INTRODUCTION TO MACHINE LEARNING

9 MAY 2019

XIAODONG DUAI

OUTLINE

- 1. Introduction
- 2. Basics of linear algebra
- 3. SVM
- 4. PCA
- 5. K-means clustering

5

BASICS OF LINEAR ALGEBRA

- 1. Scalar, Vector, Matrix
- 2. Matrix-Scalar multiplication
- 3. Matrix-Vector multiplication
- 4. Matrix-Matrix addition, subtraction and multiplication
 - Vector-Vector multiplication
- 5. Transpose

9 MAY 2019 | XIAODONG DUAN POSTDOC

MACHINE LEARNING

- 1. Machine learning is a technology for computers to learn how to perform a task from data without the need of thoroughly understanding it.
- 2. Components:
 - Data
 - Model
 - Training methods
 - Inference methods

J.

CATEGORIES OF MACHINE LEARNING

- 1. Supervised learning
 - Classification
 - Regression
- 2. Unsupervised learning
 - Dimensionality reduction
 - Clustering

PIPELINE

- 1. Gather data.
- 2. Annotate data if needed.
- 3. Separate the data into training, validation and testing subsets.
- 4. Define the feature for representation of the data.
- 5. Choose models.
- 6. Train the model using the training data.
- 7. Choose the proper model or hyper-parameters using validation data.
- 8. Test the chosen model using the testing data.

9 MAY 2019 XIAODONG DUAN POSTDOC

SUPPORT VECTOR MACHINE (SVM)

- 1. Supervised learning
- 2. Construct a hyperplane to do classification task
- 3. Training set
 - $\{\boldsymbol{x}_i, y_i\}, i = 1, \dots, N$
 - $y_i \in \{-1, 1\}$
- 4. Hyperplane
 - $\bullet \mathbf{w}^T \mathbf{x} + \mathbf{b} = 0$

B

SVM

- 1. Objective function
 - $\min_{w} \frac{1}{2} ||\mathbf{w}||^2$
 - s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + b) 1 \ge 0, i = 1, ..., N$
- 2. Decision function
 - $f(\mathbf{x}) = \sum_{i=1}^{N} a_i y_i \mathbf{x}^T \mathbf{x}_i + b$

(**E**)

SVM

Kernel trick

- We map the feature into space with increased dimension, when the data are not separable.
- Mapping function: $\varphi(x)$
- With kernel function, we do not need to calculate $\varphi(x)$. Instead, through the kernel function, we can get the dot product between $\varphi(x_i)$ and $\varphi(x_j)$, which is needed for the decision function.

9 MAY 2019 | XIAODONG DUAN POSTDOC

PRINCIPAL COMPONENT ANALYSIS (PCA)

- 1. Project the original feature into a lower dimensional space
 - Speeding up.
 - Noise reduction.
- 2. Linear mapping: $x_n = Ax$
- 3. Maximizing the variance of the projected data.

E)

PCA

- 1. Training data
 - $x_n, n = 1, ..., N$
- 2. Form the covariance matrix for the training data

•
$$C = \frac{1}{N} \sum_{n=1}^{N} \{ (x_n - m)(x_n - m)^T \}$$

- 3. Calculate the eigenvectors for the covariance matrix
 - $Cw = \lambda C$
- 4. Rank the eigenvectors based the corresponding eigenvalues.
- 5. Use the first K eigenvectors to form ${\bf A}$, then we can map the feature to a K dimensional space.

9 MAY 2019 XIAODONG DUAN POSTDOC

K-MEANS CLUSTERING

- 1. Form K reference vectors that best represent the data.
- 2. The data can be segmented into K clusters based on the K reference vectors.
- 3. Unsupervised learning.

9 MAY 2019 XIAODONG DUAN POSTDOC

K-MEANS CLUSTERING

- 1. Training data
 - x_n , $n = 1, \dots, N$
- 2. Randomly choose K data point to initialize the reference vectors \mathbf{m}_k , k=1,...,K
- 3. Initialize a K-dimension vector \boldsymbol{b}_n for each \boldsymbol{x}_n
- 4. For each x_n

$$\bullet \ \boldsymbol{b}_n^i = \begin{cases} 1 & if \ \|\boldsymbol{x}_n - \boldsymbol{m}_i\| = \min_k \|\boldsymbol{x}_n - \boldsymbol{m}_k\| \\ 0 & else \end{cases}$$

- 5. For each m_k
 - $\mathbf{m}_k = \sum_n \mathbf{b}_n^k \mathbf{x}_n / \sum_n \mathbf{b}_n^k$
- 6. If m_k converges, stop. Otherwise, go to 4.

9 MAY 2019 XIAODONG DUAN POSTDOC

RESOURCES

- 1. Books:
 - Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.
 - Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
- 2. Softwares:
 - Python
 - scikit-learn, tensorflow, keras, CNTK, PyTorch, Github
- 3. Papers:
 - ICML, NeurIPS(NIPS), ICLR, CVPR, ICCV, ECCV, IJCAI, AAAI, arXiv

