

Administrivia

- Groups are now finalized
 - Moving forward, all labs will be group assignments
 - If you don't have a team, please reach out!
 - Coordinate with your groupmates, don't miss lab without talking to them!
- Homework 0 graded, feel free to reach out on Piazza
- Lab 1 due tonight!
 - We currently have 26 submission out of 100 for Lab 1
- Homework 1 is out

Median = 23

Mean = 19.8

Roadmap

Lecture 1: Overview

Lecture 7+: Sensors,
Feature Selection,
Mapping...

Actuation

- Locomotion Moving oneself
 - Enacting a force on / utilizing a force within the environment
 - Rolling, walking, running, jumping, sliding, flying, etc.

- Manipulation Moving others
 - Enacting forces on objects

Degrees of Freedom [DoFs]

- 6-dimensional:
 - X, Y, Z
 - Yaw, Pitch, and Roll
- 3D position + 3Dorientation = 6D pose
- Fully characterizes the state of the plane

Degrees of Freedom in Joint and Cartesian Space

- DoF = Number of controllable
 dimensions of actuation
- Most robot arms have 6-DoF at their end effector
 - DoF in cartesian space
 - They are not directly controllable

- Robots can be controlled through motors in the joints
 - DoFs in joint space
 - REDUNDANCY: Robot DoF > EnvironmentDoF
 - Why would you want this?

cartesian space == operational space ==
 task space == environment

How many DoFs does a human arm have?

Forward (Direct) Kinematics

Forward (Direct) Kinematics

Forward Kinematics

Given a robot configuration, what is the end-effector's pose?

Inverse Kinematics

How to move an arm in space in order to reach for a specific pose [or position, or orientation]?

- Coordinate Systems
- Nested Coordinate Systems
- Introduction to Rotations: Deriving 2D Rotation Equations

Chapter 3.1

Rigid Body Transformations

Rigid Body:

- $0 \in \mathbb{R}^3$
- $\forall p, q \in O$:
- ||p(t) q(t)|| = ||p(0) q(0)||

Rigid Body Transformation:

A mapping $\mathbf{g}: \mathbb{R}^3 \to \mathbb{R}^3$ is a rigid body transformation if:

- Length is preserved: $||g(p) g(q)|| = ||p q|| \ \forall p, q \in \mathbb{R}^3$
- Cross product is preserved: $g_*(v \times w) = g_*(v) \times g_*(w) \forall v, w \in \mathbb{R}^3$

What do we need to describe pose?

What do we need to describe pose?

Notation

$$\vec{p} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + c_3 \vec{b}_3$$

- Basis vectors \vec{b} identify the coordinate system axes
- Basis vectors need to be orthonormal
- Coefficients c express how far to travel along each axis

$$\vec{p} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Shorthand: $\vec{p} = R\vec{c}$

Example

$$\vec{p} = c_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

- lacktriangle Basis vectors \overrightarrow{b} identify the coordinate system axes
- Basis vectors need to be orthonormal
- Coefficients c express how far to travel along each axis

$$\vec{p} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Shorthand: $\vec{p} = R\vec{c} = \vec{c}$

Coordinate Systems and Right Hand Rule

- Thumb along x-axis
- Index along y-axis
- Middle along z-axis

It's the order that counts!

- Pitch axis

 Roll axis

 Yaw axis
- Recall: an airplane can be modeled as a single rigid body
 - A position and coordinate system fully characterizes its kinematic state
- How can a robot manipulator be modeled?
 - Multiple rigid bodies connected together by joints
 - Each DoF / point of actuation presents a new Coordinate
 System w.r.t. the previous linkage

 Each DoF / point of actuation presents a new Coordinate System w.r.t. the previous linkage

Applies to both manipulators and mobile platforms!

 This idea can also be used to describe the pose of objects in the environment

Example: direct kinematics of 2R arm

$$q = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \Leftarrow \text{Joint-space DOFs}$$

$$r = \begin{bmatrix} p_{2,x} \\ p_{2,y} \\ \theta \end{bmatrix} \Leftarrow \text{Operational-space DOFs}$$

$$r=f(q)$$

$$p_{2,x} = \cdots$$

$$p_{2,y} = \cdots$$

$$\theta = \cdots$$

Example: direct kinematics of 2R arm

$$q = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \Leftarrow \text{Joint-space DOFs}$$

$$r = \begin{bmatrix} p_{2,x} \\ p_{2,y} \\ \theta \end{bmatrix} \Leftarrow \text{Operational-space DOFs}$$

$$r = f(q)$$

$$p_{2,x} = l_1 \cos(q_1) + l_2 \cos(q_1 + q_2)$$

$$p_{2,y} = l_1 \sin(q_1) + l_2 \sin(q_1 + q_2)$$

$$\theta = q_1 + q_2$$

For more general cases, we need a "method"!

How can we express point Q, with position known in coordinate system {B} centered at P, in coordinate system {A} with origin (0,0)?

How can we express point Q, with position known in coordinate system {B} centered at P, in coordinate system {A} with origin (0,0)?

How can we convert between {A} and {B}?

We need to find the translation and rotation that would move the axes of {A} onto {B}

How can we convert between {A} and {B}?

We need to find the translation and rotation that would move the axes

of {A} onto {B}

Translation:

Subtract {A} from {B} to get the difference between origins.

$$T_{x} = \hat{B}_{x} - \hat{A}_{x}$$

$$T_{y} = \hat{B}_{y} - \hat{A}_{y}$$

$$T_{z} = \hat{B}_{z} - \hat{A}_{z}$$

How can we convert between {A} and {B}?

We need to find the translation and rotation that would move the axes

of {A} onto {B}

Rotation:

For each axis of {B}, we need to find out how it maps onto {A}

Starting with one axis:

How to map
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 onto A?

 $\{B\}_{x}$ contributes to both $\{A\}_{x}$ and $\{A\}_{y}$

Nested Coordinate Systems: Projection

- Problem: How to map $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ onto A? $\{B\}_x$ contributes to both $\{A\}_x$ and $\{A\}_y$
- Solution: Need to find the amount of these contributions!

Recall:

- Axes are unit-length vectors
- Dot product formula

•
$$A \cdot B = \sum_{i} A_i B_i = |A| * |B| * \cos(\alpha)$$

$$\{B\}_{x} \cdot \{A\}_{x} = \text{Amount of } \{B\}_{x} \text{ that contributes to } \{A\}_{x}$$

 $\{B\}_{x} \cdot \{A\}_{y} = \text{Amount of } \{B\}_{x} \text{ that contributes to } \{A\}_{y}$

$${}_{B}^{A}R = \begin{bmatrix} \{B\}_{x} \cdot \{A\}_{x} & \{B\}_{y} \cdot \{A\}_{x} \\ \{B\}_{x} \cdot \{A\}_{y} & \{B\}_{y} \cdot \{A\}_{y} \end{bmatrix}$$

Expressing $\{B\}$ in $\{A\}$

$$\begin{array}{ll}
^{A}\widehat{X}_{B} = (\widehat{X}_{B} \cdot \widehat{X}_{A}, \widehat{X}_{B} \cdot \widehat{Y}_{A}, \widehat{X}_{B} \cdot \widehat{Z}_{A})^{T} \\
^{A}\widehat{Y}_{B} = (\widehat{Y}_{B} \cdot \widehat{X}_{A}, \widehat{Y}_{B} \cdot \widehat{Y}_{A}, \widehat{Y}_{B} \cdot \widehat{Z}_{A})^{T} \\
^{A}\widehat{Y}_{B} = (\widehat{Z}_{B} \cdot \widehat{X}_{A}, \widehat{Z}_{B} \cdot \widehat{Y}_{A}, \widehat{Z}_{B} \cdot \widehat{Z}_{A})^{T}
\end{array}$$

$$\begin{array}{ll}
^{A}R = \begin{bmatrix} AX_{B}, AY_{B}, AZ_{B} \end{bmatrix} = \begin{bmatrix} \widehat{X}_{B} \cdot \widehat{X}_{A} & \widehat{Y}_{B} \cdot \widehat{X}_{A} & \widehat{Z}_{B} \cdot \widehat{X}_{A} \\
\widehat{X}_{B} \cdot \widehat{Y}_{A} & \widehat{Y}_{B} \cdot \widehat{Y}_{A} & \widehat{Z}_{B} \cdot \widehat{Y}_{A} \\
\widehat{X}_{B} \cdot \widehat{Z}_{A} & \widehat{Y}_{B} \cdot \widehat{Z}_{A} & \widehat{Z}_{B} \cdot \widehat{Z}_{A} \end{bmatrix}$$

How can we express point Q, with position known in coordinate system

{B} centered at P, in coordinate system

{A} centered at the origin (0,0)?

$$^{B}Q = Known$$

$$^{A}P = Known$$

How can we express point Q, with position known in coordinate system

{B} centered at P, in coordinate system

{A} centered at the origin (0,0)?

$$^{A}_{B}R = [^{A}X_{B}, ^{A}Y_{B}, ^{A}Z_{B}]$$

$$^{A}X_{B} = [X_{B} \cdot X_{A}, X_{B} \cdot Y_{A}, X_{B} \cdot Z_{A}]^{T}$$

$$^{A}Q = {}^{A}_{B}R * {}^{B}Q + {}^{A}P$$

Homogenous Transform

• Instead of ${}^AQ = {}^A_BR * {}^BQ + {}^AP$, we can express the transformation as a single matrix multiplication:

$$\begin{bmatrix} {}^{A}Q\\1 \end{bmatrix} = \begin{bmatrix} {}^{A}BR & {}^{A}P\\0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{B}Q\\1 \end{bmatrix}$$

• Inverse Transform:

$$T^{-1} = \begin{bmatrix} R^T & -R^{TA}P \\ 0 & 1 \end{bmatrix} \in SE(3)$$

Example

$${}^{A}\hat{X}_{B} = (\hat{X}_{B} \cdot \hat{X}_{A}, \hat{X}_{B} \cdot \hat{Y}_{A}, \hat{X}_{B} \cdot \hat{Z}_{A})^{T}$$

$${}^{A}\hat{Y}_{B} = (\hat{Y}_{B} \cdot \hat{X}_{A}, \hat{Y}_{B} \cdot \hat{Y}_{A}, \hat{Y}_{B} \cdot \hat{Z}_{A})^{T}$$

$${}^{A}\hat{Z}_{B} = (\hat{Z}_{B} \cdot \hat{X}_{A}, \hat{Z}_{B} \cdot \hat{Y}_{A}, \hat{Z}_{B} \cdot \hat{Z}_{A})^{T}$$

$$\hat{C}R = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

X-axis of \hat{S} is the negative-Y-axis of \hat{C}

Y-axis of \hat{S} is the negative-Z-axis of \hat{C}

Z-axis of \hat{S} is the X-axis of \hat{C}

Example: Expressing a Point in New Coordinate Frame

$$\hat{c}R = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\hat{c}p = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$

$$\hat{S}_{p} = \hat{S}_{\hat{C}} R \hat{C}_{p} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Example: Inverting a Rotation

Example: Composing Rotations

$$\hat{S}_{\hat{B}}R = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \hat{E}_{\hat{C}}R = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\hat{C}^{\hat{B}}R = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\hat{S}_{\hat{C}}R = \hat{S}_{\hat{B}}R\hat{E}_{\hat{C}}R = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

Forward Kinematics of a differential wheel robot (i.e. the e-puck)

• Manipulator:

- Forward kinematics is uniquely defined by its joint angles
- Measure of joint angles through encoders is absolute

Differential Wheels robot:

- Measure of joint angles through encoders is relative
- Encoders' values need to be integrated over time

Forward Kinematics of a differential wheel robot (i.e. the e-puck)

Holonomic or Non-Holonomic on the 2D plane?

Steering wheel is rotated 90 degrees then acceleration is applied for 1 second

VS.

Acceleration is applied for 1 second then steering wheel rotated 90 degrees!

Different ending configuration = Non-holonomic!

- How to model wheel motion
- Wheel motions to position updates
- Position updates to Forward Kinematics in Inertia frame

Chapter 3.3.2

Odometry

Derived from Greek words for "measure route"

Utilization of sensors to estimate changes in position over time

Useful for position/pose estimation!

Odometry aka: Where is the e-puck?

• How do we figure out where the e-puck is in the world?

What is our state vector?

- What are we able to control?
 - [JOINT SPACE DoFs]

• What are we able to measure?

- What variables do we need to measure the robot's motion in space?
 - [OPERATIONAL SPACE DoFs]

Odometry aka: Where is the e-puck?

• How do we figure out where the e-puck is in the world?

Measuring the e-puck's displacement

1. Wheel motion

Distance traveled is angle of rotation times wheel radius:

$$x = r\phi$$

$$x = r\phi$$
$$\dot{x} = r\dot{\phi}$$

2. Wheel motion → Position Updates

What about the case where only one wheel is moving?

Its center of mass will move by $\frac{1}{2}\phi r!$

2. Wheel motion → Position Updates

$$\dot{x}_r = \frac{1}{2}\dot{\phi}r$$

$$\omega_r d = \phi_r r \to \dot{\omega}_r = \frac{\phi_r r}{d}$$

2. Wheel motions → Position Updates

What about the case where both wheels are moving at different speeds $\dot{\phi}_l$ and $\dot{\phi}_r$?

$$\dot{x}_r = \frac{r\dot{\phi}_l}{2} + \frac{r\dot{\phi}_r}{2}$$

2. Wheel motions → Position Updates

$$\dot{\omega}_r = \frac{\dot{\phi_r}r}{d}$$

$$\dot{\omega}_l = \frac{\dot{\phi_l}r}{d}$$

$$\dot{\theta} = \frac{\dot{\phi}_r r}{d} - \frac{\dot{\phi}_l r}{d}$$

2. Forward Kinematics of mobile robot

$$\begin{bmatrix} \dot{x_R} \\ \dot{y_R} \\ \dot{\theta}_R \end{bmatrix} = \begin{bmatrix} \frac{r\phi_l}{2} + \frac{r\phi_r}{2} \\ 0 \\ \frac{\dot{\phi_r}r}{d} - \frac{\dot{\phi_l}r}{d} \end{bmatrix}$$

3. Forward Kinematics + Odometry

$$\begin{bmatrix} \dot{x_R} \\ \dot{y_R} \\ \dot{\theta}_R \end{bmatrix} = \begin{bmatrix} \frac{r\phi_l}{2} + \frac{r\phi_r}{2} \\ 0 \\ \frac{\dot{\phi_r}r}{d} - \frac{\dot{\phi_l}r}{d} \end{bmatrix}$$

3. Forward Kinematics + Odometry

$$\dot{x}_{I,x} = \cos(\theta)\dot{x}_{R}$$

$$xi_{,y} = -\sin(\theta)yi_{R}$$

$$\dot{x_I} = \cos(\theta)\dot{x_R} - \sin(\theta)\dot{y_R}$$
$$\dot{y_I} = \sin(\theta)\dot{x_R} + \cos(\theta)\dot{y_R}$$
$$\dot{\theta_I} = \dot{\theta_R}$$

$$\begin{pmatrix} \dot{x_I} \\ \dot{y_I} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{r\dot{\phi_l}}{2} + \frac{r\dot{\phi_r}}{2} \\ 0 \\ \frac{\dot{\phi_r}r}{d} - \frac{\dot{\phi_l}r}{d} \end{pmatrix}$$

4. Speeds → How can we compute positions?

$$\begin{pmatrix} x_I(T) \\ y_I(T) \\ \theta(T) \end{pmatrix} =$$

Don't forget...

- Take the quiz...
- Check out Homework 0
- Submit lab 1
- See you tomorrow