Calculus I

Homework Derivatives of Involving Logarithms and Arbitrary Exponents Lecture 14

1. Compute the derivative.

- (a) ln(4x)
- (b) $\ln(-13x)$
- (c) $\log_2(5x)$
- (d) $\log_{10}(-3x)$
- (e) $x^6 \ln(2x)$
- (f) $x^4 \ln(2x)$
- (g) $\ln (x^4)$
- (h) $(\ln (x))^4$
- (i) $\ln (7x+1)$
- 2. Differentiate.
 - (a) 10^{x^3} .
 - (b) $2^{\tan x}$.
 - (c) x^x .
- 3. Find the limit.
 - (a) $\lim_{x \to \infty} \left(1 \frac{2}{x}\right)^x$.
 - (b) $\lim_{x \to 0} (1-x)^{\frac{1}{x}}$.

- (j) $\ln (-6x + 2)$
- (k) $\ln \left(\frac{3x-2}{-2x+3} \right)$
- (l) $\ln \left(\frac{5x-4}{-x-5} \right)$
- (m) $\ln \left(\frac{3x+1}{4x-5}\right)$.
- (n) $\ln(\cot x)$
- (o) $\ln(\sec(2x))$
- (p) $f(x) = \ln(\sec x) + \ln(\cot x)$.
- (d) x^{x^x} .
- (e) $(\sin x)^{\cos x}$.
- (f) $(\ln x)^{\ln x}$.
- (c) $\lim_{x \to \infty} \left(\frac{x}{x-5} \right)^x$.
- (d) $\lim_{x \to \infty} \left(\frac{x}{x-2} \right)^{3x+2}$.