Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e poi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A)=2$, tutte le altre $rk(A)=3$;
	• Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che $A^n=0$) allora det $A=0\to N$ ilpotente non invertibile allora det $A=0$
	• Se A è una matrice simmetrica, allora A^2 è simmetrica $\to M$ simmetrica se $M = M^T \Rightarrow M^T \cdot M^T = (M \cdot M)^T \Rightarrow M = M^T$, sostituisci M con A^2
	• Sia $A \in M_{3,2}(\mathbb{R})$ di rango 2, allora il sistema lineare $AX = B$ ammette soluzioni comunque si scelga la matrice B dei termini noti. \rightarrow Se si sceglie B t.c $rk(A B) = 3$ allora il sistema è impossibile (non ammette
	soluzioni) per Kouché-Capelli (∞^{2-3})
	• $A^7 - A = 12 \rightarrow A(A^3 - I) = I \Rightarrow (A^4 - I) = A$ - quindi $AA = I$ (A c invertible) • $A^3 - A = 0 \rightarrow A(A^2 - I) = 0 \Rightarrow A = 0, A^2 - I = 0 \Rightarrow A = 0, A^2 = I$ quindi A è invertibile se $A^2 = I$
	altrimenti se $A=0$ non è invertibile
Esercizio 3	$\bullet A^3-A=\begin{pmatrix}1&1\\2&3\end{pmatrix} \rightarrow A(A^2-I)=\begin{pmatrix}1&1\\2&3\end{pmatrix} \Rightarrow A=\begin{pmatrix}1&1\\2&3\end{pmatrix}, A^2-I=\begin{pmatrix}1&1\\2&3\end{pmatrix} \Rightarrow A^2=\begin{pmatrix}1&1\\2&3\end{pmatrix}+I=\begin{pmatrix}1&1\\2&3\end{pmatrix}$
	$\begin{pmatrix} 2 & 1 \\ 2 & 4 \end{pmatrix} \Rightarrow A = \begin{pmatrix} \sqrt{2} & 1 \\ \sqrt{2} & 2 \end{pmatrix}$ poi calcolo il determinante delle due A e uso il teorema di Binét: $\det \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$
	1, $\det \left(\frac{\sqrt{2}}{\sqrt{2}} - 1 \right) = 2\sqrt{2} - \sqrt{2} \neq 0$, quindi A è invertibile
	• A è invertibile, allora $\det(A) > 0 \to \text{Falso}$, per Binét A è invertibile se $\det A \neq 0$ (quindi può essere anche negativo).
	• Se $A \in B$ sono invertibili, $AB \in A$ invertibile $AB \in A$ invertibile se $AB \in AB$ e per Binét $AB \in AB$ e det $AB \in AB$ e det $AB \in AB$ e per Binét det $AB \in AB$
	• Se $A^{13} = B$ e B è invertibile, allora A è invertibile \to Vero, $\det(A^{13}) = \det(B) \Rightarrow \det(A)^{13} = \det(B)$ sappiamo che $\det(B) \neq 0$ quindi $\det(A) \neq 0$ e quindi A è invertibile

Qui ci andranno gli esercizi già fatti

$\sqrt{25} = 5$	$\sqrt{100} = 10$	$\sqrt{225} = 15$	$\sqrt{400} = 20$	$\sqrt{625} = 25$	$\sqrt{900} = 30$
$\sqrt{16} = 4$	$\sqrt{81} = 9$	$\sqrt{196} = 14$	$\sqrt{361} = 19$	$\sqrt{576} = 24$	$\sqrt{841} = 29$
$\sqrt{9} = 3$	$\sqrt{64} = 8$	$\sqrt{169} = 13$	$\sqrt{324} = 18$	$\sqrt{529} = 23$	$\sqrt{784} = 28$
$\sqrt{4} = 2$	$\sqrt{49} = 7$	$\sqrt{144} = 12$	$\sqrt{289} = 17$	$\sqrt{484} = 22$	$\sqrt{729} = 27$
$\sqrt{1} = 1$	$\sqrt{36} = 6$	$\sqrt{121} = 11$	$\sqrt{256} = 16$	$\sqrt{441} = 21$	$\sqrt{676} = 26$