第一章 大数定律与中心极限定理

Remark. 相美知识

依概率收敛设 Y_1, Y_2, \ldots 是一个随机变量的序列,a 是一个常数,对于任意的给定正数若有 $\lim_{n\to\infty} P\{|Y_n-a|<\epsilon\}=1$,则称该随机变量的序列依概率收敛与 a,记作 $Y_n\stackrel{P}{\to}a$

切比雪夫大数定律设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立, 数学期望 EX_i 和方差 DX_i 都存在, 并且方差有公共上界, 即 $DX_i \leq c, i = 1, 2, \cdots$,则对任意给定的 $\varepsilon > 0$,都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n \mathbf{E} X_i \right| < \varepsilon \right\} = 1.$

伯努利大数定律设随机变量 X_n 服从参数为 n 和 p 的二项分布, 即 $X_n \sim B(n,p)$, μ_n 是 n 次试验中事件 A 发生的次数 $(n=1,2,\cdots)$,则对任意 $\varepsilon>0$,都有 $\lim_{n\to\infty} \mathbf{P}\left\{\left|\frac{\mu_n}{n}-p\right|<\varepsilon\right\}=1$.

辛钦大数定律设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立同分布, 期望存在, 记 μ 为它们共同的期望, 则对任意 $\varepsilon > 0$,都有 $\lim_{n \to \infty} \mathbf{P} \left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| < \varepsilon \right\} = 1.$

Remark. 三个考点

(1) 切比雪夫不等式

$$P\{|X - EX| \ge \epsilon\} \le \frac{DX}{\epsilon^2}$$
,或者 $P\{|X - EX| < \epsilon\} > 1 - \frac{DX}{\epsilon^2}$

(2) 大数定理

$$\frac{1}{n} \sum_{i=1}^{n} \overline{X_i} \xrightarrow{P} E\overline{X_i}$$

(3) 中心极限定理

$$\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

(4) 不同定理的成立条件的差别

切比雪夫大数定理要求 X_i 相互独立, 均值方差存在, 且方差具有公共上界

伯努利大数定理要求 $X_i \sim B(n, p)$

辛钦大数定律要求 X_i 独立同分布, 期望存在

列维-林德伯格定理要求 X_i 独立同分布, 且期望方差均存在

棣莫弗-拉普拉斯定理要求 $X_i \sim B(n,p)$

- 1. 设随机变量 $X_1, X_2 ... X_n$ 相互独立, 令 $S_n = X_1 + X_2 + ... + X_n$, 则根据列维-林德伯格 定理, 当 n 充分大的时候 S_n 近似服从正态分布, 则要求 X_1, X_2, \ldots, X_n 满足 ()
 - (A) 有相同的期望与方差
- (B) 服从同一离散型分布
- (C) 服从同一均匀分布 (D) 服从同一连续型分布

Solution. 答案选 C

2. (2022, 数一) 设随机变量 X_1, X_2, \dots, X_n 相互独立同分布, $\mu_k = E(X_i^k)(k=1,2,3,4)$ 。由 切比雪夫不等式, 对任意 $\varepsilon > 0$, 有 $P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} - \mu_{2}\right| \geq \varepsilon\right\} \leq$

$$(A) \frac{\mu_4 - \mu_2^2}{n\varepsilon^2} \quad (B) \frac{\mu_4 - \mu_2^2}{\sqrt{n}\varepsilon^2} \quad (C) \frac{\mu_2 - \mu_1^2}{n\varepsilon^2} \quad (D) \frac{\mu_2 - \mu_1^2}{\sqrt{n}\varepsilon^2}$$

Solution. 首先需要确定 $E(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})$ 是否等于 μ_{2} 显然, 所以这个式子满足切比雪夫 不等式, 故根据切比雪夫不等式有

原式
$$\geq \frac{D(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2})}{\epsilon^{2}} = \frac{\mu_{4} - \mu_{2}^{2}}{n\epsilon^{2}}$$

3. (2022, 数一) 设随机变量 X_1, X_2, \cdots, X_n 相互独立同分布, X_i 的概率密度为

$$f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{其他} \end{cases}$$

则当 $n \to \infty$ 时, $\frac{1}{n} \sum_{i=1}^{n} X_i^2$ 依概率收敛于?.

Solution. 由大数定理有 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\overset{P}{\rightarrow}EX_{i}^{2}$, 又期望的定义有

$$EX_i^2 = 2\int_0^1 x^2(1-x)dx = \frac{1}{6}$$

3

4. (2020, 数一) 设 X_1, X_2, \dots, X_n 为来自总体 X 的简单随机样本, $P\{X = 0\} = P\{X = 1\} = \frac{1}{2}$, $\Phi(x)$ 表示标准正态分布函数。利用中心极限定理得 $P\left\{\sum_{i=1}^{100} X_i \leq 55\right\}$ 的近似值为

$$(A) \ 1 - \Phi(1) \quad (B) \ \Phi(1) \quad (C) \ 1 - \Phi(0.2) \quad (D) \ \Phi(0.2)$$

Solution. 由中心极限定理有 $\sum_{i=1}^{100} X_i \sim N(50, 25)$ 标准化后所求概率为

$$P\{\frac{X-50}{5} \le 1\} \implies \Phi(1)$$