Tutorial Sheet No. 10

Course: B.Tech. (CSE, IT, ECE, EEE, ME, CE, FT)

Year & Semester: I / II

Subject & Code: Mathematics – II (BAS – 203) Unit & Topic: V / Complex Integration (a)

Prepared By: Dr. Manoj Kumar Gupta, Assistant Professor

1. Evaluate:

(i)
$$\int_0^{1+i} (x-y+ix^2) dz$$
 along the line from z = 0 to z = 1+ i. [Ans.: $-\frac{1}{3} + \frac{1}{3}i$]

(ii)
$$\int_0^{1+i} (x^2 - iy) dz$$
 along the path $y = x$ [Ans.: $\frac{5}{6} - i\frac{1}{6}$]

(b)
$$\int_C |z| dz$$
 where C is the straight line from $z = -i$ to $z = i$. [Ans.: i]

(c) $\int_C [(x+y)dx + x^2y dy]$ where C is the path $y = x^2$ having (0, 0) and (3, 9) as end points.

(d)
$$\int_0^{2+i} (|z|)^2 dz$$
 along the line $y = x/2$ is [Ans.: $\frac{5}{3}(2-i)$]

2. Find the value of the integral
$$\int_C \frac{1}{z-a} dz$$
 where C is the circle $|z-a|=r$. [Ans.: $2\pi i$]

3. Evaluate the following integrals:

(i)
$$\int_C \frac{z^2 - z + 1}{z - 1} dz$$
 where C is the circle $|z| = 1$ [Ans.: $2\pi i$]

(ii)
$$\int_C \frac{\sin^2 z}{\left(z - \frac{\pi}{6}\right)^3} dz$$
 where C is the circle $|z| = 1$ [Ans.: πi]

(iii)
$$\int_C \frac{z+1}{z^3-2z^2} dz$$
 where C is a circle $|z|=1$ [Ans.: $-\frac{3}{2}\pi i$]

(iv)
$$\int_C \frac{z^2+1}{(z+1)(z+2)} dz$$
 where C is a circle $|z| = \frac{3}{2}$ is [Ans.: $4\pi i$]

(v)
$$\int_C \frac{4z^2 + z + 5}{z + 4} dz$$
 where C is a circle $9x^2 + 4y^2 = 36$ [Ans.: 0]

(v)
$$\int_C \frac{1}{z^2-1} dz$$
 If C is a circle with $|Z|=2$ [Ans.: 0]

4. Evaluate the integral $\int_C \frac{\cos z}{z} dz$; where *C* is the ellipse $4x^2 + 9y^2 = 36$ by Cauchy's integral formula. [Ans.: $2\pi i$]

5. Evaluate
$$\int_C \frac{4-3z}{z(z-1)(z-2)} dz$$
 where C is the circle $|z| = \frac{3}{2}$. [Ans.: $2\pi i$]

6. Evaluate
$$\oint_C \frac{3z^2+z}{z^2-1} dz$$
 where C is the circle $|z-1|=1$. [Ans.: $4\pi i$]