UNIVERSIDADE PRESBITERIANA MACKENZIE

Integrantes:

Bruno Zovaro Nascimento - 10424880 Douglas Novaes Dias - 14023666 Milan Mirco Moraes Mazur - 10363757 Paulo Cesar Masson Junior - 10416023

PROJETO APLICADO II

SUBCONJUNTO DE PREVISÃO DE IDADE

São Paulo 2024

SUMÁRIO - Aplicando Conhecimento - Aula 2

- 1 Definição da linguagem de programação usada no projeto
- 2 Análise exploratória da base de dados escolhida
- 3 Tratamento da base de dados (Preparação e treinamento)
- 4 Definição e descrição das bases teóricas dos métodos
- 5 Definição e descrição de como será calculada a acurácia
- 6 Base de Dados/ Repositório do Github
- 7 Cronograma de Atividades

1. Definição da linguagem de programação usada no projeto

A linguagem de programação é Python. As bibliotecas a serem usadas incluem pandas, seaborn, fetch_ucirepo, sklearn.

2. Análise exploratória da base de dados escolhida.

Head:

_	display(dataBase.head(10)) ✓ 0.0s											
	SEQN	age_group	RIDAGEYR	RIAGENDR	PAQ605	вмхвмі	LBXGLU	DIQ010	LBXGLT	LBXIN		
0	73564.0	Adult	61.0	2.0	2.0	35.7	110.0	2.0	150.0	14.91		
1	73568.0	Adult	26.0	2.0	2.0	20.3	89.0	2.0	80.0	3.85		
2	73576.0	Adult	16.0	1.0	2.0	23.2	89.0	2.0	68.0	6.14		
3	73577.0	Adult	32.0	1.0	2.0	28.9	104.0	2.0	84.0	16.15		
4	73580.0	Adult	38.0	2.0	1.0	35.9	103.0	2.0	81.0	10.92		
5	73581.0	Adult	50.0	1.0	2.0	23.6	110.0	2.0	100.0	6.08		
6	73587.0	Adult	14.0	1.0	2.0	38.7	94.0	2.0	202.0	21.11		
7	73596.0	Adult	57.0	2.0	2.0	38.3	107.0	2.0	164.0	20.93		
8	73607.0	Senior	75.0	1.0	2.0	38.9	89.0	2.0	113.0	17.47		
9	73610.0	Adult	43.0	1.0	1.0	28.9	90.0	2.0	95.0	3.24		

Describe:

3. Tratamento da base de dados (Preparação e treinamento).

Preparação 1:

```
Tratamento da base

dataBase = dataBase.rename(columns={
    'SEQN': 'sk',
    'age_group': 'faixaEtaria',
    'RIDAGEVR': 'idade',
    'RIAGENDR': 'sexo',
    'PAQ605': 'exerciciosSemanais?',
    'BMXBMI: 'imc',
    'LBXGLU': 'nivelGlicose',
    'DIQ010': 'diabetico?',
    'LBXGLT': 'LBXGLT',
    'LBXIN': 'nivelInsulinaSangue'
    })

    ✓ 0.0s

dataBase["sexo"] = dataBase["sexo"].replace({1: 'MALE', 2: 'FEMALE'})
    dataBase["exerciciosSemanais?"] = dataBase["exerciciosSemanais?"].replace({1: 'SIM', 2: 'NAO'})
    dataBase["diabetico?"] = dataBase["diabetico?"].replace({1: 'SIM', 2: 'NAO'})
    ✓ 0.0s
```

Resultado Preparação 1:

	sk	faixaEtaria	idade	sexo	exerciciosSemanais	imc	nivelGlicose	diabetico	LBXGLT	nivelInsulinaSangue
0	73564.0	Adult	61.0	FEMALE	NAO	35.7	110.0	NAO	150.0	14.91
1	73568.0	Adult	26.0	FEMALE	NAO	20.3	89.0	NAO	80.0	3.85
2	73576.0	Adult	16.0	MALE	NAO	23.2	89.0	NAO	68.0	6.14
3	73577.0	Adult	32.0	MALE	NAO	28.9	104.0	NAO	84.0	16.15
4	73580.0	Adult	38.0	FEMALE	SIM	35.9	103.0	NAO	81.0	10.92
5	73581.0	Adult	50.0	MALE	NAO	23.6	110.0	NAO	100.0	6.08
6	73587.0	Adult	14.0	MALE	NAO	38.7	94.0	NAO	202.0	21.11
7	73596.0	Adult	57.0	FEMALE	NAO	38.3	107.0	NAO	164.0	20.93
8	73607.0	Senior	75.0	MALE	NAO	38.9	89.0	NAO	113.0	17.47
9	73610.0	Adult	43.0	MALE	SIM	28.9	90.0	NAO	95.0	3.24

Treinamento:

```
Treinamento de teste
    x = dataBase['idade']
   y = dataBase[['imc', 'nivelGlicose']]
✓ 0.0s
    if x.isnull().any() or y.isnull().any().any(): # Verifica se há valores ausentes em y
       print("Valores ausentes encontrados. Removendo linhas com valores ausentes.")
        dataBase = dataBase.dropna(subset=['idade', 'imc', 'nivelGlicose']) # Remover linhas com valores ausentes
       x = dataBase['idade']
y = dataBase[['imc', 'nivelGlicose']]
    x_train, x_test, y_train, y_test = train_test_split(
        test_size=0.3,
        random_state=123
   print("Dimensões do conjunto de treino:")
   print(f"x_train: {x_train.shape}, y_train: {y_train.shape}")
   print("Dimensões do conjunto de teste:")
   print(f"x_test: {x_test.shape}, y_test: {y_test.shape}")
Dimensões do conjunto de treino:
x_train: (1594,), y_train: (1594, 2)
Dimensões do conjunto de teste:
x_test: (684,), y_test: (684, 2)
```

```
x_train, x_test, y_train, y_test = train_test_split(
       х, у,
       test_size=0.3,
       random_state=123
   # Criacao da saida multi regressao
   regressor = MultiOutputRegressor(LinearRegression())
   # Ajuste do modelo
   regressor.fit(x train.values.reshape(-1, 1), y train)
   # Previsões
   y_pred = regressor.predict(x_test.values.reshape(-1, 1))
   # Avaliacao do desempenho para cada saída
   for i, coluna in enumerate(y_train.columns):
       mse = mean_squared_error(y_test[coluna], y_pred[:, i])
       print(f"Erro quadrático médio para {coluna}: {mse}")
✓ 0.0s
Erro quadrático médio para imc: 50.378884502155785
Erro quadrático médio para nivelGlicose: 402.8259095253492
```

4. Definição e descrição das bases teóricas dos métodos.

O método a ser usado, inicialmente definido, é a Regressão Logística.

5. Definição e descrição de como será calculada a acurácia

A acurácia mede a eficiência de um modelo. No nosso escopo de trabalho, usaremos a acurácia para calcular quanto de sucesso obtivemos (em porcentagem) em prever a idade dos entrevistados. Também poderemos ver qual das medidas nos fornece uma melhor eficiência, se são as medidas fisiológicas ou bioquímicas.

Para isso, utilizaremos uma faixa de ±1. Por exemplo, caso a idade de uma pessoa seja 40 e o nosso modelo prever entre 39 e 41, podemos considerar como correto. Se tiver fora dessa faixa, será uma previsão incorreta.

Com isso, pegamos os valores preditos corretamente e dividimos pelo total de casos no modelo e obtemos a acurácia. Há algumas formas de fazermos isso no Python.

$$Acur\'{a}cia = \frac{Casos\ Preditos\ corretamente}{Total\ de\ casos}$$

6. Base de Dados/ Repositório do Github

Links das bases de dados:

https://archive.ics.uci.edu/dataset/887/
national+health+and+nutrition+health+survey+2013-2014+(nhanes)
+age+prediction+subset

Link para acesso ao GitHub:

https://github.com/pcmassonjr/ProjetoAplicado2

7. Cronograma de Atividades

cronograma do projeto

PROJETO Nº 2

PROJETO APLICADO 2

14/09/2024

Definição do grupo; Premissas do projeto; Objetivos e metas;

05/10/2024

Definição das bibliotecas; Análise exploratória dos dados Tratamento das bases; Definição bases teóricas dos métodos e acurácia

02/11/2024

Consolidação do método analítico; Aplicação das medias de acurácia; Definição dos resultados preliminares e esboço do storytelling;

23/11/2024

Relatório técnico do projeto; Apresentação do storytelling e video; Disponibilização do repositório do Github;

Finalizado