

CLAIMS

What Is Claimed:

1	1.	A method for simulating a multi-dimensional space, comprising:
2		generating a sequence of pseudo-random numbers according to a
3		prescribed quasi-Monte Carlo model; and
4		mapping each pseudo-random number R of the sequence of
5		random numbers into multiple variables of unique values for the multi-
6		dimensional space, the multi-dimensional space including D dimensions,
7		where D is a number.
1	2.	The method of claim 1, further comprising assigning the unique values to
2		each dimension based upon a prescribed index.
1	3.	The method of claim 1, further comprising sampling the multiple variables
2		of the multi-dimensional space and statistically analyzing the sampled
3		multiple variables according to a prescribed error analysis.
1	4.	The method of claim 1, further comprising sampling the multiple variables
2		of the multi-dimensional space and performing numerical integrations
3		upon the sampled multiple variables.
1	5.	The method of claim 1, wherein each pseudo-random number R
2		generated by the prescribed quasi-Monte Carlo model includes a floating
3		point number having a value between 0.0 and 1.0, further wherein each
4		dimension is characterized by a unique value based upon an index, the
5		index equal to a total combinations of dimensional value points TC times a
6		respective pseudo-random number R.

- The method of claim 1, wherein each of the multiple variables of the multidimensional space represents a corresponding D dimension value and wherein each dimension is characterized by a minimum and a maximum value, further wherein each dimension is characterized by a prescribed resolution S.
- The method of claim 6, wherein the D dimension values are further characterized by a first dimension D0 that includes minimum and maximum values defined as D0.min and D0.max, respectively, a second dimension D1 that includes minimum and maximum values defined as D1.min and D1.max, etceteras, up to a Dth dimension.
- The method of claim 6, further comprising selecting a value of S according to a desired accuracy of a final simulation value, wherein the value of S defines a grid for use in conjunction with the mapping of the pseudorandom numbers into the multiple variables of the multi-dimensional space.
- The method of claim 8, wherein selecting the value of S includes deriving the value of S such that a ratio r, as defined by $r = s^D/P^N$, is not factorable by one of the following selected from the group consisting of base P and the number of dimensions D, and where N is the number of pseudorandom numbers and r is a prescribed prime number.

10. A method for simulating a multi-dimensional space, comprising:

generating a sequence of pseudo-random numbers according to a prescribed quasi-Monte Carlo model;

mapping each pseudo-random number R of the sequence of random numbers into multiple variables of unique values for the multidimensional space, the multi-dimensional space including D dimensions, where D is a number, wherein each of the multiple variables of the multidimensional space represents a corresponding D dimension value and wherein each dimension is characterized by a minimum and a maximum value, the D dimension values further being characterized by a first dimension D0 that includes minimum and maximum values defined as D0.min and D0.max, respectively, a second dimension D1 that includes minimum and maximum values defined as D1.min and D1.max, etceteras, up to a Dth dimension, further wherein each dimension is characterized by a prescribed resolution S; and

selecting a value of S according to a desired accuracy of a final simulation value, wherein the value of S defines a grid for use in conjunction with the mapping of the pseudo-random numbers into the multiple variables of the multi-dimensional space, wherein selecting the value of S includes deriving the value of S such that a ratio r, as defined by $r = s^D/P^N$, is not factorable by one of the following selected from the group consisting of base P and the number of dimensions D, and where N is the number of pseudo-random numbers and r is a prescribed prime number.

1	11.	A method for simulating trace impedance of a printed circuit board
2		characterized by at least three dimensions of a multi-dimensional space,
3		said method comprising:
4		generating a sequence of pseudo-random numbers according to a
5		prescribed quasi-Monte Carlo model; and
6		mapping each pseudo-random number R of the sequence of
7		random numbers into multiple variables of unique values for the multi-
8		dimensional space, the multi-dimensional space including D dimensions,
9		where D is a number.
1	12.	The method of claim 11, further comprising assigning the unique values to
2		each dimension based upon a prescribed index.
1	13.	The method of claim 11, further comprising sampling the multiple variables
2		of the multi-dimensional space and statistically analyzing the sampled
3		multiple variables according to a prescribed error analysis.
		-
1	14.	The method of claim 11, further comprising sampling the multiple variables
2		of the multi-dimensional space and performing numerical integrations
3		upon the sampled multiple variables.
1	15.	The method of claim 11, wherein each pseudo-random number R
1	10.	generated by the prescribed quasi-Monte Carlo model includes a floating
2		point number having a value between 0.0 and 1.0, further wherein each
3		•
4		dimension is characterized by a unique value based upon an index, the
5		index equal to a total combinations of dimensional value points TC times a
6		respective pseudo-random number R.

- 1 16. The method of claim 11, wherein each of the multiple variables of the
 2 multi-dimensional space represents a corresponding D dimension value
 3 and wherein each dimension is characterized by a minimum and a
 4 maximum value, further wherein each dimension is characterized by a
 5 prescribed resolution S.
- 1 17. The method of claim 16, wherein the D dimension values are further
 2 characterized by a first dimension D0 that includes minimum and
 3 maximum values defined as D0.min and D0.max, respectively, a second
 4 dimension D1 that includes minimum and maximum values defined as
 5 D1.min and D1.max, etceteras, up to a Dth dimension.
- 1 18. The method of claim 16, further comprising selecting a value of S
 2 according to a desired accuracy of a final simulation value, wherein the
 3 value of S defines a grid for use in conjunction with the mapping of the
 4 pseudo-random numbers into the multiple variables of the multi5 dimensional space.
- The method of claim 18, wherein selecting the value of S includes deriving the value of S such that a ratio r, as defined by $r = s^D/P^N$, is not factorable by one of the following selected from the group consisting of base P and the number of dimensions D, and where N is the number of pseudorandom numbers and r is a prescribed prime number.

20.

Apparatus for simulating trace impedance of a printed circuit board, the printed circuit board characterized by at least three dimensions of a multi-dimensional space, said apparatus comprising:

a random number generator for generating a sequence of pseudorandom numbers according to a prescribed quasi-Monte Carlo model;

a mapping processor for mapping each pseudo-random number R of the sequence of random numbers into multiple variables of unique values for the multi-dimensional space, the multi-dimensional space including D dimensions, where D is a number, wherein each of the multiple variables of the multi-dimensional space represents a corresponding D dimension value and wherein each dimension is characterized by a minimum and a maximum value, the D dimension values further being characterized by a first dimension D0 that includes minimum and maximum values defined as D0.min and D0.max, respectively, a second dimension D1 that includes minimum and maximum values defined as D1.min and D1.max, etceteras, up to a Dth dimension, further wherein each dimension is characterized by a prescribed resolution S; and

a value selector for selecting a value of S according to a desired accuracy of a final simulation value, wherein the value of S defines a grid for use in conjunction with the mapping of the pseudo-random numbers into the multiple variables of the multi-dimensional space, wherein selecting the value of S includes deriving the value of S such that a ratio r, as defined by $r = s^D/P^N$, is not factorable by one of the following selected from the group consisting of base P and the number of dimensions D, and where N is the number of pseudo-random numbers and r is a prescribed prime number.

1	21.	A method of manufacturing a printed circuit board comprising:
2		characterizing the printed circuit board by at least three dimensions
3		of a multi-dimensional space; and
4		manufacturing the printed circuit board in accordance with a
5		simulated trace impedance, the simulated trace impedance obtained by:
6		generating a sequence of pseudo-random numbers
7		according to a prescribed quasi-Monte Carlo model;
8		mapping each pseudo-random number R of the sequence of
9		random numbers into multiple variables of unique values for the
10		multi-dimensional space, the multi-dimensional space including D
11		dimensions, where D is a number, wherein each of the multiple
12		variables of the multi-dimensional space represents a
13		corresponding D dimension value and wherein each dimension is
14		characterized by a minimum and a maximum value, the D
15		dimension values further being characterized by a first dimension
16		D0 that includes minimum and maximum values defined as D0.min
17		and D0.max, respectively, a second dimension D1 that includes
18		minimum and maximum values defined as D1.min and D1.max,
19		etceteras, up to a Dth dimension, further wherein each dimension is
20		characterized by a prescribed resolution S; and
21		selecting a value of S according to a desired accuracy of a
22		final simulation value, wherein the value of S defines a grid for use
23		in conjunction with the mapping of the pseudo-random numbers
24		into the multiple variables of the multi-dimensional space, wherein
25		selecting the value of S includes deriving the value of S such that a
26		ratio r, as defined by $r = s^D/P^N$, is not factorable by one of the
27		following selected from the group consisting of base P and the
28		number of dimensions D, and where N is the number of pseudo-
29		random numbers and r is a prescribed prime number.

22. A computer system, comprising:

a printed circuit board manufactured in accordance with a simulated trace impedance, said printed circuit board including impedance traces that characterize at least three dimensions of a multi-dimensional space of said printed circuit board, wherein said impedance traces include trace impedances obtained by:

generating a sequence of pseudo-random numbers according to a prescribed quasi-Monte Carlo model;

mapping each pseudo-random number R of the sequence of random numbers into multiple variables of unique values for the multi-dimensional space, the multi-dimensional space including D dimensions, where D is a number, wherein each of the multiple variables of the multi-dimensional space represents a corresponding D dimension value and wherein each dimension is characterized by a minimum and a maximum value, the D dimension values further being characterized by a first dimension D0 that includes minimum and maximum values defined as D0.min and D0.max, respectively, a second dimension D1 that includes minimum and maximum values defined as D1.min and D1.max, etceteras, up to a Dth dimension, further wherein each dimension is characterized by a prescribed resolution S; and

selecting a value of S according to a desired accuracy of a final simulation value, wherein the value of S defines a grid for use in conjunction with the mapping of the pseudo-random numbers into the multiple variables of the multi-dimensional space, wherein selecting the value of S includes deriving the value of S such that a ratio r, as defined by $r = s^D/P^N$, is not factorable by one of the following selected from the group consisting of base P and the number of dimensions D, and where N is the number of pseudo-random numbers and r is a prescribed prime number.