Zhihao Ruan

3131 Walnut St Unit #553, Philadelphia, PA 19104 ruanzh@grasp.upenn.edu • +1 (734) 881-4112 • https://zhihaoruan.xyz

EDUCATION

University of Pennsylvania

Philadelphia, PA

General Robotics, Automation, Sensing & Perception (GRASP) Laboratory

May 2022

May 2020

Master of Science in Engineering in Robotics, **projected**

Ann Arbor, MI

· College of Engineering

University of Michigan

Bachelor of Science in Computer Science Engineering, GPA: 3.89/4.00

.

Shanghai Jiao Tong University

Shanghai, China

University of Michigan-Shanghai Jiao Tong University Joint Institute (UM-SJTU Joint Institute)
Bachelor of Science in Electrical and Computer Engineering, GPA: 3.56/4.00

August 2020

RELATED COURSEWORK

ECE: Electromagnetics, Signals and Systems, Analog Circuits, Semiconductor Devices; **CSE:** Embedded Systems, Machine Learning, Computer Vision, Autonomous Robotics, CUDA programming, Operating Systems.

RESEARCH EXPERIENCE

Synthetic Health Sensor

Ann Arbor, MI

Interactive Sensing and Computing Lab of Prof. Alanson Sample, University of Michigan

Jan 2019 – Dec 2019

- o Built an embedded system with STM32 microprocessor and Panasonic's GridEye * 8 \times 8 IR sensor using I 2 C, UART and MATLAB signal processing that can collect, detect and visualize heat distribution in the room.
- o <u>Constructed</u> a complete API <u>from scratch</u> for Panasonic's GridEye $^{\circ}$ 8 \times 8 IR sensor for STM32 microprocessor.
- Implemented <u>Direct Digital Synthesis (DDS)</u> of a frequency-sweep ultrasonic sine wave from 39kHz to 41kHz with STM32 microprocessor and ultrasonic transducers.
- Implemented two different ultrasound distance measurement algorithms including FMCW (Frequency-Modulated Continuous Wave) algorithm and phase-based ranging algorithm with STM32 microprocessor and Python.

PROJECT EXPERIENCE

Real-Time On-Device Flow Statistics Detection and Prediction

Shanghai, China

Undergraduate Major Design Experience, UM-SJTU Joint Institute

June 2020 - Aug 2020

- Built a system which <u>detects</u> human tracffic flow, automatically <u>analyzes</u> & <u>detects</u> entrances on Raspberry Pi 4B, <u>stores</u> data on a server, <u>visualizes</u> analyzed data on a self-designed front-end website <u>in real time</u>.
- Implemented object tracking & people counting with self-designed Kalman filter tracker, automatic entrance detection with density-based clustering algorithm DBSCAN.

DOAPP: Dynamic Object Avoidance and Path Planning

Ann Arbor, MI

Undergraduate Major Design Experience, University of Michigan

Oct 2019 - Dec 2019

- Implemented a GPU-accelerated motion planning algorithm by Chonhyon Park, et al. on an Nvidia's GPU with CUDA parallel programming & optimization.
- $\circ \ \ \text{Built a} \ \underline{\text{ROS controller and trajectory follower from scratch}} \ \text{for Dynamixel motors on robot arm}.$

Interactive Game: Step on White Tiles

Ann Arbor, MI

EECS 373: Introduction to Embedded Systems Design, University of Michigan

March 2019 – April 2019

- o Visualized black & white tiles flow by driving a projector with FPGA by programming VGA protocols in Verilog.
- o Decoded signals from Nintendo controller in Verilog.
- o Built a complete menu selection user interface on an LCD display with SmartFusion® microprocessor and Nintendo controller.
- o Achieved stepping detection on projected tiles through SPI communication with Pixy camera.
- Enabled sound effects using SmartFusion microprocessor, Adafruit Audio Sound Board and Dell stereos.

WORK EXPERIENCE

Introduction to Machine Learning Computer Vision Introduction to Embedded Systems Design Matrix Algebra Academic Writing II Grader Grader

Grader

Grader Teaching Assistant

SKILLS

Programming Languages: C/C++, Python, MATLAB, Verilog.

Development Tools: STM32CubeMX, OpenCV, PyTorch, Scikit-Learn, LCM (Lightweight Communications and Marshalling), ROS (Robotics Operating System), CUDA