Evolution Simulations

Motivating Factors

- Understanding evolution of pathogen virulence
 - Ex: Different food sources
 elicit fast changes to bacterial
 virulence (Ketola, et al)

- Bioengineering of organisms
 - Ex: Programmed Evolution for Optimization of Orthogonal Metabolic Output in Bacteria (Eckdahl, et al)

Outline of Simulations

- Population of organisms (G) in an Environment (E(G,t)) that potentially changes with time
- The Environment has finite resources that the organisms need

- Each organism has:
 - A genotype (g)
 - A birth rate b(g, E(G,t))
 - A death rate d(g, E(G,t))
 - A mutation rate m(g, E(G,t))

Central Questions

 What distribution of genotypes in the population are stable in stable environments?

 What happens to the genotype distribution as the resources in the environment change?

What is the time frame in which the genotype distribution evolves?

Particular System

- Organism have n genes and n + 1 possible genotypes
- Genes are binary: can be 'A' or 'B'
- The Environment has 3 resources
 - 'Water' with capacity C_w >> 1 that is consumed by every organism
 - Food A with capacity C_A >> 1 is consumed by organisms with 'A' genes
 - Food B with capacity C_B >> 1 is consumed by organisms with 'B' genes

Key Functions

- death rate = constant
- mutation rate = constant
- birth rate =

$$(\frac{m}{n}(b_A + r_A(m,n))e^{\frac{-1}{C_A}\sum \frac{m_i}{n}} + \frac{n-m}{n}(b_B + r_B(m,n))e^{\frac{-1}{C_B}\sum \frac{n-m_i}{n}})e^{\frac{-N}{C_W}}$$

Experiment #1: Equilibria

Experiment #1: Equilibria

Evolution Forces

A population of a given genotype is favorable to grow when:

$$\left(\frac{m}{n}(b_A + r_A(m, n))e^{\frac{-1}{C_A}\sum \frac{m_i}{n}} + \frac{n - m}{n}(b_B + r_B(m, n))e^{\frac{-1}{C_B}\sum \frac{n - m_i}{n}})e^{\frac{-N}{C_W}} + M \cdot G > d\right)$$

And the homogeneous genomes will always be favorable when:

$$r_i e^{\frac{-N}{C_i}} > \frac{1}{n} (1 - e^{\frac{-N}{C_i}})$$

Experiment #2: Evolution

Experiment #3: Time to Recovery

- Increasing the number of genes
 - Increases the probability of mutations
 - Decreases the marginal difference between genotypes that differ by one gene

My prediction: Exponential Curve

Experiment #3: Time to Recovery

time = -313 + 192n

Next Steps

Look at more complex dynamics of changing resources

Make time dependent predictions

Look at more complex gene models

Bonus: Dynamically Changing Resources

Conclusions

- Just because a nearby genotype is favored, doesn't mean we will find it in the population
- Manipulating selection forces is a potentially powerful tool to manipulate the genotype of a population

 Realistic analyses of gene transformation is not necessarily computationally feasible with my framework

Acknowledgements

- QinQin Yu
- Oskar Hallatschek
- Evolutionary Dynamics by Martin Nowak

Questions?