Sistemas de información geográfica (SIG) o Geographic Information Systems (GIS)

Datamining en Ciencia y Tecnología 2023

Introducción a SIG

Motivación

¿Cómo puedo georeferenciar un punto en la tierra?

Latitud y Longitud

34°32'31"S 58°26'40"W

¿Con respecto a qué sistema de referencia?

ESFERA

ELIPSOIDE

Radio mayor = a Radio menor = b Aplastamiento = f

$$f = \frac{a - b}{b}$$

Un elipsoide se puede definir por:

- La longitud del radio mayor (ecuatorial) y del menor (polar)
- La longitud del radio mayor y el aplastamiento

Sin embargo....

¿Existe algún elipsoide lo suficientemente representativo para la Tierra?

ELIPSOIDES AJUSTADOS

GEOIDE

El geoide es la superficie
equipotencial del campo de gravedad
terrestre coincidente con la superficie
media de los mares en reposo.

GEOIDE - ELIPSOIDE

GLOBALES

El centro de gravedad terrestre y el del elipsoide deben coincidir.

El plano ecuatorial terrestre y el del elipsoide deben coincidir.

LOCALES

El punto de contacto determina un punto astronómico fundamental "*punto DATUM*"

Puedo tener un mismo elipsoide con diferente datum origina coordenadas distintas para cada punto

Punto Datum

Constituye el origen de las mediciones en los Sistemas Locales. Posee coordenadas astronómicas iguales a las elipsoidales. Las normales al elipsoide y al geoide son coincidentes.

¿Cuál es DATUM de Argentina?

El datum se ubica en la intersección del meridiano 62 y el paralelo 36 (cerca de Pehuajó, Buenos Aires).

El elipsoide asociado fue el Internacional de 1924 (a=6378388; 1/f=297).

PROYECCIONES

¿Cómo hacemos un mapa?

https://museovirtual.csic.es/salas/universo/astro4.htm

PROYECCIONES

Transforma las coordenadas geográficas basadas en un elipsoide a ubicaciones en un plano.

El resultado es un arreglo de paralelos y meridianos en una superficie plana.

Ventajas

Desventajas

Permite la representación en soporte digital en mapas bidimensionales.

Trabajar con coordenadas es más simple en términos de cómputo que con latitudes y longitudes.

PROYECCIONES

Transforma las coordenadas geográficas basadas en un elipsoide a ubicaciones en un plano.

El resultado es un arreglo de paralelos y meridianos en una superficie plana.

Ventajas

Permite la representación en soporte digital en mapas bidimensionales.

Trabajar con coordenadas es más simple en términos de cómputo que con latitudes y longitudes.

Desventajas

Distorsión en la representación.

Preservan ciertas propiedades espaciales en detrimento de otras

Proyecciones

Clasificación según la figura geométrica donde se proyecte

Cilíndricas

Cónicas

Cenitales

Clasificación según las propiedades que preservan

Formas

--- Conformes

Distancias

Equidistantes

Áreas

Equivalentes

Convencionales

Proyecciones

https://map-projections.net/singleview.php

Conforme - mantiene formas

Equivalente - mantiene áreas

Equidistante - mantiene distancias

Convencionales

WGS84 World Geodetic System

WGS84 (World Geodetic System) es un elipsoide de referencia que utilizan actualmente los Sistemas de Posicionamiento Global (GPS).

El centro de gravedad y el del elipsoide coinciden

El plano ecuatorial y el del elipsoide coinciden

SISTEMA DE PROYECCIÓN GAUSS-KRÜGER

La **proyección Krüger** se ajusta al datum para garantizar la precisión en la representación de las coordenadas geográficas en los mapas.

Esto significa que los valores de latitud y longitud en un mapa Krüger están vinculados al datum

Se recomienda limitar la proyección a 10-12 grados a ambos lados del meridiano central.

CIUDAD DE BUENOS AIRES

PROYECCIONES PARA LA CIUDAD AUTONOMA DE BUENOS AIRES

LA CIUDAD DE BUENOS AIRES CUENTA CON UN SISTEMA PROPIO DE PROYECCIÓN LLAMADO "GAUSS KRUGGER BUENOS AIRES" CUYOS PARÁMETROS SON LOS SIGUIENTES:

DATUM: CAMPO INCHAUSPE

ESFEROIDE: INTERNATIONAL 1924

PROYECCION: TRANSVERSE_MERCATOR

FALSO ESTE: 100000

FALSO NORTE: 100000

MERIDIANO CENTRAL: -58.4627

FACTOR DE ESCALA: 0.999998

LATITUD DE ORIGEN: -34.6297166

UNIDAD: METROS

¿Qué tipos de datos utilizamos?

1. Vectorial

2. Raster

DATOS RASTER

- Centrado en las propiedades del espacio.
- Más importantes las propiedades que la localización.
- Se divide el espacio en celdas donde cada una representa un único valor.
- Apropiado cuando se deben describir objetos geográficos con límites difusos.
- Cada celda se denomina píxel y representa una unidad de información.
- El conjunto de celdas constituye una matriz numérica.
- Cuanto menor tamaño de celda/píxel, mayor resolución espacial.

DATOS VECTORIALES

- Centrado en la precisión de la localización.
- Vectores definidos por pares de coordenadas que ocupan un espacio
- continuo.
- Se utilizan tres tipos de objetos espaciales: punto, línea y polígono.
- Se asigna un conjunto único de coordenadas XY a cada objeto.
- Capacidad de ampliar una pequeña porción del mapa y mostrar mayor detalle, o reducir un área y mostrarla en el contexto regional.

Consultas sobre datos espaciales

Y otros...

- Distancia
- Igual
- Cruza
- Largo
- Disjunto
- Superpone
- Area
- Intersecta
- Contiene
- Centroide
- Toca

Archivos:

- GeoJSON
- shapefile

¿Dónde puedo sacar información Georeferenciada?

Ejemplos

- https://www.idera.gob.ar/
- http://usig.buenosaires.gob.ar/
- https://www.google.com/maps
- www.carto.arba.gov.ar/cartoArba/

EXTRAS....

Ayudas para el tp.....

1- !pip install pyclustering

(Scikit learn, para *K Means* no puedo cambiar las métricas)

2- <u>No corran todas las imágenes al principio</u>. Hagan un sub-sampleo para que el código funcione y luego lo corren completo.

¿Cómo modifico hiper-parámetros?

```
# Prepare initial centers using K-Means centers from scikit-learn
kmeans centers = KMeans(n clusters=n clusters, random state=10)
kmeans centers.fit(x)
centers= kmeans centers.cluster centers
#Metricas FUCLIDEA
Metrica elegida = distance metric(type metric.EUCLIDEAN) #Se puede cambiar
# Perform cluster analysis
kmeans instance = kmeans(x, centers, metric=Metrica elegida);
kmeans instance.process();
clusters = kmeans instance.get clusters();
# Calculate Silhouette score
score = silhouette(x, clusters).process().get score()
print(np.mean(score))
avg silhouette=np.mean(score)
SIL EUC.append(avg silhouette)
```

¿Cómo modifico hiper-parámetros?

Kmedoids

```
#KM_medoi = KMedoids(n_clusters=k,metric='precomputed',init='heuristic').fit(d_gower)
KM_medoi = KMedoids(n_clusters=k,init='k-medoids++').fit(x)
```

Clustering aglomerativo

```
clustering = AgglomerativeClustering(n_clusters=k,metric='euclidean', linkage='ward').fit(x)
silh.append(silhouette_score(x,clustering.labels_))
```

PUNTO 7

7. Detección de objetos dentro de una imagen

Se propone detectar un objeto dentro de una imágen siguiendo los siguientes pasos.

- (a) Seleccionar una sóla imagen.
- (b) Convertir la imagen a binaria.
- (c) Aplicar los algoritmos de Connected-component labelling y clustering espectral sobre los pixels.
- (d) Describir el proceso y comparar los resultados obtenidos.

Connected-component labelling

from skimage import io, color, measure, filters

Etiquetar componentes conectados
labeled_image = measure.label(binary_image)

Imagen Original

Spectral clustering (Hay que darle un N)

from sklearn.cluster import SpectralClustering

#Convierto la imagen a un grafo
graph = image.img_to_graph(img, mask=mask) #Convierte en un grafo

