TED University

CMPE 252 - C Programming, Spring 2021

Lab 2

In this lab, you will use the following functions to be implemented for the prelab.

```
void readInput(int arr[], int *nPtr); // reads numbers from the standard input into
// arr, and stores the number of read elements in the memory cell pointed to by nPtr
void printNumbers(const int arr[], int n); // prints the elements in arr[0..(n-1)]
```

Part 1 (30 points)

Implement the following function in skeleton code lab2part1.c:

```
// Precondition: Let n represent size of arr. ind is in range [1 (n-1)].
// Shift all array elements starting from index ind until end of the array to one
// position left.
// Notice that, as a result, the element at index ind-1 is removed and the number of
// elements in the array is decreased by one.
// Size of arr is pointed to by np.
void shiftLeft(int arr[], int *np, int ind);
```

Your task in this part to fill in the missing function definitions in skeleton code lab2part1.c. main function will stay as it is.

Sample Run:

C:\Users\m_bah\Desktop\TEDU\CMPE252\Lab2\v1\Lab2V1Part1\main.exe

```
Enter the number of elements:
9
Enter 9 elements:
1 2 3 4 5 6 7 8 9
Array elements: 1 2 3 4 5 6 7 8 9
Enter an index from 1 to 8:
5
Array elements: 1 2 3 4 6 7 8 9
Process returned 0 (0x0) execution time : 14.041 s
Press any key to continue.
```

Computer Engineering Department

TED University

Part 2 (35 points)

Implement the following function in skeleton code lab2part2.c:

```
// Eliminate consecutive duplications in arr by shifting its elements to left.
// Update size of arr (which is pointed to by np) accordingly.
void removeConsecutiveDuplications(int arr[], int *np);
```

Restriction: Use shiftLeft function while implementing removeConsecutiveDuplications function.

Your task in this part to fill in the missing function definitions in skeleton code lab2part2.c. main function will stay as it is.

Sample Run:

C:\Users\m_bah\Desktop\TEDU\CMPE252\Lab2\v1\Lab2V1Part2\main.exe

```
Enter the number of elements:
9
Enter 9 elements:
5 5 7 8 11 11 5 9 9
Array elements: 5 5 7 8 11 11 5 9 9
Array elements: 5 7 8 11 5 9
Process returned 0 (0x0) execution time : 24.615 s
Press any key to continue.
```

Computer Engineering Department

TED University

Part 3 (35 points)

Given a sequence of values, a local maximum refers to a value which is greater than its left and right neighbors. For example, considering the sequence 1 2 3 2 4 5 9 3, local maximums are 3 and 9. See the figure below.

If the sequence includes consecutive duplicate elements, then a value is a local maximum if it is greater than the first different value at its left and the first different value at its right. For example, considering the sequence 1 2 2 2 3 5 5 5 4 3 3 3 4 4 2, local maximums are 5, 5, 5, 4, 4. See the figure below.

Computer Engineering Department

Implement the following function in skeleton code lab2part3.c:

```
// Finds local maximums of the sequence of n values in arr and outputs them using
// localMaxArr arrar where sp points to the memory cell storing size of localMaxArr.
void findLocalMax(const int arr[], int n, int localMaxArr[], int *sp);
```

Your task in this part to fill in the missing function definitions in skeleton code lab2part3.c. main function will stay as it is.

Sample Run:

C:\Users\m_bah\Desktop\TEDU\CMPE252\Lab2\v1\Lab2V1Part3\main.exe

```
Enter the number of elements:
9
Enter 9 elements:
1 2 3 4 3 5 10 11 9
Array elements: 1 2 3 4 3 5 10 11 9
Local maximum array:
Array elements: 4 11
Process returned 0 (0x0) execution time : 48.120 s
Press any key to continue.
```