Gegeben sind die Ebenenschar E_t : $(1+t) \cdot x + t \cdot y - 2z = 14$ mit $t \in \mathbb{R}$

und die Ebene

$$F: \vec{x} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix} + v \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + w \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$
 mit $v, w \in \mathbb{R}$.

- 1.1 Bestimmen Sie eine Gleichung der Ebene F in Koordinatenform. (6P) Bestätigen Sie durch geeignete Rechnung, dass die Ebene F eine Ebene der Schar ist, und geben Sie den Wert von t an, für den $E_t = F$ ist.
- 1.2 Untersuchen Sie die Lagebeziehung der Ebenen F und E_3 . Geben Sie die Menge der gemeinsamen Punkte an. (6P)
- 2. Ermitteln Sie zwei Ebenen der Ebenenschar E_t , die sich unter einem Winkel von 90° schneiden, und erläutern Sie Ihren Lösungsweg. (7P)
- 3. Die beiden Abbildungsmatrizen M und N bilden die Ebene F vom 3-dimensionalen Raum \mathbb{R}^3 in den 4-dimensionalen Raum \mathbb{R}^4 auf die "Ebenen" F_M und F_N ab:

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad N = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 3.1 Bestimmen Sie jeweils eine Gleichung der "Ebenen" F_M und F_N im \mathbb{R}^4 in Parameterform. (6P)
- 3.2 Die beiden "Ebenen" F_M und F_N können auf folgende Weise dargestellt werden:

$$F_{M}: \vec{x} = \begin{pmatrix} 4 \\ 4 \\ 8 \\ -1 \end{pmatrix} + r \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix} \qquad F_{N}: \vec{x} = \begin{pmatrix} 2 \\ 5 \\ 5 \\ -1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} + u \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix} \text{ mit } r, s, t, u \in \mathbb{R}$$

Die Untersuchung der Lagebeziehung der beiden neu entstandenen "Ebenen" F_M und F_N im \mathbb{R}^4 führt auf ein lineares Gleichungssystem. Bestimmen Sie dieses lineare Gleichungssystem; es muss nicht gelöst werden.

Die Lösung des linearen Gleichungssystems ist r=-2, s=-2, t=-4 und u=-1. Ermitteln Sie damit die Lagebeziehung der beiden "Ebenen" F_M und F_N . Beurteilen Sie das Ergebnis.

(5P)