I! homo $\bar{f}: \frac{6}{N} \rightarrow H$ tal que $\bar{f}(aN) = f(a)$, $Vacces Se$ there además que $Im \bar{f} = Im f$ y $\ker \bar{f} = \ker f/N$. En particular, \bar{f} es un iso \Leftrightarrow f epi y $\ker f = N$ Demostración. Observemos que, como $N \triangleq 6$ y $N \leq \ker f \Rightarrow N \triangleq \ker f$ I a $N \mid a \in \ker f \mid = \ker f/N \leq 6/N$ a $NbN = abN$ Veamos primero que $\bar{f}: \frac{6}{N} \rightarrow H$, $\bar{f}(aN) = f(a)$ está bien definida ie que no depende del representante de la coclase aN Supongamos que tomamos otro representante: $aN \triangleq bN$, $ab \in 6$ $\Leftrightarrow a'b \in N \leq \ker f \Rightarrow f(a'b) = e$ hp $f(a) = f(b)$ (ques $f(a) = f(b) = e$) Ueago f está bien definida		419124
Im (F) \leq H \rightarrow no necessariamente es normal f epi \Leftrightarrow Tm (F) = H f mono \Leftrightarrow ker (F) = f let f mono \Leftrightarrow ker (F) = f let f mono f	F: 6 → H nomomor fismo	
F epi \Leftrightarrow Im (f) = H f mono \Leftrightarrow Ker(f) = let TEOREMAS DE ISOMORFISMO TEOREMA. sea $f:G \to H$ homo $S: N \triangleq G$ tax que $N \in Ker f$, entonces $\exists !$ homo $\overline{f}: fN \to H$ tax que $\overline{f}(aN) = f(a)$, Vac G . Se there además que Im $\overline{f} = Im f$ y $\ker \overline{f} = \ker f/N$. En particular, \overline{f} es un iso \Leftrightarrow f epi y $\ker f = N$ Demostración. Observemos que, como $N \triangleq G$ y $N \in \ker f \Rightarrow N \triangleq \ker f$ $AN a \in \ker f = \ker f/N \subseteq G/N$ anb $N = abN$ Veamos primero que $\overline{f}: G/N \to H$, $\overline{f}(aN) = f(a)$ está bien definida ie que n depende del representante de la coclase n		
F MONO \Leftrightarrow Ker(f) = let TEOREMAS DE 150MORFISMO TEOREMA Sea $f:G \to H$ Nomo $S: N \triangleq G$ tau que $N \in Ker f$, entonces $\exists !$ Nomo $\overline{F}: \stackrel{G}{S}N \to H$ tau que $\overline{f}(aN) = f(a)$, Vac G . Se there además que $\text{Im } \overline{f} = \text{Im } f$ y $\text{Ker } \overline{f} = \text{Ker } f/N$. En particular, \overline{f} es un iso \Leftrightarrow f epi y $\text{Ker } f = N$ Demostración. Observemos que, como $N \triangleq G$ y $N \in \text{Ker } f = N \triangleq \text{Ker } f$ and $N = \text{Como}(N) = Com$	Im(f) ≤ H → no necesariamente es normal	
TEOREMAS DE ISOMORFISMO TEOREMAS DE ISOMORFISMO TEOREMA Sea $f: G \to H$ Nomo $S: N \triangle G$ tal que $N \in Ker f$, entonces $\exists !$ homo $\bar{f}: \sqrt{N} \to H$ tal que $\bar{f}(aN) = f(a)$, $\forall a \in G$ Se there además que $\text{Im } \bar{f}: \text{Im } f$ y $\text{Ker } \bar{f}: \text{Ker } f/N$. En particular, \bar{f} es un iso $\Leftrightarrow f$ epi: y $\text{Ker } f: N$ Demostración. Observemos que, como $N \triangle G$ y $N \in \text{Ker } f: N$ $aNbN = abN$ Vea mos primero que $\bar{f}: \frac{G}{N} \to H$, $\bar{f}(aN) = f(a)$ está bien definida ie que $\text{No } d$ depende del representante de la coclase aN Supongamos que tomamos otro representante: $aN = bN$, $ab \in G$ $\Leftrightarrow a^{-1}b \in N \subseteq \text{Ker } f: f(a) = f(a) = f(a)$ Uea $\text{Im } f(a) = f(b) = e$ Im 	f epi (=> Im (f) = H	
TEOREMA: sea $f:G \to H$ Nomo. $S: N \supseteq G$ tae que $N \subseteq Ker f$, entonces $\exists !$ Nomo $\overline{F}: \stackrel{G}{\not N} \to H$ tal que $\overline{f}(aN) = f(a)$, $\forall a \in G$. Se tiene además que $\text{Im } \overline{f} = \text{Im } f$ y $\text{Ker } \overline{f} = \text{Ker } f/N$. En particular, \overline{f} es un iso $\Leftrightarrow f$ epi; y $\text{Ker } f = N$ Demostración. Observemos que, como $N \supseteq G$ y $N \subseteq Ker f \Rightarrow N \supseteq Ker f$ I a $N \mid a \in Ker f \mid = Ker f/N \subseteq G/N$ a $N \ni N $	$f mono \Leftrightarrow ker(f) = \{e\}$	
TEOREMA: Sea $f:G \to H$ Nomo. $S: N \cong G$ tae que $N \subseteq \ker F$, entonces $\exists !$ homo $\overline{F}: \stackrel{G}{N} \to H$ tal que $\overline{F}(aN) = f(a)$, $\forall a \in G$. Se tiene además que $\operatorname{Im} \overline{F} = \operatorname{Im} F$ y $\ker \overline{F} = \ker F/N$. En particular, \overline{F} es un iso $\Leftrightarrow f$ epi y $\ker F = N$ Demostración. Observemos que, como $N \cong G$ y $N \subseteq \ker F = N \cong \ker F$ $AN a \in \ker F ^2 = \ker F/N \subseteq G/N$ $AN b = abN$ Veamos primero que $\overline{F}: \frac{G}{N} \to H$, $\overline{F}(aN) = f(a)$ está bien definida ie que no depende del representante de la coclase aN $a = b(N)$ Supongamos que tomamos otro representante: $aN = bN$, $ab \in G$ $\Leftrightarrow a^{-1}bCN \subseteq \ker F \implies f(a^{-1}f) = e$ $hip.$ $f(a)^{-1}f(b)$ por ser homo $\Leftrightarrow f(a) = F(b)$ (ques $f(a)^{-1}f(b) = e$) Luego \overline{F} está bien definida		
I! homo $\bar{f}: \frac{6}{N} \rightarrow H$ tal que $\bar{f}(aN) = f(a)$, $Vacces Se$ there además que $Im \bar{f} = Im f$ y $\ker \bar{f} = \ker f/N$. En particular, \bar{f} es un iso \Leftrightarrow f epi y $\ker f = N$ Demostración. Observemos que, como $N \triangleq 6$ y $N \leq \ker f \Rightarrow N \triangleq \ker f$ I a $N \mid a \in \ker f \mid = \ker f/N \leq 6/N$ a $NbN = abN$ Veamos primero que $\bar{f}: \frac{6}{N} \rightarrow H$, $\bar{f}(aN) = f(a)$ está bien definida ie que no depende del representante de la coclase a N Supangamos que tomamos otro representante: $aN \triangleq bN$, $ab \in 6$ $\Leftrightarrow a'b \in N \leq \ker f \Rightarrow f(a'b) = e$ hnp . $f(a) = f(b)$ (ques $f(a) = f(b) = e$) Luego f está bien definida	TEOREMAS DE ISOMORFISMO	
I! homo $\bar{f}: \sqrt[6]{N} \to H$ tal que $\bar{f}(aN) = f(a)$, $Vacces Se$ there además que $Im \bar{f} = Im f$ y $\ker \bar{f} = \ker f/N$. En particular, \bar{f} es un iso \Leftrightarrow f epi y $\ker f = N$ Demostración. Observemos que, como $N \triangleq 6$ y $N \leq \ker f \Rightarrow N \triangleq \ker f$ $ aN = a \in \ker f = \ker f/N \leq 6/N$ $ aN = a \in \ker f = \ker f/N \leq 6/N$ AND $ a = a \in \ker f = \ker f/N \leq 6/N$ Veamos primero que $\bar{f}: 6/N \to H$, $\bar{f}(aN) = f(a)$ está bien definida ie que no depende del representante de la coclase $ a $ Supongamos que tomamos otro representante: $ a = a $ Supongamos que tomamos otro representante: $ a = a $	TEMELLA SON F. C - 4 Nonna S: NAC tan a.m. NCN	ser f entongen
que Im $f = Im f y \text{ Ker } f = \text{Ker } f/N$. En particular, \bar{f} es un iso \Leftrightarrow f epi y Ker $f = N$ Demostración. Observemos que , como $N \cong G$ y $N \leq \text{Ker } f \Rightarrow N \cong \text{Ker } f$ I a $N \mid a \in \text{Ker } f \mid f = \text{Ker } f/N \leq G/N$ a $N \mid b N = abN$ Vea mos primero que $\bar{f} : G/N \to H$, $\bar{f}(aN) = f(a)$ está bien definida ie que no depende del representante de la coclase a N Supongamos que tomamos otro representante: $a N = b(N)$ Supongamos que tomamos otro representante: $a N = b(N)$ $C \Rightarrow a' \mid b \in N \leq \text{Ker } f \Rightarrow f(a' \mid b) = e$ $h \mid b N \leq \text{Ker } f \Rightarrow f(a' \mid b) = e$ $f(a) = f(b)$ (ques $f(a) = f(b) = e$)	$\exists 1 \text{ home } \overline{f} : 6/N \rightarrow H + \text{as are } \overline{f}(ab) = f(a) + \text{as } 6 = 6$	tiene odernis
En particular, \bar{f} es un iso \Leftrightarrow f epi y Ker f = N Demostración. Observemos que , como $N \triangleq 6$ y $N \leq \text{Ker } f$ $\Rightarrow N \triangleq \text{Ker } f$ $ aN a \in \text{Ker } f = \text{Ker } f/N \leq G/N$ $ aN b = abN$ Veamos primero que $\bar{f}: 6/N \rightarrow H$, $\bar{f}(aN) = f(a)$ está bien definida ie que lo depende del representante de la coclase aN $ a b(N)$ Supongamos que tomamos otro representante: $aN \stackrel{?}{=} bN$, $ab \in G$ $ a = a^{-1}b \in N \leq \text{Ker } f \Rightarrow f(a^{-1}b) = e$ $ a = f(a) = f(b)$ (ques $f(a) = f(b) = e$) Luego f está bien definida		
Demostración: Observemos que, como $N \triangleq 6$ y $N \leq \ker f \Rightarrow N \triangleq \ker f$ (a $N \mid \alpha \in \ker f \mid = \ker f \mid_N \leq G/N$ anb $N = abN$ Veamos primero que $\bar{f} : G/N \rightarrow H$, $\bar{f} (a N) = f(a)$ está bien definida le que no depende del representante de la coclase a N Supongamos que tomamos otro representante: $a N \stackrel{?}{=} bN$, $ab \in G$ $\Rightarrow a^{-1}b \in N \leq \ker f \Rightarrow f(a^{-1}b) = e$ $hnp.$ $f(a)^{-1}f(b)$ por ser homo $(\Rightarrow f(a) = f(b))$ (ques $f(a)^{-1}f(b) = e$) Luego \bar{f} está bien definida		
Observemos que, como $N \cong G$ y $N \leq \ker f \Rightarrow N \cong \ker f$ $A \in \mathbb{R} \setminus \mathbb{R} = \mathbb{R} \setminus $	en particular, 7 es on 100 => 1 epi y her + = N	
I all a \in ker f } = ker f / $_{N}$ \subseteq G / $_{N}$ all bits a primero que $\bar{f}: G$ / $_{N}$ \longrightarrow H, \bar{f} (all) = f (a) está bien definida ie que los depende del representante de la coclase all a $= b(n)$ Supongamos que tomamos otro representante: all $= b$ 0 $= b$ 0, ab $= G$ 0 $= a^{-1}bCN \le ker = b1 = b2 = b3 = b4 = b4 = b5 = c4 = a^{-1}bCN \le ker = a^{-$	Demostración:	
Veamos primero que $\bar{f}: \frac{G}{N} \rightarrow H$, $\bar{f}(au) = f(a)$ está bien definida ie que lo depende del representante de la coclase all $a \equiv b(u)$ Supongamos que tomamos otro representante: all \bar{b} blu, $ab \in G$ $\Rightarrow a^{-1}b \in U \le \ker f \Rightarrow f(a^{-1}b) = e$ $h p$. $f(a)^{-1}f(b)$ por ser homo (=> $f(a) = f(b)$ (ques $f(a)^{-1}f(b) = e$) Uego \bar{f} está bien definida	Observemos que, como N 46 y N ≤ Kerf => N ≥ Kerf	
Veamos primero que $\bar{f}: G_{/N} \rightarrow H$, $\bar{f}(au) = f(a)$ está bien definida ie que lo depende del representante de la coclase all $a \equiv b(u)$ $a \equiv b(u)$ Supongamos que tomamos otro representante: all \bar{b} blu , $ab \in G$ $\Rightarrow a^{-1}b \in N \le \ker f \Rightarrow f(a^{-1}b) = e$ $h_{1}p$. $f(a)^{-1}f(b)$ por ser homo $\Rightarrow f(a) = f(b)$ (ques $f(a)^{-1}f(b) = e$) Luego \bar{f} está bien definida	falla E Ker f} = Ker f/ & G/	
No depende del representante de la coclase al $a = b(u)$ Supongamos que tomamos otro representante: $a = b(u)$ $a = b(u)$ Supongamos que tomamos otro representante: $a = b(u)$ $a = $		
Supongamos que tomamos otro representante: $a N = bN$, $ab \in G$ $\iff a^{-1}b \in N \le \ker f \implies f(a^{-1}b) = e$ $hip. \qquad f(a)^{-1}f(b) \text{ por ser homo}$ $\iff f(a) = f(b) \text{ (ques } f(a)^{-1}f(b) = e \text{)}$ Luego f esta bien definida	Veamos primero que $\bar{f}: \frac{6}{N} \rightarrow H$, $\bar{f}(a N) = f(a)$ está bien	definida ie qu
Supongamos que tomamos otro representante: $a N = bN$, $ab \in G$ $\iff a^{-1}b \in N \le \ker f \implies f(a^{-1}b) = e$ $hip.$ $f(a)^{-1}f(b)$ por ser homo $\iff f(a) = f(b)$ (ques $f(a)^{-1}f(b) = e$) Luego f esta bien definida	no dependo del representante de la coclasa all	
$(\Rightarrow) a^{-1}bEN \leq \ker f \Rightarrow f(a^{-1}b) = e$ $ h p. \qquad f(a)^{-1}f(b) \text{ por ser homo}$ $(\Rightarrow) f(a) = f(b) \text{ (pues } f(a)^{-1}f(b) = e$ $ uego f esta bien definida$	a=b(N)	
hip. $f(a)^{-1}:f(b)$ por ser homo $(\Rightarrow) f(a) = f(b)$ (ques $f(a)^{-1}:f(b) = e$) Luego \hat{f} está bien definida	Supongamos que tomamos otro representante: a U = b N	, abes
hip. $f(a)^{-1}:f(b)$ por ser homo $(\Rightarrow) f(a) = f(b) \text{ (pues } f(a)^{-1}:f(b) = e \text{)}$ Usego \hat{f} está bien definida	$\Leftrightarrow a^{-1}beb \leq \ker f \Rightarrow f(a^{-1}b) = e$	
$(\Rightarrow f(a) = f(b) \text{ (pues } f(a)^{-1}f(b) = e)$ Luego \hat{f} está bien definida		
Luego f esta bien definida	() () () per sar right	
	27 100) - FCIO) CAGES 1000 7CIO) - E)	
$\bar{f}(aN\cdot bN) = \bar{f}(abN) = f(ab) = f(a)f(b) = \bar{f}(aN)\bar{f}(bN) \cdot \cdot \cdot \bar{f}$ homo	luego f está bien definida	
$f(aN \cdot bN) = f(abN) = f(ab) = f(a) f(b) = f(aN) + (bN) \cdot f(ab)$		5.
	$(a \times b \times) = + (ab \times) = + (ab) = + (a) + (b) = + (a) + (b) $	omon t

Veamos la unici	edad	
Si f': 6/N →	H satisface que f'(aN) = f(a)	VaEG, claramente
"= \(\), ie \(\)	es único con esta condición	
· Im = 4 = (a	N) (ae6}= (fa)(ae6}= Imf	
ane kerf	$\Rightarrow e = \overline{f}(\alpha N) = f(\alpha)$	
<=	⇒ a∈kerf	
$: \ker \bar{f} = \{a$	Nlackerf} = Kerf/N	
in un lenguaje a	ategórico, el teorema (su primera q	carte) se expresa así:
NAG	$G \xrightarrow{F} H$	5: 7! Falaunos autor
N & Kerf		la escriben y sindes
70 2 100	n / //	única, no le escriben
	√ , ´ ∃! ₹	el nombre.
la conmutativido	ad del diagrama FT = f equivo	ue a f(aN) = f(a), Yaes
		π(α)
	Isomorfia > Hungerford	
Corolario (Prime	r Teorema de Isomorfismos) sea f	F: G → H homo de acusos
	ce un isomorfismo (kerf = Im	
Demostración:		
Si tomamos 1	N= Kerf ≤ 6 en el teorema anter	ior, tenemos
F	: G/kerf -> H tal que F(aN) = f(a) YaeG
I	m = Im f y ker = de} = Ker	f/kerf
con to wal Fe	es mono y da lugar a un iso 6/kg	ort -> Im = Imt
Por correstricción	7.	

Observación: ς : ς : ς : ς \to H es mono, entonces ς induce un iso ς \simeq Im ς :	≟ H
TEOREMA (Cayley): Sea 6 grupo. Entonces existe un subgrupo $\tilde{6}$ de tal que $6 \cong \tilde{6}$	2 (6)
Demostración:	
Sea C: $G \rightarrow S(G)$, $C(a)(x) = ax$, $\forall a \in G, x \in G \rightarrow C$ homo de gi	UP05
C(ab)(x) = (ab)x = a(bx) = C(a)(bx) = C(a)C(b)(x)	
Además Ker C = $\{a \mid C(a) = Id_6\} = \{a \mid a_x = x \mid x \in G\} = \{e\}$ se ve tomando x=e	
:. C es un monomorfismo	
Por el corolario anterior, C induce un iso $G \cong \underline{\operatorname{Im}} C$	
C se dice "representación de Cayley"	
Observación: 5: $161 = n \cdot 200 \implies G \cong \widetilde{G} \subseteq S_n$ $ G = n y S_n = n!$	
D'oservación: supongamos que $f: G \to H$, G, H finitos	
Por el 1º Teorema de Isomorfismos (PTI) > 6/kerf = Imf < 4	
IIm f IH y Im f = 161 Kerf IHI	
f: HI → D6 - HI = 8 y D61 = 12 : f no puede ser mon	0
Más awn 2 Ker f $\left(\text{pues } \frac{8}{\text{ker f}}\right)$ 12	
Notar además que Do no tiene subgrupo de orden 8	
5: el orden del cito de salida no divide al orden del cito de llegentances fino puede ser mono	gada

Corolario: sea $f: G \rightarrow H$ homo y sean $N \triangleq G$, $M \trianglerighteq H$ tales que $f(N) \nleq M$.
Entonces f induce un homo. $\bar{f}: 6/N \rightarrow 6/N$ que cumple $\bar{f}(aN)=f(a)M$, $\forall a \in C$
Se tiene $\text{Im}\bar{f} = (\text{Im}f \vee M)/M$, $\text{ker}\bar{f} = f^{-1}(M)/N$
En particular \bar{f} es iso \Leftrightarrow Imf $\vee \mu = H + g + f^{-1}(\mu) \notin N$
So dire are to "fortona a procedure" f(u) ≤ M > V
Demostración.
F; G → H da lugar a un homo Trf: G → H/M, Tr: H → H/M proyección canónica
f(N) & M => N & ker (Trf) pues Trf(a) = f(a) M = M YaGN
Por el primer Teorema probado en esta clase, IT induce un homo
$\bar{\xi}: G/N \longrightarrow H/M$ tal que $\bar{\xi}(\alpha N) = \pi f(\alpha) = f(\alpha) M$, $\forall \alpha \in G$
Im = Im (TTF) = ff(a) M a E G } = Im f V M /M (M no necessariam C Im F)
$\ker \bar{F} = \frac{\ker (\pi F)}{N} \dot{C} \text{ Quien es } \ker (\pi F) ?$
ae ker (Tf) = πF(a) = eμ => f(a) εμ
F(a) H H
Luego Ker (πf) = f-'(μ) y sique la 2° afirmación.
La tercera es consecuencia de esto.
Corolario (Segundo Teorema de Isomorfismo): Sean 6 grupo, K≤6, N ≥6.
Entonces K/KNN = KN/N
Demostración:
F: K Ci> KN T KN/N es homo de grupos con núcleo KNN a man a man an
toma elemento de k y la manda a su cociase módulo N
Por el Teorema anterior, este homo induce $\bar{f}: \frac{k}{knn} \rightarrow \frac{kn}{n}$ $\bar{f}(a(knn)) = f(a) = an$ y f monomorfismo

Bastr	χV	er	que	<u>.</u>	Ŧ (હ	epi	i (.pc	ua	c	onc	lui	ر	i	(03				()	(N	=NK	ques	μ	ΔG)
50	20	k.C	k	n C	1)			(0	KI.	_ k	(1)	<u> </u>		νci	C N	(1))								
	ลก										.,,			N C	`11	,0)									
ie	tod	as	ιω	ω	da	હ્હડ	500	n <u>_</u>	_																
Obser	vaci	: nò	bo	ەند	la	5 Y	ni pá	5 les	i S	del	2	2º T	eor	emo	r c	le I	L sor	nor	fisn	702	;				
				۲	V		N.	. ר	۲۱	· ·	レハ	٦ 7													
				L	NN		N.	7 -	اما		(1)	10.7													-
Coro	lari	o C	Teri	cer	Te	ore	ma	. 0	le :	I5(me	rfi	SM	0):	50	മ	H, F	< 4	1 C	, е	gr	UPO	tales i	gre	K∈H
En-	tono	0<	H	k '	4	6/K		u	G	/K	/11.		~	6/1	1										
	. 01 10	ک						9		/	r/k	<		7 1	1										
Dem	ostr	aci	ón :																						
6	8	id	_>	G			\sim		_	Ωø	_										-				
1				ı			Po	r e	Į.	2"	lei	ren	na	de	la	- cl	ase	d	e r	oy	id	දා	homo.		
							id	(a	κ)	=	at	1													
6,				G,																					
€/k														id					1/K						
Im	Cid) =	In) i	d_	٧	H	Н	=	6/	H			id	l e	ر ا	epi								
1				6	a -										G/	i /	,	~	<i>C</i> .						
Luego) , ¢	por	લ	7.	· 14	ю.	de	Is	50	te	nem	0გ_	qu	е		/	1/K	≌	9/	H				п	
En r	esu	me	n (los	3.	Teo	de	? 13	50 M	vor!	ું શ	no)).												
		F:	6-	→ H							J۵	ς,	ΗL	6					K,H	46	-,	KEF	r		
I)	G	Ker	t	<u>ا</u>	Tπ	12			IL.) _K ,	LIOI	_ ≘	¥ K	N/N	s		II.) 6	3/K/	/H/2	<i>,</i> ≅	G/H			
											NI JI			, .					/	/ K					
TEOT	REL	(A	(de	2 00	277	e59	000	der	Cic	2	de	50	ba	rup	205	ځ . (sea	t	: G	->	Н	ер	imorfi	smo	
	71.2		1			,				6	() ·	\ _	D _ C				00			.0					
Enti	onc	25	la	Ю	nci	OU	K		- 7	>	CK) C	Xe+	ine	UNC	λ (רוסג	esq	POU(den	cia	pige	2C+7VQ	en	tre
i)	Sυ	bgr	υρο	s	K	ta	les	Qı	æ	ke	x f	٤ ٤	k s	<u> </u>		(se	d	i ce	n .	inter	me	dios)		
						1,																			
LL) SU	pg	υþ	os (de	Н																			
Baic	es	ta	cor	res	por	nde	nci	α .	lo	5 .5	ומט	OTE	pa:	s r	100	ma	lles								
			•		,							J	,												

Pemostración				
Notemos que	s: K ≤ G =>	(1)		
	x = f(a)	y=f(b) →	$xy^{-1} = f(a)f(b)^{-1} = f(a)$	(ab-1) ∈ f(k) pues ab-16
Análogamen	e, si L = H =>	f-'(L) ≤6	:	
ξ-'(L) =	4aEG f(a) EL }			
a,b	f (ab-1) = f(a) f	(6)-1 ∈ L ≤ H	>> ab-'∈ f-'	a)
Veamos que	ker f c f-'(L):	Sea at Ke	F => f(a) = e E L	=> a ∈ f - (L)
firmación: L	a aplicación L +	→ }-,(\(\(\))	es inversa de K	\mapsto f(κ), entre los
consun tos	(i) y (ii)			
Demostración				
Z-, (Z(K)) :	= fae G f(a) e fo	(K)		
Sea Kerfé		f(k) => f	$(\alpha k^{-1}) = f(\alpha) f(k)^{-1}$	=e => ak-1 E kerf ≤
=> a E k	<k .:="" 5-'(<="" =="" k="" td=""><td>F(K)) ⊆ K</td><td>y claramente K</td><td>G 2-, (£(K))</td></k>	F(K)) ⊆ K	y claramente K	G 2-, (£(K))
∴ K = f	-'(f(K)) Y ker f	4 K 4 G		
Plesta ver qu	e f(f-'(L))=L	₩L≤H		
C) Oovia				
2) sea x6	EL, $x = f(a)$ ($f epi$	2ef-'(L) (pues f(a) E L)	
Por último t	enemos que ver qu	e subgrupos 1	normales se corres	sponden con subgrupos
	CK) Q Imf = H		pues yEImf, y=f(b),be	x=f(a) & f(k) G ack
4xy-1= f(b)	f(a) f(b) ⁻¹ = f(ba N K4			
nalogamente,	Si Lat => f-1			