UEPB/CCT/DC/LC

Disciplina: Matemática Discreta II

Prof.: Antonio Carlos

Aluno: _____

Data: / / 2022

Período: 2021.2

Matrícula:	

3° Exercício de Classe

Obs1 – As letras A, B, C, D, E, etc., nos quesitos, são parâmetros. O valor de cada parâmetro depende do último algarismo da matrícula do aluno. Assim, para cada aluno o parâmetro terá um valor diferente.

Obs2 - O valor de cada parâmetro está na tabela no final da prova.

Obs3 - Por favor, pegue os parâmetros referentes à sua, e somente à sua, matrícula.

1. Escreva as listas de nós que resultam de um percurso pré-ordem, ordem simétrica e pós-ordem da

Pré-O:	(RED)
OS :	(ERD)
Pós-O:	(EDR)

- 2. Desenhe a árvore binária que, percorrida em OS, representa a expressão dada abaixo:
 - a) $[(B1 B2) * B3] + [B4 (B5 \div B6)]$

(responda neste espaço)

b) $\{[B7 \div (B8 + B9)] * B10\} - [(B11 - B12) + B13]$

Dica: As operações (+, -, *, ÷) ficam nos nós internos e os operandos (números) ficam nas folhas. Veja mais dicas no apêndice.

- 3. Desenhe <u>a árvore</u> cujo percurso em ordem simétrica é **d**, **b**, **h**, **e**, **i**, **a**, **j**, **f**, **k**, **c**, **g** e cujo percurso em pós-ordem é **d**, **h**, **i**, **e**, **b**, **j**, **k**, **f**, **g**, **c**, **a**. (é uma única árvore que dá os dois percursos).
- 4. Dada a tabela de códigos abaixo, decodifique as seqüências dadas:

É ? Ī Caractere: Α ٧ 0 L D [sp] Código : 1000 1101 111 101 1100 010 011 1001 00

- 0 C3C8C6C1C6C3C8C5C8C3C2C1C4
- 1 C3C4C1C2C3C8C5C8C3C2C1C4C7
- 2 C3C8C3C2C3C8C5C8C3C2C1C4C9
- 3 C3C8C6C1C6C3C8C6C3C8C3C4C1C2C3
- 4 C3C8C6C1C6C3C8C6C3C8C2C3C2
- 5 C3C8C3C4C5C8C6C3C8C3C4C1C2C3
- 6 C3C8C3C4C5C8C6C3C8C6C1C6C3
- 7 C3C8C3C4C5C8C6C3C8C3C2C3C7
- 8 C5C8C3C2C1C4C8C3C8C3C2C3C9
- 9 C3C8C3C2C3C8C6C3C8C6C1C6C3

Matrículas terminadas em: 5. Escrevas os códigos de Huffman para os símbolos presentes na árvore binária mostrada abaixo:

6. Gere o código de Huffman do seguinte texto: "**E1 e E2**". (1. Desconsidere as aspas e use esta lista inicial: **E3**; 2. Regra para inserir nó de peso igual a um já na lista: <u>inserir depois do último nó de mesmo peso</u>).

7. Use o algoritmo de Dijkstra para achar, no grafo a seguir, o <u>caminho mínimo</u> entre os nós 1 e 6 e seu <u>respectivo comprimento</u>: (preencha todos os espaços, diagramas e tabelas).

IN = {

Caminho mínimo: _____

Comprimento do Caminho Mínimo:

Trace aqui o caminho mínimo:

8. Dê a matriz final de acessibilidade da rede representada pelo grafo abaixo e <u>diga qual(is) o(s)</u> ponto(s) que não pode(m) ser acessado(s) a partir do ponto **G1**. [Warshall]

Valores dos Parâmetros A, B, E e L encontrados nos Quesitos da Prova

As Cores das Linhas Estão Relacionadas a um Quesito (Ex. verde, quesito 1; azul, quesito 2; etc.)

As Colunas Estão Identificadas Pelo Último Algarismo do Número de Matrícula 9 0 4 **A1** М K G Ε C N J Α L **A2** В Ν L Н F D Α М K **A3** C М K ī G Ε В N Α L Н F C **A4** D В Ν J Α M L **A5** Ε C Α M K ı G D В N N C **A6** F D В L J Н Ε Α **A7** G Ε С Α M K ī F D В **A8** Н F d В N L J G Ε С **A9** G E C М K Н F D Α A10 J Н F D В Ν L ī G Ε G Ε C Н F **A11** K ı Α M J **A12** L J Н F D В Ν K ı G М G Ε C Н A13 K Т Α L J A14 N Н F D М K В Т **B1** 6 4 7 5 7 4 3 8 3 B₂ 3 8 1 3 2 8 5 6 4 7 **B3** 5 6 4 7 5 7 4 3 8 1 8 3 2 8 5 **B4** 4 3 1 6 4 **B5** 8 5 6 4 7 5 7 4 3 8 2 **B6** 7 4 3 8 1 3 8 5 6 **B7** 2 8 5 4 7 5 7 4 3 6 7 3 3 2 **B8** 5 4 8 1 8 5 B9 3 5 4 7 5 7 4 2 8 6 **B10** 7 5 7 4 8 1 3 2 8 3

	Questão 4: Valores de C1 a C9 para todas as matrículas												
		C1	C2	C3	C4	C5	C6	C7	C8	C9			
		1001	1000	1101	00	111	101	1100	010	011			
Exemp	plo:	C3C8	3C3C4C5	C8C6C3C	8C3C4C5			O OLÉ DO	OLÉ				

5

4

8

6

3

5

4

8

6

7

1

5

3

7

2

8

7

2

B11

B12

B13

1

4

8

3

7

2

3

	0	1	2	3	4	5	6	7	8	9
D1	D	Р	U	В	Е	С	U	С	В	D
D2	С	В	E	D	Р	U	Р	D	E	U
D3	U	D	Р	С	В	Е	В	U	С	Р
D4	Е	С	В	U	D	Р	Е	Р	D	В
D5	Р	U	D	Е	С	В	С	В	U	Е
D6	В	E	С	Р	U	D	D	E	Р	С

	0	1	2	3	4	5	6	7	8	9
E1	Galo	Galo	Galo	Gato	Gato	Pato	Gato	Rato	Pato	Galo
E2	Pato	Gato	Rato	Pato	Rato	Rato	Mato	Mato	Mato	Mato
E3	eGIPtao-	eltaGo-	eGIRtao-	eGPaot-	eGRaot-	ePRaot-	eGMaot-	eMRaot-	eMPaot-	eGIMtao-

Para a matrícula terminada em 0, a frase "E1 e E2" é "Galo e Pato" e a lista inicial E3 ordenada de modo crescente pelo peso é: e G l P t a o - . O traço "-" está representando o "espaço": "Galo-e-Pato".

A frase "Galo e Pato" tem 11 caracteres e a soma de	1	1	1	1	1	2	2	2
todos os pesos tem de dar 11.	е	G	_	Р	t	а	0	-

Todas as matrículas trabalharão com frases de **11** caracteres; em todas as listas, da inicial até a final, a soma de todos os pesos sempre terá de ser igual a **11**.

	Δ.	4	2	2	1		6	7	0	0
	U	ı		3	4	อ	О	- /	0	9
F1	1	1	6	6	2	2	2	2	2	2
F2	6	2	1	2	6	1	3	3	3	3
F3	2	3	2	3	1	6	4	5	1	6
F4	3	4	3	4	3	3	6	1	4	4
F5	4	5	4	5	4	4	1	6	5	5
F6	5	6	5	1	5	5	5	4	6	1
	Λ	1	2	2	1	5	6	7	Q	0

	0	1	2	3	4	5	6	7	8	9
G1	1	2	3	4	5	6	2	1	4	3

Apêndice

Dicas para a Questão 2:

- 1. Identificar a operação central da expressão: $(2-3)^*(1+4)$. A operação central vai ser a raiz da árvore;
- 2. A expressão à esquerda da operação central está associada à subárvore da esquerda da raiz; e a expressão à direita fica associada à subárvore da direita da raiz;
- 3. As operações ficam nos nós internos;
- 4. Os operandos ficam nas folhas.

Seguindo as dicas acima a árvore que guarda a expressão (2 – 3) * (1 + 4) será a seguinte:

Percorrendo a árvore ao lado em ordem simétrica, os termos da expressão dada serão listados na mesma ordem que aparecem na expressão (com exceção dos parênteses que não são mostrados).

Ex.2: Desenhe a árvore binária que, percorrida em OS, representa a expressão [(2 + 4) * 3] – (7 – 1):

Percurso em OS: 2, +, 4, *, 3, -, 7, -, 1