Mental Model: Digital Signal Processing: Time ↔ Frequency Reality

♦ 1. Time Domain = Where the Work Happens

- Everything is stored and manipulated as sequences of numbers: x[n], h[n], y[n]
- · You apply filters, convolution, algorithms, etc. in time domain
- Mathematical operations like 1filter, convolve, etc. work directly on samples
- All code, hardware, and real-time systems process signal sample by sample, or block-byblock
- Time domain is the "hands-on workspace" of DSP.

♦ 2. Frequency Domain = Where You Analyze the Effect

- · You switch to frequency domain (via FFT, DFT) to:
 - Understand what your signal is made of (spectrum)
 - Verify filter behavior (e.g., does it cut off 2 kHz as intended?)
 - Design or interpret filter responses
- But you don't operate directly in frequency domain unless needed (e.g., FFT filtering, spectral subtraction)
- ₱ Frequency domain is the "diagnostic lens" you see the effect of what you did in time
 domain.

♦ 3. The Complete System (Tx–Rx)

Let's walk through what you hinted — a **real-world DSP path** from analog to digital and back:

TRANSMISSION SIDE:

1. Analog signal (microphone, antenna)

```
\begin{array}{c} \downarrow \\ \textbf{2. ADC} \rightarrow \textbf{samples it to produce } x[n] \\ \downarrow \\ \textbf{3. Digital filtering / modulation / encoding (DSP)} \\ \downarrow \\ \textbf{4. DAC} \rightarrow \textbf{converts it back to analog} \\ \downarrow \\ \end{array}
```

5. **Transmission** (RF, audio, etc.)

RECEIVER SIDE:

1. Analog input (antenna, sensor)

2. $\overrightarrow{\mathsf{ADC}} o \mathsf{digitizes} \ \mathsf{to} \ x[n]$

3. DSP applies filtering, detection, demodulation

4. You extract information (audio, video, IQ, data)

∀ Key Principles (What to Remember)

Concept	Role
Time Domain	Where DSP happens (convolution, filtering, modulation)
Frequency Domain	Where interpretation and filter design is verified
ADC	Converts real-world signal → digital samples
DSP	Processes those samples using mathematical operations
DAC	Converts processed digital samples → analog signal

♦ Real-World Analogy:

Stage	Analogy
Time domain filtering	Cooking: you follow a recipe (weighted steps on samples)
Frequency domain	Nutrition label: shows how healthy the output is (what's inside)
ADC/DAC	Converts between ingredients (analog) and numbers (digital)