Total No. of Pages: 2

Seat No.

S.E. (Computer Science and Engineering) (Semester - IV)

(Revised) Examination, May - 2019

Operating Systems - I

Sub. Code: 63534

Day and Date: Wednesday, 22 - 05 - 2019

Total Marks: 50

Time: 02.30 p.m. to 04.30 p.m.

Instructions:

- 1) Q. No. 3 and Q. No. 6 are compulsory.
- 2) Solve any one from Q.No. 1 and 2 and any one from Q.No.4 and 5.
- 3) Assume suitable data wherever necessary.

SECTION - I

- Q1) a) What is an Operating System? Explain Time sharing operating systems. [5]
 - b) Explain operating system with Monolithic Structure.

C. [5]

Q2) a) Draw and explain Queueing-diagram representation of process scheduling.

b) Consider the following processes with arrival time, burst time and priority.
Calculate average waiting time using Non-preemptive priority scheduling & Preemptive priority scheduling algorithm.

Process	Arrival time (in ms)	Burst time (in ms)	Priority
P ₁	0	11	2
P ₂	2	1	3
P ₃	3	4	2
P ₄	4	2	1

Q3) Write short notes on (any three):

[15]

- a) Cooperating processes.
- b) Algorithm 3 for two process solutions for critical-section problem.
- c) Bounded buffer problem with structure of the producer and consumer process.
- d) Multilevel Feedback Queue Scheduling.

On

SECTION - II

Q4) a)	Explain Banker's algorithm? Write an algorithm for f	inding out whether	er
	Explain Banker's algorithm? Write an algorithm for for not a system is in safe state.	0/2° [5	5]

b) What is a Deadlock? What are the necessary conditions for deadlock?

[5]

Q5) a) Explain the concept of segmentation with paging.

[4]

- b) What are the steps in handling a page fault? How we compute the effective access time for a demand-paged memory. [6]
- Q6) Write short notes on (any three):

[15]

- a) Resource allocation graph Algorithm for deadlock avoidance.
- b) Optimal Page Replacement.

A in

- c) I/O Hardware.
- d) Files and file operations.

