

Sports Analytics

Sports analytics are a collection of statistics of players, Weather conditions, Team's recent wins/lose,

that when properly applied can provide a competitive advantage to a team or individual.

One such great example is, Real Madrid — is using Microsoft technology to transform its operations, performance, fitness, and relationships with 500 million global fans.

DATA SCIENCE

Ol Domain Understanding Understand the characteristics of

Understand the characteristics of the sport.

02 Data Pre processing

Data Collection, Data Cleaning & transformation

03 EDA & Feature Selection

Exploratory data analysis and selecting the most important variables

O4 Modelling

Select candidate models.

Model EvaluationSelect measure of model

Select measure of model performance

06 Deploy Model

Generate predictions for upcoming matches.

Block Diagram

OI DOMAIN UNDERSTANDING

Indian Premier League

The IPL is a **professional Twenty20 cricket league** in India contested during March or April and May of every year by the Board of Control for Cricket in India(**BCCI**) in 2008.

TEAM

Total of 8 teams particate each year, representing different cities of India

The squad strength must be between 18 and 25 players, with a maximum of 8 overseas players.

According to BCCI, the 2015 IPL season contributed ₹11.5 billion (US\$160 million) to the GDP of the Indian

02

DATA PRE_PROCESSING

DATA COLLECTION

PLAYER POINTS CALCULATION

PlayerPoints(Y) =
$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \beta_6 X_6 + \epsilon$$

Weight of the team $=rac{\sum_{i=1}^{11} i^{th} Player Points}{Total apperance of the team}$

DATA CLEANING

Mergeing Data

History dataset was merged with IPL dataset with the function "concat"

Missing Value

The rows with Missing values were eliminated from the data

Encoding Categorical Features

"Ordinal Encoder and Label Encoder" were used to covert categorical data to intergers

Verification and Encrichment

The final ready data was inspected and Uniformity was maintained

03 EDA & Feature Selection

MATCHES EVERY SEASON

VENUES AND CITIES

VENUES AND CITIES

TOSS

Does winning the toss means winning the game?

Feature Selection

04 Modelling

Training Set

Cross Validation

Testing Set

Model Selection

Logistic Regression

It uses Logistic function to the regression to get the probabilities of it belonging in either class(winner/loser).

K Nearest Neighbors

It is used to identify the data points that are separated into several classes to predict the classification of a new sample point.

Gaussian Naive Bayes

Based on naive Bayes, Gaussian naive Bayes is used for classification based on the binomial (normal) distribution of data. The probability of a data point having either class, given the data point.

Support Vector Machine

It performs classification by finding the hyperplane that maximizes the margin between classes

Ensemble Methods

Bagging

RANDOM FOREST CLASSIFIER

Boosting

EXTREME GRADIENT BOOST CLASSIFIER

Classifier	Correct Prediction(out of 59)	Model Accuracy (2019)	
Logistic Regression	19	35.8%	
Gaussian Naive Bayes	21	40.1%	
K Nearest Neighbour	26	64.9%	
Support Vector Machine	32	85.3%	
Random Forest	40	90.0%	
XG Boost	42	90.9%	

TEAM	PREDICTED WINS	ACTUAL WINS
Mumbai Indians	12	9
Chennai Super Kings	11	9
Royal Challengers Bangalore	8	5
Delhi Capitals	7	9
Sunrisers Hyderabad	6	6
Kolkata Knight Riders	6	6
Kings XI Punjab	5	5
Rajasthan Royals	4	5

PREDICTIVE PLAYOFFS AND WINNER 2019

05 Model <u>Evaluation</u>

Hyper Tuning of XG Boost Classifier

An ensemble learning strategy that trains a series of weak models, each one attempting to correctly predict the observations the previous model got wrong.

Parameter	From	То
Learning Rate	0.1	0.3
Max_depth	3	6

Assumptions

- It is assumed that the entire squad of the team would be available for selection in every match.
- Player injuries have not been taken into consideration.
- It is assumed every match will result in an outcome i.e. external forces such as rain will not have any impact on the outcome of the match.
- Any kind of fixing involving players has not been considered.

06 Deploy Model

POINTS TABLE

TEAM	MATCHES	WON	LOST	POINTS
CSK	14	11	3	22
MI	14	9	5	18
KKR	14	8	6	16
RCB	14	8	6	16
SRH	14	6	8	12
RR	14	6	8	12
DD	14	5	9	10
KXIP	14	3	11	6

Winner of Vivo IPL 2020

LIMITATIONS

- The model is not real-time, as a result the toss factor could not be used for predicting IPL 2020 results
- The model does not takes into consideration player injuries and washouts which occur due to external forces
- IPL is just a 12 year old league, therefore the sample size of matches is comparatively less

FUTURE SCOPE

- Converting this model in a real-time model will improve the accuracy as essential factor like Toss Winner, Toss Decision and Changing Player Points can be considered.
- Going even further and making a model based on player statistics alone with give an idea on each player performance.
- Using this model for predicting other leagues like Test Match, World Cup and even Dream 11.

CONCLUSION

In cricketing field, to achieve the full convergence into data science world, it would require a lot of additional data to meet full picture of analysis. The prediction of winner produced through this project required a lot of domain information and observation.

The Twenty20 format of cricket carries a lot of **randomness**, because a single over can completely change the ongoing pace of the game.

Hence, designing a machine learning model for predicting the match outcome of an auction-based Twenty20 format premier league with a testing accuracy of **71.8%** is highly satisfactory.

THANK YOU

Presented by-

Ananya P

Dhruv Gupta