# 小ねぎ調製位置検出のための インスタンスセグメンテーション

安藤 拓翔 $^1$  井上 優良 $^2$ 

1大分工業高等専門学校 専攻科 電気電子情報工学専攻 2大分工業高等専門学校 情報工学科

# 発表内容

01

背景と目的

問題背景と研究の目的

02

先行研究との比較

既存の検出方法の紹介と本研究の立ち位置の説明

03

提案手法

提案手法と分岐部検出システム処理の流れ

04

実験と評価

2つの実験により本手法の有効性の評価

05

まとめ

本発表のまとめと今後の課題

### 発表内容

01

背景と目的

問題背景と研究の目的

02

先行研究との比較

既存の検出方法の紹介と本研究の立ち位置の説明

03

提案手法

提案手法と分岐部検出システム処理の流れ

04

実験と評価

2つの実験により本手法の有効性の評価

05

まとめ

本発表のまとめと今後の課題

# 農業従事者の不足

#### 大分県の小ねぎ調製場では人手不足が課題

小ねぎ調製作業における省力化・軽労化のために

農業機械による自動化が要求される

#### 小ねぎ調製作業とは

葉の皮むきを指す

出荷するためには1芯1葉に調製する



1芯1葉(合わせて2枚に)

# 調製方法

#### 現行の調製手順

上下の水圧ノズルにより不要な葉の除去

精度が低く 一度に全ての不要な葉を取り除くことができない

人手による二次処理を要する



調製後の小ねぎ

調製前の小ねぎ

小ねぎ調製機の図

### 不要な葉を一度に除去するには

方法:水圧ノズルの位置合わせをする[1]

[1]大分県(2022)大分県スマート農林水産業推進方針, 〈https://www. pref.oita.jp/soshiki/15060/sumart.html〉, 2024 年 2 月 10 日参照

小ねぎの最上部の分岐部位置にノズルを合わせて投入

個体によって異なる分岐部位置を判別する必要がある



目標精度:90%

小ねぎの上部

小ねぎの下部

# 分岐部位置の判別方法

#### 画像認識により判別

YOLOなどのDNNによる物体検出が挙げられる

分岐部が遮蔽された場合は検出できない



# 本研究では

#### 分岐部が遮蔽された場合でも対応

1つの葉が分岐して2枚の葉に変化した箇所

インスタンスセグメンテーションにより

葉の枚数をカウント



葉の形状から分岐部の位置を推定

#### 本研究の目的

インスタンスセグメンテーションにより

葉の位置から分岐部を推定する手法の有効性の評価

### 発表内容

01

背景と目的

問題背景と研究の目的

02

先行研究との比較

既存の検出方法の紹介と本研究の立ち位置の説明

03

提案手法

提案手法と分岐部検出システム処理の流れ

04

実験と評価

2つの実験により本手法の有効性の評価

05

まとめ

本発表のまとめと今後の課題

# 1. エッジ検出による分岐部検出

#### 分岐部にある繊維斜線を検出[2]

分岐部には斜線のような繊維がある特徴を利用

エッジ検出により分岐部斜線を抽出することで

分岐部位置を検出

組込み機器でも容易に動作可能

ただし 遮蔽は×



# 2. YOLOXによる分岐部検出

#### 白ねぎを対象とした分岐部検出[3]

YOLOXによる分岐部の検出

組込み機器向けの軽量なモデルを利用

精度は約96%

#### ただし 遮蔽は×

(小ねぎより遮蔽が少ないため問題なし)



[3] 小野竜也, 井上 優良, YOLOX を用いた白ねぎの葉の分岐部検出,2023,2023年度 (第31回) 電子情報通信学会九州支部学生会講演会, D-22

# 本研究の立ち位置

#### 先行研究の共通した特徴

カメラで分岐部を撮影できる前提

分岐部が遮蔽されていれば検出はできない

#### 本研究では

小ねぎは葉が重なり合うことが多いため

▶ 分岐部の遮蔽によらない検出手法を提案

# 発表内容

01

背景と目的

問題背景と研究の目的

02

先行研究との比較

既存の検出方法の紹介と本研究の立ち位置の説明

03

提案手法

提案手法と分岐部検出システム処理の流れ

04

実験と評価

2つの実験により本手法の有効性の評価

05

まとめ

本発表のまとめと今後の課題

# 提案手法

#### 処理の流れ



[4] コントラストの調整 - MATLAB & Simulink, (https://www.mathworks.com/help/images/contrast-adjustment\_ja\_JP.html), 2024 年 9 月 18 日参照

#### 画像の取得と前処理

調製前の小ねぎ1本を撮影した画像を取得

推論の精度を上げるため

前処理としてヒストグラム平坦化を適用

画像の取得
前処理
推論
分岐部位置の判別

y座標の出力

コントラストの補正





補正前

補正後 [4]

#### インスタンスセグメンテーションとは

領域分割して物体の種類を認識できる手法 セマンティックと違い、同じクラスでも個別に抽出





Semantic Segmentation

Instance Segmentation

2つのセグメンテーションの違い

利用したモデル: Mask-RCNN

#### アノテーション:芯クラスと葉クラスで区別

芯クラス:根から小ねぎの先端まで伸びている葉

葉クラス: 芯から分岐している外葉



#### 推論 (インスタンスセグメンテーションを実行)

Mask-RCNNにより

葉と芯のインスタンス領域を推論

物体のバウンディングボックスを取得







# 分岐部位置の判別と出力

#### 葉の位置と枚数から分岐部位置を推定

葉の枚数が変わっている箇所が

分岐部であると推定して出力





# 発表内容

01

背景と目的

問題背景と研究の目的

02

先行研究との比較

既存の検出方法の紹介と本研究の立ち位置の説明

03

提案手法

提案手法と分岐部検出システム処理の流れ

04

実験と評価

2つの実験により本手法の有効性の評価

05

まとめ

本発表のまとめと今後の課題

# 本実験の目的

#### 葉の位置から分岐部を推定する手法の

検出精度と分岐部の遮蔽に対する有効性の評価

推論処理を<u>認識精度(正解率\*)</u>の観点で性能評価

物体検出モデル(YOLOX)と比較

\* 正解位置との差が1cm未満を検出成功とする 出力y座標と正解y座標の差が50px未満であれば正解



上下誤差 1.0cm

# 評価方法

#### K-分割交差検証 (K = 10)

目的:テストデータセットの偏りによる精度の影響を防ぐため



430枚のデータを10分割

1つ(43枚)をテストデータ

残り(387枚)を学習データ

10回実験を実施して全ての画像について評価

# 実験(2つの実験により本手法の有効性を評価)

#### 01 すべての小ねぎ画像で評価

小ねぎデータセット430枚すべての画像に対して 正解率を評価(分岐部が遮蔽された画像も含む)

#### 02 分岐部が遮蔽された画像で評価

430枚のなかで、分岐部が遮蔽されていると判断した

39枚のうち正解率を評価

# 実験結果

#### すべての小ねぎ画像(遮蔽を含む)と遮蔽画像の評価

全ての画像を評価すると精度はYOLOXの推論が上回る

一方で、分岐部が遮蔽した場合ではMask-RCNNが大幅に上回る



実験1:すべての画像(430枚)の評価



実験2:分岐部が遮蔽した画像(39枚)の評価

# 提案手法の有効性について

#### 葉が見えていれば推定可能

分岐部が遮蔽されていても葉を個体ごとに認識することが

できれば分岐部位置を推定可能

ただし全体の精度は物体検出モデルに劣る そのため現時点では実応用は不可



# 発表内容

01

背景と目的

問題背景と研究の目的

02

先行研究との比較

既存の検出方法の紹介と本研究の立ち位置の説明

03

提案手法

提案手法と分岐部検出システム処理の流れ

04

実験と評価

2つの実験により本手法の有効性の評価

05

まとめ

本発表のまとめと今後の課題

# まとめ

インスタンスセグメンテーションにより葉の位置を抽出して

葉の形状から分岐部を推定する手法を提案

分岐部が遮蔽された場合の検出率は 89% & YOLOXの約2.34倍

▶ 分岐部が遮蔽された場合の検出の有効性を確認

#### 今後の課題

分岐部が遮蔽されていない場合の精度の向上 物体検出モデルと組み合わせた検出手法の検討

# appendix

#### **Mask-RCNN**

#### Faster-RCNNをセグメンテーション向けに拡張したモデル

物体検出(Faster-RCNN)+セグメンテーション機能

物体検出結果として得られた領域に対してセグメンテーション

▶ 2ステップで推論を実行



#### Detectron2

#### Meta Research が提供するモデル作成用ライブラリ

物体検出やセグメンテーションモデルを作成可能

Apache 2.0 ライセンスで商用利用も可

事前に学習されたResNet-50を転移学習



# 実験環境

| CPU       | Intel(R) Core(TM) i5-11400 |
|-----------|----------------------------|
| GPU       | NVIDIA GeForce RTX-3060    |
| OS        | Ubuntu 20.04               |
| プログラミング言語 | Python 3.11.4              |

# データセット

大分県宇佐市北部小ねぎ共同調製場にて 調製される小ねぎを撮影した430枚の画像 撮影位置は固定

解像度:1920 x 1080



# 検出可否の基準

#### 出力y座標と正解y座標を比較

正解位置との差が1cm未満を検出成功とする

出力y座標と正解y座標の差が50px未満であれば正解



# スライド素材

# 実験2

#### 分岐部が遮蔽された画像に対して推論を評価

この場合ではMask-RCNNが89%であり高精度



YOLOXとの正解率の比較

# 実験 1

#### すべての小ねぎ画像に対して推論を評価

精度はYOLOXの推論が上回る



YOLOXとの正解率の比較

# 実験結果

#### すべての小ねぎ画像に対して推論を評価

全ての画像を評価すると精度はYOLOXの推論が上回る

一方で、分岐部が遮蔽した場合ではMask-RCNNが大幅に上回る



すべての画像(430枚)の評価



分岐部が遮蔽した画像(39枚)の評価

# 発表内容

01

背景と目的

問題背景と研究の目的

02

先行研究との比較

既存の検出方法の紹介と本研究の立ち位置の説明

03

提案手法

提案手法と分岐部検出システム処理の流れ

04

実験と評価

2つの実験により本手法の有効性の評価

05

まとめ

本発表のまとめと今後の課題

# 調製方法

#### 現行の調製手順

上下の水圧ノズルにより不要な葉の除去

精度が低く 一度に全ての不要な葉を取り除くことができない

▶人手による二次処理を要する

