Math 725 Advanced Linear Algebra

HW4

Brent A. Thorne

brentathorne@gmail.com

Quotent Space and Dual Basis

```
In [1]: # import libraries
   import numpy as np
   import sympy as sym
   from sympy.matrices import Matrix
   from sympy import I
   import matplotlib.pyplot as plt
   from IPython.display import display, Math, Latex

  from sympy import init_printing
  init_printing()
```

1. (3E2)

Suppose V_1, \ldots, V_m are vector spaces such that $V_1 \times \cdots \times V_m$ is finite-dimensional. Prove that V_j is finite-dimensional for each $j = 1, \cdots, m$.

Solution:

Consider a basis of each V_j such that the j^{th} slot is 1 and all other slots is 0. The list of all such vector is linearly independent and spans $V_1 \times \cdots \times V_m$ and has length of the basis is $\dim V + \cdots + \dim V_m$, which is finite dimensional as desired.

see also Axler 3.76 proof

Another way to see this is to consider the contrary...

Consider $(v_{1,1},v_{1,2},\cdots,v_{1,m}), (v_{2,1},v_{2,2},\cdots,v_{2,m}),\cdots, (v_{k,1},v_{k,2},\cdots,v_{k,m})$ as a baisis for $V_1\times\cdots\times V_m$ and there exits $v\in V$ so the $v\not\in \operatorname{span}(v_{1,1},v_{2,1},\ldots v_{k,1})$. Thus u_1,u_2,\ldots,u_m for any $u_i\in V$ is not a linear combination of $v_{i,1},\ldots,v_{i,m}, 1\leq i\leq k$, thus contradiction. V_i must be finite dimensional as desired.

2. (3E3)

Give an example of a vector space V and subspaces U_1, U_2 of V such that $U_1 \times U_2$ is isomorphic to $U_1 + U_2$ but $U_1 + U_2$ is not a direct sum.

Hint: The vector space V must be infinite-dimensional.

Solution:

Suppose polynominal vector spaces, $V=\mathcal{P}(\mathbb{R})$, $U_1=$ span $(1,x,x^2)$, and $U_2=$ { $p\in\mathcal{P}(\mathbb{R}):$ deg $p\geq 2$ }.

 $U_1+U_2\neq U_1\oplus U_2$ since,

$$1 + x + 2x^2 + x^3 = (1 + x + x^2) + (x^2 + x^3) = (1 + x) + (2x^2 + x^3).$$

Let T: $U_1 imes U_2 \mapsto U_1 + U_2$ such that $T(u_1,u_2) = u_1, xu_2.$

If $T(u_1,u_2)=T(v_1,v_2)$ then $u_1+xu_2=v1+xv_2$, thus surjective.

If deg $u_1 \leq \deg xu_2$ for any $u_1 \in U_1$ and $u_2 \in U_2$ then $u_1 = v_1$ and $u_2 = v_2$ must be True. Thus T is injective and is an isomorphism.

3. (3E6)

For n a positive integer, define V^n by

$$V^n = \underbrace{V \times \cdots \times V}_{n \text{ times}}$$

Prove that V^n and $\mathcal{L}(\mathbb{F}^n, V)$ are isomorphic vector spaces.

Solution:

Define $T: V^n \mapsto \mathcal{L}(\mathbb{F}^n, V)$ such that $T(v_1 \dots v_n) = S \in \mathcal{L}(\mathbb{F}^n, V)$ and $S(0, \dots, 0, 1_i, 0, \dots, 0) = v_i$. Thus by construction T is surjective.

If
$$T(v_1\ldots v_n)=T(u_1\ldots u_n)$$
 the $S_v=S_u$ so $S_v(0,\ldots,0,1_i,0,\ldots,0)=S_u(0,\ldots,0,1_i,0,\ldots,0)$.

Hence $v_i=u_i\implies v_1\ldots v_n=u_1\ldots u_n$ thus T is injective $\implies V^n$ and $\mathcal{L}(\mathbb{F}^n,V)$ are isomorphic.

4. (3E8)

Prove that a nonempty subset A of V is an affine subset of V if and only if $\lambda v + (1-\lambda)w \in A$ and for all $v,w \in A$ and all $\lambda \in \mathbb{F}$.

Solution:

If A is an affine subspace of V then A is a+U for $a\in V$ and $U\in V$.

Suppose $v, w \in A$ and $u_1, u_2 \in U$ such that $a + u_1 = v$ and $a + u_2 = w$. Hence,

$$\lambda v + (1-\lambda)w = a + \lambda u_1 + (1-\lambda)u_2 \in A \text{ for any } \lambda \in \mathbb{F}.$$

If $\lambda v+(1-\lambda)w\in A$ for all $v,w\in A$ and all $\lambda\in\mathbb{F}$, then consider arbitary $w\in A$ so that $U=\{u-w:u\in A\}$ and any $x_1,x_2\in U$ such that $x_1=u_1-w,x_2=u_2-w$ for $u_1,u_2\in A$.

Let
$$\lambda=2$$
 then $2u_1-w\in A, 2u_2-w\in A.$

Let
$$\lambda=\frac{1}{2}$$
 then $\frac{1}{2}(2u_1-w)+\frac{1}{2}(2u_2-w)\in A \implies u_1+u_2-2w\in A$. Thus it follows $u_1+u_2-2w\in u \implies x_1+x_2\in U$ for any $x_1,x_2\in U$.

If
$$\lambda(2u_1-w)+(1-\lambda)w\in A$$
 or $2\lambda u_1\in A$ for any $u_1\in A\implies U$ is a subspace of V .

Hence A = w + U thus A is an affine subset of V as desired.

see proof of 3.87 Axler

see also Toan Quang Pham's notes for LADR

5. (3F1)

Explain why every linear function is either surjective or the zero map.

Solution:

Consider $\varphi \in \mathcal{L}(V,\mathbb{F})$, if $\dim \mathrm{\,range\,} \varphi = 0$, then φ is the zero map.

On the other hand, if φ not a zero map there exists $v \in V$ so $v\varphi = c \neq 0 \implies$ that for any $\lambda \in \mathbb{F}$ that $\varphi(\lambda/c \cdot v) = \lambda$. Thus φ is surjective.

6. (3F13)

Define
$$\mathcal{T}:\mathbb{R}^3\mapsto\mathbb{R}^2$$
 by $\mathcal{T}(x,y,z)=(4x+5y+6z,7x+8y+9z).$

Suppose φ_1, φ_2 denotes that dual basis of the standard basis of R^2 and ψ_1, ψ_2, ψ_3 denotes that dual basis of the standard basis of R^3 .

- (a) Describe the linear functionals $\mathcal{T}'(\varphi_1)$ and $\mathcal{T}'(\varphi_2)$.
- (b) Write $\mathcal{T}'(\varphi_1)$ and $\mathcal{T}'(\varphi_2)$ as linear combinations of ψ_1, ψ_2, ψ_3 .

Solution:

(a) Describe the linear functionals $\mathcal{T}'(\varphi_1)$ and $\mathcal{T}'(\varphi_2)$.

This is a coordinate transform...

$$(\mathcal{T}'(\varphi_1))(x,y,z) = (\varphi_1 \circ \mathcal{T})(x,y,z) = \varphi_1(4x + 5y + 6z, 7x + 8y + 9z) = 4x + 5y + 6z.$$

Similarly,
$$(\mathcal{T}'(arphi_2))(x,y,z)=7x+8y+9z$$

(b) Write $\mathcal{T}'(\varphi_1)$ and $\mathcal{T}'(\varphi_2)$ as linear combinations of ψ_1, ψ_2, ψ_3 .

Recall $\mathcal{T}'(arphi)\in (\mathbb{R}^3)'$ and ψ_1,ψ_2,ψ_3 is dual basis of $(\mathbb{R}^3)'$..

$$(\mathcal{T}'(\varphi_1)) = (\mathcal{T}'(\varphi_1))(1,0,0)\psi_1 + (\mathcal{T}'(\varphi_1))(0,1,0)\psi_2 + (\mathcal{T}'(\varphi_1))(0,0,1)\psi_3 = 4\psi_1 + 5\psi_2 + 6\psi_3,$$
 and

$$(\mathcal{T}'(\varphi_2)) = (\mathcal{T}'(\varphi_2))(1,0,0)\psi_1 + (\mathcal{T}'(\varphi_2))(0,1,0)\psi_2 + (\mathcal{T}'(\varphi_2))(0,0,1)\psi_3 = 7\psi_1 + 8\psi_2 + 9\psi_3,$$

7. (3F22)

Suppose U, W are subspaces of V.

Show that $(U+W)^0=U^0\cap W^0$.

Solution:

Consider
$$U \subset U + W \implies U^0 \subset U^0 + W^0 \implies (U + W)^0 \subset U^0$$
 (by proof of 3.105 Axler).

Similarly,
$$(U+W)^0\subset W^0$$
, thus $(U+W)^0\subset U^0\cap W^0$.

Conversely if $\varphi\in U^0\cap W^0$ then $\varphi(u)=0$ for any $u\in U$ or $u\in W$. Thus, $\varphi(u+w)=0$ for any $u\in U, w\in U$ so $\varphi\in (U+W)^0$. (also by proof of 3.105 Axler)

It follows that $U^0 \cap W \subset (U+W)^0 \implies U^0 \cap W = (U+W)^0$ as desired.

8. (3F34)

The $double\ dual\ space$ of V, denoted V'', is defined to be the dual space of V'. In other words, V''=(V')'. Define $\Lambda:V\mapsto V''$ by

$$(\Lambda v)(\varphi) = \varphi(v)$$

for $v \in V$ and $\varphi \in V'$.

- (a) Show that Λ is a linear map from V to V''.
- (b) Show that if $\mathcal{T} \in \mathcal{L}(V)$, then $\mathcal{T}'' \circ \Lambda = \Lambda \circ \mathcal{T}$, where $\mathcal{T}'' = (\mathcal{T}')'$.
- (c) Show that is finite-dimensional, then Λ is an isomorphism from V onto V''.

[Suppose V is finite-dimensional. Then V and V' are isomorphic, but find an isomorphism from V onto V' generally requires choosing a basis of V. In contrast, the isomorphism Λ from V onto V'' does not require a choice of basis and thus is considered more natural.]

Solution:

(a) Show that Λ is a linear map from V to V''.

For any $arphi \in V'$ then

$$(\Lambda(v_1+v_2))(arphi)=\Lambdaarphi(v_1+v_2)=\Lambda(arphi(v_1)+arphi(v_2))=(\Lambda v_1)(arphi)+(\Lambda v_2)(arphi).$$

Thus, $\Lambda(v_1+v_2)=\Lambda v_1+\Lambda v_2$. Similarly, $\Lambda(\lambda v)=\lambda(\Lambda v)$. Thus, Λ is a linear map from V to V''.

(b) Show that if $\mathcal{T}\in\mathcal{L}(V)$, then $\mathcal{T}''\circ\Lambda=\Lambda\circ\mathcal{T}$, where $\mathcal{T}''=(\mathcal{T}')'$.

Consider $arphi \in V'$ then,

$$(\Lambda(\mathcal{T}v))(arphi)=(\mathcal{T}^{\,\prime\prime}(\Lambda v)(arphi).$$

Thus, $(\Lambda(\mathcal{T}v))(arphi)=arphi(\mathcal{T}v)$ and $T''=(T')'\in\mathcal{L}(V'',V'')$ so

$$(T''(\Lambda v))(\varphi) = ((\Lambda v) \circ \mathcal{T}')(\varphi) = (\Lambda v)(\mathcal{T}'(\varphi)) = (\mathcal{T}'(\varphi))(v) = (\varphi \circ \mathcal{T})(v) = \varphi(\mathcal{T}v).$$

Thus $(T''(\Lambda v))(\varphi) = (\Lambda(\mathcal{T}v))(\varphi)$ for any $\varphi \in V' \implies \Lambda(\mathcal{T}v) = T''(\Lambda)$ for any $v \in V$. Thus, $\Lambda \circ \mathcal{T} = \mathcal{T}'' \circ \Lambda$ as desired.

(c) Show that is finite-dimensional, then Λ is an isomorphism from V onto V''.

Suppose $\Lambda v=0$ then $(\Lambda v)(arphi)=0$ for any $arphi\in V'\implies v=0.$ Thus, Λ is injective.

Consider $v_1\dots v_n$ to be a basis of V and $\varphi_1\dots \varphi_n$ to be a dual basis of V'. Also consider $S\in V''$ so that $\Lambda v=S$ where $v=\sum_{i=1}^n S(\varphi_i)v_i$.

We can see that $\varphi_i(v)=S(\varphi_i)$ for each $1\leq i\leq n$. Thus $\varphi(v)=S(\varphi)$ for any $\varphi\in V'$. Thus, $\Lambda v=S \implies \Lambda$ surjective.

Thus, Λ is an isomorphism from V onto $V^{\prime\prime}$

see also Toan Quang Pham's notes for LADR

Appendix 0. Extra Problems

x. (3F32)

Suppose $\mathcal{T} \in \mathcal{L}(V)$, and u_1, \ldots, u_n and v_1, \ldots, v_n are bases of V. Prove that the following are equivalent:

(a) \mathcal{T} is invertible.

Surjective

- (b) The columns of $\mathcal{M}(\mathcal{T})$ are linearly independent in $\mathbb{F}^{n,1}$.
- (c) The columns of $\mathcal{M}(\mathcal{T})$ span $\mathbb{F}^{n,1}$.
- (d) The rows $\mathcal{M}(\mathcal{T})$ are linearly independent in $\mathbb{F}^{1,n}$.
- (e) The rows $\mathcal{M}(\mathcal{T})$ span $\mathbb{F}^{1,n}$.

Here $\mathcal{M}(\mathcal{T})$ means $\mathcal{M}(\mathcal{T},(u_1,\ldots,u_n),(v_1,\ldots,v_n))$.

Appendix 1. Complex

```
In [2]: |# fancy plot
        def z_plot(Z, c=None):
            #display(Latex(f'${sym.latex(Z.T)}$'))
            z= np.array(Z.tolist()).astype(np.complex64)
            n = len(z)
            #plt.scatter(z.real, z.imag, c=c)
            if False:
                for i in range(len(z)): # this got a bit fancy
                    zz = z[i] + .06 *np.exp(1j*2*np.pi*i/n) #offset text
                    plt.text(zz.real, zz.imag, i, fontsize=12)
            z = np.append(z,z[0]) # close the shape
            plt.plot(z.real, z.imag, c=c)
            plt.grid(visible=True);
            plt.gca().set aspect("equal") # square grids are pretty
            plt.axhline(0, color='black', alpha = .2, linestyle='--')
            plt.axvline(0, color='black', alpha = .2, linestyle='--')
```

```
In [3]: # we're replicating Arek's algorithm here
# FIXME!!! we ought to use sympy's plot_implicit() to avoid np.linspace()
z,R, theta =sym.symbols('z R theta')
p = z**4-z+1
eq = R*sym.exp(2*sym.pi*sym.I*theta)

phi = np.linspace(0,1,100)
r = np.linspace(3,0,10)

Z=[p.subs([(z,eq.subs([(R,1),(theta,t)]))]) for t in phi]
z_plot(Matrix([Z]))

display(Latex(f'Recall: $p={sym.latex(p)}$, and $z={sym.latex(eq)}$'))
```

Recall: $p=z^4-z+1$, and $z=Re^{2i\pi\theta}$


```
In [4]: import ipywidgets as widgets
    from ipywidgets import HBox, VBox
    import numpy as np
    import matplotlib.pyplot as plt
    from IPython.display import display
%matplotlib inline
```

```
In [5]: @widgets.interact
    def f(r=3.1):
        Z=[p.subs([(z,eq.subs([(R,r),(theta,t)]))])        for t in phi]
        z_plot(Matrix([Z]))
```

interactive(children=(FloatSlider(value=3.1, description='r', max=9.3, min=-3.1), Output
()), _dom_classes=('wi...