

Online Learning and Online Convex Optimization

Chapter 2 in Shai Shalev Shwartz / Online Learning and Online convex Optimization

Outline

Online Convex Optimization

Follow The Leader

Quadratic Optimization

Failure of Follow the Leader

Follow The Regularized Leader

FTRL for linear functions

Online Gradient Descent

Doubling Trick

Strong Convexity

General Theorem regarding FTRL with Strong Convexity

Applications to expert advice

Mirror Descent

Potential Based Gradient descent

OMD for linear cost functions

sub-gradients

Duality

Online Convex Optimization (OCO)

Algorithm

```
Input: A convex set S
```

```
For t = 1, 2, ...
```

- ▶ Predict a vector $w_t \in S$
- ▶ Receive a convex loss function $f_t: S \to \mathbb{R}$
- ► Suffer loss $f_t(w_t)$

Regret Definition

Regret of the Algorithm:

Regret_T(u) =
$$\sum_{t=1}^{T} f_t(w_t) - \sum_{t=1}^{T} f_t(u)$$
. (1)

Regret relative to a set of vectors U:

$$Regret_{\mathcal{T}}(U) = \max_{u \in U} Regret_{\mathcal{T}}(u). \tag{2}$$

Follow-the-Leader Algorithm

FTL Strategy

At round t, select:

$$w_t = \operatorname{argmin}_{w \in S} \sum_{i=1}^{t-1} f_i(w)$$

- Natural approach: Choose best performer on past data
- ► Simple but can be unstable
- Requires solving optimization problem each round

FTL Regret Analysis

Theorem (Lemma 2.1)

For any $u \in S$:

$$Regret_{T}(u) = \sum_{t=1}^{T} (f_{t}(w_{t}) - f_{t}(u)) \leq \sum_{t=1}^{T} (f_{t}(w_{t}) - f_{t}(w_{t+1})).$$

proof

Step 1: Equivalent to

$$\sum_{t=1}^{T} f_{t}(w_{t+1}) \leq \sum_{t=1}^{T} f_{t}(u)$$

Step 2: By induction on T:

- ▶ Base case: T = 1 trivial as $f_1(w_1) f_1(u) \le 0$
- ▶ Inductive step: Assume holds for T-1, then

$$\sum_{t=1}^{T} [f_t(w_t) - f_t(u)]$$

$$= \underbrace{\sum_{t=1}^{T-1} [f_t(w_t) - f_t(u)]}_{\leq \sum_{t=1}^{T-1} [f_t(w_t) - f_t(w_{t+1})]} + [f_T(w_T) - f_T(u)]$$

$$\leq \underbrace{\sum_{t=1}^{T-1} [f_t(w_t) - f_t(w_{t+1})]}_{t=1}$$

using
$$w_{T+1} = \operatorname{argmin}_w \sum_{t=1}^{T} f_t(w)$$

FTL for Quadratic Optimization

For
$$f_t(w) = \frac{1}{2} ||w - z_t||_2^2$$
:

- FTL update: $w_t = \frac{1}{t-1} \sum_{i=1}^{t-1} z_i$
- ► Regret bound: $O(\log T)$

Regret Calculation for quadratic optimization.

Regret_T(u)
$$\leq \sum_{t=1}^{T} \frac{1}{t} \| w_t - z_t \|^2$$

 $\leq \sum_{t=1}^{T} \frac{(2L)^2}{t} = 4L^2 (\log T + 1)$

where
$$L = \max_{t} \|z_{t}\|$$

Failure of follow the leader

$$f_t(w) = w \cdot z$$
:

$$z_t = egin{cases} -0.5 & ext{if } t=1 \ 1 & ext{if } t ext{ is even} \ -1 & ext{if } t>1 ext{ and } t ext{ is odd} \end{cases}$$

- $w_t = -1, 1, -1, 1, \dots$
- Cumulative loss is T.
- Cumulative loss of 0 is 0
- ► Regret is *T*.
- ▶ Reason: prediction is unstable
- ▶ We need to regularize.
- \triangleright R(W) penalizes vectors which are large.

Follow-the-Regularized-Leader (FTRL)

$$\forall t, \quad \mathsf{w}_t = \arg\min_{\mathsf{w} \in \mathcal{S}} \sum_{i=1}^{t-1} f_i(\mathsf{w}) + R(\mathsf{w})$$

- For bad case above: $w_t = 0, 0, 0, 0, \dots$
- Each step requires solving a minimization problem.

Lemma 2.3: Follow-the-Regularized-Leader

Lemma 2.3. Let w_1, w_2, \ldots be the sequence of vectors produced by FoReL. Then, for all $u \in S$ we have:

$$\sum_{t=1}^{T} (f_t(w_t) - f_t(u)) \leq R(u) - R(w_1) + \sum_{t=1}^{T} (f_t(w_t) - f_t(w_{t+1})).$$

Proof of Lemma 2.3

Proof. Observe that running FoReL on f_1, \ldots, f_T is equivalent to running FTL on f_0, f_1, \ldots, f_T where $f_0 = R$. Using Lemma 2.1, we obtain:

$$\sum_{t=0}^{T} (f_t(w_t) - f_t(u)) \leq \sum_{t=0}^{T} (f_t(w_t) - f_t(w_{t+1})).$$

Rearranging the above and using $f_0 = R$, we conclude our proof.

FTRL for linear functions

FTRL Regret Bound for linear functions

For linear
$$f_t(w) = \langle w, z_t \rangle$$
 and $R(w) = \frac{1}{2\eta} ||w||_2^2$
Update rule $w_{t+1} = w_t - \eta z_t$ Then, for all u we have

Regret_T(u)
$$\leq \frac{1}{2\eta} \|\mathbf{u}\|_{2}^{2} + \eta \sum_{t=1}^{T} \|\mathbf{z}_{t}\|_{2}^{2}$$
.

FTRL for linear functions

Choice of η and Final Bound for linear functions

Tunings:

- ▶ Define the set $U = \{u : ||u|| \le B\}$.
- Assume that

$$\frac{1}{T} \sum_{t=1}^{I} \|\mathbf{z}_t\|_2^2 \le L^2.$$

ightharpoonup Set $\eta = \frac{B}{I\sqrt{2T}}$.

Conclusion:

$$Regret_T(U) \leq BL\sqrt{2T}$$
.

From linear functions to Online Gradient Descent

Example (OGD from FTRL)

Consider the OCO setup where the functions f_1, f_2, \ldots are differentiable.

Let η be the learning rate.

$$w_{t+1} = w_t - \eta z_t, \quad z_t = \nabla f_t(w_t)$$

Identical to FTRL with regularization: $R(w) = \frac{1}{2n} ||w||_2^2$

Regret bound on OGD: From FTRL theorem:

$$\operatorname{Regret} \leq \frac{\|u\|^2}{2\eta} + \eta \sum_{t=1}^{T} \|z_t\|^2$$

$$\leq \frac{B^2}{2\eta} + \eta T L^2$$

Regret Bound for OGD

If we further assume that each f_t is L_t -Lipschitz with respect to $\|\cdot\|_2$, and let L be such that

$$\frac{1}{T}\sum_{t=1}^{I}L_t^2\leq L^2.$$

Then, for all u, the regret of OGD satisfies

$$\mathsf{Regret}_{T}(\mathsf{u}) \leq \frac{1}{2\eta} \|\mathsf{u}\|_{2}^{2} + \eta T L^{2}.$$

└ Online Gradient Descent

Bounding the norm of u

In particular, if
$$U=\{\mathbf u:\|\mathbf u\|_2\leq B\}$$
 and $\eta=\frac{B}{L\sqrt{2T}}$ then
$$\mathrm{Regret}_T(U)\leq BL\sqrt{2T}.$$

Practical Considerations

Doubling Trick

- Removes need to know time horizon T
- ▶ Divide time into epochs 2^m , $2^{m+1} 1$
- Regret increases by constant factor:

$$\sum_{m=0}^{\log T} \sqrt{2^m} = O(\sqrt{T})$$

Example (Optimal
$$\eta$$
)
Setting $\eta = \frac{B}{L} \sqrt{\frac{2}{T}}$ gives:

Definition 2.4: Strong Convexity

Strong Convexity

A function $f: S \to \mathbb{R}$ is σ -strongly convex over S with respect to a norm $\|\cdot\|$ if for any $w \in S$ we have:

$$\forall z \in \partial f(w), \quad \forall u \in S, \quad f(u) \ge f(w) + \langle z, u - w \rangle + \frac{\sigma}{2} \|u - w\|^2.$$

Lemma 2.8: Strong Convexity implication

Lemma 2.8

Let S be a nonempty convex set. Let $f: S \to \mathbb{R}$ be a σ -strongly convex function over S with respect to a norm $\|\cdot\|$. Let:

$$w = \arg\min_{v \in S} f(v).$$

Then, for all $u \in S$, we have:

$$f(\mathsf{u}) - f(\mathsf{w}) \ge \frac{\sigma}{2} \|\mathsf{u} - \mathsf{w}\|^2.$$

Strong Convexity Condition

If R is twice differentiable, then it is easy to verify that a sufficient condition for strong convexity of R is that for all \mathbf{w}, \mathbf{x} ,

$$\langle \nabla^2 R(\mathbf{w}) \mathbf{x}, \mathbf{x} \rangle \ge \sigma \|\mathbf{x}\|^2$$

where $\nabla^2 R(w)$ is the Hessian matrix of R at w, namely, the matrix of second-order partial derivatives of R at w [39, Lemma 14].

Example 2.4: Euclidean Regularization

The function

$$R(w) = \frac{1}{2} ||w||_2^2$$

is 1-strongly-convex with respect to the ℓ_2 norm over \mathbb{R}^d . To see this, simply note that the Hessian of R at any w is the identity matrix.

Example 2.5: Entropic Regularization

The function

$$R(w) = \sum_{i=1}^{d} w[i] \log(w[i])$$

is $\frac{1}{B}$ -strongly-convex with respect to the ℓ_1 norm over the set

$$S = \{ w \in \mathbb{R}^d : w > 0 \land ||w||_1 \le B \}.$$

In particular, R is 1-strongly-convex over the probability simplex, which is the set of positive vectors whose elements sum to 1.

Strong Convexity

Proof of strong convexity for Entropic Regularization

$$\frac{\partial^2}{\partial w[i]^2} w[i] \log w[i] = \frac{1}{w[i]}$$

$$\langle \nabla^2 R(w) \mathbf{x}, \mathbf{x} \rangle = \sum_i \frac{\mathbf{x}[i]^2}{w[i]}$$

$$= \frac{1}{\|\mathbf{w}\|_1} \left(\sum_i w[i] \right) \left(\sum_i \frac{\mathbf{x}[i]^2}{w[i]} \right)$$

$$\geq \frac{1}{\|\mathbf{w}\|_1} \left(\sum_i \sqrt{w[i]} \frac{\mathbf{x}[i]}{\sqrt{w[i]}} \right)^2 = \frac{\|\mathbf{x}\|_1^2}{\|\mathbf{w}\|_1},$$

where the inequality follows from Cauchy-Schwarz inequality.

Single Step of FTRL with Strong Convexity

Let

$$R:S\to\mathbb{R}$$

be a σ -strongly-convex function over S with respect to a norm $\|\cdot\|$. Let w_1, w_2, \ldots be the predictions of the FoReL algorithm. Then, for all t, if f_t is L_t -Lipschitz with respect to $\|\cdot\|$, then:

$$f_t(w_t) - f_t(w_{t+1}) \le L_t ||w_t - w_{t+1}|| \le \frac{L_t^2}{\sigma}.$$

Proof (Single Step of FTRL with Strong Convexity)

For all t let

$$F_t(w) = \sum_{i=1}^{t-1} f_i(w) + R(w)$$

and note that the FoReL rule is

$$w_t = \arg\min_{w \in S} F_t(w).$$

Note also that F_t is σ -strongly-convex since the addition of a convex function to a strongly convex function keeps the strong convexity property. Therefore, Lemma 2.8 implies that:

$$F_t(\mathbf{w}_{t+1}) \ge F_t(\mathbf{w}_t) + \frac{\sigma}{2} \|\mathbf{w}_t - \mathbf{w}_{t+1}\|^2.$$

Continuing the Proof (Single Step of FTRL with Strong Convexity)

Repeating the same argument for F_{t+1} and its minimizer w_{t+1} , we get:

$$F_{t+1}(w_t) \ge F_{t+1}(w_{t+1}) + \frac{\sigma}{2} \|w_t - w_{t+1}\|^2.$$

Taking the difference between the last two inequalities and rearranging, we obtain:

$$|\sigma| |w_t - w_{t+1}||^2 \le f_t(w_t) - f_t(w_{t+1}).$$
 (2.7)

Final Steps (Single Step of FTRL with Strong Convexity)

Next, using the Lipschitzness of f_t , we get that:

$$f_t(w_t) - f_t(w_{t+1}) \le L_t ||w_t - w_{t+1}||.$$

Combining with Equation (2.7) and rearranging, we get:

$$\|\mathbf{w}_t - \mathbf{w}_{t+1}\| \le L/\sigma$$
.

Together with the above, we conclude our proof.

Main theorem regarding σ -strongly convex regularization functions

Let f_1, \ldots, f_T be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to some norm $\|\cdot\|$. Let L be such that

$$\frac{1}{T}\sum_{t=1}^{I}L_t^2 \leq L^2.$$

Assume that FoReL is run on the sequence with a regularization function which is σ -strongly-convex with respect to the same norm. Then, for all $u \in S$,

$$Regret_T(u) \le R(u) - \min_{v \in S} R(v) + \frac{TL^2}{\sigma}.$$

Corollary for I_2 regularization

Let f_1, \ldots, f_T be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to $\|\cdot\|_2$. Let L be such that

$$\frac{1}{T}\sum_{t=1}^{T}L_t^2 \leq L^2.$$

Assume that FoReL is run on the sequence with the regularization function

$$R(w) = \frac{1}{2n} \|w\|_2^2.$$

Then, for all u,

$$\operatorname{Regret}_{T}(\mathsf{u}) \leq \frac{1}{2\eta} \|\mathsf{u}\|_{2}^{2} + \eta T L^{2}.$$

Applications to expert advice

- Distribution w_t
- Action Losses: $x_t \in [0, 1]^d$
- ▶ Algorithm Loss: $\langle x_t, w_t \rangle$
- ▶ We want to bound regret.
- ightharpoonup we will compare l_2 regularization with Entropic Regularization.

Experts using l_2 regularization (1)

S be a convex set and consider running FoReL with the regularization function:

$$R(w) = \begin{cases} \frac{1}{2\eta} \|w\|_2^2 & \text{if } w \in S \\ \infty & \text{if } w \notin S \end{cases}$$

Where S us the d dimensional simplex.

Then, for all $u \in S$,

$$\operatorname{Regret}_{T}(\mathsf{u}) \leq \frac{1}{2\eta} \|\mathsf{u}\|_{2}^{2} + \eta T L^{2}.$$

Experts using l_2 regularization (2)

lf

$$B \ge \max_{u \in S} \|u\|_2$$

Setting

$$B = 1; \ L = \sqrt{d}; \ \eta = \frac{B}{L\sqrt{2T}} = \frac{1}{\sqrt{2dT}}$$

then,

$$\operatorname{Regret}_{T}(S) \leq \sqrt{2dT}$$
.

Entropic Regularization

Let f_1, \ldots, f_T be a sequence of convex functions such that f_t is L_t -Lipschitz with respect to $\|\cdot\|_1$. Let L be such that $\frac{1}{T}\sum_{t=1}^T L_t^2 \leq L^2$. Assume that FoReL is run on the sequence with the regularization function

$$R(w) = \frac{1}{\eta} \sum_{i} w[i] \log(w[i])$$

and with the set

$$S = \{ \mathbf{w} : \|\mathbf{w}\|_1 = \mathbf{B} \land \mathbf{w} > 0 \} \subset \mathbb{R}^d.$$

Then,

$$\operatorname{Regret}_{\mathcal{T}}(S) \leq \frac{B \log(d)}{\eta} + \eta BTL^2.$$

In particular, setting $\eta = \frac{\sqrt{\log d}}{L\sqrt{2T}}$ yields

$$Regret_T(S) \leq BL\sqrt{2\log(d)T}$$
.

Entropic regularization for Experts

The Entropic regularization is strongly convex with respect to the ℓ_1 norm, and therefore the Lipschitzness requirement of the loss functions is also with respect to the ℓ_1 -norm.

For linear functions,

$$f_t(w) = \langle w, x_t \rangle,$$

we have by Hölder's inequality that,

$$|f_t(w) - f_t(u)| = |\langle w - u, x_t \rangle| \le ||w - u||_1 ||x_t||_{\infty}.$$

Therefore, the Lipschitz parameter grows with the ℓ_∞ norm of x_t rather than the ℓ_2 norm of x_t .

expert advice: B = 1 and L = 1), we obtain the regret bound of

$$\sqrt{2\log(d)T}$$

Comparison between regularizations

- entropic regularization vs. ℓ_2 regularization.
- ▶ $\log d$ vs \sqrt{d}
- ▶ L: $||x_t||_{\infty} \ge ||x_t||_2$ Liphsitz condition carries heavier penalty with entropic regularization.
- ▶ $B: ||u||_1 \le ||u||_2$ Comparator length carries heavier penalty with I_2 norm.

Potential based gradient Descent

- Regret_t = Regret vector Regret_t(w) = $L_{A,t} L_t(w)$
- Regret_t = State of prediction algorithm at time t
- ► Potential/Regularizer: R(Regret) Quantifies badness of the state.
- A state is bad if adversary can force high regret in the future.
- ► Choose prediction so that $R(\text{Regret}_{t+1}) R(\text{Regret}_t) + w_t \cdot \ell_t$ is small for all possible ℓ_t
- $\mathbf{w}_t = \nabla R(\mathsf{Regret}_t)$ is a good choice.
- For finite number of experts, Regret_t is finite dimensional and we can compute w_t explicitly.
- ► Here, Regret = $\{R(w)\}_{w \in \mathbb{R}^d}$ is uncountably infinite.
- ▶ If Experts correspond to exponential distributions and loss is log loss- we can use conjugate priors. (recall: biased coins).
- We need a new trick to compute $\mathbf{w}_t = \nabla R(\mathsf{Regret}_t)$ efficiently.

└OMD for linear cost functions

FoReL Update Rule for linear cost function

Define $\mathbf{z}_{1:t} = \sum_{i=1}^{t} \mathbf{z}_{i}$, the FoReL update rule can be written as

$$\begin{aligned} \mathbf{w}_{t+1} &= \arg\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{i=1}^{t} \langle \mathbf{w}, \mathbf{z}_{i} \rangle \\ &= \arg\min_{\mathbf{w}} R(\mathbf{w}) + \langle \mathbf{w}, \mathbf{z}_{1:t} \rangle \\ &= \arg\max_{\mathbf{w}} \langle \mathbf{w}, -\mathbf{z}_{1:t} \rangle - R(\mathbf{w}). \end{aligned}$$

Mirror Descent Update for linear functions

Update rule

$$w_{t+1} = \arg\max_{w} \langle w, -z_{1:t} \rangle - R(w).$$

Link Function:

$$g(\theta) = \arg\max_{\mathbf{w}} \langle \mathbf{w}, \theta \rangle - R(\mathbf{w}),$$

Update rule can be re-written as

- 1. $\theta_0 = 0$
- 2. $\theta_{t+1} = \theta_t z_t$
- 3. $w_{t+1} = g(\theta_{t+1})$

Sub-Gradients

- we can reduce general convex to linear using the gradient.
- ▶ What can we do if f(x) is convex but not differentiable at x?
- Use the sub-gradients at $x \doteq \partial f(x)$: the set of linear functions such that $I(x) = \langle w, x \rangle + o$ such that $\forall y, I(y) \leq f(x)$ and I(x) = f(x)
- ▶ if gradient $\nabla f(x)$ exists, then $\partial f(x) = {\nabla f(x)}$

Example Generalized Online Gradient Descent

Consider the ℓ_2 setup where the functions f_1, f_2, \ldots are convex (but not necessarily differentiable). Let η be the learning rate.

$$w_{t+1} = w_t - \eta z_t, \ z_t \in \partial f_t(w_t)$$

Identical to FTRL with regularization: $R(w) = \frac{1}{2\eta} ||w||_2^2$ Regret bound on OGD: From FTRL theorem:

$$Regret \le \frac{\|u\|^2}{2\eta} + \eta \sum_{t=1}^{T} \|z_t\|^2$$
$$\le \frac{B^2}{2\eta} + \eta T L^2$$

Online Mirror Descent (OMD)

```
parameter: a link function g : \mathbb{R}^d \to S initialize: \theta_1 = 0 for t = 1, 2, ...
```

- ▶ update $\theta_{t+1} = \frac{\theta_t}{t} z_t$ where $z_t \in \frac{\partial f_t(w_t)}{t}$

Duality

- ► OMD can be analyzed using elementary tools.
- Using Duality Gives better intuition, more general analysis, tighter bounds.

Dual Vector Spaces

- ightharpoonup V is a vector space, with a norm ||v||
- \triangleright U is the set of all linear mappings from V to V
- ▶ The norm of $u \in U$ is defined as

$$||u||^* = \max_{v \in V} \frac{||u(v)||}{||v||}$$

- \triangleright V is equivalent to the set of all linear mappings from U to U.
- \triangleright U and V are dual vector spaces, with dual norms.

Dual Norms

- ► The space is always $U, V = \mathbb{R}^n$
- The linear operation is the dot product u · v
- \blacktriangleright L_2 norm: $\sqrt{\sum_{i=1}^n x_i^2}$
- $ightharpoonup L_1$ norm: $\sum_{i=1}^n |x_i|$
- $ightharpoonup L_{\infty}$ norm: $\max_i |x_i|$
- $ightharpoonup L_p \text{ norm: } \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$
- $ightharpoonup L_p, L_q$ are dual norms if $p, q \ge 1$, and $\frac{1}{p} + \frac{1}{q} = 1$
- $ightharpoonup L_1, L_{\infty}$ are dual.
- ► L₂ is self-dual.

Fenchel Duality

- ▶ Suppose $F : A \to \mathbb{R}$ is a convex function over a convex set $A \subset \mathbb{R}^n$.
- ► The dual function to F is

$$F^*(u) = \sup_{v \in A} (u \cdot v - F(v))$$

 Fenchel duality Reduces to Legendre duality for differentiable functions

Visualization of the Febchel Dual

- \triangleright x, y \mathbb{R}
- $f^*(y) = \sup_{x \in \mathbb{R}} (xy f(x))$
- $-f^*(y) = \inf_{x \in \mathbb{R}} (f(x) xy)$

Dual of Dual

- ▶ The dual of any function is convex.
- ▶ if F is convex then $F^{**} = F$

Gradient Duality

- ► If the gradient of f at x is k then the gradient of f* at k is x
- ► In general:

$$\nabla F^* = (\nabla F)^{-1}$$

Example: Exponential Potential

- ▶ Potential: $F(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ▶ Gradient: $\nabla F(\mathbf{u})_i = e^{u_i}$ or $\nabla F(\mathbf{u}) = F(\mathbf{u})$.
- ▶ Dual: $F^*(v) = \sum_{i=1}^d v_i (\ln v_i 1)$
- ► Gradient of dual: $\nabla F^*(\mathbf{v})_i = \ln v_i$
- Note $(\nabla F)^{-1} = \nabla F^*$

Bregman Divergence

- R(x) is convex and differentiable.
- $D_R(w||u) = R(w) (R(u) + \langle \nabla R(u), (w-u) \rangle)$

Fenchel and Bregman

- F: strictly convex with continuous first derivative.
- F* is the Fenchel Dual of F
- \triangleright D_F , D_{F^*} Bregman divergences wrt F, F^*
- $ightharpoonup u' = \nabla F(u)$ and $v' = \nabla F(v)$

Mirror Descent

- Gradient descent in dual space $\theta_t = \theta_{t-1} \lambda \nabla \ell_t(\theta_{t-1})$
- Using duality can be rewritten as

$$\nabla R^*(\mathbf{w}_t) = \nabla R^*(\mathbf{w}_{t-1}) - \lambda \nabla \ell_t(\mathbf{w}_{t-1})$$

As ∇R is the inverse of ∇R^* we get

$$\mathbf{w}_t = \nabla R(\nabla R^*(\mathbf{w}_{t-1}) - \lambda \nabla \ell_t(\mathbf{w}_{t-1}))$$

A picture of mirror descent

$$\mathbf{w}_t = \nabla R(\nabla R^*(\mathbf{w}_{t-1}) - \lambda \nabla \ell_t(\mathbf{w}_{t-1}))$$

Intuition

- ▶ \mathbf{u} should balance minimizing the loss from observing same example again and divergence between \mathbf{u} and \mathbf{w}_{t-1}
- Exact Goal: $\min_{\mathbf{u} \in \mathbb{R}^d} \left[D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{u}) \right]$
- ► Taylor order one approximation: $\min_{\mathbf{u} \in \mathbb{R}^d} [F(\mathbf{u})]$ where $F(\mathbf{u}) = D_{\phi^*}(\mathbf{u}, \mathbf{w}_{t-1}) \lambda [\ell_t(\mathbf{w}_{t-1}) + (\mathbf{u} \mathbf{w}_{t-1})\nabla \ell_t(\mathbf{w}_{t-1})]$
- Assuming everything is differrentiable and convex, $\nabla_{\mathbf{u}} F[\mathbf{u}] = 0$ yields: $\nabla R^*(\mathbf{w}_t) = \nabla R^*(\mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{w}_{t-1})$
- Equivelently: $\mathbf{w}_t = \nabla R(\nabla R^*(\mathbf{w}_{t-1}) \lambda \nabla \ell_t(\mathbf{w}_{t-1}))$

Theorem

- ▶ $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is a regular loss function if it is convex and non-negative.
- ▶ Regret: Regret_t(u) = $L_{A,t} L_t(u)$
- Theorem: For all example sequences $(x_1, y_1), \dots, (x_T, y_T)$, any initial vector $\mathbf{w}_0 \in \mathbb{R}^d$. all learning rates $\lambda > 0$ and all $\mathbf{u} \in \mathbb{R}^d$:

Regret_T(u)
$$\leq \frac{1}{\lambda} D_{R^*}(u, w_0) + \frac{1}{\lambda} \sum_{t=1}^{T} D_{R^*}(w_{t-1}, w_t)$$

- \triangleright $D_{R^*}(u, w_0)$ penalizes for the length of the comparator.
- $\triangleright D_{R^*}(w_{t-1}, w_t)$ penalizes large changes in w_t .

Polynomial Potential

- ► Potential: $R_p(\mathbf{u}) = \frac{1}{2} \|\mathbf{u}\|_p^2 = \frac{1}{2} \left(\sum_{i=1}^d u_i^p\right)^{2/p}$
- ▶ Dual Potential $R_p^* = R_q$ Where $\frac{1}{p} + \frac{1}{q} = 1$
- Euclidean norm: q = p = 2
- Suppose the sequence of examples $(x_1, y_1), \dots, (x_T, y_T)$ satisfies $||x_t||_p \le X_p$ for all $1 \le t \le T$
- Suppose we use the dual descend algorithm for the potential function R_p and the learning rate $\lambda = \frac{2\epsilon}{(p-1)X_p^2}$ for some $0 < \epsilon < 1$
- Loss Bound: $L_{A,T} \le \frac{L_T(\mathsf{u})}{1-\epsilon} + \frac{\|\mathsf{u}\|_q^2}{\epsilon(1-\epsilon)} \times \frac{(p-1)X_p^2}{4}$

Exponential Potential

- ▶ Potential: $R(\mathbf{u}) = \sum_{i=1}^{d} e^{u_i}$
- ▶ Dual Potential $R^*(u) = \sum_{i=1}^d u_i (\ln u_i 1)$
- ightharpoonup Euclidean norm: q = p = 2
- Suppose the sequence of examples $(x_1, y_1), \dots, (x_T, y_T)$ satisfies $||x_t||_{\infty} \leq X_p$ for all $1 \leq t \leq T$
- Suppose we use the dual descend algorithm for the exponential potential function R and the learning rate $\lambda = \frac{2\epsilon}{X_{2}^{2}}$ for some $0 < \epsilon < 1$
- Loss Bound: $L_{A,T} \le \frac{L_T(\mathsf{u})}{1-\epsilon} + \frac{X_{\infty}^2 \ln d}{2\epsilon(1-\epsilon)}$

Lemma 2.20: Regret Bound for OMD

Lemma 2.20. Suppose that OMD is run with a link function $g = \nabla R^*$. Then, its regret is upper bounded by:

$$\sum_{t=1}^{T} \langle w_t - u, z_t \rangle \leq R(u) - R(w_1) + \sum_{t=1}^{T} D_{R^*}(-z_{1:t} || - z_{1:t-1}).$$

Furthermore, equality holds for the vector u that minimizes $R(\mathbf{u}) + \sum_{t} \langle \mathbf{u}, \mathbf{z}_{t} \rangle$.

Proof: Step 1 - Fenchel-Young Inequality

Using the **Fenchel–Young inequality**, we have:

$$R(\mathbf{u}) + \sum_{t=1}^{T} \langle \mathbf{u}, \mathbf{z}_t \rangle = R(\mathbf{u}) - \langle \mathbf{u}, -\mathbf{z}_{1:T} \rangle \ge -R^*(-\mathbf{z}_{1:T}).$$

Equality holds for u that maximizes $\langle u, -z_{1:T} \rangle - R(u)$, hence minimizing $R(u) + \langle u, z_{1:T} \rangle$.

Proof: Step 2 - Bregman Divergence

Since $w_t = \nabla R^*(-z_{1:t-1})$ and using the definition of the Bregman divergence, we rewrite:

$$-R^*(-z_{1:T}) = -R^*(0) - \sum_{t=1}^{T} (R^*(-z_{1:t}) - R^*(-z_{1:t-1})).$$

Rearranging, we get:

$$= -R^*(0) + \sum_{t=1}^{T} (\langle w_t, z_t \rangle - D_{R^*}(-z_{1:t} || - z_{1:t-1})).$$

Conclusion

Note: Since

$$R^*(0) = \max_{w} \langle 0, w \rangle - R(w) = -\min_{w} R(w) = -R(w_1),$$

combining all the above, we conclude the proof. \Box