

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет информатики и прикладной математики Кафедра прикладной математики и экономико-математических методов

ЗАДАНИЕ

на тему:

«Решение СЛАУ прямым методом»

метод:

«Метод квадратных корней -1.1.3а»

Направление (специал	іьность)	01	.03.02	
	·	(код, н	аименование)	
Направленность (спец	циализация)			
Обучающийся		Софья Ивановн И.О. полностью)	a	
ГруппаПМ-1901 (номер группы)	_			
Проверил	-	мир Борисович реподавателя)	I	
Должность	=			
Оценка			Дата:	
Полицац				

Санкт-Петербург 2021

1.1.3. Метод квадратных корней (метод Холецкого - Холесского)

$$\mathbf{A} > 0 \implies \mathbf{A} = \mathbf{L}\mathbf{L}^T \implies (\mathbf{L}\mathbf{L}^T)\mathbf{x} = \mathbf{f} \implies \begin{bmatrix} \mathbf{L}\mathbf{g} = \mathbf{f} \\ \mathbf{L}^T\mathbf{x} = \mathbf{g} \end{bmatrix}$$

$$a_{11} > 0, \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, ..., |\mathbf{A}| > 0$$

Прямой ход	$l_{11} = \sqrt{a_{11}}, \ \mathbf{L}_{*1} = l_{11}^{-1} \mathbf{A}_{*1},$ $l_{kk} = \sqrt{a_{kk} - \sum_{i=1}^{k-1} l_{ki}^2}, \ \mathbf{L}_{*k} = l_{kk}^{-1} (\mathbf{A}_{*k} - \sum_{i=1}^{k-1} \mathbf{L}_{*i} l_{ki}), \ k = 2,, n$	$g_1 = I_{11}^{-1} f_1,$ $g_k = I_{kk}^{-1} (f_k - \sum_{i=1}^{k-1} I_{ki} g_i), k = 2,, n$
Обратный ход		$x_n = l_{11}^{-1} g_n, \ x_k = l_{kk}^{-1} (g_k - \sum_{j=k+1}^n l_{ik} x_j), \ k = n-1,,1$

1.2 Математическое описание алгоритма

Исходные данные: положительно определённая симметрическая матрица A (элементы a_{ij}).

Вычисляемые данные: нижняя треугольная матрица L (элементы l_{ij}).

Формулы метода:

$$egin{aligned} l_{11} &= \sqrt{a_{11}}, \ l_{j1} &= rac{a_{j1}}{l_{11}}, \quad j \in [2,n], \ l_{ii} &= \sqrt{a_{ii} - \sum_{p=1}^{i-1} l_{ip}^2}, \quad i \in [2,n], \ l_{ji} &= \left(a_{ji} - \sum_{p=1}^{i-1} l_{ip} l_{jp}
ight)/l_{ii}, \quad i \in [2,n-1], j \in [i+1,n]. \end{aligned}$$

Существует также блочная версия метода, однако в данном описании разобран только точечный метод.

Исходные данные:

№	
6	$\mathbf{f} = \begin{pmatrix} 0.3 \\ 0.5 \\ 0.7 \\ 0.9 \end{pmatrix}$
3	$A = \begin{pmatrix} 1.00 & 0.42 & 0.54 & 0.66 \\ 0.42 & 1.00 & 0.32 & 0.44 \\ 0.54 & 0.32 & 1.00 & 0.22 \\ 0.66 & 0.44 & 0.22 & 1.00 \end{pmatrix}$

Реализация метода Холецкого:

Проверка:

Ответ:
$$x_1 = \frac{-83315}{66239}$$

$$x_2 = \frac{25925}{596151}$$

$$x_3 = \frac{206500}{198717}$$

$$x_4 = \frac{883730}{596151}$$
 Система уравнений:
$$\begin{cases} 1 & x_1 + & 0.42 & x_2 + & 0.54 & x_3 + & 0.66 & x_4 = & 0.3 \\ 0.42 & x_1 + & 1 & x_2 + & 0.32 & x_3 + & 0.44 & x_4 = & 0.5 \\ 0.54 & x_1 + & 0.32 & x_2 + & 1 & x_3 + & 0.22 & x_4 = & 0.7 \\ 0.54 & x_1 + & 0.32 & x_2 + & 1 & x_3 + & 0.22 & x_4 = & 0.7 \\ 0.66 & x_1 + & 0.44 & x_2 + & 0.22 & x_3 + & 1 & x_4 = & 0.9 \end{cases}$$
 Общее решение \mathfrak{C} : $X = \begin{bmatrix} -83315 & 0.315 &$

Оценка точности полученного решения:

```
x = metodHolechkogo[A, f] \{\{-1.25779\}, \{0.0434873\}, \{1.03917\}, \{1.48239\}\} Print["Вектор невязки =", f-A.x] печатать Вектор невязки =\{\{-1.66533\times10^{-16}\}, \{0.\}, \{0.\}, \{-1.11022\times10^{-16}\}\}
```

Решения совпадают.