Integrated Platform Management System

Element Processing Specification

Preliminary

Business Unit Naval Projects

Imtech Marine & Offshore B.V.

Sluisjesdijk 155
P.O. Box 5054
3008 AB Rotterdam
The Netherlands
Harbour number 2137
Tel. +31 (0)10 487 19 11
Fax. +31 (0)10 487 17 02

Integrated Platform Management System

Element Processing Specification

Volume -

 File : 190134-4380-ELP-TSC.doc
 Issue : 0.2

 Ref.No. : 190134-4380-ELP-TSC
 Date : April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 1 of 130
Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

Project: TNI-AL Indonesia Corvette

Projectnumber: 190134

Main title: Integrated Platform Management System

Sub title: Element Processing Specification

Special remark: Preliminary

Issue: 0.2

Date: April 2006

Total number of pages: 130

Registration code: 190134-4380-ELP-TSC

Name Signature

Author: R. Langeveld

Quality control: E.J. Middeldorp

Acknowledge: R. van Treuren

Approved:

Certified:

Date of release:
Copy no.:

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 2 of 130
Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

Table of contents

Title page Administrative page

1.	Intro	oduction	23
	1.1	Purpose of this document	
	1.2	Relationship to other documents	
2.	Data	ı interfacing, a brief overview	24
	2.1	General	
	2.1.1	ELP Monitoring	
	2.2	ELP Control	
3.	Func	ctional Design of Element Processing	25
	3.1	Ship's platform	25
4.	Anal	logue Application Element (AAE)	27
	4.1	Function	27
	4.2	Interface	27
	4.2.1	Platform interface	27
	4.2.2	IPMS interface	27
	4.3	Parameters	28
	4.4	Processing	28
	4.4.1		
	4.4.2	Value selection	29
	4.4.3	Alarm evaluation	29
	4.4.4	Alarm/element state determination	29
	4.5	Command word and status word	30
	4.5.1	Command word HMI	30
	4.5.2	Status word	31
5.	Circ	uit Breaker element for Applications (CBA)	32
	5.1	Function	32
	5.2	Interface	32
	5.2.1	External Application Interface	32
	5.2.2		
	5.3	Parameters	
	5.4	Processing	
	5.4.1	Platform control	33
	5.4.2	Alarm/element state determination	34
	5.5	Command word and status word	34
	5.5.1	Command word	34
	5.5.2	Status word	35
6.	Circ	uit Breaker Element (CBE)	36
	6.1	Function	
	6.2	Interface	36
	6.2.1	Platform interface	36

Issue : Date :

Date

Integrated Platform Management System

Element Processing Specification

Preliminary

	6.2.2	IPMS interface	
	6.3	Parameters	
	6.4	Processing	
	6.4.1		
		Control mode determination	
	6.4.3	Element Control	
	6.5	Alarm/element state determination	
	6.6	Command word and status word	
	6.6.1	Command word HMI	41
	6.6.2	Status word	41
7.	Cont	rol element (CTR)	42
	7.1	Function	42
	7.2	Interface	42
		Platform interface	
	7.2.2	IPMS interface	
	7.3	Parameters	42
	7.4	Processing	43
	7.4.1	Platform control	43
	7.4.2	Element state determination	43
	7.5	Command word and status word	43
	7.5.1	Command word HMI	43
	7.5.2	Status word	44
8.	Digit	al Application Element (DAE)	45
	8.1	Function	45
	8.2	Interface	45
	8.2.1	Platform interface	45
	8.2.2	IPMS interface	45
	8.3	Parameters	45
	8.4	Processing	46
	8.4.1	Element state determination	
	8.5	Command word and status word	46
	8.5.1	Command word HMI	47
	8.5.2	Status word	47
9.	Moto	or Control Element (MCE)	48
	9.1	Function	
	9.2	Interface	
	9.2.1	Platform interface	
	9.2.2	IPMS interface	
	9.3	Parameters	
	9.4	Processing	
	9.4.1	Platform control	
		Control mode determination	
	9.4.3	Alarm/element state determination	
	9.5	Command word and status word	
	9.5.1	Command word HMI	
		Status word	
10	D., a 1	speed Motor Control element (MCD)	E A
10.	Dual	. Specu 1410t0f Cultrul element (141CD)	

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Integrated Platform Management System

Element Processing Specification

Preliminary

	10.1 Function	
	10.2 Interface	
	10.2.1 Platform interface	
	10.2.2 IPMS interface	
	10.3 Parameters	
	10.4 Processing	56
	10.4.1 Platform control	
	10.4.2 Control mode determination	58
	10.4.3 Value/element state determination	58
	10.5 Command word and status word	59
	10.5.1 Command word HMI	59
	10.5.2 Status word	60
11.	Motor Control Standby-element (MCS)	61
	11.1 Function	
	11.2 Interface	
	11.2.1 Platform interface	61
	11.2.2 IPMS interface	
	11.3 Parameters	
	11.4 Processing	
	11.4.1 Platform control	
	11.4.2 Control mode determination	
	11.4.3 Alarm/element state determination.	
	11.5 Command word and status word	
	11.5.1 Command word HMI.	
	11.5.2 Status word	
		(0)
12.	Running hours-element (RHE)	68
12.	12.1 Function	68
12.	12.1 Function 12.2 Interface	68
12.	12.1 Function	
12.	12.1 Function	
12.	12.1 Function	
12.	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing	
12.	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination	
12.	12.1 Function	
12.	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination	
12.	12.1 Function	
12.	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE)	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function 13.2 Interface	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function 13.2 Interface 13.2.1 Platform interface	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function 13.2 Interface 13.2.1 Platform interface 13.2.1 Platform interface 13.2.2 IPMS interface 13.3 Parameters	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function 13.2 Interface 13.2.1 Platform interface 13.2.2 IPMS interface 13.3 Parameters 13.4 Processing	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function 13.2 Interface 13.2.1 Platform interface 13.2.1 Platform interface 13.2.2 IPMS interface 13.3 Parameters	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function 13.2 Interface 13.2.1 Platform interface 13.2.2 IPMS interface 13.3 Parameters 13.4 Processing 13.4.1 Application value conversion 13.4.2 Value selection	
	12.1 Function 12.2 Interface 12.2.1 Platform interface 12.2.2 IPMS interface 12.3 Parameters 12.4 Processing 12.4.1 Element state determination and Running hours determination 12.5 Command word and status word 12.5.1 Command word HMI 12.5.2 Status word Serial Application Element (SAE) 13.1 Function 13.2 Interface 13.2.1 Platform interface 13.2.2 IPMS interface 13.3.3 Parameters 13.4 Processing 13.4.1 Application value conversion	

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Integrated Platform Management System

Element Processing Specification

Preliminary

	13.5.2 Status word	
14.	Switch Event Element (SEE)	75
	14.1 Function	
	14.2 Interface	
	14.2.1 Platform interface	
	14.2.2 IPMS interface	
	14.3 Parameters	
	14.4 Processing	
	14.4.1 Switch Events determination	
	14.4.2 Element state determination	
	14.5 Command word and status word	
	14.5.1 Command word HMI.	
	14.5.2 Status word	
15.	Setpoint Element (SPE)	70
15.	• • • • • • • • • • • • • • • • • • • •	
	15.2 Interface	
	15.2.1 Platform interface	
	15.2.2 IPMS interface	
	15.3 Parameters	
	15.4 Processing	
	15.4.1 Element enable/disable	
	15.4.2 Storage of setpoint value	
	15.5 Command word and status word	
	15.5.1 Command word HMI.	
	15.5.2 Status word	80
16.	Sensor element (SSE)	81
	16.1 Function	
	16.2 Interface	81
	16.2.1 Platform interface	81
	16.2.2 IPMS interface	82
	16.3 Parameters	82
	16.4 Processing	82
	16.4.1 Sensor value conversion	83
	16.4.2 Value selection	83
	16.4.3 Alarm evaluation	83
	16.4.4 Alarm / element state determination	
	16.5 Command word and status word	84
	16.5.1 Command word HMI.	85
	16.5.2 Status word	85
17.	Tank Level element (SSL)	86
17.	17.1 Function	
	17.2 Interface	
	17.2.1 Platform interface	
	17.2.2 IPMS interface	
	17.3 Parameters	
	17.4 Processing	
	17.4.1 Sensor value conversion	
	17.7.1 DOUGOI VALUE CONVERSION	

Issue : Date :

Integrated Platform Management System

Element Processing Specification

Preliminary

	17.4.2 Tank level determination	
	17.4.3 Tank content determination	89
	17.4.4 Alarm evaluation	
	17.4.5 Alarm/element state determination	91
	17.5 Command word and status word	91
	17.5.1 Command word HMI	91
	17.5.2 Status word	92
18.	Sensor element (SS1)	93
	18.1 Function	93
	18.2 Interface	93
	18.2.1 Platform interface	93
	18.2.2 IPMS interface	94
	18.3 Parameters	94
	18.4 Processing	94
	18.4.1 Sensor value conversion	
	18.4.2 Value selection	95
	18.4.3 Alarm evaluation	
	18.4.4 Alarm / element state determination	
	18.5 Command word and status word	
	18.5.1 Command word HMI.	
	18.5.2 Status word	
19.	Sensor element (SS2)	99
	19.1 Function.	
	19.2 Interface	
	19.2.1 Platform interface	
	19.2.2 IPMS interface	
	19.3 Parameters	
	19.4 Processing	
	19.4.1 Sensor value conversion	
	19.4.2 Value selection	
	19.4.3 Alarm evaluation	
	19.4.4 Alarm / element state determination.	
	19.5 Command word and status word	
	19.5.1 Command word HMI.	
	19.5.2 Status word	
20.	Switch element (basic) (SWB)	104
	20.1 Function	
	20.2 Interface	
	20.2.1 Platform interface	
	20.2.2 IPMS interface	
	20.3 Parameters	
	20.4 Processing	
	20.4.1 Element state determination	
	20.5 Command word and status word	
21.	Switch-element (SWE)	
	21.1 Function	
	21.2 Interface	

Issue : Date :

Integrated Platform Management System

Element Processing Specification

Preliminary

	21.2.1 Platform interface	106
	21.2.2 IPMS interface	
	21.3 Parameters	
	21.4 Processing	
	21.4.1 Signal delay	
	21.4.2 Alarm/element state determination	
	21.5 Command word and status word	
	21.5.1 Command word HMI.	
	21.5.2 Status word	
	2102 0000	
22.	Switch-element with NBCD function (SWN)	110
	22.1 Function	
	22.2 Interface	
	22.2.1 Platform interface	
	22.2.2 Application interface	
	22.2.3 IPMS interface	
	22.3 Parameters	
	22.4 Processing.	
	22.4.1 Alarm/element state determination	
	22.5 Command word and status word	
	22.5.1 Command word HMI.	
	22.5.2 Status word	
	22.3.2 Status word	113
23.	Valve-element electrical (VCE)	114
25.	23.1 Function	
	23.2 Interface	
	23.2.1 Platform interface	
	23.2.2 IPMS interface	
	23.3 Parameters	
	23.4 Processing.	
	23.4.1 Platform control	
	23.4.2 Control mode determination	
	23.4.3 Alarm/element state determination	
	23.5 Command word and status word	
	23.5.1 Command word HMI	
	23.5.2 Status word	
	25.5.2 Status word	, 110
24.	Valve-element hydraulic (VCH)	110
24.		
	24.1 Function	
	24.2 Interface	
	24.2.1 Platform interface	
	24.2.2 IPMS interface	
	24.3 Parameters	
	24.4 Processing	
	24.4.1 Platform control	
	24.4.2 Control mode determination	
	24.4.3 Alarm/element state determination	
	24.5 Command word and status word	
	24.5.1 Command word HMI	
	24.5.2 Status word	124

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Integrated Platform Management System

Element Processing Specification

Preliminary

25.	Valve	-element, proportional controlled (VCP)	126		
		Function			
		Interface			
		Platform interface			
		Application interface			
		IPMS interface			
	25.3	Parameters	127		
	25.4	Processing	127		
		Platform control			
	25.4.2	Control mode determination			
	25.4.3	Alarm/element state determination			
	25.5	Command word and status word			
	25.5.1	Command word HMI	129		
	25.5.2	Status word	130		
Fig	gures				
1.		luction			
		Purpose of this document			
	1.2	Relationship to other documents	23		
2.	Data interfacing, a brief overview				
		General			
		ELP Monitoring			
		ELP Control			
3.	Funct	ional Design of Element Processing	25		
	3.1	Ship's platform	25		
4.	Analo	gue Application Element (AAE)	27		
		Function			
	4.2	Interface	27		
	4.2.1	Platform interface	27		
	4.2.2	IPMS interface	27		
	4.3	Parameters	28		
		Processing			
		Application value conversion			
	4.4.2	Value selection	29		
		Alarm evaluation			
		Alarm/element state determination			
		Command word and status word			
		Command word HMI			
	4.5.2	Status word	31		
5.	Circu	it Breaker element for Applications (CBA)	32		
		Function			
		Interface			
	5.2.1	External Application Interface	32		

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Issue : 0.2 Date : April 2006 Page 9 of 130

> Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

	5.2.2	IPMS interface	32
	5.3	Parameters	33
	5.4	Processing	33
	5.4.1	Platform control	33
	5.4.2	Alarm/element state determination	34
	5.5	Command word and status word	
		Command word	
	5.5.2	Status word	35
6.	Circ	uit Breaker Element (CBE)	36
	6.1	Function	36
	6.2	Interface	36
	6.2.1	Platform interface	36
	6.2.2	IPMS interface	36
	6.3	Parameters	
	6.4	Processing	
	6.4.1	Platform control	
		Control mode determination	
	6.4.3	Element Control	
	6.5	Alarm/element state determination	
	6.6	Command word and status word	
	6.6.1	Command word HMI	41
	6.6.2	Status word	41
7.	Cont	rol element (CTR)	42
	7.1	Function	
	7.2	Interface	
	7.2.1	Platform interface	
		IPMS interface	
	7.3	Parameters	42
	7.4	Processing	
	7.4.1	e e e e e e e e e e e e e e e e e e e	
		Element state determination	
	7.5	Command word and status word	43
	7.5.1	Command word HMI	
	7.5.2	Status word	44
8.	Digit	al Application Element (DAE)	45
•		Function	
	8.2	Interface	45
	8.2.1	Platform interface	
	8.2.2	IPMS interface	
	8.3	Parameters	
	8.4	Processing	
	8.4.1	Element state determination	
	8.5	Command word and status word	
	8.5.1	Command word HMI.	
		Status word	
9.	Moto	or Control Element (MCE)	18
٠.		Function	48

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Integrated Platform Management System

Element Processing Specification

Preliminary

	9.2 Interface	48
	9.2.1 Platform interface	48
	9.2.2 IPMS interface	49
	9.3 Parameters	
	9.4 Processing	
	9.4.1 Platform control	
	9.4.1.1 Embedded control functions	
	9.4.2 Control mode determination	
	9.4.3 Alarm/element state determination	
	9.5 Command word and status word	
	9.5.1 Command word HMI	
	9.5.2 Status word	
10.	Dual speed Motor Control clament (MCD)	E 1
10.	Dual speed Motor Control element (MCD)	54
	10.1 Function	
	10.2 Interface	
	10.2.1 Platform interface	
	10.2.2 IPMS interface	
	10.3 Parameters	
	10.4 Processing	
	10.4.1 Platform control	
	10.4.1.1 Embedded control functions	
	10.4.2 Control mode determination	
	10.4.3 Value/element state determination	
	10.5 Command word and status word	
	10.5.1 Command word HMI	
	10.5.2 Status word	60
11.	Motor Control Standby-element (MCS)	61
	11.1 Function	
	11.2 Interface	61
	11.2.1 Platform interface	61
	11.2.2 IPMS interface	
	11.3 Parameters	62
	11.4 Processing	
	11.4.1 Platform control	
	11.4.1.1 Embedded control functions	64
	11.4.2 Control mode determination	
	11.4.3 Alarm/element state determination	
	11.5 Command word and status word	
	11.5.1 Command word HMI	
	11.5.2 Status word	
12.	Running hours-element (RHE)	68
	12.1 Function	
	12.2 Interface	
	12.2.1 Platform interface	
	12.2.2 IPMS interface	
	12.3 Parameters	
	12.4 Processing	
	12.4.1 Element state determination and Running hours determination	
	12.7.1 Element state determination and Kulling Hours determination	69

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Integrated Platform Management System

Element Processing Specification

Preliminary

	12.5 Command word and status word	69
	12.5.1 Command word HMI	70
	12.5.2 Status word	70
13.	Serial Application Element (SAE)	71
15.	13.1 Function	
	13.2 Interface	
	13.2.1 Platform interface	
	13.2.2 IPMS interface	
	13.3 Parameters	
	13.4 Processing	
	13.4.1 Application value conversion 13.4.2 Value selection	
	13.4.3 Alarm/element state determination	
	13.5 Command word and status word	
	13.5.1 Command word HMI.	
	13.5.2 Status word	/4
14.	Switch Front Florent (SFF)	75
14.	Switch Event Element (SEE)	
	14.2 Interface	
	14.2.1 Platform interface	
	14.2.2 IPMS interface	
	14.3 Parameters	
	14.4 Processing	
	14.4.1 Switch Events determination	
	14.4.2 Element state determination	
	14.5 Command word and status word	
	14.5.1 Command word HMI	
	14.5.2 Status word	77
15.	Setpoint Element (SPE)	78
13.	15.1 Function	
	15.2 Interface	
	15.2.1 Platform interface	
	15.2.2 IPMS interface	
	15.3 Parameters	
	15.4 Processing	
	15.4.1 Element enable/disable	
	15.4.2 Storage of setpoint value	
	15.5 Command word and status word	
	15.5.1 Command word HMI.	
	15.5.2 Status word	
	13.3.2 Status word	
16.	Sensor element (SSE)	81
	16.1 Function	
	16.2 Interface	81
	16.2.1 Platform interface	
	16.2.2 IPMS interface	
	16.3 Parameters	
	16.4 Processing	

Issue : Date :

Integrated Platform Management System

Element Processing Specification

Preliminary

	16.4.1 Sensor value conversion	
	16.4.2 Value selection	
	16.4.3 Alarm evaluation	83
	16.4.4 Alarm / element state determination	84
	16.5 Command word and status word	84
	16.5.1 Command word HMI	85
	16.5.2 Status word	85
17.	Tank Level element (SSL)	86
	17.1 Function	
	17.2 Interface	86
	17.2.1 Platform interface	
	17.2.2 IPMS interface	
	17.3 Parameters	87
	17.4 Processing	
	17.4.1 Sensor value conversion	
	17.4.2 Tank level determination	88
	17.4.3 Tank content determination	
	17.4.4 Alarm evaluation	
	17.4.5 Alarm/element state determination.	
	17.5 Command word and status word	
	17.5.1 Command word HMI	
	17.5.2 Status word	92
18.	Sensor element (SS1)	93
	18.1 Function.	
	18.2 Interface	
	18.2.1 Platform interface	
	18.2.2 IPMS interface	
	18.3 Parameters	
	18.4 Processing	
	18.4.1 Sensor value conversion	
	18.4.2 Value selection	
	18.4.3 Alarm evaluation	
	18.4.4 Alarm / element state determination	
	18.5 Command word and status word	
	18.5.1 Command word HMI.	
	18.5.2 Status word	
19.	Sensor element (SS2)	99
	19.1 Function.	
	19.2 Interface	
	19.2.1 Platform interface	
	19.2.2 IPMS interface	
	19.3 Parameters	
	19.4 Processing	
	19.4.1 Sensor value conversion	
	19.4.2 Value selection	
	19.4.3 Alarm evaluation	
	19.4.4 Alarm / element state determination.	
	19.5 Command word and status word	
	17.0 COMMING HOLD WIND HOLD	

Issue : Date :

Integrated Platform Management System

Element Processing Specification

Preliminary

	19.5.1 Command word HMI.	
	19.5.2 Status word	102
• •		40.4
20.	Switch element (basic) (SWB)	
	20.1 Function	
	20.2 Interface	
	20.2.1 Platform interface	
	20.2.2 IPMS interface	
	20.3 Parameters	
	20.4 Processing	
	20.4.1 Element state determination	105
	20.5 Command word and status word	105
21.	Switch-element (SWE)	106
	21.1 Function.	
	21.2 Interface	
	21.2.1 Platform interface	
	21.2.2 IPMS interface	
	21.3 Parameters	
	21.4 Processing	
	21.4.1 Signal delay	
	21.4.1 Signal delay 21.4.2 Alarm/element state determination	
	21.5 Command word and status word	
	21.5.1 Command word HMI	
	21.5.2 Status word	109
22.	Switch-element with NBCD function (SWN)	110
	22.1 Function	110
	22.2 Interface	110
	22.2.1 Platform interface	110
	22.2.2 Application interface	
	22.2.3 IPMS interface	
	22.3 Parameters	
	22.4 Processing	
	22.4.1 Alarm/element state determination.	
	22.5 Command word and status word	
	22.5.1 Command word HMI.	
	22.5.2 Status word	
22	VI I I I I I I I I I I I I I I I I I I	11.1
23.	Valve-element electrical (VCE)	
	23.1 Function	
	23.2 Interface	
	23.2.1 Platform interface	
	23.2.2 IPMS interface	
	23.3 Parameters	
	23.4 Processing	115
	23.4.1 Platform control	116
	23.4.2 Control mode determination	
	23.4.3 Alarm/element state determination.	117
	23.5 Command word and status word	
	23.5.1 Command word HMI.	

Issue : Date :

Integrated Platform Management System

Element Processing Specification

Preliminary

	23.5.2	Status word	118
24.	Valve	e-element hydraulic (VCH)	119
	24.1	Function	
		Interface	
		Platform interface	
		IPMS interface	
		Parameters	
		Processing	
		Platform control	
		Control mode determination	
		Alarm/element state determination	
		Command word and status word	
		Command word HMI	
	24.5.2	Status word	124
25.	Valve	e-element, proportional controlled (VCP)	126
	25.1	Function	126
	25.2	Interface	126
	25.2.1	Platform interface	126
	25.2.2	Application interface	126
	25.2.3	IPMS interface	126
	25.3	Parameters	127
	25.4	Processing	127
	25.4.1	Platform control	128
		Control mode determination	
		Alarm/element state determination	
	25.5	Command word and status word	129
	25.5.1	Command word HMI	129
	25.5.2	Status word	130
Ta	bles		
Table	e 3-1	List of element types	26
Table	e 4-1	Application-element IPMS interface	27
Table	e 4-2	Analogue application-element parameters	28
Table	e 4-3	Analogue application-element alarm/element state determination	30
Table	e 4-4	Analogue application element Command word HMI	30
Table	e 4-5	Analogue Application Element Status word	31
Table	e 5-1	Circuit breaker-element platform interface	32
Table		Circuit breaker-element IPMS interface	32
Table		Circuit breaker-element alarm/element state determination	34
Table		Circuit breaker element Command word HMI	34
Table		Circuit breaker element Status word	35
Table		Circuit breaker element platform interface	36
Table		Circuit breaker element IPMS interface	37
Table		Circuit breaker element parameters	37
Table		Circuit breaker element control position determination	39
Table	e 6-5	Circuit breaker element control	39

Issue : Date : 0.2 April 2006

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Page 15 of 130

Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

Table ((Circuit busiless along and along /along out atoms determined in	40
Table 6-6	Circuit breaker element alarm/element state determination	40
Table 6-7	Circuit breaker element Command word HMI	41
Table 6-8	Circuit breaker element Status word	41
Table 7-1	Control-element IPMS interface	42
Table 7-2	Control element parameters	42
Table 7-3	Control-element state determination	43
Table 7-4	Control element Command word HMI	44
Table 7-5	Control element Status word	44
Table 8-1	Application-element IPMS interface	45
Table 8-2	Application-element IPMS interface	45
Table 8-3	Analogue Application Element state determination	46
Table 8-4	Digital Application Element Command word HMI	47
Table 8-5	Digital Application Element Status word	47
Table 9-1	Motor starter-element platform interface	48
Table 9-2	Motor Control Element IPMS interface	49
Table 9-3	Motor Control Element parameters	49
Table 9-4	Motor Control Element platform control	50
Table 9-5	Motor Control Element control mode determination	51
Table 9-6	Motor Control Element alarm/element state determination	52
Table 9-7	Motor control element Command word HMI	53
Table 9-8	Motor control element Status word	53
Table 10-1	Motor starter dual speed-element platform interface	55
Table 10-2	Motor starter dual speed-element IPMS interface	55
Table 10-3	Motor starter dual speed-element parameters	56
Table 10-4	Motor starter dual speed-element platform control	57
Table 10-5	Motor starter dual speed-element control mode determination	58
Table 10-6	Motor starter dual speed-element alarm/element state determination	59
Table 10-7	Motor starter dual speed-element Command word HMI	59
Table 10-8	Motor starter dual speed-element Status word	60
Table 11-1	Motor Control Standby-element platform interface	62
Table 11-2	Motor Control Standby-element IPMS interface	62
Table 11-3	Motor Control Standby-element parameters	62
Table 11-4	Motor Control Standby-element platform control	64
Table 11-5	Motor Control Standby-element control position determination	65
Table 11-6	Motor Control Standby-element alarm/element state determination	66
Table 11-7	Motor Control Standby-element Command word HMI	67
Table 11-8	Motor Control Standby-element Status word	67
Table 12-1	Running hours-element IPMS interface	68
Table 12-2	Running hours-element parameters	69
Table 12-3	Running hour-element element state determination	69
Table 12-4	Running hours element Command word HMI	70
Table 12-5	Running hours element Status word	70
Table 13-1	Serial Application Element IPMS interface	72
Table 13-2	Serial Application Element parameters	72
Table 13-3	Serial Application Element alarm/element state determination	73
Table 13-4	Serial Application Element Command word HMI	74
Table 13-5	Serial Application Element Status word	74
Table 14-1	Switch Event Element IPMS interface	75
Table 14-2	Switch Event Element parameters	75
Table 14-3	Switch Event Element state determination	76
Table 14-4	Command word HMI	77
Table 14-5	Status word	77

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Issue : 0.2 Date : April 2006 Page 16 of 130

> Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

Table 15-1	Setpoint Element IPMS interface	78
Table 15-2	Setpoint Element Command word HMI	80
Table 15-3	Setpoint Element Status word	80
Table 16-1	Sensor Element platform interface	81
Table 16-2	Sensor Element IPMS interface	82
Table 16-3	Sensor Element parameters	82
Table 16-4	Sensor Element alarm/element state determination	84
Table 16-5	Sensor Element Command word HMI	85
Table 16-6	Sensor Element Status word	85
Table 17-1	Tank level element platform interface	87
Table 17-2	Tank level element IPMS interface	87
Table 17-3	Tank level element parameters	87
Table 17-4	Tank level element alarm/element state determination	91
Table 17-5	Tank level element Command word HMI	91
Table 17-6	Tank level element Status word	92
Table 18-1	Sensor-element platform interface	93
Table 18-2	Sensor-element IPMS interface	94
Table 18-3	Sensor-element parameters	94
Table 18-4	Sensor element alarm/element state determination	96
Table 18-5	Sensor element Command word HMI	97
Table 18-6	Sensor element Status word	98
Table 19-1	Sensor-element IPMS interface	100
Table 19-2	Sensor-element parameters	100
Table 19-3	Sensor element alarm/element state determination	102
Table 19-4	Sensor element Command word HMI	102
Table 19-5	Sensor element Status word	103
Table 20-1	Switch element (basic) platform interface	104
Table 20-2	Switch-element-bit IPMS interface	104
Table 21-1	Switch-element platform interface	106
Table 21-2	Switch-element IPMS interface	107
Table 21-3	Switch-element parameters	107
Table 21-4	Switch element alarm/element state determination	108
Table 21-5	Switch element Command word HMI	108
Table 21-6	Switch element Status word	109
Table 22.1	NBCD Switch-element platform interface	110
Table 22.2	NBCD Switch-element application interface	110
Table 22.3	NBCD Switch-element IPMS interface	111
Table 22.4	NBCD Switch-element parameters	111
Table 22.5	NBCD Switch-element alarm/element state determination	112
Table 22.6	NBCD Switch element Command word HMI	112
Table 22.7	NBCD Switch element Status word	113
Table 23-1	Electrical valve-element platform interface	114
Table 23-2	Electrical valve-element IPMS interface	115
Table 23-3	Electrical valve-element parameters	115
Table 23-4	Electrical valve-element control mode determination	117
Table 23-5	Electrical valve-element alarm/element state determination	117
Table 23-6	Electrical valve-element Command word HMI	118
Table 23-7	Electrical valve-element Status word	118
Table 24-1	Hydraulic valve-element platform interface	120
Table 24-2	Hydraulic valve-element IPMS interface	121
Table 24-3	Hydraulic valve-element parameters	121
Table 24-4	Hydraulic valve element control mode determination	123

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Issue : Date : 0.2 April 2006 Page 17 of 130

Integrated Platform Management System

Element Processing Specification

Preliminary

Table 24-5	Hydraulic valve-element alarm/element state determination	124
Table 24-6	Hydraulic valve-element Command word HMI	124
Table 24-7	Hydraulic valve-element Status word	125
Table 22.1	Proportional valve-element platform interface	126
Table 22.2	Proportional valve-element IPMS interface	127
Table 22.3	Proportional valve-element parameters	127
Table 22.4	Proportional valve-element control mode determination	128
Table 22.5	Proportional valve-element alarm/element state determination	128
Table 22.6	Proportional valve-element Command word HMI	129
Table 22.7	Proportional valve-element Status word	130

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC Issue : Date : 0.2 April 2006

Page 18 of 130 Copyright 2005 Imtech Marine & Offshore B.V. Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Page 19 of 130

Preliminary

References

[1] Title: Contract

Description: Contract between Schelde Naval Shipbuilding and IMTECH Marine & Offshore

Ref.:

From: Schelde Naval Shipbuilding and IMTECH Marine & Offshore

Issue: <> Date: <>

[2] Title: Documentation Plan

Description: Documentation Plan for TNI-AL

Ref.: 190134-DOP From: R. v. Treuren

Issue: 1.0 Date: \Leftrightarrow

[3] Title: System Specification IAS

Description: Overall System specification of the Integrated Automation System

Ref.: 190134-4000-SSC From: E.J. Middeldorp

Issue: V1.0 Date: \Leftrightarrow

[4] Title: Functional Specification IPMS

Description: Functional specification of the (SCADA-PLC based) Integrated Platform Management System

function of the IAS.

Ref.: 190134-4380-FSC
From: R.Langeveld
Issue: V1.0
Date: \Leftrightarrow

[5] Title: Technical Specification IPMS HMI

Description: Technical Specification of the Human Machine Interface of the IPMS

Ref.: 190134-4380-HMI-TSC

From: R. Langeveld Issue: V1.0

Date:

[6] Title: Technical Specification IPMS ELP

Description: Technical Specification of the Element Processing of the IPMS

Ref.: 190134-4380-ELP-TSC

From: R. Langeveld

Issue: V1.0 Date:

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 20 of 130

Preliminary

[7] Title: Functional Specification PMS

Description: Functional Specification of the Power Management System of the IAS

Ref.: 190134-3900-FSC From: C. Schouten

Issue: V1.0 Date: \Leftrightarrow

[8] Title: Functional Specification PCS

Description: Functional specification of the Propulsion Control System of the IAS

Ref.: 190134-2520-FSC

From: R. Bipat Issue: V1.0
Date: \Leftrightarrow

[9] Title: Network Architecture CSN and PDN

Description: Network architecture of the IAS, Client Server Network (CSN) and Platform Data Network

(PDN)

Ref.: 190134-CSN/PDN-CFS

From: G. Tiekstra Issue: V1.0
Date: \Leftrightarrow

[10] Title: IO List

Description: List with Input/Ouput signals of the IPMS

Ref.: 190134-4380-IOL From: E.J. Middeldorp

Issue: V1.0 Date: \diamond

[11] Title: Item Survey List

Description: States the defined items and their characteristics, such as dimensions, weight, and allocation

on board

Ref.: 190134-4000-ISL From: E.J. Middeldorp

Issue: V1.0 Date: \Leftrightarrow

[12] Title: IPMS User Manual

Description: An operator guide that describes the entire user scoped IPMS functions.

Ref.: 190134-4380-UM From: R. Langeveld

Issue: V1.0 Date: \diamond

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

Abbreviations

AAE Analogue Application-element

Analogue Input ΑI ALP Alarm presentation

Alarm, Monitoring & Control System **IPMS**

AO Analogue Output

Component Assist Presentation CAP **CBA** Circuit-breaker element (application)

Circuit-breaker element CBE

Component Information Presentation CIP

CTR Control Element

DAE Digital Application Element DINC Discrete Input - Normally Close Discrete Input - Normally Open DINO

Discrete Output DO **Element Processing** ELP EU **Engineering Unit** HA High Alarm HAV High Alarm Value Highhigh alarm HHA HHAV Highhigh alarm value HY Common Hysteresis Hysteresis on High Alarm **HYHA HYLA** Hysteresis on Low Alarm IMO Imtech Marine & Offshore

Ю Input/Output LA Low Alarm

LAN Local Area Network LAV Low Alarm Value LPU Local Processing Unit

MCE Motor starter single speed-element Motor starter double speed-element MCD Motor starter standby-element MCS

Mimic Presentation MIP MMI Man Machine Interface OORH Out Of Range High **OORL** Out Of Range Low

PCM Platform Control and Monitoring Programmable Logic Controller **PLC**

Ready For Use **RFU** Ready For Closing **RFC RFO** Ready For Opening RHE Running Hour Element SAE Serial Application Element SEE Switching Events Element

Scale factor SF Specific gravity SG **SSE** Sensor-element SSL Tank level element

190134-4380-ELP-TSC.doc Issue 0.2 April 2006 Ref.No.: 190134-4380-ELP-TSC Date

Copyright 2005 Imtech Marine & Offshore B.V.

Integrated Platform Management System

Element Processing Specification

Page 22 of 130

Preliminary

SWB Switch element bit SWE Switch-element

SWF Switch with no delay element SWN Switch with NBCD Functionality

TA Time delay for alarm TAU Filter constant TCTRL Control duration

TDLY Delay time before activation THA Delay time alarm high active TLA Delay time alarm low active **TOORH** Time delay Out Of Range High **TOORL** Time delay Out Of Range Low **TTRANS** Allowable transition duration **TTRO** Time needed for run-out V20 Scaled sensor value @ 20 mA V4 Scaled sensor value @ 4 mA

VCE Valve-element

VCH Hydraulic valve element

XHA Too high alarm XHAV Too high alarm value

Updates

Underneath are the updates indicated of those parts, which have been changed related to the previous release.

Issue:	Date:	Change:	Reason:
0.1	1 March 2005	-	Preliminary release
0.2	April 2006	Added VCP element section 25	

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

1. Introduction

1.1 Purpose of this document

This document covers the technical specification of the Element Processing function as defined within the Function Specification of the Integrated Platform Management System (IPMS), ref. [4].

1.2 Relationship to other documents

This document is part of the documentation for the Integrated Automation System. The relation to other documents is illustrated by Error! Reference source not found.

Figure 1-1 Overview of the documentation

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Page 23 of 130

Integrated Platform Management System

Element Processing Specification

Page 24 of 130

Preliminary

2. Data interfacing, a brief overview

2.1 General

Though not strictly necessary to understand this document, the reader should be familiar with platform information monitoring. The next sections will introduce you to some of the interface aspects.

2.1.1 ELP Monitoring

Consider a sensor somewhere on the platform that senses a physical value. The sensor transfers the physical value into an analogue electrical value. Usually the sensor transfers the physical value into an electrical current but other quantities may be used also. In most cases, the sensor output will be wired to an analogue input module that is able to convert the electrical value into a numerical value. ELP is involved with all generic monitoring figures such as:

- Scaling the raw numerical value into an engineering range;
- Determining the sensor status regarding alarm thresholds that may apply to this sensor;
- Adapting information needed by the HMI like:
 - Visualization of the sensor value;
 - o Setting/resetting of alarm statuses;
- Picking up HMI commands, alarm events, and changed parameter settings.

This data interface is illustrated in Figure 2-1.

2.2 ELP Control

Equipment that can be controlled from a remote location will be wired to a PLC output module. The actual status of this equipment is monitored by the PLC also. In this case ELP comprises of:

- Interfacing commands given from remote, either manually or automatically.
- Validation of commands regarding element control mode;
- Driving the relevant output modules

This data interface is illustrated in Figure 2-1.

Figure 2-1 Data interfacing

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

3. Functional Design of Element Processing

3.1 Ship's platform

The ELP function is based on a number of generic software modules, one for each platform element type. Platform element types can be distinguished by classifying each platform component among one of the element types currently defined. Classification can be realized based on the electrical interface and functional behaviour of each component. Once classified, calling its applicable software module along with relevant component id's and settings can process each platform object.

Classification information along with specific settings for each platform object is stored within a, so-called, element list. The element list, in fact, is an off-line database, which resides within the software development environment of each project.

The Element list comprises the next information for each platform component:

- General information:
 - Element type (basic element), name (id), description and main mimic number.
- Alarm information:

Settings regarding alarm configuration, installation group and relevant platform evaluations.

- Parameters:
 - Default parameter values. Most of the parameters apply to the alarm process.
- IO mapping.

Processor module ID. This defines the processor module that will process the software regarding the platform component. Rack ID, Module ID and IO-Channels involved with the platform component.

By means of a data generator tool the Element list data is transformed to a set of files relevant for:

- HMI/SCADA system;
- Element Processing functions in the PLC's.

Error! Reference source not found. summarizes the element types currently defined along with their acronym:

Element type acronym	Element type description
AAE	Analogue Application Element
CBA	Circuit Breaker Element for Applications
CBE	Circuit Breaker Element
CTR	Control-element
DAE	Digital Application Element
MCD	Motor Control element with Double speed function
MCE	Motor Control Element
MCS	Motor Control element with Standby function
RHE	Running Hours counter Element
SAE	Serial Application Element. Dual logical alarm inputs
SEE	Switching Event Element
SPE	Setpoint element
SSE	Sensor Element with alarm low/high support

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Intech Marine & Offshore B.V.

Intech Marine & Offshore B.V.

Integrated Platform Management System

Element Processing Specification

Preliminary

Element type acronym	Element type description
SS1	Sensor Element with alarm high / highhigh / too high support
SS2	Application Element with alarm high / highhigh / too high support
SSL	Sensor element with tank content measurement support
SWB	Switch-element Basic functions only
SWE	Switch-element with alarm function
SWN	Switch element used for NBCD related objects
VCE	Valve Control Element
VCH	Valve Control Element for hydraulically controlled valves
VCP	Valve Control Element for proportionally controlled valves

Table 3-1 List of element types

The next sections will describe all functions relevant for each element type.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Ref.No.: 190134-4380-ELP-TSC Date : April 2006 Page 26 of 130

Copyright 2005 Intech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Page 27 of 130

Preliminary

4. Analogue Application Element (AAE)

4.1 Function

The analogue application-element handles a derived or calculated (i.e. not related to a physical input) value. The element is able to generate high and low alarms whenever the analogue input exceeds one of the alarm thresholds. Along with these alarms the element supports hysteresis and time delay functions as well. Spurious alarms which might be caused by a certain platform state can be inhibited as it supports an alarm inhibit input also.

4.2 Interface

The element interface is shown by Figure 4-1.

Figure 4-1 Analogue application-element interface

The next sections describe the interfaces.

4.2.1 Platform interface

This element has no interface related to physical IO.

4.2.2 IPMS interface

The IPMS interface is shown in Table 4-1.

Name	Value
Input	
Value application	Value (not scaled)
State value valid	[Valid Invalid]
State wire break	[Wire break No Wire break]
State element disabled	[Disabled Enabled]
State alarm inhibit	[Inhibited Not inhibited]
State display stationary value	[Display stationary value Display element value]
Parameters	[HAV + LAV + HYHA + HYLA + THA + TLA + SF + STA]
Output	
State alarm	[None HA LA Wire break Inhibited]
State element	[Value OK Disabled HA LA Unavailable Wire break]
Value element	Scaled value in EU

Table 4-1 Application-element IPMS interface

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 28 of 130

Preliminary

4.3 Parameters

The parameters of the element are shown in Table 4-2.

Parameter	Description	Unit	Value	Adjustable
HAV	High alarm value	EU		Yes
LAV	Low alarm value	EU		Yes
HYHA	Hysteresis on HA alarms	EU		Yes
HYLA	Hysteresis on LA alarms	EU		Yes
THA	Time delay high alarm	S		Yes
TLA	Time delay low alarm	S		Yes
SF	Scale factor	-		Yes
STA	Stationary value	EU		No

Table 4-2 Analogue application-element parameters

4.4 Processing

The element processing comprises the next functions:

- Application Value conversion;
- Value selection;
- Alarm evaluation;
- Alarm/element state determination.

The processing is shown in Figure 4-2.

Figure 4-2 Analogue application-element processing

The next sections describe these functions.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

4.4.1 Application value conversion

IF (State element disabled = disabled) OR (Value application valid = invalid) OR (State wire break = wire break) THEN Value Element = Unavailable;

ELSE

Value = Value application / SF;

END

4.4.2 Value selection

IF (State display stationary value = display stationary value) THEN Value HMI = Stationary value;

ELSE

Value HMI = Value Element;

END

4.4.3 Alarm evaluation

The alarm evaluation determines if there is an alarm condition active. The next alarm conditions are available:

- HA;
- LA.

<u>HA</u>

IF ((Value element > HAV) during (t > THa)) THEN HA = 1;

END

IF (Value element <= (HAV - HYHA) THEN) HA = 0;

END

LA

IF ((Value element < LAV) during (t > TLa)) THEN
LA = 1;

END

IF (Value element >= (LAV + HYLA)) THEN LA = 0;

END

4.4.4 Alarm/element state determination

The alarm/element state determination is shown in Table 4-3.

State element disabled	State Value Valid	State Alarm inhibited	Wire break	НА	ΥT	State alarm	State element
Disabled	X	X	X	X	X	None	Disabled
Enabled	Invalid	X	X	X	X	None	Unavailable
Enabled	Valid	Inhibited	X	X	X	Inhibited	Value OK
Enabled	Valid	Not inhibited	1	X	X	Wire break	Wire break
Enabled	Valid	Not inhibited	0	1	0	HA	HA
Enabled	Valid	Not inhibited	0	0	1	LA	LA

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC

Copyright 2005 Imtech Marine & Offshore B.V.

Issue : 0.2 Date : April 2006

Page 30 of 130

Preliminary

Enabled Valid Not inhibited 0 0 None Value OK

Table 4-3 Analogue application-element alarm/element state determination

4.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word represent the element status.

The next sections describe command - and status word arrangements.

4.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 4-4 Analogue application element Command word HMI

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

4.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Value OK
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Not Valid
1001	0-3	Reserved
1010	0-3	Reserved
1011	0-3	Alarm wire break
1100	0-3	Alarm low
1101	0-3	Alarm high
1110	0-3	-
1111	0-3	-
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Alarm inhibited
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 4-5 Analogue Application Element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Ref. No.: 190134-4380-ELP-TSC

Date : April 2006

Page 31 of 130

Imtech Marine & Offshore B.V.

Copyright 2005 Imtech Marine & Offshore B.V.

Co.C. Rotterdam 24193093

Page 32 of 130

Preliminary

5. Circuit Breaker element for Applications (CBA)

5.1 Function

The function of the circuit breaker element for applications is to forward both the breaker status (including relevant alarms) and breaker commands from/to an external application like a Power Management System. As this application must have full control over the circuit breaker, the element processing only adapts the signals it needs to achieve a proper HMI interface.

5.2 Interface

The circuit breaker element interface is shown in Figure 5-1.

Figure 5-1 Circuit-breaker element interface

The next sections describe these interfaces in detail.

5.2.1 External Application Interface

Table 5-1 lists all signals incorporated by this interface.

- 110 - 10 - 1 - 1-10 11 11 11 1- 11 1- 11 1 1 1					
Name	Value				
Input					
Status	[Element disabled Closed Open Transition Not RFO Not RFC Failure Local				
	Remote Manual Auto Unknown Fault Tripped Failed to open Failed to close]				
Output					
Commands	[Open Close Manual Auto Disable element Enable element]				

Table 5-1 Circuit breaker-element platform interface

5.2.2 IPMS interface

The IPMS interface of the element is shown in Table 5-2.

Name	Value			
Input				
Command open	[Not activated Activated]			
Command close	[Not activated Activated]			
Manual / Auto	[Manual Auto]			
Disable element	[Disabled Enabled]			
Output				
State alarm	[None Unknown Fault Tripped Open failure Close failure]			
State element	[Disabled Closed Open Transition Not RFO Not RFC Close failure Open failure			
	Undetermined Fault]			

Table 5-2 Circuit breaker-element IPMS interface

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 33 of 130

Preliminary

5.3 Parameters

This element has no parameters.

5.4 Processing

The element processing comprises the next functions:

- Platform control;
- Alarm / element state determination.

The processing is shown by Figure 5-2.

Figure 5-2 Circuit breaker-element processing

The next sections describe the functionality.

5.4.1 Platform control

IF (Disable element = Disabled) THEN
PM Command Close = None;
PM Command Open = None;

END

PM Command close = Command close PM Command open = Command open PM Disable Element = Disable Element PM Manual/Auto = Manual/Auto

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 34 of 130

Preliminary

5.4.2 Alarm/element state determination

The alarm/element state determination is shown in Table 5-3.

Element Disabled	State switch Closed	State switch Open	State element (from PM)	State alarm	State element
Disabled	X	X	X	None	Disabled
Enabled	X	X	Closed	None	Closed
Enabled	X	X	Open	None	Open
Enabled	X	X	Not RFO	None	Not RFO
Enabled	X	X	Not RFC	None	Not RFC
Enabled	X	X	Transition	None	Transition
Enabled	X	X	Tripped	Tripped	Tripped
Enabled	X	X	Fault	Fault	Fault
Enabled	X	X	Unknown	Unknown	Unknown
Enabled	X	X	Failed To Close	Open failure	Failed To Close
Enabled	X	X	Failed To Open	Close failure	Failed To Open

Table 5-3 Circuit breaker-element alarm/element state determination

5.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word represent the element status.

The next sections describe command - and status word arrangements.

5.5.1 Command word

Bit	Description
0	Close
1	Open
2	-
3	-
4	-
5	Manual
6	Auto
7	-
8	Disable element
9	Enable element
10	-
11	-
12	Reserved
13	-
14	-
15	•

Table 5-4 Circuit breaker element Command word HMI

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

5.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	Closed
0010	0-3	Open
0011	0-3	-
0100	0-3	-
0101	0-3	Transition
0110	0-3	-
0111	0-3	-
1000	0-3	-
1001	0-3	Not Ready for closing
1010	0-3	Not Ready for opening
1011	0-3	Tripped
1100	0-3	Failed to close
1101	0-3	Failed to open
1110	0-3	Unknown
1111	0-3	Fault
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	Last command was: Close
	5	Last command was: Open
	6	-
	7	-
	8	Alarm Inhibited
	9	True = Manual / False = Auto
	10	True = Local / False = Remote
	11	-
	12	-
	13	-
	14	-
	15	-

Table 5-5 Circuit breaker element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 35 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 **Element Processing Specification**

Page 36 of 130

Preliminary

6. Circuit Breaker Element (CBE)

6.1 Function

The function of the circuit breaker element is support monitoring and control functions relevant for a circuit breaker such as commands, statuses and alarms. This element supports alarm inhibition. To use this feature, an external logical expression must define all platform states that might cause a spurious CBE alarm.

6.2 Interface

The element interfacing is shown by Figure 6-1.

Figure 6-1 Circuit breaker element interface

The next sections specify the interfaces.

6.2.1 Platform interface

The element platform interface is shown in Table 6-1.

Name	Value	I/O specification
Input		
State switch closed	[Closed Not closed]	DINO
State switch open	[Open Not open]	DINO
State switch remote	[Local Remote]	DINO
State switch tripped	[Tripped Not Tripped]	DINO
State switch no fault	[Fault No fault]	DINO
Output		
Control close	[Not activated Activated]	DO
Control open	[Not activated Activated]	DO

Table 6-1 Circuit breaker element platform interface

6.2.2 IPMS interface

The IPMS interface is shown within Table 6-2

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 37 of 130

Preliminary

Name	Value
Input	
Command close (application)	[Not activated Activated]
Command open (application)	[Not activated Activated]
Command close (HMI)	[Not activated Activated]
Command open (HMI)	[Not activated Activated]
Parameters	[Ttrans + Tctrl]
State element disabled	[Disabled Enabled]
State alarm inhibited	[Inhibited Not inhibited]
State auto/manual	[Manual Auto]
State RFC	[Ready for Closing Not Ready for Closing]
State RFO	[Ready for Opening Not Ready for Opening]
Output	
State alarm	[None Close failure Open failure Unknown]
State command	[None Command close Command open]
State control position	[None Local Manual Auto]
State element	[Disabled Closed Open Transition Not RFC Not RFO Open failure
	Close failure Unknown Tripped Fault]

Table 6-2 Circuit breaker element IPMS interface

6.3 Parameters

The element parameters are shown by Table 6-3

Parameter	Description	Unit	Value	Adjustable
Ttrans	Time delay allowed for transition	S		Yes
Tetrl	Control Pulse duration (0=continuously controlled)	S		Yes

Table 6-3 Circuit breaker element parameters

If Tctrl = 0, then the relevant output is driven continuously (I.e. not by a pulse) If Ttrans = 0, then no time-out alarm will be generated.

6.4 Processing

The element processing comprises the next functions:

- Alarm/element state determination;
- Control mode determination;
- Platform control.

The processing is shown by Figure 6-2.

Integrated Platform Management System

Element Processing Specification

Preliminary

Figure 6-2 Circuit breaker element processing

These functions are described by the next paragraphs.

```
6.4.1 Platform control
```

```
(State element disabled = Disabled) THEN
      Control close = Deactivated;
      Control open = Deactivated;
      Desired State = none;
ELSE
             (Command close = Activated) THEN
             Control open = Deactivated;
             Desired State = Closed;
                   (Tctrl = 0) THEN
                    Control close = Activated continuously;
             END
                    (TCtrl > 0) THEN
             IF
                    Control close = Activated during t = TCtrl;
             END
      END
             (Command open = Activated) THEN
      IF
             Control close = Deactivated;
             Desired State = Open;
                    (TCtrl = 0) THEN
             IF
                    Control open = Activated continuously;
             END
                    (TCtrl > 0) THEN
             IF
                    Control open = Activated during t = TCtrl;
             END
      END
END
```

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 39 of 130

Preliminary

Whenever the element is (re-) initialised (LPU state toggles from offline to online) or when the element control mode is switched from 'local' to 'remote' or when the element is enabled then the desired state must be forced to match the actual state of the breaker. In all other cases the desired state must keep up with the command input state.

```
IF
      ((Initialising
                                                    ) OR
      (State switch remote = Open -> Closed
                                                    ) OR
                                                    )) THEN
      (State element disabled = Disabled -> Enabled
             (State switch closed = Activated) THEN
             Desired state = closed;
      ELSE
             IF
                   (State switch open = Activated) THEN
                   Desired state = open;
             ELSE
                   Desired state = none;
             END
      END
ELSE
      IF Command Close =activated THEN Desired State = Closed
      IF Command Open = activated THEN Desired State = Open
END
```

6.4.2 Control mode determination

The control mode determination is shown by Table 6-4.

State	State switch	State manual	Control
element	remote	/auto	mode
disabled			
Disabled	X	X	None
Enabled	Local	X	Local
Enabled	Remote	Manual	Manual
Enabled	Remote	Auto	Auto

Table 6-4 Circuit breaker element control position determination

6.4.3 Element Control

The element is controlled as specified by Table 6-5.

State	Command	Control mode	Element control
element			
disabled			
Disabled	X	X	None
Enabled	None	X	None
Enabled	Command close (Appl)	Auto	Close
Enabled	Command open (Appl)	Auto	Open
Enabled	Command close (Appl)	Manual	None
Enabled	Command open (Appl)	Manual	None
Enabled	Command close (HMI)	Auto	None
Enabled	Command open (HMI)	Auto	None
Enabled	Command close (HMI)	Manual	Close
Enabled	Command open (HMI)	Manual	Open

Table 6-5 Circuit breaker element control

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 40 of 130

Preliminary

6.5 Alarm/element state determination

The alarm/element state determination is shown by Table 6-6.

State element Disabled	State Tripped	State No fault	RFU = RFO AND RFC	State switch Remote	Desired State	State switch Closed	State switch Open	Ttrans	Timer *)	State alarm	State element
Disabled	X	X	X	X	X	X	X	X	X	None	Disabled
Enabled	Tripped	X	X	X	X	X	X	X	X	Tripped	Tripped
Enabled	Not tripped	Fault	X	X	X	X	X	Х	X	Fault	Fault
Enabled	Not tripped	No fault	X	X	X	Closed	Open	X	X	Unknown	Unknown
Enabled	Not tripped	No fault	Not RFC	X	X	X	X	X	X	None	Not RFC
Enabled	Not tripped	No fault	Not RFO	х	X	X	X	х	X	None	Not RFO
Enabled	Not tripped	No fault	RFU	Local	X	Closed	Not open	X	х	None	Closed
Enabled	Not tripped	No fault	RFU	Local	X	Not closed	Open	х	х	None	Open
Enabled	Not tripped	No fault	RFU	Local	X	Not closed	Not open	х	х	None	Transition
Enabled	Not tripped	No fault	RFU	Rem	Closed	Closed	Not open	х	X	None	Closed
Enabled	Not tripped	No fault	RFU	Rem	Closed	Not closed	X	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Not tripped	No fault	RFU	Rem	Closed	Not closed	X	=0	X	None	Transition
Enabled	Not tripped	No fault	RFU	Rem	Closed	Not closed	X	>0	t>=Ttrans	Close failure	Failed to Close
Enabled	Not tripped	No fault	RFU	Rem	Open	Not closed	Open	х	x	None	Open
Enabled	Not tripped	No fault	RFU	Rem	Open	X	Not open	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Not tripped	No fault	RFU	Rem	Open	х	Not open	>0	t>=Ttrans	Open failure	Failed to open

Table 6-6 Circuit breaker element alarm/element state determination

6.6 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word represent the element status.

The next sections describe command - and status word arrangements.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

^{*)} The timer is reset on the rising edge of the command close or command open signal.

Integrated Platform Management System

Element Processing Specification

Preliminary

6.6.1 Command word HMI

Bit	Description
0	Close
1	Open
2	-
3	-
4	-
5	Manual
6	Auto
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 6-7 Circuit breaker element Command word HMI

6.6.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	Closed
0010	0-3	Opened
0011	0-3	-
0100	0-3	-
0101	0-3	Transition
0110	0-3	-
0111	0-3	-
1000	0-3	-
1001	0-3	Not Ready for Closing
1010	0-3	Not Ready for Opening
1011	0-3	Tripped
1100	0-3	Failed to close
1101	0-3	Failed to open
1110	0-3	Unknown
1111	0-3	Fault
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	Last command was: Close
	5	Last command was: Open
	6	-
	7	-
	8	-
	9	True = Hand / False = Auto
	10	True = Local / False = Remote
	11	-
	12	-
	13	-
	14	-
	15	-

Table 6-8 Circuit breaker element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 41 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Page 42 of 130

Preliminary

7. Control element (CTR)

7.1 Function

The control-element supports a button or checkbox object within the HMI. Buttons and checkboxes might be used by HMI mimics to achieve remote operator access relevant to control/configure a platform process. Whenever the state of a button or checkbox is toggled, a HMI command is send to the LPU involved with that process. If the IPMS accepts the command then this has to be designated by an element status change. To acknowledge the operator command the HMI uses the control element status for animation purposes regarding the button/checkbox symbol.

7.2 Interface

The element interface is shown by Figure 7-1.

Figure 7-1 Control-element interface

The next sections will specify the interface.

7.2.1 Platform interface

The platform is not involved with the CTR interface.

7.2.2 IPMS interface

The IPMS interface considering the CTR is shown by Table 7-1.

Name	Value
Input	
HMICommand	[Not activated Activated]
Process Status	[No fault Fault], [RFU Not RFU], [In transition Not in transition]
Output	
Process Command	[Not Activated Activated]
State Element	[Not RFU Not Applicable Normal Active Transition Fault]

Table 7-1 Control-element IPMS interface

7.3 Parameters

Parameter	Description	Unit	Value	Adjustable
TCtrl	Control timer	S		Yes

Table 7-2 Control element parameters

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

7.4 Processing

The element processing comprises the next functions:

- Element state determination;
- Platform control.

The processing is shown in Figure 7-2.

Figure 7-2 Control-element processing

The next sections describe the process functions.

7.4.1 Platform control

IF (HMICommand = Activated) THEN State Command = Activated for t = TCtrl.

END

7.4.2 Element state determination

The element state determination is shown in Table 7-3.

No fault	NRFU	Transition	Process Status	State element
Fault	X	X	X	Fault
No Fault	NRFU	X	X	Not RFU
No Fault	RFU	In transition	X	In transition
No Fault	RFU	Not in transition	Normal	Normal
No Fault	RFU	Not in transition	Active	Active

Table 7-3 Control-element state determination

7.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

7.5.1 Command word HMI

Bit	Description
0	Control button activated
1	-
2	-
3	-

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

Bit	Description
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 7-4 Control element Command word HMI

7.5.2 Status word

SM	Bit	Description
0000	0-3	-
0001	0-3	-
0010	0-3	Normal
0011	0-3	Active
0100	0-3	-
0101	0-3	Transition
0110	0-3	-
0111	0-3	-
1000	0-3	-
1001	0-3	Not Applicable
1010	0-3	Not Ready for Use
1011	0-3	-
1100	0-3	-
1101	0-3	-
1110	0-3	-
1111	0-3	Alarm
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Reserved
	9	1
	10	0
	11	-
	12	-
	13	-
	14	-
	15	-

Table 7-5 Control element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Ref. No.: 190134-4380-ELP-TSC

Date : April 2006

Page 44 of 130

Imtech Marine & Offshore B.V.

Copyright 2005 Imtech Marine & Offshore B.V.

Co.C. Rotterdam 24193093

Page 45 of 130

Preliminary

8. Digital Application Element (DAE)

8.1 Function

The discrete application-element is able to designate 15 different statuses either derived from a process or from the platform. Although alarm statuses may be indicated by the matching HMI symbol, the DAE itself is not capable of generating an alarm.

8.2 Interface

The DAE interface is shown by Figure 8-1.

Figure 8-1 Discrete application-element interface

The interfaces are described by the next paragraphs.

8.2.1 Platform interface

The platform interface is shown by Table 8-1.

Name	Value
Input	
State	['State 1' to 'State 15']

Table 8-1 Application-element IPMS interface

8.2.2 IPMS interface

The IPMS interface is shown by Table 8-2.

Name	Value
Input	
Command	[Disable Enable]
Output	
State element	[Disabled 'State 1'to 'State 15']

Table 8-2 Application-element IPMS interface

8.3 Parameters

No parameters apply to this element.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 46 of 130

Preliminary

8.4 Processing

The element processing comprises the next functions:

• Element state determination.

The processing is visualized by Figure 8-2.

Figure 8-2 Analogue application-element processing

The functions are described in the next paragraphs.

8.4.1 Element state determination

The alarm/element state determination is visualized by Table 8-3.

Command: Enabled/ Disabled	State	State element
Disabled	X	Disabled
Enabled	'State1'	'State1'
Enabled	'State2'	'State2'
Enabled	'State3'	'State3'
Enabled	'State4'	'State4'
Enabled	'State5'	'State5'
Enabled	'State6'	'State6'
Enabled	'State7'	'State7'
Enabled	'State8'	'State8'
Enabled	'State9'	'State9'
Enabled	'State10'	'State10'
Enabled	'State11'	'State11'
Enabled	'State12'	'State12'
Enabled	'State13'	'State13'
Enabled	'State14'	'State14'
Enabled	'State 15'	'State 15'

Table 8-3 Analogue Application Element state determination

8.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

8.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	Reserved
13	-
14	-
15	-

Table 8-4 Digital Application Element Command word HMI

8.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	'text 0' is displayed
0010	0-3	'text 1' is displayed
0011	0-3	'text 2' is displayed
0100	0-3	'text 3' is displayed
0101	0-3	'text 4' is displayed
0110	0-3	'text 5' is displayed
0111	0-3	'text 6' is displayed
1000	0-3	'text 7' is displayed
1001	0-3	'text 8' is displayed
1010	0-3	'text 9' is displayed
1011	0-3	'text 10' is displayed
1100	0-3	'text 11' is displayed
1101	0-3	'text 12' is displayed
1110	0-3	'text 13' is displayed
1111	0-3	'text 14' is displayed
	0	Status bit 0
	1	Status bit 1
	2 3	Status bit 2
		Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Reserved
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 8-5 Digital Application Element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 47 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Page 48 of 130

Preliminary

9. Motor Control Element (MCE)

9.1 Function

The Motor Control Element interfaces a motor starter unit on the platform. Though the MCE supports a wide range of platform components it usually processes the monitoring and control functions of a single speed motor.

9.2 Interface

The element interfacing is visualized by Figure 9-1.

Figure 9-1 Motor starter-element interface

The interfaces are described in the next paragraphs.

9.2.1 Platform interface

The platform interface of the element is shown in Table 9-1.

Name	Value	I/O specification		
Input				
State switch remote	[Local Remote]	DINO		
State switch running	[Running Not Running]	DINO		
State switch no fault	[No fault Fault]	DINC		
Output				
Control start	[Not activated Activated]	DO		
Control stop	[Not activated Activated]	DO		

Table 9-1 Motor starter-element platform interface

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

9.2.2 **IPMS** interface

The IPMS interface of the element is shown in Table 9-2.

Name	Value
Input	
Command start (application)	[Not activated Activated]
Command stop (application)	[Not activated Activated]
Command start (HMI)	[Not activated Activated]
Command stop (HMI)	[Not activated Activated]
Parameters	[Ttrans + Tctrl]
State manual/auto	[Manual Auto]
State element disabled	[Disabled Enabled]
State blackout	[Activated Not activated]
State restart	[Activated Not activated]
State value valid	[Valid Not valid]
Run conditions	[OK NOK]
RFU	[RFU Not RFU]
Output	
State alarm	[None Fault Unknown Failed to start Failed to stop]
State command	[None Command start Command stop]
State control position	[None Local Manual Auto]
State element	[Disabled Stopped Running Transition Not valid Not RFU Run failure
	Stop failure Unknown Motor fault]

Table 9-2 **Motor Control Element IPMS interface**

9.3 **Parameters**

The element parameters are listed by Table 9-3.

Parameter	Description	Unit	Value	Adjustable
Ttrans	Time allowed for stopped/running transition	S		Yes
Tctrl	Pulse length used for control	S		Yes

Table 9-3 **Motor Control Element parameters**

If Tctrl = 0, then the relevant output is driven continuously (I.e. not by a pulse) If Ttrans = 0, then no time-out alarm will be generated.

9.4 **Processing**

The element comprises the next functions:

- Alarm & element state determination;
- Control mode determination;
- Platform control.

These functions along with their interconnection are visualized by Figure 9-2.

190134-4380-ELP-TSC.doc Issue 0.2 April 2006 Ref.No.: 190134-4380-ELP-TSC Date

Copyright 2005 Imtech Marine & Offshore B.V. Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 **Integrated Platform Management System**

Element Processing Specification

Page 50 of 130

Preliminary

Figure 9-2 Motor Control Element processing

The next sections specify these functions.

9.4.1 Platform control

The element is controlled as defined by Table 9-4

State element disabled	Command (any)	Running Conditions	State switch RFU	Control mode	Platform control
Disabled	X	X	X	X	None
Enabled	None	X	X	X	None
Enabled	X	X	X	Local	None
Enabled	x	NOK	X	Auto	Stop
Enabled	x	NOK	X	Manual	Stop
Enabled	Command stop (Appl)	OK	X	Auto	Stop
Enabled	Command start (Appl)	OK	OK	Auto	Start
Enabled	Command start (Appl)	OK	NOK	Auto	None
Enabled	Any command (Appl)	OK	X	Manual	None
Enabled	Any command (HMI)	OK	X	Auto	None
Enabled	Command stop (HMI)	OK	X	Manual	Stop
Enabled	Command start (HMI)	OK	OK	Manual	Start
Enabled	Command start (HMI)	OK	NOK	Manual	Start

Table 9-4 Motor Control Element platform control

Whenever the element is (re-) initialised (LPU state toggles from offline to online) or when the element control mode is switched from 'local' to 'remote' or when the element is enabled then the desired state must be forced to match the actual state of the motor. In all other cases the desired state must keep up with the command input state.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

```
IF
      ((Initialising
                                                   ) OR
   (State switch remote
                        = Local -> Remote
                                                   ) OR
   (State element disabled = Disabled -> Enabled)) THEN
   IF (State switch running = running) AND (State switch RFU=RFU) THEN
      Desired State = Running;
   IF (State switch running = Not running) AND (State switch RFU=RFU) THEN
      Desired State = Stop;
   END
ELSE
      IF Command Start THEN Desired State = Running
      IF Command Stop THEN Desired State = Stop
END
```

9.4.1.1 **Embedded control functions**

Run Conditions

For safety reasons the motor might have to be forced to stop despite its desired 'Run' state. Element processing supports this by providing a 'Run conditions' input. As soon as the run conditions are not met anymore this input must be deactivated to stop the motor provided that the element is controlled by the LPU (I.e the control mode is not local). However since the desired state is still 'Run' a run failure alarm will be generated after t = Ttrans if Ttrans > 0.

This function is not to be confused with the 'State switch RFU' input. Although the 'Ready For Use' input needs to be in state RFU before it is possible to start the motor it won't stop once it is running whenever this input toggles to state 'Not Ready For Use' (NRFU).

Power Management support

```
The element supports the next blackout functions:
IF (State Blackout = Activated) THEN
       Failed to run alarm is suppressed
       Desired State line up sequence is disabled
       IF (State Restart = Activated) AND (Desired State = Run) THEN
             Motor is restarted
       END
END
```

9.4.2 **Control mode determination**

The control mode is determined by the Remote/Local switch and the Manual/Auto switch as shown in Table 9-5.

State switch	State switch	Control mode
remote	Manual/Auto	
Local	X	Local
Remote	Manual	Manual
Remote	Auto	Auto

Table 9-5 **Motor Control Element control mode determination**

190134-4380-ELP-TSC.doc Issue 0.2 April 2006 Ref.No.: 190134-4380-ELP-TSC

Integrated Platform Management System

Element Processing Specification

Preliminary

9.4.3 Alarm/element state determination

The alarm/element state determination is shown in Table 9-6.

State element disabled	State value Valid	State switch No fault	State switch remote	State switch RFU	Desired State	State switch running	Ttrans	Transition timer	State alarm	State
Disabled Enabled	x Not	X X	X X	x x	X X	X X	X X	X X	None None	Disabled Invalid
Enabled Enabled Enabled	valid Valid Valid Valid	Fault Fault No	x x Local	X X X	X X X	x Running Not	X X X	X X X	Fault Unknown None	Fault Unknown Stopped
Enabled	Valid	fault No fault	Local	Х	х	running Running	X	x	None	Running
Enabled	Valid	No fault	Rem.	Not RFU	Х	x	х	х	None	Not RFU
Enabled	Valid	No fault	Rem.	RFU	None	Not running	X	Х	None	Stopped
Enabled	Valid	No fault	Rem.	RFU	None	Running	X	X	None	Running
Enabled	Valid	No fault	Rem.	RFU	Stop	Running	>0	< Ttrans	None	Transition
Enabled	Valid	No fault	Rem.	RFU	Stop	Running	>0	>= Ttrans	Stop failure	Stop failure
Enabled	Valid	No fault	Rem.	RFU	Stop	Not running	>0	X	None	Stopped
Enabled	Valid	No fault	Rem.	RFU	Stop	Running	=0	X	None	Running
Enabled	Valid	No fault	Rem.	RFU	Run	Not running	>0	< Ttrans	None	Transition
Enabled	Valid	No fault	Rem.	RFU	Run	Not running	>0	>= Ttrans	Start failure	Run failure
Enabled	Valid	No fault	Rem.	RFU	Run	Running	>0	X	None	Running
Enabled	Valid	No fault	Rem.	RFU	Run	Not Running	=0	X	None	Stopped

Table 9-6 Motor Control Element alarm/element state determination

9.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

9.5.1 Command word HMI

Bit	Description
0	Stop
1	Start
2	-

 File : 190134-4380-ELP-TSC.doc
 Issue : 0.2

 Ref.No. : 190134-4380-ELP-TSC
 Date : April 2006

^{*)} The timer is reset on a positive edge of the command stop or command start signal.

Integrated Platform Management System

Element Processing Specification

Page 53 of 130

Preliminary

Table 9-7 Motor control element Command word HMI

9.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	Stopped
0010	0-3	Running
0011	0-3	-
0100	0-3	-
0101	0-3	Transition
0110	0-3	-
0111	0-3	-
1000	0-3	Not valid
1001	0-3	-
1010	0-3	Not Ready for use
1011	0-3	-
1100	0-3	Run failure
1101	0-3	Stop failure
1110	0-3	Unknown
1111	0-3	Motor fault
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	Last command was: stop
	5	Last command was: start
	6	-
	7	-
	8	Alarm inhibited
	9	True = Hand / False = Auto
	10	True = Local / False = Remote
	11	-
	12	-
	13	-
	14	-
	15	-

Table 9-8 Motor control element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 54 of 130

Preliminary

10. Dual speed Motor Control element (MCD)

10.1 Function

The dual speed motor control element interfaces a motor starter unit that supports a dual speed motor. I.e. the motor either runs at low/high speed or in two different directions.

10.2 Interface

The element interface is visualized by Figure 10-1.

Figure 10-1 Motor starter dual speed-element interface

The next sections specify the interface.

Integrated Platform Management System

Element Processing Specification

Page 55 of 130

Preliminary

10.2.1 Platform interface

The involved platform IO is listed by Table 10-1.

Name	Value	I/O specification
Input		
State switch speed 1	[Running speed 1 Not running speed 1]	DINO
State switch speed 2	[Running speed 2 Not running speed 2]	DINO
State switch remote	[Local Remote]	DINO
State switch no fault	[Fault No fault]	DINC
Output		
Control start speed 1	[Not activated Activated]	DO
Control start speed 2	[Not activated Activated]	DO
Control stop	[Not activated Activated]	DO

Table 10-1 Motor starter dual speed-element platform interface

10.2.2 IPMS interface

The involved IPMS links are listed by Table 10-2.

Name	Value
Input	
Command start speed 1 (appl)	[Not activated Activated]
Command start speed 2 (appl)	[Not activated Activated]
Command stop (appl)	[Not activated Activated]
Command start speed 1 (HMI)	[Not activated Activated]
Command start speed 2 (HMI)	[Not activated Activated]
Command stop (HMI)	[Not activated Activated]
Parameters	[Ttrans + Tctrl + Tro]
State blackout	[Activated Not activated]
State restart	[Activated Not activated]
State manual / auto	[Manual Auto]
State element disabled	[Disabled Enabled]
State value valid	[Valid Not valid]
RFU	[RFU Not RFU]
Running conditions	[Activated Not activated]
Output	
State alarm	[None Fault Unknown Failed to run at 'Speed 2' while running at
	'Speed 1' Failed to run at 'Speed 1' while running at 'Speed 2' Failed to stop while running at 'Speed 2' Stopped – Failed to run at 'Speed 2'
	Stopped – Failed to run at 'Speed 1' Failed to stop while running at
	'Speed 1']
State command	[None Command start speed 1 Command start speed 2 Command stop]
State control position	[None Local Manual Auto]
State element	[Disabled Stopped Running speed 1 Running speed 2 Transition Not
	valid Not RFU Failed to run at 'Speed 2' while running at 'Speed 1'
	Failed to run at 'Speed 1' while running at 'Speed 2' Failed to stop while
	running at 'Speed 2' Stopped – Failed to run at 'Speed 2' Stopped – Failed
	to run at 'Speed 1' Failed to stop while running at 'Speed 1' Unknown
	Motor fault]

Table 10-2 Motor starter dual speed-element IPMS interface

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 56 of 130

Preliminary

10.3 Parameters

The element parameters are summarized by Table 10-3.

Parameter	Description	Unit	Value	Adjustable
Ttrans	Time delay on transition	S		Yes
Tetrl	Pulse control length	S		Yes
Tro	Run out time	s		Yes

Table 10-3 Motor starter dual speed-element parameters

If Tctrl = 0, then the relevant output is driven continuously (I.e. not by a pulse)

If Ttrans = 0, then no time-out alarm will be generated.

10.4 Processing

The element processing comprises the next functions:

- Alarm & element state determination;
- Control mode determination;
- Platform control.

Figure 10-2 Motor starter dual speed-element processing

The functions are described in the next paragraphs.

10.4.1 Platform control

The element is controlled according to Table 10-4

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 57 of 130

Preliminary

State	Command	Running	State switch	Control mode	Platform control
element		Conditions	RFU		
disabled					
Disabled	X	X	X	X	None
Enabled	None	X	X	X	None
Enabled	X	X	X	Local	None
Enabled	X	NOK	X	Auto	Stop
Enabled	x	NOK	X	Manual	Stop
Enabled	Command stop (Appl)	X	X	Auto	Stop
Enabled	Command start speed 1 (Appl)	OK	OK	Auto	Start speed 1
Enabled	Command start speed 1 (Appl)	OK	NOK	Auto	None
Enabled	Command start speed 2 (Appl)	OK	OK	Auto	Start speed 2
Enabled	Command start speed 2 (Appl)	OK	NOK	Auto	None
Enabled	Any command from the appl.	OK	X	Manual	None
Enabled	Any command from the HMI	OK	X	Auto	None
Enabled	Command stop (HMI)	X	X	Manual	Stop
Enabled	Command start speed 1 (HMI)	OK	OK	Manual	Start speed 1
Enabled	Command start speed 1 (HMI)	OK	NOK	Manual	None
Enabled	Command start speed 2 (HMI)	OK	OK	Manual	Start speed 2
Enabled	Command start speed 2 (HMI)	OK	NOK	Manual	None

Table 10-4 Motor starter dual speed-element platform control

10.4.1.1 Embedded control functions

Running Conditions

For safety reasons the motor might need to stop despite its desired 'Running Speed 1' or 'Running Speed 2' state. Element processing supports this by providing a 'Run conditions' input. As soon as the run conditions are not met anymore the input will be deactivated causing the motor to stop provided that the element is controlled by the LPU (I.e the control mode is not local). However since the desired state is still 'Running Speed 1' or "Running Speed 2' a run failure alarm will be generated after t = Ttrans if Ttrans > 0.

This function is not to be confused with the 'State switch RFU' input. Although the 'Ready For Use' input needs to be in state RFU before it is possible to start the motor it won't stop once it is running whenever this input toggles to state 'Not Ready For Use' (NRFU).

```
Power Management support
```

```
The element supports the next blackout functions:

IF (State Blackout = Activated) THEN

Failed to run alarms are suppressed

Line up sequence concerning the 'Desired State' is disabled

IF (State Restart = Activated) THEN

IF (Desired State = Running Speed 1) THEN

Motor is restarted at Speed 1

ELSEIF (Desired State = Running Speed 2) THEN

Motor is restarted at Speed 2

END

END

END
```

Whenever the element is (re-) initialised (LPU state toggles from offline to online) or when the element control mode is switched from 'local' to 'remote' or when the element is enabled then the desired state must be forced to match the actual state of the motor. In all other cases the desired state must keep up with the command input state.

 File:
 190134-4380-ELP-TSC.doc
 Issue:
 0.2

 Ref.No.:
 190134-4380-ELP-TSC
 Date:
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Imtech Marine & Offshore B.V.

C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

IF ((Initialising) OR (State switch remote = Local -> Remote) OR (State element disabled = Disabled -> Enabled)) THEN

IF (State switch speed 1 = Open) And (State switch speed 2 = Closed) And (State switch RFU=Open) THEN Desired state = Running speed 2;

IF (State switch speed 1 = Closed) And (State switch speed 2 = Open) And (State switch RFU=Open) THEN Desired state = Running speed 1;

END

IF (State switch speed 1 = Open) And (State switch speed 2 = Open) And (State switch RFU=Open) THEN Desired state = Stop;

END

END

10.4.2 **Control mode determination**

The control mode is determined by the Remote/Local switch and the Manual/Auto switch as shown in Table 10-5.

State switch Remote	State Manual / Auto	Control mode
Local	X	Local
Remote	Manual	Manual
Remote	Auto	Auto

Table 10-5 Motor starter dual speed-element control mode determination

10.4.3 Value/element state determination

State element disabled	State value valid	State switch no fault	State switch remote	State switch RFU	Desired State	State switch speed 2	State switch speed 1	Ttrans	Transition timer *)	State alarm	State element
Disabled	X	X	X	X	X	X	X	X	X	None	Disabled
Enabled	Not valid	X	х	Х	X	X	X	Х	Х	None	Not valid
Enabled	Valid	Fault	X	X	X	X	X	X	X	Fault	Fault
Enabled	Valid	Fault	X	X	X	Speed 2	X	X	X	Unknown	Unknown
Enabled	Valid	Fault	X	X	X	X	Speed 1	X	X	Unknown	Unknown
Enabled	Valid	No fault	X	X	X	Speed 2	Speed 1	X	X	Unknown	Unknown
Enabled	Valid	No fault	Loc	X	X	Speed 2	Not Speed 1	X	x	None	Speed 2
Enabled	Valid	No fault	Loc	X	X	Not Speed 2	Speed 1	X	х	None	Speed 1
Enabled	Valid	No fault	Loc	X	X	Not Speed 2	Not Speed 1	X	x	None	Stopped
Enabled	Valid	No fault	Rem	Not RFU	X	X	X	Х	х	None	Not RFU
Enabled	Valid	No fault	Rem	RFU	None	Not Speed 2	Not Speed 1	Х	x	None	Stopped
Enabled	Valid	No fault	Rem	RFU	None	Speed 2	Not Speed 1	X	х	None	Speed 2
Enabled	Valid	No fault	Rem	RFU	None	Not Speed 2	Speed 1	Х	x	None	Speed 1
Enabled	Valid	No fault	Rem	RFU	Stop	Not Speed 2	Not Speed 1	X	х	None	Stopped
Enabled	Valid	No fault	Rem	RFU	Stop	Speed 2	Not	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition

190134-4380-ELP-TSC.doc

Copyright 2005 Imtech Marine & Offshore B.V.

Issue 0.2 Ref.No.: 190134-4380-ELP-TSC April 2006

Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Page 59 of 130

Preliminary

State element disabled	State value valid	State switch no fault	State switch remote	State switch RFU	Desired State	State switch speed 2	State switch speed 1	Ttrans	Transition timer	State alarm	State element
Enabled	Valid	No fault	Rem	RFU	Stop	Speed 2	Speed 1 Not Speed 1	>0	t=>Ttrans	Speed 2 – Failed to stop	Speed 2 – Failed to stop
Enabled	Valid	No fault	Rem	RFU	Stop	Speed 2	Not Speed 1	=0	X	None	Speed 2
Enabled	Valid	No fault	Rem	RFU	Stop	Not Speed 2	Speed 1	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Valid	No fault	Rem	RFU	Stop	Not Speed 2	Speed 1	>0	t>=Ttrans	Speed 1 – Failed to stop	Speed 1 – Failed to stop
Enabled	Valid	No fault	Rem	RFU	Speed 2	Not Speed 2	X	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Valid	No fault	Rem	RFU	Speed 2	Not Speed 2	X	>0	t>=Ttrans	Speed 2 failure	Speed 2 failure
Enabled	Valid	No fault	Rem	RFU	Speed 2	Speed 2	Not Speed 1	>0	X	None	Speed 2
Enabled	Valid	No fault	Rem	RFU	Speed 1	X	Not Speed 1	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Valid	No fault	Rem	RFU	Speed 1	X	Not Speed 1	>0	t>=Ttrans	Speed 1 failure	Speed 1 failure
Enabled	Valid	No fault	Rem	RFU	Speed 1	Not Speed 2	Speed 1	>0	Х	None	Speed 1

Table 10-6 Motor starter dual speed-element alarm/element state determination

10.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

10.5.1 Command word HMI

Bit	Description
0	Stop
1	Speed 1
2	Speed 2
3	-
4	-
5	Manual
6	Auto
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 10-7 Motor starter dual speed-element Command word HMI

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

^{*)} The timer is reset on a positive edge of the command stop, start speed 2 or start speed 1 signal.

Integrated Platform Management System

Element Processing Specification

Preliminary

10.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	Stopped
0010	0-3	Running Speed 1
0011	0-3	Running Speed 2
0100	0-3	-
0101	0-3	Transition
0110	0-3	Not Valid
0111	0-3	Speed 2 – Failed to speed 1
1000	0-3	Speed 1 – Failed to speed 2
1001	0-3	Speed 1 – Failed to stop
1010	0-3	Not Ready for use
1011	0-3	Stopped – Failed to speed 1
1100	0-3	Stopped – Failed to speed 2
1101	0-3	Speed 2 – Failed to stop
1110	0-3	Undetermined
1111	0-3	Motor fault
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	Last command was: stop
	5	Last command was: Speed 1
	6	Last command was: Speed 2
	7	-
	8	-
	9	True = Hand / False = Auto
	10	True = Local / False = Remote
	11	-
	12	-
	13	-
	14	-
	15	-

Table 10-8 Motor starter dual speed-element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 60 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 **Integrated Platform Management System**

Element Processing Specification

Page 61 of 130

Preliminary

11. Motor Control Standby-element (MCS)

11.1 Function

The motor starter standby-element manages the control and monitoring functions relevant to of a motor starter with standby functionality. I.e. the motor is started automatically if certain conditions are met provided that the element state is 'Standby'.

11.2 Interface

The element interface is shown by Figure 11-1.

Figure 11-1 Motor Control Standby-element interface

The interfaces are described in the next paragraphs.

11.2.1 Platform interface

The element platform interface is shown by Table 11-1.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 62 of 130

Preliminary

Name	Value	I/O specification
Input		
State switch remote	[Local Remote]	DINO
State switch running	[Running Not Running]	DINO
State switch standby	[Standby Not Standby]	DINO
State switch no fault	[Fault No fault]	DINC
Output		
Control standby	[Not activated Activated]	DO
Control start	[Not activated Activated]	DO
Control stop	[Not activated Activated]	DO

Table 11-1 Motor Control Standby-element platform interface

11.2.2 IPMS interface

The IPMS interface is listed by Table 11-2.

Name	Value
Input	
Command standby (appl)	[Not activated Activated]
Command start (appl)	[Not activated Activated]
Command stop (appl)	[Not activated Activated]
Command standby (HMI)	[Not activated Activated]
Command start (HMI)	[Not activated Activated]
Command stop (HMI)	[Not activated Activated]
State blackout	[Activated Not activated]
State restart	[Activated Not activated]
State value valid	[Valid Not valid]
Parameters	[Ttrans + Tctrl]
State manual /auto	[Manual Auto]
State element disabled	[Disabled Enabled]
State switch RFU	[RFU Not RFU]
Run conditions	[OK NOK]
Output	
State alarm	[None Fault Running – Failed to Standby Standby – Failed to Start Standby –
	Failed to stop Stopped – Failed to Standby Stopped – Failed to Start Running
	- Failed to Stop Unknown]
State command	[None Command standby Command start Command stop]
State control position	[None Local Manual Auto]
State element	[Disabled Stopped Running Standby Transition Not valid Not RFU
	Running – Failed to Standby Standby – Failed to Start Standby – Failed to stop
	Stopped – Failed to Standby Stopped – Failed to Start Running – Failed to
	Stop Unknown Fault]

Table 11-2 Motor Control Standby-element IPMS interface

11.3 Parameters

The element parameters are summarized by Table 11-3.

Parameter	Description	Unit	Value	Adjustable
Ttrans	Time delay on transition	S		Yes
Tetrl	Control pulse length	S		Yes

Table 11-3 Motor Control Standby-element parameters

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 63 of 130

Preliminary

If Tctrl = 0, then the relevant output is driven continuously (I.e. not by a pulse) If Ttrans = 0, then no time-out alarm will be generated.

11.4 Processing

The element processing comprises the next functions:

- Alarm & element state determination;
- Control mode determination;
- Platform control.

The element processing functions along with their internal links are visualized by Figure 11-2.

Figure 11-2 Motor Control Standby-element processing

The next sections specify these functions.

11.4.1 Platform control

The element is controlled as shown in Table 11-4.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

State	Command	Run	State Switch	Control mode	Platform control
element		Conditions	RFU		
disabled					
Disabled	X	X	X	X	None
Enabled	None	X	X	X	None
Enabled	x	X	X	Local	None
Enabled	x	NOK	X	Auto	Stop
Enabled	x	NOK	X	Manual	Stop
Enabled	Command Stop (Appl)	X	X	Auto	Stop
Enabled	Command Start (Appl)	OK	RFU	Auto	Start
Enabled	Command Start (Appl)	OK	NRFU	Auto	None
Enabled	Command Standby (Appl)	X	RFU	Auto	Standby
Enabled	Any command from the appl.	X	X	Manual	None
Enabled	Any command from the HMI	X	X	Auto	None
Enabled	Command Stop (HMI)	X	X	Manual	Stop
Enabled	Command Start (HMI)	OK	RFU	Manual	Start
Enabled	Command Start (HMI)	OK	NRFU	Manual	None
Enabled	Command Standby (HMI)	X	RFU	Manual	Standby

Table 11-4 Motor Control Standby-element platform control

11.4.1.1 Embedded control functions

Run Conditions

For safety reasons the motor might have to be forced to stop despite its desired run or standby state. Element processing supports this by providing a 'Running conditions' input. As soon as the running conditions are not met anymore the input will be deactivated causing the motor to stop provided that the element is controlled by the LPU (I.e the control mode is not local). However since the desired state is still 'Run' or 'Standby' a 'run failure' or 'failed to standby' alarm will be generated after t = Ttrans if Ttrans > 0.

This function is not to be confused with the 'State switch RFU' input. Although the 'Ready For Use' input needs to be in state RFU before it is possible to start the motor it won't stop once it is running whenever this input toggles to state 'Not Ready For Use' (NRFU).

Power Management support

```
The element support the next blackout functions:

IF (State Blackout = Activated) THEN
Failed to run alarms are suppressed
Line up sequence concerning the 'Desired State' is disabled
IF (State Restart = Activated) THEN

IF (Desired State = Start) THEN

Motor is restarted
ELSEIF (Desired State = Standby) THEN

Motor is set to standby
END
END
```

Whenever the element is (re-) initialised (LPU state toggles from offline to online) or when the element control mode is switched from 'local' to 'remote' or when the element is enabled then the desired state must be forced to match the actual state of the motor. In all other cases the desired state must keep up with the command input state.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 64 of 130

Integrated Platform Management System

Element Processing Specification

Preliminary

IF ((Initialising) OR (State switch remote = Local -> Remote) OR (State element disabled = Disabled -> Enabled)) THEN

IF (State switch standby = Closed) AND (State switch running = Open) AND (State switch RFU=Open) THEN Desired State = Standby;

END

IF (State switch standby = Open) AND (State switch running = Closed) AND (State switch RFU=Open) THEN Desired State = Start;

END

IF (State switch standby = Open) AND (State switch running = Open) AND (State switch RFU=Open) THEN Desired State = Stop;

END

END

11.4.2 Control mode determination

The control mode is determined by the Remote/Local switch and the Manual/Auto switch as shown in Table 11-5.

State switch	State switch	Control mode
Remote	manual / auto	
Local	X	Local
Remote	Manual	Manual
Remote	Auto	Auto

Table 11-5 Motor Control Standby-element control position determination

11.4.3 Alarm/element state determination

The alarm/element state determination is shown in Table 11-6.

State element disabled	State value valid	State switch no fault	State switch remote	State switch RFU	Desired State	State switch running	State switch standby	Ttrans	Transition timer *)	State alarm	State element
Disabled	X	X	X	X	X	X	X	X	X	None	Disabled
Enabled	Not valid	X	X	X	X	X	X	Х	X	None	Invalid
Enabled	Valid	Fault	X	X	X	X	X	X	X	Fault	Fault
Enabled	Valid	Fault	X	X	X	Running	X	X	X	Unknown	Unknown
Enabled	Valid	Fault	X	X	X	X	Standby	X	X	Unknown	Unknown
Enabled	Valid	No fault	X	X	X	Running	Standby	Х	Х	Unknown	Unknown
Enabled	Valid	No fault	Local	X	X	Not running	Not Standby	Х	X	Not Standby	Stopped
Enabled	Valid	No fault	Local	X	X	Running	Not Standby	х	x	None	Running
Enabled	Valid	No fault	Local	X	X	Not running	Standby	х	x	None	Standby
Enabled	Valid	No fault	Rem	Not RFU	X	Х	X	х	x	None	Not RFU
Enabled	Valid	No fault	Rem	RFU	None	Not running	Not Standby	х	x	Not Standby	Stopped
Enabled	Valid	No fault	Rem	RFU	None	Not running	Standby	х	x	None	Standby
Enabled	Valid	No fault	Rem	RFU	None	Running	Not Standby	х	X	None	Running
Enabled	Valid	No	Rem	RFU	Stop	Not	Not	>0	X	Not Standby	Stopped

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

State element disabled	State value valid	State switch no fault	State switch remote	State switch RFU	Desired State	State switch running	State switch standby	Ttrans	Transition timer *)	State alarm	State element
		fault				running	Standby				
Enabled	Valid	No fault	Rem	RFU	Stop	Running	Not Standby	>0	<ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Valid	No fault	Rem	RFU	Stop	Running	Not Standby	>0	>=Ttrans	Running – Failed to stop	Stop failure
Enabled	Valid	No fault	Rem	RFU	Stop	Running	Not Standby	=0	>=Ttrans	None	Running
Enabled	Valid	No fault	Rem	RFU	Stop	Not running	Standby	>0	<ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Valid	No fault	Rem	RFU	Stop	Not running	Standby	>0	>=Ttrans	Standby – Failed to stop	Standby – Failed to Stop
Enabled	Valid	No fault	Rem	RFU	Start	Running	Not Standby	>0	х	None	Running
Enabled	Valid	No fault	Rem	RFU	Start	Not running	X	>0	<ttrans< td=""><td>Not Standby</td><td>Transition</td></ttrans<>	Not Standby	Transition
Enabled	Valid	No fault	Rem	RFU	Start	Not running	Х	>0	>=Ttrans	Start failure	Start failure
Enabled	Valid	No fault	Rem	RFU	Stand by	Not running	Standby	>0	x	None	Standby
Enabled	Valid	No fault	Rem	RFU	Stand by	х	Not Standby	>0	<ttrans< td=""><td>Not Standby</td><td>Transition</td></ttrans<>	Not Standby	Transition
Enabled	Valid	No fault	Rem	RFU	Stand by	Х	Not Standby	>0	>=Ttrans	Standby failure	Standby failure

Table 11-6 Motor Control Standby-element alarm/element state determination

11.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

11.5.1 Command word HMI

Bit	Description
0	Stop
1	Start
2	Standby
3	-
4	-
5	Manual
6	Auto
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

^{*)} The timer is reset on a positive edge of the command stop, Command start or command standby signal. For specific standby-elements the alarm state "Auto start" can be suppressed. These elements should be defined at system configuration.

Integrated Platform Management System

Element Processing Specification

Page 67 of 130

Preliminary

Bit	Description
14	-
15	Parameter update request

Table 11-7 Motor Control Standby-element Command word HMI

11.5.2 Status word

SM	Bit	Description							
0000	0-3	Element disabled							
0001	0-3	Stopped							
0010	0-3	Running							
0011	0-3	Running Standby							
0100	0-3	-							
0101	0-3	Transition							
0110	0-3	Not valid							
0111	0-3	Running – Failed to Standby							
1000	0-3	Standby – Failed to Start							
1001	0-3	Standby – Failed to Stop							
1010	0-3	Not Ready for use							
1011	0-3	Stopped – Failed to Standby							
1100	0-3	Stopped – Failed to Start							
1101	0-3	Running – Failed to Stop							
1110	0-3	Unknown							
1111	0-3	Motor fault							
	0	Status bit 0							
	1	Status bit 1							
	2	Status bit 2							
	3	Status bit 3							
	4	Last command was: stop							
	5	Last command was: start							
	6	Last command was: standby							
	7	-							
	8	Alarm inhibited							
	9	True = Hand / False = Auto							
	10	True = Local / False = Remote							
	11	-							
	12	-							
	13	-							
	14	-							
	15	-							

Table 11-8 Motor Control Standby-element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Page 68 of 130

Preliminary

12. Running hours-element (RHE)

12.1 Function

The RHE element is used to count up the hours whenever a platform component is in operation. If the relevant platform component is in operation, the value will accumulate. The operator can reset the counter provided that he is authorized to. This might be of use in case the platform component is replaced or overhauled. In case the accumulated value is lost the last known value may be put in. This is realized by setting the offset parameter. Again the operator must have sufficient privileges to do so.

12.2 Interface

The interface of the element is shown in Figure 12-1.

Figure 12-1 Running hours-element interface

The interfaces are described in the next paragraphs.

12.2.1 Platform interface

A platform interface doesn't apply to the RHE.

12.2.2 IPMS interface

The IPMS interface is shown by Table 12-1.

Name	Value
Input	
Command reset	[Not activated Activated]
Parameters	[OFFSET]
Enable counting	[Not enabled Enabled]
State element disabled	[Disabled Enabled]
Output	
State element	[Disabled Stopped Counting]
Value element	Value in hours

Table 12-1 Running hours-element IPMS interface

12.3 Parameters

The element parameters are shown in Table 12-2.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Page 69 of 130

Preliminary

Parameter	Description	Unit	Value	Adjustable
OFFSET	Offset on running hours value	Hours		Yes

Table 12-2 Running hours-element parameters

12.4 Processing

The element processing comprises the next functions:

- Element state determination;
- Running hours determination.

The processing is shown in Figure 12-2.

Figure 12-2 Running hours-element processing

The next sections specify these functions.

12.4.1 Element state determination and Running hours determination

The element state determination is shown in Table 12-3.

State element disabled	Enable counting	Command	State element	Value element
Disabled	X	X	Disabled	Unavailable
Enabled	Not enabled	Not Activated	Stopped	OFFSET + Accumulated value (stopped)
Enabled	X	Activated	-	OFFSET
Enabled	Enabled	Not activated	Counting	OFFSET + Accumulated value (counting)

Table 12-3 Running hour-element element state determination

12.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 70 of 130

Preliminary

12.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	Reset counter
11	-
12	-
13	-
14	-
15	Parameter update request

Table 12-4 Running hours element Command word HMI

12.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	Stopped
0100	0-3	Counting
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Reserved
1001	0-3	Reserved
1010	0-3	Reserved
1011	0-3	Reserved
1100	0-3	Reserved
1101	0-3	Reserved
1110	0-3	Reserved
1111	0-3	Reserved
	0	Status bit 0
	1	Status bit 1
	2 3	Status bit 2
		Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Reserved
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 12-5 Running hours element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 71 of 130

Preliminary

13. Serial Application Element (SAE)

13.1 Function

Like the AAE type element (See section 4) the SAE is able to manage all functions necessary to interface an analogue value that is derived from another application. However, unlike the AAE element the SAE type does no alarm detection by itself. This is especially useful in case an external system (with a native controller inside) not only provides the analogue value but its relevant alarm statuses as well. The SAE is able to interface both the analogue value and the alarm statuses and will forward all these to the HMI in a proper way.

13.2 Interface

The element interface is visualized by Figure 13-1.

Figure 13-1 Serial Application Element interface

The next sections specify the interfaces.

13.2.1 Platform interface

A platform interface does not apply to this element.

13.2.2 IPMS interface

The IPMS interface is shown by Table 13-1

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 72 of 130

Preliminary

Name	Value
Input	
Value application	Value from external application (raw)
State element disabled	[Disabled Enabled]
State display stationary value	[Display stationary value Display value element]
State alarm inhibited	[Inhibited Not inhibited]
Parameters	[SF + STA]
State value valid	[Valid Invalid]
State wire break	[Wire break No wire break]
State low alarm	[Low Alarm No Alarm]
State high alarm	[High Alarm No Alarm]
State highhigh alarm	[Highhigh Alarm No Alarm]
Output	
State alarm	[None HHA HA LA Wire break]
State element	[Disabled None Not valid Wire break LA HA HHA]
Value element	Scaled value in EU

Table 13-1 Serial Application Element IPMS interface

13.3 Parameters

The element parameters are shown in Table 13-2

Parameter	Description	Unit	Value	Adjustable
SF	Scale factor	-		Yes
STA	Stationary Value			No

Table 13-2 Serial Application Element parameters

13.4 Processing

The element processing comprises the next functions:

- Application Value conversion
- Value selection
- Alarm/element state determination.

These functions along with their interconnections are visualized by Figure 13-2

Figure 13-2 Serial Application Element processing

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 73 of 130

Preliminary

The next sections specify these functions.

13.4.1 Application value conversion

IF (State element disabled = disabled) OR (Value application valid = invalid) THEN Value = Unavailable;

ELSE

Value = Value application / SF;

END

13.4.2 Value selection

IF (State display stationary value = display stationary value) THEN Value HMI = Stationary value;

ELSE

Value HMI = Value Element;

END

13.4.3 Alarm/element state determination

The alarm/element state determination is shown in Table 13-3

State element Disabled	State value Valid	State alarm inhibited	Wire Break	ННА	НА	LA	State alarm	State element
Disabled	X	X	X	X	X	X	None	Disabled
Enabled	Invalid	X	X	X	X	X	None	Invalid
Enabled	Valid	Inhibited	X	X	X	1	Inhibited	Value OK
Enabled	Valid	Inhibited	X	X	1	X	Inhibited	Value OK
Enabled	Valid	X	X	1	X	X	HHA	HHA
Enabled	Valid	X	1	X	X	X	Wire break	Wire break
Enabled	Valid	Not inhibited	0	0	0	1	LA	LA
Enabled	Valid	Not inhibited	0	0	1	0	HA	HA
Enabled	Valid	Not inhibited	0	0	0	0	None	Value OK

Table 13-3 Serial Application Element alarm/element state determination

13.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 74 of 130

Preliminary

13.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 13-4 Serial Application Element Command word HMI

13.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Normal
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Not valid
1001	0-3	Reserved
1010	0-3	Reserved
1011	0-3	Alarm wire break
1100	0-3	Alarm low
1101	0-3	Alarm high
1110	0-3	Reserved
1111	0-3	Reserved
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Alarm inhibited
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 13-5 Serial Application Element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Preliminary

14. **Switch Event Element (SEE)**

14.1 Function

The Switch Event Element is used to count the number of switch events of a platform component. If a relevant change of state of the component is detected a positive edge applied on the event input will increment the count by one. The operator can reset the counter provided that he is authorized to. This might be of use in case the relevant component has been replaced of overhauled. In case the accumulated value is lost the last known value may be put in by setting an offset parameter. Again the operator needs sufficient privileges to able to.

14.2 Interface

The interface of the element is shown in Figure 14-1.

Figure 14-1 Switch Event Element interface

The interfaces are described in the next paragraphs.

Platform interface

This element has no platform interface.

14.2.2 **IPMS** interface

The IPMS interface of the element is shown in Table 14-1.

Name	Value
Input	
Command reset	[Not activated Activated]
Parameters	[OFFSET]
Event input	[Not activated Activated]
State element disabled	[Disabled Enabled]
Output	
State element	[Disabled Counting Normal]
Value element	Number of events

Table 14-1 Switch Event Element IPMS interface

14.3 Parameters

The parameters of the element are shown in Table 14-2.

Parameter	Description	Unit	Value	Adjustable
OFFSET	Offset on switching event counter	Events	0	Yes

Table 14-2 Switch Event Element parameters

190134-4380-ELP-TSC.doc Issue 0.2 Ref.No.: 190134-4380-ELP-TSC Date April 2006

Page 75 of 130

TNI-AL Indonesia Corvette Integrated Platform Management System

Element Processing Specification

Page 76 of 130

Preliminary

14.4 Processing

The element processing comprises the next functions:

- Element state determination;
- Switch events determination.

The processing is shown in Figure 12-2.

Figure 14-2 Switch Event Element processing

The next sections specify these functions

14.4.1 Switch Events determination

IF (Event Input = Activated) THEN

Value element = Value element + 1

ELSEIF

(Command reset = Activated) OR (Value element > 2147483647) THEN

Value element = 0;

ELSE

Value element is unchanged

END

14.4.2 Element state determination

The element state determination is shown in Table 14-3

State	Event input	State element
element		
disabled		
Disabled	X	Disabled
Enabled	X	Normal

Table 14-3 Switch Event Element state determination

14.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

14.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	Reset counter
11	-
12	-
13	-
14	-
15	Parameter update request

Table 14-4 Command word HMI

14.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Normal
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Reserved
1001	0-3	Reserved
1010	0-3	Reserved
1011	0-3	Reserved
1100	0-3	Reserved
1101	0-3	Reserved
1110	0-3	Reserved
1111	0-3	Reserved
	0	Status bit 0
	1	Status bit 1
	2 3	Status bit 2
		Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Reserved
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 14-5 Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 78 of 130

Preliminary

15. Setpoint Element (SPE)

15.1 Function

The setpoint element supports numerical input from remote. By using this element a remote operator is able to readjust setpoint values regarding a certain process.

15.2 Interface

The element interface is shown in Figure 15-1.

Figure 15-1 Setpoint Element interface

The next sections specify the setpoint element interface signals.

15.2.1 Platform interface

A platform interface doesn't apply to this element

15.2.2 IPMS interface

The IPMS interface is shown in Table 15-1.

Name	Value
Input	
Command enable/disable	[Disable Enable]
HMI Setpoint	New setpoint value
Output	
Element state	[Disabled Normal]
Actual Setpoint	Value in EU (to HMI and application)

Table 15-1 Setpoint Element IPMS interface

15.3 Parameters

This element has no parameters.

15.4 Processing

The element processing comprises the next functions:

- Storage of setpoint value;
- Enable/disable element

These functions are shown by Figure 15-2.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 79 of 130

Preliminary

Figure 15-2 Setpoint element processing

The next sections specify these functions.

15.4.1 Element enable/disable

IF (Command enable/disable = disable) THEN
Element state = Disabled

ELSE IF (Command enable/disable = enable) THEN

Element state = Enabled

END

15.4.2 Storage of setpoint value

IF (Element state = disabled) THEN Actual Setpoint = Unavailable;

ELSE

Actual Setpoint = HMI Setpoint

END

15.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections describe command - and status word arrangements.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

15.5.1 Command word HMI

Bit	Description
0	-
1	-
2	Reserved
3	Reserved
4	Reserved
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	Reserved
13	-
14	-
15	-

Table 15-2 Setpoint Element Command word HMI

15.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Normal
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Reserved
1001	0-3	Reserved
1010	0-3	Reserved
1011	0-3	Reserved
1100	0-3	Reserved
1101	0-3	Reserved
1110	0-3	Reserved
1111	0-3	Reserved
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Reserved
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 15-3 Setpoint Element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 80 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Page 81 of 130

Preliminary

16. Sensor element (SSE)

16.1 Function

The sensor element interfaces an analogue value that is derived from a physical analogue input. The element function includes scaling by using a linear conversion algorithm and the upper and lower limits of its specified range. An 'out of range low' or 'out of range high' alarm will be generated in case the input value is outside its normal range. Furthermore a high or low alarm will be generated in case the input value exceeds an alarm threshold value being set for the element although it is within its working range. The element supports hysteresis and time delay functions for both the high and low alarms.

Besides this, both the high and low alarms can be inhibited in case the sensor value exceeds its limits due to a normal platform state. In that case the alarm is considered to be spurious.

16.2 Interface

The element interface is shown in Figure 16-1

Figure 16-1 Sensor Element interface

The interfaces are specified by the next sections.

16.2.1 Platform interface

The platform interface is shown in Table 16-1

Name	Value	I/O specification
Input		
Value sensor	0 - 20 mA	AI 4 - 20 mA

Table 16-1 Sensor Element platform interface

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 82 of 130

Preliminary

16.2.2 IPMS interface

The IPMS interface is shown in Table 16-2

Name	Value
Input	
State element disabled	[Disabled Enabled]
State inhibited	[Not inhibited Inhibited]
State display stationary value	[Display stationary value Display sensor value (scaled)]
Parameters	[HA + LA + HYHA + HYLA + THA + TLA + TOORH + TOORL + V20+
	V4 + STA
Output	
State alarm	[None HA LA OORL OORH]
State element	[Disabled Value OK HA LA OORL OORH]
Value element	Value in EU (to HMI)
Value application	Value in EU (to application)

Table 16-2 Sensor Element IPMS interface

16.3 Parameters

The parameters that apply are shown in Table 16-3

Parameter	Description	Unit	Value	Adjustable
НА	High alarm value	EU		Yes
LA	Low alarm value	EU		Yes
HYHA	Hysteresis on HA alarms	EU		Yes
HYLA	Hysteresis on LA alarms	EU		Yes
THA	Time delay high alarm	S		Yes
TLA	Time delay low alarm	S		Yes
TOORL	Time delay OORL alarm	S		No
TOORH	Time delay OORH alarm	S		No
V20	Value on 20 mA	EU		Yes
V4	Value on 4 mA	EU		Yes
STA	Stationary Value	EU		No

Table 16-3 Sensor Element parameters

16.4 Processing

The element processing comprises the next functions:

- Alarm evaluation;
- Alarm / Element state determination;
- Sensor value conversion.

The processing is shown in Figure 16-2

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 83 of 130

Preliminary

Figure 16-2 Sensor Element processing

The functions are described in the next paragraphs.

16.4.1 Sensor value conversion

IF (State element disabled = disabled) THEN

Value element = Unavailable;

ELSE

Value element = (V20 - V4)/16 * (Value sensor - 4) + V4;

Value application = (V20 - V4)/16 * (Value sensor - 4) + V4;

END

16.4.2 Value selection

IF (State display stationary value = display stationary value) THEN

Value HMI = Stationary value;

ELSE

Value HMI = Value Element;

END

16.4.3 Alarm evaluation

The alarm evaluation determines if there is an alarm condition active. The next alarm conditions are available:

- HA;
- LA;
- OORH;
- OORL.

HA

IF (Value element > HAV during t > THA) AND (OORH≠1) THEN HA = 1;

END

IF (Value element <= (HAV - HYHA) during (t > THA)) THEN HA = 0;

END

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

IF (Value element < LAV during t > TLA) AND (OORL≠1) THEN LA = 1; IF (Value element \geq = (LAV + HYLA) during (t \geq TLA)) THEN LA = 0; **END**

OORH

IF (Value sensor > V20 during (t > TOORH)) THEN OORH = 1;IF (Value sensor < V20 limit during (t > TOORH)) THEN OORH = 0;**END**

OORL

 $\overline{\text{IF (Value sensor}} < \text{V4 limit during (t} > \text{TOORL)) THEN}$ OORL = 1; **END** IF (Value sensor > v4 limit during (t > TOORL)) THEN OORL = 0; **END**

16.4.4 Alarm / element state determination

The alarm/element state determination is shown in Table 16-4

State element disabled	State Inhibited	OORH	OORL	НА	LA	State alarm	State element
Disabled	X	X	X	X	X	None	Disabled
Enabled	Inhibited	X	X	X	X	Inhibited	Value OK
Enabled	Not inhibited	0	0	0	1	LA	LA
Enabled	Not inhibited	0	0	1	0	HA	HA
Enabled	Not inhibited	0	1	X	X	OORL	OORL
Enabled	Not inhibited	1	0	X	X	OORH	OORH
Enabled	Not inhibited	0	0	0	0	None	Value OK

Table 16-4 Sensor Element alarm/element state determination

Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

190134-4380-ELP-TSC.doc Issue 0.2 Ref.No.: 190134-4380-ELP-TSC April 2006

Page 84 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 Copyright 2005 Imtech Marine & Offshore B.V.

Integrated Platform Management System

Element Processing Specification

Page 85 of 130

Preliminary

16.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 16-5 Sensor Element Command word HMI

16.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Normal
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Reserved
1001	0-3	Reserved
1010	0-3	Reserved
1011	0-3	
1100	0-3	Alarm low
1101	0-3	Alarm high
1110	0-3	Alarm Out of range low
1111	0-3	Alarm Out of range high
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	•
	8	Alarm inhibited
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
<u> </u>	15	-

Table 16-6 Sensor Element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Element Processing Specification

Page 86 of 130

Preliminary

17. Tank Level element (SSL)

17.1 Function

The tank level element functions are dedicated to tank content measurements. The tank level can be derived from a pressure sensor that is installed inside, and near the bottom of, a tank. For accurate tank content determination, the SSL element needs adjustment of relevant parameters such as specific gravity constant (applicable to the medium inside the tank) and tank sensor location relative to the tank bottom.

Besides this, the relationship between tank level and tank content must be specified for each tank. A maximum of 16 breakpoints is supported to configure the tank curve.

Furthermore the SSL element features

- A first order filter to filter out tank level changes due to the ship's swell;
- Air pressure compensation;
- Max. 5 tank curves to compensate for several ship-trim angles.

An 'out of range low' or 'out of range high' alarm will be generated in case the input value is outside its normal range. Moreover a high or low alarm will be generated in case the input value exceeds an alarm threshold value being set for the element although it is in its working range. The element supports hysteresis and time delay functions for each 'high' or 'low' alarm.

Both the high and low alarms can be inhibited in case the sensor value exceeds its limits for a known situation.

17.2 Interface

The element interface is shown by Figure 17-1.

Figure 17-1 Tank level element interface

The interfaces are described in the next paragraphs.

17.2.1 Platform interface

The platform interface is summarized by Table 17-1.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

Name	Value	I/O specification
Input		
Value sensor	0 - 20 mA	AI 4 - 20 mA
Trim value	0 - 20 mA	AI 4 - 20 mA
Compensation sensor	0 - 20 mA	AI 4 - 20 mA

Table 17-1 Tank level element platform interface

17.2.2 **IPMS** interface

The IPMS interface is summarized by Table 17-2.

Name	Value
Input	
Parameters	[SG + Tau + HA + LA + HYHA + HYLA + THA + TLA + TOORL + TOORH +
	V20+ V4 + SenOff + TnkCntMax + X1X16 + TRIM1TRIM5]
State element disabled	[Disabled Enabled]
State inhibited	[Not inhibited Inhibited]
Output	
State alarm	[None Inhibited WB HA LA OORL OORH]
State element	[Disabled None WB HA LA OORL OORH]
Value element %	Value in %
Value element level	Value in m
Value element m3	Value in m3
Value element mass	Value in tons

Table 17-2 Tank level element IPMS interface

Parameters

The parameters that apply to this element are shown by Table 17-3.

Parameter	Description	Unit	Value	Adjustable
SG	Specific Gravity of tank medium	Kg/m ³		Yes
Tau	Filter Constant	S		Yes
HAV	High alarm value	m		Yes
HYHA	Hysteresis on HA alarms	m		Yes
HYLA	Hysteresis on LA alarms	m		Yes
LAV	Low alarm value	m		Yes
THA	Time delay high alarm	S		Yes
TLA	Time delay low alarm	S		Yes
TOORL	Time delay OORL alarm	S		No
TOORH	Time delay OORH alarm	S		No
V4	Value on 4 mA	m		Yes
V20	Value on 20 mA	m		Yes
SenOff	Distance below tank sensor relative to tank bottom	m		No
TnkCntMax	Max. content of tank	m3		No
X1X16	Breakpoints "tank level vs. tank content" curve	m		No
Y1Y5	Breakpoints "trim" vs. "tank content" curve	m		No

Table 17-3 Tank level element parameters

Processing

The element processing comprises the next functions:

190134-4380-ELP-TSC.doc Issue 0.2

Page 87 of 130

Integrated Platform Management System

Element Processing Specification

Page 88 of 130

Preliminary

- Sensor value conversion;
- Tank level determination:
- Tank contents determination.
- Alarm evaluation;
- Alarm/element state determination;

These functions along with their interconnections are visualized by Figure 17-2.

Figure 17-2 Tank level element processing

The next sections specify these functions.

17.4.1 Sensor value conversion

IF (State element disabled = disabled) THEN
Press Value = Unavailable;
ELSE
Press Value = (Value sensor / 100) * (V20 – V4) + V4;
END

17.4.2 Tank level determination

The tank level will be derived from the pressure measured at the bottom of the tank, the compensation sensor value, the gravity constant (ρ) and the specific gravity for the medium (SG).

$$Measured level = \frac{PressVal + Compensation factor}{SG * \rho}$$

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Imtech Marine & Offshore B.V.

C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Page 89 of 130

Preliminary

Where:

compensation factor = $P_2 - P_1$

When the air pressure compensation sensor is not OK or not installed, then $P_2 = P_1$ And Compensation factor = 0.

A first order filter algorithm will filter the measured level. (Time constant defined by parameter 'Tau'):

Measured level = Measured level (t) - Measured level (t - dt) * $\frac{\text{Tcycle}}{\text{Tau}}$ + Measured level (t - dt)

Besides this the measured level might need an extra offset as the sensor position is probably slightly above the bottom of the tank. In that case an offset parameter can be used to compensate for the actual tank level.

Value element level = Measured level + Offset

17.4.3 Tank content determination

The determination of the tank content is derived from the tank level by interpolation of a given curve. This curve is unique for each tank. The tank curve has to be provided by the customer. A maximum of 16 breakpoints will be derived from that curve. To compensate for trim several curves must be supplied for each trim. A maximum of 5 breakpoints can be derived to compensate tank level determination for a deviation of trim.

Value element m3 = Interpolation (X1..16, Value element level), Interpolation (Y1..5, Trim value);

Value element % = 100.0 * Value element m3 / TnkCntMax

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 90 of 130

Preliminary

Value element mass (in tons) = Value element m3 * SG / 1000

17.4.4 Alarm evaluation

The alarm evaluation determines if there is an alarm condition active. The next alarm conditions are available:

- HA;
- LA;
- OORH;
- OORL.

HA

END

LA

```
IF (Value element level < LAV during t > TLA) AND (OORL = 0) THEN
    LA = 1;
END
IF (Value element level >= (LAV + HYLA) during (t > TLA)) THEN
    LA = 0;
END
```

OORH

```
IF (Value sensor > OORH during (t > TOORH)) THEN
   OORH = 1;
END
IF (Value sensor < OORH during (t > TOORH)) THEN
   OORH = 0;
END
```

OORL

```
IF (Value sensor < OORL limit during (t > TOORL)) THEN
   OORL = 1;
END
IF (Value sensor > OORL limit during (t > TOORL)) THEN
   OORL = 0;
END
```

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 91 of 130

Preliminary

17.4.5 Alarm/element state determination

The alarm/element state determination is shown in Table 17-4.

State element disabled	State alarm Inhibited	OORH	OORL	НА	LA	State alarm	State element
Disabled	X	X	X	X	X	None	Disabled
Enabled	Inhibited	1	0	X	X	Inhibited	Value OK
Enabled	Not inhibited	0	0	1	0	HA	HA
Enabled	Not inhibited	0	0	0	1	LA	LA
Enabled	Not inhibited	0	0	0	0	None	Value OK
Enabled	Not inhibited	1	0	x	X	OORH	OORH
Enabled	Not inhibited	0	1	X	X	OORL	OORL

Table 17-4 Tank level element alarm/element state determination

17.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

17.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 17-5 Tank level element Command word HMI

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

17.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Normal
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Reserved
1001	0-3	Reserved
1010	0-3	Reserved
1011	0-3	
1100	0-3	Alarm low
1101	0-3	Alarm high
1110	0-3	Alarm Out of range low
1111	0-3	Alarm Out of range high
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Alarm inhibited
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 17-6 Tank level element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 92 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Preliminary

18. Sensor element (SS1)

18.1 Function

Like the SSE (See section 16) this element is mend to interface an analogue value derived from a physical analogue input. The element function includes a linear scaling algorithm based on the upper and lower limits of its specified normal range. An 'out of range low' or 'out of range high' alarm will be generated in case the input value is outside its normal range.

Unlike the SSE, three different alarm high threshold levels are defined for this element. That is the element is able to generate 'high', 'highhigh' and 'extra high' alarms. The element supports hysteresis and time delay functions for each alarm.

The 'high' alarm can be inhibited in case the sensor value exceeds this limit for a known platform situation. The other alarm levels though are not inhibited by this element.

18.2 Interface

The interface of the element is shown in Figure 18-1

Figure 18-1 Sensor element interface

The next sections specify the sensor element interface.

18.2.1 Platform interface

The platform interface is shown in Table 18-1

Name	Value	I/O specification
Input		
Value sensor	0 - 20 mA	AI 4 - 20 mA

Table 18-1 Sensor-element platform interface

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Page 93 of 130

Integrated Platform Management System

Element Processing Specification

Page 94 of 130

Preliminary

18.2.2 IPMS interface

The IPMS interface is summarized by Table 18-2

Name	Value
Input	
State element disabled	[Disabled Enabled]
State alarm inhibited	[Not inhibited Inhibited]
State display stationary value	[Display stationary value Display sensor value (scaled)]
Parameters	[HAV + HHAV + XHAV + HY + TA + V20 + V4 + STA]
Output	
State alarm	[None HA HHA XHA OORL OORH]
State element	[Disabled Value OK HA HHA XHA OORL OORH]
Value element	Value in EU (to HMI)
Value application	Value in EU (to application)

Table 18-2 Sensor-element IPMS interface

18.3 Parameters

The parameters that apply to this element are listed by Table 18-3

Parameter	Description	Unit	Value	Adjustable
HAV	High alarm value	EU		Yes
HHAV	Highhigh alarm value	EU		Yes
XHAV	Extra high alarm value	EU		Yes
HY	Hysteresis applicable to all high alarms	EU		Yes
TA	Time delay applicable to all high alarms	S		Yes
TOORL	Time delay OORL alarm	S		No
TOORH	Time delay OORH alarm	S		No
V20	Value on 20 mA	EU		Yes
V4	Value on 4 mA	EU		Yes
STA	Stationary Value	EU		No

Table 18-3 Sensor-element parameters

18.4 Processing

The element processing comprises:

- Alarm evaluation;
- Alarm / Element state determination;
- Sensor value conversion;
- Value selection.

The processing is shown in Figure 18-2

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 95 of 130

Preliminary

Figure 18-2 Sensor-element processing

The functions are described in the next paragraphs.

18.4.1 Sensor value conversion

IF (State element disabled = disabled) THEN

Value element = Unavailable;

ELSE

Value element = (V20 - V4)/16 * (Value sensor - 4) + V4;

Value application = (V20 - V4)/16 * (Value sensor - 4) + V4;

END

18.4.2 Value selection

IF (State display stationary value = display stationary value) THEN

Value HMI = Stationary value;

ELSE

Value HMI = Value Element;

END

18.4.3 Alarm evaluation

The alarms are generated by the alarm evaluation function. The next alarms apply to this element:

- HA;
- HHA;
- XHA;
- OORH;
- OORL.

HA

IF (Value element > HAV during t > TA) AND (OORH \neq 1) THEN HA = 1; END IF (Value element <= (HAV - HY) during (t > TA)) THEN HA = 0; END

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 96 of 130

Preliminary

<u>HHA</u>

IF (Value element > HHAV during t > TA) AND (OORH≠1) THEN HHA = 1;

END

IF (Value element <= (HHAV - HY) during (t > TA)) THEN HHA = 0;

END

XHA

IF (Value element > XHAV during t > TA) AND (OORH≠1) THEN XHA = 1;

END

IF (Value element <= (XHAV - HY) during (t > TA)) THEN XHA = 0;

END

OORH

IF (Value sensor > OORH) limit during (t > TOORH)) THEN OORH = 1;

END

IF (Value sensor < OORH limit during (t > TOORH)) THEN OORH = 0;

END

OORL

IF (Value sensor < OORL limit during (t > TOORL)) THEN OORL = 1;

END

IF (Value sensor > OORL limit during (t > TOORL)) THEN
OORL = 0;

END

18.4.4 Alarm / element state determination

The alarm/element state determination is shown in Table 18-4

State element disabled	State Inhibited	OORH	OORL	НА	ННА	ХНА	State alarm	State element
Disabled	X	X	X	X	X	X	None	Disabled
Enabled	Inhibited	X	X	X	X	X	Inhibited	Value OK
Enabled	Not inhibited	0	0	0	0	1	XHA	XHA
Enabled	Not inhibited	0	0	0	1	0	HHA	HHA
Enabled	Not inhibited	0	0	1	0	0	HA	HA
Enabled	Not inhibited	0	1	X	X	X	OORL	OORL
Enabled	Not inhibited	1	0	X	X	X	OORH	OORH
Enabled	Not inhibited	0	0	0	0	0	None	Value OK

Table 18-4 Sensor element alarm/element state determination

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

18.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

18.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 18-5 Sensor element Command word HMI

18.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Normal
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Reserved
1001	0-3	Reserved
1010	0-3	Alarm high
1011	0-3	
1100	0-3	Alarm highhigh
1101	0-3	Alarm extra high
1110	0-3	Alarm Out of range low
1111	0-3	Alarm Out of range high
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Alarm inhibited
	9	-
	10	-
	11	-
	12	-
	13	-

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 97 of 130
Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

SM	Bit	Description
	14	-
	15	-

Table 18-6 Sensor element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Page 98 of 130
Intech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Page 99 of 130

Preliminary

19. Sensor element (SS2)

19.1 Function

Like the AAE (See section 4) this element is mend to interface a derived or calculated (i.e. not related to a physical input) value. Unlike the AAE, three different alarm high threshold levels are defined for this element. That is, the element is able to generate 'high', 'highhigh' and 'extra high' alarms. Along with these alarms the element supports hysteresis and time delay functions as well.

The 'high' alarm can be inhibited in case the sensor value exceeds this limit for a known platform situation. The other alarm levels though are not inhibited by this element.

19.2 Interface

The interface of the element is shown in Figure 19-1

Figure 19-1 Sensor element interface

The next sections specify the sensor element interface.

19.2.1 Platform interface

A platform interface doesn't apply to this element.

19.2.2 IPMS interface

The IPMS interface is summarized by Table 19-2

Name	Value
Input	
Value application	Value (not scaled)
State element disabled	[Disabled Enabled]
State alarm inhibited	[Not inhibited Inhibited]
State display stationary value	[Display stationary value Display sensor value (scaled)]
Parameters	[HAV + HHAV + XHAV + HY + TA + V20 + V4 + STA]
Output	
State alarm	[None HA HHA XHA OORL OORH]
State element	[Disabled Value OK HA HHA XHA OORL OORH]

Page 100 of 130

Preliminary

Name	Value
Value element	Value in EU (to HMI)
Value application	Value in EU (to application)

Table 19-1 Sensor-element IPMS interface

19.3 Parameters

The parameters that apply to this element are listed by Table 19-3

Parameter	Description	Unit	Value	Adjustable
HAV	High alarm value	EU		Yes
HHAV	Highhigh alarm value	EU		Yes
XHAV	Extra high alarm value	EU		Yes
HY	Hysteresis applicable to all high alarms	EU		Yes
TA	Time delay applicable to all high alarms	S		Yes
STA	Stationary Value	EU		No

Table 19-2 Sensor-element parameters

19.4 Processing

The element processing comprises:

- Alarm evaluation;
- Alarm / Element state determination;
- Sensor value conversion;
- Value selection.

These functions along with their interconnections are visualized by Figure 19-2

Figure 19-2 Sensor-element processing

The functions are described by the next paragraphs.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

19.4.1 Sensor value conversion

IF (State element disabled = disabled) OR (Value application valid = invalid) OR (State wire break) THEN Value Element = Unavailable; **ELSE**

Value Element = Value application / SF;

END

19.4.2 Value selection

(State display stationary value = display stationary value) THEN Value HMI = Stationary value; **ELSE**

Value HMI = Value Element;

END

19.4.3 Alarm evaluation

The alarms are generated by the alarm evaluation function. The next alarms apply to this element:

- HA;
- HHA;
- XHA;

IF (Value element > HAV during t > TA) AND (OORH≠1) THEN HA = 1; **END** IF (Value element \leq (HAV - HY) during (t \geq TA)) THEN HA = 0; **END**

HHA

IF (Value element > HHAV during t > TA) AND (OORH≠1) THEN HHA = 1; **END** IF (Value element \leq (HHAV - HY) during (t > TA)) THEN HHA = 0;**END**

XHA

IF (Value element > XHAV during t > TA) AND (OORH≠1) THEN XHA = 1;**END** IF (Value element \leq (XHAV - HY) during (t \geq TA)) THEN XHA = 0;**END**

19.4.4 Alarm / element state determination

The alarm/element state determination is shown in Table 19-3

190134-4380-ELP-TSC.doc Issue 0.2 Ref.No.: 190134-4380-ELP-TSC Date April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 101 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

State element disabled	State Inhibited	Wire break	НА	ННА	ХНА	State alarm	State element
Disabled	Х	X	X	X	X	None	Disabled
Enabled	X	1	X	X	X	WB	WB
Enabled	X	0	X	X	1	XHA	XHA
Enabled	X	0	X	1	0	HHA	HHA
Enabled	Inhibited	0	1	0	0	Inhibited	Value OK
Enabled	Not inhibited	0	1	0	0	HA	HA
Enabled	Not inhibited	0	0	0	0	None	Value OK

Table 19-3 Sensor element alarm/element state determination

19.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

19.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 19-4 Sensor element Command word HMI

19.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	-
0010	0-3	-
0011	0-3	-
0100	0-3	Normal
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	Reserved
1001	0-3	Reserved
1010	0-3	Alarm high
1011	0-3	Wire break

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 102 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

SM	Bit	Description
1100	0-3	Alarm highhigh
1101	0-3	Alarm extra high
1110	0-3	
1111	0-3	
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Alarm inhibited
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 19-5 Sensor element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 103 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Preliminary

Switch element (basic) (SWB) 20.

20.1

The SWB element interfaces a discrete (digital) input in a basic way. That is it does not support any alarm or parameter functionality neither disable/enable functions. It is mend to monitor a digital status either issued by a digital input module or derived from a logical expression.

20.2 **Interface**

The element interface is shown in Figure 20-1.

Figure 20-1 Switch-element-bit interface

The interfaces are described in the next paragraphs.

20.2.1 Platform interface

The platform interface of the element is shown in Table 20-1.

Name	Value	I/O specification
Input		
InState*	[TRUE FALSE]	DINO / DINC

Table 20-1 Switch element (basic) platform interface

*: This element suits monitoring internal logical states also. In that case the platform interface doesn't apply

IPMS interface

The IPMS interface of the element is shown in Table 20-2.

Name	Value
Input	
InState*	[TRUE FALSE]
Output	
State element	[State 0 State 1]

Table 20-2 Switch-element-bit IPMS interface

*: This element suits monitoring discrete platform inputs also. In that case the IPMS interface doesn't apply

20.3 **Parameters**

This element does not use any parameters

190134-4380-ELP-TSC.doc April 2006 Ref.No.: 190134-4380-ELP-TSC Date

Page 104 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 Copyright 2005 Imtech Marine & Offshore B.V.

Integrated Platform Management System

Element Processing Specification

Page 105 of 130

Preliminary

20.4 Processing

The element processing comprises the next function:

• Element state determination;

The processing is shown in Figure 20-2

Figure 20-2 Switch-element-bit processing

This function is described in the next section.

20.4.1 Element state determination

IF (InState = TRUE) THEN
State element = State 1
END
IF (InState = FALSE) THEN
State element = State 0;
END

20.5 Command word and status word

This element has no command word or status word. For animation a single bit embedded into an array of double words represents the status of the element. This array is forwarded to the HMI.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Page 106 of 130

Preliminary

21. Switch-element (SWE)

21.1 Function

The SWE function is to interface a discrete (digital) input or a logically derived status.

An alarm status may apply to either the open (Normally Closed) or closed (Normally Open) state of the switch. A spurious alarm caused by a certain (known) platform state can be inhibited by driving the alarm inhibit input

21.2 Interface

The element interface is shown in Figure 21-1.

Figure 21-1 Switch-element interface

The next sections describe the interfaces.

21.2.1 Platform interface

The platform interface of the element is shown in Table 21-1.

Name	Value	I/O specification
Input		
InState*	[TRUE FALSE]	DINO / DINC

Table 21-1 Switch-element platform interface

*: This element suits monitoring internal logical states also. In that case the platform interface doesn't apply

21.2.2 IPMS interface

The IPMS interface of the element is shown in Table 21-2.

 File : 190134-4380-ELP-TSC.doc
 Issue : 0.2

 Ref.No. : 190134-4380-ELP-TSC
 Date : April 2006

Preliminary

Name	Value
Input	
InState*	[TRUE FALSE]
Parameters	[NO/NC + TDELAY + MODE]
State element disabled	[Disabled Enabled]
State inhibited	[Not inhibited Inhibited]
Output	
State alarm	[None Alarm]
State element	[Disabled State 0 State 1 Alarm]

Table 21-2 Switch-element IPMS interface

21.3 Parameters

The parameters of the element are shown in Table 21-3.

Parameter	Description	Unit	Value	Adjustable
NO/NC	Input signal type	-		No
MODE	Alarm / No alarm configuration	-		No
TDELAY	Time delay on switch	S		Yes

Table 21-3 Switch-element parameters

21.4 Processing

The element processing comprises the next functions:

- Alarm/element state determination;
- Signal delay.

The processing is shown in Figure 21-2.

Figure 21-2 Switch-element processing

The functions are described in the next paragraphs.

21.4.1 Signal delay

IF (State switch = TRUE for t > TDELAY) THEN
 State switch delayed = TRUE;

END

IF (State switch = FALSE for t > TDELAY) THEN
 State switch delayed = FALSE;

END

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Ref.No.: 190134-4380-ELP-TSC Date : April 2006 Page 107 of 130

Copyright 2005 Intech Marine & Offshore B.V.

Co.C. Rotterdam 24193093

^{*:} This element is also suitable for monitoring a discrete digital input state. In that case the IPMS interface doesn't apply.

Integrated Platform Management System

Element Processing Specification

Page 108 of 130

Preliminary

21.4.2 Alarm/element state determination

The alarm/element state determination is shown in Table 21-4.

State element disabled	State alarm inhibited	Mode	NO / NC	State switch delayed	State alarm	State element
Disabled	X	X	X	x	None	Disabled
Enabled	Inhibited	Alarm	NO	TRUE	Inhibited	State 0
Enabled	Inhibited	Alarm	NC	FALSE	Inhibited	State 0
Enabled	X	No Alarm	NO	TRUE	None	State 0
Enabled	X	No Alarm	NC	FALSE	None	State 0
Enabled	X	No Alarm	NO	FALSE	None	State 1
Enabled	X	No Alarm	NC	TRUE	None	State 1
Enabled	Not inhibited	Alarm	NO	TRUE	Alarm	Alarm
Enabled	Not inhibited	Alarm	NC	FALSE	Alarm	Alarm

Table 21-4 Switch element alarm/element state determination

21.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

21.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 21-5 Switch element Command word HMI

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

21.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	State 0
0010	0-3	State 1
0011	0-3	-
0100	0-3	-
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	-
1001	0-3	-
1010	0-3	-
1011	0-3	-
1100	0-3	-
1101	0-3	-
1110	0-3	-
1111	0-3	Alarm
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	-
	5	-
	6	-
	7	-
	8	Alarm inhibited
	9	-
	10	-
	11	-
	12	-
	13	-
	14	-
	15	-

Table 21-6 Switch element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 109 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Page 110 of 130

Preliminary

22. Switch-element with NBCD function (SWN)

22.1 Function

Basically the Switch-element with NBCD has the same features as the SWE. Additionally it features an 'Evaluate' function which compares the current element state with a required element state regarding a certain NBCD threat level. Since a simple activation of the NBCD threat level might cause a great number of alarms regarding all NBCD elements that don't comply, the evaluate function makes it possible to achieve a preview of all the NBCD elements on the platform not being in their required state before the NBCD threat is actually activated.

22.2 Interface

The element interface is shown in Figure 22.1.

Figure 22.1 NBCD Switch-element interface

The interfaces are described in the following paragraphs.

22.2.1 Platform interface

The platform interface of the element is shown in Table 22.1

Name	Value	I/O specification
Input		
State switch	[False True]	DI

Table 22.1 NBCD Switch-element platform interface

22.2.2 Application interface

The application interface of the element is shown in Table 22.2

Name	Value
Input	
State alarm inhibited	[Not inhibited Inhibited]
Evaluate State	[False True]

Table 22.2 NBCD Switch-element application interface

 File : 190134-4380-ELP-TSC.doc
 Issue : 0.2

 Ref.No. : 190134-4380-ELP-TSC
 Date : April 2006

Preliminary

22.2.3 IPMS interface

The IPMS interface of the element is shown in Table 22.3.

Name	Value
Input	
Parameters	[TDELAY + MODE]
State element disabled	[Disabled Enabled]
Output	
State alarm	[None Alarm Inhibited]
State element	[Disabled State 0 State 1 Warning Alarm]

Table 22.3 NBCD Switch-element IPMS interface

22.3 Parameters

The parameters of the element are shown in Table 22.4.

Parameter	Description	Unit	Value	Adjustable
MODE	Alarm / No alarm	-		No
TDELAY	Time delay on switch	S		Yes

Table 22.4 NBCD Switch-element parameters

22.4 Processing

The processing of the element comprises the following functions:

- Alarm/element state determination;
- Signal delay.

The processing is shown in Figure 22.2.

Figure 22.2 NBCD Switch Element processing

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Ref.No.: 190134-4380-ELP-TSC Date : April 2006 Page 111 of 130

Copyright 2005 Intech Marine & Offshore B.V. Co.c. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Page 112 of 130

Preliminary

The next sections specify these functions.

Signal delay:

IF (State switch = True during t > TDELAY) THEN
 State switch delayed = True;
END

IF (State switch = False) THEN State switch delayed = False;

END

22.4.1 Alarm/element state determination

The alarm/element state determination is shown in Table 22.5.

State element disabled	State alarm inhibited	Evaluate	Mode	State switch delayed	State alarm	State element
Disabled	X	X	X	X	None	Disabled
Enabled	Inhibited	False	X	False	Inhibited	State 1
Enabled	Inhibited	False	X	True	Inhibited	State 0
Enabled	Inhibited	True	X	False	Inhibited	State 1
Enabled	Inhibited	True	X	True	Inhibited	Warning
Enabled	Not inhibited	X	No Alarm	False	None	State 1
Enabled	Not inhibited	X	No Alarm	True	None	State 0
Enabled	Not inhibited	X	Alarm	False	None	State 1
Enabled	Not inhibited	X	Alarm	True	Alarm	Alarm

Table 22.5 NBCD Switch-element alarm/element state determination

22.5 Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

22.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 22.6 NBCD Switch element Command word HMI

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

22.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	State 0
0010	0-3	State 1
0011	0-3	-
0100	0-3	-
0101	0-3	-
0110	0-3	-
0111	0-3	-
1000	0-3	-
1001	0-3	-
1010	0-3	Warning
1011	0-3	-
1100	0-3	-
1101	0-3	-
1110	0-3	-
1111	0-3	Alarm
	4	-
	5	-
	6	-
	7	
	8	Alarm inhibited
	9	-
	10	-
	11 12	-
	13	-
	13	
	15	
<u> </u>	13	<u> </u>

Table 22.7 NBCD Switch element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Ref. No.: 190134-4380-ELP-TSC

Date : April 2006

Page 113 of 130

Imtech Marine & Offshore B.V.

Copyright 2005 Imtech Marine & Offshore B.V.

Co.C. Rotterdam 24193093

Page 114 of 130

Preliminary

23. Valve-element electrical (VCE)

23.1 Function

This element interfaces an electrically controlled valve with state feedback. The actual state of the valve interfaces the element by two digital inputs i.e. 'closed' or 'open'. Besides interfacing a valve this type of element might used to interface other components such as clutches also.

23.2 Interface

The element interface is shown in Figure 23-1.

Figure 23-1 Electrical valve-element interface

The interfaces are described in the next sections.

23.2.1 Platform interface

The platform interface of the element is shown in Table 23-1.

Name	Value	I/O specification
Input		
State switch closed	[Closed Not closed]	DINO
State switch open	[Open Not open]	DINO
State switch remote	[Local Remote]	DINO
Output		
Control close	[Not activated Activated]	DO
Control open	[Not activated Activated]	DO

Table 23-1 Electrical valve-element platform interface

23.2.2 IPMS interface

The IPMS interface of the element is shown in Table 23-2.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 115 of 130

Preliminary

Name	Value		
Input			
Command close (application)	[Not activated Activated]		
Command open (application)	[Not activated Activated]		
Command close (HMI)	[Not activated Activated]		
Command open (HMI)	[Not activated Activated]		
Parameters	[Ttrans + Tctrl]		
State element disabled	[Disabled Enabled]		
State auto/manual	[Manual Auto]		
State RFU	[Ready for Use Not Ready for Use]		
Output			
State alarm	[None Failed to Close Failed to open Unknown]		
State command	[None Command close Command open]		
State control position	[None Local Manual Auto]		
State element	[Disabled Closed Open Transition Not RFU Open failure Close failure		
	Unknown]		

Table 23-2 Electrical valve-element IPMS interface

23.3 Parameters

The element parameters are shown in Table 23-3.

Parameter	Description	Unit	Value	Adjustable
Ttrans	Time delay on transition	S		Yes
Tctrl	Pulslength (0=continuous control)	S		Yes

Table 23-3 Electrical valve-element parameters

If Tctrl = 0, then the relevant output is driven continuously (I.e. not by a pulse) If Ttrans = 0, then no time-out alarm will be generated.

23.4 Processing

The element processing comprises the next functions:

- Command/alarm/element state determination;
- Control position determination;
- Platform control.

The processing is shown in Figure 23-2.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 116 of 130

Preliminary

Figure 23-2 Electrical valve-element processing

The functions are described in the next paragraphs.

23.4.1 Platform control

```
IF
      (State element disabled = Disabled) THEN
      Control close = Deactivated AND Control open = Deactivated;
      Desired State = none;
ELSEIF
            (Command close = Activated) THEN
      Control open = Deactivated;
      Desired State = Closed;
            (Tetrl = 0) THEN
            Control close = Activated continuously;
      ELSE
            Control close = Activated during t = TCtrl;
      END
ELSEIF
            (Command open = Activated) THEN
      Control close = Deactivated;
      Desired State = Command open;
            (TCtrl = 0) THEN
            Control open = Activated continuously;
      ELSE
            Control open = Activated during t = TCtrl;
      END
END
```

Whenever the element is (re-) initialised (LPU state toggles from offline to online) or when the element control mode is switched from 'local' to 'remote' or when the element is enabled then the desired state must be forced to match the actual state of the breaker. In all other cases the desired state must keep up with the command input state.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Imtech Marine & Offshore B.V.

C.o.C. Rotterdam 24193093

Integrated Platform Management System

Element Processing Specification

Preliminary

```
IF ((Initialising) OR (State switch remote = Open -> Closed) OR
(State element disabled = Disabled -> Enabled)) THEN

IF (State switch closed = Closed) THEN

Desired state = Closed;

ELSEIF (State switch open = Open) THEN

Desired state = Open;

ELSE

Desired state = None;

END

END
```

23.4.2 Control mode determination

The control mode is determined by the Remote/Local switch and the Manual/Auto switch as shown in Table 23-4.

State switch	State	Control
Remote	Manual /Auto	mode
Local	X	Local
Remote	Manual	Manual
Remote	Auto	Auto

Table 23-4 Electrical valve-element control mode determination

23.4.3 Alarm/element state determination

The alarm/element state determination is shown in Table 23-5.

State element disabled	RFU	State witch remote	Desired State	State switch closed	State switch open	Ttrans	timer *)	State alarm	State element
Disabled	X	X	X	X	X	X	X	None	Disabled
Enabled	X	X	X	Closed	Open	X	X	Unknown	Unknown
Enabled	NRFU	X	Closed	Closed	Not open	X	X	None	Not RFU
Enabled	NRFU	X	Open	Not closed	Open	X	X	None	Not RFU
Enabled	RFU	Local	X	Closed	Not open	X	X	None	Closed
Enabled	RFU	Local	X	Not closed	Not open	X	X	None	Transition
Enabled	RFU	Local	X	Not closed	Open	X	X	None	Open
Enabled	RFU	Rem	Closed	Closed	Not open	X	X	None	Closed
Enabled	RFU	Rem	Closed	Not closed	X	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	RFU	Rem	X	Not closed	Not open	=0	X	None	Transition
Enabled	RFU	Rem	Closed	Not closed	X	>0	t>=Ttrans	Close failure	Close failure
Enabled	RFU	Rem	Open	X	Not open	>0	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	RFU	Rem	Open	Not closed	Open	X	X	None	Open
Enabled	RFU	Rem	Open	X	Not open	>0	t>=Ttrans	Open failure	Open failure

Table 23-5 Electrical valve-element alarm/element state determination

23.5 Command word and status word

Copyright 2005 Imtech Marine & Offshore B.V.

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

Page 117 of 130

^{*)} The timer is reset on a positive edge of the command close, command open signal.

Integrated Platform Management System

Element Processing Specification

Preliminary

23.5.1 Command word HMI

Bit	Description
0	Close
1	Open
2	-
3	-
4	-
5	Manual
6	Auto
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 23-6 Electrical valve-element Command word HMI

23.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	Closed
0010	0-3	Opened
0011	0-3	-
0100	0-3	-
0101	0-3	Transition
0110	0-3	-
0111	0-3	-
1000	0-3	-
1001	0-3	-
1010	0-3	Not Ready for use
1011	0-3	-
1100	0-3	Failed to close
1101	0-3	Failed to open
1110	0-3	Unknown
1111	0-3	-
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	Last command was: Close
	5	Last command was: Open
	6	-
	7	-
	8	Reserved
	9	True = Hand / False = Auto
	10	True = Local / False = Remote
	11	-
	12	-
	13	-
	14	-
	15	-

Table 23-7 Electrical valve-element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Copyright 2005 Imtech Marine & Offshore B.V.

Page 118 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 **Integrated Platform Management System**

Element Processing Specification

Preliminary

24. Valve-element hydraulic (VCH)

24.1 **Function**

The function of this element is to interface a hydraulically controlled valve. The valve state is controlled by two digital outputs. One is used for starting a hydraulic pump while the other one is used for the direction in which the valve will move. To toggle the valve state the element must start the pump while the direction output is in the relevant state. The timing diagram is shown in Figure 24-1.

Figure 24-1 Timing diagram hydraulic valve

190134-4380-ELP-TSC.doc Issue April 2006 Ref.No.: 190134-4380-ELP-TSC Date

Page 119 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 Copyright 2005 Imtech Marine & Offshore B.V.

Preliminary

24.2 **Interface**

The interface of the element is shown in Figure 24-2.

Figure 24-2 Hydraulic valve-element interface

The next sections describe the interfaces.

24.2.1 Platform interface

The platform interface of the element is shown in Table 24-1.

Name	Value	I/O specification
Input		
State switch closed	[Closed Not closed]	DINO
State switch open	[Open Not open]	DINO
State switch remote	[Local Remote]	DINO
Output		
Control run	[Run Stop]	DO
Control direction	[Open Close]	DO

Table 24-1 Hydraulic valve-element platform interface

190134-4380-ELP-TSC.doc Issue April 2006 Ref.No.: 190134-4380-ELP-TSC Date

Page 120 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 Copyright 2005 Imtech Marine & Offshore B.V.

Integrated Platform Management System

Element Processing Specification

Page 121 of 130

Preliminary

24.2.2 IPMS interface

The IPMS interface of the element is shown in Table 24-2.

Name	Value
Input	
Command open (appl)	[Not activated Activated]
Command close (appl)	[Not activated Activated]
Command open (HMI)	[Not activated Activated]
Command close (HMI)	[Not activated Activated]
Parameters	[Ttrans + TCdd + Tctrl]
State element disabled	[Disabled Enabled]
State manual / auto	[Manual Auto]
RFU	[RFU Not RFU]
Output	
State alarm	[None Open failure Close failure Unknown]
State command	[None Command close Command open]
State control position	[None Local Manual Auto]
State element	[Disabled Closed Open Transition Not RFU Close failure Open failure
	Unknown]

Table 24-2 Hydraulic valve-element IPMS interface

24.3 Parameters

The parameters of the element are shown in Table 24-3.

Parameter	Description	Unit	Value	Adjustable
Ttrans	Time delay on transition	S		Yes
TCdd	Time needed between change of direction	S		No
TCtrl	Time needed to close or open valve	S	1	Yes

Table 24-3 Hydraulic valve-element parameters

If Tctrl = 0, then the relevant output is driven continuously (I.e. not by a pulse) If Ttrans = 0, then no time-out alarm will be generated.

24.4 Processing

The element processing comprises the next functions:

- Command/alarm/element state determination;
- Control position determination;
- Platform control.

The processing is shown in Figure 24-3.

Integrated Platform Management System

Element Processing Specification

Page 122 of 130

Preliminary

Figure 24-3 Hydraulic Valve element processing

The next sections describe these functions.

```
24.4.1 Platform control
```

```
(State element disabled = Disabled) THEN
      Control run = Deactivated AND Control direction = Deactivated;
      Desired state = none;
ELSEIF
             (Command open = Activated) THEN
      Control direction = Deactivated;
      Desired state = Open;
             (TCtrl = 0) THEN
             Control run = Activated continuously
      ELSE
             Control run = Activated during t = TCtrl + TCcd;
      END
ELSEIF (Command close = Activated) THEN
      Control direction = Activated:
      Desired state = Closed:
             (TCtrl = 0) THEN
             Control run = Activated continuously;
      ELSE
             Control run = Activated during t = TCtrl + TCcd;
      END
END
```

Whenever the element is (re-) initialised (LPU state toggles from offline to online) or when the element control mode is switched from 'local' to 'remote' or when the element is enabled then the desired state must be forced to match the actual state of the breaker. In all other cases the desired state must keep up with the command input state.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

```
IF
      ((Initialising) OR (State switch remote = Open -> Closed) OR
      (State element disabled = Disabled -> Enabled)) THEN
             (State switch close = Closed) THEN
      IF
             Desired State = Closed;
                   (State switch open = Closed) THEN
      ELSEIF
             Desired State = Open;
      ELSE
             Desired State = None;
      END
END
```

24.4.2 **Control mode determination**

The control mode is determined by the Remote/Local switch and the Manual/Auto switch as shown in Table 24-4.

State switch	State	Control mode
Remote	Manual / Auto	
Local	X	Local
Remote	Manual	Manual
Remote	Auto	Auto

Table 24-4 Hydraulic valve element control mode determination

24.4.3 Alarm/element state determination

The alarm/element state determination is shown in Table 24-5

State element Disabled	State switch remote	RFU	Desired State	State switch closed	State switch open	timer *)	State alarm	State element
Disabled	X	X	X	X	X	X	None	Disabled
Enabled	X	X	X	Closed	Open	X	Unknown	Unknown
Enabled	Local	X	X	Closed	Not open	X	None	Closed
Enabled	Loc	X	X	Not	Open	X	None	Open
Enabled	Loc	X	x	closed Not closed	Not open	x	None	None
Enabled	Rem	Not RFU	X	X	X	X	None	Not RFU
Enabled	Rem	RFU	None	Not closed	Not open	X	None	None
Enabled	Rem	RFU	None	Closed	Not open	X	None	Closed
Enabled	Rem	RFU	None	Not closed	Open	X	None	Open
Enabled	Rem	RFU	Close	Not closed	Not open	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Rem	RFU	Close	Not closed	Not open	t=>Ttrans	Failed to close	Close failure
Enabled	Rem	RFU	Close	Closed	Not open	x	None	Closed
Enabled	Rem	RFU	Close	Not closed	Open	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Rem	RFU	Close	Not	Open	t=>Ttrans	Failed to close	Close failure

190134-4380-ELP-TSC.doc

Issue 0.2 April 2006 190134-4380-ELP-TSC

Integrated Platform Management System

Element Processing Specification

Preliminary

State element Disabled	State switch remote	RFU	Desired State	State switch closed	State switch open	timer *)	State alarm	State element
Enabled	Rem	RFU	Onon	closed Not	Not onen	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Kem	KI U	Open	closed	Not open	t~1 trails	None	Transition
Enabled	Rem	RFU	Open	Not closed	Not open	t=>Ttrans	Failed to open	Open failure
Enabled	Rem	RFU	Open	Not closed	Open	X	None	Open
Enabled	Rem	RFU	Open	Closed	Not open	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Rem	RFU	Open	Closed	Not open	t=>Ttrans	Failed to open	Open failure

Table 24-5 Hydraulic valve-element alarm/element state determination

Command word and status word

The PLC to HMI interfacing incorporates a command word and a status word. The command word is used for remote operator commands (HMI to PLC) whilst the status word is used for monitoring purposes (PLC to HMI). The least significant four bits of the status word designate the element status.

The next sections specify command - and status word arrangements.

24.5.1 **Command word HMI**

Bit	Description
0	Close
1	Open
2	-
3	-
4	-
5	Manual
6	Auto
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 24-6 Hydraulic valve-element Command word HMI

24.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	Closed
0010	0-3	Opened
0011	0-3	-
0100	0-3	-
0101	0-3	Transition
0110	0-3	-

190134-4380-ELP-TSC.doc Issue April 2006 Ref.No.: 190134-4380-ELP-TSC Date

Copyright 2005 Imtech Marine & Offshore B.V.

Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093

^{*)} The timer is reset on a positive edge of the command close, command open signal.

Integrated Platform Management System

Element Processing Specification

Preliminary

SM	Bit	Description
0111	0-3	-
1000	0-3	-
1001	0-3	-
1010	0-3	Not Ready for use
1011	0-3	-
1100	0-3	Failed to close
1101	0-3	Failed to open
1110	0-3	Unknown
1111	0-3	-
	0	Status bit 0
	1	Status bit 1
	2	Status bit 2
	3	Status bit 3
	4	Last command was: Close
	5	Last command was: Open
	6	-
	7	-
	8	Reserved
	9	True = Hand / False = Auto
	10	True = Local / False = Remote
	11	-
	12	-
	13	-
	14	-
	15	-

Table 24-7 Hydraulic valve-element Status word

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Ref. No.: 190134-4380-ELP-TSC

Date : April 2006

Page 125 of 130

Imtech Marine & Offshore B.V.

Copyright 2005 Imtech Marine & Offshore B.V.

Co.C. Rotterdam 24193093

Page 126 of 130

Preliminary

25. Valve-element, proportional controlled (VCP)

25.1 Function

This element interfaces a proportionally controlled valve with state feedback. The actual state of the valve interfaces the element by an analogue input.

25.2 Interface

The element interface is shown in Figure 25.1.

Figure 25.1 Proportional valve-element interface

The following sections describe the interface.

25.2.1 Platform interface

The platform interface of the element is shown in Table 25.1

Name	Value	I/O specification
Input		
Value valve	4-20 mA	AI (4- 20 mA)
State switch remote	[1=Remote 0=Local]	DI
Output		
Control close	[1=Activated 0=Not activated]	DO
Control open	[1=Activated 0=Not activated]	DO

Table 25.1 Proportional valve-element platform interface

25.2.2 Application interface

This element has no application interface

25.2.3 IPMS interface

The IPMS interface of the element is shown in Table 25.2.

Name	Value
Input	
Parameters	[Ttrans]
State element disabled	[Disabled Enabled]
Output	
State alarm	[None Control open failure Control close failure OORL OORH]

Page 127 of 130

Preliminary

Name	Value
State control position	[None Local Remote]
State element	[Disabled Closed Open Transition NRFO NRFC Control open failure
	Control close failure OORL OORH]
Value element	Value open percentage (0 %– 100 %)

Table 25.2 Proportional valve-element IPMS interface

25.3 Parameters

The parameters of the element are shown in Table 25.3

Parameter	Description	Unit	Value	Adjustable
Ttrans	Time delay on transition $(0 = no timeout alarms)$	S		Yes

Table 25.3 Proportional valve-element parameters

25.4 Processing

The element processing comprises the following functions:

- Command/alarm/element state determination;
- Control position determination;
- Platform control.

The processing is shown in Figure 25.2

Figure 25.2 Proportional valve-element processing

The functions are described in the following paragraphs.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 128 of 130

Preliminary

25.4.1 Platform control

IF (Setpoint > Value valve) THEN

Control open = activated;

Control close = deactivated;

ELSEIF (Setpoint < Value valve) THEN

Control open = deactivated;

Control close = activated;

ELSE

Control close = Deactivated

Control open = Deactivated;

END

Whenever the element is (re-) initialised (LPU state toggles from offline to online) or when the element control mode is switched from 'local' to 'remote' or when the element is enabled then the desired state must be forced to match the actual state of valve. In all other cases the desired state must keep up with the command input state.

IF ((Initialising) OR (State switch remote = Open -> Closed) OR (State element disabled = Disabled -> Enabled)) THEN

Setpoint = Value valve 'open'

END

25.4.2 Control mode determination

The control mode determination is shown in Table 25.4.

State switch	State control
remote	Position
X	None
Local	Local
Remote	Remote

Table 25.4 Proportional valve-element control mode determination

25.4.3 Alarm/element state determination

The alarm/element state determination is shown in Table 25.5

State element disabled	State witch remote	Desired	Value valve	timer *)	State alarm	State element
Disabled	X	X	X	Х	None	Disabled
Enabled	Local	X	X	X	None	Closed/ Open %
Enabled	Remote	Setpoint	Value valve = Setpoint	X	None	Closed/ Open %
Enabled	Remote	Setpoint	Value valve <> Setpoint	t <ttrans< td=""><td>None</td><td>Transition</td></ttrans<>	None	Transition
Enabled	Remote	Setpoint	Value valve <> Setpoint	t>=Ttrans	Control failure	Control failure
Enabled	X	X	OORL	X	OORL	OORL
Enabled	X	X	OORH	x	OORH	OORH

Table 25.5 Proportional valve-element alarm/element state determination

*) The timer is reset once the setpoint changes.

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Page 129 of 130

Preliminary

25.5 Command word and status word

The communication between the PLC and the HMI uses a command word and a status word. The command word is used for commands from the HMI to the PLC and the status word for the statuses from the PLC to the HMI.

The least significant four bits of the status word represent the element status.

The following sections describe the command word and status word.

25.5.1 Command word HMI

Bit	Description
0	-
1	-
2	-
3	Sp Exe
4	-
5	Manual
6	Auto
7	-
8	Disable element
9	Enable element
10	-
11	-
12	-
13	-
14	-
15	Parameter update request

Table 25.6 Proportional valve-element Command word HMI

 File :
 190134-4380-ELP-TSC.doc
 Issue :
 0.2

 Ref.No. :
 190134-4380-ELP-TSC
 Date :
 April 2006

Integrated Platform Management System

Element Processing Specification

Preliminary

25.5.2 Status word

SM	Bit	Description
0000	0-3	Element disabled
0001	0-3	Closed
0010	0-3	Opened
0011	0-3	-
0100	0-3	-
0101	0-3	Transition
0110	0-3	-
0111	0-3	-
1000	0-3	-
1001	0-3	-
1010	0-3	-
1011	0-3	-
1100	0-3	Control Open Failure
1101	0-3	Control Close Failure
1110	0-3	OOL
1111	0-3	ООН
	4	-
	5	-
	6	-
	7	-
	8	-
	9	-
	10	True = Local / False = Remote
	11	-
	12	-
	13	-
	14	-
<u></u>	15	-

Table 25.7 Proportional valve-element Status word

File : 190134-4380-ELP-TSC.doc Ref.No. : 190134-4380-ELP-TSC Issue : Date : 0.2 April 2006 Date

Page 130 of 130 Imtech Marine & Offshore B.V. C.o.C. Rotterdam 24193093 Copyright 2005 Imtech Marine & Offshore B.V.