# Brain Teaser (pay attention!)

- · A school principal does an experiment
- 1000 students are lined up in front of 1000 lockers, which are all shut
- · The first student opens every locker
- The second student starts at locker 2, and takes every other locker
  - o If it's closed, she opens it, and if it's open, she closes it.
- The kth student visit every kth locker changing its "state"
  - o open->closed, closed->open
- After 1000 students pass through, which lockers are closed?

### Mathematical Induction

- Induction: inference of an event from past events
- In math, use property of ints 1-999 to infer property of 1000.

### Positive Integers

The set of positive integers

$$\circ$$
  $Z^+ = \{1, 2, 3, ...\}$ 

· The set of negative integers

$$\circ Z^{-} = \{-1, -2, -3, ...\}$$

· Zero is neither positive nor negative

# Principle of Mathematical Induction

- Define a predicate P(n) on the set of positive integers
- Prove the following implication
  - $_{\circ}$  P(n-1) -> p(n)  $\forall$  n∈N
- This implication allows you to hop your way from one to infinity



Prove this

Prove this implication

# "Four-Step" Plan

To prove a statement of the form:

"P(n) s true for all natural numbers n."

- 1. Problem Statement: Formulate P(n)
- 2. Base Case: Prove P(1) is true
- 3. Inductive Hypothesis: Assume P(n) for some n
- 4. Inductive Step: Prove P(n+1) is true

## Closed Expressions for Sums

#### · Prove:

$$S(m) = \sum_{i=1}^{m} i = 1 + 2 + 3 + \dots + m - 1 + m$$
$$= \frac{m(m+1)}{2}$$

What are the steps?

### Inductive Proof of Sums

- S(1) = 1 (by definition) • and 1(1+1)/2 = 1 (by formula)
- By definition: S(m+1) = S(m) + m+1
   Recursive expression of sum
- · Now deploy the inductive assumption

```
 S(m) = m(m+1)/2 -> S(m+1) 
 = m(m+1)/2 + m+1 = (m^2+m + 2m+2)/2 
 = (m^2+3m+2)/2 = (m+1)(m+2)/2  (closed form)
```

• Therefore, S(m) = m(m+1)/2

### Practice

#### · For:

- $\circ a(k) = a(k-1) + 2k$
- o Prove that a(n)=n(n+1)

#### • For

- $\circ$  S(n) = 1+3+5+...+(2n-1)
- $\circ$  Prove that  $S(n)=n^2$

# Another Example

• **Prove:** 
$$S(n) = \sum_{i=1}^{n} \frac{2}{3^i} = 1 - \frac{1}{3^n}$$

- S(1) = 2/3 (definition)
  - $\circ = 1-(1/3)=2/3$  (closed form)
- · Recursive form

$$S(n+1)=S(n)+\frac{2}{3^{n+1}}$$
 
$$=1-\frac{1}{3^n}+\frac{2}{3^{n+1}}=1-\frac{-3+2}{3^{n+1}}=1-\frac{1}{3^{n+1}}$$
 Closed form for S(n+1), we done

Inductive assumption

Common denominator and reduce

## Proving Other Things

- Number sequence: a(n) = 2a(n-1)+a(n-2)
- a(1)=5, a(2)=10
- Prove that a(n)<3<sup>n</sup> for all n≥3
- $P(3)=2\cdot 10+5=25 < 3^3=27$
- $P(4)=2\cdot 25+10=60 < 3^4=81$
- Assume:  $a(n)<3^n$  and  $a(n-1)<3^{(n-1)}$
- Then  $a(n+1) = 2 \cdot a(n) + a(n-1)$ 
  - $\circ$  < 2 · 3<sup>n</sup> + 3<sup>(n-1)</sup>
  - $\circ$  < 2.3<sup>n</sup>+3<sup>n</sup> = 3<sup>(n+1)</sup> (which satisfies the property)
- Done

### Fibonacci Numbers

- f(1)=1, f(2)=1
- f(n)=f(n-1)+f(n-2)
  - o 1,1,2,3,5,8,

### Fibonacci Numbers

- Prove that if 3 | n, then f(n) is even
- f(3)=2, which is even
- Assume f(n) is even and 3 | n. Show f(n+3) even.
  - o Strategy, think of 3 n as a sequence
  - o ...f(n-3), f(n), f(n+3)...
- · Cases:
  - f(n-1) is even. Then f(n+1) is even, because even numbers are closed under addition
    - -> f(n+2) even, f(n+3) even
  - $\circ$  f(n-1) is odd, then f(n+1) is odd, because even+odd is odd.
    - ->f(n+2) is odd, because f(n+2)=f(n+1) [odd] + f(n) [even]
    - ->f(n+3) is even, because f(n+3)=f(n+2) [odd] + f(n+1) [odd]
- Therefore, f(n+3) is even, and (f(n) even)->(f(n+3) even)

#### A matter of life and death

In the Jewish revolt against Rome, Josephus and 39 of his comrades were holding out against the Romans in a cave. With defeat imminent, they resolved that, like the rebels at Masada, they would rather die than be slaves to the Romans. They decided to arrange themselves in a circle. One man was designated as number one, and they proceeded clockwise killing every seventh man... Josephus (according to the story) was among other things a mathematician; so he instantly figured out where he ought to sit in order to be the last to go. But when the time came, instead of killing himself he joined the Roman side.





















# Josephus 2x Theorem

- P(n): For a 2<sup>n</sup> person, 2x game, the winning strategy is to be in position 1.
- P(2): the second person is killed and then the first.
- P(n+1): for  $2^{(n+1)}$  people, every other person starting with 2 and ending with  $2^{(n+1)}$  is killed.
  - o Therefore, the game continues with the first person again and 2<sup>n</sup> players.
- ...P(n) -> P(n+1), and the theorem is proven

### Contradiction and Pigeonhole Principle

- Methods of proving:
  - o Direct proof
  - Proof by contrapositive
  - Mathematical induction
- · Prove by contradiction
  - There cannot possibly be a counter example to the theorem.
  - o Such an example must
    - Make the hypothesis true
    - Make the conclusion false

# Example

#### • If n<sup>2</sup> is odd, then n is odd.

| ${f Direct}$                | Contrapositive                 |
|-----------------------------|--------------------------------|
| Let $n^2$ be an odd integer | Let $n$ be even                |
| ÷ ·                         | <u>:</u>                       |
| We conclude that $n$ is odd | We conclude that $n^2$ is even |

#### Contradiction

Suppose there is an integer n such that  $n^2$  is odd and n is even

:

We infer a false statement.

This is a contracition, so such a counter example cannot possibly exist.

# Example

- Prove: ∀x∈R, (x>0) -> (1/x)>0
- Suppose there is a counterexample, with x>0 and (1/x)≤0
- Because x is positive we have
  - 0 (1/x)≤0
  - $\circ x \cdot (1/x) \le x \cdot 0$
  - 0 1≤0
- This cannot be true, so there must be no counter example

### Existence and Nonexistence

#### Existence

- o There exists x s.t. P(x)
  - · Easy proof: find an example
- o Constructive proofs
  - · Show how an example satisfies the condition

#### Nonexistence

o The existence leads to an contradiction

# Relatively Prime

- Two numbers are relatively prime iff they have no common divisor greater than 1.
  - Examples (relatively prime or not?)
    - 20, 6
    - 21, 8
    - 56, 15
    - 49, 14

### Thereom

- Any rational number can be written as a ratio of relatively prime numbers
- Proof (construction):
  - o let r=a/b and let a,b share a factor c
  - $\circ$  r=(c·d)/(c·e)=d/e
  - The number of factors a number has in finite, so we can repeat the above process until the two numbers are relatively prime.

### Nonexistence Proof

- sqrt(2) is not rational
- Suppose sqrt(2) is rational
  - ∘ Then  $\exists$  r∈Q, r<sup>2</sup>=2
  - $\circ$  ->(a/b)<sup>2</sup>=2, where a,b are relatively prime
  - $\circ$  ->  $a^2=2b^2$  -> a is even, a=2k
  - $\circ$  ->  $a^2 = 4k^2 = 2b^2$
  - $\circ$  ->  $b^2=2k^2$  -> b is even
  - o -> a,b are both even
  - o -> a,b share a factor of 2
  - o -> they are not relatively prime

#### Fundamental Theorem of Arithmetic

- Every integer greater than 1 can be expressed as a product of prime numbers
- Proof:
  - By induction, with the proposition that all numbers < n can be expressed so</li>
  - o Cases:
    - n prime
    - n not prime

### Example: Proof by Contradiction

- · Theorem: There are an infinitely many prime numbers
- · Proof:
  - o Assume there are only k prime numbers, the biggest l
  - Then we can multiply them all together and get a bigger number, q>l
  - o p=q+1 has a remainder of 1 for all the primes
  - By the fund. thm. of arithmetic, any factor of p can be further factored into primes.
    - But no primes>1 divide p, so it must be prime
  - o -> p must be prime
  - This is a contraction because p was not in the original set

### A Game

- You give 29 tennis balls out to four players.
  - o One player has the most (or tied) balls
  - What is the least number of balls she could have?

# The Pigeonhole Principle

• If m n+1 objects are distributed among n containers, then there must be some container containing at least m+1 objects

# The Pigeonhole Principle

- Proof (by contradiction):
  - o x(i) = number of objects in container I
  - $\circ x(1)+x(2)+...+x(n)=m\cdot n+1$
  - o The counter example: ∀i, x(i)≤m
  - $\circ$  ->  $x(1)+x(2)+...+x(n) \le m+m+...+m = n \cdot m$
  - $\circ$  but  $x(1)+x(2)+...+x(n)=m\cdot n+1$
  - o so we have a contradiction
- ... for n containers to hold n·m+1, there must be a container m+1 or more objects

## Proposition and Proof

- Given any 4 integers in Z<sup>+</sup>, some pair of them will have a difference divisible by 3
- Put each number k into one of 3 boxes
  - o Labeled 0,1,2
  - o The box number is the remainder of k÷3
  - o Some box, d, contains at least 2 numbers
    - · Call them a & b
  - $\circ$  a=3J+d, b=3L+d
  - $\circ$  -> a-b = 3J+d-3L-d = 3(J-L) = 3M (M∈Z)
  - o QED

### Practice Problem

• For any 11 positive integers, some pair of them must have a difference divisible by 10.

# Proposition and Proof

- Given any 5 points placed in the unit square, there must be at least 2 placed within sqrt(2)/2 of each other
- Proof
  - o Divide the square into four equal squares
  - Each square is contained in a circle of diameter sqrt(2)/2
    - Any two points in that circle are at most sqrt(2)/2 apart

# Proposition and Proof

- By PHP, at least one square must contain two points
- Those two points are contained in the same sqrt(2)/2 circle



What configuration of five points achieves this optimum?