University of Western Ontario, Computer Science Department CS3350B, Computer Organization

Due: April 7, 2023

Assignment 4

Figure 1: MIPS Datapath with Interstage Registers

Exercise. Consider the multi-cycle MIPS datapath presented in Figure 1, it shows 4 interstage registers: IF/ID, ID/EX, EX/MEM, and MEM/WB. Consider also the control signals presented in the diagram in blue. Assume the ALUOp control signal is 3 bits. Ignore control signals not shown (i.e. the ones controlling forwarding). Determine the minimum size, in bits, of each of the four inter-stage registers. For part marks, ensure to include workings and not just the total values.

IF/ID: total 64 ID/EX: total 148 EX/MEM: total 107 MEM/WB: total 71

Exercise.

```
add $t0, $0, $0
                                   \#\ \$t0=0, which corresponds to \mathtt{i} in \mathtt{C} code
loop: lw $s1, 0($s4)
                                   \# assume \$s4 stores the base address of array b
         add $s0, $s1, $t0
                                   \# \$s0 \text{ gets } b[i] + i
                                   \# assume $s2 stores the base address of array a
         sw $s0, 0($s2)
         addi $t0, $t0, 1
addi $s2, $s2, 4
                                   \# ++i
                                   \# get address of a[i+1]
         addi $s4, $s4, 4
slt $t2, $t0, $s5
                                   \# get address of b[i+1]
                                   \# assume that $s5 holds n
         bne $t2, $0, loop
                                   \# if t2 == 1, go to loop
```

With Loop unrolling applied first:

(a)

	- :	1 2	2 3	3	4	5	6	7	8 !	9 10	11	. 12	13	14	15	16	17	7 18	3 19	20	21	1 2
lw	IF	ID	EX	ME	WB																	
lw		IF	ID	EX	ME	WB																
nop			-	-	-	-	-															
nop				-	-	-	-	-														
sw					IF	ID	EX	ME	WB													
addi						IF	ID	EX	ME	WB												
nop							-	-	-	-	-											
nop								-	-	-	-	-										
sw									IF	ID	EX	ME	WB									
addi										IF	ID	EX	ME	WB								
addi											IF	ID	EX	ME	WB							
addi												IF	ID	EX	ME	WB						
nop													-	-	-	-	-					
nop														-	-	-	-	-				
slt															IF	ID	EX	ME	WB			
nop																-	-	-	-	-		
nop																	-	-	-	-	-	
bne																		IF	ID	EX	ME	WB
																			CPI =	22/10	= 2.2	

(b)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
lw	IF	ID	EX	ME	WB									
lw		IF	ID	EX	ME	WB								
sw			IF	ID	EX	ME	WB							
addi				IF	ID	EX	ME	WB						
sw					IF	ID	EX	ME	WB					
addi						IF	ID	EX	ME	WB				
addi							IF	ID	EX	ME	WB			
addi								IF	ID	EX	ME	WB		
slt									IF	ID	EX	ME	WB	
one										IF	ID	EX	ME	WB
												CPI =	14/10 =	= 1.4
			мем-	MEM										
			мем-	MEM										
			ALU-A	ALU	(purple	e is des	stination	of red	forwar	ding, a	nd sou	rce of b	lue for	vading)
			ALU-A	ALU										

(d)

	ALU or branch	Data transfer	CC
loop:	addi \$s4 8	lw \$s1 0(\$s4)	1
	add \$s0 \$s1 \$t0	lw \$s3 -4(\$s4)	2
	addi \$t0 \$t0 1	sw \$s0 0(\$s2)	3
	add \$s0 \$s3 \$t0		4
	addi \$t0 \$t0 1	sw \$s0 4(\$s2)	5
	addi \$s2 \$s2 8		6
	slt \$t2 \$t0 \$s5		7
	bne \$t2 \$0 loop		8

Exercise. Consider a multi-core processor with 2 cores, named P1 and P2. Each core has a dedicated cache with the following characteristics:

- 2-way set associative and a 16-byte capacity;
- is initially empty;
- follows the MESI snooping protocol;
- follows write-back and write-allocate protocols; and
- follows a pseudo-LRU replacement policy where
 - (i) empty cache lines in a set are filled first, then,
 - (i) if there are any invalid cache lines in a set replace them, then,
 - (ii) if no invalid cache lines are present, follows a typical LRU replacement policy.

Given the following list of serialized memory byte address accesses by the cores, determine:

- (a) whether each access results in a cache hit, cold miss, conflict miss, capacity miss, true share miss, or false share miss;
- (b) the data stored in each cache after all addresses in the list have been accessed; and
- (c) the MESI state of each cache block after all addresses in the list have been accessed.

Time	Memory Access	Hit/Miss Type	Time	Memory Access	Hit/Miss Type
1	P1 Reads 5	cold	11	P2 Writes 9	hit
2	P2 Writes 8	cold	12	P2 Writes 10	cold
3	P1 Reads 9	cold	13	P2 Reads 2	cold
4	P1 Writes 14	cold	14	P1 Writes 7	cold
5	P1 Reads 3	cold	15	P1 Reads 8	false
6	P1 Writes 12	cold	16	P1 Reads 4	conflict
7	P2 Reads 6	cold	17	P2 Reads 12	cold
8	P2 Reads 17	cold	18	P2 Reads 7	true
9	P1 Reads 20	cold	19	P1 Writes 2	hit
10	P2 Reads 4	cold	20	P1 Reads 11	cold

P1 Cache

Set	Cache Bl	State	
0	8	9	S
U			
1	2	3	M
1	10	11	S
2	20	21	Е
	4	5	S
3	14	15	M
	6	7	S

P2 Cache

Set	Cache Bl	State	
0	8	9	S
	16	17	E
1	10	11	S
	2	3	I
2	4	5	S
	12	13	E
3	6	7	S