Problem 6

Proposition 0.1. Let \mathcal{H} be a separable Hilbert space and let $T \colon \mathcal{H} \to \mathcal{H}$ be a compact self-adjoint operator. Then there exists a sequence T_m of operators with finite dimensional range such that $||T - T_m|| \to 0$ and $m \to \infty$.

Proof. Choose an orthonormal basis (e_n) consisting of eigenvectors of T and let (λ_n) be the corresponding sequence of eigenvalues. By reindexing if necessary, we may assume that $|\lambda_n| \ge |\lambda_{n+1}|$ for all $n \in \mathbb{N}$. For each $m \in \mathbb{N}$, we define $T_m \colon \mathcal{H} \to \mathcal{H}$ by

$$T_m x = \sum_{n=1}^m \lambda_n \langle x, e_n \rangle e_n$$

for all $x \in \mathcal{H}$. Observe that $\operatorname{im}(T_m) = \operatorname{span}(\{e_1, \dots, e_m\})$ is finite dimensional. We claim that $||T - T_m|| \to 0$ and $m \to \infty$. Indeed, let $\varepsilon > 0$ and let Λ denote the set of all eigenvalues of T. If Λ is finite, then the claim is clear by the spectral theorem for compact self-adjoint operators, so assume Λ is infinite. Then 0 must be an accumulation point of Λ . In particular, $|\lambda_n| \to 0$ as $n \to \infty$. Choose $N \in \mathbb{N}$ such that $n \ge N$ implies $|\lambda_n| < \varepsilon$. Then for all $x \in B_1[0]$, we have

$$||Tx - T_m x||^2 = \left\| \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n - \sum_{n=1}^{m} \lambda_n \langle x, e_n \rangle e_n \right\|^2$$

$$= \left\| \sum_{n=m+1}^{\infty} \lambda_n \langle x, e_n \rangle e_n \right\|^2$$

$$= \sum_{n=m+1}^{\infty} |\lambda_n \langle x, e_n \rangle|^2$$

$$\leq |\lambda_N|^2 \sum_{n=m+1}^{\infty} |\langle x, e_n \rangle|^2$$

$$\leq |\lambda_N|^2 ||x||^2$$

$$\leq \varepsilon^2.$$

This implies $||T - T_m|| \to 0$ and $m \to \infty$.