Limits

Allen Williams

November 8 2017

Problem. $47 \ a) \lim_{n \to \infty} \frac{n-1}{n+1} = 1$

Proof. Fix $\epsilon>0$ and let $N=\frac{2}{\epsilon}$. Then n>N means $n>\frac{2}{\epsilon}$, which means $\epsilon>\frac{2}{n}>\frac{2}{n+1}=|\frac{n-1-(n+1)}{n+1}|$ which implies $\epsilon>|\frac{n-1}{n+1}-1|$ when n>N, and $\lim_{n\to\infty}\frac{n-1}{n+1}=1$.

Problem. $47 \ b) \lim_{n \to \infty} \frac{1}{2n^2 + 1} = 0$

Proof. Fix $\epsilon > 0$ and let $N = \frac{1}{\sqrt{\epsilon}}$. Then n > N means $n > \frac{1}{\sqrt{\epsilon}}$, which means $\epsilon > \frac{1}{n^2} > \frac{1}{2n^2+1} = |\frac{1}{2n^2+1}|$. So n > N implies $\epsilon > |\frac{1}{2n^2+1}$ so $\lim_{n \to \infty} \frac{1}{2n^2+1} = 0$. OED

Problem. 47 c) $\lim_{n\to\infty} \frac{4n^3+2n}{2n^3+1} = 2$

Proof. Fix $\epsilon>0$ and let $N=\frac{1}{\sqrt{\epsilon}}$. Then n>N means $n>\frac{1}{\sqrt{\epsilon}}$, which means $\epsilon>\frac{1}{n^2}$, or equivalently $\epsilon>\frac{2n}{2n^3}>|\frac{2n-2}{2n^3+1}|$. Then $\epsilon>|\frac{4n^3+2n-2(2n^3+1)}{2n^3+1}|$ or $\epsilon>|\frac{4n^3+2n}{2n^3+1}-2|$. So n>N implies $\epsilon>|\frac{4n^3+2n}{2n^3+1}-2|$ proving that $\lim_{n\to\infty}\frac{4n^3+2n}{2n^3+1}=2$. QED

Problem. $47 \ d$ $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0$

Proof. Fix $\epsilon > 0$ and let $N = \frac{1}{\epsilon}$, then n > N means $n > \frac{1}{\epsilon}$ or $\epsilon > \frac{1}{n}$, or equivalently, $\left|\frac{(-1)^n}{n}\right| < \epsilon$. So n > N implies $\left|\frac{(-1)^n}{n}\right| < \epsilon$, meaning $\lim_{n \to \infty} \frac{(-1)^n}{n} = 0$. QED

Problem. 47 e) $\lim_{n\to\infty} \frac{\sin(n)}{n} = 0$

Proof. Fix $\epsilon > 0$ and let $N = \frac{1}{\epsilon}$, then n > N means $n > \frac{1}{\epsilon}$ or $\epsilon > \frac{1}{n}$, which also means $\epsilon > |\frac{1}{n}|$, since $|\frac{1}{n}| = \frac{1}{n}$. $|\frac{1}{n}| \ge |\frac{\sin(n)}{n}|$ for all n so $\epsilon > |\frac{\sin(n)}{n}|$ by transitivity. Then $n > \frac{1}{\epsilon}$ implies $|\frac{\sin(n)}{n}| < \epsilon$ so $\lim_{n \to \infty} \frac{\sin(n)}{n} = 0$. QED

Problem. $47 f) \lim_{n \to \infty} \sqrt{4n^2 + n} - 2n = \frac{1}{4}$

 $\begin{array}{l} \textit{Proof.} \ \ \text{Fix} \ \epsilon > 0 \ \ \text{and let} \ \ N = \frac{4\epsilon+1}{2}, \ \text{then} \ \ n > N \ \ \text{means} \ \ n > \frac{4\epsilon}{2}, \ \text{or} \ \ \epsilon > \frac{2n-1}{4}, \\ \text{which is always positive so} \ \epsilon > \left|\frac{2n-1}{4}\right|, \ \text{or equivalently,} \ \epsilon > \left|\frac{n^2}{2n} - \frac{1}{4}\right| > \left|\frac{n}{\sqrt{4n^2+n}+2n} - \frac{1}{4}\right| \\ \text{which is equivalent to} \ \ \left|\sqrt{4n^2+2n}-2n-\frac{1}{4}\right|. \ \ \text{So} \ n > N \ \text{implies} \ \ \left|\sqrt{4n^2+n}-2n-\frac{1}{4}\right| < \epsilon \\ \text{proving } \lim_{n \to \infty} \sqrt{4n^2+n} - 2n = \frac{1}{4} \end{array} \qquad \qquad \text{QED} \end{array}$

Problem. 48 a) $s_n = \sin(\frac{\pi n}{4})$ diverges.

Proof. Assume for contradiction that s_n converges to a limit $s \in R$ and let $\epsilon = 1$. Then by lemma there exists an $N \in R$ such that for n > N, $|\sin(\frac{\pi n}{4}) - s| < 1$. Consider cases n = 2 + 8k for $k \in Z$ and n = 6 + 8k for $k \in Z$. Observe |1 - s| < 1 and |-1 - s| < 1 and note that |-(s + 1)| = |s + 1|. Then |1 - s| + |-(s + 1)| < 2 and by the triangle inequality |1 - s + s + 1| < 2 or |2| < 2, but 2 = 2, so a contradiction has been derived and the assumption that s_n converges must be wrong, thus s_n diverges. QED

Problem. 48 b) $s_n = (-1)^n \cdot n$ diverges.

Proof. Assume for contradiction that s_n converges to a limit $s \in R$ and let $\epsilon = 1$. Then by lemma there exists an $N \in R$ such that for n > N, $|(-1)^n \cdot n - s| < 1$. Consider cases n = 2k for $k \in Z$ and n = 2k + 1 for $k \in Z$, both of which can be found above any large N. |n - s| < 1 and |-n - s| < 1, then by adding the two inequalities and invoking the triangle inequality, |2n| < |n - s| + |-n - s| < 1. This cannot happen for any $n \in N$ so the assumption that s_n converges is false.

Problem. 49 Let t_n be a bounded sequence, i.e. there exists an M such that $|t_n| \leq M$ for all n, and let s_n be a sequence such that $\lim_{n\to\infty} s_n = 0$. Then $\lim_{n\to\infty} (s_n t_n) = 0$.

Proof. It must be shown that for all $\epsilon > 0$ there exists an $n \in R$ such that $|s_nt_n| < \epsilon$. $|s_nt_n| = |s_n| \cdot |t_n| \le |s_n|M$, so it is sufficient to show that $|s_n|M < \epsilon$ for sufficiently large n. Since $\lim_{n \to \infty} s_n = 0$ then for all $\frac{\epsilon}{|M|}$ there exists an $N \in R$ such that $|s_n| < \frac{\epsilon}{|M|}$, so $|s_n|M \le |s_n| \cdot |M| < \epsilon$. So $|t_n| \le M$ for all n and $s_n \to 0$ implies that $\lim_{n \to \infty} (s_nt_n) = 0$.

Problem. 50 3 sequences $a_n \le s_n \le b_n$ for all n and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = s$, then $\lim_{n\to\infty} s_n = s$.

Proof. We know that for all $\epsilon > 0$ there exists an $N_a \in N$ such that $|a_n - s| < \epsilon$ and there exists an $N_b \in N$ such that $|b_n - s| < \epsilon$, that is $-\epsilon + s < a_n \le s_n \le b_n < \epsilon + s$ for $n > \max\{N_a, N_b\}$ then $-\epsilon < a_n - s \le s_n - s \le b_n - s < \epsilon$ which means that $|s_n - s| < \epsilon$ for $n > \max\{N_a, N_b\}$ proving $\lim_{n \to \infty} s_n = s$. QED