Cap 1 – Funções reais de n variáveis reais

1.1 Generalidades

O espaço vetorial \mathbb{R}^n

Produto escalar e norma em \mathbb{R}^n Produto vetorial em \mathbb{R}^3

Função real de n variáveis reais

Definição

Contradomínio, gráfico e estruturas de nível

Estruturas de nível

O espaço vetorial \mathbb{R}^n

 O termo vetor é usado para indicar quantidades que tenham em simultâneo grandeza, direção e sentido (velocidade, força, deslocamento, ...);

 Um vetor é, geometricamente, representado por um segmento de reta orientado;

 O comprimento do segmento representa a grandeza enquanto a seta indica o sentido.

O espaço vetorial \mathbb{R}^n

Seja $n \ge 1$ um número natural.

- $ightharpoonup \mathbb{R}^n$ é o conjunto dos n-uplos ordenados $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ onde x_1,x_2,\ldots,x_n são números reais.
- ightharpoonup Os elementos de \mathbb{R}^n são chamados pontos ou vetores de \mathbb{R}^n .
- ightharpoonup Os números reais x_1, \ldots, x_n são as coordenadas de \mathbf{x} .
- ▶ Sendo $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n)$ em \mathbb{R}^n e $\lambda \in \mathbb{R}$, definimos:
 - a soma de x e y

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n);$$

 \bullet o produto de λ por \mathbf{x}

$$\lambda \mathbf{x} = (\lambda x_1, \dots, \lambda x_n);$$

Observação

- $lackbox{ Os elementos de }\mathbb{R}^n$ podem ser representados geometricamente de duas formas
 - como pontos do espaço;

- como direções.
- É, por isso, também usual designar os elementos de \mathbb{R}^n por maiúsculas X,Y,Z,P,Q,A,B,C,\ldots ou pelos símbolos $\vec{x},\vec{y},\vec{z},\vec{u},\vec{v},\vec{w},\vec{a},\vec{b},\ldots$
- A única diferença entre o elemento $\mathbf{x} = (1,2,3)$, o ponto X = (1,2,3) e o vetor $\vec{x} = (1,2,3)$ é a denominação; o objeto designado é sempre o mesmo: o triplo (1,2,3).
- ▶ Os vetores $\vec{e}_1 = (1,0,\ldots,0,0),\ldots,\vec{e}_n = (0,0,\ldots,0,1)$ são a base canónica de \mathbb{R}^n .
 - No caso particular de n=3 denota-se

$$\vec{e}_1 = \vec{i}, \qquad \qquad \vec{e}_2 = \vec{j}, \qquad \qquad \vec{e}_3 = \vec{k}.$$

Produto escalar e norma em \mathbb{R}^n

Sejam
$$\vec{x} = (x_1, \dots, x_n), \vec{y} = (y_1, \dots, y_n)$$
 em \mathbb{R}^n .

ightharpoonup O produto escalar¹ de \vec{x} e \vec{y} é definido por

$$\vec{x} \cdot \vec{y} = x_1 y_1 + \dots + x_n y_n;$$

ightharpoonup a norma do vetor \vec{x} é definida por

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + \dots + x_n^2}.$$

Se θ for o ângulo formado por \vec{x} e \vec{y} então

$$\vec{x} \cdot \vec{y} = ||\vec{x}|| \, ||\vec{y}|| \, \cos \theta.$$

• Os vetores \vec{x} e \vec{y} dizem-se vetores ortogonais se $\vec{x} \cdot \vec{y} = 0$.

¹ou produto interno. Também se denota por $<\vec{x},\vec{y}>$.

Produto vetorial em \mathbb{R}^3

Sejam
$$\vec{x} = (x_1, x_2, x_3), \vec{y} = (y_1, y_2, y_3)$$
 em \mathbb{R}^3 .

ightharpoonup O produto vetorial² de \vec{x} e \vec{y} é o vetor definido por

$$\vec{x} \times \vec{y} = (x_2y_3 - x_3y_2, -x_1y_3 + x_3y_1, x_1y_2 - x_2y_1).$$

 $\blacktriangleright \ \mbox{Se } \theta \in [0,\pi]$ for o ângulo formado por \vec{x} e \vec{y} então

$$\|\vec{x} \times \vec{y}\| = \|\vec{x}\| \|\vec{y}\| \operatorname{sen} \theta.$$

► [Mnemónica]

$$\vec{x} \times \vec{y} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$$

 $^{^2}$ ou produto externo. Também se denota $\vec{x} \wedge \vec{y}$

Função real de n variáveis reais: definição

▶ Uma função real de *n* variáveis reais é uma função

$$f:U\longrightarrow \mathbb{R}$$

em que o domínio U é um subconjunto de \mathbb{R}^n .

A função associa a cada elemento $(x_1, \ldots, x_n) \in U$ um (e um só) número real $f(x_1, \ldots, x_n)$.

Exemplo

1. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(\mathbf{x}, \mathbf{y}) = 2 x y;$$

2. $g: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por

$$g(x, y, z) = x^2 + y^2 + z^2;$$

3. $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$h(x,y) = \operatorname{sen}(xy);$$

4. $m:\mathbb{R}^3\longrightarrow\mathbb{R}$ definida por

$$m(x, y, z) = e^{x^2 + y^2 + z^2}.$$

Notação

$$f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n).$

- Quando
 - $U \subset \mathbb{R}^n$ escrevemos $\mathbf{x} = (x_1, \dots, x_n)$;
 - $U \subset \mathbb{R}^2$ escrevemos $\mathbf{x} = (x, y)$;
 - $U \subset \mathbb{R}^3$ escrevemos $\mathbf{x} = (x, y, z)$.
- ▶ Usando a notação $(x_1, ..., x_n) = \mathbf{x}$, as definições de contradomínio e gráfico de f são formalmente iguais aos conceitos análogos para funções reais de uma variável real.

Contradomínio, gráfico e estruturas de nível

Seja
$$f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$
 e $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$.

▶ O contradomínio de f é o conjunto $CD_f \subset \mathbb{R}$ constituído por todas as imagens de f:

$$CD_f = \{ f(\mathbf{x}) \in \mathbb{R} \mid \mathbf{x} \in U \}.$$

▶ O gráfico de f é o conjunto $G_f \subset \mathbb{R}^{n+1}$ de todos os n+1-uplos $(x_1,\ldots,x_n,f(x_1,\ldots,x_n))$ com $\mathbf{x}\in U$

$$\mathsf{G}_f = \{ (\mathbf{x}, f(\mathbf{x})) \, | \, \mathbf{x} \in U \}.$$

▶ A estrutura de nível $k \in \mathbb{R}$ é o conjunto $f^{-1}(\{k\}) \subset \mathbb{R}^n$ de todos os pontos $\mathbf{x} \in U$ cuja imagem por f é k

$$f^{-1}(\{k\}) = \{\mathbf{x} \in U \mid f(\mathbf{x}) = k\}.$$

Gráfico

$$f: U \subset \mathbb{R} \longrightarrow \mathbb{R}$$

 $G_f = \{(x, f(x)) \in \mathbb{R}^2 : x \in U\}$

$$f: U \in \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $G_f = \{(x, y, f(x, y)) \in \mathbb{R}^3 : (x, y) \in U\}$

Só é possível fazer o esboço do gráfico se o domínio da função estiver contido em \mathbb{R}^2 , isto é, se o gráfico for um subconjunto de \mathbb{R}^3 .

Exercício

Considere a função f definida por

$$f(x,y) = \sqrt{9 - x^2 - y^2}.$$

- (a) Determine e esboce o domínio de f. Calcule f(0,0), f(-3,0), f(1,1) e f(2,-1)
- (b) Determine o contradomínio de f.
- (c) Determine o valor de f para os pontos da circunferência de equação $x^2 + y^2 = 1$.
- (d) Determine os pontos do domínio com imagem 2.
- (e) Esboce o gráfico de f.
- (f) Esboce também o gráfico da função g(x,y) = f(x,y) + 1.

Exemplo: gráficos

Gráfico da função

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}, \qquad f(x,y) = \operatorname{sen}(xy)$$

Plano

•
$$f(x,y) = 3$$

$$2x + 4y + 3z = 12$$

Parabolóide

$$f(x,y) = 4 + x^2 + y^2$$

$$f(x,y) = 5 - x^2 - y^2$$

Parabolóide hiperbólico

$$f(x,y) = x^2 - y^2$$

Cilindro parabólico

$$f(x,y) = y^2$$

Superfícies

De entre as superfícies usaremos frequentemente as superfícies quádricas - gráficos de uma equação de segundo grau em 3 variáveis da forma:

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0.$$

Por translação ou rotação da equação geral chegamos a uma das duas formas standard:

$$Ax^2 + By^2 + Cz^2 + J = 0$$
 ou $Ax^2 + By^2 + Iz = 0$.

Quando na equação de uma superfície quádrica não figura uma das variáveis x,y ou z estamos perante uma superfície cilíndrica.

Superfícies

Superfícies cilíndricas

$$x^2 + y^2 = 4$$

$$x^2 + z^2 = 4$$

Superfície esférica

$$x^2 + y^2 + z^2 = 4$$

Observação

► Todos os gráficos de funções reais de 2 variáveis são superfícies.

Nem todas as superfícies são gráficos de funções reais de duas variáveis.

Estruturas de nível

- ightharpoonup curvas de nível se $U \subset \mathbb{R}^2$;
- ightharpoonup superfícies de nível se $U\subset\mathbb{R}^3$

Exemplo

▶ isotérmicas: linhas que unem pontos com igual temperatura.

Exemplo

▶ Seja $f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $f(x,y) = x^2 + y^2$.

A curva de nível k de f é

$$C_k = f^{-1}(\{k\}) = \{(x, y) \in U : f(x, y) = k\}$$

= $\{(x, y) \in U : x^2 + y^2 = k\}, k \ge 0.$

Exemplo: curvas de nível

• curvas de nível de f(x,y) = x + y e de g(x,y) = 3x + 3y

lacktriangle curvas de nível de $f(x,y)=x^2+y^2$ e de $g(x,y)=1-x^2-y^2$

lacktriangledown curvas de nível de f(x,y)=-xy e de $g(x,y)=y-x^2$

Exemplo: superfícies de nível

▶ Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $f(x, y, z) = x^2 + y^2 + z^2$.

A superfície de nível $k \geq 0$ de f é

$$\{(x,y,z)\in\mathbb{R}^3: x^2+y^2+z^2=k\},$$

isto é, é a superfície esféricas de centro (0,0,0) e raio \sqrt{k} .

