Magnitudes Lineales

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2014) Buenos Aires, Argentina atorassa@gmail.com

Resumen

En mecánica clásica, este trabajo presenta definiciones de magnitudes lineales a partir de magnitudes vectoriales.

Magnitudes Lineales

Las magnitudes lineales para una partícula A de masa m_a se definen con respecto a un vector posición \mathbf{r} que es constante en magnitud y dirección.

Masa Lineal $Y_a = m_a (\mathbf{r} \cdot \mathbf{r}_a)$

Momentum Lineal $P_a = m_a (\mathbf{r} \cdot \mathbf{v}_a)$

Fuerza Lineal $F_a = m_a (\mathbf{r} \cdot \mathbf{a}_a)$

Trabajo Lineal $W_a = \int F_a d(\mathbf{r} \cdot \mathbf{r}_a)$

Teorema $W_a = \Delta \frac{1}{2} m_a (\mathbf{r} \cdot \mathbf{v}_a)^2$

Donde \mathbf{r}_a , \mathbf{v}_a y \mathbf{a}_a son la posición, la velocidad y la aceleración de la partícula A.

Las magnitudes lineales para un sistema de partículas se definen también con respecto a un vector posición \mathbf{r} que es constante en magnitud y dirección.

Energía Potencial Lineal

La energía potencial lineal U_a de una partícula A sobre la cual actúa una fuerza resultante \mathbf{F}_a , está dada por:

$$U_a = -\int (\mathbf{r} \cdot \mathbf{F}_a) \ d(\mathbf{r} \cdot \mathbf{r}_a)$$

donde \mathbf{r} es un vector posición que es constante en magnitud y dirección y \mathbf{r}_a es la posición de la partícula A.

Si \mathbf{F}_a es constante y como $\mathbf{F}_a = m_a \mathbf{a}_a$, entonces se deduce:

$$U_a = -m_a(\mathbf{r} \cdot \mathbf{a}_a)(\mathbf{r} \cdot \mathbf{r}_a)$$

donde m_a es la masa de la partícula A y \mathbf{a}_a es la aceleración constante de la partícula A.

Energía Mecánica Lineal

La energía mecánica lineal E_a de una partícula A de masa m_a que se mueve en un campo de fuerzas uniforme, está dada por:

$$E_a = \frac{1}{2} m_a (\mathbf{r} \cdot \mathbf{v}_a)^2 - m_a (\mathbf{r} \cdot \mathbf{a}_a) (\mathbf{r} \cdot \mathbf{r}_a)$$

donde \mathbf{r} es un vector posición que es constante en magnitud y dirección, y \mathbf{v}_a , \mathbf{a}_a y \mathbf{r}_a son la velocidad, la aceleración constante y la posición de la partícula A.

El principio de conservación de la energía mecánica lineal establece que si una partícula A se mueve en un campo de fuerzas uniforme entonces la energía mecánica lineal de la partícula A permanece constante.

Principio de Mínima Acción Lineal

Si consideramos una partícula A de masa m_a entonces el principio de mínima acción lineal, está dado por:

$$\delta \int_{t_1}^{t_2} \frac{1}{2} m_a (\mathbf{r} \cdot \mathbf{v}_a)^2 dt + \int_{t_1}^{t_2} (\mathbf{r} \cdot \mathbf{F}_a) \, \delta(\mathbf{r} \cdot \mathbf{r}_a) \, dt = 0$$

donde \mathbf{r} es un vector posición que es constante en magnitud y dirección, \mathbf{v}_a es la velocidad de la partícula A, \mathbf{F}_a es la fuerza resultante que actúa sobre la partícula A y \mathbf{r}_a es la posición de la partícula A.

Si
$$-\delta V_a = (\mathbf{r} \cdot \mathbf{F}_a) \, \delta(\mathbf{r} \cdot \mathbf{r}_a)$$
 y como $T_a = \frac{1}{2} \, m_a (\mathbf{r} \cdot \mathbf{v}_a)^2$, entonces:

$$\delta \int_{t_1}^{t_2} (T_a - V_a) \, dt = 0$$

Y como $L_a = T_a - V_a$, entonces se obtiene:

$$\delta \int_{t_1}^{t_2} L_a \, dt = 0$$

Bibliografía

- **A. Einstein**, Sobre la Teoría de la Relatividad Especial y General.
- E. Mach, La Ciencia de la Mecánica.
- R. Resnick y D. Halliday, Física.
- J. Kane y M. Sternheim, Física.
- H. Goldstein, Mecánica Clásica.
- L. Landau y E. Lifshitz, Mecánica.