

From Optimization of industrial Crystallizers to Design of New Equipment using Advanced Modelling Tools

M. Oullion, PhD R&D Process Engineering Solvay

Who are we?

A major global player in Chemicals with compelling strengths

Created by Ernest Solvay in 1863, Solvay is a **Global** company, with historical anchorage in Europe, and headquartered in Brussels.

Our strengths

- 90% of sales in businesses among the top 3 global leaders
- A balanced portfolio of activities, directed at growth regions
- A culture of sustainability, innovation and operational excellence

€9.9 bn
NET SALES

€1,663 bn Adjusted REBITDA

117
INDUSTRIAL SITES

15 MAJOR R&I

29,400 EMPLOYEES 55 COUNTRIES

Investments, energy and quality: The key drivers of process improvements

- Reduce the investments costs
 - Increase of the existing equipment capacity ("debottlenecking")
 - intensification of new equipment
 - reuse of existing devices ("retrofitting")

- Reduce the energy consumption
- better control of heat transfers, continuous process

Best Product

gCRYSTAL: an opportunity advanced crystallization mode Why modelling crystallization? Major impact on most of the processes involving solid Complex operation Why using gCRYSTAL? To avoid building a full "in-house" population balance code M. Oullion

Outline

- Building a batch crystallization model using gCRYSTAL
 - Data acquisition
 - Model & Kinetic parameters estimation
 - Kinetic model development
- Optimizing an industrial crystallizer capacity and energy consumption
- Towards the Design of New Crystallizers

A direct measurement of the growth rate kinetic

Growth rate function of the supersaturation

Power law kinetic

Monitoring temperature, concentration and crystal size during a batch cryst.

- 1- MSMPR
- 2- Mixell TT impeller
- 3- Cooling bath
- 4- Computer
- 5- Sampling

Effects of changing the temperature profile

Supersaturation profiles

Crystal size

Outline

- Building a batch crystallization model using gCRYSTAL
 - Data acquisition
 - Model & Kinetic parameters estimation
 - Kinetic model development
- Optimizing an industrial crystallizer capacity and energy consumption
 - heat exchange
 - modelling approach of the scaling mechanism
- Towards the Design of New Crystallizers

gCRYSTAL model: a fast way to simulate a batch crystallization

"Bulid-in" kinetics from gCRYSTAL were used

1^{ary} nucleation

$$\mathbf{r}_{N1} = \mathbf{A}_n \cdot e^{-\frac{\mathbf{B}_n}{\ln(c/c^*)}}$$

Linear growth rate

$$G = \mathbf{k}_c \cdot \frac{2 \cdot M_\omega}{\rho} \left(\frac{c - c *}{c *}\right)^{\mathbf{j}_c}$$

Entering the experimental data

Good estimation of the kinetc parameters using the optimization feature

Good match between simulated and experimental concentration profiles for different cooling rate

Outline

- Building a batch crystallization model using gCRYSTAL
 - Data acquisition
 - Model & Kinetic parameters estimation
 - Kinetic model development
- Optimizing an industrial crystallizer capacity and energy consumption
 - heat exchange
 - modelling approach of the scaling mechanism
- Towards the Design of New Crystallizers

Crystal Habit

Crystals look like aggregates

Agglomeration model

Addition of an Aggregation kinetics (Mumtaz)

Agglomeration kernel $\beta_{agg} = \left(\sqrt{\frac{8\pi\varepsilon}{15\nu}} \cdot \overline{d}_{3.0}^{3}\right) \cdot \frac{(A_{50}G)/(\varepsilon\rho\overline{d}_{3.0}^{2})}{1 + (A_{50}G)/(\varepsilon\rho\overline{d}_{3.0}^{2})}$

Collision rate Agglomeration efficiency

- L length of the line of contact between two collided crystals
- σ^* apparent yield strength
- G linear growth rate of crystals
- ε energy dissipation rate
- ρ liquid density
- $\bar{d}_{3,0}$ 3,0 mean particle size

Fitting parameter

Particle size prediction with the new model

Good match!!

Outline

- Building a batch crystallization model using gCRYSTAL
 - Data acquisition
 - Model & Kinetic parameters estimation
 - Kinetic model development
- Optimizing an industrial crystallizer capacity and energy consumption
 - heat exchange
 - modelling approach of the scaling mechanism
- Towards the Design of New Crystallizers

Energy cost for cooling crystallization

The temperature of the cooling water has to be controlled for better economical results

How to control the heat exchange?

$$\Phi = U \cdot A \cdot (T_{cryst.} - T_{cool.})$$

Modeling of a heat controlled crystallizer

T _{cryst}	T _{cryst} -T _{cool}
T1	ΔΤ1
T2	ΔΤ2
Т3	ΔΤ3
•••	

Coupling heat balance and population balance

gCRYSTAL developper version

Instead of being directly controled by a T° profile, the crystallization is controlled by the **heat output profile**

Outline

- Building a batch crystallization model using gCRYSTAL
 - Data acquisition
 - Model & Kinetic parameters estimation
 - · Kinetic model development
- Optimizing an industrial crystallizer capacity and energy consumption
 - heat exchange
 - modelling approach of the scaling mechanism
- Towards the Design of New Crystallizers

What is scaling?

Initial T°

Beginning of crystallization

Final T°

End of crystallization

$$\Phi = \mathbf{U} \cdot A \cdot \Delta T$$

Scaling affects the heat exchange coefficient

How to model scaling?

$$U(t) = \frac{U_0}{1 + \mathbf{f} \cdot e(t)}$$

U: heat exchange coefficient

 U_0 : Initial heat exchange coefficient

e: Scaling thickness

f: Thermal conductivity factor

$$e(t)=f(\sigma_{s,} \sigma_{c})$$

With local supersat. σ_c

Implementation in gCRYSTAL Developer version

Evolution of the heat exchange coefficient

Good match between simulated and real Heat Exchange Coefficient

New cooling profile to avoid scaling

Outline

- Building a batch crystallization model using gCRYSTAL
 - Data acquisition
 - Model & Kinetic parameters estimation
 - Kinetic model development
- Optimizing an industrial crystallizer capacity and energy consumption
 - heat exchange
 - modelling approach of the scaling mechanism
- Towards the Design of New Crystallizers

Prospects: New crystallizer configurations

Conclusions

- Thanks to a simple "Step-by-Step" approach we managed to simulate the evolution with time of the supersaturation and of the DTC for a batch cooling crystallization
- The kinetic laws available in gCRYSTAL were sufficient to produce a satisfying model
- Using the developer version of gCRYSTAL, a specific heat exchange model was added to the initial one.
- This allowed us to simulate the effect of the scaling mechanism and later to optimize the cooling profile. The production capacity was increased by 10% and 15% of the electricity consumption was saved.

Aknowledgments

Hassan Mumtaz, PhD, Senior Consultant at PSE, Solids Business

P. Carvin, Solvay - Expert in solid processes

E. Chateigner, Solvay - Process Engineering Technician

Solar Impulse Pioneering sustainable chemistry

Crystallization mechanisms

Kinetic models considered in a 1st step

"Bulid-in" kinetics from gCRYSTAL were used

1 ary nucleation
$$r_{N1} = A_n \cdot e^{-\frac{B_n}{\ln(C/C^*)}}$$

Linear growth rate
$$G = \mathbf{k}_c \cdot \frac{2 \cdot M_{\omega}}{\rho} \left(\frac{c - c *}{c *}\right)^{\mathbf{j}_c}$$

A_n :	Pre-exponential factor of the primary nucleation	[s-1]
B_n :	Exponential factor of the primary nucleation	[-]
<i>c</i> :	Solute concentration	$[kg.kg^{-1}]$
c*:	Solubility in the crystallization medium	$[kg.kg^{-1}]$
k_c :	Crystal growth factor	
j_c :	Crystal growth supersaturation exponent	
<i>n</i> :	Distribution function	$[m^{-1}]$
M_w :	Molar mass of the crystals	[kg.mol ⁻¹]
t:	Time	[s]
L:	Crystals characteristic size	[m]
<i>G</i> :	Crystal growth rate	$[m.s^{-1}]$
R_{NI} :	Distribution of the primary nucleation rate	$[m^{-1}.s^{-1}]$

Outline

- Building a batch crystallization model using gCRYSTAL
 - Data acquisition
 - Model & Kinetic parameters estimation
 - Kinetic model development
- Optimizing an industrial crystallizer capacity and energy consumption
 - heat exchange
 - modelling approach of the scaling mechanism
- Towards the Design of New Crystallizers

Fitting the experimental results

Effects of changing the temperature profile

Temperature profiles

Supersaturation profiles

Different crystallization intensities

Experimental results: Evolution of the particle size

Decrease of the crystal size with the increase of the cooling rate

Setting-up the parameter estimation

Setting-up the parameter estimation

