# Elemente de teoria mulțimilor

#### Matematică - anul I

Facultatea de Informatică, UAIC

e-mail: adrian.zalinescu@info.uaic.ro

web: https://profs.info.uaic.ro/~adrian.zalinescu

2 Octombrie, 2018

### Structura cursului

- Mulţimi. Relaţii. Funcţii (Curs 1)
- Şiruri în  $\mathbb{R}$  (Curs 2)
- Serii de numere reale (Cursurile 3&4)
- Spațiul  $\mathbb{R}^n$ : aspecte algebrice, topologice; aplicații liniare, biliniare și pătratice (*Cursurile 5–8*)
- Continuitatea funcțiilor de mai multe variabile (Curs 9)
- Diferențiabilitatea funcțiilor de mai multe variabile și aplicații (Cursurile 10&11)
- Integrare (Cursurile 12&13)

## Modalitatea de evaluare

#### Nota finală va fi alcătuită din:

- Prezență 10%, constituită din:
  - 5% prezență seminar, unde se punctează: prezența = 10, absența motivată (înainte de oră) = 5, absența = 0;
  - 5% activitate seminar (ieșiri la tablă): note de la 1 la 10;
- Activitate seminar 30%: 2 lucrări în săptămânile S4 și S12 la sfârșitul seminariilor, de 10 – 15 minute. Nu este obligatorie prezenţa, nu se cere notă minimă.
- Evaluare prin examene 60%: 2 examene scrise în săptămânile de evaluare (*E1* în *S8* și *E2* în *S15*), timp de lucru în medie *1h30min*. Prezența este obligatorie.

### Condiții de promovare a disciplinei:

- Prezența obligatorie la evaluările E1 și E2;
- Media evaluărilor E1 și E2: ≥ 4, 5;
- Punctaj total: > 4, 5.

4ロト 4個ト 4 差ト 4 差ト 差 めなべ

A. Zălinescu (lași) Cursul 1 2 Octombrie, 2018

#### Exemplu:

Un student vine la 4 seminarii, obține notele 6 și 5 prin ieșiri la tablă, la o lucrare ia nota 7 (lipsește la cealaltă), iar la evaluări notele 4 și 7. Nota sa este calculată astfel:

$$\left(\frac{40}{130}*5\% + \frac{6+5}{130}*5\% + \frac{7}{20}*30\% + \frac{4+7}{20}*60\%\right)*10 = \textbf{4}, \textbf{55}.$$

Cum toate condițiile de promovare sunt îndeplinite, acesta promovează cu nota **5**.

### Observații:

- Participanții la pregătirile pentru concursuri, cu rezultate în competițiile studențești de Matematică (minim medalie sau mențiune) vor avea echivalată activitatea de seminar (30% din punctajul final) cu nota 10.
- În sesiunea de restanțe se va da o probă scrisă la care studenții vor putea opta pentru refacerea evaluărilor E1 sau E2.

A. Zălinescu (Iași) Cursul 1 2 Octombrie, 2018

# Cuprins

- Mulţimi
  - Axiomele Zermelo-Fraenkel
  - Proprietăți
- Relaţii
  - Relații de echivalență
  - Relații de ordine
- § Funcţii

# Ce este o mulțime?

**Georg Cantor**: "un tot unitar, cu elemente distincte, în care ordinea de dispunere a elementelor nu are importanță"

#### Adică:

- o colecție de obiecte, a căror ordine nu contează;
- pentru scopul nostru, obiect = obiect matematic;
- aceste colecții (mulțimi) trebuie ele însele tratate ca obiecte (matematice).

Mulți matematicieni și filosofi au încercat să stabilească o *fundație a matematicii* (sfârșitul secolului 19 / începutul secolului 20).

Noțiunea de *mulțime*, așa cum a fost ea introdusă de Cantor, s-a dovedit foarte valoroasă pentru acest scop.

#### Totuși, apar câteva probleme:

• Ce obiecte pot fi elementele unor mulțimi?

Răspuns: pentru stabilirea unei baze solide a matematicii, e de ajuns ca toate obiectele să fie mulțimi (nu e foarte intuitiv).

Conceptul de mulțime este unul *primar*, deci nu va avea definiție.

• Ce reguli pentru formarea mulțimilor sunt permise?

La o primă vedere, dacă avem o proprietate  $\mathcal{P}(x)$  despre x (x este o variabilă pentru obiecte), obiectul

 $\{x \mid \mathcal{P}(x)\} \quad \text{(a se citi: clasa (colecția) acelor $x$ astfel încât $\mathcal{P}(x)$)}$ 

ar trebui să fie o mulțime.

## Paradoxul lui Russell

Această regulă duce la următorul "paradox" (printre altele), datorat lui **Bertrand Russell**:

• Este  $\{x \mid x \notin x\}$  ("mulțimea" tuturor mulțimilor care nu se conțin pe ele însele) o mulțime?

Răspunsul este categoric nu.

Acest lucru ne spune că obiectul abstract construit mai sus *nu trebuie* considerat o mulțime. Totuși, putem păstra anumite proprietăți  $\mathcal{P}(x)$  pentru care  $\{x \mid \mathcal{P}(x)\}$  să fie mulțime. Aceste proprietăți (sau reguli de construcție a mulțimilor) sunt date de un set de *axiome*. În continuare vom reda setul de axiome introduse de **Ernst Zermelo** and

In continuare vom reda setul de axiome introduse de **Ernst Zermelo** and **Abraham Fraenkel** (la începutul secolului 20).

2 Octombrie, 2018

# Teoria Zermelo-Fraenkel a mulțimilor

Matematica poate fi descrisă în *limbajul formal* al *teoriei mulțimilor* (ZFC) În acest limbaj:

- toate obiectele pot fi considerate drept mulțimi ele vor fi reprezentate de *variabile*: x,y, z, a, b, c, A, B, C, etc.;
- două relații primare între mulțimi vor fi considerate:
  - egalitatea: = (relație logică);
  - apartenența: ∈ (specifică teoriei mulțimilor);
- formule sau propretăți ce pot fi scrise cu ajutorul simbolurilor de mai sus și al altor simboluri logice: ⇒, ⇔, ∧, ∨, ¬, ∃, ∀.

**Exemplu:** " $\{x \mid x \notin x\}$  nu este o mulțime" se poate scrie în ZFC ca

$$\neg (\exists A \forall x (x \in A \Leftrightarrow \neg (x \in x))).$$

# Axioma extensionalității

#### Axioma ZF<sub>1</sub>

Două mulțimi sunt egale dacă au aceleași elemente.

*Interpretare*: dacă A și B sunt mulțimi, atunci  $\forall x (x \in A \Leftrightarrow x \in B)$  implică A = B.

### Definiție

Fie A și B mulțimi.

- $A \subseteq B$  (A este o submulțime a lui B):  $\forall x (x \in A \Rightarrow x \in B)$ ;
- $A \subseteq B$  (A este o submulțime proprie a lui B):  $A \subseteq B$  și  $A \neq B$ .

## Propoziție

Fie A, B și C mulțimi. Atunci:

- *i*)  $A \subseteq A$  (reflexivitate);
- ii)  $A \subseteq B$  și  $B \subseteq A$  implică A = B (antisimetrie);
- *iii*)  $A \subseteq B$  și  $B \subseteq C$  implică  $A \subseteq C$  (tranzitivitate).

# Axioma de comprehensiune

#### Axioma ZF<sub>2</sub>

Pentru orice mulțime A și orice proprietate  $\mathcal{P}$  (privind elementele lui A), există o mulțime ce conține elementele lui A care satisfac  $\mathcal{P}$  și numai acestea.

- Această mulțime se notează  $\{x \in A \mid \mathcal{P}\}$  sau  $\{x \in A; \mathcal{P}\}$  și este o submulțime a lui A.
- Este aceeași cu clasa  $\{x \mid (x \in A) \land P\}$  și este unică, datorită  $ZF_1$ .

# Axioma mulțimii vide

#### Axioma ZF<sub>3</sub>

Există o mulțime fără elemente.

- Această mulțime este unică (din ZF₁) și se notează Ø.
- Avem:  $\emptyset = \{x \mid x \neq x\}.$

# Axioma perechii

#### Axioma ZF<sub>4</sub>

Pentru orice mulțimi x și y există o mulțime care are doar pe x și y ca elemente.

- Vom nota  $\{x, y\}$  o astfel de mulțime.
- $\{x, y\}$  se numește pereche neordonată.
- Mulțimea  $\{x, x\}$  se mai notează  $\{x\}$ .
- Bineînțeles,  $\{x, y\} = \{z \mid (z = x) \lor (z = y)\}.$

## Perechi ordonate

Definim perechea ordonată ca

$$(x,y) := \{\{x\}, \{x,y\}\}.$$

## Propoziție

Fie x, y, x' și y' mulțimi. Atunci (x,y)=(x',y') dacă și numai dacă x=x' și y=y'.

Generalizare la  $n \ (n \ge 3)$  mulțimi: n-uplu (ordonat) cu elementele  $x_1, \ldots, x_n$ :

$$(x_1,\ldots,x_n):=((x_1,\ldots,x_{n-1}),x_n).$$

# Axioma mulțimii părților

#### Axioma ZF<sub>5</sub>

Pentru o mulțime A, există o altă mulțime care este formată numai din submulțimile lui A.

- Vom nota  $\mathscr{P}(A)$  o astfel de mulțime, pe care o vom numi mulțimea părților lui A.
- Astfel,  $B \in \mathscr{P}(A) \Leftrightarrow B \subseteq A$ , adică  $\mathscr{P}(A) = \{B \mid B \subseteq A\}$ .
- Bineînțeles,  $\emptyset \in \mathscr{P}(A)$ .

## Axioma reuniunii

#### Axioma ZF<sub>6</sub>

Pentru orice mulțime  $\mathcal{A}$ , există o altă mulțime ce conține numai elementele elementelor lui  $\mathcal{A}$ .

- Numim o astfel de mulțime reuniunea lui  $\mathcal{A}$  și o notăm  $\bigcup \mathcal{A}$ .
- Avem:  $x \in \bigcup \mathcal{A}$  dacă și numai dacă există  $A \in \mathcal{A}$  astfel încât  $x \in A$ , adică

$$\bigcup \mathcal{A} = \{ x \mid \exists A : x \in A \} .$$

• Dacă  $\mathcal{A} = \{A_i\}_{i \in I}$ , unde I este o mulțime de *indici*, vom scrie  $\bigcup_{i \in I} A_i$  în loc de  $\bigcup \{A_i\}_{i \in I}$ . Evident,

$$x \in \bigcup_{i \in I} A_i \Leftrightarrow \exists i \in I : x \in A_i.$$

(ロ) (型) (型) (型) (型) (型) のQで

A. Zălinescu (Iași) Cursul 1 2 Octombrie, 2018

# Reuniunea unui număr finit de mulțimi

## Definiție

Dacă A și B sunt mulțimi, numim reuniunea mulțimilor A și B mulțimea  $A \cup B := \bigcup \{A, B\}$ .

- Este clar că  $x \in A \cup B$  dacă și numai dacă  $x \in A$  sau  $x \in B$ .
- Generalizare la  $n \ (n \ge 3)$  mulțimi: reuniunea mulțimilor  $A_1, \ldots, A_n$ :

$$\bigcup_{k=1}^n A_k = A_1 \cup \cdots \cup A_n := (A_1 \cup \cdots \cup A_{n-1}) \cup A_n.$$

• Avem:  $A_1 \cup \cdots \cup A_n = \bigcup \{A_1, \ldots, A_n\}$ , dar mai întâi trebuie să introducem noțiunea de *n-uplu neordonat* cu elementele  $x_1, \ldots, x_n$ :

$$\{x_1,\ldots,x_n\}:=\{x_1,\ldots,x_{n-1}\}\cup\{x_n\}.$$



A. Zălinescu (Iași) Cursul 1 2 Octombrie, 2018

# Intersecția

Dacă  ${\mathcal A}$  este o mulțime, *intersecția* lui  ${\mathcal A}$  este clasa

$$\bigcap \mathcal{A} := \{ x \mid x \in A, \ \forall A \in \mathcal{A} \} .$$

Dacă  $\mathcal{A}$  este nevidă, atunci  $\bigcap \mathcal{A}$  este o mulțime și  $\bigcap \mathcal{A} \subseteq \bigcup \mathcal{A}$ . Prin analogie cu noțiunea de reuniune:

- Scriem  $\bigcap_{i \in I} A_i$  în loc de  $\bigcap \{A_i\}_{i \in I}$ .
- Numim *intersecția* mulțimilor A și B mulțimea  $A \cap B := \bigcap \{A, B\}$ .
- Bineînțeles,  $x \in A \cap B$  dacă și numai dacă  $x \in A$  and  $x \in B$ .
- Generalizare la  $n \ (n \ge 3)$  mulțimi: intersecția mulțimilor  $A_1, \ldots, A_n$ :

$$\bigcap_{k=1}^{n} A_{k} = A_{1} \cap \cdots \cap A_{n} := (A_{1} \cap \cdots \cap A_{n-1}) \cap A_{n}$$
$$= \bigcap \{A_{1}, \dots, A_{n}\}.$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

A. Zălinescu (lași) Cursul 1 2 Octombrie, 2018

# Diferența mulțimilor

Fie A și B mulțimi.

• Diferența mulțimilor A și B este

$$A \setminus B := \{ x \in A \mid x \notin B \} .$$

• Diferența simetrică a mulțimilor A și B este

$$A\triangle B:=(A \setminus B) \cup (B \setminus A).$$

# Complemente

• Dacă A este o mulțime, complementul absolut al lui A este clasa

$$A^{c} := \{ x \mid x \notin A \},\,$$

care nu este mulțime.

- Totuși, dacă  $A \subseteq U$ , complementul relativ al lui A în raport cu U,  $C_A^U := U \setminus A$  este în mod evident o mulțime.
- Câteodată, atunci când mulțimea U este implicită (un *univers*), notăm  $C_A$  în loc de  $C_A^U$ .

A. Zălinescu (lași)

# Proprietăți ale operațiilor cu mulțimi

## Propoziție

Fie A, B, C mulțimi și U univers (în scopul efectuării de complemente relative). Atunci:

- *i*)  $A \cup A = A \cap A = A$  (idempotență);
- ii)  $A \cup \emptyset = A$ ;  $A \cap \emptyset = \emptyset$ ;
- iii)  $A \cup B = B \cup A$ ;  $A \cap B = B \cap A$  (comutativitate);
- iv)  $(A \cup B) \cup C = A \cup (B \cup C)$ ;  $(A \cap B) \cap C = A \cap (B \cap C)$  (asociativitate);
- v)  $(A \cup B) \cap C = (A \cap C) \cup (B \cap C);$  $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$  (distributivitate);
- *vi*)  $A \cup (A \cap B) = A \cap (A \cup B) = A$  (absorbţie);

◆ロト ◆個ト ◆重ト ◆重ト ■ 釣りで

$$VII)$$
  $C_{C_A} = A;$ 

*viii*) 
$$C_{A \cup B} = C_A \cap C_B$$
;  $C_{A \cap B} = C_A \cup C_B$  (legile De Morgan);

ix) 
$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B);$$
  
 $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B);$ 

$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C);$$
$$(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C);$$

$$xi$$
)  $A\triangle A = \emptyset$ ;  $A\triangle \emptyset = A$ ;

$$xii)$$
  $A\triangle B = B\triangle A;$ 

$$xiii) (A\triangle B)\triangle C = A\triangle (B\triangle C).$$

## Produsul cartezian

## Definiție

Numim produsul cartezian al mulțimilor A și B mulțimea

$$A \times B := \{(x, y) \mid x \in A, y \in B\}.$$

#### Propoziție

Fie A, B și C mulțimi. Atunci:

- *i*)  $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ;
- ii)  $A \times (B \cap C) = (A \times B) \cap (A \times C);$
- *iii*)  $(A \cup B) \times C = (A \times C) \cup (B \times C)$ ;
- *iv*)  $(A \cap B) \times C = (A \times C) \cap (B \times C)$ .

A. Zălinescu (Iași)

Generalizare la  $n (n \ge 3)$  mulțimi:

$$A_1 \times \cdots \times A_n := (A_1 \times \cdots \times A_{n-1}) \times A_n$$
  
= \{(x\_1, \cdots, x\_n) \cdot | x\_1 \in A\_1, \cdots, x\_n \in A\_n\}.

## Alte axiome

## Axioma înlocuirii - ZF7

Pentru orice mulțime A și orice proprietate  $\mathcal P$  astfel încât

$$\forall x(x \in A \Rightarrow \exists! y : \mathcal{P}),$$

există o mulțime B astfel încât

$$\forall y(y \in B \Leftrightarrow \exists x \in A : \mathcal{P}).$$

#### Axioma infinitului – ZF<sub>8</sub>

Există o mulțime C astfel încât:

- i)  $\emptyset \in C$ ;
- ii)  $x \in C \Rightarrow x \cup \{x\} \in C$ .

Cu ajutorul ZF<sub>8</sub> putem construi mulțimea numerelor naturale:

• Fie C o mulțime ce satisface i) și ii); definim

$$\omega := \bigcap \{ N \in \mathscr{P}(C) \mid N \text{ satisface i) si ii} \}.$$

Atunci  $\omega$  însăși satisface i) și ii).

- Putem defini:  $0 := \emptyset$ ,  $1 := \{0\} = \{\emptyset\}$ ,  $2 := 1 \cup \{1\} = \{\emptyset, \{\emptyset\}\}$ ,  $3 := 2 \cup \{2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$ , samd ...
- Avem:  $0, 1, 2, 3, \dots \in \omega$ ; astfel  $\omega$  devine un prototip pentru *mulțimea* numerelor naturale, notată de obicei prin  $\mathbb{N}$ .
- Elementele acesteia se numesc numere naturale.

A. Zălinescu (lași) Cursul 1 2 Octombrie, 2018

#### Axioma fundației - ZF9

Pentru orice mulțime nevidă A, există o mulțime  $x \in A$  astfel încât  $x \cap A = \emptyset$ .

- Această axiomă are rolul de a preveni comportamente patologice ale mulțimilor.
- De exemplu, pentru orice mulțime x, avem  $x \notin x$  (e de ajuns să luăm  $A := \{x\}$  în  $\mathrm{ZF}_9$ ).

#### Axioma alegerii - ZF<sub>10</sub>

Pentru orice mulțime  $\mathcal A$  formată din mulțimi nevide și disjuncte două câte două, există o mulțime  $\mathcal C$  astfel încât pentru orice  $\mathcal A \in \mathcal A$ ,  $\mathcal C$  și  $\mathcal A$  au precis un element comun.

# Relații

### Definiție

Fie A și B mulțimi.

- O relație (binară) de la A la B este o submulțime a lui A × B.
- În cazul A = B, spunem că R este o *relație pe A*.

Terminologie: dacă R este o relație de la A la B și  $(x,y) \in R$ ,

- spunem că x este în relația R cu y;
- notăm adesea xRy.

Fie R o relație de la A la B și S o relație de la B la C.

• Domeniul, respectiv imaginea sau codomeniul relației R sunt:

Dom 
$$R := \{x \in A \mid \exists y \in B : xRy\}$$
,  
Im  $R := \{y \in B \mid \exists x \in A : xRy\}$ .

Inversa relației R este următoarea relație de la B la A:

$$R^{-1} := \{(y, x) \in B \times A \mid xRy\}.$$

• Compunerea lui S cu R este următoarea relație de la A la C:

$$S \circ R := \{(x, z) \in A \times C \mid \exists y \in B : xRy \land ySz\}.$$

Fie A o mulțime. *Identitatea* pe A este relația

$$1_A := \{(x, x) \mid x \in A\}.$$

#### Definiție

Fie R o relație pe A. Spunem că R este:

- reflexivă dacă xRx,  $\forall x \in A$ , adică  $1_A \subseteq R$ ;
- simetrică dacă  $xRy \Rightarrow yRx$ ,  $\forall x, y \in A$ , adică  $R^{-1} = R$ ;
- antisimetrică dacă  $xRy \land yRx \Rightarrow x = y, \ \forall x, y \in A$ , adică  $R \cap R^{-1} = 1_A$ ;
- tranzitivă dacă  $xRy \land yRz \Rightarrow xRz$ ,  $\forall x, y, z \in A$ , adică  $R \circ R \subseteq R$ ;
- totală dacă  $xRy \lor yRx$ ,  $\forall x, y \in A$ , adică  $R \cup R^{-1} = A \times A$ .

A. Zălinescu (lasi) Cursul 1 2 Octombrie, 2018

4 日 × 4 图 × 4 图 × 4 图 ×

# Relații de echivalență

## Definiție

Fie R o relație pe A. Spunem că R este o relație de echivalență pe A dacă este reflexivă, simetrică și tranzitivă.

## Definiție

Fie R o relație de echivalență pe A.

• Clasa de echivalență a lui  $x \in A$  este:

$$\widehat{x}_R = [x]_R := \{ y \in A \mid xRy \} .$$

• Câtul lui A în raport cu R este:

$$A/_R := \{\widehat{x}_R \mid x \in A\}.$$

# Propoziție

Fie R o relație de echivalență pe A. Atunci:

- *i*)  $x \in \widehat{x}$ ,  $\forall x \in A$ ;
- ii)  $y \in \widehat{x} \Leftrightarrow \widehat{x} = \widehat{y} \Leftrightarrow xRy, \ \forall x, y \in A.$

Clasele de echivalență sunt de obicei notate  $\sim$ ,  $\simeq$ ,  $\approx$ ,  $\equiv$ , etc.

# Relații de ordine

#### Definiție

Fie R o relație pe A. Spunem că R este:

- o ordine pe A dacă este reflexivă, antisimetrică și tranzitivă;
- o preordine pe A dacă este reflexivă și tranzitivă;
- o ordine totală pe A dacă este o ordine pe A și este o relație totală.
- În cazurile de mai sus, numim perechea (A, R) o mulțime ordonată (preordonată, respectiv total ordonată).
- Relațiile de ordine sunt de obicei notate prin  $\leq$ ,  $\leq$ ,  $\leqslant$ , etc.
- Inversele acestora sunt notate  $\geq$ ,  $\succeq$ ,  $\gtrsim$ , respectiv  $\geqslant$ .
- De asemenea, dacă  $\leq$  este o preordine pe A,  $\prec$  va nota relația  $\leq \setminus 1_A$ , adică  $x \prec y \Leftrightarrow (x \leq y) \land (x \neq y)$  pentru orice  $x, y \in A$  (convenții similare se aplică și celorlalte simboluri).

A. Zălinescu (lași) Cursul 1 2 Octombrie, 2018

Fie  $(A, \preceq)$  o mulțime preordonată și  $B \subseteq A$ .

- Un element  $a \in A$  se numește un *majorant* pentru B dacă  $x \leq a$ ,  $\forall x \in B$ .
- Un element  $a \in A$  se numește un *minorant* pentru B dacă  $x \succeq a$ ,  $\forall x \in B$ .
- Dacă B admite un majorant, un minorant sau ambii, spunem că B este mărginită superior, mărginită inferior, respectiv mărginită.
- Dacă  $a \in A$  este un majorant pentru B și  $a \in B$ , spunem că a este un punct de maxim pentru B.
- Dacă  $a \in A$  este un minorant pentru B și  $a \in B$ , spunem că a este un punct de *minim* pentru B.

- În general, pot exista mai multe puncte de maxim sau de minim pentru *B*.
- Totuși, dacă 

   de este o preordine, atunci punctele de maximum și de minimum, dacă există, sunt unice.
- Le notăm  $\max_{\leq} B$ , respectiv  $\min_{\leq} B$  ( $\max B$ , respectiv  $\min B$ , dacă nu există posibilitate de confuzie).

Fie  $(A, \preceq)$  o mulțime ordonată și  $B \subseteq A$ .

- Spunem că un element a ∈ A este marginea superioară (sau supremum) a lui B dacă a este cel mai mic majorant al lui B, adică a = min U, unde U este mulțimea tuturor majoranților lui B. Un astfel de element, dacă există, se notează sup B (sau, mai simplu sup B).
- Spunem că un element  $a \in A$  este marginea inferioară (sau infimum) a lui B dacă a este cel mai mare minorant al lui B, adică  $a = \max L$ , unde L este mulțimea tuturor minoranților lui B. Un astfel de element, dacă există, se notează  $\inf \prec B$  (sau, mai simplu  $\inf B$ ).

Fie  $(A, \leq)$  o mulțime ordonată.

- Spunem că  $(A, \preceq)$  este *Dedekind completă* dacă orice submulțime nevidă a lui A care este mărginită superior admite un supremum.
- Spunem că (A, ≤) este bine ordonată dacă orice submulțime nevidă a lui A admite un minimum.
- O mulțime ordonată este Dedekind completă dacă și numai dacă fiecare submulțime nevidă a sa care este minorată admite un infimum.
- O mulțime bine ordonată este o mulțime total ordonată.
- Dacă acceptăm axima alegerii  $ZF_{10}$ , se poate demonstra că orice mulțime poate fi bine ordonată (adică, pentru orice mulțime A există o ordine  $\leq$  pe A astfel încât  $(A, \leq)$  să fie bine ordonată).

# Funcții

## Definiție

Fie A și B mulțimi. O funcție de la A la B este o relație  $f \subseteq A \times B$  care satisface:

- Dom f = A;
- $(x, y) \in f$ ,  $(x, z) \in f \Rightarrow y = z$ ,  $\forall x \in A$ ,  $\forall y, z \in B$ .

Notăm acest lucru  $f: A \rightarrow B$ .

- Dacă  $f: A \to B$  și  $x \in A$ , notăm f(x) unicul element  $y \in B$  astfel încât  $(x, y) \in f$ .
- Dacă dorim să definim o funcție  $f:A\to B$ , este de ajuns să specificăm valoarea f(x) pentru fiecare  $x\in A$ .
- Pentru o funcție  $f: A \to B$ ,  $f = \{(x, f(x)) \mid x \in A\}$ ; când "uităm" că f este o relație, numim aceasta din urmă graficul lui f.

A. Zălinescu (lași) Cursul 1 2 Octombrie, 2018

4 D F 4 D F 4 D F 4 D F -

- Identitatea pe o mulțime A este o funcție,  $1_A:A\to A$   $(1_A(x)=x,\ \forall x\in A).$
- Dacă X și Y sunt mulțimi, notăm  $\mathscr{F}(X;Y)$  mulțimea funcțiilor de la X la Y.

Fie  $f: A \rightarrow B$  o funcție.

- Dacă  $E \subseteq A$ , funcția  $f|_E := f \cap (E \times B)$  (adică  $f|_E(x) := f(x)$ ,  $\forall x \in E$ ) se numește *restricția* lui f la E.
- Dacă  $E \subseteq A$ , *imaginea* lui f prin E este:

$$f[E] := \{ y \in B \mid \exists x \in E : (x, y) \in f \}.$$

• Dacă  $F \subseteq B$ , preimaginea sau imaginea inversă a lui f prin F este:

$$f^{-1}[F] := \{ x \in A \mid \exists y \in F : (x, y) \in f \}.$$

Pentru o funcție  $f: A \rightarrow B$ ,

- $f[\emptyset] = \emptyset$ ,
- $\bullet \ f^{-1}[\emptyset] = \emptyset,$
- $f[A] = \operatorname{Im} f$ ,
- $f^{-1}[B] = \text{Dom } f = A$ .

O funcție  $f: A \rightarrow B$  se numește:

- injectivă dacă pentru orice  $x, y \in A$ ,  $f(x) = f(y) \Rightarrow x = y$ ;
- surjectivă dacă  $\operatorname{Im} f = B$ ;
- bijectivă dacă este atât injectivă cât și surjectivă;
- inversabilă dacă există  $g: B \to A$  astfel încât  $f \circ g = 1_B$  și  $g \circ f = 1_A$ .

O funcție  $f: A \to B$  este injectivă dacă și numai dacă relația  $f^{-1}$  este o funcție de la Im f to A.

## Propoziție

O funcție  $f:A\to B$  este bijectivă dacă și numai dacă este inversabilă. În acest caz,  $f^{-1}$  este o funcție de la B la A și

- $f \circ f^{-1} = 1_B$ ,
- $f^{-1} \circ f = 1_A$ .

Fie o mulțime U suficient de mare. Dacă  $A\subseteq U$ , numim funcția caracteristică a lui A funcția  $\chi_A:U\to\{0,1\}$  definită de

$$\chi_A(x) := \left\{ \begin{array}{ll} 1, & x \in A; \\ 0, & x \in C_A. \end{array} \right.$$

## Propoziție

Fie A și B două submulțimi ale lui U. Atunci:

- *i*)  $A \subseteq B \Leftrightarrow \chi_A \leq \chi_B$ ;
- ii)  $\chi_{C_A} = 1 \chi_A$ ;
- iii)  $\chi_{A\cap B}=\chi_A\cdot\chi_B$ ;
- iv)  $\chi_{A\cup B} = \chi_A + \chi_B \chi_A \cdot \chi_B$ .

A. Zălinescu (Iași)

Cursul 1

# Bibliografie selectivă

- M. Gorunescu, Lecţii de analiză matematică pentru informaticieni, Ed. Univ. Craiova, 2000.
- M. Postolache, *Analiză matematică (teorie și aplicații)*, Ed. Fair Partners, București, 2011.
- Language Set Theory, 2011.
- V. Postolică, Baze ale matematicii actualizate prin eficiență, Matrix Rom, București, 2008.
- 🗣 F. L. Țiplea, *Introducere în teoria mulțimilor*, Ed. Univ. "Al. I. Cuza", Iași, 1998.
- B. Poonen, *Infinity: Cardinal Numbers*, 2002.
- W. F. Trench, Introduction to Real Analysis, Pearson Education Publ., 2009
- E. Cioară, M. Postolache, Capitole de analiză matematică, Ed. Fair Partners, București, 2010.
- S. O'Regan, *Mathematics in Computing* (Ch. 2), Springer Verlag, London, 2013.

A. Zălinescu (lași) Cursul 1 2 Octombrie, 2018

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶