Homework set #8

- 1. Assume that X_1, \ldots, X_n are i.i.d. Gamma $(r, 1/\lambda)$, where r is known, i.e., $f(x|r,\lambda) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}$. Find the posterior Bayes estimator of λ for the $\Gamma(l,k)$ prior.
- 2. Let X_1, \ldots, X_n be i.i.d. $N(\theta, \sigma^2)$, where σ^2 is known and θ is unknown.
 - (a) Find the posterior Bayes estimator for prior $\pi \sim N(a, b^2)$.
 - (b) Find the posterior Bayes estimator for prior $\pi(\theta) = 1, \ \theta \in \mathbb{R}$. (This is called an "improper prior".)
- 3. Let X_1, \ldots, X_n be i.i.d. Bernoulli(p). In what follows we will consider the loss function $L(p,a) = \frac{(p-a)^2}{p}$. (This is not the squared loss!)
 - (a) Find the Bayes rule for the loss function L(p, a) and $\text{Beta}(\alpha, \beta)$ prior. (Hint: Calculate the posterior risk $r = \int_0^1 L(p, a) \pi(p|\mathbf{x}) dp$ and notice that this is a quadratic function in a. Then find a that minimizes r.)
 - (b) Find the MINIMAX estimator for this loss function.
- 4. Let X_1, \ldots, X_n be i.i.d. $\text{Exp}(\lambda)$. (Use the parametrization where $EX = \lambda^{-1}$). Find the MINIMAX estimator for the loss $L(a, \lambda) = \lambda^2 (a \lambda^{-1})^2$.
- 5. (a) Prove or disprove: Any admissible estimator with a flat risk is MINIMAX.
 - (b) Does a MINIMAX estimator have to be admissible?
- 6. Let S^2 be the sample variance based on sample of size n from a normal population. We know that $(n-1)S^2/\sigma^2 \sim \chi_{n-1}^2$. Consider the inverse gamma, $\mathrm{IG}(\alpha,\beta)$ prior, given by

$$\pi(\sigma^2) = \frac{e^{-\frac{1}{\beta\sigma^2}}}{\Gamma(\alpha)\beta^{\alpha}(\sigma^2)^{\alpha+1}} I_{(0,\infty)}(\sigma^2).$$

Find the posterior. Is this prior conjugate? What is the posterior Bayes estimator of σ^2 ?

7. Let X_1, \ldots, X_n be iid Poisson(λ), and consider the prior $\lambda \sim \Gamma(\alpha, \beta)$.

- (a) Find the posterior distribution.
- (b) Calculate the posterior mean and variance.
- 8. Let X_1, \ldots, X_n be iid $N(\theta, \sigma^2)$, with $\sigma^2 > 0$ known. Consider the double exponential prior $\pi(\theta) = e^{-|\theta|/a}/(2a)$ with a > 0 known. Find the mean of the posterior distribution of θ . (Hint: The calculations in this problem are complicated. Use of symbolic math program is recommended.)
- 9. A loss function investigated by Zellner (1986) is the LINEX loss given by

$$L(\theta, a) = e^{c(a-\theta)} - c(a-\theta) - 1,$$

where c > 0 is a constant.

- (a) Plot $L(\theta, a)$ as a function of $a \theta$ for c = 0.2, 0.5, 1.
- (b) Show that the Bayes rule is $-\frac{\log E(e^{-c\theta}|X)}{c}$.
- (c) Let X_1, \ldots, X_n be iid $N(\theta, \sigma^2)$ with $\sigma^2 > 0$ known, and consider the improper prior $\pi(\theta) = 1$. Find δ the Bayes estimator using the LINEX loss.
- (d) Calculate the posterior risk for δ and \bar{X}_n using the LINEX loss.
- (e) Calculate the posterior risk for δ and \bar{X}_n using the square loss.