

Elektrik-Elektronik Mühendisliği Sayısal Lojik

Deney Raporu-6

Yakup Demiryürek 180711049

(Bahar 2023)

Amaç

3-bit toplayıcı devre tasarımı amaçlanmıştır.

Ekipmanlar

Xilinx yüklü bilgisayar

Deney Çalışması

DC₁

Xilinx programında Şekil 1'de gösterildiği gibi tam-toplayıcı devrenin Vhdl kodu yazılmıştır.

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library UNISIM;
use UNISIM. VComponents.all;
entity deney6adder is
    Port ( A : in STD_LOGIC;
           B : in STD_LOGIC;
          Cin : in STD_LOGIC;
          S : out STD_LOGIC;
          Cout : out STD_LOGIC);
end deney6adder;
architecture Behavioral of deney6adder is
signal AxrB: std_logic;
begin
AxrB <= A xor B;
S <= AxrB xor Cin;
Cout <= (AxrB and Cin) or (A and B);
end Behavioral;
```

Şekil 1.Tam-toplayıcı Vhdl

Simülasyonun için gerekli kod Şekil 2'de simülasyon Şekil 3'de gösterilmiştir.

```
A_process :process
begin
  A <= '0';
  wait for period*4;
  A <= '1';
  wait for period*4;
end process;
B_process :process
begin
  B <= '0';
  wait for period*2;
  B <= '1';
  wait for period*2;
end process;
Cin_process :process
begin
  Cin <= '0';
  wait for period;
  Cin <= '1';
   wait for period;
end process;
```

Şekil 2.Simülasyon kodu

Şekil 3.Tam-toplayıcı simülasyon

DC₂

Şekil 1'de yazılan Tam-toplayıcı VHDL kodu ile 3-bitlik A (A₂A₁A₀) ve B (B₂B₁B₀) sayılarını toplayıp 4-bitlik S (S₃S₂S₁S₀) sonucunu veren devrenin kodu **Şekil 4**'deki gibi yazılmıştır.

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library UNISIM;
use UNISIM.VComponents.all;
entity threebitadder is
    Port ( Ain : in STD_LOGIC_VECTOR (2 downto 0);
Bin : in STD_LOGIC_VECTOR (2 downto 0);
            Sout : out STD_LOGIC_VECTOR (3 downto 0));
end threebitadder;
architecture Behavioral of threebitadder is
component deney6adder
    Port ( A : in STD_LOGIC;
            B : in STD_LOGIC;
            Cin : in STD_LOGIC;
            S : out STD_LOGIC;
            Cout : out STD_LOGIC);
end component;
signal c:std logic vector(2 downto 0);
begin
 \label{eq:FA0: denoy6adder port map(A=>Ain(0),B=>Bin(0),Cin=>'0',S=>Sout(0),Cout=>c(0)); } \\
FA1: deney6adder port map(A=>Ain(1),B=>Bin(1),Cin=>c(0),S=>Sout(1),Cout=>c(1));
FA2: deney6adder port map(A=>Ain(2),B=>Bin(2),Cin=>c(1),S=>Sout(2),Cout=>c(2));
Sout(3) <= c(2);
end Behavioral;
```

Şekil 4. 3-bit tam-toplayıcı Vhdl

Simülasyonun için gerekli kod Şekil 5'de simülasyon Şekil 6'de gösterilmiştir.

```
Ain2_process :process
begin
   Ain(2) <= '0';
   wait for period*64;
   Ain(2) <= '1';
   wait for period*64;
end process;
Ain1_process :process
begin
   Ain(1) <= '0';
   wait for period*32;
   Ain(1) <= '1';
   wait for period*32;
end process;
Ain0_process :process
begin
   Ain(0) <= '0';
   wait for period*16;
   Ain(0) <= '1';
   wait for period*16;
end process;
Bin2_process :process
begin
   Bin(2) <= '0';
   wait for period*4;
   Bin(2) <= '1';
   wait for period*4;
end process;
Bin1_process :process
begin
   Bin(1) <= '0';
   wait for period*2;
   Bin(1) <= '1';
   wait for period*2;
end process;
Bin0_process :process
begin
   Bin(0) <= '0';
   wait for period;
   Bin(0) <= '1';
   wait for period;
end process;
Şekil 5.Simülasyon kodu
```


Şekil 6. 3-bit tam-toplayıcı simülasyon

DÇ3

4-bit girişli 8-bit çıkışlı 7-parçalı göstergenin kodu Şekil 7'deki gibi yazılmıştır.

```
with A select S
"01000000" when "0000",
"01111001" when "0011",
"00110000" when "0011",
"00011001" when "0100",
"0000001" when "0110",
"00000000" when "0111",
"00000000" when "1000",
"00010000" when "1000",
"00001000" when "1001",
"0000010" when "1011",
"01111100" when "1101",
"0000011" when "1101",
"0000011" when "1110",
"00000110" when "1110",
"00000110" when "1111",
"01111111" when others;
```

Şekil 7.Sev-seg Vhdl

Simülasyonun için gerekli kod Şekil 8'de simülasyon Şekil 9'de gösterilmiştir.

```
A3_process :process
 begin
    A(3) <= '0';
    wait for period*8;
    A(3) <= '1';
    wait for period*8;
 end process;
 A2_process :process
 begin
    A(2) <= '0';
    wait for period*4;
    A(2) <= '1';
    wait for period*4;
 end process;
 Al_process :process
 begin
    A(1) <= '0';
    wait for period*2;
    A(1) <= '1';
    wait for period*2;
 end process;
 A0_process :process
 begin
    A(0)<= '0';
    wait for period;
    A(0) <= '1';
    wait for period;
 end process;
JD;
```

Şekil 8.Simülasyon Kodu

Şekil 9. Sev-seg simülasyon

DC4

DÇ2'deki 3-bit toplayıcı devresi ile **DÇ3**'deki 7-parçalı gösterge devreleri şema haline getirilip **Şekil 10**'daki gibi birleştirilmiştir.

Şekil 10. 3-bit tam toplayıcı devre ile 7-parçalı gösterge devrelerinin birleşimi

DÇ5

DÇ4'teki devrenin simülasyonu için gerekli kod **Şekil 11**'de simülasyon **Şekil 12**'de gösterilmiştir.

```
Ain2process : process
begin
Ain(2)<='0'; wait for period*32;
Ain(2)<='1'; wait for period*32;
end process;
Ainlprocess : process
begin
Ain(1) <= '0'; wait for period*16;
Ain(1)<='1'; wait for period*16;
end process;
AinOprocess : process
begin
Ain(0)<='0';wait for period*8;
Ain(0)<='l';wait for period*8;
end process;
Bin2process : process
begin
Bin(2)<='0';wait for period*4;
Bin(2)<='1'; wait for period*4;
end process;
Binlprocess : process
begin
Bin(1) <= '0'; wait for period*2;
Bin(1)<='1'; wait for period*2;
end process;
BinOprocess : process
begin
Bin(0)<='0'; wait for period;
Bin(0) <= 'l'; wait for period;
end process;
```

Şekil 11.Simülasyon Kodu

Şekil 12. 3-bit tam toplayıcı devre ile 7-parçalı gösterge devrelerinin simülasyonu

Sonuç

S2

F çıkışı elde edilebilmesi için 4-bit tam-toplayıcı devresine ihtiyaç duyulur.

S1

A ₂	$\mathbf{A_1}$	A ₀	B ₂	\mathbf{B}_1	\mathbf{B}_0	S_0	S_1	S_2	S_3	S ₄	S ₅	S 6	S 7	
0	0	0	0	0	0	1	1	1	1	1	1	0	1	0
0	0	0	0	0	1	0	1	1	0	0	0	0	1	1
0	0	0	0	1	0	1	1	0	1	1	0	1	1	2
0	0	0	0	1	1	1	1	1	1	0	0	1	1	3
0	0	0	1	0	0	0	1	1	0	0	1	1	1	4
0	0	0	1	0	1	1	0	1	1	0	1	1	1	5
0	0	0	1	1	0	1	0	1	1	1	1	1	1	6
0	0	0	1	1	1	1	1	1	0	0	0	0	1	7
0	0	1	0	0	0	0	1	1	0	0	0	0	1	1
0	0	1	0	0	1	1	1	0	1	1	0	1	1	2
0	0	1	0	1	0	1	1	1	1	0	0	1	1	3
0	0	1	0	1	1	0	1	1	0	0	1	1	1	4
0	0	1	1	0	0	1	0	1	1	0	1	1	1	5
0	0	1	1	0	1	1	0	1	1	1	1	1	1	6
0	0	1	1	1	0	1	1	1	0	0	0	0	1	7
0	0	1	1	1	1	1	1	1	1	1	1	1	1	8
0	1	0	0	0	0	1	1	0	1	1	0	1	1	2
0	1	0	0	0	1	1	1	1	1	0	0	1	1	3
0	1	0	0	1	0	0	1	1	0	0	1	1	1	4
0	1	0	0	1	1	1	0	1	1	0	1	1	1	5
0	1	0	1	0	0	1	0	1	1	1	1	1	1	6
0	1	0	1	0	1	1	1	1	0	0	0	0	1	7
0	1	0	1	1	0	1	1	1	1	1	1	1	1	8
0	1	0	1	1	1	1	1	1	1	0	1	1	1	9
0	1	1	0	0	0	1	1	1	1	0	0	1	1	3
0	1	1	0	0	1	0	1	1	0	0	1	1	1	4
0	1	1	0	1	0	1	0	1	1	0	1	1	1	5

0	1	1	0	1	1	1	0	1	1	1	1	1	1	6
0	1	1	1	0	0	1	1	1	0	0	0	0	1	7
0	1	1	1	0	1	1	1	1	1	1	1	1	1	8
0	1	1	1	1	0	1	1	1	1	0	1	1	1	9
0	1	1	1	1	1	1	1	1	0	1	1	1	1	A
1	0	0	0	0	0	0	1	1	0	0	1	1	1	4
1	0	0	0	0	1	1	0	1	1	0	1	1	1	5
1	0	0	0	1	0	1	0	1	1	1	1	1	1	6
1	0	0	0	1	1	1	1	1	0	0	0	0	1	7
1	0	0	1	0	0	1	1	1	1	1	1	1	1	8
1	0	0	1	0	1	1	1	1	1	0	1	1	1	9
1	0	0	1	1	0	1	1	1	0	1	1	1	1	A
1	0	0	1	1	1	0	0	1	1	1	1	1	1	В
1	0	1	0	0	0	0	1	1	0	1	1	0	1	5
1	0	1	0	0	1	0	1	1	1	1	1	0	1	6
1	0	1	0	1	0	1	1	0	0	0	0	1	1	7
1	0	1	0	1	1	1	1	1	1	1	1	1	1	8
1	0	1	1	0	0	1	1	1	0	1	1	1	1	9
1	0	1	1	0	1	1	1	0	1	1	1	1	1	A
1	0	1	1	1	0	0	1	1	1	1	1	0	1	В
1	0	1	1	1	1	0	0	1	1	1	0	0	1	C
1	1	0	0	0	0	0	1	1	1	1	1	0	1	6
1	1	0	0	0	1	1	1	0	0	0	0	1	1	7
1	1	0	0	1	0	1	1	1	1	1	1	1	1	8
1	1	0	0	1	1	1	1	1	0	1	1	1	1	9
1	1	0	1	0	0	1	1	0	1	1	1	1	1	A
1	1	0	1	0	1	0	1	1	1	1	1	0	1	В
1	1	0	1	1	0	0	0	1	1	1	0	0	1	C
1	1	0	1	1	1	1	1	1	1	0	1	1	1	D
1	1	1	0	0	0	1	1	1	0	0	0	0	1	7
1	1	1	0	0	1	1	1	1	1	1	1	1	1	8
1	1	1	0	1	0	1	1	1	1	0	1	1	1	9
1	1	1	0	1	1	1	1	1	0	1	1	1	1	A
1	1	1	1	0	0	0	0	1	1	1	1	1	1	В
1	1	1	1	0	1	1	0	0	1	1	1	0	1	C
1	1	1	1	1	0	0	1	1	1	1	0	1	1	D
1	1	1	1	1	1	1	0	0	1	1	1	1	1	E