

Universidade Federal de Santa Maria

Departamento de Eletrônica e Computação

ELC1048 - PROJETO DE SISTEMAS EMBARCADOS

Prof. Carlos Henrique Barriquello barriquello@gmail.com

Entradas e saídas (E/S ou I/O)

- Entradas e saídas podem ser:
 - Digitais: dois valores possíveis: ligado/desligado, on/off, 0/1. Também chamadas GPIO – general purpose input/output
 - Analógicas valores contínuos em um intervalo (ex.: 0 a 3V). Precisam ser digitalizadas (conjunto finito de valores).
 - Sequenciais: comunicações seriais.
 Sequencias de valores digitais (0/1)

Entradas e saídas digitais

 Saída: permite ligar a um pino o sinal positivo de tensão (VDD ou VCC – ex. 3V) ou o sinal de referência (GND ou VSS - 0V).

Entradas e saídas digitais

- Exemplo de uso: acionamento de LED (diodo emissor de luz)

Entradas e saídas digitais

 Entrada: permite detectar um sinal de tensão em um pino entre duas possibilidades (valor alto - 1 ou valor baixo - 0).

Entradas digitais

Geralmente, entradas digitais usam *schmitt trigger* (faixa de histerese para evitar oscilações causadas por ruído)

Entradas e saídas analógicas

- Entradas analógicas utilizam um conversor (ADC) para converter o sinal de tensão na entrada do pino em um valor numérico inteiro.
- Saídas analógicas utilizam um conversor (DAC) ou um temporizador para converter um valor numérico inteiro em um valor de tensão (médio) no pino.

Saída analógica com PWM

Modulação por largura de pulso:

Razão cíclica:

razão entre tempo que o sinal permanece alto (lógico 1) pelo tempo total de um período

A técnica de PWM utiliza um temporizador, isto é, um contador de pulsos de relógio.

Saída analógica com PWM

- Exemplos de aplicações:
 - Controle de intensidade (ex.: brilho de um LED)
 - Sintetização de sinais analógicos (ex.: um sinal senoidal)
 - Controle de máquinas, motores, conversores, etc...

PWM

Princípio: Variação do valor médio de tensão

PWM assimétrico

PWM simétrico

PWM

Frequência do PWM → período de contagem

Resolução do PWM

 A técnica de PWM possui uma resolução finita de capacidade de sintetização de um sinal "analógico". Esta resolução depende da frequência do relógio (clock) e do número de bits do registrador de contagem.

Exercício

1 – Caso seja necessário gerar um sinal PWM com resolução de 0,1% e uma frequência de até 20 kHz, qual deve ser a frequência do relógio (clock)?

 Os sinais encontrados no mundo real são contínuos (ou analógicos, pois variam no tempo de forma contínua), como, por exemplo: a intensidade <u>luminosa</u> de um ambiente que se modifica com a distância, a aceleração de um carro de corrida, a temperatura em um ambiente, etc.

 Entretanto, os processadores manipulam dados no formato digital (numérico), os quais devem ser representados por um número finito de bits.

 A conversão analógico-digital (A/D) é o processo que possibilita a representação de sinais analógicos no mundo digital. Desta forma é possível utilizar os dados extraídos do mundo real para cálculos ou operar seus valores.

 Em um conversor A/D, entra um sinal analógico e sai um sinal digital, a cada intervalo fixo de tempo.

A informação digital é diferente de sua forma original contínua em dois aspectos fundamentais:

- É <u>amostrada</u> porque é baseada em amostragens, ou seja, são realizadas leituras em um intervalo fixo de tempo no sinal contínuo;
- É <u>quantizada</u> porque é atribuído um valor proporcional a cada amostra com base em um **conjunto finito** de valores possíveis.

Para cada faixa de valores do sinal analógico corresponde um valor digital

A um intervalo fixo "mede-se" o valor do sinal analógico.

- Características importantes de um conversor A/D:
 - Freqüência de amostragem (Hertz Hz)
 - Define o intervalo de tempo entre amostras consecutivas

- Resolução (número de bits)
 - Define a capacidade de representação do valor quantizado em um valor numérico.

Método de aproximação sucessiva

Modelo matemático do ADC

O ADC pode ser interpretado como um divisor, que retorna a fração inteira entre o valor analógico na entrada (Vin) pela diferença entre os valores máximo (VrefH) e mínimo (VrefL).

Valor digital (n bits) =
$$\frac{\text{Vin - VrefL}}{\text{VrefH - VrefL}}$$

Se VrefL = 0 V ...

Valor digital (n bits) =
$$\frac{\text{Vin}}{\text{VrefH}}$$

Resolução do ADC e ruído de quantização

 Devido à resolução limitada do ADC, o erro de quantização equivale a um ruído aditivo na medição do sinal desejado. Isto é, o sinal x(t) é medido como o sinal f(x(t)), onde o ruído n(t) é a diferença (f(x(t)) – x(t))

$$f(x(t)) = x(t) + n(t)$$

Razão sinal/ruído de quantização (SNR)

 A potência de um sinal pode ser calculada pelo seu valor RMS (root mean square). Assim, se X for o valor RMS do sinal x(t) e N for o valor RMS do ruído, a razão sinal/ruído (SNR), em decibéis (dB), é dada por:

$$SNR_{dB} = 20 \log_{10} \left(\frac{X}{N}\right)$$

O valor RMS do ruído é calculado por:

$$N = \lim_{T \to \infty} \sqrt{\frac{1}{2T} \int_{-T}^{T} (n(\tau))^2 d\tau}$$

Razão sinal/ruído de quantização (SNR)

 Exemplo para um sinal senoidal de amplitude A, o valor RMS é A/√2. E o valor RMS de ruído de quantização para n bits é A/√3 2ⁿ

Neste caso, a SNR é dada por:

$$SNR (dB) = 1,76 + 6n dB$$

Cada bit de resolução do ADC acrescenta 6 dB!

Deve ser escolhida conforme o teorema de amostragem de Nyquist-Shannon.

Informalmente, o teorema afirma que se as amostras forem coletadas a uma taxa R = 1/T, o sinal original pode ser *unicamente* reconstruído a partir destas amostras se o mesmo for composto pelo somatório de componentes senoidais com frequências inferiores a R/2 Hz!

De forma simples, se um sinal pode variar com frequência menor que R/2, a taxa de amostragem deve ser R. Caso contrário, ocorre o efeito chamado **aliasing.**

Aliasing significa que não é possível identificar unicamente o sinal amostrado.

Por exemplo, se um sinal senoidal de **1kHz** é amostrado a uma taxa de **8000** amostras por segundo, o sinal amostrado s(n) é dado por:

$$s(n) = sen(2\pi 1000n/8000) = sen(\pi n/4)$$

Mas, se o sinal original for de **9kHz**, o sinal amostrado será:

$$s(n) = sen(2\pi 9000n/8000) = sen(\pi n/4 + 2\pi n) = sen(\pi n/4)$$

Aliasing: amostras de um sinal de 9kHz amostrado a 8000 amostras por segundo são as mesmas de um sinal de 1kHz amostrado a 8000 amostras por segundo!

Para evitar o aliasing, o sinal de interesse deve ser filtrado previamente usando-se um filtro anti-aliasing! Isto é, um filtro passa-baixas que atenua as componentes com frequência acima da metade da taxa de amostragem utilizada!

Exercício

2- Qual é o menor de tensão necessário para alterar um bit o valor amostrado por um ADC de 12 bits, se os pinos VrefL e VrefH estiverem conectados ao terra (0V) e em 3,3V, respectivamente?

Exercício

3- Um sinal de áudio (voz) possui componentes de frequência de até 4kHz. Determine a quantidade de memória necessária para armazenar 1 segundo de áudio digitalizado por um ADC com resolução de 12 bits. Para este caso, determine ainda a razão sinal-ruído obtida.