1ª Lista de Exercícios de Métodos Numéricos Prof. Glauber Cintra Equipe:

1.(1 ponto) Converta os números contidos na tabela abaixo para sua representação nos demais sistemas numéricos (represente até a oitava casa decimal significativa).

	Decimal	Binário	Octal	Hexadecimal
Decimal	137,25	10001001,010000	207,200000000	87,400000000
Binário	234,81250000	11101010,1101	352,64	EAD
Octal	171,23437500	10101011,001111	253,17	AB,3C
Hexadecimal	45,6015625	101101,10011010	55,464	2D,9A

2. **(0,5 pontos)** Triangularize o sistema linear abaixo utilizando o *Método de Gauss* e exiba a matriz triangularizada. Se o sistema for determinado, forneça a solução do sistema. Se o sistema for indeterminado, forneça uma solução do sistema. Indique se o sistema for incompatível.

Para a resolução dessa questão, temos que a matriz aumentada correspondente ao sistema fornecido é a seguinte:

Na primeira iteração do algoritmo de Gauss iremos adotamos m[0][0] como sendo o nosso pivô, onde m é a nossa matriz aumentada do sistema. Nesse caso, m[0][0] = 2. Abaixo explicitamos os multiplicadores de cada linha. Veja que o multiplicador é encontrado aplicando a seguinte fórmula mult = -(m[i][j]/m[i][i]), adotando j como sendo número da linha que estamos procurando o multiplicador e i é o contador da iteração atual.

Após a troca de linha das matrizes utilizando-se dos multiplicadores encontrados, teremos uma matriz resultante igual à apresentada abaixo :

Repare que já na primeira iteração conseguimos uma matriz nos moldes que procuramos, no entanto, verifica-se através desse resultado que o sistema é **incompatível**.

$$(I)$$
 $2X_3 = 0$ (II) $-X_3 = -1$

Repare que I e II não podem ser verdade simultaneamente.

3. **(0,5 pontos)** Resolva o sistema linear abaixo utilizando o *Método de Jordan* e exiba a matriz diagonal obtida.

$$2x_1 - 4x_2 + 2x_3 = 4$$

 $x_1 - 2x_2 + 3x_3 = 4$
 $-x_1 + 2x_2 - 2x_3 = -3$

1ª Iteração

2ª Iteração

3ª Iteração

2 0
$$-4$$
 -4 $m = -1$
0 **2** 0 2
0 -1 0 -1 $m = \frac{1}{2}$

4ª Iteração

$$2x_3 = 2$$
 $x_2 = \text{\'e variável}$ $x_3 = 1$ livre por convenção $2x_1 = 2$ $x_2 = 0$; $x_1 = 1$

Sistema Indeterminado pela convenção ,Solução x = [1,0,1];

4. **(1 ponto)** Usando a transformação explicada em sala de aula, a partir do sistema linear complexo abaixo obtenha um sistema linear com coeficientes reais. Resolva tal sistema linear utilizando o *Método de Gauss* e exiba a matriz triangularizada. Em seguida exiba a solução do sistema linear complexo.

$$x_1 + (3 - i)x_2 = 11 - i$$

- $x_1 + 4x_2 = 3 - i$

$$M:1 3 N:0 -1 C:11 d:-1 \\ -1 4 0 0 0 3 -1$$

1ª iteração

2ª iteração

3ª iteração

Com a matriz triangularizada conseguimos descobrir os valores de s1, s2, t1 e t2 que são respectivamente 5, 2, 1 e 0. Fazendo xk = sk + tk. i, temos x1 = 5 + i e x2 = 2 como solução do SL.

Questão 5

Fornecido o sistema de equações, o primeiro passo que tomaremos será isolar X_1 , X_2 , X_3 como pode ser conferido abaixo:

$$X_1 = (12 - X_2 + X_3) / 5$$

 $X_2 = (4 + X_1 + X_3) / 3$

$$X_3 = (39 + X_1 - 2X_2)/4$$

Apresentamos abaixo duas tabelas que explicitam os valores de cada iteração de dois métodos que tem o propósito de encontrar as raízes das equações acima. A primeira tabela traz os resultados do método de Jacobi enquanto a segunda os de Gauss-Seidel

Método de Jacobi				
iter.	X ₁	X2	Х3	
1	0	0	0	
2	2.4	1.3	9.7	
3	4.09	5.38	9.7	
4	3.26	5.93	8.08	
5	2.83	5.11	7.60	

Método de Gauss-Seidel				
iter.	X ₁	X2	Х3	
1	0	0	0	
2	2.4	2.13	9.28	
3	3.83	5.70	7.85	
4	2.83	4.89	8.01	
5	3.02	5.01	8	

Por fim, agora iremos apresentar o determinante normalizado para a matriz proposta nesta questão. Veja abaixo:

Det(norm) =
$$|-74/(5.1961 * 3.3166 * 4.5826)|$$

Det(norm) = 0.9370

6. **(0,5 pontos)** Seja $f(x) = 2x^5 - 3x^4 + x^3 - 5x^2 + 8x + 6$. Calcule f(3) usando o *Método de Briot-Ruffini*. Em seguida, coloque f na *Forma de Horner* e calcule f(4).

Método de Briot-Ruffini

Forma de Horner

$$f(x) = ((((2x - 3)x + 1)x - 5)x + 8)x + 6)$$

$$f(4) = ((((2.4 - 3)4 + 1)4 - 5)4 + 8)4 + 6) = 1302$$

7. **(1 ponto)** Usando o *Teorema de Lagrange*, determine um intervalo para as raízes reais negativas e para as raízes reais positivas de $p(x) = x^4 - 4x^3 - 9x^2 + 16x + 20$. Calcule uma aproximação para uma raiz de p usando o *Método de Newton*. Execute quatro iterações do método.

p(x) =
$$x^4 - 4x^3 - 9x^2 + 16x + 20$$

k = 3; B = 9; $a_n = 1$; n = 4;
L = 1 + $\sqrt[4]{9/1}$ = 10

p(1/x) =
$$20x^4 - 16x^3 - 9x^2 - 4x + 1$$

k =2; B = 9; $a_n = 20$; n =4;
L = 1 + $\sqrt[3]{9/20}$ = 1,6780
1/L1= 0,5985

p(-x) =
$$x^4 + 4x^3 - 9x^2 - 16x + 20$$

k =2; B = -16; $a_n = 1$; n =4;
L 2= 1 + $\sqrt[3]{16/1}$ = 5

p(-1/x) =
$$20x^4 - 16x^3 - 9x^2 + 4x + 1$$

k = 3; B = -16; $a_n = 20$; n = 4;
L 3= 1 + $\sqrt[3]{16/20}$ = 1,894
1/L3= 0,5985

$$-5 \le x \le -0,55$$

0,5985 \le x \le 10

$$f(x) = x^4 - 4x^3 - 9x^2 + 16x + 20$$

$$f'(x) = 4x^3 - 12x^2 - 18x + 16$$

$$x_0 = 0$$

 $x_1 = 10 - 1,88 = 8,12$
 $x_2 = 8,12 - 1,444 = 6,676$
 $x_3 = 6,676 - 0,782 = 5,894 - 0,605 = 5,289$
 $x_4 = 5,289 - 0,24 = 5,042$

8. **(1 ponto)** Esboce o gráfico de $q(x) = 2^x - x^2 - 7$ e calcule uma aproximação para uma raiz de q contida no intervalo [3, 6] usando o *Método da Bisseção*. Execute quatro iterações do método.

Método da Bisseção

Interação	а	b	М	sinal F(a)	sinal F(b)	sinal F(m)	Erro
0	3	6	4,5	-	+	-	1,5
1	4,5	6	5,25	-	+	+	0,75
2	4,5	5,25	4,875	-	+	-	0,375
3	4,875	5,25	5,0625	-	+	+	0,1875
4	4,875	5,0625	4,96875	1	+	-	0,09375
5	4,96875	5,0625					

9. **(0,5 pontos)** Calcule uma aproximação para a raiz quadrada de 634 utilizando o *Método de Newton*, usando 634 como aproximação inicial. Execute seis iterações do método e exiba as aproximações obtidas em cada iteração.

$$X_0 = 634$$

$$C = 634$$

1ª Iteração

$$X_1 = (X_0 + C/X_0)/2$$

2ª Iteração

 $X_2 = (X_1 + C/X_1)/2$

 $X_{2} = (317.5 + 634 / 317.5)/2 = 159.7484$

 $X_4 = (X_3 + C/X_3)/2$

 $X_{4} = (81,8585 + 634 / 81,8585)/2 = 44,8017$

3ª Iteração

 $X_3 = (X_2 + C/X_2)/2$

 $X_3 = (159,7484 + 634 / 159,7484)/2 = 81,8585$

5ª Iteração

 $X_5 = (X_4 + C/X_4)/2$

 $X_5 = (44,8017 + 634 / 44,8017)/2 = 29,4764$

6ª Iteração

 $X_6 = (X_5 + C/X_5)/2$

 $X_{6} = (29,4764 + 634 / 29,476 4)/2 = 25,4925$

4ª Iteração