Elisa Antuca Massimo Bertolotti

TITOLO TITOLOZZO **QUESTO TITOLO** È PROVVISORIOZZO E CI PIACE COSÌ

$$\beta(P_1, P_2, P_3, P_4) = \frac{\begin{vmatrix} \lambda_1 & \lambda_4 \\ \mu_1 & \mu_4 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_3 \\ \mu_2 & \mu_3 \end{vmatrix}}{\begin{vmatrix} \lambda_1 & \lambda_3 \\ \mu_1 & \mu_3 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_4 \\ \mu_2 & \mu_4 \end{vmatrix}}$$

$$\beta(P_1, P_2, P_3, P_4) = \frac{\begin{vmatrix} \lambda_1 & \lambda_4 \\ \mu_1 & \mu_4 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_3 \\ \mu_2 & \mu_3 \end{vmatrix}}{\begin{vmatrix} \lambda_1 & \lambda_3 \\ \mu_1 & \mu_3 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_4 \\ \mu_2 & \mu_4 \end{vmatrix}}$$

$$X \xrightarrow{f} Y$$

$$X/\sim \qquad \chi(S) = v - e + f$$

$$\pi_1(S^1) = \mathbb{Z}$$

$$e^A := \sum_{k=0}^{+\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

Note per la lettura

"Un matematico è una macchina per trasformare caffè in teoremi."

Alfréd Rényi, studioso del teorema di Van Moka-mpen.

Senza troppe pretese di formalità, com'è intuibile dal termine dal termine tecnico manualozzo e dalle citazioni a inizio capitolo, queste note sono nate come appunti a quattro mani basati sul corso di Geometria 2 tenuto dai docenti Alberto Albano, Cinzia Casagrande ed Elena Martinengo nell'Anno Accademico 2020-2021 presso il Dipartimento di Matematica dell'Università degli Studi di Torino.

Il corso è diviso in *cinque* parti, pertanto abbiamo ritenuto opportuno dividere in altrettante parti il testo, seguendo l'ordine delle lezioni: Topologia generale, Omotopia, Classificazione delle superfici topologiche, Approfondimenti di Algebra Lineare e infine Geometria proiettiva. I prerequisiti necessari sono gli argomenti trattati nei corsi di *Geometria 1, Algebra 1 e Analisi 1*.

In aggiunta a ciò, potete trovare a fine libro delle utili *postille* con alcune digressioni interessanti, nonché tabelle ed elenchi riepilogativi dei teoremi, delle definizioni e delle proprietà affrontate.

Per quanto ci piacerebbe esserlo, non siamo *esseri infallibili*: ci saranno sicuramente sfuggiti degli errori (o degli *orrori*, la cui causa è solamente degli autori che non hanno studiato bene e non dei professori, chiaramente), per cui vi chiediamo gentilmente di segnalarceli su https://maxmaci.github.io per correggerli e migliorare le future edizioni del *manualozzo*.

I disegni sono stati realizzati da Massimo Bertolotti, l'addetto alla grafica e ai capricci di LATEX (ed è molto capriccioso, fidatevi). Chi volesse dilettarsi può cercare di distinguere chi fra i due autori ha scritto cosa, non dovrebbe essere troppo difficile.

Seconda edizione, compilato il 5 novembre 2021.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indice

IN	DICE	11	
Ι	Intr	ODUZI	one ad Analisi Matematica 3 1
1	1.1	Una do 1.1.1 1.1.2	comanda banale: la lunghezza di un'ellisse 3 La problematica dimostrazione della lunghezza dell'ellisse: la serie di Taylor 4 La problematica dimostrazione della lunghezza dell'ellisse: passaggio al limite sotto segno di integrale 6 anali conseguenze di una domanda banale 7
II	Con	VERGE	NZA DI FUNZIONI 9
2	2.2 2.3	Conve 2.1.1 2.1.2 2.1.3 2.1.4 Conve Propri 2.3.1 2.3.2	Continuità 21 Integrabilità e passaggio al limite sotto segno di integrale 22
3	3.1 3.2 3.3	Serie i Serie o 3.2.1 Propri 3.3.1 3.3.2	n uno spazio normato 31 li funzioni 34 Il criterio di Weierstrass 35 età di regolarità di una serie di funzioni 36 Limitatezza 36 Continuità 36 Integrabilità e scambio tra integrale e serie 37 Derivabilità 38

INDICE

```
SERIE DI POTENZE
         Serie di potenze
                            41
                Il raggio di convergenza
         4.1.1
                                           42
         Comportamento sul bordo
   4.2
         Serie di potenze e convergenza uniforme
   4.3
         Proprietà di regolarità della somma di una serie di potenze
   4.4
                 Continuità
         4.4.2
                 Derivabilità
         Funzioni analitiche e serie di Taylor
   4.5
         Esempi di funzioni analitiche
   4.6
         Funzioni esponenziale e logaritmo in campo complesso
   4.7
                 Funzione esponenziale in campo complesso
         4.7.1
                 Funzione logaritmo in campo complesso
         4.7.2
   TEORIA DELLA MISURA
         Il contesto storico: il problema delle discontinuità nell'integrale defini-
   5.1
         \sigma-algebre
                      66
   5.2
         Funzioni misurabili
                                67
   5.3
                 Caratterizzazione delle funzioni misurabili
                                                              68
                 Passaggio al limite per funzioni misurabili
                                                              69
         5.3.2
         Misura di Peano-Jordan
                                    71
                 Definizione e osservazioni sulla misura di Peano-Jordan
         Misura secondo Lebesgue
                                      73
   5.5
III APPENDICI-TE
   Note aggiuntive
         Capitolo 1: alla ricerca della lunghezza dell'ellisse
                                                              79
                 Il coefficiente binomiale generalizzato
         Capitolo 3: serie di funzioni
   6.2
                 Tanti criteri di Cauchy
         6.2.1
         6.2.2
                 Criteri di convergenza delle serie
                                                    83
                 Serie a valori reali notevoli
         6.2.3
         Capitolo 4: serie di potenze
                 Il prodotto di serie (secondo Cauchy)
   Elenchi delle definizioni e dei teoremi
```

Introduzione ad Analisi Matematica 3

Alla ricerca della lunghezza dell'ellisse

"BEEP BOOP QUESTA È UNA CITAZIONE."

Marinobot, dopo aver finito le citazioni stupide.

Una circonferenza e un'ellisse a primo acchito possono sembrare molto simili: in fondo, una circonferenza non è altro che un'ellisse i cui punti focali coincidono e dunque l'ellisse si può vedere come una circonferenza "allungata" rispetto ad un asse. Il valore dell'area delimitata da una circonferenza (πr^2) e la lunghezza di una circonferenza $(2\pi r)$ sono ben noti già dall'antichità, i cui calcoli sono stati opportunamente formalizzati in epoca moderna; tuttavia, riguardo l'ellisse, ci accorgiamo di aver incontrato nel corso degli studi precedenti quasi esclusivamente il valore dell'area delimitata da essa (πab) , ma non la lunghezza dell'ellisse. Come mai?

1.1 UNA DOMANDA BANALE: LA LUNGHEZZA DI UN'ELLISSE

Partiamo col seguente quiz: quale delle seguenti tre espressioni è il valore, o una sua approssimazione, della lunghezza di un'ellisse di semiassi di lunghezza a e b?

- a) $L(a,b) = \pi ab$
- b) $L(a,b) \approx \pi(a+b) + 3\pi \frac{(a-b)^2}{10(a+b) + \sqrt{a^2 + 14ab + b^2}}$
- c) $L(a,b) \approx 2\pi a$.

Chiaramente, come abbiamo detto nell'introduzione del capitolo, la lunghezza dell'ellisse non è una formula nota dagli studi passati e possiamo (per ora) solamente escludere la prima risposta, in quanto essa è il valore dell'area delimitata dell'ellisse.

Osservazione. Possiamo escludere la prima risposta anche per motivi puramente dimensionali: a e b sono, dimensionalmente parlando, due lunghezze, quindi πab deve essere una lunghezza al quadrato, cioè un'area e non può essere una lunghezza!

In realtà, la domanda del quiz è mal posta: le risposte b) e c) sono entrambe corrette. Il matematico indiano Srinivasa Aiyangar Ramanujan fornì come nota a margine non commentata in un suo articolo del 1914 (ramanujan:1914piapprox) l'approssimazione *b*):

$$L(a,b) \approx \pi \left((a+b) + 3 \frac{(a-b)^2}{10(a+b) + \sqrt{a^2 + 14ab + b^2}} \right)$$

Vedremo fra poco che anche l'approssimazione data dalla *a*) è anch'essa lecita.

Il motivo per cui diamo approssimazioni ma non formule esatte per la lunghezza dell'ellisse è dovuto al fatto che non esiste una formula esplicita in termini di funzioni elementari, bensì possiamo esprimerla soltanto come somma di una serie.

Teorema 1.1.1. - Lunghezza dell'ellisse di semiassi di lunghezza a e b. Siano $a \ge b$ le lunghezze dei semiassi dell'ellisse e $e = e(a,b) = \frac{\sqrt{a^2 - b^2}}{a} \in [0,1)$ l'eccentricità; allora si ha

$$L(a,b) = 2\pi a \sum_{j=0}^{+\infty} \frac{1}{1-2j} \left(\frac{(2j-1)!!}{(2j)!!} e^j \right)^2$$
 (1.1)

dove !! indica il **doppio fattoriale**:

$$\forall n \in \mathbb{N} \quad n!! = \begin{cases} n \cdot (n-2) \cdot \dots \cdot 6 \cdot 4 \cdot 4 \cdot 2 \text{ se } n > 0 \text{ è pari} \\ n \cdot (n-2) \cdot \dots \cdot 5 \cdot 3 \cdot 2 \cdot 1 \text{ se } n > 0 \text{ è dispari} \end{cases}$$

Il primo termine della serie fornisce l'approssimazione espressa nella risposta a):

$$L(a,b) \approx 2\pi a$$

La problematica dimostrazione della lunghezza dell'ellisse: la serie di Taylor

Dimostriamo finalmente la lunghezza dell'ellisse. Come è noto dal corso di Analisi 2, per una curva regolare come l'ellisse è possibile calcolarne la lunghezza usando un'opportuna parametrizzazione.

Poniamo $a \ge b$ le lunghezze dei semiassi ed $e = \frac{\sqrt{a^2-b^2}}{a} \in [0,1)$ l'eccentricità. Una parametrizzazione è

$$\vec{r}(t) = (a \sin t, b \cos t)$$
 $t \in [0, 2\pi]$

Allora

$$L = \int_0^{2\pi} \|\vec{r}''(t)\| dt = \int_0^{2\pi} \|(a\cos t, -b\sin t)\| dt = \int_0^{2\pi} \sqrt{a^2\cos^2 t + b^2\sin^2 t} dt =$$

$$= \int_0^{2\pi} \sqrt{a^2 - (a^2 + b^2)\sin^2 t} dt = a \int_0^{2\pi} \sqrt{1 - e^2\sin^2 t}$$

C'è un problema: la funzione $f(t) = \sqrt{1 - e^2 \sin^2 t}$ non è elementarmente integrabile, cioè non ammette primitive in termini di funzioni elementari.

Attenzione! Non essere elementarmente integrabile *non* significa che non sia integrabile! La funzione integranda f(t) è continua su $[0, 2\pi]$, dunque per il *teorema fondamentale del calcolo integrale* ammette primitive su $[0, 2\pi]$. Una di esse è

$$F(t) = \int_0^t \sqrt{1 - e^2 \sin^2 y} \, dy \quad \forall y \in [0, 2\pi]$$

Il problema è che non possiamo riscrivere F in modo esplicito usando solo funzioni elementari.

Questo tipo di integrale è detto integrale ellittico.

DIGRESSIONE. Gli *integrali ellittici* si incontrano in molti ambiti matematici. Ad esempio, appaiono nella risoluzione dell'equazione differenziale del moto di un pendolo semplice:

$$\ddot{\theta} = -\frac{g}{l}\sin\theta$$

Sono il motivo per cui tale equazione si studia spesso per piccole oscillazioni, in modo da poter operare una linearizzazione $\sin\theta \sim \theta$ e calcolare il moto senza passare per tali integrali non calcolabili.

Un altro esempio della loro importanza è noto agli appassionati di Geometria: infatti, la branca della Geometria Algebrica nasce anche dagli studi su tali integrali.

Potremmo limitarci a considerare l'intero integrale ellittico come una nuova funzione, ma al più potremmo calcolarne il valore tramite metodi dell'Analisi Numerica. Invece, proviamo a riscrivere l'integrale utilizzando uno **sviluppo in serie** della funzione integranda.

Poniamo $x = -e^2 \sin^2 t$ e osserviamo che

$$\sqrt{1 - e^2 \sin^2 t} = \sqrt{1 + x} = (1 + x)^{1/2} = (1 + x)^{\alpha}$$
 dove $\alpha = \frac{1}{2}$

Poichè $(1+x)^{\alpha}$ è una funzione di classe \mathscr{C}^{∞} in un intorno di x=0, si può approssimare localmente col **polinomio di Taylor** di ordine n centrato in x=0, $\forall n \geq 0$. Se il polinomio in questione è

$$P_{n,0}(x) = \sum_{j=0}^{n} {\alpha \choose j} x^j \quad \forall n \ge 0$$

 $\operatorname{con} \binom{\alpha}{j}$ il **coefficiente binomiale generalizzato**¹, allora l'approssimazione dell'integranda data dal polinomio di Taylor è proprio

$$(1+x)^{1/2} \approx \sum_{j=0}^{n} {1/2 \choose j} x^j \quad \forall n \ge 0$$

Risostituendo $x = -e^2 \sin^2 t$ abbiamo un'approssimazione dell'integranda. Tuttavia, noi vorremmo un *risultato esatto*.

Sappiamo intuitivamente che più termini si hanno nello sviluppo di Taylor, più accurata

¹Nelle "Note aggiuntive", a pagina 79 è possibile trovare la definizione e le proprietà del binomiale generalizzato.

è l'approssimazione; cosa succede per $n \to \infty$? Dobbiamo studiare la somma di serie

$$\sum_{j=0}^{+\infty} \binom{1/2}{j} x^j$$

Già ci dobbiamo porre nuove domande: la serie *converge* e per quali valori di x? Supponendo che la serie converga per opportuni valori di x, la serie converge proprio a $(1+x)^{1/2}$? In generale, per $f \in \mathcal{C}^{\infty}$ qualsiasi **NO**, la serie di Taylor non converge proprio e se converge non converge ad f! Tuttavia, in questo caso siamo particolarmente fortunati: $\forall x \in (-1,1)$ la serie converge² e vale

$$(1+x)^{\frac{1}{2}} = \sum_{j=0}^{+\infty} {\binom{1/2}{j}} x^j \quad \forall n \ge 0 \quad \forall x \in (-1,1)$$

In questa prima parte della dimostrazione abbiamo capito che è importante determinare quando è possibile passare dalla semplice *approssimazione* di una funzione con il *polinomio di Taylor* a poter riscrivere una funzione come una **serie di Taylor** di funzioni opportune.

1.1.2 La problematica dimostrazione della lunghezza dell'ellisse: passaggio al limite sotto segno di integrale

Torniamo al problema originale. Ricordando che $x = -e^2 \sin^2 t$, poiché $t \in [0, 2\pi]$ si ha che $x \in [-e^2, 0] \subseteq (-1, 1)$ dato che $e^2 < 1$. Possiamo riscrivere l'integranda come il suo sviluppo in *serie di Taylor*:

$$\left(1 - e^2 \sin^2 t\right)^{1/2} = \sum_{j=0}^{+\infty} {1/2 \choose j} \left(-e^2 \sin^2 t\right)^j = \sum_{j=0}^{+\infty} {1/2 \choose j} (-1)^j e^{2j} \sin^{2j} t \quad \forall t \in [0, 2\pi]$$

Sostituiamo nell'integrale; poiché la funzione è pari e simmetrica, possiamo ricondurci a studiare l'integrale su $[0, \pi/2]$:

$$L = a \int_0^{2\pi} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \sum_{j=0}^{+\infty} {1/2 \choose j} (-1)^j e^{2j} \sin^{2j} t dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t \right)^{1/2} dt = 4a \int_0^{\frac{$$

Incontriamo un nuovo problema: cos'è l'**integrale di una serie**? Se avessimo una somma di un numero *finito* di termini per la *linearità* dell'integrale potremmo scambiare la sommatoria con l'integrale, ma è possibile farlo nel caso di una serie?

Riscriviamo l'espressione precedente con la definizione di serie come *limite* per $n \to +\infty$ delle *ridotte*:

$$= 4a \int_0^{\frac{\pi}{2}} \lim_{n \to +\infty} \left(\sum_{j=0}^n {\binom{1/2}{j}} (-1)^j e^{2j} \sin^{2j} t \right) dt$$

Il problema precedente si può riformulare come "È possibile scambiare integrale e limite?". Tale questione è come il problema del **passaggio al limite sotto segno di integrale**. In generale, la risposta è **NO**: non è possibile scambiare limite e integrale. Ciò nonostante

²Nelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione di tale convergenza.

anche questa volta siamo particolarmente fortunati e il passaggio è lecito³ e si ha

$$L = 4a \lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \sum_{j=0}^n \binom{1/2}{j} (-1)^j e^{2j} \sin^{2j} t dt$$

$$= 4a \lim_{n \to +\infty} \sum_{j=0}^n \int_0^{\frac{\pi}{2}} \binom{1/2}{j} (-1)^j e^{2j} \sin^{2j} t dt$$

$$= 4a \sum_{j=0}^{+\infty} \binom{1/2}{j} (-1)^j e^{2j} \int_0^{\frac{\pi}{2}} \sin^{2j} t dt$$

Completando il calcolo dell'integrale⁴ si ottiene la formula della lunghezza scritta precedentemente.

1.2 NON BANALI CONSEGUENZE DI UNA DOMANDA BANALE

Abbiamo finalmente raggiunto una *risposta*, seppur assolutamente non banale, alla domanda che ci eravamo posti originalmente: qual è la *lunghezza dell'ellisse*? Nel far ciò ci siamo imbattuti in tutta una serie di problemi: esplicitare integrali non *elementarmente* risolvibili, la *convergenza* di *serie di Taylor* di funzioni ad una funzione specifica, il *passaggio al limite* sotto segno di *integrale*. La teoria matematica che tratteremo a partire dai capitoli successivi *nasce* proprio da questi problemi apparsi nell'*insidiosa ricerca* di una formula della lunghezza dell'ellisse.

In particolare, per capire quando era possibile il passaggio al limite sotto segno di integrale sono stati sviluppati diversi *teoremi*, più o meno vantaggiosi da utilizzare, le cui ipotesi variano sensibilmente fra di loro: alcuni si inseriscono nella già nota *teoria Riemanniana degli integrali*, mentre altri richiedono ipotesi completamente diverse. È da questi innumerevoli approcci al problema che, storicamente parlando, fu tale quesito a dare un *impeto* fondamentale allo sviluppo della **teoria degli integrali di Lebesgue**.

³Nelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione che in questo caso il passaggio è lecito.

⁴Nelle "Note aggiuntive", a pagina XXX è possibile trovare tale calcolo.

II

Convergenza di funzioni

Convergenza di funzioni

"BEEP BOOP QUESTA È UNA CITAZIONE."

Marinobot, dopo aver finito le citazioni stupide.

[COMPLETARE]

2.1 CONVERGENZA UNIFORME DI FUNZIONI

Per poter trattare i problemi enunciati nel Capitolo 1 a pagina 3 dobbiamo parlare di convergenza di funzioni. Innanzitutto, ricordiamo le definizioni di distanza, spazio metrico e convergenza.

DEFINIZIONE 2.1.1. - SPAZIO METRICO E DISTANZA.

Uno **spazio metrico** è una coppia (X, d) dove X è un insieme e $d: X \times X \longrightarrow \mathbb{R}^+$ è una funzione detta **distanza**, cioè tale che $\forall x, y, z \in X$ essa soddisfi le seguenti proprietà:

- 1. $d(x, y) \ge 0$, $d(x, y) = 0 \iff x = y$.
- 2. d(x, y) = d(y, x).
- 3. $d(x, y) \le d(x, z) + d(z, y)$.

DEFINIZIONE 2.1.2. - CONVERGENZA DI SUCCESSIONI SECONDO UNA DISTANZA.

Una successione $v_n \in X$ converge in X a $v \in X$ se

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) : \forall n \ge N, \ d(v_n, v) < \varepsilon$$
 (2.1)

Un *caso particolare* di spazio metrico è lo spazio $X = \mathcal{C}([a,b]; \mathbb{R})$ delle funzioni continue su un intervallo compatto con la **metrica lagrangiana**:

$$d(f, g) = \max_{x \in [a,b]} |f(x) - g(x)|$$
 (2.2)

OSSERVAZIONE. La distanza è ben definita perché la funzione |f(x) - g(x)|, essendo definita su [a, b] compatto, non si considera solo l'estremo superiore ma ammette massimo per il teorema di Weierstrass.

DEFINIZIONE 2.1.3. - CONVERGENZA NELLA METRICA LAGRANGIANA.

Siano f_n , $f \in X$. Si dice che f_n converge a f in X se

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon): \ \forall n \ge N, \ \max_{x \in [a,b]} |f_n(x) - f(x)| < \varepsilon$$
 (2.3)

Siccome vale per il massimo allora vale per qualsiasi x, quindi la relazione si può riscrivere come

$$\forall \varepsilon > 0$$
, $\exists N = N(\varepsilon) : \forall n \ge N$, $|f_n(x) - f(x)| < \varepsilon$, $\forall x \in [a, b]$

OSSERVAZIONE. La condizione, riscritta in questo modo, non solo *non necessita* più dell'esistenza del *massimo*, ma non è neanche necessario che l'intervallo sia *compatto* o che le funzioni f_n siano *continue*: questa è in realtà una relazione *più generale* rispetto alla semplice convergenza nella metrica lagrangiana!

Vedremo che nel caso di funzioni continue sui compatti la convergenza uniforme coincide con quella lagrangiana.

DEFINIZIONE 2.1.4. - CONVERGENZA UNIFORME.

Siano f_n , $f:A\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ con $A\subseteq R$ qualsiasi. Si dice che f_n converge uniformemente a f su A se

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) : \forall n \ge N, \ |f_n(x) - f(x)| < \varepsilon, \ \forall x \in A$$
 (2.4)

DEFINIZIONE 2.1.5. - FUNZIONE LIMITE.

Se f_n converge a f su A, f si dice **funzione limite**.

OSSERVAZIONE. Segue immediatamente dalla definizione che se f_n converge uniformemente a f su A, allora $\forall B \subseteq A$ si ha che f_n converge uniformemente a f su B.

ATTENZIONE! È estremamente importante dire **dove** converge f_n : infatti, una stessa successione può convergere uniformemente su A, ma allo stesso tempo *non convergere* uniformemente in un altro insieme B. Vedremo un esempio fondamentale a riguardo successivamente.

Ora passiamo da questa definizione ad una formulazione equivalente operativa. Se essa vale per qualsiasi x in A, allora vale per il sup e viceversa, quindi è equivalente a dire che

$$\forall \varepsilon > 0, \ \exists N = N\left(\varepsilon\right) \colon \forall n \geq N, \ \sup |f_{n}\left(x\right) - f\left(x\right)| < \varepsilon$$

Siccome il sup dipende da n, possiamo definire una successione $c_n \coloneqq \sup_{x \in A} |f_n(x) - f(x)| \in \mathbb{R}^+$. Allora la relazione sopra, per definizione di limite di una successione, è equivalente a $\lim_{n \to +\infty} c_n = 0$, cioè

$$\lim_{n \to +\infty} \left(\sup_{x \in A} |f_n(x) - f(x)| \right) = 0$$

In conclusione abbiamo mostrato che

$$f_n$$
 converge uniformemente a f in $A \iff \lim_{n \to +\infty} \left(\sup_{x \in A} |f_n(x) - f(x)| \right) = 0$ (2.5)

Esempio. Proviamo che $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$ converge uniformemente a f(x) = |x| su \mathbb{R} . Dobbiamo provare che

$$\lim_{n \to +\infty} \left(\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \right) = 0$$

1. Calcoliamo il sup con *n fissato*:

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right| = \sup_{x \in \mathbb{R}} \left(\sqrt{x^2 + \frac{1}{n}} - |x| \right)$$

dove (*) si ha perché l'argomento del valore assoluto è sempre positivo.

Per trovare il sup tracciamo il grafico di $\varphi_n(x) = \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right|$ e cerchiamo il suo estremo superiore. Per parità della funzione ci basta fare le nostre considerazioni su $(0, +\infty)$ per poi disegnare il resto del grafico grazie alla simmetria assiale rispetto all'asse y; studiando opportunamente la derivata e il limite all'infinito si ottiene il seguente grafico.

Segue chiaramente che

$$\sup_{x \in \mathbb{R}} \varphi_n(x) = \varphi_n(0) = \frac{1}{\sqrt{n}} (= c_n)$$

2. Calcoliamo il limite per $n \to +\infty$:

$$\lim_{n \to +\infty} \left(\sup_{x \in A} |f_n(x) - f(x)| \right) = \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

Abbiamo così verificato la convergenza richiesta.

ESEMPIO. SUCCESSIONE GEOMETRICA.

Consideriamo $f_n(x) = x^n$, $\forall n \ge 0$. Allora:

- 1. x^n converge uniformemente a 0 su *ogni* insieme [-a, a], $\forall a: 0 < a < 1$.
- 2. x^n non converge uniformemente a 0 su (-1, 1).

DIMOSTRAZIONE.

1. Sia $a \in (0,1)$ fissato e consideriamo

$$|x^{n} - 0| = |x^{n}| \implies \sup_{x \in [-a,a]} |x^{n} - 0| = \sup_{x \in [-a,a]} |x^{n}|$$

Qual è il grafico di x^n ?

• Se *n* pari, è visivamente simile a quello di x^2 .

• Se *n* dispari, è visivamente simile a quello di x^3 .

Siccome $|x^n|$, $\forall n \ge 2$ è una funzione pari, il grafico è visivamente simile a quello di x^2 . Segue immediatamente che

$$\sup_{x \in [-a,a]} |x^n| = a^n, \ \forall a \colon 0 < a < 1$$

Ora si ha

$$\lim_{n \to +\infty} \left(\sup_{x \in [-a,a]} |x^n| \right) = \lim_{n \to +\infty} a^n = 0$$

perché $a \in (0,1)$ e quindi a^n è una successione geometrica convergente e pertanto il limite a $+\infty$ è sempre necessariamente 0.

2. In questo caso anche se non ho il massimo ho l'estremo superiore

$$\sup_{x \in (-1,1)} |x^n| = 1, \ \forall n$$

da cui

$$\lim_{n \to +\infty} \left(\sup_{x \in (-1,1)} |x^n| \right) = 1 \neq 0$$

pertanto non c'è convergenza uniforme su (-1,1).

Esercizio. $f_n(x) = \frac{x^n}{n}$ converge uniformemente a 0 su [0,1]?

Soluzione. Dimostriamo che

$$\lim_{n \to +\infty} \left(\sup_{x \in [0,1]} \left| \frac{x^n}{n} - 0 \right| \right) = \lim_{n \to +\infty} \left(\sup_{x \in [0,1]} \frac{x^n}{n} \right) = 0$$

Poiché

$$\sup_{x \in [0,1]} \frac{x^n}{n} = \frac{x^n}{n} \Big|_{x=1} = \frac{1}{n}$$

allora

$$\lim_{n \to +\infty} \left(\sup_{x \in [0,1]} \frac{x^n}{n} \right) = \lim_{n \to +\infty} \frac{1}{n} = 0$$

2.1.2 Criterio di Cauchy per la convergenza uniforme

Come nel caso delle successioni numeriche, esiste un **criterio di Cauchy** per la convergenza uniforme.

TEOREMA 2.1.1. - CRITERIO DI CAUCHY PER LA CONVERGENZA UNIFORME.

Siano $f_n: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$. Allora

 f_n converge uniformemente su $A \iff$

$$\iff \forall \varepsilon > 0, \ \exists N = N(\varepsilon) : \forall n, m \ge N, \ |f_n(x) - f_m(x)| < \varepsilon, \ \forall x \in A \quad (2.6)$$

OSSERVAZIONE. Il criterio di Cauchy è un *risultato teorico molto importante*, in quanto permette di mostrare la convergenza uniforme di una successione di funzioni *senza sapere* quale sia il limite come invece è necessario nella definizione di convergenza, in modo analogo a ciò che succede con il criterio di Cauchy per le *successioni numeriche*.

2.1.3 Visualizzazione della convergenza uniforme

Siamo abituati alle successioni numeriche v_n ed eventualmente a studiare il loro andamento in modo grafico, rappresentando sulle ascisse il numero n e sulle ordinate il valore v_n . Nel caso di successioni di funzioni l'argomento è una funzione, quindi per studiarle può essere utile proprio disegnare i grafici degli f_n , vedere come cambiano al variare di n e come convergono verso f.

Come appare *visivamente* la convergenza uniforme? Possiamo riscrivere la condizione della convergenza uniforme

$$\forall \varepsilon > 0$$
, $\exists N = N(\varepsilon)$, $\forall n \ge N$, $|f_n(x) - f(x)| < \varepsilon$, $\forall x \in A$

come

$$f(x) - \varepsilon < f_n(x) < f(x) + \varepsilon, \ \forall x \in A \text{ definitivamente}$$
 (2.7)

In altre parole, scelto ε , trovo un N nella successione tale che definitivamente f_n deve essere compresa nell'**intorno tubulare** di f(x), cioé le f_n devono stare in questo intorno

per ogni n sufficientemente grande ($\forall n \geq N$), quindi la striscia cattura globalmente tutte le f_n da un certo N in poi.

Visivamente la successione geometrica non converge uniformemente su (-1,1) a 0 perché non posso restringermi intorno alla funzione limite f(x) = 0 per qualsiasi ε io scelga, infatti $f_n(1) = 1, \forall n$.

DEFINIZIONE 2.1.6. - INTORNO TUBULARE.

Un **intorno tubulare** di larghezza arepsilon di una curva è l'unione di tutti i dischi di raggio arepsiloncon centro un punto di una curva.

2.1.4 Generalizzazioni della convergenza uniforme

Prima di tutto, ricordiamo le definizioni di norma e spazio normato.

DEFINIZIONE 2.1.7. - SPAZIO NORMATO E NORMA.

Uno **spazio normato** è una coppia $(X, \|\cdot\|)$ dove X è un spazio vettoriale su \mathbb{K} reale o complesso e $\|\cdot\|: X \longrightarrow \mathbb{R}^+$ è una funzione detta **norma**, cioè tale che $\forall x, y \in X, \lambda \in$

- 1. $||x|| \ge 0$, $||x|| = 0 \iff x = 0$.
- 2. $\|\lambda x\| = |\lambda| \|x\|$. 3. $\|x + y\| \le \|x\| + \|y\|$.

Osservazione. Ogni spazio normato è anche uno spazio metrico se consideriamo la **metrica indotta dalla norma**, cioè la funzione data da d(x, y) := ||x - y||.

Generalizziamo la definizione di convergenza uniforme considerando f_n , $f:A\longrightarrow Y$, con A insieme qualsiasi e Y uno spazio normato; se vogliamo che valga anche il criterio di Cauchy è necessario che *Y* sia anche uno spazio **completo**.

DEFINIZIONE 2.1.8. - SUCCESSIONE DI CAUCHY.

Una successione $v_n \in X$ è **di Cauchy** in X se

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) : \forall n, m \ge N, \ d(v_n, v_m) < \varepsilon$$
 (2.8)

DEFINIZIONE 2.1.9. - SPAZIO COMPLETO.

Uno spazio metrico è detto completo se tutte le successioni di Cauchy convergono.

OSSERVAZIONE. Una successione convergente è *sempre* di Cauchy, ma in generale *non tutte* le successioni di Cauchy convergono. L'implicazione opposta è vera solo se lo spazio è completo.

Possiamo ora, date queste nuove ipotesi, riformulare la convergenza uniforme.

DEFINIZIONE 2.1.10. - CONVERGENZA UNIFORME, GENERALIZZATA.

Siano f_n , $f:A\longrightarrow Y$ con A insieme qualsiasi e Y spazio normato completo. Si dice che f_n converge uniformemente a f su A se

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) : \forall n \ge N, \ ||f_n(x) - f(x)|| < \varepsilon, \ \forall x \in A$$
 (2.9)

Digressione. Volendo è possibile generalizzare ulteriormente parlando di convergenza uniforme per funzioni a valori in semplici **spazi metrici** (completi), sostituendo a $||f_n(x) - f(x)|| < \varepsilon$ la condizione $d(f_n(x), f(x)) < \varepsilon$, infatti se non ci si trova in uno spazio vettoriale potrebbe non essere definita la differenza. Nei nostri studi non affronteremo ciò e ci limiteremo a considerare il caso di spazi normati (completi).

2.2 CONVERGENZA PUNTUALE

Durante gli studi di Calcolo delle probabilità si è parlato di tre tipi di convergenze di successioni di variabili aleatorie: la **convergenza in probabilità**, la **convergenza quasi certa** e la **convergenza in legge** (o in distribuzione). Consideriamo ora quest'ultima, di cui riportiamo la definizione.

DEFINIZIONE 2.2.1. - CONVERGENZA IN LEGGE.

Dato $(\Omega, \mathcal{M}, \mathbb{P})$ spazio di probabilità, $X_n, X : \Omega \longrightarrow \mathbb{R}$ variabili aleatorie e le due corrispettive funzioni di distribuzione

$$F_n: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto F_n(x) = \mathbb{P}(X_n \le x), \ \forall x \in \mathbb{R}$

$$F: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto F(x) = \mathbb{P}(X \le x), \ \forall x \in \mathbb{R}$

allora si dice che X_n converge a X in legge $\left(X_n \xrightarrow{d} X\right)$ se

$$\lim_{n \to +\infty} F_n(x) = F(x), \ \forall x \in \mathbb{R} \text{ punto di continuità di } F.$$
 (2.10)

Quello che abbiamo appena scritta non è altro che il caso applicato agli *studi probabili-* stici della **convergenza puntuale** di una successione ad una funzione limite nel punto x.

DEFINIZIONE 2.2.2. - CONVERGENZA PUNTUALE.

Siano f_n , $f:A\longrightarrow Y$ con A insieme qualsiasi e Y spazio normato (completo). f_n converge a f **puntualmente** in ogni punto di A se

$$\forall x \in A, \ \forall \varepsilon > 0, \ \exists N = N(\varepsilon, x) : \ \forall n \ge N, \ \|f_n(x) - f(x)\| < \varepsilon$$
 (2.11)

Confrontiamo qui f_n , $f: A \subseteq R \longrightarrow \mathbb{R}$:

1. **(CU)** f_n converge a f uniformemente su A se

$$\forall \varepsilon > 0$$
, $\exists N = N(\varepsilon) : \forall n \ge N$, $|f_n(x) - f(x)| < \varepsilon$, $\forall x \in A$

2. **(CP)** f_n converge a f **puntualmente** in ogni punto di A se

$$\forall x \in A, \ \forall \varepsilon > 0, \ \exists N = N(\varepsilon, x) : \ \forall n \ge N, \ |f_n(x) - f(x)| < \varepsilon$$

Il quantificatore esistenziale \exists implica che ciò che esiste dipende da tutto ciò che lo precede: nella convergenza puntuale N non dipende dal solo ε come così capita nella **convergenza uniforme**, ma anche da x. La convergenza uniforme è più restrittiva rispetto alla puntuale perché la soglia N è indipendente da x, quindi basta trovare un solo N che va bene per tutte le $x \in A$ (ed è questo il motivo per cui $\forall x \in A$ appare al fondo della formula), al contrario della convergenza puntuale in cui la soglia N dipende dalla x che consideriamo.

OSSERVAZIONE. Questa differenza è concettualmente analoga a quella che c'è fra continuità uniforme e continuità.

OSSERVAZIONE. Possiamo considerare $\forall \varepsilon > 0$ due punti x' e x'' su cui valutare la **soglia** N di un successione di funzioni: in questo caso abbiamo per il primo punto $N(\varepsilon, x')$ e per il secondo $N(\varepsilon, x'')$. Vediamo subito che max $(N(\varepsilon, x'), N(\varepsilon, x''))$ è una soglia lecita sia per x' sia x''.

Finché si ha un numero finito di punti si può considerare il massimo, ma in generale se voglio passare dalla convergenza puntuale alla convergenza uniforme avendo un numero infinito di punti devo considerare

$$\sup_{x\in A}N\left(\varepsilon,x\right)$$

- Se $\sup_{x \in A} N(\varepsilon)$ è finito, allora $\sup_{x \in A} N(\varepsilon) = \max_{x \in A} N(\varepsilon) = N(\varepsilon)$ e c'è convergenza uniforme.
- Se $\sup_{x \in A} N(\varepsilon) = +\infty$ allora *non* c'è convergenza uniforme.

Dalle definizioni segue immediatamente che

 f_n converge uniformemente a f in $A \Longrightarrow f_n$ converge puntualmente a f in ogni punto di A (2.12)

ma in generale vale che la convergenza puntuale NON implica la convergenza uniforme perché fissata la tolleranza ε la soglia N potrebbe cambiare al variare di $x \in A$.

Евемрю. Consideriamo la successione geometrica $f_n(x) = x^n$, $\forall n \ge 0$. Dagli studi fatti nel corso di Analisi 1 si ha $\forall x \in \mathbb{R}$ fissato

$$\lim_{n \to +\infty} x^n = \begin{cases} +\infty & \text{se } x > 1\\ 1 & \text{se } x = 1\\ 0 & \text{se } -1 < x < 1\\ \text{non esiste} & \text{se } x \le 1 \end{cases}$$

Allora x^n converge puntualmente a

$$f(x) = \begin{cases} 1 & \text{se } x = 1 \\ 0 & \text{se } -1 < x < 1 \end{cases}$$

in ogni punto di (-1,1] e la funzione limite è discontinua.

Abbiamo provato precedentemente che $f_n(x) = x^n$ converge uniformemente a $f \equiv 0$ in ogni intervallo $[-a,a] \subsetneq (-1,1)$, $\forall a \in (0,1)$, ma *non* converge uniformemente a f = 0 in (-1,1).

Questo mostra che su (-1,1) c'è convergenza puntuale ma non uniforme.

OSSERVAZIONE. Questo esempio mostra inoltre che la CP *non* è sufficiente in generale per trasferire la continuità alla funzione limite.

2.3 PROPRIETÀ DI REGOLARITÀ NEL CASO DI CONVERGENZA UNIFORME E PUNTUALE

Adesso studiamo il diverso comportamento delle due tipologie di convergenza viste rispetto alle proprietà di regolarità: se le funzioni f_n della successione sono limitate/continue/integrabili/differenziabili, la funzione limite f è limitata/continua/integrabile/differenziabile?

2.3.1 Limitatezza

TEOREMA 2.3.1. - TEOREMA DI LIMITATEZZA PER SUCCESSIONI.

Siano $f_n, f : [a, b] \longrightarrow \mathbb{R}$, $n \ge 1$ tali che

- 1. f_n limitata su [a, b], $\forall n \ge 1$.
- 2. f_n converge uniformemente a f su [a,b].

Allora f è limitata su [a, b].

Dimostrazione. Dobbiamo provare e f è limitate, ovvero che

$$\exists M > 0 \colon |f(x)| \le n, \ \forall x \in A$$

Per l'ipotesi 2) sappiamo che

$$\forall \varepsilon > 0, \exists N = N(\varepsilon) : \forall n \ge N, |f_n(x) - f(x)| < \varepsilon, \forall x \in A$$

Posto ad esempio a $\varepsilon=2$, consideriamo la soglia $N_2=N$ (2) e $n=N_2$. Allora la relazione precedente risulta

$$|f_{N_2}(x) - f(x)| < 2, \ \forall x \in A$$

Consideriamo $f_{N_2}(x)$: per l'ipotesi 1) è limitata, cioè

$$\exists M_2 > 0: |f_{N_2}(x)| \le M_2, \ \forall x \in A$$

Per ogni $x \in A$ si ha quindi

$$|f(x)| = |f(x) + f_{N_2}(x) - f_{N_2}(x)| \le |f(x) - f_{N_2}(x)| + |f_{N_2}(x)| \le 2 + M_2 = M, \ \forall x \in A$$

 a La scelta di ε è assolutamente arbitraria.

DIGRESSIONE. Il risultato si generalizza ponendo $f_n, f: X \longrightarrow Y$, dove X è un qualunque insieme e Y è uno spazio normato.

La convergenza puntuale non è sufficiente per trasferire la limitatezza alla funzione limite: infatti, possiamo costruire un controesempio di una successione f_n limitata che converge puntualmente ad una funzione non limitata.

Esempio. Sia $f_n:(0,1] \longrightarrow \mathbb{R}$, $n \ge 1$, definita da

$$f_n(x) = \begin{cases} n & \text{se } 0 < x < \frac{1}{n} \\ \frac{1}{x} & \text{se } x \ge \frac{1}{n} \end{cases}$$

 $\forall x \in (0,1].$

Un grafico qualitativo di f_n è rappresentato in figura.

Per ogni $n \ge 1$ la funzione f_n è limitata su (0,1]. Inoltre, $\forall x \in (0,1]$ si ha

$$\lim_{n \to +\infty} f_n(x) = \frac{1}{x}$$

Infatti, fissato $x \in (0,1]$, indicando con le parentesi quadre la parte intera e posto

$$n_x = \left[\frac{1}{x}\right] + 1$$

allora se $n \ge n_x$ si ha x > 1/n e dunque

$$f_n(x) = \frac{1}{x}$$

Si ha dunque

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{1}{x} = \frac{1}{x}$$

La successione di funzioni *limitate* f_n converge quindi puntualmente $\forall x \in (0,1]$ alla funzione $\frac{1}{x}$ che **non** è limitata su (0,1].

2.3.2 Continuità

TEOREMA 2.3.2. - TEOREMA DI CONTINUITÀ PER SUCCESSIONI.

Siano $f_n, f : [a, b] \longrightarrow \mathbb{R}$, $n \ge 1$ tali che

- 1. f_n continua su [a, b], $\forall n \ge 1$.
- 2. f_n converge uniformemente a f su [a, b].

Allora f è continua su [a, b].

DIMOSTRAZIONE. Sia $x_0 \in [a, b]$ fissato. Dobbiamo dimostrare che

$$\forall \varepsilon > 0, \ \exists \delta > 0: |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Per l'ipotesi 2) sappiamo che f_n converge uniformemente; allora, fissato $\varepsilon > 0$, $\exists N = N \ (\varepsilon) \in \mathbb{N}$ tale che

$$|f_N(x) - f(x)| < \frac{\varepsilon}{3}, \ \forall x \in [a, b]$$

Questa relazione chiaramente vale anche per x_0 :

$$|f_N(x_0) - f(x_0)| < \frac{\varepsilon}{3}$$

Per l'ipotesi 1) ogni f_n è continua in x_0 , in particolare f_N la è. Per definizione di continuità, considerato sempre lo stesso $\varepsilon > 0$ di prima $\exists \delta > 0$ tale che se $|x - x_0| < \delta$ si ha

$$\left|f_{N}\left(x\right)-f_{N}\left(x_{0}\right)\right|<\frac{\varepsilon}{3}$$

Quindi, se $|x - x_0| < \delta$ abbiamo

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

Digressione. Il risultato si generalizza ponendo $f_n, f: X \longrightarrow Y$, dove X è un qualunque insieme e Y è uno spazio normato.

La convergenza puntuale non è sufficiente per trasferire la continuità alla funzione limite: infatti, possiamo costruire un controesempio di una successione f_n continua che converge puntualmente ad una funzione non continua.

Esempio. Consideriamo la successione geometrica $f_n(x) = x^n$, $n \ge 1$, sull'intervallo [0,1]. Sappiamo che essa converge puntualmente in ogni punto di [0,1] alla funzione limite

$$f(x) = \begin{cases} 0 & \text{se } 0 \le x < 1\\ 1 & \text{se } x = 1 \end{cases}$$

La successione di funzioni *continue* f_n converge quindi puntualmente per ogni $x \in [0,1]$ alla funzione f che **non** è continua su [0,1].

2.3.3 Integrabilità e passaggio al limite sotto segno di integrale

D'ora in avanti indicheremo con $\mathcal{R}([a,b])$ l'insieme delle funzioni integrabili secondo Riemann su [a,b].

TEOREMA 2.3.3. - TEOREMA DI INTEGRABILITÀ PER SUCCESSIONI, PASSAGGIO AL LIMITE SOTTO SEGNO DI INTEGRALE.

Siano $f_n, f : [a, b] \longrightarrow \mathbb{R}$, $n \ge 1$ tali che

- 1. $f_n \in \mathcal{R}([a,b]), \forall n \geq 1$.
- 2. f_n converge uniformemente a f su [a, b].

Allora

- 1. $f \in \mathcal{R}([a,b])$.
- 2. Vale il passaggio al limite sotto segno di integrale:

$$\lim_{n \to +\infty} \int_{a}^{b} f_n(x) = \int_{a}^{b} \lim_{n \to +\infty} f_n(x) dx = \int_{a}^{b} f(x) dx$$
 (2.13)

Osservazione. Nel caso di un intervallo illimitato la convergenza uniforme

- *non* è condizione sufficiente per il passaggio al limite sotto il segno di integrale, e non è necessaria neanche nel caso limitato
- *non* è condizione sufficiente per trasferire alla funzione limite l'integrabilità Inoltre la convergenza puntuale *non* è condizione sufficiente per il passaggio al limite sotto il segno di integrale, nemmeno nel caso di un intervallo limitato. Di seguito vedremo dei controesempi.

Vedremo la dimostrazione di una versione più generica del teorema quando parleremo degli integrali di Lebesgue.

Esempi. Per quanto questo teorema ha una notevole importanza, ha un campo d'azione particolarmente limitato. Infatti, anche cambiando leggermente le ipotesi non è più possibile affermare la tesi. Vediamo alcuni di questi controesempi.

- 1. La convergenza **uniforme** *non* è **sufficiente** per trasferire alla funzione limite l'integrabilità su un intervallo *illimitato*.
- 2. La convergenza **uniforme** *non* è condizione **necessaria** per il passaggio al limite sotto segno di integrale.
- 3. La convergenza **uniforme** *non* è condizione **sufficiente** per il passaggio al limite sotto il segno di integrale nel caso in un intervallo *illimitato*.
- 4. La convergenza **puntuale** *non* è condizione **sufficiente** per il passaggio al limite sotto il segno di integrale, *nemmeno* nel caso di un intervallo *limitato*.

DIMOSTRAZIONE.

I Consideriamo la successione di funzioni $f_n:[1,+\infty)\longrightarrow \mathbb{R}$ definite da

$$f_n(x) = \frac{n}{nx + x^2}, \ \forall x \ge 1, n \ge 1$$

Per ogni $x \ge 1$ osserviamo che $f_n(x) \sim \frac{n}{nx}$ per $n \to +\infty$, quindi si ha

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{n}{nx} = \frac{1}{x}$$

Si ha quindi convergenza puntuale in ogni punto di $[1, +\infty)$ alla funzione $f(x) = \frac{1}{x}$. Inoltre, la convergenza è uniforme su $[1, +\infty)$: vale infatti

$$|f_n(x) - f(x)| = \left| \frac{n}{nx + x^2} - \frac{1}{x} \right| = \frac{1}{n+x}$$

per ogni $x \ge 1$, $n \ge 1$. Per monotonia, si ha quindi

$$\sup_{x \ge 1} |f_n(x) - f(x)| = \sup_{x \ge 1} \frac{1}{n+x} = \frac{1}{n+1}, \ \forall n \ge 1$$

Deduciamo che

$$\lim_{n \to +\infty} \left(\sup_{x \ge 1} |f_n(x) - f(x)| \right) = \lim_{n \to +\infty} \frac{1}{n+1} = 0$$

da cui segue la convergenza uniforme su $[1,+\infty)$. Osserviamo ora che per ogni $n \ge 1$ si ha

$$f_n(x) \sim \frac{n}{x^2}, \ x \to +\infty$$

e dunque f_n è integrabile in senso improprio su $[1,+\infty)$, per ogni $n \ge 1$; la funzione limite $f(x) = \frac{1}{x}$ non è invece integrabile in senso improprio su $[1,+\infty)$. La successione di funzioni f_n integrabili su $[1,+\infty)$ converge quindi uniformemente su $[1,+\infty)$ alla funzione f che **non** è integrabile su $[1,+\infty)$.

II Consideriamo la successione di funzioni $f_n(x) = x^n$ definite su [0,1]. Osserviamo che

$$\lim_{n \to +\infty} \int_0^1 x^n dx = \lim_{n \to +\infty} \left[\frac{1}{n+1} x^{n+1} \right]_0^1 = \lim_{n \to +\infty} \frac{1}{n+1} = 0$$

Invece, sappiamo che x^n converge puntualmente in ogni punto di [0,1] alla funzione limite

$$f(x) = \begin{cases} 0 & \text{se } 0 \le x < 1\\ 1 & \text{se } x = 1 \end{cases}$$

dunque su [0,1] $f(x) = \lim_{n \to \infty} f_n(x)$ è una funzione *identicamente nulla* tranne un *numero finito* di punti (in questo caso, uno soltanto). Allora

$$\int_0^1 \lim_{n \to +\infty} x^n dx = \int_0^1 0 dx = 0$$

 x^n non converge uniformemente su [0,1], ma il passaggio al limite sotto segno di integrale si verifica comunque.

III Sia $f_n:[0,+\infty)\longrightarrow \mathbb{R}$, $n\geq 1$, definita da

$$f_n(x) = \begin{cases} \frac{1}{n} & \text{se } n \le x \le 2n\\ 0 & \text{se } x < n \lor x > 2n \end{cases}$$

Osserviamo che

$$\lim_{n \to +\infty} \int_{0}^{+\infty} f_{n}(x) dx = \lim_{n \to +\infty} \left[\int_{0}^{n} 0 dx + \int_{n}^{2n} \frac{1}{n} dx + \int_{2n}^{+\infty} 0 dx \right] = \lim_{n \to +\infty} \int_{n}^{2n} \frac{1}{n} dx =$$

$$= \lim_{n \to +\infty} \left[\frac{x}{n} \right]_{n}^{2n} = \lim_{n \to +\infty} \frac{2n - n}{n} = \lim_{n \to +\infty} 1 = 1$$

Invece, si vede immediatamente che

$$\int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx = \int_0^{+\infty} 0 dx = 0$$

Vediamo che f_n converge uniformemente su $[0,+\infty)$ a 0:

$$\sup_{x \in [0, +\infty)} \left| f_n(x) - f(x) \right| = \frac{1}{n}$$

$$\lim_{n \to +\infty} \left(\sup_{x \in [0, +\infty)} \right) = \lim_{n \to +\infty} \frac{1}{n} = 0$$

Anche aggiungendo al teorema l'ipotesi che f(x) sia Riemann-integrabile (in questo caso ciò è verificato), il passaggio al limite sotto segno di integrale *non* si verifica *necessariamente* se l'intervallo è illimitato.

IV Consideriamo la successione di funzioni $f_n(x) = nx(1-x^2)^n$ definite su [0,1]. Osserviamo che

$$\lim_{n \to +\infty} \int_0^1 nx \left(1 - x^2\right)^n dx = -\frac{1}{2} \lim_{n \to +\infty} \int_0^1 n(-2x) \left(1 - x^2\right)^n =$$

$$= -\frac{1}{2} \lim_{n \to +\infty} n \left[\frac{1}{n+1} \left(1 - x^2\right)^{n+1} \right]_0^1 = \frac{1}{2} \lim_{n \to +\infty} \frac{n}{n+1} = \frac{1}{2}$$

Invece, osserviamo che, se abbiamo fissato x rispetto alla n, allora $nx\left(1-x^2\right)^n=x\frac{\left(1-x^2\right)^n}{\frac{1}{n}}$ si può vedere come il rapporto di un esponenziale di ragione (in modulo) minore di 1 con il reciproco di un termine lineare, dunque per $n\to +\infty$ l'esponenziale tende a 0 molto più velocemente di $\frac{1}{n}$: segue che

$$\int_{0}^{1} \lim_{n \to +\infty} nx \left(1 - x^{2}\right)^{n} dx = \int_{0}^{1} 0 dx = 0$$

Per lo stesso ragionamento si vede che $f_n(x)$ converge puntualmente a 0 per ogni punto di [0,1], ma *non* si verifica il passaggio al limite sotto segno di integrale.

2.3.4 Derivabilità

Date $f_n, f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ con f la funzione limite di f_n su A, possiamo porci due domande:

- 1. f_n derivabile su $A \Longrightarrow f$ derivabile su A?
- 2. Vale lo scambio tra derivata e limite?

$$\lim_{n \to +\infty} f'_n(x) = D\left(\lim_{n \to +\infty} f(x)\right)$$

O, in altre parole, il diagramma seguente è commutativo?

$$\begin{array}{ccc}
f_n & \xrightarrow{D} & f'_n \\
\lim \downarrow & & \downarrow \lim \\
\lim_{n \to +\infty} f_n & \xrightarrow{D} & \lim_{n \to +\infty} f'_n
\end{array}$$

La risposta ad entrambe domande, a differenza di quanto ci si potrebbe aspettare dati i risultati su limitatezza, continuità e integrabilità, è **NO**, anche nel caso di *convergenza uniforme*.

Esempio. La convergenza uniforme non è condizione sufficiente per trasferire alla funzione limite la derivabilità.

Consideriamo la successione $f_n(x) = \sqrt{x^2 + \frac{1}{n}}, \ \forall x \in \mathbb{R}, \ \forall n \ge 1.$

 f_n è derivabile.

■ f_n abbiamo visto^a converge uniformemente su \mathbb{R} a f(x) = |x| che *non* è derivabile in x = 0

^aSi veda pag. 13, sezione 2.1.

ESEMPIO. LA CONVERGENZA UNIFORME NON È CONDIZIONE SUFFICIENTE PER POTER SCAM-BIARE LIMITE E DERIVATA, ANCHE SE SI AGGIUNGE L'IPOTESI CHE LA FUNZIONE LIMITE SIA DERIVABILE.

Consideriamo la successione $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}, \ \forall x \in \mathbb{R}, \ \forall n \ge 1.$

 f_n è derivabile su \mathbb{R} , $\forall n \geq 1$, e vale

$$f'(x) = \sqrt{n}\cos(nx), \ \forall x \in \mathbb{R}, \ \forall n \ge 1$$

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \underbrace{\frac{1}{\sqrt{n}}}_{\text{limitato}} \underbrace{\sin(nx)}_{\text{limitato}} = 0, \ \forall x \in \mathbb{R}$$

⋄ f_n converge **uniformemente** a f(x) = 0, $\forall x \in \mathbb{R}$:

$$\lim_{n \to +\infty} \left(\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| \right) = \lim_{n \to +\infty} \left(\sup_{x \in \mathbb{R}} \left| \frac{\sin(nx)}{\sqrt{n}} \right| \right) = \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

Osserviamo che in entrambi i casi f(x) = 0 su \mathbb{R} : questa funzione è chiaramente derivabile e vale

$$D\left(\lim_{n\to+\infty}f_n(x)\right)=D\left(0\right)=0,\ \forall x\in\mathbb{R}$$

D'altro canto, si ha

$$\lim_{n \to +\infty} D(f_n(x)) = \lim_{n \to +\infty} f'_n(x) = \lim_{n \to +\infty} \sqrt{n} \cos(nx)$$

Ad esempio, per x = 0 troveremmo

$$\lim_{n \to +\infty} D\left(f_n\left(x\right)\right) = \lim_{n \to +\infty} \sqrt{n} = +\infty$$

Quindi non si può per x = 0 scambiare limite e derivata-

Esiste comunque un legame tra successioni di funzioni, derivabilità e convergenza uniforme; scopriamo che non è più la successione f_n a dover convergere uniformemente, bensì sono le derivate f' della successioni a doverlo fare.

TEOREMA 2.3.4. - TEOREMA DI DERIVABILITÀ PER SUCCESSIONI.

Siano dati $f_n:(a,b)\longrightarrow \mathbb{R}$ tali che

- 1. f_n derivabili su (a, b).
- 2. $\exists c \in (a, b) : f_n(c)$ converge puntualmente.
- 3. f'_n converge uniformemente a g su (a, b).

Allora

- 1. $\exists f : (a,b) \longrightarrow \mathbb{R}$ tale che f_n converge uniformemente a f su (a,b).
- 2. *f* è derivabile.
- 3. $f'(x) = g(x), \forall x \in (a, b)$, ossia

$$D\left(\lim_{n\to+\infty} f_n(x)\right) = \lim_{n\to+\infty} f'_n(x), \ \forall x \in (a,b)$$
 (2.14)

Per dimostrare il teorema, faremo uso di tre strumenti: il *criterio di Cauchy per la convergenza uniforme* (teorema 2.1.1, pag. 15), il *teorema di scambio di limiti* e una conseguenza *teorema di Lagrange*. Enunciamo questi ultimi due.

TEOREMA 2.3.5. - TEOREMA DI SCAMBIO DI LIMITI.

Dati $g_n, g: I \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ e *c* punto di accumulazione di *I*, se

- 1. g_n converge uniformemente a g su I
- 2. Per ogni $n \ge 1$ esiste $L_n \in \mathbb{R}$ tale che

$$\lim_{x \to c} g_n(x) = L_n$$

Allora:

1. Esistono finiti

$$\lim_{x \to c} g(x), \qquad \lim_{n \to +\infty} L_n \tag{2.15}$$

2. Vale la relazione

$$\lim_{x \to c} g(x) = \lim_{n \to +\infty} L_n \tag{2.16}$$

ossia

$$\lim_{x \to c} \lim_{n \to +\infty} g_n(x) = \lim_{n \to +\infty} \lim_{x \to c} g_n(x)$$
(2.17)

COROLLARIO 2.3.1. - CONSEGUENZA AL TEOREMA DI LAGRANGE.

Sia $h: (\alpha, \beta) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ derivabile in (α, β) . Allora:

$$\forall u, v \in (\alpha, \beta), |h(u) - h(v)| \le \left(\sup_{x \in (\alpha, \beta)} |h'(x)| \right) |u - v| \tag{2.18}$$

Dimostrazione. (DEL TEOREMA DI DERIVABILITÀ PER SUCCESSIONI.)

1. Dimostriamo la *convergenza uniforme* di f_n su (a,b). Per il Criterio di Cauchy per la convergenza uniforme è sufficiente dimostrare che

$$\forall \varepsilon > 0, \exists N = N(\varepsilon) : \forall n, m \ge N, \sup_{x \in (a,b)} |f_n(x) - f_m(x)| < \varepsilon$$

Sia $\varepsilon > 0$. Per ogni $x \in (a, b)$, preso c come da ipotesi 2):

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - (f_n(c) - f_m(c))| + |f_n(c) - f_m(c)|$$

Studiamo il primo addendo. Per il corollario al teorema di Lagrange si ha

$$|f_n(x) - f_m(x) - (f_n(c) - f_m(c))| \le \left(\sup_{t \in (a,b)} |x - c|\right)$$

Inoltre, poiché per ipotesi 3) f'_n converge uniformemente su (a,b), si ha per il criterio di Cauchy che

$$\forall \varepsilon > 0, \ \exists N_1 = N_1(\varepsilon) : \forall n, m \ge N_1, \ \sup_{x \in (a,b)} \left| f_n'(x) - f_m'(x) \right| < \frac{\varepsilon}{2(b-a)}$$

Segue dunque che

$$|f_{n}(x) - f_{m}(x) - (f_{n}(c) - f_{m}(c))| \le \left(\sup_{t \in (a,b)} |x - c|\right) \le \frac{\varepsilon}{2(b-a)}|x - c| \le \frac{\varepsilon}{2}, \ \forall x \in (a,b), \ \forall n,m \ge N_{1}$$

Per il secondo addendo, dato che per ipotesi 2) f_n converge puntualmente in c, possiamo applicare il criterio di Cauchy per le successioni:

$$\forall \varepsilon > 0, \ \exists N_2 = N_2(\varepsilon) : \forall n, m \ge N_2, \ \left| f_n(c) - f'_m(c) \right| < \frac{\varepsilon}{2}$$

Posto $N = \max\{N_1, N_2\}$, per ogni $n, m \ge N$ si ha

$$|f_n(x) - f_m(x)| \le |f_n(x) - f_m(x) - (f_n(c) - f_m(c))| + |f_n(c) - f_m(c)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \ \forall x \in (a, b)$$

Da cui segue:

$$\sup_{x \in (a,b)} |f_n(x) - f_m(x)| < \varepsilon, \ \forall n, m \ge N$$

- Denominiamo f il limite puntuale di f_n , che esiste e coincide con quello uniforme per la dimostrazione appena fatta al punto 1). Riscriviamo la tesi 2) e 3) nella seguente maniera:

 - b. Per ogni $d \in (a, b)$ vale $\lim_{x \to d} \frac{f(x) f(d)}{x d}$ c. $\lim_{x \to d} \lim_{n \to +\infty} \frac{f_n(x) f_n(d)}{x d} = \lim_{n \to +\infty} \lim_{x \to d} \frac{f_n(x) f_n(d)}{x d}$. Verifichiamo le ipotesi del teorema di scambio dei limi

- $\lim_{\substack{x \to d \\ \text{su}(a,b)}} \frac{f_n(x) f_n(d)}{x d}$ esiste *finito* in quanto per ipotesi 1) gli f_n sono *derivabili* su (a,b).
- $\frac{f_n(x)-f_n(d)}{x-d}$ converge uniformemente su $(a,b)\setminus\{d\}$. Infatti, per ogni $\varepsilon > 0$ e per ogni $x \in (a,b) \setminus \{d\}$ si ha, in virtù del *corollario* al teorema di Lagrange

$$\left| \frac{f_{n}(x) - f_{n}(d)}{x - d} - \frac{f_{m}(x) - f_{m}(d)}{x - d} \right| \le \left| \frac{f_{n}(x) - f_{m}(x) - (f_{n}(d) - f_{m}(d))}{x - d} \right| \le \sup_{t \in (a,b)} \left| f'_{n}(t) - f'_{m}(t) \right|$$

Inoltre, si applica il *criterio di Cauchy* alle successione f_n' : per ogni $\varepsilon > 0$ $\exists N = N_0$ tale che per ogni $\forall n, m \geq N$ vale

$$\sup_{t \in (a,b)} \left| f_n'(t) - f_m'(t) \right| < \varepsilon$$

da cui segue

$$\left| \frac{f_n(x) - f_n(d)}{x - d} - \frac{f_m(x) - f_m(d)}{x - d} \right| < \varepsilon, \ \forall x \in (a, b) \setminus \{d\}$$

Per il *criterio di Cauchy* sulla convergenza uniforme, c'è convergenza uniforme su $(a,b) \setminus \{d\}$. Il teorema di scambio dei limiti garantisce che il limite

$$\lim_{x \to d} \lim_{n \to +\infty} \frac{f_n(x) - f_n(d)}{x - d} \iff \lim_{x \to d} \frac{f(x) - f(d)}{x - d}$$

esiste finito (tesi 2) e vale lo scambio di limite e derivata (tesi 3).

SERIE DI FUNZIONI

"BEEP BOOP QUESTA È UNA CITAZIONE."

Marinoвот, dopo aver finito le citazioni stupide.

Le Nel Capitolo 2 a pagina 11 abbiamo iniziato a trattare la convergenza uniforme e puntuale di successioni di funzioni. Adesso passiamo a parlare di serie di funzioni. [COMPLETARE]

3.1 SERIE IN UNO SPAZIO NORMATO

Innanzitutto, ricordiamo le definizioni di serie a valori reali e di convergenza (assoluta) di una serie a valore reali.

DEFINIZIONE 3.1.1. - SERIE A VALORI REALI E CONVERGENZA DI UNA SERIE.

Data una successione $x_n \in \mathbb{R}$, $n \ge 0$, la **serie** $\sum_{k=0}^{+\infty} x_k$ è la somma di tutti gli elementi della successione.

Considerata la somma parziale, o altresì detta ridotta

$$s_n = \sum_{k=0}^n x_k \quad \forall n \ge 0 \tag{3.1}$$

si dice che la serie $\sum_{k=0}^{+\infty} x_k$ converge se converge la successione s_n ; si pone in tal caso

$$\sum_{k=0}^{+\infty} x_k = \lim_{n \to +\infty} s_n \tag{3.2}$$

DEFINIZIONE 3.1.2. - CONVERGENZA ASSOLUTA.

Sia x_n una successione a valori reali. La serie $\sum_{k=0}^{+\infty} x_k$ converge assolutamente in \mathbb{R} se converge la serie $\sum_{k=0}^{+\infty} |x_k|$.

TEOREMA 3.1.1. - CONVERGENZA ASSOLUTA IMPLICA CONVERGENZA SEMPLICE.

Ogni serie di numeri reali assolutamente convergente è anche semplicemente convergente.

DIMOSTRAZIONE. Per dimostrare che la serie $\sum_{k=0}^{+\infty} x_k$ converge, per il *Criterio di Cauchy per*

le serie^a è sufficiente provare che

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}: \ \forall n \geq N, \ \forall p \in \mathbb{N}, \ \left| x_{n+1} + x_{n+2} + \ldots + x_{n+p} \right| < \varepsilon$$

Per ipotesi la serie $\sum_{k=0}^{+\infty} |x_k|$ converge: per il Criterio di Cauchy, si ha

$$\forall \varepsilon>0, \ \exists N\in\mathbb{N}\colon \forall n\geq N, \ \forall p\in\mathbb{N}, \ \left|\left|x_{n+1}\right|+\left|x_{n+2}\right|+\ldots+\left|x_{n+p}\right|\right|=\left|x_{n+1}\right|+\left|x_{n+2}\right|+\ldots+\left|x_{n+p}\right|<\varepsilon$$

D'altra parte, dalla disuguaglianza triangolare segue che

$$\left|x_{n+1}+x_{n+2}+\ldots+x_{n+p}\right|<\left|x_{n+1}\right|+\left|x_{n+2}\right|+\ldots+\left|x_{n+p}\right|<\varepsilon,\ \forall n\in\mathbb{N},\ \forall p\in\mathbb{N}$$

Dalle ultime due relazioni si deduce immediatamente la prima relazione e dunque la tesi. \Box

OSSERVAZIONE. Il teorema appena dimostrato è una conseguenza della **completezza** di \mathbb{R} . Infatti, abbiamo usato il *criterio di Cauchy*, che si basa sul fatto che le successioni di Cauchy convergono sempre in \mathbb{R} e quindi proprio per la completezza dei reali. Se lo spazio non è completo si ottiene solo che la successione delle ridotte è di Cauchy, e senza la completezza dello spazio non posso dire che convergono.

Il viceversa del teorema appena dimostrato non è valido, come segue dal seguente controesempio.

ESEMPIO. CONVERGENZA SEMPLICE NON IMPLICA CONVERGENZA ASSOLUTA

Consideriamo la serie $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$: non converge assolutamente in quanto la serie, con gli elementi in modulo, diventa

$$\sum_{n=1}^{+\infty} \left| (-1)^n \frac{1}{n} \right| = \sum_{n=1}^{+\infty} \frac{1}{n}$$

^aNelle "Note aggiuntive", a pagina 81 è possibile trovare maggiori dettagli sui criteri di Cauchy.

che, essendo la **serie armonica**^a, non converge. Tuttavia, la serie semplice è una serie a segni alterni e poiché

 $\lim_{n \to +\infty} \frac{1}{n} = 0.$

per il criterio di Leibniz la serie semplice converge. Pertanto, la convergenza semplice non implica la convergenza assoluta.

Prendiamo ora $x_n \in X$, con X un insieme generico. Per generalizzare la definizione di serie convergente abbiamo bisogno che su *X* si possano compiere i seguenti passaggi:

- Poter definire s_n , cioè è necessario *sommare* elementi di X.
- Poter definire la *convergenza* in *X*.

Se dotiamo l'insieme X di una struttura di **spazio normato** possiamo generalizzare ad una serie generale le definizioni precedentemente enunciate per le serie a valori reali: infatti, se X è spazio normato gode sia dell'essere uno spazio metrico (e quindi è spazio topologico di Hausdorff, il che permette di definire univocamente la convergenza della successione) sia dell'essere spazio vettoriale (che permette la somma di elementi).

Definizione 3.1.3. - Serie e convergenza di una serie.

Data una successione $x_n \in X$ in uno spazio *normato*, $n \ge 0$, la **serie** $\sum_{k=0}^{+\infty} x_k$ è la somma di tutti gli elementi della successione.

Considerata la somma parziale, o altresì detta ridotta

$$s_n = \sum_{k=0}^n x_k \quad \forall n \ge 0 \tag{3.3}$$

si dice che la serie $\sum_{k=0}^{\infty} x_k$ converge se converge la successione s_n ; si pone in tal caso

$$\sum_{k=0}^{+\infty} x_k = \lim_{n \to +\infty} s_n \tag{3.4}$$

DEFINIZIONE 3.1.4. - CONVERGENZA TOTALE O ASSOLUTA.

Sia $(X, \|\cdot\|)$ spazio normato e x_n una successione in X. La serie $\sum_{k=0}^{+\infty} x_k$ converge total-

mente o **assolutamente** in X se converge la serie $\sum_{k=0}^{\infty} ||x_k||$.

Dall'osservazione a pag. 32 il teorema "Convergenza assoluta implica convergenza semplice" (teorema 3.1.1, pag. 32) necessita della completezza dei reali. Per generalizzarlo ci basta lavorare in *spazi normati completi*.

^aNelle "Note aggiuntive", a pagina ?? è possibile trovare maggiori dettagli sulle serie notevoli.

Teorema 3.1.2. - Convergenza totale o assoluta implica convergenza semplice. Ogni serie in X spazio normato completo totalmente convergente è anche semplicemente convergente.

Dimostrazione. La dimostrazione è analoga a quella affrontata nel teorema 3.1.1, pag. 32: è sufficiente sostituire al valore assoluto |⋅| la norma ||⋅||. □

In generale, il problema della convergenza in spazi normati è *inesplorato*, ma se lo spazio è *completo* possiamo passare per la *convergenza totale* e studiare una serie a valori reali tramite i *criteri di convergenza*¹ noti dall'Analisi Matematica 1.

3.2 SERIE DI FUNZIONI

Consideriamo lo spazio $X = \mathcal{C}([a,b]; \mathbb{R}) = \mathcal{C}([a,b])$ delle funzioni continue su un intervallo compatto con la *metrica lagrangiana*:

$$d(f, g) = \max_{x \in [a,b]} |f(x) - g(x)|$$

Una serie convergente $\sum_{k=0}^{+\infty} f_k$ in questo spazio si può quindi scrivere, per definizione, come

$$\sum_{k=0}^{+\infty} f_k = \lim_{n \to +\infty} \sum_{k=0}^{n} f_k = \lim_{n \to +\infty} S_n$$

dove S_n è una successione di funzioni. Allora la condizione di convergenza di serie in X si può formulare come

$$\sum_{k=0}^{+\infty} f_k \text{ converge in } \mathscr{C}([a,b]) \iff S_n \text{ converge con metrica lagriangiana in } \mathscr{C}([a,b])$$

ossia

$$\sum_{k=0}^{+\infty} f_k \text{ converge in } \mathscr{C}([a,b]) \iff S_n \text{ converge uniformemente in } \mathscr{C}([a,b])$$

Per la stessa osservazione fatte a pag. 12, sezione 2.2, per parlare di convergenza uniforme non sono necessarie né la *compattezza* di [a,b] né la *continuità* delle funzioni. Possiamo *estendere* la definizione di convergenza di una serie di funzioni per

$$f_n:A\subseteq\mathbb{R}\longrightarrow\mathbb{R}$$

con A insieme contenuto nei reali o, ancora più in generale, per funzioni del tipo

$$f_n:X\longrightarrow Y$$

¹Nelle "Note aggiuntive", a pagina 83 è possibile trovare maggiori dettagli sui criteri di convergenza delle serie a valori reali.

3.2. SERIE DI FUNZIONI 35

dove *X* è un *insieme qualunque* e *Y* è uno **spazio normato completo**.

Studieremo quindi in questo capitolo le **serie di funzioni** $\sum_{k=0}^{\infty} f_k(x)$; per studiare la *conver*genza di tali serie applicheremo le convergenze viste in precedenza alla successione delle ridotte $S_n(x) = \sum_{k=0}^{n} f_k(x)$.

DEFINIZIONE 3.2.1. - CONVERGENZA DI UNA SERIE DI FUNZIONI.

In queste definizioni la convergenza delle ridotte si trasferisce sulla convergenza della serie:

- (CP) La serie ∑_{k=0}^{+∞} f_k(x) converge puntualmente in x ∈ A se S_n(x) converge puntualmente in x ∈ A.
 (CU) La serie ∑_{k=0}^{+∞} f_k(x) converge uniformemente in x ∈ A se S_n(x) converge
- uniformemente su A

Il criterio di Weierstrass 3.2.1

Per motivi che saranno chiari a partire dalla sezione 4.1 (pag. 41) sulle serie di potenze, in questa sottosezione lavoreremo nello spazio dei complessi $\mathbb C$.

Abbiamo dato la definizione di convergenza uniforme di una serie di funzione, ma essa non è di facile applicazione operativa. Infatti, la serie $\sum_{n=0}^{+\infty} f_n(z)$ converge uniformemente

su $A \subseteq \mathbb{C}$ se e solo se, definita S(z) la funzione limite delle ridotte $S_n(z) = \sum_{i=1}^n f_k(z)$, vale

$$\lim_{n \to +\infty} \left(\sup_{z \in A} |S_n(z) - S(z)| \right) = 0$$

Tuttavia, questa funzione richiede la conoscenza della somma S(z), cosa che in generale non avviene. Usare direttamente il criterio di Cauchy per la convergenza uniforme è sicuramente più conveniente, ma non è semplice comunque da verificare. Esiste tuttavia una condizione sufficiente che consente di provare la convergenza uniforme senza la conoscenza della somma limite.

Proposizione 3.2.1. - Criterio di Weierstrass.

Siano $f_n: A \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ tale che

- 1. $\forall n \in \mathbb{N}, \exists c_n \in \mathbb{R} : |f_n(z)| \le c_n, \forall z \in A.$
- 2. $\sum_{n=1}^{+\infty} c_n$ converge (come serie numerica).

Allora $\sum_{n=1}^{\infty} f_n(z)$ converge uniformemente in A.

OSSERVAZIONE. La dimostrazione utilizza il criterio di Cauchy per la convergenza unifor-

Osservazione. Significato del criterio.

Le ipotesi 1) e 2) implicano immediatamente la convergenza puntuale (assoluta) della serie di potenze in ogni $z \in A$. Infatti, fissato z ho la relazione $|f_n(z)| \le c_n$; da questo vale

$$\sum_{n=0}^{+\infty} |f_n(z)| \le \sum_{n=0}^{+\infty} c_n$$

e, poiché la serie $\sum_{n=0}^{+\infty} c_n$ converge, $\sum_{n=0}^{+\infty} |f_n(z)|$ converge per criterio del confronto e quindi

la serie di funzioni converge puntualmente.

Quello che osserviamo nello specifico è che l'ipotesi 1) funge da maggiorazione uniforme della serie di funzioni su A, da cui possiamo ricavare, anche a partire dalla convergenza puntuale della serie, la convergenza uniforme su A.

PROPRIETÀ DI REGOLARITÀ DI UNA SERIE DI FUNZIONI 3.3

Ci poniamo ora il problema di studiare come si modificano i teoremi di limitatezza, continuità, integrabilità, integrabilità e derivabilità visti nel Capitolo 2 a pagina 11 nel caso delle serie di funzioni.

3.3.1 Limitatezza

TEOREMA 3.3.1. - TEOREMA DI LIMITATEZZA PER SERIE.

Siano $f_n: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$, $n \ge 1$ tali che

- 1. f_n limitata su A, $\forall n \ge 1$.

2. $\sum_{n=0}^{+\infty} f_n \text{ converge } \text{uniformemente a } f \text{ su } A.$ Allora, posto $S(x) = \sum_{n=0}^{+\infty} f_n$, $\forall x \in A$, S(x) è limitata su A.

Dimostrazione. La strategia è passare per la successione delle ridotte. Posto $S_n(x) =$

$$\sum_{k=0}^{n} f_k(x), \ \forall x \in A, \text{ allora si ha:}$$

- S_n limitata su A, poiché le f_k lo sono.
- S_n convergente uniformemente a S su A.

Per il teorema di limitatezza per le successioni, S è limitata su A.

3.3.2 Continuità

Si ha che la continuità è del tutto analoga alla limitatezza.

TEOREMA 3.3.2. - TEOREMA DI CONTINUITÀ PER SERIE.

Siano $f_n: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}$, $n \ge 1$ tali che

- 1. f_n continua su A, $\forall n \ge 1$. 2. $\sum_{n=0}^{+\infty} f_n$ converge uniformemente a f su A.

Allora, posto $S(x) = \sum_{n=0}^{+\infty} f_n$, $\forall x \in A$, S(x) è continua su A.

Dimostrazione. La strategia è passare per la successione delle ridotte. Posto $S_n(x) =$

$$\sum_{k=0}^{n} f_k(x), \ \forall x \in A, \text{ allora si ha:}$$

- S_n continua su A, poiché le f_k lo sono.
 S_n convergente uniformemente a S su A.

Per il teorema di continuità per le successioni, S è continua su A.

3.3.3 Integrabilità e scambio tra integrale e serie

TEOREMA 3.3.3. - TEOREMA DI INTEGRABILITÀ PER SERIE, SCAMBIO TRA INTEGRALE E SERIE.

Sia $f_n, f : [a, b] \longrightarrow \mathbb{R}$, $n \ge 1$ tali che

- 1. $f_n \in \mathcal{R}([a,b]), \forall n \geq 1.$
- 2. $\sum_{n=0}^{+\infty} f_n \text{ converge } uniformemente \text{ a } f \text{ su } [a,b].$

Allora, posto $S(x) = \sum_{n=0}^{+\infty} f_n$, $\forall x \in [a, b]$:

- 1. $S \in \mathcal{R}([a,b])$
- 2. Vale lo scambio tra integrale e serie:

$$\int_{a}^{b} \sum_{k=0}^{+\infty} f_{k}(x) dx = \sum_{k=0}^{+\infty} \int_{a}^{b} f_{k}(x) dx$$
 (3.5)

Dimostrazione. Posto $S_n(x) = \sum_{k=0}^n f_k(x)$, $\forall x \in [a,b]$, allora si ha:

- $S_n \in \mathcal{R}([a,b])$, poiché le f_k lo sono.
- S_n convergente uniformemente a S su [a,b].

Per il teorema di integrabilità per le successioni:

- $S \in \mathcal{R}([a,b])$ (somma di funzioni integrabili).
- Vale il passaggio al limite sotto segno di integrale per la successione delle ridotte,

$$\lim_{n \to +\infty} \int_{a}^{b} S_{n}(x) dx = \int_{a}^{b} S(x) dx$$

Poiché l'integrale di una somma finita è uguale ad una somma finita di integrali, il

primo membro dell'equazione può essere riscritto come

$$\lim_{n \to +\infty} \int_{a}^{b} \sum_{k=0}^{n} f_{k}(x) dx = \lim_{n \to +\infty} \sum_{k=0}^{n} \int_{a}^{b} f_{k}(x) dx = \sum_{k=0}^{+\infty} \int_{a}^{b} f_{k}(x) dx$$

e poiché
$$\int_{a}^{b} S(x) dx = \int_{a}^{b} \sum_{k=0}^{+\infty} f_{k}(x) dx$$
, otteniamo la tesi:

$$\int_{a}^{b} \sum_{k=0}^{+\infty} f_{k}(x) \, dx = \sum_{k=0}^{+\infty} \int_{a}^{b} f_{k}(x) \, dx$$

3.3.4 Derivabilità

TEOREMA 3.3.4. - DERIVABILITÀ TERMINE A TERMINE.

Sia $f_n:(a,b)\longrightarrow \mathbb{R}$ tale che

1. f_n derivabile su (a, b), $\forall n \ge 1$.

2.
$$\exists c \in (a,b)$$
 tale che $\sum_{n=1}^{+\infty} f_n(c)$ converge

3.
$$\sum_{n=1}^{+\infty} f'_n(x)$$
 converge uniformemente su (a,b) .

Allora:

1. $\sum_{n=1}^{+\infty} f_n(x)$ converge uniformemente su (a,b)

Inoltre, detta f la funzione somma:

3. f è derivabile su (a, b)

4.
$$f'(x) = \sum_{n=1}^{+\infty} f'_n(x)$$
, $\forall x \in (a, b)$, ossia vale la **derivazione termine** a **termine**:

$$D\left(\sum_{n=1}^{+\infty} f_n(x)\right) = \sum_{n=1}^{+\infty} f'_n(x), \ \forall x \in (a,b)$$
(3.6)

DIMOSTRAZIONE. Si applica il teorema di derivazione alla successione delle ridotte

$$S_n(x) = \sum_{k=1}^n f_k(x), \ \forall x \in (a,b), \ \forall n \ge 1$$

Verifichiamo le ipotesi:

- 1. S_n è derivabile su $(a,b) \ \forall n \ge 1$ perché lo sono le f_k su (a,b), $\forall k \ge 1$.
- 2. $S_n(c)$ converge perché $\sum_{n=1}^{+\infty} f_n(c)$ converge per ipotesi.

3. $S'_n(x) = \sum_{k=1}^n f'_k(x)$ converge uniformemente su (a, b) per ipotesi.

Allora per il teorema di derivazione per le successioni si ha che

$$S_n(x)$$
 converge uniformemente su (a, b)

ossia, per definizione, che

$$\sum_{n=1}^{+\infty} f(x)$$
 converge uniformemente su (a, b)

Inoltre, definita la somma $f(x) = \sum_{n=1}^{+\infty} f_n(x) = \lim_{n \to +\infty} S_n(x)$, $\forall x \in (a,b)$, si ha che f è derivabile su (a,b) e per il teorema di derivazione

$$f'(x) = \lim_{n \to +\infty} S'_n(x) = \lim_{n \to +\infty} \sum_{k=1}^{+\infty} f'_k(x) = \sum_{k=1}^{+\infty} f'_k(x), \ \forall x \in (a, b)$$

OSSERVAZIONE. La derivazione termine a termine si può interpretare anche come "la derivata della serie è la serie delle derivate", estendendo così la regola delle somma *finita* delle derivate.

SERIE DI POTENZE

"BEEP BOOP QUESTA È UNA CITAZIONE."

Marinobot, dopo aver finito le citazioni stupide.

L Nel Capitolo 2 a pagina 11 abbiamo iniziato a trattare la convergenza uniforme e puntuale di successioni di funzioni. Adesso passiamo a parlare di serie di funzioni. [COMPLETARE]

4.1 SERIE DI POTENZE

Definizione 4.1.1. - Una serie di potenze è una serie di funzioni della forma

$$\sum_{n=0}^{+\infty} a_n (x - x_0)^n \tag{4.1}$$

con a_n numeri reali (eventualmente dipendenti da n) e x, $x_0 \in A \subseteq \mathbb{R}$, dove x_0 è dato.

L'ambito naturale di studio delle serie di potenze è \mathbb{C} : da qui in poi considereremo la serie (con anche i suoi coefficienti) in campo complesso:

$$\sum_{n=0}^{+\infty} a_n (z - z_0)^n \qquad a_n, \ z \in \mathbb{C}$$
(4.2)

dove $z \in A \subseteq \mathbb{C}$. Cambiando le variabili possiamo centrare la serie in $z_0 = 0$, cioè studiare la serie

$$\sum_{n=0}^{+\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + a_3 z^3 \dots$$
 (4.3)

Chiaramente la serie così scritta converge in z=0 (o, se prendiamo la serie non centrata nell'origine, in $z=z_0$), dato che la serie ha termini costantemente nulli e quindi è banalmente convergente.

Ci interessa ora studiare in quale insieme di C tali serie convergono.

TEOREMA 4.1.1. - INSIEME DI CONVERGENZA.

Se una serie di potenze converge in $z_0 \in \mathbb{C}$, allora essa converge (assolutamente) in ogni punto z con $|z| < |z_0|$.

Dimostrazione. Sappiamo dalle ipotesi che la serie $\sum_{n=0}^{+\infty} a_n z_0^n$ è convergente, quindi per la condizione necessaria di convergenza il termine $a_n z_0^n$ tende a zero. Per definizione di limite significa che

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) \in \mathbb{N}: \ \forall n \geq N, \ \left| a_n z_0^n \right| < \varepsilon$$

Scegliamo arbitrariamente $\varepsilon=1$, cioè $\exists N_1=N(1): \forall n\geq N$ vale $\left|a_nz_0^n\right|<1$. Allora definitivamente vale

$$|a_n z^n| = \left| a_n z_0^n \right| \left| \frac{z}{z_0} \right|^n \le \left| \frac{z}{z_0} \right|^n$$

Poiché per ipotesi $|z| < |z_0|$, vale $\left|\frac{z}{z_0}\right| < 1$ e quindi la serie geometrica $\sum_{n=0}^{+\infty} \left|\frac{z}{z_0}\right|$ converge.

Per il teorema di confronto segue che anche la serie $\sum_{n=0}^{+\infty} |a_n z^n|$ è convergente e quindi

$$\sum_{n=0}^{+\infty} a_n z^n \text{ converge (assolutamente)}.$$

Con questo non solo abbiamo dimostrato che se la serie di potenze converge in z_0 allora la serie converge in tutti i punti z con $|z| < |z_0|$, ma implicitamente sappiamo anche che la serie non converge in z_0 allora non converge per $|z| > |z_0|$.

Infatti, se in z_0 la serie non converge supponiamo per assurdo che esista z^* , con $|z^*| > |z_0|$, in cui la serie converge. Per il teorema appena dimostrato in tutti i punti z con $|z| < |z^*|$ la serie di potenze converge, ma fra questi è compreso anche z_0 dove essa *non* converge.

4.1.1 Il raggio di convergenza

Per queste osservazioni l'insieme di convergenza della serie è un *cerchio* centrato nell'origine di un certo *raggio R*. Diamo una definizione formale di questo raggio.

DEFINIZIONE 4.1.2. - CERCHIO E RAGGIO DI CONVERGENZA.

Prendiamo $A = \left\{ z \mid \sum_{n=0}^{+\infty} a_n z^n \text{ converge} \right\} \subseteq \mathbb{C}$ l'insieme di convergenza della serie di potenze centrata in $z_0 = 0$ e consideriamo l'insieme $E = \{|z| \mid z \in A\} \subseteq \mathbb{R}$ dato da tutti i moduli dei punti di convergenza della serie. Il **raggio di convergenza** è definito come

$$r := \sup E = \sup \left\{ |z| \left| \sum_{n=0}^{+\infty} a_n z^n \text{ converge} \right| \right\}$$

Esso può essere:

- \blacksquare R = 0; in tal caso la serie converge *solo* per z = 0.
- $R = +\infty$; in tal caso la serie converge per ogni $z \in \mathbb{C}$.

4.1. SERIE DI POTENZE 43

■ $0 < R < +\infty$; in base al teorema 4.1.1, pag. 4.1.1, la serie converge (assolutamente) per |z| < r, non converge per |z| > r e a priori non abbiamo alcuna informazione per i punti z sul bordo, cioè tali che |z| = r. L'insieme di convergenza risulta essere un **cerchio aperto** centrato nell'origine di raggio R, a cui si aggiungono eventualmente altri punti di convergenza sul bordo (tutti, nessuno o solo alcuni).

Poiché sappiamo che la serie converge assolutamente per |z| < r, lo studio del raggio di convergenza passa attraverso lo studio della serie assoluta associata $\sum_{n=0}^{+\infty} |a_n z^n|$.

Per determinare il raggio di convergenza, possiamo ad esempio usare il **criterio di D'A-lembert** o detto anche *criterio del rapporto*, che ci fornisce una condizione *sufficiente* su come determinare il raggio di convergenza.

PROPOSIZIONE 4.1.1. - CRITERIO DI D'ALEMBERT O DEL RAPPORTO.

Data la serie $\sum_{n=0}^{+\infty} a_n z^n$, se $a_n \neq 0$ definitivamente ed esiste il limite

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = L$$

allora

- 1. $L=0 \implies R=+\infty$
- 2. $L = +\infty \implies R = 0$
- 3. $0 < L < +\infty \implies R = \frac{1}{L}$

Questa proposizione ha il vantaggio di essere operativamente utile, ma ovviamente solo se valgono le ipotesi: non è scontato che il limite del rapporto sia ben definito! Un teorema più generale che vale *per ogni serie* è il *criterio della radice* o altresì noto come **teorema di Cauchy-Hadamard**.

TEOREMA 4.1.2. - TEOREMA DI CAUCHY-HADAMARD

Sia data la serie di potenze

$$\sum_{n=0}^{+\infty} a_n z^n$$

e sia

$$\lambda = \limsup_{n \to +\infty} \sqrt[n]{|n|} \tag{4.4}$$

Allora

- 1. Se $\lambda = 0$, la serie converge $\forall z \in \mathbb{C}$.
- 2. Se $0 < \lambda < +\infty$, la serie converge $R = \frac{1}{\lambda}$.
- 3. Se $\lambda = +\infty$, la serie converge solo in z = 0.

Osservazione. I tre casi scritti esauriscono tutti i casi possibili. Infatti, per la permanenza del segno del limsup^a vale

$$\sqrt[n]{|a_n|} \ge 0, \ \forall n \ge 0 \implies \limsup_{n \to +\infty} \sqrt[n]{|a_n|} \ge 0$$

Dimostrazione. (DEL TEOREMA DI CAUCHY-HADAMARD.) Partiamo dal dimostrare il punto 2): dobbiamo provare che $R = \frac{1}{\lambda}$, ossia

- Se $|z| < 1/\lambda$, allora $\sum_{n=0}^{+\infty} a_n z^n$ converge. Se $|z| > 1/\lambda$, allora $\sum_{n=0}^{+\infty} a_n z^n$ non converge.
- Sia z tale che $|z| < 1/\lambda$. Se z = 0 la serie banalmente converge. Se $z \neq 0$, vale $\lambda < 1/|z|$; consideriamo allora λ' tale che $\lambda < \lambda' < 1/|z|$: poiché $\lambda' > \lambda$, per la caratterizzazione del massimo limite si ha

$$\exists N: \forall n \geq N \ \sqrt[n]{|a_n|} < \lambda'$$

Proviamo che $\sum_{n=0}^{\infty} a_n z^n$ converge assolutamente usando il criterio del confronto.

$$|a_n z^n| = |a_n||z^n| = |a_n||z|^n < (\lambda')^n |z|^n = (\lambda'|z|)^n, \ \forall n \ge N$$

Questo è il termine *n*-esimo della serie geometrica $\sum_{n=0}^{+\infty} (\lambda'|z|)^n$ di ragione $\lambda'|z|$. Poiché $0 < \lambda'|z| < 1$ per la scelta di λ' , la serie geometrica converge e quindi per il

[&]quot;Nelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione di questo risultato insieme ad altri relativi al limsup e liminf.

4.1. SERIE DI POTENZE 45

criterio del confronto converge anche la serie $\sum_{n=0}^{+\infty} |a_n z^n|$ e dunque converge anche

$$\sum_{n=0}^{+\infty} a_n z^n.$$

Sia z tale che $|z| > 1/\lambda$. Per mostrare la non convergenza della serie proviamo che la condizione necessaria di convergenza non è soddisfatta, ovvero

$$\lim_{n\to+\infty} a_n z^n \neq 0, \ \forall z \colon |z| > \frac{1}{\lambda}$$

Questo è equivalente a mostrare che

$$\lim_{n\to+\infty} |a_n z^n| \neq 0, \ \forall z \colon |z| > \frac{1}{\lambda}$$

Poiché $z \neq 0$, vale $\lambda > 1/|z|$. Consideriamo allora λ'' tale che $1/|z| < \lambda'' < \lambda$: poiché $\lambda'' < \lambda$, per la caratterizzazione del massimo limite si ha

$$\exists n_k \to +\infty \colon \sqrt[n_k]{|a_{n_k}|} > \lambda''$$

Si ha, lungo la sottosuccessione:

$$\left|a_{n_k}z^{n_k}\right| = \left|a_n|z^{n_k}\right| > (\lambda'')^{n_k} \left|z\right|^{n_k} = \left(\lambda''|z|_{>1 \text{ per la scelta di } \lambda''}\right)^{n_k} > 1, \ \forall n_k$$

Poiché esiste una sotto successione che è sempre maggiore di 1, deve esistere un valore limite della successione $|a_n z^n|$ maggiore o uguale a 1. Ma allora

$$\limsup_{n \to +\infty} |a_n z^n| \ge 1 \implies \lim_{n \to +\infty} |a_n z^n| \ne 0$$

La dimostrazione del punto 1) è analoga alla prima parte della dimostrazione del punto 2). In questo caso, dobbiamo mostrare che la serie converge $\forall z \in \mathbb{C}$.

Se z=0, la serie banalmente converge, mentre se $z\neq 0$, si ha chiaramente che $0=\lambda<1/|z|$, $\forall z\in\mathbb{C}\setminus\{0\}$. Consideriamo allora λ' tale che $0<\lambda'<1/|z|$: poiché $\lambda'>0$, per la caratterizzazione del massimo limite si ha

$$\exists N: \forall n \geq N \sqrt[n]{|a_n|} < \lambda'$$

Proviamo che $\sum_{n=0}^{+\infty} a_n z^n$ converge assolutamente usando il criterio del confronto.

$$|a_n z^n| = |a_n||z^n| = |a_n||z|^n < (\lambda')^n |z|^n = (\lambda'|z|)^n, \ \forall n \ge N$$

Questo è il termine *n*-esimo della serie geometrica $\sum_{n=0}^{+\infty} (\lambda'|z|)^n$ di ragione $\lambda'|z|$.

Poiché $0 < \lambda'|z| < 1$ per la scelta di λ' , la serie geometrica converge e quindi per il criterio del confronto converge anche la serie $\sum_{n=0}^{+\infty} |a_n z^n|$ e dunque converge anche $\sum_{n=0}^{+\infty} a_n z^n$. Poiché la scelta di z è stata arbitraria, vale la tesi.

La dimostrazione del punto 1) è analoga alla seconda parte della dimostrazione del punto 2). In questo caso, dobbiamo mostrare che la serie converge solo in z=0. Se z=0, la serie banalmente converge. Per mostrare la non convergenza della serie proviamo che la condizione necessaria di convergenza non è soddisfatta, ovvero

$$\lim_{n\to+\infty}a_nz^n\neq 0,\ \forall z\neq 0$$

Questo è equivalente a mostrare che

$$\lim_{n\to+\infty} |a_n z^n| \neq 0, \ \forall z\neq 0$$

Dato $z \neq 0$, consideriamo allora λ'' tale che $1/|z| < \lambda'' < +\infty$: poiché $\lambda'' < +\infty$, per la caratterizzazione del massimo limite si ha

$$\exists n_k \to +\infty \colon \sqrt[n_k]{|a_{n_k}|} > \lambda''$$

Si ha, lungo la sottosuccessione:

$$\left|a_{n_k}z^{n_k}\right| = \left|a_n|z^{n_k}\right| > (\lambda'')^{n_k} |z|^{n_k} = \left(\lambda''|z|_{>1 \text{ per la scelta di } \lambda''}\right)^{n_k} > 1, \ \forall n_k$$

Poiché esiste una sotto successione che è sempre maggiore di 1, deve esistere un valore limite della successione $|a_n z^n|$ maggiore o uguale a 1. Ma allora

$$\limsup_{n \to +\infty} |a_n z^n| \ge 1 \implies \lim_{n \to +\infty} |a_n z^n| \ne 0$$

La scelta di z è arbitraria, purché z sia diverso da zero; per questo motivo vale la tesi.

4.2 COMPORTAMENTO SUL BORDO

Consideriamo la serie di potenze

$$\sum_{n=0}^{+\infty} a_n z^n, \quad a_n, \ z \in \mathbb{C}$$

con raggio di convergenza finito e non nullo. I possibili comportamenti sul *bordo* del cerchio di convergenza sono i seguenti:

- 1. Convergenza in tutti i punti del bordo del cerchio di convergenza
- 2. Non convergenza in nessun punto del bordo del cerchio di convergenza
- 3. Convergenza solo in *alcuni punti* del bordo del cerchio di convergenza Mostriamo per ciascuno di essi un esempio.

ESEMPIO. CASO 1.

Consideriamo la serie

$$\sum_{n=1}^{+\infty} \frac{z^n}{n^{\alpha}}, \quad \alpha > 1$$

Con la formula di D'Alembert vediamo che il raggio di convergenza è R = 1. Infatti

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{(n+1)^{\alpha}}{n^{\alpha}} = \lim_{n \to +\infty} \frac{n^{\alpha} \left(1 + \frac{1}{n}\right)^{\alpha}}{n^{\alpha}} = \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^{\alpha} = 1 = \ell \implies r = \frac{1}{\ell} = 1$$

Per ogni $z \in \mathbb{C}$ tale che |z| = 1 la serie converge (assolutamente):

$$\sum_{n=1}^{+\infty} \left| \frac{z^n}{n^{\alpha}} \right| = \sum_{n=1}^{+\infty} \frac{n}{n^{\alpha}}$$

La serie in modulo è la *serie armonica generalizzata* che, per $\alpha > 1$, converge; la serie semplice converge su tutti i punti del bordo.

ESEMPIO. CASO 2.

Consideriamo la serie geometrica

$$\sum_{n=1}^{+\infty} z^n$$

Poichè $a_n \equiv 1 \ \forall n$, il criterio del rapporto ci fornisce come raggio di convergenza R=1. Per ogni $z \in \mathbb{C}$ tale che |z|=1 la serie *non* converge: possiamo osservare che presa la successione $c_n \in \mathbb{C}$, vale^a

$$\lim_{n \to +\infty} |c_n| \neq 0 \implies \lim_{n \to +\infty} c_n \neq 0$$

In questo caso:

$$\lim_{n \to +\infty} |z^n| = \lim_{n \to +\infty} 1 = 1 \neq 0 \implies \lim_{n \to +\infty} z^n \neq 0$$

È evidente che la *condizione necessaria* di convergenza *non* è soddisfatta: la serie *non* converge in nessun punto del bordo.

"Nelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione di questo risultato.

Esempio. Caso 3.

Consideriamo la serie

$$\sum_{n=1}^{+\infty} \frac{z^n}{n^{\alpha}}, \quad 0 < \alpha < 1$$

L'applicazione del criterio del confronto è esattamente analogo a quello visto nel caso e il raggio di convergenza è pertanto R = 1.

Se z=1 la serie non converge, dato che essa diventa una serie armonica generalizzata con $\alpha \leq 1$:

$$\sum_{1}^{+\infty} \frac{1}{n^{\alpha}}$$

Invece, per ogni $z \in \mathbb{C}$ tale che |z| = 1 e $z \neq 1$ la serie converge: infatti, possiamo applicare il *criterio di Abel-Dirichlet*.

$$\sum_{n=1}^{+\infty} \frac{z^n}{n^{\alpha}} = \sum_{n=1}^{+\infty} z^n \frac{1}{n^{\alpha}} = \sum_{n=1}^{+\infty} \alpha_n \beta_n$$

con $\alpha_n = z^n$ e $\beta_n = 1/n^{\alpha}$, $n \ge 1$.

- 1. $\beta_n = 1/n^{\alpha}$ è una successione di elementi strettamente positivi, decrescenti e infinitesima per $n \to +\infty$.
- 2. La successione delle *somme parziali* di $\alpha_n = z^n$ è *limitata*. Consideriamo

$$\left| \sum_{n=1}^{k} z^n \right| = \left| \sum_{n=0}^{k} z^n - 1 \right| \equiv$$

Poiché $\sum_{n=0}^{k} z^n$ è un serie geometrica parziale, sappiamo la sua somma parziale.

Applicando poi una disuguaglianza triangolare, troviamo una maggiorazione della somma parziale di α_n .

$$\left| \exists \left| \frac{1 - z^{k+1}}{1 - z} - 1 \right| = \left| \frac{z - z^{k+1}}{1 - z} \right| \le \frac{|z| + \left| - z^{k+1} \right|}{|1 - z|} \le \frac{1 + 1}{|1 - z|} = \frac{2}{|1 - z|}, \ \forall k \ge 1$$

Osserviamo che, nonostante la serie converga, essa non converge assolutamente: la serie in modulo è la serie armonica generalizzata con $\alpha \le 1$, nota per essere divergente.

Anche se in generale non possiamo affermare a priori come converge sul bordo si può osservare che, in alcuni casi particolari, dalla converge in un punto del bordo si ottiene la convergenza sull'intero bordo. Vediamone alcuni

Proposizione 4.2.1. - Convergenza assoluta sul bordo se la serie di potenze converge assolutamente in un punto.

Sia data la serie di potenze

$$\sum_{n=1}^{+\infty} a_n z^n$$

Se la serie converge assolutamente in un punto della frontiera del cerchio di convergenza, allora converge assolutamente su tutta questa frontiera.

DIMOSTRAZIONE. Supponiamo che la serie converga assolutamente in z_0 , dove $|z_0| = R$ e prendiamo un qualunque z tale che |z| = R. Osserviamo che, presa la serie in modulo, si ha

$$\sum_{n=1}^{+\infty} |a_n z^n| = \sum_{n=1}^{+\infty} |a_n| |z^n| = \sum_{n=1}^{+\infty} |a_n| |z|^n = \sum_{n=1}^{+\infty} |a_n| |R^n| = \sum_{n=1}^{+\infty} |a_n| |z_0|^n = \sum_{n=1}^{+\infty} |a_n z_0^n|$$

che converge per ipotesi. Allora la serie di potenze converge assolutamente.

COROLLARIO 4.2.1. - CONVERGENZA SUL BORDO SE LA SERIE DI POTENZE A COEFFICIENTI REALI POSITIVI CONVERGE IN z=R.

Sia data la serie di potenze

$$\sum_{n=1}^{+\infty} a_n z^n$$

Se la serie ha coefficienti reali positivi e converge nel punto z = R, dove $R \in (0, +\infty)$ è il raggio di convergenza, allora converge in ogni punto della frontiera del cerchio di convergenza.

DIMOSTRAZIONE. Poiché a_n e R sono reali positivi, $a_n = |a_n|$ e R = |R|. Allora si ha

$$\sum_{n=1}^{+\infty} a_n R^n = \sum_{n=1}^{+\infty} |a_n R^n|$$

Quindi in questo caso la convergenza semplice della serie implica la convergenza assoluta. Poiché la serie converge assolutamente in un punto del bordo, segue dalla proposizione precedente la convergenza (assoluta) in tutti i punti del bordo.

4.3 SERIE DI POTENZE E CONVERGENZA UNIFORME

TEOREMA 4.3.1. - CONVERGE UNIFORME DELLE SERIE DI POTENZE.

Sia $\sum_{n=0}^{+\infty} a_n z^n$ una serie di potenze con raggio di convergenza $R \in (0, +\infty)$. Allora

- 1. La serie converge uniformemente su ogni insieme $H \subseteq \mathbb{C}$ tale che $\overline{H} \subsetneq B_R(0)$, con $B_R(0)$ il disco aperto di convergenza.
- 2. Se la serie converge assolutamente in ogni $z \in \partial B_R(0)$ (il bordo del disco), allora converge uniformemente sul disco chiuso $\overline{B_R(0)}$.

DIMOSTRAZIONE. Per questa dimostrazione useremo il *criterio di Weierstrass* enunciato nella sezione 3.2.1, pag. 35.

- 1. Sia H tale che $\overline{H} \subsetneq B_R(0)$. Per il criterio di Weierstrass, per provare la convergenza uniforme su H è sufficiente provare che esiste una successione c_n tale che
 - a. $|a_n z^n| \le c_n$, $\forall z \in H$
 - b. $\sum_{n=0}^{+\infty} c_n$ converge.

Poiché H è solo strettamente contenuto nel disco aperto di convergenza, $\exists R' < R$ tale che si abbia $\overline{H} \subseteq B_{R'}(0)$, ossia $|z| \le R'$, $\forall z \in H$. Allora si ha, $\forall n \ge 0$ e $\forall z \in H$

$$|a_n z^n| = |a_n||z|^n \le \underbrace{|a_n|(R')^n}_{\text{non dipende da } z}$$

Inoltre, la serie $\sum_{n=0}^{+\infty} c_n = \sum_{n=0}^{+\infty} |a_n| (R')^n$ converge in quanto è la convergenza della serie di potenze per il punto z=R', che è *interno* al disco di convergenza $B_R(0)$. Applicando il criterio di Weierstrass otteniamo la tesi.

2. Si ripete la dimostrazione sull'insieme $\overline{B_R(0)}$ con R'=R, considerando che la serie $\sum_{n=0}^{+\infty} |a_n| R^n$ converge per ipotesi sulla convergenza sul bordo.

Esempio. Serie geometrica.

Sulla serie geometrica $\sum_{n=0}^{+\infty} z^n$ abbiamo già ricavato diverse informazioni: ha raggio di con-

vergenza R = 1 e non c'è convergenza (assoluta) sul bordo. Studiamo ora la convergenza uniforme.

- Converge uniformemente su ogni insieme H tale che $\overline{H} \subsetneq B_1(0)$ per il teorema precedente.
- Non avendo alcuna convergenza sul bordo, a priori non possiamo dare risultati generali sulla convergenza uniforme sulla base del teorema visto. Tuttavia, possiamo mostrare direttamente grazie al fatto che la somma parziale e limite della serie geometrica è nota^a che la serie non converge uniformemente sul disco aperto B_1 (0). Infatti

$$\sup_{z \in B_1(0)} |S_n(z) - S(z)| = \sup_{z \in B_1(0)} \left| \frac{1 - z^{n+1}}{1 - z} - \frac{1}{1 - z} \right| = \sup_{z \in B_1(0)} \left| \frac{-z^{n+1}}{1 - z} \right| =$$

$$= \sup_{z \in B_1(0)} \frac{|z|^{n+1}}{|1 - z|} = +\infty, \ \forall n \ge 0$$

da cui

$$\lim_{n \to +\infty} \left(\sup_{z \in B_1(0)} |S_n(z) - S(z)| \right) = +\infty \neq 0$$

4.4 PROPRIETÀ DI REGOLARITÀ DELLA SOMMA DI UNA SERIE DI POTENZE

Sia $\sum_{n=0}^{+\infty} a_n z^n$ una serie di potenze con R > 0 il raggio di convergenza. Studiamo le proprietà di continuità e derivabilità della **funzione somma**

$$f: B_R(0) \subseteq \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto \sum_{n=0}^{+\infty} a_n z^n$$
(4.5)

4.4.1 Continuità

Proposizione 4.4.1. - Proprietà di continuità per la somma di una serie di potenze, caso generale.

La funzione f è continua su $B_R(0)$.

Attenzione! La convergenza della serie di potenze su $B_R(0)$ non è in generale uniforme, ma sappiamo al più che converge uniformemente su H tale che $\overline{H} \subsetneq B_R(0)$, quindi dobbiamo tenere conto di questo fattore nelle dimostrazioni che faremo.

^aNelle "Note aggiuntive", a pagina XXX è possibile trovare maggiori dettagli sulla somma (parziale) della serie geometrica e come ricavarla.

Dimostrazione. Dobbiamo provare che $f \in \mathcal{C}(B_R(0))$, cioè f continua in z_0 , $\forall z_0 \in B_R(0)$.

Sia $z_0 \in B_R(0)$ fissato. Per proprietà della metrica, allora $\exists R_0 < R$ tale che $z_0 \in B_{R_0}(0)$. Su $B_{R_0}(0)$ si ha continuità uniforme e dunque, posto

$$S_n(z) = \sum_{k=0}^n a_k z^k$$

si ha

- 1. S_n continua su $B_{R_0}(0)$ perché è un polinomio. 2. S_n converge uniformemente a f su $B_R(0)$.

Per il teorema di continuità della funzione limite, f è continua in $B_{R_0}(0)$ e dunque in z_0 .

Questo risultato ci permette di parlare della convergenza sul disco aperto, ma se c'è qualche tipo di convergenza sul bordo, e quindi f è definita anche su di esso, si può estendere la continuità di f fino a tale frontiera? Studiamo due casi.

Corollario 4.4.1. - Proprietà di continuità per la somma di una serie di potenze, caso SUL BORDO CON CONVERGENZA ASSOLUTA.

Sia data la serie di potenze $\sum_{n=0}^{+\infty} a_n z^n$ con raggio di convergenza R > 0. Se la serie converge (assolutamente) su $\partial B_R(0)$ allora la serie è continua su $B_R(0)$.

Dimostrazione. Segue immediatamente ricordando che dalle ipotesi di convergenza assoluta sul bordo, sulla base del teorema 4.3.1, pag. 49, vale la convergenza uniforme su $\overline{B_R(0)}$.

Se invece supponiamo che la serie converga in un punto¹ z_0 , cioè $\sum_{n=0}^{\infty} a_n z_0^n$ converge, possiamo definire la funzione somma come

$$f: B_R(0) \cup \{z_0\} \subseteq \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto \sum_{n=0}^{+\infty} a_n z^n$$
(4.6)

La convergenza uniforme di f anche sui punti di convergenza z_0 sul bordo ci viene garantita dal **teorema di Abel**.

TEOREMA 4.4.1. - TEOREMA DI ABEL.

Sia dato la serie di potenze la serie di potenze $\sum_{n=0}^{+\infty} a_n z^n$ con raggio di convergenza R > 0.

¹Nel caso di più punti di convergenza $z_0, z_1, ...,$ la funzione somma f sarà definita su $B_R(0) \cup \{z_0\} \cup \{z_1\} \cup ...$ Qui riportiamo per semplicità il caso di un solo punto, ma i risultati successivi sono opportunamente generalizzabili con più punti di convergenza sul bordo.

Se
$$\exists z_0 = Re^{i\theta_0}$$
 tale che $\sum_{n=0}^{+\infty} a_n z_0^n$ converge, allora

1. la serie converge uniformemente sul segmento

$$\Sigma_0 = \left\{ z \in \mathbb{C} \mid z = re^{i\theta_0}, \ r \in [0, R] \right\}$$
 (4.7)

2. La restrizione di f a Σ_0 è continua su z_0 , ossia

$$\lim_{r \to R} f(re^{i\theta_0}) = f(z_0) = \sum_{n=0}^{+\infty} a_n z_0^n$$
 (4.8)

4.4.2 Derivabilità

Abbiamo definito la funzione somma dal disco aperto $B_R(0)$ in campo complesso a \mathbb{C} , ma al momento non conosciamo cosa vuol dire derivabilità di una funzione $f:\mathbb{C}\longrightarrow\mathbb{C}$. Per il momento, limitiamoci al caso reale, cioè consideriamo una serie di potenze

$$\sum_{n=0}^{+\infty} a_n x^n, \ x \in \mathbb{R}, \ a_n \in \mathbb{R}$$

con raggio di convergenza R > 0. In questo caso il cerchio di convergenza è un intervallo (-R, R), con estremi eventualmente inclusi. La funzione somma risulta allora la funzione

$$f: (-R, R) \longrightarrow \mathbb{R}$$

$$x \longmapsto \sum_{n=0}^{+\infty} a_n x^n$$
(4.9)

Teorema 4.4.2. - Derivabilità della somma di una serie di potenze. Sia data

$$f\left(x\right)=\sum_{n=0}^{+\infty}a_{n}x^{n},\;\forall x\in\left(-R,R\right),\;a_{n}\in\mathbb{R}$$

con R > 0 il raggio di convergenza. Allora

- 1. f è derivabile su (-R, R)
- 2. La derivata di f è

$$f'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}, \ \forall x \in (-R, R)$$
 (4.10)

Per dimostrare questo teorema useremo il teorema di derivibilità per serie di funzioni (teorema 3.3.4, pag. 38, capitolo Capitolo 3 a pagina 31): poiché le ipotesi 1) e 2) sono banalmente verificate, dobbiamo contrarci sull'ipotesi 3), ovvero abbiamo bisogno di

informazioni sulla convergenza uniforme della serie delle derivate $\sum_{n=1}^{+\infty} na_n x^{n-1}$; poiché

la serie delle derivate è ancora una serie di potenze, allora ci basta studiare il raggio di convergenza.

Lemma 4.4.1. - Convergenza della serie di derivate della serie di potenze.

Sia data la serie di potenze $\sum_{n=0}^{+\infty} a_n x^n$ e sia R > 0 il suo raggio di convergenza. Allora la

serie di potenze $\sum_{n=1}^{+\infty} na_n x^{n-1}$ ha raggio di convergenza R.

DIMOSTRAZIONE. Riscriviamo la serie delle derivate, operando un cambio di indici ponendo n = k + 1

$$\sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{k=0}^{+\infty} \underbrace{(k+1) a_{k+1}}_{=b_k} x^k = \sum_{k=0}^{+\infty} b_k a_k$$

Sia R' il suo raggio di convergenza. Per il teorema di Cauchy-Hadamard si ha

$$\frac{1}{R'} = \limsup_{n \to +\infty} |b_n|^{1/n} = \limsup_{n \to +\infty} |(n+1)a_{n+1}|^{1/n} = \limsup_{n \to +\infty} \underbrace{(n+1)^{1/n}}_{=\alpha_n} |a_{n+1}|^{1/n} = \limsup_{n \to +\infty} \alpha_n \beta_n = \lim_{n \to +\infty} a_n =$$

Osserviamo che

$$\lim_{n \to +\infty} \alpha_n = \lim_{n \to +\infty} (n+1)^{1/n} = \lim_{n \to +\infty} e^{\frac{1}{n} \log(n+1)} = \lim_{n \to +\infty} e^{\frac{\log(n+1)}{n}}$$

Poichè $\frac{\log(n+1)}{n} \to 0$ per $n \to +\infty$ per confronto della crescita degli infiniti, $\lim_{n \to +\infty} \alpha_n = e^0 = 1$, dunque α_n ammette limite e dunque coincide col suo limsup. Allora, per proprietà^a del limsup:

Poichè $^{n+1/n} \to 1$ per $n \to +\infty$, possiamo applicare Cauchy-Hadamar sulla serie di potenze $\sum_{n=0}^{+\infty} a_n x^n$ con raggio di convergenza R > 0: poiché

$$\frac{1}{R} = \limsup_{n \to +\infty} |a_n|^{1/n} = \limsup_{n \to +\infty} |a_{n+1}|^{1/n+1}$$

allora abbiamo mostrato che

$$\frac{1}{R'} = \dots = \limsup_{n \to +\infty} \left(|a_{n+1}|^{1/n+1} \right)^{n+1/n} = \frac{1}{R}$$

cioè
$$R' = R$$
.

^aNelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione di questo risultato insieme ad altri relativi al limsup e liminf.

Grazie a questo lemma, possiamo finalmente dimostrare il teorema lasciato in sospeso all'inizio della sezione.

Dimostrazione. (DEL Teorema di derivabilità della somma di una serie di potenze.)

Fissiamo $\bar{x} \in (-R, R)$ arbitrario e sia (a, b) tale che

- $\overline{x} \in (a,b).$

■ $[a,b] \subsetneq (-R,R)$ Applichiamo ora il teorema di derivabilità termine a termine della serie di funzioni su (a,b) sulla serie di potenze $\sum_{n=0}^{+\infty} a_n x^n$; vediamo che le ipotesi sono verificate: $f_n(x) = a_n x^n$ derivabile in (a,b), $\forall n \ge 1$.

- sulla base del lemma precedentemente dimostrato.

Per il teorema di derivabilità termine a termine f è derivabile in (a, b) e dunque anche in \overline{x} , con derivata in tal punto

$$f'(\overline{x}) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$

Per l'arbitrarietà di \overline{x} , questi risultati valgono $\forall x \in (-R, R)$ e dunque segue la tesi.

FUNZIONI ANALITICHE E SERIE DI TAYLOR

La tesi 2) appena dimostrata ci dice che la derivata f' è una somma di serie di potenze con stesso raggio di convergenza R di f. Possiamo riapplicare il teorema alla funzione f':

• f' è derivabile in (-R, R).

$$f''(x) = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2}, \ \forall x \in (-R, R).$$

Ma anche f'' è una serie di potenze con raggio R: possiamo riapplicare il teorema su f'' e ammettere l'esistenza di f''' come serie di potenze. Iterando il ragionamento, si trova che esiste $f^{(k)}(x)$, $\forall x \in (-R, R)$, $\forall k \ge 0$ e vale

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)\dots(n-k+1) a_n x^{n-k} = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k}, \ \forall x \in (-R,R)$$
 (4.11)

Esplicitiamo il primo termine di $f^{(k)}(x)$:

$$f^{(k)}(x) = k(k-1)\dots(k-k+1)a_k x^0 + \sum_{n=k+1}^{+\infty} n(n-1)\dots(n-k+1)a_n x^{n-k} =$$

$$= k! a_k + \sum_{n=k+1}^{+\infty} n(n-1)\dots(n-k+1)a_n x^{n-k}$$

In x = 0 otteniamo

$$f^{(k)}(0) = k!a_k + 0 = k!a_k$$

Da cui otteniamo una espressione del termine a_k in funzione della derivata k-esima, supponendo che esiste tale derivata:

$$a_k = \frac{f^{(k)}}{k!}, \ \forall k \ge 0$$
 (4.12)

Riscriviamo questi risultati in un unico teorema.

Teorema 4.5.1. - Analiticità della somma di una serie di potenze.

Sia data la serie di potenze

$$\sum_{n=0}^{+\infty} a_n x^n, \ a_n \in \mathbb{R}, x \in \mathbb{R}$$

con raggio di convergenza R > 0 e sia f la sua somma. Allora

- 1. $f \in \mathscr{C}^{\infty}((-R,R))$.
- 2. La derivata k-esima è nella forma

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} n(n-1)\dots(n-k+1) a_n x^{n-k} = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k}, \ \forall x \in (-R,R)$$
(4.13)

3. Il coefficiente a_k si può scrivere come

$$a_k = \frac{f^{(k)}}{k!}, \ \forall k \ge 0$$
 (4.14)

4. f è analitica in 0, ossia si può scrivere come una **serie di Taylor di** f **centrata in** x = 0

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}}{k!} x^k, \ \forall x \in (-R, R)$$
 (4.15)

Diamo una definizione formale del termine "funzione analitica" che abbiamo appena usato nel teorema.

DEFINIZIONE 4.5.1. - FUNZIONE ANALITICA.

Sia $f: U \subseteq \mathbb{R} \longrightarrow \mathbb{R}$ tale che $f \in \mathscr{C}^{\infty}(U)$.

1. Dato $x_0 \in U$, f si dice **analitica** in x_0 se $\exists r_0 > 0$ tale che

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \ \forall x \in (x_0 - r_0, x_0 + r_0) \subseteq U$$

2. f si dice **analitica in** U se è analitica in ogni punto $x_0 \in U$. In questo caso si scrive $f \in \mathcal{A}(U)$.

Il problema della *ricostruzione* di una funzione come somma della sua serie di Taylor, introdotto nello studio della lunghezza dell'ellisse nel Capitolo 1 a pagina 3, si può anche formulare come

"Ogni funzione $f \in \mathscr{C}^{\infty}(U)$ è anche analitica su U?"

ossia

$$f \in \mathscr{C}^{\infty}(U) \stackrel{?}{\Longrightarrow} f \in \mathscr{A}(U)$$

In generale la risposta è no, come possiamo vedere nell'esempio successivo.

Esempio. Consideriamo la funzione

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

f è certamente di classe $\mathscr{A}^{\infty}(\mathbb{R}\setminus\{0\})$; si verifica che esiste $f^{(k)}=0$, $\forall k\geq 0$ e che $f^{(k)}\in\mathscr{C}(\mathbb{R})$, $\forall k\geq 0$, dunque $f\in\mathscr{C}(\mathbb{R})$:

Tuttavia, $f \notin \mathcal{A}(\mathbb{R})$. Infatti, la serie di Taylor centrata in $x_0 = 0$ è

$$\sum_{k=0}^{+\infty} \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=0}^{+\infty} \frac{0}{k!} x^k \equiv 0$$

che converge ma non a f, ossia $f(x) \neq \sum_{k=0}^{+\infty} \frac{f^{(k)}(0)}{k!} x^k$, $\forall x \neq 0$.

Bisogna quindi capire sotto quali ipotesi ulteriori una funzione di classe \mathscr{C}^{∞} è anche analitica; cerchiamo a tal scopo una condizione *sufficiente*.

Riprendiamo il problema come era stato posto originalmente; approssimiamo f con il polinomio di Taylor, tenendo conto del resto $R_n(x)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x)$$

Per passare da questa approssimazione alla riscrittura di f come serie di Taylor è necessario ridurre il resto dell'approssimazione a zero al crescere dei termini del polinomio, ossia

$$\lim_{n\to+\infty} R_n(x) = 0$$

Ricordiamo l'espressione del resto in forma di Lagrange:

$$\exists \xi = \xi_{x,n} \colon R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

La condizione sufficiente che andremo ora a definire necessita di avere una informazione sulle derivate $f^{(n)}$ per n sufficientemente grande.

Teorema 4.5.2. - Condizione sufficiente di analiticità.

Sia $f:U\subseteq\mathbb{R}\longrightarrow\mathbb{R}$, $f\in\mathscr{C}^{\infty}(U)$ e sia $x_0\in U$. Se $\exists r_0>0$, $\exists M>0$, $\exists n_0>0$ tale che

$$\left| f^{(n)}(x) \right| \le \frac{Mn!}{r_0^n}, \ \forall x \in (x_0 - r_0, x_0 + r_0), \ \forall n \ge n_0$$
 (4.16)

allora f è analitica in x_0 e vale

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \ \forall x \in (x_0 - r_0, x_0 + r_0)$$

DIMOSTRAZIONE. Sia $x \in (x_0 - r_0, x_0 + r_0)$ fissato. Dobbiamo provare che

$$\lim_{n \to +\infty} R_n(x) = \lim_{n \to +\infty} \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} = 0$$

dove ξ è ottenuto applicando la formula di Taylor con il resto in *formula di Lagrange*.

Poiché $\xi \in (x_0 - r_0, x_0 + r_0)$, per l'ipotesi di partenza si può stimare $f^{(n+1)}(\xi)$:

$$0 \le \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} \right| = \frac{\left| f^{(n+1)}(\xi) \right|}{(n+1)!} |x - x_0|^{n+1} \ \forall n \ge n_0 \frac{\frac{M(n+1)!}{r_0^{n+1}}}{(n+1)!} |x - x_0|^{n+1} = M \left(\frac{|x - x_0|}{r_0} \right)^{n+1}$$

Abbiamo quindi ottenuto

$$0 \le |R_n(x)| \le M \left(\frac{|x - x_0|}{r_0}\right)^{n+1}, \ \forall n \ge n_0$$

Poiché $\left(\frac{|x-x_0|}{r_0}\right)^{n+1}$ è una successione geometrica di ragione $\frac{|x-x_0|}{r_0} \in (0,1)$, essa tende a 0 per $n \to +\infty$: per il teorema del confronto abbiamo $\lim_{n \to +\infty} R_n(x) = 0$.

OSSERVAZIONE. Questa condizione sufficiente si verifica anche se $\exists M > 0, \exists r_0 > 0$ tale per cui

$$|f^{(n)}(x)| \le M, \ \forall x \in (x_0 - r_0, x_0 + r_0), \ \forall n \ge 0$$

Infatti, $\forall r_0 > 0$, per confronto di crescita si ha

$$\lim_{n \to +\infty} \frac{n!}{r_0^n} = +\infty$$

Dunque esiste sempre n_0 tale che $\forall n \geq n_0$ si ha $\frac{n!}{r_0^n} > 1$. Segue allora

$$\left|f^{(n)}(x)\right| \leq M < M\frac{n!}{r_0^n}, \; \forall x \in \left(x_0-r_0,x_0+r_0\right), \; \forall n \geq n_0$$

4.6 ESEMPI DI FUNZIONI ANALITICHE

Teorema 4.6.1. - Analiticità di e^x , $\cos x$, $\sin x$, $(1+x)^{\alpha}$.

Le funzioni e^x , $\cos x$, $\sin x$, $(1+x)^{\alpha}$ con $\alpha \in \mathbb{R}$ sono analitiche in $x_0 = 0$ e vale

$$e^{x} = \sum_{k=0}^{+\infty} \frac{1}{k!} x^{k}, \ \forall x \in \mathbb{R}$$
 (4.17)

$$\sin x = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} x^{2k}, \ \forall x \in \mathbb{R}$$
 (4.18)

$$\cos x = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}, \ \forall x \in \mathbb{R}$$
 (4.19)

$$(1+x)^{\alpha} = \sum_{k=0}^{+\infty} {\alpha \choose k} x^k, \ \forall x \in (-1,1), \ \forall \alpha \in \mathbb{R}$$
 (4.20)

Attenzione! L'ultima formula vale solo per $x \in (-1,1)$, indipendentemente dal dominio di $(1+x)^{\alpha}$. Ad esempio, se $\alpha = \frac{1}{3}$, $(1+x)^{\alpha} = \sqrt[3]{1+x}$ è definita su tutto \mathbb{R} , però si può scrivere somma della sua serie di Taylor solo in (-1,1); in altre parole, l'analiticità è una proprietà *locale*.

Le prime tre formule si dimostrano usando la condizione sufficiente precedentemente dimostrata. Per quanto riguarda la quarta formula, *non* si riesce a verificare la validità di tale condizione, ma con un altro ragionamento si trova comunque l'analiticità. Questo mostra che la condizione scritta sopra è *solo* sufficiente, ma *non* necessaria per l'analiticità.

DIMOSTRAZIONE.

• e^x , $\sin x$, $\cos x$. È noto che

$$\sum_{k=0}^{n} \frac{1}{k!} x^{k} \quad \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k)!} x^{2k} \quad \sum_{k=0}^{n} \frac{(-1)^{k}}{(2k+1)!} x^{2k+1}$$

sono i polinomi di Taylor di e^x , $\cos x$ e $\sin x$ centrati in $x_0 = 0$. Per $n \to +\infty$ si ottengono le serie di Taylor

$$\sum_{k=0}^{+\infty} \frac{1}{k!} x^k \quad \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} x^{2k} \quad \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

Proviamo ora che valgono le uguaglianze scritte. Per dimostrare che valgono su tutto \mathbb{R} è sufficiente dimostrate che valgono su un intervallo del tipo $(-r_0, r_0)$ con $r_0 > 0$ arbitrario.

Sia allora $r_0 > 0$ fissato arbitrariamente e sia $x \in (-r_0, r_0)$. Proviamo che è vera la condizione a pag. 57, che sappiamo implicare la condizione sufficiente a pag. 56. Vediamo i tre casi:

 \diamond e^x . La derivata di $f(x) = e^x$ è $f^{(n)}(x) = e^x$, quindi si ha

$$|f^{(n)}(x)| = e^x \le e^{r_0} = M, \ \forall x \in (-r_0, r_0), \ \forall n \ge 0$$

 \diamond cos x, sin x. Poiché le derivate di seno e coseno sono ciclicamente seno e coseno con opportuni segni, la derivata n-esima di cos x e sin x in modulo è sempre limitata da 1.

$$|f^{(n)}(x)| \le 1 = M, \ \forall x \in (-r_0, r_0), \ \forall n \ge 0$$

Poiché la condizione è verificata su $(-r_0, r_0)$ e vale l'analiticità su tale intervallo, per l'arbitrarietà di r_0 l'analiticità si verifica su tutto \mathbb{R} .

■ $(1+x)^{\alpha}$. Mostriamo innanzitutto che la serie di potenze $\sum_{n=0}^{+\infty} {\alpha \choose k} x^k$ converge $\forall x \in (-1,1)$, usando il criterio del rapporto:

$$R = \lim_{n \to +\infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to +\infty} \frac{|\alpha(\alpha - 1)...(\alpha - n + 1)|}{n!} \frac{(n+1)!}{|\alpha(\alpha - 1)(\alpha - (n + 1) + 1)|} = \lim_{n \to +\infty} \frac{|n+1|}{|\alpha - n|} = \lim_{n \to +\infty} \frac{n+1}{|\alpha - n|} = \lim_{n \to +\infty} \frac{n+1}{|\alpha - n|} = 1$$

Adesso definiamo la funzione somma

$$g_{\alpha}(x) = \sum_{n=0}^{+\infty} {\alpha \choose n} x^n, \ \forall x \in (-1,1)$$

Dobbiamo dimostrare che $g_{\alpha}(x) = (1+x)^{\alpha}$, $\forall x \in (-1,1)$. Per la derivazione termine a termine abbiamo

$$g_{\alpha}'(x) = \sum_{n=1}^{+\infty} n \binom{\alpha}{n} x^{n-1} = \sum_{n=1}^{+\infty} \frac{\alpha (\alpha - 1) \dots (\alpha - n + 1)}{n!} n x^{n-1} =$$

$$= \alpha \sum_{n=1}^{+\infty} \frac{(\alpha - 1) \dots (\alpha - 1 (n - 1) + 1)}{(n + 1)!} x^{n-1} = \alpha \sum_{n=1}^{+\infty} \binom{\alpha - 1}{n - 1} x^{n-1} =$$

$$= \alpha \sum_{n=1}^{+\infty} \binom{\alpha - 1}{n} x^{n} = \alpha g_{\alpha - 1}(x), \ \forall x \in (-1, 1)$$

Quindi $g'_{\alpha}(x) = \alpha g_{\alpha-1}(x)$, $\forall x \in (-1,1)$. Osserviamo che

$$(1+x)g_{\alpha-1}(x) = \sum_{n=0}^{+\infty} {\binom{\alpha-1}{n}} x^n + \sum_{n=0}^{+\infty} {\binom{\alpha-1}{n}} x^{n+1} =$$

$$= \sum_{n+1=m}^{+\infty} \sum_{n=0}^{+\infty} {\binom{\alpha-1}{n}} x^n + \sum_{m=1}^{+\infty} {\binom{\alpha-1}{m-1}} x^m =$$

$$= 1 + \sum_{m=1}^{+\infty} {\binom{\alpha-1}{m}} + {\binom{\alpha-1}{m-1}} x^m = 1 + \sum_{m=1}^{+\infty} {\binom{\alpha}{m}} x^m$$

Infatti, si ha

$$\binom{\alpha - 1}{m} + \binom{\alpha - 1}{m - 1} = \frac{(\alpha - 1)(\alpha - 2)\dots(\alpha - 1 - m + 1)}{m!} + \frac{(\alpha - 1)(\alpha - 2)\dots(\alpha - 1 - (m - 1) + 1)}{(m - 1)!} =$$

$$= \frac{(\alpha - 1)(\alpha - 2)\dots(\alpha - 1 - (m - 1) + 1)}{(m - 1)!} \frac{(\alpha - 1 - m + 1 + m)}{m} = \frac{\alpha(\alpha - 1)}{m} =$$

$$= \frac{\alpha(\alpha - 1)\dots(\alpha - m + 1)}{m!} = \binom{\alpha}{m}$$

Riassumendo, abbiamo ottenuto che

$$(1+x)g_{\alpha-1}(x) = g_{\alpha}(x)$$

Si ha

$$\begin{cases} g'_{\alpha}(x) = \frac{\alpha}{(1+x)} g_{\alpha}(x) \\ g_{\alpha}(0) = 1 \end{cases}$$

che è un *problema di Cauchy* o altresì noto come un'*equazione differenziale lineare* omogenea del I grado con dato iniziale, la cui soluzione è

$$g_{\alpha}(x) = e^{\alpha \int_0^x \frac{1}{1+t} dt} = e^{\alpha \log(1+x)} = (1+x)^{\alpha}, \ \forall x \in (-1,1)$$

DIGRESSIONE. UNO SGUARDO AL FUTURO: IL CASO COMPLESSO

In Analisi Matematica 4 si riprenderà la questione della derivabilità in campo complesso, definendola e proseguendo con il problema di studiare l'analiticità delle funzioni in campo complesso.

Se in campo reale le funzioni *analitiche* sono solo un piccolo sottoinsieme delle funzioni $\mathscr{C}^{\infty}(U)$, a loro volta un sottoinsieme stretto delle funzioni $\mathscr{C}^1(U)$, $\mathscr{C}^2(U)$, ..., a loro volta sottoinsieme delle funzioni *derivabili* D(U) e infine delle funzioni *continue* $\mathscr{C}(U)$. In campo complesso abbiamo una sorpresa. Infatti, se la funzione è *derivabile* una volta, lo è *infinitamente* con continuità e sono anche *analitiche*!

$$D(U) = \mathscr{C}^{1}(U) = \dots = \mathscr{C}^{\infty}(U) = \mathscr{A}$$

4.7 FUNZIONI ESPONENZIALE E LOGARITMO IN CAMPO COMPLESSO

4.7.1 Funzione esponenziale in campo complesso

DEFINIZIONE 4.7.1. - ESPONENZIALE IN CAMPO COMPLESSO.

L'esponenziale in campo complesso è la funzione definita $\forall z \in \mathbb{C}$ come

$$e^z := \sum_{n=0}^{+\infty} \frac{z^n}{n!} \tag{4.21}$$

DIMOSTRAZIONE. Questa funzione è ben definita. Applichiamo alla serie di potenze $\sum_{n=0}^{+\infty} \frac{z^n}{n!}$ il criterio di d'Alembert:

$$\lim_{n \to +\infty} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{n \to +\infty} \frac{n!}{(n+1)!} = \lim_{n \to +\infty} \frac{1}{n+1} = 0$$

Segue che converge per ogni $z \in \mathbb{C}$.

Osservazione. Ricordando che in campo reale vale la relazione

$$e^z = \sum_{n=0}^{+\infty} \frac{x^n}{n!}, \ \forall x \in \mathbb{R}$$

si ricava che la funzione esponenziale definita in campo complesso coincide con la nota funzione esponenziale nel caso di $z = x \in \mathbb{R}$.

Proposizione 4.7.1. - Proprietà dell'esponenziale complesso.

1.
$$e^{z_1+z_2}=e^{z_1}e^{z_2}$$
, $\forall z_1, z_2 \in \mathbb{C}$

2.
$$e^z \neq 0$$
. $\forall z \in \mathbb{C}$.

2.
$$e^z \neq 0$$
, $\forall z \in \mathbb{C}$.
3. $e^{-z} = \frac{1}{e^z}$, $\forall z \in \mathbb{C}$.

4. Vale la formula di Eulero:

$$e^{iy} = \cos y + i \sin y, \ \forall y \in \mathbb{R}$$
 (4.22)

5.
$$e^{x+iy} = e^x (\cos y + i \sin y), \forall x, y \in \mathbb{R}$$

5.
$$e^{x+iy} = e^x (\cos y + i \sin y), \forall x, y \in \mathbb{R}.$$

6. $|e^z| = e^{\Re z}, \arg(e^z) = \operatorname{Im} z + 2k\pi, k \in \mathbb{Z}, \forall z \in \mathbb{C}.$
7. $e^{z+2k\pi i} = e^z, \forall z \in \mathbb{C}, k \in \mathbb{Z}.$

7.
$$e^{z+2k\pi i}=e^z$$
, $\forall z\in\mathbb{C}, k\in\mathbb{Z}$

DIMOSTRAZIONE.

I Siano z_1 , $z_2 \in \mathbb{C}$. Dobbiamo provare che

$$\sum_{n=0}^{+\infty} \frac{(z_1 + z_2)^n}{n!} = \sum_{n=0}^{+\infty} \frac{z_1^n}{n!} \cdot \sum_{n=0}^{+\infty} \frac{z_2^n}{n!}$$

Ricordiamo^a che, date due serie

$$\sum_{n=0}^{+\infty} \alpha_n, \quad \sum_{n=0}^{+\infty} \beta_n, \quad \alpha_n, \ \beta_n \in \mathbb{C}$$

il loro prodotto è la serie

$$\sum_{n=0}^{+\infty} \gamma_n, \text{ dove } \gamma_n = \sum_{k=0}^{n} \alpha_k \beta_{n-k}, \quad \forall n \ge 0$$

Nel caso in questione $\alpha_n = \frac{z_1^n}{n!}$, $\beta_n = \frac{z_2^n}{n!}$, $\forall n \ge 0$, dunque

$$\gamma_n = \sum_{k=0}^n \frac{z_1^k}{k!} \, \frac{z_2^{(n-k)}}{(n-k)!} = \sum_{k=0}^n \frac{z_1^k z_2^{(n-k)}}{k!(n-k)!}, \quad \forall \ n \ge 0.$$

Osserviamo che vale

$$\frac{1}{k!(n-k)!} = \frac{1}{n!} \binom{n}{k}, \quad \forall \ n \ge 0, \ 0 \le k \le n.$$

Dalla formula del binomio di Newton, ricaviamo allora

$$\gamma_n = \sum_{k=0}^n \frac{z_1^k}{k!} \frac{z_2^{(n-k)}}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{(n-k)} = \frac{(z_1 + z_2)^n}{n!}, \quad \forall \ n \ge 0$$

Abbiamo quindi ottenuto la tesi:

$$\sum_{n=0}^{+\infty} \frac{z_1^n}{n!} \cdot \sum_{n=0}^{+\infty} \frac{z_2^n}{n!} = \sum_{n=0}^{+\infty} \frac{(z_1 + z_2)^n}{n!}$$

Sia $z \in \mathbb{C}$ fissato. Applichiamo la formula dimostrata al punto I con $z_1 = z$ e $z_2 = -z$; otteniamo

$$e^{z-z} = e^z e^{-z} \implies 1 = e^z e^{-z}$$

Da questo segue che $e^{-z} = 1/e^z$.

Fissato $y \in \mathbb{R}$, dalla definizione dell'esponenziale complesso segue che

$$e^{iy} = \sum_{n=0}^{+\infty} \frac{(iy)^n}{n!} = \sum_{n=0}^{+\infty} \frac{i^n y^n}{n!}$$

Riordiniamo i termini della serie separando i termini di posto pari e quelli di posto dispari^b, ottenendo

$$e^{iy} = \sum_{n=0}^{+\infty} \frac{i^{2k}y^{2k}}{(2k)!} + \sum_{n=0}^{+\infty} \frac{i^{2k+1}y^{2k+1}}{(2k+1)!}$$

Calcoliamo ora i^{2k} e i^{2k+1} : $i^{2k} = (i^2)^k = (-1)^k.$

$$i^{2k+1} = i \left(i^2 \right)^k = i \left(-1 \right)^k.$$

Allora

$$e^{iy} = \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k}}{(2k)!} + i \sum_{k=0}^{+\infty} \frac{(-1)^k y^{2k+1}}{(2k+1)!}$$

Ricordando che

$$\cos y = \sum_{n=0}^{+\infty} \frac{(-1)^k y^{2k}}{(2k)!} \quad \sin y = \sum_{n=0}^{+\infty} \frac{(-1)^k y^{2k+1}}{(2k+1)!}$$

segue la tesi.

- Sia z = x + iy, con $x, y \in \mathbb{R}$. Dalla relazione provata in I segue che $e^{x+iy} = e^x e^{iy}$. Applicando la formula di Eulero, si ha la tesi.
- Sia z = x + iy, con $x, y \in \mathbb{R}$, ossia $x = \Re \varepsilon z e y = \operatorname{Im} z$. La formula provata al punto V esprime il numero complesso e^z in forma trigonometrica; da essa si ricava quindi immediatamente il risultato.
- Siano $z \in \mathbb{C}$ e $k \in \mathbb{Z}$. Dalla relazione provata al punto I segue che

$$e^{z+2k\pi i} = e^z e^{2k\pi i}$$

Applicando la formula di Eulero si ricava immediatamente che

$$e^{2k\pi i} = \cos 2k\pi + i\sin 2k\pi = 1$$

e questo consente di concludere la tesi.

^aNelle "Note aggiuntive", a pagina 6.3.1 è possibile trovare alcune informazioni sulla proprietà di prodotto (secondo Cauchy).

^bPer riordinare la serie come due "sottoserie" senza che la somma venga modificata è necessaria la convergenza assoluta. Poiché ogni serie di potenze converge assolutamente all'interno del suo cerchio di convergenza, in questo caso non abbiamo problemi di riorganizzazione della serie. Nelle "Note aggiuntive", a pagina XXX è possibile trovare alcune informazioni sul problema di riorganizzazione della serie.

OSSERVAZIONE. Dalla relazione $e^{z+2k\pi i} = e^z$, $\forall z \in \mathbb{C}, k \in \mathbb{Z}$ segue che in campo complesso la funzione esponenziale è **periodica** di periodo $2\pi i$.

Di conseguenza, in campo complesso la funzione esponenziale *non* è invertibile. L'*invertibilità* è però garantita consentendo come inversa una *funzione multivoca*.

DEFINIZIONE 4.7.2. - FUNZIONE MULTIVOCA.

Una è una relazione binaria seriale che associa ad ogni valore x nel dominio X uno o più valori y nel codominio Y.

4.7.2 Funzione logaritmo in campo complesso

DEFINIZIONE 4.7.3. - LOGARITMO IN CAMPO COMPLESSO.

Dato un numero complesso z, si chiamano **logaritmi complessi** di z, se esistono, i numeri complessi w tali che

$$e^w = z \tag{4.23}$$

L'insieme di tali numeri si indica con

$$\log z \tag{4.24}$$

Proviamo ora che l'insieme dei logaritmi di z è non vuoto ed infinito se $z \neq 0$.

TEOREMA 4.7.1. - CARATTERIZZAZIONE DEI LOGARITMI IN CAMPO COMPLESSO.

L'insieme dei logaritmi di un numero complesso z è non vuoto se e solo se $z \neq 0$. In questo caso esso è *infinito* ed è costituito dai numeri complessi

$$\log z = \log|z| + i(\arg z + 2k\pi), \quad k \in \mathbb{Z}$$
(4.25)

DIMOSTRAZIONE. Ricordiamo che, per definizione, i logaritmi di un numero complesso z sono le soluzioni dell'equazione $e^w = z$. Dalle proprietà dell'esponenziale è noto che $e^w \neq 0$, per ogni numero complesso w; di conseguenza, l'equazione non ha soluzioni se z = 0.

Sia ora $z \neq 0$; posto w = u + iv, con $u, v \in \mathbb{R}$, ricordiamo che

$$e^w = e^u (\cos v + i \sin v)$$

affinché questo numero sia uguale a z si dovrà quindi avere

$$|e^w| = e^u = |z|$$
 e $\arg(e^w) = v = \arg(z) + 2k\pi$

per qualche $k \in \mathbb{Z}$. Otteniamo quindi

$$u = \log |z| \in \mathbb{R}$$

e dunque

$$w = \log|z| + i(\arg(z) + 2k\pi), \quad k \in \mathbb{Z}$$

OSSERVAZIONE. Si presti attenzione al diverso significato del simbolo log nella formula caratterizzante il *logaritmo complesso*: a *primo membro* esso indica i *logaritmi complessi* del numero z; a secondo membro, l'unico logaritmo reale del numero reale positivo |z|.

In figura sono rappresentati alcuni dei logaritmi complessi di un numero complesso non nullo z.

Come si osserva dalla formula essi hanno tutti la stessa parte reale e parti immaginarie che differiscono per multipli di 2π .

Teoria della misura

"BEEP BOOP QUESTA È UNA CITAZIONE."

Marinobot, dopo aver finito le citazioni stupide.

C TUDIEREMO [COMPLETARE]

5.1 IL CONTESTO STORICO: IL PROBLEMA DELLE DISCONTINUITÀ NELL'IN-TEGRALE DEFINITO

Seppur tecniche per calcolare aree e volumi furono già introdotte dai matematici dell'antica Grecia, fu solo nel tardo XVII secolo che vennero sviluppati i principi dell'integrazione indipendentemente da Isaac Newton (1643-1727) e Gottfried Wilhelm Leibniz (1646-1716), i quali immaginarono l'area sotto una curva come una somma infinita di rettangoli di larghezza infinitesima.

Nel corso dell'Ottocento una buona parte delle ricerche dell'Analisi si concentrarono su un aspetto dell'integrale definito di una funzione: *quanti* possono essere i *punti discontinuità* di una funzione integrabile e, più in generale, quali *classi* di funzioni sono integrabili? Augustin-Louis Cauchy (1789-1857) in *Résumé des leçons données à l'École Royale Polytechnique sur le calcul infinitésimal* (1823) definì l'integrale per funzioni continue o con al più un numero finito di discontinuità.

Successivamente, fu Bernhard Riemann (1826-1866) nella sua *Tesi di abilitazione all'insegnamento* (1851-1852) a estendere il concetto di integrale alle funzioni limitate e dare una caratterizzazione delle funzioni integrabili (ora dette **integrabili secondo Riemann**).

Definizione 5.1.1. - Caratterizzazione degli integrali secondo Riemann. La funzione $f:[a,b] \longrightarrow \mathbb{R}$ limitata è integrabile (secondo Riemann) se e solo se

 $\forall \varepsilon > 0 \ \exists D$ suddivisione di [a, b] in un numero finito di intervalli I_1, \ldots, I_n tale per cui

$$\sum_{i=1}^{n} \left(\sup_{I_i} f - \inf_{I_i} f \right) \mathcal{L}(I_i) < \varepsilon$$
 (5.1)

Dalla caratterizzazione di Riemann è evidente che affinché una funzione sia integrabile è necessario rendere *piccola* l'oscillazione di f, ossia

$$\sup_{I_i} f - \inf_{I_i} f$$

Dal teorema di *Heine-Cantor* è noto che per le funzioni continue su [a,b] questa oscillazione è arbitrariamente piccola se l'ampiezza dell'intervallo I_i è sufficientemente piccola, mentre in generale non lo è.

ESEMPIO. LA FUNZIONE DI DIRICHLET.

Consideriamo la funzione

$$f(x) = \begin{cases} 1 & \text{se } x \in [0,1] \cap \mathbb{Q} \\ 0 & \text{se } x \in [0,1] \setminus \mathbb{Q} \end{cases}$$
 (5.2)

Osserviamo come essa non è integrabile su [0,1]: poiché $\forall D$ partizione di [0,1] per densità dei razionali si ha

$$\sup_{I_i} f = 1 \qquad \inf_{I_i} f = 1, \ \forall i = 1, \dots, n$$

Allora

$$\sum_{i=1}^{n} \left(\sup_{I_{i}} f - \inf_{I_{i}} f \right) \mathcal{L}(I_{i}) = \sum_{i=1}^{n} (1 - 0) \mathcal{L}(I_{i}) = \sum_{i=1}^{n} \mathcal{L}(I_{i}) = \mathcal{L}([0, 1]) = 1, \ \forall D \text{ suddivisione}$$

Nel corso di Analisi Matematica Uno abbiamo dato la definizione di integrale secondo Riemann per le funzioni limitate.

5.2 σ -ALGEBRE

DEFINIZIONE 5.2.1. - σ -ALGEBRA, SPAZI E INSIEMI MISURABILI.

Sia X insieme qualsiasi e \mathcal{M} una famiglia di sottoinsiemi di X. \mathcal{M} è una σ -algebra se soddisfa i seguenti assiomi:

- 1. L'insieme stesso sta nella σ -algebra: $X \in \mathcal{M}$.
- 2. La σ -algebra è chiusa rispetto alla complementarizzazione: $A \in \mathcal{M} \implies A^C \in \mathcal{M}$.
- 3. La σ -algebra è chiusa rispetto alla *unione numerabile*: $A_n \in \mathcal{M} \implies \bigcup_{n \geq 1} A_n \in \mathcal{M}$.

La coppia (X, \mathcal{M}) si dice **spazio misurabile** e gli insiemi che appartengono a \mathcal{M} sono detti **insiemi misurabili**.

OSSERVAZIONE.

- $\emptyset \in \mathcal{M}$ in quanto è il complementare dell'insieme X.
- La σ -algebra è chiusa rispetto all'*intersezione finita*: $A_k \in \mathcal{M} \implies \bigcap_{k=1}^n A_k \in \mathcal{M}$

Infatti, si può scrivere l'intersezione tramite unione e complementari - operazioni interne alla σ -algebra - tramite le *leggi di De Morgan*^a.

^aNelle "Note aggiuntive", a pagina XXX è possibile trovare alcune informazioni sulle leggi di De Morgan.

Esempio. Ogni insieme è uno spazio misurabile, in quanto ammette almeno la σ -algebra triviale data da $\mathcal{P}(X)$.

Definizione 5.2.2. - σ -algebra generata da una famiglia di sottoinsiemi.

Data una famiglia \mathscr{F} di sottoinsiemi di X, si dice σ -algebra generata da \mathscr{F} l'intersezione di tutte le σ -algebre che contengono \mathscr{F} ed è la più piccola σ -algebra che contiene \mathscr{F} .

ESEMPIO. Se X è spazio topologico e \mathscr{F} è la famiglia degli aperti di X (che coincide con la topologia τ se definita con gli assiomi degli aperti), la σ -algebra generata da \mathscr{F} si chiama σ -algebra dei Borelliani di X e si indica con $\mathscr{B}(X)$.

Osserviamo che la famiglia \mathscr{F} di per sé non è una σ -algebra: se A è aperto, $A^{\mathbb{C}}$ è chiuso e quindi non appartiene a \mathscr{F} ; invece, in $\mathscr{B}(X)$ ci stanno anche i chiusi della topologia e quindi la complementarizzazione è un'operazione interna.

5.3 FUNZIONI MISURABILI

DEFINIZIONE 5.3.1. - FUNZIONE MISURABILE.

Sia (X, \mathcal{M}) spazio misurabile e Y spazio topologico. Una funzione $f: X \longrightarrow Y$ si dice **misurabile** se $f^{-1}(A) \in \mathcal{M}$, $\forall A \subseteq Y$ aperto.

DIGRESSIONE. In CALCOLO DELLE PROBABILITÀ, le funzioni misurabili sono dette **variabili** aleatorie.

OSSERVAZIONE. Se $\mathcal{M} = \mathcal{P}(X)$, allora *ogni* funzione è misurabile.

ESEMPI.

1. Sia $(X,\mathcal{B}(X))$ spazio misurabile su X spazio topologico con la σ -algebra dei Borelliani di X e sia Y spazio topologico. Allora

$$f: X \longrightarrow Y$$
 continua $\Longrightarrow f: X \longrightarrow Y$ misurabile.

Infatti, $\forall A \subseteq Y$ aperto, $f^{-1}(A)$ è aperto per continuità di f e quindi $f^{-1}(A) \in \mathcal{B}(X)$.

2. Sia (X, \mathcal{M}) spazio misurabile qualsiasi e sia $E \subseteq X$. Definiamo la **funzione** caratteristica di E o indicatrice di E la funzione

$$\chi_E : X \longrightarrow \mathbb{R}$$

$$x \longmapsto \chi_E(X) = \begin{cases}
1 & \text{se } x \in E \\
0 & \text{se } x \notin E
\end{cases} \tag{5.3}$$

Allora

$$\chi_E$$
 è misurabile $\iff E \in \mathcal{M}$

Infatti, preso $A \subseteq \mathbb{R}$, si ha

$$f^{-1}(A) = \begin{cases} \varnothing & \text{se } 0 \notin A, \ 1 \notin A \\ E^{C} & \text{se } 0 \in A, \ 1 \notin A \\ E & \text{se } 0 \notin A, \ 1 \in A \\ X & \text{se } 0 \in A, \ 1 \in A \end{cases}$$

Allora $f^{-1}(A) \in \mathcal{M} \iff E \in \mathcal{M}$.

OSSERVAZIONE. La funzione caratteristica $\chi_{\mathbb{Q}\cap[0,1]}$ è la funzione di Dirichlet vista nella sezione XXX, pag. XXX.

Proposizione 5.3.1. - Proprietà della funzioni misurabili.

1. Sia (X,\mathcal{M}) uno spazio misurabile e sia $f:X\longrightarrow\mathbb{C}$, dove \mathbb{C} ha la topologia Euclidea. Possiamo "scomporre" la funzione a valori complessi come combinazione lineare di funzioni reali rispetto alla base (1,i).

$$\forall x \in X f\left(x\right) \in \mathbb{C} \implies f\left(x\right) = \underbrace{u\left(x\right)}_{\text{parte reale}} + i \underbrace{v\left(x\right)}_{\text{parte immaginaria}} \text{, con } u, v: X \longrightarrow \mathbb{R} \text{ .}$$

Allora

- a. f è misurabile $\implies u, v, |f|$ misurabili.
- b. u, v sono misurabili $\implies f = u + iv$ è misurabile.
- 2. Siano $f,g:X\longrightarrow \mathbb{C}$. Se f,g sono misurabili, allora
 - f + g è misurabile.
 - fg è misurabile.

5.3.1 Caratterizzazione delle funzioni misurabili

In Calcolo delle Probabilità abbiamo dato una definizione di funzione misurabile $f:(X,\mathcal{M})\longrightarrow Y$ se la controimmagine tramite f di un Borelliano è un insieme misurabile per \mathcal{M} . Vedremo ora come questa definizione è equivalente a quella data all'inizio della sezione.

TEOREMA 5.3.1. - CARATTERIZZAZIONE DELLE FUNZIONI MISURABILI.

- 1. $f:(X,\mathcal{M})\longrightarrow Y$ misurabile con Y spazio topologico $\iff f^{-1}(B)\in\mathcal{M}, \ \forall B$ borelliano di Y
- 2. Posto $\mathbb{R}^*Y = [-\infty, +\infty]$, $f: X \longrightarrow [-\infty, +\infty]$ misurabile $\iff f((\alpha, +\infty)) \in \mathcal{M}, \forall \alpha \in \mathbb{R}$.

Che differenza c'è tra la definizione e le caratterizzazioni? In sostanza possono essere considerate tre "test" differenti per mostrare o confutare che una funzione sia misurabile.

$$(A) \quad f^{-1}(A) \in \mathcal{M}, \ \forall A \ \text{aperto di } Y$$

$$(B) \quad f^{-1}(B) \in \mathcal{M}, \ \forall B \ \text{Borelliano di } Y$$

$$(C) \quad f^{-1}((\alpha, +\infty)) \in \mathcal{M}, \ \forall \alpha \in \mathbb{R}, \ \text{con } Y = \mathbb{R}^* = [-\infty, +\infty]$$

Da un punto di vista operativo B non conviene per verificare che f sia misurabile, perché i Borelliani sono molti di più.

Tuttavia, (B) rispetto a (A) informazioni che immediatamente non si avevano dalla definizione originale: sono misurabili non solo le controimmagini degli aperti, ma anche le controimmagini dei chiusi.

Col caso C ci limitiamo ad operare in $\mathbb{R}^* = [-\infty, +\infty]$, ma è sicuramente $\mathbb{R}^* = [-\infty, +\infty] \mathbb{R}^* = [-\infty, +\infty]$ è più vantaggioso rispetto ad A.

5.3.2 Passaggio al limite per funzioni misurabili

Ci chiediamo se, date f_n successione di funzioni misurabili che convengono ad una funzione f in *una qualche* convergenza, f risulta essere ancora misurabile e se sì, con quale tipo di convergenza.

A differenza di quanto visto col passaggio al limite della continuità, la risposta è affermativa anche sotto la sola ipotesi di *convergenza puntuale*!

Per dimostrarlo (e lo faremo per funzioni a valori in \mathbb{C}), abbiamo bisogno di alcuni risultati preliminari che riguardano sup, inf, lim sup, lim inf di una successione di funzione. Per poter parlare di lim sup e lim inf abbiamo bisogno di avere il codomini della funzione in uno spazio Y con ordinamento, pertanto ci porremo in $\mathbb{R}^* = [-\infty, +\infty]$, ossia le nostre funzioni saranno del tipo

$$f:(X,\mathcal{M})\longrightarrow \mathbb{R}^*=[-\infty,+\infty]$$

DEFINIZIONE 5.3.2. - sup, inf, lim sup e lim inf di una successione di funzioni.

$$\left(\sup_{n\geq 1} f_n\right)(x) := \sup_{n\geq 1} f_n(x), \ \forall x \in X$$

$$\left(\inf_{n\geq 1} f_n\right)(x) := \inf_{n\geq 1} f_n(x), \ \forall x \in X$$

$$\left(\limsup_{n\to +\infty} f_n\right)(x) := \limsup_{n\to +\infty} f_n(x), \ \forall x \in X$$

$$\left(\liminf_{n\to +\infty} f_n\right)(x) := \liminf_{n\to +\infty} f_n(x), \ \forall x \in X$$

Proposizione 5.3.2. - Misurabilità di sup, inf, lim sup e lim inf di una successione di funzioni misurabili.

Siano (X, \mathcal{M}) uno spazio misurabile e siano $f_n : (X, \mathcal{M}) \longrightarrow \mathbb{R}^* = [-\infty, +\infty]$ misura-

bili. Allora

$$\sup_{n\geq 1} f_n \quad \inf_{n\geq 1} f_n \quad \limsup_{n\to\infty} f_n \quad \liminf_{n\to\infty} f_n$$

DIMOSTRAZIONE.

1. Sia $g(x) = \sup_{n \ge 1} f_n(x)$, $\forall x \in X$. Dobbiamo provare che g sia misurabile, con $g: (X, \mathcal{M}) \longrightarrow \mathbb{R}^* = [-\infty, +\infty]$. Per la caratterizzazione delle funzioni misurabili (teorema 5.3.1, pag. 68) è sufficiente dimostrare che $g^{-1}((\alpha, +\infty)) \in \mathcal{M}$, $\forall \alpha \in \mathbb{R}$.

Si prova che

$$g^{-1}((\alpha,+\infty)) = \bigcup_{n\geq 1} f_n^{-1}((\alpha,+\infty)), \ \forall \alpha \in \mathbb{R}$$

Poiché f_n è misurabile si ha

$$f_n^{-1}((\alpha,+\infty)) \in \mathcal{M}$$

ed essendo $\mathcal M$ una σ -algebra vale

$$g^{-1}((\alpha, +\infty)) = \bigcup_{n \ge 1} f_n^{-1}((\alpha, +\infty)) \in \mathcal{M}$$

2-3-4 Si riconducono al caso 1) perché

$$\inf_{n\geq 1} f_n = -\left(\sup_{n\geq 1} (-f_n)\right)$$

$$\limsup_{n\to +\infty} f_n = \inf_{k\geq 1} \sup_{n\geq k} f_n$$

$$\liminf_{n\to +\infty} f_n = \sup_{k\geq 1} \inf_{n\geq k} f_n$$

Corollario 5.3.1. - Passaggio al limite per funzioni misurabili in \mathbb{C} .

Sia (X,\mathcal{M}) uno spazio misurabile e siano $f_n:X\longrightarrow \mathbb{C}$.

Se f_n sono misurabili ed esiste $f: X \longrightarrow \mathbb{C}$ tale che

$$\lim_{n \to +\infty} f_n(x) = f(x), \ \forall x \in X$$

allora f è misurabile.

DIMOSTRAZIONE. Riconduciamoci al caso reale per utilizzare la proposizione precedente. Posto

$$f_n = u_n + iv_n$$
 $f = u + iv$

dove

$$u_n = \Re e(f_n) : X \longrightarrow \mathbb{R}$$
 $v_n = \operatorname{Im}(f_n) : X \longrightarrow \mathbb{R}$
 $u = \Re e(f) : X \longrightarrow \mathbb{R}$ $v = \operatorname{Im}(f) : X \longrightarrow \mathbb{R}$

Come visto nella proposizione 5.3.1 (pag. 68) f_n misurabile implica che sia u_n sia v_n siano misurabili e, dal risultato precedente sulle funzioni a valori in \mathbb{R}^* si ha

$$\limsup_{n\to+\infty} u_n$$
, $\limsup_{n\to+\infty} v_n$ misurabili.

D'latra parte si ha

$$\lim_{n \to +\infty} f_n(x) = f(x) \implies \left\{ \lim_{n \to +\infty} u_n(x) = u(x) \lim_{n \to +\infty} v_n(x) = v(x) \right\}$$

Poiché i limiti esistono si ha

$$\lim_{n \to +\infty} u_n = \limsup_{n \to +\infty} u_n = u(x)$$

$$\lim_{n \to +\infty} v_n = \limsup_{n \to +\infty} v_n = v(x)$$

Quindi u(x) e v(x) sono misurabili, pertanto anche f = u + iv è misurabile.

5.4 MISURA DI PEANO-JORDAN

Negli stessi anni in cui si lavorò per espandere la classe di funzioni che ammettono integrale definito, diversi matematici lavorano su un'altra questione, quella della **misura** di un insieme.

Chiaramente già dall'antichità erano note misure di figure "elementari", come ad esempio la lunghezza e l'area di un poligono o il volume di certi solidi, spesso sulla base di principi come quello di *esaustione*.

Solo nel XIX secolo si cercò di formalizzare questi ragionamenti ed espandere il concetto di misura non soltanto a figure generiche, ma anche a più dimensioni fino ad arrivare ad una astrazione di tale concetto ad insiemi, indipendentemente dall'essere in \mathbb{R}^n .

Il primo ad introdurre un concetto di misura di un sottoinsieme della retta, del piano o delle spazio fu Giuseppe **Peano** (1858-1932). Nel suo Applicazioni geometriche del calcolo infinitesimale (1887), il matematico torinese ipotizza di "modernizzare" il metodo di esaustione già citato in precedenza. Ad esempio, prendo un insieme limitato in \mathbb{R}^2 , ossia quello che all'epoca veniva denominato *campo piano*, potremmo considerare dei poligoni che contengono tale insieme - che chiameremo *poligoni esterni* - e dei poligoni che sono contenuti in tale insieme - i cosiddetti *poligoni interni*.

Se l'estremo inferiore dei poligoni esterni coincide con quello superiore di quelli interni, potremmo dire che l'insieme è misurabile e ha area pari a questo limite. Inoltre, Peano fornisce una condizione necessaria e sufficiente: la differenza tra i poligoni esterni ed interni deve essere piccola a piacere, ossia la frontiera dell'insieme (che chiaramente è contenuta nell'area di piano fra i poligoni esterni ed interni) dovrà avere misura nulla.

Possono capitare anche insiemi che non ammettono area. Ad esempio, supponiamo di prendere tutti i punti a distanza *razionale* $r \le 1$ dall'origine, cioè infinite circonferenze di raggio razionale interne al disco di raggio 1. Chiaramente l'area interna è uguale a o, mentre essendo l'insieme denso nel disco di raggio 1, ogni poligono che la contiene contiene il cerchio e quindi l'area esterna è ≥ 1 : essendo l'area interna e l'area esterna diverse, il poligono non ammette aree.

La misura di Peano, per quanto innovativa, risente di alcuni problemi: parlare di poligoni o solidi poligonali è facile farlo in \mathbb{R}^2 o \mathbb{R}^3 , ma non è generalizzabile in dimensioni maggiori: ad esempio, qual è la misura di un ipersolido poligonale di dimensione 4? Inoltre, la misura di Peano non è numerabilmente additiva, ossia un'unione *infinita numerabile*

di insiemi misurabili secondo Peano non è necessariamente ancora misurabile. Qualche anno dopo i lavori di Peano, il matematico francese Marie Camille **Jordan** (1838-1922) *estende* il concetto di misura introdotta da Peano a una generica dimensione *n*, utilizzando invece che poligoni o solidi poligoni delle *unioni di intervalli*, *rettangoli* o, in generale, *parallelepipedi n*-dimensionali, poiché questi hanno una misura ben nota!

Anche se questa misura coincide con quella di Peano (dopotutto, le unioni di parallelepipedi sono un *caso particolare* di ipersolidi poligonali), in questo modo si risolve il *primo problema* dei due problemi enunciati precedentemente; ciò nonostante, questa definizione non è ancora una misura numerabilmente-additiva.

5.4.1 Definizione e osservazioni sulla misura di Peano-Jordan

DEFINIZIONE 5.4.1. - PARALLELEPIPEDO *n*-DIMENSIONALE.

Un **parallelepipedo** *n*-dimensionale è un *plurintervallo*, ossia come il prodotto cartesiano di *n* intervalli:

$$P = \prod_{i=1}^{n} [a_i, b_i] \quad \text{con } -\infty < a_i < b_i < +\infty$$
 (5.4)

Posta la lunghezza di un intervallo come

$$\mathscr{L}([a_i, b_i]) = b_i - a_i \tag{5.5}$$

la misura *n*-dimensionale del parallelepipedo è

$$V_n(P) = \prod_{i=1}^n \mathcal{L}([a_i, b_i])$$
(5.6)

Introduciamo formalmente la misura esterna e la misura interna di un insieme limitato *A* come estremi inferiori e superiori di un **insieme elementare**, cioè un'unione finita di parallelepipedi:

■ Misura esterna:

$$m^{X}(A) = \inf \left\{ \sum_{i=1}^{n} V_{n}(P_{i}) \mid P_{i} \text{ parallelepipedi, } \bigcup_{i=1}^{n} P_{i} \supseteq A \right\}$$
 (5.7)

■ Misura interna:

$$m_X(A) = \inf \left\{ \sum_{i=1}^n V_n(P_i) \mid P_i \text{ parallelepipedi, } \bigcup_{i=1}^n P_i \subseteq A \right\}$$
 (5.8)

In generale $m_X(A) \le m^X(A)$.

DEFINIZIONE 5.4.2. - MISURA DI PEANO-JORDAN.

Un insieme limitato A è misurabile secondo Peano-Jordan se $m^X(A) = m_X(A)$ e la misura (secondo P-J) dell'insieme è

$$m(A) = m^{X}(A) = m_{X}(A)$$
(5.9)

Proposizione 5.4.1. - Criterio di misurabilità.

L'insieme limitato $A \subseteq \mathbb{R}^n$ è misurabile per Peano-Jordan se e solo se $\forall \varepsilon > 0$, $\exists P \subseteq A, Q \supseteq A$ con P, Q insiemi elementari tali che

$$m(Q) - m(P) \le \varepsilon$$
 (5.10)

Definito

$$\mathcal{M} = \{ A \subseteq \mathbb{R}^n \mid A \grave{e} \text{ P-J misurabile} \}$$
 (5.11)

essa è un'algebra, ma non una σ -algebra, cioè non è chiusa rispetto all'unione numerabile infinita.

Esempio. Controesempio dell'additività numerabile della misura di Peano-Jordan. Consideriamo

$$E = \mathbb{Q} \cap [0,1] = \bigcup_{n \ge 1} \{r_n\}$$

dove $\{r_n\}$ è un'enumerazione di razionali in [0,1].

 $\{r_n\}$ è un punto e dunque è misurabile con misura nulla, ma $\bigcup_{n\geq 1} \{r_n\} = E \ non$ è misurabile,

dato che

$$\begin{cases} m^{X}(E) = 1\\ m_{X}(E) = 0 \end{cases}$$

In altre parole, la misura secondo Peano-Jordan è additiva, ma non σ -additiva.

DIGRESSIONE. Il termine italiano "Misura di Peano-Jordan" è improprio, in quanto essa non è una *misura* nel senso *moderno* del termine. Nell'Anglosfera lo stesso concetto viene chiamata "Jordan content".

5.5 MISURA SECONDO LEBESGUE

Per quanto innovativa, la misura di Peano-Jordan presenta alcuni notevoli problemi:

- É definita solo per *insiemi limitati*.
- Non è *numerabilmente additività*: la misura di un'unione numerabilmente infinita di insiemi misurabili non è necessariamente misurabile.

Il concetto *moderno* di misura di un sottoinsieme dello spazio *n*-dimensionale viene per la prima volta presentato in *Intégrale, longueure, aire* (1902) dal matematico francese Henri **Lebesgue** (1875-1941) nell'ambito dell'annoso problema delle discontinuità nell'integrale definito.

La costruzione della misura secondo Lebesgue inizia in modo analogo a quella di Peano-Jordan, definendo i *parallelepipedi*; per poter definire la misurabilità di insiemi illimitati si ammettono parallelepipedi *degeneri*.

DEFINIZIONE 5.5.1. - PARALLELEPIPEDO *n*-DIMENSIONALE.

Un **parallelepipedo** *n*-dimensionale è un *plurintervallo*, ossia come il prodotto cartesia-

no di *n* intervalli eventualmente *degeneri*:

$$P = \prod_{i=1}^{n} [a_i, b_i] \quad \text{con } -\infty \le a_i \le b_i \le +\infty$$
 (5.12)

Posta la lunghezza di un intervallo come

$$\mathcal{L}([a_i, b_i]) = \begin{cases} b_i - a_i & \text{se } -\infty < a_i \le b_i < +\infty \\ +\infty & \text{altrimenti} \end{cases}$$
 (5.13)

la misura *n*-dimensionale del parallelepipedo è

$$V_n(P) = \prod_{i=1}^n \mathcal{L}([a_i, b_i])$$
(5.14)

con la convenzione che $0 \cdot \infty = 0$.

OSSERVAZIONE. Come mai $0 \cdot \infty$ non è lasciato indeterminato, ma posto proprio uguale a o?. Per capirlo, facciamo prima un esempio in dimensione 2; consideriamo il rettangolo degenere

$$P = \{a_1\} \times (a_2, +\infty)$$

Esso è un sottoinsieme di \mathbb{R}^2 , ma ha chiaramente dimensione 1: seppur come semiretta ha una lunghezza ben definita (e in tal caso sarebbe infinita tale lunghezza), è ragionevole dire che come oggetto *bidimensionale* abbia *area* 0.

In altre parole, se almeno un intervallo che compone il parallelepipedo n-dimensionale ha lunghezza nulla, P è da intendersi come elemento di dimensione k in uno spazio n-dimensionale, con k < n; in questo caso la sua misura n-dimensionale è nulla, anche se fosse *illimitato* in diverse direzioni, da qui spiegato il perché di $0 \cdot \infty = 0$.

A differenza di Peano-Jordan, Lebesgue definisce solamente la **misura esterna** dell'insieme:

$$m^{X}(A) = \inf \left\{ \sum_{i=1}^{n} V_{n}(P_{i}) \mid P_{i} \text{ parallelepipedi, } \bigcup_{i=1}^{n} P_{i} \supseteq A \right\}$$

Essa si può vedere come una funzione

$$m^X: \mathcal{P}(\mathbb{R}^n) \longrightarrow [0, +\infty]$$
 (5.15)

che gode delle seguenti proprietà:

• Se l'insieme è un parallelepipedo *n*-dimensionale, la misura esterna del parallelepipedo ovviamente coincide con la misura *n*-dimensionale di esso:

$$m^{X}(P) = V_{n}(P), \forall P \text{ parallelepipedo}$$
 (5.16)

■ È monotona:

$$m^{X}(A) \le m^{X}(B), \forall A \subseteq B$$
 (5.17)

 \blacksquare È σ -sub-additiva:

$$m^{X}\left(\bigcup_{n\geq1}A_{n}\right)\leq\sum_{n\geq1}m^{X}\left(A_{n}\right),\forall A_{n}\subseteq\mathbb{R}^{n}$$
 (5.18)

■ È invariante per traslazioni:

$$m^{X}(A + \{x\}) = m^{X}(A), \ \forall x \in \mathbb{R}^{n}, \ \forall A \subseteq \mathbb{R}^{n}$$
(5.19)

Osserviamo che per m^X vale solo la σ -sub-additività, ma non la σ -additività.

DEFINIZIONE 5.5.2. - INSIEME MISURABILE SECONDO LEBESGUE.

Un insieme $A \subseteq \mathbb{R}^n$ è misurabile secondo Lebesguese $\forall E \subseteq \mathbb{R}^n$ vale

$$m - n^{X}(E) = m_{n}^{X}(E \cap A) + m_{n}^{X}(E \cap A^{C})$$

$$(5.20)$$

E è un **insieme test** arbitrario: A è misurabile se decompone bene E in due sottoinsiemi misurabili $E \cap A$ e $E \cap A^C$.

Proposizione 5.5.1. - Gli insiemi misurabili secondo Lebesgue sono una σ -algebra. L'insieme

$$\mathcal{L}(\mathbb{R}^n) = \{A \subseteq \mathbb{R}^n \mid A \text{ è Lebesgue-misurabile}\}$$

è una σ -algebra.

DEFINIZIONE 5.5.3. - MISURA SECONDO LEBESGUE.

La **misura secondo Lebesgue** è la restrizione della misura esterna a $\mathcal{L}(\mathbb{R}^n)$:

$$m_n = m_n^X|_{\mathscr{L}(\mathbb{R}^n)} \text{ ossia } m_n : \mathscr{L}(\mathbb{R}^n) \longrightarrow [0, +\infty]$$
 (5.21)

Note aggiuntive

"Le note a piè di pagina sono le superfici ingannatrici che permettono ai paragrafi tentacolari di aderire alla realtà più ampia della biblioteca."

NICHOLSON BAKER, bibliotecario di Cthulhu.

Riportiamo alcune note, precisazioni e dimostrazioni complementari agli argomenti dei capitoli principali che possono risultare utili al lettore.

6.1 CAPITOLO 1: ALLA RICERCA DELLA LUNGHEZZA DELL'ELLISSE

6.1.1 Il coefficiente binomiale generalizzato

DEFINIZIONE 6.1.1. - COEFFICIENTE BINOMIALE.

Dati $n, j \in \mathbb{N}$ con $n \ge j$, si definisce il **coefficiente binomiale** il numero

$$\binom{n}{j} = \frac{n!}{j!(n-j)!} \tag{6.1}$$

dove! indica il fattoriale:

- \blacksquare (0)! = 1

Se n < j, allora poniamo $\binom{n}{j} = 0$

Possiamo estendere la definizione del coefficiente binomiale sostituendo a n e j dei qualunque numeri complessi α e β (purché non sia un intero negativo) utilizzando la generalizzazione del fattoriale, la funzione Gamma di Eulero. Vediamone la definizione con α tale che $\Re \alpha$ (α) > 0.

DEFINIZIONE 6.1.2. - FUNZIONE GAMMA DI EULERO.

Dato α tale che $\Re (\alpha) > 0$, definiamo la **funzione Gamma di Eulero** in campo comples-

so come il prolungamento analitico dell'integrale improprio convergente

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-\alpha} dx \tag{6.2}$$

Essa gode di alcune proprietà:

- $\Gamma(1) = 1$
- $\Gamma(\alpha+1)=\alpha\Gamma(\alpha), \forall \alpha>0$
- $\Gamma(n) = (n+1)!, \forall n \in \mathbb{N}$

Definita la funzione Gamma, diamo ora una definizione generalizzata di coefficiente binomiale.

Definizione 6.1.3. - Coefficiente binomiale generalizzato con Gamma di Eulero. Dati $\alpha, \beta \in \mathbb{C} \setminus \{z \mid \Re \varepsilon(z) \in \mathbb{Z} \wedge \Re \varepsilon(z) \leq 0\}$, si definisce il coefficiente binomiale generalizzato il numero

$$\binom{\alpha}{\beta} = \frac{\Gamma(\alpha+1)}{\Gamma(\beta+1)\Gamma(\alpha-j+1)}$$
 (6.3)

Questa definizione è corretta, ma presenta alcuni inconvenienti:

- *Non è definita* sui complessi con parte reale un numero intero negativo o zero.
- *Non è operativa*, dato che richiede di conoscere i valori della funzione Gamma che, in generale, non sono noti.

Consideriamo ora il caso del binomiale $\binom{\alpha}{j}$ dove $\alpha \in \mathbb{C}$ e $j \in \mathbb{N}$. Se $\alpha \in \mathbb{N}$, osserviamo come la forma operativa del binomiale è la seguente:

In realtà questa relazione si ottiene anche col coefficiente che abbiamo definito in precedenza se $\alpha \in \mathbb{C}$ e $j \in \mathbb{N}$. Innanzitutto, diamo qualche notazione.

Definizione 6.1.4. - Simbolo di Pochhammer o fattoriale crescente.

Dati $\alpha \in \mathbb{C}$, $j \in \mathbb{N}$, il **simbolo di Pochhammer** o altresì detto **fattoriale crescente** è il numero

$$\alpha^{\overline{j}} = (\alpha)_j := \frac{\Gamma(\alpha + j)}{\Gamma(\alpha)}$$
 (6.4)

Questa equivale a

$$\alpha^{\bar{j}} = (\alpha)_j = \prod_{k=0}^{j-1} (\alpha + j) = \prod_{k=1}^{j} (\alpha + j - 1) = \alpha (\alpha + 1) \cdots (\alpha + j - 1)$$
 (6.5)

DEFINIZIONE 6.1.5. - FATTORIALE DECRESCENTE.

Dati $\alpha \in \mathbb{C}$, $j \in \mathbb{N}$, il **fattoriale decrescente** è il numero

$$\alpha^{\underline{j}} := \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha - j + 1)} \tag{6.6}$$

Questa equivale a

$$\alpha^{j} = \prod_{k=0}^{j-1} (\alpha - j) = \prod_{k=1}^{j} (\alpha - j + 1) = \alpha (\alpha - 1) \cdots (\alpha - j + 1)$$
 (6.7)

Attenzione! La notazione $(\alpha)_j$, introdotta da Leo August Pochhammer, è talvolta usata anche per indicare il fattoriale *decrescente* oltre che quello *crescente*. Anche se useremo il simbolo di Pochammer solo per il fattoriale crescente, prediligeremo la notazione introdotta da Knuth et al.

Osserviamo che

$$\binom{\alpha}{j} = \frac{\Gamma(\alpha+1)}{j!\Gamma(\alpha-j+1)} = \frac{\alpha^{\underline{j}}}{j!} = \frac{\alpha(\alpha-1)\cdots(\alpha-j+1)}{j!} = \frac{(\alpha-j+1)^{\overline{j}}}{j!} = \frac{(\alpha-j+1)_{\overline{j}}}{j!}$$

Allora possiamo considerare questa definizione operativa come la generalizzazione nel caso $\alpha \in \mathbb{C}$ e $j \in \mathbb{N}$ del binomiale.

Definizione 6.1.6. - Coefficiente binomiale generalizzato, definizione operativa. Dati $\alpha \in \mathbb{C}$, $j \in \mathbb{N}$, si definisce il coefficiente binomiale generalizzato il numero

$$\binom{\alpha}{j} = \frac{\alpha^{\underline{j}}}{j!} = \frac{(\alpha - j + 1)^{\overline{j}}}{j!} = \frac{(\alpha - j + 1)_j}{j!} = \frac{\alpha (\alpha - 1) \cdots (\alpha - j + 1)}{j!}$$
(6.8)

Osservazione. Se $\alpha < j$, con $\alpha \in \mathbb{Z}$ e $j \in \mathbb{N}$, si ha al numeratore il fattore $(\alpha - \alpha)$ e quindi $\binom{\alpha}{j} = 0$. Il

Valgono inoltre le seguenti proprietà, $\forall \alpha \in \mathbb{C}$:

$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1 \tag{6.9}$$

$$\binom{\alpha}{k+1} = \binom{\alpha}{k} \frac{\alpha - k}{k+1}$$
 (6.10)

$$\binom{\alpha}{k-1} + \binom{\alpha}{k} = \binom{\alpha+1}{k}$$
 (6.11)

6.2 CAPITOLO 3: SERIE DI FUNZIONI

6.2.1 Tanti criteri di Cauchy

Il **criterio di Cauchy** è un importante teorema che fornisce condizioni necessarie e sufficienti per la convergenza di una successione.

TEOREMA 6.2.1. - CRITERIO DI CAUCHY PER LE SUCCESSIONI.

Sia v_n successione in X spazio metrico *completo*. Allora

 v_n converge in $X \iff v_n$ è di Cauchy \iff

$$\iff \forall \varepsilon > 0 \; \exists N = N(\varepsilon) : \forall n, m \ge N \; d(v_n, v_m) < \varepsilon \quad (6.12)$$

DIMOSTRAZIONE.

 \implies) Supponiamo che v_n converge a $v \in X$, ovvero

$$\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n \ge Nd(v_n, v) < \frac{\varepsilon}{2}$$

Prendiamo $n, m \ge N$. Per la disuguaglianza triangolare della metrica d si ha

$$d(v_n, v_m) < d(v_n, v) + d(v, v_m) = d(v_n, v) + d(v_m, v) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 \iff) Vale per la completezza dello spazio X.

OSSERVAZIONE. L'implicazione \implies) vale in generale su qualunque spazio metrico, mentre l'altra vale solo se lo spazio è completo. Per dimostrare che X sia completo può essere utile utilizzare alcune delle seguenti proprietà a :

- Una successione di Cauchy è *convergente* se e solo se ha punti di accumulazione.
- Una successione di Cauchy è *convergente* se ha una *sottosuccessione convergente*.
- Se *X* è spazio metrico *compatto*, allora *X* è spazio metrico *completo*; non è vero il viceversa.

INTUITIVAMENTE... Possiamo vedere una successione di Cauchy come una successione che *oscilla* sempre di meno, fino a posizionarsi su un valore relativamente costante, dove le oscillazioni fra due valori distinti della successione sono davvero piccole.

In termini matematici, possiamo formalizzare questa intuizione così: una oscillazione dopo l'N-esimo elemento è la più grande differenza fra due elementi della successione scelti arbitrariamente dopo l'N-esimo:

$$osc(N) := sup \{d(v_n, v_m) \mid n, m \ge N\}$$

Allora una serie è di Cauchy se

$$\lim_{N \to +\infty} osc(N) = 0$$

Questo ci permette di *estendere* il criterio di Cauchy a situazione *molto variegate* tra di loro dove bisogna studiare una convergenza, tutte *accomunate* dall'idea che "portare l'oscillazione a *zero* è equivalente alla convergenza".

Abbiamo visto nel Capitolo 2 a pagina 11, a pag. 15 il criterio di Cauchy per la *convergenza uniforme*; qui di seguito riportiamo quello per le successioni.

^aPer approfondimenti si veda il Capitolo 6 di **antucabertolotti:2021manualozzogeometria**.

COROLLARIO 6.2.1. - CRITERIO DI CAUCHY PER LE SERIE.

Una serie $\sum_{n=0}^{+\infty} x_n$ in uno spazio *normato completo* è convergente se e solo se

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall n \ge N, \ \forall p \in \mathbb{N} \ \left\| x_{n+1} + x_{n+2} + \dots + x_{n+p} \right\| < \varepsilon \tag{6.13}$$

DIMOSTRAZIONE. Considerate le ridotte $s_n = \sum_{k=1}^n a_k$, la serie $\sum_{n=0}^{+\infty} x_n$ converge se e solo se la successione delle ridotte converge. Poiché X è uno spazio completo, questo equivale a dire che la successione delle ridotte s_n è di Cauchy, ossia

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \geq N, \ \forall p \in \mathbb{N} \ ||s_m - s_n|| < \varepsilon$$

Senza perdita di generalità poniamo m = n + p: la relazione qui sopra coincide con

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \colon \forall n \ge N, \ \forall p \in \mathbb{N} \ \left\| x_{n+1} + x_{n+2} + \ldots + x_{n+p} \right\| < \varepsilon$$

e quindi segue la tesi.

6.2.2 Criteri di convergenza delle serie

Di seguito enunceremo diversi criteri utili per studiare la convergenza di una serie $\sum_{n=1}^{+\infty} a_n$.

■ Limite del termine della successione. (*Criterio necessario*, \mathbb{R} o \mathbb{C}) Se la serie converge, allora $\lim_{n \to +\infty} a_n = 0$. Per contronominale vale

$$\lim_{n \to +\infty} a_n \neq 0 \implies \sum_{n=1}^{+\infty} a_n \text{ non converge}$$
 (6.14)

■ Convergenza assoluta. (Criterio sufficiente, \mathbb{R} o \mathbb{C}) Se la serie $\sum_{n=1}^{+\infty} |a_n|$ converge,

allora si dice che la serie $\sum_{n=1}^{+\infty} a_n$ converge assolutamente e inoltre essa converge anche semplicemente.

■ Criterio del rapporto o di d'Alembert. (Criterio sufficiente, \mathbb{R} o \mathbb{C}) Se esiste R tale che

$$\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = R \tag{6.15}$$

se R < 1, la serie è *assolutamente* convergente. Se R > 1, la serie diverge. Se R = 1, non abbiamo informazioni sulla convergenza.

Criterio della radice o di Cauchy. (Criterio sufficiente, \mathbb{R} o \mathbb{C}) Sia

$$R = \limsup_{n \to +\infty} \sqrt[n]{|a_n|}$$

se R < 1, la serie è *assolutamente* convergente. Se R > 1, la serie diverge. Se R = 1, non abbiamo informazioni sulla convergenza.

Se una serie infinita converge o diverge col criterio della radice, lo stesso risultato si ottiene con il criterio del rapporto ma non vale il viceversa.

■ Criterio dell'integrale. (*Criterio necessario e sufficiente*, \mathbb{R}) Sia $f:[1,+\infty) \longrightarrow \mathbb{R}_+$ una funzione non-negativa e monotona decrescente tale per cui $f(n) = a_n$. Allora, posto

$$\int_{1}^{+\infty} f(x) dx = \lim_{t \to \infty} \int_{1}^{t} f(x) dx$$

la serie a_n converge se e solo se l'integrale converge.

- Criterio di confronto diretto. (Criterio sufficiente, \mathbb{R} o \mathbb{C}) Se la serie $\sum_{n=1}^{+\infty} b_n$ è una serie assolutamente convergente e $|a_n| < |b_n|$ per n sufficientemente largo, allora la serie $\sum_{n=1}^{+\infty} a_n$ converge assolutamente.
- Criterio del confronto asintotico (*Criterio necessario e sufficiente*, \mathbb{R}) Se a_n , $b_n > 0$, $\forall n$, e il limite $\lim_{n \to +\infty} \frac{a_n}{b_n}$ esiste, è finito e diverso da zero, allora

$$\sum_{n=1}^{+\infty} a_n \text{ converge } \iff \sum_{n=1}^{+\infty} b_n \text{ converge.}$$

■ Criterio di condensazione di Cauchy. (*Criterio necessario e sufficiente*, \mathbb{R}) Sia a_n una successione non negativa e non crescente. Allora

$$\sum_{n=1}^{+\infty} a_n \text{ converge } \iff \sum_{n=1}^{+\infty} 2^n a_{2^n} \text{ converge.}$$

Inoltre, nel caso di convergenza, si ha

$$\sum_{n=1}^{+\infty} a_n < \sum_{n=1}^{+\infty} 2^n a_{2^n} < 2 \sum_{n=1}^{+\infty} a_n$$

lacktriangle Criterio di Abel-Dirichlet. (Criterio sufficiente, $\mathbb R$ o $\mathbb C$) Sia data la serie

$$\sum_{n=0}^{+\infty} a_n b_n, \quad a_n \in \mathbb{C}, \ b_n \in \mathbb{R}$$
 (6.16)

Se

- ⋄ $b_n > 0$ è decrescente e infinitesima per $n \to +\infty$.
- \diamond la successione delle somme parziali di a_n è limitata, ossia

$$\exists M > 0: \left| \sum_{n=0}^{+\infty} a_n \right| \le M, \ \forall k \le 0$$

allora la serie $\sum_{n=0}^{+\infty} a_n b_n$ converge (semplicemente).

Criterio di Leibniz. (*Criterio sufficiente*, \mathbb{R} o \mathbb{C}) Sia data la serie

$$\sum_{n=0}^{+\infty} (-1)^n a_n, \quad a_n \in \mathbb{R}$$
 (6.17)

Se $a_n > 0$ è decrescente ed infinitesima per $n \to +\infty$, allora la serie $\sum_{n=0}^{+\infty} (-1)^n a_n$ converge (semplicemente).

6.2.3 Serie a valori reali notevoli

?? Di seguito enunceremo alcune serie a valori reali di particolare rilevanza.

Serie geometrica.

$$\sum_{n=0}^{+\infty} z^n$$

La ridotta è uguale a

$$s_n = \sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z}$$

La serie dunque converge se e solo se |z| < 1 e in tal caso converge a $\frac{1}{1-z}$.

Serie armonica generalizzata.

$$\sum_{n=1}^{+\infty} \frac{1}{n^p} \tag{6.18}$$

converge se p > 1 e diverge per $p \le 1$; per p = 1 abbiamo la **serie armonica**. Se p > 1 la somma della serie armonica generalizzata, se vista in funzione di p, è $\zeta(p)$, ossia la *funzione zeta di Riemann* valutata in p.

■ Serie logaritmica.

$$\sum_{n=2}^{+\infty} \frac{1}{n \left(\log n\right)^p} \tag{6.19}$$

per ogni numero reale positiva p. Diverge per $p \le 1$, ma converge per ogni p > 1.

6.3 CAPITOLO 4: SERIE DI POTENZE

6.3.1 Il prodotto di serie (secondo Cauchy)

In questa sezioni ricordiamo la definizione ed alcune proprietà del prodotto di serie (secondo Cauchy), basandoci sul Capitolo 3 di **rudin:1976principles**. Date le due serie

$$\sum_{n=0}^{+\infty} \alpha_n, \quad \sum_{n=0}^{+\infty} \beta_n, \quad \alpha_n, \ \beta_n \in \mathbb{C}$$

vogliamo definire il loro prodotto. L'idea alla base della definizione è quella di *generalizzare* il prodotto di due *polinomi*: è noto che, dati i polinomi

$$\sum_{n=0}^{J} \alpha_n z^n, \quad \sum_{n=0}^{J} \beta_n z^n$$

il loro prodotto si scrive come

$$\sum_{n=0}^{2J} \gamma_n z^n \quad \text{con} \quad \gamma_n = \sum_{k=0}^n \alpha_k \beta_{n-k}, \quad \forall \ n \ge 0$$

Possiamo estendere formalmente questa scrittura al caso di serie di potenze, ponendo

$$\sum_{n=0}^{+\infty} \alpha_n z^n \cdot \sum_{n=0}^{+\infty} \beta_n z^n = \sum_{n=0}^{+\infty} \gamma_n z^n$$

dove γ_n è definito come precedentemente. Il risultato per z=1 suggerisce quindi come definire il prodotto delle serie iniziali.

DEFINIZIONE 6.3.1. - PRODOTTO DI SERIE (SECONDO CAUCHY.)

Date le serie

$$\sum_{n=0}^{+\infty} \alpha_n, \quad \sum_{n=0}^{+\infty} \beta_n, \quad \alpha_n, \ \beta_n \in \mathbb{C}$$

si definisce prodotto secondo Cauchy la serie

$$\sum_{n=0}^{+\infty} \gamma_n \quad \text{con} \quad \gamma_n = \sum_{k=0}^{n} \alpha_k \beta_{n-k}, \quad \forall \ n \ge 0$$

Il problema principale sul prodotto di serie è quello della sua convergenza, a partire dalla convergenza delle serie iniziali: più precisamente, ci si chiede:

se le serie iniziali convergono rispettivamente a α e β , la serie prodotto converge a $\alpha\beta$?

In generale la risposta è **no**, come mostra il prossimo esempio.

Esempio. Serie convergenti, aventi prodotto non convergente.

Consideriamo la serie

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

Applicando il criterio di Leibniz, si verifica facilmente che la serie converge. La serie prodotto della serie data per se stessa ha termine generale

$$\gamma_n = \sum_{k=0}^n \frac{(-1)^k}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{(n-k+1)(k+1)}}, \quad \forall \ n \ge 0.$$

Ora, si ha

$$(n-k+1)(k+1) = \left(\frac{n}{2}+1\right)^2 - \left(\frac{n}{2}-k\right)^2 \le \left(\frac{n}{2}+1\right)^2 = \left(\frac{n+2}{2}\right)^2, \ \forall n \ge 0, \ 0 \le k \le n$$

Otteniamo quindi

$$\left|\gamma_n\right| = \sum_{k=0}^n \frac{1}{\sqrt{(n-k+1)(k+1)}} \ge \sum_{k=0}^n \frac{2}{n+2} = \frac{2(n+1)}{n+2}, \quad \forall \ n \ge 0.$$

Questo prova che

$$\liminf_{n\to+\infty} |\gamma_n| \ge \liminf_{n\to+\infty} \frac{2(n+1)}{n+2} = 2 \implies \lim_{n\to+\infty} |\gamma_n| \ne 0.$$

Perciò si ha

$$\lim_{n\to +\infty} \gamma_n \neq 0$$

e quindi la serie prodotto non può convergere.

Osserviamo che nell'esempio riportato la serie iniziale *converge semplicemente*, ma non *assolutamente*; questo è il motivo per cui la serie prodotto *non converge*. Infatti, in presenza della convergenza assoluta la serie prodotto *converge*.

TEOREMA 6.3.1. - PRODOTTO DI SERIE (SECONDO CAUCHY CONVERGENTE SE UNA SERIE CONVERGE ASSOLUTAMENTE.)

Siano date le due serie

$$\sum_{n=0}^{+\infty} \alpha_n, \quad \sum_{n=0}^{+\infty} \beta_n, \quad \alpha_n, \ \beta_n \in \mathbb{C},$$

e si supponga che esse convergano a α e β , rispettivamente. Inoltre, si supponga che almeno una di esse converga assolutamente. Allora, la loro serie prodotto converge a $\alpha\beta$.

CAPITOLO 7

Elenchi delle definizioni e dei teoremi

ELENCO DELLE DEFINIZIONI	_
	3.1.2. Convergenza assoluta.
Capitolo 2: Convergenza di funzio- ni	32 3.1.3. Serie e convergenza di una serie. 33
2.1.1. Spazio metrico e distanza.112.1.2. Convergenza di successio-	3.1.4. Convergenza totale o assoluta. 33
NI SECONDO UNA DISTANZA.	3.2.1. CONVERGENZA DI UNA SERIE DI FUNZIONI. 35 CAPITOLO 4: SERIE DI POTENZE
2.1.3. Convergenza nella metrica lagrangiana. 122.1.4. Convergenza uniforme.	4.1.1. 41 4.1.2. Cerchio e raggio di convergenza. 42
12 2.1.5. Funzione limite. 12 2.1.6. Intorno tubulare. 16	4.5.1. Funzione analitica. 55 4.7.1. Esponenziale in campo complesso. 60
2.1.7. Spazio normato e norma.162.1.8. Successione di Cauchy.16	4.7.2. Funzione multivoca. 634.7.3. Logaritmo in campo complesso. 63
2.1.9. Spazio completo. 172.1.10. Convergenza uniforme, generalizzata. 17	Capitolo 5: Teoria della misura 5.1.1. Caratterizzazione degli integrali secondo Riemann.
2.2.1. Convergenza in legge. 172.2.2. Convergenza puntuale.18	65 5.2.1. σ -algebra, spazi e insiemi misurabili. 66
CAPITOLO 3: SERIE DI FUNZIONI 3.1.1. SERIE A VALORI REALI E CONVER- GENZA DI UNA SERIE. 31	5.2.2. σ -algebra generata da una famiglia di sottoinsiemi. 67 5.3.1. Funzione misurabile. 67

5.3.2. sup, inf, limsup e liminf di una successione di funzioni.

69

5.4.1. Parallelepipedo n-dimensionale. 7^2

5.4.2. Misura di Peano-Jordan.

5.5.1. Parallelepipedo n-dimensionale.

5.5.2. Insieme misurabile secondo Lebesgue. 75

5.5.3. Misura secondo Lebesgue.

75
APPENDICE A: NOTE AGGIUNTIVE
6.1.1. COEFFICIENTE BINOMIALE.

79

ELENCO DEI TEOREMI

CAPITOLO 1: ALLA RICERCA DELLA LUNGHEZZA DELL'ELLISSE

T1.1.1. Lunghezza dell'ellisse di semiassi di lunghezza $a \in b$.

4

Capitolo 2: Convergenza di funzioni

T2.1.1. CRITERIO DI CAUCHY PER
LA CONVERGENZA UNIFORME.
15

T2.3.1. Teorema di limitatezza per successioni. 19

T2.3.2. Teorema di continuità per successioni. 21

T2.3.3. TEOREMA DI INTEGRABILITÀ
PER SUCCESSIONI, PASSAGGIO
AL LIMITE SOTTO SEGNO DI
INTEGRALE. 22

T2.3.4. Teorema di derivabilità per successioni. 26

T2.3.5. Teorema di scambio di limiti. 27

C2.3.1. Conseguenza al teorema di Lagrange. 27

CAPITOLO 3: SERIE DI FUNZIONI

T3.1.1. CONVERGENZA ASSOLUTA IMPLICA CONVERGENZA SEMPLICE.

T_{3.1.2}. Convergenza totale o assoluta implica convergenza semplice. 34

6.1.2. Funzione Gamma di Eulero.

6.1.3. COEFFICIENTE BINOMIALE GENERALIZZATO CON GAMMA DI EULERO. 80

6.1.4. Simbolo di Pochhammer o fattoriale crescente. 80

6.1.5. Fattoriale decrescente.

6.1.6. Coefficiente binomiale generalizzato, definizione operativa. 81

6.3.1. Prodotto di serie (secondo Cauchy.) 86

P3.2.1. CRITERIO DI WEIERSTRASS.

T3.3.1. Teorema di limitatezza per serie. 36

T3.3.2. Teorema di continuità per serie. 36

T3.3.3. Teorema di integrabilità per serie, scambio tra integrale e serie. 37

T3.3.4. Derivabilità termine a termine. 38

CAPITOLO 4: SERIE DI POTENZE

T4.1.1. Insieme di convergenza.

P4.1.1. CRITERIO DI D'ALEMBERT O DEL RAPPORTO. 43

T4.1.2. Teorema di Cauchy-Hadamard 43

P4.2.1. CONVERGENZA ASSOLUTA SUL BORDO SE LA SERIE DI POTENZE CONVERGE ASSOLUTAMENTE IN UN PUNTO. 48

C4.2.1. Convergenza sul bordo se la serie di potenze a coefficienti reali positivi converge in z = R. 48

T4.3.1. Converge uniforme delle serie di potenze. 49

P4.4.1. Proprietà di continuità per la somma di una serie di potenze, caso generale.

50

C4.4.1. Proprietà di continuità
PER LA SOMMA DI UNA SERIE
DI POTENZE, CASO SUL BORDO
CON CONVERGENZA ASSOLUTA.
51
T4.4.1 . Teorema di Abel. 51
T4.4.2. Derivabilità della somma di
UNA SERIE DI POTENZE. 52
L4.4.1. Convergenza della serie
DI DERIVATE DELLA SERIE DI
POTENZE. 53
T4.5.1. Analiticità della somma di
una serie di potenze. 55
T4.5.2. Condizione sufficiente di
analiticità. 56
T4.6.1 . Analiticità di e^x , $\cos x$, $\sin x$,
$(1+x)^{\alpha}$. 57
P4.7.1. Proprietà dell'esponenziale
COMPLESSO. 61
T4.7.1. Caratterizzazione dei lo-
GARITMI IN CAMPO COMPLESSO.
63
Capitolo 5: Teoria della misura
P5.3.1. Proprietà della funzioni

MISURABILI.

- T5.3.1. CARATTERIZZAZIONE DELLE FUNZIONI MISURABILI. 68
- P5.3.2. Misurabilità di sup, inf, lim sup e liminf di una successione di funzioni misurabili. 69
- C5.3.1. Passaggio al limite per funzioni misurabili in \mathbb{C} .
- P5.4.1. Criterio di misurabilità.
- P5.5.1. Gli insiemi misurabili secondo Lebesgue sono una σ -algebra. 75

APPENDICE A: NOTE AGGIUNTIVE

- T6.2.1. CRITERIO DI CAUCHY PER LE SUCCESSIONI. 82
- C6.2.1. Criterio di Cauchy per le serie. 83
- T6.3.1. Prodotto di serie (secondo Cauchy convergente se una serie converge assolutamente.) 87