

Matrix methods – Least squares problems MATH 2740 – Mathematics of Data Science – Lecture 06

Julien Arino

julien.arino@umanitoba.ca

Department of Mathematics @ University of Manitoba

Fall 202X

The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis. We respect the Treaties that were made on these territories, we acknowledge the harms and mistakes of the past, and we dedicate ourselves to move forward in partnership with Indigenous communities in a spirit of Reconciliation and collaboration.

The least squares problem (simplest version)

Definition 1

Given a collection of points $(x_1, y_1), \ldots, (x_n, y_n)$, find the coefficients a, b of the line y = a + bx such that

$$\|\mathbf{e}\| = \sqrt{\varepsilon_1^2 + \dots + \varepsilon_n^2} = \sqrt{(y_1 - \tilde{y}_1)^2 + \dots + (y_n - \tilde{y}_n)^2}$$

is minimal, where $\tilde{y}_i = a + bx_i$ for i = 1, ..., n

We just saw how to solve this by brute force using a genetic algorith to minimise $\|e\|$, let us now see how to solve this problem "properly"

p. 1 – Least squares problem

For a data point i = 1, ..., n

$$\varepsilon_i = y_i - \tilde{y}_i = y_i - (a + bx_i)$$

So if we write this for all data points,

$$\varepsilon_1 = y_1 - (a + bx_1)$$

$$\vdots$$

$$\varepsilon_n = y_n - (a + bx_n)$$

In matrix form

$$oldsymbol{e} = oldsymbol{b} - Aoldsymbol{x}$$

with

$$\boldsymbol{e} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, \boldsymbol{A} = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} a \\ b \end{pmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

The least squares problem (reformulated)

Definition 2 (Least squares solutions)

Consider a collection of points $(x_1, y_1), \dots, (x_n, y_n)$, a matrix $A \in \mathcal{M}_{mn}$, $\mathbf{b} \in \mathbb{R}^m$. A **least squares solution** of $A\mathbf{x} = \mathbf{b}$ is a vector $\tilde{\mathbf{x}} \in \mathbb{R}^n$ s.t.

$$\forall \mathbf{x} \in \mathbb{R}^n, \quad \|\mathbf{b} - A\tilde{\mathbf{x}}\| \leq \|\mathbf{b} - A\mathbf{x}\|$$

Needed to solve the problem

Definition 3 (Best approximation)

Let V be a vector space, $W \subset V$ and $\mathbf{v} \in V$. The **best approximation** to \mathbf{v} in W is $\tilde{\mathbf{v}} \in W$ s.t.

$$\forall \mathbf{w} \in W, \mathbf{w} \neq \tilde{\mathbf{v}}, \quad \|\mathbf{v} - \tilde{\mathbf{v}}\| < \|\mathbf{v} - \mathbf{w}\|$$

Theorem 4 (Best approximation theorem)

Let V be a vector space with an inner product, $W \subset V$ and $\mathbf{v} \in V$. Then $\operatorname{proj}_W(\mathbf{v})$ is the best approximation to \mathbf{v} in W

Let us find the least squares solution

 $\forall x \mathbb{R}^n$, Ax is a vector in the **column space** of A (the space spanned by the vectors making up the columns of A)

Since
$$\mathbf{x} \in \mathbb{R}^n$$
, $A\mathbf{x} \in \operatorname{col}(A)$

 \implies least squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\tilde{\mathbf{y}} \in \text{col}(A)$ s.t.

$$\forall \mathbf{y} \in \mathsf{col}(A), \quad \|\mathbf{b} - \tilde{\mathbf{y}}\| \leq \|\mathbf{b} - \mathbf{y}\|$$

This looks very much like Best approximation and Best approximation theorem

Putting things together

We just stated: The least squares solution of Ax = b is a vector $\tilde{y} \in col(A)$ s.t.

$$\forall \mathbf{y} \in \operatorname{col}(A), \quad \|\mathbf{b} - \tilde{\mathbf{y}}\| \leq \|\mathbf{b} - \mathbf{y}\|$$

We know (reformulating a tad):

Theorem 5 (Best approximation theorem)

Let V be a vector space with an inner product, $W \subset V$ and $\mathbf{v} \in V$. Then $\operatorname{proj}_W(\mathbf{v}) \in W$ is the best approximation to \mathbf{v} in W, i.e.,

$$\forall \mathbf{w} \in W, \mathbf{w} \neq \operatorname{proj}_{W}(\mathbf{v}), \quad \|\mathbf{v} - \operatorname{proj}_{W}(\mathbf{v})\| < \|\mathbf{v} - \mathbf{w}\|$$

$$\implies W = \operatorname{col}(A), \ \boldsymbol{v} = \boldsymbol{b} \ \text{and} \ \tilde{\boldsymbol{y}} = \operatorname{proj}_{\operatorname{col}(A)}(\mathbf{b})$$

So if $\tilde{\mathbf{x}}$ is a least squares solution of $A\mathbf{x} = \mathbf{b}$, then

$$ilde{ extbf{\emph{y}}} = extbf{\emph{A}} ilde{ extbf{\emph{x}}} = extbf{proj}_{ ext{col}(extbf{\emph{A}})}(extbf{\emph{b}})$$

We have

$$\textbf{\textit{b}} - A\tilde{\textbf{\textit{x}}} = \textbf{\textit{b}} - \mathsf{proj}_{\mathsf{col}(A)}(\textbf{\textit{b}}) = \mathsf{perp}_{\mathsf{col}(A)}(\textbf{\textit{b}})$$

and it is easy to show that

$$\mathsf{perp}_{\mathsf{col}(A)}(\mathbf{b}) \perp \mathsf{col}(A)$$

So for all columns a_i of A

$$\boldsymbol{a}_i \cdot (\boldsymbol{b} - A\tilde{\boldsymbol{x}}) = 0$$

which we can also write as $\boldsymbol{a}_{i}^{T}(\boldsymbol{b}-A\tilde{\boldsymbol{x}})=0$

For all columns a_i of A,

$$\boldsymbol{a}_{i}^{T}(\boldsymbol{b}-A\tilde{\boldsymbol{x}})=0$$

This is equivalent to saying that

$$A^{T}(\boldsymbol{b}-A\tilde{\boldsymbol{x}})=\mathbf{0}$$

We have

$$A^{T}(\boldsymbol{b} - A\tilde{\boldsymbol{x}}) = \boldsymbol{0} \iff A^{T}\boldsymbol{b} - A^{T}A\tilde{\boldsymbol{x}} = \boldsymbol{0}$$
$$\iff A^{T}\boldsymbol{b} = A^{T}A\tilde{\boldsymbol{x}}$$
$$\iff A^{T}A\tilde{\boldsymbol{x}} = A^{T}\boldsymbol{b}$$

The latter system constitutes the **normal equations** for \tilde{x}

Least squares theorem

Theorem 6 (Least squares theorem)

 $A \in \mathcal{M}_{mn}$, $\boldsymbol{b} \in \mathbb{R}^m$. Then

- 1. $A\mathbf{x} = \mathbf{b}$ always has at least one least squares solution $\tilde{\mathbf{x}}$
- 2. $\tilde{\mathbf{x}}$ least squares solution to $A\mathbf{x} = \mathbf{b} \iff \tilde{\mathbf{x}}$ is a solution to the normal equations $A^T A \tilde{\mathbf{x}} = A^T \mathbf{b}$
- 3. A has linearly independent columns \iff A^TA invertible. In this case, the least squares solution is unique and

$$\tilde{\mathbf{x}} = \left(A^T A\right)^{-1} A^T \mathbf{b}$$

We have seen 1 and 2, we will not show 3 (it is not hard)

Least squares problem Fitting something more complicated

Suppose we want to fit something a bit more complicated..

For instance, instead of the affine function

$$y = a + bx$$

suppose we want to do the quadratic

$$y=a_0+a_1x+a_2x^2$$

or even

$$y = k_0 e^{k_1 x}$$

How do we proceed?

Fitting the quadratic

We have the data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ and want to fit

$$y = a_0 + a_1 x + a_2 x^2$$

At (x_1, y_1) ,

$$\tilde{y}_1 = a_0 + a_1 x_1 + a_2 x_1^2$$

:

At (x_n, y_n) ,

$$\tilde{y}_n = a_0 + a_1 x_n + a_2 x_n^2$$

In terms of the error

$$\varepsilon_1 = y_1 - \tilde{y}_1 = y_1 - (a_0 + a_1 x_1 + a_2 x_1^2)$$

 \vdots
 $\varepsilon_n = y_n - \tilde{y}_n = y_n - (a_0 + a_1 x_n + a_2 x_n^2)$

i.e.,

$$e = b - Ax$$

where

$$\boldsymbol{e} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}, A = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Theorem 6 applies, with here $A \in \mathcal{M}_{n3}$ and $\boldsymbol{b} \in \mathbb{R}^n$

Fitting the exponential

Things are a bit more complicated here

If we proceed as before, we get the system

$$y_1 = k_0 e^{k_1 x_1}$$

$$\vdots$$

$$y_n = k_0 e^{k_1 x_n}$$

 $e^{k_1x_i}$ is a nonlinear term, it cannot be put in a matrix

However: take the In of both sides of the equation

$$\ln(y_i) = \ln(k_0 e^{k_1 x_i}) = \ln(k_0) + \ln(e^{k_1 x_i}) = \ln(k_0) + k_1 x_i$$

If $y_i, k_0 > 0$, then their In are defined and we're in business...

$$\ln(y_i) = \ln(k_0) + k_1 x_i$$

So the system is

$$\mathbf{v} = A\mathbf{x} + \mathbf{b}$$

with

$$A = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \boldsymbol{x} = (k_1), \boldsymbol{b} = (\ln(k_0)) \text{ and } \boldsymbol{y} = \begin{pmatrix} \ln(y_1) \\ \vdots \\ \ln(y_n) \end{pmatrix}$$

p. 14 - Least squares problem