Problem 4: Coding 90s in Loot Lists 7 Points

Problem ID: fortnite

Rank: 2

Introduction

Falling out of the <u>battle bus</u>, <u>Fortnite Jonesy</u> drops into the warzone known as <u>Tilted Towers</u>. After <u>cranking 90s</u> and <u>default dancing</u> on the bodies of <u>Ninja</u> and <u>Nick Eh 30</u>, he realizes <u>the storm</u> is setting onto him. <u>Remembering</u> that he has to <u>never back down, never give up</u>, Jonesy decides to rush towards the <u>reboot van</u> outside the storm in order to get a <u>#1 Victory Royale</u>.

Problem Statement

You start with N health and you need to travel a distance of D meters to exit the storm, which continuously damages you at a rate of P health per second.

While inside the storm, you can perform any one of following two actions:

- 1. Run continuously at a rate of S meters per second towards the storm's exit.
- 2. Heal continuously to gain **H** health per second. While healing, you **can't move** and you **still take damage** from the storm.

Find the minimum time needed to exit the storm while keeping your health at or above 0. It's **not guaranteed** that the minimum time will be an integer.

If there is no way to exit while keeping your health at or above 0, output -1.0.

Input Format

The first line of the input contains an integer **T** denoting the number of test cases that follow. Each test case is described in a single line containing five space separated integers denoting:

- N: starting health
- H: healing per second
- **D**: distance to exit storm (in meters)
- S: running speed (in meters per second)
- P: storm damage per second

Output Format

For each test case, output a single number denoting the minimum time needed to get out of the storm alive. This number can be an integer or a decimal.

Your answer must be within an absolute error of 0.1 to be considered correct.

Constraints

Time limit: 1 second
Memory limit: 256 MB

 $1 \le T \le 100$

 $1 \le N \le 100$

 $1 \le \mathbf{H} \le 100$

 $1 \le \mathbf{D} \le 100$

 $1 \le S \le 100$

 $1 \le \mathbf{P} \le 100$

Sample Test Cases

5	
100 15 50 10 10	
20 15 50 10 10	
20 15 50 10 30	
100 15 50 10 20	
42 17 73 9 14	

Sampl	e Outpu	t
-------	---------	---

Download

5
11.0
-1
5.000
31.96296296296

Note that due to rounding, this is one of many possible correct outputs. If there are multiple solutions, you may output any of them.

Sample Explanations

Test Case #1:

Sample Input

The minimum time to exit the storm is achieved by running directly out of the storm. Since you run at a speed of $\mathbf{S} = 10$ meters per second and you need to run $\mathbf{D} = 50$ meters, it takes 5 seconds to escape the storm. This solution works because the health remaining is at or above 0 as you have $\mathbf{N} = 100$ health and the total damage taken would be 50 ($\mathbf{P} = 10$ damage from storm per second * 5 seconds). Thus the minimum time needed is 5 seconds.

Download

Test Case #2:

One possible strategy to exit is to run for 1 second, heal for 3 seconds, run for 1 second, heal for 2 seconds, run for 1 second, heal for 1 second, run for 2 seconds, then exit. The minimum time needed is 11 seconds. Here's a Desmos plot that illustrates this strategy in action:

© 2024 California Informatics Competition

Test Case #3

It is impossible to exit the storm given these values so we print -1.

Test Case #4

This is the same as Test Case #1, but now the damage from the storm $\bf P$ is higher. However, the minimum time to exit the storm is still a straight line out. We still run for 5 seconds, but this time we take 100 damage. However, since we exit the storm as we take 100 damage, this is still the minimum time. Therefore, we return 5.000.