			
Fossil fuel	1641.32	1617.18	1664.98
Renewables	1681.85	1609.49	1780.81
Nuclear	434.91	394.61	500.23
Cumulative final			
energy consumption			
from 2025-2050 (EJ)			
Coal and natural gas	359.22	355.48	365.54
Refined liquids	881.67	867.29	899.34
Electricity and	1357.74	1258.29	1495.86
hydrogen			
Biomass	214.05	228.10	203.31
Marginal abatement	3110	2749	4075
cost of carbon by	3110	2, 12	.075
2050 (\$/tCO ₂)			

Table S 9 Emission/sequestration-based results between SSP1, 2, and 5

Indicator	SSP1	SSP2	SSP5
Cumulative positive			
CO ₂ emissions from			
2050 (GtCO ₂ /yr)			
Building	7.89	7.98	7.74
Industry	38.08	38.22	37.80
Power	23.71	23.64	23.34
Transport	38.49	37.42	29.33
Cumulative positive			
non-CO ₂ emissions			
by 2050 (GtCO ₂ e/yr)			
Methane	36.45	36.66	36.92
Nitrous oxides	17.90	17.88	18.18
Fluorinated gases	7.66	7.17	8.22
Cumulative net			
negative CO ₂			
emissions from 2025-			
2050 (GtCO ₂ /yr)			
LUC	17.95	17.75	17.63

Table S 10 Land/water/fertilizer results between SSP1, 2, and 5

Indicator	SSP1	SSP2	SSP5
Cumulative land			
allocation from 2025-			
2050 (Mkm²)			
Bioenergy crops	16.12	15.48	15.92
Crops	61.37	62.32	62.05
Cumulative water			
consumption from			
2025-2050 (km³)			
CDR (DACCS)	13.61	13.13	16.34
Bioenergy crops	420.07	401.01	413.50
Electricity generation	863.73	830.84	911.34
Cumulative fertilizer	111.67	107.38	110.08
demand from 2025-			
2050 (MtN)			

3. Model parameterization and underlying equations for demand and supply

In this section, some underlying parameters/modelling assumptions and selected equations. Unless cited otherwise, all information are obtained from Ref. ¹, and additional information not discussed or presented here can be obtained from the same source.

Table S 11 Fraction of CO2 captured by transformation technologies

Supply sector	Subsector	Technology	1971	2100
Refining	Coal to liquids	Coal to liquids ccs level 1	0.818	0.818
Refining	Coal to liquids	Coal to liquids ccs level 2	0.9	0.9
Refining	Biomass liquids	Cellulosic ethanol ccs level 1	0.26	0.26
Refining	Biomass liquids	Cellulosic ethanol ccs level 2	0.9	0.9
Refining	Biomass liquids	Ft biofuels ccs level 1	0.818	0.818
Refining	Biomass liquids	Ft biofuels ccs level 2	0.9	0.9

Table S 12 Primary energy transformation technologies default cost assumptions (1975\$/GJ)

Supply sector	Technology	1971	2010	2100	Improvement max	Improvement rate
Gas processing	Natural gas	0.2	0.2	0.2	11144.1	1400
Gas processing	Biomass gasification	7.030087	7.030087		0.7	0.03
Gas processing	Coal gasification	5.285779	5.285779		0.7	0.03
Nuclear fuel gen II	Enriched uranium	0.124464	0.124464	0.124464		
Nuclear fuel gen III	Enriched uranium	0.124464	0.124464	0.124464		
Refining	Oil refining	0.84	0.84	0.84		
Refining	Coal to liquids	5.294118	5.294118		0.7	0.03
Refining	Coal to liquids ccs level 1	5.980615	5.980615		0.6	0.05
Refining	Coal to liquids ccs level 2	6.467671	6.467671		0.6	0.05
Refining	Gas to liquids	3.970588	3.970588		0.7	0.03
Refining	Cellulosic ethanol	4.74	4.74		0.7	0.03
Refining	Cellulosic ethanol ccs level 1	4.991818	4.991818		0.6	0.05
Refining	Cellulosic ethanol ccs level 2	6.850562	6.850562		0.6	0.05
Refining	Ft biofuels	7.802308	7.802308		0.7	0.03
Refining	Ft biofuels ccs level 1	8.516923	8.516923		0.6	0.05
Refining	Ft biofuels ccs level 2	8.97527	8.97527		0.6	0.05
Refining	Corn ethanol	2.38	2.38	2.38		
Refining	Sugar cane ethanol	2	2	2		
Refining	Biodiesel	1.88	1.88	1.88		

Table S 13 Electricity technology capacity factors

1	Table S 13 I	Electricity technology capacity fa	ctors	
Supply	Subsector	Technology	1971	2100
sector				
Electricity	Coal	Coal (Conventional	0.85	0.85
		Pulverized Coal		
Electricity	Coal	Coal (Conventional	0.8	0.8
		Pulverized Coal with CCS)		
Electricity	Coal	Coal (Integrated Gasification	0.8	0.8
		Combined Cycle)		
Electricity	Coal	Coal (Integrated Gasification	0.8	0.8
		Combined Cycle with CCS)		
Electricity	Gas	Gas (Steam Cycle/Turbine)	0.8	0.8
Electricity	Gas	Gas (Combined Cycle)	0.85	0.85
Electricity	Gas	Gas (Combined Cycle with	0.8	0.8
		CCS)		
Electricity	Refined	Refined liquids (Steam	0.8	0.8
	liquids	Cycle/Turbine)		
Electricity	Refined	Refined liquids (Combined	0.85	0.85
	liquids	Cycle)		
Electricity	Refined	Refined liquids (Combined	0.8	0.8
	liquids	Cycle with CCS)		
Electricity	Biomass	Biomass (conventional)	0.85	0.85
Electricity	Biomass	Biomass (conventional with	0.85	0.85
		CCS)		
Electricity	Biomass	Biomass ((Integrated	0.8	0.8
		Gasification Combined		
		Cycle)		
Electricity	Biomass	Biomass ((Integrated	0.8	0.8
		Gasification Combined		
		Cycle with CCS)		
	1	i		1

Electricity	Nuclear	Generation II Light Water	0.9	0.9
		Reactor		
Electricity	Nuclear	Generation III	0.9	0.9
Electricity	Wind	Wind	0.37	0.37
Electricity	Wind	Wind with storage	0.37	0.37
Electricity	Solar	Photovoltaic (PV)	0.2	0.2
Electricity	Solar	PV with storage	0.2	0.2
Electricity	Solar	Concentrated solar power (CSP)	0.25	0.25
Electricity	Solar	CSP with storage	0.5	0.5
Electricity	Geothermal	Geothermal	0.9	0.9
Electricity	Rooftop PV	Rooftop PV	0.17	0.17

Table S 14 Electricity technology capture fractions (portion of CO₂ emissions that are captured)

Supply	Subsector	gy capture fractions (portion Technology	1971	2020	2100
sector	Subsector	reciniology	19/1	2020	2100
Electricity	Coal	Coal (Conventional	0.85	0.85	0.95
		Pulverized Coal with			
		CCS)			
Electricity	Coal	Coal (Integrated	0.85	0.85	0.95
		Gasification Combined			
		Cycle with CCS)			
Electricity	Gas	Gas (Combined Cycle	0.85	0.85	0.95
		with CCS)			
Electricity	Refined	Refined liquids	0.85	0.85	0.95
	liquids	(Combined Cycle with			
		CCS)			
Electricity	Biomass	Biomass (conventional	0.85	0.85	0.95
		with CCS)			
Electricity	Biomass	Biomass ((Integrated	0.85	0.85	0.95
		Gasification Combined			
		Cycle with CCS)			

Table S 15 Electricity technology retirement parameters

Table S 15 Electricity technology retirement parameters					
Subsector	Technology	Year	Lifetime	Half life	Steepness
Coal	Coal	Final-	60	30	0.1
	(Conventional	calibration-			
	Pulverized	year			
	Coal)				
Gas	Gas (Steam	Final-	45	22.5	0.1
	Cycle/Turbine)	calibration-			
		year			
Gas	Gas	Final-	45	22.5	0.1
	(Combined	calibration-			
	Cycle)	year			
Refined	Refined	Final-	45	22.5	0.1
liquids	liquids (Steam	calibration-			
	Cycle/Turbine)	year			
Biomass	Biomass	Final-	60	30	0.1
	(conventional)	calibration-			
		year			
Nuclear	Generation II	Final-	60	30	0.1
	Light Water	historical-			
	Reactor	year			
Wind	Wind	Final-	30		
		calibration-			
		year			
Solar	PV	Final-	30		
		calibration-			
		year			
Solar	CSP	Final-	30		
		calibration-			
		year			

Geothermal	Geothermal	Final-	30	
		calibration-		
		year		
Coal	Coal	Initial-future-	60	
	(Conventional	year		
	Pulverized			
	Coal)			
Coal	Coal	Initial-future-	60	
	(Integrated	year		
	Gasification			
	Combined			
	Cycle)			
Coal	Coal	Initial-future-	60	
	(Integrated	year		
	Gasification			
	Combined			
	Cycle with			
	Carbon			
	Capture and			
	Storage)			
Gas	Gas	Initial-future-	45	
	(Combined	year		
	Cycle with			
	Carbon			
	Capture and			
	Storage)			
Refined	Refined	Initial-future-	45	
liquids	liquids	year		
	(Combined			
	Cycle)			

Refined	Refined	Initial-future-	45	
liquids	liquids	year		
	(Combined			
	Cycle with			
	Carbon			
	Capture and			
	Storage)			
Biomass	Biomass	Initial-future-	60	
	(conventional	year		
	with CCS)			
Biomass	Biomass	Initial-future-	60	
	(Integrated	year		
	Gasification			
	Combined			
	Cycle)			
Biomass	Biomass	Initial-future-	60	
	(Integrated	year		
	Gasification			
	Combined			
	Cycle with			
	Carbon			
	Capture and			
	Storage)			
Nuclear	Generation III	Initial-	60	
		nonhistorical-		
		year		
Wind	Wind with	Initial-future-	30	
	storage	year		
Solar	PV with	Initial-future-	30	
	storage	year		

Solar	CSP with	Initial-future-	30	
	storage	year		
Wind	Wind offshore	Final-	25	
		calibration-		
		year		
Wind	Wind offshore	Initial-future-	25	
		year		

Note: lifetime: maximum lifetime of cohort. If no retirement function is used; the entire cohort is retired in this number of years. half life: number of years at which 50% of the cohort is retired; using the s-curve-shutdown-decider retirement function. steepness: shape parameter used by the s-curve-shutdown-decider retirement function.

Table S 16 Industrial energy use default efficiencies

Table S 16 Industrial energy use default efficiencies							
Technology	Energy input	Secondary	1971	2020	2050	2080	2100
		output					
		1					
Biomass	Delivered b	iomass	0.746423	0.797	0.81	0.823	0.828
Biomass	Delivered biomass	Electricity	0.515677	0.56	0.577	0.595	0.604
cogeneration							
Coal	Delivered	coal	0.80808	0.891	0.909	0.926	0.936
Coal	Delivered coal	Electricity	0.582005	0.629	0.644	0.661	0.67
cogeneration							
District heat	District 1	heat	1	1	1	1	1
Electricity	Electricity (i	ndustry)	0.934197	1.015	1.046	1.078	1.094
Gas	Wholesal	e gas	0.82583	0.898	0.926	0.955	0.969
Gas	Wholesale gas	Electricity	0.563321	0.612	0.63	0.649	0.659
cogeneration							
Hydrogen	Hydrogen	enduse	1	1	1.03	1.062	1.078
Hydrogen	Hydrogen enduse	Electricity	0.457	0.457	0.471	0.485	0.492
cogeneration							
Refined	Refined liquids	s industrial	0.917381	1.001	1.033	1.062	1.077
liquids							
Refined	Refined liquids	Electricity	0.565189	0.614	0.632	0.652	0.662
liquids	industrial						
cogeneration							
Coal	Delivered	l coal	1	1	1	1	1
Gas	Wholesal	e gas	1	1	1	1	1
Refined	Refined liquids	s industrial	1	1	1	1	1
liquids							

Table S 17 Carbon storage resource supply curve points (2005\$/tCO2)

Resource	Subresource	Grade	Fraction	Cost
Onshore carbon-storage	Onshore carbon-storage	Grade 1	0	0
Onshore carbon-storage	Onshore carbon-storage	Grade 2	0.005	0.1
Onshore carbon-storage	Onshore carbon-storage	Grade 3	0.1	5
Onshore carbon-storage	Onshore carbon-storage	Grade 4	0.6	10
Onshore carbon-storage	Onshore carbon-storage	Grade 5	0.295	75
Onshore carbon-storage	Onshore carbon-storage	Grade 6	0	3500

Table S 18 Calibration values for the CO₂ removal sector (MtC)

Table S 18 Calibration values for the CO2 removal sector (MtC)						
GCAM region	sector	year	value			
USA	CO ₂ removal	2015	2000			
Africa Eastern	CO ₂ removal	2015	26.58922			
Africa Northern	CO ₂ removal	2015	26.30296			
Africa Southern	CO ₂ removal	2015	25.52156			
Africa Western	CO ₂ removal	2015	51.65929			
Australia (with New Zealand)	CO ₂ removal	2015	417.4775			
Brazil	CO ₂ removal	2015	1012.358			
Canada	CO ₂ removal	2015	79.87708			
Central America and Caribbean	CO ₂ removal	2015	86.18576			
Central Asia	CO ₂ removal	2015	429.8247			
China	CO ₂ removal	2015	2116.542			
EU-12	CO ₂ removal	2015	22.06217			
EU-15	CO ₂ removal	2015	71.77459			
Europe (Eastern)	CO ₂ removal	2015	15.81593			
Europe (Non EU)	CO ₂ removal	2015	15.84964			
European Free Trade Association	CO ₂ removal	2015	6.34295			
India	CO ₂ removal	2015	87.41423			
Indonesia	CO ₂ removal	2015	16.37849			
Japan	CO ₂ removal	2015	66.31417			
Mexico	CO ₂ removal	2015	232.7633			
Middle East	CO ₂ removal	2015	334.5848			
Pakistan	CO ₂ removal	2015	7.458686			
Russia	CO ₂ removal	2015	313.093			
South Africa	CO ₂ removal	2015	5.567627			
South America (Northern)	CO ₂ removal	2015	161.9685			
South America (Southern)	CO ₂ removal	2015	470.9671			
South Asia	CO ₂ removal	2015	8.830837			
South Korea	CO ₂ removal	2015	0			
Southeast Asia	CO ₂ removal	2015	165.692			
L			1			

Taiwan	CO ₂ removal	2015	0.307808
Argentina	CO ₂ removal	2015	331.3725
Colombia	CO ₂ removal	2015	136.5132

Table S 19 CO₂ capture rates for DAC and process heat DAC technology

Supply sector	Subsector	Technology	1971	2100
Process heat	Gas ccs	Gas ccs	0.95	0.95
DAC				
CO ₂ removal	DAC	High temperature DAC	1	1
		(natural gas)		
CO ₂ removal	DAC	High temperature DAC	1	1
		(electricity)		
CO ₂ removal	DAC	Low temperature DAC	1	1
		(heat pump)		

Table S 20 Parametrizations for DACCS Technologies.

Table S 20 Parametrizations for DACCS Technologies.									
		Natural gas Electricity Non-e		Non-ene	ergy cost	Wa	ater		
Technology	Scenario	(GtCO ₂)		(GtCO ₂) (GtCO ₂)		(2015 \$tCO ₂)		(m ³ /tCO ₂)	
		2020	2030	2020	2030	2020	2030	2020	2030
High temperature	SSP1-sustainable	8.1	5.3	1.8	1.3	296	185	4	.7
DACCS (natural gas)	development								
	SSP2-middle of the		5.3		1.3		185		
	road								
	SSP5-fossil fueled		5.3		1.3		78		
	development								
High temperature	SSP1-sustainable	-	_	6	5	384	186	4	.7
DACCS (fully electric)	development								
	SSP2-middle of the				5		186		
	road								
	SSP5-fossil fueled				5		101		
	development								
Low temperature	SSP1-sustainable	-	_	5.5	2.5	402	235	-	_
DACCS (electric heat	development								
pump)	SSP2-middle of the				2.5		235	1	
	road								
	SSP5-fossil fueled				2.5		137		
	development				- 6 2				

Values are assumed to remain constant after 2030 (Adapted from Ref. ²)

Fig. S1 and S2 represent enhanced weathering supply curves for GCAM regions included and not included in Beerling et al. ³, respectively. Both figures are adapted from Ref. ⁴.

Fig. S 1 Enhanced weathering supply curves for GCAM regions(a)

Fig. S 2 Enhanced weathering supply curves for GCAM regions (b)

Table S 20 and S21 represents enhanced weathering cost adder and electrical energy inputs (Assumes rock comminution to 20 um) for enhanced weathering, respectively from Streffler et al. ⁵ and Adapted from Ref. ⁴.

Table S 21 Enhanced Weathering Cost Adder

Tuble 3.21 Ennancea weathering Cost Adder	Upper	Best	Units
	bound	estimate	
Investment	\$14	\$6	\$/t
			rock
O&M	\$59	\$26	\$/t
			rock
	\$73	\$31	\$/t
Total non-cost fuel			rock
	\$242	\$104	\$/t
			CO ₂
Difference between upper bound + best estimate (2020 cost adder for GCAM	\$1	138	\$/t
assumption; declines to zero by 2050)			CO ₂

Table S 22 Electrical energy inputs for enhanced weathering

Best estimate	0.66	GJ/tCO ₂
Lower bound	0.23	GJ/tCO ₂
Upper bound	2.03	GJ/tCO ₂

Table S22 represents electrical energy input derivation for DORCS paired with reverse osmosis desalination. Non-fuel cost (based on Ref ⁶) and non-energy cost assumptions for DORCS are shown in Tables S23 and S24, respectively and they are adapted from Ref. ⁴. Similarly, GCAM's assumption for DORCS (Adapted from Ref. ⁴) is shown in Table S25.

Table \$ 23 Electrical Energy Input Derivation for DORCS paired with reverse osmosis desalination.

Row	Value	Units	Source
1	0.075	kWh kg ⁻¹ CO ₂ captured (capture energy only; standalone capture energy equal to this value)	Ref. ⁶
2	277.77	kWh/GJ	Unit conversion
3	3.666667	kgCO ₂ /kgC	Unit conversion
4	9.89E-04	GJ electricity / kgC captured	Calculation [1]/[2]*[3]
5	13.1	m ³ ocean water / kg captured CO ₂	ref
6	48.03	m ³ ocean water / kg captured C	Calculation [5]*[1]
7	2.5	m ³ seawater processed / m ³ desalinated water produced	GCAM assumption
8	5.15E-05	GJ elec / m³ desalinated water (CO ₂ capture only)	Calculation [4]/[6]*[7]
9	2.20E-02 - 6.30E-03	GJ elec / m³ desalinated water (desalination)	GCAM assumption

Table S 24 Non-fuel costs of DORCS

Ocean	CapEx (\$	No	n-fuel opex (\$	S kg ⁻¹ CO ₂)	Total	GDP	1975 (\$kg ⁻¹ C)
capture	kg ⁻¹ CO ₂)	O&M	Labor, tax,	Replacements	(\$ kg ⁻¹ CO ₂)	deflator	
scenario			insurance			from	
						2020 to	
						1975	
Co-located	0.18	0.05	0.06	0.18	0.47	3.79	0.45
Stand-alone	1.07	0.18	0.27	0.18	1.7		1.64

Table S 25 Non-energy cost assumptions for DORCS paired with reverse osmosis desalination.

101E 3 23	Non-energy cost assumptions	,		
Row	Description	Value	Units	Source
1	non-fuel costs of CO ₂	0.45	1975\$/kgC	*
	capture for co-located			
	DORCS			
2	m ³ ocean water / kg	48.03	m ³ /kgC	6
	captured C			
3	m ³ seawater processed /	2.5	unitless	GCAM assumption
	m ³ desalinated water			
	produced			
4	Non-energy cost adder for	0.023	\$1975/m ³	Calculation
	CO ₂ capture		desalinated water	[1]/[2]*[3]
5	Non-fuel cost of	0.38	\$1975/m ³	GCAM assumption
	desalinated water (reverse		desalinated water	
	osmosis technology)			
6	Total non-fuel cost of	0.40	\$1975/m ³	Calculation [4]+[5]
	DORCS + reverse osmosis		desalinated water	
	*D 1 C		T11 26 D 64	

^{*}Based on Supplementary Table 2 from Ref. 4

Table S 26 GCAM Assumptions for Direct Ocean Capture.

Tuble 3 26 GCAM Assumpt	lable 3 26 GCAM Assumptions for Direct Ocean Capture.				
	Electricity input	Non-fuel cost			
	(GJ/tCO2)	(2020\$/tCO2)			
Stand-alone	16.5	1700			
Co-located with desalination	0.26	470			
(carbon capture only)					

Table S26 represents biochar demand and supply assumptions (based on Ref. 7). Table is adapted from Ref. 4 .

Table S 27 Biochar supply and demand assumptions

	11 2	1	
Metric	Value	Unit	Source
Non-energy cost	45.93	2007 USD per ton of feedstock	8
Biomass input	3.65	Tons of switchgrass per ton of	
		biochar	
Natural gas input	211.19	MJ per dry ton of biochar	
Syngas co-product	20095	MJ per dry ton of biochar	
Net syngas co-product	19884	MJ per dry ton of biochar	
Application rate	10 - 20	Tons of biochar per hectare	9,10
Yield improvements	12 (tropical irrigated)	Percentage	
	19 (tropical rainfed)		
	10 (temperate irrigated)		
	15 (temperate rainfed)		
Carbon sequestered	70	Percentage	11

Selected equations are presented below, additional model underlying equations can be obtained directly from Ref. ¹

Technology or subsector share

GCAM uses one of two different logit formulations to calculate the shares for each technology or subsector.

The first option, also known as the relative-cost-logit, is:

$$s_i = \frac{\alpha_i c_i^{\gamma}}{\sum_{j=1}^N \alpha_j c_j^{\gamma}} \tag{1}$$

where s_i is the share of technology or subsector i, α_i is the share weight, c_i is the cost of technology or subsector i, and γ is the logit exponent.

The second option, also known as the absolute-cost-logit, is:

$$s_i = \frac{\alpha_i \exp(\beta c_i)}{\sum_{j=1}^{N} \alpha_j \exp(\beta c_j)}$$
(2)

where s_i is the share of technology or subsector i, α_i is the share weight, c_i is the cost of technology or subsector i, and β is the logit exponent.

Transportation service demand

The demand (D) for transportation services (e.g., passenger-km, tonne-km) in region r and time period t is given by the following equation:

$$D_{r,t} = D_{r,t-1} \left(\frac{Y_{r,t}}{Y_{r,t-1}} \right)^{\alpha} \left(\frac{P_{r,t}}{P_{r,t-1}} \right)^{\beta} \left(\frac{N_{r,t}}{N_{r,t-1}} \right)$$
(3)

Where Y is the per-capita GDP, P is the total service price aggregated across all modes, N is the population, and α and β are income and price elasticities, respectively.

Transportation subsector competition

At the subsector level, the subsector competition may add the time value of transportation, as shown in the equation for the price (P) of mode i, in region r and time period t:

$$P_{i,r,t} = \sum_{j=1}^{N} (\alpha_{j,i,r,t} * P_{j,i,r,t}) + \frac{W_{r,t} * V_{i,r,t}}{S_{i,r,t}}$$
(4)

In the equation above, j refers to any of N technologies within subsector i, and α is the share of technology j in subsector i. Where this equation differs from the subsectors elsewhere in GCAM is the final term, the wage rate (W) multiplied by the "time value multiplier" (V), divided by the average speed of the mode (S).

Transportation technology cost

The costs of transportation technologies are computed as follows, for technology j in subsector i, region r, and time period t:

$$P_{j,i,r,t} = \frac{P_{f,r,t} * I_{j,i,r,t} + N_{j,i,r,t}}{L_{i,i,r,t}}$$
(5)

In this equation, P_f stands for the fuel price, I is the vehicle fuel intensity, N is the levelized non-fuel cost (expressed per vehicle-km), and L is the load factor (persons or tonnes per vehicle).

Direct Air Capture for Carbon Dioxide Removal

We use GCAM's (unmodified) logit choice model for economic choice between DACCS technologies. This includes the "choice" to not deploy DACCS and instead use other mitigation or negative emissions technologies (i.e., the "no-DAC" technology). The share s_i of any DACCS technology with price pi is computed as follows:

$$s_i = \frac{\alpha_i * \exp(\beta * p_i)}{\sum_{j=1}^{N} \alpha_j * \exp(\beta * p_j)}$$
(6)

Where:

 α_i = the shareweight of the technology.

 β = the logit coefficient, which determines how large a cost difference is required to produce a given difference in market share.

Total technology cost

The total cost for a technology is the sum of the cost of the technology, the cost of its inputs, and any GHG value:

$$C = t + \sum_{j=1}^{n} i_j + \sum_{k=1}^{m} g_k - \sum_{l=1}^{o} v_l$$
 (7)

Where C is the total cost, t \$ is the exogenously specified technology cost (capturing capital cost and operating & maintenance costs), i_j is the cost of input j (e.g., a fuel), g_k is the GHG value of gas k, and v_l is the value of secondary output l. Costs vary by region, technology, and year.

Renewable resource supply

The specific supply curve in each region for wind and solar is assigned three parameters, detailed in the following equation:

$$Q = maxSubResource * \frac{P^{CurveExponent}}{(MidPrice^{CurveExponent} + P^{CurveExponent})}$$
(8)

Where *Q* refers to the quantity of electricity produced, *P* the price, and the remaining parameters are exogenous, with the names in the XML input files corresponding to the names in the equation above. *maxSubResource* indicates the maximum quantity of renewable energy that could be produced at any price, *CurveExponent* is a shape parameter, and *MidPrice* indicates the price at which 50% of the maximum available resource is produced.

4. References

- Bond-Lamberty, B. et al. JGCRI/gcam-core: GCAM 6.0. (2022) doi:10.5281/ZENODO.6619287.
- 2. Fuhrman, J. *et al.* The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. *Environ. Res. Lett.* **16**, 114012 (2021).
- Beerling, D. J. et al. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 583, 242–248 (2020).
- 4. Fuhrman, J. *et al.* Diverse carbon dioxide removal approaches could reduce impacts on the energy—water—land system. *Nat. Clim. Change* (2023) doi:10.1038/s41558-023-01604-9.

- 5. Strefler, J., Amann, T., Bauer, N., Kriegler, E. & Hartmann, J. Potential and costs of carbon dioxide removal by enhanced weathering of rocks. *Environ. Res. Lett.* **13**, 034010 (2018).
- 6. Digdaya, I. A. *et al.* A direct coupled electrochemical system for capture and conversion of CO2 from oceanwater. *Nat. Commun.* **11**, 4412 (2020).
- 7. Bergero, C., Wise, M., Lamers, P., Wang, Y. & Weber, M. *Biochar as a carbon dioxide removal strategy in integrated long-run climate scenarios*. https://www.researchsquare.com/article/rs-1805544/v1 (2022) doi:10.21203/rs.3.rs-1805544/v1.
- 8. Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. & Lehmann, J. Life Cycle Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate Change Potential. *Environ. Sci. Technol.*44, 827–833 (2010).
- 9. Jeffery, S., Verheijen, F. G. A., Van Der Velde, M. & Bastos, A. C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. *Agric. Ecosyst. Environ.* **144**, 175–187 (2011).
- 10. Ye, L. *et al.* Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. *Soil Use Manag.* **36**, 2–18 (2020).
- 11. Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. *GCB Bioenergy* **8**, 512–523 (2016).