Seminario 1

Temperatura y Dilatación

1.1. Termometría

Las escalas termodinámicas más utilizadas son:

- Celsius (°C): Basada en los puntos de congelación $(0^{\circ}C)$ y ebullición $(100^{\circ}C)$ del agua.
- Fahrenheit (°F): Usada en EE.UU., con 32°F como congelación y 212°F como ebullición.
- Kelvin (K): Escala absoluta, donde 0K es el cero absoluto.
- Réaumur (°R): Antigua escala con 0°R como congelación y 80°R como ebullición del agua.

La relación entre estas escalas es:

$$\frac{C}{5} = \frac{R}{4} = \frac{F - 32}{9}$$

Problemas

- 1. ¿A qué temperatura coinciden las lecturas de un termómetro en las escalas Celsius (°C) y Fahrenheit (°F)? Asimismo, ¿a qué temperatura coinciden las escalas Fahrenheit y Réaumur?
- 2. Calcular el intervalo de temperatura, expresado en grados Fahrenheit, que corresponde a una diferencia de 55° en la escala Celsius.
 - 3. Sabiendo que el cero absoluto en la escala Kelvin corresponde a $-273,16^{\circ}$ C, determinar:
 - 1. Su equivalente en grados Fahrenheit.
 - 2. El intervalo de temperatura, en la escala Fahrenheit, comprendido entre el cero absoluto y el punto de fusión del hielo.

1.2. Dilatación

La dilatación térmica se expresa en función del cambio de temperatura (ΔT) y el coeficiente de dilatación:

$$L_f = L_o(1 + \alpha \Delta T)$$
 $S_f = S_o(1 + \beta \Delta T)$ $V_f = V_o(1 + \gamma \Delta T)$

Relación entre los coefficcientes de dilatación.

$$\frac{\gamma}{3} = \frac{\beta}{2} = \frac{\alpha}{1}$$

Donde:

- L_f es la longitud final y L_0 la inicial, con α como coeficiente de dilatación lineal.
- S_f es el área final y S_o la inicial, con β como coeficiente de dilatación superficial.
- V_f es el volumen final y V_o el inicial, con γ como coeficiente de dilatación volumétrica.

Problemas

- 1. En el comparador de la figura 1.1 se mide la dilatación de una barra de hierro, de 1 m de longitud a $0^{\circ}C$, obteniéndose para los $50^{\circ}C$ una dilatación de 0.06 cm. Calcular:
 - 1. El coeficiente de dilatación lineal del hierro.
 - 2. Si tiene una sección de $10\,cm^2$ a $0^{\circ}C$, ¿cuáles son su sección y su volumen a $100^{\circ}C$?

Figura 1.1

- 2. La varilla de un reloj de lenteja sin compensar, que bate segundos a $0^{\circ}C$, es de latón. Averiguar cuánto se retrasa el reloj en 1 d si se introduce en un ambiente a $200^{\circ}C$. Coeficiente de dilatación del latón: $\alpha = 17 \times 10^{-6} \, {}^{\circ}C^{-1}$. (Considerar el péndulo como simple, de longitud la misma que la varilla).
- 3. En un tubo de vidrio de sección uniforme, cerrado por su extremo inferior, hay aire encerrado bajo una gota de mercurio. A la temperatura de $20^{\circ}C$ el aire encerrado en el tubo alcanza una altura de 25 cm. ¿Qué altura alcanzará cuando el tubo se calienta a $80^{\circ}C$?
 - **4.** Una vasija de 1l contiene 0.05 moles de hidrógeno a $20^{\circ}C$.
 - 1. Calcular la presión a que se encuentra el gas. Se abre un momento la llave y parte del gas sale a la atmósfera.
 - 2. Calcular la masa de hidrógeno que queda en la vasija, siendo la presión exterior exactamente 1 atm.
 - 3. ¿A qué temperatura se debe calentar el gas que ha quedado, cerrada la vasija, para que la presión recobre el valor que tenía inicialmente?

- 5. Una botella de acero de 10l de capacidad tiene una llave que permite ponerla en comunicación con la atmósfera. La presión exterior es de 76 cm de mercurio y se supone que la botella no se dilata. Averiguar:
 - 1. ¿Cuánto pesa el aire contenido en la botella si su temperatura es de $0^{\circ}C$ y su presión de 114 cm de mercurio, estando cerrada la llave?
 - 2. Sin abrir la llave se calienta la botella hasta $100^{\circ}C$. ¿Cuál será entonces la presión del aire interior?
 - 3. Se mantiene la temperatura a $100^{\circ}C$ y se abre la llave. ¿Cuánto pesará el aire que quede dentro de la botella?
 - 4. Finalmente se cierra la llave y se enfría todo a $0^{\circ}C$. ¿Cuál será entonces la presión del aire interior? Peso específico del aire en condiciones normales: $1{,}293\,g/l$.