Impinj, Inc.

ADDENDUM TEST REPORT FOR 90557-6

RFID Integrated Reader, IPJR640

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207 & 15.247 and RSS-210 Version 7

Report No.: 90557-6A

Date of issue: May 19, 2010

TESTING CERT #803.01, 803.02, 803.05, 803.06 This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

A	dministrative Information	3
	Test Report Information	3
	Revision History	3
	Report Authorization	3
	Test Facility Information	4
	Site Registration & Accreditation Information	4
	Summary of Results	5
	Conditions During Testing	5
	Equipment Under Test	6
	Peripheral Devices	6
F	CC Part 15 Subpart C	7
	Temperature And Humidity During Testing	7
	15.33(a) Frequency Ranges Tested	7
	15.203 Antenna Requirements	7
	EUT Operating Frequency	7
	15.207 AC Conducted Emissions.	8
	15.247(a)(1)(i) 20 dB Bandwidth	22
	15.247(b)(1) Maximum Peak Power	26
	15.247(d) RF Conducted Spurious Emissions	29
	15.247(d) RF Radiated Spurious Emissions	32
	RSS-210 99% Bandwidth	85
Sı	upplemental Information	89
	Measurement Uncertainty	89
	Emissions Tost Datails	90

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Impinj, Inc. Joyce Walker

701 N. 34th St. CKC Laboratories, Inc. Seattle, WA 98103 5046 Sierra Pines Drive Mariposa, CA 95338

Representative: Bill Ashley Project Number: 90557

Customer Reference Number: 102475

DATE OF EQUIPMENT RECEIPT: April 21, 2010

DATE(S) OF TESTING: April 21-22, 2010

Revision History

Original: Test of the RFID Integrated Reader, IPJR640 to FCC Part 15 Subpart C Sections 15.207 & 15.247. **Addendum A:** Added a Laptop Computer and USB Hub to Peripheral sections, added better definition on the connections, cable type and operational mode in the test conditions, replaced plots with revised distance correction factor and antenna polarity, replaced bandedge compliance data/plots and peak power data/plots.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 7 B

Page 3 of 90 Report No.: 90557-6A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Bothell, WA 98021-4413

Site Registration & Accreditation Information

Location	Japan	Canada	FCC	
Bothell	R-2296, C-2506 & T-1489	3082C-1	318736	

Page 4 of 90 Report No.: 90557-6A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.247

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207(a)/ ANSI C63.4	Pass
20 dB Bandwidth	FCC Part 15 Subpart C Section 15.247(a)(1)(i)/ FCC Public Notice DA 00-705	Pass
Maximum Peak Power	FCC Part 15 Subpart C Section 15.247(b)(1) / FCC Public Notice DA 00-705	Pass
RF Conducted Spurious Emissions	FCC Part 15 Subpart C Section 15.247(d)/ FCC Public Notice DA 00-705	Pass
RF Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.247(d)/ FCC Public Notice DA 00-705	Pass

Standard / Specification: RSS-210 Version 7

Description	Test Procedure/Method	Results
99% Bandwidth	RSS-210 Version 7/ FCC Public Notice DA 00-705	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

The device can operate from two different power sources; 24VDC or 48VDC POE (Power Over Ethernet). Worst case emissions were found using the 48VDC POE option and are reported.

Page 5 of 90 Report No.: 90557-6A

EQUIPMENT UNDER TEST (EUT)

The EUT is an UHF RFID portal reader system consisting of an integrated antenna with reader.

EQUIPMENT UNDER TEST

The following model was tested by CKC Laboratories: RFID, IPJR640

Since the time of testing the manufacturer has chosen to use the following model name in its place. Any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name shown on the data sheets: **RFID Integrated Reader**, **IPJR640**

RFID Integrated Reader

Manuf: Impinj, Inc. Model: IPJR640 Serial: 37009510054

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

48VDC Power Adapter

Manuf: D-LINK Model: VAN90C-480B Serial: 13092600057-0D

24VDC Power Adapter

Manuf: CUI, Inc. Model: DSA-60W-20

Serial: DTS240250UC-P11P-DB

USB Hub

Manuf: SI Tech Model: 2173 Serial: 079536

POE Switch

Manuf: D-LINK Model: DES-1008PA Serial: F3GR188000310

Laptop Computer

Manuf: Dell. Model: Latitude Serial: 6497402833

> Page 6 of 90 Report No.: 90557-6A

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

Temperature and Humidity During Testing

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

15.33(a) Frequency Ranges Tested

15.207 Conducted Emissions: 150 kHz – 30 MHz 15.247 Radiated Emissions: 30 kHz – 9.3GHz

15.203 Antenna Requirements

The antenna is removable and uses a RP-TNC type connector.

EUT Operating Frequency

The EUT was operating at 902 - 928 MHz

Page 7 of 90 Report No.: 90557-6A

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Impinj, Inc.**

Specification: 15.207 AC Mains - Average

Work Order #: 90557 Date: 4/21/2010
Test Type: Conducted Emissions Time: 10:50:58 AM

Equipment: **RFID** Sequence#: 1

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert Model: IPJR640 Tested By: Jeff Gilbert 120V 60Hz

S/N: 37009510054

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01492	50uH LISN-Line (dB)	3816/2NM	6/2/2009	6/2/2011
	AN01492	50uH LISN-Neutral (dB)	3816/2NM	6/2/2009	6/2/2011
T2	ANP05435	Attenuator	PE7015-10	9/5/2008	9/5/2010
T3	ANP05360	Cable	RG214	11/10/2008	11/10/2010
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T6	AN02611	High Pass Filter	HE9615-150K-50-720B	7/21/2008	7/21/2010
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
24VDC Power adapter	CUI, Inc.	DSA-60W-20	DTS240250UC-P11P-DB
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 150 kHz - 30 MHz

22°C /Relative Humidity 35% / 102.0 kPa

Setup and testing per ANSI C63.4

EUT is transmitting continuously, fully modulated (100%).

Ethernet and USB ports are loaded. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

EUT power is 24VDC from an AC/DC power adapter; input power is 120VAC / 60Hz.

Page 8 of 90 Report No.: 90557-6A

Ext Attn: 0 dB

Measurement Data:		Reading listed by margin.			Test Lead: Line						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	-		T5	T6					-	•	
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	551.418k	27.0	+0.1	+9.6	+0.1	+0.0	+0.0	37.0	46.0	-9.0	Line
			+0.0	+0.2							
2	187.815k	31.7	+0.1	+9.6	+0.0	+0.0	+0.0	41.6	54.1	-12.5	Line
			+0.0	+0.2							
3	306.349k	25.6	+0.1	+9.6	+0.0	+0.0	+0.0	35.4	50.1	-14.7	Line
			+0.0	+0.1							
4	427.793k	22.5	+0.1	+9.6	+0.1	+0.0	+0.0	32.4	47.3	-14.9	Line
			+0.0	+0.1							
5	6.932M	24.6	+0.4	+9.5	+0.2	+0.2	+0.0	35.0	50.0	-15.0	Line
			+0.0	+0.1							
6	248.173k	26.7	+0.1	+9.6	+0.0	+0.0	+0.0	36.6	51.8	-15.2	Line
			+0.0	+0.2							
7	11.716M	23.5	+0.6	+9.5	+0.2	+0.2	+0.0	34.1	50.0	-15.9	Line
			+0.0	+0.1							
8	11.463M	23.5	+0.5	+9.5	+0.2	+0.2	+0.0	34.0	50.0	-16.0	Line
			+0.0	+0.1							
9	6.725M	23.5	+0.4	+9.5	+0.2	+0.2	+0.0	33.9	50.0	-16.1	Line
			+0.0	+0.1							
10	608.867k	19.7	+0.1	+9.6	+0.1	+0.0	+0.0	29.7	46.0	-16.3	Line
			+0.0	+0.2							
11	251.809k	25.3	+0.1	+9.6	+0.0	+0.0	+0.0	35.2	51.7	-16.5	Line
			+0.0	+0.2							
12	11.670M	22.8	+0.6	+9.5	+0.2	+0.2	+0.0	33.4	50.0	-16.6	Line
			+0.0	+0.1							
13	6.598M	22.8	+0.4	+9.5	+0.2	+0.2	+0.0	33.2	50.0	-16.8	Line
			+0.0	+0.1							
14	6.661M	22.8	+0.4	+9.5	+0.2	+0.2	+0.0	33.2	50.0	-16.8	Line
1.5	400 1511	10.2	+0.0	+0.1	0.1	0.0	0.0	20.2	16.0	160	т.
15	488.151k	19.3	+0.1	+9.6	+0.1	+0.0	+0.0	29.3	46.2	-16.9	Line
1.0	11 7003 6	22.4	+0.0	+0.2	0.2	0.2	0.0	22.0	50.0	17.0	т.
16	11.788M	22.4	+0.6	+9.5	+0.2	+0.2	+0.0	33.0	50.0	-17.0	Line
17	206 7221	26.2	+0.0	+0.1	. 0. 0	. 0. 0	. 0. 0	26.2	52.2	17.1	т.
17	206.722k	26.3	+0.1	+9.6	+0.0	+0.0	+0.0	36.2	53.3	-17.1	Line
10	2 22014	10.6	+0.0	+0.2	10.2	10.2	100	20.0	46.0	17.0	T in a
18	3.220M	18.6	+0.2	+9.5	+0.2	+0.2	+0.0	28.8	46.0	-17.2	Line
10	2 20414	10 6	+0.0	+0.1	10.2	+0.2	+0.0	28.8	16 N	17.2	Lina
19	3.284M	18.6	+0.2	+9.5	+0.2	+0.2	+0.0	∠8.8	46.0	-17.2	Line
20	2 2 4 0 1 1	10 5	+0.0	+0.1	10.2	10.2	100	20.7	16 N	17.2	Lina
20	3.348M	18.5			+0.2	+0.2	+0.0	28.7	46.0	-17.3	Line
			+0.0	+0.1							

Page 9 of 90 Report No.: 90557-6A

CKC Laboratories, Inc. Date: 4/21/2010 Time: 10:50:58 AM Impinj, Inc. WO#: 90557 15.207 AC Mains - Average Test Lead: Line 120V 60Hz Sequence#: 1 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj, Inc.

Specification: 15.207 AC Mains - Average

 Work Order #:
 90557
 Date: 4/21/2010

 Test Type:
 Conducted Emissions
 Time: 10:56:06 AM

Equipment: **RFID** Sequence#: 2

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert Model: IPJR640 120V 60Hz

S/N: 37009510054

Test Equipment:

100 24 top mont										
ID	Asset #	Description	Model	Calibration Date	Cal Due Date					
	AN01492	50uH LISN-Line (dB)	3816/2NM	6/2/2009	6/2/2011					
T1	AN01492	50uH LISN-Neutral (dB)	3816/2NM	6/2/2009	6/2/2011					
T2	ANP05435	Attenuator	PE7015-10	9/5/2008	9/5/2010					
T3	ANP05360	Cable	RG214	11/10/2008	11/10/2010					
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010					
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011					
T6	AN02611	High Pass Filter	HE9615-150K-50-720B	7/21/2008	7/21/2010					
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011					

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
24VDC Power adapter	CUI, Inc.	DSA-60W-20	DTS240250UC-P11P-DB
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 150 kHz - 30 MHz

22°C / Relative Humidity 35% / 102.0 kPa

Setup and testing per ANSI C63.4

EUT is transmitting continuously, fully modulated (100%).

Ethernet and USB ports are loaded. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

EUT power is 24VDC from an AC/DC power adapter; input power is 120VAC / 60Hz.

Ext Attn: 0 dB

Measur	rement Data:	Re	eading list	ted by ma	ırgin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	187.815k	34.6	+0.1	+9.6	+0.0	+0.0	+0.0	44.5	54.1	-9.6	Neutr
			+0.0	+0.2							
2	550.691k	26.5	+0.0	+9.6	+0.1	+0.0	+0.0	36.4	46.0	-9.6	Neutr
			+0.0	+0.2							
3	195.087k	31.2	+0.1	+9.6	+0.0	+0.0	+0.0	41.1	53.8	-12.7	Neutr
			+0.0	+0.2							
4	307.076k	27.5	+0.0	+9.6	+0.0	+0.0	+0.0	37.2	50.0	-12.8	Neutr
			+0.0	+0.1							

Page 11 of 90 Report No.: 90557-6A

5	424.157k	24.4	+0.0	+9.6	+0.1	+0.0	+0.0	34.2	47.4	-13.2	Neutr
			+0.0	+0.1							
6	163.817k	31.3	+0.1	+9.6	+0.0	+0.0	+0.0	41.5	55.3	-13.8	Neutr
			+0.0	+0.5							
7	245.991k	28.3	+0.0	+9.6	+0.0	+0.0	+0.0	38.1	51.9	-13.8	Neutr
			+0.0	+0.2							
8	162.363k	31.1	+0.1	+9.6	+0.0	+0.0	+0.0	41.4	55.3	-13.9	Neutr
			+0.0	+0.6							
9	11.301M	25.4	+0.2	+9.5	+0.2	+0.2	+0.0	35.6	50.0	-14.4	Neutr
			+0.0	+0.1							
10	606.685k	21.6	+0.0	+9.6	+0.1	+0.0	+0.0	31.5	46.0	-14.5	Neutr
			+0.0	+0.2							
11	670.679k	21.5	+0.0	+9.6	+0.1	+0.0	+0.0	31.4	46.0	-14.6	Neutr
			+0.0	+0.2							
12	196.541k	29.0	+0.1	+9.6	+0.0	+0.0	+0.0	38.9	53.8	-14.9	Neutr
			+0.0	+0.2							
13	488.878k	21.1	+0.0	+9.6	+0.1	+0.0	+0.0	31.0	46.2	-15.2	Neutr
			+0.0	+0.2							
14	728.129k	20.0	+0.0	+9.6	+0.1	+0.1	+0.0	30.0	46.0	-16.0	Neutr
			+0.0	+0.2							
15	6.905M	23.8	+0.1	+9.5	+0.2	+0.2	+0.0	33.9	50.0	-16.1	Neutr
			+0.0	+0.1							
16	254.718k	25.2	+0.0	+9.6	+0.0	+0.0	+0.0	35.0	51.6	-16.6	Neutr
			+0.0	+0.2							
17	2.795M	19.2	+0.1	+9.6	+0.1	+0.1	+0.0	29.2	46.0	-16.8	Neutr
			+0.0	+0.1							
18	7.004M	23.1	+0.1	+9.5	+0.2	+0.2	+0.0	33.2	50.0	-16.8	Neutr
			+0.0	+0.1							
19	6.833M	22.6	+0.1	+9.5	+0.2	+0.2	+0.0	32.7	50.0	-17.3	Neutr
			+0.0	+0.1							
20	7.067M	22.5	+0.1	+9.5	+0.2	+0.2	+0.0	32.6	50.0	-17.4	Neutr
			+0.0	+0.1							

CKC Laboratories, Inc. Date: 4/21/2010 Time: 10:56:06 AM Impinj, Inc. WO#. 90557 15.207 AC Mains - Average Test Lead: Neutral 120V 60Hz Sequence#: 2 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 90557 Date: 4/21/2010
Test Type: Conducted Emissions Time: 16:19:16
Equipment: RFID Sequence#: 6

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert Model: IPJR640 120V 60Hz

S/N: 37009510054

Test Equipment:

I cot Eq	ttip menti.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01492	50uH LISN-Line (dB)	3816/2NM	6/2/2009	6/2/2011
	AN01492	50uH LISN-Neutral (dB)	3816/2NM	6/2/2009	6/2/2011
T2	ANP05435	Attenuator	PE7015-10	9/5/2008	9/5/2010
T3	ANP05360	Cable	RG214	11/10/2008	11/10/2010
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T6	AN02611	High Pass Filter	HE9615-150K-50-720B	7/21/2008	7/21/2010
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
POE Switch	D-LINK	DES-1008PA	F3GR188000310
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 150 kHz - 30 MHz

22°C /Relative Humidity 35% / 102.0 kPa

Setup and testing per ANSI C63.4

EUT is transmitting continuously, fully modulated (100%).

Ethernet and USB ports are loaded. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

EUT power is 48VDC POE from a D-LINK POE switch.

The D-LINK is powered by an AC/DC power adapter; input power is 120VAC / 60Hz.

Ext Attn: 0 dB

Measur	Measurement Data:		Reading listed by margin.				Test Lead: Line				
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	13.191M	35.7	+0.6	+9.5	+0.2	+0.2	+0.0	46.3	50.0	-3.7	Line
	Ave		+0.0	+0.1							
٨	13.189M	37.0	+0.6	+9.5	+0.2	+0.2	+0.0	47.6	50.0	-2.4	Line
			+0.0	+0.1							
^	13.193M	35.8	+0.6	+9.5	+0.2	+0.2	+0.0	46.4	50.0	-3.6	Line
			+0.0	+0.1							

Page 14 of 90 Report No.: 90557-6A

4	12.175M	32.8	+0.6	+9.5	+0.2	+0.2	+0.0	43.4	50.0	-6.6	Line
			+0.0	+0.1							
5	14.211M	31.4	+0.6	+9.5	+0.2	+0.2	+0.0	42.0	50.0	-8.0	Line
			+0.0	+0.1							
6	15.220M	31.3	+0.6	+9.5	+0.2	+0.2	+0.0	41.9	50.0	-8.1	Line
			+0.0	+0.1							
7	16.238M	30.3	+0.6	+9.5	+0.3	+0.3	+0.0	41.1	50.0	-8.9	Line
			+0.0	+0.1							
8	12.679M	30.0	+0.6	+9.5	+0.2	+0.2	+0.0	40.6	50.0	-9.4	Line
			+0.0	+0.1							
9	508.513k	26.2	+0.1	+9.6	+0.1	+0.0	+0.0	36.2	46.0	-9.8	Line
			+0.0	+0.2							
10	24.354M	28.7	+1.0	+9.5	+0.3	+0.3	+0.0	40.1	50.0	-9.9	Line
			+0.1	+0.2							
11	16.743M	28.9	+0.6	+9.5	+0.3	+0.3	+0.0	39.8	50.0	-10.2	Line
			+0.0	+0.2							
12	13.697M	28.4	+0.6	+9.5	+0.2	+0.2	+0.0	39.0	50.0	-11.0	Line
			+0.0	+0.1							
13	11.670M	28.4	+0.6	+9.5	+0.2	+0.2	+0.0	39.0	50.0	-11.0	Line
			+0.0	+0.1				•••	= 0.0		
14	17.761M	27.8	+0.7	+9.5	+0.3	+0.3	+0.0	38.9	50.0	-11.1	Line
			+0.1	+0.2					10.0		
15	355.072k	27.3	+0.1	+9.6	+0.1	+0.0	+0.0	37.2	48.8	-11.6	Line
1.5	2.0503.6	242	+0.0	+0.1	0.1	0.1	0.0	211	450		Ţ.
16	2.978M	24.3	+0.2	+9.6	+0.1	+0.1	+0.0	34.4	46.0	-11.6	Line
17	22 2401 4	27.0	+0.0	+0.1	0.0	0.2	0.0	20.2	50.0	11.7	т.
17	23.340M	27.0	+0.9	+9.5	+0.3	+0.3	+0.0	38.3	50.0	-11.7	Line
10	1.61.6251	22.2	+0.1	+0.2	. 0. 0	. 0. 0	. 0. 0	12.5	55.4	11.0	т.
18	161.635k	33.2	+0.1	+9.6	+0.0	+0.0	+0.0	43.5	55.4	-11.9	Line
10	1645441	22.1	+0.0	+0.6	.0.0	.00	.00	12.2	55.0	11.0	т
19	164.544k	33.1	+0.1	+9.6	+0.0	+0.0	+0.0	43.3	55.2	-11.9	Line
20	2.02634	22.7	+0.0	+0.5	.0.1	. 0. 1	.0.0	22.0	46.0	10.0	T in
20	2.936M	23.7	+0.2	+9.6	+0.1	+0.1	+0.0	33.8	46.0	-12.2	Line
21	2.02014	22.6	+0.0	+0.1	.0.1	. 0.1	.00	22.7	46.0	10.2	т
21	3.029M	23.6	+0.2	+9.6	+0.1	+0.1	+0.0	33.7	46.0	-12.3	Line
22	20.70714	26.1	+0.0	+0.1	+0.2	.0.2	.00	27.2	50.0	10.7	T in a
22	20.797M	26.1	+0.8	+9.5	+0.3	+0.3	+0.0	37.3	50.0	-12.7	Line
<u></u>			+0.1	+0.2							

CKC Laboratories, Inc. Date: 4/21/2010 Time: 16:19:16 Impinj, Inc. WO#. 90557 15.207 AC Mains - Average Test Lead: Line 120V 60Hz Sequence#: 6 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj, Inc.

Specification: 15.207 AC Mains - Average

Work Order #: 90557 Date: 4/21/2010 Test Type: **Conducted Emissions** Time: 16:39:01 Equipment: **RFID** Sequence#: 8

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert Model:

IPJR640 120V 60Hz

S/N: 37009510054

Test Equipment:

I cot Eq	ttip menti.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN01492	50uH LISN-Line (dB)	3816/2NM	6/2/2009	6/2/2011
T1	AN01492	50uH LISN-Neutral (dB)	3816/2NM	6/2/2009	6/2/2011
T2	ANP05435	Attenuator	PE7015-10	9/5/2008	9/5/2010
T3	ANP05360	Cable	RG214	11/10/2008	11/10/2010
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T6	AN02611	High Pass Filter	HE9615-150K-50-720B	7/21/2008	7/21/2010
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
POE Switch	D-LINK	DES-1008PA	F3GR188000310
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 150 kHz - 30 MHz

22°C /Relative Humidity 35% / 102.0 kPa

Setup and testing per ANSI C63.4

EUT is transmitting continuously, fully modulated (100%).

Ethernet and USB ports are loaded. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

EUT power is 48VDC POE from a D-LINK POE switch.

The D-LINK is powered by an AC/DC power adapter; input power is 120VAC / 60Hz.

Ext Attn: 0 dB

Meas	surement Data:	Reading listed by margin.				Test Lead: Neutral					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
	1 350.900k	36.6	+0.0	+9.6	+0.1	+0.0	+0.0	46.4	48.9	-2.5	Neutr
	Ave		+0.0	+0.1							
,	^ 351.820k	37.5	+0.0	+9.6	+0.1	+0.0	+0.0	47.3	48.9	-1.6	Neutr
			+0.0	+0.1							
,	^ 353.618k	37.3	+0.0	+9.6	+0.1	+0.0	+0.0	47.1	48.9	-1.8	Neutr
			+0.0	+0.1							

Page 17 of 90 Report No.: 90557-6A

4	508.513k	27.0	+0.0	+9.6	+0.1	+0.0	+0.0	36.9	46.0	-9.1	Neutr
			+0.0	+0.2							
5	826.302k	26.0	+0.0	+9.6	+0.1	+0.1	+0.0	36.0	46.0	-10.0	Neutr
			+0.0	+0.2							
6	787.760k	25.2	+0.0	+9.6	+0.1	+0.1	+0.0	35.2	46.0	-10.8	Neutr
			+0.0	+0.2							
7	744.127k	25.0	+0.0	+9.6	+0.1	+0.1	+0.0	35.0	46.0	-11.0	Neutr
			+0.0	+0.2							
8	13.193M	28.6	+0.3	+9.5	+0.2	+0.2	+0.0	38.9	50.0	-11.1	Neutr
			+0.0	+0.1							
9	312.894k	29.1	+0.0	+9.6	+0.0	+0.0	+0.0	38.8	49.9	-11.1	Neutr
			+0.0	+0.1							
10	171.816k	33.5	+0.1	+9.6	+0.0	+0.0	+0.0	43.6	54.9	-11.3	Neutr
			+0.0	+0.4							
11	1.056M	24.4	+0.0	+9.6	+0.1	+0.1	+0.0	34.4	46.0	-11.6	Neutr
			+0.0	+0.2							
12	16.229M	27.5	+0.4	+9.5	+0.3	+0.3	+0.0	38.1	50.0	-11.9	Neutr
			+0.0	+0.1							
13	1.443M	23.6	+0.1	+9.6	+0.1	+0.1	+0.0	33.7	46.0	-12.3	Neutr
			+0.0	+0.2							
14	1.098M	23.5	+0.0	+9.6	+0.1	+0.1	+0.0	33.5	46.0	-12.5	Neutr
			+0.0	+0.2							
15	477.243k	24.0	+0.0	+9.6	+0.1	+0.0	+0.0	33.9	46.4	-12.5	Neutr
			+0.0	+0.2							
16	1.800M	23.4	+0.1	+9.6	+0.1	+0.1	+0.0	33.4	46.0	-12.6	Neutr
			+0.0	+0.1							
17	1.753M	23.4	+0.1	+9.6	+0.1	+0.1	+0.0	33.4	46.0	-12.6	Neutr
			+0.0	+0.1							
18	869.207k	23.3	+0.0	+9.6	+0.1	+0.1	+0.0	33.3	46.0	-12.7	Neutr
			+0.0	+0.2							
19	157.999k	32.0	+0.1	+9.6	+0.0	+0.0	+0.0	42.8	55.6	-12.8	Neutr
			+0.0	+1.1							
20	1.137M	23.1	+0.0	+9.6	+0.1	+0.1	+0.0	33.1	46.0	-12.9	Neutr
			+0.0	+0.2							
21	12.175M	26.7	+0.3	+9.5	+0.2	+0.2	+0.0	37.0	50.0	-13.0	Neutr
			+0.0	+0.1							
22	3.323M	22.9	+0.1	+9.5	+0.2	+0.2	+0.0	33.0	46.0	-13.0	Neutr
			+0.0	+0.1							

CKC Laboratories, Inc. Date: 4/21/2010 Time: 16:39:01 Impinj, Inc. WO#: 90557 15:207 AC Mains - Average Test Lead: Neutral 120V 60Hz Sequence#: 8 Ext ATTN: 0 dB

Test Setup Photos

15.247(a)(1)(i) 20 dB Bandwidth

Test Conditions: Frequency Range investigated: 902 - 928 MHz; 22º C / Relative Humidity 35% / 102.0 kPa; Conducted RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems. The EUT is transmitting continuously, fully modulated; the Ethernet port is connected to a laptop, but this is only used to configure the EUT for transmit testing. Low CH: 902.75 MHz; Mid CH: 915.25 MHz; High CH: 927.25 MHz.

Engineer Name: J. Gilbert

Test Equipment											
Equipment Model Cal Date Cal Due Asset											
Cable	27	4/17/2009	4/17/2011	ANP05238							
Cable	32026-2-29080-84	10/23/2009	10/23/2011	AN03121							
Attenuator	PE7015-10	9/5/2008	9/5/2010	ANP05435							
Spectrum Analyzer	E4440A	8/25/2009	8/25/2011	AN02872							

Test Data

15.247(a)(1)(i) - 20 dB Bandwidth

- (-/(// /			
Frequency MHz	Frequency MHz Measured 20 dB BW kHz		Pass/Fail
902.75	424	500	Pass
915.25	424	500	Pass
927.25	422	500	Pass

Page 22 of 90 Report No.: 90557-6A

Low Channel 20dB Bandwidth

Mid Channel 20dB Bandwidth

High Channel 20dB Bandwidth

Test Setup Diagram

Page 25 of 90 Report No.: 90557-6A

15.247(b)(1) Maximum Peak Power

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Impinj, Inc.**

Specification: 15.247(b) 902-928 MHz FHSS >50 Channels

 Work Order #:
 90557
 Date: 4/21/2010

 Test Type:
 Maximized Emissions
 Time: 17:56:16

Equipment: **RFID** Sequence#: 1

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

	T				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05238	Cable	27	4/17/2009	4/17/2011
T2	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
Т3	ANP05435	Attenuator	PE7015-10	9/5/2008	9/5/2010
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 902 - 928 MHz

22°C / Relative Humidity 35% / 102.2 kPa

Conducted RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems EUT is transmitting continuously, Fully modulated. The Ethernet port is connected to a laptop, but this is only used to configure the EUT for transmit testing.

Low CH: 902.75 MHz Mid CH: 915.25 MHz High CH: 927.25 MHz

> Page 26 of 90 Report No.: 90557-6A

Ext Attn: 0 dB

Measurement Data:		Reading listed by margin.			argin.	Test Distance: None					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBm	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	927.244M	17.7	+0.4	+0.8	+9.6		+0.0	28.5	30.0	-1.5	None
											101
2	902.754M	17.7	+0.4	+0.8	+9.6		+0.0	28.5	30.0	-1.5	None
											101
3	915.246M	17.7	+0.4	+0.8	+9.6	•	+0.0	28.5	30.0	-1.5	None
											101

15.247(b)(1) - Maximum Peak Power

	- (-// /		
Frequency MHz	· · ·		Pass/Fail
902.75	28.5	30.0	Pass
915.25	28.5	30.0	Pass
927.25	28.5	30.0	Pass

CKC Laboratories, Inc. Date: 4/21/2010 Time: 17:56:16 Impinj, Inc. WO#. 90557 15.247(b) 902-928 MHz FHSS >50 Channels Test Distance: None Sequence#: 1 Ext ATTN: 0 dB

Test Setup Diagram

Page 28 of 90 Report No.: 90557-6A

15.247(d) RF Conducted Spurious Emissions

<u>Test Conditions:</u> Frequency Range Investigated: 902 - 928 MHz; 22º C / 35% / 102.0 kPa; Conducted RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems; EUT is transmitting continuously, fully modulated; the Ethernet port is connected to a laptop, but this is only used to configure the EUT for transmit testing. Low CH: 902.75 MHz; Mid CH: 915.25 MHz; High CH: 927.25 MHz.

Engineer Name: J. Gilbert

Test Equipment									
Equipment Model Cal Date Cal Due Asset									
Cable	27	4/17/2009	4/17/2011	ANP05238					
Cable	32026-2-29080-84	10/23/2009	10/23/2011	AN03121					
Attenuator	PE7015-10	9/5/2008	9/5/2010	ANP05435					
Spectrum Analyzer	E4440A	8/25/2009	8/25/2011	AN02872					

Test Plots

Low Channel RF Conducted Spurious

Page 29 of 90 Report No.: 90557-6A

Mid Channel RF Conducted Spurious

High Channel RF Conducted Spurious

Test Setup Diagram

Page 31 of 90 Report No.: 90557-6A

15.247(d) RF Radiated Spurious Emissions

Test Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Impinj, Inc.** Specification: **15.247(d)**

Work Order #: 90557 Date: 4/21/2010
Test Type: Maximized Emissions Time: 4:51:26 PM

Equipment: RFID Sequence#: 6

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00052	Loop Antenna	6502	6/4/2008	6/4/2010
T2	ANP05360	Cable	RG214	11/10/2008	11/10/2010
T3	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T4	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
T5	AN01717	High Pass Filter	F3440-P005	7/21/2008	7/21/2010
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 30 kHz - 30 MHz

22°C / Relative Humidity 35% / 102.0 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems EUT is transmitting continuously, Fully modulated. The USB port is connected to a powered USB hub; there is no

traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Page 32 of 90 Report No.: 90557-6A

Ext Attn: 0 dB

Measui	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 6 Meters	1	
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2.185M	20.8	+10.4 +0.0	+0.1	+0.1	+0.0	-28.0	3.4	29.5	-26.1	Verti 100
2	101.880k	43.7	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-14.3	27.4	-41.7	Verti 100
3	96.600k	42.1	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-15.9	27.9	-43.8	Verti 100
4	102.720k	39.7	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-18.3	27.4	-45.7	Verti 100
5	97.320k	39.8	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-18.2	27.8	-46.0	Verti 100
6	107.640k	39.0	+9.9 +0.0	+0.0	+0.0	+0.0	-68.0	-19.1	27.0	-46.1	Verti 100
7	109.080k	38.7	+9.9 +0.0	+0.0	+0.0	+0.0	-68.0	-19.4	26.9	-46.3	Verti 100
8	106.440k	38.8	+9.9 +0.0	+0.0	+0.0	+0.0	-68.0	-19.3	27.1	-46.4	Verti 100
9	95.880k	39.2	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-18.8	28.0	-46.8	Verti 100
10	103.080k	38.2	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-19.8	27.4	-47.2	Verti 100
11	108.240k	37.8	+9.9 +0.0	+0.0	+0.0	+0.0	-68.0	-20.3	26.9	-47.2	Verti 100
12	95.400k	38.7	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-19.3	28.0	-47.3	Verti 100
13	94.920k	38.6	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-19.4	28.0	-47.4	Verti 100
14	101.160k	38.1	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-19.9	27.5	-47.4	Verti 100
15	90.600k	38.9	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-19.1	28.4	-47.5	Verti 100
16	94.440k	38.4	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-19.6	28.1	-47.7	Verti 100
17	98.160k	37.7	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-20.3	27.8	-48.1	Verti 100
18	91.560k	37.8	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-20.2	28.4	-48.6	Verti 100
19	103.560k	36.6	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-21.4	27.3	-48.7	Verti 100
20	92.160k	37.5	+10.0 +0.0	+0.0	+0.0	+0.0	-68.0	-20.5	28.3	-48.8	Verti 100

Page 33 of 90 Report No.: 90557-6A

CKC Laboratories, Inc. Date: 4/21/2010 Time: 4:51:26 PM Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 6 Meters Sequence#: 6 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/21/2010
Test Type: Maximized Emissions Time: 5:23:07 PM

Equipment: **RFID** Sequence#: 8

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T2	ANP05360	Cable	RG214	11/10/2008	11/10/2010
Т3	AN01517	Preamp	8447D	7/8/2008	7/8/2010
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 30 - 902 MHz 22°C / Relative Humidity 35% / 102.2 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measur	rement Data:	Reading listed by margin.			Test Distance: 3 Meters						
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	612.084M	33.6	+20.0	+1.6	-29.6	+1.9	+0.0	28.1	46.0	-17.9	Horiz
			+0.6				360				110
2	38.037M	35.6	+12.2	+0.4	-29.1	+0.4	+0.0	19.6	40.0	-20.4	Horiz
			+0.1				360				110
3	405.838M	34.4	+16.5	+1.3	-29.0	+1.5	+0.0	25.2	46.0	-20.8	Horiz
			+0.5				360				110
4	402.835M	34.1	+16.5	+1.3	-29.0	+1.5	+0.0	24.9	46.0	-21.1	Horiz
			+0.5				360				110
5	404.277M	34.0	+16.5	+1.3	-29.0	+1.5	+0.0	24.8	46.0	-21.2	Horiz
			+0.5				360				110

Page 35 of 90 Report No.: 90557-6A

_											
6	409.682M	33.8	+16.6	+1.3	-29.1	+1.5	+0.0	24.6	46.0	-21.4	Horiz
			+0.5				360				110
7	407.520M	33.7	+16.5	+1.3	-29.1	+1.5	+0.0	24.4	46.0	-21.6	Horiz
			+0.5				360				110
8	901.736M	94.1	+23.1	+1.9	-29.3	+2.0	+0.0	92.6	115.5	-22.9	Horiz
			+0.8				360				110
9	333.526M	33.7	+14.6	+1.3	-28.5	+1.3	+0.0	22.8	46.0	-23.2	Horiz
			+0.4				360				110
10	133.046M	34.8	+12.2	+0.7	-29.0	+0.7	+0.0	19.7	43.5	-23.8	Horiz
			+0.3				360				110
11	124.757M	34.6	+12.3	+0.7	-29.0	+0.7	+0.0	19.5	43.5	-24.0	Horiz
			+0.2				360				110
12	123.076M	34.8	+11.9	+0.7	-29.0	+0.7	+0.0	19.3	43.5	-24.2	Horiz
			+0.2				360				110
13	133.526M	33.9	+12.2	+0.7	-29.0	+0.7	+0.0	18.8	43.5	-24.7	Horiz
			+0.3				360				110
14	115.748M	34.4	+10.9	+0.6	-29.0	+0.6	+0.0	17.7	43.5	-25.8	Horiz
			+0.2				360				110
15	108.181M	34.1	+10.6	+0.6	-29.1	+0.6	+0.0	17.0	43.5	-26.5	Horiz
			+0.2				360				110
16	269.982M	32.4	+13.0	+1.0	-28.4	+1.1	+0.0	19.5	46.0	-26.5	Horiz
			+0.4				360				110
17	121.875M	32.5	+11.6	+0.7	-29.0	+0.7	+0.0	16.7	43.5	-26.8	Horiz
			+0.2				360				110
18	149.983M	31.2	+12.1	+0.8	-28.9	+0.8	+0.0	16.3	43.5	-27.2	Horiz
			+0.3				360				110
19	330.042M	29.4	+14.5	+1.3	-28.5	+1.3	+0.0	18.4	46.0	-27.6	Horiz
			+0.4				360				110
20	162.355M	30.4	+11.1	+0.8	-28.8	+0.9	+0.0	14.7	43.5	-28.8	Horiz
			+0.3				360				110

Customer: Impinj, Inc.
Specification: 15,247(d)

Work Order #: 90557 Date: 4/21/2010
Test Type: Maximized Emissions Time: 17:21:32

Equipment: **RFID** Sequence#: 7

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T2	ANP05360	Cable	RG214	11/10/2008	11/10/2010
T3	AN01517	Preamp	8447D	7/8/2008	7/8/2010
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 30 - 902 MHz 22°C / Relative Humidity 35% / 102.2 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	38.055M	52.9	+12.2	+0.4	-29.1	+0.4	+0.0	36.9	40.0	-3.1	Verti
(QP		+0.1				285				100
^	38.037M	51.2	+12.2	+0.4	-29.1	+0.4	+0.0	35.2	40.0	-4.8	Verti
			+0.1								140
3	37.531M	47.3	+12.4	+0.4	-29.1	+0.4	+0.0	31.5	40.0	-8.5	Verti
			+0.1								140
4	168.481M	39.4	+10.5	+0.8	-28.8	+0.9	+0.0	23.1	43.5	-20.4	Verti
			+0.3								140
5	74.553M	39.0	+7.6	+0.5	-29.1	+0.5	+0.0	18.7	40.0	-21.3	Verti
			+0.2								140

Page 38 of 90 Report No.: 90557-6A

6	75.060M	38.8	+7.7	+0.5	-29.1	+0.5	+0.0	18.6	40.0	-21.4	Verti
			+0.2								140
7	166.079M	38.1	+10.7	+0.8	-28.8	+0.9	+0.0	22.0	43.5	-21.5	Verti
			+0.3								140
8	74.047M	38.3	+7.6	+0.5	-29.1	+0.5	+0.0	18.0	40.0	-22.0	Verti
			+0.2								140
9	73.604M	38.1	+7.5	+0.5	-29.1	+0.5	+0.0	17.7	40.0	-22.3	Verti
			+0.2								140
10	612.324M	28.9	+20.0	+1.6	-29.6	+1.9	+0.0	23.4	46.0	-22.6	Verti
			+0.6								140
11	73.034M	37.6	+7.4	+0.5	-29.1	+0.5	+0.0	17.1	40.0	-22.9	Verti
			+0.2								140
12	609.321M	28.3	+20.0	+1.6	-29.6	+1.9	+0.0	22.8	46.0	-23.2	Verti
			+0.6								140
13	613.886M	28.2	+20.0	+1.6	-29.6	+1.9	+0.0	22.7	46.0	-23.3	Verti
			+0.6								140
14	612.925M	27.9	+20.0	+1.6	-29.6	+1.9	+0.0	22.4	46.0	-23.6	Verti
			+0.6								140
15	611.844M	27.9	+20.0	+1.6	-29.6	+1.9	+0.0	22.4	46.0	-23.6	Verti
			+0.6								140
16	610.282M	27.8	+20.0	+1.6	-29.6	+1.9	+0.0	22.3	46.0	-23.7	Verti
			+0.6								140
17	610.883M	27.8	+20.0	+1.6	-29.6	+1.9	+0.0	22.3	46.0	-23.7	Verti
			+0.6								140
18	608.000M	27.6	+20.0	+1.6	-29.6	+1.9	+0.0	22.1	46.0	-23.9	Verti
- 10			+0.6								140
19	108.781M	36.4	+10.7	+0.6	-29.1	+0.6	+0.0	19.4	43.5	-24.1	Verti
26	100 1107 5	20.0	+0.2	1.0	20.1	4.5		21.7	450	216	140
20	409.442M	30.9	+16.6	+1.3	-29.1	+1.5	+0.0	21.7	46.0	-24.3	Verti
21	1.60.0013.5	25.0	+0.5	0.0	20.6	0.0	0.0	10.0	10.5	24.5	140
21	168.001M	35.3	+10.5	+0.8	-28.8	+0.9	+0.0	19.0	43.5	-24.5	Verti
			+0.3								140

Page 39 of 90 Report No.: 90557-6A

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/21/2010
Test Type: Maximized Emissions Time: 5:46:47 PM

Equipment: **RFID** Sequence#: 10

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T2	ANP05360	Cable	RG214	11/10/2008	11/10/2010
Т3	AN01517	Preamp	8447D	7/8/2008	7/8/2010
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 928 - 1000 MHz

22°C / Relative Humidity 35% / 102.2 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	998.819M	37.5	+24.4	+2.1	-29.0	+2.1	+0.0	37.9	54.0	-16.1	Horiz
			+0.8				360				130
2	999.729M	37.3	+24.4	+2.1	-29.0	+2.1	+0.0	37.7	54.0	-16.3	Horiz
			+0.8				360				130
3	988.118M	37.0	+24.3	+2.0	-29.0	+2.2	+0.0	37.3	54.0	-16.7	Horiz
			+0.8				360				130
4	999.385M	36.9	+24.4	+2.1	-29.0	+2.1	+0.0	37.3	54.0	-16.7	Horiz
			+0.8				360				130
5	985.191M	37.0	+24.2	+2.0	-29.1	+2.2	+0.0	37.1	54.0	-16.9	Horiz
			+0.8				360				130

Page 41 of 90 Report No.: 90557-6A

6	988.709M	36.8	+24.3	+2.0	-29.0	+2.2	+0.0	37.1	54.0	-16.9	Horiz
			+0.8				360				130
7	997.515M	36.7	+24.4	+2.1	-29.0	+2.1	+0.0	37.1	54.0	-16.9	Horiz
			+0.8				360				130
8	989.471M	36.7	+24.3	+2.0	-29.0	+2.2	+0.0	37.0	54.0	-17.0	Horiz
			+0.8				360				130
9	989.668M	36.7	+24.3	+2.0	-29.0	+2.2	+0.0	37.0	54.0	-17.0	Horiz
			+0.8				360				130
10	991.390M	36.7	+24.3	+2.0	-29.0	+2.1	+0.0	36.9	54.0	-17.1	Horiz
			+0.8				360				130
11	982.435M	36.9	+24.2	+1.9	-29.1	+2.2	+0.0	36.9	54.0	-17.1	Horiz
			+0.8				360				130
12	980.738M	36.9	+24.2	+1.9	-29.1	+2.2	+0.0	36.9	54.0	-17.1	Horiz
			+0.8				360				130
13	988.020M	36.6	+24.3	+2.0	-29.0	+2.2	+0.0	36.9	54.0	-17.1	Horiz
			+0.8				360				130
14	986.740M	36.8	+24.2	+2.0	-29.1	+2.2	+0.0	36.9	54.0	-17.1	Horiz
			+0.8				360				130
15	984.453M	36.8	+24.2	+1.9	-29.1	+2.2	+0.0	36.8	54.0	-17.2	Horiz
			+0.8				360				130
16	983.444M	36.8	+24.2	+1.9	-29.1	+2.2	+0.0	36.8	54.0	-17.2	Horiz
			+0.8				360				130
17	992.694M	36.6	+24.3	+2.0	-29.0	+2.1	+0.0	36.8	54.0	-17.2	Horiz
			+0.8				360				130
18	987.109M	36.7	+24.2	+2.0	-29.1	+2.2	+0.0	36.8	54.0	-17.2	Horiz
			+0.8				360				130
19	986.199M	36.6	+24.2	+2.0	-29.1	+2.2	+0.0	36.7	54.0	-17.3	Horiz
			+0.8				360				130
20	988.438M	36.4	+24.3	+2.0	-29.0	+2.2	+0.0	36.7	54.0	-17.3	Horiz
			+0.8				360				130

Customer: Impinj, Inc. Specification: 15.247(d)

Work Order #: 90557 Date: 4/21/2010
Test Type: Maximized Emissions Time: 5:42:55 PM

Equipment: **RFID** Sequence#: 9

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01993	Biconilog Antenna	CBL6111C	10/9/2009	10/9/2011
T2	ANP05360	Cable	RG214	11/10/2008	11/10/2010
Т3	AN01517	Preamp	8447D	7/8/2008	7/8/2010
T4	ANP05366	Cable	RG-214	11/5/2008	11/5/2010
T5	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 928 - 1000 MHz

22°C / Relative Humidity 35% / 102.2 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measurement Data: Reading listed by margin. Test Distance: 3 Meters											
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5								
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	965.274M	36.0	+24.0	+1.8	-29.1	+2.2	+0.0	35.7	54.0	-18.3	Verti
			+0.8								130
2	964.290M	34.5	+24.0	+1.8	-29.1	+2.2	+0.0	34.2	54.0	-19.8	Verti
			+0.8								130
3	966.330M	32.9	+24.0	+1.8	-29.1	+2.2	+0.0	32.6	54.0	-21.4	Verti
			+0.8								130
4	960.331M	32.8	+23.9	+1.8	-29.2	+2.2	+0.0	32.3	54.0	-21.7	Verti
			+0.8								130
5	960.547M	32.7	+23.9	+1.8	-29.2	+2.2	+0.0	32.2	54.0	-21.8	Verti
			+0.8								130

Page 44 of 90 Report No.: 90557-6A

6	964.434M	32.4	+24.0	+1.8	-29.1	+2.2	+0.0	32.1	54.0	-21.9	Verti
			+0.8								130
7	999.336M	31.3	+24.4	+2.1	-29.0	+2.1	+0.0	31.7	54.0	-22.3	Verti
			+0.8								130
8	960.283M	32.1	+23.9	+1.8	-29.2	+2.2	+0.0	31.6	54.0	-22.4	Verti
			+0.8								130
9	967.409M	31.9	+24.0	+1.8	-29.1	+2.2	+0.0	31.6	54.0	-22.4	Verti
			+0.8								130
10	964.794M	31.6	+24.0	+1.8	-29.1	+2.2	+0.0	31.3	54.0	-22.7	Verti
			+0.8								130
11	960.019M	31.5	+23.9	+1.8	-29.2	+2.2	+0.0	31.0	54.0	-23.0	Verti
			+0.8								130
12	962.754M	31.4	+23.9	+1.8	-29.1	+2.2	+0.0	31.0	54.0	-23.0	Verti
			+0.8								130
13	967.625M	31.0	+24.0	+1.8	-29.1	+2.2	+0.0	30.7	54.0	-23.3	Verti
			+0.8								130
14	999.213M	30.2	+24.4	+2.1	-29.0	+2.1	+0.0	30.6	54.0	-23.4	Verti
			+0.8								130
15	979.262M	30.6	+24.1	+1.9	-29.1	+2.2	+0.0	30.5	54.0	-23.5	Verti
			+0.8								130
16	967.146M	30.7	+24.0	+1.8	-29.1	+2.2	+0.0	30.4	54.0	-23.6	Verti
			+0.8								130
17	962.874M	30.5	+23.9	+1.8	-29.1	+2.2	+0.0	30.1	54.0	-23.9	Verti
			+0.8								130
18	968.297M	30.4	+24.0	+1.8	-29.1	+2.2	+0.0	30.1	54.0	-23.9	Verti
			+0.8								130
19	989.963M	29.8	+24.3	+2.0	-29.0	+2.1	+0.0	30.0	54.0	-24.0	Verti
			+0.8								130
20	963.858M	30.3	+23.9	+1.8	-29.1	+2.2	+0.0	29.9	54.0	-24.1	Verti
			+0.8								130

Page 45 of 90 Report No.: 90557-6A

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/21/2010
Test Type: Maximized Emissions Time: 19:08:17
Equipment: RFID Sequence#: 13
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

1 cst Lqui	pintenti				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
T3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 1000 - 8000 MHz

22°C / Relative Humidity 35% / 102.2 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 902.75 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Meas	surement Data:	Re	Reading listed by margin.			Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
	1 7330.365M	38.7	+35.2	+0.2	+0.5	-34.6	+0.0	47.6	54.0	-6.4	Horiz
			+5.2	+2.4							100
1	2 7539.315M	38.1	+35.5	+0.2	+0.4	-34.7	+0.0	47.4	54.0	-6.6	Horiz
			+5.4	+2.5							100
	3 7673.640M	37.9	+35.6	+0.1	+0.5	-34.7	+0.0	47.3	54.0	-6.7	Horiz
			+5.4	+2.5							100
	4 7713.440M	37.7	+35.7	+0.1	+0.5	-34.6	+0.0	47.3	54.0	-6.7	Horiz
			+5.4	+2.5							100

Page 47 of 90 Report No.: 90557-6A

5 7638.815M 37.8 +35.6 +0.2 +0.4 -34.8 +0.0 47.2 54.0 -45.4 +2.6	6.8 Horiz
	100
6 7279.620M 38.2 +35.2 +0.2 +0.5 -34.6 +0.0 47.1 54.0 -6 +5.2 +2.4	5.9 Horiz 100
	5.9 Horiz
+5.4 +2.6	100
	7.1 Horiz
+5.4 +2.5	100
	7.2 Horiz
+5.4 +2.6	100
	7.3 Horiz
+5.4 +2.5	100
	7.4 Horiz
+5.3 +2.3	100
	7.4 Horiz
+5.4 +2.5	100
	7.6 Horiz
+5.3 +2.3	100
14 7521.405M 37.2 +35.4 +0.2 +0.4 -34.7 +0.0 46.4 54.0 -	7.6 Horiz
+5.4 +2.5	100
15 7479.615M 37.1 +35.4 +0.2 +0.4 -34.6 +0.0 46.3 54.0 -	7.7 Horiz
+5.4 +2.4	100
16 5416.413M 38.4 +33.6 +0.2 +0.5 -33.9 +0.0 45.5 54.0 -4	8.5 Horiz
+4.6 +2.1	100
17 5436.433M 36.6 +33.7 +0.2 +0.5 -33.9 +0.0 43.9 54.0 -1	0.1 Horiz
+4.6 +2.2	100
	1.1 Horiz
Ave +1.8 +0.8 185	100
	2.4 Horiz
+1.8 +0.8 185	100
	0.0 Horiz
+1.8 +0.8	100
	2.0 Horiz
Ave +1.8 +0.8 185	100
	1.6 Horiz
+1.8 +0.8 185	100
	0.2 Horiz
	100
+1.8 +0.8 24 1013.191M 35.2 +22.3 +18.1 +0.1 -37.1 +0.0 41.2 54.0 -1	
	100
	1.2 Horiz
+1.8 +0.8 180	100
	0.3 Horiz
+1.8 +0.8	100

CKC Laboratories, Inc. Date: 4/21/2010 Time: 19:08:17 Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 3 Meters Sequence#: 13 Ext ATTN: 0 dB

Customer: Impinj, Inc. Specification: 15.247(d)

Work Order #: 90557 Date: 4/21/2010
Test Type: Maximized Emissions Time: 6:34:37 PM

Equipment: **RFID** Sequence#: 11

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

	L .				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN02750	High Pass Filter	9SH10-	3/15/2010	3/15/2012
			1000/T10000-O/O		
T3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

T I			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 1000 - 8000 MHz

22°C / Relative Humidity 35% / 102.2 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 902.75 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

LACI	tttii. o ab										
Measu	irement Data:	Reading listed by margin.			argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	7739.310M	37.9	+35.7	+0.4	+0.5	-34.6	+0.0	47.8	54.0	-6.2	Verti
			+5.4	+2.5			360				100
2	5416.413M	40.7	+33.6	+0.1	+0.5	-33.9	+0.0	47.7	54.0	-6.3	Verti
			+4.6	+2.1			360				100
3	7704.485M	37.7	+35.7	+0.4	+0.5	-34.6	+0.0	47.6	54.0	-6.4	Verti
			+5.4	+2.5			360				100

Page 50 of 90 Report No.: 90557-6A

4 7734.335N	<i>M</i> 37.6	+35.7	+0.4	+0.5	-34.6	+0.0	47.5	54.0	-6.5	Verti
		+5.4	+2.5			360				100
5 7605.980N	Λ 38.0	+35.5	+0.4	+0.4	-34.9	+0.0	47.4	54.0	-6.6	Verti
		+5.4	+2.6			360				100
6 7654.735N	<i>A</i> 37.7	+35.6	+0.4	+0.5	-34.7	+0.0	47.4	54.0	-6.6	Verti
		+5.4	+2.5			360				100
7 7296.535N	<i>A</i> 38.3	+35.2	+0.3	+0.5	-34.6	+0.0	47.3	54.0	-6.7	Verti
		+5.2	+2.4			360				100
8 7667.670N	<i>M</i> 37.6	+35.6	+0.4	+0.5	-34.7	+0.0	47.3	54.0	-6.7	Verti
		+5.4	+2.5			360				100
9 7472.650N	<i>M</i> 37.9	+35.4	+0.4	+0.4	-34.6	+0.0	47.2	54.0	-6.8	Verti
		+5.3	+2.4			360				100
10 7730.355N	<i>A</i> 37.3	+35.7	+0.4	+0.5	-34.6	+0.0	47.2	54.0	-6.8	Verti
		+5.4	+2.5			360				100
11 7360.215N	<i>A</i> 38.2	+35.3	+0.3	+0.5	-34.6	+0.0	47.2	54.0	-6.8	Verti
		+5.2	+2.3			360				100
12 7379.120N	Λ 38.0	+35.3	+0.4	+0.5	-34.6	+0.0	47.2	54.0	-6.8	Verti
		+5.3	+2.3			360				100
13 7315.440N	Л 38.1	+35.2	+0.3	+0.5	-34.6	+0.0	47.1	54.0	-6.9	Verti
		+5.2	+2.4			360				100
14 7509.465N	<i>A</i> 37.7	+35.4	+0.3	+0.4	-34.6	+0.0	47.1	54.0	-6.9	Verti
		+5.4	+2.5			360				100
15 7492.550N	<i>A</i> 37.5	+35.4	+0.4	+0.4	-34.6	+0.0	46.9	54.0	-7.1	Verti
		+5.4	+2.4			360				100
16 7338.325N	<i>M</i> 37.6	+35.2	+0.3	+0.5	-34.6	+0.0	46.6	54.0	-7.4	Verti
		+5.2	+2.4			360				100
17 5428.425N	A 36.8	+33.7	+0.1	+0.5	-33.9	+0.0	44.0	54.0	-10.0	Verti
		+4.6	+2.2			360				100
18 5436.433N	<i>A</i> 36.8	+33.7	+0.1	+0.5	-33.9	+0.0	44.0	54.0	-10.0	Verti
		+4.6	+2.2			360				100
19 5439.436N	<i>A</i> 36.7	+33.7	+0.1	+0.5	-33.9	+0.0	43.9	54.0	-10.1	Verti
		+4.6	+2.2			360				100
20 5458.455N	<i>A</i> 36.6	+33.7	+0.1	+0.5	-33.9	+0.0	43.8	54.0	-10.2	Verti
		+4.6	+2.2			360				100

CKC Laboratories, Inc. Date: 4/21/2010 Time: 6:34:37 PM Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 3 Meters Sequence#: 11 Ext ATTN: 0 dB

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 08:48:14
Equipment: RFID Sequence#: 15
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

1 cst Equi	pintenti				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
Т3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 1000 - 8000 MHz

21°C / Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 915.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Meası	irement Data:	Re	eading lis	ted by ma	ırgin.		Тє	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	7694.535M	38.5	+35.7	+0.1	+0.5	-34.6	+0.0	48.1	54.0	-5.9	Horiz
			+5.4	+2.5			360				101
2	7259.720M	38.5	+35.1	+0.2	+0.5	-34.6	+0.0	47.3	54.0	-6.7	Horiz
			+5.2	+2.4			360				101
3	7740.305M	37.5	+35.7	+0.1	+0.5	-34.6	+0.0	47.1	54.0	-6.9	Horiz
			+5.4	+2.5			360				101
4	7331.360M	38.1	+35.2	+0.2	+0.5	-34.6	+0.0	47.0	54.0	-7.0	Horiz
			+5.2	+2.4			360				101

Page 53 of 90 Report No.: 90557-6A

5	7286.585M	38.0	+35.2	+0.2	+0.5	-34.6	+0.0	46.9	54.0	-7.1	Horiz
	50 65 6003 5	20.1	+5.2	+2.4	0.7	21.5	360	1.50			101
6	7265.690M	38.1	+35.1	+0.2	+0.5	-34.6	+0.0	46.9	54.0	-7.1	Horiz
			+5.2	+2.4			360				101
7	7625.880M	37.5	+35.6	+0.2	+0.4	-34.8	+0.0	46.9	54.0	-7.1	Horiz
			+5.4	+2.6			360				101
8	7621.900M	37.5	+35.6	+0.2	+0.4	-34.8	+0.0	46.9	54.0	-7.1	Horiz
			+5.4	+2.6			360				101
9	7524.390M	37.6	+35.4	+0.2	+0.4	-34.7	+0.0	46.8	54.0	-7.2	Horiz
			+5.4	+2.5			360				101
10	7657.720M	37.3	+35.6	+0.2	+0.5	-34.7	+0.0	46.8	54.0	-7.2	Horiz
			+5.4	+2.5			360				101
11	7308.475M	37.8	+35.2	+0.2	+0.5	-34.6	+0.0	46.7	54.0	-7.3	Horiz
			+5.2	+2.4			360				101
12	1057.000M	47.3	+22.6	+10.3	+0.2	-36.9	+0.0	46.3	54.0	-7.7	Horiz
	220001.1		+1.9	+0.9		20.7	360		2		101
13	1059.000M	47.1	+22.6	+9.9	+0.2	-36.9	+0.0	45.7	54.0	-8.3	Horiz
13	1037.000141	77.1	+1.9	+0.9	10.2	30.7	360	73.7	54.0	0.5	1012
1/1	1000.795M	35.6	+22.2	+20.4	+0.1	-37.2	+0.0	43.7	54.0	-10.3	Horiz
	Ave	33.0	+1.8	+0.8	+0.1	-31.2	180	45.7	34.0	-10.5	100
	1000.795M	48.6	+22.2	+20.4	+0.1	-37.2	+0.0	56.7	54.0	+2.7	
	1000.793WI	48.0			+0.1	-31.2		30.7	34.0	+2.7	Horiz
	1000 70514	15.7	+1.8	+0.8	. 0. 1	27.2	180	<i>52.0</i>	510	0.2	100
	1000.795M	45.7	+22.2	+20.4	+0.1	-37.2	+0.0	53.8	54.0	-0.2	Horiz
17	5415 4143 5	26.6	+1.8	+0.8	0.5	22.0	360	40.7	540	10.2	101
17	5417.414M	36.6	+33.6	+0.2	+0.5	-33.9	+0.0	43.7	54.0	-10.3	Horiz
			+4.6	+2.1			360				101
18	5396.393M	36.3	+33.6	+0.2	+0.5	-33.9	+0.0	43.4	54.0	-10.6	Horiz
			+4.6	+2.1			360				101
19	5435.432M	36.1	+33.7	+0.2	+0.5	-33.9	+0.0	43.4	54.0	-10.6	Horiz
			+4.6	+2.2			360				101
20	1011.503M	35.6	+22.3	+18.4	+0.1	-37.1	+0.0	41.9	54.0	-12.1	Horiz
	Ave		+1.8	+0.8			180				101
^	1011.503M	49.8	+22.3	+18.4	+0.1	-37.1	+0.0	56.1	54.0	+2.1	Horiz
			+1.8	+0.8			180				101
^	1011.503M	47.0	+22.3	+18.4	+0.1	-37.1	+0.0	53.3	54.0	-0.7	Horiz
L			+1.8	+0.8			360				101
23	1035.494M	35.8	+22.5	+14.1	+0.2	-37.0	+0.0	38.2	54.0	-15.8	Horiz
	Ave		+1.8	+0.8			180				100
٨	1035.494M	49.3	+22.5	+14.1	+0.2	-37.0	+0.0	51.7	54.0	-2.3	Horiz
			+1.8	+0.8			180				100
٨	1035.494M	46.9	+22.5	+14.1	+0.2	-37.0	+0.0	49.3	54.0	-4.7	Horiz
	1000.17 1111	10.7	+1.8	+0.8	. 3.2	57.0	360	17.5	2 1.0	1.,	1012
26	1039.469M	35.9	+22.5	+13.3	+0.2	-37.0	+0.0	37.5	54.0	-16.5	Horiz
	Ave	55.7	+22.3 $+1.8$	+0.8	10.2	31.0	180	٠١٠٦	27.0	10.5	100
^	1039.469M	49.1	+22.5	+13.3	+0.2	-37.0	+0.0	50.7	54.0	-3.3	Horiz
	1037.407111	47.1	+22.3	+13.5	+0.∠	-57.0	+0.0 180	50.7	J4.U	-3.3	100
	1020 46014	47.5		+13.3	10.2	27.0	+0.0	49.1	540	4.0	
	1039.469M	41.3	+22.5		+0.2	-37.0		49.1	54.0	-4.9	Horiz
			+1.8	+0.8			360				101

Page 54 of 90 Report No.: 90557-6A

CKC Laboratories, Inc. Date: 4/22/2010 Time: 08:48:14 Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 3 Meters Sequence#: 15 Ext ATTN: 0 dB

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 08:17:42
Equipment: RFID Sequence#: 14
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

T CST Eq	птритент.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
T3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support 2 criters.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 1000 - 8000 MHz

21°C / Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 915.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measu	irement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	7738.315M	38.5	+35.7	+0.1	+0.5	-34.6	+0.0	48.1	54.0	-5.9	Verti
			+5.4	+2.5			360				100
2	7298.525M	39.0	+35.2	+0.2	+0.5	-34.6	+0.0	47.9	54.0	-6.1	Verti
			+5.2	+2.4			360				100
3	7459.715M	38.6	+35.4	+0.2	+0.4	-34.6	+0.0	47.7	54.0	-6.3	Verti
			+5.3	+2.4			360				100
4	7270.665M	38.7	+35.1	+0.2	+0.5	-34.6	+0.0	47.5	54.0	-6.5	Verti
			+5.2	+2.4			360				100

Page 56 of 90 Report No.: 90557-6A

5	7273.650M	38.5	+35.1	+0.2	+0.5	-34.6	+0.0	47.3	54.0	-6.7	Verti
			+5.2	+2.4			360				100
6	7277.630M	38.4	+35.1	+0.2	+0.5	-34.6	+0.0	47.2	54.0	-6.8	Verti
			+5.2	+2.4			360				100
7	7528.370M	37.7	+35.5	+0.2	+0.4	-34.7	+0.0	47.0	54.0	-7.0	Verti
			+5.4	+2.5			360				100
8	7675.630M	37.6	+35.6	+0.1	+0.5	-34.7	+0.0	47.0	54.0	-7.0	Verti
			+5.4	+2.5			360				100
9	7691.550M	37.4	+35.6	+0.1	+0.5	-34.6	+0.0	46.9	54.0	-7.1	Verti
			+5.4	+2.5			360				100
10	7420.910M	37.9	+35.3	+0.2	+0.5	-34.6	+0.0	46.9	54.0	-7.1	Verti
			+5.3	+2.3			360				100
11	7514.440M	37.6	+35.4	+0.2	+0.4	-34.6	+0.0	46.9	54.0	-7.1	Verti
			+5.4	+2.5			360				100
12	7625.880M	37.5	+35.6	+0.2	+0.4	-34.8	+0.0	46.9	54.0	-7.1	Verti
			+5.4	+2.6			360				100
13	7518.420M	37.6	+35.4	+0.2	+0.4	-34.7	+0.0	46.8	54.0	-7.2	Verti
10	70101.201.1	27.0	+5.4	+2.5		<i>C</i> ,	360		<i>c</i>	· ·-	100
14	7321.999M	37.8	+35.2	+0.2	+0.5	-34.6	+0.0	46.7	54.0	-7.3	Verti
	Ave	37.0	+5.2	+2.4	10.5	5 1.0	199	10.7	2 1.0	7.5	101
	7322.037M	44.1	+35.2	+0.2	+0.5	-34.6	+0.0	53.0	54.0	-1.0	Verti
	7322.037111		+5.2	+2.4	10.5	5 1.0	199	55.0	2 1.0	1.0	101
^	7322.037M	41.7	+35.2	+0.2	+0.5	-34.6	+0.0	50.6	54.0	-3.4	Verti
	7322.037111	11.7	+5.2	+2.4	10.5	31.0	360	50.0	31.0	3.1	100
17	7608.965M	37.5	+35.5	+0.2	+0.4	-34.9	+0.0	46.7	54.0	-7.3	Verti
1 /	7000.703IVI	37.3	+5.4	+2.6	10.4	54.7	360	40.7	34.0	7.5	100
18	7600.010M	37.4	+35.5	+0.2	+0.4	-34.9	+0.0	46.6	54.0	-7.4	Verti
10	7000.010IVI	37.4	+5.4	+2.6	10.4	-34.7	360	40.0	34.0	-/. -	100
10	7472.650M	37.5	+35.4	+0.2	+0.4	-34.6	+0.0	46.6	54.0	-7.4	Verti
19	7472.030WI	31.3	+5.3	+2.4	⊤0. 4	-34.0	360	40.0	34.0	-/. -	100
20	5459.456M	37.4	+33.7	+0.2	+0.5	-33.9	+0.0	44.7	54.0	-9.3	Verti
20	J+J7.4JUM	31.4	+33.7	+0.2	+0.5	-33.9	±0.0 360	44.7	34.0	-7.3	100
21	5395.392M	36.5	+33.6	+0.2	+0.5	-33.9	+0.0	43.6	54.0	-10.4	Verti
21	JJJJ.JJ2IVI	30.3		+0.2	+0.5	-33.9	+0.0 360	43.0	34.0	-10.4	100
22	1000.887M	32.6	+4.6	+20.3	+0.1	-37.2	+0.0	40.6	54.0	-13.4	
		32.0	+22.2 +1.8	+20.3	+0.1	-31.2	+0.0 180	40.0	34.0	-13.4	Verti 100
	Ave 1000.887M	46.4		+20.3	ιO 1	27.2		54.4	54.0	+0.4	
	1000.88/M	40.4	+22.2		+0.1	-37.2	+0.0	54.4	34.0	+0.4	Verti
	1000 00714	44.2	+1.8	+0.8	. 0. 1	27.0	180	<i>5</i> 0.0	5 40	1.0	100
	1000.887M	44.2	+22.2	+20.3	+0.1	-37.2	+0.0	52.2	54.0	-1.8	Verti
			+1.8	+0.8			360				100

Page 57 of 90 Report No.: 90557-6A

CKC Laboratories, Inc. Date: 4/22/2010 Time: 08:17:42 Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 3 Meters Sequence#: 14 Ext ATTN: 0 dB

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 09:14:47
Equipment: RFID Sequence#: 17

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

I cot Equi	pintentt				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
Т3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 1000 - 8000 MHz

21°C /Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 927.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measi	ırement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	1040.000M	46.7	+22.5	+13.3	+0.2	-37.0	+0.0	48.3	54.0	-5.7	Horiz
			+1.8	+0.8			360				100
2	7661.700M	37.8	+35.6	+0.2	+0.5	-34.7	+0.0	47.3	54.0	-6.7	Horiz
			+5.4	+2.5			360				100
3	7332.355M	38.3	+35.2	+0.2	+0.5	-34.6	+0.0	47.2	54.0	-6.8	Horiz
			+5.2	+2.4			360				100
4	7738.315M	37.6	+35.7	+0.1	+0.5	-34.6	+0.0	47.2	54.0	-6.8	Horiz
			+5.4	+2.5			360				100

Page 59 of 90 Report No.: 90557-6A

5 7678	8.615M	37.3	+35.6	+0.1	+0.5	-34.7	+0.0	46.7	54.0	-7.3	Horiz
			+5.4	+2.5			360				100
6 7670	0.655M	37.3	+35.6	+0.1	+0.5	-34.7	+0.0	46.7	54.0	-7.3	Horiz
			+5.4	+2.5			360				100
7 5399	9.396M	37.0	+33.6	+0.2	+0.5	-33.9	+0.0	44.1	54.0	-9.9	Horiz
			+4.6	+2.1			360				100
8 106	7.000M	46.4	+22.7	+8.5	+0.2	-36.9	+0.0	43.7	54.0	-10.3	Horiz
			+1.9	+0.9			360				100
9 1003	3.498M	35.7	+22.2	+19.9	+0.1	-37.2	+0.0	43.3	54.0	-10.7	Horiz
Ave			+1.8	+0.8			180				101
^ 1003	3.498M	48.5	+22.2	+19.9	+0.1	-37.2	+0.0	56.1	54.0	+2.1	Horiz
			+1.8	+0.8			180				101
^ 1003	3.498M	46.2	+22.2	+19.9	+0.1	-37.2	+0.0	53.8	54.0	-0.2	Horiz
			+1.8	+0.8			360				100
12 4740	0.738M	37.3	+32.6	+0.3	+0.4	-33.8	+0.0	43.1	54.0	-10.9	Horiz
			+4.3	+2.0			360				100
13 392	7.926M	38.6	+31.7	+0.3	+0.3	-33.5	+0.0	42.9	54.0	-11.1	Horiz
			+3.7	+1.8			360				100
14 536	5.363M	36.1	+33.5	+0.2	+0.4	-33.9	+0.0	42.9	54.0	-11.1	Horiz
			+4.5	+2.1			360				100
15 454	1.539M	37.5	+32.4	+0.3	+0.4	-33.9	+0.0	42.7	54.0	-11.3	Horiz
			+4.1	+1.9			360				100
16 536	0.357M	35.9	+33.5	+0.2	+0.4	-33.9	+0.0	42.7	54.0	-11.3	Horiz
			+4.5	+2.1			360				100
17 4720	0.718M	36.9	+32.5	+0.3	+0.4	-33.8	+0.0	42.6	54.0	-11.4	Horiz
			+4.3	+2.0			360				100
18 505	5.053M	36.5	+32.9	+0.2	+0.4	-33.8	+0.0	42.5	54.0	-11.5	Horiz
			+4.3	+2.0			360				100
19 4999	9.997M	36.2	+32.8	+0.2	+0.4	-33.7	+0.0	42.2	54.0	-11.8	Horiz
			+4.3	+2.0			360				100
20 466	5.663M	36.6	+32.5	+0.3	+0.4	-33.8	+0.0	42.1	54.0	-11.9	Horiz
			+4.2	+1.9			360				100
21 470:	5.703M	36.4	+32.5	+0.3	+0.4	-33.8	+0.0	42.1	54.0	-11.9	Horiz
			+4.3	+2.0			360				100
22 103	4.585M	35.4	+22.5	+14.2	+0.2	-37.0	+0.0	37.9	54.0	-16.1	Horiz
Ave			+1.8	+0.8			180				101
^ 1034	4.585M	48.5	+22.5	+14.2	+0.2	-37.0	+0.0	51.0	54.0	-3.0	Horiz
			+1.8	+0.8			180				101
^ 1034	4.585M	46.3	+22.5	+14.2	+0.2	-37.0	+0.0	48.8	54.0	-5.2	Horiz
			+1.8	+0.8			360				100

Page 60 of 90 Report No.: 90557-6A

CKC Laboratories, Inc. Date: 4/22/2010 Time: 09:14:47 Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 3 Meters Sequence#: 17 Ext ATTN: 0 dB

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 08:55:28
Equipment: RFID Sequence#: 16
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

T cst Eq	приси.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
T3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support 2 criters.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 1000 - 8000 MHz

21°C / Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 927.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Meası	irement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	7556.230M	38.2	+35.5	+0.2	+0.4	-34.8	+0.0	47.4	54.0	-6.6	Verti
			+5.4	+2.5			360				100
2	7698.515M	37.8	+35.7	+0.1	+0.5	-34.6	+0.0	47.4	54.0	-6.6	Verti
			+5.4	+2.5			360				100
3	7417.925M	38.3	+35.3	+0.2	+0.5	-34.6	+0.0	47.3	54.0	-6.7	Verti
			+5.3	+2.3			360				100
4	7677.620M	37.9	+35.6	+0.1	+0.5	-34.7	+0.0	47.3	54.0	-6.7	Verti
			+5.4	+2.5			360				100

Page 62 of 90 Report No.: 90557-6A

5	7309.470M	38.2	+35.2	+0.2	+0.5	-34.6	+0.0	47.1	54.0	-6.9	Verti
			+5.2	+2.4			360				100
6	7681.600M	37.7	+35.6	+0.1	+0.5	-34.7	+0.0	47.1	54.0	-6.9	Verti
			+5.4	+2.5			360				100
7	7492.550M	37.7	+35.4	+0.2	+0.4	-34.6	+0.0	46.9	54.0	-7.1	Verti
			+5.4	+2.4			360				100
8	7623.890M	37.5	+35.6	+0.2	+0.4	-34.8	+0.0	46.9	54.0	-7.1	Verti
			+5.4	+2.6			360				100
9	7636.825M	37.5	+35.6	+0.2	+0.4	-34.8	+0.0	46.9	54.0	-7.1	Verti
			+5.4	+2.6			360				100
10	7288.575M	37.8	+35.2	+0.2	+0.5	-34.6	+0.0	46.7	54.0	-7.3	Verti
			+5.2	+2.4			360				100
11	7258.725M	37.9	+35.1	+0.2	+0.5	-34.6	+0.0	46.7	54.0	-7.3	Verti
			+5.2	+2.4			360				100
12	7338.325M	37.7	+35.2	+0.2	+0.5	-34.6	+0.0	46.6	54.0	-7.4	Verti
			+5.2	+2.4			360				100
13	7357.230M	37.8	+35.2	+0.2	+0.5	-34.6	+0.0	46.6	54.0	-7.4	Verti
			+5.2	+2.3			360				100
14	7374.145M	37.6	+35.3	+0.2	+0.5	-34.6	+0.0	46.6	54.0	-7.4	Verti
			+5.3	+2.3			360				100
15	7504.490M	37.2	+35.4	+0.2	+0.4	-34.6	+0.0	46.5	54.0	-7.5	Verti
			+5.4	+2.5			360				100
16	7313.450M	37.6	+35.2	+0.2	+0.5	-34.6	+0.0	46.5	54.0	-7.5	Verti
			+5.2	+2.4			360				100
17	7549.265M	37.2	+35.5	+0.2	+0.4	-34.7	+0.0	46.5	54.0	-7.5	Verti
			+5.4	+2.5			360				100
18	7512.450M	37.2	+35.4	+0.2	+0.4	-34.6	+0.0	46.5	54.0	-7.5	Verti
			+5.4	+2.5			360				100
19	7648.765M	36.9	+35.6	+0.2	+0.5	-34.8	+0.0	46.4	54.0	-7.6	Verti
			+5.4	+2.6			360				100
20	1001.443M	32.2	+22.2	+20.2	+0.1	-37.2	+0.0	40.1	54.0	-13.9	Verti
	Ave		+1.8	+0.8			180				100
٨	1001.443M	45.4	+22.2	+20.2	+0.1	-37.2	+0.0	53.3	54.0	-0.7	Verti
			+1.8	+0.8			180				100
٨	1001.443M	43.9	+22.2	+20.2	+0.1	-37.2	+0.0	51.8	54.0	-2.2	Verti
			+1.8	+0.8			360				100
									_		

CKC Laboratories, Inc. Date: 4/22/2010 Time: 08:55:28 Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 3 Meters Sequence#: 16 Ext ATTN: 0 dB

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 9:37:52 AM

Equipment: **RFID** Sequence#: 19

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

I cot Eq	ttip ment.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
T3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 8000 - 9300 MHz

22°C /Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 902.75 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measi	urement Data:	Re	eading lis	ted by ma	ırgin.		Τe	est Distance	e: 2 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	9154.774M	37.6	+38.5	+0.2	+0.3	-34.2	-4.0	46.8	54.0	-7.2	Horiz
			+5.7	+2.7							100
2	9054.162M	37.5	+38.6	+0.2	+0.3	-34.3	-4.0	46.6	54.0	-7.4	Horiz
			+5.7	+2.6							100
3	9009.092M	37.3	+38.6	+0.2	+0.3	-34.3	-4.0	46.4	54.0	-7.6	Horiz
			+5.7	+2.6							100
4	9055.073M	37.3	+38.6	+0.2	+0.3	-34.3	-4.0	46.4	54.0	-7.6	Horiz
			+5.7	+2.6							100

Page 65 of 90 Report No.: 90557-6A

5	9033.220M	37.1	+38.6	+0.2	+0.3	-34.3	-4.0	46.2	54.0	-7.8	Horiz
			+5.7	+2.6							100
6	9000.897M	36.7	+38.6	+0.2	+0.3	-34.3	-4.0	45.8	54.0	-8.2	Horiz
			+5.7	+2.6							100
7	9027.757M	36.7	+38.6	+0.2	+0.3	-34.3	-4.0	45.8	54.0	-8.2	Horiz
			+5.7	+2.6							100
8	9093.769M	36.4	+38.6	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.6							100
9	9101.053M	36.4	+38.5	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.7							100
10	9143.392M	36.3	+38.5	+0.2	+0.3	-34.2	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.7							100
11	9068.275M	36.3	+38.6	+0.2	+0.3	-34.3	-4.0	45.4	54.0	-8.6	Horiz
			+5.7	+2.6							100
12	9014.100M	36.0	+38.6	+0.2	+0.3	-34.3	-4.0	45.1	54.0	-8.9	Horiz
			+5.7	+2.6							100
13	9019.107M	35.9	+38.6	+0.2	+0.3	-34.3	-4.0	45.0	54.0	-9.0	Horiz
			+5.7	+2.6							100
14	9099.232M	36.0	+38.5	+0.2	+0.3	-34.3	-4.0	45.0	54.0	-9.0	Horiz
			+5.7	+2.6							100
15	8372.244M	37.8	+37.0	+0.3	+0.4	-34.7	-4.0	44.8	54.0	-9.2	Horiz
			+5.6	+2.4							100
16	8481.916M	37.3	+37.3	+0.3	+0.4	-34.6	-4.0	44.8	54.0	-9.2	Horiz
			+5.6	+2.5							100
17	8499.668M	37.2	+37.3	+0.3	+0.4	-34.6	-4.0	44.7	54.0	-9.3	Horiz
			+5.6	+2.5							100
18	9010.458M	35.6	+38.6	+0.2	+0.3	-34.3	-4.0	44.7	54.0	-9.3	Horiz
			+5.7	+2.6							100
19	8371.421M	37.6	+37.0	+0.3	+0.4	-34.7	-4.0	44.6	54.0	-9.4	Horiz
			+5.6	+2.4							100
20	8494.905M	37.1	+37.3	+0.3	+0.4	-34.6	-4.0	44.6	54.0	-9.4	Horiz
			+5.6	+2.5							100

CKC Laboratories, Inc. Date: 4/22/2010 Time: 9:37:52 AM Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 2 Meters Sequence#: 19 Ext ATTN: 0 dB

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 09:36:02
Equipment: RFID Sequence#: 18
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

I cst Dqui	pinent.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
Т3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 8000 - 9300 MHz

22°C / Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 902.75 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Meast	urement Data:	Re	eading list	ted by ma	ırgin.	Test Distance: 2 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	9027.515M	38.6	+38.6	+0.2	+0.3	-34.3	-4.0	47.7	54.0	-6.3	Verti
	Ave		+5.7	+2.6			210				106
^	9027.452M	43.5	+38.6	+0.2	+0.3	-34.3	-4.0	52.6	54.0	-1.4	Verti
			+5.7	+2.6			210				106
^	9027.452M	39.9	+38.6	+0.2	+0.3	-34.3	-4.0	49.0	54.0	-5.0	Verti
			+5.7	+2.6			360				100
4	9096.046M	36.9	+38.5	+0.2	+0.3	-34.3	-4.0	45.9	54.0	-8.1	Verti
			+5.7	+2.6			360				100

Page 68 of 90 Report No.: 90557-6A

5	9045.057M	36.8	+38.6	+0.2	+0.3	-34.3	-4.0	45.9	54.0	-8.1	Verti
			+5.7	+2.6			360				100
6	9008.181M	36.4	+38.6	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Verti
			+5.7	+2.6			360				100
7	9003.629M	36.1	+38.6	+0.2	+0.3	-34.3	-4.0	45.2	54.0	-8.8	Verti
			+5.7	+2.6			360				100
8	9010.458M	36.1	+38.6	+0.2	+0.3	-34.3	-4.0	45.2	54.0	-8.8	Verti
			+5.7	+2.6			360				100
9	8476.287M	37.0	+37.3	+0.3	+0.4	-34.6	-4.0	44.5	54.0	-9.5	Verti
			+5.6	+2.5			360				100
10	8492.740M	36.9	+37.3	+0.3	+0.4	-34.6	-4.0	44.4	54.0	-9.6	Verti
			+5.6	+2.5			360				100
11	8455.938M	36.9	+37.2	+0.3	+0.4	-34.6	-4.0	44.3	54.0	-9.7	Verti
			+5.6	+2.5			360				100
12	8219.064M	37.5	+36.6	+0.3	+0.4	-34.7	-4.0	44.3	54.0	-9.7	Verti
			+5.5	+2.7			360				100
13	8467.628M	36.7	+37.3	+0.3	+0.4	-34.6	-4.0	44.2	54.0	-9.8	Verti
			+5.6	+2.5			360				100
14	8450.309M	36.7	+37.2	+0.3	+0.4	-34.6	-4.0	44.1	54.0	-9.9	Verti
			+5.6	+2.5			360				100
15	8471.525M	36.5	+37.3	+0.3	+0.4	-34.6	-4.0	44.0	54.0	-10.0	Verti
			+5.6	+2.5			360				100
16	8387.480M	37.0	+37.0	+0.3	+0.4	-34.7	-4.0	44.0	54.0	-10.0	Verti
			+5.6	+2.4			360				100
17	8186.946M	37.1	+36.5	+0.3	+0.4	-34.7	-4.0	43.8	54.0	-10.2	Verti
			+5.5	+2.7			360				100
18	8336.420M	36.9	+36.9	+0.3	+0.4	-34.7	-4.0	43.8	54.0	-10.2	Verti
			+5.5	+2.5			360				100
19	8359.891M	36.3	+37.0	+0.3	+0.4	-34.7	-4.0	43.4	54.0	-10.6	Verti
			+5.6	+2.5			360				100
20	8363.597M	36.3	+37.0	+0.3	+0.4	-34.7	-4.0	43.4	54.0	-10.6	Verti
			+5.6	+2.5			360				100
21	8355.362M	36.3	+37.0	+0.3	+0.4	-34.7	-4.0	43.4	54.0	-10.6	Verti
			+5.6	+2.5			360				100
22	8042.825M	36.4	+36.1	+0.2	+0.4	-34.7	-4.0	42.4	54.0	-11.6	Verti
			+5.5	+2.5			360				100
		-	-	-							

CKC Laboratories, Inc. Date: 4/22/2010 Time: 09:36:02 Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 2 Meters Sequence#: 18 Ext ATTN: 0 dB

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 9:47:52 AM

Equipment: **RFID** Sequence#: 21

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

1 cst Eq	utpinent.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
Т3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support 2 criters.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 8000 - 9300 MHz

22°C /Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 915.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measi	urement Data:	Re	eading lis	ted by ma	ırgin.		Тє	est Distance	e: 2 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	9082.388M	37.9	+38.6	+0.2	+0.3	-34.3	-4.0	47.0	54.0	-7.0	Horiz
			+5.7	+2.6							101
2	9142.026M	36.7	+38.5	+0.2	+0.3	-34.2	-4.0	45.9	54.0	-8.1	Horiz
			+5.7	+2.7							101
3	9152.497M	36.5	+38.5	+0.2	+0.3	-34.2	-4.0	45.7	54.0	-8.3	Horiz
			+5.7	+2.7							101
4	9188.918M	36.5	+38.5	+0.2	+0.3	-34.2	-4.0	45.7	54.0	-8.3	Horiz
			+5.7	+2.7							101

Page 71 of 90 Report No.: 90557-6A

5	9083.298M	36.4	+38.6	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.6							101
6	9106.061M	36.4	+38.5	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.7							101
7	9129.279M	36.3	+38.5	+0.2	+0.3	-34.2	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.7							101
8	9089.217M	36.3	+38.6	+0.2	+0.3	-34.3	-4.0	45.4	54.0	-8.6	Horiz
			+5.7	+2.6							101
9	9133.377M	36.1	+38.5	+0.2	+0.3	-34.2	-4.0	45.3	54.0	-8.7	Horiz
			+5.7	+2.7							101
10	9173.894M	36.1	+38.5	+0.2	+0.3	-34.2	-4.0	45.3	54.0	-8.7	Horiz
			+5.7	+2.7							101
11	8463.731M	37.2	+37.2	+0.3	+0.4	-34.6	-4.0	44.6	54.0	-9.4	Horiz
			+5.6	+2.5							101
12	8475.421M	36.7	+37.3	+0.3	+0.4	-34.6	-4.0	44.2	54.0	-9.8	Horiz
			+5.6	+2.5							101
13	8382.951M	37.0	+37.0	+0.3	+0.4	-34.7	-4.0	44.0	54.0	-10.0	Horiz
			+5.6	+2.4							101
14	8484.514M	36.5	+37.3	+0.3	+0.4	-34.6	-4.0	44.0	54.0	-10.0	Horiz
			+5.6	+2.5							101
15	8137.945M	37.4	+36.4	+0.2	+0.4	-34.7	-4.0	43.8	54.0	-10.2	Horiz
			+5.5	+2.6							101
16	8457.670M	36.4	+37.2	+0.3	+0.4	-34.6	-4.0	43.8	54.0	-10.2	Horiz
			+5.6	+2.5							101
17	8494.472M	36.2	+37.3	+0.3	+0.4	-34.6	-4.0	43.7	54.0	-10.3	Horiz
			+5.6	+2.5							101
18	8254.065M	36.8	+36.7	+0.3	+0.4	-34.7	-4.0	43.6	54.0	-10.4	Horiz
			+5.5	+2.6							101
19	8352.479M	36.5	+37.0	+0.3	+0.4	-34.7	-4.0	43.6	54.0	-10.4	Horiz
			+5.6	+2.5							101
20	8373.068M	36.5	+37.0	+0.3	+0.4	-34.7	-4.0	43.5	54.0	-10.5	Horiz
			+5.6	+2.4							101

Page 72 of 90 Report No.: 90557-6A

CKC Laboratories, Inc. Date: 4/22/2010 Time: 9:47:52 AM Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 2 Meters Sequence#: 21 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 09:46:46
Equipment: RFID Sequence#: 20
Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

T cst Eq.	utpintent.				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
T3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support Devices.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 8000 - 9300 MHz

22°C / Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 915.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measi	urement Data:	Re	eading lis	ted by ma	argin.		Te	est Distance	e: 2 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	9128.369M	37.2	+38.5	+0.2	+0.3	-34.2	-4.0	46.4	54.0	-7.6	Verti
			+5.7	+2.7			360				100
2	9191.194M	36.7	+38.5	+0.2	+0.3	-34.2	-4.0	45.9	54.0	-8.1	Verti
			+5.7	+2.7			360				100
3	9091.948M	36.7	+38.6	+0.2	+0.3	-34.3	-4.0	45.8	54.0	-8.2	Verti
			+5.7	+2.6			360				100
4	9173.439M	36.4	+38.5	+0.2	+0.3	-34.2	-4.0	45.6	54.0	-8.4	Verti
			+5.7	+2.7			360				100

Page 74 of 90 Report No.: 90557-6A

5 9107.427M 36.3 +38.5 +0.2 +0.3 -34.3 -4.0 45.4 54.0 -8.6 Verti 6 9183.455M 36.0 +38.5 +0.2 +0.3 -34.2 -4.0 45.2 54.0 -8.8 Verti 7 9193.925M 36.0 +38.5 +0.2 +0.3 -34.2 -4.0 45.2 54.0 -8.8 Verti 9 848283.301M 37.6 +36.8 +0.3 +0.4 -34.7 -4.0 44.5 54.0 -9.5 Verti 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.7 -4.0 44.5 54.0 -9.5 Verti 100 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.5 Verti 4.0 9 152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.7 Verti <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>												
6 9183.455M 36.0 +38.5 +0.2 +0.3 -34.2 -4.0 45.2 54.0 -8.8 Verti 7 9193.925M 36.0 +38.5 +0.2 +0.3 -34.2 -4.0 45.2 54.0 -8.8 Verti 8 8283.301M 37.6 +36.8 +0.3 +0.4 -34.7 -4.0 44.5 54.0 -9.5 Verti 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.5 Verti 10 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.5 Verti 10 9 8462.432M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.4 54.0 -9.6 Verti 10 10 9152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.0	5	9107.427M	36.3	+38.5	+0.2	+0.3	-34.3	-4.0	45.4	54.0	-8.6	Verti
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				+5.7	+2.7			360				100
7 9193.925M 36.0 +38.5 +0.2 +0.3 -34.2 -4.0 45.2 54.0 -8.8 Verting 8 8283.301M 37.6 +36.8 +0.3 +0.4 -34.7 -4.0 44.5 54.0 -9.5 Verting 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.6 Verting +5.6 +2.5 360 100 10 9152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.6 Verting Ave +5.7 +2.7 215 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.7 Verting -8 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verting -5.7 +2.7 360 10	6	9183.455M	36.0	+38.5	+0.2	+0.3	-34.2	-4.0	45.2	54.0	-8.8	Verti
+5.7 +2.7 360 100 8 8283.301M 37.6 +36.8 +0.3 +0.4 -34.7 -4.0 44.5 54.0 -9.5 Verti +5.5 +2.6 360 100 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.6 Verti +5.6 +2.5 360 100 10 9152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.7 Verti Ave +5.7 +2.7 215 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verti +5.7 +2.7 215 101 ^ 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 54.0 -5.8 Verti +5.7 +2.7 360 100				+5.7	+2.7			360				100
8 8283.301M 37.6 +36.8 +0.3 +0.4 -34.7 -4.0 44.5 54.0 -9.5 Verting 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.6 Verting 10 9152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.7 Verting Ave +5.7 +2.7 215 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -9.7 Verting 101 *9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verting ***9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verting ***10 ***1 **5.7 +2.7 360 100 **13 **8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verti	7	9193.925M	36.0	+38.5	+0.2	+0.3	-34.2	-4.0	45.2	54.0	-8.8	Verti
+5.5 +2.6 360 100 9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.6 Verti 10 9152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.7 Verti Ave +5.7 +2.7 215 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verti +5.7 +2.7 215 101 ^ 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verti +5.7 +2.7 215 101 13 8497.070M 36.7 +37.3 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verti +5.6 +2.5 360 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -				+5.7	+2.7			360				100
9 8462.432M 37.0 +37.2 +0.3 +0.4 -34.6 -4.0 44.4 54.0 -9.6 Verting 10 9152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.7 Verting Ave +5.7 +2.7 215 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verting -9.7 101 +5.7 +2.7 215 101 -3.0 Verting -9.8 -9.8 +5.7 +2.7 360 100 -5.8 Verting -9.8 -9.8 -9.8 Verting -9.8 Verting -9.8 Verting -9.8 -9.8 -9.8 -9.8 Verting -9.8 Verting -9.8 -9.8 -9.8 -9.8 Verting -9.8 Verting -9.8 -9.8 -9.8 -9.8 -9.8 Verting -9.8 -9.8 -9.8 -9.8 -9.8 -9.8 -9.8 </td <td>8</td> <td>8283.301M</td> <td>37.6</td> <td>+36.8</td> <td>+0.3</td> <td>+0.4</td> <td>-34.7</td> <td>-4.0</td> <td>44.5</td> <td>54.0</td> <td>-9.5</td> <td>Verti</td>	8	8283.301M	37.6	+36.8	+0.3	+0.4	-34.7	-4.0	44.5	54.0	-9.5	Verti
+5.6 +2.5 360 100 10 9152.512M 35.1 +38.5 +0.2 +0.3 -34.2 -4.0 44.3 54.0 -9.7 Verti Ave +5.7 +2.7 215 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verti 101 +5.7 +2.7 215 101 ^ 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verti 100 13 8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -5.8 Verti 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verti 10 +5.6 +2.5 360 100 100 Verti 100 100 100				+5.5	+2.6			360				100
10 9152.512M Ave 35.1 +38.5 +0.2 +0.3 +2.7 +0.3 -34.2 -4.0 215 44.3 54.0 -9.7 Verti 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verti +5.7 +2.7 215 101 ^ 9152.497M 39.0 +38.5 +0.2 +0.3 +0.3 +0.3 +0.3 +0.4 -34.2 -4.0 48.2 54.0 -5.8 Verti +5.7 +2.7 360 54.0 -5.8 Verti 100 13 8497.070M 36.7 +37.3 +0.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verti +5.6 +2.5 360 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verti +5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti	9	8462.432M	37.0	+37.2	+0.3	+0.4	-34.6	-4.0	44.4	54.0	-9.6	Verti
Ave +5.7 +2.7 215 101 ^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verti +5.7 +2.7 215 101 ^ 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verti +5.7 +2.7 360 100 13 8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verti +5.6 +2.5 360 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verti +5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4				+5.6	+2.5			360				100
^ 9152.522M 41.8 +38.5 +0.2 +0.3 -34.2 -4.0 51.0 54.0 -3.0 Verti +5.7 +2.7 215 101 ^ 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verti +5.7 +2.7 360 100 13 8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verti +5.6 +2.5 360 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verti +5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti <td>10</td> <td>9152.512M</td> <td>35.1</td> <td>+38.5</td> <td>+0.2</td> <td>+0.3</td> <td>-34.2</td> <td>-4.0</td> <td>44.3</td> <td>54.0</td> <td>-9.7</td> <td>Verti</td>	10	9152.512M	35.1	+38.5	+0.2	+0.3	-34.2	-4.0	44.3	54.0	-9.7	Verti
+5.7 +2.7 215 101 ^ 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verti +5.7 +2.7 360 100 13 8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verti +5.6 +2.5 360 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verti +5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti		Ave		+5.7	+2.7			215				101
^ 9152.497M 39.0 +38.5 +0.2 +0.3 -34.2 -4.0 48.2 54.0 -5.8 Verting 13 8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verting 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verting 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verting 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verting	^	9152.522M	41.8	+38.5	+0.2	+0.3	-34.2	-4.0	51.0	54.0	-3.0	Verti
+5.7 +2.7 360 100 13 8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verti +5.6 +2.5 360 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verti +5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti				+5.7	+2.7			215				
13 8497.070M 36.7 +37.3 +0.3 +0.4 -34.6 -4.0 44.2 54.0 -9.8 Verting 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verting +5.5 +2.6 360 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verting 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verting	^	9152.497M	39.0	+38.5	+0.2	+0.3	-34.2	-4.0	48.2	54.0	-5.8	Verti
+5.6 +2.5 360 100 14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verti +5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti				+5.7	+2.7			360				100
14 8118.179M 37.7 +36.3 +0.2 +0.4 -34.7 -4.0 44.0 54.0 -10.0 Verti +5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti	13	8497.070M	36.7	+37.3	+0.3	+0.4	-34.6	-4.0	44.2	54.0	-9.8	Verti
+5.5 +2.6 360 100 15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti				+5.6	+2.5			360				100
15 8448.577M 36.7 +37.2 +0.3 +0.4 -34.7 -4.0 43.9 54.0 -10.1 Verti +5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti	14	8118.179M	37.7	+36.3	+0.2	+0.4	-34.7	-4.0	44.0	54.0	-10.0	Verti
+5.6 +2.4 360 100 16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti				+5.5	+2.6			360				100
16 8392.421M 36.7 +37.1 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti	15	8448.577M	36.7			+0.4	-34.7		43.9	54.0	-10.1	
				+5.6				360				100
	16	8392.421M	36.7			+0.4	-34.7		43.8	54.0	-10.2	
				+5.6	+2.4			360				100
17 8381.715M 36.8 +37.0 +0.3 +0.4 -34.7 -4.0 43.8 54.0 -10.2 Verti	17	8381.715M	36.8	+37.0	+0.3	+0.4	-34.7	-4.0	43.8	54.0	-10.2	
+5.6 +2.4 360 100												
18 8272.595M 36.9 +36.7 +0.3 +0.4 -34.7 -4.0 43.7 54.0 -10.3 Verti	18	8272.595M	36.9			+0.4	-34.7		43.7	54.0	-10.3	
+5.5 +2.6 360 100					+2.6							100
19 8426.496M 36.6 +37.1 +0.3 +0.4 -34.7 -4.0 43.7 54.0 -10.3 Verti	19	8426.496M	36.6			+0.4	-34.7		43.7	54.0	-10.3	
+5.6 +2.4 360 100				+5.6	+2.4							100
1 00 0411 262M 264 271 402 404 247 40 425 540 105 West	20	8411.363M	36.4	+37.1	+0.3	+0.4	-34.7	-4.0	43.5	54.0	-10.5	Verti
20 8411.363M 36.4 +3/.1 +0.3 +0.4 -34./ -4.0 43.5 54.0 -10.5 Verti				+5.6	+2.4			360				100
+5.6 +2.4 360 100	21	8166.769M	36.8	+36.5	+0.3	+0.4	-34.7	-4.0	43.5	54.0	-10.5	Verti
+5.6 +2.4 360 100				+5.5	+2.7			360				100
+5.6 +2.4 360 100 21 8166.769M 36.8 +36.5 +0.3 +0.4 -34.7 -4.0 43.5 54.0 -10.5 Verti +5.5 +2.7 360 100	22	8352.479M	36.4	+37.0	+0.3	+0.4	-34.7	-4.0	43.5	54.0	-10.5	Verti
+5.6 +2.4 360 100 21 8166.769M 36.8 +36.5 +0.3 +0.4 -34.7 -4.0 43.5 54.0 -10.5 Verti +5.5 +2.7 360 100 22 8352.479M 36.4 +37.0 +0.3 +0.4 -34.7 -4.0 43.5 54.0 -10.5 Verti	1			+5.6	+2.5			360				100

CKC Laboratories, Inc. Date: 4/22/2010 Time: 09:46:46 Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 2 Meters Sequence#: 20 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj, Inc.
Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010
Test Type: Maximized Emissions Time: 9:55:10 AM

Equipment: **RFID** Sequence#: 23

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
T3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Support 2 criters.			
Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 8000 - 9300 MHz

22°C / Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 927.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measi	urement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 2 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	9127.003M	37.6	+38.5	+0.2	+0.3	-34.2	-4.0	46.8	54.0	-7.2	Horiz
			+5.7	+2.7							101
2	9093.314M	37.0	+38.6	+0.2	+0.3	-34.3	-4.0	46.1	54.0	-7.9	Horiz
			+5.7	+2.6							101
3	9044.146M	36.9	+38.6	+0.2	+0.3	-34.3	-4.0	46.0	54.0	-8.0	Horiz
			+5.7	+2.6							101
4	9056.438M	36.7	+38.6	+0.2	+0.3	-34.3	-4.0	45.8	54.0	-8.2	Horiz
			+5.7	+2.6							101

Page 77 of 90 Report No.: 90557-6A

5	9046.423M	36.4	+38.6	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.6							101
6	9065.088M	36.4	+38.6	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.6							101
7	9071.462M	36.4	+38.6	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Horiz
			+5.7	+2.6							101
8	9047.788M	36.3	+38.6	+0.2	+0.3	-34.3	-4.0	45.4	54.0	-8.6	Horiz
			+5.7	+2.6							101
9	9076.470M	36.3	+38.6	+0.2	+0.3	-34.3	-4.0	45.4	54.0	-8.6	Horiz
			+5.7	+2.6							101
10	9100.143M	36.3	+38.5	+0.2	+0.3	-34.3	-4.0	45.4	54.0	-8.6	Horiz
			+5.7	+2.7							101
11	9112.890M	36.1	+38.5	+0.2	+0.3	-34.3	-4.0	45.2	54.0	-8.8	Horiz
			+5.7	+2.7							101
12	9171.163M	36.0	+38.5	+0.2	+0.3	-34.2	-4.0	45.2	54.0	-8.8	Horiz
			+5.7	+2.7							101
13	9049.610M	35.9	+38.6	+0.2	+0.3	-34.3	-4.0	45.0	54.0	-9.0	Horiz
			+5.7	+2.6							101
14	8356.597M	37.8	+37.0	+0.3	+0.4	-34.7	-4.0	44.9	54.0	-9.1	Horiz
			+5.6	+2.5							101
15	8477.153M	37.2	+37.3	+0.3	+0.4	-34.6	-4.0	44.7	54.0	-9.3	Horiz
			+5.6	+2.5							101
16	8400.245M	37.3	+37.1	+0.3	+0.4	-34.7	-4.0	44.4	54.0	-9.6	Horiz
			+5.6	+2.4							101
17	8465.030M	36.9	+37.2	+0.3	+0.4	-34.6	-4.0	44.3	54.0	-9.7	Horiz
			+5.6	+2.5							101
18	8234.712M	37.5	+36.6	+0.3	+0.4	-34.7	-4.0	44.2	54.0	-9.8	Horiz
			+5.5	+2.6							101
19	8297.301M	37.3	+36.8	+0.3	+0.4	-34.7	-4.0	44.2	54.0	-9.8	Horiz
			+5.5	+2.6							101
20	8205.064M	37.3	+36.6	+0.3	+0.4	-34.7	-4.0	44.1	54.0	-9.9	Horiz
			+5.5	+2.7							101

CKC Laboratories, Inc. Date: 4/22/2010 Time: 9:55:10 AM Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 2 Meters Sequence#: 23 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 22116 23rd Ave SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: Impinj, Inc. Specification: 15.247(d)

Work Order #: 90557 Date: 4/22/2010 Test Type: **Maximized Emissions** Time: 9:51:14 AM

Equipment: Sequence#: 22 RFID

Manufacturer: Impinj, Inc. Tested By: Jeff Gilbert

Model: IPJR640 S/N: 37009510054

Test Equipment:

Test Equi	Pitteritt				
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01412	Horn Antenna-ANSI C63.5	3115	10/12/2009	10/12/2011
		Calibration (dB)			
T2	AN03170	High Pass Filter	HM1155-11SS	9/14/2009	9/14/2011
Т3	AN03123	Cable	32026-2-29801-12	10/23/2009	10/23/2011
T4	AN01271	Preamp	83017A	9/17/2009	9/17/2011
T5	ANP05542	Cable	Heliax	10/23/2009	10/23/2011
T6	AN03121	Cable	32026-2-29080-84	10/23/2009	10/23/2011
	AN02872	Spectrum Analyzer	E4440A	8/25/2009	8/25/2011

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
RFID*	Impinj, Inc.	IPJR640	37009510054

Support Devices:

Function	Manufacturer	Model #	S/N
48VDC Power adapter	D-LINK	VAN90C-480B	13092600057-0D
POE Switch	D-LINK	DES-1008PA	F3GR188000310
USB Hub	SI Tech	2173	079536
Laptop	Dell	Latitude	6497402833

Test Conditions / Notes:

Frequency Range Investigated: 8000 - 9300 MHz

22°C / Relative Humidity 33% / 102.5 kPa

Radiated RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems

EUT is transmitting continuously, Fully modulated; 927.25 MHz. The USB port is connected to a powered USB hub; there is no traffic on the USB port. The Ethernet port is connected to a laptop outside the chamber, but this is only used to configure the EUT for transmit testing.

48VDC via POE; input to POE adapter is 120VAC / 60Hz

Ext Attn: 0 dB

Measi	urement Data:	Re	eading lis	ted by ma	ırgin.		Тє	est Distance	e: 2 Meters	1	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\muV/m$	dB	Ant
1	9083.754M	37.3	+38.6	+0.2	+0.3	-34.3	-4.0	46.4	54.0	-7.6	Verti
			+5.7	+2.6			360				101
2	9186.641M	36.6	+38.5	+0.2	+0.3	-34.2	-4.0	45.8	54.0	-8.2	Verti
			+5.7	+2.7			360				101
3	9013.644M	36.6	+38.6	+0.2	+0.3	-34.3	-4.0	45.7	54.0	-8.3	Verti
			+5.7	+2.6			360				101
4	9156.139M	36.5	+38.5	+0.2	+0.3	-34.2	-4.0	45.7	54.0	-8.3	Verti
			+5.7	+2.7			360				101

Page 80 of 90 Report No.: 90557-6A

5	9183.455M	36.5	+38.5	+0.2	+0.3	-34.2	-4.0	45.7	54.0	-8.3	Verti
			+5.7	+2.7			360				101
6	9040.960M	36.5	+38.6	+0.2	+0.3	-34.3	-4.0	45.6	54.0	-8.4	Verti
			+5.7	+2.6			360				101
7	9076.014M	36.4	+38.6	+0.2	+0.3	-34.3	-4.0	45.5	54.0	-8.5	Verti
			+5.7	+2.6			360				101
8	9140.661M	36.3	+38.5	+0.2	+0.3	-34.2	-4.0	45.5	54.0	-8.5	Verti
			+5.7	+2.7			360				101
9	9048.244M	36.2	+38.6	+0.2	+0.3	-34.3	-4.0	45.3	54.0	-8.7	Verti
			+5.7	+2.6			360				101
10	9114.711M	36.2	+38.5	+0.2	+0.3	-34.3	-4.0	45.3	54.0	-8.7	Verti
			+5.7	+2.7			360				101
11	9035.041M	36.2	+38.6	+0.2	+0.3	-34.3	-4.0	45.3	54.0	-8.7	Verti
			+5.7	+2.6			360				101
12	9044.146M	36.2	+38.6	+0.2	+0.3	-34.3	-4.0	45.3	54.0	-8.7	Verti
			+5.7	+2.6			360				101
13	9096.501M	36.1	+38.5	+0.2	+0.3	-34.3	-4.0	45.1	54.0	-8.9	Verti
			+5.7	+2.6			360				101
14	8372.656M	37.7	+37.0	+0.3	+0.4	-34.7	-4.0	44.7	54.0	-9.3	Verti
			+5.6	+2.4			360				101
15	8171.710M	37.8	+36.5	+0.3	+0.4	-34.7	-4.0	44.5	54.0	-9.5	Verti
			+5.5	+2.7			360				101
16	8427.795M	37.4	+37.1	+0.3	+0.4	-34.7	-4.0	44.5	54.0	-9.5	Verti
			+5.6	+2.4			360				101
17	8215.358M	37.6	+36.6	+0.3	+0.4	-34.7	-4.0	44.4	54.0	-9.6	Verti
			+5.5	+2.7			360				101
18	8137.945M	37.9	+36.4	+0.2	+0.4	-34.7	-4.0	44.3	54.0	-9.7	Verti
			+5.5	+2.6			360				101
19	8274.654M	37.5	+36.7	+0.3	+0.4	-34.7	-4.0	44.3	54.0	-9.7	Verti
			+5.5	+2.6			360				101
20	8203.005M	37.4	+36.6	+0.3	+0.4	-34.7	-4.0	44.2	54.0	-9.8	Verti
			+5.5	+2.7			360				101

CKC Laboratories, Inc. Date: 4/22/2010 Time: 9:51:14 AM Impinj, Inc. WO#: 90557 15.247(d) Test Distance: 2 Meters Sequence#: 22 Ext ATTN: 0 dB

Test Setup Photos

30kHz-30MHz

30MHz-1GHz

1GHz-9.3GHz

RSS-210 99% Bandwidth

<u>Test Conditions</u>: Frequency Range Investigated: 902 - 928 MHz; 22º C / 35% / 102.0 kPa; Conducted RF testing per FCC Public Notice DA 00-705 for Frequency Hopping Spread Spectrum Systems. The EUT is transmitting continuously, fully modulated; the Ethernet port is connected to a laptop, but this is only used to configure the EUT for transmit testing. Low CH: 902.75 MHz; Mid CH: 915.25 MHz; High CH: 927.25 MHz.

Engineer Name: J. Gilbert

Test Equipment							
Equipment	Model	Cal Date	Cal Due	Asset			
Cable	27	4/17/2009	4/17/2011	ANP05238			
Cable	32026-2-29080-84	10/23/2009	10/23/2011	AN03121			
Attenuator	PE7015-10	9/5/2008	9/5/2010	ANP05435			
Spectrum Analyzer	E4440A	8/25/2009	8/25/2011	AN02872			

Test Data

RSP-100 - 99%BW

Frequency MHz	Measured 99% BW kHz	Min Limit kHz	Pass/Fail
902.75	464	500	Pass
915.25	465.2	500	Pass
927.25	463.8	500	Pass

Page 85 of 90 Report No.: 90557-6A

Low Channel 99 % Bandwidth

Mid Channel 99 % Bandwidth

High Channel 99 % Bandwidth

Test Setup Photos

Page 88 of 90 Report No.: 90557-6A

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 89 of 90 Report No.: 90557-6A

SAMPLE CALCULATIONS						
	Meter reading (dBμV)					
+	Antenna Factor	(dB)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBμV/m)				

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. When conducted emissions testing was performed, a 10 dB external attenuator was used with internal offset correction in the analyzer.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE					
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING		
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz		
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz		
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz		

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 90 of 90 Report No.: 90557-6A