Algoritmos y Estructuras de Datos

Repaso de Lógica Proposicional

2024

Bibliografía

- Michael Huth y Mark Ryan, Logic in computer science. Modelling and Reasoning about Systems, Cambridge University Press, 2004.
- ▶ Dirk Van Dalen, Logic and Structure, Series Universitext, Springer, 4th edition, 2008.
- ➤ Steve Reeves y Michael Clarke, Logic for computer science, Addison-Wesley, 1990.
- Michael Genesereth y Eric Kao (Synthesis Lectures on Computer Science), Introduction to Logic, Morgan & Claypool Publishers, 2012.

Por qué estudiar lógica

- Queremos usar lógica en nuestras especificaciones
- usamos lógica en nuestros programas
- Queremos lenguajes para modelar situaciones
- Queremos poder razonar y argumentar
- Queremos poder hacer esto formalmente
- y vamos a entender más sobre la computación y sus raíces

Lógica proposicional (PROP) - sintaxis

símbolos

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

variables proposicionales (infinitas)

$$p$$
, q , r , ...

- fórmulas
 - combinaciones apropiadas de símbolos y variables proposicionales
 - ► Ejemplo de combinación inapropiada: (∧p((

Lógica proposicional (PROP) - sintaxis

Fórmulas

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula
- 4. si ϕ y ψ son fórmulas, $(\phi \lor \psi)$ es una fórmula
- 5. si ϕ y ψ son fórmulas, $(\phi \rightarrow \psi)$ es una fórmula
- 6. si ϕ y ψ son fórmulas, $(\phi \leftrightarrow \psi)$ es una fórmula
 - Muy entre paréntesis: Las fórmulas son un ejemplo de un conjunto inductivo
- Vienen provistos de
 - Esquema de prueba para probar propiedades sobre ellos (inducción estructural)
 - Esquema de recursión para definir funciones sobre el conjunto (recursión estructural)
- No es tema primario del curso, quizás lo veremos de pasada, pero quería que lo supieran

Lógica proposicional - sintaxis

Ejemplos

$$((p \land q) \rightarrow r) \quad (p \lor p)$$

¿Y estas expresiones son fórmulas?

$$p(\land q), \neg p$$

- Convenciones de notación
 - ▶ Precedencia: \land y \lor ligan más fuerte que \rightarrow y \leftrightarrow , \neg liga más fuerte que los demás
 - Omisión de paréntesis más externos y los de negaciones
 - ► Asociatividad de ∧ y ∨

Semántica clásica

- ► Consiste en asignarle valores de verdad a las fórmulas
- ► El conjunto de valores de verdad es

$$\{\mathsf{T},\mathsf{F}\}$$

- Dos enfoques para darle semántica a las fórmulas de PROP
 - 1. Tablas de verdad
 - 2. Valuaciones
- Son equivalentes

Tablas de verdad

Conociendo el valor de las variables proposicionales de una fórmula, conocemos el valor de verdad de la fórmula

ϕ	$(\neg \phi)$
Т	F
F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \to \psi)$
Т	Т	T
TF		F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Ejemplo: tabla de verdad para $((p \land q) \to r)$

р	q	r	$(p \land q)$	$((p \land q) \to r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

Solución 1:

p = Juan está cursando q = Juan no conoce a nadie

r= Juan no tiene grupo

$$(p \land q) \rightarrow r$$

Solución 2:

p =Juan está cursando

q= Juan conoce a alguien

r= Juan tiene grupo

$$(p \land \neg q) \rightarrow \neg r$$

Valuaciones

- ▶ Una valuación es una función $v : \mathcal{V} \to \{T, F\}$ que asigna valores de verdad a las variables proposicionales
- ▶ Una valuación satisface una proposición ϕ si $v \models \phi$ donde:

$$v \models p \quad sii \quad v(p) = T$$

$$v \models \neg \phi \quad sii \quad v \not\models \phi \ (i.e. \ no \ v \models \phi)$$

$$v \models \phi \lor \psi \quad sii \quad v \models \phi \ o \ v \models \psi$$

$$v \models \phi \land \psi \quad sii \quad v \models \phi \ y \ v \models \psi$$

$$v \models \phi \rightarrow \psi \quad sii \quad v \not\models \phi \ o \ v \models \psi$$

$$v \models \phi \leftrightarrow \psi \quad sii \quad (v \models \phi \ sii \ v \models \psi)$$

Tautologías y satisfactibilidad

Dadas fórmulas ϕ y ψ

 \blacktriangleright ϕ es lógicamente equivalente a ψ cuando $v \models \phi$ sii $v \models \psi$

Una fórmula ϕ es

- ightharpoonup una tautología si $v \models \phi$ para toda valuación v
- ightharpoonup satisfactible si existe una valuación v tal que $v \models \phi$
- insatisfactible si no es satisfactible

Un conjunto de fórmulas S es

- ▶ satisfactible si existe una valuación v tal que para todo $\phi \in S$, se tiene $v \models \phi$
- insatisfactible si no es satisfactible

Ejemplos

Tautologías

- ightharpoonup p
- ightharpoonup
 abla
 abla
 p
- $\blacktriangleright (p \to q) \leftrightarrow (\neg q \to \neg p)$

Fórmulas insatisfactibles

- $\blacktriangleright (\neg p \lor q) \land (\neg p \lor \neg q) \land p$
- $\blacktriangleright (p \to q) \land p \land \neg q$

Tautologías e insatisfactibilidad

Teorema

Una fórmula ϕ es una tautología sii $\neg \phi$ es insatisfactible

Demostración

- \rightarrow . Si ϕ es tautología, para toda valuación v, $v \models \phi$. Entonces, $v \not\models \neg \phi$ (i.e. v no satisface $\neg \phi$).
- \leftarrow . Si $\neg \phi$ es insatisfactible, para toda valuación v, $v \not\models \neg \phi$. Luego $v \models \phi$.

Observación

Este resultado sugiere un método indirecto para probar que una fórmula ϕ es una tautología, que es probar que $\neg \phi$ es insatisfactible

Relación entre tablas de verdad y valuaciones

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
v_1	Т	Т	Т	Т	Т
<i>V</i> 2	Т	Т	F	T	F
<i>V</i> 3	Т	F	Т	F	Т
<i>V</i> ₄	Т	F	F	F	Т
<i>V</i> ₅	F	Т	Т	F	Т
<i>v</i> ₆	F	Т	F	F	Т
<i>V</i> 7	F	F	Т	F	Т
<i>v</i> 8	F	F	F	F	Т

Equivalencias entre fórmulas

- ► Teorema. Las siguientes son tautologías.
 - 1. Idempotencia

$$(p \land p) \leftrightarrow p$$

 $(p \lor p) \leftrightarrow p$

Asociatividad

$$\begin{array}{l} (p \wedge q) \wedge r \leftrightarrow p \wedge (q \wedge r) \\ (p \vee q) \vee r \leftrightarrow p \vee (q \vee r) \end{array}$$

3. Conmutatividad

$$(p \land q) \leftrightarrow (q \land p)$$
$$(p \lor q) \leftrightarrow (q \lor p)$$

4. Distributividad

$$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$$
$$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$$

5. Reglas de De Morgan

$$\neg(p \land q) \leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \leftrightarrow \neg p \land \neg q$$