

Curtis Robinson | Mack Atencia

ELEN 100 Lab

February 17, 2023

Project 1 Lab Report

Problem 1:

Transfer Function Calculation:

Problem 1 continued ...

$$= \frac{(JWC_2)(R_1 + R_2 + JWC_1R_1R_2)}{(JWC_2)(I + JWC_1R_1)} + \frac{I + JWC_1R_1}{(JWC_2)(I + JWC_1R_1)}$$

$$(3mc^{2})(1+3mc^{1}b^{1})$$

 $(3mc^{2})(1+3mc^{1}b^{1})$
 $(1+3mc^{1}b^{1})$

Voltage Divider:

$$Z_{TH} = \frac{R_1 + R_2 + JWl_1R_1R_2}{1 + JWl_1R_1R_2}$$

$$V_{CZ} = \frac{R_1 + R_2 + JWl_1R_1R_2}{1 + JWl_1R_1R_2} + \frac{1}{JWl_2}$$
• V_{TH}

$$= \frac{\frac{1}{\int W \zeta_{2}}}{\frac{R_{1} + R_{2} + \int W \zeta_{1} R_{1} R_{2}}{1 + \int W \zeta_{2}}} + \frac{1}{\int W \zeta_{2}}$$

$$= \frac{\frac{1}{\int \mathcal{W} \ell_{Z}}}{(\mathcal{W}(c_{2})(\epsilon_{1}+\epsilon_{2}+\lambda \mathcal{W}(\epsilon_{1}\epsilon_{1})+(1+J\mathcal{W}(\epsilon_{1}\epsilon_{1}))}} \frac{V_{g}}{1+\rho_{1}J\mathcal{W}(\epsilon_{1}\epsilon_{1})}$$

$$\gamma_{C2} = \frac{(1+1)\omega(1R_1)}{(1+1)\omega(1R_1) + (1+1)\omega(1R_1)} \cdot \frac{V_g}{1+2+3\omega(1R_1)}$$

$$\lambda^{CS} = \frac{(mc^2)(k^1+k^2+2mc^1k^2)+(1+2mc^2k^2)}{\sqrt{2}}$$

$$\frac{V_{c2}}{v_{3}} = \frac{1}{(\underline{wc_{2}})(R_{1}+R_{2}+Jwc_{1}R_{2})+(1+Jwc_{1}R_{1})}$$

$$\frac{\sqrt{c_2}}{\sqrt{g}} = \frac{1}{\left(R_1 JW(2 + R_2 JW(2 + JW(2 + R_2 JW(2)) + (1 + JW(1,R_1))\right)}$$

$$\frac{V_{c2}}{v_3} = \frac{1}{\int w \left(\beta_1 (c_2 + \beta_2 c_2 + Jw c_1 \beta_1 \beta_2 c_2 + c_1 \beta_1) + 1 \right)}$$

$$H(JW) = \frac{V_{c2}}{Vg} = \frac{1}{1 + Jw(R_1(L_2 + R_2(L_2 + L_1R_1) + (Jw)^2 C_1R_1(L_2R_2))}$$

Problem 2:

Resistor Value Calculations:

Problem #2

$$\frac{V_{c_1}}{V} = \frac{1}{\int_{0}^{10} (R_1 C_2 + R_1 C_1 + R_2 C_2) + \int_{0}^{10} (C_1 C_2 R_1 R_2) + 1}{\int_{0}^{10} (R_1 C_2 + R_1 C_1 + R_2 C_2) + \int_{0}^{10} (C_1 C_2 R_1 R_2) + 1}$$
 $\frac{1}{b} + \frac{1}{a} = R_1 C_2 + R_1 C_1 + R_2 C_2$
 $\frac{25}{b0000} = R_1 C_2 + R_1 C_1 + R_2 C_2$
 $= R_1 C_1 + R_1 C_1 + R_2 C_1$
 $= C_1 (R_1 + R_1 + R_2)$
 $\frac{23}{b0000} = (C_1 (2R_1 + R_2))$
 $\frac{1}{ab} = C_1 C_2 R_1 R_2$
 $R_1 = \frac{1}{3000 \cdot 20000} \cdot ((0^{-6})^2 R_1 R_2)$
 $R_1 = \frac{1}{3000 \cdot 20000} \cdot ((0^{-6})^2 R_1 R_2)$
 $\frac{23}{b0000} = (0^{-6} \left(\frac{2 \cdot (16666 \cdot 0^{\frac{3}{2}} + R_2)}{R_2} + R_2 \right)$
 $\frac{23}{b0000} = \frac{033}{R_2} + \left(R_2 \times 10^{-6} \right)$
 $O = \left(10^{-6} \right) R_2^2 - \left(\frac{23}{60000} \right) R_2 + \left(0.033 \right)$
 $R_2 = 262.79 R_1, 130.54 R_2$
 $R_1 = 66.93 R_1, 127.67 R_2$

All Components

$$C_1 = C_2 = 10^{-6} \text{ F}$$

 $R_1 = 66.93 \text{ s}$
 $R_2 = 252.79 \text{ s}$

Problem 3:

Nodal Analysis for MATLAB Matrix input:

Final Matrix

$$\begin{pmatrix} 1 & O & O \\ -\frac{1}{\beta_1} & \frac{1}{\beta_1} + J\omega l_1 + \frac{1}{\beta_2} & -\frac{1}{\beta_2} \\ O & -\frac{l}{\beta_2} & \frac{1}{\beta_2} + J\omega l_2 \end{pmatrix} = \begin{pmatrix} V_1 \\ V_2 \\ \end{pmatrix} \begin{pmatrix} V_3 \\ 0 \\ \end{pmatrix}$$

* matrix plugged into mattab

MATLAB Script:

```
close all;
clear;
clc;
%Variabble declarations
R1 = 65.93;
R2 = 252.79;
C1 = 10^{-6};
C2 = 10^{-6};
%Matrix declarations
G = [1,0,0;(-1/R1),(1/R1+1/R2),-1/R2;0,(-1/R2),(1/R2)];
C = [0,0,0;0,(C1),0;0,0,C2];
b = [1;0;0];
%Varying frequencies
r = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9];
W = [r, (10*r), (1e2*r), (1e3*r), (1e4*r), (1e5*r)];
freq = (w/(2*pi));
%Calling graphing functions with the parameters
semilogx(freq,freqresp4(G,C,b,w))
grid
ylim([-100,10]);
ylabel('20log|H(jw)|');
xlabel('w (rad/sec)');
hold on
```

MATLAB Simulation Result:

MATLAB Run-time Results:

Problem 4:SPICE Simulation Results:

Problem 5:

MATLAB Script:

```
close all;
clear all;
clc;
%All Resistor and Capacitor Declarations
R1 = 110;
R2 = 120;
C1 = 10^{-6};
C2 = 10^{-6};
%Count of graphs being produced.
num = 20;
QX = [R1 R2 C1 C2];
b = [1;0;0];
r = [1 2 3 4 5 6 7 8 9];
W = [r, (10*r), (1e2*r), (1e3*r), (1e4*r), (1e5*r)];
freq = (w/(2*pi));
for s = 1:num
 Q = variation(QX);
   % This function produces random variables of the element values, which are
 within 20% of the nominal ones.
 G = zeros(3,3); C = zeros(3,3);
   %This line saves us some time, since we now need to enter only the nonzero
 elements in G and C.
   G(1,1) = 1;
   G(2,1) = -1/Q(1);
   G(2,2) = 1/Q(1);
   G(2,3) = -1/Q(2);
   G(3,2) = -1/Q(2);
   G(3,3) = 1/Q(2);
   C(2,2) = Q(3);
   C(3,3) = Q(4);
   %For each new set of elements values, matrices G, C and L must be
 recomputed.
   mag = zeros(3,1);
   %vector mag is initialized
   for k = 1: length(w)
    omega = w(k);
       % omega is the next frequency
       A = G+i*omega* C;
       x = A \setminus b;
       %Vector X contains the solution of the node voltage equation in complex
 form
```

MATLAB Simulation Result:

MATLAB Run-time Results:

Problem 6:

Measured Resistor and Capacitor Values:

R1: .109kR2: .119kC1: 96.3nFC2: 1.035μF

Measured Results from Assembled Circuit:

#	Frequency	Amplitude	Gain (dB)	Phase (°)					
1		1	-1.87	-36.73					
2		1	-2.45	-41.72					
3		1	-3.17	-46.98					
4	849.3	1	-4.03	-52.08					
5	1013.4	1	-4.98	-57.1					
6	1209.1	1	-6.08	-61.96					
7		1	-7.27	-66.48					
8	1721.4	1	-8.57	-70.65					
9	2053.9	1	-9.91	-74.5					
10	2450.6	1	-11.3	-78.01					
11	2924	1	-12.72	-81.28					
12	3488.8	1	-14.19	-84.36					
13	4162.8	1	-15.68	-87.3					
14	4966.9	1	-17.19	-90.21					
15	5926.3	1	-18.71	-93.13					
16	7071.1	1	-20.3	-96.17					
17	8437	1	-21.9	-99.33					
18	10066.7	1	-23.53	-102.7					
19		1	-25.2	-106.35					
20		1	-26.96	-110.35					
21		1	-28.82	-114.62					
22		1	-30.73	-119.23					
23		1	-32.73	-124.04					
24		1	-34.87	-129.03					
25		1	-37.16	-133.96					
26		1	-39.55	-138.83					
27		1	-42.16	-143.57					
28		1	-44.83	-147.74					
29		1	-47.57	-151.65					
30 31		1 1	-50.46 -53.42	-155.54 -159.14					
	119316.6	1	-56.53	-162.48	47	1687392	1	-59.07	77.43
	142364.6	1	-50.53	-166.58	48	2013339	1	-57.72	73.65
	169864.6	1	-62.98	187.67	49	2402249	1	-56.25	76.36
	202676.8	1	-66.32	180.56	50	2866283	1	-54.63	74.01
	241827.1	1	-69.68	167	51	3419952	1	-52.96	73.54
37		1	-72.34	148.68	52	4080572	1	-51.31	70.85
	344276.2	1	-73.78	120.16	53	4868801	1	-49.73	65.37
	410778.8	1	-72.31	101.21	54	5809289	1	-47.99	61.77
	490127.4	1	-70.5	92.4	55	6931448	1	-46.12	58.33
41	584803.5	1	-68.92	82.27	56	8270371	1	-44.12	52.19
42	697767.9	1	-67.06	82.89	57	9867929	1	-41.75	45.67
43	832553.2	1	-65.25	79.9		11774080	1	-38.91	37.92
44	993374.5	1	-63.66	79.41		14048437	1	-35.42	28.25
45	1185261	1	-62.02	78.59		16762122	1	-30.12	16.03
46	1414214	1	-60.95	77.46	61	20000000	1	-19.92	-1.32

MATLAB Script:

Set up the Import Options and import the data

```
opts = delimitedTextImportOptions("NumVariables", 5);

% Specify range and delimiter
opts.DataLines = [2, Inf];
opts.Delimiter = ",";

% Specify column names and types
opts.VariableNames =
   ["VarName1", "FrequencyHz", "AmplitudeVpp", "GaindB", "Phase"];
opts.VariableTypes = ["double", "double", "double", "double", "double"];

% Specify file level properties
opts.ExtraColumnsRule = "ignore";
opts.EmptyLineRule = "read";

% Import the data
MeasuredResults = readtable("C:\Users\purin\Documents\SCU\2022-2023\ELEN
100\ELEN 100 Lab\ELEN 100 Project 1 Deliverables\Measured Results.csv",
opts);
```

Clear temporary variables

```
clear opts
x = MeasuredResults.FrequencyHz;
y = MeasuredResults.GaindB;
semilogx(x,y)
grid
ylabel('20log|H(jw)|');
xlabel('w (rad/sec)');
```

MATLAB Simulation Result:

MATLAB Run-time Results:

MATLAB Simulation Compared to Problem 3:

MATLAB Simulation Compared to Problem 5:

