(35), and account for the uncertainty in spatial localization of a quantum particle due to its momentum that is determined by the particle's self interaction. The self-consistent solution of the transport and constraint equations (34) and (35) therefore corresponds to summing over all possible quantum paths r in space-time with fluctuations in energy-momentum p, constrained by the uncertainty principle [19]. This simultaneous evolution in r and p of the Wigner functions F_{α} is illustrated in Fig. 4.

3.3 Macroscopic quantities

The functions F_{α} , eq. (38), contain the microscopic information that is required for the statistical description of the time evolution of a many-particle system in complete phase space [24]. Depending on the physical situation under consideration, one starts from specified initial distributions at $t = t_0$ and follows the time evolution of the phase-space densities $F_{\alpha}(r,p)$ according to the master equations (34) and (35). At any time $t > t_0$, $F_{\alpha}(r,p)$ reflects the state of the system around \vec{r} and \vec{p} . One can then calculate, in a Lorentz-invariant manner, directly from the microscopic densities F_{α} , the relevant macroscopic quantities that are related to observables. Relativistic transport theory [25] relates physical quantities to phase-space integrals over products of combinations of four-momenta or tensors and the particle distributions. Specifically, using (37), performing the traces over color and spin indices where necessary, and taking the ensemble average, one obtains the local space-time-dependent particle currents n_{α} and the corresponding energy-momentum tensors $T_{\alpha}^{\mu\nu}$ for the different particle species $\alpha = q, \bar{q}, g, \chi, U$, which are given by [24]

$$n_{\alpha}^{\mu}(r) = \int d\Omega_{\alpha} p^{\mu} F_{\alpha}(p, r) , \qquad T_{\alpha}^{\mu\nu}(r) = \int d\Omega_{\alpha} p^{\mu} p^{\nu} F_{\alpha}(r, p) , \qquad (40)$$

where $d\Omega_{\alpha} = \gamma_{\alpha}dM^2d^3p/(16\pi^3p^0)$, the γ_{α} are degeneracy factors for the internal degrees of freedom (color, spin, etc.), M_{α} measures the amount by which a particle α is off mass shell as a result of the self energy terms in (34), (35), and $p^0 \equiv E = +\sqrt{\vec{p}^2 + M_{\alpha}^2}$. These macroscopic quantities can be written in Lorentz-invariant form by introducing for each species α the associated matter flow velocity $u_{\alpha}^{\mu}(r)$, defined as a unit-norm time-like vector at each space-time point, $(u_{\mu}u^{\mu})_{\alpha} = 1$. A natural choice is e.g. $u_{\alpha}^{\mu} = n_{\alpha}^{\mu}/\sqrt{n_{\nu\alpha}n_{\alpha}^{\nu}}$. By contracting the quantities (40) with the local flow velocities u_{α}^{μ} , one can now obtain corresponding invariant scalars of particle density, pressure, and energy density, for each particle