День недели	. Начало занятия	. Лектор	. Выходной	. Аудитория	

Журнал "Исчисление 2" CAL203-2

При выполнении Индивидуальных Заданий (ИЗ) каждый студент берет примеры согласно своему номеру по журналу. Задания выполняются на листах формата A4 с фамилией студента и номером группы (по LMS) на каждой странице, и в формате PDF загружаются на платформу https://lms.tuit.uz/.

Разбалловка для $\dot{\mathbf{H3}}_{-1}$: Выполнение задания (загрузка в систему и сдача бумажного варианта) — $\mathbf{1}$ балл, Активность на занятиях (решение на доске, ответ по дом.заданиям) — $\mathbf{3}$ балла, Защита задания (письменно и

устно) – 5 балла; Итого 9 баллов.

	устно) – 5 ба лла;	Ито	го 🤉	9 ба	ЛЛО	B.																
IID	*110				_	ļ_	-			_	0		10		m	11	10	10	1.4	1.5	1	
HP	ФИО	1	2	3	4	5	Е	T	6	7	8	9	10	Е	T	11	12	13	14	15	Е	T
1	Abdurahimov Abu-Bakr Maftunbek oʻgʻli																					
2	Ahmedov Saidumar Iqbol o'g'li																					
3	Inogʻomjonov Adhamjon Mansur oʻgʻli																					
4	Kuandikov Nurpeys Jiyenbay oʻgʻli																					
5	Mamirov Behruz Mavlonovich																					
6	Nuriddinov Abdulaziz Mirsharif oʻgʻli																					
7	Nusratov Shaxriyorxon Ibrohim oʻgʻli																					
8	Ogay Kim Viktorovich																					
9	Qahhorov Javohirbek Rustam oʻgʻli																					
10	Saidov Shohjahon Erkin oʻgʻli																					
11	Saitbayev Kamronjon Karimjonovich																					
12	Samadov Buzurgmehr Gayratovich																					
13	Samatov Elfat Rinatovich																					
14	Shavkatov Sherzod Nodir oʻgʻli																					
15	Tadjibayev Bexruz Abdullaxayevich																					
16	Xoʻjayev Muhammadrajab Rashid oʻgʻli																					
17	Yuldashev Azizbek Komil oʻgʻli																					
18	- 0																					
19																						
20				<u> </u>		<u> </u>																
21		1		-																		
23																						
24																						
25																						
26																						
27																						
28																						
29				<u> </u>																		
30		1	<u> </u>	<u> </u>		<u> </u>																
31		1		-																		
32	Кол-во присутствующих	1																				
	студентов																					
		1	I	ı	-	1				l	ı	ı	l			1			l	ı		

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ №1

Каждый студент

- 1. Решает соответствующий пример своего варианта.
- 2. Должен защитить проделанную работу.
- 3. Для оценивания работы должен загрузить проделанную работу в формате PDF в систему

http://lms.tuit.uz.

Номер варианта студента соответствует порядковому номеру в журнале группы. За работу загруженное в систему несоответствующего варианта выставляется ноль баллов.

1

АЛГЕБРАИЧЕСКАЯ, ТРИГОНОМЕТРИЧЕСКАЯ И ПОКАЗАТЕЛЬНАЯ ФОРМЫ КОМПЛЕКСНОГО ЧИСЛА. ОПЕРАЦИИ НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ.

Найти ответы на следующие вопросы для заданных комплексных чисел

№ варианта	Комплексные числа для каждого варианта
0	$z = 3 + \sqrt{3} \cdot i;$ $z_1 = 5 + 2 \cdot i;$ $z_2 = 2 - 5 \cdot i$
1	$z = 1 + \sqrt{3} \cdot i;$ $z_1 = 4 + 3 \cdot i;$ $z_2 = 2 - 5 \cdot i$
2	$z = 4 + 4 \cdot i;$ $z_1 = 7 + 5 \cdot i;$ $z_2 = -3 - 4 \cdot i$
3	$z = 2 - 2\sqrt{3} \cdot i$; $z_1 = 6 - 4 \cdot i$; $z_2 = -8 + 9 \cdot i$
4	$z = -2 + 2\sqrt{3} \cdot i;$ $z_1 = 1 + 12 \cdot i;$ $z_2 = 4 - 3 \cdot i$
5	$z = -1 - \sqrt{3} \cdot i$; $z_1 = 2.5 - 4 \cdot i$; $z_2 = -4 + 7 \cdot i$
6	$z = -2 - 2 \cdot i$; $z_1 = 1,2 + 3,2 \cdot i$; $z_2 = 2,8 + 5 \cdot i$
7	$z = 6 + 2\sqrt{3} \cdot i$; $z_1 = 5.3 - 1.8 \cdot i$; $z_2 = -3.2 + 9.5 \cdot i$
8	$z = -9 - \sqrt{27} \cdot i;$ $z_1 = 4,4 + \sqrt{5} \cdot i;$ $z_2 = \sqrt{2} - i$
9	$z = -6 + 2\sqrt{3} \cdot i$; $z_1 = 2.14 + 3\sqrt{5} \cdot i$; $z_2 = 2\sqrt{2} - 3 \cdot i$
10	$z = 2\sqrt{3} - 2 \cdot i;$ $z_1 = 3.2 + 4\sqrt{2} \cdot i;$ $z_2 = 5.1 - 2.2 \cdot i$

 $z = 4\sqrt{3} - 12 \cdot i$; $z_1 = 8.1 + 2\sqrt{2} \cdot i$; $z_2 = \sqrt{7} - 1.9 \cdot i$

- **1.** Re(z)-? Im(z)-?
- **2.** z; z_1 ; z_2 построить комплексные числа на плоскости
- 3. $z_1 + z_2 ?$

30

- 4. $z_1 z_2 ?$
- 5. $z_1 \cdot z_2 ?$
- 6. $\frac{z_1}{z_2}$ -?

- 7. $\frac{1}{z}$ -?
- 8. |z|-?; arg(z)-?
- **9.** Найти тригонометрическую форму комплексного числа z-?
- **10.** Построить на графике тригонометрическую форму комплексного числа z
- 11. z^2 -?
- **12.** z^{m+5} -? (здесь m номер варианта)
- **13.** \sqrt{z} ?
- **14.** Найти и изобразить геометрически корни $\sqrt[3]{z}$

2

Ряды Фурье. Система ортогональных и ортонормальных функций. Разложение в ряд Фурье по системе ортогональных функций.

Для заданных функций проверить выполнение следующего условия: (1-5)

$$\int_a^b f_{\rm m}(x) f_{\rm n}(x) dx = 0, если m \neq n.$$

1. Доказать что заданные функции ортогональны в интервале [-1,1]:

$$f_1(x) = 1, f_2(x) = x.$$

2. Доказать что заданные функции ортогональны в интервале $[-\pi,\pi]$:

$$f_1(x) = cos(x), f_2(x) = sin(x).$$

3. Доказать что заданные функции ортогональны в интервале [0, L]:

$$f_{\rm m}(x) = \sin\left(\frac{m\pi x}{L}\right), \ f_{\rm n}(x) = \sin\left(\frac{n\pi x}{L}\right), \ m \neq n.$$

4. Доказать что заданные полиномы ортогональны в интервале [-1,1]:

$$P^{0}(x) = 1$$
, $P^{1}(x) = x$, $P^{2}(x) = \left(\frac{3}{2}\right)x^{2} - \frac{1}{2}$.

5. Доказать что заданные функции ортогональны в интервале [0,1]:

$$f_1(x) = x, f_2(x) = x^2.$$

Проверить каждую функцию на нормированность и на ортогональность:(6-8)

$$\int_a^b f_n^2(x) \ dx = 1.$$

6. Доказать что заданные функции ортогональны в интервале $[-\pi,\pi]$:

$$f_{\rm n}(x) = \left(\frac{1}{\sqrt{\pi}}\right) \sin(n x), \ n = 1, 2, 3, ...$$

7. Доказать что заданные полиномы Чебышева ортогональны в интервале [-1,1]:

$$T_0(x) = 1$$
, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$.

8. Доказать что заданные функции ортогональны в интервале [0,1]:

$$f_{\rm n}(x) = \sqrt{2} \sin(n\pi x), \quad n = 1,2,3,...$$

Разложить в ряд Фурье следующих функций с периодом 2π .

9.
$$f(x) = \begin{cases} \pi + 2x, & \text{если} - \pi < x \le 0 \\ -\pi, & \text{если} & 0 < x \le \pi \end{cases}$$

10.
$$f(x) = \begin{cases} x, & \text{если} - \pi < x \le 0 \\ 2x, & \text{если} & 0 < x \le \pi \end{cases}$$

11.
$$f(x) = x$$
, если $-\pi < x \le \pi$

12. Разложить в ряд Фурье функцию $f(x) = x^2$ с периодом 2π в интервале (-π;π]. С помощью разложения ряда вычислить суммы следующих числовых рядов:

1)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
; 2) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$; 3) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.

Разложить функции f(x) с периодом T, заданным в интервале (a, b), в ряд Фурье:

13.
$$f(x) = |x| + 1$$
, $(-\pi; \pi)$, $T = 2\pi$.

14.
$$f(x) = \begin{cases} 0, & \text{если } -\pi < x < 0 \\ x + 1, & \text{если } 0 \le x < \pi \end{cases}$$
.
15. $f(x) = \frac{\pi - x}{2}$, $(-\pi; \pi)$, $T = 2\pi$.

15.
$$f(x) = \frac{\pi - x}{2}$$
, $(-\pi; \pi)$, $T = 2\pi$.

16.
$$f(x) = |x| - 2$$
, $(-\pi; \pi)$, $T = 2\pi$

16.
$$f(x) = |x| - 2$$
, $(-\pi; \pi)$, $T = 2\pi$.
17. $f(x) = \begin{cases} -2x, & \text{если } -\pi < x < 0 \\ 1, & \text{если } 0 \le x \le \pi \end{cases}$. $T = 2\pi$.

18.
$$f(x) = x + 1$$
, $(-\pi; \pi)$ $T = 2\pi$.

19.
$$f(x) = x^2 + 1$$
, (0; 2π), $T = 2\pi$

19.
$$f(x) = x^2 + 1$$
, (0; 2π), $T = 2\pi$.
20. $f(x) = \begin{cases} -x, & \text{если } -\pi < x < 0 \text{ если,} \\ 0, & \text{если } 0 \le x < \pi \text{ если.} \end{cases}$ $T = 2\pi$.

21.
$$f(x) = \sin \frac{x}{2}$$
, $(-\pi; \pi)$, $T = 2\pi$.
22. $f(x) = \begin{cases} 0, & \text{если} - \pi < x \le 0 \\ 1 + x, & \text{если} & 0 < x \le \pi. \end{cases}$ $T = 2\pi$.
23. $f(x) = \begin{cases} -1, & \text{если} & -\pi < x < 0, \\ 2, & \text{если} & 0 \le x \le 1. \end{cases}$ $T = 2\pi$.
24. $f(x) = \begin{cases} \cos x, & \text{если} - \frac{\pi}{2} < x < \frac{\pi}{2}, \\ 0, & \text{если} - \frac{\pi}{2} < x < \frac{\pi}{2}, \end{cases}$ $T = 2\pi$.
25. $f(x) = |x| + x^2, (-\pi; \pi), T = 2\pi$.
26. $f(x) = \begin{cases} 1, & \text{если} - \pi < x \le 0, \\ 1 + x, & \text{если} & 0 < x \le \pi. \end{cases}$ $T = 2\pi$.
27. $f(x) = \begin{cases} 1, & \text{если} - \pi < x \le 0, \\ 1 + x, & \text{если} & 0 < x \le \pi. \end{cases}$ $T = 2\pi$.
28. $f(x) = \begin{cases} -1, & \text{если} - \pi < x \le 0, \\ 1 + x, & \text{если} & 0 < x \le \pi. \end{cases}$ $T = 2\pi$.
29. $f(x) = \begin{cases} \frac{1}{2}, & \text{если} - \pi < x \le 0 \text{ если}, \\ 1 + x, & \text{если} & 0 < x \le \pi \text{ если}. \end{cases}$ $T = 2\pi$.
30. $f(x) = \begin{cases} -2, & \text{если} - \pi < x \le 0 \text{ если}, \\ 1, & \text{если} & 0 < x \le \pi \text{ если}. \end{cases}$ $T = 2\pi$.

3

ВЕКТОР ФУНКЦИИ И КРИВЫЕ В ПРОСТРАНСТВЕ. ПРОИЗВОДНЫЕ ВЕКТОР ФУНКЦИЙ.

Вычислить для заданных вектор функций $\vec{r}_1(t)$ и $\vec{r}_2(t)$

- 1. Найти область определения вектор функций $\overrightarrow{r_1}(t)$, $\overrightarrow{r_2}(t)$
- 2. $\lim_{t \to t_0} (\vec{r}_1(t) \cdot \vec{r}_2(t))$
- 3. $\lim_{t \to t_0} (\vec{r}_1(t) \times \vec{r}_2(t))$
- 4. $(\vec{r}_1(t) \cdot \vec{r}_2(t))'$
- 5. $(\vec{r}_1(t) \times \vec{r}_2(t))'$
- 6. Найти для заданных вектор функций $\vec{r}_1(t)$, $\vec{r}_2(t)$ касательную, нормаль, бинормальную вектора.
- 7. В момент времени t_0 вычислить скорость и ускорение.
- 8. Найти кривизну вектор функции $\vec{r}_1(t)$ в точке t_0

1.
$$\vec{r}_1(t) = t^2 \vec{i} + \frac{(t^3 - 1)}{(t - 1)} \vec{j} + 2t \vec{k}$$
 $\vec{r}_2(t) = (t^2 + 1) \vec{i} + (t^2 - 1) \vec{j} + t \vec{k}$ $t_0 = 1$

2.
$$\vec{r}_1(t) = t^2 \vec{i} + \frac{(t^3 + 1)}{(t - 1)} \vec{j} + 2t \vec{k}$$
 $\vec{r}_2(t) = t^2 \vec{i} + \frac{\sin 3t}{\ln(1 + t)} \vec{j} + 2t \vec{k}$ $t_0 = 0$

3.
$$\vec{r}_1(t) = t^2 \vec{i} + \sqrt{t^2 - 2t + 1} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$
 $t_0 = 1$

4.
$$\vec{r}_1(t) = e^{2t}\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = (t^3 + 2)\vec{i} + \sin x\vec{j} + t\vec{k}$$
 $t_0 = 2$

5.
$$\vec{r}_1(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = \frac{\sin t}{3t}\vec{i} + (t^2 - 1)\vec{j} + 2t\vec{k}$$
 $t_0 = 0$

6.
$$\vec{r}_1(t) = \frac{1}{t-2}\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + (t^2)\vec{j} + \frac{1}{t}\vec{k}$$
 $t_0 = 2$

7.
$$\vec{r}_1(t) = t^4 \vec{i} + \frac{(t^2 - 9)}{(t - 3)} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = \frac{1}{t}\vec{i} + (t^3)\vec{j} + t\vec{k}$$
 $t_0 = 3$

8.
$$\vec{r}_1(t) = t^2 \vec{i} + \cos 3t \vec{j} + \sqrt{t-1} \vec{k}$$

$$\vec{r}_2(t) = t^2 \vec{i} + (t^3 - 1)\vec{j} + \frac{1}{\sqrt{t - 1}}\vec{k}$$
 $t_0 = 1$

9.
$$\vec{r}_1(t) = e^{2t}\vec{i} + (t^2 - 9)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = t^2 \vec{i} + \frac{1}{t-3} \vec{j} + \frac{1}{t} \vec{k}$$
 $t_0 = 3$

10.
$$\vec{r}_1(t) = \ln(t-1)\vec{i} + (t^2)\vec{j} + \frac{1}{t}\vec{k}$$

$$\vec{r}_2(t) = \frac{1}{t-1}\vec{i} + (t^2+2)\vec{j} + (t-1)\vec{k}$$
 $t_0 = 1$

11.
$$\vec{r}_1(t) = \cos 5t\vec{i} + \frac{lnt}{t}\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + t\vec{j} + \frac{1}{t}\vec{k}$$
 $t_0 = 0$

12.
$$r_1(t) = (t^2 - 2)\vec{i} + \frac{tgt}{t}\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = \frac{\sin 5}{3t}\vec{i} + (t^2 - 1)\vec{j} + 7t\vec{k} \qquad t_0 = 0$$

13.
$$\vec{r}_1(t) = t^2 \vec{i} + \frac{(t^3 - 1)}{(t - 1)} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$
 $t_0 = 2$

14.
$$\vec{r}_1(t) = t^2 \vec{i} + \sqrt{t^2 - 2t + 1} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = t^2 \vec{i} + \frac{\sin 3t}{\ln(1+t)} \vec{j} + 2t \vec{k}$$
 $t_0 = 0$

15.
$$\vec{r}_1(t) = e^{2t}\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + (t^2)\vec{j} + \frac{1}{t}\vec{k}$$
 $t_0 = 2$

16.
$$\vec{r}_1(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = (t^3 + 2)\vec{i} + \sin x\vec{j} + t\vec{k}$$
 $t_0 = 1$

17.
$$\vec{r}_1(t) = \frac{1}{t-2}\vec{i} + (t^2-1)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = \frac{\sin t}{3t}\vec{i} + (t^2 - 1)\vec{j} + 2t\vec{k}$$
 $t_0 = 0$

18.
$$\vec{r}_1(t) = t^4 \vec{i} + \frac{(t^2 - 9)}{(t - 3)} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = t^2 \vec{i} + \frac{\sin 3t}{\ln(1+t)} \vec{j} + 2t\vec{k}$$
 $t_0 = 3$

19.
$$\vec{r}_1(t) = t^2 \vec{i} + \cos 3t \vec{j} + \sqrt{t-1} \vec{k}$$

$$\vec{r}_2(t) = \frac{1}{t}\vec{i} + (t^3)\vec{j} + t\vec{k}$$
 $t_0 = 2$

20.
$$\vec{r}_1(t) = e^{2t}\vec{i} + (t^2 - 9)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = t^2 \vec{i} + \frac{1}{t-3} \vec{j} + \frac{1}{t} \vec{k}$$
 $t_0 = 0$

21.
$$\vec{r}_1(t) = \ln(t-1)\vec{i} + (t^2)\vec{j} + \frac{1}{t}\vec{k}$$

$$\vec{r}_2(t) = t^2 \vec{i} + (t^3 - 1)\vec{j} + \frac{1}{\sqrt{t - 1}}\vec{k}$$
 $t_0 = 2$

22.
$$\vec{r}_1(t) = \cos 5t\vec{i} + \frac{lnt}{t}\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = t^2 \vec{i} + \frac{1}{t-3} \vec{j} + \frac{1}{t} \vec{k}$$
 $t_0 = 1$

23.
$$r_1(t) = (t^2 - 2)\vec{i} + \frac{tgt}{t}\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + t\vec{j} + \frac{1}{t}\vec{k}$$
 $t_0 = 0$

24.
$$\vec{r}_1(t) = t^2 \vec{i} + \frac{(t^3 - 1)}{(t - 1)} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = \frac{\sin 5}{3t}\vec{i} + (t^2 - 1)\vec{j} + 7t\vec{k} \qquad t_0 = 0$$

25.
$$\vec{r}_1(t) = t^2 \vec{i} + \frac{(t^3 + 1)}{(t - 1)} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$
 $t_0 = 1$

26.
$$\vec{r}_1(t) = t^2 \vec{i} + \frac{(t^3 - 1)}{(t - 1)} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$
 $t_0 = 3$

27.
$$\vec{r}_1(t) = t^2 \vec{i} + \sqrt{t^2 - 2t + 1} \vec{j} + 2t \vec{k}$$

$$\vec{r}_2(t) = \frac{\sin t}{3t}\vec{i} + (t^2 - 1)\vec{j} + 2t\vec{k}$$
 $t_0 = 0$

28.
$$\vec{r}_1(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = \frac{1}{t}\vec{i} + (t^3)\vec{j} + t\vec{k}$$
 $t_0 = 1$

29.
$$\vec{r}_1(t) = t^2 \vec{i} + \cos 3t \vec{j} + \sqrt{t-1} \vec{k}$$

$$\vec{r}_1(t) = t^2 \vec{i} + \cos 3t \vec{j} + \sqrt{t-1} \vec{k}$$
 $t_0 = 2$

30.
$$\vec{r}_1(t) = \cos 5t\vec{i} + \frac{\ln t}{t}\vec{j} + t\vec{k}$$

$$\vec{r}_2(t) = (t^2 + 1)\vec{i} + (t^2 - 1)\vec{j} + t\vec{k}$$
 $t_0 = 1$

4

Интеграл вектор функции. Длина дуги и кривизны заданными вектор функциями. Движение в пространстве: скорость и ускорение.

Вычислить для заданной вектор функции $\vec{r}(t)$:

- 1. $\vec{R}(t) = \int \vec{r}(t)dt ?, \vec{R}(0) = \vec{i} \vec{j} \vec{k}$
- 2. Найти длину дуги кривой соответствующей $0 \le t \le 4$.
- 3. Найти кривизну кривой в точке (0,0,0).
- 4. Найти соприкасающиеся плоскость и окружность кривизны для заданной кривой вектор функцией в точке соответствующей t=1.
- 5. Если частица движется по вектор функции $\vec{r}(t)$, то найти скорость и ускорение в момент времени t=1.

1.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + (t^2 - 1) \cdot \vec{j} + t \cdot \vec{k}$
2.	$\vec{r}(t) = (t^3 + 1) \cdot \vec{t} + (t^2 - 1) \cdot \vec{j} + t \cdot \vec{k}$
3.	$\vec{r}(t) = t^2 \cdot \vec{i} + \sqrt{2t} \cdot \vec{j} + 2t \cdot \vec{k}$
4.	$\vec{r}(t) = e^{2t} \cdot \vec{\iota} + (t^2 - 1) \cdot \vec{j} + t \cdot \vec{k}$
5.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + (t^3 - 1) \cdot \vec{j} + (t + 2) \cdot \vec{k}$
6.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + (t^2) \cdot \vec{j} + \frac{1}{t} \cdot \vec{k}$
7.	$\vec{r}(t) = t^4 \cdot \vec{i} + \frac{(t^2 - 9)}{(t - 3)} \cdot \vec{j} + 2 \cdot t \cdot \vec{k}$
8.	$\vec{r}(t) = t^2 \cdot \vec{i} + (t^3 - 1) \cdot \vec{j} + \frac{1}{\sqrt{t - 1}} \cdot \vec{k}$
9.	$\vec{r}(t) = t^2 \cdot \vec{i} + \frac{1}{t-3} \cdot \vec{j} + \frac{1}{t} \cdot \vec{k}$
10.	$\vec{r}(t) = \frac{1}{t-1} \cdot \vec{i} + (t^2+2) \cdot \vec{j} + (t-1) \cdot \vec{k}$
11.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + t \cdot \vec{j} + \frac{1}{t} \cdot \vec{k}$
12.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + (t^2 - 1) \cdot \vec{j} + t \cdot \vec{k}$
13.	$\vec{r}(t) = t^2 \cdot \vec{i} + \frac{(t^3 - 1)}{(t - 1)} \cdot \vec{j} + 2t \cdot \vec{k}$
14.	$\vec{r}(t) = t^2 \cdot \vec{i} + \sqrt{t^2 - 2t + 1} \cdot \vec{j} + 2t \cdot \vec{k}$
15.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + (t^3 - 4) \cdot \vec{j} + \frac{1}{t} \cdot \vec{k}$

16.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{t} + (t^2 - 1) \cdot \vec{j} + t \cdot \vec{k}$
17.	$\vec{r}(t) = \frac{1}{t-2} \cdot \vec{i} + (t^2 - 1) \cdot \vec{j} + t \cdot \vec{k}$
18.	$\vec{r}(t) = t^4 \cdot \vec{t} + \frac{(t^2 - 9)}{(t - 3)} \cdot \vec{j} + 2t \cdot \vec{k}$
19.	$\vec{r}(t) = \frac{1}{t} \cdot \vec{i} + (t^3) \cdot \vec{j} + t \cdot \vec{k}$
20.	$\vec{r}(t) = t^2 \cdot \vec{i} + \frac{1}{t-3} \cdot \vec{j} + \frac{1}{t+2} \cdot \vec{k}$
21.	$\vec{r}(t) = t^2 \cdot \vec{i} + (t^3 - 1) \cdot \vec{j} + \frac{1}{\sqrt{t - 1}} \cdot \vec{k}$
22.	$\vec{r}(t) = t^2 \cdot \vec{i} + \frac{1}{t-3} \cdot \vec{j} + \frac{1}{t} \cdot \vec{k}$
23.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{t} + t \cdot \vec{j} + \frac{1}{t+3} \cdot \vec{k}$
24.	$\vec{r}(t) = t^2 \cdot \vec{i} + \frac{(t^3 - 1)}{(t - 1)} \cdot \vec{j} + 2t \cdot \vec{k}$
25.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + (t^2 - 1) \cdot \vec{j} + t \cdot \vec{k}$
26.	$\vec{r}(t) = t^2 \cdot \vec{t} + \frac{(t^3 - 1)}{(t - 1)} \cdot \vec{j} + 2t \cdot \vec{k}$
27.	$\vec{r}(t) = (t^2 + 1) \cdot \vec{i} + (t^2 - 4) \cdot \vec{j} + t \cdot \vec{k}$
28.	$\vec{r}(t) = \frac{1}{t} \cdot \vec{i} + (t^3) \cdot \vec{j} + t \cdot \vec{k}$
29.	$\vec{r}(t) = (t+1)^2 \cdot \vec{t} + \cos\frac{\pi}{2}t \cdot \vec{j} + \sqrt{t-1} \cdot \vec{k}$
30.	$\vec{r}(t) = (t^2 + 3) \cdot \vec{i} + (t^3 - 1) \cdot \vec{j} + 2t \cdot \vec{k}$