

Model Free Prediction

Outline

- Introduzione
- Approcci di Monte-Carlo
- ▶ Temporal-Difference (TD) learning
- ► TD(λ)

Model-Free Reinforcement Learning

- Finora ci siamo concentrati sulla risoluzione di un MDP noto (composto da stati, transizioni, ricompense, azioni)
- Model free
 - Nessun modello dell'ambiente
 - Nessuna conoscenza delle transizioni/ricompense del MDP
- Model-free prediction Stimare la value function di un MDP non noto
- Model-free control Ottimizzare la value function di un MDP non noto

Monte-Carlo (MC) Reinforcement Learning

- I metodi MC apprendono direttamente dagli episodi di esperienza
- MC è model-free: nessuna conoscenza delle transizioni/ricompense del MDP
- MC apprende da episodi completi: nessun bootstrapping
- Model-free control Ottimizzare la value function di un MDP non noto
- MC utilizza l'idea più semplice possibile: valore = guadagno medio degli episodi
- Warning: può applicare MC solo a MDP episodiche
- Tutti gli episodi devono terminare

Monte-Carlo Policy Evaluation

Delictivo: apprendere v_{π} da episodi di esperienza in base alla policy π

$$S_1, A_1, R_2, \dots, R_k \sim \pi$$

 Ricordiamo che il guadagno è la ricompensa totale scontata

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Ricordiamo che la value function è il guadagno atteso

$$v_{\pi}(s) = \mathbb{E}\left[G_t | S_t = s\right]$$

 La Monte-Carlo policy evaluation utilizza il guadagno medio empirico al posto del guadagno atteso

First-Visit Monte-Carlo Policy Evaluation

- Per valutare lo stato s
- ▶ Il primo time-step t in cui lo stato s viene visitato in un episodio
 - ▶ Incremento del contatore N(s) <- N(s) + 1</p>
 - ▶ Incremento del guadagno totale $S(s) \leftarrow S(s) + G(t)$
 - ▶ Stima del valore dal guadagno medio V(s) = S(s)/N(s)
- Per la legge dei grandi numeri

$$V(s) \rightarrow v_{\pi}(s) \text{ as } N(s) \rightarrow \infty$$

First-Visit Monte-Carlo Policy Evaluation

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Input: a policy \pi to be evaluated Initialize: V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathcal{S} Returns(s) \leftarrow an empty list, for all s \in \mathcal{S} Loop forever (for each episode): Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T G \leftarrow 0 Loop for each step of episode, t = T-1, T-2, \ldots, 0: G \leftarrow \gamma G + R_{t+1} Unless S_t appears in S_0, S_1, \ldots, S_{t-1}: Append G to Returns(S_t) V(S_t) \leftarrow average(Returns(S_t))
```

Every-Visit Monte-Carlo Policy Evaluation

- Per valutare lo stato s
- Ogni time-step t in cui lo stato s viene visitato in un episodio
 - ▶ Incremento del contatore N(s) <- N(s) + 1</p>
 - ▶ Incremento del guadagno totale $S(s) \leftarrow S(s) + G(t)$
 - ▶ Stima del valore dal guadagno medio V(s) = S(s)/N(s)
- Di nuovo, per la legge dei grandi numeri

$$V(s) \rightarrow v_{\pi}(s) \text{ as } N(s) \rightarrow \infty$$

Esempio Blackjack

- Stati (200)
 - Somma attuale (12-21)
 - Carta scoperta dal banco (asso-10)
 - ▶ Ho uno *usable ace*? (si-no)
- Ricompensa per l'azione stick (smettere di ricevere carte (e terminare)):
 - +1 se la somma delle carte > somma delle carte del banco
 - ▶ 0 se la somma delle carte = somma delle carte del banco
 - → -1 se la somma delle carte < somma delle carte del banco</p>
- Ricompensa per l'azione twist (prendere un'altra carta (senza sostituirla)):
 - -1 se la somma delle carte > 21 (e termina)
 - 0 altrimenti
 - Transizioni: automaticamente twist se la somma delle carte è < 12

Value Function del Blackjack dopo il MC Learning

Policy: stick se la somma delle carte è ≥ 20, altrimenti twist

Media incrementale

La media μ_1 , μ_2 , ... di una sequenza x_1 , x_2 , ... può essere calcolata in modo incrementale

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j = \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$\mu_k = \frac{1}{k}(x_k + (k-1)\mu_{k-1}) = \mu_{k-1} + \frac{1}{k}(x_k - \mu_{k-1})$$

Aggiornamento Media incrementale del MC

▶ Aggiorna V(s) in modo incrementale dopo l'episodio

$$S_1, A_1, R_2, ..., R_T$$

- Per ogni stato S_t con guadagno G_t
 - ▶ Incremento del contatore N(s) <- N(s) + 1</p>
 - Aggiornamento della value function (con media incrementale)

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

In problemi non stazionari si traccia una media mobile (dimenticando i vecchi episodi)

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

Temporal-Difference Learning

Temporal-Difference (TD) Learning

- I metodi TD apprendono direttamente da episodi di esperienza
- TD è model-free: nessuna conoscenza delle transizioni/ricompense del MDP
- TD apprende da episodi incompleti, tramite bootstrapping
- TD aggiorna un'ipotesi verso un'altra ipotesi

MC vs TD Learning

- Obiettivo: apprendere v_{π} da episodi di esperienza in base alla policy π
- MC incrementale ad ogni visita
 - Aggiornamento del valore $V(S_t)$ verso il guadagno effettivo G_t

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

- Algoritmo più semplice del temporal-difference learning (TD(0))
 - Aggiornamento del valore $V(S_t)$ verso il guadagno stimato $R_{t+1} + \gamma$ $V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \Big]$$

$$\text{TD target}$$

$$\text{TD error } \delta_t$$

TD(0) Policy Evaluation

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0,1] Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0 Loop for each episode:

Initialize S
Loop for each step of episode:

A \leftarrow \text{action given by } \pi \text{ for } S
Take action A, observe R, S'
V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]
S \leftarrow S'
until S is terminal
```

Esempio Temporal Difference

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Esempio Guida Verso Casa

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Esempio Guida Verso Casa – MC vs TD

Vantaggi e svantaggi di MC vs. TD (I)

- TD può apprendere prima di conoscere il risultato finale
 - ▶ TD può apprendere online dopo ogni step
 - MC deve aspettare la fine dell'episodio prima di conoscere il guadagno
- TD può apprendere senza il risultato finale
 - ▶ TD può apprendere da sequenze incomplete
 - MC può apprendere solo da sequenze complete
 - TD funziona in ambienti continui (non terminanti)
 - MC funziona solo in ambienti episodici (terminanti)

Bias-Variance Tradeoff

- Il guadagno $G_t = R_{t+1} + \gamma R_{t+2} + \cdots, \gamma^{T-1} R_T$ è una stima imparziale (unbiased) di $v_{\pi}(S_t)$
- Il vero target di TD $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ è una stima imparziale (unbiased) di $v_{\pi}(S_t)$
- Il target di TD $R_{t+1} + \gamma V(S_{t+1})$ è una stima distorta (biased) di $v_{\pi}(S_t)$
- Il target di TD ha una varianza molto più bassa rispetto al guadagno:
 - ▶ Il guadagno G_t dipende da molte azioni, transizioni e ricompense casuali
 - Il target di TD dipende da una sola azione, transizione e ricompensa casuale

Vantaggi e svantaggi di MC vs. TD (II)

- MC ha un'alta varianza e zero bias
 - Buone proprietà di convergenza (anche con approssimazione della funzione)
 - Non è molto sensibile al valore iniziale
 - Molto semplice da comprendere e utilizzare
- TD ha una bassa varianza ma alcuni bias
 - Solitamente più efficiente di MC
 - TD(0) converge a $v_{\pi}(s)$ (ma non sempre con l'approssimazione della funzione)
 - Più sensibile al valore iniziale

Esempio Random Walk

Esempio Random Walk – MC vs TD

Batch MC e TD

- ▶ MC e TD convergono: $V(s) \rightarrow v_{\pi}(s)$ con l'esperienza $\rightarrow \infty$
- Ma che dire della soluzione batch per l'esperienza finita?

$$s_1^1, a_1^1, r_2^1, \dots, s_{T_1}^1$$

 \vdots
 $s_1^K, a_1^K, r_2^K, \dots, s_{T_K}^K$

- ▶ ad es. campionare ripetutamente l'episodio $k \in [1,K]$
- Applicare MC o TD(0) all'episodio k

Un semplice esempio

Due stati A e B; nessuna scontistica; 8 episodi di esperienza

- 1. A, 0, B, 0
- 2. B, 1
- 3. B, 1
- 4. B, 1
- 5. B, 1
- 6. B, 1
- 7. B, 1
- 8. B, 0
- Cos'è V(A); V(B)?

Certainty Equivariance

- MC converge alla soluzione con il il minimo errore quadratico medio
 - Miglior adattamento ai guadagni osservati

$$\sum_{k=1}^K \sum_{t=1}^{T_k} \left(G_t^k - V(s_t^k) \right)^2$$

- TD(0) converge alla soluzione del modello di Markov a massima verosimiglianza
 - ▶ Soluzione del MDP <S, A, P, R, γ > che meglio si adatta ai dati

$$\widehat{P}_{SS'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k, s_{t+1}^k; s, a, s')$$

$$\widehat{\mathcal{R}}_{S}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_t^k, a_t^k; s, a) r_t^k$$

Vantaggi e svantaggi di MC vs. TD (III)

- TD sfrutta la proprietà di Markov
 - Solitamente più efficiente in ambienti di Markov
- MC non sfrutta la proprietà di Markov
 - Solitamente più efficace in ambienti non di Markov

Visione Unificata

MC Update

TD Update

Programmazione dinamica

Bootstrapping and Sampling

- Bootstrapping L'aggiornamento prevede una stima
 - MC non esegue il bootstrap
 - DP esegue il bootstrap
 - TD esegue il bootstrap
- Sampling L'aggiornamento campiona una previsione
 - MC esegue il sampling
 - DP non esegue il sampling
 - ▶ TD esegue il sampling

Unified View del RL

Generalizzazione TD

Generalizzazione del TD: n-step Prediction

Generalizzazione del TD: n-step Return

▶ Consideriamo i seguenti n-step return per $n = 1, 2, ..., \infty$

$$n = 1 \quad \text{(TD)} \quad G_t^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$

$$n = 2 \quad G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$$
...
$$n = \infty \quad \text{(MC)} \quad G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Definiamo l'n-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

▶ Apprendimento basato sull'*n*-step difference

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

Media degli n-step Return

- Possiamo eseguire una media degli n-step return su differenti n
 - Ad esempio, la media dei 2-step e 4-step return

$$\frac{1}{2}G^{(2)} + \frac{1}{4}G^{(4)}$$

- Combina informazioni provenienti da due fasi temporali diverse
- Possiamo combinare in modo efficiente le informazioni provenienti da tutti i timestep?

λ-return

- L' λ -return G_t^{λ} combina tutti gli gli n-step return $G_t^{(n)}$
- Utilizza i pesi $(1-\lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

• Aggiorna in modo appropriato $(TD(\lambda))$

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t^{\lambda} - V(S_t))$$

TD(λ) Weight Function

$$G_t^{\lambda} = (1-\lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_{t:t+n} + \lambda^{T-t-1} G_t$$

- $\lambda = 1$ Monte Carlo
- $\lambda = 0$ one-step TD

Forward View TD(λ)

- Aggiorna la value function verso il λ -return
- La forward view guarda al futuro per calcolare G_t^{λ}
- Come il MC, può essere calcolato solo da episodi completi

Backward View TD(λ)

- La forward view fornisce la teoria
- La backward view fornisce il meccanismo
- Aggiornamento online, ad ogni step, da sequenze incomplete

Eligibility Traces

- Credit assignment problem: il problema di determinare le azioni che portano a un determinato risultato. Cosa ha causato lo shock?
 - Frequency heuristic: assegna credito agli stati più frequenti
 - Recency heuristic: assegna credito agli stati più recenti
- Le eligibility traces combinano entrambe le euristiche

Backward View TD(λ)

- Si tiene traccia di una eligibility trace per ogni stato s
- Aggiorna il valore V(s) per ogni stato s
- In proporzione al TD-error δ_t e alla eligibility trace $E_t(s)$

$TD(\lambda) e TD(0)$

• Quando λ = 0, viene aggiornato solo lo stato attuale

$$E_t(s) = \mathbf{1}(S_t; s)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

Equivalente all'aggiornamento TD(0)

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

$TD(\lambda)$ e MC

- Quando $\lambda = 1$, il credito è differito fino alla fine dell'episodio
- Si considerano gli ambienti episodici con aggiornamenti offline
- Durante un episodio, l'aggiornamento totale per TD(1) è uguale all'aggiornamento totale per MC
- Teorema
 - La somma degli aggiornamenti offline è identica per la forward e backward view $TD(\lambda)$

$$\sum_{t=1}^{T} \alpha \delta_t E_t(s) = \sum_{t=1}^{T} \alpha \left(G_t^{\lambda} - V(S_t) \right) \mathbf{1}(S_t; s)$$

Telescoping in TD(1)

- Quando λ = 1, la somma degli errori di TD si trasforma nell'errore di MC
- TD(1) è approssimativamente equivalente a un every-visit
 Monte-Carlo
- Gli errori vengono accumulati online, step-by-step
- Se la value function viene aggiornata offline solo alla fine dell'episodio, allora l'aggiornamento totale è uguale a quello di MC

Take home messages

- La Model-free prediction è la stima della value function di un MDP non noto
 - È basato sui sample-update
- Metodi di Monte-Carlo
 - Stima della value function attraverso la media dei sample return
 - Solo per compiti episodici (che terminano indipendentemente dalle azioni intraprese)
- TD learning
 - Apprendere dalle stime esistenti (distorte) del guadagno futuro (bootstrapping)
 - Esplorare il futuro fino all'n-esimo step