1) Algoritmo de planificación Primero en llegar primero en servir.

Es un algoritmo de planificación que maneja los trabajos de acuerdo con su tiempo de llegada conforme entran. Este algoritmo se utiliza para los sistemas que trabajan por lotes

Proceso	NCPU en Quantum		
PO	400		
P1	300		
P2	1800		
P3	2370		

- a) Crear un diagrama de Grantt que muestre la ejecución de estos procesos
- b) Hallar el tiempo de vuelta de los procesos
- c) Hallar el tiempo medio de vuelta.
- d) Hallar el tiempo de espera de los proceso
- e) Hallar el tiempo medio de espera.
 - 2) Usando el algoritmo de planificación de prioridad. Cada proceso tiene asociado una prioridad y el proceso que se va a ejecutar es el que tiene máxima prioridad

Proceso	Prioridad	NCPU en Quantum		
PO	0	680		
P1	2	1800		
P2	4	300		
P3	3	10		
P4	1	200		
P5	2	88		

- a) Crear un diagrama de Grantt que muestre la ejecución de estos procesos
- b) Hallar el tiempo de vuelta de los procesos
- c) Hallar el tiempo medio de vuelta.
- d) Hallar el tiempo de espera de los proceso

- e) Hallar el tiempo medio de espera.
 - 3) Usando el algoritmo de planificación el más cortó. Siempre envía a ejecución el proceso que menos tiempo necesita de procesador.

Proceso	NCPU		
	(Quantum)		
P0	620		
P1	760		
P2	400		
P3	300		
P4	56		

- a) Crear un diagrama de Grantt que muestre la ejecución de estos procesos
- b) Hallar el tiempo de vuelta de los procesos
- c) Hallar el tiempo medio de vuelta.
- d) Hallar el tiempo de espera de los proceso
- e) Hallar el tiempo medio de espera.

Algoritmo de planificación Round Robin.

Manda al procesador proceso que esté al frente de la cola y le asigna un Quantum si no acabo lleva el proceso al final de la cola y continua con el proceso que está al frente.

Usando el algoritmo de planificación Round Robin con un Quantum de tamaño 200 milisegundos y un intercambio de tamaño 20 milisegundos.

Proceso	tiempo de	NCPU en	gasta en	NCPU en	gasta en	NCPU en
	llegada en	Quantum	Entrada/	Quantum	Entrada/Salida	Quantum
	Milisegundos		Salida		en Quantum	
			en			
			Quantum			
РО	0	1	2	2	-	-
P1	190	2	2	1	-	-
P2	500	4	-	-	-	-
P3	700	3	-	-	_	-

a) Crear un diagrama de Grantt que muestre la ejecución de estos procesos

- b) Hallar el tiempo de vuelta de los procesos
- c) Hallar el tiempo medio de vuelta.
- d) Hallar el tiempo de espera de los proceso
- e) Hallar el tiempo medio de espera.