Sistema de comunicaciones seguras con segmentación virtual de dominios

Avance de proyecto

Alberto Daniel Lange

Dirección: Juan Ignacio Vaccarezza Codirección: Santiago Pérez Ghiglia

Ingeniería en Telecomunicaciones Instituto Balseiro

26 de febrero de 2025

- Introducción
- 2 Revisión bibliográfica
- 3 Desarrollo
- **4** Conclusiones

- Introducción
- 2 Revisión bibliográfica
- 3 Desarrollo
- 4 Conclusiones

Introducción

Desarrollo de un encriptador para asegurar las comunicaciones entre sitios.

Figura 1: Esquema simplificado de operación del sistema.

Motivación

- Abordaje novedoso a las soluciones de encriptación de redes.
- Necesidad de una solución propia y auditable.

Objetivos

- Validar la viabilidad de realizar segmentación de dominios basada en hipervisores.
- Realizar una prueba de concepto del enfoque propuesto.
- Implementar una propuesta de solución auditable y documentada.

- 2 Revisión bibliográfica
- 3 Desarrollo
- 4 Conclusiones

Tríada CID

Figura 2: Modelo CID.

- Clave única.
- Requiere un canal seguro para el intercambio de la clave.
- La confidencialidad y autenticación dependen tanto de A como de B.
- Método eficiente.

Figura 3: Esquema simplificado de la encriptación simétrica.

Encriptación asimétrica

- Par de claves relacionadas.
- Mantener la autenticidad y confidencialidad de lo que recibe A depende solo de A.
- Mayor costo computacional.

Figura 4: Esquema simplificado de la encriptación asimétrica.

Acuerdo de claves Diffie-Hellmann

- Método para generar una clave compartida sin intercambio directo.
- Mitiga un problema de la encriptación simétrica.
- No resuelve el problema de autenticación.

Figura 5: Método Diffie-Hellmann simplificado.

Arquitectura red/black

 Lineamientos para identificar y separar correctamente dominios de información.

Figura 6: Esquema simplificado dominios red/black.

Hipervisores

Software que permite la ejecución de entidades virtuales independientes sobre hardware compartido.

- Tipo 1: ejecución sobre hardware.
- Tipo 2: ejecución sobre un sistema operativo.

Figura 7: Ejemplo de hipervisores.

- 3 Desarrollo
- 4 Conclusiones

Desarrollo •00000000000

Plan de trabajo

Figura 8: Plan de trabajo del primer semestre de proyecto.

- 3 Desarrollo Propuesta de solución
- 4 Conclusiones

Desarrollo 00000000000

Método ARCADIA

Figura 9: Desglose del método adoptado.

Análisis operacional

- Definición del problema.
- Planteo de las necesidades del usuario.
- Alcance de la solución.
- Concepto de operaciones.

Figura 10: Esquema simplificado del sistema propuesto.

Modos de operación

Figura 11: Despliegue en sitio sin infraestructura de red.

Figura 12: Despliegue en sitio con infraestructura de red

- Funcionales: renovación de claves, manejo de ataques DoS.
- Rendimiento: tasa de transferencia, número de nodos.
- Interfaz: administración, interfaces físicas.
- Documento de requerimientos.

Desarrollo

Arquitectura lógica

- Uso de un hipervisor con tres máquinas virtuales independientes.
- Documento de arquitectura.

Figura 13: Arquitectura lógica de la solución propuesta.

Tecnologías a usar

NOISE

 Framework para el desarrollo de protocolos seguros.

Tecnologías a usar

NOISE

 Framework para el desarrollo de protocolos seguros.

Wireguard

- Software VPN.
- Opera a nivel de capa de red.
- Base de código reducida.

Tecnologías a usar

NOISE

 Framework para el desarrollo de protocolos seguros.

Wireguard

- Software VPN.
- Opera a nivel de capa de red.
- Base de código reducida.

seL4

- · Microkernel.
- Hipervisor tipo 1.
- Formalmente probado.

- 2 Revisión bibliográfica
- 3 Desarrollo Propuesta de solución Laboratorios virtuales
- 4 Conclusiones

Desarrollo

Laboratorio virtual - Wireguard

- Fundamentos de redes.
- Utilización de Wireguard.

Figura 14: Primeras pruebas con Wireguard en GNS3.

Laboratorio virtual - Wireguard

Figura 15: Implementación de la propuesta de solución en GNS3.

- 1 Introducción
- 2 Revisión bibliográfica
- 3 Desarrollo
- **4** Conclusiones

Resumen

- Introducción a los conceptos de sistemas de comunicaciones seguras.
- Elaboración e implementación simulada de una propuesta de solución.
- Familiarización con las tecnologías a utilizar.

Trabajo a futuro

- Reformular la implementación simulada del encriptador en seL4 y posteriormente implementarlo en hardware.
- Adquirir conceptos de hacking para realimentar el diseño de la solución.
- Continuar con la documentación del proyecto.

¡Muchas gracias! ¿Preguntas?