Grafos – Definições Básicas e Representação Estrutura de Dados Avançada — QXD0015

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2023

Redes Sociais

Como representar amizades em uma rede social?

Redes Sociais

Como representar amizades em uma rede social?

Temos um conjunto de pessoas (Ana, Beto, Carlos, etc...)

Redes Sociais

Como representar amizades em uma rede social?

Temos um conjunto de pessoas (Ana, Beto, Carlos, etc...)

• Ligamos duas pessoas se elas se conhecem

O Grafo como estrutura de dados é frequentemente utilizado para representar relações entre conjuntos de objetos

• Chamamos esses objetos de vértices

- Chamamos esses objetos de vértices
 - o Ex: pessoas em uma rede social

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas

- Chamamos esses objetos de vértices
 - Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - o Ex: relação de amizade na rede social

- Chamamos esses objetos de vértices
 - o Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - o Ex: relação de amizade na rede social

O Grafo como estrutura de dados é frequentemente utilizado para representar relações entre conjuntos de objetos

- Chamamos esses objetos de vértices
 - o Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - o Ex: relação de amizade na rede social

O Grafo como estrutura de dados é frequentemente utilizado para representar relações entre conjuntos de objetos

- Chamamos esses objetos de vértices
 - o Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - o Ex: relação de amizade na rede social

O Grafo como estrutura de dados é frequentemente utilizado para representar relações entre conjuntos de objetos

- Chamamos esses objetos de vértices
 - o Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - o Ex: relação de amizade na rede social

O Grafo como estrutura de dados é frequentemente utilizado para representar relações entre conjuntos de objetos

- Chamamos esses objetos de vértices
 - o Ex: pessoas em uma rede social
- Chamamos as conexões entre os objetos de arestas
 - o Ex: relação de amizade na rede social

Um grafo não direcionado G é um par ordenado (V, E) tal que:

 V é um conjunto finito e não vazio cujos elementos são chamados vértices do grafo.

Um grafo não direcionado G é um par ordenado (V, E) tal que:

ullet V é um conjunto finito e não vazio cujos elementos são chamados vértices do grafo.

 \circ Exemplo: $V = \{0, 1, 2, 3, 4, 5\}$

- V é um conjunto finito e não vazio cujos elementos são chamados vértices do grafo.
 - \circ Exemplo: $V = \{0, 1, 2, 3, 4, 5\}$
- E é um conjunto de pares de elementos não ordenados de V. Cada elemento em E é chamado de aresta.

- V é um conjunto finito e não vazio cujos elementos são chamados vértices do grafo.
 - \circ Exemplo: $V = \{0, 1, 2, 3, 4, 5\}$
- E é um conjunto de pares de elementos não ordenados de V. Cada elemento em E é chamado de aresta.
 - $\circ \ \, \mathsf{Exemplo:} \ \, \boldsymbol{E} = \Big\{ \{0,4\}, \{5,3\}, \{1,2\}, \{2,5\}, \{4,5\}, \{3,2\}, \{1,4\} \Big\} \\$

- ullet V é um conjunto finito e não vazio cujos elementos são chamados vértices do grafo.
 - \circ Exemplo: $V = \{0, 1, 2, 3, 4, 5\}$
- E é um conjunto de pares de elementos não ordenados de V. Cada elemento em E é chamado de aresta.
 - $\circ \ \, \mathsf{Exemplo:} \ \, \boldsymbol{E} = \Big\{\{0,4\},\{5,3\},\{1,2\},\{2,5\},\{4,5\},\{3,2\},\{1,4\}\Big\}$
- Chamamos grafos não direcionados simplesmente de grafos.

Grafo Simples – Definição

 Para alguns problemas, faz sentido permitir que dois vértices sejam ligados por várias arestas (arestas múltiplas) e também permite-se arestas que possuam o mesmo vértice como extremos (laços).

Grafo Simples – Definição

- Para alguns problemas, faz sentido permitir que dois vértices sejam ligados por várias arestas (arestas múltiplas) e também permite-se arestas que possuam o mesmo vértice como extremos (laços).
- Grafos que não possuem laços nem arestas múltiplas são chamados grafos simples.

Seguindo e sendo seguido

Em alguns problemas em grafos, as relações a serem modeladas não são simétricas. Por exemplo, como representar seguidores em redes sociais?

Seguindo e sendo seguido

Em alguns problemas em grafos, as relações a serem modeladas não são simétricas. Por exemplo, como representar seguidores em redes sociais?

- A Ana segue o Beto e o Eduardo
- Ninguém segue a Ana
- O Daniel é seguido pelo Carlos e pelo Felipe
- O Eduardo segue o Beto que o segue de volta

Um grafo direcionado ou digrafo G é um par ordenado (V, E) tal que:

Um grafo direcionado ou digrafo G é um par ordenado (V, E) tal que:

ullet V é um conjunto vértices finito e não vazio.

Um grafo direcionado ou digrafo G é um par ordenado (V, E) tal que:

- ullet V é um conjunto vértices finito e não vazio.
- E é um conjunto de pares ordenados de vértices. Os elementos de E são chamados de arestas. Cada aresta $(u,v)\in E$ é tal que u indica origem e v indica destino. A aresta sai de u e entra em v.

Um grafo direcionado ou digrafo G é um par ordenado (V, E) tal que:

- V é um conjunto vértices finito e não vazio.
- E é um conjunto de pares ordenados de vértices. Os elementos de E são chamados de arestas. Cada aresta $(u,v) \in E$ é tal que u indica origem e v indica destino. A aresta sai de u e entra em v.

Desenhamos um grafo direcionado com os vértices representados por pontos e as arestas representadas por curvas com uma seta na ponta ligando os seus extremos.

Grafos direcionados e não direcionados

Podemos ver um grafo não direcionado como um grafo direcionado.

Basta considerar cada aresta como dois arcos.

Grafos direcionados e não direcionados

Podemos ver um grafo não direcionado como um grafo direcionado.

Basta considerar cada aresta como dois arcos.

Grafos direcionados e não direcionados

Podemos ver um grafo não direcionado como um grafo direcionado.

Basta considerar cada aresta como dois arcos.

Uma série de definições

Adjacência e Incidência

• Dado G = (V, E) não direcionado e $\{u, v\} \in E$, dizemos que $\{u, v\}$ incide nos vértices u e v e vice-versa.

Adjacência e Incidência

- Dado G = (V, E) não direcionado e $\{u, v\} \in E$, dizemos que $\{u, v\}$ incide nos vértices u e v e vice-versa.
- Dizemos também que u e v são adjacentes.

Adjacência e Incidência

- Dado G = (V, E) não direcionado e $\{u, v\} \in E$, dizemos que $\{u, v\}$ incide nos vértices u e v e vice-versa.
- ullet Dizemos também que u e v são adjacentes.
- Dizemos que u e v são os extremos da aresta (u,v).

- Dado G = (V, E) não direcionado e $\{u, v\} \in E$, dizemos que $\{u, v\}$ incide nos vértices u e v e vice-versa.
- Dizemos também que u e v são adjacentes.
- Dizemos que u e v são os extremos da aresta (u, v).
- Vértices adjacentes a um vértice u formam a vizinhança de u e são chamados vizinhos de u.

- Dado G = (V, E) não direcionado e $\{u, v\} \in E$, dizemos que $\{u, v\}$ incide nos vértices u e v e vice-versa.
- Dizemos também que u e v são adjacentes.
- Dizemos que u e v são os extremos da aresta (u, v).
- Vértices adjacentes a um vértice u formam a vizinhança de u e são chamados vizinhos de u.
 - \circ Exemplo: os vértices 0, 1 e 5 são vizinhos de 4.

• Dado G=(V,E) direcionado e $(u,v)\in E$, dizemos que (u,v) sai do vértice u e entra ou incide no vértice v.

- Dado G=(V,E) direcionado e $(u,v)\in E$, dizemos que (u,v) sai do vértice u e entra ou incide no vértice v.
- ullet Dizemos também que v é adjacente a u.

- Dado G=(V,E) direcionado e $(u,v)\in E$, dizemos que (u,v) sai do vértice u e entra ou incide no vértice v.
- Dizemos também que v é adjacente a u.
- Dizemos que u e v são os extremos da aresta (u, v).

- Dado G=(V,E) direcionado e $(u,v)\in E$, dizemos que (u,v) sai do vértice u e entra ou incide no vértice v.
- Dizemos também que v é adjacente a u.
- Dizemos que u e v são os extremos da aresta (u, v).
- Vértices adjacentes a um vértice u formam a vizinhança de u e são chamados vizinhos de u.

- Dado G=(V,E) direcionado e $(u,v)\in E$, dizemos que (u,v) sai do vértice u e entra ou incide no vértice v.
- Dizemos também que v é adjacente a u.
- Dizemos que u e v são os extremos da aresta (u, v).
- Vértices adjacentes a um vértice u formam a vizinhança de u e são chamados vizinhos de u.
 - o Exemplo: Felipe é vizinho de Eduardo e Carlos, mas Ana não.

Considere um grafo G = (V, E)

ullet Denotamos por |V| a cardinalidade do conjunto de vértices

Considere um grafo G = (V, E)

- ullet Denotamos por |V| a cardinalidade do conjunto de vértices
- ullet e por |E| a cardinalidade do conjunto de arestas

Considere um grafo G = (V, E)

- ullet Denotamos por |V| a cardinalidade do conjunto de vértices
- e por |E| a cardinalidade do conjunto de arestas
- no exemplo abaixo, temos |V|=6 e |E|=7

Considere um grafo G = (V, E)

- ullet Denotamos por |V| a cardinalidade do conjunto de vértices
- e por |E| a cardinalidade do conjunto de arestas
- no exemplo abaixo, temos |V|=6 e |E|=7

ullet O tamanho do grafo G é dado por |V|+|E|

Grau de um vértice

Quem tem mais amigos no Facebook? E seguidores no Instagram?

Dado um grafo simples e não direcionado G=(V,E), o grau de um vértice $v\in V$, denotado por d(v), é o número de arestas incidentes em u.

Grau de um vértice

Quem tem mais amigos no Facebook? E seguidores no Instagram?

Dado um grafo simples e não direcionado G=(V,E), o grau de um vértice $v\in V$, denotado por d(v), é o número de arestas incidentes em u.

Dado um grafo **direcionado** G=(V,E), o grau de saída $d^+(v)$ de um vértice $v\in V$, é o número de arestas que saem de v. O grau de entrada $d^-(v)$ de v, é o número de arestas que entram em v.

O grau d(v) de v é a soma $d^+(v) + d^-(v)$.

Definição - Graus mínimo e máximo

- Um vértice de grau 0 é dito vértice isolado.
- Um vértice de grau 1 é dito vértice terminal.
- Um vértice de grau |V|-1 é dito vértice universal.

Definição - Graus mínimo e máximo

- Um vértice de grau 0 é dito vértice isolado.
- Um vértice de grau 1 é dito vértice terminal.
- Um vértice de grau |V|-1 é dito vértice universal.
- O grau mínimo de G é o menor grau dentre todos os graus de vértices de G e é denotado por $\delta(G)$.
- O grau máximo de G é o maior grau dentre todos os graus de vértices de G e é denotado por $\Delta(G)$.

Definição - Graus mínimo e máximo

- Um vértice de grau 0 é dito vértice isolado.
- Um vértice de grau 1 é dito vértice terminal.
- Um vértice de grau |V|-1 é dito vértice universal.
- O grau mínimo de G é o menor grau dentre todos os graus de vértices de G e é denotado por $\delta(G)$.
- O grau máximo de G é o maior grau dentre todos os graus de vértices de G e é denotado por $\Delta(G)$.

Se G=(V,E) é um grafo simples não direcionado e v é um vértice qualquer de G, então: $0 \leq \delta(G) \leq d(v) \leq \Delta(G) \leq |V|-1$.

$$d(a) = 2$$

 $d(b) = 3$
 $d(c) = 6$
 $d(d) = 5$
 $d(e) = 4$

$$d(a) = 2$$

 $d(b) = 3$
 $d(c) = 6$
 $d(d) = 5$
 $d(e) = 4$

Teorema 1 [Euler, 1735]

Se $G=\left(V,E\right)$ é um grafo não direcionado, então

$$\sum_{v \in V} d(v) = 2|E|.$$

Euler

Teorema 2

Se G=(V,E) é um grafo direcionado, então

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v) = |E|.$$

Passeando pelo grafo

Um passeio P de um vértice v_0 a um vértice v_k em um grafo G=(V,E) é uma sequência finita e não vazia de vértices (v_0,v_1,\ldots,v_k) tal que $(v_{i-1},v_i)\in E$ para $1\leq i\leq k$.

Um passeio P de um vértice v_0 a um vértice v_k em um grafo G=(V,E) é uma sequência finita e não vazia de vértices (v_0,v_1,\ldots,v_k) tal que $(v_{i-1},v_i)\in E$ para $1\leq i\leq k$.

• dizemos que v_k é alcançável a partir de v_0 através de P

Um passeio P de um vértice v_0 a um vértice v_k em um grafo G=(V,E) e uma sequência finita e não vazia de vértices (v_0,v_1,\ldots,v_k) tal que $(v_{i-1},v_i)\in E$ para $1\leq i\leq k$.

- dizemos que v_k é alcançável a partir de v_0 através de P
- se $v_0 = v_k$, então dizemos que P é um passeio fechado

Um passeio P de um vértice v_0 a um vértice v_k em um grafo G=(V,E) e uma sequência finita e não vazia de vértices (v_0,v_1,\ldots,v_k) tal que $(v_{i-1},v_i)\in E$ para $1\leq i\leq k$.

- dizemos que v_k é alcançável a partir de v_0 através de P
- se $v_0 = v_k$, então dizemos que P é um passeio fechado
- ullet o comprimento de P é o seu número de arestas, ou seja, k

• Um caminho é um passeio cujos vértices são distintos.

- Um caminho é um passeio cujos vértices são distintos.
- Um ciclo é um passeio fechado (v_0,v_1,\ldots,v_k) com k>0 que possui pelo menos uma aresta e tal que v_1,\ldots,v_k são distintos e todas as arestas são distintas.

- Um caminho é um passeio cujos vértices são distintos.
- Um ciclo é um passeio fechado (v_0,v_1,\ldots,v_k) com k>0 que possui pelo menos uma aresta e tal que v_1,\ldots,v_k são distintos e todas as arestas são distintas.
- O comprimento do ciclo é o seu número de arestas, ou seja, k.

- Um caminho é um passeio cujos vértices são distintos.
- Um ciclo é um passeio fechado (v_0,v_1,\ldots,v_k) com k>0 que possui pelo menos uma aresta e tal que v_1,\ldots,v_k são distintos e todas as arestas são distintas.
- O comprimento do ciclo é o seu número de arestas, ou seja, k.

Refletindo sobre as definições

• Seja G um grafo e u,v vértices de G. Mostre que se existe um passeio de u a v em G, então existe um caminho de u a v em G.

Refletindo sobre as definições

- Seja G um grafo e u,v vértices de G. Mostre que se existe um passeio de u a v em G, então existe um caminho de u a v em G.
- Seja G um grafo e u,v,w vértices de G. Mostre que se em G existem um caminho de u a v e um caminho de v a w então existe um caminho de u a w em G.

Conexidade

- Dizemos que dois vértices u e v de um grafo G estão conectados se existe um (u,v)-caminho em G.
 - \circ Caso contrário, dizemos que G é desconexo.
- Um grafo G não direcionado é conexo quando quaisquer dois de seus vértices estão conectados.

Um grafo G com 12 vértices

Componentes conexas

• As componentes conexas de um grafo não direcionado G=(V,E) são as classes de equivalência de V sob a relação "é alcançável a partir de".

Um grafo com três componentes conexas $\{4\}$, $\{3,6\}$ e $\{1,2,5\}$. Note que todo vértice em $\{1,2,5\}$ é alcançável a partir de todo vértice em $\{1,2,5\}$.

Famílias de grafos especiais

Grafo completo

• Um grafo completo é um grafo simples no qual quaisquer dois de seus vértices são adjacentes.

Grafo completo

- Um grafo completo é um grafo simples no qual quaisquer dois de seus vértices são adjacentes.
- Um grafo completo com n vértices é denotado por K_n .

Grafo completo

- Um grafo completo é um grafo simples no qual quaisquer dois de seus vértices são adjacentes.
- Um grafo completo com n vértices é denotado por K_n .

• se o número de vértices é n, então ele tem $\binom{n}{2}$ arestas

Grafo completo

- Um grafo completo é um grafo simples no qual quaisquer dois de seus vértices são adjacentes.
- Um grafo completo com n vértices é denotado por K_n .

- se o número de vértices é n, então ele tem $\binom{n}{2}$ arestas
- portanto, um grafo simples tem no máximo $\binom{n}{2}$ arestas

Grafo vazio

• Grafo vazio é o grafo cujo conjunto de arestas é vazio, ou seja, $E(G) = \emptyset$.

Um grafo vazio G com seis vértices.

Grafo complemento

O complemento de um grafo simples G é o grafo simples \overline{G}

- cujo conjunto de vértices é $V(\overline{G}) = V(G)$
- e com $uv \in E(\overline{G})$ se e somente se $uv \notin E(G)$

Grafo complemento

O complemento de um grafo simples G é o grafo simples \overline{G}

- cujo conjunto de vértices é $V(\overline{G}) = V(G)$
- e com $uv \in E(\overline{G})$ se e somente se $uv \notin E(G)$

Note que $d_G(v) + d_{\overline{G}}(v) = |V| - 1$

Grafo bipartido

 Um grafo é bipartido se o seu conjunto de vértices pode ser particionado em dois subconjuntos X e Y de modo que toda aresta tenha um extremo em X e o outro extremo em Y.

Grafo bipartido

- Um grafo é bipartido se o seu conjunto de vértices pode ser particionado em dois subconjuntos X e Y de modo que toda aresta tenha um extremo em X e o outro extremo em Y.
 - $\circ\,$ Tal partição (X,Y) é chamada uma bipartição do grafo, e X e Y são suas partes.

Grafo bipartido

- Um grafo é bipartido se o seu conjunto de vértices pode ser particionado em dois subconjuntos X e Y de modo que toda aresta tenha um extremo em X e o outro extremo em Y.
 - $\circ\,$ Tal partição (X,Y) é chamada uma bipartição do grafo, e X e Y são suas partes.
 - $\circ\:$ Nós denotamos um grafo bipartido G com bipartição (X,Y) por G[X,Y].

• Um grafo bipartido completo é um grafo simples bipartido G[X,Y] tal que todo vértice em X é ligado a todo vértice em Y.

- Um grafo bipartido completo é um grafo simples bipartido G[X,Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X,Y] é geralmente denotado por $K_{p,q}$, tal que |X|=p e |Y|=q.

- $\bullet\,$ Um grafo bipartido completo é um grafo simples bipartido G[X,Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X,Y] é geralmente denotado por $K_{p,q}$, tal que |X|=p e |Y|=q.

- Um grafo bipartido completo é um grafo simples bipartido G[X,Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X,Y] é geralmente denotado por $K_{p,q}$, tal que |X|=p e |Y|=q.

- Um grafo bipartido completo é um grafo simples bipartido G[X,Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X,Y] é geralmente denotado por $K_{p,q}$, tal que |X|=p e |Y|=q.

- Um grafo bipartido completo é um grafo simples bipartido G[X,Y] tal que todo vértice em X é ligado a todo vértice em Y.
- Um grafo bipartido completo G[X,Y] é geralmente denotado por $K_{p,q}$, tal que |X|=p e |Y|=q.

• Uma estrela é um grafo bipartido completo G[X,Y] com |X|=1 ou |Y|=1.

Caminhos

- Um caminho é um grafo simples cujos vértices podem ser dispostos em uma sequência linear de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um caminho com n vértices é denotado por P_n .

• Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.

- Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um ciclo com n vértices é denotado por C_n .

- Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um ciclo com n vértices é denotado por C_n .

- Um ciclo com três ou mais vértices é um grafo simples cujos vértices podem ser dispostos em uma sequência cíclica de modo que dois vértices são adjacentes se e somente se eles são consecutivos na sequência.
- Um ciclo com n vértices é denotado por C_n .

• O comprimento de um caminho ou ciclo é o seu número de arestas.

Árvores

• Um grafo é acíclico se ele não contém ciclos.

- Um grafo é acíclico se ele não contém ciclos.
- Uma árvore é um grafo conexo e acíclico.

Todas as árvores com 6 vértices

- Um grafo é acíclico se ele não contém ciclos.
- Uma árvore é um grafo conexo e acíclico.

Todas as árvores com 6 vértices

• Uma floresta é um grafo acíclico.

- Um grafo é acíclico se ele não contém ciclos.
- Uma árvore é um grafo conexo e acíclico.

Todas as árvores com 6 vértices

- Uma floresta é um grafo acíclico.
- Uma folha é um vértice de grau 1 em uma árvore.

- Um grafo é acíclico se ele não contém ciclos.
- Uma árvore é um grafo conexo e acíclico.

Todas as árvores com 6 vértices

- Uma floresta é um grafo acíclico.
- Uma folha é um vértice de grau 1 em uma árvore.
- toda árvore com pelo menos um vértice tem folha (por quê?)

Aplicações e Exemplos

 Aplicações: Construção de rodovias, instalação de redes em geral. Em alguns casos, para se mostrar um resultado para grafos é interessante começar mostrando para árvores.

Aplicações e Exemplos

- Aplicações: Construção de rodovias, instalação de redes em geral. Em alguns casos, para se mostrar um resultado para grafos é interessante começar mostrando para árvores.
- Em Ciência da Computação as árvores são a base de estruturas de dados muito eficientes:

Aplicações e Exemplos

- Aplicações: Construção de rodovias, instalação de redes em geral. Em alguns casos, para se mostrar um resultado para grafos é interessante começar mostrando para árvores.
- Em Ciência da Computação as árvores são a base de estruturas de dados muito eficientes:
 - Árvores binárias de busca balanceadas: Árvores AVL, Árvores Rubro-Negras, Árvores B, etc.
 - $\circ\:$ Permitem busca, inserção e remoção em tempo $O(\lg n).$

Esquema de uma árvore rubro-negra

Teorema 7.2: Se G = (V, E) é uma árvore, então |E| = |V| - 1.

Teorema 7.2: Se G = (V, E) é uma árvore, então |E| = |V| - 1.

Demonstração:

 $\bullet \ \ {\rm Defina} \ n=|V| \ {\rm e} \ m=|E|.$

Teorema 7.2: Se G = (V, E) é uma árvore, então |E| = |V| - 1.

- Defina n = |V| e m = |E|.
- ullet Vamos provar por indução no número de vértices n.

Teorema 7.2: Se G = (V, E) é uma árvore, então |E| = |V| - 1.

- Defina n = |V| e m = |E|.
- ullet Vamos provar por indução no número de vértices n.
- Quando n=1, temos que $G\cong K_1$ e m=0=1-1=n-1. Então, o resultado vale para n=1.

Teorema 7.2: Se G = (V, E) é uma árvore, então |E| = |V| - 1.

- Defina n = |V| e m = |E|.
- Vamos provar por indução no número de vértices n.
- Quando n=1, temos que $G\cong K_1$ e m=0=1-1=n-1. Então, o resultado vale para n=1.
- Suponha que o teorema é verdadeiro para toda árvore com menos do que n vértices. Seja G uma árvore com n vértices, n>1.

Teorema 7.2: Se G = (V, E) é uma árvore, então |E| = |V| - 1.

- Defina n = |V| e m = |E|.
- ullet Vamos provar por indução no número de vértices n.
- Quando n=1, temos que $G\cong K_1$ e m=0=1-1=n-1. Então, o resultado vale para n=1.
- Suponha que o teorema é verdadeiro para toda árvore com menos do que n vértices. Seja G uma árvore com n vértices, n>1.
- Seja P um caminho mais longo em G e sejam x e y os extremos do caminho P.

Continuação da demonstração

Note que o vértice x deve ter grau 1 pois, caso contrário, o caminho P
poderia ser aumentado ou poderia existir um ciclo em G, ambas as
possibilidades levam a uma contradição.

Continuação da demonstração

- Note que o vértice x deve ter grau 1 pois, caso contrário, o caminho P
 poderia ser aumentado ou poderia existir um ciclo em G, ambas as
 possibilidades levam a uma contradição.
- Então, nós removemos o vértice x de G. Com isso, a aresta incidente em x também é removida.

Continuação da demonstração

- Note que o vértice x deve ter grau 1 pois, caso contrário, o caminho P
 poderia ser aumentado ou poderia existir um ciclo em G, ambas as
 possibilidades levam a uma contradição.
- Então, nós removemos o vértice x de G. Com isso, a aresta incidente em x também é removida.
- Assim, nós obtemos uma nova árvore H com n-1 vértices e m-1 arestas.
- Pela hipótese de indução, temos que m-1=(n-1)-1. Daqui segue que m=n-1. Então, o teorema também é verdadeiro para G.

Representação de grafos

Representamos grafos de duas maneiras principais

Representamos grafos de duas maneiras principais

1. matriz de adjacência

Representamos grafos de duas maneiras principais

- 1. matriz de adjacência
- 2. listas de adjacência

Representamos grafos de duas maneiras principais

- 1. matriz de adjacência
- 2. listas de adjacência

Qual estrutura de dados escolher?

Representamos grafos de duas maneiras principais

- 1. matriz de adjacência
- 2. listas de adjacência

Qual estrutura de dados escolher?

• depende do problema sendo tratado

Representamos grafos de duas maneiras principais

- 1. matriz de adjacência
- 2. listas de adjacência

Qual estrutura de dados escolher?

- depende do problema sendo tratado
- e das operações realizadas pelo algoritmo

Representamos grafos de duas maneiras principais

- 1. matriz de adjacência
- 2. listas de adjacência

Qual estrutura de dados escolher?

- depende do problema sendo tratado
- e das operações realizadas pelo algoritmo
- a estrutura escolhida afeta a complexidade do algoritmo

Matriz de adjacência

grafo não direcionado

• Seja G um grafo com n vértices. A matriz de adjacência de G é a matriz $A(G)=(a_{uv})$ de dimensão $n\times n$, tal que a_{uv} é o número de arestas ligando os vértices u e v, cada laço contando como duas arestas.

$$A(G) = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ v_2 & 2 & 1 & 0 & 1 & 0 \\ v_2 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 2 & 0 \\ v_4 & 1 & 1 & 2 & 0 & 1 \\ v_5 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Matriz de adjacência

grafo não direcionado

• Seja G um grafo com n vértices. A matriz de adjacência de G é a matriz $A(G)=(a_{uv})$ de dimensão $n\times n$, tal que a_{uv} é o número de arestas ligando os vértices u e v, cada laço contando como duas arestas.

ullet se G for não direcionado, então a matriz A é simétrica

Matriz de adjacência

UNIVERSIDADE FEDERAL DO CEARÁ

Grafo direcionado

	5	t	и	X	W	V
S	0	1	0	1	0	0
t	0	0	0	0	1	0
и	0	0	0	0	1	1
Χ	0	1	0	0	0	0
W	0 '	0	1	1	0	0
V	0	0	0	0	0 1 1 0 0	0

ullet se G for direcionado, então a matriz A não é simétrica

Para representar um grafo G=(V,E) por listas de adjacências:

Para representar um grafo G=(V,E) por listas de adjacências:

ullet criamos uma lista encadeada Adj[v] para cada vértice v

Para representar um grafo G=(V,E) por listas de adjacências:

- ullet criamos uma lista encadeada Adj[v] para cada vértice v
- ullet adicionamos a Adj[v] todos os vértices adjacentes a v

Para representar um grafo G=(V,E) por listas de adjacências:

- ullet criamos uma lista encadeada Adj[v] para cada vértice v
- ullet adicionamos a Adj[v] todos os vértices adjacentes a v

Para representar um grafo G = (V, E) por listas de adjacências:

- ullet criamos uma lista encadeada Adj[v] para cada vértice v
- ullet adicionamos a Adj[v] todos os vértices adjacentes a v

Como representamos uma aresta (u, v)?

ullet se a aresta for direcionada, então v está em Adj[u]

Para representar um grafo G = (V, E) por listas de adjacências:

- ullet criamos uma lista encadeada Adj[v] para cada vértice v
- ullet adicionamos a Adj[v] todos os vértices adjacentes a v

- se a aresta for direcionada, então v está em Adj[u]
- se a aresta for não direcionada,

Para representar um grafo G=(V,E) por listas de adjacências:

- ullet criamos uma lista encadeada Adj[v] para cada vértice v
- ullet adicionamos a Adj[v] todos os vértices adjacentes a v

- ullet se a aresta for direcionada, então v está em Adj[u]
- se a aresta for não direcionada,
 - 1. então v está em Adj[u]

Para representar um grafo G=(V,E) por listas de adjacências:

- ullet criamos uma lista encadeada Adj[v] para cada vértice v
- ullet adicionamos a Adj[v] todos os vértices adjacentes a v

- ullet se a aresta for direcionada, então v está em Adj[u]
- se a aresta for não direcionada,
 - 1. então v está em Adj[u]
 - 2. também u está em Adj[v]

 A representação por listas de adjacências geralmente é a mais usada por serem mais eficientes em grafos esparsos.

Espaço para o armazenamento:

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))
Espaço utilizado	$O(V ^2)$	O(V + E)

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))
Espaço utilizado	$O(V ^2)$	O(V + E)

As duas permitem representar grafos e digrafos

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))
Espaço utilizado	$O(V ^2)$	O(V + E)

As duas permitem representar grafos e digrafos

Qual usar?

Espaço para o armazenamento:

• Matriz: $O(|V|^2)$

• Listas: O(|V| + |E|)

Tempo:

Operação	Matriz	Listas
Inserir	O(1)	O(1)
Remover	O(1)	O(d(v))
Aresta existe?	O(1)	O(d(v))
Percorrer vizinhança	O(V)	O(d(v))
Espaço utilizado	$O(V ^2)$	O(V + E)

As duas permitem representar grafos e digrafos

Qual usar?

• Depende das operações usadas e se o grafo é esparso

Extensões

• Há alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.

Extensões

- Há alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.
- Essas representações podem ser usadas para grafos ponderados, grafos com laços e arestas múltiplas, grafos com pesos nos vértices etc.

Extensões

- Há alternativas para representar grafos, mas matrizes e listas de adjacência são as mais usadas.
- Essas representações podem ser usadas para grafos ponderados, grafos com laços e arestas múltiplas, grafos com pesos nos vértices etc.
- Para determinados algoritmos é importante manter estruturas de dados adicionais.

- O grau de um vértice em um grafo não-direcionado é o número de arestas que nele incidem. Em um grafo direcionado, o grau de saída de um vértice é o número de arestas que saem dele, e o grau de entrada de um vértice é o número de arestas que entram nele. O grau de um vértice em um grafo direcionado é seu grau de entrada mais seu grau de saída.
 - Dada uma representação por lista de adjacências de um grafo direcionado:
 - (a) Qual o tempo necessário para calcular os graus de saída de todos os vértices?
- (b) Qual o tempo necessário para calcular os graus de entrada?

- O grau de um vértice em um grafo não-direcionado é o número de arestas que nele incidem. Em um grafo direcionado, o grau de saída de um vértice é o número de arestas que saem dele, e o grau de entrada de um vértice é o número de arestas que entram nele. O grau de um vértice em um grafo direcionado é seu grau de entrada mais seu grau de saída.
 - Dada uma representação por lista de adjacências de um grafo direcionado:
 - (a) Qual o tempo necessário para calcular os graus de saída de todos os vértices?
- (b) Qual o tempo necessário para calcular os graus de entrada?

- O transposto de um grafo direcionado G=(V,E) é o grafo $G_T=(V,E_T)$, onde $E_T=\{(v,u)\in V\times V\colon (u,v)\in E\}$. Assim, G_T é G com todas as suas arestas invertidas. Descreva algoritmos eficientes para calcular G_T a partir de G, para a representação por lista de adjacências e também para a representação por matriz de adjacências de G. Analise os tempos de execução de seus algoritmos.
- O quadrado de um grafo direcionado G=(V,E) é o grafo $G_2=(V,E_2)$ em que $(u,v)\in E_2$ se e somente se G contiver um caminho que tenha no máximo duas arestas entre u e v. Descreva algoritmos eficientes para calcular G_2 a partir de G para uma representação por lista de adjacências e para uma representação por matriz de adjacências de G. Analise os tempos de execução de seus algoritmos.

• A maioria dos algoritmos em grafos que adota uma representação por matriz de adjacências como entrada exige o tempo $\Omega(V^2)$, mas há algumas exceções. Mostre como determinar se um grafo direcionado G contém um **sumidouro** (isto é, um vértice com grau de entrada |V|-1 e grau de saída 0) no tempo O(V), dada uma matriz de adjacências para G.

• A matriz de incidência de um grafo direcionado G = (V, E) sem nenhum laço é uma matriz $B = (b_{ij})$ de dimensão $|V| \times |E|$ tal que:

$$b_{ij} = \begin{cases} -1, & \text{se a aresta } j \text{ sai do v\'ertice } i; \\ 1, & \text{se a aresta } j \text{ entra no v\'ertice } i; \\ 0, & \text{se caso contr\'ario.} \end{cases}$$

Descreva o que representam as entradas do produto de matrizes BB_T , onde B_T é a transposta de B.

ullet Dada a matriz de adjacências de uma grafo com N vértices, faça um algoritmo que determine se esse grafo é direcionado ou não-direcionado.

• Um **multigrafo** é um grafo que possui arestas paralelas e/ou laços. Dada uma representação por lista de adjacências de um multigrafo G=(V,E), descreva um algoritmo de tempo O(V+E) para calcular a representação por lista de adjacências do grafo não direcionado "equivalente" G'=(V,E'), onde E' consiste nas arestas em E onde todas as arestas múltiplas entre dois vértices foram substituídas por uma aresta única e onde todos os laços foram removidos.

FIM