Catalysis of the Zinc-Acid Reaction

Ben Keppie

February 11, 2015

Contents

1	Abs	ract	2
2	Plai	ning	3
	2.1	Chemical Ideas	3
		2.1.1 Rate of Reactions	3
		2.1.2 Factors that affect Rate of Reaction	3
		2.1.3 Rate Equations	3
		2.1.4 Orders of Reactions	3
		2.1.5 Methods of Finding Rates	3
		2.1.6 pH	3
		2.1.7 Acids	5
		2.1.8 Catalysts	6
		2.1.9 Enthalpy Level Diagrams	6
		2.1.10 Transition Metal Catalysts	6
		2.1.11 D-Orbitals	6
		2.1.12 Complexes and their Properties	6
	2.2	nventory	6
		2.2.1 Equipment List	6
		2.2.2 Chemical List	6
	2.3	Methods	6
		2.3.1 Chosen Method	6
		2.3.2 Justification of Chosen Method	7
	2.4		11
3	Refe	ences	13
	3.1	Sources	13
	3.2	Figures	13

Chapter 1

Abstract

Chapter 2

Planning

2.1 Chemical Ideas

In this section.

- 2.1.1 Rate of Reactions
- 2.1.2 Factors that affect Rate of Reaction
- 2.1.3 Rate Equations
- 2.1.4 Orders of Reactions
- 2.1.5 Methods of Finding Rates

Justification of Chosen Method

I will be

2.1.6 pH

The pH scale is composed of two extremes that describes a chemical property about the substance being tested, these extremes are called acids and bases. Mixing acids and bases together will induce a neutralisation reaction which can cancel out their extreme effects. A substance which is neither acidic nor basic is called a neutral substance. The pH scale ranges from 0 to 14, with 0 being as acidic as possible and 14 being as basic as possible. Neutral has a corresponding

pH of 7 and therefore anything below 7 is acidic and anything above 7 is basic. The pH scale is illistrated below.

Concentration of hydrogen ions con to distilled water	mpared	Examples of solutions at this pH		
10,000,000	pH = 0	battery acid, strong hydrofluoric acid		
1,000,000	pH = 1	hydrochloric acid secreted by stomach lining		
100,000	pH = 2	lemon juice, gastric acid, vinegar		
10,000	pH = 3	grapefruit, orange juice, soda		
1,000	pH = 4	tomato juice, acid rain		
100	pH = 5	soft drinking water, black coffee		
10	pH = 6	urine, saliva		
11	pH = 7	"pure" water		
1/10	pH = 8	sea water		
1/100	pH = 9	baking soda		
1/1,000	pH = 10	Great Salt Lake, milk of magnesia		
1/10,000	pH = 11	ammonia solution		
1/100,000	pH = 12	soapy water		
1/1,000,000	pH = 13	bleaches, oven cleaner		
1/10,000,000	pH = 14	liquid drain cleaner		

Figure 2.1: The pH scale

The pH scale is a man made scale which is used to measure the concentration of hydrogen ions, each concentration is given a corresponding place on the scale (pH). pH is mathematically defined as the negative logarithm of the hydrogen ion concentration. As a result of this we can determine that the pH scale is logarithmic, therefore each value above/below the neutral value (7) is ten times more basic/acidic respectively. For example pH 6 is ten times as acidic as pH 7 and pH 5 is one hundred times as acidic than pH 7. The mathematical equation for working out pH is illistrated below.

•
$$pH = -log[H^+]$$

There are many indicators used to find out the pH of substances. A table of common indicators with their properties are displayed in the table below.

Indicator	Low pH color	Transition pH range	High pH color	
Thymol blue (first transition)	Red	1.2 – 2.8	Yellow	
Methyl red	Red	4.4 – 6.2	Yellow	
Bromothymol blue	Yellow	6.0 – 7.6	Blue	
Thymol blue (second transition)	Yellow	8.0-9.6	Blue	
Phenolphthalein	Colorless	8.3 – 10.0	Fuchsia	

Figure 2.2: List of pH Indicators

Universal indicator contains all of the chemicals above, all mixed into a single solution or into universal indicator paper. This allows for a continuous color change from about pH 2 to pH 10. Visual comparison of the colour of the universal indicator and a standard colour chart give a rough reading of the pH of the substance being measured, usually to the nearest whole number.

2.1.7Acids

The Brønsted-Lowry theory defines an acid as a proton (H^+) donor.

-Weak/strong (organic/inorganic) (dissociation) -Low conc/High conc

2.1.8 Catalysts

2.1.9 Enthalpy Level Diagrams

2.1.10 Transition Metal Catalysts

2.1.11 D-Orbitals

2.1.12 Complexes and their Properties

2.2 Inventory

2.2.1 Equipment List

- $250 \text{ } cm^3 \text{ conical flask}$.
- Bung fitted to a glass tube.
- Burette.

2.2.2 Chemical List

- Distilled Water.
- $0.20 \text{ mol dm}^-3 \text{ Copper Sulfate } (aq).$
- 1.0 mol dm⁻3 Sulfuric Acid₍aq).
- Granulated Zinc(s).
- Mixture of Different Catalysts.

2.3 Methods

2.3.1 Chosen Method

Setting Up

- 1. Fill the Burette with distilled water.
- 2. Fit the bung (fitted with glass tube) into the conical flask.
- 3. Fit the inverted Burette to the end of the glass tube.

Carrying out the Experiment

- 1. Remove the bung from the conical flask and pour $30~\rm cm^3$ of distilled water and $10~\rm cm^3$ of sulfuric acid into the conical flask.
- 2. Weigh out 1.0 g of granulated zinc.
- 3. Add the measured 1.0 g of granulated zinc to the conical flask.
- 4. Place the bung back in the conical flask.
- 5. Record the volume of hydrogen produced in $\rm cm^3$ every 30 seconds for 5 minutes from the burette markings to 1 decimal place.
- 6. Repeat the experiment but use $30~{\rm cm}^3$ of copper sulfate instead of distilled water.

Interpreting the Data (as discussed before)

- 1. Plot a graph of the volume of hydrogen against time.
- 2. From the graph draw a tangent to the line at the initial point.
- 3. Calculate the gradient of the tangent by using the equation:
- 4. The gradient is equal to the rate of reaction.

2.3.2 Justification of Chosen Method

In addition to the method discussed above, there are two other methods which would allow me to carry out my experiment:

- The Gas Syringe Method
- The Mass Change Method

Below, the methods are explained:

Gas Syringe Method

Setting up involves a similar set up to my chosen method, but the gas syringe replaces the burette. This is shown below:

Figure 2.3: Gas Syringe Equipment

Carrying out the method is precisely the same as my chosen method except a reading is taken from the gas syringe instead of the burette. This is precisely the reason I have chosen to not use this method. The gas syringes available to me have graduations every 1 ml, whereas the burrettes available to me have graduations every 0.1 ml. Therefore the accuracy of my readings will be greater using the burette method and consequently I have chosen the burette method ovet the gas syring method.

Mass Change Method

Setting up this method involves:

- Balance (reading to 0.01 g)
- Conical Flask
- Cotton Wool

Figure 2.4: Mass Change Equipment

Carrying out this method involves:

- 1. Zero the Balance.
- 2. Pour 30 $\rm cm^3$ of distilled water and 10 $\rm cm^3$ of sulfuric acid into the conical flask.
- 3. Take note of the Balance value + 1.0 g
- 4. Weigh out 1.0 g of granulated zinc.
- 5. Add the measured 1.0 g of granulated zinc to the conical flask.
- 6. Place the cotton wool in the conical flask to stop acid 'spray' excaping.

- 7. Record the loss in mass in grams every 30 seconds for 5 minutes to 2 decimal places.
- 8. Repeat the experiment but use $30~{\rm cm}^3$ of copper sulfate instead of distilled water.

I have chosen not to carry out this method as the balance will be a lot more sensitive to the environment and there will be room for a lot more human error. For example, left over residue could land on the scales and scew the results during the experiment.

2.4 Risk Assessment

Name of	Source	Hazards	Risks	Control Mea-	Disposal Method	Emergency
Chemi-	of Infor-			sures		Procedures
cal	mation					
Copper Sulfate (aq)	CLEAPSS Hazcards	 Harmful Dangerous for the Environ- ment 	 Harmful if swallowed Irritating to eyes and skin 	 Do not put near mouth Use gloves Use goggles Keep away from water, unless intended. 	Dissolve 64 g in 1 litre of water before pouring the solution down a foulwater drain. This disposal procedure should be kept to a minimum.	Seek medical attention. Wash con- taminated area.
Hydrated Copper Sulfate (s)	CLEAPSS Hazcards	 Harmful Dangerous for the Environ- ment 	 Harmful if swallowed Irritating to eyes and skin 	 Do not put near mouth Use gloves Use goggles Label: Harmful, if above 1 moldm⁻3 	Crystals may be used for solutions. Dilute to less than 0.4 mol dm ⁻ 3 or dissolve 100 g in 1 litre of water before pouring the solution down a foulwater drain. This disposal procedure should be kept to a minimum.	Seek medical attention. Wash contaminated area.

Candidate No. 4609

Sulfuric	CLEAPSS		Causes	serious		Add slowly no	Remove con-
Acid (aq)	Hazcards	 Corrosive 	burns		• Label: Irri-	more than 10 cm^3	taminated
		• Irritant			tant, if above	of concentrated sul-	clothing and
					$0.5~\mathrm{moldm}^-3$	furic(VI) acid to 1	quickly wipe
					• Label: Corro-	litre of 1 mol dm^-3	as much
					sive, if above	sodium carbonate	liquid as
					1.5 moldm^-3	solution (con-	possible off
					 Wear gloves 	taining indicator)	the skin
					 Wear goggles 	which should be	with a dry
						constantly stirred.	cloth before
						Let the mixture	drenching
						cool (or add ice),	the area
						before adding more	with a large
						acid. Pour the	excess of
						solution down a	water. If a
						foul-water drain.	large area
							is affected
							or blister-
							ing occurs, seek medical
							attention.
Granulated	CLEAPSS		N/A		Place in normal	N/A	N/A
Zinc (s)	Hazcards	• Low Hazard	11/11		refuse	11/11	11/11
Zinc (s)	11azcaras	• Low Hazard			TOTABO		

Chapter 3

References

3.1 Sources

• Source 1 -

3.2 Figures

- Figure 2.1 http://www.heartupdate.com/prevention/ph-body-influence-daily-life_94/ Accessed 13:01, 09/02/2015.
- Figure 2.2 Ben Keppie Table Table made from information from: Foster, Laurence S. and Irving J. Gruntfest, "Demonstration Experiments Using Universal Indicators", J. Chem. Ed., 14, 274 (1937).
- Figure 2.3 http://www.bbc.co.uk/schools/gcsebitesize/science/add_ocr_gateway/chemical_economics/reaction1rev1.shtml Accessed 14:20, 09/02/2015.
- Figure 2.4-http://everythingmaths.co.za/science/grade-12/07-rate-and-extent-of-reaction.07-rate-and-extent-of-reaction-03.cnxmlplus-Accessed 15:19, 09/02/2015.