Теория Вероятностей

Домашние задания

2024-2025

2024-09-16	
ДЗ 1	2
Задача 25 (1)	
Задача 26 (4)	
Задача 27 (5)	
Задача 28 (6)	
Задача 29 (7)	
Задача 30 (11)	
Задача 31 (12)	
Задача 32 (13)	
Задача 33 (14)	4
Задача 34 (15)	4
Залача 35	

2024-09-16

_____ ДЗ 1 _____

—— Задача 25 (1) ——

• (a)

1. При k > 17 все карманы пусты.

$$P=1$$

2. При $k \le 17, k-1$ карманов пусты, всего карманов 17.

$$P = \frac{k-1}{17}$$

(б)

$$P = \frac{2}{17} \cdot \frac{1}{16} \cdot \frac{15}{15} \cdot \frac{14}{14} = \frac{2}{17} \cdot \frac{1}{16} = \frac{1}{136}$$

• (B)

$$P = \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{100}$$

----- Задача 26 (4) -----

• (A)

- 1. Способов выбрать два туза для первой пачки: C_4^2
- 2. Способов выбрать остальные карты для первой пачки: C_{48}^{24}
- 3. Всего способов разделить на две части: C_{52}^{26}
- 4. Итого,

$$P = \frac{C_4^2 C_{48}^{24}}{C_{52}^{26}}$$

• (В) Все тузы либо в первой пачке, либо во второй:

$$P = \frac{C_{48}^{22} + C_{48}^{26}}{C_{52}^{26}}$$

• (С) Либо в первой один туз, а во второй — три, либо наоборот. Выберем первую:

$$P = \frac{2 \cdot C_4^1 C_{48}^{25}}{C_{54}^{26}}$$

—— Задача 27 (5) ——

- Первый человек родился в некий день из 365
- Под второго осталось 365 1 = 364
- Под третьего -365-2=363

• ..

• Под r-того -365 - r + 1

$$P = \frac{365}{365} \cdot \frac{364}{365} \cdot \dots \cdot \frac{365 - r + 1}{365}$$

При $r=23:P\approx 0.49$

Таблица 1. Число перестановок

Всего	6!
Буквы А	3!
Буквы Н	2!
Буквы С	1!
Различных	$\frac{6!}{3!2!1!} = 60$
Подходящих	1

$$P = \frac{1}{60}$$

Аналогично задаче 5.

$$P = \frac{30}{30} \cdot \frac{29}{30} \cdot \dots \cdot \frac{26}{30} = 0.7037(3)$$
 —— Задача 30 (11) ——

Выбрать получивших номера: C_{10}^6

• (а) Выбрать 6 мужчин: $C_6^6=1$.

$$P = \frac{1}{C_{10}^6} = \frac{1}{210}$$

• (б) Выбрать 4 муж — C_6^4 , 2 жен — C_4^2 .

$$P = \frac{C_6^4 C_4^2}{C_{10}^6} = \frac{3}{7}$$

• (в) Обратно пункту а.

$$P = 1 - \frac{1}{210} = \frac{209}{210}$$

He все из 12-ти комбинаций равновероятны. Так, например, комбинация 6-4-1 соответствует шести ситуациям:

1-ая кость	2-ая кость	3-ая кость
1	4	6
1	6	4
4	1	6
4	6	1
6	1	4

1-ая кость	2-ая кость	3-ая кость
6	4	1

Комбинация 4-4-3 — трем:

1-ая кость	2-ая кость	3-ая кость
3	4	4
4	3	4
4	4	3

А комбинация 4-4-4 — только одной:

	1-ая кость	2-ая кость	3-ая кость
I	4	4	4

• (а) выберем в одну (первую или вторую) из подгрупп шесть лидирующих и ещё три не лидирующие:

$$P = \frac{2 \cdot C_6^6 \cdot C_{12}^3}{C_{18}^9} = \frac{2 \cdot C_{12}^3}{C_{18}^9}$$

• (б) выберем три лидирующие команды и шесть не лидирующих команд в первую группу:

$$P = \frac{C_6^3 \cdot C_{12}^6}{C_{18}^9}$$

шампанское

$$5$$
 \rightarrow
 4

 белое вино
 3
 \rightarrow
 2

 красное вино
 2
 \rightarrow
 1

 всего
 10
 \rightarrow
 7

$$P = \frac{C_5^4 \cdot C_3^2 \cdot C_2^1}{C_{10}^7}$$

• (а) Рассмотрим обратное событие:

Айова
 2

$$\rightarrow$$
 0

 Остальные
 98
 \rightarrow
 50

 Всего
 100
 \rightarrow
 50

$$P = 1 - \frac{C_2^0 \cdot C_{98}^{50}}{C_{100}^{50}} = 1 - \frac{C_{98}^{50}}{C_{100}^{50}}$$

(б)

$$\begin{array}{cccc} \hbox{III} \hbox{тат 1} & 2 & \rightarrow & 1 \\ \hbox{III} \hbox{тат 2} & 2 & \rightarrow & 1 \end{array}$$

...

$$\begin{array}{cccc} \text{IIITaT 50} & 2 & \rightarrow & 1 \\ \hline \text{Bcero} & 100 & \rightarrow & 50 \\ \end{array}$$

$$P = \frac{\left(C_2^1\right)^{50}}{C_{100}^{50}} = \frac{2^{50}}{C_{100}^{50}}$$

Рассмотрим обратное событие: все ботинки из разных пар.

$$P = 1 - \frac{20}{20} \cdot \frac{18}{19} \cdot \frac{16}{18} \cdot \frac{14}{17}$$