JUL 3 1 2002 JUL 3 1 2002

In the Claims

Cancel days 1-51 without prejudice and substitute new claim 52:

--52. A compound of the formula 2

RECEIVED

200 00 2002

TECH CENTER 1600/2900

Sclected from the group contacting of wherein R^{34} is H, CH2CN, CF3;

R-independently is phenyl, 2- and 3-pyrrolyl, 2- and 3-thienyl, 2- and 4-imidazolyl, 2-, 4- and 5-oxazolyl, 3- and 4-isoxazolyl, 2-, 4- and 5-thiazolyl, 3- 4- and 5-isothiazolyl, 3- and 4-pyrazolyl, 2-, 3- and 4-pyridinyl, 2-, 4- and 5-pyrimidinyl, 2-, 3- and 4-alkoxyphenyl (C₁-C₁₂ alkyl), 2-, 3- and 4-halophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dihalophenyl, 2-, 3- and 4-haloalkylphenyl (1 to 5 halogen atoms, C₁-C₁₂ alkyl), 2-, 3- and 4-cyanophenyl, carboalkoxyphenyl (C₁-C₄ alkyl), 1-, 2-, 3-, and 4-pyridinyl (-C₅H₄N₁, 2-, 3- and 4-nitrophenyl, 2-, 3- and 4-haloalkylbenzyl (1 to 5 halogen atoms, C₁-C₁₂ alkyl), alkylsalicylphenyl (C₁-C₄ alkyl), 2-,3- and 4-acetylphenyl, -O-C₁₀H₆-OH, -O-C₁₀H₆-O-, -O-C₆H₄-C₆H₄-O- (both exygen atoms are linked to the phosphorus atom), alkoxy ethyl (C₁-C₆ alkyl), phenoxymethyl, aryloxy ethyl (C₆-C₉ aryl or C₆-C₉ aryl substituted by OH, NH₂, balo, C₁-C₄ alkyl or C₁-C₄ alkyl substituted by OH or by 1 to 3 halo atoms), -C₆H₄-ZH₂-N(CH₃)₂, N-ethylmorpholino

; $-(CH_2)_2-N[(CH_2)_2(CH_2)_2]O)$,

adamantoyl oxymethyl, pivaloyloxy(methoxyethyl)methyl (-CH(CH2CH2OCH3)-O-C(O)-C(CH3)3),

pivaloyloxymethyl (-CH₂-O-C(O)-C(CH₃)₃), pivaloyloxy(methoxymethyl)-methyl (-CH(CH₂OCH₃)-O-C(O)-C(CH₃)₃), pivaloyloxyisobutyl (-CH(CH(CH₃)₂)-O-C(O)-C(CH₃)₃) isobutyryloxymethyl (-CH₂-O-C(O)-CH₂-CH(CH₃)₂), cyclohexanoyl oxymethyl (-CH₂-O-C(O)-C₆H₁₁), phenyl (-C₆H₅), benzyl (-CH₂-C₆H₅), isopropyl (-CH(CH₃)₂), t-butyl (-C(CH₃)₃), -CH₂-CH₃, -(CH₂)₂-CH₃, -(CH₂)₃-CH₃, -(CH₂)₄-CH₃, -(CH₂)₅-CH₃, -CH₂-CH₂F, -CH₂-CH₂Cl, -CH₂-CF₃, -CH₂-CCl₃, R⁵. NHR6A or N(R⁶A)₂;

wherein R^5 is $CH_2C(O)N(R^6A)_2$, $CH_2C(O)OR^6A$, $CH_2OC(O)R^6A$, $CH(R^6A)OC(O)R^6A$, $CH_2C(R^6A)_2CH_2OH$, CH_2OR^6A , NH- CH_2 -C(O)O- CH_2CH_3 , $N(CH_3)$ - CH_2 -C(O)O- CH_2CH_3 , NHR^{40} , CH_2 -O-C(O)- C_6H_5 , CH_2 -O-C(O)- $C_{10}H_{15}$, $-CH_2$ -O-C(O)- CH_2CH_3 , CH_2 -O-C(O)- $CH(CH_3)_2$, CH_2 -O-C(O)- $C(CH_3)_3$, CH_2 -O-C(O)- CH_2CH_5 ;

wherein R6A is C1-C20 alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH. O. N and halogen (1 to 5 halogen atoms), C6-C20 aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH. O. N and halogen (1 to 5 halogen atoms) or C7-C20 aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms), provided that for compounds of formulas N(R6A)2, CH2C(O)N(R6A)2, CH2C(O)OR6A, CH2OC(O)R6A, CH(R6A)OC(O)R6A and CH2C(R6A)2CH2OH, the total number of carbon atoms present is less than 25; wherein R40 is C1-C20 alkyl; and

B is a 1-pyrimidinyl residue selected from cytosinyl, 5-halocytosinyl, and 5-(C1-C3-alkyl)eytosinyl.--

R independently is selected from the group consisting of X^1 , X^2 , X^3 , R^5 , NHR^{6A} and N(R^{6A}), and wherein χ^{1} is selected from the group consisting of 2- and 3-pyrrolyl, 2- and 3thienyl, 2- and 4-imidazolyl, 2-, 4- and 5-oxazolyl, 3- and 4-isoxazolyl, 2-, 4- and 5-thiazolyl, 3-, 4- and 5-isothiazolyl, 3- and 4-pyrazolyl, 1-, 2-, 3- and 4-pyridinyl, and 2-, 4- and 5-pyrimidinyl; χ^2 is selected from the group consisting of phenyl, benzyl, $-\underline{C_6H_4CH_2}-\underline{N(CH_3)_2}, 2-, 3- \text{ and } 4- \text{alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 4- \text{ alkoxyphenyl } (\underline{C_1}-\underline{C_{12}} \text{ alkyl}), 2-, 3- \text{ and } 3- \text{ alkyl})$ halophenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dihalophenyl, 2-, 3- and 4haloalkylphenyl (1 to 5 halogen atoms, C₁-C₁₂ alkyl), 2-, 3- and 4-cyanophenyl, carboalkoxyphenyl (C_1 - C_4 alkyl), 2-, 3-, and 4-nitrophenyl, 2-, 3- and 4-<u>haloalkylbenzyl (1 to 5 halogen atoms (C_1 - C_{12} alkyl), alkylsalicylphenyl (C_1 - C_4 </u> alkyl), 2-, 3- and 4-acetylphenyl, phenyl substituted by methoxy, ethoxy, OH, $NH_{\underline{2}}$, halo, $C_{\underline{1}}$ - $C_{\underline{4}}$ alkyl or $C_{\underline{1}}$ - $C_{\underline{4}}$ alkyl substituted by OH or by 1 to 3 halo atoms, and $-C_{10}H_6OH$; and X^3 is selected from the group consisting of alkoxy ethyl (C_1 - C_6 alkyl),

adamantoyloxymethyl, pivaloyloxy(methoxyethyl)methyl (-CH(CH₂CH₂OCH₃)-O-C(O)-C(CH₂)₃), 1-adamantanecarbonyloxymethyleneoxymethyl-, pivaloyloxymethyl (-CH₂-O-C(O)-C(CH₃)₃), pivaloyloxy(methoxymethyl)-methyl (-CH(CH2OCH2)-O-C(O)-C(CH2)2 pivaloyloxyisobutyl (-CH(CH(CH₃)₂)-O-C(O)-C(CH₃)₃), isobutyryloxymethyl (-CH₂-O-C(O)-CH₂-CH(CH₃)₂), cyclohexanoyloxymethyl $(-CH_2-O-C(O)-C_6H_{11})$, isopropyl $(-CH(CH_3)_2)$, t-butyl $(-C(CH_3)_3)$, $-\underline{\text{CH}_2\text{-}\text{CH}_3}, -(\underline{\text{CH}_2})_2 - \underline{\text{CH}_3}, -(\underline{\text{CH}_2})_3 - \underline{\text{CH}_3}, -(\underline{\text{CH}_2})_4 - \underline{\text{CH}_3}, -(\underline{\text{CH}_2})_5 - \underline{\text{CH}_3}, -\underline{\text{CH}_2} - \underline{\text{CH}_2} + \underline{\text{CH}_2} - \underline{\text{CH}_3}, -\underline{\text{CH}_3} - \underline{\text{CH}_3} - \underline$ -CH2CH2Cl, -CH2-CF3 and -CH2-CCl2; or two R groups are joined to form substituents selected from the group consisting of -C₁₀H₆- and -C₆H₄C₆H₄-, wherein R^5 is selected from the group consisting of $CH_2C(O)N(R^{6A})_{2L}$ $CH_2C(O)OR^{6A}$, $CH_2OC(O)R^{6A}$, $CH(R^{6A})OC(O)R^{6A}$, $CH_2C(R^{6A})$, CH_3OH , CH_3OR^{6A} , NH-CH₂-C(O)O-CH₂CH₃, N(CH₂)-CH₂-C(O)O-CH₂CH₃, NHR⁴⁰ $\underline{CH_2}$ -O-C(O)- $\underline{C_1}\underline{H_5}$, $\underline{CH_2}$ -O-C(O)- $\underline{C_{10}}\underline{H_{15}}$, $\underline{-CH_2}$ -O-C(O)- $\underline{CH_2}\underline{CH_3}$, $\underline{CH_2\text{-}O\text{-}C(O)\text{-}CH(CH_3)_2, CH_2\text{-}O\text{-}C(O)\text{-}C(CH_3)_3, and CH_2\text{-}O\text{-}C(O)\text{-}CH_2\text{-}C_6H_5;}$ w erc. κ^{6A} is selected from the group consisting of C_1 - C_{20} alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms), C₆-C₂₀ aryl which is unsubstituted or substituted by substituents independently selected

from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms) or C_2 - C_{20} aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms), wherein O and N are substituted for carbon and provided that the total number of R^5 or R carbon atoms is less than 25 for compounds where R^5 or R is selected from the group consisting of $N(R^{6A})_2$, $CH_2C(O)N(R^{6A})_2$, $CH_2C(O)OR^{6A}$, $CH_2OC(O)R^{6A}$, $CH(R^{6A})OC(O)R^{6A}$ and $CH_2C(R^{6A})_2CH_2OH$; wherein R^{40} is C_1 - C_{20} alkyl; and C_1 - C_2 alkyl; and C_2 below the group consisting of C_3 alkyl) cytosinyl, 5-halocytosinyl, and 5- C_1 - C_3 -alkyl) cytosinyl.--