PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-039765

(43) Date of publication of application: 13.02.2001

(51)Int.CI.

CO4B 35/46 H01B 3/12 H01G 4/12 H01G 4/30

(21)Application number : 11-211082

(71)Applicant: MURATA MFG CO LTD

(22)Date of filing:

26.07.1999

(72)Inventor: OKAMATSU TOSHIHIRO

NAKAMURA TOMOYUKI

HORI KENJI

HATAKE KOTARO **SANO HARUNOBU**

(54) DIELECTRIC CERAMIC COMPOSITION AND MULTILAYER CERAMIC CAPACITOR

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a dielectric ceramic composition for a multilayer ceramic capacitor, which has temp. characteristics of the capacitance satisfying B- characteristics and X7R-characteristics and the dielectric constant of not less than 2,500 and which exhibits that the product of the insulation resistance and the capacitance is not less than 5,000 O.F when 4 kVDC/mm is applied at the room temp., and further which is excellent in reliability even when it is made thin layer.

SOLUTION: The dielectric ceramic composition is a complex oxide which contains, as a main component, barium titanate and, as sub-components, R (R is at least one of Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb), Ca, Mg and Si. When the complex oxide is expressed by the formula; 100BamTiO3+

aRO3/2+bCaO+cMgO+dSiO2 (wherein the unit of the coefficient 100, (a), (b), (c), or (d) is mole), (m), (a), (b), (c) and (d) are each given by the following relation: 0.990≤m≤1.030, 0.5≤a≤6.0, 0.10≤b≤5.00, 0.010≤c≤ 1.000 and 0.05≤d≤2.00.

LEGAL STATUS

[Date of request for examination]

23.02.2001

[Date of sending the examiner's decision of

rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19) 日本国特許庁(JP)

四公開特許公報 (A)

(11) 特許出願公開番号

特開2001-39765 (P2001-39765A)

(43) 公開日 平成13年2月13日 (2001. 2. 13)

(51) Int. Cl. 7		· 識別記号		FI				テーマコード(参考)			
C 0 4 B	35/46			C 0 4 B	35/46		D	4G031			
H01B	3/12	3 0 3		H01B	3/12	303		5E001			
H 0 1 G	4/12	3 5 8		H01G	4/12	3 5 8		5E082			
	4/30	3 0 1		·	4/30	3 0 1	E	5G3O3			
	審査請求	未請求 請求項の数5	OL			(全	頁)				
(21) 出願番号	特	類平11-211082		(71) 出願人	000006	231					
			ļ		株式会	株式会社村田製作所					
(22) 出願日	平	成11年7月26日 (1999. 7. 26)	- 1		京都府	長岡京市	天神.	二丁目26番10号			
				(72) 発明者	明者 岡松 俊宏						
					京都府	長岡京市	天神	二丁目26番10号	株式		
					会社村	田製作所	内				
				(72) 発明者	千 中村	友幸					
					京都府	長岡京市	天神	二丁目26番10号	株式		
					会社村	田製作所	内				
				(72) 発明者	針 堀 徳	治					
					京都府	長岡京市	天神	二丁目26番10号	株式		
					会社村	田製作所	内				
								最終頁	こ続く		

(54) 【発明の名称】誘電体セラミック組成物、および積層セラミックコンデンサ

(57) 【要約】

【課題】静電容量の温度特性がB特性、X7R特性を満足し、比誘電率が2500以上、室温における4kVDC/mm印加時の絶縁抵抗と静電容量の積が5000Ω・F以上であり、薄層化しても信頼性に優れた、積層セラミックコンデンサ用の誘電体セラミック組成物を提供する。

【解決手段】チタン酸パリウムを主成分とし、副成分としてR(ただし、RはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybのうちの少なくとも1種類)、Ca、MgおよびSiの各元素を含有したものからなる組成物である。この組成物を次の一般式:100 BamTiO3+aRO3/2+bCaO+cMgO+dSiO2(ただし、係数100、a、b、c、dはモル)で表わしたとき、0.990 \leq m \leq 1.030、0.5 \leq a \leq 6.0、0.10 \leq b \leq 5.00、0.010 \leq c<1.000、0.05 \leq d<2.00の関係を満足する。

【特許請求の範囲】

【請求項1】 チタン酸バリウムを主成分とし、副成分としてR(ただし、RはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbのうちの少なくとも1種類)、Ca、MgおよびSiの各元素を含有したものからなる複合酸化物であって、

前記チタン酸バリウムをBamTiO3と表現し、前記各副成分をRO3/2、CaO、MgO、SiO2と表現し、 次の一般式

 $1\ 0\ 0\ B\ a_mT\ i\ O_3 + a\ RO_{3/2} + b\ C\ a\ O + c\ M\ g\ O$ + d S i O₂

(ただし、係数100、a、b、cおよびdはモル)で 表わした場合に、m、a、b、cおよびdがそれぞれ

- $0.990 \le m \le 1.030$
- $0.5 \le a \le 6.0$
- $0.10 \le b \le 5.00$
- $0. 010 \le c < 1. 000$
- $0.05 \le d < 2.00$

の関係を満足することを特徴とする、誘電体セラミック 組成物。

【請求項2】 さらに副成分として、 $B元素を含む化合物を<math>B_2O_3$ に換算して5.5 モル以下含有していることを特徴とする、請求項1 に記載の誘電体セラミック組成物

【請求項3】 さらに副成分として、Mn、Zn、Ni、CoおよびCu元素のうちの少なくとも1種類を含む化合物を、MO(ただし、MはMn、Zn、Ni、CoおよびCuのうちの少なくとも1種類)に換算して5.0モル以下含有していることを特徴とする、請求項1または2に記載の誘電体セラミック組成物。

【請求項4】 さらに副成分として、Ba、Caおよび Sr 元素のうちの少なくとも1 種類と、Zr およびHf 元素を含む化合物を、X(Zr, Hf) O_3 (ただし、XはBa、Ca およびSr のうちの少なくとも1 種類) に換算して 7. 0 モル以下含有していることを特徴とする、請求項1 から3 のいずれかに記載の誘電体セラミック組成物。

【請求項5】 複数の誘電体セラミック層と、該誘電体セラミック層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備えた積層セラミックコンデンサにおいて、前記誘電体セラミック層が前記請求項1から4のいずれかに記載の誘電体セラミック組成物で構成され、前記内部電極が卑金属を主成分として構成されていることを特徴とする、積層セラミックコンデンサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、誘電体セラミック 組成物、およびそれを用いた積層セラミックコンデンサ に関する。 [0002]

【従来の技術】従来より、積層セラミックコンデンサは 以下のようにして製造されるのが一般的である。

【0003】まず、その表面に内部電極となる電極材料を塗布したシート状の誘電体材料が準備される。誘電体材料としては、たとえばBaTiOsを主成分とする材料が用いられる。次に、この電極材料を塗布したシート状の誘電体材料を積層して熱圧着し、一体化したものを焼成することで、内部電極を有する誘電体セラミックが得られる。そして、この誘電体セラミックの端面に、内部電極と導通する外部電極を焼き付けることによって、積層セラミックコンデンサが得られる。

【0004】そして、内部電極の材料として、誘電体材料と同時に焼成しても酸化されない白金、金、パラジウム、銀ーパラジウム合金などの貴金属が用いられてきた。しかしながら、これら電極材料は優れた特性を有する反面、きわめて高価であるため、積層セラミックコンデンサの製造コストを上昇させる最大の要因となっていた

【0005】そこで、内部電極の材料として比較的安価なニッケル、銅などの卑金属を使用するようになってきているが、これらの卑金属は高温の酸化雰囲気中では容易に酸化されて電極として機能しなくなるため、内部電極として使用するためには、誘電体セラミック層とともに中性または還元性雰囲気中で焼成する必要がある。ところが、このような中性または還元性雰囲気で焼成すると誘電体セラミック層が還元されて半導体化してしまうという欠点があった。

【0006】この欠点を克服するために、たとえば特公30 昭57-42588号公報に示されるように、チタン酸パリウム固溶体において、パリウムサイト/チタンサイトの比を化学量論比より過剰にした誘電体セラミック組成物や、特開昭61-101459号公報のようにチタン酸パリウム固溶体にLa、Nd、Sm、Dy、Yなどの希土類酸化物を添加した誘電体セラミック組成物が考えだされた。

【0007】また、誘電率の温度変化を小さくしたものとして、たとえば特開昭62-256422号公報に示されるBaTiO₃-CaZrO₃-MnO-MgO系 や、特公昭61-14611号公報に示されるBaTiO₃-(Mg, Zn, Sr, Ca)O-B₂O₃-SiO₂系の誘電体セラミック組成物が提案されてきた。

【0008】このような誘電体セラミック組成物によって、還元性雰囲気で焼成しても半導体化しない誘電体セラミックが得られ、内部電極としてニッケルなどの卑金属を使用した積層セラミックコンデンサの製造が可能になった。

[0009]

【発明が解決しようとする課題】近年のエレクトロニク 50 スの発展にともない電子部品の小型化が急速に進行し、 積層セラミックコンデンサも小型化、大容量化の傾向が 顕著になってきた。したがって、高誘電率で、誘電率の 温度変化が小さく、薄層にしても絶縁性が高く信頼性に 優れる誘電体セラミック組成物に対する需要が大きくな っている。

【0010】しかしながら、従来の誘電体セラミック組成物は、低い電界強度下で使用されることを前提として設計されていたので、薄層すなわち高い電界強度下で使用すると、絶縁抵抗値、絶縁耐力および信頼性が極端に低下するという問題点を有していた。このため、従来の10誘電体セラミック組成物では、セラミック誘電体層を薄層化する際には、その薄層化の程度に応じて定格電圧を下げる必要があった。

【0011】具体的に、特公昭57-42588号公報や、特開昭61-101459号公報に示される誘電体セラミック組成物は、大きな誘電率が得られるものの、得られたセラミックの結晶粒が大きくなり、積層セラミックコンデンサにおける誘電体セラミック層の厚みが 10μ m以下のような薄膜になると、100 層中に存在する結晶粒の数が減少し、信頼性が低下してしまうという欠点があった。また、誘電率の温度変化も大きいという問題もあり、市場の要求に十分に対応できているとはいえない。

【0012】また、特開昭62-256422号公報に示される誘電体セラミック組成物では、誘電率が比較的高く、得られたセラミック積層体の結晶粒も小さく、誘電率の温度変化も小さいものの、 $CaZrO_3$ や焼成過程で生成する $CaTiO_3$ が、MnOなどとともに二次相を生成しやすいため、薄層化したとき、特に高温での信頼性に問題があった。

【0013】また、特公昭61-14611号公報に示される誘電体セラミック組成物では、EIA規格で規定されているX7R特性、すなわち温度範囲 $-55\sim+125$ ℃の間で静電容量の変化率が $\pm15\%$ 以内を満足しないという問題があった。

[0014] そこで上記問題点を解決すべく、特開平5-9066号、特開平5-9067号、特開平5-9068号公報においてBaTiO₃ $-Re_2O_3-Co_2O_3$ 系組成物(ただし、Reは希土類元素)が提案されている。しかし、これら組成物においても、誘電体セラミック層を薄層化したときの信頼性において、市場の要求を十分満足し得るものではない。

【0015】そこで、本発明の目的は、静電容量の温度特性がJIS規格で規定するB特性およびEIA規格で規定するX7R特性を満足し、比誘電率 (ϵ) が2500以上で、室温における4kVDC/mm印加時の絶縁抵抗(R) と静電容量(C) の積(CR積) が5000 $\Omega \cdot F$ 以上であり、高温高電圧下における絶縁抵抗の加速寿命が長いため薄層化しても信頼性に優れた、積層セラミックコンデンサの誘電体セラミック層を構成するこ

とができる誘電体セラミック組成物を提供することにある。 また このような誘電体セラミック組成物を誘電体

る。また、このような誘電体セラミック組成物を誘電体 セラミック層として用いるともに、内部電極が卑金属で 構成された積層セラミックコンデンサを提供することに ある。

[0016]

【課題を解決するための手段】上記目的を達成するため、本発明の誘電体セラミック組成物は、チタン酸パリウムを主成分とし、副成分としてR(ただし、RはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbのうちの少なくとも1種類)、Ca、MgおよびSiの各元素を含有したものからなる複合酸化物であって、前記チタン酸パリウムをBamTiO3と表現し、前記各副成分をRO $_{3/2}$ 、CaO、MgO、SiO $_{2}$ と表現し、次の一般式

 $1\ 0\ 0\ B\ a_mT\ i\ O_3 + a\ R\ O_{3/2} + b\ C\ a\ O + c\ M\ g\ O$ + d S i O_2

(ただし、係数100、a、b、cおよびdはモル)で表わした場合に、m、a、b、cおよびdがそれぞれ、 $0.990 \le m \le 1.030$ 、 $0.5 \le a \le 6.0$ 、 $0.10 \le b \le 5.00$ 、 $0.010 \le c < 1.00$

0、0.05≤d<2.00の関係を満足することを特徴とする。【0017】そして、上記組成物に、さらに副成分とし

て、B元素を含む化合物をB2O3に換算して5.5モル以下含有していることを特徴とする。 【0018】また、上記組成物に、さらに副成分とし

【0018】また、上記組成物に、さらに削成分として、Mn、Zn、Ni、CoおよびCu元素のうちの少なくとも1種類を含む化合物を、MO(ただし、MはMn、Zn、Ni、CoおよびCuのうちの少なくとも1種類)に換算して5.0モル以下含有していることを特徴とする。

【0019】また、上記組成物に、さらに副成分として、Ba、CaおよびSr元素のうちの少なくとも1種類と、ZrおよびHf元素を含む化合物を、X(Zr, Hf) O_3 (ただし、XはBa、CaおよびSr のうちの少なくとも1種類)に換算して7.0 モル以下含有していることを特徴とする。

【0020】そして、本発明の積層セラミックコンデンサは、複数の誘電体セラミック層と、該誘電体セラミック層と、該誘電体セラミック層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備えた積層セラミックコンデンサにおいて、前記誘電体セラミック層が上記の誘電体セラミック組成物で構成され、前記内部電極が卑金属を主成分として構成されていることを特徴とする。

[0021]

【発明の実施の形態】まず、本発明の一実施形態による 積層セラミックコンデンサの構造を図面により説明す る。図1は、積層セラミックコンデンサの一例を示す断 50 面図である。 5

【0022】本実施形態による積層セラミックコンデンサ1は、図1に示すように、内部電極4を介して複数枚の誘電体セラミック層2aおよび2bを積層して得られた、直方体形状のセラミック積層体3を備える。セラミック積層体3の両端面上には、内部電極4の特定のものに電気的に接続されるように、外部電極5がそれぞれ形成され、その上には、ニッケル、銅などの第1のめっき層6が形成され、さらにその上には、はんだ、錫などの第2のめっき層7が形成されている。

【0023】そして、前記誘電体セラミック層が、本発明の、チタン酸パリウムを主成分とし、副成分として限(ただし、RはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、TmおよびYbのうちの少なくとも1種類)、Ca、MgおよびSiの各元素を含有したものからなる複合酸化物で構成されている。そして、この複合酸化物は、前記チタン酸パリウムをBamTiO3と表現し、前記各副成分をRO3/2、CaO、MgO、SiO2と表現し、一般式100BamTiO3+aRO3/2+bCaO+cMgO+dSiO2(ただし、係数100、a、b、cおよびdばモル)で表わした場合に、m、a、b、cおよびdがそれぞれ、0.990≤m≤1.030、0.5≤a≤6.0、0.10≤b≤5.00、0.010≤c<1.000、0.05≤d<2.00の関係を満足するものである。

【0024】また、上記組成物に、さらに特定量の、◆ B元素を含む化合物、◆ Mn、Zn、Ni、CoおよびCu元素のうちの少なくとも1種類を含む化合物、◆ Ba、CaおよびSr元素のうちの少なくとも1種類と、ZrおよびHf元素を含む化合物のうちの少なくとも1種類を副成分として含有しているものが好ましい。◆

【0025】このような誘電体セラミック組成物を誘電体セラミック層として用いることによって、還元性雰囲気中で焼成してもその特性を劣化させることなく、静電容量の温度特性がJISで規定されているB特性およびEIA規格で規定されているX7R特性を満足し、4kV/mm印加時の室温での絶縁抵抗を静電容量との積

(CR積)で表したとき5000Ω・F以上で、高温高電圧下における加速寿命が長いため、薄層化しても信頼性に優れる積層セラミックコンデンサを得ることができる。

【0026】また、積層セラミックコンデンサの内部電 極としては、ニッケル、ニッケル合金、銅などの卑金属

極としては、ニッケル、ニッケル合金、銅などの卑金属 を適宜用いることができる。また、これら内部電極材料 に、構造欠陥を防ぐために、セラミック粉末を少量添加 することも可能である。

【0027】また外部電極は、銀、パラジウム、銀ーパラジウム、銅などの種々の導電性金属粉末の焼結層、または上記導電性金属粉末と B_2O_3 -Li $_2O$ -Si O_2 -BaO系、 B_2O_3 -Si O_2 -BaO系、Li $_2O$ -Si O_2 -BaO系、 B_2O_3 -Si O_2 -BaO系などの種々のガラスフリットとを配合した焼結層によって構成することができる。さらに、これら焼結層からなる外部電極の上に、ニッケル、銅などのめっき層が形成されるが、このめっき層は、その用途などによっては省略されることもある。

[0028]

【実施例】(実施例 1)まず、出発原料として、TiC 1_4 とBa (NO_3) $_2$ を準備して秤量し水溶液とした後、蓚酸を添加して蓚酸チタニルバリウム $\{BaTiO(C_2O_4)\cdot 4H_2O\}$ として沈殿させた。そして、この沈殿物にBa/Ti 比であるmを調整するために、あらかじめ用意しておいたBa (OH) $_2$ または TiO_2 を加えて、1000 C以上の温度で加熱分解させて、主成分用原料として、表1に示すmを有する種々のチタン酸バリウム (Ba_mTiO_3) を合成した。

 $[0\ 0\ 2\ 9]$ 次に、副成分用の原料として Y_2O_3 、Sm $_2O_3$ 、Eu $_2O_3$ 、Gd $_2O_3$ 、Tb $_2O_3$ 、Dy $_2O_3$ 、Ho $_2O_3$ 、Er $_2O_3$ 、Tm $_2O_3$ 、Yb $_2O_3$ 、CaO、MgO およびSiO $_2$ を準備した。

【0030】次に、これらの原料の粉末を表1に示す組成物(100 B a m T i O 3 - a R O 3/2 - b C a O - c Mg O - d S i O 2)が得られるように秤量し、ポリビニルプチラール系パインダーおよびエタノールなどの有機溶媒を加えて、ボールミルにより湿式混合し、セラミックスラリーを作製した。その後、セラミックスラリーをドクタープレード法によりシート成形し、グリーンシートを得た。

[0031]

【表1】

批料	粗风物: Ba,TiO3			■R0				aD	C=O	MgO	810,
香号	m	R		R	•	R	•	合計	ь	6	ď
#1	0.980	ΥЬ	1.0	Ho	1.0	ТЪ	1.0	3.0	2.00	0.050	0.05
#2	1.040	Er	1.0	_		_		1.0	0.30	0.030	1.00
*3	1.010	Gd	0,1	Dy	0,1	Er	0.1	0.3	3.50	0.700	1.50
#	1.005	Dy	8.0	-		-		8.0	4.00	0.800	1.80
+5	1.010	Tm	2.0	8m	1.0	-		3.0	0.05	0.300	1.00
#6	1.005	Но	0.5	Eu	2.5	ı		3.0	7.00	0.100	1.60
•7	1.005	Sm	0.5	Ho	0.5	-		1.0	2.00	0.004	0.70
#8	1.010	Tm	5.0	1		•		5.0	1.50	1.000	0.90
*9	1.010	Ý	3.5	Gd	1.0	ı		4.5	2.00	0.500	0.02
*10	1.010	Ė	0.5	Yb	0.5	•		1.0	1.00	0.400	2.00
11	0.990	۶	0.5	ď	1.0	Dy	1.0	2.5	1.00	0.900	0.20
12	1.030	Er	2.0			-		2.0	2.00	0.020	1.50
13	1.010	Eu	0.5	-		_		0.5	0.50	0.800	0.20
14	1.000	Тъ	6.0	_		-		6.0	1.00	0.020	0.80
15	1.005	8m	3.0			_		3.0	0.10	0.100	1.00
16	1.005	Ть	1.0	Tm	1.0	<u> </u>		2.0	5.00	0.500	1.50
17	1.010	Sm	1,0	Ho	1.0			2.0	2.00	0.010	1.00
18	1.005	Ho	25					2.5	3.00	0.300	0.05
19	1.010	Er	1.0	Eu	1.0	ТЪ	0.5	2.5	0.50	0.700	1.50
20	1.005	Dy	3.5	_		-		3.5	4.00	0.200	1.20
21	1.005	Dy	2.0	Er	1.0	_		3.0	2.00	0.300	1.40

【0032】次に、上記セラミックグリーンシート上に、ニッケルを主成分とする導電ペーストをスクリーン印刷し、内部電極を構成するための導電ペースト層を形成した。その後、導電ペースト層が形成されたセラミックグリーンシートを導電ペースト層の引き出されている側が互い違いになるように複数枚積層し、積層体を得た。そして、得られた積層体を、 N_2 雰囲気中で350 での温度に加熱し、バインダーを燃焼させた後、酸素分圧 $10^{-9}\sim10^{-12}$ MPaの H_2 - N_2 - H_2 Oガスからなる還元性雰囲気中において表2に示す温度で2時間焼成 30 し、セラミックの焼結体を得た。

【0033】次に、得られた焼結体の両端面に B_2O_3 ーL i_2O-SiO_2-BaO 系ガラスフリットを含有する銀ペーストを塗布し、 N_2 雰囲気中で600℃の温度で焼き付け、内部電極と電気的に接続された外部電極を形成した。

【0034】このようにして得られた積層コンデンサの外形寸法は、幅; $1.6 \,\mathrm{mm}$ 、長さ; $3.2 \,\mathrm{mm}$ 、厚さ; $1.2 \,\mathrm{mm}$ であり、内部電極間に介在する誘電体セラミック層の厚みは $3 \,\mu\mathrm{m}$ であった。また、有効誘電体 $40 \,\mathrm{to}$ セラミック層の総数は $100 \,\mathrm{to}$ であり、一層当たりの対向電極面積は $2.1 \,\mathrm{mm}^2$ であった。

[0035]次に、得られた積層セラミックコンデンサ について電気的特性を測定した。すなわち、静電容量 (C) および誘電損失(t a n δ)は、周波数 1 k H z、1 V r m s、温度 2 5 $\mathbb C$ で測定し、静電容量から比誘電率 (ϵ) を算出した。次に、4 k V / mmの電界での絶縁抵抗を測定するために、1 2 V の直流電圧を 2 分間印加して + 2 5 $\mathbb C$ の絶縁抵抗(R)を測定し、静電容量 (C) と絶縁抵抗(R) との積、すなわち C R 積を求めた。

【0036】また、温度変化に対する静電容量の変化率を測定した。静電容量の温度変化率については、20 での静電容量を基準とした-25 と 85 での変化率 ($\Delta C/C_{20}$) と、25 での静電容量を基準とした-55 と 125 での変化率 ($\Delta C/C_{25}$) とを求め

[0037] また、高温負荷寿命試験として、各試料を 36 個ずつ、温度 175 ℃にて、電界強度が 15 k V / mmになるように直流電圧 45 V を印加して、その絶縁抵抗の経時変化を測定した。そして、各試料について、絶縁抵抗値(R)が 10^6 Ω 以下になったときの時間を 寿命時間とし、その平均寿命時間を求めた。

【0038】以上の結果を表2に示す。なお、表2において、試料番号に*印を付したものは本発明の範囲外のものであり、その他は本発明の範囲内のものである。

[0039]

【表2】

BUR	统成温度		ten ð	事業温度	安化率	中量温度	支化率	CR機	平均寿命
	(%)	_	(96)	AC/C20 (%)		AC/C25 (%)		(Q-F)	
	, -,			-25℃	+85℃	_65°C	+125℃		(h)
- 91	1240				华基	体化			
72	1280	3220	1.7	-0.2	-7.8	-2.4	-13.2	5800	10
*3	1220	3350	.1.8	-0.1	-7.9	-2.7	-15.0	9000	200
*4	1280	1600	1.5	-0.5	-8,2	-2,3	-13,7	6500	180
*5	1240	2890	1.5	-0.2	-7.5	-2.2	-12.5	6800	20
+6	1240	1820	1.4	-0.3	-8.0	-2.6	-13.9	10100	210
+7	1220	3410	1.6	-0.2	-7.6	-2.7	-15.7	7800	200
*8	1380	2550	1.6	0.0	-8.0	-2.7	-12.2	6200	240
+9	1380	2810	1.7	0.1	-7.7	-2.4	-12.7	5200_	230
#10	1200	3180	1.5	0.2	-7.7	-2.6	-15.6	11000	210
11	1240	2860	1.5	-0.1	-7.9	-2.7	-121	5900	190
12	1260	2940	1.4	0.0	-8.2	-2.3	-13.3	6400	240
13	1220	3510	1.8_	0.1	-8.0	-2.3	-13.9	9000	190
14	1280	2510	1.7	0.2	-7.8	-2.2	-13.6	8700	240
. 15	1240	2840	1.7_	0.3	-8.1	-2.0	-12.1	7700	170
16	1240	2520	1.5	0.4	-7.7	-2.7	-13.3	8300	190
17	1220	3150	1.6	-1.0	-8.2	-2.7	-13.8	7800	260
18	1280	2950	1.6	-0.9	-6.3	-22	-12.3	6800	210
19	1220	2980	1.7	-0.8	-7.7	-2.6	-13.5	8600	190
20	1240	2680	1.5	-0.7	-7.6	-2.7	-122	6800	230
21	1240	2820	1.8	-0.6	-7.5	-2.6	-12.9	7600	220

 $[0\ 0\ 4\ 1]$ 次に、組成の限定理由を以下に示す。 $B\ a$ m $T\ i\ O_3$ の $B\ a$ / $T\ i$ 比を示すmを0. $9\ 9\ 0$ \le m \le 1. $0\ 3\ 0$ と限定したのは、試料番号1 のように、m < 0. $9\ 9\ 0$ の場合には半導体化してしまい、また、試料番号2 のようにx / y > 1. $0\ 3\ 0$ の場合には高温負荷寿命が短くなるためである。

[0042] RO $_{3/2}$ 量aを0. $5 \le a \le 6$. 0 と限定したのは、試料番号3のように、a < 0. 5の場合には静電容量の温度変化率がX7 R特性を外れ、また、試料番号4のように、a > 6. 0の場合には比誘電率(ϵ)が2500より小さくなるためである。

【0043】 CaO量bを0. $10 \le b \le 5$. 00と限定したのは、試料番号5のように、b < 0. 10の場合には高温負荷寿命が短くなり、また、試料番号6のよう 40に、b > 5. 00の場合には比誘電率 (ϵ) が2500より小さくなるためである。

【0044】MgO量cを0.010 \leq c<1.000と限定したのは、試料番号7のように、c<0.010の場合には、静電容量の温度変化率がX7Rを外れ、また、試料番号8のように、c \geq 1.000モルの場合には焼結性が低下するためである。

【0.045】SiO₂量dを0.05 \leq d<2.00と限定したのは、試料番号9のように、d<0.05の場

合には焼結性が低下し、また、試料番号10のように、 $d \ge 2.0$ の場合には静電容量の温度変化率がX7R特性を外れるためである。

[0046] (実施例2) 実施例1と同様にして、Ba 1.005 TiO3を準備した。また、Dy2O3、CaO、M gO、SiO2およびB2O3を準備した。そして、式: 100 Ba1.005 TiO3-3.5 DyO3/2-4.0 CaO-0.2 MgO-1.2 SiO2-eB2O3 (ただし、係数はそれぞれモルであり、e は表3に示す値)で表わされる組成物が得られるように秤量して、配合物を得た。なお、これら組成物は、実施例1の試料番号20の組成物に、さらに副成分として、B元素を含む化合物としてのB2O3を含有するものである。

[0047]

【表3】

試料番号	eB ₂ O ₃
I	
22	6.00
23	1.50
24	0.35
25	5.50

[0048] 次に、これら配合物を用いて、実施例1と同様な手法で同様な構造を有する積層セラミックコンデンサを作製した。そして、実施例1と同様にして、比誘電率 (ϵ) 、誘電損失 $(t \ an \ \delta)$ 、静電容量 (C) と絶縁抵抗 (R) とのCR 積、静電容量の温度変化率、高温負荷寿命における平均寿命時間を求めた。以上の結果を表4に示す。

[0049]

【表4】

1	n
1	4

試料 番号	焼成温度 (℃)	8	tan 8 (96)	容量温度		₽ ₽ ⊒₽ ΔC/C -55°C	25 (%)	CR糖 (Q·F)	平均寿命 時間 (h)
22	940	2590	1.9	-0.7	-9,9	-2.3	-15.8	5900 ·	180
23	1140	2710	1.7	0.2	-8.6	-2.7	-14.1	7300	250
24	1180	2840	1.5	0.3	-7.7	-2.4	-12.7	8300	320
25	960	2630	1.8	-0.1	-9.1	-2.6	-14.2	6600	190

【0050】表4の試料番号23~25と実施例1の試 料番号20の比較で明らかなように、さらに副成分とし てB元素を含む化合物をB2O3に換算して5.5モル以 下含有させることにより焼成温度が低下し、焼結性が向 10 上する。

【0051】(実施例3)実施例1と同様にして、Ba 1.005 TiO3を準備した。また、Dy2O3、Er2O3、 CaO, MgO, SiO₂, MnO, ZnO, NiO, CoOおよびCuOを準備した。そして、式:100B $a_{1.005}$ T i $O_3 - 2$. 0 D y $O_{3/2} - 1$. 0 E r $O_{3/2} -$ 2. 0 CaO - 0. 3 MgO - 1. $4 \text{ SiO}_2 - \text{ fMO}$ (ただし、係数はそれぞれモルであり、f は表5に示す 値、Mは表5に示す元素)で表わされる組成物が得られ は、実施例1の試料番号21の組成物に、さらに副成分 として、Mn、Zn、Ni、CoおよびCu元素のうち の少なくとも1種類を含む化合物としてのMOを含有す るものである。

[0052]

【表5】

过料番号					
	М	f	М	f	の合計
26	Mn	3.0	Zn	4.0	7.0
27	Mn	6.0	-		6.0
28	Zn	2.0	Ni	3.0	5.0
29	Cu	2.0	-		2.0
30	Mn	0.3	Co	0.2	0.5

【0053】次に、これら配合物を用いて、実施例1と 同様な手法で同様な構造を有する積層セラミックコンデ ンサを作製した。そして、実施例1と同様にして、比誘 電率 (ϵ) 、誘電損失 $(tan\delta)$ 、静電容量 (C) と 絶縁抵抗(R)とのCR積、静電容量の温度変化率、高 るように秤量して、配合物を得た。なお、これら組成物 20 温負荷寿命における平均寿命時間を求めた。以上の結果 を表6に示す。

[0054]

【表 6 】

8341	Table 18 and 1		1 Ann #	森鲁迪 月	· 本ル金 【	容量温度	F 表 作 主	CD	型物基本
基号	焼皮温度 (℃)	.8	(%)	ΔC/C20 (%)		AC/C	25 (%)	(Q · F)	時間
- ·		:	1	-25℃	+85°C	-65°C	+125℃		(h)
26	1300	1830	1.3	0.1	-7.7	-2.7	-12.9	300	10
27	1280	2180	1.5	0.0	-7.6	-2.7	-12.8	700	30
28	1280	2430	1.5	0.1	-7.5	-2.2	-12.7_	10300	240
29	1260	2790	1.6	0.2	-7.8	-2.6	-13.3	11800	290
30	1240	2880	1.6	0.3	-7.7	-2.7	-12.8	12200	260

【0055】表6の試料番号28~30と実施例1の試 料番号21の比較で明らかなように、さらに副成分とし て、Mn、Zn、Ni、CoおよびCu元素のうちの少 なくとも1種類を含む化合物を、MO(ただし、MはM n、Zn、Ni、CoおよびCuのうちの少なくとも1 種類) に換算して5. 0モル以下含有させることによ り、CR積がより大きくなる。

【0056】(実施例4)実施例1と同様にして、Ba 1.010 TiO3を準備した。また、Er2O3、Eu2O3、 Tb₂O₃、CaO、MgO、SiO₂を準備した。さら に、Ba、CaおよびSr元素のうちの少なくとも1種 類と、ZrおよびHf元素を含む化合物をX(Zr, H f) O₃ (ただし、XはBa、CaおよびSrのうちの 少なくとも1種類)と表わしたときの構成成分としてC aZrO₃, SrZrO₃, BaZrO₃, CaHfO₃,

SrHfO3およびBaHfO3を準備した。そして、 式: $100Ba_{1.010}$ TiO₃-1. 0ErO_{3/2}-1. $0 \to u O_{3/2} - 0$. $5 \to 0 O_{3/2} - 0$. $5 \to 0 O_{3/2} - 0$. $5 \to 0 O_{3/2} - 0$. $7 \to 0 O_{3/2} - 0$. MgO−1. 5SiO₂−gX (Zr, Hf) O₃ (ただ し、係数はそれぞれモルであり、gの値およびX(Z r、Hf)O₃の構成成分は表7に示す)で表わされる 組成物が得られるように秤量して、配合物を得た。な お、これら組成物は、実施例1の試料番号19の組成物 に、さらに副成分として、Ba、CaおよびSr元素の 40 うちの少なくとも1種類と、ZrおよびHf元素を含む 化合物としてのX(Zr, Hf)O3(ただし、XはB a、CaおよびSrのうちの少なくとも1種類)を含有 するものである。

[0057]

【表7】

14

战料												
番号	CaZrO ₃	SrZrO ₂	BaZrO ₂	CaHfO ₂	SrHfO ₂	BaHfO ₃	6の合計					
31	0	3.50	5.00	0	0.50	0	9.00					
32	2.00	6.00	0	0	0	0	8.00					
33	0.30	0,60	0	0,30	0	0	1.20					
34	0	0	2.40	0	0	0	2.40					
35	0	3.00	3.00	0	0.50	0.50	7.00					

【0058】次に、これら配合物を用いて、実施例1と同様な手法で同様な構造を有する積層セラミックコンデンサを作製した。そして、実施例1と同様にして、比誘電率 (ϵ)、誘電損失 (t an δ)、静電容量 (C) と 10 絶縁抵抗 (R) とのC R積、静電容量の温度変化率、高

温負荷寿命における平均寿命時間を求めた。以上の結果 を表8に示す。

[0059]

10 【表8】

試料 鏡成温度 番号 (*C)	8	tan 8		容量道皮変化率 AC/C20 (%)		(%)	CR積 (Q·F)	平均寿命時間	
				_25°C	+85°C	-55°C	+125°C		(h)
31	1240	3190	1.7	-0.3	-9.1	-5.4	-15.8	13200	280
32	1240	3100	1,8	-0.2	-8.8	-4.3	-15.2	12900	290
33	1220	2890	1,5	0.2	-7.6	-2.8	-13.4	12000	270
34	1220	2900	1.6	0.2	-7.8	-2.6	-13.3	12100	310
35.	1240	2920	1.7	0.1	-6.3	-3.4	-14.3	12500	290

【0060】表8の試料番号33~35と実施例1の試料番号19の比較で明らかなように、さらに副成分として、Ba、CaおよびSr元素のうちの少なくとも1種 20類と、ZrおよびHf元素を含む化合物を、X(Zr, Hf)O3(ただし、XはBa、CaおよびSrのうちの少なくとも1種類)に換算して7.0モル以下含有させることにより、CR積が大きくなり、平均寿命時間が長くなり信頼性が向上する。

 $[0\ 0\ 6\ 1]$ なお、以上各実施例で得られた本発明の範囲内の誘電体セラミック組成物の平均結晶粒径は、いずれも $1\ \mu$ m以下であった。

【0062】また、上記実施例においては、主成分用原料のチタン酸バリウムとして、蓚酸法により合成したチ 30タン酸バリウムを用いたが、これに限定するものではなく、アルコキシド法または水熱合成法などにより作製したチタン酸バリウムを用いてもよい。

【0063】また、主成分用原料のチタン酸バリウム中には、SrO、CaOなどのアルカリ土類金属酸化物、 Na_2O 、 K_2O などのアルカリ金属酸化物、 Al_2O_3 などが不純物として存在するが、そのうち特に Na_2O 、 K_2O などのアルカリ金属酸化物の含有量が電気的特性に大きく影響することを確認している。したがって、電気的特性の低下を防止するためには、アルカリ金属酸化物の含有量が0.02重量%未満のチタン酸バリウムを用いることが好ましい。

【0064】また、上記実施例においては、副成分用原料として、たとえば Y_2O_3 、 Sm_2O_3 、 Eu_2O_3 、 MgO_3 、 SiO_2 などの酸化物を用いたが、これらに限定されるものではなく、炭酸塩、アルコキシド、有機金属などを用いることができる。

【0065】また、本発明の誘電体セラミック組成物は、上述の副成分に加えて、さらに、V、W、NbまたはTaの元素を副成分として、好ましくは酸化物換算で 50

チタン酸パリウム 100 モルに対して 5 モル以内の範囲で、含有させた複合酸化物とすることもできる。

[0066]

【発明の効果】以上の説明で明らかなように、本発明の誘電体セラミック組成物は、静電容量の温度特性がJIS規格で規定するB特性およびEIA規格で規定するX7R特性を満足し、平坦な温度特性を持つ。したがって、この誘電体セラミック組成物を誘電体層とした積層セラミックコンデンサは、温度変化の大きい場所で用いられるあらゆる電子機器に使用することができる。

【0067】また、本発明の誘電体セラミック組成物は、平均結晶粒径が 1μ m以下と小さく、比誘電率 (ϵ) が2500以上と高く、室温における4k VD C /mm印加時の絶縁抵抗(R)と静電容量(C)の積(C R 積)が5000 Ω ・F以上であり、高温高電圧下における絶縁抵抗の加速寿命が長いため薄層化しても信頼性に優れる。したがって、誘電体セラミックの薄層化によるコンデンサの小型、大容量化が可能となり、また、薄層化してもコンデンサの定格電圧を下げる必要がない。すなわち、誘電体層の厚みをたとえば 3μ m以下と薄層化した小型、大容量の積層セラミックコンデンサ

を得ることができる。 【図面の簡単な説明】

【図1】本発明の一実施形態による積層セラミックコン デンサを示す断面図である。

【符号の説明】

- 1 積層セラミックコンデンサ
- 2a、2b 誘電体セラミック層
- 3 セラミック積層体
- 4 内部電極
- 5 外部電極
- 6、7 めっき層

特開2001-39765.

【図1】

フロントページの続き

(72) 発明者 畠 宏太郎

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

(72) 発明者 佐野 晴信

京都府長岡京市天神二丁目26番10号 株式

会社村田製作所内

Fターム(参考) 4G031 AA03 AA04 AA06 AA07 AA10

AA11 AA12 AA19 AA22 AA23

AA25 AA26 AA28 AA30 BA09

5E001 AB03 AC09 AE02 AE03 AE04

5E082 AA01 AB03 BC39 EE04 EE23

EE26 EE35 FG06 FG26 FG46

FG54 GG10 GG28 PP03

5G303 AA01 AB06 AB11 AB14 AB20

BA12 CA01 CB02 CB03 CB06

CB09 CB11 CB17 CB18 CB23

CB30 CB32 CB35 CB38 CB39

CB40 CB41 CB43

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
☐ BLACK BORDERS	
\square image cut off at top, bottom or sides	
☐ FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
	•

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.