

pn Преход

Преговор – ниво на Ферми в примесни полупроводници

n-тип полупроводник

р-тип полупроводник

Формиране на рп преход

pn прехода се формира в полупроводнов монокристал, в който една област е легирана с акцепторни примесни атоми, за да се образува р област, а съседната област е легирана с донорни атоми за образуване на п регион.

Границата, разделяща n и р областите, се нарича металургичен граница.

Най-често, легирането се извършва посредством йонна имплантация.

Формиране на р-п преход

Първоначално в металургичната граница има много голям градиент на концентрацията както на електрони така и на дупки. Основните токоносители в n областта (електрони) ще започнат да дифундират в p областта. Репективно, основните токоносители в p областта (дупки) ще започнат да дифундират в n областта.

Обратно на свободните токоносители, йоните никога не се движат. Те остават фиксирани във възлите на кристалната решетка поради ковалентни връзки в полупроводниковата структура.

Когато електроните дифундират от областта n, в нея остават положително заредените донорни атоми. По същия начин тъй като дупките дифундират от р областта, там остават отрицателно заредени акцепторни атоми.

Образува се **обемен заряд**, който индуцира електрическо поле в района близо до металургичния преход.

Това поле изтласква електроните и дупките от областта на обемния заряд, поради което тя се нарича **обеднена** област.

В термично равновесие, влиянието на дифузията и на полето на обемния заряд се уравновесяват.

Ако означим широчината на обеднената област с d и интензитета на електрическото поле с E, потенциалната разлика между двете области на pn прехода ще бъде

$$U_0 = E.d$$

 U_0 се нарича бариерен потенциал.

При стайна температура (25 °C) бариерният потенциал за Si диоди е приблизително 0.7V.

Зонна диаграма на pn преход в термично равновесие

$$U_0 = |\varphi_{Fp}| + |\varphi_{Fn}| = \varphi_t \ln \left(\frac{N_a N_d}{n_i^2} \right)$$

$$\varphi_t = \frac{kT}{e} = 0.0259 \, V$$
 при Т=300К

 U_0 — бариерен потенциал

 $arphi_t$ – топлинен потенциал

k — константа на Болцман

T- абсолютна температура

e — заряд на електрона

Новото на Ферми е едно и също за цялата система.

При преминаване през зоната на обемен заряд, нивата на валентната зона и зоната на проводимост се огъват, защото отстоянието им от нивито на Ферми е различно за р и n областите.

Зонна диаграма на pn преход в термично равновесие

Защо U_0 се нарича "бариерен" потенциал? Електроните в зоната на проводимост на n областта срещата "бариера" когато се опитат да преминат в зоната на проводимост на р областта. Височината на тази бариера е eU_0

Обратно включване на pn преход

Ако приложим потенциал U_R между областите р и n, ще се наруши условието за равновесие — нивото на Ферми вече няма да бъде постоянно през система.

Бариерният потенциал се повишава до U_o + U_R

Обеднената област действа като изолатор, предотвратявайки значителен поток на електрически ток (освен ако външен източник на екергия – например светлина – не предизвиква генериране на двойки електрон-дупка).

Пробив

Обратното напрежение не може да бъде увеличавано неограничено – при определено напрежение обратният ток ще се увеличи бързо. Приложеното напрежение в тази точка се нарича напрежение на пробив.

Съществуват няколко механизма на пробив:

1. Пробивът на Zener се обяснява с тунелиране на токоносители през рп прехода.

В силно легиран преход, енергийните зони от двете страни на прехода са достатъчно близки една до друга.

Електроните могат да тунелират директно от валентната зона на р областта в зоната на проводимост на n областта.

Лавинен пробив

2. Лавинният пробив възниква, когато електрони или дупки, движейки се в областта на обемния заряд, придобиват достатъчно енергия от електрическото поле, за да създадат двойки електрон-дупка чрез сблъсък с електроните на неутрални атоми.

Топлинен пробив

3. Ако продължим да увеличаваме обратното напрежение върху рп прехода ще се увеличава и обратния ток.

Протичането на ток води до отделяне на топлина и до повишаване на температурата.

Рано или късно, това ще доведе до необратимо разрушаване на pn прехода.

Право включване на pn преход

Обратно включване

Право включване

Намаленият бариерен потенциал вече не е в състояние да спре дифузията на токоносители. През pn прехода ще протече ток.

Волта-Амперна характеристика на идеален диод

$$I = I_S \left(e^{\frac{U}{\varphi_T}} \right) - 1$$

I – ток през диода

 Is — ток на насищане

U – напрежение върху диода

 $arphi_t$ – топлинен потенциал

John Bardeen(I), William Shockley and Walter Brattain(r), 1948

1956 Нобелова награда по физика за изследване свойствата на полупроводниците и откриване на транзистора.

Влияние на температурата - обратно включване

Figure 2. Typical Reverse Current

Токът на насищане I_s се удвоява на всеки 10 ^{o}C увеличение на температурата.

Тъй като обратният ток се формира от топлинно генерирани неосновни токоносители, той силно зависи от изменението на температурата.

Влияние на температурата – право включване

$$TKU_F = \frac{dU}{dT} \approx \frac{\Delta U}{\Delta T} | I = const$$

$$TKU_F \approx -2 \ mV/^{\circ}C$$

Ако $T \uparrow mo U \downarrow при I=const$

Figure 1. Typical Forward Voltage

Диодът има **отрицателен температуран коефициент** на напрежението U_{F} Това позволява диодите да се използват като датчици за температура, както и за температурна компенсация.

Преход метал-полупроводник Прехо на Шотки

Зонна диаграма

Преди контакт, нивото на Ферми в полупроводникът е над това в метала. За да може нивото на Ферми да е постояно в цялата система, електрони от полупроводника преминават в по-ниските енергийни състояния в метала.

Положително заредени донорни атоми остават в полупроводника, създавайки област на пространствен заряд

 ϕ_m - работна функция на метала ϕ_s - работна функция на полупроводника χ — електронен афинитет на полупроводника

$$arphi_{B0} = arphi_m - \chi$$
 – бариера на Шотки

$$U_0 = arphi_{B0} - arphi_n$$
 - бариерен потенциал

Зонна диаграма – право и обратно включване

Зонните диаграми при право и обратно включване на прехода на Шотки са подобни на тези при рп прехода. Подобна е и волт-амперната карактеристика.

Съществена разлика, е че токът в прехода на Шотки се формира само от електрони – т.е. от основни токоносители. Следователно, той зависи по-слабо от температурни промени.