DSBDAL Assignment 08 - Data Analytics 1

Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset (https://www.kaggle.com/c/boston-housing). The Boston Housing dataset contains information about various houses in Boston through different parameters. There are 506 samples and 14 feature variables in this dataset.

```
from google.colab import drive
drive.mount('/content/drive')
    Mounted at /content/drive

import numpy as np
import pandas as pd
import seaborn as sns

ds = pd.read_csv('/content/drive/My Drive/DSBDL/Assignment8/boston_housing.csv')
ds
```

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	1:
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	
506 rows × 14 columns										•			

Next steps:

Generate code with ds

View recommended plots

About the Dataset

- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town.
- CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in \$1000's

ds.columns

dtype='object')

ds.dtypes

float64 float64 float64 crim zn indus chas int64 float64 nox float64 float64 float64 int64 rm age dis rad int64 tax float64 ptratio float64 float64 float64 lstat medv dtype: object

ds.describe()

	crim	zn	indus	chas	nox	rm	ag
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.57490
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.14886
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.90000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.02500
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.50000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.07500
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.00000

sns.boxplot(data=ds)

ds.corr()

	crim	zn	indus	chas	nox	rm	age	d
crim	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734	-0.3796
zn	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537	0.6644
indus	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779	-0.7080
chas	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518	-0.0991
nox	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470	-0.7692
rm	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265	0.2052
age	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000	-0.7478
dis	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881	1.0000
rad	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022	-0.4945
tax	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456	-0.5344
ptratio	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515	-0.2324
b	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534	0.2915
Istat	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339	-0.4969
medv	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955	0.2499

sns.heatmap(ds.corr() , cmap="twilight")

ds.skew()

crim 5.223149 zn 2.225666 indus 0.295022 chas 3.405904 0.729308 nox 0.403612 rm -0.598963 age 1.011781 dis 1.004815 rad 0.669956 tax ptratio -0.802325 -2.890374 lstat 0.906460 medv 1.108098 dtype: float64

```
def remove_outliers(
    feature_name: str
):
    global ds
    q3 , q1 = np.percentile( ds[ feature_name ] , [ 75 , 25 ] )
    iqr = q3 - q1
    ds = ds[ (ds[ feature_name ] >= q1 - 1.5 * iqr) & (ds[ feature_name ] <= q3 + 1.5 * iqr) ]

remove_outliers( "crim" )
remove_outliers( "zn" )
remove_outliers( "zn" )
remove_outliers( "rad" )
remove_outliers( "tax" )
remove_outliers( "lstat" )
remove_outliers( "lstat" )</pre>
```

ds.describe()

	crim	zn	indus	chas	nox	rm	ag
count	267.000000	267.000000	267.000000	267.000000	267.000000	267.000000	267.00000
mean	0.269166	7.913858	8.254794	0.063670	0.504317	6.301839	61 38651
std	0.376737	13.134000	5.206476	0.244623	0.071415	0.493938	26.31628
min	0.006320	0.000000	1.250000	0.000000	0.409000	4.973000	2.90000
25%	0.069020	0.000000	4.930000	0.000000	0.447000	5.955500	41.10000
50%	0.131170	0.000000	6.910000	0.000000	0.493000	6.182000	62.80000
75%	0.286760	20.000000	9.900000	0.000000	0.538000	6.582500	84.55000
max	2.733970	45.000000	25.650000	1.000000	0.871000	8.069000	100.00000

sns.boxplot(data=ds)

ds.skew()

```
crim
           3.457800
           1.372669
zn
indus
           1.554100
chas
           3.594281
           1.776428
nox
           0.769068
rm
          -0.304989
age
           0.575180
dis
rad
           0.173594
tax
           0.466026
ptratio
          -0.538715
          -2.052233
lstat
           0.636089
           0.800355
medv
dtype: float64
```

```
ds[ "crim" ] = np.log2( ds["crim"] )
ds[ "zn" ] = np.cbrt( ds["zn"] )
ds[ "nox" ] = np.log2( ds["nox"] )
sns.boxplot( data=ds , x="zn" )
```

<Axes: xlabel='zn'>

sns.boxplot(data=ds , x="crim")

<Axes: xlabel='crim'>

sns.boxplot(data=ds , x="nox")

<Axes: xlabel='nox'>

sns.boxplot(data=ds)

```
400 -
300 -
200 -
100 -
crim zn indus chas nox m age dis rad taxptratio b Istat medv
```

```
ds.skew()
     crim
               0.381947
               0.943741
     zn
     indus
               1.554100
     chas
                3.594281
     nox
               1.042174
     rm
               0.769068
     age
               -0.304989
     dis
               0.575180
     rad
                0.173594
     tax
               0.466026
               -0.538715
     ptratio
               -2.052233
     1stat
               0.636089
               0.800355
     medv
     dtype: float64
def min_max_normalize( name: str ):
    ds[name] = (ds[name] - ds[name].min()) / (ds[name].max() - ds[name].min())
for col in ds.drop( [ "medv" ] , axis=1 ).columns:
    min_max_normalize( col )
from sklearn.model_selection import train_test_split
X = np.asarray( ds.drop( [ "medv" ] , axis=1 ) )
y = np.asarray( ds[ "medv" ] )
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3 )
```