CMPE 320: Probability, Statistics, and Random Processes

Lecture 6: Independence (2)

Spring 2018

Seung-Jun Kim

Reliability analysis

 $P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3)$ - $P(A_1 \cap A_2) - P(A_2 \cap A_3) - P(A_3 \cap A_1) + P(A_1 \cap A_2 \cap A_3)$

• In probabilistic models involving a complex system, it is often useful to assume the components are independent $= P_1 * P_2 * P_3 - P_1 P_2 * P_2 P_3 - P_3 P_1$

Example 1.24. Network Connectivity. A computer network connects two nodes A and B through intermediate nodes C, D, E, F, as shown in Fig. 1.15(a). For every pair of directly connected nodes, say i and j, there is a given probability p_{ij} that the link from i to j is up. We assume that link failures are independent of each other. What is the probability that there is a path connecting A and B in which all links are up?

P; i Prob. that the i-th composent is "up"

For the series connection,

P(success) = P, P2 P3

For the perallel connection,

P(failure) = (1-P1)(1-P2)(1-P3)

P(success) = 1-(1-P1)(1-P2)(1-P3)

Parallel connection of
$$A \rightarrow C \rightarrow B$$

 $A \rightarrow C \rightarrow B$
 $A \rightarrow D \rightarrow B$
Psuce $(ADB) = 0.75 \times 0.75 = 0.712$ 0.75 D 0.95 B
Now $A \rightarrow C \rightarrow B$ is a serial connection of $C \rightarrow B = 0.840.9$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$
 $C \rightarrow C \rightarrow B = 0.95 \times 0.85$

Announcement

- HW#2 is due on 2/21, Wednesday
- HW#3 is due on 2/26, Monday
- My office hours will be back to 12pm Tuesdays.
- The TA's office hours will be 12pm Thursdays.

Problem 36. A power utility can supply electricity to a city from n different power plants. Power plant i fails with probability p_i , independent of the others.

- (a) Suppose that any one plant can produce enough electricity to supply the entire city. What is the probability that the city will experience a black-out?
- (b) Suppose that two power plants are necessary to keep the city from a black-out. Find the probability that the city will experience a black-out.

Independent Bernoulli trials

 Independent trials = an experiment involving independent but identical stages

• Independent Bernoulli trials = Each stage can have only 2 outcomes

n independent coin tosses

- P(k=2) = P(2 heads in a 3-toss sequence) = $\frac{1}{3}$
 - # of ways M, H, T can be arranged

Binomial probabilities

- P(k) = P(k heads in an n-toss sequence) =
- $\binom{n}{k}$ = number of distinct n-toss sequence that contain k heads

 " n chaose k"

 " n combination k"

 Binomial formula

 Since $P(\Omega) = 1$ $\sum_{K=0}^{n} P(k) = 1 = \sum_{K=0}^{n} \binom{n}{k} P^{K}(1-p)^{n-1K}$

Since
$$P(\Omega) = 1$$
 $\sum_{K=0}^{n} P(K) = 1 = \sum_{K=0}^{n} {n \choose K} P^{K} (1-p)^{n-K}$

Example: You want to transmit a binary message (either "0" or "1") over a computer network. The network introduces errors to the message (flips the bit) with probability 0.1. In order to make the transmission more secure, you send the same messages 5 times. The receiver will decide on the message that is the majority. What is the probability that an incorrect message is received?

$$P(error) = P(more flipped lits than correct bits)$$

= $P(K=3) + P(K=4) + P(K=5)$ $K: # ob bit flips$
= $\binom{5}{3} \cdot 0.1^3 (1-0.1)^{5-3} + \binom{5}{4} \cdot 0.1^4 \cdot 0.9^1 + \binom{5}{5} \cdot 0.1^5 \cdot 0.9^0$

Example 1.25. Grade of Service. An internet service provider has installed c modems to serve the needs of a population of n dialup customers. It is estimated that at a given time, each customer will need a connection with probability p, independent of the others. What is the probability that there are more customers needing a connection than there are modems?