Дисклеймер.

Автор не несет ответственности за любой ущерб, причиненный Вам при использовании данного документа. Автор напоминает, что данный документ может содержать ошибки и опечатки, недостоверную и/или непроверенную информацию. Если Вы желаете помочь в развитии проекта или сообщить об ошибке/опечатке/неточности:

 $\operatorname{Git} \operatorname{Hub}$ проекта

Автор в ВК

Содержание

1	pass	3	
	1.1	Понятие множества. Отображение	٠
	1.2	Метрические и нормированные пространства	4

Список литературы

- [1] Колмогоров, Фомин «Элементы теории функций и функционального анализа»
- [2] Канторович, Акилов «Функциональный анализ нормированных пространств»
- [3] Вулих «Основы теории функций вещественной переменной»
- [4] Халмош «Теория меры»
- [5] Данфорд, Шварц «Линейные операторы. Общая теория»
- [6] Очан «Сборник задач по теории функций вещественной переменной»

1 pass

1.1 Понятие множества. Отображение

Определение 1.1. Множеством называется совокупность элементов какой-либо природы.

Определение 1.2. Множества A и B дизъюнктны, если они не пересекаются.

Система множеств также называется дизъюнктной, если множества попарно не пересекаются: $A_i \cap A_j = \emptyset, \ \forall i \neq j$

Определение 1.3. Множество называется упорядоченным, если для его элементов введены операции отношения $<,>,\leq,\geq$.

Если множество упорядочено, то для него можно ввести понятие ограниченности, супремума, инфимума и так далее.

Определение 1.4. Пусть заданы M, N — произвольные множества. И пусть задано правило f, согласно которому $\forall x \in M \; \exists ! y = f(x) \in N$. Тогда говорят, что задано отображение $f: M \to N$.

Соответственно x — прообраз, y — образ.

Пример 1.1. Пусть M и N — числовые. Тогда f называется функцией.

Пример 1.2. Пусть M=C[a,b] — непрерывные функции из [a,b] и $N=\mathbb{R}$. Тогда отображение — функционал. $y=\int_a^b x(t)dt$ — элементарный функционал.

Пример 1.3. $M = \mathbb{R}^3$, а N = Oxy и каждому вектору сопоставляется его проекция. Тогда отображение будет называться оператором.

Пример 1.4. M — множество фигур в \mathbb{R}^2 и каждой фигуре ставится в соответствие ее площадь. Тогда отображение называется мерой. Или, в теории вероятности, отображение события в значение его вероятности.

Определение 1.5. Два множества A и B называются эквивалентными или равномощными, если между их элементами можно установить взаимно однозначное соответствие.

Определение 1.6. Пусть A,B — множества, и при этом $\exists D\subset B: A\sim D$ и $\not\exists C\subset A: B\sim C.$ Тогда говорят, что B мощнее A.

Пример 1.5. Самыми маломощными являются конечные множества. Следующие по мощности — счетные. Следующие — множества мощности континуума (мощность множества вещественных чисел на любом отрезке). Есть ли еще мощнее?

Теорема 1.1. Пусть A- множество, а B- множество всех подмножеств множетсва A. Тогда B мощнее A.

Замечание 1.1. Если A имеет мощность континуума, то B будет иметь мощность гиперконтинуума. Из теоремы следует, что мощность можно увеличивать до бесконечности.

1.2 Метрические и нормированные пространства

Определение 1.7. Пространство X называется метрическим, если $\forall x, y \in X \exists! \rho(x, y) \in \mathbb{R}$, такое, что:

- 1) $\rho(x,y) > 0$, при этом $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2) $\rho(x, y) = \rho(y, x)$;
- 3) $\rho(x,y) < \rho(x,z) + \rho(y,z)$

$$\forall x, y, z \in X$$
.

Пример 1.6.

 $X=\mathbb{R},$ тогда $\rho(x,y)=|x-y|.$ $X=\mathbb{R}^n,$ тогда: $\rho(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}$ (сферическая метрика) или $\rho(x,y)=\max_{i=\overline{1,n}}|x_i-y_i|$ (параллелепипедальная) и любые другие, на какие может хватить фантазии. Вообще говоря, близость в одной метрике не значит близости в другой.

Пример 1.7. Пусть
$$X = C[a,b]$$
. $\rho(f(x),g(x)) = \max_{[a,b]} |f(x) - g(x)|$ Или $\rho(x,y) = \int_a^b |f(x) - g(x)| dx$.

Определение 1.8. ε -окрестность точки x: $V_{\varepsilon}(x)=\{y\in X: \rho(x,y)<\varepsilon\}$ — шар с центром в точке x и радиусом ε .

Используя понятие окрестности, можно ввести понятия предельной точки, внутренней точки, открытого и замкнутого множества и так далее.

Определение 1.9. Пусть $A \subset B$. A всюду плотно в B, если $\forall \varepsilon > 0, \ \forall x \in B \ \exists y \in A$: $\rho(x,y)<\varepsilon.$

Определение 1.10. Множество X называется сепарабельным, если у него есть счетное всюду плотное подмножество.

Пример 1.8. \mathbb{R} — сепарабельное $\mathbb{Q} \subset \mathbb{R}$.

Аналогично C[a,b] — сепарабельное, поскольку содержит множество полиномов.

Определение 1.11. $A \subset B$. A нигде не плотно в B, если оно не плотно ни в одном шаре из B.

Пример 1.9. $B = \mathbb{R}$. $A = \mathbb{N}$.

Определение 1.12. Пусть $\{x^{(k)}\}_{k=1}^{\infty}$ — последовательность элементов в X. И пусть $x^* \in X$. Тогда $x^{(k)} \to x^*: \rho(x^{(k)}, x^*) \to_{k \to \infty} 0$.

Определение 1.13. Последовательность $\{x^{(k)}\}_{k=1}^{\infty}$ фундаментальна, если для нее выполнен критерий Коши: $\forall \varepsilon > 0 \; \exists N > 0 : \; \forall k, n > N \;$ выполняется $\rho(x^{(k)}, x^{(n)}) < \varepsilon$.

Теорема 1.2. Если последовательность сходится, то она фундаментальна.

Доказательство. Рассмотрим $0 \le \rho(x^{(k)}, x^{(n)}) \le \rho(x^{(k)}, x^*) + \rho(x^*, x^{(n)}) \to_{k \to \infty} 0$. Теорема о двух милиционерах.

Определение 1.14. Пространство X — полное, если любая фундаментальная последовательность в нем сходится к элементу этого пространства: \forall фундаментальной $\{x^{(k)}\} \in X \; \exists x^* \in X$, такое, что $x^{(k)} \to_{k \to \infty} x^*$.

Пример 1.10. $X = \mathbb{R}$ — полное. $X = \mathbb{Q}$ — не полное, $x^{(k)} = (1 + \frac{1}{k})^k \in \mathbb{Q}$ сходится к e, но $e \notin Q$.

Замечание 1.2. Полнота пространства зависит, вообще говоря, от введенной метрики.

Пример 1.11. $X = C[a,b], \rho_1(f(x),g(x)) = \max_{[a,b]} |f(x)-g(x)|$ и $\rho_2(f(x),g(x)) = \int_a^b |f(x)-g(x)| dx$. Если рассматривать $\rho_1(f_k(x),g(x)) \to_{k\to\infty} 0 \Rightarrow f_k(x) \rightrightarrows_{k\to 0}^{[a,b]} f(x) \Rightarrow f(x) \in X$, но $\rho_2(f_k(x),g(x)) \to_{k\to\infty} 0 \not\Rightarrow f(x) \in X$.

Теорема 1.3. Для того, чтобы X было полным, необходимо и достаточно, чтобы любая последовательность вложенных друг в друга замкнутых шаров имела непустое пересечение.

Доказательство. Аналогично лемме Коши-Кантора для вложенных отрезков.

Теорема 1.4. (Бэра) Полное пространство не может быть представлено в виде счетного объединения нигде не плотных множеств.

Вывод 1.1. Полное пространство не может быть счетным.

Если пространство не полное, то его можно пополнить.

Определение 1.15. X^* называется пополнением пространства X, если:

- 1) $X \subset X^*$;
- 2) X всюду плотно в X^* .
- 3) X^* полное.

Операция пополнения эквивалентна опрерации замыкания, но замыкают чем-то известным, а пополняют чем-то новым.

Пример 1.12. \mathbb{Q} — неполное. Дополним его иррациональными числами и получим полное пространство \mathbb{R} .