STSCI 5080 Probability Models and Inference

Lecture 9: Generalizations and Functions of Random Vectors

September 20, 2018

Random vector

Definition

A vector of n random variables (X_1, \ldots, X_n) is called an n-dimensional random vector.

Discrete random vector

- If X_1, \ldots, X_n are discrete individually, then the vector (X_1, \ldots, X_n) is said to be discrete.
- The joint pmf of $(X_1, \ldots X_n)$ is defined by

$$p(x_1,\ldots,x_n) = P(X_1 = x_1,\ldots,X_n = x_n).$$

• From joint pmf to marginal pmf:

$$p_{X_1}(x_1) = \sum_{x_2} \cdots \sum_{x_n} p(x_1, x_2, \dots, x_n).$$

Similarly, we can calculate the joint pmf of (X_1, X_2) as

$$p_{X_1,X_2}(x_1,x_2) = \sum_{x_3} \cdots \sum_{x_n} p(x_1,x_2,x_3,\ldots,x_n).$$

• For any subset $B \subset \mathbb{R}^n$,

$$P((X_1,...,X_n) \in B) = \sum_{(x_1,...,x_n) \in B} p(x_1,...,x_n).$$

• The joint cdf of (X_1, \ldots, X_n) is defined by

$$F(x_1,\ldots,x_n) = P(X_1 \le x_1,\ldots,X_n \le x_n)$$

= $\sum_{y_1 \le x_1} \cdots \sum_{y_n \le x_n} p(y_1,\ldots,y_n).$

Continuous random vector

• A function $f(x_1, \ldots, x_n)$ on \mathbb{R}^n is a pdf on \mathbb{R}^n if $f(x_1, \ldots, x_n) \geq 0$ for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$ and

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_1 \cdots dx_n = 1.$$

• A random vector (X_1, \ldots, X_n) is continuous if there exists a pdf $f(x_1, \ldots, x_n)$ on \mathbb{R}^n such that

$$P((X_1,\ldots,X_n)\in B)=\int\cdots\int_B f(x_1,\ldots,x_n)dx_1\cdots dx_n$$

for any subset B of \mathbb{R}^n . The function $f(x_1, \ldots, x_n)$ is the joint pdf of (X_1, \ldots, X_n) .

• From joint pdf to marginal pdf:

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_n) dx_2 \cdots dx_n.$$

Similarly, we can calculate the joint pdf of (X_1, X_2) as

$$f_{X_1,X_2}(x_1,x_2) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1,x_2,x_3,\ldots,x_n) dx_3 \cdots dx_n.$$

Joint cdf

• The joint cdf of (X_1, \ldots, X_n) is defined by

$$F(x_1,\ldots,x_n) = P(X_1 \le x_1,\ldots,X_n \le x_n)$$

=
$$\int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(y_1,\ldots,y_n) dy_1 \cdots dy_n.$$

From joint cdf to joint pdf:

$$f(x_1,\ldots,x_n)=\frac{\partial^n}{\partial x_1\cdots\partial x_n}F(x_1,\ldots,x_n).$$

7

Independence

Definition

Random variables X_1, \ldots, X_n are independent if

$$P(X_1 \in A_1, \ldots, X_n \in A_n) = P(X_1 \in A_1) \cdots P(X_n \in A_n)$$

for any subsets $A_1, \ldots, A_n \subset \mathbb{R}$.

Definition

If random variables X_1, \ldots, X_n are independent with common cdf F (on \mathbb{R}), then they are called a random sample from F.

"
$$X_1, \ldots, X_n \sim F$$
 i.i.d.",

where "i.i.d." means "independent and identically distributed". E.g.,

$$X_1,\ldots,X_n\sim N(\mu,\sigma^2)$$
 i.i.d.

Types of data

- Cross section data X_1, \ldots, X_n : Taken from different individuals/households at one period.
- Time series data X_1, \ldots, X_T : Taken from the same individual for different time periods.
- Panel (or longitudinal) data X_{it} , i = 1, ..., n; t = 1, ..., T: Taken from different individuals for different time periods.

Types of data

- Cross section data X_1, \ldots, X_n : Taken from different individuals/households at one period.
- Time series data X_1, \ldots, X_T : Taken from the same individual for different time periods.
- Panel (or longitudinal) data X_{it} , i = 1, ..., n; t = 1, ..., T: Taken from different individuals for different time periods.
- Spatial data, spatio-temporal data etc.

Types of data

- Cross section data X_1, \ldots, X_n : Taken from different individuals/households at one period.
- Time series data X_1, \ldots, X_T : Taken from the same individual for different time periods.
- Panel (or longitudinal) data X_{it} , i = 1, ..., n; t = 1, ..., T: Taken from different individuals for different time periods.
- Spatial data, spatio-temporal data etc.

Independence: discrete case

Theorem

Suppose that X_1, \ldots, X_n are discrete. Then X_1, \ldots, X_n are independent if and only if

$$p(x_1,\ldots,x_n)=p_{X_1}(x_1)\cdots p_{X_n}(x_n)$$

for any x_1, \ldots, x_n .

Example

Independent Bernoulli trials X_1, \ldots, X_n (cf. Lecture 4) are independent.

Example

If $X_1, \ldots, X_n \sim Po(\lambda)$ i.i.d., then find their joint pmf.

Example

If $X_1, \ldots, X_n \sim Po(\lambda)$ i.i.d., then find their joint pmf.

The marginal pmf of X_i is

$$p_{X_i}(x_i) = \frac{\lambda^{x_i}}{x!} e^{-\lambda}, \ x_i = 0, 1, 2, \dots,$$

so that

$$p(x_1,...,x_n) = \prod_{i=1}^n \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \frac{\lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n x_i!} e^{-n\lambda}.$$

Independence: continuous case

Theorem

Suppose that the vector $(X_1, ..., X_n)$ is continuous with joint pdf $f(x_1, ..., x_n)$. Then $X_1, ..., X_n$ are independent if and only if

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

for any x_1, \ldots, x_n .

Theorem

If random variables X_1, \ldots, X_n are independent and continuous with pdfs f_{X_1}, \ldots, f_{X_n} , respectively, then the vector (X_1, \ldots, X_n) is continuous with joint pdf

$$f(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

for any x_1, \ldots, x_n .

Functions of random vectors

Example

If *X* and *Y* are independent, then find the pmf/pdf of Z = X + Y.

Discrete case

Theorem

If X and Y are independent and discrete with pmfs p_X and p_Y , respectively, then the pmf of Z = X + Y is

$$p_Z(z) = \sum_{x} p_X(x) p_Y(z - x)$$

for any z. This is called the convolution of p_X and p_Y .

Example

If $X, Y \sim Po(\lambda)$ i.i.d., then $X + Y \sim Po(2\lambda)$.

Example

If $X, Y \sim Po(\lambda)$ i.i.d., then $X + Y \sim Po(2\lambda)$.

$$\sum_{x} p_X(x) p_Y(z - x) = \sum_{x=0}^{z} \frac{\lambda^x}{x!} e^{-\lambda} \frac{\lambda^{z-x}}{(z - x)!} e^{-\lambda}$$

$$= \frac{\lambda^z e^{-2\lambda}}{z!} \sum_{x=0}^{z} \underbrace{\frac{z!}{x!(z - x)!}}_{=(x)}$$

$$= \frac{(2\lambda)^z}{z!} e^{-2\lambda},$$

where we have used the binomial theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Continuous case

Theorem

If X and Y are independent and continuous with pdfs f_X and f_Y , respectively, then the pdf of Z = X + Y is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

for any z. This is called the convolution of f_X and f_Y .

Proof?

Example

If $X, Y \sim Ex(\lambda)$ i.i.d., then find the pdf of X + Y.

Example

If $X, Y \sim Ex(\lambda)$ i.i.d., then find the pdf of X + Y.

The pdf of Z = X + Y is

$$f_Z(z) = egin{cases} \lambda^2 z e^{-\lambda z} & \text{if } z \geq 0 \ 0 & \text{otherwise} \end{cases}.$$

Quotient

Example

If X and Y are independent and continuous, find the pdf of Y/X.

Theorem

If X and Y are independent and continuous with pdfs f_X and f_Y , respectively, then the pdf of Z = Y/X is

$$f_Z(z) = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(xz) dx.$$

Rice p. 98.

Example

If $X, Y \sim N(0, 1)$ i.i.d., then find the pdf of Z = Y/X.

Example

If $X, Y \sim N(0, 1)$ i.i.d., then find the pdf of Z = Y/X.

The pdf of Z is

$$f_{\rm Z}(z) = \frac{1}{\pi(1+z^2)}, -\infty < z < \infty.$$

This is called the Cauchy density.