(ME 543) COMPUTATIONAL FLUID DYNAMICS

Assignment - 2

Submitted by:

SIVA NAVEEN GURRAM

(Roll No: 224103108)

COMPUTATIONAL MECHANICS

Problem - 1

1. Explicit method : FTCS

$$\phi_i^{n+1} = \gamma_x \phi_{i+1}^n + (1 - 2\gamma_x) \phi_i^n + \gamma_x \phi_{i-1}^n$$

- Number of time iterations to converge up to ϵ <10-6 = **11641**
- Physical time taken to converge up to ϵ <10-6 = **58.205**

Time (t)	No. of iterations
0.5	100
2.5	500
10	2000
25	5000
60	12000

Problem - 2

2. Implicit method: BTCS

Line Gauss-Seidel iterative method (*TriDiagonal Matrix Algorithm*)

$$\gamma_x \phi_{i-1}^{n+1} - (1 + 2\gamma_x)\phi_i^{n+1} + \gamma_x \phi_{i+1}^{n+1} = -\phi_i^n$$

- Number of time iterations to converge up to ϵ <10-6 = **6230**
- Physical time taken to converge up to ϵ <10-6 = **62.29**

Time (t)	No. of iterations
1	100
5	500
10	1000
70	7000

Problem - 2

2. Implicit method: Crank-Nicolson

Line Gauss-Seidel iterative method (*TriDiagonal Matrix Algorithm*)

$$\frac{\phi_i^{n+1} - \phi_i^n}{\Delta t} = \frac{\Gamma}{2} \left[\frac{\phi_{i+1}^{n+1} - 2\phi_i^{n+1} + \phi_{i-1}^{n+1}}{(\Delta x)^2} + \frac{\phi_{i+1}^n - 2\phi_i^n + \phi_{i-1}^n}{(\Delta x)^2} \right]$$

- Number of time iterations to converge up to ϵ <10-6 = **6189**
- Physical time taken to converge up to ϵ <10-6 = **61.88**

Time (t)	No. of iterations
1	100
5	500
10	1000
70	7000

Error Vs Time

Error vs Time plot on log-log scale