Generated on 2014-10-27 16:01:50 by gEcon version 0.7.0 (2014-10-27) Model name: ttb

1 CONSUMER

Optimization problem

$$\max_{C_t, N_t, a_t, L_t} U_t = \beta E_t [U_{t+1}] + \gamma^{-1} (C_t^{\mu} L_t^{1-\mu})^{\gamma}$$
(1.1)

$$C_t = \pi_t + N_t W_t \quad (\lambda_t^c) \tag{1.2}$$

$$L_t = 1 - \alpha N_t - \eta a_{t-1} \left(1 - \alpha \right) \quad \left(\lambda_t^{\text{CONSUMER}^2} \right)$$
 (1.3)

$$a_t = N_t + a_{t-1} (1 - \eta) \quad (\lambda_t^{\text{CONSUMER}^3})$$
 (1.4)

1.2 First order conditions

$$\beta - \lambda_t^U = 0 \quad (U_t) \tag{1.5}$$

$$-\lambda_t^c + \mu C_t^{-1+\mu} L_t^{1-\mu} (C_t^{\mu} L_t^{1-\mu})^{-1+\gamma} = 0 \quad (C_t)$$
 (1.6)

$$\lambda_t^{\text{CONSUMER}^3} - \alpha \lambda_t^{\text{CONSUMER}^2} + \lambda_t^c W_t = 0 \quad (N_t)$$
 (1.7)

$$-\lambda_t^{\text{CONSUMER}^3} + \operatorname{E}_t \left[\lambda_{t+1}^U \left(\lambda_{t+1}^{\text{CONSUMER}^3} \left(1 - \eta \right) - \eta \lambda_{t+1}^{\text{CONSUMER}^2} \left(1 - \alpha \right) \right) \right] = 0 \quad (a_t)$$
(1.8)

$$-\lambda_t^{\text{CONSUMER}^2} + (1 - \mu) C_t^{\mu} L_t^{-\mu} (C_t^{\mu} L_t^{1-\mu})^{-1+\gamma} = 0 \quad (L_t)$$
(1.9)

2 FIRM

Optimization problem 2.1

$$\max_{K_{t}, N_{t}^{d}, Z_{t}, Y_{t}, S_{t}, X_{t}, \pi_{t}, S_{t}^{\text{lag}^{1}}, S_{t}^{\text{lag}^{2}}} \Pi_{t} = \pi_{t} + \lambda_{t}^{c-1} \mathcal{E}_{t} \left[\lambda_{t+1}^{c} \lambda_{t+1}^{U} \Pi_{t+1} \right]$$
(2.1)

s.t.:

$$Y_{t} = \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} N_{t}^{d^{1-\theta}} K_{t-1}^{\theta}\right)^{-\nu}\right)^{-\nu^{-1}} (\lambda_{t}^{\text{FIRM}^{1}})$$
(2.2)

$$K_t = S_{t-3} + K_{t-1} (1 - \delta) \quad (\lambda_t^{\text{FIRM}^2})$$
 (2.3)

$$X_{t} = \psi \left(S_{t-3} + S_{t-2} + S_{t-1} + S_{t} \right) \quad \left(\lambda_{t}^{\text{FIRM}^{3}} \right)$$
 (2.4)

$$\pi_t = Z_{t-1} - X_t + Y_t - Z_t - N_t^d W_t \quad (\lambda_t^{\text{FIRM}^4})$$
 (2.5)

2.2First order conditions

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^c^{-1} \lambda_t^c \lambda_t^U = 0 \quad (\Pi_t)$$

$$(2.6)$$

$$-\lambda_{t}^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^{c}^{-1} \lambda_{t}^{c} \lambda_{t}^{U} = 0 \quad (\Pi_{t})$$

$$-\lambda_{t}^{\text{FIRM}^{\Pi}} + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} (1 - \delta) + \theta \lambda_{t+1}^{\text{FIRM}^{1}} \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{d}^{-1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{d}^{-1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{d}^{-1-\theta} \right)^{-1-\nu^{-1}} \right]$$

$$(2.7)$$

$$-\lambda_{t}^{\text{FIRM}^{4}} W_{t} + \lambda_{t}^{\text{FIRM}^{1}} \Lambda_{t} (1 - \theta) N_{t}^{d-\theta} \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} N_{t}^{d^{1-\theta}} K_{t-1}^{\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t} N_{t}^{d^{1-\theta}} K_{t-1}^{\theta} \right)^{-1-\nu} K_{t-1}^{\theta} = 0 \quad (N_{t}^{d})$$
(2.8)

$$-\lambda_{t}^{\text{FIRM}^{4}} + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{4}} + \sigma \lambda_{t+1}^{\text{FIRM}^{1}} Z_{t}^{-1-\nu} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{d}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) \right] = 0 \quad (Z_{t}) \quad (2.9)$$

$$-\lambda_t^{\text{FIRM}^1} + \lambda_t^{\text{FIRM}^4} = 0 \quad (Y_t)$$
 (2.10)

$$\psi \lambda_t^{\text{FIRM}^3} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^S^{\log^1}} + \psi \lambda_{t+1}^{\text{FIRM}^3} \right) \right] = 0 \quad (S_t)$$
 (2.11)

$$-\lambda_t^{\text{FIRM}^3} - \lambda_t^{\text{FIRM}^4} = 0 \quad (X_t) \tag{2.12}$$

$$1 - \lambda_t^{\text{FIRM}^4} = 0 \quad (\pi_t) \tag{2.13}$$

$$-\lambda_t^{\text{FIRM}S^{\text{lag}^1}} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}S^{\text{lag}^2}} + \psi \lambda_{t+1}^{\text{FIRM}^3} \right) \right] = 0 \quad (S_t^{\text{lag}^1})$$

$$(2.14)$$

$$-\lambda_{t}^{\text{FIRM} S^{\text{lag}^{2}}} + E_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} + \psi \lambda_{t+1}^{\text{FIRM}^{3}} \right) \right] = 0 \quad (S_{t}^{\text{lag}^{2}})$$
 (2.15)

2.3 First order conditions after reduction

$$-\lambda_t^{\text{FIRM}^{\Pi}} + \lambda_{t-1}^c {}^{-1}\lambda_t^c \lambda_t^U = 0 \quad (\Pi_t)$$

$$(2.16)$$

$$-\lambda_{t}^{\text{FIRM}^{2}} + \text{E}_{t} \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(\lambda_{t+1}^{\text{FIRM}^{2}} \left(1 - \delta \right) + \theta \Lambda_{t+1} K_{t}^{-1+\theta} N_{t+1}^{d}^{1-\theta} \left(\sigma Z_{t}^{-\nu} + \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{d}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \left(\Lambda_{t+1} K_{t}^{\theta} N_{t+1}^{d}^{1-\theta} \right)^{-1-\nu} \right] \right]$$
(2.17)

$$-W_{t} + \Lambda_{t} (1 - \theta) N_{t}^{d-\theta} \left(\sigma Z_{t-1}^{-\nu} + \left(\Lambda_{t} N_{t}^{d^{1-\theta}} K_{t-1}^{\theta} \right)^{-\nu} \right)^{-1-\nu-1} \left(\Lambda_{t} N_{t}^{d^{1-\theta}} K_{t-1}^{\theta} \right)^{-1-\nu} K_{t-1}^{\theta} = 0 \quad (N_{t}^{d}) \quad (2.18)$$

$$-1 + E_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(1 + \sigma Z_t^{-1-\nu} \left(\sigma Z_t^{-\nu} + \left(\Lambda_{t+1} K_t^{\theta} N_{t+1}^{d}^{1-\theta} \right)^{-\nu} \right)^{-1-\nu^{-1}} \right) \right] = 0 \quad (Z_t)$$
 (2.19)

$$-\psi + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^{\Pi}} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^{S^{\text{lag}^1}}} \right) \right] = 0 \quad (S_t)$$
 (2.20)

$$-\lambda_t^{\text{FIRM}^S}^{\text{lag}^1} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^\Pi} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^S}^{\text{lag}^2} \right) \right] = 0 \quad (S_t^{\text{lag}^1})$$
(2.21)

$$-\lambda_t^{\text{FIRM}^S}^{\text{lag}^2} + \mathcal{E}_t \left[\lambda_{t+1}^{\text{FIRM}^\Pi} \left(-\psi + \lambda_{t+1}^{\text{FIRM}^2} \right) \right] = 0 \quad (S_t^{\text{lag}^2})$$
 (2.22)

3 EQUILIBRIUM

3.1 Identities

$$N_t^d = N_t (3.1)$$

4 EXOG

4.1 Identities

$$-1 + \Lambda_t = \epsilon_t^{\Lambda} + \phi^a \left(-1 + \Lambda_{t-1} \right) + \phi^b \left(-1 + \Lambda_{t-1} \right)$$
(4.1)

5 Equilibrium relationships

$$-1+\beta C_{t}^{1-\mu}L_{t}^{-1+\mu}(C_{t}^{\mu}L_{t}^{1-\mu})^{1-\gamma}E_{t}\left[\left(1+\sigma Z_{t}^{-1-\nu}\left(\sigma Z_{t}^{-\nu}+\left(\Lambda_{t+1}K_{t}^{\theta}N_{t+1}^{1-\theta}\right)^{-\nu}\right)^{-1-\nu^{-1}}\right)C_{t+1}^{-1+\mu}(C_{t+1}^{\mu}L_{t+1}^{1-\mu})^{-1+\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}}\right)^{\text{log}^{1}}\right)C_{t+1}^{-1+\mu}L_{t+1}^{1-\mu}(C_{t+1}^{\mu}L_{t+1}^{1-\mu})^{-1+\gamma}\right]=0 \quad (5.2)$$

$$S_{t-1}-S_{t}^{\text{log}^{1}}=0 \quad (5.3)$$

$$S_{t}^{\text{log}^{1}}-S_{t}^{\text{log}^{2}}=0 \quad (5.4)$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{-1+\mu}(C_{t}^{\mu}L_{t}^{1-\mu})^{1-\gamma}E_{t}\left[\left(\lambda_{t+1}^{\text{PIRM}^{2}}(1-\delta)+\theta\Lambda_{t+1}K_{t}^{-1+\theta}N_{t+1}^{1-\theta}\left(\sigma Z_{t}^{-\nu}+\left(\Lambda_{t+1}K_{t}^{\theta}N_{t+1}^{1-\theta}\right)^{-\nu}\right)^{-1-\nu^{-1}}\left(S_{t}^{\text{PIRM}^{2}}\right)\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{-1+\mu}(C_{t}^{\mu}L_{t}^{1-\mu})^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}(1-\delta)+\theta\Lambda_{t+1}K_{t}^{-1+\theta}N_{t+1}^{1-\theta}\left(\sigma Z_{t}^{-\nu}+\left(\Lambda_{t+1}K_{t}^{\theta}N_{t+1}^{1-\theta}\right)^{-\nu}\right)^{-1-\nu^{-1}}\right)\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{-1+\mu}(C_{t}^{\mu}L_{t}^{1-\mu})^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}\right)C_{t+1}^{-1+\mu}L_{t+1}^{1-\mu}\left(C_{t+1}^{\mu}L_{t+1}^{1-\mu}\right)^{-1+\gamma}\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{-1+\mu}\left(C_{t}^{\mu}L_{t}^{1-\mu}\right)^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}\right)C_{t+1}^{-1+\mu}L_{t+1}^{1-\mu}\left(C_{t+1}^{\mu}L_{t+1}^{1-\mu}\right)^{-1+\gamma}\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{-1+\mu}\left(C_{t}^{\mu}L_{t}^{1-\mu}\right)^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}\right)C_{t+1}^{-1+\mu}L_{t+1}^{1-\mu}\left(C_{t+1}^{\mu}L_{t+1}^{1-\mu}\right)^{-1+\gamma}\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{-1+\mu}\left(C_{t}^{\mu}L_{t}^{1-\mu}\right)^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}\right)C_{t+1}^{-1+\mu}L_{t+1}^{1-\mu}\left(C_{t+1}^{\mu}L_{t+1}^{1-\mu}\right)^{-1+\gamma}\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{1-\mu}\left(C_{t}^{\mu}L_{t}^{1-\mu}\right)^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}\right)C_{t+1}^{1-\mu}L_{t+1}^{1-\mu}\left(C_{t+1}^{\mu}L_{t+1}^{1-\mu}\right)^{-1+\gamma}\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{1-\mu}\left(C_{t}^{\mu}L_{t}^{1-\mu}\right)^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}\right)C_{t+1}^{1-\mu}L_{t+1}^{1-\mu}\left(C_{t+1}^{\mu}L_{t+1}^{1-\mu}\right)^{-1+\gamma}\right]$$

$$-\lambda_{t}^{\text{PIRM}^{2}}+\beta C_{t}^{1-\mu}L_{t}^{1-\mu}\left(C_{t}^{\mu}L_{t}^{1-\mu}\right)^{1-\gamma}E_{t}\left[\left(-\psi+\lambda_{t+1}^{\text{PIRM}^{2}}\right)C_{t+1}$$

(5.15)

(5.16)

(5.17)

(5.18)

 $1 - L_t - \alpha N_t - \eta a_{t-1} (1 - \alpha) = 0$

 $-1 - \epsilon_t^{\Lambda} + \Lambda_t - \phi^a (-1 + \Lambda_{t-1}) - \phi^b (-1 + \Lambda_{t-1}) = 0$

 $Z_{t-1} - \pi_t + Y_t - Z_t - \psi \left(S_{t-1} + S_{t-1}^{\text{lag}^1} + S_{t-1}^{\text{lag}^2} + S_t \right) - N_t W_t = 0$

6 Steady state relationships

$$-1+\beta \left(1+\sigma Z_{ss}^{-1-\nu} \left(\sigma Z_{ss}^{-\nu} + \left(\Lambda_{ss} K_{ss}^{\theta} N_{ss}^{1-\theta}\right)^{-\nu}\right)^{-1-\nu^{-1}}\right) 1 L_{ss}^{-1+\mu} L_{ss}^{1-\mu} \left(C_{ss}^{\mu} L_{ss}^{1-\mu}\right)^{-1+\gamma} \left(C_{ss}^{\mu} L_{ss}^{1-\mu}\right)^{1-\gamma} = 0$$

$$(6.1)$$

$$-\psi + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM} S^{\rm lag^{1}}\right) 1 L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} \left(C_{\rm ss}^{\mu} L_{\rm ss}^{1-\mu}\right)^{1-\gamma} \left(C_{\rm ss}^{\mu} L_{\rm ss}^{1-\mu}\right)^{-1+\gamma} = 0 \tag{6.2}$$

$$S_{\rm ss} - S_{\rm ss}^{\rm lag^1} = 0 ag{6.3}$$

$$S_{\rm ss}^{\rm lag^1} - S_{\rm ss}^{\rm lag^2} = 0 ag{6.4}$$

$$-\lambda_{\rm ss}^{\rm FIRM^{2}} + \beta \left(\lambda_{\rm ss}^{\rm FIRM^{2}} (1 - \delta) + \theta \Lambda_{\rm ss} K_{\rm ss}^{-1 + \theta} N_{\rm ss}^{1 - \theta} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta}\right)^{-\nu}\right)^{-1 - \nu^{-1}} \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta}\right)^{-1 - \nu}\right) C_{\rm ss}^{-1 + \mu} C_{\rm ss}^{1 - \theta}$$
(6.5)

$$-\lambda_{\rm ss}^{\rm FIRM}^{\rm S^{\rm lag^{1}}} + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM}^{\rm S^{\rm lag^{2}}} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0 \tag{6.6}$$

$$-\lambda_{\rm ss}^{\rm FIRM} S^{\rm lag^2} + \beta \left(-\psi + \lambda_{\rm ss}^{\rm FIRM^2} \right) C_{\rm ss}^{-1+\mu} C_{\rm ss}^{1-\mu} L_{\rm ss}^{-1+\mu} L_{\rm ss}^{1-\mu} = 0$$
 (6.7)

$$-W_{\rm ss} + \Lambda_{\rm ss} (1 - \theta) K_{\rm ss}^{\theta} N_{\rm ss}^{-\theta} \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta} \right)^{-\nu} \right)^{-1 - \nu^{-1}} \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1 - \theta} \right)^{-1 - \nu} = 0$$
 (6.8)

$$-Y_{\rm ss} + \left(\sigma Z_{\rm ss}^{-\nu} + \left(\Lambda_{\rm ss} K_{\rm ss}^{\theta} N_{\rm ss}^{1-\theta}\right)^{-\nu}\right)^{-\nu^{-1}} = 0 \tag{6.9}$$

$$-K_{\rm ss} + S_{\rm ss}^{\rm lag^2} + K_{\rm ss} (1 - \delta) = 0 \tag{6.10}$$

$$-a_{ss} + N_{ss} + a_{ss} (1 - \eta) = 0 ag{6.11}$$

$$-\pi_{\rm ss} + \Pi_{\rm ss} - \beta \Pi_{\rm ss} 1 \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{\ 1-\mu} \right)^{-1+\gamma} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{\ 1-\mu} \right)^{1-\gamma} = 0 \tag{6.12}$$

$$\pi_{\rm ss} - C_{\rm ss} + N_{\rm ss} W_{\rm ss} = 0 \tag{6.13}$$

$$U_{\rm ss} - \beta U_{\rm ss} - \gamma^{-1} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{1-\mu} \right)^{\gamma} = 0 \tag{6.14}$$

$$\beta \left((1-\eta) \left(\alpha (1-\mu) C_{\rm ss}^{\ \mu} L_{\rm ss}^{-\mu} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{1-\mu} \right)^{-1+\gamma} - \mu W_{\rm ss} C_{\rm ss}^{-1+\mu} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{1-\mu} \right)^{-1+\gamma} L_{\rm ss}^{1-\mu} \right) - \eta (1-\alpha) (1-\mu) C_{\rm ss}^{\ \mu} L_{\rm ss}^{-\mu} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{-1+\mu} \left(C_{\rm ss}^{\ \mu} L_{\rm ss}^{1-\mu} \right)^{-1+\gamma} L_{\rm ss}^{1-\mu} \right) \right)$$

$$(6.15)$$

$$1 - L_{ss} - \alpha N_{ss} - \eta a_{ss} (1 - \alpha) = 0 \tag{6.16}$$

$$-1 + \Lambda_{ss} - \phi^a (-1 + \Lambda_{ss}) - \phi^b (-1 + \Lambda_{ss}) = 0$$
 (6.17)

$$-\pi_{\rm ss} + Y_{\rm ss} - \psi \left(2S_{\rm ss} + S_{\rm ss}^{\rm lag^{1}} + S_{\rm ss}^{\rm lag^{2}}\right) - N_{\rm ss}W_{\rm ss} = 0$$
 (6.18)

7 Parameter settings

$$\alpha = 1$$
 (7.1)
 $\beta = 0.99$ (7.2)
 $\delta = 0.025$ (7.3)
 $\eta = 0.5$ (7.4)
 $\gamma = -1$ (7.5)
 $\mu = 0.34$ (7.6)
 $\nu = 3$ (7.7)
 $\phi^a = 0.906$ (7.8)
 $\phi^b = 0.088$ (7.9)
 $\psi = 0.25$ (7.10)
 $\sigma = 0.01$ (7.11)

(7.12)

8 Steady state values

	Steady state values
a	0.6064
$\lambda^{\mathrm{FIRM}^2}$	1.0153
λ $\lambda^{\text{FIRM}S^{\text{lag}^1}}$	0.5025
λ λ FIRMS $^{\log^2}$	0.7576
π	0.1283
C	0.8261
K	11.0149
L	0.6968
Λ	1
N	0.3032
П	12.8257
S	0.2754
S^{\log^1}	0.2754
S^{\log^2}	0.2754
U	-135.4461
W	2.3014
Y	1.1015
Z	1.0987

 $\theta = 0.36$

9 The solution of the perturbation

9.1 P

9.2 Q

$$\begin{array}{c} \epsilon^{\Lambda} \\ a \\ K \\ \Lambda \\ S \\ S^{\mathrm{lag}^1} \\ S^{\mathrm{lag}^2} \\ C \\ Z \end{array} \begin{pmatrix} 0.1558 \\ 0 \\ 1 \\ 6.2947 \\ 0 \\ 0 \\ 0.2668 \\ \end{pmatrix}$$

9.3 R

	a_{t-1}	K_{t-1}	Λ_{t-1}	S_{t-1}	$S_{t-1}^{^{\mathrm{lag}^{1}}}$	$S_{t-1}^{^{\mathrm{lag}^2}}$	Z_{t-1}
$\lambda^{^{\mathrm{FIRM}^2}}$	0	-0.0493	0.0617	-9e - 04	-0.0019	-0.0025	0.0167
λ $\lambda^{\mathrm{FIRM}S^{\mathrm{lag}^{1}}}$	0	-0.0227	0.025	-0.0016	-0.0017	-0.0015	0.0126
$\lambda^{ ext{FIRM}S^{ ext{lag}^2}}$	0	-0.0376	0.044	-0.0012	-0.0024	-0.0022	0.0165
π	0	1.3828	-1.7195	0.0202	0.041	0.0647	0.1891
C	0	0.4442	0.6996	0.0019	0.0039	0.0062	0.0545
L	0	0.0523	-0.1348	0.001	0.0021	0.0033	0.0075
N	0	-0.1202	0.3098	-0.0023	-0.0048	-0.0075	-0.0172
П	0	0.8155	0.0939	0.0046	0.0091	0.014	0.0989
U	0	-0.0465	-0.2798	-3e - 04	-6e - 04	-9e - 04	-0.0046
W	0	0.3919	0.8344	9e - 04	0.0018	0.0029	0.047
Y	0	0.2802	1.1803	-0.0015	-0.003	-0.0047	-8e - 04

9.4 S

	ϵ^{Λ}
$\lambda^{^{\mathrm{FIRM}^2}}$	(0.0621)
$\lambda^{ ext{FIRM}S^{ ext{lag}^1}}$	0.0252
$\lambda^{ ext{FIRM}_S^{ ext{lag}^2}}$	0.0443
π	-1.7299
C	0.7038
L	-0.1356
N	0.3117
П	0.0945
U	-0.2815
W	0.8395
Y	\ _{1.1874} /

10 Statistics of the model

10.1 Moments

	Steady state value	Std. dev.	Variance	Loglinear
C	0.8261	0.2883	0.0831	Y
K	11.0149	0.093	0.0087	Y
L	0.6968	0.0533	0.0028	Y
Λ	1	0.4096	0.1678	Y
N	0.3032	0.1225	0.015	Y
U	-135.4461	0.1153	0.0133	Y
W	2.3014	0.3399	0.1155	Y
Y	1.1015	0.4723	0.2231	Y

10.2 Correlation matrix

	C	K	L	Λ	N	U	W	Y
a	0.9543	-0.1427	-0.9156	0.9519	0.9156	-0.9551	0.9532	0.9469
λ^{FIRM^2}	0.9535	-0.3445	-0.999	0.9851	0.999	-0.9786	0.9655	0.9808
λ λ FIRMS lag 1	0.9189	-0.3123	-0.9813	0.9538	0.9813	-0.9461	0.9334	0.9536
λ $\lambda^{\text{FIRM}S}^{\text{lag}^2}$	0.9415	-0.3346	-0.9959	0.9746	0.9959	-0.9675	0.9548	0.9726
π	-0.9228	0.4079	0.9932	-0.9663	-0.9932	0.9566	-0.9386	-0.9601
C	1	-0.0689	-0.9613	0.989	0.9613	-0.994	0.9991	0.9937
K	-0.0689	1	0.3125	-0.2068	-0.3125	0.171	-0.1075	-0.1669
L	-0.9613	0.3125	1	-0.9891	-1	0.9836	-0.9723	-0.9861
Λ	0.989	-0.2068	-0.9891	1	0.9891	-0.9992	0.9941	0.9983
N	0.9613	-0.3125	-1	0.9891	1	-0.9836	0.9723	0.9861
П	0.5469	0.7454	-0.3036	0.4173	0.3036	-0.4523	0.5115	0.4537
S	0.6373	-0.1735	-0.7313	0.6684	0.7313	-0.66	0.6554	0.684
S^{\log^1}	0.5043	-0.2471	-0.5156	0.5098	0.5156	-0.5088	0.5086	0.5115
S^{\log^2}	0.3796	-0.2113	-0.316	0.3713	0.316	-0.3758	0.3715	0.3551
U	-0.994	0.171	0.9836	-0.9992	-0.9836	1	-0.9974	-0.9991
W	0.9991	-0.1075	-0.9723	0.9941	0.9723	-0.9974	1	0.9976
Y	0.9937	-0.1669	-0.9861	0.9983	0.9861	-0.9991	0.9976	1
Z	0.8794	0.2007	-0.766	0.8151	0.766	-0.833	0.8661	0.8414

10.3 Autocorrelations

	t-1	t-2	t-3	t-4	t-5
C	0.7305	0.4987	0.3069	0.1534	0.0236
K	0.8674	0.72	0.6137	0.5297	0.3681
L	0.6809	0.4258	0.2416	0.1333	-0.0011
Λ	0.7212	0.4838	0.2859	0.1249	-0.0024
N	0.6809	0.4258	0.2416	0.1333	-0.0011
U	0.7238	0.4879	0.2907	0.1298	0.0022
W	0.721	0.4848	0.2936	0.1466	0.0162
Y	0.7051	0.4634	0.2752	0.1393	0.0069

11 Statistics of the model

11.1 Moments relative to moments of the reference variable

	Steady state value relative to Y	Std. dev. relative to Y	Variance relative to Y	Loglinear
C	0.75	0.6104	0.3726	Y
K	10.0002	0.197	0.0388	Y
L	0.6326	0.1129	0.0127	Y
Λ	0.9079	0.8672	0.752	Y
N	0.2753	0.2594	0.0673	Y
U	-122.969	0.2441	0.0596	Y
\overline{W}	2.0894	0.7196	0.5178	Y
Y	1	1	1	Y

11.2 Correlations with the reference variable

	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	Y_{t+5}
C	-0.0457	0.0881	0.2302	0.427	0.681	0.9937	0.7438	0.5265	0.3448	0.1984	0.0719
K	-0.4647	-0.472	-0.4503	-0.3907	-0.2912	-0.1669	0.018	0.2779	0.6192	0.6097	0.5685
L	-0.0857	-0.213	-0.3367	-0.5075	-0.7249	-0.9861	-0.6361	-0.3607	-0.1629	-0.0451	0.0902
Λ	0.0291	0.1602	0.295	0.4793	0.7138	0.9983	0.7105	0.4668	0.265	0.1019	-0.0259
N	0.0857	0.213	0.3367	0.5075	0.7249	0.9861	0.6361	0.3607	0.1629	0.0451	-0.0902
U	-0.0096	-0.1417	-0.2788	-0.4668	-0.7068	-0.9991	-0.7218	-0.4853	-0.2877	-0.1267	9e-04
W	-0.0253	0.1081	0.2481	0.4418	0.6914	0.9976	0.7308	0.5032	0.3181	0.1753	0.0468
Y	0.0069	0.1393	0.2752	0.4634	0.7051	1	0.7051	0.4634	0.2752	0.1393	0.0069

12 Impulse response functions

12.1 Shock ϵ^{Λ}

Figure 1: Impulse response function for ϵ^{Λ} shock

Figure 2: Impulse response function for ϵ^{Λ} shock