Aspects of regression to the mean

André Meichtry

April 25, 2024

Contents

1. Shrinkage is a fact of life	1
2. True and observed	1
3. Placebo as a statistical phenomenon	4
A. Maths	Shrinkage of results can be seen to be a necessary fact of life.
	(Stephen Senn

1. Shrinkage is a fact of life

• Galton 1889: Regression toward mediocrity: Phenomenon where if one sample of a random variable is extreme, the next sampling of the same random variable is likely to be closer to its mean.

2. True and observed

Assume true diastolic blood pressure, τ , at baseline is measured with error ϵ so that

$$X = \tau + \epsilon \tag{1}$$

is the observed blood pressure. Let the true mean difference between patients be Δ and the observed mean difference D, then the expectation of D is

$$E(D \mid \Delta = \delta) = \delta, \tag{2}$$

that is, we have "classical" unbiasedness, since $\beta_{D|\Delta} = \frac{\text{Cov}(\Delta, D)}{\sigma_{\Lambda}^2} = 1$.

However, the contrary is not true. We have for the expectation of Δ , given an observed difference d,

$$|E(\Delta \mid D = d)| < |d|, \tag{3}$$

since $\beta_{\Delta|D} = \frac{\text{Cov}(\Delta,D)}{\sigma_D^2} < 1$, and we have regression to the mean¹.

Reliability as upper bound The maximal possible correlation between Δ and D is $\sqrt{rel_D}$.

In a Bayesian approach, shrinking is natural and we have inverse unbiasedness. Most bayesians are rather unconcerned about unbiasedness (at least in the formal sampling-theory sense above) of their estimates. For example, Gelman et al (1995) write: "From a Bayesian perspective, the principle of unbiasedness is reasonable in the limit of large samples, but otherwise it is potentially misleading. Unbiasedness as conventionally understood is not a necessary property of good inferences". Assume without loss of generality $E(\Delta) = 0$ and $\widehat{\Delta}$ an unbiased estimate of a given effect Δ and $\widehat{\Delta}_{shrunk}$ a shrunk estimate. Although $\widehat{\Delta}_{shrunk}$ is not unbiased in the classic forward sense, $E(\widehat{\Delta}_{shrunk} \mid \Delta = \delta) \neq \delta$ it is unbiased in the Bayesian backward sense: $E(\Delta \mid \widehat{\Delta}_{shrunk} = \widehat{\delta}_{shrunk}) = \widehat{\delta}_{shrunk}$.

Figure 1: Shrinkage as a fact of life

3. Placebo as a statistical phenomenon

Placebo effects can often be interpreted as a purely statistical – not a psychological – phenomenon.

Assuming no true change. We simulate correlated pre-post diastolic blood pressure data assuming no change from baseline to follow-up: simulations from parameters: $\rho_{BL,FU}=0.76, \mu_{BL}=\mu_{FU}=90, \sigma_{BL}=\sigma_{FU}=8$. Then let us look at the subgroup of "hypertensive at baseline" only. We have regression to the mean, since $\beta_{FU|BL}=\frac{\sigma_{FU,BL}}{\sigma_{BL}^2}=r\leq 1$.

```
library(RegToMeanExample)
args(DBP.RTM)

## function (mu = 90, sigma = 8, r = 0.76, n = 1000, limit = 95,
## TrueChange = 0, show.plot = TRUE, show.out = FALSE)
## NULL

res <- DBP.RTM(show.plot = FALSE)</pre>
```

```
res$ttestall$p.value

## NULL

res$ttestextrem$p.value

## NULL
```


Figure 2: Simulation of diastolic blood pressure data. Simulations from parameters: $\rho_{BL,FU}=0.76, \mu_{BL}=\mu_{FU}=90, \sigma_{BL}=\sigma_{FU}=8. \text{ Left panel: Baseline versus Follow-up for diastolic blood pressure: no change in the mean. Right panel: Baseline versus Follow-up for "hypertensive at baseline" only. We observe an apparent change due to regression to the mean (Solid line: Regression of follow-up on baseline-measure (that is, by fixing baseline)). Dashed lines: mean values and equality lines.$

Extreme case: ρ =0

DBP.RTM(r = 0, show.plot = TRUE)

Including a true change of -10 and ρ =.8

DBP.RTM(n = n, r = 0.8, TrueChange = -10, show.plot = TRUE)

Including a true change of -10 and ρ =.4

DBP.RTM(r = 0.4, TrueChange = -10, show.plot = TRUE)

ρ =1 (Perfect reliability)

DBP.RTM(r = 1, TrueChange = 0, show.plot = TRUE)

A. Maths

Definition for bivariate normal distribution If (X, Y) follows a bivariate normal distribution, then $E(Y \mid X)$ is a linear function of X. The correlation ρ between X and Y determines:

$$\frac{\mathrm{E}(Y\mid X) - \mathrm{E}(Y)}{\sigma_Y} = \rho \frac{X - \mathrm{E}(X)}{\sigma_X},\tag{4}$$

where E(X) and E(Y) are the expected values of X and Y, respectively, and σ_X and σ_Y are the standard deviations of X and Y, respectively.

The conditional expected value of Y, given that X is t standard deviations above its mean (and that includes the case where it is below its mean, when t<0), is ρt standard deviations above the mean of Y.

Since $|\rho| \leq 1$, Y is no farther from the mean than X is, as measured in the number of standard deviations. Hence, if $0 \leq \rho < 1$, then (X,Y) shows regression toward the mean, that is, $Z_{Y|X} = \rho Z_x$, leading to $Z_{Y|X} - Z_X = (\rho - 1)Z_x$. The amount of RTM is

$$\boxed{\left|z_{Y|X} - z_x\right| = (1 - \rho)z_x}.$$
(5)

The estimated fraction of RTM is given by $1 - \rho$, the fraction of variance that is due to within-subject variability. This quantity represents *unreliability*.

Attenuation Spearman 1904: The proof and measurement of association between two things.

- Reduced reliability of X and Y will always attenuate the observed correlation
- attenuation

$$r_{X,Y} = r_{X_T,Y_T} \times \sqrt{r_{XX'} \times r_{YY'}} \tag{6}$$

• dis-attenuation:

$$r_{X_T,Y_T} = \frac{r_{X_T,Y_T}}{\sqrt{r_{XX'} \times r_{YY'}}} \tag{7}$$

• The maximal possible observable correlation between X and Y is the square root of the product of their reliability

