Problem Set 2: Constrained Dynamics and Variational Integrators

Problem №1: Closed Loop Chain

Consider the following system:

with parameters given by:

```
m1 = 0.5 \# [kg] - mass in the first joint m2 = 0.7 \# [kg] - mass in the first joint l = 0.3 \# [m] - the length of links L = 0.4 \# [m] - length between fixed joints g = 9.81 \# [m/s^2] the gravitational acceleration
```

Do the following:

- [5 points] Choose the coordinates ${\bf q}$ to represent the system and derive the free dynamics in these coordinates (you may use Euler-Lagrange or Newton's laws). Write the set of holonomic constraints that represent the closed chain in the form $\varphi({\bf q})=0$. Find the constraint Jacobian ${\bf J}=\frac{\partial \varphi}{\partial {\bf q}}$ and its derivative ${\bf J}$ as a function of ${\bf q}$ and $\dot{{\bf q}}$.
- [15 points] Use either the Lagrange or Udwadia-Kalaba approach with a Runge-Kutta 4th-order integrator to simulate the motion of the system, given a sample rate of dt=0.01 [s] and a feasible initial point $\mathbf{q}(0)$ in the rest. Calculate and plot the constraint penalization along the simulated trajectory $\|\boldsymbol{\varphi}(\mathbf{q}(t))\|$. Introduce and tune the Baumgarte stabilization technique to reduce constraint penalization. Animate the motion.
- [15 points] Introduce the external torques $u_{1,2} = 3\sin(t)$ into the fixed joints as depicted in Figure (b), and repeat the steps above.

Problem №2: Bicycle Dynamics

Consider the following system:

with parameters given by:

```
m1 = 1.0 # [kg] - mass distributed around front wheel m2 = 2.0 # [kg] - mass distributed around rear wheel I2 = 0.1 # [kg*m^2] - inertia of front wheel I1 = 1.0 # [kg*m^2] - combined inertia of frame and rear wheel l = 0.5 # [m] - length between wheels
```

Do the following:

- [10 points] Propose the coordinates that will represent the configuration of the system, derive the unconstrained dynamics, introduce the appropriate holonomic and nonholonomic constraints, and convert them into a generalized form: $\mathbf{A}(\mathbf{q}, \dot{\mathbf{q}}, t)\ddot{\mathbf{q}} = \mathbf{b}(\mathbf{q}, \dot{\mathbf{q}}, t)$.
- [15 points] Set the external forces ${\bf Q}$ to represent the actuation of the system as shown in Figure (b). Simulate the behavior of the system using Udwadia-Kalaba approach and Runge-Kutta integrator, starting from a feasible configuration similar to that of Figure (b). Set $u_1=4$ and $u_2=0$, plot the trajectories and time evolution of the constraints. Animate the resulting motion, and introduce and tune the Bamguart stabilization.
- [5 points] Change the actuation forces to represent the given figure (c), with $u_1=4$ and $u_2=5(1.2\sin(t)-\alpha)-\dot{\alpha}$, then repeat the above steps. Discuss the results.

Problem №3: Variational Integrators and Quaternions

Consider the rotation of single rigid body with associated kinetic energy given by:

$$\mathcal{K} = oldsymbol{\omega}^T \mathbf{I} oldsymbol{\omega}$$

With the inertia matrix given with respect to the principle axes as $\mathbf{I} = \operatorname{diag}[I_x, I_y, I_z]$, the inertia parameters are given by:

```
Ix = 0.1 \# [kg*m^2] inertia around x axis

Iy = 0.2 \# [kg*m^2] inertia around y axis

Iz = 0.4 \# [kg*m^2] inertia around z axis
```

Do the following:

- [10 points] Choose unit quaternions $\mathbf{q} \in \mathbb{S}^3$ to represent the configuration of the system, and define the discrete Lagrangian in these coordinates.
 - Note: You may define the angular speed through quaternion derivative as follows: $\hat{\boldsymbol{\omega}} = 2\mathbf{q} \otimes \dot{\mathbf{q}}$, where $\hat{\boldsymbol{\omega}} = [0, \boldsymbol{\omega}]$ and \mathbf{q} is the quaternion conjugate.
- **[15 points]** Derive the constrained discrete Euler-Lagrange equations in momentum form and simulate the system with a sampling rate of dt=0.01 [s], starting from an initial quaternion of $\mathbf{q}(0)=[1,0,0,0]$ and initial velocities of $\omega 1(0)=[6,0.1,0.1]$. Repeat the same for $\omega 2(0)=[0.1,6,0.1]$ and $\omega 2(0)=[0.1,0.1,6]$, animate the trajectories as a rotating frame, and discuss the results.
- [10 points] Plot the energy $\mathcal{K}(t)$, the norm of momentum $\|\mathbf{p}(t)\|$, and the norm of the quaternion $\|\mathbf{q}(t)\|$. Compare the results with Euler integration (with and without quaternion normalization).