TRABAJO PRÁCTICO N°1: LÓGICA PROPOSICIONAL

Integrantes del grupo:

Ahumada Brian, DNI 38.335.339

Alancay Abel Matias, DNI 32.104.501

Alsina Maximiliano, DNI: 35.618.005

Berrini Alejandro, DNI 34.658.942

Calle Porco Sonia Enes, DNI 18.804.659

Costa Maria Eugenia , DNI 31.164.697

1. Sin usar tabla de verdad pruebe y/o simplifique según corresponda (indique en cada paso las leyes del álgebra proposicional que emplea):

```
1.a
                                                             (\neg p \lor q) \land (p \land (p \land q)) \equiv p \land q
                                                                                                                                      Asociativa
                                                          (\neg p \lor q) \land (((p \land p) \land q)) \equiv p \land q
                                                                                                                                    Idempotencia
                                                                     (\neg p \lor q) \land (p \land q)) \equiv p \land q
                                                                                                                             Distributiva
                                                        (p \land q \land \neg p) \lor (p \land q \land q) \equiv p \land q
                                                                                                                     Conmutativa y Asociativa
                                               ((p \land \neg p) \land q) \lor (p \land (q \land q)) \equiv p \land q
                                                                                                                      Complemento e Idempotencia
                                                             ((F) \land q) \lor (p \land (q)) \equiv p \land q
                                                                                                                                       Identidad
                                                                    ((F) \lor (p \land (q)) \equiv p \land q
                                                                                                                                Identidad
                                                                                             (p \land q) \equiv p \land q
1.b
                                                                     (p \land q) \lor \neg (q \lor \neg p) \equiv p
                                                                                                                       Ley de Morgan
                                                            (p \land q) \lor (\neg q \land \neg (\neg p)) \equiv p
                                                                                                                                Doble negación
                                                                   (p \land q) \lor (\neg q \land p) \equiv p
                                                                                                                            Conmutativa
                                                                 (p \land q) \lor (p \lor \neg q) \equiv p
                                                                                                                     Distributiva inversa
                                                                       p \land (q \lor \neg q) \equiv p
                                                                                                                      Complemento
                                                                                 p \wedge (T) \equiv p
                                                                                                                   Identidad
                                                                                                     p \equiv p
                                                                 [p \lor (q \land r)] \lor (\neg q \land r) \equiv p \lor r
1.c
                                                                                                                                  Asociativa
                                                                 p \vee [(q \wedge r) \vee (\neg q \wedge r)] \equiv p \vee r
                                                                                                                                 Distributiva
                                                                       p \vee [r \wedge (q \vee \neg q)] \equiv p \vee r Complemento
                                                                              p \vee [r \wedge (T)] \equiv p \vee r Identidad
                                                                                               p \vee r \equiv p \vee r
1.d
                                                                          \neg \left[ (\neg q \lor p) \land \neg \left[ \left( \neg p \land (q \land r) \right) \land (p \lor r) \right] \right]
```

```
\left[\neg[(\neg q \lor p)] \lor \neg \left[\neg[(\neg p \land (q \land r)) \land (p \lor r)]\right]\right]
                                                                                                                                                                        Ley de Morgan
                                                \left[ \left[ \neg (\neg q) \land \neg p \right. \right] \quad \lor \quad \left[ \left( \neg p \land (q \land r) \right) \land (p \lor r) \right] \quad \text{Ley de Morgan y Doble negación}
                                                           \begin{bmatrix} [q \land \neg p] & \lor & [(\neg p \land (q \land r)) \land (p \lor r)] \end{bmatrix} 
 \begin{bmatrix} [q \land \neg p] & \lor & [(\neg p \land q) \land r \land (p \lor r)] \end{bmatrix} 
                                                                                                                                                       Doble negación
                                                                                                                                                                Asociativa
                                                                 [[q \land \neg p] \lor [(q \land \neg p) \land r]] Absorción y Conmutativa
                                                                                       [(q \land \neg p) \land r] Idempotencia
                                 [(p \lor q) \land \neg (\neg p \land q)] \qquad \lor \qquad [\neg [q \land (r \lor q)] \land (p \lor \neg q)] \qquad \qquad \mathsf{Ley} \ \mathsf{de} \ \mathsf{Morgan} \ \mathsf{y} \ \mathsf{Ley} \ \mathsf{de} \ \mathsf{Absorci\'{o}} \mathsf{n}
1.e
                                          [(p \lor q) \land [\neg(\neg p) \lor \neg q]] \lor [\neg q \land (p \lor \neg q)]
                                                                                                                                                                      Doble Negación
                                                                            [(p \lor q) \land [p \lor \neg q]] \lor (\neg q)
                                                                                                                              Absorcion
                                                                                    [p \lor (q \land \neg q)] \lor \neg q Complemento
                                                                                              [p \lor F] \lor \neg q Identidad
                                                                                                               p V \neg q
1.f
                                                                   (\neg p \land (\neg q \land r)) \lor (q \land r \lor (p \land r)) \equiv r
                                                                                                                                                     Distributiva
                                                                      (\neg p \land (\neg q \land r)) \lor (r \land (p \lor q)) \equiv r
                                                                                                                                                      Morgan
                                                                          \neg (p \lor q) \land r \lor r \land (p \lor q) \equiv r Distributiva
                                                                         r \lor \lceil \neg (p \lor q) \lor (p \lor q) \rceil \equiv r Complemento
                                                                                          r \wedge T \equiv r Identidad
                                                                                                             r \equiv r
1.g
                                                                              p \to (q \lor r) \equiv (p \to q) \lor (p \to r) Distributiva
                                                                                  (p \to q) \lor (p \to r) \equiv (p \to q) \lor (p \to r)
```

```
(p \lor q) \to r \equiv (p \to r) \land (q \to r) Ley de condicional / Implicacion material
1.h
                                             \neg (p \lor q) \lor r \equiv (p \to r) \land (q \to r) Ley de condicional / Implicacion material
                                            \neg (p \lor q) \lor r \equiv (\neg p \lor r) \land (\neg q \lor r)
                                                                                                                                          Distributiva
                                            \neg (p \lor q) \lor r \equiv (\neg p \land \neg q) \lor r
                                                                                                                                               Morgan
                                                                           (\neg p \land \neg q) \lor r \equiv (\neg p \land \neg q) \lor r
1.i
                                                p \to (q \to p) \equiv \neg p \lor (q \to p) Ley de condicional / Implicación material
                                                                             \neg p \lor (q \to p) \equiv \neg p \lor (q \to p)
1.j
                                          [(p \lor q) \land (p \to r) \land (q \to r)] \to r \equiv T Ley de condicional / Implicacion material
                                      \neg [(p \lor q) \land ((\neg p \lor r) \land (\neg q \lor r))] \lor r \equiv T
                                                                                                                                                Distributiva
                                              \neg [(p \lor q) \land (r \lor (\neg p \land \neg q))] \lor r \equiv T
                                                                                                                                             Morgan
                                                     \neg [(p \lor q) \land r \lor \neg (p \lor q))] \lor r \equiv T
                                                                                                                               Conmutativa
                                                    \neg [(p \lor q) \land \neg (p \lor q) \lor r)] \lor r \equiv T
                                                                                                                              Complemento
                                                                              \neg [F \lor r] \lor r \equiv T Identidad
                                                                               \neg r \lor r \equiv T Complemento
                                                                                               T \equiv T
```

2- Demuestre las equivalencias siguiente comprobando las equivalencias duales (*indique en cada paso las leyes del álgebra proposicional que* emplea):

2.a
$$\neg ((\neg p \land q) \lor (\neg p \land \neg q)) \lor (p \land q) \equiv p$$
2.b
$$(p \land (p \leftrightarrow q)) \rightarrow q \equiv T$$
2.c
$$\neg (p \land q) \rightarrow (\neg p \lor (\neg p \lor q)) \equiv (\neg p \lor q)$$
2.d
$$(\neg p \rightarrow (\neg p \rightarrow (\neg p \land q))) \equiv p \lor q$$
2.e
$$p \leftrightarrow q \equiv (p \lor q) \rightarrow (p \land q)$$
2.f
$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

$$\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$$

No se vio la teoría de dualidad, queda para la parte 2 del TP 1.

Ejercicios complementarios y de repaso

4. Construya la tabla de verdad de cada una de las siguientes proposiciones

4.a $(p \lor q) \to (p \land q)$

p	q	$(p \lor q)$	$(p \wedge q)$	$(p \lor q) \to (p \land q)$
V	V	V	V	V
V	F	V	F	F
F	V	V	F	F
F	F	F	F	V

 $(p \lor q)$ V es DISJUNCION (O/OR) con que una sea V => es V. Solo es F si ambas son F

 $(p \land q)$ \land es CONJUNCION (Y/AND) solo es V si ambas son V $(p \lor q) \rightarrow (p \land q)$ \rightarrow es IMPLICACION solo es F si: V \rightarrow F

 $(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$ 4.b

q	р	$\neg p$	$(q \rightarrow \neg p)$	$(p \leftrightarrow q)$	$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$
V	V	F	F	V	F
V	F	V	V	F	F
F	V	F	V	F	F
F	F	V	V	V	V

 \rightarrow es IMPLICACION solo es F si: V -> F

 $(p \leftrightarrow q) \leftrightarrow \text{es DOBLE IMPLICACION solo es V si ambas coinciden en su valor}$ $(q \to \neg p) \leftrightarrow (p \leftrightarrow q) \leftrightarrow \text{es DOBLE IMPLICACION solo es V si ambas coinciden en su valor}$

 $(\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$

р	q	$\neg p$	$\neg q$	$\neg p \leftrightarrow \neg q$	$p \leftrightarrow q$	$(\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q)$
V	V	F	F	V	V	V
V	F	F	V	F	F	V
F	V	V	F	F	F	V
F	F	V	V	V	V	V

 $\neg p \leftrightarrow \neg q \qquad \leftrightarrow \text{es DOBLE IMPLICACION solo es V si ambas coinciden en su valor} \\ p \leftrightarrow q \qquad \leftrightarrow \text{es DOBLE IMPLICACION solo es V si ambas coinciden en su valor} \\ (\neg p \leftrightarrow \neg q) \leftrightarrow (p \leftrightarrow q) \qquad \leftrightarrow \text{es DOBLE IMPLICACION solo es V si ambas coinciden en su valor}$

 $(p \to q) \to (q \to p)$

р	q	$p \rightarrow q$	$q \rightarrow p$	$(p \to q) \to (q \to p)$
V	V	V	V	V
V	F	F	V	V
F	V	V	F	F
F	F	V	V	V

 $p \rightarrow q$

 $q \rightarrow p$

$$(p \rightarrow q) \rightarrow (q \rightarrow p)$$

Las 3 son \rightarrow : IMPLICACION solo es F si: V -> F

4.e $(p \leftrightarrow q) \leftrightarrow ((p \land q) \lor (\neg p \land \neg q))$

р	q	$\neg p$	$\neg q$	$(p \leftrightarrow q)$	$(p \wedge q)$	$(\neg p \land \neg q)$	$((p \land q) \lor (\neg p \land \neg q))$	$(p \leftrightarrow q) \leftrightarrow ((p \land q) \lor (\neg p \land \neg q))$
V	V	F	F	V	V	F	V	V
V	F	F	V	F	F	F	F	V
F	V	V	F	F	F	F	F	V
F	F	V	V	V	F	V	V	V

 $p \leftrightarrow q \leftrightarrow \text{es DOBLE IMPLICACION solo es V si ambas coinciden en su valor} \ (p \land q) \land \text{es CONJUNCION (Y/AND) solo es V si ambas son V} \ \neg p \land \neg q \land \text{es CONJUNCION (Y/AND) solo es V si ambas son V}$

 $((p \land q) \lor (\neg p \land \neg q))$ V es DISJUNCION (0) con que una sea V => es V. Solo es F si ambas son F

 $(p \leftrightarrow q) \leftrightarrow ((p \land q) \lor (\neg p \land \neg q)) \leftrightarrow$ es DOBLE IMPLICACION solo es V si ambas coinciden en su valor

f. $\neg (p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \rightarrow r))$

p	q	r	(q A r)	$p \lor (q \land r)$	$\neg (p \lor (q \land r))$	$(p \lor q)$	$(p \rightarrow r)$	$((p \lor q) \land (p \to r))$	$\neg (p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \to r))$
V	V	V	V	V	F	V	V	V	F
V	V	F	F	V	F	V	F	F	V
V	F	V	V	V	F	V	V	V	F
V	F	F	F	V	F	V	F	F	V
F	V	V	V	V	F	V	V	V	F
F	V	F	F	F	V	V	V	V	V
F	F	V	F	F	V	F	V	F	F
F	F	F	F	F	V	F	V	F	F

 $(q \land r) \land es CONJUNCION (Y) Solo es V si ambas son V$

 $p \vee (q \wedge r)$ V es DISYUNCION (O) con que una de las dos sea V entonces ya es V. Solo es F si ambas son F.

 $\neg (p \lor (q \land r))$ NEGACION

 $(p \lor q)$ V es DISYUNCION (O) con que una de las dos sea V entonces ya es V. Solo es F si ambas son F. $(p \to r)$ IMPLICACION solo es F si: V -> F

 $(p \lor q) \land (p \to r)$ \(\text{ \text{of } es CONJUNCION (Y/AND) solo es V si ambas son V}\)

 $(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$ 4.g

р	q	r	$\neg p$	$\neg q$	$(\neg p \leftrightarrow \neg q)$	$(q \leftrightarrow r)$	$(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$
V	V	V	F	F	V	V	V
V	V	F	F	F	V	F	F
V	F	V	F	V	F	F	V
V	F	F	F	V	F	V	F
F	V	V	V	F	F	V	F
F	V	F	V	F	F	F	V
F	F	V	V	V	V	F	F
F	F	F	V	V	V	V	V

 $\neg p$ es NEGACION

 $\neg q$ es NEGACION

 $(\neg p \leftrightarrow \neg q)$ es DOBLE IMPLICACION solo es V si ambas coinciden en su valor

 $(q \leftrightarrow r)$ es DOBLE IMPLICACION solo es V si ambas coinciden en su valor $(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$ es DOBLE IMPLICACION solo es V si ambas coinciden en su valor

4.h

							$(p \to (q \to q))$	$(s) \wedge (\neg r \vee p) \wedge q$	
p	q	r	S	$\neg r$	$q \rightarrow s$	$p \to (q \to s)$	$\neg r \lor p$	$(p \to (q \to s)) \land (\neg r \lor p)$	$(p \to (q \to s)) \land (\neg r \lor p) \land q$
V	V	V	V	F	V	V	V	V	V
V	V	V	F	F	F	F	V	F	F
V	V	F	V	V	V	V	V	V	V
V	V	F	F	V	F	F	V	F	F
V	F	V	V	F	V	V	V	V	F
V	F	V	F	F	V	V	V	V	F
V	F	F	V	V	V	V	V	V	F
V	F	F	F	V	V	V	V	V	F
F	V	V	V	F	V	V	F	F	F
F	V	V	F	F	F	V	F	F	F
F	V	F	V	V	V	V	V	V	V
F	V	F	F	V	F	V	V	V	V
F	F	V	V	F	V	V	F	F	F
F	F	V	F	F	V	V	F	F	F
F	F	F	V	V	V	V	V	V	F
F	F	F	F	V	V	V	V	V	F

 $q \rightarrow s$ IMPLICACION solo es F si: V -> F

 $p \to (q \to s)$ IMPLICACION solo es F si: V -> F $\neg r \lor p$ V es DISYUNCION (O) con que una sea V => es V. Solo es F si ambas son F

4.i

				$\frac{q \land (\neg r \to p)}{(\neg r \to p)}$	
q	r	р	$\neg r$	$(\neg r \rightarrow p)$	$q \wedge (\neg r \rightarrow p)$
V	V	V	F	V	V
V	V	F	F	V	V
V	F	V	V	V	V
V	F	F	V	F	F
F	V	V	F	V	F
F	V	F	F	V	F
F	F	V	V	V	F
F	F	F	V	F	F

 $(\neg r \rightarrow p)$ IMPLICACION solo es F si: V -> F $q \land (\neg r \rightarrow p)$ \land es CONJUNCION (Y/AND) solo es V si ambas son V

 $(p \lor q) \land r$

4.j

р	q	r	$(p \lor q)$	$(p \lor q) \land r$
V	V	V	V	V
V	V	F	V	F
V	F	V	V	V
V	F	F	V	F
F	V	V	V	V
F	V	F	V	F
F	F	V	F	F

_	_	_	_	_
			I E	
Г	Г		F	Г

 $(p \lor q)$ V es DISYUNCION (0) con que una sea V => es V. Solo es F si ambas son F

 $(p \lor q) \land r$ \land es CONJUNCION (Y/AND) solo es V si ambas son V

5. Determine cuál de las proposiciones compuestas siguientes son tautologías y cuáles contradicciones (utilizando tabla de verdad):

5.a

						$(\neg q \land (p \to q)) \to \neg p$
p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \land (p \rightarrow q)$	$\left(\neg q \land (p \to q)\right) \to \neg p$
V	V	F	F	V	F	<mark>V</mark>
V	F	F	V	F	F	<mark>V</mark>
F	V	V	F	V	F	V
F	F	V	V	V	V	V

Es una tautología

 $((p \to q) \land (q \to r)) \to (p \to r)$

p	q	r	$(p \rightarrow q)$	$q \rightarrow r$	$(p \rightarrow r)$	$(p \to q) \land (q \to r)$	$((p \to q) \land (q \to r)) \to (p \to r)$		
V	V	V	V	V	V	V	<mark>V</mark>		
V	V	F	V	F	F	F	<mark>V</mark>		
V	F	V	F	V	V	F	<mark>V</mark>		
V	F	F	F	V	F	F	<mark>V</mark>		
F	V	V	V	V	V	F	<mark>V</mark>		
F	V	F	V	F	V	F	<mark>V</mark>		
F	F	V	V	V	V	V	V		
F	F	F	V	V	V	V	V		

Es tautología

$$\neg (q \rightarrow r) \land r \land (p \rightarrow q)$$

5.c

5.b

p	q	r	$q \rightarrow r$	$\neg(q \rightarrow r)$	$(p \rightarrow q)$	$\neg (q \to r) \land r \land (p \to q)$
V	V	V	V	F	V	F
V	V	F	F	V	V	F
V	F	V	V	F	F	F
V	F	F	V	F	F	F F
F	V	V	V	F	V	<mark>F</mark>
F	V	F	F	V	V	F P
F	F	V	V	F	V	F F
F	F	F	V	F	V	F F

Es una contradicción

5.d $((p \lor q) \land (p \to r) \land (q \to r)) \to r$

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q)$	$((p \lor q) \land (p \to r) \land (q \to r)) \to r$	
						$ \wedge (p \to r) \\ \wedge (q \to r) $		
V	V	V	V	V	V	V	<mark>V</mark>	
V	V	F	V	F	F	F	<mark>V</mark>	
V	F	V	V	V	V	F	V	
V	F	F	V	F	V	F	<mark>V</mark>	
F	V	V	V	V	V	V	<mark>V</mark>	
F	V	F	V	V	F	F	V	
F	F	V	F	V	V	F	V	
F	F	F	F	V	V	F	V	

Es tautología

5.e $p \rightarrow (p \lor q)$ es una tautología

$p \rightarrow$	→ (p v q) es una tautología					
р	q	$p \lor q$	$p \to (p \lor q)$			
V	V	V	V			
V	F	V	V			
F	V	V	V			
F	F	F	V			

5.
f $p \wedge (\neg p \wedge q) \text{ es una contradicción}$

р	q	$\neg p$	$\neg p \land q$	$p \wedge (\neg p \wedge q)$
V	V	F	F	F F
V	F	F	F	F F
F	V	V	V	F F
F	F	V	F	F F

6. Demuestre mediante tabla de verdad, las siguientes leyes del álgebra proposicional

6.a) Negación

p	$\neg p$	$\neg(\neg p)$
V	F	V
F	V	F

6.b) Idempotencia

$$p \wedge p \equiv p$$

Λ es CONJUNCION (Y/AND) Solo es VERDADERA si ambas son VERDADERAS

$$p \lor p \equiv p$$

р	$p \lor p$	<mark>p</mark>
V	V	V
F	F	F

V es DISYUNCION (O) con que una sea VERDADERA, entonces es VERDADERA. Solo es FALSA si ambas son FALSAS

6.c) Asociativa

 $(p \land q) \land r \equiv p \land (q \land r)$

					P 1. (9 1.1)	
p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
V	V	V	V	V	V	V
V	V	F	V	F	F	<mark>F</mark>
V	F	V	F	F	F	<mark>F</mark>
V	F	F	F	F	F	<mark>F</mark>
F	V	V	F	F	V	<mark>F</mark>
F	V	F	F	F	F	<mark>F</mark>
F	F	V	F	F	F	F
F	F	F	F	F	F	<mark>F</mark>

6.d) Conmutativa

			$p \wedge q = q \wedge p$
p	q	<mark>p ∧ q</mark>	$q \wedge p$
V	V	V	V

V	F	<mark>F</mark>	F
F	V	<mark>F</mark>	<mark>F</mark>
F	V	<mark>F</mark>	F F

6.e) Absorción

 $p \lor (p \land q) \equiv p$

		$P \cdot (P \cap Q) = P$	
<mark>p</mark>	q	$p \wedge q$	$p \lor (p \land q)$
<mark>V</mark>	V	V	V
<mark>V</mark>	F	F	V
F	V	F	<mark>F</mark>
F	F	F	F

$$p \wedge (p \vee q) \equiv p$$

6.f) Distributiva

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

р	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
V	V	V	V	V	V	V	<mark>V</mark>
٧	V	F	F	V	V	V	V
٧	F	٧	F	V	V	V	V
V	F	F	F	V	V	V	<mark>V</mark>
F	V	V	V	V	V	V	<mark>V</mark>
F	V	F	F	F F	V	F	F
F	F	٧	F	F	F	V	F
F	F	F	F	F	F	F	F