DEVOIR À LA MAISON Nº 5

Problème 1 —

Partie I –

Pour tout réel $\mathfrak a$ positif ou nul, on note $g_{\mathfrak a}$ la fonction définie sur $\mathbb R_+^*$ par $g_{\mathfrak a}(t)=t^{\mathfrak a}.$

1. Montrer que la fonction $g_{\mathfrak{a}}$ est prolongeable par continuité en $\mathfrak{0}$ (on notera toujours $g_{\mathfrak{a}}$ la fonction ainsi prolongée, qui est donc définie et continue sur \mathbb{R}_+). Préciser la valeur de $g_{\mathfrak{a}}(\mathfrak{0})$. Montrer que la fonction $g_{\mathfrak{a}}$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ pour $\mathfrak{a} \geqslant 1$.

Soient a et b deux réels positifs ou nuls. On pose

$$I(a,b) = \int_0^1 g_a(t) g_b(1-t) dt.$$

2. Justifier l'existence de l'intégrale I(a,b). Comparer I(a,b) et I(b,a).

On écrira abusivement $I(a,b) = \int_0^1 t^a (1-t)^b dt$.

- 3. Soient a et b deux réels positifs ou nuls. Trouver une relation entre I(a+1,b) et I(a,b+1).
- 4. Calculer I(a,0). En déduire que, pour tout entier naturel n, on a

$$I(\alpha,n) = \frac{n!}{(\alpha+1)(\alpha+2)\cdots(\alpha+n+1)}.$$

- 5. Soient p et q deux entiers naturels. Exprimer I(p,q) à l'aide de factorielles.
- 6. En déduire la valeur de l'intégrale

$$J(p,q) = \int_0^{\frac{\pi}{2}} (\sin \theta)^{2p+1} (\cos \theta)^{2q+1} d\theta,$$

où p et q sont deux entiers naturels.

Partie II -

Pour tout réel $\mathfrak a$ strictement positif, on note $\mathfrak f_{\mathfrak a}$ la fonction définie par

$$f_{\alpha}(x) = x \ln \left(1 - \frac{\alpha}{x}\right)$$
.

1. Préciser l'ensemble de définition de f_a .

On note \mathcal{C}_a la courbe représentant la restriction de la fonction f_a à l'intervalle $]a, +\infty[$.

2. Si a et x dont deux réels tels que 0 < a < x, démontrer l'encadrement

$$\frac{a}{x} \leqslant \ln x - \ln(x - a) \leqslant \frac{a}{x - a}.$$

- 3. En déduire les variations de la fonction f_{α} sur l'intervalle $]\alpha, +\infty[$ (on dressera un tableau de variations). Préciser la nature des branches infinies de la courbe \mathcal{C}_{α} .
- 4. Donner l'allure des courbes $\mathcal{C}_1,\,\mathcal{C}_2$ et \mathcal{C}_3 sur un même schéma.
- 5. On fixe $\alpha>0$ et on considère la suite $y=(y_n)$ définie, pour tout entier naturel n tel que $n>\alpha$, par $y_n=\left(1-\frac{\alpha}{n}\right)^n$.

Étudier le comportement (sens de variation, limite) de la suite (y_n) .

Partie III -

Pour tout réel positif ou nul x et tout entier naturel non nul n, on pose

$$F_n(x) = \int_0^n \left(1 - \frac{u}{n}\right)^n u^x du.$$

- 1. Montrer que $F_n(x) = n^{x+1} I(x, n)$.
- 2. En utilisant les résultats de la partie II, montrer que, pour tout x fixé, la suite $(F_n(x))_{n \in \mathbb{N}^*}$ est croissante.
- **3.** On fixe $x \ge 0$.
 - a. Montrer l'existence d'un réel strictement positif U tel que

$$\forall u \in \mathbb{R}_+ \qquad u \geqslant U \Longrightarrow e^{-u} \leqslant \frac{1}{u^{x+2}}.$$

b. En déduire que, pour tout entier naturel non nul n, on a

$$F_n(x) \leqslant \int_0^U e^{-u} u^x du + \frac{1}{U}.$$

c. Montrer que la suite $(F_n(x))_{n\in\mathbb{N}^*}$ est convergente.

Pour tout réel positif ou nul x, on pose $F(x) = \lim_{n \to +\infty} F_n(x)$.

4. Démontrer la relation fonctionnelle

$$\forall x \in \mathbb{R}_+, \quad F(x+1) = (x+1)F(x).$$

En déduire la valeur de F(k) pour k entier naturel.