Circuitos Elétricos II

Aula 7

Algumas normas sobre instalações elétricas

- NBR 5410 Instalações elétricas de baixa tensão;
- NBR 14039 Instalações elétricas de média tensão de 1 a 36 kV;
- NBR 5413 Iluminação de interiores;
- NBR 5419 Proteção de estruturas contra descargas atmosféricas.

Dimensionamento de condutores BT

Os fatores básicos que envolvem o dimensionamento de um condutor são:

- tensão nominal;
- frequência nominal;
- potência ou corrente da carga a ser suprida;
- fator de potência da carga;
- tipo de sistema: monofásico, bifásico ou trifásico;
- método de instalação dos condutores;
- natureza de carga: iluminação, motores, capacitores, retificadores etc.;
- distância da carga ao ponto de suprimento;
- corrente de curto-circuito.

Circuitos baixa tensão

- Podem ter isolação de:
 - PVC para 750 V, sem cobertura.
 - PVC ou EPR para 0,6/1,0 kV, com capa de proteção em PVC.
 - XLPE para 0,6/1,0 kV, com capa de proteção em PVC.
- A seção mínima dos condutores elétricos deve satisfazer, simultaneamente, aos três critérios seguintes:
 - Capacidade de condução de corrente ou simplesmente ampacidade.
 - Limites de queda de tensão.
 - Capacidade de condução de corrente de curto-circuito por tempo limitado.

Número de condutores carregados

- O número de condutores a se considerar num circuito é o dos condutores efetivamente percorridos por corrente de acordo com os seguintes critérios:
 - circuitos de corrente alternada:
 - trifásico sem neutro = 3 condutores carregados;
 - trifásico com neutro = 4 condutores carregados;
 - monofásico a 2 condutores = 2 condutores carregados;
 - monofásico a 3 condutores = 2 condutores carregados;
 - duas fases sem neutro = 2 condutores carregados;
 - duas fases com neutro = 3 condutores carregados.
 - circuitos de corrente contínua: 2 ou 3 condutores.
- Quando num circuito trifásico com neutro as correntes são consideradas equilibradas, o condutor neutro não deve ser considerado. Quando for prevista a circulação de corrente harmônica no condutor neutro de um circuito trifásico, este condutor será sempre computado, tendo-se, portanto, quatro condutores carregados. Os condutores utilizados como condutores de proteção não são considerados; os condutores PEN são considerados neutros.

Exemplo

Dimensione os condutores dos circuitos 1 e 2 da instalação a seguir, além do ramal de alimentação (entre quadro de medição e de distribuição). Os circuitos 1 e 2 são monofásicos de 127 V (F+N) e o ramal de alimentação deve ser trifásico de 220 V. Em ambos os casos, os condutores serão embutidos em alvenaria e isolados em PVC. Considere temperatura ambiente de $25^{\circ}C$.

Solução: Método de instalação B1 com dois condutores carregadas para os circuitos 1 e 2 e três condutores para o ramal de alimentação.

Corrente em cada circuito:

- Circuito 1: $I_1 = \frac{\sum P}{V} = \frac{60 + 120 + 400 + 500}{127} \rightarrow I_1 = 8,5 A$
 - Condutor de $0.5 \ mm^2$ já seria o suficiente pelo critério da ampacidade.
- Circuito 2: $I_2 = \frac{\sum P}{V} = \frac{40 + 140 + 220 + 800}{127} \rightarrow I_2 = 9,44 A$
 - Condutor de $0.5 \ mm^2$ já seria o suficiente pelo critério da ampacidade.
- Alimentador: $I_{al} = \frac{\sum P}{V} = \frac{2280}{\sqrt{3} \times 220} \to I_2 = 5,98 A$
 - Condutor de $0.5 \ mm^2$ já seria o suficiente pelo critério da ampacidade.

Quadro de

medição

Carga	Potência (W)		
1	60		
2	120		
3	400		
4	500		
5	40		
6	140		
7	220		
8	800		

Continuação...

Circuito	Carga	Potência (W)	Distância até QD	Produto Wm	Somatório
1	1	60	15	900	32040
	2	120	22	2640	
	3	400	30	12000	
	4	500	33	16500	
2	5	40	25	1000	44540
	6	140	30	4200	
	7	220	37	8140	
	8	800	39	31200	
Alimentador		2280	30	68400	

Pelo critério da queda de tensão:

- Circuito 1: cabo de 2,5 mm^2 terá QT < 3%
- Circuito 2: cabo de $4 mm^2$ terá QT < 3%
- Alimentador: cabo de $\frac{68400}{3} = 22800 \ Wm \rightarrow 4 \ mm^2 \ {\rm ter\'a} \ QT < 2\%$

Pelo critério da seção mínima, considerando que os circuitos serão de iluminação:

- Circuito 1: cabo de 1,5 mm²
- Circuito 2: cabo de 1,5 mm²
- Alimentador: cabo de 1,5 mm²

O condutor de maior seção transversal para cada circuito será:

- Circuito 1: cabo de $2.5 mm^2$.
- Circuito 2: cabo de 4 mm².
- Alimentador: cabo de $4 mm^2$.