CSEG601 & CSE5601: Spatial Data Management & Application:

Distanced-Based Spatial Indexing Method: M-tree

Big Data Processing & Database Lab.

Dept. of Computer Science and Engineering

Sogang University

Seoul, Korea

Tel: +82-2-705-8930

Email: jungsung@sogang.ac.kr

Curse of Dimensionality

- When the dimensionality increases, the <u>volume</u> of the space increases so fast that the available data become sparse
- Organizing and searching data often relies on detecting areas where objects form groups with similar properties
- In high dimensional data, all objects appear to be sparse and dissimilar in many ways, which prevents common data organization strategies from being efficient

The M-tree

- Inherently dynamic structure
- Disk-oriented (fixed-size nodes)
- Built in a bottom-up fashion
 - Inspired by R-trees and B-trees
- All data in leaf nodes
- Internal nodes: pointers to subtrees and additional information
- Objects are stored in leaves.

3

Metric Indexing

Feature vectors are indexed according to distances between each other.

As a dissimilarity measure, a distance function $d(O_i, O_j)$ is specified such that the metric axioms are satisfied:

$$d(O_i, O_j) = 0$$
 reflexivity $d(O_i, O_j) > 0$ positivity $d(O_i, O_j) = d(O_j, O_i)$ symmetry $d(O_i, O_k) + d(O_k, O_j) \ge d(O_i, O_j)$ triangular inequality

M-tree at a glance

- Indexing objects of a general metric space (not only vector spaces)
- Doesn't directly use dimensions, just the distances between objects
- The correct M-tree hierarchy is guaranteed due to the triangular inequality axiom of *d*. The hierarchy consists of nested metric regions.
- Better resists to "the Curse of Dimensionality"
- The hierarchy of nodes allows to natively implement the similarity queries

Structure of the M-tree

The M-tree nodes contain items of two types:

- ground objects in leafs, representing the data objects
- routing objects in inner nodes, representing the metric regions

M-tree: Internal Node

- Internal node consists of an entry for each subtree
- Each entry consists of:
 - □ Pivot: p
 - Covering radius of the sub-tree: r^c
 - \Box Distance from p to parent pivot p^p : $d(p,p^p)$
 - Pointer to sub-tree: ptr

$$\boxed{\langle p_1, r_1^c, d(p_1, p^p), ptr_1 \rangle \Big[\langle p_2, r_2^c, d(p_2, p^p), ptr_2 \rangle \cdots \Big[\langle p_m, r_m^c, d(p_m, p^p), ptr_m \rangle \Big]}$$

 \Box All objects in subtree *ptr* are within the distance r^c from p.

7

M-tree: Leaf Node

- leaf node contains data entries
- each entry consists of pairs:
 - □ object (its identifier): o
 - \Box distance between o and its parent pivot: $d(o,o^p)$

$$\boxed{\langle o_1, d(o_1, o^p) \rangle \middle| \langle o_2, d(o_2, o^p) \rangle \middle| \cdots \middle| \langle o_m, d(o_m, o^p) \rangle \middle|}$$

M-tree, single-way insertion

During an object insertion, only single sub-tree is further processed on a current level of M-tree. A heuristic criterion: a node is chosen, that spatially contains the inserted object and/or whose routing object is the nearest

M-tree, multi-way insertion

During an object insertion, a point query for the inserted object is executed and routing objects of all relevant non-full leafs are checked. The nearest one is chosen. If such leaf doesn't exist, the single-way insertion is performed.

M-tree: Insert

- Insert a new object o_N:
- recursively descend the tree to locate the most suitable leaf for o_N
- in each step enter the subtree with pivot p for which:
 - □ no enlargement of radius r^c needed, i.e., $d(o_N, p) \le r^c$
 - in case of ties, choose one with p nearest to o_N
 - minimize the enlargement of r^c

M-tree: Insert (cont.)

- when reaching leaf node N then:
 - \Box if *N* is not full then store o_N in *N*
 - \Box else **Split**(N,o_N).

13

M-tree: Split

Split(N,o_N):

- Let S be the set containing all entries of N and o_N
- Select pivots p₁ and p₂ from S
- Partition S to S_1 and S_2 according to p_1 and p_2
- Store S₁ in N and S₂ in a new allocated node N'
- If N is root
- else (let N^p and p^p be the parent node and parent pivot of N)
 - □ Replace entry p^p with p_1
 - \Box If N^p is full, then **Split**(N^p, p_2)
 - else store p_2 in node N^p

M-tree: Pivot Selection

- Several pivots selection policies
 - □ **RANDOM** select pivots p_1 , p_2 randomly
 - \square **m_RAD** select p_1 , p_2 with minimum $(r_1^c + r_2^c)$
 - \square **mM_RAD** select p_1 , p_2 with minimum $max(r_1^c, r_2^c)$
 - \square **M_LB_DIST** let $p_1 = p^p$ and $p_2 = o_i \mid \max_i \{d(o_i, p^p)\}$
 - Uses the pre-computed distances only
- Two versions (for most of the policies):
 - \Box Confirmed reuse the original pivot p^p and select only one
 - □ Unconfirmed select two pivots (notation: RANDOM_2)
- In the following, the *mM* RAD 2 policy is used.

15

M-tree: Split Policy

- Partition S to S_1 and S_2 according to p_1 and p_2
- Unbalanced
 - Generalized hyperplane

- Balanced
 - Larger covering radii
 - Worse than unbalanced one

Similarity queries in the M-tree

A range query is specified by a query object O_q and a query radius r_q . A k-NN query is based on a modified range query (using dynamic radius) and a priority queue.

During the range query evaluation, the M-tree is LIFO-passed and only the relevant (i.e. intersecting) metric regions (their nodes resp.) are further processed.

M-tree: Range Search

Given R(q,r):

- Traverse the tree in a depth-first manner
- In an internal node, for each entry $\langle p, r^c, d(p, p^p), ptr \rangle$
 - □ Prune the subtree if $|d(q,p^p) d(p,p^p)| r^c > r$
 - Application of the pivot-pivot constraint

M-tree: Range Search (cont.)

- If not discarded, compute d(q,p) and
 - □ Prune the subtree if $d(q,p) r^c > r$
 - Application of the range-pivot constraint

All non-pruned entries are searched recursively.

19

M-tree: Range Search in Leaf Nodes

- In a leaf node, for each entry ⟨o,d(o,o^p)⟩
 - □ Ignore entry if $|d(q,o^p) d(o,o^p)| > r$
 - □ else compute d(q,o) and check $d(q,o) \le r$
 - Application of the object-pivot constraint

Example: We are going to perform a range search R(O_q, 3.0) (i.e., a red dotted circle centered at O_q with radius 3.0) over the following M-tree. Given $d(O_q,O_1) = 11.5$, $d(O_q,O_2) = 9.7$, $d(O_q,O_4) = 2.8$, and $d(O_q,O_9) = 3.1$, show how the range search are pruned over the nodes of the following M-Tree.

21

Example: We are going to perform a range search $R(O_q, 3.0)$ (i.e., a red dotted circle centered at O_q with radius 3.0) over the following M-tree. Given $d(O_q, O_1) = 11.5$, $d(O_q, O_2) = 9.7$, $d(O_q, O_4) = 2.8$, and $d(O_q, O_9) = 3.1$, show how the range search are pruned over the nodes of the following M-Tree.

Root Node of the M-tree: Application of the range-pivot constraint

 O_1 entry:Prune O_1 entry since $d(O_q,O_1)-4.5$ = 11.5 - 4.5 = 7.0 > 3.0

 O_2 entry: Don't Prune O_2 entry since $d(O_q,O_2)-6.9$ = 9.7 - 6.9 = 2.8 < 3.0

O2 Node: Application of the pivot-pivot constraint

 O_7 entry:Prune O_7 entry since $|d(O_q,O_2)-d(O_7,O_2)|-1.3=|9.7-3.8|-1.3=5.9-1.3=4.6>3.0$

 $O_4 \; entry: Search \; O_4 \; entry \; since \; |d(O_q,O_2) - d(O_4,O_2)| - 1.6 = |9.7 - 5.3| - 1.6 = 4.4 \; - 1.6 = 2.8 \; \leq \; 3.0 \; entry: Search \; O_4 \; entry: Search \; O_6 \; entry: Search \; O_7 \; entry: Search \; O_8 \; entry: Search \; O_8 \; entry: Search \; O_9 \; en$

 $d(O_q, O_4) - 1.6 = 2.8 - 1.6 = 1.2 < 3.0$

O₄ Node: Application of the object-pivot constraint

 O_4 entry: Cannot ignore O_4 entry since $|d(O_q,O_4)-d(O_4,O_4)| = |2.8 - 0.0| = 2.8 \leq 3.0$

 $d(O_q,O_4) = 2.8 < 3.0 \rightarrow O_4$ is in the range

 O_9 entry: Cannot ignore O_9 entry since $|d(O_q,O_4)-d(O_9,O_4)|$ =|2.8-1.6| =1.2 < 3.0

 $d(O_q,O_9) = 3.1 > 3.0 \rightarrow O_9$ is not in the range.

M-tree: k-NN Search

Given k-NN(q):

- Based on a priority queue and the pruning mechanisms applied in the range search.
- Priority queue:
 - Stores pointers to sub-trees where qualifying objects can be found.
 - □ Considering an entry $E = \langle p, r^c, d(p, p^p), ptr \rangle$, the pair $\langle ptr, d_{min}(E) \rangle$ is stored.
 - $d_{min}(E) = max \{ d(p,q) r^c, 0 \}$
- Range pruning: instead of fixed radius r, use the distance to the k-th current nearest neighbor.

23