

5. Handle the Missingvalues In [34]: df.isnull().sum(6. Find the outliers and replace theoutliers

import numpyas np
import sklearn
from sklearn.datasetsimport load boste 01 = mp.percentile(df('CreditGoore'), 25, interpolation = 'midpoint')
01 = mp.percentile(df('CreditGoore'), 75, interpolation = 'midpoint')
03 = mp.percentile(df('CreditGoore'), 75, interpolation = 'midpoint')
108 = (0) =

8. Split the data into dependent and independent variables						
In [40]:	A = df.iloc[:, :-1].values print(A)					
	[[1 15634602 'Hargrave' 1 1 101348.88] [21567311'H11'0112542.98] [31563394' (10.011011331.37]					

 $\ensuremath{\mathfrak{g}}.$ Scale the independent variables 12]: from sklearn.preprocessingimport StandardScalerfrom
sklearn.preprocessingimport MinMaxScaler scaler =
MinMaxScaler()
df["CustomerId"]] = scaler.fit_transform(df[["Custorprint(df]")]

3		Unio	502	
	4 0.542636		699	France Female 3
4		Mitchell	850	Spain Female 4
0005	9996 0.162119	Objection	771	Franco Malo 2
	9997 0.016765			
9997	9998 0.075327	Johnstone		France Female 3
9998	9998 0.075327 9999 0.466637	Cabbatini	772	Germany Male 4
	10000 0.250483		792	
	Tenure Balance NumO	fBroducteWseCvCsvd	IT ea at i moMor	har \
0	2 0.00	1	1	1
1	1 83807 86	1	0	1
2	8 159660.80	3	1	0
3	1 0.00	2	0	0
4	2 125510.82		1	1
9995		2	1	0
9996	10 57369.61	1	1	1
	7 0.00	1	0	1
9998	3 75075.31	2	1	0
9999	4 130142.79	1	1	0
	EstimatedSalary Ex			
0	101348.88	1		
1	112542.58	0		
2	113931.57			
3	93826.63			
4	79084.10			
9995	96270.64			
9996		0		
		1		
9997	92888.52	î		

10. Split the data into training andtesting

from stiearn.model selectionimpost train test split (from stiearn.model) acta-crain test split (fr. test size=0.2, random_state=25) print(ffb. of training examples: (ranining data.happe(0))*) print(ffb. of testing examples: (ranining data.happe(0))*)
No. of training examples: (acting_data.shappe(0))*)
No. of training examples: 1997
No. of testing examples: 1997