

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

Computer Networks and the Internet

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

"Protocol Layers" and reference models

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Question:

is there any hope of organizing structure of network?

.... or at least our *discussion* of networks?

Example: Organization of Air Travel

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

airplane routing

airline travel: a series of steps, involving many services

Layering of Airline functionality

ticket (purchase)	ticketing service	ticket (complain)
baggage (check)	baggage service	baggage (claim)
gates (load)	gate service	gates (unload)
runway takeoff	runway service	runway landing
airplane routing	routing service	airplane routing

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

Q: describe in words the service provided in each layer above

Why layering?

PES UNIVERSITY ONLINE

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change in layer's service *implementation*: transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- layering considered harmful?
- layering in other complex systems?

Internet Protocol Stack

PES UNIVERSITY

- application: supporting network applications (access to network resources)
 - IMAP, SMTP, HTTP
- transport: process-process data transfer (segmentation & reassembly, sockets, connection, flow and error control)
 - TCP, UDP
- network: routing of datagrams from source to destination (addressing, routing)
 - IP, routing protocols
- link: data transfer between neighboring network elements (framing, addressing, flow & error control)
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

application

transport

network

link

physical

Queries

THANK YOU

Sivaraman Eswaran Ph.D.

Department of Computer Science and Engineering

sivaramane@pes.edu

+91 80 6666 3333 Extn 834