Foundations of Computing Lecture 7

Arkady Yerukhimovich

February 7, 2023

Outline

- 1 Lecture 6 Review
- 2 The Pumping Lemma for Regular Languages
- Using the Pumping Lemma
- 4 Using Closure Properties

Lecture 6 Review

- Nonregular languages
- Proving The NFA pumping lemma

Lecture 6 Review

- Nonregular languages
- Proving The NFA pumping lemma

Today

Using the pumping lemma to prove languages are not regular.

Let L be a regular language, prove that the following languages are regular.

- **1** NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$
- **②** $NOEXTEND(L) = \{ w \in L | w \text{ is not a proper prefix of any string in } L \}$

Let ${\it L}$ be a regular language, prove that the following languages are regular.

- **1** NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$
- ② $NOEXTEND(L) = \{w \in L | w \text{ is not a proper prefix of any string in } L\}$

Example:

- $L = \{00, 11, 001, 101\}$
- $NOPREFIX(L) = \{00, 11, 101\}$
- $NOEXTEND(L) = \{11,001,101\}$

Let L be a regular language, prove that the following languages are regular.

1 NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$

Let L be a regular language, prove that the following languages are regular.

- **1** NOPREFIX(L) = $\{w \in L | \text{ no proper prefix of } w \text{ is a member of } L\}$
- **②** $NOEXTEND(L) = \{ w \in L | w \text{ is not a proper prefix of any string in } L \}$

Outline

- 1 Lecture 6 Review
- 2 The Pumping Lemma for Regular Languages
- Using the Pumping Lemma
- 4 Using Closure Properties

Pumping Lemma

Pumping Lemma

If L is a regular language, then there exists an integer p (the pumping length) where any string $w \in L$ such that $|w| \ge p$ can be divided into three pieces w = xyz satisfying:

• For each $i \ge 0$, $xy^i z \in L$

Pumping Lemma

- For each $i \ge 0$, $xy^i z \in L$
- |y| > 0, and

Pumping Lemma

- For each $i \ge 0$, $xy^i z \in L$
- ② |y| > 0, and
- $|xy| \leq p$

Pumping Lemma

- For each $i \ge 0$, $xy^iz \in L$
- ② |y| > 0, and
- $|xy| \leq p$
 - We saw how to prove the pumping lemma last week
 - Today we will learn how to use it

Outline

- 1 Lecture 6 Review
- 2 The Pumping Lemma for Regular Languages
- Using the Pumping Lemma
- 4 Using Closure Properties

To use the pumping lemma to prove that L is not regular, we do the following:

Assume that L is regular

- Assume that L is regular
- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w|>p can be pumped

- Assume that L is regular
- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w|>p can be pumped
- **3** Choose $w \in L$ with $|w| \ge p$

- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w| > p can be pumped
- **3** Choose $w \in L$ with $|w| \ge p$
- Demonstrate that w cannot be pumped
 - For each possible division w = xyz (with |y| > 0 and $|xy| \le p$), find an integer i such that $xy^iz \notin L$

- ② Use pumping lemma to guarantee pumping length p, s.t. all w with |w| > p can be pumped
- **3** Choose $w \in L$ with $|w| \ge p$
- Demonstrate that w cannot be pumped
 - For each possible division w = xyz (with |y| > 0 and $|xy| \le p$), find an integer i such that $xy^iz \notin L$
- Contradiction!!!

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

Proof:

lacktriangle Assume L is regular, and let p be the pumping length this implies

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

- **1** Assume L is regular, and let p be the pumping length this implies
- ② Choose $w = 0^p 1^p \in L$

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- ② Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- ② Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- lacktriangle Complete proof by considering all possible values for y

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- ② Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Complete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- ② Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- lacktriangle Complete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$
 - y consists of only 1s then xyyz has more 1s than 0s, so $w \notin L$

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- lacktriangle Complete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$
 - y consists of only 1s then xyyz has more 1s than 0s, so $w \notin L$
 - y consists of both 0s and 1s then xyyz has 0s alternating with 1s more than once, so $w \notin L$

Consider $L = \{0^n 1^n | n \ge 0\}$, prove L is not regular.

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- ② Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Complete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$
 - y consists of only 1s then xyyz has more 1s than 0s, so $w \notin L$
 - y consists of both 0s and 1s then xyyz has 0s alternating with 1s more than once, so $w \notin L$
- ⑤ Contradiction hence, L is not regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

Proof:

lacktriangle Assume L is regular, and let p be the pumping length this implies

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **1** Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- **9** Problem: We have to consider all possible splits w = xyz, but if $y = 0^m 1^m$, then w can be pumped not leading to contradiction

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- **•** Problem: We have to consider all possible splits w = xyz, but if $y = 0^m 1^m$, then w can be pumped not leading to contradiction
- **5** Solution: Use condition that $|xy| \le p$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **1** Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- **•** Problem: We have to consider all possible splits w = xyz, but if $y = 0^m 1^m$, then w can be pumped not leading to contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- **•** Problem: We have to consider all possible splits w = xyz, but if $y = 0^m 1^m$, then w can be pumped not leading to contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols
 - But, this means that y must be all 0s

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- **9** Problem: We have to consider all possible splits w = xyz, but if $y = 0^m 1^m$, then w can be pumped not leading to contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols
 - But, this means that y must be all 0s
- Omplete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- lacktriangle Assume L is regular, and let p be the pumping length this implies
- 2 Choose $w = 0^p 1^p \in L$
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- **1** Problem: We have to consider all possible splits w = xyz, but if $y = 0^m 1^m$, then w can be pumped not leading to contradiction
- **5** Solution: Use condition that $|xy| \le p$
 - Since $w = 0^p 1^p$ and $|xy| \le p$, we know that y must be in first p symbols
 - But, this means that y must be all 0s
- Complete proof by considering all possible values for y
 - y consists of only 0s then xyyz has more 0s than 1s, so $w \notin L$
- O Contradiction hence, *L* is not regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

Using closure properties:

① We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is not regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **①** We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is not regular
- ② Observe that $L_1 = L \cap 0^*1^*$

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **①** We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is not regular
- ② Observe that $L_1 = L \cap 0^*1^*$
- Easy to see that 0*1* is regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **①** We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is not regular
- ② Observe that $L_1 = L \cap 0^*1^*$
- Easy to see that 0*1* is regular
- **3** Since regular languages are closed under \cap , if L is regular then L_1 must be regular

Consider $L = \{w | w \text{ has an equal number of 0s and 1s} \}$, prove L is not regular

- **①** We already proved that $L_1 = \{0^n 1^n | n \ge 0\}$ is not regular
- ② Observe that $L_1 = L \cap 0^*1^*$
- Easy to see that 0*1* is regular
- lacktriangle Since regular languages are closed under \cap , if L is regular then L_1 must be regular
- lacktriangle Since we know L_1 is nonregular, this means that L must be nonregular

Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular

lacktriangled Assume L is regular, and let p be the pumping length

- lacktriangle Assume L is regular, and let p be the pumping length
- What w should we choose?

- lacktriangle Assume L is regular, and let p be the pumping length
- What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i

- lacktriangled Assume L is regular, and let p be the pumping length
- 2 What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Recall that our goal is to prove that above is not true. Specifically, we want

- Assume *L* is regular, and let *p* be the pumping length
- 2 What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.

- lacktriangled Assume L is regular, and let p be the pumping length
- What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- **Q** Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.
- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$

- lacktriangled Assume L is regular, and let p be the pumping length
- What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.
- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- Consider what happens when we pump k times:

- lacktriangled Assume L is regular, and let p be the pumping length
- What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.
- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- **o** Consider what happens when we pump k times: $xy^kz = 0^{\alpha+k\beta+m-(\alpha+\beta)}1^n$.

- Consider $L = \{0^m 1^n | m \neq n\}$, prove L is not regular
 - lacktriangle Assume L is regular, and let p be the pumping length
 - 2 What w should we choose?
 - **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
 - Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.
 - Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
 - **3** Consider what happens when we pump k times: $xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n$. We need $\alpha+k\beta+m-(\alpha+\beta)=m+(k-1)\beta=n$ for a contradiction

- lacktriangle Assume L is regular, and let p be the pumping length
- What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.
- Suppose we choose $w=0^m1^n$ with $m \ge p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- Consider what happens when we pump k times: $xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n$. We need $\alpha+k\beta+m-(\alpha+\beta)=m+(k-1)\beta=n$ for a contradiction Equivalently, we need $k=(n-m)/\beta+1$ to be an integer

- lacktriangle Assume L is regular, and let p be the pumping length
- What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.
- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- Consider what happens when we pump k times: $xy^kz = 0^{\alpha+k\beta+m-(\alpha+\beta)}1^n$. We need $\alpha+k\beta+m-(\alpha+\beta)=m+(k-1)\beta=n$ for a contradiction Equivalently, we need $k=(n-m)/\beta+1$ to be an integer
- **②** We only know $\beta \leq p$, how can we guarantee (n-m) is divisible by β ?

- lacktriangle Assume L is regular, and let p be the pumping length
- What w should we choose?
- **3** By pumping lemma, w = xyz s.t. $xy^iz \in L$ for all i
- Recall that our goal is to prove that above is not true. Specifically, we want $xy^iz = 0^{m'}1^{n'}$ with m' = n'.
- Suppose we choose $w=0^m1^n$ with $m\geq p$, then $x=0^\alpha$, $y=0^\beta$, $z=0^{m-(\alpha+\beta)}1^n$
- Consider what happens when we pump k times: $xy^kz=0^{\alpha+k\beta+m-(\alpha+\beta)}1^n$. We need $\alpha+k\beta+m-(\alpha+\beta)=m+(k-1)\beta=n$ for a contradiction
 - Equivalently, we need $k=(n-m)/\beta+1$ to be an integer
- We only know $\beta \leq p$, how can we guarantee (n-m) is divisible by β ?
- § Set n=2p!, m=p!, can guarantee (n-m)=p! is divisible by β , so there is k s.t. $xy^kz\notin L$

Hints for Using the Pumping Lemma

To use the pumping lemma, need to do the following

- Identify what it means for $x \notin L$
- Choose w such that any valid split xyz can lead to a contradiction
- Prove that $w' = xy^k z \notin L$ form some k

Choosing w is often tricky, requires intuition and some trial and error.

Outline

- 1 Lecture 6 Review
- 2 The Pumping Lemma for Regular Languages
- Using the Pumping Lemma
- 4 Using Closure Properties

Using Closure Properties of Regular Languages

We have seen a number of closure properties of REs

- ① Closure under complement: \overline{L} is regular if L is
- **2** Closure under union: $L_1 \cup L_2$ is regular if L_1 , L_2 are
- **3** Closure under intersection: $L_1 \cap L_2$ is regular if L_1, L_2 are
- Closure under reversal: L^R is regular if L is
- NOPREFIX, NOEXTEND
- There are many more (e.g., set difference, cross product, ...)

Using Closure Properties of Regular Languages

We have seen a number of closure properties of REs

- ① Closure under complement: \overline{L} is regular if L is
- **2** Closure under union: $L_1 \cup L_2$ is regular if L_1 , L_2 are
- **3** Closure under intersection: $L_1 \cap L_2$ is regular if L_1, L_2 are
- Closure under reversal: L^R is regular if L is
- NOPREFIX, NOEXTEND
- There are many more (e.g., set difference, cross product, ...)

Important

- It is much easier to prove non-regularity using closure properties
- Try this first before you turn to pumping lemma

Exercise

Prove that the following language is nonregular:

$$L = \{0^{i}1^{j}2^{i}3^{j}|i,j>0\}$$

What's Next?

 We will add (a little) memory to our machines to recognize a richer class of languages