

Theoretische Grundlagen der Informatik

Tutorium 1

Über mich

Michael Fürst mail@michaelfuerst.de Mittwoch 15:45, SR -109

Organisatorisches – Zum Übungsbetrieb

- Abgabe: Handschriftlich in Zweiergruppen
- Schein:
 - Klausurbonus (1 Notenschritt)
 - Ab 50% der erreichbaren Punkte
- Tutoriumsmaterial auf GitHub
 - http://tinyurl.com/tgi1415
 - E-Mail-Liste über Ilias

Organisatorisches – Zum Tutorium

- Stoff soll wiederholt werden
- Dabei Fokus auf Übungsbetrieb
- Fragen/Vorschläge/Anmerkungen willkommen!
- Credits to: Joachim Priesner, Sebastian Ullrich, Max Wagner

Kurze Wiederholung: Formale Sprachen

Eine *formale Sprache L* ist eine Teilmenge aller Wörter über einem endlichen Alphabet Σ . Also $L \subseteq \Sigma^*$.

Beispiele:

- $\Sigma = \{0, 1\}, L = \{w \mid 11z \mid w, z \in \Sigma^*\}$
 - Die Menge aller Wörter über {0, 1}*, die "11" enthalten.

Im Allgemeinen kann man formale Sprachen sehr frei angeben:

- lacksquare $\Sigma = \{0, 1\}, L = \{w \in \Sigma^* \mid w \text{ hat eine gerade Anzahl an 1en} \}$
 - Die Menge aller Wörter über {0, 1}*, die eine gerade Anzahl an Einsen enthalten.

Kurze Wiederholung: Reguläre Sprachen

Eine Sprache $L \subseteq \Sigma^*$ heißt regulär, wenn für sie einer der folgenden Punkte gilt:

- Verankerung
 - $L = \{a\}$ mit $a \in \Sigma^*$ oder
 - $L = \hat{\varnothing}$
- Induktion: Seien *L*₁, *L*₂ reguläre Sprachen.
 - $L = L_1 \cdot L_2$ oder
 - $L = L_1 \cup L_2$ oder
 - $L = L_1^*$

Beispiel ($\Sigma = \{a, b\}$):

- $L_1 = \{ w \in \Sigma^* \mid w \text{ besteht aus einer geraden Anzahl } a \}$
- $L_2 = \{ w \in \Sigma^* \mid w \text{ enthält gleich viele } a \text{ und } b \}$

L₁ ist regulär, L₂ nicht.

Deterministische endliche Automaten

Ein deterministischer endlicher Automat *M* ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- Σ: endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times \Sigma \to Q$
- s: Startzustand ∈ Q
- **F**: Endzustandsmenge $\subseteq Q$

Nichtdeterministische endliche Automaten

Ein nichtdeterministischer endlicher Automat *M* ist ein 5-Tupel

$$M = (Q, \Sigma, \delta, s, F).$$

- Q: endliche Zustandsmenge
- Σ: endliches Alphabet
- δ : Zustandsübergangsfunktion $Q \times (\Sigma \cup \varepsilon) \rightarrow \mathcal{P}(Q)$
- s: Startzustand ∈ Q
- F: Endzustandsmenge $\subseteq Q$

Damit der NEA ein Wort akzeptiert, muss es *einen* akzeptierenden Weg geben.

Tutoriumsmaterial von Michael Fuerst

NEA: Beispiel

Bei Eingabe von b im Zustand q_1 gibt es mehrere Möglichkeiten.

(siehe Berechnungsbaum an der Tafel).

NEA: Aufgabe

Welche Sprache akzeptiert der nichtdeterministische endliche Automat zu dem folgenden Zustandsgraphen?

NEA: Aufgabe

Über dem Alphabet $\Sigma = \{a, b\}$ sei der reguläre Ausdruck

$$r := (a \cup (ab(b)^*ba))^*$$

gegeben.

Gib einen NEA an, der L(r) erkennt. Begründe kurz die Korrektheit deines Automaten, ein formaler Korrektheitsbeweis ist jedoch nicht erforderlich.

(Hinweis: Es gibt einen NEA mit 3 Zuständen.)

Potenzmengenkonstruktion

Zu jedem nichtdeterministischen endlichen Automaten existiert ein äquivalenter deterministischer endlicher Automat.

In eine Tabelle werden die Automatenzustände und ihre Folgezustände bei jeweiliger Eingabe eingetragen.

	у	X
$-\{q_0\}$	$\{q_1\}$	Ø
$\{q_1\}$	$\{q_1\}$	$\{q_1, q_2\}$

Potenzmengenkonstruktion

Ein neuer Zustand entsteht, wenn man von einem alten Zustand durch eine Eingabe in mehrere Zustände kommt.

Potenzmengenkonstruktion

Die Einträge der ersten Spalte sind die neuen Zustände. Alle Mengen, die einen Endzustand enthalten, sind wiederum im neuen Automaten Endzustände.

Eliminierung von ε -Übergängen

Satz 2.13 (Skript)

- Zu jedem nichtdeterministischen endlichen Automaten mit ε -Übergängen gibt es einen äquivalenten nichtdeterministischen endlichen Automaten ohne ε -Übergänge, der nicht mehr Zustände hat.
- äquivalent = akzeptiert dieselbe Sprache.

Erinnerung

Der ε -Abschluss E(q) eines Zustandes q ist definiert als die Menge aller Zustände, die von q aus durch lediglich ε -Übergänge erreichbar sind (q selbst zählt auch dazu).

Eliminierung von ε -Übergängen

Konstruktion

Zu einem NEA $A:=(Q,\Sigma,\delta,s,F)$ mit ε -Übergängen konstruieren wir einen äquivalenten NEA $\tilde{A}:=(\tilde{Q},\Sigma,\tilde{\delta},\tilde{s},\tilde{F})$ mit

- lacksquare gleicher Zustandsmenge $ilde{ extstyle Q}:= extstyle Q$
- gleichem Startzustand š := s
- neuer Endzustandsmenge $\tilde{F} := \{ q \in Q \, | \, E(q) \cap F \neq \emptyset \}$
 - "alle Zustände, in deren ε-Abschluss ein Endzustand liegt"
- neuer Übergangsfunktion $ilde{\delta}(m{q},m{a}) := egin{cases} \{m{q}\} & \text{falls } m{a} = m{arepsilon} \\ \delta(m{E}(m{q}),m{a}) & \text{sonst} \end{cases}$

Eigenschaften von \tilde{A}

$$L(\tilde{A}) = L(A) \text{ und } |\tilde{Q}| = |Q|.$$

Tutoriumsmaterial von Michael Fuerst

NEA2DEA: Aufgabe

Gegeben sei der NEA $\mathcal{A} = (\{s, q, f\}, \{a, b, c\}, \delta, s, \{f\})$, wobei die Übergangsfunktion δ gegeben ist durch:

	ε	а	b	С
s	$\{q, f\}$	Ø	{ q }	{ <i>f</i> }
q	Ø	$\{s\}$	{ <i>f</i> }	$\{s,q\}$
f	Ø	Ø	Ø	Ø

- 1. Geben Sie zu dem Automaten $\mathcal A$ den Übergangsgraphen an und eliminieren Sie die ε -Übergänge.
- 2. Ermitteln Sie mittels Potenzmengenkonstruktion den zu $\mathcal A$ äquivalenten DEA. Geben Sie hierbei die Übergangsfunktion tabellarisch an.

Bis zum nächsten Mal!

Some people, when confronted with a problem, think 'I know, I'll use regular expressions.' Now they have two problems. – Jamie Zawinski

Some people, when confronted with a problem, think 'I know, I'll quote Jamie Zawinski.' Now they have two problems. – Mark Pilgrim

Lizenzen

Dieses Werk ist unter einem "Creative Commons Namensnennung-Weitergabe unter gleichen Bedingungen 3.0 Deutschland"-Lizenzvertrag lizenziert. Um eine Kopie der Lizenz zu erhalten, gehen Sie bitte zu http://creativecommons.org/licenses/by-sa/3.0/de/ oder schreiben Sie an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Davon ausgenommen sind das Titelbild, welches aus der März-April 2002 Ausgabe von American Scientist erschienen ist und ohne Erlaubnis verwendet wird, sowie das KIT Beamer Theme, Hierfür gelten die Bestimmungen der jeweiligen Urheber,