Pitanja:

- 1) Opisati postupak pretvorbe NKA u DKA.
- 2) Definirati nejednoznačnost kontekstno-neovisne gramatike.
- 3) Opisati postupak konstrukcije potisnog automata koji prihvaća praznim stogom na osnovi zadanog potisnog automata koji prihvaća prihvatljivim stanjem.
- 4) Opisati postupak konstrukcije gramatike kojom se dokazuje da su kontekstnoneovisni jezici zatvoreni s obzirom na operaciju nadovezivanja.
- 5) Formalno definirati osnovni model Turingovog stroja.
- 6) Zadani DKA pretvoriti u DKA s minimalnim brojem stanja. Minimizaciju DKA provesti primjenom metode traženja neistovjetnih stanja (3. algoritam u udžbeniku).

			1		
	X	. y .	. W .	. Z .	
q_0	q ₀	q ₃	q ₆	. q 8	1
q_1	q_1	94	q_6	q_3	1
q_2	q ₄	4 5	q_0	q_2	1
q_3	q 6	48	97	q_3	0
q_4	q 6	47	q_3	q_1	0
q 5	q ₆	q ₈	q_0	$q_{\mathbf{g}}$	0
q 6	q ₀	4 5	q ₆	48	1
q 7	q 7	q 5	q_6	q_3	0
48	q 6	48	97	q_3	1
q ₉	q8	q ₃	q_2	,q ₀	0

7) Primjenom zadane gramatike i tablice LR parsera parsirati niz *aacabacaca*. Da li parser prihvaća ili odbacuje ulazni niz?

$$S \rightarrow aS$$

$$S \rightarrow AB$$

$$A \rightarrow ac$$

$$A \rightarrow a A a$$

$$B \rightarrow bA$$

	а	.b.	.С.		.S.	. A .	.В.	
0	s2				1	3		
1				prihvati				
2	s2		.s5		4	6		
3		.s9					7	
4				.r1				
5	r3	.r3		.r3				
6	s8	.s9					7	
7				.r2				
8	r4	.r4		.r4				
9	s11					10		
10				.r5				
11	s11		.s5			12		
12	s8					·		

8) Iz zadane kontekstno-neovisne gramatike izbaciti jedinične i €-produkcije.

$$S \rightarrow xyAC$$

$$A \rightarrow xB$$

$$A \rightarrow BC$$

$$B \rightarrow xyC$$

$$B \rightarrow C$$

$$C \rightarrow yyB$$

$$C \rightarrow xyCAy$$

$$C \rightarrow \epsilon$$

- 9) Konstruirati formalni automat najjednostavnijeg razreda kojim je moguće prihvaćati jezik nad abecedom $\{a,b,c\}$ kojeg čine nizovi znakova oblika a^{ib} a^{ib}
- 10) Ispitati jednoznačnost zadane gramatike za generiranje aritmetičkih izraza. Ako je gramatika nejednoznačna, nejednoznačnost razriješiti promjenom gramatike. Promjenom gramatike potrebno je postići ispravnu interpretaciju generiranih izraza s obzirom na predmet operatora (operator * ima veću prednost od operatora +).

$$S \rightarrow VOV$$

$$V \rightarrow S$$

$$V \rightarrow abbc$$

ODGOVORI

1.

Neka je M1 =
$$(Q_1 \mathcal{E}_1 \delta_1 q_1 \mathcal{F}_1)_{NKA}$$
.
Konstruiramo DKA M2 = $(Q_2 \mathcal{E}_2 \delta_2 q_2 \mathcal{F}_2)$

Sad vrijedi da je:

$$Q_2 = 2^{Q_1}$$
tj Skupa stanja M2 je partitivni skup stanja M1.

$$q_2 = [q_1]$$
 pocetno stanje M2 je skup koji sadrzi pocetno stanje M1.

$$\mathbf{Z}_2 = \mathbf{Z}_1$$
 abeceda ostaje ista

$$q_{\underline{s}} \in Q_2 = [sl_{i}s2_{i}s3...ss] \in F_2 \Leftrightarrow \exists si \in F_1$$
 Tj. stanje u M2 je prihvatljivo ako sadrzi barem jedno stanje prihvatljivo u M1

$$q_x \in Q_2 = [s1, s2, s3, ..., sx] \delta_2(qx, a) = [\delta_1(s1, a), \delta_1(s2, a), ..., \delta_1(sx, a)]$$

To jest prijelaz za neki znak iz stanja u M2 je skup stanja u koje prelazi svaka komponenta tog stanja u M1.

2.

Gramatika je nejdenoznacna ako je za isti niz moguce konstruirati barem dva generativna stabla zamjenom krajnje desnog(lijevog) nezavrsnog znaka. Der'z natn to it

sve ok, samo u drugom pocetno stanje od dka = [q1]

3.

Neka je PA1 =
$$(Q_{1}, \Gamma_{1}, \Sigma_{1}, \delta_{1}, q_{1}, \Sigma_{1}, F)$$
 koji prihvaca stanjem.

Konstruiramo PA2 = $(Q_2, \Gamma_2, E_2, \delta_2, q_2, E_3, F)$ koji prihvaca praznim stogom.

Kazemo da je

$$Q_2 = Q_1 cup(q_s, q_f)$$

$$\Gamma_2 = \Gamma_1 \cup (X)$$

$$Z_2 = X$$

$$q_2 = q_3$$

$$\Sigma_2 = \Sigma_1$$

$$F_2 = 0$$

$$\delta_2 = \delta_1$$
 i jos dodajemo

$$\delta_2(q_{\bullet}, \epsilon, X) = (q_0, Z_1 X)$$

$$\delta_2(q_f \epsilon_{\eta}) = (q_0 \epsilon)_{\text{za svaki } \gamma \in \Sigma_2}$$

i sad najbitnije

$$\forall q \in F_1 \forall \gamma \in \Sigma_1 \rightarrow \delta_2(q,\epsilon\gamma) = (q_f,\epsilon)$$

i to je to.

4.

Neka gramatika $G_1 = (V_1 T_1 P_1 S_1)$ generira kont. neov. jezik $L_1(G_1)$ i gramatika $G_2 = (V_2 T_2 P_2 S_2)$ generira kont. neov. jezik $L_2(G_2)$. Neka je $V_1 \cap V_2 = 0$ sto mozemo reci bez smanjenja opcenitosti dokaza.

Konstruiramo gramatiku $G_3 = (V_1 \cup V_2, T_1 \cup T_2, P_3, S_3)$

$$P_3 = P_1 \cup P_2$$
 i jos se dodaje pravilo $S_3 \rightarrow S_1 S_2$

Ovakva gramatika ima generativne nizove oblika:

 $S_3 \rightarrow S_1 S_2 \vec{P}_1 w_1 S_2 \vec{P}_2 w_1 w_2$ iz cega je vidljivo da generira jezik $L_3(G_3) = L_1 L_2$.

Buduci da jednimo pravilo dodanu u \mathbf{P}_3 ne narusava kontekstnu neovisnost iz toga sljedi da je nadovezivanje kont. neovisnih jezika zatvorena operacija.

5.

$$TS = (Q_i \Sigma_j I_i \delta_j q_{0j} B_j F)$$

- konacan skup stanja TS-a

 $m{arGamma}$ - konacan skup znakova trake

B ∈ **I** - znak kojim se oznacava prazna celija

 $\mathbf{Z} \in \mathbf{\Gamma}_1 \mathbf{B}_2^{\mathbf{Z}}$ - konacan skup ulaznih znakova

 $\delta: Q \times \mathcal{B} \to Q \times \mathcal{B} \times (L_{\mathbf{j}} R)$ funkcija prijelaza gdje L i R oznacavaju pomak u lijevo i desno

 $q_0 \in Q$ pocetno stanje

F⊆**Q** prihvatljiva stanja

Formalno gledano, ovo je potpuna definicija.

6.

Krajnje rjesenje: q3 i q8 su jednaki.

7.

- 1. $S \rightarrow aS$
- 2. $S \rightarrow AB$
- 3. **A** → **ac**
- 4. $A \rightarrow aAa$
- 5. **B → bA**

	а	٠b.	. C.		.S.	.А.	.В.	
0	s2				1	3		
1				prihvati				
2	s2		.s5		4	6		
3		.s9					7	
4				.r1				
5	r3	.r3		.r3				
6	s8	.s9					7	
7				.r2				
8	r4	.r4		.r4				
9	s11					10		
10				.r5				
11	s11		.s5			12		
12	s8							

0	aacabacaca	s2	
0a2	acabacaca	s2	
0a2a2	cabacaca	s5	
0a2a2c5	abacaca	r3	A->ac duzina je 2, micemo 4 znaka, stanje A2 -> 6
0a2A6	abacaca	s8	
0a2A6a8	bacaca	r4	A->aAa duzina je 3, micemo 6 znakova, stanje A0->3
0A3	bacaca	s9	
0A3b9	acaca	s11	
0A3b9a11	caca	s5	
0A3b9a11c5	aca	r3	A->ac duzina je 2, micemo 4 znaka, stanje A9->10
0A3b9A10	aca	Χ	prazno polje znaci da se niz odbija

Niz se odbija.

8.

$S \rightarrow xyAC$	$A \rightarrow xB$	$B \rightarrow xyC$	$C \rightarrow yyB$
	$A \rightarrow BC$	$B \rightarrow C$	$C \rightarrow xyCAy$
			$C \rightarrow \epsilon$

Turbo rjesenje, prvo sta je sve epsilon:

$C \to \epsilon \\ B \to C \\ A \to BC$

Dakle, sve ce kad tad biti epsilon produkcija. Zato turbo rjesenje odmah i za A i za B i za C rjesava epsilon problem. Pa picimo:

5 → syAC	$A \rightarrow xB$	$B \rightarrow xyC$	
$S \rightarrow xyA$	$A \rightarrow BC$	$B \rightarrow C$	$C \rightarrow xyCAy$
	$A \rightarrow x$	$B \rightarrow sy$	$C \rightarrow yy$
$S \rightarrow xy$	$A \rightarrow B$		$C \rightarrow xyCy$
	$A \rightarrow C$		$C \rightarrow xyAy$
			$C \rightarrow xyy$

Sad da se rjesimo jedinicnih jos.

$S \to xyAC$	$A \rightarrow xB$	$B \rightarrow xyC$	$C \rightarrow yyB$
$S \rightarrow xyA$	$A \rightarrow BC$	$B \rightarrow xy$	$C \rightarrow xyCAy$
$S \rightarrow xyC$	$A \rightarrow x$	$B \rightarrow yyB$	$C \rightarrow yy$
$S \rightarrow xy$	$A \rightarrow xyC$	$B \rightarrow xyCAy$	$C \rightarrow xyCy$
	$A \rightarrow xy$	$B \rightarrow yy$	$C \rightarrow xyAy$
	$A \rightarrow yyB$	$B \rightarrow xyCy$	$C \rightarrow xyy$
	$A \rightarrow xyCAy$	$B \rightarrow xyAy$	
	$A \rightarrow yy$	$B \rightarrow xyy$	
	$A \rightarrow xyCy$		
	$A \rightarrow xyAy$		
	$A \rightarrow zyy$		

I to je ta strahota.