PORTFOLIO

이름	채 주 형
생년월일	1995. 02. 11
이메일	cown0211@naver.com
전화번호	010-2262-8170

PORTFOLIO CONTENTS

01.	K-Means 클러스터링을 통한 고객 군집화 및 해석	고객의 신상 정보(생년, 학력, 자녀유무, 결혼유무 등)와 구매 정보(분야별 소 비액수, 유입 경로 등)가 담긴 데이터로부터 고객을 군집화하여 이를 각 군집 에 대한 해석을 진행한 프로젝트
02.	정보시스템 설계	웹크롤링, 반응형차트, Dash 웹페이지를 활용하여 데이터베이스의 정보를 시각화하는 프로젝트
03.	소득 분위에 대한 소득, 지출 분석	소득 분위에 따른 지출 분야의 차이를 회귀해석을 적용하여 분석 및 이로부 터 발생하는 불균형에 대한 해석
04.	진단 정보를 통한 치매 예측 모형	치매로 의심되는 환자들의 MRI 분석 결과를 이용하여 뇌부피 측정 및 기억 력 검사 등을 통해 치매 여부를 판별하는 모형 설계
05.	분리불안 의심 아동 행동분석 Ai를 통한 진찰 권고 시스템	아동의 행동이 담긴 영상으로부터 아동의 행동이 분리불안이 의심되는지 여 부를 반환하는 모형 개발

Project

K-Means 클러스터링을 통한 고객 군집화 및 해석

About project •

고객의 신상 정보(생년, 학력, 자녀유무, 결혼유무 등)와 구매 정보 (분야별 소비액수, 유입 경로 등)가 담긴 데이터로부터 고객을 군집 화하여 이를 각 군집에 대한 해석을 진행한 프로젝트

작업 기간	2021. 10 ~ 2021. 12 (3개월)
인력 구성(기여도)	개인 프로젝트
프로젝트 목적	군집화 및 시각화 역량 강화
프로젝트 내용	주어진 데이터로부터 고객을 군집화 하여 이를 각 군집에 대한 해석을 진행한 프로젝트
주요 업무 및 상세 역할	1) 데이터 전처리(날짜 -> 수치, 새로운 파생 변수로 통합, 결측치 및 이상치 처리) 2) 군집화 및 시각화
사용언어 및 개발 환경	Python, Jupyter Notebook
참고 자료	Kaggle-DACON/marketing_campagin.ipynb at main · cown0211/Kaggle-DACON · GitHub

데이터 전처리 Main work

• 이상치 및 결측치 제거

전체 데이터 개수에 비해 이상치 및 결측치의 비중이 매 우 낮은 것을 고려하여 제거하고 분석

- 모든 레코드에 대해 똑같은 값을 갖는 의미 없는 변수 제거
- '생년' 데이터를 직관적이도록 나이로 변환
- 아동,청소년 자녀수 변수는 합쳐 자녀수로 변환
- 각 캠페인에 응한 횟수는 모두 더해 캠페인에 응한 총 횟수로 변환

```
In [11]: # birthyear 이상치 탐색
          plt.boxplot(custdf['birthyear'])
          plt.title('boxplot of birthyear')
          plt.show()
          custdf[(custdf['birthyear'] < 1930)]
```



```
In [22]: # 변수 생성
          # 200
          custdf['age'] = today.year - custdf['birthyear']
          custdf['kids'] = custdf['kid'] + custdf['teen']
          custdf['totalcmp'] = custdf['cmp1'] + custdf['cmp2'] + custdf['cmp3'] + custdf['cmp4'] + custdf['cmp5']
```

```
In [19]: # countplot of marital
         sns.countplot(custdf['marital'])
         plt.title('countplot of marital')
         C:#Users#ungud#anaconda@#Lib#site-markages#seaborn# decorators nv:36: FutureWarning: Pass the following var
         able as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing
         other arguments without an explicit keyword will result in an error or misinterpretation.
```

countplot of marital


```
In [20]: # marital 변수. 2개 발주로 변환
           custdf['narital'].replace(['Single', 'Divorced', 'Widow', 'Alone', 'Absurd', 'YOLO'], O, inplace=True)
custdf['narital'].replace(['Together', 'Married'], 1, inplace=True)
            sns.countplot(custdf['marital'])
            plt.title('countplot of marital')
```

C:#|kers#ungud#anaconda@#|ih#site-nackages#seahorn# decorators nv:@6: FutureWarning: Pass the following var able as a keyword arg: x. From version 0.12, the only valid positional argument will be 'data', and passing other arguments without an explicit keyword will result in an error or misinterpretation.

• '싱글','동거','이혼','사별' 등의 값을 갖는 결혼여부 변수는 배 우자 유무로 변환

Main work 군집화, 시각화, 해석

• **군집의 개수를 정하기 위해 ELBOW METHOD 활용** 군집의 개수는 3

 고객 데이터를 4가지 카테고리로 분류하여 각 군집에 대한 해석을 진행

개인정보,구매상품,유입경로,캠페인민감도에 따른 분류

• 각 그룹에 대한 해석(0그룹, 1그룹, 2그룹)

0그룹; 상대적 저소득, 저연령, 저학력, 자녀1~2명, 웹방문 잦으나 할인이나 캠페인에는 잘 응하지 않음

1그룹; 중간 소득층, 고령, 고학력, 자녀1~2명, 오프라인 선호, 할인 구매 잦음

2그룹; 고소득, 고른 나이 분포, 중간 학력, 자녀0~1명, 할 인 및 웹사이트 방문 빈도 낮음

```
### elbow method ###
# 데이터 스케일링
scaler = StandardScaler()
custdf_scaling = scaler.fit_transform(custdf.values)
# inertia 계산
tmp = []
for i in range(1, 11):
 kmeans = KMeans(n_clusters = i, max_iter = 1000)
  kmeans.fit(custdf_scaling)
  tmp.append(kmeans.inertia_)
  print('n_cluster', i, ':', kmeans.inertia_)
plt.plot(range(1, 11), tmp, marker = 'o')
plt.title('elbow method')
plt.xlabel('number of cluster')
plt.show()
# clustering, k = 3
kmean = KMeans(n_clusters = 3, max_iter = 1000)
kmean.fit(custdf_scaling)
kmean.labels_
custdf['cluster'] = kmean.labels_
```


【그림 12】elbow method

Project 02.

정보시스템 설계

About project •

웹크롤링, 반응형차트, Dash 웹페이지를 활용하여 데이터베이스의 정보를 시각화하는 프로젝트

작업 기간	2021.03~2021.06
인력 구성(기여도)	학과 개인 프로젝트
프로젝트 목적	파이썬을 활용하여 주어진 데이터를 시각화하고 변동사항을 반영하 여 웹페이지를 통해 시각화
	- 주어진 데이터를 반응형 차트로 시각화
프로젝트 내용	- 데이터의 변동사항을 웹크롤링을 통해 반영
	- 웹페이지를 활용한 시각화
주요 업무 및 상세 역할	 반응형 차트 제작 웹 크롤링을 통해 변동사항 반영 웹페이지를 통해 시각화
사용언어 및 개발 환경	Python, PyCharm
참고 자료	DonggukUniv/21_1_InformationSystem_ISE at main · cown0211/DonggukUniv · GitHub

Perfume Sales DashBoard for ISE4032

All Products< ▼ Selected Category: ALL

Main work 웹크롤링

- Beautifulsoup 라이브러리를 활용하여 웹페이지의 텍스트를 모두 읽어온 후 프로젝트의 목적에 맞게 전처리 하는 과정을 거침
- 아이템의 종류에 따른 가격을 가져오기 위한 목적으로 전처 리 시행


```
import pandas as pd
import math
from bs4 import BeautifulSoup # Ctrl + Space beautifulsoup 선택
from urllib.request import urlopen
# 패키지 beautifulsoup4, requests 설치
from datetime import date # 기본 패키지

def load data():
    html = urlopen('https://sites.google.com/dqu.ac.kr/dquise4032/itemlist')
    # 웹페이지 전체 컨텐츠를 긁어움
    bs0bject = BeautifulSoup(html, 'html.parser')

# HTML 파일을 불러와서 파성(=변환)
# Variables 중 text 가면 웹 페이지의 text 다 긁어음
print(bs0bject.text)
print(bs0bject.getText())
# 휴자가 함수로 원하는 값 반환받기 용이

# 긁어오긴 하는데 여기서 가격을 어떻게 추출하나?
text = bs0bject.getText()
print(text.index('KRW')) # 텍스트 내의 특정 키워드 위치 반환

# 특정 키워드를 다른 키워드로 대체하고 이 전후로 슬라이센
text = text.replace('KRW', '#') # KRW -> #으로 변환
text = text.replace('ENTRY', '#')
text = text.replace('PREMIUM', '#')
text = text.replace('HIGH END', '#')
```

반응형 차트 Main work

- Plotly 라이브러리 활용
- 차트의 점에 마우스를 갖다 대면 점이 갖고 있는 데이터를 표 시해주는 반응형 차트 제작

Main work Dash 웹페이지 제작

- Dash 라이브러리를 활용하여 앞서 만든 반응형 차트를 웹페 이지에 띄우는 형식으로 시각화 함
- 주어진 데이터에 따라 모든 ITEM을 볼 수 있고, 카테고리를 구분하여 볼 수 있음

```
Perfume Sales DashBoard for ISE4032
                                                                        All Products< ▼
                                                                       Selected Category: ALL
                                                                                                                                 ITEM_NAME
                                                                                                                                             --- PREMIUM
                                                                                                                                              - HIGH END
                                                                               Feb 28
                                                                                      Mar 14
                                                                                             Mar 28
                                                                                                     Apr 11
                                                                                                            Apr 25
                                                                                                                    May 9
                                                                                                                           May 23
                                                                               2021
                                                                                                         ORDER_DATE
def update_graph(option_selected): # 선택된 옵션대로 차트 업데이트 위함!
     df_new['TOTAL_PRICE'] = df_new['PRICE'] * df_new['ITEM_QTY']
```

소득 분위에 대한 소득, 지출 분석

About project •

소득 분위에 따른 지출 분야의 차이에 대한 분석 및 이로부터 발생하는 불균형에 대한 해석

작업 기간	2020.03~2020.06
인력 구성(기여도)	학과 팀 프로젝트(2인)
프로젝트 목적	소득 분위에 따른 지출 분야의 차이에 대한 분석 및 이로부터 발생 하는 불균형에 대한 해석
프로젝트 내용	소득 분위 별 지출 분야의 차이에 대한 분석소득 분위 별 저축불균형에 대한 비교
주요 업무 및 상세 역할	1) 회귀식 작성, 유의수준 및 다중공선성 분석 2) 소득분위 별 지출분야 비교
사용언어 및 개발 환경	R
참고 자료	DonggukUniv/회귀분석 프로젝트 코드 최종.r at main · cown0211/DonggukUniv · GitHub

*그림1-2. 소득분위별 연도에 따른 소득과 지출의 변화~

*그림6-1. 하위 10%계층이 차지하는 비중 추정↔

Main work 소득분위, 연도별 지출분야 분석

• X축을 연도로, Y축을 액수로 하는 차트를 소득분위 별로 구분하여 시각화함으로 소득분위 별로 연도에 따라 지출과 소득 총액에서 보이는 추세가 다른 것을 확인함

```
67 #그림1-2. 년도에 따른 소득,가계지출,소비지출의 변화
68 #소비지출=가계지출-비소비지출
69 #비소비지출= 조세,공적연금,사회보험,비영리단체로이전, 가구간 이전 등
72 lines(가계지출~년도,type="l",col="Red",data=c_1)
73 lines(소田지출~년도,type="l",col="blue",data=c 1)
74 plot(소득~년도,type="1",data=c_2,main='2분위',ylim=c(min(소득,가계지출,소비지출),max(소득,가계지출,소비지출)))
75 lines(가계지출~년도,type="1",col="Red",data=c_2)
76 lines(소비지출~년도,type="1",col="blue",data=c 2)
77 plot(소득~년도,type="1",data=c_3,main='3분위',ylim=c(min(소득,가계지출,소비지출),max(소득,가계지출,소비지출)))
78 lines(가계지출~년도,type="1",col="Red",data=c_3)
79 lines(소비지출~년도,type="1",col="blue",data=c_3)
80 plot(소득~년도,type="1",data=c_4,main='4분위',ylim=c(min(소득,가계지출,소비지출),max(소득,가계지출,소비지출)))
81 lines(가계지출~년도,type="1",col="Red",data=c_4)
82 lines(소비지출~년도,type="1",col="blue",data=c_4)
83 plot(소득~년도,type="1",data=c 5,main='5분위',ylim=c(min(소득,가계지출,소비지출),max(소득,가계지출,소비지출)))
84 lines(가계지출~년도,type="1",col="Red",data=c_5)
85 lines(소비지출~년도,type="1",col="blue",data=c_5)
86 plot.new();legend("center",legend=c("소득","가계지출","소비지출"),col=c('black','red','blue'),lty=1)
87 ###소독은 분위에 상관없이 증가하는 추세이나, 지출은 저분위일수록 증가->감소 추세이고 고분위일수록 증가추세이다.
```


• 각 소비분야에 따르는 추세를 정확히 확인하고자 소비분야에 따라 다른 색을 입혀 시각화 함

여러 차이가 존재했지만 가장 논에 띄는 것은 저분위일수록 주거/수도/광열 분야로의 지출이, 고분위일수록 교육,음식/숙박 분야로의 지출이 커지는 것을 확인

```
116 #그림-2. 년도에 따른 소비분이별 액수변화
117 par(mfrow=c(2,3))
118 plot(c_1[,6]-c_1[,1],type="1",ylim=c(0,max(c_1[,6:17])),xlab='년도',ylab='지출액(단위:만 원)',1
119 lines(c_1[,7]-c_1[,1],type="1",col='blue')
120 lines(c_1[,9]-c_1[,1],type="1",col='purple')
121 lines(c_1[,1]-c_1[,1],type="1",col='purple')
122 lines(c_1[,1]-c_1[,1],type="1",col='purple')
123 lines(c_1[,1]-c_1[,1],type="1",col='prey')
124 lines(c_1[,1]-c_1[,1],type="1",col='prey')
125 lines(c_1[,1]-c_1[,1],type="1",col='prown')
126 lines(c_1[,1]-c_1[,1],type="1",col='light blue')
127 lines(c_1[,1]-c_1[,1],type="1",col='dark green')
128 lines(c_1[,1]-c_1[,1],type="1",col='dark green')
129 lines(c_1[,17]-c_1[,1],type="1",col='pink')
130 plot(c_2[,6]-c_2[,1],type="1",col='pink')
131
```


Main work 소득분위, 연도별 지출분야 분석

• 소득(총액)과 지출(총액)을 타겟으로 하고 각 지출분야를 변 수로 하는 회귀식을 작성함

> 각 소득분위 별로 회귀식을 각각 작성하여 총 10개의 회 귀식을 작성함. 소득과 지출에 영향을 주는 요소를 파악 하기 위해 회귀식의 변수의 유의성과 다중공선성을 파악 하여 회귀식 작성

• 각 회귀모형에 대한 잔차분석 시행

엄격하게 잔차의 정규성을 따른다고 보기는 어려웠으나 전반적으로 정규성을 따른다고 가정하기에는 충분하였음

```
    y1=1m(소목-의료들이주목을로+주류함에+한부인발+주지수교함을
    +지원들복기에서비스+보건+교육+중인+요원들로+교육+중인속한+지하상품서비스, data=c_1)

                                                                                                     > y1_earn=1m(c=~ #2+2=+2=+7=8=##c,data=c_1)
lm(formula = sa - umanosam + cabe + made +
    주지수도한참 + 가장요롭게하셔데스 + 보건 + 교육 + 폭선 +
유학문의 + 교육 + 음식으약 + 기다양목서비스, data = c_1)
                                                                                                     > summary(yl_earn);vif(yl_earn);
                                                                                                     lm(formula = 소득 ~ 보건 + 교통 + 교육 + 기타상통서비스, data = c 1)
-0.021347 0.088273 -0.150530 -0.024791 0.453452 -0.842898 0.093493 0.328124 0.073863
 0.000354 -0.240369 0.182073 0.451213 -0.478317 0.075408
                                                                                                                    10 Median
                                                                                                     -4.5624 -1.2301 -0.1814 0.9021 3.4980
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
-34.2402 11.0612 -3.096 0.0904
-0.2908 1.2572 -0.231 0.8386
(Intercept
                                                                                                     Coefficients:
                                                                                                                        Estimate Std. Error t value Pr(>(t))
06 6.1784 -0.047 0.9668
93 3.3734 -2.668 0.1165
0.9842 1.731 0.2256
4.7084 -0.411 0.7206
                                                                                                                         18.9203
                                                                                                                                        7.0319 2.691 0.02268 *
                                                                                                                                       0.7734
 7/8##7/HHS0 -1.9373
                                                                                                                                      0.9047 3.677 0.00426 **
                               1.5159 3.588 0.0697 .
1.0597 -0.492 0.6712
1.8192 4.856 0.0399
                                                                                                                        -4.6557
                                                                                                                                      0.5688 -8.186 9.63e-06 ***
                                                                                                     기타상품서비스 3.7885 1.2776 2.965 0.01416 *
                                                                                                     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                  6.4956
                            1.6757 3.876 0.0606 .
対数位置対域点
                                                                                                     Residual standard error: 2.655 on 10 degrees of freedom
                                                                                                     Multiple R-squared: 0.9874, Adjusted R-squared: 0.9823
Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1
                                                                                                     F-statistic: 195.6 on 4 and 10 DF, p-value: 1.899e-09
Residual standard error: 0.8942 on 2 degrees of freedom
Multiple R-squared: 0.9997, Adjusted R-squared: 0.5
F-statistic: 582 on 12 and 2 DF, p-value: 0.001716
                                                                                                            3.236428
                                                                                                                                2.815555
                                                                                                                                                   2.607066
       155.71101
                                                                    136,71210
                                                  98.52761
                                                                                         194.27954
                                                                2825
                              34.05700
                    기타상품서비스
          57.09854
                             15.33506
```


진단 정보를 통한 치매 예측 모형

About project •

치매로 의심되는 환자들의 MRI 분석 결과를 이용하여 뇌부피 측정 및 기억력 검사 등을 통해 치매 여부를 판별하는 모형 설계

작업 기간	2019.09~2019.12
인력 구성(기여도)	학과 팀 프로젝트(5인)
프로젝트 목적	치매 환자 여부를 판별하는 적절한 모형을 개발
프로젝트 내용	- Logistic Regression, Decision Tree, Random Forest, KNN, Naïve Bayes, CART 모형을 활용하여 가장 적절한 예측모형을 찾아내고 치매 판별에 가장 큰 영향을 주는 변수를 찾아냄
주요 업무 및 상세 역할	1) 모델링 이후 변수의 유의성 분석 2) 모델 간 정확도 비교
사용언어 및 개발 환경	R
참고 자료	DonggukUniv/19_2_DataMining_ISE/proj at main · cown0211/DonggukUniv · GitHub

Main work

• 주어진 데이터에 Logistic Regression, Decision Tree, Random Forest, KNN, Naïve Bayes, CART 모형을 적용시 켜 각 모형에서의 변수의 유의성을 비교하여 치매 진단에 가 장 중요한 변수를 파악함

• 각 모델에서의 정확도는 70% ~ 87%로 모두 달랐으나 분류 에 있어 가장 중요한 변수는 모두 MMSE라는 변수를 나타냈 음.

Tree1. Pruning 실시 전

Tree1. Pruning 실시 후

MMSE< 26.5

Nondemei 19/112

분리불안 의심 아동 행동분석 AI를 통한 진찰 권고 시스템

About project •

아동의 행동이 담긴 영상으로부터 아동의 행동이 분리불안이 의심 되는지 여부를 반환하는 모형 개발

작업 기간	2021.01~2021.05
인력 구성(기여도)	대외 팀 프로젝트(5인)
프로젝트 목적	영상 데이터를 정형화 하고 정형화된 데이터를 통해 분리불안이 의 심되는지 여부를 판별하는 모형 개발
프로젝트 내용	- 아동의 행동이 담긴 영상으로부터 아동의 행동이 분리불안이 의 심되는지 여부를 반환하는 모형 개발
주요 업무 및 상세 역할	 1) 영상 전처리(1초 단위로 자름) 2) 이미지에 CNN, openCV 모형 적용 3) 반환된 정형 데이터에 XGBoost 모형 적용
사용언어 및 개발 환경	Python, Jupyter Nootebook
참고 자료	

Main work

• 아동의 행동이 담긴 영상을 1초 단위의 이미지로 자른 뒤, 각 이미지에 기존에 정의한 4가지 행동값, 4가지 감정값을 할당 함

행동값이 부여된 이미지에는 openCV를, 감정값이 부여된 이미지에는 CNN 알고리즘을 적용하여 훈련시킨 뒤 이미지가 어떤 행동 or 감정값을 가지게 되는지 1차 예측 모형을 설계

이때 알고리즘이 내놓는 아웃풋은 행동, 감정값을 attribute로 갖는 행렬 형태

```
from PIL import Image
   import os, glob, numpy as np
   from keras.models import load_model
   caltech_dir = "picturedata3/분리불안 아닌 데이터/data (1)"
  image_w = 28
  image_h = 28
 9 pixels = image_h * image_w * 3
11 X = []
13 files = glob.glob(caltech_dir+"/*.*")
14 for i, f in enumerate(files):
       img = Image.open(f)
       img = img.convert("RGB")
       img = img.resize((image_w, image_h))
                                                                In [ ]: caltech_dir = "c://data/분리불안/9"
       data = np.asarray(img)
                                                                          image_w = 64
       filenames.append(f)
                                                                         image_h = 64
      X.append(data)
22 X = np.array(X)
                                                                         pixels = image_h * image_w * 3
23 model = load_model('Gersang.h5')
                                                                         X = []
25 | prediction = model.predict(X)
                                                                         filenames = []
  np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".form
                                                                         files = glob.glob(caltech_dir+"/*.*")
28 e, f, g, h =0, 0, 0, 0
                                                                         for i, f in enumerate(files):
                                                                              img = Image.open(f)
30 for i in prediction:
                                                                              img = img.convert("RGB")
       pre_ans = i.argmax() # 예측 레이블
                                                                              img = img.resize((image_w, image_h))
      print(i)
                                                                              data = np.asarray(img)
      print(pre_ans)
      pre_ans_str = ''
                                                                             filenames.append(f)
       if pre_ans == 0: pre_ans_str = "cry"
                                                                             X.append(data)
       elif pre_ans == 1: pre_ans_str = "sad"
       elif pre ans == 2: pre ans str = "mad"
       elif pre_ans == 3: pre_ans_str = "innocence"
                                                                         X = np.array(X)
                                                                         model = load_model('./multiimg_classification.model')
                                                                                         del.predict(X)
                  data cry sad mad innocence begging deny stable violence anxiety
                                                                                         ions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
           0 data (1) 0.0 17.0 0.0
                                                                           29.0
                                             82.0
                                                            0.0
                                                                 71.0
                                                                                         0, 0, 0
           1 data (2)
                       4.0 31.0 6.0
                                             59.0
                                                            3.0
                                                                  64.0
                                                                           33.0
                                                                                    0.0
                            18.0 0.0
                                                                           44.0
                                             80.0
                                                            6.0
                                                                49.0
                                                                                    0.0
                                                                           42.0
           3 data (4)
                       3.0 12.0 8.0
                                            75.0
                                                      1.0 16.0
                                                                 41.0
                                                                                    0.0
                                             87.0
                                                                           81.0
                       0.0 12.0 0.0
                                                                  13.0
                            5.0 25.0
                                             64.0
                                                      5.0 21.0
                                                                           47.0
           6 data (7) 3.0 4.0 12.0
                                             80.0
                                                      5.0 41.0 27.0
                                                                           26.0
                                                                                    0.0
                       4.0 11.0 16.0
                                             68.0
                                                      3.0 22.0
                                                                 32.0
                                                                           43.0
                                                                                    0.0
           8 data (9) 10.0 5.0 0.0
                                             84.0
                                                      0.0 26.0
                                                                           21.0
           9 data (10) 15.0 12.0 40.0
                                                      1.0 30.0 43.0
                                                                           27.0
                                            31.0
                                                                                    0.0
```

Main work

• 이미지 분류기로부터 얻어낸 행렬 데이터에서 타겟변수는 분 리불안 여부, 종속변수는 행동,감정 예측값으로 하는 최종 예 측 모형 설계

분리불안 의심 = 1; 분리불안 의심x = 0

 Logistic Regression, Decision Tree, Random Forest, XGBoost 모델에 각각 적용시켜 가장 정확도가 높은 XGBoost 모형을 최종적으로 선택

> train set에서의 정확도는 Logistic Regression이 가장 높 았으나, test set에서의 정확도는 XGBoost가 더 높았음

End of Document