INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Versatility of JK flipflop

A flipflop can do three operations: Set it to 1, reset it to 0, or complement its output.

But, D flipflop can do only two operations since it has only 1 input.

Synchronized by a clock signal, the JK flip-flop has two inputs and performs all three operations.

JK Flip-flop

FIGURE 5.12

JK flip-flop

JK flipflop

$$D = JQ' + K'Q$$

The J input sets the flip-flop to 1, the K input resets it to 0, and when both inputs are enabled, the output is complemented.

When J = 1 and K = 0, D = Q + Q' = 1, so the next clock edge sets the output to 1.

When J = 0 and K = 1, D = 0, so the next clock edge resets the output to 0.

When both J = K = 1 and D = Q, the next clock edge complements the output.

When both J = K = 0 and D = Q, the clock edge leaves the output unchanged.

Toggle (T) flipflop

The complementing flip-flop is useful for designing binary counters.

Characteristic table

Table 5.1 *Flip-Flop Characteristic Tables*

<i>JK</i> Flip-Flop			
J	K	Q(t+1))
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

D	Fl	in	-F	lo	D
		ľ		•	r

D	Q(t + 1))
0	0	Reset
1	1	Set

T Flip-Flop

T	Q(t+1)	
0	Q(t)	No change
1	Q'(t)	Complement

Characteristic Equation

$$Q(t+1) = D$$

$$Q(t+1) = JQ' + K'Q$$

$$Q(t+1) = T \oplus Q = TQ' + T'Q$$

Asynchronous (direct) set/reset

Some flip-flops have asynchronous inputs to force the flip-flop to a particular state independently of the clock.

Direct set/reset: setting flip-flip to 1 or 0.

When power is turned on, the state of the flip-flops is unknown.

Direct inputs bring all flip-flops to a known starting state prior to the clocked operation.

Positive-edge-triggered *D* flip-flop with active-low asynchronous reset

R	Clk	D	Q Q'
0 1 1	X ↑	X 0 1	$\begin{array}{ccc} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{array}$

(b) Function table