PV Generation Forecasting Based On Cloud Detection Calculation Via Camera And Sensor Network

Mehmet Fatih Altun
End of Semester Presentations for SDP 1

Project Description

Solar panels PV Generation Forecasting

- ► To Create a Forecasting Algorithms
 - ► Tried to Develop Algorithms

- ► A software Project
 - Python

Dataset Before Preprocessing

Index	Day of Year	Year	Month	Day	First Hour of Period	Is Daylight	Distance to Solar Noon	Average Temperature (Day)	Wind Directi	ge Wind Speed	Sky Cover	Visibility	Relative Humidity	Average Wind Speed (Period)	Barometric Pressure	Power Generated
0	245	2008				False	0.859897				0				29.82	0
1	245	2008				False	0.628535	69			0	10			29.85	0
2	245	2008				True	0.397172	69			0				29.89	5418
3	245	2008				True	0.16581	69			0	10			29.91	25477
4	245	2008				True	0.0655527	69			0				29.89	30069
5	245	2008				True	0.296915	69			0	10			29.85	16280
6	245	2008				True	0.528278	69			0				29.83	
7	245	2008			22	False	0.75964	69			0	10			29.86	0
8	246	2008				False	0.862113			6.8	0				29.86	0
9	246	2008				False	0.630155	72		6.8	0	10			29.87	0
10	246	2008				True	0.398196			6.8	0	10			29.9	
11	246	2008				True	0.166237	72		6.8	0				29.92	24335
12	246	2008				True	0.0657216			6.8	0	10			29.88	29025
13	246	2008				True	0.29768	72		6.8	0	10			29.84	15408
14	246	2008			19	True	0.529639	72		6.8	0	10			29.84	
15	246	2008			22	False	0.761598			6.8	0	10			29.85	0
16	247	2008				False	0.865459				0	10			29.84	0
17	247	2008				False	0.6326	73			0	10			29.86	0
18	247	2008				True	0.399741	73			0				29.88	4854
19	247	2008				True	0.166882				0	10			29.88	23855
20	247	2008				True	0.0659767				0				29.84	28339
21	247	2008				True	0.298836				0	10			29.81	15308
22	247	2008			19	True	0.531695	73			0				29.81	
23	247	2008			22	False	0.764554				0	10			29.85	0
24	248	2008	9	4	1	False	0.867704	76	30	6.9	0	10	73	0	29.83	0

2920 rows 16 variables

A solar power system installed in Berkeley, CA.³

Datasets After Preprocessing

independent variable

Index	Is Daylight						Average Barometric Pressure (Period)
0	0	0.859897					29.82
1	0	0.628535					29.85
2		0.397172					29.89
3		0.16581					29.91
4		0.0655527					29.89
5		0.296915					29.85
6		0.528278					29.83
7	0	0.75964					29.86
8	0	0.862113		6.8			29.86
9	0	0.630155		6.8			29.87
10				6.8			29.9
11		0.166237		6.8			29.92
12		0.0657216		6.8			29.88
13		0.29768		6.8			29.84
14		0.529639		6.8			29.84
15	0	0.761598		6.8			29.85
16	0	0.865459					29.84
17	0	0.6326					29.86
18							29.88
19		0.166882					29.88
20		0.0659767					29.84
21		0.298836					29.81
22		0.531695					29.81
23	0	0.764554					29.85
24	0	0.867704					29.83

dependent variable

Index	Power Generated
0	0
1	0
2	5418
3	25477
4	30069
5	16280
6	515
7	0
8	0
9	0
10	4939
11	24335
12	29025
13	15408
14	491
15	0
16	0
17	0
18	4854
19	23855
20	28339
21	15308
22	455
23	0
24	0

Datasets Train and Test

$\mathsf{pandas}_{y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}}$

	- DataFram	ie									
Index	s Daylight	ice to Solar	Temperat	/ind Direc	Wind Spe	Sky Cover	Visibility	tive Humi			
0	0	0.859897	69	28	7.5		10	75			
2	1	0.397172	69	28	7.5		10	70			
3	1	0.16581	69	28	7.5		10	33			
5	1	0.296915	69	28	7.5		10	20			
7	0	0.75964	69	28	7.5		10	49			
8	0	0.862113	72	29	6.8		10	67			
■ x_test -	■ x_test - DataFrame										
Index	s Daylight	ice to Solar	Temperat	/ind Direc	Wind Spe	Sky Cover	Visibility	tive Humi			
1	0	0.628535	69	28	7.5		10	77			
4	1	0.0655527	69	28	7.5		10	21			
6	1	0.528278	69	28	7.5		10	36			
9	0	0.630155	72	29	6.8		10	49			
10	1	0.398196	72	29	6.8		10	54			
14	1	0.529639	72	29	6.8		10	65			
15	0	0.761598	72	29	6.8		10	75			
17	0	0.6326	73	29	7.9		10	78			
20	1	0.0659767	73	29	7.9		10	33			
22	1	0.531695	73	29	7.9		10	53			
23	0	0.764554	73	29	7.9		10	70			
27	1	0.167315	76	30	6.9		10	64			
30	1	0.533074	76	30	6.9		10	27			
33	0	0.635417	77	29	8.5		10	70			

Codes

```
Created on Sat Dec 5 12:55:34 2020
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
 veriler = pd.read_csv("pvdata.csv")
veri1 = veriler.iloc[:, 6:13]
veri2 = veriler.iloc[:, 15:]
dl = veriler.iloc[:,5:6].values
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
 dl[:,0] = le.fit_transform(veriler.iloc[:,5:6])
ohe = preprocessing.OneHotEncoder()
dl = ohe.fit_transform(dl).toarray()
dllast = pd.DataFrame(data=dl[:,1:], index=range(2920), columns=['Is DayLight'])
 verilson = pd.concat([dllast,veril], axis=1)
 from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(verilson, veri2, test_size=0.33, random_state=0)
x_train = x_train.sort_index()
 x_test = x_test.sort_index()
y_train = y_train.sort_index()
y_test = y_test.sort_index()
 from sklearn.preprocessing import StandardScaler
 sc = StandardScaler()
 X_train = sc.fit_transform(x_train)
 X_test = sc.fit_transform(x_test)
 Y_train = sc.fit_transform(y_train)
 Y_test = sc.fit_transform(y_test)
 from sklearn.linear_model import LinearRegression
 lin_reg = LinearRegression()
 lin_reg.fit(X_train, Y_train)
y_tahmin = lin_reg.predict(X_test)
 is dllast list = list(x test["Is DayLight"])
for counter in range(len(x_test)):
    if is_dllast_list[counter] == 0.0:
         y_tahmin[counter] = 0.0
plt.plot(y_tahmin[0:20,:], color = 'blue')
plt.plot(Y_test[0:20,:], color = 'red')
 plt.title("PV Generation Forecasting Linear Regression")
 plt.show()
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
 print(r2_score(Y_test, y_tahmin),"\n")
 print(mean_squared_error(Y_test, y_tahmin, squared=False),"\n")
 print(mean_absolute_error(Y_test, y_tahmin),"\n")
 import statsmodels.api as sm
X = np.append(arr = np.ones((2920,1)).astype(int), values=verilson, axis=1)
 X_1 = veri1son.iloc[:, [0,1,2,3,4,5,6,7]].values
 X_1 = np.array(X_1,dtype=float)
 model = sm.OLS(veri2, X_1).fit()
 print(model.summary(), '\n')
```

```
Created on Sat Dec 5 12:55:34 2020
 @author: mfa
 import pandas as pd
 import numpy as np
import matplotlib.pyplot as plt
veriler = pd.read_csv("pvdata.csv")
veril = veriler.iloc[:, 6:13]
veri2 = veriler.iloc[:, 15:]
dl = veriler.iloc[:,5:6].values
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
dl[:,0] = le.fit_transform(veriler.iloc[:,5:6])
ohe = preprocessing.OneHotEncoder()
 dl = ohe.fit_transform(dl).toarray()
dllast = pd.DataFrame(data=dl[:,1:], index=range(2920), columns=['Is Daylight'])
verilson = pd.concat([dllast,veril], axis=1)
from sklearn.preprocessing import StandardScaler
sc1 = StandardScaler()
x_olcek = sc1.fit_transform(veri1son)
sc2 = StandardScaler()
y_olcek = sc2.fit_transform(veri2)
from sklearn.linear_model import LinearRegression
from sklearn.inear_model import Linearkegression
from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=2)
x_poly2 = poly_reg.fit_transform(x_olcek)
 lin_reg2 = LinearRegression()
 lin_reg2.fit(x_poly2, y_olcek)
y_tahmin2 = lin_reg2.predict(x_poly2)
 from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
print("2.derece polinom tahmin:", r2_score(y_olcek, y_tahmin2),"\n")
plt.plot(y_tahmin2[0:20,:], color = 'blue')
plt.plot(y_olcek[0:20,:], color = 'red')
plt.show()
 from sklearn.preprocessing import PolynomialFeatures
poly_reg = PolynomialFeatures(degree=4)
 x_poly4 = poly_reg.fit_transform(x_olcek)
 lin_reg4 = LinearRegression()
 lin_reg4.fit(x_poly4, y_olcek)
 y_tahmin4 = lin_reg4.predict(x_poly4)
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error print("4.derece polinom tahmin:", r2_score(y_olcek, y_tahmin4),"\n")
```

Regression Methods and Results

- Multi Linear Regression
- Support Vector Regression
- Polinomial Regression
 - 2.Degree
 - ▶ 4.Degree

PV Generation Forecasting with Linear Regression Method: 0.6619942662010241

PV Generation Forecasting with Linear Regression Method: 0.7457413330617766

PV Generation Forecasting with 2.degree Polinomial Regression Method: 0.868841677991917

PV Generation Forecasting with Support Vector Regression Method: 0.9021700251450911

PV Generation Forecasting with 4.degree Polinomial Regression Method: 0.915734948862559

PV Generation Forecasting with 4.degree Polinomial Regression Method: 0.918446515722637

Graphs

~

PV Generation

Forecasting

Xlabel: >Plot Number

Ylabel:

>PV Generation

Final Graphs

PV Generation

Forecasting

Xlabel:

>Plot Number

Ylabel:

>Forecasting

What was planned what was achieved?

R-squared

$$R^2 = 1 - rac{ ext{sum squared regression (SSR)}}{ ext{total sum of squares (SST)}},$$
 $= 1 - rac{\sum (y_i - \hat{y_i})^2}{\sum (y_i - \bar{y})^2}.$

OLS Report

Dep. Varia	ble:	Power Genera			uared (uncent		0.779		
Model:					R-squared (u atistic:	0.779			
Method: Date:		Least Squa				1028. 0.00			
Time:		Tue, 26 Jan 2 19:32			(F-statistic .ikelihood:	:):		-29471.	
No. Observ	ations:			ATC:	IKCIIIIOU.		-		
Df Residua		_		BIC:		5.896e+04 5.902e+04			
Df Model:	13.	-	10	DIC.			_	. 3020.04	
Covariance	Type:	nonrob	ust						
	coef	std err		t	P> t	[0.025	0.975]		
x1	6601.2157	405.306	16.	287	0.000	5806.500	7395.932		
x2	-3.142e+04		-46.			-3.27e+04	-3.01e+04		
x3	-95.3294	17.283	-5.	516	0.000	-129.217	-61.442		
x4	43.0348	17.888	2.	406	0.016	7.960	78.110		
x5	-90.9553	33.222	-2.	738	0.006	-156.095	-25.815		
х6	-786.7503	88.011	-8.	939	0.000	-959.320	-614.181		
x7	119.0875	87.565	1.	360	0.174	-52.608	290.783		
x8	-157.6229		-16.		0.000	-175.980	-139.266		
x9	178.2200		8.	305	0.000	136.141	220.299		
x10	1195.8944	49.231	24.	292	0.000	1099.364	1292.425		
Omnibus:	=======	 12	:===== .587	Duchi	 in-Watson:		1.148		
Prob(Omnib	us).				ue-Bera (JB):		16.347		
Skew:	as).			Prob			0.000282		
Kurtosis:				Cond.	• •		725.		

Current Progress and Next Semester Plans

Thank you for Listening