Solubility Curve for Fe(OH)_{3(s)}

```
[TOTFe<sub>diss</sub>] = [Fe<sup>3+</sup>] + [Fe(OH)<sup>2+</sup>]+ [Fe(OH)<sub>2</sub>+]+ [Fe(OH)<sub>3(aq)</sub>] + [Fe(OH)<sub>4</sub>-]

= [Fe<sup>3+</sup>](1 + \beta_1*/[H+] + \beta_2*/[H+]<sup>2</sup> + \beta_3*/[H+]<sup>3</sup> + \beta_4*/[H+]<sup>4</sup>)
```


Solubility Constants of Solids of Interest

Table 8.7 The K_{s0} values of some solids of interest

Metal	Mineral Name	Formula	$\text{Log } K_{\mathfrak{sl}}$	Metal	Mineral Name	Formula	Log K,
Ag ⁺		AgOH(s)	-7.70	Cu ⁺	Nantokite	CuCl(s)	-6.76
		$Ag_2CO_3(s)$ $Ag_3PO_4(s)$ $Ag_2S(s)$ AgCl(s)	-11.07 -17.55 -48.97 -9.75	Fe ²⁺	Siderite Vivianite	Fe(OH) ₂ (s) FeCO ₃ (s) Fe ₃ (PO ₄) ₂ (s) FeS(s)	-15.90 -10.55 -36.00 -16.84
A1 ³⁺	Gibbsite	$Al(OH)_3(s)$ $Al(OH)_3(s)$ $AlPO_4(s)$	-31.62 -33.23 -22.50	Fe ³⁺	Ferriliydrite Goethite Lepidocrocite	Fe(OH) ₃ (s) α -FeOOH(s) γ -FeOOH(s)	-37.11 -41.50 -46.00
Ca ²⁺	Calcite	CaCO ₃ (s)	-8.48	Hg ²⁺	Hematite	α -Fe ₂ O ₃ (s)	-40.63
	Aragonite Portlandite Lime Gypsum Hydroxylapatite	$CaCO_3(s)$ $Ca(OH)_2(s)$ CaO(s) $CaSO_4(s)$ $Ca_5(OH)(PO_4)_3(s)$	-8.36 -5.32 4.80 -4.85 -44.2		Cinnubar	$Hg(OH)_2(s)$ HgO(s) $Hg(CN)_2(s)$ $HgCO_3(s)$ HgS(s)	-25.40 -25.55 -39.28 -22.52 -52.01

In terms of OH⁻ K_{s0} : Fe(OH)_{3(s)}= Fe³⁺ + 3OH⁻

Source: Water Chemistry, Benjamin, 2002

Solubility of CaCO_{3(s)}

Solid does not precipitate below pH_{crit} = 7.9

Solubility of CaCO_{3(s)}

рΗ

NEW TOPIC

SORPTION OF POLLUTANT SPECIES ON SOLIDS

Ion Associations Near Mineral Surface

Source: <u>Environmental Organic Chemistry</u>, 2nd Ed., Schwarzenbach, Gschwend, and Imboden, 2003.

Sorption Mechanisms to Inorganic Surface

Source: <u>Environmental Organic Chemistry</u>, 2nd Ed., Schwarzenbach, Gschwend, and Imboden, 2003.

Environmental Quality and Pollution

Clay Structure

Inner-sphere surface complex: K⁺ on vermiculite

Outer-sphere surface complex: Ca (H₂O)₆²⁺ on montmorillonite