da

2 title

3 title

4 Opracowanie wyników

Masa miedzi wydzielonej podczas elektrolizy na katodzie

$$m = 0,301q$$

Zmiana masy anod podczas elektrolizy

$$M = 0,298q$$

Oblicz wartość współczynnika elektrochemicznego wykorzystując wzór $k=\frac{m}{Lt}$

$$k = \frac{0,301}{0.5*30*60} = 0,000334[\frac{g}{C}]$$

Korzystając z otrzymanej wartości współczynnika k oblicz, przy pomocy wzoru $F = \frac{\mu}{w \cdot k}$

$$F = \frac{63.58}{2*0,000334} = 95179,64 \left[\frac{C/mol}{\right]}$$

Posługując się wyznaczoną doświadczalnie stałą Faradaya oblicz wielkość ładunku elementarnego

$$e = \frac{F}{N_a} = \frac{95179,64}{6,02*10^{23}} = 1.58*10^{-19}[C]$$

OBLICZANIE NIEPEWNOŚCI POMIAROWEJ

$$m = 0,301q$$

Niepewność pomiaru masy miedzi wydzielonej podczas elektrolizy przyjmujemy jako

$$u(m) = 0,00058q$$

Oblicz niepewność wartości ładunku elektrycznego, który przepłynął przez elektrolit. W tym celu obliczamy niepewność pomiaru natężenia prądu wiedząc, że jest ona równa

$$u(I) = (klasa \text{ amperomierza * zakres } / 100) = 0,5*0,75/100 = 0,0038[A]$$

Oszacuj niepewność pomiaru czasu. W zależności od oceny wielkości tej niepewności można uwzględnić ja w dalszych obliczeniach albo pominać ze względu na fakt, że jest zaniedbywalnie mała.

ją w dalszych obliczeniach albo pominąć ze względu na fakt, że jest zaniedbywalnie mała. W naszym przypadku
$$u(t)=1s$$
 $\frac{u(t)}{t}=\frac{1}{1800}=0,056\%$ Będziemy uwzględniać tę niepewność.

Ponieważ równoważnik elektrochemiczny miedzi obliczyliśmy ze wzoru $k=\frac{m}{I\cdot t}$ w którym występują tylko operacje mnożenia i dzielenia, złożona niepewność względna jest równa

$$\frac{u(k)}{k} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[\frac{u(I)}{I}\right]^2 + \left[\frac{u(I)}{t}\right]^2} = \sqrt{\left[\frac{0,00058}{0,301}\right]^2 + \left[\frac{0,0038}{0,5}\right]^2 + \left[\frac{1}{1800}\right]^2} = 0,0079$$

$$u(k) = 0,0079 * 0,000334 = 2,6 * 10^{-6} \left[\frac{g}{C}\right]$$

Stała Faradaya oraz ładunek elementarny obliczane są z wzorów, w których obliczone k mnożone lub dzielone jest przez tablicowe stałe, których niepewności są pomijalnie małe więc

$$\frac{u(F)}{F} = \frac{u(k)}{k} \quad \frac{u(e)}{e} = \frac{u(k)}{k}$$

$$u(f) = F \cdot \frac{u(k)}{k} = 95179,64*0,0079 = 751,92[\frac{C}{mol}] \quad u(e) = e \cdot \frac{u(k)}{k} = 1,58*10^{-19}*0,0079 = 1,2*10^{-21}[C]$$

Zestawienie wyników Wszystkie wartości zostały zebrane w tabeli

	wartość tablicowa	wartość wyznaczona	różnica	niepewność	niepewność względna [%]
k	0,0003294	0,000334	$5*10^{-6}$	$2,6*10^{-6}$	0,79
F	96500	95179,64	1320,36	751,92	0,79
е	$1,6*10^{-19}$	$1,58*10^{-19}$	$2*10^{-21}$	$1,2*10^{-21}$	0,79

Porównanie mas blaszek :

Zmiana mas na anodach wyniosła 0,297g

Niepewność u(m) = 0,00058g

Sprawdzamy czy ubytek masy na anodach jest równy masie wytworzonej miedzi w granicach niepewności. Będzie to prawdą gdy $|y_1-y_2| < U(y_1-y_2)$

$$|0,301-0,297|<2*\sqrt{2*0,00058^2}$$

Oznacza to, że ubytek masy nie jest równy masie wytworzonej miedzi w granicach niepewności.

5 Wnioski