- **29.** Sea A una matriz de $n \times n$. Demuestre que la matriz $\frac{1}{2}(A + A^{\mathsf{T}})$ es simétrica.
- **30.** Sea A una matriz de $n \times n$. Demuestre que la matriz $\frac{1}{2}(A A^{\mathsf{T}})$ es antisimétrica.
- *31. Demuestre que cualquier matriz cuadrada se puede escribir de una forma única como la suma de una matriz simétrica y una matriz antisimétrica.
- *32. Sea $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ una matriz con elementos reales no negativos que tiene las propiedades siguientes: i) $a_{11}^2 + a_{12}^2 = 1$ y $a_{12}^2 + a_{22}^2 = 1$ y ii) $\begin{pmatrix} a_{11} \\ a_{12} \end{pmatrix}$, $\begin{pmatrix} a_{11} \\ a_{22} \end{pmatrix} = 0$. Demuestre que A es invertible y que $A^{-1} = A^{T}$.

De los problemas 33 a 38 calcule $(A^{\mathsf{T}})^{-1}$ y $(A^{-1})^{\mathsf{T}}$ y demuestre que son iguales.

33.
$$A = \begin{pmatrix} 0 & 4 \\ -4 & 1 \end{pmatrix}$$
 34. $\begin{pmatrix} 2 & 0 \\ 6 & 3 \end{pmatrix}$ 35. $A = \begin{pmatrix} 2 & 4 \\ -4 & 1 \end{pmatrix}$

$$34. \quad \begin{pmatrix} 2 & 0 \\ 6 & 3 \end{pmatrix}$$

35.
$$A = \begin{pmatrix} 2 & 4 \\ -4 & 1 \end{pmatrix}$$

36.
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

36.
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$
 37. $A = \begin{pmatrix} -1 & -3 & 2 \\ 3 & 0 & 2 \\ 3 & -1 & 3 \end{pmatrix}$ **38.** $\begin{pmatrix} 9 & 0 & 12 \\ 0 & 2 & 0 \\ -4 & 0 & -5 \end{pmatrix}$

$$\begin{array}{cccc}
\mathbf{38.} & \begin{pmatrix} 9 & 0 & 12 \\ 0 & 2 & 0 \\ -4 & 0 & -5 \end{pmatrix}
\end{array}$$

En los problemas 39 a 41 evalúe las expresiones indicadas si

$$A = \begin{pmatrix} 7 & 4 & 10 \\ 10 & 9 & -7 \\ 2 & 3 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} -2 & 3 & 4 \\ 6 & 5 & -4 \end{pmatrix} \quad \mathbf{y} \quad C = \begin{pmatrix} 2 & 1 \\ -1 & a \\ b & 0 \end{pmatrix}.$$

- **39.** $A^{T} A$.
- **40.** $(B^{\top} + C)^{\top}$.
- **41.** $B^{T}B$.

EJERCICIOS CON MATLAB 2.5

Información de MATLAB. En la mayoría de las aplicaciones, para encontrar la transpuesta de A, A^{T} , se da A'. Aquí ' es el apóstrofo. Si A tiene elementos complejos, A' ocasionará la transpuesta conjugada compleja; si desea encontrar la transpuesta de A (sin conjugación compleja), utilice A. '

Para generar matrices aleatorias, consulte los problemas que aparecen en la sección Ejercicios con MATLAB 2.2.

1. Genere cuatro pares, A y B, de matrices aleatorias tales que AB esté definido. Elija algunas matrices cuadradas y otras no cuadradas. Encuentre $(AB)^{\mathsf{T}} - A^{\mathsf{T}}B^{\mathsf{T}}$ y $(AB)^{\mathsf{T}} - B^{\mathsf{T}}A^{\mathsf{T}}$. Concluya una fórmula para $(AB)^{\mathsf{T}}$ en términos de las transpuestas de A y B.