Extrapolation von Zeitreihen mit Hilfe von künstlichen neuronalen Netzen am Beispiel von Börsenprognosen

Sebastian Schötteler & Benedikt Hofrichter Matrikelnummer 2429289 & Matrikelnummer 2272198

Technische Hochschule Nürnberg Georg Simon Ohm

4. November 2015

Inhaltsverzeichnis

1	Einleitung	
	1.1 Motivation	
	1.2 Ziel dieser Arbeit	
2	Konzeption	
	2.1 Konzeption der Java-Anwendung	
	2.1.1 Funktionalitäten der Anwendung	
	2.1.2 Mockup der Anwendung	
	2.2 Konzeption des künstlichen neuronalen Netzes	
	2.2.1 Klasse des künstlichen neuronalen Netzes	
	2.2.2 Topologie des künstlichen neuronalen Netzes	
	2.2.3 Lernverfahren des künstlichen neuronalen Netzes	
	2.3 Analyse geeigneter Frameworks zur Erstellung künstlicher neuronaler Netze	
	2.3.1 SNNS	
	2.3.2 JavaNNS	
	2.3.3 Neuroph	
	2.4 Wahl des geeignetsten Frameworks	
3	Umsetzung	
	3.1 Erstellung künstlicher neuronaler Netze	
	3.1.1 4-09-1 – Layer mit Sigmoider Funktion	
	3.1.2 4-09-1 – Layer mit Tanh Funktion	
	3.1.3 4-21-1 – Layer mit Sigmoider Funktion	
	3.1.4 4-21-1 – Layer mit Tanh Funktion	
	3.1.5 Validierung der künstlichen neuronalen Netze	
	3.2 Überführung der künstlichen neuronalen Netze in einer Java-Anwendung	
	3.3 Anpassen der Java-Anwendung	
4	Beschreibung der Anwendung	
_	4.1 Elemente der Anwendung	
	4.2 Zusammenspiel mit dem Framework	
5	Fazit	
	Appendix	
,	6.1 Abbildungsverzeichnis	
	6.2 Tabellenverzeichnis	
	6.2 Literaturrangialaria	

1 Einleitung

- 1.1 Motivation
- 1.2 Ziel dieser Arbeit

2 Konzeption

- 2.1 Konzeption der Java-Anwendung
- 2.1.1 Funktionalitäten der Anwendung
- 2.1.2 Mockup der Anwendung
- 2.2 Konzeption des künstlichen neuronalen Netzes
- 2.2.1 Klasse des künstlichen neuronalen Netzes
- 2.2.2 Topologie des künstlichen neuronalen Netzes
- 2.2.3 Lernverfahren des künstlichen neuronalen Netzes
- 2.3 Analyse geeigneter Frameworks zur Erstellung künstlicher neuronaler Netze
- 2.3.1 SNNS
- 2.3.2 JavaNNS
- 2.3.3 Neuroph
- 2.4 Wahl des geeignetsten Frameworks

3 Umsetzung

- 3.1 Erstellung künstlicher neuronaler Netze
- 3.1.1 4-09-1 Layer mit Sigmoider Funktion
- 3.1.2 4-09-1 Layer mit Tanh Funktion
- 3.1.3 4-21-1 Layer mit Sigmoider Funktion
- 3.1.4 4-21-1 Layer mit Tanh Funktion
- 3.1.5 Validierung der künstlichen neuronalen Netze
- 3.2 Überführung der künstlichen neuronalen Netze in einer Java-Anwendung
- 3.3 Anpassen der Java-Anwendung

4 Beschreibung der Anwendung

- 4.1 Elemente der Anwendung
- 4.2 Zusammenspiel mit dem Framework

5 Fazit

6 Appendix

- 6.1 Abbildungsverzeichnis
- 6.2 Tabellenverzeichnis
- 6.3 Literaturverzeichnis