Modular equations for Lubin-Tate formal groups at chromatic level 2

Yifei Zhu

Northwestern University

AMS session on algebraic geometry 2016

Generalized cohomology theory $\{h^n\}$: Spaces \to AbGroups

Cup product $\rightsquigarrow h^*(X)$ a graded commutative algebra over $h^*(pt)$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\operatorname{Sq}^i \colon H^*(-; \mathbb{Z}/2) \to H^{*+i}(-; \mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\rightsquigarrow h^*(X)$ a graded commutative algebra over $h^*(pt)$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\operatorname{Sq}^i \colon H^*(-; \mathbb{Z}/2) \to H^{*+i}(-; \mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\rightsquigarrow h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\operatorname{Sq}^i \colon H^*(-; \mathbb{Z}/2) \to H^{*+i}(-; \mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\rightsquigarrow h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\operatorname{Sq}^i \colon H^*(-; \mathbb{Z}/2) \to H^{*+i}(-; \mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\rightsquigarrow h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\mathrm{Sq}^i\colon\thinspace H^*(-;\mathbb{Z}/2) \to H^{*+i}(-;\mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\leadsto h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i : h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\mathrm{Sq}^i\colon\thinspace H^*(-;\mathbb{Z}/2) \to H^{*+i}(-;\mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\leadsto h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i : h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\operatorname{Sq}^i \colon H^*(-; \mathbb{Z}/2) \to H^{*+i}(-; \mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Adem relations
$$\mathrm{Sq}^i\mathrm{Sq}^j = \sum_{k=0}^{\left[\frac{i}{2}\right]} \binom{j-k-1}{i-2k} \mathrm{Sq}^{i+j-k} \mathrm{Sq}^k$$
, $0 < i < 2j$

Cartan formula
$$\operatorname{Sq}^{i}(xy) = \sum_{k=0}^{i} \operatorname{Sq}^{i-k}(x) \operatorname{Sq}^{k}(y)$$

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\leadsto h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\operatorname{Sq}^i \colon H^*(-; \mathbb{Z}/2) \to H^{*+i}(-; \mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Adem relations
$$\operatorname{Sq}^{i}\operatorname{Sq}^{j} = \sum_{k=0}^{\left[\frac{i}{2}\right]} \binom{j-k-1}{i-2k} \operatorname{Sq}^{i+j-k} \operatorname{Sq}^{k}$$
, $0 < i < 2j$

Cartan formula $\operatorname{Sq}^{i}(xy) = \sum_{k=0}^{i} \operatorname{Sq}^{i-k}(x) \operatorname{Sq}^{k}(y)$

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\leadsto h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (ordinary cohomology with $\mathbb{Z}/2$ -coefficients)

Steenrod squares $\operatorname{Sq}^i \colon H^*(-; \mathbb{Z}/2) \to H^{*+i}(-; \mathbb{Z}/2)$

Power operation $\operatorname{Sq}^{i}(x) = x^{2}$ if i = |x|

Adem relations
$$\operatorname{Sq}^{i}\operatorname{Sq}^{j} = \sum_{k=0}^{\left[\frac{i}{2}\right]} \binom{j-k-1}{i-2k} \operatorname{Sq}^{i+j-k} \operatorname{Sq}^{k}$$
, $0 < i < 2j$

Cartan formula $\operatorname{Sq}^{i}(xy) = \sum_{k=0}^{i} \operatorname{Sq}^{i-k}(x) \operatorname{Sq}^{k}(y)$

Generalized cohomology theory $\{h^n\}$: Spaces $\to AbGroups$

Cup product $\rightsquigarrow h^*(X)$ a graded commutative algebra over $h^*(\mathrm{pt})$

Cohomology operation $Q^i \colon h^*(-) \to h^{*+i}(-)$

Example (complex K-theory)

Adams operations $\psi^i \colon K(-) \to K(-)$

Power operation $\psi^p(x) \equiv x^p \mod p$

$$\psi^i \psi^j = \psi^{ij} \qquad \qquad \psi^i(xy) = \psi^i(x) \psi^j(y)$$

J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962)

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory \longleftrightarrow 1-dim formal group laws

complex-oriented
$$h^*(-)$$
 $F(x,y)$ over $h^*(\text{pt})$ $c_1(L_1 \otimes L_2) = F(c_1(L_1), c_1(L_2))$

$$H^*(-; \mathbb{Z}/2) \iff \mathbb{G}_a(x, y) = x + y$$

$$K(-) \iff \mathbb{G}_m(x,y) = x + y - xy$$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$ $c_1(L_1\otimes L_2) = F\big(c_1(L_1),c_1(L_2)\big)$

$$H^*(-; \mathbb{Z}/2) \iff \mathbb{G}_a(x, y) = x + y$$

$$K(-) \iff \mathbb{G}_m(x, y) = x + y - xy$$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\iff$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$ $c_1(L_1\otimes L_2) = F(c_1(L_1),c_1(L_2))$

$$H^*(-; \mathbb{Z}/2) \iff \mathbb{G}_a(x, y) = x + y$$

$$K(-) \iff \mathbb{G}_m(x, y) = x + y - xy$$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\iff$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1 \otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

$$H^*(-; \mathbb{Z}/2) \iff \mathbb{G}_a(x, y) = x + y$$

$$K(-) \iff \mathbb{G}_m(x, y) = x + y - xy$$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

$$H^*(-; \mathbb{Z}/2) \iff \mathbb{G}_a(x, y) = x + y$$

$$K(-) \iff \mathbb{G}_m(x,y) = x + y - xy$$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory \iff 1-dim formal group laws complex-oriented $h^*(-)$ F(x,y) over $h^*(\mathrm{pt})$ $c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$

Example (Morava 1978, Goerss-Hopkins-Miller 1990s-2004)

 $k \, = {\sf perfect}$ field of characteristic p>0

F= formal group over k of height $n<\infty$

 $E_n(k,F)(-) \iff$ the Lubin-Tate universal deformation of F/k

$$\pi_* E_n(k, F) \cong \mathbb{W}(k)[[u_1, \dots, u_{n-1}]][u^{\pm 1}]$$
 with $|u| = -2$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory \iff 1-dim formal group laws complex-oriented $h^*(-)$ F(x,y) over $h^*(\mathrm{pt})$ $c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$

Example (Morava 1978, Goerss-Hopkins-Miller 1990s-2004)

 $k \, = {\sf perfect}$ field of characteristic p>0

F= formal group over k of height $n<\infty$

 $E_n(k,F)(-) \Leftrightarrow$ the Lubin-Tate universal deformation of F/k

$$\pi_* E_n(k, F) \cong \mathbb{W}(k)[[u_1, \dots, u_{n-1}]][u^{\pm 1}]$$
 with $|u| = -2$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory \iff 1-dim formal group laws complex-oriented $h^*(-)$ F(x,y) over $h^*(\mathrm{pt})$ $c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$

Example (Morava 1978, Goerss-Hopkins-Miller 1990s-2004)

k = perfect field of characteristic p > 0

F= formal group over k of height $n<\infty$

 $E_n(k,F)(-) \iff$ the Lubin-Tate universal deformation of F/k

$$\pi_* E_n(k, F) \cong \mathbb{W}(k) [u_1, \dots, u_{n-1}] [u^{\pm 1}] \text{ with } |u| = -2$$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory \iff 1-dim formal group laws complex-oriented $h^*(-)$ F(x,y) over $h^*(\mathrm{pt})$ $c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$

Example (Morava 1978, Goerss-Hopkins-Miller 1990s-2004)

k = perfect field of characteristic p > 0

F= formal group over k of height $n<\infty$

 $E_n(k,F)(-) \iff$ the Lubin-Tate universal deformation of F/k

$$\pi_* E_n(k, F) \cong \mathbb{W}(k)[\![u_1, \dots, u_{n-1}]\!][u^{\pm 1}]$$
 with $|u| = -2$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

Example (Morava E-theories cont.)

- $E_1(\mathbb{F}_p, \mathbb{G}_m) = K_p^{\wedge}$
- \bullet $E_2(\mathbb{F}_{p^2},\widehat{C})$ with C an elliptic curve that is supersingular
- K(1)-localization $L_{K(1)}E_2 = \text{form of } K\text{-theory}$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

Example (Morava E-theories cont.)

- $E_1(\mathbb{F}_p, \mathbb{G}_m) = K_p^{\wedge}$
- \bullet $E_2(\mathbb{F}_{p^2},\widehat{C})$ with C an elliptic curve that is supersingular
- K(1)-localization $L_{K(1)}E_2 = \text{form of } K\text{-theory}$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

Example (Morava E-theories cont.)

- $E_1(\mathbb{F}_p, \mathbb{G}_m) = K_p^{\wedge}$
- ullet $E_2(\mathbb{F}_{p^2},\widehat{C})$ with C an elliptic curve that is supersingular
- K(1)-localization $L_{K(1)}E_2 = \text{form of } K\text{-theory}$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

Example (Morava E-theories cont.)

- $E_1(\mathbb{F}_p, \mathbb{G}_m) = K_p^{\wedge}$
- \bullet $E_2(\mathbb{F}_{p^2},\widehat{C})$ with C an elliptic curve that is supersingular
- K(1)-localization $L_{K(1)}E_2 = \text{form of } K\text{-theory}$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

Example (Morava *E*-theories cont.)

- $E_1(\mathbb{F}_p, \mathbb{G}_m) = K_p^{\wedge}$
- $E_2(\mathbb{F}_{p^2},\widehat{C})$ with C an elliptic curve that is supersingular
- K(1)-localization $L_{K(1)}E_2 = \text{form of } K\text{-theory}$

A connection between Alg. Top. and Alg. Geom. (Quillen 1969)

stable homotopy theory
$$\longleftrightarrow$$
 1-dim formal group laws complex-oriented $h^*(-)$ $F(x,y)$ over $h^*(\mathrm{pt})$
$$c_1(L_1\otimes L_2) \ = \ F\big(c_1(L_1),c_1(L_2)\big)$$

Example (Morava *E*-theories cont.)

- $E_1(\mathbb{F}_p, \mathbb{G}_m) = K_p^{\wedge}$
- ullet $E_2(\mathbb{F}_{p^2},\widehat{C})$ with C an elliptic curve that is supersingular
- K(1)-localization $L_{K(1)}E_2 = \text{form of } K\text{-theory}$

Theorem (Z.)

Given any Morava E-theory E of height 2 at a prime p, there is an explicit presentation for its algebra of power operations, in terms of generators $Q_i\colon E(-)\to E(-),\ 0\le i\le p$, and quadratic relations

$$Q_{i}Q_{0} = -\sum_{k=1}^{p-i} w_{0}^{k} Q_{i+k} Q_{k} - \sum_{k=1}^{p} \sum_{m=0}^{k-1} w_{0}^{m} d_{i,k-m} Q_{m} Q_{k}$$

for $1 \leq i \leq p$, where the coefficients w_0 and $d_{i,\,k-m}$ arise from certain modular equations for elliptic curves.

Theorem (Z.)

Given any Morava E-theory E of height 2 at a prime p, there is an explicit presentation for its algebra of power operations, in terms of generators $Q_i\colon E(-)\to E(-),\ 0\le i\le p$, and quadratic relations

$$Q_i Q_j = -\sum_{k=1}^{p-i} w_0^k Q_{i+k} Q_k - \sum_{k=1}^p \sum_{m=0}^{k-1} w_0^m d_{i,k-m} Q_m Q_k$$

for $i > pj \ge 0$, where the coefficients w_0 and $d_{i,k-m}$ arise from certain modular equations for elliptic curves.

Theorem (Z.)

Given any Morava E-theory E of height 2 at a prime p, there is an explicit presentation for its algebra of power operations, in terms of generators $Q_i\colon E(-)\to E(-),\ 0\le i\le p$, and quadratic relations

$$Q_i Q_0 = -\sum_{k=1}^{p-i} w_0^k Q_{i+k} Q_k - \sum_{k=1}^p \sum_{m=0}^{k-1} w_0^m d_{i,k-m} Q_m Q_k$$

for $1 \leq i \leq p$, where the coefficients w_0 and $d_{i,\,k-m}$ arise from certain modular equations for elliptic curves.

Theorem (Z.)

Given any Morava E-theory E of height 2 at a prime p, there is an explicit presentation for its algebra of power operations, in terms of generators $Q_i\colon E(-)\to E(-),\ 0\le i\le p$, and quadratic relations

$$Q_i Q_0 = -\sum_{k=1}^{p-i} w_0^k Q_{i+k} Q_k - \sum_{k=1}^p \sum_{m=0}^{k-1} w_0^m d_{i,k-m} Q_m Q_k$$

for $1 \leq i \leq p$, where the coefficients w_0 and $d_{i,\,k-m}$ arise from certain modular equations for elliptic curves.

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \iff E_n(F,k)$$
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1, \dots, u_{n-1} \rrbracket \iff E_n(F, k)$$
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \iff E_n(F,k)$$
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \quad \Longleftrightarrow \quad E_n(F,k)$$
 Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \quad \Longleftrightarrow \quad E_n(F,k)$$
 Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \quad \Longleftrightarrow \quad E_n(F,k)$$
 Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \quad \Longleftrightarrow \quad E_n(F,k)$$
 Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Goal Compute one side explicitly to get the other side.

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \iff E_n(F,k)$$
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

<u>Goal</u> Compute one side explicitly to get the other side.

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \iff E_n(F,k)$$
Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Goal Compute one side explicitly to get the other side.

Recall E-theory at height n and prime p has an underlying model

$$F/k \xleftarrow{\operatorname{univ defo}} \Gamma/\mathbb{W}(k)\llbracket u_1,\ldots,u_{n-1} \rrbracket \quad \Longleftrightarrow \quad E_n(F,k)$$
 Frobenius isogenies power operations

An equivalence of cats (Ando-Hopkins-Strickland '04, Rezk '09)

$$\left\{ \begin{array}{l} \text{qcoh sheaves of grd comm algs} \\ \text{over the moduli problem of} \\ \text{defos of } F/k \text{ and Frob isogs} \end{array} \right\} \cong \left\{ \begin{array}{l} \text{grd comm algs over} \\ \text{a } \textit{Dyer-Lashof algebra} \\ \text{for } E_n(F,k) \end{array} \right\}$$

Goal Compute one side explicitly to get the other side.

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of an ec $C \cong$ defo thy of its p-divisible gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of an ec $C \cong$ defo thy of its p-divisible gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C \cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a $supersingular\ C\cong defo$ thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a $supersingular\ C\cong defo$ thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a $supersingular\ C\cong defo$ thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C \cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an $\it open$ arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha - 1)^p (\alpha - p) - ((-1)^p + (-1)^{p-1} (-p)p + h)\alpha = 0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C \cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C \cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-((-1)^p+(-1)^{p-1}(-p)p+h)\alpha=0$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C\cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an $\it open~arithmetic~surface$ (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-\big(\!(-1)^p+(-1)^{p-1}(-p)p+h\big)\alpha\equiv\alpha(\alpha^p-h)\mod p$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C \cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-\left((-1)^p+(-1)^{p-1}(-p)p+h\right)\alpha\equiv\alpha(\tilde{j}^p-j)\mod p$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C\cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-\big(\!(-1)^p+(-1)^{p-1}(-p)p+h\big)\alpha\equiv\alpha(\alpha^p-h)\mod p$

Moduli of formal groups and moduli of ell. curves (Serre-Tate 1964) p-adically, defo thy of a supersingular $C\cong$ defo thy of its formal gp

 $[\Gamma_0(p)]$ as an open arithmetic surface (Katz-Mazur 1985) parameters for its local ring at a supersingular point

Theorem (Z.)

A choice of such parameters, h and α , satisfies the equation $(\alpha-1)^p(\alpha-p)-\big(\!(-1)^p+(-1)^{p-1}(-p)p+h\big)\alpha\equiv\alpha(\alpha^p-h)\mod p$

<u>Future directions</u> How much (local) structure of the moduli carries on to formal groups of higher height (or higher-dimensional abelian varieties)?

Thank you.