K - Nearest Neighbor (KNN)

Dr. M. Sridevi

Definition

- K-Nearest Neighbor is considered a lazy learning algorithm that classifies data sets based on their similarity with neighbors.
- "K" stands for number of data set items that are considered for the classification.

Mathematically

• For the given attributes $A=\{X1, X2,..., XD\}$ Where D is the dimension of the data, we need to predict the corresponding classification group $G=\{Y1,Y2,...,Yn\}$ using the proximity metric over K items in D dimension that defines the closeness of association such that $X \in RD$ and $Yp \in G$.

• Idea:

- Similar examples have similar label.
- Classify new examples like similar training examples.

• Algorithm:

- Given some new example x for which we need to predict its class y
- Find most similar training examples
- Classify x "like" these most similar examples

• Questions:

- How to determine similarity?
- How many similar training examples to consider?
- How to resolve inconsistencies among the training examples?

KNN Algorithm

- 1. Determine parameter K = number of nearest neighbors
- 2. Calculate the distance between the query-instance and all the training samples
- 3. Sort the distance and determine nearest neighbors based on the K-th minimum distance
- 4. Gather the category ^y of the nearest neighbors
- 5. Use simple majority of the category of nearest neighbors as the prediction value of the query instance

1-Nearest Neighbor

- One of the simplest of all machine learning classifiers
- Simple idea: label a new point the same as the closest known point

k - Nearest Neighbor

- Generalizes 1-NN to smooth away noise in the labels
- A new point is now assigned the most frequent label of its k nearest neighbors

Simple example

Given N training vectors, kNN algorithm identifies the k nearest neighbors of 'c', regardless of labels

Example

- k = 3
- · classes 'a' and 'o'
- · find class for 'c'

Numerical Example 1

Customer	Age	Income	No. credit cards	Class
George	35	35K	3	No
Rachel	22	50K	2	Yes
Steve	63	200K	1	No
Tom	59	170K	1	No
Anne	25	40K	4	Yes
John	37	50K	2	?

Distance from John		
sqrt [(35-37) ² +(35-50) ² +(3- 2) ²]=15.16		
sqrt [(22-37) ² +(50-50) ² +(2- 2) ²]=15		
sqrt [(63-37) ² +(200-50) ² +(1- 2) ²]=152.23		
sqrt [(59-37) ² +(170-50) ² +(1- 2) ²]=122		
sqrt [(25-37) ² +(40-50) ² +(4- 2) ²]=15.74		

Numerical Example 2

Age	Loan	Default	Distance
25	\$40,000	N	102000
35	\$60,000	N	82000
45	\$80,000	N	62000
20	\$20,000	N	122000
35	\$120,000	N	22000
52	\$18,000	N	124000
23	\$95,000	Υ	47000
40	\$62,000	Υ	80000
60	\$100,000	Υ	42000
48	\$220,000	Υ	78000
33	\$150,000	Υ <table-cell-columns></table-cell-columns>	8000
		1	
48	\$142,000	?	

Numerical Example 3

Age	Loan	Default	Distance
0.125	0.11	N	0.7652
0.375	0.21	N	0.5200
0.625	0.31	_ N -	0.3160
0	0.01	N	0.9245
0.375	0.50	N	0.3428
0.8	0.00	N	0.6220
0.075	0.38	Y	0.6669
0.5	0.22	Y	0.4437
1	0.41	Y	0.3650
0.7	1.00	Y	0.3861
0.325	0.65	Υ	0.3771
0.7	0.61	?	
0.7 Standardized Va	Y X	-Min	
Standaro	$X_s = \frac{1}{Max}$	x-Min	

Similarity Metrics

Similarity Measure	Data Format			
Contingency Table, Jaccard coefficient, Distance Measure	Binary			
Z-Score, Min-Max Normalization, Distance Measures	Numeric			
Cosine Similarity, Dot Product	Vectors			

Distance Measure

Euclidean Distance:

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Ex: Given
$$X = \{-2,2\} \& Y = \{2,5\}$$

Euclidean Distance = $dist(X,Y) = [(-2-2)^2 + (2-5)^2]^{(1/2)}$
= $dist(X,Y) = (16 + 9)^{(1/2)}$
= $dist(X,Y) = 5$

Distance Measure

- For the numeric data let us consider some distance measures:
 - Manhattan Distance:

$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 $Y = \langle y_1, y_2, \dots, y_n \rangle$

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

- Ex: Given $X = \{1,2\} & Y = \{2,5\}$ Manhattan Distance = dist(X,Y) = |1-2|+|2-5|= 1+3 = 4

Selecting the Number of Neighbors

- Increase k:
 - Makes KNN less sensitive to noise
- Decrease k:
 - Allows capturing finer structure of space
- Pick k not too large, but not too small (depends on data)

Curse-of-Dimensionality

- Prediction accuracy can quickly degrade when number of attributes grows.
 - Irrelevant attributes easily "swamp" information from relevant attributes
 - When many irrelevant attributes, similarity/distance measure becomes less reliable
- Remedy
 - Try to remove irrelevant attributes in pre-processing step
 - Weight attributes differently
 - Increase k (but not too much)

Advantages and Disadvantages of KNN

- Need distance/similarity measure and attributes that "match" target function.
- For large training sets,
- Must make a pass through the entire dataset for each classification. This can be prohibitive for large data sets.
- Prediction accuracy can quickly degrade when number of attributes grows.