Devoir à la maison n°15

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Solution 1

1. a. Soit $x \in \text{Ker}(p) \cap \text{Im}(p)$. Ainsi $p(x) = 0_E$ et il existe donc $a \in E$ tel que x = p(a). Comme $p^2 = p$, $x = p(a) = p^2(a) = p(x) = 0_E$. Finalement $\text{Ker}(p) \cap \text{Im}(p) = \{0_E\}$. Mais comme E est de dimension finie, on peut appliquer le théorème du rang pour affirmer que dim $E = \dim \text{Ker}(p) + \dim \text{Im}(p)$. On en déduit que $E = \text{Ker}(p) \oplus \text{Im}(p)$.

b. On suppose que *p* est un projecteur orthogonal.

Soit $x \in E$. Alors $p(x) \in Im(p)$ et $x - p(x) \in Ker p$ donc, comme Ker(p) et Im(p) sont orthogonaux, le théorème de Pythagore permet d'affirmer que

$$||x||^2 = ||p(x) + (x - p(x))||^2 = ||p(x)||^2 + ||x - p(x)||^2 \ge ||p(x)||^2$$

Ainsi $||p(x)|| \le ||x||$. Le théorème de Pythagore montre également que le cas d'égalité se produit si et seulement si x = p(x) i.e. $x \in \text{Im}(p)$.

A nouveau, $p(x) \perp x - p(x)$ donc

$$\langle p(x), x \rangle = \langle p(x), p(x) + (x - p(x)) \rangle = ||p(x)||^2 + \langle p(x), x - p(x) \rangle = ||p(x)||^2 \ge 0$$

Ce calcul montre également que

$$\langle p(x), x \rangle = 0 \iff \|p(x)\|^2 = 0 \iff p(x) = 0_E \iff x \in \text{Ker}(p)$$

c. Supposons que p est un projecteur orthogonal. Soit $(x, y) \in E^2$. Alors

$$\langle p(x), y \rangle = \langle p(x), y - p(y) \rangle + \langle p(x), p(y) \rangle = \langle p(x), p(y) \rangle$$

car $y - p(y) \in \text{Ker}(p)$ et $p(x) \in \text{Im}(p)$ donc $y - p(y) \perp x$. Comme $\langle p(x), p(y) \rangle$ est invariant par échange de x et y,

$$\langle p(x),y\rangle = \langle p(y),x\rangle = \langle x,p(y)\rangle$$

de sorte que $p^* = p$ par définition de l'adjoint.

Supposons que $p^* = p$. Soit $(x, y) \in \text{Ker}(p) \times \text{Im}(p)$. Il existe donc $a \in E$ tel que y = p(a). Alors

$$\langle x, y \rangle = \langle x, p(a) \rangle = \langle p(x), a \rangle = \langle 0_{\mathcal{E}}, a \rangle = 0$$

Donc $Ker(p) \perp Im(p)$ et p est un projecteur orthogonal.

2. a. D'après la question précédente, M est la matrice d'un projecteur orthogonal dans une base orthonormée de E si et seulement si $M^2 = M$ et $M^T = M$, ce qui équivaut au système

$$\begin{cases} a^2 + b^2 = a \\ b^2 + d^2 = d \\ ab + bd = b \\ b = c \end{cases}$$

ou encore

$$\begin{cases} a(1-a) = b^2 \\ a^2 - d^2 = a - d \\ ab + bd = b \\ b = c \end{cases}$$

1

ou bien encore

$$\begin{cases} a(1-a) = b^2 \\ (a-d)(a+d-1) = 0 \\ b(a+d-1) = 0 \\ b = c \end{cases}$$

Si on avait $a+d-1 \neq 0$, on aurait b=c=0 et $a=d \in \{0,1\}$ i.e. $M \in \{0,I_2\}$ et M ne serait pas la matrice d'un projecteur strict. On en déduit que M est la matrice d'un projecteur orthogonal strict si et seulement si

$$\begin{cases} a(1-a) = b^2 \\ a+d-1 = 0 \\ b = c \end{cases}$$

b. Le produit a(1-a) doit être positif, ce qui impose $a \in [0,1]$.

c. On trouve $N = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$.

Supposons que a = 0. Alors, d'après la question **2.a**, $b^2 = a(1 - a) = 0$ puis b = 0. Ainsi N = 0 donc N est bien diagonalisable et $Sp(N) = \{0\} \subset [0, 1]$.

Supposons que $a \neq 0$. Alors $\chi_N = X(X-a)$ est scindé à racines simples. D'après la question précédente, $a \in [0,1]$ donc $Sp(N) = \{0,a\} \subset [0,1]$.

- **d.** Comme p_1 est un projecteur orthogonal strict, dim $\operatorname{Ker}(p_1) = \dim \operatorname{Im}(p_1) = 1$. La matrice de p_1 dans une base orthonormée de E adpatée à la décomposition en somme directe $E = \operatorname{Im}(p_1) \oplus \operatorname{Ker}(p_1)$ est alors $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Comme p_2 est également un projecteur orthogonal strict, la question **2.a** permet d'affirmer que sa matrice dans cette même base orthonormée est de la forme $\begin{pmatrix} a & b \\ b & 1-a \end{pmatrix}$. La matrice de $p_1 \circ p_2$ dans cette base est alors la matrice N de la question précédente. Comme N est diagonalisable, $p_1 \circ p_2$ l'est également et $\operatorname{Sp}(p_1 \circ p_2) = \operatorname{Sp}(N) \subset [0,1]$.
- 3. a. Comme p_1 et p_2 sont des projecteurs orthogonaux, on obtient par propriété de l'adjonction :

$$(p_1 \circ p_2 \circ p_1)^* = p_1^* \circ p_2^* \circ p_1^* = p_1 \circ p_2 \circ p_1$$

Par conséquent, $p_1 \circ p_2 \circ p_1$ est auto-adjoint et le théorème spectral permet d'affirmer qu'il est diagonalisable dans une base orthonormée.

Soient $\lambda \in \operatorname{Sp}(p_1 \circ p_2 \circ p_1)$ et x un vecteur propre associé. Comme p_1 et p_2 sont des projecteurs orthogonaux, on obtient avec la question $\mathbf{1.b}$,

$$||p_1 \circ p_2 \circ p_1(x)|| \le ||p_2 \circ p_1(x)|| \le ||p_1(x)|| \le ||x||$$

c'est-à-dire $|\lambda| ||x|| \le ||x||$. Comme x n'est pas nul en tant que vecteur propre, ||x|| > 0 puis $|\lambda| \le 1$. Comme p_1 est un endomorphisme auto-adjoint,

$$\langle p_1 \circ p_2 \circ p_1(x), x \rangle = \langle p_2 \circ p_1(x), p_1(x) \rangle$$

Mais comme p_2 est un projecteur orthogonal, $\langle p_2 \circ p_1(x), p_1(x) \rangle \geq 0$. Finalement, $\langle p_1 \circ p_2 \circ p_1(x), x \rangle \geq 0$ ou encore $\lambda \|x\|^2 \geq 0$. A nouveau, $\|x\|^2 > 0$ donc $\lambda \geq 0$. Finalement, $\lambda \in [0, 1]$.

- **b.** On a clairement $\text{Im}(p_1 \circ p_2 \circ p_1) \subset \text{Im}(p_1)$ donc $\text{Im}(p_1)$ est stable par $p_1 \circ p_2 \circ p_1$.
- c. De même, $\operatorname{Im}(p_1 \circ p_2) \subset \operatorname{Im}(p_1)$ donc $\operatorname{Im}(p_1)$ est également stable par $p_1 \circ p_2$. Soit $x \in \operatorname{Im}(p_1)$. Alors $x = p_1(x)$ puis $p_1 \circ p_2(x) = p_1 \circ p_2 \circ p_1(x)$. L'endomorphisme q de $\operatorname{Im}(p_1)$ induit par $p_1 \circ p_2$ est donc également l'endomorphisme de $\operatorname{Im}(p_1)$ induit par $p_1 \circ p_2 \circ p_1$. Or $p_1 \circ p_2 \circ p_1$ est diagonalisable donc l'endomorphisme q de $\operatorname{Im}(p_1)$ qu'il induit est également diagonalisable. On peut également affirmer avec la question 3.a que $\operatorname{Sp}(q) \subset \operatorname{Sp}(p_1 \circ p_2 \circ p_1) \subset [0,1]$.
- **d.** On montre classiquement que, si A et B sont des sous-espaces vectoriels de E, alors $(A + B)^{\perp} = A^{\perp} \cap B^{\perp}$. Ainsi

$$G^{\perp} = \operatorname{Im}(p_1)^{\perp} \cap \operatorname{Ker}(p_2)^{\perp}$$

Mais comme p_1 et p_2 sont des projecteurs orthogonaux, $\text{Im}(p_1)^{\perp} = \text{Ker}(p_1)$ et $\text{Ker}(p_2)^{\perp} = \text{Im}(p_2)$. Ainsi

$$G^{\perp} = \operatorname{Ker}(p_1) \cap \operatorname{Im}(p_2)$$

Soit $x \in G^{\perp} = \operatorname{Ker}(p_1) \cap \operatorname{Im}(p_2)$. Alors $p_2(x) = x$ et $p_1(x) = 0_E$. Ainsi $p_1 \circ p_2(x) = 0_E$. L'endomorphisme $p_1 \circ p_2$ est donc nul sur G^{\perp} .

e. Comme q est diagonalisable, il existe une base \mathcal{B} de Im p_1 formée de vecteurs propres de q et donc de $p_1 \circ p_2$. Comme $G = \operatorname{Im} p_1 + \operatorname{Ker} p_2$, on peut compléter \mathcal{B} en une base \mathcal{B}' de G en lui ajoutant des vecteurs de $\operatorname{Ker} p_2$. Ces vecteurs sont encore des vecteurs propres de $p_1 \circ p_2$ (associés à la valeur propre 0). \mathcal{B}' est donc une base de G formée de vecteurs propres de $p_1 \circ p_2$. Donnons nous enfin une base \mathcal{B}'' de G^{\perp} . Comme $p_1 \circ p_2$ est nul sur G^{\perp} , \mathcal{B}'' est une base de vecteurs propres de $p_1 \circ p_2$ (encore une fois associés à la valeur popre 0). Comme $E = G \oplus G^{\perp}$, la concaténation des bases \mathcal{B}' et \mathcal{B}'' est une base de E formée de vecteurs propres de $p_1 \circ p_2$ qui est donc diagonalisable. De plus, les valeurs propres de $p_1 \circ p_2$ sont 0 et les valeurs propres de $p_1 \circ p_2$ sont toutes dans [0,1]. Ainsi toutes les valeurs propres de $p_1 \circ p_2$ sont encore dans [0,1].

f. Notons $r = \operatorname{rg}(p_1 \circ p_2)$. Comme $p_1 \circ p_2$ est diagonalisable, elle est semblable à une matrice $\operatorname{diag}(\lambda_1, \dots, \lambda_r, 0, \dots, 0)$ où les λ_i sont non nuls. On sait de plus que les λ_i sont dans l'intervalle [0, 1] donc

$$\operatorname{tr}(p_1 \circ p_2) = \sum_{i=1}^r \lambda_i \le r = \operatorname{rg}(p_1 \circ p_2) \le \operatorname{rg}(p_2) = r_2$$

Supposons que $\operatorname{tr}(p_1 \circ p_2) = r_2$. D'après les inégalités précédentes, on a donc $r = r_2$ et $\lambda_i = 1$ pour tout $i \in [\![1,r]\!]$. Notons (e_1,\ldots,e_n) une base dans laquelle la matrice de $p_1 \circ p_2$ est $\operatorname{diag}(1,\ldots,1,0,\ldots,0)$. Soit $i \in [\![1,r]\!]$. Alors $p_1 \circ p_2(e_i) = e_i$. Mais comme p_1 et p_2 sont des projecteurs orthogonaux, la question **1.b** montre que

$$||p_1 \circ p_2(e_i)|| \le ||p_2(e_i)|| \le ||e_i||$$

Comme $p_1 \circ p_2(e_i) = e_i$, ces inégalités sont en fait des égalités et la question **1.b** nous dit notamment que $p_2(e_i) \in \text{Im}(p_1)$. Par ailleurs, Réciproquement, si $\text{Im}(p_2) \subset \text{Im}(p_1)$, alors pour tout $x \in E$, $p_2(x) \in \text{Im}(p_1)$ donc $p_1 \circ p_2(x) = p_2(x)$. Ainsi $p_1 \circ p_2 = p_2$. Ainsi $\text{tr}(p_1 \circ p_2) = \text{tr}(p_2) = \text{rg}(p_2)$ car le rang d'un projecteur est égal à sa trace.

Solution 2

1. a. Un produit par blocs donne

$$M_{A,B,C,D}M_{I_n,E,O_n,I_n} = M_{A,AE+B,C,CE+D}$$

b. En prenant $E = -A^{-1}B$ dans la question précédente, on obtient

$$M_{A,B,C,D}M_{I_n,E,0_n,I_n} = M_{A,0_n,C,D-CA^{-1}B}$$

Par conséquent,

$$\det(M_{A,B,C,D}) \det(M_{I_n,E,0_n,I_n}) = \det(M_{A,0_n,C,D-CA^{-1}B})$$

Les matrices $M_{I_n,E,0_n,I_n}$ et $M_{A,0_n,C,D-CA^{-1}B}$ sont triangulaires par blocs donc $\det(M_{I_n,E,0_n,I_n}) = \det(I_n)^2 = 1$ et $\det(M_{A,0_n,C,D-CA^{-1}B}) = \det(A) \det(D-CA^{-1}B)$. Finalement,

$$\det(M_{A,B,C,D}) = \det(A) \det(D - CA^{-1}B)$$

2. a. D'après la question précédente,

$$\begin{split} \det(M_{A,B,C,D}) &= \det(A) \det(D - CA^{-1}B) \\ &= \det(A(D - CA^{-1}B)) \qquad \text{par propriété du déterminant} \\ &= \det(AD - ACA^{-1}B) \\ &= \det(AD - CAA^{-1}B) \qquad \text{car A et C commutent} \\ &= \det(AD - CB) \end{split}$$

b. i. Soit $\lambda \in \mathbb{C} \setminus \operatorname{Sp}(A)$. Alors $\lambda I_n - A$ est inversible. De plus, $\lambda I_n - A$ et -C commutent encore. On peut alors appliquer la question précédente pour affirmer que

$$\chi_{\mathrm{M_{A,B,C,D}}}(\lambda) = \det(\mathrm{M_{\lambda I_n - A, -B, -C, \lambda I_n - D}}) = \det((\lambda \mathrm{I}_n - \mathrm{A})(\lambda \mathrm{I}_n - \mathrm{D}) - \mathrm{CB}) = \det(\lambda^2 \mathrm{I}_n + \lambda \mathrm{U} + \mathrm{V})$$

avec U = -(A+D) et V = AD - CB. Les applications $\lambda \mapsto \chi_{M_{A,B,C,D}}(\lambda)$ et $\lambda \mapsto \det(\lambda^2 I_n + \lambda U + V)$ sont polynomiales et coïncident sur l'ensemble infini $\mathbb{C} \setminus Sp(A)$: elles sont donc égales.

ii. Les deux applications précédentes sont donc égales en 0, ce qui donne

$$\det(\mathbf{M}_{-\mathbf{A},-\mathbf{B},-\mathbf{C},-\mathbf{D}}) = \det(\mathbf{A}\mathbf{D} - \mathbf{C}\mathbf{B})$$

Or

$$\det(M_{-A,-B,-C,-D}) = \det(-M_{A,B,C,D}) = (-1)^{2n} \det(M_{A,B,C,D}) = \det(M_{A,B,C,D})$$

donc

$$det(M_{A,B,C,D}) = det(AD - CB)$$

- 3. a. D'une part, $(B^TB)^T = B^T(B^T)^T = B^TB$ donc B^TB est symétrique. D'autre part, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^TB^TBX = (BX)^TBX = \|BX\|^2 \ge 0$ où $\|\cdot\|$ désigne la norme euclidienne usuelle sur $\mathcal{M}_{n,1}(\mathbb{R})$. Ainsi B est bien symétrique positive.
 - **b.** Comme I_n et B^T commutent, on peut appliquer la question **2.b.i** pour affirmer que

$$\forall \lambda \in \mathbb{C}, \ \chi_{S}(\lambda) = \det(\lambda^{2} - 2\lambda I_{n} + I_{n} - B^{\mathsf{T}}B) = \det((\lambda - 1)^{2}I_{n} - B^{\mathsf{T}}B) = \chi_{\mathsf{R}^{\mathsf{T}}\mathsf{R}}((\lambda - 1)^{2})$$

c. Remarquons déjà que S est bien symétrique.

Supposons que S soit symétrique définie positive. Soit $\mu \in Sp(B^TB)$. Comme B^TB est symétrique positive, $\mu \ge 0$. D'après la question précédente,

$$\chi_{S}(1 - \sqrt{\mu}) = \chi_{B^{T}B}(\mu) = 0$$

donc $1-\sqrt{\mu}$ est valeur propre de S. Comme S est symétrique définie positive, $1-\sqrt{\mu}>0$ puis $\mu<1$. Les valeurs propres de B^TB sont donc toutes strictement inférieures à 1.

Supposons que toutes les valeurs propres de B^TB soient strictement inférieures à 1. Soit $\lambda \in Sp(S)$. Alors

$$\chi_{\mathbf{B}^{\mathsf{T}}\mathbf{B}}((\lambda-1)^2) = \chi_{\mathbf{S}}(\lambda) = 0$$

d'après la question précédente. Ainsi $(\lambda-1)^2$ est une valeur porpre de B^TB de sorte que $(\lambda-1)^2<1$ i.e. $-1<\lambda-1<1$ ou encore $0<\lambda<2$. On a alors $Sp(S)\subset\mathbb{R}_+^*$ donc S est bien symétrique définie positive.

4. a. On montre d'abord par récurrence que A_n est une matrice carrée de taille 2^n . Les matrices $2A_{n-1}$ et iA_{n-1} commutent donc, d'après la question **2.b.ii**,

$$\det(A_n) = \det(2A_{n-1} \times (-2A_{n-1}) - iA_{n-1} \times iA_{n-1}) = \det(-3A_{n-1}^2) = (-3)^{2^{n-1}} \det(A_{n-1})^2$$

Mais comme n > 1, 2^{n-1} est pair donc

$$\det(A_n) = 3^{2^{n-1}} \det(A_{n-1})^2$$

b. Tout d'abord, $\det(A_1) = -3$. On montre ensuite par récurrence que $\det(A_n) = 3^{2^{n-1}n}$ pour tout entier $n \ge 2$. D'abord,

$$\det(A_2) = 3^2 \det(A_1)^2 = 3^4 = 3^{2^{2-1} \times 2}$$

Ensuite, supposons que $det(A_n) = 3^{2^{n-1}n}$ pour un certain entier $n \ge 2$. Alors

$$\det(\mathbf{A}_{n+1}) = 3^{2^n} \det(\mathbf{A}_n)^2 = 3^{2^n} \left(3^{2^{n-1}n}\right)^2 = 3^{2^n} \cdot 3^{2^n n} = 3^{2^n(n+1)}$$

ce qui conclut la récurrence.

c. Les matrices $2A_{n-1}$ et iA_{n-1} commutent donc, d'après la question **2.b.i**,

$$\begin{split} \forall \lambda \in \mathbb{C}, \ \chi_{A_n}(\lambda) &= \det(\lambda^2 I_{2^{n-1}} - 3A_{n-1}^2) \\ &= \det\left(3\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} - A_{n-1}\right)\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} + A_{n-1}\right)\right) \\ &= 3^{2^{n-1}}\det\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} - A_{n-1}\right)\det\left(\frac{\lambda}{\sqrt{3}}I_{2^{n-1}} + A_{n-1}\right) \\ &= 3^{2^{n-1}}\chi_{A_{n-1}}\left(\frac{\lambda}{\sqrt{3}}\right)\chi_{-A_{n-1}}\left(\frac{\lambda}{\sqrt{3}}\right) \end{split}$$

d. Comme $\chi_{A_1}=X^2-3$, $Sp(A_1)=\{-\sqrt{3},\sqrt{3}\}$. La relation de récurrence de la question précédente montre que

$$\operatorname{Sp}(\mathbf{A}_n) = \left(\sqrt{3}\operatorname{Sp}(\mathbf{A}_{n-1})\right) \cup \left(\sqrt{3}\operatorname{Sp}(-\mathbf{A}_{n-1})\right) = \left(\sqrt{3}\operatorname{Sp}(\mathbf{A}_{n-1})\right) \cup \left(-\sqrt{3}\operatorname{Sp}(\mathbf{A}_{n-1})\right)$$

On en déduit par une récurrence évidente que $Sp(A_n) = \{-\sqrt{3}^n, \sqrt{3}^n\}$.