Notes

Will Boland

February 28, 2019

Claim: $(A \land B) \rightarrow C$, $A \vdash (B \land D) \rightarrow C$ is valid)

Proof:
Suppose $(A \land B) \rightarrow C$ and A.

— Assume $B \land D$ — From $B \land D$, we get B and D (\land -elim.)

— A and B together imply $A \land B$ (\land -intro)

— We have $(A \land B) \rightarrow C$ and $A \land B$, so C (\rightarrow -elim)

Assuming $B \land D$, we proved C and therefore $(B \land D) \rightarrow C$. (direct proof or \rightarrow -introduction)

Claim: $(X \lor Y) \land \neg \neg Z \vdash X \rightarrow Z$

Proof:

Assume $(X \lor Y) \rightarrow \neg \neg Z$

- Assume X∨Y
- Apply $(X \lor Y) \rightarrow \neg \neg Z$, to $X \lor Y$, resulting in $\neg \neg Z$. (Appl.)
- $-- \neg \neg Z$ leads to Z (double neg)

Under the assumption $X \lor Y$, we orived Z, and si $(X \lor Y) \rightarrow Z$ (Dir. proof)

Do this instead of above!!!:

Assume $(X \lor Y) \to \neg \neg Z$

- Assume X
- From X, we know $X \vee Y$ (weak.)
- $(X \lor Y) \rightarrow \neg \neg Z$ and $X \lor Y$ imply $\neg \neg Z$ (appl.)
- Because $\neg \neg Z$, Z. (double neg)

We used X to prove Z, and hence $X\rightarrow Z$ (Dir. pf) \square

When you pick your assumption, think about what you will do after you have finished the subproof, <u>not</u> what you will do <u>inside</u> the subproof.