Define:

$$S = \{(p_1, p_2, \theta_2)\}$$
 for player 1 position p_1 , player 2 position p_2 and player 2 type θ_2
$$S_R = \{(x_{red}, y_{red})\}$$

$$S_G = \{(x_{green}, y_{green})\}$$

$$A_1 = \{\phi, N, E, W, S, Z\}$$

$$A_2 = \{\phi, N, E, W, S\}$$

$$p_1 := (x_1, y_1)$$

$$p_2 := (x_2, y_2)$$

Transition:
$$(x_i^{t+1}, y_i^{t+1}) = \begin{cases} (x_i^t, y_i^t) & a_i^t \in \{\phi, Z\} \\ (x_i^t, y_i^t - 1) & a_i^t = N \\ (x_i^t + 1, y_i^t) & a_i^t = E \\ (x_i^t - 1, y_i^t) & a_i^t = W \\ (x_i^t, y_i^t + 1) & a_i^t = S \end{cases}$$

else (x_i^t, y_i^t) for $i \in \{1,2\}$ (North and South may not seem intuitive but we are using Pygames' indexing where the upper left cell is (0,0))

Neighbors
$$v(x,y) = \{(x-1,y-1), (x,y-1), (x+1,y-1), (x-1,y), (x,y), (x+1,y), (x-1,y+1), (x,y+1), (x+1,y+1)\}$$

Costs: $B \in [0,1), C \in [0,1)$

Initialize:

$$Q_1(h, a_1) = 0$$
 for all $h \in H$, $a_1 \in A_1$
 $Q_2(s, a_2) = 0$ for all $s \in S$, $a_2 \in A_2$

Repeat for every episode:

Player 1's posterior in last episode is prior in this episode

Player 2 chooses type $\theta_2 \in \{0,1\}$

For
$$t = 0,1,2,...,$$
 do:

State

$$p_1^t \coloneqq (x_1^t, y_1^t)$$

$$p_2^t \coloneqq (x_2^t, y_2^t)$$

Observe current state $s^t = (p_1^t, p_2^t, \theta_2)$

Observe current history $h^t = (s^0, a^0, s^1, \dots s^{t-1}, a^{t-1}, s^t)$

Set: $r_1 = 0$, $r_2 = 0$

Player 1

Action choice

$$a_1^t \in \arg\max_{a_1} VI_1(a_1|h^t)$$

$$VI_1(a_1|h^t) = \sum_{x \in \{0,1\}} \mathbb{P}(\theta_2 = x|h^t) \sum_{a_2 \in A_2} Q_1(h^t, (a_1, a_2)) \mathbb{P}(a_2|\theta_2 = x)$$

$$\mathbb{P}(\theta_2 = x | h^t) = \frac{\mathbb{P}(h^t \middle| \theta_2 = x) \mathbb{P}(\theta_2 = x)}{\sum_{y \in \{0,1\}} \mathbb{P}(h^t \middle| \theta_2 = y) \mathbb{P}(\theta_2 = y)}$$

$$\mathbb{P}(h^t|\theta_2 = x) = \prod_{\tau=0}^{t-1} \mathbb{P}(a_2^{\tau}|\theta_2 = x)$$

P1 Transition and rewards

If
$$a_1^t = Z$$
:

If
$$\theta_2=0$$
 and $p_2^t\in \nu(p_1^t)$: $r_1=-\mathcal{C}, r_2=-\mathcal{C}$

Episode Ends

Else:

$$p_1^{t+1} \leftarrow p_1^t$$

Player 2

With probability ϵ : choose random action $a_2^t \in A_2$

Otherwise: choose action $a_2^t \in \arg \max_{a_2} Q_2(s^t, a_2)$

P2 Transition and rewards

$$p_2^{t+1} \leftarrow p_2^t$$

If
$$\theta_2 = 0$$
 and $p_2^{t+1} \in S_G$: $r_1 = 1$, $r_2 = 1$
If $\theta_2 = 1$ and $p_2^{t+1} \in S_R$: $r_1 = -B$, $r_2 = B$

Q-value update

Joint action $a^t = (a_1^t, a_2^t)$

Transition $s^{t+1} = (p_1^{t+1}, p_2^{t+1}, \theta_2)$

$$Q_1(h^t, (a_1, a_2)) = \sum_{s' \in S} P(s' | s^t, (a_1, a_2)) \left[r_1 + \gamma \max_{a_1' \in A_1} VI_1(a_1' | \langle h^t, (a_1, a_2), s' \rangle) \right]$$

$$Q_2(s^t, a_2^t) \leftarrow Q_2(s^t, a_2^t) + \alpha \left[r_2 + \gamma \max_{a_2'} Q_2(s^{t+1}, a_2') - Q_2(s^t, a_2^t) \right]$$

History update

$$h^{t+1} = \langle h^t, a^t, s^{t+1} \rangle$$