PT-100 Project

EE2802 — Machine Learning

Jaswanth Chowdary Madala (EE20BTECH11025)

IIT Hyderabad

April 27, 2023

Contents

- Introduction
- PT-100 Sensor
- Oata Acquisition
- Optimization
- Results and Testing
- Conclusion

Introduction

 Jaswanth (IIT Hyderabad)
 PT-100 Project
 April 27, 2023
 3/22

Introduction

- The project is about using machine learning techniques to model the voltage-temperature characteristics of the PT-100
- In this project, we will apply Linear Regression using the least squares method to model the voltage-temperature characteristics of the PT-100 sensor

PT-100 Sensor

Jaswanth (IIT Hyderabad) PT-100 Project April 27, 2023 5/22

PT-100 Sensor

- The PT-100 sensor is a commonly used temperature sensor that is based on the resistance-temperature relationship of platinum
- The characteristic equation of voltage vs Temperature is given by the Callendar-Van Dusen equation

$$V(T) = V(0) \left(1 + AT + BT^2 \right) \tag{1}$$

• The value of B is small. So by neglecting B, the curve can be modelled by a linear relation. Hence we have,

$$T = wV + b \tag{2}$$

Jaswanth (IIT Hyderabad)

Data Acquisition

Jaswanth (IIT Hyderabad) PT-100 Project April 27, 2023 7/22

Circuit Diagram

• The Circuit diagram that is used inorder to collect the data is shown in the below figure 1.

Figure 1: Circuit Diagram

Design Parameter R

Complete Circuit Diagram

Figure 2: Circuit Diagram

swanth (IIT Hyderabad) PT-100 Project April 27, 2023 10/22

Training Data

• The training data - Voltage reading of PT-100 collected from arduino and the Temperature reading collected from thermometer, is shown in the following table 1.

Voltage (in Volts)	Temperature (in °C)
1.70	30
1.74	40
1.75	45
1.79	53
1.82	62
1.85	71
1.88	80

Table 1: Training Data

Optimization

Jaswanth (IIT Hyderabad) PT-100 Project April 27, 2023 12/22

Least Squares Minimization

• For n data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, the least squares function is the sum of squares of the difference between observed and predicted data values,

$$e = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 \tag{3}$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \hat{\mathbf{y}} = \begin{pmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_n \end{pmatrix} \tag{4}$$

 \hat{y}_i denotes the predicted value, y_i denotes the observed value

Linear Modelling

The linear model is given by,

$$\hat{T}_i = wV_i + b \tag{5}$$

For n data points, we have

$$\hat{\mathbf{T}} = \mathbf{V}^{\top} \mathbf{w} \tag{6}$$

where

$$\mathbf{T} = \begin{pmatrix} T_1 \\ T_2 \\ \vdots \\ T_n \end{pmatrix} \quad \hat{\mathbf{T}} = \begin{pmatrix} \hat{T}_1 \\ \hat{T}_2 \\ \vdots \\ \hat{T}_n \end{pmatrix} \quad \mathbf{V} = \begin{pmatrix} V_1 & V_2 & \dots & V_n \\ 1 & 1 & \dots & 1 \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w \\ b \end{pmatrix} \quad (7)$$

Optimization Problem Formulation

• The optimization problem is given by

$$\mathbf{w}_{\mathsf{opt}} = \arg\min_{\mathbf{w} \in \mathbb{R}^2} \left\| \mathbf{T} - \mathbf{V}^{\mathsf{T}} \mathbf{w} \right\|^2 \tag{8}$$

• This optimization probelem can be solved using numpy.linalg.lstq, gradient descent, cvxpy. The codes for the same is given. All .algorithms give the same result

April 27, 2023

Results and Testing

Jaswanth (IIT Hyderabad) PT-100 Project April 27, 2023 16/22

Linear Model Plot

• The plot of the training data, linear model curve is shown in the figure 3.

Figure 3: Model Training

swanth (IIT Hyderabad) PT-100 Project April 27, 2023 17/22

Results

 \bullet The value of \mathbf{w}_{opt} obtained from optimization is,

$$\mathbf{w}_{\text{opt}} = \begin{pmatrix} 270.28248588 \\ -428.99096045 \end{pmatrix} \tag{9}$$

 \bullet Finally this w_{opt} is fed to the arduino so that the temperature displays on the LCD screen

Jaswanth (IIT Hyderabad) PT-100 Project April 27, 2023 18/22

Testing

• The data used to evaluate the model is shown in the following table 2.

Voltage (in Volts)	Temperature (in °C)
1.68	25
1.72	35
1.77	50

Table 2: Test Data

Linear Model Testing Plot

• The test data, linear model curve are shown in the figure 4.

Figure 4: Model Evaluation

swanth (IIT Hyderabad) PT-100 Project April 27, 2023 20/22

Conclusion

 Jaswanth (IIT Hyderabad)
 PT-100 Project
 April 27, 2023
 21/22

Conclusion

- In conclusion, this project effectively used machine learning to model the voltage-temperature characteristics of the PT-100, utilizing the least squares method and validating the model through test data.
- The project showcases the practical implementation of data collection and optimization.