COSC 444/541: Automata

Lecture 3: Three Basic Concepts, DFAs

Today's Agenda

- Review proof by induction
- Continue Three Basic Concepts (Chapter 1.2)
- Break at 1:50 PM
- Start Finite Automata:
 - DFA (Chapter 2.1)
- Exit Token

Review: Proof by Induction

Solution posted on Canvas:

[Textbook page 16, exercise 38]

Prove that for all $n \ge 4$ the inequality $2^n < n!$ holds.

Review: Proof that π is irrational

Out of scope of our course, but you can take a look at the multiple proofs:

Wiki: prove that the number π is irrational

Language

Grammar

Automata

What is a language?

Natural languages: English, French, ...

Formal languages require precise definitions.

- Start with an alphabet Σ = finite, nonempty set of symbols
- Build strings that are finite sequences of symbols from Σ
- A language = any subset of Σ*

Example: $\Sigma = \{a, b\}$

Strings: abab, aaabbba, λ (empty string)

Notion of strings: u, v, w

Operations:

- Concatenation: uv
- Reverse: w^R
- Length: |w|
- Empty string: λ , with $|\lambda|=0$
- wⁿ denotes the string obtained by repeating w n times
- The length of concatenation of strings is the sum of individual lengths (theorem 1.6 in textbook)
 - $\circ \quad |uv| = |u| + |v|$

 Σ^* = all strings (including λ) from Σ

Languages = subsets of Σ^*

Standard set operations on languages: Union, intersection, difference, complement

Reverse: $L^R = \{w^R : w \in L\}$

Concatenation: $L_1L_2 = \{xy : x \in L_1, y \in L_2\}$

Complement: L or Lc

Lⁿ is defined as L concatenated with itself n times.

Special cases:

- $L^0 = \{\lambda\}$
- L¹=LU

Star-closure of L:

$$L^* = L^0 U L^1 U L^2 ...$$

If $L^1 = \{a^nb^n: n \ge 0\}$, then $L^2 = \{a^nb^na^mb^m: n \ge 0, m \ge 0\}$

For example, if $L = \{ab, baa\}$, so tokens are of lengths 2 and 3.

L³ consists of concatenations of exactly 3 tokens.

Possible lengths: 2+2+2=6, 2+2+3=7, 2+3+3=8, 3+3+3=9

L⁴ consists of concatenations of exactly 4 tokens.

Possible lengths: 8,9,10,11,12

Grammar

Informal descriptions (English) are ambiguous.

Grammar is a precise way to define languages.

A grammar G = (V, T, S, P):

- V = variables (nonterminals)
- T = terminals (alphabet symbols)
- $S \in V = \text{start symbol}$
- P = productions

Automata

An automata is an abstract model of computation

Components:

- Input mechanism (reads symbols)
- Control unit
- Optional storage (stack, etc.)
- Transition function

Output:

Accepter (yes/no)

Transducer (produces output string)

Example 1:

[Textbook page 28, exercise 1]

1. How many substrings aab are in ww^Rw , where w = aabbab?

Example 2:

[Textbook page 28, exercise 2]

2. Use induction on n to show that $|u^n| = n |u|$ for all strings u and all n.

Example 3:

[Textbook page 28, exercise 6]

6. Let $\Sigma = \{a, b\}$ and $L = \{aa, bb\}$. Use set notation to describe \overline{L} .

In-class Exercise:

[Textbook page 28, exercise 5]

5. Let $L = \{ab, aa, baa\}$. Which of the following strings are in L^* : abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaaa? Which strings are in L^4 ?

Finite Automata

Simplest pattern recognizers.

Reads inputs from left to right, either accepts or rejects them.

DFA (deterministic) and NFA (nondeterministic):

DFAs have one and only one option at any time.

NFAs can have several options.

Finite Automata

C identifiers:

Start with state 1 (arrow with no origin).

If first symbol is letter or undrscr, go to state 2 -> accepting state If first symbol is digit, go to state 3 -> rejecting/trap state

Finite Automata

Binary adder:

Start with No carry state (arrow with no origin).

Example: add 101 and 011

Position 0 (rightmost): (1,1)/0, sum 0, carry 1, go to Carry state

Position 1: (0,1) + carry 1, sum 0, carry 1, stay in Carry state

Position 2: (1,0) + carry 1, sum 0, carry 1, stay in Carry state

Position 3: overflow, carry 1 -> sum 1

DFA Definition

DEFINITION 2.1

A **deterministic finite accepter** or **dfa** is defined by the quintuple $M = (Q, \Sigma, \delta, q_0, F)$,

where

Q is a finite set of **internal states**, Σ is a finite set of symbols called the **input alphabet**, $\delta: Q \times \Sigma \to Q$ is a total function called the **transition** function, $q_0 \in Q$ is the **initial state**, $F \subseteq Q$ is a set of **final states**.

Q is the set of states. There are only finitely many.

 Σ is the input alphabet. The set of symbols the machine can read.

 δ is the transition function.

q₀ is the initial state.

F is the set of final or accepting states.

DFA Example (Figure 2.1)

$$M = (\{q0,q1,q2\},\{0,1\}, \delta, q0, \{q1\})$$

$$\delta(q_0, 0) = q_0,$$
 $\delta(q_0, 1) = q_1,$
 $\delta(q_1, 0) = q_0,$ $\delta(q_1, 1) = q_2,$
 $\delta(q_2, 0) = q_2,$ $\delta(q_2, 1) = q_1.$

DFA Example (Figure 2.1)

$$M = (\{q0,q1,q2\},\{0,1\}, \delta, q0, \{q1\})$$

$$\delta(q_0, 0) = q_0,$$
 $\delta(q_0, 1) = q_1,$
 $\delta(q_1, 0) = q_0,$ $\delta(q_1, 1) = q_2,$
 $\delta(q_2, 0) = q_2,$ $\delta(q_2, 1) = q_1.$

Example 1: (Textbook page 48, exercise 1)

1. Which of the strings 0001, 01101, 00001101 are accepted by the dfa in Figure 2.1?

DFA Example (Figure 2.5)

A DFA that accepts all the strings on {0,1}, except those containing the

substring 001.

DFA Example (Figure 2.5)

A DFA that accepts all the strings on {0,1}, except those containing the

substring 001.

Example 1: (Textbook page 48, exercise 2)

2. Translate the graph in Figure 2.5 into δ - notation.

DFAs

In-class Exercise:

[Textbook page 48, exercise 3]

- 3. For $\Sigma = \{a, b\}$, construct dfa's that accept the sets consisting of
 - (a) all strings of even length.
 - (b) all strings of length greater than 5.
 - (c) all strings with an even number of a's.
 - (d) all strings with an even number of a's and an odd number of b's.

Today's Takeaways

Three Basic Concepts

DFAs

Exit Token

- Write on a piece of paper:
 - Name
 - Time and location of CS Fall Meet & Greet