This week on the problem set we will see examples of integrals over more general regions.

You will only need to hand in a small selection of the questions for homework, however I recommend that you at least attempt them all by the end of the quarter as some may appear on exams!

Homework: The first homework will be due on Friday 20 January, at 12pm, the *start* of the lecture. It will consist of questions:

*Numbers in parentheses indicate the question has been taken from the textbook:

J. Rogawski, C. Adams, *Calculus, Multivariable*, 3rd Ed., W. H. Freeman & Company, and refer to the section and question number in the textbook.

1. (16.2.4) Sketch the domain

$$\mathcal{D}: 0 < x < 1, \quad x^2 < y < 4 - x^2$$

and evaluate $\iint_{\mathcal{D}} y \, dA$ as an iterated integral.

- 2. (16.2.8) Sketch the domain \mathcal{D} defined by $x + y \le 12, x \ge 4, y \ge 4$ and compute $\iint_{\mathcal{D}} e^{x+y} dA$.
- 3. (16.2.14) Integrate $f(x,y) = (x+y+1)^{-2}$ over the triangle with vertices (0,0), (4,0) and (0,8).
- 4. (16.2) In the following exercises compute the double integral of f(x,y) over the domain \mathcal{D} indicated.

(a)
$$(16.1.20)$$
 $f(x,y) = \cos(2x+y);$ $\frac{1}{2} \le x \le \frac{\pi}{2}, 1 \le y \le 2x$

- (b) (16.1.21) f(x,y) = 2xy; bounded by $x = y, x = y^2$.
- (c) (16.1.23) $f(x,y) = e^{x+y}$; bounded by y = x 1, y = 12 x for $2 \le y \le 4$.
- 5. (16.2.29) Sketch the domain \mathcal{D} corresponding to

$$\int_0^4 \int_{\sqrt{y}}^2 \sqrt{4x^2 + 5y} \, \mathrm{d}x \, \mathrm{d}y$$

- 6. (16.1.31) Compute the integral of $f(x,y) = (\ln y)^{-1}$ over the domain \mathcal{D} bounded by $y = e^x$ and $y = e^{\sqrt{x}}$. Hint: Choose the order of integration that enables you to evaluate the integral.
- 7. (16.2.45) Find the volume of the region bounded by z = 40 10y, z = 0, y = 0 and $y = 4 x^2$.
- 8. (16.2.48) Find the volume of the region bounded by $y = 1 x^2$, z = 1, y = 0 and z + y = 2.
- 9. (16.2.49) Set up a double integral that gives the volume of the region bounded by the two paraboloids $z = x^2 + y^2$ and $z = 8 x^2 y^2$. (Do not evaluate the integral.)