Spartan Martin-Löf Type Theory

Andrej Bauer University of Ljubljana

UniMath School April 2019, Birmingham, UK

(Spartan Martin-Löf) Type Theory

Andrej Bauer University of Ljubljana

UniMath School April 2019, Birmingham, UK

Spartan (Martin-Löf Type Theory)

Andrej Bauer University of Ljubljana

UniMath School April 2019, Birmingham, UK spartan | 'spart(ə)n | adjective showing or characterized by austerity or a lack of comfort or luxury: the accommodation was fairly spartan.

What is type theory?

A foundation of mathematics

Adalion

A theory of constructions

A theory of constructions

A theory of dependent constructions

t

Type

A type

Element

p : A

Equal types

 $A \equiv B$

Equal elements

 $p \equiv_A q$

Space

A type

Point

p : A

Equal spaces

 $A \equiv B$

Equal points

p = q : A

Sum $\sum (x:A) B(x)$

•formation:

if type B(x) depends on x : A, then $\sum (x : A) B(x)$ is a type.

•introduction:

if t : A and u : B(t) then $(t, u) : \sum (x : A) B(x)$.

•elimination:

• If $p : \sum (x : A) B(x)$ then $\pi_1(p) : A$.

• If $p : \sum (x : A) B(x)$ then $\pi_2(p) : B(\pi_1(p))$.

•equations:

 $\bullet \pi_1(t, u) \equiv t$

• $\pi_2(t, u) = u$

 $\bullet (\pi_1(p), \, \pi_2(p)) \equiv p$

Binary product

$$A \times B = \sum (-1.4) B$$

Anonymous variable
(B does not depend on A)

Product $\Pi(x:A)$ B(x)

- given B(x) over A, $\prod(x : A) B(x)$ is a type
- if p(x) : B(x) then $\lambda(x:A) p(x) : \prod(x:A) B(x)$.
- If $f: \prod (x:A) B(x)$ and t:A then f(t):B(t).
- $(\lambda(x:A) p(x))(t) = p(t)$
- $\lambda(x:A)(f(x)) = f$

 $p:\Pi(x:a)B(x)$

Function space

$$A \rightarrow B = \prod(\underline{\ }: A) B$$

Universe

- There is a type Type.
- The elements of **Type** are types.
- A dependent type is a map B: A → Type.
- Beware of paradoxes: there can be no type of all types!
- Type₀: Type₁: Type₂:

Basic types

- Unit element is tt
- Empty no elements
- Bool elements true and false
- N natural numbers

Simple sum A + B

Simple sum A + B

Natural numbers N

- •0:N
- If **n**: **N** then **S(n)**: **N**.
- If **P**: **N** → **Type** and **e**: **P(0)** and
 - $f: \prod (x:N) P(x) \rightarrow P(S(x))$ then
 - ind_nat P e f : \prod (x:N) P(x).
- ind_nat P e f 0 = e
- •ind_nat P e f (S n) = f n (ind_nat P e f n)

Path space

- If t: A and u: A then Paths_A(t, u) is a type.
- If t: A then idpath(t): Paths_A(t, t).
- We write t = u for Paths_A(t, u).

Transport

- Given a type A and B: A → Type
- If α: Paths_A(x, y) and s: B(x) then transport B α s: B(y).
- transport B (idpath(x)) s = s.

Caveats

- Old people call path spaces "identity types" and use the notation Id_A(x, y).
- Older people call path spaces "propositional equality" and they call equality "judgmental equality".
- Half of the definition of path spaces is missing. The other half will be given later this week.
- Path spaces are the equality you are used to. Really!

Proofs as constructions

"Every natural number is even or odd."

Proofs as constructions

"Every natural number is even or odd."

 $\prod (n:nat) \sum (m:nat) (n = 2m) + (n = 2m+1)$

How do we deny P?

By constructing an element in

P → Empty

(false = true) → Empty

```
Definition sanity : true = false → Empty :=
  fun (p : true = false) →
    transport
      (ind_bool (fun _ ⇒ Type) Unit Empty)
      p
      tt.
```

Unit **Empty** tt false true

Unit **Empty** true false

We are not done!

- We left out precise rules!
- What about spheres, reals, groups, etc?
- Can paths be composed, or inverted?
- What is a path between paths?
- What is a path between types in **Type**?

Further material

- Euclid: *Elements*
- Daniel Grayson: An introduction to univalent foundations for mathematicians (arXiv:1711.01477)
- UniMath library
- Talk to people here!