

1: Theory of Matrices, Vector spaces and Linear Transformations

IT5506 – Mathematics for Computing II

Level III - Semester 5

Intended Learning Outcomes

At the end of this lesson, you will be able to;

- Check whether an operation is an inner product.
- Calculate the norm of a vector and the angle between two vectors.
- Determine whether two vectors in an inner product space are orthogonal.
- Compute the scalar and vector projection of one vector onto another.
- Check whether a basis is orthogonal and/or orthonormal.
- Find an orthonormal basis of a subspace.
- Find least squares approximations for a system of equations.
- Determine whether a matrix is orthogonal.

List of sub topics

- 1.8 Orthogonality (2 hours)
 - 1.8.1 Inner (dot) product in real vector spaces with examples and its properties.
 - 1.8.2 Orthogonal Vectors and Subspaces
 - 1.8.3 Projections onto Lines
 - 1.8.4 Orthogonal Bases and Gram-Schmidt orthogonalization process and the QR- decomposition.
 - 1.8.5 Least square solution of a non-consistent linear system and the orthogonal projections.

1.8.1 Real Inner/Dot Product in a Vector Space

Definition: A real inner product space is a real vector space V equipped with an operation that assigns to any pair of vectors $u, v \in V$ a real number $\langle u, v \rangle$, called the inner product of u and v. This operation must satisfy the following properties:

- 1. $\langle u, v \rangle = \langle v, u \rangle$, for all $u, v \in V$. (symmetry)
- 2. $\langle u, \alpha v + \beta w \rangle = \alpha \langle u, v \rangle + \beta \langle u, w \rangle$ for all $u, v, w \in V$, $\alpha, \beta \in \mathbb{R}$. (linearity)
- 3. $\langle u, u \rangle \ge 0$, for all $u \in V$, and $\langle u, u \rangle = 0$ if and only if u = 0.

Definition (Dot product in \mathbb{R}^n):

Let
$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
, $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be two vectors in \mathbb{R}^n . The dot product of u and v is a real

number denoted by $oldsymbol{u}\cdotoldsymbol{v}$ and defined as

$$u \cdot v = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}^T \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

\mathbb{R}^n with the dot product is an inner product space

Example 1.8.1.1: Define a mapping $\langle ., . \rangle$: $\mathbb{R}^n \to \mathbb{R}^n$ by $\langle u, v \rangle = u \cdot v, \forall u, v \in \mathbb{R}^n$.

We shall show that \mathbb{R}^n with this mapping (dot product) is an inner product.

Solution: Let $u, v, w \in \mathbb{R}^n$, and $\alpha, \beta \in \mathbb{R}$

- $\langle u, v \rangle = u \cdot v = u^T v = (u^T v)^T = v^T u = v \cdot u = \langle v, u \rangle$. (Since $u^T v$ is a real number, $u^T v = (u^T v)^T$)
- $\langle u, \alpha v + \beta w \rangle = u^T (\alpha v + \beta w) = u^T (\alpha v) + u^T (\beta v)$ $= \alpha u^T v + \beta u^T v$ $= \alpha \langle u, v \rangle + \beta \langle u, w \rangle.$
- Since $\langle u, u \rangle = u \cdot u = u_1^2 + u_2^2 + \dots + u_n^2$, $\langle u, u \rangle \geq 0$, and $\langle u, u \rangle = 0 \Leftrightarrow u = \mathbf{0}$.

Hence, \mathbb{R}^n with the dot product is an inner product space

Note: Even though, there exist other inner product operations on \mathbb{R}^n besides the dot product, in this course, we are going to consider only the dot product as the inner product.

Properties of the Dot Product

Theorem 1.8.1.1: Let u, v, w be three vectors in \mathbb{R}^n and $\alpha, \beta \in \mathbb{R}$. Then

- 1. $u \cdot v = v \cdot u$
- 2. $(\alpha u + \beta v) \cdot w = \alpha (u \cdot w) + \beta (u \cdot w)$
- 3. $u \cdot (\alpha v + \beta w) = \alpha(u \cdot v) + \beta(u \cdot w)$.

These identities can be easily proved using the definition of dot product and are left as exercise.

Length of a vector in \mathbb{R}^2

The **length** (Euclidian length) or **norm** of a vector x is denoted ||x|| and is defined as $||x|| = (x_1^2 + x_2^2)^{\frac{1}{2}}$.

$$||x||^2 = x_1^2 + x_2^2 = x \cdot x = x^T x.$$

The **length** or **distance** between two vectors \mathbf{y} and \mathbf{x} is denoted by $\|\mathbf{y} - \mathbf{x}\|$ and is defined as $\|\mathbf{y} - \mathbf{x}\|^2 = (y_1 - x_1)^2 + (y_2 - x_2)^2$.

$$x_1 = (y_1 \quad x_1) \quad (y_2 \quad x_2)$$
.

 $||y-x||^2 = (y-x) \cdot (y-x)$

$$= (y - x)^T (y - x).$$

Length of a vector in \mathbb{R}^n

Definition: Let $u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$ be a vector in \mathbb{R}^n . Then the length of u or the **norm** of u is denoted by $\|u\|$ and is defined as $\|u\| = (u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2}}$.

Properties of length: Let $u \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$. Then

- $||u|| \ge 0$;
- ||u|| = 0 if and only if u = 0.
- $\|\alpha u\| = |\alpha| \|u\|$.
- $\langle u, u \rangle = u \cdot u = ||u||^2$.

Definition (Unit Vector): A vector $u \in \mathbb{R}^n$ is called a unit vector if it has length 1, that is, if ||u|| = 1.

Normalizing a vector

Example 1.8.1.2: Consider the vector $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ in \mathbb{R}^3 , Find the unit vector u that has the same direction as v. (u is known as the normalizing vector of v)

Solution: We have $||v|| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$. Hence,

$$u = \frac{v}{\parallel v \parallel} = \frac{1}{\sqrt{14}} \ v = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{14} \\ -2/\sqrt{14} \\ 3/\sqrt{14} \end{bmatrix}.$$

Exercise: Let
$$u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $v = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \in \mathbb{R}^3$. Find $||u + v||$ and $||u - v||$.

The Cauchy-Schwarz Inequality in \mathbb{R}^n

Theorem 1.8.1.2: Let $u, v \in \mathbb{R}^n$. Then $|u \cdot v| \le ||u|| ||v||$. Furthermore equality is obtained if and only if one of u or v is a scalar multiple of the other.

Proof: If u = 0, then $|u \cdot v| = 0$ and ||u|| ||v|| = 0. Hence, the theorem follows.

Therefore, we may assume that $u \neq \mathbf{0}$. Define a function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(t) = (t\mathbf{u} + \mathbf{v}) \cdot (t\mathbf{u} + \mathbf{v}), \forall t \in \mathbb{R}.$$

Then by the properties of dot product, we know that $f(t) \ge 0$ for all $t \in \mathbb{R}$ and

$$f(t) = tu \cdot (tu + v) + v \cdot (tu + v)$$

$$= t^{2} (u \cdot u) + t (u \cdot v) + v \cdot tu + v \cdot v$$

$$= ||u||^{2} t^{2} + 2(u \cdot v)t + ||v||^{2}.$$

This is a quadratic function in t, and it has one or zero roots if and only if $(2(u.v))^2 - 4 \| u \|^2 \| v \|^2 \le 0$. Which is equivalent to

$$|u\cdot v|\leq \parallel u\parallel \parallel v\parallel.$$

Note that if $u = \alpha v$ for some $\alpha \in \mathbb{R}$, then $|u \cdot v| = |(\alpha v) \cdot v| = |\alpha| \|v\|^2$, and $\|u\| \|v\| = \|\alpha v\| \|v\| = |\alpha| \|v\|^2$.

Therefore, if u is a scalar multiple of v, then $|u \cdot v| = ||u|| ||v||$.

Interpretation of Cauchy-Schwarz Inequality in \mathbb{R}^2

$$||u|| = \sqrt{3^2 + 2^2} = \sqrt{13}.$$

$$||v|| = \sqrt{2^2 + (4)^2} = \sqrt{20}.$$

$$|u \cdot v| = |(3 \times 2) + (2 \times 4)| = |14| = 14.$$

Not that,

$$|u \cdot v| = 14 < \sqrt{13} \times \sqrt{20} = \sqrt{260} = ||u|| ||v||.$$

We knew from A/L Mathematics that,

$$u \cdot v = ||u|||v|| \cos \theta$$
.

$$\Rightarrow |u \cdot v| = ||u|| ||v|| ||\cos \theta| \le ||u|| ||v|| \quad (\because |\cos \theta| \le 1).$$

Triangle Inequality in \mathbb{R}^n

Theorem 1.8.1.3: For any $u, v \in \mathbb{R}^n$, $||u + v|| \le ||u|| + ||v||$.

Proof: Let $u, v \in \mathbb{R}^n$.

$$\| u + v \|^{2} = (u + v) \cdot (u + v)$$

$$= u \cdot u + u \cdot v + v \cdot u + v \cdot v$$

$$= \| u \|^{2} + 2 (u \cdot v) + \| v \|^{2}$$

$$\leq \| u \|^{2} + 2 |u \cdot v| + \| v \|^{2} \qquad (\because u \cdot v \leq |u \cdot v|)$$

$$\leq \| u \|^{2} + 2 \| u \| \| v \| + \| v \|^{2} \qquad (\because \text{Cauchy-Schwarz Inequality})$$

$$= (\| u \| + \| v \|)^{2}.$$

Therefore, $\| u + v \|^2 \le (\| u \| + \| v \|)^2$. By taking square roots of both sides, We obtain $\| u + v \| \le \| u \| + \| v \|$.

Exercises

- 1. Let u, v be two vectors in \mathbb{R}^n . Using the properties of dot product prove the following:
 - $(a \cdot b) = \frac{1}{4} (\| \mathbf{u} + \mathbf{v} \|^2 \| \mathbf{u} \mathbf{v} \|^2)$
 - $\| \mathbf{u} + \mathbf{v} \|^2 + \| \mathbf{u} \mathbf{v} \|^2 = 2 \| \mathbf{u} \|^2 + 2 \| \mathbf{v} \|^2$.
- 2. Find the angle between the vectors $u = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$.
- 3. Determine whether the formula $\langle u, v \rangle = u^T A v$ for all $u, v \in \mathbb{R}^2$ determines an inner product on \mathbb{R}^2 , where $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

1.8.2 Orthogonal vectors and Subspaces in \mathbb{R}^n

Definition: Two vectors x, y of a vector space (\mathbb{R}^n) are said to be orthogonal (perpendicular) to each other if $x \cdot y = 0$.

We also write $x \perp y$ to indicate that x and y are orthogonal.

Note: zero (**0**) vector is orthogonal to every other vector x in the vector space, since $x \cdot \mathbf{0} = 0$.

Example: Determine whether two vectors $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ are orthogonal.

$$\mathbf{y} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$x \cdot y = 1 \times 2 + 2 \times (-1) + 3 \times 0 = 0.$$

Hence, $x \perp y$.

Also verify that $||x + y||^2 = ||x||^2 + ||y||^2 = 19$.

Orthogonal Complement

Definition: Let S be a subset of \mathbb{R}^n . The orthogonal complement of S is the set $S^{\perp} = \{x \in \mathbb{R}^n \colon x \cdot w = 0 \text{ for all } w \in S\}.$

Theorem 1.8.2.1: If S is any subset of \mathbb{R}^n , then S^{\perp} is a subspace of \mathbb{R}^n .

Proof: Since **0** is orthogonal to all vectors, $\mathbf{0} \in S^{\perp}$.

Assume that $u, v \in S^{\perp}$. We have to show that $u + v \in S^{\perp}$.

Let $x \in S$. Then we have $(u + v) \cdot x = u \cdot x + u \cdot y = 0 + 0 = 0$.

That is; $(u + v) \cdot x = 0$, for all $x \in S$.

Therefore, $u + v \in S^{\perp}$.

Similarly, we can show that for any $v \in S^{\perp}$ and $\alpha \in \mathbb{R}$, we have $\alpha v \in S^{\perp}$.

Therefore, S^{\perp} is a subspace of \mathbb{R}^n .

Orthogonal and Orthonormal sets of vectors in \mathbb{R}^n

Definition: A set of vectors $S = \{x_1, x_2, \dots, x_k\}$ in \mathbb{R}^n $(k \le n)$ is said to be an **orthogonal** set if the vectors are non-zero and pairwise orthogonal, i.e., $x_i \ne 0$ for all i, and $x_i \perp x_j$ for all $i \ne j$.

Moreover, the set of vectors $U = \{u_1, u_2, \dots, u_k\}$ in \mathbb{R}^n is called **orthonormal** if it is orthogonal and $||u_i|| = 1$ for each i.

Theorem 1.8.2.2: Let $S = \{x_1, x_2, \dots, x_k\} \subseteq \mathbb{R}^n \ (k \le n)$ is Orthogonal. Then S is linearly independent.

Proof: Suppose $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_k x_k = \mathbf{0}$ for α_1 , α_2 , \cdots , $\alpha_k \in \mathbb{R}$.

Let $i \in \{1, 2, \dots, k\}$ be arbitrary.

$$0 = (\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k) \cdot x_i = \alpha_1 x_1 \cdot x_i + \dots + \alpha_i x_i \cdot x_i + \dots + \alpha_k x_k \cdot x_k$$

$$= \alpha_i x_i \cdot x_i \ (\because x_j \cdot x_i = 0, for \ i \neq j).$$

That is, $\alpha_i x_i \cdot x_i = \alpha_i \| x_i \|^2 = 0$. Since $x_i \neq \mathbf{0}$, we have $\alpha_i = 0$.

Hence, $\alpha_i = 0$, $\forall i$. Therefore, x_1, x_2, \dots, x_k are linearly independent.

Orthogonal Subspaces

Definition: Two subspaces V and W of the same vector space \mathbb{R}^n are orthogonal if and only if every vector v in V is orthogonal to every vector w in W.

$$V \perp W \iff v \perp w, \forall v \in V \& \forall w \in W \iff v \cdot w = 0, \forall v \in V \& \forall w \in W.$$

Example:

Let
$$V = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\4\\4 \end{bmatrix} \right\}$$
. Then V is a

2 dimensional subspace of \mathbb{R}^3 .

Let
$$W = \left\langle \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\} \right\rangle$$
. Then W is a

1 dimensional subspace of \mathbb{R}^3 .

Since every vector v in V is orthogonal to every vector w in W, $V \perp W$

Fundamental Theorem of Orthogonality

Theorem 1.8.2.3: The row space of a real matrix $A = [a_{ij}]_{m \times n}$ is orthogonal to the null space of A (in \mathbb{R}^n). The column space of A is orthogonal to the null space of A^T (in \mathbb{R}^m).

Proof: Let $x \in N(A)$.

$$\Rightarrow Ax = 0. \text{ That is; } \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}.$$

- \Rightarrow (row 1 of A) $\cdot x = 0$, (row 2 of A) $\cdot x = 0$, ..., (row m of A) $\cdot x = 0$.
- $\Rightarrow x \perp (\text{row 1 of } A), x \perp (\text{row 2 of } A), \dots, x \perp (\text{row n of } A).$

$$\Rightarrow x \perp Span\left(\left\{\begin{bmatrix} a_{11} \\ \vdots \\ a_{1n} \end{bmatrix}, \begin{bmatrix} a_{21} \\ \vdots \\ a_{2n} \end{bmatrix}, \cdots, \begin{bmatrix} a_{m1} \\ \vdots \\ a_{mn} \end{bmatrix}\right\} = Row \, space(A) = C(A^T)$$

Since $x \in N(A)$ was arbitrary, we have $N(A) \perp Row \, space(A) = C(A^T)$.

Proof Continued

Let
$$y \in N(A^T)$$
.

$$\Rightarrow A^T y = [\mathbf{0}]_{n \times 1}.$$

$$\Rightarrow y^T A = [\mathbf{0}]_{1 \times n}.$$

$$\Rightarrow [y_1 \quad \cdots \quad y_m] \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} = [0 \quad \cdots \quad 0]$$

- $\Rightarrow y \cdot (\text{column 1 of } A) = 0, y \cdot (\text{column 2 of } A) = 0, \dots, y \cdot (\text{column n of } A) = 0.$
- \Rightarrow $y \perp (\text{column 1 of } A), y \perp (\text{column 2 of } A), \dots, y \perp (\text{column n of } A).$

$$\Rightarrow y \perp Span \left(\left\{ \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix}, \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix}, \cdots, \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} \right\} \Rightarrow y \perp C(A).$$

Since $y \in N(A^T)$ was arbitrary, we have $N(A^T) \perp C(A)$.

1.8.3 Projections Onto Lines

It is sometimes important to find the component of a vector in a particular direction. Consider the following picture:

The distance from 0 to P (measured positively in the direction of a) is called the component of b in the direction of a.

The vector $\overrightarrow{OP} = \boldsymbol{p}$ is called the projection of \boldsymbol{b} onto \boldsymbol{a} , and is denoted $proj_{\boldsymbol{a}}(\boldsymbol{b})$.

$$OP = \| \boldsymbol{b} \| \cos \boldsymbol{\theta}$$

On the other hand, we have $a \cdot b = \| a \| \| b \| \cos \theta$. Therefore,

$$\parallel \boldsymbol{b} \parallel \cos \boldsymbol{\theta} = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\parallel \boldsymbol{a} \parallel}.$$

$$proj_{a}(b) = \overrightarrow{OP} = |OP| \frac{a}{\|a\|} = \|b\| \cos \theta \frac{a}{\|a\|} = \|a\| \|b\| \cos \theta \frac{a}{\|a\|^{2}}$$
$$= (a \cdot b) \frac{a}{\|a\|^{2}}$$
$$= \frac{a^{T}b}{a^{T}a} a.$$

Projections Onto Lines

Example 1.8.3.1: Find the projection of $\boldsymbol{b} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ onto $\boldsymbol{a} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

$$b = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

$$a = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$proj_{\boldsymbol{a}}(\boldsymbol{b}) = \frac{\boldsymbol{a}^T \boldsymbol{b}}{\boldsymbol{a}^T \boldsymbol{a}} \ \boldsymbol{a} = \begin{pmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$= \left(\frac{3}{2}\right) \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 3/2\\3/2\\0 \end{bmatrix}.$$

Note:
$$proj_a(b) = \left(\frac{a^Tb}{a^Ta}\right) a = a\left(\frac{a^Tb}{a^Ta}\right) = \left(\frac{a a^T}{a^Ta}\right) b \quad \left(\because \left(\frac{a^Tb}{a^Ta}\right) \text{ is a real number}\right).$$

The matrix
$$P = \begin{pmatrix} \frac{aa^T}{a^Ta} \end{pmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 is known as the projection

matrix, and the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}$, defined by Tx = Px, $\forall x \in \mathbb{R}^3$, is known as the projection mapping.

1.8.4 Orthogonal Bases, Gram-Schmidt Orthogonalization Process and the QR- Decomposition

Definition: A basis $\mathcal{B} = \{b_1, b_2, \cdots, b_n\}$ of \mathbb{R}^n is said to be an orthogonal basis if \mathcal{B} is orthogonal. If, moreover, $\|b_i\| = 1$ for each i, we say that \mathcal{B} is an orthonormal basis for \mathbb{R}^n .

Example:

- $\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\2\end{bmatrix}\}$ is a basis for \mathbb{R}^2 , but this is not orthogonal.
- $\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}1\\-1\end{bmatrix}\}$ is an orthogonal basis for \mathbb{R}^2 , but this not orthonormal.
- $\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\}$ is an orthonormal basis for \mathbb{R}^2 known as standard basis for \mathbb{R}^2 .
- $\left\{\begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix},\begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}\right\}$ is an orthonormal basis for \mathbb{R}^2 for all $\theta\in\mathbb{R}$.

Gram-Schmidt Orthogonalization Process

The Gram-Schmidt orthogonalization procedure is a method for turning any basis of a finite dimensional vector space into an orthogonal/orthonormal one.

Theorem 1.8.4.1: Let V be a finite dimensional vector space. Let $\{a_1, a_2, \cdots, a_n\}$ be a linearly independent subset of V. Then the Gram-Schmidt orthogonalization process uses the vectors a_1, a_2, \cdots, a_n to construct orthonormal vectors q_1, q_2, \cdots, q_n such that $\langle \{a_1, a_2, \cdots, a_i\} \rangle = \langle \{q_1, q_2, \cdots, q_i\} \rangle$, $\forall i = 1, 2, \cdots n$.

There is no problem with q_1 : it can go in the direction of a_1 . We divide by the length, so that $q_1 = \frac{a_1}{\|a_1\|}$ is a unit vector.

We will show this results for the cases n = 2 & 3.

Gram-Schmidt Orthogonalization Process (n = 2)

Let a_1, a_2 be two linearly independent vectors in a finite dimensional vector space.

Let
$$q_1 = \frac{a_1}{\|a_1\|}$$
. Then $\|q_1\| = 1$, and $\langle \{a_1\} \rangle = \langle \{q_1\} \rangle$.

Projection of a_2 onto the line through a_1 is $(q_1 \cdot a_2)q_1 = (q_1^T a_2)q_1$.

Let
$$\boldsymbol{e_2} = a_2 - (q_1^T a_2)q_1$$
. Then $\boldsymbol{e_2} \perp q_1$ because $q_1 \cdot \boldsymbol{e_2} = q_1 \cdot (a_2 - (q_1^T a_2)q_1)$

$$= q_1 \cdot a_2 - (q_1 \cdot a_2)(q_1 \cdot q_1) = 0.$$

$$q_2$$
 q_2
 q_1
 q_2
 q_3

Let
$$q_2=\frac{e_2}{\|e\|}$$
. Then $\|q_2\|=1$, $q_2\perp q_1$, and $\langle\{a_1,a_2\}\rangle=\langle\{q_1,q_2\}\rangle$.

That is; the subspace spanned by the basis a_1 , a_2 and the subspace spanned by the orthonormal basis q_1 , q_2 are the same.

Gram-Schmidt Orthogonalization Process (n = 3)

Let a_1 , a_2 , a_3 be three linearly independent vectors in a finite dimensional vector space.

 a_3 can not be in the plane of q_1 and q_2 , which is the plane of a_1 and a_2 . However, it may have a component in that plane, and that has to be subtracted.

Let
$$e_3 = a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2$$
.

This is the one idea of the whole Gram-Schmidt process, to subtract from every new vector its components in the directions that are already settled. That idea is used over and over again.

Let $q_3=\frac{e_3}{\|e_3\|}$. Then $\|q_3\|=1$, and it can be easily shown that $q_3\perp q_1,\,q_3\perp q_2$, and $\langle\{a_1,a_2,a_3\}\rangle=\langle\{q_1,q_2,q_3\}\rangle$.

The Gram-Schmidt process starts with independent vectors a_1, a_2, \dots, a_n and ends with orthonormal vectors q_1, q_2, \dots, q_n . At step j, it subtracts from a_j its components in the directions q_1, q_2, \dots, q_{j-1} that are already settled:

$$e_j = a_j - (q_1^T a_j)q_1 - (q_2^T a_j)q_2 - \dots - (q_{j-1}^T a_j)q_{j-1}$$
, and $q_j = \frac{e_j}{\|e_j\|}$.

Gram-Schmidt orthogonalization process (n = 3)

The QR**- decomposition:** Relation ships between given basis vectors $a_i's$ and the equivalent orthonormal basis $q_i's$ when n=3:

Let A, Q be the matrices containing a_1 , a_2 , a_3 and q_1 , q_2 , q_3 as its column vectors respectively. We have,

$$a_1 = (q_1^T a_1)q_1$$

$$a_2 = (q_1^T a_2)q_1 + (q_2^T a_2)q_2$$

$$a_3 = (q_1^T a_3)q_1 + (q_2^T a_3)q_2 + (q_3^T a_3)q_3.$$

$$\Rightarrow \begin{bmatrix} \vdots & \vdots & \vdots \\ a_1 & a_2 & a_3 \\ \vdots & \vdots & \vdots \end{bmatrix} = \begin{bmatrix} \vdots & \vdots & \vdots \\ q_1 & q_2 & q_3 \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} q_1^T a_1 & q_1^T a_2 & q_1^T a_3 \\ 0 & q_2^T a_2 & q_2^T a_3 \\ 0 & 0 & q_3^T a_3 \end{bmatrix}$$

$$\Rightarrow A = QR.$$

R is upper triangular because of the way Gram-Schmidt process was done. The first vectors a_1 and q_1 fell on the same line. Then q_1 , q_2 were in the same plane as a_1 , a_2 . The third vectors a_3 and a_3 were not involved until step 3.

Every m by n matrix with independent columns can be factored into A = QR. The columns of Q are orthonormal, and R is upper triangular and invertible. When m = n and all matrices are square, Q becomes an orthogonal matrix.

Gram-Schmidt orthogonalization process

Example 1.8.4.1: $a_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $a_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $a_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ are given. Find orthonormal vectors q_1, q_2, q_3 such that $\langle \{a_1, a_2, a_3\} \rangle = \langle \{q_1, q_2, q_3\} \rangle$.

Solution:
$$q_1 = \frac{a_1}{\|a_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
.

$$e_2 = a_2 - (q_1^T a_2)q_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - \left(\frac{1}{\sqrt{2}}\right)\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}. \text{ Hence, } q_2 = \frac{e_2}{\|e_2\|} = \left(\frac{1}{\sqrt{2}}\right)\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

$$\boldsymbol{e_3} = a_3 - (q_1^T a_3)q_1 - (q_2^T a_3)q_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - (\sqrt{2})\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - (\sqrt{2})\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

$$q_3 = \frac{e_3}{\|e_3\|} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}. \text{ Also } A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2} \\ 0 & \frac{1}{\sqrt{2}} & \sqrt{2} \\ 0 & 0 & 1 \end{bmatrix} = QR.$$

Orthogonal Matrices

Definition: Let q_1, q_2, \dots, q_n be orthonormal vectors in \mathbb{R}^n (Orthonormal basis for \mathbb{R}^n). The square matrix Q with q_1, q_2, \dots, q_n as its columns is called **orthogonal matrix**.

Proposition 1.8.4.2: If Q is a square orthogonal matrix, then $Q^TQ = I$. **Proof:**

$$\begin{bmatrix} \cdots & q_1^T & \cdots \\ \cdots & q_2^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & q_n^T & \cdots \end{bmatrix} \quad \begin{bmatrix} \vdots & \vdots & \cdots & \vdots \\ q_1 & q_2 & \cdots & q_n \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix} = I_n \quad \left(\because \quad q_i^T q_i = 1, \forall i \\ q_i^T q_j = 0, \forall i \neq j \right).$$

Hence, $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ and $Q^{-1} = Q^T$.

Examples of Orthogonal Matrices

1.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ for any $\theta \in \mathbb{R}$.

2.
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{bmatrix}$$

Properties of Orthogonal Matrices

Proposition 1.8.4.3: Let *Q* be an orthogonal Matrix of order n. Then

- 1. *Q* preserves lengths ($||Qx|| = ||x||, \forall x \in \mathbb{R}^n$)
- 2. *Q* preserves inner products and angles $((Qx)^T(Qy) = x^Ty, \forall x, y \in \mathbb{R}^n)$.

Proof:

1.
$$\|Qx\|^2 = (Qx)^T(Qx) = x^TQ^TQx = x^Tx = \|x\|^2$$
 (: $Q^TQ = I$)
Hence, $\|Qx\| = \|x\|$, $\forall x \in \mathbb{R}^n$.

2.
$$(Qx)^T(Qy) = x^TQ^TQy = x^Ty$$
 $(\because Q^TQ = I)$
Hence, $(Qx)^T(Qy) = x^Ty, \forall x, y \in \mathbb{R}^n$.

1.8.5 Least Squares Approximations by a line

Consider the following system of linear equations Ax = b:

$$M + C = 1$$

$$2M + C = 2$$

$$3M + C = 2$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} M \\ C \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$

This system is inconsistent. We would like to find the best possible $\hat{x} = \begin{bmatrix} \hat{M} \\ \hat{C} \end{bmatrix}$ such that error $\|b - A\hat{x}\|$ is minimal. That is, we would like to find the best line $h = \hat{M}t + \hat{C}$ that is very close to all data points.

Least Square Error
$$E$$

$$= (M + C - 1)^{2} + (2M + C - 2)^{2} + (3M + C - 2)^{2}$$

$$\frac{\partial E}{\partial C} = 2(M + C - 1) + 2(2M + C - 2) + 2(3M + C - 2)$$

$$\frac{\partial E}{\partial M} = 2(M + C - 1) + 4(2M + C - 2) + 6(3M + C - 2)$$

$$\frac{\partial E}{\partial c} = 0 \implies 6M + 3C = 5 \& \frac{\partial E}{\partial M} = 0 \implies 14M + 6C = 11$$

Hence, the least square error is obtained at $M={}^1\!/_2$ and $C={}^2\!/_3$. The best line is $h={}^1\!/_2\,t+{}^2\!/_3$.

Least Squares Approximation Problem

Problem: Given a (possibly inconsistent) system of linear equations Ax = b, find x such that ||Ax - b|| is as small as possible. We call such a vector x a least squares approximation for the system of linear equations.

Let
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$
, $b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$, and $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. Then

$$Ax - b = \begin{bmatrix} a_{11}x_1 + \dots + a_{1n} x_n - b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn} x_n - b_m \end{bmatrix}$$
, and therefore,

$$||Ax - b||^2 = (a_{11}x_1 + \dots + a_{1n}x_n - b_1)^2 + \dots + (a_{m1}x_1 + \dots + a_{mn}x_n - b_m)^2.$$

Therefore, minimizing ||Ax - b|| is the same as minimizing the sum of the squares of the errors of all the equations.

We note that ||Ax - b|| = 0 if and only if Ax - b = 0. Therefore, if the system of equations Ax = b is consistent, then its least squares approximations are exactly the solutions of the system of equations in the usual sense.

Solution of the least squares approximation problem

Theorem 1.8.5.1: A vector \hat{x} is a least squares approximation of the system of equations Ax = b if and only if $A^T A \hat{x} = A^T b$.

Proof: Let a_1, a_2, \dots, a_n be the columns of the matrix A. Then the column space of A is $C(A) = Span(\{a_1, a_2, \dots, a_n\})$. If $x = [x_1 \quad \dots \quad x_n]^T$ is any column vector, then by the definition of matrix multiplication, we have $Ax = x_1a_1 + \dots + x_na_n$.

Therefore, the equation Ax = b has a solution if and only if $b \in C(A)$. For \hat{x} to be a least squares approximation, we want $\|A\hat{x} - b\|$ to be as small as possible. This means that we are looking for the element of C(A) that is closest to b. we know that this happens when $(A\hat{x} - b) \perp C(A)$.

$$(A\hat{x} - b) \perp C(A) \iff (A\hat{x} - b) \perp a_i$$
 for each i

$$\Leftrightarrow a_i \cdot (A\hat{x} - b) = a_i^T (A\hat{x} - b) = 0$$
 for each i

$$\Leftrightarrow A^T(A\hat{x}-b)=0$$

 $\Leftrightarrow A^T A \hat{x} = A^T b$. (This is called as Normal Equation.)

Least Squares Approximation

Example 1.8.5.1: Find the least squares approximation for the system of equations

$$2x_1 + 2x_2 + 2x_3 = 1$$

$$x_1 - x_2 - x_3 = -2$$

$$-x_1 - x_2 + 2x_3 = 4$$

$$2x_1 + 2x_2 - x_3 = -8$$

Solution:
$$Ax = b$$
, where $A = \begin{bmatrix} 2 & 2 & 2 \\ 1 & -1 & -1 \\ -1 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ -2 \\ 4 \\ -8 \end{bmatrix}$, and $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

By Theorem 1.8.5.1, the least squares approximation \hat{x} is given by the solution of the system of equations $A^T A \hat{x} = A^T b$.

$$A^{T}A = \begin{bmatrix} 2 & 1 & -1 & 2 \\ 2 & -1 & -1 & 2 \\ 2 & -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 1 & -1 & -1 \\ -1 & -1 & 2 \\ 2 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 10 & 8 & -1 \\ 8 & 10 & 1 \\ -1 & 1 & 10 \end{bmatrix}.$$

Least Squares Approximation

Solution of example 1.8.5.1 continue:

$$A^{T}b = \begin{bmatrix} 2 & 1 & -1 & 2 \\ 2 & -1 & -1 & 2 \\ 2 & -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 4 \\ -8 \end{bmatrix} = \begin{bmatrix} -20 \\ -16 \\ 20 \end{bmatrix}.$$

Therefore, the least squares approximation, we solve the system of equations:

$$\begin{bmatrix} 10 & 8 & -1 \\ 8 & 10 & 1 \\ -1 & 1 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -20 \\ -16 \\ 20 \end{bmatrix}.$$

The unique solution of this system is $x_1 = -1$, $x_2 = -1$ and $x_3 = 2$.

Note: We can double-check this answer by checking whether Ax - b is orthogonal to every column vector of A.

Exercise

Find the least squares approximation for the system of equations:

$$x_1 + 2x_2 + 2x_3 = 5$$

$$x_1 + x_2 - x_3 = 11$$

$$x_1 + 2x_2 - x_3 = -18$$

$$2x_1 - x_2 + 2x_3 = 0$$