Extraction de contours

Bruno VALLET

LaSTIG - IGN

bruno.vallet@ign.fr
https://www.umr-lastiq.fr/bruno-vallet/

ÉCOLE NATIONALE DES SCIENCES GÉOGRAPHIQUES

ENSG Ingénieur 2

Le problème de l'extraction de contours

- Décider quels pixels de l'image correspondent à des contours
- Les contours structurent l'image
- Discontinuités radiométriques, souvent géométriques

Le problème de l'extraction de contours

- Indispensable pour de nombreuses applications :
 - Reconnaissance des formes
 - Sémantisation/interprétation

Le problème de l'extraction de contours

- Qu'est ce qu'un contour ?
 - Une zone de l'image ou la valeur varie brutalement dans une direction donnée

3 Problèmes

Localisation des contours

Amplitude des contours

3 Problèmes

Direction du contour

3 étapes

- Calcul du gradient
- Maximum du gradient dans la direction du gradient
- Filtrage par hystérésis

Filtres de convolution

Extraction de contours

15	17	31	52	1 . 1	2	14	21
4	9	55	41	Filtre de	5	46	-1 4
12	14	3	61	Gradient	2	-1 1	58

Image

Gradient

ENSG Ingénieur 2 Bruno Vallet 8/

9/

Filtres de convolution

Gradient

Prewitt

Roberts

Sobel

Filtres de Deriche

Paramètre: taille du filtre

ENSG Ingénieur 2 Bruno Vallet 10/

Direction et module

ENSG Ingénieur 2 Bruno Vallet 11/

Image originale

ENSG Ingénieur 2 Bruno Vallet 12/

Gradient X

alpha=2

Gradient Y

Gradient X

alpha=0.5 Gradient Y

Module du gradient alpha=1

ENSG Ingénieur 2 Bruno Vallet 15/

Image originale

ENSG Ingénieur 2 Bruno Vallet 16/

 Condition: maximum ssi module du gradient sur le pixel > module du gradient sur ses voisins dans la direction du gradient

ENSG Ingénieur 2 **Bruno Vallet** 18/

ENSG Ingénieur 2 Bruno Vallet 20/

$$snap(x) = \begin{cases} -1 & \text{si } x < -1 \\ 1 & \text{si } x > 1 \\ 0 & \text{sinon} \end{cases}$$

ENSG Ingénieur 2 Bruno Vallet 21/

$$||\mathbf{g}(l,c)|| > ||\mathbf{g}(l+dl,c+dc)||$$

 $||\mathbf{g}(l,c)|| > ||\mathbf{g}(l-dl,c-dc)||$

$$||\mathbf{g}(l,c)|| > seuil$$

Selection du maximum: résultat

Image originale

Selection du maximum: résultat

Maxima du gradient

Seuillage simple

ENSG Ingénieur 2 Bruno Vallet 25/

Seuillage simple: résultat

Image originale

ENSG Ingénieur 2 Bruno Vallet 26/

Seuillage simple: résultat

Seuillage simple

ENSG Ingénieur 2 Bruno Vallet 27/

Seuillage par hystérésis

- Idée : favoriser la reconnection des contours :
 - Un contour faible peut connecter des contours forts
 - Dans le cas contraire on peut l'éliminer
- Algorithme
 - Seuiller les pixels de contour par un seuil bas (sur la norme du gradient)
 - Extraire les composantes connexes des pixels de contours
 - Garder les composantes connexes dont au moins un pixel est au dessus du seuil haut

ENSG Ingénieur 2 Bruno Vallet 28/

Seuillage par hystérésis

Extraction de composantes connexes:

- Initialisation
 - ID(p) = -1 (pas encore traité) pour chaque pixel p de contours
 - cur ID = 0
- Pour chaque pixel p de contours, si ID(p) = -1:
 - ID(p) = cur_ID (attribue p à la composante connexe cur_ID)
 - pixels_a_traiter = voisins de p
 - Tant que pixels a traiter n'est pas vide:
 - $ID(p) = cur_ID$

Seuillage par hystérésis

Seuillage par hystérésis: résultat

Image originale

ENSG Ingénieur 2 Bruno Vallet 31/

Seuillage par hystérésis: résultat

Seuillage par hysteresis

ENSG Ingénieur 2 Bruno Vallet 32/

Image originale

ENSG Ingénieur 2 Bruno Vallet 33/

Module du gradient

Maxima du gradient

ENSG Ingénieur 2 Bruno Vallet 35/

Seuillage simple, seuil=16

Seuillage simple, seuil=64

ENSG Ingénieur 2 Bruno Vallet 37/

Seuillage par hysteresis

Conclusion

- La détection de contour est une étape de la chaîne de traitement d'image très souvent utilisée
- Elle utilise principalement des filtrages à deux niveaux :
 - Filtrage de l'image elle même pour en calculer le gradient
 - Filtrage du gradient pour trouver les contours potentiels
 - Filtrage des contours potentiels pour les reconnecter

Conclusion

- La détection de contour est une étape vers :
 - La segmentation (basée contours)
 - L'appariement d'images
 - La reconnaissance des formes et d'objets structurés
 - L'interprétation (sémantisation, analyse) de scène
 - La reconstruction 3D de primitives linéaires (segments)