REDES DE INFORMACIÓN

PROTOCOLO FRAME RELAY

QUÉ ES FRAME RELAY

- •FRAME RELAY = RETRANSMISION DE CUADRO.
- •ES UNA TÉCNICA DE FAST PACKET SWITCHING.
- •TRABAJA SOBRE ENLACES DE ALTA CALIDAD (MEJOR QUE BER = 10^{-7}). ASOCIADO A LA FIBRA ÓPTICA.
- •FUNDAMENTALMENTE SE USA PARA REEMPLAZAR LÍNEAS PUNTO A PUNTO (DEDICADAS).
- •LAS ESTACIONES TERMINALES DAN: COBERTURA DE ERRORES, CONTROL DE SECUENCIA Y DE FLUJO. NECESITAN UNA MAYOR INTELIGENCIA.
- •LAS INTERMEDIAS RETRANSMITEN.

CARACTERÍSTICAS

•ALTA VELOCIDAD Y BAJA LATENCIA.

•LATENCIA

Es la suma de retardos temporales dentro de una red.

Un retardo es producido por la demora en la propagación y transmisión de paquetes dentro de la red.

Otros factores que influyen en la latencia de una red son:

- El tamaño de los paquetes transmitidos.
- El tamaño de los búferes dentro de los equipos de conectividad.

•.

CARACTERÍSTICAS

- •BASADO EN VC (CIRCUITOS VIRTUALES) DE NIVEL 2 DE TIPO PERMANENTE (PVC).
- •SE IDENTIFICA POR DLCI (DATA LINK CONNECTION IDENTIFIER).
- EL VC ES UNA ASOCIACIÓN LÓGICA DE DLCI(S).
- •EL DLCI TIENE SIGNIFICADO LOCAL.
- ·LA CONMUTACIÓN SE PRODUCE A NIVEL DE FRAME.
- •USO DINÁMICO DEL ANCHO DE BANDA = SE OCUPA CUANDO HAY INFORMACIÓN PARA TRANSMITIR

CARACTERÍSTICAS

- ORIENTADO A TRÁFICO POR RÁFAGAS (TIPO LAN).
- •DEFINE LA INTERFAZ ENTRE CPE (EQUIPO EN LA INSTALACIÓN DEL CLIENTE) Y POP (Point of Presence).
- CPE SON ROUTERS O FRAD (DISPOSITIVO DE ACCESO A FR).
- •POP SON SWITCHES RÁPIDOS QUE OFRECEN PUERTOS DE ACCESO A LA RED FR.
- •NIVEL 2 = LAP D Y LAPF (SUBCONJUNTO DEL LAPD) AMBOS SON VERSIÓN DEL HDLC. PDU = CUADRO

UBICACIÓN RESPECTO AL MODELO OSI

EL MODELO DE REFERENCIA OSI

APLICACION

PRESENTACION

SESION

TRANSPORTE

RED

ENLACE DE DATOS

FISICO

X.25

PAQUETE

LAPB

CAPA FÍSICA

FRAME RELAY

LAPF / LAPD

CAPA FÍSICA

ARQUITECTURA DE PROTOCOLOS EN FR

PLANOS DE OPERACIÓN

DE CONTROL (ESTABLECIMIENTO Y LIBERACIÓN DE CONEXIONES LÓGICAS)

DE USUARIO (TRANSFERENCIA DE DATOS DE USUARIOS)

LAPD (Link Access Protocol for D-channel)

Protocolo de control de enlace de datos para los canales tipo D que son usados para transportar información de control y señalización y que nunca se separan de los canales B que transportan datos de usuario.

Protocolo ITU Q.921.

LAPD (cont.)

CUADRO FRAME RELAY (LAP-F)

1600 a 4096 B

F = FECN (notificación de congestión explícita hacia delante)

B = BECN (notificación de congestión explícita hacia atrás)

DE = elección para descarte

EA = extensión de campo de dirección

C/R = **comando** - **respuesta**

AMPLIACIÓN DEL CAMPO DE DIRECCIÓN

Flag	Address	Information	FCS	Flag
<1>	<>	<>	<>	<1>
octet				

(a) Frame format

(b) Address field - 2 octets (default)

8	7	6	5	4	3	2	1
		Upper	DLCI			C/R	EA 0
	DI	.CI		FECN	BECN	DE	EA 0
Lower	r DL(CI or E	L-CO	RE co	ontrol	D/C	EA 1

(c) Address field - 3 octets

8	7	6	5	4	3	2	1
	Ţ	Upper	DLCI	1		C/R	EA 0
DLCI FECN BECN DE					EA 0		
DLCI						EA 0	
Lower DLCI or DL-CORE control D/O					D/C	EA 1	

(d) Address field - 4 octets

DE

EA Address field extension bit
C/R Command/response bit
FECN Forward explicit congestion
notification
BECN Backward explicit congestion
notification
DLCI Data link connection identifier
D/C DLCI or DL-CORE control indicator

Discard eligibility

CONTROL ERRORES Y DE FLUJO EN FR

•<u>CONTROL DE ERRORES</u>: SOLO DETECCIÓN DE ERRORES (FCS) EN LOS EXTREMOS. CAPAS SUPERIORES SE OCUPAN DE LA CORRECCIÓN.

NO SE LLEVA SECUENCIAMIENTO DE CUADROS (NO SE USA CAMPO DE CONTROL).

• CONTROL DE CONGESTIÓN: MEDIANTE FECN Y BECN.

FECN SE SETEA CUANDO LA CONGESTIÓN ES EN EL MISMO SENTIDO EN QUE VA EL CUADRO.

BECN SE SETEA CUANDO LA CONGESTIÓN ES EN EL SENTIDO CONTRARIO EN QUE VA EL CUADRO.

LOS POP SETEAN ESTOS BITS Y, LOS CPE Y EL ADMINISTRADOR DE LA RED LOS DETECTAN.

• <u>CONTROL DE FLUJO</u>: MEDIANTE DATOS ELEGIDOS PARA DESCARTE (DE).

DEFINICIONES

- •PUERTO: PERMITE EL INGRESO A LA RED. LOS POP PROVEEN VARIOS. LOS PVC NACEN EN LOS PUERTOS.
- •BC (bits): TAMAÑO COMPROMETIDO DE RÁFAGA. CANTIDAD MÁXIMA DE BITS QUE SE TRANSMI-TEN POR UN PVC EN UN INTERVALO DE MEDICIÓN (TC).
- •TC (segundos): INTERVALO DE MEDICIÓN (CON Y SIN ACTIVIDAD).
- BE (bits): TAMAÑO EN EXCESO DE RÁFAGA.
 CANTIDAD NO COMPROMETIDA (MARCAR CON DE)

DEFINICIONES

- •VEL PUERTO (VP) (bps): VELOCIDAD MÁXIMA DE ENTRADA A LA RED FR. RANGO 56-64 Kbps / 1,5-2 Mbps.
- •CIR (bps): VELOCIDAD DE INFORMACIÓN COMPROMETIDA PARA EL PVC EN CONDICIONES NORMALES.
- •EIR (bps): VELOCIDAD DE INFORMACIÓN EN EXCESO.
- \cdot CIR = BC / TC
- \bullet EIR = BE / TC

ALTERNATIVAS DE TRÁFICO POR RÁFAGAS

CIR = VP

100 % CIR

CIR < V P VP= BC+BE / TC 50 % CIR (POR EJEMPLO)

ALTERNATIVAS DE TRÁFICO POR RÁFAGAS

VP > BC + BE / TC

CIR = 0 BC = 0

DES DIR: DESCARTE DIRECTO

<u>INTERFASES Y DISPOSITIVOS DE RED FR</u>

SOBRESUSCRIPCIÓN

- •ASIGNACIÓN DINÁMICA DEL ANCHO DE BANDA A LOS PVC(S) (MULTIPLEXADO ESTADÍSTICO).
- •SUMA DE LOS CIR DE CADA PVC, SUPERE LA VP.

VOZ SOBRE FR

- •VOZ: TOLERANTE A PÉRDIDAS, NO A RETARDOS
- •MENOR QoS, MENOR COSTO (20 A 30 % MENOS) FRENTE A COM TEF CONVENCIONALES.
- •NO ACEPTA RETRANSMISIONES → INTERRUPCIONES
- •APROVECHAR SILENCIOS.
- •USO DE ALGORITMOS DE COMPRESIÓN (PCM, ADPCM) 64, 32, 16, 12, 8 KBPS

VOZ SOBRE FR

- •PRIORIZAR TRÁFICO Y USO DE DLCI PARA VOZ
- •MENOR TAMAÑO DE LOS CUADROS (FRAGMENTACIÓN)
- •RUTAS CON POCOS SALTOS (3 O 4). MENOR RETARDO EN LA RED.
- •FRAD(S) O ROUTERS PARA VOZ Y DATOS.

EJEMPLO DE APLICACIÓN

Voz sobre Frame Relay (VoFR)

FPS - 8

- FRAD y PAD para ocho canales asíncronicos con un solo enlace Frame Relay o X.25 síncronico
- Encapsulado IP sobre redes Frame Relay (RFC 1490) o X.25 (RFC 1356)
- Adaptador de terminal RDSI integrado
- Gestión SNMP mediante la aplicación RADview en una PC o una estación HP OpenView
- Velocidad de datos del enlace síncronico hasta 2 Mbps
- Velocidad de datos del canal asíncronico hasta 115.2 kbps
- Interfaces de enlace síncronico:
 V.24/R5-232, V.35, X.21, R5-530 y V.36
- Puede operar como servidor de terminales

Visite www.rad.com para las últimas actualizaciones

APD-8

FRAD y PAD X.25 para ocho canales

El dispositivo APD-8 es un FRAD y PAD-X.25 que conecta hasta ocho canales asincronicos a una red X.25 o Frame Relay.

Todos los canales son configurados y monitoreados por el agente de gestión de la unidad APD-8. Los canales asincronicos trabajan según los perfiles X.3, X.28 y X.29 o el protocolo SUP. El trádico asincronico se puede empaquetar directamente mediante Frame Relay, o por medio del protocolo X.25 y encapsulado Frame Relay.

El agente de gestión integrado permite configurar el sistema, compilar estadísticas e informes de estado y realizar diagnósticos. Las unidades incluyen un agente SNIMP opcional que hace posible la gestión mediante RADview en una PC o en una estación de trabajo HP Open/view.

El dispositivo APD-8 está disponible como unidad de escritorio y mide 1U (44 mm) de altura. Se pueden montar dos unidades, una allado de la otra, en un bastidor de 19° (48.26 cm).

REDES DE INFORMACIÓN

PROTOCOLO ATM

<u>ATM</u> (MODO DE TRANSFERENCIA ASINCRÓNICO)

RESULTADO DE NUEVAS NECESIDADES, CAMBIOS DEL NEGOCIO DE LAS TELECOM Y DEL TRÁFICO

MONTADO SOBRE REDES ISDN BANDA ANCHA BASADAS EN TECNOLOGÍA SDH.

PERMITEN VELOCIDADES BINARIAS DE MÁS DE 2,4 GBPS POR LA ALTA CALIDAD DE LOS VÍNCULOS.

LA PDU ES LA <mark>CELDA O CÉLULA</mark>. SON DE TAMAÑO FIJO Y PEQUEÑAS (53 BYTES) PERMITEN TRANSPORTAR TODO TIPO DE SERVICIO (VOZ, VIDEO, DATOS, COMBINACIONES).

USA CAPAS DE ADAPTACIÓN PARA INTEGRAR SERVICIOS.

PERMITE CONMUTACIÓN RÁPIDA CON MUY BAJOS RETARDOS.

REDUCCIÓN DE FUNCIONALIDADES EN LOS NODOS Y DELEGACIÓN DE FUNCIONES A LOS EXTREMOS.

PROTOCOLO ORIENTADO A LA CONEXIÓN.

NORMALIZADO POR LA UIT (I.XXXX) Y POR EL FORUM ATM.

PROCESO ATM

CELDA ATM

5 BYTES

48 BYTES

ENCABEZAMIENTO

CARGA

- TAMAÑO FIJO: PROCESAMIENTO SENCILLO.
- TAMAÑO PEQUEÑO: MENOR RETARDO, MEMORIAS MÁS PEQUEÑAS.
- •ENCABEZAMIENTO: INFORMACIÓN DE ENRUTAMIENTO Y PRIORIDAD. IDENTIFICACIÓN DE CELDAS DE UN MISMO CAMINO.
- •<u>CARGA</u>: VIDEO, VOZ O DATOS (TRANSPARENTE DE EXTREMO A EXTREMO).
- •OYM: VA EN LA CARGA.

¿QUÉ TIENE DE ASINCRÓNICO EL ATM?

LAS CELDAS SE TRANSPORTAN SOBRE CANALES SINCRÓNICOS.

ASINCRÓNICO POR:

- •NO ESTAN SINCRONIZADAS CON RESPECTO A NINGUN USUARIO
- •LAS POSICIONES EN EL FLUJO SE ASIGNA POR DEMANDA (TRÁFICO EN RÁFAGAS)

TRAYECTOS Y CANALES VIRTUALES

VC (CANAL VIRTUAL) = FTE CON 1 O MÁS DESTINOS. SIMILAR AL CIRCUITO VIRTUAL DE X.25 Y FRAME RELAY

VP (TRAYECTO VIRTUAL) = VC CON LOS MISMOS DESTINOS. AGRUPA VC EN UNA MISMA UNIDAD FACILITANDO LA GESTIÓN Y LA CONMUTACIÓN.

IDENTIFICADORES

VPI NO SE PUEDEN REPETIR

VCI SE PUEDEN REPETIR

ARQUITECTURA DE PROTOCOLOS ATM

•DE USUARIO: TRANSFERENCIA DE INFO USUARIO Y CONTROLES ASOCIADOS (DE FLUJO Y ERRORES)

•DE CONTROL: CONTROLES DE LLAMADA Y DE CONEXIÓN

PLANOS DE OPERACIÓN

•DE GESTIÓN

•DE PLANO: COORDINACIÓN ENTRE PLANOS Y COMO UN TODO

•DE CAPA: RECURSOS Y PARÁMETROS DE PROTOCOLOS

CAPAS Y SUBCAPAS DE ATM

ALTAS

NIVEL 2

TRAMA DE
APLICACIÓN
AAL
(ADAPTACION ATM)

CARGA DE CELDAS

ATM

NIVEL 1

CELDAS

FISICA

BITS

CONVERGENCIA

SEGMENTACION Y REENSAMBLADO

CONVERGENCIA DE TX

MEDIO FISICO

FUNCIONES DE CAPAS Y SUBCAPAS ATM

Convergencia: Independiza la pila de protocolos que está debajo de ella de las capas superiores. Identificar mensajes, recuperar señal de reloj.

Segmentación y reensamble: Segmentar la información de las capas superiores. Permite manejar cuadros de longitud mayor que las celdas (Ej: LAN). Adapta la información a los 48 Byte, acorde a la clase de servicio que se trate. Reensamblado.

<u>ATM:</u> Multiplexión. Armado de celdas. Introducción y extracción del header. Control de congestiones y ruteos (flujo) en UNI.

Convergencia de Tx: Independiza la velocidad del flujo de celdas de la interfaz física. Convierte el flujo de celdas ATM en flujos de bits.

Medio Físico: Controla las funciones que dependen del medio físico, tipos de cable, conectores, etc. Funciones de bit. Basada en SDH.

CLASES DE SERVICIOS ATM

SERVICIO	VELOCIDAD	ACRÓNIMO	EJEMPLO
DE TIEMPO	CONSTANTE	CBR	CIRCUITO E1
REAL	VARIABLE	rt-VBR	VIDEOCONFERENCIA
	VARIABLE	nrt-VBR	CORREO ELECTRÓNICO MULTIMEDIA
DE NO TIEMPO REAL	DISPONIBLE	ABR	CONSULTAS WEB TRANSMISIÓN RÁFAGAS CON CONOCIMIENTO DE AB
	NO ESPECIFICADA	UBR	FTP EN 2DO PLANO IP (BEST EFFORT)

CAPAS AAL SEGÚN REQUERIMIENTOS DE SERVICIOS

REQUERIMIEN- TO	CLASE A	CLASE B	CLASE C	CLASE D	
TIEMPO ENTRE FUENTE Y DES- TINO	REQUERIDO (SENSIBLE A DEMORAS) rt		NO REQUERIDO (NO SENSIBLE A DEMORAS) nrt		
BIT RATE	CONSTANTE CBR	VARIABLE rt -VBR nrt -VBR			
MODO DE CONEXIÓN	ORIENTADO A LA CONEXIÓN			NO ORIENTADO A LA CONEXIÓN	

AAL 1

AAL 2

AAL 3/AAL 4

AUDIO Y VIDEO S/COMP VIDEO COMP DATOS EN GENERAL

SERVICIO CON MENOR OVERHEAD Y MEJOR DETECCION DE ERRORES AAL 5

EMULACIÓN LAN, FR, ATM, IP SOBRE ATM

ENCABEZAMIENTO DE CELDA

UNI: interfase red – usuario NNI: interfase red - red

GFC: control de flujo genérico

PT: tipo de carga útil (de usuario o de gestión de red / mantenimiento)

CLP: prioridad de pérdida de celda (0=alta, 1=puede descartar la red)

HEC: control de errores de cabecera (detección y a veces corrección error simple) G(x): x8+x2+x+1

MAPEO DE CELDAS ATM

- → Forma en que las celdas son introducidas en contenedores normalizados
 - > SDH
 - > PDH
 - > Estructura de Celdas

CUADRO COMPARATIVO DE TECNOLOGÍAS

	X.25	FRAME RELAY	ATM
NIVELES DE PROTOCOLOS	1,2,3 OSI	1,2 OSI	MEDIO FÍSICO, ATM, AAL
VEL BIN MAX	64 Kbps	2 Mbps O MÁS ACTUALMENTE	622 Mbps Y MÁS (2,4 Gbps)
CONTROL DE ERRORES	DETECCIÓN Y CORRECCIÓN SALTO POR SALTO LAP-B (HDLC)	NODOS INTERME-DIOS RTX. EXTREMOS DETECTAN. CAPAS SUPERIORES CORRIGEN. LAP-F Y LAP-D (HDLC)	SOLO DE EXTREMO A EXTREMO HAY CONTROL DE HEADER DE CELDA (DETECTA Y PUEDE CORREGIR A VECES). CAPAS SUPERIORES CORRIGEN.
SOPORTE COM	RED ANALÓGICA Y DIGITAL BAJA CALIDAD	ISDN MEJOR CALIDAD	B-ISDN ALTA CALIDAD
PDU	TRAMA Y PAQUETE	CUADRO	CELDA O CELULA
LONGITUD DE LA PDU	GRANDE Y VARIABLE (16/1024 B PAQ)	GRANDE Y VARIABLE (1600/4096 B)	PEQUEÑA Y FIJA (53 B)

CUADRO COMPARATIVO DE TECNOLOGÍAS

	X.25	FRAME RELAY	ATM
TIPO DE TRÁFICO MÁS ADECUADO	FILE TRANSFER, BATCH, CORREO ELECTRÓNICO	RÁFAGAS (LAN), VOZ	INFO EN TIEMPO REAL, VOZ, VIDEO, VIDEO- CONFERENCIA
TIPO DE SERVICIO	O. CONEXIÓN	O. CONEXIÓN	O. CONEXIÓN
CONMUTACIÓN	POR SOFTWARE (MAYOR PROCESAMIENTO)	POR SOFTWARE (MENOR PROCESAMIENTO)	POR HARDWARE (MENOR RETARDO)
MULTIPLEXIÓN E IDENTIFICADO- RES	LC (CANAL LÓGICO) VC (CIRCUITO	VC (CIRCUITO VIRTUAL) DLCI	VP (CAMINO VIRTUAL) VC (CANAL

ASIGNACIÓN FIJA

VIRTUAL)

LCI

EFICIENCIA

ASIGNACIÓN POR

DEMANDA

VIRTUAL)

VPI Y VCI

DEMANDA

ASIGNACIÓN POR

COMPARACIÓN DE CONTROL POR NIVELES

FIGURA 1. RED SDH-ATM QUITO

MTU UNIDAD DE TRANSFERENCIA MÁXIMA DE UNA RED

TAMAÑO MÁXIMO DEL CAMPO DE DATOS DE LA PDU DE UNA RED

TECNOLOGÍA DE RED	MTU
ETHERNET	1500 B
FDDI	4470 B
TOKEN BUS	8182 B
TOKEN RING	65535 B
X.25	128 B (N3)
FRAME RELAY	4090 B
ATM	48 B

LAN SOBRE ATM

