数据采集方法作业

姓名: 蒋贵豪 学号: B+X9bo

2021年12月6日

题目 1. 在一个关于 1,2-丙烷二元醇的含氨化合物的试验中,化学反应物主要是 1,2-丙烷二元胺和 2,5-二甲基哌嗪。因子是氨的浓度 (A)、最高温度 (B)、水的浓度 (C) 和初始氢气压 (D)。表中给出了设计阵和响应数据。实际安排矩阵可通过乘以一个尺度因子再加上一个中心因子而得到:A(51,102),B(20,250),C(200,300),D(350,850),括号中的数值分别表示尺度和中心常数。例如,对于因子 A,用其水平乘以 51 再加上 102,于是编码水平 +1 对应于 (+1)51+102=153。响应是 2,5-二甲基哌嗪的百分比产出 (DMP),这里想要得到高的 DMP 产出。第 1-17 号试验为最初的一阶设计,第 18-25 号试验是用来完成二阶设计的星点。

- (a) 描述试验所选择的设计。
- (b) 分析数据, 描述所拟合的响应曲面并识别出最大化响应因子的设置。

表 1: 氨试验的设计阵和响应数据

-					
试验号	A	B	C	D	DMP
1	-1	-1	-1	-1	20.2625
2	1	-1	-1	-1	21.1407
3	-1	1	-1	-1	21.4192
4	1	1	-1	-1	19.9397
5	-1	-1	1	-1	28.2179

6	1	-1	1	-1	27.4594
7	-1	1	1	-1	27.5944
8	1	1	1	-1	27.156
9	-1	-1	-1	1	21.4822
10	1	-1	-1	1	21.0007
11	-1	1	-1	1	20.3318
12	1	1	-1	1	19.9855
13	-1	-1	1	1	39.3914
14	1	-1	1	1	39.4027
15	-1	1	1	1	39.3187
16	1	1	1	1	37.5407
17	0	0	0	0	29.528
18	-1.4	0	0	0	29.4931
19	1.4	0	0	0	30.3885
20	0	-1.4	0	0	30.1277
21	0	1.4	0	0	30.9075
22	0	0	-1.4	0	16.9673
23	0	0	1.4	0	33.9391
24	0	0	0	-1.4	24.1566
25	0	0	0	1.4	32.0151

解答. (a) 试验选择了序贯设计,并且用到了响应曲面法。

首先我们进行筛选试验,在多个因子中剔除不重要的因子,只保留少量因子。

然后进行一阶试验,确定当前试验条件是否接近最优试验区域。当输入因子水平远 离最优区域,考虑一阶模型:

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \epsilon \tag{1}$$

进行一阶的逼近得到最优区域。如果一阶模型得到的区域不是最优区域,我们考虑使用最峭攀登法,重新给定因子的水平选择,得到一阶最优区域。

然后进行第二个一阶试验,当其接近最优试验区域时,先进行曲度的检测,如过存在曲度或交互效应,则进入二阶试验,否则,使用另一个一阶试验和最峭攀登法继续搜索。

进入二阶试验后,我们采用式2来逼近曲面,完成最终的优化目标,得到最优因子组合。

$$\hat{y} = \hat{\beta}_0 + \sum_{i=1}^k \hat{\beta}_i x_i + \sum_{i< j}^k \hat{\beta}_{ij} x_i x_j + \sum_{i=1}^k \hat{\beta}_{ii} x_i^2$$
(2)

(b) 对于试验数据,我们拟合式2的模型,我们编写 **Matlab** 代码,得到的结果如表2所示:

				1
效应	估计	标准误	t	p 值
截距	29.810	0.372	80.085	0.000
eta_1	-0.158	0.141	-1.118	0.290
eta_2	-0.200	0.141	-1.417	0.187
eta_3	6.239	0.141	44.252	0.000
eta_4	2.825	0.141	20.035	0.000
eta_{12}	-0.231	0.157	-1.467	0.173
eta_{13}	-0.096	0.157	-0.610	0.556
eta_{14}	-0.050	0.157	-0.316	0.758
eta_{23}	-0.041	0.157	-0.259	0.801
eta_{24}	-0.196	0.157	-1.243	0.242
eta_{34}	2.824	0.157	17.953	0.000
eta_{11}	0.032	0.225	0.141	0.891
eta_{22}	0.326	0.225	1.447	0.178
eta_{33}	-2.258	0.225	-10.025	0.000
eta_{44}	-0.915	0.225	-4.061	0.002

表 2: 初始试验的最小二乘估计、标准误、t 统计量和 p 值

从表2中可以看出,只有水的浓度和初始氢气压是重要的,它们之间存在着显著的交互作用和曲度效应。以表2的**显著效应估计响应曲面如图所示**。因此,我们最终得到的拟合模型如式3所示:

$$\hat{y} = 29.810 + 6.239x_3 + 2.825x_4 - 2.258x_3^2 - 0.915x_4^2 + 2.824x_3x_4 \tag{3}$$

我们编写 Matlab 程序求解式3在限制在因子最大最小水平之间的最大值,求得的最大

图 1: 试验的响应曲面估计

值点为: $x_3 = 500$, $x_4 = 1200$ 。这也与响应曲面中体现出的是一致的。于是我们的**最大化**响应因子设置为:水的浓度为 500,初始氢气压为 1200。

当然,我们也可以做后续的跟随二阶试验,因子只考虑水的浓度和初始氢气压,得 到更为精确的响应曲面和最大化响应因子设置。

附录

计算最小二乘估计、标准误、t 统计量和 p 值的函数:

```
1 function [beta,standard_error,T,p] = ...
           Leastsquare_2d_curtest(x,y);%输入y是列向量
_{2} N = size(x);
3 X(:,1) = ones(N(1),1);
4 X(:,2:(1+N(2))) = x;
5 \text{ for } i = 1:N(2)
       for j = 1:N(2)
           if i < j
               X = [X'; (x(:,i).*x(:,j))']';
8
           end
       end
10
11 end
12 X = [X'; (x.^2)']';
13 size X = size(X);
14 for i = 1:size X(2)
       for j = 1:size X(2)
15
           X Normal(i,j) = sum(X(:,i).*X(:,j));
16
       end
17
       Y(i) = sum(X(:,i).*y);
18
  beta = X_Normal^(-1)*Y';
  for i = 1:size_X(2)
       standard error(i) = sqrt(sum((y-X*beta).^2)/sum((X(:,i)-...
22
               mean(X(:,i))).^2)/(size X(2)-1));
23
  end
24
25 standard error(1) = ...
           sqrt(sum((y-X*beta).^2)/(size_X(2)-1)*(1/(size_X(2)-1)+...
               (mean(X(:,i)))^2/sum((X(:,i)).^2));
26
```

```
27 standard_error = standard_error';
28 T = beta./standard_error;
29 p = 2*min(tcdf(T,(size_X(2)-1)),1-tcdf(T,(size_X(2)-1)));
30 p(1) = 2*min(tcdf(T(1),(size_X(2)-1)),1-tcdf(T(1),(size_X(2)-1)));
```

代入实际数值:

```
_{1} x = [-1 \ -1 \ -1]
                     -1
       -1 -1
                 -1
            -1
                 -1
4 1
            -1
                -1
5 -1
       -1
            1
                 -1
            1
6 1
       -1
                 -1
            1
                 -1
       1
  1
       1
            1
                 -1
10 1
       -1
            -1
                 1
11 -1
       1
            -1
                 1
12 1
       1
            -1
                 1
            1
                 1
13 -1
       -1
       -1
            1
                 1
14 1
15 -1
       1
            1
                 1
16 1
       1
            1
                 1
17 0
       0
            0
                 0
                     0
18 -1.4
            0
                 0
19 1.4 0
            0
                 0
       -1.4
                     0
20 0
21 0
       1.4 0
                 0
            -1.4
                     0
22 0
23 0
            1.4 0
                -1.4
24 0
25 0
       0
            0
                 1.4
```

```
26 ];
27 y=[29.49306687 20.26248303 28.21787102 21.4822297 39.39141536 ...
21.41919053 27.59438637 20.33184107 39.31871927 30.127689 ...
29.5279922 16.96732843 33.93911192 24.1566307 32.01512035 ...
30.907479 21.14071579 27.45942248 21.00074189 39.40273353 ...
19.93966367 27.1559919 19.98549752 37.54072093 ...
30.38846612]';
28 [beta,standard_error,T,p] = Leastsquare_2d_curtest(x,y)
```

绘制响应曲面:

```
1 f = @(x3,x4) 29.81+6.239*((x3-300)/200)+2.825*((x4-850)/350)+...
2 2.824*((x3-300)/200).*((x4-850)/350)-0.915*((x4-850)/350)^2-...
3 2.258*((x3-300)/200)^2;
4 fcontour(f,[100 500 500 1200])
```

求最大化响应因子:

```
1 f = @(x) -(29.81+6.239*((x(1)-300)/200)+2.825*((x(2)-850)/350)+...
2 2.824*((x(1)-300)/200).*((x(2)-850)/350)-0.915*((x(2)-850)/350)^2-...
3 2.258*((x(1)-300)/200)^2);
4 fmincon(f,[200 600],[],[],[],[100 500],[500 1200])
```