Topic in quantum computation and information

Names of team members University of British Columbia

Abstract

This is a short description of the paper.

1 Introduction

To use this template, create a *new* Latex project in Overleaf and copy both main.tex and references.bib into that project.

Here is a reference [Sho97].

2 Another sample section

Here is a sample equation:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \tag{1}$$

We can now refer to this as Eq. (1).

Aligned equations can be produced as follows:

$$|\text{EPR}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle),$$
 (2)

$$|\text{GHZ}\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle).$$
 (3)

We can use customized commands to produce, e.g., $|\psi\rangle\langle\phi|$ and $|\chi\rangle\langle\chi|$. Note that "ketbra" and "ketbrasame" are defined via "newcommand" in the Latex code.

Acknowledgments

If you have discussions with your classmates about your chosen topic, you can thank them here.

References

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. doi: 10.1137/S0097539795293172. [p. 1]