

Stu	ident Name: Rahma Assir Okour	5		University No.: 12 7160		
	stion 1 (20 points): Choose the most appropriate a	nswer	Use the	attached Scranton sheet to answer this		
Quest quest	ion		,			
1.	Combining DNA from different sources is an	examp	ole of:			
	D) biogramadiation		ediation			
A) C)	recombinant DNA technology	D)		chnology		
	•	_		of the section of DNA made for		
2.	Scientists at the biotechnology company Gen	entech	created	the first recombinant DNA product for		
use in humans. Approved by the Food and Drug Administration in 1982, this pro				ation in 1902, this product is		
A)	human growth hormone	(B) D)	chymosin			
C)	gene chip	D)				
3.	Selective breeding involves:					
A)	genetic engineering of animals and plants to		mating organisms with desirable characteristics			
	improve growth characteristics			1 11- from different		
C)	the use of fermentation to produce	D)	combin	ning sperm and egg cells from different		
	biotechnology products		species	s to produce hybrid organism		
4.	is the enzyme that copies DNA du	ring DN	NA repli	cation.		
A)	RNA polymerase	(B)		oolymerase		
C)	DNA ligase	D)		orimase		
٠,						
5.		translat		allow for polypeptides to be synthesized.		
(A) C) ribosomes	B)		osomes		
Č) RNA polymerases	D)	nuclei			
6.	. Which of the following is a structural featur	re of DN	NA but n	ot RNA?		
A		B)		ning phosphate groups		
C		D	contair	ning deoxyribose sugars		
	•					
7. Reverse transcriptase catalyzes the production						
A) DNA from an mRNA template	B)		from a DNA template		
C) DNA from a protein template	D)	D) tRNA from a DNA template			
8.	In prokaryotic organisms					
A		B)	transci	ription occurs in the nucleus		
C	11 11	(D)		tion occurs at the ribosome		
Ŭ	,			7774.0		
9. Which of the following enzymes allows scientists to join together two DNA fragment B) restriction nuclease			gether two DNA tragments?			
A		B)		helicase		
Ç	DNA ligase	D)	DINA	Helicase		
10	10. Which type of point mutation creates a stop codon in a gene?		e?			
Α		B)	frame	shift		
C		(D)	misse	nse		
		41 D -	aha 454	novt gonoration purosequencing		
11	11. Which of the following is NOT used during the Roche 454 next generation pyrosequencing					
Α	· · · · · · · · · · · · · · · · · · ·	(B)		xy-dNTPs (ddNTPs)		
C) luciferase	D)	prime	rs		

17.

A) C)

18. A)

(C)

					University No.: 127160	
	Studer	nt Name: Rahma Assir OKour				
• • • • • • • • • • • • • • • • • • •		(Continued)				
Ouestion 1 (Continued) 12. Which of the following vectors can hold the largest DNA insert? R) cosmid						
	12.	Which of the following vectors can note the	B)	cosmid		
		YAC Bacteriophage vectors	D)	BAC		
	13.	Which of the following is most necessary to	make a	cDNA I	ibrary?	
		DNA polymerase	®	reveres	e transcriptuse	
	C)	restriction enzymes	D)	ribosom		
	14.	Which of the following is an INCORRECT	statem	ent abou	t restriction enzymes?	
	A) 1	most restriction enzymes are isolated from	B)	restricti	on enzymes usually recognize parmaronno	
	<u> </u>	pacteria	D)	sequeno	on enzymes can cut to create overlapping	
	Ь	estriction enzymes create phosphodiester onds between pieces of dna in a cloning xperiment	D)	single-s	tranded ends of dna	
15	5.	is a DNA-binding dye that fluores	sces wh	en DNA	in an agarose gel is illuminated with	
	ul	traviolet light.				
A) C)		ctic acid	(B) D)	etnidiur x-gal	n bromide	
C)						
16.		ich of the following is true regarding TA		g?	ar vector that has single stranded uracil on	
(A)	used	I to clone TA-rich DNA only	B)	each en		
C)	Taq p	polymerase puts a single adenine otide on the 3' end of all PCR products	D)		AC vectors	
17.	Trans	sformation in a cloning experiment is _		_•		
	sing PCR to clone a gene (B) inse			inserting DNA into bacteria cells		
C)	ligating pieces of foreign DNA together		D)	cutting	DNA with restriction enzymes	
18.	Whic	h of the following is true regarding dire	ected n	iolecula	r evolution technology?	
A)		PCR to clone a gene	B)	uses sit	e-directed mutagenesis to introduce ons into genes	
<u>C</u>)	introc the ar	luces specific, predefined alterations in mino acid sequence	D)		ces chemical modification on histones and	
19.	Duri	ng downstream processing, proteins are	e stabil	ized in s	colution by which of the following?	
A)		ion of protease inhibitors	B)		n of anti-foaming agents	
C)		ications occur at low temperatures	(D)	all of th	ne these	
20.		is used to determine protein str	ucture	and	is used for protein sequencing	
(A)	X-ra	y crystallography; mass spectrometry	B)	mass s	pectrometry; SDS-PAGE	
(A) (C)		s spectrometry; protein microarray	D)		crystallography; isoelectric focusing	
21.	Whi	ich of the following vectors is used for the	ne high	-level sy	nthesis of eukaryotic proteins within	
A) C)	YA		B	expres BAC	sion vectors	

Student Nan	ne: Rahma	Assir	OKour	- 1 100 + 2	University No.: 127160
	75	, I , I , I , I , I , I , I , I , I , I			
Duestion 1 (C	ontinuedy			•	tion acquence for the restriction enzyme Eco R1 is
locate	d 300 base p	airs (bp)	from the 5' end o	ecognii f this li	tion sequence for the restriction enzyme Eco R1 is inear DNA molecule. Digesting this DNA molecul
with E A) one Di	Cco RI would NA fragment	, 1,000 bp	long	B)	three DNA fragments, two of them 300 bp long an one 400 bp long
	o DNA fragments, one 300 bp long and one to bp long		D)	two fragments, each 500 bp long	
3. Appro	ximately ho	w many g	genes are present	in the	human genome?
	n genes			B)	20 billion genes
-,	genes			D)	100,000 genes
	consi	sts of clor	ned DNA fragme	nts for	all expressed genes in a particular tissue
				(B)	cDNA library
	nic DNA libr ibrary	ary		D)	mRNA library
-,				4 -lasin	or for emplifying DNA?
25. Which	ch of the foll	owing tec	hniques is the bes	st choic	te for amplifying DNA?
	ity chromato			B	Southern blot PCR
C) micr	oarray analy			D	
26. Wh	ich of the fo	llowing te	chniques is most o	commo	nly used to separate and analyze DNA by size?
A) DN	A libraries			В)	Northern blot
O ag	arose gel elec			D)	PCR
27. D	uring molect	ılar clonin	g, a gene of intere	st (insu	lin) is inserted into a bacterial structure called a
	and	enters a b	acterial cell throug	gh a pro	ocess called
A) cl	romosome; e	lectrophor	esis	B)	plasmid; transcription
(C) pl	asmid; transf	ormation		D)	nucleus; transformation
28. D	uring library	screening	g, PCR, Southern	blotting	, and other techniques, binding two pieces of DNA
to	each other l	oy hydrogo	en bonding is calle	:d	•
(A) h	ybridization			B)	DNA ligation polyadenylation
C) a	utoradiograph	У		D)	polyadenylation
29. V	Vhich of the 1	following i	s NOT required fo	r a PC	R reaction?
A) A	thermostable	DNA pol	ymerase	B	Dideoxy-dNTPs (ddNTPs)
	rimers			D)	template DNA
30. S	tudying prot	eins and e	nzymatic pathway	s involv	ved in cell metabolism
	netagenomics			B)	glycomics
	netabolomics			D)	transcriptomics
31.	All of the follo	wing are	pharmaceutical pi	oducts	produced as recombinant proteins except
	ntibodies	6		B)	
,	nterferons			(D)	

Student Name: Rahma Assir Okour University No.: 127160

Question 1 (Continued)

32. Which of the following is NOT true regarding the device shown on the right?

A) it is called a bioreactor

B) used to grow large quantities of biological cells

C) computers monitor the environment inside the device to keep oxygen levels and temperature ideal for cell growth

(D) used for downstream processing

33. RT-PCR is a method that is used for:

(A) forensic analysis of DNA

- C) analysis of mRNA expression
- 34. Protein glycosylation
- A) can increase proteins solubility
- C) extend the active life of proteins
- 35. The graph on the right shows the results from a real-time PCR experiment done to study the expression of a gene in 3 different cell types (A, B and C). It can be concluded from the figure that:

A) the gene is not expressed in any cell type

B) highest expression of the gene is found in cell type A

C) highest expression of the gene is found in cell type B

D) highest expression of the gene is found in cell type C

- B) amplification of genomic DNA sequences
- D) amplification of mRNA sequences
 - B) orient proteins into membranes
- (D) all of these are correct

36. All of the following techniques separate proteins from each other based on their charge except

A) ion-exchange chromatography

B affinity chromatography

C) isoelectric focusing

D) A & C

37. All of the following techniques require the use of electrophoresis to separate molecules except

A Southern blot C) SDS-PAGE

B) Sanger Sequencing (dideoxy chain termination)

D) microarray

38. All of the following techniques can be used to study gene expression except

A Northern blot C) real-time PCR B) FISH

D) microarray

39. All of the following techniques separate different proteins from each other based on their size except

A) size-exclusion chromatography

B affinity chromatography

C) dialysis

- D) ultrafiltration
- 40. Which of the following sequences is most commonly found at eukaryotic promoters?

TATAAT

B) Poly(A) tail

C) 7-methyl G cap

D) 5'-GU . . . AG-3'

Jordan University of Science	e & Technology	BT232 Departs	ment of Biotech. & Genetic Engineering
Student Name: Rahm	a Assir Okour	University	No.: 127160
Question 2 (10 points):	Choose from the following	list to fill in the blank. Some t	erms might not be used at all.
Epigenome- Lipases- Karyotyping Paleogenomics Glycosylation- Metagenomics	Gene -RNA interference (RNA) 2D electrophoresis Biomarker protein -Cohesive (sticky) ends -Fermenters	— Alternative splicing , Model organisms - Primers - Fusion protein Genetic engineering - Lyophilization	-Inclusion bodies -Plaques -Probes -Anticodon -Restriction map -Chromosome
Model organism	S.		biologic processes in experimental
Fermenters	are large containers use	called <u>Genetic engined</u> d for growing cultures of mic s with the instructions to synth	10018
particular type of R	is a laboratory procedure	for analyzing the number and products to be producted.	structure of chromosomes in a cell. ced from the same gene sequence.
. The three-nucleotid called Anticodon	le sequence at the end of a t	RNA molecule that office to	a specific de de la
s. Epigenome	consists of all chemical		n's genome that are not due to cule created by the action of certain
9. <u>Cohesive (sticky) s</u> restriction enzyme 10. <u>Plaques</u>	es are small clear spots of	f dead bacteria appearing on a	culture plate, caused by bacterial
cell lysis by bacte	are short oligonucleoti	ing reactions.	sequences of interest; used in PCR
12. The analysis of an 13. Restriction w	ncient DNA such as DNA fr	rom fossils is called <u>Paleage</u> ne number, order, and types of	nomics restriction-enzyme cutting sites in a
DNA molecule. 14. RNA interference			res the formation of protein-RNA
15. <u>Glycosylation</u> 16. <u>Fusion Prote</u>	is a natural process of is a "hybrid" recombin	adding sugar units to proteins ant protein consisting of a pro- ptein that serves as a tag for iso	plating recombinant proteins.
17 Tulub	are made of expressed	foreign proteins that concentr	ate in an insoluble form inside

17. Inclusion bodies transformed cell.

18. The process of freeze-drying proteins is called <u>Lyophilization</u>.

19. <u>20 electrophoress</u> is a technique used to separate proteins based on their electrical charge and size.

20. Fat-digesting enzymes are called <u>Lipases</u>

Question 3 (3 points):
List 3 advantages and 3 disadvantages of using <u>E coli</u> for the production of recombinant proteins.

Advantage	Disadvantage
it's genetics & well Known	can't Polded protein as in 😝 eukaryotic
it's reproduction processes well known	mosto of protein inactive insid bacteri
«	«

Co. L. Albamar D. L Accis of Olympia	University No.: 127160
Student Name: Rahma Assir Okour	
Question 4 (2 points): Write down 4 basic concepts scientists have learned from the Human (Genome Project:
1: not all genome are cooling protein	
2: different protiens ar produce from	the same gene sequence
3:	
4:	·
	(1)
Question 5 (6 points): Write the correct order of steps (Left to right) for the following techni	iques/procedures (3.25 points)
Genomic library preparation (1.5) A) Inserting DNA fragments into plasmids by DNA ligase B) Introduction of plasmids into bacteria C) Genomic DNA digestion with restriction enzyme Correct order is, and	
Southern blotting (2.5) A) Filter (blot) is baked or exposed to UV light to permanently att B) Gel is treated with alkaline solution to denature the DNA C) Fragments are transferred onto a nylon or nitrocellulose filter (D) DNA fragments are separated by agarose gel electrophoresis E) Filter (blot) is incubated with a labeled probe and exposed to filter	called blotting)
Correct order is A , A , A , and A	
Basic Steps in protein purification (2) A) Concentration and initial purification B) Purification by chromatography techniques C) Stabilization of final product and adjustment of activity to requese Extraction of crude protein (cell lysis)	uired level
Correct order is,, and	

Student Name: Rahma Assir Okow University No.: 127160

Question 6 (3 points):

A 1 kb DNA fragment containing gene X was cloned into the plasmid (size is 2 kb) below. After cloning, the resulting plasmid was transformed into E.coli. After transformation, three colonies were obtained on agar plate containing the antibiotic ampicillin and x-gal, the substrate for the enzyme Beta-galactosidase (LacZ).

The plasmids from the 3 colonies were isolated, each plasmid was digested with *EcoRI* and the products were run on gel electrophoresis. After taking a photo for the gel, the gel showed the plasmid banding patterns shown below.

A. On the plasmid, region number $\underline{4}$ (1, 2, 3, or 4) represents the multiple cloning site.

B. On the plasmid, region number 2 (1, 2, 3, or 4) represents selectable marker gene.

C. On the plasmid, region number 3 is important for replication

D. To clone gene X into the plasmid, both gene X and the plasmid must be cut with the restriction enzyme

Eco RT

E. X-gal and the enzyme Beta-galactosidase are used for the blue - white selection

F. Plasmid(s) from colony/colonies A and (A, B and/or C) contain(s) the inserted gene X