HAETAE: Shorter Lattice-based Fiat-Shamir Signatures

Jung Hee Cheon^{1,2}, <u>Hyeongmin Choe</u>¹, Julien Devevey³, Tim Güneysu^{4,5}, Dongyeon Hong², Markus Krausz⁴, Georg Land⁴, Damien Stehlé², MinJune Yi^{1,2}

¹Seoul National University, ²CryptoLab Inc., ³ANSSI, ⁴Ruhr Universität Bochum, ⁵DFKI

https://ia.cr/2023/624

Sungshin Women's University May 21, 2024

Table of Contents

1. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE:

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

1. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE:

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

Digital signatures

Conventional signatures work as:

Digital signatures

Conventional signatures work as:

Digital signatures work as:

Digital signatures

Digital signatures work as:

- Correctness: Verify(vk, m, Sign(sk, m)) = accept
- Unforgeability: Only Alice can make a new valid signature. More formally,

for given vk and valid message-signature pairs $\{(m_i, \sigma_i)\}_i$, no adversary can forge a new valid signature σ for some message m.

vk and
$$\{(m_i, \sigma_i)\}_i \longrightarrow$$

 $\mathsf{new}\ m\ \mathsf{and}\ \sigma$

1. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

Fiat-Shamir with abort

Hash-and-Sign

Fiat-Shamir with Aborts (FSwA):

Key:

Key: (secret key: 'short' s, public key: $\mathbf{t} = \mathbf{A}\mathbf{s} \bmod q$)

Sign: $\sigma = (c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

in $R_q = R/qR$, where

 $R = \mathbb{Z}[x]/\Phi_N(x)$.

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Fiat-Shamir with abort:

Key: (secret key: 'short' s, public key: $\mathbf{t} = \mathbf{A}\mathbf{s} \mod q$)

Sign: $(c = H(\mathbf{A}\mathbf{y} \bmod q, m), \mathbf{z} = \mathbf{y} + c\mathbf{s})$ for short \mathbf{y} , with rejection sampling

Verify: check whether $c = H(\mathbf{Az} - c\mathbf{t} \mod q, m)$ and \mathbf{z} is short.

Correctness of FSwA:

• y, s: short, and $c = H(\cdot)$: binary hash value $\Rightarrow c$ s: short.

$$\Rightarrow$$
 z = **y** + c**s**: short.

• $\mathbf{A}\mathbf{y} = \mathbf{A}(\mathbf{z} - c\mathbf{s}) = \mathbf{A}\mathbf{z} - c\mathbf{A}\mathbf{s} = \mathbf{A}\mathbf{z} - c\mathbf{t} \mod q$.

Unforgeability of FSwA:

• **Public key** does not leak secret \Leftarrow Module-SIS: it is hard to find a short vector \mathbf{s} satisfying $\mathbf{A}\mathbf{s} = \mathbf{t} \mod q$.

- **Signature** (c, \mathbf{z}) does not leak secret \leftarrow rejection sampling,
- No new signatures can be sampled without $\mathbf{s} \Leftarrow \mathsf{Module}\text{-SIS}$ (assuming ROM and rewinding...): it is hard to find short $\mathbf{z}_1 \neq \mathbf{z}_2$ satisfying $\mathbf{A}(\mathbf{z}_1 \mathbf{z}_2) = 0 \bmod q$.

¹Both HAETAE and Dilithium use MLWE instead of MSIS.

1. Digital Signatures:

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

Rejection sampling

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we can collect \mathbf{z} for the same c:

 \Rightarrow Recover s from cs.

Rejection sampling

Rejection sampling

Rejection sampling

The **FSwA signatures** are generated as follows:

- 1 $\mathbf{y} \leftarrow D_0$
- $c \leftarrow H(\mathbf{A}\mathbf{y} \bmod q, m)$
- $\mathbf{z} \leftarrow \mathbf{y} + c\mathbf{s}$
- 4 with probability $\frac{p_{\text{target}}(c,\mathbf{z})}{M \cdot p_{\text{source}}(c,\mathbf{z})}$, return $\sigma = (c,\mathbf{z})$, else go to step 1

M: bounding factor for the probability to be ≤ 1 .

Final distribution $\sim D_{\text{target}}$.

Run-time $\propto M$.

Bimodal rejection sampling

Run-time $\propto M$ (\approx green area / purple area).

To decrease M, [DDLL13] uses

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s} \bmod 2q$$

instead of $\mathbf{z} = \mathbf{y} + c\mathbf{s} \mod q$:

Note, no change for the uniform case.

1. Digital Signatures

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE:

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

Previously, the randomness ${\bf y}$ was chosen from either discrete Gaussian (or its bimodal version) or uniform hypercube.²

 $^{^2}$ The vectors ${f y}$ and ${f z}$ are high-dimensional vectors, so uniform in an interval is indeed a uniform hypercube.

HAETAE uses uniform hyperball distribution for sampling y [DFPS22], based on the bimodal approach [DDLL13],

ullet to exploit optimal M, which reduces signature and verification key sizes.

bimodal hyperball

We reject $(c, \mathbf{z}) \sim D_s$ (with p.d.f. p_s) to a target distribution D_t (with p.d.f. p_t), where

- ullet $p_{
 m s}$: uniform in hyperballs of radii B centered at $\pm c{
 m s}$
 - union of two large balls
- p_t : uniform in a smaller hyperball of radii B' centered at zero
 - a smaller ball in the middle

•
$$p_{s}(\mathbf{x}) = \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} - cs \parallel < B} + \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} + cs \parallel < B}$$

• $p_{t}(\mathbf{x}) = \frac{1}{\text{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} \parallel < B'}$

$$\Rightarrow p(\mathbf{x}) = \frac{p_{\mathsf{t}}(\mathbf{x})}{M \cdot p_{\mathsf{s}}(\mathbf{x})} = \frac{\chi_{\|\mathbf{z}\| < B'}}{\chi_{\|\mathbf{z} - c\mathbf{s}\| < B} + \chi_{\|\mathbf{z} + c\mathbf{s}\| < B}}$$

$$\begin{array}{ll} 0 & \text{if } \mathbf{z} \notin \mathcal{B}(B'), \\ = & 1/2 & \text{if } \mathbf{z} \in \mathcal{B}(B') \cap \mathcal{B}(B,c\mathbf{s}) \cap \mathcal{B}(B,-c\mathbf{s}), \\ & 1 & \text{if } \mathbf{z} \in \mathcal{B}(B') \setminus (\mathcal{B}(B,c\mathbf{s}) \cap \mathcal{B}(B,-c\mathbf{s})), \end{array}$$

for some M>0.

That is, we return $\mathbf{x} = (c, \mathbf{z})$ with probability

- 0: if $\|\mathbf{z}\| \ge B'$,
- 1/2: else if $\|\mathbf{z} c\mathbf{s}\| < B$ and $\|\mathbf{z} + c\mathbf{s}\| < B$,
- 1: otherwise.

1. Digital Signatures

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE:

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

Parameter choices

Basic parameters:

• Ring degree of \mathcal{R} : n=256

 \bullet MLWE, MSIS moduli: $q = 64513 = 2^{16} - 2^{10} + 1$

• Module dimension: $k, \ell \ (\mathbf{A} \in \mathcal{R}_{2q}^{k \times (k+\ell+1)})$

ullet Ternary secret: $\eta=1$

• Hamming weight of $c = H(\cdot)$: τ

✓ Entropy for c should be large enough, for e.g., $\approx 2^{\{192,\ 225,\ 255\}}$ for security parameters $\lambda=128,\ 192,\ \text{and}\ 256,\ \text{respectively}.$

 $\Rightarrow \binom{n}{\tau}$ is set to have $\approx 2^{\{192,\ 225\}}$ for $\lambda=128$ and 192. For $\lambda=256,$ however, we need $\sum_{k=0}^{n/2-1} \binom{n}{k}=2^{255}.$

Parameter choices

Rejection sampling parameters

- Radii for \mathbf{y} and \mathbf{z} : B and B'
- ullet Parameter for sk rejection: γ
- ✓ B'-hyperball is contained in the two B-hyperballs, centered at $\pm \|c\mathbf{s}\|_2$:

$$\Rightarrow B'^2 + ||c\mathbf{s}||_2^2 \le B^2.$$

✓ To further reduce B and B', we use good sk satisfying $\|c\mathbf{s}\|_2 \leq \gamma \sqrt{\tau}$, via sk rejection sampling (use 1/10 among uniform ternary secret vectors).

$$\Rightarrow B'^2 + \gamma^2 \tau < B^2$$
.

HAETAE: Parameter choices H. Choe

Parameter choices

Compression parameters

• Parameter for vk truncation: d

ullet Parameter for ${f z}$ and ${f vk}$ compression: ${f lpha}$ and ${f lpha_h}$

• Radius for $\tilde{\mathbf{z}}$ (decompressed \mathbf{z} with some error): B''

- ✓ HAETAE uses various compression techniques to reduce signature sizes:
 - Entropy encoding (rANS) on signatures in B-ball
 - HighBits, LowBits, LSB compression with hints
 - Final rejection after signing (rejects 0.1% signatures)

1. Digital Signatures

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE:

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

Comparison to SotA lattice signatures.

For 120-bit classical security. Sizes are in bytes.

Scheme	sig	vk	KeyGen	Sign	
				sampling	rejection
Dilithium-2	2420	1312	fast	Hypercube	$\ \cdot\ _{\infty} < B$
Bliss-1024 ³	1700	1792	fast	dGaussian at 0	reject with prob. $f(sk, Sig)$
HAETAE120	1468	1056	fast	dHyperball at 0	$\ \cdot\ _2 < B$
Mitaka-512 ⁴	713	896	slow	dGaussian at 0 & intGaussian at $H(m)$	none
Falcon-512	666	897	slow	dGaussian at $H(m)$	none

Table: Comparison between different lattice-based signature schemes.

 $^{^3}$ modified Bliss (to ≥ 120 bit-security) in Dilithium paper.

⁴Mitaka-512 has 102 bits of security

1. Digital Signatures

- What is a digital signature?
- Lattice-based digital signatures
- Rejection sampling

2. HAETAE:

- Hyperball bimodal rejection sampling
- Parameter choices
- Comparison to SotA lattice signatures
- Current status

HAETAE: Current status H. Choe

Current Status

NIST PQC

- Competition for USA standard PQC schemes.
- HAETAE is one of the candidates in *Additional Signatures* track.

KPQC

- Competition for Korean standard PQC schemes.
- HAETAE is advanced to Round 2, one of four candidates in *Digital Signatures* track.
- ✓ HAETAE will appear in CHES 2024.

Thank you!

Any question?

References I

- [BG14] Shi Bai and Steven D Galbraith.

 An improved compression technique for signatures based on learning with errors.

 In Cryptographers' Track at the RSA Conference, pages 28–47. Springer, 2014.
- [DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians. In <u>Annual Cryptology Conference</u>, pages 40–56. Springer, 2013.
- [DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On rejection sampling in lyubashevsky's signature scheme. Cryptology ePrint Archive, Number 2022/1249, 2022. To be appeared in Asiacrypt, 2022. https://eprint.iacr.org/2022/1249.
- [DKL+18] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
 Crystals-dilithium: A lattice-based digital signature scheme.
 IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 238–268, 2018.
- [DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over ntru lattices. In International Conference on the Theory and Application of Cryptology and Information Security, pages 22–41. Springer, 2014.

References II

[DP16] Léo Ducas and Thomas Prest.
Fast fourier orthogonalization.

In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 191–198, 2016.

[Duc14] Léo Ducas.

Accelerating bliss: the geometry of ternary polynomials.

Cryptology ePrint Archive, Paper 2014/874, 2014.

https://eprint.iacr.org/2014/874.

[EFG⁺22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira

Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

Mitaka: A simpler, parallelizable, maskable variant of.

In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 222-253. Springer, 2022.

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.

Shorter hash-and-sign lattice-based signatures.

In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –

CRYPTO, 2022.

References III

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.
Falcon: Fast-fourier lattice-based compact signatures over ntru.

Submission to the NIST's post-quantum cryptography standardization process, 36(5), 2018.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.
Practical lattice-based cryptography: A signature scheme for embedded systems.
In International Workshop on Cryptographic Hardware and Embedded Systems, pages 530–547. Springer, 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 197–206, 2008.

 $[{\rm HHGP}^+03]$ Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H Silverman, and William Whyte.

Ntrusign: Digital signatures using the ntru lattice.

In Cryptographers' track at the RSA conference, pages 122–140. Springer, 2003.

References IV

[Lyu09] Vadim Lyubashevsky.

Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In International Conference on the Theory and Application of Cryptology and Information Security, pages 598–616. Springer, 2009.

[Lyu12] Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 738–755. Springer, 2012.