Chapter 6 Banach Spaces

Section 6.1 L^p Spaces

Definition. A measurable function $f:[0,1]\to\mathbb{R}$ is said to be in the space $L^p=L^p([0,1])$ if

$$\int_{a}^{b} |f|^{p} < \infty.$$

Note the following

- (1) L^1 is the space of integrable functions.
- (2) L^p is closed under + and under scalar multiplication i.e., if $f, g \in L^p$ then $f+cg \in L^p$ for all $c \in \mathbb{R}$. This implies that L^p is a linear (vector) space.

Definition. The L^p -norm on a L^p space for all $f \in L^p$ is given by

$$||f|| = ||f||_p = \left(\int_0^1 |f|^p\right)^{1/p}.$$

In order for $\|\cdot\|$ to be a norm over a vector space V, the following properties must be satisfied for all $v \in V$:

- (1) ||v|| = 0 if and only v = 0.
- (2) For all $\alpha \in \mathbb{R}$, $\|\alpha v\| = |\alpha| \|v\|$.
- (3) $||v + w|| \le ||v|| + ||w||$.

In terms of L^p spaces, this is what we currently have for all $f \in L^p$:

- (1) ||f|| = 0 if and only if f = 0 a.e.
- (2) $\|\alpha f\| = |\alpha| \|f\|$ for all $\alpha \in \mathbb{R}$.

but we do not have the triangle inequality (third property from above) for norms of L^p spaces since ||f|| = 0 implies f = 0 almost everywhere rather than strict equality.

However, if we consider equivalence classes of L^p where functions are equal almost everywhere, we can define norms on these spaces. That is, define the relation \sim and

$$\tilde{L^p} = L^P \big/ \sim$$

where $f \sim g \Leftrightarrow f = g$ a.e. In other words, if mod out by functions that are equal almost everywhere, we can get a "nice" normed linear space!!

Definition. The L^p -norm on a L^p space is defined as

$$||f||_p := \left(\int_0^1 |f|^p\right) \text{ for all } p \in (0, \infty).$$

If $p \in (0,1)$, then $||f+g||_p \le ||f||_p + ||g||_p$. We want to show that $||f+g||_p \le ||f||_p + ||g||_p$ for $p \in [1,\infty]$.

Definition. For $p = \infty$, the space L^{∞} is the set of bounded measurable functions for $f \in L^{\infty}$. Then

$$||f||_{\infty} = \operatorname{ess sup} |f(x)|$$

= $\inf \{ M : m\{t : f(t) > M\} = 0 \}.$

Note that $||\cdot||_{\infty}$ is the limit of $||\cdot||_p$ i.e.,

$$f \in L^{\infty}, ||f||_p \to ||f||_{\infty}.$$

Section 5.5 Convex Functions

Definition. A function $\phi : [a, b] \to \mathbb{R}$ is **convex** if for all $x, y \in [a, b]$ and for all $\lambda \in (0, 1)$, we have that

$$\phi(\lambda x + (1 - \lambda)y) \le \lambda \phi(x) + (1 - \lambda)\phi(y)$$

Proposition (5.17).

If ϕ is convex on [a, b] then

- (1) (don't care about this)
- (2) Right-hand and left-hand derivatives are equal except on a countable set.
- (3) The left- and right-hand derivatives are monotone increasing functions, and at each point the left-hand derivative is less than or equal to the right-hand derivative.

Corollary (5.19). If ϕ is twice-differentiable, then ϕ is convex if and only $\phi''(x) > 0$.

Corollary (5.20, Jensen's Inequality). Let ϕ be a convex function on $(-\infty, \infty)$ and f be an integrable function [0, 1]. Then

$$\int_0^1 \phi(f(t)) dt \ge \phi \left[\int_0^1 f(t) dt \right].$$

An example of this is $\phi(x) = x^p$. For any $p \in (1, \infty)$, this function is twice-differentiable. Applying Jensen's inequality, we get

$$\int_0^1 |f(x)|^p dx \ge \left(\int_0^1 |f(x)| dx\right).$$

If $f \in L^p$, then $f \in L^1$ i.e., $L^p \subset L^1$.

Theorem (6.1, Minkowski Inequality). If $f, g \in L^p$ with $p \in [1, \infty]$, then $f + g \in L^p$ and

$$||f+g||_p \le ||f||_p + ||g||_p.$$

If $p \in (1, \infty)$, then the equality can hold only if and only if there exists $\alpha, \beta \geq 0$ such that $\beta f = \alpha g$.

Proof. We leave $p = \infty$ as exercise so suppose p is finite. Let $p \in [1, \infty]$. We normalize f and g i.e., there exists two functions $f_0, g_0 \in L^p$ such that $|f| = \alpha \cdot f_0$ and $|g| = \beta \cdot g_0$ with $||f_0|| = ||g_0|| = 1$. Let $\lambda = \frac{\alpha}{\alpha + \beta}$ and $1 - \lambda = \frac{\beta}{\alpha + \beta}$. By the convexity of $\phi(t) = t^p$ for $p \in [1, \infty]$, we have that

$$|f(x) + g(x)|^p \le (|f(x)| + |g(x)|^p)$$

$$= (\alpha f_0 + \beta g_0)^p$$

$$= (\alpha + \beta)^p \left(\frac{\alpha}{\alpha + \beta} f_0 + \frac{\beta}{\alpha + \beta} g_0\right)^p$$

$$\le (\alpha + \beta)^p (\lambda f_0 + (1 - \lambda) g_0)^p$$

Now take the integrals of these guys (Jensen's inequality or something like that). In other words,

$$||f + g||_p^p \le (\alpha + \beta)^p \cdot (\lambda ||f_0||_p^p + (1 - \lambda)||g_0||_p^p)$$

$$= (||f||_p^p + ||g||_p^p) \cdot 1$$
 because $f_0 = 1 = g_0$.

Taking the pth root,

$$||f + g||_p \le |f||_p + ||g||_p.$$

This gives us the last norm-space requirement (triangle inequality of normed spaces).

Lemma (6.3). Let $p \in [1, \infty]$. Then for $a, b, t \ge 0$, we have

$$(a+tb)^p \ge a^p + ptba^{p-1}.$$

Proof. Define the function

$$\phi(t) = (a+tb)^p - a^p - ptba^{p-1}.$$

We know $\phi(0) = 0$. Take the derivative of this thing and this is greater than zero because

$$\phi'(x) = p(a+tb)^{p-1} + b - pba^{p-1}$$
$$= pb\left((a+bt)^{p-1} - a^{p-1}\right)$$

and so ϕ is increasing.

Theorem (6.4, Holder Inequality). ¹ If p and q are nonnegative extended real numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1,$$

and if $f \in L^p$ and $g \in L^q$, then $f \cdot g \in L^1$ and

$$\int |fg| \le ||f||_p \cdot ||g||_q.$$

If p, q = 2, then this just reduces to the Cauchy-Schwarz inequality.