113年 網際網路期末考 考古題

第一題

a 判斷要從哪個路由器的 interface 出去,是用課本的 forwarding table 圖

Destination Address Range	Link interface	
11001000 00010111 00010*** *******	0	
11001000 00010111 00011000 ******	1	
11001000 00010111 00011*** ******	2	
otherwise	3	

examples:

DA: 11001000 00010111 00010110 10100001 which interface?

DA: 11001000 00010111 00011000 10101010 which interface?

- b 問子網路遮罩,網路的部分是哪些(題目是 200.23.16.0/23)
- c 問 prefix 的好處

· longest prefix matching –

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

第二題

a mobility direct routing 畫圖

b direct 相比 indirect 有什麼好處

overcome triangle routing problem

第三題

a 講義 go-back-n 的圖,問接下來的四個 pkt 為何

b ACK & timeout retransmission 在 RDT 裡面的 key point 第四題

a 如何判斷發生 TCP congestion, 應該有兩個條件

How to Perceive Congestion

- Timeout
- Three duplicate acknowleges

b AIMD 怎麼運作的

Additive Increase Multiplicative Decrease (AIMD)

- Successful Transmission.
 - CongWin = CongWin + I

Packet Loss.

CongWin = CongWin /2

a LEO 的優點,寫兩個

人人都說低軌好

	同步(GEO)	中軌(MEO)	低軌(LEO)	
高度(km)	35,786	2,000~35,786	500~2,000	
繞地週期	~24hr 12hr@2萬k		1.5hr@500km	
信號延遲時間 One way	250msec	100msec	20msec	
發射成本	高	中	低	
發射功率	市	中	低	
衛星單價	中	高	低	

b matter 系統架構,用 protocol stack 表示(不太確定)

第六題

畫出 Dijkstra's algorithm

Dijkstra's algorithm: another example

St	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux 🕶	2,u	4,x		2,x	∞
	2	uxy	2,u	3,y			4,y
	3	uxyv 🗸		3,y			4,y
	4	uxyvw ←					4,y
	5	HXVVW7 ←					

