1 Estimation non-paramétrique

Moments à savoir

$$\mu'_{k} = E\left[X^{k}\right]$$

$$\mu_{k} = E\left[(X - \mu)^{k}\right]$$

$$CV = \frac{\sigma}{E\left[X\right]}$$

$$\gamma_{1} = \frac{\mu_{3}}{\sigma^{3}}$$

$$\gamma_{2} = \frac{\mu_{4}}{\sigma^{4}}$$

Fonction empirique

$$F_n(x) = \frac{1}{n} \sum_{j=1}^{n} I_{\{x_j \le x\}}$$

$$f_n(x) = \frac{1}{n} \sum_{j=1}^{n} I_{\{x_j = x\}}$$

$$nF_n(x) \sim bin(n, F(x))$$

$$E[F_n(x)] = \frac{nF_n(x)}{n} = F_n(x)$$

$$\widehat{Var}[F_n(x)] = \frac{nF_n(x)(1 - F)n(x)}{n^2}$$

$$= \frac{F_n(x)(1 - F_n(x))}{n}$$

$$\widehat{Var}[S_n(x)] = \frac{S_n(x)(1 - S_n(x))}{n}$$

$$F_n(x) = \begin{cases} 0, & x < y_1 \\ 1 - \frac{r_j}{n}, & y_{j-1} \le x < y_j, j = 2, ..., k \\ 1, & x > y_k \end{cases}$$

Estimateur de Nelson-Aalen Estimateur de Kaplan-Meier

2 Fonction génératrice cumulante

Soit la fonction génératrice des moments $M_X(t)$, telle que

$$M_X(t) = \mathbb{E}\left[e^{tX}\right]$$

Alors, la fonction génératrice cumulante $K_X(t)$ est définie comme

$$K(t) = \frac{\partial}{\partial t} \ln M_X(t)$$

De plus, la fonction génératrice cumulante a les propriétés suivantes :

$$K'(t)\Big|_{t=0} = E[X]$$
 $K''(t)\Big|_{t=0} = Var(X)$

3 Frequentist estimation

Méthode des moments

On résoud p équations à p inconnus, telles que

$$\hat{\mu}'_k = \mu'_k$$

Méthode des percentiles

On résoud p équations à p inconnus (paramètres) telles que

$$F_n(\hat{\pi}_{g_i}) = g_i \quad i = 1, ..., p$$

où $\hat{\pi}_{g_i}$ est le g_i^{e} quantile de la fonction empirique.

Smoothed empirical estimate

Parfois, le quantile recherché tombe entre 2 *marches* de la fonction empirique. On utilise l'approximation linéaire suivante avec les statistiques d'ordre $X_{(i)}$:

$$\hat{\pi}_g = (1 - h)X_{(j)} + hX_{(j+1)}$$

avec
$$j = |(n+1)g|$$
 et $h = (n+1)g - j$.

Méthode du maximum de vraisemblance (MLE)

Données complètes

On définit la fonction de vraisemblance $L(\theta)$ telle que

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

Et la fonction de log-vraisemblance $\ell(\theta)$

$$\ell(\theta) = \sum_{i=1}^{n} \ln f(x_i; \theta)$$

L'estimateur du maximum de vraisemblance θ maximiser $L(\theta)$ ou $\ell(\theta)$, i.e.

$$\left. \frac{\partial}{\partial \theta} \ell(\theta) \right|_{\theta = \hat{\theta}_{MLE}} = 0$$

Données groupées

Si les données sont groupées, alors on utilise une forme plus générale de la fonction de vraisemblance :

$$L(\theta) = \prod_{j=1}^{k} \left(F_X(c_j; \theta) - F_X(c_{j-1}; \theta) \right)^{n_j}$$

où F_X est la fonction de répartition théorique de la distribution qu'on suppose la distribution de notre estimateur MLE. Si les données sont censurés à la classe c_{j-1} , alors on utilise $(1 - F_X(c_{j-1};\theta))$.

Variance des estimateurs et intervalle de confiance

Estimation de la variance de $\hat{\theta}$

L'information de Fisher $I(\theta)$ est définie par

$$I(\theta) = -\mathrm{E}\left[\frac{\partial^2}{\partial \theta^2}\ell(\theta)\right] = \mathrm{E}\left[\left(\frac{\partial}{\partial \theta}\ell(\theta)\right)^2\right]$$

Si l'information n'est pas connue, on peut l'estimer avec *l'information observée* :

$$\hat{I}(\hat{\theta}) = \sum_{i=1}^{n} \left(\frac{\partial}{\partial \theta} \ln f(x_i; \theta) \Big|_{\theta = \hat{\theta}} \right)^2 = -\sum_{i=1}^{n} \frac{\partial^2}{\partial \theta^2} \ln f(x_i; \theta) \Big|_{\theta = \hat{\theta}}$$

$$\operatorname{Var}\left(\hat{\theta}\right) = I(\theta)^{-1}$$

Intervalle de confiance pour $\hat{\theta}$

Lorsque $n \to \infty$, $\hat{\theta} \sim N(\theta, \text{Var}(\hat{\theta}))$. Alors, on peut trouver un IC pour l'estimateur au seuil $1 - \alpha$:

$$\theta \in \left[\hat{\theta} \pm z_{\alpha/2} \sqrt{\operatorname{Var}(\hat{\theta})}\right]$$

Méthode delta pour estimer la variance d'une transformation de $\hat{\theta}$

Lorsqu'on veut calculer la variance d'une autre quantité que le paramètre $\hat{\theta}$ lui-même, on peut utiliser la méthode Delta:

$$\operatorname{Var}\left(h(\hat{\theta})\right) = \left(\frac{\partial}{\partial \theta}h(\theta)\right)^{2} \operatorname{Var}\left(\hat{\theta}\right)$$

Dans un contexte multivarié, où $\hat{\theta}$ est un vecteur d'estimateurs, alors on a

$$\operatorname{Var}\left(h(\hat{\theta})\right) = \boldsymbol{h}^{\top} I(\theta)^{-1} \boldsymbol{h}$$

où h est le vecteur des dérivées partielle de $h(\theta)$:

$$m{h} = egin{bmatrix} rac{\partial}{\partial heta_1} h(heta) \ rac{\partial}{\partial heta_2} h(heta) \ rac{\partial}{\partial heta_k} h(heta) \end{bmatrix}$$

Test du rapport de vraisemblance (LRT)

On veut tester si le modèle réduit avec θ_0 , qui est une *bonne* simplification de θ_1 , le modèle complet. Alors, on teste si la différence dans les log-vraisemblance est significative :

$$T = 2 \left(\ell(\theta) - \ell(\theta_0) \right) \sim \chi^2_{dl_1 - dl_0, 1 - \alpha}$$

où dl_1 est le nombre de paramètres non-fixés du modèle complet et dl_0 le nombre de paramètres non-fixés du modèle réduit. On va rejeter H_0 si $T > \chi^2_{dl_1 - dl_0, 1-\alpha}$ (test unilatéral), en concluant que le modèle réduit n'est pas une bonne simplification du modèle de l'hypothèse alternative.

Ainsi, on peut calculer la variance de l'estimateur $\hat{\theta}_{MLE}$ telle Construction d'un intervalle de confiance par inver- Critères de sélection sion du LRT

Si θ_0 est un paramètre adéquat pour le modèle réduit, alors la statistique T du LRT ne dépassera pas le quantile théorique $\chi_{dl,1-\alpha^2}$. Alors, on veut trouver $\hat{\theta}_0$ tel que

$$2\left(\ell(\theta) - \ell(\theta_0)\right) \le \chi^2_{dl_1 - dl_0, 1 - \alpha}$$

On trouvera une équation du genre $g(\theta) \leq 0$, où g sera une fonction avec deux racines définies, qui correspondent aux bornes de l'intervalle de confiance pour les valeurs de $\hat{\theta}_0$:

Sélection de modèles

Chi-Square Goodness-of-fit

On veut valider l'adéquation du modèle qu'on propose avec ce test. On calcule la quantité X^2 :

$$X^{2} = \frac{\sum_{j=1}^{k} (E_{j} - O_{j})^{2}}{E_{j}}$$

où $E_i = n\hat{p}_i$ est le nombre de valeurs qu'on s'attend à avoir dans la i^{e} classe et $O_{i} = np_{ni}$ le nombre d'observations dans la *i*^e classe. On peut prouver que

$$X^2 \sim \chi^2_{k-p-1}$$

On peut aussi faire le test LRT pour valider l'adéquation aussi.

Pour chosir entre plusieurs modèles, on peut, entre autres, se baser sur les critères suivants :

- 1. la plus faible valeur pour le test Kolmogorov-
- 2. la plus faible valeur pour le test Anderson-Darling;
- 3. la plus faible valeur pour le test Goodness-of-fit;
- 4. la plus haute valeur pour la p-value du test Goodness-of-fit;
- 5. la plus haute valeur pour la fonction de vraisemblance à son maximum.

Estimation bayésienne

Distribution a priori

Soit un paramètre θ d'une distribution quelconque. Afin de réaliser une estimation Bayésienne, on connaît a priori la distribution que prend le paramètre θ , qu'on dénote par $\pi(\theta)$.

Alors, notre distribution des pertes est conditionnée par rapport à la valeur que θ prend (i.e. $f_{X|\Theta}$).

Distribution a posteriori

La distribution a posteriori nous permet de savoir avec quelle probabilité non-nulle notre paramètre θ peut prendre une certaine valeur, sachant qu'on a observé certains x, qu'on dénote comme $\pi_{\Theta|X}(\theta|x)$:

$$\pi_{\Theta|X}(\theta|x) = \frac{f_{\Theta,X}(\theta,x)}{f_{X}(x)} = \frac{f_{X|\Theta}(x|\theta)\pi(\theta)}{\int f_{X|\Theta}(x|\theta)\pi(\theta)d\theta} \quad (1)$$

L'idée est de remplacer les différentes distributions dans l'Équation 1, et en déduire une distribution avec une paramétrisation différente ^a.

a. Souvent, la distribution a posteriori aura la même distribution que celle a priori, mais avec des paramètres diffé-

L'estimateur Bayésien L'estimateur Bayésien est défini comme l'espérance du paramètre θ , sachant la distribution de X. En d'autres mots, on veut l'espérance de la distribution *a posteriori* :

$$\hat{\theta}_{BAYES} = E\left[\Theta|X\right] \tag{2}$$

6 Rappel de probabilité

Certaines lois à savoir

Loi	$Pr(X = x)$ ou $f_X(x)$	E[X]	Var(X)	$M_X(t)$
Bin(n,p)	$\binom{n}{x}p^x(1-p)^{n-x}$	пр	np(1-p)	$\left((1-p) + p^t \right)^n$
$Pois(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$e^{\lambda(t-1)}$
$Gamma(\alpha,\lambda)$	$\frac{\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)^{\alpha}$
Normale (μ, σ^2)	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$

Rappels d'algèbre linéaire

Matrice transposée

la matrice transposée est définie par A^{\top} , telle que

$$A^{\top} = \begin{bmatrix} a & -c \\ -b & d \end{bmatrix}$$

Déterminant d'une matrice

On peut calculer le déterminant $\det(A)$ de la matrice A tel que

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Inverse d'une matrice

L'équivalent de l'opération $\frac{1}{A}$ en algèbre linéaire est de calculer la matrice inverse de A^{-1} , telle que

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} a & -c \\ -b & d \end{bmatrix}$$

où on multiple par la matrice adjointe de A. Il faut normalement calculer les cofacteurs, mais le cas à 2 dimensions est un cas simplifié.