See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/233779851

Preparation of [Ru6N] clusters on MgO, K+/MgO, Cs+/MgO, and Al2O3 and the reactivities with H2 and N2

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY · JUNE 1995

DOI: 10.1021/j100025a041

CITATIONS

15

READS

21

2 AUTHORS:

Yasuo Izumi

Chiba University

125 PUBLICATIONS 1,192 CITATIONS

SEE PROFILE

Ken-ichi Aika

Japan Science and Technology Agency (JST)

196 PUBLICATIONS 4,773 CITATIONS

SEE PROFILE

Preparation of [Ru₆N] Clusters on MgO, K⁺/MgO, Cs⁺/MgO, and Al₂O₃ and the Reactivities with H₂ and N₂

Yasuo Izumi* and Ken-ichi Aika*

Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan

Received: January 26, 1995; In Final Form: April 3, 1995\overline{8}

The supported ruthenium clusters [Ru₆N] were prepared on MgO, K⁺/MgO, and Cs⁺/MgO from [Ru₆N(CO)₁₆]⁻ cluster as hydrogenation catalysts, stabilized, and chemically modified by nitrido nitrogen. The characterization and reactivities with H₂ and N₂ were investigated by EXAFS (extended X-ray absorption fine structure) in relation to their catalysis promoted by nitrido nitrogen. The [Ru₆N] cluster unit was found to remain on MgO after heating in vacuum at 813 K (decarbonylated) and in H₂ at 588 K (reaction condition of N₂ hydrogenation), whereas the [Ru₆N(CO)₁₆]⁻ cluster strongly interacted with the Al₂O₃ surface to degrade to [Ru₃] by heating in vacuum at 813 K. The decarbonylated [Ru₆N] framework also remained in H₂ at 588 K on K+/MgO and Cs+/MgO without aggregation or degradation. By changing the Ru loading from 0.48 to 3.9 wt % on MgO, the coordination number $N_{\text{Ru-O}_{\text{su}}}$ (O_{su}, oxygen atom at surface) decreased from 1.2 to 0.3, while the [Ru₆N] cluster unit remained unchanged for samples with Ru loading up to ~ 2.5 wt %. The preferable reaction of [Ru₆N] clusters with MgO(001) flat surfaces was suggested for the sample at 2.5 wt % Ru, but the cluster should have reacted mainly with lower coordination sites of MgO for the sample with lower Ru loading (~ 0.5 wt %). The $r_{Ru-O_{su}}$ was shorter for [Ru₆N] on K⁺/MgO and Cs⁺/MgO (2.00-2.03 Å) than on MgO (2.13 Å), implying that the [Ru₆N] was interacted with O_{su} atoms bonded to K⁺ or Cs⁺ ions to have a direct support effect of basic oxide K+/MgO or Cs+/MgO on catalysis. H-induced structure changes were observed for [Ru₆N]/MgO and [Ru₆N]-Cs⁺/MgO as the reversible changes on bonding distance r_{Ru-Ru} of 0.03 and 0.08 Å, respectively, by the adsorption/desorption of H₂. The adsorption of N₂ was simple adsorption on [Ru₆N] without structural change of [Ru₆N] on MgO or Cs⁺/MgO.

Introduction

Metal clusters as homogeneous (in liquid) and heterogeneous (supported clusters) catalysts are expected to be effective catalysts associated with their multiple metal sites. The specific catalysis has been reported on supported carbido clusters [Ru₆C] and $[Rh_6C]$ on MgO, La₂O₃, SiO₂, Al₂O₃, TiO₂, etc.¹⁻³ Supported [Ru₆C] clusters prepared from [Ru₆C(CO)₁₆Me]⁻ produced oxygenated compounds (MeOH, H2CO, Me2O) from CO + H₂ with high activities and selectivities.³ Supported [Rh₆C] clusters prepared from [Rh₆C(CO)₁₅]²⁻ produced propanal from $C_2H_4 + CO + H_2$ in high selectivities.² Active structures were indicated to be carbido metal hexamers [Ru₆C] and [Rh₆C] by means of EXAFS, and electron donation from carbido carbon to the cluster framework $[M_6]$ (M = Ru, Rh)was suggested to have a chemical effect on catalysis. In relation to the effects of structure on catalysis, reversible expansion/ contraction of the [Ru6C] framework was observed by the adsorption/desorption of CO under in-situ conditions (in CO + H₂ around 523 K).^{1,2,4} These EXAFS results indicated that the expansion of the [Ru₆C] framework facilitated H₂ molecules to access Ru cluster sites covered with CO(a) and to dissociate by elongating the Ru-Ru distance.^{1,2} As a result of this hydrogen activation, the reaction path was switched over from CO-dissociative (CH₄ formation) to CO-associative type (oxygenate formation). Similarly, propanal was selectively formed on CO-covered [Rh₆C] clusters on SiO₂.²

These chemical (electron donation from C) and structural (cluster framework expansion) effects found for supported [Ru₆C] and [Rh₆C] clusters implied the possibility of investigat-

Abstract published in Advance ACS Abstracts, June 1, 1995.

ing new catalyst systems of transition metal + main group element, such as ruthenium carbide or nitride and rhodium carbide or nitride, although studies on these systems were very rare because they cannot exist as bulk in usual thermodynamic conditions. Recently, we reported the catalysis of nitrido-[Ru₆] clusters [Ru₆N(CO)₁₆] on MgO, K⁺/MgO, and Cs⁺/MgO, which retained the hexamer [Ru₆N] unit in the reaction conditions. The interstitial nitrido nitrogen was suggested to promote catalysis through the comparison of activities with other supported clusters and conventional Ru catalysts.⁵ Similar to the framework expansion/contraction of [Ru₆C] clusters by CO adsorption/desorption, expansion/contraction of the [Ru₆N] framework was observed by the adsorption/desorption of hydrogen. These data suggested that the catalyst systems of transition metal (Ru, Rh) + carbon or nitrogen were impossible as bulk, but possible as very small metal particles such as supported hexamer clusters + carbon or nitrogen.

The information about the interactions of supported clusters with H_2 is important in relation to catalysis (hydrogenation), but research on the interactions has been difficult because of the "invisibleness" of hydrogen to most spectroscopies and the instability of supported clusters in reaction conditions of hydrogenation. The hydrogen effect on metal particle structure was investigated for Ir/Al_2O_3 after reduction (427 K) and subsequent heating in vacuum (650 K) by means of EXAFS.⁶ By heating at 650 K, the bonding distance r_{Ir-Ir} and coordination number N_{Ir-Ir} decreased from 2.71 to 2.64 Å (Å = 10^{-1} nm) and from 4.9 to 4.0, respectively. The interaction of Ir clusters with H_2 was not clear due to the change of cluster structure. It was suggested that the cluster structure was transformed from hemispherical to almost flat on the basis of the decrease of N_{Ir-Ir} . The conventional Pd/C (average Pd particle size 35 Å) and Pd/

^{*}To whom correspondence should be addressed. E-mail: yizumi@chemenv.titech.ac.jp.

Al₂O₃ (34 Å) were treated in H₂ at 373 K, and subsequently the ambient gas was switched from H₂ to Ar at the same temperature.⁷ During the desorption of H(a), the $r_{\rm Pd-Pd}$ was decreased from 2.82 to 2.76 Å (Pd/C) and from 2.82 to 2.75 Å (Pd/Al₂O₃) keeping the $N_{\rm Pd-Pd}$ almost unchanged. The palladium hydride PdH_x ($x \sim 0.44$) formation/decomposition on C or Al₂O₃ was suggested compared to α -phase PdH_x ($x \ll 0.6$) and β -phase PdH_x ($x \sim 0.6$) as bulk Pd hydride.

The spectroscopic detection of H(a) was reported by IR (infrared absorption) and NMR (nuclear magnetic resonance). Different from the previous reports on supported metal catalysts, multifold (bridging and 3-fold) H(a) were detected in addition to the on-top H(a) on conventional Ru/MgO and Ru–Cs⁺/MgO at 183 K.⁸ Two peaks were observed for conventional Ru/SiO₂ around -60 ppm in H₂ (1.3-100 kPa) (α) and around -30 ppm (13-100 kPa) (β) by solid ¹H-NMR.⁹ The β peak was implied to be weakly bound H species on Ru particles on the basis of the smaller heat of adsorption (10 kJ mol⁻¹) and larger H/Ru_{surf} ratio (3.3-5.6 at $P_{\rm H_2} = 33-100$ kPa).

In this paper, we report the preparation of [Ru₆N] clusters on MgO, K⁺/MgO, and Cs⁺/MgO compared to that on Al₂O₃ as the first subject. The stability of [Ru₆C] clusters on MgO, La₂O₃, TiO₂, or Al₂O₃ was reported to be due to stabilization of the [Ru₆] framework by carbido carbon, 1,10 and similar stabilization was expected for supported [Ru₆N]. Detailed characterization of supported [Ru₆N] clusters was performed to determine (1) the homogeneity of supported [Ru₆N], (2) the kind of MgO surface sites where [Ru₆N] was attached, the (3) the nature of Ru-O_{su} bonds (O_{su}, oxygen atom at surface), through the EXAFS observations for samples at different Ru wt % and the TPR (temperature-programmed reduction) measurements. Secondly, the reactivities of thus-characterized supported nitrido clusters with H₂ or N₂ were investigated by in-situ EXAFS measurements. These studies on the reactivity with H_2 and N_2 should be closely related with the catalysis (ammonia synthesis) on these nitrido clusters on a molecular level. The detailed discussions on the structures and their changes by the interaction with H₂ or N₂ are reported in this paper. The extension to catalysis is described in the accompanying paper.11

Experimental Section

 $[PPN]^{+}[Ru_6N(CO)_{16}]^{-}$ (1) $(PPN = N(PPh_3)_2)^{12}$ ($[PPN]^{+}Cl^{-}$, Aldrich Chem Co., 97%; NaN3, Wako Pure Chemical Ind., Ltd., >90%; Ru₃(CO)₁₂, Soekawa) was supported on MgO, K⁺/MgO, Cs⁺/MgO, or Al₂O₃ by reaction at 290 K (1 h) in purified THF (tetrahydrofuran, Wako, Special Grade) and the subsequent removal of THF in vacuum. The MgO (surface area 200 m² g⁻¹) was prepared from Mg(OH)₂ (Wako, 99.99%) by heating at 773 K (2 h) in vacuum. A water solution of Cs₂CO₃ (Wako, >95%) or K₂CO₃ (Wako, >99.5%) was impregnated on MgO, followed by treatments in O_2 and then in H_2 at 773 K. The Al_2O (aerosil C) (100 m² g⁻¹) was treated at 623 K (2 h) in vacuum. The loadings of Ru were 2.5 wt % for MgO, K+/ MgO, and Cs⁺/MgO and 1.6 wt % for Al₂O₃ except for the EXAFS experiments at different Ru wt % for MgO (0.48, 2.5, and 3.9 wt %). The experiments at 0.48 and 3.9 wt % Ru were specified in the text, and those without special notation for MgOsupported samples were at 2.5 wt % Ru. The molar ratios Cs⁺/ [Ru₆N] and K⁺/[Ru₆N] were fixed at 12 on the basis of the preliminary activity tests for ammonia synthesis. The supported nitrido-Ru clusters are denoted as [Ru₆N]/oxide.

[PPN]⁺2[Ru₆(CO)₁₈]²⁻ (2) and [NMe₃CH₂Ph]⁺[Ru₆C(CO)₁₆-Me]⁻ (3) ([NMe₆CH₂Ph]⁺Cl⁻, Wako; CH₃I, Wako, Special Grade) were supported on MgO in THF solution in a similar

manner to the case of 1 or ref 1. The supported Ru clusters are denoted as [Ru₆]/MgO and [Ru₆C]/MgO (2.5 wt % Ru). The process of cluster catalyst preparation and transfer was carried out in argon (99.99%) or helium (99.99%). As pretreatment, incipient supported clusters were heated (elevating rate of temperature 4 K min⁻¹) in vacuum at 813 K except for [Ru₆N]—Cs⁺/MgO and [Ru₆N]—K⁺/MgO (heated at 673 K), followed by treatment in H₂ for 1 h (588–773 K).

The EXAFS spectra of the Ru K edge were measured for these supported clusters at the beamline 10B and 6B (2.5 GeV, current 360-260 A) of the Photon Factory in the National Laboratory for High Energy Physics (Proposal No. 93G010) between June 1993 and November 1994. The X-ray was monochronized through a double-crystal monochrometer of Si-(311), and the spectra were obtained in the transmission mode with ionization chambers fitted with argon (I_0) and krypton (I). The energy resolution was ~1 eV at 9 keV, and the photon flux on the sample was $> 10^9$ /s. The sample was transferred to an EXAFS Pyrex cell (0.13 < $\Delta \mu t$ < 0.98 dependent on the Ru wt %) with Kapton films on both sides by using the Schlenk technique from a closed circulating system for sample preparation. The data collection was performed at 30-293 K utilizing a closed cycle refrigerator (Cryo System, LTS-21). The analysis was performed by the program EXAFSH by Yokoyama et al.¹³ The background subtraction was performed by calculating the cubic spline with three blocks, and the obtained function $\mu t(k)$ $-\mu_0 t(k)$ was normalized by using the Victoreen parameter μ_0 - $(\lambda) = C\lambda^3 - D\lambda^4$ to determine $\mu_0 t(k)$ and t. The Fourier transform (FT) of the k3-weighted EXAFS oscillation was carried out over the range of $k_{\min} = 3$ and $k_{\max} = 13-16 \text{ Å}^{-1}$ according to the signal/noise (S/N) of each spectrum. The window function (Hanning function) was multiplied with a k width of $(k_{\text{max}} - k_{\text{min}})/20$ on both ends of the FT k range. The inverse FT was performed in the r range of $r_{min} = 1.3-1.4$ and $r_{\text{max}} = 2.9 - 3.0 \text{ Å}$ multiplied by the window Hanning function with the width 0.1 Å on both ends. The curve-fitting analysis was performed by the method based on the formula of plane wave single-scattering theory, 14 using empirical phase shift and amplitude functions extracted from ruthenium powder for the Ru-Ru bond (metallic), RuO₂ for the Ru-O bond, [RuCl₂- $(CO)_3$ for the Ru(-C-)O bond, cluster 3 (Ru(-C-)Ru bond) for the Ru(-N-)Ru bond, and $Ru_3(CO)_{12}$ (Ru-C bond) for the Ru-C and Ru-N bonds (in the case of N2 adsorbed on supported [Ru₆N] clusters). The parameters for the Ru-Ru bond (cluster) were obtained by subtracting the oscillation of the third shell of the complex $[RuCl_2(CO)_3]_2$ (Ru(-C-)O) from second shell of cluster 1 (Ru-Ru + Ru(-C-)O), taking into account each coordination number. The EXAFS spectra for these reference compounds were taken at room temperature. The residual factor (R_f) was calculated by the following equation:

$$R_{\rm f} = \int |k^3 \chi^{\rm obs}(k) - k^3 \chi^{\rm calc}(k)|^2 dk / \int |k^3 \chi^{\rm obs}(k)|^2 dk$$

in the k region of 4–13 Å⁻¹ (4–12 for [Ru₆N]–Cs⁺/MgO in H₂ and 0.48 wt % [Ru₆N]/MgO because of their worse S/N) for the curve-fitting analysis. The H₂ (99.99%) and N₂ (99.99%) gas were purchased from Toyo Sanso Co., Ltd. The impurities (as molecular content) were less than the following values: H₂O < 10, N₂ < 50, O₂ < 10, CO < 10, CO₂ < 10 ppm and total hydrocabons < 10 ppm (as carbon content) in the H₂ gas, and H₂O < 10, O₂ < 2 ppm, and total hydrocarbons < 1 ppm (as carbon content) in the N₂ gas. The H₂ or N₂ was introduced to the EXAFS sample cell after further purification by passage through a liquid nitrogen trap.

FTIR spectra of supported nitrido clusters were recorded on a FTIR spectrometer (JASCO FTIR-5000) in a quartz IR cell

Figure 1. Ru K edge EXAFS spectra observed at 293 K for $[Ru_6N(CO)_{16}]^-/MgO$ (2.5 wt % Ru). The sample was heated in vacuum (813 K) and in H₂ (588 K): (a) raw spectrum, (b) k^3 -weighted EXAFS oscillation, (c) its associated Fourier transform, and (d) curve-fitting analysis, (—) observed, (- - -) calculated.

with NaCl windows on both sides combined with a closed circulating system. Support oxide disks were treated in the same conditions as powders in the IR cell and impregnated by a drop of a THF solution of cluster 1. The temperature of the IR cell can be maintained at 295–823 K by a coil would around the cell.

Results

Characterization of Supported [Ru₆N] Clusters on MgO, K+/MgO, Cs+/MgO, and Al₂O₃. 1. Incipient Supported Clusters. The EXAFS spectra were observed for incipient $[Ru_6N]/MgO$, $[Ru_6N]-Cs^+/MgO$, and $[Ru_6N]/Al_2O_3$. The obtained coordination numbers N_{Ru-C} and $N_{Ru(-C-)O}$ were 2.5, 2.1, and 2.4-2.5, respectively, by the curve-fitting analysis. Corresponding numbers of carbonyl ligands per cluster would be 15, 13, and 14-15, respectively, in accordance with the total amount of desorbed CO + CO2 in TPD (temperatureprogrammed desorption) measurements up to 813 K separately observed in vacuum (15, 12, and 16 on carbon basis). Although the incipient [Ru₆N] framework was not affected upon supporting on MgO and Cs⁺/MgO judging from the unchanged bonding distances r and N for Ru-Ru (first coordination) and Ru(-N-)Ru (diagonal line of octahedral (O_h) cluster $[Ru_6N]$) bondings, the Ru(-N-)Ru peak around 3.7 Å (phase shift uncorrected) disappeared in the FT of $k^3\chi$ for incipient [Ru₆N]/ Al₂O₃ compared to the FT for unsupported cluster 1 (crystal). This suggested the distortion of the [Ru₆N] framework (the angle $\theta_{Ru-N-Ru}$ was reduced from π)¹⁵ by strong interaction with the Al2O3 surface.

2. Heated and Reduced Clusters. The incipient [Ru₆N]/MgO and [Ru₆N]/Al₂O₃ were heated in vacuum at 813 K (up to the temperature where CO ligands had totally desorbed) and then in H₂ at 588 K. The obtained EXAFS spectra were almost identical after heating and after subsequent H₂ treatment for [Ru₆N]/MgO (Figure 1a,b). Also, the corresponding two spectra were almost identical for [Ru₆N]/Al₂O₃. Therefore, common ruthenium cluster species were suggested for samples with/ without the H₂ treatment at 588 K. The EXAFS spectrum for [Ru₆N]/MgO after heating and in H₂ is shown in Figure 1. A strong peak ascribable to Ru-Ru bonding and a shoulder on the shorter distance side of the Ru-Ru peak were observed (Figure 1c). By the curve-fitting analysis with two waves (Ru-Ru, Ru-O), the coordination number of Ru-Ru bonding $(N_{\text{Ru-Ru}})$ was calculated to be 4.1 with $r_{\text{Ru-Ru}} = 2.62 \text{ Å}$ (Table 1 and Figure 1d), similar to the value for cluster 1 (=4), indicating that the [Ru₆N] unit remained on MgO in H₂ at 588 K. An alternative curve-fitting analysis was performed with one wave (Ru-Ru) or three waves (Ru-Ru, two Ru-O), and the $R_{\rm f}$ values were 6.8 and 2.8%, respectively. In the one-wave fitting (Ru-Ru), the calculated curve did not trace the inversely Fourier-transformed experimental curve in all wavenumber regions. In the three-wave fitting (Ru-Ru, two Ru-O), the fitting was not improved by the addition of one more Ru-O wave to two waves (Ru-Ru, Ru-O). Thus, the analysis with two waves (Ru-Ru, Ru-O) was reasonable with smaller R_€ 2.5% (Table 1). The obtained $N_{Ru-O_{su}}$ (0.5) suggests that one triangle Ru₃ face of the O_h-like [Ru₆N] framework was attached on the MgO surface through three Ru- O_{su} bonds. If the O_h like structure was destroyed to a raftlike structure by the

TABLE 1: Results for the Curve-Fitting Analysis of Ru K Edge EXAFS (Observed at 293 K) for Supported [Ru₆N(CO)₁₆]⁻ Clusters on MgO, K⁺/MgO, Cs⁺/MgO, and Al₂O₃ after Heating in Vacuum (813^a or 673 K^b) and in Hydrogen (588 K)^c

			Ru-F	L u						
support	Ru wt %	N	r^d	ΔE_0^e	$\Delta(\sigma^2)^f$	N	r	ΔE_0	$\Delta(\sigma^2)$	$R_{ m f}$
$\overline{{\sf MgO}^a}$	2.5	4.1	2.62	-7.4	4.0	0.5	2.13	12	-2.2	2.5
K^{+}/MgO^{b}	2.5	3.8	2.63	-14	3.7	0.6	2.00	-13	0.87	5.2
Cs+/MgOb	2.5	$4.0 (\pm 0.6)$	$2.63 (\pm 0.016)$	$-13 (\pm 4)$	$3.6 (\pm 1.2)$	$0.6 (\pm 0.2)$	$2.03 (\pm 0.027)$	$-4.1 (\pm 2.7)$	$0.94 (\pm 0.67)$	$3.2 (\pm 1.6)$
$Al_2O_3^a$	1.6	2.0	2.61	-8.9	0.49	1.9	2.16	1.7	1.9	0.6

^a MgO and Al₂O₃ catalysts heated at 813 K. ^b K⁺/MgO and Cs⁺/MgO catalysts heated at 673 K. ^c K⁺ (or Cs⁺)/[Ru₆N] = 12 in mol ratio. The error (within the 50% increase of R_f) is shown in parentheses. ^d In Å (Å = 10^{-1} nm). ^e In eV. ^f In 10^{-3} Å².

Figure 2. Ru K edge EXAFS spectra observed at 293 K for $[Ru_6N(CO)_{16}]^-/Al_2O_3$ (1.6 wt % Ru). The sample was heated in vacuum (813 K) and in H_2 (588 K). The captions for (a)-(d) are the same as in Figure 1.

interaction with the MgO surface, N_{Ru-Ru} should be smaller than the observed 4.1. Hence, we suppose the formulation [Ru₆N- $(\mu - O_{su})_3$ $(N_{Ru} - O_{su}) = 2.13 \text{ Å}$. The cluster 1 was suggested to interact with the Al_2O_3 surface and be distorted to lose O_h symmetry of the [Ru₆N] framework, as indicated by the disappearance of Ru(-N-)Ru bonding for the incipient cluster (in the previous section). The EXAFS spectra for [Ru₆N]/Al₂O₃ after heating and in H2 are shown in Figure 2, and curve-fitting result is listed in Table 1. The N_{Ru-Ru} decreased to 2.0, and $N_{\text{Ru-O}_{\text{su}}}$ was 1.9. The formation of the trimer [Ru₃(μ_2 -O_{su})₃] cluster was suggested after the fragmentation from hexamer nitrido cluster 1 by strong interaction with the Al₂O₃ surface. The coordination of O_{su} should be μ_2 (coordinate to two Ru atoms) in order to be consistent with $N_{Ru-O_{su}}$ (1.9) taking into account the [Ru₃] cluster size and the population of O_{su} at the Al_2O_3 surface (see the Discussion section).

Also, [Ru₆N]-K⁺/MgO and [Ru₆N]-Cs⁺/MgO heated in vacuum at 673 K showed very little change of EXAFS spectra by subsequent H₂ treatment at 588 K. The EXAFS spectra are

shown in Figure 3 for $[Ru_6N]-Cs^+/MgO$ heated in vacuum at 673 K and in H_2 at 588 K. Corresponding curve-fitting results are listed in Table 1. The result was similar to that for $[Ru_6N]/MgO$, and N_{Ru-Ru} of 3.8 on K⁺/MgO and 4.0 on Cs⁺/MgO suggest retention of the $[Ru_6N]$ unit on K⁺/MgO and Cs⁺/MgO. However, the $r_{Ru-O_{su}}$ values were 2.00–2.03 Å for $[Ru_6N]-K^+/MgO$ and $[Ru_6N]-Cs^+/MgO$, which were shorter by 0.10–0.13 Å than that for $[Ru_6N]/MgO$ (2.13 Å) (Table 1).

3. The Change of $[Ru_6N]$ Cluster Structure and MgO Sites at Different Ru wt %. The EXAFS spectra were also measured for $[Ru_6N]/MgO$ at 0.48 and 3.9 wt % Ru. The EXAFS spectrum of a sample at 0.48 wt % Ru is shown in Figure 4. Compared to the Fourier transform for the 2.5 wt % Ru sample (Figure 1c), the peak around 1.7 Å (Ru-O) (phase shift uncorrected) became stronger, while the peak around 2.3 Å did not show significant change (Figure 4c). The best fit result is listed in Table 2 and shown in Figure 4d. The N_{Ru-Ru} (4.0) suggested that the $[Ru_6N]$ cluster unit was retained also at 0.48 wt % Ru on the MgO surface.

Figure 3. Ru K edge EXAFS spectra observed at 293 K for $[Ru_6N(CO)_{16}]^--Cs^+/MgO$ (2.5 wt % Ru, $Cs^+/[Ru_6N] = 12$ in mol ratio). The sample was heated in vacuum (673 K) and in H_2 (588 K). The captions for (a)-(d) are the same as in Figure 1.

The $N_{\text{Ru-Ru}}$ for [Ru₆N]/MgO at 3.9 wt % Ru was 5.0 with the same $r_{\text{Ru-Ru}}$ (2.62 Å) as for the sample at 2.5 wt % Ru (Table 2). The [Ru₆N] clusters should have aggregated to larger Ru particles similar to [Ru₆N]/MgO (2.5 wt % Ru) in H₂ at 653-773 K ($N_{\text{Ru-Ru}} = 4.9-6.6$, EXAFS). The surface cluster species [Ru₆N] were stable in H₂ or in reaction conditions of N₂ + H₂, but aggregated to larger metal particles in more severe conditions or with larger Ru loadings (Ru \sim 4 wt %). The $N_{\text{Ru-Ru}}$ of [Ru₆]/MgO (without interstitial atom) prepared from non-nitrido cluster 2 was 5.9 in vacuum at 813 K and 6.2 in H₂ at 588 K by EXAFS, indicating the aggregation of the [Ru₆] cluster to larger particles in vacuum at 813 K and/or in H₂ at 588 K in the case of cluster 2 (without nitrido N).

4. TPR Measurements for $[Ru_6N]/MgO$, $[Ru_6N]-Cs^+/MgO$, and $[Ru_6]/MgO$. We studied TPR in H_2 by mass spectroscopy for incipient $[Ru_6N]/MgO$, $[Ru_6N]-Cs^+/MgO$, and $[Ru_6]/MgO$ (Figure 5a). These spectra had common peaks of NH_3 around 510 K, but higher temperature peaks of NH_3 were observed around 660 K only for $[Ru_6N]/MgO$ and $[Ru_6N]-Cs^+/MgO$. As the former desorption temperature (around 510 K) coincided with the disappearing temperature of the IR peak of $[PPN]^+$ (cation of clusters 1 and 2) (1117 cm⁻¹) (Figure 5b), we believe that the peaks around 660 K originated from nitrido N of 1. This TPR result supported the structure $[Ru_6N(\mu-O_{su})_3]$ on MgO, K^+/MgO , and Cs^+/MgO .

The Reactivity of Supported [Ru₆N] Clusters on MgO and Cs⁺/MgO with H₂/N₂. 1. With H₂. The FT of the EXAFS at 193 K for [Ru₆N(μ -O_{su})₃] on MgO in H₂ (76 kPa) slightly shifted to the longer distance side compared to those in vacuum (Figure 1), and the obtained curve-fitting data indicated the change of bond distance of $r_{\text{Ru-Ru}}$ from 2.62 to 2.65 Å with the change of

 $r_{\rm Ru-O_{\rm su}}$ from 2.13 to 2.17 Å by the adsorption of H₂ (Table 3). The sample after evacuation of H₂ at 193 K was very similar to the EXAFS of the initial supported cluster before H₂ introduction (Figure 1), suggesting that this structure change by the hydrogen adsorption/desorption was reversible. The control EXAFS experiment was carried out for [Ru₆N]/MgO in vacuum at 30–193 K. The obtained $r_{\rm Ru-Ru}$ (2.62 Å) at 30 K) in Table 3 was the same as that for [Ru₆N]/MgO in vacuum at 293 K (Table 1), excluding the possibility of the expansion/contraction of the [Ru₆N] cluster framework by cooling/heating.

The reactivity of [Ru₆N]-Cs⁺/MgO with H₂ (76 kPa) was also examined by EXAFS. Compared to $k^3\chi$ observed in vacuum (Figure 3b), we observed a drastic change of EXAFS in H₂ (Figure 6b). In its associated FT (Figure 6c), the bonding distance of the main peak (Ru-Ru) became larger (phase shift uncorrected) than those in vacuum (Figure 3). The r_{Ru-Ru} obtained by curve fitting (Figure 6d) was 2.71 Å for the sample in H₂ (Table 3), longer by 0.08 Å than for the sample in vacuum (2.63 Å, Table 1). Additional analyses were performed by changing the FT range, CF range, N, or r, independently, and also for another EXAFS spectrum of the same sample in the same conditions in order to estimate the errors. The errors for $r_{\text{Ru-Ru}}$ were ± 0.016 and ± 0.015 Å for spectra corresponding to Figures 3 and 6 (Table 1 and 3). Therefore, it is valid to think that the r_{Ru-Ru} change (± 0.08 Å) was induced by hydrogen expansion/contraction.

As a reference, incipient [Ru₆C]/MgO was heated in vacuum and in H₂ at 623 K. The non-nitrido Ru hexamer cluster [Ru₆- $(\mu$ -O_{su})_x] was suggested to be formed from the equimolar desorption data for CH₄¹ and the EXAFS data $r_{\text{Ru}-\text{Ru}}$ (2.63 Å) and $N_{\text{Ru}-\text{Ru}}$ (4.2) (Table 4). The number x should be 3–4

Figure 4. Ru K edge EXAFS spectra observed at 293 K for [Ru₆N(CO)₁₆][−]/MgO (0.48 wt % Ru). The sample was heated in vacuum (813 K) and in H₂ (588 K). The captions for (a)-(d) are the same as in Figure 1.

TABLE 2: Results for the Curve-Fitting Analysis of Ru K Edge EXAFS (Observed at 293 K) for [Ru₆N(CO)₁₆]⁻/MgO at Different Ru wt % (0.48, 2.5, and 3.9 wt %)^a

		R	u-Ru						
Ru wt %	\overline{N}	r^b	ΔE_0^c	$\Delta(\sigma^2)^d$	N	r	ΔE_0	$\Delta(\sigma^2)$	R_{f}
0.48	4.0	2.65	-0.4	4.6	1.2	2.09	4.1	-3.0	4.8
2.5	4.1	2.62	-7.4	4.0	0.5	2.13	12	-2.2	2.5
3.9	5.0	2.62	-9.4	3.5	0.3	2.20	13	-5.0	4.7

^a The samples were treated in the same conditions as in table 1. ^b In Å. c In eV. d In 10^{-3} Å².

judging from $N_{Ru-O_{su}}$ (0.6). In H_2 , the cluster showed no structural change of cluster framework (Table 4).

2. With N_2 . The EXAFS spectrum was observed for [Ru₆N- $(\mu$ -O_{su})₃] on MgO in N₂ (25 kPa) at 193 K. In its FT, a shoulder peak on the lower distance side than Ru-Ru bonding became stronger than in Figure 1c. The data were best fitted with three waves, Ru-Ru, Ru-O_{su}, and Ru-N, with the distances 2.62, 2.13, and 1.95 Å (R_f 1.7%, in Table 3) rather than two waves $(Ru-Ru, Ru-O_{su})$ $(R_f 4.0\%)$. The N_{Ru-N} (0.4) by three-wave fitting suggested two or three on-top N₂(a) or one or two bridging N₂(a) on the Ru cluster because molecular N₂ should not be dissociated at 193 K. The N and r for Ru-Ru and Ru- O_{su} bondings did not change by the adsorption of N_2 (N_{Ru-Ru} = 4.1 ± 0.1 , $r_{Ru-Ru} = 2.62$ Å, $N_{Ru-O_{su}} = 0.5$, $r_{Ru-O_{su}} = 2.13$ Å (Tables 1 and 3).

. The interaction with N_2 (25 kPa) was also examined for [Ru₆N]—Cs⁺/MgO. The curve-fitting analysis with three waves, Ru-Ru, Ru-O_{su}, and Ru-N, improved the fitting compared to two-wave (Ru-Ru, Ru-O_{su}) fitting, especially in the lower k region. The obtained r for Ru-Ru and Ru- O_{su} bondings by three-wave fitting (Table 3) showed slight changes (Δr_{Ru-Ru} = $0.02 \text{ Å}, \Delta r_{\text{Ru-O}_{\text{su}}} = 0.04 \text{ Å})$ compared to the sample in vacuum (Table 1). The r_{Ru-N} was 2.02 Å, larger by 0.07 Å than for $N_2(a)$ on $[Ru_6N]MgO$ (Table 3).

Discussion

Cluster Structures. The [Ru₆N(CO)₁₆] cluster 1 interacted with MgO to form $[Ru_6N(CO)_{16-x}]^{n-}$ $(x \sim 1)$, releasing one CO at room temperature, and transformed to $[Ru_6N(\mu-O_{su})_3]$ (Figure 7) by the decarbonylation in vacuum at 813 K (Figure 1 and Table 1). The attached cluster framework structure did not change by subsequent treatment in H₂ at 588 K or the treatment in N₂ and H₂ at 588 K ($r_{Ru-Ru} = 2.62$ Å, $r_{Ru-O_{su}} =$ 2.13 Å). On Cs⁺-doped MgO and K⁺-doped MgO, the cluster 1 interacted with Cs⁺/MgO or K⁺/MgO to form [Ru₆N- $(CO)_{16-x}]^{m-}$ (x ~ 3-4), releasing three to four CO ligands from the cluster, and transformed to $[Ru_6N(\mu-O_{su})_3]$ (Figure 7) by the evacuation at 673 K and hydrogen treatment at 588 K (r_{Ru-ru} = 2.63 Å, $r_{Ru-Q_{su}}$ = 2.03 Å on Cs⁺/MgO and r_{Ru-Ru} = 2.63 Å, $r_{\text{Ru-O}_{\text{su}}} = 2.00 \text{ Å on K}^+/\text{MgO}$, in Table 1). In contrast, cluster 1 transformed to $[Ru_3(\mu_{-2}-O_{su})_3]$ on Al_2O_3 by the evacuation at 813 K (Figure 7), and the species were very stable in H₂ at 588-773 K (Table 1). This triangle cluster ($r_{Ru-Ru} = 2.61 \text{ Å}$, $r_{\text{Ru-O}_{\text{su}}} = 2.16 \text{ Å}$) should be similar to $[\text{Ru}_3(\mu_2 - \text{O}_{\text{su}})_3]$ on Al₂O₃ prepared from cluster 2 $(r_{Ru-O_{su}}) = 2.06 \text{ Å}).^{1}$ Considering the crystal structures of Al₂O₃ (corundum for α and spinal for γ) and MgO (NaCl-type), the smallest interatomic distances of two O'su atoms at 2.8 Å for Al₂O₃ and 2.98 Å for MgO. Compared to the r_{Ru-Ru} of attached Ru clusters (2.61 Å for Al₂O₃ and 2.62 Å for MgO, Table 1), the obtained $N_{Ru-O_{su}}$ (1.9) for [Ru₃] species on Al₂O₃ can be interpreted only as the μ_2 coordination

Figure 5. Temperature-programmed reduction (TPR) in H_2 for incipient $[Ru_6N(CO)_{16}]^-/MgO$ (♠), $[Ru_6N(CO)_{16}]^--Cs^+/MgO$ (♠), and $[Ru_6(CO)_{18}]^2^-/MgO$ (■): (a) NH₃ desorption monitored by mass; (b) the decrease rate of the IR peak at 1117 cm⁻¹. The heating rate is 4 K min⁻¹.

of three O_{su} atoms. The $N_{Ru-O_{su}}$ (0.5) for $[Ru_6N]$ species on MgO can be understood as three O_{su} atoms coordinated to one triangle face [Ru₃] of the O_b-like [Ru₆N] species as the μ_1 coordination. This coordination style of [Ru₆N] species on MgO was ensured by the Ru wt % dependence of $N_{Ru-O_{su}}$ (see below). The other examples of metal-O_{su} bond distances (2.00-2.83 Å) were summarized in ref 2 for the supported Ru, Rh, Pd, Re, Os, Ir, or Pt clusters, and the distances were classified as either in the range 2.00-2.24 Å or in the range 2.63-2.83 Å. Observed $r_{\text{Ru}-\text{O}_{\text{su}}}$ values for $[\text{Ru}_6\text{N}(\mu\text{-O}_{\text{su}})_3]$ on MgO (2.13 Å), K^+/MgO (2.00 Å), Cs^+/MgO (2.03 Å), or Al_2O_3 (2.16 Å) were within the range 2.00-2.24 Å, similar to other supported Ru, Rh, Re, or Os clusters. In the curve-fitting analyses in Tables 1-3 for N₂-free samples, all the Fourier-filtered $k^3\chi$ were well fitted with two waves (Ru-Ru, Ru-O_{su}). The addition of a Ru-N_{int} (N_{int}, interstitial nitrogen) wave (2.06 Å) was needed to fit the EXAFS of cluster 1 (powder) as the bonding between Ru and Nint. The reason that the additional wave was not needed to fit the experimental data in Tables 1-3 may be electron donation from Nint to [Ru6], as suggested by IR and the distorted framework structure of [Ru₆N] from its O_h symmetry when unsupported.15 Similarly, Ru K edge EXAFS for supported [Ru₆C] was well fitted without a Ru-C_{int} wave probably due to the chemical state of Cint (with less electrons) as a backscattering atom in EXAFS and the distortion of the [Ru₆C] framework.1,2

The dependence of cluster structure on Ru wt % was examined for [Ru₆N]/MgO at 0.48, 2.5, and 3.9 wt % Ru. On the basis of the surface area of MgO (200 m² g⁻¹), $r_{\text{Mg-O}}$ (2.106 Å), and the number of surface OH groups of MgO heated at 773 K (~5 nm⁻²), ¹⁶ the numbers of surface O atom (O_{su}) and

surface OH groups were estimated to be 2.3×10^{21} and 1×10^{21} 10²¹ per gram of MgO, respectively. On MgO, OH groups were observed as a sharp strong peak at 3757 cm⁻¹ in addition to a weaker broad peak around 3614 cm⁻¹ after pretreatment at 773 K, and the peak intensity of these peaks did not change by the interaction with cluster 1 in THF and/or heating in vacuum at 813 K. The number of attached [Ru₆N] clusters was $4.8 \times$ 10^{18} , 2.4×10^{19} , and 4.0×10^{19} per gram of MgO in the case of 0.48, 2.5, and 3.9 wt % Ru samples, respectively. It was difficult to monitor the MgO surface sites which were reacted with [Ru₆N] clusters because the reaction of incipient [Ru₆N- $(CO)_{16-x}$ ⁿ⁻ (partially decarbonylated) with the MgO surface (to form Ru-O_{su} bondings) occurred during heating in vacuum (813 K), accompanying the total decarbonylation. However, the number of surface OH groups was larger by about 30 times than that of [Ru₆N] for the 3.9 wt % Ru sample, and the $N_{\text{Ru}-\text{O}_{\text{Su}}}$ changed very critically with different Ru loadings (Table 2). In this context, we believe the reaction of the cluster is with $O_{\rm su}$, not with OH. As the (001) face is believed to be predominantly exposed for MgO even as a powder, 17 two models of supported $[Ru_6N(\mu-O_{su})_x]$ were proposed on major sites of MgO(001) (Figure 8a) and on fewer sites on MgO(001) with steps (Figure 8b). We think that the [Ru₆N] with low Ru loading (Ru ~ 0.5 wt %) mainly interacted with the lower coordination MgO surface to form $[Ru_6N(\mu-O_{su})_x]$ (x = 5-7), such as in Figure 8b ($N_{Ru-O_{su}} = 0.83$ as a model), on the basis of the obtained $N_{\text{Ru-O}_{\text{su}}}$ by EXAFS (1.2, Table 2). The [Ru₆N] at moderate Ru loading (Ru ~ 2.5 wt %) mainly interacted with relatively flat MgO planes to form $[Ru_6N(\mu-O_{su})_3]$, similar to Figure 8a $(N_{\text{Ru}-\text{O}_{\text{su}}}=0.5 \text{ as a model})$, on the basis of the obtained $N_{\text{Ru}-\text{O}_{\text{su}}}$ by EXAFS (0.5, Table 2). Heterolytic fragmentations of [Ru₆N] by heating in vacuum at 813 K, such as from [Ru₆N] to [Ru₅N] + Ru, seemed improbable on the basis of wavenumbers and the peak pattern of adsorbed CO (in IR) on [Ru₆N]/MgO (heated at 813 K and in H₂ at 588 K) at 0.06 wt % Ru (1978w(sh), 1965s) similar to that at 2.5 wt % (2059w(sh), 2045w(sh), 1992s),¹¹ without specific twin or triple peaks ascribable to surface $Ru(CO)_x$ species. 18-20

The nuclearity of [Ru₆N] on MgO, Cs⁺/MgO, or K⁺/MgO did not change by heating in vacuum or in H₂ probably due to the strong binding of [Ru₆] by nitrido nitrogen on the basis of the experimental facts of the retention of nitrido N below \sim 600 K in H_2 in TPR (Figure 5a) and the N_{Ru-Ru} (about 4) by EXAFS (Tables 1-3). The 100%-raft [Ru₆] on flat MgO(001) cannot explain the observed $N_{\text{Ru-O}_{\text{su}}} = 1.2 \ (r_{\text{Ru-O}_{\text{su}}} = 2.09 \ \text{Å})$ with $N_{\text{Ru-Ru}} = 4.0 \ (r_{\text{Ru-Ru}} = 2.65 \ \text{Å}) \ \text{at } 0.48 \ \text{wt } \% \ \text{Ru} \ (\text{Table 2})$ because the N_{Ru-Ru} should be around 3 for raft [Ru₆]. We believe the selective reaction of O_h -[Ru₆N] with a lower coordination MgO surface at lower Ru loadings was quite probable due to higher reactivity of lower coordination surface sites. The $r_{\text{metal}-O_{\text{su}}}$ distances were 2.09-2.17 Å for [Ru₆N]/ MgO (Tables 2 and 3), 2.00 Å for [Ru₆N]-K⁺/MgO (Table 1), and 2.03-2.07 Å for $[Ru_6N]-Cs^+/MgO$ (Tables 1 and 3). The r_{Ru-O_{su}} distances were shorter on K⁺- or Cs⁺-doped MgO (2.00-2.03 Å) than on alkali-undoped MgO (2.13 Å) after the incipient clusters were heated at 813 or 673 K (Table 1). The distances $r_{Ru-O_{su}}$ for [Ru₆N]/MgO were always longer (2.09-2.20 Å) than $[Ru_6N]-A^+/MgO$ (A = K, Cs) (2.00-2.07 Å) at any Ru wt % and in H₂ or N₂ (Tables 1-3), implying the [Ru₆N- $(\mu$ -O_{su})₃] clusters were coordinated to O_{su} bonded to K⁺ or Cs⁺ ions on K⁺/MgO or Cs⁺/MgO (Figure 7).

Similar to the supported nitrido [Ru₆N] clusters, the carbido clusters 3 transferred to [Ru₆C(μ -O_{su})₃] (r_{Ru-Ru} = 2.63 Å, r_{Ru-O_{su}} = 2.12 Å) on MgO by heating in vacuum at 623 K.^{1,2} By further treatment in H₂ at 623 K, it lost carbido carbon and was

TABLE 3: Results for the Curve-Fitting Analysis of Ru K Edge EXAFS (Observed at 193,^a 100,^b and 30 K^c) for $[Ru_6N(CO)_{16}]^-/MgO$ and $[Ru_6N(CO)_{16}]^-$. Cs^+/MgO in H_2 or N_2^d

	Ru-Ru				Ru-O				Ru-N					
support	gas	N	re	ΔE_0^f	$\Delta(\sigma^2)^g$	N	r	ΔE_0	$\Delta(\sigma^2)$	N	r	ΔE_0	$\Delta(\sigma^2)$	$R_{ m f}$
MgO	vacuum	3.9	2.62	-11	0.36	0.7	2.15	7.0	-0.05				-	4.9
C	H_2^a	4.2	2.65	-7.9	3.6	0.5	2.17	5.2	-1.5					2.3
	N_2^a	4.2	2.62	-9.9	3.0	0.5	2.13	6.8	-3.9	0.4	1.95	-13	10	1.7
Cs+/MgO	H_2^b	$4.0 (\pm 0.5)$	$2.71 (\pm 0.015)$	$-14(\pm 5)$	$3.5 (\pm 0.6)$	$0.6 (\pm 0.2)$	$2.06 (\pm 0.010)$	$1.2(\pm 1.1)$	$-2.1(\pm 2.2)$					$3.8 (\pm 1.9)$
	N_2^a	3.7	2.65	-6.9	5.8	0.7	2.07	6.4	-3.0	0.7	2.02	8.9	4.3	1.9

a MgO catalyst in H2 and N2 and Cs+/MgO catalyst in N2 observed at 193 K. b Cs+/MgO catalyst in H2 observed at 100 K. MgO catalyst in vacuum observed at 30 K. The samples were treated in the same conditions as Table 1. The error (within the 50% increase of R_f) is shown in parentheses, e In Å. f In eV. g In 10^{-3} Å².

Figure 6. Ru K edge EXAFS spectra observed at 100 K for $[Ru_6N(CO)_{16}]^--Cs^+/MgO$ (2.5 wt % Ru, $Cs^+/[Ru_6N] = 12$) in H_2 (76 kPa). The sample was heated in vacuum (673 K) and in H₂ (588 K). The captions for (a)-(d) are the same as in Figure 1.

TABLE 4: Results for the Curve-Fitting Analysis of Ru K Edge EXAFS (Observed at 293^a and 100 K^b) for [Ru₆(µ-O_{su})₃₋₄] on MgO Prepared from [Ru₆C(CO)₁₆Me]⁻ in Vacuum and in H2 at 623 K

		R	lu-Ru						
gas	N	r^d	ΔE_0^e	$\Delta(\sigma^2)^f$	N	r	ΔE_0	$\Delta(\sigma^2)$	R_{f}
vacuum ^a	4.2	2.63	-10	2.2	0.6	2.10	0.7	-0.3	4.2
\mathbf{H}_{2}^{b}	3.7	2.63	-7.9	1.5	0.7	2.11	2.3	-0.5	3.3

^a In vacuum at 293 K. ^b In H₂ at 100 K. ^c The samples were treated in the same conditions as in Table 1. d In Å. e In eV. f In 10⁻³ Å².

transformed to $[Ru_6(\mu-O_{su})_{3-4}]$ $(r_{Ru-Ru} = 2.63 \text{ Å}, r_{Ru-O_{su}} = 2.10 \text{ Å})$ Å) on MgO (Table 4). Corresponding TPR in H₂ for [Ru₆C]/ MgO had a peak of CH₄ around 560 K (carbido C desorbed as CH₄), similar to the peak of NH₃ around 660 K for [Ru₆N]/ MgO and [Ru₆N]-Cs⁺/MgO (Figure 5a). The cluster 2 without an interstitial atom readily aggregated to larger Ru particles on

MgO during the evacuation at 813 K and/or subsequent H₂ treatment at 588 K ($N_{Ru-Ru} = 5.9-6.2$). Thus, nitrido N (or carbido C) was suggested to maintain the [Ru₆] cluster framework by binding from the inside even at high temperatures or in H₂.

Cluster Structure Changes in H₂ or N₂. In the EXAFS measurements in H_2 or N_2 , a drastic change of $k^3\chi$ was observed for [Ru₆N]-Cs⁺/MgO in H₂ (Figure 6 and Table 3) compared to no change in vacuum at 30-293 K (Tables 1 and 3). Smaller changes of $k^3\chi$ (and the fitted values) were observed for [Ru₆N]/ MgO by the introduction of H₂ (Table 3). It should be noted that initial EXAFS spectra in vacuum were reproduced by the evacuation for these two cases in H2, indicating these EXAFS changes by the adsorption/desorption of H_2 were reversible.

The causes of the spectral changes in H₂ or N₂ were classified as (1) simple adsorption of gas and (2) adsorption-induced structure changes of cluster framework (Δr_{Ru-Ru}) and cluster/

Figure 7. Structures of supported clusters on MgO, K^+/MgO , Cs^+/MgO , and Al_2O_3 prepared from $[Ru_6N(CO)_{16}]^-$. The samples were heated in vacuum (813 or 673 K) and in H_2 (588 K).

Figure 8. Structure models for [Ru₆N] clusters on MgO: (a) on flat MgO face; (b) on stepped MgO face. Average $N_{\rm Ru-O_{su}}$ are 0.5 and 0.83 in model structures (a) and (b), respectively. The $r_{\rm Ru-O_{su}}$ are based on EXAFS data in Table 2 (2.13 for (a) and 2.09 Å for (b)). Only Ru₃ triangle faces of [Ru₆N] are drawn for clarity.

support interface ($\Delta r_{Ru-O_{su}}$). The adsorption of N₂ should be simple nondissociative adsorption. Examples are reported for the distance $r_{\text{metal}-N}$ for adsorbed N₂ on metal catalysts or N₂coordinated organometallic complexes. The r_{Ni-N} were reported to be 1.91-1.94 Å for π -coordinated N₂ in [(PhLi)₆Ni₂N₂- $(Et_2O)_2]_2$. The r_{V-N} were reported to be 1.832–1.833 Å for nearly straight V-N-N-V bonding in $(\mu_2-N_2)[\{(o-Me_2NCH_2)-(o-Me_2NCH$ C_6H_4 $_2V(Py)$ $_2(THF)_2$.²² The r_{Ti-N} were reported to be 1.857– 2.181 Å for μ_3 -N₂ in $(\mu_3$ -N₂)[$(\eta^5:\eta^5$ -C₁₀H₈) $(\eta$ -C₅H₅)₂Ti₂]•[$(\eta^1:\eta^5)$ η^5 -C₅H₄)(η -C₅H₅)₃Ti₂]•[(η -C₅H₅)₂(C₆H₁₄O₃)Ti]•C₆H₁₄O₃.²³ The r_{Ru-N} were 1.95-2.02 Å for $N_2(a)$ on $[Ru_6N]/MgO$ and $[Ru_6N]$ -Cs⁺/MgO (Table 3). The adsorptions of molecular N_2 were not accompanied by the expansion/contraction of cluster framework [Ru₆N], keeping the r_{Ru-Ru} (almost) unchanged for $[Ru_6N]/MgO$ (2.62 Å) and for $[Ru_6N]-Cs^+/MgO$ (2.64 \pm 0.01 A) (Table 3).

The adsorption of H_2 must be accompanied by adsorption-induced structure changes of cluster framework [Ru₆N]. The $r_{\text{Ru-Ru}}$ changes from 2.62 to 2.65 Å for [Ru₆N]/MgO and from 2.63 to 2.71 Å for [Ru₆N]-Cs⁺/MgO (Table 3) by the adsorption of hydrogen. These H-induced structure changes also induced smaller changes of cluster/support interface; the $r_{\text{Ru-Osu}}$ changed from 2.13 to 2.17 Å for [Ru₆N]/MgO and from 2.03 to 2.06 Å for [Ru₆N]-Cs⁺/MgO (Table 3). The changes of $r_{\text{Ru-Ru}}$ (1.1 % for [Ru₆N]/MgO and 3.0% for [Ru₆N]-Cs⁺/MgO) are smaller than the [Ru₆C] framework expansion/contraction induced by CO (9.1%) for [Ru₆C]/MgO and [Ru₆C]/La₂O₃ (5.7%) and comparable to that induced by CO for [Ru₆C]/Al₂O₃ (1.5%).^{1,2}

The H-induced structure change of the Ru(0001) surface was monitored by VLEED (very low-energy LEED (low-energy electron diffraction)).²⁴ It was found that the first layer Ru array expanded by 1.7% in the [1100] direction and by 0.9% in the [0001] direction by H adsorption (T_{ad} < 72 K). The other examples of H-induced structure change were reported for Co, Ni, Pd, Mo, and W single-crystal surfaces.²⁵ The expansions of r_{Pd-Pd} on conventional Pd/C and Pd/Al₂O₃ by hydride or carbide formation were reported by means of EXAFS.7 The r_{Pd-Pd} increased by 2.0 and 2.4% with hydride formation and by 1.2 and 0.3% with carbide formation for Pd/C and Pd/Al₂O₃, respectively. The expansion of r_{Pd-Pd} of Pd/ZrO₂ by carbide formation was mesured during the CO disproportionation by XRD (X-ray diffraction).²⁶ The carbon was incorporated up to 15 atom % in Pd, and the r_{Pd-Pd} was linearly increased by up to 2.6%. The change of r_{Ru-Ru} ($\Delta = 0.08$ Å, 3.0%) for our [Ru₆N]-Cs⁺/MgO (Table 3) was larger than the above Hinduced reconstruction of Ru(0001) surface (0.9-1.7%) or "hydrogen-absorptive" or "carbon-absorptive" supported Pd catalysts (0.3-2.6%). This large expansion of the [Ru₆N] framework may be due to the fact that all the Ru atoms of $[Ru_6N(\mu-O_{su})_3]$ were exposed and able to interact with H(a). The adsorbed amount of hydrogen atoms were three to four on [Ru₆N]/MgO at 185 K and five to six on [Ru₆N]-Cs⁺/MgO at 77 K.11

The catalytic effect of $[Ru_6C]$ expansions of $[Ru_6C]/Al_2O_3$, $/La_2O_3$, or /MgO induced by CO was discussed and summarized to afford enough space on $[Ru_6C]$ framework to dissociate H_2 molecules, and CO-associative oxygenate compounds were selectively produced on the expanded $[Ru_6C]$.^{1,2} The catalytic effects of $[Ru_6N]$ expansion/contraction of $[Ru_6N/MgO]$ and $[Ru_6N]$ -Cs⁺/MgO induced by hydrogen adsorption/desorption are described in the accomanying paper.

Conclusions

- 1. Supported [Ru₆N(μ -O_{su})₃] clusters were prepared on MgO, K⁺/MgO, or Cs⁺/MgO from [Ru₆N(CO)₁₆]⁻ clusters (2.5 wt % Ru). The cluster [Ru₆N(CO)₁₆]⁻ was cleaved to the trimer [Ru₃(μ ₂-O_{su})₃] on Al₂O₃ by heating at 813 K. These clusters were stable in H₂ at 588 K.
- 2. The $r_{Ru-O_{su}}$ were in the range 2.09–2.17 Å for [Ru₆N]/MgO, and they were shorter (2.00–2.07 Å) for [Ru₆N]–K⁺/MgO and [Ru₆N]–Cs⁺/MgO. The [Ru₆N] was implied to be reacted with three O_{su} atoms bonded to K⁺ or Cs⁺ ions on K⁺/MgO and Cs⁺/MgO.
- 3. The [Ru₆N] was suggested to inteact with lower coordination sites of the MgO surface, such as step sites, on the basis of the increase of $N_{\text{Ru-O}_{\text{su}}}$ when the Ru loadings were changed from 2.5 to 0.5 wt %.
- 4. The expansion and contraction of the [Ru₆N] framework were observed by the hydrogen adsorption and desorption for [Ru₆N]/MgO ($\Delta r_{\text{Ru-Ru}} = 0.03$ Å) and [Ru₆N]-Cs⁺/MgO ($\Delta r_{\text{Ru-Ru}} = 0.08$ Å). This expansion/contraction of the [Ru₆N] framework was found to be reversible.
- 5. N₂ was adsorbed on [Ru₆N]/MgO and [Ru₆N]-Cs⁺/MgO at 193 K at $r_{Ru-N} = 1.95-2.02$ Å observed by EXAFS without structural modifications of the [Ru₆N] framework.

References and Notes

- Izumi, Y.; Chihara, T.; Yamazaki, H.; Iwasawa, Y. J. Phys. Chem. 1994, 98, 594.
 - (2) Izumi, Y.; Iwasawa, Y. Chemtech 1994, July, 20.
- (3) Izumi, Y.; Chihara, T.; Yamazaki, H.; Iwaswa, Y. J. Chem. Soc., Chem. Commun. 1992, 1395.
- (4) Izumi, Y.; Chihara, T.; Yamazaki, H.; Iwasawa, Y. J. Am. Chem. Soc. 1993, 115, 6462.

- (5) Izumi, Y.; Aika, K. Chem. Lett. 1995, 137.
- (6) Kamper, F. W. H.; Koningsberger, D. C. Faraday Discuss. Chem. Soc. 1990, 89, 137.
 - (7) McCaulley, J. A. J. Phys. Chem. 1993, 97, 10372.
- (8) Izumi, Y.; Hoshikawa, M.; Aika, K. Bull. Chem. Soc. Jpn. 1994, 67, 3191.
- (9) Bhatia, S.; Engelke, F.; Pruski, M.; Gerstein, B. C.; King, T. S. J. Catal. 1994, 147, 455.
- (10) Izumi, Y.; Liu, T.; Asakura, K.; Chihara, T.; Yamazaki, H.; Iwasawa, J. Chem. Soc., Dalton Trans. 1992, 2287.
 - (11) Izumi, Y.; Aika, K. J. Phys. Chem. 1995, 99
 - (12) Blohm, M. L.; Gladfelter, W. L. Organometallics 1985, 4, 45.
- (13) Yokoyama, T.; Hamamatsu, H.; Ohta, T. Analysis Program EXAFSH2; The University of Tokyo, 1994.
- (14) Teo, B. K. EXAFS: Basic Principles and Data Analysis; Springer: Berlin, 1986.
- (15) Binsted, N.; Cook, S. L.; Evans, J.; Greaves, G. N.; Price, R. J. Am. Chem. Soc. 1987, 109, 3669.

- (16) Tailored Metal Catalysts; Iwasawa, Y., Ed.; Reidel: Dordrecht, The Netherlands, 1986; p 16.
 - (17) Henrich, V. C. Rep. Prog. Phys. 1985, 48, 1481.
 - (18) Robbins, J. L. J. Catal. 1989, 115, 120.
 - (19) Dalla Betta, R. A. J. Phys. Chem. 1975, 79, 2519.
 - (20) Brown, M. F.; Gonzalez, R. D. J. Phys. Chem. 1976, 80, 1731.
 - (21) Kruger, C.; Tsay, Y. Angew. Chem., Int. Ed. Engl. 1973, 12, 998.
- (22) Edema, J. J. H.; Meetsma, A.; Gambarotta, S. J. Am. Chem. Soc. 1989, 111, 6878.
- (23) Pez, G. P.; Apgar, P.; Crissey, R. K. J. Am. Chem. Soc. 1982, 104, 482.
 - (24) Held, G.; Pfnür, H.; Menzel, D. Surf. Sci. 1992, 271, 21.
 - (25) Christmann, K. Surf. Sci. Rep. 1988, 9, 1.
 - (26) Maciejewski, N.; Baiker, A. J. Phys. Chem. 1994, 98, 285.

JP9502767