Embedded & Software Engineering

IoT – Security Check

Michael Schnelle, 21.04.2018

Wozu IT-Sicherheit?

DDOS FÜR 7.500 US-DOLLAR

Hacker verkaufen Zugang zu IoT-Botnetz im Darknet

Der Zugang zum IoT-Botnetz Mirai setzt neuerdings keine technischen Kenntnisse mehr voraus, sondern nur genügend Finanzmittel - 7.500 US-Dollar. Ein chinesischer Hersteller sagt "Mirai ist ein Desaster für das IoT" und reagiert mit einer Rückrufaktion.

Produkte für Mirai genutzt werden. (Bild: Hangzhou Xiongmai Technology)

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY—WITH ME IN IT

98 Sekunden bis zur Infektion: IoT-Botnetz im Selbstversuch UPDATE

22.11.2016 13:16 Uhr - Dennis Schirrmacher

Quelle: heise online / golem.de / wired.com

MQTT-Protokoll: IoT-Kommunikation von Reaktoren und Gefängnissen öffentlich einsehbar

17.02.2017 09:44 Uhr - Uli Ries

(Bild: Purple Slog, CC BY 2.0)

Über das Telemetrie-Protokoll MQTT spricht eine unüberschaubare Zahl an IoT-Sensoren in etwa Autos und Flugzeugen mit ihren Servern – unverschlüsselt, ohne Frage nach Passwörtern. Hacker könnten nicht nur mitlesen, sondern Daten auch manipulieren.

Agenda

- Wie sichere ich mein System ab?
- Bedrohungsmodellierung allgemein 2.
- Bedrohungs- und Risikoanalyse an einem Beispiel 3.
- Verbreitete Schwachstellen und Gegenmaßnahmen

Wie sichere ich mein System ab?

Exkurs: Microsoft Security Development Lifecycle

Quelle: https://www.microsoft.com/en-us/sdl/

IoT – Beispielarchitektur – Heimnetzwerk

Angreifer

Heimnetzwerk

NAS

Router/ **Firewall**

Internet / externe Dienste

Bewohner Besucher

IoT – Beispielarchitektur – Heimnetzwerk

Angreifer

Internet / externe Dienste

Heimnetzwerk

The **Joy of Tech™** by Nitrozac & Snaggy

You can help us keep the comics coming by becoming a patron! www.patreon/joyoftech

joyoftech.com

Vorgehen bei der Bedrohungsmodellierung

Modellierung der Applikation

- Zusammentragen verfügbarer Informationen
- Dokumentation in einheitlicher Form
- Abgrenzung von irrelevanter Umgebung
- Besonders Relevant: Schnittstellen
- Typische Techniken:
 - Interviews
 - Sichten von Dokumenten / Standards
 - Modellierung mittels abstrakter Diagramme (Komponentendiagram/DFD)
- Schwierigkeiten:
 - Wahl einer passenden Notation
 - Wahl einer passenden Abstraktionsebene

Was sind die konkreten Bedrohungen für meine Applikation?

- Technologische Aspekte
 - Verwendete Bibliotheken
 - Hardwareeigenschaften
 - Übertragungstechnologien
- Angreifermodelle
 - Skript-Kiddie
 - Insider
 - Organisiertes Verbrechen
- Verschiedenste Vorgehensmodelle:
 - Gefährdungskataloge des BSI
 - Top n Listen (z.B. OWASP IoT Top 10 Bedrohungen)
 - Bedrohungsmodellierung nach STRIDE

Bedrohungsmodellierung nach STRIDE

Angreifer

Heimnetzwerk

Kriterien:

- Spoofing Identity
- I Tampering with data
- Repudiation
- **I**nformation disclosure
- Denial of service
- Elevation of privileges

Ziel: Priorisierung der Bedrohungen

- Welcher Schaden kommt auf mich zu, wenn die Bedrohung eintritt?
- Wie hoch ist die Wahrscheinlichkeit, dass die Bedrohung eintritt?

Risikomatrix:

Eintrittswahrscheinlichkeit

Ziel: Priorisierung der Bedrohungen

Bedrohung: Mein IoT Gerät macht bei einer DDOS Attacke mit!

Skala: z.B. 0 – 10

Damage

8 (hoher wirtschaftlicher Schaden, mein Gerät begeht eine Straftat)

Reproducibility

8 (hoch, viele unbekannte Sicherheitslücken, Geräte hängen meist

offen im Netz)

Exploitability

6 (nicht zu einfach, aber doch sehr verbreitet)

Affected users

9 (theoretisch kann jeder betroffen sein)

Discoverability

6 (mittlerer technischer Aufwand nötig)

37 / 5 = 7.4Risiko = (D + R + E + A + D)/510 – 7 hohes Risiko 6 – 4 mittleres Risiko

3-0 geringes Risiko

Ausarbeitung von Gegenmaßnahmen

Agenda

- Wie sichere ich mein System ab?
- Bedrohungsmodellierung allgemein 2.
- Bedrohungs- und Risikoanalyse an einem Beispiel 3.
- Verbreitete Schwachstellen und Gegenmaßnahmen

xkcd - Exploits of a Mom

Quelle: http://imgs.xkcd.com/comics/exploits_of_a_mom.png

Funktionsweise:

Beispiel:

Eingabe:

```
userid = getRequestString("UserName");
sql = "SELECT * FROM Users WHERE Name ='" + userid;
```

execute(sql);

- → Tommy
- \rightarrow Tommy or 1 == 1
- → Tommy; DROP Table Students

UserId:

SQL – Injection: Gegenmaßnahmen

- Wenn möglich Bibliothek für den Datenbankzugriff verwenden
- Wenn nicht möglich, dann:
 - Benutzung von "Prepared Statements" (parametrisierte Statements)
 - Stored Procedures
 - Benutzereingaben filtern (sqlSafe Funktion)

Unsichere Passwortspeicherung

LinkedIn-Hack: 117 Millionen Passwort-Hashes zum Download aufgetaucht

Die Angebote mit riesigen Passwort-Hash-Listen im Netz häufen sich: 117 Millionen LinkedIn-Hashes, 360 Millionen MySpace-Konten und 65 Millionen Tumblr-Hashes befeuern die Algorithmen der Cracker. Alle stammen aus alten Hackerangriffen von 2012 und 2013.

Kein Salz = schneller Erfolg für Cracker

Nachdem LinkedIn die Hashwerte lediglich mit dem Algorithmus SHA1 erzeugte und seinerzeit noch auf das Salzen der Werte verzichtet hat haben Cracker leichtes Spiel: Eine einzelne Grafikkarte AMD Radeon R9 290X erzeugt pro Sekunde über 4 Milliarden solcher Hashwerte.

... Quelle: heise online

BKA findet eine halbe Milliarde ausgespähte Zugangsdaten

(Bild: dpa, Oliver Berg/Illustration)

Sichere Speicherung von Passworten

Basis: Hash Funktion

Hashfunktionen (Streufunktionen) sind eine Abbildung einer Eingabemenge (Schlüssel) auf eine Ausgabemenge (Hashwerte)

- Deterministisch: Für eine Eingabe erfolgt immer die gleiche Ausgabe
- Es gibt keinen (vertretbaren) Weg vom Hashwert zum Schlüssel zurück
- Streuend: Ähnliche Eingaben führen zu komplett verschiedenen Ausgaben

Speicher von Passworten als Hash

Festlegen des Passworts

Einloggen mit festgelegtem Passwort

Speicherung von Passworten als Salted Hash

Festlegen des Passworts

setPassword(username, password)

salt = generateSalt()
saltedPasswordHash = generateHash(salt + password)
storeCredentials(username, salt, saltedPasswordHash)

Verbreitete Schwachstellen (nach OWASP IoT)

- Unverschlüsselte Übertragung oder Speicherung
- Schlecht oder falsch implementierte Verschlüsselung
- Nicht fest verbaute Speichermedien

Verbreitete Gegenmaßnahmen

- Verschlüsselte Übertragung / Speicherung
- Richtige Rechte- und Rollenverwaltung
- Passwörter nicht im Klartext speichern
- Redundante Instanzen einführen

Handlungsempfehlungen

- Nicht-vertrauenswürdige Komponenten in separates Netz
- Unnötigen Netzwerkverkehr unterbinden
- Updates regelmäßig einspielen
- Augen auf bei der Produktauswahl
- Standardpassworte immer ändern
- Netzwerkverkehr überwachen

Was fällt Ihnen noch ein?

Embedded & Software Engineering technik.mensch.leidenschaft

Professional User Interface

Embedded Linux jobs@mixed-mode.de

Test & Quality
Internet of Things We need you! **Embedded Security**