Naive Bayes

MR. HUYNH NAM

Guess the gender

The Dataset

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

Example

Is this officer a Male or a Female?

Officer Drew

The Dataset

Name	Sex
Drew	Male
Claudia	Female
Drew	Female
Drew	Female
Alberto	Male
Karin	Female
Nina	Female
Sergio	Male

Guess the gender

Assume that we have two classes

 C_1 = male, C_2 = female

We have a person whose sex we do not know, say "drew" or d.

Drew can be a male or a female name

Classifying drew as male or female is equivalent to asking is it more probable that drew is male or female.

I.e which is greater P(male | drew) or P(female | drew)

Bayes approach

$$P(class|data) = \frac{P(class) * P(data|class)}{P(data)}$$

$$posterior = \frac{prior \times likelihood}{evidence}$$

Result

Officer Drew is female

Officer Drew

	Outlook	Play Golf
0	Rainy	No
1	Rainy	No
2	Overcast	Yes
3	Sunny	Yes
4	Sunny	Yes
5	Sunny	No
6	Overcast	Yes
7	Rainy	No
8	Rainy	Yes
9	Sunny	Yes
10	Rainy	Yes
11	Overcast	Yes
12	Overcast	Yes
13	Sunny	No

- 1. Cho bảng dữ liệu thu thập về tình hình thời tiết và quyết định đi chơi.
- 2. Hãy xây dựng mô hình Bayes Classifier
- 3. Hãy dùng mô hình Bayes để dự báo nếu hôm nay thời tiết u ám thì có đi chơi không.

How to deal with multiple attributes?

The Dataset

Over 170cm	Eye	Hair length	Sex
No	Blue	Short	Male
Yes	Brown	Long	Female
No	Blue	Long	Female
No	Blue	Long	Female
Yes	Brown	Short	Male
No	Blue	Long	Female
Yes	Brown	Short	Female
Yes	Blue	Long	Male

So far we have only considered Bayes Classification when we have one attribute (the "antennae length", or the "name"). But we may have many features.

Ex: Height, Eye Color, Hair Length, and so on.

How do we use all the features?

P(male| Height, Eye, Hair Length) ~ P(Height, Eye, Hair Length | male) P(male)

Computing Probability P(Height, Eye, Hair Length | male) is infeasible!

Naïve Bayes Classification

Assume all input features are class conditionally independent!

P(male| Height, Eye, Hair Length) ~ P(Height| male) P(Eye|male) P(Hair Length | male) P(male)

Note: Direction of arrow from class to feature

How to choose class

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

The Dataset

Name	Over 170cm	Eye	Hair length	Sex
Drew	No	Blue	Short	Male
Claudia	Yes	Brown	Long	Female
Drew	No	Blue	Long	Female
Drew	No	Blue	Long	Female
Alberto	Yes	Brown	Short	Male
Karin	No	Blue	Long	Female
Nina	Yes	Brown	Short	Female
Sergio	Yes	Blue	Long	Male

- 1. Cho bảng dữ liệu thu thập về name, height hơn 170 cm, eye color, hair length
- 2. Hãy xây dựng mô hình Bayes Classifier
- 3. Hãy dùng mô hình Bayes để dự báo nếu tôi biết thông tin: chiều cao trên 170cm, mắt nâu và tóc ngắn thì người đó sẽ có giới tính nào.

	Outlook	Temperature	Humidity	Windy	Play Gol
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes
5	Sunny	Cool	Normal	True	No
6	Overcast	Cool	Normal	True	Yes
7	Rainy	Mild	High	False	No
8	Rainy	Cool	Normal	False	Yes
9	Sunny	Mild	Normal	False	Yes
10	Rainy	Mild	Normal	True	Yes
11	Overcast	Mild	High	True	Yes
12	Overcast	Hot	Normal	False	Yes
13	Sunny	Mild	High	True	No

- 1. Cho bảng dữ liệu thu thập về tình hình thời tiết và quyết định đi chơi.
- 2. Hãy xây dựng mô hình Bayes Classifier
- 3. Hãy dùng mô hình Bayes để dự báo nếu hôm nay: thời tiết u ám, trời nóng, độ ẩm cao và không có gió thì có đi chơi không.

Evaluating Naive Bayes Classifier

Advantages

Fast to train (just one scan of database) and classify

Not sensitive to irrelevant features

Handles discrete data well

Handles streaming data well

Disadvantage

Assumes independence of features - Losing the accuracy.

Not really good for continuous attribute values.

Issues with Naive Bayes Classifier - 1

ZERO CONDITIONAL PROBABILITY PROBLEM

- Incomplete training data
- A given class and feature value never occur together in the training set.
- This is problematic since it will wipe out all information in the other probabilities when they are multiplied.
- Conditional probability will be zero and the whole construction collapses!

Issues with Naive Bayes Classifier - 1

ZERO CONDITIONAL PROBABILITY PROBLEM

Example: A feature F2 and the class label do not occur in training set.

Since, P(F2 | label) = 0

P(label | F1, F2, F3) = P(label) P(F1|label) P(F2|label) P(F3|label)

P(label | F1, F2, F3) = 0

Correction to Zero Probability Problem

Laplace Smoothing

- To eliminate zeros joint probability, we use add-one or Laplace smoothing
- Adds arbitrary low probabilities in such cases so that the probability computation does not become zero.
- Basic Idea: Pretend that you saw every feature-class outcome pair k
 extra times.

Laplace Smoothing

 X_i = The i-th attribute in dataset D.

 $x_i = A$ particular value of the X_i attribute in dataset D.

N = Total number of tuples in dataset D.

k = Laplace Smoothing Factor.

Count $(X_i = x_i)$ = Number of tuples where the attribute X_i takes the value x_i

| X_i | = Number of different values attribute X_i can take.

$$P_{Lap,k}(X_i = x_i) = \frac{count(X_i = x_i) + k}{N + k|X_i|}$$

Laplace Smoothing

Count $(X_i = x_i, Y = y)$ = Joint probability of $X_i = x_i$ and Y = y appearing together in the dataset.

 $|X_i|$ = Number of different values attribute X_i can take.

$$P_{Lap,k}(X_i = x_i | Y = y) = \frac{count(X_i = x_i, Y = y) + k}{count(Y = y) + k|X_i|}$$

The Dataset

Name	Over 170cm	Eye	Hair length	Sex
Drew	No	Blue	Short	Male
Claudia	Yes	Brown	Long	Female
Drew	No	Blue	Long	Female
Drew	No	Blue	Long	Female
Alberto	Yes	Brown	Short	Male
Karin	No	Blue	Long	Female
Nina	Yes	Brown	Short	Female
Sergio	Yes	Blue	Long	Male

Sử dụng Laplace Smoothing với k = 1 để thực hiện

- 1. Cho bảng dữ liệu thu thập về name, height hơn 170 cm, eye color, hair length
- 2. Hãy xây dựng mô hình Bayes Classifier
- 3. Hãy dùng mô hình Bayes để dự báo nếu tôi biết thông tin : chiều cao trên 170cm, mắt nâu và tóc ngắn thì người đó sẽ có giới tính nào.

Issues with Naive Bayes Classifier - 2

CONTINUOUS VARIABLES

 When an attribute is continuous, computing the probabilities by the traditional method of frequency counts is not possible.

Solution ---- May lead to loss in classification accuracy

Discretization: Convert the attribute values to discrete values - Binning

Probability Density Functions: To compute probability densities instead of actual probabilities.

Concept of Probability Density Function (PDF)

- Finding P(X = x) for a continuous random variable X is not going to work.
- Solution Find the probability that X falls in some interval [a, b], i.e.

find P(a <= X <= b) ----> PDF comes to the rescue.

 $f_X(x)$ = Probability Density Function of attribute X.

$$\Pr[a \leq X \leq b] = \int_a^b f_X(x) \, dx.$$

Gaussian Naive Bayes classifier

In Gaussian Naive Bayes, continuous values associated with each feature are assumed to be distributed according to a Gaussian distribution.

PDF equation:

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

The Normal Distribution

$$P(x_i|y) = rac{1}{\sqrt{2\pi\sigma_y^2}}exp\left(-rac{(x_i-\mu_y)^2}{2\sigma_y^2}
ight)$$

ti	ci	drug
5.1	3.5	X
4.9	3	X
4.7	3.2	X
4.6	3.1	X
7	3.2	Υ
6.4	3.2	Υ
6.9	3.1	Υ
5.5	2.3	Υ
6.3	2.5	Z
6.5	3	Z
6.2	3.4	Z
5.9	3	Z

Xây dựng mô hình Bayes Gaussian đề xuất cấp thuốc dựa trên chỉ số xét nghiệm máu: ti và ci

Ví dụ: [ti, ci] = [6.9, 3.1] thì sẽ cấp thuốc loại gì

THANK YOU