

(a)
$$y + 4y = 0$$

Q1V. Let $f_1 = x$, $f_2 = x^4$, $f_3 = 1 + x$, $f_4 = 1$, then Wronskian $W(f_1, f_2, f_3, f_4) = (c) 3 - 4x$

Show that the functions: $(1, \sin x, \cos x)$ are linearly independent.

$$K = \begin{vmatrix} \int Sin x & Cop x \\ O & Sin x & -Sin x \end{vmatrix} = \int \left(-Cop x - Sin x \right) = -\int \left(Sin x + Cop x \right)$$

$$= -1 \neq 0$$

$$\angle \cdot I$$

Abel's Formula to find Wronskian:

Let us consider a 2nd order homogeneous LDE:

$$a_0y'' + a_1y' + a_2y = 0 (1)$$

Where $a_0 \neq 0$, a_1 , a_2 are continuous on an interval I and y_1 , y_2 be its linearly independent solutions, then Wronskian is given as:

Wronskian,
$$W = ce^{-\int \left(\frac{a_1}{a_0}\right) dx}$$
 where c is a constant.

find Wronskian for:
$$y'' - 4y' + 4y = 0$$

y, y, an L-I

W= C. C

$$q_0 = 1$$
, $q_1 = -4$ $q_2 = 4$.
 $-\int -\frac{4}{7} dx$ $\int 4 dx$ $\int 4 dx$ $\int 4 dx$ $\int C \cdot e = C \cdot e$

Using Abel's formula, find Wronskian for: y'' + y' + 4y = 0

(A)
$$W = ce^{4x}$$

(A)
$$W = ce^{4x}$$

$$W = ce^{-x}$$

$$W = ce^{x}$$

$$W = ce^{x}$$

(C)
$$W = ce^x$$

(D)
$$W = ce^{2x}$$

$$y^{\prime\prime} + a^2 y = 0, a \neq 0.$$

$$q_0=1$$
, $q_1=0$ $q_2=q^2$
 $-\int \frac{1}{12} dx$
 $k=0$ $k=0$ $k=0$

Findamental solution or Basis

Solution and L. I

Show that $(1, x^2)$ form a set of fundamental solutions (basis) of homogeneous equation: $x^2y'' - xy' = 0$.

24"-x4=0

$$\chi'(0) - \chi(0) = 0$$

 $y=1 \ y=0 \ y=0$ $y=x^{2}$ (2)-x(2x)=0 } satisfied $y=x^{2}$ (2)-x(2x)=0 } (2)-x(2x)=0 (2)-x(2x)=

$$H = \begin{vmatrix} 1 & \chi^{2} \\ 0 & 2\chi \end{vmatrix} = 2\chi - 0 = 2\chi \neq 0$$

$$2x-0 = 2x \neq 0$$

SI, 23 Fundamental sof of Basis

19th Feb 2021

Syllabous Unit -I

CA-1

19th Feb 2021 Syllabous Unit - I

Saturday

MCO 30MCO

L. NO Negative Markey

oas

A → 19th B → 20th