Glossary v. 4.8

For an introduction into the topic of Artificial Pancreas Systems ("Looping"), see:

- https://github.com/danamlewis/artificialpancreasbook/
- and https://androidaps.readthedocs.io/en/latest/Resources/clinician-guide-to-AndroidAPS.html#for-clinicians-a-general-introduction-and-guide-to-aaps.
- No medical advice
- Overview over all DIY loops https://www.diabettech.com/user-resources/hcp-loop-guide/
- For a resource on key topics like ISF, meal management etc. see the pdf collection in the HCL branch of: https://github.com/bernie4375/HCL-Meal-Mgt.-ISF-and-IC-settings

The parallel default branch with a "FCL-e-book" https://github.com/bernie4375/FCL-potential-autoISF-research- is for advanced users of systems with SMB+UAM (oref) algorithm.

Term	Description	related	more details @
AAPS	AAPS is the name of an Open Source (aka "DIY") looping app: On A ndroid phones, Bluetooth connected with an insulin pump and a CGM , it provides an Artificial Pancreas System Broadest choice of pumps and CGMs of any looping option Algorithm: see oref	oref iAPS, Trio iOS Loop	https://androidaps.readth edocs.io/en/latest/introdu ction.html#what-is- android-aps-aaps
AAPS Client	AAPS can be monitored and controlled remotely via the AAPSClient app and optionally via the associated Wear app running on Android Wear watches Similar for iOS Loop -> Loop Caregiver	Loop Caregiver app	https://androidaps.readth edocs.io/en/latest/Getting Started/FAQ.html#confi guring-and-using-the- aapsclient-remote-app https://androidaps.readt hedocs.io/en/latest/Rem oteFeatures/RemoteMo nitoring.html
acceleration	mathematical analysis of the bg development can reveal earliest signs of a bg rise; this is highly relevant in -> FCL w/ autoISF; -> parabola fit. Growing bg delta s are a simpler way of detecting acceleration, but with a ~ 10-20 minutes relative delay. A de-celerating rise indicates a bg peak will soon be reached.		https://github.com/ga-zelle/APS-what-if/blob/A3.2.0.4 ai3.0.1 Quick_Guide.pdf FCL-e-book, section 4.2
Activity Monitor	feature of some loop systems that allow adaptation of loop aggressiveness with ~ past hour data from the phone's (or watch') motion monitor (evtl also heart rate).	aggressive ness	FCL-e-book, section 5.1.5
aggressiveness of the loop	more aggressive loop settings will deliver more insulin, often via a lowered temporary ISF being applied to a needed	resistance sensitivity	https://androidaps.readthedocs. io/en/latest/DailyLifeWithAap s/ProfileSwitch- ProfilePercentage.html

	correction, or also via a temp. lowered bg target. A more aggressive loop helps fight temp. insulin resistance (e.g. after fatty meals). Conversely, e.g. in an exercise context, higher ISF and higher temp.glucose target help deal with increased insulin sensitivity, and deliver less insulin. dev variant of AAPS involving simple	temp.profil e override	https://loopkit.github.io/loopdocs/operation/features/overrides FCL-e-book, section 5 FCL-e-book 13.3.2;
AIMI	Meal Announcement (MA) that might be stretched into a FCL		https://discord.gg/tPDQz S3Bq3
algorithm	the algorithm is a set of calculations and plausibility/safety checks the loop goes through every 5 minutes (upon receipt of a new CGM value), to define what to do, notably in terms of more insulin delivery for control of bg (to bring it to target). DIY looping algorithms see: - > iOS Loop; - > oref (OpenAPS origin)	control; oref; iOS Loop insulin kinetics	https://www.diabettech.com /looping-a-guide/comparing- the-loop-and-openaps- algorithms/
AMA	advanced meal assist - algorithm to handle carbs via % TBR (loop not giving small boli) iOS Loop equivalent: "Temp.Basal Only Dosing Strategy"	TBR	Wiki - AMA https://loopkit.github.io/loopdocs/operation/algorithm/auto-adjust/#determine-the-temporary-basal-rate
Android Studio	(free) developer software needed to complete and maintain your personal copy of AAPS	Github for i-Phone loops: Xcode	https://androidaps.readthe docs.io/en/latest/Installing - AndroidAPS/troubleshootin g_androidstudio.html#trou bleshooting-android-studio
Anubis	DIY re-engineered transmitter for Dexcom G6 CGM; lasts unlimited (evtl. battery change); will not shut down sensor at 10.0 days (as factory transmitters do). For more info: "Followers of Anubis" Facebook group	G6 G6 x 2	https://docs.google.com/fo rms/d/e/1FAIpQLSdGtAmw qkBUaMVbBPENF_eRBSz7Z McCz- 3CjLxwc4TC6_RH5w/viewf orm
apk	software installation file (Android application package)	Github	Wiki - Building APK
APS	Artificial Pancreas System. Semi- automatic insulin delivery system that, coupled with a CGM, can regulate bg to target. Besides DIY systems (OpenAPS, iOS Loop, AAPS, iAPS and Trio) that pioneered this area, there is an increasing number of commercial systems now available	AAPS; Trio; iAPS; iOS Loop CGM	https://iaps.readthedocs.io/e n/latest/resources/alternativ e.html#comparison-table- of-automated-insulin- delivery-systems; https://github.com/danamle wis/artificialpancreasbook/
Artificial Pancreas System (APS)	a system which works to automatically keep blood sugar levels within healthy		https://androidaps.readthedocs.io/en/latest/introduction.html#what-is-an-

	limits: by detecting glucose levels , using these values to do calculations , and then delivering the (predicted) right amount of insulin to the body. It repeats the calculation, every few minutes, 24/7.		artificial-pancreas- system
autoISF	oref SMB+UAM, with very sharp adaptation of ISF to glucose "behavior" (acceleration, delta, level, stuck-at-high). Ideal for FCL but difficult to set up (initial "tuning"). Useful also in HCL (tuning then different) autoISF is available only in dev variants of 1. AAPS 2. iAPS 3. Trio	FCL	https://github.com/ga- zelle/autoISF/blob/A3.2.0.4 ai3.0.1/autoISF3.0.1 Quic k Guide.pdf 1. https://github.com/T-o-b- i-a-s/AndroidAPS/ 2.https://github.com/mountr cg/iAPS 3. https://github.com/mountrcg/Trio FCL-e-book
Auto(matic) Bolus	small bolus given by the loop: advanced feature for faster bg adjustment than via TBR —only (see AMA); given bolus size is limited to 40% of the calculated bolus (or to the set max.bolus, if smaller). Zero basal right after an automatic bolus is expected	oref = SMB	https://loopkit.github.io/loopdocs/operation/algorithm/auto-adjust/#deliver-automatic-bolus-with-scheduled-basal
Automation (Feature integrated in AAPS; other loops may need 3rd party software; or "middleware")	1. analyze patterns in YOUR data, (at times, geo-locations, or bg and iob patterns that point to a problem) where you want your loop act differently: carve out Conditions that describe the situations 2. Define Actions (loop settings for different aggressiveness) for x minutes Specifically in AAPS: User Action Automations enable -> DIY cockpit	Automated aggressive -ness modulatio n DIY cockpit middlewar e (iOS)	https://androidaps.readthed ocs.io/en/latest/Usage/Auto mation.html#automation https://androidaps.readthed ocs.io/en/latest/Usage/auto mationwithapp.html#autom ation-with-third-party- android-automate-app
Autosens	calculation of sensitivity to insulin as a result of exercise, hormones etc. in the past 8 – 24 hrs, and automatic % adjustment (within selected min and max borders) of basal, ISF and (if selected) bg targets. ((Note, if Autotune is also selected, the result from Autosens will be used to adjust the profile, rather than temp. moderating key profile parameters))	iob delta Autotune	DIABETTECH - Autosens https://openaps.readthedocs.i o/en/latest/docs/Customize- Iterate/autosens.html?highlig ht=Open- APS%20Autosens#notes- about-autosensitivity

	T	1	T
Autotune	Autotune can be used to get suggestions how to tune profile basal ; it gives also one 24h average IC and ISF suggestion. Controversial (see 3 rd link given)! Not for use with dynamicISF , autoISF .	Autosens	https://androidaps.readthedocs.io/e n/latest/Usage/autotune.html#how- to-use-autotune-plugin-dev-only https://iaps.readthedocs.io/en/main /settings/configuration/autotune.ht ml#autotune https://github.com/bernie4375/H CL-Meal-MgtISF-and-IC- settings/blob/HCLsettings-main- repo- (pdf)/Using%20Autotune V.1.pdf
average delta	see delta (long or short avg. delta bg)		
basal rate	the basal rate defined in the profile* (that you give to your loop to work with) is the amount of hourly insulin to maintain bg at a stable level, in absence of -> disturbances *note that basal might get auto-adjusted (e.g. by Autosens, or in an exercise mode).	IC / ISF profile disturb- ance	
bg	blood glucose: the tissue glucose that all CGMs measure reflects the blood glucose, with a couple of minutes of delay. (This, plus the minutes of spacing between CGM values, adds to the "sluggishness" of getting our bg regulated by the loop).	control (sluggish- ness) Libre 3	
bg_delta	see delta		
bg deviation	describes deviations when the observed changes in glucose do not quite match up with the expected change due to insulin effects alone -> absorbed_carbs = bgDEV * IC / ISF	called insulin counteractio n effect in iOS Loop	https://androidaps.readthed ocs.io/en/latest/Usage/COB -calculation.htm
bg source	the blood glucose source is the source where your bg values come from. They come from a CGM system which you wear through some kind of integration software like BYODA, xDrip+	CGM / FGM	Wiki - BG source
ВМІ	body mass index		https://www.diabettech.co m/artificial- pancreas/losing-while- looping-can-you-lose- weight-with-a-diyaps/
Bolus wizard	See Calculator		
Boost	dev variant of AAPS involving simple Meal Announcement (MA) that can be stretched into a FCL		Fcl-e-book 13.3.1; https://discord.gg/nYC4T9 PgCR
BYODA	Build Your Own Dexcom App - a special way to generate your own Dexcom App for reading out the transmitters and pass smoothened bg values on for looping (e.g. BYODA -> AAPS; or w/G6 also BYODA -> xDrip + -> AAPS)	xDrip+	Dexcom G6ONE G7 https://docs.google.com/forms/ d/e/1FAIpQLScD76G0Y- BIL4tZljaFkjlwuqhT83QlFM5 v6ZEfO7gCU98iJQ/viewform

	while retaining the option to use Clarity® (as your doc office may want you to use)		
Calculator	HCL systems (and pump therapy in general) come with bolus calculators for suggesting bolus size for meals based on: to-be-digested g of carbs (while bolus is very active; later carbs -> eCarbs!); IC; ISF (if bg not near target); iob.	IC pre-bolus	https://androidaps.readthed ocs.io/en/latest/Getting- Started/Screenshots.html#b olus-wizard https://loopkit.github.io/loo pdocs/operation/features/bo lus/#meal-bolus
calibration (of CGM)	if your symptoms disagree with what the CGM shows: test with your blood glucose meter; calibration is one (but not always the best) option then	CGM	https://navid200.github.io/x Drip/docs/Calibration.html
carb absorption	1) foods with slower absorption are easier to manage with insulin 2) 30 g/h seems a max (heavy eaters: do not bolus for more g than digested while your bolus goes strong!) 3) for oref systems, the lower border of plausibility is defined by the min5mCarbImpact 4) loops calculate delta cob from bg delta and iob delta (using IC (CIR) and ISF); more see at: dynamic carb absorption 5) note that drugs,eg.Ozempic® or comorbidities, e.g.gastroparesis have profound effects (inform yourself about implications re. carb absorpt. corridor).	cob; iob iob delta; dynamic carb abs. eCarbs; FPU; insulin kinetics	https://github.com/danamlewis/artificialpancreasbook/blob/master/8tips-and-tricks-for-real-life-with-an-aps.md#heres-the-detailed-explanation-of-what-we-learned https://loopkit.github.io/loopdocs/operation/features/carbs/#review-carb-absorption https://androidaps.readthedocs.io/en/latest/Usage/FullClosedLoop.html#meal-related-limitations
carb ratio	see IC factor (AAPS) or carb insulin ratio CIR (iOS Loop)for this	IC CIR	Carb ratio determpdf' in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings
CGM	continuous glucose monitor (Dexcom, Libre, and other systems)	bg source G7, 6; Libre 3	https://www.diabettech.co m/cgm/six-of-the-best- digging-further-into-the- statistics/
CIR (carb insulin ratio)	factor (g/U) describing how many grams of carb are covered by one unit of insulin	carb absorption <u>oref:</u> IC	https://loopkit.github.io/loop docs/operation/features/car bs/#review-carb-absorption
circadian (sensitivity, basal rate, ISF)	basal need, IC and ISF vary over 24 hours according to a "circadian" pattern of varying sensitivity to insulin. Improper profile settings will "use up and waste" some of the loop system's capability to correct for disturbances.	disturbanc e	Section 5. in "ISF determpdf": https://github.com/bernie43 75/HCL-Meal-MgtISF-and-IC-settings

			https://androidaps.readthed
Closed Loop	closed-loop systems make automatic adjustments to basal delivery (TBR), without needing user-approval, based on an algorithm ; some also can automatically bolus (SMB)	Open Loop	ocs.io/en/latest/Resources/c linician-guide-to- AndroidAPS.html#for- clinicians-a-general- introduction-and-guide-to- aaps;
			Wiki closed loop
clinician support of DIY systems	the references given demonstrate increasing consensus to support DIY solutions as suitable for their patients		https://androidaps.readthed ocs.io/en/latest/introduction .html#support-for-diy- looping-by-other-clinicians
cob (g)	carbs on board is the amount of carbohydrates currently available for digestion ("that still needs iob ").	carb absorption;	https://androidaps.readthedocs .io/en/latest/Usage/COB- calculation.html#how-does- aaps-calculate-the-cob-value https://loopkit.github.io/loop docs/operation/features/car bs/#review-carb-absorption
connectivity	numerous options for Bluetooth or WLAN connected devices. Additional open-source software and platforms (which are not shown in reference, e.g. Automate!, or Android Auto) can also be integrated.		https://androidaps.readthed ocs.io/en/latest/introduction .html#what-is-the- connectivity-of-the-aaps- system
control of bg (sluggishness)	balancing carb absorption with insulin activity is a very difficult "sluggish" control problem - very much like boating. See slides 11-19 in "Meal Mgtpdf".	carb absorption; insulin kinetics;	"Meal Mgt. 1 -4pdf" in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings
delivery ratio	portion of insulin required that gets delivered by the loop via SMB or TBR; fixed at 50% in AAPS Master. Note that going towards 100% would be very unsafe at CGM jumps! It is better to wait another 5 minutes to confirm the bg trend, for getting again 50% of what <i>then</i> is required (=of what was held back, plus of "newly developed need")	insulin required SMB	https://androidaps.readthed ocs.io/en/latest/Usage/Full ClosedLoop.html#enabling- boosted-smbs-safety FCL-e-book_section 2.3
delta All 3 delta categories show in the top section of the AAPS main screen	delta bg =d5=in past 5 minutes: important anchor point for loop calculations (see e.g in SMB tab of AAPS) = bg(0m)-bg(-5m) short avg delta= d15=avg. of last 3 deltas = (bg(0m)-bg(-15m))/3 long avg.delta=d45 is the average delta between 15 and 45 minutes back	iob delta	
	= (bg(-15m) - bg(-45m))/6		
dev	dev version of Master =software in pre- Master-release testing,	autoISF;	
	,	Boost;	

	dev variants have different, often extra, features to Master = still in development, insufficiently tested for broader release	and many others	
Dexcom	CGM, see G7, G6		
DIA (hours)	duration of insulin action	insulin kinetics	Wiki insulin types DIABETTECH - DIA Insulin_DIApdf' in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings
disturbance	Factors like meals and exercise (and ~40 others) disturb the smooth operation that would be possible with a well set basal profile. The set ISF , or a temp. activated exercise mode may enable the loop to automatically manage the disturbance. In other cases, a %profile switch or other measures may be needed.	ISF; exercise mode; %profile switch	https://diatribe.org/poster- now-available-42-factors- affect-blood-glucose FCL-e-book, section 5.2
DIY cockpit	term used for * having all buttons to "tweak" loop aggressiveness on the main screen of the closed loop phone * using tools like "user action Automations" in AAPS to construct extra buttons for this purpose These can be programmed to show only in pre-defined times, or geo-locations		FCL-e-book, section 5.2.2
Dual Hormone Loop	"Double closed loop" featuring insulin AND glucagon (in development): the glucagon component not only helps stay out of hypos. It enables a more aggressive treatment for preventing, or reducing, high glucose values, as well		FCL-e-book 13.6
dynamic carb absorption	every 5 minutes, loops figure out carb absorption from bg delta , insulin activity consumed, and other data, and make predictions used in their dosing decision: 1) oref loops (AAPS , Trio , and iAPS) can work entirely without carb inputs at meals ("UAM", "FCL") 2) iOS Loop makes strong use of the user's carb inputs	UAM FCL	Section 1.2 in: https://github.com/bernie4375/ HCL-Meal-MgtISF-and-IC- settings/blob/HCLsettings- main-repo- (pdf)/IC% 20(carb% 20ratio)_V .3.1.pdf 1) https://androidaps.readthedocs. io/en/latest/Usaqe/COB- calculation.html 2) https://loopkit.github.io/loopdoc s/operation/algorithm/prediction / and https://loopkit.github.io/loopdoc s/operation/algorithm/prediction /#carbohydrate-effect
dynamic carb ratio	automatic adaptation of IC to bg level and to past day(s) TDD (not useful in advanced oref looping/FCL)	Trio, iAPS	https://discord.gg/gGKXW 5uX3m

dynamicISF	automatic adaptation of ISF to bg level and to past day(s) TDD; tuneable. several refined versions, e.g. using bg AND predicted bg; pegging in some form to profileISF (Caution: Can make life easier but can be inferior to using a well tuned profile ISF + being proactive with manual or automated %profile switches)	sigmoid	https://androidaps.readthed ocs.io/en/latest/Usage/Dyna micISF.html#dynamicisf- dynisf
dynamic iobTH	iob threshold above which no more SMBs are given varies with the set exercise target (feature of exercise mode in autoISF)	iobTH exercise	FCL-e-book section 6.1.3
dynamic bg target	your loop probably allows you to generally select "sensitivity raises bg target" and "resistance lowers bg target". (Caution: Can lead to rollercoasters, especially if your carb settings and daily inputs are not spot-on (=> skewed Autosens!))		
EatingSoon TT (mg/dl) or (mmol/L)	Concept going back to looping pioneer Dana Lewis: to set a very low temp. bg target ~ 1 h before meals, so the loop gets a low bg starting point, and also some pos. iob at meal start	pre-bolus	https://github.com/danamle wis/artificialpancreasbook/ blob/master/8tips-and- tricks-for-real-life-with-an- aps.md#how-to-do-eating- soon-mode
EatingNow	dev variant of AAPS involving simple Meal Announcement (MA) that might be stretched into a FCL		FCL-e-book 13.3.3; https://discord.gg/XqhnPR ChEP
eCarbs	"extended carbs" – Carb inputs split up over several hours; consider also effects from fat/protein (FPU) here. extended boluses you might know from regular pump therapy do not make much sense when looping; when your given bolus fades out, the loop takes increasingly over w/ SMBs or high %TBR	FPU SMB Calculator	https://androidaps.readthed ocs.io/en/latest/Usage/Exte nded-Carbs.html#what-are- ecarbs-and-when-are-they- useful eCarbs use case
Emulator	program to analyze AAPS logfiles , including what-if analysis Note: iAPS has some on-bord analytic capabilities	log files	https://github.com/autoisf/ what-if
exercise mode	a loop mode which limits how high iob will/can go, via any combination of: raising glucose target , lowering profile basal , elevating ISF , limiting iob .	TT %profile switch; dynamic iobTH	https://loopkit.github.io/loopdocs/operation/features/overrides/?h=exercise#create-an-override-preset https://androidaps.readthedocs.io/en/latest/Usage/making-sport-with-AAPS.html#cycling

			,,,,,
			https://diyps.org//how-to- exercise-when-exercise-is
			FCL-e-book, section 6
extended bolus	frequently desired by looping beginners "to fight high bg", this contradicts the very idea of looping: the algo must receive the inputs to manage bg (tuning). Boli (also the initial meal bolus in HCL) disturb the workings of the loop (that shuts off for a while via zero-temping)	eCarbs	https://androidaps.readthed ocs.io/en/latest/Usage/Exte nded-Carbs.html#extended- bolus-and-why-they-won-t- work-in-closed-loop- environment
FCL-e-book	Series of pdfs about FCL , with case studies (autoISF focused, but all other methods are presented and referenced)	FCL	https://github.com/bernie43 75/FCL-potential-autoISF- research-
FPU (g)	Fat-Protein-Units, converted into g carb equivalent Rather than worrying too much about conversion factors for FPUs (controversy see slide 30 in 2nd link ->) oref loopers should rather see to it that their loop can deal well with temporary (!) insulin resistance from fatty acid receptor blockages (3rd link) Note that autoISF has the "dura_ISF" component to deal with plateaus of high bg.	eCarbs	https://iaps.readthedocs.io/e n/latest/settings/services/fat protein.html#fat-and- protein-conversion; p. 3 in: "Meal Mgt. 3 .pdf" in:https://github.com/bernie 4375/HCL-Meal-MgtISF- and-IC-settings https://androidaps.readthed ocs.io/en/latest/Usage/Full ClosedLoop.html#stagnatio n-at-high-bg-values
FCL: Full Closed Loop	Mode of closed looping without the user giving any boli, and without carb inputs. Depending on lifestyle and %TIR expectation, can run fully hands-off, or require a few button pushes at special disturbances, like heavier exercise. Setting up (personalized tuning) is difficult!	Hybrid Closed Loop (HCL) UAM	https://androidaps.readthed ocs.io/en/latest/Usage/Full ClosedLoop.html; FCL-e-book see: https://github.com/bernie43 75/FCL-potential-autoISF- research-
G7, G6, ONE, G5	abbreviation for Dexcom sensor/transmitter CGM systems	BYODA	Wiki - BG source
G6 x 2 (overlapping)	method to get un-interrupted CGM values	Anubis; xDrip Variant	FCL-e-book: Case study 1.5
git	git in our context here is the tool to mainly download the AAPS sources from Github for the build process. It's version-control system for tracking changes in computer files and coordinating work on those files especially for teams. -> necessary for apk updates		Wiki - update APK
GitHub	web-based hosting service for version control using git -> storage of source code to build apk , and of related documentation	1.Android Studio; 2/3.Xcode	1. GitHub AndroidAPS; 2a.https://github.com/nightscout/Trio

glucagon	for: 1) AAPS 2a) Trio 2b) iAPS 3) iOS Loop Note: Special dev variants are on other Github pages, see e.g. @ autoISF as experimental (!!) adjunct for improved glucose control Discord group "insulin-plus-glucagon": https://discord.gg/eHSgx5jWuk		2b.Github_build_iAPS.yml 3.https://loopkit.github.io/loopdocs/gh-actions/gh-first-time/ https://www.diabettech.com/glucagon/glucagon-me-n1-experiments-with-microbolusing-glucagon-part-2-quantifying-use/
glucose momentum	term used for predictions in iOS Loop; assumes that the bg effects seen in the last three five-minute segments are likely to continue for a short period of time	iOS Loop	
glucose target	corrections by the loop aim at the bg target value (set in the profile* for each hour of the day); depending on nature of disturbances, and properly set ISF, that value should be gradually reached over the course of 2-4 hours; *note that targets might get auto-adjusted (e.g. by Autosens, or in an exercise mode).	TT	
half-basal exercise target	at <i>elevated</i> temp. glucose targets (as for exercise), loop aggressiveness (profile basal, ISF used) gets reduced. Effect is the stronger the lower this parameter is set (in AAPS/Preferences default is 160 mg/dl*), and the higher the TT; in case you switch "low_TT_reduces_ sensitivity" ON in /Preferences, the parameter can *) also be used for <i>increasing</i> the loop aggressiveness!	* AAPS x autoISF; might differ or be non- existent in other loops	Details see on Exercise Mode page of the autoISF Quick guide: https://github.com/ga-zelle/autoISF/blob/A3.2.0.4 ai 3.0.1/autoISF3.0.1 Quick Guide.pdf
HCL: Hybrid Closed Loop	the usual mode of looping, with the user initiating a meal bolus (and making other frequent inputs, notably re. carbs). This is really a compromise owed to slow insulins in-capable of dealing with rapid carb absorption	calculator; extended bolus; FCL	https://androidaps.readthed ocs.io/en/latest/introduction .html#what-does-hybrid- closed-loop-mean
iAPS	oref loop (like AAPS, but) for i-phone Caution: iAPS is a "alpha" early dev variant with little testing and incomplete docu (and not fully Open Source). Weekly stream of new features and bugfixes, but not safe unless you constantly stay informed in Discord Source code (apk): see Github A safer route is to use Trio (Master expected to launch inQ3/2024) Requires Apple developer licence (\$ 100/year), and Xcode.	Github Trio AAPS Xcode	https://discord.gg/JVXw G7gS https://www.facebook.c om/groups/1351938092 206709 https://iaps.readthedocs.i o/en/latest/;

IC (carb ratio) (g/U)	factor (g/U) describing how many grams of carb are covered by one unit of insulin	iOS Loop: CIR	IC determpdf' in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings
ICE (insulin counteraction effects)	example: user enters 72g carbs w/ 4 h absorption => Loop adds 50% time, and assumes a min. absorption rate MAR of 12g/hr for 6 hrsThis linear model is modulated using recently observed glucose data to estimate how fast carbohydrates have been absorbing. The expected change in glucose due to insulin effects alone is compared to the actual observed changes in glucose. This difference is termed the insulin counteraction effect (ICE):		
individualized tuning	DIY loops are not self-learning but require "tuning" to find proper individual settings, 1) for Meal Management HCL: AAPS Objectives; meal management FCL: dial in your settings (incl. Automations) so the loop is enabled to mimick your successful HCL Meal Management (notably, similar insulin activity curve, going up a bit later, but very steep) 2) finding individual temporary settings to adapt loop aggressiveness for other disturbances e.g. exercise Note 1: Tuning must follow a certain sequence (to avoid instability from counter-balanced multiple errors). Resist the temptation to just play around on the many "buttons" offered! Note 2: Learn not to interfere, make your loop – over time – fit to manage automatically	Object- ives; Meal manage- ment; FCL tuning	HCL guidance in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings FCL-e-book in: https://github.com/bernie43 75/FCL-potential-autoISF- research- other disturbances (than meals, see "42 factorspdf"@HCL guidance), see e.g. sections 5 and 6 in FCL-e- book: https://github.com/bernie43 75/FCL-potential-autoISF- research-
insulin activity (U/5 min)	part of iob that will become active in the upcoming 5 minutes (above profile basal supply => figure can be negative also)	insulin kinetics: blue curve	
insulin counteraction effect (ICE)	ICE describes deviations when the observed changes in glucose do not quite match up with the expected change due to insulin effects alone -> absorbed_carbs = ICE * CIR / ISF	iOS Loop bg deviation	
insulin kinetics	AAPS insulin tab shows two curves: The <u>pink curve</u> starts at 1.0 (100%) and goes down to 0 (0%) when the DIA is over. It shows iob left, at any time. The	control of bg (slug- gishness)	"Insulin_DIApdf" in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings

<u> </u>	T .	1	
	blue curve shows how the activity goes: Practically nothing (!) for a bunch of minutes, then rapidly going high, and then slowly fading out out over the DIA period (with a maximum at time-to-peak). For its calculations, AAPS adds these blue curves up for all boli, SMBs and TBRs profile basal -> thin yellow "activity" curve you can see in your AAPS glucose screen!		"The artificial pancreaspdf" in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings/blob/FCL- w/autoISF/The%20Artificia 1%20Pancreas%20and%20 Meal%20Control.pdf https://loopkit.github.io/loop docs/operation/algorithm/pre diction/#insulin-effect
insulin required (U)	key parameter in the oref loop algo: from how bg, iob and cob resp. carb deviations develop (-> predictions), need for more insulin is calculated equivalent (but determined differently) in iOS Loop: -> recommended dose	SMB predictions delivery rate	https://openaps.readthedocs .io/en/latest/docs/While%2 0You%20Wait%20For%20 Gear/Understand- determine- basal.html?highlight=insuli n%20required#blending- relevant-predictions
integral correction effect	via selecting the IRC setting for "IntegralCorrection", iOS Loop uses "learning" from historical prediction problems (deviations) when making glucose predictions	iOS Loop	https://loopkit.github.io/loopdocs/operation/algorithm/prediction/#integral-retrospective-correction-effect
iob (U)	insulin on board; units of insulin (above basal need) <u>currently available to become</u> (within the remainder of its DIA) active in your body (to deal with un-absorbed carbs, or with other disturbances)	insulin activity DIA	https://androidaps.readthed ocs.io/en/latest/Getting- Started/Screenshots.html#s ection-d-iob-cob-br-and-as
iob delta (U)	insulin consumed = (1) delta bg / ISF = used for bg correction (2) the rest of the delta iob, multiplied with IC, is the grams of carbs absorbed. (3) if (2) results in implausible carb absorption, then IC and ISF are adapted "to force a plausible fit"; and the adapted insulin sensitivity is then reflected in Autosens ≠ 100%	carb abs. 2), 3) min5m_ca rb.impact	
iobTH (U) or iobTH% (% of maxIOB)	iob threshold (set below maxIOB); at iob > iobTH, the loop will give no more boli (SMB) but only TBR	iob; maxIOB; SMB	https://androidaps.readthed ocs.io/de/latest/Usage/Full ClosedLoop.html#iob- threshold
iOS Loop	easy DIY loop to set up on i-phone; iOS Loop uses a model predictive control (MPC) algorithm to maintain glucose in a correction range by predicting the contributions from four individual effects (insulin, carbohydrates, retrospective correction, and glucose momentum). algorithm requires precise carb inputs at all meals (no UAM or FCL);	i-phone loops with different algorithm (as in AAPS) =>: Trio; or iAPS	https://loopkit.github.io/loopdocs/ https://www.loopandlearn.org/starting-loop/ https://loopkit.github.io/loopdocs/faqs/algorithm-faqs/#more-algorithm-information

	very limited choices of pumps		https://loopkit.github.io/loop docs/operation/algorithm/ove rview/#algorithm-terminology
IRC	see integral correction	iOS Loop	
ISF (mg/dl)/U or (mmol/L)/U	insulin sensitivity factor = the expected decrease in bg as a result of one unit of insulin; most important parameter in oref loops	IC	ISF determpdf" in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings
LGS	Low Glucose Suspend AAPS will reduce basal if bg is dropping. But if bg is rising then it will only increase basal if the iob is negative (from a previous LGS), otherwise basal rates will remain the same as your selected profile. You may temporarily experience spikes following treated hypos without the ability to increase basal on the rebound.	objective 6	https://wiki.aaps.app/en/lat est/Usage/completing-the- objectives.html#objective- 6-starting-to-close-the- loop-with-low-glucose- suspend
Libre 3	CGM; also Libre2 (alternatives to Dexcom CGMs)	CGM bg	https://www.diabettech.co m/cgm/battle-royale- freestyle-libre-3-and- dexcom-g7-face-off-the- results/;
Libre 3 1 minute	First option to run a 1-minute CGM - bg; which could bridge a few minutes of "sluggish" delay in looping. control This is particularly of interest in nobolussing FCL (see 2 nd reference ->).		https://github.com/Nightsc o/xDrip/releases/tag/202 3.02.15 https://github.com/ga- zelle/autoISF
log files	record of all AAPS actions (useful for troubleshooting and debugging)		Wiki - log files
Loopo Caregiver App		AAPS Client	https://loopkit.github.io/loopdocs/nightscout/loopcaregiver/
low glucose suspend	see LGS	LGS	
MA	see: Meal Announcement		
MAR (minimum absorption rate)	example: user enters 72g carbs w/ 4 h absorption => <u>iOS Loop</u> adds 50% time, and assumes a min. absorption rate (MAR) of 12g/hr for 6 hrs.	oref: see min_5m_ca rb-impact	
Master	Master is the latest official release, the software that should be used. Note that it is advisable to tune profile in Master before adding more features.	dev; vanilla	
maxIOB	safety feature: maximum total iob the loop can't go over. (can be limited by set patient type!)		https://androidaps.readthed ocs.io/en/latest/Usage/Open -APS- features.html#maximum-

			total-iob-openaps-cant-go- over-openaps-max-iob
MDI	mulitple daily injections: option to manage your t1d with an insulin pen (and bg measurements or CGM). An option you should resort to in case components of your loop system are unreliable (pump, occlusion , erratic CGM, instable Bluetooth)		https://androidaps.readthed ocs.io/en/latest/introduction .html#how-does-aaps- compare-to-mdi-and-open- looping
Meal Announcement (MA)	MA is a closed looping mode between HCL and FCL: In contrast to HCL, no carbs are counted with an attempt to give a suitable meal bolus. But in contrast to FCL, some form of meal announcement must be made, usually by giving a small pre-bolus.		
Meal Management	Juggling (for every meal!) the differing carb and insulin absorption characteristics, so bg stays in range, is a tough, if at all possible, mission. Big effort should go into individualized tuning of the loop system, and into defining bolus strategies	EatingSoo nTT; pre-bolus	"Meal Mgt.1-4.pdf" and "IC determpdf"in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings
middleware	custom algorithm add-ons (notably in iAPS that does <u>not</u> have the Automation feature of AAPS)	Automatio ns	https://github.com/macconnellk/RoboSurfer/tree/main Middleware code for iAPS https://discord.gg/3JWQRzfyB2
min_5m_carb impact	safety feature (oref): default carb decay at times when dynamic carb absorption does not reasonably work out based on your bg reactions	carb absorption <u>iOS Loop:</u> <u>see</u> MAR	"min5m_CIxls" in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings Wiki - config builder
minimum carb absorption rate	<u>see for oref:</u> min_5m_carb-impact <u>see for iOS Loop</u> : MAR		
negative iob	iob is defined as insulin on bord above (profile) basal need. Negative iob can occur (and can self-resolve, too). Too high set profile basal can be behind neg.iob. Likewise, if you forget to keep temp.% profile reduced after a day of exercise, your profile basal will be temporarily too high, and neg.iob would be reported. Tipp: For easy spotting of neg.iob phases you can use an extra graph on the bottom of your AAPS main screen; define IOB (not ABS!) as the first parameter		
Nightscout (NS)	open source project to access and report CGM and related data. Convenient	Nightscout Reporter	Nightscout

	options (10be, NS pro) that host your large amount of data come with monthly cost Except for a brief initial period, it is not required that AAPS loopers are using NS.		Hosted services: https://nightscout.github.io/#nigh tscout-as-a-service
Nightscout Reporter	free tool provided by a fellow looper to generate great PDF reports from your Nightscout data, e.g. for meetings with your diabetes team.	Nightscout	Nightscout Reporter NS Reporter @ Facebook
NS Client	part of AAPS to connect to your Nightscout site; important also for remote monitoring and control (parent/kid)	remote control	Wiki - NS Client
Objectives	learning program within AAPS guiding you step by step from open to closed loop		Wiki - objectives
occlusion	insulin the pump releases is not fully delivered in the body => persistent very high bg despite (fake) high iob – dangerous, must be avoided! ((Often occlusions are only partial, and then dynamicISF might help a bit. But try to avoid!))		""Occlusionpdf" in: https://github.com/bernie43 75/HCL-Meal-MgtISF- and-IC-settings
OpenAPS	open artificial pancreas system: runs on small computers (i.e. Raspberry Pi) AAPS and iAPS use many of the OpenAPS features		OpenAPS docs
Open Loop	system will only <u>suggest</u> adjustments which have to be confirmed manually in the application	Closed Loop	Wiki - config builder https://loopkit.github.io/loop docs/operation/loop/open- loop/
Open Source	philosophy to openly share product (especially, software) development without profit orientation, and not operating in narrow frameworks like mandated by e.g. regulations on medical products, (Alternatively, the prefix "DIY" is often used)	Github clinician support	
oref	the key algorithm behind OpenAPS, AAPS and iAPS. In SMB+UAM setting it enables looping without any carb inputs	dynamic carb absorption iOS Loop;	Wiki - sensitivity detection https://openaps.readthedocs.io/ en/latest/docs/While%20You %20Wait%20For%20Gear/Un derstand-determine- basal.html#understanding-the- basic-logic-written-version
override	see aggressiveness of the loop <u>equivalent in oref:</u> -> profile switch		https://loopkit.github.io/loopdo cs/operation/features/over- rides/?h=override https://loopkit.github.io/loopdo cs/operation/features/overrides /?h=exercise#create-an- override-preset

parabola fit	mathematical method used in autoISF for 1) improved smoothing and predicting of bg 2) early detection of -> acceleration	autoISF acceleration smoothing	See last page before attachments in https://github.com/ga-zelle/APS-what-if/blob/A3.2.0.4_ai3.0.1/Documentation%20in%20English/DRAFT%20-%20Guide%20to%20VDF%20Files%20for%20the%20AAPS%20Emulator.pdf
peak time or time-to-peak (minutes)	time to maximum effect of insulin given: shorter is better for looping, but also exposes bad tuning and can be unsafe (hypos!) for looping beginners	insulin kinetics	Wiki - config builder Insulin_DIApdf' in: https://github.com/bernie4375/ HCL-Meal-MgtISF-and-IC- settings
pre-bolus	any meal containing rapid carbs will push bg high faster than insulin could become strongly active (nearing peak-time) to control this. Hence giving your meal bolus a number of minutes <i>before</i> meal start can be a good idea.	Meal Mgt. Calculator Eating SoonTT	"Meal Management 2 .pdf' in: https://github.com/bernie4375/ HCL-Meal-MgtISF-and-IC- settings https://loopkit.github.io/loop docs/operation/features/carb s/#time
predictions	loops look into predictions (bg in the future), not just on present bg, for their decisions 1).In oref systems, this is based on several different calculations; eventualBG uses traditional bolus calculator math. IOBpredBGs predicts only an eventual BG value, once all insulin activity takes effect. ZTpredBGs what will happen in the "worst likely case," if observed carb absorption suddenly ceases, and a zero-temp is applied until BG begins rising at/above target. COBpredBGs is calculated based on observed deviations since carb entry, assuming that carbs would continue to be digested/absorbed at a configurable minimum rate. UAMpredBGs Once deviations have peaked, UAM calculations assume that the deviations will continue decreasing at that same rate until they reach zero. If they're decreasing, but too slowly, it assumes	insulinReq u.	1).For AAPS see Wiki - prediction lines https://openaps.readthedocs .io/en/latest/docs/While%2 0You%20Wait%20For%20 Gear/Understand- determine- basal.html#understanding- the-purple-prediction-lines 2) for iOS Loop's (one) prediction see: https://loopkit.github.io/loo pdocs/operation/algorithm/ prediction/#glucose- prediction

	they'll decrease linearly to zero over 3		
	hours		
	2).for iOS Loop, see @ retrospective correction, and @ iOS Loop		
profile	basic treatment settings (basal rate, DIA, IC, ISF, bg target) AAPS v3 only supports local profiles but Nightscout profiles can be copied (synchronized) to AAPS *note that some profile settings might get temporarily auto-adjusted (e.g. by Autosens, or in an exercise mode).		Wiki - profile
profile switch (% other than 100)	temporary (= assigned with a duration) change of profile used reflecting percentual increase/decrease of insulin sensitivity (e.g. <<100% in an exercise context) aggress ness of loop		https://androidaps.readthed ocs.io/en/latest/Usage/Profi les.html#profile-switch
	equivalent in iOS Loop: -> override		https://loombit.githyb.io/loomdo
recommended dose	with each cycle, <u>iOS Loop</u> generates a glucose prediction and a recommended dose (positive or negative) to bring you to your correction range <u>equivalent (but determined differently) in oref</u> <u>loops:</u> -> insulin required		https://loopkit.github.io/loopdo cs/faqs/safety- faqs/?h=dosing#understand- delivery-limits https://loopkit.github.io/loopdo cs/operation/algorithm/auto- adjust/#calculated-dose
remote control	DIY looping systems come with options for parents/caregivers to remotely control their young kids' loops, e.g. via secure SMS commands or NS Client	NS Client AAPS Client Loop Caregiver	https://androidaps.readthedocs. io/en/latest/introduction.html#r emote-control https://loopkit.github.io/loop docs/nightscout/remote- overview/
retrospective correction effect	Going forward in 5 minute steps, the loop keeps observing deviations between predicted and actually seen glucose values, and translates this into a so-called Retrospective Correction Effect . Assuming these effects (from different temp.insulin sensitivity than suggested by the factors, or from wrong carb inputs) will continue for some short time, the loop can improve its prediction where bg is headed, and whether insulin other-than-profile basal need is required.	iOS Loop	https://loopkit.github.io/loopdocs/operation/algorithm/prediction/#retrospective-correction-effect
resistance	above-normal insulin need, e.g. reduced sensitivity to insulin after a fatty meal	FPU sensitivity	
roller coaster	term to describe bg curves that go steep down, then up, then down again	ISF;	

	often a result of too aggressive ISF ; dynamic settings (ISF, bg target etc) can also increase the tendency towards r.c.	dynamic ISF, bg	
sensitivity	below-normal insulin need, e.g. after exercise that makes you temp. more insulin sensitive	exercise resistance	
sensitivity adaptation	Rather than invariably using average sensitivity data as set in the profile, loops may be capable of: 1) ->sensitivity detection -> Autosens 2) inferring sensitivity change based on bg or TDD -> dynamic ISF 3) inferring sensitivity from bg curve characteristics (-> autoISF)		
sensivity detection	calculation of sensitivity to insulin (based on deviations that cannot be "explained" by carb absorption) as a result of exercise, hormones etc.	Autosens	DIABETTECH - Autosens
sensor noise	unstable CGM readings leading to "jumping" values	CGM smoothing	Wiki - sensor noise
sigmoid	uses profile ISF and adjusts it "in S-curve shape" with glucose level above target, and TDD . Can turn out more aggressive than standard dynamicISF if Autosens min/max is set wide open => not recommended for iAPS beginners	dynamic ISF	https://www.desmos.com/c alculator/s9jxdmqhh8
SMB	small bolus given by the loop (advanced feature for faster bg adjustment vs TBR); max size restricted via setting minutes of profile basal (30 120). Note that small size is a precaution for beginners against wrong ISF or bad CGM. Try to "open up" when tuning. SMBs try to give 50% of -> insulin_requ. (see also -> (SMB) delivery ratio). Zero basal right after a SMB is expected.	TBR iOS Loop = Auto()Bol us UAM iobTH	Wiki - SMB Wiki - AMA to SMB
SMB delivery ratio	defines which % (default 50 or 60%) of the calculated insulinRequ . shall be given now vs. waiting 5 more minutes, (and then again same % of what then is open, which includes the portion that had to wait). Caution: Using >75% not recommended as it does not provide room for CGM jitter, and reduces flexibility around SMB/TBR sizing to pull back on insulin delivery when required.		FCL-e-book section 2.3
SMB range extention	Bolus sizes the loop can give are severely restricted in HCL (usually to max 2x hourly basal). This factor multiplies to magnify "allowed" SMB size in FCL .		FCL-e-book section 2.1

tuning	see: individualized tuning		
TT (or target) even / odd	some looping softwares offer to set different behaviors (SMBs allowed /blocked), with setting even/odd numbered TT (or also profile target)	SMB	
TT (mg/dl) or (mmol/L)	temporary target: temporary increase /decrease of bg target (range) e.g. for exercise, or for "eating soon" => for the loop to deliver a bit less / a bit more insulin by "shooting for" different targets. Some loops offer an option to boost this further, see under "half-basal."	half-basal exercise target	Wiki - temp targets
Tsunami	dev variant of AAPS involving simple Meal Announcement (MA) that might be		FCL-e-book 13.3.4; https://discord.gg/veRKcgw
Trio	oref loop like AAPS but for i-phone -> Trio (or iAPS). Source code (apk): see Github Building requires Apple developer licence (\$ 100/year), and Xcode.	Xcode iAPS AAPS	0.0.1 documentation 8 https://discord.gg/Rr37a AzWz9 https://www.facebook.c om/groups/diytrio
TIR (%)	10 mmol/L) range.	Github	What is Trio? — Trio
TID (0/)	noticeable false high TDD values! % of time bg is in a 70 – 180 mg/dl (3.9 –	occlusion	
TDD (U)	total daily insulin dose (bolus + basal per day) Note that occlusions can produce very	dynamic ISF;	
TBR (% of profile basal)	temporary basal rate (given as % of profile basal). Note that <i>elevated</i> TBRs regulate bg far slower <i>down</i> than SMB s.	SMB	https://loopkit.github.io/loo pdocs/operation/algorithm/ auto-adjust/#determine-the- temporary-basal-rate
source code	describes how the loop works in all details DIY loops are Open Source = free access on Github = anyone can read, use and branch out/change code (-> dev variants)	apk Github	
	Smoother is safer (may be needed), but it slows the loop's treatment of bg rises		or-not-back-smoothing-is- that-the-question/
smoothing	CGM systems deliver raw bg values that can be too "jumpy" to use. The loop system and/or intermediate app that captures the transmitter signals (1) offer options to smooth the values into a "realistic" bg curve and (2) might (!) contain internal plausibility checks.	CGM parabola fit	https://androidaps.readthed ocs.io/en/latest/Usage/Smo othing-Blood-Glucose- Data.html#smoothing- blood-glucose-data https://www.diabettech.co m/cgm/back-smoothing-

		Т	
UAM	Un-Announced Meals - Detection of significant increase in bg levels due to meals (but also adrenaline or other influences), and attempt to adjust this with SMBs. Carb inputs are optional.		Wiki - SMB Why no carb inputs needed see section 1.2.2 in "IC (carb ratio)pdf" in: https://github.com/bernie43 75/HCL-Meal-MgtISF-and-IC-settings
UTZ, CET	time zones: The AAPS loop data are generally recorded in UTZ time (universal Greenwich time). Your AAPS screen will show your Smartphone time zone, like central European daylight saving time (CET DST).	recorded in UTZ time (universal logfiles). Your AAPS screen will Smartphone time zone, like ropean daylight saving time	
vanilla	term often used for Master version. Advice is not to make use of extras ("bells and whistles") before the basics are tuned in right. Reason: Errors can be balanced with countererrors => instable system)	Master	
virtual pump	option to try loop functions without a pump connected (manual enacting suggestions)	Open Loop	
_weight (-) e.g. bgAccel_ISF_w eight	tuning factors used in autoISF to adapt ISF according to developing glucose curve	autoISF	FCL-e-book, section 4
wiki	readthedocs (docus, one for each DIY app of your looping system)		
Xcode	developer software (free, but \$ 100/y developer licence) needed to complete and maintain your personal copy of iAPS (or iOS Loop)	for AAPS: Android Studio	https://loopkit.github.io/loo pdocs/gh-actions/gh-first- time/
xDrip+	open source software to read CGM transmitters and pass (if desired, smoothened) values on for looping	BYODA	https://navid200.github.io/x Drip/docs/FAQ page.html https://jamorham.github.io/ #xdrip-plus https://navid200.github.io/x Drip/docs/Installation_page .html
xDrip Variant	Enables up to 4 parallel xDrip instances on smartphone	G6 x 2 (overlappi ng)	https://navid200.github.io/x Drip/docs/Variants.html FCL-e-book: Case studies 1.5 and 5.3
zero-temp(ing)	temporary basal rate with 0% (no basal insulin delivery); often seen after a bolus was given: Moving some basal (from baseline need, as defined in profile) <i>into the bolus or SMB</i> provides for fastest correction; in turn, basal supply is reduced until safe to continue		