自动控制原理

汪晶

QQ:150302300

第六章 线性系统的校正

本章知识点:

- ■校正的基本概念
- ■线性系统的基本控制规律
- ■常用校正装置及其特性
- ■串联相位超前校正
- ■串联相位滞后校正
- ■串联相位滞后-超前校正

第一节 校正的基本概念

校正:

调整控制器中放大器增益;

在系统中引入附加装置。

串联校正:校正装置一般接在系统误差检测点之后和放大元件之前,

串联于系统前向通道之中

反馈校正:接在系统局部反馈通道之中

前馈校正(顺馈校正、前馈补偿、复合校正):

校正装置在主反馈回路之外 干扰 前馈校正 前馈校正 装置 装置 按输入补偿 按干扰补偿 C(s)R(s)被控 E(s)给定装置 放大装置 执行机构 对象 B(s)主反馈 测量装置 例: N(s) $G_3(s)$ $G_3(s)$ $\mathcal{E}(s)$ $E(s)_{|}$ C(s)R(s)C(s)R(s) $G_2(s)$ $G_2(s)$ $G_1(s)$ $G_1(s)$

第二节 线性系统的基本控制规律

比例控制(P) Proportiona 积分控制(I) Integral 微分控制(D) Derivative Proportional

一、比例控制(P)

采用比例控制器的二阶系统

$$G(s) = K_P \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$

二、比例微分控制(PD)

PD校正装置

三、比例积分控制(PI)

PI校正装置

$$G(s) = \frac{\omega_n^2 (K_P s + K_I)}{s^2 (s + 2\zeta \omega_n)}$$

$$K_I \frac{\omega_n^2}{s(s^2 + 2\zeta \omega_n s + K_P \omega_n^2)} = -1$$

四、比例积分微分控制(PID)

采用串联比例-积分-微分控制器的二阶系统

$$G(s) = \frac{\omega_n^2 (K_D s^2 + K_P s + K_I)}{s^2 (s + 2\zeta \omega_n)}$$

第三节 常用校正装置及其特性

无源校正装置

有源校正装置

比例控制器

相位滞后校正装置

相位超前校正装置

相位滞后-超前校正装置

无源校正装置

(一) 比例控制器

$$K = \frac{U_2(s)}{U_1(s)} = \frac{R_2}{R_2 + R_1} < 1$$

(二) 相位超前校正装置

$$\frac{U_2(s)}{U_1(s)} = \frac{R_2}{R_2 + \frac{1}{\frac{1}{R_1} + Cs}} = \frac{R_2(CR_1s + 1)}{R_1R_2Cs + R_1 + R_2}$$

$$\xrightarrow{\tau=R_1C} \frac{R_2(\tau s + 1)}{R_2\tau s + R_1 + R_2} = \frac{R_2}{R_1 + R_2} \cdot \frac{\tau s + 1}{\frac{R_2}{R_1 + R_2}\tau s + 1}$$

$$\stackrel{\alpha = \frac{R_2}{R_1 + R_2}}{\Longrightarrow} \alpha \left(\frac{\tau s + 1}{\alpha \tau s + 1} \right)$$

$$G_c(s) = \frac{\tau s + 1}{\alpha \tau s + 1}$$

$$\varphi(\omega) = \arctan(\tau\omega) - \arctan(\alpha\tau\omega)$$
$$= \arctan\frac{\tau\omega(1-\alpha)}{1+\alpha\tau^2\omega^2}$$

$$\frac{d\varphi(\omega)}{d\omega} = 0 \quad \Rightarrow \quad \frac{d}{d\omega} \left[\tan \varphi \left(\omega \right) \right] = 0$$

$$\frac{d}{d\omega} \left[\frac{\tau \omega (1 - \alpha)}{1 + \alpha \tau^2 \omega^2} \right] = \frac{\tau (1 - \alpha) [1 - \alpha \tau^2 \omega^2]}{(1 + \alpha \tau^2 \omega^2)^2} = 0$$

最大超前相位频率:
$$\omega_m = \frac{1}{\tau\sqrt{\alpha}}$$

$$\varphi_m = \arctan \frac{1-\alpha}{2\sqrt{\alpha}} = \arcsin \frac{1-\alpha}{1+\alpha}$$

$$L(\omega_m) = -10 \lg \alpha$$

$$G_c(j\omega) = \frac{j\omega\tau + 1}{j\alpha\omega\tau + 1}$$

作用:

- 相位超前,即适当选择校正装置参数,使最大超前角频率 ω_m 置于校正后系统的剪切频率处,就可以有效增加系统的相角裕度,提高系统的相对稳定性。
- 幅值增加,即将校正装置的对数幅频特性叠加到原系统开环 对数幅频特性上,会使系统的剪切频率右移(增大),有利 于提高系统响应的快速性。

(三) 相位滞后校正装置

$$\frac{U_2(s)}{U_1(s)} = \frac{R_2 + \frac{1}{Cs}}{R_1 + R_2 + \frac{1}{Cs}} = \frac{R_2Cs + 1}{(R_1 + R_2)Cs + 1}$$

$$R_{1} + R_{2} + \frac{1}{Cs} \qquad (R_{1} + R_{2})Cs + 1$$

$$\xrightarrow{\tau = R_{2}C} \qquad \tau s + 1 \qquad = \frac{\tau s + 1}{(R_{1} + R_{2})Cs + 1} = \frac{R_{1} + R_{2}}{R_{2}} \tau s + 1$$

 u_2

$$\stackrel{\beta = \frac{R_1 + R_2}{R_2}}{\Longrightarrow} \frac{\tau s + 1}{\beta \tau s + 1}$$

$$G_c(s) = \frac{\tau s + 1}{\beta \tau s + 1}$$

$$\varphi\left(\frac{10}{\tau}\right) = \arctan(10) - \arctan(10\beta)$$
$$= \arctan\frac{10(1-\beta)}{1+100\beta}$$

$$\lim_{\beta \to \infty} \varphi\left(\frac{10}{\tau}\right) = \lim_{\beta \to \infty} \arctan \frac{10(1-\beta)}{1+100\beta}$$
$$= \arctan \frac{-1}{10} = -5.7106^{\circ} > -6^{\circ}$$

$$G_c(j\omega) = \frac{j\omega\tau + 1}{j\beta\omega\tau + 1}$$

作用:

- 利用幅值衰减特性,可以挖掘原系统自身的相位储备量,提 高系统的稳定裕度;
- 压低了高频段,相应提高了校正后系统的抗高频干扰能力。

(四) 相位滞后-超前校正装置

$$\frac{U_2(s)}{U_1(s)} = \frac{(\tau_1 s + 1)(\tau_2 s + 1)}{\tau_1 \tau_2 s^2 + (\tau_1 + \tau_2 + \tau_{12})s + 1}$$

$$\begin{cases}
\tau_1 = R_1 C_1 \\
\tau_2 = R_2 C_2 \\
\tau_{12} = R_1 C_2
\end{cases}$$

$$\beta \tau_1 + \frac{\tau_2}{\beta} = \tau_1 + \tau_2 + \tau_{12} \quad (\beta > 1)$$

$$\beta \tau_1 > \tau_1 > \tau_2 > \frac{\tau_2}{\beta}$$

$$= (\frac{\tau_1 s + 1}{\beta \tau_1 s + 1})(\frac{\tau_2 s + 1}{\frac{\tau_2}{\beta} s + 1})$$

$$[s]$$

$$-\frac{\beta}{\tau_2} \quad -\frac{1}{\tau_2} \quad -\frac{1}{\tau_1} \quad -\frac{1}{\beta \tau_1}$$

作用:

- 利用相位超前特性,有效增加系 统的相角裕度;
- 利用幅值衰减特性,挖掘原系统 自身的相位储备量。

$$G_c(s) = \frac{(j\omega\tau_1 + 1)(j\omega\tau_2 + 1)}{(j\omega\beta\tau_1 + 1)(\frac{j\omega\tau_2}{\beta} + 1)}$$

有源校正装置

有源校正装置示意图

$$G_c(s) = \frac{G_2(s)}{G_1(s)}$$

比例(P)

$$G_c(s) = K$$

$$K = \frac{R_2}{R_1}$$

微分(D)

$$G_c(s) = Ks$$

$$u = K \frac{d\theta}{dt}$$

积分(I)

$$G_c(s) = \frac{1}{\tau s}$$
$$\tau = R_1 C$$

比例-微分(PD)

$$G_c(s) = K(\tau s + 1)$$

$$\tau = \frac{R_2 R_3}{R_1 + R_3} C$$

$$K = \frac{R_2 + R_3}{R_1}$$

比例-积分(PI)

$$G_c(s) = \frac{K(\tau s + 1)}{\tau s}$$
$$\tau = R_2 C$$
$$K = \frac{R_2}{R_1}$$

滤波型调节器 (惯性环节)

$$G_c(s) = \frac{K}{1 + \tau s}$$

$$\tau = R_2 C$$

$$K = \frac{R_2}{R_1}$$

PID控制器

$$\frac{U_r}{\frac{1}{R_1} + C_1 s} = \frac{U_c}{R_2 + \frac{1}{C_2 s}}$$

$$G_{c}(s) = \frac{U_{c}}{U_{r}} = R_{2}C_{1}s + \left(\frac{C_{1}}{C_{2}} + \frac{R_{2}}{R_{1}}\right) + \frac{1}{R_{1}C_{2}s} = K_{D}s + K_{P} + \frac{K_{I}}{s}$$

$$K_{D} \qquad K_{P} \qquad K_{I}$$

$$G_c(s) = R_2 C_1 s + \left(\frac{C_1}{C_2} + \frac{R_2}{R_1}\right) + \frac{1}{R_1 C_2 s}$$

$$= \frac{(R_1 C_1 s + 1)(R_2 C_2 s + 1)}{R_1 C_2 s}$$

作用:

- 低频段,积分作用,改善稳态 性能;
- 中高频段,微分作用,改善动 态性能。

频域法串联校正的设计过程

控制系统性能指标

	时域	频域 (开环)	频域 (闭环)
稳态性能	开环增益 K 系统型别 v	(低频段) 开环增益 <i>K</i> 系统型别 v	零频值
暂态性能	最大超调量 M_p 调节时间 t_s	(中频段) 剪切频率 ω_c 相角裕度 γ	谐振峰值 M_r 带宽频率 ω_b

- 低频段增益充分大,以保证稳态误差要求;
- 中频段对数幅频特性斜率一般为-20dB/dec,并占据充分宽的频带,以保证具备适当的相角裕度;
- 高频段增益尽快减小,以削弱噪声影响。

串联相位超前校正

原理: 利用超前网络相角超前特性增大系统的相角裕度

适用: $\omega_{c0} < \omega_c^*$ 、 $\gamma_0 < \gamma^*$

步骤:

①由 $e_{Sr}^* \to K$

②由 $G_0(s) \to L_0(\omega) \to \omega_{c0} \to \gamma_0$

③确定 $\varphi_m = \gamma^* - \gamma_0 + (5^{\circ} \sim 10^{\circ}), \quad \alpha = \frac{1 - \sin \varphi_m}{1 + \sin \varphi_m}, \quad -10 \lg \alpha$

④作图设计,确定 $G_c(s)$

⑤ $G(s) = G_c(s) \cdot G_0(s)$, 验算 ω_c , γ 是否满足指标

效果:

①保持低频段 满足稳态精度

②改善中频段 $\omega_c \uparrow \ \gamma \uparrow \ \omega_c$ 附近斜率减小,动态性能提高

③抬高高频段 抗高频干扰能力降低

例:已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K}{s(s+1)}$,要求:r(t) = t时, $e_{sr}^* \leq 0.1$, $\omega_c^* \geq 5$, $\gamma^* \geq 60^\circ$,试确定串联校正装置的传递函数 $G_c(s)$

解: ①
$$e_{sr}^* = \frac{1}{K} \le 0.1$$
 $K \ge 10$ ②确定原系统的 ω_{c0} 、 γ_0 $\omega_{c0} = \sqrt{10} = 3.16 < \omega_c^*$ $\gamma_0 = 180^\circ - 90^\circ - \arctan 3.16$ $= 17.6^\circ < \gamma^*$ 采用串联相位超前校正

③
$$\varphi_m = \gamma^* - \gamma_0 + 5^\circ$$

 $= 60^\circ - 17.6^\circ + 5^\circ = 47.4^\circ$
 $\alpha = \frac{1 - \sin 47.4^\circ}{1 + \sin 47.4^\circ} \approx \frac{1}{7}$
 $-10\lg \alpha = 8.5 dB$

④作图设计

$$8.5 = 40 \lg \frac{\omega_c}{\omega_{c0}}$$
 $\omega_c = 3.16 \times 10^{\frac{8.5}{40}} = 5.16 > \omega_c^*$

$$\frac{\omega_c}{\omega_1} = \frac{\omega_2}{\omega_c} = \frac{7\omega_1}{\omega_c}$$

$$\omega_1 = 1.94$$
 $\omega_2 = 13.73$

$$G_c(s) = \frac{\frac{s}{1.94} + 1}{\frac{s}{13.73} + 1}$$

⑤验算

$$G(s) = G_c(s) \cdot G_0(s)$$

$$= \frac{\frac{s}{1.94} + 1}{\frac{s}{13.73} + 1} \cdot \frac{10}{s(s+1)}$$

$$K = 10 \qquad \omega_c = 5.16 > \omega_c^*$$

$$\gamma = 180^{\circ} + \arctan \frac{5.16}{1.94} - \arctan \frac{5.16}{13.73} - 90^{\circ} - \arctan 5.16 = 58.8^{\circ} < \gamma^{*}$$

$$\gamma_0 - \gamma_0' \approx 5^{\circ} \sim 10^{\circ}$$

$$\gamma_0 - \gamma_0' \approx 5^\circ \sim 10^\circ$$

$$\varphi_m = \gamma^* - \gamma_0 + (5^\circ \sim 10^\circ)$$

重新校正

$$-10\lg\alpha = 9dB$$

$$\omega_c = 3.16 \times 10^{\frac{9}{40}} = 5.3 > \omega_c^*$$

$$\frac{\omega_c}{\omega_1} = \frac{\omega_2}{\omega_c} = \frac{8\omega_1}{\omega_c}$$

$$\omega_1 = 1.87$$
 $\omega_2 = 15$

$$G_c(s) = \frac{\frac{s}{1.87} + 1}{\frac{s}{15} + 1}$$

$$G(s) = \frac{\frac{s}{1.94} + 1}{\frac{s}{13.73} + 1} \cdot \frac{10}{s(s+1)}$$

$$\gamma = 180^{\circ} + \arctan \frac{5.3}{1.87} - \arctan \frac{5.3}{15} - 90^{\circ} - \arctan 5.3 = 61.8^{\circ}$$

方法②:

还是这个系统: $G(s) = \frac{K}{s(s+1)}$, 要求:r(t) = t时, $e_{sr}^* \le 0.1$, $\omega_c^* \ge 7$, $\gamma^* \ge 60^\circ$, 试确定串联校正装置的传递函数 $G_c(s)$

$$\omega_c = 5.16 < \omega_c^*$$

串联相位滞后校正

原理: 利用滞后网络幅值衰减特性,将系统的中频段压低,使校正后系统的剪切频率减小,挖掘系统自身的相角储备

适用: $\omega_{c0} > \omega_c^*$ 、 $\gamma_0 < \gamma^*$

步骤:

①曲 $e_{sr}^* \to K$

②由 $G_0(s) \to L_0(\omega) \to \omega_{c0} \to \gamma_0$

③确定 $\gamma_0(\omega_c) = \gamma^* + 6^\circ$, $\Rightarrow \omega_c$

④作图设计,确定 $G_c(s)$

⑤ $G(s) = G_c(s) \cdot G_0(s)$, 验算 ω_c , γ 是否满足指标

效果:

①保持低频段 满足稳态精度

②降低中频段 $\omega_c \downarrow \chi \uparrow$, 损失快速性, 改善均匀性

③压低高频段 提高抗高频干扰能力

例:已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K}{s(0.2s+1)(0.1s+1)}$,要求:

 $K_v^* = 30, \ \omega_c^* \ge 2.3, \ \gamma^* \ge 40^\circ, \$ 试确定串联校正装置的传递函数 $G_c(s)$

解: ①
$$K_v^* = \lim_{s \to 0} sG(s) = K$$

$$K = 30$$

2

$$\frac{30}{\omega_{c0} \cdot \frac{\omega_{c0}}{5} \cdot \frac{\omega_{c0}}{10}} = 1$$

$$\omega_{c0} = 11.45 > \omega_c^*$$

$$\gamma_0 = 90^{\circ} - \arctan \frac{11.45}{5} - \arctan \frac{11.45}{10}$$

$$= -25.28^{\circ} < \gamma^*$$

若采用串联超前校正:

 $\varphi_m = \gamma^* - \gamma_0 + 10^\circ > 60^\circ, \text{ 不能} -$ 次成功

在 $\omega_c^* = 2.3$ 处, $\gamma_0(\omega_c^*) = 52.345^\circ > \gamma^* + 6^\circ$

$$\gamma = 180^{\circ} + \arctan \frac{2.7}{0.27} - 90^{\circ} - \arctan(0.2 \times 2.7) - \arctan(0.1 \times 2.7) - \arctan \frac{2.7}{0.0243}$$

= 41.3° 符合要求

串联相位滞后-超前校正

原理:综合利用滞后网络幅值衰减、超前网络相角超前特性。

适用: 超前、滞后均不成功

步骤:

①由 $e_{Sr}^* \to K$

②由 $G_0(s) \to L_0(\omega) \to \omega_{c0} \to \gamma_0$

③确定
$$\varphi_m = \gamma^* - \gamma_0(\omega_c^*) + 6^\circ$$
, $\alpha = \frac{1 - \sin \varphi_m}{1 + \sin \varphi_m}$

- ④作图设计,确定 $G_c(s)$
- $(S)G(s) = G_c(s) \cdot G_0(s)$, 验算 ω_c , γ 是否满足指标

效果:

- ①保持低频段 满足稳态精度
- ②改善中频段 γ显著提高

例:已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K}{s(\frac{s}{10}+1)(\frac{s}{s}+1)}$,要求:r(t) = t

时 $e_{sr}^* \leq \frac{1}{126}$, $\gamma^* \geq 35^\circ$, $\omega_c^* \geq 20 \text{ rad/s}$, 试确定串联校正装置的传递函数 $G_c(s)$

决定采用滞后-超前校正

超前部分应该提供的超前角: $\varphi_m = \gamma^* - \gamma_0(20) + 6^\circ = 35^\circ - 8.2^\circ + 6^\circ = 32.8^\circ$

$$\alpha = \frac{1 - \sin \varphi_m}{1 + \sin \varphi_m} = \frac{1}{3.4}$$

$$\sqrt{\alpha} = \frac{1}{1.85}$$

④作图设计,确定 $G_c(s)$

$$\omega_1 = \sqrt{\alpha}\omega_c = 10.81$$

$$\omega_1 = \sqrt{\alpha}\omega_c = 10.81$$

$$\omega_2 = \frac{1}{\sqrt{\alpha}}\omega_c = 37$$

$$\omega_3 = 0.1\omega_c = 2$$

$$\frac{\omega_{c0}}{\omega_{c0}} = \frac{\omega_0}{\omega_{c0}} \qquad \omega_0 = 63$$

$$\frac{\omega_{c0}^3}{\omega_c} = \frac{\omega_0}{\omega_{c0}}$$

$$\omega_0 = 63$$

$$\frac{\omega_0}{\omega_1} = \frac{\omega_3}{\omega_4}$$

$$\omega_4 = 0.343$$

$$\frac{\omega_{c0}}{\omega_{c}} = \frac{\omega_{0}}{\omega_{c0}} \qquad \omega_{0} = 63$$

$$\frac{\omega_{0}}{\omega_{1}} = \frac{\omega_{3}}{\omega_{4}} \qquad \omega_{4} = 0.343$$

$$G_{c}(s) = \frac{(\frac{s}{2} + 1)(\frac{s}{10.81} + 1)}{(\frac{s}{0.343} + 1)(\frac{s}{37} + 1)}$$

⑤验算

$$G(s) = \frac{126}{s(\frac{S}{10} + 1)(\frac{S}{60} + 1)} \cdot \frac{\left(\frac{S}{2} + 1\right)\left(\frac{S}{10.81} + 1\right)}{\left(\frac{S}{0.343} + 1\right)\left(\frac{S}{37} + 1\right)}$$

$$\omega_c = 20 \operatorname{rad/s}$$

$$\gamma = 180^\circ + \arctan \frac{20}{2} + \arctan \frac{20}{10.81}$$

$$-90^\circ - \arctan \frac{20}{10} - \arctan \frac{20}{60}$$

$$-\arctan \frac{20}{0.343} - \arctan \frac{20}{37}$$

$$= 36.6^\circ > 35^\circ$$

$$\frac{\left(\frac{S}{2} + 1\right)\left(\frac{S}{10.81} + 1\right)}{\left(\frac{S}{37} + 1\right)}$$

$$\frac{\left(\frac{S}{2} + 1\right)\left(\frac{S}{10.81} + 1\right)}{\left(\frac{S}{37} + 1\right)}$$

$$\frac{\left(\frac{S}{37} + 1$$

校正方法	网络特点	应用场合		效果
超前校正 (微分)	相角超前幅值增加	$\omega_{c0} < \omega_c^*$ $\gamma_0 < \gamma^*$	ω _c ↑、 γ ↑ 抗高频干扰能力↓	100 dB φ(ω) 20 0.1 1 1 20 100 100 20 -90° -40 -180°
滞后校正 (积分)	幅值衰减 相角滞后	$\omega_{c0} > \omega_c^*$ $\gamma_0 < \gamma^*$ $\gamma_0(\omega_c^*)$ $> \gamma^* + 6^\circ$	ω_c ↓、 γ ↑ 抗高频干扰能力↑ 可增大 K 改善稳态 性能	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
滞后-超 前校正	幅值衰减 相角超前	超前、滞 后均不成 功	γ ↑↑	L(\omega) dB \qquad \qqqqq \qqqq \qq

例:已知某单位反馈系统的开环传递函数为 $G(s) = \frac{K}{(s+1)(\frac{s}{5}+1)(\frac{s}{30}+1)}$,试设

计PID控制器,使系统稳态速度误差 $e_{sr}^* \leq 0.1$, $\omega_c^* \geq 15$, $\gamma^* \geq 65^\circ$

超前校正、滞后校正、滞后-超前校正均不能成功得到预计动态性能

选择PID校正

④作图设计,确定 $G_c(s)$

$$\varphi_m = \gamma^* - \gamma_0(\omega_c) + 6^\circ = 65^\circ - (-4.3^\circ) + 6^\circ = 75.3^\circ$$

$$\angle (1 + \frac{s}{\omega_1})$$
 = $\arctan \frac{15}{\omega_1}$ arctan $\frac{15}{\omega_1}$ = 75.3° $\omega_1 = 3.9$ PID增益为1

⑤验算

$$G(s) = G_c(s) \cdot G_0(s) = \frac{\left(\frac{s}{0.854} + 1\right)\left(\frac{s}{3.9} + 1\right)}{s} \cdot \frac{10}{(s+1)\left(\frac{s}{5} + 1\right)\left(\frac{s}{30} + 1\right)}$$

$$\gamma = 180^\circ + \arctan\frac{15}{0.854} + \arctan\frac{15}{3.9} - 90^\circ - \arctan15 - \arctan\frac{15}{5} - \arctan\frac{15}{30}$$

 $= 67.85^{\circ} > \gamma^*$

