Linear Algebra

Dr. Bui Xuan Dieu

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology

Chapter 5: Quadratic Form- Euclidean Space

- Bilinear form Quadratic form
- Reduction of Binary Quadratic Forms
 - Lagrange reduction
- 3 Euclidean space
 - The inner product (dot product)
 - Gram-Schmidt process
 - Projection of a vector onto subspace
- Orthogonal Diagonalization
 - Orthogonal Diagonalization of Symmetric Matrices
 - Orthogonal diagonalization of Quadratic Forms
 - Quadratic curve in plane
 - Quadratic surface classification
 - Orthogonal transform to constrained extrema problems

Bilinear form - Quadratic form

Definition

A bilinear form on a vector space V is a bilinear map $\varphi: V \times V \to \mathbb{R}$. In other words, it is linear in each argument separately:

$$\begin{cases} \varphi(x_1 + x_2, y) = \varphi(x_1, y) + \varphi(x_2, y) \text{ and } \varphi(kx, y) = k\varphi(x, y) \\ \varphi(x, y_1 + y_2) = \varphi(x, y_1) + \varphi(x, y_2) \text{ and } \varphi(x, ky) = k\varphi(x, y) \end{cases}$$

The bilinear form φ is called symmetric if

$$\varphi(x,y) = \varphi(y,x)$$
 for all $x,y \in V$.

Definition

Let φ be a symmetric bilinear form on V. The map $H:V\to\mathbb{R}$ defined by $H(x)=\varphi(x,x)$ is called a quadratic form corresponding to φ .

Dr. Bui Xuan Dieu Linear Algebra 3 / 42

Coordinate representation

Let $\varphi: V \times V \to \mathbb{R}$ be a bilinear form, where V is an n-dimensional vector space with basis $S = \{e_1, e_2, ..., e_n\}$. Then,

$$\varphi(x,y) = \varphi\left(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j,\right) = \sum_{i,j=1}^{n} \varphi(e_i, e_j) x_i y_j$$

$$= \sum_{i,j=1}^{n} a_{ij} x_i y_j = [x]^T A[y].$$
(1)

Remark: φ is symmetric $\Leftrightarrow A = [a_{ij}] = [\varphi(e_i, e_j)]$ is a symmetric matrix.

Definition

The matrix $A = [a_{ij}] = [\varphi(e_i, e_j)]$ is called the matrix of the bilinear form φ (or the quadratic form H) w.r.t the basis S.

- 1) $\varphi(x,y) = [x]^T A[y]$: the coordinate representation of φ .
- 2) $H(x,x) = [x]^T A[x]$: the coordinate representation of H.

Dr. Bui Xuan Dieu Linear Algebra 4 / 42

Coordinate representation

Example

Assume that

i) f is a bilinear form on a 3-dimensional vector space V and the matrix

of f w.r.t a basis B is
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 0 & -2 \\ 3 & 4 & 5 \end{bmatrix}$$

ii) $h:V\to V$ is a linear transformation and the matrix of h w.r.t. the

basis
$$\mathcal{B}$$
 is $B = \begin{bmatrix} -1 & 1 & 1 \\ -3 & -4 & 2 \\ 1 & -2 & -3 \end{bmatrix}$

Prove that the map g(x, y) = f(x, h(y)) is a bilinear form on V. Find its matrix w.r.t the basis \mathcal{B} .

Dr. Bui Xuan Dieu Linear Algebra 5 / 42

Classification of Quadratic Forms

A quadratic form $\varphi(x,x)$ is said to be

positive definite if	$\varphi(x,x)>0$	for all $x \in V, x \neq 0$
positive semidefinite if	$\varphi(x,x)\geq 0$	for all $x \in V, x \neq 0$
negative definite if	$\varphi(x,x)<0$	for all $x \in V, x \neq 0$
negative semidefinite if	$\varphi(x,x)\leq 0$	for all $x \in V, x \neq 0$
indefinite if	$\varphi(x,x) < 0, \varphi(y,y) > 0$	for some $x, y \in V$

Eigenvalues and definiteness

Let A be the matrix of the quadratic form $\varphi(x,x):\mathbb{R}^n\to\mathbb{R}$ w.r.t. the some basis of \mathbb{R}^n . Then φ is

- 1) positive definite if and only if all eigenvalues of \boldsymbol{A} are strictly positive.
- 2) negative definite if and only if all eigenvalues of \boldsymbol{A} are strictly negative.
- 3) positive semidefinite if and only if all eigenvalues of \boldsymbol{A} are nonnegative.
- 4) negative semidefinite if and only if all eigenvalues of A are nonpositive.

Dr. Bui Xuan Dieu Linear Algebra 6 / 42

Classification of Quadratic Forms

Exercise

Determine the definiteness of the following quadratic form on \mathbb{R}^3 .

i)
$$\omega_1(x_1, x_2, x_3) = x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$$

- ii) $\omega_2(x_1, x_2, x_3) = x_1x_2 + 4x_1x_3 + x_2x_3$,
- iii) $\omega_3 = 5x^2 + 2y^2 + z^2 6xy + 2xz 2yz$.

Exercise

Find a such that the following quadratic forms are positive definite:

a)
$$5x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$
.

b)
$$2x_1^2 + x_2^2 + 3x_3^2 + 2ax_1x_2 + 2x_1x_3$$
.

c)
$$x_1^2 + x_2^2 + 5x_3^2 + 2ax_1x_2 - 2x_1x_3 + 4x_2x_3$$
.

Dr. Bui Xuan Dieu Linear Algebra 7 / 42

Chapter 5: Quadratic Form- Euclidean Space

- Bilinear form Quadratic form
- Reduction of Binary Quadratic FormsLagrange reduction
- 3 Euclidean space
 - The inner product (dot product)
 - Gram-Schmidt process
 - Projection of a vector onto subspace
- Orthogonal Diagonalization
 - Orthogonal Diagonalization of Symmetric Matrices
 - Orthogonal diagonalization of Quadratic Forms
 - Quadratic curve in plane
 - Quadratic surface classification
 - Orthogonal transform to constrained extrema problems

Reduction of Binary Quadratic Forms

Definition (diagonal form)

The following form

$$\varphi(x,x) = \alpha_1 x_1^2 + \alpha_2 x_2^2 + \ldots + \alpha_n x_n^2$$

is called the diagonal form of the quadratic form w.r.t. some basis S of V. The corresponding symmetric matrix is diagonal $A = \text{diag}[\alpha_1, \ldots, \alpha_n]$.

Lagrange reduction

Let
$$Q(x,x) = \sum_{i,j=1}^{n} a_{ij}x_ix_j$$
, where $a_{ij} = a_{ji}$.

1) If there is some $a_{ii} \neq 0$, says $a_{11} \neq 0$:

$$Q = \left(a_{11}x_1^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n\right) + \dots + a_{nn}x_n^2$$

= $\frac{1}{a_{11}}\left(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n\right)^2 + Q_1$,

where Q_1 does not contain x_1 .

- 2) Let $y_1 = a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n, y_2 = x_2, ..., y_n = x_n$, then $Q = \frac{1}{2} y_1^2 + Q_1$, where Q_1 does not contain y_1 .
- 3) Continue the procedure with Q_1 .
- 4) If $a_{ii} = 0 \forall k \Rightarrow \exists a_{ii} \neq 0$. Let $x_i = y_i + y_i, x_i = y_i - y_i, x_k = y_k, k \neq i, j$ then $2a_{ij}x_ix_j = 2a_{ij}(y_i^2 - y_i^2) \Rightarrow$ Continue the procedure.

Dr. Bui Xuan Dieu Linear Algebra 10 / 42

Lagrange reduction

Exercise

Lagrange reduction of quadratic forms to canonical (diagonal) form

a)
$$\omega_1(x_1, x_2, x_3) = x_1^2 + 5x_2^2 - 4x_3^2 + 2x_1x_2 - 4x_1x_3$$

b)
$$\omega_2(x_1, x_2, x_3) = x_1x_2 + 4x_1x_3 + x_2x_3$$
,

c)
$$\omega_3 = 5x^2 + 2y^2 + z^2 - 6xy + 2xz - 2yz$$
.

d)
$$5x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$
.

e)
$$2x_1^2 + x_2^2 + 3x_3^2 + 2ax_1x_2 + 2x_1x_3$$
.

f)
$$x_1^2 + x_2^2 + 5x_3^2 + 2ax_1x_2 - 2x_1x_3 + 4x_2x_3$$
.

Classification of Quadratic Forms

Example

Find a such that $\omega = 5x_1^2 + x_2^2 + ax_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$ is positive definite.

Method 1: Lagrange reduction:

$$\omega = 5\left(x_1 + \frac{1}{5}x_2 - \frac{2}{5}x_3\right)^2 + \frac{1}{5}\left(x_2 - 3x_3\right)^2 + (a - 2)x_3^2$$

 ω is positive definite if and only if a>2.

Method 2: ω is positive definite \Leftrightarrow all the eigenvalues of A are strictly positive.

Dr. Bui Xuan Dieu Linear Algebra 12 / 42

Sylvester's law of inertia

Sylvester's law of inertia

A real quadratic form Q in n variables can by a suitable change of basis be brought to the diagonal form

$$Q(x_1, x_2, ..., x_n) = \sum_{i=1}^n a_{ii} x_i^2$$

with each $a_{ii} \in \{0, 1, -1\}$. The number of coefficients of a given sign is an invariant of Q, i.e., does not depend on a particular choice of diagonalizing basis.

- 1) The number of +1s, denoted n_+ , is called the positive index of inertia of A,
- 2) The number of -1s, denoted n_- , is called the negative index of inertia of A.

Dr. Bui Xuan Dieu Linear Algebra 13 / 42

Chapter 5: Quadratic Form- Euclidean Space

- Bilinear form Quadratic form
- Reduction of Binary Quadratic Forms
 - Lagrange reduction
- 3 Euclidean space
 - The inner product (dot product)
 - Gram-Schmidt process
 - Projection of a vector onto subspace
- Orthogonal Diagonalization
 - Orthogonal Diagonalization of Symmetric Matrices
 - Orthogonal diagonalization of Quadratic Forms
 - Quadratic curve in plane
 - Quadratic surface classification
 - Orthogonal transform to constrained extrema problems

The inner product (dot product)

Definition

Let V be a linear space. An inner product (dot product) on V is a map $V \times V \to R$ that satisfies the following axioms:

- 1) $u \cdot v = v \cdot u$,
- 2) $(u+v) \cdot w = u \cdot w + v \cdot w$,
- 3) $(ku) \cdot v = k(u \cdot v)$,
- 4) $u \cdot u \ge 0$, $u \cdot u = 0$ if and only if u = 0.

Remark: Inner product is a symmetric bilinear form and the corresponding quadratic form is positive definite.

Dr. Bui Xuan Dieu Linear Algebra 15 / 42

Length - Distance - Orthogonality

Length of a vector

The *length* (or *norm*) of a vector $v \in V$ is defined by $||v|| = \sqrt{v \cdot v}$.

Distance

The distance between two vectors u and v is defined by d(u, v) = ||u - v||.

Orthogonality

Two vectors u and v are called *orthgonal*, denoted by $u \perp v$, if

$$u \cdot v = 0$$
.

Dr. Bui Xuan Dieu Linear Algebra 16 / 42

Parallelogram formulas - Pythagorean theorem

Let V be an Euclidean space.

$$\begin{cases} \|u + v\|^2 + \|u - v\|^2 = 2\left(\|u\|^2 + \|v\|^2\right), \\ u \perp v \Leftrightarrow \|u + v\|^2 = \|u\|^2 + \|v\|^2, \forall u, v \in V. \end{cases}$$

Dr. Bui Xuan Dieu Linear Algebra 17 / 42

The inner product (dot product)

Exercise

Determine if the following are inner products on $P_3|x|$?

a)
$$p \cdot q = p(0)q(0) + p(1)q(1) + p(2)q(2)$$

b)
$$p \cdot q = p(0)q(0) + p(1)q(1) + p(2)q(2) + p(3)q(3)$$

c)
$$p \cdot q = \int_{-1}^{1} p(x)q(x)dx$$
.

In case it is, compute $p \cdot q$, where

$$p = 2 - 3x + 5x^2 - x^3$$
, $q = 4 + x - 3x^2 + 2x^3$.

Linear Algebra 18 / 42

The inner product (dot product)

Exercise

Let $\mathcal{B}=\{e_1,e_2,...,e_n\}$ be a basis of an n-dimensional vector space V. If $u,v\in V$, we have $\begin{cases} u=a_1e_1+a_2e_2+\cdots+a_ne_n,\\ v=b_1e_1+b_2e_2+\cdots+b_ne_n \end{cases}$

$$\Rightarrow u \cdot v = a_1b_1 + a_2b_2 + \cdots + a_nb_n.$$

- a) Prove that this is an inner product on V.
- b) Apply for $V = \mathbb{R}^3$, where $e_1 = (1,0,1)$, $e_2 = (1,1,-1)$, $e_3 = (0,1,1)$, u = (2,-1,-2), v = (2,0,5) and compute $u \cdot v$.
- c) Apply for $V = P_2[x]$, where $\mathcal{B} = \{1, x, x^2\}$, $u = 2 + 3x^2$, $v = 6 3x 3x^2$ and compute $u \cdot v$.
- d) Apply for $V = P_2[x]$, where $\mathcal{B} = \{1 + x, 2x, x x^2\}$, $u = 2 + 3x^2$, $v = 6 3x 3x^2$ and compute $u \cdot v$.

Dr. Bui Xuan Dieu Linear Algebra 19 / 42

Orthogonal and orthonormal set

Orthogonal and orthonormal set

a) A set of vectors (e_1, e_2, \dots, e_k) in an inner product space is called pairwise orthogonal if each pairing of them is orthogonal, i.e.,

$$< e_i, e_j > = 0$$
 nឣu $i \neq j$.

Such a set is called an orthogonal set.

b) A set of vectors (e_1, e_2, \ldots, e_k) form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length,i.e.,

$$< e_i, e_j > = \delta_{ij} = egin{cases} 0 \; \mathsf{n}ar{\mathsf{a}}\check{\mathsf{x}}\mathfrak{L}\mathsf{u} \; i
eq j \ 1 \; \mathsf{n}ar{\mathsf{a}}\check{\mathsf{x}}\mathfrak{L}\mathsf{u} \; i = j \end{cases}$$

Dr. Bui Xuan Dieu Linear Algebra 20 / 42

Orthogonal and orthonormal set

Proposition

- i) An orthogonal set of non-zero vectors is linearly independent.
- ii) If (e_1, e_2, \dots, e_k) are an orthogonal set of non-zero vectors, then $\left(\frac{e_1}{\|e_1\|}, \frac{e_2}{\|e_2\|}, \dots, \frac{e_k}{\|e_k\|}\right)$ is an orthonormal set.

Linear Algebra 21 / 42

Gram-Schmidt process

Theorem

Let V be an inner product space and $S=\{u_1,u_2,...,u_n\}$ be linearly vectors in V. There is an orthonormal set $S'=\{v_1,v_2,...,v_n\}$, such that span $\{u_1,u_2,...,u_k\}=$ span $\{v_1,v_2,...,v_k\}$ for all k=1,2,...,n.

Gram-Schmidt process

- 1) Let $v_1 = u_1$.
- 2) Let $v_2 = u_2 + tv_1$ such that $v_2 \cdot v_1 = 0 \Rightarrow t = -u_2 \cdot v_1$.
- 3) Continue this procedure.
- 4) Let $v_k = u_k + t_1 v_1 + ... + t_{k-1} v_{k-1}$ such that $v_k \cdot v_j = 0, \forall j = \overline{1, k-1} \Rightarrow t_j = -u_k \cdot v_j.$
- 5) Continue this procedure until k = n we construct orthogonal set $S' = \{v_1, v_2, ..., v_n\}$.
- 6) Orthonormalization the set $S' = \{v_1, v_2, ..., v_n\}$ to get the result.

Dr. Bui Xuan Dieu Linear Algebra 22 / 42

GramâĂŞSchmidt process

Example

Apply the Gram-Schmidt process to the vectors $\{u_1, u_2, u_3, u_4\}$, where

$$u_1 = (1, 1, 1, 1), u_2 = (0, 1, 1, 1), u_3 = (0, 0, 1, 1), u_4 = (0, 0, 0, 1).$$

Example

Let the inner product on $P_2[x]$ be defined as $p \cdot q = \int_{-1}^{1} p(x)q(x)dx$, where

$$p, q \in P_2[x].$$

- a) Apply the GramâÄŞSchmidt process to the basis $\mathcal{B} = \{1, x, x^2\}$ to get an orthonormal basis \mathcal{A} .
- b) Find the change of basis matrix for converting the basis ${\mathcal B}$ to the basis ${\mathcal A}$
- c) Find the coordinate vector $[r]_A$ if $r = 2 3x + 3x^2$

Dr. Bui Xuan Dieu Linear Algebra 23 / 42

Orthogonal complement

Definition

Let U, V be subspaces of an Euclide space E.

- a) We say that a vector $v \in E$ orthogonal (or perpendicular) with U and write $v \perp U$, if $v \perp u$ for all $u \in U$.
- b) We say that U orthogonal (or perpendicular) with V and write $U \perp V$, if $u \perp v$ for all $u \in U, v \in V$.

Definition

Let U be a subspace of an Euclidean space E. We define the orthogonal complement W^\perp to be

$$U^{\perp} = \{ v \in E | v \perp U \}.$$

- i) U^{\perp} is a subspace of E.
- ii) If E is a finite dimensional space, then dim $E = \dim U + \dim U^{\perp}$.

Dr. Bui Xuan Dieu Linear Algebra 24 / 42

Orthogonal complement

Example

Let V be an n-dimensional Euclidean space and V_1 be an m-dimensional subspace of V. Let $V_2 = \{ u \in V | u \perp v, \forall v \in V_1 \}$.

- a) Prove that V_2 is a subspace of V.
- b) Prove that V_1 and V_2 be orthogonal complement.
- c) Find dim V_2

Example

Let

$$v_1 = (1, 1, 0, 0, 0), v_2 = (0, 1, -1, 2, 1), v_3 = (2, 3, -1, 2, 1)$$

and
$$V = \{x \in \mathbb{R}^5 | x \perp v_i, i = 1, 2, 3\}$$

- a) Prove that V is a subspace of \mathbb{R}^5 .
- b) Find dim V.

Dr. Bui Xuan Dieu Linear Algebra 25 / 42

Theorem

Let U be a subspace of an Euclidean space E. Each vector $v \in E$ has a unique representation

$$v = u + u^{\perp}$$
, where $u \in U, u^{\perp} \in U^{\perp}$.

u is called the projection of v onto subspace U.

Dr. Bui Xuan Dieu Linear Algebra 26 / 42

Theorem

Let U be a subspace of an Euclidean space E and $S=\{u_1,u_2,\ldots,u_n\}$ be an orthonormal basis of U. The projection of v onto U is

$$u = (v \cdot u_1)u_1 + (v \cdot u_2)u_2 + \cdots + (v \cdot u_n)u_n.$$

Dr. Bui Xuan Dieu Linear Algebra 27 / 42

Example

Let $v_1 = (6, 3, -3, 6), v_2 = (5, 1, -3, 1)$. Find the projection of v = (1, 2, 3, 4) onto $U = \text{span}(v_1, v_2)$.

Dr. Bui Xuan Dieu Linear Algebra 28 / 42

Example

Let $v_1 = (6, 3, -3, 6)$, $v_2 = (5, 1, -3, 1)$. Find the projection of v = (1, 2, 3, 4) onto $U = \text{span}(v_1, v_2)$.

Method 1: Apply the Gram-Schmidt process vectors $\{v_1, v_2\}$ to get an orthonormal basis of W:

$$u_1 = \frac{1}{3\sqrt{10}} (6, 3, -3, 6), \quad u_2 = \frac{1}{\sqrt{260}} (9, -3, -7, -11).$$

Apply the formula

$$u = (v \cdot u_1)u_1 + (v \cdot u_2)u_2 = \left(\frac{-9}{26}, \frac{21}{13}, \frac{10}{13}, \frac{115}{26}\right).$$

Method 2: Decompose $v = u + u^{\perp}$, where $u \in U, u^{\perp} \perp W$. It leads to a system of two linear equations.

Dr. Bui Xuan Dieu Linear Algebra 28 / 42

Vector projection

The vector projection of a vector v onto a nonzero vector $u \Leftrightarrow$ the projection of v onto $U = \operatorname{span}(u)$

Method 1: U has an orthonormal basis $S = \left\{u_1 = \frac{u}{\|u\|}\right\}$. Therefore,

$$w_1=(v\cdot u_1)u_1=\frac{v\cdot u}{\|u\|^2}u$$

is the projection of v onto u.

Method 2: Decompose $v = w_1 + w_2$, where $w_1 \in U, w_2 \perp U$. Base on conditions $w_1 \in W, w_2 \perp W$ to find w_1, w_2 .

Example

Find the projection of u = (1, 3, -2, 4) onto v = (2, -2, 4, 5)

Dr. Bui Xuan Dieu Linear Algebra 29 / 42

Let W be a subspace of a finite Euclidean space V and $v \in V$. Prove that

- a) There exists $u \in W$ such that $(v u) \perp W$.
- b) Then $||v u|| \le ||v w||, \forall w \in W$.

Geometric meaning

- i) u is the projection of v onto W.
- ii) The the perpendicular distance is the shortest one.

Dr. Bui Xuan Dieu Linear Algebra 30 / 42

Chapter 5: Quadratic Form- Euclidean Space

- Bilinear form Quadratic form
- Reduction of Binary Quadratic Forms
 - Lagrange reduction
- 3 Euclidean space
 - The inner product (dot product)
 - Gram-Schmidt process
 - Projection of a vector onto subspace
- Orthogonal Diagonalization
 - Orthogonal Diagonalization of Symmetric Matrices
 - Orthogonal diagonalization of Quadratic Forms
 - Quadratic curve in plane
 - Quadratic surface classification
 - Orthogonal transform to constrained extrema problems

Orthogonal Diagonalization of Symmetric Matrices

Definition

An orthogonal matrix is a square matrix whose columns and rows are orthonormal vectors, i.e., $PP^T = P^TP = I$.

Definition

A square matrix A is orthogonally diagonalizable if there is an orthogonal matrix P such that $P^{-1}AP$ is a diagonal matrix.

Necessary and sufficient conditions

A matrix is orthogonally diagonalizable if and only if it is symmetric.

$\mathsf{Theorem}$

- i) All eigenvalues of a symmetric matrix are real.
- ii) Eigenvectors of a symmetric matrix corresponding to different eigenvalues are orthogonal.

Dr. Bui Xuan Dieu Linear Algebra 32 / 42

Orthogonal Diagonalization of Symmetric Matrices

Method for orthogonal diagonalization of a symmetric matrix

- 1) Find eigenvalues of A.
- 2) Find the eigenspace for each eigenvalue and its basis.
- 3) Apply Gram-Schmidt process to find an orthogonal basis for each eigenspace.
- 4) Together, these orthogonal bases of eigenspaces form an orthogonal basis $\{f_1, f_2, ..., f_n\}$ of \mathbb{R}^n corresponding to eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$.
- 5) Let $P = [[f_1], [f_2], \dots, [f_n]]$ as columns, then

$$A' = P^{-1}AP = P^{t}AP = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Dr. Bui Xuan Dieu Linear Algebra 33 / 42

Orthogonal Diagonalization of Symmetric Matrices

Exercise

Orthogonal Diagonalization of the following Symmetric Matrices

a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} -7 & 24 \\ 24 & 7 \end{bmatrix}$$

c)
$$C = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

d)
$$D = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & 2 \\ 0 & 2 & 5 \end{bmatrix}$$

Dr. Bui Xuan Dieu Linear Algebra 34 / 42

Orthogonal diagonalization of Quadratic Forms

Let Q be a quadratic form.

- 1) Find the symmetric matrix A which represents Q.
- 2) Let P be the matrix that orthogonally diagonalizes A.
- 3) Then

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = P \begin{bmatrix} \xi_1 \\ \xi_2 \\ \dots \\ \xi_n \end{bmatrix}$$

is the required orthogonal change of coordinates and

$$Q = \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + ... + \lambda_n \xi_n^2.$$

Example

Orthogonal diagonalization of $Q = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2$.

Dr. Bui Xuan Dieu Linear Algebra 35 / 42

Orthogonal diagonalization of Quadratic Forms

Exercise

Orthogonal diagonalization of the following quadratic forms

a)
$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2$$

b)
$$7x_1^2 - 7x_2^2 + 48x_1x_2$$

c)
$$2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 + 2x_2x_3$$

d)
$$5x_1^2 + x_2^2 + x_3^2 - 6x_1x_2 + 2x_1x_3 - 2x_2x_3$$
.

Dr. Bui Xuan Dieu Linear Algebra 36 / 42

Quadratic curve classification

The general bivariate quadratic curve can be written

$$ax^2 + 2bxy + cy^2 + 2dx + 2fy + g = 0,$$

where the left hand-side is a sum of function P and a quadratic form Q:

$$\begin{cases} Q = ax^2 + 2bxy + cy^2, \\ P = 2dx + 2fy + g. \end{cases}$$

- 1) Orthogonal diagonalization of $Q \Rightarrow \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + r\lambda_1 + s\lambda_2 + t = 0$.
- 2) The quadratic curve then can be classified as: parabola, hyperbola, ellipse or circle depending on the context.

Example

Quadratic curve classification $x^2 + 2xy + y^2 + 8x + y = 0$.

Remark

Only Orthogonal diagonalization can be used to classify quadratic curves, since it preserves the length.

Dr. Bui Xuan Dieu Linear Algebra 37 / 42

Quadratic curve classification

Exercise

Classify the following quadratic curves

a)
$$2x^2 - 4xy - y^2 + 8 = 0$$

b)
$$x^2 + 2xy + y^2 + 8x + y = 0$$

c)
$$11x^2 + 24xy + 4y^2 - 15 = 0$$

d)
$$2x^2 + 4xy + 5y^2 = 24$$

e)
$$x^2 + xy - y^2 = 18$$

f)
$$x^2 - 8xy + 10y^2 = 10$$
.

Dr. Bui Xuan Dieu Linear Algebra 38 / 42

Quadratic surface classification

The general bivariate quadratic surface can be written

$$ax^2 + by^2 + cz^2 + 2rxy + 2sxz + 2tyz + 2ex + 2gy + 2hz + d = 0,$$

where the left hand-side is a sum of function P and a quadratic form Q:

$$\begin{cases} Q = ax^2 + by^2 + cz^2 + 2rxy + 2sxz + 2tyz, \\ P = 2ex + 2gy + 2hz + d. \end{cases}$$

- 1) Orthogonal diagonalization of Q $\Rightarrow \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \lambda_3 \xi_3^2 + m \xi_1 + n \xi_2 + p \xi_3 + q = 0.$
- 2) The quadratic surface then can be classified as: paraboloid, hyperboloid, cylinder, ellipsoid or sphere depending on the context.

Example

Classify the quadratic surface $x^2 + y^2 + z^2 + 2xy = 4$.

Dr. Bui Xuan Dieu Linear Algebra 39 / 42

Quadratic curve classification

Exercise

Classify the following quadratic surfaces

a)
$$x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 = 4$$

b)
$$5x^2 + 2y^2 + z^2 - 6xy + 2xz - 2yz = 1$$

c)
$$2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1x_2 - 2x_2x_3 = 16$$

d)
$$7x^2 - 7y^2 + 24xy + 50x - 100y - 175 = 0$$

e)
$$7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z = 24$$

f)
$$2xy + 2yz + 2xz - 6x - 6y - 4z = 0$$

Linear Algebra 40 / 42

Apply the orthogonal transform to constrained extrema problems

Problem

Let $Q = \sum_{i=1}^{n} a_{ij}x_ix_j$ be a quadratic form. Find extrema of Q subject to the constraint $x^T x = x_1^2 + x_2^2 + ... + x_n^2 = 1$.

By orthogonal transform $x = P\xi$, Q becomes

$$Q = \lambda_1 \xi_1^2 + \lambda_2 \xi_2^2 + \dots + \lambda_n \xi_n^2.$$

Suppose $\lambda_1 < \lambda_2 < ... < \lambda_n$, then

$$\lambda_1 \sum_{i=1}^n \xi_i^2 \le Q \le \lambda_n \sum_{i=1}^n \xi_i^2$$

$$x = P\xi \Rightarrow x^T x = (P\xi)^T (P\xi) = \xi^T P^t P\xi = \xi^T \xi = 1 \Rightarrow \lambda_1 \le Q \le \lambda_n$$

- i) Q attains the maximum value λ_n at $\xi^M = (0, 0, ..., 1) \Leftrightarrow x = P\xi^M$.
- ii) Q attains the minimum value λ_1 at $\xi^m = (1, 0, ..., 0) \Leftrightarrow x = P\xi^m$.

Dr. Bui Xuan Dieu Linear Algebra 41 / 42

Orthogonal transform to constrained extrema problems

Example

Let
$$Q(x_1, x_2, x_3) = 9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$$
.

- a) Find $\max_{x_1^2 + x_2^2 + x_3^2 = 1} Q(x_1, x_2, x_3), \min_{x_1^2 + x_2^2 + x_3^2 = 1} Q(x_1, x_2, x_3).$
- b) Find $\max_{x_1^2 + x_2^2 + x_2^2 = 16} Q(x_1, x_2, x_3), \min_{x_1^2 + x_2^2 + x_2^2 = 16} Q(x_1, x_2, x_3).$

Dr. Bui Xuan Dieu Linear Algebra 42 / 42

Orthogonal transform to constrained extrema problems

Example

Let
$$Q(x_1, x_2, x_3) = 9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$$
.

- a) Find $\max_{x_1^2 + x_2^2 + x_3^2 = 1} Q(x_1, x_2, x_3), \min_{x_1^2 + x_2^2 + x_3^2 = 1} Q(x_1, x_2, x_3).$
- b) Find $\max_{x_1^2+x_2^2+x_2^2=16} Q(x_1, x_2, x_3), \min_{x_1^2+x_2^2+x_2^2=16} Q(x_1, x_2, x_3).$

Remark

Problem: Let $Q = \sum_{i,j=1}^{n} a_{ij}x_ix_j$ be a quadratic form. Find extrema of Q

subject to the constraint $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} + ... + \frac{x_n^2}{a_n^2} = 1$.

Solution: Let $y_i = \frac{x_i}{a_i}$, then $Q = \sum_{i=1}^n b_{ij} y_i y_j$, and the constraint becomes

 $y_1^2 + y_2^2 + ... + y_n^2 = 1 \Rightarrow back to the above Problem.$

Dr. Bui Xuan Dieu Linear Algebra 42 / 42