Aufgabe 1 (Frühjahr 2015). Ein Ring R mit Eins heißt idempotent, wenn $a \cdot a = a$ für alle $a \in R$ gilt Beweisen Sie:

- (a) -1 = 1 in R.
- (b) Jeder idempotente Ring ist kommutativ.
- (c) Jeder idempotente Integritätsbereich is isomorph zu \mathbb{F}_2 , dem Körper mit zwei Elementen. (Dies werden wir später besprechen.)

Lösung. Zu (a): Für beliebige $x, y \in R$ gilt wie in jedem Ring xy = (-x)(-y), denn

$$(-x)y + xy = ((-x) + x) \cdot y = 0 \cdot y = 0 = x \cdot 0 = x \cdot ((-y) + y) = x(-y) + xy$$

das heißt -xy = (-x)y = x(-y), und damit

$$xy = -(-xy) = -(x(-y)) = (-x)(-y).$$

Also insbesondere $1 \cdot 1 = (-1)(-1)$ und wegen Idempotenz folgt

$$1 = 1 \cdot 1 = (-1)(-1) = -1.$$

Zu (b):Um die Kommutativität zu zeigen, betrachten wir für $x, y \in R$

$$x + y = (x + y)^{2} = x^{2} + xy + yx + y^{2} = x + xy + yx + y.$$

Nach Subtraktion von x und y auf beiden Seiten erhält man 0 = xy + yx, also $yx = -xy = (-1)xy = 1 \cdot xy$.

Aufgabe 2 (Herbst 1999). Die Menge \mathbb{Z}^2 ist ein Ring bezüglich komponentenweiser Addition und Multiplikation. Wir untersuchen hier seine Ideale.

(a) Sei $I \triangleleft \mathbb{Z}^2$ ein Ideal und

$$I_1 = \{x \in \mathbb{Z} \mid (x,0) \in I\}$$

$$I_2 = \{y \in \mathbb{Z} \mid (0,y) \in I\}$$

Man zeige, daß I_1 und I_2 Ideale von \mathbb{Z} sind.

- (b) Man zeige $I = I_1 \times I_2$.
- (c) Man bestimme die Ideale von \mathbb{Z}^2

Lösung. Zu (a): I_1 is nicht-leer, da $(0,0) \in I$, also $0 \in I_1$.

Sei $x, y \in I_1$ und $k \in \mathbb{Z}$. Dann ist $(x, 0), (y, 0) \in I$, also $(x - y, 0) = (x, 0) - (y, 0) \in I$, da $I \subset \mathbb{Z}^2$ ein Ideal ist. Es folgt $x - y \in I_1$.

Weiter ist für $l \in \mathbb{Z}$ beliebig $(kx, 0) = (k, l)(x, 0) \in I$, also $kx \in I_1$.

Ähnlich für I_2 .

Zu (b): Sei $(x,y) \in I_1 \times I_2$. Dann ist $(x,0), (0,y) \in I$. Also $(x,y) = (x,0) + (0,y) \in I$, und damit $I_1 \times I_2 \subset I$.

Andererseits ist für $(x,y) \in I$ auch $(x,0) = (1,0)(x,y) \in I$ und $(0,y) = (0,1)(x,y) \in I$, also $x \in I_1$ und $y \in I_2$. Damit $(x,y) \in I_1 \times I_2$ und $I \subset I_1 \times I_2$.

Zu (c): Wir wissen, daß die Ideale von \mathbb{Z} genau die Untergruppen sind, also gibt es $a, b \in \mathbb{Z}$ mit $I_1 = a \mathbb{Z}$ und $I_2 = b \mathbb{Z}$. Wir folgern, daß jedes Ideal von \mathbb{Z}^2 die Form $I = a \mathbb{Z} \times b \mathbb{Z} = (a, b) \mathbb{Z}^2$ hat.

Aufgabe 3 (??). Sei $A \in M_n(\mathbb{R})$ eine $n \times n$ -Matix über den reellen Zahlen. Sei

$$K_A := \{ M \in M_n(\mathbb{R}) \mid AM = MA \}$$

die Menge der mit A vertauschbaren Matrizen.

Zeigen Sie, daß K_A eine \mathbb{R} -Agebra ist.

Lösung. Die Menge K_A ist ein Unterring des Matrizenrings $M_n(\mathbb{R})$: sie enthält die Einheitsmatrix E_n (und die Nullmatrix 0_n), und für $B, C \in K_A$ gilt

$$(B-C)A = BA-CA = AB-AC = A(B-C)$$
 und $(BC)A = B(CA) = B(AC) = (BA)C = (AB)C = A(BC)$

also $B - C \in K_A$ und $BC \in K_A$.

Des weiteren definiert die Abbildung

$$\varphi: \mathbb{R} \to K_A, \alpha \mapsto \alpha E_n$$

einen Ringhomomorphismus mit $\operatorname{im}(\varphi) \subset Z(K_A)$, denn

$$\varphi(0) = 0_n$$

$$\varphi(1) = E_n$$

$$\varphi(\alpha + \beta) = (\alpha + \beta)E_n = \alpha E_n + \beta E_n = \varphi(\alpha) + \varphi(\beta)$$

$$\varphi(\alpha \cdot \beta) = (\alpha \cdot \beta)E_n = \alpha E_n \cdot \beta E_n = \varphi(\alpha) \cdot \varphi(\beta)$$

$$\operatorname{im}(\varphi) \subset Z(M_n(\mathbb{R}))$$

Aufgabe 4 (Herbst 1978). Sei E eine Menge und $A = \mathcal{P}(E)$ ihre Potenzmenge mit den Verknüpfungen

$$E_1 \Delta E_2 = \{ e \in E \mid e \in E_1 \cup E_2, e \notin E_1 \cap E_2 \}$$

$$E_1 \cap E_2$$

- (a) Man zeige, daß (A, Δ, \cap) ein kommutativer Ring ist.
- (b) Sei E endlich und $E' \subset E$. Man zeige, daß $I = \mathcal{P}(E')$ ein Ideal von A ist.
- (c) Sei andererseits I ein Ideal von A. Sei $X, Z \in I$ und $Y \subset X$. Man zeige $Y \in I$ und $X \cup Z \in I$.
- (d) Man zeige, daß es $E' \subset E$ gibt, so daß $I = \mathcal{P}(E')$.
- (e) Sei E unendlich. Man zeige, dass die Menge der endlichen Teilmengen von E ein Ideal von A bilden, das nicht on der Form $\mathcal{P}(E')$ ist.

Lösung. **Zu** (a): Man muß die Axiome nachprüfen, da A kein Unterring eines bekannten Rings ist. Es ist klar, daß Δ und \cap Verknüpfungen $A \times A \to A$ definieren, da $E_1 \Delta E_2 \subset E$ und $E_1 \cap E_2 \subset E$. Wir zeigen, daß (A, Δ) eine abelsche Gruppe ist:

- Kommutativität: $E_1 \Delta E_2 = E_2 \Delta E_1$ nach Definition.
- Assoziativität:

$$(E_{1}\Delta E_{2})\Delta E_{3} = \{e \in E \mid e \in (E_{1}\Delta E_{2}) \cup E_{3}, e \notin (E_{1}\Delta E_{2}) \cap E_{3}\}$$

$$= \{e \in E \mid e \in E_{1} \cup E_{2} \cup E_{3}, e \notin E_{1} \cap E_{2} \cup E_{1} \cap E_{3} \cup E_{2} \cap E_{3}\}$$

$$E_{1}\Delta(E_{2}\Delta E_{3}) = \{e \in E \mid e \in E_{1}\Delta(E_{2} \cup E_{3}), e \notin E_{1} \cap (E_{2}\Delta E_{3})\}$$

$$= \{e \in E \mid e \in E_{1} \cup E_{2} \cup E_{3}, e \notin E_{1} \cap E_{2} \cup E_{1} \cap E_{3} \cup E_{2} \cap E_{3}\}$$

• Neutrales Element:

$$\varnothing \Delta E' = \{e \in E \mid e \in E' \cup \varnothing = E', e \notin E' \cap \varnothing = \varnothing\} = E'$$

• Inverses Element:

$$E'\Delta E' = \{e \in E \mid e \in E' \cup E' = E', e \notin E' \cap E' = E'\} = \varnothing$$

Wir zeigen, daß (A,\cap) ein kommutatives Monoid ist:

- Kommutativität: klar.
- Assoziativität: klar.

- Neutrales Element: $E' \cap E = E'$.
- (Außerdem ist $A = \mathcal{P}(E)$ idempotent: $E' \cap E' = E'$.)

Wir zeigen das Distributivgesetz:

$$(E_1 \Delta E_2) \cap E_3 = \{ e \in E \mid e \in (E_1 \cup E_2) \cap E_3, e \notin E_1 \cap E_2 \}$$

= $\{ e \in E \mid e \in (E_1 \cap E_3) \cup (E_3 \cap E_3), e \notin (E_1 \cap E_3) \cap (E_2 \cap E_3) = (E_1 \cap E_3) \Delta(E_2 \cap E_3) \}$

Zu (b): Wie oben sieht man, daß $\mathcal{P}(E')$ eine abelsche Gruppe ist, also insbesondere eine Untergruppe von $\mathcal{P}(E)$. Weiter ist für $X \in \mathcal{P}(E')$ und $Y \in A$

$$X \cap Y \subset X \subset E'$$

also $X \cap Y \in \mathcal{P}(E')$.

Zu (c): Sei $X \in I$ und $Y \subset X$, also $Y \in A$. Da I ein Ideal von A ist, ist $Y = Y \cap X \in I$. Sei $X, Z \in I$, setze $X_1 = X \setminus Z$, dann sind X_1 und Z disjunkt, und es gilt

$$X \cup Z = X_1 \cup Z = X_1 \Delta Z \in I$$
,

da $X_1 \subset X \in I$ und I ein Ideal ist.

Zu (d): Sei E' die Vereinigung aller Elemente in I. Natürlich ist $E' \subset E$ eine endliche Menge, und mit Iduktion folgt nach (c), daß $E' \in I$. Nach (c) is auch klar, daß $\mathcal{P}(E') \subset I$. Aber wenn $X \in I$ ist, ist auch $X \subset E'$, also $X \in \mathcal{P}(E')$. Damit $I = \mathcal{P}(E')$.

Zu (e): Die Menge der endlichen Teilmengen ist ein Ideal von A: diese Menge enthält die leere Menge und ist abgeschlossen unter Δ und für $X \in A$ und eine endliche Teilmenge $Y \subset E$ ist $X \cap Y$ endlich. Sie ist nicht von der Form $\mathcal{P}(E')$: Angenommen dies wäre der Fall. Dann wäre für $x \in E$ und $X = \{x\}$ auch $X \in \mathcal{P}(E')$, das heißt $x \in E'$, in anderen Worten E = E'. Aber da das Ideal nur die endlichen Teilmengen von E enthält, kann es nicht $\mathcal{P}(E)$ sein.

Aufgabe 5 (Herbst 1975). Sei R ein endlicher kommutativer Ring (nicht notwendig mit 1). Beweisen Sie, daß jedes Element $x \in R$ eine der drei folgenden Aussagen erfüllt:

- (a) x ist 0 oder nilpotent,
- (b) x ist eine Einheit in R,
- (c) eine Potenz von x ist idempotent.

Lösung. Angenommen $x \in R$ ist nicht null, nicht nilpotent, und keine Einheit. Betrachte die Menge

$$\{x, x^2, x^3, \ldots\} \subset R.$$

Da R endlich ist, ist auch diese Menge endlich, und es gibt $a < b \in \mathbb{N}$ mit $x^a = x^b$. Sei b = a + r. Dann ist

$$x^{a} = x^{a+r} = x^{a}x^{r} = x^{a+r}x^{r} = x^{a+2r} = \dots = x^{a+kr}$$

für alle $k \in \mathbb{N}_0$ und

$$x^{na} = x^{(n-1)a}x^a = x^{(n-1)a}x^{a+kr} = x^{na+kr}$$
.

Wählen wir also n = r und k = a, so erhalten wir

$$x^{ra} = x^{ra+ar} = x^{ar}x^{ar}.$$