Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(2,3-Dimethylphenyl)-2-methylbenzamide

Vinola Z. Rodrigues, B. Thimme Gowda, Vilus Sivý, Viktor Vrábel and Jozef Kožíšek

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ^bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering, Slovak Technical University, Namestie slobody 17, SK-812 31 Bratislava, Slovak Republic, and ^cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic Correspondence e-mail: gowdabt@vahoo.com

Received 22 November 2011; accepted 25 November 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(C-C) = 0.010$ Å; R factor = 0.068; wR factor = 0.208; data-to-parameter ratio = 6.8.

In the title compound, $C_{16}H_{17}NO$, the two aromatic rings make a dihedral angle of 5.9 (2)°, while the central amide core -NH-C(=O)— is twisted by 44.0 (3) and 47.1 (3)° out of the planes of the 2,3-dimethylphenyl and 2-methylphenyl rings, respectively. In the crystal, $N-H\cdots O$ hydrogen bonds link the molecules into infinite chains running along the b axis.

Related literature

For the preparation of the title compound, see: Gowda *et al.* (2003). For our studies on the effects of substituents on the structures and other aspects of *N*-(aryl)-amides, see: Bowes *et al.* (2003); Gowda *et al.* (2000); Saeed *et al.* (2010) on *N*-(aryl)-methanesulfonamides, see: Jayalakshmi & Gowda (2004), on *N*-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on *N*-chloroarylamides, see: Gowda *et al.* (1996).

Experimental

Crystal data

 $C_{16}H_{17}NO$ $M_r = 239.31$ Monoclinic, Pc a = 5.8092 (4) Å b = 4.9253 (2) Å c = 23.1887 (12) Å $\beta = 94.229$ (5)° V = 661.67 (6) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 295 K $0.50 \times 0.30 \times 0.10 \text{ mm}$ Data collection

Oxford Diffractio Xcalibur System diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) $T_{\min} = 0.962, T_{\max} = 0.993$

9487 measured reflections 1162 independent reflections 1021 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.068$ $wR(F^2) = 0.208$ S = 1.101162 reflections 170 parameters 3 restraints H atoms treated by a mixture of independent and constrained refinement $\Delta a = 0.29 \text{ e Å}^{-3}$

 $\Delta \rho_{\text{max}} = 0.29 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N1-H1···O1 ⁱ	0.86 (1)	2.23 (5)	2.903 (6)	136 (6)

Symmetry code: (i) x, y + 1, z.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis CCD*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2002) and *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2009) and *WinGX* (Farrugia, 1999).

VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship. JS, VV and JK thank the VEGA Grant Agency of the Slovak Ministry of Education (1/0679/11) and the Research and Development Agency of Slovakia (APVV-0202/10) for financial support and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5725).

References

Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). *Acta Cryst.* C**59**, o1–o3.

Brandenburg, K. (2002). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Gowda, B. T., Dou, S. Q. & Weiss, A. (1996). Z. Naturforsch. Teil A, 51, 627–636.

Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.

Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800

Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 491–500.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Saeed, A., Arshad, M. & Simpson, J. (2010). *Acta Cryst.* E**66**, o2808–o2809. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3496 [doi:10.1107/S1600536811050732]

N-(2,3-Dimethylphenyl)-2-methylbenzamide

V. Z. Rodrigues, B. T. Gowda, J. Sivý, V. Vrábel and J. Kozísek

Comment

The amide and sulfonamide moieties are the constituents of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of *N*-(aryl)-amides (Bowes *et al.*, 2003; Gowda *et al.*, 2000; Saeed *et al.*, 2010), *N*-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004), *N*-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and *N*-chloro-arylsulfonamides (Gowda *et al.*, 1996), in the present work, the crystal structure of *N*-(2,3-dimethylphenyl)-2-methylbenzamide (I) has been determined (Fig. 1).

In (I), the two aromatic rings make the dihedral angle of $5.9 (2)^{\circ}$, while the central amide core –NH—C(=O)— is twisted by $44.0 (3)^{\circ}$ and $47.1 (3)^{\circ}$ out of the planes of the 2,3-dimethylphenyl and 2-methylphenyl rings, respectively.

Further, the *ortho*-methyl group in the benzoyl ring is positioned *syn* to the C=O bond and so also the *ortho*- and *meta*-methyl groups in the anilino ring to the N—H bond, while the N—H and C=O bonds in the C—NH—C(O)—C segment are *anti* to each other.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into infinite chains running along the b-axis. Part of the crystal structure is shown in Fig. 2.

Experimental

The title compound was prepared according to the method described by Gowda *et al.* (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Plate like colourless single crystals of the title compound were obtained by slow evaporation of an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

All hydrogen atoms except amide H atom were placed in calculated positions with C–H distances in the range 0.93–0.96 Å and constrained to ride on their parent atoms. The amide H atom was found in a difference map and was refined with the N—H distance restrained to 0.86 (3) Å. The Uiso~(H) values were set at $1.2U_{eq}$ (C-aromatic, N) or $1.5U_{eq}$ (C-methyl). In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1. Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Packing view of the title compound. Molecular chains along *b* axis are generated by N–H···O hydrogen bonds which are shown by dashed lines. H atoms not involved in H-bonding have been omitted.

N-(2,3-Dimethylphenyl)-2-methylbenzamide

Crystal data

C₁₆H₁₇NO F(000) = 256 $M_r = 239.31$ $D_x = 1.201 \text{ Mg m}^{-3}$ Monoclinic, Pc Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: P -2yc Cell parameters from 6163 reflections a = 5.8092 (4) Å $\theta = 3.5 - 25.0^{\circ}$ b = 4.9253 (2) Å $\mu = 0.08 \text{ mm}^{-1}$ T = 295 Kc = 23.1887 (12) Å $\beta = 94.229 (5)^{\circ}$ Plate, colourless $0.50\times0.30\times0.10~mm$ $V = 661.67 (6) \text{ Å}^3$ Z = 2

Data collection

Oxford Diffractio Xcalibur System 1162 independent reflections

diffractometer

Radiation source: fine-focus sealed tube

graphite

Detector resolution: 0 pixels mm⁻¹ \setminus j scans, and ω scans with κ offsets

Absorption correction: multi-scan

(CrysAlis RED; Oxford Diffraction, 2009)

 $T_{\min} = 0.962, T_{\max} = 0.993$

9487 measured reflections

1021 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.043$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.5^{\circ}$

 $h = -6 \rightarrow 6$

 $k = -5 \rightarrow 5$

 $l = -27 \rightarrow 27$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.068$

 $wR(F^2) = 0.208$

S = 1.10

1162 reflections

170 parameters

3 restraints

Primary atom site location: structure-invariant direct

methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring

sites

H atoms treated by a mixture of independent and

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.122P)^2 + 0.430P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$

 $\Delta \rho_{\text{max}} = 0.29 \text{ e Å}^{-3}$

 $\Delta \rho_{min} = -0.23 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7345 (9)	0.2228 (10)	0.2068 (2)	0.0440 (13)
C2	0.9138 (11)	0.3524 (12)	0.1826 (3)	0.0507 (14)
C3	0.9528 (11)	0.3043 (14)	0.1241 (3)	0.0582 (16)
C4	0.8099 (14)	0.1135 (15)	0.0929(3)	0.069(2)
H4	0.8364	0.0739	0.0548	0.083*
C5	0.6384 (13)	-0.0099 (15)	0.1175 (3)	0.0661 (19)
H5	0.5456	-0.1324	0.0959	0.079*
C6	0.5950 (12)	0.0403 (13)	0.1744 (3)	0.0582 (16)

Н6	0.4740	-0.0471	0.1909	0.070*
C7	1.0716 (12)	0.5454 (14)	0.2186 (4)	0.069(2)
H7A	1.2242	0.5380	0.2054	0.104*
H7B	1.0768	0.4924	0.2585	0.104*
H7C	1.0130	0.7272	0.2145	0.104*
C8	1.1354 (16)	0.4573 (18)	0.0958 (4)	0.081(2)
H8A	1.1608	0.3746	0.0593	0.122*
H8B	1.2761	0.4538	0.1203	0.122*
H8C	1.0868	0.6420	0.0896	0.122*
C9	0.6479 (10)	0.0862 (11)	0.3048 (2)	0.0446 (13)
C10	0.6090 (11)	0.1940 (11)	0.3638 (2)	0.0485 (14)
C11	0.4282 (10)	0.1026 (12)	0.3934(3)	0.0520 (15)
C12	0.4113 (16)	0.2012 (17)	0.4479 (3)	0.075(2)
H12	0.2908	0.1411	0.4689	0.090*
C13	0.5661 (15)	0.3872 (16)	0.4731 (3)	0.072(2)
H13	0.5472	0.4519	0.5102	0.086*
C14	0.7478 (14)	0.4764 (15)	0.4435 (3)	0.0680 (19)
H14	0.8540	0.5996	0.4603	0.082*
C15	0.7695 (10)	0.3809 (13)	0.3890(3)	0.0528 (15)
H15	0.8913	0.4397	0.3683	0.063*
C16	0.2533 (14)	-0.0985 (15)	0.3695 (4)	0.074(2)
H16A	0.1224	-0.0972	0.3925	0.111*
H16B	0.3206	-0.2766	0.3703	0.111*
H16C	0.2046	-0.0508	0.3304	0.111*
N1	0.6911 (9)	0.2757 (9)	0.2654(2)	0.0478 (12)
H1	0.756 (11)	0.427 (8)	0.276 (3)	0.06 (2)*
O1	0.6366 (11)	-0.1558 (8)	0.2943 (2)	0.0708 (14)

Atomic displacement parameters (\mathring{A}^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.054(3)	0.029(2)	0.049(3)	0.002(2)	0.003(2)	-0.003(2)
0.059 (4)	0.029(3)	0.063 (4)	0.005 (2)	0.000(3)	0.001(2)
0.057 (4)	0.052 (4)	0.066 (4)	0.005(3)	0.008(3)	0.015(3)
0.098 (6)	0.065 (4)	0.044(3)	0.012 (4)	0.007 (4)	0.003(3)
0.090 (5)	0.056 (4)	0.050(4)	-0.014 (4)	-0.005(3)	-0.013 (3)
0.072 (4)	0.047 (3)	0.055 (4)	-0.010(3)	-0.001 (3)	-0.006(3)
0.062 (4)	0.052 (4)	0.094 (5)	-0.021 (3)	0.005(3)	-0.012 (4)
0.094 (5)	0.077 (5)	0.076 (5)	0.006 (5)	0.025 (4)	0.023 (4)
0.053 (3)	0.032(3)	0.049(3)	0.002(2)	0.007(2)	0.000(2)
0.068 (4)	0.031 (3)	0.046 (3)	0.008(3)	-0.002(3)	0.002(2)
0.056 (4)	0.036(3)	0.065 (4)	0.001(3)	0.007(3)	0.003(3)
0.091 (6)	0.070 (5)	0.064 (4)	-0.002 (4)	0.015 (4)	0.009(4)
0.103 (6)	0.061 (4)	0.049 (4)	-0.006(4)	-0.001 (4)	-0.001(3)
0.086 (5)	0.059 (4)	0.058 (4)	-0.008(4)	0.001(3)	-0.010(3)
0.059 (4)	0.048 (3)	0.051 (3)	-0.006(3)	-0.001 (3)	0.002(3)
0.072 (5)	0.048 (4)	0.104 (6)	-0.012 (3)	0.011 (4)	-0.008(4)
0.060(3)	0.028 (2)	0.056 (3)	-0.008 (2)	0.012 (2)	-0.004(2)
	0.054 (3) 0.059 (4) 0.057 (4) 0.098 (6) 0.090 (5) 0.072 (4) 0.062 (4) 0.094 (5) 0.053 (3) 0.068 (4) 0.091 (6) 0.103 (6) 0.086 (5) 0.059 (4) 0.072 (5)	0.054 (3)	0.054 (3) 0.029 (2) 0.049 (3) 0.059 (4) 0.029 (3) 0.063 (4) 0.057 (4) 0.052 (4) 0.066 (4) 0.098 (6) 0.065 (4) 0.044 (3) 0.090 (5) 0.056 (4) 0.050 (4) 0.072 (4) 0.047 (3) 0.055 (4) 0.062 (4) 0.052 (4) 0.094 (5) 0.094 (5) 0.077 (5) 0.076 (5) 0.053 (3) 0.032 (3) 0.049 (3) 0.068 (4) 0.031 (3) 0.046 (3) 0.056 (4) 0.036 (3) 0.065 (4) 0.091 (6) 0.070 (5) 0.064 (4) 0.103 (6) 0.061 (4) 0.049 (4) 0.086 (5) 0.059 (4) 0.058 (4) 0.059 (4) 0.048 (3) 0.051 (3) 0.072 (5) 0.048 (4) 0.104 (6)	0.054 (3) 0.029 (2) 0.049 (3) 0.002 (2) 0.059 (4) 0.029 (3) 0.063 (4) 0.005 (2) 0.057 (4) 0.052 (4) 0.066 (4) 0.005 (3) 0.098 (6) 0.065 (4) 0.044 (3) 0.012 (4) 0.090 (5) 0.056 (4) 0.050 (4) -0.014 (4) 0.072 (4) 0.047 (3) 0.055 (4) -0.010 (3) 0.062 (4) 0.052 (4) 0.094 (5) -0.021 (3) 0.094 (5) 0.077 (5) 0.076 (5) 0.006 (5) 0.053 (3) 0.032 (3) 0.049 (3) 0.002 (2) 0.068 (4) 0.031 (3) 0.046 (3) 0.008 (3) 0.056 (4) 0.036 (3) 0.065 (4) 0.001 (3) 0.091 (6) 0.070 (5) 0.064 (4) -0.002 (4) 0.103 (6) 0.061 (4) 0.049 (4) -0.006 (4) 0.086 (5) 0.059 (4) 0.058 (4) -0.008 (4) 0.059 (4) 0.048 (3) 0.051 (3) -0.006 (3) 0.072 (5) 0.048 (4) 0.104 (6) -0.012 (3) <td>0.054 (3) 0.029 (2) 0.049 (3) 0.002 (2) 0.003 (2) 0.059 (4) 0.029 (3) 0.063 (4) 0.005 (2) 0.000 (3) 0.057 (4) 0.052 (4) 0.066 (4) 0.005 (3) 0.008 (3) 0.098 (6) 0.065 (4) 0.044 (3) 0.012 (4) 0.007 (4) 0.090 (5) 0.056 (4) 0.050 (4) -0.014 (4) -0.005 (3) 0.072 (4) 0.047 (3) 0.055 (4) -0.010 (3) -0.001 (3) 0.062 (4) 0.052 (4) 0.094 (5) -0.021 (3) 0.005 (3) 0.094 (5) 0.077 (5) 0.076 (5) 0.006 (5) 0.025 (4) 0.053 (3) 0.032 (3) 0.049 (3) 0.002 (2) 0.007 (2) 0.068 (4) 0.031 (3) 0.046 (3) 0.008 (3) -0.002 (3) 0.056 (4) 0.036 (3) 0.065 (4) 0.001 (3) 0.007 (3) 0.091 (6) 0.070 (5) 0.064 (4) -0.002 (4) 0.015 (4) 0.103 (6) 0.061 (4) 0.049 (4) -0.006 (4) -0.001 (4) 0.059 (4)</td>	0.054 (3) 0.029 (2) 0.049 (3) 0.002 (2) 0.003 (2) 0.059 (4) 0.029 (3) 0.063 (4) 0.005 (2) 0.000 (3) 0.057 (4) 0.052 (4) 0.066 (4) 0.005 (3) 0.008 (3) 0.098 (6) 0.065 (4) 0.044 (3) 0.012 (4) 0.007 (4) 0.090 (5) 0.056 (4) 0.050 (4) -0.014 (4) -0.005 (3) 0.072 (4) 0.047 (3) 0.055 (4) -0.010 (3) -0.001 (3) 0.062 (4) 0.052 (4) 0.094 (5) -0.021 (3) 0.005 (3) 0.094 (5) 0.077 (5) 0.076 (5) 0.006 (5) 0.025 (4) 0.053 (3) 0.032 (3) 0.049 (3) 0.002 (2) 0.007 (2) 0.068 (4) 0.031 (3) 0.046 (3) 0.008 (3) -0.002 (3) 0.056 (4) 0.036 (3) 0.065 (4) 0.001 (3) 0.007 (3) 0.091 (6) 0.070 (5) 0.064 (4) -0.002 (4) 0.015 (4) 0.103 (6) 0.061 (4) 0.049 (4) -0.006 (4) -0.001 (4) 0.059 (4)

O1	0.120 (4)	0.028 (2)	0.066 (3)	0.003 (2)	0.019 (2)	0.001 (2)
Geometric para	meters (Å, °)					
C1—C2		1.376 (9)	C9—	-01		1.217 (7)
C1—C6		1.392 (8)	C9—			1.342 (7)
C1—N1		1.424 (7)	C9—			1.502 (8)
C2—C3		1.412 (9)		-C11		1.373 (9)
C2—C7		1.526 (9)		-C15		1.406 (9)
C3—C4		1.416 (10)		-C12		1.362 (10)
C3—C8		1.491 (11)		C16		1.496 (9)
C4—C5		1.330 (11)		—C13		1.383 (11)
C4—H4		0.9300		—H12		0.9300
C5—C6		1.385 (10)	C13-	C14		1.374 (11)
C5—H5		0.9300	C13-	—H13		0.9300
C6—H6		0.9300	C14-	C15		1.363 (10)
C7—H7A		0.9600	C14-	—H14		0.9300
C7—H7B		0.9600	C15-	—H15		0.9300
C7—H7C		0.9600	C16-	—H16A		0.9600
C8—H8A		0.9600	C16-	—Н16В		0.9600
C8—H8B		0.9600	C16-	—H16С		0.9600
C8—H8C		0.9600	N1—	-H1		0.860 (5)
C2—C1—C6		120.5 (5)	01–	-C9—N1		123.8 (6)
C2—C1—N1		119.8 (5)	O1—	-C9—C10		121.2 (5)
C6—C1—N1		119.7 (5)	N1—	-C9C10		115.0 (5)
C1—C2—C3		119.6 (5)	C11-	C10C15		121.0 (5)
C1—C2—C7		120.5 (6)	C11-	C10C9		120.8 (5)
C3—C2—C7		119.9 (6)	C15-	C10C9		118.0 (6)
C2—C3—C4		118.1 (6)	C12-	C11C10		117.2 (6)
C2—C3—C8		120.5 (7)	C12-	C11C16		119.1 (6)
C4—C3—C8		121.4 (7)	C10-	C11C16		123.7 (6)
C5—C4—C3		121.0 (6)	C11-	C12C13		122.6 (7)
C5—C4—H4		119.5	C11-	C12H12		118.7
C3—C4—H4		119.5	C13-	—С12—Н12		118.7
C4—C5—C6		121.4 (6)	C14-	C13C12		120.0 (7)
C4—C5—H5		119.3	C14-	—С13—Н13		120.0
C6—C5—H5		119.3		—С13—Н13		120.0
C5—C6—C1		119.3 (6)	C15-	C14C13		118.7 (7)
C5—C6—H6		120.3		—С14—Н14		120.6
C1—C6—H6		120.3		C14H14		120.6
C2—C7—H7A		109.5		C15C10		120.4 (6)
C2—C7—H7B		109.5		—С15—Н15		119.8
H7A—C7—H7B	}	109.5		C15H15		119.8
C2—C7—H7C		109.5		-C16H16A		109.5
H7A—C7—H7C		109.5		-C16H16B		109.5
H7B—C7—H7C		109.5		A—C16—H16B		109.5
C3—C8—H8A		109.5		-C16H16C		109.5
C3—C8—H8B		109.5		A—C16—H16C		109.5
Н8А—С8—Н8В	i	109.5	H16	В—С16—Н16С		109.5

C3—C8—H8C	109.5	C9—N1—C1	125.3 (5)
H8A—C8—H8C	109.5	C9—N1—H1	121 (5)
H8B—C8—H8C	109.5	C1—N1—H1	108 (5)
C6—C1—C2—C3	1.5 (8)	N1—C9—C10—C15	-49.1 (7)
N1—C1—C2—C3	-178.5 (5)	C15—C10—C11—C12	0.2 (9)
C6—C1—C2—C7	-178.0 (6)	C9—C10—C11—C12	177.0 (6)
N1—C1—C2—C7	2.0(8)	C15—C10—C11—C16	-179.2 (6)
C1—C2—C3—C4	-2.6 (9)	C9—C10—C11—C16	-2.4(9)
C7—C2—C3—C4	176.9 (6)	C10—C11—C12—C13	0.5 (11)
C1—C2—C3—C8	175.6 (6)	C16—C11—C12—C13	179.9 (8)
C7—C2—C3—C8	-4.9 (9)	C11—C12—C13—C14	-1.0(13)
C2—C3—C4—C5	2.4 (10)	C12—C13—C14—C15	0.8 (12)
C8—C3—C4—C5	-175.9 (7)	C13—C14—C15—C10	-0.2 (11)
C3—C4—C5—C6	-0.9 (12)	C11—C10—C15—C14	-0.3 (10)
C4—C5—C6—C1	-0.3 (11)	C9—C10—C15—C14	-177.2 (6)
C2—C1—C6—C5	0.0 (9)	O1—C9—N1—C1	-1.4(10)
N1—C1—C6—C5	180.0 (6)	C10—C9—N1—C1	179.7 (6)
O1—C9—C10—C11	-45.0 (9)	C2—C1—N1—C9	-134.7 (6)
N1—C9—C10—C11	133.9 (6)	C6—C1—N1—C9	45.3 (8)
O1—C9—C10—C15	132.0 (7)		
Hydrogen-bond geometry (Å. °)			
TIVATOSEN-DONA SEOMETVIA. T			

Hydrogen-bond geometry (Å, °)

 $D - H \cdots A$ D - H $H \cdots A$ $D \cdots A$ $D - H \cdots A$ $N1 - H1 \cdots O1^{i}$ 0.86 (1) 2.23 (5) 2.903 (6) 136 (6)

Symmetry codes: (i) x, y+1, z.

Fig. 1

Fig. 2

