Sampling Distribution of the Mean

Dr Tom Ilvento

Department of Food and Resource Economics

Overview

- This is one of the most important topics in the course
- Sampling distributions are key to the logic of inference
- It is based on the notion of taking many, many samples....
- And making an estimate from each sample
- In reality we only take one sample, but we will think of it as one of many possible
- And our estimate as one of many estimates that follow a certain distribution......

2

Who Do you intend to vote for in the 2008 Presidential Election?

- All polls were taken in mid-September, 2008
- We expect variability from sample to sample
- we call it sampling error

3

Now we start toward inference

- Remember we noted that
- A parameter is a numerical descriptive measure of the population
 - We use Greek terms to represent it
 - It is hardly ever known
- A sample statistic is a numerical descriptive measure from a sample
 - Based on the observations in the sample
 - We want the sample to be derived from a random process

Help me do a little experiment

- Toss a die three times
 - Each time we toss the die three times we note and record the faces
 - Then calculate mean and median
- We can do this a number of times

5

Results of some trials of the experiment

Sample	Result	Mean	Median
I	5 4 I	3.33	4
2	4 4 3	3.67	4
3	5 5 2	4.00	5
4	6 1 1	3.67	I
5	6 4 2	4.00	4
6	3 3 2	2.67	3

(

A Priori we have the following expectation and variance

x	I	2	3	4	5	6
P(X)	0.167	0.167	0.167	0.167	0.167	0.167

- $E(x) = \mu = 1(.1667) + 2(.1667) + 3(.1667) + 4(.1667) + 5(.1667) + 6(.1667)$
 - $E(x) = \mu = 3.500$
- $E(x-\mu)^2 = \sigma^2 = (1-3.5)^2(.1667) + (2-3.5)^2(.1667) + (3-3.5)^2(.1667) + (4-3.5)^2(.1667) + (5-3.5)^2(.1667) + (6-3.5)^2(.1667)$
 - $E(x-\mu)^2 = \sigma^2 = 2.916667$
 - $\sigma = 1.7078$

7

I used the following as a sample

- There are 6*6*6 = 216 different combinations of outcomes of rolling three die
- If I take the mean of each possible outcome
- And take the summary statistics (including the mean of the means)
- I get the following table (from Excel)

Sampling Distribution of the Sample Mean for rolling 3 die

- Notice the mean of "the sample means" is 3.5, the population value
- But the standard deviation is something less than the 1.7078 we expected
 - But try this divide 1.7078 by the SQRT(3) the sample size (n)
- This value is .986 which is essentially the standard deviation of this variable
- And the distribution looks very much like a normal distribution

9

Comparing the Mean vs the Median for this Sampling Distribution

	Mean	Median
Mean	3.50	3.50
Standard Error	0.07	0.09
Median	3.50	3.50
Mode	3.33	3.00
Standard Deviation	0.99	1.37
Sample Variance	0.98	1.89
Kurtosis	-0.40	-0.81
Skewness	0.00	0.00
Range	5	5
Minimum	1	1
Maximum	6	6
Sum	756	756
Count	216	216

- I also calculated the statistics for the median of each sample
- If I compare the mean to the median, the standard deviation for the mean is smaller
- The mean as a measure of this sampling distribution has minimum variance

10

Sampling Distribution

- Sample statistics are random variables they vary from sample to sample
- We can look at their probability distribution based on repeating the sampling experiment many times
 we will get different sample statistics each time
- If we do repeat the experiment many times results in a **sampling distribution**
- The sampling distribution of a sample statistic calculated from many samples of n measurements results in the probability distribution of the statistic.

What do we want from an estimator of the population parameter?

- $\bullet \;\;$ If the sample statistic is a good estimator of μ
- We would expect the values of the sample means to cluster around µ
- We wouldn't want to cluster to be at a point above or below μ (not be biased)
- And we might say our estimator is "good" if the cluster of the sample means around is tighter than the sampling distribution of some other possible estimator (minimum variance)

П

Think our our estimator in terms of a Bulls-Eye Target

- We want our estimates to center around the true value
- A tighter fit around the target
 Minimum Variance better
 and preferred
- A biased estimator may have a tight fit, but consistently misses the target in a discernible way
- This is the kind of pattern we would like to see – a tight fit around the population parameter

13

15

I did a simulation to help construct a sampling distribution for the mean

- We took 100 random samples of size n = 50
- From a population of X ~ N (75, 10)
- The "mean of the means" should equal the population parameter, μ = 75.
- The standard deviation of this new distribution should be related to σ, but we might expect it to be smaller

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = 10/(50)^{.5} = 1.41$$

The standard deviation of this sampling distribution is called a standard error

Results of the Experiment based on repeated samples from a population with a mean of 75 and a standard deviation of 10 - 100 different random samples

- The exercise resulted in a Mean of 75.06, very close to 75.0
- Std Dev = 1.39
- This is very close to the expected Std Error of 10/(50).5 = 1.41

Sampling theory and sampling distributions help make inferences to a population

- Let's use the example of the mean to set up our discussion of a sampling distribution.
 - Suppose we are looking at a variable, e.g., average purchases of customers at an Internet sales company.
 - We think of the population (let's use the Population of adult customers of our Internet company in 2008).
- We believe there is an average purchases of this population, designated as μ .
- We want to take a random sample to estimate μ.

Inferences from a sample

• Our sample estimator of the population mean is:

$$\bar{x} = \frac{\sum x}{n}$$

- The variance of our sample estimate is given as:
- $s^2 = \frac{\sum (x \overline{X})^2}{n 1}$
- where n is equal to the sample size
- s² is a unbiased estimator of population variance σ^2

17

deviation around our estimator (i.e., the sample mean).

• That is, what if we took a whole bunch of samples. and recorded the mean of each sample – what it would look like?

Inferences from a sample

• The standard deviation represents the average

But we only took one sample out of an infinite

A reasonable question would be what is the

deviation around the sample mean.

number of possible samples.

18

Inferences from a sample

- If we could take an infinite number of samples, each sample would most likely yield a different sample mean.
- Yet, each one would be expressed as a reasonable estimate of the true $Var(\bar{x}) = Var\left(\frac{\sum \bar{x}}{n}\right) = \frac{\sigma^2}{n}$ population mean. • Yet, each one would be expressed population mean.
- So, if we were able to take repeated samples, each of sample size n, what would be the standard deviation of the sample estimates?
- Sampling theory specifies the of a mean as:

$$Var(\bar{x}) = Var\left(\frac{\sum \bar{x}}{n}\right) = \frac{\sigma^2}{n}$$

variance of the sampling distribution

The square root is called the **Standard Error** of the mean

Inferences from a sample

- The standard error of the mean is the standard deviation of a sampling distribution of means from samples taken from a population with parameters equal to μ and σ^2 .
- If we don't know σ^2 we use the unbiased sample estimate of s² to estimate the sampling variance of the mean.

$$S_{\overline{x}} = \frac{S}{\sqrt{n}}$$

This is the strategy

- We use the theoretical sampling distribution to make inferences from our sample to the population.
- The sampling distribution of an estimator is based on repeated samples of size n.
 - We may never actually take repeated samples
 - But we could think of this happening
 - And we think of our observed sample as one of many possible samples, of size n, we could have drawn from the population

21

This is the strategy

- We expect that the standard deviation of sampling distribution of the estimator (in this case the mean) will be smaller than that of the population or the samples themselves.
- We expect some variability across samples, but not as much as we would find in the population.
- Thus the sampling error is smaller than the standard deviation for the population.

22

The Standard Error

- The Standard Error depends upon:
 - The size of n (as n gets larger the SE gets smaller)
 - The variance of the population variable itself. We can think of this as homogeneity.
- The larger the sample size, and the more homogeneous the population, the smaller the standard error is for our estimator.

Properties of the Sampling Distribution for the Mean

- If a random sample of size n is drawn from a population with mean μ and standard deviation σ, then:
- The sampling distribution of the means has a mean equal to the population mean µ.
- And the sampling distribution of the mean has a standard deviation equal to the standard deviation of the population standard deviation σ , divided by the square root of the sample size n.
- And if we don't know σ, we use the sample standard deviation, s.

 $S_{\overline{x}} = \frac{s}{\sqrt{n}}$

24

We use two theorems to help us make inferences

- In the case of the mean, we use two theorems concerning the normal distribution that help us make inferences
- One depends upon the variable being normally distributed
- The other does not Central Limit Theorem

Summary

- We are on our journey toward inference
- A key part of this journey is understanding a sampling distribution
 - The sampling distribution is the theoretical distribution of making an estimate of a parameter from many, many samples
 - The sampling distribution of the mean (and proportion), will follow a normal distribution (under certain circumstances)
- Knowing the form of the sampling distribution will help in inference through confidence intervals and hypothesis tests

25