(570
$$\hookrightarrow$$
 A)
(570 \hookrightarrow A)
(561A \longleftrightarrow C)
(561B \longleftrightarrow B)

(c)
$$C570 \iff A, C$$

$$C561A \iff D$$

$$C561B \iff B$$

Scanned by CamScanner

(Majel of Line)

2. After vsing the algorithm,

We have

(Jerry, Megan)

(Sam, Eric)

(Angeling, Lucy)

	<u></u>					
	J	K	M	L	8	X
	E	M	3	\bigcirc	A	Z
	5	元	M	E	14	A
	L	2 A	丁	E	5	M
	M	0	A	D	7	X
	Α	5		M	又	TE

Scanned by CamScanner

(9)
$$2x=14$$
, $x=7$
 $2y=4$, $y=2$
(b) $x+y=4$ (mod 5)
(c) $x-y=0$ (mod 5)
(d) $4(x+y)-(x-y)=4.4-0$ mod (3)
 $3x\equiv 1$ (mod 5)
 $4x=2$ (mod 5)
(f) $4x=2$ (mod 5)
 $4x=2$ (mod 5)

4. (a) After interlation,

$$d=1$$
, $a=-2$, $b=3$

where $31a+21b=d$.

(b) To make inellicinty positive,

we first have

 $(a,b)=(-200,3030)$ as a solution,

and then have

 $a=-200+21.97$, $b=3030-31.97$
 $a=17$
 $b=17$
 $b=17$
 $b=17$
 $b=17$
 $a=17$
 $b=17$
 $b=17$
 $b=17$
 $a=17$
 $b=17$
 $b=$

5. (a) Pour full #5 into #3, resulting in 2-ours in #5. Pour the 2-ours into #3. Then pour full #5 int, #3, resulting in 4 owner. (b) Keep porrig full as into the p-tumbler. If the next pour will overfill p. fill up p and dump the full p-tunbler, and then pour remaining contacts of a-funbler into p. Apply the algorithm again The contexts inside p will be of the form Ka (mod p), which will eyele though all values of 80,12,-, p3 72 some order. Take the set of all numbers

Scanned by CamScanner

6. Note that the map things {x: x ∈ 5,3 → {xa } multiplying all clemants in Sn is a see bijection to itself, because two elemats mapping to the same elemat implies $Xa = Xa \mod (n)$, which implies X=y (moda) because a ir coprine, Then taking the product of their each gives the same value, u_ $a^{15n!}P = P \pmod{n}, \ 2=> a^{15n!} \pmod{n}$ because P is coprine to m, as it is the product of

coprime elements

Scanned by CamScanner

7. (a)
$$(p-1)(q-1)$$
 must be coprine to 3,

so p,q are of form $3K+2$.

(b) $(x^{17})^4 = x \mod(37\cdot13)$,

or $17d = 1 \mod(36\cdot12)$

solving give: $d=305$

(c) $91 = x^{17} \mod(37\cdot13)$,

 $91^{305} = x \mod(37\cdot13)$,

 $x = 13 \mod(37\cdot13)$,

 $x = 13 \mod(37\cdot13)$,

(d) $8^{25} \mod(7\cdot3) = 8 \mod(7\cdot3)$

(e) since $x^{p-1} = \mod(p)$, this implies from FLT, we can subtact multiple of $p-1$ on the expensal, similarly $x^e = x^{(p-0)+1} = x^1 \mod(p)$,

so by $(RT, x^e = x^1 \mod(p_2))$.

Scanned by CamScanner