Models of Computing General purpose model [can do anything a real compater con] I. pseudo-code, each line takes 1 timestep careful: e.g. initializing an array might be I line but should cost n-time steps (n= length of array). With-this contion, this model reflects realityso long as the problem fits in main memory and the numbers involved fit in one word. Dealing with large numbers: example function tibonacci (n) $i \in 0, j \in I$ for k < 1 to n i < j-i Cold value of j) { Zn steps y = i+i return j 0,1,1,2,3,5,8,,,, But the numbers grow so quickly that 2n stype does not reflect reality: n= 47 causes overflow on 32 bit words. II. Pseudo-code, take word Size into account

II. Pseudo-code, take word Size into account

Either limit word size (constant or logn) OR

count cost of arithmetic on large words

e.g. 2 x b size of number a = # bits in binary representation ~ log a [log 2 +1 2 x b takes O((log 2)(log b):59) using efficient multiplication. [we'll see the olg. later on] school method takes O((loga)(logb)) We can be more formal by defining a simple assembly longuage and counting steps in that: III RAM = Random Access Nachine-abstracts assembly long. - "random access" means we can access memory location i at unit cost (not like tape or Turing machine. word RAM - each memory location holds one word and assume # bits in word = log n, n = input size IV circuit family - obstracts hardware circuitry I Turing machine - abstracts human computer working with pencil and poper Note: time to access memory location i is proportional to i. Special purpose or "structured" models of computing · comparison-based model for sorting [2(nlopn) lower bound. · arithmetic model

Our model of Computing -pseudo-code and try to be realistic about what are elementary operations - for graph algorithms, we'll assume log n bits per word and constant time for arithmetic on words.

T_A(I) - running time of a Gorithm of an input I (4) We expect running time to inclease as size of input increases. Simplify by expressing run time as a fu of input size (3) [Note: model of computing must say how to count input size] For given size n, there are various inputs (a finite number). How do we combine running-times to one number?

Worst case running time

[the standard unless otherwise specified]

Ty(n) = max {Ty(I): I an input of size n }

[leave off of it's understood]

Alternative: average case running time - replace

Max by Average

or use a more general probability distribution on inputs (avg. assumes uniform distribution).

When on algorithm uses random numbers we use expected run-time

[discuss later]

The (I) = expected runtime on input II

(depends on random nos. used by A)

Still use worst case over inputs

The (n) = Max & The (I): I input of size nowns.

Challenge If you have a RAM model and allow unlimited # bits for each memory location and charge I for arithmetic and shifts, how can you "cheat" and sort in O(n) steps

Hirt: Do all nº pairwise comparisons in 1 Subtraction

Asymptotic Analysis of Algorithms

Recall running time of algorithm as fy of input size n

T(n) = Max {T(I): I an input of size n}

T(I) and size(I) measured according to model of computation

We want T(n) to be

· simple to express, e.g. n2

machine independent, thus ignore multiplicative factors
 (one machine might be twice as fast), thus ignore lower
 order terms (n+5 ≤ 2n, n≥5)

Pefinition Big On notation

Let f(n), g(n) be functions from N to $TR^{\geq 0}$ f(n) is O(g(n)) "order g(n)", "big oh of g(n)"

if $\exists constants c>0$ and n_0 s.t. $f(n) \leq c \cdot g(n)$ for all $n > n_0$.

(we say fis bounded by a constant times g for n Sufficiently large - this is what asymptotic means)

Notation f(n) \(O(g(n)) \) [CLRS writes \(f(n) = O(g(n)) \)

Big oh gives on upper bound. Examples:

• $T(n) = 5n^2 + 3n + 25$ is $O(n^2)$

• 10100 · n is O(n)

· logn is O(n) but n is not O(logn)

· 2"+1 is 0(2")

• ? (n+1)! is O(n!) ? No.

Properties of Big oh · max rule: Oct(n)+g(n)) is O(max {f(n),g(n)}) · transitivity: f(n) & O(g(n)), g(n) & O(h(n)) > f(n) & O(h(n)) Further Definitions · f(n) is IZ(g(n)) "omega" if 3 constants c, no s.t. f(n) > c.g(n) \ n > n6 · f(n) is $\theta(g(n))$ "theto" if f(n) is $\theta(g(n))$ and $\Omega(g(n))$ -gives an exact (asymptotic) bound. · f(n) is o (q (n)) "little oh" if for any constant C>0, there exists a constant no s.t. f(n) < c.g(n) Y n > No (for f, g: TN >TR+) equivalently lim f(n) = 0 Comparing Algorithms using Asymptotic Analyis Suppose the worst case run time of algorithm A is O(n2) algorithm B is O(nlogn) Which is better? - We can't know. This is like 26 5 y = 10, which is smaller? To compare algorithms, we need tight bounds O(n2) US O(n log n)

0 is like \(\)
0 <
θ · =
one difference: we can compare any 2 numbers
$z \leq y$ or $y \leq z$
But there are functions $f, g s.t. f(n)$ is not $O(g(n))$ and $g(n)$ is not $O(f(n))$. Find some.
- ^ ^1
Challenge
Conyon find such fus using just +, x, exponentiation, log?
onot allowed to use sing LI, I
• not allowed to use Sin, LI, [7] • not allowed to say f(n) = { - nodd
Dal G. H. Hardy, Soc Concrete Water Graham. Knoth
Ref. G.H. Hardy. Sec Concrete Moth, Graham, Knuth,
Ref. G.H. Hardy. Sec Concrete Moth, Graham, Knuth, Potoshnik.

```
Typical run-times and how they compare
     logn - binary search
     nlogn - sorting
      n - find max
n² - insertion sort
      n3 - multiplying two n×n matrices
      n! - try all orderings of a set (e.g.
2n - try all subsets Travelling Salesman)
      In , loglogn, logn
  Ordering, where f(n) < q(n) means f(n) to (q(n))
      1 « loglogn « logn ≪ log²n ≪ 5n ≪ n
          \ll nlogn \ll n^2 \ll n^3 \ll 2^n \ll n!
  Also na & o(nb) 6>a>0
        log^a n \in o(n^b) b>0
         n^{4} \in o(2^{n})
Skiena Ch. 2 is a good reference
Examples using above.
  6 nlogn vs nJn/2
     from above legn E o (Jn)
    So nlogn \in o(n\sqrt{n}/2)
  · log (vn) vs log n
      log(\sqrt{n}) = log n^{\frac{1}{2}} = \frac{1}{2}log n \in \Theta(log n)
```

Sometimes we will analyze an algorithm's run-time in terms of several parameters. EX1. graph with n vertices and m edges m is O(n2) but O(n+m) can be better than O(n2) EX2. input and output size e.g. Jarvis' March O(n.h) n=input size, h=output Jefn f,q: N×N > TR=0 f(n,m) is O(g(n,m) if 7 constants c, no, mo s.t. $f(n,m) \leq c \cdot g(n,m)$ for all $n \geq n_0$, $m \geq m_0$ Summary We analyze algorithms by analyzing the asymptotic rate of growth of the worst case run time. Does it really matter? Show charts from Garey & Johnston, Skiena

from Skiena's book

n $f(n)$	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu\mathrm{s}$	$0.033~\mu { m s}$	$0.1~\mu\mathrm{s}$	$1 \mu s$	3.63 ms
20	$0.004~\mu { m s}$	$0.02~\mu\mathrm{s}$	$0.086~\mu { m s}$	$0.4~\mu \mathrm{s}$	1 ms	77.1 years
30	$0.005 \; \mu { m s}$	$0.03~\mu\mathrm{s}$	$0.147~\mu { m s}$	$0.9~\mu \mathrm{s}$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu { m s}$	$0.04~\mu \mathrm{s}$	$0.213~\mu { m s}$	$1.6~\mu \mathrm{s}$	18.3 min	
50	$0.006~\mu { m s}$	$0.05~\mu\mathrm{s}$	$0.282~\mu { m s}$	$2.5~\mu\mathrm{s}$	13 days	
100	$0.007~\mu {\rm s}$	$0.1~\mu \mathrm{s}$	$0.644~\mu { m s}$	$10~\mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010 \ \mu s$	$1.00 \; \mu { m s}$	$9.966 \ \mu s$	$1 \mathrm{\ ms}$		
10,000	$0.013~\mu { m s}$	$10~\mu \mathrm{s}$	$130 \; \mu s$	100 ms		
100,000	$0.017 \; \mu s$	$0.10~\mathrm{ms}$	$1.67 \mathrm{\ ms}$	10 sec		
1,000,000	$0.020 \; \mu { m s}$	1 ms	19.93 ms	$16.7 \mathrm{min}$		
10,000,000	$0.023~\mu s$	$0.01 \sec$	$0.23 \sec$	$1.16 \mathrm{days}$		
100,000,000	$0.027~\mu { m s}$	$0.10 \sec$	$2.66 \sec$	$115.7 \mathrm{days}$		
1,000,000,000	$0.030 \; \mu { m s}$	$1 \sec$	$29.90 \sec$	31.7 years		

Figure 2.4: Growth rates of common functions measured in nanoseconds

Size of Largest Problem Instance Solvable in 1 Hour

	With present	With computer	With computer
	computer	100 times faster	1000 times faster
_	N/	1001	10001/
n	N ₁	100 <i>N</i> ₁	1000 <i>N</i> ₁
n ²	N ₂	10 <i>N</i> ₂	31.6 <i>N</i> ₂
n ³	N ₃	4.64 <i>N</i> ₃	10 <i>N</i> ₃
n ⁵	N ₄	2.5 <i>N</i> ₄	3.98 <i>N</i> ₄
2 ⁿ	N ₅	N ₅ + 6.64	N ₅ + 9.97
3 ⁿ	N ₆	N ₆ + 4.19	N ₆ + 6.29

Figure 1.3 from *Computers and Intractability: A Guide to the Theory of NP-Completeness*, by Garey and Johnson: Effect of improved technology on several polynomial and exponential time algorithms.