Udarbejdet af Benjamin Buus Støttrup til 5 Ligninger

1 Brøker

Brøker er tal på formen

hvor a, b er tal samt $b \neq 0$. a er tælleren og

This work is licensed under a Creative Com-mons "Attribution-NonCommercial 4.0 Inter-

b er nævneren. 1.1 Regneregler Der gælder

$$\frac{a}{c} \pm \frac{b}{c} = \frac{a \pm b}{c}, \quad \frac{a}{b} \frac{c}{d} = \frac{ac}{bd},$$
$$a\frac{b}{c} = \frac{ab}{c}, \quad \frac{\frac{a}{b}}{c} = \frac{a}{bc},$$

$$\frac{a}{b} = \frac{a}{c}$$

$$\frac{\frac{a}{b}}{c} =$$

$$\frac{a}{b} = \frac{ac}{bc}$$

2 Potenser Potenser er tal på formen x^a , x er grund-

tallet og a er eksponenten. 2.1 Regneregler

Der gælder

$$x^{a}x^{b} = x^{a+b}, \quad \frac{x^{a}}{x^{b}} = x^{a-b}, \quad (xy)^{a} = x^{a}y^{a},$$

 $\left(\frac{x}{y}\right)^{a} = \frac{x^{a}}{v^{a}}, \quad (x^{a})^{b} = x^{ab}, \quad x^{-a} = \frac{1}{x^{a}}.$

Hvis $x \ge 0$ og $n \in \mathbb{Z}_+$ så findes et tal $\sqrt[n]{x} > 0$ så

$$(\sqrt[n]{v}$$

Bemærk at $\sqrt[n]{x} = x^{\frac{1}{n}}$.

3.1 Regneregler

$$\sqrt[n]{x} = x^{\frac{1}{n}}, \quad \sqrt[n]{x^m} = x^{\frac{m}{n}} = (\sqrt[n]{x})^m,$$

$$\sqrt[n]{xy} = \sqrt[n]{x}\sqrt[n]{y}, \qquad \sqrt[n]{\frac{x}{v}} = \frac{\sqrt[n]{x}}{\sqrt[n]{v}}.$$

4 Kvadratsætninger Der gælder

$$(a+b)^{2} = a^{2} + b^{2} + 2ab$$
$$(a-b)^{2} = a^{2} + b^{2} - 2ab$$

$$(a+b)(a-b) = a^2 - b^2.$$

1. Man må lægge til/trække fra med

- det samme tal på begge sider af et lighedstegn. 2. Man må gange/dividere med det
- samme tal (undtagen 0) på begge sider af et lighedstegn. 5.1 Andengradsligninger

Andengradsligninger er på formen

 $ax^2 + bx + c = 0.$

$$x = \frac{-b \pm \sqrt{b^2 - 4aa}}{2a}$$

5.2 Faktorisering

Hvis $ax^2 + bx + c = 0$ har rødder r_1 og r_2 så gælder.

$$ax^2 + bx + c = a(x - r_1)(x - r_2).$$

6 Funktioner

En funktion $f: X \to Y$ tildeler alle $x \in X$ *præcis ét* element $f(x) \in Y$.

6.1 Sammensatte funktioner

Hvis $f: X \to Y$ og $g: Y \to Z$ defineres sammensætningen $g \circ f: X \to Z$ ved $(g \circ f)(x) = g(f(x))$. f er den indre funktion, g er den ydre funktion

6.2 Inverse funktioner

To funktioner $f: X \to Y$ og $g: Y \to X$ er hinandens inverse hvis

$$f(g(y)) = y$$
, og $g(f(x)) = x$

for alle x i X og y i Y.

6.3 Polynomier

Et førstegradspolynomium har forskrift:

$$f(x) = ax + b.$$

Et andengradspolynomium har forskrift:

$$f(x) = ax^2 + bx + c.$$

og vi har

 $\ln x = \log_a x$

6.5 Regneregler

Der gælder

6.4 Logaritmer og eksponentialfunktioner Ligninger kan reduceres med følgende Logaritmen med grundtal a, \log_a : $]0, \infty[\rightarrow$ R er invers til eksponentialfunkionen

 $\log x = \log_{10} x$

 $f_a(x) = a^x$ (a > 0, $a \ne 1$). Der gælder at

 $\log_a(a^x) = x$ og $a^{\log_a(y)} = v$

 $\log_a(xy) = \log_a(x) + \log_a(y),$

 $\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y),$

De trigonometriske funkioner er define-

 $\log_a(x^r) = r \log_a(x).$

7 Trigonometriske funktioner

Der gælder at $tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$ samt

ret ud fra enhedscirklen:

 nx^{n-1} e^{x} ce^{cx} $a^{x} \ln a$ $\ln x$ $-\sin x$ $\cos x$ $\sin x$ $\cos x$

f(x)

f'(x)

8.2 Generelle regneregler

Der gælder at

$$(cf)'(x) = cf'(x)
(f \pm g)'(x) = f'(x) \pm g'(x)
(fg)'(x) = f'(x)g(x) + f(x)g'(x)
\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^{2}(x)}
\frac{d}{dx}f(g(x)) = f'(g(x))g'(x).$$

 $1 + \tan^2(x)$

Den sidste regneregel kaldes kæderglen.

9 Ubestemte integraler

En funktion f har stamfunktion F hvis

$$F'(x) = f(x).$$

Det ubestemte integral af f er

$$\int f(x) dx = F(x) + k,$$

hvor F'(x) = f(x) og $k \in \mathbb{R}$.

9.1 Generelle regneregler

$$\int cf(x)dx = c \int f(x)dx$$

$$\int f(x) \pm g(x)dx = \int f(x)dx \pm \int g(x)dx.$$

$$\int f(x)g(x)dx = f(x)G(x) - \int f'(x)G(x)dx$$

den sidste kaldes integration ved substitu-

 $\int f(g(x))g'(x) dx = F(g(x)) + k.$ Den afledede af f skrives som $f' = \frac{d}{dx}f =$ Den 3. regel kaldes delvis integration og

cx + k $\frac{1}{2}x^2 + k$ $\frac{1}{n+1}x^{n+1} + k$ $e^{x} + k$ $\frac{1}{c}e^{cx} + k$ ln(|x|) + k $\ln x$ $x \ln(x) - x + k$ $\sin x + k$ $\cos x$ $\sin x$ $-\cos x + k$ $\tan x$ $-\ln(|\cos(x)|) + k$

f(x)dx

9.2 Regneregler

Der gælder at

9.3 Integration ved substitution Givet et integral рå $\int f(g(x))g'(x)dx$ anyendes metoden:

1. Lad u = g(x). 2. Udregn $\frac{du}{dx}$ og isoler dx. formen

formen

- 3. Substituer g(x) og dx.
- 4. Udregn integralet mht. *u*.
- 5. Substituer tilbage.

10 Besemte integraler

Det bestemte integral af f i intervallet [*a*, *b*] til

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a),$$

hvor *F* er en stamfunktion til *f* .

10.1 Generelle regneregler

$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x)g(x) dx = [f(x)G(x)]_{a}^{b} - \int_{a}^{b} f'(x)G(x) dx$$

$$\int_{a}^{b} f(g(x))g'(x) dx = [F(x)]_{g(a)}^{g(b)}.$$
10.2 Integration ved substitution

Givet et integral på $\int_{a}^{b} f(g(x))g'(x) dx$ anvendes metoden

1. Lad u = g(x).

- 2. Udregn $\frac{du}{dx}$ og isoler dx.
- 3. Substituer g(x), dx samt grænser. 4. Udregn integralet mht. *u*.

8.1 Regneregler Der gælder at

 $\sin \theta$

 $\cos \theta$

 $\tan \theta$

0

Differentialregning