Exemplo:

Seja f a função definida por $f(x) = \frac{x^2-4}{x-2}$. Investigue o que podemos falar a respeito das imagens da função f para valores de x que estejam muito próxima de 2.

Por aproximação:

х	1	1,5	1,75	1,9	1,975	1,99	1,999	1,9999	2	2,0001	2,001	2,01	2,25	2,5	2,75	3
f(x)	3	3,5	3,75	3,9	3,975	3,99	3,999	3,9999		4,0001	4,001	4,01	4,25	4,5	4,75	5

f se aproxima de 4 quando x se aproxima de 2, por valores menores que 2.

f se aproxima de 4 quando x se aproxima de 2, por valores maiores que 2.

Matematicamente, dizemos que: Se $x \to 2^-$, então $f(x) \to 4$.

Matematicamente, dizemos que: Se $x \to 2^+$, então $f(x) \to 4$.

$$\lim_{x \to 2^{-}} f(x) = 4$$

$$\lim_{x \to 2} f(x) = 4$$

$$\lim_{x \to 2^+} f(x) = 4$$

Relação entre limites laterais e bilaterais:

O limite bilateral existe se, e somente se, existirem os limites laterais e forem iguais.

$$\lim_{x \to a} f(x) = L \qquad \Leftrightarrow \qquad \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L.$$
Limite bilateral
Limite lateral pela esquerda Limite lateral pela direita

Use o gráfico de f para determinar:

$\lim_{x \to -4^{-}} f(x) =$	$\lim_{x \to -4^+} f(x) =$	$\lim_{x \to -4} f(x)$	f(-4)
$\lim_{x \to -2^-} f(x) =$	$\lim_{x \to -2^+} f(x) =$	$\lim_{x \to -2} f(x)$	f(-2)
$\lim_{x \to -1^{-}} f(x) =$	$\lim_{x \to -1^+} f(x) =$	$\lim_{x \to -1} f(x)$	f(-1)
$\lim_{x \to 0^{-}} f(x) =$	$\lim_{x \to 0^+} f(x) =$	$\lim_{x \to 0} f(x)$	f(0)
$\lim_{x \to 2^{-}} f(x) =$	$\lim_{x \to 2^{+}} f(x) =$	$\lim_{x \to 2} f(x)$	f(2)
$\lim_{x \to 4^{-}} f(x) =$	$\lim_{x \to 4^+} f(x) =$	$\lim_{x \to 4} f(x)$	f(4)
$\lim_{x \to 6^{-}} f(x) =$	$\lim_{x \to 6^+} f(x) =$	$\lim_{x\to 6}f\left(x\right)$	f (6)

Agora, olhando para x (de)crescendo muito, o que podemos falar a respeito de $\lim_{x \to \pm \infty} f(x)$?

Limites no infinito:

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to +\infty} f(x) =$$

Função Contínua

Intuitivamente,

uma **função é contínua** nos pontos que **não apresenta** salto nem buraco, nem limite infinito. Matematicamente, dizemos que uma função:

Definição:
$$f(x)$$
 é **contínua** no ponto c se, e somente se, $\lim_{x\to c} f(x) = f(c)$.

Forma equivalente de definir função contínua é:

Definição: f é contínua em x=c se, e somente se, as três condições são satisfeitas:

- i. f(c) está definida;
- ii. $\lim_{x\to c}f\left(x\right)$ existe, ou seja, se $\lim_{x\to a^{-}}f\left(x\right)=\lim_{x\to a^{+}}f\left(x\right)$;
- iii. $\lim_{x\to c} f(x) = f(c)$.

Se alguma destas condições não for satisfeita, dizemos que f é uma função **descontínua** em x = c.

Classificações das descontinuidades:

I - **Removível:** se $\lim_{x \to a} f(x)$ existe, mas é diferente de f(a); ou, se $\lim_{x \to a} f(x)$ existe e f(a) não está

definida. $x \to a$

II - Primeira Espécie ou Salto: se os dois limites laterais existem, mas são distintos.

III - Segunda espécie ou infinita: se um ou ambos os limites laterais são limites infinitos.

Limites Laterais:

$$\lim_{x \to -4^-} f(x) = 1$$

$$\lim_{x \to -4^+} f(x) = 1$$

Limites bilateral:

$$\lim_{x \to -4} f(x) = 1$$

Imagem de f:

$$f(-4)$$
 não definida

Descontinuidade do tipo removível, pois $\lim_{x\to -4} f(x)$ existe, mas -4 não pertence do domínio da função.

Limites Laterais:

$$\lim_{x \to -2^-} f(x) = 5$$

$$\lim_{x \to -2^+} f(x) = 5$$

Limites bilateral:

$$\lim_{x \to -2} f(x) = 5$$

Imagem de f:

$$f(-2) = 1$$

Descontinuidade do tipo removível, pois $\lim_{x\to -2} f(x)$ existe, mas é diferente de f(-2).

Limites Laterais:

$$\lim_{x \to -1^-} f(x) = 3$$

$$\lim_{x \to -1^+} f(x) = -1$$

Limites bilateral:

$$\lim_{x\to -1} f(x)$$
 não existe

Imagem de f:

$$f(-1) = -1$$

Descontinuidade do tipo salto, pois os limites lateriais existem, mas possuem valores diferentes.

Limites Laterais:

$$\lim_{x \to 0^-} f(x) = -3$$

$$\lim_{x \to 0^+} f(x) = -3$$

Limites bilateral:

$$\lim_{x \to 0} f(x) = -3$$

Imagem de f:

$$f(0) = -3$$

A função é contínua em x=0, pois $\lim_{x\to 0} f(x)=-3=f(0)$.

Limites Laterais:

$$\lim_{x \to 2^-} f(x) = 5$$

$$\lim_{x \to 2^+} f(x) = -\infty$$

Limites bilateral:

$$\lim_{x\to 2} f(x)$$
 não existe

Imagem de f:

$$f(2) = 5$$

Descontinuidade do tipo infinita, pois $\lim_{x\to 2^+} f(x) = -\infty$

Limites Laterais:

$$\lim_{x \to 4^-} f(x) = 4$$

$$\lim_{x \to 4^+} f(x) = -1$$

Limites bilateral:

$$\lim_{x\to 4} f(x)$$
 não existe

Imagem de f:

$$f(4) = -1$$

Descontinuidade do tipo salto, pois os limites lateriais existem, mas possuem valores diferentes.

Limites Laterais:

$$\lim_{x \to 6^-} f(x) = +\infty$$

$$\lim_{x \to 6^+} f(x) = +\infty$$

Limites bilateral:

$$\lim_{x\to 6} f(x) = +\infty$$

Imagem de f:

f(6) não definida

Descontinuidade do tipo infinita, pois $\lim_{x\to 6} f(x) = +\infty$