TEOREMA CHINEZĂ A RESTURILOR

1. Teorema Chineză a Resturilor pentru numere întregi

Fie $n_1, n_2 \ge 2$ două numere întregi prime între ele. Fie a_1, a_2 numere întregi fixate. Considerăm sistemul de congruențe

$$\begin{cases} x \equiv a_1 \bmod n_1 \\ x \equiv a_2 \bmod n_2 \end{cases}$$

Vom arăta că sistemul dat are soluții și vom determina cea mai mică soluție pozitivă a acestuia.

Deoarece $(n_1, n_2) = 1$ avem că \widehat{n}_1 este inversabil în $\mathbb{Z}/n_2\mathbb{Z}$, respectiv \widehat{n}_2 este inversabil în $\mathbb{Z}/n_1\mathbb{Z}$. Așadar există $y_1, y_2 \in \mathbb{Z}$ cu proprietatea că $n_1y_1 \equiv 1 \mod n_2$, respectiv $n_2y_2 \equiv 1 \mod n_1$. Fie acum $x = a_1n_2y_2 + a_2n_1y_1$. Este evident că x este o soluție a sistemului de congruențe dat. Mai mult, sistemul are o infinitate de soluții, deoarece $x + kn_1n_2$ este de asemenea soluție, oricare ar fi $k \in \mathbb{Z}$.

Ne propunem acum să determinăm cea mai mică soluție pozitivă a sistemului. Scriem $x = n_1 n_2 q + r$ cu $0 \le r < n_1 n_2$. Dacă r = 0, atunci cea mai mică soluție pozitivă este $n_1 n_2$. În caz contrar, r este cea mai mică soluție pozitivă. Este evident că r este o soluție a sistemului. Să arătăm că este cea mai mică. Fie 0 < r' < r o altă soluție. Atunci $r \equiv r' \mod n_1$ și $r \equiv r' \mod n_2$, deci $n_1 \mid r - r'$ și $n_2 \mid r - r'$. Cum $(n_1, n_2) = 1$ deducem că $n_1 n_2 \mid r - r'$. Pe de altă parte, $0 < r - r' < n_1 n_2$, contradicție.

Să remarcăm că $(n_1, n_2) = 1$ este, în general, o condiție necesară: de exemplu, sistemul de congruențe

$$\begin{cases} x \equiv 1 \bmod 4 \\ x \equiv 2 \bmod 6 \end{cases}$$

nu are soluții.

Exercițiul 1.1. Să se afle cea mai mică soluție pozitivă a sistemului de congruențe

$$\begin{cases} x \equiv 5 \bmod 18 \\ x \equiv 27 \bmod 35 \end{cases}$$

Exercițiul 1.2. Rezolvați sistemul de congruențe

$$\begin{cases} 6x \equiv 2 \bmod 8 \\ 5x \equiv 5 \bmod 6 \end{cases}$$

Rezultatele de mai sus se pot generaliza la mai mult de două numere.

Teorema 1.3. (Teorema chineză a resturilor) Fie $s \geq 2$ şi fie $n_1, \ldots, n_s \geq 2$ numere întregi oricare două prime între ele. Fie a_1, \ldots, a_s numere întregi fixate. Considerăm sistemul de congruențe

$$\begin{cases} x \equiv a_1 \bmod n_1 \\ \dots \\ x \equiv a_s \bmod n_s \end{cases}$$

Acesta are o unică soluție $0 < x \le n_1 \cdots n_s$.

Proof. Vom arăta că sistemul dat are soluții și vom determina cea mai mică soluție pozitivă a acestuia. Fie $m_i = \prod_{j \neq i} n_j$, $1 \leq i \leq s$. Deoarece $(n_i, m_i) = 1$ avem că \widehat{m}_i este inversabil în $\mathbb{Z}/n_i\mathbb{Z}$, pentru orice $i = 1, \ldots, s$. Așadar există $y_i \in \mathbb{Z}$ cu proprietatea că $m_i y_i \equiv 1 \mod n_i$. Fie acum $x = \sum_{i=1}^s a_i y_i m_i$. Este evident că x este o soluție a sistemului de congruențe dat. Mai mult, sistemul are o infinitate de soluții, deoarece $x + kn_1 \cdots n_s$ este de asemenea soluție, oricare ar fi $k \in \mathbb{Z}$.

Ne propunem acum să determinăm cea mai mică soluție pozitivă a sistemului. Scriem $x=n_1\cdots n_sq+r$ cu $0\leq r< n_1\cdots n_s$. Dacă r=0, atunci cea mai mică soluție pozitivă este $n_1\cdots n_s$. În caz contrar, r este cea mai mică soluție pozitivă. Este evident că r este o soluție a sistemului. Să arătăm că este cea mai mică. Fie 0< r'< r o altă soluție. Atunci $r\equiv r' \mod n_i$, deci $n_i\mid r-r'$. Cum n_1,\ldots,n_s sunt numere întregi oricare două prime între ele deducem că $n_1\cdots n_s\mid r-r'$. Pe de altă parte, $0< r-r'< n_1\cdots n_s$, contradicție.

2. Teorema Chineză a Resturilor pentru polinoame

Vom considera acum inelul de polinoame K[X] în locul lui \mathbb{Z} .

Teorema 2.1. (Teorema de interpolare a lui Lagrange) Fie K un corp comutativ, $s \geq 2$ un număr întreg, $a_1, \ldots, a_s \in K$ oricare două distincte şi $b_1, \ldots, b_s \in K$. Considerăm sistemul de congruențe

$$\begin{cases} f(X) \equiv b_1 \mod (X - a_1) \\ \dots \\ f(X) \equiv b_s \mod (X - a_s) \end{cases}$$

Acesta are o unică soluție $f \in K[X]$ cu deg $f \le s - 1$.

Proof. Fie $m_i = \prod_{j \neq i} (X - a_j)$, $1 \leq i \leq s$. Deoarece $(X - a_i, m_i) = 1$ avem că \widehat{m}_i este inversabil în $K[X]/(X - a_i)$, pentru orice $i = 1, \ldots, s$. Dar $K[X]/(X - a_i) \simeq K$ și prin acest izomorfism \widehat{m}_i corespunde lui $\prod_{j \neq i} (a_i - a_j)$, inversul său fiind $y_i = \prod_{j \neq i} (a_i - a_j)^{-1}$. Așadar există $y_i \in K^{\times}$ cu proprietatea că $m_i y_i \equiv 1 \mod (X - a_i)$. Fie acum $f = \sum_{i=1}^s b_i y_i m_i$. Este evident că f este o soluție a sistemului de congruențe dat și deg $f \leq s - 1$.

Să arătăm că f este unica soluție cu această proprietate. Fie $g \in K[X]$ o altă soluție cu deg $g \leq s-1$. Atunci $f \equiv g \mod (X-a_i)$, deci $X-a_i \mid f-g$. Cum $X-a_1,\ldots,X-a_s$ sunt oricare două prime între ele deducem că $(X-a_1)\cdots(X-a_s)\mid f-g$. Pe de altă parte, deg(f-g) < s, contradicție.

Remarca 2.2. Polinomul f construit mai sus se scrie sub forma

$$f(X) = \sum_{i=1}^{s} b_i \frac{\prod_{j \neq i} (X - a_j)}{\prod_{j \neq i} (a_i - a_j)}.$$

Acesta se numește polinomul de interpolare Lagrange asociat elementelor distincte $a_1, \ldots, a_s \in K$ și elementelor $b_1, \ldots, b_s \in K$. Să remarcăm că $f(a_i) = b_i$ pentru orice $i = 1, \ldots, s$.

Exercițiul 2.3. Fie $f \in \mathbb{Q}[X]$ un polinom de grad $n \geq 1$ care satisface condițiile $f(i) = 2^i$ pentru orice $i = 0, 1, \ldots, n$. Aflați f(n+1).

3. Teorema Chineză a Resturilor pentru ideale

Fie $n_1, n_2 \geq 2$ două numere întregi prime între ele. Am demonstrat anterior că funcția $f: \mathbb{Z}/(n_1n_2)\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_2\mathbb{Z}$ definită prin $f(\widehat{x}) = (\overline{x}, \overline{\overline{x}})$ este un izomorfism de inele. Se observă că dacă notăm $I_1 = n_1\mathbb{Z}$ și $I_2 = n_2\mathbb{Z}$, atunci $I_1 + I_2 = \mathbb{Z}$ și $I_1I_2 = I_1 \cap I_2$. Aceasta ne sugerează următoarea generalizare:

Definiția 3.1. Fie R un inel și I_1 , I_2 ideale bilaterale ale lui R cu proprietatea că $I_1 + I_2 = R$. Atunci idealele I_1 și I_2 se numesc comaximale.

Remarca 3.2. Dacă R este inel comutativ şi unitar, iar I_1, I_2 sunt ideale comaximale, atunci $I_1I_2 = I_1 \cap I_2$.

Exercițiul 3.3. (i) Dați un exemplu de inel comutativ (neunitar) R și de două ideale comaximale $I_1, I_2 \subseteq R$ pentru care $I_1I_2 \neq I_1 \cap I_2$.

(ii) Fie R un inel unitar şi I_1, I_2 ideale comaximale. Atunci $I_1I_2 + I_2I_1 = I_1 \cap I_2$. *(iii) Daţi un exemplu de inel necomutativ şi unitar R şi de două ideale comaximale $I_1, I_2 \subseteq R$ pentru care $I_1I_2 \neq I_1 \cap I_2$.

Teorema 3.4. Fie R un inel și I_1 , I_2 ideale comaximale ale lui R. Atunci morfismul

$$f: R/I_1 \cap I_2 \to R/I_1 \times R/I_2$$

definit prin $f(\widehat{x}) = (\overline{x}, \overline{\overline{x}})$ este un izomorfism de inele.

Proof. Se arată mai întâi că f este bine definit, iar apoi se arată că $(\overline{r}, \overline{\overline{0}})$ şi $(\overline{0}, \overline{s})$ sunt în imaginea lui f pentru orice $r, s \in R$: deoarece $I_1 + I_2 = R$ există $x_1 \in I_1$ şi $x_2 \in I_2$ astfel încât $x_1 + x_2 = r$, respectiv există $y_1 \in I_1$ şi $y_2 \in I_2$ astfel încât $y_1 + y_2 = s$. Atunci $f(\widehat{x}_2) = (\overline{r}, \overline{\overline{0}})$ şi $f(\widehat{y}_1) = (\overline{0}, \overline{s})$. De aici se obţine $f(\widehat{x}_2 + y_1) = (\overline{r}, \overline{s})$, deci f este surjectiv.

Teorema 3.4 admite următoarea generalizare:

Teorema 3.5. (Teorema chineză a resturilor) Fie R un inel, I_1, \ldots, I_n , $n \geq 2$ ideale bilaterale ale lui R. Definim

$$f: R \to R/I_1 \times \cdots \times R/I_n$$

 $prin \ f(x) = (x + I_1, \dots, x + I_n).$

(i) f este morfism de inele şi $\operatorname{Ker} f = \bigcap_{i=1}^{n} I_i$;

(ii) f este surjectiv dacă şi numai dacă I_i şi $\bigcap_{j\neq i} I_j$ sunt comaximale pentru orice $i\neq j$. În acest caz există un izomorfism

$$\overline{f}: R/I \to R/I_1 \times \cdots \times R/I_n.$$

Proof. (i) Evident.

(ii) Dacă f este surjectiv, atunci pentru $r \in R$ există $a \in R$ cu proprietatea că $f(a) = (0 \mod I_1, \ldots, 0 \mod I_{i-1}, r \mod I_i, 0 \mod I_{i+1}, \ldots, 0 \mod I_n)$, deci $a \in \bigcap_{j \neq i} I_j$ şi $r - a \in I_i$. Cum r = (r - a) + a deducem că $I_i + \bigcap_{j \neq i} I_j = R$.

Reciproc este suficient să arătăm că orice element de forma $(0 \bmod I_1, \ldots, 0 \bmod I_{i-1}, r \bmod I_i, 0 \bmod I_{i+1}, \ldots, 0 \bmod I_n), 1 \leq i \leq n$ se găsește în imaginea lui f. Cum $I_i + \bigcap_{j \neq i} I_j = R$ vor exista $u \in I_i$ și $v \in \bigcap_{j \neq i} I_j$ astfel încât r = u + v. Se observă acum că $f(v) = (0 \bmod I_1, \ldots, 0 \bmod I_{i-1}, r \bmod I_i, 0 \bmod I_{i+1}, \ldots, 0 \bmod I_n)$. Izomorfismul \overline{f} se obține din teorema fundamentală de izomorfism pentru inele. \square

Definiția 3.6. Dacă R este un inel și I_1, \ldots, I_n , $n \geq 2$ sunt ideale bilaterale ale lui R cu proprietatea că $I_i + I_j = R$ pentru orice $i \neq j$, atunci acestea se numesc comaximale în perechi.

Exercițiul 3.7. (i) Fie R un inel unitar şi I_1, \ldots, I_n , $n \geq 2$ ideale bilaterale ale lui R. Dacă I_1, \ldots, I_n sunt comaximale în perechi, atunci I_i şi $\bigcap_{j\neq i} I_j$ sunt comaximale, pentru orice $i=1,\ldots,n$.

(ii) Daţi un exemplu de inel comutativ (neunitar) R şi de trei ideale $I_1, I_2, I_3 \subseteq R$ comaximale în perechi pentru care I_1 şi $I_2 \cap I_3$ nu sunt comaximale.

Remarca 3.8. (i) Teorema Chineză a Resturilor are loc și pentru ideale comaximale în perechi dacă R este inel unitar.

(ii) Dacă R este inel comutativ și unitar, iar I_1, \ldots, I_n sunt ideale comaximale în perechi, atunci $\bigcap_{i=1}^n I_i = \prod_{i=1}^n I_i$.

Exercițiul 3.9. Arătați că $\mathbb{Q}[X]/(X^2-1) \simeq \mathbb{Q} \times \mathbb{Q}$, $\mathbb{Z}[X]/(X^2-X) \simeq \mathbb{Z} \times \mathbb{Z}$, dar $\mathbb{Z}[X]/(X^2-1) \not\simeq \mathbb{Z} \times \mathbb{Z}$.