k ist ein Körper. Die Standardbasis von k^n wird mit \mathcal{B}_n bezeichnet.

Aufgabe 1. (2 Punkte) Man berechne die Produkte AB und BA für die Matrizen

$$A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_2(k).$$

Aufgabe 2. (3 Punkte) Man bestimme $\mathcal{M}_{\mathcal{C},\mathcal{C}}(f)$ in folgenden Fälle.

- (i) $k = \mathbb{R}$, $C = \mathcal{B}_2$, $f : \mathbb{R}^2 \to \mathbb{R}^2$ Drehung um 90° im mathematisch positiven Sinne.
- (ii) $k = \mathbb{R}$, $C = \mathcal{B}_2$, $f: \mathbb{R}^2 \to \mathbb{R}^2$ Spiegelung an der Geraden y = x.
- (iii) $k = \mathbb{Q}$, $C = (1, \sqrt{2})$, $R = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\} \subset \mathbb{C}$, $f : R \to R$ Multiplikation mit $\alpha + \beta\sqrt{2}$, wobei $\alpha, \beta \in \mathbb{Q}$.

Aufgabe 3. (3 Punkte) Es sei $f: k^3 \to k^2$ die durch $(x, y, z) \mapsto (x + y, x - y - z)$ definierte lineare Abbildung.

- (i) Man bestimme $\mathcal{M}_{\mathcal{B}_2,\mathcal{B}_3}(f)$.
- (ii) Man zeige, dass C = ((1, 1, 0), (0, 1, 1), (0, 0, 1)) eine Basis von k^3 ist.
- (iii) Man bestimme $\mathcal{M}_{\mathcal{B}_2,\mathcal{C}}(f)$.

Aufgabe 4. (2 Punkte) Es sei $f: k^2 \to k^2$ eine lineare Abbildung sodass $f \circ f = 0$. Man zeige: es gibt eine Basis \mathcal{C} von k^2 sowie Skalare $a, b \in k$ sodass

$$\mathcal{M}_{\mathcal{C},\mathcal{C}}(f) = \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix}.$$