Zaawansowane technologie bazodanowe Mikołaj Wielgos Lab3

1. czy występują samotne budynki, tj. takie, które nie są połączone z innymi budynkami,

MATCH (b) WHERE NOT (b)-[:INSIDE_WALK_FLOOR_0|INSIDE_WALK_FLOOR_1|INSIDE_WALK_FLOOR_ALL]-() AND NOT ()-[:INSIDE_WALK_FLOOR_0|INSIDE_WALK_FLOOR_1|INSIDE_WALK_FLOOR_ALL]→(b) AND NOT b:Faculty RETURN b


```
c:ResearchAndTeachingFacilities {id: "u-1"})

(:ResearchAndTeachingFacilities {id: "z-2"})

(:ServiceOutlets {id: "u-7"})

(:ServiceOutlets {id: "u-8"})

(:ServiceOutlets {id: "u-9"})

(:ServiceOutlets {id: "u-9"})

(:ServiceOutlets {id: "u-3"})
```

2. ile jest budynków typu service,

```
MATCH (s:ServiceOutlets)
RETURN COUNT(s) as serviceCount
```

```
|serviceCount|
|10
```

3. z jakimi budynkami i na jakich piętrach połączony jest A-1,

```
MATCH (a1 {id: "a-1"})-[r:INSIDE_WALK_FLOOR_0|INSIDE_WALK_FLOOR_ALL] \rightarrow (b) RETURN b.id as connected_building, CASE WHEN type(r) = 'INSIDE_WALK_FLOOR_0' THEN 'Parter' WHEN type(r) = 'INSIDE_WALK_FLOOR_ALL' THEN 'Wszystkie piętra' END as connection_type
```

connected_building	connection_type
"c-1"	"Parter"
"a-0"	"Parter"
"h-a1"	"Parter"
"h-a1"	"Wszystkie piętra"
"a-2"	"Parter"
"a-2"	"Wszystkie piętra"

4. jak dojść z Admission Centre do Faculty of Mechanical Engineering and Robotics bez opuszczania budynków,

```
MATCH (start) -[:BELONGS_T0_FACULTY]→(:Faculty {id: 31}),

(end)-[:BELONGS_T0_FACULTY]→(:Faculty {id: 6}),

path =
shortestPath((start)-[:INSIDE_WALK_FLOOR_0|INSIDE_WALK_FLOOR_1|INSIDE_WALK_FLO
OR_ALL*1..9]→(end))
RETURN path

(no changes, no records)

Natomiast dodając możliwość przechodzenia między pobliskimi budynkami wychodząc na zewnątrz:

MATCH (start) -[:BELONGS_T0_FACULTY]→(:Faculty {id: 31}),

(end)-[:BELONGS_T0_FACULTY]→(:Faculty {id: 6}),

path =
shortestPath((start)-[:INSIDE_WALK_FLOOR_0|INSIDE_WALK_FLOOR_1|OUSTIDE_WALK|IN
SIDE_WALK_FLOOR_ALL*1..9]→(end))
RETURN path
```

```
(:ResearchAndTeachingFacilities {id: "u-2"})-[:INSIDE_WALK_FLOOR_ALL]-
>(:ResearchAndTeachingFacilities {id: "a-3"})-[:INSIDE_WALK_FLOOR_ALL]
->(:ResearchAndTeachingFacilities {id: "a-4"})-[:INSIDE_WALK_FLOOR_0]-
>(:ResearchAndTeachingFacilities {id: "c-4"})-[:OUSTIDE_WALK]->(:Reseal rchAndTeachingFacilities {id: "b-1"})-[:INSIDE_WALK_FLOOR_ALL]->(:Reseal rchAndTeachingFacilities {id: "b-1"})-[:INSIDE_WALK_FLOOR_ALL]->(:Reseal rchAndTeachingFacilities {id: "b-2"})
```

5. jaka jest najkrótsza droga (najmniejsza liczba odwiedzanych budynków) z parteru C-3 do wejścia w A-0?

```
MATCH path = shortestPath(
(start {id: "c-3"})-[:INSIDE_WALK_FLOOR_0|INSIDE_WALK_FLOOR_ALL*1..10]→(end
{id: "a-0"})
)
RETURN path, length(path) as numberOfBuildings
```

path	numberOfBuildings
(:ResearchAndTeachingFacilities {id: "c-3"})-[:INSIDE_WALK_FLOOR_ALL]-	:
<pre>>(:ResearchAndTeachingFacilities {id: "c-2"})-[:INSIDE_WALK_FLOOR_0]-> (:ResearchAndTeachingFacilities {id: "c-1"})-[:INSIDE_WALK_FLOOR_0]->(</pre>	
:ResearchAndTeachingFacilities {id: "a-1"})-[:INSIDE_WALK_FLOOR_0]->(: ResearchAndTeachingFacilities {id: "a-0"})	
[ResearchAndreachThigractItitles {Id: 'a-0'})	

6. znajdź budynki, które są połączone z trzema innymi budynkami (sąsiadują ze sobą i można się do nich dostać nie wychodząc na zewnątrz).

MATCH

```
(b)-[r:INSIDE_WALK_FLOOR_0|INSIDE_WALK_FLOOR_1|INSIDE_WALK_FLOOR_ALL]→(neighbor)
with b, COUNT(DISTINCT neighbor) as connections
WHERE connections = 3
RETURN b.id as building, connections
```

building	connections
"c-7"	3
"c-6"	3
 "a-4" 	3

Wynik jest niepełny ze względu na braku zamodelowania części budynków.