ALGEBRA AND FUNCTIONS

Indices

i)
$$a^0 = 1$$

i)
$$a^0 = 1$$
 ii) $a^m \times a^n = a^{m+n}$ iii) $\frac{a^m}{a^n} = a^{m-n}$ iv) $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

(a^m)ⁿ = a^{mn} vi)
$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

vi)
$$a^{\frac{1}{n}} =$$

$$a^{-n} = \frac{1}{a^n}$$

vii)

In general,
$$\sqrt{x \pm y} \neq \sqrt{x} \pm \sqrt{y}$$

Surds

i)
$$\sqrt{xy} = \sqrt{x} \times \sqrt{y}$$

$$\sqrt{xy} = \sqrt{x} \times \sqrt{y}$$
 ii) $\sqrt{\frac{x}{y}} = \frac{\sqrt{x}}{\sqrt{y}}$

iii)
$$a\sqrt{x} \pm b\sqrt{x} = (a \pm b)\sqrt{x}$$

Rationalising Surds

Given that
$$\frac{1}{\sqrt{a}}$$
 multiply by $\frac{\sqrt{a}}{\sqrt{a}}$.

Given that
$$\frac{1}{a \pm \sqrt{b}}$$
 multiply by $\frac{a \mp \sqrt{b}}{a \mp \sqrt{b}}$

Quadratic functions

If $f(x) = ax^2 + bx + c$, the discriminant is: $b^2 - 4ac$

For
$$f(x) = 0$$
 ...
 $b^2 - 4ac < 0 \Rightarrow$ two unreal roots
 $b^2 - 4ac > 0 \Rightarrow$ two real, distinct roots
 $b^2 - 4ac = 0 \Rightarrow$ two real, equal roots,

Factorisation and Complete the square

If f(x) = 0, then:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sketching the quadratic functions

- Finding the point of intersection with the y-axis:
 - Put x = 0 in y = f(x)
- Finding the point of intersection with x-axis:
 - Solve f(x) = 0
- Finding the maximum/minimum point:
 - Use completing the square,
 - Symmetry OR
 - Solve f'(x) = 0

Transformations

Transformation (for a > 0)	Solution
y = f(x) + a	Translate y=f(x) through $\overline{\begin{pmatrix} 0 \\ a \end{pmatrix}}$
y = f(x + a)	Translate $y = f(x)$ through $\begin{pmatrix} -a \\ 0 \end{pmatrix}$
y = af(x)	Stretch $y = f(x)$ parallel to y-axis with scale factor a
y = f(ax)	Stretch y = f(x) parallel to x-axis with scale factor $\frac{1}{a}$

COORDINATE GEOMETRY

Given points $P(x_1, y_1)$ and $Q(x_2, y_2)$

- Gradient of PQ = $\underline{y_2 y_1}$
- Distance PQ =

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Midpoint of PQ:
$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Given gradient of l_1 is m_1 , gradient of line l_2 is m_2 :

- If l₁ parallel to l₂:
- $\begin{array}{ccc} & & & \\ &$

DIFFERENTIATION

Notation:

If
$$y = f(x)$$
 then $\frac{dy}{dx} = f'(x)$ and $\frac{d^2y}{dx^2} = f''(x)$

у	dy/dx
ax ⁿ	anx ⁿ⁻¹ (a is constant)
f(x) ± g(x)	f'(x) ± g'(x)

Equation of tangents and normals:

Useful facts for these questions:

- Gradient of a tangent to a curve = dy/dx
- The normal to a curve at a particular point is perpendicular to the tangent at that point
- If two perpendicular lines have gradients m_1 and m_2 then $m_1 \times m_2 = -1$
- The equation of a line through (x_1, y_1) with gradient m is $y - y_1 = m(x - x_1)$

Equation of straight line

- Given gradient, m, and vertical intercept (0, c): y = mx + c
- Given a point P (x_1, y_1) and the gradient, m: $y - y_1 = m(x - x_1)$
- Given two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ on the

$$y - y_1 = \frac{x - x_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$

SEQUENCES AND SERIES

Sigma notation e.g.
$$\sum_{r=1}^{4} (2r+5) = 7+9+11+13$$

 $u_{n+1} = 3u_n + 5, n \ge 1, u_1 = -2$

The first 5 terms of this sequence are: -2, -1, 2, 11 and 38

Arithmetic series:

each term is obtained from the previous term by adding a constant called the common difference, d

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

$$S_n = \frac{n}{2} [a+l]$$
 where last term $l = a + (n-1)d$

Sum of first n natural numbers:

$$S_n = \frac{n}{2}(n+1)$$

INTEGRATION

$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c \quad \text{provided } n \neq -1$$

$$\int (f'(x) + g'(x)) dx = f(x) + g(x) + c$$