- 1. Построить леволинейную грамматику для языка десятичных чисел, делящихся на 4, и преобразовать её в праволинейную.
- 2. Построить минимальный автомат, распознающий регулярное выражение $(ab \mid a)b^*ab(a^* \mid ba)$.
- 3. Исследовать язык $\{w \, | |w|_a \neq 2 * |w|_b \ \& \ w \in \{a,b,c\}^*\}.$

- 1. Построить регулярную грамматику для десятичных чисел, делящихся на 3, и регулярную грамматику для их реверсов (побуквенных обращений). Построить их формальное пересечение.
- 2. Построить минимальный автомат, распознающий регулярное выражение $a^*(bab^*)^*a$.
- 3. Исследовать язык $\{a^n b^m c^{n*m}\}$.

- 1. Построить регулярную грамматику, распознающую строки, содержащие блоки, заключенные в /*, */, и не содержащие знака / (эти блоки могут и отсутствовать в строке). Построить регулярную грамматику, распознающую строки, содержащие блоки, заключенные в ** ** и не содержащие знака *. Построить их формальное пересечение. Алфавит $\{/,*,a\}$.
- 2. Построить минимальный автомат, распознающий регулярное выражение $1*[^0]*(10)^+2$? в алфавите $\{0,1,2\}$.
- 3. Исследовать язык $\{w^R z^R wz \mid , w, z \in \{a, b\}^* \& |w| > 1\}.$

- 1. Построить регулярную грамматику, распознающую список идентификаторов. Список начинается и заканчивается квадратными скобками, разделитель элементов в списке запятая. Идентификатор последовательность латинских букв и цифр, начинающаяся со строчной буквы. Между элементами списка может быть сколько угодно пробелов.
- 2. Построить минимальный автомат, распознающий регулярное выражение $(abc \mid bbb)(ab)?a^*(a \mid b)$.
- 3. Исследовать язык $\{z_1wz_2w \mid w \in \{a,b\}^* \& |w| > 0 \& z_i \in \{b,c\}^*\}.$

- 1. Построить регулярную грамматику или регулярное выражение, распознающие последовательность объявлений целых переменных в С-подобном синтаксисе. Объявление переменной начинается с объявления типа int, затем через минимум один пробел следует идентификатор последовательность букв и цифр, начинающаяся не с цифры и опционально объявление значения через знак равенства. Считаем, что переменным присваиваются лишь целочисленные значения. Элементы последовательности отделяются друг от друга точкой с запятой. Между ними могут быть переводы строки. Расстановка пробелов произвольна.
- 2. Построить минимальный автомат, распознающий регулярное выражение http[s]? : $//(a \mid b)^+.(com \mid ru)$.
- 3. Исследовать язык $\{www \mid w \neq z_1 vvz_2(|v| > 0) \& w \in \{a, b\}^*\}.$

- 1. Построить регулярную грамматику, распознающую следующую конструкцию: идентификатор, за которым следуют единственные фигурные скобки, внутри которых записано одно или более выражение, содержащее идентификаторы, пробелы и единственный знак равенства и заканчивающееся точкой с запятой и, возможно, переводом строки (код \$). Если выражение не заканчивается переводом строки, тогда после него обязан стоять пробел. Идентификатор строка из латинких букв.
- 2. Построить минимальный автомат, распознающий регулярное выражение $(a(a \mid b)^+a) \mid (ba^*b)$.
- 3. Исследовать язык $\{w \mid |w|_{abb} = |w|_{bba} \& w \in \{a,b\}^*\}.$

- 1. Построить регулярную грамматику для следующей структуры перечислений. Перечисление начинается с тега en_b, заканчивается тегом en_e и содержит как минимум одно поле. Поле начинается тегом en_i и заканчивается переводом строки (код \$). После тега поля может идти любая последовательность букв, пробелов и знаков подчёркивания, за исключением тега en_b, кроме того, от тега en_i и до перевода строки не должно встречаться и тегов конца или поля перечисления.
- 2. Построить минимальный автомат, распознающий регулярное выражение ($[^be]^*b [^be]^+e [^be]^*|[^be]^*$) в алфавите $\{a,b,c,e\}$.
- 3. Исследовать язык $\{w\,|\,w\in\{(,)\}^+\ \&\ w$ префикс правильной скобочной последовательности, отличный от правильной скобочной последовательности $\}.$

- 1. Построить регулярное выражение, описывающее регулярные выражения не больше чем с одним уровнем вложенности скобок [,]. Входное регулярное выражение может содержать операции *, +, ?, | и латинские буквы.
- 2. Построить минимальный автомат, распознающий регулярное выражение if id=id then num (; | else num;). Пробелы значащие, id последовательность латинских букв, num неотрицательное целое число.
- 3. Исследовать язык $\{w^{|v|_a}v^{|w|_a}\,|w,v\in\{a,b\}^*\ \&\ |w|_a>1\ \&\ |v|_a>1\}.$

4.

- 1. Построить регулярную грамматику для слов, начинающихся и кончающихся одной и той же буквой, и слов, не содержащих подстрок aa, bb, cc в алфавите $\{a, b, c\}$. Построить их формальное пересечение.
- 2. Построить минимальный автомат, распознающий троичные числа, делящиеся на 2. Распознавание числа с конца от младших разрядов к старшим.
- 3. Исследовать язык $\{w\,|\,|w|_0\neq |w|_1\vee |w|_0\neq |w|_2\ \&\ w\in\{0,1,2\}^+\}.$ (Указание: рассмотрите язык $\{w\,|\,|w|_1>|w|_0\}$)

- 1. Построить регулярные грамматики для скобочных выражений, в которых ни одна закрывающая скобка не стоит впереди открывающей, и для сбалансированных скобочных выражений без вложенных скобок. Построить их формальное пересечение.
- 2. Построить минимальный автомат, распознающий троичные числа, делящиеся на 2. Распознавание числа с начала от старших разрядов.
- 3. Исследовать язык $\{w_1cw_2 \mid w_i \in \{a,b,c\}^* \& |w_1|_a = |w_2|_b \& |w_1|_b = |w_2|_b\}.$

- 1. Построить регулярную грамматику для слов, в которых не больше двух подслов ab, и регулярную грамматику для слов, в которых встречается минимум по две буквы a и b. Алфавит $\{a,b\}$. Построить их формальное пересечение.
- 2. Построить минимальный автомат, распознающий язык $(a^*b^*aa^*b^*ba^*b^*a)^*$.
- 3. Исследовать язык $\{a^{n!}\} \cup \{a^{n^2}\}.$

- 1. Построить регулярную грамматику для тождественно истинных логических формул без скобок, со связками только \lor , & и \neg (с обычным приоритетом операций) и константами T, F.
- 2. Построить минимальный автомат, распознающий язык $d[*d](+d[*d]^*)^* = d$. Здесь * и + не в верхних индексах символы языка, так же как и буква d и знак равенства.
- 3. Исследовать язык $\{a^ncz \mid n = |z|_a \& z \in \{a,b\}^*\}.$

- 1. Построить регулярную грамматику для арифметических выражений, принимающих значение 0. Выражения содержат числа от 0 до 9, а также знаки сложения и умножения (с обычным приоритетом операций). Скобок нет.
- 2. Построить минимальный автомат, распознающий язык списков неотрицательных целых чисел. Список начинается и заканчивается квадратной скобкой, разделитель запятая. Список может быть пустым.
- 3. Исследовать язык таких SRS, записанных в одну строку: $(W_1 \to W_2\$)^+$ (где $W_1, W_2 \in \{[a-z]\}^+$), для которых существует перекрытие некоторой левой части W_1 подсловом некоторой другой левой части. Например, как в данной SRS: $bab \to b\$ a \to a\$$. Здесь левая часть второго правила, а именно a, является подсловом левой части первого правила, а именно bab. Пробелы в языке SRS не допускаются, в примере они расставлены для лучшей читаемости SRS.

- 1. Построить регулярное выражение или регулярную грамматику для арифметических выражений, принимающих значение 1. Выражения содержат только числа 0, 1, 2, а также знаки сложения и умножения (с обычным приоритетом операций). Скобок нет.
- 2. Построить минимальный автомат, распознающий правильно записанные неотрицательные числа с плавающей точкой в двоичной системе.
- 3. Исследовать язык $\{a^bb \mid a \in \{S\}^+ \& b \in \{I\}^+$ и под a^b подразумевается слово, полученное b приписываниями слова a к самому себе $\}.$

- 1. Построить регулярное выражение, принимающее рассортированные по возрастанию списки, содержащие только числа 0, 1, 2. Список начинается и заканчивается квадратными скобками, разделитель элементов в списке запятая. Между элементами может быть произвольное число пробелов.
- 2. Построить минимальный автомат, распознающий язык $f(\&f)^*(\lor f(\&f)^*)^*$ в алфавите $\{\&,\lor,f\}$.
- 3. Исследовать язык перепутанных скобочных последовательностей. В нём встречаются два вида скобок: круглые и квадратные, причём если стереть все квадратные скобки, получится правильная скобочная последовательность из круглых скобок, и если стереть все круглые скобки, тоже останется правильная скобочная последовательность. Между собой скобки могут быть перепутаны, например, как в слове ([)].

- 1. Построить регулярное выражение или грамматику для распознавания тождественно ложных логических формул в ДНФ, если известно, что формулы имеют один уровень вложенности скобок (т.е. вложенных скобочных конструкций нет). Формулы содержат символы &, \lor , \neg , (,), A, B, где A, B логические переменные. Приоритет операций обычный. Конъюнкты могут быть заключены в скобки или нет.
- 2. Построить нормальную форму Грейбах для грамматики, распознающей правильные скобочные термы, содержащие только скобки двух типов: круглые и квадратные.
- 3. Исследовать язык $\{1(+1)^n-(2(+2)^m)=0\,|\,1*(n+1)=2*(m+1)\}.$ Т.е. этот язык состоит из правильных равенств, где справа всегда нуль, а слева сумма из n+1 единицы, из которой вычитается сумма из m+1 двоек.

- 1. Построить регулярное выражение, описывающее плоские образцы рефала. Рефал-образец это последовательность констант, строк и переменных, разделенных пробелами. Константы это последовательности латинских букв и цифр, начинающиеся с буквы, без кавычек. Строки последовательности латинских букв, цифр, знаков препинания и пробелов в одинарных кавычках (апострофах). Апострофы внутри строк считаем запрещенными. Переменные это символы е, t или s, после которых следует точка и непустая последовательность латинских букв и цифр. Например, e.A0, s.01s переменные.
- 2. Построить нормальную форму Грейбах для грамматики правильных скобочных последовательностей, распознающих два вида скобок (круглые и фигурные). Причём внутри круглых скобок запрещены фигурные. Т.е. выражения вида ({}) считаются некорректными.
- 3. Исследовать язык $\{w_1w_2\,|\,w_1 \neq w_2\ \&\ |w_i|>2\}$. Алфавит не унарный.

- 1. Построить регулярное выражение, описывающее строку из латинских букв, точек и пробелов, устроенную следующим образом. Строка начинается с заглавной буквы; пробелы не могут идти друг за другом, а также не могут начинать или заключать строку; за точкой всегда идёт либо конец строки, либо пробел, и после этого пробела заглавная буква.
- 2. Построить нормальную форму Грейбах для грамматики истинных выражений вида M-N=T, где M, T, N унарные числа вида s^nz . $T.e.\ 0$ это $z,\ n+1$ это выражение для числа n, κ которому приписана в начале буква s. Примеры таких выражений: sz sz = z, ssssz ssz = ssz. Примеры выражений, не принадлежащих языку: ssz s = sz, sss ss = s, ssz sz = z.
- 3. Исследовать язык $\{w_1w_2 \mid w_2 = h(w_1) \& w_1 \in \{a,b\}^*\}$, где h это гомоморфизм, определенный как $h(a) = \varepsilon$, h(b) = b.

- 1. Построить регулярное выражение, описывающее тексты в LATEX, имеющие корректную структуру математических блоков (в том числе таких блоков может и не быть в тексте). Блок либо начинается последовательностью \$\$ и заканчивается ею же, либо начинается знаком \$ и заканчивается им же. Блоки не должны содержать неэкранированных знаков \$. Экранирование делается с помощью символа \. Считаем, что кроме вышеописанных знаков блоков, в тексте не встречается ничего, кроме пробелов и латинских букв, а в математических блоках могут быть ещё и цифры.
- 2. Построить нормальную форму Хомского для грамматики логических формул с кванторами $\forall ... (...)$ и $\exists ... (...)$, связкой &, единственным предикатом P(1) и переменными x и y. Переменная не может входить в формулу не как аргумент предиката, но может входить как аргумент предиката, не будучи связанной квантором. Т.е. выражение x & P(x) некорректно, выражение $\forall x (\forall x (P(y) \& P(x))) \& P(x)$ корректно.
- 3. Исследовать язык $\{a^{2*n}a^{3*k} \mid k > n\}$.

- Построить регулярное выражение, описывающее корректные бесскобочные логические формулы. Формула считается корректной, если её смысл однозначно определяется исходя из приоритета операций. В формулах могут быть связки ∨, ¬, &, ⇒, а также заглавные латинские буквы булевские переменные. Поскольку ⇒ не ассоциативная связка, считаем, что больше чем одно её вхождение в бесскобочную формулу приводит к неоднозначности.
- 2. Построить нормальную форму Грейбах для грамматики правильно записанных арифметических выражений, содержащих скобки, знаки + и -, унарный минус и литеру n, обозначающую любое число.
- 3. Исследовать язык скобочных последовательностей таких, что они не могут быть префиксами правильно построенных скобочных последовательностей. Скобки одного типа круглые.

- 1. Построить регулярную грамматику для выражений, содержащих произвольно расставленные круглые скобки и правильно расставленные квадратные скобки, не вложенные в другие квадратные скобки. Построить аналогичную грамматику для произвольно стоящих квадратных скобок и правильно стоящих невложенных круглых скобок. Найти их пересечение.
- 2. Построить нормальную форму Хомского для языка арифметических выражений над двоичными числами, равных 0. Допустимые операции сложение и умножение.
- 3. Исследовать язык логических формул с кванторами от переменных вида xi, где $i \in \mathbb{N}$, в которых каждая переменная, входящая в формулу, должна быть связана квантором. Переменные под кванторами запрещается объединять, т.е. записи $\forall x1x2(...)$ и $\forall x1,x2(...)$ считаем некорректными. Кроме кванторных выражений и скобок, формулы могут содержать только унарный предикатный символ $P(\bullet)$ и связку \Rightarrow .

- 1. Построить регулярную грамматику для правильно записанных арифметических выражений без скобок с единственной операцией + и натуральными числами, и грамматику для выражений в алфавите $\{0,1,+\}$, в которых нет подстрок, состоящих из двух одинаковых символов. Построить их пересечение.
- 2. Построить нормальную форму Грейбах для грамматики палиндромов, не содержащих подслов вида aa, bb, cc, в алфавите $\{a, b, c\}$.
- 3. Исследовать язык программ, вычисляющихся без ошибок, вида [<операция>;]*, где операция это присваивание <переменная> = <выражение>; переменная последовательность латинских букв; выражение арифметическое выражение, содержащее натуральные числа, +, * и переменные. Программа считается вычисляющейся без ошибок, если правая часть любой операции содержит только те переменные, которым уже были присвоены значения какой-либо предшествующей операцией.

- 1. Построить регулярную грамматику для регулярных выражений без скобок над алфавитом $\{a,b\}$, которые не принимают пустую строку. Допустимые операции альтернатива, положительная итерация (+), итерация Клини, знак вопроса.
- 2. Построить нормальную форму Грейбах для грамматики языка $\{a^nb^{m+1}=c^md^{n+1}\}$, где n и m могут быть и нулями. Знак равенства входит в символы языка.
- 3. Исследовать язык арифметических выражений без вычитания, в которых нет деления на 0. То есть в языке не допускаются выражения, например, вида 1/(1*0). Арифметическое выражение содержит любые натуральные числа, операции умножения, деления и сложения, а также скобки. Делитель не заключается в скобки лишь тогда, когда состоит из единственного числа.

- 1. Построить регулярную грамматику для регулярных выражений без скобок, обязательно допускающих пустую строку. Алфавит констант: $\{0,1\}$, допустимые операции итерация Клини, альтернатива, знак вопроса, положительная итерация (+). Примеры выражений, которые не допускаются таким языком 0|1, 1*1, 1?00+. Примеры допускаемых: 1*1?, 1*|0+.
- 2. Построить нормальную форму Грейбах для грамматики $S \to aSc \, | \, B,$ $B \to bBc \, | \, Sc \, | \, \varepsilon.$
- 3. Исследовать язык $\{a^{k_1}b^{k_2}...a^{k_{n-1}}b^{k_n}c^{k_1+k_2+...+k_n}|$ для всех возможных $n,\ k_i>0\ \}.$

- 1. Построить регулярную грамматику для правильно записанных неотрицательных чисел с плавающей точкой. Построить регулярную грамматику для реверсов (обращенных записей) таких чисел. Построить их пересечение.
- 2. Построить нормальную форму Грейбах для грамматики

$$S \to (V) \mid S \Rightarrow S$$
 $V \to T \mid V \& T$ $T \to \neg T \mid a \mid b$

3. Исследовать язык $\{a^{k_1}b^{k_2+k_1}...a^{k_{99}+k_{98}}b^{k_{100}+k_{99}}\,|\,k_i>0\}.$

- 1. Построить регулярную грамматику для правильно построенных арифметических выражений, содержащих скобки одного уровня вложенности, знак + и переменные x и y. Построить регулярную грамматику реверсов таких выражений. Найти их пересечение.
- 2. Построить нормальную форму Грейбах для грамматики

$$S \to S; S \mid T = T \quad T \to T + T \mid n$$

3. Исследовать язык $\{wa^nb^nw \,|\, w\in \{a,b\}^*\}.$

- 1. Построить регулярную грамматику для правильно построенных логических формул над константами Т и F без скобок и со связками &, ¬, принимающих значение F. Построить грамматику всех бесскобочных логических формул со связками &, ¬ и константой Т. Построить их пересечение.
- 2. Построить нормальную форму Грейбах для грамматики

$$S \to SbSa \mid SaSb \mid \varepsilon$$

3. Исследовать язык $\{w \mid \forall w_1, z, w_2 (w = w_1 z w_2 \& z = a^k \& w_1 = w_3 b \& w_2 = b w_4 \Rightarrow |w_1|_a = |w_2|_a = k)\}$. Можно ограничиться алфавитом $\{a,b\}$.

- 1. Построить регулярную грамматику для слов, содержащих подслово aba. Построить регулярную грамматику для слов, содержащих подслово baa. Построить их пересечение. Алфавит $\{a,b,c\}$.
- 2. Построить нормальную форму Грейбах для грамматики

$$S \to A \Rightarrow B \quad A \to 0 \mid (B \Rightarrow A) \quad B \to 1 \mid (S)$$

3. Исследовать язык правильных регулярных выражений, обязательно принимающих, в числе прочего, пустое слово. Регулярные выражения могут содержать буквы A-z, а также операции альтернативы, итерации Клини, положительной итерации (+) и квадратные скобки, формирующие группы.

- 1. Построить регулярную грамматику для слов, не содержащих подслова ab. Построить грамматику для слов, не содержащих подслова aa в конце. Построить их формальное пересечение.
- 2. Построить нормальную форму Грейбах для грамматики

$$S \to S[]S|T(T)$$
 $T \to TT|[T]|()$

3. Исследовать язык слов в алфавите $\{a,b,c\}$ таких, что перестановкой букв в них можно получить палиндром.

- 1. Построить регулярную грамматику для слов, на чётных позициях которых стоит буква a. Построить регулярную грамматику для слов, у которых в каждом подслове из трёх символов совпадают первая и последняя буквы. Построить их формальное пересечение. Алфавит $\{a,b\}$.
- 2. Построить нормальную форму Грейбах для грамматики регулярных выражений. Регулярные выражения могут содержать букву a, квадратные скобки, знак альтернативы и итерацию Клини.
- 3. Исследовать язык $\{w \mid \forall w_1, z, w_2 (w = w_1 z w_2 \& z = a^k \& w_1 = w_3 b \& w_2 = b w_4 \Rightarrow |w_1|_a + |w_2|_a = k)\}$. Можно ограничиться алфавитом $\{a,b\}$.

- 1. Построить регулярную грамматику для слов, либо начинающихся и заканчивающихся на a, либо не содержащих букв a. Построить регулярную грамматику для слов, в которых нет подслов w длины 2 и больше, которые не содержат букв a. Построить их формальное пересечение. Алфавит $\{a,b,c\}$.
- 2. Построить нормальную форму Грейбах для грамматики

$$S \to S_1 S_1$$
 $S_1 \to S_2 S_2$ $S_2 \to ab \mid S$

3. Исследовать язык всех возможных подслов правильных скобочных последовательностей. Допускаются два типа скобок — круглые и квадратные.

- 1. Построить регулярную грамматику для слов, содержащих подслово aba. Построить регулярную грамматику для слов, содержащих подслово baa. Построить их пересечение. Алфавит $\{a,b\}$.
- 2. Построить нормальную форму Грейбах для грамматики

$$S \to S[S)S \mid S(S]S \mid [] \mid ()$$

3. Исследовать язык всех возможных подслов правильных скобочных последовательностей. Тип скобок единственный — круглые.

- 1. Построить регулярную грамматику для распознавания списка правил регулярной (право- или леволинейной) грамматики. Правила могут содержать знак альтернативы, нетерминалы A-Z и терминалы а-z. Правила разделяются знаком конца строки (\$). Начальный нетерминал S.
- 2. Построить минимальный автомат, распознающий выражения вида $A_1=A_2$, где A_i это натуральное число или запись суммы нескольких натуральных чисел.
- 3. Исследовать язык $\{w\,|\,\exists v,z_1(|v|>0\ \&\ (w=vvz_1\lor w=z_1vv))\}.$ Алфавит $\{a,b\}.$

- 1. Построить регулярную грамматику для чисел в троичной системе, на чётных позициях которых стоят нули. Построить регулярную грамматику для чисел в *двоичной* системе, делящихся на 3. Построить их формальное пересечение.
- 2. Построить нормальную форму Грейбах для регулярной грамматики, содержащей нетерминалы S (стартовый), A, B, C, терминал а и порождающей хотя бы одну бесконечную цепочку. Правила грамматики имеют синтаксис $N \to mN\$$ или $N \to m$ (\$ конец строки, N нетерминал, m терминал).
- 3. Исследовать язык списков натуральных чисел, рассортированных по неубыванию, причём если некоторое число входит в такой список, то оно входит в него минимум дважды. Считаем, что список заключён в квадратные скобки, и элементы списка разделяются только запятой.

- 1. Построить регулярную грамматику для распознавания списка правил контекстно-свободной грамматики в форме Грейбах. Правила могут содержать знак альтернативы, нетерминалы A-Z и терминалы а-z, и представляют собой выражение «нетерминал -> правая часть». Правила разделяются знаком конца строки (\$). Начальный нетерминал S.
- 2. Построить нормальную форму Грейбах для грамматики дизъюнктивных нормальных форм без переменных (с константами Т и F). Скобки допускаются только вокруг конъюнктов, но их может и не быть.
- 3. Исследовать язык $\{w\,|\,|w|_{aba}=|w|_{baa}=|w|_{aab}\ \&\ |w|_{aaa}=0\ \&\ w\in\{a,b,c\}^*\}.$