

Green's Identity and Extended Identity

Lecture objective

Our objective in this lecture is to learn how to derive the adjoint operator for linear partial differential equations (PDEs).

We will use $L: \mathcal{V} \to V$ to denote the differential operator that appears in the (primal) PDE, where \mathcal{V} is an appropriate function space.

Examples of L:

Review of discrete adjoint

Recall the generic discrete adjoint equation introduced last class:

$$L_h^T \psi_h = -g_h$$

where $L_h \equiv \partial R_h/\partial u_h$ and $g_h = (\partial J_h/\partial u_h)^T$.

Notation: moving forward, I will use a subscript h whenever I am referring to a finite-dimensional object (e.g. vector, matrix).

- Our objective is to determine the analog of L_h^T for L.
- ullet We will call this the adjoint operator and denote it by L^* .

Hicken (RPI) Adjoints Fall 2020 4/21

Bilinear identity

Idea: To find L^* we will generalize the bilinear identity:

$$\psi_h^T L_h u_h - u_h^T L_h^T \psi_h = 0.$$

In order to generalize the bilinear identity, it is helpful (I think) to make the implicit inner product above explicit.

• For example, let $(u_h, v_h)_h \equiv u_h^T v_h$.

Then the bilinear identity becomes

$$(\psi_h, L_h u_h)_h - (u_h, L_h^T \psi_h)_h = 0.$$

Hicken (RPI) Adjoints Fall 2020 5 / 21

Bilinear identity (cont.)

Let's make some connections between the discrete and continuous case.

discrete	continuous
u_h, ψ_h :	u, ψ :
L_h, L_h^T :	L, L^* :
$(u_h,v_h)_h$:	$(u,v)_{\Omega}$:

Hicken (RPI) Adjoints Fall 2020 6/21

Integral Inner Product

Definition: Integral Inner Product

The integral inner product between two scalar, real-valued functions u and v, defined on the domain Ω , is denoted $(u, v)_{\Omega}$ and is defined by

$$(u,v)_{\Omega} \equiv \int_{\Omega} uv \, d\Omega.$$

- If u and v are vector-valued functions, the integrand is simply replaced with u^Tv .
- If u and v are complex-valued functions, the integrand is replaced with u^*v , where u^* denotes the complex conjugate of u.

Hicken (RPI) Adjoints Fall 2020 7 / 21

Green's identity

We now have the pieces necessary to define the analog of the bilinear identity.

Definition: Green's Identity [Lan61]

For any linear differential operator L we can uniquely define the adjoint operator L^{st} such that

$$(\psi, Lu) - (u, L^*\psi)_{\Omega} = \int_{\Omega} (\psi Lu - uL^*\psi) \ d\Omega = 0,$$

for any pair of sufficiently differentiable functions u and ψ that satisfy the proper boundary conditions.

Hicken (RPI) Adjoints Fall 2020 8 / 21

Green's identity (cont.)

What does "proper boundary conditions" mean?

- For u, the "proper boundary conditions" will be give by the original PDE.
- \bullet For ψ , the "proper boundary conditions" will be discussed next class.

Hicken (RPI) Adjoints Fall 2020 9/21

Extended Green's identity

Since the boundary conditions distract from our current focus on the adjoint differential operators, we will drop these requirements on u and ψ for now.

Thus, any pair of sufficiently differentiable functions u and ψ will satisfy the extended Green's Identity

$$(\psi, Lu) - (u, L^*\psi)_{\Omega} = \int_{\Omega} (\psi Lu - uL^*\psi) \ d\Omega$$
= boundary terms,

where "boundary terms" refers to integrals over the boundary $\partial\Omega$.

Hicken (RPI) Adjoints Fall 2020 10 / 21

The 1D case

To see how the (extended) Green's identity is used to derive L^* , let's consider the one-dimensional case, where L is an ordinary differential operator.

Lemma

For a given ordinary differential operator L and sufficiently differentiable functions u and ψ , there exists L^* such that

$$\psi(x)Lu(x) - u(x)L^*\psi(x) = \frac{d}{dx}F(\psi, u),$$

where $F(\psi, u)$ is a bilinear function of u, ψ , and their derivatives.

Hicken (RPI) Adjoints Fall 2020 11/21

Note that if the above lemma is true, then

$$(\psi, Lu) - (u, L^*\psi)_{\Omega} = \int_{\Omega} \frac{d}{dx} F(\psi, u) dx = F(\psi, u)|_{\text{boundary}},$$

by the fundamental theorem of calculus.

Proof of the lemma:

Hicken (RPI) Adjoints Fall 2020 13 / 21

Hicken (RPI) Adjoints Fall 2020 14 / 21

In summary, the adjoint for the linear, ordinary differential operator

$$Lu = \sum_{k=0}^{r} p_k(x) \frac{d^k}{dx^k} u(x)$$

is given by

$$L^*\psi = \sum_{k=0}^{r} (-1)^k \frac{d^k}{dx^k} [p_k(x)\psi(x)].$$

- coefficients change position, e.g. outside to inside
- odd derivatives get a negative sign

Hicken (RPI) Adjoints Fall 2020 15 / 21

Exercise

Determine the adjoint operator for

$$Lu = a(x)\frac{d^2u}{dx^2} + b(x)\frac{du}{dx} + c(x)u.$$

Exercise

Determine the adjoint operator for

$$Lu = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{du_1}{dx} \\ \frac{du_2}{dx} \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}.$$

Exercise (cont.)

Hicken (RPI) Adjoints Fall 2020 18 / 21

Exercise

Determine the adjoint operator for

$$Lu = A(x, y) \frac{\partial^{i}}{\partial x^{i}} \frac{\partial^{j}}{\partial y^{j}} u(x, y).$$

Exercise (cont.)

Hicken (RPI) Adjoints Fall 2020 20 / 21

References

[Lan61] Cornelius Lanczos, Linear Differential Operators, D. Van Nostrand Company, Limited, London, England, 1961.

Hicken (RPI) Adjoints Fall 2020 21 / 21