

지난 학습 내용

운영체제와 사용자 인터페이스

운영체제의 개요 명령행 인터페이스,그래픽 인터페이스

운영체제의 분류 일괄처리, 시분할시스템,다중프로그래밍, 다중처리

운영체제의 종류 및 활용 MS-DOS, 원도우, Linux, Unix

데이터베이스의 개요

2 데이터베이스의 모델

3 DBMS

1. 데이터베이스의 개요

데이터와 정보

데이터가 사람에게 유용한 의미로 쓰여질 수 있도록 처리되면 정보(Information)

데이터, 정보, 지식, 지혜

- 데이터(data)
 - 단순한 사실의 나열
- 정보(information)
 - 의미있는 데이터
- ➤ 지식(knowledge)
 - 가치있는 정보
- ➤ 지혜(wisdom)
 - 패턴화된 지식

http://yjhyjh.egloos.com/viewer/39721

데이터, 정보, 지식, 지혜를 쌓는 과정: 맥도널드 지점장의 사례

- ➤ 데이터
 - 맥도널드 지점에서 영수증을 출력 (기록 그 자체)
- ▶ 정보
 - 매출정보
 - ✓ 오늘-50만원, 어제- 60만원, 일 평균 20만원
- ▶ 지식
 - 매출액 변동이라는 정보를 가지고 원인을 분석하여 매출액 증대라는 가치를 창출
 - ✓ 날씨정보를 미리 예측하여 눈이 오는 날은 배달 10% 할인 판촉을 통해 매출을 더욱 높여야 겠다고 생각하고 이 아이디어가 성공하여 매출이 100만원까지 증가
- ➤ 지혜
 - 눈오는 날의 매출액 변동이라는 하나의 지식에서 온도와 계절변화라는 패 턴에 적용시켜 지식을 패턴화하여 메뉴얼화
 - ✓ 온도와 계절변화라는 패턴에 적용시켜 지식을 패턴화
 - 봄(소풍), 여름(운동회), 가을(단풍놀이)

http://egloos.zum.com/asteray/v/2746553

데이터베이스의 정의와 역할

- ➤ 데이터베이스의 정의
 - '관련 있는 데이터의 저장소'
- 데이터베이스의 역할
 - 여러 사람이나 응용시스템에 의해 참조 가능하도록 서로 논리 적으로 연관되어 통합 관리되는 데이터의 모임
 - 데이터베이스에 저장된 자료는 데이터를 추가하고, 찿고, 정 렬하고, 분류하고, 요약하고, 출력하는 등의 여러 조작을 통하 여 정보로 활용

데이터베이스 특징

데이터베이스 특징	내용
데이디메이즈 극성	니증
통합된 데이터	데이터의 특성, 실체 상호 간의 의미 관계와 형식 관계를 기술한 개념적인 구조에 따라서 편성된 데이터의 집합
관련 있는 데이터	동시에 복수의 적용 업무나 응용 시스템에 대한 데이터의 공급 기지로서 공유할 필요 가 있는 데이터를 보관, 관리
중복의 최소화	동일한 내용의 데이터가 중복되지 않아야 하고, 다양한 접근 방식이 마련되어 있어야하며, 검색이나 갱신이 효율적으로 이루어질 수 있도록 중복을 최소화
보조기억장치에 저장	자기 디스크나 자기 테이프 등 컴퓨터에서 사용할 수 있는 보조 기억 장치에 저장
무결성	데이터가 정확성을 항상 유지
동시 접근	여러 사람이 동시에 자료에 접근하더라도 문제없이 작업을 수행
보안 유지	데이터베이스의 관리 및 접근을 효율적으로 관리하여 보안 유지
장애 회복	문제가 발생하더라도 이전 상태로 복구 가능

데이터베이스 관리시스템(DBMS : Database Management System)

- ▶ 데이터베이스를 관리하는 소프트웨어
- 데이터와 응용 프로그램 사이에서 중재자 역할로서 모든 프로그램들이 데이터베이스를 유용하게 활용할 수 있도 록 관리해 주는 소프트웨어

필드(Fields)

- ➤ 필드
 - 논리적 의미가 있는 자료
 - 이름, 학번, 생년월일, 주소
- ➤ 데이터 유형(data types)
 - 이름 필드 문자열형
 - 학번필드 정수형

레코드

▶ 필드에는 실제 자료 값이 저장되며 이러한 필드가 여러 개 모이면 하나의 레코드(Record)가 됨

파일과 데이터베이스

- ➤ 파일
 - 여러 개의 레코드가 모여 구성
- ➤ 데이터베이스
 - 파일을 여러 개 모아 저장된 파일들을 논리적으로 연결해서 필요한 정보를 적절히 활용할 수 있도록 서로 관련 있는 데이 터들로 통합한 파일의 집합

파일과 데이터베이스 예

▶ 데이터베이스 예

- 필드가 학번, 이름, 학과, 주소인 학생에 대한 정보를 저장하 는 파일
- 다른 정보를 저장하는 여러 파일

데이터베이스 스키마

➤ 스키마

- 데이터베이스의 전체적인 설계
- 데이터베이스를 구성하는 정보의 종류와 관계의 구체적인 기술(description)

추상화의 세 가지 단계 (1)

- ▶ 물리적 단계: 내부 단계(internal level)
 - 저장 장치의 내부에 실질적으로 데이터가 저장될 구조와 위치를 결정
 - 하위 수준의 접근 방식을 다루고 바이트들이 어떻게 저장 장 치로부터 변환이 되는지 다름
 - 하드웨어와 직접적인 상호 작용을 다룸
 - 데이터베이스의 물리적 구조를 기술한 것으로 하위 데이터 모델을 통해 표현

추상화의 세 가지 단계 (2)

- ➤ 논리적 단계: 개념 단계(conceptual level)
 - 데이터베이스에 저장될 데이터의 종류와 데이터 간의 관계를 기술
 - 복잡한 데이터베이스의 내부 구조를 알 필요 없이 비교적 간 단한 데이터 구조로 전체 데이터베이스를 기술
- ➤ 뷰 단계: 외부 단계(external level)
 - 추상화의 최상위 단계, 사용자와 직접적인 상호작용
 - 논리적 단계에 서 나온 데이터를 사용자에게 친숙한 형태의 뷰(view)로 변환하여 사용자에게 제공
 - 서브 스키마 또는 외부 스키마(external schema)
 - ✓ 사용자마다 다른 뷰에서 본인의 관심인 데이터베이스의 일 부분을 정의한 것

데이터 독립성

➤ 데이터 독립성(data independence)

 데이터베이스의 추상화 과정에서 상위 수준의 스키마 정의에 영향을 주지 않고 해당 스키마 정의를 수정할 수 있는 능력

➤ 논리적 데이터 독립성

논리적 데이터 독립성은 사용자의 응용프로그램 자체에 영향을 주지 않고 논리적 단계에서의 논리 스키마를 수정할 수 있는 능력

물리적 데이터 독립성

사용자의 응용프로그램 자체나 데이터베이스의 논리 스키마에 영향을 주지 않고 데이터의 물리적 스키마를 수정할 수 있는 능력

2. 데이터베이스 모델

데이터베이스 모델

- 관계형 모델(relational model)
 - 데이터를 행과 열로 구성된 이차원 테이블의 집합으로 표현한 모델
 - 포인터가 존재하지 않고 테 이블을 구성하는 동일한 열 로 데이터의 관계를 표현
 - 수학적 기초에 기본을 두고 있으며 현재 가장 널리 활 용되는 관계형 데이터베이 스(relational database) 의 데이터 모델

관계형 모델

- ➤ 관계 스키마
 - 관계의 구조를 정의
 - ✓ 관계 이름인 학생
 - ✓ 학생의 속성 구성
 - [학생(학번, 이름, 학과, 주소, 지도교수)]
 - 정적인 특성
 - ✓ 관계 이름과 속성 이름이 처음에 한번 결정되면 시간의 흐름 과 관계없이 동일한 내용이 계속 유지
- ➤ 관계 사례
 - 관계 스키마에 삽입되는 실제 데이터 값
 - ✓ 실제로 관계 내부에 삽입된 하나의 자료
 - (2000003, 김근태, 001, 인천, 0002)
 - 동적인 특성
 - ✓ 시간이 변함에 따라 실제 사례 값이 변함

속성과 튜플

- ➤ 속성(attribute)
 - 관계에서 각 열을 속성
 - 실제 데이터베이스에서는 필드
 - DBMS에서는 열(column)이라고 표현
- ➤ 튜플(tuple)
 - 하나의 관계에서 각 행을 튜플
 - 관계에서 정의된 모든 속성 값들의 집합
 - 실제 데이터베이스에서는 레코드
 - DBMS에서는 행(row)이라고 표현
- ➤ 도메인
 - 하나의 속성이 취할 수 있는 모든 값의 범위를 의미

관계의 특징

특징	내용
속성 이름의 유일성	한 관계에서 속성 이름은 유일해야 한다.
원자 값	튜플 내의 모든 값은 더 이상 나눌 수 없는 원자 값(atomic value)이어야 한다.
튜플 간의 순서	관계에서 튜플 간의 순서는 무의미하다.
속성 간의 순서	한 관계에서 속성 간의 순서는 무의미하다.
중복 불허	한 관계에서 두 튜플의 속성 값이 모두 같은 것은 불허한다.

키(Key)란?

- **>** ₹|(key)
 - 관계에서 투플들을 유일(uniqueness)하게 구별할 수 있는 하 나 이상의 속성의 집합
- ▶ 키의 특성
 - 유일성(uniqueness)
 - ✓ 하나의 릴레이션에서 모든 투풀은 서로 다른키 값을 가져 야 함
 - 최소성(minimality)
 - ✓ 꼭 필요한 최소한의 속성들로만 키를 구성

키(key)의 종류

- 수퍼키(super key)
 - 유일성을 만족하는 속성 또는 속성들의 집합
- 후보키(candidate key)
 - 하나의 관계에서 유일성과 최소성을 만족하는 속성 또는 속성들의 집합
- ▶ 주키(primary key)
 - 관계에서 여러 투플 중에서 하나의 투플을 식별하는 역할
- ▶ 외래키(foreign key)
 - 어느 관계의 속성들 중에서 일부가 다른 관계의 주키가 될 때
 - 외래키를 이용하여 관계와 관계를 서로 연결할 수 있음

3. DBMS

데이터베이스 관리 시스템 정의

➤ 데이터베이스 관리시스템

- DBMS: Database Management System
 - ✓ 데이터베이스를 정의
 - ✓ 데이터베이스를 구축
 - ✓ 데이터베이스를 조작
 - ✓ 데이터베이스를 제어
- 데이터베이스에서 정보를 쉽게 활용할 수 있도록 만든 프로그 램이자 소프트웨어

데이터베이스 관리 시스템 구성

- ➤ 저장 관리자(Storage Manager)
- ▶ 질의 처리기(Query Processor)
- ➤ DBMS 인터페이스 도구(DBMS Interface Tool)

데이터베이스 관리 시스템의 장단점

➤ 상점

- 데이터 중복을 통제 가능
- 데이터 독립성 확보
- 데이터를 동시 공유 가능
- 데이터 보안이 향상
- 데이터 무결성을 유지가능
- 표준화 가능
- 장애 발생 시 회복이 가능
- 응용 프로그램 개발 비용감 소

▶ 단점

- 비용 많이 소요
- 백업과 회복 방법이 복잡
- 중앙 집중 관리로 인한 취 약점이 존재

관계형 DBMS 제품들

▶ 오라클

• 오라클(Oracle) 사가 개발한 오라클은 세계적으로 가장 성공 한 DBMS의 한 제품

MySQL

• MySQL은 대표적인 오픈 소스 DBMS 제품

➤ MSSQL 서버

• 마이크로소프트가 사이베이스(Sybase)를 기반으로 개발한 관계형 데이터베이스

학습정리

- 1 데이터베이스의 개요 필드, 레코드, 파일, DB, 데이터 독립성
- 2 데이터베이스 모델 관계형 모델, 속성, 투플, 도메인, 키
- 3 DBMS 정의, 구축, 조작, 제어

9주. 데이터베이스

이번 강의를 마칩니다. 수고하셨습니다.