В начало Курсы ФИиВТ 09.03.04 Программная инженерия(Очная) ПС 11 Разработка программных систем 4 семестр (09.03.04_11_4 сем_о)Физика Раздел 1 "Основы квантовой механики" К-1 ТЕСТ.

Тест начат Воскресенье, 14 Апрель 2024, 12:57

Состояние Завершенные
Воскресенье, 14 Апрель 2024, 13:11

Прошло времени
Баллы 10,83/13,00
Оценка 8,33 из 10,00 (83%)

Вопрос **1** Верно

Баллов: 1,00 из 1,00

Две частицы прошли ускоряющую разность потенциалов 800 В и 200 В. Заряды и массы частиц *одинаковы*.

При этом отношение длин волн де Бройля этих частиц λ_1/λ_2 равно...

Выберите один ответ:

- \odot $\frac{1}{2}$
- $\bigcirc \qquad \frac{1}{2\sqrt{2}}$
- \bigcirc $\frac{1}{4}$
- \bigcirc $\frac{1}{\sqrt{2}}$

Вопрос	2
Верно	

Баллов: 1,00 из 1,00

Чему равна неопределенность координаты частицы, если проекция ее импульса на ось ОУ определена точно.

Ответ выразите в м.

Выберите один ответ:

- ⊚ ∞ ✓

6,6·10⁻⁶

6,6.10-26

Ваш ответ верный.

Вопрос 3

Верно

Баллов: 1,00 из 1,00

Сопоставьте формулу и вид уравнения Шредингера:

$$-\frac{\hbar 2}{2m}\Delta\Psi+U\Psi=i\hbar\frac{\partial\Psi}{\partial t}$$

Нестационарное трехмерное уравнение

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} \left(E - \frac{kx^2}{2} \right) \Psi = 0$

Стационарное уравнение для одномерного гармонического осциллятора

 $\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} E \Psi = 0$

Стационарное уравнение для одномерного ящика с бесконечно высокими стенками

Вопрос **4**

Верно

Баллов: 1,00 из 1,00

Частица в очень глубоком потенциальном ящике шириной *L* находится **на 3-м энергетическом уровне**.

Укажите, какова вероятность нахождения частицы в интервале от **0 до 2/3L**.

Выберите один или несколько ответов:

- ∠ 2/3 ✔
- 4/9
- 1/3
- 1,0
- 1/9

Ваш ответ верный.

Вопрос **5**

Верно

Баллов: 1,00 из 1,00

Частица с энергией **Е** может находиться в области **I** и **II** (см. рисунок)

Укажите вид волновой функции в соответствующей области:

 $\Psi(x) = e^{-\frac{\sqrt{2m(U-x)}}{\hbar}}$

II

Волновая функция вида частицы в области...

 $\Psi(x) = e^{i\frac{\sqrt{2m(E-U)}}{\hbar}x}$

соответствует нахождению

соответствует нахождению 🧳

соответствует нахождению 🗸

I

Волновая функция вида частицы в области...

 $\Psi(x) = e^{-\frac{i\sqrt{2m(U-E)}}{\hbar}x}$

не соответствует ни одной из областей

Волновая функция вида частицы в области...

Вопрос 6		
Верно		
Баллов: 1,00 из 1,00		
	roug napus 2	
Главное квантовое число электрона в ат		
Укажите все возможные состояния электро	рна.	
Выберите один или несколько ответов:		
✓ 2S ✓		
☑ 2p ✔		
□ 2f		
2d		
Ваш ответ верный.		
. 7		
Вопрос 7 Частично правильный		
Баллов: 0,50 из 1,00		
Баллов. 0,30 из 1,00		
Энергетический уровень в атоме ртути име	ет обозначение 6 ⁹	$^{3}P_{2}$
Укажите значения квантовых числе для это	ого состояния:	
Спиновое квантовое число равно	1	✓
Орбитальное квантовое число равно	0	×
Квантовое число полного момента равно	1	×
	'	
Главное квантовое число равно	6	
Ваш ответ частично правильный.		
Вы правильно выбрали 2.		
ы правильно выорали 2.		

Вопрос **8**Неверно
Баллов: 0,00 из 1,00

Дана схема состояний электрона в атоме водорода.

Существуют <u>правила отбора переходов</u> электрона между состояниями, т.к. должны выполняться законы <u>сохранения энергии и момента импульса</u>.

Укажите разрешенные переходы.

Выберите один или несколько ответов:

/	h	- 34

е

✓ c ×

✓ d **X**

a

Ваш ответ неправильный.

Вопрос **9** Верно

Баллов: 1,00 из 1,00

Укажите верные утверждения для **фотонов**:

Его спиновое квантовое число равно

Он относится к классу...

Его волновая функция...

В одном квантовом состоянии таких частиц может быть...

Вопрос 10					
Верно					
Баллов: 1,00 из 1,00					
Волновая функция системы при перестановке двух тождественных частиц <i>изменила</i> свой знак. Ответьте на следующие вопросы:					
Эта система состоит из	фермионов	✓			

полуцелым

антисимметричной

Ваш ответ верный.

Значение спина частиц системы является

Волновая функция такой системы является...

Вопрос **11** Верно Баллов: 1,00 из 1,00

На рисунке показаны уровни энергии орбиталей в атомах, а справа - образование периодов как совокупности орбиталей.

Сформируйте верные утверждения:

Максимальное число электронов на 4f - орбитали равно...

Максимальное число электронов на 5d - орбитали равно...

Число химических элементов в 6-м периоде равно...

14 **•**10 **•**22 **•**

Вопрос 12

Верно

Баллов: 1,00 из 1,00

В многоэлектронных атомах уровни энергии определяются не только главным квантовым числом, но и **полным моментом атома**, а переходы между ними подчиняются **правилам отбора**.

Атом ртути находился в состояниях $\mathbf{6}^{3}\mathbf{D_{1}}$ и $\mathbf{6}^{3}\mathbf{P_{1}}$.

Укажите, верны ли следующие утверждения:

Переход из 1-го состояния во 2-е невозможен, т.к. главное квантовое число не изменяется.

Переход из 1-го состояния во 2-е возможен, т.к. орбитальное число изменяется на 1.

Переход из 1-го состояния во 2-е невозможен, т.к. полный момент не изменяется на 1.

Ваш ответ верный.

Вопрос 13

Частично правильный

Баллов: 0,33 из 1,00

На рисунке показан полный спектр энергетических уровней молекулы и переходы между ними.

Фиолетовые стрелки соответствуют...

Синие стрелки соответствуют

Красные стрелки соответствуют ...

электронным переходам колебательно-вращательным переходам электронно-колебательно-вращательным переходам

Ваш ответ частично правильный.

Вы правильно выбрали 1.