四川省省队集训

第一组

时间: 1926 年 8 月 17 日 00:00 ~ 00:00:01

题目名称	字符串	矩阵	冰棒
题目类型	传统型	传统型	传统型
目录	string	matrix	popsicle
可执行文件名	string	matrix	popsicle
输入文件名	string.in	matrix.in	popsicle.in
输出文件名	string.out	matrix.out	popsicle.out
每个测试点时限	2.5 秒	1.0 秒	2.0 秒
内存限制	1024 MiB	512 MiB	512 MiB
测试点数目	0	20	25
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	string.cpp	matrix.cpp	popsicle.cpp
-----------	------------	------------	--------------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

字符串 (string)

【题目描述】

对于一个字符串 S,定义 root(S) 表示 S 的最小整周期, $R(S) = \frac{|S|}{|root(S)|}$ 即最小整周期出现次数。

定义 $S[l, \dots, r]$ 表示 S 字符串第 l 个字符到第 r 个字符所构成的子串。

定义 f(S) 表示 $\max_{l < r} R(S[l, \cdots, r])$, 即 S 的子串中最大的 R。

给定一个长度为 n 的字符串 S,你需要找一个最大的子串 $S[L, \dots, R]$,使其具有最大的 R,若存在多个,输出字典序最小的。

接下来给出 m 个询问,每次询问给定两个整数 $l, r(1 \le l \le r \le n)$,你需要输出 $f(S[l, \dots, r])$ 。

【输入格式】

从文件 string.in 中读入数据。

第一行输入一个字符串 S。

第二行输入一个整数 m。

接下来 m 行,每行两个整数,表示 l,r。

【输出格式】

输出到文件 string.out 中。

第一行一个字符串 T,表示 S 中具有最大的 R 的子串,若有多个需要输出字典序最小的。

接下来 m 行,每行一个正整数,表示对应询问的答案。

【样例 () 输入】

```
      1
      ccabababc

      2
      5

      3
      2
      9

      4
      1
      7

      5
      2
      5

      6
      2
      6

      7
      3
      8
```

【样例 0 输出】

```
      1
      ababab

      2
      3

      3
      2

      4
      1

      5
      2

      6
      3
```

【样例 1】

见选手目录下的 *string/string1.in* 与 *string/string1.ans*。

【样例 2】

见选手目录下的 *string/string2.in* 与 *string/string2.ans*。

【样例 3】

见选手目录下的 *string/string3.in* 与 *string/string3.ans*。

【样例 4】

见选手目录下的 *string/string4.in* 与 *string/string4.ans*。

【样例 5】

见选手目录下的 *string/string5.in* 与 *string/string5.ans*。

【样例 6】

见选手目录下的 *string/string6.in* 与 *string/string6.ans*。

【样例 7】

见选手目录下的 string/string7.in 与 string/string7.ans。 样例 $1\sim7$ 分别满足每一个子任务的限制。

【子任务】

本题使用捆绑测试。

对于所有数据,保证 $1 \le n, m \le 10^6, 1 \le l \le r \le n$,保证 S 只由小写英文字母组成。

子任务编号	$n \leq$	$m \leq$	特殊性质	分值
1	500	500	无	10
2	5000	5000	无	10
3	2×10^5	0	无	10
4	10^{6}	0	无	20
5	10^{6}	10^{6}	A	10
6	2×10^5	2×10^5	无	20
7	10^{6}	10^{6}	无	20

特殊性质 A: 保证字符串的每一个字符在小写英文字母中随机,每个询问的 [l,r] 分别在 [1,n] 范围内随机。

矩阵 (matrix)

【题目描述】

给定 $n \times m$ 的矩阵 A, 你需要构造 $n \times m$ 的 01 矩阵 B, 满足:

- $\forall i \in [1, n], j \in [1, m]$, \ddot{B} $B_{i,j}$ $b \in [1, m]$, \ddot{B} $B_{i,j-1}$, $B_{i,j-1}$, $B_{i,j+1}$, $B_{i-1,j}$, $B_{i+1,j}$ $b \in [0, m]$
- $\forall i \in [1, n], j \in [1, m]$ 满足 i + j 为奇数,若 $B_{i,j}$ 为 1,则 $B_{i-1,j-1}, B_{i+1,j+1}$ 均为 0。
- $\forall i \in [1, n], j \in [1, m]$ 满足 i + j 为偶数,若 $B_{i,j}$ 为 1,则 $B_{i-1,j+1}, B_{i+1,j-1}$ 均为 0。 对于 $i \notin [1, n]$ 或 $j \notin [1, m]$,我们钦定 $B_{i,j} = 0$ 。

你需要最大化 $\sum B_{i,j} \times A_{i,j}$ 。

【输入格式】

从文件 matrix.in 中读入数据。

对于每组数据,第一行两个整数 n, m。

接下来 n 行,每行 m 个整数,第 i 行第 j 个整数表示 $A_{i,j}$ 。

【输出格式】

输出到文件 matrix.out 中。

第一行一个整数,表示最大的 $\sum B_{i,j} \times A_{i,j}$ 。

接下来 n 行,每行 m 个值为 0 或 1 的整数,第 i 行第 j 个整数表示你所构造的 $B_{i,j}$ 。

如果有多组解, 你可以输出任意一种。

【样例 0 输入】

```
      1
      3
      4

      2
      2
      5
      3
      4

      3
      5
      5
      2
      2

      4
      5
      2
      5
      1
```

【样例 0 输出】

```
1 19
2 0 1 0 1
3 0 0 0 0
4 1 0 1 0
```

【样例 1】

见选手目录下的 *matrix/matrix1.in* 与 *matrix/matrix1.ans*。

【样例 2】

见选手目录下的 *matrix/matrix2.in* 与 *matrix/matrix2.ans*。

【样例 3】

见选手目录下的 *matrix/matrix3.in* 与 *matrix/matrix3.ans*。

【样例 4】

见选手目录下的 *matrix/matrix4.in* 与 *matrix/matrix4.ans*。

【样例 5】

见选手目录下的 *matrix/matrix5.in* 与 *matrix/matrix5.ans*。

【样例 6】

见选手目录下的 *matrix/matrix6.in* 与 *matrix/matrix6.ans*。

【样例 7】

见选手目录下的 matrix/matrix7.in 与 matrix/matrix7.ans。 样例 $1 \sim 7$ 分别满足测试点 1, 2, 3, 5, 7, 9, 12 的限制。

除样例 0 外,其余样例没有给出具体构造方案。

【提示】

本题下发 SPJ。

将选手目录下的 spj.cpp 与 testlib.h 置于同一文件夹下,并在终端使用 g++ spj.cpp -o spj -std=c++14 -02 编译得到可运行文件。使用 spj <input> <output> <answer> 运行 SPJ。

下发的 SPJ 与实际评测中使用的 有所不同。

【子任务】

对于所有数据, $1 \le n \times m \le 1000$, $1 \le A_{i,j} \le 10^9$ 。

测试点编号	$n \times m \le$	特殊性质
1	1000	A
2	20	无
$3 \sim 4$	100	无
$5\sim 6$	200	无
$7 \sim 8$	350	无
$9 \sim 11$	1000	В
$12 \sim 20$	1000	无

特殊性质 A: 保证 n=1。

特殊性质 B: 保证 $\forall i \in [1, n], j \in [1, m], A_{i,j} = 1$ 。

冰棒 (popsicle)

【题目描述】

暑假来了,小 δ 想要吃冰棒。

小 δ 知道 n 家售卖冰棒的商店,它们被依次编号为 0 到 (n-1)。这些商店的老板都十分任性——他们每天售卖的冰棒口味并不相同。小 δ 只喜欢西瓜味的冰棒,因此他早就做好了调查。小 δ 的调查结果形如 n 个有理数序列,其中第 i 个序列的长度为 l_i ,且它的第 j 项记作 $p_{i,j}$ 。为了方便起见,我们给出的值为 $p'_{i,j}$,它是 $p_{i,j}$ 对 998244353 取模的结果,可以说明在本题限制下这不会影响求解的过程。此外,i,j 均从 0 开始标号。

小 δ 的暑假长达 2025! 天。对于商店 i,在第 t 天,它售卖西瓜味冰棒的几率为 $p_{i,(t \bmod l_i)}$ 。小 δ 每天都会前往所有商店购买冰棒,如果其中至少一个商店售卖西瓜味冰棒,小 δ 就会开心。

现在,小 δ 想要知道:他开心的日子占整个暑假的比例的期望是多少?为了方便你的计算,他只需要你告诉他这个答案对 998244353 取模的结果就好了。

【输入格式】

从文件 popsicle.in 中读入数据。

本题有多组测试数据。

输入的第一行包含正整数 T, 代表数据组数。

接下来依次输入每组测试数据,对于每组测试数据:

输入的第一行包含正整数 n。

接下来的 n 行,每行开头包含一个正整数 l_i ,接下来的 l_i 个非负整数为 $p'_{i,j}$ 。

【输出格式】

输出到文件 popsicle.out 中。

对于每组测试数据,输出一行一个非负整数,代表所求的答案。

【样例1输入】

```
1 2 2 2 3 1 499122177 4 2 499122177 1 5 2 6 2 1 0 7 3 1 0 1
```

【样例1输出】

1 124780545

2 831870295

【样例1解释】

对于第一组数据,输入中的 $p'_{i,j}=499122177$ 代表 $p_{i,j}=\frac{1}{2}$ 。在第 $1,3,5,\cdots$ 天,小 δ 一定能在商店 1 购买到冰棒,在第 $2,4,6,\cdots$ 天,小 δ 有 $\frac{3}{4}$ 的几率买到冰棒。可以说明,最后的答案应为 $\frac{7}{8}$ 对 998244353 取模的结果。

对于第二组数据,可以说明,最后的答案应为 5 对 998244353 取模的结果。

【样例 2】

见选手目录下的 *popsicle/popsicle2.in* 与 *popsicle/popsicle2.ans*。 这个样例满足测试点 1 的条件限制。

【样例 3】

见选手目录下的 *popsicle/popsicle3.in* 与 *popsicle/popsicle3.ans*。 这个样例满足测试点 2 的条件限制。

【样例 4】

见选手目录下的 popsicle/popsicle4.in 与 popsicle/popsicle4.ans。这个样例满足测试点 $3 \sim 4$ 的条件限制。

【样例 5】

见选手目录下的 popsicle/popsicle5.in 与 popsicle/popsicle5.ans。这个样例满足测试点 $5 \sim 7$ 的条件限制。

【样例 6】

见选手目录下的 popsicle/popsicle6.in 与 popsicle/popsicle6.ans。这个样例满足测试点 $8 \sim 15$ 的条件限制。

【样例 7】

见选手目录下的 popsicle/popsicle7.in 与 popsicle/popsicle7.ans。这个样例满足测试点 $21 \sim 25$ 的条件限制。

【子任务】

对于所有测试数据保证: $1 \le T \le 5$, $1 \le n \le 3 \times 10^3$, $1 \le l_i \le 100$, $0 \le p'_{i,j} < 998244353$ 。

测试点	特殊性质
1	$\forall 1 \leq i < j \leq n, \ l_i = l_j$
2	$\operatorname{lcm}(l_1, l_2, \cdots, l_n) \le 10^3$
3,4	$\left \text{lcm}(l_1, l_2, \cdots, l_n) \le 10^6 \right $
$5\sim7$	$\forall 1 \leq i \leq n, l_i$ 为质数
$8 \sim 15$	$l_i \le 50$
$16 \sim 20$	T = 1
$21 \sim 25$	无

【提示】

有理数 $\frac{a}{b}$ 对 P 取模的结果被定义为在 [0,P) 内的整数 c,满足 $c\times b\equiv a\pmod{P}$ 。可以说明,在 $P\nmid b$ 且 P 为质数时,存在唯一这样的整数 c。

本题读入量较大, 请选择合适的读入方法。