CHAPTER 6 : BENZENE & ITS DERIVATIVES

- 6.1 Introduction
- 6.2 Nomenclature
- 6.3 Chemical properties

Learning Outcomes

At the end of this topic, you should be able to:

- **6.1** Introduction (C2)
 - a) Describe:
 - i. aromaticity;
 - ii. Kekule structure; and
 - iii. resonance structure of benzene.
- **6.2** (a) Give the name of benzene derivatives according to the IUPAC nomenclature for: (C1,C2)
 - monosubstituted benzenes
 - ii. disubstituted benzenes; and
 - iii. tri and tetrasubstituted benzenes
 - (b) Give the structures of benzene derivatives in 6.2 (a). (C2)
 - (c) Apply IUPAC rules to name compounds with C₆H₅- phenyl or C₆H₅CH₂-benzyl as substituents. (C3)

Learning Outcomes

At the end of this topic, you should be able to:

- **6.3** Chemical properties
 - (a) Explain the electrophilic aromatic substitution reactions of benzene: (C3,C4)
 - i. Nitration
 - ii. Halogenation
 - iii.Friedel-Crafts alkylation; and
 - iv.Friedel-Crafts acylation
 - (b) Illustrate the mechanism for the electrophilic aromatic substitution of benzene. *limit to rection in 6.3(a) i,ii & iii only (C3,C4)
 - (c) Explain the influence of *ortho-para* and *meta* directing substituents towards electrophilic aromatic substitution reaction. (C3)
 - (d) Predict the product of electrophilic aromatic substitution of monosubstituted benzene. **limit to rection in 6.3(a) only* (C3)
 - (e) Explain the following reactions of alkylbenzene: (C3)
 - i. oxidation with hot acidified KMnO₄ or K₂Cr₂O₇
 - ii. halogenation (free radical substitution)

6.1 INTRODUCTION

Describe:

- Aromaticity
- Kekulé structure
- Resonance structure of benzene

 In earlier time, compounds are called aromatic because of their pleasant odours.

 Today, we use the word aromatic to refer to benzene and its structural relatives.

- Arenes are aromatic hydrocarbons that contain a benzene ring as a structural unit.
- Benzene is the simplest aromatic hydrocarbon.
 Example...

Aromaticity

4 structural criteria must be satisfied for compound to be aromatic:

CYCLIC

 To be aromatic, each p orbital must overlap with p orbitals on adjacent atoms.

PLANAR

All adjacent p orbitals must be aligned so that the π electron density can be delocalized.

COMPLETELY CONJUGATED

Aromatic compounds must have a *p* orbital on each atom.

SATISFY HUCKEL'S RULE

- 6 π electrons
- 4n + 2 = 6
- Where n = 1
- Aromatic

- 6 π electrons
- 4n + 2 = 4
- Where $n = \frac{1}{2}$
- Not aromatic

Aromatic compounds must contain $[4n+2]\pi$ electrons (n = 0,1,2, and so forth).

Examples:

Identify the aromaticity of the compounds below:

- Aromatic compound is a cyclic conjugated unsaturated molecule or ion that is stabilised by π electron delocalisation.
- Benzene is aromatic because contain 6π electrons (obey HÜckel's Rule), cyclic, planar and has a completely conjugated ring.

KEKULÉ STRUCTURE OF BENZENE

- August Kekulé (1872) proposed a cyclic structure for benzene.
- The Kekulé structure of benzene can be written as a six-membered ring of carbon atoms with alternating single and double bonds.
- One hydrogen atom is attached to each carbon atom.

KEKULÉ'S STRUCTURE FOR BENZENE

$$\begin{array}{c|c} H \\ H \\ \end{array}$$

The benzene ring is planar and all the carbon-carbon bonds are the same length.

RESONANCE STRUCTURE

- Each carbon atom is sp² hybridized, thus has pure 2p orbital with single electron in it.
- The six 2p orbitals overlap to form three delocalised π bonds.
- As a result, the resonance structure of benzene is a hybrid resonance from two Kekulé structure as shown below:

The six p electrons completely delocalized around the ring

16

6.2 NOMENCLATURE

LEARNING OUTCOMES

- **6.2** (a) Give the name of benzene derivatives according to the IUPAC nomenclature for:
 - i. monosubstituted benzenes
 - ii. disubstituted benzenes; and
 - iii. tri and tetrasubstituted benzenes
 - (b) Give the structures of benzene derivatives in 6.2 (a).
 - (c) Apply IUPAC rules to name compounds with C₆H₅-phenyl or C₆H₅CH₂-benzyl as substituents.

MONO SUBSTITUTED BENZENES

- To name a benzene ring with one substituent, name the substituent and add the word benzene.
- Carbon substituents are named as alkyl groups.

Example...

MONO SUBSTITUTED BENZENES

Halogen substituents are named as a halo, change the —ine ending the name of the halogen to the suffix -o. Eg : chlorine → chloro

Example...

MONO SUBSTITUTED BENZENE

IUPAC rules allow some of the common names to be retained.

DISUBSTITUTED BENZENE

Relative position of substituents are indicated by prefixes ortho, meta, and para (o-, m-, and p-) or by the use of number.

1,2-dibromobenzene
or

o–dibromobenzene

1,3-dibromobenzene

or *m*–dibromobenzene

1,4–dibromobenzene **or**

p–dibromobenzene

DISUBSTITUTED BENZENE

1,2-dinitrobenzene **or**

o–dinitrobenzene

1,4-dimethylbenzene

or

p–dimethylbenzene

1,3–dinitrobenzene

or

m–dinitrobenzene

DISUBSTITUTED BENZENE

If two different substituents present,

- select one of the substituent that gives new parent name.
- the highest priority substituent will be the parent chain & numbered as C₁.

SO₃H Priority Increase OH NH₂ R (alkyl group) X (Halogen)

DISUBSTITUTED BENZENE

Example...

highest priority: be a parent chain

2–nitrobenzoic acid **or** *o*–nitrobenzoic acid

3-nitrophenol **or** *m*-nitrophenol

4–hydroxybenzoic acid **or**

p–hydroxybenzoic acid

DISUBSTITUTED BENZENE

3-nitrophenol or *m*-nitrophenol

1,4-benzenedicarboxylic acid

1-bromo-4-chlorobenzene

TRI & TETRASUBSTITUTED BENZENE

- Position of substituents must be indicated by numbers.
- The substituents are listed alphabetically when writing the name.
- C atom bearing the substituent that define the new parent's name is numbered as C₁.

TRI & TETRASUBSTITUTED BENZENE

4-chloro-2-nitroaniline

2,4-dinitrotoluene

3,5—dihydroxybenzoic acid

TRI & TETRASUBSTITUTED BENZENE

3-amino-5-chloro-2-methylbenzoic acid

2-bromo-5-chloro-1,3-dimethylbenzene

KEEP IN MIND!

4-bromo-1,2-dimethylbenzene

4-bromo-o-dimethylbenzene

o−, m− and p− naming system is used for arenes with 2 substituents only!

BENZENE AS A SUBSTITUENT - PHENYL

- If alkyl substituent is larger than the ring (more than 6 C), the compound is named as phenylsubstituted alkane.
- Benzene ring as substituent.
- Phenyl group:

*phenyl, Ph = C_6H_5

BENZENE AS A SUBSTITUENT - PHENYL

• If the chain is unsaturated (have C=C or C≡C) or contains important functional group, the benzene ring is considered as phenyl substituent.

BENZENE AS A SUBSTITUENT - BENZYL

- Benzyl the benzene ring that attach to the –CH₂ group.
- Benzyl group :

BENZENE AS A SUBSTITUENT - BENZYL

Benzylbromide

or

(bromomethyl)benzene

Benzylalcohol

or

Phenyl methanol

2-benzyl-1-butanol

4-benzyl-2-hexene

6.3 CHEMICAL PROPERTIES

Learning Outcomes

At the end of this topic, you should be able to:

6.3 Chemical properties

- (a) Explain the electrophilic aromatic substitution reactions of benzene:
 - I. Nitration
 - **!!.** Halogenation
 - !II.Friedel-Crafts alkylation; and
 - IV.Friedel-Crafts acylation
- (b) Illustrate the mechanism for the electrophilic aromatic substitution of benzene. *6.3 (a) i.ii & iii.
- (c) Explain the influence of *ortho-para* and *meta* directing substituents towards electrophilic aromatic substitution reaction.
- (d) Predict the product of electrophilic aromatic substitution of monosubstituted benzene.
- (e) Explain the following reactions of alkyl benzene:
 - i. oxidation with hot acidified KMnO₄ or K₂Cr₂O₇
 - II. halogenation (free radical substitution)

Chemical Properties of Benzene

Benzeneunlike alkenes,

- The stability of π electron system will be lost if benzene undergo addition reactions.
- Hence, benzene and its derivative undergo electrophilic aromatic substitution reactions.

Chemical Properties of Benzene

Electrophilic Aromatic Substitution Reaction

A H atom is replaced by an electrophile.

6.3 (a) Chemical Properties of Benzene

Chemical Properties of Benzene

6.3 (b) Mechanism for Electrophilic Aromatic Substitution of Benzene

Mechanism of benzene involves 3 steps of reaction:

Step 1: Formation of electrophile

Step 2: Formation of arenium ion

Step 3: Deprotonation of arenium ion (lost of H⁺)

(i) Nitration of Benzene

 Benzene reacts rapidly with a mixture of concentrated nitric acid and concentrated sulphuric acid to give nitrobenzene.

Examples ...

- Product : nitrobenzene
- Observation: yellow oil formed

STEP 1

Formation of nitronium ion (NO₂⁺)

$$H-O-NO_2 + H-OSO_3H \longrightarrow H-O+-NO_2 + HSO_4$$
 $H_2O + +NO_2$

nitronium ion

STEP 2 Formation of arenium ion

$$+ \text{ *NO}_2$$

$$+ \text{*NO}_2$$

$$\text{arenium ion}$$

STEP 3

Loss of H⁺

$$NO_2$$
 $+ H_2SO_4$

(ii) Halogenation of Benzene

- Benzene reacts with bromine and chlorine in the presence of a Lewis acid.
- The Lewis acids commonly used are FeCl₃, AlCl₃ for chlorination and FeBr₃ for bromination.

Examples ...

- Product : halobenzene
- Observation: reddish brown colour of bromine decolourises

STEP 1 Bromine combines with FeBr₃ to form a complex

STEP 2 Formation of arenium ion

$$+ : \underline{Br} - \underline{FeBr_3} \longrightarrow \underbrace{+ : \underline{Br} - \underline{FeBr_3}}_{arenium ion} + FeBr_4$$

STEP 3 Loss of H⁺

(iii) Friedel-Crafts Alkylation

- Benzene reacts with haloalkane in the presence of Lewis acid catalyst such as AlCl₃ or FeCl₃ to form alkylbenzene.
- For CH₃Cl and CH₃CH₂Cl, the Lewis acid-base complex itself serves as the electrophile for electrophilic aromatic substitution.

Examples 1:

STEP 1

Chloroethane combines with AlCl₃ to form a complex.

ElectrophileLewis acid-base complex

STEP 2

The complex react with benzene to form an arenium ion

STEP 3

The arenium ion then loses a proton, H⁺ and becomes ethylbenzene.

Friedel-Crafts Alkylation

- Most Friedel Crafts alkylation reactions involve carbocation electrophiles.
- The reaction can yield products having rearranged carbon skeletons when 1° and 2° haloalkanes are used as starting materials.

Examples 2:

Friedel-Crafts Alkylation

Examples 2

Product : alkylbenzene

STEP 1 Formation of carbocation

STEP 2 Formation of arenium ion

STEP 3 Loss of H⁺

Friedel-Crafts Alkylation

Examples 3

Reagent: 3° Haloalkane

Product: alkylbenzene

STEP 1 Formation of carbocation

$$(CH_3)_2CH\overset{\dot{}}{C}\overset{\dot{}}{\Box}\overset{\dot{}}{\Box}$$
 + AICI₃ \longrightarrow $(CH_3)_2CH\overset{\dot{}}{\Box}\overset{\dot{}}{\Box}$ + AICI₄ \longrightarrow $(CH_3)_2\overset{\dot{}}{C}H$ + AICI₄ \longrightarrow $(CH_3)_2\overset{\dot{}}{C}H$ + AICI₄ \longrightarrow $(CH_3)_2\overset{\dot{}}{C}H$

STEP 2 Formation of arenium ion

$$+ + CH(CH_3)_2 \rightarrow \begin{pmatrix} CH(CH_3)_2 & CH(CH_3)_2 \\ H & CH(CH_3)_2 \\ H & CH(CH_3)_2 \end{pmatrix}$$
arenium ion

STEP 3 Loss of H⁺

CH(CH₃)₂

$$+ AICI4 \rightarrow + HCI + AICI3$$

6.3 (c) The influence of *ortho-para* and *meta* directing substituents towards electrophilic aromatic substitution reaction.

i. Effect of Substituents on Electrophilic Aromatic Substitution

A substituent on the benzene ring affects 2 aspects of electrophilic aromatic substitution :

- a) Reaction rate
- b) Orientation

i. Reaction Rate

- A substituted benzene reacts faster or slower towards further substitution.
- Example: more reactive or less reactive

i. Activating Groups (activators)

- Activate the benzene ring towards electrophilic attack, making it more reactive than benzene via Inductive Effect or Resonance Effect.
- Electron-donating groups / electron-releasing groups are activating groups

Example

Benzene rings that contain an electron-donating group (activating group):

ii. Deactivating Groups (deactivators)

- Deactivate a benzene ring towards electrophilic attack, making it less reactive than benzene.
- Electron-withdrawing groups are deactivating groups.

Example

Benzene rings that contain an electron-withdrawing group (deactiving group):

Example

Deactivating group

0.033

1

Activating group

1000

of nitration

Relative rate

reactivity

ii. Orientation

The existing substituent on the benzene ring determines the position of the second substituent.

A = substituent

a) Ortho-para director

ii. Meta director

Thus,

- 1. All ortho-para directors (except halogens) ⇒ activating groups.
- 2. All meta directors \Rightarrow deactivating groups.
- 3. The halogens are ortho-para directors but deactivating groups.

Ortho-para directors which are activating groups

Increasing ring activation

General structure

–R

—R

Alkyl (Inductive effect)

—Z: or

> have lone pair electron (Resonance effect)

Ortho-para directors which are deactivating groups

General structure:

—X: (halogens)

Meta director which are deactivating groups

6.3 (d) Predict the product of electrophilic aromatic substitution of monosubstituted benzene.

6.3 (e) Reactions of Alkylbenzene

(i) OXIDATION WITH HOT ACIDIFIED KMnO₄ or K₂Cr₂O₇

Benzylic hydrogen

Hydrogen atom bonded to a sp³ hybridized carbon atom that bonded to a benzene ring.

Reactions of Alkylbenzene

Example...

$$\begin{array}{c|c} \text{CH}_3 & \text{K M n O }_4/\text{H} \\ \hline \Delta & \end{array}$$

The alkylbenzenes with alkyl groups other than methyl will produce benzoic acid, carbon dioxide and water.

$$\begin{array}{c|c} CH_2CH_3 \\ \hline \\ \Delta \end{array}$$

Reactions of Alkylbenzene

Example...

Compounds without a benzylic H are inert to oxidation.

Reactions of Alkylbenzene

(ii) Halogenation (free radical substitution)

- Take place at high temperature or in the presence of uv light.
- Mechanism: free-radical substitution.
- Cl or Br replaces H atom of alkyl group.

Example...

Benzene vs Alkylbenzene

no reaction occur

benzene cannot undergo oxidation

no reaction occur

benzene cannot undergo halogenation in inert solvent

no reaction occur

benzene cannot undergo halogenation under sunlight

Benzene vs Alkylbenzene

Benzene vs Alkylbenzene

reddish brown colour of bromine decolourised

Exercise 1

Suggest the reagents and products formed for the following reaction:

Exercise 2

Compound **A** and **B** are hydrocarbon with the structural formula:

Name the compound A and B

Write the equation for the reaction between **B** and bromine under sunlight

The product of bromination of **B** depends on the reaction conditions. State the conditions and the product formed.

CHAPTER 6: BENZENE AND ITS DERIVATIVES

BIL	TERM	DEFINITION
1.	Kekule structure	The carbons are arranged in a hexagon, suggested alternating double and single bonds between them. Each carbon atom has a hydrogen attached to it
2.	Aromaticity	A property of the conjugated cycloalkenes which enhances the stability of a molecule due to the delocalization of electrons present in the π - π orbitals.
3.	Electrophilic aromatic substitution	Organic reactions where an electrophile replaces an atom which is attached to an aromatic ring
4.	Friedel-Crafts alkylation	The replacement of an aromatic proton with an alkyl group.
5.	Friedel-Crafts acylation	The reaction of an arene with acyl chlorides or anhydrides using a strong Lewis acid catalyst.
6.	Monosubstituted benzene	When one of the positions on the ring has been substituted with another atom or group of atoms.