

Руководство разработчика v1.0

https://github.com/andykarpov/karabas-pro
© 2023 Andy Karpov, Oleh Starychenko

Оглавление

Введение	4
Системные порты	5
Порт конфигурации #7FFD (#FD)	5
Порт конфигурации #DFFD	6
Системный порт #FE	7
Порт палитры #7Е	8
Порт конфигурации #008В	9
Порт конфигурации #018В	10
Порт конфигурации #028В	11
Устройства хранения данных	12
SD карта	12
Порт данных SD-карты #57	12
Порт управления SD-карты #77	13
SPI-flash	14
Порт управления SPI-flash #C7	14
Порт младшего байта адреса страницы SPI-flash #87	15
Порт старшего байта адреса страницы SPI-flash #A7	16
Порт адреса байта в странице SPI-flash #67	17
Порт байта данных в странице SPI-flash #E7	18
Структура SPI-flash памяти	19
Байт конфигурации SPI-flash	20
Порты IDE HDD (CF)	21
Порты FDD	22
Системный регистр ВГ93 (RQ93)	23
Устройства ввода	24
Порт Kempston Joystick #1F	24
Порты Kempston Mouse	25
Порт кнопок мыши и оси Z (колесика) #FADF	25
Порт оси X мыши #FBDF	26
Порт оси Y мыши #FFDF	27
Порты Serial Mouse	28
Порт регистра команд / статуса RS232 #B3	28
Порт данных RS232 #93	29

Аппаратное прерывание RS232	30
Расширенная периферия	31
Часы реального времени + NVRAM	31
Порт AS RTC #FF (#BF)	31
Порт DS RTC #DF (#9F)	32
Порты ZX UNO	33
Порт регистра адреса ZX UNO #FC3B	33
Порт регистра данных ZX UNO #FD3B	34
Внутренний регистр данных UART #C6 (#C8 для UART2)	34
Внутренний регистр состояния UART #C7 (#C9 для UART2)	35
Звуковая подсистема	36
Порты Soundrive (Covox)	36
Порт Covox #FB	36
Порты Soundrive #0F, #1F, #3F, #4F, #5F	37
Порты TurboSound	38
Порт регистра адреса AY #FFFD	38
Порт регистра данных AY #BFFD	39
Порт SAA1099 #FF	40

Введение

Компьютер Karabas-Pro, в целом, повторяет архитектуру железа Profi 5.06, а также имеет ряд специфических портов управления дополнительной периферией.

В зависимости от ревизии платы, Karabas-Pro имеет на борту 2 либо 6 МБ ОЗУ. На момент написания данного руководства, используется только 2МБ, причем первый мегабайт используется под ОЗУ, а во втором хранятся образы ПЗУ, которые при старте железки копируются в свободный мегабайт из конфигурационного flash и после старта платы доступны только для чтения.

Как и в компьютере Profi, в Karabas-Pro имеется стандартный спектрумовский видеорежим, так и режим расширенного экрана Profi, при этом включается альтернативный тактовый генератор. Оба видеорежима поддерживают палитру 3:3:3 (512 цветов) из 16 предустановленных цветов.

Периферия Karabas-Pro включает такие компоненты: контроллер дисковода на реальном чипе BГ93, Compact Flash в режиме IDE, SD-карта по стандарту Z-контроллера, порт kempston-джойстика с поддержкой SEGA-геймпадов, модуль ESP8266 для подключения к сети интернет, звуковые модули Turbosound, Covox, Soundrive, SAA1099, PS/2 мышь в виде kempston-мыши, а также эмуляцию COM-мыши в упрощенном режиме последовательного порта. Имеется также доступ к встроенной конфигурационной SPI-flash памяти через параллельный интерфейс, часам реального времени + NVRAM (240 ячеек).

Дополнительные порты, реализованные в проекте, поддерживают операционную систему PQ-DOS (которая пока находится в стадии активной разработки).

Данная документация содержит описание портов, реализованных в проекте. Руководство предназначено, в первую очередь, для разработчиков программного обеспечения, для этого по каждому порту описаны не только назначения каждого бита порта, но и правила дешифрации, а также доступность на чтение и запись.

Системные порты

Порт конфигурации #7FFD (#FD)

Порт #7FFD является стандартным портом конфигурации 128к машин (CMR0). При определенных условиях, порт также доступен по короткой адресации (#FD).

Дешифрация (CS): ~IORQ=0 и ~M1=1 и A(15:0)=7FFD

Короткая дешифрация (CSS): ~IORQ=0 и ~M1=1 и A(15)=0 и A(1)=0

Условия записи в порт: CS и ~WR=0 и #7FFD(5)=0 и #DFFD(4)=1

Условия чтения порта: CS и ~RD=0 и A(15:0)=7FFD

					Бит	ГЫ Д	цані	ны)	· · ·		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
SEGA0		•								•	Младшие биты
SEGA1 SEGA2		•							•		адресов расширенной памяти
OLONZ								•			(до 128к)
POLEKR							•				Выбор положения растра экрана Spectrum (DS80=0): 0 - seg 05; 1 - seg 07 Profi (DS80=1): 0 - экран точек SEG 04, атрибуты SEG38; 1 - экран точек SEG 06, атрибуты SEG 3A.
ROM14	-	•				•					Переключение банка ПЗУ 0 – Spectrum 128 1 – Spectrum 48
Запрет расширенной памяти (выше 128к)	•	•			•						Защелку (1) можно снять только сбросом компа
Управление памятью				•							Старшие биты
		•	•								адресов расширенной памяти (по стандарту pentagon-512)

Порт конфигурации #DFFD

Порт #DFFD является стандартным портом конфигурации компьютера Profi (CMR1).

Дешифрация (CS): ~IORQ=0 и ~M1=1 и A(15:0)=DFFD

Условия записи в порт: CS и ~WR=0

			E	Бит	ЫД	цан	НЫ	x			
Группа	R	w	7	6	5	4	3	2	1	0	Описание
Управление памятью	•	-							•	•	Старшие биты адресов расширенной памяти (по стандарту profi-1024)
		•						•			Стандарту ргон-то24)
SCO							•				Выбор положения окна проецирования сегментов: 0 - окно номер 1 (#C000-#FFFF) 1 - окно номер 2 (#4000-#7FFF)
NOROM	•					•					Отключение блокировки порта #7FFD и включение ПЗУ, помещая на его место ОЗУ из SEG 00
СРМ	•				•						1 - блокирует работу контроллера из ПЗУ TR-DOS и включает порты на доступ из ОЗУ (при ROM14=0); При ROM14=1 - мод. доступ к расширенной периферии
SCR	•			•							1 - проецирует дополнительный экран (сегмент 06) в карту памяти процессора на место сегмента 02, при этом бит D3 #7FFD должен быть равен "1"
DS80	•		•								1 - включает видеорежим расширенного экрана (с переключением тактового генератора) 0 = SEG 05 spectrum bitmap, 1 = profi bitmap SEG 06 & SEG 3a & SEG 04 & SEG 38

Системный порт #FE

Порт #FE является стандартным встроенным портом ZX Spectrum, который отвечает за ввод с клавиатуры и магнитофона, а при чтении содержит байт бордюра и звук с магнитофонным выходом.

Дешифрация (CS): ~IORQ=0 и A(0)=0

Условия записи в порт: CS по фронту ~WR

Условия чтения порта: CS и ~RD=0

			Би	ты	да	HHE	οIX				
Группа	R	W	7	6	5	4	3	2	1	0	Описание
BORDER										•	Цвет бордюра
									•		
								•			
TAPEOUT		•					•				Магнитофонный выход
SPEAKER						•					Бипер
BX0		•	•								Младший бит синего компонента палитры 3:3:3
KB(5:0)	•									•	Данные от выбранного
	•								•		полуряда клавиатуры + 5й бит расширенной клавиатуры profi
	•							•			расширенной клавиатуры ргон
	•						•				
	•					•					
					•						
TAPEIN	•			•							Сигнал с магнитофона
PAL_DETECT			•								Сигнал нужен для определения софтом, реализована ли палитра в железе, а также типа палитры 3:3:2 (256 цветов) или 3:3:3 (512 цветов).

Бит PAL_DETECT имеет логику GX0 XOR BX0 - записывая значения в GX0 и BX0, и сравнивая с ожидаемым результатом в тесте палитры, можно определить как наличие самой палитры, так и её тип (3:3:2 или 3:3:3).

Порт палитры #7Е

Порт #7E служит для установки значения цвета ячейки палитры с адресом BORDER(3:0). Само значение, записываемое в палитру определяется инверсным текущим значением ША по адресу A(15:8) + #FE(7).

Дешифрация (CS): ~IORQ=0 и A(0)=0 и A(7)=0

Условия записи в порт: CS по фронту ~WR и DS80=1

				E	5ит	ЫД	цан	НЫ	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
GX0										•	Биты 2:0 зеленого цвета
GX1									•		палитры
GX2								•			
RX0							•				Биты 2:0 красного цвета
RX1						•					палитры
RX2					•						
BX1				•							Биты 2:1 синего цвета палитры
BX2			•								

Палитра 3:3:3 имеет 16 ячеек, в каждой из которых может быть установлен один из 512 цветов.

9-й бит палитры 3:3:3 (младший бит синего компонента) берется из порта #FE (бит 7).

При чтении из палитры, видеоконтроллер использует адрес ячейки палитры, который составляется из компонентов IGRB.

При сбросе компьютера палитра автоматически устанавливается (на уровне железа) в дефолтные цвета спектрумовской палитры.

Порт конфигурации #008В

Порт конфигурации #008В является дополнительным расширенным портом конфигурации. Используется в системе PQ-DOS.

Дешифрация (CS): A(15:0)=#008B и ~IORQ=0 и ~M1=1 и ((CPM=1 и ROM14=1) или (DOS=1 и ROM14=0))

Условия записи в порт: CS и ~WR=0

				E	5ит	ЫД	цан	ны	K		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
ROM0										•	ROM64Kb PAGE bit 0 Change
ROM1									•		ROM64Kb PAGE bit 1 Change
ROM2								•			ROM64Kb PAGE bit 2 Change
ROM3	•	-					•				ROM64Kb PAGE bit 3 Change
ROM4	-	-				•					ROM64Kb PAGE bit 4 Change
ROM5	-	-			•						ROM64Kb PAGE bit 5 Change
ONROM				•							Принудительная активация сигнала DOS
UNLOCK_128			•								Разблокировка ПЗУ 128 для DOS

Порт конфигурации #018В

Порт конфигурации #018В является дополнительным расширенным портом конфигурации. Используется в системе PQ-DOS.

Дешифрация (CS): A(15:0)=#018B и ~IORQ=0 и ~M1=1 и ((CPM=1 и ROM14=1) или (DOS=1 и ROM14=0))

Условия записи в порт: CS и ~WR=0

				E	БИТ	ЫД	цан	ны	K		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
RAM0										•	RAM PAGE bit 0
RAM1									•		RAM PAGE bit 1
RAM2	•	•						•			RAM PAGE bit 2
RAM3							•				RAM PAGE bit 3
RAM4						•					RAM PAGE bit 4
RAM5		•			•						RAM PAGE bit 5
RAM6				•							RAM PAGE bit 6
RAM7			•								RAM PAGE bit 7

Порт конфигурации #028В

Порт конфигурации #028В является дополнительным расширенным портом конфигурации. Используется для форсированных включений и выключений аппаратных переключателей режимов системы.

Дешифрация (CS): A(15:0)=#028B и ~IORQ=0 и ~M1=1 и ((CPM=1 и ROM14=1) или (DOS=1 и ROM14=0))

Условия записи в порт: CS и ~WR=0

				E	Бит	ЫД	цан	ны	(
Группа	R	w	7	6	5	4	3	2	1	0	Описание
HDD_OFF		-								•	Отключение HDD
HDD_TYPE									•		Режим HDD Profi / Nemo
TURBOFDC_OFF		-						•			Отключение Turbo FDC
FDC_SWAP	•						•				Меняет местами буквы дисководов
SOUND_OFF						•					Отключение звука
TURBO_MODE					•						Турбо режим
				•							
LOCK_DFFD			•								Блокировка порта DFFD

Устройства хранения данных

SD карта

Доступ к SD карте осуществляется по стандарту Z-controller через порты #57, #77. Однако, так как SD карта сидит на одной шине SPI вместе с конфигурационной SPI флешкой, есть дополнительное условие доступа к этим портам — бит 3 порта #С7 должен быть 0.

Порт данных SD-карты #57

Порт #57 служит для обмена данными с SD картой.

Дешифрация (CS): ~IORQ=0 и ~M1=1 и A(7:0)=#57

Условия записи в порт: CS и #C7(3)=0

				E	Бит	ЫД	цан	НЫ	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
SD_DATA		•								•	Запись: отсылка байта в
		•							•		SD-карту по SPI, одновременно принятый байт можно в
		•						•			дальнейшем считать из этого
							•				же порта.
						•					Чтение: считать ранее
		•			•						принятый байт, отослать #FF в карту. Вновь принятый байт
				•							доступен при повторном
			•								чтении.

Порт управления SD-карты #77

Порт #77 служит для чтения и записи статусов при обмене данными с SD картой.

Дешифрация (CS): ~IORQ=0 и ~M1=1 и A(7:0)=77

Условия записи в порт: CS и #C7(3)=0

				E	БИТ	ЫД	цан	ны	K		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
SD_DETECT										0	0=SD-карта установлена
SD_RO									0		0=SD-карта в режиме RW
SD_POWER										•	0 – питание выключено, 1 – вкл.
SD_CS									•		Управление сигналом CS карты

SPI-flash

Доступ к SPI-flash осуществляется с помощью серии портов: #C7, #87, #A7, #E7, #67. Так как устройство SPI-flash является последовательным, для эмуляции параллельного режима работы с ней пришлось изобретать велосипед с пачкой портов для задания адресов страницы, байта в странице, байта с данными, а также конфигурационного порта для управления разными режимами работы и чтением статусов выполнения асинхронных операций от флешки.

Порт управления SPI-flash #C7

Порт #C7 служит для управления чтением, записью и стиранием SPI флеш по псевдо-параллельному интерфейсу.

Дешифрация (CS): ~IORQ=0 и A(7:0)=#C7 и CPM=1 и ROM14=1 и DS80=1

Условия чтения из порта: CS и ~RD=0

				E	Бит	ЫД	цан	ны	X		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
FLASH_BUSY										•	1 – устройство занято, 0- свободно
FLASH_READY									•		1 – данные готовы, 0 – не готовы
IS_FLASH_NOT_S D	•						•				1 – flash, 0 - sd
FW_UPDATE_MOD E	•					•					1- разрешены операции с чипом
FLASH_RD		•								•	1 – инициирование цикла чтения
FLASH_WR									•		1 – инициирование цикла записи
IS_FLASH_NOT_S D		•					•				1 – режим flash, 0 – режим sd
FW_UPDATE_MOD E		•				•					1- разрешены операции с чипом
FLASH_ER		•			•						1 – инициирование цикла очистки блока размером 64к

Порт младшего байта адреса страницы SPI-flash #87

Порт #87 служит для задания младшего байта адреса страницы для операций чтения-записи-стирания SPI-flash.

Дешифрация (CS): ~IORQ=0 и A(7:0)=#87 и CPM=1 и ROM14=1 и DS80=1 и #C7(5)=1

								ны	X		
Группа	руппа R W				5	4	3	2	1	0	Описание
FLASH_PAGE_LO		•								•	Младший байт адреса выбора
W		•							•		страницы SPI-flash
		•						•			
		•					•				
		•				•					
		•			•						
		•		•							
			•								

Порт старшего байта адреса страницы SPI-flash #A7

Порт #A7 служит для задания старшего байта адреса страницы для операций чтения-записи-стирания SPI-flash.

Дешифрация (CS): ~IORQ=0 и A(7:0)=#A7 и CPM=1 и ROM14=1 и DS80=1 и #C7(5)=1

				E	Бит	ЫД	цан	ны	K		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
FLASH_PAGE_HIG										•	Старший байт адреса выбора
H									•		страницы SPI-flash
								•			
							•				
						•					
					•						
				•							
			•								

Порт адреса байта в странице SPI-flash #67

Порт #67 служит для задания адреса байта в установленной странице для операций чтения-записи-стирания SPI-flash.

Дешифрация (CS): ~IORQ=0 и A(7:0)=#67 и CPM=1 и ROM14=1 и DS80=1 и #C7(5)=1

				E	Бит	ЫД	цан	ны	K		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
FLASH_ADDR		•								•	Адреса байта в странице
		•							•		SPI-flash
		-						•			
		•					•				
		•				•					
		•			•						
				•							
		•	•								

Порт байта данных в странице SPI-flash #E7

Порт #E7 служит для чтения-записи байта данных в установленной странице SPI-flash.

Дешифрация (CS): ~IORQ=0 и A(7:0)=#E7 и CPM=1 и ROM14=1 и DS80=1 и

#C7(5)=1

Условия чтения из порта: CS и ~RD=0

				E	Бит	ЫД	цан	ны	K		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
FLASH_DATA										•	Байт данных в странице
									•		SPI-flash
								•			
	•						•				
						•					
					•						
				•							
			•								

Структура SPI-flash памяти

0×000000×0		0x059D8B			0x0FFFF
Конфі	игурация FF 368011б	PGA			
0x100000	0×110000	0×120000	0x130000	0×1F0000	0x1FFFFF
ROM0 64кБ	ROM1 64кБ	ROM2 64кБ	ROM3 64кБ	 CFG 16	

Конфигурационный битстрим начинается с адреса 0x000000 и имеет длину 368011 байт для Altera Cyclone IV EP4CE6, EP4CE10, а также для Altera Cyclone III EP3C5, EP3C10.

Образы 4-х банков ПЗУ, которые копируются в ОЗУ при старте платы, начинаются с адреса 0x100000. Каждый ромбанк имеет длину 64кБ.

По адресу 0x1F0000 находится байт конфигурации, в котором содержится информация о ревизии платы, тип установленного на плате ЦАП и дополнительные фичи платы. Байт конфигурации доступен внутри дизайна для внутренних нужд и никак не проецируется наружу в виде отдельных портов для чтения. Байт конфигурации прошивается в SPI-flash на этапе сборки платы и далее не меняется.

Байт конфигурации SPI-flash

				E	5ит	ЫД	цан	ны	x		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
DAC TYPE										•	Тип ЦАП на плате: 0 - TDA1543 1 - TDA1543A
									0		зарезервировано
TAPE IN								•			Наличие магнитофонного входа на плате: 0 - нет входа 1 - имеется вход
							0				зарезервировано
BOARD TYPE						•					Тип платы: 0 - ревизия Е, Ё 1 - ревизия Ї (только для 6МБ версии)
RAM TYPE					•						Количество ОЗУ: 0 - 2МБ 1 - 6МБ
				0							зарезервировано
	•		0								зарезервировано

Пример версий плат на основании данных в битах 5-2:

- 0000: ревизия A,B,C,D

- 0001: ревизия DS

- 1001: ревизия E (Ë)

1101: ревизия ї

Валидные значения байта конфигурации для текущей линейки плат:

- 0x00 - ревизия A с TDA1543

- 0x01 - ревизия A с TDA1543A

- 0x04 - ревизия DS с TDA1543

- 0x05 - ревизия DS с TDA1543A

- 0x24 - ревизия E с TDA1543

- 0x25 - ревизия E с TDA1543A

- 0x34 - ревизия Ï с TDA1543

- 0x35 - ревизия Ï с TDA1543A

Порты IDE HDD (CF)

Порты для доступа к CF-карте реализованы по стандарту Профи через серию портов **#xxEB**, **#xxCB**, **#xxAB**. XX в данном случае — определяется состоянием старшего байта ША (значимыми являются адресные линии A(10:8), которые напрямую подключены к CF-карте на ее адресные линии выбора регистра A(2:0)).

Дешифрация (CS): A(7:0) и ~IORQ=0 и ((CPM=1 и ROM14=1) или (DOS=1 и ROM14=0))

Порт	R	w	Назначение
#06AB			Системный регистр управления IDE
#01CB			Регистр ошибок
#02CB	•		Регистр счетчика секторов
#03CB	•		Регистр номера сектора
#04CB	•		Регистр младшего байта номера цилиндра
#05CB			Регистр старшего байта номера цилиндра
#06CB	•		Регистр номера головы
#07CB			Регистр состояния
#01EB			Регистр свойств
#02EB			Регистр счетчика секторов
#03EB			Регистр номера сектора
#04EB			Регистр младшего байта номер цилиндра
#05EB			Регистр старшего байта номера цилиндра
#06EB			Регистр номера головы
#07EB			Регистр команд
#00CB			Регистр данных младший байт
#00EB			Регистр данных младший байт

Порты FDD

Порты FDD доступны как в короткой адресации, так и в длинной. Так называемый стандартный и расширенный режимы периферии. Режимы выбираются комбинацией битов ROM14 (7FFD (4)) и CPM (DFFD(5)). Значения стандартных портов, при ROM14=0 & CPM=0, описываются без скобок. Значения расширенных портов, при ROM14=1 & CPM=1 и ROM14=0 & CPM=1 соответственно, описываются в скобках.

Порт	R	W	Назначение
#1F (#83) (#1F)	•	•	Регистр команд/состояния ВГ93
#3F (#A3) (#3F)	•	•	Регистр дорожки ВГ93
#5F (#C3) (#5F)	•	•	Регистр сектора ВГ93
#7F (#E3) (#7F)	•		Регистр данных ВГ93
#FF (#3F) (#BF)			Системный регистр ВГ93 (RQ93)

Системный регистр ВГ93 (RQ93)

Группа	R	w	7	7 6 5 4 3 2 1 0					1	0	Описание
	•									•	
									•		
								•			
							•				
						•					
					•						
DRQ	•			•							Состояние сигнала DRQ от BГ93
INTRQ	•		•								Состояние сигнала INTRQ от BГ93
DRIVE (0)										•	Выбор дисковода bit 0
DRIVE (1)		•							•		Выбор дисковода bit 1
RESET								•			0 - сброс ВГ93
HRDY		•					•				1 – HRDY 0 - эмуляция сигнала IP
SIDE		•				•					Выбор стороны дисковода 0 - 1 сторона 1 - 0 сторона
~DDEN					•						0-двойная плотность записи (MFM) 1 - одинарная плотность записи (FM)

Устройства ввода

Порт Kempston Joystick #1F

Порт Kempston Joystick обслуживает как стандартный 5-кнопочный механический манипулятор типа Atari, так и SEGA Joypad (при этом задействованы все 8 бит порта).

Дешифрация (CS): ~IORQ=0 и ~M1=1 и A(7:0)=#1F и CPM=0 и DOS_ACT=0

			E	Бит	ЫД	цан	ны	X			
Группа	R	W	7	6	5	4 3 2 1		1	0	Описание	
JOY_RIGHT										•	Кнопка вправо
JOY_LEFT									•		Кнопка влево
JOY_DOWN								•			Кнопка вверх
JOY_UP	-						•				Кнопка вниз
JOY_FIRE						•					Кнопка огонь
JOY_FIRE2					•						Дополнительный огонь SEGA
JOY_A				•							Кнопка A SEGA
JOY_B			•								Кнопка В SEGA

Порты Kempston Mouse

Порты Kempston Mouse предназначены для поддержки манипуляторов типа «мышь». Порты представлены набором 3х портов #FADF, FBDF, #FFDF. Опросом PS/2 мыши занимается контроллер Atmega328, по внутренней шине AVR-FPGA приходят значения координат X,Y, Z и состояния кнопок.

Порт кнопок мыши и оси Z (колесика) #FADF

Дешифрация (CS): ~IORQ=0 и A(15:0)=#FADF и CPM=0

				E	5ит	ЫД	цан	НЫ	x		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
MOUSE_BTN_R										•	Правая кнопка мыши
MOUSE_BTN_L	•								•		Левая кнопка мыши
MOUSE_BTN_M	-		•				•			Средняя кнопка мыши	
							1				Четверная кнопка мыши
MOUSE_Z						•					Ось Z (колесико)
					•						
	-										
			•								

Порт оси X мыши #FBDF

Дешифрация (CS): ~IORQ=0 и A(15:0)=#FBDF и CPM=0

				E	Бит	ЫД	цан	ны	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
MOUSE_X	•									•	Байт данных с координатами по
									•		оси Х мыши
	•							•			
	•						•				
	•					•					
	•				•						
	•			•							
	-		•								

Порт оси Y мыши #FFDF

Дешифрация (CS): ~IORQ=0 и A(15:0)=#FFDF и CPM=0

				E	Бит	ЫД	цан	ны	K							
Группа	R	W	7	6	5	4	3	2	1	0	Описание					
MOUSE_Y	•									•	Байт данных с координатами по					
	•								•		оси Ү мыши					
	•							•								
	•						•									
	•					•										
					•											
				•												
	•		•													

Порты Serial Mouse

RS232 мышь эмулируется в упрощенном режиме - эмулируется часть последовательного интерфейса (микросхемы K580BB51) — порт регистра команд (запись) и порт регистра статуса (чтение) #B3 и порт данных #93. Также для правильной работы последовательной мыши используется аппаратное прерывание.

Порт регистра команд / статуса RS232 #B3

Дешифрация (CS): ~IORQ=0 и A(7:0)=#B3 и ((CPM=0 и ROM14=1) или (DOS=1 и ROM14=0))

Условия чтения из порта: CS и ~RD=0

			_								1
				E	Бит	ЫД	цан	ны	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
TX_EN		•								•	1 – разрешение передачи
DTR		•							•		1 – готовность передачи
RX_E		•						•			1– разрешение приема
SBRK		•					•				1 – конец передачи (SBRK), 0 – нормальная работа передачи
ER		•				•					1 – установка статуса ошибок в исходное состояние
RTS		•			•						1 – передача разрешена
IR		•		•							1 – сброс в исходное состояние
EH		•	•								1 – режим поиска синхро символов
TX_RDY										•	1 – готовность передатчика
RX_RDY	•								•		1 – готовность приемника
TX_E								•			1 – конец передачи
PE	•						•				1 – ошибка четности
OE	•					•					1 – переполнение буфера
FE					•						1 – ошибка стоп-бита
SYNDET				•							1 – синхросимвол найден
DSR	•		•								1 – готовность терминала

Порт данных RS232 #93

В порт данных RS232 попадают данные в формате мыши Microsoft Mouse в виде последовательности из 3х байт. Координаты по оси X и Y являются знаковыми, от -128 до +127. Первый байт в последовательности маркируется 6-м битом. 7-й бит не используется. Идентификатор мыши не шлется.

В режиме записи в порт есть возможность установить флаг включения аппаратного прерывания.

		E	Бит	ЫД	цан	ны	X	
#	7	6	5	4	3	2	1	0
1	х	1	L	R	Y7	Y6	X7	X6
2	х	0	X5	X4	Х3	X2	X1	X0
3	Х	0	Y5	Y4	Υ3	Y2	Y1	Y0

Дешифрация (CS): ~IORQ=0 и A(7:0)=#93 и ((CPM=0 и ROM14=1) или (DOS=1 и

ROM14=0))

Условия чтения из порта: CS и ~RD=0

				E	Бит	ЫД	цан	ны	K		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
MS_DATA	-									•	Байт данных от мыши
									•		
	•							•			
							•				
						•					
					•						
				•							
			•								
INT_EN										•	1 - Включение аппаратного прерывания RS232

Аппаратное прерывание RS232

В компьютере PROFI 2+, в связи с добавлением новой аппаратуры, система прерываний была расширена. В режиме IM0, IM2 программист должен учитывать следующие особенности:

кроме прерывания от кадровой синхронизации (50 Герц) должна осуществляться обработка прерываний от коммуникационного порта (RST20H - прием, RST28H - передача) и от аппаратных часов (RST30H), в системе обработка этих прерываний осуществляется драйверами коммуникационного порта и аппаратных часов;

Соответственно, если включен (=1) бит 0 порта #93, то при наступлении следующих событий:

- RX_RDY=1 и RX_EN=1
- TX_RDY=1 и TX_E=0 и TX_EN=1

Формируются RST20H (11100111) или RST28H (11101111) в цикле подтверждения прерывания.

Расширенная периферия

Часы реального времени + NVRAM

На реальном железе часы реального времени реализованы на микросхеме mc146818, которая имеет параллельный интерфейс. В компьютере karabas-pro используется эмуляция данной микросхемы через связку чипа DS1307 по i2c шине с AVR, а далее через связку AVR-FPGA. Некоторые моменты упрощены или отсутствуют, некоторые наоборот, расширены. Например, вместо 56 байт NVRAM доступно 240 байт.

Параллельный безвейтовый доступ осуществляется через 2 порта — порт адресного регистра (AS) и порт регистра данных (DS). AS доступен по портам #FF и #BF, а DS доступен по портам #DF, #9F. Порты доступны только в режиме расширенной периферии profi.

Порт AS RTC #FF (#BF)

Дешифрация (CS): ~IORQ=0 и ~M1=1 и (A(7:0)=#FF или A(7:0)=#BF) и ((CPM=1 и ROM14=1) или (DOS=1 и ROM14=0))

				E	Бит	ЫД	цан	ны	X						
Группа	R	W	7	6	5	4	3	2	1	0	Описание				
RTC_AS										•	Регистр адреса микросхемы				
									•		RTC				
								•							
							•								
						•									
					•										
				•											
			•												

Порт DS RTC #DF (#9F)

Порт DS доступен как на чтение, так и на запись.

Дешифрация (CS): ~IORQ=0 и ~M1=1 и (A(7:0)=#DF или A(7:0)=#9F) и ((CPM=1 и

ROM14=1) или (DOS=1 и ROM14=0))

Условия записи в порт: CS и ~WR=0

				E	Бит	ЫД	цан	ны	K		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
RTC_DS										•	Регистр данных микросхемы
									•		RTC
								•			
	•						•				
	•					•					
	•				•						
				•							
			•								

Порты ZX UNO

Для реализации UART по стандарту ZX UNO для доступа к набортному модулю ESP8266 на скорости 115200 реализованы такие порты ZX UNO: #FC3B — регистр адреса, #FD3B — регистр данных. Дальнейшее общение с UART происходит через внутренние регистры порта #FC3B.

Порт регистра адреса ZX UNO #FC3B

Регистр адреса #FC3B служит для установки и чтения адреса одного из 256 внутренних регистров. Для UART реализованы только 2 таких регистра: #C6 — регистр данных UART, #C7 — регистр статистики UART. В платах, на которых установлен более емкий чип Altera EP4CE10, например, доступен второй UART, который выведен на гребенку. Доступ к UART2 осуществляется через внутренние порты #C8, #C9.

Дешифрация (CS): ~IORQ=0 и A(15:0)=#FC3B

Условия записи в порт: CS и ~WR=0

				E	Бит	ЫД	цан	НЫ	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
UNO_ADDR_REG										•	Адрес внутреннего регистра ZX
									•		UNO, с которым происходит работа
								•			padora
							•				
						•					
					•						
				•							
			•								

Порт регистра данных ZX UNO #FD3B

Регистр адреса #FD3B служит для установки и чтения байта данных из предустановленного регистра.

Дешифрация (CS): ~IORQ=0 и A(15:0)=#FD3B

Условия записи в порт: CS и ~WR=0

Условия чтения из порта: CS и ~RD=0

				E	Тит	ЫД	цан	ны	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
UNO_DATA_REG											Байт данных внутреннего
									•		регистра ZX UNO
								•			
							•				
						•					
					•						
				•							
			•								

Внутренний регистр данных UART #C6 (#C8 для UART2)

При чтении — является аккумулятором, содержит принятый по UART байт данных.

При записи в регистр — является буфером для отправки данных через UART.

				E	Бит	ЫД	цан	ны	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
UART_DATA_REG										•	Байт данных UART
									•		
								•			
							•				
						•					
					•						
				•							
			•								

Внутренний регистр состояния UART #C7 (#C9 для UART2)

Содержит флаги состояния модуля UART. Доступен только на чтение.

				E	Бит	ЫД	цан	ны	K		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
RX_RECV										•	Флаг наличия данных для чтения
TX_BUSY	•								•		Флаг занятости UART при передаче данных
								0			
							0				
						0					
					0						
				0							
			0								

Звуковая подсистема

Порты Soundrive (Covox)

Помимо стандартного порта Covox #FB, в компьютере Karabas-Pro реализованы также порты Soundrive в виде набора однотипных портов #0F, #1F, #3F, #4F, #5F, через которые с помощью ЦАП выводится многоканальный стерео-звук.

Микширование каналов осуществляется таким образом:

- левый: #0F, #1F, #3F, #FB

- правый: #4F, #5F, #FB

Порт Covox #FB

Дешифрация (CS): DOS=0 и CPM=0 и ~IORQ=0 и A(7:0)=#FB

Запись в порт: CS и ~WR=0

				E	Бит	ЫД	цан	НЫ	K		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
COVOX_DATA		•								•	Байт звуковых данных для
		•							•		Covox
								•			
		•					•				
						•					
					•						
		•		•							
		•	•								

Порты Soundrive #0F, #1F, #3F, #4F, #5F

Дешифрация (CS): DOS=0 и CPM=0 и ~IORQ=0 и A(7:0)=#0F (#1F/#3F/#4F/#5F)

Запись в порт: CS и ~WR=0

				E	Бит	ЫД	цан	ны	X		
Группа	R	W	7	6	5	4	3	2	1	0	Описание
SNDRIVE_DATA										•	Байт звуковых данных для
		•							•		порта Soundrive
								•			
							•				
						•					
		•			•						
		•		•							
			•								

Порты TurboSound

Порты TurboSound реализованы стандартными портами **#FFFD** для задания адреса регистра AY и портом **#BFFD** — для задания данных, посылаемых в регистр AY. Выбор одного из двух чипов TurboSound осуществляется путем обращения к одному из несуществующих регистров AY: для выбора 0 чипа используется регистр **#FF**, для выбора 1-го чипа используется регистр **#FE**.

Порт регистра адреса AY #FFFD

Дешифрация (CS): ~IORQ=0 и ~M1=1 и A(15)=1 и A(1)=0

Запись в порт: CS и ~WR=0

Чтение из порта: CS и ~RD=0

			Биты данных						X		
Группа	R	w	7	6	5	4	3	2	1	0	Описание
AY_REG		•								•	Установка адреса регистра
		•							•		звукового чипа АҮ
								•			
							•				
		•				•					
		•			•						
		•		•							
		•	•								
AY_REG										•	Чтение содержимого регистра
	•								•		AY
	•							•			
	•						•				
	•					•					
					•						
				•							
			•								

Порт регистра данных AY #BFFD

Порт доступен только на запись байта данных в выбранный регистр текущего чипа TurboSound, заданный через порт #FFFD.

Дешифрация (CS): ~IORQ=0 и ~M1=1 и A(14)=0 и A(1)=0

Запись в порт: CS и ~WR=0

			Биты данных								
Группа	R	w	7	6	5	4	3	2	1	0	Описание
AY_DATA										•	Пересылка данных в выбранный регистр звукового чипа АҮ
									•		
								•			
							•				
						•					
					•						
				•							
			•								

Порт SAA1099 #FF

Доступ к звуковому чипу SAA1099 осуществляется через порт #FF, только в режиме записи. Куда пишутся данные, в регистр адреса или в регистр данных обусловлено битом ША A(8). При A(8)=1 — в чип пишется адрес, при A(8)=0 — в чип пишутся данные.

Дешифрация (CS): ~IORQ=0 и A(7:0)=#FF и DOS=0

Запись в порт: CS и ~WR=0

			Биты данных									
Группа	R	W	7	6	5	4	3	2	1	0	Описание	
SAA_DATA										•	Данные для записи в порт	
									•		SAA1099	
								•				
							•					
						•						
					•							
				•								
			•									