Packet 2: Functions of Random Variables

Chap 5.1 Function of One Random Variable

STAT 414 has introduced distributions that are meaningful and mathematically continent.

Motivation:

• What if the distribution of a random variable is uncommon but some transformation leads to a common distribution?

• Sometimes, we can also apply simple tools to the transformed variable. E.g. the time series of world population is as follows:

Year	Pop Size (million)	$\log(\text{Size}) \text{ (base 10)}$
1	170	8.23
400	190	8.28
800	220	8.34
1200	360	8.56
1600	545	8.74
1800	900	8.95
1850	1200	9.08
1900	1625	9.20
1950	2500	9.40
1975	3900	9.59
2000	6080	9.78

• Change the support of the random variable, e.g. logit transformation on a proportion variable.

Question: After the distribution of transformed variable is estimated, how about the original one? Let us assume the distribution of a continuous random variable X follows a common distribution, e.g. log income follows a normal distribution. What is the distribution of the income at the original scale, $Y = \exp(X)$?

So we need a theory to figure out the distribution of Y = u(X) for any transformation u(.) that is a 1-1 mapping.

Example 5.1-1 (p.g. 163) Let X have a gamma distribution with p.d.f.

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta},$$

where $0 < x < \infty$, $\alpha > 0$ and $\theta > 0$.

Question: what is the distribution of $Y = e^X$?

Shortcut for the change of variable (univariate case):

Let X be a continuous random variable with p.d.f. f(x). When u(.) is a 1-1 mapping:

• Y = u(X) is an strictly increasing function of X with inverse function X = v(Y).

• Y = u(X) is an strictly decreasing function of X with inverse function X = v(Y).

When u(.) is not a 1-1 mapping:

Example: X has a Cauchy distribution with p.d.f.

$$f(x) = \frac{1}{x(1+x^2)},$$

where $-\infty < x < \infty$.

Question, what is the distribution of $Y = X^2$?

More examples 5.1-3, 5.1-5.

A special case. Theorem 5.1-1: Let F(x) = P(X < x) have the properties of a c.d.f.: strictly increasing on a < x < b, F(a) = 0 and F(b) = 1.

If $Y \sim U(0,1)$ and Y = F(X) , then the random variable $X = F^{-1}(Y)$ will have c.d.f. F(x).

Chap 5.2 Function of Two Random Variables

Question: What if two random variables are involved in the transformation?

Answer: The rule is the same as that in the univariate case, with derivative being replaced by the Jacobian. (p.g. 171)

Example 5.2-1: Let $X_1, X, 2$ have the joint p.d.f. $f(x_1, x_2) = 2$ for $0 < x_1 < x_2 < 1$.

Question: What is the joint distribution of $Y_1 = X_1/X_2$ and $Y_2 = X_2$?

More examples: 5.2-2, 5.2-3.

Example 5.2-4: Let two independent variables $U \sim \chi^2(r_1) \ V \sim \chi^2(r_2)$.

Question: What is the distribution of $F = \frac{U/r_1}{V/r_2}$?