William Stallings Arquitetura e Organização de Computadores 8ª Edição

Capítulo 6 Memória externa

Tipos de memória externa

- Disco magnético:
 - -RAID.
 - -Removível.
- Óptica:
 - -CD-ROM.
 - —CD-Recordable (CD-R).
 - -CD-R/W.
 - -DVD.
- Fita magnética.

Disco magnético

- Substrato de disco coberto com material magnetizável (óxido de ferro... ferrugem)
- Substrato era alumínio.
- Agora é vidro.
 - —Maior uniformidade da superfície.
 - Aumenta confiabilidade.
 - -Redução nos defeitos da superfície.
 - Erros reduzidos de leitura/gravação.
 - —Alturas de voo mais baixas (veja adiante).
 - —Melhor rigidez.
 - Maior resistência a choques e dados.

Mecanismos de leitura e gravação

- Gravação e leitura por bobina condutora, chamada cabeça.
- Pode ser única cabeça de leitura/gravação ou separadas.
- Durante leitura/gravação, cabeça fica parada, placas giram.
- Gravação:
 - Corrente pela bobina produz campo magnético.
 - Pulsos enviados à cabeça.
 - Padrão magnético gravado na superfície abaixo dela.
- Leitura (tradicional):
 - Campo magnético movendo-se em relação à bobina produz corrente.
 - Bobina é a mesma para leitura e gravação.
- Leitura (contemporânea):
 - Cabeça de leitura separada e próxima da cabeça de gravação.
 - Sensor magnetorresistivo (MR) parcialmente blindado.
 - Resistência elétrica depende da direção do campo magnético.
 - Operação em alta frequência.
 - Densidade de armazenamento e velocidade mais altas.

Cabeça de gravação indutora/leitura MR

Organização e formatação de dados

- Anéis ou trilhas concêntricas.
 - Lacunas entre as trilhas.
 - Reduza a lacuna para aumentar a capacidade.
 - —Mesmo número de bits por trilha (densidade de compactação variável).
 - Velocidade angular constante.
- Trilhas divididas em setores.
- Tamanho de bloco mínimo é de um setor.
- Pode haver mais de um setor por bloco.

Layout de dados de disco

Velocidade do disco

- Bit próximo do centro do disco girando passa por ponto fixo mais lento que o bit na borda do disco.
- Aumente espaçamento entre bits de diferentes trilhas.
- Gire disco em velocidade angular constante (CAV).
 - Setores em forma de fatia de torta e trilhas concêntricas.
 - Trilhas e setores individuais endereçáveis.
 - Mova cabeça para determinada trilha e espere por determinado setor.
 - Perda de espaço nas trilhas externas.
 - Menor densidade de dados.
- Pode usar zonas para aumentar capacidade.
 - Cada zona tem número fixo de bits por trilha.
 - Circuito mais complexo.

Diagrama de métodos de layout de disco

Localizando setores

- Deve ser capaz de identificar início da trilha e setor.
- Formatar disco:
 - -Informações adicionais não disponíveis ao usuário.
 - Marca trilhas e setores.

Formato de disco Winchester (Seagate ST506)

Características

- Cabeça fixa (rara) ou móvel.
- Removível ou fixo.
- Única ou dupla (mais comum) face.
- Prato único ou múltiplos.
- Mecanismo da cabeça:
 - —Contato (disquete).
 - -Lacuna fixa.
 - Lacuna aerodinâmica (Winchester).

Disco de cabeça fixa/móvel

- Cabeça fixa:
 - —Uma cabeça de leitura por trilha.
 - Cabeças montadas sobre braço rígido fixo.
- Cabeça móvel:
 - Uma cabeça de leitura e escrita por lado.
 - —Montada sobre um braço móvel.

Removível ou não

- Disco removível:
 - Pode ser removido da unidade e substituído por outro disco.
 - Oferece capacidade de armazenamento ilimitada.
 - -Transferência de dados fácil entre sistemas.
- Disco não removível:
 - —Montado permanentemente na unidade.

Múltiplas placas

- Uma cabeça por lado.
- Cabeças são unidas e alinhadas.
- Trilhas alinhadas em cada placa formam cilindros.
- Dados são espalhados pelo cilindro:
 - -Reduz movimento da cabeça.
 - Aumenta velocidade (taxa de transferência).

Trilhas e cilindros

Disquete

- 8", 5,25", 3,5".
- Pequena capacidade.
 - -Até 1,44 MB (2,88 MB nunca foi popular).
- Lento.
- Universal.
- Barato.
- Obsoleto?

Disco rígido Winchester

- Desenvolvido pela IBM em Winchester (USA).
- Unidade selada.
- Uma ou mais placas (discos).
- Cabeças voam na camada de limite de ar enquanto o disco gira.
- Cabeça muito pequena para lacuna do disco.
- Tornando-se mais robusto.

- Universal.
- Barato.
- Armazenamento externo mais rápido.
- Tornando-se maior o tempo todo.
 - -250 GB agora facilmente disponível.

Velocidade

- Tempo de busca:
 - —Movendo cabeça para trilha correta.
- Latência (rotacional):
 - -Esperando dados passarem sob a cabeça.
- Tempo de acesso= Busca + Latência.
- Taxa de transferência.

Temporização de transferência de E/S de disco

RAID

- Redundant Array of Independent Disks.
- Redundant Array of Inexpensive Disks.
- 6 níveis de uso comum.
- Não é uma hierarquia.
- Conjunto dos principais discos vistos como uma única unidade lógica pelo SO.
- Dados distribuídos pelas unidades físicas.
- Pode usar capacidade redundante.
- Pode usar capacidade redundante para armazenar informação de paridade.

RAID 0

- Não redundante.
- Dados espalhados por todos os discos.
- Mapeamento Round Robin.
- Maior velocidade.
 - Múltiplas solicitações de dados provavelmente não no mesmo disco.
 - Discos buscam em paralelo.
 - Um conjunto de dados provavelmente será espalhado por múltiplos discos.

Mapeamento de dados para RAID 0

RAID 1

- Discos espelhados.
- Dados espalhados pelos discos.
- 2 cópias de cada stripe em discos separados.
- Leitura de qualquer um deles.
- Gravação em ambos.
- Recuperação é simples:
 - —Troca entre disco com defeito e espelho.
 - -Sem tempo de paralisação.
- Caro.

ARQUITETURA E ORGANIZAÇÃO

RAID 2

- Discos são sincronizados.
- Stripes muito pequenos.
 - —Normalmente, único byte/palavra.
- Correção de erro calculada pelos bits correspondentes nos discos.
- Múltiplos discos de paridade armazenam correção de erro via código de Hamming em posições correspondentes.
- Muita redundância.
 - -Caro.
 - -Não usado.

slide 3. Sold register register and little a

RAID 3

- Semelhante a RAID 2.
- Somente um disco redundante, não importa o tamanho do array.
- Bit de paridade simples para cada conjunto de bits correspondentes.
- Dados sobre unidade com defeito podem ser reconstruídos a partir de dados sobreviventes e informação de paridade.
- Taxas de transferência muito altas.

RAID 4

- Cada disco opera independentemente.
- Bom para taxa de solicitação de E/S alta.
- Grandes stripes.
- Paridade bit a bit calculada por stripes em cada disco.
- Paridade armazenada no disco de paridade.

(e) RAID 4 (paridade em nível de bloco)

RAID 5

- Como RAID 4.
- Paridade espalhada por todos os discos.
- Alocação round-robin para stripe de paridade.
- Evita gargalo do RAID 4 no disco de paridade.
- Normalmente usado em servidores de rede.
- N.B. NÃO SIGNIFICA 5 DISCOS!!!!!

RAID 6

- Dois cálculos de paridade.
- Armazenado em blocos separados em discos diferentes.
- Requisito do usuário de N discos precisa de N+2.
- Alta disponibilidade de dados.
 - Três discos precisam falhar para haver perda de dados.
 - Penalidade de gravação significativa.

CD-ROM de armazenamento óptico

- Originalmente para áudio.
- 650 MB gerando mais de 70 minutos de áudio.
- Policarbonato com cobertura altamente reflexiva, normalmente alumínio.
- Dados armazenados como sulcos.
- Lidos pela reflexão do laser.
- Densidade de empacotamento constante.
- Velocidade linear constante.

Operação do CD

Velocidade de unidade de CD-ROM

- Áudio tem velocidade única:
 - Velocidade linear constante.
 - -1,2 ms^{-1.}
 - -Trilha (espiral) tem 5,27 km de extensão.
 - —Oferece 4391 segundos= 73,2 minutos.
- Outras velocidades indicadas por múltiplos.
- P.e., 24x.
- Valor indicado é o máximo que a unidade pode conseguir.

Formato do CD-ROM

- Modo 0 = campo de dados em branco.
- Modo 1 = 2048 bytes de dados+correção de erro.
- Modo 2 = 2336 bytes de dados.

Acesso aleatório no CD-ROM

- Difícil.
- Move cabeça para posição aproximada.
- Define velocidade correta.
- Lê endereço.
- Ajusta para local solicitado.
- (Boceja!)

CD-ROM – prós e contras

- Grande capacidade (?).
- Fácil de produzir em massa.
- Removível.
- Robusto.
- Caro para pequenas quantidades.
- Lento.
- Somente de leitura.

Outro armazenamento óptico

- CD-Recordable (CD-R):
 - WORM.
 - Agora com preço acessível.
 - Compatível com unidades de CD-ROM.
- CD-RW:
 - Apagável.
 - Ficando mais barato.
 - Em grande parte compatível com unidade de CD-ROM.
 - Mudança de fase:
 - Material tem duas refletividades diferentes em diferentes estados de fase.

DVD - O que há no nome?

- Digital Video Disk:
 - Usado para indicar um player para filmes.
 - Só toca discos de vídeo.
- Digital Versatile Disk:
 - Usado para indicar uma unidade de computador.
 - Lerá discos de computador e tocará discos de vídeo.
- Dogs Veritable Dinner (jantar verdadeiro de cães)
 - Oficialmente nada!!!

DVD - tecnologia

- Multicamadas.
- Capacidade muito alta (4,7 G por camada).
- Filme de tamanho completo em único disco.
 - -Usando compactação MPEG.
- Finalmente padronizado (honesto!).
- Filmes transportam codificação regional.
- Players só tocam filmes da região correta.
- Pode ser "reparado".

DVD – gravável

- Muito trabalho com padrões.
- Unidades de DVD de primeira geração podem não ler discos DVD-W de primeira geração.
- Unidades de DVD de primeira geração podem não ler discos CD-RW.
- Espere até que a situação se estabilize antes de comprar!

CD e DVD

Discos ópticos de alta definição

- Projetados para vídeos de alta definição.
- Capacidade muito mais alta que DVD.
 - Laser com comprimento de onda mais curto.
 - Faixa do azul violeta.
 - Sulcos menores.
- HD-DVD:
 - 15 GB de único lado, única camada.
- Blue-ray:
 - Camada de dados mais próxima do laser.
 - Foco mais estreito, menos distorção, sulcos menores.
 - 25 GB em única camada.
 - Disponível para apenas leitura (BD-ROM), regravável uma vez (BR-R) e re-regravável (BR-RE).

Características da memória óptica

Fita magnética

- Acesso serial.
- Lenta.
- Muito barata.
- Backup e arquivamento.
- Unidades de fita Linear Tape Open (LTO).
 - Desenvolvida no final da década de 1990.
 - Alternativa de fonte aberto para os diversos sistemas de fita patenteados.

Unidades de fita Linear Tape Open (LTO)

	LTO-1	LTO-2	LTO-3	LTO-4	LTO-5	LTO-6
Data de lançamento	2000	2003	2005	2007	TBA	TBA
Capacidade compactada	200 GB	400 GB	800 GB	1600 GB	3,2 TB	6,4 TB
Taxa de transferência compactada (MB/s)	40	80	160	240	360	540
Densidade linear (bits/mm)	4880	7398	9638	13300		
Trilhas de fita	384	512	704	896		
Comprimento da fita	609 m	609 m	680 m	820 m		
Largura da fita (cm)	1,27	1,27	1,27	1,27		
Elementos de gravação	8	8	16	16		

Recursos da Internet

- Optical Storage Technology Association:
 - Boa fonte de informações sobre tecnologia e fornecedores de armazenamento óptico.
 - Extensa lista de links relevantes.
- DLTtape:
 - Boa coleção de informações técnicas e links para vendedores.
- Procure sobre RAID.