מבני נתונים – תרגיל 1

תאריך פרסום: 19.3.2023

מאריך הגשה: 6.4.2023, 23:59

מתרגל אחראי: אדם עוזיאל.

הנחיות:

- יש לקרוא תחילה את הנהלים להגשת עבודות במודל.
 - יש לרשום שמות מלאים + ת"ז.
 - העבודה חייבת להיות מוקלדת במלואה.
 - יש להגיש את העבודה במערכת ההגשה במודל.
 - ההגשה הינה בזוגות בלבד.
- יש לכתוב הוכחות פורמאליות עבור חסמים אסימפטוטיים, בדומה לדוגמאות שנלמדו
 - בכיתה.
- אין צורך לפרט דברים שנלמדו בכיתה, אלא אם נתבקשתם לעשות זאת. עם זאת, יש
 - להוכיח כל טענה שלא נלמדה בהרצאה או בתרגול.
 - . 2 מתייחס ללוגריתם בבסיס log(n)
- שאלות לגבי העבודה יש לשאול בפורום באתר הקורס או בשעות הקבלה של אדם עוזיאל.
 - .(5-6.4.2023) איענו שאלות בפורום ביומיים האחרונים של ההגשה (5-6.4.2023).

שאלה 1 (18 נק'):

הוכיחו או הפריכו את הטענות הבאות:

- . כאשר $k \geq 1$ הוא קבוע חיובי. $f(n-k) \neq \theta ig(f(n)ig)$ כך ש-f(n) הוא קבוע חיובי.
 - לכל $f(n),g(n)\geq 1$ ש- פונקציות כך פונקציות לכל f(n),g(n) לכל $f(n)+g(n)=Oig(f(n)\cdot g(n)ig)$
 - $.2^{f(n)} = O(2^n)$ אז f(n) = O(n) אם .3

שאלה 2 (18 נק'):

ארוע? במקרה מל קטעי הקוד הבאים (במונחים של θ) במקרה הגרוע?

נסחו את תשובותיכם באופן מפורש (דהיינו ללא שימוש בסכומים, מכפלות או סימן עצרת). הסבירו ונמקו את דרך ההגעה לפתרון. סימן החץ מייצג השמה.

<u>:'סעיף א</u>

```
Func1(n)

for (i \leftarrow 1; i <= n; i++)

for (j \leftarrow 1; j <= 20; j++)

for (k \leftarrow n; k <= n+5; k++)

x \leftarrow n

while (x > 1)

x \leftarrow x/2

print(x)
```

<u>כעיף ב':</u>

```
Func2(n):

i←1

while i<n

for j←1 to i

k\leftarrow n

while k>j

k\leftarrow k/2

k\leftarrow j

while k>1

k\leftarrow k/2

i\leftarrow i+1
```

<u>:'סעיף ג</u>

Func3(n):

$$val \leftarrow 0$$

for $(i \leftarrow 1; i \le n; i \leftarrow i*2)$
for $(j \leftarrow 1; j \le i; j++)$
 $val++$

שאלה 3 (20 נק'):

מצאו חסם עליון ותחתון אסימפטוטיים עבור $\mathbf{T}(n)$ בכל אחת מנוסחאות הנסיגה לפי אחת משלושת השיטות שנלמדו בכיתה. הניחו כי $\mathbf{T}(n)$ קבועה עבור n קבוע. מצאו חסמים הדוקים ככל שניתן והראו את הדרך לפתרון.

$$\sum_{i=1}^{n} \frac{1}{i} \cong \log(n)$$
, $n \to \infty$

$$T(n) = 3T\left(\frac{n}{3}\right) + n^2 \quad .3$$

$$T(n) = T\left(\frac{3n}{5}\right) + 2T\left(\frac{n}{5}\right) + n \quad .4$$

$$T(n) = 8T(\frac{n}{2}) + 2021 \cdot n^2 + n^e + 17$$
 .5

$$T(n) = T(\sqrt{n}) + 1 .6$$

שאלה 4 (24 נק'):

סדרו את הפונקציות הבאות לפי סדר אסימפטוטי Ω (...) מן הגדולה לקטנה. אם שתי פונקציות בסידור מקיימות את הפונקציות והוכיחו את שני הכיוונים ($\Omega \& O$), אחרת מספיק להוכיח רק כיוון אחד. תנו הוכחה פורמלית לתשובותיכם לגבי כל זוג עוקב של פונקציות בסידור.

$f_1(n) = 2017$	$f_2(n) = 2^{\log_{\sqrt{2}} n}$	$f_3(n) = 2^{\sqrt{n}}$	$f_4(n) = \frac{1}{n}$
$f_5(n) = 3^n$	$f_6(n) = 2^{3^n}$	$f_7(n) = n^n$	$f_8(n) = 3^{2^n}$
$f_9(n) = \log(\sqrt{n})$	$f_{10}(n) = \log(2^n n^2)$	$f_{11}(n) = \log(n^{10})$	$f_{12}(n) = n^2 + \log(n) + n$

שאלה 5 (20 נק')

. אפסים n אפסים ולאחריהם ממוינים שלמים שלמים מספרים ח ובו A

A:

x אם x, אובי נתון מערך x, תארו אלגוריתם בזמן ריצה $O(\log(n))$ המוצא את האינדקס של מספר חיובי נתון x, אם x נמצא ב x לא נמצא ב- x יש להחזיר x-. הסבירו מדוע הוא עומד במגבלת זמן הריצה.

.A.length אינו ידוע מראש. כלומר, בפתרון לא ניתן להשתמש ב A אינו ידוע מראש.

בהצלחה!