# Engineering Optics Lecture 20

02/05/2023

#### Debolina Misra

Assistant Professor Department of Physics IIITDM Kancheepuram, Chennai, India

## Problem-1

If  $E_x$  and  $E_y$  represent the x and y components of the resultant field  $\mathbf{E} (= \mathbf{E}_1 + \mathbf{E}_2)$ , then

and 
$$E_x = a_1 \cos \omega t$$
$$E_y = a_2 \cos (\omega t - \theta)$$
$$\theta = n\pi$$

State of polarization for (i)  $\theta = 0$  and  $a_2 = 1.5$   $a_1$  (ii)  $\theta = \pi$  and  $a_2 = 1.5$   $a_1$ 

## Case - 2: Examples

$$\theta = n\pi$$





## What if $\theta = \pi/2$ ?

Now 
$$\theta = \pi/2$$

$$E_x = a_1 \cos \omega t$$
  
$$E_y = a_2 \cos (\omega t - \theta)$$

$$E_x = a_1 \cos \omega t$$

$$E_v = a_1 \sin \omega t$$

tip of the electric vector rotates on the circumference of a circle (of radius  $a_1$ ) in the counterclockwise direction





**Q:** What if a1 ≠ a2 ??

#### Q: Condition to get LCP light?



Optics, Ghatak

## Problem:2

Discuss the state of polarization when the x and y components

of the electric field are given by the following equations:

(a) 
$$E_x = E_0 \cos(\omega t + kz)$$
$$E_y = \frac{1}{\sqrt{2}} E_0 \cos(\omega t + kz + \pi)$$

(b) 
$$E_x = E_0 \sin(\omega t + kz)$$
$$E_y = E_0 \cos(\omega t + kz)$$

(c) 
$$E_x = E_0 \sin\left(kz - \omega t + \frac{\pi}{3}\right)$$
  
 $E_y = E_0 \sin\left(kz - \omega t - \frac{\pi}{6}\right)$ 

(d) 
$$E_x = E_0 \sin\left(kz - \omega t + \frac{\pi}{4}\right)$$
  
 $E_y = \frac{1}{\sqrt{2}} E_0 \sin\left(kz - \omega t\right)$ 

(a) 
$$E_x = E_0 \cos(\omega t + kz)$$
$$E_y = \frac{1}{\sqrt{2}} E_0 \cos(\omega t + kz + \pi)$$

⇒Linearly polarized

(b) 
$$E_x = E_0 \sin(\omega t + kz)$$
  
 $E_y = E_0 \cos(\omega t + kz)$ 

 $\Rightarrow \theta = \frac{\pi}{2}, a_1 = a_2$ Left (?) circular polarization

(c) 
$$E_x = E_0 \sin\left(kz - \omega t + \frac{\pi}{3}\right)$$
  
 $E_y = E_0 \sin\left(kz - \omega t - \frac{\pi}{6}\right)$   
 $\Rightarrow d\theta = \frac{\pi}{2}, a_1 = a_2$   
Right(?) circular polarization

(d) 
$$E_x = E_0 \sin\left(kz - \omega t + \frac{\pi}{4}\right)$$

$$E_y = \frac{1}{\sqrt{2}} E_0 \sin\left(kz - \omega t\right)$$

$$\Rightarrow \theta = \frac{\pi}{4}, a_1 \neq a_2$$
Right (?) elliptically polarized light

## Problem-3

$$E_x = a_1 \cos \omega t$$

$$E_y = a_2 \cos (\omega t - \theta)$$

 $\theta$  takes the values  $0,\pi/3,\,\pi/2,\,2\pi/3$  and  $\pi.$  Determine the state of polarization

### Answer:

Let:

$$E_x = a_1 \cos \omega t$$
  
$$E_y = a_2 \cos (\omega t - \theta)$$

If 
$$a_1 = a_2 \Rightarrow$$

If  $a_1 \neq a_2$  one obtains an elliptically polarized wave which degenerates into a straight line for  $\theta =$  $0, \pi, 2\pi, ...$ 





(g)





















z 

Propagation is along z-axis—coming out of the paper.

## Thank You