Données Séquentielles Symboliques: Translittération automatique

Alexandre Bérard, Mathias Millet, Charles Robin

January 10th, 2014

Sommaire

- Introduction
 - Translittération
 - Le projet
 - Méthodologie
- Translittération
 - Règles de substitution
 - Traduction statistique
 - CRF
- Conclusion

Introduction: Translittération

Definition

Conversion de texte d'un système d'écriture à un autre, en substitutant des *graphèmes* ou des *phonèmes*.

Exemple: anglais - hindi

Type	Word	Acceptable transliterations
English word	Azure	अज्योर, अज्यॉर, अज्र्योर, अज्यॉर, एज्योर, एज्यॉर, एज्र्योर, एज़्यॉर, अज्यौर, अज्यौर, एज्यौर, एज्यौर
Foreign name	Norfolk	नोरफोल्क, नोरफोल्क, नोरफॉल्क, नोरफॉल्क,

Pourquoi?

- Traduction automatique de termes techniques, noms propres, ou requêtes Web.
- Plus besoin de maintenir un dictionnaire!

Introduction : le projet

L'objectif

Implémenter des techniques de translittération automatique

- De l'espagnol vers le portugais (SPA-POR)
- De l'anglais vers le russe (ENG-RUS)

Les données

Pour chaque paire de langages :

- Un corpus d'apprentissage : 3057 entrées pour SPA-POR, et 7262 entrées pour ENG-RUS.
- Un corpus de test : 1000 entrées.

Méthodologie

Échantillonage?

Les données fournies sont déjà séparées entre données d'apprentissage et données de test

⇒ L'échantillonage n'est pas nécessaire

Métriques

Deux métriques :

- Précision
- Distance de Levenshtein

Espagnol - Portugais

Premières considérations

- Les deux langues sont très proches (51% de précision sans rien faire)
- En appliquant les trois règles suivantes :

```
is#->e#
ción#->ção#
ido#->ídeo#
```

nous obtenons 57% de précision

⇒ De bons résultat peuvent être obtenus en déterminant des règles automatiquement

Apprentissage

Objectif

Trouver un compromis entre :

- Fiabilité : la règle ne conduit pas à de fausses translittérations
- Généralisation : la règle peut s'appliquer à beaucoup de mots

 \Longrightarrow Nous allons essayer de générer de règles en prenant ces deux paramètres en compte

Génération des règles

Partie gauche:

Aligner les mots :

```
[('#catars', '#catars'), ('is', 'e'), ('#', '#')]
```

- Enumérer la liste des candidats de gauche, de longueur > 1 :
 ['is', 'sis', 'is#', 'sis#', ...]
- Garder les candidats ayant un support suffisant :
 len([w for w in words if 'is' in w]) >= s

Partie droite:

Prendre la partie droite de règle offrant le meilleur taux de confiance ($\geq c$).

Résultats

Support s	Longueur /	Confiance c	Précision	Distance	Règles
2	6	0.80	56.8%	0.82	104
2	5	0.80	69.0%	0.58	315
2	4	0.80	68.1%	0.59	584
3	5	0.80	67.3%	0.61	195
5	5	0.80	67.2%	0.61	128
1	5	0.80	64.5%	0.68	1490
2	5	0.75	68.5%	0.59	340
2	5	0.85	68.4%	0.59	287

- Introduction
 - Translittération
 - Le projet
 - Méthodologie
- 2 Translittération
 - Règles de substitution
 - Traduction statistique
 - CRF
- Conclusion

Traduction statistique

Présentation

Équation principale des CRF

$$p(\mathbf{s}|\mathbf{o}) = \frac{1}{Z_0} exp(\sum_{t=1}^T \sum_k \lambda_k f_k(...))$$
 (1)

CRF

Méthode

- Alignement grâce à dpalign
- Utilisation de CRF++ :

```
# Unigram

U0: %x[0,0]

U1: %x[-1,0]

U2: %x[1,0]

U3: %x[-2,0]

U4: %x[2,0]

U5: %x[-3,0]

U6: %x[3,0]

Bigram

B
```

Résultats

Métriques

Table : Résultats pour le jeu de données Espagnol-Portugais

Règles	Précision	Distance d'édition
Baseline	51.0%	1.06
3 subst.	58.6%	0.76
CRF	63.9%	0.69

Résultats

Table : Résultats pour le jeu de données Anglais-Russe

Précision	Distance d'édition
49.8%	1.61

- Introduction
 - Translittération
 - Le projet
 - Méthodologie
- 2 Translittération
 - Règles de substitution
 - Traduction statistique
 - CRF
- 3 Conclusion

Bibliography

Kevin Knight and Jonathan Graehl.

Machine transliteration.

Computational Linguistics, 24(4):599-612, 1998.

Philipp Koehn.

Slides of the statistical machine translation book.

http://www.statmt.org/book/, 2010.

Philipp Koehn.

Moses, Statistical Machine Translation System, User Manual and Code Guide.

University of Edinburgh, 2014.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, and Christine Moran.

Moses: Open source toolkit for statistical machine translation.

In *Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions*, ACL '07, pages 177–180, 2007.

Conclusion

https://code.google.com/p/transliteration