8/8

1/1

1/1

1/1

Note: 20/20 (score total: 26/26)

+5/1/52+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS		
\mathbf{Quizz}	$d\mathbf{u}$	15/11/2017

Nom et prénom	
HA 55 A	noHAneD

Durée: 10 minutes.

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. Téléphone interdit.

Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses.

Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 •
On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
$\frac{A_0}{1+\tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?
$ p = -(1+A_0)/\tau_C \qquad p = (A_0+1)/\tau_C \qquad p_1 = A_0/\tau_C \text{ et } p_2 = -A_0/\tau_C $ Le système est oscillant Le système est stable p = (A_0-1)/\tau_C p = (A_0-1)/\tau_C \tau_C \tau_C \tau_C \tau_C \tau_C \tau_C \tau_C \qua
Question 2 • Quelle fonction réalise un capteur ?
Aucune de ces propositions La faculté de délivrer toujours la même valeur en sortie pour la même valeur d'entrée L'écart maximal entre la valeur de sortie mesurée et la valeur idéale attendue Convertir une grandeur physique en grandeur électrique
Question 3 • Quelle relation donne la résistivité ρ d'un matériau de résistance R , de longueur L et de section S ?
Question 4 • Une jauge de contrainte a comme caractéristiques $R_0=70\Omega,\ L_0=8\mathrm{mm}$ et $K=0.3$. Combien vaut R si $L=10\mathrm{mm}$?
\square 70.6Ω \square 74.5Ω \square 65.5Ω \square 73.0Ω
Question 5 •

Soit le filtre RC suivant : Quelles valeurs donner au produit RC pour qu'une perturbation d'une fréquence de 100kHz soit réduite à 2% de sa valeur ? (en Ω .F).

Question 9 •

3/3

Sachant que $R_2 = 10k\Omega$, calculer les valeurs de R_1 , R_3 et R_4 ?

Question 10 • Soit F_{\max} la plus haute fréquence contenue dans un signal. D'aprés le théorème de Shannon, pour échantillonner sans pertes il faut que la fréquence d'échantillonnage F_e vérifie quelle condition ?

1/1 $F_e > 2F_{max}$ $F_{max} < 2F_e$ $F_e < 2F_{max}$ $F_{max} > 2F_e$