Appendix A: Scientific Writing

Writing a Thesis or a Technical Report

The process of a refereed scientific publication

A. Scientific Writing

Overview

A.1 The Purpose of Writing

A.2 Developing Ideas

A.3 Structure

A.4 Writing

A.5 Reviewing Your Work

A.6 Summary

Scientific Writing has Many Goals:

- obtaining a degree (Bachelor, Master, Ph.D.)
- project documentation
- > job requirements: "publish or perish" (your salary depends on)
- academic career (your reputation in a scientific community)
- just for fun (want to attend this conference on Hawaii)

Know Your Audience:

- Whom are you writing for?
- How and what to write?
- Know the process!

Process for a Thesis

- exposee (title, name, short intro, problem/topic, approach/tools, expected results, references, time table, all in 3pp.)
- application / registration (find two supervisors)
- bi-weekly meeting with supervisor(s)
 - > research
 - > development
 - evaluation
 - writing
- > file your thesis on time (2-3 copies on paper + CD + statement)
- colloquium (presentation)
- grading (how much does your grade count?)

Process for a Scientific Publication

- submission according to call for papers (CFP)
- evaluation by 2-5 reviewers
- recommendation (referee / program committee)
- decision notification (conference chair / journal editor)
 - > accept
 - > reject
 - > revision
- camera-ready submission (if accepted)

Types of Scientific Work

- technical reports (just documentation)
- theses (partial degree fulfilment, including defense)
- conference papers (4-10pp, fixed deadline, small contribution, short reviewing cycle, travel + presentation)
- → journal papers (8-30pp, solid technical contribution, multiple reviewing cycles, deadline only for special issues)
- books / book chapters

Not Scientific Work

- blogs
- manuals / online-tutorials
- web pages

Reasons for Rejection / for Bad Grades

- deadline missed (avoid at any cost!)
- no technical contribution
- not appropriate for audience / for purpose
- lacking structure
- technical errors
- bad writing
- submission requirements not met (too long / short, etc.)
- other papers/theses are (much) better

How to Find a Topic

- come up with something fancy (really crazy ideas often lead to amazing results and great scientific discoveries)
- study related work (Is your idea new? Can use related work?)
- run experiments / analyze (Avoid risks before you start!)
- how can you sell it?

Also Worth Trying

- does your company have open research problems
- ask colleagues / profs
- web search within your area of interest
- brain storming (team work)

Scientific Contribution

- What is the main contribution?
 - > a novel algorithm / method
 - > a new way of looking at things
 - survey / comparison of existing methods
- How does it compare to related work?
 - > efficiency, robustness, quality
 - possibilities and limitations
- What are the expected outcomes?

Before You Start Writing

- produce a proof of concept / numerical examples
- produce images
- outline structure of thesis/paper
 - > name sections
 - > itemize content
 - ➤ add hand-drawn figures
- be aware of tools (LaTeX, style documents, etc.) http://www.maths.tcd.ie/~dwilkins/LaTeXPrimer http://nwalsh.com/tex/texhelp/ltx-2.html Aulis: MI_STYLEDOKUMENTE_4_WISS_ARBEITEN

Start Writing

- have the complete paper/thesis in your mind
- fill in contents (in meaningful order)
 - place images / figures
 - > write sections
 - add more figures (reference all in text)
- proof-read
 - does it sell / is it appropriate for event
 - check spelling / cross references

Tools to Facilitate Writing (besides LaTeX)

- digital libraries
 - public (http://citeseer.ist.psu.edu , https://dblp.uni-trier.de)
 - > ACM, IEEE, ... (access via the library system)
 - papers are often on authors' homepages
 - in a web search, add "pdf" or use https://scholar.google.com
 - online dictionaries (http://dict.leo.org , https://translate.google.com)
- tools for generating figures (Matlab, Python, ...)
- > spell checker

A Scientific Document may Contain:

- > abstract
- introduction / motivation
- > related work / state of the art / fundamentals
- technical content ("the meat")
- numerical examples / results / analysis
- conclusions, acknowledgements (if any)
- > references

Abstract

- > short (200-400 words)
- contains main point of the thesis/paper
 - what (contribution + results)
 - how (brief summary of method)
- > should motivate so. to read your work
- > should tell reviewers/supervisors what you contribute

Introduction / Motivation

- problem statement (attention getter)
 - > can already review some previous work
 - should motivate your claim
- > claim
 - summarize your contribution
 - > show why it is important
- preview the contents of your work
 - > should motivate so. to read on...

Related Work

- background, if necessary
- summarize competing approaches
- differences wrt. your method
- again, mention your contribution

Hint: You can use related work either for comparison or for improving your method. **Just provide reference!**

Original Research and Development

- motivate your approach by figures (can place a teaser figure on front page)
- provide equations and explanation in words
- be aware of addressed reader profile
- focus on important details (but: see question below)
- move supplementary material to appendix

Question: Can a skilled graduate student implement your approach from reading your thesis and re-produce your results? (Should be absolutely, positively answered with **yes**!)

Results

- always provide examples
- > comparison wrt. other methods
 - > can you beat results from previous work?
 - compare to straight-forward method
- evaluate (qualitative, observations, user study, ...)
- limitations + suggestion how to fix these

Quality versus Quantity

Note: You never can solve all problems. Show the quality of your achievements and devise unsolved problems as future work!

Conclusions

- short review of method ("tell 'em three times" – Ken Joy, UC Davis)
- > achievements
- future work (unsolved problems, but don't tell all your secrets!)

Compare to Abstract

... and re-write the latter!

Acknowledgements

- people who helped besides co-authors
- > sources of
 - data sets
 - software packages
 - support of any kind
- your sponsors ("Thanks for the money, guys! Was a lot of fun spending it...")

References: Check for Completeness

- > use bibtex
 - > takes care of formatting
 - > shows only papers referenced in text
- for each paper
 - > authors + title
 - > conference / journal + vol + no. / booktitle + eds.
 - page numbers + year

Forbidden: Do not sell web links as literature!

Can write your Thesis in English

- English sentences are short!
- be concise omit dispensable words
- ➤ think English avoid translations
 - develop coarse structure in items
 - > translate items into sentences
- use either American or British English (not both)

Modularization

- > paragraphs
 - > carry semantic units
 - > never change topic within
 - > split long paragraphs
 - avoid redundancy (only allowed between sections)
- sections / subsections as needed
 - > no subsection x.1 without x.2!

Semantic Flow

- smooth semantic structure
- consecutive sentences / paragraphs build on top of each other
- > use examples and figures to explain complicated issues
- > let the reader know
 - > what you do next
 - > why you are doing this

A few Notes

- mostly use present, except
 - future work "will be directed at..."
 - previous work "Marching Cubes was invented in 1987"
- say "we" (this includes the reader, do not use "I")
- never "," before "that"!
- "-ing" is smarter than "that":
 "a method that provides good results"
 - → "a method providing good results"

A few more Notes

- avoid sloppy writing (in contrast to presentations where items are preferred)
 - "can't" → "cannot"
 - ➤ "pros and cons"→"pros and contras"
- > introduce abbreviations **before** using them
 - ➤ "A multi-scale analysis (MSA) is defined as...

 Now, we use multiple MSAs ..."

Hyphenation

- overrides right associativity
 "disabled user interface" = user interface not active
 "disabled-user interface" = interface for impaired person
- often not unique, but use consistently "coordinate" or "co-ordinate"

A.5 Review Your Work

Last Improvements

- finish thesis/paper well before deadline
- let other people proof-read
- > review your thesis
- identify and improve weak points
- > check spelling
- > submit well before deadline

A.5 Review Your Work

Example Review Form (Conference Papers)

- Summarize the paper (sanity check to see whether the reviewer understood the paper)
- Is the paper appropriate for event?
- Does it advance the state of art? (Does it provide a significant, novel contribution?)
- Is the paper well structured? Is it easy to read?
- ➤ is it technically sound? (Report Errors)
- Are the results reproducible?
- Are important references missing?
- Do you recommend it for publication?

A.6 Summary

Publish Your Work

- > Your thesis advances the state of the art?
- Why not publish your work at a small conference (ask your professor for travel funding)?
- Understand the process. Be part of it!

A.6 Summary

Publish Your Work

- > come up with a novel idea
- > find the proper event
- > run experiments / compare
- put results into images
- place structure around them
- > fill in text
- proof-read + submit

A.6 Summary

References (and Online Sources)

- ➤ Justin Zobel, **Writing for Computer Science**, 3rd edition, Springer, 2014.
- Jim Kajiya, How to Get Your SIGGRAPH Paper Rejected https://www.siggraph.org/sites/default/files/kajiya.pdf
- Melissa Bender, How to Give a Professional Talk https://urc.ucdavis.edu/sites/g/files/dgvnsk3561/files/local_resources/do cuments/pdf_documents/WAC_Professional_Talk_Bender.pdf
- Charles van Loan, The Short Talk https://www.cmpe.boun.edu.tr/~cemgil/Courses/cmpe700/ShortTalk.htm
- For further **Advice on Research and Writing**, see http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mleone/web/how-to.html

