

(51) International Patent Classification 7: C08F 4/40 (43) International Publication Date: 20 April 2000 (20.04.00 Priority Data: 98203407.6 (51) International Patent Classification 7: (43) International Publication Date: 20 April 2000 (20.04.00 Priority Data: 98203407.6 (51) International Publication Number: 20 April 2000 (20.04.00 Priority Data: 20 April 2000	, FCI	TOTA *	DIDER THE PATENT COOPERATION TREATY (PCT)
(21) International Publication Date: 20 April 2000 (20.04.00 (20.0	INTERNATIONAL APPLICATION PUBLISH	HED (WO 00/22003
(22) International Application Number: (22) International Filing Date: 11 October 1999 (11.10.99) (30) Priority Data: 98203407.6 12 October 1998 (12.10.98) (71) Applicant (for all designated States except US): AKZO NOBEL N.V. [NL/NL]; Velperweg 76, NL-6824 BM Arnhem (NL). (72) Inventors; and (75) Inventors; Applicants (for US only): VAN SWIETEN, Andreas, Petrus [NL/NL]; Reinaldstraat 6, NL-6883 HM Velp (NL). WAANDERS, Petrus, Paulus [NL/NL]; Bentinckstraat 13, NL-7471 SL Goor (NL). MALTHA, Annemarieke [NL/NL]; De Meren 1729, NL-6605 XS Wijchen (NL). (74) Agent: ARNOLD & SIEDSMA; Sweelinckplein 1, NL-2517		A1	
	(22) International Application Name (22) International Filing Date: (30) Priority Data: 98203407.6 12 October 1998 (12.10.98) (71) Applicant (for all designated States except US): AKZ N.V. [NL/NL]; Velperweg 76, NL-6824 BM Am (72) Inventors; and (75) Inventors/Applicants (for US only): VAN SWIE dreas, Petrus [NL/NL]; Reinaldstraat 6, NL-688 (NL). WAANDERS, Petrus, Paulus [NL/NL]; straat 13, NL-7471 SL Goor (NL). MALTHA, Ai [NL/NL]; De Meren 1729, NL-6605 XS Wijcher (74) Agent: ARNOLD & SIEDSMA; Sweelinckplein 19	(11.10.9) CO NOE TEN, 3 HM Benti nneman	GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, KR, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SC, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SI, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, D) DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, MR, NE, SN, TD, TG). Published With international search report.

(54) Title: REDOX POLYMERIZATION PROCESS

A process for emulsion polymerization comprising the steps of reacting together a polymerization initiator, a reductor, and a polymerizable species, with the proviso that the polymerization initiator is not a hydroperoxide, characterized in that the polymerization polymerization and the reductor are reacted together to provide a free radical moiety of the initiator, whereupon this free radical moiety initiates polymerization of the polymerizable species, this step being carried out at an initial cold start temperature, whereafter the temperature is increased to follow a temperature profile to a final preselected polymerization temperature increased to follow a temperature profile to a final preselected polymerization temperature.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BE BF BG BJ BR CCA CCF CCG CCH CI CM CN CU CZ DE DK EE	Albania Armenia Austria Austria Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GE GH GN GR HU IE IL IS IT JP KE KG KP KR LL LL LL LL LL	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TI UA UG US VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe	
---	--	---	---	---	---	--	---	--

REDOX POLYMERIZATION PROCESS

The present invention relates to a process for emulsion polymerization, to the polymers obtainable by such a process, and to their uses.

5

The production of water based resins, for example by means of emulsion polymerization techniques, is carried out thermally with inorganic persulfates. A problem with thermal polymerization is the process time, which leads to a less than desirable reactor output.

10

An object of the present invention is to provide an alternative polymerization process which aims to improve the process time.

The first aspect of the present invention provides a process according to claim 1.

15

Since the polymerization process according to the present invention provides a free radical initiator moiety by means of a redox reaction instead of by thermal decomposition, the polymerization can be carried out with a so-called "cold start", which involves the process time being reduced and the reactor output per unit time being increased.

20

A redox polymerization is known for tertiary butyl hydroperoxide "Trigonox A-W70". The inventors have shown, however, that a redox polymerization utilizing other organic peroxides provides unexpectedly good results.

25

The inventors have shown that polymerization can start at a lower initial temperature, which means that because of the longer "heating-up" time necessary in thermal polymerization, the polymerization time can be reduced utilizing the process of the current invention.

30

The inventors have furthermore demonstrated that the process according to the present invention enables a polymer with a very low residual monomer level to be

obtained, whilst, with respect to thermal polymerization, the amount of initiator used can be reduced.

Good results have been achieved under the conditions as defined in claims 2-6.

The polymerization initiator is most preferably a substantially non-water-soluble initiator, such as defined in claim 7 or 8, since these non-water-soluble initiators yield an unexpectedly high efficiency in polymerization.

This higher efficiency results in shorter polymerization times and in polymer resins with improved properties. The higher efficiency of the organic peroxides is expressed by the low level of residual monomers and by the low molecular weights (Mw/Mn) of the polymers formed.

Furthermore, the conductivity of the resins initiated with the organic peroxide/redox system is lower than for corresponding resins that were initiated by persulfates.

The reductor of the redox system preferably is chosen from the following group: sodium formaldehyde sulfoxylate (SFS), sodium bisulfite, Ascorbic acid (vitamin C), aldehydes, for example glutaraldehyde, sodium metabisulfite, sodium dithionate, and sugars, wherein the reductor most preferably is sodium formaldehyde sulfoxide.

The polymerizable species preferably is chosen from the following group: acrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methoxyethyl acrylate, dimethyl aminoacrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearic methacrylate, dimethyl aminomethacrylate, allyl methacrylate, 2-hydroxyethyl

acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, acrylamide, methacrylamide, glycidyl acrylate, vinyl ester of versatic acid, styrene, para-methyl styrene, vinyl acetate, alpha-methyl styrene, wherein the polymerizable species most preferably comprises vinyl acetate and/or the vinyl ester of versatic acid.

Further preferred process conditions are detailed in claims 11-15.

The polymerization is carried out in a conventional emulsion, for example in a mixture of anionic and non-ionic surfactants such as Witconate (sodium alphaolefin sulfonate) and Syntopon (ethoxylated nonylphenol); however, other emulsifiers or mixtures are also possible.

This emulsifier solution preferably is a mixture of nonionic and anionic emulsifiers and most preferably is selected from the group consisting essentially of:

- long-chain aliphatic carboxylates (ionic)
- alkylbenzene sulfonates (ionic)
- alkyl sulphates (ionic)

30

- dialkylsulphosuccinate (ionic)
- ethoxylated alcohols (nonionic)
 - ethoxylated alkyl phenols (nonionic)
 - ethoxylated amine or amides (nonionic).

A second aspect of the present invention provides a polymer obtainable according to this process.

The invention will now be further elucidated by way of the following examples. Examples 1-6 are comparative examples and Examples 7-12 are examples according to the present invention using a redox system. Examples 3, 4, 6, 8-12 were subjected to a temperature profile increasing from an initial temperature to a

final temperature, i.e. subjected to a so-called "cold-start", and Example 7 was carried out at constant temperature.

Procedure of preparation

The polymerization in all the examples was carried out in a 0.25 L glass reactor with a stirrer under nitrogen. A seed was prepared first by adding 10% of the reactive components at polymerization temperature.

The preparation of the seed was carried out as follows:

The reactor was filled with buffered (NaAc/HAc) emulsifier solution (Witconate/Syntopon), prepared with oxygen-free deionized water. At the polymerization temperature 10% of the pre-emulsion containing soaps (Witconate and Syntopon), monomers, and, in the case of the redox system according to the present invention, also reductor and catalyst, were added. In addition the solution or pre-emulsion of the initiator was added to achieve control over the accurate dosing of the initiator.

After a polymerization time of 30 minutes the remaining monomers, pre-emulsion, and initiator solution were dosed in 2.5 hours. In Examples 3, 4, 6, 8-12 the temperature was increased to the final temperature in the same period, following a temperature profile. The final temperature was maintained for 1 hour.

The composition of the buffered soap solution used was as follows:

NaAC.3aq

0.25 g (sodium acetate)

25 HAC

20

0.11 g (acetic acid)

H₂O

30.3 g

Witconate

0.38 g (soap)

Syntopon

0.38 g (soap)

Example 1

Thermal system

The temperature was kept at 70°C during the polymerization. The composition of the used pre-emulsion was:

Witconate

1.28 g

Syntopon

1.28 g

H₂O

34.43 g

Vac (vinyl acetate)

52.5 g (monomer)

VEOVA (vinyl ester of versatic acid)

22.5 g (monomer)

5

The initiator solution was composed of 4.18 mmoles ammonium/sodium or potassium persulfate in 25 g $\rm H_2O$. The total process time including the time needed for heating up the reactor contents to 70°C before polymerization amounted to 5.5 hours.

10

Examples 2, 5, 7

The temperature was kept at 70°C (Examples 2, 5) and 20°C (Example 7), respectively. The composition of the used pre-emulsions was as follows:

Witconate

1.28 g

Syntopon

1.28 g

H₂O

34.43 g

Peroxide

1.04-4.18 mmoles as mentioned in the examples

Vac (vinyl acetate)

52.5 g (monomer)

VEOVA (vinyl ester of

22.5 g (monomer)

versatic acid)

The reductor SFS (sodium formaldehyde sulfoxyde: 0.65 g) and the catalyst (FeSO₄ 16.7 mg) were dissolved in 25 g H₂O.

The total process time was 4 hours.

15

30

Examples 3, 4, 6, 8-12

The polymerization temperature was kept at 20°C for the first 30 minutes to prepare a seed. The temperature was then increased by 20°C/hour to 70°C following a temperature profile.

It is noted that other starting temperatures and temperature programmes can be used, either for initiating polymerization or for initiating and completing polymerization.

In all the examples the residual monomers were determined by gas chromatography (GC). The molecular weight of the prepared polymers was determined by gel permeation chromatography (GPC) with polystyrene for calibration. The conversion/solids content was determined by standard procedure. The viscosity was determined using a Brookfield digital viscometer.

The results are shown in Table 1.

Examples 13-24

20 Procedure of preparation

The polymerization in all examples was carried out in a 0.25 L glass reactor with a stirrer under nitrogen. A seed was prepared first by adding 10% of the reactive components at polymerization temperature.

The preparation of the seed was carried out as follows:

The reactor was filled with the emulsifier solution (sodium lauryl sulfate in water) prepared with oxygen-free deionized water. At the starting polymerization temperature 10% of the pre-emulsion containing soap, monomers, and in the case of the redox system, also reductor and catalyst, were added. In addition the solution or pre-emulsion of the initiator was added to achieve control over the

accurate dosing of the initiator.

After a polymerization time of 30 minutes the remaining monomers, pre-emulsion, and initiator solution were dosed in 2.5 hours. The temperature was increased to the final temperature in the same period, following a temperature profile. The final temperature was maintained for 1 hour.

The composition of the soap solution was as follows:

- 0.10 g sodium lauryl sulfate (emulsifier)
- 25.0 ml deionized water 10

Pre-emulsion:

1.60 g sodium lauryl sulfate

30 ml deionized water

70 g monomer mixture (butylacrylate / styrene / methacrylic acid = 6/4/0.1) 15 including the initiator (1.04 meq), if not water-soluble.

The reductor SFS (sodium formaldehyde sulfoxylate 0.16 g) and the catalyst (Fe^{II}SO₄ 2.8 mg) were dissolved in 10 ml water.

The molar ratio oxidator: reductor: Fe = 1: 1: 0.01

The results are shown in Tables 2 and 3.

meq coxid. veova x1000 miscrit avid. avid. % 630/50 5.3 4.2 70°C thermal 0.10 0.074 630/50 5.3 4.2 70°C redox 0.51 0.035 790/64 10.3 Butyl 4.2 20 -> 70°C redox 0.096 0.30 290/19 3.4 Butyl 4.2 70°C redox 0.073 0.028 670/44 3.6 Butyl 4.2 20 -> 70°C redox 0.073 0.028 670/44 3.6 Butyl 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.1 Jyl peroxybenzoate) 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.2 A peroxybenzoate) 4.2 20 -> 70°C redox 0.049 0.03 270/35 2.2 A peroxybenzoate) 1.5 20 -> 70°C redox 0.049 0.03 270/48 1.9 A peroxybenzoate) 1.05 20 -> 70°C redox 0.08			- - -	acillo a	residual Vac%	residual	Mw/Mn	X	(80)
1.5 1.0	1	Initiator	oxid.	CONDITIONS		VeoVa	×1000	ED/CE	()
4.2 70°C thermal 0.10 0.074 0.005 0.0074 0.0077 0.0074 0.0077 0.						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	630/50	5.3	180
70 (tert-Butyl 4.2 70°C redox 0.51 0.23 410.37 0.03 790/64 10.3 10	_		12	70°C thermal	0.10	0.074	20,000	80	212
4.2 7.0 C redox 0.27 0.095 790/64 10.3 70 (tert-Butyl 4.2 2.1 20°-> 70°C redox 0.36 0.12 740/49 5.6 70 (tert-Butyl 4.2 70°C redox 0.073 0.028 670/44 3.4 70 (tert-Butyl 4.2 20 -> 70°C redox 0.073 0.028 670/44 3.6 Arch-Butyl 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.1 sert-Butyl peroxybenzoate) 4.2 20 -> 70°C redox 0.049 0.03 270/35 2.2 art-Butyl peroxybenzoate) 1.5 20 -> 70°C redox 0.049 0.03 270/35 2.2 art-Butyl peroxybenzoate) 1.5 20 -> 70°C redox 0.049 0.03 270/35 2.2 art-Butyl peroxybenzoate) 1.05 20 -> 70°C redox <0.049		K2S208	7.	xoper Jook	0.51	0.23	410/3/	25,	197
70 (tert-Butyl 4.2 20 -> 70°C redox 0.36 0.12 740/49 5.6 70 (tert-Butyl 4.2 2.1 20° -> 70°C redox 0.096 0.30 290/19 3.4 70 (tert-Butyl 4.2 70°C redox 0.073 0.028 670/44 3.6 70 (tert-Butyl 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.1 sert-Butyl peroxybenzoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 sart-Butyl peroxybenzoate) 2.1 20° -> 70°C redox 0.049 0.03 270/35 2.2 ert-Butyl peroxybenzoate) 1.5 20° -> 70°C redox 0.048 <0.004	T	K25208	4.2	VO C I ECON	0.37	0.095	790/64	10.3	5 6
70 (tert-Butyl 2.1 20° -> 70°C redox 0.36 0.30 290/19 3.4 roxide) 4.2 70°C redox 0.073 0.028 670/44 3.6 70 (tert-Butyl 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.1 8ert-Butyl peroxybenzoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 sarnoate) 3rt-Butyl peroxybenzoate) 4.2 20 -> 70°C redox 0.049 0.03 270/35 2.2 srt-Butyl peroxybenzoate) 1.5 20° -> 70°C redox 0.049 0.03 270/35 2.2 3rt-Butyl peroxybenzoate) 1.5 20° -> 70°C redox 0.048 <0.004	T	00000	4.2	20> 70°C redox	0.57	0.12	740/49	5.6	128
xybenzoate) 4.2 70°C redox 0.096 0.30 250.15 xybenzoate) 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.1 xybenzoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 xybenzoate) 4.2 20 -> 70°C redox 0.049 0.03 270/35 2.2 xybenzoate) 1.5 20° -> 70°C redox 0.082 0.032 560/48 1.7 xybenzoate) 1.5 20° -> 70°C redox 0.048 <0.004		KZSZUB	21	20° -> 70°C redox	0.36	0.12	200/10	3.4	189
xy-2- 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.1 xy-2- 4.2 20 -> 70°C redox 0.054 0.067 170/18 3.1 xybenzoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 xybenzoate) 2.1 20° -> 70°C redox 0.049 0.03 270/35 2.2 xybenzoate) 1.5 20° -> 70°C redox 0.082 0.022 560/48 1.7 xybenzoate) 1.05 20° -> 70°C redox 0.048 <0.004		K2S208	1,2	70°C redox	960.0	0.30	61 1067		
axy-2- 4.2 20 -> 70°C redox 0.073 0.028 670/44 3.1 oxy-2- 4.2 20°C redox 0.054 0.067 170/18 3.1 xybenzoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 xxybenzoate) 2.1 20° -> 70°C redox 0.049 0.03 270/35 2.2 xxybenzoate) 1.5 20° -> 70°C redox 0.082 0.022 560/48 1.7 xxybenzoate) 1.05 20° -> 70°C redox 0.048 <0.004	Γ	Tx A-W70 (tert-Butyl	4.4)			, , , ,	3 6	141
Butyl 4.2 20 -> /0°C redox 0.054 0.067 170/18 3.1 A peroxy-2- 4.2 20°C redox 0.054 0.067 170/18 3.2 A peroxybenzoate) 4.2 20 -> 70°C redox 0.049 0.03 270/35 2.2 I peroxybenzoate) 2.1 20° -> 70°C redox 0.082 0.032 560/48 1.9 I peroxybenzoate) 1.5 20° -> 70°C redox 0.048 <0.004		hydroperoxide)		Cock	0.073	0.028	6/0/44		
4.2 20°C redox 0.054 0.067 170/18 3.1 izoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 izoate) 2.1 20° -> 70°C redox 0.049 0.03 270/35 2.2 izoate) 1.5 20° -> 70°C redox 0.082 0.022 560/48 1.9 izoate) 1.05 20° -> 70°C redox 0.048 <0.004 1000/48 1.7 izoate) 4.2 20 -> 70°C redox <0.016 0.009 770/106 3.1	-	T. A M/70 (loct-Ruty)	4.2	20> /0°C redux)))				5,7,
4.2 20°C redox 0.054 0.057 0.057 3.2 Izoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 Izoate) 2.1 20° -> 70°C redox 0.049 0.03 270/35 2.2 Izoate) 1.5 20° -> 70°C redox 0.082 0.022 560/48 1.9 Izoate) 1.05 20° -> 70°C redox 0.048 <0.004		.(:				790.0	170/18	3.1	143
zoate) 4.2 20 -> 70°C redox 0.17 0.11 150/22 3.2 zoate) 2.1 20° -> 70°C redox 0.049 0.03 270/35 2.2 zoate) 1.5 20° -> 70°C redox 0.082 0.022 560/48 1.9 zoate) 1.05 20° -> 70°C redox 0.048 <0.004 1000/48 1.7 zoate) 4.2 20 -> 70°C redox <0.016 0.009 770/106 3.1		hydroperoxide)	4.5	20°C redox	0.054	0.00	:		
zoate) 4.2 20> 70°C redox 0.17 0.11 150/22 2.2 zoate) 2.1 20°> 70°C redox 0.049 0.03 270/35 2.2 zoate) 1.5 20°> 70°C redox 0.082 0.022 560/48 1.9 zoate) 1.05 20°> 70°C redox 0.048 <0.004 1000/48 1.7 zoate) 4.2 20> 70°C redox <0.016 0.009 770/106 3.1		Tx 21 (tert-Butyl peroxy-2-	7:+				COTOL	3.2	175
4.2 20 -> 70°C redox 0.03 270/35 2.2 2.1 20° -> 70°C redox 0.049 0.032 560/48 1.9 1.5 20° -> 70°C redox 0.048 <0.004		othylhovannafe)			0.17	0.1	120/72	3.0	5
2.1 20°> 70°C redox 0.049 0.022 560/48 1.9 1.5 20°> 70°C redox 0.082 0.022 560/48 1.7 1.05 20°> 70°C redox 0.048 <0.004	١	elliyillokarioare)	4.2	20> 70°C redox	2	200	270/35	2.2	180
1.5 20° -> 70°C redox 0.082 0.022 350/45 1.7 1.05 20° -> 70°C redox 0.048 <0.004 1000/48 1.7 4.2 20> 70°C redox <0.016 0.009 770/106 3.1		Tx C (tert-buty) peroxyperizograph	2.4	20°> 70°C redox	0.049	0.03	07/002	10	181
1.5 20°-> 70°C redox 0.048 <0.004 1000/48 1.7 1.05 20°-> 70°C redox <0.016 0.009 770/106 3.1		Tx C (tert-Butyl peroxybenzoate)	7.7	×0002 0002	0.082	0.022	200/40	2	ay,
1.05 20°> 70°C redox 0.046 0.009 770/106 3.1	١	The Authority haroxybenzoate)	1.5	20° -> /U-C I EUGA	0700	<0 004	1000/48	1./	2
4.2 20> 70°C redox <0.016 0.009 7.0100		IX C (rert-bury) percy percy	105	20°> 70°C redox	0.048	50.0	770/1108	3.1	172
4.2 20-2-02 2.4	l	Tx C (tert-Butyl peroxybenzoate)	3	xoper Jour > oc	<0.016	600.0	20170	;	
Without Ea2+	1	Tx C (tert-Butyl peroxybenzoate)	4.4						
		Without Ee2+							

Table 1

Table 2

Emulsion: Theoretical solids content: VeoVa10/VAc-emulsions: 44% Reductant: SFS/Fe(II) Ox : SFS : Fe = 1 : 1 : 0.01

								_		
				monom latter	MW	~	2	2	:	
1-14:-40-	Monomers	[Initlator]	Solids	Kesidual monomers						
Initiato				V 6V 6V	200					
		med		BACCA	╢		00071	0 30	0.30	
		F		1 4	_	0066	21900	0.00	200	
			30.8	565				000	2,00	
2007	VeoVa/VAc	1.4	03.0			2000	29000	D. O.	2.30	
222			007	0.74	_	2007			107	
	1 1/00//00//	2.1	43.4	50.0	t	0001	22200	6.34	4.33	
	VCO VOI VVC		00.		_	11300	22200		3	
	1/00//00//	114	42.7		_	0000	00800	86.9	3.61	
ر ×	V60V8/V7C	:		200		32000	2000			
	1/00/100/1	28	40.5		t	0000	24400	200	4.55	
77.X	Venva/	2	١		2 - Z	2/8200	31400			
	00/00/100/1	717	1 42.5	5:-	1		744500	ر م	01.4	
Tx 117	V60V2/VAC				7	28500	14 1300	3		
		7 7	16.5							
YOU TO	- VeoVa/VAC	ŧ.	2:5							

n.a. = not applicable n.d. = not detected

Table 3 Emulsion:

Theoretical solids content: STY/BA/MA-emulsions:46%

Reductant: SFS/Fe(II) Ox : SFS : Fe = 1 : 1 : 0.01

			***************************************	ļ.			171	<i>c</i>	1
Initiator	Monomers	[initiator]	Solids	Residual n STY	Residual monomers	A.M.		.	
		ווופא					000070	F 0.7	2 40
	CTV/DA/AAA	1 0	44 R	Pu	1.59	1753000	346000	2.07	2.13
づかと	CINIZOLLO	10	2			00000	000007	* *	00
1	CTV/DAMAA	200	157	2	1.20	000069	00000	1	2.0
ر 	ZMADI IN	6.00	1.5	.5		001011	00017	30 F	OC F
	ALAL A CILYTO	5	483	007	1.17	713/00	144300	CS: 4	4.20
	20207		2:0			001001	10000	7 17	1 02
- CO	CTV/DA/AAA	200	50.0	n d	n.d.	529500	00807	/#./	1.34
77 X	CINICALIA	2.00	5000			00000	440400	2 82	4 40
1. 447	CTV/DA/MA	1 04	47.0	0.10	1.87	236080	140400	30.0	27.7
	CINICALIN		2			30,120	000007	בצב	200
	CTV/DA/MA	1 04	45.5	n.d.	n.d.	2367400	420300	0.00	000
Laurox	לואוסטווס	1.51	2:2						

n.a. = not applicable

ហ

n.d. = not detected

Styrene/butyl acrylate/methacrylic acid: 4/6/0.1

Tx C = tert-butyl peroxybenzoate

 T_{x} 22 = 1,1 di(tert-butylperoxy)cyclohexane T_{x} 117 = tert-butylperoxy-2-ethylhexyl carbonate

Laurox = di-lauroyl peroxide

Results

As reference the emulsion copolymerization of vinylacetate and VeoVa with potassium persulfate at 70°C was used (thermal conditions).

5

The results show low residual monomer levels for the non-water-soluble organic peroxides (peroxyesters) under redox conditions. As the efficiency of the non-water-soluble peroxyesters such as Trigonox C was much higher than that of the water-soluble persulfates and hydroperoxides, the levels of addition could be lowered to 20-40% of the original milli-equivalents of initiator used. Due to lower amounts of initiator and reductor, a higher value for pH and lower values for the conductivity were obtained. The prepared polymer had molecular weights (Mw/Mn) comparable with those of the reference copolymer of VeoVa/VAc.

15

20

The peroxyesters such as Trigonox 21 gave a high conversion of monomers at ambient temperature.

The invention is not limited to the above description; rather, the requested rights are determined by the following claims.

CLAIMS

5

10

- 1. A process for emulsion polymerization comprising the steps of reacting together a polymerization initiator, a reductor, and a polymerizable species, with the proviso that the polymerization initiator is not a hydroperoxide, characterized in that the polymerization initiator and the reductor are reacted together to provide a free radical moiety of the initiator, whereupon this free radical moiety initiates polymerization of the polymerizable species, this step being carried out at an initial cold start temperature, whereafter the temperature is increased to follow a temperature profile to a final preselected polymerization temperature.
- Process according to claim 1 carried out at an initial temperature of up to 70°C, for example carried out at an initial temperature of up to 50°C and preferably of up to 35°C.
 - 3. Process according to claim 1 or 2 carried out at an initial temperature lying in the range of +10° to 35°C, preferably in the range of 15° to 25°C.
- 4. Process according to any one of the preceding claims wherein the initial temperature is maintained for a predetermined length of time, for example up to 2 hours, preferably up to 1 hour, most preferably up to half an hour.
- 5. Process according to any one of the preceding claims wherein the temperature is increased subsequent to the initial temperature maintenance period to follow a temperature profile to a final polymerization temperature, preferably up to a final polymerization temperature of at the most 90°C, and wherein the final polymerization temperature preferably lies in the range of 50-80°C and most preferably is

70°C or less.

- Process according to claim 5 wherein the initial temperature is increased incrementally per pre-selected time period, preferably by about 20°C per hour.
- Process according to claim 6 wherein the initiator is selected from the 7. essentially of: diisobutanoyl peroxide, consisting peroxyneodecanoate, 2,4,4-trimethylpentyl-2-peroxyneodecanoate, tertamyl peroxyneodecanoate, bis(4-tert-butylcyclohexyl)peroxydicarbonate, 10 bis(-ethylhexyl)peroxydicarbonate, tert-butyl peroxyneodecanoate, dibutyl dimyristyl peroxyperoxydicarbonate, dicetyl peroxydicarbonate, dicarbonate, tert-amyl peroxypivalate, tert-butyl peroxypivalate, bis(3,5,5trimethylhexanoyl) peroxide, dilauroyl peroxide, didecanoyl peroxide, 2,5"bis(2-ethylhexanoylperoxy)-2,5-dimethylhexane, tert-amyl peroxy-2-15 ethylhexanoate, dibenzoyl peroxide, tert-butyl peroxy-2-ethylhexanoate, tert-butyl peroxydiethylacetate, 1,4-bis(tert-butylperoxycarbo)cyclohexane, 1,1-bis(tert-butylperoxy)-3,3,5peroxyisobutanoate, tert-butyl 1,1-bis(tert-butylperoxy)cyclohexane, tert-butyl trimethylcyclohexane, 2,2-bis(tert-butylperoxy)butane, tertperoxy-3,5-trimethylhexanoate, 20 butylperoxy isopropyl carbonate, tert-butylperoxy 2-ethylhexyl carbonate, tert-butyl peroxyacetate, tert-butyl peroxybenzoate, di-tert-amyl peroxide, dicumyl peroxide, bis(tert-butylperoxyisopropyl)benzene, 2,5-bis(tertbutylperoxy)-2,5-dimethylhexane, tert-butyl cumyl peroxide, 2,5-bis(tertbutylperoxy)-2,5-dimethyl-3-hexyne, and di-tert-butyl peroxide. 25
 - Process according to claim 7 wherein the initiator is substantially non-water-soluble and is selected from the group consisting essentially of:

 alifatic and aromatic peroxyesters, preferably tert-butyl peroxy-2

15

ethylhexanoate (Trigonox 21), tert-amyl peroxy-2-ethylhexanoate, tert-butyl peroxybenzoate (Trigonox C), tert-amyl peroxybenzoate, tert-butyl peroxyacetate, tert-butyl peroxy-3,5-trimethylhexanoate, tert-butyl peroxyisobutanoate, tert-butyl peroxybenzoate, tert-butyl peroxypivalate;

- peroxycarbonates, preferably tert-butyl peroxyisopropyl carbonate (Trigonox BPIC), and tert-butyl peroxy-2-ethyl hexyl carbonate Trigonox 117).
- 9. Process according to any one of the preceding claims wherein the reductor is chosen from the group consisting essentially of: sodium formaldehyde sulfoxylate (SFS), sodium bisulfite, Ascorbic acid (vitamin C), aldehydes, for example glutaraldehyde, sodium metabisulfite, sodium dithionate, and sugars.
- 10. Process according to any one of the preceding claims wherein the polymerizable species is selected from the group consisting essentially of: acrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2ethylhexyl acrylate, methoxyethyl acrylate, dimethyl aminoacrylate, ethyl methacrylate, methyl methacrylate, acid, methacrylic 20 methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearic methacrylate, dimethyl aminomethacrylate, allyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, acrylamide, methacrylamide, glycidyl acrylate, vinyl ester of versatic acid, styrene, para-25 methyl styrene, vinyl acetate, alpha-methyl styrene.
 - 11. Process according to any one of the preceding claims carried out in the presence of a catalyst, said catalyst preferably being a water-soluble salt

derived from a transition metal, and most preferably being selected from the group consisting essentially of Fe²⁺, Co³⁺, Cu⁺, and Ce³⁺.

- 12. Process according to any one of the preceding claims wherein the initiator and the reductor are provided in the following ratios 10:1 to 1:5, preferably 4:1 to 1:2.
 - 13. Process according to any one of the preceding claims wherein the ratio of catalyst: oxidator is about 0-0.1 on a molar basis.
- 14. A polymer obtainable according to the process of any one of the preceding claims.
- 15. Polymer according to claim 14 having one or more of the following characteristics:
 - a conductivity lower than about 5,
 - a low residual monomer level,
 - a particle size of less than about 220 nm, preferably less than 200 nm.
- 16. Use of a polymer according to claims 14 and/or 15 in coatings and/or adhesives.

Intel Shal Application No PCT/EP 99/07769

			\neg
A. CLASSIF IPC 7	COSF4/40		
According to	International Patent Classification (IPC) or to both national classification	n and IPC	
B FIELDS S	SEARCHED		
Minimum do	cumentation searched (classification system followed by classification s	symbols)	l
IPC 7	C08F		
Documentati	ion searched other than minimum documentation to the extent that such	documents are included in the fields searched	1
			_
Electronic da	ata base consulted during the international search (name of data base	and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant	ant passages Relevant to claim N	°.
X	US 3 022 281 A (E. S. SMITH) 20 February 1962 (1962-02-20)	1	
	claim 1		1
A	GB 1 558 835 A (JAPAN SYNTHETIC RU CO.) 9 January 1980 (1980-01-09)	JBBER	
		\	
Fur	ther documents are listed in the continuation of box C.	Patent family members are listed in annex.	
1		T later document published after the international filing date or priority date and not in conflict with the application but	
consi	nent defining the general state of the art which is not idered to be of particular relevance	cited to understand the principle or theory underlying the invention	
filing	date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone	
I which	nent which may throw doubts on priority claim(s) or h is cited to establish the publication date of another on or other special reason (as specified)	"Y" document of particular relevance; the claimed invention	
"O" docum	ment referring to an oral disclosure, use, exhibition or reason	document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.	
P docum	nent published prior to the international filing date but than the priority date claimed	"&" document member of the same patent family	
Date of the	e actual completion of the international search	Date of mailing of the international search report	
	17 January 2000	24/01/2000	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.,	Cauwenberg, C	

1

Intel Snal Application No PCT/EP 99/07769

Information on patent family members

Patent document cited in search report	ŧ	Publication date		Patent family member(s)	Publication date
US 3022281	A	20-02-1962	DE FR GB	1099738 B 1236360 A 851964 A	16-11-1960
GB 1558835	Α	09-01-1980	JP JP JP JP JP JP JP US	1298730 C 52084269 A 60023681 B 1298731 C 52084268 A 60023682 B 1250848 C 52084275 A 59013525 B 4201848 A	31-01-1986 13-07-1977 08-06-1985 31-01-1986 13-07-1977 08-06-1985 14-02-1985 13-07-1977 30-03-1984 06-05-1980