- 1. V o F. Justifique.
 - (a) Dado $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ se tiene que $\Psi_{\mathcal{P}}^{1,0,\omega} \circ \lambda x[(x)_1] = \lambda x[(x)_1] \circ E_{\#} \circ (M(P), p_1^{1,0}, C_{\varepsilon}^{1,0}, C_{\mathcal{P}}^{1,0})$, donde $P = \lambda t x[i(t, x, \varepsilon, \mathcal{P}) = n(\mathcal{P}) + 1]$.
 - (b) Sea $g:D_g\subseteq\Sigma^*\to\Sigma^*$ una función Σ -computable. Entonces existe el macro [IF W1 $\in D_g$ GOTO A1]
 - (c) Si $\mathrm{Dom}(\Psi^{1,0,\omega}_{\mathcal{P}}) = \omega$ entonces $\mathrm{Dom}(\Psi^{1,0,\omega}_{\mathcal{P}\mathcal{P}}) = \omega$.
 - (d) Sean $f: \omega \to \omega$ y $g: \Sigma^* \to \Sigma^*$ funciones Σ -computables. Entonces hay un programa $\mathcal P$ tal que $\Psi^{1,0,\omega}_{\mathcal P} = f$ y $\Psi^{0,1,\Sigma^*}_{\mathcal P} = g$.
- 2. Dar un programa $Q \in \operatorname{Pro}^{\Sigma_p}$ tal que $\operatorname{Dom}(\Psi_Q^{1,0,\Sigma_p^*}) = \omega$ e $\operatorname{Im}(\Psi_Q^{1,0,\Sigma_p^*})$ sea el conjunto

$$\{\mathcal{P} \in \operatorname{Pro}^{\Sigma_p} \mid \text{hay } p \in \omega \text{ primo } \Psi^{1,1,\omega}_{\mathcal{P}}(p,\mathcal{P}) = 1\}.$$

3. Si $S\subseteq \Sigma^*$ es Σ -r.e. entonces $T=\{a\in \Sigma^*\mid \text{hay }\beta\in S \text{ tal que }\alpha \text{ es subpalabra de }\beta\}$ también es Σ -r.e.

Para cada macro usado en (2) y/o (3) dar el predicado o la funcion asociada dependiendo si es un macro de tipo IF o de asignacion.