Trabalho Sistemas de Controle Automático II, I/2023

Data de entrega do trabalho: 24/10/2023

Aluno	Planta	Requisitos do projeto
1	$G(s) = \frac{10}{s \cdot (s+15)}$	m.f. = 45° ; m.g. = 12 dB ; $e_{SS} = 0.01$.
2	$G(s) = \frac{15}{s \cdot (s+25)}$	m.f. = 55° ; m.g. = 10 dB ; $e_{SS} = 0,012$.
3	$G(s) = \frac{20}{s \cdot (s+35)}$	m.f. = 50° ; m.g. = 12 dB ; $e_{SS} = 0,015$.
4	$G(s) = \frac{25}{s \cdot (s+33)}$	m.f. = 53° ; m.g. = 15 dB ; $e_{SS} = 0.01$.
5	$G(s) = \frac{33}{s \cdot (s+45)}$	m.f. = 56° ; m.g. = 13 dB ; $e_{SS} = 0,009$
6	$G(s) = \frac{37}{s \cdot (s+41)}$	m.f. = 49°; m.g. = 15 dB; $e_{SS} = 0.011$

Roteiro para o Trabalho

- 1. O relatório do trabalho deve ser feito no Microsoft Word.
- 2. Todos os cálculos e todos os gráficos devem ser feitos no MATLAB e exportados para o Microsoft Word.
- 3. Sequência do projeto de compensador:
 - definir o número do tipo da função de transferência da planta (tipo 0, tipo 1 ou tipo 2); calcular o ganho adicional K necessário para atender o requisito de precisão (e_{SS} erro estático);
 - calcular a função de transferência $G_I(s)$ do sistema não compensado, mas com o ganho ajustado; plotar os gráficos logarítmicos de $G_I(j\omega)$ e obter as margens de fase e de ganho;
 - calcular a defasagem máxima do compensador por avanço de fase; calcular os parâmetros a e T do compensador; escrever a função de transferência do compensador $G_c(s)$;
 - compensar o sistema; desenhar os gráficos logarítmicos do sistema compensado e verificar as margens de fase e de ganho obtidas. Se as margens estiverem fora das faixas de tolerância (\pm 2 dB e \pm 2°) refazer o projeto;
 - fechar a malha de controle (realimentação unitária e negativa) e obter o gráfico da resposta transitória
 - obter o erro estático e compará-lo com o erro estático especificado.

Passar para o relatório todos os comandos válidos executados no MATLAB e acrescentar comentários para cada comando. (desconto de até 3 pontos caso não seguir essas orientações)

Integrantes do Grupo

Grupo 1: William, João

Grupo 2: Dulcamar, Robson

Grupo 3: Luiz, Luan

Grupo 4: Izaque, Juliana, Anderson

Grupo 5:

Grupo 6: