The preliminary results is to show the primary analysis of what will be your final paper. There is a section on inference between variables and another section of comparing the performance of three different types of models.

Format [20 points]

Breakdown					
	Points	Desc.	Points	Desc.	
$\leq 8 \text{ pages}$	10	yes	0	no	
Section headers	6	2 points each			
Typos/grammar errors	4	none to some	0	many	

Provide section headers for the following:

Inference [20 points]

First, we want to establish the relationships between important covariates and the response variable. Here you will use LASSO to select variables (transformed and/or interacted as you see fit) using cross-validation to determine the best hyperparameter on the training data set. Then you will run the selected variables through either OLS or logistic regression (binomial/multinomial), whichever applies to your problem. Finally, you will interpret the top three most statistically significant coefficients.

Show code only for the cross-validation LASSO and the best λ . Show code and output for the summary of the final selected model. The output should contain coefficient estimates, standard errors, t or z statistics, and the associated p-values.

Breakdown				
	Points	Desc.		
Cross-validation	5	showed code		
Best λ	4	showed best		
Final model code/output	5	2 points for code, 3 points for output		
Interpretation	6	2 points each		

Prediction [50 points]

The next step is to compare how the model selected in the Inference section performs against two other models of your choosing. Choose two from the following:

Classification	Regression
Boosted Random Forest GAM (spline/local/polynomial) Neural Network KNN SVM LDA/QDA	Boosted Random Forest GAM (spline/local/polynomial) Neural Network KNN PCR

Train each model on the training data and display the accuracy of each model using either MSE (regression) or the error rate (classification). Show the code and/or output for each part as described in the point breakdown table below.

Describe the two modelling choices made and discuss model output.

ECON490: ML in Econ

BREAKDOWN

	Points	Desc.
Inference model accuracy	8	showed code and output
Chosen model 1 training	8	showed code
Chosen model 1 test accuracy	8	showed code and output
Chosen model 2 training	8	showed code
Chosen model 2 test accuracy	8	showed code and output
Descriptions/discussions	10	not a wall of only code and output

Comparison [10 points]

In one paragraph, compare the interpretability and flexibility of the models, compare the performance of the models, and tell us which model was the most accurate.