

Lecture 5 – Supplementary

Aptiv 自动驾驶 新加坡国立大学 博士 清华大学 本科

- An instance of GCN for Point Cloud
 - Dynamic Graph CNN for Learning on Point Clouds (DGCNN)
- General GCN

能够写成图的数据表达方式

- Some common GCNs
- GCN vs. DGCNN
- Classification vs. Semantic Segmentation

- Social Network
- Citation Network
- Molecules
- Point Cloud
- 3D Mesh
-

• Graph - G(V, E)

• V: a set of vertices

• *E*: a set of edges

- Represent a point cloud by graph?
 - One point one vertex
 - Edge
 - Fix by coordinate based kNN/RadiusNN
 - Dynamic **DGCNN**

每个节点之间怎么连是动态生成的

Vertex info:

Coordinate: \mathbb{R}^3

Feature: \mathbb{R}^m

Graph – G(V, E)

Regular Euclidean Data (Grid)
Normal convolution / pooling,
etc.

Graph in Non-Euclidean Space: *Convolution? Pooling?*

Single CNN layer with 3x3 filter:

Consider this undirected graph:

Calculate update for node in red:

A unified formulation of convolution on images and graphs:

Updated vertex/pixel $\mathbb{R}^{c'}$

$$x_i' = x_i W_0 + \sum_{j=1}^k \overline{x_j} W_j$$

The vertex/pixel we are working on \mathbb{R}^c

Neighboring vertex/pixel \mathbb{R}^c

lacktriangle Trainable parameter $\mathbb{R}^{c imes c'}$

Single CNN layer with 3x3 filter:

Consider this undirected graph:

Calculate update for node in red:

- Problem solved? No!
 - Number of neighbor is not fixed on graph.
 - DGCNN for Point Cloud: Fixed neighbor number
 - There are edge weights not utilized.
 - DGCNN for Point Cloud: Assume identical edge weight. (Ignore edge weight)

- EdgeConv
 - Aggregation of neighboring vertex

$$\mathbf{x}_{i}' = \prod_{j:(i,j)\in\mathcal{E}} h_{\Theta}(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$h_{\Theta}(\mathbf{x}_{i}, \mathbf{x}_{j}) = h_{\Theta}(\mathbf{x}_{i})$$

$$h_{\mathbf{\Theta}}(\mathbf{x}_i, \mathbf{x}_j) = h_{\mathbf{\Theta}}(\mathbf{x}_i)$$

Identity Function

MLP

Point Feature, \mathbb{R}^m

PointNet

EdgeConv

Maxpool

$$\mathbf{x}_i' = \prod_{j:(i,j)\in\mathcal{E}} h_{\mathbf{\Theta}}(\mathbf{x}_i, \mathbf{x}_j)$$

$$h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = h_{\Theta}(\mathbf{x}_j)$$

MLP

Features of dimension C, C_1 , C_2

$$h_{\Theta}(\mathbf{x}_i, \mathbf{x}_j) = h_{\Theta}(\mathbf{x}_j - \mathbf{x}_i)$$

MLP

Coordinate of dimension d = 3

PointNet++

MLP with trainable param Θ

MLP with trainable param ϕ

$$h_{\Theta}\big(x_i,x_j\big) = h_{\Theta}\big(x_j-x_i\big) + h_{\phi}(x_i)$$
 Neighboring vertex, \mathbb{R}^m The vertex we are working on, \mathbb{R}^m

$$x_i' = maxpool_j \left(h_{\Theta}(x_i, x_j) \right)$$

- Similar to T-Net of PointNet,
- NOT presented in the author's open-source code

n points, each is $x_i' = maxpool(h_{\Theta}(x_j - x_i) + h_{\phi}(x_i))$

Source: DGCNN:Dynamic Graph CNN for Learning on Point Clouds. 2018, Wang Y, Sun Y, Liu Z, et al.

Classification Network

Segmentation Network

Aggregation function, e.g., sum, avg, min, max

Edge function (feature transform), with trainable parameter θ

Vertices that are connected to x_i

- How to define "neighbor x_i "?
 - For first EdgeConv kNN on coordinates $(x_i \in \mathbb{R}^3)$

working on

• For subsequent EdgeConv – kNN on features $(x_i' \in \mathbb{R}^m)$ $\underset{\text{fight}}{}$

• Graph is dynamic, not static.

动态建图,每个点携带坐标信息和特征信息

- Left
 - Euclidean distance in \mathbb{R}^3
- Middle
 - Euclidean distance in \mathbb{R}^3
 - After 3×3 matrix transform
- Right
 - Feature distance in R³
 - From the last layer
 - Semantic & dynamic

distance after distance distance in \mathbb{R}^3 transform

Euclidean

Euclidean

Feature

挑选谁跟谁更近

Classification on ModelNet40 – Outperforms PointNet++

	Model size(MB)	Тіме(мѕ)	Accuracy(%)
PointNet (Baseline) [Qi et al. 2017b]	9.4	6.8	87.1
PointNet [Qi et al. 2017b]	40	16.6	89.2
PointNet++ [Qi et al. 2017c]	12	163.2	90.7
PCNN [Atzmon et al. 2018]	94	117.0	92.3
Ours (Baseline)	11	19.7	91.7
Ours	21	27.2	92.9

Table 3. Complexity, forward time, and accuracy of different models

Number of nearest neighbors (k)	Mean Class Accuracy(%)	Overall Accuracy(%)	
5	88.0	90.5	
10	88.9	91.4	
20	90.2	92.9	
40	89.4	92.4	

Table 5. Results of our model with different numbers of nearest neighbors.

- Graph structure is represented by Similarity Matrix $A \in \mathbb{R}^{n \times n}$
 - Un-connected: 0
 - · Connected: similarity score, e.g., 1
- Concepts derived from A (Please refer to Lecture 4)
 - Degree matrix $D \in \mathbb{R}^{n \times n}$
 - Laplacian matrix $L = D A \in \mathbb{R}^{n \times n}$
 - Normalized Laplacian matrix $L_{sym} = D^{-1/2}LD^{-1/2} = I D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
- Why do we need these A, D, L, L_{sym} ?

Connectivity / Similarity matrix A

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Degree Matrix D

$$\begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• Input: $X \in \mathbb{R}^{n \times C_{in}}$

• Output: $H \in \mathbb{R}^{n \times C_{out}}$

- A GCN layer consists of two steps
 - Aggregation
 - Gather features from neighbors
 - Update ^{MLP}
 - Apply learnable layer to transform the aggregated features

• Input: $X \in \mathbb{R}^{n \times C_{in}}$

• Output: $H \in \mathbb{R}^{n \times C_{out}}$

Aggregation

- Weighted sum of neighbors
- $N = A \cdot X$

Connectivity / Similarity matrix A

[0	1	0	1	0	0
1	1 0 1 0 0	1	0	0	0
0	1	0	1	0	0
1	0	1	0	1	0
0	0	0	1	0	1
0	0	0	0	1	0_

Update

- Linear (Fully Connected) Layer with learnable param $W \in \mathbb{R}^{C_{in} \times C_{out}}$
- Activation function σ , e.g, ReLU
- $H = \sigma(N \cdot W) = \sigma(AXW)$

•
$$H = \sigma(N \cdot W) = \sigma(AXW)$$

- Problem:
 - Each node itself is not considered
 - Diagonal elements of A is 0
 - Solution: Laplacian matrix

Graph

Connectivity / Similarity matrix A

Γ0	1	0	1	0	0
1 0	0	1	0	0	0
0	1	0 1 0 1 0	1	0	0 0 0 0
1	0	1	0	1	0
0	0	0	1	0	1
0	0	0	0	1	0

- Naïve weighted sum puts more weights on nodes with more connections
 - A is not normalized
 - Solution: Normalized Laplacian matrix

Seneral GCN—Lapacian Matrix

• Input: $X \in \mathbb{R}^{n \times C_{in}}$

• Output: $H \in \mathbb{R}^{n \times C_{out}}$

Aggregation

- Weighted sum of neighbors and itself
- $N = (D A) \cdot X = LX$ laplacican matrix 包含了自己也包含了邻居的信息
- In vector form: $N_i = \sum_j (A_{ij}(X_i X_j))$

Graph

- Linear (Fully Connected) Layer with learnable param $W \in \mathbb{R}^{C_{in} \times C_{out}}$
- Activation function σ , e.g, ReLU
- $H = \sigma(N \cdot W) = \sigma(LXW)$

• Input: $X \in \mathbb{R}^{n \times C_{in}}$

• Output: $H \in \mathbb{R}^{n \times C_{out}}$

Aggregation

Normalized weighted sum of neighbors and itself

•
$$N = D^{-1/2}LD^{-1/2} \cdot X = L_{sym}X$$

• In vector form:
$$N_i = \sum_j \left(A_{ij} (X_i - X_j) \cdot \frac{1}{\sqrt{D_{ii}D_{jj}}} \right)$$

Graph

Normalized Laplacian Matrix L_{sym}

$$\begin{bmatrix} 1 & -\frac{1}{\sqrt{2}\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}\sqrt{3}} & 0 & 0\\ -\frac{1}{\sqrt{2}\sqrt{2}} & 1 & -\frac{1}{\sqrt{2}\sqrt{2}} & 0 & 0 & 0\\ 0 & -\frac{1}{\sqrt{2}\sqrt{2}} & 1 & -\frac{1}{\sqrt{2}\sqrt{3}} & 0 & 0\\ -\frac{1}{\sqrt{2}\sqrt{3}} & 0 & -\frac{1}{\sqrt{2}\sqrt{3}} & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & -\frac{1}{\sqrt{2}\sqrt{1}}\\ 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}\sqrt{1}} & 1 \end{bmatrix}$$

归一化,考虑了每个节点的degree

- Update
 - Linear (Fully Connected) Layer with learnable param $W \in \mathbb{R}^{C_{in} \times C_{out}}$
 - Activation function σ , e.g, ReLU
 - $H = \sigma(N \cdot W) = \sigma(LXW)$

S DGCNN vs. General GCN

DGCNN

- For each *i*
- MLP on neighbors → get multiple feature vectors
- Maxpool → get final feature vector for i

MLP with param
$$\Theta$$
 MLP with param ϕ
$$h_{\Theta}\big(x_i,x_j\big) = h_{\Theta}\big(x_j-x_i\big) + h_{\phi}(x_i)$$
 Neighboring vertex, \mathbb{R}^m The vertex we are working on, \mathbb{R}^m

$$x_i' = maxpool_j \left(h_{\Theta}(x_i, x_j) \right)$$

General GCN

- For each *i*
- Aggregation: Weighted sum of neighbors → get one feature vector
- Update: MLP on the feature vector \rightarrow get final feature vector for i

- Similarity
 - Both of them are classification by Softmax

- Difference
 - Classification Per Object. Segmentation Per Point
 - Network design
 - Classification: Global feature
 - Segmentation: Global + Local feature

- Want practical tricks/experience?
 - Do it yourself
 - Dataset preparation
 - Design, write, train & tune your own network
 - Don't be scared. DL is simple for implementation.
 - You have to experience it to get "experience"
 - Develop your ability to invent "tricks"
 - You won't get a good job by saying you know lots of tricks
- Common methods?
 - Core ideas are valid for a long time
 - PointNet series, voxel grid, data augmentation...
 - Methods/Networks are different every company, every year.

Some critical topics in industry

- Data/repo management
 - Coding ability
- Runtime
 - TensorRT
 - Hardware-aware network design
 - Network Pruning, Quantization, etc.
- Performance optimization
 - Active learning, e.g., data mining
 - Network Architecture Search (NAS)