Facultad de Ingeniería

Laboratorio de Fundamentos de Control(6655)

Profesor: Salcedo Ubilla María Leonor Ing.

Semestre 2019-1

Práctica No. 2

Nociones de Simulink de MATLAB

Grupo 2

Brigada: 4

Vivar Colina Pablo

Ciudad Universitaria Agosto de 2018.

Índice

1.	Resumen	1
2.	Introducción	1
3.	Objetivos3.1. Objetivos Generales3.2. Objetivos Particulares	2 2 2
4.	Materiales y métodos	2
5.	Resultados	2
6.	Análisis de Resultados	3
7.	Conclusiones	3
8.	Referencias	3

1. Resumen

2. Introducción

En el laboratorio de fundamentos de control se utilizará MATLAB, el cual utiliza scripts con extensión ".m", para ésta tarea también se pueden utilizar alternativas libres como GNU/Octave que también pueden procesar archivos con éste tipo de extensión.

MATLAB (laboratorio de matrices) es un entorno de cálculo numérico multiparadigma y un lenguaje de programación propietario desarrollado por MathWorks. MATLAB permite la manipulación de matrices, el trazado de funciones y datos, la implementación de algoritmos, la creación de interfaces de usuario y la interfaz con programas escritos en otros lenguajes, incluyendo C, C++, C#, Java, Fortran y Python. [1]

Aunque MATLAB está pensado principalmente para la computación numérica, una caja de herramientas opcional utiliza el motor simbólico MuPAD, permitiendo el acceso a las capacidades de computación simbólica. Un paquete adicional, Simulink, añade simulación gráfica multidominio y diseño basado en modelos para sistemas dinámicos y embebidos. [1]

En 2018, MATLAB tiene más de 3 millones de usuarios en todo el mundo Los usuarios de MATLAB proceden de diversos ámbitos de la ingeniería, la ciencia y la economía. [1]

Traducción realizada con el traductor www.DeepL.com/Translator. [2]

3. Objetivos

3.1. Objetivos Generales

- Iniciar al alumno en el manejo y uso de "simulink" como una herramienta de análisis de sistemas dinámicos.
- Que el alumno se inicie en el manejo y uso de la caja de herramientas de "simulink" de "matlab", para el análisis de sistemas dinámicos. Utilizar los comandos básicos de cálculo en MATLAB

3.2. Objetivos Particulares

• Realizar los objetivos anteriores en GNU/Octave

4. Materiales y métodos

- Computadora con editor de código "m" (MATLAB o GNU/Octave).
- Computadora con MATLAB V.5.3 instalado con las caja de herramientas "simulink".

5. Resultados

Figura 1: modelo con entrada de voltaje constante

Figura 2: modelo con entrada de voltaje señal Escalon

Figura 3: modelo con entrada de voltaje constante a partir de funcion de transferencia

6. Análisis de Resultados

7. Conclusiones

8. Referencias

Referencias

- $[1] \ \ Wikipedia, MATLAB, HTTPS: //EN.Wikipedia.org/Wiki/MATLAB,, Wikimedia.Group.$
- [2] DEEPL, WWW. DEEPL. COM/TRANSLATOR

Figura 4: modelo con entrada de voltaje señal Escalon a partir de su función de transferencia