Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №7

По дисциплине «Основы профессиональной деятельности»

Вариант 676

Выполнила:

Брель Мария Владимировна

Группа Р3107

Принял:

Вербовой Александр Александрович

Санкт-Петербург 2024

Оглавление

Текст задания	3
 Исходный код синтезируемой команды	
трассировка микропрограммыТрассировка микропрограммы	
· Код программы проверки команды на языке ассемблера	
Описание тестовых программ	
Подготовка к проверке	
Методика проверки тестов	7
Вывод	8

Текст задания

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

Лабораторная работа №7

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

Введите номер варианта 676

- 1. MSUB M вычитание аккумулятора из M с записью результата в ячейку памяти с установкой N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса 007416

Исходный код синтезируемой команды

Адрес ячейки	новый код МК	Комментарий							
Цикл исполнения команды MSUB(E0—E2)									
E0	0001E09611	\sim AC + DR + 1 \rightarrow DR, N, Z, V, C							
E1	020000000	DR ? MEM(AR) // Запись результата в ячейку памяти							
E2	80C4101040	GOTO INT @ C4 // Завершение цикла выполнения команды, переход к циклу прерываний							

Трассировка микропрограммы

МР до	Содержимое памяти и регистров процессора после выборки и исполнения команды									
выборк и МК	MR	IP	CR	AR	DR	SP	BR	AC	NZVC	МР (СчМК)
E0	0001E09611	50A	9500	500	A000	000	0509	0234	1001	E1
E1	0200000000	50A	9500	500	A000	000	0509	0234	1001	E2
E2	80C4101040	50A	9500	500	A000	000	0509	0234	1001	C4

Код программы проверки команды на языке ассемблера

```
ORG
      0x0
TT1: WORD 0x0; Тест 1 - Проверка при прямой абсолютной адресации
TT2: WORD 0x0; Тест 2 - Проверка на отсутствие изменения NZVC
TT3: WORD
             0х0; Тест 3 - Проверка на установку флага С
TT4: WORD
             0х0; Тест 4 – Проверка при прямой относительной адресации
TT6: WORD
             0х0; Тест 6 – Крайний случай + косвенная относительная
MEM: WORD 0x7C0
ORG 0x0074
START: CALL $TEST1
     LD $TT1
     NOP; Проверка
     CALL $TEST2
     LD $TT2
     NOP ; Проверка
     CALL $TEST3
     LD
           $TT3
     NOP ; Проверка
CALL $TEST4
     LD
           $TT4
     NOP ; Проверка
CALL $TEST5; Вызов пятого теста
     NOP ; Проверка
CALL $TEST6; Вызов шестого теста
           $ТТ6; Загрузка результата 6ого теста
     NOP ; Проверка
     HLT
ORG 0x500
A1: WORD 0xA234
B1: WORD 0x0234
RES1: WORD?
TEST1: CLA
 CLC
 LD A1
 SUB B1
 ST RES1
     LD B1
 WORD 0x9500
     LD A1
 CMP RES1
 BNE ERR1
```

```
LD #0x1
 ST $TT1
 RET
ERR1: LD #0x0
  ST $TT1
  RET
;-----
ORG 0x600
A2: WORD 0xA234
B2: WORD 0xFFFF
TEST2: CLA
    CLC
LD
    B2
    WORD 0x9600
    BCS ERR2
LD #0x1
    ST $TT2
 RET
ERR2: LD #0x0
 ST $TT2
 RET
;-----
ORG 0x700
A3: WORD 0xA234
B3: WORD 0xFFFF
RES3: WORD?
TEST3: CLA
    CLC
LD
    A3
    WORD 0x9601
    BLO ERR3
LD #0x1
    ST $TT3
 RET
ERR3: LD #0x0
 ST $TT3
 RET
;-----
ORG 0x750
A4: WORD 0xA234
B4: WORD 0x0234
RES4: WORD?
```

```
TEST4: CLA
 CLC
 LD A4
 SUB B4
 ST $RES4
   LD B4
 WORD 0x9EF6
    LD A4
 CMP RES4
 BNE ERR4
 LD #0x1
 ST $TT4
 RET
ERR4: LD #0x0
 ST $TT4
 RET
;-----
ORG 0x7A0
A5: WORD 0x0031
B5: WORD 0x0033
RES5: WORD?
TEST5: CLA
 CLC
 LD B5
 SUB A5
 ST $RES5
 RET
;-----
ORG 0x7C0
A6: WORD 0x0000
         0xFFFF
B6: WORD
RES6: WORD?
TEST6: CLA
 CLC
 CMC
 LD B6
 SUB (MEM)
 ST $RES6
    LD A6
 WORD 0x9805
    LD B6
 CMP RES6
 BNE ERR6
 LD
     #0x1
```

ST \$TT6
RET
ERR6: LD #0x0
ST \$TT6
RET
MEM: WORD 0x07C0

Описание тестовых программ

- 1. Первый тест проверяет правильность исполнения команды при прямой абсолютной адресации
- 2. Второй и третий тесты проверяют правильность выставления флага С в результате выполнения операции
- 3. Четвертый тест аналогичен первому, но использует прямую относительную адресацию
- 4. Пятый тест показывает результат выполнения команды при прямой загрузке
- 5. Шестой тест рассматривает разность крайних значений с использованием косвенной относительной адресации

Подготовка к проверке

- 1. Открыть БЭВМ в формате cli или dual "java –Dmode=dual –jar bcomp-ng.jar"
- 2. Открыть help "?"
- 3. На основе help и таблицы микрокоманд перенести нужные микрокоманды в БЭВМ
- 4. Открыть режим ввода Assembler "asm"
- 5. Загрузить команды Assembler в БЭВМ
- 6. Заменить везде NOP на HLT.
- 7. Написать после кода Assembler END и нажать Enter

Методика проверки тестов

- 1. Запустить программу в режиме "РАБОТА" (адрес начала программы 0х40F).
- 2. Дождаться останова. Записать значение из АС в результат первого теста ТТ1.
- 3. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 4. Дождаться останова. Записать значение из АС в результат второго теста **TT2**.
- 5. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 6. Дождаться останова. Записать значение из АС в результат третьего теста **ТТ3**.
- 7. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 8. Дождаться останова. Записать значение из АС в результат третьего теста **ТТ4**.
- 9. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 10. Дождаться останова. Посмотреть, куда записался результат MSUB.
- 11. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 12. Дождаться останова. Записать значение из АС в результат третьего теста **ТТ6**.
- 13. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 14. Дождаться останова.
- 15. Удостовериться, что все результаты тестов равны 0х1.

Вывод

В ходе выполнения лабораторной работы я изучила алгоритм синтеза собственной команды БЭВМ с помощью микропрограмм и методику проверки сделанной программы