Exemples pratiques de recherche du point de fonctionnement

A.Pompe refoulant sur deux trançons de diametres differents

Perte de charge totale dans les tronçons

Tronçon 1 : Aspiration – Nœud N

$$\Delta H_1 = K_1 \cdot \mathbf{Q}^2$$

Tronçon 2 : Nœud N - Réservoir

$$\Delta H_2 = K_2 \cdot Q^2$$

La pompe doit vaincre

$$h_g + \Delta H_1 + \Delta H_2$$

D'où
$$H = h_g + \Delta H_1 + \Delta H_2$$

Point P (Q_p, H_p) : point de fonctionnement de l'ensemble

B.Pompe refoulant sur deux trançons en parallèle (cas simple : pas de trançon commun, circuit d'aspiration négligé)

Au nœud N, la charge est la même pour les deux tronçons

$$Hg_1 + \Delta H_1 = Hg_2 + \Delta H_2$$

Point de fonctionnement $P : Q_p = Q_1 + Q_2$

C.Systeme série- parallèle

Démarche à suivre :

- Pour les tronçons N-R1 et N-R2 (en parallèle) : sommation des débits partiels pour une même charge : Courbe C1
- Pour un même débit : sommation des charges de la courbe C1 et la charge H_{g_N} + ΔH_0 (aspiration-Nœud N) : Courbe C2

 ΔH_0 : Pertes de charge linéaires singulières entre l'aspiration et le nœud de jonction N

D.Cas d'un plan d'aspiration variable

 δ : Rabattement de la nappe \longrightarrow «Perte de charge supplémentaire » $\delta = \delta({\bf Q})$

Caractéristique résistante du réseau

$$H_a + \delta + \Delta H$$

