2022 年春季《高等微积分 2》期中试卷

2022 年 4 月 17 日 9:50-11:50

本试卷分两页, 共七道试题, 其中第 2,3 题各 10 分, 第 6 题 20 分, 其余每题各 15 分,

- 1 (1) 设 $P(x,y) = \sum_{i=0}^{n} a_i x^i y^{n-i}$ 是 n 次齐次的多项式, α 是小于 n 的正数. 求极限 $\lim_{(x,y)\to(0,0)} \frac{P(x,y)}{(x^2+y^2)^{\alpha/2}}.$
 - (2) 求极限 $\lim_{(x,y)\to(0,0)} \frac{(x\cos y + y\sin y)e^x x}{x^2 + y^2}$.
 - (3) 已知有如下极限式成立:

$$\lim_{(x_1,\dots,x_n)\to(0,\dots,0)} \frac{a_1x_1+\dots+a_nx_n}{\sqrt{x_1^2+\dots+x_n^2}} = 0.$$

证明: $a_1 = \cdots = a_n = 0$.

- 2 设 $D \in \mathbb{R}^n$ 的开集, 函数 f 在 D 上的所有偏导函数 $\frac{\partial f}{\partial x_i}(i=1,2,\cdots,n)$ 都存在且有界, 即存在 M,使得对任意的 $i \leq n$ 以及任何 $\mathbf{x} \in D$ 都有 $\left|\frac{\partial f}{\partial x_i}|_{\mathbf{x}}\right| \leq M$. 证明: $f \in D$ 上的连续函数.
- 3 设函数 f(x,y) 是 \mathbb{R}^2 上的 C^2 光滑函数, 满足在任何点处都有 $f_y \neq 0$ 且

$$f_x^2 f_{yy} - 2f_x f_y f_{xy} + f_y^2 f_{xx} = 0.$$

设 y=y(x,z) 是由方程 z=f(x,y) 所确定的隐函数, 求 $\frac{\partial^2 y}{\partial x^2}$.

- 4 (1) 求幂级数 $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} (x-1)^n$ 的收敛域.
 - (2) 将函数 $f(x) = \frac{1}{1-5x+6x^2}$ 在 x = 0 附近表示成幂级数的和函数, 并求出该幂级数的收敛半径.

- 5 定义函数 f(x) 为 $f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2+1}$. 证明: f(x) 在区间 $(0,2\pi)$ 内具有连续的导函数. (提示: 可能需要用到一致收敛的 Dirichlet 判别法. 设 $\{a_n(x)\}_{n=1}^{\infty}$ 在区间 I 上一致收敛到零函数,且对每个 $x \in I$, $\{a_n(x)\}_{n=1}^{\infty}$ 关于 n 单调;设 $\{b_n(x)\}_{n=1}^{\infty}$ 的部分和序列在区间 I 上一致有界,则 $\sum_{n=1}^{\infty} a_n(x)b_n(x)$ 在区间 I 上一致收敛.)
- 6 设 $f: \mathbb{R}^2 \to \mathbb{R}$ 是 C^2 光滑函数.
 - (1) 设 \mathbf{x}_0 是 f 的临界点, 对每个向量 $\mathbf{v} \in \mathbb{R}^2$, 计算极限

$$\lim_{t\to 0}\frac{f(\mathbf{x}_0+t\mathbf{v})-f(\mathbf{x}_0)}{t^2},$$

要求将结果用 f 的海瑟矩阵表示 (或等价的, 用 f 的二阶偏导表示).

(2) 设 \mathbf{x}_0 是 f 在 \mathbb{R}^2 上的最小值点. 证明:

$$f_{xx}(\mathbf{x}_0) \ge 0, \quad f_{yy}(\mathbf{x}_0) \ge 0.$$

- (3) 设 P,Q 都是 \mathbb{R}^2 上的连续函数,满足 Q 在 \mathbb{R}^2 上有界,且当 $x^2+y^2\to +\infty$ 有 $P(x,y)\to +\infty$. 证明: f=P-Q 在 \mathbb{R}^2 上有最小值.
- (4) 设 (3) 中所述的函数 P,Q 在 \mathbb{R}^2 上处处有二阶导数, 且满足在 \mathbb{R}^2 上处处有

$$\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = e^P, \quad \frac{\partial^2 Q}{\partial x^2} + \frac{\partial^2 Q}{\partial y^2} \ge e^Q.$$

证明: 对任何点 $(x,y) \in \mathbb{R}^2$ 都有 $P(x,y) \ge Q(x,y)$.(提示: 利用 (3) 的结论, 再用 (2) 的结论)

7 对二阶可导函数 f(x,y,z), 定义

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

- (1) 设 u 是 $\mathbb{R}\setminus\{0\}$ 上的光滑函数,定义 $\mathbb{R}^3\setminus\{(0,0,0)\}$ 上的函数 $f(x,y,z)=u(\sqrt{x^2+y^2+z^2})$. 证明: f 在 $\mathbb{R}^3\setminus\{(0,0,0)\}$ 上处处满足 $\Delta f=0$ 的充分必要条件是 u 在 $\mathbb{R}\setminus\{0\}$ 上处处满足 $u''(r)+\frac{2}{r}u'(r)=0$.
- (2) 假设 (1) 中的 f 还满足在单位球面上恒等于 0, 当 $x^2 + y^2 + z^2 \to +\infty$ 时 $f(x,y,z) \to 1$. 请求出所有这样的 $f(x,y,z) \to 1$.