ECE220 Lab1

Introduction

TA: Matt Potok (Poe tock)

Email: potok2@illinois.edu

Office Hours:

- Monday 6:00 PM to 8:00 PM
- Thursday 6:00 PM to 8:00 PM

Course websites:

- Course Wiki: https://wiki.illinois.edu/wiki/display/ece220su2/ECE+220+SU18+Home+Page
- Course Github: https://github-dev.cs.illinois.edu/ECE220SU18/ release
- Piazza: https://piazza.com/class/jexl8le0xnb3zz

Class Overview

Machine Problems:

- Available on Monday before the lab
- Due next Monday 10:00 PM CST

Labs

- Weekly on Mondays 3:00 PM to 4:00 PM CST
- Optional lab assignment
 - 10 extra points per assignment
 - Available on Monday before the lab
 - Due next Monday 10:00 PM CST

Quizzes

Weekly on Thursday 8:00 PM to 9:00 PM CST

Git/Github

- Version control system
- Retrieve and submit assignments

REMOTE

access repository and send changes back to the server.

Git Overview

LOCAL

Someone else's computer talks to the GitHub server.

Setting up Git and Lab1

Login at https://github-dev.cs.illinois.edu/

Follow instructions at https://github-dev.cs.illinois.edu/ECE220SU18/ release

Lab1a – Hello World!

Two assignments:

- ∘ lab1a Hello World!
- ∘ lab1b Printing a hexadecimal number

More information about the lab at https://wiki.illinois.edu/wiki/display/ece220su2/Lab1

Complete lab1a and see 'Hello <your name>!' printed to the console

Commit changes to your local repository.

Push changes to the remote repository.

Working Remotely

Personal computer

Install LC3 tools: https://wiki.illinois.edu/wiki/display/ece220su2/Installing+LC-3+tools+on+your+machine

EWS machines

- SSH/X-forwarding
- Remote desktop environment with FastX
- Load LC3 tools with *module load Ic3tools*
- Instructions at https://wiki.illinois.edu/wiki/display/ece220su2/Working+Remotely

SSH Keys:

Follow instructions at https://wiki.illinois.edu/wiki/display/ece220su2/Setting+up+SSH+Keys

Git Review

Remote Repository

Local Repository

Workspace

git status @ 3)

- unmodified tracked
 - lab1/file1.txt
 - lab1/file2.txt

git status @ 4)

- unmodified tracked
 - lab1/file2.txt
- modified tracked
 - lab1/file1.txt
- untracked
 - lab1/file3.txt
 - lab1/file4.txt

git status @ 4.5)

- unmodified tracked
 - lab1/file2.txt
- untracked
 - lab1/file3.txt
- changes to commit
 - lab1/file1.txt
 - lab1/file4.txt

git status @ 5)

- unmodified tracked
 - lab1/file1.txt
 - lab1/file2.txt
 - lab1/file4.txt
- untracked
 - lab1/file3.txt

MP1 and Lab1b – Printing a hexadecimal number

This is a test of the counting frequency code. AbCd...WxYz.

@ 000F

A 0002

B 0001

• • •

Y 0002

Z 0001

MP1

- Given a histogram of letters and symbols, print it out to the console.
- More information at <u>https://wiki.illinois.edu/wiki/display/ece220su2/</u> MP1+-+Printing+a+Histogram

Lab1b – Printing a hexadecimal number

What LC3 ASM instruction can we use for printing?

LC3 ASM instruction OUT – write character from R0[7:0] to console

Suppose given R3 with xCA75 (x1100 1010 0111 0101)

What order do we want to print hexadecimal characters to the console?

C, A, 7, 5 (left to right)

How to move each hexadecimal character into R0? x1100 1010 0111 0101 -> x0000 0000 0000 1100

- Check MSB of R3 to see if a 1 or 0 where 1 indicates R3 is negative and 0 indicates R3 is either zero or positive
- Add 1 to R0 if R3 is negative
- Left shift R3 and R0 by 1

Lab1b – Printing a hexadecimal number

Whole process from previous slide

Initially have R3 with x1100 1010 0111 0101 and R0 with x0000 0000 0000 0000

- 1. x<u>1001</u> <u>0100</u> <u>1110</u> <u>1010</u> and x<u>0000</u> <u>0000</u> <u>0000</u> <u>0001</u>
- 2. x0010 1001 1101 0100 and x0000 0000 0000 0011
- 3. x<u>0101 0011 1010 1000</u> and x<u>0000 0000 0000 0110</u>
- 4. x<u>1010 0111 0101 0000</u> and x<u>0000 0000 0000 1100</u>

Are we done yet?

```
Dec Hx Oct Char
                                      Dec Hx Oct Html Chr
                                                           Dec Hx Oct Html Chr Dec Hx Oct Html Chr
                                      32 20 040 @#32; Spac
                                                            64 40 100 @#64; 🛭
                                                                               96 60 140 @#96;
0 0 000 NUL (null)
1 1 001 SOH (start of heading)
                                      33 21 041 @#33;
                                                            65 41 101 A A
                                                                               97 61 141 @#97; 8
                                                            66 42 102 B B
                                                                               98 62 142 6#98; b
                                      34 22 042 6#34; "
 2 2 002 STX (start of text)
 3 3 003 ETX (end of text)
                                      35 23 043 @#35; #
                                                            67 43 103 a#67; C | 99 63 143 a#99; C
 4 4 004 EOT (end of transmission)
                                      36 24 044 @#36; $
                                                            68 44 104 6#68; D | 100 64 144 6#100; d
                                      37 25 045 @#37; %
                                                            69 45 105 6#69; E 101 65 145 6#101; e
 5 5 005 ENQ (enquiry)
                                                            70 46 106 6#70; F 102 66 146 6#102; f
 6 6 006 ACK (acknowledge)
                                      38 26 046 @#38; @
                                                            71 47 107 6#71; G 103 67 147 6#103; g
 7 7 007 BEL (bell)
                                      39 27 047 4#39; '
 8 8 010 BS
              (backspace)
                                      40 28 050 ( (
                                                            72 48 110 6#72; H | 104 68 150 6#104; h
                                      41 29 051 6#41; )
                                                            73 49 111 6#73; I 105 69 151 6#105; i
   9 011 TAB (horizontal tab)
                                      42 2A 052 @#42; *
                                                            74 4A 112 6#74; J | 106 6A 152 6#106; j
              (NL line feed, new line)
                                      43 2B 053 4#43; +
                                                            75 4B 113 6#75; K 107 6B 153 6#107; k
              (vertical tab)
                                                            76 4C 114 6#76; L 108 6C 154 6#108; L
                                      44 2C 054 @#44;
              (NP form feed, new page)
13 D 015 CR
              (carriage return)
                                      45 2D 055 6#45;
                                                            77 4D 115 6#77; M 109 6D 155 6#109; M
                                      46 2E 056 . .
                                                            78 4E 116 N N | 110 6E 156 n n
14 E 016 SO
              (shift out)
                                      47 2F 057 / /
                                                            79 4F 117 6#79; 0 111 6F 157 6#111; 0
15 F 017 SI
             (shift in)
                                      48 30 060 0 0
                                                            80 50 120 6#80; P 112 70 160 6#112; P
16 10 020 DLE (data link escape)
                                      49 31 061 4#49; 1
                                                            81 51 121 6#81; Q 113 71 161 6#113; q
17 11 021 DC1 (device control 1)
18 12 022 DC2 (device control 2)
                                      50 32 062 4#50; 2
                                                            82 52 122 6#82; R | 114 72 162 6#114; r
19 13 023 DC3 (device control 3)
                                      51 33 063 6#51; 3
                                                            83 53 123 6#83; 5 115 73 163 6#115; 5
                                      52 34 064 4 4
                                                            84 54 124 @#84; T | 116 74 164 @#116; t
20 14 024 DC4 (device control 4)
                                                            85 55 125 a#85; U 117 75 165 a#117; u
21 15 025 NAK (negative acknowledge)
                                      53 35 065 4#53; 5
                                                            86 56 126 a#86; V 118 76 166 a#118; V
22 16 026 SYN (synchronous idle)
                                      54 36 066 6 6
23 17 027 ETB (end of trans. block)
                                      55 37 067 4#55; 7
                                                            87 57 127 a#87; ₩ 119 77 167 a#119; ₩
                                      56 38 070 4#56; 8
                                                            88 58 130 4#88; X 120 78 170 4#120; X
24 18 030 CAN (cancel)
                                      57 39 071 4#57; 9
                                                            89 59 131 6#89; Y 121 79 171 6#121; Y
25 19 031 EM (end of medium)
26 1A 032 SUB (substitute)
                                      58 3A 072 4#58; :
                                                            90 5A 132 6#90; Z | 122 7A 172 6#122; Z
27 1B 033 ESC (escape)
                                      59 3B 073 4#59;;
                                                            91 5B 133 6#91; [ 123 7B 173 6#123;
                                      60 3C 074 < <
                                                            92 5C 134 @#92; \
                                                                              124 70 174 @#124;
28 1C 034 FS
              (file separator)
                                      61 3D 075 = =
                                                            93 5D 135 6#93; 1
                                                                             125 7D 175 @#125; )
29 1D 035 GS
              (group separator)
             (record separator)
                                      62 3E 076 > >
                                                            94 5E 136 ^ ^ | 126 7E 176 ~ ~
                                                            95 5F 137 6#95; 127 7F 177 6#127; DEL
31 1F 037 US
              (unit separator)
                                      63 3F 077 ? ?
                                                                         Source: www.LookupTables.com
```

Lab1b – Printing a hexadecimal number

Now have R0 with x0000 0000 0000 1100

What happens if we call OUT now?

 Tries to print xC to the console which is the character for a new page.

How can we correctly print 'C' to the console given x1100?

 Need to convert x<u>1100</u> to ASCII letter 'C' which is x43 (x<u>0100</u> 0011)

Do we need to check the number in R0 before adding any offsets?

Yes!

Which offsets do we need to add?

x30 for 0 − 9 and x41 for A − F

init digit counter FALSE DONE TRUE init digit and bit counter FALSE TRUE FALSE shift digit left digit <= 9? FALSE R3 < 0? Add 'A' - 10 Add '0' (MSB = 1)Add 1 to digit (Add 0 to digit) OUT trap increment digit shift R3 left counter increment bit counter

Lab1b Flowchart