Lecture 9

Line Integrals Independent of Path

Definition (Simply Connected Domain): A domain G is called **simply connected** if every simple closed curve in G encloses only points of G (i.e. the domain G has no holes).

Let G be a simply connected domain and the points $a, z \in G$. Let the function f be continuous on G. The indefinite integral $\int_a^z f(w) dw$ is called independent of path if the value of the integral is the same for all simple piecewise differentiable curves G by G and G and G and G and G and G.

It is easily seen that an indefinite integral is independent of path, if

- (i) f is analytic in G or
- (ii) $\int f(w)dw = 0$ for every closed piece-wise differentiable curve C lying in G.

Note that (i) \Rightarrow (ii) so it is sufficient to prove that indefinite integrals are independent of path by using (ii). This can be done as *follows by using the definition of integration:*

Let C_1, C_2 be any two piecewise differentiable curves joining a and z.

Consider the curve $C = C_1U(-C_2)$. Since C is a closed curve

$$\int_{C} f(w)dw = 0 \Rightarrow \int_{C_{1}} f(w)dw = -\int_{-C_{2}} f(w)dw = \int_{C_{2}} f(w)dw$$

thus the integral $\int_{a}^{z} f(w) dw$ is independent of path).

Note: An indefinite integral $\int_{a}^{z} f(w) dw$ defines a function F(z)

by $F(z) = \int_{a}^{z} f(w) dw$ only if $\int_{a}^{z} f(w) dw$ is independent of path.

Proposition. Let $\int_a^z f(w) dw$ be independent of path, f is continuous in a simply connected domain G containing the points a and z and $F(z) = \int_a^z f(w) dw$. Then, F(z) is differentiable and F'(z) = f(z) for all $z \in G$.

Proof. We have

$$F(z + \Delta z) - F(z) = \int_{z}^{z + \Delta z} f(w) dw$$

Choose the path of integration from z to Δz to be a straight line segment (this is possible, since, by assumption, the value of integral is same along every path joining z and Δz)

$$\Rightarrow \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(w) dw - \frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(z) dw$$
$$= \frac{1}{\Delta z} \int_{z}^{z + \Delta z} (f(w) - f(z)) dw \qquad (*)$$

Now, f is continuous at z

$$\Rightarrow$$
 for $\varepsilon > 0$, $\exists \delta > 0$, s.t. $|f(w) - f(z)| < \varepsilon$ whenever $|w - z| < \delta$.

Therefore, (*) gives,

$$\left| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right| < \frac{1}{|\Delta z|} \cdot \varepsilon \cdot |\Delta z| = \varepsilon, \text{ whenever } |\Delta z| < \delta.$$

$$\Rightarrow F'(z) = f(z).$$

Proposition (Morera's Theorem, Converse of Cauchy Theorem):

If f is continuous in a simply connected domain G and $\int_C f(w) dw = 0$, for every closed curve C in G, then f is analytic in G.

Proof. By the hypothesis of Morera's Theorem, $F(z) = \int_{a}^{z} f(w) dw$, $a, z \in G$, is independent of path.

The previous proposition $\Rightarrow F'(z) = f(z)$ exists for every $z \in G$.

- \Rightarrow *F* is analytic, so has derivatives of all orders in *G* (*by a Proposition based on Taylor's Theorem*); in particular, the second derivative of *F* in *G* exists.
- \Rightarrow the derivative of f exists in G .
- $\Rightarrow f$ is analytic in G

Zeros of Analytic Functions

The point 'a' is called a zero of order m of a function f(z), analytic at the point a, if

$$f(a) = f'(a) = \dots = f^{(m-1)}(a) = 0$$
 but $f^{m}(a) \neq 0$.

If the function f(z) has a zero of order m at the point a, then

$$f(z) = \sum_{n=m}^{\infty} b_n (z-a)^n = (z-a)^m g(z), \text{ where } g(z) = \sum_{n=m}^{\infty} b_n (z-a)^{n-m}$$

Since, $g(a) = b_m = \frac{f^{(m)}(a)}{m!}$, it follows that $g(a) \neq 0$.

Isolated Zeros Theorem. The zeros of functions analytic in a domain D are isolated unless the function is identically zero.

(A zero 'a' of function f is called isolated if a disk centered at 'a' can be found which does not contain any other zero of f)

Proof: Let f(z) be analytic in a domain D and $a \in D$ be such that f(a) = 0. Consider the Taylor series expansion $\sum_{n=0}^{\infty} b_n (z-a)^n \text{ of } f(z) \text{ convergent in a disk } \{z: |z-a| < R\} \subset D.$

Let $b_j = 0$ for $1 \le j \le k-1$ and $b_k \ne 0$. Then,

$$f(z) = (z-a)^k \sum_{n=0}^{\infty} b_{n+k} (z-a)^n \equiv (z-a)^k g(z)$$
 (say)

Since, $\sum_{n=0}^{\infty} b_{n+k} (z-a)^n$ has same radius of convergence as

 $\sum\limits_{n=0}^{\infty}b_n(z-a)^n$, the function g(z) represented by it is analytic, hence is continuous, in |z-a| < R.

The continuity of g(z) at a and $g(a) = b_k \neq 0 \Rightarrow$ there exists a $\delta > 0$ such that $|g(z) - b_k| < \frac{|b_k|}{2}$ for all z in $|z - a| < \delta$.

 $\Rightarrow g(z) \neq 0 \text{ for all } z \text{ in } |z - a| < \delta.$

Let $\delta^* = \min(\delta, R)$. Then $g(z) \neq 0$ in the disk $|z - a| < \delta^*$ contained in D .

Consequently, $f(z) \neq 0$ in the disk $|z-a| < \delta^*$, except at a = 0. Thus, the zero a of f(z) is isolated.

Corollary 1: If f and g are analytic in a domain D and \exists a sequence $\{z_n\}$ with a limit point in D, such that $f(z_n) = g(z_n)$ for all n, then $f(z) \equiv g(z)$ in D.

Proof: Apply the above theorem for the function $\varphi(z) = f(z) - g(z)$.

Corollary 2: If f and g are analytic in a domain D and $f(\varsigma) = g(\varsigma)$ for all the points lying on some curve in D, then $f(z) \equiv g(z)$ in D.