Agrégation interne

Nombres premiers

1

Ce problème est en relation avec les leçons d'oral suivantes :

- 103 Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications.
- 104 Nombres premiers. Applications.
- -157. Arithmétique dans \mathbb{Z} .
- 302. Exercices faisant intervenir les notions de congruence et de divisibilité dans ℤ.
- 305. Exercices faisant intervenir les nombres premiers.
- 357. Exercices utilisant le corps $\frac{\mathbb{Z}}{p\mathbb{Z}}$.

On pourra consulter les ouvrages suivants.

- V. Beck, J. Malick, G. Peyre. Objectif Agrégation. H et K (2004).
- O. Bordelles. Thèmes d'arithmétique. Ellipses (2006).
- J. M. DE KONINCK, A. MERCIER. 1001 problèmes en théorie classique des nombres. Ellipses. (2003).
- M. Demazure. Cours d'algèbre. Cassini. (1997).
- S. Francinou, H. Gianella, S. Nicolas. Oraux X-ENS. Algèbre 1. Cassini (2009).
- X. GOURDON. Les Maths en tête. Algèbre. Ellipses.
- D. Perrin. Cours d'algèbre. Ellipses (1996).
- J. P. Ramis, A. Warusfel. *Mathématiques tout en un pour la licence. Niveau L1.* Dunod. (2007).
- P. TAUVEL. Mathématiques générales pour l'agrégation. Masson (1993).

Pour tout entier $n \geq 2$, on note \mathbb{Z}_n l'anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$ des classes résiduelles modulo n et \mathbb{Z}_n^{\times} le groupe multiplicatif des éléments inversibles de \mathbb{Z}_n .

On rappelle que, pour tout entier relatif a, on a :

$$(\overline{a} \in \mathbb{Z}_n^{\times}) \Leftrightarrow (a \wedge n = 1) \Leftrightarrow (\mathbb{Z}_n^{\times} = \langle \overline{a} \rangle)$$

et la fonction indicatrice d'Euler est définie, pour $n \geq 2$, par :

$$\varphi(n) = \operatorname{card}\left(\mathbb{Z}_{n}^{\times}\right) = \operatorname{card}\left\{a \in \{1, \cdots, n-1\} \mid a \wedge n = 1\right\}$$
$$= \operatorname{card}\left\{a \in \{1, \cdots, n-1\} \mid \mathbb{Z}_{n}^{\times} = \langle \overline{a} \rangle\right\}$$

On convient que $\varphi(1) = 1$.

Pour $p \geq 2$ premier, $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est un corps. On le note \mathbb{F}_p .

Du théorème de Lagrange, on déduit les résultats suivants, où $n \geq 2$ est un entier :

- pour tout entier relatif a premier avec n, on a $a^{\varphi(n)} \equiv 1$ (n) (théorème d'Euler);
- si p est un nombre premier, alors pour tout entier relatif a premier avec p, on a $a^{p-1} \equiv 1$ (p) et pour tout entier relatif a, on a $a^p \equiv a$ (p) (théorème de Fermat).

Pour tout entier $n \geq 2$, on note \mathcal{D}_n l'ensemble des diviseurs de n dans \mathbb{N}^* et $\sigma(n)$ la somme de tous ces diviseurs.

On dit que n est parfait s'il est égal à la somme de ses diviseurs stricts, ce qui équivaut à :

$$\sigma\left(n\right) = \sum_{d \in \mathcal{D}_n} d = 2n$$

Exercice 1 Nombres premiers de Mersenne.

- 1. Soient $a \ge 2$, $m \ge 2$ deux entiers et $p = a^m 1$.
 - (a) Montrer que si p est premier, on a alors a = 2 et m est premier.
 - (b) La réciproque est-elle vraie?
 On appelle nombre premier de Mersenne tout nombre premier de la forme 2^m 1.
 Le plus grand nombre premier de Mersenne connu au 25 janvier 2013 est 2⁵⁷⁸⁸⁵¹⁶¹ 1 qui est formé de plus de 17 millions de chiffres en base 10 (exactement 17 425 170 chiffres).
- 2. On appelle nombre d'Euclide tout entier de la forme $2^{m-1} (2^m 1)$ où m est un nombre premier tel que $2^m 1$ soit premier (de Mersenne).

 Montrer qu'un entier n est un nombre d'Euclide si, et seulement si, il est pair et parfait.

Exercice 2 Tests de primalité.

Pour tout entier $n \geq 2$, montrer que les assertions suivantes sont équivalentes :

- 1. n est premier;
- 2. pour tout entier naturel non nul α , on a $\varphi(n^{\alpha}) = (n-1) n^{\alpha-1}$;
- 3. $\varphi(n) = n 1$;
- 4. n est premier avec tout entier compris entre 1 et n-1;
- 5. \mathbb{Z}_n est un corps;
- 6. \mathbb{Z}_n est un intègre;
- 7. $(n-1)! \equiv -1 \pmod{n}$ (théorème de Wilson);
- 8. $(n-2)! \equiv 1 \pmod{n}$;
- 9. pour tout k compris entre 1 et n, on a $(n-k)!(k-1)! \equiv (-1)^k \pmod{n}$;

10.
$$n = 2$$
 ou n est impair et $\left(\left(\frac{n-1}{2} \right)! \right)^2 \equiv (-1)^{\frac{n+1}{2}} \pmod{n}$;

- 11. pour tout entier k compris entre 1 et n-1, on $a\binom{n}{k} \equiv 0 \pmod{n}$;
- 12. pour tout entier k compris entre 1 et n-1, on $a \binom{n}{k} \equiv 0 \pmod{n}$ et $\binom{n-1}{k} \equiv (-1)^k \pmod{n}$;
- 13. il existe un entier relatif a premier avec n tel que $(X + \overline{a})^n = X^n + \overline{a}$ dans $\mathbb{Z}_n[X]$.

 On pourra montrer que:

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (1)$$

puis:

$$(1) \Leftrightarrow (7), (7) \Leftrightarrow (8), (7) \Leftrightarrow (9), (7) \Leftrightarrow (10)$$

 $(1) \Rightarrow (11) \Rightarrow (12) \Rightarrow (1)$
 $(1) \Leftrightarrow (13)$

Exercice 3 Théorème de Wilson.

Soit $n \geq 2$ un entier naturel. Montrer que :

$$(n-1)! \equiv \begin{cases} -1 \pmod{n} & \text{si } n \text{ est premier} \\ 2 \pmod{n} & \text{si } n = 4 \\ 0 \pmod{n} & \text{si } n \neq 4 \text{ est non premier} \end{cases}$$

Exercice 4 Théorème de Fermat et tests de primalité.

1. Soit $p \ge 2$ un nombre premier. Montrer que pour tout entier $n \ge 2$ et tout n-uplet (a_1, \dots, a_n) d'entiers relatifs, on a:

$$(a_1 + \dots + a_n)^p \equiv a_1^p + \dots + a_n^p \pmod{p}$$

et retrouver le théorème de Fermat.

- 2. Soit $p \ge 2$ un nombre premier. Expliquer comment utiliser le théorème de Fermat pour simplifier le calcul du reste dans la division euclidienne par p d'un entier de la forme a^b , où a, b sont des entiers plus grands que p, l'entier p ne divisant pas a.
- 3. Soient $p \geq 2$ un nombre premier et $P(X) = X^p X$ dans $\mathbb{F}_p[X]$.
 - (a) Sans utiliser l'implication (1) \Rightarrow (11) de l'exercice 2, montrer que $P(X + \overline{1}) = P(X)$ dans $\mathbb{F}_p[X]$.
 - (b) Retrouver le fait que $\binom{p}{k} \equiv 0 \pmod{p}$ et $\binom{p-1}{k} \equiv (-1)^k \pmod{p}$ pour tout entier k compris entre 1 et p-1.
- 4. La réciproque du théorème de Fermat est-elle vraie?
- 5. Soit $p \ge 3$ un entier. Montrer que s'il existe un entier relatif a tel que $a^{p-1} \equiv 1 \pmod{p}$ et, pour tout diviseur $d \in \{1, \dots, p-2\}$ de p-1, $a^d \not\equiv 1 \pmod{p}$, alors p est premier (test de primalité de Lehmer).
- 6. Soit $p \ge 3$ un entier. Montrer que si pour tout diviseur premier d de p-1, il existe un entier a tel que $a^{p-1} \equiv 1 \pmod{p}$ et $a^{\frac{p-1}{d}} \not\equiv 1 \pmod{p}$, alors p est premier (test de primalité de Lucas-Lehmer).

Exercice 5 Pour $p \geq 2$ premier, \mathbb{Z}_p^* est cyclique.

Le résultat étant évident pour $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$, on s'intéresse au cas où $p \geq 3$ est un nombre premier impair.

On utilise la décomposition en facteurs premiers, $p-1=\prod_{k=1}^r p_k^{\alpha_k}$, où $2 \le p_1 < \cdots < p_r$ sont premiers et les α_k , pour k compris entre 1 et r, sont des entiers naturels non nuls.

- 1. Soient k comprisentre 1 et r, $q_k = \frac{p-1}{p_k^{\alpha_k}}$ et $x \in \mathbb{Z}_p^*$. Montrer que x^{q_k} est d'ordre $p_k^{r_{x,k}}$ où $0 \le r_{x,k} \le \alpha_k$.
- 2. Montrer que, pour k compris entre 1 et r, il existe dans \mathbb{Z}_p^* un élément d'ordre $p_k^{\alpha_k}$.
- 3. En déduire que \mathbb{Z}_p^* est cyclique d'ordre p-1.

Exercice 6 Nombres de Carmichaël.

On appelle nombre de Carmichaël tout entier $n \geq 2$ non premier tel que $a^{n-1} \equiv 1 \pmod n$ pour tout entier a premier avec n, ce qui revient à dire que, pour tout $x \in \mathbb{Z}_n^{\times}$, on a $x^{n-1} = \overline{1}$

- 1. Montrer qu'un nombre de Carmichaël est impair.
- 2. Soit $a \in \mathbb{N}^*$ tel que les entiers $p_k = 6 \cdot k \cdot a + 1$ pour k = 1, 2, 3, soient premiers. Montrer que $n = p_1 p_2 p_3$ est un nombre de Carmichaël.
- 3. Montrer qu'un nombre de Carmichaël est sans facteur carré.
- 4. Soit $n \geq 3$ un entier. Montrer que les assertions suivantes sont équivalentes :
 - (a) n est un nombre de Carmichaël.
 - (b) il existe un entier $r \geq 3$ et des nombres premiers $3 \leq p_1 < \cdots < p_r$ tels que $n = \prod_{j=1}^r p_j$ et, pour tout indice j compris entre 1 et r, $p_j 1$ divise n 1.

Exercice 7 Carrés dans \mathbb{F}_p^* , où p est premier et $\mathbb{F}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$.

On note:

$$C_p = \left\{ x^2 \mid x \in \mathbb{F}_p^* \right\}$$

l'ensemble des carrés de \mathbb{F}_p^* et :

$$\Sigma_p = \left\{ x \in \mathbb{F}_p^* \mid x^{\frac{p-1}{2}} - \overline{1} \right\}$$

l'ensemble des racines du polynôme $X^{\frac{p-1}{2}} - \overline{1} \in \mathbb{F}_p[X]$.

- 1. Montrer que les carrés de \mathbb{F}_p^* sont les racines du polynôme $X^{\frac{p-1}{2}} \overline{1} \in \mathbb{F}_p[X]$ et qu'il y en $\frac{p-1}{2}$.
- 2. Soit p un nombre premier impair.
 - (a) Monrer que $\overline{(-1)}$ est un carré dans \mathbb{F}_p si, et seulement si, p est congru à 1 modulo 4.
 - (b) En déduire qu'il existe une infinité de nombres premiers de la forme 4n+1.
 - (c) Montrer que s'il existe deux entiers a, b premiers entre eux tels que p divise $a^2 + b^2$, on a alors $p \equiv 1$ (4).
 - $(d)\ \ \textit{Montrer qu'il existe une infinit\'e de nombres premiers de la forme } 8n+5.$
- 3. En désignant par ψ le morphisme de groupes :

$$\begin{array}{cccc} \psi: & \mathbb{F}_p^* & \to & \mathbb{F}_p^* \\ & x & \mapsto & x^{\frac{p-1}{2}} \end{array}$$

4

montrer que $\ker(\psi) = C_p$ et $\operatorname{Im}(\psi) = \{-\overline{1}, \overline{1}\}$.

4. On note $S = \left\{1, 2, \cdots, \frac{p-1}{2}\right\}$ et on se donne un entier relatif a non divisible par p.

Montrer que pour tout entier $k \in S$, il existe un unique couple (ε_k, s_k) dans $\{-1, 1\} \times S$ tel que:

$$\overline{ka} = \varepsilon_k \overline{s_k}$$

(en fait (ε_k, s_k) dépend de k et de a), l'application $k \mapsto s_k$ réalise une bijection de S sur lui même et on a:

$$a^{\frac{p-1}{2}} \equiv \prod_{k=1}^{\frac{p-1}{2}} \varepsilon_k \, (\operatorname{mod} p)$$

Exercice 8 Réciprocité quadratique.

On dit qu'un entier a non multiple de p est un résidu quadratique modulo p si il existe un entier k tel que $k^2 \equiv a \pmod{p}$.

Pour tout entier relatif a non divisible par p, on définit le symbole de Legendre $\left(\frac{a}{p}\right)$ par :

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 1 \text{ si a est un r\'esidu quadratique modulo } p \\ -1 \text{ sinon} \end{cases}$$

1. Montrer que pour tout entier relatif a non divisible par p, on a :

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$$

et:

$$\left(\frac{a}{p}\right) = \prod_{k=1}^{\frac{p-1}{2}} \varepsilon_k$$

(notations de l'exercice précédent).

- 2. Calculer $\left(\frac{-1}{p}\right)$ et $\left(\frac{2}{p}\right)$.
- 3. Montrer que pour tout entier relatif a non divisible par p, on a :

$$\left(\frac{a}{p}\right) = \prod_{k=1}^{\frac{p-1}{2}} \frac{\sin\left(ax_k\right)}{\sin\left(x_k\right)}$$

où:

$$x_k = \frac{2k\pi}{p} \left(1 \le k \le \frac{p-1}{2} \right)$$

4. Montrer que pour tout entier naturel non nul r, il existe un polynôme unitaire P_r de degré égal à r tel que :

$$\forall x \in \mathbb{R}, \cos(2rx) = \frac{(-4)^r}{2} P_r \left(\sin^2(x)\right)$$

et pour tout entier naturel non nul r et tout réel $x \in \mathbb{R} \setminus \pi\mathbb{Z}$, on a :

$$\frac{\sin((2r+1)x)}{\sin(x)} = (-4)^r \prod_{k=1}^r \left(\sin^2(x) - \sin^2\left(\frac{2k\pi}{2r+1}\right)\right)$$

5. Montrer que pour tout entier naturel impair a non divisible par p, on a :

$$\left(\frac{a}{p}\right) = \left(-4\right)^{\frac{p-1}{2}\frac{a-1}{2}} \prod_{\substack{1 \le j \le \frac{a-1}{2} \\ 1 \le k \le \frac{p-1}{2}}} \left(\sin^2\left(\frac{2k\pi}{p}\right) - \sin^2\left(\frac{2j\pi}{a}\right)\right)$$

6. Montrer que pour tout nombre premier impair $q \neq p$, on a :

$$\left(\frac{q}{p}\right) = \left(-1\right)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right)$$

(formule de réciprocité quadratique).

- 7. Soient $p \geq 3$ un nombre premier impair et n un entier impair de la forme $n = 2^{\alpha}m + 1$, où α est un entier supérieur ou égal à 2 et m un entier impair compris entre 1 et $2^{\alpha} 1$. On suppose que p ne divise pas n et que n n'est pas un résidu quadratique modulo p. Montrer que n est premier si, et seulement si, $p^{\frac{n-1}{2}} \equiv -1$ modulo n.
- 8. En utilisant le test de primalité de la question précédente, montrer qu'un entier de Fermat, $F_n=2^{2^n}+1$ où n est un entier naturel non nul, est premier si, et seulement si, $3^{\frac{F_n-1}{2}}$ est congru à -1 modulo F_n .