Contents

Int	rodu	ction	1		
1	DN	A: The Molecule of Life	5		
	1.1	Introduction	5		
	1.2	The Structure and Manipulation of DNA	6		
	1.3	DNA as the Carrier of Genetic Information	7		
	1.4	Operations on DNA	10		
	1.5	Summary	21		
	1.6	Bibliographical Notes	21		
2	$Th\epsilon$	eoretical Computer Science: A Primer	23		
	2.1	Introduction	23		
	2.2	Algorithms and Automata	25		
	2.3	The Turing Machine	27		
	2.4	The Random Access Machine	29		
	2.5	Data Structures	33		
	2.6	Computational Complexity	39		
	2.7	P and NP	43		
	2.8	Summary	43		
	2.9	Bibliographical Notes	44		
3	Models of Molecular Computation				
	3.1	Introduction	45		
	3.2	Filtering Models	46		
	3.3	Splicing Models	60		
	3.4	Constructive Models	61		
	3.5	Membrane Models	63		
	3.6	Summary	69		
	3.7	Bibliographical Notes	70		

4	Con	nplexity Issues	71
	4.1	Introduction	71
	4.2	An Existing Model of DNA Computation	73
	4.3	A Strong Model of DNA Computation	76
	4.4	Ogihara and Ray's Boolean Circuit Model	77
		4.4.1 Ogihara and Ray's Implementation	79
	4.5	An Alternative Boolean Circuit Simulation	82
	4.6	Proposed Physical Implementation	84
	4.7	Analysis	87
	4.8	Example Application: Transitive Closure	
	4.9	P-RAM Simulation	
	4.10	The Translation Process	
		Assessment	
		A Worked Example: The List Ranking Problem	
		Summary	
		Bibliographical Notes	
		.	
5	Phy	sical Implementations	
	5.1	Introduction	
	5.2	Implementation of Basic Logical Elements	
	5.3	Initial Set Construction Within Filtering Models	
	5.4	Adleman's Implementation	
	5.5	Evaluation of Adleman's Implementation	
	5.6	Implementation of the Parallel Filtering Model	
	5.7	Advantages of Our Implementation	
	5.8	Experimental Investigations	
	5.9	Other Laboratory Implementations	
		5.9.1 Chess Games	
		5.9.2 Computing on Surfaces	
		5.9.3 Gel-Based Computing	
		5.9.4 Maximal Clique Computation	
		5.9.5 Other Notable Results	
	5.10	Summary	145
	5.11	Bibliographical Notes	145
	~ 11		
6		lular Computing	
	6.1	Introduction	
	6.2	Successful Implementations	
	6.3	Gene Unscrambling in Ciliates	
	6.4	Biological Background	
		6.4.1 IESs and MDSs	
		6.4.2 Scrambled Genes	
		6.4.3 Fundamental Questions	152

	Contents	XIII
6.5	Models of Gene Construction	153
6.6	Summary	155
	Bibliographical Notes	
Referen	ices	157
Index .		167

http://www.springer.com/978-3-540-65773-6

Theoretical and Experimental DNA Computation Amos, M.

2005, XIII, 173 p., Hardcover ISBN: 978-3-540-65773-6