6. MĚŘENÍ KMITOČTU A DOBY PERIODY ČÍTAČEM

Autor: Jakub Kraus Měřeno: 30.10.2024

Spolupracoval: Viktor Procházka

Úplné zadání úlohy:

- 6.3.1 Změřte frekvenci generovanou nízkofrekvenčním generátorem:
- a) školním čítačem v režimu měření frekvence při různých dobách otevření hradla (TN = 1 s, 10 s)
- b) školním čítačem v režimu měření doby periody jednak přímo (n = 1), jednak s využitím průměrování (n = 100)
- c) Komerčním čítačem TF930 v režimu měření frekvence při dobách měření TN = 1 s, 10 s Na generátoru nastavte kmitočty 60 Hz, 500 Hz, 5 kHz, 50 kHz, 200 kHz. Pro výše uvedené režimy měření určete pro kmitočty 60 Hz a 200 kHz pro měření školním čítačem jak absolutní nejistotu, tak relativní nejistotu v %.

Poznámka k měření: Komerční čítače, které jsou v současné době na trhu, používají pro eliminaci nevýhod výše uvedených metod a zpřesnění měření tzv. metodu "recipročního měření" (reciprocal counting), která obě výše uvedené metody kombinuje (více detailů pro zájemce viz podklady k přednášce Měření kmitočtu a fázového rozdílu).

- 6.3.2. Ověřte přesnost krystalem řízených hodin:
- b) měřením doby periody pulsů pro krokový motor (správná hodnota je 2 s),
- c) přímým měřením frekvence oscilátoru (správná hodnota je 215, tj. 32 768 Hz).

Určete nepřesnost hodin v sekundách za den.

Poznámka k měření: Přímé měření kmitočtu oscilátoru u krystalu není vhodné, protože vstupní kapacita kabelu a čítače (i při použití sondy) ovlivňuje kmitočet oscilátoru. Proto je mezi krystalem a čítačem zařazen emitorový sledovač (je součástí přípravku s hodinami).

Schéma zapojení

Obr. 6.4. Zapojení měřicího obvodu

Seznam použitých přístrojů Generátor FG-8002

Školní čítač K3-4

Čítač TF930

Domácí příprava

Naměřené hodnoty

merem'		500	5k	50k	200K	1
~ ~ ~ ~	60	560	5540	58213	204 664	\[H_{2}]
75c. f 7,1 Ty=10	66,3	559,2	5540,7	58213,5	204894,0	_)
b) 50.T. n=101	14998,2	7755,0	77516	16.9	4,9	
	74499,87	1755,09	779,57	16,86	4,87	
c) TF 930 15	66,955	592,005	5,9147 K	60,559 K	205,05 K	
	66,9564	547,444	5, 97477 K	60,563 K	205,102 K	
ţī, n=101	14838,63	1766,07	2/776,718	16,957 /	4,898	
	0 0003					
a) 2	32,76	,75 kHz	Ü			
7	32,76		Ü			

Zpracování

Pro čítač 3-4 je stabilita $\delta f_0 = 2.5 \times 10^{-5}\%$

6.3.1 Přímé měření (frekvence)

$$u_{f_x} = \sqrt{\left(\frac{\Delta' f_X}{\sqrt{3}}\right)^2 + \left(\frac{\Delta f_x}{\sqrt{3}}\right)^2}$$

$$\Delta' f_x = \frac{1}{T_N}$$

$$\Delta f_x = \frac{\delta f_0}{100} \frac{N}{T_N} = \frac{\delta f_0}{100} f_x$$

- 60Hz, $T_N = 1s$
 - Naměřeno 67Hz

$$u_{f_x} = \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{2.5 \times \frac{10^{-5}}{100} \times 67}{\sqrt{3}}\right)^2} \doteq 0.577 \text{Hz} \rightarrow 0.86\%$$

- $f_x = (67.0 \pm 0.6) \text{Hz} = (67.0 \pm 0.86\%) \text{Hz}$
- 60Hz, $T_N = 10s$
 - ► Naměřeno 66.3Hz

$$u_{f_x} = \sqrt{\left(\frac{0.1}{\sqrt{3}}\right)^2 + \left(\frac{2.5 \times \frac{10^{-5}}{100} \times 66.3}{\sqrt{3}}\right)^2} \doteq 0.0577 \text{Hz} \rightarrow 0.087\%$$

- $f_x = (66.30 \pm 0.06) \mathrm{Hz} = (66.30 \pm 0.087\%) \mathrm{Hz}$
- 200kHz, $T_N = 1s$
 - Naměřeno 204664Hz

$$u_{f_x} = \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{2.5 \times \frac{10-5}{100} \times 204664}{\sqrt{3}}\right)^2} \doteq 0.578 \text{Hz} \rightarrow 2.8 \times 10^{-4} \%$$

- $f_x = (204664.0 \pm 0.6)$ Hz = $(204664.0 \pm 2.8 \times 10^{-4}\%)$ Hz
- 200kHz, $T_N=10s$
 - ► Naměřeno 204697.0Hz

$$u_{f_x} = \sqrt{\left(\frac{0.1}{\sqrt{3}}\right)^2 + \left(\frac{2.5 \times \frac{10^{-5}}{100} \times 204697.0}{\sqrt{3}}\right)^2} \doteq 0.0649 \text{Hz} \rightarrow 3.2 \times 10^{-5} \%$$

- $f_x = (204697.00 \pm 0.07) \mathrm{Hz} = \left(204697.00 \pm 3.2 \times 10^{-5}\%\right) \mathrm{Hz}$

6.3.1 Nepřímé měření (periody)
$$u_{T_x} = \sqrt{\left(\frac{\Delta' T_X}{n\sqrt{3}}\right)^2 + \left(\frac{\Delta T_x}{\sqrt{3}}\right)^2 + 2\left(\frac{u_k}{n}\right)^2}$$

$$\Delta' T_x = \frac{1}{f_n}$$

$$\Delta T_x = \frac{\delta f_0}{100} T_N N = \frac{\delta f_0}{100} T_x$$

Hodnotu u_k nemám, jak zjistit.

- 60Hz, n = 1

- 60Hz, n = 100

- 200 kHz, n = 1

▶ Naměřeno 4.9us → 204kHz
$$u_{T_x} = \sqrt{\left(\frac{10^{-7}}{\sqrt{3}}\right)^2 + \left(\frac{2.5 \times 10^{-5}}{100} \times 4.9 \times 10^{-6}\right)^2} \doteq 58 \text{ns} \rightarrow 1.2\%$$

- $1.2\% \rightarrow f_x = (204 \pm 1.2\%) \text{kHz} = (204 \pm 2) \text{kHz}$
- 200 kHz, n = 100

6.3.2

Dle měření periody:

$$\frac{2000030.7}{2000000.0} - 1 = 15.35 \text{ ppm}$$

Den má 60 * 60 * 24 = 86400 sekund

 $\frac{15.35}{10^6} \times 86400 \stackrel{.}{=} 1.33$ sekund za den

Dle měření frekvence:

$$\frac{32.7675}{32.7680} - 1 = 15.26 \text{ ppm}$$

Den má 60 * 60 * 24 = 86400 sekund

 $\frac{15.26}{10^6} \times 86400 \doteq 1.32$ sekund za den