Conservation analysis of genome-scale biochemical networks

Nick Henderson, Ding Ma, Yuekai Sun, and Michael Saunders

Conservation analysis

Goal: find subgroups conserved by biological systems

- Examples:
 - adenine nucleotide moiety (ADP, ATP, AMP)
- ► NAD/NADH
- CoA/Acetyl-CoA
- An important preliminary step in
- evaluating drug targets
- analyzing the transient behavior of biochemical networks

Finding rank(S) and null(S^T) S = stoichiometric matrix

Conservation analysis reduces to finding rank(S) and null(S^T):

$$0 = \frac{d}{dt} \{z^T c(t)\} = z^T \frac{dc(t)}{dt} = z^T Sv(t)$$

z is a conserved moiety (group of chemical species) Need $S^Tz = 0$

Also part of conservation analysis:

- Partitioning the rows (species) of S into dependent and independent rows (species)
- Computing a link matrix that describes the relations among the concentrations of dependent and independent species

Models 9, 10, 11

rank(S) by SVD Matlab

Singular value decomposition $S = UDV^T$

- ▶ Ideal for rank-estimation but *U*, *V* are dense
- ▶ model 9 (Recon1) 2800 × 3700 17 secs
 model 10 (ThMa) 15000 × 18000 11 hours
 model 11 (GlcAer) 62000 × 77000 ∞

rank(S) by QR SPQR

Householder QR factorization SP = QR

- $P = \text{col perm } Q^TQ = I R \text{ diagonal } \text{rank}(S) = \text{rank}(R)$
- Nearly as reliable as SVD
- ► Dense QR used by Vallabhajosyula, Chickarmane, Sauro (2005)
- ► Sparse QR (SPQR) now available: Davis (2013)
- model 9 (Recon1) 2800 × 3700 0.1 secs
 model 10 (ThMa) 15000 × 18000 2.5 secs
 model 11 (GlcAer) 62000 × 77000 0.2 secs(!)

rank(S) by LDU

LUSOL

Sparse LU with Threshold Rook Pivoting $P_1SP_2 = LDU$

- ► $P_1, P_2 = \text{perms}$ D diagonal rank(S) $\approx \text{rank}(D)$ L, U well-conditioned
- ► $L_{ii} = U_{ii} = 1$ $|L_{ij}| \text{ and } |U_{ij}| \le \text{factol} = 4 \text{ or 2 or 1.2, 1.1, ...}$
- LUSOL: Main engine in sparse linear/nonlinear optimizers MINOS, SQOPT, SNOPT
- model 9 (Recon1) 2800 × 3700 0.1 secs
 model 10 (ThMa) 15000 × 18000 4.0 secs
 model 11 (GlcAer) 62000 × 77000 158 secs

References

- ► T. A. Davis (2013). Algorithm 9xx: SuiteSparseQR, a multifrontal multithreaded sparse QR factorization package, *ACM TOMS*
- ▶ P. E. Gill, W. Murray, M. A. Saunders (2005). SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM Review 47(1):99–131 (includes description of LUSOL)
- N. W. Henderson (2013).
 - Matlab interface to LUSOL, https://github.com/nwh/lusol/tree/master/matlab

SVD, SPQR, LUSOL on S

SOL	Sparse $Ax \approx b$		S matrices		$rank(\mathcal{S})$		SQOPT, SNOP		T PDCO)	Conclusion
		l m	n	r	ank(S)					ı	time	9
	model			SVD			nnz(S)	nnz(Q)	nnz(R)	İ		SPQR
	Recon1	2766	3742	2674	2674		14300	2750	21093		17.5	0.1
	ThMa	15024	17582	14983	14983		326035	844096	10595016	-	11hrs	2.5
	GlcAer	62212	76664	?	62182		913967	1287	916600	1	infty	0.2
		factol =	= 2.00	S	= LDU							
	model	m	n	r	ank(S)	1	nnz(S)	nnz(L)	nnz(U)		time	
	Recon1	2766	3742		2674	1	14300	4280	16463	١	0.1	
	${\tt ThMa}$	15024	17582		14983		326035	30962	346122		4.1	
	GlcAer	62212	76664		62182		913967	635571	1810491		186.2	
		factol =	= 4.00	S	= LDU							
	model	l m	n	r	ank(S)		nnz(S)	nnz(L)	nnz(U)	I	time	
	Recon1	2766	3742		2674		14300	2701	12896		0.1	
	ThMa	15024	17582		14983		326035	36350	330485		4.0	
	GlcAer	62212	76664		62182		913967	427456	1584188		157.9	
aunders et al.: Software tools for bioinformatics					BMES Sep 25-28, 2013							

SVD, SPQR, LUSOL on S^T

SOL	Sparse $Ax \approx b$		S matrices		rank(S)		SQOPT, SNOPT		PDCO)	Conclusio	
		l	m	n	ra						l	time	
	model				SVD	SPQR	 	nnz(S)	nnz(Q)	nnz(R)	 	SVD	SPQR
	Recon1	1	3742	2766	2674	2674	1	14300	107935	36929		17.2	0.1
	ThMa		17582	15024	14983	14983		326035	624640	605888		11hrs	0.7
	GlcAer	1	76664	62212	?	62182	1	913967	3573696	4038988	1	infty	2.7
		fa	actol =	2.00	s,	= LDU							
	model	1	m	n	ra:	nk(S')	1	nnz(S)	nnz(L)	nnz(U)		time	
	Recon1	1	3742	2766		2674		14300	12832	7421		0.3	
	${\tt ThMa}$		17582	15024		14983		326035	501198	358601		37.8	
	GlcAer	1	76664	62212		62182	1	913967	1996892	709448	1	586.0	
		fa	actol =	4.00	s,	= LDU							
	model		m	n	ra:	nk(S')	1	nnz(S)	nnz(L)	nnz(U)		time	
	Recon1		3742	2766		2674		14300	9811	6093		0.2	
	${\tt ThMa}$		17582	15024		14983		326035	410290	355475		14.8	
	GlcAer	1	76664	62212		62182	1	913967	1823067	711906	1	791.2	
aunder	s et al.: So	ftwa	are tools fo	r bioinform	atics			BMES	Sep 25–28, 2	013			24,

Funding

DOE DE-FG02-09ER25917 NIH U01-GM102098

