习题测试 (三) 答案

一、填空题
1. 设, $X = \{a, b\}$,则 X 的离散拓扑为 $\mathcal{T} = \{X, \emptyset, \{a\}, \{b\}\}$ 。
2. $x \in d(A)$ 当且仅当对于 x 的每一邻域 U 有 $U \cap (A - \{x\}) \neq \phi$
3. $f: X \to Y$ 是拓扑空间 X 到 Y 的一个映射,若它是一个单射,并且是从 X 到它的
集 $f(X)$ 的一个同胚,则称映射 f 是一个嵌入。
4. 设 X 是一个集合,则 X 的可数补拓扑为 $\mathcal{T} = \{U \subset X \mid U'$ 是一个可数子集 $\} \cup \{\emptyset\}$ 。
5. 设集合 X 的子集族 B 是 X 的一个拓扑基,则 B 必须要满足条件:
(1) $\bigcup_{B \in \mathcal{B}} B = X$; (2) <u>若 $B_1, B_2 \in \mathcal{B}$,则对于任意 $x \in B_1 \cap B_2$ 存在 $B \in \mathcal{B}$使得 $x \in B \subseteq B_1 \cap B_2$ 。</u>
6. 设 A 是拓扑空间 X 的子集,则 A 的闭包是包含 A 的最小 闭集, A 的内部是在 A 中的的最大开集(填最大或最小)。
7. 设 $X = \{1,2,3,4\}$, $\mathcal{T} = \{\emptyset, X, \{1,2\}, \{1,,2,4\}, \{4\}\}$ 是 X 的拓扑, $A = \{1,4\}$,则 X 的子
空间 A 的拓扑为。 8. 在实数空间 R 中,有理数集 Q 的导集 $d(Q)$ =。
9. $f: X \to Y$ 是拓扑空间 X 到 Y 的一个映射,如果它是一个满射,并且 Y 的拓扑是对于映
射 f 而言的商拓扑,则称 f 是一个 <u>商映射</u> 。
10. 称 X 是正则空间,若
$x \in X, A \subset X, A$ 为闭集,且 $x \notin A$,存在 $U \in N(x), V \in N(A)$,使得 $U \cap V = \emptyset$ 。
 11. 完全正则的 T₁空问成为T_{3.5}空间。 12. 紧致性关于(填开或闭)遗传。 13. 请补充下列几种紧致性的关系:
<u>列紧</u> + $T_1 \Rightarrow$ 可数紧,可数紧+ $A_2 \Rightarrow \underline{F列紧}$
二、证明题
1. 设 X 和 Y 是两个集合, $f: X \to Y$,证明下列两条件等价:

- (1) f是一个单射;
- (2)对于任意 A, $B \subset X$, $f(A \cap B) = f(A) \cap f(B)$.

证明: $(1) \Rightarrow (2)$ 显然有 $f(A \cap B) \subset f(A \cap B)$, 设 $f(A \cap B) = f(A) \cap f(B)$, 则

 $\exists x_1 \in A, x_2 \in B$, 使得 $y = f(x_1) = f(x_2)$, 由条件 f 是单射知, $x_1 = x_2$, 所以 $y \in f(A) \cap f(B)$

散 $f(A \cap B) = f(A) \cap f(B)$; (5 分)

 $(2) \Rightarrow (1)$ 若 $f(x_1) = f(x_2)$,令 $A = \{x_1\}, B = \{x_2\}$,由条件(2),

 $f(\{x_1\} \cap \{x_2\}) = f(x_1) \cap f(x_2) = f(x_1) = f(x_2)$,从而 $x_1 = x_2$, 故f是一个单射。(10 分)

2. 设 $X = \{a,b,c\}, \mathcal{T} = \{\emptyset, \{b,c\}, \{a,b,c\}\}\}$,验证(X,\mathcal{T})是拓扑空间,但不满足 T_0 性.

证明: (1) $X,\emptyset\in\mathcal{T}$; (2) $\{b,c\}\cap\{a,b,c\}=\{b,c\}\in\mathcal{T}$;

(3) $\{b,c\} \cup \{a,b,c\} = \{a,b,c\} \in \mathcal{T}$, 上 \mathcal{T} 是一个拓扑。取 $b \neq c$, \mathcal{T} 中只有两个非空开集 $\{b,c\},\{a,b,c\},$ 对开集 $\{b,c\}$,有 $b,c \in \{b,c\}$

且开集 $\{a,b,c\}$, $b,c \in \{a,b,c\}$,故不存在邻域 $U \in N(b)$, $V \in N(c)$,使得 $c \notin U,b \notin V$,故 $X \oplus T_0$ 的.

3. 实数集合 R 中的一个关系 R 定义为 $R = \{(x,y) \in R^2 \mid x-y \in R\}$,证明 R 是一个等价关系.

综上可知, R是一个等价关系。

4. 证明:正则性是遗传性质.

证明:设X是一个正则空间,Y是X的一个子空间,下证Y是正则的。

设 $y \in Y, y \notin B$,其中B是Y中的闭集,则存在X中的闭集 \widetilde{B} ,使得 $\widetilde{B} \cap Y = B$ 。因此 $y \notin \widetilde{B}$,

因 X是正则的,则存在 y 和 \widetilde{B} 的开邻域 \widetilde{U} , \widetilde{V} ,使得 \widetilde{U} \cap \widetilde{V} = \varnothing ,令 U = \widetilde{U} \cap Y , V 与别是 y 和 B 在子空间 Y 中的开邻域,且有 U \cap V = \varnothing 。故 Y 是正则空间。从而正则性是遗传性质。

5. 证明:设X是 Hausdorff 空间,A,B 是 X 中任两个无交的紧子集,则存在A 的开邻域 U,B 的开邻域 V,使得 $U \cap V = \emptyset$ 。

证明:任意取定 $y_0 \in B$, $\forall x \in A$,则 $x \neq y_0$,因 $X \neq T_2$ 的,故 $\exists x$ 的开邻域 $G(x,y_0)$, y_0 的开邻域 $H(x,y_0)$,使得 $G(x,y_0) \cup H(x,y_0) = \emptyset$,从而 $A \subseteq \bigcup_{x \in A} G(x,y_0)$,

由
$$A$$
 是紧的,所以 $\exists x_1, x_2, ..., x_m \in A$,使得 $A \subseteq \bigcup_{i=1}^m G(x_i, y_0)$,

令
$$G(y_0) = \bigcup_{i=1}^m G(x_i, y_0)$$
, $H(y_0) = \bigcap_{i=1}^m H(x_i, y_0)$ 则 $G(y_0)$ 是 A 的开邻域, $H(y_0)$ 是 y_0 的开邻域,

且 $G(y_0) \cup H(y_0) = \emptyset$,又因 B 是紧的且 $B \subseteq \bigcup_{y \in B} H(y)$,

则
$$\exists y_1,y_2,...,y_n \in B$$
, 使得 $B \subseteq \bigcup_{i=1}^n H(y_i)$, 令 $U = \bigcap_{i=1}^n G(y_i), V = \bigcup_{i=1}^n H(y_i)$

则 $U \in A$ 的开邻域, $V \in B$ 的开邻域,且 $U \cap V = \emptyset$.。