CS 225

Data Structures

March 12 – Disjoint Sets G Carl Evans

Disjoint Sets ADT

- Maintain a collection $S = \{s_0, s_1, ... s_k\}$
- Each set has a representative member.

```
• API: void makeSets(int number);
    void union(int k1, const int k2);
    int find(int k);
```

Implementation #1

0	1	2	3	4	5	6	7

Find(k):

Union(k1, k2):

Implementation #2

0	1	2	3	4	5	6	7

Find(k):

Union(k1, k2):

Implementation #2

- We will continue to use an array where the index is the key
- The value of the array is:
 - -1, if we have found the representative element
 - The index of the parent, if we haven't found the rep. element
- We will call theses **UpTrees**:

UpTrees

0	1	2	3

0	1	2	3

0	1	2	3

Disjoint Sets

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else { return find( s[i] ); }
4 }</pre>
```

Running time?

What is the ideal UpTree?

Disjoint Sets Union

```
1 void DisjointSets::union(int r1, int r2) {
2
3
4 }
```


Disjoint Sets – Union

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8	-1	10	7	-1	7	7	4	5

Disjoint Sets – Smart Union

Union by height

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Keep the height of the tree as small as possible.

Disjoint Sets – Smart Union

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Keep the height of the tree as small as possible.

Disjoint Sets – Smart Union

Union by height

ľ												
	6	6	6	8		10	7		7	7	4	5
ļ	0	1	2	3	4	5	6	/	8	9	10	11

Idea: Keep the height of the tree as small as possible.

Union by size

0	1	2	3	4	5	6	7	8	9	10	11
6	6	6	8		10	7		7	7	4	5

Idea: Minimize the number of nodes that increase in height

Both guarantee the height of the tree is: _____

Disjoint Sets Find

```
1 int DisjointSets::find(int i) {
2   if ( s[i] < 0 ) { return i; }
3   else { return find( s[i] ); }
4 }</pre>
```

```
void DisjointSets::unionBySize(int root1, int root2) {
     int newSize = arr [root1] + arr [root2];
 4
     // If arr [root1] is less than (more negative), it is the larger set;
     // we union the smaller set, root2, with root1.
     if ( arr [root1] < arr [root2] ) {</pre>
       arr [root2] = root1;
       arr [root1] = newSize;
10
11
     // Otherwise, do the opposite:
     else {
12
13
       arr [root1] = root2;
       arr [root2] = newSize;
14
15
16
```

Union by Size (limit on height)

To show that every tree in a disjoint set data structure using union by size has a height of at most O(log n) we will show that the inverse.

Base Case

Inductive Hypothesis

Union by Size

Case 1

Union by Size

Case 2

Union by Height (limit on height)

Much like before we will show the min(nodes) in a tree with a root of height $k \geq 2^k$

Base Case

ΙH

Path Compression

Disjoint Sets Analysis

The **iterated log** function:

The number of times you can take a log of a number.

```
log*(n) = 0 , n \le 1
 1 + log*(log(n)), n > 1
```

What is **lg*(2⁶⁵⁵³⁶)**?

Disjoint Sets Analysis

In a Disjoint Sets implemented with smart unions and path compression on find:

Any sequence of **m union** and **find** operations result in the worse case running time of O(_______), where **n** is the number of items in the Disjoint Sets.