1 | 1.

Done on Friday

2 | 2.

$$\int_{-\infty}^{0} x e^{-x} dx = 0 - (-\infty) = \infty$$
 (1)

We know that the limit of xe^{-x} as x goes to negative infinity is zero because as x decreases past zero e^{-x} approaches infinity.

3 | 3.

We know that $\int_1^\infty e^{-x}\,dx$ is finite because e^{-x} converges to 0. If we write e^{-x} as a function f, then the gaussian curve (e^{-x^2}) can be written as $\frac{1}{f(x)^2}$, or $f(x)^{-2}$. With reverse chain rule we can easily integrate this: $\int_1^\infty f(x)^{-2}\,dx = F(1)^{-1} - F(\infty)^{-1}$ We know that $F(\infty)^{-1}$ is finite because $F(\infty)$ is finite because the integral of e^{-x} earlier is finite. Of course, $F(1)^{-1}$ is also finite. Therefore, the entire integral is finite.

4 | 4.

$$\vec{r} \times \vec{s} = (\vec{r}_y \vec{s}_z - vecr_z \vec{s}_y)\hat{i} + (\vec{r}_z \vec{s}_x - \vec{r}_x \vec{s}_z)\hat{j} + (\vec{r}_x \vec{s}_y - \vec{r}_y \vec{s}_x)\hat{k}$$
 The orthogonal direction is the cross product:
$$= ((-2)(-3) - (6)(1))\hat{i} + ((6)(-5) - (10)(-3))\hat{j} + ((10)(1) - (-5)(-2))\hat{k}$$

$$= 0\hat{i} + 0\hat{j} + 0\hat{k}$$

This makes sense because \vec{r} and \vec{s} are colinear.