Un teorema di convergenza dominata generalizzato

 $18~\mathrm{marzo}~2020$

Teorema. Sia (Ω, Σ, μ) uno spazio di misura positiva. Supponiamo che $\{f_n\}_n$ e $\{g_n\}_n$ siano due successioni in $L^1(\Omega, \mu)$, e f, g due funzioni di $L^1(\Omega)$ tali che $f_n \to f$, $g_n \to g$ quasi ovunque in Ω . Se $|f_n| \le g_n$ e $\lim_{n \to +\infty} \int_{\Omega} g_n \, d\mu = \int_{\Omega} g \, d\mu$, allora $\lim_{n \to +\infty} \int_{\Omega} f_n \, d\mu = \int_{\Omega} f \, d\mu$

Dimostrazione. Per ipotesi, $0 \leq g_n + f_n$ e
 $0 \leq g_n - f_n$ in $\Omega.$ Applicando il Lemma di Fatou otteniamo

$$\int_{\Omega} (g+f) \, d\mu \le \liminf_{n \to +\infty} \int_{\Omega} (g_n + f_n) \, d\mu = \int_{\Omega} g \, d\mu + \liminf_{n \to +\infty} \int_{\Omega} f_n \, d\mu \tag{1}$$

 \mathbf{e}

$$\int_{\Omega} (g - f) d\mu \le \liminf_{n \to +\infty} \int_{\Omega} (g_n - f_n) d\mu = \int_{\Omega} g d\mu - \limsup_{n \to +\infty} \int_{\Omega} f_n d\mu.$$
 (2)

Pertanto

$$\int_{\Omega} f \, d\mu \leq \liminf_{n \to +\infty} \int_{\Omega} f_n \, d\mu \leq \limsup_{n \to +\infty} \int_{\Omega} f_n \, d\mu \leq \int_{\Omega} f \, d\mu.$$