Семинар 26

Общая информация:

- Квадратичная форма $Q: V \to F$ это отображение по правилу $Q(v) = \beta(v, v)$, где $\beta: V \times V \to F$ некоторая билинейная форма (не обязательно симметричная). Если надо подчеркнуть билинейную форму β , то пишут Q_{β} .
- В координатах любая квадратичная форма $Q \colon F^n \to F$ записывается в виде $Q(x) = x^t A x$, для некоторой $A \in \mathrm{M}_n(F)$. Такая матрица A определена не единственным образом, однако ее диагональные элементы a_{ii} определены однозначно, и $a_{ij} + a_{ji}$ определена однозначно. Потому обязательно можно найти единственную симметрическую матрицу S такую, что $Q(x) = x^t S x$.
- Если $Q: V \to F$ некоторая квадратичная форма, то соответствующая симметрическая билинейная форма $\beta_Q: V \times V \to F$ задана по правилу $\beta_Q(v,u) = \frac{1}{2}(Q(v+u) Q(v) Q(u))$. Здесь предполагается, что $2 \neq 0$ в поле.
- Отображения $\beta \mapsto Q_{\beta}$ и $Q \mapsto \beta_{Q}$ задают изоморфизм между симметричными билинейными формами и квадратичными формами.
- В координатах, если $\beta(x,y)=x^tBy$, то $Q_{\beta}(x)=x^tBx$. Если $Q(x)=x^tAx$, то $\beta_Q(x,y)=x^t\frac{A+A^t}{2}y$.
- Для квадратичной формы $Q: V \to F$ каноническим называется вид, в котором соответствующая симметрическая билинейная форма диагональная, то есть $Q(x) = \sum_i a_i x_i^2$.
- Над полем \mathbb{C} нормальным видом Q называется вид $Q(x) = \sum_{i=1}^{r} x_i^2$.
- Над полем $\mathbb R$ нормальным видом Q называется вид $Q(x) = \sum_{i=1}^k x_i^2 \sum_{i=k+1}^r x_i^2$
- Билинейная форма $\beta\colon V\times V\to\mathbb{R}$ называется положительной, если $Q_{\beta}(v)=\beta(v,v)>0$ для любого $v\in V,\,v\neq 0.1$
- Сигнатура билинейной формы $\beta \colon V \times V \to \mathbb{R}$ это количество 1, -1 и 0 в ее диагональной форме.
- Сигнатура квадратичной формы это сигнатура соответствующей ей симметричной билинейной формы.

Задачи:

- 1. Задачник. §38, задача 38.16 (a).
- 2. Задачник. §38, задача 38.18 (ж).
- 3. Определите, задают ли следующие матрицы одну и ту же билинейную форму на \mathbb{R}^3 в разных базисах:
 - (a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ и $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
 - (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $\mathbf{u} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
 - (c) $\begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & -3 \\ 2 & -3 & 7 \end{pmatrix}$ \bowtie $\begin{pmatrix} -1 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$
- 4. Найдите все такие матрицы $A \in M_n(\mathbb{R})$, что $\operatorname{tr}(AX) = 0$ для любой матрицы X со следом 0.
- 5. Пусть $V = \mathbb{R}[t]_{\leq n}$ пространство многочленов степени не больше n и пусть $Q: V \to \mathbb{R}$ квадратичная форма заданная по правилу $f \mapsto f(1)f(2)$. Определите сигнатуру этой формы.
- 6. Доказать, что если в симметричной матрице некоторый главный минор порядка r отличен от нуля, а все окаймляющие его главные миноры порядков r+1 и r+2 равны нулю, то ранг этой матрицы равен r.
- 7. Пусть $Q: V \to \mathbb{R}$ невырожденная квадратичная форма и пусть существует ненулевой вектор $v \in V$ такой, что Q(v) = 0. Доказать, что отображение $Q: V \to \mathbb{R}$ сюръективно.

 $^{^1}$ Заметьте, что это НЕ значит, что $\beta(v,u)>0$ для любых $v,u\in V$. Например, если $\beta(v,u)>0$, то $\beta(v,-u)<0$.

8. В пространстве \mathbb{R}^4 задана билинейная форма

$$\beta(x,y) = 2x_2y_1 + x_4y_4$$

По ней построили квадратичную форму $Q \colon \mathbb{R}^4 \to \mathbb{R}$. После этого Q ограничили на подпространство $V = \{x \in \mathbb{R}^4 \mid x_1 - 3x_2 - 3x_3 + x_4 = 0\}$. Найдите сигнатуру Q и сигнатуру ограничения Q на V.