

Rishabh Iyer University of Texas at Dallas

- Learning
 - Store all training examples
- T = S(NI), -.. (NM/YM) J M Train Data point

- Classifying a new point x'
 - Find the training example $(x^{(i)}, y^{(i)})$ such that $x^{(i)}$ is closest (for some notion of close) to x'
 - Classify x' with the label $y^{(i)}$

k-nearest neighbor methods look at the k closest points in the training set and take a majority vote (should choose k to be odd)

k-nearest neighbor methods look at the k closest points in the training set and take a majority vote (should choose k to be odd)

1-NN Example

20-NN Example

- Applies to data sets with points in \mathbb{R}^d
 - Best for large data sets with only a few (< 20) attributes
- Advantages
 - Learning is easy \(\text{No faining}
 - Can learn complicated decision boundaries
- Disadvantages
 - Classification is slow (need to keep the entire training set around) $M \sim 1M^{-1}$ There is in Slow (2) High memory testing
 - Easily fooled by irrelevant attributes

Practical Challenges

- How to choose the right measure of closeness?
 - Euclidean distance is popular, but many other possibilities
- How to pick k?

- Too small and the estimates are noisy, too large and the accuracy suffers
- What if the nearest neighbor is really far away?

Choosing the Distance

- <u>Euclidean distance</u> makes sense when each of the features is roughly on the same scale
 - If the features are very different (e.g., height and age), then Euclidean distance makes less sense as height would be less significant than age simply because age has a larger range of possible values
 - To correct for this, feature vectors are often recentered around their means and scaled by the standard deviation over the training set

Normalization [Mean-Variance Normalization]

Sample mean

$$\widehat{\overline{x}} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

Sample variance (biased)

$$\hat{\sigma}_{k}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{k}^{(i)} - \bar{x}_{k} \right)^{2}$$

$$\chi_{k} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{k}^{(i)} - \bar{x}_{k} \right)^{2}$$

$$\chi_{k} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{k}^{(i)} - \bar{x}_{k} \right)^{2}$$

Min-Max Normalization $n_{k} = mex n_{k}$ $n_{i0} = mio n_{k}$ $n_{i0} = n_{i0}$ $n_{i0} = n_{i0}$

Same Normalization for from 8 fest Xt test Note = Main

Grain

Irrelevant Attributes

Consider the nearest neighbor problem in one dimension

Irrelevant Attributes

Now, add a new attribute that is just random noise...

$$\frac{1 \rightarrow 2 \rightarrow 3}{d_{12}} \leq d_{13}$$

$$\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

$$\frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}}$$

100

- In order to do classification, we can compute the distances between all points in the training set and the point we are trying to classify
 - With m data points in n-dimensional space, this takes O(mn)time for Euclidean distance
 - It is possible to do better if we do some preprocessing on the training data

- k-d trees provide a data structure that can help simplify the classification task by constructing a tree that partitions the search space
 - Starting with the entire training set, choose some dimension, i
 - Select an element of the training data whose i^{th} dimension has the median value among all elements of the training set
 - Divide the training set into two pieces: depending on whether their i^{th} attribute is smaller or larger than the median
 - Repeat this partitioning process on each of the two new pieces separately

- Building a K-D tree from training data:
 - $-\{(1,9), (2,3), (4,1), (3,7), (5,4), (6,8), (7,2), (8,8), (7,9), (9,6)\}$
 - pick random dimension, find median, split data, repeat

- Building a K-D tree from training data:
 - $-\{(1,9), (2,3), (4,1), (3,7), (5,4), (6,8), (7,2), (8,8), (7,9), (9,6)\}$
 - pick random dimension, find median, split data, repeat

Adapted from Victor Lavrenko

K-Dimensional Trees: Inference

- Find NNs for new point (7,4) ← Tox
 - find region containing (7,4)
 - compare to all points in region

Approximate MD

Adapted from Victor Lavrenko

- By design, the constructed k-d tree is "bushy"
 - The idea is that if new points to classify are evenly distributed throughout the space, then the expected (amortized) cost of classification is approximately $O(d \log n)$ operations
- Summary
 - k-NN is fast and easy to implement
 - No training required
 - Can be good in practice (where applicable)

Color: dred, gren, blire, 1- Hot Encoding. [000100-0]