# IMMO ELIZA DATA ANALYSIS

TEAM 5

Yusra

Zelim

Rasmita

Muntadher

# OBJECTIVE

Perform an initial analysis of the scraped data to create visualizations and establish the foundation for the Machine Learning model.



#### **OBSERVATIONS AND FEATURES**

**Observations**: These are the rows in your dataset, representing each individual instance .

**Features**: These are the columns in your dataset, representing the attributes or characteristics of each observation. For example, features in a real estate dataset could include "location," "price," "number of bedrooms.



#### **After Data Cleaning**

Number of (rows): 17258 Number of (columns): 23

# THE PROPORTION OF MISSING VALUES PER COLUMN.

| <ul> <li>Construction year</li> </ul> | 44%    |
|---------------------------------------|--------|
| <ul> <li>Total area sqm</li> </ul>    | 10.08% |
| <ul> <li>Surface land sqm</li> </ul>  | 48.01% |
| <ul> <li>Frontages</li> </ul>         | 34.89% |
| <ul> <li>Terrace sqm</li> </ul>       | 17.40% |
| <ul> <li>Garden sqm</li> </ul>        | 3.89%  |
| <ul> <li>Latitude</li> </ul>          | 18.67% |
| <ul> <li>Longitude</li> </ul>         | 18.67% |

- Primary Energy Consumption sqm 35.18%
- Cadastral Income 59.55%



#### VARIABLES YOU WOULD DELETE.

#### Variable Deletion in Real Estate Dataset for Immo Eliza

During this review, certain variables were identified as <u>redundant</u> or <u>irrelevan</u>t for our specific objectives and were therefore removed. Also variables with a high percentage of missing values (e.g., more than 40%).

- 1. Surface land sqm
- 2. Frontages
- 3. Cadastral Home
- 4. Terrace FL
- 5. Garden FL
- 6. Primary Energy Consumption
- 7. Heating type



#### REMOVING THESE VARIABLES IS EXPECTED TO

- Improve Model Simplicity: Fewer variables reduce model complexity, which can lead to better interpretability and faster computation.
- Focus on Key Features: Concentrating on variables that have a more direct impact on property prices will help refine the accuracy of predictions.





# QUANTITATIVE

- Price
- Total Area
- No. of bedrooms
- Terrace(sqm)
- Garden(sqm)
- Primary Energy Consumption per sqm

# QUALITATIVE

## Nominal

- ID
- Property Type
- Sub property type
- Location data

## Ordinal

- Construction year
- State of building
- Kitchen level

## Binary

- Swimming pool
- Double glazing
- Furnished
- Open Fire
- Flood zone

# **CONVERSION METHODS**

- Numeric Encoding
- Label Encoding
- One hot encoding
- Frequency encoding









# Top 5 variables



## Distribution of Properties by Total Area (sqm)



## Average Prices per sqm in Belgium



### Average Prices per sqm in Flanders



## Average Prices per sqm in Wallonia



# Conclusion

- Price is most correlated with the values of total area and number of bedrooms.
- Ordinal variables in our dataset have low correlation with price.
- Garden area has the most outliers.
- Brugge is the most expensive and leper is the least expensive locality in Flanders.
- **Nivelles** is the most expensive and **Philippeville** is the least expensive locality in Wallonia.
- West Flanders is the most expensive and Hainaut is the least expensive province in all of Belgium.

