Analog pixel test structures (APTS)

Overview

- 4*4 pixels with 16 buffered analogue outputs
- Aim to characterize sensor
- DC coupled and AC coupled version, and version with special in-pixel amplifier (IPHC)
- Three sensor versions: standard, modified and modified with gap
- Two versions of output buffer: source follower and opamp, central matrix identical

General Description

APTS features fast analogue readout and includes various sensor flavours, aims at sensor characterization. The APTS family consists of 36 variants of single matrix chips and 2 variants of 4x multiplexed matrix, 44 pixel variants in total. They can be recognized by the on-chip label as follows. A chip list can be found in chip variants section.

Analog readout structures:

- F: basic source follower structure offers a robust analog readout, but slower
- A: based on basic source follower structure, an in-pixel amplifier is implemented in the pixel front-end before source follower chain, features higher gain.
- O: high speed OPAMP buffers out frontend output, achieves better timing performance with 50ohm terminating resistance on board. Identical front-end as basic source follower structures.

Sensor flavors:

AC coupled version gives the possibility to bias the electrode with higher voltage.

High level functional block diagram

4x4 pixels

Overview	l
General Description	
High level functional block diagram	
Revision History	
Document permissions	
Chip variants	
Table of pads	4
Absolute Ratings	9
Recommended Operating Conditions	9
Electrical Specifications	12
Operating Instructions	12
Typical Performance Characteristics	13
Mechanical data	15

Revision History

- 22/01/2021 V.0.0
- 25/02/2021 V.1.0 Top-view drawing of sensor is included
- 03/03/2021 V.1.1 Correct the names of pin 13 and 24 in the table of pads
- 10/03/2021 V.1.2 Add long-term performance
- 11/10/2021 V.1.3 Correct the chip labels for AO structures
- 10/01/2022 V.1.4 Clarify pulsing selection bits SEL_0, SEL_1
- 25/01/2022 V.1.5 Add schematics under recommended operating conditions

Document permissions

Public

Chip variants

	Pixel pitch		AC or DC cou-	
Chip label	(um)	Buffer	pled	Process
AF10	10	source follower	DC	standard
AF10B	10	source follower	DC	modified
AF10P	10	source follower	DC	modified with gap
AF15	15	source follower	DC	standard
AF15B	15	source follower	DC	modified
AF15P	15	source follower	DC	modified with gap
AF20	20	source follower	DC	standard
AF20P	20	source follower	DC	modified with gap
AF25	25	source follower	DC	standard
AF25B	25	source follower	DC	modified
AF25P	25	source follower	DC	modified with gap
		in-pixel amplifier + source		
AA10	10	follower	DC	standard
		in-pixel amplifier + source		
AA10B	10	follower	DC	modified
4.4.4.0.D	40	in-pixel amplifier + source	D C	and the state of the state
AA10P	10	follower	DC	modified with gap
AA20	20	in-pixel amplifier + source follower	DC	standard
AAZU	20	in-pixel amplifier + source	DC	Staridard
AA20B	20	follower	DC	modified
		in-pixel amplifier + source		
AA20P	20	follower	DC	modified with gap
AF10A	10	source follower	AC	standard
AF10AB	10	source follower	AC	modified
AF10AP	10	source follower	AC	modified with gap
AF20A	20	source follower	AC	standard
AF20AB	20	source follower	AC	modified
AF20AP	20	source follower	AC	modified with gap
		in-pixel amplifier + source		
AA10A	10	follower	AC	standard
		in-pixel amplifier + source		,
AA10AB	10	follower	AC	modified
AA10AP	10	in-pixel amplifier + source	A.C.	مم مانان ما سندا م
	10	follower	AC	modified with gap
AA20A	20	in-pixel amplifier + source follower	AC	standard
	20	IOHOWEI	AC	Stallualu

		in-pixel amplifier + source		
AA20AB	20	follower	AC	modified
		in-pixel amplifier + source		
AA20AP	20	follower	AC	modified with gap
AO10	10	opamp	DC	standard
AO10B	10	opamp	DC	modified
AO10P	10	opamp	opamp DC	
AO10A	10	opamp AC		standard
AO10AB	10	opamp AC r		modified
AO10AP	10	opamp AC r		modified with gap
		source follower + multi-		4 variants modified
AF10PM	10	plexer DC with ga		with gap
		source follower +multi-		4 variants modified
AF20PM	20	plexer	DC	with gap

Table of pads

Single matrix chips:

	macrin emps.			
No.	Name	Direction	Description Type	
48	PW		Pwell and deep pwell in matrix	Bias
47	IBIAS4		Source follower NMOS current mir-	Bias
			ror bias	
			or OPAMP PMOS current mirror	
			bias	
46	OUT<0>	Out	Pixel 0 analog output	Analog output
45	AVDD		1.2V Power	Supply
44	OUT<5>	Out	Pixel 5 analog output	Analog output
43	AVSS		Ground	Supply
42	OUT<1>	Out	Pixel 1 analog output	Analog output
41	AVDD		1.2V Power	Supply
40	OUT<2>	Out	Pixel 2 analog output	Analog output

39	IBIAS3		Source follower PMOS current mir- ror bias or OPAMP PMOS current mirror		
			bias		
38	IBIASP		Source drain follower PMOS cur- rent mirror bias		
37	TEMP C		Cathode of temperature diode	Bias	
36	TEMP A		Anode of temperature diode	Bias	
35	IBIASN		Source drain follower NMOS cur-	Bias	
33	IDIASIN		rent mirror bias	Dias	
34	OUT<3>	Out	Pixel 3 analog output	Analog output	
33	AVSS		Ground	Supply	
32	OUT<6>	Out	Pixel 6 analog output	Analog output	
31	AVDD		1.2V Power	Supply	
30	OUT<7>	Out	Pixel 7 analog output	Analog output	
29	AVSS		Ground	Supply	
28	OUT<11>	Out	Pixel 11 analog output	Analog output	
27	IRESET		Reset current	Bias	
26	VRESET		Reset voltage	Bias	
25	PSUB		Psubstrate	Bias	
24	PW		Pwell and deep pwell in matrix	Bias	
23	VCASP		OPAMP structure: PMOS voltage	Bias	
			bias for OPAMP		
			*No connection for source follower		
			structure		
22	VCASN		OPAMP structure: NMOS voltage	Bias	
			bias for OPAMP		
			*No connection for source follower		
			structure		
21	OUT<15>	Out	Pixel selection for pulsing	Analog output	
20	AVDD		1.2V Power	Supply	
19	OUT<10>	Out	Pixel 10 analog output	Analog output	
18	AVSS		Ground	Supply	
17	OUT<14>	Out	Pixel 14 analog output	Analog output	
16	AVDD		1.2V Power	Supply	
15	OUT<13>	Out	Pixel 13 analog output	Analog output	
14	TRG	In	Pulsing input	Digital input	
13	PW/HV		Pwell and deep pwell in matrix	Bias	
			*In AC coupled chips, it's high volt-		
	2011		age bias on electrode		
12	PSUB		Psubstrate	Bias	
11	SEL_1	In	Pixel selection for pulsing	Digital input	
10	SEL_0	In	Pixel selection for pulsing	Digital input	
9	OUT<12>	Out	Pixel 12 analog output Analog output		
8	AVSS		Ground	Supply	
7	OUT<9>	Out	Pixel 9 analog output Analog output		
6	AVDD		1.2V Power	Supply	
5	OUT<8>	Out	Pixel 8 analog output	Analog output	

4	AVSS		Ground	Supply
3	OUT<4>	Out	Pixel 4 analog output	Analog output
2	VH		Voltage bias: amplitude of pulsing signal	Bias
1	PUSB		Psubstrate	Bias

Multiplexing chip:

Mult	ipicamg cmp.			
48	PW		Pwell and deep pwell in matrix	Bias
47	IBIAS4	Source follower NMOS current mirror		Bias
			bias	
46	OUT<0>	Out	Pixel 0 analog output	Analog output
45	AVDD		1.2V Power	Supply
44	OUT<1>	Out	Pixel 1 analog output	Analog output

43	AVSS		Ground	Supply
42	OUT<2>	Out	Pixel 2 analog output	Analog output
41	AVDD		1.2V Power	Supply
40	OUT<3>	Out	Pixel 3 analog output	Analog output
39	IBIAS3		Source follower PMOS current mirror Bias bias	
38	IBIASP		Source drain follower PMOS current mirror bias	Bias
37	TEMP_C		Cathode of temperature diode	Bias
36	TEMP_A		Anode of temperature diode	Bias
35	IBIASN		Source drain follower NMOS current mirror bias	Bias
34	OUT<7>	Out	Pixel 7 analog output	Analog output
33	AVSS		Ground	Supply
32	OUT<6>	Out	Pixel 6 analog output	Analog output
31	AVDD		1.2V Power	Supply
30	OUT<11>	Out	Pixel 11 analog output	Analog output
29	AVSS		Ground	Supply
28	OUT<10>	Out	Pixel 10 analog output	Analog output
27	IRESET		Reset current	Bias
26	VRESET		Reset voltage Bias	
25	PSUB		Psubstrate	Bias
24	PW		Pwell and deep pwell in matrix	Bias
23	MUX<0>		MUX selection bit	Digital input
22	MUX<1>		MUX selection bit	Digital input
21	OUT<15>	Out	Pixel 15 analog output	Analog output
20	AVDD		1.2V Power	Supply
19	OUT<14>	Out	Pixel 14 analog output	Analog output
18	AVSS		Ground	Supply
17	OUT<13>	Out	Pixel 13 analog output	Analog output
16	AVDD		1.2V Power	Supply
15	OUT<12>	Out	Pixel 12 analog output	Analog output
14	TRG	In	Pulsing input	Digital input
13	PW		Pwell and deep pwell in matrix	Bias
12	PSUB		Psubstrate	Bias
11	SEL_1	In	Pixel selection for pulsing	Digital input
10	SEL_0	In	Pixel selection for pulsing	Digital input
9	OUT<5>	Out	Pixel 5 analog output	Analog output
8	AVSS		Ground	Supply
7	OUT<9>	Out	Pixel 9 analog output	Analog output
6	AVDD		1.2V Power	Supply
5	OUT<8>	Out	Pixel 8 analog output	Analog output
4	AVSS		Ground	Supply
3	OUT<4>	Out	Pixel 4 analog output	Analog output
2	VH		Voltage bias: amplitude of pulsing signal	Bias
1	PSUB		Psubstrate	Bias

Note: pixel number always starts from top left to bottom right in single matrix chips as well as multiplexing chips.

Absolute Ratings

Parameter	Rating
Analog input voltage	-0.1 to +1.3V
Digital input voltage	-0.1 to +1.3V
P-well bias voltage	0 to -6V
P-substrate bias voltage*	0 to -50V
High voltage bias for AC coupled chips	0 to +50V

^{*}Substrate bias voltage range needs to be tested first.

Recommended Operating Conditions

Applied for all sensor flavours.

Parameter		Comments	Min.	Typ.	Max	Unit
Operating temperature			-40	27	85	°C
Power voltage AV	DD			1.2		V
Front-end bias	IBIASP	1/4 mirror ratio to frontend		+80	+100	uA
(same for all chip	IBIASN	1/4 mirror ratio to frontend		-800	-1000	uA
variants)	IRESET	1/10 ⁴ mirror ratio to frontend	+0.1	+1	+1	uA
	VRESET		+200	+200	+400	mV
Source follower	IBIAS3	1:1 mirror ratio		+800	+1000	uA
bias	IBIAS4	1:1 mirror ratio		-6	-8	mA
OPAMP bias	IBIAS3	¹ / ₄ mirror ratio	+600	+800	+850	uA
	IBIAS4	1:1 mirror ratio	+1	+2.5	+3	mA
	VCASP		200	300	350	mV
	VCASN		700	750	850	mV
Pulsing bias	VH		0		+1.2	V
Well bias	PW	Pwell bias voltage	-6		0	V
	PSUB	P-substrate bias voltage	-50		0	V
	HV	For AC coupled chips	0		+50	V
Analog output terminating		For OPAMP chips				
resistance		_		50		Ω
Input signal rise ar	nd fall time				1	us

^{*}Assume the positive current direction (+) of current bias is from pin to ground on board

For all the source followers, there is no lower current limit; the lower the current, the slower the source follower. To operate in low power mode, all the currents can be simply scaled by 10x, e.g. IBIASP 8 uA IBIASN -80 uA and so on. The two simulations below show the speed degradation for the two operation modes. Both simulations have been performed with a load capacitance of 2pF; in the high power mode, the output transition time is 250 ps, whilst in the low power case it is around 1 ns.

Schematic

Schematic of APTS source follower version

Schematic of DC coupled in-pixel amplifier

*Note: the output of in-pixel amplifier is followed by the same source follower as APTS source follower version.

Schematic of APTS OPAMP version

Schematic of OPAMP

Electrical Specifications

All typical specifications are at $TA = 27^{\circ}$ C and AVDD = 1.2 V, unless otherwise noted.

Parameter		Test conditions/ comments	Min. Typ.	Max	Unit
Power consumption	SF structures		108		mA
	OPAMP structures		116.5		mA
ENC	DC coupled		27		e
	AC coupled		54		e
Pulse-IN	DC coupled		242		aF
coupling capacitance	AC coupled		242		aF
	ctrode-input of frontend citance in AC chips		10		fF

Operating Instructions

Pulsing selection

To pulse a pixel, first set selection bits (SEL 0, SEL 1), then inject a pulse on TRG (active high)

2 Selection Bits = 4 patterns

- 00 single pixel △
- 01 outer corners
- 10 inner corners
- 11 full matrix

SEL_0	SEL_1	Hit Pattern
0	0	Δ
0	1	0
1	0	\Diamond
1	1	Full matrix

Pulsing circuit in pixel:

VH defines the amplitude of pulsing signal

PULSE-IN Coupling = 242 aF

Note: in multiplexing chips, only left bottom matrix has the same single pixel selected as above, which is the first row first column pixel. In other 3 matrixes, the locations of selected pixel are mirrored with respect to center.

Matrix selection by MUX:

In multiplexing chips, 2 matrix selection bits (MUX<0> MUX<1>)

00: (left top) Larger electrode

01: (right top) Finger shaped pwell enclosure

10: (left bottom) Identical sensor structure as single matrix chip with pattern NX

11 : (right bottom) Smaller pwell enclosure

Typical Performance Characteristics

Source follower structures:

Apply the typical value of biases:

Inject 100e, 1pF board load, ~50% amplitude loss, 140ps of fall time on board.

The fall time degrades quickly with larger capacitance on board. 3pF board load, 200ps of fall time on board

Long-term performance

In-pixel amplifier:

The input diode capacitance set to 1fF, PCB capacitance 1pF.

OUT_PIX_AMPL is the output just after in-pixel amplifier, OUT1 and OUT2 after source followers,

OUT_PCB_1pF - output with PADs and PCB 1pF load.

The injected charge is 100e, ENC is 13e from AC noise simulations.

Each in-pixel amplifier consumes ~15uA. (consumption of source followers are not included, they are same as in SF structures).

One can see that in-pixel amplifier has gain about \sim 4, and at the end, conversion factor at PCB is 0.1 mV/electron.

Rise time at PCB output <200ps..

OPAMP structures:

Example waveforms (300e-):

Mechanical data

Outline / Floorplan / Top Layout Illustration / reference coordinates Table of pads (name, orientation, centre coordinates of pads) Geometry and dimensions of pads

Footprint for the layout of PCB carriers (die-on-board bonding)

13 14 15 16 17 18 19 20 21 22 23 24

Unit: um

Pad opening: 96*71

D	1	•	٠.	1		Ο.	\sim
Pa	പ -	111	11	n١	٠.	×ι	1
1 (1	u	.,,		\sim		() !	.,

Pad # (left)	x (um)	y (um)	Pad # (bottom)	x (um)	y (um)	Pad # (right)	x (um)	y (um)	Pad # (top)	x (um)	y (um)
1	129	1190	13	310	129	25	1371	310	37	1190	1371
2	129	1110	14	390	129	26	1371	390	38	1110	1371
3	129	1030	15	470	129	27	1371	470	39	1030	1371
4	129	950	16	550	129	28	1371	550	40	950	1371
5	129	870	17	630	129	29	1371	630	41	870	1371
6	129	790	18	710	129	30	1371	710	42	790	1371
7	129	710	19	790	129	31	1371	790	43	710	1371
8	129	630	20	870	129	32	1371	870	44	630	1371
9	129	550	21	950	129	33	1371	950	45	550	1371
10	129	470	22	1030	129	34	1371	1030	46	470	1371
11	129	390	23	1110	129	35	1371	1110	47	390	1371
12	129	310	24	1190	129	36	1371	1190	48	310	1371

16