COMP2610/6261 - Information Theory

Lecture 22: Hamming Codes

Mark Reid and Aditya Menon

Research School of Computer Science The Australian National University

October 15th, 2014

Reminder: Repetition Codes

The repetition code R_3 :

S	0	0	1	0	1	1	0
t	$\widehat{000}$	$\widehat{000}$	$\widehat{111}$	$\widehat{000}$	$\widehat{111}$	$\widehat{111}$	$\widehat{000}$
η	0 0 0	0 0 1	0 0 0	0 0 0	101	0 0 0	0 0 0
r	000	001	111	0 0 0	010	111	000

For a BSC with bit flip probability f=0.1, drives error rate down to pprox 3%

For general f, the error probability is $f^2(3-2f)$

This time

- Introduction to block codes
 - Extension to basic repetition codes
- The (7,4) Hamming code
- Redundancy in (linear) block codes through parity check bits
- Syndrome decoding

- Motivation
- The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Error Probabilities

Wrapping up

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on repetition codes?

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on repetition codes?

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on repetition codes?

Idea: Introduce redundancy to blocks of data instead

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on repetition codes?

Idea: Introduce redundancy to blocks of data instead

Block Code

A block code is a rule for encoding a length-K sequence of source bits ${\bf s}$ into a length-N sequence of transmitted bits ${\bf t}$.

- Introduce redundancy: N > K
- Focus on Linear codes

Goal: Communication with small probability of error and high rate:

- Repetition codes introduce redundancy on a per-bit basis
- Can we improve on repetition codes?

Idea: Introduce redundancy to blocks of data instead

Block Code

A block code is a rule for encoding a length-K sequence of source bits ${\bf s}$ into a length-N sequence of transmitted bits ${\bf t}$.

- Introduce redundancy: N > K
- Focus on Linear codes

We will introduce a simple type of block code called the (7,4) Hamming code

An Example

The (7, 4) Hamming Code

Consider K = 4, and a source message $\mathbf{s} = 1 \ 0 \ 0 \ 0$

The repetition code R_2 produces

$$\mathbf{t} = 1 \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0}$$

The (7,4) Hamming code produces

$$\mathbf{t} = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1$$

- Redundancy, but not repetition
- How are these magic bits computed?

- Motivation
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Error Probabilities

Wrapping up

Consider
$$K = 4$$
, $N = 7$ and $\mathbf{s} = 1 \ 0 \ 0 \ 0$

It will help to think of the code in terms of overlapping circles

Consider
$$K = 4$$
, $N = 7$ and $\mathbf{s} = 1 \ 0 \ 0 \ 0$

It will help to think of the code in terms of overlapping circles

Copy the source bits into the the first 4 target bits:

Set *parity-check* bits so that the number of ones within each circle is even:

So we have $\mathbf{s} = 1 \ 0 \ 0 \ 0 \overset{\mathsf{encoder}}{\longrightarrow} \mathbf{t} = 1 \ 0 \ 0 \ 1 \ 0 \ 1$

It is clear that we have set:

$$t_i = s_i$$
 for $i = 1, \dots, 4$
 $t_5 = s_1 \oplus s_2 \oplus s_3$
 $t_6 = s_2 \oplus s_3 \oplus s_4$
 $t_7 = s_1 \oplus s_3 \oplus s_4$

where we use modulo-2 arithmetic

In matrix form:

$$\mathbf{t} = \mathbf{G}^{T} \mathbf{s} \text{ with } \mathbf{G}^{T} = \begin{bmatrix} \mathbf{I}_{4} \\ \mathbf{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix},$$

where
$$\mathbf{s} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 \end{bmatrix}^T$$

G is called the *Generator matrix* of the code.

The Hamming code is linear!

Each (unique) sequence that can be transmitted is called a *codeword*.

	S	Codeword (t)
	0010	0010111
Codeword examples:	0110	0110001
	1010	1010010
	1110	?

Each (unique) sequence that can be transmitted is called a *codeword*.

	S	Codeword (t)
	0010	0010111
Codeword examples:	0110	0110001
	1010	1010010
	1110	?

• For the (7,4) Hamming code we have a total of 16 codewords

Codewords

Each (unique) sequence that can be transmitted is called a *codeword*.

	S	Codeword (t)
	0010	0010111
Codeword examples:	0110	0110001
	1010	1010010
	1110	?

- For the (7,4) Hamming code we have a total of 16 codewords
- ullet There are $2^7 2^4$ other bit strings that immediately imply corruption

Each (unique) sequence that can be transmitted is called a codeword.

	S	Codeword (t)
	0010	0010111
Codeword examples:	0110	0110001
	1010	1010010
	1110	?

- For the (7,4) Hamming code we have a total of 16 codewords
- There are $2^7 2^4$ other bit strings that immediately imply corruption
- Any two codewords differ in at least three bits
 - ► Each original bit belongs to at least two circles

Write

$$\boldsymbol{\mathsf{G}}^{\mathcal{T}} = \begin{bmatrix} \boldsymbol{\mathsf{G}}_{1\cdot} & \boldsymbol{\mathsf{G}}_{2\cdot} & \boldsymbol{\mathsf{G}}_{3\cdot} & \boldsymbol{\mathsf{G}}_{4\cdot} \end{bmatrix}$$

where each G_i is a 7 dimensional bit vector

Then, the transmitted message is

$$\mathbf{t} = \mathbf{G}^T \mathbf{s}$$

= $\begin{bmatrix} \mathbf{G}_1. & \mathbf{G}_2. & \mathbf{G}_3. & \mathbf{G}_4. \end{bmatrix} \mathbf{s}$
= $s_1 \mathbf{G}_1. + \ldots + s_4 \mathbf{G}_4.$

All codewords can be obtained as linear combinations of the rows of G:

Codewords
$$=\left\{\sum_{i=1}^4 lpha_i \mathbf{G}_{i\cdot}
ight\}$$
 ,

where $\alpha_i \in \{0,1\}$ and \mathbf{G}_i is the *i*th row of \mathbf{G} .

- Motivation
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Error Probabilities

Wrapping up

Decoding

We can encode a length-4 sequence ${\bf s}$ into a length-7 sequence ${\bf t}$ using 3 parity check bits

Decoding

We can encode a length-4 sequence ${\bf s}$ into a length-7 sequence ${\bf t}$ using 3 parity check bits

t can be corrupted by noise which can flip *any* of the 7 bits (including the parity check bits):

Decoding

We can encode a length-4 sequence ${\bf s}$ into a length-7 sequence ${\bf t}$ using 3 parity check bits

t can be corrupted by noise which can flip any of the 7 bits (including the parity check bits): s 1 0 0 0

How should we decode \mathbf{r} ?

- We could do this exhaustively using the 16 codewords
- Assuming BSC, uniform p(s): Get the most probable explanation
- Find **s** such that $\|\mathbf{t}(\mathbf{s}) \ominus \mathbf{r}\|_1$ is minimum

Decoding

We can encode a length-4 sequence ${\bf s}$ into a length-7 sequence ${\bf t}$ using 3 parity check bits

t can be corrupted by noise which can flip any of the 7 bits (including the parity check bits): s 1 0 0 0

How should we decode \mathbf{r} ?

- We could do this exhaustively using the 16 codewords
- Assuming BSC, uniform p(s): Get the most probable explanation
- Find **s** such that $\|\mathbf{t}(\mathbf{s}) \ominus \mathbf{r}\|_1$ is minimum

We can get the most probable source vector in an more efficient way.

Decoding Example 1

We have $\mathbf{s}=1~0~0~0 \overset{\mathsf{encoder}}{\longrightarrow} \mathbf{t}=1~0~0~0~1~0~1 \overset{\mathsf{noise}}{\longrightarrow} \mathbf{r}=1~\overset{\mathsf{1}}{\longrightarrow} 0~0~1~0~1$:

- (1) Detect circles with wrong (odd) parity
 - ▶ What bit is responsible for this?

Decoding Example 1

We have $\mathbf{s} = 1 \ 0 \ 0 \ 0 \overset{\mathsf{encoder}}{\longrightarrow} \mathbf{t} = 1 \ 0 \ 0 \ 1 \ 0 \ 1 \overset{\mathsf{noise}}{\longrightarrow} \mathbf{r} = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1 \ 0 \ 0 \ 0$

Decoding Example 2

We have
$$\mathbf{s} = 1\ 0\ 0\ 0 \overset{\mathsf{encoder}}{\longrightarrow} \mathbf{t} = 1\ 0\ 0\ 0\ 1\ 0\ 1 \overset{\mathsf{noise}}{\longrightarrow} \mathbf{r} = 1\ 0\ 0\ 0\ 0\ 1$$
:

- (1) Detect circles with wrong (odd) parity
 - ▶ What bit is responsible for this?

Decoding Example 2

We have $\mathbf{s} = 1 \ 0 \ 0 \ 0 \overset{\mathsf{encoder}}{\longrightarrow} \mathbf{t} = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \overset{\mathsf{noise}}{\longrightarrow} \mathbf{r} = 1 \ 0 \ 0 \ 0 \ 0 \ 1$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1 \ 0 \ 0 \ 0$

Decoding Example 3

We have
$$\mathbf{s} = 1~0~0~0 \stackrel{\mathsf{encoder}}{\longrightarrow} \mathbf{t} = 1~0~0~0~1~0~1 \stackrel{\mathsf{noise}}{\longrightarrow} \mathbf{r} = 1~0~1~0~1~0~1$$
:

- (1) Detect circles with wrong (odd) parity
 - ▶ What bit is responsible for this?

Decoding Example 3

We have $\mathbf{s} = 1 \ 0 \ 0 \ 0 \overset{\mathsf{encoder}}{\longrightarrow} \mathbf{t} = 1 \ 0 \ 0 \ 1 \ 0 \ 1 \overset{\mathsf{noise}}{\longrightarrow} \mathbf{r} = 1 \ 0 \ 1 \ 0 \ 1 \ 1$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1 \ 0 \ 0 \ 0$

- Motivation
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Error Probabilities

Wrapping up

Optimal Decoding Algorithm: Syndrome Decoding

Given $\mathbf{r} = r_1, \dots, r_7$, assume BSC with small noise level f:

- **①** Define the syndrome as the length-3 vector \mathbf{z} that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - $ightharpoonup \mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - Flipping a single bit leads to a different syndrome

Optimal Decoding Algorithm: Syndrome Decoding

Given $\mathbf{r} = r_1, \dots, r_7$, assume BSC with small noise level f:

- **①** Define the syndrome as the length-3 vector \mathbf{z} that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - $ightharpoonup \mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - ▶ Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome

Optimal Decoding Algorithm: Syndrome Decoding

Given $\mathbf{r} = r_1, \dots, r_7$, assume BSC with small noise level f:

- **①** Define the syndrome as the length-3 vector \mathbf{z} that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - $ightharpoonup \mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - ▶ Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome
- Unflip the single bit responsible for this pattern of violation
 - ▶ This syndrome could have been caused by other noise patterns

Optimal Decoding Algorithm: Syndrome Decoding

Given $\mathbf{r} = r_1, \dots, r_7$, assume BSC with small noise level f:

- **1** Define the syndrome as the length-3 vector \mathbf{z} that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - $ightharpoonup \mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - ▶ Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome
- Unflip the single bit responsible for this pattern of violation
 - ▶ This syndrome could have been caused by other noise patterns

z	0 0 0	001	0 1 0	0 1 1	100	1 0 1	1 1 0	1 1 1
Flip bit	none	<i>r</i> 7	<i>r</i> ₆	<i>r</i> ₄	<i>r</i> 5	r_1	<i>r</i> ₂	r ₃

Optimal Decoding Algorithm: Syndrome Decoding

Given $\mathbf{r} = r_1, \dots, r_7$, assume BSC with small noise level f:

- Define the syndrome as the length-3 vector \mathbf{z} that describes the pattern of violations of the parity bits r_5 , r_6 , r_7 .
 - $ightharpoonup \mathbf{z}_i = 1$ when the *i*th parity bit does not match the parity of \mathbf{r}
 - ▶ Flipping a single bit leads to a different syndrome
- ② Check parity bits r_5 , r_6 , r_7 and identify the syndrome
- Unflip the single bit responsible for this pattern of violation
 - ▶ This syndrome could have been caused by other noise patterns

z	0 0 0	0 0 1	0 1 0	0 1 1	1 0 0	101	1 1 0	1 1 1
Flip bit	none	<i>r</i> ₇	<i>r</i> ₆	<i>r</i> ₄	<i>r</i> ₅	r_1	<i>r</i> ₂	<i>r</i> ₃

The optimal decoding algorithm unflips at most one bit

Optimal Decoding Algorithm: Syndrome Decoding

When the noise level f on the BSC is small, it may be reasonable that we see only a single bit flip in a sequence of 4 bits

The syndrome decoding method exactly recovers the source message in this case

 \bullet c.f. Noise flipping one bit in the repetition code R_3

But what happens if the noise flips more than one bit?

Decoding Example 4: Flipping 2 Bits

- (1) Detect circles with wrong (odd) parity
 - ▶ What bit is responsible for this?

Decoding Example 4: Flipping 2 Bits

We have $\mathbf{s} = 1~0~0~0 \stackrel{\mathsf{encoder}}{\longrightarrow} \mathbf{t} = 1~0~0~0~1~0~1 \stackrel{\mathsf{noise}}{\longrightarrow} \mathbf{r} = 1~0~1~0~1~0~0$:

- (2) Detect culprit bit and flip it
 - The decoded sequence is $\hat{\mathbf{s}} = 1 \ 1 \ 1 \ 0$
 - ▶ We have made 3 errors but only 2 involve the actual message

Syndrome Decoding: Matrix Form

Recall that we just need to compare the expected parity bits with the actual ones we received:

$$z_1 = r_1 \oplus r_2 \oplus r_3 \ominus r_5$$

$$z_2 = r_2 \oplus r_3 \oplus r_4 \ominus r_6$$

$$z_3 = r_1 \oplus r_3 \oplus r_4 \ominus r_7,$$

Syndrome Decoding: Matrix Form

Recall that we just need to compare the expected parity bits with the actual ones we received:

$$z_1 = r_1 \oplus r_2 \oplus r_3 \ominus r_5$$

$$z_2 = r_2 \oplus r_3 \oplus r_4 \ominus r_6$$

$$z_3 = r_1 \oplus r_3 \oplus r_4 \ominus r_7,$$

but in modulo-2 arithmetic $-1 \equiv 1$ so we can replace \ominus with \oplus so we have:

$$\mathbf{z} = \mathbf{Hr} \text{ with } \mathbf{H} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Syndrome Decoding: Matrix Form

Recall that we just need to compare the expected parity bits with the actual ones we received:

$$z_1 = r_1 \oplus r_2 \oplus r_3 \ominus r_5$$

$$z_2 = r_2 \oplus r_3 \oplus r_4 \ominus r_6$$

$$z_3 = r_1 \oplus r_3 \oplus r_4 \ominus r_7,$$

but in modulo-2 arithmetic $-1 \equiv 1$ so we can replace \ominus with \oplus so we have:

$$\mathbf{z} = \mathbf{Hr} \text{ with } \mathbf{H} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

What is the syndrome for a codeword?

Syndrome Decoding: Matrix Form

Recall that we obtain a codeword with $\mathbf{t} = \mathbf{G}^T \mathbf{s}$

Assume we receive $\mathbf{r} = \mathbf{t} + \boldsymbol{\eta}$, where $\boldsymbol{\eta} = \mathbf{0}$

The syndrome is

$$\mathbf{z} = \mathbf{H}\mathbf{r}$$

$$= \mathbf{H}\mathbf{t}$$

$$= \mathbf{H}\mathbf{G}^{T}\mathbf{s}$$

$$= \mathbf{0}$$

This is because $\mathbf{HG}^T = \mathbf{P} + \mathbf{P} = \mathbf{0}$

Syndrome Decoding: Matrix Form

For the noisy case we have:

$$egin{aligned} \mathbf{r} &= \mathbf{G}^T \mathbf{s} + \boldsymbol{\eta} \ \mathbf{z} &= \mathbf{H} \mathbf{r} \ &= \mathbf{H} \mathbf{G}^T \mathbf{s} + \mathbf{H} \boldsymbol{\eta} \ &= \mathbf{H} \boldsymbol{\eta}. \end{aligned}$$

Syndrome Decoding: Matrix Form

For the noisy case we have:

$$egin{aligned} \mathbf{r} &= \mathbf{G}^T \mathbf{s} + \boldsymbol{\eta} \ \mathbf{z} &= \mathbf{H} \mathbf{r} \ &= \mathbf{H} \mathbf{G}^T \mathbf{s} + \mathbf{H} \boldsymbol{\eta} \ &= \mathbf{H} \boldsymbol{\eta}. \end{aligned}$$

Therefore, syndrome decoding boils down to find the most probable η satisfying $\mathbf{H}\eta=\mathbf{z}$.

Maximum likelihood decoder

- Motivation
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Error Probabilities

Wrapping up

Error Probabilities

Decoding Error: Occurs if at least one of the decoded bits \hat{s}_i does not match the corresponding source bit s_i for i = 1, ... 4

Error Probabilities

Decoding Error: Occurs if at least one of the decoded bits \hat{s}_i does not match the corresponding source bit s_i for $i=1,\ldots 4$

 $p(Block Error) : p_B = p(\hat{s} \neq s)$

Error Probabilities

Decoding Error: Occurs if at least one of the decoded bits \hat{s}_i does not match the corresponding source bit s_i for $i=1,\ldots 4$

$$p(\mathsf{Block\ Error}): p_B = p(\hat{\mathsf{s}} \neq \mathsf{s})$$

$$p(\mathsf{Bit\ Error}) \,:\, p_b = rac{1}{K} \sum_{k=1}^K p(\hat{s}_k
eq s_k)$$

Error Probabilities

Decoding Error : Occurs if at least one of the decoded bits \hat{s}_i does not match the corresponding source bit s_i for $i=1,\ldots 4$

$$p(Block Error) : p_B = p(\hat{s} \neq s)$$

$$p(\mathsf{Bit\ Error}) \,:\, p_b = rac{1}{K} \sum_{k=1}^K p(\hat{s}_k
eq s_k)$$

Rate :
$$R = \frac{K}{N} = \frac{4}{7}$$

Error Probabilities

Decoding Error: Occurs if at least one of the decoded bits \hat{s}_i does not match the corresponding source bit s_i for $i=1,\ldots 4$

$$p(\mathsf{Block\ Error}): p_B = p(\hat{\mathbf{s}} \neq \mathbf{s})$$

$$p(\mathsf{Bit\ Error}) \,:\, p_b = rac{1}{K} \sum_{k=1}^K p(\hat{s}_k
eq s_k)$$

Rate :
$$R = \frac{K}{N} = \frac{4}{7}$$

What is the probability of block error for the (7,4) Hamming code with f = 0.1?

Leading-Term Error Probabilities

Block Error: This occurs when 2 or more bits in the block of 7 are flipped

We can approximate p_B to the leading term:

$$p_B = \sum_{m=2}^{7} {7 \choose m} f^m (1-f)^{7-m}$$
$$\approx {7 \choose 2} f^2 = 21f^2.$$

The (7,4) Hamming code: Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

•
$$p(\hat{s}_i \neq s_i) \approx \frac{3}{7}p_B$$
 for $i = 1, \dots, 7$

Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

- $p(\hat{s}_i \neq s_i) \approx \frac{3}{7}p_B$ for $i = 1, \dots, 7$
- All bits are equally likely to be corrupted (due to symmetry)

Leading-Term Error Probabilities

Bit Error: Given that a block error occurs, the noise must corrupt 2 or more bits

- $p(\hat{s}_i \neq s_i) \approx \frac{3}{7}p_B$ for $i = 1, \dots, 7$
- All bits are equally likely to be corrupted (due to symmetry)
- $p_b \approx \frac{3}{7} p_B \approx 9 f^2$

What Can Be Achieved with Hamming Codes?

- H(7,4) improves p_b at a moderate rate R = 4/7
- BCH are a generalization of Hamming codes.
- \bullet BCH better than R_N but still pretty depressing

Can we do better? What is achievable / nonachievable?

- Motivation
- 2 The (7,4) Hamming code
 - Coding
 - Decoding
 - Syndrome Decoding
 - Error Probabilities

Wrapping up

Summary

- The (7,4) Hamming code
- Redundancy in (linear) block codes through parity check bits
- Syndrome decoding via identification of single bit noise patterns
- Block error, bit error, rate
- Reading: Mackay $\S 1.2 \S 1.5$