НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ім І.Сікорського

ФАКУЛЬТЕТ ЕЛЕКТРОНІКИ КАФЕДРА КЕОА

3BIT

ПРО ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ №3

3 КУРСУ

«Аналогова електроніка»

ТЕМА РОБОТИ: «Дослідження польового МДН транзистора з індукованим n-каналом»

ВИКОНАВ: студент гр. Дк-61 Сидорчук Максим

ПЕРЕВІРИВ: доцент Короткий Є.В

1. Побудуємо схему підсилювача на біполярному транзисторі із загальним ємітером

R1=67 кОм

Rк=1 кОм

С1=С2=10 мкФ

R2=17,95 кОм

Rн=3,84 кОм

Було отримано сигнали на вході і виході схеми

2. Визначимо характеристики робочої точки .Для цього відключемо малий змінний сигнал на вході.

Uбе0=0.666 В

Uкe0=2.479

 I_{60} =16.07 MKA

 $I_{K0} = 2.5 \text{ MA}$

3. Виміряємо вхідний опір підсилювача Rвх. Для цього необхідно ввімкнути змінний резистор Rvar. Резистори Rvar і Rвх утворять подільник напруги. І опір треба підлаштувати так щоб напруга подільника напруги була рівна половині живлення.

Rвx=1.043 кОм

4. Виміряйте вихідний опір підсилювача Rвих. Вихідний опір підсилювача вимірюється таким же методом, як і вхідний опір.Спочатку необхідно відключити резистор навантаження від виходу підсилювача і змінюючи напругу на генераторі встановити на виході підсилювача напругу холостого ходу Uxx=1B (або іншу круглу цифру). Після цього до виходу підсилювача необхідно підключити у якості навантаження змінний резистор і обертаючи його ручку (змінюючи опір) необхідно домогтися, щоб напруга яка виділяється на ньому досягла значення половини визначеної раніше напруги холостого ходу Rвих=879 Ом

5. Виміряти амплітудну характеристику підсилювача

Uвх, В	Ивих, В	
3,856	409	
4,85	479,86	
5,1	503,46	
6,5	582,24	
7,82	643,4	
9,15	724,85	
12,12	886,41	
12,12	886,41	

Як видно з графіку, по мірі збільшення Uвх, відбувається лінійне зростання Uвих. Ця залежність описується формулою Uвх = Ku*Uвх Визначемо Uвхmax. Для цього будемо збільшувати напругу до тих пір доки не побачимо спотворення сигналу на виході

Uвхmax=12 мВ

Визначемо Ku=90

6. Для всіх значень вхідного сигналу визначемо вхідний струм і вихідний

Івх, мкА	Івих,	
	мкА	
3,70	106,5104	
4,65	124,9635	
4,89	131,1094	
6,23	151,625	
7,50	167,5521	
8,77	188,763	
11,62	230,8359	

Коеф усиления для многих практических случаев его можно считать постоянным. Однако в действительности его величина зависит от тока коллектора Ki=24

7. Розрахувати параметри підсилювача теоретично. Порівняти розраховані значення зі значеннями, отриманими експериментально.

Формули для розрахунку:

gm= $I\kappa 0/\phi T$;=2.5MA/25MA=0.1

 $KU=-gm\cdot(Rk||RH); =0.1*793=79$ Ku=90

Похибка 14 %

 $KI=KU\cdot RBx/RH=21$ Ki=24

Похибка 13 %

Rвих=Rk;=1000 Rвих=879

Похибка 14 %

Похибка 44 %

 $ri=\beta/gm .=1560$

β=Iκ0/I60=156

Висновок: Була зібрана схема на біполярному транзисторі із загальним емітером. Схема підсилює як струм так і напругу. Спочатку було відключено джерело вхідної змінної напруги і зняли виміри робочої точки спокою. Потім за допомогою потенціометра і двух вольтметрів ми визначили вхідний і вихідний опір. Потім зняли амплітудну характеристику схеми. І за законом побудували залежність струму виходу від струму входа. Потім розрахували теоретичні значення і порівняли з практичними.