

MT8385 IOT APPLICATION PROCESSOR DATASHEET

Version: 1.4

Release date: 2024-03-29

Use of this document and any information contained therein is subject to the terms and conditions set forth in Exhibit 1 Terms and Conditions. This document is subject to change without notice.

© 2021-2024 MediaTek Inc. All rights reserved.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

MEDIATEK

Version	Date	Description			
1.0	2021-10-01	First official release			
		Modified Table 5-2 Storage Conditions			
1.1	2023-01-11	Modified max. value of operating junction temperature in Table 5-3			
		Recommended Operating Conditions			
1.2	2022 04 12	Modified Section 3.12.1.2 I2C Timing Characteristics			
1.2 2023-04-12		Modified AVDD12_SSUSB to AVDD18_SSUSB in Table 4-5 Pin Characteristics			
1.3	2023-06-01	Modified Bluetooth 5.0 to Bluetooth 4.2 in Table 1-1 Device Features			
1.4	2024-03-29	Modified the part number in Table 1-2 Ordering Information			

Table of Contents

Ver	sion Hist	tory		2
Tab	le of Cor	ntents		3
	List o	f Figures	s	5
	List o	f Tables	j	6
1	Intro	duction.		9
	1.1	Feature	es Overview	10
	1.2	Orderin	ng Information	11
2	Prefa	ce		12
	2.1	Pin Cha	aracteristics and Signal Descriptions Conventions	12
	2.2	Timing	Conventions, Parameters, and Information	12
		2.2.1	Timing Parameters and Information	13
		2.2.2	Parameter Information	13
	2.3	Abbrev	viations	14
3	Featu	ires Des	scription	22
	3.1	Applica	ation Processors	22
		3.1.1	Cortex-A73 Processor	22
		3.1.2	Cortex-A53 Processor	23
	3.2	Graphi	ics Accelerator	24
	3.3	System	n Companion Processor	24
		3.3.1	SCP Signal Descriptions	25
	3.4	Vision	Processor Unit	25
	3.5	Memoi	ry	26
		3.5.1	EMI Signal Descriptions	27
		3.5.2	EMI Signal Mapping	29
		3.5.3	LPDDR3 Interface	30
		3.5.4	LPDDR4/X Interface	33
	3.6	Storage	e	33
		3.6.1	Memory Card Controller (MSDC)	33
		3.6.2	Universal Flash Storage (UFS)	41
	3.7	Display	у	41
		3.7.1	Multimedia Data Path (MDP)	41
		3.7.2	Display Data Path (DISP)	43
		3.7.3	Display Parallel Interface (DPI)	46
		3.7.4	Display Bus Interface (DBI)	48
		3.7.5	Display Serial Interface (DSI)	49
		3.7.6	Display Pulse Width Modulation (DISP PWM) and Reset	50
	3.8	Imagin	ng	51
		3.8.1	Camera Image Signal Processor (ISP)	51
		3.8.2	Face Detection and Visual Tracking (FDVT)	52
		3.8.3	Camera Serial Interface (CSI)	52
	3.9	Video .		54
		3.9.1	Video Encoder (VENC)	55
		3.9.2	Video Decoder (VDEC)	55
	3.10	Audio.		<mark>56</mark>

4

5

	3.10.1	Inter-IC Sound (I2S)	56
	3.10.2	Pulse Code Modulation (PCM)	58
	3.10.3	Time Division Multiplexed (TDM)	59
	3.10.4	Pulse Density Modulation (PDM)	61
3.11	Analog	Baseband	62
	3.11.1	ABB Signal Descriptions	62
	3.11.2	PMIC Audio Interface Signal Descriptions	63
3.12	Connec	ctivity	63
	3.12.1	Inter-Integrated Circuit (I2C)	63
	3.12.2	Universal Asynchronous Receiver/Transmitter (UART)	66
	3.12.3	Serial Peripheral Interface (SPI)	67
	3.12.4	SuperSpeed Universal Serial Bus (SSUSB)	69
	3.12.5	KeyPad Scanner (KeyPad)	70
	3.12.6	General Purpose I/O (GPIO)	71
	3.12.7	Pulse Width Modulation (PWM)	75
3.13	Wireles	ss Connectivity	76
	3.13.1	WCM Signal Descriptions	76
	3.13.2	Wireless Local Area Network (WLAN)	
	3.13.3	Bluetooth (BT)	78
	3.13.4	Global Navigation Satellite System (GNSS)	78
	3.13.5	FM System (FMSYS)	
	3.13.6	Baseband Serial Interface (BSI)	
	3.13.7	Baseband Parallel Interface (BPI)	
	3.13.8	Radio Frequency Front-End (RFFE) Interface	
3.14	Miscell	aneous	
	3.14.1	Timers and Counters	81
	3.14.2	PMIC Wrapper (PWRAP)	81
	3.14.3	Auxiliary Analog-to-Digital Converter (AUXADC)	
	3.14.4	Thermal Controller	
3.15	Boot M	1odes	84
4.1	Quadra	ant Pinout	86
4.2	Pin Cha	aracteristics	90
4.3	Power	Rails	120
4.4		ed and Unused Pin Handling Recommendations	
Elect		racteristics	
5.1		te Maximum Ratings	
	5.1.1	Storage Conditions	
5.2	Recom	mended Operating Conditions	124
5.3		ctrical Specifications	
	5.3.1	RTCIO DC Specifications	
	5.3.2	SPII2SIO DC Specifications	
	5.3.3	I2C012IO DC Specifications	
	5.3.4	I2C3IO DC Specifications	
	5.3.5	MSDC0IO DC Specifications	
	5.3.6	MSDC1IO DC Specifications	
	5.3.7	DDRIO DC Specifications	

	5.4	Power	Management	128
		5.4.1	Power Sequences	128
	5.5	Reset .		128
		5.5.1	Reset Signal Descriptions	129
		5.5.2	Reset Timing Characteristics	129
5	Clock	c Charact	eristics	130
	6.1	Maxim	um Performance Ratings	130
	6.2	PLL Sp	ecifications	131
	6.3	Clock S	Squarer	134
	6.4	Clock S	Signal Descriptions	135
7	Pack	age Info	rmation	
	7.1	Therm	al Specifications	136
		7.1.1	Thermal Operating Specifications	136
	7.2	Тор М	arking	136
	7.3	Mecha	nical Drawing	137
3	Lega	l and Sup	pport Information	139
	8.1	Relate	d Documents and Products	139
	8.2	Traden	narks	139
Exh	nibit 1 Te	erms and	Conditions	141
Li	st of I	Figure	es	
	Figure	1-1 Func	tional Block Diagram	9
	Figure	3-1 LPDD	PR3 Basic Schematic for 1 × 32-bit	32
	Figure	3-2 LPDD	PR4/X Basic Schematic for 2 × 16-bit	33
	Figure	3-3 MSD	C Timing Diagram (Default Speed mode)	36
	Figure	3-4 MSD	C Timing Diagram (High Speed mode)	37
	Figure	3-5 MSD	C Timing Diagram (SDR12/SDR25/SDR50/SDR104 modes)	38
	Figure	3-6 MSD	C Timing Diagram (DDR50 mode)	38
	Figure	3-7 MSD	C Timing Diagram (HS200 mode)	39
	Figure	3-8 MSD	C Timing Diagram (HS400 Input mode)	40
	Figure	3-9 MSD	C Timing Diagram (HS400 Output mode)	40
	Figure	3-10 DPI	Timing Diagram	48
	Figure	3-11 Ima	ge Signal Processor Block Diagram	51
	Figure	3-12 Aud	lio Interfaces Block Diagram	56
	Figure	3-13 I2S	Timing Diagram	58
	Figure	3-14 PCN	/I Master Mode Timing Diagram	59
	Figure	3-15 PCN	/I Slave Mode Timing Diagram	59
	Figure	3-16 TDN	/I Master Mode Timing Diagram	60
	Figure	3-17 PDN	Л Timing Diagram	61
	Figure	3-18 I2C	Timing Diagram (SS/FS/FS+ modes)	65
	Figure	3-19 I2C	Timing Diagram (HS mode)	66
	Figure	3-20 SPI	Master Timing Diagram	69
	_		Pad Double Key Matrix	
	_	-	M Timing Diagram	
	_		Vlap Diagram	
	_		t Block Diagram	
	•		ce Clock Diagram	

L	i	S	t	0	f	T	a	b		e	S
---	---	---	---	---	---	---	---	---	--	---	---

or labics	
Table 1-1 Device Features	
Table 1-2 Ordering Information	
Table 2-1 Column Headers Description	
Table 2-2 Timing Parameters	
Table 3-1 SCP Signal Descriptions	
Table 3-2 EMI Signal Descriptions (LPDDR4)	
Table 3-3 EMI Signals Mapping (LPDDR4 to LPDDR3)	
Table 3-4 LPDDR3 Device Combinations	
Table 3-5 LPDDR4/X Device Combinations	
Table 3-6 MSDC Signal Descriptions	34
Table 3-7 MSDC Signal Mapping	
Table 3-8 MSDC Timing Characteristics (Default Speed mode)	35
Table 3-9 MSDC Timing Characteristics (High Speed mode)	36
Table 3-10 MSDC Timing Characteristics (SDR12/SDR25/SDR50/SDR104 modes)	37
Table 3-11 MSDC Timing Characteristics (DDR50 mode)	38
Table 3-12 MSDC Timing Characteristics (HS200 mode)	39
Table 3-13 MSDC Timing Characteristics (HS400 mode)	39
Table 3-14 UFS Signal Descriptions	41
Table 3-15 DPI Signal Descriptions	46
Table 3-16 DPI Signals Mapping in Dual Edge Mode	47
Table 3-17 DPI Timing Characteristics	47
Table 3-18 DBI Signal Descriptions	49
Table 3-19 DSI Signal Descriptions	50
Table 3-20 DISP PWM and Reset Signal Descriptions	50
Table 3-21 CAM Signal Descriptions	52
Table 3-22 CSI0 Signal Descriptions	53
Table 3-23 CSI1 and CSI2 Signal Descriptions	53
Table 3-24 CSI Timing Characteristics for D-PHY Mode	54
Table 3-25 VENC Supported Formats	55
Table 3-26 I2S Signal Descriptions	57
Table 3-27 I2S Timing Characteristics	57
Table 3-28 PCM Signal Descriptions	58
Table 3-29 PCM Timing Characteristics	58
Table 3-30 TDM Signal Descriptions	60
Table 3-31 TDM Timing Characteristics	60
Table 3-32 PDM Timing Characteristics	61
Table 3-33 DMIC Signal Descriptions	61
Table 3-34 DMIC Filter Characteristics	61
Table 3-35 ABB Signal Descriptions	62
Table 3-36 PMIC Signal Descriptions	63
Table 3-37 I2C Signal Descriptions	64
Table 3-38 I2C Timing Characteristics (SS/FS/FS+ modes)	65
Table 3-39 I2C Timing Characteristics (HS mode)	66
Table 3-40 UART Signal Descriptions	67

Table 3-41 SPI Signal Descriptions	68
Table 3-42 SPI Timing Characteristics	68
Table 3-43 SSUSB Signal Descriptions	69
Table 3-44 KeyPad Signal Descriptions	70
Table 3-45 GPIO Signal Descriptions	71
Table 3-46 PWM Signal Descriptions	76
Table 3-47 PWM Timing Characteristics	76
Table 3-48 WCM Signal Descriptions	77
Table 3-49 BSI Signal Descriptions	79
Table 3-50 BPI Signal Descriptions	80
Table 3-51 RFFE Signal Descriptions	80
Table 3-52 PWRAP Signal Descriptions	82
Table 3-53 AUXADC Signal Descriptions	82
Table 3-54 AUXADC Channel Mapping	82
Table 3-55 AUXADC Specifications	83
Table 3-56 TSENSE Specifications	84
Table 4-1 Ball Map-Top Left	86
Table 4-2 Ball Map-Top Right	87
Table 4-3 Ball Map-Bottom Left	88
Table 4-4 Ball Map-Bottom Right	89
Table 4-5 Pin Characteristics	90
Table 4-6 Power Rails	120
Table 4-7 Reserved and Unused Pin Handling Recommendations	122
Table 5-1 Absolute Maximum Ratings	123
Table 5-2 Storage Conditions	124
Table 5-3 Recommended Operating Conditions	124
Table 5-4 RTCIO DC Specifications	126
Table 5-5 SPII2SIO DC Specifications	126
Table 5-6 I2CO12IO DC Specifications	126
Table 5-7 I2C3IO DC Specifications	127
Table 5-8 MSDC0IO DC Specifications	127
Table 5-9 MSDC1IO DC Specifications (2.8 V/3.3 V)	127
Table 5-10 MSDC1IO DC Specifications (1.8 V)	128
Table 5-11 Reset Signal Descriptions	129
Table 5-12 Reset Timing Characteristics	129
Table 6-1 Maximum Performance Ratings	
Table 6-2 ARMPLL_L Specifications	131
Table 6-3 ARMPLL_LL Specifications	132
Table 6-4 MAINPLL Specifications	
Table 6-5 MFGPLL Specifications	
Table 6-6 MMPLL Specifications	
Table 6-7 UNIVPLL Specifications	
Table 6-8 MSDCPLL Specifications	
Table 6-9 APLL1 Specifications	
Table 6-10 APLL2 Specifications	
Table 6-11 CCIPLL Specifications	
Table 6-12 TVDPLL Specifications	134

MT8385

IOT APPLICATION PROCESSOR

UNCLASSIFIED

Table 6-13 Clock Squarer Specifications	134
Table 6-14 Clock Signal Descriptions	
Table 7-1 Thermal Operating Specifications	136
Table 7-2 Printed Device Reference and Decoding	136

MEDIATEK

1 Introduction

The MT8385 is a highly integrated and powerful IoT platform with the following key features:

- Quad-core Arm® Cortex®-A73 processor
- Quad-core Arm Cortex-A53 processor
- Arm Mali[™]-G72 MP3 3D Graphics Accelerator (GPU) with Vulkan[®] 1.0, OpenGL ES 3.2 and OpenCL[™] 2.x full profile
- Dual-core Vision Processor Unit (VPU) Cadence®
 Tensilica® VP6 DSP
- LPDDR3 or LPDDR4/X external memory support
- HEVC/H.264 1080p @ 30fps video decoding

- H.264 1080p @ 30fps video encoding
- High-resolution, multi-camera framework, up to 32MP @ 30fps
- Display support with MIPI® DSI, and DPI/DBI outputs, up to 2400p × 1080p (Full HD+), 20:9 aspect ratio
- eMMC5.1 and UFS2.1 interfaces
- Advanced Wi-Fi®, Bluetooth®, GNSS, and FM Radio connectivity

Figure 1-1 shows the functional block diagram of the device.

Figure 1-1 Functional Block Diagram

1.1 Features Overview

Table 1-1 shows a summary of the device feature.

Table 1-1 Device Features

Feature		MT8385
Processors		
Quad-core Arm Cortex-A73	A73	Up to 2000 MHz (see Section 6.1)
Quad-core Arm Cortex-A53	A53	Up to 2000 MHz (see Section 6.1)
Graphics Accelerator Mali G-72 MP3	GPU	Up to 800 MHz (see Section 6.1)
Vision Processing Unit VP6 DSP	VPU	Up to 525 MHz (see Section 6.1)
Memory		,
External Memory Interface (LPDDR3 and LPDDR4/X)	EMI	Up to 8GB DDR-3733 (see Section 6.1)
Storage	I	
	MSDC0	eMMC (8-bit)
Memory Card Controller eMMC™/SD®/SDIO	MSDC1	Wi-Fi / SD card (4-bit)
Universal Flash Storage	UFS	Yes (one-lane)
Display	I	
Display Controller	DISP	Concurrent dual display
Display Parallel Interface	DPI	12-bit ⁽¹⁾
MIPI Display Bus Interface	DBI	Type B (8-/9-bit) or Type C (Option 1/3) (1)
MIPI Display Serial Interface	DSI	4-lane
Imaging	•	
Image Signal Processor	ISP	32MP @ 30fps
		3 × 4-lane D-PHY or
MIPI Camera Serial Interface 2	CSI	2 × 4-lane D-PHY and 3-trio C-PHY, or
		2 × 2-lane D-PHY and 2 × 4-lane D-
Face Detection and Visual Tradition	FD\/T	PHY
Face Detection and Visual Tracking	FDVT	Yes
JPEG Encoder	JPEG	Baseline encoding
Video Encoder	VENC	11.364.4000n @ 20fms
Video Decoder	VENC	H.264, 1080p @ 30fps H.264/HEVC, 1080p @ 30fps
Audio	VDEC	11.204/11EVC, 1080p @ 301ps
Audio	1250	Master/slave receive
	1251	Master transmit
Inter-IC Sound	1252	Master receive (2 stereo channels)
inter-ic Sound	1252	Master transmit
	1255	Master transmit
Pulse Code Modulation	PCM	2 ⁽²⁾
Pulse Density Modulation (decoder for DMIC)	PDM	1
Time Division Multiplexed Interface	TDM	8-channel TX
Analog Baseband	ABB	Yes
Connectivity	700	163
Inter-Integrated Circuit	I2C	g(3)
Universal Asynchronous Receiver/Transmitter	UART	2
Serial Peripheral Interface	SPI	6 (master mode only)
SuperSpeed Universal Serial Bus	SSUSB	SSUSB device or USB 2.0 OTG
KeyPad Scanner	KeyPad	3×3
General Purpose I/O pins	GPIO	180
- General Fulpose I/O pilis	0.10	100

Feature		MT8385
Pulse Width Modulation	PWM	Up to 3
Wireless Connectivity		
	WLAN	Dual band: 2.4 GHz and 5 GHz
Minutes Communication Mandale (MACMA)	BT	Bluetooth 4.2
Wireless Communication Module (WCM)	GNSS	Yes
	FMSYS	Yes
Miscellaneous		
JTAG® Interface	JTAG	Yes
PMIC Interface	PWRAP	Yes
Auxiliary ADC	AUXADC	12-bit, 5 inputs
	GPT	5 × 32-bit and 1 × 64-bit
Timers	SYSTMR	64-bit
	WDT ⁽⁴⁾	Yes

- 1. DPI pins shared with DBI.
- 2. PCM merged with I2S.
- 3. I2C1, I2C2, and I2C4 support MIPI I3C® SDR mode only.
- 4. The Watchdog Timer (WDT) is part of the Top Reset Generation Unit (TOPRGU).

1.2 Ordering Information

Table 1-2 shows the available ordering part numbers.

Table 1-2 Ordering Information

Part Number	Package	Operational Temperature Range
MT8385V/AZA	VFBGA	See Table 5-3 Recommended Operating Conditions

2 Preface

2.1 Pin Characteristics and Signal Descriptions Conventions

Table 2-1 describes the column headers in all Pin Characteristic and Signal Description tables in Section 4.2 Pin Characteristics and Section 3 Features Description.

Table 2-1 Column Headers Description

Column Name	Explanations
Ball Name	Logical name of the ball. Note that there may exist a selection of several signals for the
Dali Naille	same ball (aux mode).
Ball Location	Ball's physical location on the chip package
Signal Name	The name of the signal for the given aux mode
	Pin type when configured for the given aux mode:
	Al: Analog input
	AO: Analog output
	AIO: Analog bi-directional pin
Туре	DI: Digital input
	DO: Digital output
	DIO: Digital bi-directional pin
	P: Power
	G: Ground
Description	Description of the signal
	Auxiliary function mode number:
Aux. Function	0 through 7 are possible alternative functions
	An empty box means Not Applicable and the ball is dedicated to one function only
Reset State	Shows the Aux. function configured at the release of the SYSRSTB signal
Buffer Type	Describes the associated input/output buffer type
Power Domain	Indicates the voltage supply that powers the terminal IO buffers
	Indicates the state of an internal pull-up or pull-down resistor at the release of the
	SYSRSTB signal:
	OFF: Internal pull-up and pull-down are disabled
PU/PD	PU: Pull-up is enabled
-	PD: Pull-down is enabled
	No: Pull-up and Pull-down not available
	Blank cell means "No"
IO Reset Value	Shows the IO state at the release of the SYSRSTB signal

2.2 Timing Conventions, Parameters, and Information

This section provides a general description of used symbols, adopted standards and terminology, and test process. All timing characteristics are valid over the represented operating conditions unless otherwise specified.

The interface clock frequency documented in this datasheet is the maximum clock frequency, which corresponds to the maximum programmable frequency on the particular output clock. The frequency defines the maximum limit supported by the device and does not consider into account any system limitation (layouts, connectors, and so forth).

The system designer should take into account these system considerations and the device timing characteristics as well and should determine properly the maximum frequency supported to transfer the data on the corresponding interface.

The timing parameter values do not include delays by board routes. Timing values may be adjusted by increasing/decreasing such delays. If needed, external logic hardware such as buffers may be used to compensate any timing differences.

2.2.1 Timing Parameters and Information

Table 2-2 represents timing parameter symbols and descriptions used in the timing characteristic tables.

Table 2-2 Timing Parameters

Symbol	Description
f _{op}	Operating frequency
t _p	Period (cycle time)
t _d	Delay time
t _{dis}	Disable time
t _{en}	Enable time
t _h	Hold time
t _{su}	Setup time
Start	Start bit
t _t	Transition time
t _v	Valid time
t _w	Pulse duration
t _{FALL}	Fall time
t _{RISE}	Rise time
V _{OH}	High level output voltage
V _{OL}	Low level output voltage
V _{IH}	High level input voltage
V _{IL}	Low level input voltage
V _{REF}	Reference voltage

2.2.2 Parameter Information

This datasheet provides timing values at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be also taken into account.

All timing requirements and switching characteristics are valid over the recommended operating conditions unless otherwise specified.

All rise and fall transition timing parameters are referenced correspondingly to 90% and 10% of the signal logical levels, unless otherwise specified.

2.3 Abbreviations

3

3GPP

3rd Generation Partnership Project

Α

A-GPS

Assisted GPS

ABB

Analog Baseband

AFBC

Arm Frame Buffer Compression

ΑI

Artificial Intelligence

APB

Advanced Peripheral Bus

API

Application Programming Interface

AXI

Advanced eXtensible Interface

В

BL

Burst Length

BLE

Bluetoot Low Energy

bps

Bits per Second

ВТ

Bluetooth Interface

C

CABC

Content Adaptive Backlight Control

ССК

Complementary Code Keying

CDM

Charged Device Model

CLK

Clock

CMDQ

Command Queue

СРНА

Clock Phase

CPOL

Clock Polarity

CPU

Central Processor Unit

CRC

Cyclic Redundancy Check

CS

Chip Select

CSI

Camera Serial Interface

CV

Computer Vision

D

DE

DE

Data Enable

DISP

Display Data Path (Display Controller)

DISP_AAL

Display Adaptive Ambient Light

DISP_CCORR

Display Color Correction

DISP_DITHER

Display Dither

DISP_GAMMA

Display GAMMA

DISP_MUTEX

Display MUTEX

DISP_OVL

Display Overlay

DISP_PWM

Display Pulse Width Modulation

DISP_RDMA

Display Data Path Read DMA

DISP_RSZ

Display Resizer

DISP_WDMA

Display Write Direct Memory Access

DL

Downlink

DMA

Direct Memory Access

DMEM

Data Memory

DPI

Display Parallel Interface

DQS

Data Strobe

DRAM

Dynamic Random Access Memory

DRE

Dark Region Enhancement

DSI

Display Serial Interface

DVFS

Dynamic Voltage and Frequency Scaling

Ε

EAV

End of Active Video

ECC

Error Checking and Correcting

EMI

External Memory Interface

EPO

Extended Prediction Orbit

F

FD

Face Detection

FIFO

First In First Out

FIR

Finite Impulse Response

FM

Frequency Modulation

FMSYS

Frequency Modulation System

fps

Frames Per Second

G

GIC

Generic Interrupt Controller

GNSS

Global Navigation Satellite System

GPIO

General-Purpose Input/Output

GPS

Global Positioning System

GPU

Graphics Accelerator (Graphics Processing Unit)

Н

нвм

Human Body Model

HDMI

High Definition Multimedia Interface

HEVC

High Efficiency Video Coding

HS

High-Speed

HW

Hardware

I

ΙP

Internet Protocol

ISP

Image Signal Processor

J

JTAG

Joint Test Action Group

L

LCM

Liquid Crystal Monitor

LDO

Low Dropout

LFSR

Linear Feedback Shift Register

LP

Low-power

LPF

Low-Pass Filter

LSB

Least Significant Bit

LTE

Long-Term Evolution

LVDS

Low-Voltage Differential Signaling

М

MACs

Multiply-Accumulate operations

MCDI

Multi-Core Deep Idle

MCLK

Master Clock

MCS

Modulation and Coding Set

MCUSYS

Microcontroller Unit System

MDP

Multimedia Data Path

MDP_CCORR

Multimedia Data Path Color Correction

MDP_RDMA

Multimedia Data Path Read DMA

MDP_TDSHP

Multimedia Data Path 2D Sharpness

MDP_WROT

Multimedia Data Path Rotation

MHL

Mobile High-Definition Link

MISO

Master Input to Slave Output

мми

Memory Management Unit

MOSI

Master Output to Slave Input

mSBC

modified Sub-Band Codec

MSDC

MMC and SD Controller

MUX

Multiplexer

0

OFDM

Orthogonal Frequency Division Multiplexing

OTG

On-The-Go

OVL

Overlay

P

PA

Power Ampilifier

PBC

Peaking by Color

РСВ

Printed Circuit Board

PCM

Pulse Code Modulation

PCO

Phased Coexistence Operation

PDM

Pulse Density Modulation

PIO

Programmed Input/Output

PLC

Packet Loss Concealment

PSMP

Power-Save Multi-Poll

PVT

Process, Voltage and Temperature

PWM

Pulse Width Modulation

PWRAP

PMIC Wrapper

Q

QoS

Quality of Service

R

RBDS

Radio Broadcast Data System

RDMA

Read Direct Memory Access

RDS

Radio Data System

RF

Radio Frequency

RH

Relative Humidity

RIFS

Reduced Interframe Space

ROI

Region-of-Interest

RSZ

Resizer

RX

Receiver

S

SAR

Successive Approximation Register

SAV

Start of Active Video

SBAS

Satellite-Based Augmentation Systems

SBC

Sub-Band Codec

SCCB

Serial Camera Control Bus

SCK

Serial Clock

SCPSYS

System Companion Processor and System Power Manager

SIMD

Single Instruction Multiple Data

SPI

Serial Peripheral Interface

SPM

System Power Management

STRC

Space-Time Block Coding

SW

Software

T

TCP

Transmission Control Protocol

TCXO

Temperature-Compensated Crystal Oscillator

TDM

Time-Division Multiplexing

TE

Tearing Effect

TLB

Translation Lookaside Buffer

TMS

Thermistor Crystal

TOPRGU

Top Reset Generation Unit

TSENSE

Temperature Sensor

ΤX

Transmitter

U

UART

Universal Asynchronous Receiver/Transmitter

UDP

User Datagram Protocol

UI

Unit Interval

UL

Uplink

USB

Universal Serial Bus

UTMI

USB Transceiver Macrocell Interface

V

VCXO

Voltage Controlled Crystal Oscillator

VDEC

Video Decoder

VENC

Video Encoder

VSYNC

Vertical Synchronization

W

WBG

Wi-Fi, Bluetooth, and GNSS

WDMA

Write DMA

WDT

Watchdog Timer

WMT

Wireless Management Task

WoWLAN

Wake on Wireless LAN

X

xHCI

eXtensible Host Controller Interface

3 Features Description

The MT8385 architecture is a highly integrated and powerful IoT platform incorporating application processing, Visual Processor Unit (VPU), and connectivity subsystems to enable wide range of use cases that require high performance edge processing, advanced multimedia and connectivity capabilities, and high resolution cameras. The platform features advanced implementation of Quad-core Arm Cortex-A73 and Cortex-A53, both operating at up to 2.0 GHz, and powerful graphics accelerator. The MT8385 features LPDDR3 and LPDDR4/X for optimal performance and also supports booting from eMMC to minimize the overall BOM cost. In addition, an extensive set of interfaces is included to connect to cameras, touch screen displays, and MMC™/SD cards.

The Quad-core Arm Cortex-A73 and Cortex-A53 equipped with Arm Neon™ engine, offer necessary processing power to support the latest high level operating systems along with demanding applications such as web browsing, email, GPS navigation and games. This content can be enhanced by the 2D/3D graphics accelerator and then visualized on a high resolution touch screen display. To provide advanced multimedia applications and services such as streaming audio and video, the device features a multi-standard video accelerator with a multitude of decoders and encoders such as HEVC and H.264, and an advanced audio subsystem.

The integrated VPU core enables deep learning, neural network acceleration, and computer vision applications. The latter, combined with the up to 32MP camera, can clearly and accurately perform Al-vision functions such as facial recognition, object identification, scene analysis, optical character recognition and much more.

Through a single antenna shared with the external MT7668/MT6631 connectivity chip, the device provides the most convenient solution in the industry. With its small footprint and low power consumption it enables a wide variety of potential device designs, reducing development costs and accelerating time to market.

3.1 Application Processors

The device includes an Arm-based processor subsystem (MCUSYS), which is responsible for running operating system and application programs in the device. It comprises of two different CPU clusters providing different levels of power efficiency and computing power to satisfy a wide range of system power and performance requirements. The power efficiency of Cluster 0 (Quad-core Arm Cortex-A53 processor) is specially optimized to minimize the power consumption in daily usage scenarios and lightweight applications. For more computing intensive and latency sensitive workloads, Cluster 1 (Quad-core Arm Cortex-A73 processor) can provide higher performance level with reasonable power consumption.

The MCUSYS also includes the Arm GIC-500 interrupt controller that provides interrupt support for both Arm clusters.

The MCUSYS supports Dynamic Voltage and Frequency Scaling (DVFS) technology which allows the CPU to run at different frequency and voltage configurations for different application requirements. Besides DVFS, the power of each CPU core can be turned off individually when not used. In standby mode, the MCUSYS can be completely shut down to further reduce power consumption and optimize the battery usage on mobile devices.

3.1.1 Cortex-A73 Processor

The A73 cluster supports the following key features:

- Quad-core implementation
- Neon processing engine with SIMDv2/VFPv4 ISA
- Full compliance with Armv8-A architecture:
 - AArch32 and AArch64 execution states at all Exception Levels (EL0 to EL3)

- A64 instruction set
- A32 instruction set (Arm instruction set in pre-Armv8 architectures)
- T32 instruction set (Arm Thumb® instruction set in pre-Armv8 architectures)
- Arm Jazelle® technology
- In-order pipeline with direct and indirect branch prediction
- Generic timers supporting 64-bit count input from SYSTMR
- Level 1 (L1) and Level 2 (L2) cache memory with cache line length of 64 bytes:
 - 64KB L1 instruction cache (L1I)
 - 64KB L1 data cache (L1D)
 - 1024KB unified L2 cache
- Memory Management Unit (MMU):
 - 32-entry, fully-associative, L1 instruction micro Translation Lookaside Buffer (TLB)
 - 48-entry, fully-associative, L1 data micro TLB
 - A main TLB which contains two cache RAMs accessed in parallel:
 - 4-way, set-associative, 1024-entry cache which stores virtual address (VA) to physical address (PA) mappings for smaller page sizes (4KB, 16KB, 64KB)
 - 2-way, set-associative, 128-entry cache which stores virtual address (VA) to physical address (PA) mappings for larger page sizes (1MB, 2MB, 16MB, 32MB, 512MB, 1GB)
- Security:
 - TrustZone®
 - Secure boot (refer to Section 3.15 Boot Modes)
- Debug:
 - Armv8 debug logic
 - Arm CoreSight™ architecture
- 128-bit AXI master interface—directly connected to External Memory Interface (EMI) to minimize the access latency to DRAM thus providing sufficient memory bandwidth

3.1.2 Cortex-A53 Processor

The A53 cluster supports the following key features:

- Quad-core implementation
- Neon processing engine with SIMDv2/VFPv4 ISA
- Full compliance with Armv8-A architecture:
 - AArch32 and AArch64 execution states at all Exception Levels (EL0 to EL3)
 - A64 instruction set
 - A32 instruction set (Arm instruction set in pre-Armv8 architectures)
 - T32 instruction set (Arm Thumb instruction set in pre-Armv8 architectures)
- Arm Jazelle technology
- In-order pipeline with direct and indirect branch prediction
- Generic timers supporting 64-bit count input from SYSTMR
- Level 1 (L1) and Level 2 (L2) cache memory with cache line length of 64 bytes:
 - 32KB L1 instruction cache (L1I)
 - 32KB L1 data cache (L1D)
 - 1024KB unified L2 cache
- Memory Management Unit (MMU):
 - 10-entry, fully-associative, L1 instruction micro Translation Lookaside Buffer (TLB)
 - 10-entry, fully-associative, L1 data micro TLB

- 4-way, set-associative, 512-entry unified main TLB
- Security:
 - TrustZone
 - Secure boot (refer to Section 3.15 Boot Modes)
- Debug:
 - Armv8 debug logic
 - Arm CoreSight architecture
- 128-bit AXI master interface—directly connected to External Memory Interface (EMI) to minimize the access latency to DRAM thus providing sufficient memory bandwidth

3.2 Graphics Accelerator

The device Graphics Accelerator (GPU) is based on Arm Mali-G72 MP3 core. It is used to process extremely complicated graphics and perform general processing tasks assigned by the main application processor.

The GPU supports the following key features:

- An enhanced API feature set with high-performance support for both shader-based and fixed-function graphics APIs. The supported API graphics industry standards are:
 - OpenGL ES 1.1, 2.0, 3.0, 3.1, 3.2
 - DirectX[®] 9, 11.1, 12
 - Vulkan 1.0
 - OpenCL 1.0, 1.1, 1.2, 2.0
- Anti-aliasing capabilities
- An effective core for General-Purpose computing on GPU (GPGPU) applications
- High memory bandwidth and low-power consumption for 3-Dimensional (3D) graphics content
- Arm Frame Buffer Compression (AFBC) and compressed texture formats
- 10- and 16-bit YUV input and output formats
- Bus protocol:
 - One 128-bit master AXI4 bus, with support of 64 read and 32 write outstanding transactions
 - One 32-bit slave AXI4 bus
- 256KB L2 cache (4-way, set-associative)

3.3 System Companion Processor

The System Companion Processor (SCP) is a processor subsystem that includes an Arm Cortex-M4 processor and a variety of peripherals. The special design of the SCP makes it suitable for running applications such as Voice Wakeup, Sensor HUB and future tasks when the entire device is in suspend mode. The SCP is connected to infra bus and therefore can access DRAM, audio SRAM and other hardware resources through this bus.

The SCP includes the following key features:

- Up to 512KB Tightly Coupled Memory (TCM)
- An AHB interface for device memory and register access
- An AHB interface for audio memory and register access
- An APB interface for MCUSYS configuration
- Interprocessor interrupt to MCUSYS
- Serial audio interface to support Voice Wakeup
- 6 × 32-bit down-count timers with selectable clock source
- Interrupt controller

- Support of 12-input external interrupt with debounce function
- 2 × I2C
- 3 × SPI
- 2 × UART
- 8-bit GPIO
- Direct path to PMIC wrapper
- Watchdog timer

3.3.1 SCP Signal Descriptions

Table 3-1 presents SCP signal descriptions.

Table 3-1 SCP Signal Descriptions

Signal Name	Type	Description	Ball Location			
SCP_SPI0			•			
SCP_SPIO_CK	DO	SCP SPIO serial clock	AF3			
SCP_SPIO_CS	DO	SCP SPIO chip select	AG3			
SCP_SPI0_MI	DI	SCP SPIO master input / slave output	AJ2			
SCP_SPI0_MO	DO	SCP SPIO master output / slave input	AH2			
SCP_SPI1			·			
SCP_SPI1_CK	DO	SCP SPI1 serial clock	AA22			
SCP_SPI1_CS	DO	SCP SPI1 chip select	AB25			
SCP_SPI1_MI	DI	SCP SPI1 master input / slave output	W22			
SCP_SPI1_MO	DO	SCP SPI1 master output / slave input	Y22			
SCP_SPI2			·			
SCP_SPI2_CK	DO	SCP SPI2 serial clock	AG2			
SCP_SPI2_CS	DO	SCP SPI2 chip select	AB5			
SCP_SPI2_MI	DI	SCP SPI2 master input / slave output	AE3			
SCP_SPI2_MO	DO	SCP SPI2 master output / slave input	AB4			
SCP Command signa	SCP Command signals					
SCP_VREQ_VAO	VREQ_VAO DO SCP to PMIC normal voltage request		AG1, AB23, AA6, L4,			
JCI _VILLQ_VAO		Ser to Fivine Horman voltage request	N25, Y25			

3.4 Vision Processor Unit

The Vision Processor Unit (VPU) is a highly efficient computing processor that is best suited for Artificial Intelligence (AI) and Computer Vision (CV) algorithms. The VPU is composed of two Cadence Vision P6 (VP6) cores sharing a common local interconnect network.

Each VP6 core supports the following key features:

- Support of iDMA for data transfer between VP6 internal Data Memory (DMEM) and external DRAM
- L1 instruction memory:
 - 192KB instruction RAM
 - 128KB instruction cache
- L1 data memory:
 - 256KB data RAM (2 banks, 128KB per bank)
 - 16KB data cache
- Top performance:

UNCLASSIFIED

- CV + AI up to 256 GMAC/sec
- Number of MACs per cycle:
 - 256 × 8x8 MACs
 - 128 × 8x16 MACs
 - 64 × 16x16 MACs
- Histogram package
- Scatter/Gather engine (8 × sub-banks)

3.5 Memory

The device connects to external memories using External Memory Interface (EMI) controller and Dynamic Random-Access Memory Controller (DRAMC) with DDR PHY. EMI is a sophisticated communication interface between external memories and the device.

The EMI controller processes requests from the device masters and issues commands to the DRMAC. It has the following key features:

- Prevents DRAM stall, data overflow, and underflow
- Allows gating its own clock when idle
- Performance monitoring
- Connection to two DRAMCs
- Command schedule options:
 - Starvation control
 - Bandwidth limiter
 - Priority control
 - Page hit control
 - Read and write turn around prevent control
- Dedicated AXI connection ports:
 - 2 × 128-bit read and write ports to the MCUSYS
 - 2 × 128-bit read and write ports to the multimedia modules
 - 2 × 128-bit read and write ports to the GPU system

Each DRAMC processes EMI commands and controls the external memory. It has the following key features:

- Contains integrated DDR PHY
- Supports the following DDR memory types:
 - 32-bit LPDDR3 at 1866 MT/s
 - 16-bit LPDDR4/X at 3733 MT/s (eMCP package) or 3200 MT/s (discrete package)
- Schedules and issues DRAM bus commands
- Keeps the integrity of DRAM bus timings
- Burst Length (BL) support: BL4, BL8
- Support of maximum 8GB LPDDR4/X device
- Supports power-down and self-refresh
- Supports clock stop
- Support of input DQS/DQ timing calibration for PVT variation
- Supports read/write command out of order control
- Supports LPDDR4 byte mode
- Supports per-bank refresh

3.5.1 EMI Signal Descriptions

Table 3-2 presents EMI signal descriptions.

Table 3-2 EMI Signal Descriptions (LPDDR4)

Signal Name	Туре	Description	Ball Location
EMI_EXTR ⁽¹⁾	DIO	DRAM output driving calibration resistor	A2
EMI_RESET_N	DIO	DRAM reset output	D22
EMI_TN	DIO	Not used. Leave unconnected.	J14
EMI_TP ⁽²⁾	DIO	DRAM voltage reference 2, connected to ½ AVDDQ_EMIO	J15
EMIO Address Bus—			
EMI0_CA0	DIO	DRAM address output 0	E9
EMI0_CA1	DIO	DRAM address output 1	C7
EMI0_CA2	DIO	DRAM address output 2	B5
EMI0_CA3	DIO	DRAM address output 3	B6
EMI0_CA4	DIO	DRAM address output 4	В7
EMI0_CA5	DIO	DRAM address output 5	E7
EMIO System Bus—C	Command,	Chip Select, Data Mask, Data Strobe, Clock Signals	
EMI0_CK_C	DIO	DRAM clock 0 output	E10
EMI0_CK_T	DIO	DRAM clock 0 output	D10
EMIO_CKE0	DIO	DRAM command output clock enable 0	E8
EMIO_CKE1	DIO	DRAM command output clock enable 1	D7
EMI0_CS0	DIO	DRAM chip select 0	D8
EMI0_CS1	DIO	DRAM chip select 1	A7
EMI0_DMI0	DIO	DRAM DQM 0	B4
EMI0_DMI1	DIO	DRAM DQM 1	C8
EMI0_DQS0_C	DIO	DRAM DQS 0	C4
EMI0_DQS0_T	DIO	DRAM DQS 0	D4
EMI0_DQS1_C	DIO	DRAM DQS 1	E12
EMI0_DQS1_T	DIO	DRAM DQS 1	F12
EMIO Data Bus—EM	I0_DQ[15:	0]	
EMI0_DQ0	DIO	DRAM data pin 0	E5
EMI0_DQ1	DIO	DRAM data pin 1	D5
EMI0_DQ2	DIO	DRAM data pin 2	E6
EMI0_DQ3	DIO	DRAM data pin 3	D6
EMI0_DQ4	DIO	DRAM data pin 4	В3
EMI0_DQ5	DIO	DRAM data pin 5	C5
EMI0_DQ6	DIO	DRAM data pin 6	A5
EMI0_DQ7	DIO	DRAM data pin 7	A3
EMI0_DQ8	DIO	DRAM data pin 8	B11
EMI0_DQ9	DIO	DRAM data pin 9	E11
EMI0_DQ10	DIO	DRAM data pin 10	B10
EMI0_DQ11	DIO	DRAM data pin 11	A9
EMI0_DQ12	DIO	DRAM data pin 12	A11
EMI0_DQ13	DIO	DRAM data pin 13	D9
EMI0_DQ14	DIO	DRAM data pin 14	C9
EMI0_DQ15	DIO	DRAM data pin 15	D11

Signal Name	Туре	Description	Ball Location
EMI1 Address Bus—		-	
EMI1 CA0	DIO	DRAM address output 0	D17
EMI1_CA1	DIO	DRAM address output 1	C15
EMI1_CA2	DIO	DRAM address output 2	B17
EMI1_CA3	DIO	DRAM address output 3	A17
EMI1_CA4	DIO	DRAM address output 4	C17
EMI1_CA5	DIO	DRAM address output 5	D19
_	Command,	Chip Select, Data Mask, Data Strobe, Clock Signals	
EMI1_CK_C	DIO	DRAM clock 0 output	F16
EMI1_CK_T	DIO	DRAM clock 0 output	E16
EMI1_CKE0	DIO	DRAM command output clock enable 0	D18
EMI1 CKE1	DIO	DRAM command output clock enable 1	E18
EMI1_CS0	DIO	DRAM chip select 0	E17
EMI1_CS1	DIO	DRAM chip select 1	C16
EMI1_DMI0	DIO	DRAM DQM 0	B18
EMI1_DMI1	DIO	DRAM DQM 1	B15
EMI1_DQS0_C	DIO	DRAM DQS 0	E21
EMI1_DQS0_T	DIO	DRAM DQS 0	F21
EMI1_DQS1_C	DIO	DRAM DQS 1	F13
EMI1_DQS1_T	DIO	DRAM DQS 1	E13
EMI1 Data Bus—EM	 1_DQ[15:	0]	
EMI1_DQ0	DIO	DRAM data pin 0	F20
EMI1_DQ1	DIO	DRAM data pin 1	E20
EMI1_DQ2	DIO	DRAM data pin 2	D20
EMI1_DQ3	DIO	DRAM data pin 3	E19
EMI1_DQ4	DIO	DRAM data pin 4	C20
EMI1_DQ5	DIO	DRAM data pin 5	B19
EMI1_DQ6	DIO	DRAM data pin 6	A19
EMI1_DQ7	DIO	DRAM data pin 7	C21
EMI1_DQ8	DIO	DRAM data pin 8	C13
EMI1_DQ9	DIO	DRAM data pin 9	C14
EMI1_DQ10	DIO	DRAM data pin 10	A13
EMI1_DQ11	DIO	DRAM data pin 11	D15
EMI1_DQ12	DIO	DRAM data pin 12	C12
EMI1_DQ13	DIO	DRAM data pin 13	A15
EMI1_DQ14	DIO	DRAM data pin 14	B14
EMI1_DQ15	DIO	DRAM data pin 15	D14

- 1. Connect this pin through an external resistor to GND. An external voltage should be applied.
- 2. This pin should be connected via 100-nF capacitors to the corresponding EMI power supply and GND. If not used, it can be left unconnected.

3.5.2 EMI Signal Mapping

Table 3-3 presents EMI signals mapping per device memory type.

Table 3-3 EMI Signals Mapping (LPDDR4 to LPDDR3)

Ball Location	Dell Name	Pin-Mux 1 - LPDDR4	Pin-Mux 2 - LPDDR3	
Ball Location	Ball Name	2 × 16-bit	1 × 32-bit	
E5	EMI0_DQ0	DQ0	CA9	
D5	EMI0_DQ1	DQ1	NC	
E6	EMI0_DQ2	DQ2	CA8	
D6	EMI0_DQ3	DQ3	CA5	
В3	EMI0_DQ4	DQ4	CA7	
C5	EMI0_DQ5	DQ5	CA2	
A5	EMI0_DQ6	DQ6	CA6	
A3	EMI0_DQ7	DQ7	CA6	
B11	EMI0_DQ8	DQ8	DQ22	
E11	EMI0_DQ9	DQ9	DQ23	
B10	EMI0_DQ10	DQ10	DQ20	
A9	EMI0_DQ11	DQ11	DQ19	
A11	EMI0_DQ12	DQ12	DQ12	
D9	EMI0_DQ13	DQ13	DQ13	
C9	EMI0_DQ14	DQ14	DQ14	
D11	EMI0_DQ15	DQ15	DQ15	
C4	EMI0_DQS0_C	DQS0_c	NC	
D4	EMI0_DQS0_T	DQS0_t	NC	
E12	EMI0_DQS1_C	DQS1_c	DQS2_c	
F12	EMI0_DQS1_T	DQS1_t	DQS2_t	
E9	EMI0_CA0	CA0	CA0	
C7	EMIO_CA1	CA1	CA1	
B5	EMI0_CA2	CA2	CA3	
В6	EMIO_CA3	CA3	NC	
В7	EMI0_CA4	CA4	NC	
E7	EMIO_CA5	CA5	NC	
D8	EMI0_CS0	CS0	CS0	
A7	EMIO_CS1	CS1	CS1	
B4	EMI0_DMI0	DM0	NC	
C8	EMI0_DMI1	DM1	DM2	
E8	EMI0_CKE0	CKE0	CKE0	
D7	EMIO_CKE1	CKE1	CKE1	
E10	EMIO_CK_C	CK_c	CK_c	
D10	EMI0_CK_T	CK_t	CK_t	
F20	EMI1_DQ0	DQ0	DQ26	
E20	EMI1_DQ1	DQ1	DQ27	
D20	EMI1_DQ2	DQ2	DQ24	
E19	EMI1_DQ3	DQ3	DQ25	
C20	EMI1_DQ4	DQ4	DQ30	
B19	EMI1_DQ5	DQ5	DQ28	

Ball Location	Ball Name	Pin-Mux 1 - LPDDR4 2 × 16-bit	Pin-Mux 2 - LPDDR3 1 × 32-bit
A19	EMI1_DQ6	DQ6	DQ31
C21		DQ7	DQ31
	EMI1_DQ7		
C13	EMI1_DQ8	DQ8	DQ2
C14	EMI1_DQ9	DQ9	DQ4
A13	EMI1_DQ10	DQ10	DQ1
D15	EMI1_DQ11	DQ11	DQ6
C12	EMI1_DQ12	DQ12	DQ0
A15	EMI1_DQ13	DQ13	DQ7
B14	EMI1_DQ14	DQ14	DQ3
D14	EMI1_DQ15	DQ15	DQ5
E21	EMI1_DQS0_C	DQS0_c	DQS3_c
F21	EMI1_DQS0_T	DQS0_t	DQS3_t
F13	EMI1_DQS1_C	DQS1_c	DQS0_c
E13	EMI1_DQS1_T	DQS1_t	DQS0_t
D17	EMI1_CA0	CA0	DQ11
C15	EMI1_CA1	CA1	DQ8
B17	EMI1_CA2	CA2	DQ15
A17	EMI1_CA3	CA3	DQ14
C17	EMI1_CA4	CA4	DQ9
D19	EMI1_CA5	CA5	DQ13
E17	EMI1_CS0	CS0	DM1
C16	EMI1_CS1	CS1	NC
B18	EMI1_DMI0	DM0	DM3
B15	EMI1_DMI1	DM1	DM0
D18	EMI1_CKE0	CKE0	DQ10
E18	EMI1 CKE1	CKE1	DQ12
F16	EMI1_CK_C	CK_C	DQS1_c
E16	EMI1_CK_T	CK_T	DQS1_t
D22	EMI_RESET_N	RESET_N	RESET_N
J15	EMI_TP	NC NC	VREF
J14	EMI_TN	NC NC	NC
A2	EMI_EXTR	EXTR	EXTR

3.5.3 LPDDR3 Interface

3.5.3.1 LPDDR3 Timing Characteristics

The EMI LPDDR3 timing characteristics are compliant with JEDEC Standard—JESD209-3C.

3.5.3.2 LPDDR3 Application Guidelines

Table 3-4 presents supported LPDDR3 device combinations.

Table 3-4 LPDDR3 Device Combinations

Number of Devices	Device Data Width	Mirrored	EMI Width
1	32-bit	No	32-bit

Figure 3-1 shows the schematic connections for a 32-bit interface using 1×32 -bit device.

Figure 3-1 LPDDR3 Basic Schematic for 1 × 32-bit

3.5.4 LPDDR4/X Interface

3.5.4.1 LPDDR4/X Timing Characteristics

The EMI LPDDR4 timing characteristics are compliant with JEDEC Standard—JC-42.6.

3.5.4.2 LPDDR4/X Application Guidelines

Table 3-5 presents supported LPDDR4/X device combinations.

Table 3-5 LPDDR4/X Device Combinations

Number of Devices	Device Data Width	Mirrored	EMI Width
2	16-bit	No	32-bit

Figure 3-2 shows the schematic connections for a 32-bit interface using 2×16 -bit devices.

Figure 3-2 LPDDR4/X Basic Schematic for 2 × 16-bit

3.6 Storage

3.6.1 Memory Card Controller (MSDC)

The MultiMediaCard and Secure Digital® (SD) card Controller (MSDC) offers a high throughput data transfers while power consumption and data security between device local hosts and memory cards are taken into consideration.

The MSDC fully supports:

- SD3.0 (Secure Digital) memory card specification
- eMMC5.1 (embedded MultiMediaCard) specification

The device includes two MSDC modules. MSDC0 is used as MMC/eMMC interface, while MSDC1 is used as SD interface. Each MSDC module supports the following key features:

• Built-in CRC circuit

- Programmed Input/Output (PIO) mode, basic DMA mode and descriptor mode
- Interrupt capabilities

The MSDC0 fully supports:

- 1-, 4-, 8-bit data bus width for eMMC
- Backwards compatibility with legacy MMC card
- High-speed Single Data Rate (SDR) mode
- High-speed Dual Data Rate (DDR) mode
- HS200 mode, SDR up to 200 MBps
- HS400 mode, DDR up to 400 MBps
- eMMC Boot up mode
- eMMC5.1 Command Queue (CMDQ)
- AES

The MSDC1 fully supports:

- 1-, 4-bit data bus width for SD card interface or SDIO interface
- Default Speed mode, data rate up to 12.5 MBps
- High Speed mode, data rate up to 25 MBps
- SDR12 mode, data rate up to 12.5 MBps
- SDR25 mode, data rate up to 25 MBps
- SDR50 mode, data rate up to 50 MBps
- SD3.0 SDR104 mode, data rate up to 100 MBps
- SD3.0 DDR50 mode, data rate up to 50 MBps

3.6.1.1 MSDC Signal Descriptions

Table 3-6 presents MSDC signal descriptions.

Table 3-6 MSDC Signal Descriptions

Signal Name	Туре	Description	Ball Location
MSDC0			·
MSDC0_CLK	DO	MSDC0 clock output	D24
MSDC0_CMD	DIO	MSDC0 command pin	C27
MSDC0_DAT0	DIO	MSDC0 data 0 pin	B26
MSDC0_DAT1	DIO	MSDC0 data 1 pin	B27
MSDC0_DAT2	DIO	MSDC0 data 2 pin	A26
MSDC0_DAT3	DIO	MSDC0 data 3 pin	E24
MSDC0_DAT4	DIO	MSDC0 data 4 pin	C26
MSDC0_DAT5	DIO	MSDC0 data 5 pin	C25
MSDC0_DAT6	DIO	MSDC0 data 6 pin	G23
MSDC0_DAT7	DIO	MSDC0 data 7 pin	D26
MSDC0_DSL	DI	MSDC0 DSL pin	E25
MSDC0_RSTB	DO	MSDC0 reset pin	D25
MSDC1			
MSDC1_CLK	DO	MSDC1 clock output	AC24
MSDC1_CMD	DIO	MSDC1 command pin	AD26
MSDC1_DAT0	DIO	MSDC1 data 0 pin	AD24

Signal Name	Туре	Description	Ball Location
MSDC1_DAT1	DIO	MSDC1 data 1 pin	AE26
MSDC1_DAT2	DIO	MSDC1 data 2 pin	AC23
MSDC1_DAT3	DIO	MSDC1 data 3 pin	AD27

3.6.1.2 MSDC Signal Mapping

The communication protocol between controller and device is implemented through an advanced 11-signal or 6-signal bus. Details are provided in Table 3-7.

Table 3-7 MSDC Signal Mapping

No.	Name ⁽¹⁾⁽²⁾	Туре	еММС	SD/SDHC	SDIO	Description	
1	MSDC0/1_CLK	DO	CLK	CLK	SCLK	Clock	
2	MSDC0_RSTB	DO	RCLK			Reset output	
3	MSDC0/1_DAT0	DIO	DAT0	DAT0	DAT0	Serial data line bit 0	
4	MSDC0/1_DAT1	DIO	DAT1	DAT1	DAT1	Serial data line bit 1	
5	MSDC0/1_DAT2	DIO	DAT2	DAT2	DAT2	Serial data line bit 2	
6	MSDC0/1_DAT3	DIO	DAT3	DAT3	DAT3	Serial data line bit 3	
7	MSDC0_DAT4	DIO	DAT4			Serial data line bit 4	
8	MSDC0_DAT5	DIO	DAT5			Serial data line bit 5	
9	MSDC0_DAT6	DIO	DAT6			Serial data line bit 6	
10	MSDC0_DAT7	DIO	DAT7			Serial data line bit 7	
11	MSDC0/1_CMD	DIO	CMD	CMD	BS	Command/bus state	
12	SD_WP ⁽³⁾	I		WP		Write protection detect	
13	SD_INS ⁽³⁾	I	VSS2	VSS2	INS	Card insertion detect	

- All MSDC I/O pads include both pull-up and pull-down resistors because they are shared by both the Memory Stick and SD/MMC memory card. Pull-down resistor for these pins can be used for power saving.
- 2. All embedded pull-up and pull-down resistors can be disabled by programming the corresponding control registers if optimal pull-up or pull-down resistors are required on the system board.
- 3. SD_WP and SD_INS signals are not provided by MSDC controller. These functions can be accomplished using GPIO pins, if needed.

3.6.1.3 MSDC Timing Characteristics

Table 3-8 and Figure 3-3 present the MSDC timing characteristics in Default Speed mode.

Table 3-8 MSDC Timing Characteristics (Default Speed mode)

No	Symbol	Parameter	Min	Max	Unit				
Clock CLI	Clock CLK (CLK rise and fall times are measured by min V _{IH} and max V _{IL}); C _{CARD} ≤ 10 pF								
DS1	f _{OP}	Operating frequency data transfer mode	0	25	MHz				
D21	f _{OP_ID}	Operating frequency identification mode	100	400	kHz				
DS2	t _{w_CLK_L}	Pulse duration, CLK low	10		ns				
DS3	t _{w_CLK_H}	Pulse duration, CLK high	10		ns				
DS4	t _{RISE_CLK}	Rise time, CLK		10	ns				
DS5	t _{FALL_CLK}	Fall time, CLK		10	ns				
Input DA	Input DAT/CMD (referenced to CLK); C _{CARD} ≤ 10 pF								
DS6	t _{su_DAT/CMD}	Setup time, DAT/CMD input	5		ns				
DS7	t _{h_DAT/CMD}	Hold time, DAT/CMD input	5		ns				

No	Symbol	Parameter	Min	Max	Unit				
Output DAT/CMD (referenced to CLK); C _L ≤ 40 pF									
DS8	t _{d_DAT/CMD}	Delay time, DAT/CMD output during data transfer mode	0	14	ns				
DS9	t _{d_DAT/CMD_ID}	Delay time, DAT/CMD output during identification mode	0	50	ns				

Figure 3-3 MSDC Timing Diagram (Default Speed mode)

Table 3-9 and Figure 3-4 present the MSDC timing characteristics in High Speed mode.

Table 3-9 MSDC Timing Characteristics (High Speed mode)

No	Parameter			Min	Max	Unit					
Clock CLK (CLK rise and fall times are measured by min V _{IH} and max V _{IL}); C _{CARD} ≤ 10 pF											
HS1	f _{OP}	Operating frequency data transfer	0	50	MHz						
HS2	t _{w_CLK_L}	Pulse duration, CLK low	7		ns						
HS3	t _{w_CLK_H}	Pulse duration, CLK high	7		ns						
HS4	t _{RISE_CLK}	Rise time, CLK		3	ns						
HS5	t _{FALL_CLK}	Fall time, CLK		3	ns						
Input DAT/CMD (referenced to CLK); C _{CARD} ≤ 10 pF											
HS6	t _{su_DAT/CMD}	Setup time, DAT/CMD input		6		ns					
HS7	t _{h_DAT/CMD}	Hold time, DAT/CMD input	2		ns						
Output DAT/CMD (referenced to CLK)											
HS8	t _{d_DAT/CMD}	Delay time, DAT/CMD output (1)	C _L ≤ 40 pF		14	ns					
HS9	t _{h_DAT/CMD}	Hold time, DAT/CMD output (1)	C _L ≥ 15 pF	2.5		ns					
	CL	Total system capacitance for each line			40	pF					

^{1.} Valid during data transfer mode.

Figure 3-4 MSDC Timing Diagram (High Speed mode)

Table 3-10 and Figure 3-5 present the MSDC timing characteristics in SDR12, SDR25, SDR50, and SDR104 modes.

Table 3-10 MSDC Timing Characteristics (SDR12/SDR25/SDR50/SDR104 modes)

No.		Parameter	Min	Max	Unit
CLK outpu	ut from host				
		Cycle time, CLK for SDR12		40	ns
SDR121	t _C	Cycle time, CLK for SDR25		20	ns
JUNIZI		Cycle time, CLK for SDR50		10	ns
		Cycle time, CLK for SDR104		4.8	ns
	D	Duty Cycle, CLK	30	70	%
SDR124	t _{RISE_CLK}	Rise time, CLK		0.2 × SDR121 ⁽¹⁾	ns
SDR125	t _{FALL_CLK}	Fall time, CLK		0.2 × SDR121 ⁽¹⁾	ns
Host DAT	CMD input (ref	ferenced to CLK), V _{CT} = 0.975V			
CDD12C	+	Setup time, DAT/CMD input for SDR50, C _{CARD} = 10 pF	3		ns
SDR126	t _{su_DAT/CMD}	Setup time, DAT/CMD input for SDR104, C _{CARD} = 10 pF	1.4		ns
CDD127	+	Hold time, DAT/CMD input for SDR50, C _{CARD} = 5 pF	0.8		ns
SDR127	t _{h_DAT/CMD}	Hold time, DAT/CMD input for SDR104, C _{CARD} = 5 pF	0.8		ns
Host DAT	CMD output (r	eferenced to CLK)			
		Delay time, DAT/CMD output for SDR12/SDR25, t _C ≥ 20.0		14	nc
		ns, C _L = 40 pF, using driver type B		14	ns
	t _{d_DAT/CMD}	Delay time, DAT/CMD output for SDR50, $t_C \ge 10.0$ ns, $C_L =$		7.5	
SDR128		30 pF, using driver type B		7.5	ns
		Delay time, DAT/CMD output for SDR104	0	2	UI ⁽²⁾
	Δt _d DAT/CMD	Delay variation due to temperature change after tuning for	-350	+1550	nc
	Δt _d _DAI/CIVID	SDR104	-330	+1330	ps
SDR129	th DAT/CNAD	Hold time, DAT/CMD output for SDR12/SDR25/SDR50, C _L =	1.5		ns
JUNIZJ	t _{h_DAT/CMD}	15 pF	1.5		113
SDR1210	t _{h_DAT/CMD}	Hold time, DAT/CMD output for SDR104	0.6(3)		UI ⁽²⁾

^{1.} $t_{RISE_CLK}/t_{FALL_CLK} < 0.96$ ns (max) at 208 MHz, $C_{CARD} = 10$ pF; $t_{RISE_CLK}/t_{FALL_CLK} < 2$ ns (max) at 100 MHz, $C_{CARD} = 10$ pF.

2. Unit Interval (UI) is one bit nominal time. For example, UI = 5 nsat 200 MHz.

3. $t_{h_DAT/CMD} = 2.88 \text{ ns at } 208 \text{ MHz}$

Figure 3-5 MSDC Timing Diagram (SDR12/SDR25/SDR50/SDR104 modes)

Table 3-11 and Figure 3-6 present the MSDC timing characteristics in DDR50 mode.

Table 3-11 MSDC Timing Characteristics (DDR50 mode)

No	Parameter		Min	Max	Unit	
Input DAT/C	MD (referenc	ed to CLK rising and falling edge /	rising edge); Co	ARD ≤ 10 pF		
DDR503	t _{su_CMD}	Setup time, CMD input		6		ns
סטאטט	t _{su_DAT}	Setup time, DAT input		3		ns
DDDE04	t _{h_CMD}	Hold time, CMD input	0.8		ns	
DDR504 t_{h_DAT}		Hold time, DAT input		0.8		ns
Output DAT/	CMD (refere	nced to CLK rising and falling edge	/ rising edge)			
חחורטר	t _{d_CMD}	Delay time, CMD output (1)	C _L ≤ 30 pF		13.7	ns
DDR505	t _{d_DAT}	Delay time, DAT output (1)	C _L ≤ 25 pF		7	ns
DDR506	t _{h_CMD}	Hold time, CMD output	C _L ≥ 15 pF	1.5		ns
	t _{h_DAT}	Hold time, DAT output	C _L ≥ 15 pF	1.5		ns

1. Valid during data transfer mode.

Figure 3-6 MSDC Timing Diagram (DDR50 mode)

Table 3-12 and Figure 3-7 present the MSDC timing characteristics in HS200 mode.

Table 3-12 MSDC Timing Characteristics (HS200 mode)

No	Parameter		Min	Max	Unit
Clock CLI	<				
HS2001	t _C	Cycle time, CLK	5		ns
HS2002	t _{RISE_CLK}	Rise time, CLK (C _{Device} ≤ 6 pF)		1	ns
HS2003	t _{FALL_CLK}	Fall time, CLK (C _{Device} ≤ 6 pF)		1	ns
	D	Duty Cycle, CLK	30	70	%
Input DA	T/CMD; C _{Device} ≤	6 pF			
HS2005	t _{su_DAT/CMD}	Setup time, DAT/CMD input	1.4		ns
HS2006	t _{h_DAT/CMD}	Hold time, DAT/CMD input	0.8		ns
Output D	AT/CMD				
	t _{d_DAT/CMD}	Delay time, DAT/CMD output	0	2	UI ⁽¹⁾
HS2007			-350	1550	
	$\Delta t_{d_DAT/CMD}$	Delay variation due to temperature change after tuning ⁽²⁾	(ΔT=-20°C)	(ΔT=90°C)	ps
HS2008	t _{h_DAT/CMD}	Hold time, DAT/CMD output	0.575 ⁽³⁾		UI ⁽¹⁾

- 1. Unit Interval (UI) is one bit nominal time. For example, UI = 5 ns at 200 MHz.
- 2. Total allowable shift of output valid window ($t_{h_DAT/CMD}$) from last system tuning procedure $\Delta t_{d_DAT/CMD}$ is 2600 ps for ΔT from -25 °C to 125 °C during operation.
- 3. The minimum value is equal to 2.88 ns at 208 MHz.

Figure 3-7 MSDC Timing Diagram (HS200 mode)

Table 3-13, Figure 3-8, and Figure 3-9 present the MSDC timing characteristics in HS400 mode.

Table 3-13 MSDC Timing Characteristics (HS400 mode)

No	Symbol	Parameter	Min	Max	Unit
Input CLK					
HS4001	t _{C_CLK}	Cycle time, CLK (with respect to V_T)	5		ns
	SR	Slew rate, with respect to V _{IH} /V _{IL}	1.125		V/ns
HS4002	t _{ck_dd}	Duty cycle distortion ⁽¹⁾	0	0.3	ns
HS4003	t _{W_CLK}	Pulse duration, CLK (with respect to V _T)	2.2		ns

No	Symbol	Parameter	Min	Max	Unit				
Input DAT (Input DAT (referenced to CLK); with respect to VIH/VIL; (C _{Device} ≤ 6 pF)								
HS4004	t _{su_DAT}	Setup time, DAT input	0.4		ns				
HS4005	t _{h_DAT}	Hold time, DAT input	0.4		ns				
	SR	Slew rate	1.125		V/ns				
Data Strobe	2								
HS4006	t _{C_CLK}	Cycle time, CLK (with respect to V _T)	5		ns				
	SR	Slew rate (with respect to V _{OH} /V _{OL} and HS400 reference load)	1.125		V/ns				
HS4007	t _{ds_dd}	Duty cycle distortion ⁽²⁾	0	0.2	ns				
HS4008	t _{W_CLK}	Pulse duration, CLK (with respect to V _T)	2		ns				
	t _{RPRE}	Read pre-amble	0.4		t _{C_CLK}				
	t _{RPST}	Read post-amble	0.4		t _{C_CLK}				
Input DAT (referenced to	Data Strobe); with respect to V _{OH} /V _{OL} and HS400 refe	erence load						
HS4009	t _{RQ}	Output skew		0.4	ns				
HS4010	t _{RQH}	Output hold skew		0.4	ns				
	SR	Slew rate	1.125		V/ns				

- 1. Allowable deviation from an ideal 50% duty cycle. With respect to V_T . Includes jitter and phase noise.
- 2. Allowable deviation from the input CLK duty cycle distortion (t_{ck_dd}). With respect to V_T . Includes jitter and phase noise.

Figure 3-8 MSDC Timing Diagram (HS400 Input mode)

Figure 3-9 MSDC Timing Diagram (HS400 Output mode)

3.6.2 Universal Flash Storage (UFS)

The UFS controller is used for computing and mobile systems requiring low power consumption and high data throughput to store data in Non-Volatile Memory (NVM) devices. The UFS controller in the device is composed of three main modules: UFS HCI (Host Controller Interface), UniPro® and M-PHY.

The UFS controller supports the following key features:

- JEDEC Standard Universal Flash Storage Version 2.1
- JEDEC UFS HCI Version 2.1
- MIPI UniPro Version 1.6
- MIPI M-PHY Version 3.1
- One lane, up to 5.8 Gbps (HS-G3 B-series)
- AHB slave interface
- DMA AXI master interface with 36-bit address width

3.6.2.1 UFS Signal Descriptions

Table 3-14 presents UFS signal descriptions.

Table 3-14 UFS Signal Descriptions

Signal Name	Туре	Description	Ball Location
UFS_MPHY_SCL	DI	UFS M-PHY serial clock	C26, L23
UFS_MPHY_SDA	DIO	UFS M-PHY serial data	G23, N27
UFS_RST_N	AIO	UFS reset	E22
UFS_RXO_RXN	AIO	UFS negative differential receive data lane 0	B22
UFS_RXO_RXP	AIO	UFS positive differential receive data lane 0	A22
UFS_TXO_N	AIO	UFS negative differential transmit data lane 0	A24
UFS_TX0_P	AIO	UFS positive differential transmit data lane 0	B24
UFS_UNIPRO_SCL	DI	UFS UniPro serial clock	C25, M24
UFS_UNIPRO_SDA	DIO	UFS UniPro serial data	B27, M25

3.7 Display

The display subsystem contains two types of data paths:

- Multimedia Data Path (MDP), which is the time-sharing data processing pipeline. The MDP includes read/write DMA
 engines and supports resizing and rotation operations for memory-to-memory pixel data transfers, in addition to
 providing 2D-sharpness enhancement, local contrast enhancement, color correction, and color enhancement
 functions.
- Display Data Path (DISP), which is a set of read/write DMA engines and provides overlay, color enhancement, adaptive
 ambient light processing, color correction, gamma correction and dither functions. The processed data can be either
 stored back in memory and/or delivered directly to display interface controllers like DSI, and DPI or DBI, for
 concurrent dual display output. The DPI port can connect to external LVDS, HDMI™, and MHL bridge chips to support
 these interfaces.

3.7.1 Multimedia Data Path (MDP)

The main purpose of the MDP is to generate images for display, video codec, JPEG codec and face detect.

3.7.1.1 MDP Read DMA (MDP RDMA)

The MDP_RDMA is used to read images of multiple source formats from DRAM and output in scan line sequence to the following MDP processing engine.

The MDP RDMA supports several functions:

- Multiple formats of input images:
 - YUV420 and YUV422 scan line 1/2/3 planes
 - RGB 16/24/32-bit
- Input image cropping/clipping
- Tile mode ready; supports source width up to 131,072 pixels
- Arbitrary byte swap for YUV or RGB source
- 3 × 3 color space conversion from RGB to YUV
- Chroma upsample to YUV444 for cosited or non-cosited YUV420 and YUV422 source data

3.7.1.2 MDP Color Correction (MDP_CCORR)

The MDP color correction engine changes the overall mixture of RGB colors to fit the characteristics of the target display panel.

The MDP_CCORR supports the following features:

- YUV to RGB, and RGB to YUV conversions
- Fixed-coefficient inverse gamma correction
- Programmable 3 × 3 conversion matrix

3.7.1.3 MDP Resizer (MDP_RSZ)

There are two resizer modules within the MDP: MDP RSZ0 and MDP RSZ1.

Each resizer supports the following key features:

- Three scaling algorithms (depending on the scaling ratio) including 6-tap FIR, 4n-tap cubic accumulation, and n-tap source accumulation
- 8-bit YUV444 (unsigned) input and output dataformat
- Scaling ratio between 1/128× and 64×
- Crop and digital zoom functions
- Maximum width of 544 pixels (tile mode)
- Edge-preserving interpolation
- Signal enhancer (pre-scaler sharpness)

3.7.1.4 MDP 2D Sharpness Engine (MDP_TDSHP)

The sharpness function provides a better picture quality for display panels by restoring the image details, sharpening the edge and delivering a vivid feeling for pictures and videos.

The MDP_TDSHP supports the following functions:

- 2-dimensional sharpness filter
- Peaking by Color (PBC)

3.7.1.5 MDP Adaptive Ambient Light Controller (MDP_AAL)

The MDP_AAL provides the following key features:

- Dark Region Enhancement (DRE) mapping for sunlight visibility
- Block-based histogram / Block-based gain-curve calculation

3.7.1.6 MDP Color Engine (COLOR)

The COLOR is a multi-stage processing engine, which is used for achieving better picture quality and making one display panel resemble another in their output characteristics. It provides color space conversion functions and various hue/luma/saturation adjustments.

The COLOR supports the following key features:

- Input/output color conversion
- Hue engine functions:
 - Partial hue: modifies hue angle of specific hue phase
- Luma engine functions:
 - Partial luma: modifies luma value of specific luma phase
 - Contrast enhancement
 - Brightnessadjustment
- Saturation engine functions:
 - Partial S: modifies saturation value of specific hue phase
 - Global saturation adjustment
 - Low S protection

NOTE: The COLOR is shared with the Display Data Path (DISP).

3.7.1.7 MDP Write DMA (MDP_WDMA)

The MDP_WDMA does the job of DMA writing out the data in MDP pipeline into the DRAM.

The MDP_WDMA supports the following key features:

- Input color format: YUV444/RGB888
- Dither function
- Internal color matrix
- Byte swap, color swap, and UV swap functions
- Output formats: RGB565/RGB888/ARGB8888/UYVY/YV12/NV12/NV21

3.7.1.8 MDP Rotation DMA (MDP_WROT)

The MDP_WROT is a write rotate DMA agent, which supports 8 rotation/flip options.

The MDP WROT provides the following key features:

- Rotation angles: 0°, 0° + H Flip, 90°, 90° + H Flip, 180°, 180° + H Flip, 270°, and 270° + H Flip
- Formats and footprints: YUV422 1/2/3 plane(s), YUV420 2/3 plane(s), RGB888, ARGB8888, RGB565, Yonly
- Internal color matrix
- Dither engine

3.7.2 Display Data Path (DISP)

The DISP consists of two display pipelines. One display pipeline has its own read/write DMA engines, overlay manager, resizer, color engine, adaptive ambient light controller, color correction block, gamma correction block, and dither engine, and outputs the processed data either to a display interface controller or writes it back to memory. The other display pipeline only includes a read DMA engine and overlay manager, and outputs the data to a display interface controller.

3.7.2.1 DISP Read DMA (DISP RDMA)

The DISP_RDMA engine reads out the data in the display pipeline from either DRAM or from upstream engines within the display pipeline, applies processing operations and delivers the data to the display interface controllers like DSI and DPI.

The DISP RDMA supports the following key features:

- Direct link input mode
- Memory input mode
 - Input formats: YUYV422, UYVY422, YVYU422, UYVY422, RGB565, RGB888, ARGB8888
 - Input footprints: Raster-scan mode, 64 byte-aligned tile mode
 - Slow down mode
- Output control
 - Byte swap, RGB swap
 - Progressive and interlace modes
 - Non-stop output mode, if the data buffer is under-running
- Buffer control
 - Programmable request, pre-ultra, and ultra control mechanisms

3.7.2.2 DISP Write DMA (DISP_WDMA)

The DISP_WDMA writes out the data in display pipeline into the DRAM.

The DISP_WDMA provides the following key features:

- Input color format: YUV444/RGB888
- Dither function
- Internal color matrix
- Byte swap, color swap, and UV swap functions
- Output color formats: RGB565/RGB8888/ARGB8888/UYVY/YV12/NV12/NV21

3.7.2.3 DISP Overlay (DISP_OVL)

The DISP_OVL manager does alpha blending of pixel data layers. The source pixel data is fetched from DRAM by a dedicated read DMA channel for each layer. The pixel data is processed depending on pixel characteristics and the display panel requirements.

There are three DISP OVL managers within the display data path: DISP OVLO, DISP OVLO 2L, and DISP OVL1 2L.

Each DISP_OVL supports the following key features:

- Layers of blending:
 - Up to 4 layers for DISP_OVL0
 - Up to 2 layers for DISP_OVL0_2L and DISP_OVL1_2L
- Input resolution:
 - Full HD+ (2400 × 1080)
- Memory source formats: RGB565/RGB8888/ARGB8888/PARGB8888/XRGB/YUV422
- Swap control:
 - RGB swap and byte swap control (RGB/BGR/xARGB/xABGR/RGBxA/BGRxA)
 - UYVY swap (UYVY/VYUY/YUYV/YVYU)
- Interleaving of left and right images for 3D display in landscape and portrait modes (supported by DISP_OVLO_2L only)
- Fixed color conversion coefficients
- Source color key or destination color key

- Pixel alpha with PARGB/ARGB, and constant alpha or surface flinger alpha blending
- Flexible Region-of-Interest (ROI) system, supporting individual color depth, window size, vertical and horizontal offsets
- Vertical, horizontal, and 180-degree flip function

3.7.2.4 DISP Color Engine (COLOR)

NOTE: The COLOR is shared with the Multimedia Data Path (MDP). For information on the supported features, see Section 3.7.1.6 MDP Color Engine (COLOR).

3.7.2.5 DISP Color Correction (DISP_CCORR)

The DISP CCORR engine changes the overall mixture of RGB colors to fit the characteristics of target display panel.

The DISP CCORR supports the following key features:

- Fixed-coefficient inverse gamma table
- Fixed-coefficient gamma table
- Programmable 3 × 3 matrix

3.7.2.6 DISP Adaptive Ambient Light Controller (DISP_AAL)

The DSIP_AAL controller includes content adaptive and ambient light adaptive functions. It is responsible for backlight power saving and sunlight visibility improvement.

The DISP AAL provides the following key features:

- Weighted maxRGB/Luma histogram
- Dark Region Enhancement (DRE) mapping for sunlight visibility
- Content Adaptive Backlight Control (CABC) compensation for power saving

3.7.2.7 DISP Gamma Engine (DISP_GAMMA)

The DISP_GAMMA engine provides gamma correction by changing the overall mixture of RGB colors to fit the characteristics of the display panel.

The DISP_GAMMA supports the following key features:

• 10-bit gamma table with 512 entries

3.7.2.8 DISP Dither Engine (DISP_DITHER)

The DISP_DITHER engine is used to reduce the effect of quantization errors while decreasing the RGB depth.

The DISP_DITHER supports the following key features:

- Ordered dithering: Running order dither frame phase control
- Linear Feedback Shift Register (LFSR) dithering
- Rounding

3.7.2.9 DISP Resizer (DISP_RSZ)

The DISP_RSZ is the resizer module in the display data path.

The DISP_RSZ supports the following key features:

- Input and output format: ARGB8888
- Up-scaling only

- Scaling ratio between 1× and 64×
- 4-tap FIR
- Maximum width of 736 pixels

3.7.2.10 DISP Mutex (DISP_MUTEX)

The DISP_MUTEX is used to synchronize the start trigger signal of each submodule in the display data path. This enables the composition of up to two independent real-time display paths, or multiple soft paths, which can perform multi-tasking between several software processes.

The DISP_MUTEX supports the following key features:

- Up to 12 mutex cores in parallel
- Each submodule in the display data path can be assigned to any one of the 12 mutex cores
- Start trigger signal selection for each mutex core: driven either from SW or from a display interface (DSI, DPI, DBI)

The start trigger method determines the operation mode of the display data path:

- Single mode (SW trigger):
 - Single frame processing upon every SW trigger
 - Memory in—memory out path (not always being single mode)
 - Memory in and direct link to command mode display output (for example, DSI command mode)
- Refresh mode (display interface trigger):
 - Frame-by-frame processing after start
 - Memory in and direct link to video mode display output (for example, DSI video mode, DPI)

3.7.3 Display Parallel Interface (DPI)

The DPI controller provides data to companion chips, such as HDMI, MHL, or other bridge chips.

The DPI controller supports the following key features:

- Resolution up to 1920p × 1080p @ 30fps
- Programmable 2D/3D, progressive/interlaced timing generator
- Programmable EAV and SAV embedded synchronization timing
- Fixed-coefficient color space transformation
- RGB888/YUV444 8-bit/YUV422 8-bit, 10-bit, 12-bit output dataformats
- YC MUX (CCIR656-like) output format
- Dual edge output format
- Secure display
- 3-tap chroma Low-Pass Filter (LPF)
- Internal pattern generator

3.7.3.1 DPI Signal Descriptions

Table 3-15 presents DPI signal descriptions.

Table 3-15 DPI Signal Descriptions

Signal Name	Туре	Description	Ball Location
DBPI_CK	DO	Display pixel clock	AC25
DBPI_D0	DIO	Display pixel data 0	W23
DBPI_D1	DIO	Display pixel data 1	AA25

Signal Name	Туре	Description	Ball Location
DBPI_D2	DIO	Display pixel data 2	W25
DBPI_D3	DIO	Display pixel data 3	W26
DBPI_D4	DIO	Display pixel data 4	AB26
DBPI_D5	DIO	Display pixel data 5	AB23
DBPI_D6	DIO	Display pixel data 6	W24
DBPI_D7	DIO	Display pixel data 7	Y24
DBPI_D8	DIO	Display pixel data 8	AB24
DBPI_D9	DIO	Display pixel data 9	Y26
DBPI_D10	DIO	Display pixel data 10	AA26
DBPI_D11	DIO	Display pixel data 11	AA23
DBPI_DE	DO	Display pixel data enable	AC26
DBPI_HSYNC	DO	Display horizontal sync	Y23
DBPI_VSYNC	DO	Display vertical sync	AA24

NOTE: The DPI shares pins with DBI (see Section 3.7.4.1 DBI Signal Descriptions) and the two interfaces cannot be used concurrently.

Table 3-16 presents the DPI pixel data signals mapping for four data/clock timing combinations in dual edge mode. In dual edge mode, one pixel is sent by two pixel clock edges.

Table 3-16 DPI Signals Mapping in Dual Edge Mode

Signal Name	Case 1		Case 2		Case 3		Case 4	
Signal Name	Rising edge	Falling edge	Rising edge	Falling edge	Falling edge	Rising edge	Falling edge	Rising edge
DBPI_D0	G4	В0	В0	G4	G4	В0	В0	G4
DBPI_D1	G5	B1	B1	G5	G5	B1	B1	G5
DBPI_D2	G6	B2	B2	G6	G6	B2	B2	G6
DBPI_D3	G7	В3	В3	G7	G7	В3	В3	G7
DBPI_D4	RO	B4	B4	R0	RO	B4	B4	R0
DBPI_D5	R1	B5	B5	R1	R1	B5	B5	R1
DBPI_D6	R2	B6	B6	R2	R2	B6	B6	R2
DBPI_D7	R3	В7	В7	R3	R3	В7	В7	R3
DBPI_D8	R4	G0	G0	R4	R4	G0	G0	R4
DBPI_D9	R5	G1	G1	R5	R5	G1	G1	R5
DBPI_D10	R6	G2	G2	R6	R6	G2	G2	R6
DBPI_D11	R7	G3	G3	R7	R7	G3	G3	R7

3.7.3.2 DPI Timing Characteristics

Table 3-17 and Figure 3-10 present timing characteristics for DPI in the device.

Table 3-17 DPI Timing Characteristics

No.	Parameter	Parameter		Max	Unit
DPI01	t _c	Cycle time	13.47 ⁽¹⁾		ns
DPI02	D	Duty cycle, DPI_CK	45	55	%
DPI03	t _{RISE}	Rise time		2.69	ns
DPI04	t _{FALL}	Fall time		2.69	ns

UNCLASSIFIED

No.	Parameter			Max	Unit
DPI05	t _d	Delay time, other signals to DBPI_CK	3.69		ns

1. For maximum operating clock frequency refer to Table 6-1.

Figure 3-10 DPI Timing Diagram

3.7.4 Display Bus Interface (DBI)

The DBI controller provides data in MIPI DBI-B or DBI-C format to a mobile Liquid Crystal Monitor (LCM).

The DBI controller provides the following key features:

- DBI Type B support:
 - 8-bit or 9-bit parallel interface
 - RGB666 color format
 - Resolution up to 320 × 480 @ 30fps
- DBI Type C support:
 - 9-bit (Option 1) or 8-bit (Option 3) serial interface
 - RGB666 color format
 - Resolution up to 240 × 240 @ 30fps for 1 data lane
 - Resolution up to 400 × 400 @ 30fps for 2 data lanes
- Tearing Effect (TE) synchronization
- Embedded dither processor, which can be used to keep the picture quality during bit drop of each color channel
 - Separate/independent dithering depth for each color channel
 - Four dithering modes:
 - Rounding
 - Randomize
 - Error diffusion
 - Running order dithering

3.7.4.1 DBI Signal Descriptions

Table 3-18 presents DBI signal descriptions.

Table 3-18 DBI Signal Descriptions

Signal Name	Type	Description	Ball Location
DBI Type B			
DBPI_CK	DO	Chip select	AC25
DBPI_D0	DIO	Display command or pixel data 0	W23
DBPI_D1	DIO	Display command or pixel data 1	AA25
DBPI_D2	DIO	Display command or pixel data 2	W25
DBPI_D3	DIO	Display command or pixel data 3	W26
DBPI_D4	DIO	Display command or pixel data 4	AB26
DBPI_D5	DIO	Display command or pixel data 5	AB23
DBPI_D6	DIO	Display command or pixel data 6	W24
DBPI_D7	DIO	Display command or pixel data 7	Y24
DBPI_D8	DIO	Display command or pixel data 8	AB24
DBPI_DE	DO	Command/data select	AC26
DBPI_HSYNC	DO	Write strobe	Y23
DBPI_VSYNC	DO	Read strobe	AA24
DBI Type C	•		•
DBPI_CK	DO	Synchronous clock	AC25
DBPI_D11	DIO	Serial data input/output	AA23
DBPI_DE	DO	Command/data select	AC26
DBPI_HSYNC	DO	Chip select	Y23

NOTE: The DBI shares pins with DPI (see Section 3.7.3.1 DPI Signal Descriptions) and the two interfaces cannot be used concurrently.

3.7.5 Display Serial Interface (DSI)

The DSI is based on MIPI Alliance Specification, supporting high-speed serial data transfer between host processor and peripheral devices such as display modules.

The DSI module receives frame pixels from memory, performs frames packing and lane distribution, and then sends the data to the MIPI D-PHY TX core for serializing.

The DSI module has the following key features for display serial interface:

- Supports video and command mode data transfers
- 1 clock lane and up to 4 data lanes
- Throughput up to 1.5 Gbps per data lane
- Resolution up to 2400 × 1080 @ 60fps
- Bi-directional data transmission in Low-Power mode in data lane 0
- Uni-directional data transmission in High-Speed mode in data lanes 0 through 3
- Non-continuous high-speed transmission in clock and data lanes
- Pixel formats supported: RGB565 / RGB666 / loosely RGB666 / RGB888
- 128-entry command queue for command transmission
- 3 types of video modes: sync-event, sync-pulse, and burst modes

- Limited high-speed residual packet transmission during video mode blanking period
- Ultra-low power mode control
- Peripheral and external Tearing Effect (TE) signals detection
- Command mode frame transmission free-run
- Low Frame-Rate (LFR) technique

3.7.5.1 DSI Signal Descriptions

Table 3-19 presents DSI signal descriptions.

Table 3-19 DSI Signal Descriptions

Signal Name	Туре	Description	Ball Location
DSI0_CKN	AIO	DSI0 clock lane N	U24
DSIO_CKP	AIO	DSI0 clock lane P	U25
DSI0_D0N	AIO	DSI0 data lane0 N	R27
DSI0_D0P	AIO	DSI0 data lane0 P	T27
DSI0_D1N	AIO	DSIO data lane1 N	T26
DSIO_D1P	AIO	DSIO data lane1 P	U26
DSI0_D2N	AIO	DSI0 data lane2 N	V24
DSI0_D2P	AIO	DSI0 data lane2 P	V25
DSI0_D3N	AIO	DSI0 data lane3 N	T24
DSI0_D3P	AIO	DSI0 data lane3 P	T25
DSI_TE	DI	DSI tearing effect control	AG26

3.7.5.2 DSI Timing Characteristics

The DSI interface timing and electrical characteristics are compliant with MIPI DSI Specification v01-02-00 and MIPI D-PHY Specification v1-1.

3.7.6 Display Pulse Width Modulation (DISP PWM) and Reset

The DISP PWM module provides a PWM signal for the LED driver of an LCM in order to reduce its backlight power consumption.

The DISP PWM supports the following features:

- Gradual PWM control
- Operating clock: 26 MHz, 104 MHz, 16 MHz, 63 MHz or 125 MHz

Additionally, the device provides the LCM_RST signal that can be used to reset an external LCM.

Table 3-20 presents the DISP PWM and reset signal descriptions.

Table 3-20 DISP PWM and Reset Signal Descriptions

Signal Name	Type	Description	Ball Location
DISP_PWM	DO	Display PWM output	AH23
LCM_RST	DO	Display reset	AH27

3.8 Imaging

The imaging subsystem is built around a feature-rich Image Signal Processor (ISP), which processes either data received from camera sensors through MIPI CSI-2 interface or RAW data fetched from DRAM, and an ancillary engine for face detection and visual tracking.

3.8.1 Camera Image Signal Processor (ISP)

The ISP consists of timing generation unit, a lens and sensor compensation unit, and an image processing unit. The ISP works on image data received either from one of the camera interfaces or from system DRAM, and outputs the processed data back into DRAM.

Figure 3-11 shows the ISP internal block diagram.

Figure 3-11 Image Signal Processor Block Diagram

The following list highlights the ISP features:

- Camera interfaces:
 - Primary camera: MIPI CSI-2 with 4 data lanes
 - Secondary camera: MIPI CSI-2 with 4 data lanes
 - Tertiary camera: MIPI CSI-2 with 4 data lanes
- 32MP @ 30fps processing
- PIP (picture in picture), (16MP + 16MP) @ 30fps
- Lens and sensor compensation and image processing units:
 - Defective pixel compensation
 - Lens shading compensation
 - De-mosaic
 - Color clipping
 - Gamma correction
 - Edge enhancement (sharpness)
 - Noise reduction with large kernel
 - Multi-frame noise reduction for image capture
 - Temporal noise reduction for video recording
 - Preference color adaptation
 - 3A (AE/AWB/AF) statistics and correction

- Hardware JPEG encoder:
 - Baseline encoding with 200MP/sec
 - Continuous shotwith 25MP @ 7fps
- Supports YUV422/YUV420 color format and EXIF/JFIF format
- Video face beautification
- Flicker detection
- Electronic image stabilization, and digital image stabilization for video
- High quality resizer engines with 90° and 180° image rotation

3.8.1.1 Camera Signal Descriptions

Table 3-21 presents CAM signal descriptions.

Table 3-21 CAM Signal Descriptions

Signal Name	Туре	Description	Ball Location
CMFLASH	DO	Camera flash strobe	AE2, R25, M22
CMMCLK0	DO	Sensor reference clock 0	AA4
CMMCLK1	DO	Sensor reference clock 1	AC2
CMMCLK2	DO	Sensor reference clock 2	W4, AA6, AE3, K4,
CIVIIVICENZ		Selisor reference clock 2	Y22, Y25
CMMCLK3	DO	Sensor reference clock 3	Y4, AH1, L4, AA22,
CIVIIVICERS		Selisor reference clock s	AD25
CMVREF0	DO	Camera Frame Sync	W5, L25, L22
CMVREF1	DO	Camera Frame Sync	AA3, P22, AD25

3.8.2 Face Detection and Visual Tracking (FDVT)

The Face Detection and Visual Tracking (FDVT) engine is used to detect the new coming faces and track the existing faces in an image. The input image of the FDVT is the 16-bit RGB565 data generated by the ISP module.

The FDVT supports the following key features:

- Detecting faces of Rotation-in-Plane (RIP) from -180° to +180°
- Detecting faces of Rotation-off-Plane (ROP) from -90° to +90°
- Maximum image size of 320 x 240 pixels

3.8.3 Camera Serial Interface (CSI)

The device features three MIPI CSI-2 modules that are fully compliant with MIPI CSI-2 specification. The primary CSI-2 interface (CSI0) uses a combined MIPI D-PHY/C-PHY layer, while the secondary (CSI1) and tertiary (CSI2) interfaces implement only a MIPI D-PHY layers. The PHY layer of each interface acts as a physical link between the CSI controllers and the image sensors.

The D-PHY layer primarily feeds in the CSI data and clock lanes. The D-PHY layer provides high-speed clock, which can achieve up to 1.5 Gbps throughput, as a primary clock to the CSI controller. Half-speed, 768-MHz clock is also supported.

The MIPI CSI-2 implementation in the device provides the following key features:

- Primary CSI-2 interface (CSI0), which can be used in one of the following three configurations:
 - One 4-data lane interface in D-PHY mode

- Two 2-data lane interfaces in D-PHY mode
- 3-trio interfaces in C-PHY mode
- Secondary CSI-2 interface (CSI1), configured with 4-data lanes in D-PHY mode
- Tertiary CSI-2 interface (CSI2), configured with 4-data lanes in D-PHY mode
- D-PHY throughput up to 2.8 Gbps for one datalane
- C-PHY throughput up to 2.5 Gbps for one datalane
- Pixel format of 10-bit RAW8/RAW10/RAW12/RAW14/YUV422
- Four virtual channels

3.8.3.1 CSI Signal Descriptions

Table 3-22 presents CSIO signal descriptions.

Table 3-22 CSIO Signal Descriptions

Signal Name	Туре		Description		Ball Location
		4-lane D-PHY Mode	2 x 2-lane D-PHY Mode	3-trio C-PHY Mode	
CSIOA_LOP_TOA	АО	CSIO data lane 2, positive	CSIO_A data lane 0, positive	CSI0 Trio0 A	P4
CSIOA_LON_TOB	AIO	CSIO data lane 2, negative	CSIO_A data lane 0, negative	CSI0 Trio0 B	P3
CSI0A_L1P_T0C	AIO	CSIO data lane 0, positive	CSIO_A clock lane, positive	CSI0 Trio0 C	R2
CSI0A_L1N_T1A	AIO	CSIO data lane 0, negative	CSIO_A clock lane, negative	CSI0 Trio1 A	R1
CSI0A_L2P_T1B	AIO	CSIO clock lane, positive	CSIO_A data lane 1, positive	CSI0 Trio1 B	P5
CSI0A_L2N_T1C	AIO	CSIO clock lane, negative	CSIO_A data lane 1, negative	CSI0 Trio1 C	N5
CSIOB_LOP_TOA	AIO	CSIO data lane 1, positive	CSIO_B data lane 0, positive	CSI0 Trio2 A	R3
CSIOB_LON_TOB	AIO	CSIO data lane 1, negative	CSIO_B data lane 0, negative	CSI0 Trio2 B	R4
CSIOB_L1P_TOC	AIO	CSI0 data lane 3, positive	CSIO_B clock lane, positive	CSI0 Trio2 C	T2
CSIOB_L1N_T1A	AIO	CSIO data lane 3, negative	CSIO_B clock lane, negative	-	T1
CSIOB_L2P_T1B	AIO	-	CSIO_B data lane 1, positive	-	ТЗ
CSI0B_L2N_T1C	AIO	-	CSIO_B data lane 1, negative	-	T4

Table 3-23 presents CSI1 and CSI2 signal descriptions.

Table 3-23 CSI1 and CSI2 Signal Descriptions

Signal Name	Type	Description	Ball Location
MIPI CSI1 (4-lane D-PHY Mode)			

Signal Name	Туре	Description	Ball Location
CSI1A_LON	AIO	CSI1 data lane 2, negative	M1
CSI1A_LOP	AIO	CSI1 data lane 2, positive	M2
CSI1A_L1N	AIO	CSI1 data lane 0, negative	M4
CSI1A_L1P	AIO	CSI1 data lane 0, positive	M3
CSI1A_L2N	AIO	CSI1 clock lane, negative	N2
CSI1A_L2P	AIO	CSI1 clock lane, positive	N1
CSI1B_LON	AIO	CSI1 data lane 1, negative	N4
CSI1B_LOP	AIO	CSI1 data lane 1, positive	N3
CSI1B_L1N	AIO	CSI1 data lane 3, negative	P1
CSI1B_L1P	AIO	CSI1 data lane 3, positive	P2
MIPI CSI2 (4-lane D	-PHY Mode)		
CSI2A_LON	AIO	CSI2 data lane 2, negative	U1
CSI2A_LOP	AIO	CSI2 data lane 2, positive	U2
CSI2A_L1N	AIO	CSI2 data lane 0, negative	R5
CSI2A_L1P	AIO	CSI2 data lane 0, positive	T5
CSI2A_L2N	AIO	CSI2 clock lane, negative	U3
CSI2A_L2P	AIO	CSI2 clock lane, positive	U4
CSI2B_LON	AIO	CSI2 data lane 1, negative	V1
CSI2B_LOP	AIO	CSI2 data lane 1, positive	V2
CSI2B_L1N	AIO	CSI2 data lane 3, negative	V3
CSI2B_L1P	AIO	CSI2 data lane 3, positive	V4

3.8.3.2 CSI Timing Characteristics

Table 3-24 presents timing characteristics for CSI in the device for D-PHY mode.

Table 3-24 CSI Timing Characteristics for D-PHY Mode

Parameter		Min	Тур	Max	Unit
LP Mode					
V _{OH}	Output voltage high	1.1	1.2	1.3	V
V _{OL}	Output voltage low	-0.05		0.05	V
HS Mode					
V _{OH}	Output high voltage for non-transition bit			0.36	V
V _{OD_PP}	Transmit differential voltage	0.14	0.2	0.27	V
Clock		<u>.</u>			
t _{RISE}	Rise time			0.3	UI ⁽¹⁾
t _{FALL}	Fall time			0.3	UI ⁽¹⁾
Data					
t _{RISE}	Rise time			0.3	UI ⁽¹⁾
t _{FALL}	Fall time			0.3	UI ⁽¹⁾
Skew		<u>.</u>		•	•
Data_Clock	Clock to data output skew	-0.15		0.15	UI ⁽¹⁾

^{1.} UI = Unit Interval

3.9 Video

There are 2 video accelerators in the device—the Video Encoder (VENC) and the Video Decoder (VDEC).

3.9.1 Video Encoder (VENC)

The VENC accelerator supports main stream H.264 video encoding. It is capable of encoding 1080p video at 30fps with superior quality video quality. The VENC supports various encoding methods that satisfy basic requirements of easy software controllability. The VENC brings astonishing high quality and low memory bandwidth requirements, with advanced encoding technology. The accelerator also considers the usage of portable devices and provides several power saving capabilities.

The VENC has the following main features:

- Uses DRAM as an input, output, and working buffer
- Reads input frame buffers, executes video encoding and writes encoded bitstream to the output buffer
- Support of H.264 encoding format
- Support of YUV420 two plane scan line (NV12/NV21) and YUV420 three plane scan line (YV12/I420) color formats

Table 3-25 shows the supported video formats and their capabilities.

Table 3-25 VENC Supported Formats

Format	Feature	Details
	Profile	High
H.264 Encoding	Level	4.1
	Speed	1080p @ 30fps

3.9.2 Video Decoder (VDEC)

The VDEC accelerator provides multi-standard video decoding feature. The main purpose of the accelerator is to relieve CPU usage while providing high performance video decompression. The input to VDEC is a compressed video bitstream. After the decoding process, the reconstructed video is written into DRAM and then sent to the display subsystem.

The VDEC supports various multimedia video formats, including:

- HEVC decoder:
 - Main profile 1080p @ 30fps (40 Mbps)
- H.264 decoder:
 - Constrained Baseline profile 1080p @ 30fps (40 Mbps)
 - Main/High profile 1080p @ 30fps (40 Mbps)
- MPEG-4 decoder:
 - SP/ASP 1080p @ 30fps (40 Mbps)
- H.263 1080p @ 30fps (40 Mbps)
- DIVX3/DIVX4/DIVX5/DIVX6/DIVX HD/XVID
- MPEG-1
- MPEG-2 decoder:
 - 1080p @ 30fps (40 Mbps)
- Adaptive MPEG de-blocking filter for MPEG-2 and H.263

The VDEC supports Full HD at 30fps under the limitation of picture size > Full HD (it does not support picture width > 1920p or picture height > 1088p).

3.10 Audio

The device includes one audio subsystem providing audio data exchange features.

The audio subsystem includes the following key components:

- 1 × Slave I²S[™] input interface with FM radio Sampling Rate Converter (SRC)
- 3 × Master I²S outputs
- 2 × Master I²S inputs
- 1 × Master TDM 8-channel output for MHL
- Proprietary audio interface for MTK PMIC CODEC
- PCM/I2S merged interface for MTK connectivity IC
- PCM interface for external MODEM
- 1 × PDM interface for DMIC
- Audio Front-End (AFE)

Figure 3-12 shows the Audio interfaces block diagram.

Figure 3-12 Audio Interfaces Block Diagram

3.10.1 Inter-IC Sound (I2S)

The device includes five standalone I2S modules with the following key features:

- I2SO supports master and slave input modes with FM SRC
- I2S1, I2S3, and I2S5 support master output mode
- I2S2 supports master input mode and 2 stereo channels
- Support of 16- and 24-bit stereo data
- Support of 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48, 88.2, 96, 176.4, and 192 kHz sampling rates
- Support of EIAJ and I²S protocol formats

3.10.1.1 I2S Signal Descriptions

Table 3-26 presents I2S signal descriptions.

Table 3-26 I2S Signal Descriptions

Signal Name	Туре	Description	Ball Location
1250			•
I2SO_BCK	DIO	I2SO serial bit clock	AF2, AA25, M26
12S0_DI	DI	I2SO serial data input	AE1, W26, L23, AG19
I2SO_LRCK	DIO	I2SO word select (left/right audio channel)	AE2, W25, N24
I2S0_MCK	DO	I2SO master clock	AC3, W23, M25
I2S1			•
I2S1_BCK	DO	I2S1 serial bit clock	AA24, AJ2, L26, AG23
I2S1_DO	DO	I2S1 serial data output	AC25, AH2, N27, AG21
I2S1_LRCK	DO	I2S1 word select (left/right audio channel)	AC26, AG3, J22, AD21
I2S1_MCK	DO	I2S1 master clock	Y23, AF3, M24, AD20
12S2			·
I2S2_BCK	DO	I2S2 serial bit clock	Y26, Y5
12S2_DI	DI	I2S2 serial data input	AA23, AA2, AG19
12S2_DI2	DI	I2S2 serial data input	P26, AE3, AG19
I2S2_LRCK	DO	I2S2 word select (left/right audio channel)	AA26, AA3
I2S2_MCK	DO	I2S2 master clock	AB24, W6
12S3			•
I2S3_BCK	DO	I2S3 serial bit clock	AB4, AB23, AG23
12S3_DO	DO	I2S3 serial data output	AG1, Y24, AG21
I2S3_LRCK	DO	I2S3 word select (left/right audio channel)	AG2, W24, AD21
I2S3_MCK	DO	I2S3 master clock	AB5, AB26, AD20
12S5			•
I2S5_BCK	DO	I2S5 serial bit clock	P26, W5, AG23
12S5_DO	DO	I2S5 serial data output	AG24, AH1, AG21
I2S5_LRCK	DO	I2S5 word select (left/right audio channel)	AG25, AA6, AD21
I2S5_MCK	DO	I2S5 master clock	N26, AE3, AD20

3.10.1.2 I2S Timing Characteristics

Table 3-27 and Figure 3-13 present timing characteristics for I2S modules in the device.

Table 3-27 I2S Timing Characteristics

No.	Parameter	Description	Min	Тур	Max	Unit
-	f_S	Sampling frequency	8		192	kHz
IIS01	f _{c_MCK}	Cycle time, MCK (master clock)			24.576	MHz
-	f _{OP_BCK}	Operation frequency, BCK	32 × f _S		64 × f _S	MHz
IIS03	t _{c_BCK}	Cycle time, BCK	81		3906	ns
IIS04	t _{w_BCK_H}	Pulse duration, BCK high		0.5		1/t _{c_BCK}
IIS05	t _{w_BCK_L}	Pulse duration, BCK low		0.5		1/t _{c_BCK}
-	t _{LRCK}	LRCK period	32		64	1/t _{c_BCK}
IIS06	t _{v_LRCK}	BCK negative edge to LRCK valid			0.2	1 / t _{c_BCK}
IIS07	t _{v_DO}	BCK negative edge to DO valid			0.2	1/t _{c_BCK}
IIS08	t _{su}	Setup time, DI	0.2			1/t _{c_BCK}
IIS10	t _h	Hold time, DI	0.2			1/t _{c_BCK}

Figure 3-13 I2S Timing Diagram

3.10.2 Pulse Code Modulation (PCM)

The device includes two PCM interfaces with the following key features:

- 4-pin merged interface for concurrently supporting I2S and PCM
- PCM supports 8 and 16 kHz sampling rates
- I2S supports 32, 44.1, and 48 kHz sampling rates

3.10.2.1 PCM Signal Descriptions

Table 3-28 presents PCM signal descriptions.

Table 3-28 PCM Signal Descriptions

Signal Name	Туре	Description	Ball Location
PCM0			
PCM0_CLK	DO	PCM0 clock	AB4, AA25
PCM0_DI	DI	PCM0 data input	AG1, W26
PCM0_DO	DO	PCM0 data output	AG2, W25
PCM0_SYNC	DO	PCM0 sync	AB5, W23
PCM1	•		-
PCM1_CLK	DIO	PCM1 clock	AC24
PCM1_DI	DI	PCM1 data input	AD27
PCM1_DO0	DO	PCM1 data output 0	AD24
PCM1_DO1	DO	PCM1 data output 1	AE26
PCM1_DO2	DO	PCM1 data output 2	AC23
PCM1_SYNC	DIO	PCM1 sync	AD26

3.10.2.2 PCM Timing Characteristics

Table 3-29, Figure 3-14 and Figure 3-15 present timing characteristics for PCM interface in the device.

Table 3-29 PCM Timing Characteristics

No.	Parameter	Description	Min	Тур	Max	Unit
-	f _S	Sampling frequency	8		48	KHz
PCM1	f _{CLK}	Serial clock frequency	32 × f _S		64 × f _S	MHz
-	t _{SYNC}	Sync period	32		64	1/f _{BCK}
PCM2	t _{w_CLK_H}	Pulse duration, CLK high		0.5		1/f _{BCK}

No.	Parameter	Description		Тур	Max	Unit
PCM3	t _{w_CLK_L}	Pulse duration, CLK low		0.5		1/f _{BCK}
PCM4	t _{d_CLK_SYNC}	Delay time, output CLK low to SYNC valid			65	ns
PCM5	t _{d_CLK_TX}	Delay time, output CLK low to TX valid			65	ns
PCM6	t _{su}	Setup time, RX master mode	65			ns
PCM7	t _h	Hold time, RX master mode	65			ns
PCM8	t _{su}	Setup time, RX slave mode				ns
PCM9	t _h	Hold time, RX slave mode	65			ns

Figure 3-14 PCM Master Mode Timing Diagram

Figure 3-15 PCM Slave Mode Timing Diagram

3.10.3 Time Division Multiplexed (TDM)

The TDM Interface is a digital multiplexing technique for combining several low-rate digital channels into one high-rate channel. The device features one TDM TX interface with independent clock signals.

The TDM TX includes the following key features:

- TDM I2S output (master mode only)
- 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48, 88.2, 96, and 192 kHz sampling rates
- 2, 4, or 8 audio channels in 1, 2, or 4 data pins correspondingly
- Dedicated pins for TDM TX

3.10.3.1 TDM Signal Descriptions

Table 3-30 presents TDM signal descriptions.

Table 3-30 TDM Signal Descriptions

Signal Name	Туре	Description	Ball Location
TDM_BCK	DO	TDM clock (channel 1)	AC3
TDM_BCK_2nd	DO	TDM clock (channel 2)	AD25
TDM_DATA0	DO	TDM data0 output (channel 1)	AE2
TDM_DATA0_2nd	DO	TDM data0 output (channel 2)	AD21
TDM_DATA1	DO	TDM data1 output (channel 1)	AE1
TDM_DATA1_2nd	DO	TDM data1 output (channel 2)	AG21
TDM_DATA2	DO	TDM data2 output (channel 1)	AD4
TDM_DATA2_2nd	DO	TDM data2 output (channel 2)	AD20
TDM_DATA3	DO	TDM data3 output (channel 1)	Y4
TDM_DATA3_2nd	DO	TDM data3 output (channel 2)	AG19
TDM_LRCK	DO	TDM LRCK (channel 1)	AF2
TDM_LRCK_2nd	DO	TDM LRCK (channel 2)	AG23
TDM_MCK	DO	TDM master clock (channel 1)	AG1
TDM_MCK_2nd	DO	TDM master clock (channel 2)	Y25

3.10.3.2 TDM Timing Characteristics

Table 3-31 and Figure 3-16 present timing characteristics for TDM in the device.

Table 3-31 TDM Timing Characteristics

No.	Parameter	Description	Min	Тур	Max	Unit
-	f _S	Sampling frequency	8		192	KHz
TDM1	f _{MCK}	Master clock frequency	0.768		49.152	MHz
TDM2	f _{BCK}	Serial clock frequency	32 × f _S		256 × f _S	MHz
TDM3	t _{w_BCK_H}	Pulse duration, BCK high		0.5		1/f _{BCK}
TDM4	t _{w_BCK_L}	Pulse duration, BCK low		0.5		1/f _{BCK}
TDM5	t _{v_WS}	BCK negative edge to WS valid			8	ns
TDM6	t _{v_SDOUT}	BCK negative edge to SDOUT valid			8	ns
TDM7	t _{su_DI}	Setup time, DI	8			ns
TDM8	t _{h_DI}	Hold time, DI	8			ns

Figure 3-16 TDM Master Mode Timing Diagram

3.10.4 Pulse Density Modulation (PDM)

The PDM module includes the following key features:

- Supports one stereo DMIC over one data wire
- Supports audio sampling rates of 8, 16, 32, 48 KHz

3.10.4.1 PDM Timing Characteristics

Table 3-32 and Figure 3-17 present timing characteristics for PDM interface in the device.

Table 3-32 PDM Timing Characteristics

No.	Parameter	Description	Min	Тур	Max	Unit
PDM1	f _{OP}	Operating frequency, PDM CLK	0.40625	-	3.25	MHz
PDM2	t _{W_CLK_H}	Pulse duration, CLK high	-	0.5	-	1/f _{CLK}
PDM3	t _{W_CLK_L}	Pulse duration, CLK low	-	0.5	-	1/f _{CLK}
PDM4	t _{SU_DAT}	Setup time, DAT	20	1	-	ns
PDM5	t _{H DAT}	Hold time, DAT	20	-	-	ns

Figure 3-17 PDM Timing Diagram

3.10.4.2 DMIC Signal Descriptions

Table 3-33 presents DMIC signal descriptions.

Table 3-33 DMIC Signal Descriptions

Signal Name	Туре	Description	Ball Location
DMIC_CLK	DO	DMIC clock	AC26, AF23, L5, Y22
DMIC_DAT	DI	PDM data input from DMIC	AC25, AF26, K5, , AA22

3.10.4.3 DMIC Filter Characteristics

 $\label{thm:continuous} \textbf{Table 3-34} \ presents \ filter \ characteristics \ for \ the \ DMIC \ interface \ in \ the \ device.$

Table 3-34 DMIC Filter Characteristics

Parameter	Description	Min	Тур	Max	Unit
			3.25		
	Operating frequency		1.625		N 41.1-
f _{OP}			0.8125		MHz
			0.40625		

Parameter	Description	Min	Тур	Max	Unit
D	Duty cycle, CLK	40		60	%
t _{RISE}	Rise time, CLK (Max C _L = 80 pF)		10		ns
t _{FALL}	Fall time, CLK (Max C _L = 80 pF)		10		ns
f _S	Audio sampling rate	8		48	kHz

3.11 Analog Baseband

The Analog Baseband (ABB) interface is a common control interface for communication with the analog blocks in the device.

3.11.1 ABB Signal Descriptions

Table 3-35 presents ABB signal descriptions.

Table 3-35 ABB Signal Descriptions

Signal Name	Туре	Description	Ball Location
APC	AIO	Automatic power control	AE13
Detection path			
DET_IN0	AIO	RFO IN detection path	AJ12
DET_IN1	AIO	RF1 IN detection path	AH11
DET_IP0	AIO	RFO IP detection path	AJ13
DET_IP1	AIO	RF1 IP detection path	AH12
DET_QN0	AIO	RFO QN detection path	AH13
DET_QN1	AIO	RF1 QN detection path	AJ10
DET_QP0	AIO	RFO QP detection path	AH14
DET_QP1	AIO	RF1 QP detection path	AH10
Diverse downlink			1
DRX_BB_I0	AIO	Diverse downlink I-ch for path 0	AH16
DRX_BB_I1	AIO	Diverse downlink I-ch for path 1	AG17
DRX_BB_Q0	AIO	Diverse downlink Q-ch for path 0	AH17
DRX_BB_Q1	AIO	Diverse downlink Q-ch for path 1	AF17
PRX_BB_I0	AIO	Main downlink I-ch for path 0	AJ16
PRX_BB_I1	AIO	Main downlink I-ch for path 1	AF16
PRX_BB_Q0	AIO	Main downlink Q-ch for path 0	AJ15
PRX_BB_Q1	AIO	Main downlink Q-ch for path 1	AG16
DAC			<u> </u>
RFIC_ETO_N	AIO	Envelop tracking DACO negative output	AE12
RFIC_ETO_P	AIO	Envelop tracking DAC0 positive output	AE11
Uplink path	•		•
TX_BB_IN0	AIO	Uplink IN for path0	AG13
TX_BB_IN1	AIO	Uplink IN for path1	AF11
TX_BB_IP0	AIO	Uplink IP for path0	AF13
TX_BB_IP1	AIO	Uplink IP for path1	AG11
TX_BB_QN0	AIO	Uplink QN for path0	AG14
TX_BB_QN1	AIO	Uplink QN for path1	AG12
TX_BB_QP0	AIO	Uplink QP for path0	AF14

Signal Name	Туре	Description	Ball Location
TX_BB_QP1	AIO	Uplink QP for path1	AF12
Voice wakeup			
VOW_CLK_MISO	DI	Voice wakeup interface	L23
VOW_DAT_MISO	DI	Voice wakeup interface	N24

3.11.2 PMIC Audio Interface Signal Descriptions

Table 3-36 presents PMIC audio interface signal descriptions.

Table 3-36 PMIC Signal Descriptions

Signal Name	Туре	Description	Ball Location
AUD_CLK_MISO	DI	PMIC audio interface clock master input	M24, M25
AUD_CLK_MOSI	DO	PMIC audio interface clock master output	M24, M25
AUD_DAT_MISO0	DI	PMIC audio interface data master input	J22, N24
AUD_DAT_MISO1	DI	PMIC audio interface data master input	N27, L23
AUD_DAT_MOSI0	DO	PMIC audio interface data master output	J22, N24
AUD_DAT_MOSI1	DO	PMIC audio interface data master output	N27, L23
AUD_SYNC_MISO	DI	PMIC audio interface sync master input	L26, M26
AUD_SYNC_MOSI	DO	PMIC audio interface sync master output	L26, M26

3.12 Connectivity

3.12.1 Inter-Integrated Circuit (I2C)

The device contains nine I2C controllers providing interface between internal hosts and any I^2C^{TM} bus compatible device. Each can be configured to work as a master I^2C -compatible device.

Each I2C module supports the following key features:

- Compliant with Philips I²C-bus Specification version 2.1
- Standard-Speed (SS) communication mode (up to 100 Kbps)
- Fast-Speed (FS) communication mode (up to 400 Kbps)
- High-Speed (HS) communication mode (up to 3.4 Mbps)
- 7- or 10-bit addressing
- START/STOP/REPEATED START conditions
- Adjustable clock speed for SS and FS modes of operation
- Manual transfer mode
- Multi-write per transfer
- Multi-read per transfer
- Multi-transfer per transaction
- Combined format transfer with length change capability
- Repeated start multiple transfer

The following I2C modules support other bus modes in addition to the standard I2C:

• I2C1: Support for I³C (SDR mode only)

- I2C2: Support for I³C (SDR mode only) and SCCB (Serial Camera Control Bus)
- I2C4: Support for I³C (SDR mode only) and SCCB

3.12.1.1 I2C Signal Descriptions

Table 3-37 presents I2C signal descriptions.

Table 3-37 I2C Signal Descriptions

Signal Name	Туре	Description	Ball Location
I2C0 ⁽¹⁾			<u>.</u>
SCL0	DIO	I2CO serial clock (input/output)	AB6
SDA0	DIO	I2C0 serial data (input/output)	AC5
I2C1 ⁽¹⁾	· I		<u>'</u>
SCL1	DIO	I2C1 serial clock (input/output)	AE4, AF3, AA22
SDA1	DIO	I2C1 serial data (input/output)	AF4, AH2, Y22
I2C2 ⁽¹⁾	•		'
SCL2	DIO	I2C2 serial clock (input/output)	AB2
SDA2	DIO	I2C2 serial data (input/output)	AB1
I2C3 ⁽¹⁾	•		'
SCL3	DIO	I2C3 serial clock (input/output)	AF22
SDA3	DIO	I2C3 serial data (input/output)	AG22
I2C4 ⁽¹⁾	•		'
SCL4	DIO	I2C4 serial clock (input/output)	Y2
SDA4	DIO	I2C4 serial data (input/output)	W2
I2C5 ⁽¹⁾	•		
SCL5	DIO	I2C5 serial clock (input/output)	AH24
SDA5	DIO	I2C5 serial data (input/output)	AH25
I2C6 ⁽²⁾	•		
SCL6	DIO	I2C6 serial clock (input/output)	AG2, N26, Y23, J4, T23
SDA6	DIO	I2C6 serial data (input/output)	AG1, P26, AA24, J5, R22
I2C7 ⁽²⁾			·
SCL7	DIO	I2C7 serial clock (input/output)	AD4, AC26, L3, AG23
SDA7	DIO	I2C7 serial data (input/output)	AC25, L5, K3, AD21
I2C8 ⁽²⁾			•
SCL8	DIO	I2C8 serial clock (input/output)	AA6, K4, AG21
SDA8	DIO	I2C8 serial data (input/output)	W5, K5, AD20

^{1.} I2C0 to I2C5 have default HW internal 5 k Ω pull-up changed by the SW initialization to 1 k Ω .

3.12.1.2 I2C Timing Characteristics

Table 3-38 and Figure 3-18 present timing characteristics for I2C interfaces in SS/FS/FS+ modes.

^{2.} I2C6 to I2C8 must be connected to an external pull-up 4.7 k Ω for SS and FS modes, and to an external pull-up 2.2 k Ω for HS mode.

Table 3-38 I2C Timing Characteristics (SS/FS/FS+ modes)

No.	Parameter		SS		FS		FS+		Unit
NO.	Parameto	Min	Max	Min	Max	Min	Max	Unit	
	tc	Cycle time		10000		2500		1000	ns
IIC2	t _{w high}	Pulse duration, SCL high	4.0		0.6		0.26		μs
IIC3	t _{w low}	Pulse duration, SCL low	4.7		1.3		0.5		μs
IIC4	trise	Rise time of SDA and SCL signals		100	20	300		120	ns
IIC5	t _{FALL} (1)	Fall time of SDA and SCL signals		300	20 × (VDD / 5.5 V)	300	20 × (VDD / 5.5 V)	120	ns
IIC6	t _{su}	Setup time, SDA to SCL	250		100		50		ns
IIC7	t _h (2)	Hold time, SDA to SCL	5.0		0		0		μs
IIC8	t _{su start}	Setup time, SCL to repeated START (Sr) condition	4.7		0.6		0.26		μs
IIC9	th start	Hold time, START (S) condition to SCL	4.0		0.6		0.26		μs
IIC10	t _{h stop}	Setup time, SCL to STOP (P) condition	4.0		0.6		0.26		ns
IIC11	t _(BUF)	Bus free time between STOP (P) and START (S) condition	4.7		1.3		0.5		ns
IIC12	t _{DV}	Data valid time		3.45		0.9		0.45	μs
IIC13	t _{DV_ACK}	Data valid acknowledge time		3.45		0.9		0.45	μs

- 1. VDD: I2C IO voltage
- 2. I2C-bus devices

Figure 3-18 I2C Timing Diagram (SS/FS/FS+ modes)

UNCLASSIFIED

Table 3-39 I2C Timing Characteristics (HS mode)

No.	Parameter			Cb = 100 pF (max)		Cb = 400 pF (max)	
			Min	Max	Min	Max	Unit
IIC1	tc	Cycle time	0	294	0	588	ns
IIC2	t _{su start}	Setup time, SCL to repeated START condition	160		160		ns
IIC3	th start	Hold time, (repeated) START condition to SCL	160		160		ns
IIC4	t _{w low}	Pulse duration, SCL low	160		320		ns
IIC5	t _{w high}	Pulse duration, SCL high	60		120		ns
IIC6	t _h ⁽¹⁾	Hold time, SDA to SCL	0	70	0	150	ns
IIC7	t _{su}	Setup time, SDA to SCL	10		10		ns
IIC8	t _{RISE}	Rise time of SDA and SCL signals	10	40	20	80	ns
IIC9	trall	Fall time of SDA and SCL signals	10	40	20	80	ns
IIC10	t _{h stop}	Setup time, SCL to STOP condition	160		160		ns

1. I2C-bus devices

Figure 3-19 I2C Timing Diagram (HS mode)

3.12.2 Universal Asynchronous Receiver/Transmitter (UART)

The device supports two UART modules, which provide full-duplex serial communication with external devices.

Each UART module supports the following key features:

- 16C450-compatible
- 16550A-compatible
- Fully programmable by an 8-bit CPU interface
- Configurable data formats:
 - 5, 6, 7, or 8 data bits
 - Optional parity bit
 - 1 or 2 stop bits
- Internal 16-bit programmable baud rate generator
- 8-bit scratch register
- Separate transmit and receive FIFOs
- Baud rates from 110 bps up to 961,200 bps
- Baud rate auto detection function
- Two DMA handshake lines
- Polling, DMA and interrupt modes of operation

Hardware flow control (RTS/CTS)

3.12.2.1 UART Signal Descriptions

Table 3-40 presents UART signal descriptions.

Table 3-40 UART Signal Descriptions

Signal Name	Туре	Description	Ball Location		
UARTO					
UCTS0	DI	UARTO clear to send (active low)	N26, AF23, W6, AD20		
URTS0	DO	UARTO request to send (active low)	P26, AF26, Y5, AG19		
URXD0	DI	UARTO receive data	AD2, AD1		
UTXD0	DO	UARTO transmit data	AD2, AD1		
UART1					
UCTS1	DI	UART1 clear to send (active low)	N26, AA26, AG25		
URTS1	DO	UART1 request to send (active low)	P26, AA23, AG24		
URXD1	DI	UART1 receive data	W24, AF23, AG25, L3, H3, AD21		
UTXD1	DO	UART1 transmit data	Y24, AF26, AG24, K3, H4, AG21		

3.12.3 Serial Peripheral Interface (SPI)

The SPI is a four-pin synchronous serial interface used for short-distance communication, primarily in embedded systems. The device features six SPI master controllers.

The SPI supports the following key features:

- Two configurable transmit modes:
 - TX DMA mode—the SPI controller automatically fetches the transmission data to be put on the MOSI line from memory.
 - TX FIFO mode—the transmission data to be put on the MOSI line are written to a FIFO before the start of the transaction.
- Two configurable receive modes:
 - RX DMA mode—the SPI controller automatically stores the received data (from MISO line) to memory.
 - RX FIFO mode—the received data is kept in an RX FIFO of the SPI controller. The processor must read the data.
- Configurable chip-select setup, hold, and idle time
- Programmable serial clock (SCK) high and low time
- Configurable transmit and receive bit order
- Adjustable endian order from/to memory system
- Programmable byte length for transmission
- Unlimited length for transmission using dedicated pause mode
- Configurable option to control chip-select de-assertion between byte transfers
- Supports all clock polarity and phase modes

3.12.3.1 SPI Signal Descriptions

Table 3-41 presents SPI signal descriptions.

Table 3-41 SPI Signal Descriptions

Signal Name	Type	Description	Ball Location
SPI0			
SPIO_CLK	DO	SPIO serial clock	AF3
SPIO_CSB	DO	SPIO chip select, active low	AG3
SPI0_MI	DI	SPIO master input / slave output	AJ2
SPI0_MO	DO	SPIO master output / slave input	AH2
SPI1			
SPI1_A_CLK	DO	SPI1 serial clock (channel A)	AA22
SPI1_A_CSB	DO	SPI1 chip select (channel A), active low	AB25
SPI1_A_MI	DI	SPI1 master input / slave output (channel A)	W22
SPI1_A_MO	DO	SPI1 master output / slave input (channel A)	Y22
SPI1_B_CLK	DO	SPI1 serial clock (channel B)	Y4
SPI1_B_CSB	DO	SPI1 chip select (channel B), active low	AD4
SPI1_B_MI	DI	SPI1 master input / slave output (channel B)	AE1
SPI1_B_MO	DO	SPI1 master output / slave input (channel B)	W4
SPI2	- I		<u> </u>
SPI2_CLK	DO	SPI2 serial clock	AG2
SPI2_CSB	DO	SPI2 chip select, active low	AB5
SPI2_MI	DI	SPI2 master input / slave output	AE3
SPI2_MO	DO	SPI2 master output / slave input	AB4
SPI3	- I		<u> </u>
SPI3_CLK	DO	SPI3 serial clock	AA23
SPI3_CSB	DO	SPI3 chip select, active low	Y26
SPI3_MI	DI	SPI3 master input / slave output	AB24
SPI3_MO	DO	SPI3 master output / slave input	AA26
SPI4	- I		<u> </u>
SPI4_CLK	DO	SPI4 serial clock	Y24
SPI4_CSB	DO	SPI4 chip select, active low	AB23
SPI4_MI	DI	SPI4 master input / slave output	AB26
SPI4_MO	DO	SPI4 master output / slave input	W24
SPI5	1	1	l
SPI5_CLK	DO	SPI5 serial clock	W26
SPI5_CSB	DO	SPI5 chip select, active low	AA25
SPI5_MI	DI	SPI5 master input / slave output	W23
SPI5_MO	DO	SPI5 master output / slave input	W25

3.12.3.2 SPI Timing Characteristics

Table 3-42 and Figure 3-20 present timing characteristics for SPI in the device.

Table 3-42 SPI Timing Characteristics

No.	Paramete	r	Min	Тур	Unit
	f _{OP_MCK}	SPI HW module clock frequency (MCK)—chip internal clock		55	MHz
SPI02	t _c	Cycle time, SPI_CLK	18.2 ⁽¹⁾		ns
SPI05	t _{w_CLK_L}	Pulse duration, SPI_CLK low	9.1		ns

No.	Paramete	r	Min	Тур	Unit
SPI06	t _{w_CLK_H}	Pulse duration, SPI_CLK high	9.1		ns
SPI07	t _{su_cs}	Setup time, SPI_CSB—register adjustable			ns
SPI08	t _{h_cs}	Hold time, SPI_CSB—register adjustable	9.1		ns
SPI09	t _{su_MOSI}	Setup time, SPI_MO to SPI_CLK	0		ns

1. For maximum operating clock frequency refer to Table 6-1.

Figure 3-20 SPI Master Timing Diagram

3.12.4 SuperSpeed Universal Serial Bus (SSUSB)

The device features one USB module with an xHCI host controller, a device controller (USB3.0) and two integrated MAC/PHY—one High-Speed (HS) / Full-Speed (FS) and one SuperSpeed (SS).

The USB controller has the following key features:

- Supports USB3.0 in static device role
- Supports host role and Dual-Role-Device (DRD) in USB2.0 mode
- Shared hardware when in DRD mode
- Proprietary application layer device controller with linked list queue and scatter/gather DMA
- Support of xHCI-based host controller
- Support of embedded SS PHY with 32-bit @ 125 MHz PIPE interface
- Support of embedded HS/FS PHY with 16-bit @ 30 MHz UTMIInterface
- HS/FS OTG DRD compliant with OTG Supplement Version 2.0

3.12.4.1 SSUSB Signal Descriptions

Table 3-43 presents USB signal descriptions.

Table 3-43 SSUSB Signal Descriptions

Signal Name	Type	Description	Ball Location
CHD_DM	AIO	BC1.1 charger mode detection D-	G24

Signal Name	Туре	Description	Ball Location
CHD_DP	AIO	BC1.1 charger mode detection D+	G25
		USB OTG ID. Cable end detector:	AE2, N26, AF23,
IDDIG	DI	GND: micro-A	AG25, W6, K3, T23,
		Floating: micro-B	W22
SSUSB_RXN	Al	USB SuperSpeed receive data negative	J27
SSUSB_RXP	Al	USB SuperSpeed receive data positive	H27
SSUSB_TXN	AO	USB SuperSpeed transmit data negative	J24
SSUSB_TXP	AO	USB SuperSpeed transmit data positive	J25
USB_DM	AIO	USB D- bi-directional differential data	F26
USB_DP	AIO	USB D+ bi-directional differential data	G26
			AE1, P26, AF26,
USB_DRVVBUS	DO	USB VBUS—signal to external power switch enable	AG24, Y5, L3, R22,
			AB25

3.12.5 KeyPad Scanner (KeyPad)

The KeyPad implements scanning algorithm for hardware-based key-press decoding and reduces overhead to the CPU.

The KeyPad supports the following key features:

- Two types of keyboards:
 - 3 × 3 single keys
 - 3 × 3 configurable double keys
- Key detection block providing key pressed, key released and de-bounce mechanisms
- Interrupt event detection on key press and key release
- Detection of one or two keys pressed simultaneously with any combination

3.12.5.1 KeyPad Signal Descriptions

Table 3-44 presents KeyPad signal descriptions.

Table 3-44 KeyPad Signal Descriptions

Signal Name	Туре	Description	Ball Location
KPCOL0	DIO	KeyPad column 0	AC4
KPCOL1	DIO	KeyPad column 1	AE3
KPCOL2	DIO	KeyPad column 2	Y23, L3, T23, W22
KPROW0	DIO	KeyPad row 0	AA5
KPROW1	DIO	KeyPad row 1	AH1
KPROW2	DIO	KeyPad row 2	AA24, K3, R22, AB25

3.12.5.2 KeyPad Applications

The KeyPad supports a 3×3 keys matrix.

NOTE: KeyPad does not support detection of simultaneously pressed keys on the same column and row.

Figure 3-21 represents 3 × 3 double KeyPad matrix example configuration.

Figure 3-21 KeyPad Double Key Matrix

3.12.6 General Purpose I/O (GPIO)

The GPIO peripheral provides 180 dedicated GPIO pins, multiplexed with other functions to reduce the pin count.

Each GPIO pin has the following key functions:

- Configurable direction: input or output
- Control of the state driven on the output pin when GPIO is configured as an output
- Detection of the state of the pin when GPIO is configured as an input
- Configurable interrupt event generation

3.12.6.1 **GPIO Signal Descriptions**

Table 3-45 presents GPIO signal descriptions.

Table 3-45 GPIO Signal Descriptions

Signal Name	Туре	Description	Ball Location
GPIO0	DIO	General purpose input and output	AB5
GPIO1	DIO	General purpose input and output	AB4
GPIO2	DIO	General purpose input and output	AG2
GPIO3	DIO	General purpose input and output	AG1
GPIO4	DIO	General purpose input and output	AC3
GPIO5	DIO	General purpose input and output	AF2
GPIO6	DIO	General purpose input and output	AE2
GPIO7	DIO	General purpose input and output	AE1
GPIO8	DIO	General purpose input and output	AD4
GPIO9	DIO	General purpose input and output	W4

UNCLASSIFIED

Signal Name	Туре	Description	Ball Location
GPIO10	DIO	General purpose input and output	Y4
GPIO11	DIO	General purpose input and output	N26
GPIO12	DIO	General purpose input and output	P26
GPIO13	DIO	General purpose input and output	W23
GPIO14	DIO	General purpose input and output	AA25
GPIO15	DIO	General purpose input and output	W25
GPIO16	DIO	General purpose input and output	W26
GPIO17	DIO	General purpose input and output	AB26
GPIO18	DIO	General purpose input and output	AB23
GPIO19	DIO	General purpose input and output	W24
GPIO20	DIO	General purpose input and output	Y24
GPIO21	DIO	General purpose input and output	AB24
GPIO22	DIO	General purpose input and output	Y26
GPIO23			AA26
GPI023	DIO	General purpose input and output	AA23
	DIO	General purpose input and output	
GPIO25	DIO	General purpose input and output	Y23
GPIO26	DIO	General purpose input and output	AA24
GPIO27	DIO	General purpose input and output	AC26
GPIO28	DIO	General purpose input and output	AC25
GPIO29	DIO	General purpose input and output	AC24
GPIO30	DIO	General purpose input and output	AD27
GPIO31	DIO	General purpose input and output	AD26
GPIO32	DIO	General purpose input and output	AD24
GPIO33	DIO	General purpose input and output	AC23
GPIO34	DIO	General purpose input and output	AE26
GPIO35	DIO	General purpose input and output	AE24
GPIO36	DIO	General purpose input and output	AE25
GPIO37	DIO	General purpose input and output	AD23
GPIO38	DIO	General purpose input and output	AE23
GPIO39	DIO	General purpose input and output	AE22
GPIO40	DIO	General purpose input and output	AF24
GPIO41	DIO	General purpose input and output	AF23
GPIO42	DIO	General purpose input and output	AF26
GPIO43	DIO	General purpose input and output	AH23
GPIO44	DIO	General purpose input and output	AG26
GPIO45	DIO	General purpose input and output	AH27
GPIO46	DIO	General purpose input and output	AG25
GPIO47	DIO	General purpose input and output	AG24
GPIO48	DIO	General purpose input and output	AH24
GPIO49	DIO	General purpose input and output	AH25
GPIO50	DIO	General purpose input and output	AF22
GPIO51	DIO	General purpose input and output	AG22
GPIO52	DIO	General purpose input and output	AJ25
GPIO53	DIO	General purpose input and output	AJ24
GPIO54	DIO	General purpose input and output	AH26

Signal Name	Туре	Description	Ball Location
GPIO55	DIO	General purpose input and output	AJ26
GPIO56	DIO	General purpose input and output	AH22
GPIO57	DIO	General purpose input and output	AJ22
GPIO58	DIO	General purpose input and output	AG20
GPIO59	DIO	General purpose input and output	AE20
GPIO60	DIO	General purpose input and output	AF20
GPIO61	DIO	General purpose input and output	AG7
GPIO62	DIO	General purpose input and output	AH7
GPIO63	1	General purpose input and output	AJ8
GPI064	DIO		AJ7
GPI065	DIO	General purpose input and output	AJ7 AE6
	DIO	General purpose input and output	
GPIO66	DIO	General purpose input and output	AD6
GPI067	DIO	General purpose input and output	AG6
GPIO68	DIO	General purpose input and output	AF6
GPIO69	DIO	General purpose input and output	AH6
GPIO70	DIO	General purpose input and output	AJ5
GPIO71	DIO	General purpose input and output	AD5
GPIO72	DIO	General purpose input and output	AE5
GPIO73	DIO	General purpose input and output	AF5
GPIO74	DIO	General purpose input and output	AG5
GPIO75	DIO	General purpose input and output	AH5
GPIO76	DIO	General purpose input and output	AC6
GPIO77	DIO	General purpose input and output	AJ4
GPIO78	DIO	General purpose input and output	AH4
GPIO79	DIO	General purpose input and output	AG4
GPIO80	DIO	General purpose input and output	AH3
GPIO81	DIO	General purpose input and output	AF4
GPIO82	DIO	General purpose input and output	AC5
GPIO83	DIO	General purpose input and output	AB6
GPIO84	DIO	General purpose input and output	AE4
GPIO85	DIO	General purpose input and output	AJ2
GPIO86	DIO	General purpose input and output	AG3
GPIO87	DIO	General purpose input and output	AH2
GPIO88	DIO	General purpose input and output	AF3
GPIO89	DIO	General purpose input and output	W5
GPIO90	DIO	General purpose input and output	AA6
GPIO91	DIO	General purpose input and output	AH1
GPIO92	DIO	General purpose input and output	AA5
GPIO93	DIO	General purpose input and output	AC4
GPIO94	DIO	General purpose input and output	AE3
GPIO95	DIO	General purpose input and output	AD2
GPIO96	DIO	General purpose input and output	AD1
GPIO97	DIO	General purpose input and output General purpose input and output	W6
GPIO97			Y5
	DIO	General purpose input and output	
GPIO99	DIO	General purpose input and output	AA4

Signal Name	Туре	Description	Ball Location
GPIO100	DIO	General purpose input and output	AC2
GPIO101	DIO	General purpose input and output	AA3
GPIO102	DIO	General purpose input and output	AA2
GPIO103	DIO	General purpose input and output	AB2
GPIO104	DIO	General purpose input and output	AB1
GPIO105	DIO	General purpose input and output	Y2
GPIO106	DIO	General purpose input and output	W2
GPIO107	DIO	General purpose input and output	L5
GPIO108	DIO	General purpose input and output	K4
GPIO109	DIO	General purpose input and output	K5
GPIO110	DIO	General purpose input and output	L3
GPI0111	DIO	General purpose input and output	L4
GPI0111	_		K3
GPI0112	DIO	General purpose input and output	
	DIO	General purpose input and output	J4
GPI0114	DIO	General purpose input and output	J5
GPIO115	DIO	General purpose input and output	H4
GPIO116	DIO	General purpose input and output	H5
GPIO117	DIO	General purpose input and output	J6
GPIO118	DIO	General purpose input and output	J7
GPIO119	DIO	General purpose input and output	H6
GPIO120	DIO	General purpose input and output	K6
GPIO121	DIO	General purpose input and output	H3
GPIO122	DIO	General purpose input and output	C27
GPIO123	DIO	General purpose input and output	B26
GPIO124	DIO	General purpose input and output	D24
GPIO125	DIO	General purpose input and output	A26
GPIO126	DIO	General purpose input and output	C26
GPIO127	DIO	General purpose input and output	G23
GPIO128	DIO	General purpose input and output	B27
GPIO129	DIO	General purpose input and output	C25
GPIO130	DIO	General purpose input and output	D26
GPIO131	DIO	General purpose input and output	E25
GPIO132	DIO	General purpose input and output	E24
GPIO133	DIO	General purpose input and output	D25
GPIO134	DIO	General purpose input and output	K26
GPIO135	DIO	General purpose input and output	M23
GPIO136	DIO	General purpose input and output	M24
GPIO137	DIO	General purpose input and output	L26
GPIO138	DIO	General purpose input and output	J22
GPIO139	DIO	General purpose input and output	N27
GPIO140	DIO	General purpose input and output	M25
GPIO141	DIO	General purpose input and output	M26
GPIO142	DIO	General purpose input and output	N24
GPIO143	DIO	General purpose input and output	L23
GPIO144	DIO	General purpose input and output	P24

Signal Name	Туре	Description	Ball Location
GPIO145	DIO	General purpose input and output	N23
GPIO146	DIO	General purpose input and output	P25
GPIO147	DIO	General purpose input and output	P23
GPIO148	DIO	General purpose input and output	R23
GPIO149	DIO	General purpose input and output	R24
GPIO150	DIO	General purpose input and output	R25
GPIO151	DIO	General purpose input and output	L25
GPIO152	DIO	General purpose input and output	M22
GPIO153	DIO	General purpose input and output	L22
GPIO154	DIO	General purpose input and output	N25
GPIO155	DIO	General purpose input and output	P22
GPIO156	DIO	General purpose input and output	T23
GPIO157	DIO	General purpose input and output	R22
GPIO158	DIO	General purpose input and output	N22
GPIO159	DIO	General purpose input and output	T22
GPIO160	DIO	General purpose input and output	K22
GPIO161	DIO	General purpose input and output	W22
GPIO162	DIO	General purpose input and output	AB25
GPIO163	DIO	General purpose input and output	Y22
GPIO164	DIO	General purpose input and output	AA22
GPIO165	DIO	General purpose input and output	Y25
GPIO166	DIO	General purpose input and output	V22
GPIO167	DIO	General purpose input and output	AE21
GPIO168	DIO	General purpose input and output	AF21
GPIO169	DIO	General purpose input and output	AD25
GPIO170	DIO	General purpose input and output	AG23
GPIO171	DIO	General purpose input and output	AD21
GPIO172	DIO	General purpose input and output	AG21
GPIO173	DIO	General purpose input and output	AD20
GPIO174	DIO	General purpose input and output	AG19
GPIO175	DIO	General purpose input and output	AD22
GPIO176	DIO	General purpose input and output	AD19
GPIO177	DIO	General purpose input and output	AA7
GPIO178	DIO	General purpose input and output	Y7
GPIO179	DIO	General purpose input and output	Y6

3.12.7 Pulse Width Modulation (PWM)

The device features three generic PWM modules to generate pulse sequences with programmable frequency and duration for a variety of applications.

Each PWM module supports the following key features:

- Old mode, FIFO mode
- Periodical memory and random modes
- Sequential output mode

3.12.7.1 PWM Signal Descriptions

Table 3-46 presents PWM signal descriptions.

Table 3-46 PWM Signal Descriptions

Signal Name	Туре	Description	Ball Location
PWM_A	DO	PWM output A	AE2, AA6, L5, R25, L22
PWM_B	DO	PWM output B	AC3, AG20, AH1, K4, L25, Y25
PWM_C	DO	PWM output C	AF2, W5, AC2, K5, M22, AD25

3.12.7.2 PWM Timing Characteristics

Table 3-47 and Figure 3-22 present timing characteristics for PWM interfaces in the device.

Table 3-47 PWM Timing Characteristics

No.	Parameter	
PWM01	t _c	Cycle time
PWM02	t _w	Pulse duration, PWM

Figure 3-22 PWM Timing Diagram

1. In this diagram, i stands for A, B, or C.

3.13 Wireless Connectivity

The device supports four wireless connectivity functions, WLAN, BT, GPS, and FM, with RF parts integrated in the MT6631, MT7668 chips. With the built-in advanced and sophisticated radio coexistence algorithms and hardware mechanisms, the device provides the best and most convenient connectivity solution among the industry. The small footprint with low-power consumption greatly reduces the PCB layout resource.

The Wireless Communication Module (WCM) supports the following key features:

- Advanced and sophisticated Radio Coexistence algorithms and hardware mechanisms
- Single shared antenna for BT, WLAN, and GNSS
- Single Temperature-Compensated Crystal Oscillator (TCXO) and Thermistor Crystal (TMS) for BT, WLAN, and GNSS
- Self-calibration
- Intelligent BT/WLAN coexistence scheme
- Best-in-class current consumption performance

The WCM is programmed only by CPU internal API and Wireless Management Task (WMT). Therefore the user does not need to individually set-up the WCM.

3.13.1 WCM Signal Descriptions

Table 3-48 presents WCM signal descriptions.

Table 3-48 WCM Signal Descriptions

Signal Name	Туре	Description	Ball Location
AGPS_SYNC	DO	Assisted GNSS synchronization	K3, D25, AD25
CONN_BT_CLK	DIO	MT6631 BT 2-wire interface	H4
CONN_BT_DATA	DIO	MT6631 BT 2-wire interface	H5
CONN_HRST_B	DO	MT6631 reset	H3
CONN_TOP_CLK	DO	MT6631 TOP 2-wire interface	J4
CONN_TOP_DATA	DIO	MT6631 TOP 2-wire interface	J5
CONN_WB_PTA	DIO	MT6631 Wi-Fi / BT PTA	K6
CONN_WF_HB0	DIO	MT6631 Wi-Fi 3-wire interface	J6
CONN_WF_HB1	DIO	MT6631 Wi-Fi 3-wire interface	J7
CONN_WF_HB2	DIO	MT6631 Wi-Fi 3-wire interface	H6
BT_IN	AIO	BT I-channel negative-end	F1
BT_IP	AIO	BT I-channel positive-end	F2
BT_QN	AIO	BT Q-channel negative-end	G2
BT_QP	AIO	BT Q-channel positive-end	G1
GPS_I	AIO	GPS I-channel	J2
GPS_Q	AIO	GPS Q-channel	J1
WF_IN	AIO	Wi-Fi I-channel negative-end	C1
WF_IP	AIO	Wi-Fi I-channel positive-end	B1
WF_QN	AIO	Wi-Fi Q-channel negative-end	D2
WF_QP	AIO	Wi-Fi Q-channel positive-end	D1
XIN_WBG	AIO	WBG crystal clock input	Н8

3.13.2 Wireless Local Area Network (WLAN)

The WLAN module includes the following key features:

- Dual-band (2.4 GHz and 5 GHz) single stream 802.11 ac/a/b/g/n MAC/BB/RF)
- Compliance with 802.11 d/e/h/i/j/k/r/v
- Security: WFA WPA/WPA2 personal, AES-CCMP, WPI-SMS4, GCMP, WPS2.0, WAPI (hardware)
- Support of 802.11n optional features: STBC, A-MPDU, Blk-Ack, RIFS, MCS Feedback, 20 and 40 MHz Phased Coexistence Operation (PCO), unscheduled Power-Save Multi-Poll (PSMP)
- Support of 802.11w protected managed frames
- Support for 802.11ac STBC TX/RX, 4T1R beamformee, MU-MIMO RX, WoWLAN
- Support for MediaTek proprietary low power Green AP mode for portable hotspot operation
- Support of Wi-Fi Direct® (peer-to-peer wireless connection) and Wi-Fi Miracast® (Wi-Fi Display)
- Support of HotSpot 2.0 (HS2)
- Integrated 2.4 GHz PA with maximum 23 dBm CCK output power and 5 GHz PA with maximum 18.5 dBm OFDM 54
 Mbps output power
- RX sensitivity at IEEE 802.11n HT20 MCS7 mode and -62 dBm at 5 GHz RX sensitivity at IEEE 802.11ac VHT80 MCS9 mode
- Support for 32 multicast address filters and TCP/UDP/IP checksum offload
- Support of per packet transmit power control
- QoS: WFA WMM, WMM PS

For more details, refer to MT6631 and MT7668 documentation.

3.13.3 Bluetooth (BT)

The BT module supports the following key features:

- Bluetooth 5 dual mode for LE 2 Mbps, LE long range, and advertise extension
- Integrated PA with 9 dBm (class 1) transmit power or 12 dBm boost mode via Wi-Fi PA.
- Receiver sensitivity:
 - GFSK: -95 dBm
 - DQPSK: -94.5 dBm
 - 8-DPSK: -88 dBm
 - BLE 1M: -98.5 dBm
 - BLE 2M: -95 dBm
 - BLE 500K: -101.5 dBm
 - BLE_125K: -104 dBm
- BT/Wi-Fi/LTE coexistence
- 7 BT links and 16 BLE links
- Packet Loss Concealment (PLC) function for better voice quality
- Wideband speech
- mSBC and SBC including mono and stereo
- Secure connection with AES-128 and ECC256
- Adaptive Frequency Hopping with built-in channel assessment method

For more details, refer to MT6631 and MT7668 documentation.

3.13.4 Global Navigation Satellite System (GNSS)

The GNSS module includes the following key features:

- Support for GPS/Glonass/Beidou/Galileo/QZSS tri-band reception concurrently
 - GPS/Galileo only (GPS only)
 - GPS/Galileo—GLONASS (G+G)
 - GPS/Beidou (G+B)
 - GPS/GLONASS/Beidou (G+G+B)
 - GPS/Galileo/GLONASS (G+G+G)
 - GPS/Galileo/GLONASS/Beidou (G+G+G+B)
- Support for Satellite-Based Augmentation Systems (SBAS): WAAS/MSAS/EGNOS/GAGAN
- Best-in-class sensitivity performance
 - -165 dBm tracking sensitivity
 - -163 dBm hot startsensitivity
 - -148 dBm cold start sensitivity
 - -151 dBm warm start sensitivity
- A-GPS sensitivity is 8 dB design margin over 3GPP
- Full A-GPS capability (EPO/HotStill)
- Active interference cancellation for up to 12 in-band tones
- Support for both Temperature-Compensated Crystal Oscillator (TCXO) and Thermistor Crystal (TMS) clock sources
- 5 Hz update rate

For more details, refer to MT6631 documentation.

3.13.5 FM System (FMSYS)

The FMSYS is an FM radio module, which includes the following key features:

- Broadcast band from 65 to 108 MHz with 50 kHz tune increment
- RDS/RBDS
- Digital stereo demodulator
- Simplified digital audio interface (I²S)
- Stereo noise reduction
- Audio sensitivity 2 dBμVemf (SINAD = 26 dB)
- Audio SINAD 60 dB
- Anti-jamming
- Integrated short antenna

For more details, refer to MT6631 documentation.

3.13.6 Baseband Serial Interface (BSI)

The BSI is used to control external radio components. It transfers data to RF circuitry for PLL frequency change, reception gain setting, and other radio control purposes.

3.13.6.1 BSI Signal Descriptions

Table 3-49 presents BSI signal descriptions.

Table 3-49 BSI Signal Descriptions

Signal Name	Туре	Description	Ball Location			
RFIC			·			
RFIC_BSI_CK	DO	RFIC BSI clock	AF21			
RFIC_BSI_D0	DIO	RFIC BSI data output 0	AF20			
RFIC_BSI_D1	DIO	RFIC BSI data output 1	AE20			
RFIC_BSI_D2	DIO	RFIC BSI data output 2	AG20			
RFIC_BSI_EN	DO	RFIC BSI enable	AE21			
SPM	SPM					
SPM_BSI_CK	DO	SPM BSI clock	AF21			
SPM_BSI_D0	DO	SPM BSI data output 0	AF20			
SPM_BSI_D1	DO	SPM BSI data output 1	AE20			
SPM_BSI_D2	DO	SPM BSI data output 2	AG20			
SPM_BSI_EN	DO	SPM BSI enable	AE21			

3.13.7 Baseband Parallel Interface (BPI)

The BPI is used for connections to radio frequency circuits with strict time control, such as transmit permission, frequency band switching, etc.

3.13.7.1 BPI Signal Descriptions

Table 3-50 presents BPI signal descriptions.

Table 3-50 BPI Signal Descriptions

Signal Name	Туре	Description	Ball Location
BPI_ANTO	DO	BPI_ANTO	AJ24
BPI_ANT1	DO	BPI_ANT1	AJ4
BPI_ANT2	DO	BPI_ANT2	AJ25
BPI_BUS0	DO	RF control bus bit 0	AC6
BPI_BUS1	DO	RF control bus bit 1	AH5
BPI_BUS2	DO	RF control bus bit 2	AG5
BPI_BUS3	DO	RF control bus bit 3	AF5
BPI_BUS4	DO	RF control bus bit 4	AE5
BPI_BUS5	DO	RF control bus bit 5	AD5
BPI_BUS6	DO	RF control bus bit 6	AJ5
BPI_BUS7	DO	RF control bus bit 7	AH6
BPI_BUS8	DO	RF control bus bit 8	AJ26
BPI_BUS9	DO	RF control bus bit 9	AH22
BPI_BUS10	DO	RF control bus bit 10	AJ22
BPI_OLAT0	DO	BPI control	AH4
BPI_OLAT1	DO	BPI control	AH26
BPI_OLAT2	DO	BPI control	AE6
BPI_OLAT3	DO	BPI control	AD6
BPI_PA_VM0	DO	BPI_PA_VM0	AH3
BPI_PA_VM1	DO	BPI_PA_VM1	AG4

3.13.8 Radio Frequency Front-End (RFFE) Interface

The MIPI RFFEsM is a two-wire interface used for control of radio frequency front-end subsystems with strict performance requirements.

3.13.8.1 RFFE Signal Descriptions

Table 3-51 presents RFFE interface signal descriptions.

Table 3-51 RFFE Signal Descriptions

Signal Name	Туре	Description	Ball Location
RFFE0			·
MIPIO_SCLK	DO	RFFE0 interface clock	AJ7
MIPIO_SDATA	DIO	RFFE0 interface data	AJ8
RFFE1			<u>.</u>
MIPI1_SCLK	DO	RFFE1 interface clock	AH7
MIPI1_SDATA	DIO	RFFE1 interface data	AG7
RFFE2	1		•
MIPI2_SCLK	DO	RFFE2 interface clock	AF6
MIPI2_SDATA	DIO	RFFE2 interface data	AG6
RFFE3	1		•
MIPI3_SCLK	DO	RFFE3 interface clock	AD6
MIPI3_SDATA	DIO	RFFE3 interface data	AE6
RFFE4	•		•

Signal Name	Туре	Description	Ball Location
MIPI4_SCLK	DO	RFFE4 interface clock	AH3
MIPI4_SDATA	DIO	RFFE4 interface data	AG4

3.14 Miscellaneous

3.14.1 Timers and Counters

3.14.1.1 System Timer (SYSTMR)

The SYSTMR is a 64-bit, always-on, up-counter which is used as a universal timer in the device. The counter value of SYSTMR is passed to A73, A53, SCP, GPU, and other processing units to provide uniform system timestamps for operating systems like Android™, Linux®, and RTOS.

The SYSTMR supports the following key features:

- Clocked by one of two available sources:
 - 26 MHz clock
 - 32 kHz clock
- Clock divider to allow the timer to tick with 26/13/6.5 MHz clock period (enabled by default for 13 MHz operation)
- HW counter incremented compensation when switching to 32 kHz clock source
- 12 x 32-bit counter timeout value (read as 32-bit down counter)
- Security access permission control for each control register (with one-time lock bit)

3.14.1.2 General-Purpose Timer (GPT)

The device has a GPT block (APXGPT) that supports the following features:

- 5 × 32-bit timers (GPT1 through GPT5)
- 1 × 64-bit timer (GPT6)
- Each GPT can operate on one of two selectable clock sources:
 - System clock (13 MHz)
 - RTC clock (32.768 kHz)
- Each GPT has a programmable clock division ratio (supported values: 1, 2, 3, 4 ...13, 16, 32, 64)
- Each GPT supports four operation modes: ONE-SHOT, REPEAT, KEEP-GO, FREERUN

3.14.1.3 Watchdog Timer (WDT)

The WDT module is a part of Top Reset Generation Unit (TOPRGU). For more information, refer to Section 5.5 Reset.

3.14.2 PMIC Wrapper (PWRAP)

The PWRAP serves as a bridge for the communication between CPU and PMIC.

The PWRAP supports the following key features:

- Fast auto SPI format generator for PMIC registers read/write
- APB3.0 bus lock scheme when SPI is busy
- Manual SPI format generator
- Dual I/O SPI mode
- Separated frequency between controller and SPI

3.14.2.1 PWRAP Signal Descriptions

Table 3-52 presents PWRAP signal descriptions.

Table 3-52 PWRAP Signal Descriptions

Signal Name	Туре	Description	Ball Location
PWRAP SPIO			
PWRAP_SPIO_CK	DO	PWRAP serial clock	P23
PWRAP_SPIO_CSN	DO	PWRAP chip select	N23
PWRAP_SPI0_MI	DIO	PWRAP master input / slave output	P24, P25
PWRAP_SPI0_MO	DIO	PWRAP master output / slave input	P24, P25

3.14.3 Auxiliary Analog-to-Digital Converter (AUXADC)

The device features one AUXADC module. It is used to identify the plugged peripherals and perform temperature measurements.

The AUXADC module key features are:

- 12-bit Successive Approximation Register (SAR) ADC architecture
- 5 external and 2 internal channels operating in immediate mode
- Configurable auto-sampling function per channel
- · Sequential channel serving from high to low channel
- Immediate analog-digital conversion with auto-set option
- Temperature measurement

3.14.3.1 AUXADC Signal Descriptions

Table 3-53 shows the AUXADC channels descriptions.

Table 3-53 AUXADC Signal Descriptions

Signal Name	Туре	Description	Ball Location
AUXINO ⁽¹⁾⁽²⁾	Al	AUXADC external input channel 0	AF19
AUXIN1 ⁽¹⁾⁽²⁾	Al	AUXADC external input channel 1	AF18
AUXIN2 ⁽¹⁾⁽²⁾	Al	AUXADC external input channel 2	AE19
AUXIN3 ⁽¹⁾⁽²⁾	Al	AUXADC external input channel 3	AE18
AUXIN4 ⁽¹⁾⁽²⁾	Al	AUXADC external input channel 4	AG18
REFP ⁽³⁾	Al	Positive reference voltage	AJ18

- 1. This pin should be connected to GND when unused.
- 2. All AUXIN* pins should be connected via a 0.1-μF capacitor to GND, as close as possible to the device, when used.
- 3. The REFP pin should be connected via a 1-μF capacitor to GND, as close as possible to the device, when used.

3.14.3.2 AUXADC Channel Mapping

Table 3-54 presents definitions of AUXADC channels.

Table 3-54 AUXADC Channel Mapping

AUXADC Channel ID	Description					
Channel 0	External use (AUXIN0)					
Channel 1	External use (AUXIN1)					

AUXADC Channel ID	Description
Channel 2	External use (AUXIN2)
Channel 3	External use (AUXIN3)
Channel 4	External use (AUXIN4)
Channel 5	NA ⁽¹⁾
Channel 6	NA ⁽¹⁾
Channel 7	NA ⁽¹⁾
Channel 8	NA ⁽¹⁾
Channel 9	NA ⁽¹⁾
Channel 10	Internal use (TSENSE)
Channel 11	Internal use (TSENSE)
Channel 12	NA ⁽¹⁾
Channel 13	NA ⁽¹⁾
Channel 14	NA ⁽¹⁾
Channel 15	NA ⁽¹⁾

^{1.} NA in this table = Not Applicable.

3.14.3.3 AUXADC Timing and Functional Characteristics

Table 3-55 presents timing and functional characteristics for auxiliary AUXADC interface in the device.

Parameter Unit Min Max Тур f_{OP} Operating frequency 3.25 MHz Ν Resolution 12 bits Sampling rate at N-bit 3.25 / (N+8) **MSPS** f_S 0.05 IN_{SW} Input swing 1.45 V fF Input capacitance unselected channel 50 C_{IN} Input capacitance selected channel 4 рF AVDD Analog power supply 1.7 1.8 1.9 Т Operating temperature °C -20 80 Accuracy ±10 m٧

Table 3-55 AUXADC Specifications

3.14.4 Thermal Controller

The device thermal controller is based on several temperature sensors in the hot spots on the die. The thermal controller executes a periodic measurement for each hot spot. The temperature values are readable by software. In order to minimize the software effort to monitor temperature, the thermal controller generates interrupts to inform microprocessors of any abnormal condition.

The thermal controller supports the following key features:

- Up to four thermal sensors
- Periodic temperature measurement
- Temperature monitoring
- Different types of low pass filters for thermal sensor reading

Table 3-56 presents the Temperature Sensor (TSENSE) specifications.

Table 3-56 TSENSE Specifications

Parameter	Min	Тур	Max	Unit
Resolution		0.15		°C
Temperature range	0		85	°C
Accuracy		±5		°C

3.15 Boot Modes

The device supports the following boot modes:

- eMMC/UFS boot
- Boot ROM power down mode

The Boot ROM power down mode is used in the following scenarios:

- After system boot, boot ROM will be powered down and prevented from any probe of ROM content.
- In Multi-Core Deep Idle (MCDI), the Boot ROM is the bootstrap for suspend/resume CPU.

4 Ball Map

Figure 4-1 presents simplified diagram of the ball location on the package.

Figure 4-1 Ball Map Diagram

For detailed information about package outlines, thermal characteristics, and markings, see Section 7 Package Information.

4.1 Quadrant Pinout

Table 4-1 shows pin mapping on the top left part of the package.

Table 4-1 Ball Map-Top Left

	Table 1 2 but that top 10)													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	NC_A1	EMI_EXTR	EMI0_DQ7		EMI0_DQ6		EMIO_CS1		EMI0_DQ11		EMI0_DQ12		EMI1_DQ10	
В	WF_IP	AVDD18_ WBG	EMI0_DQ4	EMI0_DMI0	EMI0_CA2	EMI0_CA3	EMIO_CA4		DVSS	EMI0_DQ10	EMI0_DQ8		DVSS	EMI1_DQ14
С	WF_IN	AVDD12_ WBG	DVSS	EMI0_DQS0_C	EMI0_DQ5	DVSS	EMIO_CA1	EMI0_DMI1	EMI0_DQ14	DVSS	DVSS	EMI1_DQ12	EMI1_DQ8	EMI1_DQ9
D	WF_QP	WF_QN	DVSS	EMI0_DQS0_T	EMI0_DQ1	EMI0_DQ3	EMIO_CKE1	EMI0_CS0	EMI0_DQ13	EMIO_CK_T	EMI0_DQ15	DVSS		EMI1_DQ15
E		DVSS	DVSS	DVSS	EMI0_DQ0	EMI0_DQ2	EMIO_CA5	EMI0_CKE0	EMIO_CA0	EMIO_CK_C	EMI0_DQ9	EMI0_DQS1_ C	EMI1_DQS1 _T	DVSS
F	BT_IN	BT_IP	DVSS	DVSS	DVSS				DVSS	DVSS	DVSS	EMI0_DQS1_ T	EMI1_DQS1 _C	
G	BT_QP	BT_QN	DVSS	DVSS	DVSS	DVSS			AVDD18_ DDR					AVDDQ_ EMI
н		DVSS	CONN_HRST_B	CONN_BT_CLK	CONN_BT_DATA	CONN_WF_ CTRL2		XIN_WBG		AVDDQ_EMI	AVDD2_EMI	AVDDQ_EMI	AVDD2_EMI	
J	GPS_Q	GPS_I	DVSS	CONN_TOP_ CLK	CONN_TOP_ DATA	CONN_WF_ CTRL0	CONN_WF_ CTRL1	DVSS		DVSS	DVDD_CORE	DVDD_SRAM _CORE	DVSS	EMI_TN
K			CAM_RST3	CAM_CLK2	CAM_RST2	CONN_WB_PTA				DVSS		DVDD_CORE		DVSS
L	DVSS	DVDD18_ IORT	CAM_PDN3	CAM_CLK3	CAM_PDN2				DVSS		DVDD_CORE		DVSS	
M	CSI1A_LON	CSI1A_LOP	CSI1A_L1P	CSI1A_L1N	DVSS					DVSS		DVDD_CORE		DVSS
N	CSI1A_L2P	CSI1A_L2N	CSI1B_LOP	CSI1B_LON	CSIOA_L2N_T1C				DVSS		DVDD_CORE		DVSS	
P	CSI1B_L1N	CSI1B_L1P	CSIOA_LON_ TOB	CSIOA_LOP_ TOA	CSIOA_L2P_T1B		DVDD_ CORE			DVSS		DVDD_CORE		DVSS

Table 4-2 shows pin mapping on the top right part of the package.

Table 4-2 Ball Map-Top Right

15	16	17	18	19	20	21	22	23	24	25	26	27
EMI1_DQ13		EMI1_CA3		EMI1_DQ6		DVSS	UFS_RXO_RXP		UFS_TX0_N		MSDC0_DAT2	NC_A27
EMI1_DMI1		EMI1_CA2	EMI1_DMI0	EMI1_DQ5		DVSS	UFS_RXO_RXN	DVSS	UFS_TX0_P	DVSS	MSDC0_DAT0	MSDC0_DAT1
EMI1_CA1	EMI1_CS1	EMI1_CA4	DVSS	DVSS	EMI1_DQ4	EMI1_DQ7	AVDD09_UFS	AVDD12_UFS	DVSS	MSDC0_DAT5	MSDC0_DAT4	MSDC0_CMD
EMI1_DQ11	DVSS	EMI1_CA0	EMI1_CKE0	EMI1_CA5	EMI1_DQ2	DVSS	EMI_RESET_N	AVDD18_UFS	MSDC0_CLK	MSDC0_RSTB	MSDC0_DAT7	
DVSS	EMI1_CK_T	EMI1_CS0	EMI1_CKE1	EMI1_DQ3	EMI1_DQ1	EMI1_DQS0_C	UFS_RST_N		MSDC0_DAT3	MSDC0_DSL	DVSS	DVDD18_MSDC0
	EMI1_CK_C	DVSS	DVSS	DVSS	EMI1_DQ0	EMI1_DQS0_T		UFS_CKIN_26M	DVDD_VQPS	AVDD33_USB	USB_DM	AVDD18_USB
AVDDQ_EMI			AVDD2_ EMI			DVSS		MSDC0_DAT6	CHD_DM	CHD_DP	USB_DP	
	AVDD2_EMI	AVDDQ_ EMI		AVDDQ_ EMI		DVDD_CORE	AVDD12_USB	AVDD18_SSUSB	DVSS	DVSS	DVSS	SSUSB_RXP
EMI_TP	DVDD_CORE	DVSS		DVDD_GPU	DVDD_ GPU		AUD_DAT_ MOSI0	DVSS	SSUSB_TXN	SSUSB_TXP	DVSS	SSUSB_RXN
	DVDD_CORE		DVSS				PERIPHERAL_ EN8	SYSRSTB	DVSS	DVSS	RTC32K_CK	AVDD09_SSUSB
DVDD_COR E		DVSS		DVDD_GPU			PERIPHERAL_ EN3	AUD_DAT_MISO1	TESTMODE	PERIPHERAL_ EN1	AUD_SYNC_ MOSI	
	DVDD_CORE		DVSS		DVDD_ GPU		PERIPHERAL_ EN2	WATCHDOG	AUD_CLK_MOSI	AUD_CLK_ MISO	AUD_SYNC_ MISO	DVDD18_IOLT
DVDD_COR E		DVSS		DVDD_GPU		DVSS	PERIPHERAL_ EN6	PWRAP_SPIO_ CSN	AUD_DAT_MISO0	SCP_VREQ_ VAO	SCL6	AUD_DAT_MOSI1
	DVDD_CORE		DVSS		DVDD_ GPU	DVDD_CORE	ANT_SEL0	PWRAP_SPIO_CK	PWRAP_SPI0_MI	PWRAP_SPI0_ MO	SDA6	

Table 4-3 shows pin mapping on the bottom left part of the package.

Table 4-3 Ball Map-Bottom Left

_	Table 4-3 Ball Map-Bottom Lejt													
R	CSIOA_L1N_ T1A	CSIOA_L1P_ TOC	CSIOB_LOP_ TOA	CSIOB_LON_ TOB	CSI2A_L1N		DVDD_CORE	DVDD_CORE	DVSS		DVDD_CORE		DVSS	
Т	CSIOB_L1N_ T1A	CSIOB_L1P_ TOC	CSIOB_L2P_ T1B	CSIOB_L2N_ T1C	CSI2A_L1P		DVDD_CORE	DVDD_CORE		DVSS	DVDD_ SRAM_CORE	DVDD_ CORE		DVSS
U	CSI2A_LON	CSI2A_LOP	CSI2A_L2N	CSI2A_L2P	DVSS		DVDD_PROC_L	DVDD_ PROC_L	DVDD_ PROC_L	DVDD_ PROC_L			DVSS	
٧	CSI2B_LON	CSI2B_LOP	CSI2B_L1N	CSI2B_L1P	DVSS			DVSS	DVSS	DVSS		DVSS		DVSS
w	DVSS	SDA4	AVDD12_CSI	EINT9	SRCLKENAI	CAM_PDN0	DVDD_SRAM_ PROC_L		DVDD_ PROC_L		DVDD_ PROC_L	DVSS	DVSS	
Υ		SCL4		EINT10	CAM_PDN1	PERIPHERAL_ EN11	PERIPHERAL_ EN10	DVSS	DVSS	DVSS		TN_PLLGP1	TP_PLLGP1	DVSS
AA	DVDD18_ IORB	CAM_RST1	CAM_RST0	CAM_CLK0	KPROW0	PWM_A	PERIPHERAL_ EN14			DVDD_ PROC_B		DVSS	AVDD12_ PLLGP	
АВ	SDA2	SCL2		EINT1	EINTO	SCL0	DVDD_CORE	DVSS	DVDD_ PROC_B				AVDD18_ PLLGP	DVSS
AC		CAM_CLK1 CAM_CLK1	EINT4	KPCOL0	SDA0	BPI_BUS0	AVDD18_CPU		DVDD_ PROC_B	DVDD_ PROC_B	DVDD_ PROC_B	DVSS	DVDD_SRAM_ PROC_B	DVDD_ SRAM_CORE
AD	UTXD0	URXD0		EINT8	BPI_BUS5	MISC_BSI_CK_3	DVDD_CORE	DVSS	DVDD_ PROC_B	DVDD_ PROC_B				
ΑE	EINT7	EINT6	KPCOL1	SCL1	BPI_BUS4	MISC_BSI_DO_ 3	CDM5P5A			DVSS	RFIC_ETO_P	RFIC_ETO_ N	APC	DVSS
AF		EINT5	SPI_CLK	SDA1	BPI_BUS3	MISC_BSI_CK_2	CDM3P5A	DVSS	DVSS		TX_BB_IN1	TX_BB_QP1	TX_BB_IP0	TX_BB_QP0
AG	EINT3	EINT2	SPI_CSB	BPI_PA_VM1	BPI_BUS2	MISC_BSI_DO_ 2	MISC_BSI_DO_ 1	DVSS	DVSS		TX_BB_IP1	TX_BB_ QN1	TX_BB_IN0	TX_BB_QN0
АН	KPROW1	SPI_MO	BPI_PA_VM0	BPI_OLATO	BPI_BUS1	BPI_BUS7	MISC_BSI_CK_1	DVSS	DVSS	DET_QP1	DET_IN1	DET_IP1	DET_QN0	DET_QP0
AJ	NC_AJ1	SPI_MI		BPI_ANT1	BPI_BUS6		MISC_BSI_CK_0	MISC_BSI_D O_0	DVSS	DET_QN1		DET_IN0	DET_IP0	
•	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Table 4-4 shows pin mapping on the bottom right part of the package.

Table 4-4 Ball Map-Bottom Right

15	16	17	18	19	20	21	22	23	24	25	26	27	J
PRX_BB_Q0	PRX_BB_IO		REFP			DVDD18_IOBL	BPI_BUS10		BPI_ANTO	BPI_ANT2	BPI_BUS8	NC_AJ27	,
DVSS	DRX_BB_I0	DRX_BB_Q0	DVSS	AVDD18_MD	AVDD12_MD	AVDD18_AP	BPI_BUS9	DISP_PWM	SCL5	SDA5	BPI_OLAT1	LCM_RST	ļ
DVSS	PRX_BB_Q1	DRX_BB_I1	AUXIN4	12S2_DI	RFICO_BSI_D2	I2S1_DO	SDA3	I2S1_BCK	INT_SIM1	INT_SIM2	DSI_TE	DVDD18_ SIM	,
DVSS	PRX_BB_I1	DRX_BB_Q1	AUXIN1	AUXIN0	RFICO_BSI_D0	RFICO_BSI_CK	SCL3	IDDIG	SIM1_SIO	DVDD28_SIM1	DRVBUS		4
DVSS	DVSS	MAIN_X26M_ IN	AUXIN3	AUXIN2	RFICO_BSI_D1	RFICO_BSI_EN	SIM1_SRST	SIM1_SCLK	SIM2_SIO	SIM2_SRST	MSDC1_DAT	DVDD28_ SIM2	Å
	DVDD_ MODEM			PERIPHERAL_ EN13	I2S1_MCK	I2S1_LRCK	PERIPHERAL_ EN12	SIM2_SCLK	MSDC1_ DAT0	PERIPHERAL_ EN5	MSDC1_ CMD	MSDC1_ DAT3	A
DVDD_ MODEM		DVSS		DVDD_MODEM			DVDD_CORE	MSDC1_ DAT2	MSDC1_CLK	DPI_CK	DPI_DE		,
	DVDD_ MODEM		DVSS		DVDD_MODE M	DVSS	DVDD_CORE	DPI_D5	DPI_D8	SPI1_CSB	DPI_D4	DVDD28_MS DC1	S
DVDD_ MODEM		DVSS		DVDD_MODEM		DVSS	SPI1_CLK	DPI_D11	DPI_VSYNC	DPI_D1	DPI_D10	DVDD18_MS DC1	5
OVDD_SRAM_ CORE	DVDD_CORE		DVSS		DVDD_CORE		SPI1_MO	DPI_HSYNC	DPI_D7	PERIPHERAL_ EN4	DPI_D9		
DVDD_CORE		DVSS		DVDD_CORE		DVSS	SPI1_MI	DPI_D0	DPI_D6	DPI_D2	DPI_D3	DVDD18_ IOLM	١
	DVDD_CORE		DVSS		DVDD_CORE	DVDD_SRAM_ CORE	PERIPHERAL_ EN9	AVDD12_ DSI	DSI0_D2N	DSI0_D2P	DVSS	AVDD04_DSI	31
DVDD_CORE		DVSS		DVDD_CORE		DVDD_CORE		DVSS	DSI0_CKN	DSIO_CKP	DSI0_D1P		
	DVDD_CORE		DVDD_ SRAM_GPU		DVDD_GPU	DVSS	PERIPHERAL_ EN7	ANT_SEL1	DSI0_D3N	DSI0_D3P	DSI0_D1N	DSIO_DOP	
DVDD_CORE		DVSS		DVDD_GPU			ANT_SEL2	SRCLKENA0	SRCLKENA1	PERIPHERAL_ EN0	DVSS	DSI0_D0N	

4.2 Pin Characteristics

Table 4-5 describes the pin characteristics and the multiplexed signals on each ball.

Table 4-5 Pin Characteristics

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO0	DIO	0				
		PCM0_SYNC	DO	2				
EINTO	AB5	SRCLKENAI0	DI	4	0	DVDD18	OFF	
LINIO	ABS	SCP_SPI2_CS	DO	5		DADDIO	OFF	'
		I2S3_MCK	DO	6				
		SPI2_CSB	DO	7				
		GPIO1	DIO	0				
		PCM0_CLK	DO	2			OFF	
EINT1	AB4	CLKM3	DO	4	0	DVDD18		
LINII	AB4	SCP_SPI2_MO	DO	5		DADDIO		'
		I2S3_BCK	DO	6				
		SPI2_MO	DO	7				
		GPIO2	DIO	0				
		PCM0_DO	DO	2				
EINT2	AG2	SCL6	DIO	4	0	DVDD18	OFF	
LINIZ	AGZ	SCP_SPI2_CK	DO	5		DADDIO	OFF	'
		I2S3_LRCK	DO	6				
		SPI2_CLK	DO	7				
		GPIO3	DIO	0				
		PCM0_DI	DI	2				
EINT3	AG1	SDA6	DIO	4	0	DVDD18	OFF	
EINIS	AGI	TDM_MCK	DO	5		0,00010	OFF	'
		12S3_DO	DO	6				
		SCP_VREQ_VAO	DO	7				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO4	DIO	0				
EINT4	AC3	PWM_B	DO	1	0	DVDD18	OFF	1
LINI4	ACS	I2SO_MCK	DO	2		DVDD18	011	'
		TDM_BCK	DO	5				
		GPIO5	DIO	0				
EINT5	AF2	PWM_C	DO	1	0	DVDD18	OFF	
EINIO	AFZ	I2SO_BCK	DIO	2		DADDIO	OFF	'
		TDM_LRCK	DO	5				
		GPIO6	DIO	0				
		PWM_A	DO	1				
EINT6	AE2	I2SO_LRCK	DIO	2	0	DVDD18	OFF	
EINIO	AEZ	IDDIG	DI	3		DVDD18	OFF	I
		TDM_DATA0	DO	5				
		CMFLASH	DO	7				
		GPIO7	DIO	0				
		SPI1_B_MI	DI	1				
EINT7	AE1	12S0_DI	DI	2	0	DVDD18	OFF	1
		USB_DRVVBUS	DO	3				
		TDM_DATA1	DO	5				
		GPIO8	DIO	0				
FINITO	A D 4	SPI1_B_CSB	DO	1		DVDD10	OFF	
EINT8	AD4	SCL7	DIO	3	0	DVDD18	OFF	ı
		TDM_DATA2	DO	5				
		GPIO9	DIO	0				
EINT9	W4	SPI1_B_MO	DO	1	0	DVDD18	OFF	1
		CMMCLK2	DO	3				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO10	DIO	0				
EINT10	Y4	SPI1_B_CLK	DO	1	0	DVDD18	OFF	
LINTIO	14	CMMCLK3	DO	3		DADDIO	OFF	'
		TDM_DATA3	DO	5				
		GPIO11	DIO	0				
		IDDIG	DI	2				
		SCL6	DIO	3				
SCL6	N26	UCTS1	DI	4	0	DVDD18	OFF	ı
		UCTS0	DI	5				
		SRCLKENAI1	DI	6				
		I2S5_MCK	DO	7				
		GPIO12	DIO	0				
		USB_DRVVBUS	DO	2	0		OFF	
		SDA6	DIO	3				
SDA6	P26	URTS1	DO	4		DVDD18		I
		URTS0	DO	5				
		I2S2_DI2	DI	6				
		I2S5_BCK	DO	7				
		GPIO13	DIO	0				
		DBPI_D0	DIO	1				
DPI_D0	W23	SPI5_MI	DI	2	0	DVDD18	OFF	I
		PCM0_SYNC	DO	3				
		I2SO_MCK	DO	6				
		GPIO14	DIO	0				
		DBPI_D1	DIO	1				
DPI_D1	AA25	SPI5_CSB	DO	2	0	DVDD18	OFF	I
		PCM0_CLK	DO	3				
		I2SO_BCK	DIO	6				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO15	DIO	0				
		DBPI_D2	DIO	1				
DPI_D2	W25	SPI5_MO	DO	2	0	DVDD18	OFF	ı
		PCM0_DO	DO	3				
		I2SO_LRCK	DIO	6				
		GPIO16	DIO	0				
		DBPI_D3	DIO	1				
DPI_D3	W26	SPI5_CLK	DO	2	0	DVDD18	OFF	ı
		PCM0_DI	DI	3				
		12S0_DI	DI	6				
		GPIO17	DIO	0				
DPI_D4	AB26	DBPI_D4	DIO	1	0	DVDD18	OFF	
DPI_D4	ABZO	SPI4_MI	DI	2		00018		'
		I2S3_MCK	DO	6				
		GPIO18	DIO	0				
		DBPI_D5	DIO	1				
DPI_D5	AB23	SPI4_CSB	DO	2	0	DVDD18	OFF	ı
		SCP_VREQ_VAO	DO	5				
		I2S3_BCK	DO	6				
		GPIO19	DIO	0				
		DBPI_D6	DIO	1				
DPI_D6	W24	SPI4_MO	DO	2	0	DVDD18	OFF	I
		URXD1	DI	5				
		I2S3_LRCK	DO	6				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO20	DIO	0				
		DBPI_D7	DIO	1				
DPI_D7	Y24	SPI4_CLK	DO	2	0	DVDD18	OFF	1
		UTXD1	DO	5				
		I2S3_DO	DO	6				
		GPIO21	DIO	0				
DPI_D8	AB24	DBPI_D8	DIO	1	0	DVDD18	OFF	
DPI_D6	AD24	SPI3_MI	DI	2		DADD19	OFF	'
		I2S2_MCK	DO	6				
		GPIO22	DIO	0				
DDI D0	V26	DBPI_D9	DIO	1	0	DVDD19	OFF	
DPI_D9	Y26	SPI3_CSB	DO	2	0	DVDD18	OFF	I
		I2S2_BCK	DO	6				
		GPIO23	DIO	0				
		DBPI_D10	DIO	1				
DPI_D10	AA26	SPI3_MO	DO	2	0	DVDD18	OFF	I
		UCTS1	DI	4				
		I2S2_LRCK	DO	6				
		GPIO24	DIO	0				
		DBPI_D11	DIO	1				
DDI D44	4422	SPI3_CLK	DO	2		D) /DD4 0	OFF	
DPI_D11	AA23	SRCLKENAI0	DI	3	0	DVDD18	OFF	I
		URTS1	DO	4				
		I2S2_DI	DI	6				
		GPIO25	DIO	0				
		DBPI_HSYNC	DO	1				
DPI_HSYNC	Y23	SCL6	DIO	3	0	DVDD18	OFF	1
		KPCOL2	DIO	4				
		I2S1_MCK	DO	6				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO26	DIO	0				
		DBPI_VSYNC	DO	1		DVDD18 OFF DVDD18 OFF DVDD18 OFF DVDD28_MSDC1 PU		
DPI_VSYNC	AA24	SDA6	DIO	3	0	DVDD18	OFF	1
		KPROW2	DIO	4				
		I2S1_BCK	DO	6				
		GPIO27	DIO	0				
		DBPI_DE	DO	1				
DPI_DE	AC26	SCL7	DIO	3	0	DVDD18	OFF	1
		DMIC_CLK	DO	4				
		I2S1_LRCK	DO	6				
		GPIO28	DIO	0			OFF OFF PU	
		DBPI_CK	DO	1			OFF	
DPI_CK	AC25	SDA7	DIO	3	0	DVDD18		1
_		DMIC_DAT	DI	4				
		I2S1_DO	DO	6				
		GPIO29	DIO	0				
MSDC1_CLK	AC24	MSDC1_CLK	DO	1	1	DVDD28_MSDC1	OFF	OL
		PCM1_CLK	DIO	6				
		GPIO30	DIO	0				
MSDC1_DAT3	AD27	MSDC1_DAT3	DIO	1	1	DVDD28_MSDC1	PU	1
		PCM1_DI	DI	6				
		GPIO31	DIO	0				
MSDC1_CMD	AD26	MSDC1_CMD	DIO	1	1	DVDD28_MSDC1	PU	1
		PCM1_SYNC	DIO	6				
		GPIO32	DIO	0				
MSDC1_DAT0	AD24	MSDC1_DAT0	DIO	1	1	DVDD28_MSDC1	PU	1
		PCM1_DO0	DO	6			OFF PU PU	

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO33	DIO	0				
MSDC1_DAT2	AC23	MSDC1_DAT2	DIO	1	1	DVDD28_MSDC1	PU	I
		PCM1_DO2	DO	6				
		GPIO34	DIO	0				
MSDC1_DAT1	AE26	MSDC1_DAT1	DIO	1	1	DVDD28_MSDC1	PU	I
		PCM1_DO1	DO	6				
SIM2_SIO	AE24	GPIO35	DIO	0	0	DVDD28_SIM2	OFF	I
SIM2_SRST	AE25	GPIO36	DIO	0	0	DVDD28_SIM2	OFF	I
SIM2_SCLK	AD23	GPIO37	DIO	0	0	DVDD28_SIM2	OFF	I
SIM1_SCLK	AE23	GPIO38	DIO	0	0	DVDD28_SIM1	OFF	I
SIM1_SRST	AE22	GPIO39	DIO	0	0	DVDD28_SIM1	OFF	I
SIM1_SIO	AF24	GPIO40	DIO	0	0	DVDD28_SIM1	OFF	I
		GPIO41	DIO	0				
		IDDIG	DI	1				
IDDIG	AF23	URXD1	DI	2	0	DVDD18	OFF	I
		UCTS0	DI	3				
		DMIC_CLK	DO	6				
		GPIO42	DIO	0				
		USB_DRVVBUS	DO	1				
DRVBUS	AF26	UTXD1	DO	2	0	DVDD18	OFF	1
		URTS0	DO	3				
	Ī	DMIC_DAT	DI	6				
DICD DIAM	AH23	GPIO43	DIO	0	0	DVDD10	OFF	ı
DISP_PWM	AH23	DISP_PWM	DO	1	U	DVDD18	OFF	I
DCI TE	AG26	GPIO44	DIO	0	0	DVDD19	OFF	
DSI_TE	AGZO	DSI_TE	DI	1	0	DVDD18	UFF	I
LCM DCT	AH27	GPIO45	DIO	0	0	DVDD19	OFF	
LCM_RST	AHZ/	LCM_RST	DO	1	0	DVDD18	OFF	I

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO46	DIO	0				
		URXD1	DI	2				
INT_SIM2	AG25	UCTS1	DI	3	0	DVDD18	OFF OFF OFF	1
		IDDIG	DI	6				
		I2S5_LRCK	DO	7				
		GPIO47	DIO	0				
		UTXD1	DO	2				
INT_SIM1	AG24	URTS1	DO	3	0	DVDD18	OFF	1
		USB_DRVVBUS	DO	6				
		12S5_DO	DO	7				
SCL5	AH24	GPIO48	DIO	0	1	DVDD18	DII	ı
3CL3	Anz4	SCL5	DIO	1	1	DADDIO	PO	'
SDA5	AH25 -	GPIO49	DIO	0	1	DVDD18	DII	ı
SDAS	AHZ3	SDA5	DIO	1	1	DADDIO	PO	'
SCL3	AF22	GPIO50	DIO	0	1	DVDD18	DII	ı
3CL3	AFZZ	SCL3	DIO	1	1	DADDIO	PO	'
SDA3	AG22	GPIO51	DIO	0	1	DVDD18	DII	ı
SDAS	AGZZ	SDA3	DIO	1	1	DADDIO	PO	'
BPI_ANT2	AJ25	GPIO52	DIO	0	1	DVDD18	OFF	OL
DFI_AIN12	AJ23	BPI_ANT2	DO	1	1	DADDIO	OFF	OL
BPI_ANTO	AJ24	GPIO53	DIO	0	1	DVDD18	OFF	OL
BPI_ANTO	AJ24	BPI_ANT0	DO	1	1	DADDIO	OFF	OL
BPI_OLAT1	AH26	GPIO54	DIO	0	1	DVDD18	OFF	OL
BPI_OLATI	AHZU	BPI_OLAT1	DO	1	1	DADDIO	OFF	OL
DDI DLICO	AJ26	GPIO55	DIO	0	1	DVDD18	OFF	OL
BPI_BUS8	AJZO	BPI_BUS8	DO	1	1	אַנטטאַט	OFF	OL
DDI DUICO	AU22	GPIO56	DIO	0	1	DVDD18	OFF	O.
BPI_BUS9	AH22 -	BPI_BUS9	DO	1	1	אַנטטאַט	UFF	OL

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
BPI_BUS10	AJ22	GPIO57	DIO	0	1	DVDD18	OFF	OL
BI 1_B0310	7322	BPI_BUS10	DO	1	1	DVDDIO	011	OL
		GPIO58	DIO	0				
RFICO_BSI_D2	AG20	RFICO_BSI_D2	DIO	1	1	DVDD18	PU/PD Reset OFF OFF OFF OFF OFF OFF OFF O	ı
NI ICO_BSI_DZ	AGZU	SPM_BSI_D2	DO	2	1	DVDD18	OH	'
		PWM_B	DO	3				
		GPIO59	DIO	0				
RFICO_BSI_D1	AE20	RFICO_BSI_D1	DIO	1	1	DVDD18	OFF	1
		SPM_BSI_D1	DO	2				
		GPIO60	DIO	0				
RFICO_BSI_D0	AF20	RFICO_BSI_D0	DIO	1	1	DVDD18	OFF	1
		SPM_BSI_D0	DO	2				
MISC_BSI_DO_1	AG7	GPIO61	DIO	0	1	DVDD18	OFF OFF OFF OFF OFF OFF	1
MISC_BSI_DO_1	AG7	MIPI1_SDATA	DIO	1	1	DADDIO	OFF	'
MISC DSI CV 1	AH7	GPIO62	DIO	0	1	DVDD18	OFF	OL
MISC_BSI_CK_1	АП	MIPI1_SCLK	DO	1	1	DADD19	OFF	OL
MICC BCI DO O	AJ8	GPIO63	DIO	0	1	DVDD18	OFF	ı
MISC_BSI_DO_0	AJO	MIPIO_SDATA	DIO	1	1	DADDIO	OFF	'
MISC_BSI_CK_0	AJ7	GPIO64	DIO	0	1	DVDD18	OFF	OL
IVII3C_B3I_CK_U	AJ7	MIPIO_SCLK	DO	1	1	DADD19	OFF	OL
		GPIO65	DIO	0				
MISC_BSI_DO_3	AE6	MIPI3_SDATA	DIO	1	1	DVDD18	OFF	1
		BPI_OLAT2	DO	2				
		GPIO66	DIO	0				
MISC_BSI_CK_3	AD6	MIPI3_SCLK	DO	1	1	DVDD18	OFF	OL
		BPI_OLAT3	DO	2				
MICC DCL DO 3	466	GPIO67	DIO	0	1	DVDD10	OFF	1
MISC_BSI_DO_2	AG6	MIPI2_SDATA	DIO	1	1	DVDD18	UFF	I

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
MISC_BSI_CK_2	AF6	GPIO68	DIO	0	1	DVDD18	OFF	OL
141136_B31_GR_2	7410	MIPI2_SCLK	DO	1	_	545510	PU/PD Reset OFF OFF OFF OFF OFF OFF OFF O	01
BPI_BUS7	AH6	GPIO69	DIO	0	1	DVDD18	OFF	OL
BH_B037	Allo	BPI_BUS7	DO	1	1	575510	011	01
BPI_BUS6	AJ5	GPIO70	DIO	0	1	DVDD18	OFF	OL
BH_B030	7.33	BPI_BUS6	DO	1	1	575510	011	01
BPI_BUS5	AD5	GPIO71	DIO	0	1	DVDD18	OFF	OL
DF1_D033	ADS	BPI_BUS5	DO	1	1	DVDD18	011	OL
BPI_BUS4	AE5	GPIO72	DIO	0	1	DVDD18	OEE	OL
BF1_BO34	ALS	BPI_BUS4	DO	1		DADDIO	OFF	OL
BPI_BUS3	AF5	GPIO73	DIO	0	1	DVDD18	OFF	OL
BF1_B033	AFS	BPI_BUS3	DO	1		DADDIO	OFF	OL
BPI_BUS2	AG5	GPIO74	DIO	0	1	DVDD18	OFF	OL
DP1_BU32	AGS	BPI_BUS2	DO	1		DADD19	OFF	OL
BPI_BUS1	AH5	GPIO75	DIO	0	1	DVDD18	OFF	OL
PhI_PO31	АПЭ	BPI_BUS1	DO	1	1	DADD19	OFF	OL
DDI DIICO	AC6	GPIO76	DIO	0	1	DVDD18	OFF	OL
BPI_BUS0	AC6	BPI_BUS0	DO	1	1	אַנטטאַט	OFF	OL
DDI ANTI	0.14	GPIO77	DIO	0	1	DVDD18	OFF	OL
BPI_ANT1	AJ4	BPI_ANT1	DO	1	1	אַנטטאַט	OFF	OL
DDL OLATO	0114	GPIO78	DIO	0	1	DVDD10	OFF	OI.
BPI_OLAT0	AH4	BPI_OLAT0	DO	1	1	DVDD18	OFF	OL
		GPIO79	DIO	0				
BPI_PA_VM1	AG4	BPI_PA_VM1	DO	1	1	DVDD18	OFF	OL
		MIPI4_SDATA	DIO	2				
		GPIO80	DIO	0				
BPI_PA_VM0	AH3	BPI_PA_VM0	DO	1	1	DVDD18	OFF	OL
		MIPI4_SCLK	DO	2	1			
			1		1			

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
SDA1	AF4	GPIO81	DIO	0	1	DVDD18	PU	1
JUAI	Al-	SDA1	DIO	1	1	DVDDIO	10	'
SDA0	AC5	GPIO82	DIO	0	1	DVDD18	PU	
SDAO	ACS	SDA0	DIO	1		DVDDIO		'
SCL0	AB6	GPIO83	DIO	0	1	DVDD18	PU	1
3010	Abo	SCL0	DIO	1		DVDD10	10	'
SCL1	AE4	GPIO84	DIO	0	1	DVDD18	DII	1
SCLI	AL4	SCL1	DIO	1		DADDIO	PO	'
		GPIO85	DIO	0				
		SPI0_MI	DI	1				
SPI_MI	AJ2	SCP_SPI0_MI	DI	2	0	DVDD18	OFF	ı
		CLKM3	DO	3			PU OFF	
		I2S1_BCK	DO	4				
		GPIO86	DIO	0				
		SPIO_CSB	DO	1				
SPI_CSB	AG3	SCP_SPIO_CS	DO	2	0	DVDD18	OFF	ı
		CLKM0	DO	3				
		I2S1_LRCK	DO	4				
		GPIO87	DIO	0				
		SPI0_MO	DO	1				
SPI_MO	AH2	SCP_SPI0_MO	DO	2	0	DVDD18	OFF	ı
		SDA1	DIO	3				
		I2S1_DO	DO	4				
		GPIO88	DIO	0				
		SPIO_CLK	DO	1	1			
SPI_CLK	AF3	SCP_SPIO_CK	DO	2	0	DVDD18	OFF	I
		SCL1	DIO	3	1			
		I2S1_MCK	DO	4	1			

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO89	DIO	0			OFF OFF OFF OFF	
		SRCLKENAI0	DI	1				
SRCLKENAI	W5	PWM_C	DO	2	0	DVDD18	OFF OFF PU	ı
SICERLIVAL	VVS	I2S5_BCK	DO	3		DVDD18		'
		SDA8	DIO	5				
		CMVREF0	DO	6				
		GPIO90	DIO	0				
		PWM_A	DO	1				
PWM_A	AA6	CMMCLK2	DO	2	0	DVDD18	OFF	1
F WWI_A	AAO	I2S5_LRCK	DO	3		DVDD18	011	'
		SCP_VREQ_VAO	DO	4				
		SCL8	DIO	5				
		GPIO91	DIO	0			OFF OFF PU	
		KPROW1	DIO	1				
KPROW1	AH1	PWM_B	DO	2	0	DVDD18		I
		12S5_DO	DO	3				
		CMMCLK3	DO	5				
KPROW0	AA5	GPIO92	DIO	0	1	DVDD18		OL
KI NOWO	7.7.3	KPROW0	DIO	1	1	545516	011	OL.
KPCOL0	AC4	GPIO93	DIO	0	1	DVDD18	PH	ı
KI COLO	7164	KPCOL0	DIO	1	1	545516	10	
		GPIO94	DIO	0				
		KPCOL1	DIO	1				
		12S2_DI2	DI	2				
KPCOL1	AE3	I2S5_MCK	DO	3	0	DVDD18	OFF	ı
M COLI	, ALS	CMMCLK2	DO	4		2,0010	OFF	·
		SCP_SPI2_MI	DI	5				
		SRCLKENAI1	DI	6				
		SPI2_MI	DI	7				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO95	DIO	0				
URXD0	AD2	URXD0	DI	1	1	DVDD18	PU	1
		UTXD0	DO	2			PU PU OFF OFF OFF	
		GPIO96	DIO	0				
UTXD0	AD1	UTXD0	DO	1	1	DVDD18	PU	ОН
		URXD0	DI	2				
		GPI097	DIO	0				
CAM_PDN0	W6	UCTS0	DI	1	0	DVDD18	OFF	ı
CAIVI_F DINO	VVO	I2S2_MCK	DO	2		DVDD18	OH	'
		IDDIG	DI	3				
		GPIO98	DIO	0				
CAM_PDN1	Y5	URTS0	DO	1	0	DVDD18	OFF	ı
CAW_FDIVI	15	I2S2_BCK	DO	2		DVDD18	OH	'
		USB_DRVVBUS	DO	3				
CAM_CLK0	AA4	GPIO99	DIO	0	0	DVDD18	OFF	ı
CAIVI_CERO	AA4	CMMCLK0	DO	1		DVDD18	OH	'
		GPIO100	DIO	0				
CAM_CLK1	AC2	CMMCLK1	DO	1	0	DVDD18	OFF	I
		PWM_C	DO	2				
		GPIO101	DIO	0				
CAM_RST0	AA3	CLKM2	DO	1	0	DVDD18	OFF	ı
CAIVI_K310	AAS	I2S2_LRCK	DO	2		DVDD18	OH	'
		CMVREF1	DO	3				
		GPIO102	DIO	0				
CAM_RST1	AA2	CLKM1	DO	1	0	DVDD18	OFF	I
		12S2_DI	DI	2				
SCL2	AB2	GPIO103	DIO	0	1	DVDD18	PU	ı
JCL2	702	SCL2	DIO	1	1	2,0010		<u>'</u>

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset	
SDA2	AB1	GPIO104	DIO	0	1	DVDD18	DII		
SDAZ	ABI	SDA2	DIO	1		DVDD18	PO	'	
SCL4	Y2	GPIO105	DIO	0	1	DVDD18	DII	ı	
3014	12	SCL4	DIO	1		DVDD18	10	,	
SDA4	W2	GPIO106	DIO	0	1	DVDD18	DII	ı	
3DA4	VVZ	SDA4	DIO	1		DVDD18	FO	'	
		GPIO107	DIO	0					
		DMIC_CLK	DO	1					
CAM_PDN2	L5	CLKM0	DO	3	0	DVDD18	OFF	1	
		SDA7	DIO	4					
		PWM_A	DO	6					
		GPIO108	DIO	0			PU PU OFF OFF		
		CMMCLK2	DO	1					
CAM_CLK2	K4	CLKM1	DO	3	0	DVDD18		1	
		SCL8	DIO	4					
		PWM_B	DO	6					
		GPIO109	DIO	0					
		DMIC_DAT	DI	1					
CAM_RST2	K5	CLKM2	DO	3	0	DVDD18	OFF	I	
		SDA8	DIO	4					
		PWM_C	DO	6					
		GPIO110	DIO	0					
		SCL7	DIO	1					
CAM DDN2	12	USB_DRVVBUS	DO	4		DVDD18	OFF		
CAM_PDN3	L3	SRCLKENAI1	DI	5	- 0	ριστικ	UFF	I	
		KPCOL2	DIO	6					
		URXD1	DI	7					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO111	DIO	0				
CAM_CLK3	L4	CMMCLK3	DO	1	0	DVDD18	OFF	1
CAIVI_CLK3	[4	SRCLKENAI0	DI	3		DADDIO	OFF	'
		SCP_VREQ_VAO	DO	4			OFF OFF OFF OFF	
		GPIO112	DIO	0				
		SDA7	DIO	1				
CAM_RST3	K3	IDDIG	DI	4	0	DVDD18	OFF	
CAIVI_K313	l K5	AGPS_SYNC	DO	5		DADD19	OFF	'
		KPROW2	DIO	6				
		UTXD1	DO	7				
		GPIO113	DIO	0				
CONN_TOP_CLK	J4	CONN_TOP_CLK	DO	1	0	DVDD18	OFF	1
		SCL6	DIO	3				
		GPIO114	DIO	0				
CONN_TOP_DATA	J5	CONN_TOP_DATA	DIO	1	0	DVDD18	OFF	1
		SDA6	DIO	3				
		GPIO115	DIO	0				
CONN_BT_CLK	H4	CONN_BT_CLK	DIO	1	0	DVDD18	OFF	1
		UTXD1	DO	2				
CONN_BT_DATA	Н5	GPIO116	DIO	0	0	DVDD18	OFF	ı
CONN_BI_DAIA	ПЭ	CONN_BT_DATA	DIO	1		DADD19	OFF	'
CONN_WF_CTRL0	J6	GPIO117	DIO	0	0	DVDD18	OFF	1
CONN_WF_CIRLO	10	CONN_WF_HB0	DIO	1	U	0,0018	OFF	I
CONN WE CTP! 1	J7	GPIO118	DIO	0	. 0	DVDD18	OFF	
CONN_WF_CTRL1	1/	CONN_WF_HB1	DIO	1	U	אַנטטאַט	OFF	I
CONN ME CTRL2	ИE	GPIO119	DIO	0	0	DVDD18	OFF	
CONN_WF_CTRL2	H6	CONN_WF_HB2	DIO	1	U	אַנטטאַט	UFF	
CONN M/P DTA	К6	GPIO120	DIO	0	0	DVDD18	OFF	
CONN_WB_PTA	NO NO	CONN_WB_PTA	DIO	1	U	אַנטטאַט	UFF	

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO121	DIO	0				
CONN_HRST_B	Н3	CONN_HRST_B	DO	1	0	DVDD18	OFF PU OFF PU PU PU	1
		URXD1	DI	2				
MSDC0_CMD	C27	GPIO122	DIO	0	1	DVDD18_MSDC0	DII	1
WISDCO_CIVID	(2)	MSDC0_CMD	DIO	1		DVDD18_W3DC0	FO	'
MSDC0_DAT0	B26	GPIO123	DIO	0	1	DVDD18_MSDC0	DII	1
WISDCO_DATO	B20	MSDC0_DAT0	DIO	1		DVDD18_W3DC0	FO	'
MSDC0_CLK	D24	GPIO124	DIO	0	1	DVDD18_MSDC0	OEE	OL
WISDCO_CER	D24	MSDC0_CLK	DO	1		DVDD18_IVISDC0	OFF	OL
MSDC0_DAT2	A26	GPIO125	DIO	0	1	DVDD18_MSDC0	DLI	
WISDCO_DATZ	AZO	MSDC0_DAT2	DIO	1		DVDD18_IVISDC0	FO	'
		GPIO126	DIO	0				
MSDC0_DAT4	C26	MSDC0_DAT4	DIO	1	1	DVDD18_MSDC0	CO PU	ı
		UFS_MPHY_SCL	DI	6				
		GPIO127	DIO	0				
MSDC0_DAT6	G23	MSDC0_DAT6	DIO	1	1	DVDD18_MSDC0	PU	I
		UFS_MPHY_SDA	DIO	6				
		GPIO128	DIO	0				
MSDC0_DAT1	B27	MSDC0_DAT1	DIO	1	1	DVDD18_MSDC0	PU	1
		UFS_UNIPRO_SDA	DIO	6				
		GPIO129	DIO	0				
MSDC0_DAT5	C25	MSDC0_DAT5	DIO	1	1	DVDD18_MSDC0	PU	1
		UFS_UNIPRO_SCL	DI	6				
MCDCO DATZ	D2C	GPIO130	DIO	0	1	DVDD10 MCDC0	DII	
MSDC0_DAT7	D26	MSDC0_DAT7	DIO	1	1	DVDD18_MSDC0	PU	'
MCDCO DCI	E35	GPIO131	DIO	0	1	DVDD19 MCDC0	OFF	1
MSDC0_DSL	E25	MSDC0_DSL	DI	1	1	DVDD18_MSDC0	OFF	'
MCDCO DATA	F2.4	GPIO132	DIO	0	4	DVDD10 MCDC0	DU	
MSDC0_DAT3	E24	MSDC0_DAT3	DIO	1	1	DVDD18_MSDC0	PU	ı

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO133	DIO	0				
MSDC0_RSTB	D25	MSDC0_RSTB	DO	1	1	DVDD18_MSDC0	PU	ОН
		AGPS_SYNC	DO	3				
RTC32K_CK	K26	GPIO134	DIO	0	1	DVDD18	OFF	ı
KTC32K_CK	K20	RTC32K_CK	DI	1		DVDD18	OFF	'
WATCHDOG	M23	GPIO135	DIO	0	1	DVDD18	OFF	OL
WAICHDOG	10123	WATCHDOG	DO	1	1	DADDIO	OFF	OL OL
		GPIO136	DIO	0				
		AUD_CLK_MOSI	DO	1				
AUD_CLK_MOSI	M24	AUD_CLK_MISO	DI	2	0	DVDD18	OFF	ı
		I2S1_MCK	DO	3				
		UFS_UNIPRO_SCL	DI	6			OFF OFF	
		GPIO137	DIO	0				
ALID CVNC MOSI	L26	AUD_SYNC_MOSI	DO	1	0	DVDD18	OFF	ı
AUD_SYNC_MOSI	LZO	AUD_SYNC_MISO	DI	2	0	אַנטטאַט	OFF	'
		I2S1_BCK	DO	3				
		GPIO138	DIO	0				
ALID DAT MOCIO	122	AUD_DAT_MOSI0	DO	1		DVDD10	OFF	
AUD_DAT_MOSI0	J22	AUD_DAT_MISO0	DI	2	0	DVDD18	OFF	ı
		I2S1_LRCK	DO	3				
		GPIO139	DIO	0				
		AUD_DAT_MOSI1	DO	1				
AUD_DAT_MOSI1	N27	AUD_DAT_MISO1	DI	2	0	DVDD18	OFF	I
		I2S1_DO						
		UFS_MPHY_SDA	DIO	6				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
AUD_CLK_MISO		GPIO140	DIO	0	0	DVDD18	OFF	ı
		AUD_CLK_MISO	DI	1				
	M25	AUD_CLK_MOSI	DO	2				
		I2SO_MCK	DO	3				
		UFS_UNIPRO_SDA	DIO	6				
AUD_SYNC_MISO	M26	GPIO141	DIO	0	0	DVDD18	OFF	ı
		AUD_SYNC_MISO	DI	1				
		AUD_SYNC_MOSI	DO	2				
		I2SO_BCK	DO	3				
		GPIO142	DIO	0	0	DVDD18	OFF	ı
	N24	AUD_DAT_MISO0	DI	1				
AUD_DAT_MISO0		AUD_DAT_MOSI0	DO	2				
		I2SO_LRCK	DO	3				
		VOW_DAT_MISO	DI	4				
	L23	GPIO143	DIO	0	0	DVDD18	OFF	ı
		AUD_DAT_MISO1	DI	1				
AUD_DAT_MISO1		AUD_DAT_MOSI1	DO	2				
		12S0_DI	DI	3				
		VOW_CLK_MISO	DI	4				
		UFS_MPHY_SCL	DI	6				
PWRAP_SPI0_MI	P24	GPIO144	DIO	0	1	DVDD18	OFF	I
		PWRAP_SPI0_MI	DIO	1				
		PWRAP_SPI0_MO	DIO	2				
PWRAP_SPIO_CSN	N23	GPIO145	DIO	0	1	DVDD18	PU	ОН
I WINAF_SFIU_CSIN		PWRAP_SPIO_CSN	DO	1				
PWRAP_SPI0_MO	P25	GPIO146	DIO	0	1	DVDD18	OFF	ı
		PWRAP_SPI0_MO	DIO	1				
		PWRAP_SPI0_MI	DIO	2				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
PWRAP_SPIO_CK	P23	GPI0147	DIO	0	1	DVDD18	OFF	OL
	P23	PWRAP_SPIO_CK	DO	1				
SRCLKENA0	R23	GPIO148	DIO	0	1	DVDD18	PU	ОН
		SRCLKENA0	DO	1				
SRCLKENA1	R24	GPIO149	DIO	0	1	DVDD18	PU	OL
		SRCLKENA1	DO	1				
PERIPHERAL_EN0		GPIO150	DIO	0	0	DVDD18	OFF	ı
	R25	PWM_A	DO	1				
	K25	CMFLASH	DO	2				
		CLKM0	DO	3				
PERIPHERAL_EN1	L25	GPIO151	DIO	0	0	DVDD18	OFF	ı
		PWM_B	DO	1				
		CMVREF0	DO	2				
		CLKM1	DO	3				
	M22	GPIO152	DIO	0	0	DVDD18	OFF	ı
PERIPHERAL_EN2		PWM_C	DO	1				
		CMFLASH	DO	2				
		CLKM2	DO	3				
PERIPHERAL_EN3	L22	GPIO153	DIO	0	0	DVDD18	OFF	ı
		PWM_A	DO	1				
		CMVREF0	DO	2				
		CLKM3	DO	3				
SCP_VREQ_VAO	N25	GPIO154	DIO	0	0	DVDD18	OFF	I
		SCP_VREQ_VAO	DO	1				
ANT_SEL0	P22	GPIO155	DIO	0	0	DVDD18	OFF	I
		CMVREF1	DO	3				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO156	DIO	0				
		SRCLKENAI0	DI	2				
ANT_SEL1	T23	SCL6	DIO	3	0	DVDD18	OFF	I
		KPCOL2	DIO	4				
		IDDIG	DI	5				
		GPIO157	DIO	0				
		SRCLKENAI1	DI	2				
ANT_SEL2	R22	SDA6	DIO	3	0	DVDD18	OFF	I
		KPROW2	DIO	4				
		USB_DRVVBUS	DO	5				
PERIPHERAL_EN6	N22	GPIO158	DIO	0	0	DVDD18	OFF	I
PERIPHERAL_EN7	T22	GPIO159	DIO	0	0	DVDD18	OFF	I
PERIPHERAL_EN8	K22	GPIO160	DIO	0	0	DVDD18	OFF	I
		GPIO161	DIO	0				
		SPI1_A_MI	DI	1				
SPI1_MI	W22	SCP_SPI1_MI	DI	2	0	DVDD18	OFF	I
		IDDIG	DI	3				
		KPCOL2	DIO	5				
		GPIO162	DIO	0				
		SPI1_A_CSB	DO	1				
SPI1_CSB	AB25	SCP_SPI1_CS	DO	2	0	DVDD18	OFF	I
		USB_DRVVBUS	DO	3				
		KPROW2	DIO	5				
		GPIO163	DIO	0				
		SPI1_A_MO	DO	1				
SDI1 MO	SPI1_MO Y22	SCP_SPI1_MO	DO	2	0	DVDD18	OFF	
2511 INIO		SDA1	DIO	3	0	0,000,10	OFF	
		CMMCLK2	DO	5				
		DMIC_CLK	DO	6				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO164	DIO	0				
		SPI1_A_CLK	DO	1	1			
CDI1 CLV	AA22	SCP_SPI1_CK	DO	2	0	DVDD18	OFF	
SPI1_CLK	AAZZ	SCL1	DIO	3	1	DADD19	OFF	'
		CMMCLK3	DO	5				
		DMIC_DAT	DI	6				
		GPIO165	DIO	0				
		PWM_B	DO	1				
PERIPHERAL_EN4	Y25	CMMCLK2	DO	2	0	DVDD18	OFF	I
		SCP_VREQ_VAO	DO	3				
		TDM_MCK_2nd	DO	6	1			
PERIPHERAL_EN9	V22	GPIO166	DIO	0	0	DVDD18	OFF	I
		GPIO167	DIO	0				
RFICO_BSI_EN	AE21	RFICO_BSI_EN	DO	1	1	DVDD18	OFF	OL
		SPM_BSI_EN	DO	2				
		GPIO168	DIO	0				
RFICO_BSI_CK	AF21	RFICO_BSI_CK	DO	1	1	DVDD18	OFF	OL
		SPM_BSI_CK	DO	2				
		GPIO169	DIO	0				
		PWM_C	DO	1				
PERIPHERAL_EN5	AD25	CMMCLK3	DO	2	0	DVDD18	OFF	
PENIPHENAL_ENS	AD25	CMVREF1	DO	3	1	0,000,10	OFF	'
		AGPS_SYNC	DO	5				
		TDM_BCK_2nd	DO	6	1			

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO170	DIO	0				
		I2S1_BCK	DO	1				
I2S1_BCK	AG23	I2S3_BCK	DO	2	0	DVDD18	OFF	1
1231_BCK	AGZS	SCL7	DIO	3		DVDD18	OH	'
		I2S5_BCK	DO	4				
		TDM_LRCK_2nd	DO	6				
		GPIO171	DIO	0				
		I2S1_LRCK	DO	1				
		I2S3_LRCK	DO	2				
I2S1_LRCK	AD21	SDA7	DIO	3	0	DVDD18	OFF	1
		I2S5_LRCK	DO	4				
		URXD1	DI	5				
		TDM_DATA0_2nd	DO	6				
		GPIO172	DIO	0				
		I2S1_DO	DO	1				
		I2S3_DO	DO	2				
12S1_DO	AG21	SCL8	DIO	3	0	DVDD18	OFF	1
		I2S5_DO	DO	4				
		UTXD1	DO	5				
		TDM_DATA1_2nd	DO	6				
		GPIO173	DIO	0				
		I2S1_MCK	DO	1				
		I2S3_MCK	DO	2				
I2S1_MCK	AD20	SDA8	DIO	3	0	DVDD18	OFF	1
	AD20	I2S5_MCK	DO	4				
		UCTS0	DI	5				
		TDM_DATA2_2nd	DO	6				

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
		GPIO174	DIO	0				
		I2S2_DI	DI	1				
12S2_DI	AG19	I2SO_DI	DI	2	0	DVDD18	OFF	1
1232_D1	AG19	I2S2_DI2	DI	4		DVDD18	OFF	'
		URTS0	DO	5				
		TDM_DATA3_2nd	DO	6				
PERIPHERAL_EN12	AD22	GPIO175	DIO	0	0	DVDD18	OFF	1
PERIPHERAL_EN13	AD19	GPIO176	DIO	0	0	DVDD18	OFF	I
PERIPHERAL_EN14	AA7	GPI0177	DIO	0	0	DVDD18	OFF	I
PERIPHERAL_EN10	Y7	GPIO178	DIO	0	0	DVDD18	OFF	I
PERIPHERAL_EN11	Y6	GPIO179	DIO	0	0	DVDD18	OFF	I
EMI0_DQ0	E5	EMI0_DQ0	DIO			AVDDQ_EMI		
EMI0_DQ1	D5	EMI0_DQ1	DIO			AVDDQ_EMI		
EMI0_DQ2	E6	EMI0_DQ2	DIO			AVDDQ_EMI		
EMI0_DQ3	D6	EMI0_DQ3	DIO			AVDDQ_EMI		
EMI0_DQ4	В3	EMI0_DQ4	DIO			AVDDQ_EMI		
EMI0_DQ5	C5	EMI0_DQ5	DIO			AVDDQ_EMI		
EMI0_DQ6	A5	EMI0_DQ6	DIO			AVDDQ_EMI		
EMI0_DQ7	A3	EMI0_DQ7	DIO			AVDDQ_EMI		
EMI0_DQ8	B11	EMI0_DQ8	DIO			AVDDQ_EMI		
EMI0_DQ9	E11	EMI0_DQ9	DIO			AVDDQ_EMI		
EMI0_DQ10	B10	EMI0_DQ10	DIO			AVDDQ_EMI		
EMI0_DQ11	A9	EMI0_DQ11	DIO			AVDDQ_EMI		
EMI0_DQ12	A11	EMI0_DQ12	DIO			AVDDQ_EMI		
EMI0_DQ13	D9	EMI0_DQ13	DIO			AVDDQ_EMI		
EMI0_DQ14	C9	EMI0_DQ14	DIO			AVDDQ_EMI		
EMI0_DQ15	D11	EMI0_DQ15	DIO			AVDDQ_EMI		
EMI0_DQS0_C	C4	EMI0_DQS0_C	DIO			AVDDQ_EMI		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
EMI0_DQS0_T	D4	EMI0_DQS0_T	DIO			AVDDQ_EMI		
EMI0_DQS1_C	E12	EMI0_DQS1_C	DIO			AVDDQ_EMI		
EMI0_DQS1_T	F12	EMI0_DQS1_T	DIO			AVDDQ_EMI		
EMI0_CA0	E9	EMI0_CA0	DIO			AVDDQ_EMI		
EMI0_CA1	C7	EMIO_CA1	DIO			AVDDQ_EMI		
EMI0_CA2	B5	EMI0_CA2	DIO			AVDDQ_EMI		
EMI0_CA3	В6	EMIO_CA3	DIO			AVDDQ_EMI		
EMI0_CA4	В7	EMIO_CA4	DIO			AVDDQ_EMI		
EMIO_CA5	E7	EMIO_CA5	DIO			AVDDQ_EMI		
EMI0_CS0	D8	EMI0_CS0	DIO			AVDDQ_EMI		
EMI0_CS1	A7	EMI0_CS1	DIO			AVDDQ_EMI		
EMI0_DMI0	B4	EMI0_DMI0	DIO			AVDDQ_EMI		
EMI0_DMI1	C8	EMI0_DMI1	DIO			AVDDQ_EMI		
EMI0_CKE0	E8	EMIO_CKE0	DIO			AVDDQ_EMI		
EMIO_CKE1	D7	EMIO_CKE1	DIO			AVDDQ_EMI		
EMI0_CK_C	E10	EMIO_CK_C	DIO			AVDDQ_EMI		
EMI0_CK_T	D10	EMIO_CK_T	DIO			AVDDQ_EMI		
EMI1_DQ0	F20	EMI1_DQ0	DIO			AVDDQ_EMI		
EMI1_DQ1	E20	EMI1_DQ1	DIO			AVDDQ_EMI		
EMI1_DQ2	D20	EMI1_DQ2	DIO			AVDDQ_EMI		
EMI1_DQ3	E19	EMI1_DQ3	DIO			AVDDQ_EMI		
EMI1_DQ4	C20	EMI1_DQ4	DIO			AVDDQ_EMI		
EMI1_DQ5	B19	EMI1_DQ5	DIO			AVDDQ_EMI		
EMI1_DQ6	A19	EMI1_DQ6	DIO			AVDDQ_EMI		
EMI1_DQ7	C21	EMI1_DQ7	DIO			AVDDQ_EMI		
EMI1_DQ8	C13	EMI1_DQ8	DIO			AVDDQ_EMI		
EMI1_DQ9	C14	EMI1_DQ9	DIO			AVDDQ_EMI		
EMI1_DQ10	A13	EMI1_DQ10	DIO			AVDDQ_EMI		
EMI1_DQ11	D15	EMI1_DQ11	DIO			AVDDQ_EMI		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
EMI1_DQ12	C12	EMI1_DQ12	DIO			AVDDQ_EMI		
EMI1_DQ13	A15	EMI1_DQ13	DIO			AVDDQ_EMI		
EMI1_DQ14	B14	EMI1_DQ14	DIO			AVDDQ_EMI		
EMI1_DQ15	D14	EMI1_DQ15	DIO			AVDDQ_EMI		
EMI1_DQS0_C	E21	EMI1_DQS0_C	DIO			AVDDQ_EMI		
EMI1_DQS0_T	F21	EMI1_DQS0_T	DIO			AVDDQ_EMI		
EMI1_DQS1_C	F13	EMI1_DQS1_C	DIO			AVDDQ_EMI		
EMI1_DQS1_T	E13	EMI1_DQS1_T	DIO			AVDDQ_EMI		
EMI1_CA0	D17	EMI1_CA0	DIO			AVDDQ_EMI		
EMI1_CA1	C15	EMI1_CA1	DIO			AVDDQ_EMI		
EMI1_CA2	B17	EMI1_CA2	DIO			AVDDQ_EMI		
EMI1_CA3	A17	EMI1_CA3	DIO			AVDDQ_EMI		
EMI1_CA4	C17	EMI1_CA4	DIO			AVDDQ_EMI		
EMI1_CA5	D19	EMI1_CA5	DIO			AVDDQ_EMI		
EMI1_CS0	E17	EMI1_CS0	DIO			AVDDQ_EMI		
EMI1_CS1	C16	EMI1_CS1	DIO			AVDDQ_EMI		
EMI1_DMI0	B18	EMI1_DMI0	DIO			AVDDQ_EMI		
EMI1_DMI1	B15	EMI1_DMI1	DIO			AVDDQ_EMI		
EMI1_CKE0	D18	EMI1_CKE0	DIO			AVDD2_EMI		
EMI1_CKE1	E18	EMI1_CKE1	DIO			AVDD2_EMI		
EMI1_CK_C	F16	EMI1_CK_C	DIO			AVDDQ_EMI		
EMI1_CK_T	E16	EMI1_CK_T	DIO			AVDDQ_EMI		
EMI_EXTR	A2	EMI_EXTR	DIO			AVDD2_EMI		
EMI_RESET_N	D22	EMI_RESET_N	DIO			AVDD2_EMI		
EMI_TP	J15	EMI_TP	DIO			AVDD2_EMI		
EMI_TN	J14	EMI_TN	DIO			AVDD18_DDR		
REFP	AJ18	REFP	AIO			AVDD18_MD		
AUXIN0	AF19	AUXIN0	AIO			AVDD18_MD		
AUXIN1	AF18	AUXIN1	AIO			AVDD18_MD		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
AUXIN2	AE19	AUXIN2	AIO			AVDD18_MD		
AUXIN3	AE18	AUXIN3	AIO			AVDD18_MD		
AUXIN4	AG18	AUXIN4	AIO			AVDD18_MD		
DET_IN0	AJ12	DET_IN0	AIO			AVDD18_MD		
DET_IP0	AJ13	DET_IP0	AIO			AVDD18_MD		
DET_QP0	AH14	DET_QP0	AIO			AVDD18_MD		
DET_QN0	AH13	DET_QN0	AIO			AVDD18_MD		
DET_IN1	AH11	DET_IN1	AIO			AVDD18_MD		
DET_IP1	AH12	DET_IP1	AIO			AVDD18_MD		
DET_QP1	AH10	DET_QP1	AIO			AVDD18_MD		
DET_QN1	AJ10	DET_QN1	AIO			AVDD18_MD		
TX_BB_QP0	AF14	TX_BB_QP0	AIO			AVDD18_MD		
TX_BB_QN0	AG14	TX_BB_QN0	AIO			AVDD18_MD		
TX_BB_IN0	AG13	TX_BB_IN0	AIO			AVDD18_MD		
TX_BB_IP0	AF13	TX_BB_IP0	AIO			AVDD18_MD		
TX_BB_QP1	AF12	TX_BB_QP1	AIO			AVDD18_MD		
TX_BB_QN1	AG12	TX_BB_QN1	AIO			AVDD18_MD		
TX_BB_IN1	AF11	TX_BB_IN1	AIO			AVDD18_MD		
TX_BB_IP1	AG11	TX_BB_IP1	AIO			AVDD18_MD		
MAIN_X26M_IN	AE17	MAIN_X26M_IN	AIO			AVDD18_MD		
PRX_BB_Q0	AJ15	PRX_BB_Q0	AIO			AVDD18_MD		
PRX_BB_I0	AJ16	PRX_BB_I0	AIO			AVDD18_MD		
DRX_BB_Q0	AH17	DRX_BB_Q0	AIO			AVDD18_MD		
DRX_BB_I0	AH16	DRX_BB_I0	AIO			AVDD18_MD		
PRX_BB_Q1	AG16	PRX_BB_Q1	AIO			AVDD18_MD		
PRX_BB_I1	AF16	PRX_BB_I1	AIO			AVDD18_MD		
DRX_BB_Q1	AF17	DRX_BB_Q1	AIO			AVDD18_MD		
DRX_BB_I1	AG17	DRX_BB_I1	AIO			AVDD18_MD		
RFIC_ETO_N	AE12	RFIC_ETO_N	AIO			AVDD18_MD		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
RFIC_ETO_P	AE11	RFIC_ETO_P	AIO			AVDD18_MD		
APC	AE13	APC	AIO			AVDD18_MD		
DSIO_CKN	U24	DSIO_CKN	AIO			AVDD12_DSI		
DSIO_CKP	U25	DSIO_CKP	AIO			AVDD12_DSI		
DSIO_DON	R27	DSIO_DON	AIO			AVDD12_DSI		
DSIO_DOP	T27	DSIO_DOP	AIO			AVDD12_DSI		
DSIO_D1N	T26	DSIO_D1N	AIO			AVDD12_DSI		
DSIO_D1P	U26	DSIO_D1P	AIO			AVDD12_DSI		
DSIO_D2N	V24	DSIO_D2N	AIO			AVDD12_DSI		
DSIO_D2P	V25	DSIO_D2P	AIO			AVDD12_DSI		
DSIO_D3N	T24	DSIO_D3N	AIO			AVDD12_DSI		
DSI0_D3P	T25	DSIO_D3P	AIO			AVDD12_DSI		
CSIOA_LOP_TOA	P4	CSIOA_LOP_TOA	AO			AVDD12_CSI		
CSIOA_LON_TOB	P3	CSIOA_LON_TOB	AIO			AVDD12_CSI		
CSI0A_L1P_T0C	R2	CSIOA_L1P_TOC	AIO			AVDD12_CSI		
CSIOA_L1N_T1A	R1	CSIOA_L1N_T1A	AIO			AVDD12_CSI		
CSIOA_L2P_T1B	P5	CSIOA_L2P_T1B	AIO			AVDD12_CSI		
CSI0A_L2N_T1C	N5	CSIOA_L2N_T1C	AIO			AVDD12_CSI		
CSIOB_LOP_TOA	R3	CSIOB_LOP_TOA	AIO			AVDD12_CSI		
CSIOB_LON_TOB	R4	CSIOB_LON_TOB	AIO			AVDD12_CSI		
CSIOB_L1P_TOC	T2	CSIOB_L1P_TOC	AIO			AVDD12_CSI		
CSIOB_L1N_T1A	T1	CSIOB_L1N_T1A	AIO			AVDD12_CSI		
CSIOB_L2P_T1B	Т3	CSIOB_L2P_T1B	AIO			AVDD12_CSI		
CSIOB_L2N_T1C	T4	CSI0B_L2N_T1C	AIO			AVDD12_CSI		
CSI1A_LOP	M2	CSI1A_LOP	AIO			AVDD12_CSI		
CSI1A_LON	M1	CSI1A_LON	AIO			AVDD12_CSI		
CSI1A_L1P	M3	CSI1A_L1P	AIO			AVDD12_CSI		
CSI1A_L1N	M4	CSI1A_L1N	AIO			AVDD12_CSI		
CSI1A_L2P	N1	CSI1A_L2P	AIO			AVDD12_CSI		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
CSI1A_L2N	N2	CSI1A_L2N	AIO			AVDD12_CSI		
CSI1B_L0P	N3	CSI1B_LOP	AIO			AVDD12_CSI		
CSI1B_LON	N4	CSI1B_LON	AIO			AVDD12_CSI		
CSI1B_L1P	P2	CSI1B_L1P	AIO			AVDD12_CSI		
CSI1B_L1N	P1	CSI1B_L1N	AIO			AVDD12_CSI		
CSI2A_LOP	U2	CSI2A_LOP	AIO			AVDD12_CSI		
CSI2A_LON	U1	CSI2A_LON	AIO			AVDD12_CSI		
CSI2A_L1P	T5	CSI2A_L1P	AIO			AVDD12_CSI		
CSI2A_L1N	R5	CSI2A_L1N	AIO			AVDD12_CSI		
CSI2A_L2P	U4	CSI2A_L2P	AIO			AVDD12_CSI		
CSI2A_L2N	U3	CSI2A_L2N	AIO			AVDD12_CSI		
CSI2B_L0P	V2	CSI2B_LOP	AIO			AVDD12_CSI		
CSI2B_LON	V1	CSI2B_LON	AIO			AVDD12_CSI		
CSI2B_L1P	V4	CSI2B_L1P	AIO			AVDD12_CSI		
CSI2B_L1N	V3	CSI2B_L1N	AIO			AVDD12_CSI		
SSUSB_RXN	J27	SSUSB_RXN	Al			AVDD18_SSUSB		
SSUSB_RXP	H27	SSUSB_RXP	Al			AVDD18_SSUSB		
SSUSB_TXN	J24	SSUSB_TXN	AO			AVDD18_SSUSB		
SSUSB_TXP	J25	SSUSB_TXP	AO			AVDD18_SSUSB		
USB_DM	F26	USB_DM	AIO			AVDD33_USB		
USB_DP	G26	USB_DP	AIO			AVDD33_USB		
CHD_DM	G24	CHD_DM	AIO			AVDD33_USB		
CHD_DP	G25	CHD_DP	AIO			AVDD33_USB		
XIN_WBG	Н8	XIN_WBG	AIO			AVDD18_WBG		
WF_IN	C1	WF_IN	AIO			AVDD18_WBG		
WF_IP	B1	WF_IP	AIO			AVDD18_WBG		
WF_QN	D2	WF_QN	AIO			AVDD18_WBG		
WF_QP	D1	WF_QP	AIO			AVDD18_WBG		
BT_IN	F1	BT_IN	AIO			AVDD18_WBG		

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
BT_IP	F2	BT_IP	AIO			AVDD18_WBG		
BT_QN	G2	BT_QN	AIO			AVDD18_WBG		
BT_QP	G1	BT_QP	AIO			AVDD18_WBG		
GPS_I	J2	GPS_I	AIO			AVDD18_WBG		
GPS_Q	J1	GPS_Q	AIO			AVDD18_WBG		
UFS_CKIN_26M	F23	UFS_CKIN_26M	AIO			AVDD18_UFS		
UFS_TX0_P	B24	UFS_TXO_P	AIO			AVDD18_UFS		
UFS_TXO_N	A24	UFS_TXO_N	AIO			AVDD18_UFS		
UFS_RXO_RXP	A22	UFS_RXO_RXP	AIO			AVDD18_UFS		
UFS_RXO_RXN	B22	UFS_RXO_RXN	AIO			AVDD18_UFS		
UFS_RST_N	E22	UFS_RST_N	AIO			AVDD18_UFS		
AVDD04_DSI	V27	AVDD04_DSI	Р					
AVDD09_SSUSB	K27	AVDD09_SSUSB	Р					
AVDD09_UFS	C22	AVDD09_UFS	Р					
AVDD12_CSI	W3	AVDD12_CSI	Р					
AVDD12_DSI	V23	AVDD12_DSI	Р					
AVDD12_MD	AH20	AVDD12_MD	Р					
AVDD12_PLLGP	AA13	AVDD12_PLLGP	Р					
AVDD12_UFS	C23	AVDD12_UFS	Р					
AVDD12_USB	H22	AVDD12_USB	Р					
AVDD12_WBG	C2	AVDD12_WBG	Р					
AVDD18_AP	AH21	AVDD18_AP	Р					
AVDD18_CPU	AC7	AVDD18_CPU	Р					
AVDD18_DDR	G9	AVDD18_DDR	Р					
AVDD18_MD	AH19	AVDD18_MD	Р					
AVDD18_PLLGP	AB13	AVDD18_PLLGP	Р					
AVDD18_SSUSB	H23	AVDD18_SSUSB	Р					
AVDD18_UFS	D23	AVDD18_UFS	Р					
AVDD18_USB	F27	AVDD04_DSI	Р					

Ball Name	Ball Location	Signal Name	Signal Type	Aux. Function	Reset Function	Power Domain	PU/PD Reset	IO Reset
AVDD18_WBG	B2	AVDD18_WBG	Р					
AVDD2_EMI	G18	AVDD2_EMI	Р					
AVDD33_USB	F25	AVDD33_USB	Р					
AVDDQ_EMI	G14	AVDDQ_EMI	Р					
DVDD_CORE	H21	DVDD_CORE	Р					
DVDD_GPU	J19	DVDD_GPU	Р					
DVDD_MODEM	AA15	DVDD_MODEM	Р					
DVDD_PROC_B	AA10	DVDD_PROC_B	Р					
DVDD_PROC_L	U7	DVDD_PROC_L	Р					
DVDD_SRAM_CORE	J12	DVDD_SRAM_CORE	Р					
DVDD_SRAM_GPU	T18	DVDD_SRAM_GPU	Р					
DVDD_SRAM_PROC_B	AC13	DVDD_SRAM_PROC_B	Р					
DVDD_SRAM_PROC_L	W7	DVDD_SRAM_PROC_L	Р					
DVDD18_IOLT	M27	DVDD18_IOLT	Р					
DVDD18_IOLM	W27	DVDD18_IOLM	Р					
DVDD18_IOBL	AJ21	DVDD18_IOBL	Р					
DVDD18_IORB	AA1	DVDD18_IORB	Р					
DVDD18_IORT	L2	DVDD18_IORT	Р					
DVDD18_MSDC0	E27	DVDD18_MSDC0	Р					
DVDD18_MSDC1	AA27	DVDD18_MSDC1	Р					
DVDD28_MSDC1	AB27	DVDD28_MSDC1	Р					
DVDD18_SIM	AG27	DVDD18_SIM	Р					
DVDD28_SIM1	AF25	DVDD28_SIM1	Р					
DVDD28_SIM2	AE27	DVDD28_SIM2	Р					
CDM3P5A	AF7	CDM3P5A	G					
CDM5P5A	AE7	CDM5P5A	G					
DVSS	A21	DVSS	G					
SYSRSTB	K23	SYSRSTB	DI					
TESTMODE	L24	TESTMODE	DI					

4.3 Power Rails

Table 4-6 lists the device power rails.

Table 4-6 Power Rails

Ball Name	Ball Location	Туре	Description
AVDD04_DSI	V27	Р	Analog power for DSI
AVDD09_SSUSB	K27	Р	Analog power for SSUSB
AVDD09_UFS ⁽¹⁾	C22	Р	Analog power for UFS
AVDD12_CSI	W3	Р	Analog power for CSI
AVDD12_DSI	V23	Р	Analog power for DSI
AVDD12_MD	AH20	Р	Analog power for MODEM
AVDD12_PLLGP	AA13	Р	Analog power for PLL
AVDD12_UFS	C23	Р	Analog power for UFS
AVDD12_USB	H22	Р	Analog power for USB
AVDD12_WBG	C2	Р	Analog power for WBG (Wi-Fi, BT, GPS)
AVDD18_AP	AH21	Р	Analog power input 1.8 V
AVDD18_CPU	AC7	Р	Analog power input 1.8 V for A73/A53
AVDD18_DDR	G9	Р	Analog power input 1.8 V for DRAM
AVDD18_MD	AH19	Р	Analog power input 1.8 V for MODEM
AVDD18_PLLGP	AB13	Р	Analog power input 1.8 V for PLL
AVDD18_SSUSB	H23	Р	Analog power input 1.8 V for SSUSB
AVDD18_UFS	D23	Р	Analog power 1.8 V for UFS
AVDD18_USB	F27	Р	Analog power 1.8 V for USB
AVDD18_WBG	B2	Р	Analog power 1.8 V for WBG
AVDD2_EMI	G18, H11, H13, H16	Р	DRAM power
AVDD33_USB	F25	Р	Analog power 3.3 V for USB
AVDDO EMI	G14, G15, H10, H12, H17,	Р	DRAM power
AVDDQ_EMI	H19	_	DRAW power
DVDD_VQPS	F24	Р	eFUSE blowing power control
	H21, J11, J16, K12, K16,		
	L11, L15, M12, M16, N11,		
	N15, P7, P12, P16, P21,		
DVDD_CORE	R7, R8, R11, R15, T7, T8,	Р	Digital power input for VPU
DVDD_COME	T12, T16, U15, U19, U21,	'	Digital power impactor vi o
	V16, V20, W15, W19, Y16,		
	Y20,		
	AB7, AB22, AC22, AD7		
DVDD_GPU	J19, J20, L19, M20, N19,	Р	Digital power input for GPU
	P20, R19, T20	-	
DVDD_MODEM	AA15, AA19, AB16, AB20,	Р	Digital power input for LTE
_	AC15, AC19, AD16		·
DVDD_PROC_B	AA10, AB9, AC9, AC10,	Р	Digital power input for A73 core
	AC11, AD9, AD10		
DVDD_PROC_L	U7, U8, U9, U10, W9,	Р	Digital power input for A53 core
	W11	-	
DVDD_SRAM_CORE	J12, T11, V21, Y15, AC14	Р	Digital power input for VPU SRAM

Ball Name	Ball Location	Туре	Description
DVDD_SRAM_GPU	T18	Р	Digital power input for GPU SRAM
DVDD_SRAM_PROC_B	AC13	Р	Digital power input for A73 core SRAM
DVDD_SRAM_PROC_L	W7	Р	Digital power input for A53 core SRAM
DVDD18_IOBL	AJ21	Р	Digital power input for IO (region 3)
DVDD18_IOLM	W27	Р	Digital power input for IO (region 2)
DVDD18_IOLT	M27	Р	Digital power input for IO (region 1)
DVDD18_IORB	AA1	Р	Digital power input for IO (region 4)
DVDD18_IORT	L2	Р	Digital power input for IO (region 5)
DVDD18_MSDC0	E27	Р	Digital power input for MSDC0
DVDD18_MSDC1	AA27	Р	Digital power input for MSDC1
DVDD18_SIM	AG27	Р	Digital power input for SIM1/2
DVDD28_MSDC1	AB27	Р	Digital power input for MSDC1
DVDD28_SIM1	AF25	Р	Digital power input for SIM1
DVDD28_SIM2	AE27	Р	Digital power input for SIM2
CDM3P5A	AF7	G	Analog ground input for MODEM
CDM5P5A	AE7	G	Analog ground input for WBG
DVSS	A21, B9, B13, B21, B23, B25, C3, C6, C10, C11, C18, C19, C24, D3, D12, D16, D21, E2, E3, E4, E14, E15, E26, F3, F4, F5, F9, F10, F11, F17, F18, F19, G3, G4, G5, G6, G21, H2, H24, H25, H26, J3, J8, J10, J13, J17, J23, J26, K10, K14, K18, K24, K25, L1, L9, L13, L17, M5, M10, M14, M18, N9, N13, N17, N21, P10, P14, P18, R9, R13, R17, R26, T10, T14, T21, U5, U13, U17, U23, V5, V8, V9, V10, V12, V14, V18, V26, W1, W12, W13, W17, W21, Y8, Y9, Y10, Y14, Y18, AA12, AA17, AA21, AB8, AB14, AB18, AB21, AC12, AC17, AD8, AE10, AE14, AE15, AG8, AG9, AG15, AH8,	G	Digital ground

^{1.} AVDD09_UFS must be connected to GND when UFS is not in use.

4.4 Reserved and Unused Pin Handling Recommendations

Table 4-7 provides specific ball handling recommendations for the case when the pins are not used.

UNCLASSIFIED

Table 4-7 Reserved and Unused Pin Handling Recommendations

Ball Name	Requirement	Ball Location
TESTMODE	Test mode (tie to GND)	L24
NC_A1, NC_A27, NC_AJ1, NC_AJ27	NC, leave unconnected	A1, A27, AJ1,
		AJ27
AUD_CLK_MOSI, AUD_SYNC_MOSI,		M24, L26, J22,
AUD_DAT_MOSI0, AUD_DAT_MOSI1,	Those pins should be connected to CND when unused	N27, AF19,
AUXINO, AUXIN1, AUXIN2, AUXIN3,	These pins should be connected to GND when unused	AF18, AE19,
AUXIN4		AE18, AG18
TN_PLLGP1, TP_PLLGP1	Reserved, leave unconnected	Y12, Y13

NOTE:

• All other unused signal balls can be left floating.

5 Electrical Characteristics

Stresses above the values listed in Table 5-1 may cause permanent damage to the device. The recommended minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage, and frequencies based on characterization results. Exposure to absolute maximum rating conditions may affect device reliability.

The operating conditions in Table 5-2 must not be exceeded in order to ensure correct operation and reliability of the device. All parameters specified in this document refer to these operating conditions, unless noted otherwise.

5.1 Absolute Maximum Ratings

Table 5-1 represents the absolute maximum ratings of the device power pins.

Table 5-1 Absolute Maximum Ratings

Param	eter	Conditions	Max	Unit
Digital power input for A73 core	DVDD_PROC_B, DVDD_SRAM_PROC	В	1.18	V
Digital power input for A53 core	DVDD_PROC_L, DVDD_SRAM_PROC_	1.18	V	
Digital power input for VPU	DVDD_CORE	0.84	V	
Digital power input for GPU	DVDD_GPU	0.95	V	
	AVDD04_DSI	AVDD04_DSI		
	AVDD09_SSUSB, AVDD09_UFS		0.99	V
	AVDD18_AP, AVDD18_CPU, AVDD18_	_DDR,		
	AVDD18_MD, AVDD18_PLLGP, AVDD	18_SSUSB,	1.98	V
	AVDD18_UFS, AVDD18_USB, AVDD18	3_WBG		
Analog power input	AVDD12_CSI, AVDD12_DSI, AVDD12_MD,			
	AVDD12_PLLGP, AVDD12_UFS, AVDD12_USB,		1.32	V
	AVDD12_WBG			
	AVDD2 EMI	LPDDR4/X	1.17	V
	AVDD2_EIVII	LPDDR3	1.3	V
	AVDD33_USB		3.22	V
	AVDDQ EMI	LPDDR4/X	0.63	V
	AVDDQ_EIVII	LPDDR3	1.3	V
	DVDD18_IOLT, DVDD18_IOLM, DVD0	18_IOBL,	1.98	V
	DVDD18_IORB, DVDD18_IORT		1.90	V
	DVDD18_MSDC0, DVDD18_MSDC1		1.95	V
Digital power input	DVDD28_MSDC1, DVDD28_SIM1, DV	DD28_SIM2	3.3	V
Digital pewer input	DVDD_MODEM		0.79	V
	DVDD_SRAM_CORE		0.95	V
	DVDD_SRAM_GPU		1.05	V
Storage temperature			150	°C

5.1.1 Storage Conditions

Table 5-2 defines specifics for the storage conditions.

Table 5-2 Storage Conditions

Parameter		Min	Max	Unit	
Shelf life in sealed bag	40 °C / 90% RH		24	months	
After bag opened ⁽¹⁾					
Mounted	30 °C / 60% RH		168	h	
Stored			20	% RH	
Baking		<u>.</u>			
Low temperature device containers	40 °C +5 °C/-0 °C and < 5% RH	192		h	
High temperature device containers	125 °C +5 °C/-0 °C	24		h	

^{1.} For devices subjected to infrared reflow, vapor-phase reflow, or equivalent processing.

5.2 Recommended Operating Conditions

Table 5-3 represents the recommended operating conditions of the device power pins.

Table 5-3 Recommended Operating Conditions

Pin Name	Description	Min	Тур	Max	Unit
AVDDO4 DSI	Analog nower for DSI	0.67	0.7	0.74	V
AVDD04_DSI	Analog power for DSI	0.76	0.8	0.84	V
AVDD09_SSUSB	Analog power for SSUSB	0.86	0.9	0.94	V
AVDD09_UFS	Analog power for UFS	0.86	0.9	0.94	V
AVDD12_CSI	Analog power for CSI	1.14	1.2	1.26	V
AVDD12_DSI	Analog power for DSI	1.14	1.2	1.26	V
AVDD12_MD	Analog power for MODEM	1.14	1.2	1.26	V
AVDD12_PLLGP	Analog power for PLLGP	1.14	1.2	1.26	V
AVDD12_UFS	Analog power for UFS	1.14	1.2	1.26	V
AVDD12_USB	Analog power for USB	1.14	1.2	1.26	V
AVDD12_WBG	Analog power for WBG	1.14	1.2	1.26	V
AVDD18_AP	Analog power for AP	1.71	1.8	1.89	V
AVDD18_CPU	Analog power for A73/A53	1.71	1.8	1.89	V
AVDD18_DDR	Analog power for DDR	1.71	1.8	1.89	V
AVDD18_MD	Analog power for MODEM	1.71	1.8	1.89	V
AVDD18_PLLGP	Analog power for PLLGP	1.71	1.8	1.89	V
AVDD18_SSUSB	Analog power for SSUSB	1.71	1.8	1.89	V
AVDD18_UFS	Analog power for UFS	1.71	1.8	1.89	V
AVDD18_USB	Analog power for USB	1.71	1.8	1.89	V
AVDD18_WBG	Analog power for WBG	1.71	1.8	1.89	V
AVDD33_USB	Analog power for USB	2.92	3.07	3.22	V
AVDD12_CSI AVDD12_DSI AVDD12_MD AVDD12_PLLGP AVDD12_UFS AVDD12_USB AVDD12_WBG AVDD18_AP AVDD18_CPU AVDD18_DDR AVDD18_MD AVDD18_PLLGP AVDD18_SSUSB AVDD18_UFS AVDD18_USB AVDD18_USB AVDD18_USB AVDD18_USB AVDD18_USB	Analog power for LPDDR4/X	1.06	1.1	1.17	V
	Analog power for LPDDR3	1.14	1.2	1.3	V
AVDDO EMI	Analog power for LPDDR4/X	0.57	0.6	0.63	V
AVDD18_WBG AVDD33_USB AVDD2_EMI	Analog power for LPDDR3	1.14	1.2	1.3	V

UNCLASSIFIED

Pin Name	Description	Min	Тур	Max	Unit
DVDD18_IOLT	Description.		. 76	max	oc
DVDD18_IOLM					
DVDD18_IOBL	Digital power input for 1.8 V IO	1 62	1.8	1 98	V
	Digital power input for 1.0 V to	1.02	1.0	1.50	·
_	Digital power input for MSDC0	1 7	1 2	1 05	V
_					V
_					V
					V
					V
DVDD28_3IIVI2	Digital power input for Silviz				V
DVDD CORF	Digital power input for VPU (0.6 V is only for				V
DVDD_CORE	IDLE state)				V
	D_GPU Digital power input for GPU				
					V
DVDD_GPU	Digital power input for GPU				V
					V
					V
					V
	Digital power input for A73				V
DVDD_PROC_B					V
					V
					V
					V
					V
DVDD_PROC_L	Digital power input for A53	0.76		0.84	V
DVDD_GPU Digital power input for GPU DVDD_PROC_B Digital power input for A73 DVDD_PROC_L Digital power input for A53 Digital power input for MODEM for IDLE state)		0.9	0.95	1	V
		1.06	1.12	1.18	V
		0.52	0.55	0.58	V
DVDD MODEM	Digital power input for MODEM (0.55 V is only	0.62	0.65	0.68	V
DVDD_GPU Digital power input for GPU DVDD_PROC_B Digital power input for A73 DVDD_PROC_L Digital power input for A53 DVDD_MODEM Digital power input for MODEM (0.55 V is only for IDLE state) DVDD_SRAM_CORE Digital power input for VPU SRAM (0.6 V is only for IDLE state) DVDD_SRAM_GPU Digital power input for GPU DVDD_SRAM_PROC_B Digital power input for A73 SRAM	0.67	0.7	0.74	V	
		ital power input for 1.8 V IO 1.62 1.8 1.98 ital power input for MSDCO ital power input for MSDC1 1.7 1.8 1.95 ital power input for MSDC1 2.7 3 3.3 ital power input for SIM1 2.7 3 3.3 ital power input for SIM2 2.7 3 3.3 ital power input for VPU (0.6 V is only for E state) 0.57 0.6 0.63 0.67 0.7 0.74 0.76 0.8 0.84 0.97 0.70 0.74 0.76 0.8 0.84 0.97 0.70 0.74 0.76 0.8 0.84 0.99 0.95 1 1.06 1.12 1.18	V		
DVDD SRAM CORF	Digital power input for VPU SRAM (0.6 V is only	0.57	0.6	0.63	V
DVDD_SWW_COME	for IDLE state)	0.86	0.9	0.95	V
		0.81	0.85	0.89	V
DVDD_SRAM_GPU	Digital power input for GPU	0.86	0.9	0.95	V
		0.95	1	1.05	V
		0.86	0.9	0.95	V
DVDD_SRAM_PROC_B	Digital power input for A73 SRAM	1	1.05	1.1	V
		1.06	1.12	1.18	V
		0.86	0.9	0.95	V
DVDD_SRAM_PROC_L	Digital power input for A53 SRAM	1	1.05	1.1	V
		1.06	1.12	1.18	V
Operating junction tempera	iture	-20		125	°C

5.3 DC Electrical Specifications

This section provides DC electrical characteristics per buffer type.

5.3.1 RTCIO DC Specifications

Table 5-4 shows RTCIO DC buffer electrical characteristics.

Table 5-4 RTCIO DC Specifications

Parameters		Min	Тур	Max	Unit			
Operating voltage = 1.8 V								
INPUT								
V _{IH}	Input logic low voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V			
V _{IL}	Input logic high voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V			
F _{RTC}	Input clock frequency		32		kHz			
DC _{RTC}	Input signal duty cycle	45	50	55	%			
OUTPUT	OUTPUT							
V _{OH}	DC output logic low voltage	0.75 × VDDIO ⁽¹⁾			V			
V _{OL}	DC output logic high voltage			0.25 × VDDIO ⁽¹⁾	V			

^{1.} VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IOLT). For more information on the power supply name on the corresponding ball, see Table 4-5 Pin Characteristics, *Power Domain* column.

5.3.2 SPII2SIO DC Specifications

Table 5-5 shows SPII2SIO DC buffer electrical characteristics.

Table 5-5 SPII2SIO DC Specifications

Parameters		Min	Тур	Max	Unit
Operatin	g voltage = 1.8 V				
INPUT					
V _{IH}	Input logic low voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V
V _{IL}	Input logic high voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V
OUTPUT					
V _{OH}	DC output logic low voltage	0.75 × VDDIO ⁽¹⁾			V
V _{OL}	DC Output logic high voltage			0.25 × VDDIO ⁽¹⁾	V

^{1.} VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IORB). For more information on the power supply name on the corresponding ball, see Table 4-5 Pin Characteristics, *Power Domain* column.

5.3.3 I2C012IO DC Specifications

Table 5-6 shows I2C012IO DC buffer electrical characteristics.

Table 5-6 I2C012IO DC Specifications

	Parameters	Min	Тур	Max	Unit	
Operating voltage = 1.8 V						
INPUT						
V _{IH}	Input logic low voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ +	V	
				0.3		
V _{IL}	Input logic high voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V	
OUTPU	т					
V _{OL}	DC output logic high voltage			0.2 × VDDIO ⁽¹⁾	V	

1. VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IORB). For more information on the power supply name on the corresponding ball, see Table 4-5 Pin Characteristics, *Power Domain* column.

5.3.4 I2C3IO DC Specifications

Table 5-7 shows I2C3IO DC buffer specifications.

Table 5-7 I2C3IO DC Specifications

	Parameters	Min	Тур	Max	Unit			
Operating voltage = 1.8 V								
INPUT								
V _{IH}	Input logic low voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ +	V			
				0.3				
V _{IL}	Input logic high voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V			
OUTPU'	OUTPUT							
V _{OL}	DC output logic high voltage			0.2 × VDDIO ⁽¹⁾	V			

^{1.} VDDIO in this table stands for corresponding power supply (i.e. DVDD18_IOLB). For more information on the power supply name on the corresponding ball, see Table 4-5 Pin Characteristics, *Power Domain* column.

5.3.5 MSDC0IO DC Specifications

Table 5-8 shows MSDC0IO DC buffer specifications.

Table 5-8 MSDC0IO DC Specifications

	Parameters	Min	Тур	Max	Unit		
Operating voltage = 1.8 V							
INPUT							
V _{IH}	Input logic low voltage	0.65 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V		
V _{IL}	Input logic high voltage	-0.3		0.35 × VDDIO ⁽¹⁾	V		
OUTPUT							
V _{OH}	DC output logic low voltage	1.4			V		
V _{OL}	DC output logic high voltage			0.45	V		

^{1.} VDDIO in this table stands for corresponding power supply (i.e. DVDD18_MSDC0). For more information on the power supply name on the corresponding ball, see Table 4-5 Pin Characteristics, *Power Domain* column.

5.3.6 MSDC1IO DC Specifications

Table 5-9 shows MSDC1IO DC buffer specifications.

Table 5-9 MSDC1IO DC Specifications (2.8 V/3.3 V)

	Parameters	Min	Тур	Max	Unit
Operatir	g voltage = 2.8 V/3.3 V				
INPUT					
V _{IH}	Input logic low voltage	0.625 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V
V _{IL}	Input logic high voltage	-0.3		0.25 × VDDIO ⁽¹⁾	V
OUTPUT					
V _{OH}	DC output logic low voltage	0.75 × VDDIO ⁽¹⁾		VDDIO ⁽¹⁾ + 0.3	V
V _{OL}	DC output logic high voltage	-0.3		0.125 × VDDIO ⁽¹⁾	V

^{1.} VDDIO in this table stands for corresponding power supply (i.e. DVDD28_MSDC1). For more information on the power supply name on the corresponding ball, see Table 4-5 Pin Characteristics, *Power Domain* column.

Table 5-10 MSDC1IO DC Specifications (1.8 V)

	Parameters	Min	Тур	Max	Unit
Operati	ng voltage = 1.8 V				
INPUT					
V _{IH}	Input logic low voltage	1.27		VDDIO ⁽¹⁾ +	V
				0.3	
V _{IL}	Input logic high voltage	-0.3		0.58	V
OUTPUT	T	·			
V _{OH}	DC output logic low voltage	1.4		VDDIO ⁽¹⁾ +	V
				0.3	
V _{OL}	DC output logic high voltage	-0.3		0.45	V

^{1.} VDDIO in this table stands for corresponding power supply (i.e. DVDD18_MSDC1). For more information on the power supply name on the corresponding ball, see Table 4-5 Pin Characteristics, *Power Domain* column.

5.3.7 DDRIO DC Specifications

The EMI LPDDR3 electrical characteristics are compliant with JEDEC Standard—JESD209-3C.

The EMI LPDDR4 electrical characteristics are compliant with JEDEC Standard—JESD209-4B.

5.4 Power Management

5.4.1 Power Sequences

Refer to MT6358 PMIC datasheet for detailed timing sequence.

5.5 Reset

Top Reset Generation Unit (TOPRGU) generates reset signals and distributes them to each system. A WDT is also included in this module.

The TOPRGU supports the following features:

- Hardware reset signals for the whole chip
- Software controllable reset
- WDT
- Reset output signals for companion chips

Figure 5-1 shows the block diagram of TOPRGU in the MT8385.

Figure 5-1 Reset Block Diagram

5.5.1 Reset Signal Descriptions

Table 5-11 shows Reset signal description.

Table 5-11 Reset Signal Descriptions

Signal Name	Туре	Description	Ball Location
SYSRSTB	DI	System reset input	K23
WATCHDOG	DO	Watchdog reset output	M23

5.5.2 Reset Timing Characteristics

Table 5-12 presents timing characteristics for Resets in the device.

Table 5-12 Reset Timing Characteristics

Min	Parameter	
RST01	t _w	Pulse width, RESET
RST02	t _h	Hold time, RESET after all supplies valid

6 Clock Characteristics

The device has four external input clocks— low frequency (RTC32K_CK), high frequency (MAIN_X26M_IN), wireless (XIN_WBG), and UFS (UFS_CKIN_26M).

Figure 6-1 shows the external clock sources and clock outputs.

Figure 6-1 Device Clock Diagram

6.1 Maximum Performance Ratings

Table 6-1 shows the maximum core and peripheral performance limitations and correlations.

Table 6-1 Maximum Performance Ratings

Module		Max	Unit
Quad-core Arm Cortex-A73	A73	2000	MHz
Quad-core Arm Cortex-A53	A53	2000	MHz

Module		Max	Unit		
Graphics Accelerator Mali G-72 MP3	GPU	800	MHz		
System Companion Processor	SCP	416	MHz		
Vision Processing Unit VP6 DSP	VPU	525	MHz		
Estamal Manager Interfere	LPDDR3	1866	MHz		
External Memory Interface	LPDDR4/X	3733	MHz		
Manager Cond Controller	еММС	200	MHz		
Memory Card Controller	SD Card/SDIO	200	MHz		
Universal Flash Storage	UFS	5830.4	Mbps		
Display Parallel Interface	DPI	148.5	MHz		
Display Serial Interface	DSI	1.5	Gbps/Lane		
Image Signal Processor	ISP	32	MPix@30fps		
6 6 111 1	CSI D-PHY	2.8	Gbps/Lane		
Camera Serial Interface	CSI C-PHY	2.5	Gbps/Lane		
Video Encoder	VENC	1920 × 1080	Pix@30fps		
Video Decoder	VDEC	1920 × 1080	Pix@30fps		
	12S master mode (sampling frequency)	192	kHz		
Inter-IC Sound	12S slave mode (sampling frequency)	48	kHz		
Pulse Code Modulation	PCM (sampling frequency)	48	kHz		
Pulse Density Modulation	PDM (clock)	3.25	MHz		
Time Division Multiplexed Interface	TDM (TX sampling frequency)	192	kHz		
Inter-Integrated Circuit	I2C (HS mode)	3.4	Mbps		
Universal Asynchronous Receiver/Transmitter	UART	961,200	bps		
Serial Peripheral Interface	SPI	54.945	MHz		
	SSUSB SuperSpeed	5	Gbps		
	SSUSB High-Speed	480	Mbps		
SuperSpeed Universal Serial Bus	SSUSB Full-Speed	12	Mbps		
	SSUSB Low-Speed	1.5	Mbps		
Pulse Width Modulation	PWM	13	MHz		
Auxiliary ADC	AUXADC (clock rate)	3.25	MHz		

6.2 PLL Specifications

Table 6-2 shows ARMPLL_L specifications.

Table 6-2 ARMPLL_L Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		2000		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			60	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-3 shows ARMPLL_LL specifications.

Table 6-3 ARMPLL_LL Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		800		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			60	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-4 shows MAINPLL specifications.

Table 6-4 MAINPLL Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		1092		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			30	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-5 shows MFGPLL specifications.

Table 6-5 MFGPLL Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		520		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			60	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-6 shows MMPLL specifications.

Table 6-6 MMPLL Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		420		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			60	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-7 shows UNIVPLL specifications.

Table 6-7 UNIVPLL Specifications

Parameter		Mode	Min	Тур	Max	Unit
F _{IN}	Input clock frequency	·		26		MHz
	Outrout alsolution successi	PLL		2496		MHz
F _{OUT}	Output clock frequency	USB		192		MHz
t _{SET}	Settling time	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle		47	50	53	%
	Output alack iittar (pariod iittar)	1248 MHz			30	ps
t _{J(CLK)}	Output clock jitter (period jitter)	192 MHz			60	ps
DVDD	Digital power supply		0.54	0.8	0.88	V
AVDD18	Analog power supply	Analog power supply		1.8	1.89	V
AVDD12	Analog power supply		1.14	1.2	1.26	V

Table 6-8 shows MSDCPLL specifications.

Table 6-8 MSDCPLL Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		416		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			60	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-9 shows APLL1 specifications.

Table 6-9 APLL1 Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		180.6336		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			60	ps
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-10 shows APLL2 specifications.

Table 6-10 APLL2 Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		196.608		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
t _{J(CLK)}	Output clock jitter (period jitter)			60	ps

Parameter		Min	Тур	Max	Unit
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-11 shows CCIPLL specifications.

Table 6-11 CCIPLL Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		800		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

Table 6-12 shows TVDPLL specifications.

Table 6-12 TVDPLL Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency		26		MHz
F _{OUT}	Output clock frequency		594		MHz
t _{SET}	Settling time		20		μs
F _{OUT(D)}	Output clock duty cycle	47	50	53	%
DVDD	Digital power supply	0.54	0.8	0.88	V
AVDD18	Analog power supply	1.71	1.8	1.89	V
AVDD12	Analog power supply	1.14	1.2	1.26	V

6.3 Clock Squarer

For digital circuits to work well, most VCXO have a sinusoidal waveform output clock with too small amplitude (about several hundred mV). The clock squarer is designed to convert such a small signal to a rail-to-rail clock signal with excellent duty-cycle.

Table 6-13 shows the specifications of the clock squarer.

Table 6-13 Clock Squarer Specifications

Parameter		Min	Тур	Max	Unit
F _{IN}	Input clock frequency	13	26		MHz
V _{IN}	Input signal amplitude	400	800	1200	mVpp
	Maximum Positive Overshoot			1.32	V
	Minimum Negative Overshoot	-0.1			V
AVDD18	Analog power supply	1.7	1.8	1.9	V
Т	Operating temperature	-20		80	°C

6.4 Clock Signal Descriptions

Table 6-14 presents clock signal descriptions.

Table 6-14 Clock Signal Descriptions

Signal Name	Туре	Description	Ball Location
MAIN_X26M_IN	AIO	26 MHz clock input	AE17
UFS_CKIN_26M	AIO	26 MHz clock input for UFS	F23
RTC32K_CK	DI	RTC 32 kHz clock input	K26
XIN_WBG	AIO	WBG crystal clock input	H8
SRCLKENA0	DO	Output signal; control of PMIC 26 MHz / Buck / LDO	R23
		Normal mode or sleep mode: High: Normal mode Low: Sleep mode or low power mode	
SRCLKENA1	DO	Output signal; control of PMIC 26 MHz / Buck / LDO on or off	R24
SRCLKENAI0	DI	SRCLKENA0 invert	AB5, AA23, W5, L4, T23
SRCLKENAI1	DI	SRCLKENA1 invert	N26, AE3, L3, R22

7 Package Information

7.1 Thermal Specifications

7.1.1 Thermal Operating Specifications

Table 7-1 presents the thermal resistance characteristics and maximum operating temperatures of the device.

Table 7-1 Thermal Operating Specifications

Parameter		Value	Unit
θ_{JA}	Package thermal resistances in nature convection	37.65	°C/Watt

7.2 Top Marking

Figure 7-1 shows the device top marking definition.

Figure 7-1 Device Top Marking

Table 7-2 presents the printed device reference and decoding.

Table 7-2 Printed Device Reference and Decoding

P	arameter	Value	Description
NNNNNN	Part number	MT8385V	Wireless connected multimedia system and IoT
INININININI	Part number	IVITOSOSV	platform
YYWW	Date code		2-digits year and week code
ZAM\$-H	Internal control code		For internal use only
XXXXXXX-A	Lot number		For internal use only
0	Pin one designator		Pin one location

7.3 Mechanical Drawing

The following figure shows printed device reference diagram (VFBGA 11.0 mm × 11.8 mm, 599-ball, 0.4 mm pitch package).

			Comm	on Dime	nsions
Item		Symbol	MIN.	NOM.	MAX.
Package Type			М	FC VFBG	SA
Body Size	X Y	D E	10.9 11.7	11.0 11.8	11.1 11.9
	X	eD	11.7	0.40	11.5
Ball Pitch	Y	еE	0.40		
Mold Thickness		А3	0.45 Ref.		
Substrate Thickness		A2	C).141 Re	f.
Substrate+Mold Thickness		A4	0.541	0.591	0.641
Total Thickness		А	-	-	0.90
Ball Diameter				0.25	
Ball Stand Off		A1	0.14	0.18	0.22
Ball Width		b	0.22	0.27	0.32
Package Edge Tolerance		aaa		0.05	
Mold Flatness		ccc		0.10	
Coplanarity		ddd		0.08	
Ball Offset (Package)		eee		0.15	
Ball Offset (Ball)		fff		0.05	
Ball Count		n		599	
Edge Ball Center to Center	X	D1		10.40	
Lage Dan Center to Center	Y	E1		11.20	
Edge Ball Center to Package Edge	X	gD		0.30	
3	Y	gE		0.30	

TITLE	PACKAGE OUTLINE		МЕПИТ	=V
MFC	VFBGA 599L 11.0 X 11.8 X	0.9mm	MEDIAN	
	DWG. NO.	REV.	SHEET	UNIT

8 Legal and Support Information

8.1 Related Documents and Products

Documents:

- MT8385 Audio Design Notice—Application note for Audio connectivity including system level block diagram, bias and uplink path, schematic and layout recommendations, unused pin handling, and pop noise solutions.
- MT8385 HW Design Notice—Application note including schematic examples for peripheral interfaces such as I2C, MSDC, GPIO, UFS, LPDDR3, LPDDR4, Display, Camera, USB, ADC, PWMs, SPI, Audio, and PCB design implementation recommendations.
- MT8385 PCB Design Guidelines—Application note including footprint recommendations, PCB stack-up, placement notes, design guidelines for high-speed digital signals and different implementation methods.

Companion chips:

- MT6358—Integrated Power Management IC (PMIC)
- MT6370—Integrated Power Management IC (PMIC)
- MT7668—Highly-integrated, DBDC-enabled 802.11ac MU-MIMO Wi-Fi AP with Bluetooth 5.0, enabling diverse home connectivity
- MT6631—Dual-band (2.4 GHz and 5 GHz) 1 x 1 802.11ac Wi-Fi; Bluetooth 5.0, GPS, FM receiver

8.2 Trademarks

Arm, Cortex, TrustZone, and Thumb are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Mali, CoreSight, and Neon are trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Vulkan is a registered trademark of the Khronos Group, Inc.

Bluetooth is a registered trademark of Bluetooth SIG, Inc.

Cadence and Tensilica are registered trademarks of Cadence Design Systems, Inc.

HDMI is a trademark of HDMI Licensing, LLC.

Wi-Fi, Wi-Fi Direct, and Miracast are registered trademarks of Wi-Fi Alliance.

I²C and I²S are trademarks of NXP Semiconductors.

JTAG is a registered trademark of JTAG Technologies B.V.

OpenCL is a trademark of Apple, Inc.

SD is a registered trademark of SD Card Association.

MMC and eMMC are trademarks of MultiMediaCard Association.

MIPI, MIPI I3C, and UniPro are registered trademarks of MIPI Alliance, Inc.

DirectX is a registered trademark of Microsoft Corporation in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Android is a trademark of Google LLC.

All other product or service names are the property of their respective owners.

Exhibit 1 Terms and Conditions

Your access to and use of this document and the information contained herein (collectively this "Document") is subject to your (including the corporation or other legal entity you represent, collectively "You") acceptance of the terms and conditions set forth below ("T&C"). By using, accessing or downloading this Document, You are accepting the T&C and agree to be bound by the T&C. If You don't agree to the T&C, You may not use this Document and shall immediately destroy any copy thereof.

This Document contains information that is confidential and proprietary to MediaTek Inc. and/or its affiliates (collectively "MediaTek") or its licensors and is provided solely for Your internal use with MediaTek's chipset(s) described in this Document and shall not be used for any other purposes (including but not limited to identifying or providing evidence to support any potential patent infringement claim against MediaTek or any of MediaTek's suppliers and/or direct or indirect customers). Unauthorized use or disclosure of the information contained herein is prohibited. You agree to indemnify MediaTek for any loss or damages suffered by MediaTek for Your unauthorized use or disclosure of this Document, in whole or in part.

MediaTek and its licensors retain titles and all ownership rights in and to this Document and no license (express or implied, by estoppels or otherwise) to any intellectual propriety rights is granted hereunder. This Document is subject to change without further notification. MEDIATEK DOES NOT ASSUME ANY RESPONSIBILITY ARISING OUT OF OR IN CONNECTION WITH ANY USE OF, OR RELIANCE ON, THIS DOCUMENT, AND SPECIFICALLY DISCLAIMS ANY AND ALL LIABILITY, INCLUDING, WITHOUT LIMITATION, CONSEQUENTIAL OR INCIDENTAL DAMAGES.

THIS DOCUMENT AND ANY OTHER MATERIALS OR TECHNICAL SUPPORT PROVIDED BY MEDIATEK IN CONNECTION WITH THIS DOCUMENT, IF ANY, ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE. MEDIATEK SPECIFICALLY DISCLAIMS ALL WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, COMPLETENESS OR ACCURACY AND ALL WARRANTIES ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. MEDIATEK SHALL NOT BE RESPONSIBLE FOR ANY MEDIATEK DELIVERABLES MADE TO MEET YOUR SPECIFICATIONS OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Without limiting the generality of the foregoing, MEDIATEK MAKES NO WARRANTY, REPRESENTATION OR GUARANTEE REGARDING THE SUITABILITY OF ITS PRODUCTS FOR ANY PARTICULAR PURPOSE, NOR DOES MEDIATEK ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT, CIRCUIT OR SOFTWARE. You agree that You are solely responsible for the designing, validating and testing Your product incorporating MediaTek's product and ensure such product meets applicable standards and any safety, security or other requirements.

The above T&C and all acts in connection with the T&C or this Document shall be governed, construed and interpreted in accordance with the laws of Taiwan, without giving effect to the principles of conflicts of law.