MATH 302

CHAPTER 2

Section 2.1: Linear First Order Differential Equation

Contents

What Is A LFODE?	2
More Terminology	2
General Solution to a LFODE	3
General Solution	3
Homogeneous LFODE	4
Nonhomogeneous LFODE	8
Summary of The Method	
General Theorem	11
Existence Theorem	11

Created by: Pierre-Olivier Parisé Fall 2022

WHAT IS A LFODE?

A first order ODE is said to be linear (abbreviated LFODE) if it can be written as

$$y' + p(x)y = f(x). (1)$$

• Example: $y' + 3y/x^2 = 1$.

• Example: $xy' - 8x^2y = \sin x$.

More Terminology

• A first order ODE that is not of the form (1), then the ODE is said to be **nonlinear**.

- Example: $xy' + 3y^2 = 2x$.

- Example: $yy' + e^y = \tan(xy)$.

• When f(x) = 0 for any x, then y' + p(x)y = 0 is said to be **homogeneous**.

- Example: $y' + 3y/x^2 = 0$.

- Example: $xy' - 8x^2y = 0$.

• When f(x) is not zero, then the LODE is said to be **nonhomogeneous**.

GENERAL SOLUTION TO A LFODE

EXAMPLE 1. Find all the solutions to

$$y' = \frac{1}{x^2}$$

General Solution

We say that a function y = y(x, c) is a **general solution** to (1) if

- For each fixed parameter c, the resulting function y = y(x, c) is a solution to (1) on an an open interval (a, b).
- If $y_1 = y_1(x)$ is a solution to (1) on (a, b), then y_1 can be obtained from the formula y = y(x, c) by choosing c appropriately.

HOMOGENEOUS LFODE

We now find the general solution to

$$y' + p(x)y = 0 (2)$$

where p is continuous on an interval (a, b).

EXAMPLE 2. Let a be a constant (fixed).

- 1. Find the general solution of y' ay = 0.
- 2. Solve the initial value problem

$$y' - ay = 0$$
, $y(x_0) = y_0$.

Example 3.

- 1. Find the general solution of xy' + y = 0.
- 2. Solve the initial value problem

$$xy' + y = 0, \quad y(1) = 3.$$

General facts:

• The general solution to (2) is given by

$$y = ce^{-P(x)}$$

where $P(x) = \int p(x) dx$ is any antiderivative of p(x).

• The solution to the IVP

$$y' + p(x)y = 0$$
, $y(x_0) = y_0$

is given by

$$y(x) = y_0 e^{-\int_{x_0}^x p(x) \, dx}.$$

Nonhomogeneous LFODE

We now want to find the general solution to

$$y' + p(x)y = f(x)$$

where the functions p(x) and f(x) are continuous on an open interval (a, b).

Remark:

• The homogeneous part y' + p(x)y = 0 is called the **complementary equation**.

EXAMPLE 4. Find the general solution of

$$y' + 2y = x^3 e^{-2x}.$$

Summary of The Method

- Find a function y_1 such that $y'_1 + p(x)y'_1 = 0$
- Write $y = uy_1$ where u is an unknown function.
- Solve $u'y_1 = f(x)$.
- Substitute u in y.

Example 5.

1. Find the general solution

$$y' + (\cot x)y = x \csc x.$$

2. Solve the initial value problem

$$y' + (\cot x)y = x \csc x, \quad y(\pi/2) = 1.$$

General Theorem

Suppose

- p(x) and f(x) are continuous on an interval (a,b)
- y_1 is a solution to the complementary equation.

Then the general solution to y' + p(x)y = f(x) is

$$y(x) = y_1(x) \left(c + \int \frac{f(x)}{y_1(x)} dx \right)$$

for each x in (a, b).

Existence Theorem

Suppose

- p(x) and f(x) are continuous on an interval (a, b).
- y_1 is a solution to the complementary equation.
- x_0 is an arbitrary number in (a, b) and y_0 is an arbitrary number.

Then the boundary value problem

$$y' + p(x)y + f(x), \quad y(x_0) = y_0$$

has a unique solution which is of the form

$$y(x) = y_1(x) \left(\frac{y_0}{y_1(x_0)} + \int_{x_0}^x \frac{f(t)}{y_1(t)} dt \right)$$

for each x in (a, b).