ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Ηλεκτρικής Ισχύος Ηρώων Πολυτεχνείου 9, Ζωγράφου, 157 73 Αθήνα

Διδάσκων: Γ. Κορρές, Καθ. ΕΜΠ

ΚΕΝΤΡΑ ΕΛΕΓΧΟΥ ΕΝΕΡΓΕΙΑΣ 8ο ΕΞΑΜΗΝΟ

ΕΞΑΜΗΝΙΑΙΟ ΘΕΜΑ ΑΚ. ΕΤΟΥΣ 2021-2022 (ΟΜΑΔΑ 2)

Τα δεδομένα του δικτύου 4 ζυγών του σχήματος δίνονται παρακάτω.

Βάση ισχύος: 100 ΜVΑ

Δεδομένα Κλάδων

From	То	R	Х	B Total	Tap t
Bus	Bus	(α.μ.)	(α.μ.)	(α.μ.)	(α.μ.)
1	2	0.02	0.06	0.20	
1	3	0.02	0.06	0.25	_
2	3	0.05	0.10	0.00	_
2	4	0.00	0.08	0.00	1.00

Φορτία:

$$S_{D2} = 0.50 + j 0.30 \alpha.\mu.$$

$$S_{D3} = 1.20 + i 0.80 \alpha.\mu.$$

$$S_{D4} = 0.25 + j \cdot 0.10 \alpha.\mu.$$

Γεννήτριες:

$$V_1 = 1.00 \text{ α.μ.}$$
 $\delta_1 = +0.0000^0$ (ζυγός 1 ταλάντωσης)

Τα αποτελέσματα της ΑC ροής φορτίου είναι τα ακόλουθα:

 $V_1 = 1.0000 \text{ a.\mu.}$ $\delta_1 = +0.0000^{\circ}$ $V_2 = 0.9545 \text{ a.\mu.}$ $\delta_2 = -2.6768^{\circ}$

 $V_3 = 0.9375 \text{ a.u.}$ $\delta_3 = -3.2006^\circ$

 $V_4 = 0.9458 \text{ a.\mu.}$ $\delta_4 = -3.9462^{\circ}$

Για το παραπάνω σύστημα ζητούνται με τη βοήθεια του προγράμματος Mathcad:

• Να υπολογιστεί η ροή ενεργού και αέργου ισχύος στα δύο άκρα του μετασχηματιστή 2–4 για t=1.15, με χρήση του 2ου μοντέλου ρύθμισης και τάσεις αυτές της ροής φορτίου.

Πρόβλημα ροών φορτίου (ονομαστική λήψη Μ/Σ)

- Να υπολογιστεί η μήτρα αγωγιμοτήτων σε καρτεσιανή μορφή, να καταστρωθούν οι εξισώσεις ροών φορτίου και να θεμελιωθεί το πρόβλημα ροών φορτίου σε καρτεσιανή μορφή.
- Να επιλυθεί το πρόβλημα της ΑC ροής φορτίου με την ανακυκλωτική μέθοδο Newton-Raphson στην υβριδική ή καρτεσιανή μορφή, θεωρώντας όριο σύγκλισης 10⁻³, σύμφωνα με τα δεδομένα του αρχείου ΚΕΕ_ΔΕΔΟΜΕΝΑ_ΘΕΜΑ_2022.pdf, και να υπολογιστούν οι ενεργές και άεργες ροές όλων των κλάδων του δικτύου καθώς και οι αντίστοιχες ενεργές και άεργες απώλειες.
- Να επιλυθεί το πρόβλημα της DC ροής φορτίου και να υπολογιστούν οι ενεργές ροές όλων των κλάδων του δικτύου.

• Πρόβλημα εκτίμησης κατάστασης με μετρήσεις SCADA (ονομαστική λήψη Μ/Σ)

Θεωρήστε τις μετρήσεις μέτρου τάσης, ροών κλάδων και εγχύσεων ζυγών, που δίνονται στο αρχείο ΚΕΕ_ΔΕΔΟΜΕΝΑ_ΘΕΜΑ_2022.pdf. Να θεωρήσετε ως τυπική απόκλιση σ=0.010 για τις μετρήσεις ροών, σ=0.050 για τις μετρήσεις εγχύσεων, και σ=0.005 για τις μετρήσεις τάσεων, και να καθορίσετε τις τιμές τους, προσθέτοντας σε κάθε "σωστή" μέτρηση, όπως αυτή προκύπτει από τα αποτελέσματα ΑC ροής φορτίου, σφάλμα (θόρυβο) εύρους ±3σ.

- Να υπολογιστεί το διάνυσμα κατάστασης με την υβριδική μορφή, θεωρώντας όριο σύγκλισης 10⁻³
- Θεωρήστε ότι σε μία μέτρηση ροής ή έγχυσης (επιλογής σας) υπάρχει πολύ μεγάλο σφάλμα (π.χ. ±20σ). Να γίνει ανίχνευση και εντοπισμός της εσφαλμένης μέτρησης και να υπολογισθούν η μήτρα συνδιασποράς της εκτίμησης κατάστασης και των υπολοίπων.
- Να επαναληφθεί το προηγούμενο ερώτημα με τη DC μέθοδο εκτίμησης κατάστασης.

Πρόβλημα εκτίμησης κατάστασης με μετρήσεις PMU (ονομαστική λήψη Μ/Σ)

Θεωρήστε τις μονάδες PMUs που δίνονται στο αρχείο KEE_ΔΕΔΟΜΕΝΑ_ΘΕΜΑ_2022.pdf. Οι τιμές των μετρήσεων φασιθετών (phasors) τάσεων ζυγών και ρευμάτων κλάδων των PMUs θα καθοριστούν όπως και του συστήματος SCADA. Να θεωρήσετε ως τυπική απόκλιση σ=0.001 για τις μετρήσεις φασιθετών ρευμάτων και τάσεων. Να υπολογιστεί το διάνυσμα κατάστασης με τη γραμμική μέθοδο εκτίμησης κατάστασης σε καρτεσιανή μορφή.

• Τεχνικές αραιών μητρών

- Να εκτελεστεί η 1^η ανακύκλωση της εκτίμησης κατάστασης με μετρήσεις SCADA, χρησιμοποιώντας τις μεθόδους τριγωνοποίησης LU και Cholesky.
- Δίνεται το μονογραμμικό διάγραμμα ενός δικτύου 6 ζυγών.

- \checkmark Να κατασκευαστεί συμβολικά η αραιή μήτρα αγωγιμοτήτων Y του δικτύου καθώς και ο πίνακας παραγόντων της Y, όπου με X θα συμβολιστούν τα μη μηδενικά στοιχεία της Y και με F τα επιπλέον μη μηδενικά στοιχεία του πίνακα παραγόντων που θα προκύψουν από την τριγωνική της παραγοντοποίηση.
- \checkmark Να υπολογιστεί ο δείκτης αραιότητας R_s της μήτρας Y .
- ✓ Να επαναριθμήσετε τους κόμβους του δικτύου (σύμφωνα με τον 1ο αλγόριθμο διατάξεως εξισώσεων) ως εξής (1→5, 2→6, 3→1, 4→2, 5→3, 6→4) και να επαναλάβετε τα προηγούμενα δύο ερωτήματα.
- \checkmark Θεωρώντας ότι όλοι οι κλάδοι έχουν $y_{km} = -j1\,\alpha.\mu$. και $y_{skm} = y_{smk} = j0\,\alpha.\mu$., να καθορίσετε τις διαστάσεις και τις τιμές των πινάκων ADIAG, ITKT, ITKM, AOFFD για την αποθήκευση της

αραιής μήτρας αγωγιμοτήτων Y του δικτύου με βάση την αρχική αρίθμηση των κόμβων του γράφου.