Logique

Logique intuitionniste et sémantique de Kripke

Lucie Le Briquer

1 Déduction naturelle intuitionniste

Précedemment : on a montré la correction de la déduction naturelle, i.e. si un jugement est prouvable, il est valide.

Remarque.

Déduction naturelle NK_0 diffère de NJ_0 (intuitionniste) qui correspond à $NK_0 - (Abs) + (\bot E)$

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}(\bot E) \qquad \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}(\mathsf{Abs})$$

- **Théorème 1** (correction) -

Si $\Gamma \vdash \varphi$ est prouvable dans NK_0 alors $\Gamma \vdash \varphi$ est valide

- **Théorème 2** (complétude) -

Si $\Gamma \vdash \varphi$ est valide dans NK_0 alors $\Gamma \vdash \varphi$ est prouvable

Lemme 3 -

Soit $\Gamma \vdash \varphi$ valide tel que \forall var prop A de $\Gamma \vdash \varphi$, $\{A, \neg A\} \cap \Gamma \neq \emptyset$ Alors $\Gamma \neg \varphi$ est prouvable dans NJ_0

Preuve.

Par récurrence sur $(|\Gamma|, |\varphi|)$ où

 $|\Gamma|=$ nombre de formules dans Γ

 $|\varphi|$ = taille (= nombre de connecteurs logiques dans φ)

- $\varphi = T$
- $\varphi = \bot$
 - Cas 1:..

- Cas 2 : $\exists \psi \in \Gamma - Lit(P)$ On pose $\Gamma' = \Gamma - \{\psi\}$ $\Gamma' \vdash \neg \psi$ est valide alors par récurrence il est prouvable

$$\frac{\frac{\Gamma' \vdash \neg \psi}{\Gamma', \psi \vdash \neg \psi}(\mathsf{Aff}) \ \frac{\Gamma', \psi \vdash \psi}{\Gamma', \psi \vdash \bot}(\neg E)}{\Gamma', \psi \vdash \bot}(\neg E)$$

- $\varphi \in Lit(P)$
- $\bullet \ \varphi = \neg T$
- $\varphi = \neg \bot$
- $\varphi = \psi_1 \wedge \psi_2 : \Gamma \vdash \psi_1$ et $\Gamma \vdash \psi_2$ sont valides donc par réc prouvables $+ (\wedge I)$
- $\varphi = \neg(\psi_1 \land \psi_2) : \Gamma \vdash \neg \psi_1$ ou $\Gamma \vdash \neg \psi_2$ est valide supposons par symétrie $\Gamma \vdash \neg \psi_1$ est valide donc prouvable par récurrence

$$\frac{\frac{\Gamma, \psi_1 \wedge \psi_2 \vdash \psi_1 \wedge \psi_2}{\Gamma, \psi_1 \wedge \psi_2 \vdash \psi_1}(Ax)}{\frac{\Gamma, \psi_1 \wedge \psi_2 \vdash \psi_1}{\Gamma, \psi_1 \wedge \psi_2 \vdash \bot}(Aff)} \frac{\Gamma, \psi_1 \wedge \psi_2 \vdash \neg \psi_1}{\Gamma, \psi_1 \wedge \psi_2 \vdash \bot}(\neg E)}{\Gamma \vdash \neg(\psi_1 \wedge \psi_2)} (\neg I)$$

• etc.

Lemme 4

$$\frac{\Gamma \vdash \varphi}{\Gamma, \neg \varphi \vdash \bot}(\neg L)$$

est dérivable dans NJ_0

Preuve.

$$\frac{\frac{\Gamma \vdash \varphi}{\Gamma, \neg \varphi \vdash \varphi}(Aff)}{\frac{\Gamma, \neg \varphi \vdash \neg \varphi}{\Gamma, \neg \varphi \vdash \bot}(\neg E)}$$

Remarque.

On note:

$$\frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi}(Abs)$$
$$\Gamma \vdash \neg \neg \varphi$$

$$\frac{\Gamma \vdash \neg \neg \varphi}{\Gamma \vdash \varphi}(DN)$$

$$\frac{1}{\Gamma \vdash \varphi \lor \neg \neg \varphi} (\text{TE})$$

Lemme 5

 $NJ_0 + (Abs), NJ_0 + (DN), NJ_0 + (TE)$ sont équivalents

Preuve.

(du théorème)

On suppose $\Gamma \vdash \varphi$ valide.

On montre par récurrence sur $\mathcal{A}(\Gamma \vdash \varphi) = |\{A \mid A \text{ apparaît dans } \Gamma \vdash \varphi \text{ et } \{A, \neg A\} \cap \Gamma = \emptyset\}|$

- si $\mathcal{A}(\Gamma \vdash \varphi) = 0$: lemme précédent
- sinon soit A tq $\{A, \neg A\} \cap \Gamma = \emptyset$ $\Gamma, A \vdash \varphi$ et $\Gamma, \neg A \vdash \varphi$ sont valides, par rec sont prouvables

$$\frac{\overline{\Gamma \vdash A \vee \neg A}(\mathrm{TE}) \quad \overline{\Gamma, A \vdash \varphi}(HR) \quad \overline{\Gamma, \neg A \vdash \varphi}(HR)}{\Gamma \vdash \varphi}(\vee E)$$

2 Calcul des séquents

Un séquent $\Gamma \vdash \Delta$ où Γ, Δ sont des multi-ensembles de formules Pour $I \subseteq P : I \vDash \Gamma \vdash \Delta$ si ou bien $\exists \varphi \in T \ I \nvDash \varphi$ ou bien $\exists \varphi \in \Delta \ I \vDash \varphi$ Définition des règles de LK_0

Théorème 6 (correction et complétude) —

 $\Gamma \vdash \Delta$ est valide ssi $\Gamma \vdash \Delta$ est prouvable en LK_0

- Théorème 7 (élimination des coupures) —

 $\Gamma \vdash \Delta$ est prouvable dans $LK_0 + \mathrm{cut}$ ssi $\Gamma \vdash \Delta$ est prouvable dans LK_0 Où :

$$\frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \Delta} \frac{\Gamma, \varphi \vdash \Delta}{\operatorname{Cut})}(\mathrm{cut})$$

Preuve.

Supposons $\Gamma \vdash \Delta$ est prouvable dans LK_0 +cut. Par correction de LK_0 +cut, $\Gamma \vdash \Delta$ est valide. Par complétude de LK_0 , $\Gamma \vdash \Delta$ est prouvable dans LK_0 .

- **Théorème 8** (propriété de la sous-formule) —

Si Π est une preuve de $\Gamma \vdash \Delta$ dans LK_0 (sans cut) et si $\Gamma' \vdash \Delta'$ apparait dans Π alors $\forall \varphi' \in \Gamma' \cup \Delta'$, $\exists \varphi \in \Gamma \cup \Delta$ telle que φ' est une sous-formule de φ .

Preuve.

Dans LK_0 , on ne fait que "casser" des formules. On fait apparaître une nouvelle φ avec la règle Cut.

Remarque.

Ce théorème permet de montrer qu'on ne peut avoir de preuve de \perp .

Définition 1 (LJ_0) -

$$\frac{\Gamma, \varphi_{1}, \varphi_{2} \vdash \psi}{\Gamma, \varphi_{1} \land \varphi_{2} \vdash \psi} (\land L) \qquad \frac{\Gamma \vdash \varphi_{1} \quad \Gamma \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \land \varphi_{2}} (\land R)
\frac{\Gamma, \varphi_{1}, \varphi_{2} \vdash \psi}{\Gamma, \varphi_{1} \land \varphi_{2} \vdash \psi} (\land L) \qquad \frac{\Gamma \vdash \varphi_{1} \quad \Gamma \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \land \varphi_{2}} (\land R)
\frac{\Gamma, \varphi_{1} \vdash \psi \quad \Gamma, \varphi_{2} \vdash \psi}{\Gamma, \varphi_{1} \lor \varphi_{2} \vdash \psi} (\lor L) \qquad \frac{\Gamma \vdash \varphi_{i}}{\Gamma \vdash \varphi_{1} \lor \varphi_{2}} (\lor R_{i})
\frac{\Gamma \vdash \varphi_{1} \quad \Gamma, \varphi_{2} \vdash \psi}{\Gamma, \varphi_{1} \to \varphi_{2} \vdash \psi} (\Rightarrow L) \qquad \frac{\Gamma \varphi_{1} \vdash \varphi_{2}}{\Gamma \vdash \varphi_{1} \to \varphi_{2}} (\Rightarrow R)
\frac{\Gamma \vdash \varphi}{\Gamma, \neg \varphi \vdash \psi} (\neg L) \qquad \frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} (\neg R)
\frac{\Gamma \vdash \psi}{\Gamma, \varphi \vdash \psi} (\text{WL}) \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} (\text{WR})
\frac{\Gamma, \varphi, \varphi \vdash \psi}{\Gamma, \varphi \vdash \psi} (\text{CL}) \qquad \frac{\Gamma \vdash \varphi \quad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} (\text{cut})$$

- Théorème 9 -

- 1. LJ_0 +cut= LJ_0
- 2. LJ_0 a la propriété de la sous-formule

Exemples.

$$\frac{\frac{\overline{A \vdash A}^{(Ax)}}{A \vdash A \land B}(\land R_1)}{\frac{\neg (A \land B), A \vdash \bot}{\neg (A \lor B) \vdash \neg A}(\neg R)} \frac{\neg (A \lor B) \vdash \neg A}{\neg (A \lor B) \vdash \neg A \land \neg B}(\land R)}{\frac{\neg (A \lor B) \vdash \neg A \land \neg B}{\vdash \neg (A \lor B) \Rightarrow (\neg A \land \neg B)}}(\Rightarrow R)$$
s de Kripke

3 Modèles de Kripke

$$K = (W, \leq_K, \alpha_K)$$

- \bullet W est un ensemble de mondes
- \leq_K est un ordre (partiel) sur les mondes
- $\alpha_K: W \longrightarrow 2^p$, α_K est croissante : si $W \leq_K W'$, alors $\alpha_K(W) \subset \alpha_K(W')$

Sémantique de Kripke.

 $w \in W, K, w \Vdash \varphi$ est défini par récurrence sur φ

- $K, w \Vdash \bot$ jamais
- $K, w \Vdash \top$ toujours
- $K, w \Vdash A \operatorname{ssi} A \in \alpha_K(w)$
- $K, w \Vdash \varphi_1 \land \varphi_2 \text{ si } K, w \Vdash \varphi_1 \text{ et } K, w \Vdash \varphi_2$
- $K, w \Vdash \varphi_1 \lor \varphi_2 \text{ si } K, w \Vdash \varphi_1 \text{ ou } K, w \Vdash \varphi_2$
- $K, w \Vdash \varphi_1 \Rightarrow \varphi_2 \text{ si } \forall w' \geq_K w \text{ si } K, w' \Vdash \varphi_1 \text{ alors } K, w' \Vdash \varphi_2$
- ... compléter
- $K, w \Vdash \Gamma$ si pour tout $\varphi \in \Gamma, K, w \Vdash \varphi$
- $K, w \Vdash (\Gamma \vdash \varphi)$ si $(K, w \Vdash \Gamma)$ implique $K, w \vdash \varphi$
- $\Gamma \vdash \varphi$ est valide si pour tout K, pour tout $w \in K$, K, $w \Vdash (\Gamma \vdash \varphi)$

- **Théorème 10** (correction) –

si $\Gamma \vdash \varphi$ est prouvable en LJ_0 alors $\Gamma \vdash \varphi$ est valide.

Preuve.

Par récurrence sur la taille de la preuve de $\Gamma \vdash \varphi$. Autrement dit pour toute règle, si les prémisses sont valides alors la conclusion est valide.

• (\Rightarrow R) supposons Γ , $\varphi_1 \vdash \varphi_2$ est valide, montrons que $\Gamma \vdash \varphi_1 \Rightarrow \varphi_2$ est valide. Soit $K = (W, \leq, \alpha)$ un modèle de Kripke, soit $w \in W$. Supposons $K, w \Vdash \Gamma$, montrons que $K, w \Vdash \varphi_1 \Rightarrow \varphi_2$ Soit $w' \geq w$. Supposons $K, w' \Vdash \varphi_1$, montrons que $K, w \Vdash \varphi_2$ $K, w' \Vdash (\Gamma, \varphi_1 \vdash \varphi_2)$ par hypothèse alors $K, w' \Vdash \Gamma$ par lemme de monotonie donc $K, w' \Vdash \varphi_2$

- **Lemme 11** (de monotonie) —

Si $w \leq w'$ et $K, w \Vdash \varphi$ alors $K, w' \Vdash \varphi$

Définition 2 (LJ_0^{\Rightarrow})

$$\frac{\Gamma \vdash \varphi_2 \quad \Gamma, \varphi_2 \vdash \psi}{\Gamma, \varphi_2 \Rightarrow \varphi_2 \vdash \psi} \ (\Rightarrow L) \qquad \qquad \frac{\Gamma \varphi_1 \vdash \varphi_2}{\Gamma \vdash \varphi_1 \Rightarrow \varphi_2}$$

+ structurelles

- **Théorème 11** (complétude de LJ_0^{\Rightarrow}) —

si $\Gamma \vdash \varphi$ est valide et Γ, φ ne comportent que \Rightarrow alors $\Gamma \vdash \varphi$ est prouvable en LJ_0^{\Rightarrow}

Preuve.

Si $S \subset \mathcal{F}(P)$, on note $S^* = \{ \varphi \mid \exists \Gamma \subseteq S \ \Gamma \vdash \varphi \text{ prouvable en } LJ_0^{\Rightarrow} \}$

- $S \subseteq S^*$ par (Ax)
- $(S^*)^* = S^*$ en utilisant (cut, WL)

On dit que S est saturé si $S = S^*$.

On pose $K_U = (W, \leq, \alpha)$ où :

- ullet W est l'ensemble des ensembles de familles saturées
- ≤=⊆
- $\alpha(S) = S \cap P$

C'est un modèle de Kripke (α est monotone)

- Lemme 12 -

$$K_U, S \Vdash \varphi \text{ ssi } \varphi \in S$$

Par récurrence sur φ :

- si $\varphi \in P : K_U, S \Vdash \varphi \Leftrightarrow \varphi \in \alpha(S) \Leftrightarrow \varphi \in S \cap P \Leftrightarrow \varphi \in S$
- si $\varphi = \varphi_1 \Rightarrow \varphi_2$

 \Leftarrow : supposons $\varphi_1 \Rightarrow \varphi_2 \in S$ montrons que $K_U, S \Vdash \varphi_1 \Rightarrow \varphi_2$

Soit $S' \supseteq S$, supposons $K_U, S' \Vdash \varphi_1$ montrons que $K_U, S' \Vdash \varphi_2$ Par hypothèse de récurrence $\varphi_1 \in S'$

Par monotonie $\varphi_1 \Rightarrow \varphi_2 \in S'$ $(S \subseteq S')$

$$\frac{}{\varphi_1 \vdash \varphi_1} \, (\mathrm{Ax}) \qquad \qquad \frac{}{\varphi_1, \varphi_2 \vdash \varphi_2} (\mathrm{Ax}) \qquad \qquad \frac{}{\varphi_1, \varphi_1 \Rightarrow \varphi_2 \vdash \varphi_2} \, (\Rightarrow L)$$

 $\varphi_2 \in (S')^* = S'$, par hypothèse de récurrence $K_U, S' \Vdash \varphi_2$

Retour à la preuve du théorème :

Soit $\Gamma \vdash \varphi$ valide. $\Gamma \subseteq \Gamma^*$, Γ^* est saturé. Montrons que $K_U, \Gamma^* \Vdash \Gamma$. Soit $\varphi \in \Gamma \subseteq \Gamma^*$, par le lemme $K_U, \Gamma^* \Vdash \varphi$ donc $K_U, \Gamma^* \Vdash \varphi$. Par le lemme $\varphi \in \Gamma^*$. Par définition, $\exists \Gamma_1 \subseteq \Gamma$ tel que $\Gamma_1 \vdash \varphi$ est prouvable.