ALGEBRA RELACIONAL: Práctica resuelta

- 1. Dada la BD de <u>proveedores</u>, <u>partes y proyectos</u> dar una solución algebraica a los siguientes ejercicios.
- a) Obtener los detalles completos de todos los proyectos.

J

b) Obtener los detalles completos de todos los proyectos de Londres.

$$\sigma_{\text{ciudad} = 'Londres'} (\mathbf{J})$$

c) Obtener los números de los proveedores que suministran partes al proyecto J1.

$$\pi_{S\#}$$
 ($\sigma_{J\#='J1'}$ (SPJ))

d) Obtener todos los envíos en los cuales la cantidad está en el intervalo de 300 a 750 inclusive.

$$\sigma_{\text{cant} \geq 300 \land \text{cant} \leq 750}$$
 (SPJ)

e) Obtener una lista de todas las combinaciones parte-color/parte-ciudad, eliminando todas las parejas color/ciudad repetidas.

$$\pi_{\text{color, ciudad}}(P)$$

f) Obtener todas las 3-uplas número de proveedor/número de parte/ número de proyecto tales que el proveedor, la parte y el proyecto indicados estén todos en la misma ciudad (cosituados).

$$\pi_{S\#,P\#,J\#}$$
 (S|x|P|x|J)

g) Obtener todas las 3-uplas número de proveedor/número de parte/ número de proyecto tales que el proveedor, la parte y el proyecto indicados no estén todos cosituados.

$$\pi_{S\#,P\#,J\#}$$
 ($\sigma_{S.ciudad} \Leftrightarrow P.ciudad \Leftrightarrow P.ciudad \Leftrightarrow J.ciudad \Leftrightarrow J.ciudad \Leftrightarrow S.ciudad ($S \times P \times J$)$

$$\pi_{S\#,P\#,J\#}$$
 (S x P x J) - $\pi_{S\#,P\#,J\#}$ (S |x| P |x| J)

h) Obtener los números de las partes suministradas por algún proveedor de Londres.

$$\pi_{P\#}$$
 ($\sigma_{ciudad = 'Londres'}(S) |x| SPJ$)

i) Obtener los números de las partes suministradas por un proveedor de Londres a un proyecto en Londres.

$$\pi_{P\#} \left(\sigma_{S.ciudad = J.ciudad}(S) \mid |x| \mid SPJ \mid |x| \mid \sigma_{ciudad = 'Londres'}(J) \right)$$

 j) Obtener los números de las partes suministradas a un proyecto por un proveedor situado en la misma ciudad que el proyecto.

$$\pi_{P\#}$$
 (S |x| SPJ |x| J)

k) Obtener los números de los proyectos a los cuales no suministra ninguna parte roja ninguno de los proveedores de Londres.

Varias posibilidades de resolución:

$$\pi$$
 J# (J) - π J# (σ $_{ciudad \,=\, 'Londres'}$ (S) $|x|$ SPJ $|x|$ π $_{p\#}$ (σ $_{color \,=\, 'Rojo'}$ (P)))

$$\pi_{\ J\#}\ (\ J\) \ - \ \pi_{\ J\#}\ ((\pi_{\ S\#}\ (S) \ - \)$$

$$(\pi_{\ S\#}\ (\sigma_{\ ciudad\ \diamondsuit\ 'Londres'}\ (\pi_{\ S\#}\ (SPJ)\ |x|\ \pi_{\ P\#}\ (\sigma_{\ color\ \diamondsuit\ 'Rojo'}\ (P)\)))\ |x|\ S\))\ |x|\ SPJ)$$

$$\pi_{J\#}$$
 (J) - $\pi_{J\#}$ (SPJ $|x|$ $\sigma_{ciudad = 'Londres'}$ (S)) U $\pi_{J\#}$ (SPJ $|x|$ $\sigma_{color = 'Rojo'}$ (P))

1) Obtener los números de los proyectos para los cuales S1 es el único proveedor.

$$\pi_{J\#}$$
 ($\sigma_{S\#='S1'}$ (SPJ)) - $\pi_{J\#}$ ($\sigma_{S\#\Leftrightarrow'S1'}$ (S PJ))

Se plantea todos los que provee menos todos los que no provee.

m) Obtener los números de las partes suministradas a todos los proyectos en Londres.

$$\pi_{P\#,J\#}$$
 (SPJ) % $\pi_{J\#}$ ($\sigma_{ciudad = 'Londres'}$ (J))

n) Obtener los números de los proveedores que suministren **la misma parte a todos** los proyectos.

$$\pi_{S\#}$$
 ($\pi_{S\#,P\#,J\#}$ (SPJ) % $\pi_{J\#}$ (J))

o) Obtener los números de los proyectos a los cuales se suministren **por lo menos todas** las partes suministradas por el proveedor S1.

$$\pi_{J\#,P\#}$$
 (SPJ) % $\pi_{P\#}$ ($\sigma_{S\#='S1'}$ (SPJ))

p) Obtener los nombres de los proveedores que suministran la parte P2.

$$\pi_{\text{snombre}}$$
 ($\sigma_{P\#='P2'}$ S |x| SPJ)

q) Obtener los nombres de los proveedores que suministran por lo menos una parte roja.

$$\pi_{snombre}$$
 ($\sigma_{color = 'Rojo'}$ S |x| P |x| SPJ)

$$\pi_{snombre}$$
 (($\sigma_{color = 'Rojo'} P$) |x| S |x| SPJ)

$$\pi_{\;snombre}$$
 [S $|x|$ $\pi_{\;S\#}(\;(\;\sigma_{\;color\;=\;'Rojo'}\;P\;)\;|x|\;SPJ\;)$]

r) Obtener los nombres de los proveedores que suministran todas las partes.

$$\pi_{\text{snombre}}$$
 [$(\pi_{P\#,S\#}(SPJ) \% \pi_{P\#}(P)) |x| S$]

s) Obtener los números de los proveedores que suministran al menos todas las partes suministradas por el proveedor S2.

$$\pi_{S\#,P\#}$$
 (SPJ) % $\pi_{P\#}$ ($\sigma_{S\#='S2'}$ (SPJ))

t) Obtener los nombres de los proveedores que no suministran la parte P2.

$$\pi_{\text{Snombre}}$$
 [$\pi_{\text{S\#}}$ (S) - $\pi_{\text{S\#}}$ ($\sigma_{\text{P\#}=\text{'P2'}}$ (SPJ) |x|S)]

u) Obtener todos los pares de números de proveedor tales que los dos proveedores en cuestión estén cosituados.

$$\pi_{S,S\#,S1,S\#}$$
 ($\sigma_{S,ciudad=S1,ciudad} \wedge S,S\# < S1,S\#$ ($S \times \rho_{S1}$ ($S \times \rho_{S1}$

- \wedge S.S# < S1.S# -> para evitar duplicados
- 2. Dadas las relaciones A y B, definir la reunión, la intersección y la división en términos de las cinco operaciones algebraicas primitivas: unión, diferencia, producto, restricción y proyección

Reunión: Supongamos que A y B tienen el atributo X en común (X puede ser compuesto). Entonces:

$$A \mid x \mid B = \sigma_{AX=BX} (Ax B)$$

Intersección:

$$A \cap B = A - (A - B) = B - (B - A)$$

División: Supongamos que A tiene los atributos X y Y y B tiene el atributo Y (X y Y pueden ser compuestos). Entonces:

$$A / B = \pi_x (A) - \pi_x (\pi_x (A) \times B) - A)$$

3. Considérese la expresión A | x | B. Si las cabeceras de A y B son disjuntas (es decir, si no tienen atributos en común), esta expresión es equivalente a A x B. ¿A qué es equivalente si las cabeceras de A y B son idénticas (es decir, tienen todos los atributos en común, y los atributos correspondientes están definidos sobre el mismo dominio)?

A
$$\cap$$
 B
A, B disjuntos \Rightarrow A |x| B \equiv A x B
A, B iguales cabeceras \Rightarrow A |x| B \equiv A \cap B

- 4. Sean A y B dos relaciones. Supongamos que las dos son compatibles respecto a la unión, compatibles respecto al producto, etcétera, en caso necesario. Indicar la clave primaria de cada una de las siguientes relaciones:
 - (a) Una restricción arbitraria de A
 - (b) Una proyección arbitraria de A
 - (c) El producto A x B
 - (d) La unión A U B
 - (e) La diferencia A B
- (a) La clave primaria de una restricción arbitraria de A es la clave primaria de A.
- (b)
- Si la proyección incluye la PK de A, su PK será la PK de A.
- Si no, será la combinación de todos los atributos de la proyección
- (c) La PK del producto A x B es la combinación de las PKs de A y B.
- (d) La PK de la unión A U B es la combinación de todos los atributos (en general).
- (e) La PK de la diferencia A B es la clave primaria de A.
- 5. Demostrar que SQL es "relacionalmente completo", en el sentido de que, para cualquier expresión arbitraria del álgebra relacional, existe una expresión de SQL equivalente en lo semántico.

Álgebra	SQL
AUB	SELECT * FROM A
	UNION
	SELECT * FROM B
A - B	SELECT * FROM A
	WHERE NOT EXISTS
	(SELECT * F'ROM B
	WHERE todos-los-campos-de-A =
	todos-los-campos-de-B)
АхВ	SELECT * FROM A, B
$\sigma_{p}(A)$	SELECT * FROM A WHERE p
$\pi_{x,y,,z}(A)$	SELECT DISTINCT x, y,, z FROM A