GSERM - **2018**Survival Model Extensions

June 8, 2018 (morning session)

Stratification

Stratification

- Allow different groups to have <u>different baseline hazards</u>
- Akin to different intercepts, but more flexible.
- Assumes covariate effects are otherwise identical
- Uses:
 - · Unit/group heterogeneity
 - · Nonproportional hazards
 - · Simple models for duration dependence

Stratification, Simulated

```
> set.seed=7222009
> Z<-rnorm(200)
> X0<-rep(0,times=200)
> X1<-rep(1,times=200)
> T0<-rweibull(200,shape=1,scale=1/exp(2+0.5*Z))
> T1<-rweibull(200,shape=0.5,scale=1/exp(2+0.5*Z))
> C<-rep(1,times=400)
> X<-append(X0,X1)
> T<-append(T0,T1)
> data<-as.data.frame(cbind(T,C,X,rep(Z,times=2)))
> colnames(data)<-c("T","C","X","Z")</pre>
```

Stratified Weibull Hazards

Stratification, Simulated

```
> cox<-coxph(S~Z+X,data=data)</pre>
> summarv(cox)
Call:
coxph(formula = S ~ Z + X, data = data)
 n= 400, number of events= 400
     coef exp(coef) se(coef) z Pr(>|z|)
Z 0.28286 1.32692 0.05133 5.510 3.58e-08 ***
X -0.22866 0.79560 0.10639 -2.149 0.0316 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
 exp(coef) exp(-coef) lower .95 upper .95
    1.3269
              0.7536 1.1999
                                1.4674
X
    0.7956 1.2569 0.6459 0.9801
Concordance= 0.571 (se = 0.017)
Rsquare= 0.08 (max possible= 1)
Likelihood ratio test= 33.25 on 2 df, p=6.022e-08
Wald test
                   = 33.02 on 2 df.
                                      p=6.749e-08
Score (logrank) test = 33.07 on 2 df, p=6.601e-08
```

Stratification, Simulated

```
> cox.strata<-coxph(S~Z+strata(X),data=data)</pre>
> summary(cox.strata)
Call:
coxph(formula = S ~ Z + strata(X), data = data)
 n= 400, number of events= 400
    coef exp(coef) se(coef) z Pr(>|z|)
Z 0.32140 1.37906 0.05176 6.21 5.3e-10 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
 exp(coef) exp(-coef) lower .95 upper .95
7.
     1.379
               0.7251
                         1.246
                                    1.526
Concordance= 0.597 (se = 0.024)
Rsquare= 0.092 (max possible= 1)
Likelihood ratio test= 38.69 on 1 df, p=4.955e-10
Wald test
                    = 38.56 on 1 df. p=5.303e-10
Score (logrank) test = 38.62 on 1 df, p=5.151e-10
```

$\operatorname{Cox} \widehat{S(t)}$ s

Stratified Weibull Model

```
> summary(survreg(S~Z+strata(X),data=data,dist="weibull"))
Call:
survreg(formula = S ~ Z + strata(X), data = data, dist = "weibull")
           Value Std. Error
                               z
-0.4140 0.0577 -7.178 7.06e-13
X = 0
         0.0152 0.0555 0.274 7.84e-01
X=1
         0.6864 0.0543 12.650 1.11e-36
Scale:
X=0 X=1 # Recall: scale = 1 / p
1.02 1.99
Weibull distribution
Loglik(model) = -7.8 Loglik(intercept only) = -31.4
Chisq= 47.36 on 1 degrees of freedom, p= 5.9e-12
Number of Newton-Raphson Iterations: 6
n = 400
```

Duration Dependence

Duration Dependence

- 1. State Dependence
 - E.g., Institutionalization / Degradation

Positive State Dependence — Negative Duration Dependence

Negative State Dependence \longrightarrow Positive Duration Dependence

Duration Dependence

- 2. Unobserved / Unmodeled Heterogeneity
 - $h(t|\mathbf{X}_i) \neq h(t|\mathbf{X}_j)$ for $\mathbf{X}_i = \mathbf{X}_j$
 - Adverse selection in the sample / data
 - Result: "Spurious" duration dependence

Suppose we have an unobserved Z, with

$$h_i(t|\mathbf{X}_i, Z_i = 0) = 0.05$$

and

$$h_i(t|\mathbf{X}_i, Z_i = 1) = 0.02.$$

Unobserved Heterogeneity Illustrated


```
> set.seed(7222009)
> W<-rnorm(500)
> X<-rnorm(500)
> Z<-rnorm(500)
> T<-rexp(500,rate=(exp(0+0.5*W+0.5*X-0.6*Z))) # exponential hazard
> C<-rep(1,times=500)
> S<-Surv(T,C)
> summary(survreg(S~W,dist="weibull"))
Call:
survreg(formula = S ~ W, dist = "weibull")
             Value Std. Error
(Intercept) -0.0101 0.0629 -0.16 8.73e-01
          -0.6339 0.0610 -10.40 2.47e-25
Log(scale) 0.2833 0.0333 8.52 1.62e-17
Scale= 1.33 \# implies p = 1/Scale = 0.753
Weibull distribution
Loglik(model) = -568.1 Loglik(intercept only) = -615.3
Chisq= 94.47 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n = 500
```

```
> summary(survreg(S~W+X,dist="weibull"))
Call:
survreg(formula = S ~ W + X, dist = "weibull")
            Value Std. Error
                                  z
-0.5907 0.0581 -10.160 2.98e-24
-0.4750 0.0556 -8.549 1.24e-17
Log(scale) 0.2202 0.0329 6.689 2.24e-11
Scale= 1.25 \# implies p = 1/Scale = 0.802
Weibull distribution
Loglik(model) = -534.5 Loglik(intercept only) = -615.3
Chisq= 161.6 on 2 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n = 500
```

```
> summarv(survreg(S~W+X+Z,dist="weibull"))
Call:
survreg(formula = S ~ W + X + Z, dist = "weibull")
             Value Std. Error
(Intercept) -0.0777 0.0494 -1.57 1.16e-01
           -0.5665 0.0468 -12.11 9.17e-34
X
          -0.5041 0.0473 -10.66 1.58e-26
          0.5923 0.0446 13.29 2.73e-40
Log(scale) 0.0423 0.0345 1.22 2.21e-01
Scale= 1.04 \# implies p = 1/Scale = 0.959
Weibull distribution
Loglik(model) = -464.3 Loglik(intercept only) = -615.3
Chisq= 302.01 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5
n = 500
```


Duration Dependence: What To Do?

(At least) Three Options:

- 1. Model Specification
- 2. Unit-Level Effects
- 3. Model the Duration Dependence

Modeling Duration Dependence

Weibull with:

$$p = \exp(\mathbf{Z}_i \gamma)$$

Gives:

$$h_i(t) = \exp(\mathbf{X}_i \beta) \exp(\mathbf{Z}_i \gamma) [\exp(\mathbf{X}_i \beta) t]^{[\exp(\mathbf{Z}_i \gamma)] - 1}$$

and (more usefully):

$$S(t) = \exp(-\exp(\mathbf{X}_i\beta)t)^{\exp(\mathbf{Z}_i\gamma)}$$

Example: SCOTUS Departures

```
> library(flexsurv)
> ct.weib<-flexsurvreg(scotus.S~age+pension+pagree,
                     data=scotus.dist="weibull")
> ct.weib
Estimates:
        data mean
                   est
                              L95%
                                         U95%
                                                    exp(est)
               NΑ
                       0.999
                                  0.637
                                             1.570
                                                          NΑ
shape
scale
               NΑ
                     942.000
                                 13.700
                                         64800.000
                                                          NΑ
                     -0.041
                                 -0.102
age
           62,100
                                             0.019
                                                       0.959
            0.199
                     -1.310
                                 -2.360
                                            -0.265
                                                       0.269
pension
pagree
            0.616
                      -0.113
                                 -0.673
                                            0.447
                                                       0.893
        L95%
                   U95%
shape
               NA
                          NA
scale
               NA
                          NΑ
            0.903
                       1.020
age
pension
            0.095
                       0.767
pagree
            0.510
                       1.560
N = 1765, Events: 51, Censored: 1714
Total time at risk: 1765
Log-likelihood = -209, df = 5
AIC = 429
```

Example: SCOTUS Departures

> ct.weib.DD

Estimates:

	data mean	a mean est L95%		U95%	
shape	NA	0.3710	0.1260	1.0900	
scale	NA	491.0000	16.7000	14500.0000	
age	62.1000	-0.0307	-0.0779	0.0164	
pension	0.1990	-1.0900	-1.9700	-0.2190	
pagree	0.6160	-0.0328	-0.4840	0.4180	
shape(age)	62.1000	0.0172	-0.0011	0.0356	
	exp(est)	L95%	U95%		
shape	NA	AT A	***		
	IVA	NA	NA		
scale	NA NA	NA NA	NA NA		
1					
scale	NA	NA	NA		
scale age	NA 0.9700	NA 0.9250	NA 1.0200		

```
N = 1765, Events: 51, Censored: 1714 Total time at risk: 1765 Log-likelihood = -208, df = 6 ATC = 427
```

\hat{p} by Age

$\widehat{h(t)}$ s by Age and Model

Separation

Separation

"Separation" = "perfect prediction"

Intuition:

$$Pr(Y = 1|X = 0) = ?$$

Separation: Effects

•
$$\hat{\beta}_X = \pm \infty$$

•
$$\widehat{\mathrm{s.e.}}_{\beta}=\infty$$

$$\bullet \left. \frac{\partial^2 \ln L}{\partial X^2} \right|_{\hat{\beta}} = 0$$

Separation Illustrated

Separation: What Happens

```
> summary(glm(Y~W+Z+X,family="binomial"))
Call:
glm(formula = Y ~ W + Z + X, family = "binomial")
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.363 0.111 -3.26 0.00111 **
            0.424 0.119 3.57 0.00036 ***
Z
            18.746 541.835 0.03 0.97240
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 684.41 on 499 degrees of freedom
Residual deviance: 464.69 on 496 degrees of freedom
ATC: 472.7
Number of Fisher Scoring iterations: 17
```

Separation: What Happens (Stata Remix)

. logit Y W Z X note: X != 0 predicts success perfectly X dropped and 136 obs not used Iteration 0: log likelihood = -245.53269 Iteration 1: log likelihood = -232.41173 Iteration 2: log likelihood = -232.34436 Iteration 3: log likelihood = -232.34436

Logistic regression	Number of obs	=	364
	LR chi2(2)	=	26.38
	Prob > chi2	=	0.0000
Log likelihood = -232.34436	Pseudo R2	=	0.0537

Y	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
	.4242117 4120285				.1913936 6321628	
	03626348		-3.26	0.001	5805892	1446803

Solution (?): Exact Logistic Regression

- Cox (1970, Ch. 4); Hirji et al. (1987 JASA); Mehta & Patel (1995 Stat. Med.)
- Conditions on permutations of covariate patterns
- Always has finite solutions;
- Computational issues...

Firth's (1993) Correction

Firth proposed:

$$L(\boldsymbol{\beta}|\boldsymbol{Y})^* = L(\boldsymbol{\beta}|\boldsymbol{Y}) |\mathbf{I}(\boldsymbol{\beta})|^{\frac{1}{2}}$$

$$\ln L(\boldsymbol{\beta}|\boldsymbol{Y})^* = \ln L(\boldsymbol{\beta}|\boldsymbol{Y}) + 0.5 \ln |\mathbf{I}(\boldsymbol{\beta})|$$

"Penalized likelihood":

- Consistent
- Eliminates small-sample bias
- Exist given separation
- Bayesians: "Jeffreys' prior"

Potential Drawbacks

- "Profile" (= "concentrated") likelihood
- $L(\hat{\beta})$ can be asymmetrical...
- ullet \rightarrow inference...

Software

- R
- elrm (exact logistic regression via MCMC)
- brlr ("bias-reduced logistic regression")
- logistf ("Firth's logistic regression")

- Stata
 - exlogistic (exact logistic regression)
 - firthlogit (Firth corrected logit)

Example: Pets as Family

- CBS/NYT Poll, April 1997
- Standard political/demographics, plus
- "Do you consider your pet to be a member of your family, or not?"
- Yes = 84.4%, No = 15.6%

Pets as Family: Data

```
> summary(Pets)
  petfamily
                 female
                                  married
Min. :0.00 Female:403 Divorced/Sep:118
1st Qu.:1.00 Male :321 Married
                                      :442
Median:1.00
                           NBM
                                      :118
Mean :0.84
                           Widowed
                                      : 46
3rd Qu.:1.00
Max. :1.00
       partyid
                       education
           : 58 < HS
                             : 71
         :224 College Grad:131
Democrat.
GOP
           :228
                 HS diploma :244
Independent:214
                 Post-Grad : 96
                 Some college: 182
```

Pets as Family: Basic Model

```
> Pets.1<-glm(petfamily~female+as.factor(married)+as.factor(partyid)
            +as.factor(education),data=Pets,family=binomial)
> summarv(Pets.1)
Call:
glm(formula = petfamily ~ female + as.factor(married) + as.factor(partyid) +
   as.factor(education), family = binomial, data = Pets)
Coefficients:
                                Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                  2.0133
                                             0.5388
                                                       3.74 0.00019 ***
femaleMale
                                             0.2142
                                 -0.6959
                                                     -3.25 0.00116 **
as.factor(married)Married
                                 -0.0657
                                             0.2911
                                                     -0.23 0.82147
as.factor(married)NBM
                                  0.4599
                                             0.3957
                                                     1.16 0.24504
as.factor(married)Widowed
                                 -0.1568
                                             0.4921
                                                     -0.32 0.75007
                                 -0.1241
                                             0.4286
                                                     -0.29 0.77213
as.factor(partyid)Democrat
as.factor(partyid)GOP
                                 -0.0350
                                             0.4321
                                                      -0.08 0.93537
as.factor(partyid)Independent
                                 -0.1521
                                             0.4299
                                                     -0.35 0.72338
as.factor(education)College Grad 0.2511
                                             0.4121
                                                     0.61 0.54228
as.factor(education)HS diploma
                                  0.0595
                                             0.3685
                                                     0.16 0.87182
as.factor(education)Post-Grad
                                  0.1946
                                             0.4331
                                                      0.45 0.65321
as.factor(education)Some college
                                 0.0587
                                             0.3867
                                                      0.15 0.87928
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 627.14 on 723 degrees of freedom
Residual deviance: 612.76 on 712 degrees of freedom
ATC: 636 8
Number of Fisher Scoring iterations: 4
```


Pets as Family: More Complicated Model

> summary(Pets.2)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	2.2971	0.6166	3.73	0.0002	***
femaleMale	-1.1833	0.5305	-2.23	0.0257	*
as.factor(married)Married	-0.3218	0.4470	-0.72	0.4716	
as.factor(married)NBM	0.1854	0.6140	0.30	0.7628	
as.factor(married)Widowed	-0.7415	0.5780	-1.28	0.1995	
as.factor(partyid)Democrat	-0.1575	0.4297	-0.37	0.7140	
as.factor(partyid)GOP	-0.0445	0.4334	-0.10	0.9182	
as.factor(partyid)Independent	-0.1757	0.4312	-0.41	0.6837	
as.factor(education)College Grad	0.2332	0.4137	0.56	0.5730	
as.factor(education)HS diploma	0.0558	0.3703	0.15	0.8801	
as.factor(education)Post-Grad	0.2171	0.4342	0.50	0.6171	
as.factor(education)Some college	0.0358	0.3890	0.09	0.9266	
femaleMale:as.factor(married)Married	0.4853	0.5908	0.82	0.4114	
femaleMale:as.factor(married)NBM	0.5260	0.8051	0.65	0.5136	
femaleMale:as.factor(married)Widowed	15.2516	549.3719	0.03	0.9779	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 627.14 on 723 degrees of freedom Residual deviance: 607.42 on 709 degrees of freedom AIC: 637.4

Number of Fisher Scoring iterations: 14

What's Going On?

```
> with(Pets, xtabs(~petfamily+as.factor(married)+female))
, , female = Female
         as.factor(married)
petfamily Divorced/Sep Married NBM Widowed
                            28 5
                    67
                           199 58
                                        32
, , female = Male
         as.factor(married)
petfamily Divorced/Sep Married NBM Widowed
                   11
                    33
                           168 47
```

Pets as Family: Firth Model

> Pets.Firth

Model fitted by Penalized ML Confidence intervals and p-values by Profile Likelihood

		(6)	lower 0.95	0 05	Chisa	_
						P
(Intercept)	2.1589	0.60	1.05	3.40	16.17636	0.000058
femaleMale	-1.1387	0.52	-2.19	-0.14	5.04186	0.024742
as.factor(married)Married	-0.2739	0.43	-1.19	0.53	0.41518	0.519353
as.factor(married)NBM	0.1589	0.59	-0.99	1.37	0.07322	0.786705
as.factor(married)Widowed	-0.7263	0.56	-1.84	0.38	1.67233	0.195947
as.factor(partyid)Democrat	-0.1182	0.42	-0.99	0.66	0.08159	0.775159
as.factor(partyid)GOP	-0.0078	0.42	-0.89	0.78	0.00034	0.985289
as.factor(partyid)Independent	-0.1364	0.42	-1.01	0.65	0.10813	0.742278
as.factor(education)College Grad	0.2390	0.40	-0.57	1.02	0.34480	0.557069
as.factor(education)HS diploma	0.0753	0.36	-0.67	0.76	0.04289	0.835933
as.factor(education)Post-Grad	0.2184	0.43	-0.63	1.05	0.26307	0.608019
as.factor(education)Some college	0.0524	0.38	-0.72	0.78	0.01888	0.890698
femaleMale:as.factor(married)Married	0.4558	0.58	-0.66	1.61	0.63550	0.425347
femaleMale:as.factor(married)NBM	0.5233	0.78	-1.02	2.05	0.45133	0.501702
femaleMale:as.factor(married)Widowed	2.4017	1.68	-0.14	7.37	3.37453	0.066212

Likelihood ratio test=17 on 14 df, p=0.24, n=724

Summary

- Separation → dropping covariates!
- Firth's approach > ELR
- Can also be applied to other sparse-data situations...

From the coxph Documentation

Convergence

In certain data cases the actual MLE estimate of a coefficient is infinity, e.g., a dichotomous variable where one of the groups has no events. When this happens the associated coefficient grows at a steady pace and a race condition will exist in the fitting routine: either the log likelihood converges, the information matrix becomes effectively singular, an argument to exp becomes too large for the computer hardware, or the maximum number of interactions is exceeded. (Nearly always the first occurs.) The routine attempts to detect when this has happened, not always successfully. The primary consequence for he user is that the Wald statistic = coefficient/se(coefficient) is not valid in this case and should be ignored; the likelihood ratio and score tests remain valid however.

Separation in Survival Data

Cox Results

```
> cox.fit<-coxph(Surv(T,C)~X,method="efron")</pre>
Warning message:
In fitter(X, Y, strats, offset, init, control, weights = weights, :
 Loglik converged before variable 1; beta may be infinite.
> summary(cox.fit)
Call:
coxph(formula = Surv(T, C) ~ X, method = "efron")
 n= 200, number of events= 19
      coef exp(coef) se(coef) z Pr(>|z|)
X 2.038e+01 7.112e+08 5.630e+03 0.004 0.997
 exp(coef) exp(-coef) lower .95 upper .95
X 711225014 1.406e-09
                                      Inf
Concordance= 0.761 (se = 0.064)
Rsquare= 0.137 (max possible= 0.583)
Likelihood ratio test= 29.37 on 1 df. p=5.994e-08
Wald test
                    = 0 on 1 df. p=0.9971
Score (logrank) test = 22.11 on 1 df, p=2.58e-06
```

Parametric Model = No Help

Heinze and Schemper (2001):

$$\ln PL(\boldsymbol{\beta}|\boldsymbol{Y})^* = \ln PL(\boldsymbol{\beta}|\boldsymbol{Y}) + 0.5 \ln |\boldsymbol{I}(\boldsymbol{\beta})|$$

with
$$\mathbf{I}(\boldsymbol{\beta}) = -E\left[\left.\frac{\partial^2}{\partial \theta^2} \ln PL(X, \boldsymbol{\beta})\right| \boldsymbol{\beta}\right]$$
.

Also, software: coxphf...

Firth-Corrected Cox

Examining the Profile Likelihood

Profile likelihood

distance from maximum in standard deviations

Example: Lo et al. (2008)

- Outcome: "Cease-Fire Duration"
- Key covariate: Foreign-Imposed Regime Change ("FIRC")
- Data: Annual data on cease-fires, 1914-2001 (expanding Fortna 1998)
- Hypotheses:
 - \cdot FIRCs \rightarrow more durable cease-fires
 - · Pacifying influence of FIRCs declines over time

Lo et al.: Kaplan-Meier

From Lo et al. (2008)

Variables	Model 1 (ARCHIGOS data)	Model 2 (ARCHIGOS data)
FOREIGN-IMPOSED REGIME CHANGE	-161*** (29.3)	_
FIRC*ln(t)	16.8*** (3.03)	_
PUPPET-FIRC	<u> </u>	-161*** (29.4)
PUPPET-FIRC* $ln(t)$	_	16.8***
CHANGE IN CAPABILITIES	.272 (.376)	.274 (.376)
BATTLE CONSISTENCY	796** (.336)	809** (.342)

Lo et al. Odds Ratio

 $\widehat{OR_{FIRC}} =$

Simplified Cox Model

Firth-Corrected Cox Model

```
> LHR.CoxF<-coxphf(LHR.S~archigosFIRC+archigosFIRCInt,data=LHR,maxit=1000)
> LHR. CoxF
coxphf(formula = LHR.S ~ archigosFIRC + archigosFIRClnt, data = LHR,
   maxit = 1000)
Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood
                     coef se(coef) exp(coef) lower 0.95
archigosFIRC -55.591223 26.330771 7.19513e-25 4.808432e-65
                 5.848163 2.775927 3.46597e+02
archigosFIRClnt
                                                        NaN
               upper 0.95 Chisq
archigosFIRC
                      NaN 9.738246 0.001804731
archigosFIRClnt 7320112 8.647141 0.003275750
```

Likelihood ratio test=15.09131 on 2 df, p=0.0005284014, n=6368

What Is Going On?

> table(LHR\$archigosFIRC,LHR\$X_d)

```
0 1
0 5265 52
1 1049 2
```

$\mathsf{Days} \to \mathsf{Years} = \mathsf{Little} \; \mathsf{Help}$

	Cox	Firth-Corrected
FIRC	-53.83	-21.08
	(51.30)	(9.99)
$FIRC \times In(T)$	14.57	5.85
	(13.54)	(2.78)
AIC	494.07	496
Num. events	54	54

Proportional Hazards

Proportional Hazards

For two individuals A and B, their relative hazards will be: $h_A(t) = Ch_B(t)$

where C is the hazard ratio between A and B.

Proportionality:

- "Flat" hazards \rightarrow parallel
- Rising hazards → diverging
- Falling hazards → converging

Proportional Hazards, Illustrated

Proportional Hazards, continued

Why might hazards not be proportional?

- <u>Resistance</u> (→ converging hazards)
- Learning (→ converging hazards)
- <u>Reinforcement</u> (→ diverging hazards)

Also, crossing hazards (always non-proportional)

Crossing Hazards

What Proportional Hazards Mean

Covariate influence over time

- PH assumes that the (proportional) influence of covariates **X** on the hazard will be the same at any point in the duration.
- Suggests how to think about it:

Conventional model:

$$h(t|\mathbf{X}_i) = h_0(t) \exp(\mathbf{X}_i\beta)$$

Generalized model:

$$h(t|\mathbf{X}_i) = h_0(t) \exp[\mathbf{X}_i \beta + \mathbf{X}_i g(t) \gamma]$$

Tests

Three kinds of tests for nonproportionality:

- 1. Tests for changes in parameter values for coefficients estimated on a subsample of the data defined by t,
- 2. Tests based on *plots of survival estimates and regression residuals* against time, and
- 3. Explicit tests of interactions of covariates and time.

Piecewise Regression

Step function:

$$g(t) = 0 \forall t \le \tau$$
$$= 1 \forall t > \tau$$

Implies:

$$h_i(t) = f\{X_i\beta_1 + [g(t)_i]\beta_2 + X_i[g(t)_i]\beta_3\}$$

Things to think about:

- Abrupt change?
- Choice of t in g(t)
- Multiple "steps"?

log-log-Survival Plots

Kalbfleisch and Prentice (1980) note that in the Cox model:

$$S(t) = \exp\left[-\exp(\mathbf{X}_i\beta)\int_0^t h_0(t)\,dt\right]$$

which means

$$\ln\{-\ln[S(t)]\} = H_0(t) \times \mathbf{X}_i \beta.$$

Implies that plots of $\ln\{-\ln[\widehat{S}(t)]\}$ vs. $\ln(T)$ for different values of **X** should be parallel to one another.

Residual-Based Methods

Recall:

$$\hat{M}_i(t) = C_i(t) - \hat{H}_i(t)$$

where $C_i(t) \equiv N_i(t)$ is the censoring indicator at t and $\hat{H}_i(t)$ is the integrated hazard.

Proportional hazards implies:

$$\hat{M}_i(t) = C_i(t) - \exp(\mathbf{X}_{it}\hat{eta})\hat{H}_0(t)$$
("Cox-Snell" residual)

Martingale Residuals

Under the usual assumptions:

- $E(M_i) = 0$ and
- $Cov(M_i, M_i) = 0$ asymptotically.

If data are time-varying, then $M_i(t)$ is the "partial" martingale residual, and

$$M_i = M_i(\infty) = \sum_{t=1}^{t_i} M_i(t)$$

Schoenfeld Residuals

$$\begin{split} \frac{\partial \text{ln}L(\beta)}{\partial \beta_k} &= \sum_{i=1}^N C_i \left\{ X_{ik} - \frac{\sum_{j \in R(t)} X_{jk} \exp(X_j \beta)}{\sum_{j \in R(t)} \exp(X_j \beta)} \right\} \\ &= \sum_{i=1}^N C_i (X_{ik} - \bar{X}_{w_i k}). \\ \hat{r}_{ik} &= C_i \left[X_{ik} - \frac{\sum_{j \in R(t)} X_{jk} \exp(X_j \hat{\beta})}{\sum_{j \in R(t)} \exp(X_j \hat{\beta})} \right] \end{split}$$

Schoenfeld Residuals

Intuition:

"(Schoenfeld residuals) ...can essentially be thought of as the observed minus the expected values of the covariate at each failure time."

- Box-Steffensmeier and Jones (2004, 121)

Properties:

- Are defined only at event times, for non-censored observations,
- $\sum_{i=1}^{N} \hat{r}_{ik} = 0$
- $Cov(\hat{r}_{ik}, T) = 0$ if X_k 's effect is proportional
- Tend to be skewed; in practice, scaled Schoenfeld residuals are used (see Grambsch and Therneau 1994).

Schoenfeld Residuals: Intuition

Example: Supreme Court Departures

```
> summary(scotus)
    justice
                                      retire
                     service
                                                         age
                                                                      pension
                                                                                         pagree
Min. : 1.00
                  Min.
                         : 1.00
                                  Min.
                                         :0.0000
                                                    Min.
                                                          :32.0
                                                                   Min.
                                                                          :0.0000
                                                                                           :0.0000
                                                                                    Min.
 1st Qu.: 26.00
                  1st Qu.: 5.00
                                  1st Qu.:0.0000
                                                    1st Qu.:56.0
                                                                   1st Qu.:0.0000
                                                                                    1st Qu.:0.0000
Median : 51.00
                  Median:10.00
                                  Median :0.0000
                                                    Median:62.0
                                                                   Median :0.0000
                                                                                    Median :1.0000
       : 52.13
                         :11.74
                                         :0.0289
                                                          :62.1
                                                                          :0.1989
                                                                                    Mean
                                                                                           :0.6164
 Mean
                  Mean
                                  Mean
                                                    Mean
                                                                   Mean
3rd Qu.: 78.00
                  3rd Qu.:17.00
                                  3rd Qu.:0.0000
                                                    3rd Qu.:69.0
                                                                   3rd Qu.:0.0000
                                                                                    3rd Qu.:1.0000
 Max.
        :107.00
                  Max.
                         :37.00
                                         :1.0000
                                                    Max.
                                                          :91.0
                                                                   Max.
                                                                          :1.0000
                                                                                    Max.
                                                                                           :1.0000
                                  Max.
```


SCOTUS Departures: Cox Regression

```
> scotus.Cox<-coxph(scotus.S~age+pension+pagree,data=scotus,ties="efron")
> summary(scotus.Cox)
Call:
coxph(formula = scotus.S ~ age + pension + pagree, data = scotus,
   ties = "efron")
 n= 1765, number of events= 51
          coef exp(coef) se(coef)
                                     z Pr(>|z|)
       0.06395 1.06604 0.02731 2.341 0.019216 *
pension 2.05136 7.77847 0.55040 3.727 0.000194 ***
pagree 0.13748 1.14738 0.29831 0.461 0.644898
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
       exp(coef) exp(-coef) lower .95 upper .95
           1.066
                     0.9381
                              1.0105
                                         1.125
age
           7.778
                                         22.877
pension
                     0.1286
                               2.6448
pagree
           1.147
                  0.8716
                             0.6394
                                         2.059
Concordance= 0.647 (se = 0.049 )
Rsquare= 0.022 (max possible= 0.194 )
Likelihood ratio test= 38.82 on 3 df,
                                       p=1.898e-08
                    = 26.82 on 3 df,
                                       p=6.426e-06
Score (logrank) test = 35.27 on 3 df, p=1.068e-07
```

log-log-Survival Plots

Martingale Residuals

>scotus\$mgres<-residuals(scotus.Cox,type="martingale")

```
> # William Howard Taft...
```

```
> print(scotus[scotus*justice==69,])
```

	justice	service	retire	age	pension	pagree	mgres
1173	69	1	0	63	0	1	0.00000000
1174	69	2	0	64	0	1	-0.03510077
1175	69	3	0	65	0	1	-0.01816026
1176	69	4	0	66	0	1	-0.01899776
1177	69	5	0	67	0	1	-0.07903096
1178	69	6	0	68	0	1	-0.02063125
1179	69	7	0	69	0	1	-0.11090925
1180	69	8	0	70	0	1	-0.02384340
1181	69	9	0	71	0	1	-0.02117129
1182	69	10	1	72	1	1	0.87052892

> L.Q.C. Lamar:

> print(scotus[scotus\$justice==49,])

mgres	pagree	pension	age	retire	service	justice	
0.00000000	1	0	62	0	1	49	851
-0.02869710	0	0	63	0	2	49	852
-0.01484716	0	0	64	0	3	49	853
-0.01553187	0	0	65	0	4	49	854
-0.06461280	0	0	66	0	5	49	855
-0.01935322	1	0	67	0	6	49	856

Schoenfeld Residuals / Tests

Plots of Schoenfeld Residuals

log-Time Interactions

Model becomes:

$$h_i(t) = h_0(t) \exp[X_i \beta + X_i \ln(T_i) \gamma + ...]$$

- Implies that the effect of the covariate on h(t) varies linearly in T
- No T term is included
- Interpretation is standard

log-Time Interactions

```
> scotus$lnT<-log(scotus$service)
> scotus$ageLnT<-scotus$age*(scotus$lnT)
> scotus.NPH<-coxph(scotus.S~age+pension+pagree+ageLnT,
           data=scotus,ties="efron")
> summarv(scotus.NPH)
 n= 1765, number of events= 51
           coef exp(coef) se(coef) z Pr(>|z|)
       -0.06988 0.93251 0.07729 -0.904 0.365933
age
pension 1.99866 7.37915 0.55167 3.623 0.000291 ***
pagree 0.09501 1.09966 0.30298 0.314 0.753849
ageLnT 0.05499 1.05653 0.03062 1.796 0.072552 .
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Concordance= 0.605 (se = 0.049)
Rsquare= 0.023 (max possible= 0.194)
Likelihood ratio test= 41.88 on 4 df. p=1.768e-08
Wald test
                    = 28.84 on 4 df, p=8.429e-06
Score (logrank) test = 36.55 on 4 df, p=2.232e-07
```

Hazard Ratio Changes Over Time

More Proportional Hazards Tests

```
> PHtest2<-cox.zph(scotus.NPH)
```

> PHtest2

```
rho chisq p
age -0.1388 1.02621 0.311
pension 0.0126 0.00814 0.928
pagree -0.1086 0.66902 0.413
ageLnT 0.1878 1.66856 0.196
GLOBAL NA 2.58245 0.630
```

Additional Considerations

- Keele (2010): Residual-based tests for nonproportionality can also be detecting model misspecification (specifically, unmodeled nonlinearity).
- Licht (2012): Inclusion of In(T) interactions alters the substantive interpretation of the regression results.
- Park and Hendry (2015): Residual-based tests for non-proportionality require careful attention to the transformation of the time scale T.
- Jin and Boehmke (2017): Modeling time-varying effects requires specification of time-varying covariates, even if the covariate in question does not vary over time.

Competing Risks

Competing Risks

R multiple kinds of events:

$$T_i \in T_{i1}, ..., T_{iR}$$

Observed duration:

$$T_i = \min(T_{i1}, ... T_{iR})$$

Event indicator:

$$D_i = r \text{ iff } T_i = T_{ri}$$

R censoring indicators:

$$C_{ir} = \begin{cases} 1 \text{ if observation } i \text{ experienced event } r \\ 0 \text{ otherwise} \end{cases}$$

Likelihoods

$$L_{i} = f_{r}(T_{i}|\mathbf{X}_{ir}, \beta_{r}) \prod_{r \neq D_{i}} S_{r}(T_{i}|\mathbf{X}_{ir}, \beta_{r})$$

$$L = \prod_{i=1}^{N} \left\{ f_{r}(T_{i}|\mathbf{X}_{ir}, \beta_{r}) \prod_{r \neq D_{i}} S_{r}(T_{i}|\mathbf{X}_{ir}, \beta_{r}) \right\}$$

$$= \prod_{r=1}^{R} \prod_{i=1}^{N_{r}} \left\{ f_{r}(T_{i}|\mathbf{X}_{ir}, \beta_{r}) S_{r}(T_{i}|\mathbf{X}_{ir}, \beta_{r}) \right\}$$

$$= \prod_{r=1}^{R} \prod_{i=1}^{N_{r}} \left[f_{r}(T_{i}|\mathbf{X}_{ir}, \beta_{r}) \right]^{C_{ir}} \left[S_{r}(T_{i}|\mathbf{X}_{ri}, \beta_{r}) \right]^{1-C_{ir}}$$

Practical Estimation

- Independent risks = separate models
- Otherwise identical estimation, interpretation, etc.
- No identification problem
- ullet Discrete-Time o MNL
- See (e.g.) Diermeier and Stevenson 1999; Zorn and Van Winkle 2000; Goemans 2008

Independent Risks

- Key: <u>Conditional</u> independence
- → Model specification
- Dependent risks:
 - Using frailties (Gordon 2002)
 - Discrete-time: strategic (Fukumoto 2009)
 - Discrete-time: bivariate probit (Quiros Flores 2012)
 - SUR?

Example: SCOTUS Vacancies

- Supreme Court Vacancies, 1789-1992 (NT = 1783)
- Departures ∈ {Retirement, Mortality}
- Independent competing risks models: Cox + MNL

SCOTUS Data

```
> summarv(scotus)
   justice
                svcstart
                             service
                                          retire
       . 1
             Min.
                          Min.
                                . 1
                                    Min.
                                            :0.00
Min.
                    : 0
1st Qu.: 26
             1st Qu.: 4 1st Qu.: 5
                                    1st Qu.:0.00
Median: 51
            Median: 9
                        Median:10 Median:0.00
Mean: 53
            Mean
                  :11
                        Mean
                               :12
                                    Mean
                                           :0.03
3rd Qu.: 79
             3rd Qu.:16
                        3rd Qu.:17 3rd Qu.:0.00
Max.
       :109
              Max.
                    :36
                        Max.
                                 :37
                                    Max.
                                             :1.00
    death
                  chief
                                south
                                               age
Min.
       :0.00
              Min.
                     :0.00
                             Min.
                                   :0.00
                                          Min. :32
1st Qu.:0.00
              1st Qu.:0.00 1st Qu.:0.00
                                         1st Qu.:56
Median :0.00
              Median:0.00
                             Median:0.00
                                          Median:62
Mean
       :0.03
              Mean
                     :0.12
                             Mean
                                   :0.31
                                          Mean
                                                 :62
3rd Qu.:0.00
              3rd Qu.:0.00
                             3rd Qu.:1.00
                                           3rd Qu.:69
Max.
       :1.00
              Max.
                     :1.00
                             Max.
                                   :1.00
                                           Max. :91
   pension
                              threecat
                 pagree
Min.
       :0.0
              Min.
                    :0.00
                                  :0.00
                            Min.
1st Qu.:0.0
             1st Qu.:0.00
                            1st Qu.:0.00
Median :0.0
              Median:1.00
                            Median:0.00
Mean
       :0.2
            Mean
                    :0.61
                           Mean
                                  :0.08
3rd Qu.:0.0 3rd Qu.:1.00
                          3rd Qu.:0.00
Max.
       :1.0
              Max.
                    :1.00
                            Max.
                                  :2.00
```

SCOTUS: Death and Retirement

Independent Risks (Cox) Models

	Combined	Retirement	Death
Age	0.06	0.07	0.04
	(0.02)	(0.03)	(0.02)
Chief	-0.03	-0.23	0.09
	(0.30)	(0.44)	(0.40)
South	0.29	0.06	0.45
	(0.23)	(0.34)	(0.33)
Pension Eligibility	0.59	2.04	-0.48
	(0.28)	(0.55)	(0.41)
Party Agreement	-0.01	0.10	-0.10
	(0.21)	(0.29)	(0.31)
AIC	713.26	356.70	348.83
Num. events	99	52	47

Multinomial Logit

	Retirement	Death
Intercept	-7.77	-8.28
	(1.45)	(1.28)
Age	-0.29	0.00
	(0.45)	(0.42)
Chief	0.06	0.48
	(0.34)	(0.32)
South	0.07	0.06
	(0.03)	(0.02)
Pension Eligibility	1.40	-0.56
	(0.42)	(0.41)
Party Agreement	0.03	-0.26
	(0.30)	(0.31)
log(Time)	-0.30	0.51
	(0.27)	(0.29)
AIC	847.51	847.51
BIC	924.31	924.31
Log Likelihood	-409.75	-409.75

Cure Models

Cure Models

Standard models (e.g.):

$$h(T_i|\mathbf{X}_i,\beta) = \frac{f(T_i|\mathbf{X}_i,\beta)}{S(T_i|\mathbf{X}_i,\beta)}$$

assume:

$$\int_0^\infty f(t)\,dt=1\,\forall\,i.$$

All observations will (eventually) experience the event of interest.

Mixture Cure Model

Assume (unobserved):

$$Y_i = \begin{cases} 1 \text{ for observations that will eventually fail,} \\ 0 \text{ for those that will not.} \end{cases}$$

For observations with Y = 1:

$$f(T_i|\mathbf{X}_i, \beta, Y_i = 1) = g(T|\mathbf{X}_i, \beta)$$

 $F(T_i|\mathbf{X}_i, \beta, Y_i = 1) = G(T|\mathbf{X}_i, \beta)$

For observations with Y = 0, f(T) and F(T) are undefined.

Mixture Cure Model (continued)

Define:

$$\Pr(Y_i = 1) = \delta_i$$
.

Overall survival is then just:

$$S_i(T) = (1 - \delta_i) + \delta_i[1 - G_i(t)]$$

Mixture Cure Model: Likelihood

Then for $C_i = 1$:

$$L_i|C_i = 1$$
 = Pr(Y_i = 1) Pr(T_i = t|Y_i = 1, **X**_i, β)
 = $\delta_i g(T_i|\mathbf{X}_i, \beta)$

For $C_i = 0$:

$$L_i|C_i = 0 = Pr(Y_i = 0) + Pr(Y_i = 1)Pr(T_i > t_i|Y_i = 1, \mathbf{X}_i, \beta)$$

= $(1 - \delta_i) + \delta_i[1 - G(T_i|\mathbf{X}_i, \beta)]$

Mixture Cure Model: Likelihood

Implies:

$$\mathbf{L} = \prod_{i=1}^{N} \left[\delta_i \mathbf{g}(\mathcal{T}_i | \mathbf{X}_i, eta) \right]^{C_i} \left\{ (1 - \delta_i) + \delta_i \left[1 - G(\mathcal{T}_i | \mathbf{X}_i, eta) \right]
ight\}^{(1 - C_i)}$$

and:

$$lnL = \sum_{i=1}^{N} C_i \left\{ \ln(\delta_i) + \ln \left[g(T_i | \mathbf{X}_i, \beta) \right] \right\} \\
+ (1 - C_i) \ln \left\{ (1 - \delta_i) + \delta_i \left[1 - G(T_i | \mathbf{X}_i, \beta) \right] \right\}$$

Mixture Cure Model: Specification

Typically:

$$\delta_i = rac{\exp(\mathbf{Z}_i \gamma)}{1 + \exp(\mathbf{Z}_i \gamma)}$$

or:

$$\delta_i = \Phi(\mathbf{Z}_i \gamma).$$

Identified even if $\mathbf{Z} \equiv \mathbf{X}$.

Non-Mixture Cure Model (e.g. Sposto 2002)

 N_i = number of pre-cancerous cell clusters, with:

$$N_i \sim \text{Poisson}(\lambda)$$
.

Pr(Cure) is:

$$\pi_i = \Pr(N_i = 0).$$

Time to cancer onset for cluster j of observation i is:

$$Z_{ij} \sim F(t), j = \{1, 2, ...N_i\}.$$

Non-Mixture Cure Model (continued)

Survival to first onset:

$$S(t) = \pi^{F(t)}$$

with hazard function:

$$h(t) = -\ln(\pi)f(t)$$

which reflects the fact that $\int_0^\infty h(t)dt = -\ln(\pi)$.

Non-Mixture Cure Model (continued)

Rewritten S(t):

$$S(t) = \exp[\ln(\pi)F(t)].$$

Assuming:

$$\pi_i = \exp[-\exp(\mathbf{X}_i\beta)]$$

we get:

$$S(t) = \exp\{[-\exp(\mathbf{X}_i\beta)]F(t)\}.$$

which is the Cox.

Mixture vs. Non-Mixture Models

Discrete-Time Cure Models

• Parametric / Cox \longrightarrow Poisson

Mixture Cure Model → Zero-Inflated Poisson

Non-Mixture Cure Model → "Hurdle" Poisson

Software

R

- · smcure (semiparametric mixture models via EM)
- · semicure (same; old)
- · nltm (various; see Tsodikov 2003)
- · CR, NPHMC (power analysis for cure models)

Stata

- · strsmix and strsnmix (general parametric mixture & non-mixture cure models)
- · cureregr (an old version)
- · Incure (log-normal cure model)
- · spsurv (discrete-time cure model)
- zip / zinb (discrete-time kludge)

A Simulated Example

```
> set.seed=7222009
> X<-rnorm(500)
> Z<-rbinom(500,1,0.5)
> T<-rweibull(500,shape=1.2,scale=1/(exp(0.5+1*X)))
> C<-rbinom(500,1,(0.4-0.3*Z))
> S<-Surv(T,C)</pre>
```


Cox Models

```
> coxph(S~X)
Call:
coxph(formula = S ~ X)
 coef exp(coef) se(coef) z p
X 1.05 2.85 0.124 8.44 0
Likelihood ratio test=77.7 on 1 df, p=0 n= 500, number of events= 130
> coxph(S~X+Z)
Call:
coxph(formula = S ~ X + Z)
  coef exp(coef) se(coef) z p
X 1.08 2.956 0.122 8.9 0.0e+00
Z -1.59 0.204 0.230 -6.9 5.4e-12
Likelihood ratio test=140 on 2 df, p=0 n= 500, number of events= 130
```

Cure Model

An Interesting Plot

> cure.pic<-plotpredictsmcure(cure.hat,type="S",model="ph")

An Example: Ceasefire Durability

Data are a subset used in Fortna (2004) (full data are here).

- N = 63
- Non-time-varying

Ceasefires: Cox Model

```
> CF.cox<-coxph(CF.S~tie+imposed+lndeaths+contig+onedem+twodem,
            data=CF.method="efron")
> CF.cox
Call:
coxph(formula = CF.S ~ tie + imposed + lndeaths + contig + onedem +
   twodem. data = CF. method = "efron")
          coef exp(coef) se(coef)
         1.845
                   6.327 0.557 3.314 0.00092
tie
imposed 0.210 1.233 0.594 0.353 0.72000
Indeaths -0.135 0.874 0.193 -0.699 0.48000
contigyes 2.898 18.143 0.948 3.058 0.00220
onedem
        3.423 30.648 1.144 2.991 0.00280
twodem -0.723 0.485 1.209 -0.598 0.55000
```

Likelihood ratio test=36.8 on 6 df, p=0.00000197 n= 63, number of events= 23

(hours of fiddling...)

A Typical Result

```
> CF.cure1.fit<-smcure(CF.S~tie+Indeaths+imposed,
                   cureform="contig,data=CF,model="ph",
                   link="logit", emmax=500)
Program is running..be patient... done.
Call:
smcure(formula = CF.S ~ tie + lndeaths + imposed, cureform = ~contig,
   data = CF, model = "ph", link = "logit", emmax = 500)
Cure probability model:
          Estimate Std.Error Z value Pr(>|Z|)
(Intercept) -3.4 12.4 -0.27 0.79
contig
             2.1
                       7.4 0.28 0.78
Failure time distribution model:
       Estimate Std.Error Z value Pr(>|Z|)
tie
          2.05
                   4.06 0.50 0.61
Indeaths -0.37 0.34 -1.10 0.27
imposed 0.97 2.40 0.41
                                 0.68
There were 50 or more warnings (use warnings() to see the first 50)
```

From Svolik (2008)

Consolidation status model ^b				
GDP per capita	2.121***	_	2.045***	2.121***
	(0.586)	_	(0.555)	(0.586)
GDP growth	-0.014	_	-0.048	-0.014
	(0.227)	_	(0.246)	(0.227)
Military (vs. Not independent)	-4.061**	_	-3.985**	-4.061**
	(1.895)	_	(1.857)	(1.895)
Civilian (vs. Not independent)	-0.421	_	-0.549	-0.421
	(1.097)	_	(1.067)	(1.097)
Monarchy (vs. Not independent)	-20.158	_	-15.844	-13.965
	(2888.609)	_	(680.185)	(891.870)
Parliamentary (vs. Mixed)	2.231	_	2.290	2.231
	(2.230)	_	(2.326)	(2.230)
Presidential (vs. Mixed)	-8.310**	_	-8.186**	-8.310**
	(3.958)	_	(4.035)	(3.958)
Intercept	-6.144**	_	-5.920**	-6.145**
	(2.646)	_	(2.644)	(2.647)

Another Example: Peace Duration

Long, Nordstrom and Baek (2007 JOP)

- Peace duration among allies
- Time-varying dyadic data, 1816-2001 (NT = 57, 819)

Cox Model (replicating LNB)

```
> LNB.cox<-coxph(LNB.S~relcap+major+jdem+border+wartime+s_wt_glo+
               medarb+noagg+arbcom+organ+milinst+cluster(dyad),
               data=LNB.method="breslow")
> LNB.cox
Call:
coxph(formula = LNB.S ~ relcap + major + jdem + border + wartime +
    s_wt_glo + medarb + noagg + arbcom + organ + milinst + cluster(dyad),
   data = LNB, method = "breslow")
          coef exp(coef) se(coef) robust se
                                                z
relcap
        -1.431
                   0.239
                            0.614
                                     0.683 -2.096 0.036000
        1.137
                   3.118
                           0.241
                                     0.280 4.064 0.000048
major
idem
        -0.987
                   0.373
                           0.367 0.380 -2.600 0.009300
border
        1.931
                   6.897
                           0.190
                                     0.206 9.378 0.000000
wartime -0.359
                   0.699
                           0.367
                                     0.467 -0.768 0.440000
s_wt_glo -0.284
                   0.752
                          0.332
                                    0.355 -0.802 0.420000
medarb
       -0.367
                   0.693
                         0.285
                                     0.306 -1.202 0.230000
        -0.463
                   0.630
                         0.126
                                     0.152 -3.051 0.002300
noagg
arbcom
       1.306
                   3.690
                         0.325
                                     0.316 4.133 0.000036
organ
        0.353
                  1.423
                          0.280
                                     0.285 1.236 0.220000
milinst -0.373
                   0.689
                            0.187
                                     0.177 -2.101 0.036000
```

Cure Models

(hours of fiddling...)

Program is running..be patient...

Cure Models (Stata Remix)

```
. stset count1, id(episode) f(buofmzmid==1)
```

- . strsmix major jdem border wartime, bhazard(h0) distribution(weibull) link(logistic) k1
- > (relcap major jdem border wartime s_wt_glo medarb noagg arbcom organ milinst)

Log likelihood = -793.21263				Wald	er of obs = chi2(4) = > chi2 =	57819 36.82 0.0000
_t	Coef.	Std. Err.	z		[95% Conf.	Interval]
pi						
major	-7.921296	3.764002	-2.10	0.035	-15.2986	5439877
jdem	6177566	.7656096	-0.81	0.420	-2.118324	.8828107
border	-1.943181	.3786093	-5.13	0.000	-2.685241	-1.20112
wartime	2.583909	1.051959	2.46	0.014	.5221065	4.645711
_cons	2.659179	.3980719	6.68	0.000	1.878972	3.439385
ln lambda	+ I					
_	-1.408332	.7129111	-1.98	0.048	-2.805613	0110523
	-1.232928	.395653	-3.12	0.002	-2.008394	4574626
idem		.4596442	-3.69	0.000	-2.598846	7970736
border		.2622007	4.67	0.000	.7102103	1.738018
wartime		.4072876	1.03	0.301	377409	1,219129
s_wt_glo		.3579769	-0.77	0.443	9763249	.4269188
medarb		.3503126	-2.35	0.019	-1.508755	1355545
noagg	68365	.1465971	-4.66	0.000	970975	3963251
arbcom	1.667284	.4562532	3.65	0.000	.7730438	2.561524
organ	.9298395	.3595899	2.59	0.010	.2250563	1.634623
milinst	4428979	.2251323	-1.97	0.049	8841491	0016468
_cons	-2.060399	.7260061	-2.84	0.005	-3.483344	6374528
ln_gamma	+ I					
_cons	.0969349	.0733007	1.32	0.186	0467319	.2406018

[.] gen h0=0

Some Lessons

Cure models...

- ...Powerful
- ...Intuitive
- ...Temperamental
- ...Ask a lot of your data

Repeated Events

Multiple / Repeated Events

Events are not "absorbing" \rightarrow capable of repetition

Raises (at least) two issues:

- Dependence across events
- Parameter variability

Variance Correction Model Properties

Model Property	Andersen-Gill (AG)	Marginal (WLW)	Conditional (PWP), Elapsed Time	Conditional (PWP), Gap Time	
Risk Set for Event <i>k</i> at Time <i>t</i>	Independent Events	All Subjects that Haven't Experienced Event k at Time t	All Subjects that Have Experienced Event k - 1, and Haven't Experienced Event k, at Time t		
Time Scale	Duration Since Starting Observation	Duration Since Starting Observation	Duration Since Starting Observation	Duration Since Previous Event	
Robust standard errors?	Yes	Yes	Y	es	
Stratification by Event?	No	Yes	Y	es	

Data Organization

```
> OR$one<-rep(1,times=nrow(OR))
> OR<-ddply(OR, "dyadid", mutate, eventno=cumsum(dispute)+1,
          altstart=cumsum(one)-1,altstop=cumsum(one))
    dyadid year start stop altstart altstop dispute eventno
      2130 1951
461
                     0
462
      2130 1952
                                                             1
463
      2130 1953
                                                             2
464
      2130 1954
                                   3
                                                             2
                                                             3
465
      2130 1956
                                            5
                                                    0
                                   5
                                            6
                                                             3
466
      2130 1957
467
      2130 1958
                                   6
                                                    0
                                                             3
468
      2130 1959
                                            8
                                                    0
                                                             3
      2130 1960
                                   8
                                            9
                                                    0
                                                             3
469
      2130 1961
                     5
                                                             3
470
                                   9
                                           10
471
      2130 1962
                                  10
                                           11
                                                    0
472
      2130 1963
                                  11
                                           12
473
      2130 1964
                                  12
                                           13
                                                    0
474
                                  13
                                                    0
      2130 1965
                                           14
```

> OR<-OR[order(OR\$dyadid,OR\$year),]

First Events

```
> OR1st<-OR[OR$eventno==1,]
> OR.1st<-Surv(OR1st$altstart,OR1st$altstop,OR1st$dispute)
> OR.Cox.1st<-coxph(OR.1st~allies+contig+capratio+growth+democracv+
                   trade+cluster(dyadid),data=OR1st,method="efron")
> OR. Cox. 1st.
Call:
coxph(formula = OR.1st ~ allies + contig + capratio + growth +
   democracy + trade + cluster(dyadid), data = OR1st, method = "efron")
           coef exp(coef) se(coef) robust se
allies
         -0.448
                   0.6389
                           0.1585
                                    0.1640 -2.732 0.0063000000
contig
         1.070
                  2.9167
                           0.1681 0.1767 6.059 0.0000000014
capratio -0.196 0.8223 0.0603 0.0779 -2.510 0.0120000000
         -2.198 0.1110 1.7195 1.9005 -1.157 0.25000000000
growth
democracy -0.424 0.6547 0.1298 0.1259 -3.365 0.0007600000
trade
         -6.728
                  0.0012 12.3255 13.9025 -0.484 0.6300000000
Likelihood ratio test=121 on 6 df, p=0 n= 17158, number of events= 205
```

Andersen-Gill

```
> OR.AGS<-Surv(OR$altstart,OR$altstop,OR$dispute)
> OR.Cox.AG<-coxph(OR.AGS~allies+contig+capratio+growth+democracy+
                  trade+cluster(dvadid).data=OR.method="efron")
> OR.Cox.AG
Call:
coxph(formula = OR.AGS ~ allies + contig + capratio + growth +
   democracy + trade + cluster(dyadid), data = OR, method = "efron")
            coef exp(coef) se(coef) robust se
allies
        -0.414 0.66090755 0.1107 0.1703 -2.431 1.5e-02
contig
         1.213 3.36515975 0.1209 0.1782 6.811 9.7e-12
capratio -0.214 0.80717357 0.0514 0.0817 -2.620 8.8e-03
growth -3.227 0.03967003 1.2279 1.3169 -2.451 1.4e-02
democracy -0.439 0.64437744 0.0998 0.1231 -3.571 3.6e-04
trade
         -13.162 0.00000192 10.3266 13.8188 -0.953 3.4e-01
```

Likelihood ratio test=272 on 6 df, p=0 n= 20448, number of events= 405

Prentice et al.: Elapsed Time

```
> OR.PWPES<-Surv(OR$altstart,OR$altstop,OR$dispute)
> OR.Cox.PWPE<-coxph(OR.PWPES~allies+contig+capratio+growth+democracy+
                 trade+strata(eventno)+cluster(dyadid),data=OR,
                 method="efron")
> OR.Cox.PWPE
Call:
coxph(formula = OR.PWPES ~ allies + contig + capratio + growth +
   democracy + trade + strata(eventno) + cluster(dyadid), data = OR,
   method = "efron")
          coef exp(coef) se(coef) robust se
allies
      -0.240
                 0.7865
                         0.1122 0.1283 -1.872 6.1e-02
contig
       0.868 2.3811 0.1223 0.1329 6.526 6.8e-11
growth -3.625 0.0266 1.2371 1.2032 -3.013 2.6e-03
democracy -0.273 0.7612
                        0.1036 0.1074 -2.541 1.1e-02
trade
       -2.514
                 0.0810 9.2934 9.9432 -0.253 8.0e-01
Likelihood ratio test=133 on 6 df. p=0 n= 20448, number of events= 405
```

Prentice et al.: Gap Time

```
> OR.PWPGS<-Surv(OR$start,OR$stop,OR$dispute)
> OR.Cox.PWPG<-coxph(OR.PWPGS~allies+contig+capratio+growth+democracy+
                  trade+strata(eventno)+cluster(dyadid),data=OR,
                  method="efron")
> OR.Cox.PWPG
Call:
coxph(formula = OR.PWPGS ~ allies + contig + capratio + growth +
   democracy + trade + strata(eventno) + cluster(dyadid), data = OR,
   method = "efron")
          coef exp(coef) se(coef) robust se
allies
      -0.329
                 0.7193
                        0.1119 0.1229 -2.68 7.3e-03
contig 0.885 2.4232 0.1222 0.1285 6.89 5.6e-12
growth -3.459 0.0315 1.2189 1.2102 -2.86 4.3e-03
democracy -0.284 0.7530 0.1028 0.1016 -2.79 5.2e-03
trade
       -4.287 0.0137
                        9.9352 10.4592 -0.41 6.8e-01
```

Likelihood ratio test=139 on 6 df. p=0 n= 20448, number of events= 405

WLW: Data Organization

```
> OR.expand<-OR[rep(1:nrow(OR),each=max(OR$eventno)),]
> OR.expand<-ddply(OR.expand,c("dyadid", "year"), mutate,
                 eventrisk=cumsum(one))
> OR.expand$dispute<-ifelse(OR.expand$eventno==OR.expand$eventrisk
                          & OR.expand$dispute==1,1,0)
> dim(OR.expand)
[1] 163584
> head(OR.expand.9)
  dyadid year start stop futime dispute allies contig trade growth
    2020 1951
                                                     1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
3
    2020 1951
                             35
                                                     1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
    2020 1951
                                                    1 0.014 0.0085
                                      0
    2020 1951
                             35
                                                    1 0.014 0.0085
    2020 1951
                                                     1 0.014 0.0085
    2020 1951
                             35
                                                     1 0.014 0.0085
    2020 1952
                                                     1 0.015 0.0259
  democracy capratio
                     one eventno altstart altstop eventrisk
                0.20
                0.20
3
                0.20
                                                           3
                0.20
                0.20
               0.20
                0.20
                0.20
                0.19
```

WLW Model

```
> OR.expand.S<-Surv(OR.expand$altstart,OR.expand$altstop,
                 OR.expand$dispute)
> OR.Cox.WLW<-coxph(OR.expand.S~allies+contig+capratio+growth+
                   democracy+trade+strata(eventno)+
                   cluster(dyadid),data=OR.expand,
                   method="efron")
> OR.Cox.WLW
Call:
coxph(formula = OR.expand.S ~ allies + contig + capratio + growth +
   democracy + trade + strata(eventno) + cluster(dvadid), data = OR.expand.
   method = "efron")
           coef exp(coef) se(coef) robust se
                                    0.1248 -1.841 6.6e-02
allies
        -0.230
                  0.7947
                           0.1122
contig
        0.852 2.3435 0.1223 0.1297 6.568 5.1e-11
capratio -0.160 0.8524 0.0471 0.0609 -2.621 8.8e-03
        -3.508 0.0300 1.2370 1.1671 -3.005 2.7e-03
growth
                 0.7625  0.1037  0.1055 -2.570 1.0e-02
democracy -0.271
trade
         -2.656 0.0702 9.2807 9.6144 -0.276 7.8e-01
Likelihood ratio test=129 on 6 df. p=0 n= 163584, number of events= 405
```

Models of Repeated Events

-	First	AG	PWP-E	PWP-G	WLW
Allies	-0.45	-0.41	-0.24	-0.33	-0.23
	(0.16)	(0.17)	(0.13)	(0.12)	(0.12)
Contiguity	1.07	1.21	0.87	0.89	0.85
	(0.18)	(0.18)	(0.13)	(0.13)	(0.13)
Capability Ratio	-0.20	-0.21	-0.16	-0.17	-0.16
	(80.0)	(80.0)	(0.06)	(0.06)	(0.06)
Growth	-2.20	-3.23	-3.63	-3.46	-3.51
	(1.90)	(1.32)	(1.20)	(1.21)	(1.17)
Democracy	-0.42	-0.44	-0.27	-0.28	-0.27
	(0.13)	(0.12)	(0.11)	(0.10)	(0.11)
Trade	-6.73	-13.16	-2.51	-4.29	-2.66
	(13.90)	(13.82)	(9.94)	(10.46)	(9.61)
AIC	2538.02	5015.77	3892.77	4103.47	5597.54
Num. events	205	405	405	405	405

Parameter Change Across Events

- Values of β differ from k to k+1
- Again: Institutionalization, learning, etc.
- Addressed using strata by covariate interactions

Parameter Change Example

```
> OR$capXevent<-OR$capratio*OR$eventno
> OR.Cox.BVary<-coxph(OR.PWPGS~allies+contig+growth+democracy+
                    trade+capratio+capXevent+strata(eventno)+
                    cluster(dvadid).data=OR.
                    method="efron")
> OR.Cox.BVary
Call:
coxph(formula = OR.PWPGS ~ allies + contig + growth + democracy +
   trade + capratio + capXevent + strata(eventno) + cluster(dyadid),
   data = OR. method = "efron")
           coef exp(coef) se(coef) robust se
allies
        -0.349
                  0.7053 0.1120 0.1177 -2.967 3.0e-03
contig
        0.897
                  2.4517 0.1221 0.1254 7.150 8.7e-13
growth -3.519
                  0.0296 1.2196 1.2129 -2.901 3.7e-03
democracy -0.305 0.7374
                          0.1037 0.0972 -3.135 1.7e-03
                  0.0370 9.7624 10.1869 -0.324 7.5e-01
trade
        -3.297
capratio -0.340
                  0.7117 0.0997 0.1054 -3.227 1.2e-03
capXevent 0.135 1.1443
                           0.0631 0.0581 2.321 2.0e-02
```

Likelihood ratio test=143 on 7 df, p=0 n= 20448, number of events= 405

Conclusions / Recommendations

As a practical matter, estimating these models is simply a function of:

- Setting up the data correctly (so as to define the right risk sets),
- Stratifying when appropriate, and
- Calculating / using robust standard errors...

Frailty Models

"Frailty" Models

$$h_i(t) = \lambda_i(t)\nu_i$$

- $\nu_i = 1 \approx$ "baseline,"
- $\nu_i > 1 \rightarrow i$ has a greater-than-average hazard,
- ullet $u_i < 1
 ightarrow ext{the opposite}.$

More Frailty

Implies:

$$S(t|\nu_i) = \exp\left[-\int_0^t h(t|\nu_i)dt\right]$$

$$= \exp\left[-\int_0^t \nu_i h(t)dt\right]$$

$$= \exp\left[-\int_0^t h(t)dt\right]^{\nu_i}$$

$$= S(t)^{\nu_i}$$

Typically:

- · Assume $\nu_i \sim g(\nu)$, with
- \cdot E(
 u)=1 and
- · $Var(\nu) = \theta$

Example: Cox with Frailty

$$\begin{array}{rcl} h_i(t) & = & h_0(t)\nu_i \mathrm{exp}(\mathbf{X}_i\beta) \\ & = & h_0(t)\mathrm{exp}(\mathbf{X}_i\beta + \alpha_i) \end{array}$$

where $\alpha_i = \ln(\nu_i)$.

(Also weibull, log-normal, etc.)

Frailty Distributions: Gamma

$$\begin{array}{rcl} g(\nu) & = & \mathcal{G}(\theta, 1/\theta) \\ & = & \frac{\nu^{1/\theta - 1} \mathrm{exp}\left(\frac{-\nu}{\theta}\right)}{\theta^{(1/\theta)} \Gamma(1/\theta)} \end{array}$$

with

$$S_{\theta}(t) = \{1 - \theta \ln[S(t)]\}^{-1/\theta}$$

Frailty Distributions: Inverse-Gaussian

$$g(\nu) = \mathcal{I}\mathcal{G}(\theta, 1/\theta)$$

$$= (2\pi\theta\nu^3)^{-1/2} \exp\left[-\frac{1}{2\theta}\left(\alpha - 2 + \frac{1}{\nu}\right)\right]$$

with

$$S_{ heta}(t) = \exp\left\{rac{1}{ heta}\left[1-\left(1-2 heta\ln\{S(t)\}
ight)^{1/2}
ight]
ight\}$$

An Important Distinction

Individual- (or Unit-) Specific Survival Function:

$$S(t|\nu_i) = S(t)^{\nu_i}$$

Population Average Survival Function:

$$\overline{S(t)} = \int_0^\infty S(t|\nu_i)g(\nu)d\nu$$

Estimation

• Originally: E-M algorithm (e.g. Klein 1992)

Later: Penalized Likelihood

· Two-level iterative procedure

· Intuition: Iterate between fitting $\hat{\beta}|\theta$ for a range of θ s, and searching over the (univariate) marginal likelihood for θ to obtain $\hat{\theta}$

· Details: Therneau and Grambsch (2000, §9.6)

Practical Matters

• Computation...

"...if there are 300 families, each with their own frailty, and four other variables, then the full information matrix has $304^2=92,416$ elements. The Cholesky decomposition must be applied to this matrix with each Newton-Raphson iteration."

- Therneau and Grambsch (2000, p. 258)
- Fitting choices (fix θ vs. estimation, etc.)
- Predictions / interpretation (typically assume $\hat{\nu}_i = 1$).

Software

R

- survival: Fits a single frailty term via frailty.gamma, frailty.gamssian, or frailty.t to either Cox or parametric models.
- · coxme (Cox w/Gaussian random effects; see below)
- · frailtypack (parallel to frailty and coxme)
- · Others (see the task view)

Stata

- · The option shared() introduces one-level gamma-distributed frailties into stcox
- streg allows unshared or shared frailties (via frailty() and shared(), respectively) in both gamma and inverse-gaussian flavors in its parametric survival models; see Guiterrez (2002) for a good starting point.

Simulated Example

```
> set.seed(7222009)
> G<-1:40  # "groups"
> F<-rnorm(40)  # frailties
> data<-data.frame(cbind(G,F))
> data<-data[rep(1:nrow(data),each=20),]
> data$X<-rbinom(nrow(data),1,0.5)
> data$T<-rexp(nrow(data),rate=exp(0+1*data$X+(2*data$F)))
> data$C<-rbinom(nrow(data),1,0.5)
> data<-data[order(data$F),]
> S<-Surv(data$T,data$C)</pre>
```

K-M Plots By Strata

Cox Fit (No Frailty)

```
> cox.noF<-coxph(S~X,data=data)</pre>
> summary(cox.noF)
Call:
coxph(formula = S ~ X, data = data)
 n= 800, number of events= 381
  coef exp(coef) se(coef) z Pr(>|z|)
       1.685
                    0.104 5.02 0.00000051 ***
X 0.522
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
 exp(coef) exp(-coef) lower .95 upper .95
X
      1.69
                0.593
                           1.37
                                    2.07
Concordance= 0.577 (se = 0.015)
Rsquare= 0.031 (max possible= 0.996)
Likelihood ratio test= 25.2 on 1 df, p=0.000000521
Wald test
                    = 25.2 on 1 df, p=0.000000508
Score (logrank) test = 25.8 on 1 df, p=0.000000382
```

Weibull Fit (No Frailty)

Cox Fit With Frailty

```
> cox.F<-coxph(S~X+frailty.gaussian(F),data=data)</pre>
> summary(cox.F)
Call:
coxph(formula = S ~ X + frailty.gaussian(F), data = data)
 n= 800, number of events= 381
                    coef se(coef) se2 Chisq DF
X
                    1.01 0.112
                                  0.112 81.9 1.0 0
frailty.gaussian(F)
                                        609.0 37.6 0
  exp(coef) exp(-coef) lower .95 upper .95
                0.363
      2.76
                           2.21
                                      3.43
Iterations: 7 outer, 47 Newton-Raphson
     Variance of random effect= 1.8
Degrees of freedom for terms= 1.0 37.6
Concordance= 0.791 (se = 0.017)
Likelihood ratio test= 414 on 38.5 df,
```

Weibull Fit With Frailty

```
> weib.F<-survreg(S~X+frailty.gaussian(F),data=data,dist="weib")</pre>
> summary(weib.F)
Call:
survreg(formula = S ~ X + frailty.gaussian(F), data = data, dist = "weib")
             Value Std. Error
(Intercept) 0.6188 0.2622 2.36 1.83e-02
         -1.1386 0.1121 -10.16 3.12e-24
Log(scale) 0.0546 0.0417 1.31 1.91e-01
Scale= 1.06
Weibull distribution
Loglik(model) = -372 Loglik(intercept only) = -594
Chisq= 443 on 37 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 5 18
n = 800
```

Example: Leader Tenure

Let's Try That Again

```
> lead.F<-coxph(lead.S~female*region+frailty.gamma(ccode),data=lead)
Warning message:
In coxpenal.fit(X, Y, strats, offset, init = init, control, weights = weights, :
 Inner loop failed to coverge for iterations 2 3
> summary(lead.F)
Call:
coxph(formula = lead.S ~ female * region + frailty.gamma(ccode),
   data = lead)
 n= 15222, number of events= 2806
  (22 observations deleted due to missingness)
                    coef
                            se(coef) se2
                                           Chisq DF p
female
                    1.2427 0.462
                                    0.4594 7.24 1 0.007100
regionLatinAm
                    -0.1259 0.208
                                    0.0333 0.37 1 0.540000
regionEurope
                                    0.0545 0.07 1 0.800000
                   0.0414 0.160
                                    0.0840 19.45 1 0.000010
regionAfrica
                    -0.7047 0.160
regionAsia
                                    0.0742
                    -0.3896 0.164
                                            5.65
                                                   1 0.017000
                                    0.0986 16.13 1 0.000059
regionMidEast
                    -0.7478 0.186
frailty.gamma(ccode)
                                           523.81 119 0.000000
female:regionLatinAm -1.8826 0.851
                                    0.8495 4.89 1 0.027000
female:regionEurope -1.5424 0.624
                                    0.6212 6.11 1 0.013000
                                    0.8556 0.83 1 0.360000
female:regionAfrica 0.7854 0.861
female:regionAsia
                    -1.8765 0.572
                                    0.5666 10.76 1 0.001000
female:regionMidEast -1.2175 0.861
                                    0.8551 2.00 1 0.160000
Iterations: 10 outer, 83 Newton-Raphson
    Variance of random effect= 0.24  I-likelihood = -19476.6
Degrees of freedom for terms= 1.0
                                    1.3 119.3 4.9
Concordance= 0.662 (se = 0.006)
Likelihood ratio test= 858 on 127 df. p=0
```

Predicted vs. Actual

Extensions: Mixed-Effects Survival Models

- HLMs for survival data / outcomes
- Combined fixed, random, and mixed effects (random-coefficient) models
- R: Implemented in coxme
- Stata: stmixed (parametric models)
- Terry Therneau has a nice vignette

Mixed Effects Example

```
> lead.coxME<-coxme(lead.S~female + (1 | ccode/female).data=lead)
> lead.coxME
Cox mixed-effects model fit by maximum likelihood
 Data: lead
 events, n = 2806, 15222 (22 observations deleted due to missingness)
 Iterations= 38 160
                NULL Integrated Fitted
Log-likelihood -19738 -19505 -19314
                 Chisa df p AIC BIC
Integrated loglik 465 3 0 459 441
Penalized loglik 849 129 0 590 -177
Model: lead.S ~ female + (1 | ccode/female)
Fixed coefficients
       coef exp(coef) se(coef) z
female -0.07 0.93 0.22 -0.31 0.75
Random effects
Group Variable Std Dev Variance
ccode/female (Intercept) 0.279 0.078
             (Intercept) 0.487 0.237
ccode
```

Stratify? Frailties? Clustering?

- Stratification ≈ "fixed effects"
- Frailties ≈ "random effects"
- "Robust" / cluster \approx GEE / PCSEs, etc.
- Not all combinations are possible, or make sense

K-M Plot: Leaders

K-M Plot: Leaders (by country)

K-M Plot: Leaders (by region)

Strata + Frailty

```
> lead.Fstrat<-coxph(lead.S~female*strata(region)+
                     frailty.gamma(ccode),data=lead)
Warning message:
In coxpenal.fit(X, Y, strats, offset, init = init, control, weights = weights, :
  Inner loop failed to coverge for iterations 2 3 4
> summary(lead.Fstrat)
Call:
coxph(formula = lead.S ~ female * strata(region) + frailty.gamma(ccode),
   data = lead)
 n= 15222, number of events= 2806
   (22 observations deleted due to missingness)
                         coef se(coef) se2
                                             Chisq DF p
female
                          1.46 0.463
                                        0.461
                                               9.88 1 0.00170
frailty.gamma(ccode)
                                             594.82 121 0.00000
female:strata(region)regi -2.20 0.853
                                        0.851 6.63 1 0.01000
female:strata(region)regi -1.75 0.625
                                        0.623 7.81 1 0.00520
female:strata(region)regi 0.13 0.869
                                        0.864 0.02 1 0.88000
female:strata(region)regi -2.07 0.573
                                       0.568 13.04 1 0.00031
female:strata(region)regi -1.31 0.862
                                        0.857 2.32 1 0.13000
```

Strata + Clustering

```
> lead.stratCl<-coxph(lead.S~female*strata(region)+
                       cluster(ccode).data=lead)
> summarv(lead.stratCl)
Call:
coxph(formula = lead.S ~ female * strata(region) + cluster(ccode).
   data = lead)
  n= 15222, number of events= 2806
   (22 observations deleted due to missingness)
                                     coef exp(coef) se(coef) robust se
female
                                    1.234
                                             3.436
                                                      0.453
                                                                0.288 4.28
female:strata(region)region=LatinAm -1.881
                                             0.152
                                                      0.842
                                                                0.627 -3.00
female:strata(region)region=Europe -1.618
                                             0.198
                                                     0.610
                                                                0.415 - 3.90
female:strata(region)region=Africa 0.473
                                             1.605
                                                      0.849
                                                                0.382 1.24
female:strata(region)region=Asia
                                                      0.555
                                                                0.342 -5.00
                                   -1.711
                                             0.181
female:strata(region)region=MidEast -0.709
                                             0.492
                                                      0.846
                                                                0.349 - 2.03
Concordance= 0.503 (se = 0.002)
Rsquare= 0.001 (max possible= 0.864)
Likelihood ratio test= 13.8 on 6 df, p=0.0323
Wald test
                    = 81.6 on 6 df,
                                      p=1.67e-15
Score (logrank) test = 20.1 on 6 df,
                                      p=0.00263,
                                                  Robust = 14.4 p=0.0255
  (Note: the likelihood ratio and score tests assume independence of
```

observations within a cluster, the Wald and robust score tests do not).

Choices...

From the frailty documentation:

"Note that use of a frailty term implies a mixed effects model and use of a cluster term implies a GEE approach; these cannot be mixed."

Therneau, Terry M., Jun 27, 2011; 8:02am Re: cluster() or frailty() in coxph

In reply to this post by Ehsan Karim

Addition of a cluster() term fits a Generalized Estimating Equations (GEE) type of model, addition of frailty() fits a random effects model (Mixed Effect or ME). In glm analysis (linear regression, logistic regression, etc) the arguments about the advantages/disadvantages of GEE ve ME would easily fill a volume. Most of this argument carries over to the coxph case; I find both approaches useful.

Caveats:

- Coxph with cluster() only allows the "working independence" variance structure. The details for other variance structures were worked out by Alicia Z in her Iowa State PhD thesis, but I've never gotton around to implementing it.
 - 2. For random effects, the coxme function is preferred.
- 3. In comparing GEE and ME one part of the arguement is that the former model is "marginal" and the second "conditional", and thus the coefficients from the models mean different things. I take this with a grain of salt. Remember that ALL models are wrong.

Terry Therneau

[hidden email] mailing list

https://stat.ethz.ch/mailman/listinfo/r-help

PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.

Topics We Didn't Cover

- * Joint Models for Survival and Longitudinal Outcomes
 - · e.g., survival + binary / multinomial / continuous variables
 - · inter alia R package JM (Rizopolous 2010)
 - · Recent reference is Viviani et al. (2014)
- * Causal Inference (IVs, RDDs, matching, etc.)
- * Variable Selection: regularization, bagging, boosting, stacking, lasso, etc.
- Bayesian approaches (esp. for high-dimensional competing risks & hierarchical models); see Ibrahim et al. (2005)
- * New / better tools for interpretation and graphics (e.g. simPH)

General Tips

Journals:

- Biometrics / Biometrika
- Statistics in Medicine
- Statistical Methods in Medical Research
- Lifetime Data Analysis

Places:

- Biostatistics / Epidemiology / Public Health
- Statistics departments
- Not economics, psychology, etc.