信号処理レポート[課題2]

提出日: 2024/10/22 HI4 45 号 山口惺司

1. 練習問題 1

次の離散信号の畳み込みをy(t) = x(t) * h(t)求めなさい. 答えはデルタ関数の和の形で書くこと.

1.1. 問題(1)

$$x(t) = 2\delta(t) + 2\delta(t-1) + \delta(t-2)$$
$$h(t) = \delta(t) + 2\delta(t-1)$$

1.1.1. 手計算

手計算で解いた結果を図1.1に示す.

	2	2	1	
2	1			
	2	2	1	
		4	4	2
	2	6	5	2

図 1.1 問題 1-1 手計算による結果

1.1.2. スクリプトと実行結果

Rを用いて作成したスクリプトと実行結果をそれぞれ図 1.2, 1.3 に示す.

図 1.2 問題 1-1 スクリプト

図 1.3 問題 1-1 実行結果

1.1.3. 結果の比較

手計算と R を用いた計算によって得られる式は以下の通りである.

$$y(t) = 2\delta(t) + 6\delta(t - 1) + 5\delta(t - 2) + 2\delta(t - 3)$$

手計算とRを用いた計算が同じであったため,正しく求められていることが分かった.

1.2. 問題 2

$$x(t) = \delta(t) + 2\delta(t-1) + \delta(t-2)$$

1.2.1. 手計算

手計算で解いた結果を図1.4に示す.

	1	2	1	
-2		2		
2	4	2		
		-2	-4	-2
2	4	0	-4	-2

図 1.4 問題 1-2 手計算による結果

1.2.2. スクリプトと実行結果

Rを用いて作成したスクリプトと実行結果をそれぞれ図 5.6 に示す.

1 x <-c(1, 2, 1)
2 h<-rev(c(2, 0, -2))
3 conv<-convolve(x,h,type='o')
4 sprintf(conv,fmt="%.f")</pre>

図 1.5 問題 1-2 スクリプト

図 1.6 問題 1-2 実行結果

1.2.3. 結果の比較

手計算と R を用いた計算によって得られる式は以下の通りである.

$$y(t) = 2\delta(t+1) + 4\delta(t) - 4\delta(t-2) - 2\delta(t-3)$$

手計算とRを用いた計算が同じであったため、正しく求められていることが分かった.

2. 練習問題 2

次の離散信号の畳み込みをy(t) = x(t) * h(t)求めなさい。答えはデルタ関数の和の形で書くこと。

2.1. 問題(1)

$$x(t) = \delta(t) - 2\delta(t-1) + 3\delta(t-3)$$

$$h(t) = 2\delta(t-1) + 4\delta(t-2) - 3\delta(t-3)$$

2.1.1. 手計算

手計算で解いた結果を図2.1 に示す.

			1	-2	0	3			
-3	4	2							
				2	-4	0	6		
					4	-8	0	12	
						-3	6	0	-9
				2	0	-11	12	12	-9

図 2.1 問題 2-1 手計算による結果

2.1.2. スクリプトと実行結果

Rを用いて作成したスクリプトと実行結果をそれぞれ図 2.2, 2.3 に示す.

1 x <-c(1,-2,0,3)
2 h<-rev(c(0,2,4,-3))
3 conv<-convolve(x,h,type='o')
4 sprintf(conv,fmt="%.f")</pre>

図 2.2 問題 2-1 スクリプト

図 2.3 問題 2-1 実行結果

2.1.3. 結果の比較

手計算と R を用いた計算によって得られる式は以下の通りである.

$$y(t) = 2\delta(t-1) - 11\delta(t-3) + 12\delta(t-4) + 12\delta(t-5) - 9\delta(t-6)$$

手計算とRを用いた計算が同じであったため、正しく求められていることが分かった.

2.2. 問題(2)

$$x(t) = 4\delta(t) + 8\delta(t-1) - 2\delta(t-3) + \delta(t-4)$$

$$h(t) = 5\delta(t-1) - 2\delta(t-2) + 3\delta(t-3)$$

2.2.1. 手計算

手計算で解いた結果を図2.4に示す.

			4	8	0	-2	1			
3	-2	5								
				20	40	0	-10	5		
					-8	-16	0	4	-2	
						12	24	0	-6	3
				20	32	-4	14	9	-8	3

図 2.4 問題 2-2 手計算による結果

2.2.2. スクリプトと実行結果

Rを用いて作成したスクリプトと実行結果をそれぞれ図 2.5. 2.6 に示す.

図 2.5 問題 2-2 スクリプト

図 2.6 問題 2-2 実行結果

2.2.3. 結果の比較

手計算と R を用いた計算によって得られる式は以下の通りである.

$$y(t) = 20\delta(t-1) + 32\delta(t-2) - 4\delta(t-3) + 14\delta(t-4) + 9\delta(t-5) - 8\delta(t-6) + 3\delta(t-7)$$
 手計算と R を用いた計算が同じであったため、正しく求められていることが分かった.

3. 練習問題 3

次の離散信号の畳み込みをy(t) = x(t) * h(t)求めなさい. 答えはデルタ関数の和の形で書くこと.

3.1. 問題(1)

$$x(t) = \delta(t) + \delta(t-2) + 3\delta(t-4)$$

$$h(t) = 2\delta(t-1) + 4\delta(t-2) - 3\delta(t-3)$$

3.1.1. 手計算

手計算で解いた結果を図3.1に示す.

			1		1		3		
1	3	2							
			2	0	2	0	6		
				3	0	3	0	9	
					1	0	1	0	3
			2	3	3	3	7	9	3

図 3.1 問題 3-1 手計算による結果

3.1.2. スクリプトと実行結果

Rを用いて作成したスクリプトと実行結果をそれぞれ図 3.2, 3.3 に示す.

図 3.2 問題 3-1 スクリプト

図 3.3 問題 3-1 実行結果

3.1.3. 結果の比較

手計算と R を用いた計算によって得られる式は以下の通りである.

$$y(t) = 2\delta(t-1) + 3\delta(t-2) + 3\delta(t-3) + 3\delta(t-4) + 7\delta(t-5) + 9\delta(t-6) + 3\delta(t-7)$$
 手計算と R を用いた計算が同じであったため、正しく求められていることが分かった.

3.2. 問題(2)

$$x(t) = 4\delta(t) - 5\delta(t-1) + 6\delta(t-3)$$

$$h(t) = 2\delta(t+1) + 4\delta(t) + 6\delta(t-1)$$

3.2.1. 手計算

手計算で解いた結果を図3.4に示す.

	4	-5	0	6		
6	4	2				
	8	-10	0	12		
		16	-20	0	24	
			24	-30	0	36
	8	6	4	-18	24	36

図 3.4 問題 3-2 手計算による結果

3.2.2. スクリプトと実行結果

R を用いて作成したスクリプトと実行結果をそれぞれ図 3.5,3.6 に示す.

- 1 x <-c(4, -5, 0, 6) 2 h<-rev(c(2, 4, 6))
- 3 conv<-convolve(x,h,type='o')</pre>
- 4 sprintf(conv,fmt="%.f")

図 3.5 問題 3-2 スクリプト

図 3.6 問題 3-2 実行結果

3.2.3. 結果の比較

手計算と R を用いた計算によって得られる式は以下の通りである.

$$y(t) = 8\delta(t+1) + 6\delta(t) + 4\delta(t-1) - 18\delta(t-2) + 24\delta(t-3) + 36\delta(t-4)$$

手計算と R を用いた計算が同じであったため、正しく求められていることが分かった.