D6.1. Find the currents I_1 and I_2 and the output voltage V_0 in the network in Figure

D6.2. Given the network in Figure D6.2, find the input impedance of the network and the current in the voltage source.

FIGURE D6.2

Ans:
$$\mathbb{Z}_i = 3 + j3 \Omega$$
, $\mathbb{I}_s = 2 - j2 A$.

D6.3. Compute the current I_1 in the network in Figure D6.3.

I, =
$$\frac{1220^{\circ}}{2 - j2 + \frac{1}{4}(4 - j2)}$$
=
$$\frac{12}{3 - j2.5}$$
=
$$3.09 \le 39.81^{\circ}$$

Ans:
$$I_1 = 3.07/39.81^{\circ} A$$
.

D6.4. Find V_0 in the network in Figure D6.3

Ans:
$$V_0 = 3.07/39.82^{\circ} \text{ V}.$$

$$V_{\bullet} = 2I_{2} = 2 \times \frac{I_{1}}{2} = I_{1} = 3.09 \times 239.81^{\circ} \sqrt{2}$$

• Ex1

(15 points) Consider the following circuit.

(a) (10 points) Complete the following equations about phasor currents, I_1 and I_2 .

$$I_1 + I_2 = I_2$$

$$I_1 + I_2 = I_2$$

$$I_2 = I_2$$

(b) (5 points) When the calculated $I_2 = 0.343 + j0.686 = 0.767 \angle 63.4^\circ = 0.767 e^{j63.4^\circ}$ and the frequency of the voltage source is 10 Hz, find **V**c and v_c(t).

V_c = 0.767
$$\angle$$
 -26.6

V_c(t) = 0.767 cos (10±2-26.6°)

• Ex2

(10 points) Consider the following circuits.

Complete the following equations about phasor currents, \mathbf{I}_1 and \mathbf{V}_1 .

• Ex3. Find the inductance between terminals a and b

