COMP5211: Machine Learning

Lecture 11

Illustration

- Each node checks on feature x_i :
 - Go left if x_i < threshold
 - Go right if x_i > threshold

 $X_{\bar{1}}$

A real example

- Each node checks on feature x_i :
 - Go left if x_i < threshold
 - Go right if x_i > threshold

Play tennis or not

Pros

- Strength:
 - It's a nonlinear classifier
 - Better interpretability
 - Can naturally handle categorical features

Pros

- Strength:
 - It's a nonlinear classifier
 - Better interpretability
 - Can naturally handle categorical features
- Computation:
 - Training: slow
 - Prediction: fast
 - h operations (h: depth of the tree, usually ≤ 15)

- Classification tree: Split the node to maximize entropy
- Let S be set of data points in a node, $c=1,\ldots,C$ are labels:

entropy :
$$H(S) = -\sum_{c=1}^{C} p(c) \log p(c)$$

- Where p(c) is the proportion of the data belong to class c
 - Entropy=0 if all samples are in the same class
 - Entropy is large if p(1) = ... = p(C)

Information Gain

• The averaged entropy of a split $S o S_1, S_2$

$$\frac{|S_1|}{|S|} H(S_1) + \frac{|S_2|}{|S|} H(S_2)$$

- Information gain: measure how good is the split
 - $H(S) (|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2)$

Information Gain

• The averaged entropy of a split $S \rightarrow S_1, S_2$

$$- \frac{|S_1|}{|S|} H(S_1) + \frac{|S_2|}{|S|} H(S_2)$$

 Information gain: measure how good is the split

Averaged entropy: 2/3*1 + 1/3*0 = 0.67

Information gain: 1.58 - 0.67 = 0.91

Information Gain

• The averaged entropy of a split $S \rightarrow S_1, S_2$

$$-\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

 Information gain: measure how good is the split

Averaged entropy: 1.51

Information gain: 1.58 - 1.51 = 0.07

•
$$H(S) - ((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2))$$

• Given the current note, how to find the best split?

- Given the current note, how to find the best split?
- For all the features and all the threshold
 - Compute the information gain after the split
 - Choose the best one (maximal information gain)

- Given the current note, how to find the best split?
- For all the features and all the threshold
 - Compute the information gain after the split
 - Choose the best one (maximal information gain)
- For n samples and d features: need O(nd) time

Regression Tree

- Assign a real number for each leaf
- Usually average y values for each leaf (minimize square error)

Regression Tree

Objective function:

•
$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (\text{Regularization})$$

• The quality of partition $S=S_1\cup S_2$ can be computed by the objective function:

$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

Where
$$y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i$$
, $y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$

Regression Tree

• Objective function:

•
$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (\text{Regularization})$$

• The quality of partition $S = S_1 \cup S_2$ can be computed by the objective function:

$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

Where
$$y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i$$
, $y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$

- Find the best split
 - Try all the features & thresholds and find the one with minimal objective function

Parameters

- Maximum depth: (usually ≈ 10)
- Minimum number of nodes in each node: (10, 50, 100)

Parameters

- Maximum depth: (usually ≈ 10)
- Minimum number of nodes in each node: (10, 50, 100)
- Single decision tree is not very powerful ...
- Can we build multiple decision trees and ensemble them together?

Random Forest

Definition

- Random Forest (Bootstrap ensemble for decision trees):
 - Create *T* trees
 - Learn each tree using a subsampled dataset S_i and subsampled feature set D_i
 - Prediction: Average the results from all the T trees
- Benefit:
 - Avoid over-fitting
 - Improve stability and accuracy
- Good software available:
 - R: "randomForest" package
 - Python: sklearn

Random Forest

Definition

Boosted Decision Tree

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

•
$$F^* = \arg\min_{F} \sum_{i=1}^{n} \mathcal{L}(y_i, F(x_i)) \text{ with } F(x) = \sum_{m=1}^{T} f_m(x)$$

• (Each f_m is a decision tree)

Boosted Decision Tree

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

•
$$F^* = \arg\min_{F} \sum_{i=1}^{n} \mathcal{L}(y_i, F(x_i))$$
 with $F(x) = \sum_{m=1}^{T} f_m(x)$

- (Each f_m is a decision tree)
- Direct loss minimization: at each stage m, find the best function to minimize loss

Solve
$$f_m = \underset{f_m}{\operatorname{arg \, min}} \sum_{i=1}^{N} \mathcal{E}(y_i, F_{m-1}(x_i) + f_m(x_i))$$

- Update $F_m \leftarrow F_{m-1} + f_m$
- $F_m(x) = \sum_{j=1}^m f_j(x)$ is the prediction of x after m iterations

Boosted Decision Tree

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

•
$$F^* = \arg\min_{F} \sum_{i=1}^{n} \mathcal{L}(y_i, F(x_i))$$
 with $F(x) = \sum_{m=1}^{T} f_m(x)$

- (Each f_m is a decision tree)
- Direct loss minimization: at each stage m, find the best function to minimize loss

• Solve
$$f_m = \arg\min_{f_m} \sum_{i=1}^{N} \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$$

- Update $F_m \leftarrow F_{m-1} + f_m$
- $F_m(x) = \sum_{j=1}^m f_j(x)$ is the prediction of x after m iterations
- Two problems:
 - Hard to implement for general loss
 - Tend to overfit training data

Gradient Boosted Decision Tree (GBDT)

Approximate the current loss function by a quadratic approximation

$$\sum_{i=1}^{n} \mathcal{E}(\hat{y}_i, F_{m-1}(x_i) + f_m(x_i)) \approx \sum_{i=1}^{n} (\mathcal{E}_i(\hat{y}_i + g_i f_m(x_i) + \frac{1}{2} h_i f_m(x_i)^2)$$

$$= \sum_{i=1}^{n} \frac{h_i}{2} ||f_m(x_i) - g_i/h_i||^2 + \text{constant}$$

• Where $g_i=\partial_{\hat{y}_i}\mathscr{C}_i(\hat{y}_i)$ is gradient, $h_i=\partial_{\hat{y}_i}^2\mathscr{C}_i(\hat{y}_i)$ is second order derivative

Gradient Boosted Decision Tree (GBDT)

• Finding $f_m(x, \theta_m)$ by minimizing the loss function:

$$\arg\min_{f_m} \sum_{i=1}^{N} [f_m(x_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT
- XGboost shows computing second order derivate yields better performance

• Finding $f_m(x, \theta_m)$ by minimizing the loss function:

$$\arg\min_{f_m} \sum_{i=1}^{N} [f_m(x_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT
- XGboost shows computing second order derivate yields better performance
- Algorithm:
 - Computing the current gradient for each \hat{y}_i
 - Building a base learner (decision tree) to fit the gradient
 - Updating current prediction $\hat{y}_i = F_m(x_i)$ for all i

- Key idea:
 - Each base learner is a decision tree
 - . Each regression tree approximates the functional gradient $\frac{\partial \mathcal{E}}{\partial F}$

- Key idea:
 - Each base learner is a decision tree
 - . Each regression tree approximates the functional gradient $\frac{\partial \mathcal{E}}{\partial F}$

$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \qquad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}$$

- Key idea:
 - Each base learner is a decision tree
 - . Each regression tree approximates the functional gradient $\frac{\partial \mathcal{E}}{\partial F}$

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \mathcal{E}}{\partial F}$

Gradient Boosted Decision Tree (GBDT)

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \mathcal{E}}{\partial F}$

Final prediction
$$F(x_i) = \sum_{j=1}^{T} f_j(x_i)$$

Open source packages

- XGBoost: the first widely used tree-boosting software
- LightGBM: released by Microsoft
 - Histogram-based training approach much faster than finding the best split
 - Good GPU support