Energetika, okoliš i održivi razvoj

3. ciklus

- potrošnja goriva kod postrojenja (1000-MWe)
 - na fosilna goriva 7300000 kg/dan
 - na nuklearnu energiju 3,2 kg/dan
- nuklearne elektrane
 - u svijetu u pogonu 439 nuklearnih elektrana
 - u 15 članica EU 145
 - prosječni faktor opterećenja 80%
 - u izgradnji 34 NE
- Hrvatska
 - nakon 2013. vršno opterećenje prelazi kapacitet postojećih elektrana
 - 27.4.2007. ratificirala Kyoto protokol i preuzela obvezu za 5% smanjiti emisiju stakleničkih plinova u razdoblju od 2008. do 2012. u odnosu na temeljnu godinu
- nuklearna opcija
 - ∘ za
- konkurentna i predvidiva cijena
- zadovoljenje Kyoto protokola
- Diversifikiacija
- pozitivan utjecaj na zapošljavanje i ekonomiju
- protiv
 - visoka ciiena investiciia
 - radioaktivan otpad
 - prihvat nuklearne energije u javnosti
 - mogućnost proliferacije

Nuklearni gorivni ciklus

- 1. pridobivanje i prerada rudače
- 2. konverzija
- 3. obogaćenje
- 4. izrada gorivnih elemenata
- 5. iskorištavanje goriva u reaktoru
- 6. skladištenje goriva
- 7. dvije mogućnosti
 - 1. prerada
 - skladištenje
- 8. dvije mogućnosti (nakon prerade)
 - skladištenje
 - 2. konverzija (opet drugi korak)
 - uran je vrlo čest mineral u prirodi
 - o ima ga 1000 puta više nego zlata i 40 puta više nego srebra
 - postoje nalazišta do 200kg po metričkoj toni
 - pridobivanje i prerada rudače (1)
 - utjecaj na okoliš

- radiološki
 - povećano pozadinsko zračenje
- neradiološki
 - velike količine otpadnih prirodnih materijala (kao i kod rudnika ugljena)
- rudnici urana se smatraju najnečistijom tehnologijom predreaktorskog dijela nuklearnog gorivnog ciklus
- konverzija (2)
 - primjer -700MWe
 - nastaje 90t krutog otpada i oko 800m^3 tekućeg otpada
 - utjecaj na okoliš
 - radiološki
 - uglavnom iz procesa purifikacije urana
 - neradiološki
 - kemijsko postrojenje
 - fluorovodična kiselina
 - akcident u postojenju Gore, SAD
- obogaćenje (3)
 - utjecaji na okoliš
 - radiološki
 - zanemarivi
 - neradiološki
 - UF6
 - zauzetost zemljišta
 - potrošnja energije
 - Primjer: Tricastin (Francuska) -površina 190km^2, snaga 2700MWe, specifična potršnja 2500kWh/SWU
- izrada gorivnih elemenata (4)
 - ∘ UF6 -> UO2
 - kapaciteti
 - postrojenja u 13 država
 - proizvodnja 11000 t/god
 - gubici 1%
 - kruti otpad 0,5 m^3/tU
 - tekući otpad 9 m^3/tU
 - utjecaji na okoliš
 - radiološki
 - zanemarivi
 - neradiološki
 - zanemarivi
- iskorištavanje goriva u reaktoru (5)
 - potrebno goriva za razne vrste pogona (1000MWe)
 - nuklearno 30 tona
 - plin 1,1M tona
 - nafta 1,4M tona
 - ugljen 2,3M tona
 - utjecaj na okoliš
 - nuklarni opasnost od akcidenata i otpad
 - prednosti NE
 - uvjerljivo najmanje otpuštanja stakleničkih plinova
 - također i najmanje smrtnih slučajeva u odnosu na ostale oblika stvaranja energije
 - najmanje zauzeće prostora

- jednostavno izrade (preko 95% potrebnih materijala su beton i željezo)
- reaktorski dio
 - redoviti pogon
 - plinoviti ispusti
 - ispuštanje tekućina
 - proizvodnja radioaktivnog otpada
 - toplinska polucija vodotoka
- obrada i skladištenje (6)
 - ograničenje koncentracije radioaktivnih plinova u zraku na granici ekskluzivne zone (500 m od središta zaštitne zgrade)
 - ograničenje godišnje efektivne doze za najizloženijeg pojedinca (50 mikroSv/god)
 - ispuštanje radioaktivnih plinova mora se vršiti isključivo u stabilnim vremenskim uvjetima, a vremenski razmak između dva uzastopna ispuštanja mora minimalno iznositi 6 dana
 - radioaktivni otpad
 - pogonski
 - nisko i srednje radioaktivni otad
 - 0,3 0,5 m^3/MWe godišnje
 - 90% pogon, 10% remont
 - NEK 9000 do 14000 m^3
 - istrošeno gorivo
 - dekomijski otpad
 - vrste otpada
 - istrošene ionske mase
 - koncentrirani talog evaporatora
 - istrošeni filtri
 - stlačivi i superstlačivi otpad
 - ostali nestlačivi otpad
 - kondenzator
 - toplinsko iskorištenje oko 33%
 - disipacija snage oko 5%
 - otpadna toplina oko 62%
 - toplinska polucija Save
 - crpke za hlađenje kondenzatora mogu uzeti najviše 1/4 protoka rijeke Save
 - rijeka mora biti ispod 28°C
 - unutar 24 sata smije zagrijati dodatni zagrijati Savu za najviše 3°C
 - u tehnološkom lancu dio se razgrađuje, a dio postaje radioaktivni otpad
 - postreaktorski dio
 - hlađenje bazen
 - skladištenje
 - skladištenje i odlaganje istrošenih gorivnih elemenata
 - nakon hlađenja istrošenih gotivnih elemenata u bazenu
 - odlaganje (otvoreni nuklearni gorivni ciklus) ili
 - prerada pa potom odlaganje (zatvoreni nuklearni gorivni ciklus)
 - bez obzira na izbor međukorak je skladištenje
 - mokro skladištenje
 - postojeći bazeni za hlađenje ili posebno izgrađena postrojenja koja nisu izgrađena kao integralni dio

reaktorskog postrojenja (samo u državama s više nuklearnih elektrana)

- suho skladištenje
 - nakon dovoljnog vremena u bazenu može ih se suho skladištiti
 - više vrsta metalnih, betonskih i višenamjenskih kontejnera
 - primjer: kontejneri tipa CASTOR

- prerada (7)
 - Purex postupak

Sigurnost nuklearnih elektrana

- PWR princip rada
 - tipični parametri
 - primarni tlak 15 do 16 MPa
 - prosječna primarna temp. 580 590 K
 - porast temp. u reaktoru 40 do 50 K
 - protok po rashl. krugu u 6 m^3/s
- osnovni sigurnosni problemi
 - radioaktivnost fisionih produkata
 - plemeniti plinovi
 - lako hlapljivi FP
 - srednje hlapljivi FP
 - slabo hlapljivi FP
 - akcidentalno ispuštanje FP
 - gap release plinoviti FP u slučaju pucanja košuljice
 - u slučaju topljenja goriva preostali plinoviti FP i lako hlapljivi FP
 - ostatna toplina
 - posljedica raspada fisijskih produkata
 - fisijom nastaje nova jezgra fisijski fragmenti
 - novonastala jezgra beta i gama radioaktivna jer ima višak neutrona
 - 180 MeV energeije se oslobađa neposredno pri fisiji, a oko 20 je posljedica radioaktivnog raspada fisijskih produkata
 - nakon obustave toplina ne nestaje iznosi približno 6% nominalne snage na kojoj je reaktor radio
- nuklearni reaktor jezgra
 - nuklearno gorivo
 - smješteno u gorivnim elementima
 - moderator
 - materijal koji ima sposobnost usporavanja neutrona
 - rashladno sredstvo
 - odvodi toplinu iz reaktora
 - kontrolni element
 - služi za nadzor broja neutrona raspoloživih za fisiju
 - ova četiri elementa čine jezgru koja je okružena štitom od zračenja
- nuklearni reaktor
 - sustav projektiran da omogući kontroliranu samoodržavajuću nuklearnu reakciju fisije
 - faktor k
 - parametar koji opisuje tijek odvijanja procesa

- definiran kao omjer srednjeg broja neutrona u dvije susjedne generacije neutrona
- ne smije imati vrijednost puno veću od jedan kontrola nuklearne reakcije
- k = 1 kritični reaktor (konstantan broj neutrona i snage proizvedene fisijom)
- k < 1 podkritični reaktor (snaga će se smanjivati)
- k > 1 nadkritični reaktor (snaga će se povećavati)
- reaktivnost (k-1)/k relativno odstupanje reaktora od kritičnog stanja
- prva kritičnost nuklearnog reaktora
 - 1942 g. Chicago Pile
- sigurnost nuklearnih elektrana
 - zanemarive emisije u normalnom pogonu
 - konzervativan projekt s visokim stupnjem sigurnosti
 - visoki zahtjevi na kvalitetu materijala i sigurnost
- za sigurnost pogona potrebno
 - spriječiti nagle poraste snage (k približno 1)
 - osigurati odvođenje ostatne topline
 - spriječiti ispuštanje radioaktivnog materijala
 - pospremiti istrošeno gorivo na siguran način
- obrana po dubini sigurnosni koncept
 - osnovna filozofija projektiranja nuklearne elektrane sa stajališta sigurnosti
 - sustav višestrukih barijera za širenje radioaktivnosti koje osiguravaju nepropusnost
 - barijere djeluju serijski jedna nakon druge
 - izgubljena funkcija jednog sigurnosnog sustava automatski preuzima drugi
 - bitni sustavi su barem udvojeni (redundancija)
 - sustavi mogu biti aktivni ili pasivni
 - barijere mogu biti
 - stvarne fizičke ugrađene u NE
 - matrica nuklearnog goriva
 - obloga gorivnog elementa
 - primarni rashladni krug
 - zaštitna posuda
 - fizičke i administrativne mjere koje se poduzimaju za zaštitu tih barijera
 - sustav za zaštitno hlađenje jezgre reaktora (štiti gorivne elemente od pregrijavanja)
 - sustav za ograničavanje porasta tlaka u zaštitnoj posudi
- principi projektiranja sigurnosnih sustava
 - jednostruki otkaz
 - redundantnost
 - diverzitet
 - neovisnost sustava
 - fizička separacija
 - provjera stanja sustava
 - aktivna i pasivna sigurnost
- analiza sigurnosti elektrane
 - cilj demonstrirati da NE može biti u pogonu bez nepotrebnog rizika za zdravlje ljudi i sigurnost
 - potrebna za pogonsku dozvolu
 - mora sadržavati analizu projekta i pogonskih svojstava elektrane
 - događaji od značaja za sigurnost

- svrha ocjena svih pogonskih stanja elektrane i demonstracija suglasnosti s regulatornim zahtjevima i uvjetima navedenim u pogonskoj dozvoli
- osiguranje sustavnog pristupa kategorizacija događaja po frekvenciji pojavljivanja, težini posljedica i prirodi poremećaja
- promjena parogeneratora i druga tehnička poboljšanja u NEK
 - veliko smanjenje vjerojatnosti događaja od značaja za sigurnost
- - kvar sustava za demineralizaciju pojne vode doveo do ispada pumpi pojne vode što operateri nisu primijetili
 - gubitak vode doveo do pregrijavanja primarnog krufa i porasta tlaka
 - tada je obustavljen reaktor
 - operatori zaustavljaju primarne pumpe radi zaštite pumpi i u jezgri se formira parni mjehur koji blokira protok vode kroz reaktor
 - operateri zaustavljaju rad pumpi sustava za zaštitno hlađenje što dovodi do pregrijavanja jezgre
 - trajanje akcidenta 16 sati
 - - izvedbi elektrane
 - procedurama
 - obuci operatera
 - · čak i mala ispuštanja mogu dovesti do oštećenja jezgre
 - znatno pooštrenje sigurnosnih zahtjeva
- nesreća u Černobilu (26.4.1986.)
 - reaktor RBMK-1000
 - prednost
 - izmjena goriva tijekom pogona
 - visoka raspoloživost te mogućnost reguliranja odgora goriva u pojedinim rashladnim kanalima bez potrebe za obustavom pogona
 - nedostaci
 - nema zaštitne zgrade
 - pozitivan temperaturni koeficijent šupljina
 - sporo kretanje regulacijskih šipki
 - regulacijske šipke u gornjem i donjem dijelu sadrže grafit umjesto apsorpcijskog materijala
 - nesreća zbog eksperimenta
 - može li se električnom energijom turbina u zastavljanu proizvesti dovoljno el. energije za napajanje sustava za zaštitno hlađenje jezgre prije starta dizel generatora ako se izgubi vanjsko napajanje
 - plan je bio izvesti eksperiment na 30% snage
 - trebao je biti na nenuklearnom dijelu elektrane
 - nema koordinacije između osoblja zaduženog za eksperiment i osoblja zaduženog za sigurnost elektrane
 - tijek događanja
 - 01:06 gašenje raktora, postepeno smanjivanje snage, početak testa
 - 03:47 zaustavljeno gašenje na 1600MW(t), zahtjev kijevskog operatera da elektrana ostane na snazi
 - 14:00 izoliran ECCS
 - 01:23:47 snaga reaktora na 30000 MW(t)
 - tlak ubrzano raste prva eksplozija
 - razorena reaktorska zgrada izloženost jezgre atmosferi

- taljenje gorivih elemenata
- vrući grafit gori u dodiru s kisikom iz atmosfere
- 10 dana oslobađan radioaktivni materijal u atmosferu
- uzroci
 - ljudska greška serija narušavanja instrukcija i operativnih procedura
 - nedostavi izvedbe elektrane
- posljedice
 - 31 žrtva
 - 134 lječenja od posljedice radijacijskog sindroma
 - 170 dodatnih slučajeva smrti od raka
 - povećanje rizika od smrtnosti zbog raka stanovništa zemalja zahvaćenih radioaktivnim oblakom od 0,03% do 0,15%
 - jako negativan utjecaj na razvoj nuklearne energetike
- osnovni ciljevi plana pripravnosti za slučaj nuklearne nesreće
 - izbjeći nepovoljan razvoj događaja u izvoru
 - minimizirati determinističke učinke
 - reducirati stohastičke učinke
- izloženost
 - izravno atmosferska disperzija (disanje, konzumiranje zaražene hrane i vode)
 - preko površinskih voda konzumiranje vode i hrane
 - preko podzemnih voda otpadi u tlo, konzumiranje vode i hrane
- hitne mjere zaštite
 - zaklanjanje
 - profilaksa stabilnim iodom
 - evakuacija
- dugoročne mjere zaštite
 - kontrola promera
 - dekontaminacija
 - kontrola prehrambenih proizvoda
 - zdravstvena kontrola
 - mjere zaštite u poljoprivredi
 - privremena relokacija
 - traina relokacija
- evolutivni PWR (europski lakovodni reaktor)
 - sigurnost
 - četverostruka redundantnost glavnih sigurnosnih funkcija
 - "hvatač" jezgre
 - zaštitna zgrada s dvostrukim zidom