Ceng352 Written Assignment 1

Bilge Eren 2171587

March 5, 2020

```
1
                                        create table works_in (
                                            emp_id int not null,
                                            dept_id int not null,
1.1
                                            primary key (emp_id, dept_id),
                                            foreign key (dept_id)
create table departments (
                                                references departments(dept_id)
     dept_id int not null,
                                                on delete restrict,
     location varchar(100),
                                            foreign key (emp_id)
     name varchar(100),
                                                references employees(emp_id)
     manager_id int not null,
                                                on delete cascade
     primary key (dept_id),
                                        );
     foreign key (manager_id)
         references employees(emp_id)
                                        create table reports_to (
         on delete set default
                                            subord_id int not null,
);
                                            super_id int not null,
create table project (
                                            foreign key (subord_id)
    project_id int not null,
                                                references employees(emp_id),
    dept_id int not null,
                                            foreign key (super_id)
    due_date date,
                                                references employees(emp_id)
    state varchar(100),
    budget int,
   primary key (project_id, dept_id),
    foreign key (dept_id)
        references departments(dept_id)
);
                                        1.2
create table employees (
    emp_id int not null default 101,
                                        CREATE ASSERTION Total CHECK (
    name varchar(100),
                                            (SELECT COUNT(*)
    surname varchar(100),
                                            FROM employees
    salary int,
                                            group by emp_id ) =
    gender varchar(100),
                                            (SELECT COUNT(distinct emp_id)
    primary key (emp_id)
                                            FROM works_in )
);
                                        );
```

```
create table departments (
1.3
                                            dept_id int not null,
                                            location varchar(100),
create table employees (
                                            name varchar(100),
    emp_id int not null default 101,
                                            manager_id int not null,
    name varchar(100),
                                            primary key (dept_id),
    surname varchar(100),
                                            foreign key (manager_id)
    salary int,
                                                references employees(emp_id)
    gender varchar(100),
                                                on delete set default,
    primary key (emp_id),
                                            CHECK (name = "%location"
    CHECK (salary >= 36000 )
                                                or name = "location%")
);
                                        );
```

1.4

```
CREATE TRIGGER ChangeState

AFTER UPDATE OF budget ON project
REFERENCING
OLD ROW AS OldTuple
NEW ROW AS NewTuple
FOR EACH ROW
WHEN (OldTuple.price > NewTuple.price)
UPDATE project
SET state = 'Unsuccesfull'
WHERE project_id = OldTuple.project_id
```

2

2.1

Given E/R means that:

A given product from a given store can be R(Lets say this Purchase) by at most one person.

So that:

There are 100 product and 5 stores. To take greatest value of tuples we can calculate that A person can purchase 500 different ways. (100(product)*5(store)) since any product-store tuple should be purchase by at most one person.

The answer is **500**.

2.2

Given E/R means that:

A given product can be purchase by a given person from at most one store.

And a given product can be purchase by a given person from at most one sales person. So that;

For the first argument, 100*1000*10

For the second argument, 100*1000*5

To calculate maximum number of tuples we should take minimum of two argument given above.

The answer is 500000.

3

3.1

			1	$A \to C$	Given
1	$CB \to F$	Given	2	$CB \to F$	Given
2	$B \to E$	Given	3	$AB \rightarrow CB$	Augmentation of 1 and B
3	$CB \to CE$	Augmentation of 2 and C	4	$AB \to F$	Transitivity of 2 and 3
4	$CB \to E$	Decomposition of 3	5	$B \to E$	Given
5	$CB \to FE$	Union of 1 and 4	6	$AB \rightarrow AE$	Augmentation of 5 and A
6	$FE \to G$	Given	7	$AB \rightarrow E$	Decomposition of 6
7	$CB \to G$	Transitivity of 5 and 6	8	$AB \rightarrow EF$	Union of 4 and 7

4

4.1

Since A and F does not appear in the right side of given functional dependencies $\{A, F\}$ is the key and $\forall X$ while $\{A, F\} \subset X$ are superkey.

4.2

No since in BCNF;

lemma: $\forall X$ attribute should be either $X + = \{X\}$ or $X + = \{all_attributes\}$.

There are multiple violations of BCNF like $A+=\{A,B\}$ according to the lemma given above.

4.3

. — **R2.2.2.2:** $\{A,F\}$ BCNF there is no FD in this set and all closure sets are trivial —

4.4

- i. No since we cannot preserve $AC \to D$.
- ii. No all BCNF decompositions are loseless decompositions.

5

5.1

Functional dependencies i have found and used for BCNF decomposition given in below with an order.

```
A \to E \ C \to A \ C \to B
```

```
Select count(distinct E)
from bigTable
group by A;
Select count(distinct A)
from bigTable
group by C;
```

Select count(distinct B)
from bigTable
group by C;

These all are bad dependencies since the only key is $\{C, D\}$. Since they are sufficient to decompose DB according to BCNF i didn't try other FDs.

5.2

For the first table given. Loaded data inside it with the help of DBeaver.

```
create table if not exists bigTable (
    A varchar(100) not null,
    B varchar(100) not null,
    C int not null,
    D int not null,
    E varchar(100) not null,
    primary key (C,D));
CREATE TABLE if not exists AE (
                                            A varchar(100) not null,
    A varchar(100) not null,
                                            primary key (C)
    E varchar(100) not null,
                                            );
    primary key (A));
                                        CREATE TABLE if not exists CB (
CREATE TABLE if not exists CA (
                                            C int not null,
    C int not null,
                                            B varchar(100) not null,
```

```
C int not null,
D int not null);

CREATE TABLE if not exists CD (

5.3

INSERT INTO AE
SELECT distinct A, E FROM bigTable; INSERT INTO CB
SELECT distinct C, B FROM bigTable;
INSERT INTO CA
SELECT C, D FROM bigTable;
```