Программное распознавание сигнала от поезда на сейсмограмме

Научный руководитель: к.ф.-м.н. Марченков Алексей Юрьевич

Выполнил: Макаров Д.Д.

Входные данные

Фурье – образ сигнала без поезда

Фурье – образ сигнала от поезда

Создание фильтра при помощи tensorflow.

- Функция потерь: $L = \left(\left(\frac{\left\| F^{-1}(F(x)*V) \right\|}{\|x\|} \right)^2 Y \right)^2$, где x сигнал,
- F fft,
- F^{-1} ifft,
- V переменная, которая по сути и есть фильтр,
- Y указатель, равный 1, если рассматриваемый сигнал содержит поезд, и 0 в противном случае.

Результаты обучения

Получившийся фильтр

Функция потерь

Автоматическое нахождение участков записи с сигналом от поезда

Результат применения фильтра на исходном сигнале

$$\frac{std_no_sinal}{std_signal} = 0.38$$

Результат применения фильтра (слабый шум)

$$\frac{std_no_sinal}{std_signal} = 0.82$$

Результат применения фильтра (средний шум)

Срабатывание при сильном шуме (землятрясение)

Одновременный анализ двух каналов сейсмической записи

Горизонтальная Компонента (Перпендикулярна ходу поезда)

Z - компонента

Совпадают на 77%

Корреляция 0.9

Анализ линейной функции двух компонент сигнала

