NUCL 402 Engineering of Nuclear Power Systems

Lecture 1: Introduction

S. T. Revankar
School of Nuclear Engineering
Purdue University

Introduction- Energy Sources

Source	Advantages	Disadvantages		
Coal	Inexpensive, Easy to recover (in U.S. and Russia)	Pollution, Requires extensive transportation system		
Nuclear	Inexpensive Fuel Concentrated Energy source Compact Waste No greenhouse or acid rain effects	Larger capital cost Long-term high level waste storage Potential nuclear proliferation		
Hydroelectric	Inexpensive to operate	Very limited source Environmental damage		
Gas / Oil	Good distribution system Easy to obtain Better as space heating energy	Very limited availability Global warming Expensive for energy generation		
Renewable Wind, Solar, Biomass, Hydrogen	Free if available	Limited areas, Need expensive energy storage Some environmental effects		

Nuclear, Wind, Tidal, Hydro, Thermal (Coal/Gas)

Nuclear Power Reactors

- ✓ Most nuclear electricity is generated using just two kinds of reactors which were developed in the 1950s and improved since.
- ✓ New designs are coming forward and some are in operation as the first generation reactors come to the end of their operating lives.
- ✓ Over 16% of the world's electricity is produced from nuclear energy, more than from all sources worldwide in 1960.

Nuclear Plants in Commercial Operation

Reactor type	Main Countries	Number	GWe	Fuel	Coolant	Moderator
Pressurised Water Reactor (PWR)	US, France, Japan, Russia	264	250.5	enriched UO ₂	water	water
Boiling Water Reactor (BWR)	US, Japan, Sweden	94	86.4	enriched UO ₂	water	water
Pressurised Heavy Water Reactor 'CANDU' (PHWR)	Canada	43	23.6	natural UO ₂	heavy water	heavy water
Gas-cooled Reactor (AGR & Magnox)	UK	18	10.8	natural U (metal), enriched UO ₂	CO ₂	graphite
Light Water Graphite Reactor (RBMK)	Russia	12	12.3	enriched UO ₂	water	graphite
Fast Neutron Reactor (FBR)	Japan, France, Russia	4	1.0	PuO ₂ and UO ₂	liquid sodium	none
other	Russia	4	0.05	enriched UO ₂	water	graphite
	TOTAL	439	384.6			

GWe = capacity in thousands of megawatts (gross)

Source: Nuclear Engineering International Handbook 2007

Locations of Operating Nuclear Power Reactors in US (104 as of now)

Note: There are no commercial reactors in Alaska or Hawaii.

BWR

PWR

Processes in Power Production

Reactor Components

- **Fuel.** Pellets of (UO2) in tubes, fuel rods, assemblies in the reactor core.
- Moderator. Neutrons thermalization, water, water or graphite.
- Control rods. Neutron-absorbing material, cadmium, hafnium or boron
- Coolant. A liquid or gas circulating through the core, water, LM, CO2, He,
- Pressure vessel or pressure tubes. steel vessel containing the reactor core and moderator/coolant,
- **Steam generator.** Cooling system where the heat from the reactor
- Containment. The structure around the reactor core which is designed to protect it from outside intrusion and to protect those outside from the effects of radiation in case of any malfunction inside. It is typically a metre-thick concrete and steel structure.

- ✓ Reactor is an Amazing Engineering Feat
- Fission process and controlled reaction
- Cooling of the core under normal and abnormal conditions
- Radiation protection and shielding
- Refueling and waste handling
- ✓ Maintenance and power generation
- Safety and accident mitigation
- ✓ etc