Семинарно упражнение №4

1-ви час: довършваме темата "Кинематика и динамика на ИТТ"

Зад. 37: Тяло с инерчен момент 100 kg.cm² има момент на импулса 10 kg.m²/s. Каква е ъгловата скорост на тялото?

$$I = 100 \text{ kg.cm}^2 = 100.10^{-4} \text{ kg.m}^2$$
; $L = 10 \text{ kg.m}^2/\text{s}$; $\omega = ?$

$$L = I\omega$$
; $\omega = L/I = 10/10^{-2} = 10^3 \text{ rad/s}$

Зад. 38: В началото на пируета на фигуристка на лед големината на инерчния момент е 4 kg.m², а големината на ъгловата скорост е 5 rad/s. Каква ще бъде нейната ъглова скорост, ако инерчният момент намалява 2 пъти?

$$I_1 = 4 \text{ kg.m}^2$$
; $\omega_1 = 5 \text{ rad/s}$; $I_2 = I_1/2$; $\omega_2 = ?$

От ЗЗМИ
$$L_1=L_2$$
; $L_1=I_1\omega_1$; $L_2=I_2\omega_2=(I_1/2)\omega_2$; $I_1\omega_1=I_1\,\omega_2/2$; $\omega_1=\omega_2/2$; $\omega_2=2\omega_1=2.5=10$ rad/s

Зад. 39: Колело започва да се върти с постоянно ъглово ускорение $1 \text{ rad/s}^2 \text{ u}$ след време 10 s моментът на импулса му е $100 \text{ kg.m}^2/\text{s}$. Определете кинетичната енергия на колелото в този момент от време.

$$\omega_0 = 0$$
; $\alpha = 1 \text{ rad/s}_2$; $t = 10 \text{ s}$; $L = 100 \text{ kg.m}^2/\text{s}$; $E_k = ?$

$$E_k = I\omega^2/2$$
; $L = I\omega$; $E_k = L\omega/2$; $\omega = \alpha t$; $E_k = L\alpha t/2 = 10^2.1.10/2 = 5.10^2 J$

Въпроси с избираем отговор: стр. 51 -1; 4; 6; стр. 52 - 8; 9; 10; 11; 15

- 1. Какви линии описват частиците на ИТТ при въртенето му спрямо неподвижна ос?
- а) прави линии; b) елипси; c) окръжности с всевъзможни равнини и центрове; d) окръжности, разположени в равнини, които са перпендикулярни на оста на въртене и с центрове, лежащи на оста; Верен отговор: d)
- 4. Коя от следните формули **HE** се отнася за равномерно движение на тяло по окръжност?

- a) $\omega = 2\pi/T$; b) $\omega = 2\pi f$; c) $\omega = \alpha t$; d) $v = 2\pi R/T$; Bepen otrobop: c)
- 6. Посочете вярното твърдение, отнасящо се за равномерно движение на материална точка по окръжност
- a) $a_n=a_t=0$; b) $a_n\neq 0$; $a_t\neq 0$; c) $a_n\neq 0$; $a_t=0$; d) $a_n=0$; $a_t\neq 0$; **Bepen отговор: c)**
- 8. Коя от посочените формули изразява връзката между линейна и ъглова скорост при равномерно движение по окръжност?
- a) $v = \Delta x/\Delta t$; b) $d\phi/dt = v/R$; c) $d\phi/dt = (x x_0)/R$; d) $\omega = 2\pi/T$; Bepen отговор: b)
- 9. Коя от посочените формули изразява връзката между ъгловата скорост и честотата на въртене?
- a) $\omega = d\phi/dt$; b) f = 1/T; c) $\omega = 2\pi f$; d) $v = 2\pi R/T$; Bepen otrosop: c)
- 10. Материална точка се движи по окръжност с радиус R. Коя от следните формули определя връзката между тангенциалното и ъгловото ускорение?
- а) $a_t = R\alpha$; b) $a_t = R\alpha^2$; c) $a_t = R^2\alpha$; d) $a_t = \alpha\omega^2$; Верен отговор: а)
- 11. Коя от посочените формули изразява връзката между нормалното ускорение и честотата на въртене?
- a) $a_n = 4\pi^2 Rf^2$; b) $a_n = 2\pi Rf^2$; c) $a_n = 2\pi^2 Rf^2$; d) $a_n = 4\pi^2 R/T^2$;

Верен отговор: а)

- 15. Кинетичната енергия при въртене на ИТТ около неподвижна ос се определя от:
- а) силите, действащи върху тялото; b) ъгловата скорост и инерчния момент на тялото; c) потенциалната енергия на тялото;
- d) пълния въртящ момент на външните сили, действащи върху тялото; Верен отговор: b)

Въпроси с избир. отговор: стр. 53 – 18; 20; 23; 24; стр. 54 – 27; 29. 18. Инерчният момент на плътен цилиндър с маса m, радиус R и височина h спрямо ос, намираща се на разстояние b от центъра му на тежестта и успоредна на нея, е:

- а) $mR^2/2$; b) $m(R^2/2 + h^2)$; c) $m(R^2/2 + b^2)$; d) $m(R^2/2 + h^2 b^2)$; **Верен отговор: c)**
- 20. Кинетичната енергия на тяло при въртене е:
- a) $E_k = mv^2/2$; b) $E_k = Iv^2/2$; c) $E_k = I\omega^2$; d) $E_k = I\omega^2/2$;

Верен отговор: d)

- 23. Кое от следните условия трябва да бъде изпълнено, за да имат 2 сили с големини F_1 и F_2 и рамена l_1 и l_2 равни въртящи моменти:
- а) $F_1 > F_2$; $l_1 = l_2$; b) $F_1 < F_2$; $l_1 = l_2$; c) $F_1 = F_2$; $l_1 = l_2$; d) $F_1 > F_2$; $l_1 > l_2$; Верен отговор: c)
- 24. Големината на въртящия момент на сила с големина F, чиято приложна точка се намира на разстояние г от оста на въртене на тялото и направлението й сключва ъгъл α с оста на въртене, се определя от формулата:
- a) $M = Frsin\alpha$; b) M = Fr; c) $M = Frtan\alpha$; d) $M = rFcos\alpha$;

Верен отговор: а)

- 27. Основното уравнение при въртеливи движения се изразява с формулата:
- а) $M = I\alpha$; b) F = ma; c) F = mg; d) $M = \sum M_i$; Верен отговор: a)
- 29. Кой от следните изрази е вярната формула за величината момент на импулс на тяло?
- а) $L = I\alpha$; b) $L = I\omega$; c) L = Iv; d) $L = m\alpha$; Bерен отговор: b)
- 2- ри час: започваме нова тема

"Молекулна физика и термодинамика" (МФТ) - 3 уч. часа

В мол. физика и термодинамика се изучават обекти, които са изградени от огромен брой еднотипни частици и се наричат макроскопични системи (макросистеми). Поради това, че макросистемите съдържат еднакви частици, ние не се интересуваме от поведението на отделните частици, а от тяхното общо поведение като едно цяло. За характеризиране на общото поведение на

частиците се въвеждат три основни параметъра, наречени макроскопични параметри: налягане P(N/m² = Pa), обем V(m³) и температура Т(К). В ежедневието обикновено измерваме температурата в градуси Целзий (t°C), но в МФТ ще използваме температурната скала на Келвин (К). Всяка температура в градуси Целзий се превръща в градуси Келвин чрез следното равенство:

 $TK = t^0C + 273$. По големина градусите в скалата на Целзий и Келвин са еднакви, поради което $\Delta t^0C = \Delta TK$.

Най–простата макросистема е **идеалният газ** – собственият обем на молекулите и потенциалната енергия на взаимодействието между тях се пренебрегват, т.е. в идеалния газ се отчитат само кинетичните енергии на газовите молекули ($E_k \neq 0$, а $E_p = 0$).

I.Експериментални газови закони. Основно уравнение на молекулнокинетичната теория (МКТ) за идеален газ

Експериментално установените газови закони определят зависимостта между основните макроскопични параметри при различни процеси.

- 1. Закон на Бойл Мариот отнася се за изотермен процес (T=const), който протича в дадена система газ с маса m, съдържаща определен брой частици N (N = const): PV = const; за две състояния на системата: $P_1V_1 = P_2V_2$.
- 2. Закон на Шарл отнася се за изохорен процес (V = const), който протича в дадена система газ с маса m, съдържаща определен брой частици N (N = const): P/T = const, или за две състояния на газа: $P_1/T_1 = P_2/T_2$.
- 3. Закон на Гей-Люсак отнася се за изобарен процес (P=const), който протича в система газ с маса m, съдържаща определен брой частици N (N = const): V/T = const; за две състояния на системата: $V_1/T_1 = V_2/T_2$.
- 4. Закон на Клапейрон Менделеев (уравнение за състоянието на идеален газ): PV = mRT/μ, където m е масата на газа, μ моларната му маса, величината m/μ определя броя молове,

съдържащи се в масата m, а R = 8,31 J/(mol.K) е универсалната газова константа. За система, в която се съдържа 1 mol газ, уравнението на Клапейрон – Менделеев ще бъде PV = RT. Последният израз е известен като уравнение за състоянието на 1 mol газ.

II. Основно уравнение на молекулно-кинетичната теория за идеален газ

Основното уравнение на МКТ се отнася за идеален едноатомен газ, съдържащ N на брой прости молекули, които са изградени от еднакви атоми. (Газът, който разглеждаме, се поставя в съд с определена форма и заема обема V на съда.) То определя връзката между обема на газа, неговото налягане и кинетичната енергия на постъпателното движение на молекулите му:

$$PV = 2N < E_{ki} > /3 = 2E_k/3$$
, (1)

където $\langle E_{ki} \rangle$ е средната кинетична енергия на една газова молекула, а E_k е пълната кинетична енергия на газа. Изразът (1) е известен като основно уравнение на МКТ за идеален едноатомен газ.

 E_k (за 1 mol газ) = 3RT/2, където R е универсалната газова константа, а T - термодинамичната температура на газа.

<E $_{ki}>=3kT/2$, където $k=1,38.10^{-23}$ J/K е константата на Болцман. Ако заместим формулата за <E $_{ki}>$ в основното уравнение ще получим нов израз, определящ връзката между основните параметри P, V и T:

$$PV = (2/3)N(3/2)kT = NkT; PV = NkT. (2)$$

Преобразуваме горния израз като прехвърляме обема на газа в дясно:

$$P = (N/V)kT = nkT; P = nkT, (3)$$

където n е концентрацията на газовите молекули (броят на молекулите в единица обем).

Задачи: стр. 63 – 4; 6; 11; 12; 13; **Въпроси с изб. отговор**: стр. 61 – 5;

Зад. 4: Колко молекули се съдържат в 1m³ въздух при налягане 150 kPa и температура 27°C?

$$V = 1m^3$$
; $P = 150 \text{ kPa} = 150.10^3 \text{ Pa}$; $T = 27 + 273 = 300 \text{ K}$; $N = ?$

$$PV = NkT; N = PV/kT = 15.10^4.1/1,38.10^{-23}.3.10^2 = (15/4,14).10^{25} = 3,6.10^{25}.$$

Зад. 6: Определете пълната кинетична енергия на постъпателното движение на молекулите, които се съдържат в 1 mol и 1 kg хелий при температура 727°C (моларната маса на хелия е 0,004 kg/mol).

$$T = 727 + 273 = 10^3 \text{ K}; \ \mu = 4.10^{-3} \text{ kg/mol}; \ m = 1 \text{ kg}; \ E_k = ?$$

 $E_k = 3RT/2$ (3a 1 mol ras m/ $\mu = 1$) = 1,5.8,31.10³ = 12,5.10³ J;

$$E_k = (m/\mu)RT(3/2) = 0.25.10^3.12.5.10^3 = 3.125.10^6 J$$
 (3a m = 1kg).

Зад. 11: В балон с обем 100 литра при нормални условия ($P_0 = 101 \text{ kPa}$, масата на газа в балона.

V=100.10⁻³=0,1 m³; P₀=101.10³ Pa; T₀=273 K;
$$\mu$$
 = 2.10⁻³ kg/mol; m=?

$$PV = (m/\mu)RT$$
; $m = PV\mu/RT = 10,1.10^4.10^{-1}.2.10^{-3}/8,31.273 = 0,0089$ kg.

Зад. 12: При изохорен процес температурата на идеален газ се понижава с 200° С, а налягането на газа намалява 2 пъти. Каква е началната температура на газа?

 T_1 (начална температура) = ?; $T_2 = T_1 - 200$; P_1 - начално налягане;

 $P_2 = P_1/2$; изохорен процес: V = const; $\Delta t^0 C = \Delta T K$;

$$P_1/T_1 = P_2/T_2; \ P_1/T_1 = P_1/2(T_1-200); T_1 = 2(T_1-200); T_1 = 400 \ K.$$

Зад. 13: Налягането на въздуха в автомобилна гума с вътрешен обем

20 dm³ e 3 пъти по-голямо от атмосферното налягане. Какъв обем ще има този въздух при същата температура, ако налягането му стане равно на атмосферното?

T = const (изотермен процес); $P_1 = 3P_0$; $P_2 = P_0$; $V_1 = 20.10^{-3} \text{ m}^3$; $V_2 = ?$

$$P_1V_1 = P_2V_2$$
; $3P_0.V_1 = P_0.V_2$; $V_2 = 3V_1$; $V_2 = 60.10^{-3}$ m³ = 6.10⁻² m³.

Зад. 17: При нагряване на газ с 1 К при постоянно налягане, обемът му нараства с 1/350 част от началния. Определете началната температура на газа.

 $P = const; T_1 - начална температура; T_2 = T_1 + 1; V_1 - начален обем;$

$$V_2 = V_1 + V_1/350 = V_1(1 + 1/350); T_1 = ?$$

$$V_1/T_1=V_2/T_2$$
; $V_1/T_1=V_1(1+1/350)/T_1+1$; $T_1(1+1/350)=T_1+1$; $T_1=350$ K.

Въпроси с избираем отговор: стр. 61 – 5; стр. 62 – 6; 7; 8; 10; 11; 12; 13.

- 5. Кой от посочените изрази е основното уравнение на МКТ за идеален газ?
- a) $\langle E_{ki} \rangle = 3NT/2V$; b) $E_k = 2N \langle E_{ki} \rangle / 3V$; c) PV = 2RT/3; d) $P = 2N \langle E_{ki} \rangle / 3V$; Верен отговор: d)
- 6. Посочете верния израз за средната кинетична енергия на една молекула от едноатомен идеален газ:
- a) $\langle E_{ki} \rangle = 3RT/2$; b) $\langle E_{ki} \rangle = kT/2$; c) $\langle E_{ki} \rangle = 3kT/2$; d) $\langle E_{ki} \rangle = RT/2$; Bepen отговор: c)
- 7. Кой от следните изрази е уравнение за състоянието на идеален газ?
- а) $mPV/\mu = R$; b) $PV = mRT/\mu$; c) $PV = \mu RT/m$; d) $RV = mPT/\mu$; **Верен отговор: b)**
- 8. Кой от следните изрази е уравнението за състояние на 1 mol идеален газ?
- a) PV = const; b) P/T = const; c) PV = RT; d) $PV = 2N < E_{ki} > /3$;

Верен отговор: с)

- 10. Ако увеличим 2 пъти температурата на идеален газ при изобарен процес:
- а) обемът му намалява 2 пъти; b) обемът му се увеличава 2 пъти;
- с) налягането се увеличава 2 пъти; d) обемът му се увеличава 4 пъти; Верен отговор: b)
- 11. Коя от следните формули описва изотермен процес в

идеален газ?

a) V/T = const; b) P/T = const; c) PV = const; d) $PV^{\gamma} = const$;

Верен отговор: с)

- 12. Ако при изотермен процес обемът на идеалния газ се увеличи 2 пъти, налягането:
- а) намалява 2^{γ} пъти; b) намалява 2 пъти; c) се увеличава 2 пъти; d) не се променя; **Верен отговор: b)**
- 13. Кой от следните изрази се отнася за изохорен процес в идеален газ?
- a) PV = const; b) V/T = const; c) P/T = const; d) PT = const; Верен отговор: c)