

A-proof report COVID-19 rehabilitation patterns

- 1. data-mining
- 2. time-series modeling

Overview

Medical team

- Research Problem
 - medical team: data-mining
- Data statistics
 - Within admission
 - After discharge
 - Tool for data analysis

Machine Learning ADM prediction

- Research Problem
 - Al: time-series modeling
- Feature Engineering
- Modelling and Results
- Discussion and Outlook

For more information please check this <u>Github repository</u> And <u>this folder</u> on google docs with progress over time

Medical team

Medical team Research questions

- What is the mean or median level of functioning on the different ICF domains at hospital admission, at hospital discharge and at the 6 weeks and 3 months outpatient visits?
- What is the mean course in the level of functioning of these domains during hospital stay (from admission to discharge)?
- What is the frequency of notes per ICF domain/level?
- What different patterns in recovery of functioning can be distinguished?

Filters applied for Data analysis only

Initial dataset: 110781 instances

- Drop instances with no evaluation for any domain studied: 71287 instances and 1289 unique patients
- Max days difference between note and previous note: 428.0
- Filter considering discharge if more than 2 days with no annotations:58093 instances and still 1289 patients (they all have a day 0)
 - n unique days count: 386
 - min days count: 0
 - mean days count: 199
 - max days count: 429
 - obs: it doesn't mean there are notes every day, it's from the first admission to the last day of note from the patient

Data statistics

Dataset description

- Dataset from 1/1/2020 until 31/03/2021
- Number of instances with info of at least one domain: 71287
- Initial number of patients: 1289
- Max days difference between note and previous note: 428.0
- N unique days count: 386
- Min days count: 0
- Mean days count: 199 days
- Max days count: 429

uniqueID total notes

>50 per ID	443	51933
>100 per ID	192	34400
>500 per ID	2	1105

Distribution of frequency of notes over time

Annotations frequency over time and domain

Outliers and missing values

Missing values

 Interpolation of ADM_IvI and removal of other domains for modelling

ADM Ivl	4777
ATT IVI	17746
_	
BER_lvl	17542
ENR_lvl	15966
ETN_lvl	10443
FAC_lvl	15019
INS_lvl	16257
MBW_lvl	17285
STM_lvl	14146

Mean evolution aggregated data for whole period VU

Mean evolution aggregated data for whole period VU

Range of days since day 0

Within admission

Mean and median daily evolution within admission

After discharge

- Number of unique patients with discharge information: 1222
- Number of unique patients from discharge to 6w: 1222
- Number of unique patients from 6 weeks discharge to 3 months: 941

Discharge evolution per domain

		Mean	Difference			Count		
	day 0	0-6w	6w-3m	date1-0	date2-0	day 0	0-6w	6w-3m
ADM_lvI	2.19	2.12	2.16	-0.07	-0.03	960	2636	2580
ATT_lvl	2.72	2.76	2.79	0.04	0.07	26	61	89
BER_IVI	2.47	2.49	2.48	0.02	0.01	64	141	237
ENR_Ivi	1.81	1.83	1.85	0.02	0.04	185	457	552
ETN_IvI	2.43	2.15	1.83	-0.28	-0.60	372	1111	1210
FAC_IvI	3.55	3.45	3.42	-0.10	-0.13	217	612	708
INS_IvI	2.61	2.69	2.68	0.08	0.07	172	428	574
MBW_lvl	2.72	2.65	2.69	-0.07	-0.03	77	225	353
STM_IvI	2.75	2.73	2.71	-0.02	-0.04	210	668	880

Tool for data analysis

Other analysis that can be done

Statistics from specific day

	mean	min	Day 0 max	median	count
ADM_lvl	2.31	-0.08	4.38	2.27	3454
ATT_lvl	2.79	0.00	4.00	2.80	37
BER_IvI	2.53	2.19	4.00	2.54	201
ENR_IvI	1.82	0.00	3.00	1.87	659
ETN_IvI	2.36	0.00	4.24	2.33	951
FAC_IvI	3.70	0.00	5.00	3.77	582
INS_IvI	2.83	0.00	4.29	2.86	445
MBW_lvl	2.59	1.00	4.00	2.43	277
STM_lvl	2.59	1.00	4.33	2.48	495

Case by case analysis of evolution per patient

Machine Learning ADM prediction

Machine Learning Goal

Goal of project: Build a time series analysis model to predict rehabilitation behavior (levels) for ADM domain for a new patient overtime.

Filters applied for modeling:

- patients with minimum of 100 notes in total;
- and 100 distinct dates;
- with at least 50 notes in the same domain for at least one domain (to analyse the domains in a level layer)

from 1290 unique IDs to 149 when adding restrictions.

frequency over time (up to 12 annotations per ID per date)

Feature Engineering

Creation of time related features:

- Average domains
- Lag of 1, 2 and 3, for ADM feature
- Rolling mean window sizes 3 and 7
- Rolling min window sizes 3 and 7
- Rolling max window sizes 3 and 7
- Expanding window mean

Other changes in dataset:

- Interpolation of ADM to solve missing values
- Discretization of ADM_lvl variable

Modelling and results

Learning setup:

Split of data: divided into 80% of patients in training and 20% of patients in test

- Shapes of DF Train: (13904, 24) | (13904,)
- Shapes of DF Test: (3695, 24) | (3695,)

Hypothesis: Model needs to reflect temporal info!

Models applied to training and test:

Accuracy on training data for each model:

- Log Reg: 0.704
- KNN: 0.754
- Gauss Naive Bayes: 0.626
- Decision Tree: 1.0
- Random Forest: 0.999

F1-macro score for test set for each model:

- Log Reg: 0.676
- KNN: 0.617
- Gauss Naive Bayes: 0.625
- Decision Tree: 0.850
- Random Forest: 0.852

Modelling results - Confusion matrix per model

- 700

- 600

- 500

- 400

- 300

- 200

- 100

- 400

- 200

- 400

- 200

Discussion and Outlook

For ADM feature
Random Forest had
the best performance
in the test set closely
followed by Decision
Tree

The notebooks
created allows a great
cross of information to
be explored, overall or
by patient,
domain-wise,
frequency-wise and to
track evolution

Many possibilities of more sophisticated models and using Predictive modeling with notion of time!