Even more hierarchical models FW 891

Click here to view presentation online

Christopher Cahill 25 October 2023

Purpose

- Today we introduce a powerful extension of mixed effects models
 - Random slopes (aka varying effects models)
 - Repent for our earlier sins
- Adventures in covariance a la McElreath (2023)
 - Cover some math necessary for working with covariance matrices
- Simulate a varying effects problem
- Develop both centered and noncentered varying effects models in Stan

Some references

 This lecture is drawing heavily on McElreath (2023), and much of the code and analyses are adapted from information in that text

Some references

- This lecture is drawing heavily on McElreath (2023), and much of the code and analyses are adapted from information in that text
 - If you want more information, check "Adventures in Covariance" chapter of this book

Some references

- This lecture is drawing heavily on McElreath (2023), and much of the code and analyses are adapted from information in that text
 - If you want more information, check "Adventures in Covariance" chapter of this book
- See also Gelman and Hill (2007)
 - Specifically chapter 13

Thinking about variability in ecological systems

Three key takeways

Point #1

variability in both intercepts and slopes among replicates

Point #2

• slopes get steeper as intercepts get bigger

Point #3

• some groups display Simpson's paradox

Simpson's paradox

Colored points are data from replicate 1

Grey points are data from all other replicates

Group question

 what is a question in your field of study that might show a similar pattern?

Varying effects

- Generalization of standard multilevel regression
 - Specifically, models that allow slopes and intercepts to vary by group
- Several ways to write, here's one for the model we just visualized

$$y_{i} \sim N(\mu_{i}, \sigma)$$
 [likelihood]
$$\mu_{i} = \beta_{0 \lceil group \rceil} + \beta_{1 \lceil group \rceil} x_{1 \lceil i \rceil}$$
 [linear model]

$$y_{i} \sim N(\mu_{i}, \sigma)$$
 [likelihood]
$$\mu_{i} = \beta_{0 \lceil group \rceil} + \beta_{1 \lceil group \rceil} x_{1 \lceil i \rceil}$$
 [linear model]

Then comes the matrix of varying intercepts and slopes, with it's covariance matrix Σ :

$$y_{i} \sim N(\mu_{i}, \sigma)$$
 [likelihood]
$$\mu_{i} = \beta_{0 \lceil group \rceil} + \beta_{1 \lceil group \rceil} x_{1 \lceil i \rceil}$$
 [linear model]

Then comes the matrix of varying intercepts and slopes, with it's covariance matrix Σ :

$$\begin{bmatrix} \beta_{0_{group}} \\ \beta_{1_{group}} \end{bmatrix} \sim \text{MVN} \begin{pmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix}, \Sigma \end{pmatrix} \text{[population of varying effects]}$$

$$\Sigma = \begin{pmatrix} \sigma_{\beta_0} & 0 \\ 0 & \sigma_{\beta_1} \end{pmatrix} \Omega \begin{pmatrix} \sigma_{\beta_0} & 0 \\ 0 & \sigma_{\beta_1} \end{pmatrix} \text{ [construct covariance matrix]}$$

$$y_{i} \sim N(\mu_{i}, \sigma)$$
 [likelihood]
$$\mu_{i} = \beta_{0 \lceil group \rceil} + \beta_{1 \lceil group \rceil} x_{1 \lceil i \rceil}$$
 [linear model]

Then comes the matrix of varying intercepts and slopes, with it's covariance matrix Σ :

$$\begin{bmatrix} \beta_{0_{group}} \\ \beta_{1_{group}} \end{bmatrix} \sim \text{MVN} \begin{pmatrix} \begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix}, \Sigma \end{pmatrix} \text{[population of varying effects]}$$

$$\Sigma = \begin{pmatrix} \sigma_{\beta_0} & 0 \\ 0 & \sigma_{\beta_1} \end{pmatrix} \Omega \begin{pmatrix} \sigma_{\beta_0} & 0 \\ 0 & \sigma_{\beta_1} \end{pmatrix} \text{ [construct covariance matrix]}$$

• Math on the previous slide says that each group has a $\beta_{0[group]}$ and $\beta_{1[group]}$ with a prior distribution defined by the two dimensional Gaussian distribution with means β_0 and β_1 and covariance matrix Σ

- Math on the previous slide says that each group has a $eta_{0[group]}$ and $eta_{1[group]}$ with a prior distribution defined by the two dimensional Gaussian distribution with means eta_0 and eta_1 and covariance matrix Σ
 - This is a multivariate normal distribution

- Math on the previous slide says that each group has a $eta_{0[group]}$ and $eta_{1[group]}$ with a prior distribution defined by the two dimensional Gaussian distribution with means eta_0 and eta_1 and covariance matrix Σ
 - This is a multivariate normal distribution
- The final line defines how we construct our covariance matrix Σ by factoring it into a diagonal matrix of σ_{β_0} and σ_{β_1} and a correlation matrix Ω

- Math on the previous slide says that each group has a $eta_{0[group]}$ and $eta_{1[group]}$ with a prior distribution defined by the two dimensional Gaussian distribution with means eta_0 and eta_1 and covariance matrix Σ
 - This is a multivariate normal distribution
- The final line defines how we construct our covariance matrix Σ by factoring it into a diagonal matrix of σ_{β_0} and σ_{β_1} and a correlation matrix Ω
 - Several ways to construct Σ , but splitting it into standard deviations, σ_{β_0} and σ_{β_1} , and a correlation matrix Ω helps with understanding

- Math on the previous slide says that each group has a $\beta_{0[group]}$ and $\beta_{1[group]}$ with a prior distribution defined by the two dimensional Gaussian distribution with means β_0 and β_1 and covariance matrix Σ
 - This is a multivariate normal distribution
- The final line defines how we construct our covariance matrix Σ by factoring it into a diagonal matrix of σ_{β_0} and σ_{β_1} and a correlation matrix Ω
 - Several ways to construct Σ , but splitting it into standard deviations, σ_{β_0} and σ_{β_1} , and a correlation matrix Ω helps with learning
- Compare this with a standard normal distribution which takes a mean and a standard deviation

The correlation matrix

For this simple example, the correlation matrix looks like

$$\mathbf{\Omega} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

The correlation matrix

For this simple example, the correlation matrix looks like

$$\mathbf{\Omega} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

• where ρ is the correlation between β_0 and β_1

The correlation matrix

For this simple example, the correlation matrix looks like

$$\mathbf{\Omega} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

- where ρ is the correlation between β_0 and β_1
- $oldsymbol{\Omega}$ gets more complicated for models with more varying slopes

Cholesky decomposition

 Note that we can take any arbitrary symmetric, positivedefinite matrix A, and factor or decompose it into

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

Cholesky decomposition

 Note that we can take any arbitrary symmetric, positivedefinite matrix A, and factor or decompose it into

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T$$

• where ${\bf L}$ is a lower triangular matrix with real and positive diagonal entries and ${\bf L}^T$ is a transpose of ${\bf L}$

Cholesky Decomposition

If we visualize a Cholesky decomposition

$$\begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{00} & 0 & 0 \\ L_{10} & L_{11} & 0 \\ L_{20} & L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} L_{00} & L_{10} & L_{20} \\ 0 & L_{11} & L_{21} \\ 0 & 0 & L_{22} \end{bmatrix}$$

Cholesky Decomposition

If we visualize a Cholesky decomposition

$$\begin{bmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{00} & 0 & 0 \\ L_{10} & L_{11} & 0 \\ L_{20} & L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} L_{00} & L_{10} & L_{20} \\ 0 & L_{11} & L_{21} \\ 0 & 0 & L_{22} \end{bmatrix}$$

 This is helpful from a numerical perspective, particularly with noncentered parameterizations

Cholesky factors continued

- Note that there is a lot of convenient linear algebra that can be done with Cholesky factors of covariance matrices L or of correlation matrices $L_{\rm corr}$
 - For example,

$$\mathbf{L} = \begin{pmatrix} \sigma_{eta_0} & 0 \\ 0 & \sigma_{eta_1} \end{pmatrix} \mathbf{L_{corr}}$$

See this link for a useful review

```
1 # create a correlation matrix and declare sigmas
 2 OMEGA <- matrix(c(1, 0.7, 0.7, 1), nrow = 2)
   sigmas <- c(1, 2) # sd_b0, sd_b1</pre>
   OMEGA
    [,1] [,2]
[1,] 1.0 0.7
[2,] 0.7 1.0
 1 sigmas
[1] 1 2
 1 # note also
 2 diag(sigmas) # diagonal matrix
    [,1] [,2]
[1,] 1 0
[2,] 0 2
```

```
1 # calculate covariance matrix:
2 SIGMA <- diag(sigmas) %*% OMEGA %*% diag(sigmas)
3 SIGMA

[,1] [,2]
[1,] 1.0 1.4
[2,] 1.4 4.0</pre>
```

[2,] 1.4 1.428286

```
1 # generate random values with desired covariance
2 Z <- rbind(rnorm(1e4), rnorm(1e4))
3 X <- Lambda %*% Z
4 par(mfrow=c(1,2))
5 plot(Z[1,]~Z[2,], main = "uncorrelated deviates", col = "firebrick")
6 plot(X[1,]~X[2,], main = "correlated deviates", col = "firebrick")</pre>
```

uncorrelated deviates

[11]Z -4 -2 0 2 -4 -2 0 2 4 Z[2,]

correlated deviates

A problem

- People want to know the extent to which juvenile walleye growth rate is density dependent
 - Has implications for both basic ecology and management
- DNR Biologists go to a collection of lakes and measure length of age-0 walleye in fall as a proxy of juvenile growth rate
- Each year, the biologists attempt to go to 30 lakes in total (weather pending)
 - They also conduct surveys to get an estimate of juvenile density
- Let's simulate some fake data representing this problem, and then build some Stan models to recover
- go to the varying_effects.r script

Hyperpriors for varying effects model

```
\beta_0 \sim \text{Normal}(0, 25) [prior for average intercept]

\beta_1 \sim \text{Normal}(0, 25) [prior for average slope]

\sigma \sim \text{Exponential}(0.01) [prior for stddev within group]

\sigma_{\beta_0} \sim \text{Exponential}(0.01) [prior stddev among intercepts]

\sigma_{\beta_1} \sim \text{Exponential}(0.01) [prior stddev among intercepts]

\sigma_{\beta_1} \sim \text{Exponential}(0.01) [prior stddev among intercepts]

\sigma_{\beta_1} \sim \text{Exponential}(0.01) [prior for correlation matrix]
```

• LKJcorr(2) defines a weakly informative prior on ρ that is skeptical of extreme correlations near -1 or 1

• LKJcorr(1)

• LKJcorr(2)

• LKJcorr(4)

• LKJcorr(10)

Why go through all of that

Wrap up

- Introduced a powerful extension to mixed effects models: varying effects
- Went through a bunch of math to show how to play with multivariate normal distributions
- Simulated an example, conducted prior predictive checks, estimated the model
- Showed a non-centered version of this model as well
- Up next, spatial random effects

References

Cahill et al. 2020. A spatial-temporal approach to modeling somatic growth across inland fisheries landscapes. CJFAS.

Gelman, A. and J. Hill. 2007. Data analysis using regression and multilevel/hierarchical models

McElreath 2023. Statistical Rethinking.

Simpson's paradox Wikipedia:

https://en.wikipedia.org/wiki/Simpson%27s_paradox

https://mlisi.xyz/post/simulating-correlated-variables-with-the-cholesky-factorization/