appendix-code

December 17, 2022

1 ECE 396 - HHL Algorithm

2 HHL Implementation for 3x3 Matrix

2.1 Defining Functions

The structure of this notebook is as follows: 1. Define the functions necessary to implement HHL for a 3x3 invertible, non-hermitian matrix. 2. Setup a testing suite using those functions for easy fine-tuning of parameters and exploration of the code. 3. Project 1.2: The Data Fitting Problem.

First, import the necessary packages.

```
[2]: import numpy as np
from numpy import pi
import scipy
from qiskit.extensions import UnitaryGate
from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister, execute,

→Aer
from qiskit.visualization import plot_histogram
```

2.2 Defining the 3x3 Matrix

We need to define a 3×3 invertible but non-hermitian A in Qiskit. That is, the following two qualities must hold:

$$AA^{-1} = A^{-1}A = I_n$$

$$A \neq A^{\dagger}$$

If we restric ourselves to only real values, the matrix we can choose must then follow the two qualities: invertible and $A \neq A^T$.

One such matrix is the following:

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & -1 \\ 0 & 0.13 & 1.3 \end{pmatrix}$$

```
A = np.matrix([[1, 1, 0], [-1, 1, -1], [0, .13, 1.3]]) # gets 1.9 and 3_{\square}
 ⇔distinct evals
def hermitian_and_pad_matrix(A):
    # define a 3x3 zero matrix for aid in construction
    zero = np.matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])
    # construct A' to be a hermitian matrix
    Ap = np.vstack((np.hstack((zero, A)), np.hstack((A.getH(), zero))))
    A_p = np.pad(Ap, ((0, 2), (0, 2)))
    # pad
    A_p[-1][-1], A_p[-2][-2] = 1, 1
    eig_val, eig_vec = scipy.linalg.eig(A_p)
   A_p /= max(np.real(eig_val)) # rescale matrix so that eigenvalues are_
 \rightarrowbetween -1 and 1
    return A_p
A_p = hermitian_and_pad_matrix(A)
eig_val, eig_vec = scipy.linalg.eig(A_p)
kappa = np.linalg.cond(A_p)
print(f"Kappa = {kappa}")
print("-"*30)
print(f"Eigen Values:")
for e_val in eig_val:
    print(e_val)
```

Kappa = 1.9216644857061569

```
Eigen Values:
(-0.999999999999996+0j)
(-0.737773583800078+0j)
(-0.5214430145579314+0j)
(0.999999999999987+0j)
(0.521443014557931+0j)
(0.7377735838000786+0j)
(0.5203822037812851+0j)
(0.5203822037812851+0j)
```

```
[7]: A
```

Before I can use the HHL algorithm, we need to convert the non-hermitian matrix into a hermitian matrix form. We can complete this by performing the operation defined in the article. That is, define:

$$A' = \begin{pmatrix} 0 & A \\ A^{\dagger} & 0 \end{pmatrix}$$

A' is now hermitian and can be used to solve $A' \cdot y = \begin{bmatrix} b \\ 0 \end{bmatrix}$; where $y = \begin{bmatrix} 0 \\ x \end{bmatrix}$

HHL requires that the matrix A is a $2^n \times 2^n$ matrix. Our A' is currently 6×6 , so we need to pad it to extend it to 8×8 . Our padding constraints need to maintain invertibility and hermitian-ness. To accomplish this, we pad the matrix to have 1's along the diagonal of the 2 added dimensions. For consistency, let's continue to call this matrix A'. We perform this logic in the helper function hermitian_and_pad_matrix().

Let's inspect the eigenvalues of this matrix.

```
[8]: eig_val, eig_vec = scipy.linalg.eig(A_p)

print("-"*30)
print(f"Eigen Values:")
for e_val in eig_val:
    print(e_val)
print("-"*30)
print(f"Eigen Vectors:")
print(eig_vec)
```

```
-----
```

```
Eigen Values:
(-0.9999999999996+0j)
(-0.737773583800078+0j)
(-0.5214430145579314+0j)
(0.99999999999987+0j)
(0.521443014557931+0j)
(0.7377735838000786+0j)
(0.5203822037812851+0j)
(0.5203822037812851+0j)
Eigen Vectors:
 \begin{bmatrix} [-0.02764673 & 0.7021214 & -0.07912776 & 0.02764673 & 0.07912776 & -0.7021214 \end{bmatrix} 
                0.
                            ]
 [ 0.60797563  0.06398656  0.35534681  -0.60797563  -0.35534681  -0.06398656
   0.
                0.
                            ]
```

```
[-0.3600018]
           0.
           0.
[ 0.33076656 -0.45010287
                              0.43359069
           0.
[-0.27763882 -0.54533205 -0.35430163 -0.27763882 -0.35430163 -0.54533205
[ \ 0.55991979 \ -0.00451201 \ -0.43182112 \ \ 0.55991979 \ -0.43182112 \ -0.00451201 
 0.
           0.
                   1
Γ0.
           0.
                     0.
                               0.
                                         0.
                                                   0.
 1.
           0.
                   ]
[ 0.
                     0.
                               0.
                                         0.
                                                   0.
           0.
 0.
           1.
                   ]]
```

Similarly, we initialize and pad the b solution vector.

```
[9]: # initialize the b solution vector
b = np.array([1, 3, 2])

# pad the b array with 0's to be 8 by 1

def pad_b(b):
    return np.append(b, [0, 0, 0, 0])

b_p = pad_b(b)
```

```
[10]: print(A_p.shape)
print(b_p.shape)
```

(8, 8) (8,)

2.3 Implementing the HHL algorithm

2.3.1 Defining parameters

Some parameters should be chosen based on the conditional number of the matrix A. That is, C, used in conditional rotation should be on the order of $1/\kappa$ where κ is the conditional number of the matrix A. If κ is too large, some of the rows of A will be very linearly dependent and thus the inverse of A is very unstable.

```
[12]: kappa = np.linalg.cond(A_p)
print(f"Kappa = {kappa}")
```

Kappa = 1.9216644857061569

We have 3 parameters for HHL. - T is used during the exponentiation of the matrix A' ($e^{i \cdot A' \cdot T}$). T needs to be relatively large so that the Fourier transffrm of the conditional Hamiltonian evolution of A' (Eq 3 in the reference paper) has an α that acts as a sync function. - C is used during conditional rotation. C needs to be on the order of $1/\kappa$ where κ is the conditional number of A' as

described previously. - n_{eig} is used during QPE and defines the number of qubits used to estimate the eigenvalues of A' up to n_{eig} bits of precision.

```
[13]: T = 150 # Used in hamiltonian evolution. Needs to be relatively large so that alpha in Eq (3) approximates as sync functions

# C = 1/2 # Used in conditional rotation. Needs to be on the order of 1/kappa where kappa is the conditional number of A

n_eig = 8 # Used in QPE, number of qubits to estimate the eigenvalues of A, defines the precision of the eigenvalues up to n_eig bits

n = 3 # 2**n x 2**n A. This defines the number of qubits needed for the dimensions of this problem. Specifically 8 dimensions can be encoded with 3 qubits.
```

2.3.2 Loading The Data

```
[14]: def construct_registers(n_eig, n, b_p):
          aux = QuantumRegister(1, 'aux') # for conditional eigenvalue inversion
          n_l = QuantumRegister(n_eig, 'nl') # stores binary representation of the_
       ⇔eigenvalues
          n b = QuantumRegister(n, 'nb') # contains the vector solution
          c = ClassicalRegister(n + n_eig + 1, 'c') # 3 for n_b, n_eig for n_l, and 1_0
       ⇔for the auxiliary
          return aux, n_l, n_b, c
      # aux, n_l, n_b, c = construct_registers(<math>n_eig, n, b_p)
      def construct_init_circ(n_eig, n, b_p):
          # state preparation of b: |0> -> |b>
          init_circ = QuantumCircuit(aux, n_l, n_b, c)
          b_p = b_p/scipy.linalg.norm(b_p) # normalize b, so it is ready for loading.
          init_circ.initialize(b_p, n_b)
          return init_circ
      # init_circ = construct_init_circ(n_eiq, n, b_p)
```

2.3.3 Quantum Phase Estimation

We'll start by converting A' to be a unitary operator by exponentiating it $e^{i \cdot A' \cdot T}$ and using Qiskit to convert to a unitary operator.

```
[15]: def convert_Ap_to_gate(A_p, T):
    # convert to unitary matrix through exponentiation
    U_mat = scipy.linalg.expm(1j*A_p*T)

# convert to a unitary operator with Qiskit
    U = UnitaryGate(U_mat)
    U.name = "$U$"
    return U
# U = convert_Ap_to_gate(A_p, T)
```

The following is the circuit implementation for QPE.

```
[16]: def construct_qpe_circ(U):
          qpe_circ = QuantumCircuit(aux, n_1, n_b, c)
          gpe circ.barrier()
          # First, perform a hadamard on all the memory qubits.
          qpe_circ.h(n_l)
          # Apply powers of controlled U on the target qubits
          for i in range(n_eig):
              Upow = U.power(2**(n_eig-1-i))
              ctrl_Upow = Upow.control()
              qpe_circ.append(ctrl_Upow, [n_l[i], n_b[0], n_b[1], n_b[2]])
          qpe_circ.barrier()
          # Compute the inverse quantum fourier transform
          for qubit in range(n_eig//2):
              qpe_circ.swap(n_l[qubit], n_l[n_eig-qubit-1])
          for i in range(n eig):
              for m in range(i):
                  qpe\_circ.cp(-pi/(2**(i-m)), n_1[n_eig-1-m], n_1[n_eig-1-i])
              qpe_circ.h(n_l[n_eig-1-i])
              qpe_circ.barrier()
          qpe_circ.barrier()
          return qpe_circ
      # qpe_circ = construct_qpe_circ(U)
```

Testing our QPE through repeated measurement. To test our QPE implementation and inspect the estimated phase of the exponentiated matrix, we repeatedly measure the encoded qubits n_l .

```
[17]: def construct_qpe_measure_circ(init_circ, qpe_circ):
    measure_circ = init_circ.compose(qpe_circ)
```

```
measure_circ.measure(n_l, c[:n_eig])

return measure_circ

# measure_circ = construct_qpe_measure_circ(init_circ, qpe_circ)
```

To test working condition, let's measure the n_l qubits to see if the eigenvalues of A are being sufficiently encoded.

```
[18]: def evaluate_QPE(measure_circ):
    nShots = 10000

    backend_qasm = Aer.get_backend('qasm_simulator')
    # perform constant_full_circuit just 1 time and plot the histogram of_u
    states!
    res = execute(measure_circ, backend_qasm,shots=nShots).result()
    counts = res.get_counts();
    return counts

# counts = evaluate_QPE(measure_circ)

# plot_histogram(counts, figsize=(30, 15))
```

```
[19]: # actual_b_j = scipy.linalg.solve(eig_vec, b_p)**2

# need to compare to estimated b_j,
#
```

Evaluating the outputs of QPE to match the expected eigenvalues of the matrix.

```
[20]: # find six peaks that must correspond to the bitstring complements of each_ other. Verifying that QPE is working.
```

```
[21]: def calculate_lmd_dec(bit_str):
    lmd = 0
    for ind, i in enumerate(bit_str[::-1]):
        lmd += int(i)/2**(ind+1)

    return lmd

def binaryToDec(n):
    return int(n, 2)

# 10 classical register, only consider the top 6: i[0][4:]
def get_top_ev_bin(counts):
    return [i[0][-n_eig:] for i in sorted(counts.items(), key=lambda i: i[1],uex=reverse=True)[:10]]
```

```
# top_ev_bin = get_top_ev_bin(counts)
# print(top_ev_bin)

def get_top_ev_dec(top_phase):
    return [binaryToDec(i[::-1]) for i in top_phase]

# top_dec = get_top_ev_dec(top_ev_bin)
# print(top_dec)
```

Manual construction of which lambdas correspond to negative eigenvalues

```
[24]: # currently written for [19, 45, 5, 59, 17, 47, 48, 16, 58, 6]
# correspondance = [1, -1, -1, 1, -1, 1, -1, 1, -1]
```

We can see in this comparison between the real eigenvalues and those that QPE output. For example, two such arrays could have that: 43 = 43, 21 = 20 or 19, 44 = 44, 20 = 20 or 19, 1 = 1, 63 = 62 with some slight approximation errors. In this way, we have verified that the QPE

algorithm is successful.

2.3.4 Eigenvalue inversion.

Using the eigenvalues output from QPE, we can construct a circuit that rotates conditionally based on these eigenvalues.

Because of arcsin in rotation the parameter C must be smaller than the smallest eigenvalue. Let's calculate C to be bounded by the minimum λ .

```
[25]: def calculate_min_C(correspondance, top_ev_bin):
    C = calculate_lmd_dec(top_ev_bin[0])
    for neg, ev in zip(correspondance, top_ev_bin):
        eigenvalue = calculate_lmd_dec(ev)
        # if the lambda corresponds to a negative eigenvalue, invert it
        if neg == -1:
            eigenvalue = -1*(1 - eigenvalue)
        lambda_j = eigenvalue * (2*pi/T)
        C = min(C, abs(lambda_j)-0.0001)
    return C
# C = calculate_min_C(correspondance, top_ev_bin)
# C
```

The following is the circuit construction.

```
[3]: # circuit construction
     from qiskit.circuit.library.standard_gates import UGate
     import math
     def theta_angle(C, eigenvalue_bin, neg):
         eigenvalue = calculate_lmd_dec(eigenvalue_bin)
         # if the lambda corresponds to a negative eigenvalue
         if neg == -1:
             eigenvalue = -1*(1 - eigenvalue)
         lambda_j = eigenvalue * (2*pi/T)
         ratio = C/lambda_j
         return math.asin(ratio)
     def construct_eig_invert_circ(correspondance, eigenvalues_bin):
         C = calculate_min_C(correspondance, eigenvalues_bin)
         eig_invert_circ = QuantumCircuit(aux, n_1)
         for neg, ev_bin in zip(correspondance, eigenvalues_bin):
             rot_angle = theta_angle(C, ev_bin, neg)
             cu_gate = UGate(rot_angle*2, 0, 0).control(n_eig, ctrl_state = ev_bin)
```

```
wiring = [i for i in range(1, n_eig+1)]+[0]
    eig_invert_circ.append(cu_gate, wiring)
    return eig_invert_circ

# eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin)
# eig_invert_circ.draw('mpl')
```

2.3.5 Reverse QPE.

```
[27]: def construct_rev_qpe_circ():
    return qpe_circ.inverse()

# rev_qpe_circ = construct_rev_qpe_circ()
# rev_qpe_circ.draw('mpl')
```

2.3.6 Putting it all together

We can summarize each of the circuit parts as the following. - init_circ defines the loading of data $|b\rangle$ into the n_b qubits. - qpe_circ defines the circuit for quantum phase estimation, encoding the eigenvalues of A' into the n_l qubits. - eig_invert_circ defines the eigenvalue inversion circuit. - reverse_qpe_circ defines the reverse qpe circuit.

We need to repeatedly measure this circuit until we see the auxiliary qubit in the 1 state. After experimentation, as seen in the following cell, this should occur every 3/4th of the time.

Let's measure both the auxiliary qubit and the n_l qubits to measure for failures.

```
[29]: def checkFailed(class_regs):
    # input 10 classical registers, check if the outputs faield
    return class_regs[-1] == '0' or any([i != '0' for i in class_regs[3:-1]])
```

```
def measure_all(full_circuit, nShots=10000):
    backend_qasm = Aer.get_backend('qasm_simulator')
    # perform constant_full_circuit just 1 time and plot the histogram of ____
 ⇔states!
    res = execute(full_circuit, backend_qasm, shots=nShots).result()
    final_counts = res.get_counts()
    # remove the failures
    numFailed = sum([val for key, val in final_counts.items() if __
 →checkFailed(key)])
    delItem = []
    for key, val in final_counts.items():
        if checkFailed(key):
            delItem.append(key)
    for item in delItem:
        final_counts.pop(item)
    return final_counts, numFailed
# nShots = 10000
# final counts, numFailed = measure all(full circuit, nShots)
# plot_histogram(final_counts)
```

However, a lot of these measurements failed, so delete the measurements where the auxiliary qubit is measured to be in the 0 state (conditional rotation failed). And where the n_l registers aren't in the $|0\rangle$ state (inverse QPE failed).

```
return [round(i, 3) for i in (x_norm)]
# x_actual = get_x_actual(A_p, b_p)
# x_actual
```

3 Use the following cells for testing it out!

Inputs and Constants:

```
[32]: # --- inputs ---

A = np.matrix([[1, 1, 0], [-1, 1, -1], [0, .13, 1.3]]) # gets 1.9 and 3__

distinct evals

b = np.array([1, 3, 2])

# --- constants ---

T = 150 # Used in hamiltonian evolution. Needs to be relatively large so that_

alpha in Eq (3) approximates as sync functions

n_eig = 8 # Used in QPE, number of qubits to estimate the eigenvalues of A,_

defines the precision of the eigenvalues up to n_eig bits

n = 3 # 2**n x 2**n A. This defines the number of qubits needed for the_

dimensions of this problem. Specifically 8 dimensions can be encoded with 3__

qubits.
```

HHL Algo

```
[33]: # ----- HHL ALGO -----
      # hermitian and pad the matrix
      A_p = hermitian_and_pad_matrix(A)
      b_p = pad_b(b)
      # - step 1: load the data:
      aux, n_l, n_b, c = construct_registers(n_eig, n, b_p) # construct registers
      init_circ = construct_init_circ(n_eig, n, b_p)
      # - step 2: QPE
      U = convert_Ap_to_gate(A_p, T) # convert A_p to unitary gate
      qpe_circ = construct_qpe_circ(U)
      measure_circ = construct_qpe_measure_circ(init_circ, qpe_circ) # add_u
       \rightarrowmeasurements
      counts = evaluate_QPE(measure_circ)
      # manual inspection of the eigenvalues from QPE is necessary (in this case) to 11
       \hookrightarrow construct
      # the conditional rotation
      top_ev_bin = get_top_ev_bin(counts)
```

```
[34]: # plot_histogram(counts, figsize=((20, 7))) # uncomment to see the histogram
```

```
[39]: # previous was [77, 179, 180, 76, 66, 190, 22, 234, 235, 21] correspondance = [-1, 1, 1, -1, 1, -1, 1, -1, 1, -1]
```

After manually constructing the correspondance array. Continue building the circuit.

```
# Step 3: conditional rotation

# compute C to be barely less than the minimum experimental eigenvalues
eig_invert_circ = construct_eig_invert_circ(correspondance, top_ev_bin)

# step 4: inverse QPE
rev_qpe_circ = construct_rev_qpe_circ()

# step 5: measure the auxiliary qubit to check for failures
full_circuit = construct_full_circuit(init_circ, qpe_circ, eig_invert_circ, rev_qpe_circ)

# full_circuit.draw('mpl') # uncomment to see the full circuit design
```

Results!

```
[41]: nShots = 10000
    final_counts, numFailed = measure_all(full_circuit, nShots)

plot_histogram(final_counts)

x_hhl = get_x_hhl(nShots, numFailed)
x_actual = get_x_actual(A_p, b_p)

print(f"Percentage of Failed Measurements: {numFailed/nShots*100}% Failed")
print(f"|x> from HHL: {x_hhl}")
print(f"|x> from actual: {x_actual}")

Percentage of Failed Measurements: 30.240000000000000% Failed
|x> from HHL: [0, 0, 0, 0.1979644495412844, 0.6397649082568807,
0.16227064220183487, 0, 0]
|x> from actual: [0.0, 0.0, 0.0, 0.238, 0.618, 0.144, 0.0, 0.0]
[42]: full_circuit.draw('mpl')

[42]:
```


4 Project 1.2: Solve a Data Fitting Problem

This quantum algorithm involves 3 sub-routines: 1. a quantum algorithm for performing a pseudo-inverse 2. an algorithm for estimating the fit quality 3. an algorithm for learning the fit parameters λ

4.1 Sub-Routine 1: Pseudo-Inverse

Input: - quantum state $|y\rangle$ - upper bound κ square root of the conditional number FF^{\dagger} and $F^{\dagger}F$ - sparseness s of F - error tolerance ϵ

Also, as defined in the project specifications, $F \in \mathbb{R}^{4\times 3}$. And $y \in \mathbb{R}^4$, not a linear combination of the columns of F

See below we define an F with rank 3 and a y that isn't a linear combination of F's columns

```
[4]: F = np.matrix([[1, 1, 1], [0, 0, 1], [1, 0, 0], [0.5, 1, 0]])

print("rank", np.linalg.matrix_rank(F))

y = np.array([0, 0, 1, 0])
y.resize((4, 1))
print("F=", F)
print("y=", y)
```

```
rank 3
F= [[1. 1. 1.]
[0. 0. 1.]
[1. 0. 0.]
[0.5 1. 0.]]
y= [[0]
[0]
[1]
[0]]
```

The data fitting problem starts with the need to solving the equation.

$$\lambda = F^+ y$$

Where $F^+ = (F^{\dagger}F)^{-1}F^{\dagger}$. However, the inverse operation is computationally expensive, so we can construct the problem as follows:

$$(F^{\dagger}F)\lambda = F^{\dagger}y$$

Which can be solved efficiently using HHL, where $A = F^{\dagger}F$ and $b = F^{\dagger}y$. A is 3×3 however, so we need to pad it for its dimensions to be a power of 2.

```
[19]: A = F.getH() * F

A = np.pad(A, ((0, 1), (0, 1)))
A[-1][-1] = 1

b = F.getH() * y
b = np.vstack((b, [0]))
```

```
[20]: from qiskit.algorithms.linear_solvers.hhl import HHL

backend = Aer.get_backend('aer_simulator')
hhl = HHL(quantum_instance=backend)
accurate_solution = hhl.solve(A, b)
```

hhl = HHL(quantum_instance=backend)

4.2 Sub-Routine 2: Estimating Fit Quality

We must perform the swap test to distinguish between $|y\rangle$ and $I(F)|\lambda\rangle$. The overlap of these two quantum states can be learned through repeated sampling of this swap test to get the approximate value $|\langle y|I(F)|\lambda\rangle|^2$ of the mean of the distribution. The fit quality E can be estimated to be less than $2(1-|\langle y|I(F)|\lambda\rangle|)$.

4.3 Sub-Routine 3: Learning Lambda

This routine involves repeatedly sampling the solution lambda output from HHL.

```
[34]: nShots = 10000
```

```
[35]: c = ClassicalRegister(2, 'c')
    qc = QuantumCircuit(c)

lambda_circ = accurate_solution.state
lambda_circ = lambda_circ.compose(qc)
lambda_circ.measure(range(2), c)

backend_qasm = Aer.get_backend('qasm_simulator')
    res = execute(lambda_circ, backend_qasm, shots=nShots).result()

counts = res.get_counts()
    plot_histogram(counts)
```


From this histogram we have the relative importance of each of the fit values and are able to obtain $|lambda\rangle$ with confidence computed from sub-routine 2. It is apparent that because we padded $|b\rangle$ with a single 0 that there is no likelihood of observing 11 \rangle .