CARDINALITY AND THE AXIOM OF CHOICE Fall, 1981

Definition. Two sets, A and B, have the <u>same cardinality</u> iff there exists a 1 - 1, onto function f: A -> B.

The cardinality of a set A is denoted |A|.

Let N be the set of positive integers, Z the set of all integers, Q the set of rational numbers, R the set of real numbers.

Theorem Car. 1. |N| = |Z|.

Theorem Car. 2. Every subset of N is either finite or has the same cardinality as N.

<u>Definition</u>. A set which is finite or has the same cardinality as N is <u>countable</u> or has <u>countable</u> cardinality.

Theorem Car. 3. Q is countable.

Theorem Car. 4. The countable union of countable sets is countable.

<u>Definition</u>. For any set A, 2^A denotes the set of all subsets of A. (The empty set, denoted \emptyset , is a subset of any set.) 2^A is called the <u>power set</u> of A.

Theorem Car, 5. For any set A, there is a 1-1, function f from A into 2^A .

Theorem Car. 6. For a set A, let P be the set of all functions from A to the two point set $\{0,1\}$. Then $|P| = |2^A|$.

Theorem Car. 7. (Cantor). There is no one-to-one function from a set A to 2^A .

<u>Definition</u>. A set is <u>infinite</u> iff it contains a subet with the same cardinality as N.

Theorem Car. 8. A set is infinite if and only if there is a one-to-one function from the set into a proper subset of itself.

Theorem Car 9. (Schroeder-Bernstein) If A and B are sets so that there exist one-to-one functions f from A into B and g from B into A, then |A|=|B|.

Below are listed Zorn's Lemma, the Axiom of Choice, and the Well-Ordering Principle. These three statements are equivalent and are used freely in most standard mathematics. We will use them freely in this course.

Definitions 1. A set X is partially ordered by the relation \leq iff, for any elements x,y, and z in X,

- (i) if $x \le y$ and $y \le z$, then $x \le z$, and
- (ii) if $x \le y$ and $y \le x$, then x=y.
- 2. Let X be a set partially ordered by \leq . Then an element m in X is a maximal element iff for any x in X, $m \leq x$ implies that m = x.
- 3. A set is totally ordered iff it is partially ordered and every two elements are comparable.

4. A set is <u>well-ordered</u> iff it is totally ordered and every non-empty subset has a least element.

Theorem Car. 10. R with the usual ordering is totally ordered, but not well-ordered. N is well-ordered.

Example. For any set A, the set 2^A is partially ordered by set inclusion. The set A is a maximal element, and, in fact, the only maximal element in this ordering.

Theorem Car. 11. Any subset of a well-ordered set is well-ordered by the same ordering restricted to the subset.

Zorn's Lemma. Let X be a partially ordered set in which each totally ordered subset has an upper bound. Then X has a maximal element.

Axiom of Choice. Let $\{A_{\alpha}\}_{\alpha\in \lambda}$ be a collection of non-empty sets. Then there is a function $f: \lambda \longrightarrow \mathcal{A}_{\alpha\in \lambda}$ so that for each α in λ , $f(\alpha)$ is an element of A_{α} .

Well-ordering Principle. Every set can be well-ordered.

<u>Definition</u>. The ordinal mumbers with which everyone is familiar are the non-negative integers: 0,1,2,3,

We can continue to count beyond the finite ordinals by the following method. Let the set of non-negative integers be

given a name, namely ω_c . The next ordinal will be defined to be the set of its predecessors (which have already been defined). In this manner the ordinals are defined, each as a set, namely its predecessors. Below are written the first ordinals:

 $0,1,2,\ldots$ $\omega_c, \omega_{c+1}, \omega_{c+2},\ldots$ $2\omega_c, 2\omega_{c+1},\ldots$ $\omega_1, \omega_{1+1},\ldots$ $\omega_{2,\ldots}$

The ordinal \mathcal{W}_l is the first ordinal whose cardinality is greater than the cardinality of \mathcal{W}_o . Likewise, \mathcal{W}_2 is by definition, the first ordinal whose cardinality is greater than \mathcal{W}_l , etc. $\mathcal{W}_o, \mathcal{W}_l, \mathcal{W}_2$... are called cardinal numbers and the bars are ommitted when referring to them as cardinalities, even though technically they should be there.

Theorem Car. 12. If A is an infinite set, then the countertable union of sets of |A| has |A|.

<u>Definition</u>s. Let X be a set totally ordered by \leq and let $x \in X$. Then $I(x) = \begin{cases} y \in X \mid y \neq x \end{cases}$ is called an <u>initial</u> <u>segment</u>.

- Theorem Car. 13. Let X and Y be well-ordered sets. Then precisely one of the following is true:
- (i) There is a function f from X to Y which is one-to-one, onto, and order preserving.
- (ii) There is a y in Y and a function f from X to I(y) which is one-to-one, onto, and order preserving.

(iii) There is an x in X and a function f from Y to I(x) which is one-to-one, onto and order preserving.

Theorem Car. 14. Let A and B be sets. Then either there is a one-to-one function from A to B or from B to A.

<u>Definition</u>. Cardinalities are ordered. We write $|A| \leq |B|$ iff there is a one-to-one function from A to B.

Theorem Car. 15. Cardinalities are well-ordered by \leq above.

General Topology

Fall 1981

<u>Definitions</u>. 1. Suppose X is a set. Then ${\mathcal T}$ is a <u>topology</u> for X if and only if ${\mathcal T}$ is a collection of subsets of X such that

i) $\emptyset \in \mathcal{I}$,

.

- ii) $X \in \mathcal{T}$,
- iii) if $A \in \mathcal{F}$ and $B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$,
- iv) if $\{A_{\alpha}\}_{\alpha\in\lambda}$ is any collection of sets each of which is in \mathcal{T} , then $\bigcup_{\alpha\in\lambda}A_{\alpha}\in\mathcal{T}$.
- 2. A <u>topological space</u> is an ordered pair (X, \mathcal{T}) where X is a set and \mathcal{T} is a topology for X.
- 3. If (X,\mathcal{T}) is a topological space, then U is an open set in (X,\mathcal{T}) if and only if $U \in \mathcal{T}$.

Several examples of topological spaces are listed below.

- Example 1. For a set X, let 2^{X} be the set of all subsets of X. Then 2^{X} is called the <u>discrete topology</u> on X. The space $(X, 2^{X})$ is called a <u>discrete topological space</u>.
- Example 2. For a set X, $\{\emptyset, X\}$ is called the <u>indiscrete topology</u> for X. So $(X, \{\emptyset, X\})$ is an indiscrete topological space.
- Example 3. For any set X, the <u>finite complement topology</u> for X is described as follows: a subset U of X is open if and only if $U = \emptyset$ or X U is finite.

Example 4. Let \mathbb{R}^n be the set of all n-tuples of real numbers. We will define the distance d(x,y) between points $\mathbf{x} = (\mathbf{x}_1^{-1}, \mathbf{x}_2^{-1}, \ldots, \mathbf{x}_n^{-1})$ and $\mathbf{y} = (\mathbf{y}_1^{-1}, \mathbf{y}_2^{-1}, \ldots, \mathbf{y}_n^{-1})$ by the equation $d(x,y) = (\sum_{i=1}^n (\mathbf{x}_i^{-1} \mathbf{y}_i^{-1})^{2i})$. A topology T for \mathbb{R}^n is defined as follows: a subset U of \mathbb{R}^n belongs to T if and only if for each point p of U there is a positive number ε so that $\{\mathbf{x} \mid d(\mathbf{p},\mathbf{x}) < \varepsilon\}$ is a subset of U. This topology T is called the <u>usual topology for \mathbb{R}^n </u>.

<u>Definitions</u>. Let (X,\mathcal{T}) be a topological space, A be a subset of X, and p be a point in X. Then:

- 1. p is a <u>limit point of</u> A if and only if for each open set U containing P, $(U-\{p\}) \cap A \neq \emptyset$. Notice that p may or may not belong to A.
- 2. If $p \in A$ but p is not a limit point of A, then p is an <u>isolated</u> point of A.
- 3. The <u>closure</u> of A (denoted \overline{A} or C1(A)) is A together with all limit points of A.
 - 4. The set A is closed iff A contains all its limit points, i.e. $\overline{A} = A$.
- Theorem 1. For any topological space (X,\mathcal{F}) and subset A of X, \overline{A} is closed.
- Theorem 2. Let X be a topological space, i.e., (X,\mathcal{F}) is really the topological space but the topology is not named. Then a subset A of X is closed if and only if X-A is open.
- Theorem 3. The union of finitely many closed sets in a topological space is closed.

Theorem 4. Let $\{A_{\alpha}\}_{\alpha\in\lambda}$ be a collection of closed subsets of a topological space X. Then $\bigcap_{\alpha\in\lambda}A$ is closed.

Theorem 5. Suppose A is a subset of X, a topological space. Then \overline{A} = the intersection of all closed sets containing A.

Theorem 6. Let $A,B \subset X^{top.sp.}$. Then

- a) if $A \subset B$, $\overline{A} \subset \overline{B}$ and
- b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

. . .

Definition. Let $\mathcal F$ be a topology on a set X and let $\mathcal B$ be a subset of $\mathcal F$. Then $\mathcal B$ is a <u>basis</u> for the topology $\mathcal F$ if and only if every element of $\mathcal F$ is the union of elements in $\mathcal B$.

Theorem 7. Let (X, \mathcal{T}) be a topological space and \mathcal{B} be a collection of subsets of X. Then \mathcal{B} is a basis for \mathcal{T} if and only if $\mathcal{B} \subset \mathcal{T}$ and for each set U in \mathcal{T} and point p in U there is a set V in \mathcal{B} such that $p \in V \subset U$.

Theorem 8. Let $\mathfrak{B} = \{(a,b) \subset \mathbb{R}^1 | a \text{ and } b \text{ are rational numbers}\}$. Then \mathfrak{B} is a basis for the usual topology on \mathbb{R}^1 .

Suppose you are given a set X and a collection $\mathcal B$ of subsets of X. Under what circumstances is $\mathcal B$ a basis for a topology on X? This question is answered in the following theorem.

Theorem 9. Suppose X is a set and \Re is a collection of subsets of X. Then \Re is a basic for a topology for X if and only if the following conditions hold.

- i) Ø ∈ ℜ
- ii) for each point p in X there is a set U in ${\mathfrak B}$ with p ${\varepsilon}$ U, and
- iii) if U and V are sets in ${\mathfrak B}$ and p is a point in U \cap V, there is a set W in ${\mathfrak B}$ so that p \in W \subset (U \cap V).

Theorem 9 allows one to describe topological spaces by first specifying a set X and then a collection $\mathcal B$ of subsets of X which satisfy the conditions of Theorem 9. The topology $\mathcal T$ whose basis is $\mathcal B$ is thereby described.

<u>Definitions</u>. Suppose X is a set. A function d from $X \times X$ into \mathbb{R}^1_+ , the non-negative reals, is a <u>metric</u> for X if and only if the following conditions are satisfied.

- (i) d(x,y) = 0 if and only if x = y
- (ii) d(x,y) = d(y,x), and
- (iii) $d(x,z) \leq d(x,y) + d(y,z)$.

If d is a metric for X, then d(x,y) is called the distance from x to y.

Suppose X is a set, d is a metric for X, $p \in X$, and $\epsilon \in \mathbb{R}^1_+$. Then the open ϵ ball about p is defined by $B_{\epsilon}(p) = \{x \in X \mid d(x,p) < \epsilon\}$. The d-metric topology for X is the topology whose basis is all the $B_{\epsilon}(p)$'s. (Check that the collection of all open ϵ balls is a basis.)

Now suppose that (X,\mathcal{T}) is a topological space. Then (X,\mathcal{T}) is a <u>metric</u> space (or <u>metrizable</u>) iff there is a metric d on X for which \mathcal{T} is the d-metric topology. If X is a metric space, then the statement that d <u>is a metric for X</u> means that the d-metric topology is the topology for X.

Notice that the same metric space may have many different metrics. As an exercise find several metrics for \mathbb{R}^n .

Theorem 10. If X is a metric space, then there is a metric d for X so that for each $x,y\in X,\ d(x,y)<1.$

Example 5. Let X be a set totally ordered by <. Let $\mathfrak B$ be the collection of all subsets of X of one of the following three forms: $\{x \in X | x < a \text{ for some } a \in X\}$, $\{x \in X | a < x \text{ for some } a \in X\}$, or $\{x \in X | a < x < b \text{ for some } a, b \in X\}$. Then $\mathfrak B$ is a basis for a topology $\mathcal T$ on X. The topology $\mathcal T$ is called the <u>order topology</u> for X.

Example 6. The usual topology on \mathbb{R}^1 is the order topology given by the usual order.

Example 7. For each ordinal α , the predecessors of α with the order topology form a space called α .

<u>Definition</u>. Let (X,\mathcal{F}) be a topological space and let \mathcal{S} be a collection of subsets of X. Then \mathcal{S} is a <u>sub-basis</u> of \mathcal{F} if and only if the collection \mathcal{S} of all finite intersections of sets in \mathcal{S} is a basis for \mathcal{F} .

Theorem 11. Let (X,\mathcal{T}) be a topological space and let \mathcal{S} be a collection of subsets of X. Then \mathcal{S} is a sub-basis for \mathcal{T} if and only if each element of \mathcal{S} is in \mathcal{T} and for each set \mathcal{U} in \mathcal{T} and point \mathcal{D} in \mathcal{U} there is a finite collection $\{V_i\}_{i=1}^n$ of elements of \mathcal{S} so that \mathcal{D} is and \mathcal{D} is \mathcal{D} in \mathcal{D} and \mathcal{D} is \mathcal{D} in \mathcal{D} in \mathcal{D} in \mathcal{D} in \mathcal{D} in \mathcal{D} in \mathcal{D} is \mathcal{D} in \mathcal{D} in

Theorem 12. Let 8 be the collection of all subsets of \mathbb{R}^1 of one of the following two forms: $\{x \mid x < a \text{ for some } a \in \mathbb{R}^1\}$. Then 8 is a sub-basis for \mathbb{R}^1 with the usual topology.

Once again we seek to answer the question of when a given collection & of subsets of a set X is a sub-basis for a topology on X.

Theorem 13. Let 8 be a collection of subsets of a set X. Then 8 is a subbasis for a topology on X if and only if every point of X is in some element of 8 and there are sets $\{U_i\}_{i=1}^n$ in 8 so that $\bigcap_{i=1}^n U_i = \emptyset$.

Theorem 13 can be used to describe topologies by presenting a sub-basis for them.

Example 8. Let 2^X be the set of all functions from the set X into the two point set $\{0,1\}$. Let 8 be the collection of all subsets of 2^X of the form $U(x,\epsilon)=\{f\in 2^X \mid f(x)=\epsilon\}$. Let $\mathcal F$ be the topology on 2^X with sub-basis 8. (This topology is really the product topology, but we will not give a general definition of product topology until later.)

Theorem 14. Suppose (X, \mathcal{T}) is a topological space, $Y \subset X$, and $\mathcal{T}_{Y} = \{U \mid \text{for some } V \text{ in } \mathcal{T}, \ U = V \cap Y\}$. Then \mathcal{T}_{Y} is a topology for Y.

Theorem 14 allows us to define a topology on a subset Y of X when (X,\mathcal{T}) is a topological space. The topology \mathcal{T}_Y of Y of Theorem 14 is called the relative topology or subspace topology. The topological space (Y,\mathcal{S}) is a subspace of (X,\mathcal{T}) if and only if Y is a subset of X and \mathcal{S} is the relative topology on Y.

Theorem 15. If X is a metric space and $Y \subset X$, then Y is a metric space.

Separation Properties

Definitions. Let (X,\mathcal{F}) be a topological space:

x 1 5 1

- 1) X is T_1 iff every point in X is a closed set.
- 2) X is <u>Hausdorff</u> (or T_2) iff for each pair of points x,y in X, there are disjoint open sets U and V in $\mathcal T$ so that $x \in U$ and $y \in V$.
- 3) X is <u>regular</u> iff for each $x \in X$ and closed set A in X with $x \notin A$, there are open sets U, V so that $x \in U$, $A \subseteq V$ and $U \cap V = \emptyset$.
- 4) X is <u>normal</u> iff for each pair of disjoint closed sets A and B in X, there are open sets U, V so that $A \subset U$, $B \subset V$, and $U \cap V = \emptyset$.
- Theorem 16. A topological space X is regular if and only if for each point p in X and open set U containing p there is an open set V so that $p \in V$ and $\overline{V} \subseteq U$.
- Theorem 17. A topological space X is normal if and only if for each closed set A in X and open set U containing A there is an open set V so that $A \subset V$, and $\overline{V} \subset U$.
- Theorem 18. A topological space X is normal if and only if for each pair of disjoint closed sets A and B, there are disjoint open sets U and V so that $A \subset U$, $B \subset V$, and $\overline{U} \cap \overline{V} = \emptyset$.

Theorem 19. A metric space is normal.

<u>Definition</u>. Let P be a property of a topological space (such as T_1 , Hausdorff, etc.). A topological space X is <u>hereditarily</u> P iff for each subspace Y of X, Y has property P.

Theorem 20. A Hausdorff space is hereditarily Hausdorff.

Theorem 21. A regular space is hereditarily regular.

Theorem 22. Let A be a closed subset of a normal space X. Then X is normal when given the relative topology.

Normality Lemma 23. Let A and B be subsets of a topological space X and let $\{U_i\}_{i\in\omega_0}$ and $\{V_i\}_{i\in\omega_0}$ be two collections of open sets such that

(i) $A \subset \bigcup U_i$, $i \in \omega_0$

- (ii) $B \subset \bigcup_{i \in \omega_0} V_i$,
- (iii) for each i in ω_0 , $\overline{U}_i \cap B = \emptyset$ and $\overline{V}_i \cap A = \emptyset$.

Then there are open sets U and V so that $A \subset U$, $B \subset V$, and $U \cap V = \emptyset$.

 $\underline{Definitions}.$ 1) A subset B of a topological space X is a G_{δ} iff B is the intersection of countably many open sets.

2) A subset B of a topological space X is an F_{σ} iff B is the union of countably many closed sets.

Theorem 24. An F_{σ} subset of a normal space is normal.

Countability Properties

<u>Definitions</u>. 1) Let A be a subset of a topological space X. Then A is $\underline{\text{dense}}$ in X iff $\overline{\text{A}} = X$.

- 2) A space X is separable iff X has a countable dense subset.
- 3) A space X is 2nd countable iff X has a countable basis.

- 4) Let p be a point in a space X. A collection of open sets $\{U_{\alpha}\}_{\alpha \in \lambda}$ in X is a neighborhood basis for p iff for each $\alpha \in \lambda$, $p \in U_{\alpha}$, and for open set U in X with p in U, there is an α in λ so that $U_{\alpha} \subseteq U$.
- 5) A space X is <u>lst countable</u> iff for each point x in X, x has a neighborhood basis consisting of a countable number of sets.
- 6) A space X has the <u>Souslin property</u> iff X does <u>not</u> contain uncountably many disjoint open sets.
 - Theorem 25. A 2nd countable space is separable.

 $x = \mathbf{1} + \cdots + x \cdot \mathbf{1}$

- Theorem 26. A 2nd countable space is 1st countable.
- Theorem 27. A 2nd countable space is hereditarily 2nd countable.
- Theorem 28. A separable space has the Souslin property.
- Theorem 29. If X is a separable, Hausdorff space, then $|X| \leq |2^{2^{10}}|$.
 - <u>Theorem</u> 30. For any $X_{s_i} 2^{X}$ has the Souslin property.
 - Theorem 31. The space $2^{\mathbb{R}^1}$ is separable.

Definition. Let $P = \{p_i\}_{i \in \omega_0}$ be a sequence of points in a space X. Then the sequence P converges to a point x iff for every open set U containing x there is an integer M so that for each m > M, $p_m \in U$.

Theorem 32. Suppose x is a limit point of the set A in a 1st countable space X. Then there is a sequence of points in A which converges to x.

Theorem 33. Every uncountable set in a 2nd countable space has a limit point.

Covering Properties

.

Definition. 1) Let A be a subset of X and let $\mathcal{B} = \{B_{\alpha}\}_{\alpha \in \lambda}$ be a collection of subsets of X. Then \mathcal{B} is a cover of A iff $A \subset \bigcup B_{\alpha}$. Also, \mathcal{B} is an open cover iff each B_{α} is open.

- 2) A space X is <u>compact</u> iff every open cover B of X has a finite subcover W. That is, W is an open cover of X each of whose elements is a set in B.
- 3) A space X is <u>countably compact</u> iff every countable open cover of X has a finite subcover.
 - 4) A space X is Lindelof iff every open cover of X has a countable subcover.
- 5) A collection $\mathfrak{A} = \{B_{\alpha}\}_{\alpha \in \lambda}$ of subsets of a space X is <u>locally finite</u> iff for each point p in X there is an open set U containing p so that U intersects only finitely many elements of \mathfrak{A} .

Example. Let $\mathfrak{B} = \{[n,n+1] \subset \mathbb{R}^1 | n \text{ is an integer}\}$. Then \mathfrak{B} is a locally finite collection in \mathbb{R}^1 (usual).

- 7) A space X is <u>paracompact</u> iff every open cover of X has a locally finite open refinement and X is Hausdorff.
 - Theorem 34. Every countably compact and Lindelof space is compact.
 - Theorem 35. Every compact, Hausdorff space is paracompact.

Theorem 36. Let A be a closed subspace of a compact space (respectively, countably compact, Lindelöf, paracompact). Then A is compact (resp., countably compact, Lindelöf, paracompact).

Theorem 37. The closed subspace [0,1] in the \mathbb{R}^1 (usual) topology is compact.

Theorem 39. Let A be a compact subspace of a Hausdorff space X. Then A is closed.

Theorem 40. If X is a Lindelöf space, then every uncountable subset of X has a limit point.

Theorem 41. Let X be a T_1 space. Then X is countably compact if and only if every infinite subset of X has a limit point.

Theorem 42. ω_1 is countably compact but not compact.

Theorem 43. Let % be a basis for a space X. Then X is compact if and only if every cover of X by basic open sets has a finite subcover.

Theorem 44. (The Alexander Sub-basis Theorem) Let 8 be a sub-basis for a space X. Then X is compact if and only if every sub-basic open cover has a finite subcover. (A sub-basic open cover is a cover of X each element of which is a set in the sub-basis.)

Theorem 45. A compact, Hausdorff space is normal. Show regular

Theorem 46. A regular, Lindelof space is normal.

- Theorem 47. A regular, T₁, Lindelof space is paracompact.
- Theorem 48. Let $\mathfrak{B} = \{B_{\alpha}\}_{\alpha \in \lambda}$ be a locally finite collection of subsets of a space X. Let C be a subset of λ . Then $C1(\bigcup B_{\alpha}) = \bigcup \overline{B}_{\alpha}$.
 - Theorem 49. A paracompact space is normal.
 - Theorem 50. A metric space is paracompact.
 - Theorem 51. In a metric space X, the following are equivalent:
 - (a) X is separable,
 - (b) X is 2nd countable,
- (c) X has the Souslin property,
 - (d) X is Lindelof,
 - (e) every uncountable set in X has a limit point.

Continuity and homeomorphisms

<u>Definition</u>. Let X and Y be topological spaces. A function $f: X \rightarrow Y$ is a <u>continuous function</u> or <u>map</u> if and only if for every open set U in Y, $f^{-1}(U)$ is open in X.

Theorem 52. Let $f: X \rightarrow Y$ be a function. Then the following are equivalent:

- (a) f is continuous.
- (b) for every closed set K in Y, $f^{-1}(K)$ is closed in X, $f^{-1}(K) = \frac{f^{-1}(Y-K)}{k!} = \frac{f^{-1}(Y-K)}{k!} = \frac{f^{-1}(Y-K)}{k!} = \frac{f^{-1}(X-K)}{k!} = \frac{f^{-1}(X-K)}{k!}$
- (c) if p is a limit point of A in X, then $\frac{\log f'(x) + \log f(x)}{f(p) \text{ belongs to Cl(f(A))}}$ $\frac{\log f'(x) + \log f(x)}{f(x)} = \frac{\log f'(x)}{\log f(x)}$ $\frac{\log f'(x)}{\log f(x)} = \frac{\log f'(x)}{\log f(x)}$

Theorem 53. Let X be a compact (resp. Lindelöf, countably compact) space and let $f: X \rightarrow Y$ be a continuous function that is onto. Then Y is compact (resp. Lindelöf, countably compact).

Theorem 54. Let X be a separable space and let $f: X \rightarrow Y$ be a continuous, onto map. Then Y is separable.

Theorem 55. Let A and B be disjoint closed sets in a normal space X. Then there exist open sets U_r for each diadic rational r (that is, r can be written as a quotient of integers with denominator a power of 2) so that $A \subset U_0$, $B \subset (X - U_1)$, and for r < s, $Cl(U_r) \subset U_S$.

- Theorem 56 (Urysohn's Lemma). A space X is normal if and only if for each pair of disjoint open sets A and B in X, there exists a continuous function $f: X \rightarrow [0,1]$ so that $A \subset f^{-1}(0)$ and $B \subset f^{-1}(1)$.
- Theorem 57 (The Tietze Extension Theorem). A space X is normal if and only if every continuous function f from a closed set A in X into [0,1] can be extended to a continuous function $F: X \rightarrow [0,1]$. (F extends f means for each point x in A, F(x) = f(x).)
- Theorem 58 (The Tietze Extension Theorem). A space X is normal if and only if every continuous function f from a closed set A in X into (0,1) can be extended to a continuous function $F: X \rightarrow (0,1)$.

5-47

<u>Definition.</u> A function f from a metric space (X, d_X) to a metric space (Y, d_Y) is <u>uniformly continous</u> if and only if for each $\varepsilon > 0$ there is a $\delta > 0$ so that if $d_X(x, y) < \delta$, then $d_Y(f(x), f(y)) < \varepsilon$.

Theorem 60. Let $f: X \to Y$ be a map from a compact metric space to a metric space Y. Then f is uniformly continuous for any choice of metrics for X and Y.

Theorem 61. Let f_i : $(X, d_X) \rightarrow (Y, d_y)$ (iew) be a sequence of maps so that for each iew, and point x in X, $d_y(f_i(x), f_{i+1}(x)) < 1/2^i$. Then $\lim_{i \to \infty} f_i$ exists and is continuous.

<u>Definition</u>. A map $f: X \to Y$ is <u>closed</u> (resp. <u>open</u>) if and only if for every closed (resp. open) set A in X, f(A) is closed (resp. open) in Y.

Theorem 62. Let X be compact and Y Hausdorff. Then any map $f: X \to Y$ is a closed map.

A cloud & Y

A Charles of Ranging ART character

E (A) compact V Ranging ART character

E (A) character

Definition. A map $f: X \rightarrow Y$ is a homeomorphism if and only if f is continuous, 1-1 and onto and $f^{-1}: Y \to X$ is also continuous.

Theorem 63. For a map $f: X \rightarrow Y$, the following are equivalent:

- Theorem 63. For a map $f: X \to Y$, the rottowing —

 (a) f is a homeomorphism. $f(A) = R \frac{1}{2} \int_{A}^{A} (f^{-1}) (A)$ (b) f is 1-1, onto and closed. For f(A) and f(A) = f(A) should

Definition. Spaces X and Y are homeomorphic if and only if there is a homeomorphism $f: X \rightarrow Y$ which is onto.

Theorem 64. For points a < b in E^1 , the interval (a, b) is homeomorphic to E¹.

Continuous .

Theorem 65. Suppose $f: X \to Y$ is a 1-1 and onto map, X is compact and Y is Hausdorff. Then f is a homeomorphism.

sec (3 (b)

Products

Let $\{X_{\alpha}\}_{\alpha \in \lambda}$ be a collection of spaces. The <u>product</u> $\prod X_{\alpha}$, or $\alpha \in \lambda$ to be $\{f \colon \lambda \to \bigcup X_{\alpha} \mid f(\alpha) \in X_{\alpha}\}$. So a point in $\prod X_{\alpha}$ can be $\alpha \in \lambda$ thought of as a function from the indexing set into $\bigcup X_{\alpha}$. So if $\alpha \in \lambda$ $\alpha \in \lambda$ where $\alpha \in \lambda$ where $\alpha \in \lambda$ where $\alpha \in \lambda$ where $\alpha \in \lambda$

For each β in λ , define the projection function $\Pi_{\beta} \colon \Pi X_{\alpha} \to X_{\beta}$ by $\Pi_{\beta}(f) = f(\beta)$. A subbasis for the <u>product topology</u> on ΠX_{α} is the collection of all sets of the form $\Pi_{\beta}^{-1}(U_{\beta})$ where U_{β} is open in X_{β} . Why is it appropriate to refer to this topology as the finite gate topology?

Theorem 66. The space 2^{\times} described before is really the product, $\mathbb{I} \{0,1\}_{\mathbf{x} \in \mathbf{X}}$

Theorem 67. The function $\Pi_{\beta} \colon \prod X_{\alpha} \to X_{\beta}$ is a continuous, open, onto map.

Theorem 68. The function $\Pi_{\beta}: \prod_{\alpha \in \lambda} X_{\alpha} \to X_{\alpha}$ need not be closed.

Theorem 69. A function g: Y \rightarrow \prod X is continuous if and only if Π_{β} og is continuous for each β in λ .

Theorem 70. Let $\{Xi\}_{i\in\omega}$ be a collection of metric spaces. Then Π X_i ; is a metric space. $i\in\omega$

Theorem 71. The space \mathbb{R}^n is homeomorphic to $\begin{bmatrix} n \\ \mathbb{R} \end{bmatrix} \mathbb{R}^1_i$ where $\mathbb{R}^1_i = \mathbb{R}^1$.

Theorem 72. Let $\{X_{\beta}\}_{\beta \in \mu}$ be a collection of Hausdorff (resp. regular) spaces. Then $\prod_{\beta \in \mu} X_{\beta}$ is Hausdorff (resp. regular).

Theorem 73. Let $\{X_{\beta}^{}\}_{\beta \in \mu}$ be a collection of separable spaces where $|\mu| \leq 2^{\omega_{\circ}}$, then $\prod_{\beta \in \mu} X_{\beta}$ is separable.

Theorem 74. Let $\{X_{\beta}\}_{\beta\in\mu}$ be a collection of separable spaces. Then II X_{β} has the Souslin property. $\beta\in\mu$

Connectedness

Definitions.

- 1. Subsets A, B of X are separated if and only if $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.
- 2. A space X is connected if and only if X is not the union of two non empty separated sets. The notation $X = A \mid B$ means $X = A \cup B$ and A and B are separated sets.

Theorem 76. A space X is connected if and only if there is not a continuous function $f: X \to \mathbb{R}^1$ so that $f(x) = \{0,1\}$.

Theorem 77. The space \mathbb{R}^1 is connected.

Theorem 78. Let A,B be separated subsets of a space X. If C is a connected subset of A \cup B, then C \subset A, or C \subseteq B.

Theorem 79. Let C be a connected subset of X. If D is a subset of X so that $C \subseteq D \subseteq \overline{C}$, then D is connected.

Example. Let

 $X = \{(x,y) \in \mathbb{R}^2 | x = 0, y \in [-1,1]\} \cup \{(x,y) \in \mathbb{R}^2 | x \in (0,1], y = \sin \frac{1}{x}\}.$ This example is the closure of the $\sin 1/x$ curve.

Theorem 80. The closure of the sin 1/x curve is connected.

Theorem 81. Let $\{C_{\alpha}^{}\}_{\alpha\in\lambda}$ be a collection of connected subsets of X and E be another connected subset of X so that for each α in λ ,

 $E \cap C_{\alpha} \neq \emptyset$. Then $E \cup (\bigcup_{\alpha \in \lambda} C_{\alpha})$ is connected.

Theorem 82. Let $f: X \xrightarrow{\text{onto}} Y$ be a continuous function. If X is connected, then Y is connected.

 $\underline{\text{Theorem}}$ 83. For spaces X and Y, X x Y is connected if and only if each of X and Y is connected.

Theorem 84. For spaces $\{X_{\alpha}^{}\}_{\alpha \in \lambda}$, $\prod_{\alpha \in \lambda}^{} X_{\alpha}$ is connected if and only if for each α in λ , X_{α} is connected.

Theorem 85. Let A be a countable subset of $\mathbb{R}^n (n \ge 2)$. Then \mathbb{R}^n - A is connected.

Theorem 86. Let X be a countable, regular, T₁ space. Then X is not connected.

Theorem 87. Let X be a connected space, C a connected subset of X, and $X - C = A \mid B$. Then $A \cup C$ and $B \cup C$ are each connected.

<u>Definition</u>. Let X be a space and p ϵ X. The <u>component of p in X</u> is the union of all connected subsets of X which contain p.

Theorem 88. Each component of X is connected and closed.

Theorem 90. Let A and B be closed subsets of a compact, Hausdorff space X so that no component intersects both A and B. Then $X = H \mid K$ where $A \subseteq H$ and $B \subseteq K$.

Example. This example will demonstrate the necessity of the "compactness" hypothesis of Theorem 90. Let X be the subset of \mathbb{R}^2 equal to $([0,1] \times \bigcup_{i \in \omega} \{1/i\}) \cup \{(0,0), (1,0)\}$. Show that the conclusion to Theorem 90 fails when $A = \{(0,0)\}$ and $B = \{(1,0)\}$.

Definition. A continuum is a connected, compact, Hausdorff space.

Theorem 91. Let U be a proper, open subset of a continuum X. Then each component of \overline{U} contains a point of Bd U. (Note: Bd U = \overline{U} - U.)

Theorem 92. ("To the boundary" theorem). Let U be a proper, open subset of a continuum X. Then each component of U has a limit point on Bd U.

Theorem 93. No continuum X is the union of a countable number (>1) of disjoint closed subsets.

 $\underline{\text{Example}}$. This example shows the necessity of the compactness hypothesis on X

The example X pictured above is a subset of the plane which is the union of a countable number of arcs as shown. Show that X is connected.

Theorem 94. Let $\{C_i\}_{i\in\omega}$ be a collection of continua so that for each i, $C_{i+1} \subseteq C_i$. Then $\bigcap_{i\in\omega} C_i$ is a continuum.

Theorem 95. Let $\{C_{\alpha}^{}\}_{\alpha \in \lambda}$ be a collection of continua indexed by a well-ordered set λ so that if $\alpha < \beta$, then $C_{\beta} \subseteq C_{\alpha}$. Then $\bigcap_{\alpha \in \lambda} C_{\alpha}$ is a continuum.

<u>Definition</u>. Let X be a connected set. A point p in X is a non-separating point iff X - {p} is connected. Otherwise p is a separating point.

Theorem 96. Let X be a continuum, p be a point of X, and $X - \{p\} = H \mid K$. Then $H \cup \{p\}$ is a continuum and if $q \neq p$ is a non-separating point of $H \cup \{p\}$, then q is a non-separating point of X.

Theorem 97. Let X be a metric continuum. Then X has at least two non-separating points.

Theorem 98. Let X be a continuum. Then X has at least two non-separating points.

Theorem 99. Let X be a metric continuum with exactly two non-separating points. Then X is homomorphic to [0,1].

Definition. A space X is <u>locally connected at the point p</u> of X if and only if for each open set U containing p, there is a connected open set V so that p ϵ V \subset U. A space X is <u>locally connected</u> if and only if it is locally connected at each point.

Theorem 100. The following are equivalent:

- (i) X is locally connected.
- (ii) X has a basis of connected open sets.
- (iii) For each ρ in X and open set U containing ρ , the component of ρ in U is open.
- (iv) For each ρ in X and open set U containing ρ , there is a connected set C so that ρ ϵ Int C \subseteq C \subseteq U.
 - (v) For each ρ in X and open set U containing ρ , there is an open set V containing ρ and V \subset (the component of ρ in U).

Theorem 101. Let X be a locally connected space and $f: X \rightarrow Y$ be an onto, closed or open map. Then Y is locally connected.

Definition. A Peano Continuum is a locally connected metric continuum.

Theorem 102. A Hausdorff space X is a Peano Continuum if and only if X is the image of [0,1] under a continuous function.

<u>Definitions.</u> A space X is <u>arc-wise connected</u> iff for each pair of points ρ , $q \in X$ there is an embedding h: $[0,1] \to X$ so that $h(0) = \rho$ and h(1) = q.

A space X is <u>locally arc-wise connected at ρ iff for each open set U containing ρ there is an open set V containing ρ so that for each pair of points x,y ϵ V, there is an arc in U which contains x and y. (Note: "an arc" means the homeomorphic image of [0,1]).</u>

A space is <u>locally arc-wise</u> <u>connected</u> iff it is locally arc-wise connected at each point.

Theorem 103. An arc-wise connected space is connected.

Theorem 104. A locally arc-wise connected space is locally connected.

Theorem 105. A Peano Continuum is arc-wise connected and locally arc-wise connected.

Theorem 106. An open, connected subset of a Peano continuum is arc-wise connected.

Metric Spaces

<u>Definitions</u>. Suppose X is a set. A function d from $X \times X$ into \mathbb{R}^1_+ , the non-negative reals, is a <u>metric</u> for X if and only if the following conditions are satisfied.

- (i) d(x,y) = 0 if and only if x = y
- (ii) d(x,y) = d(y,x), and
- (iii) $d(x,z) \le d(x,y) + d(y,z)$.

If d is a metric for X, then d(x,y) is called the distance from x to y.

Suppose X is a set, d is a metric for X, $p \in X$, and $\epsilon \in \mathbb{R}_+^*$. Then the open ϵ ball about p is defined by $B_{\epsilon}(p) = \{x \in X \mid d(x,p) < \epsilon\}$. The dmetric topology for X is the topology whose basis is all the $B_{\epsilon}(p)$'s. (Check that the collection of all open ϵ balls is a basis.)

Now suppose that (X,\mathcal{F}) is a <u>metric space</u> (or <u>metrizable</u>) iff there is a metric d on X for which \mathcal{F} is the d-metric topology. If X is a metric space, then the statement that d <u>is a metric for</u> X means that the d-metric topology is the topology for X.

Notice that the same metric space may have many different metrics. As an exercise find several different metrics for \mathbb{R}^n .

Example. For any set X, define a metric d on X by d(x,y) = 1 if $x \neq y$, d(x,x) = 0. What is the d-metric topology on X?

Theorem M.1. If X is a metric space and $Y \subset X$, then Y is a metric space.

Theorem M.2. If X is a metric space, then there is a metric d for X so that for each $x,y\in X$, d(x,y)<1.

Theorem M.3. Let X be a metric space. Then X is perfectly normal.

<u>Definition.</u> A space X is <u>collectionwise normal</u> if and only if for each discrete collection of closed sets $\{H_{\alpha}\}_{\alpha\in\lambda}$ in X, there is a collection of disjoint open sets $\{U_{\alpha}\}_{\alpha\in\lambda}$ so that for each α in λ , $H_{\alpha}\subset U_{\alpha}$.

Theorem M.4. Every metric space is collectionwise normal.

Theorem M.5. If X is metrizable and Y is metrizable, then $X \times Y$ is metrizable.

Theorem M.6. If $\{X_i\}_{i\in\omega_0}$ is a collection of metric spaces, then $\prod_{i\in\omega_0} X_i$ is metrizable.

Theorem M.7. Let d_1 be a metric for X and d_2 be a metric for Y. A function $f\colon X \to Y$ is continuous if and only if for each $x \in X$ and $\varepsilon > 0$, there is a $\delta > 0$ so that $d_1(x,y) < \delta$ implies that $d_2(f(x),f(y)) < \varepsilon$.

Theorem M.8. In a metric space X, the following are equivalent:

- (a) X is 2nd countable,
- (b) X has the Souslin property,
- (c) X is Lindelöf,
- (d) X is separable,
- (e) every uncountable set in X has a limit point.

Theorem M.9. If a metric space is countably compact, it is compact.

Theorem M.10. Let C be a compact subset of a metric space X and $\{U_{\alpha}\}_{\alpha\in\lambda}$ be a collection of open sets in X so that $C \subset \bigcup U_{\alpha}$. Then there is an $\epsilon>0$ so that for every set S with diameter less than ϵ in X where $S\cap C \neq \emptyset$, there is a U_{α} so that $S \subset U_{\alpha}$.

Definition. Let S be a subset of a metric space X. Then the diameter of S equals $\sup\{d(x,y) \mid x,y \in S\}$.

Definition. In the situation described in Theorem M.10, any number ϵ satisfying the conclusion is called a <u>Lebesgue number</u>.

Definition. Let X be a metric space with metric d. A sequence $\{x_i\}_{i\in\omega_0}$ of points in X is a <u>Cauchy sequence</u> if and only if for each $\epsilon>0$, there is an integer M so that for all m,n>M, $d(x_m^-,x_n^-)<\epsilon$.

<u>Definition</u>. Let d be a metric for X. Then d is a <u>complete metric</u> for X if and only if every d-Cauchy sequence in X converges.

<u>Definition</u>. A space X is <u>complete</u> or is a <u>complete metric</u> <u>space</u> iff there is a complete metric for X.

Theorem M.11. The space \mathbb{R}^n is complete.

Theorem M.12. There is a metric for \mathbb{R}^1 which is not complete.

Theorem M.13. A closed subset of a complete space is complete.

Theorem M.14. An open set U of a metric space X can be embedded as a closed subset of $X \times \mathbb{R}^{1}$.

Theorem M.15. If X and Y are complete metric spaces, then $X \times Y$ is complete.

Theorem M.16. If $\{X_i\}_{i\in\omega_0}$ is a collection of complete spaces, then I X is complete. ie ω_0

Theorem M.17. An open set U of a complete space X is complete.

Theorem M.18. Let X be a complete metric space and Y \subset X. Then Y is complete if and only if Y is a G_8 subset of X.

Theorem M.19. Let X be a compact metric space. Then every metric for X is a complete metric for X.

 $\underline{\text{Theorem}}$ M.20. Let X be a metric space. If X is not compact, there is a metric for X which is not complete.

<u>Definition</u>. Let Y be a space with metric d. A sequence of continuous maps $f_i \colon X \to Y$ <u>converges uniformly</u> iff for every $\epsilon > 0$, there is an integer M so that for every $x \in X$ and m, n > M, $d(f_m(x), f_n(x)) < \epsilon$.

Theorem M.21. Let Y be a metric space with a complete metric d. If a sequence of continuous maps $f_i: X \to Y$ converges uniformly, then $\lim_{i \to \infty} f_i = f$ exists and is continuous.

Theorem M.22. Let X be a complete metric space and $\{u_i\}_{i\in\omega_0}$ be a collection of dense open sets. Then $\bigcap_{i\in\omega_0} u_i$ is a dense set.

<u>Definition</u>. A subset Y of a space X is <u>nowhere</u> <u>dense</u> if and only if $Int(\overline{Y}) = \emptyset$.

Theorem M.23. Let X be a complete metric space. Then X is not the union of countably many nowhere dense sets.

Note M.24. For a space X the following are equivalent:

. .

- (a) no open subset of X is the union of countably many nowhere dense sets, and
- (b) if $\{U_i\}_{i\in\omega_0}$ is a collection of dense open sets in X, then $\bigcap_{i\in\omega_0}U_i \text{ is dense.}$

Definition. Let $\{U_{\alpha}\}_{\alpha\in\lambda}$ be an open cover of a space X. Then $\mathcal{U}=\bigcup_{\mathbf{i}\in\omega_0}\mathbf{i}$ is a σ -discrete open (resp. closed) refinement of $\{U_{\alpha}\}_{\alpha\in\lambda}$ iff \mathcal{U} is an open (resp. closed) refinement and for each $\mathbf{i},\mathcal{W}_{\mathbf{i}}$ is a discrete collection of open (resp. closed) sets.

Theorem. M.25. Let X be a regular, T_1 space in which every open cover has a σ -discrete open refinement. Then X is paracompact.

Theorem M.26. Let X be a collectionwise normal, T_1 space in which every open cover has a σ -discrete closed refinement. Then X is paracompact.

Lemma M.27. Let $\{U_{\alpha}\}_{\alpha\in\lambda}$ be an open cover of X where λ is a well-ordered set, for each $\alpha\in\lambda$, $U_{\alpha}=\bigcup_{\mathbf{i}\in\omega_0}F_{\alpha,\mathbf{i}}$ where each $F_{\alpha,\mathbf{i}}$ is a closed set, and for each $\alpha\in\lambda$ and $\mathbf{i}\in\omega_0$, $Cl(\bigcup_{\beta<\alpha}F_{\beta,\mathbf{i}})\subset\bigcup_{\beta<\alpha}U_{\beta}$.

Then $\{U_{\alpha}\}_{\alpha \in \lambda}$ has a σ -discrete closed refinement.

Theorem M.28. Every metric space is paracompact.

a collection is σ -something if and only if it can be broken into a countable number of pieces each of which is something.

Theorem M.29. If X is a metric space, then X has a σ -locally finite basis.

Theorem M.30. If X is a metric space, then X has a σ -discrete basis.

Example M.1.

For a set λ consider the set of all ordered pairs (α,t) where $\alpha \in \lambda$ and $0 < t \le 1$. Then one additional point 0 is added. Think of the cone pictured above. A metric d is put on this space as follows: $d((\alpha,t),(\beta,s)) = s+t$ if $\alpha \ne \beta$, $d((\alpha,t),(\alpha,s)) = |t-s|$, and $d((\alpha,t),0) = t$. This space is called a hedgehog.

Theorem M.31. Every metric space can be embedded in a countable product of hedgehogs.

Theorem M.32. Every separable metric space can be embedded in a countable product of intervals.

Urysohn's metrization
Theorem M.33. A 2nd countable, regular, T₁ space is metrizable.

Theorem M.34. Let X be a regular, T_1 space with a σ -discrete basis. Then X is metrizable.

Theorem M.25. Let X be a regular T_1 space with a σ -locally finite basis. Then X is a metrizable space.

 $\underline{\text{Metrization}}$ $\underline{\text{Theorem}}$. For a regular, T_1 space the following are equivalent:

- (a) X is metrizable,
- (b) X has a σ -discrete basis,
- (c) X has a σ -locally finite basis,
- (d) X can be embedded in a countable product of hedgehogs.

Theorem M.36. Let X be a metric space and $f: X \twoheadrightarrow Y$ be a closed, onto map so that for each $y \in Y$, $f^{-1}(y)$ is compact. Then Y is metrizable.

Theorem M.37. Let X be a compact metric space, Y be a Hausdorff space, and $f: X \gg Y$ be an onto map. Then Y is a compact metric space.

 $\underline{\text{Theorem}}$ M.38. Let X be a compact metric space. Then there is a continuous function from the Cantor set onto X.

The Cantor Set

Definition. Let $A_0 = [0,1]$, $A_1 = [0,1/3] \cup [2/3,1]$, $A_2 = [0,1/9] \cup [2/9,3/9]$ $[6/9,7/9] \cup [8/9,1]$, Then $\bigcap_{\mathbf{i} \in \omega_0} A_{\mathbf{i}}$ is the Standard Cantor Set. A space homeomorphic to the Standard Cantor Set is called a Cantor Set.

Theorem C.S.1. Let C be a Cantor Set. Then $|C| = |R| = 2^{\omega_0}$.

Theorem C.S.2. The Standard Cantor Set has measure 0. And for any $\lambda \in [0,1)$ there is a Cantor Set in [0,1] with measure λ . ?

Theorem C.S.3. $\pi_{i \in \omega_0} \{0,1\}$ is a Cantor Set. \checkmark

Theorem C.S.4. Let C be a Cantor Set in \mathbb{R}^1 , A a countable subset of \mathbb{R}^1 and $\varepsilon > 0$. Then \exists a rigid translation h of \mathbb{R}^1 of distance less than ε so that $h(c) \cap A = \emptyset$.

Theorem C.S.5. Let X be a compact, metric space and let $\{A_i\}_{i\in\omega_0}$ be a collection of closed sets in X such that

- (i) $A_{i+1} \subset A_i$,
- (ii) $A_i = \bigcup \{A_{ik}\}_{k=1}^{n_i}$, where $\{A_{ik}\}_{k=1}^{n_i}$ is a collection of disjoint closed sets.
- (iii) $A_0 \neq \emptyset$ and each A_{ik} contains at least two $A_{(i+1)k}$'s,
- (iv) no A_{ik} has an isolated point,
- (v) diam $A_{ik} < 1/2^i$; for each $i \in \omega_0$ and $k = 1, \dots, n_i$. Then $\bigcap_{i \in \omega_0} A_i$ is a Cantor Set.
- Theorem C.S.6. There is a Cantor Set in $\mathbb{R}^2 \{(0,0)\}$ such that every ray from the origin intersects it.

Theorem C.S.7. There is a Cantor Set C in \mathbb{R}^2 so that the graph of every continuous function from $[0,1] \rightarrow [0,1]$ intersects C.

Theorem C.S.8. A space X is a Cantor Set if and only if X is compact, metric, 0-dimensional and has no isolated points.

Theorem C.S.9. Let X be 2nd countable. Then \exists a countable set $B \subseteq X$ so that every open set in X containing a point in X - B contains an uncountable number of points in X - B.

Theorem C.S.10. Let X be a compact, metric space. Then $|X| \le \omega_0$ or $|X| = 2^{\omega_0}$. Also if $|X| > \omega_0$, then X contains a Cantor Set.

Theorem C.S.11. Let X be a countable, compact, metric space. Then X has an isolated point.

Theorem C.S.12. There is a map from the Cantor Set onto [0,1].

Theorem C.S.13. Let X be a compact, metric space. Then there is a map from the Cantor Set onto X.

Definition. Let C be the Standard Cantor Set. Then a point in C of the form $k/3^n$ where $n=0,1,\ldots$ and $k=0,1,\ldots,3^n$ is called an accessible point. All other points are non-accessible or inaccessible.

Theorem C.S.14. If C is the Standard Cantor Set, then there is a homeomorphism $h: C \twoheadrightarrow C$ which takes all the accessible points to non-accessible points.

Definition. Let C be a Cantor Set in some space X. Suppose $C = \bigcap_{i \in \omega_0} A_i$, where $A_{i+1} \subset Int A_i$, each A_i has a finite number of components, and each component of each A_i is a cell (respectively, _____). Then C is <u>definable</u> by cells (respectively, <u>by</u> ______).

Definition. Let C be a Cantor Set in \mathbb{R}^n . Then C is tame iff \exists a homeomorphism $\mathbb{H} \colon \mathbb{R}^n \to \mathbb{R}^n$ such that $\mathbb{H}(\mathbb{C})$ lies on a straight line. Otherwise, C is wild.

Theorem C.S.15. Every Cantor Set in \mathbb{R}^n is definable by PL n-manifolds with boundary.

Theorem C.S.16. Let C be a Cantor Set in \mathbb{R}^n . Then C is tame iff C is definable by n-cells.

Theorem C.S.17. Let C be a Cantor Set in \mathbb{R}^2 . Then C is tame.

Theorem C.S.18. Let C be a Cantor Set iN $\mathbb{R}^n \times \{0\}$. Then C is tame in \mathbb{R}^{n+1} .

Theorem C.S.19. Let C be a Cantor Set in \mathbb{R}^n . Then \exists an embedding h of the arc [0,1] into \mathbb{R}^n so that $C \subseteq h([0,1])$.

Theorem C.S.20. Let C be a Cantor Set in \mathbb{R}^n . Then \exists an embedding h of the n-cell B into \mathbb{R}^n such that $C \subseteq h(Bd B)$.

Theorem C.S.21. Let C be a Cantor Set in \mathbb{R}^n and let X be a non-degenerate continuum in \mathbb{R}^n . Then \exists a re-embedding h of X into \mathbb{R}^n so that $C \subseteq h(X)$.

Theorem C.S.22. Let T_0 be a standard solid torus and T_1 be the union of the four solid tori in T_0 (see picture). Let T_{i+1} be obtained from T_i as T_i

is obtained from T_0 . Then $\bigcap_{i \in \omega_0} T_i$ is a wild Cantor Set in \mathbb{R}^3 called Antoine's Necklace.

Theorem C.S.23. There is a wild Cantor Set C in \mathbb{R}^3 with $\pi_1(\mathbb{R}^3-C)=1$.

Theorem C.S.24. There exist wild arcs, n-cells and (n-1)-spheres in \mathbb{R}^n for $n \ge 3$.

Theorem C.S.25. Let C be a Cantor Set in \mathbb{R}^n ($n \ge 2$), $x,y \in \mathbb{R}^n - C$, $\varepsilon > 0$ and \overline{xy} the straight line segment joining x and y. Then \exists a homeomorphism h: $\mathbb{R}^n \to \mathbb{R}^n$ such that

- (i) h(x) = x and h(y) = y
- (ii) h equals the identity outside an ϵ -nbhd of \overline{xy} and h moves points less than a distance of ϵ .
- (iii) $h(\overline{xy}) \cap C = \emptyset$.

Classification of 2-manifolds

<u>Definition</u>. An n-manifold is a separable metric space M^n so that for each $p \in M^n$, there is an open set U containing p so that U is homeomorphic to \mathbb{R}^n .

Theorem 1. Let v_0 , v_1 be two points in R^n . Then $\sigma^1 = \{\mu v_0 + (1-\mu)v_1 \mid 0 \le \mu \le 1\}$ is the straight line segment between v_0 and v_1 .

Definition. A set σ^1 as above is called a 1-simplex or edge with vertices v_0 and v_1 .

Definitions. 1. A set σ^2 as above is a 2-simplex with vertices v_0 , v_1 , and v_2 and edges v_0v_1 , v_1v_2 , and v_0v_2 .

- 2. A triangulated compact 2-manifold is a space homeomorphic to a subset M of ${I\!\!R}^n$ so that M = U σ_i so that:
 - (a) each σ_i is a 2-simplex,
 - (b) for $i \neq j$, $\sigma_i \cap \sigma_j$ is either \emptyset , an edge of each σ_i and σ_j , or a vertex of each,
 - (c) each edge of any $\sigma_{\bf i}$ is an edge of exactly two $\sigma_{\bf i}$'s, and
 - (d) for each vertex v of a σ_i , the union of all σ_i 's containing v is homeomorphic to a polygonal disk, where v goes to the center and each simplex containing v goes linearly to one of the sectors.

The set of 2-simplexes $\{\sigma_i^{}\}_{i=1}^k$ above is called a <u>triangulation</u> of the 2-manifold.

Theorem 3. A triangulated, compact 2-manifold is a 2-manifold.

Definitions. 1. Let σ^2 be a 2-simplex with vertices v_0 , v_1 and v_2 . Then $p = 1/3v_0 + 1/3v_1 + 1/3v_2$ is the <u>barycenter</u> of σ^2 .

2. Let $T = \{\sigma_i\}_{i=1}^k$ be a triangulation for a triangulated, compact 2-manifold M^2 . The <u>first derived subdivision</u> of T, denoted T', is a collection of 2-simplexes obtained from T by breaking each σ_i in T into six pieces as shown:

where the new vertices are the barycenter of $\sigma_{\bf i}$ and the centers of each edge. The 2nd derived subdivision, denoted T", is (T')'.

Theorem 4. The first derived subdivision of a triangulation of a 2-manifold is also a triangulation of the 2-manifold.

Definitions. 1. Let M^2 be a 2-manifold with triangulation $T = \{\sigma_i\}_{i=1}^k$. Let A be the union of any subset of the elements of T or their edges or their vertices. The <u>regular neighborhood</u> of A, denoted N(A), equals $\cup \{\sigma_j'' | \sigma_j'' \in T'' \text{ and } \sigma_j'' \cap A \neq \emptyset \}.$

- 2. The 1-skeleton of a triangulation T equals $\cup \{\sigma_j | \sigma_j \text{ is an edge of a 2-simplex in T}\}$ and is denoted T⁽¹⁾.
- 3. The <u>dual 1-skeleton</u> of a triangulation T equals $\bigcup \{\sigma_j | \sigma_j \text{ is an edge of a 2-simplex in T' and neither vertex of <math>\sigma_j$ is a vertex of a 2-simplex of T}.

Exercise. The boundary of a tetrahedron is naturally triangulated with four 2-simplexes. On the boundary of a tetrahedron locate the first and second derived subdivisions, the 1-skeleton, and its regular neighborhood, and the dual 1-skeleton for the natural triangulation.

Definitions 1. A graph G is the union of 1-simplexes $\{\sigma_i\}_{i=1}^k$ in \mathbb{R}^n so that for $i \neq j$, $\sigma_i \cap \sigma_j$ is empty or an endpoint of each of σ_i and σ_j . The σ_i 's are the edges of G.

- 2. A tree is a connected graph with no circuits.
- 3. Given a connected graph G with edges $\{\sigma_i\}_{i=1}^k$, a subgraph T of G is a maximal tree if and only if T is a tree and for any edge e of G not in T, TUe has a circuit.

Theorem 5. Let G be a connected graph. Then G contains a maximal tree and every maximal tree for G contains every vertex of G.

Theorem 6. Let A_0 and A_1 be two subsets of a Hausdorff space X and let h_0 and h_1 be homeomorphisms of A_0 and A_1 , respectively to D^2 (=[0,1]×[0,1]). Suppose $A_0 \cap A_1$ is homeomorphic to an arc of the form $h_0^{-1}(\alpha) = h_1^{-1}(\beta)$ where α and β are arcs on Bd D^2 . Then $A_0 \cup A_1$ is homeomorphic to D^2

Theorem 7. Let M^2 be a compact, triangulated 2-manifold with triangulation T. Let S be a tree whose edges are 1-simplexes in the 1-skeleton of T. Then N(S), the regular neighborhood of S, is homeomorphic to D^2 .

Theorem 8. Let M^2 be a compact, triangulated 2-manifold with triangulation T. Let S be a tree whose edges are edges in the dual 1-skeleton of T. Then $\cup \{\sigma'_j | \sigma'_j \in T'' \text{ and } \sigma'_j \cap S \neq \emptyset \}$ is homeomorphic to D^2 .

Theorem 9. Let M² be a connected, compact, triangulated 2-manifold with triangulation T. Let S be a maximal tree in the 1-skeleton of T. Let S' be the subgraph of the dual 1-skeleton of T whose edges do not intersect S. Then S' is connected.

Theorem 10. Let M^2 be a connected, compact, triangulated 2-manifold. Then $M^2 = D_0 \cup D_1 \cup (\bigcup H_i)$ where D_0 , D_1 , and each H_i is homeomorphic to D^2 , let $D_0 \cap D_1 = \emptyset$, the H_i 's are disjoint, $\bigcup Int H_i \cap (D_0 \cup D_1) = \emptyset$, and for each i, $I_i \cap D_1 = \emptyset$ disjoint arcs each arc on the boundary of each of H_i and D_1 .

Theorem 11. Let M^2 be a connected, compact, triangulated 2-manifold. Then there is a disk D_0 in M^2 so that M^2 -(Int D_0) is homeomorphic to the following subset of R^3 : a disk D_1 with a finite number of disjoint strips attached to boundary of D_1 where each strip has no twist or 1/2 twist. (See Example below.)

Figure

Note that the boundary of the disk with strips is one simple closed curve. (Why?)

Theorem 12. Let M^2 be a connected, compact, triangulated 2-manifold. Then there is a disk D_0 in M^2 so that M^2 -Int D_0 is homeomorphic to a disk D_1 with strips attached as follows: first come a finite number of strips with 1/2 twist each whose attaching arcs are consecutive along Bd D_1 , next come a finite number of pairs of untwisted strips, each pair with attaching arcs entwined as pictured with the four arcs from each pair consecutive along Bd D_1 .

Theorem 13. Let M^2 be a connected compact, triangulated 2-manifold. Then there is a disk D_0 in M^2 so that M^2 -Int D_0 is homeomorphic to one of the following:

- (a) a disk D₁,
- (b) a disk D_1 with k 1/2 twisted strips with consecutive attaching arcs, or
- (c) a disk D_1 with k pairs of untwisted strips, each pair in entwining position with the four attaching arcs from each pair consecutive.