COL351: Analysis and Design of Algorithms

Tutorial Sheet - 10

November 7, 2022

Question 1 The basic rule for blood donation are: A patient of blood group A can receive only blood of group A or O. A patient of blood group B can receive only blood of group B or A patient of blood group A can receive only blood of group A can receive blood of any group.

Let s_O , s_A , s_B , s_{AB} denote the supply in whole units of the different blood types in a hospital for the coming week. Assume that the hospital knows the projected demand for each blood type d_O , d_A , d_B , and d_{AB} for the coming week. Give a max-flow based algorithm to check if the supply would meet the projected demand.

Solution Create a directed graph G with 4 layers as below:

- 1. First layer contains s
- 2. Layer two contains four vertices, namely, x_O , x_A , x_B , x_{AB} .
- 3. Layer three contains four vertices, namely, y_O , y_A , y_B , y_{AB} .
- 4. Last layer contains t.

The edge and their capacities are as follows:

- 1. For $i \in \{O, A, B, AB\}$, add edge (s, x_i) to G of capacity c_i .
- 2. For $j \in \{O, A, B, AB\}$, add edge (y_i, t) to G of capacity d_i .
- 3. Finally, add edge (x_i, y_j) to G, for $i, j \in \{O, A, B, AB\}$ iff a person of blood group j can receive blood from a person of blood group i. The edges (x_i, y_j) have infinite capacity.

<u>Claim:</u> The projected demand can be met iff the (s,t)-max-flow in G is $(d_O + d_A + d_B + d_{AB})$.

Question 2 Let G = (V, E) be a directed graph, and (s, t) be a vertex pair. Two paths from s to t are said to be *internally-vertex-disjoint* if they do not share any vertex except end-points s and t. Present an O(mn) algorithm to compute the maximum number of vertex disjoint paths from s to t. *Hint:* An (s, t)-max-flow on edges of unit capacity can be computed in O(mn) time.

Solution Let G be the input graph on n vertices and m edges. Compute a new graph H from G by splitting each $v \neq s, t$ into an edge (v_{in}, v_{out}) such that:

- The incoming edges of v_{in} in H corresponds to incoming edges of v in G.
- The outgoing edges of v_{out} in H corresponds to outgoing edges of v in G.

Note that $|V(H)| \le 2n$ and $|E(H)| \le m+n$. Compute $\alpha =$ the value of maximum flow from s to t in H assuming all edge capacities are one. This takes O(mn) time.

The value α is equal to the maximum number of vertex disjoint paths from s to t in G as there is 1-1 correspondence between 'edge-disjoint paths in H' and 'vertex-disjoint paths in G'.

Question 3 Let $M = (m_{ij})$ be a square matrix of size n storing positive real numbers. It is given that the sum of elements of each column as well as each row is a positive integer. Prove that elements of M can be replaced by integers without changing any column sum or row sum.

Solution Compute a directed graph G = (V, E, c) on 2n + 2 vertices as follows.

The edge capacities are as follows.

- For i = 1 to n: capacity of $(s, x_i) = R_i$ (sum of i^{th} row in M).
- For j = 1 to n: capacity of $(y_j, t) = C_j$ (sum of j^{th} column in M).
- For $1 \leq i, j \leq n$: capacity of $(x_i, y_j) = \infty$.

Compute maximum flow from s to t using Ford-Fulkerson algorithm. This will guarantee an integer flow along each edge.

Observe that the value of maximum flow will be $S := \sum_{i=1}^{n} R_i = \sum_{j=1}^{n} C_j$ (Why?). Furthermore, with respect to any maximum-flow out-edges of s, and in-edges of t will be fully saturated.

We can now compute new matrix M' by setting its $(i, j)^{th}$ entry as flow through (x_i, y_j) edge. It is easy to observe that the row-sums and column-sum remain same as that in the input matrix.

Question 4 You have a collection of n software applications, $1, \ldots, n$, running on an old system; and now you would like to port some of these to a new system. If you move application i to the new system, you expect a net (monetary) benefit of $b_i \geq 0$. The different software applications interact with one another; if applications i and j have extensive interaction, then the you will incur an expense if you move one of i or j to the new system but not both – let's denote this expense by $x_{ij} \geq 0$. So if the situation were really this simple, you would just port all n applications, achieving a total benefit of $\sum_{i=1}^n b_i$. Unfortunately, there's a problem. Due to small but fundamental incompatibilities between the two systems, there's no way to port application 1 to the new system; it will have to remain on the old system. Nevertheless, it might still pay off to port some of the other applications.

Your task is the following: which of the remaining applications, if any, should be moved? Design an algorithm to find a set $S \subseteq \{2, ..., n\}$ for which the sum of the benefits minus the expenses of moving the applications in S to the new system is maximized.

Solution Create an undirected graph G = (V, E, c) on n+1 vertices as follows. The vertex-set V is $\{s = v_1, v_2, \dots, v_n, t\}$, where v_i corresponds to application i.

For $1 \le i, j \le n$, if applications i and j interact, then we have an edge between v_i and v_j of capacity x_{ij} . Further, for $1 \le i \le n$, we have an edge (v_i, t) of capacity b_i .

<u>Claim:</u> A (s,t)-min-cut will give the desired solution.¹

<u>Proof:</u> Let (X,Y) be an (s,t)-cut. So, $v_1 \in X$, $t \in Y$. Here Y corresponds to the set of applications that we move. The capacity of this cut is

$$c(X,Y) = \sum_{i,j:v_i \in X, v_j \in Y} x_{ij} + \sum_{i:v_i \in X} b_i$$
$$= \left(\sum_{i,j:v_i \in X, v_i \in Y} x_{ij} - \sum_{i:v_i \in Y} b_i\right) + \sum_i b_i$$

Note that $\left(\sum_{i,j:v_i\in X,v_j\in Y} x_{ij} - \sum_{i:v_i\in Y} b_i\right)$ is exactly the expense minus benefit of moving the applications. Thus, finding a min-cut is same as finding the set of applications for which expense minus benefit is minimized, or benefit minus expense is maximized.

¹Here $s = v_1$.

Question 5 There are n clients (c_1, \ldots, c_n) who want to be connected to one of the k mobile towers (m_1, \ldots, m_k) in a town. You are given the (x,y) coordinates of each client and each tower, a distance parameter d, and a load parameter L. Design a polynomial time algorithm to decide if every client can be connected simultaneously to some mobile tower subject to the following constraints.

- 1. Each client is connected with exactly one of the mobile towers, and a client can only be connected to tower that is within distance d.
- 2. No more than L clients can be connected to any single mobile tower.

Solution Compute a directed graph G = (V, E, c) on n + k + 2 vertices as follows.

The edge capacities are as follows.

- For i = 1 to n: capacity of $(s, c_i) = 1$.
- For j = 1 to k: capacity of $(m_j, t) = L$.

■ For
$$1 \le i \le n$$
, $1 \le j \le k$: capacity of $(x_i, y_j) = \begin{cases} 1 & \text{if } dist(c_i, m_j) \le d; \\ 0 & \text{otherwise.} \end{cases}$

<u>Claim:</u> It is possible to obtain a valid client-tower connection if and only if the value of (s, t)-max-flow in the above graph is exactly n.

The corresponding connections will be obtained by an (s, t)-max-flow f. We connect c_i to m_j if and only if $f(c_i, m_j) = 1$.