1. Definición de entradas y salidas

1 No hace falta ninguna entrada

3 Salidas Z2, Z1 y Z0 para poder contar desde 0 a 7 (=111).

2. Definición de estados

- A estado del contador con salida 0
- B estado del contador con salida 1
- C estado del contador con salida 2
- D estado del contador con salida 3
- E estado del contador con salida 4
 F estado del contador con salida 5
- G estado del contador con salida 6
- H estado del contador con salida 7

3. Tabla de estados

Estado Presente	Estado Futuro Y ⁺	Salidas			
Υ		Z2	Z1	Z0	
Α	В	0	0	0	
В	С	0	0	1	
С	D	0	1	0	
D	E	0	1	1	
E	F	1	0	0	
F	G	1	0	1	
G	Н	1	1	0	
Н	Α	1	1	1	

3. Diagrama de estados

4. Minimización de estados

Son todos diferentes

5. Asignación de estados.

Hay 8 estados, se necesitan 3 FF's: Y2, Y1, Y0. Asignaremos de forma que cada estado coincida con la salida: A=000, B=001, C=010, D=011, E=100, F=101, G=110, H=111

D2 D1 D0

6. Tabla de transiciones

-						[]				
Presente	Y2	Y1	Y0	Futuro	Y2 [†]	Y1 ⁺	Y0 [⁺]	Z2	Z1	Z 0
Α	0	0	0	В	0	0	1	0	0	0
В	0	0	1	C	0	1	0	0	0	1
С	0	1	0	D	0	1	1	0	1	0
D	0	1	1	Е	1	0	0	0	1	1
Е	1	0	0	F	1	0	1	1	0	0
F	1	0	1	G	1	1	0	1	0	1
G	1	1	0	Н	1	1	1	1	1	0
Н	1	1	1	Α	0	0	0	1	1	1

7. Elección de FFs

Tipo D por flanco de subida. **Q⁺=D,** por tanto, Y2⁺=D2, Y1⁺=D1, Y0⁺=D0,

8. Resolución de Karnaughs

9. Esquema lógico del circuito

