Бустинг

Виктор Китов

v.v.kitov@yandex.ru

Бустинг1

Строится линейная композиция:

$$G_M(x) = f_0(x) - c_1 f_1(x) - ... - c_M f_M(x)$$

Регрессия: $\widehat{y}(x) = G_M(x)$

Классификация: $g_{y}(x) = G_{M}(x), \ \widehat{y}(x) = \text{sign } G_{M}(x)$

- $f_1(x), ... f_M(x)$ базовые модели (base learners, base models).
- Сложно оптимизировать $f_0(x), f_1(x), ... f_M(x)$ и $c_1, ... c_M$ одновременно.
- Упрощение: настраиваем $f_0(x)$, потом последовательно $(f_m(x), c_m)$ для m = 1, 2, ...M.

 $^{^{1}}$ Какую модель получим, если применим бустинг к линейным моделям?

Алгоритм бустинга

Настраиваем начальное приближение

$$f_0(x) = \arg\min_{f} \sum_{n=1}^{N} \mathcal{L}(f(x_n), y_n)$$

- ② Для m = 1, 2, ...M:
 - находим коррекцию:

$$(c_m, f_m) := \arg\min_{f,c} \sum_{n=1}^{N} \mathcal{L}(G_{m-1}(x_n) - cf(x_n), y_n)$$

• обновляем ансамбль:

$$G_m(x) := G_{m-1}(x) - c_m f_m(x)$$

Бэггинг и бустинг

Бэггинг и бустинг

Аналогия с игрой в гольф

Аналогия с игрой в гольф

Аналогия с разложением в ряд Тейлора

Аналогия с разложением в ряд Тейлора

3ависимость от M

Зависимость средних потерь от M:

M контролирует сложность ансамбля. Настраиваем #базовых моделей стратегией ранней остановки (early stopping), когда качество на валидации стало уменьшаться.

Комментарии

- Усреднение выгоднее производить по большему числу базовых моделей.
- Каждый $f_m(x)$ должен быть простым, чтобы оставлять возможности последующим моделям.
 - $f_0(x)$ тождественный ноль или константа
 - настройка $f_m(x)$ может быть неточной
 - $f_m(x)$ должны быть простыми моделями

Содержание

- Adaboost
- 2 Градиентный бустинг
- В Расширения
- Фармантный бустинг деревьев

Adaboost (дискретная версия)

Предположения:

- ullet бинарная классификация $y \in \{+1, -1\}$
- функция потерь $\mathcal{L}(G(x), y) = e^{-yG(x)}$
 - неустойчива к выбросам, их нужно фильтровать по весам
- $f_m(x) \in \{+1, -1\}$, способны настраиваться на взвешенной обучающей выборке.
- ullet настраивается $F_M(x) = \mathrm{sign}\left(\sum_{m=1}^M c_m f_m(x)\right)$
- прогнозирование $\widehat{y}(x) = sign\{G_M(x)\}$
- M внешний параметр.

Возможно аналитическое решение.

Adaboost (дискретная версия): алгоритм

- **1** Инициализируем веса объектов $w_n = 1/N$, n = 1, 2, ...N.
- ② Для каждого m = 1, 2, ... M:
 - **1** настраиваем $f_m(x)$ по выборке с весами $\{w_n\}_{n=1}^N$
 - 2 вычисляем взвешенную частоту ошибок:

$$E_{m} = \frac{\sum_{n=1}^{N} w_{n} \mathbb{I}[f_{m}(x_{n}) \neq y_{n}]}{\sum_{n=1}^{N} w_{n}}$$

- ullet если $E_m > 0.5$ либо $E_m = 0$: останавливаем построение ансамбля.
- **③** вычисляем $c_m = \frac{1}{2} \ln \left((1 E_m) / E_m \right)$ $E_m < 0.5 = > c_m > 0$
- **5** увеличиваем веса объектов, где $f_m(x)$ ошиблась:

$$w_n \leftarrow w_n e^{2c_m} = w_n \left(\frac{1-E_m}{E_m} \right),$$
 для $n: f_m(x_n) \neq y_n$

Задаем
$$G_0(x) \equiv 0$$
.
Для каждого $m = 1, 2, ...M$:

$$(c_m, f_m) = \arg \min_{c_m, f_m} \sum_{n=1}^{N} \mathcal{L}(G_{m-1}(x_n) + c_m f_m(x_n), y_n)$$

$$= \arg \min_{c_m, f_m} \sum_{n=1}^{N} e^{-y_n G_{m-1}(x_n)} e^{-c_m y_n f_m(x_n)}$$

$$= \arg \min_{c_m, f_m} \sum_{i=1}^{N} w_n^m e^{-c_m y_n f_m(x_n)}, \quad w_n^m := e^{-y_n G_{m-1}(x_n)}$$

$$\frac{\partial L(c_m)}{\partial c_m} = -\sum_{n=1}^N w_n^m e^{-c_m y_n f_m(x_n)} y_n f_m(x_n) = 0$$

$$-\sum_{n:f_m(x_n)=y_n} w_n^m e^{-c_m} + \sum_{n:f_m(x_n)\neq y_n} w_n^m e^{c_m} = 0$$

$$e^{2c_m} = \frac{\sum_{n:f_m(x_n)=y_n} w_n^m}{\sum_{n:f_m(x_n)\neq y_n} w_n^m}$$

$$c_m = \frac{1}{2} \ln \frac{\left(\sum_{n:f_m(x_n)=y_n} w_n^m\right) / \left(\sum_{n=1}^N w_n^m\right)}{\left(\sum_{n:f_m(x_n)\neq y_n} w_n^m\right) / \left(\sum_{n=1}^N w_n^m\right)} = \frac{1}{2} \ln \frac{1-E_m}{E_m} > 0,$$
где $E_m := \frac{\sum_{n=1}^N w_n^m \mathbb{I}[f_m(x_n)\neq y_n]}{\sum_{n=1}^N w_n^m}$

$$\sum_{n=1}^{N} w_{n}^{m} e^{-c_{m} y_{n} f_{m}(x_{n})} = \sum_{n: f_{m}(x_{n}) = y_{n}} w_{n}^{m} e^{-c_{m}} + \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m} e^{c_{m}}$$

$$= e^{-c_{m}} \sum_{n: f_{m}(x_{n}) = y_{n}} w_{n}^{m} + e^{c_{m}} \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m}$$

$$= e^{-c_{m}} \sum_{n=1}^{N} w_{n}^{m} - e^{-c_{m}} \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m} + e^{c_{m}} \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m}$$

$$= e^{-c_{m}} \sum_{n} w_{n}^{m} + (e^{c_{m}} - e^{-c_{m}}) \sum_{n: f_{m}(x_{n}) \neq y_{n}} w_{n}^{m}$$

Поскольку $c_m > 0$, $f_m(\cdot)$ находится из условия

$$f_m(\cdot) = \arg\min_{f} \sum_{n=1}^{N} w_n^m \mathbb{I}[f(x_n) \neq y_n]$$

Пересчет весов:

$$w_n^{m+1} \stackrel{def}{=} e^{-y_n G_m(x_n)} = e^{-y_n G_{m-1}(x_n)} e^{-y_n c_m f_m(x_n)}$$

Т.к. $-y_n f_m(x_n) = 2\mathbb{I}[f_m(x_n) \neq y_n] - 1$, получим:

$$\begin{split} w_n^{m+1} &= e^{-y_n G_{m-1}(x_n)} e^{c_m (2\mathbb{I}[f_m(x_n) \neq y_n] - 1)} = w_n^m e^{2c_m \mathbb{I}[f_m(x_n) \neq y_n]} e^{-c_m} \\ &\propto w_n^m e^{2c_m \mathbb{I}[f_m(x_n) \neq y_n]} = w_n^m \left(\frac{1 - E_m}{F_m}\right) > w_n^m \end{split}$$

- Веса нормируются, поэтому можно сократить общий множитель.
- $w_n^{m+1} = w_n^m$ для $n : f_m(x_n) = y_n$.
- $w_n^{m+1} > w_n^m$ для $n: f_m(x_n) \neq y_n$.
 - последующие модели уделят объектам повышенное внимание

Содержание

- Adaboost
- 2 Градиентный бустинг
- 3 Расширения
- 4 Градиентный бустинг деревьев

Мотивация

- Проблема: для ф-ции потерь общего вида пересчет модели/весов не может быть решен аналитически.
- Аналогия с минимизацией ф-ций: если нет аналитического решения, находим численное решение
- Градиентный бустинг: аналогия градиентного спуска в пространстве функций.

Локальная линейная аппроксимация

Линейная аппроксимация
$$\mathcal{L}$$
 с $g(x)=\left.\frac{\partial \mathcal{L}(G,y)}{\partial G}\right|_{G=G(x)}$:
$$\mathcal{L}(G(x)-f(x),\,y)\approx \mathcal{L}(G(x),y)-g(x)f(x)$$

$$rg \min_{f(x)} \sum_{n=1}^N \mathcal{L}(G(x_n) - f(x_n), y_n)$$
 $pprox rg \min_{f(x)} \sum_{n=1}^N \mathcal{L}(G(x_n), y_n) - g(x_n) f(x_n)$ $= rg \min_{f(x)} \sum_{n=1}^N -g(x_n) f(x_n) = rg \max_{f(x)} \sum_{n=1}^N g(x_n) f(x_n)$ $=> f(x)$ должна настраиваться на $g(x)$, т.к.

 $\underset{f:||f|| \leq ||g||}{\text{arg max}} \langle f, g \rangle = g$

Пример: регрессия

$$\sum_{n=1}^{N} \left(f_m(x_n) - \frac{\partial \mathcal{L}(G, y)}{\partial G} |_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

$$\mathcal{L} = \frac{1}{2} (G - y)^2 : f(x) \approx \frac{\partial \mathcal{L}(G, y)}{\partial G} = G - y$$

Пример: регрессия

$$\sum_{n=1}^{N} \left(f_m(x_n) - \frac{\partial \mathcal{L}(G, y)}{\partial G} |_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

$$\mathcal{L} = \frac{1}{2} (G - y)^2 : \ f(x) \approx \frac{\partial \mathcal{L}(G, y)}{\partial G} = G - y$$

$$G_m(x_n) := G_{m-1}(x_n) - c_m f(x) \approx G_{m-1}(x_n) + c_m (y_n - G_{m-1}(x_n))$$

Пример: классификация

$$\sum_{n=1}^{N} \left(f_m(x_n) - \frac{\partial \mathcal{L}(G, y)}{\partial G} |_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

$$\mathcal{L} = [-Gy]_+ : f(x) \approx \frac{\partial \mathcal{L}(G, y)}{\partial G} = \begin{cases} -y, & Gy < 0\\ 0, & Gy \ge 0 \end{cases}$$

Пример: классификация

$$\sum_{n=1}^{N} \left(f_m(x_n) - \frac{\partial \mathcal{L}(G, y)}{\partial G} \Big|_{G = G_{m-1}(x_n)} \right)^2 \to \min_{f_m}$$

$$\mathcal{L} = [-Gy]_+ : \ f(x) \approx \frac{\partial \mathcal{L}(G, y)}{\partial G} = \begin{cases} -y, & Gy < 0 \\ 0, & Gy \ge 0 \end{cases}$$

$$G_m(x_n) := G_{m-1}(x_n) - c_m f(x) \approx G_{m-1}(x_n) + \begin{cases} c_m y_n, & G(x_n) y_n < 0 \\ 0, & G(x_n) y_n \ge 0 \end{cases}$$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

 $oldsymbol{0}$ Настраиваем начальную модель $G_0(x)$

- lacktriangledown Настраиваем начальную модель $G_0(x)$
- ② Для каждого m = 1, 2, ...M:

- **①** Настраиваем начальную модель $G_0(x)$
- ② Для каждого m = 1, 2, ...M:
 - $oldsymbol{0}$ вычисляем градиенты: $g_n = rac{\partial \mathcal{L}(G,y_n)}{\partial G}|_{G_n = G_{m-1}(x_n)}$

- **①** Настраиваем начальную модель $G_0(x)$
- ② Для каждого m = 1, 2, ...M:
 - $oldsymbol{0}$ вычисляем градиенты: $g_n = rac{\partial \mathcal{L}(\mathcal{G}, y_n)}{\partial \mathcal{G}}|_{\mathcal{G}_n = \mathcal{G}_{m-1}(x_n)}$
 - \bullet настраиваем $f_m(\cdot)$ на $\{(x_n,g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangledown Настраиваем начальную модель $G_0(x)$
- ② Для каждого m = 1, 2, ... M:
 - $oldsymbol{0}$ вычисляем градиенты: $g_n = rac{\partial \mathcal{L}(\mathcal{G}, y_n)}{\partial \mathcal{G}}|_{G_n = G_{m-1}(x_n)}$
 - **2** настраиваем $f_m(\cdot)$ на $\{(x_n, g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

3 настраиваем шаг (в sklearn - константный):

$$\varepsilon_m = \underset{\varepsilon>0}{\arg\min} \sum_{n=1}^N \mathcal{L}\left(G_{m-1}(x_n) - \varepsilon f_m(x_n), y_n\right)$$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- **①** Настраиваем начальную модель $G_0(x)$
- ② Для каждого m = 1, 2, ...M:
 - f 0 вычисляем градиенты: $g_n = rac{\partial \mathcal{L}(G,y_n)}{\partial G}|_{G_n = G_{m-1}(x_n)}$
 - \bullet настраиваем $f_m(\cdot)$ на $\{(x_n,g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

3 настраиваем шаг (в sklearn - константный):

$$\varepsilon_m = \arg\min_{\varepsilon>0} \sum_{n=1}^N \mathcal{L}\left(G_{m-1}(x_n) - \varepsilon f_m(x_n), y_n\right)$$

 \mathbf{G} обновляем $G_m(x) = G_{m-1}(x) - \varepsilon_m f_m(x)$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; функция потерь $\mathcal{L}(f, y)$ и число базовых моделей M.

- lacktriangledown Настраиваем начальную модель $G_0(x)$
- ② Для каждого m = 1, 2, ... M:
 - $oldsymbol{0}$ вычисляем градиенты: $g_n = rac{\partial \mathcal{L}(\mathcal{G}, y_n)}{\partial \mathcal{G}}|_{G_n = G_{m-1}(x_n)}$
 - $m{Q}$ настраиваем $f_m(\cdot)$ на $\{(x_n,g_n)\}_{n=1}^N$, например

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}$$

в настраиваем шаг (в sklearn - константный):

$$\varepsilon_m = \arg\min_{\varepsilon>0} \sum_{n=1}^N \mathcal{L}\left(G_{m-1}(x_n) - \varepsilon f_m(x_n), y_n\right)$$

o обновляем $G_m(x) = G_{m-1}(x) - \varepsilon_m f_m(x)$

Выход: композиция $G_M(x)$.

Содержание

- Adaboost
- 2 Градиентный бустинг
- 3 Расширения
- Ф Градиентный бустинг деревьев

Сжатие, обучение на подвыборках

- Перенастройка линейной регрессией весов по признакам $f_1(x), ... f_M(x)$.
- Сжатие шага (shrinkage):

$$G_m(x) = G_{m-1}(x) - \alpha \varepsilon_m f_m(x)$$

- $\alpha \downarrow \implies M \uparrow (\alpha M \approx const)$
- $\alpha \in (0,1]$ искусственно увеличиваем # шагов и # базовых моделей для \uparrow точности.
- настраиваем все параметры, потом используем α и $M:=M/\alpha.$
- Обучение $f_m(x)$ на подвыборках (subsampling)
 - объекты и признаки сэмплируются без возвращения
 - сэмплирование объектов позволяет считать out-of-bag оценки качества
 - ускоряет настройку
 - ullet повышает разнообразие $f_m(x)$ и точность композиции.

Эффект сжатия и обучения на подвыборках

Эффект сжатия и обучения на подвыборках

Локальная квадратичная аппроксимация

Квадратичная аппроксимация
$$\mathcal{L}$$
, используя $g(x) = \frac{\partial \mathcal{L}(G,y)}{\partial G} \Big|_{r=G(x)}, \ h(x) = \frac{\partial^2 \mathcal{L}(G,y)}{\partial G^2} \Big|_{G=G(x)}$:
$$\mathcal{L}(G(x) - f(x), y) \approx \mathcal{L}(G(x), y) - g(x)f(x) + \frac{1}{2}h(x)\left(f(x)\right)^2 = \frac{1}{2}h(x)\left(f(x) - \frac{g(x)}{h(x)}\right)^2 + const(f(x))$$
 arg $\min_{f(x)} \sum_{n=1}^N \frac{1}{2}h(x_n)\left(f(x_n) - \frac{g(x_n)}{h(x_n)}\right)^2 + const(f(x))$
$$= \arg\min_{f(x)} \sum_{n=1}^N h(x_n)\left(f(x_n) - \frac{g(x_n)}{h(x_n)}\right)^2$$

Следовательно $f(x_n) \approx g(x_n)/h(x_n)$ с весом $h(x_n)$. • $h(x) \ge 0$ в окрестности локального минимума L.

Содержание

- Adaboost
- 2 Градиентный бустинг
- 3 Расширения
- 4 Градиентный бустинг деревьев

Преимущества решающих деревьев

Преимущества решающих деревьев:

- нелинейная модель с гибкой настройкой сложности
 - по глубине и др. критериям
- вычислительная эффективность прогнозов
- встроенный обзор признаков
- инвариантны к масштабу признаков
- инвариантны к монотонным преобразованиям признаков
- обладают универсальной применимостью к признакам разной природы
 - бинарные, вещественные, порядковые категориальные
 - категориальные->бинарные (one-hot) или вещественные (mean-value encoding)
 - категориальные->порядковые, упорядочив категории по \overline{y} при условии категории
- позволяют вычислять важность признаков

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

• Начальная аппроксимация-константа:

$$G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$$

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ... M:

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- **2** Для каждого m = 1, 2, ... M:
 - $oldsymbol{0}$ вычисляем градиенты $g_n = rac{\partial \mathcal{L}(G,y_n)}{\partial G}|_{G=G_{m-1}(x_n)}$

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ... M:
 - $oldsymbol{0}$ вычисляем градиенты $g_n = rac{\partial \mathcal{L}(G,y_n)}{\partial G} |_{G=G_{m-1}(x_n)}$
 - **2** настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n, g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_i^m\}_{i=1}^J$.

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ...M:
 - $oldsymbol{0}$ вычисляем градиенты $g_n = rac{\partial \mathcal{L}(G, y_n)}{\partial G} |_{G = G_{m-1}(x_n)}$
 - ② настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n,g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_i^m\}_{i=1}^{J_m}$.
 - **3** для каждого прямоугольника R_j^m , $j = 1, 2, ... J_m$ пересчитываем прогнозы:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_n \in R_i^m} \mathcal{L}(F_{m-1}(x_n) - \gamma, y_n)$$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ...M:
 - $oldsymbol{0}$ вычисляем градиенты $g_n = rac{\partial \mathcal{L}(G,y_n)}{\partial G} |_{G=G_{m-1}(x_n)}$
 - **2** настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n, g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_i^m\}_{i=1}^{J_m}$.
 - **3** для каждого прямоугольника R_j^m , $j=1,2,...J_m$ пересчитываем прогнозы:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_n \in R_i^m} \mathcal{L}(F_{m-1}(x_n) - \gamma, y_n)$$

 $oldsymbol{G}$ обновляем $G_m(x) = G_{m-1}(x) - \sum_{j=1}^{J_m} \gamma_j^m \mathbb{I}[x \in R_j^m]$

Вход: обучающая выборка (x_n, y_n) , n = 1, 2, ...N; ф-ция потерь $\mathcal{L}(f, y)$ и # базовых моделей M.

- **1** Начальная аппроксимация-константа: $G_0(x) = \arg\min_{\gamma} \sum_{n=1}^{N} \mathcal{L}(\gamma, y_n)$
- ② Для каждого m = 1, 2, ...M:
 - $oldsymbol{0}$ вычисляем градиенты $g_n = rac{\partial \mathcal{L}(G,y_n)}{\partial G}|_{G=G_{m-1}(x_n)}$
 - **2** настраиваем решающее дерево $f_m(\cdot)$ на $\{(x_n,g_n)\}_{n=1}^N$, получаем разбиение пр-ва признаков $\{R_i^m\}_{i=1}^{J_m}$.
 - **3** для каждого прямоугольника R_j^m , $j=1,2,...J_m$ пересчитываем прогнозы:

$$\gamma_j^m = \arg\min_{\gamma} \sum_{x_n \in R_i^m} \mathcal{L}(F_{m-1}(x_n) - \gamma, y_n)$$

 $oldsymbol{G}$ обновляем $G_m(x) = G_{m-1}(x) - \sum_{j=1}^{J_m} \gamma_j^m \mathbb{I}[x \in R_j^m]$

Выход: композиция $G_M(x)$.

- Индивидуальная настройка прогноза в каждом R_i^m .
 - ullet подбирать общий множитель $arepsilon_m$ уже не нужно
 - повышает гибкость настройки
- ullet Охватываем взаимодействие K признаков, если
 - макс. глубина дерева К:
 - ullet либо макс. # листьев K+1
- ullet Обычно подбиарют $2 \le K \le 8$ по валидации.
- Англ. gradient boosting on decision trees (GBDT).
- Один из самых точных алгоритмов для неоднородных данных (признаки разной природы)
- Для однородных данных (текст, звук, изображения, видео)
 нейросети, обычно, лучше.

Случай
$$y \in \{1, 2, ...C\}$$

Используем обобщение: один-против-всех, один-против-одного, коды, исправляющие ошибки.

Случай $y \in \{1, 2, ...C\}$

Используем обобщение: один-против-всех, один-против-одного, коды, исправляющие ошибки.

Альтернативно, можно оптимизировать $\mathcal{L}(G(x),y)$, $G(x)\in\mathbb{R}^C$. Пример:

- $G(x) = \{p(y=c|x)\}_{c=1}^{C}$, y one-hot закодированный класс
- $S(G(x), y) = G(x)^T y = p(y = \text{correct class}|x)$ рейтинг
- Решаем задачу С-мерной регрессии:

$$\sum_{n=1}^{N} (f_m(x_n) - g_n)^2 \to \min_{f_m}, \quad g_n = \frac{\partial \mathcal{S}(G, y_n)}{\partial G}|_{r = G_{m-1}(x_n)} \in \mathbb{R}^C$$

- можем использовать квадратичную аппроксимацию.
 - для быстрого обращения $\left(\left. \frac{\partial^2}{\partial G^2} \mathcal{L}(G,y) \right|_{G=G(x)} \right)$ можно использовать квадратичную аппроксимацию.

Продвинутые реализации бустинга

- Продвинутые реализации бустинга:
 - CatBoost
 - разработано Яндексом, документация на русском
 - специальная обработка категориальных признаков
 - xgBoost
 - аппроксимация 2го порядка, дискретизация признаков
 - гибкая регуляризация деревьев: $L_0 + L_2$
 - ullet деревья настраиваются на пользовательскую ${\mathcal L}$
 - LightGBM
 - ускорение: оптимизация на меньшем #объектов и признаков
- Эффективная реализация с параллелизацией на ядрах процессора и видеокарте.

Заключение

- Бустинг линейная композиция последовательно настраиваемых алгоритмов.
- В редких случаях есть аналитическое решение (AdaBoost).
- В общем случае используется градиентный бустинг.
- Градиентный бустинг над решающими деревьями один из самых точных методом ML.
 - менее гибок, чем нейросети, но
 - проще, не нужно подбирать архитектуру сети
 - меньше предобработки данных (универсальность деревьев)
 - интерпретируемый (можно считать важности признаков)
- Полезные надстройки:
 - сжатие (shrinking) больше базовых алгоритмов
 - обучение на подвыборках (subsampling) повышение разнообразия
- Можно использовать квадратичную, а не линейную аппроксимацию.