

Wimax TRX receiving frequency 2.3 GHz- 2.7 GHz

LO Frequency

Wimax TRX receiving frequency 2.3 GHz- 2.7 GHz

LO Frequency

Wimax TRX receiving frequency 2.3 GHz- 2.7 GHz

LO Frequency

Current consumtion

	mA	V
Mixer	105	3.3/5
LNA	2x81	3-5.5
Tranceiver	RX110 TX170	2.7-3.6
ADC	14	1.8-3.3
LPC4300	100	3.3
Switch	-	3.3/5
SUMRX	410mA	
SUMTX	470mA	

SKY13317-373LF: 20 MHz to 6.0 GHz pHEMT GaAs SP3T Switch

Applications

- 802.11 a/b/g/n WLAN networks
- Bluetooth[®] systems

Features

- Positive low voltage control: 0/1.8 to 5.0 V
- Low insertion loss: 0.5 dB @ 2.5 GHz, 0.9 dB @ 6 GHz
- High isolation: 25 dB up to 6 GHz
- Excellent linearity performance: P1dB = +29 dBm
- Miniature, ultra-thin MLP (8-pin, 1.5 x 1.5 mm) package (MSL1, 260 °C per JEDEC J-STD-020)

3 rd Order Input Intercept Point	IIP3	900 to 2450 MHz, $\Delta F = 1$ MHz, $P_{IN} = +17$ dBm/tone		
		$\begin{aligned} &\text{VLow} = 0 \text{ V, VHigh} = 2.1 \text{ V} \\ &\text{VLow} = 0 \text{ V, VHigh} = 3.3 \text{ V} \end{aligned}$	+33 +50	dBm dBm

Table 4. SKY13317-373LF Truth Table

Low Insertion Loss Path	V1 (Pin 3)	V2 (Pin 6)	V3 (Pin 7)
RFC to RF1	High	Low	Low
RFC to RF2	Low	High	Low
RFC to RF3	Low	Low	High

Note: "High" = 1.8 to 5.0 V. "Low" = 0 to 0.25 V. Any state other than described in this Table places the switch into an undefined state. An undefined state will not damage the device.

2.3GHz to 2.7GHz Wireless Broadband RF Transceiver

Features
♦ 2.3GHz to 2.7GHz Wideband Operation
♦ Complete RF Transceiver, PA Driver, and
Crystal Oscillator
0dBm Linear OFDM Transmit Power
-70dBr Tx Spectral Emission Mask
2.3dB Rx Noise Figure
Tx/Rx I/Q Error and LO Leakage Detection
Monolithic Low-Noise VCO with -39dBc
Integrated Phase Noise
Programmable Tx I/Q Lowpass
Anti-Aliasing Filter
Sigma-Delta Fractional-N PLL with
20Hz Step Size
45dB Tx Gain-Control Range
94dB Receive Gain-Control Range
60dB Analog RSSI Instantaneous
Dynamic Range
4-Wire SPI™ Digital Interface
I/Q Analog Baseband Interface
Digitally Tuned Crystal Oscillator
On-Chip Digital Temperature Sensor Read-Out
♦ +2.7V to +3.6V Transceiver Supply
♦ Low-Power Shutdown Current
A Concil 40 Din Thin OFN Declare

(6mm x 6mm x 0.8mm)

Lowpass

Thin-Film Low Pass Filter

LP0603 Lead-Free LGA Type

GENERAL DESCRIPTION

The LP0603 ITF (Integrated Thin Film) Lead-Free LGA Low Pass Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Low Pass Filters are offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

- Miniature Size: 0603
- Frequency Range: 900MHz-5.5HGz
 Characteristic Impedance: 50 Ohm
- Operating/Storage Temperature: -40°C to +85°C
- Power Rating: 3W Continuous
- Low Profile
- Rugged Construction
- Lead Free
- Taped and Reeled

APPL

- Mobile
- Satelli
- GPSVehicl
- Wirele
- RFID

LANE

- Inhere
- Self A
- Excell
- Low F
- Better

Highpass

Multilayer Chip High Pass Filters For Bluetooth & 2.4GHz W-LAN

DEA Series DEA162400HT-8004B1

SHAPES AND DIMENSIONS

FREQUENCY CHARACTERISTICS INSERTION LOSS

RETURN LOSS

ATTENUATION

VSWR

LTC5510

1MHz to 6GHz Wideband High Linearity Active Mixer

FEATURES

- Input/LO Frequency Range to 6GHz
- 50Ω Matched Input from 30MHz to >3GHz
- Capable of Up- or Down-Conversion
- OIP3: 27dBm at f_{OUT} = 1575MHz
- 1.5dB Conversion Gain
- Noise Figure: 11.6dB at f_{OUT} = 1575MHz
- High Input P1dB: 11dBm at 5V
- 5V or 3.3V Supply at 105mA
- Shutdown Control
- LO Input Impedance Always Matched
- 0dBm LO Drive Level
- On-Chip Temperature Monitor
- –40°C to 105°C Operation (T_C)
- 16-Lead (4mm × 4mm) QFN Package

30MHz to 4GHz Up/Down Mixer for Wideband Receiver

VS Input Frequency 30 25 IIP3 HS LO LS LO NF PIN = -10dBm PLO = 0dBm T_C = 25°C 0 1000 2000 3000 4000

INPUT FREQUENCY (MHz)

Conversion Gain, IIP3 and NF

IM3 Level vs Output Power (2-Tone)

IM2 Level vs Output Power (2-Tone)

Conversion Gain, OIP3 and NF vs LO Power

LO Leakage vs LO Frequency

MAX2612-MAX2616

40MHz to 4GHz Linear Broadband Amplifiers

General Description

–MAX2616 is a family of high-performance in blocks designed for use as a PA predrivinglifier, or as a cascadable 50Ω amplifier 9.5dBm output power. These devices are ny applications that include cellular infrate or commercial microwave radios, and modems. The operating frequency range 10MHz to 4000MHz. The amplifier operates +5.25V supply with input and output ports thed to 50Ω . The device family is available compatible, compact 2mm x 3mm TDFN tage.

Applications

- Infrastructure
- ave Radio
- s LAN
- d Measurement

nation appears at end of data sheet.

and recommended products to use with this part, imintegrated.com/MAX2612.related.

Current 80.6 mA

Features

- Extremely Flat Frequency Response
 \$\display\$ 0.5dB, 1GHz to 4GHz
- Low Noise Figure: 2.0dB at f_{RFIN} = 2.0GHz
- · 40MHz to 4000MHz Frequency Range
- Industry's Highest Max P_{IN} Rating
- Large OIP3 Ranges
 - ♦ MAX2615/MAX2616: +37dBm
 - MAX2612: +35.2dBm
 - MAX2613: +31.2dBm
 - ♦ MAY2614+ ±30dPm
- Output P1dB: +19.5dBm (MAX2615/MAX2616)
- High Gain: 18.6dB
- Shutdown Mode (MAX2612/MAX2613/ MAX2614/MAX2616)
- Adjustable Bias Current for Improved OIP3 (MAX2615)
- 3.0V to 5.25V Supply Range
- · Compact 2mm x 3mm TDFN Package
- Industry-High ESD Rating: 2.5kV HBM

2.3GHz to 2.7GHz Wireless **Broadband RF Transceiver**

on

iver ♦ 2.3GHz to 2.7GHz Wideband Operation

less maency of a r IC

ella. uits. tch.

ons.

nteansath: ncv ntrol

r an ithic and ized plez to iires ency

RF

Features

♦ Complete RF Transceiver, PA Driver, and Crystal Oscillator

> 0dBm Linear OFDM Transmit Power -70dBr Tx Spectral Emission Mask 2.3dB Rx Noise Figure Tx/Rx I/Q Error and LO Leakage Detection

Monolithic Low-Noise VCO with -39dBc Integrated Phase Noise

Programmable Tx I/Q Lowpass Anti-Aliasing Filter

Sigma-Delta Fractional-N PLL with 20Hz Step Size

45dB Tx Gain-Control Range

94dB Receive Gain-Control Range

60dB Analog RSSI Instantaneous Dynamic Range

4-Wire SPI™ Digital Interface

I/Q Analog Baseband Interface

Digitally Tuned Crystal Oscillator

On-Chip Digital Temperature Sensor Read-Out

♦ +2.7V to +3.6V Transceiver Supply

♦ Low-Power Shutdown Current

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc_	2.7		3.6	V
	Shutdown mode, T _A = +25°C		10		μA
	Standby mode		35	45	
Supply Current	Rx mode		91	110	
Supply Current	Tx mode, TA = +25°C		145	170	mA
	Rx calibration mode		135	160	
	Tx calibration mode		110	135	
Rx I/Q Output Common-Mode	D9:D8 = 00 in A4:A0 = 00100	0.85	1.0	1.20	
	D9:D8 = 01 in A4:A0 = 00100		1.1		v
Voltage	D9:D8 = 10 in A4:A0 = 00100		1.2		
	D9:D8 = 11 in A4:A0 = 00100		1.35		
Tx Baseband Input Common- Mode Voltage Operating Range	DC-coupled	0.5		1.2	V
Tx Baseband Input Bias Current	Source current		10	20	μA
LOGIC INPUTS: ENABLE, TXENA	ABLE, RXENABLE, SCLK, DIN, CS, B7:B1, RXHP				
Digital Input-Voltage High, VIH		V _{CC} - 0.4			V
Digital Input-Voltage Low, VIL				0.4	V
Digital Input-Current High, I _{IH}		-1		+1	μA
Digital Input-Current Low, I _{IL}		-1		+1	μA

AC ELECTRICAL CHARACTERISTICS—Rx MODE

(MAX2837 evaluation kit: $V_{CC_}=2.8V$, $f_{RF}=2.502GHz$, $f_{LO}=2.5GHz$; receiver baseband I/Q outputs at $90mV_{RMS}$ (-21dBV), $f_{REF}=40MHz$, $ENABLE=RXENABLE=\overline{CS}=high$, TXENABLE=SCLK=DIN=low, with power matching for the differential RF pins using the typical applications and registers set to default settings and corresponding test mode, T_A = +25°C, unless otherwise noted. Lowpass filter is set to 10MHz RF channel BW. Unmodulated single-tone RF input signal is used, unless otherwise indicated.) (Note 1)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER SECTION: LNA RF IN	PUT TO BASEBAND	/Q OUTPUTS				
RF Input Frequency Range			2.3		2.7	GHz
Peak-to-Peak Gain Variation over RF Input Frequency Range	Tested at band edge	Tested at band edges and band center				dB
RF Input Return Loss	All LNA gain settings			13		dB
Total Voltage Gain	T _A = -40°C to +85°C	Maximum gain, B7:B1 = 0000000	90	99		dB
Total Voltage Gain	1A = -40°C 10 +85°C	Minimum gain, B7:B1 = 1111111		5	13	ub ub
	From max RF gain to	max RF gain - 8dB		8		
RF Gain Steps	From max RF gain to	max RF gain - 16dB		16		dB
	From max RF gain to	max RF gain - 32dB		32		
Gain Change Settling Time	Any RF or baseband gain change; gain settling to within ± 1 dB of steady state; RXHP = 1			0.2		
	Any RF or baseband gain change; gain settling to within ±0.1dB of steady state; RXHP = 1			2		μs
Baseband Gain Range	From maximum base minimum baseband of TA = -40°C to +85°C	58	62	66	dB	
Baseband Gain Minimum Step Size						dB
	Voltage gain ≥ 65dB	with max RF gain (B7:B6 = 00)		2.3		
DSB Noise Figure	Voltage gain = 50dB with max RF gain - 8dB (B7:B6 = 01)			5.5		
	Voltage gain = 45dB with max RF gain - 16dB (B7:B6 = 10) 17					dB
	Voltage gain = 15dB (B7:B6 = 11)	with max RF gain - 32dB		27		

Ultra-Low-Power, High-Dynamic-Performance, 22Msps Analog Front End

General Description

-low-power, highly integrated analog r portable communication equipment PDAs. WLAN, and 3G wireless termiintegrates dual 8-bit receive ADCs smit DACs while providing the highnance at ultra-low power. The ADCs' implifiers are fully differential and scale signals. Typical I-Q channel ±0.1° and amplitude matching is s feature 48.5dB SINAD and 69dBc nic range (SFDR) at f_{IN} = 5.5MHz and e DACs' analog I-Q outputs are fully DmV full-scale output, and 1.4V comvoical I-Q channel phase match is le match is ±0.05dB. The DACs also resolution with 71.7dBc SFDR, and 2.2MHz and $f_{CLK} = 22MHz$.

is operate simultaneously or indepenr-division duplex (FDD) and time-divi-) modes. A 3-wire serial interface /n and transceiver modes of operaperating power is 42mW at f_{CLK} =

_Features

- ♦ Integrated Dual 8-Bit ADCs and Dual 10-Bit DACs
- Ultra-Low Power

42mW at f_{CLK} = 22MHz (Transceiver Mode) 34mW at f_{CLK} = 15.36MHz (Transceiver Mode) Low-Current Idle and Shutdown Modes

- ♦ Excellent Dynamic Performance 48.5dB SINAD at f_{IN} = 5.5MHz (ADC) 71.7dB SFDR at f_{OUT} = 2.2MHz (DAC)
- ◆ Excellent Gain/Phase Match ±0.1° Phase, ±0.03dB Gain at f_{IN} = 5.5MHz (ADC)
- ♦ Internal/External Reference Option
- +1.8V to +3.3V Digital Output Level (TTL/CMOS Compatible)
- Multiplexed Parallel Digital Input/Output for ADCs/DACs
- ♦ Miniature 48-Pin Thin QFN Package (7mm × 7mm)
- ♦ Evaluation Kit Available (Order MAX5865EVKIT)

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=3V, OV_{DD}=1.8V, internal reference (1.024V), C_{L}\approx 10 pF on all digital outputs, f_{CLK}=22MHz, ADC input amplitude = -0.5dBFS, DAC output amplitude = 0dBFS, differential ADC input, differential DAC output, C_{PEFP}=C_{REFN}=C_{COM}=0.33 \mu F, Xcvr mode, unless otherwise noted. Typical values are at T_A=+25°C, unless otherwise noted.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER REQUIREMENTS						
Analog Supply Voltage	V _{DD}		2.7	3.0	3.3	٧
Output Supply Voltage	OVDD		1.8		V_{DD}	٧
V _{DD} Supply Current		ADC operating mode, f _{IN} = 5.5MHz, f _{CLK} = 22MHz, DAC operating mode, f _{OUT} = 2.2MHz		14	16.5	
		ADC operating mode, $f_{\parallel N} = 5.5 MHz$, $f_{CLK} = 15.36 MHz$, DAC operating mode, $f_{OUT} = 2.2 MHz$		11.4		
		ADC operating mode (Rx), f _{IN} = 5.5MHz, f _{CLK} = 15.36MHz, DAC off, DAC digital inputs at zero or DV _{DD}		8.25		mA
		DAC operating mode (Tx), f _{OUT} = 2.2MHz, f _{CLK} = 15.36MHz, ADC off		8		
		Standby mode, DAC digital inputs and CLK at zero or OVDD			2.0	
		Idle mode, DAC digital inputs at zero or OVDD, fCLK = 22MHz			6.7	
		Shutdown mode, digital inputs and CLK at zero or OV_{DD} , $\overline{CS} = OV_{DD}$		1		μА
		ADC operating mode, $f_{IN} = 5.5 MHz$, $f_{CLK} = 22 MHz$, DAC operating mode, $f_{OUT} = 2.2 MHz$		2.3		mA
OV _{DD} Supply Current		Idle mode, DAC digital inputs at zero or OVDD, fCLK = 22MHz		20.6		
		Shutdown mode, DAC digital inputs and CLK at zero or OV _{DD} , $\overline{\text{CS}} = \text{OV}_{DD}$		1		μА

Functional Diagram

4.1		

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
ADC DC ACCURACY							
Resolution			8			Bits	
Integral Nonlinearity	INL			±0.15		LSB	
Differential Nonlinearity	DNL	No missing codes over temperature		±0.15		LSB	
Offset Error		Residual DC offset error		±0.24	±5	%FS	
Gain Error		Includes reference error		±0.77	±5	%FS	
DC Gain Matching				±0.03	±0.25	dB	
Offset Matching				±3		LSB	
Gain Temperature Coefficient				±59		ppm/º(
Dower Cumply Dejection	PSRR	Offset error (V _{DD} ±5%)		±0.2		LSB	
Power-Supply Rejection	PSHH	Gain error (V _{DD} ±5%)		±0.07		LSB	
ADC ANALOG INPUT							
Input Differential Range	VID	Differential or single-ended inputs		±0.512		V	
Input Common-Mode Voltage Range				V _{DD} /2		v	
	RIN	Switched capacitor load		245		kΩ	
Input Impedance	CIN			5		pF	
ADC CONVERSION RATE							
Maximum Clock Frequency	fclk	(Note 2)			22	MHz	
Data Latency		Channel I		5		Clock	
		Channel Q		5.5		cycles	
ADC DYNAMIC CHARACTERIST	ICS (Note 3)						
Oleman to Males Battle	OUD	f _{IN} = 5.5MHz	47	48.6		-40	
Signal-to-Noise Ratio	SNR	f _{IN} = 11MHz		48.6		dB	
Signal-to-Noise and Distortion	OINIAD	f _{IN} = 5.5MHz	46.5	48.5		-10	
Ratio	SINAD	f _{IN} = 11MHz		48.5		dB	
Onunious Franchis Danner	OFFD	f _{IN} = 5.5MHz	58	69		4D-	
Spurious-Free Dynamic Range	SFDR	f _{IN} = 11MHz		71.5		dBc	
Third Hammed Blots die	LIDO	$f_{IN} = 5.5MHz$		-70.3		-ID-	
Third-Harmonic Distortion	HD3	f _{IN} = 11MHz	-75.5			dBc	
Intermodulation Distortion	IMD	f ₁ = 2MHz, -7dBFS; f ₂ = 2.01MHz, -7dBFS		-64		dBc	
Third-Order Intermodulation Distortion	IM3	f ₁ = 2MHz, -7dBFS; f ₂ = 2.01MHz, -7dBFS		-67		dBc	
Total Harmonic Distortion	THD	f _{IN} = 5.5MHz		-68.2	-57	dBc	
	, ,,,,,,	2 24111-	-	- 00			