Problem 1 (1.4.7). The family of mappings introduced here plays an important role in complex analysis. These mappings, sometimes called **Blaschke factors**, will reappear in various applications in later chapters.

(a) Let z, w be two complex numbers such that $\bar{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\bar{w}z}\right|<1 \quad \text{if } |z|<1 \ \ \text{and} \ |w|<1,$$

and also that

$$\left|\frac{w-z}{1-\bar{w}z}\right|=1 \quad \text{if } |z|=1 \ \text{or } |w|=1.$$

Hint: Wy can one assume that z is real? It then suffices to prove that

$$(r-w)(r-\bar{w}) \le (1-rw)(1-r\bar{w})$$

with equality for appropriate r and |w|.

(b) Prove that for a fixed w in the unit disc \mathbb{D} , the mappings

$$F: z \mapsto \frac{w-z}{1-\bar{w}z}$$

satisfies the following conditions:

- (i) F maps the unit disc to itself (that is, $F: \mathbb{D} \to \mathbb{D}$), and is holomorphic.
- (ii) F interchanges 0 and w, namely F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F: \mathbb{D} \to \mathbb{D}$ is bijective. Hint: Calculate $F \circ F$.

Proof.

Problem 2 (1.4.9). Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad and \quad \frac{1}{r} \frac{\partial u}{\partial \theta} = -\frac{\partial v}{\partial r}.$$

Use these equations to show that the logarithm function defined by

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$

is holomorphic in the region r > 0 and $-\pi < \theta < \pi$.

Proof.

Problem 3 (1.4.10). Show that

$$4\frac{\partial}{\partial z}\frac{\partial}{\partial \bar{z}} = 4\frac{\partial}{\partial \bar{z}}\frac{\partial}{\partial z} = \Delta,$$

where Δ is the **Laplacian**

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

Proof.

Problem 4 (1.4.13). Suppose that f is holomorphic in an open set Ω . Prove that in any one of the following cases:

- (a) $\Re(f)$ is constant;
- (b) $\Im(f)$ is constant;
- (c) |f| is constant;

one can conclude that f is constant.

Proof.

Problem 5 (1.4.17). Show that if $\{a_n\}_{n=0}^{\infty}$ is a sequence of non-zero complex numbers such that

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = L,$$

then

$$\lim_{n \to \infty} |a_n|^{1/n} = L.$$

In particular, this exercise shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.

Proof.

Problem 6 (2.6.1). Prove that

$$\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}.$$

These are the **Fresnel Integrals**. Here, \int_0^∞ is interpreted as $\lim_{R\to\infty}\int_0^R$. Hint: Integrate the function e^{-x^2} over the $\pi/4$ semicircle thing. Recall that $\int_{-\infty}^\infty e^{-x^2} = \sqrt{\pi}$.

Proof.

Problem 7 (2.6.11). Let f be a holomorphic function on the disc D_{R_0} centered at the origin and of radius R_0 .

Proof. (a) Prove that whenever $0 < R < R_0$ and |z| < R, then

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\varphi} \Re\left(\frac{Re^{i\varphi} + z}{Re^{i\varphi} - z}\right)) d\varphi.$$

(b) Show that

$$\Re\left(\frac{Re^{i\gamma}-r}{Re^{i\gamma}-r}\right) = \frac{R^2-r^2}{R^2-2Rr\cos\gamma+r^2}.$$

Hint: For the first part, note that if $w = R^2/\bar{z}$, then the integral of $f(\zeta)/(\zeta - w)$ around the circle of radius R centered at the origin is zero. Use this, together with the usual Cauchy integral formula, to deduce the desired identity.

Problem 8 (2.6.14). Suppose that f is holomorphic in an open set containing the closed unit disc, except for a pole at z_0 on the unit circle. Show that if

$$\sum_{n=0}^{\infty} a_n z^n$$

denotes the power series expansion of f in the open unit disc, then

$$\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = z_0$$

Proof.