

SEQUENCE LISTING

<110> Stoddard, Barry L.
Pratt, Kathleen
Fujikawa, Kazuo
Davie, Earl W.
Fred Hutchinson Cancer Research Center
University of Washington

<120> Crystal of a Truncated Protein Construct Containing a Coagulation Factor VIII C2 Domain in the Presence or Absence of a Bound Ligand and Methods of Use Thereof

<130> 14538A-005310US

<140> US 10/049,399
<141> Not yet assigned

<150> US 60/148,907
<151> 1999-08-13

<150> WO PCT/US00/22226
<151> 2000-08-11

<160> 12

<170> PatentIn Ver. 2.1

<210> 1
<211> 2332
<212> PRT
<213> Homo sapiens

<220>
<223> human Factor VIII

<400> 1
Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
1 5 10 15

Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro
20 25 30

Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys
35 40 45

Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro
50 55 60

Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val
65 70 75 80

Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val
85 90 95

Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala
100 105 110

Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val
115 120 125

Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn
130 135 140

Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser
145 150 155 160

His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu
165 170 175

Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu
180 185 190

His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp
195 200 205

His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser
210 215 220

Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg
225 230 235 240

Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His
245 250 255

Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu
260 265 270

Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile
275 280 285

Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly
290 295 300

Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met
305 310 315 320

Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg
325 330 335

Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp
340 345 350

Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe
355 360 365

Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His
370 375 380

Tyr Ile Ala Ala Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu
385 390 395 400

Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro
405 410 415

Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr
420 425 430

Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile
435 440 445

Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile
450 455 460

Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile
465 470 475 480

Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys
485 490 495

His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys
500 505 510

Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys
515 520 525

Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala
530 535 540

Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp
545 550 555 560

Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe
565 570 575

Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln
580 585 590

Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe
595 600 605

Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser
610 615 620

Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu
625 630 635 640

Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr
645 650 655

Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro
660 665 670

Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp
675 680 685

Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala
690 695 700

Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu
705 710 715 720

Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala
725 730 735

Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Pro Ser Thr Arg
740 745 750

Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys
755 760 765

Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn
770 775 780

Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro
785 790 795 800

His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe
805 810 815

Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser
820 825 830

Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val
835 840 845

Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly
850 855 860

Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser
865 870 875 880

Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala
885 890 895

Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His
900 905 910

Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro
915 920 925

Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp
930 935 940

Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp
945 950 955 960

Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys
965 970 975

Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys
980 985 990

Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala
995 1000 1005

Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu Asn
1010 1015 1020

Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys
1025 1030 1035 1040

Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp Lys Asn Ala
1045 1050 1055

Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys
1060 1065 1070

Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp
1075 1080 1085

Ala Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu
1090 1095 1100

Ser Ala Arg Trp Ile Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser
1105 1110 1115 1120

Gly Gln Gly Pro Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys
1125 1130 1135

Ser Val Glu Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val
1140 1145 1150

Gly Lys Gly Glu Phe Thr Lys Asp Val Gly Leu Lys Glu Met Val Phe
1155 1160 1165

Pro Ser Ser Arg Asn Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu
1170 1175 1180

Asn Asn Thr His Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys
1185 1190 1195 1200

Lys Glu Thr Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr
1205 1210 1215

Val Thr Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr
1220 1225 1230

Arg Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu
1235 1240 1245

Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys His
1250 1255 1260

Thr Ala His Phe Ser Lys Lys Gly Glu Glu Asn Leu Glu Gly Leu
1265 1270 1275 1280

Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys Thr Thr Arg
1285 1290 1295

Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr Gln Arg Ser Lys
1300 1305 1310

Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu Glu Thr Glu Leu Glu
1315 1320 1325

Lys Arg Ile Ile Val Asp Asp Thr Ser Thr Gln Trp Ser Lys Asn Met
1330 1335 1340

Lys His Leu Thr Pro Ser Thr Leu Thr Gln Ile Asp Tyr Asn Glu Lys
1345 1350 1355 1360

Glu Lys Gly Ala Ile Thr Gln Ser Pro Leu Ser Asp Cys Leu Thr Arg
1365 1370 1375

Ser His Ser Ile Pro Gln Ala Asn Arg Ser Pro Leu Pro Ile Ala Lys
1380 1385 1390

Val Ser Ser Phe Pro Ser Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu
1395 1400 1405

Phe Gln Asp Asn Ser Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys
1410 1415 1420

Asp Ser Gly Val Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys
1425 1430 1435 1440

Asn Asn Leu Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln
1445 1450 1455

Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr
1460 1465 1470

Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr
1475 1480 1485

Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys Asp
1490 1495 1500

Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu Asp Leu
1505 1510 1515 1520

Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile Lys Trp Asn
1525 1530 1535

Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg Val Ala Thr Glu
1540 1545 1550

Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp Pro Leu Ala Trp Asp
1555 1560 1565

Asn His Tyr Gly Thr Gln Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu
1570 1575 1580

Lys Ser Pro Glu Lys Thr Ala Phe Lys Lys Lys Asp Thr Ile Leu Ser
1585 1590 1595 1600

Leu Asn Ala Cys Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly
1605 1610 1615

Gln Asn Lys Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr
1620 1625 1630

Glu Arg Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg
1635 1640 1645

Glu Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr
1650 1655 1660

Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr
1665 1670 1675 1680

Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg
1685 1690 1695

His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser
1700 1705 1710

Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro
1715 1720 1725

Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe Thr
1730 1735 1740

Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu Leu Gly
1745 1750 1755 1760

Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val Thr Phe Arg
1765 1770 1775

Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr
1780 1785 1790

Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg Lys Asn Phe Val Lys
1795 1800 1805

Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys Val Gln His His Met Ala
1810 1815 1820

Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp
1825 1830 1835 1840

Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu
1845 1850 1855

Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr
1860 1865 1870

Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser
1875 1880 1885

Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn
1890 1895 1900

Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala
1905 1910 1915 1920

Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln
1925 1930 1935

Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn
1940 1945 1950

Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys
1955 1960 1965

Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu
1970 1975 1980

Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys
1985 1990 1995 2000

Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val
2005 2010 2015

Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile
2020 2025 2030

Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro
2035 2040 2045

Lys Leu Ala Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr
2050 2055 2060

Lys Glu Pro Phe Ser Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile
2065 2070 2075 2080

Ile His Gly Ile Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu
2085 2090 2095

Tyr Ile Ser Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp
2100 2105 2110

Gln Thr Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly
2115 2120 2125

Asn Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile
2130 2135 2140

Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser
2145 2150 2155 2160

Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met
2165 2170 2175

Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala
2180 2185 2190

Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala
2195 2200 2205

Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val Asn
2210 2215 2220

Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met Lys Val
2225 2230 2235 2240

Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr Ser Met Tyr
2245 2250 2255

Val Lys Glu Phe Leu Ile Ser Ser Gln Asp Gly His Gln Trp Thr
2260 2265 2270

Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe Gln Gly Asn Gln Asp
2275 2280 2285

Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg
2290 2295 2300

Tyr Leu Arg Ile His Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg
2305 2310 2315 2320

Met Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr
2325 2330

<210> 2
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR
amplification primer F8Xc2-5

<400> 2
atctctctcg agaaaagagt ggatttaaat agttgcagca t 41

<210> 3
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:PCR
amplification primer F8NC32

<400> 3
agacagcggc cgcttagtaga ggtcctgtgc ctgcga 36

<210> 4
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:complementary
oligonucleotide C2CYS 5'

<400> 4
tcgagaaaaag aatgggctgt gatttgaatt cttgcagcat g 41

<210> 5
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:complementary
oligonucleotide C2CYS3'

<400> 5
ctgcaagaat tcaaattcaca gcccattctt ttc 33

<210> 6
<211> 9029
<212> DNA
<213> Homo sapiens

<220>
<223> human Factor VIII cDNA

<220>
<221> mat_peptide
<222> (898)..(7224)

<400> 6
gcttagtgct gagcacatcc agtggtaaa gttccttaaa atgctctgca aagaaattgg 60

gactttcat taaatcagaa attttacttt tttccctcc tgggagctaa agatattttta 120
 gagaagaatt aacctttgc ttctccagtt gaacatttgt agcaataagt catcaaata 180
 gagctctcca cctgcttctt tctgtgcctt ttgcgattct gcttagtgc caccagaaga 240
 tactacctgg gtgcagtgga actgtcatgg gactatatgc aaagtatct cggtgagctg 300
 cctgtggacg caagattcc tcctagagtg caaaatctt ttccattcaa cacctcagtc 360
 gtgtacaaaa agactctgtt tgtagaattc acgatcacc tttcaacat cgctaagcca 420
 aggccaccct ggatgggtct gctaggctt accatccagg ctgaggtta tgatacagtg 480
 gtcattacac ttaagaacat ggctcccat cctgtcagtc ttcatgctgt tgggtatcc 540
 tactggaaag cttctgaggg agctgaatat gatgatcaga ccagtcaaag ggagaaagaa 600
 gatgataaaag tctccctgg tggaaaggcat acatatgtct ggcaggtctt gaaagagaat 660
 ggtccaatgg cctctgaccc actgtgcctt acctactcat atcttctca tggacactg 720
 gtaaaagact tgaattcagg cctcattgga gcccacttag tatgtagaga agggagctg 780
 gccaaggaaa agacacagac cttgcacaaa ttataactac ttttgcgtt atttgatgaa 840
 gggaaaagtt ggcactcaga aacaaagaac tccttgcac aggataggta tgctgcac 900
 gtcgggccc ggcctaaaat gcacacagtc aatggttatg taaacaggtc tctgccagg 960
 ctgattggat gccacaggaa atcgtctat tggcatgtga ttggatggg caccactcct 1020
 gaagtgcact caatattcct cgaaggcac acatttctt tgaggaacca tggccaggcg 1080
 tccttgaaaa tctcgccaat aacttcctt actgctcaa cactttgtt ggaccttgga 1140
 cagtttctac tgffffgtca tatctcttcc cacaacatg atggcatgga agcttatgtc 1200
 aaagtagaca gctgtccaga ggaaccccaa ctacgaatga aaaataatga agaagcggaa 1260
 gactatgatg atgatcttac tgattctgaa atggatgtgg tcaggttga tgatgacaac 1320
 totccttcctt ttatccaaat tcgctcagtt gccaagaagc atcctaaaac ttgggtacat 1380
 tacattgctg ctgaagagga ggactggac tatgctccct tagcctcgc ccccgatgac 1440
 agaagttata aaagtcaata tttgaacaat ggcctcagc ggattggtag gaagtacaaa 1500
 aaagtccgat ttatggcata cacagatgaa acctttaaga ctcgtgaagc tattcagcat 1560
 gaatcaggaa tcttgggacc tttactttat ggggaagttg gagacacact gttgattata 1620
 tttagaatc aagcaagcag accatataac atctaccctc acggaatcac tggatgtccgt 1680
 ccttgcattt caaggagatt accaaaaggt gtaaaacatt tgaaggattt tccaattctg 1740
 ccaggagaaa tattcaata taaatggaca gtgactgttag aagatggcc aactaaatca 1800
 gatcctcggt gcctgacccg ctattactt agttcggtt atatggagag agatctagct 1860
 tcaggactca ttggccctct cctcatctc tacaagaat ctgtagatca aagagggaaac 1920
 cagataatgt cagacaagag gaatgtcatt ctgtttctg tatttgcata gaaccgaagc 1980
 tggcacccatc cagagaatat acaacgcattt ctccccatc cagctggagt gcagcttgag 2040
 gatccagatg tccaaagcctc caacatcatg cacagcatca atggctatgt tttgatagt 2100
 ttgcagttt cagttttttt gcatgaggtg gcatactggt acatttcaag cattggagca 2160
 cagactgact tcctttctgt cttttctctt ggatataacct tcaaacacaa aatggcttat 2220
 gaagacacac tcaccctatt cccattctca ggagaaactg tcttcatgtc gatggaaaac 2280
 ccaggcttatg ggattctggg gtgccacac tcagactttc ggaacagagg catgaccggc 2340
 ttactgaagg tttcttagtt tgacaagaac actggtgatt attacgagga cagttatgaa 2400
 gatatttcag catacttgct gactttttttt aatgcatttgc aaccaagaag ctctcccg 2460
 aattcaagac acccttagcac taggcaaaaatg caatttacatg ccaccacaat tccagaaaat 2520
 gacatagaga agactgaccc ttggtttgc acacaaacac ctatgcctaa aataaaaaat 2580
 gtctccctca gtgattttt gatgcttttgc cgacagagtc ctactccaca tgggctatcc 2640
 ttatctgatc tccaaagac caaatatgag actttttctg atgatccatc acctggagca 2700
 atagacagta ataacagcct gtctgaaatg acacacttca gcccacagct ccatcacagt 2760
 ggggacatgg tatttacccc tgagtcaggc ctccaattaa gattaatga gaaactgggg 2820
 acaactgcag caacagagtt gaagaaactt gatttcaaaat tttcttagtac atcaaataat 2880
 ctgatttcaa caattccatc agacaatttgc gcagcaggta ctgataatac aagttcctta 2940
 ggaccccaatg gtatgccatg tcattatgt agtcaatttgc ataccactt atttggcaaa 3000
 aagtcatctc cccttacttgc gtctggtggc cctctgagct tgagtgaaga aaataatgt 3060
 tcaaagttgt tagaatcagg ttaaatgaa agccaagaaaa gttcatgggg aaaaaatgta 3120
 tcgtcaacag agagttgttag gttattttaa gggaaaagag ctcattggacc tgctttgtt 3180
 actaaagata atgccttatt caaagtttgc atctctttgt taaagacaaa caaaacttcc 3240
 aataatttcag caactaatag aaagactcac attgatggcc catcatttatt aattgagaat 3300
 agtccatcag tctggcaaaa tatatttagaa agtgcacactg agttttttttt agtgcacact 3360
 ttgattcatg acagaatgtc tatggacaaa aatgcacatg ctgttggaggctt aaatcatatg 3420
 tcaaataaaa ctacttcatc aaaaaacatg gaaatggcc aacagaaaaa agagggcccc 3480
 attccaccatc atgcacaaaaa tccagatgt tcgttcttta agatgcattt cttgccagaa 3540
 tcagcaaggatggatacaag gactcatgaa aagaactctc tgaactctgg gcaaggcccc 3600
 agtccaaagc aatttagtac ctttaggacca gaaaatctg tggaaaggta gaatttctt 3660
 tctgagaaaaa acaaagtggt agtaggaaag ggtgaattta caaaggacgt aggactcaaa 3720

gagatgggtt ttccaacgac cagaaaccta tttcttacta acttggataa ttacatgaa 3780
aataatacac acaatcaaga aaaaaaaatt caggaagaaa tagaaaagaa ggaaacatta 3840
atccaaagaga atgtatgtt gcctcagata catacagtga ctggcactaa gaatttcatg 3900
aagaacctt tcttacttag cactaggaa aatgtagaag gttcatatga cggggcatat 3960
gctccagttt ttcagatt taggtcatta aatgattcaa caaatagaac aaagaaacac 4020
acagctcatt tctcaaaaaa aggggaggaa gaaaacttgg aaggcttggg aaatcaaacc 4080
aagcaaattt tagagaaata tgcatgcacc acaaggatat ctcctaatac aagccagcag 4140
aattttgtca cgcaacgtag taagagagct ttgaaacaat tcagactccc actagaagaa 4200
acagaacttg aaaaaaggat aatttgtggat gacacctcaa cccagtggtc caaaacatg 4260
aaacatttga ccccgagcac cctcacacag atagactaca atgagaagga gaaaggggccc 4320
attactcagt ctcccttatac agattgcct acgaggagtc atagcatccc tcaagcaaat 4380
agatctccat tccccattgc aaaggtatca tcatttccat ctattagacc tatatatctg 4440
accagggtcc tattccaaga caactttct catcttccag cagcatctta tagaaagaaa 4500
gattctgggg tccaagaaag cagtcttgc ttacaaggag caaaaaaaaa taacccttct 4560
ttagccattc taaccttggg gatgactggt gatcaaagag aggttggctc cctgggaca 4620
agtgccacaa attcagtcac atacaagaaa gttgagaaca ctgttctccc gaaaccagac 4680
ttgccccaaa catctggcaa agttgaattt cttccaaaag ttcacattta tcagaaggac 4740
ctattcccta cggaaacttag caatgggtct cctggccatc tggatctcg ggaaggggagc 4800
cttcttcagg gaacagaggg agcgattaag tggaaatgaag caaacagacc tggaaaaggt 4860
ccctttctga gagtagcaac agaaagctct gcaaagactc cctccaagct attggatcct 4920
cttgcttggg ataaccacta tggtaactcag atacccaaaag aagagtggaa atcccaagag 4980
aagtaccagg aaaaaacagc ttttaagaaa aaggataccat ttttgcctt gaacgcttgt 5040
gaaagcaatc atgcaatagc agcaataaat gagggacaaa ataagcccga aatagaagtc 5100
acctggccaa agcaaggtag gactgaaagg ctgtgctctc aaaacccacc agtctgaaa 5160
cgccatcaac gggaaataac tcgtactact cttcagtcag atcaagagga aattgactat 5220
gatgatacca tatcagttga aatgaagaag gaagattttg acatttatga tgaggatgaa 5280
aatcagagcc cccgcagctt tcaaaagaaa acacgacact attttattgc tgcagtgag 5340
aggctctggg attatggat gagtagctcc ccacatgttc taagaaacag ggctcagagt 5400
ggcagttgtcc ctcagttcaa gaaagttgtt ttccaggaat ttactgtatgg ctccttact 5460
cagcccttat accgtggaga actaaatgaa catttggac tcctggggcc atatataaga 5520
gcagaagttg aagataatat catgtaact ttcagaaatc aggctctcg tccctattcc 5580
ttctatttca gccttatttc ttatgaggaa gatcagaggc aaggagcaga acctagaaaa 5640
aactttgtca agcctaatac aaccaaaact tacttttggaa aagtgcacca tcataatggca 5700
cccactaaag atgagttga ctgcaaagcc tgggcttatt tctctgatgt tgacctggaa 5760
aaagatgtgc actcaggccct gattggaccc cttctgtct gccacactaa cacactgaac 5820
cctgctcatg ggagacaagt gacagtacag gaatttgc tggatccatc catcttgat 5880
gagaccaaaaa gctggactt cactgaaaat atggaaaagaa actgcagggc tccctgcaat 5940
atccagatgg aagatcccac ttttaaagag aattatcgct tccatgcaat caatggctac 6000
ataatggata cactacctgg cttagtaat gctcaggatc aaaggattcg atggatctg 6060
ctcagcatgg gcagcaatga aaacatccat tctatttcat tcagtgacca tggatccact 6120
gtacaaaaaa aagaggagta taaaatggca ctgtacaatc tctatccagg tggatccatg 6180
acagtggaaa ttttaccatc caaagctggc atttggccgg tggatgcct tattggcgag 6240
catctacatg ctggatggag cacactttt ctggtgacca gcaataagt tcagactccc 6300
ctgggaatgg ctctggaca cattagagat tttcagatta cagttcagg acaatatgga 6360
cagttggccca caaagctggc cagacttcat tattccggat caatcaatgc ctggagcacc 6420
aaggagccct ttcttggat caagggtggat ctgttggcac caatgattat tcacggcatc 6480
aagaccagg gtccccgtca gaagttctcc agcctctaca tctctcagtt tatcatcatg 6540
tatagttctt atgggaagaa gtggcagact tattcgaggaa attccactgg aacctaataatg 6600
gtcttccttgc gcaatgtggc ttcatctggg ataaaacaca atatttttaa ccctccaatt 6660
attgctcgat acatccgtt gcacccaact cattatac ttcgcagcac tcttcgcatg 6720
gagttgtatgg gctgtgatt aaatagttgc agcatgccc tggatggaa ggtaaagca 6780
atatcagatg cacagattac tgcttcatcc tactttacca atatgttgc cacctggct 6840
ccttcaaaag ctcgacttca ctcacaaggaa aggagtaatg cctggagacc tcaggtgaat 6900
aatccaaaag agtggctgca agtggacttc cagaagacaa tgaaaagtc acggactaact 6960
actcaggagg taaaatctt gtttaccagc atgtatgtga aggagttcct catctccagc 7020
agtcaagatg gccatcagtg gactctttt tttcagaatg gcaaaagtaaa ggttttcag 7080
ggaaatcaag actccttcac acctgtggtg aactctctag acccaccgtt actgactcgc 7140
taccttcgaa ttccacccca gagttgggtg caccagattg ccctgaggat ggaggttctg 7200
ggctgcgagg cacaggaccc tcaactgaggg tggccactgc agcacctgcc actgcccgtca 7260
ccttccttc ctcagctcca gggcagtgtc cttcccttgc ttgccttcta ctttggct 7320
aaatccatgc agacactgccc ttgaagctc ctgaattaaac tatcatcagt cctgcatttc 7380

tttgggtgggg ggccaggagg gtgcatccaa tttaacttaa ctcttaccta ttttctgcag 7440
 ctgctcccag attactcctt cttccaata taactaggca aaaagaagtg aggagaaacc 7500
 tgcataaag cattctccc taaaaggta gcctctcag agtcaccact tcctctgtt 7560
 tagaaaaact atgtgatgaa actttgaaaa agatatttat gatgttaaca tttcaggtt 7620
 agcctcatac gttaaaata aaactctcag ttgttattt tcctgatcaa gcatggaaca 7680
 aagcatgtt caggatcaga tcaatacaat ctggagtca aaaggcaa at cattggaca 7740
 atctgcaaaa tggagagaat acaataacta ctacagtaaa gtctgttct gttccttac 7800
 acatagata aattatgtt ttagtcatt atgagggca cattcttac tccaaaacta 7860
 gcattctaa actgagaatt atagatgggg ttcaagaatc cctaagtccc ctgaaattat 7920
 ataaggcatt ctgtataaat gcaaatgtgc attttctga cgagtgtcca tagatataaa 7980
 gccatttggg cttattctg accaataaaa aaataagtca ggaggatgca attgttgaaa 8040
 gcttggaaat aaaataacaa tgtcttctt aaatttgtga tggccaaagaa agaaaatgat 8100
 gatgacatta ggcttctaa ggacatacat ttaatattt tttggaaata tgaggaaaat 8160
 ccatggttat ctgagatagg agatacaaac ttgttaattc taataatgca ctcagttac 8220
 tctctccctc tactaatttctg ctgctgaaaa taacacaaca aaaatgtaac aggggaaatt 8280
 atataccgtg actgaaaact agagtctac ttacatagtt gaaatatcaa ggaggtcaga 8340
 agaaaattgg actggtgaaa acagaaaaaa cactccagtc tgccatatca ccacacaata 8400
 ggatccccct tcttgcctc cacccccata agattgtgaa gggtttactg ctccttccat 8460
 ctgcctgacc cttcactat gactacacag aatctctgta tagtaaagg ggctggaggc 8520
 aaggataagt tatagagcag ttggaggaag catccaaaga ttgcaacccca gggcaaatgg 8580
 aaaacaggag atcctaataat gaaagaaaaa tggatccaa tctgagaaaa ggcaaaagaa 8640
 tgctacttt ttcttatgct ggagtat tttt ctaataatcc tgcttgaccc ttatctgacc 8700
 tcttgaaa ctataacata gctgtcacag tatagtcaca atccacaaat gatgcaggtg 8760
 caaatggttt atagccctgt gaagttctt aagtttagag gctaacttac agaaatgaat 8820
 aagttgttt gtttatagc ccggtagagg agtaacccc aaaggtgata tggtttatt 8880
 tctgtttag tttaacttga taatcttatt ttgcattt tttccattt actatataca 8940
 tctctatttc tcaaatgttc atgaaactag ctctttattt ttcctgctgg tttcttcagt 9000
 aatgagttaa ataaaacatt gacacatac 9029

```

<210> 7
<211> 160
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:human Factor
      VIII C2 domain

<220>
<221> VARIANT
<222> (20)
<223> Xaa = Ala (wild-type) or Pro (hemophilia A
      mutation)

<220>
<221> VARIANT
<222> (35)
<223> Xaa = Lys (wild-type) or Gln, Leu or Gly
      (hemophilia A mutations)

<220>
<221> VARIANT
<222> (54)
<223> Xaa = Pro (wild-type) or Cys (hemophilia A
      mutation)
  
```

```
<220>
<221> VARIANT
<222> (66)
<223> Xaa = Met (wild-type) or Val (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (73)
<223> Xaa = Thr (wild-type) or Ala (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (74)
<223> Xaa = Gln (wild-type) or Arg (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (90)
<223> Xaa = Ile (wild-type) or Thr (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (111)
<223> Xaa = Phe (wild-type) or Val (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (128)
<223> Xaa = Pro (wild-type) or Ser or Leu (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (132)
<223> Xaa = Arg (wild-type) or Gly or Cys (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (135)
<223> Xaa = Arg (wid-type) or Gln or Leu (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (148)
<223> Xaa = Arg (wid-type) or Thr (hemophilia A
mutation)

<220>
<221> VARIANT
<222> (153)
<223> Xaa = Gly (wild-type) or Ser (hemophilia A
mutation)
```

<400> 7
Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala
1 5 10 15

Gln Ile Thr Xaa Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser
20 25 30

Pro Ser Xaa Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg
35 40 45

Pro Gln Val Asn Asn Xaa Lys Glu Trp Leu Gln Val Asp Phe Gln Lys
50 55 60

Thr Xaa Lys Val Thr Gly Val Thr Xaa Xaa Gly Val Lys Ser Leu Leu
65 70 75 80

Thr Ser Met Tyr Val Lys Glu Phe Leu Xaa Ser Ser Ser Gln Asp Gly
85 90 95

His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Xaa Gln
100 105 110

Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp Pro Xaa
115 120 125

Leu Leu Thr Xaa Tyr Leu Xaa Ile His Pro Gln Ser Trp Val His Gln
130 135 140

Ile Ala Leu Xaa Met Glu Val Leu Xaa Cys Glu Ala Gln Asp Leu Tyr
145 150 155 160

<210> 8
<211> 160
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:murine Factor
VIII C2 domain

<400> 8
Ser Cys Ser Ile Pro Leu Gly Met Glu Ser Lys Val Ile Ser Asp Thr
1 5 10 15

Gln Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser
20 25 30

Pro Ser Gln Ala Arg Leu His Leu Gln Gly Arg Thr Asn Ala Trp Arg
35 40 45

Pro Gln Val Asn Asp Pro Lys Gln Trp Leu Gln Val Asp Leu Gln Lys
50 55 60

Thr Met Lys Val Thr Gly Ile Ile Thr Gln Gly Val Lys Ser Leu Phe
65 70 75 80

Thr Ser Met Phe Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly
85 90 95

His His Trp Thr Gln Ile Leu Tyr Asn Gly Lys Val Lys Val Phe Gln
100 105 110

Gly Asn Gln Asp Ser Ser Thr Pro Met Met Asn Ser Leu Asp Pro Pro
115 120 125

Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ile Trp Glu His Gln
130 135 140

Ile Ala Leu Arg Leu Glu Ile Leu Gly Cys Glu Ala Gln Gln Gln Tyr
145 150 155 160

<210> 9

<211> 160

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:canine Factor
VIII C2 domain

<400> 9

Ser Cys Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala
1 5 10 15

Gln Ile Thr Ala Ser Ser Tyr Leu Ser Ser Met Leu Ala Thr Trp Ser
20 25 30

Pro Ser Gln Ala Arg Leu His Leu Gln Gly Arg Thr Asn Ala Trp Arg
35 40 45

Pro Gln Ala Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Arg Lys
50 55 60

Thr Met Lys Val Thr Gly Ile Thr Thr Gln Gly Val Lys Ser Leu Leu
65 70 75 80

Ile Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly
85 90 95

His Asn Trp Thr Leu Phe Leu Gln Asn Gly Lys Val Lys Val Phe Gln
100 105 110

Gly Asn Arg Asp Ser Ser Thr Pro Val Arg Asn Arg Leu Glu Pro Pro
115 120 125

Leu Val Ala Arg Tyr Val Arg Leu His Pro Gln Ser Trp Ala His His
130 135 140

Ile Ala Leu Arg Leu Glu Val Leu Gly Cys Asp Thr Gln Gln Pro Ala
145 150 155 160

<210> 10

<211> 160

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:porcine Factor
VIII C2 domain

<400> 10

Ser Cys Ser Met Pro Leu Gly Met Gln Asn Lys Ala Ile Ser Asp Ser
1 5 10 15

Gln Ile Thr Ala Ser Ser His Leu Ser Asn Ile Phe Ala Thr Trp Ser
20 25 30

Pro Ser Gln Ala Arg Leu His Leu Gln Gly Arg Thr Asn Ala Trp Arg
35 40 45

Pro Arg Val Ser Ser Ala Glu Glu Trp Leu Gln Val Asp Leu Gln Lys
50 55 60

Thr Val Lys Val Thr Gly Ile Thr Thr Gln Gly Val Lys Ser Leu Leu
65 70 75 80

Ser Ser Met Tyr Val Lys Glu Phe Leu Val Ser Ser Ser Gln Asp Gly
85 90 95

Arg Arg Trp Thr Leu Phe Leu Gln Asp Gly His Thr Lys Val Phe Gln
100 105 110

Gly Asn Gln Asp Ser Ser Thr Pro Val Val Asn Ala Leu Asp Pro Pro
115 120 125

Leu Phe Thr Arg Tyr Leu Arg Ile His Pro Thr Ser Trp Ala Gln His
130 135 140

Ile Ala Leu Arg Leu Glu Val Leu Gly Cys Glu Ala Gln Asp Leu Tyr
145 150 155 160

<210> 11

<211> 159

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:porcine Factor
V C2 domain

<400> 11

Gly Cys Ser Thr Pro Leu Gly Met Glu Asn Gly Lys Ile Glu Asn Lys
1 5 10 15

Gln Ile Thr Ala Ser Ser Phe Lys Lys Ser Trp Trp Gly Asp Tyr Trp
20 25 30

Glu Pro Phe Arg Ala Arg Leu Asn Ala Gln Gly Arg Val Asn Ala Trp
35 40 45

Gln Ala Lys Ala Asn Asn Asn Lys Gln Trp Leu Glu Ile Asp Leu Leu
50 55 60

Lys Ile Lys Lys Ile Thr Ala Ile Ile Thr Gln Gly Cys Lys Ser Leu
65 70 75 80

Ser Ser Glu Met Tyr Val Lys Ser Tyr Thr Ile His Tyr Ser Glu Gln
85 90 95

Gly Val Glu Trp Lys Pro Tyr Arg Leu Lys Ser Ser Met Val Asp Lys
100 105 110

Ile Phe Glu Gly Asn Thr Asn Thr Lys Gly His Val Lys Asn Phe Phe
115 120 125

Asn Pro Pro Ile Ile Ser Arg Phe Ile Arg Val Ile Pro Lys Thr Trp
130 135 140

Asn Gln Ser Ile Ala Leu Arg Leu Glu Leu Phe Gly Cys Asp Ile
145 150 155

<210> 12

<211> 150

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:human Factor
VIII C1 domain

<400> 12

Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe
1 5 10 15

Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala
20 25 30

Arg Leu His Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Trp
35 40 45

Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr
50 55 60

Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile
65 70 75 80

Ile Met Tyr Ser Leu Asp Gly His His Trp Gln Thr Tyr Arg Gly Asn
85 90 95

Ser Thr Gly Thr Leu Met Val Phe Gln Gly Asn Val Asp Ser Ser Gly
100 105 110

Ile Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr Ile Arg
115 120 125

Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg Met Glu Leu
130 135 140

Met Gly Cys Asp Leu Asn
145 150