Realistic Blur Synthesis for Learning Image Deblurring

Jaesung Rim, Geonung Kim, Jungeon Kim, Junyong Lee, Seungyong Lee, and Sunghyun Cho

POSTECH, Pohang, Korea

ECCV 2022

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Introduction

• First present RSBlur, that provides pairs of a real blurred image and a sequence of sharp images

• Then, using the dataset, we **analyze** the difference between the generation process of real and synthetic blurred images

• Present a realistic blur synthesis method based on the analysis

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Framework

Framework

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Analysis

- simply average sharp images do not have such saturated pixels
- Even for high-end sensors, noise cannot be avoided due to the statistical **property of photons** and the **circuit readout process**.
- **ISPs** perform various operations, including white balancing, color correction, demosaicing, and nonlinear mapping using CRFs, which affect the noise distribution and introduce distortions

 8

Frame Interpolation

• Increase nine sharp images to 65 images using ABME

sRGB2Lin & Averaging

- Convert the images into the linear space, and average them to precisely mimic the real blur generation process.
- While the actual accumulation of incoming light happens in the camera RAW space, averaging in the **camera RAW space and in the linear space are equivalent** to each other as the two spaces can be converted using a linear transformation.

Saturation Synthesis

$$M_i(x, y, c) = \begin{cases} 1, & \text{if } S_i(x, y, c) = 1\\ 0, & \text{otherwise,} \end{cases}$$
 (1)

$$B_{sat} = \text{clip}(B_{syn} + \alpha M_{sat}) \tag{2}$$

Saturation Synthesis

$$B_{oracle}(x, y, c) = \begin{cases} B_{real}(x, y, c), & \text{if } M_{sat}(x, y, c) > 0 \\ B_{syn}(x, y, c), & \text{otherwise.} \end{cases}$$
(3)

Conversion to RAW

- reflect the distortion introduced by the camera ISP
- Apply the inverse of each step of our ISP, including inverse color correction transformation, mosaicing, and inverse white balance except for the CRF step (non-linear) in the reverse order.

Noise Synthesis

$$B_{noisy} = \beta_1 (I + N_{shot}) + N_{read}$$

• photon shot noise

$$(I + N_{shot}) \sim \mathcal{P}\left(\frac{B_{raw}}{\beta_1}\right) \beta_1,$$

circuit readout noise

$$N_{read} \sim \mathcal{N}(0, \beta_2)$$

For analysis

$$B_{noisy} = B + N_{gauss}$$

Applying Camera ISP

- apply the camera ISP to the noisy image to obtain a blurred image in the sRGB space
- consists of white balance, demosaicing, color correction, and CRF steps

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Blur Synthesis Methods							PSNR / SSIM			
No.	Real	CRF	Interp.	Sat.	Noise	ISP	All	Saturated	No Saturated	
1	✓						32.53 / 0.8398	31.20 / 0.8313	33.78 / 0.8478	
2		Linear					30.12 / 0.7727	28.67 / 0.7657	31.47 / 0.7793	
3		sRGB					30.90 / 0.7805	29.60 / 0.7745	32.13 / 0.7861	
4		sRGB			\mathbf{G}		31.69 / 0.8258	30.18 / 0.8174	33.11 / 0.8336	
5		$\mathbf{s}\mathbf{R}\mathbf{G}\mathbf{B}$	\checkmark				30.20 / 0.7468	29.06 / 0.7423	31.27 / 0.7511	
6		$\mathbf{s}\mathbf{R}\mathbf{G}\mathbf{B}$	\checkmark		\mathbf{G}		31.77 / 0.8275	30.28 / 0.8194	33.17 / 0.8352	
7		sRGB	\checkmark	Oracle	\mathbf{G}		31.89 / 0.8267	30.58 / 0.8191	33.12 / 0.8338	
8		sRGB	\checkmark	Ours	\mathbf{G}		31.83 / 0.8265	30.47 / 0.8187	33.12 / 0.8339	
9		sRGB	\checkmark	Oracle	G+P	\checkmark	32.06 / 0.8315	30.79 / 0.8243	33.25 / 0.8384	
10		sRGB	✓	Ours	G+P	✓	32.06 / 0.8322	30.74 / 0.8248	33.30 / 0.8391	

Blur Synthesis Methods							PSNR / SSIM			
No.	Real	CRF	Interp.	Sat.	Noise	ISP	All	Saturated	No Saturated	
1	√						32.53 / 0.8398	31.20 / 0.8313	33.78 / 0.8478	
2		Linear					30.12 / 0.7727	28.67 / 0.7657	31.47 / 0.7793	
3		$\mathbf{s}\mathbf{R}\mathbf{G}\mathbf{B}$					30.90 / 0.7805	29.60 / 0.7745	32.13 / 0.7861	
4		sRGB			\mathbf{G}		31.69 / 0.8258	30.18 / 0.8174	33.11 / 0.8336	
5		sRGB	\checkmark				30.20 / 0.7468	29.06 / 0.7423	31.27 / 0.7511	
6		sRGB	\checkmark		\mathbf{G}		31.77 / 0.8275	30.28 / 0.8194	33.17 / 0.8352	
7		sRGB	\checkmark	Oracle	\mathbf{G}		31.89 / 0.8267	30.58 / 0.8191	33.12 / 0.8338	
8		sRGB	\checkmark	Ours	\mathbf{G}		31.83 / 0.8265	30.47 / 0.8187	33.12 / 0.8339	
9		sRGB	\checkmark	Oracle	G+P	\checkmark	32.06 / 0.8315	30.79 / 0.8243	33.25 / 0.8384	
10		sRGB	✓	Ours	G+P	✓	32.06 / 0.8322	30.74 / 0.8248	33.30 / 0.8391	

(a) Blurred image PSNR/SSIM

(b) Method 1 29.81/0.8066

(c) Method 5 26.87/0.7129

(d) Method 6 27.45/0.7938

(e) Method 10 29.38/0.8027

(f) Ground truth

		Blur Synthesis	PSNR / SSIM					
No.	Training set	CRF	Interp.	Sat.	Noise	ISP	$RealBlur_J$	BSD_All
1	$RealBlur_{-}J$						30.79 / 0.8985	29.67 / 0.8922
2	$\mathrm{BSD}_{-}\mathrm{All}$						28.66 / 0.8589	33.35 / 0.9348
3	GoPro	Linear					28.79 / 0.8741	29.17 / 0.8824
4	GoPro	sRGB					28.93 / 0.8738	29.65 / 0.8862
5	GoPro	sRGB	\checkmark				28.92 / 0.8711	30.09 / 0.8858
6	GoPro	sRGB	\checkmark		\mathbf{G}		29.17 / 0.8795	31.19 / 0.9147
7	GoPro	sRGB	\checkmark	Ours	\mathbf{G}		29.95 / 0.8865	31.41 / 0.9154
8	GoPro	sRGB, A7R3	\checkmark	Ours	G+P	A7R3	30.32 / 0.8899	30.48 / 0.9060
9	$GoPro_{-}U$	Linear					29.09 / 0.8810	29.22 / 0.8729
10	$GoPro_U$	sRGB					29.28 / 0.8766	29.72 / 0.8773
11	$GoPro_U$	sRGB			\mathbf{G}		29.50 / 0.8865	30.22 / 0.8973
12	$GoPro_U$	sRGB		Ours	\mathbf{G}		30.40 / 0.8970	30.31 / 0.8995
13	$GoPro_{-}U$	sRGB, A7R3		Ours	G+P	A7R3	30.75 / 0.9019	29.72 / 0.8925

Results

(a) Blurred image PSNR/SSIM

(b) Method 1 28.27/0.8562

(c) Method 5 26.00/0.8218

(d) Method 6 26.69/0.8430

(e) Method 8 28.16/0.8562 Ours (GoPro)

(f) Ground truth

(g) Method 2 24.68/0.7471 BSD_All

(h) Method 10 26.27/0.8191

(i) Method 11 26.50/0.8534

(j) Method 13 28.67/0.8870 Ours (GoPro_U)

- Introduction
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• RSBlur dataset, the first dataset that provides **pairs of a real-blurred image** and a **sequence of sharp** images.

• Analyzed several factors that introduce the difference between them with the dataset and presented a novel blur synthesis pipeline.

• Using our pipeline, we showed that our blur synthesis pipeline could **greatly improve** the deblurring performance on real-world blurred images.