BJT Cheat Sheet Solved

Variable	gm	r_{π}	re	r _o
Equation				
Typical value				

T model	Hybrid Pi model
C i_{c} $g_{m}v_{be}$ $= \alpha i_{e}$ v_{be} r_{e} $-$ i_{e} E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Element	DC Model	AC Model
Resistor	R	R
Capacitor	Open	С
Inductor	L	Short
Diode	0.7V drop	$R_d = V_t/I_D$
Indep. Voltage Source	V	Short
Indep. Current Source	I	Open
ВЈТ	Diode/Current Src	Pi or T model

Common Emitter

V _{CC}	Input resistance	
$R_{\rm C}$	Output resistance	
v_o	Output resistance	
v_{i}	Gain	
<u></u>		

Common Emitter with degeneration resistor

V _{CC}	Input resistance	
₹ _{RC}		
v_0	Output resistance	
v_i		
$R_{\rm E}$	Gain	
<u> </u>		

Common Collector

V _{CC}	Input resistance	
v_{i} \sim v_{O}	Output resistance	
$\stackrel{\stackrel{\scriptstyle >}{\underset{=}}}{\stackrel{\scriptstyle \sim}{\underset{=}}}$	Gain	

Common Base

V_{CC}	Input resistance	
Š		
V_{bias} v_O	Output resistance	
v_{i}	Gain	

Small signal analysis of BJT circuits

Complete the following table for these circuits. Assume infinite Early voltage.

Circuit	I _C	V _{OUT}	$g_{\rm m}$	r _e	A_V
001					
002					
003					
004					

Small signal analysis of BJT circuits

Complete the following table for these circuits. Assume infinite Early voltage.

Circuit	I_{C}	V_{OUT}	$g_{\rm m}$	r _e	A_V
001					
002					
003					
004					

Small signal analysis of BJT circuits

Let's explore the range of AC gain that you can achieve with the following circuit. The values of R1 and R2 have been selected so that the base of the BJT is DC biased to 0.96V – you do not need to compute the resistors values needed to make this happen.

- Step 1: Describe I_{C} in terms of R_{E}
- Step 2: Describe V_{OUT} in terms of R_{E} and R_{C}
- Step 3: Describe g_m and r_e in terms of R_E
- Step 4: Build a small signal model for the circuit
- Step 5: Describe the small signal gain in terms of R_E and R_C
- Step 6: Describe V_{OUT} in terms of A_v
- Step 7: Find the maximum gain before the BJT saturates