Курсовая работа по вычислительной математике № 9

Стационарная задача теплопроводности в балке

Выполнил Елесин Л. О., Б02-927

17 мая 2022 г.

Аннотация

Получено численное решение стационарной задачи теплопроводоности в балке квадратного сечения при помощи итерационных методов Зейделя, Якоби и верхней релаксации. Получено, что скорость сходимости максимальна при использовании схемы верхней релаксации с параметром $\tau_{opt}=1.9$. Также решена нестационрная задача и получена анимация решения.

1 Постановка задачи

Рассмотрим задачу о нагревании балки квадратного сечения, бесконечной по одной оси координат (O_z) . Пусть температура грани AB, BC, CD, DA поддерживается постоянной: 1 на AB, 2 на BC, 3 на CD и 4 на DA (температура приведена в относительных еденицах, $T_* = 100^\circ$). Размер грани AB = BC = CD = AD = 0.1 м. Требуется найти устоявшееся распределение температуры внутри балки.

Рис. 1: Постановка задачи

2 Численные методы и граничные условия

Стационарное уравнение теплопроводности в 2D имеет вид:

$$\frac{\partial^2 T(x,y)}{\partial x^2} + \frac{\partial^2 T(x,y)}{\partial y^2} = 0$$

После дискретезации уравнения, вводя пространственную сетку, используем схему с центральной разностью и получаем :

$$\frac{T_{i-1,j}-2T_{i,j}+T_{i+1,j}}{\Delta x^2}+\frac{T_{i,j-1}-2T_{i,j}+T_{i,j+1}}{\Delta y^2}=0$$

Поскольку задача симметрична примем $\Delta x = \Delta y$, и выразим $T_{i,j}$:

$$T_{i,j} = \frac{T_{i-1,j} + T_{i+1,j} + T_{i,j-1} + T_{i,j+1}}{4}$$

Будем использоваьть три метода для решения задачи:

1. Метод Якоби. Для вычисления температуры используются только значения из прошлой итерации:

$$T_{i,j}^{k+1} = \frac{T_{i-1,j}^k + T_{i+1,j}^k + T_{i,j-1}^k + T_{i,j+1}^k}{4}$$

2. Метод Зейделя. Используется как значения из текущей так и из прошлой итерации:

$$T_{i,j}^{k+1} = \frac{T_{i-1,j}^{k+1} + T_{i+1,j}^k + T_{i,j-1}^{k+1} + T_{i,j+1}^k}{4}$$

3. Метод верхней релаксации. К методу Зейделя добавляется коэффициент масштабирования, благодаря которому уменьшается колличество итераций:

$$T_{i,j}^{k+1} = \frac{T_{i-1,j}^{k+1} + T_{i+1,j}^k + T_{i,j-1}^{k+1} + T_{i,j+1}^k}{4/\tau} + (1-\tau)T_{i,j}^k$$

Размер сетки выберем из физических соображений, таких что температуру легко измерять с точностью до сотых на масштабе 1 мм. Так как длина ребра поперечного сечения у нас 10 см, то получится сетка размером $100\mathbf{x}100$. Для критерия остновки будем пользоваться \mathbf{C} нормой матрицы распределения темпераутры

$$\frac{\|abs(T^{k-1} - T^k)\|_C}{100} \le \epsilon$$

где 100 коэффициент порядка характерной температуры, $\epsilon=10^{-4}$ выбрана из соображения значения относительной погрешности измерения температуры в реальной жизни.

3 Скорость сходимости и сходимость по сетке

Сравним три метода по скорости сходимости на различных сетках. Для этого просто посчитаем количество итераций, после выполнения которых выполняется критерий остановки.

Γ	Length, N _{cells}	10	25	50	75	100	125	150	175	200
ſ	Jacobi, N_{it}	47	250	766	1383	2013	2599	3096	3470	3706
ſ	Seidel, N_{it}	26	140	448	840	1274	1721	2157	2565	2928
	Relax, N_{it}	18	53	182	357	565	795	1040	1294	1551

Таблица 1. Колличество итерраций

Теоретические рассчеты дают:

- 1. Якоби : $I \approx 2 \frac{N_c^2}{\pi^2} \ln \epsilon^{-1}$, $I(100) \approx 9000$
- 2. Зейдель: $I \approx \frac{N_c^2}{\pi^2} \ln \epsilon^{-1}, \, I(100) \approx 4000$
- 3. Релаксация: $I \approx 2 \frac{N_c}{\pi} \ln \epsilon^{-1}, \; I(100) \approx 300$

Что по порядку велечины совпадает с численными расчетами, и отражает тот факт, что метод Якоби самый медленный, а верхней релоксации самый быстрый.

Рис. 2: Скорость сходимости в зависимости от колличества узлов

Убедимся, что методы сходятся по сетке, для этого будем вычислять среднюю температуру на разных линиях, измельчая сетку. Посчитаем средние значения на высоте 2, 4, 6 и 8 см, и убедимся, что при измельчении сетки среднее значение выходит на плато.

Рис. 3: Сходимость по сетке (Релаксация, Якоби, Зейдель)

4 Зависимость скорости сходимости метода верхней релаксации от параметра τ

На сетке 100×100 исследуем скорость сходимости метода верхней релаксации в зависисмости от параметра τ . Видно, что скорость сходимости максимальна при $\tau \approx 1.9$.

Рис. 4: Скорость сходимости в зависисмости от параметра au

5 Результаты численного моделирования

Приведем основные результаты полученные численными методами, на основной сетке (100x100), а именно графики зависисмости T(x,y), графики T(x) при фиксированном у и T(y) при фиксированном х.

Рис. 5: Изолинии (Якоби, Зейдель, Релаксация)

Рис. 6: Зависимость температуры при фиксированном Х (Якоби, Зейдель, Релаксация)

Рис. 7: Зависимость температуры при фиксированном У (Якоби, Зейдель, Релаксация)

6 Вывод

Получено численное решение стационарной задачи теплопроводоности в балке квадратного сечения при помощи итеррационных методов Зейделя, Якоби и верхней релаксации. Методы показали аналогичные результаты, но самым быстрым по сходимости и по времени работы оказался метод верхней релаксации, также по порядку скорость сходимости совпала с теорией. Получено, что скорость сходимости в схеме верхней релаксации максимальна при использовании параметра $\tau_{opt}=1.9$

7 Приложение

7.1 Решение нестационарной задачи

Нестационарная задача теплопроводности имеет вид:

$$\frac{\partial^2 T(x,y,t)}{\partial x^2} + \frac{\partial^2 T(x,y,t)}{\partial y^2} = \alpha \frac{\partial T(x,y,t)}{\partial t}$$

Где α - коэффициент температуропроводности. Например для некоторых композитов углерода $\alpha \approx 0.00025 \ m^2/s$. Дискретезируя уравнение и выражая температуру получим (используя явный метод):

$$T_{i,j}^{k+1} = T_{i,j}^k + \alpha \frac{\Delta t}{\Delta h^2} (T_{i-1,j}^k + T_{i+1,j}^k + T_{i,j-1}^k + T_{i,j+1}^k - 4T_{i,j}^k)$$

За временную единицу выберем $\Delta t=1$ мс, за пространственную $\Delta x=\Delta y=\Delta h=0.001$ м . Решая численно получим GIF файл (evolution main), где отображается изменение температуры в образце в зависимости от времени. Также имеются анимации с другими начальными распределениями температуры.

7.2 Результаты численного моделирования

Приведена финальная картинка распределения температуры решения стационарного уравнения для метода верхней релаксации. Для метода Зейделя и верхней релаксации получены GIF, отражающие изменение решения в зависимости от итерации.

Рис. 8: Распределение температуры (Релаксация)

7.3 Ссылка на код и на саму работу

https://github.com/LeoYe-st/Vychmat_project