California State University, Long Beach

The Hidden Secrets Behind Making the MLB Playoffs

STAT 550: Multivariate Analysis Final

Denisse Valdez Ho Joon Lee Kevin Merritt 5-5-2016

INTRODUCTION

According to USA Today Sports, Major League Baseball teams who make the playoffs earn on average \$20 to \$30 million more in revenue each year than teams who do not make the playoffs (Barmasse, 2014). Knowing this, the objective for this project was to determine which team performance statistics play the largest role in reaching the playoffs and thus increasing annual revenue. Identifying these factors is important since an extra 20 million dollars can improve a team's performance considerably either by affording new players or new management. Additionally, it is commonly known pitchers are the highest paid players in baseball. Therefore, do pitching statistics also play the largest role in determining if a team will make the playoffs?

DATA

This project uses MLB statistics from the years 2011 to 2015, which was collected from the Elias Sports Bureau (ESPN, 2016). The five most recently completed seasons were chosen because it was determined one season wasn't enough and consolidating the data for more than five seasons would be beyond the scope of this project. Consequently, each of the 30 MLB teams have five years of observations, resulting in a total of 150 data observations. From the wide selection of baseball statistics, we focused on 25 of the "major" statistics for batting, pitching, and fielding. PitchERA, BatAB/HR, PitchBAA, and PitchBB are all variables which were considered "good" if they have lower values (highlighted in the table below). In addition, our final data set for this project included two categorical variables – team league and playoffs teams.

Therefore, a logistic analysis model is appropriate for our data set, where 0 means National League (NL) and 1 means American League (AL) for the variable league. For the variable playoffs, 1 means the team made the playoffs and 0 means they did not make the playoffs. Since we have 27 variables, the following is the list of the variables which require more in depth knowledge of baseball. The rest of the variable descriptions can be found in Appendix A1.

BatTB	total bases; H+ (# of 2B)*2 + (# of 3B)*3+ (# of HR)*4
BatRBI	runs batted in; A run scored because of the action of a batter
BatAVG	batting average; Hits divided by At Bats
BatOBP	on base percentage; (H + BB + HBP) divided by (AB + BB + HBP + SF)
	(Hits + walks + hit by pitch)/(at-bats + walks + hit by pitch + sacrifice flies)
BatSLG	slugging percentage; Total Bases divided by At Bats
BatOPS	OPS = OBP +SLG
BatAB/HR	at bats to home run ratio
PitchERA	Earned-run average; (ER times 9) divided by IP
	(Earned runs*9)/(innings pitched)
PitchSV	saves; Earned when a pitcher finishes a game without having given up the lead
	after entering in a save situation
PitchCG	complete games; the act of a pitcher pitching an entire game without the benefit

	of a relief pitcher.
PitchSHO	shutouts, refers to the act by which a single pitcher pitches a complete game and
	does not allow the opposing team to score a run.
PitchQS	quality starts; pitcher completes at least six innings and permits no more than
	three earned runs.
PitchBAA	opponents' batting average; measures a pitcher's ability to prevent hits during
	official at bats.
PitchSV%	save percentage; # of saves divided by save opportunities
PitchK/BB	strikeout to walk ratio
FieldFPCT	fielding percentage
	(PO + A) divided by (PO + A + E)
	(Putouts + Assists)/(Putouts + Assists + Errors)

Table 1: Variable Explanations Where Highlighted Variables are "Good" When Low Values

PRELIMINARY ANALYSIS

For this analysis, a correlation matrix was used because there is an inconsistency in the units used to measure each variable. Additionally, looking at the sample of simple statistics below (Table 2) for a few of the variables in the data set, it is clear the range of standard deviations is very large which confirms the choice of using the correlation matrix for analysis.

	Simple Statistics													
	BatAB	BatR	BatH	Bat2B	Bat3B	BatHR	BatTB	BatRBI	BatAVG					
Mean	5520.853333	683.2533333	1400.833333	275.0733333	29.23333333	154.9466667	2199.213333	649.7933333	0.2536400000					
StD	73.578556	67.1739390	76.246370	24.3443134	8.86014882	31.5426177	150.088457	66.3135016	0.0112728694					

Table 2: Sample of Basic Statistics for Variables in Data Set

In Appendix A2, the full correlation matrix for our data set can be found. In general, we found there to be a lot of variables highly correlated with each other. This is due to the fact certain variables play a role in others. For example, batter hits and batter average would directly affect the on base percentage.

To verify the assumption of normality, a QQ Plot (Figure 1) of the residuals was produced. Clearly the residuals generally form a straight line confirming the assumption of normality is not violated. Also, the residuals for each variable are randomly scattered about the zero line (Figure 2) indicating the assumption of equal variances is not violated. The rest of the residual plots can be seen in Appendix A3.

Figure 1: Q-Q Plot for Residuals

Figure 2: Residual vs BatAB Plot

PRINCIPAL COMPONENT ANALYSIS (PCA)

Due to the large number of variables in the data set, variable reduction is an essential part of the analysis. Based on the scree plot below (Figure 3), there is a significant drop in eigenvalues from one to two and two to three but the drop between three and four is not as significant. This is confirmed by the proportion and cumulative columns (Table 3). In general, a cumulative percentage of over 70% is considered okay; we decided 66% is appropriate for our data set due to the large number of observations.

1 1111	cipe	ar Comp	OTICITE
Figure	3:	Scree	Plot

Eigenvalues of the Correlation Matrix												
	Eigenvalue	Difference	Proportion	Cumulative								
1	8.67369187	2.93581635	0,3469	0.3469								
2	5.73787551	3.58364813	0.2295	0.5765								
3	2.15422738	0.83521987	0.0862	0.6626								
4	1.31900752	0.10029265	0.0528	0.7154								
5	1.21871487	0.19590432	0.0487	0,7641								

Table 3: Eigenvalue Table for First Five PCA's

The table below (Table 4) can be used to get a more accurate picture of what each principal component represents from the original variables. The following is an explanation of each principal component used:

Prin1: Measurement of hitting statistics for a particular team

Prin2: Measurement of pitching statistics for a particular team

Prin3: Measurement of "power ball1"

Keep in mind, some of the variables are "good" when they have large negative value within the principal component (circled in Figure 4).

	Prin1	Prin2	Prin3
BatAB	0.223957	086212	0.206371
BatR	0.321388	0.043724	026060
BatH	0.293195	048041	0.282776
Bat2B	0.234161	043604	0.235493
Bat3B	0.036711	091607	0.334377
BatHR	0.224519	0.075929	478050
BatTB	0.332816	0.005578	080073
BatRBI	0.322248	0.050583	034990
BatAVG	0.289824	032268	0.283321
BatOBP	0.288449	0.064135	0.199139
BatSLG	0.325247	0.026639	138105
BatOPS	0.333172	0.040955	031302

	Prin1	Prin2	Prin3
BatAB/HR	206920	082150	0.487704
PitchERA	0.058615	377700	-115868
PitchSV	003077	0.269394	0.042271
PitchCG	0.018252	0.132086	0.071276
PitchSHO	021406	0.275158	0.169993
PitchQS	0.038196	020946	144585
PitchR	0.053906	382261	- 100183
PitchBB	022349	282650	003093
PitchSO	0.002557	0.278387	012702
PitchBAA	0.035518	354040	014738
PitchSV%	031129	0.264306	0.072194
PitchK/BB	0.016329	0.346530	013431
FieldFPCT	0.031338	0.166682	097924

Table 4: Loadings for Principal Components 1, 2, and 3

¹ Power ball refers to scoring runs based off of extra base hits such as 3B and HR

Figure 4: Prin1 vs. Prin2 with "Good" Variables Circled

Our next step in the analysis was to compare the graphs of prin1 vs prin2, prin1 vs prin3, and prin2 vs prin3. In doing so, teams were plotted in each combination by league where red is the AL and blue is the NL. The principal component plots by league shows no particular league is better in any particular principal component. For example, both leagues are randomly scattered when it comes to hitting (prin1), pitching (prin2), and "power ball" (prin3). These plots can be seen in Appendix A4.

Next, the same combinations of principal components were plotted by whether a team reached the playoffs (red) or not (blue). It is clear pitching (prin2) is the best predictor for whether a team will make the playoffs or not. This can be seen in Figure 6. Hitting (prin1) also plays a role in predicting if a team makes the playoffs (Figure 5). "Power ball" (prin3) doesn't seem to have an effect on playoffs when coupled with prin1 either (figure in Appendix A4).

Figure 5: Prin1 vs Prin2 Separated by Playoffs

Figure 6: Prin2 vs Prin3 Separated by Playoffs

CLUSTER ANALYSIS (CA)

Based on the PC analysis performed above, we saw prin1 and prin2 are the most important components in determining if a team will make the playoffs. Therefore, our group performed further analysis of these two components using cluster analysis. The number of clusters used in the analysis was determined based on the tree diagram located in Appendix A5. Based on this diagram, we chose five clusters to group the variables.

Cluster analysis classifies the teams based on their statistics to groups which are similar. The first cluster plot (Figure 7) below, shows all the teams based on prin1 and prin2 and whether they made the playoffs or not. The green and red clusters in the plot show teams which made the playoffs. The black, orange, and blue indicate teams who did not make the playoffs. This coincides with the results found in our PCA section.

The second plot (Figure 8) shows prin1 and prin2 with the team names as their indicator. Knowing red and green indicate teams who made the playoffs and black, orange, and blue are teams who did not make the playoffs, we are able to make general assumptions about teams. For example, Colorado (all five years in the black cluster) tends to focus on hitting instead of pitching and it has resulted in not making the playoffs in the last five years. Another good illustration of the fine line between making the playoffs and not is seen in Atlanta11 and Atlanta12. In both seasons, Atlanta had similar pitching statistics but a slight increase in their hitting performance in 2012 caused them to make the playoffs.

Figure 7: Prin1 vs. Prin2 CA Labeled with Playoffs

Figure 8: Prin1 vs. Prin2 CA with Team Name Labels

LOGISTIC ANALYSIS

Since we have analyzed the background information of the data, our next logical step was to attempt to predict what teams will make the playoffs and which ones will go home early. We chose to use Logistical Analysis instead of discriminate analysis because the response variable in our case is categorical (binary). Since PCA was already used to reduce the number of dimensions in our data, the logistic analysis was run using the three components identified previously.

Looking at the Maximum Likelihood Estimates shows a p-value for prin3 as .0507 (Table 5). While this typically would indicate removal of the component at the alpha level of .05, we included it because during our PC analysis, we saw prin3 accounts for about 10% of the explanation of the variance in our model. The estimates show prin2 has a significant amount of impact on the model compared to prin1 and prin3.

	Anal	ysis of Maxi	mum Likelih	ood Estimates	5
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-2.1042	0.4445	22.4096	<.0001
Prin1	1	0.6502	0.1399	21.5986	<.0001
Prin2	1	1.2020	0.2273	27.9704	<.0001
Prin3	1	0.3649	0.1868	3.8178	0.0507

Table 5: Maximum Likelihood Estimates for Prin 1, 2, and 3

Cross validation was then used to check the adequacy of the model. Typically a decision rule of 50% is used when classifying but we chose to use 60% in this case. We chose this rule because it is riskier for a team to believe they will make the playoffs when they end up missing them. For example, a team which thinks they will make the playoffs will believe they have an extra 20 to 30 million dollars in revenue when they don't. Since only 1/3 of MLB teams make the playoffs every year, we decided to use a decision rule of 60%. Therefore, we felt it would be better to be conservative and predict a team will miss the playoffs when they actually make it.

Using the decision rule of 60%, there were a total of 21 misclassifications out of 150 which equates to a 14% misclassification rate (Table 6). Out of the 21, 14 of the misclassifications were teams predicted to miss the playoffs but actually made them (false-negative). This boils down to seven teams believing they would get this increase in revenue and not actually getting it (false-positive). We expected to see more false-negatives than false-positives which turned out to be true.

	Play	offs(Playo	ffs)
newplayoffs	0	1	Total
0	95 63.33 87.16 93.14	9.33 12.84 29.17	109 72.67
1	7 4.67 17.07 6.86	34 22.67 82.93 70.83	41 27.33
Total	102 68.00	48 32.00	150

Table 6: Results of Logistic Analysis

In more detail, out of the 48 teams which made the playoffs, 14 of them were originally projected to miss them. This equates to 29.17% of teams who ended up making the playoffs thinking they wouldn't. On the other hand, out of the 102 teams which did not make the playoffs, seven of them believed they would but ended up missing them. This equates to 6.86% of those teams. Keep in mind our model was designed to favor misclassifying false-negative situations. For this reason, we believe our model is adequate and a pretty good representation of which teams will make the playoffs and which teams will end up missing out on the extra 20 to 30 million dollars in revenue.

CONCLUSION

After analyzing the data using PCA, cluster analysis, and logistic analysis, pitchers seemed to affect a team making the playoffs the most. However, hitting also played a role in determining if a team would get the increased revenue. Hitting itself, will typically not put a team into the playoffs (see Colorado) but it will act as a tie breaker for equal pitching staffs, (see Atlanta11 and Atlanta12). While it may seem obvious pitching and hitting play the largest role in determining success of teams, it is interesting to note the style of play (i.e. "small ball," "power ball," etc.) added very little to determining a team's playoff destiny.

If we were to run this analysis again to improve the model, factors such as team salaries, playoff experience of the roster, average age of the roster, etc. could be included to help make it more accurate. If we decided to go into more detail about the results we found, an in depth analysis of teams pitching staffs could be conducted since pitching is the leading factor. Some possible questions to be investigated are: impact of starting pitchers vs relief pitchers, is it better to have a highly paid star pitcher or a well-rounded pitching rotation, what role do catchers play, or how do pitching coaches effect a team's staff.

Overall, our method with a 14% misclassification rate adequately measures whether teams make it to the playoffs or not. It could potentially be used to help teams determine if they are going to earn an extra 20 to 30 million dollars in any particular year.

RESOURCES

Barmasse, Jason. "How Much Value Does a Postseason Appearance Hold for MLB Franchises?" *The Fields of Green.* USA Today Sports, 02 Oct. 2014. Web. 02 May 2016. http://thefieldsofgreen.com/2014/10/02/how-much-value-does-a-postseason-appearance-hold-for-mlb-franchises/.

"MLB Team Statistics." *ESPN*. Data Provided by Elias Sports Bureau, 2016. Web. http://espn.go.com/mlb/stats/team/_/stat/batting/year/2016/seasontype/2.

Team	Name of MLB team (response variable)
League	categorical variable, either American League and National League
Playoffs	categorical variable, teams that reached or did not reach playoffs
BatAB	at bats
BatR	runs
BatH	hits
Bat2B	doubles
Bat3B	triples
BatHR	home runs
BatTB	total bases; H+ 2B + (3B times 2) + (HR times 3)
BatRBI	runs batted in; A run scored because of the action of a batter
BatAVG	batting average; H divided by AB
BatOBP	on base percentage; (H + BB + HBP) divided by (AB + BB + HBP + SF)
	(Hits + walks + hit by pitch)/(at-bats + walks + hit by pitch + sacrifice
	flies)
BatSLG	slugging percentage; TB divided by AB
BatOPS	OPS = OBP +SLG
BatAB/HR	at bats to home run ratio
PitchERA	Earned-run average; (ER times 9) divided by IP
	(Earned runs*9)/(innings pitched)
PitchSV	saves; Earned when a pitcher finishes a game without having given up
	the lead after entering in a save situation
PitchCG	complete games; the act of a pitcher pitching an entire game without
-ti-1-a	the benefit of a relief pitcher.
PitchSHO	shutouts, refers to the act by which a single pitcher pitches a complete
Direct OC	game and does not allow the opposing team to score a run.
PitchQS	quality starts; pitcher completes at least six innings and permits no
PitchR	more than three earned runs.
PitchBB	runs
	walks
PitchSO PitchBAA	strikeouts
FILLIIDAA	opponents batting average; measures a pitcher's ability to prevent hits during official at bats.
PitchSV%	
PitchK/BB	save percentage strikeout to walk ratio
FieldFPCT	fielding percentage
i iciui r Ci	(PO + A) divided by (PO + A + E)
	(Putouts + Assists)/(Putouts + Assists + Errors)
	[1 utouts + Assists]/[r utouts + Assists + E11015]

Correlation Matrix					Correlation Matrix									Correlation Matrix												
		BatAB	BatR	BatH	Bat2B	Bat3B	BatHR	BatTB	BatRBI	BatAVG	BatOBP	BatSLG	BatOPS	BatAB_HR	PitchERA	PitchSV	PitchCG	PitchSHO	PitchQS	PitchR	PitchBB	Pitch50	PitchBAA	PitchSV_	PitchK_BB	FieldFPCT
BatAB	BatAB	1.0000	0.5421	0.7859	0.5659	0.1244	0.2119	0.6393	0.5407	0.6582	0.4992	0.4984	0.5301	1497	0.2391	1054	1018	1552	0865	0.2585	0.1163	0178	0.2216	1905	1005	0.0594
BatR	BatR	0.5421	1.0000	0.7482	0.6148	0.0836	0.6623	0.9072	0.9959	0.7482	0.8324	0.9019	0.9352	6028	0.0604	0.0233	0.1039	0006	0.1289	0.0457	1413	0.0173	0066	0.0059	0.1035	0.0968
BatH	BatH	0.7859	0.7482	1.0000	0.6811	0.2387	0.2549	0.8074	0.7459	0.9824	0.8117	0.7333	0.8063	-,1958	0.1932	0409	0.0118	0424	0.0059	0.1866	0.0256	0400	0.1948	1028	0462	0.0268
Bat2B	Bat2B	0.5659	0.6148	0.6811	1.0000	0.1125	0.1635	0.6245	0.6103	0.6600	0.6381	0.5764	0.6344	1375	0.1360	0282	0.0120	1039	0.0047	0.1481	0.0215	0395	0.1075	1594	0391	0431
Bat3B	Bat3B	0.1244	0.0836	0.2387	0.1125	1.0000	2535	0.0978	0.0685	0.2507	0.1209	0.0815	0.0999	0.2200	0.1264	0919	0307	0393	0.0900	0.1201	0.1361	1465	0.1688	0297	1803	2319
BatHR	BatHR	0.2119	0.6623	0.2549	0.1635	2535	1.0000	0.7566	0.6752	0.2462	0.3524	0.8081	0.7029	9582	0.0538	0.0957	0.0106	0598	0.1514	0.0281	1308	0.1228	0853	0160	0.1635	0.1972
BatTB	BatTB	0.6393	0.9072	0.8074	0.6245	0.0978	0.7566	1.0000	0.9117	0.7909	0.7523	0.9851	0.9675	6999	0.1690	0.0241	0.0110	0807	0.1098	0.1507	0499	0.0334	0.0825	0917	0.0519	0.1036
BatRBI	BatRBI	0.5407	0.9959	0.7459	0.6103	0.0685	0.6752	0.9117	1.0000	0.7461	0.8351	0.9073	0.9400	6158	0.0498	0.0334	0.1104	0.0011	0.1271	0.0346	1501	0.0351	0153	0.0163	0.1172	0.1237
BatAVG	BatAVG	0.6582	0.7482	0.9824	0.6600	0.2507	0.2462	0.7909	0.7461	1.0000	0.8389	0.7428	0.8225	1924	0.1631	0170	0.0468	0014	0.0312	0.1495	0038	0429	0.1708	0682	0261	0.0166
BatOBP	BatOBP	0.4992	0.8324	0.8117	0.6381	0.1209	0.3524	0.7523	0.8351	0.8389	1.0000	0.7360	0.8731	3200	0378	0.0607	0.1800	0.1581	0.0673	0372	1518	0.0704	0356	0.0426	0.1425	0.0849
BatSLG	BatSLG	0.4984	0.9019	0.7333	0.5764	0.0815	0.8081	0.9851	0.9073	0.7428	0.7360	1.0000	0.9725	7584	0.1357	0.0522	0.0354	0548	0.1433	0.1111	0873	0.0442	0.0428	0620	0.0860	0.1038
BatOPS	BatOPS	0.5301	0.9352	0.8063	0.6344	0.0999	0.7029	0.9675	0.9400	0.8225	0.8731	0.9725	1.0000	6560	0.0851	0.0601	0.0855	0.0127	0.1250	0.0673	1130	0.0556	0.0191	0286	0.1093	0.1044
BatAB_HR	BatAB/HR	1497	6028	1958	1375	0.2200	9582	6999	6158	1924	3200	7584	6560	1.0000	0355	0777	0375	0.0467	1503	0133	0.1492	1542	0.0970	0.0175	1951	1679
PitchERA	PitchERA	0.2391	0.0604	0.1932	0.1360	0.1264	0.0538	0.1690	0.0498	0.1631	0378	0.1357	0.0851	0355	1.0000	5982	2381	5846	0.1065	0.9863	0.5298	5492	0.8643	-,5452	6570	2490
PitchSV	PitchSV	1054	0.0233	0409	0282	0919	0.0957	0.0241	0.0334	0170	0.0607	0.0522	0.0601	0777	5982	1.0000	0732	0.3310	0015	6001	3518	0.3036	4363	0.7012	0.3876	0.2159
PitchCG	PitchCG	1018	0.1039	0.0118	0.0120	0307	0.0106	0.0110	0.1104	0.0468	0.1800	0.0354	0.0855	0375	2381	0732	1.0000	0.3100	0023	2436	3256	0.0419	2672	0.1121	0.2467	0.1476
PitchSHO	PitchSHO	1552	0006	0424	1039	0393	0598	0807	0.0011	0014	0.1581	0548	0.0127	0.0467	5846	0.3310	0.3100	1.0000	0784	5990	3854	0.3813	5719	0.3328	0.4786	0.1607
PitchQS	PitchQS	0865	0.1289	0.0059	0.0047	0.0900	0.1514	0.1098	0.1271	0.0312	0.0673	0.1433	0.1250	1503	0.1065	0015	0023	0784	1.0000	0.1034	0.0669	0049	0.0228	0.0791	0474	1249
PitchR	PitchR	0.2585	0.0457	0.1866	0.1481	0.1201	0.0281	0.1507	0.0346	0.1495	0372	0.1111	0.0673	0133	0.9863	6001	2436	5990	0.1034	1.0000	0.5286	5438	0.8692	5503	6530	3306
PitchBB	PitchBB	0.1163	1413	0.0256	0.0215	0.1361	1308	0499	1501	0038	1518	0873	1130	0.1492	0.5298	3518	3256	3854	0.0669	0.5286	1.0000	2463	0.3480	3522	8226	2663
Pitch50	PitchSO	0178	0.0173	0400	0395	1465	0.1228	0.0334	0.0351	0429	0.0704	0.0442	0.0556	1542	5492	0.3036	0.0419	0.3813	0049	5438	2463	1.0000	6291	0.2994	0.7387	0.1873
PitchBAA	PitchBAA	0.2216	0066	0.1948	0.1075	0.1688	0853	0.0825	0153	0.1708	0356	0.0428	0.0191	0.0970	0.8643	4363	2672	5719	0.0228	0.8692	0.3480	6291	1.0000	4494	5810	2693
PitchSV_	PitchSV%	1905	0.0059	1028	1594	0297	0160	0917	0.0163	0682	0.0426	0620	0286	0.0175	5452	0.7012	0.1121	0.3328	0.0791	5503	3522	0.2994	4494	1.0000	0.3797	0.2262
PitchK_BB	PitchK/BB	1005	0.1035	0462	0391	1803	0.1635	0.0519	0.1172	0261	0.1425	0.0860	0.1093	1951	6570	0.3876	0.2467	0.4786	0474	6530	8226	0.7387	5810	0.3797	1.0000	0.2705
FieldFPCT	FieldFPCT	0.0594	0.0968	0.0268	0431	2319	0.1972	0.1036	0.1237	0.0166	0.0849	0.1038	0.1044	1679	2490	0.2159	0.1476	0.1607	1249	3306	2663	0.1873	2693	0.2262	0.2705	1.0000

