1) Uma exola possei 500 almos. Desses almos, 237 são meninos e o restante são meninas. Sabe-se que há 120 meninos e 97 meninas no ensino funda mental e os demois estas no ensino nédio.

a) Ache a probabilidade de que um aluno selecionado aleatoriamente seja do ensino médio.

	Meninos	Meninas	total	
EF	120	97	217	
EM	117	166	283	
total:	237	263	500	

P(ser EM) = 283 = 0,566

b) Ache a probabilidade de un aluno selecionado aleatoriamente ser moninos ou estar no ensino

Primeiro, contamos o número de alunos que satisfazem uma das duas condições e deprois calculamos a probabilidade.

no ensino imédio.

NA = 117 + 120 + 166 =

P(menino ou EM) = 403 = 0,806

ore P(menino on EM) = P(menino) + P(EM) - P(menino e EM)= $\frac{237}{500} + \frac{283}{500} - \frac{117}{500} - \frac{403}{500} = 0,806$ fundamental.

Primeiro, contamos o número de alunos que
satisfazem os duas condições e depois calculamos a
probabilidade.

no ensino funda mental.

NA = 97P(menina e EF) = 97 = 0,194

d) Ache a probabilidade de um almo relecionado alea toriamente estar no ensino fundamental e médio ao mermo tempo.

dono o número de alunos que satisfazem os duas condições ao mermo tempo é Zero. Logo

 $P(EF \in EM) = 0 = 0$ (evento improvavel)

e) Ache a probabilidade de um aluno relecionado aleatriamente pertencer a escola.

P(pertencer a excola) = 500 = 1 (evento corto).

f) Ache a probabilidade de très alunos selecionados aleatoriamente, sem reposição, serem todos meninas.

P(3 meninas) = 263. 262. 261 = 0, 145 500 499 498

2) Seja o	conjunto de dado: 1 15, 15, 15, 15, 13, 13, 4, 13,
10, 11, 105,	20, 10.1, 11.9, 17.2, 16.5, 14.5, 15, 15.8, 13.4, 13.4,
12.6, 12.	

a) (dual é o formato da distribuição desses dados? Precisamos construir um histograma

valor mínimo = 10

valor matimo = 20

numero de classes = 5

amplitude de classe = (20-10): 5 = 2

classe	frequência	freq. relativa
10 = x < 12	5	====================================
12 < x < 14	4	4/15 = 0,267
145 x < 16	3	$\frac{3}{15} = 0, 2$
16 < x < 18	2	2/15 = 0,133
18 < x < 20	1	1/15 = 0,067
total	15	

b) la la le a probabilidade de que um valor selecio nado alea toriamente desse conjunto de dador seja maior ou igual à 16. $P(x \ge 16) = P(16 \le x < 18) + P(18 \le x \le 20) = 1$ tilibra

= 0,133+0,067 = 0,2) 20% dos dados São a 16.

4

c) la loule a probabilidade de que um valor selecionado al eatoriamente desse conjunto esteja entre 12 e 18.

 $P(12 \le x \le 18) = 0,267 + 0,2 + 0,133$

d) Quais valores são usuais e não usuais nesse conjunto de dados?

usuais: 10 < X < 18

não-umais: X < 10 ou x > 18

3) Um conjunto de dador têm distribuição normal com média u=50 e desvio padrão 0 = 0,7. Deter mine um intervalo que contenha aproximada mente 95% deves dados.

Usando a regra empírica, temos:

hogo, o intervalo que contem 95% dos dados é 48,6 ≤ x = 51,40.

		4	medio	
intervalo	ponto médio	y do ponto	2	
24 - 25		y-e-1 (24,5-30)	= 0,044	
25 - 26	25+26 = 25.5	4= 0.053		
26 - 27	26+27 = 26.5	4= 0,062		
	2	7		

A1 = (25-24). 0,044 = 0,044

 $A_2 = (26-25) \cdot 0,053 = 0,053$

A3 = (27-26). 0,062 = 0,062

Area total = $A_1 + A_2 + A_3 = 0$, 044 + 0,053 + 0,062 $\approx 0,159$

OBS1: Use a planitha "calculo-probabilidades-DN. XIS"
para conferir esse resultado.

OBS 2: Chanto maior for o número de subintervalos, maior é a aproximação calculada.

DBS3: Esse é o conceito básico de integral.

tilibra

(5) Um fabricante de tubos com diâmetro de 2 polegadas afirma que seus tubos tem um desvio padrão de 2 milimetros no diâmetro. Uma amostra de 35 tubos apresentou um diâmetro médio de 55,1 milimetros. Construa com intervalo de confiança de 95% para o verdadeiro diâmetro dos tubos e verifique se a informação do fabricante é verdadeira.

O fabricante a firma que a população de tubos tem média u = 2 x 25,4 = 50,8 mm (uma polegada é igual à 25,4 mm) e desvio padrão σ = 2 mm. hogo:

 $\mu = 50.8$ $\sigma = 2$ n = 35 $\bar{\chi} = 55.1$ $\alpha = 0.05$ $\sigma = 2$ $\sigma = 35$ $\sigma = 35$ $\sigma = 2$ $\sigma = 2$ $\sigma = 35$ $\sigma = 2$ $\sigma = 2$ $\sigma = 35$ $\sigma = 2$ $\sigma = 2$ $\sigma = 35$ $\sigma = 2$ $\sigma = 2$ $\sigma = 35$ $\sigma = 2$ $\sigma = 2$ $\sigma = 35$ $\sigma = 2$ $\sigma = 2$

 $E = \frac{7}{2} \cdot \frac{\sigma}{\sqrt{n}} = \frac{1,96.2}{\sqrt{35}} = 0,663$

 $\bar{X} - E \le u \le \bar{X} + E \implies 55,1 - 0,663 \le u \le 55.1 + 0,663$ $\implies 54,44 \le u \le 55,76//$

Logo, a amostra estima que a populações de tubos tem uma média de diâmetros maior ou igual à 54,44 m m. Portanto, a informações do fabricante, de que os tubos tem diâmetro médio de 50,8 mm, parece estar errada.