Anexo al tema 4. Repaso de álgebra relacional y SOL

El modelo de datos relacional, las restricciones relacionales y el álgebra relacional Elmasri/Navathe 02

> El estándar de las Bases de Datos Relacionales Elmasri/Navathe 02

- Modelo relacional: conceptos, restricciones, operaciones de actualización y operaciones del álgebra
- Revisión de SQL

© A. Jaime 2003 DBD Tema 4

Restricciones relacionales

- De dominio: valor atómico de un tipo
- **De clave**: atributo(s) que identifica(n) unívocamente a las tuplas.
 - Superclave y clave
 - Clave candidata y clave primaria
- Integridad de entidades:ninguna clave primaria puede contener el valor nulo
- Integridad referencial:
 - Una tupla que referencia a otra (de la misma u otra relación), debe referirse a una tupla existente en dicha relación
 - Se hace referencia a otra tupla mediante una clave extranjera (foránea, externa). Conjunto de atributos no vacío. Puede contener valor nulo.

EMPLEADO				e		ave injera	
NOMBRE	INIC	APELLIDO	NSS		NSS_SUPERV	ND	
John	В	Smith	123456789		333445555	5	1
Franklin	T	Wong	333445555		888665555	5	ł
Alicia	J	Zelaya	999887777		987654321	4	Н
Jennifer	S	Wallace	987654321	•••	888665555	4	Н
Ramesh	K	Narayan	666884444		333445555	5	H
Joyce	Α	English	453453453		333445555	5	H
Ahmad	V	Jabbar	987987987		987654321	4	Н
James	Е	Borg	888665555		nulo	1	H
DEPARTAMENTO NOMBRED NÚMEROD NSS JEFE FECHA INIC JEFE							
Investiga	ción	5	333445555	1988-05-22		_←	J
Administr		4	987654321		1995-01-01		_
Direcci	ón	1	888665555		1981-06-19		

Conceptos

- BD: colección de relaciones
 - Relación:

 Valores columna mismo domino

 Nombre CódigoAlumno Año Especialidad Smith 17 1 CS
 Brown 8 2 CS

 Columna = Atributo
- **Relación = conjunto de tuplas** (no tienen sentido tuplas duplicadas)
- Dominios atómicos: ni compuestos ni multivaluados
- Esquema de relación $R(A_1, ..., A_n)$: intensión
- Relación (o estado de relación) r ó r(R): extensión $r=\{t_1, t_2, ..., t_m\}$: conjunto de tuplas Cada valor v_i de un t_i $1 \le i \le n$ es:
 - un elemento de dom(Ai)
 - · o un valor nulo
- Orden entre las tuplas: no se considera
- Orden en los valores de una tupla: es una lista ordenada de n valores. Lo importante es la correspondencia atributo-valor

Esquema de la BD "EMPRESA"

con restricciones de integridad referencial

Figura 7.7 restricciones de integridad referencial representadas en el esquema de la base de datos relacional EMPRESA

© A. Jaime 2003 DBD Tema 4 3 © A. Jaime 2003 DBD Tema 4 4

Estado de la BD relacional "EMPRESA"

EMPLEADO

B BB. 1D.	_				
NOMBRE	INIC	APELLIDO	NSS	FECHA_NCTO	DIRECCIÓN
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX
Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX
Joyce	A	English	453453453	1972-07-31	5631 Rice, Houston, TX
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX

TRABAJA EN

TICHER TOTAL	. ,	
NSSE	NP	HORAS
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	nulo

	SEXO	SALARIO	NSS_SUPERV	ND
	Н	30.000	333445555	5
	Н	40.000	888665555	5
	M	25.000	987654321	4
••	M	43.000	888665555	4
	Н	38.000	333445555	5
	M	25.000	333445555	5
	Н	25.000	987654321	4
	Н	55.000	nulo	1

Figura 7.6 (1ª parte) Un posible estado de la base de datos relacional del esquema EMPRESA

DEPARTAMENTO

NOMBRED	<u>NÚMEROD</u>	NSS_JEFE	FECHA_INIC_JEFE
Investigación	5	333445555	1988-05-22
Administración	4	987654321	1995-01-01
Dirección	1	888665555	1981-06-19

© A. Jaime 2003 DBD Tema 4

Operaciones de actualización y violación de las RI

- Operaciones de actualización:
 - Insertar
 - Eliminar
 - Actualizar (modificar)
- · Cuando se aplican no deben violar ninguna RI
- Insertar y actualizar pueden violar los 4 tipos de RI
- Eliminar sólo puede violar la I. Referencial
- En SQL se pueden definir acciones asociadas a la violación de RI (ejemplo. ON UPDATE CASCADE)

Estado de la BD relacional "EMPRESA" (cont)

LOCALIZACIONES_DEPT

<u>NÚMEROD</u>	LOCALIZACIÓND
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

PROYECTO

INOTECTO			
NOMBREP	<u>NÚMEROP</u>	LOCALIZACIÓNP	NÚMD
ProductoX	1	Bellaire	5
ProductoY	2	Sugarland	5
ProductoZ	3	Houston	5
Automatización	10	Stafford	4
Reorganización	20	Houston	1
Nuevos beneficios	30	Stafford	4

DEPENDIENTE

NSSE	NOMBRE_DEPENDIENTE	SEXO	FECHA_NCTO	PARENTESCO
333445555	Alice	M	1986-04-05	HIJA
333445555	Theodore	Н	1983-10-25	HIJO
333445555	Joy	M	1958-05-03	ESPOSA
987654321	Abner	Н	1942-02-28	ESPOSO
123456789	Michael	Н	1988-01-04	HIJO
123456789	Alice	M	1988-12-30	HIJA
123456789	Elizabeth	M	1967-05-05	ESPOSA

Figura 7.6 (2ª parte) Un posible estado de la base de datos relacional del esquema EMPRESA

© A. Jaime 2003 DBD Tema 4 6

Álgebra relacional

- Operaciones para manipular relaciones enteras
- Permiten especificar consultas (recuperación de datos)
- El resultado de una consulta es otra relación

• Operaciones específicas del álgebra relacional:

SELECCIONAR
PROYECTAR
REUNIÓN (JOIN)
Binario

• Operaciones de teoría de conjuntos:

- UNIÓN
- INTERSECCIÓN
- DIFERENCIA
- PRODUCTO CARTESIANO

Binarios

- Otras operaciones:
 - DIVISIÓN
 - FUNCIONES AGREGADAS Y DE AGRUPACIÓN
 - Etc.

© A. Jaime 2003 DBD Tema 4 7 © A. Jaime 2003 DBD Tema 4 8

Seleccionar: o

EMPLEADO

EMI LEADO				
NOMBRE	INIC	APELLIDO	NSS	
John	В	Smith	123456789	
Franklin	T	Wong	333445555	
Alicia	J	Zelaya	999887777	
Jennifer	S	Wallace	987654321	
Ramesh	K	Narayan	666884444	
Joyce	A	English	453453453	
Ahmad	V	Jabbar	987987987	
James	Е	Borg	888665555	

	NSS_SUPERV	ND
	333445555	5
	888665555	5
•••	987654321	4
	888665555	4
	333445555	5
	333445555	5
	987654321	4
	nulo	1

NOMBRE	INIC	APELLIDO	NSS
Alicia	J	Zelaya	999887777
Jennifer	S	Wallace	987654321
Ahmad	V	Jabbar	987987987

- Selecciona un subconjunto de filas (tuplas) de una
- Las que satisfacen una condición
- Condición: $\{=, <, \leq, >, \geq, \neq\}$ Y, O, NO
- El resultado es otra relación
- Conmutativa: $\sigma_{<\text{COND1}>}(\sigma_{<\text{COND2}>}(R)) = \sigma_{<\text{COND2}>}(\sigma_{<\text{COND1}>}(R))$
- $\sigma_{<\text{COND1}>}(\sigma_{<\text{COND2}>}(R)) = \sigma_{<\text{COND1}> Y < \text{COND2}>}(R)$

© A. Jaime 2003 DBD Tema 4

Proyectar: π

EMPLEADO

	-		
NOMBRE	INIC	APELLIDO	NSS
John	В	Smith	123456789
Franklin	T	Wong	333445555
Alicia	J	Zelaya	999887777
Jennifer	S	Wallace	987654321
Ramesh	K	Narayan	666884444
Joyce	Α	English	453453453
Ahmad	V	Jabbar	987987987
James	Е	Borg	888665555

	SEXO	SALARIO	NSS_SUPERV	ND
	Н	30.000	333445555	5
	Н	40.000	888665555	5
,	M	25.000	987654321	4
	M	43.000	888665555	4
	Н	38.000	333445555	5
	M	25.000	333445555	5
	Н	25.000	987654321	4
	Н	55.000	nulo	1

 $\pi_{SEXO, SALARIO}$ (EMPLEADO) SEXO SALARIO Н 30.000 25.000 43.000 M Н 38.000 Fig 7.8 (c) 25.000

El (M, 25.000) duplicado se ha eliminado

- Selecciona las columnas especificadas de una relación (desechando el resto de columnas)
- El resultado es otra relación
- Eliminación de duplicados
- $\pi_{< LISTA1>}(\pi_{< LISTA2>}(R)) = \pi_{< LISTA1>}(R)$
- No es conmutativa

© A. Jaime 2003 DBD Tema 4 10

Renombrar y resultados intermedios

EMPLEADO

NOMBRE	INIC	APELLIDO	NSS
John	В	Smith	123456789
Franklin	T	Wong	333445555
Alicia	J	Zelaya	999887777
Jennifer	S	Wallace	987654321
Ramesh	K	Narayan	666884444
Joyce	Α	English	453453453
Ahmad	V	Jabbar	987987987
James	E	Borg	888665555

SALARIO	NSS_SUPERV	ND
30.000	333445555	5
40.000	888665555	5
25.000	987654321	4
43.000	888665555	4
38.000	333445555	5
25.000	333445555	5
25.000	987654321	4
55.000	nulo	1

Resultado intermedio

$TEMP \leftarrow \sigma_{ND=5}(EMPLEADO)$

NOMBRE	INIC	APELLIDO	NSS
John	В	Smith	123456789
Franklin	T	Wong	333445555
Ramesh	K	Narayan	666884444
Joyce	Α	English	453453453

SALARIO	NSS_SUPERV	ND
30.000	333445555	5
40.000	888665555	5
38.000	333445555	5
25.000	333445555	5

Renombre de atributos

R(NOMBRE PILA, PRIMER APELL, SALARIO) ←

 $\pi_{\text{NOMBRE,APELLIDO,SALARIO}}$ (TEMP)

NOMBRE_PILA	PRIMER_APELL	SALARIO	
John	Smith	30.000	
Franklin	Wong	40.000	
Ramesh	Narayan	38.000	
Joyce	English	25.000	

Alternativa sin resultados intermedios o renombre de atributos $\pi_{\text{NOMBRE, APELLIDO, SALARIO}}(\sigma_{\text{ND=5}}(\text{EMPLEADO}))$

DBD Tema 4 © A. Jaime 2003 11

Unión, intersección y diferencia

ALUMNO

1220112110	
NOM	APEL
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Bárbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert

ALUMNO ∩ PROFESOR

PROFESOR — ALUMNO NOMBRE APELLIDO

APEL

Yao

Shah

Smith

Browne

Johnson

NOM

Susan

Ramesh

John

Ricardo

Francis

n	n	1	1.0	ES	$\boldsymbol{\alpha}$	n
м	к		н	н		к

NOMBRE	APELLIDO
John	Smith
Ricardo	Browne
Susan	Yao
Francis	Johnson
Ramesh	Shah

ALUMNO ∪ PROFESOR

NOM	APEL
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Bárbara	Jones
Amy	Ford
Jimmy	Wang
Ernest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

Compatibilidad con la unión: ambas relaciones deben tener el mismo número de atributos y cada par de atributos correspondientes pertenecer al mismo dominio

conmutativas	asociativas	no conmutativa
$R \cup S = S \cup R$	$(R \cup S) \cup T = R \cup (S \cup T)$	$R - S \neq S - R$
$R \cap S = S \cap R$	$(R \cap S) \cap T = R \cap (S \cap T)$	

© A. Jaime 2003 DBD Tema 4 12

Producto Cartesiano: × (CROSSJOIN)

PR STAF

DP STAF

NOMBREP	NOMBRED	NÚMEROD
Automatización	Administración	4
Nuevos beneficios	Mantenimiento	8
		•

$R \leftarrow PR STAF \times DP STAF$

NOMBREP	NOMBRED	NÚMEROD
Automatización	Administración	4
Automatización	Mantenimiento	8
Nuevos beneficios	Administración	4
Nuevos beneficios	Mantenimiento	8

- Relaciones: no han de ser compatibles con la unión
- $R(A_1,...,A_n) \times S(B_1,...,B_m) = Q(A_1,...,A_n, B_1,...,B_m)$ donde R tiene n' tuplas y S m' tuplas
 - Q tiene n'* m' tuplas
 - Q consta de todas las combinaciones de cada tupla de R seguida de otra de S

© A. Jaime 2003

DBD Tema 4

13

© A. Jaime 2003

DBD Tema 4

14

Reunión (JOIN) (2)

- Relaciones: no han de ser compatibles con la unión
- $R(A_1,...,A_n) | \times |_{COND} S(B_1,...,B_m) = Q(A_1,...,A_n, B_1,...,B_m)$ donde R tiene n' tuplas y S m' tuplas
 - **Q** tiene un máximo de n'∗ m' tuplas
 - Q consta de todas las combinaciones de cada tupla de R seguida de otra de S, que satisfagan la condición de reunión "COND"
 - R y Q pueden ser el mismo conjunto
 - Si ninguna combinación cumple la condición "COND" el resultado es una relación vacía (sin tuplas)
- Condición "cond":
 - Se evalúa para cada combinación de tuplas
 - tiene la forma: <subcondición> Y <subcondición>Y ... Y <subcondición>
 - Cada subcondición tiene la forma: Ai θ Bj donde Ai \in R y Bj \in S y $\theta \in \{=, <, \leq, >, \geq, \neq\}$

Reunión (JOIN): |X|

 $EMP \leftarrow \pi_{APELLIDO, NSS, ND}(EMPLEADO)$

APELLIDO	NSS	ND
Smith	123456789	5
Wong	333445555	5
Zelaya	999887777	4
Wallace	987654321	4
Narayan	666884444	5
English	453453453	5
Jabbar	987987987	4
Borg	888665555	1

$\mathsf{DPT} \leftarrow \pi_{\,\mathsf{NOMBRED},\,\mathsf{NSS_JEFE}}(\mathsf{DEPARTAMENTO})$

NOMBRED	NSS_JEFE
Investigación	333445555
Administración	987654321
Dirección	888665555

JEFE_DTO DPT $\leftarrow |\mathbf{X}|_{\text{NSS IEFE=NSS}}$ EMP

NOMBRED	NSS_JEFE	APELLIDO	NSS	ND
Investigación	333445555	Wong	333445555	5
Administración	987654321	Wallace	987654321	4
Dirección	888665555	Borg	888665555	1

- Combina tuplas relacionadas de 2 relaciones (o de la misma)
- · Operación muy importante para cualquier BDR
- Permite procesar vínculos entre relaciones

Tipos de reunión (JOIN)

· Reunión Theta:

- Cualquier reunión
- Las tuplas cuyo atributo de reunión sea nulo NO aparecen en el resultado

• Equirreunión (equijoin):

- sólo comparaciones de igualdad en "conp"
- El resultado siempre tiene pares de atributos con valores idénticos en todas las tuplas

Reunión natural (join natural):

- equirreunión seguida de la eliminación de atributos superfluos.
- "COND" implícita: igualdades de todos los pares de atributos de igual nombre
- Exige algún par de atributos de igual nombre
- Se identifica con *

© A. Jaime 2003 DBD Tema 4 15 © A. Jaime 2003 DBD Tema 4 16

Ejemplo de reunión natural: *

 $PRY \leftarrow \pi_{NOMBREP NÚMD}(PROYECTO)$

NOMBREP	NÚMD
ProductoX	5
ProductoY	5
ProductoZ	5
Automatización	4
Reorganización	1
Nuevos beneficios	4

DPT(NOMBRED, NÚMD)

 $\leftarrow \pi_{\text{NOMBRED, NÚMEROD}}(\text{DEPARTAMENTO})$

NOMBRED	<u>NÚMD</u>
Investigación	5
Administración	4
Dirección	1

Tiene que haber al menos un par de atributos con el mismo nombre

Desaparece un NÚMD

 $\mathsf{DEPTO}_\mathsf{PROY} \leftarrow \mathsf{PRY} * \mathsf{DPT}$

NOMBREP	NÚMD	NOMBRED
ProductoX	5	Investigación
ProductoY	5	Investigación
ProductoZ	5	Investigación
Automatización	4	Administración
Reorganización	1	Dirección
Nuevos beneficios	4	Administración

© A. Jaime 2003 DBD Tema 4 17

División: ÷ (2)

 La división sirve para construir consultas como la siguiente:

Obtener el NSS de los empleados que trabajan **en todos y cada uno** de los proyectos en los que trabaja el empleado con NSS=123456789.

División: ÷

- Para cada atributo de D debe haber otro en N de igual nombre: Y ⊂ X
- El resultado tiene los atributos de N que NO están en D:
 Z=X Y
- Son tuplas del resultado, t∈R, las que cumplen:
 - La combinación de valores de t está en alguna tupla de N
 - Esa combinación de valores de t se encuentra en tuplas de N junto todas y cada una de las combinaciones de valores de las tuplas de D
- Es decir, t∈R si y solo si :

$$\forall t_{D} \in D \quad \exists t_{N} \in N \quad \text{tal que} (t = t_{N}[Z] \land t_{D} = t_{N}[Y])$$

DBD Tema 4 13

Funciones agregadas (SUMA, PROMEDIO, MÁXIMO, MÍNIMO y CUENTA) y de agrupación

EMP

NSS	SALARIO
123456789	30.000
333445555	40.000
999887777	25.000
987654321	43.000
666884444	38.000
453453453	25.000
987987987	25.000
888665555	55.000

- En general, los valores duplicados también se consideran en los cálculos
- En SQL se puede poner para ello, por ejemplo: COUNT(DISTINCT SALARIO)

R1 $\leftarrow \mathfrak{F}_{CIIENTA NSS. PROMEDIO SALARIO}(EMP)$

CUENTA NSS, I KOMEDIO SE	
CUENTA_NSS	PROMEDIO_SALARIO
8	35125

 $R2 \leftarrow \mathfrak{F}_{PROMEDIO\ SALARIO}(EMP)$

PROMEDIO_SALARIO 35125 El resultado es una relación, aunque se trate de una sola tupla con un solo atributo

R3 \leftarrow_{ND} 3 $_{\text{CUENTA NSS, PROMEDIO SALARIO}}$ (EMP)

ND	CUENTA_NSS	PROMEDIO_SALARIO
5	4	33250
4	3	31000
1	1	55000

© A. Jaime 2003 DBD Tema 4 19 © A. Jaime 2003 DBD Tema 4 20

Funciones agregadas y de agrupación v valor nulo

Reunión externa

© A. Jaime 2003 DBD Tema 4 22

Ejemplos de consultas con álgebra relacional

 Nº de proyecto, nº de departamento que lo controla, apellido, dirección y fecha de nacimiento del jefe del departamento de todos los proyectos realizados en Stafford

$$\begin{split} & PRYS_STAFF \leftarrow \sigma_{LOCALIZACI\acute{O}NP=`Stafford`}(PROYECTO) \\ & DPT_CONTR \leftarrow PRYS_STAFF \left|\textbf{x}\right|_{N\acute{U}MD=N\acute{U}MEROD} \\ & DEPARTAMENTO \end{split}$$

$$\begin{split} & \text{JEFE_DP_PRY} \leftarrow \text{DPT_CONTR} \: | \textbf{x}| \: \underset{NSS_JEFE=NSS}{\text{NSS}} \: \text{EMPLEADO} \\ & \text{RESULTADO} \leftarrow \pi_{\text{N\'UMEROP},\text{N\'UMD},\text{APELLIDO},\text{DIRECCIÓN},\text{FE-} \\ & \text{CHA_NCTO} \left(\text{JEFE_DP_PRY} \right) \end{split}$$

• Nombre de los empleados que trabajan en *todos* los proyectos del departamento 5.

$$\begin{split} & \text{PRY_DP5 (NÚMP)} \leftarrow \pi_{\text{NÚMEROP}} \big(\sigma_{\text{NÚMD=5}} (\text{PROYECTO}) \big) \\ & \text{EMP_PRY(NSS,NÚMP)} \leftarrow \pi_{\text{NSSE,NP}} (\text{TRABAJA_EN}) \\ & \text{NSSS_EMP} \leftarrow \text{EMP_PRY} \div \text{PRY_DP5} \\ & \text{RESULTADO} \leftarrow \pi_{\text{APELLIDO, NOMBRE}} \big(\text{NSSS_EMP} * \text{EMPLEADO} \big) \end{split}$$

Revisión de SQL (Structured Query Language)

- Álgebra relacional → orden de las operaciones
- SQL: lenguaje declarativo →

Reunión externa derecha R |x | S

Reunión externa completa R |x | S

- Se indica cuál es el resultado esperado
- Permite que el SGBD seleccione las operaciones y el orden más adecuados para obtener el resultado: optimización
- SGBD comerciales → son variantes de SQL
- Estándares SQL: SQL1 1986, SQL2 1992 y SQL3 (extenderá SQL2 con conceptos recientes de BD y OO)
- SQL:
 - Lenguaje de Definición de Datos (LDD)
 - Lenguaje de Manipulación de Datos (LMD): consulta y actualización
 - Definición de vistas
 - Especificación de seguridad y autorización
 - Definición de restricciones de integridad
 - Especificación de control de transacciones
 - Reglas para inclusión en lenguajes (C, PASCAL,...)

© A. Jaime 2003 DBD Tema 4 23 © A. Jaime 2003 DBD Tema 4 24

Esquema y catálogo en SQL2

Esquema de BD: el término se incorporó en SQL2

CREATE SCHEMA Nombre [AUTHORIZATION Usuario];

 Catálogo del SGBD: colección de esquemas en un entorno SOL

- Restricciones de integridad (RI): sólo entre relaciones del mismo catálogo del SGBD
- Esquemas del catálogo del SGBD: pueden compartir elementos (por ejemplo dominios)

© A. Jaime 2003 DBD Tema 4 25

3

CREATE TABLE: especificación de restricciones y valores por omisión

- Definición de atributos:
 - NOT NULL: no se permite que el atributo tome valor nulo
 - DEFAULT un-valor: se indica qué valor tomará el atributo si no se le asigna nada. Si no se indica DEFAULT, el valor por defecto es el valor nulo
- Especificación de restricciones (tras las definiciones de atributo):
 - PRIMARY KEY: clave primaria
 - UNIQUE: clave candidata
 - FOREIGN KEY: clave extranjera
 - Se puede calificar con:
 - ON DELETE: en caso de borrarse la tupla a la que se hace referencia con un valor de la clave extranjera
 - ON UPDATE: en caso de modificarse el valor de clave primaria al que se hace referencia con el valor de clave extranjera

CREATE TABLE DEPARTAMENTO				
(NOMBRED	VARCHAR(15)	NOT NULL,		
NUMEROD	INT	NOT NULL DEFAULT 1,		
NSS_JEFE	CHAR(9)	NOT NULL,		
FECHA_INIC_JEFE	DATE,			
PRIMARY KEY(NUMEROD),				
UNIQUE(NOMBRED),				
FOREIGN KEY(NSS_JEFE) REFERENCES EMPLEADO(NSS)				
ON UPDATE CASCADE ON DELETE SET NULL				
);				

Instrucción CREATE TABLE

CREATE TABLE:

especificación de restricciones y valores por omisión (2)

FOREIGN KEY (clave extranjera):

- Acciones posibles (en ON DELETE / ON UPDATE):
 - SET NULL: el valor de clave extranjera en cuestión se sustituye por el valor nulo
 - SET DEFAULT: el valor de clave extranjera en cuestión se sustituye por el valor por defecto del atributo clave extranjera
 - CASCADE: en caso de ON DELETE se borran las tuplas que hacen referencia a la tupla que desaparece.

En caso de ON UPDATE se aplica la misma modificación en las claves extranjeras que la realizada sobre la clave primaria a la que hacen referencia.

CASCADE es adecuada para:

- vínculos (TRABAJA_EN)
- atributos multivaluados (LOCALIZACIONES_DEPT)
- tipos de entidad débiles (DEPENDIENTE)
- RESTRICT (cuando No se pone ON DELETE / ON UPDATE):
 impide el borrado (si falta ON DELETE) o la modificación (si falta ON UPDATE) de cualquier tupla referenciada desde un valor de la clave extranjera en cuestión.

CREATE TABLE DE	PARTAMENTO		
(NOMBRED	VARCHAR(15)	NOT NULL,	
NUMEROD	INT	NOT NULL DEFAULT 1,	
NSS_JEFE	CHAR(9)	NOT NULL,	
FECHA_INIC_JEFE	DATE,		
PRIMARY KEY(NUMEROD),			
UNIQUE(NOMBRED),			
FOREIGN KEY(NSS_JEFE) REFERENCES EMPLEADO(NSS)			
ON UPDA	TE CASCADE (ON DELETE SET NULL	
);			

© A. Jaime 2003 DBD Tema 4 27 © A. Jaime 2003 DBD Tema 4 28

Borrar esquemas (DROP SCHEMA) v borrar tablas (DROP TABLE)

Borrar un esquema completo:

DROP SCHEMA EMPRESA CASCADE

- RESTRICT:borra el esquema sólo si NO contiene ningún elemento
- CASCADE: borra el esquema y todos sus contenidos

· Borrar una tabla de un esquema:

DROP TABLE DEPENDIENTE CASCADE

- RESTRICT: borra la tabla sólo si NO existen referencias a la misma:
 - Desde claves externa de otra tabla
 - Desde alguna vista
- CASCADE: borra tabla y todas las restricciones (constraints) y vistas donde haya referencias a ésta

© A. Jaime 2003 DBD Tema 4 29

Evolución del esquema: restricciones (constraints)

Borrar restricciones:

ALTER TABLE EMPRESA.EMPLEADO DROP CONSTRAINT CLE_SUPERV_EMP;

 Es preciso haberle dado un nombre con CONSTRAINT en la definición (por ejemplo en CREATE TABLE)

· Añadir restricciones:

ALTER TABLE EMPRESA.EMPLEADO ADD CONSTRAINT CLE_SUPERV_EMP

FOREIGN KEY (NSS_SUPERV) REFERENCES EMPLEADO(NSS)

ON DELETE SET NULL

ON UPDATE CASCADE;

Evolución del esquema: columnas (ALTER TABLE)

· Añadir columnas:

ALTER TABLE EMPRESA.EMPLEADO ADD PUESTO VARCHAR(12);

- En las tuplas existentes se asignan valores NULL.
 Alternativas: definir DEFAULT o introducir valores con la orden UPDATE (se estudiará más adelante)
- NOT NULL no está permitido

Borrar columnas:

ALTER TABLE EMPRESA.EMPLEADO DROP DIRECCIÓN CASCADE;

- CASCADE borra también las restricciones (constraints) y vistas que hagan referencia a la columna (DIRECCIÓN)
- RESTRICT sólo borra la columna (DIRECCIÓN) si no hay restricciones ni vistas que le hagan referencia

• Modificar la definición de columnas:

ALTER TABLE EMPRESA.DEPARTAMENTO ALTER
NSS_JEFE DROP DEFAULT;

ALTER TABLE EMPRESA.DEPARTAMENTO ALTER NSS JEFE SET DEFAULT '333445555';

- Elimina la definición DEFAULT '888665555'
- Inserta una nueva definición de DEFAULT para el atributo NSS_JEFE

© A. Jaime 2003 DBD Tema 4 30

Consultas básicas

SELECT columnas
FROM tablas
[WHERE condición]

La omisión de
WHERE equivale
a WHERE TRUE

• Condiciones en WHERE:

 $\{=, <>, <, >, <=, >=\}, AND, OR, NOT$

• El resultado puede contener TUPLAS REPETIDAS

 Nombre y dirección de los empleados del departamento de Investigación

π_{NOMBRE, APELLIDO, DIRECCIÓN} (2)

C1: SELECT NOMBRE, APELLIDO, DIRECCIÓN FROM EMPLEADO, DEPARTAMENTO

WHERE NOMBRED='Investigación' AND NÚMEROD=ND

 $(2) = \sigma_{\text{NOMBRED='Investigación'}}(1) \qquad \boxed{(1) = \text{DEPARTAMENTO } |\mathbf{x}|_{\text{NÚME-ROD=ND EMPLEADO}}}$

© A. Jaime 2003 DBD Tema 4 31 © A. Jaime 2003 DBD Tema 4 32

Calificar atributos y alias

 Nombre, apellido y dirección de los empleados del departamento de investigación

Calificando atributos:

C1A:SELECT EMPLEADO.NOMBRE, APELLIDO, DIRECCIÓN

FROM EMPLEADO, DEPARTAMENTO

WHERE DEPARTAMENTO.NOMBRE = 'Investigación' AND

DEPARTAMENTO.ND=EMPLEADO.ND

Utilizando alias:

C1A':SELECT E.NOMBRE, APELLIDO, DIRECCIÓN de alias

FROM EMPLEADO AS E, DEPARTAMENTO AS D

WHERE D.NOMBRE = 'Investigación' AND D.ND=E.ND

Uso de alias

Declaración

Para cambiar los nombres de atributo:

FROM ..., DEPARTAMENTO AS D(NOM, ND, NSS, FECHA)

© A. Jaime 2003 DBD Tema 4 33

UNION [ALL], INTERSECT [ALL] y EXCEPT [ALL]

- Por defecto las tuplas repetidas se eliminan del resultado
- Con UNION ALL se conservan las repeticiones
- Se exige compatibilidad de unión

 Números de proyecto donde participa Smith como trabajador o como jefe del departamento controlador:

C4: SELECT NUMEROP

FROM PROYECTO, DEPARTAMENTO, EMPLEADO
WHERE NÚMD=NÚMEROD AND NSS_JEFE=NSS AND
APELLIDO='Smith'

⇒ UNION

SELECT NP

FROM TRABAJA_EN, EMPLEADO

WHERE NSSE=NSS AND APELLIDO='Smith'

SELECT * ALL y DISTINCT

• Seleccionar todos los atributos de las tablas de FROM

C1A": SELECT *

FROM EMPLEADO, DEPARTAMENTO

WHERE NOMBRED='Investigación' AND ND=NÚMEROD

Seleccionar todos los atributos de EMPLEADO

C1Aiv: SELECT EMPLEADO.*

FROM EMPLEADO, DEPARTAMENTO
WHERE NOMBRED='Investigación' AND ND=NÚMEROD

 Seleccionar todos los valores (incluidos los repetidos) de salario de EMPLEADO

C11:SELECT ALL SALARIO Opción por FROM EMPLEADO defecto

 Seleccionar todos los diferentes valores de salario de EMPLEADO

C11A:SELECT DISTINCT SALARIO FROM EMPLEADO

© A. Jaime 2003 DBD Tema 4 34

LIKE '+', '-', '*', '/' y '||'

• Empleados que viven en Houston, Texas:

C12: SELECT NOMBRE, APELLIDO

FROM EMPLEADO

WHERE DIRECCIÓN LIKE '%Houston, TX%'

- % sustituye a un nº arbitrario de caracteres
- sustituye a un solo carácter

 Nombre y salario de los empleados que trabajan en 'ProductoX' tras aumentarles el sueldo un 10%:

C13: SELECT NOMBRE, APELLIDO, 1.1*SALARIO FROM EMPLEADO, TRABAJA_EN, PROYECTO WHERE NSS=NSSE AND NP=NÚMEROP AND NOMBREP='ProductoX'

¿Qué produce 1.1 * SALARIO cuando SALARIO vale NULL?

© A. Jaime 2003 DBD Tema 4 35 © A. Jaime 2003 DBD Tema 4 36

Ordenación de tuplas (ORDER BY)

Empleados y proyectos donde trabajan, ordenados por departamento y, dentro de cada departamento, ordenados alfabéticamente por apellido y nombre :

C15: SELECT NOMBRED, APELLIDO, NOMBRE, NOMBREP FROM DEPARTAMENTO, EMPLEADO, TRABAJA EN, PROYECTO

WHERE NÚMEROD=ND, NSS=NSSE, NP=NÚMEROP ORDER BY NOMBRED, APELLIDO, NOMBRE

- Por defecto, el orden es ascendente
- **DESC** indica orden descendente
- ASC indica orden ascendente
- El valor null también ocupa un orden entre los demás valores

NOMBRED DESC, APELLIDO ASC, ORDER BY NOMBRE ASC

© A. Jaime 2003 DBD Tema 4 37

Consultas anidadas

SELECT en la cláusula WHERE de otra SELECT

TRABAJA EN NSSE NP HORAS

Información de los empleados que trabajan en algún proyecto en el que trabaje más de 10 horas a la semana el empleado '123456789'

SELECT NSSE FROM TRABAJA EN Puede haber más niveles de anidamiento

WHERE NP IN (SELECT NP FROM TRABAJA EN WHERE NSS='123456789' AND HORAS>10)

Algunas anidadas (como las que usan '=' e IN) se pueden escribir sin anidamientos:

SELECT T.NSSE

FROM TRABAJA_EN AS T INNER JOIN TRABAJA_EN AS T_EMP ON T.NP=T_EMP.NP

WHERE T_EMP.NSS='123456789' AND T_EMP.HORAS>10

- Se admite el uso de conjuntos explícitos de valores: WHERE (NP,HORAS) IN (SELECT NP, HORAS FROM ...)
- Se compara **un valor** de atributo (o conjunto de atributos entre paréntesis) con el conjunto de tuplas devueltas por la subconsulta

BETWEEN y conjuntos explícitos de valores

BETWEEN:

Información de los empleados cuyo salario está entre 30.000 y 40.000

SELECT * FROM EMPLEADO WHERE (SALARIO BETWEEN 30000 AND 40000) Equivale a SALARIO >= 30000 AND SALARIO <= 40000

Conjuntos explícitos de valores:

NSS de los empleados que trabajan en los proyectos 1, 2 o 3

C17: SELECT DISTINCT NSSE FROM TRABAJA EN **WHERE** NP **IN** (1,2,3)

© A. Jaime 2003 DBD Tema 4 38

Proceso de consultas anidadas

© A. Jaime 2003 DBD Tema 4 39 © A. Jaime 2003

IN, ALL y ANY (o SOME)

- WHERE atributo(s) IN subconsulta
 WHERE atributo(s) = ANY subconsulta
 - Cierto si y sólo si el valor del/de los atributo/s coincide con alguna tupla de la subconsulta
- WHERE atributo(s) < ANY subconsulta
 - Cierto si y sólo si el valor del/de los atributo/s es menor que alguna tupla de la subconsulta
 - _ =, <, >, <=, >=, <>
- WHERE atributo(s) < ALL subconsulta
 - Cierto si y sólo si el valor del/de los atributo/s es menor que todas las tuplas de la subconsulta
 - _ <, >, <=, >=, <>
- WHERE atributo(s) < subconsulta
 - Cierto si y sólo si el valor del/de los atributo/s es menor que la única tupla de la subconsulta
 - =, <, >, <=, >=, <>

EMPLEADO

<u>DNI</u>	SALARIO
1	100
2	150
3	175
4	200
5	160

SELECT DNI
FROM EMPLEADO

WHERE SALARIO (*) (SELECT SALARIO FROM EMPLEADO)

D - --- 14 - J -

41

(*)		Kesultado
< ALL	\Rightarrow	Ø
\leq =ALL	\Rightarrow	1
< ANY	\Rightarrow	1, 2, 3, 5
$\leq ANY$	\Rightarrow	1, 2, 3, 4, 5

© A. Jaime 2003 DBD Tema 4

EXISTS

• Devuelve cierto si y sólo si la subconsulta devuelve alguna tupla.

• Empleados sin familiares dependientes:

SELECT NOMBRE, APELLIDO

FROM EMPLEADO

© A. Jaime 2003

WHERE NOT EXISTS (SELECT * FROM DEPENDIENTE WHERE NSS=NSSE)

UNIQUE

- Devuelve cierto si y sólo si la subconsulta no devuelve tuplas duplicadas.
- Ejemplo:

SELECT A, B

FROM T1

WHERE UNIQUE (SELECT F FROM T2 WHERE $\,$ G=T1.C)

División en SQL

DBD Tema 4

42

• NSS de aquellos empleados que trabajan en <u>todos</u> los proyectos de la empresa

Resultado \leftarrow ($\pi_{NSSE, NP}$ TRABAJA_EN) \div (π_{NP} PROYECTO)

© A. Jaime 2003 DBD Tema 4 43

IS NULL e IS NOT NULL

• Nombre y apellido de empleados sin supervisores

C18: SELECT NOMBRE, APELLIDO

FROM EMPLEADO

WHERE NSS SUPERV IS NULL

- Si pusiera WHERE NSS_SUPERV = NULL
 - Para las filas con NSS SUPERV nulo se estaría comparando si NULL = NULL
 - Esta comparación NO devuelve cierto ni falso
 - La comparación devuelve NULL (UNKNOWN)

Una condición puede NO verificarse por FALSE o por NULL

Cualquier cosa operada con NULL devuelve NULL (UNKNOWN)

© A. Jaime 2003 DBD Tema 4

45

Ejemplos con valor null

A			OR		NOT
True	Null	Null	True	Null	Null
False	Null	Null	Null		
Null	Null	Null	Null		

Código de vendedor

ven	tas		
Cod	Vendedor	Vendido	Cuota
1	Juan	1000	1000
2	María	1500	1000
3	Jesús	500	Null
4	Ana	1000	1200
5	Aitor	1100	1000
6	Leire	2000	Null

SELECT Vendedor FROM Ventas SELECT Vendedor FROM Ventas WHERE Vendido>Cuota WHERE Vendido<=Cuota

> Vendedor María Aitor

Vendedor Juan Ana

SELECT Vendedor, Cuota+500 AS X FROM Ventas

	_
Vendedor	Cuota
Juan	1500
María	1500
Jesús	Null
Ana	1700
Aitor	1500
Leire	Null

SELECT SUM(VD) AS V1, SUM(CU) AS V2, (SUM(VD)-SUM(CU)) AS V3, SUM(VD-CU) AS V4 FROM Ventas AS V(CD,VR,VD,CU)

V1	V2	V3	V4
7100	4200	2900	400

© A. Jaime 2003 DBD Tema 4 46

Ejemplos con valor null (2)

Codigo de					
vendedor	Ventas				
	Cod	Vendedor	Vendido	Cuota	
	1	Juan	1000	1000	
	2	María	1500	1000	
	3	Jesús	500	Null	
	4	Ana	1000	1200	
	5	Aitor	1100	1000	
	6	Leire	2000	Null	

SELECT SUM(CU) AS C1, COUNT(CU) AS C2, COUNT(*) AS C3 FROM Ventas AS V(CD,VR,VD,CU) WHERE Vendido=500 OR Vendido=2000

SELECT Cuota, COUNT(*) AS C1 FROM Ventas **GROUP BY** Cuota

SELECT VD, SUM(CU) AS V, COUNT(CU) AS C1, COUT(*) AS C2 FROM Ventas AS V(CD,VR,VD,CU) **GROUP BY** Vendido

Renombrar atributos del resultado con AS

C8A: SELECT E.APELLIDO AS NOMBRE_EMPLEADO, S.APELLIDO AS NOMBRE SUPERVISOR FROM EMPLEADO AS E, EMPLEADO AS S WHERE $E.NSS_SUPERV = S.NSS$

- Cambia el nombre de cualquier columna (atributo) que aparezca en el resultado
- Antes hemos visto que la construcción AS también sirve para declarar alias de tablas:

FROM EMPLEADO E, ... -€ SQL1 SQL2 FROM EMPLEADO AS E,

FROM EMPLEADO AS E(NP, IN, AP, NSS, FN, DIR, SEX, SAL, NSSS, ND), ...

© A. Jaime 2003 DBD Tema 4 47 © A. Jaime 2003 DBD Tema 4 48

Tablas combinadas (INNER, NATURAL y OUTER JOIN en FROM)

NOMBRE INIC APELLIDO NSS FECHA_NCTO DIRECCIÓN SEXO SALARIO NSS_SUPERV ND DEPARTAMENTO NOMBRED NÚMEROD NSS_JEFE FECHA_INIC_JEFE

Nombre y dirección de los empleados del departamento de Investigación

C1: C1A: SELECT NOMBRE, APELLIDO, DIRECCIÓN
FROM (EMPLEADO INNER JOIN DEPARTAMENTO
ON ND=NÚMEROD)

WHERE NOMBRED='Investigación'

- Este concepto se incorporó a SQL2
- La consulta se entiende más fácilmente, al evitar la mezcla de condiciones de |x| y σ en el WHERE
- Se pueden especificar diferentes tipos de reunión:
 INNER JOIN (o JOIN), NATURAL JOIN, LEFT [OUTER] JOIN, RIGHT [OUTER] JOIN y FULL [OUTER] JOIN
- NO se pueden definir alias de tablas combinadas:

FROM (EMPLEADO INNER JOIN DEPARTAMENTO ON ND=NÚMEROD) AS ED ...

© A. Jaime 2003 DBD Tema 4 49

Anidamiento de tablas combinadas

SELECT NÚMEROP, NÚMD, APELLIDO, DIRECCIÓN
FECHA_NCTO
FROM (PROYECTO NATURAL JOIN DEPARTAMENTO)
INNER JOIN EMPLEADO ON NSS_JEFE=NSS
WHERE LOCALIZACIÓNP='Stafford'

© A. Jaime 2003 DBD Tema 4 50

OUTER JOIN

SELECT * FROM T1 INNER JOIN T2

ON B=F				
A	В	E	F	
aa	1	100	1	
aa	1	101	1	
bb	2	200	2	

SELECT *
FROM T1 LEFT JOIN T2

	ON B=F			
A	В	E	F	
(a)	null	null	null	
aa	1	100	1	
aa	1	101	1	
bb	2	200	2	
cc	3	null	null	

Oracle: SELECT * FROM T1,T2 WHERE B=(+)F SQLServer:SELECT * FROM T1,T2 WHERE B*=F

DBD Tema 4

Oracle: ...WHERE B(+)=F
SQLServer: ...WHERE B=*F
SELECT *
FROM T1 RIGTH JOIN T2

ON B=F			
A	В	E	F
null	null	000	null
aa	1	100	1
aa	1	101	1
bb	2	200	2
null	null	400	4

© A. Jaime 2003

Oracle: no lo implementa
SQLServer: ...WHERE B*=*F
SELECT *
FROM T1 FULL JOIN T2

(ON B=F			
A	В	E	F	
(a)	null	null	null	
null	null	000	null	
aa	1	100	1	
aa	1	101	1	
bb	2	200	2	
cc	3	null	null	
null	null	400	4	

51

- Se puede considerar como una mezcla de FULL OUTER JOIN y UNION.
- Los atributos correspondientes con dominio compatible se tratan como en la unión. Los incompatibles, se tratan como en FULL OUTER JOIN.

UNION JOIN

Utilidad limitada.

Funciones agregadas y de agrupación

 COUNT (cuenta), SUM (suma), MAX (máximo), MIN (mínimo), AVG (media)

mínimo), AVG (media)

- Con expresiones : AVG(1.1*SALARIO) dominio con orden total

- MAX y MIN también con atributos NO núméricos
- Suma de salarios del dpto. 'Investigación', junto a los salarios máximo, mínimo y medio:

 $\begin{aligned} \textbf{C20: SELECT SUM}(\text{SALARIO}), & \textbf{MAX}(\text{SALARIO}), & \textbf{MIN}(\text{SALARIO}), \\ & \textbf{AVG}(\text{SALARIO}) \end{aligned}$

FROM EMPLEADO INNER JOIN DEPARTAMENTO ON ND=NÚMEROD

WHERE NOMBRED='Investigación'

• Nº de empleados en el departamento 'Investigación':

C22: SELECT COUNT(*) * se refiere a tuplas

FROM EMPLEADO INNER JOIN DEPARTAMENTO ON ND=NÚMEROD

WHERE NOMBRED='Investigación'

Atributos de agrupación: GROUP BY

 Obtener por cada dpto. su nombre y número junto al número de empleados del mismo y el salario medio del dpto.:

C24': SELECT NOMBRED, ND, COUNT(*) AS N_EMP, AVG(SALARIO) AS SAL MED

FROM EMPLEADO LEFT JOIN DEPARTAMENTO ON ND=NÚMEROD

GROUP BY NOMBRED, ND

- Todos los atributos de SELECT (que no son atributos de funciones) deben estar en GROUP BY
- Los atributos de GROUP BY no es obligatorio que estén en SELECT

Funciones agregadas y de agrupación (2)

Cuántos valores de salario diferentes hay:

C23: SELECT COUNT(DISTINCT SALARIO)

NO cuenta los valores nulos

• Cuántos valores de salario hay (con repeticiones):

C23': SELECT COUNT(SALARIO) Cuenta las filas con salario NO nulo

Cuántos empleados hay:

C23": SELECT COUNT(*)
FROM EMPLEADO
Cuenta todas las
filas de la tabla

¿Qué ocurre cuando todos los salarios valen NULL? ¿Qué ocurre cuando la tabla está vacía?

© A. Jaime 2003 DBD Tema 4 54

HAVING

 Para especificar una condición en términos del grupo de tuplas asociado a cada valor de los atributos de agrupación

 Para cada proyecto con más de 2 empleados, obtener su número, nombre y nº de empleados

SELECT NP, NOMBREP, COUNT(*)
FROM PROYECTO NATURAL JOIN TRABAJA_EN
GROUP BY NP, NOMBREP
HAVING COUNT(*)>2

© A. Jaime 2003 DBD Tema 4 55 © A. Jaime 2003 DBD Tema 4 56

Primero WHERE, después HAVING

Nº de empleados con salario>30.000 en cada dpto. Sólo para dptos. con más de 2 empleados con ese sueldo

SELECT NOMBRED, COUNT(*) FROM EMPLEADO INNER JOIN DEPARTAMENTO ON ND = NÚMEROD

WHERE SALARIO>30.000 **GROUP BY NOMBRED HAVING COUNT(*)** > 2

© A. Jaime 2003 DBD Tema 4 57

GROUP BY con ORDER BY

Obtener por cada proyecto su número y nombre junto al número de empleados que trabajan en él, ordenado ascendentemente por el número de empleados

C25': SELECT NÚMEROP, NOMBREP, COUNT(*) FROM PROYECTO INNER JOIN TRABAJA_EN ON NÚMEROP=NP GROUP BY NÚMEROP, NOMBREP ORDER BY COUNT(*) ASC

C25": SELECT NÚMEROP, NOMBREP, COUNT(*) AS NUM EMP FROM PROYECTO INNER JOIN TRABAJA EN ON NÚMEROP=NP GROUP BY NÚMEROP, NOMBREP ORDER BY NUM EMP ASC NO se puede usar el nuevo nombre (AS) del atributo del resultado en ORDER BY

© A. Jaime 2003 58

CASE

SELECT NOMBRE,

CASE

WHEN ESTADOCIVIL='S' THEN 'SOLTERO/A' WHEN ESTADOCIVIL='C' THEN 'CASADA/O' WHEN ESTADOCIVIL='D' THEN 'DIVORCIADO/A' ELSE 'VIUDA/O'

END, EDAD, FECHA NACIMIENTO

FROM PERSONAS;

- En los WHEN cualquier condición (AND, OR, ...)
- Ahorro espacio almacenamiento: S/C/D/V frente a Soltero/Casado ...

SELECT NOMBRE,

CASE ESTADO CIVIL

WHEN 'S' THEN 'SOLTERO/A' WHEN 'C' THEN 'CASADA/O' WHEN 'D' THEN 'DIVORCIADO/A' ELSE 'VIUDA/O'

END, EDAD, FECHA NACIMIENTO

FROM PERSONAS;

- En los WHEN un valor posible del atributo

UPDATE EMPLEADO

SET SUELDO = CASE DEPTO

WHEN 'VIDEO' THEN SUELDO*1.1 WHEN 'MÚSICA' THEN SUELDO*1.2 ELSE 0

END:

DBD Tema 4

NULLIF y COALESCE

Operador NULLIF:

SELECT . . .

FROM . .

WHERE BENEFICIO / NULLIF(COSTO, -1) >100

- Cuando COSTO vale -1 NULLIF devuelve NULL
- La división tiene un comportamiento predefinido cuando el denominador sea NULL (el resultado es NULL)

WHERE BENEFICIO / CASE WHEN COSTO = -1 THEN NULL ELSE COSTO END >100

NULLIF es una abreviatura de CASE

Operador COALESCE:

K1: SELECT NOMBRE, COALESCE (SUELDO, PARO, SALARIO_SOCIAL) AS SALARIO

FROM DATOS HACIENDA;

- Devuelve el primer valor NO nulo de la lista que sigue a la palabra COALESCE

DATOS_HACIENDA				
NOMBRE	SUELDO	PARO	SALARIO_SOCIAL	
Matias	NULL	NULL	20.000	
Marta	NULL	30.000	NULL	
Maider	40 000	MHII	NIIII	

NOMBRE	SALARIO
Matias	20.000
Marta	30.000
Maider	40.000

K 1

© A. Jaime 2003 DBD Tema 4 59 © A. Jaime 2003 DBD Tema 4 60

CAST (conversión de tipos) y constructor de valor de tupla

WHERE DIRECTOR.FECHA_INICIO >
CAST(EMPLEADO.FECHA_ALTA_SS
AS DATE);

- Convierte el campo FECHA_ALTA_SS a tipo DATE
- Una sola comparación incluye todos los valores de dos tuplas:

WHERE (NOMBRE,EDAD,ESTADO_CIVIL) = ("José María", 18, 'S')

equivale a:

WHERE NOMBRE= "José María" AND EDAD=18
AND ESTADO CIVIL="S"

WHERE (C1, C2, C3) < (T1, T2, T3)

equivale a:

WHERE C1<T1 OR

(C1=T1 AND C2<T2) OR

(C1=T1 AND C2=T2 AND C3<T3)

© A. Jaime 2003 DBD Tema 4 61

Análisis de consultas SQL (2)

- En SQL hay varias alternativas para especificar la misma consulta :
 - Ventaja: el programador elige la técnica que le resulte más cómoda.
 - Desde el punto de vista de optimización de consultas, conviene que las consultas tengan el menor anidamiento y el menor ordenamiento implícito posible.
 - Desventaja: el programador puede desconocer cuál es la técnica más eficiente en cada caso
 - Idealmente, el SGBD debería procesar la consulta de la misma manera sin importar cómo se haya escrito.
 - En la práctica esto resulta muy dificil, y es conveniente que el usuario sea consciente de qué construcciones tienen un costo más elevado que otras.

Análisis de consultas SQL

SELECT <atributos y funciones>
FROM <tablas>
[WHERE <condición>]
[GROUP BY <atributos agrupación>]
[ORDER BY <atributos ordenación>]

También hay HAVING, que este curso no estudiaremos

- Una consulta SQL se evalúa conceptualmente así:
 - Primero FROM, seguido de WHERE, en tercer lugar GROUP BY y por último ORDER BY
 - Si no hay GROUP BY ni ORDER BY, para cada combinación de tuplas (una de cada tabla de FROM), se evalúa la condición de WHERE. Si es cierta se colocan en el resultado los valores correspondientes a los atributos del SELECT.
 - Esta NO es una forma eficiente de implementar una consulta SQL. Así pues, cada SGBD tiene rutinas para optimizar la evaluación.

© A. Jaime 2003 DBD Tema 4 62

INSERT

A1: INSERT INTO EMPLEADO

VALUES ('Richard', 'K', 'Marini', '653298653', '1962-12-30', '98 Oak Forest, Katy, TX', 'H', 37000, '987654321', 4)

 Mismo orden en el que se especificaron los atributos en CREATE TABLE

A1A: INSERT INTO EMPLEADO(NOMBRE, APELLIDO, NSS)
VALUES ('Richard', 'Marini', '653298653')

- Así los atributos con valor NULL o DEFAULT se pueden omitir
- Los valores de VALUES en el mismo orden que se especifican los atributos en INSERT INTO
- También se pueden incluir varias tuplas en la misma instrucción: INSERT ... INTO ... VALUES (tupla1), (tupla2), ... (tuplaN)

A2:INSERT INTO EMPLEADO (NOMBRE, APELLIDO, NSS, ND)
VALUES ('Robert', 'Hatcher', '980760540', 2)

 Rechazada por la inexistencia del departamento número 2

A2A: INSERT INTO EMPLEADO (NOMBRE, APELLIDO, ND) **VALUES** ('Robert', 'Hatcher', 5)

 Rechazada por no proporcionar valor para NSS (clave primaria: NOT NULL)

© A. Jaime 2003 DBD Tema 4 63 © A. Jaime 2003 DBD Tema 4 64

INSERT (2)

A3A: CREATE TABLE INFO_DEPTOS (

NOMBRE_DEPTO VARCHAR(15), NÚM_DE_EMPS INTEGER, SAL_TOTAL INTEGER);

A3B: INSERT INTO INFO_DEPTOS (NOMBRE_DEPTO,

NÚM DE EMPS, SAL TOTAL)

SELECT NOMBRED, COUNT (*), SUM(SALARIO)
FROM DEPARTAMENTO INNER JOIN EMPLEADO

ON NÚMEROD=ND GROUP BY NOMBRED;

Inserta varias tuplas (el resultado de la consulta)

- Utilidad: tabla temporal donde realizar consultas

• Sus datos pueden perder actualidad

• Alternativa sin este problema: vista

DELETE

A4A: DELETE FROM EMPLEADO

WHERE APELLIDO='Brown'

- Una sola tabla

- WHERE: selección de tuplas a eliminar

- El borrado se puede propagar (RI referencial)

A4B: DELETE FROM EMPLEADO

WHERE NSS='123456789'

A4C: DELETE FROM EMPLEADO

WHERE ND IN

(SELECT NÚMEROD FROM DEPARTAMENTO WHERE NOMBRED='Investigación')

A4D: DELETE FROM EMPLEADO

Sin WHERE se borran todas las tuplas (quedaría la tabla vacía)

 Usando DROP TABLE se hubiera eliminado además la definición de la tabla

© A. Jaime 2003 DBD Tema 4 66

65

UPDATE

DBD Tema 4

A5: UPDATE PROYECTO

© A. Jaime 2003

SET LOCALIZACIÓNP='Bellaire', NÚMD=5

WHERE NÚMEROP=10

- Una sola tabla

- WHERE: selección de tuplas a modificar

SET: atributos a modificar y nuevos valores

- SET: el nuevo valor puede ser NULL o DEFAULT

 Modificaciones de clave primaria pueden propagarse a clave/s extranjera/s (debido a las acciones declaradas en la RI, como CASCADE)

A6: UPDATE EMPLEADO

SET SALARIO=SALARIO*1.1
WHERE ND IN (SELECT NÚMEROD

FROM DEPARTAMENTO

WHERE NOMBRED= 'Investigación')

A la izda se refiere al nuevo valor de SALARIO

A la dcha al valor antiguo

Vistas en SQL

- Una vista es una tabla derivada de otras tablas (que pueden ser tablas de base u otras vistas).
- Tipos de vista:
 - Tabla virtual: se calcula, no se almacena en la BD. Siempre está *al día:* sus "tuplas" se crean cuando se realiza una consulta sobre la vista.
 - Vista materializada: se crea una fisicamente una tabla cuando se consulta por primera vez. Se pueden hacer sucesivas consultas sobre esa tabla. Hay técnicas para mantener la vista actualizada de forma incremental.
- Ejemplo de creación de la vista TRABAJA_EN_1:
 CREATE VIEW TRABAJA EN 1

AS SELECT NOMBRE, APELLIDO, NOMBREP, HORAS FROM (EMPLEADO INNER JOIN TRABAJA_EN ON NSS=NSSE) INNER JOIN PROYECTO ON NP=NUMEROP

• La vista se puede usar en consultas:

SELECT NOMBRE, APELLIDO

FROM TRABAJA_EN_1

WHERE NOMBREP='ProyectoX'

- Para borrar una vista: **DROP VIEW** TRABAJA_EN_1
- Una vista tiene limitaciones para actualizar sus tuplas como si fuese una tabla, ya que puede corresponder a varias actualizaciones de las tablas de base.

© A. Jaime 2003 DBD Tema 4 67 © A. Jaime 2003 DBD Tema 4 68

Ejercicios

© A. Jaime 2003 DBD Tema 4

Ejercicio: Operaciones del álgebra

EMP			DEP		PRO	ΟΥ	TRAB			
NOMBRE	NSS	ND	NUMD	NOMD	NP	NOMBRE	NSSE	<u>NP</u>	HORAS	
Iker	11	1	1	LSI	1	.NET	11	1	5	
Ana	22	1	2	ATC	2	XML	11	2	2	
Jon	33	2			3	EJB	22	1	3	
Karmele	44	2			4	UML	22	3	1	
							44	3	4	

Dibujar las relaciones resultantes de realizar las siguientes operaciones del álgebra relacional:

 Nombre y NSS de cada empleado junto al número de cada proyecto en el que trabaja:

PERS
$$\leftarrow \pi_{\text{NOMBRE, NSS}}(\text{EMP})$$

TRB(NSS,NP) $\leftarrow \pi_{\text{NSSE, NP}}(\text{TRAB})$
R6 \leftarrow PERS * TRB

 Nombre de cada empleado junto al nombre de cada proyecto en el que trabaja:

$$\begin{aligned} & PRY(NP,NOMP) \leftarrow PROY \\ & PERS_PRY \leftarrow R6 * PRY \\ & R7 \leftarrow \pi_{NOMBRE,\ NOMP}(PERS_PRY) \end{aligned}$$

¿Qué cambia en PERS_PRY si se usa PROY en lugar de PRY?

© A. Jaime 2003 DBD Tema 4 70

Ejercicio: consultas álgebra relacional EMPRESA

- a) Empleados del departamento 5 que trabajan más de 10 horas/semana en el proyecto 'Producto X'
- b) Nombre de cada proyecto junto al número total de horas invertidas por los empleados en él.
- c) Nombres de todos los empleados que trabajan en todos y cada uno de los proyectos
- d) Empleados que no trabajan en ningún proyecto
- e) Nombre y dirección de los empleados que trabajan en algún proyecto que, por una parte, está situado en Houston y por otra el proyecto pertenece a un departamento que no está situado en Houston.

Ejercicio: consultas SQL EMPRESA

(8.13 (7.18) Elmasri/Navathe 02)

Sobre el esquema de BD de la figura 7.7 (pg. 4): (donde pide empleados se refiere a su nombre y apellido)

- a) Empleados del departamento 5 que trabajan más de 10 horas/semana en el proyecto 'Producto X'
- b) Empleados con un dependiente con su mismo nombre de pila
- c) Empleados cuyo jefe directo es Franklin Wong
- d) Nombre de cada proyecto junto al número total de horas trabajadas por los empleados en él.
- e) Empleados que trabajan en todos los proyectos de la empresa
- f) Empleados que no trabajan en ningún proyecto
- g) Nombre de cada departamento junto al salario medio de los empleados asignados al mismo
- h) Salario medio de las empleadas de la compañía
- i) Nombre y dirección de los empleados que trabajan en algún proyecto situado en Houston pero departamento no está situado allí
- j) Jefes de departamento sin dependientes

© A. Jaime 2003 DBD Tema 4 71 © A. Jaime 2003 DBD Tema 4 72

Ejercicio: consultas SQL UNIVERSIDAD (1)

- a) Por cada curso, obtener el alumno con mejor nota media en las asignaturas de este curso.
- b) Obtener el DNI de los alumnos que están "limpios" en 3º curso, es decir, que están matriculados en 3º y tienen aprobadas todas las asignaturas de cursos inferiores.
- c) DNI de los alumnos que están matriculados de ALGUNA asignatura de tercero y tienen aprobadas TODAS las asignaturas de segundo.
- d) Obtener el DNI de los alumnos matriculados en al menos una asignatura de cada uno de los departamentos de Informática.
- e) Obtener el nombre de los alumnos que están matriculados en sexta convocatoria en al menos dos asignaturas (sin utilizar funciones agregadas).
- f) Obtener el DNI de los alumnos que están matriculados de todas las asignaturas de 3º y de alguna otra asignatura de cursos inferiores.

© A. Jaime 2003 DBD Tema 4 73

Soluciones

Ejercicio: consultas SQL UNIVERSIDAD (2)

- g) Nombre de los alumnos que han obtenido como nota SOBRESALIENTE en al menos dos asignaturas de cualquiera de los cursos en los que hayan estado matriculados (sin utilizar funciones agregadas).
- h) Obtener, sin usar funciones agregadas, el nombre de los alumnos que están matriculados sólo de asignaturas del departamento DMC.
- Obtener, sin usar funciones agregadas, el nombre de los alumnos matriculados en alguna asignatura de tercer curso que no tengan ninguna matrícula en asignaturas de segundo curso.
- j) Para cada asignatura del departamento DMC con más de 10 alumnos matriculados, obtener el código de la asignatura y el número de convocatoria media en la que se encuentran los alumnos de Arnedo
- k) Obtener el nombre de los alumnos de Nájera mayores de 20 años que se encuentran matriculados en alguna asignatura de tercero

© A. Jaime 2003 DBD Tema 4 74

Solución Operaciones del álgebra (1)

EMP				DEP			PROY			TRAB		
NOMBRE	NSS	ND		NUMD	NOMD		<u>NP</u>	NOMBRE		NSSE	NP	HORAS
Iker	11	1	ĺ	1	LSI		1	.NET		11	1	5
Ana	22	1		2	ATC		2	XML		11	2	2
Jon	33	2		-			3	EJB		22	1	3
Karmele	44	2					4	UML		22	3	1
										44	3	4

PRY1_	MA	S1HOR	A R1	R2	TODOS_	PRY R3
NSSE	NP	HORAS	NSSE	NP	NP	NP
11	1	5	11	1	1	4
22	1	3	22	2	2	
				3	3	
					4	

PRY1_MAS1HORA \leftarrow $\sigma_{\text{NP=1 Y HORAS>1}}$ (TRAB) R1 \leftarrow π_{NSS} (PRY1_MAS1HORA) R2 \leftarrow π_{NP} (TRAB) TODOS PRY \leftarrow π_{NP} (PROY)

TODOS_PRY $\leftarrow \pi_{NP}(PROY)$ R3 \leftarrow TODOS_PRY - R2

R4										
NOMBRE	NSS	ND	NUMD	NOMD						
Iker	11	1	1	LSI						
Ana	22	1	1	LSI						
Jon	33	2	2	ATC						
Karmele	44	2	2	ATC						

R5	
NOMBRE	NOMD
Iker	LSI
Ana	LSI
Jon	ATC
Karmele	ATC

R4 \leftarrow EMP $|\times|_{ND=NNUMD}$ DEP R5 \leftarrow $\pi_{NOMBRE, NOMD}$ (R4)

© A. Jaime 2003 DBD Tema 4 75 © A. Jaime 2003 DBD Tema 4 76

Solución Operaciones del álgebra (2)

EMP				DEP		PRO	Y	TRAB		
NOMBRE	NSS	ND		NUMD	NOMD	<u>NP</u>	NOMBRE	NSSE	<u>NP</u>	HORAS
Iker	11	1	1	1	LSI	1	.NET	11	1	5
Ana	22	1		2	ATC	2	XML	11	2	2
Jon	33	2			•	3	EJB	22	1	3
Karmele	44	2				4	UML	22	3	1
								44	3	Δ

PERS		TRB		R6	L	77
NOMBRE	NSS	NSS	NP	NOMBRE	NSS	NP
Iker	11	11	1	Iker	11	1
Ana	22	11	2	Iker	11	2
Jon	33	22	1	Ana	22	1
Karmele	44	22	3	Ana	22	3
		44	3	Karmele	44	3

 $\begin{aligned} \text{PERS} &\leftarrow \pi_{\text{NOMBRE, NSS}}(\text{EMP}) \\ \text{TRB(NSS,NP)} &\leftarrow \pi_{\text{NSSE, NP}}(\text{TRAB}) \end{aligned}$ R6← PERS * TRB

PRY	7	PERS_PR	Y	R7	R7		
NP	NOMP	NOMBRE	NSS	NP	NOMP	NOMBRE	NOMP
1	.NET	Iker	11	1	.NET	Iker	.NET
2	XML	Iker	11	2	XML	Iker	XML
3	EJB	Ana	22	1	.NET	Ana	.NET
4	UML	Ana	22	3	EJB	Ana	EJB
		Karmele	44	3	EJB	Karmele	EJB

 $\begin{array}{l} PRY(NP,NOMP) \leftarrow \pi_{NP,\ NOMBRE}(PROY) \\ PERS_PRY \leftarrow R6 * PRY \end{array}$ $R7 \leftarrow \pi_{NOMBRE, NOMP}(PERS_PRY)$

> PERS_PRY NOMBRE NSS NP

Usando PROY en lugar de PRY en PERS_PRY

© A. Jaime 2003 DBD Tema 4 77

Solución consultas EMPRESA (2)

(Elmasri/Navathe 7.18)

e) Nombres de todos los empleados que trabajan en cada uno de los proyectos

f) Empleados que no trabajan en ningún proyecto

$$\begin{split} & \text{EMP_PROY(NSS)} \leftarrow \pi_{\text{NSSE}}(\text{TRABAJA_EN}) \\ & \text{EMPS} \leftarrow \pi_{\text{NSS}}(\text{EMPLEADO}) \\ & \text{EMPS_SIN_PRY} \leftarrow \text{EMPS} \cdot \text{EMP_PROY} \\ & \text{R6} \leftarrow \pi_{\text{NOMBRE, APELLIDO}}(\text{EMPLEADO* EMPS_SIN_PRY}) \end{split}$$

- g) Nombre de cada departamento junto al salario medio de los empleados asignados al mismo $\mathsf{DPTO}_\mathsf{EMP} \leftarrow \mathsf{DEPARTAMENTO} \mid \times \mid_{\mathsf{N\acute{U}MEROD=ND}} \mathsf{EMPLEADO}$ $R7 \leftarrow_{NOMBRED} \Im_{PROMEDIO SALARIO}(DPTO_EMP)$
- h) Salario medio de las empleadas de la empresa $EMP_FEM \leftarrow \sigma_{SEXO=^{\circ}M}$, (EMPLEADO) $R8 \leftarrow \Im_{PROMEDIO SALARIO}(EMP_FEM)$

Solución consultas álgebra relacional **EMPRESA**

(Elmasri/Navathe 7.18)

- a) Empleados del departamento 5 que trabajan más de 10 horas/semana en el proyecto 'Producto X' $\texttt{EMP_DP5}(\texttt{NSSE}) \leftarrow \pi_{\texttt{NSS}}(\ \sigma_{\texttt{ND=5}}(\texttt{EMPLEADO})\)$ $NUM_PROY(NP) \leftarrow \pi_{NUMEROP}(\sigma_{NOMBREP="ProductoX"})$ (PROYECTO)) $\text{EMP_PR} \leftarrow \sigma_{\text{HORAS} > 10}(\text{TRABAJA_EN} * \text{NUM_PROY})$ $R1 \leftarrow \pi_{NOMBRE,APELLIDO}(EMP_PR * EMP_DP5)$
- b) Empleados con un dependiente con su mismo nombre de pila

```
DEP(NSS, NOMBRE) \leftarrow \pi_{NSSE, \, NOMBRE\text{-}DEPENDIENTE}
     (DEPENDIENTE)
\texttt{EMP\_CON\_DEP\_IGUAL} \leftarrow \texttt{EMPLEADO} * \texttt{DEP}
R2 \leftarrow \pi_{NOMBRE,APELLIDO}(EMP\_CON\_DEP\_IGUAL\ )
```

- c) Empleados cuyo jefe directo es Franklin Wong $\begin{aligned} & F_WONG(NSS_SUPERV) \leftarrow \pi_{NSS_}(\sigma_{NOMBRE="Franklin"} & Y\\ & & APELLIDO="Wong" (EMPLEADO)) \\ & SUPERVISADOS \leftarrow F_WONG * EMPLEADO \end{aligned}$ $R3 \leftarrow \pi_{NOMBRE,APELLIDO}(SUPERVISADOS)$
- d) Nombre de cada proyecto junto al número total de horas trabajadas por los empleados en él. $PROY_NOM \leftarrow PROYECTO \left| \times \right|_{N\acute{U}MEROP=NP} TRABAJA_EN$ R4(NOMBREP, HORAS) \leftarrow NOMBREP \Im SUMA HORAS(PROY_NOM)

© A. Jaime 2003 DBD Tema 4 78

Solución consultas EMPRESA (3)

(Elmasri/Navathe 7.18)

i) Nombre y dirección de los empleados que trabajan en algún proyecto situado en Houston pero cuyo departamento no está situado allí

```
PRY\_HOUSTON \leftarrow \pi_{N\acute{U}MEROP,\,N\acute{U}MD}(\sigma_{LOCALIZACI\acute{O}NP=`Houston'}
     (PROYECTO))
\begin{array}{l} DPT\_HOUSTON \leftarrow \pi_{NUMEROD}(\sigma_{LOCALIZACIOND = `Houston'}(LOCALIZACIONES\_DEPTOS)) \end{array}
TODOS\_DPTOS \leftarrow \pi_{N\acute{U}MEROD}(DEPARTAMENTO)
\texttt{DPT\_NO\_HOUSTON} \leftarrow \texttt{TODOS\_DPTOS} \cdot \texttt{DPT\_HOUSTON}
PRY\_BUSCADOS(NP) \leftarrow \pi_{N\acute{U}MEROP}(PRY\_HOUSTON
     |\times|_{\text{NÚMD=NÚMEROD}} \text{ DPT\_NO\_HOUSTON})
EMP\_BUSCADOS(NSS) \leftarrow \pi_{NSSE}(TRABAJA\_EN * PRY\_BUS-
     CADOS)
R9 \leftarrow \pi_{NOMBRE, APELLIDO, DIRECCIÓN}(EMPLEADO * EMPS\_BUSCADOS)
                                            Puede haber departamentos que están
en lugares distintos a Houston
(1) NO se puede calcular así:
                                                y que también están en Houston
```

j) Jefes de departamento sin dependientes

```
\mathsf{JEFES}(\mathsf{NSSE}) \leftarrow \pi_{\mathsf{NSS}} \ \mathsf{_{JEFE}}(\mathsf{DEPARTAMENTO})
\texttt{JEFES\_CON\_DEP(NSSE)} \leftarrow \pi_{\texttt{NSSE}}(\texttt{JEFES} * \texttt{DEPENDIENTE})
\mathsf{JEFES\_SIN\_DEP}(\mathsf{NSS}) \leftarrow \mathsf{JEFES} - \mathsf{JEFES\_CON\_DEP}
R10 \leftarrow \pi_{NOMBRE, \, APELLIDO}(JEFES\_SIN\_DEP * EMPLEADO)
```

80

 $\begin{array}{l} \mathsf{DPT_NO_HOUSTON} \leftarrow \pi_{\mathsf{NUMEROD}}(\sigma_{\mathsf{LOCALIZACIOND}} \not= \mathsf{Houston}^* \\ (\mathsf{LOCALIZACIONES_DEPTOS})) \end{array}$

```
\texttt{JEFES\_SIN\_DEP(NSS)} \leftarrow \texttt{JEFES} - (\pi_{\texttt{NSSE}}(\texttt{EMPLEADO}
                                                |\times|_{\text{NSS=NSSE}} DEPENDIENTE))
    Alternativa válida
© A. Jaime 2003
                                              DBD Tema 4
```

© A. Jaime 2003 DBD Tema 4 79