# Tutorial 2

Scheduling

## Real Time Scheduling: Rate Monotonic

Q. Verify the schedulability and construct the schedule according to the RM policy for the following set of periodic tasks. Here C<sub>i</sub> and T<sub>i</sub> are the execution time and periods respectively.

|         | $C_i$ | $T_i$ |
|---------|-------|-------|
| $	au_1$ | 2     | 6     |
| $	au_2$ | 2     | 8     |
| $	au_3$ | 2     | 12    |

#### Ans.

Utilization (U) = 2/6 + 2/8 + 2/12 = 0.75Processor utilization upper bound  $U_{max} = n(2^{1/n} - 1) = 0.78$ U <  $U_{max}$  The task set is RM schedulable

## Real Time Scheduling: Rate Monotonic

#### Q. Write down the RM schedule for the given task set.

Hyper-period = lcm (6,8,12) = 24

|         | $C_i$ | $T_i$ |
|---------|-------|-------|
| $	au_1$ | 2     | 6     |
| $	au_2$ | 2     | 8     |
| $	au_3$ | 2     | 12    |





RM Schedule

RM Schedule:  $T_1^{\ 1} \ T_2^{\ 1} \ T_3^{\ 1} \ T_1^{\ 2} \ T_2^{\ 2} \ T_1^{\ 3} \ T_3^{\ 2} \ T_2^{\ 3} \ T_1^{\ 4}$ 

### Real Time Scheduling: Rate Monotonic

Consider the following set of tasks

| Tasks    | C <sub>i</sub> | T <sub>i</sub> |
|----------|----------------|----------------|
| $\tau_1$ | 2              | 5              |
| $\tau_2$ | 4              | 7              |

Utilization (U) = 2/5 + 4/7 = 0.97Processor utilization upper bound  $U_{max} = n(2^{1/n} - 1) = 0.83$ U >  $U_{max}$  The task set may not be RM schedulable

#### Lets check!!

## Real Time Scheduling: Earliest Deadline First (EDF)

Hyper-period = lcm(5, 7) = 35



| Tasks    | C <sub>i</sub> | T <sub>i</sub> |
|----------|----------------|----------------|
| $\tau_1$ | 2              | 5              |
| $\tau_2$ | 4              | 7              |



### Exercise - 1

# Q. Check if the following task set is RM schedulable? If not, is it EDF schedulable?

| Tasks | Execution Time | Period |
|-------|----------------|--------|
| T1    | 20             | 100    |
| T2    | 30             | 150    |
| Т3    | 90             | 200    |

## Real Time Scheduling

#### Q. Check if the following task set is RM schedulable?

| Tasks | Execution Time | Period |
|-------|----------------|--------|
| T1    | 20             | 100    |
| T2    | 30             | 150    |
| Т3    | 90             | 200    |

#### Ans.

Utilization (U) = 20/100 + 30/150 + 90/200 = 0.85Processor utilization upper bound  $U_{max} = n(2^{1/n} - 1) = 0.78$ U >  $U_{max} \rightarrow RM$  schedulable may not be feasible

### Real Time Scheduling

Hyper-period = LCM(100,150,200) = 600



| Tasks | Execution<br>Time | Period |
|-------|-------------------|--------|
| T1    | 20                | 100    |
| T2    | 30                | 150    |
| T3    | 90                | 200    |

RM Schedule: T1<sup>1</sup> T2<sup>1</sup> T3<sup>1</sup> T1<sup>2</sup> T3<sup>1</sup> T2<sup>2</sup> T3<sup>1</sup> T1<sup>3</sup> T3<sup>2</sup> T1<sup>4</sup> T2<sup>3</sup> T3<sup>2</sup> T1<sup>5</sup> T3<sup>3</sup> T2<sup>4</sup> T3<sup>3</sup> T1<sup>6</sup> T3<sup>3</sup>

## LDF Scheduling

Given the precedence graph in following figure and the following table of task execution times  $(C_i)$  and deadlines  $(D_i)$ , determine a Latest Deadline First (LDF) schedule.

|       | $J_1$ | $J_2$ | $J_3$ | $J_4$ | $J_5$ | $J_6$ | $J_7$ | $J_8$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $C_i$ | 3     | 4     | 2     | 3     | 3     | 2     | 2     | 1     |
| $D_i$ | 5     | 8     | 11    | 15    | 12    | 18    | 19    | 20    |



Schedule:  $J_1$   $J_2$   $J_3$   $J_5$   $J_4$   $J_6$   $J_7$   $J_8$ 

## LDF Scheduling

|       | $J_1$ | $J_2$ | $J_3$ | $J_4$ | $J_5$ | $J_6$ | $J_7$ | $J_8$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $C_i$ | 3     | 4     | 2     | 3     | 3     | 2     | 2     | 1     |
| $D_i$ | 5     | 8     | 11    | 15    | 12    | 18    | 19    | 20    |



Schedule: J<sub>1</sub> J<sub>2</sub> J<sub>3</sub> J<sub>5</sub> J<sub>4</sub> J<sub>6</sub> J<sub>7</sub> J<sub>8</sub>

## **EDF\* Scheduling**



All tasks arrive at t=0. They all have deadline d=20. Their execution times are given below. Determine the EDF\* schedule.

|       | Α | В | С | D | Е | F | G |
|-------|---|---|---|---|---|---|---|
| $C_i$ | 3 | 2 | 4 | 3 | 2 | 5 | 1 |

## **EDF\* Scheduling**



|       | Α | В | С | D | Е | F | G |
|-------|---|---|---|---|---|---|---|
| $C_i$ | 3 | 2 | 4 | 3 | 2 | 5 | 1 |

$$d'_i = \min(d_i, \min_{j \in D(i)} (d'_j - e_j)).$$

$$d'_{E} = 20$$

$$d'_{F} = 20$$

$$d'_{G} = 20$$

$$d'_{C} = min(20, 20-2, 20-5) = 15$$

$$d'_D = min(20, 20-5, 20-1) = 15$$

$$d'_{B} = min(20, 15-4, 15-3) = 11$$

$$d'_A = min(20, 15-4) = 11$$

EDF\* schedule: A,B,C,D,E,F,G

Q. Consider two tasks to be scheduled periodically on a single processor using Rate Monotonic (RM) scheduling policy. Task T1 has periodicity p1 = 4 and task T2 has periodicity p2 = 6. If execution time of T1 is e1 = 1

a. what will the execution time of T2 to get a near maximum processor utilization?

- Q. Consider two tasks to be scheduled periodically on a single processor using Rate Monotonic (RM) scheduling policy. Task T1 has periodicity p1 = 4 and task T2 has periodicity p2 = 6. If execution time of T1 is e1 = 1
- a. what will the execution time of T2 to get a near maximum processor utilization?

Sol. 
$$\frac{e1}{p1} + \frac{e2}{p2} \le 1 \Rightarrow \frac{1}{4} + \frac{e2}{6} \le 1 \Rightarrow e2 \le 4.5$$

If e2 = 4.5 => Not RM schedulable (Check)

- Q. Consider two tasks to be scheduled periodically on a single processor using Rate Monotonic (RM) scheduling policy. Task T1 has periodicity p1 = 4 and task T2 has periodicity p2 = 6. If execution time of T1 is e1 = 1
- a. What will the execution time of T2 to get a near maximum processor utilization?
- b. Considering context switch overhead as 0.2 time units, comment on how it will affect the schedule

- Q. Consider two tasks to be scheduled periodically on a single processor using Rate Monotonic (RM) scheduling policy. Task T1 has periodicity p1 = 4 and task T2 has periodicity p2 = 6. If execution time of T1 is e1 = 1
- a. What will the execution time of T2 to get a near maximum processor utilization?
- b. Considering context switch overhead as 0.2 time units, comment on how it will affect the schedule
- Sol. Not RM schedulable



- Q. Consider two tasks to be scheduled periodically on a single processor using Rate Monotonic (RM) scheduling policy. Task T1 has periodicity p1 = 4 and task T2 has periodicity p2 = 6. If execution time of T1 is e1 = 1
- a. What will the execution time of T2 to get a near maximum processor utilization?
- b. Considering context switch overhead as 0.2 time units, comment on how it will affect the schedule
- c. Had we used Earliest Deadline First (EDF) scheduling policy instead of RM with the same set-up, how would context switch have affected the schedule?

Q. Consider two tasks to be scheduled periodically on a single processor using Rate Monotonic (RM) scheduling policy. Task T1 has periodicity p1 = 4 and task T2 has periodicity p2 = 6. If execution time of T1 is e1 = 1

- a. What will the execution time of T2 to get a near maximum processor utilization?
- b. Considering context switch overhead as 0.2 time units, comment on how it will affect the schedule
- c. Had we used Earliest Deadline First (EDF) scheduling policy instead of RM with the same set-up, how would context switch have affected the schedule?

#### Sol. EDF schedulable

