Supplemental Information for Web Application

Environmental Impact

As part of this research, a full life cycle assessment (LCA) was developed for the three scenarios using the software package MSW-DST. The LCA was developed using the composition of residential waste collected in Metropolitan Nashville/Davidson County (CDM Smith, 2018). The LCA evaluates the full management of MSW collected as well are recyclable and yard waste which can be diverted from the landfill. The LCA involved the evaluation of environmental impacts using TRACI (Tool for the Reduction and Assessment of Chemical and other Environmental Impacts) characterization factors which is an environmental impact assessment tool (Jain, Dyson, Tolaymat, & Ingwersen, 2015). The default of the software is to optimize operations for energy, cost, and CO₂ emissions. The results of MSW-DST for the three scenarios are shown show in Table 1 for air and Table 2 for water:

	Table 1: Impacts to Air										
Impact Category	Pollutant Name	Scenario 1 - Energy Optimization	Scenario 1 - Cost Optimization	Scenario 1 - CO2 Optimization	Scenario 2 - Energy Optimization	Scenario 2 - Cost Optimization	Scenario 2 - CO2 Optimization	Scenario 3 - Energy Optimization	Scenario 3 - Cost Optimization	Scenario 3 - CO2 Optimization	
		per ton MSW	per ton MSW	per ton MSW	per ton MSW	per ton MSW	per ton MSW	per ton MSW	per ton MSW	per ton MSW	
Global Warming Air	Carbon Dioxide Fossil	-1.2E+02	-1.903E+01	-1.334E+02	-2.058E+02	-1.903E+01	-2.813E+02	-1.006E+02	-1.324E+02	-1.334E+02	kg of CO2- equivalent
	Methane (CH4)	4.043E+02	4.664E+02	5.005E+02	-1.737E+01	4.664E+02	-1.83E+01	5.605E+01	5.005E+02	5.005E+02	kg of CO2- equivalent
Acidification Air	Nitrogen Oxides Sulfur	-2.141E+01	6.722E-01	-1.075E+01	-3.082E+01	6.722E-01	-2.658E+01	-2.068E+01	-1.044E+01	-1.075E+01	kg of H+ moles- equivalent kg of H+ moles-
	Oxides	-7.032E+01	-1.468E+01	-5.512E+01	-1.727E+02	-1.468E+01	-1.717E+02	-6.96E+01	-5.502E+01	-5.512E+01	equivalent
	Ammonia (Air)	-3.661E-01	-1.148E-01	-3.02E-02	-3.888E-01	-1.148E-01	-5.233E-02	-3.268E-01	-3.009E-02	-3.02E-02	kg of H+ moles- equivalent
	Hydrochloric Acid	-5.646E-01	1.262E-01	-5.946E-01	-2.172E+00	1.262E-01	-2.265E+00	-4.716E-01	-5.946E-01	-5.946E-01	kg of H+ moles- equivalent
Human Health Cancer Air	Lead (Air)	-1.158E-09	-3.475E-10	7.487E-11	-1.531E-09	-3.475E-10	-3.216E-10	-1.251E-09	7.497E-11	7.487E-11	Comparative Toxic Units
Human Health Noncancer Air	Lead (Air)	-4.064E-07	-1.22E-07	2.627E-08	-5.367E-07	-1.22E-07	-1.127E-07	-4.385E-07	2.627E-08	2.627E-08	Comparative Toxic Units
Human Health Criteria Air- Point Source	Total Particulate Matter	-5.398E-01	-1.923E-01	-4.685E-01	-7.59E-01	-1.923E-01	-7.28E-01	-5.657E-01	-4.664E-01	-4.685E-01	kg of PM10- equivalent
	Nitrogen Oxides	-1.417E-02	4.447E-04	-7.146E-03	-2.037E-02	4.447E-04	-1.758E-02	-1.365E-02	-6.918E-03	-7.146E-03	kg of PM10- equivalent
	Sulfur Oxides	-2.306E-01	-4.798E-02	-1.81E-01	-5.657E-01	-4.798E-02	-5.646E-01	-2.285E-01	-1.81E-01	-1.81E-01	kg of PM10- equivalent
Eutrophication Air	Nitrogen Oxides	-2.368E-02	7.435E-04	-1.189E-02	-3.413E-02	7.435E-04	-2.937E-02	-2.285E-02	-1.158E-02	-1.189E-02	kg of N- equivalent
	Ammonia (Air)	-4.55E-04	-1.427E-04	-3.754E-05	-4.829E-04	-1.427E-04	-6.494E-05	-4.054E-04	-3.733E-05	-3.754E-05	kg of N- equivalent
Ecotoxicity Air	Lead (Air)	-7.487E-03	-2.244E-03	4.829E-04	-9.876E-03	-2.244E-03	-2.079E-03	-8.077E-03	4.84E-04	4.829E-04	Comparative Toxic Units
	Ammonia (Air)	-2.834E-04	-8.873E-05	-2.337E-05	-2.999E-04	-8.873E-05	-4.043E-05	-2.523E-04	-2.327E-05	-2.337E-05	Comparative Toxic Units

	Table 2: Impacts to Water										
		Scenario 1 -	Scenario 1 -	Scenario 1 -	Scenario 2 -	Scenario 2 -	Scenario 2 -	Scenario 3 -	Scenario 3 -	Scenario 3 -	
Impact	Pollutant	Energy	Cost	CO2	Energy	Cost	CO2	Energy	Cost	CO2	
Category	Name	Optimization	Units								
		per ton MSW									
Human Health		101300	101300	101300	101300	101500	101500	101500	101300	101300	Comparative
Cancer Water	Cadmium	-2.234E-11	4.292E-12	-2.172E-11	-4.385E-11	4.292E-12	-4.219E-11	5.491E-11	-2.161E-11	-2.172E-11	Toxic Units
											Comparative
	Arsenic	3.164E-09	3.092E-09	3.113E-09	-5.574E-09	3.092E-09	-5.791E-09	8.687E-10	3.113E-09	3.113E-09	Toxic Units
	Mercury	4.65.45.44	4 0005 44		4544	4 0005 44	4 005 44	0.5045.40	4.6645.44	4.6645.44	Comparative
	(Water)	4.654E-11	4.902E-11	4.664E-11	-1.E-11	4.902E-11	-1.03E-11	8.521E-12	4.664E-11	4.664E-11	Toxic Units
	Lead (Water)	8.128E-12	8.087E-12	8.056E-12	-9.276E-12	8.087E-12	-9.628E-12	3.847E-11	8.056E-12	8.056E-12	Comparative Toxic Units
Human Health	(vvater)	8.128L-12	8.087L-12	8.030L-12	-9.270L-12	8.087L-12	-9.028L-12	3.847L-11	8.030L-12	8.030L-12	TOXIC OTIES
Noncancer											Comparative
Water	Copper	1.018E-12	6.112E-13	7.456E-13	-3.02E-11	6.112E-13	-3.133E-11	2.327E-11	7.456E-13	7.456E-13	Toxic Units
											Comparative
	Cadmium	-6.008E-09	1.148E-09	-5.822E-09	-1.179E-08	1.148E-09	-1.138E-08	1.479E-08	-5.801E-09	-5.822E-09	Toxic Units
	A:-	2 2475 07	2 2055 07	2 2005 07	4 4265 07	2 2055 07	4 2025 07	C 4225 00	2 2005 07	2 2005 07	Comparative
	Arsenic Mercury	2.347E-07	2.285E-07	2.306E-07	-4.126E-07	2.285E-07	-4.292E-07	6.432E-08	2.306E-07	2.306E-07	Toxic Units Comparative
	(Water)	5.512E-09	5.801E-09	5.522E-09	-1.179E-09	5.801E-09	-1.22E-09	1.008E-09	5.522E-09	5.522E-09	Toxic Units
	(110001)		0.000=	0.00000							Comparative
	Chromium	2.265E-13	2.823E-13	2.254E-13	-3.382E-13	2.823E-13	-3.454E-13	2.565E-14	2.254E-13	2.254E-13	Toxic Units
	Lead										Comparative
	(Water)	2.854E-09	2.834E-09	2.823E-09	-3.247E-09	2.834E-09	-3.371E-09	1.344E-08	2.823E-09	2.823E-09	Toxic Units
	7:	1 525 07	4.0055.00	0.2765.00	4.6545.00	4.0055.00	1 0005 07	2 0445 07	0.2455.00	0.3765.00	Comparative
Eutrophication	Zinc	1.52E-07	4.995E-08	-8.376E-09	-4.654E-09	4.995E-08	-1.696E-07	2.844E-07	-8.345E-09	-8.376E-09	Toxic Units kg of N-
Water	BOD	3.04E-02	3.33E-02	3.485E-02	3.526E-03	3.33E-02	6.236E-04	1.044E-02	3.485E-02	3.485E-02	equivalent
	202	3.0.12.02	3.332 02	37.032.02	3.3202 03	3.332 32	0.2002 0 .	2.0	31.032 02	31.032 02	kg of N-
	COD	6.246E-02	8.48E-02	9.483E-02	-1.179E-02	8.48E-02	-7.249E-05	3.454E-02	9.483E-02	9.483E-02	equivalent
	Ammonia										kg of N-
	(Water)	1.675E+01	1.675E+01	1.675E+01	-1.934E-03	1.675E+01	-1.127E-03	3.547E+00	1.675E+01	1.675E+01	equivalent
	51 1 .				5 0465 04		0.5405.04				kg of N-
Ecotovicity	Phosphate	5.336E-03	5.998E-03	5.222E-03	-5.016E-04	5.998E-03	-8.542E-04	2.472E-02	5.222E-03	5.222E-03	equivalent
Ecotoxicity Water	Iron	1.923E+01	7.373E+00	-9.38E+00	-1.644E+01	7.373E+00	-4.695E+01	3.65E+01	-9.38E+00	-9.38E+00	Comparative Toxic Units
vvatei	11011	1.5252101	7.3732100	J.30L100	1.0441.01	7.3732100	4.055L101	3.032101	J.30L 100	J.30L100	Comparative
	Copper	6.515E-02	3.909E-02	4.778E-02	-1.934E+00	3.909E-02	-2.006E+00	1.489E+00	4.778E-02	4.778E-02	Toxic Units
	• •										Comparative
	Cadmium	-1.365E-01	2.616E-02	-1.324E-01	-2.678E-01	2.616E-02	-2.575E-01	3.351E-01	-1.324E-01	-1.324E-01	Toxic Units

Arsenic	1.303E-01	1.272E-01	1.282E-01	-2.296E-01	1.272E-01	-2.389E-01	3.588E-02	1.282E-01	1.282E-01	Comparative Toxic Units
Mercury										Comparative
(Water)	8.563E-03	9.018E-03	8.583E-03	-1.841E-03	9.018E-03	-1.892E-03	1.562E-03	8.583E-03	8.583E-03	Toxic Units
										Comparative
Selenium	1.138E-01	1.107E-01	1.117E-01	-2.451E-01	1.107E-01	-2.544E-01	3.64E-02	1.117E-01	1.117E-01	Toxic Units
										Comparative
Chromium	9.669E-02	1.21E-01	9.638E-02	-1.448E-01	1.21E-01	-1.479E-01	1.096E-02	9.648E-02	9.638E-02	Toxic Units
Lead										Comparative
(Water)	8.904E-03	8.862E-03	8.821E-03	-1.017E-02	8.862E-03	-1.055E-02	4.219E-02	8.821E-03	8.821E-03	Toxic Units
										Comparative
Zinc	4.592E+00	1.499E+00	-2.523E-01	-1.396E-01	1.499E+00	-5.109E+00	8.552E+00	-2.513E-01	-2.523E-01	Toxic Units

Land Impacts:

Scenario 1: The total acreage of a Class I landfill varies depending on design expectations. The facility often consists of buffer and borrow soils area which increases the overall need for land to site the facility. For example, Class I landfill located in Rutherford County, south east of Metropolitan Nashville is 808 acres (https://middlepointlandfill.com/). The county landfill located in Montgomery County Tennessee, north west of Nashville sits on 550 acres, with 75 acres of closed landfill areas and 53 acres of active landfill area (https://mcgtn.org/bi-county/facts-about-landfill).

Scenario 2: For waste to energy facilities, several structures are needed for facility operation. Two main structure include the waste to energy incinerator facility and associated landfill for fly ash and bottom ash. In a waste-to-energy plant, 2,000 pounds of garbage is reduced to 300 pounds—600 pounds of ash (U.S. Energy Information Administration, n.d.). Therefore, the process allows for a reduction in disposed of volume. The Solid Waste Disposal Authority of the City of Huntsville which operated a waste to energy facility achieves a 90 percent reduction to MSW mass processed at the facility. At this facility, the Landfill property consists of 286 acres with a total disposal area of 178.23 acres. Of that, exists closed landfill areas, a construction and demolition landfill, and a current landfill area of 35 acres permitted for a variety of wastes including incinerator disposal ash (Solid Waste Disposal Authority of the City of Huntsville, n.d.). For this system, after the facility is decommissioned, the waste to energy plant can be demolished and removed from the site. The associated landfill will remain on the property after facility closure.

Scenario 3:

The areas required for a composting operation varies depending on the amount of waste that is managed. For a MSW composting facility in Portland, Oregon, the active composting area was about 7.5 acres in size, contains nearly two-thirds of the total area of the facility (Jones & Talbott, n.d.). A processing building is located on the site to separate the compostable and non-compostable fractions of MSW. The non-

compostable fraction, or residue, is conveyed away from the trommel screen for ultimate disposal in a landfill (Jones & Talbott, n.d.). In this scenario the landfill is located adjacent to the composting facility and will require adequate acreage for disposal of non-compostable waste.

Based on waste characterization used in this study, less than 30 percent of the MSW is compostable organics. Therefore, the remaining material will be disposed of in an associated landfill. Once operations cease, the composting facility will be decommissioned, and the landfill will remain.

Economic Criterion

The Economics Criteria involves the financial elements involved with the short and long term operations of the MSW management system. The attributes of the criteria include capital investments, operations and maintenance costs necessary for day to day operations of the facility and infrastructure, economic incentives that may be provide to communities located in the vicinity of the facility, and property values of land located around the facility. Below are several economic indicators that calculated during the LCA evaluation for the three scenarios. Operational costs were developed for the optimized system scenarios and are presented in Table 4.

Table 4: Annual Operation Costs								
Scenario		Annual Operation Cost						
	(US Dollar per Year per 1 ton MSW)							
	Optimized for Energy Optimized for Cost Optimized for CO ₂ Emiss							
Scenario 1	97	89	107					
Scenario 2	137 89 148							
Scenario 3	162	162 102 107						

The Technical Feasibility Criteria considers of several attributes such as the availability of land/land use, energy efficiency, distance from community/ transfer station, beneficial reuse/resource conservation, available infrastructure. Table 5 below presents the annual energy usage that was calculated during the LCA evaluation. The operational costs were developed for the optimized system scenarios.

Annual Energy Usage

Table 5: Annual Energy Usage							
Scenario		Energy Usage					
	l) 1 ton MSW per year)						
	Optimized for CO ₂ Emissions						
Scenario 1	-2.5	0.1	-1.6				
Scenario 2	-8.1	0.1	-7.8				
Scenario 3	-2.7	-1.7	-1.6				

Note: Negative value indicated energy production for scenario and optimized condition