Exercises, Algebraic Geometry II – Week 7

Exercise 31. (3 points) Unramified morphisms.

In class we proved that a morphism locally of finite type $f: X \to Y$ between locally Noetherian schemes is unramified if and only if $\Omega_{X/Y} = 0$. Prove that this is also equivalent to the diagonal morphism $\Delta: X \to X \times_Y X$ being an open immersion.

Exercise 32. (5 points) Étale morphisms.

Decide which of the following morphisms are étale or at least unramified.

- 1. $\mathbb{A}^1_k \setminus \{0\} \to \mathbb{A}^1_k \setminus \{0\}, t \mapsto t^2$.
- 2. $\mathbb{A}^2_k \to \mathbb{A}^2_k$, $(x,y) \mapsto (x,xy)$
- 3. $\mathbb{P}_k^n \to \mathbb{P}_k^n$, $[x_0 : \cdots : x_n] \mapsto [x_0^{\ell} : \cdots : x_n^{\ell}]$.
- 4. $\operatorname{Spec}(\mathcal{O}_{\mathbb{Q}(\sqrt{5})}) \to \operatorname{Spec}(\mathcal{O}_{\mathbb{Q}}).$
- 5. Spec $(k[t]) \to \text{Spec}(k[x,y]/(x^3-y^2))$ given by $x \mapsto t^2$, $y \mapsto t^3$.

Exercise 33. (2 points) Hurwitz formula.

Let $f: X \to Y$ be a finite separable morphism of smooth complete curves of degree d. Show that $g(X) \ge g(Y)$ and that equality is only possible if g(Y) = 0, 1 or d = 1.

Study the morphism $f: \mathbb{P}^1_k \to \mathbb{P}^1_k$ which on \mathbb{A}^1_k is given by $x \mapsto x^{2p} - x$, where $p = \operatorname{char}(k)$. Determine the ramification divisor and, in particular, decide whether the morphism is tamely ramified.

Exercise 34. (3 points) Canonical bundle of projective bundles.

Use the relative Euler sequence (see Exercise 11) to compute the canonical bundle $\omega_{\mathbb{P}(\mathcal{E})}$ of a projective bundle $X = \mathbb{P}(\mathcal{E}) \to Y$, where \mathcal{E} is a locally free sheaf on Y. Can $\omega_{\mathbb{P}(\mathcal{E})}$ ever be ample? What about its dual? Compute $\omega_{\mathbb{P}(\mathcal{T}_{\mathbb{P}^n})}$.

Exercise 35. (3 points) Ramification divisor of the blow-up.

Let $f: X \to \mathbb{A}_k^n$ be the blow-up of the origin with exceptional divisor $E = f^{-1}(0)$. Show that the ramification divisor R_f is (n-1)E.

Let now Y be smooth and of finite type over a field k and let $f: X \to Y$ be the blow-up at a (k-rational) closed point $y \in Y$. Express ω_X in terms of ω_Y and the exceptional divisor $E = f^{-1}(y)$.