Esercitazione Sistemi Digitali

20/12/2022

Esercizio 1- Traccia

Analisi rete fino alla scrittura dell'automa senza output:

- 1 Scrivere le espressioni booleane associate alle entrate dei FF
- Scrivere in forma canonica congiuntiva l'espressione ottenuta per D₀ specificando assiomi algebra di Boole usati
- $oxed{3}$ Scrivere in forma canonica disgiuntiva l'espressione ottenuta per J_1
- 4 Scrivere la tabella degli stati futuri
- 5 Ricavare dalla tabella l'automa senza output assumendo che inizialmente entrambi i flip flop contengano valore 0

Soluzione 1 (1)

$$D_0 = y_1 + \bar{x}y_0$$
 $J_1 = (\bar{x}\bar{y_0})y_1 + (x\bar{y_0})y_0 = \bar{y_0}\bar{x}y_1 + x\bar{y_0}$
 $K_1 = xy_0$

- Semplificazione D_0 : Proprietà distributiva- $y_1 + \bar{x}y_0 = (y_1 + \bar{x})(y_1 + y_0) =$ Elemento complementare-= $(y_1 + \bar{x} + y_0\bar{y_0})(y_1 + y_0 + x\bar{x}) =$ Proprietà distributiva-= $(x + y_0 + y_1)(\bar{y_0} + y_1 + \bar{x})(\bar{x} + y_0 + y_1)(\bar{x} + y_0 + y_1) =$ Idempotenza-= $(x + y_0 + y_1)(\bar{y_0} + y_1 + \bar{x})(\bar{x} + y_0 + y_1)$
- J_1 in forma normale disgiuntiva: $\bar{y_0}\bar{x}y_1 + x\bar{y_0} = \bar{y_0}\bar{x}y_1 + x\bar{y_0}(y_1 + \bar{y_1}) = \bar{y_0}\bar{x}y_1 + x\bar{y_0}y_1 + x\bar{y_0}\bar{y_1}$

Soluzione 1 (2)

Tabella stati futuri:

\mathbf{Q}_1	Q_0	X	J_1	K ₁	$\mathbf{D_0}$	Q ₁ '	Q ₀ '
0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	1
0	1	1	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	1	0	1	1	1
1	1	0	0	0	1	1	1
1	1	1	0	1	1	0	1

Soluzione 1 (3)

In base ai valori di Q_1 e Q_0 :

• *S*₀: (0,0)

• S₁: (0,1)

• *S*₂: (1,0)

• S₃: (1,1)

Stato Presente	x	Stato Futuro
S_0	0	S_0
S_0	1	S_2
S_2	0	S_3
S_2	1	S ₃
S_3	0	S ₃
S_3	1	S_1
S_1	0	S_1
S_1	1	S_0

Soluzione 1 (4)

Esercizio 2- Traccia

Dato I seguente automa di stato iniziale S0:

- Minimizzare automa
- Ricavare la rete sequenziale dall'automa minimo realizzando la parte combinatoria usando un PLA e la parte sequenziale con FF di tipo JK

Soluzione 2 (1)

La tabella di minimizzazione è:

	S0	S1	S2	S3	S4	S 5
S6	3,4	X	X	1,5	1,5 3,4	X
S5	X		X	X	X	
S4	1,5	X	X	4,6		
S 3	1,5 4,6	X	X			
S2	X	X				
S1	X					

Notare che:

- S7 è eliminabile non essendo raggiungibile da S0
- Possiamo raggruppare S0, S3, S4, S6 in un unico stato T0
- Possiamo raggruppare S1, S5 in un unico stato T1
- Rappresentiamo S2 con T2

	0	1
T0	T1 / 0	T0 / 0
T1	T1 / 0	T2 / 1
T2	T0 / 1	T0 / 0

Soluzione 2 (1)

Avendo 3 stati sono sufficienti 2 bits per la codifica:

- Codifica di T0 è Q1Q0=00
- Codifica di T1 è Q1Q0=01
- Codifica di T2 è Q1Q0=10

La tabella degli stati futuri è quindi la seguente (utilizzando 2 FF JK per memorizzare i bits dello stato)

X	Q1	Q0	Q1	Q0 (t+1)	z	J1	K1	JO	КО
0	0	0	0	1	0	0	-	1	-
0	0	1	0	1	0	0	-	-	0
0	1	0	0	0	1	-	1	0	-
0	1	1	-	-	-	-	-	-	-
1	0	0	0	0	0	0	-	0	-
1	0	1	1	0	1	1	-	-	1
1	1	0	0	0	0	-	1	0	-
1	1	1	-	-	-	-	-	-	-

Soluzione 2 (3)

$$J1 = xQ0$$

$$K1 = 1$$

Soluzione 2 (4)

$$J0 = \bar{x}\bar{Q}1$$

$$K0 = x$$

Soluzione 2 (5)

$$z = xQ0 + \bar{x}Q1$$

Soluzione 2 (6)

$$Z = \underline{x} Q1 + x Q0$$
 $J1 = x Q0$ $K1 = 1$ $J0 = \underline{x} Q1$

$$J1 = x Q0$$

$$K1 = 1$$

$$J0 = \underline{x} \underline{C}$$

K0 = x

