Addendum

Rappresentazione digitale dell'informazione

Digital Networks

La tecniche di trasmissione digitale abilitano la rete al trattamento di qualsiasi flusso informativo

Obiettivi e problemi

- Come ridurre il tempo di trasmissione di un "messaggio" (testo, immagine) ?
 - Qual è la lunghezza di un "messaggio" ?
 - Quali sono i vincoli che devono essere rispettati nella trasmissione di un "messaggio"?
- Può una rete gestire chiamate vocali o video ?
 - Qual è la banda richiesta per il supporto di una chiamata vocale o video ?
 - Quali sono i vincoli di qualità che devono essere soddisfatti?
- Qual è il tempo necessario a trasferire un messaggio senza errori ?
 - Per quale motivo si verificano errori in trasmissione ?
 - come è possibile rivelare e correggere gli errori in trasmissione ?
- Qual è la banda disponibile nei vari mezzi trasmissivi (rame, fibra, radio, ecc.) ?

Informazione a Blocchi vs. Stream

- Informazione a blocchi
- L'informazione è naturalmente strutturata in unità indipendenti (blocchi)
 - Text message
 - Data file
 - JPEG image
 - MPEG file
- Dimensione (size)
 - numero di bit (byte) per blocco

- Informazione Stream
- Informazione prodotta e trasmessa in modo continuo
 - Real-time voice
 - Streaming video
- Bit rate
 - misura la quantità di bit prodotti dalla sorgente in una unità di tempo

Delay di trasferimento di un messaggio

- R → velocità del sistema di trasmissione (bit/s)
- $t_{prop} \rightarrow tempo di propagazione lungo il mezzo trasmissivo$
- d → lunghezza del collegamento
- c

 velocità di propagazione sul mezzo trasmissivo
 (3x108 m/s nel vuoto, 2x108 m/s nei mezzi guidati)

Delay minimo =
$$t_{prop}$$
 + L/R = d/c + L/R

- L si riduce mediante tecniche di compressione
- R si aumenta mediante tecniche di trasmissione
- d si riduce avvicinando sender e receiver

Compressione

Algoritmi di compressione dati

- Riducono il numero di bit necessari alla rappresentazione dell'informazione riducendo la ridondanza
- Senza perdita (Lossless): l'informazione originale è ricostruita esattamente
 - zip, GIF, fax
- Con perdita (lossy): l'informazione decompressa non è identica all'originale
 - JPEG
- Rapporto di compressione (Compression Ratio) (R_c)
 - R_c = B_{orig}/B_{compr} (#bits file originale / #bits file compresso)
 - Compromesso tra numero di bit e qualità

$$R_c = \frac{R_{orig}}{R_{compr}}$$

Immagine a colori

 $B_{orig} = 3 \times H \times W \text{ pixel} \times B \text{ bit/pixel} = 3HWB \text{ bit}$

Esempio: 8×10 inch picture a 400×400 pixel per inch² $400 \times 400 \times 8 \times 10 = 12.8$ million pixels 8 bits/pixel/color 12.8 megapixel \times 3 byte/pixel = 38.4 megabyte

Esempi di informazione a blocchi

Tipo	Metodo	Formato	Originale	Compressed Ratio
Text	Zip	ASCII	Kbyte- Mbyte	2 <r<sub>c<6</r<sub>
Fax	CCITT Group 3	A4 page 200×100 pixel/in²	256 kbyte	5-54 kbyte (5 <r<sub>c<50)</r<sub>
Immagine a Colori	JPEG	8×10 in² photo 400² pixel/in²	38.4 Mbyte	1-8 Mbyte (5 <r<sub>c<30)</r<sub>

Stream Information

- Un segnale vocale nella forma originale è di tipo analogico
- Un segnale vocale deve essere digitalizzato e trasmesso in tempo reale
- Il livello del segnale analogico varia nel tempo

Digitalizzazione di segnali analogici

<u>Campionamento</u> (sampling) del segnale analogico nel tempo e codifica dell'ampiezza dei campioni

Bit rate dei segnali digitalizzati

- Larghezza di banda (Bandwidth) Ws (Hz)
 - indica quanto "velocemente" il segnale varia nel tempo
 - \blacksquare Maggiore bandwidth \rightarrow campioni più frequenti
 - Frequenza di campionamento minima Fc = 2 x Ws
- Accuratezza della rappresentazione
 - Maggiore accuratezza
 - $lue{}$ ightharpoonup minore spaziatura tra approssimazione dei campioni
 - → numero maggiore di bit per campione

Esempio: Voce & Audio

Codifica vocale (Telefonia)

- $W_s = 4 \text{ kHz} \rightarrow 8000$ sample/sec
- 8 bit/sample
- $R_s = 8 \times 8000 = 64 \text{ kbit/s}$
- Nella telefonia mobile si usano codifiche con maggiore rapporto di compressione
 - $R_s = 8-12 \text{ kbit/s}$

CD Audio

- $W_s = 22 \text{ kHz} \rightarrow 44000 \text{ sample/sec}$
- 16 bit/sample
- R_s= $16 \times 44000 = 704 \text{ kbps}$ per canale
- MP3 usa una codifica con maggiore rapporto di compressione
 - R_s = 50 kbit/s per canale audio

Segnale video

- Sequenza di "quadri" (picture frame)
 - ogni picture è digitalizzata e compressa
- Frequenza di ripetizione delle frame
 - 10-30-60 frame/sec in relazione all'obiettivo di qualità
- Risoluzione di ogni picture (<u>Frame</u> resolution)
 - Bassa risoluzione per servizio di videoconferenza
 - Risoluzione maggiore per servizio broadcast TV
 - HDTV frames

Rate = M bits/pixel x (WxH) pixel/frame x F frame/second

Frame Video

Digital Video Signals

Tipo	Metodo	Formato	Originale	Compresso
Video Confer- enza	H.261	176×144 or 352×288 pix a 10-30 fr/sec	2-36 Mbit/s	64-1544 kbit/s
Full Motion	MPEG2	720x480 pix a 30 fr/sec	249 Mbit/s	2-6 Mbit/s
HDTV	MPEG2	1920×1080 a 30 fr/sec	1.6 Gbit/s	19-38 Mbit/s

Tipologia di informazioni stream

Constant bit-rate

- Flussi informativi a bit rate costante
 - Es. sorgente telefonica produce un flusso stream a rate costante 64 kbit/s
- La rete deve fornire un canale di comunicazione con banda almeno uguale al bit rate della sorgente
 - Es. Rete telefonica: canali di comunicazione (circuiti) a 64 kbit/s

Variable bit-rate

- Flussi informativi con bit rate variabile nel tempo
 - Es. sorgente video a qualità costante produce un flusso in cui il bit rate varia in funzione del movimento tra due picture consecutive
- La rete deve supportare in modo efficiente la variabilità del bit rate
 - Es. commutazione di pacchetto o rate-smoothing

Classificazione delle sorgenti

- CBR: Constant Bit Rate
 - Esempio: uscita da un codificatore opera un campionamento di un segnale analogico (codificatore vocale o musicale)
 - Voce codificata PCM = 64 kbit/s = 8bit/125μs

Classificazione delle sorgenti

Sorgenti VBR Variable Bit Rate

Esempio: codifica di immagini in movimento (MPEG)

Classificazione delle sorgenti

- Sorgenti VBR a due stati o anche sorgenti ON-OFF
 - Esempio: sorgenti vocali con rivelazione di tratti vocali
 - Voce codificata ADPCM Fp=32 kbit/s
 - Rm = 32 kbit/s*E{Ton}/({Ton}+{Toff})=11.2 kbit/s
 - E{Ton}=350 ms, E{Toff}=650 ms
 - Coefficiente di attività a= Rm/Rp

Parametri di qualità per servizi di tipo Stream

- Possibili problemi introdotti dal transito in rete (<u>Network Impairmen</u>t)
 - Ritardo (Delay)
 - Per ogni servizio occorre individuare il vincolo sul ritardo massimo di attraversamento della rete
 - Variabilità del ritardo (Jitter)
 - Per ogni servizio occorre individuare il vincolo sulla variabilità massima consentita del ritardo di attraversamento della rete
 - Perdita di informazioni (Loss)
 - Per ogni servizio occorre individuare il vincolo sul percentuale massima di bit persi (per errori o congestione) sul totale dei bit trasmessi (Probabilità di perdita)
 - I protocolli di trasferimento sono progettati per gestire questi problemi

Tipi di sorgenti

	Ritmo binario	Tipo di emissione
Voce qualità telefonica	64 kbit/sec	CBR
Voce qualità migliorata	48, 56 o 64 kbit/s	CBR
Voce codificata ADPCM	32 kbit/sec (DECT)	CBR
Voce con codificatori di analisi per sintesi	16 kbit/sec, 13 kbit/sec (GSM)	CBR
CD musicali	1,41 Mbit/s, 384 kbit/s, 256 kbit/s	CBR
Standard Definition TV	166 Mbit/s	CBR
High Definition TV	885 Mbit/s, 15-25Mbit/s	CBR
ISDN px64 video conferenza	64 e 1984 kbit/s	VBR
Video conferenza a basso ritmo	< 28.8 kbit/s	VBR
MPEG-1	1-1,5 Mbit/s.	VBR
MPEG-2	5 Mbit/s	VBR