MATH453 Elementary Number Theory

Lecture 9: Linear Congruence

Lecturer: Bruce Berndt Scribe: Kevin Gao

9.1 Linear Congruence

We are all familiar with linear equations like

$$ax + b = 0$$

We are going to talk about a different kind of linear "equation" known as linear congruence. They are of the form

$$ax \equiv b \mod m$$

Let's consider some linear congruence. First, we look at $3x \equiv 1 \mod 6$. If we try everything from 0 to 5, it is easy to notice that this does not have a solution.

How about $2x \equiv 4 \mod 6$. We have one solution $\{2, 8, 14, \ldots, \}$ and another solution $\{5, 11, 17, \ldots \}$. In total, we have two solutions. Further, these two solution sets are incongruent because elements from one set is not congruent to those from the other set modulo 6.

 $2x \equiv 5 \mod 6$ does not have a solution. But $3x \equiv 1 \mod 5$ have the solution $\{2, 7, 12, \ldots, \}$.

The two examples that do not have a solution are $3x \equiv 1 \mod 6$ and $2x \equiv 5 \mod 6$. The ones that do have solutions are $2x \equiv 4 \mod 6$ and $3x \equiv 1 \mod 5$. From these examples, we make the observation that one thing in common among the linear congruences that do not have a solution is that the GCD of a and m does not divide b. In particular, we have that $\gcd(3,6) \nmid 1$ and $\gcd(2,6) \nmid 5$. On the other hand, $\gcd(2,6) \mid 4$ and $\gcd(3,5) \mid 1$.

We can generalize this into the following theorem:

Theorem 9.1. Let $ax \equiv b \mod m$ be a linear congruence in one variable and let $d = \gcd(a, m)$. If $d \nmid b$, then the linear congruence has no solution in \mathbb{Z} . If $d \mid b$, then the linear congruence has exactly d incongruent solutions modulo m in \mathbb{Z} .

The proof can be broken into two parts:

- (1) Showing that if $d \nmid b$, then the linear congruence has no solution. This can be proved using the contrapositive of the original statement (namely, if the linear congruence has solution, then $d \mid b$);
- (2) Showing that if $d \mid b$, then the linear congruence has a solution, x_0 . And given a solution x_0 , we can construct infinitely many solutions of a given form and that among those infinitely many solutions, we have d incongruent solutions. More specifically, it suffices to show the following:
 - a. Show that a solution x_0 exists.
 - b. Given a solution x_0 , show that $ax \equiv b \mod m$ has infinitely many solutions in \mathbb{Z} of a given form.
 - c. Given a solution x_0 , show that every solution has the form in (b).
 - d. Show that there are d incongruent solutions.

Proof. We begin the proof by proving Part (1) by its contrapositive.

Assume that $ax \equiv b \mod m$ has a solution. By definition of congruence, $m \mid ax - b$. By definition of divisibility, $m \mid ax - b$ iff there exists some $y \in \mathbb{Z}$ such that my = ax - b. This, in turn, is true iff ax - my = b has a solution. Since d is the gcd of a and m, $d \mid a$ and $d \mid m$. By Proposition 2.2, it follows that $d \mid ax - my$. Since b = ax - my iff $ax \equiv b \mod m$ has a solution, $d \mid b$ if the original linear congruence has a solution.

Now we proceed to prove **Part** (2)a. Assume $d \mid b$. Since d is the **gcd** of a and m, by **Proposition** ??, there exists $r, s \in \mathbb{Z}$ such that

$$d = ar + ms$$

Further, $d \mid b$ implies b = de for some $e \in \mathbb{Z}$. So, by substitution

$$b = de = (ar + ms)e = a(re) + m(se)$$

which clearly suggests a solution with x = re and y = -se that solves ax - my = b (and thus solves $ax \equiv b \mod m$).

For Part (2)b, let x_0 be an arbitrary solution for the linear congruence $ax \equiv b \mod m$. Let $n \in \mathbb{Z}$ and we consider

$$x = x_0 + \left(\frac{m}{d}\right)n$$

Since $d \mid m, \frac{m}{d}$ is an integer, so it follows that x is also an integer. Furthermore, we observe that

$$a\left(x_0 + \left(\frac{m}{d}\right)n\right) = ax_0 + a\left(\frac{m}{d}\right)n$$
$$= ax_0 + \left(\frac{a}{d}\right)mn$$
$$\equiv ax_0 \mod m$$
$$\equiv b \mod m$$

Since for every solution x, $ax \equiv b \mod m$ but also $b \equiv a(x_0 + (\frac{m}{d})n) \mod m$, for all $n \in \mathbb{Z}$,

$$x_0 + \left(\frac{m}{d}\right)n$$

is also a solution to $ax \equiv b \mod m$. It follows that given any solution x_0 of $ax \equiv b \mod m$, there are infinitely many solutions of the form $x_0 + (m/d)n$ for $n \in \mathbb{Z}$.

For Part 2(c), let x_0 be a solution of $ax \equiv b \mod m$. Then, $ax_0 - my_0 = b$ for some $y_0 \in \mathbb{Z}$. Now, any other solution x of $ax \equiv b \mod m$ implies the existence of $y \in \mathbb{Z}$ with ax - my = b, and we have

$$(ax - my) - (ax_0 - my_0) = b - b = 0$$

and

$$a(x - x_0) = m(y - y_0)$$

Dividing both sides by d, we have

$$\left(\frac{a}{d}\right)(x-x_0) = \left(\frac{m}{d}\right)(y-y_0)$$

Now $\frac{m}{d} \mid (\frac{a}{d})(x-x_0)$. Since $\gcd(\frac{a}{d}, \frac{m}{d}) = 1$, we have $\frac{m}{d} \mid x-x_0$. Consequently, $x-x_0 = (\frac{m}{d})n$ for some $n \in \mathbb{Z}$. Equivalently, $x = x_0 + (\frac{m}{d})n$ for some $n \in \mathbb{Z}$. Combining this result with 2(b), we have shown that all solutions of $ax \equiv b \mod m$ are given precisely by $x_0 + (\frac{m}{d})n$ for $n \in \mathbb{Z}$.

For $2(\mathbf{d})$, to determine how many incongruent solutions modulo m exist among the solutions of the form $x_0 + (\frac{m}{d})n$ for $n \in \mathbb{Z}$, we establish a **necessary and sufficient condition** (chain of iff.) for the congruence modulo m of two such solutions. Consider

$$x_0 + \left(\frac{m}{d}\right) n_1 \equiv x_0 + \left(\frac{m}{d}\right) n_2 \mod m$$

if and only if
$$\left(\frac{m}{d}\right)n_1\equiv\left(\frac{m}{d}\right)n_2\mod m$$
 if and only if
$$m\mid\left(\frac{m}{d}\right)(n_1-n_2)$$
 if and only if
$$d\mid n_1-n_2$$
 if and only if
$$n_1\equiv n_2\mod d$$

Therefore, two solutions of the form $x_0 + (\frac{m}{d})n$ are congruent modulo m if and only if the n-values of these two solutions are congruent modulo d. Thus, a complete set of incongruent solutions modulo m of $ax \equiv b$ mod m can be obtained from an initial solution $x_0 + (\frac{m}{d})n$ by letting n range over a complete residue system modulo d, that is $\{0, 1, 2, \ldots, d-1\}$.

Corollary 9.2. Let $ax \equiv b \mod m$ be a linear congruence in one variable and let $d = \gcd(a, m)$. If $d \mid b$, then there are d incongruent solutions modulo m given by

$$x_0 + \left(\frac{m}{d}\right)n$$
 $n = 0, 1, \dots, d-1$

where x_0 is a particular solution of the congruence.