Развити въпроси за изпит по ЧМ

Информатика при Лозко Милев

Съдържание

1	Формулирайте интерполационната задача на Лагранж. До-	
	кажете единствеността. Изведете интерполационната фор-	
	мула на Лагранж	3
2	Формулирайте и докажете теоремата за оценка на грешка-	
	та при интерполация на Лагранж	Ę
3	Дайте определение за полином на Чебишов. Напишете и	
	докажете рекурентната връзка. Намерете нулите на поли-	
	нома на Чебишов от п-та степен	6
4	Напишете и докажете интерполационната формула на Ню-	
	тон с разделени разлики. Напишете задачата, която се ре-	
	шава с тази формула	7
5	Напишете и докажете формулата на Нютон с крайни раз-	
	лики за интерполация напред. Напишете задачата, която	
	се решава с тази формула	8
6	Формулирайте интерполационната задача на Ермит. Дока-	
	жете, че задачата има единствено решение.	ç
7	Формулирайте и докажете рекурентната връзка за разде-	
	лени разлики с кратни възли. Включително случая, в кой-	
	то всички възли съвпадат.	10
8	Напишете и докажете, формулата за интерполационния	
	тригонометричен полином при произволно разположени ин-	
	терполационни възли в $[0,2\pi)$. Напишете задачата, която	
	се решава с тази формула	10
9	Формулирайте и докажете теоремата за представяне на	
	сплайн функция, като линейна комбинация на полиноми	
	и отсечени степенни функции	12
10	Напишете и докажете рекуретната връзка за В-сплайните .	14
11	Формулирайте теоремата на Чебишов за алтернанса. До-	
	кажете достатъчността	15
12	Формулирайте теоремата на Вайерщрас. Докажете я като	
	използвате полиномите на Бернщайн	15
13	Напишете и докажете тричленната рекуретната връзка за	
	редица от ортогонални полиноми	17
14	Формулирайте и докажете теоремата за характеризация на	
	елемента на най-добро приближение в Хилбертово прост-	
	ранство. (НДУ)	18

15	Изведете формулата от вида $f'(a) \approx C_0 f(a-h) + C_1 f(a+h)$	
	и грешката $O(h^2)$ при положение, че f е достатъчно гладка.	
	Обосновете порядъка на грешката	18
16	Изведете елементарната квадратурна формула на трапеца	
	и оценката на грешката при подходящи предположения за	
	подинтегралната функция	19
17	Формулирайте и докажете теоремата за квадратурната фор-	
	мула на Гаус	20
18	Формулирайте и докажете теоремата за приближено ре-	
	шаване на нелинейно изображение по метода свиващото	
	изображение	22

1 Формулирайте интерполационната задача на Лагранж. Докажете единствеността. Изведете интерполационната формула на Лагранж.

Постановка на задачата

Нека $x_1, x_2, ..., x_n$ са различни точки и $y_1, y_2, ..., y_n$ са дадени реални числа.

Да се построи алгебричен полином P(x) от степен $\leq n$, който удовлетворява следните условия:

$$P(x_k) = y_k, \quad k = 0, \dots, n \tag{1.1}$$

Теорема 1.1. Ако съществува решение на 1.1, то трябва да е единствено.

Доказателство. Допускаме, че съществуват два полинома P и Q от степен n, които удовлетворяват 1.1, тогава разликата

$$R(x) = P(x) - Q(x)$$

ще бъде полином от степен $\leq n$ и освен това

$$R(x_k) = P(x_k) - Q(x_k) = y_k - y_k = 0, \quad k = 0, \dots, n$$

Следователно R е полином от степен n, който се анулира в n+1 точки. Тогава от основната теорема на алгебрата R(x) е тъждествено равен на 0. Следователно $P\equiv Q$.

Извеждане на формулата

При фиксирано k да се намери полинома $l_{nk}(x) \in \pi_n$, който удовлетворява условията:

1.
$$l_{nk}(x_i) = 0$$
, за $i = 0, ..., n$ и $i \neq k$

2.
$$l_{nk}(x_i) = 1$$
, за $i = k$

От 1. следва, че точките $x_0, \ldots, x_{k-1}, x_{k+1}, \ldots x_n$ са нули на полинома l_{nk} . От $l_{nk} \in \pi_n$ следва, че $x_0, \ldots, x_{k-1}, x_{k+1}, \ldots x_n$ са всичките нули. Тогава l_{nk} може да се запише във вида:

$$l_{nk}(x) = A(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n),$$

където A е някакво число. A се определя от 2...

$$1 = l_{nk}(x_k) = A(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)$$

Следователно:

$$A = \frac{1}{\prod_{i=0, i \neq k}^{n} (x_k - x_i)}.$$

Тогава

$$l_{nk}(x) = \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x - x_n)}$$

$$= \prod_{i=0, i \neq k}^{n} \left(\frac{x - x_i}{x_k - x_i}\right). \tag{1.2}$$

Полиномите $\{l_{nk}\}_{k=0}^n$ се наричат базисни полиноми на Лагранж. С тяхна помощ може лесно да се построи P.

Ще покажем, че решението P(x) на 1.1 се дава с

$$P(x) = \sum_{k=0}^{n} y_k l_{nk}(x)$$
 (1.3)

По построение

$$l_{nk}(x_i) = \delta_{ki} = \begin{cases} 1, & k = i \\ 0, & k \neq i \end{cases}$$

Тогава

$$P(x_i) = \sum_{k=0}^{n} y_k l_{nk}(x_i) = y_i l_{ni}(x_i) = y_i 1 = y_i,$$

за всяко $i=0,\ldots,n$. От това, че полиномът 1.3 е от $\pi_n(l_{nk}\in\pi_n)$ и удовлетворява 1.1, следва, че P(x) даден в 1.3 е решение на интерполационната задача.

Най-често $\{y_k\}_{k=0}^n$ са стойностите на някаква функция f(x) в точките x_0,x_1,\ldots,x_n , тоест

$$y_k = f(x_k), \quad , k = 0, \dots, n.$$

В такъв случай

$$P(x_k) = f(x_k), \quad , k = 0, \ldots, n$$

се бележи с $L_n(f;x)$ и се нарича интерполационен полином на Лагранж за функцията f с възли x_0, \ldots, x_n . Казваме още, че $L_n(f;x)$ интерполира f(x) в точките (x_0, \ldots, x_n) .

И така доказахме следната теорема

Теорема 1.2. Нека $x_0 < \ldots < x_n$ и f(x) е определена в тези точки. Тогава съществува единствен полином от π_n , който интерполира f в x_0, \ldots, x_n . Този полином се представя чрез формулата:

$$L_n(f;x) = \sum_{k=0}^n f(x_k) \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$
 (1.4)

Формула 1.4 се нарича интерполационна формула на Лагранж.

2 Формулирайте и докажете теоремата за оценка на грешката при интерполация на Лагранж.

Теорема 2.1. Нека [a,b] е даден краен интервал и x_0, \ldots, x_n са различни точки в него. Нека функцията f(x) има непрекосната (n+1)-ва производна в [a,b]. Тогава $\forall x \in [a,b] \exists \xi \in [a,b]$:

$$f(x) - L_n(f;x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0) \dots (x - x_n).$$

Доказателство. Образуваме помощната функция

$$F(t) = f(t) - L_n(f;t) - c(t - x_0) \dots (t - x_n),$$

където c е параметър. F(t) се анулира в точките x_0, \ldots, x_n при всеки избор на c.

$$F(x_k) = f(x_k) - L_n(f;k) - c.0 = f(x_k) - f(x_k) = 0.$$

Избираме c така, че F(t) да се анулира и при t=x. От равенството

$$f(x) - L_n(f;x) - c(x - x_0) \dots (x - x_n) = 0$$

определяме

$$c = \frac{R_n(f;x)}{(x - x_0)\dots(x - x_n)}. (2.1)$$

И така при този избор на c функцията F(t) има поне n+2 нули. Това са точките x, x_0, \ldots, x_n . По теоремата на Рол F'(t) ще има поне n+1 нули, които лежат в интервала [a,b], F''(t) ще има поне n нули и тн. $F^{(n+1)}(t)$ ще има поне една нула, която лежи в [a,b]. Да я означим с ξ . Имаме $F^{(n+1)}(\xi)=0$. От друга страна,

$$F^{(n+1)}(\xi) = f^{(n+1)}(\xi) - L_n(f;\xi) - c(n+1)! =$$

= $f^{(n+1)}(\xi) - c(n+1)!$.

Следователно

$$c = \frac{f^{(n+1)}(\xi)}{(n+1)!}.$$

Като сравним това равенство с 2.1 получаваме:

$$R_n(f;x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)\dots(x-x_n).$$

Теоремата е доказана.

3 Дайте определение за полином на Чебишов. Напишете и докажете рекурентната връзка. Намерете нулите на полинома на Чебишов от n-та степен.

Дефиниция 3.1. Полиномът на Чебишов от първи род от n-ma степен се бележи с $T_n(x)$ и се определя в интервала [-1,1] чрез равенството

$$T_n(x) = \cos(n\arccos(x)), x \in [-1, 1]. \tag{3.1}$$

Непосредствено от дефиницията следва, че:

$$T_0(x) = 1$$

$$T_1(x) = x$$

Освен това съгласно формулата за събиране на синуси:

$$T_{n+1} + T_{n-1} = cos ((n+1)arccosx) + cos ((n-1)arccosx)$$
$$= 2cos(arccosx)cos(narccosx)$$
$$= \boxed{2xT_n(x)},$$

при всяко n > 1. Оттук получаваме следната рекурентна връзка

$$T_{n+1} = 2xT_n(x) - T_{n-1}(x) (3.2)$$

Като използваме равенство 3.1 веднага можем да намерим нулите на полинома. Очевидно $T_n(x)=0$ при $narcosx=(2k-1)\frac{\pi}{2}, k=0,1,2,\ldots$ Оттук следва, че нулите на полинома са:

$$\xi_k = \cos\frac{(2k-1)\pi}{2n}, k = 1, \dots, n.$$

4 Напишете и докажете интерполационната формула на Нютон с разделени разлики. Напишете задачата, която се решава с тази формула.

Ще изведем формулата на Нютон за интерполационни полиноми. За целта разглеждаме разликата:

$$L_{k+1}(f;x) - L_k(f;x),$$

където $L_{k+1}(f;x)$ интерполира f в x_0,\ldots,x_{k+1} , а $L_k(f;x)$ интерполира f в x_0,\ldots,x_k . Ясно е, че $L_{k+1}(f;x)-L_k(f;x)\in\pi_{k+1}$. Освен това

$$L_{k+1}(f;x) - L_k(f;x) = f(x_i) - f(x_i) = 0, \text{ as } i = 0, \dots, k.$$

Следователно x_0, \ldots, x_k са всичките нули на полинома $L_{k+1}(f;x) - L_k(f;x)$. Тогава той може да се запише във вида:

$$L_{k+1}(f;x) - L_k(f;x) = A(x - x_0) \dots (x - x_k), \tag{4.1}$$

където A е константа. За да намерим A нека сравним коефициентите пред x^{k+1} в 4.1.

Съгласно теоремата за разделените разлики коефициента пред x^{k+1} в $L_{k+1}(f;x)$ е равен на разделената разлика $f[x_0,\ldots,x_{k+1}]$. Следователно

$$A = f[x_0, \dots, x_{k+1}]$$

и следователно от 4.1

$$L_{k+1}(f;x) = L_k(f;x) + f[x_0, \dots, x_{k+1}](x - x_0) \dots (x - x_k)$$
(4.2)

Нека приложим 4.2 за $k=n-1,n-3,\ldots,2,1,0$. Получаваме следния явен израз за интерполационния полином на Лагранж.

$$L_n(f;x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

Това е интерполационната формула на Нютон. Понякога ще я записваме съкратено така

$$L_n(f;x) = \sum_{k=0}^n f[x_0, \dots, x_k](x - x_0) \dots (x - x_{k-1}), \tag{4.3}$$

като приемаме, че $(x-x_0)\dots(x-x_{k-1})=1$ при k=0. Може и с инфукция наобратно Напишете задачата - може би табличката

5 Напишете и докажете формулата на Нютон с крайни разлики за интерполация напред. Напишете задачата, която се решава с тази формула.

Нека възлите $\{x_i\}_0^n$ са равноотдалечени и функцията f е дефинирана в тях. Търсим полинома $L_n(f;x) \in \pi_n$, който интерполира f в x_0, \ldots, x_n . Съгласно интерполационната фирмула на Нютон:

$$L_n(f;x) = \sum_{k=0}^n f[x_0, \dots, x_k](x - x_0) \dots (x - x_{k-1}).$$

Нека $x_i = x_0 + ih, i = 0, \dots, n$ и $x = x_0 + th$. Тогава

$$(x-x_0)\dots(x-x_{k-1})=\prod_{i=0}^{k-1}(x_0+th-x_0-ih)=h^kt(t-1)\dots(t-k+1).$$

Сега като използваме връзката между разделената разлика и крайната разлика, тоест $f[x_0,\ldots,x_n]=\frac{\Delta^n f_0}{n!h^n}$, получаваме

$$L_n(f;x) = L_n(f;x_0+th) = \sum_{k=0}^n \frac{\Delta^k f_0}{k!} t(t-1) \dots (t-k+1) = \sum_{k=0}^n \Delta^k f_0 \binom{t}{k}.$$

Това е формула на Нютон с крайни разлики за интерполиране напред. май пак схемата

6 Формулирайте интерполационната задача на Ермит. Докажете, че задачата има единствено решение.

Постановка: Нека x_0, \ldots, x_n са дадени n+1 различни точки и ν_0, \ldots, ν_n са цели положителни числа и

$$\{y_{k\lambda}: k = 0, \dots, n, \lambda = 0, \dots, \nu_k - 1\}$$

е таблица от произволни реални стойностти. Означаваме с $N = \nu_0 + \ldots + \nu_n - 1$. Да се построи алгебричен полином P от степен N, който удовлетворява условията:

$$P_{(\lambda)}(x_k) = y_{k\lambda}, k = 0, \dots, n, \lambda = 0, \dots, \nu_k - 1.$$
 (6.1)

Теорема 6.1. При всеки избор на интерполационни възли $\{x_k\}_0^n, x_i \neq x_j \Leftrightarrow i \neq j$ и при всяка таблица от стойностти $\{y_{k\lambda}\}$ интерполационната задача на Ермит 6.1 има единствено решение.

Доказателство. Условията 6.1 представляват една система от N+1 линейни уравнения с неизвестни - коефициентите a_0, \ldots, a_N на полинома P(x). Тази система има единствено решение, ако детерминантата ѝ е различна от 0. Да допуснем, че детерминанатата ѝ е 0. Тогава хомогенната система:

$$P^{(\lambda)}(x_k) = 0, k = 0, \dots, n\lambda = 0, \dots, \nu_k - 1$$

ще има някакво ненулево решение $P(x) = a_0 x^N + \ldots + a_{N-1} x + a_N$. Но горните условия означават, че P има N+1 нули, броейки кратностите. От друга страна $P \in \pi_N$. Следователно $P(x) \equiv 0$ и оттук $a_0 = \ldots = a_N = 0$ и стигаме до противоречие.

7 Формулирайте и докажете рекурентната връзка за разделени разлики с кратни възли. Включително случая, в който всички възли съвпадат.

Теорема 7.1. Нека f има k непрекъснати производни g [a,b]. Тогава за произволни точки $x_0 \le \dots x_k$ от [a,b] е g сила рекурентната връзка:

$$f[x_0, \dots, x_k] = \begin{cases} \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}, x_0 < x_k \\ \frac{f^{(k)}(x_0)}{k!}, & x_0 = x_k \end{cases}$$
(7.1)

Доказателство. При $x_0 = x_k$ разглеждаме разделената разлика $f[x_0, x_0, \dots, x_0]$ построяваме полинома p(x) използвайки формулата на Тейлър:

$$p(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k,$$

. Този полином удовлетворява условието $p^(j)(x_0) = f^{(j)}(x_0), j = 0, \ldots, k$. С други думи полиномът p интерполира f в точката x_0 с кратност k+1. От явния вид на p се вижда, че коефициента пред x^n е $\frac{f^{(k)}(x_0)}{k!}$. И от това, че разделената разлика е равна на коефициента пред x^n следва, че

$$f[x_0,\ldots,x_k] = rac{f^{(k)}(x_0)}{k!}$$
при $x_0 = \ldots = x_k$

Нека $x_0 < \ldots < x_k$ и тъй като разделената разлика е линеен функционал, то

$$(x_k - x_0)f[x_0, \dots, x_k] = \{(x_k - x + x - x_0)f\}[x_0, \dots, x_k]$$

= $(x_k - x)f[x_0, \dots, x_k] + \{x - x_0f\}[x_0, \dots, x_k]$
= $-f[x_0, \dots, x_{k-1}] + f[x_1, \dots, x_k]$

Следователно

$$\frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

8 Напишете и докажете, формулата за интерполационния тригонометричен полином при произволно разположени интерполационни възли в $[0,2\pi)$. Напишете задачата, която се решава с тази формула.

Теорема 8.1. Нека $0 \le x_0 < x_1 < \ldots < x_{2n} < 2\pi$. Тогава за всяка функция f определена в точките $\{x_i\}_0^{2n}$ съществува единствен триго-

нометричен полином t_n от ред n такъв, че

$$t_n(x_i) = f(x_i), i = 0, \dots, 2n$$
 (8.1)

и той има вида

$$t_n(x) = \sum_{k=0}^{2n} \lambda_k f(x_k) \tag{8.2}$$

 $\kappa \sigma \partial emo$

$$\lambda_k = \prod_{i=0, i \neq k}^{2n} \frac{\sin\left(\frac{x-x_i}{2}\right)}{\sin\left(\frac{x_k-x_i}{2}\right)} \tag{8.3}$$

$$\lambda_k(x_i) = 0$$
, за $i \neq j$
 $\lambda_k(x_i) = 1$, иначе.

От това следва, че изразът 8.2 ще удовлетворява интерполационните условия 8.1. Остава само да докажем, че λ_k , следователно и t_n са тригонометрични полиноми от ред n. За целта ще използваме индукция по n. При n=1:

$$\lambda_k(x_1) = \sin\left(\frac{x-\alpha}{2}\right) \sin\left(\frac{x-\beta}{2}\right)$$
$$= \frac{1}{2} \left(\cos\frac{\beta-\alpha}{2} - \cos\left(x - \frac{\alpha+\beta}{2}\right)\right)$$
$$= a_0 + a_1 \cos x + b_1 \sin x$$

Следователно $\lambda_k(x)$ е тригонометричен полином от ред 1.

Допускаме, че всяко едно произведение от n-1 двойки синуси е тригонометричен полином от ред n-1. Да разгледаме произволен израз за $\lambda_k(x)$ от вид 8.3. Той може да се запише по следния начин:

$$\lambda_k(x) = c \prod_{i=0, i \neq k}^{2n} \sin\left(\frac{x - x_i}{2}\right)$$

$$= C \left\{ \prod_{i=1}^{n-1} \sin\left(\frac{x - \alpha_i}{2}\sin\left(\frac{x - \beta_i}{2}\right)\right) \right\} \left\{ \sin\left(\frac{x - \alpha}{2}\sin\left(\frac{x - \beta}{2}\right)\right) \right\},$$

където C е константа. Но съгласно идукционното предположение и двата израза в големите скоби са тригонометрични полиноми от ред n-1 и 1 съответно и следователно:

$$\begin{split} \lambda_k(x) &= \left(a_0 + \sum_{k=1}^{n-1} (a_k cos(kx) + b_k sin(kx))\right) \left(a_0 + a_1 cosx + b_1 sinx\right) \\ &= a_0^2 + a_0 a_1 cosx + a_0 b_1 sinx + \sum_{k=1}^{n-1} \left(a_k a_0 cos(kx) + b_k a_0 sin(kx) + a_k a_1 cosx cos(kx) + b_k a_1 cosx sin(kx) + a_k b_1 sinx cos(kx) + b_k b_1 sinx sin(kx)\right) \\ &= a_0^2 + a_0 a_1 cosx + a_0 b_1 sinx + \sum_{k=1}^{n-1} \left(a_k a_0 cos(kx) + b_k a_0 sin(kx) + a_k a_1 \frac{1}{2} (cos(k-1)x + cos(k+1)x) + b_k a_1 \frac{1}{2} (sin(k+1)x - sin(k-1)x) + a_k b_1 \frac{1}{2} (sin(k+1)x - sin(k-1)x) + b_k b_1 \frac{1}{2} (cos(k-1)x - cos(k+1)x)\right) \\ &= A_0 + A_1 cosx + B_1 sinx + \sum_{k=1}^{n-1} A_{k-1} cos(k-1)x + a_k cos(kx) + a_k c$$

Очевидно $\lambda_k(x)$ е линейна комбинация на $sinkx, coskx, k = 0, \ldots, n$, което означава, че λ_k е тригонометричен полином от ред n. Следователно и t_n също е тригонометричен полином от ред n изпълняващ условята 8.1 за интерполация.

9 Формулирайте и докажете теоремата за представяне на сплайн функция, като линейна комбинация на полиноми и отсечени степенни функции.

Дефиниция 9.1. Функцията s(x) се нарича сплайн функция от степен r с възли $x_1 < \ldots < x_n$, ако:

1. s(x) е полином от степен най-много r във всеки подинтервал $(x_i, x_{i+1}), i = 0, \ldots, n(x_0 = -\infty, x_n = +\infty)$

2. $s(x), s'(x), \ldots, s^{(r-1)}(x)$ са непрекоснати функции в $(-\infty, +\infty)$

Дефиниция 9.2. $S_r(x_1,\ldots,x_n)$ отбелязва множеството от сплайнфункции от степен r свъзли в точките x_1,\ldots,x_n .

Дефиниция 9.3. Отсечената степенна функция:

$$(x-\xi)_+^r = \begin{cases} (x-\xi)^r, & x \ge \xi \\ 0, & x < \xi \end{cases}$$

е сплайн от степен r с единствен възел в точката ξ .

Теорема 9.1. Всяка сплайн функция s(x) от класа $S_r(x_1,...,x_n)$ се представя по единствен начин от вида:

$$s(x) = p(x) + \sum_{k=1}^{n} c_k (x - x_k)_+^r, \tag{9.1}$$

където p(x) е полином от степен r, ac_1, \ldots, c_n са реални числа:

$$c_k = \frac{s^{(k)}(x_k + 0) - s^{(r)}(x_k - 0)}{r!}, k = 1, \dots, n$$
(9.2)

Доказателство. Означението $f(x+0) = \lim_{h\to 0, h>0} f(x+h)$ и аналогично е за f(x-0). Нека $s(x) \in S_r(x_1,\ldots,x_n)$. Тогава s съвпада с някакъв полином P_k от степен r в подинтервала $(x_k,x_{k+1}), k=0,\ldots,n$. Тъй като $s^{(j)}(x)$ е непрекъсната функция в точката x_k , то $P_{k-1}^{(j)}(x_k) = P_k^{(j)}(x_k), j = 0,\ldots,r-1$. Следователно

$$P_k(x) = P_{k-1}(x) + c_k(x - x_k)^r, \forall x,$$
(9.3)

където c_k е някаква константа. От тази рекурентна връзка следва, че

$$P_k(x) = P_0(x) + \sum_{i=1}^k c_i (x - x_i)^r.$$

Като вземем предвид, че $s(x) \equiv P_k(x), x \in (x_k, x_{k+1})$ и определението за отсечена функция от горното равенство получаваме

$$s(x) = P_0(x) + \sum_{i=0}^{n} c_i (x - x_i)_+^r,$$

което е търсенео представяне. Остава да покажем, че коефициентите c_k се определят еднозначно. Диференцираме 9.3 r—пъти в точката x_k и получаваме:

$$P_k^{(r)} = P_{k-1}^{(r)}(x_k) + c_k r!$$

и оттук

$$c_k = \frac{s^{(k)}(x_k + 0) - s^{(r)}(x_k - 0)}{r!}.$$

Полиномът p(x) в 9.1 се определя също еднозначно и съвпада с $P_0(x)$.

10 Напишете и докажете рекуретната връзка за Всплайните

Дефиниция 10.1. Разделената разлика на отсечената степенна функция $(x-t)_+^{r-1}$ по отношение на x в точките $x_1 < \ldots < x_r$ се нарича B-сплайн от степен r-1 с възли x_0, \ldots, x_r .

Теорема 10.1. За всяко $r \ge 2$ и $t \in (-\infty, \infty)$ е в сила равенството:

$$B_{i,r-1}(t) = \frac{t - x_i}{x_{i+r} - x_i} B_{i,r-2}(t) + \frac{x_{i+r} - t}{x_{i+r} - x_i} B_{i+1,r-2}(t).$$
 (10.1)

Доказателство. Ще използваме правилото на Сефансон за намиране на разделената разлика на произведение на функции:

$$(f.g)[x_0,\ldots,x_n] = \sum_{k=0}^n f[x_0,\ldots,x_k]g[x_k,\ldots,x_n].$$

Избираме f(x) = x - t и $g(x) = (x - t)_+^{r-2}$. Очевидно

$$f(x)g(x) = (x-t)_+^{r-1}, x \in (-\infty, \infty)$$

и следователно

$$B_{i,r-1}(t) = (f.g)[x_i, \dots, x_{i+r}] = f(x_i)g[x_i, \dots, x_{i+r}] + f[x_i, x_{i+1}]g[x_{i+1}, \dots, x_{i+r}],$$

тъй като $f[x_i,\ldots,x_{i+k}]=0, k\geq 2.$ Като вземем предвид, че $f[x_i,x_{i+1}]=1$

и рекурентната връзка за разделените разлики получаваме:

$$B_{i,r-1}(t) = f(x_i) \frac{g[x_{i+1}, \dots, x_{i+r}] - g[x_i, \dots, x_{r+i-1}]}{x_{i+r} - x_i} + g[x_{i+1}, \dots, x_{i+r}]$$

$$= \left(1 + \frac{f(x_i)}{x_{x+r} - x_i}\right) g[x_{i+1}, \dots, x_{i+r}] - \frac{f(x_i)}{x_{i+r} - x_i} g[x_i, \dots, x_{i+r-1}]$$

$$= \frac{x_{i+r} - t}{x_{i+r} - x_i} B_{i+1,r-2}(t) + \frac{t - x_i}{x_{i+r} - x_i} B_{i,r-2}(t).$$

11 Формулирайте теоремата на Чебишов за алтернанса. Докажете достатъчността.

Теорема 11.1. Нека f е произволна непрекъсната функция в крайния и затворен интервал [a,b]. Необходимо и достатъчно условие е полиномът $P \in \pi_n$ да бъде полином на най-добро равномерно приближение за f от n-та степен в [a,b] е да съществува n+2 точки $\{x_i\}_0^{n+1} \in [a,b]$: $a \leq x_0 < \ldots < x_n \leq b$ и

$$f(x_i) - P(x_i) = (-1)^i \epsilon ||f - P||, i = 0, \dots, n+1,$$
(11.1)

където $\epsilon = 1$ или $\epsilon = -1$.

Доказателство. Условието 11.1 означава, че разликата f(x)-P(x) достига максимумалата си по модул стойност в n+2 точки, като си сменя алтернативно знака. В такъв случай казваме, че f и P осъществяват алтернанс в n+2 точки. Достатъчност на 11.1.

Нека P удовлетворява 11.1, тоест съществува n+2 точки $\{x_i\}_0^{n+1} \in [a,b]$: $a \le x_0 < \ldots < x_n \le b$ и $f(x_i) - P(x_i) = (-1)^i \epsilon ||f-P||, i = 0, \ldots, n+1$, където $\epsilon = 1$ или $\epsilon = -1$. Тогава е изпълнено:

$$E_n(f) \ge ||f - P||.$$

Но, по определение, $E_n(f) \leq ||f-Q||, \forall Q \in \pi_n$. Следователно $E_n(f) = ||f-P||$ и P е полином на най-добро равномерно проближение

12 Формулирайте теоремата на Вайерщрас. Докажете я като използвате полиномите на Бернщайн.

Дефиниция 12.1. Нека f(x) е произволна функция, дефинирана в интервала [0,1]. Полиномът на Бернщайн от степен n за функцията f се бележи с $B_n(f;t)$ и се определя с равенството:

$$B_n(f;t) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} t^k (1-t)^{n-k}$$

Дефиниция 12.2. *Нека* f *е* функция дефинирана g [a,b]. Величината:

$$w(f; \delta) = \sup |f(x) - f(y)| : x, y \in [a, b], |x - y| \le \delta$$

се нарича модул на непрекъснатост на f в [a,b].

Теорема 12.1. Нека f е произволна непрекъсната функция в [0,1]. Тогава за всяко n и всяко $t \in [0,1]$ имаме

$$|f(t) - B_n(f;t)| \le \frac{3}{2}w\left(f; \frac{1}{\sqrt{n}}\right)$$
(12.1)

Теорема 12.2. Нека [a,b] е произволен краен интервал и f(x) е непрекъсната функция в него. Тогава $\forall \epsilon > 0$ съществува алгебричен полином P(x) такъв, че:

$$\max_{x \in [a,b]} |f(x) - P(x)| \le \epsilon.$$

Доказателство. Въвеждаме функцията:

$$h(t) = f(a + t(b - a)), t \in [0, 1].$$

Тъй като f(x) е непрекъсната в [a,b], то и h(t) ще е непрекъсната в [0,1] и следователно

$$\lim_{\delta \to 0} w(h, \delta) = 0.$$

Тогава $\exists n$:

$$\frac{3}{2}w\left(h;\frac{1}{\sqrt{n}}\right) < \epsilon$$

От теорема 12.1

$$|h(t) - B_n(h;t)| \le \frac{3}{2}w\left(h;\frac{1}{\sqrt{n}}\right) < \epsilon$$

за това n. Тоест полинома $B_n(h;t)$ приблицава h в [0,1] с точност ϵ . Сега, като се върнем обратно към променливата x със смяната $t=\frac{x-a}{b-a}$, получаваме:

$$\left| h\left(\frac{x-a}{b-a}\right) - B_n\left(h; \frac{x-a}{b-a}\right) \right| < \epsilon, x \in [a,b].$$

Където $f(x) = h\left(\frac{x-a}{b-a}\right)$ и $P(x) = B_n\left(h; \frac{x-a}{b-a}\right)$ са алгебрични полиноми от степен n. Тогава P(x) е полином, за който

$$|f(x) - P(x)| < \epsilon, x \in [a, b].$$

Доказателството е завършено.

13 Напишете и докажете тричленната рекуретната връзка за редица от ортогонални полиноми.

Свойство 1. За всяка система от ортогонални полиноми $P_0(x), P_1(x) \dots$ съществува тричленна рекурентна връзка от вида:

$$P_{n+1} = (A_n x - B_n) P_n(x) + C_n P_{n-1}(x), n = 1, 2, \dots,$$
(13.1)

където A_n, B_n, C_n са константи.

Доказателство.

$$xP_n(x) = a_0P_0(x) + \ldots + a_nP_n(x) + a_{n+1}P_{n+1}(x)$$

с някакви константи a_0, \ldots, a_{n+1} . Умножаваме с $P_i(x)$ и интегрираме. Получаваме:

$$\int_{a}^{b} \mu(x)x P_{n}(x) P_{i}(x) dx = a_{i}(P_{i}, P_{i}), i = 0, \dots, n+1.$$
 (13.2)

Като интеграла е равен на 0 за $i=0,\ldots,n-2$ от ортогоналността и $P_i\in\pi_{n-1}$. Следователно $a_i=0$ при $i=0,\ldots,n-2$ и

$$xP_n(x) = a_{n-1}P_{n-1}(x) + a_nP_n(x) + a_{n+1}P_{n+1}(x).$$
(13.3)

Така получаваме търсената връзка, а за коефициентите от 13.2

$$a_{n-1} = \frac{(xP_n, P_{n-1})}{(P_{n-1}, P_{n-1})}$$
$$a_n = \frac{(xP_n, P_n)}{(P_n, P_n)}$$

и от 13.3 $a_{n+1} = \frac{\alpha_n}{\alpha_{n-1}}$, ако $P_k(x) = \alpha_k x^k + \ldots \in \pi_{k-1}, k = 0, 1, \ldots$

14 Формулирайте и докажете теоремата за характеризация на елемента на най-добро приближение в Хилбертово пространство. (НДУ)

Теорема 14.1. Нека H е произволно хилбертово пространство u $f \in H$. Елементът $p \in \Omega_n$ е елемент на най-добро проближение за f с елемент от Ω_n тогава u само тогава, когато

$$(f - p, \phi) = 0, \forall \phi \in \Omega_n. \tag{14.1}$$

 $Доказателство. (\Rightarrow)$

Да предположим, че р е елемент на най-добро приближение, тоест

$$||f - p|| = \inf\{||f - \phi|| : \phi \in \Omega_n\} = \epsilon_n(f).$$

Тогава за произволно $\phi \in \Omega_n$ и $\phi \neq 0$ функцията:

$$r(\lambda) = ||f - p + \lambda \phi||^2 = (f - p + \lambda \phi, f - p + \lambda \phi)$$

$$= \epsilon_n^2(f) + 2\lambda(f - p, \phi) + \lambda^2(\phi, \phi)$$

ще има минимум при $\lambda=0$. Това означава, че и r'(0)=0. Но $r'(0)=2(f-p,\phi)$, следователно $(f-p,\phi)=0, \forall \phi\in\Omega_n$ (\Leftarrow)

Да допуснем, че $p \in \Omega_n$ и p удовлетворява условията за ортогоналност 14.1. Нека ϕ е произволен друг елемент от Ω_n . Тогава $\delta = p - \phi \in \Omega_n$ и следователно

$$||f - \phi||^2 = ||f - p + p - \phi||^2$$

$$= (f - p + \delta, f - p + \delta) = ||f - p||^2 + ||\delta||^2 (\text{защото}(f - p) \perp \delta)$$

$$\geq ||f - p||^2$$

И така, ако p удовлетворява 14.1, то

$$||f - p|| < ||f - \phi||, \forall \phi \in \Omega_n$$

Като равенство се достига само при $\delta = 0$, тоест когато $p \equiv \phi$.

15 Изведете формулата от вида $f'(a) \approx C_0 f(a-h) + C_1 f(a+h)$ и грешката $O(h^2)$ при положение, че f е достатъчно гладка. Обосновете порядъка на грешката.

Нека f(t) е дефинирана в [a-h,a-h] и $x_0=a-h,x_1=a+h$ са различни възли на интерполация симитрични спрямо точката a. Търсим

приближение на f'(a). Съгласно формулата на Нютон

$$f(t) = L_1(f;t) + f[a - h, a + h, t](t - a + h)(t - a - h)$$

Очевидно

$$L_1(f;t) = f(a-h) + f[a-h, a+h](t-a+h).$$

Следователно $f'(a) \approx L'_1(a) = f[a-h,a+h]$ и получаваме следната формула за приближение от търсения вид:

$$f'(a) = \frac{f(a+h) - f(a-h)}{2h}$$

Тогава за грешката имаме

$$E(f) = (f[a - h, a + h, t](t - a + h))'$$

$$= f[a - h, a + h, t, t](t - a + h)(t - ah) + f[a - h, a + h, t]2(x - a)$$

$$E(a) = f[a - h, a + h, t, t](a - a + h)(a - a - h) = \frac{f^{(3)}(\xi)}{3!}(-h^2)$$

$$= \boxed{-\frac{f^{(3)}(\xi)}{6}h^2}$$

От $E(a) \to 0$ при $h^2 \to 0$, следва, че порядъка на грешката е $o(h^2)$.

16 Изведете елементарната квадратурна формула на трапеца и оценката на грешката при подходящи предположения за подинтегралната функция.

Нека f(x) е непрекъсната и дефинирана в [a,b] и нека $x_0=a,x_1=b.$ Тогава

$$L_1(f;x) = f(a) + f[a,b](x-a)$$

$$f(x) = L_1(f;x) + f[a,b,x](x-a)(x-b)$$

Заменяме под интеграланата функция $f \in L_1$ и получаваме квадратурна формула на трапците:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} L_{1}(f;x)dx = \int_{a}^{b} f(a) + f[a,b](x-a)$$

$$= f(a)(b-a) + f[a,b]\frac{b^{2}-a^{2}}{2} - f[a,b]a(b-a)$$

$$= f(a)(b-a) + \frac{f(b)-f(a)}{b-a} \left(\frac{b^{2}-a^{2}}{2} - ab + a^{2}\right)$$

$$= f(a)(b-a) + \frac{f(b-f(a))}{b-a} \frac{b^{2}-2ab+a^{2}}{2}$$

$$= f(a)(b-a) + \frac{(f(b)-f(a))(b-a)}{2} = \boxed{\frac{b-a}{2}[f(a)-f(b)]}.$$

От това, че w(x) = (x-a)(x-b) има постоянен знак в (a,b) и използвайки теоремата за средните стойностти за грешката получаваме:

$$R(f) = \int_{a}^{b} f[a, b, x](x - a)(x - b)dx = \frac{f''(\xi)}{2} \int_{a}^{b} (x^{2} - ax - bx + ab)dx, \xi \in [a, b]$$

$$R(f) = \frac{f''(\xi)}{2} \left(\frac{b^{3} - a^{3}}{3} - \frac{ab^{2} - a^{3}}{2} - \frac{b^{3} - ba^{2}}{2} + ab^{2} - a^{2}b \right)$$

$$= \frac{f''(\xi)}{2} \left(\frac{2b^{3} - 2a^{3} - 3ab^{2} + 3a^{3} - 3b^{3} + 3ba^{2} + 6ab^{2} - ba^{2}b}{6} \right)$$

$$= \left[-\frac{f''(\xi)}{12} (b - a)^{3} \right].$$

17 Формулирайте и докажете теоремата за квадратурната формула на Гаус.

Теорема 17.1. При всяко естествено число п съществува единствена квадратурна формула от вида:

$$\int_{a}^{b} \mu(x)f(x)dx \equiv \sum_{k=1}^{n} A_{k}f(x_{k}), \qquad (17.1)$$

където $\mu(x)$ е дадено тегло, дефинирано в $[a,b], a \leq x_1 < x_2 < \ldots < x_n \leq b, a\{A_k\}_1^n \in \mathbb{R}$ с алгебрична степен на точност 2n-1. Възлите $\{x_k\}_1^n$ на

тази формула са нулите на полинома от степен n, ортогонален [a,b] с тегло $\mu(x)$ на всички алгебрични полиноми от степен n-1.

Доказателство. (\Leftarrow)Нека w(x) е полином от степен n, с коефициент 1 пред x_n , който е ортогонален в [a,b] с тегло $\mu(x)$ на всички полиноми от степен n-1 и нека x_1,\ldots,x_n са неговите нули, тоест $w(x)=(x-x_1)\ldots(x-x_n)$. Ще построим интерполационната квадратурна формула от вида 17.1 с възли нулите $\{x_k\}_1^n$ на w(x) и ще покажем, че тази формула има ACT= 2n-1. Нека f е произволен полином от степен 2n-1. Разделяме f(x) на w(x) и получаваме:

$$f(x) = w(x)q(x) + r(x),$$
 (17.2)

където q и r са полиноми от по-малка или равна на n-1. Тогава:

$$\int_a^b \mu(x)f(x)dx = \int_a^b \mu(x)w(x)q(x)dx + \int_a^b \mu(x)r(x)dx.$$

От w(x) ортогонален на q(x), следва че:

$$\int_{a}^{b} \mu(x)f(x)dx = \int_{a}^{b} \mu(x)r(x)dx$$

Формула 17.1 е точна за r(x), тогава

$$\int_{a}^{b} \mu(x)r(x)dx = \sum_{k=1}^{n} A_{k}r(x_{k})$$

От $w(x_k) = 0$, следва, че $r(x_k) = f(x_k)$.Получаваме

$$\int_{a}^{b} \mu(x)f(x)dx = \sum_{k=1}^{n} A_{k}f(x_{k})$$

Квадратурната формула е точна за всяко $f(x) \in \pi_{2n-1}$ следователно ACT = 2n - 1.

 \Rightarrow Нека квадратурната формула 17.1 има ACT= 2n-1. Ще покажем, че полинома $w(x)=(x-x_1)\dots(x-x_n)$ е ортогонален на всеки полином от π_{n-1} . Тогава полиномът f(x)=Q(x)w(x) е от степен 2n-1 и квадратурната формула ще бъде точна за него. Имаме

$$\int_{a}^{b} \mu(x)Q(x)w(x)dx = \sum_{k=1}^{n} A_{k}Q(x_{k})w(x_{k}) = 0,$$

тоест w(x) е ортогонален на Q(x). Единствеността на полинома с найвисока ACT, тоест 2n-1, следва от единствеността на полинома $w(x)=(x-x_1)\dots(x-x_n)$, ортогонален на всички полиноми от π_{n-1} .

18 Формулирайте и докажете теоремата за приближено решаване на нелинейно изображение по метода свиващото изображение.

Теорема 18.1. Нека ϕ е непрекъснато изображение на [a,b] в себе си, което удовлетворява условието на Липшиц с константа q < 1. Тогава

- а Уравнението $x = \phi(x)$ има единствен корен $\xi \in [a, b];$
- б $Peduyama \{x_n\}$ клони към ξ $npu n \to \infty$.

Нещо повече

$$|x_n - \xi| \le (b - a)q^n, \forall n \tag{18.1}$$

Доказателство. От това, че ϕ е непрекъснато изображение на интервала [a,b] в себе си следва, че ϕ има неподвижна точка в [a,b]. Да допуснем, че неподвижните точки са повече от една. Нека $\xi_1 = \phi(\xi_1), \xi_2 = \phi(\xi_2),$ за някои $\xi_1, \xi_2 \in [a,b]$. Тогава при $\xi_2 \neq \xi_2$:

$$|\xi_1 - \xi_2| = |\phi(\xi_1) - \phi(\xi_2)|$$

 $\leq q|\xi_1 - \xi_2|$ (по условие на Липшиц) $< |\xi_1 - \xi_2|$ (от $q < 1$)

И достигнахме до противоречие, следователно в интервала [a, b] имаме единствена неподвижна точка ξ . Ще докажем оценката 18.1, от която следва b. Имаме

$$|x_n - \xi| = |\phi(x_{n-1}) - \phi(\xi)| \le q|x_{n-1} - \xi|$$

$$= q|\phi(x_{n-2}) - \phi(\xi)| \le q^2|x_{n-3} - \xi|$$
...
$$\le q^n|x_0 - \xi|$$

От $x_0 \in [a,b]$ и $\xi \in [a,b]$, то $|x_0 - \xi| < b-a$