The dangers of using Seasonal Adjustment and other filters in Econometrics

Some economic and environmental examples

Antonio García-Ferrer ¹ Marcos Bujosa ²

¹Dpto. de Análisis Económico: Economía Cuantitativa. Universidad Autónoma de Madrid

²Dpto. de Análisis Económico y Economía Cuantitativa. Universidad Complutense de Madrid

June 30 - July 3, 2024

- When using seasonally unadjusted data, how can we decide what is the optimal seasonal adjustment to use?
 - Not theoretical point of view
- Do we have sensible statistical tools to discriminate among the different available alternatives?
- Knowing that the estimated components are not observable, is it enough to pay attention to just the component of interest and forget about the remaining ones?
- Is the ideal property of orthogonality among the different component reasonably fulfilled?
- How potential outliers and other variants of intervention analysis affect final estimated components?

1 Introduction

- When using seasonally unadjusted data, how can we decide what is the optimal seasonal adjustment to use?
 - Not theoretical point of view
- Do we have sensible statistical tools to discriminate among the different available alternatives?
- Knowing that the estimated components are not observable, is it enough to pay attention to just the component of interest and forget about the remaining ones?
- Is the ideal property of *orthogonality* among the different component reasonably fulfilled?
- How potential *outliers* and other variants of *intervention* analysis affect final estimated components?

1 Introduction

- When using seasonally unadjusted data, how can we decide what is the optimal seasonal adjustment to use?
 - Not theoretical point of view
- Do we have sensible statistical tools to discriminate among the different available alternatives?
- Knowing that the *estimated* components are not *observable*, is
 it enough to pay attention to just the component of interest
 and forget about the remaining ones?
- Is the ideal property of *orthogonality* among the different component reasonably fulfilled?
- How potential outliers and other variants of intervention analysis affect final estimated components?

2 Traditional approach

$$y_t = T_t + C_t + S_t + e_t$$

3 Small empirical exercise

Four monthly time series pertaining to the Spanish economic CLI used in: http://uam-ucm-economic-indicators.es/

- CAR REGISTRATIONS
- HOUSING STARTS
- CEMENT CONSUMPTION
- TRUCKS

From 1978M01 to 2013M12

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

4 Small empirical exercise

5 Several signal extraction methodologies

Using several model-based signal extraction methodologies, namely

- SEATS-TRAMO
- X-12 ARIMA
- Linear Dynamic Harmonic Regression (Bujosa et al., 2007)

Disclaimer and explanation of the posterior empirical results

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

6 Dynamic Harmonic Regression Model

The DHR model consists of several unobserved components plus an irregular stationary zero mean component $e = \{e_t\}_{t \in \mathbb{Z}}$

$$y = \sum_{j=0}^{R} s^j + e. \tag{1}$$

ullet DHR components $s^j=\{s^j_t\}_{t\in\mathbb{Z}}$ are oscillatory

$$s_t^j = a_t^j \cos(\omega_j t) + b_t^j \sin(\omega_j t), \tag{2}$$

where frequency ω_i is associated to the *j*-th component.

- Oscillations are modulated by two GRW processes $a^j=\{a^j_t\}_{t\in\mathbb{Z}}$ and $b^j=\{b^j_t\}_{t\in\mathbb{Z}}.$
- $\omega_0 = 0$ corresponds to the trend (or zero frequency term).
- The model is fitted in the frequency domain.

7 Car registrations Seasonal Factors: DHR, ST, X12

8 Seasonally adjusted Car registrations: DHR, ST, X12

oduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

9 FAC - First Difference of Seasonally adjusted Car registrations

10 Summary of tentative results of the four series

 Outlier detection plus other interventions as easter effects and calendar effects are crucial in the estimation of unobserved components models

 As a matter of fact when you don't use this option in SEATS-TRAMO there is evidence of seasonality in the SA series

 Using outlier detection plus easter and calendar effects produce considerable reduction in the estimated residual variances ranging from 21% to 31% 11 Results from a Stock & Watson data base

- Housing starts
- IPI
- Money supply M1
- Retail sales

12 Results from a Stock & Watson data base

13 Results from a Stock & Watson data base: Housing starts

14 Results from a Stock & Watson data base: IPI

15 Results from a Stock & Watson data base: Money supply

16 Results from a Stock & Watson data base: Retail sales

17 Hodrick–Prescott filter

$$y_t = \tau_t + c_t + \epsilon_t$$

Given a positive λ , there is a trend component τ that solves

$$\min_{\tau} \left(\sum_{t=1}^{T} (y_t - \tau_t)^2 + \lambda \sum_{t=2}^{T-1} [(\tau_{t+1} - \tau_t) - (\tau_t - \tau_{t-1})]^2 \right)$$

18 Hodrick–Prescott filter

oduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

19 The Central England Temperature 1659–2007 (CET)

Alternative Temperature Cycles and Bayesian Turning Points

1675 1700 1725 1750 1775 1800 1825 1850 1875 1900 1925 1950 1975 2000

21 The Central England Temperature 1659–2023 (CET)

roduction Exercise Methodologies S&W data HP Filter Climate 1 Climate 2 Covid References

22 Modelling of Global Climate Change

23 Have AMO and GTA a common 63-years cycle?

DHR components for GTA

Trend, Cycle (shifted +0.7 units) and irregular (shifted -1 units) DHR components

$$GTA = T + S^{63} + S^{21} + \sum (\text{other harmonics}) + Irreg$$

24 Have AMO and GTA a common 63-years cycle?

DHR Trend-cycle component for AMO

$$AMO = T + S^{21} + \sum (\text{other harmonics}) + Irreg$$

25 Have AMO and GTA a common 63-years cycle?

Not clear GTA has a periodic cycle, but not AMO

26 Have original AMO and GTA a common 63-years cycle?

DHR components for "original" AMO data

Trend, cycle (shifted +0.7 units) and irregular (shifted -1 units) DHR components

$$AMO_{\rm with\ trend} = T + S^{63} + S^{21} + \sum ({\rm other\ harmonics}) + Irreg$$

27 Have the "original" AMO and GTA a common cycle?

They seem to have a common cycle (as suggested in Professor Young's article)

28 Number of confirmed cases at 3/22/2020

Figure 1: Number of confirmed cases at 3/22/2020

29 Observed contagions and forecasts in Spain

Figure 2: Observed contagions and Forecasts in Spain

30 Observed deaths and forecasts in Spain

Figure 3: Observed Deaths and Forecasts in Spain

Bujosa, M., García-Ferrer, A., and Young, P. C. (2007). Linear dynamic harmonic regression. *Comput. Stat. Data Anal.*, **52**(2), 999–1024. ISSN 0167-9473.