1) Power	Polynomicl	2 tuple vector
0	0	(0,0)
4.	1	(1,0)
W	W	(0,1)
ω'n	1+ω	(1,1)

2)

+	0	1	ω	ພັ
0	0	ı	w	u'
1	.1	0	ω	ω
W	W	ம்	0	1
w	ω·	W	ŧ	O

.	0	1	ω	w
0	0	0	0	0
1	0	1	IJ	wz
w	0	ω	cs [*]	ŧ
2	0	ຜ້	1	ω

1) $P(X) = X^2 + X + \omega$ is irreducible since if not then it is divisible by $X - \alpha$ for some element α in GF(4), i.e, it has a root in GF(4). However, $P(0) = 0 + 0 + \omega = \omega \neq 0$ $P(1) = 1 + 1 + \omega = \omega \neq 0$ $P(\omega) = \omega^2 + \omega + \omega = \omega^2 \neq 0$ $P(\omega^2) = \omega + \omega + \omega = \omega^2 \neq 0$ Hence, P(X) is irreducible.

2)	Dower	polynomial	2-tuple veiter
	0	0	(0,0)
	1	1	(1,0)
	×	×	(0,1)
	_d²	w + x	(w,:)
	od 3	W' + W'X	(w, w')
	a4	1 + ~	(1,1)
	as-	ω	(4,0)
	d ⁶	wx	(0,0)
	d ⁷	ω+ ω×	(4, 4)
	d8	w+ x	(w', 1)
	×9	W+ Wa	(w, w)
	d ID	ω^2	(62.0)
	d"	W2×	(0, w²)
	w 11	1 + w2x	(1, w2)
	213	1+ 60	(1,0)
	×14	WZ+ wZq	(w2, w2)

Problem 2 (ront.)

3)

element	minimal palynomial
1	× + 1
×	$(X + \alpha)(X + \alpha^4) = X^2 + X + \omega$
ײ	(x+ x2) (x+ x3) = x+ x+w2
×3	(x+x3)(x+x12)=x2+wx+1
×4	(x+ x4) (x+ x) = x+ x+ w
d ⁵	X + 0 = X + W
d 6	(x+x6)(x+x9) = X2+ WX + 1
× 7	(x+ x7)(x+x13) = X2+ wx+w
× 3	$(x+\alpha^{9})(x+\alpha^{1})=X^{1}+X+\omega^{1}$
29	(X+ x9) (X+ x6) = X2+ wx+1
d ¹⁰	X + 210 = X + w2
. XII	(X + a")(X + a") = X2 + wX + w2
d12	(X+ x12) (X+ x3) = X+ 2x+1
م م	(X+ x13) (X+ x7) = X2+ w X+ w
d d'4	(X+ 014) (X+011) = X1+ w1 X+ w2

- 1) $g(x) = L(H \{ \varphi_i(X), \varphi_i(X), \varphi_j(X), \varphi_j(X) \}$ where $\varphi_i(X)$ is the minimal polynomial of α^i $g(X) = L(H \{ X_7^2 X_7 \omega, X_7^1 X_7 \omega^2, X_7^1 \omega^2 X_7 \omega^2, X_7^1 X_7 \omega^2 X_7$
- 2) Dimension = 15 degree of g(X) = 15 - 6 = 9 Number of codewords = 49 = 262,144

Syndrome Computation: S=r(d)=d2, 5=r(d2)=d4, 5=r(d3)=0, 5=r(d4)=d8.

Berlekamp - Massey Algorithm:

11	6 (x)	du	en	P
-1		1	0	_
0	Ü	×°	0	_
1	1 + 2 X	×9	1	-1
2	1 + 012X	×'11	1	0
3	1+ 22x + 29 x	0	2	0
41	1 + x 12 X + x 9 X2	1 _ 1	2	

o(X) has roots of and ol3. Hence, B = d = d, B = d = d.

Error Evaluation:

$$Z_0 = S_1 + (S_2 + \sigma_1 S_1)X = \alpha^2 + (\alpha''^4 + \alpha''^2, \alpha'^2)X = \alpha^2$$

$$S_k = -\frac{Z_o(\beta_k^{(1)})}{\sigma'(\beta_k^{(1)})}$$
 where $\sigma'(X) = \alpha'$.