```
import numpy as np
In [23]:
         import pandas as pd
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.linear_model import LogisticRegression
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.neural network import MLPClassifier
         from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
         from sklearn.metrics import accuracy score,f1 score
         import warnings
         warnings.filterwarnings(action='ignore')
         data=pd.read csv('data-ori.csv')
In [24]:
         data.head()
Out[24]:
            HAEMATOCRIT HAEMOGLOBINS ERYTHROCYTE LEUCOCYTE THROMBOCYTE MCH MCHC MCV AGE SEX SOURCE
                                                                                             75.5
         0
                     35.1
                                     11.8
                                                  4.65
                                                              6.3
                                                                                 25.4
                                                                                         33.6
                                                                                                                 out
                                                                                              80.7
         1
                     43.5
                                     14.8
                                                  5.39
                                                             12.7
                                                                            334
                                                                                 27.5
                                                                                         34.0
                                                                                                                 out
         2
                     33.5
                                     11.3
                                                  4.74
                                                             13.2
                                                                            305
                                                                                  23.8
                                                                                         33.7
                                                                                             70.7
                                                                                                                 out
         3
                     39.1
                                     13.7
                                                  4.98
                                                             10.5
                                                                            366
                                                                                27.5
                                                                                         35.0
                                                                                             78.5
                                                                                                                 out
                     30.9
                                      9.9
                                                  4.23
                                                             22.1
                                                                            333
                                                                                 23.4
                                                                                         32.0
                                                                                             73.0
                                                                                                     1 M
                                                                                                                 out
In [25]:
         data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4412 entries, 0 to 4411
Data columns (total 11 columns):
    Column
                  Non-Null Count Dtype
    _____
                  -----
    HAEMATOCRIT
                  4412 non-null float64
    HAEMOGLOBINS
                  4412 non-null
                                  float64
 2
    ERYTHROCYTE
                  4412 non-null
                                  float64
 3
    LEUCOCYTE
                                 float64
                  4412 non-null
    THROMBOCYTE
                  4412 non-null
                                  int64
 5
                                  float64
    MCH
                  4412 non-null
    MCHC
                  4412 non-null
                                  float64
 7
    MCV
                  4412 non-null
                                 float64
    AGE
                  4412 non-null
                                  int64
 9
    SEX
                  4412 non-null
                                  object
 10 SOURCE
                  4412 non-null
                                 object
dtypes: float64(7), int64(2), object(2)
memory usage: 379.3+ KB
data.isna().sum()
```

```
In [26]:
          HAEMATOCRIT
                          0
Out[26]:
          HAEMOGLOBINS
                          0
          ERYTHROCYTE
                          0
          LEUCOCYTE
          THROMBOCYTE
          MCH
          MCHC
          MCV
          AGE
          SEX
          SOURCE
          dtype: int64
```

Preprocessing

```
In [35]: def preprocess_input(df):
    df=df.copy()

#Binary Encoding
    df['SEX']=df['SEX'].replace({'F':0, 'M':1})
```

```
#split df into X and y
y=df['SOURCE']
X=df.drop('SOURCE',axis=1)

#Train_test_split
X_train,X_test,y_train,y_test =train_test_split(X,y,train_size=0.7,shuffle=True,random_state=1)

#Scale X
scaler= StandardScaler()
scaler.fit(X_train)
X_train=pd.DataFrame(scaler.transform(X_train),index=X_train.index, columns=X_train.columns)
X_test=pd.DataFrame(scaler.transform(X_test),index=X_test.index, columns=X_test.columns)

return X_train,X_test,y_train,y_test
```

```
In [36]: X_train,X_test,y_train,y_test=preprocess_input(data)
```

In [37]: **X_train**

Out[37]:		HAEMATOCRIT	HAEMOGLOBINS	ERYTHROCYTE	LEUCOCYTE	THROMBOCYTE	МСН	МСНС	MCV	AGE	SEX
	2275	1.521571	0.918324	4.205082	-0.507635	-0.368181	-3.543672	-1.886871	-3.523787	0.113088	-1.043023
	4093	-0.590225	-0.613524	-0.673427	-0.468456	-0.184678	0.106741	-0.267275	0.263954	1.411455	-1.043023
	1727	-1.512041	-1.618799	-1.463160	0.099634	1.195966	-0.228501	-0.996093	0.191392	-0.350615	-1.043023
	615	0.817639	0.870454	0.765924	-0.488046	-0.140986	0.032243	0.380563	-0.127881	-1.138910	0.958752
	1610	0.348351	0.391752	-0.036546	-0.311742	0.260973	0.665478	0.299583	0.670302	-0.443356	-1.043023
	•••										
	2895	0.029906	0.056660	-0.240348	-0.781885	0.531859	0.479233	0.137624	0.510665	0.576790	-1.043023
	2763	-0.003615	-0.278432	-0.533314	-0.703528	0.182329	0.479233	-1.158053	1.149211	0.484050	-1.043023
	905	1.320448	1.444897	0.753186	-0.488046	0.907604	0.926222	0.704482	0.742864	-0.953429	0.958752
	3980	-0.539944	-0.565653	-0.558789	-0.703528	-0.420611	-0.005006	-0.267275	0.089805	1.318715	0.958752
	235	-0.288540	-0.230562	-0.011071	0.334706	0.732839	-0.451995	0.218603	-0.606791	-1.741723	-1.043023

3088 rows × 10 columns

```
In [38]: y_train
         2275
                 out
Out[38]:
         4093
                  in
         1727
                  in
         615
                 out
         1610
                 out
                 . . .
         2895
                 out
         2763
                 out
         905
                 out
         3980
                 out
         235
                 out
         Name: SOURCE, Length: 3088, dtype: object
In [39]: y_train.value_counts()
```

```
Out[39]: out 1834
in 1254
Name: SOURCE, dtype: int64
```

Training

Result

```
In [41]: for name,model in models.items():
    y_pred = model.predict(X_test)
    acc=accuracy_score(y_test,y_pred)
    print(name+ "Accuracy: {:.2f}%".format(acc*100))

Logistic RegressionAccuracy: 71.15%
    Decision TreeAccuracy: 66.77%
    Neural NetworkAccuracy: 74.17%
    Random ForestAccuracy: 74.02%
    Gradient BoostingAccuracy: 73.64%

In [42]: for name,model in models.items():
    y_pred = model.predict(X_test)
```