Computing the Summation of the Möbius Function

Marc Deléglise and Joël Rivat

CONTENTS

- 1. Introduction
- 2. A Combinatorial Identity
- 3. Outline of the Method
- 4. Tabulating M by Blocks
- 5. Computing $S_1(x, u)$ and $S_2(x, u)$ References

We describe an elementary method for computing isolated values of $M(x) = \sum_{n \leq x} \mu(n)$, where μ is the Möbius function. The complexity of the algorithm is $O(x^{2/3}(\log\log x)^{1/3})$ time and $O(x^{1/3}(\log\log x)^{2/3})$ space. Certain values of M(x) for x up to 10^{16} are listed: for instance, $M(10^{16}) = -3195437$.

1. INTRODUCTION

Möbius [1832] was the first to study the function $\mu(n)$, defined for positive integers n by

- $\mu(1) = 1$,
- $\mu(n) = 0$ if n has a squared prime factor;
- $\mu(p_1 \dots p_k) = (-1)^k$ if all the primes p_1, \dots, p_k are different.

Mertens [1897] introduced the summation function

$$M(x) = \sum_{n \le x} \mu(n),$$

which is defined for all real $x \geq 0$. He verified that $|M(x)| \leq \sqrt{x}$ for x < 10000, and conjectured that this inequality holds for any x. Von Sterneck [1912] verified this up to 500,000. (The Riemann Hypothesis implies the weaker conjecture $|M(x)| = O(x^{1/2+\varepsilon})$ for all $\varepsilon > 0$.)

However, Odlyzko and te Riele disproved the Mertens conjecture when they showed [1985] that

$$\liminf_{x \to +\infty} \frac{M(x)}{\sqrt{x}} < -1.009, \quad \limsup_{x \to +\infty} \frac{M(x)}{\sqrt{x}} > 1.06.$$

Pintz [1987] made this result effective, proving that there exist values of $x < \exp(3.21 \times 10^{64})$ such that $|M(x)| > \sqrt{x}$.

The first value of x for which $|M(x)| > \sqrt{x}$ is still unknown, but Dress [1993] has verified that it exceeds 10^{12} . He also proposed in his paper a

method for computing an isolated value of M(x), using $O(x^{3/4} \log^{1/2} x)$ time and $O(x^{1/2})$ space.

Lagarias and Odlyzko [1987] proposed an analytic method for computing $\pi(x)$ (the number of primes not greater than x) in $O(x^{1/2+\varepsilon})$ time and $O(x^{1/4+\varepsilon})$ space. They mentioned that their algorithm could be adapted for computing M(x). To our knowledge, nobody has tried to compute $\pi(x)$ or M(x) using their method yet.

In this paper we explain another method for computing an isolated value of M(x) using

$$O(x^{2/3}(\log\log x)^{1/3})$$

time and $O(x^{1/3}(\log \log x)^{2/3})$ space. Our method is elementary, and was inspired by [Lehman 1960]. We give a table of certain values of M(x) for x up to 10^{16} , and also some computation times.

2. A COMBINATORIAL IDENTITY

For completeness we recall some classical results concerning the Möbius function. Our goal is to obtain Lemma 2.1 below, which is essentially derived from [Lehman 1960, p. 314].

It follows immediately from the definition that $\mu(n)$ is a multiplicative function. Next, we have the Möbius inversion formula

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise.} \end{cases}$$

This is obvious for n = 1. For n > 1, we write $n = p_1^{a_1} \cdots p_k^{a_k}$ with $k \ge 1$, and obtain

$$\begin{split} \sum_{d|n} \mu(d) &= 1 + \sum_{i} \mu(p_i) + \sum_{i,j} \mu(p_i p_j) + \cdots \\ &= 1 - k + \binom{k}{2} - \binom{k}{3} + \cdots = (1-1)^k = 0. \end{split}$$

The inversion formula easily implies, for $x \ge 1$, that $\sum_{n \le x} M(x/n) = 1$. Indeed,

$$\sum_{n < x} M \left(\frac{x}{n}\right) = \sum_{n < x} \sum_{d < \frac{x}{n}} \mu(d) = \sum_{l < x} \sum_{d \mid l} \mu(d) = \mu(1).$$

Lemma 2.1. For $1 \le u \le x$ we have the combinatorial identity

$$M(x) = M(u) - \sum_{m \le u} \mu(m) \sum_{\frac{u}{m} < n \le \frac{x}{m}} M\left(\frac{x}{mn}\right)$$

Proof. We use the Möbius inversion formula, together with the equality $\sum_{n \leq x} M(\frac{x}{n}) = 1$ with x replaced by x/m:

$$\sum_{m \le u} \mu(m) \sum_{n \le \frac{x}{m}} M\left(\frac{x}{mn}\right) = \sum_{m \le u} \mu(m) = M(u)$$

$$\sum_{m \le u} \mu(m) \sum_{n \le \frac{u}{m}} M\left(\frac{x}{mn}\right) = \sum_{l \le u} M\left(\frac{x}{l}\right) \sum_{m|l} \mu(m)$$

$$= M\left(\frac{x}{l}\right) = M(x).$$

The result follows by writing M(u) - M(x). \square

3. OUTLINE OF THE METHOD

Observe that the sum in Lemma 2.1 has more than x terms, but these terms often have the same value. This comes from the general fact that, for y > 0, the sequence $(\lfloor y/n \rfloor)_n$ takes at most $2\lfloor \sqrt{y} \rfloor + 1$ different values:

- the values |y/n| for $1 \le n \le |\sqrt{y}|$,
- the values $0, 1, \ldots, \lfloor \sqrt{y} \rfloor$ corresponding to $n > \lfloor \sqrt{y} \rfloor$.

We apply this idea to split the sum in Lemma 2.1. For $1 \le u \le \sqrt{x}$ we have $M(x) = M(u) - S_1(x, u) - S_2(x, u)$, with

$$S_1(x, u) = \sum_{m \le u} \mu(m) \sum_{\frac{u}{m} < n \le \sqrt{\frac{x}{m}}} M\left(\frac{x}{mn}\right),$$

$$S_2(x, u) = \sum_{m \le u} \mu(m) \sum_{\sqrt{\frac{x}{m}} < n \le \frac{x}{m}} M\left(\frac{x}{mn}\right).$$

For any y > 0 of the form y = x/m, and any $k \le \sqrt{y}$, it is not difficult to compute the number of values of n with $\sqrt{y} < n \le y$ and $\lfloor y/n \rfloor = k$.

For both $S_1(x, u)$ and $S_2(x, u)$ the number of terms in the sum is at most

$$\sum_{m < u} \sqrt{x/m} = O(\sqrt{xu}).$$

This summation will be done using a table of values of $\mu(n)$ for $1 \le n \le u$ and a table of values of M(n) for $1 \le n \le x/u$.

We will see later that it is possible to build these tables in $O((x/u) \log \log(x/u))$ time. By choosing $u = x^{1/3} (\log \log x)^{2/3}$, we get a total time of

$$O\Big(\frac{x}{u}\log\log x + \sqrt{xu}\Big) = O(x^{2/3}(\log\log x)^{1/3}).$$

The tabulation of $\mu(n)$ for $n \leq u$ costs O(u) space, which is acceptable. Unfortunately the tabulation of M would need $O(x/u) = O(x^{2/3})$ space, which is not available on current computers when $x \geq 10^{15}$. Hence we have to work by blocks of size $L \approx u$, as we will explain now.

4. TABULATING M BY BLOCKS

We suppose $L \geq u \geq x^{1/3}$ and we want to tabulate M for $a \leq n < b = a + L$. Since we have $M(n) = M(n-1) + \mu(n)$, it suffices to know M(a-1) and have a table of $\mu(n)$ for $a \leq n < b$ in order to build a table of M(n) for $a \leq n < b$. The additional cost (from μ to M) is O(L) time.

Hence it suffices to be able to tabulate $\mu(n)$ for $a \leq n < b$. This must be achieved without the help of a table of primes up to b, which would be too big. The following algorithm uses only a table of primes up to \sqrt{b} :

Algorithm 4.1 (Tabulation of μ).

Input: bounds b > a > 0.

Output: a table t(n) of values of $\mu(n)$ for $a \leq n < b$.

- 1. for each $n \in [a, b)$, set t(n) = 1.
- 2. for each prime number $p \in [2, \sqrt{b}]$, do:
 - for each multiple $m \in [a, b)$ of p^2 , set t(m) = 0.
 - for each multiple $m \in [a, b)$ of p, multiply t(m) by -p.

- 3. for each $n \in [a, b)$ such that $t(n) \neq 0$, do:
 - -if |t(n)| < n, multiply t(n) by -1.
 - -if t(n) > 0, set t(n) = 1.
 - -if t(n) < 0, set t(n) = -1.

In order to use this algorithm for tabulating M by blocks up to x/u, we need a table of the prime numbers up to $\sqrt{x/u}$. Such a table is easy to build using Eratosthenes' sieve, a process that requires $O(\sqrt{x/u})$ space. The finished table takes $O(\sqrt{x/u}/\log(x/u))$ space, by Chebyshev's Theorem. Since $\sqrt{x/u} \le L$, the space cost of tabulating M by blocks is O(L). For each block $a \le n < b$ the number of operations we do is

$$O\bigg(L + \sum_{p < \sqrt{b}} \Big(1 + \frac{L}{p^2} + \frac{L}{p}\Big)\bigg) = O\bigg(\frac{\sqrt{b}}{\log b} + L \log \log b\bigg),$$

which is $O(\sqrt{x/u} + L \log \log(x/u))$.

Hence the total cost for tabulating M by blocks of size L up to x/u is $O((x/u) \log \log(x/u))$ time and O(L) space.

5. COMPUTING $S_1(x, u)$ **AND** $S_2(x, u)$

For $1 \le a \le b$ we have

$$a \leq \frac{x}{mn} < b \iff \frac{x}{mb} < n \leq \frac{x}{ma}.$$

We suppose we have tabulated M(n) for an interval of size L, namely for $a_k \leq n < a_{k+1}$ with $a_k = 1 + kL$, for some $k \leq x/(uL)$. The number of terms of the sum over m and n corresponding to this block is

$$\sum_{m \leq u} \left(\min \left(\left\lfloor \frac{x}{m a_k} \right\rfloor, \left\lfloor \sqrt{\frac{x}{m}} \right\rfloor \right) - \max \left(\left\lfloor \frac{x}{m a_{k+1}} \right\rfloor, \left\lfloor \frac{u}{m} \right\rfloor \right) \right).$$

The total number of terms we have to sum is obtained by summing the preceding expression over $k \leq x/(uL)$. Reversing the order of summation shows that the total equals the sum over $m \leq u$ of

$$\sum_{k \leq \frac{x}{nL}} \left(\min \left(\left\lfloor \frac{x}{ma_k} \right\rfloor, \left\lfloor \sqrt{\frac{x}{m}} \right\rfloor \right) - \max \left(\left\lfloor \frac{x}{ma_{k+1}} \right\rfloor, \left\lfloor \frac{u}{m} \right\rfloor \right) \right).$$

n	10	11	12	13	14	15
$M(1 \times 10^n)$	-33722	-87856	62366	599582	-875575	-3216373
$M(2\times10^n)$	48723	-19075	-308413	127543	2639241	1011871
$M(3 \times 10^{n})$	42411	133609	190563	-759205	-2344314	5334755
$M(4 \times 10^n)$	-25295	202631	174209	-403700	-3810264	-6036592
$M(5 \times 10^n)$	54591	56804	-435920	-320046	4865646	11792892
$M(6 \times 10^n)$	-56841	-43099	268107	1101442	-4004298	-14685733
$M(7 \times 10^n)$	7917	111011	-4252	-2877017	-2605256	4195668
$M(8 \times 10^n)$	-1428	-268434	-438208	-99222	3425855	6528429
$M(9 \times 10^n)$	-5554	10991	290186	1164981	7542952	-12589671

TABLE 1. Values of $M(k \times 10^n)$.

The sequence $(\lfloor x/(ma_k)\rfloor)_k$ forms a subdivision of the interval $\lfloor u/m, \sqrt{x/m}\rfloor$ such that the above sum over k is at most $\sqrt{x/m}$. Hence the cost of computing $S_1(x,u)$ is $O(\sqrt{xu})$ time and O(L) space.

Turning now to $S_2(x, u)$, we start by defining $l(y, k) = \#\{n : \sqrt{y} < n \le y, \lfloor y/n \rfloor = k\}$. The computation of l(y, k) clearly needs O(1) time. We have

$$S_2(x, u) = \sum_{m \le u} \mu(m) \sum_{k \le \sqrt{\frac{x}{m}}} M(k) l\left(\frac{x}{m}, k\right)$$
$$= \sum_{k \le \sqrt{x}} M(k) \sum_{m \le \min(u, x/k^2)} \mu(m) l\left(\frac{x}{m}, k\right).$$

This last sum is appropriate for use in a tabulation of M done by blocks of size L without any additional cost. Hence the computation of $S_2(x, u)$ can be achieved in $O(\sqrt{xu})$ time and O(L) space.

We therefore get a total time cost of

$$O((x/u) \log \log x + \sqrt{xu}) = O(x^{2/3} (\log \log x)^{1/3}),$$

by choosing

$$u = x^{1/3} (\log \log x)^{2/3}.$$

The total space cost is O(L) with $L \geq u$. In our program we chose L = 4u. (Our program is written in C++, compiled with GNU C/C++, and is 270 lines long. For more information, contact the second author.)

Tables 1 and 2 show some of the values obtained.

x	M(x)	time (s)
10^{6}	212	0.06
10^{7}	1037	0.28
10^{8}	1928	1.36
10^{9}	-222	6.74
10^{10}	-33722	32.74
10^{11}	-87856	160.99
10^{12}	62366	878.37
10^{13}	599582	4927.23
10^{14}	-875575	24048.91
10^{15}	-3216373	115614.87
10^{16}	-3195437	555276.59

TABLE 2. Values of $M(10^n)$ and computation times on a 64-bit DEC Alpha 3000 Model 300 with 96 Mbytes of memory.

REFERENCES

[Dress 1993] F. Dress, "Fonction sommatoire de la fonction de Möbius; 1. Majorations expérimentales", Experimental Math. 2 (1993), 93-102.

[Lagarias and Odlyzko 1987] J. Lagarias and A. Odlyzko, "Computing $\pi(x)$: an analytic method", J. Algorithms 8 (1987), 173–191.

[Lehman 1960] R. S. Lehman, "On Liouville's function", *Math. Comp.* **14** (1960), 311–320.

[Mertens 1897] F. Mertens, "Über eine zahlentheoretische Funktion", Akad. Wiss. Wien Math.-Natur. Kl. Sitzungber. Ha 106 (1897), 761–830.

[Möbius 1832] A. F. Möbius, "Über eine besondere Art von Umkehrung der Reihen", *J. reine angew. Math.* **9** (1832), 105–123.

- [Odlyzko and te Riele 1985] A. Odlyzko and H. te Riele, "Disproof of the Mertens conjecture", *J. reine angew.* Math. **357** (1985), 138–160.
- [Pintz 1987] J. Pintz, "An effective disproof of the Mertens conjecture", Astérisque 147-148 (1987), 325-333, 346.
- [von Sterneck 1912] R. D. von Sterneck, "Die zahlentheoretische Funktion $\sigma(n)$ bis zur Grenze 500000", Akad. Wiss. Wien Math.-Natur. Kl. Sitzungber. IIa 121 (1912), 1083–1096.
- Marc Deléglise, Institut Girard Desargues (URA 746), Département de Mathématiques, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbaine, France (deleglis@lmdi.univ-lyon1.fr)
- Joël Rivat, Institut Girard Desargues (URA 746), Département de Mathématiques, Université Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbaine, France (rivat@caissa.univ-lyon1.fr)

Received January 2, 1996; accepted April 12, 1996