UF1

Entornos de Desarrollo

Olimpia Olguín Tinoco

- Desarrollo de Software
- Instalación y uso de entornos de desarrollo

 Entorno de Desarrollo: es el conjunto de procedimientos y herramientas utilizadas para la creación o mantenimiento de programas informáticos (software).

IDE: (Integrated Development Environment o Entorno de Desarrollo Integrado) al entorno de programación que contiene un conjunto de procesos, instrumentos y normas que trabajan de forma coordinada para facilitar al programador el control de las diferentes etapas del desarrollo en las que está directamente implicado

IDE

- **Área 1.** Menú principal, desde donde se realizan las principales acciones del entorno (fcheros, depuración y control del proyecto).
- Área 2. Ventana de proyecto. Muestra una visión de conjunto del proyecto (fcheros, librerías necesarias para el código entrado, etcétera).
- Área 3. Ventana de navegación. Permite acceder de forma rápida a los ele-mentos de las clases que tengamos seleccionadas.
- Área 4. Ventana de edición. Editor de texto a través del cual entramos en el código del desarrollo de nuestro proyecto.
- Área 5. Ventana de salida / Tareas. Muestra los errores de compilación e información seleccionada por el programador mediante palabras clave del código.

- Desarrollo de software es el proceso que tiene lugar desde que un usuario plantea una mejora de su actual sistema informático hasta que dicha solución (nuevo software creado o modificado de uno ya existente) le es entregado para su inmediata utilización.
- También incluye aspectos relacionados con el negocio del cliente, como por ejemplo: las fechas de entrega, la valoración económica, el cálculo de recursos necesarios y acciones de ajuste de personal, y el presupuesto.

Desarrollo de software = aspectos tecnológica + aspectos de negocio

- **Un programa informático** es un conjunto de instrucciones que indican y permiten a un ordenador realizar una tarea determinada.
- Algoritmo: conjunto de instrucciones con normas claras, finitas y ordenadas en el tiempo. Puede ser sencillo o complicado

Programa informático

Preprocesamiento: Se hace un rastreo del código fuente para detectar todos los posibles errores de entrada de código (paréntesis sin cerrar, asignaciones de variables inválidas, etcétera).

Máquina virtual

Una máquina virtual es un software que simula un entorno de ordenador concreto en el que podemos instalar un sistema operativo, o programas, y ejecutarlos.

Es como un ordenador simulado dentro de otro ordenador

La enfocaremos a el lenguaje Java, que utiliza una máquina virtual para ejecutarse, que es la llamada JVM (Máquina Virtual de Java).

Dividimos los lenguajes de programación en tres grandes grupos:

- Lenguaje procedural (lista de acciones a realizar siempre en el mismo orden). Éste se caracteriza por: un punto de comienzo, un proceso y un final. Los procedimientos pueden ser funciones, rutinas o métodos. Basic y Fortran.
- Lenguaje estructurado (variante del anterior con mayor organización interna)
 Romper la estructura monolítica de los programas en módulos más pequeños y
 manejables así como diferenciar variables globales y locales visibles desde un módulo en
 concreto. C y Pascal
- Lenguaje orientado a objetos (Se crean estructuras de datos y operaciones que aceptan dichas estructuras)

El programador diseña la estructura de datos y el tipo de operaciones que acepta dicha estructura. Al conjunto de estructura de dato y operación se le llama objeto. El programa ya no es una lista de acciones de orden fijo si no un conjunto de objetos (datos y posibles operaciones que puede realizar) que cooperan entre ellos para conseguir un objetivo. Java, C, C++, PHP, C# y Visual Basic.

Programación modular

Consiste en dividir el programa en una línea principal y varias funciones

- La línea principal controla la lógica
- Uso de break para romper un secuencia y loops
- En cada función utilizar la programación estructurada

Programación estructurada

POO

Características de los lenguajes más difundidos

JAVA:

- Lenguaje orientado a objetos.
- Más sencillo de manejar que otros lenguajes orientados a objetos.
- Manejo de computación distribuida (varios ordenadores trabajando juntos en una red).
- Portabilidad (la Máquina Virtual de Java permite que un mismo programa pueda ser utilizado en diferentes ordenadores con distintos sistemas operativos).
- Buenas perspectivas profesionales.

<u>C</u>

- Lenguaje estructurado.
- Reducido número de comandos.
- Existencia de compiladores para casi cualquier ordenador.
- Larga presencia en el tiempo.

Características de los lenguajes más difundidos

C++

- Lenguaje orientado a objetos.
- Concisión: utiliza muchos caracteres especiales en vez de comandos, por lo que un programador codifica a mucha velocidad.
- Portabilidad: para compilar en casi todos los ordenadores y sistemas operativos.
- Programación modular: varias fuentes son compiladas independientemente para luego enlazarlas.
- Compatibilidad: código escrito en C puede ser incluido con facilidad en C++.
- Eficiencia en la ejecución de programas

PHP

- Lenguaje de script (permite el control de una o más aplicaciones).
- Utilizado en el desarrollo web (Ámbito del Servidor).
- Práctico: su evolución se orientó hacia la utilidad de cara al usuario.
- Muy bajo coste económico.
- Páginas web dinámicas (uso embebido en código HTML).

Características de los lenguajes más difundidos

C#

- Lenguaje orientado a objetos.
- Incorpora características de otros lenguajes (Java, Visual Basic).
- Forma parte de la plataforma .NET de Microsoft.
- Su sintaxis deriva de C y C++.

Visual Basic

- Lenguaje orientado a objetos.
- Fácil de utilizar.
- Deriva del BASIC de procedimiento.
- Forma parte de la plataforma .NET de Microsoft.

Clasificación basada en la forma de trabajar de los programas y la filosofía de su creación es la siguiente:

- Lenguajes de programación imperativos: entre ellos tenemos el Cobol, Pascal, C y Ada.
- Lenguajes de programación declarativos: el Lisp y el Prolog.
- Lenguajes de programación orientados a objetos: el Smalltalk y el C++.
- Lenguajes de programación orientados al problema: son aquellos lenguajes específicos para gestión.
- Lenguajes de programación naturales: son los nuevos lenguajes que pretender aproximar el diseño y la construcción de programas al lenguaje de las personas.

Clasificación teniendo en cuenta el desarrollo de los ordenadores según sus diferentes generaciones:

- Lenguajes de programación de primera generación: el lenguaje máquina y el ensamblador.
- Lenguajes de programación de segunda generación : los primeros lenguajes de programación de alto nivel imperativo (FORTRAN, COBOL).
- Lenguajes de programación de tercera generación: son lenguajes de programación de alto nivel imperativo pero mucho más utilizados y vigentes en la actualidad (ALGOL 8, PL/I, PASCAL, MODULA).
- Lenguajes de programación de cuarta generación: usados en aplicaciones de gestión y manejo de bases de dados (NATURAL, SQL).
- Lenguajes de programación de quinta generación: creados para la inteligencia artificial y para el procesamiento de lenguajes naturales (LISP, PROLOG).

Fases de Desarrollo de una Aplicación

- Planificación del proyecto. Estudio de viabilidad.
 - Documento del presupuesto. Después de la planificación, el responsable del proyecto debe valorarlo económicamente.
 - Firma del documento de iniciación del proyecto.
 - Análisis del sistema y recogida de requerimientos
 - Diseño del sistema.
- Codificación
- Pruebas técnicas
- Pruebas de usuario.
- Documentación.
- Implementación en entorno de explotación (Real).
- Plan de mantenimiento

PRINCE2

- Un Entorno de Desarrollo debe encajar dentro de una metodología de trabajo.
- PRINCE2(Projects IN Controlled Environments o Proyectos en Entornos Controlados) es una buena metodología de gestión de proyectos con certificación de calidad.

https://es.slideshare.net/evergreenpm/acis-xii-jornadasprince2

Diferencia entre Metodología ágil y tradicional

Metodologías Agiles	Metodologías Tradicionales
Especialmente preparados para cambios durante el proyecto	Cierta resistencia a los cambios
Impuestas internamente(por el equipo)	Impuestas externamente
Proceso menos controlado, con pocos principios	Proceso mucho más controlado, con numerosas políticas/normas
No existe contrato tradicional o es más flexible si existe	Existe un contrato prefijado
El cliente es parte del equipo de desarrollo	El cliente interactúa con el equipo de desarrollo mediante reuniones
Grupos pequeños (<10 integrantes) y trabajando en el mismo sitio	Grupos grandes y posiblemente distribuidos
Pocos roles	Más roles
Menos énfasis en la arquitectura del software	La arquitectura del software es esencial y se expresa mediante modelos

Metodología tradicional (waterfall-en cascada)

Metodología tradicional (waterfall-en cascada)

Ventajas:

- Simple y fácil de entender
- Aproximación "disciplina"
 - Definición exhaustiva del trabajo
 - Revisión sistemática en hitos
 - Énfasis en control y documentación
- Nivel de incertidumbre del proyecto bajo.

Desventajas

- Cambios más caros cuanto más tarde se descubren
- Riesgo para cliente y proveedor
 - Seguimiento sobre calendario engañoso: "Efecto 90%"
 - Validación al final del proyecto: funcionalidades y arquitectura
 - Fomenta la "deuda técnica

Metodología Ágil (SCRUM)

Agilidad es:

- Una alternativa al desarrollo secuencial tradicional
- Concebida para ayudar en la respuesta a lo imprevisto
- Incremental, trabajo interactivo con retroalimentación empírica
- Focalizada en incrementos potenciales de productos entregables en cortos periodos de tiempo
- Revisando contantemente cada aspecto del desarrollo a través del ciclo de vida
- Continuamente re-evaluando la dirección con las posibilidades de cambio
- Nivel de incertidumbre del proyecto alto

Metodologías agiles

La mejor forma de aprender es "haciendo". Educación y empresas forman un binomio inseparable