# kmtricks: modular k-mer count matrix and Bloom filter construction for large read collections

Téo Lemane, Rayan Chikhi, Pierre Peterlongo -SegBIM 2020









# Database growth



- Tara Ocean: **250 billions** metaG reads
- 100000 genome project: ~19 PB
- SRA: > 30 PB

https://trace.ncbi.nlm.nih.gov/Traces/sra/

# Indexing: Motivation & Applications

Sequencing data → Assembly/Mapping → Analyses →

Data sleeps in rarely opened drawers

# Indexing: Motivation & Applications

Sequencing data 

Assembly/Mapping 

Analyses



Data sleeps in rarely opened drawers

Querying this data could help answer some questions:

- RNA-seq
  - Expressed isoform according to tissues [1]
  - Gene fusion [2]
- Microbial genomics
  - Antimicrobial resistance [3]
- Genome dynamics
  - Phylogeny [4]
- ...

<sup>[1]</sup> B. Solomon and C. Kingsford. Fast search of thousands of short-read sequencing experiments. Nature Biotechnology, 2016.

<sup>[2]</sup> Y. Yu, et al. Seqothello: querying rna-seq experiments at scale. Genome Biology, 2018.

<sup>[3]</sup> N .Luhmann, et al. Blastfrost: Fast querying of 100,000 s of bacterial genomes in bifrost graphs. BioRxiv, 2020.

<sup>[4]</sup> R. Wittler. Alignment-and reference-free phylogenomics with colored de bruijn graphs. Algorithms for Molecular Biology, 2020.

# How to query these data?



Your search - AAAGCAGCGACGACATCTATACTACATATACTACA - did not match any documents.

#### Suggestions:

- Make sure that all words are spelled correctly.
- Try different keywords.
- · Try more general keywords.













- Limited to Tara assembled Genes
- Usage of Blast, Diamond, HMMER

# From sequence alignement to k-mers

Problem: Given experiments sets, and a sequence of interest, which dataset contains this sequence?

#### In terms of k-mers:

- A query Q matches an experiment L if at least a fraction  $\theta$  of Q's k-mers are present in L.



# k-mer indexing

#### query requires membership data structures



# k-mer indexing

#### k-mer indexing methods (non exhaustive):

- BFT (Holley et al., 2016)\*
- Sequence Bloom Tree\*:
  - SBT (Solomon & Kingsford, 2016)
  - AllSomeSBT (Sun et al., 2017)
  - SSBT (Solomon & Kingsford, 2018)
  - HowDeSBT (Harris & Medvedev, 2019)
- Mantis (Pandey et al., 2018)
- SeqOthello (Yu et al., 2018)
- BIGSI (Bradley *et al.*, 2019)\*
- COBS (Bingmann et al., 2019)\*

**Review of k-mer indexing methods**: Data structure based on k-mers for querying large collections of sequencing datasets (Marchet *et al.* 2019)

\*Based on Bloom filters

# k-mer indexing: State of the art

#### Space and time results on 2585 human RNA-seq sets

| Tool            | Data Processing Time (days) | Max Ext. Memory (GB) | Time (h, wallclock) | Peak RAM (GB) | Index Size (GB) |
|-----------------|-----------------------------|----------------------|---------------------|---------------|-----------------|
| SBT             | $3.5^{b}$                   | $300^{a}$            | $55^b$              | $25^{b}$      | $200^{a}$       |
| AllSomeSBT      | $3.5^{a}$                   | $600^{a}$            | $25^a$              | $35^b$        | $140^{a}$       |
| SSBT            | $3.5^{a}$                   | $600^{a}$            | $55^a$              | $5^b$         | $20^a$          |
| <b>HowDeSBT</b> | $2.5^{a}$                   | $30^{a}$             | $10^a$              | N/A           | $15^{a}$        |
| Mantis          | $130^{a}$                   | 3,500                | $20^a$              | N/A           | $30^a$          |
| SeqOthello      | $3.5^{b}$                   | $190^{b}$            | $2^b$               | $15^b$        | $20^b$          |
| BIGSI           | N/A                         | N/A                  | N/A                 | N/A           | $145^{c}$       |

Marchet et al. 2019

# k-mer indexing: State of the art

#### Space and time results on 2585 human RNA-seq sets

| Tool            | Data Processing Time (days) | Max Ext. Memory (GB) | Time (h, wallclock) | Peak RAM (GB)   | Index Size (GB) |
|-----------------|-----------------------------|----------------------|---------------------|-----------------|-----------------|
| SBT             | $3.5^{b}$                   | $300^{a}$            | $55^b$              | $25^{b}$        | $200^{a}$       |
| AllSomeSBT      | $3.5^{a}$                   | $600^{a}$            | $25^a$              | 35 <sup>b</sup> | $140^{a}$       |
| SSBT            | $3.5^{a}$                   | $600^{a}$            | $55^a$              | $5^b$           | $20^a$          |
| <b>HowDeSBT</b> | $(2.5^a)$                   | $30^{a}$             | $10^a$              | N/A             | $15^{a}$        |
| Mantis          | $130^{a}$                   | 3,500                | $20^a$              | N/A             | $30^a$          |
| SeqOthello      | $3.5^{b}$                   | $190^{b}$            | $2^b$               | $15^b$          | $20^b$          |
| BIGSI           | N/A                         | N/A                  | N/A                 | N/A             | $145^{c}$       |

Marchet et al. 2019

- focuse on improving data processing time in the case of HowDeSBT

### Bloom filters



#### BF supports two operations:

- **Insertion:** for each key, get *n* positions from *n* hash functions. Set all these positions to 1
- **Query:** check bit value for *n* positions

### Bloom filters



#### BF supports two operations:

- Insertion: for each key, get n positions from n hash functions. Set all these positions to 1
- Query: check bit value for n positions

#### Bloom filters from read set:

- Count k-mers
- For each k-mer: compute hashes and set corresponding bits

### **Bloom filters**



#### BF supports two operations:

- **Insertion:** for each key, get *n* positions from *n* hash functions. Set all these positions to 1
- **Query:** check bit value for *n* positions

#### Bloom filters from read set:

- Count k-mers
- For each k-mer: compute hashes and set corresponding bits

#### **Bloom filters construction issues:**

- The largest bottleneck is the k-mer count step
- Bad data locality



### kmtricks



### kmtricks



#### Step 1: Compute minimizers repartition

- Compute minimizers frequency
- Dispatch minimizers in *p* partitions.
- These partitions will contain the k-mers of our data sets.
   The idea is to have an equivalent number of k-mers per partition.

#### Step 2: Compute super-k-mers from reads

- Dispatch super-k-mers in their partitions according to their minimizers



#### Step 3: Sorting count algorithm

- Split super-k-mers into k-mers and hash them.
- Sort: the count is given by identical consecutive hashes.
- Hash spaces are **specific and consecutive** according to the partitions (== according to a set of minimizers).



#### Step 4: Merge equivalent partitions between datasets

- Add **empty lines for missing hashes** (k-mers)
- Hashes are **not stored** but are given by line numbers



Step 5: Transpose each partition to obtains individual bloom filters



# kmtricks: rare k-mers handling

- Leverage information across samples during the merging step.
- Salvage k-mers seen often but at low counts in datasets



# kmtricks: rare k-mers handling

- Leverage information across samples during the merging step.
- Salvage k-mers seen often but at low counts in datasets





### kmtricks results

Indexing of 100 human RNA-seq read sets:

- Comparison vs HowDeSBT classical construction

|                    | Time     | Max memory | Max disk usage |
|--------------------|----------|------------|----------------|
| HowDeSBT<br>makebf | 2h27     | 13.2 GB    | 55.1 GB        |
| kmtricks           | 35min48s | 3.5 GB     | 56.6 GB        |

### kmtricks results

Indexing of 674 human RNA-seq read sets (> 1 TB gzip):

- Comparison vs HowDeSBT classical construction

|                    | Time  | Max memory | Max disk usage |
|--------------------|-------|------------|----------------|
| HowDeSBT makebf    | 59h03 | 13.2 GB    | 206 GB         |
| kmtricks           | 22h10 | 22 GB      | 1.5 TB         |
| kmtricks w/o merge | 17h56 | 21 GB      | 238 GB         |

### kmtricks overview

#### Modular k-mer count matrix and Bloom filter construction for large read collections



### Conclusion & Future work

- Improves bf construction time but it's still very insufficient to hope to scale up on the very large databases

Application on medium/large scale dataset: TARA Ocean (running)

- Take advantage of better data locality:
  - The query can be seen as a set of super-k-mers (corresponding to a **set of minimizers**)
  - For a query, we probably don't need the whole set of partitions.

# Thank you •••



#### References

- N .Luhmann, et al. Blastfrost: Fast querying of 100,000 s of bacterial genomes in bifrost graphs. BioRxiv, 2020.
- R. Wittler. Alignment-and reference-free phylogenomics with colored de bruijn graphs. Algorithms for Molecular Biology, 2020.
- G. Holley, R. Wittler, and J. Stoye, "Bloom Filter Trie: An alignment-free and reference-free data structure for pan-genome storage," *Algorithms Mol. Biol.*, vol. 11, no. 1, p. 3, 2016, doi: 10.1186/s13015-016-0066-8.
- B. Solomon and C. Kingsford, "Fast search of thousands of short-read sequencing experiments," *Nat. Biotechnol.*, vol. 34, no. 3, pp. 300–302, Mar. 2016, doi: 10.1038/nbt.3442.
- B. Solomon and C. Kingsford, "Improved search of large transcriptomic sequencing databases using split sequence bloom trees," in *Journal of Computational Biology*, 2018, vol. 25, no. 7, pp. 755–765, doi: 10.1089/cmb.2017.0265.
- C. Sun, R. S. Harris, R. Chikhi, and P. Medvedev, "AllSome Sequence Bloom Trees," *J. Comput. Biol.*, vol. 25, no. 5, pp. 467–479, 2018, doi: 10.1089/cmb.2017.0258.
- R. S. Harris and P. Medvedev, "Improved representation of sequence Bloom trees," *Bioinformatics*, 2019, doi: 10.1093/bioinformatics/btz662.

#### References

- P. Pandey, F. Almodaresi, M. A. Bender, M. Ferdman, R. Johnson, and R. Patro, "Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index," *Cell Syst.*, vol. 7, no. 2, pp. 201-207.e4, Aug. 2018, doi: 10.1016/j.cels.2018.05.021.
- Y. Yu *et al.*, "SeqOthello: querying RNA-seq experiments at scale," *Genome Biol.*, vol. 19, no. 1, p. 167, Oct. 2018, doi: 10.1186/s13059-018-1535-9.
- P. Bradley, H. C. den Bakker, E. P. C. Rocha, G. McVean, and Z. Iqbal, "Ultrafast search of all deposited bacterial and viral genomic data," *Nat. Biotechnol.*, vol. 37, no. 2, pp. 152–159, Feb. 2019, doi: 10.1038/s41587-018-0010-1.
- T. Bingmann, P. Bradley, F. Gauger, and Z. Iqbal, "COBS: a Compact Bit-Sliced Signature Index," *Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)*, vol. 11811 LNCS, pp. 285–303, May 2019.
- C. Marchet, C. Boucher, S. Puglisi, P. Medvedev, M. Salson, and R. Chikhi, "Data structures based on k -mers for querying large collections of sequencing datasets," *bioRxiv*, p. 866756, Dec. 2019, doi: 10.1101/866756.

# Sequence Bloom Tree





## HowDeSBT



## HowDeSBT

