Notes on Mathematics For Machine Learning

Jonathan Chen

September 13, 2025

Contents

1	Intr	roduction and Motivation
	1.1	Finding words for intuition
	1.2	
2	Line	ear Algebra
	2.1	Systems of Linear Equations
	2.2	Matrices
		2.2.1 Matrix addition and multiplication
		2.2.2 Inverse and Transpose
		2.2.3 Multiplication by scalar
		2.2.4 Compact Representations of Systems of Linear Equations
	2.3	Solving Systems of Linear Equations
		2.3.1 Particular and General Solution
		2.3.2 Elementary Transformations
	2.4	The Minus-1 Trick

1 Introduction and Motivation

 Machine learning designs algorithms that automatically extract valuable information from data. "Automatic" emphasizes general-purpose methodologies that can be applied across diverse datasets, producing meaningful outputs without heavy domainspecific customization.

• Data

- ML is inherently data-driven; data forms the basis of every method.
- Goal: uncover patterns and structure directly from datasets with minimal prior knowledge.
- Example: topic modeling in large document corpora (Hoffman et al., 2010).

• Model

- Represents the process generating the data (e.g., regression maps inputs to real-valued outputs).
- Mitchell (1997): a model learns if its task performance improves after exposure to data.
- Strong models must not only fit observed data but also generalize to unseen cases, which is essential for future applications.

• Learning

- The process of optimizing model parameters to capture patterns and relationships in data.
- Enables adaptability across tasks and datasets, reducing the need for manual rule design.

• Mathematical Foundations

- Provide clarity on the principles underlying complex ML systems.
- Enable creation of new methods beyond existing software packages.
- Support debugging and evaluation of current approaches.
- Reveal assumptions and limitations, which is crucial for reliable and responsible deployment in practice.

1.1 Finding words for intuition

- In machine learning, concepts and terms can be ambiguous; the same word may have different meanings depending on context.
 - Example: **algorithm**
 - * As predictor: a system making predictions from input data.

- * As training procedure: a system adapting parameters so the predictor performs well on unseen data.
- The three main components of an ML system are data, models, and learning.
 - **Data**: represented as vectors.
 - * Computer science view: array of numbers.
 - * Physics view: arrow with direction and magnitude.
 - * Mathematics view: object obeying addition and scaling.
 - **Model**: simplified version of the data-generating process, capturing aspects relevant for prediction and enabling exploration of hidden patterns.
 - Learning: training a model means optimizing its parameters with respect to a utility function measuring predictive performance.
 - * Analogy: climbing a hill to maximize performance.
 - * Training accuracy may only reflect memorization; the real goal is generalization to unseen data.

1.2 Two Ways to Read this Book

- Two strategies for learning mathematics for ML
 - Bottom-up: build from foundational to advanced concepts.
 - * Advantage: solid grounding, each step relies on previous knowledge.
 - * Disadvantage: foundations may feel abstract or unmotivated.
 - Top-down: start from practical needs, drill down into required math.
 - * Advantage: clear motivation, direct path to applications.
 - * Disadvantage: knowledge may rest on weak foundations.

• Book structure

- Modular design: can be read bottom-up or top-down.
- Part I: mathematics foundations.
- Part II: machine learning applications (regression, dimensionality reduction, density estimation, classification).

• Mathematical foundations (Part I)

- Linear algebra: vectors, matrices, data representation.
- Analytic geometry: similarity and distance between vectors.
- Matrix decomposition: structure and efficient computation.
- Vector calculus: gradients for optimization.
- Probability theory: quantifying uncertainty and noise.

- Optimization: finding maxima/minima using gradients.

• Applications (Part II)

- Regression: functions mapping inputs to outputs; MLE, MAP, Bayesian linear regression.
- Dimensionality reduction: compact representations (e.g., PCA).
- Density estimation: probability distributions for data (e.g., Gaussian mixtures).
- Classification: discrete labels (e.g., support vector machines).

2 Linear Algebra

- Algebra: a set of objects (symbols) and rules for manipulating them.
- Linear algebra: study of vectors and the rules for combining them.
- **Vectors**: abstract objects that can be added and scaled (closure property). Any object satisfying these rules is a vector.
 - Geometric vectors: arrows with direction and magnitude; addition and scalar multiplication preserve vector form.
 - Polynomials: closed under addition and scalar multiplication; abstract but valid vectors.
 - Audio signals: represented as sequences of numbers; addition and scaling produce new signals.
 - Elements of \mathbb{R}^n : *n*-tuples of real numbers; focus of this book. Operations are defined component-wise.
- Practical viewpoint: vectors in \mathbb{R}^n correspond to arrays in computer implementations. Many languages support array operations, enabling efficient ML algorithms.
- Closure and vector spaces: the set of all possible vectors generated by addition and scaling forms a vector space. Vector spaces and their properties underpin much of ML.
- Role in ML:
 - Chapter 3: analytic geometry for similarity and distances.
 - Chapter 5: matrix operations for vector calculus.
 - Chapter 9: linear regression solved via least squares.
 - Chapter 10: dimensionality reduction with projections (PCA).
 - Chapter 12: classification methods relying on linear algebra.

2.1 Systems of Linear Equations

- Many problems in linear algebra can be formulated as **systems of linear equations**. Linear algebra provides systematic tools to solve them.
- General form:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1, \dots, a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

where $a_{ij}, b_i \in \mathbb{R}$ and x_1, \ldots, x_n are unknowns.

- Solutions are *n*-tuples $(x_1, \ldots, x_n) \in \mathbb{R}^n$ that satisfy all equations.
- A system can have no solution, exactly one solution, or infinitely many solutions.

• Examples:

- No solution: equations contradict each other.
- Unique solution: (1,1,1) solves one example system.
- Infinitely many solutions: free variables parameterize solution sets.

• Geometric interpretation:

- Two variables: each equation is a line in the x_1x_2 -plane; solutions = intersection of lines.
- Three variables: each equation is a plane; intersections may yield a plane, line, point, or empty set.

• Matrix form:

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{b} \in \mathbb{R}^m$$

where A collects coefficients a_{ij} , \mathbf{x} collects unknowns, and \mathbf{b} collects constants.

2.2 Matrices

- Matrices: central objects in linear algebra.
 - Represent systems of linear equations compactly.
 - Represent linear mappings (to be discussed later).
- **Definition**: A real-valued (m, n) matrix A is an ordered $m \cdot n$ -tuple of elements $a_{ij} \in \mathbb{R}$, arranged in m rows and n columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}$$

• Special cases:

- -(1, n)-matrix: row (row vector).
- -(m, 1)-matrix: column (column vector).
- Notation: $\mathbb{R}^{m \times n}$ is the set of all real-valued (m, n) matrices.
- Vectorization: A matrix $A \in \mathbb{R}^{m \times n}$ can be re-shaped as a vector $a \in \mathbb{R}^{mn}$ by stacking its n columns.

6

2.2.1 Matrix addition and multiplication

• Matrix addition: For $A, B \in \mathbb{R}^{m \times n}$,

$$A + B = \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

• Matrix multiplication: For $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times k}$

$$C = AB \in \mathbb{R}^{m \times k}, \quad c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}$$

- Multiply i-th row of A with j-th column of B and sum.
- Defined only when the inner dimensions match.
- In general, $AB \neq BA$.
- Hadamard product: element-wise multiplication $c_{ij} = a_{ij}b_{ij}$, distinct from matrix multiplication.
- Identity matrix: For $n \in \mathbb{N}$,

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n \times n}$$

- Property: $I_m A = A I_n = A$, for $A \in \mathbb{R}^{m \times n}$.
- Algebraic properties:
 - Associativity: (AB)C = A(BC)
 - Distributivity: (A + B)C = AC + BC, A(C + D) = AC + AD

2.2.2 Inverse and Transpose

• Inverse of a square matrix: For $A \in \mathbb{R}^{n \times n}$, if there exists $B \in \mathbb{R}^{n \times n}$ such that

7

$$AB = I_n = BA,$$

then B is called the inverse of A, denoted A^{-1} .

- A is invertible / nonsingular / regular if A^{-1} exists.
- A is singular / noninvertible if A^{-1} does not exist.
- If A^{-1} exists, it is unique.

• 2×2 case: For

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix},$$

the inverse exists iff $det(A) = a_{11}a_{22} - a_{12}a_{21} \neq 0$, and

$$A^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}.$$

• Example:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 4 & 5 \\ 6 & 7 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} -7 & -7 & 6 \\ 2 & 1 & -1 \\ 4 & 5 & -4 \end{bmatrix}$$

satisfy AB = I = BA, so $B = A^{-1}$.

- Transpose: For $A \in \mathbb{R}^{m \times n}$, the transpose $A^{\top} \in \mathbb{R}^{n \times m}$ is defined by $(A^{\top})_{ij} = a_{ji}$.
 - Obtained by writing columns of A as rows of A^{\top} .
- Properties:

$$AA^{-1} = I = A^{-1}A$$

$$(AB)^{-1} = B^{-1}A^{-1}, \quad (A+B)^{-1} \neq A^{-1} + B^{-1}$$

$$(A^{\top})^{\top} = A, \quad (AB)^{\top} = B^{\top}A^{\top}, \quad (A+B)^{\top} = A^{\top} + B^{\top}$$

- Symmetric matrices: $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^{\top}$.
 - Only square matrices can be symmetric.
 - If A is invertible, then A^{\top} is invertible and $(A^{-1})^{\top} = (A^{\top})^{-1} = A^{-\top}$.
 - $-\,$ Sum of symmetric matrices is symmetric.
 - Product of symmetric matrices is not necessarily symmetric.

2.2.3 Multiplication by scalar

• For $A \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$, scalar multiplication is defined as

$$(\lambda A)_{ij} = \lambda a_{ij}.$$

Practically, each entry of A is scaled by λ .

- Properties: For $\lambda, \psi \in \mathbb{R}$, $B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times k}$:
 - Associativity: $(\lambda \psi)C = \lambda(\psi C)$
 - Compatible with matrix multiplication:

$$\lambda(BC) = (\lambda B)C = B(\lambda C) = (BC)\lambda$$

8

– Transpose: $(\lambda C)^{\top} = \lambda C^{\top}$

- Distributivity:

$$(\lambda + \psi)C = \lambda C + \psi C, \quad \lambda(B + C) = \lambda B + \lambda C$$

• Example: For $C = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $\lambda, \psi \in \mathbb{R}$,

$$(\lambda + \psi)C = \begin{bmatrix} \lambda + \psi & 2(\lambda + \psi) \\ 3(\lambda + \psi) & 4(\lambda + \psi) \end{bmatrix} = \lambda C + \psi C$$

2.2.4 Compact Representations of Systems of Linear Equations

• A system of linear equations can be expressed using matrix notation.

• Example:

$$2x_1 + 3x_2 + 5x_3 = 1$$
$$4x_1 - 2x_2 - 7x_3 = 8$$
$$9x_1 + 5x_2 - 3x_3 = 2$$

can be written as

$$\begin{bmatrix} 2 & 3 & 5 \\ 4 & -2 & -7 \\ 9 & 5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 2 \end{bmatrix}.$$

• General form:

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{b} \in \mathbb{R}^m$$

• Interpretation: The product $A\mathbf{x}$ is a linear combination of the columns of A, with coefficients given by the components of \mathbf{x} .

2.3 Solving Systems of Linear Equations

• General form of a linear system:

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1, \dots, a_{m1}x_1 + \dots + a_{mn}x_n = b_m$$

where $a_{ij}, b_i \in \mathbb{R}$ are known constants and x_i are unknowns.

• Compact matrix form:

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathbb{R}^{m \times n}, \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{b} \in \mathbb{R}^m$$

- Matrices provide a concise framework to represent and manipulate linear systems, enabling the use of algebraic operations.
- Goal: focus on **solving** systems of linear equations and introduce an algorithm for computing the inverse of a matrix as part of the solution process.

2.3.1 Particular and General Solution

• Example system:

$$\begin{bmatrix} 1 & 0 & 8 & -4 \\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 42 \\ 8 \end{bmatrix}.$$

- Since the system has two equations and four unknowns, we expect infinitely many solutions.
- Particular solution:

$$\mathbf{x}_p = \begin{bmatrix} 42\\8\\0\\0 \end{bmatrix},$$

since $b = 42c_1 + 8c_2$ (with c_i denoting the *i*-th column).

• Solutions to Ax = 0 (homogeneous system):

$$\lambda_1 \begin{bmatrix} 8 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \quad \lambda_2 \begin{bmatrix} -4 \\ 12 \\ 0 \\ -1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

• General solution:

$$\mathbf{x} = \begin{bmatrix} 42 \\ 8 \\ 0 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 8 \\ 2 \\ -1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} -4 \\ 12 \\ 0 \\ -1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

- General method:
 - 1. Find a particular solution of Ax = b.
 - 2. Find all solutions of Ax = 0.
 - 3. Combine both to obtain the general solution.
- General systems are not usually in this convenient form, so we use **Gaussian elimination** to reduce them into a form where steps (1)–(3) can be applied.

2.3.2 Elementary Transformations

- **Elementary transformations** simplify a system of linear equations without changing its solution set:
 - Exchange of two equations (row swap)

- Multiplication of a row by $\lambda \in \mathbb{R} \setminus \{0\}$
- Addition of a multiple of one row to another row
- Systems are often written in **augmented matrix form**: (A|b) compactly represents $A\mathbf{x} = b$.
- Example: Transforming a system via row operations leads to an **augmented matrix** in **row-echelon form (REF)**.

$$\begin{bmatrix} 1 & -2 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 3 & -2 \\ 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0 & a+1 \end{bmatrix}$$

corresponds to

$$x_1 - 2x_2 + x_3 - x_4 + x_5 = 0$$

$$x_3 - x_4 + 3x_5 = -2$$

$$x_4 - 2x_5 = 1$$

$$0 = a + 1$$

- From REF:
 - Only solvable if a = -1.
 - A particular solution is $\begin{bmatrix} 2 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$.
 - The general solution is

$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 2 \\ 0 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

- Row-echelon form (REF):
 - All zero rows are at the bottom.
 - Each pivot (first nonzero entry in a row) is strictly to the right of the pivot above it.
 - This creates a staircase structure.
- Basic vs. free variables:
 - Pivot columns \rightarrow basic variables.

- Non-pivot columns \rightarrow free variables.
- Example: in (2.45), x_1, x_3, x_4 are basic; x_2, x_5 are free.
- Reduced row-echelon form (RREF):
 - Matrix is in REF.
 - Every pivot is 1.
 - Pivot is the only nonzero entry in its column.
- Gaussian elimination: algorithm that applies elementary transformations to bring a system into RREF, enabling direct solution construction.

2.4 The Minus-1 Trick

- Minus-1 Trick: A method to read solutions of $A\mathbf{x} = 0$ when A is in reduced row-echelon form (RREF).
 - Extend $A \in \mathbb{R}^{k \times n}$ to $\tilde{A} \in \mathbb{R}^{n \times n}$ by adding rows of the form

$$(0 \cdots 0 - 1 0 \cdots 0),$$

- so that the diagonal entries of \tilde{A} are either 1 or -1.
- Columns of \tilde{A} with -1 on the diagonal form a basis of the solution space (kernel/null space).
- Example (Minus-1 Trick):

$$A = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix} \quad \Rightarrow \quad \tilde{A} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

• Solutions:

$$\mathbf{x} = \lambda_1 \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 0 \\ 9 \\ -4 \\ -1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

• Inverse Calculation: To compute A^{-1} for $A \in \mathbb{R}^{n \times n}$, solve

$$AX = I_n$$
.

Write the augmented matrix

$$(A \mid I_n),$$

and perform Gaussian elimination until

$$(A \mid I_n) \implies (I_n \mid A^{-1}).$$

• Example (Inverse): For

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix},$$

row reduction of $(A|I_4)$ yields

$$A^{-1} = \begin{bmatrix} -1 & 2 & -2 & 2\\ 1 & -1 & 2 & -2\\ 1 & -1 & 1 & -1\\ -1 & 0 & -1 & 2 \end{bmatrix}.$$

Verification: $AA^{-1} = I_4$.