Summary Table of Community Metabolic Modelling. Comparison and overview of published metabolic modelling approaches for microbial communities.

Modelling method	Modelling condition	Suitable for large community	Comments	Ref
cFBA	Steady-state, FBA	No, (pairwise analysis)	Compartmentalised approach	
			Multi-objective function assuming fixed growth rates	[1]
			 Nonlinear optimisation 	
SteadyCom	Steady-state, FBA	Yes	Compartmentalised approach	
			 Maximises community's specific growth rate 	[2]
			 Less computationally demanding than cFBA 	
MiCOM	Steady-state, FBA	Yes	Compartmentalised approach	
			• Maximises weighted sum of biomass fluxes of all species,	[3]
			then minimises sum of the squared biomass fluxes	
	Steady-state, FBA	No, (2-4 species)	Bi-level and multi-objective optimisation	
OptCom			 Maximises growth of individual species as well 	[4]
			as the whole community	
	Steady-state, FBA	No, (2-4 species)	Bi-level objective optimisation	[5]
NECom			• All feasible solutions are Nash equilibria of	
			microbial community metabolic models	
			Compartmentalised approach	
Koch et al.	Steady-state, FBA	No, (few species)	Maximises the community growth rate, then	[6]
(OptDeg)			optimises for optimal substrate usage (biomass yield)	
CASINO	Steady-state, FBA	Yes	Maximises biomass yield of individual species, then	
			performs iterative multi-level optimisation to maximise	[7]
			biomass production at the community level.	
DMMM	Temporal, FBA	Yes	• Extension of single species dFBA	[8]
			• Iteratively solves linear FBA problem for each time	
			and species (uses Euler forward method)	
	Temporal, FBA	Yes	• To prevent negative concentrations, an	
μ bialSim			augmented Euler forward method is adapted	[9]
			to temporarily reduce time steps	
	Temporal, FBA	Yes	Addresses infeasibility and degeneracy	
DFBALab			for exchange reaction fluxes	[10]
			Needs user-defined prioritisation of shared metabolites	
	Temporal, FBA	Yes	Euler forward method replaced with Runge-Kutta	
ORKA			Assumption of constant reaction rate relaxed over	[11]
			time intervals (trapezoidal rule used)	
dOptCom	Temporal, FBA	No, (2-3 species)	Bi-level and multi-objective optimisation	[12]
			 Generally the community level objective is to 	
			maximise the community biomass concentration.	

Modelling method	Modelling condition	Suitable for large community	Comments	Ref
Brunner et al.	Temporal, FBA	Yes	• Uses prior solutions to inform future time steps,	
			by simulating system forward as an ODE	[13]
			• Reduces the number of FBA problems that are solved	
MCM	Temporal, FBA	Yes	• Tool that unifies model construction, statistical	
			evaluation, sensitivity analysis and parameter calibration	[14]
			 Provides versatility in terms of uptake kinetics 	
COMETS	Spatiotemporal, FBA	Yes	Uses biophysical models to simulate convection and	
			diffusion of metabolites and biomass.	[15, 16]
			 Biophysical models improved in recent update 	
BacArena	Spatiotemporal, FBA	No, (few species)	 Agent-based modelling approach 	
			 Can give finer resolution of communities, becomes 	[17]
			computationally expensive for large communities	
ACBM	Spatiotemporal, FBA	No, (few species)	 Agent-based modelling approach 	
			 Can give finer resolution of communities, becomes 	[18]
			computationally expensive for large communities	
Taffs et al.	Steady-state, EMA	Yes	 Does not require defined species and 	
			community level objective functions	[19]
			 Allows exploration of the entire solution space 	
RedCom	Steady-state, EFVA	Yes	• Takes a nested (two-step) approach similar to the	
			one by Taffs et al. but using EFVA instead of EMA	[20]
			• Allows for simulation of compartmentalised models	
CODY	Spatiotemporal, EMA	Yes	Multiscale framework based on EMA that can	[21]
			be used for spatiotemporal modelling of communities.	

References

- [1] Khandelwal, R. A. et al. (2013) Community Flux Balance Analysis for Microbial Consortia at Balanced Growth. *PLOS ONE*, **8**(5), 1–10.
- [2] Chan, S. H. J., Simons, M. N., and Maranas, C. D. (2017) SteadyCom: Predicting microbial abundances while ensuring community stability. *PLOS Computational Biology*, **13**(5), 1–25.
- [3] Diener, C., Gibbons, S. M., and Resendis-Antonio, O. (2020) MICOM: Metagenome-Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. *mSystems*, **5**(1).
- [4] Zomorrodi, A. R. and Maranas, C. D. (2012) OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities. *PLOS Computational Biology,* **8**(2), 1–13.
- [5] Cai, J., Tan, T., and Chan, S. H. J. (2020) Predicting Nash equilibria for microbial metabolic interactions. *Bioinformatics*, **36**(24), 5649–5655.
- [6] Koch, S. et al. (2016) Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process. *Biotechnology for Biofuels*, **9**(1), 17.
- [7] Shoaie, S. et al. (2015) Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. *Cell Metabolism*, **22**(2), 320–331.
- [8] Zhuang, K. et al. (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. *The ISME Journal*, **5**(2), 305–316.
- [9] Popp, D. and Centler, F. (2020) μ BialSim: Constraint-Based Dynamic Simulation of Complex Microbiomes. *Frontiers in Bioengineering and Biotechnology*, **8**, 574.
- [10] Gomez, J. A. and Barton, P. I. (2018) Dynamic Flux Balance Analysis Using DFBAlab.. *Methods in molecular biology (Clifton, N.J.)*, **1716**, 353–370.
- [11] Schroeder, W. L. and Saha, R. (2020) Introducing an Optimization- and explicit Runge-Kutta- based Approach to Perform Dynamic Flux Balance Analysis. *Scientific Reports*, **10**(1), 9241.
- [12] Zomorrodi, A. R., Islam, M. M., and Maranas, C. D. (2014) d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities. *ACS Synthetic Biology*, **3**(4), 247–257.
- [13] Brunner, J. D. and Chia, N. (2020) Minimizing the number of optimizations for efficient community dynamic flux balance analysis. *PLOS Computational Biology*, **16**(9), 1–20.
- [14] Louca, S. and Doebeli, M. (2015) Calibration and analysis of genome-based models for microbial ecology. *eLife*, **4**, e08208.
- [15] Harcombe, W. R. et al. (2014) Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics. *Cell Reports*, **7**(4), 1104–1115.
- [16] Dukovski, I. et al. Computation Of Microbial Ecosystems in Time and Space (COMETS): An open source collaborative platform for modeling ecosystems metabolism. (2020).

- [17] Bauer, E. et al. (2017) BacArena: Individual-based metabolic modeling of heterogeneous microbes in complex communities. *PLOS Computational Biology,* **13**(5), 1–22.
- [18] Karimian, E. and Motamedian, E. (2020) ACBM: An Integrated Agent and Constraint Based Modeling Framework for Simulation of Microbial Communities.. *Scientific reports*, **10**(1), 8695.
- [19] Taffs, R. et al. (2009) In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study. *BMC Systems Biology*, **3**(1), 114.
- [20] Koch, S. et al. (2019) RedCom: A strategy for reduced metabolic modeling of complex microbial communities and its application for analyzing experimental datasets from anaerobic digestion. *PLOS Computational Biology,* **15**(2), 1–32.
- [21] Geng, J. et al. (2021) CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. *Proceedings of the National Academy of Sciences*, **118**(13).