Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Fizyki i Informatyki Stosowanej Informatyka Stosowana

Metody Numeryczne

Wyznaczanie Wartości i Wektorów Własnych Macierzy Metoda Bisekcji Ireneusz Bugański

1. Cel ćwiczenia

Celem ćwiczenia jest zastosowanie metody bisekcji do znalezienia wektorów własnych oraz wartości własnych.

2. Opis problemu

Zadaniem jest znalezienie wektorów własnych i stowarzyszonych z nimi wartości własnych macierzy Hamiltona dla jednowymiarowego kwantowego oscylatora harmonicznego. Równanie własne operatora energii w tym przypadku ma postać równania Schrödingera:

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{kx^2}{2}\right)\psi(x) = E\psi(x),\tag{1}$$

gdzie $\psi(x)$ – funkcja stanu elektronu o energii $E, \frac{kx^2}{2}$ – potencjał oscylatora harmonicznego, m – masa elektronu, \hbar - stała Plancka podzielona przez 2π . Równanie (1) można zapisać bez stałych fizycznych, przyjmując za jednostkę energii $\hbar\omega$, $\omega=k/m$ oraz za jednostkę długości $\sqrt{\hbar/m\omega}$. W nowych jednostkach rówanie (1) ma postać:

$$\left(-\frac{\partial^2}{\partial x^2} + \frac{x^2}{2}\right)\psi(x) = E\psi(x). \tag{2}$$

W obliczeniach numerycznych pochodną zastępuje się ilorazem różnicowym:

$$\frac{\partial^2}{\partial x^2} \psi(x = x_i) \approx \frac{\psi(x_{i+1}) - 2\psi(x_i) + \psi(x_{i+1})}{(\Delta x)^2},\tag{3}$$

gdzie x_i to współrzędna x w i-tym węźle siatki obliczeniowej. Zwykle w obliczeniach przyjmuje się siatkę równoodległych węzłów, gdzie $\Delta x = x_{i+1} - x_i$. Przybliżając różniczkę w równaniu (2) wzorem (3) oraz stosując notację $\psi(x_i) \equiv \psi_i$ otrzymujemy równanie różnicowe:

$$-\frac{1}{2}\frac{\psi_{i+1} - 2\psi_i + \psi_{i-1}}{(\Delta x)^2} + \frac{1}{2}x_i\psi_i = E\psi_i. \tag{4}$$

Warunek brzegowy nałożony na funkcję falową wymaga, aby funkcja ta zerowała się w nieskończoności. Siatka obliczeniowa ma N węzłów, więc $\psi_0 = 0$ oraz $\psi_N = 0$, gdzie węzły o numerach 1 oraz N odpowiadają brzegom siatki obliczeniowej. Równanie (4) można przedstawić w postaci macierzowej:

$$\begin{pmatrix} h_{1,1} & h_{1,2} & 0 & \cdots & 0 & 0 & 0 & 0 \\ h_{2,1} & h_{2,2} & h_{2,3} & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & h_{N-3,N-4} & h_{N-3,N-3} & h_{N-3,N-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & h_{N-2,N-3} & h_{N-2,N-2} & h_{N-2,N-1} \\ 0 & 0 & 0 & \cdots & 0 & 0 & h_{N-1,N-2} & h_{N-1,N-1} \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_{N-2} \\ \psi_{N-1} \\ \psi_{N-1} \end{pmatrix}$$

$$= E \begin{pmatrix} \psi_1 \\ \psi_2 \\ \vdots \\ \psi_{N-2} \\ \psi_{N-1} \\ \psi_{N-1} \end{pmatrix}, \tag{5}$$

gdzie $h_{i,i-1}=h_{i-1,i}=-1/[2(\Delta x)^2]$ dla $i=2,\ldots,N-1$, $h_{i,i}=(\Delta x)^{-2}+\frac{x_i^2}{2}$, $x_i=-L+i\Delta x$ dla $i=1,\ldots,N-1$ oraz $\Delta x=2L/N$, gdzie L – współrzędna końca przedziału x. Macierz (5) jest rzeczywistą macierzą trójprzekątniową.

Znajdź pięć pierwszych wartości własnych i wektorów własnych macierzy (5) oraz nanieś na wspólnym wykresie wektory własne w przedziale $x \in [-L, L]$. Wykorzystaj metodę bisekcji wykonywaną dla $IT_MAX = 50$ iteracji. Przyjmij N = 50 oraz L = 5. Porównaj wyniki z wynikami analitycznymi.

Opis metody bisekcji

Metoda bisekcji ma zastosowanie w przypadku macierzy trójdiagonalnej symetrycznej i nieredukowalnej. Macierz trójdiagonalna symetryczna i nieredukowalna H jest postaci:

$$H = \begin{pmatrix} \delta_{1} & \gamma_{1} & 0 & \cdots & 0 \\ \gamma_{1} & \delta_{2} & \gamma_{2} & \cdots & 0 \\ 0 & \gamma_{3} & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \gamma_{N-1} \\ 0 & 0 & 0 & \gamma_{N-1} & \delta_{N} \end{pmatrix}, \tag{6}$$

gdzie γ_i , i=1:N-1 są różnei od 0. Dla tak zdefiniowanej macierzy można pokazać, że wszystkie wartości są rzeczywiste i pojedyncze.

Metoda bisekcji opiera się na określeniu liczby wartości własnych mniejszych niż obrana wartość parametru λ . Dla parametru λ oblicza się ciąg wartości wielomianu charakterystycznego $p_k(\lambda)$ podmacierzy głównej $H^{(k)}$, tj. zawierającej k pierwszych wierszy i k pierwszych kolumn macierzy H. Liczba zmian znaku w ciągu $\{p_k(\lambda)\}$ jest równa liczbie wartości własnych mniejszych niż λ . Wartości $p_k(\lambda)$ można obliczyć w sposób iteracyjny:

$$p_0(\lambda) = 1$$

$$p_1(\lambda) = \delta_1 - \lambda$$

$$p_k(\lambda) = (\delta_k - \lambda)p_{k-1}(\lambda) + (\gamma_{k-1})^2 p_{k-2}(\lambda),$$

$$k = 1, \dots, N.$$
(7)

Algorytm wyznaczania *i*-tej wartości własnej λ_i przebiega następująco:

- Algorytm jest iteracyjny i wykonuje się założoną przez użytkownika liczbę razy równą *IT_MAX*. Liczba wykonań określa dokładność przybliżenia λ_i przez λ_i , gdzie λ_i to przbliżenie wartości własnej w j-tej iteracji.
- b) W pierwszej iteracji wyznacz przedział [a,b], w którym przewiduje się, że λ_i się znajduje. Przyjmij $\lambda_j = \frac{a+b}{2}$. c) Wyznacz liczbę n zmian znaku w ciągu $\{p_k(\lambda)\}$.

- d) Jeśli $n \le i$, to w kolejnej iteracji przyjmij przedział $[\lambda_j, b]$, w przeciwnym przypadku przyjmij przedział $[a, \lambda_1]$.
- e) Przyjmij jako nowe λ_j środek nowego przedziału, tj. $\lambda_j = \frac{a+\lambda_j}{2}$ lub $\lambda_j = \frac{b+j}{2}$ w zależności od tego, który warunek w d) jest spełniony
- f) Powtarzaj punkty c) i d) i e) IT_MAX razy Wektor własny \mathbf{x}_i dla wartości własnej λ_i można otrzymać rekurencyjnie:

$$x_{i}^{1} = 1$$

$$x_{i}^{2} = \frac{\lambda_{i} - \delta_{1}}{\gamma_{1}}$$

$$x_{i}^{n} = \frac{(\lambda_{i} - \delta_{n})x_{i}^{n-1} - \gamma_{n-2}x_{i}^{n-2}}{\gamma_{n-1}},$$
(8)

gdzie x_i^n to n-ta współrzędna i-tego wektora własnego. Wektor należy na koniec unormować, tzn. $\mathbf{x}_i = \frac{\mathbf{x}_i}{x_i}$, gdzie x_i – długość wektora \mathbf{x}_i . Długość wektora obliczana jest z normy Euklidesowej.

4. Rozwiązanie

Kolejne wartości własne są równe: 0.4987, 1.4947, 2.4836, 3.4685, 4.4481 Na Rysunku 1. Przedstawiono wykresy wektorów własnych.

Rysunek 1. Wykres kolejnych wektorów własnych oscylatora harmonicznego.