Dominik Wawszczak Student ID Number: 440014

Group Number: 3

Task 1

To begin, we will show that verifying whether an input contains a tree can be checked using $\mathcal{O}(\log N)$ space, where N is the size of the input. A graph is a tree if and only if it satisfies the following two conditions:

- 1. The number of edges is one less than the number of vertices.
- 2. The graph is connected.

Checking the first condition is straightforward. We can iterate over the edges while maintaining a binary counter and then verify if it equals n-1. This counter will indeed require no more than $\mathcal{O}(\log N)$ space.

The second condition is more complex. We can iterate over all pairs $(s,t) \in \{1,\ldots,n\}^2$ using two binary counters. For each pair, we need to determine if a simple path exists from s to t. This problem belongs to the L class, as discussed in the lecture.

A root of a tree T with radius at most 2 is a vertex $r \in V(T)$ such that every other vertex in V(T) is within distance 2 of r.

We will use a slightly different definition of an *induced subgraph* than the one in the assignment statement. A graph G_1 is an induced subgraph of G_2 if and only if there exists an injection $f: V(G_1) \to V(G_2)$ such that

$$\bigvee_{u \in V(G_1)} \bigvee_{v \in V(G_1)} (u, v) \in E(G_1) \iff (f(u), f(v)) \in E(G_2),$$

which we will refer to as the map function.

Our approach will follow these steps:

1. Find a root r of T_1 .

To do this, iterate over all vertices of T_1 , treating each vertex as a candidate for r. To verify a candidate, check for each $v \in V(T_1) \setminus \{r\}$ whether either $(v, r) \in E(T_1)$ or there exists a vertex $u \in V(T_1) \setminus \{v, r\}$ with $(v, u) \in E(T_1)$ and $(u, r) \in E(T_1)$.

This requires three binary counters (for r, v, and u). If no root is found, we can reject the input.

2. For each $s \in V(T_2)$, check if there exists a valid map function f such that f(r) = s. The remaining part of the solution will focus on this check.

<u>Lemma 1</u> Let T_1 be a tree of radius 2 with root r, and let T_2 be any tree. Let v_1, \ldots, v_k denote the children of r, ordered so that

$$\forall_{i \in \{2,...,k\}} (\deg(v_{i-1}), v_{i-1}) \geqslant (\deg(v_i), v_i),$$

where

$$(a_1, b_1) \geqslant (a_2, b_2) \iff a_1 > a_2 \lor (a_1 = a_2 \land b_1 \geqslant b_2).$$

Let s be any vertex of T_2 , and denote u_1, \ldots, u_l as the children of s when T_2 is rooted at s, ordered similarly. Then a map function f with the property that f(r) = s exists if and only if

$$k \leqslant l \wedge \bigvee_{i \in \{1,\dots,k\}} \deg(v_i) \leqslant \deg(u_i).$$
 (1)

<u>Proof of Lemma 1</u> If condition (1) holds, we can define f(r) = s and set $f(v_i) = u_i$ for each $i \in \{1, ..., k\}$, ensuring there are enough vertices in T_2 to accommodate each grandson of r.

To derive a contradiction, assume there is a map function f, but condition (1) does not hold. Since $k \leq l$ must be true, there exists an $i \in \{1, ..., k\}$ such that $\deg(v_i) > \deg(u_i)$. Take the smallest such i. There is a unique j such that $f(v_i) = u_j$, which must be less than i, or there would not be enough vertices to match the children of v_i ; thus i > 1. For each i' < i, let j' be the index with $f(v_{i'}) = u_{j'}$; similarly, j' must be less than i because $\deg(v_{i'}) \geqslant \deg(v_i)$. This creates a contradiction by the Pigeonhole principle, as f was assumed to be injective, completing the proof.

Returning to the second step, once we have the root r, finding the number k of its children requires only one binary counter. For a given $s \in V(T_2)$, we can similarly find the number of its children l. By Lemma 1, if k > l, we can discard s as a candidate. Otherwise, we need to verify for each $i \in \{1, ..., k\}$ whether $\deg(v_i) \leq \deg(u_i)$. To calculate the degree of a vertex, we can iterate over edges while using a single binary counter. However, finding v_i and u_i in logarithmic space is more challenging.

We can determine $(\deg(v_1), v_1)$ by iterating over the sons of r, comparing each $(\deg(v_{\text{cur}}), v_{\text{cur}})$ with the best pair found so far, and updating as needed. We can calculate $(\deg(u_1), u_1)$ in a similar way. After this, we compare $\deg(v_1) \leq \deg(u_1)$ and reject if the condition does not hold; otherwise, we move on to the next pair. Once $(\deg(v_i), v_i)$ is calculated, obtaining $(\deg(v_{i+1}), v_{i+1})$ is straightforward – simply ignore any $(\deg(v_{\text{cur}}), v_{\text{cur}})$ strictly greater than $(\deg(v_i), v_i)$. The same process applies to $(\deg(u_{i+1}), u_{i+1})$.

The entire algorithm requires only a constant number of binary counters, concluding the solution.

Task 2

To start, we will prove that the language belongs to the NP class. For any induced subgraph H of G, we need to perform the following steps:

- 1. Verify that H is a tree.
- 2. Identify the root of H, confirming that H is a tree of radius 2.
- 3. Compare the multisets of degrees of the children of the roots in both T and H.

Each of these steps can be completed in polynomial time.

Now, we proceed to show that the problem is NP-hard. To do so, we will construct a Karp reduction from the 3-coloring problem to the problem specified in the assignment.

Let G^* be an arbitrary graph. Our goal is to construct a tree T of radius 2 and a graph G such that

$$G^*$$
 is 3-colorable \iff T is isomorphic to an induced subgraph of G . (2)

Let $n = |V(G^*)|$ and $m = |E(G^*)|$. The tree T will consist of a root r and n + 3 children: a vertex v' for each $v \in V(G^*)$ and three auxiliary vertices: a_1 , a_2 , and a_3 .

The graph G will include a special vertex s. For each $v \in V(G^*)$, the following structure will be added to G:

Additionally, for each edge $(u, v) \in E(G^*)$, we will add the following three edges to G:

Finally, s will have three auxiliary neighbors: b_1 , b_2 and b_3 .

It should be noted that the size of the new instance is polynomial in terms of the size of G^* , as T has n+4 vertices and n+3 edges, while G has 3n+4 vertices and 6n+3m+3 edges. Therefore, the only remaining step is to prove the equivalence (2).

Assume that G^* is 3-colorable. For each $v \in V(G^*)$, let $\operatorname{color}_v \in \{\text{blue}, \text{green}, \text{red}\}\$ be the color assigned to v. We can then define a map function f as follows:

$$f(r) = s;$$

$$f(v') = v_{\text{color}_v}, \text{ for any } v \in V(G^*);$$

$$f(a_i) = b_i, \text{ for } i \in \{1, 2, 3\}.$$

For every child t of r, we have $(f(r), f(t)) \in E(G)$, so we only need to show that for any two children t_1 and t_2 of r, $(f(t_1), f(t_2)) \notin E(G)$. If either t_1 or t_2 is one of the three auxiliary children, this is straightforward. Otherwise, assume $t_1 = u'$ and $t_2 = v'$ for some $u, v \in V(G^*)$. If $(u, v) \notin E(G^*)$, then $f(t_1) = u_{\text{color}_u}$ and $f(t_2) = v_{\text{color}_v}$ are not connected. On the other hand, if $(u, v) \in E(G^*)$, then $\text{color}_u \neq \text{color}_v$, meaning they are also not connected.

Conversely, assume there exists a map function f. Then we must have f(r) = s, as deg(r) = n + 3 and s is the only vertex in G with degree at least n + 3. We can verify this since

$$\deg(v_{\text{color}}) = 3 + \deg(v) \leqslant n + 2$$
, for any $v \in V(G^*)$ and $\operatorname{color} \in \{\text{blue}, \text{green}, \text{red}\}$, and $\deg(b_1) = \deg(b_2) = \deg(b_3) = 1$.

Suppose there exists a vertex $v \in V(G^*)$ and two distinct colors $color_1, color_2 \in \{blue, green, red\}$, such that both v_{color_1} and v_{color_2} belong to the image of f. Then the induced subgraph would contain a triangle $(s, v_{color_1}, v_{color_2})$, creating a contradiction. Therefore, at most one of v_{blue} , v_{green} , or v_{red} can belong to the image of f.

If none of v_{blue} , v_{green} , or v_{red} belongs to the image of f, then the size of the image of f is at most n+3: consisting of s, b_1 , b_2 , b_3 , and one vertex for each of the remaining n-1 vertices. However, the size of the domain of is n+4, and because f is an injection, it follows that exactly one of v_{blue} , v_{green} , or v_{red} must appear in the image of f for each $v \in V(G^*)$.

For any $v \in V(G^*)$, let color_v be the unique color in {blue, green, red} such that $v_{\operatorname{color}_v} \in f^{-1}(V(T))$. If, for some $(u, v) \in E(G^*)$, $\operatorname{color}_u = \operatorname{color}_v$, then the induced subgraph would contain a triangle $(s, u_{\operatorname{color}_u}, v_{\operatorname{color}_v})$, which again results in a contradiction. Thus, we have a valid 3-coloring, completing the proof.