

DATASET DESCRIPTION

Source:

Kaggle

Size:

- 50,000 rows
- 24 columns

Target Variable:

• is_drinker (0: Non-Drinker, 1: Drinker)

Sample Features:

 Age, Gender, Blood Pressure, Liver Enzymes, Cholesterol, etc.

DATA PREPROCESSING

Preprocessing Steps:

- Imported dataset and renamed columns for clarity
- Checked for null values and duplicates (none found)
- Removed ineffective columns after analysis

Feature Engineering:

- Added new features:
 - Liver_Enzyme_Ratio (ALT/AST)
 - Anemia_Indicator (based on hemoglobin levels)

Other Key Steps:

- Outlier treatment (IQR Method)
- Label Encoding (Categorical variables)
- Train-Test Split (80-20)
- Data Standardization (Standard Scaler)

MODEL SELECTION

Models Used:

- Logistic Regression
- Random Forest Classifier
- XGBoost
- Gradient Boosting
- Stacking Classifier (ensemble)

Training Strategy:

- Each model trained using standardized data
- Evaluated using accuracy and classification report

HYPERPARAMETER TUNING

Technique:

RandomizedSearchCV

Purpose:

• To find the best set of hyperparameters to optimize model performance.

Example Tuned Parameters:

- Random Forest (n_estimators, max_depth)
- XGBoost (learning_rate, subsample)
- Gradient Boosting (n_estimators, max_depth)

06

MODEL COMPARISON

	Model	Train Accuracy	Test Accuracy
	Logistic Regression	74.12%	72.01%
	Random Forest	76.85%	73.25%
	XGBoost	76.00%	73.10%
	Gradient Boost	75.72%	72.90%
۲	Stacking (Best)	76.30%	73.79%

INSIGHTS

Insights:

- Feature engineering enhanced model performance.
- Ensemble learning (Stacking) outperformed individual models by combining their strengths.

Conclusion:

- Machine learning models can effectively predict drinking behavior based on medical data with good accuracy.
- Proper data preprocessing and model tuning are critical for maximizing performance.

X FUTURE SCOPE

Future Scope:

• Feature Enrichment: Adding more lifestyle or psychological factors could improve prediction accuracy.

 Deep Learning: Exploring neural networks for capturing complex patterns.

• Deployment: Building a web application for real-time prediction.

• Explainability: Using SHAP values to understand feature impact better.

GITHUB LINK

Mohit: Link

Devanshu: Link

