UNIT-IV

- 1 Locate the stationary points and examine their nature (a) $f(x,y) = x^4 + y^4 2x^2 + 4xy 2y^2$ (b) $x^3 + 3xy^2 15x^2 15y^2 + 72x$
- Find the stationary points of $u(x, y) = \sin x \sin y \sin(x + y), 0 < x, y < \pi$ and find the maximum value of $u(x, y) = \sin x \sin y \sin(x + y), 0 < x, y < \pi$
- Examine the following functions for extreme values: (a). $x y e^{-(2x+3y)}$.
 - (b) $(x^2 + y^2)e^{6x+2x^2}$
- Examine the following functions for extreme values (a) f (x,y) = $6x + 8y x^2 2y^2 + 50$ (b) f (x,y) = $x^2 + 2y^2 - 4x - 16y + 30$
- 5 Find the maximum and minimum values of the function $f(x,y) = 2(x^2 y^2) x^4 + y^4 \qquad \text{(b)} \qquad x^3 y^2 (1 x y)$
- 6 (a) Minimize $x^2 + y^2 + z^2$ subject to the constraint x + y + z = 3a. (b) Maximum of xy^2z^3 subject to the constrain x+y+z=12
- Find the volume of the largest rectangular box that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1.$
- 8 A rectangular box open at the top has a constant surface area 108 sq ft. Find its dimensions such that its volume is a maximum.
- Given x + y + z = a, find the maximum value of $x^m y^n z^p$.
- Find the points on the surface $z^2 = 1 + xy$ that are nearest to the origin.
- Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $4x^2 + 4y^2 + 9z^2 = 36$.
- Show that the functions u = x + y + z, $v = x^2 + y^2 + z^2 2xy 2yz 2zx$ and $w = x^3 + y^3 + z^3 3xyz$ are functionally
- Given the transformations $u = \tan^{-1} x + \tan^{-1} y$ and $v = \frac{x+y}{1-xy}$ show that u and v are

functionally related and hence find the relation between them

- Expand $f(x, y) = e^y \log(1+x)$ in powers of x and y.
- Find the Taylor's expansion of $f(x, y) = \cot^{-1}(x y)$ in powers of (x + 0.5) and (y 2) up to second degree terms.
- If u = x + y + z, uv = y + z, uvw = z then prove that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2 v$
- 17 If $x = \sqrt{v w}$, $y = \sqrt{w u}x = \sqrt{u v}$ and $u = \rho Sin\Theta Sin\varphi$, $v = \rho Sin\Theta Cos\varphi$, $w = \rho Sin\Theta Cos\varphi$

$$Cos\Theta$$
 then find $J\left(\frac{x,y,z}{\rho,\theta,\varphi}\right)$

- Using polar co-ordinates, show that $u_{xx} + u_{yy} = 0$ transforms into $u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$
- 19 i). If $u = e^{x+y}/(e^x + e^y)$, show that $u_x + u_y = u$. ii). If $U = \ln(x^3 + y^3 - x^2y - xy^2)$ show that $U_{xx} + U_{yy} + 2U_{xy} = -4(x+y)^{-2}$
- 20 Find d^2y/dx^2 given $x^5 + y^5 = 5a^3x^2$.