IoTデバイス活用マニュアル

センサ種類:圧力計

型番: MPS-35

ストーリー:変化量情報を取得

センサー仕様MPS-35

- ・センサー電源 12-24V
- ・電圧出力1-5V

- 事前に下記準備が必要
- ①センサー電源 12-24Vの準備
- ②アナログ出力1-5Vを3V入力に変換
- ③初期値補正(arduinoスケッチ内)

- ①センサー電源の確保 (12-24V)
- ②アナログ出力1-5Vを3V入力に変換
- ③初期値補正(arduinoスケッチ内)

事前準備①

センサー電源を確保する

センサー回路図

上記青枠が電源用ライン

電源を確保する。

(例)

付属ケーブルのチャ(+)青(一)

12V直流用変換アダプター等を使用。

事前準備②

アナログ出力1-5Vを3V入力に変換

最大出力5V仕様

抵抗分圧回路使用し 最大入力電圧を3.0V以下にする MPS-<u>35</u>-NCA 2NPN+アナログ(電圧)出力(1-5V)

回路からR1が1K Ω のため R2に1K Ω を設定することで最 大電圧2.5V設定とする。

事前準備②

アナログ出力1-5Vを3V入力に変換 接続方法

接続例

※接続方法につきましては、各社様の最適方法をご検討ください。

事前準備③

初期値補正(arduinoスケッチ内)

補正手順

- ① 圧力Oの状態でのシリアルモニターの"V"の数値を vstartに入力
- ② 任意の圧力を圧力計にかけ、センサーの数値をcalmpaに入力
- ③ ②の圧力時のシリアルモニターの"V"の数値を vstartに入力

シリアルモニター

。Arduinoのプログラムの変更

ライブラリの読み込みとコードの変更箇所

WiFi 設定、デバイスキーの書き換え

WiFi の SSID、パスワードを入力する Azure IoThub で発行されたデバイスのプライマリ文字列を該当箇所に反映する

圧力計からの出力値(MPa)が5秒おきにAzureへ配信されます。 ※ご使用いただく電源、抵抗、環境によって圧力値に多少のズレが発生します。

2. Stream Analyticsのクエリ変更

修正不要 講座の標準サンプルの温度計の設定のまま 利用できます。

3. PowerBIでのレポートの作成

修正不要 講座の標準サンプルの温度計の設定 のまま利用できます。

データセットを開く

折れ線グラフの設定

