SURDS & INDICES

- KOUSTAV

CONCEPT

$$(1024)^{10} = (2^{10})^{-\frac{1}{10}} = 2^{10} = 2^{-1} = \frac{1}{2} = 0.5$$

1. Laws of Indices:

ii.
$$\frac{a^m}{a^n} = a^{m-n}$$

iii.
$$(a^m)^n = a^{mn}$$

iv.
$$(ab)^n = a^n b^n$$

$$V. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

vi.
$$a^0 = 1$$

$$= \frac{2}{2} = \frac{1}{4}$$

$$\vec{a} = \frac{1}{4}$$

2. Surds:

Let a be rational number and n be a positive integer such that $a^{(1/n)} = \sqrt[n]{a}$

Then, $\sqrt[n]{a}$ is called a surd of order n.

3. Laws of Surds:

iii.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = -\left(\frac{\alpha}{b}\right)^{1/2}$$

iv.
$$(\sqrt[n]{a})^n = a$$

vi.
$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

1.
$$(17)^{3.5} \times (17)^{?} = 17^{8}$$

2. If
$$\left(\frac{a}{b}\right)^{x-1} = \left(\frac{b}{a}\right)^{x-3}$$
, then the value of x is:

A.
$$\frac{1}{2}$$

$$\left(\frac{a}{b}\right)^{x-1} = \left(\left(\frac{a}{b}\right)^{x-3}\right)^{-1}$$

D.
$$\frac{7}{2}$$

$$L' = \frac{1}{\alpha}$$

3. Given that $10^{0.48} = x$, $10^{0.70} = y$ and $x^z = y^2$, then the value of z is close to:

- A. 1.45 $\left(10^{0.48}\right)^2 = \left(10^{0.70}\right)^2$
- B. 1.88
- 2.9 10° 10
 - D. 3.7 0.48 Z = 1.4
- 4. If $5^a = 3125$, then the value of $5^{(a-3)}$ is:
 - $5^{\circ} = 3125 = 5^{\circ}$
 - B. 125 a:5
 - c. 625 $5^{(5-3)}:5^2:25$
 - D. 1625

5. If $3^{(x-y)} = 27$ and $3^{(x+y)} = 243$, then x is equal to:

- A. 0 $2^{1} 4^{2} = 3^{3}$
 - 3 = 3 2 = 3
- $\frac{2}{2}$ $\frac{1}{4}$ $\frac{1}$
 -). 6 ** x = 4
- 6. $(256)^{0.16} \times (256)^{0.09} = ?$

- B. 16
- C. 64
- D. 256.25

$$256 = 256$$

$$= (256)^{1/4} = (256)^{1/4} = (256)^{1/4}$$

$$= (4)^{1/4} = (4)^{1$$

7. The value of
$$[(10)^{150} \div (10)^{146}]$$

- A. 1000
- **B**. 10000
- C. 100000
- D. 10⁶

8.
$$\frac{1}{1 + x^{(b-a)} + x^{(c-a)}} + \frac{1}{1 + x^{(a-b)} + x^{(c-b)}} + \frac{1}{1 + x^{(b-c)} + x^{(a-c)}} = ?$$

A. 0

1+ $\frac{1}{x^{b}} + \frac{1}{x^{a}} + \frac{1}{x^{a}} = \frac{1}{x^{a} + x^{b} + x^{c}} = ?$

C. x^{a-b-c}

D. None of these

$$= \frac{x^{a} + x^{b} + x^{c}}{x^{a} + x^{b} + x^{c}} = \frac{x^{a} + x^{b} + x^{c}}{x^{a} + x^{b} + x^{c}} = \frac{x^{a} + x^{b} + x^{c}}{x^{a} + x^{b} + x^{c}} = ?$$

9.
$$(25)^{7.5} \times (5)^{2.5} \div (125)^{1.5} = 5$$
?

A. 8.5

$$(5^2)^{1/5} \times 5^{2/5} - (5^3)^{1/5}$$

$$2 \times 7.5 + 2.5 - 3 \times 1.5$$

D. 17.5

None of these

10.
$$(0.04)^{-1.5} = ?$$

A. 25

C. 250

D. 625

$$\frac{\left(\frac{4}{100}\right)^{-\frac{15}{10}}}{=\left(\frac{100}{4}\right)^{\frac{3}{2}}} = \frac{\left(25\right)^{\frac{3}{2}}}{=5^{\frac{2}{3}}} = \frac{25}{125}$$

$$\frac{11. \ (243)^{n/5} \times 3^{2n+1}}{9^n \times 3^{n-1}} =$$

$$\left(3^{5}\right)^{\gamma_{15}}$$

$$3^{2^{M}} \times 3$$

$$= 3^{5\times N_{5}} + 2^{M+1} - 2^{M} - (M-1)$$

12.
$$\frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(m-n)}} = ?$$

- A. 0

D.
$$a^{m+n}$$

$$\frac{1}{1+a^{M}}+\frac{1}{1+a^{M}}$$

$$= \frac{a^{m}}{a^{m}+a^{n}} + \frac{a^{n}}{a^{n}+a^{m}} =$$

^{13.} If m and n are whole numbers such that $m^n = 121$, the value of $(m - 1)^{n+1}$ is:

A. 1

- 121=112 = m
- 103

B. 10

w= 11

w = 2

1000

- C. 121
- 1000

14.
$$\left(\frac{x^b}{x^c}\right)^{(b+c-a)} \cdot \left(\frac{x^c}{x^a}\right)^{(c+a-b)} \cdot \left(\frac{x^a}{x^b}\right)^{(a+b-c)} = ?$$

- A. yabc
- x b2+ be-to+ c2+ ca 26+ a Falt-al

B. 1

- ch+ c2-ca+ac+ a2-ak+ba+ 12-tre
- C. xab + bc + ca

b+ 2+ a2

D. xa+b+0

7 (24 W2+ b2

ANSWER KEY

QUESTION	ANSWER	QUESTION	ANSWER
1	D	8	В
2	C	9	В
3	C	10	В
4	Α	П	C
5	C	12	C
6	Α	13	D
7	В	14	В

