vrAln: A Deep Learning Approach for Virtualized RANs

J. A. Ayala–Romero* ψ , A. Garcia–Saavedra*, M. Gramaglia ω , X. Costa-Perez*, A. Banchs $\omega\Theta$, J. J. Alcaraz ψ NEC Laboratories Europe*, Technical University of Cartagena^{\pi}, Universidad Carlos III de Madrid^ω, IMDEA Networks Institute[©]

Dynamic Control of Virtualized RANs

- Native support for HW/SW upgrades
- Continuous Gradual Optimization
- AI derives optimal control policies tailored per-operator

- Resource control depends on context (SNR conditions, computing platform and load) and is highly non-linear
- We need AI/ML to learn the underlying model relating radio/compute resource decisions, contexts and performance!

Proof-of-Concept

Control Frontend

- **QoS** Criteria
- Load patterns
- Signal quality patterns

Monitoring Dashboard

System reward and system cost Network load and SNR CPU and radio policies Throughput, BER and CPU usage

