1 Équations aux différences

EDO vs Equation aux différences

$$\frac{dy(t)}{dt} = ay(t) \to y(t+1) = (a+1)y(t)$$

1.1 Polynôme caractéristique

On pose le polynôme en fonction du "décalage" de la valeur

$$y(k+1) - 1.1y(k) = 0 \longrightarrow \lambda - 1.1 = 0$$

De manière plus générale

$$y(k+n) + a_{n-1}y(k+n-1) + \dots + a_0y(k) = 0$$

Va donner

$$\lambda^{k+n} + a_{n-1}\lambda^{k+n-1} + \dots + a_0\lambda^k = 0$$

Et si on divise par λ^k

$$\lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0\lambda = 0$$

1.2 Équations aux différences \longrightarrow Équation différentielle

On utilise la formule de la dérivée (pour un h petit)

$$u'(x) = \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} = \lim_{h \to 0} \frac{u(x) - u(x-h)}{h}$$

1.3 Solutions générales

$$y(k+1) = ay(k) \qquad \longrightarrow y(k) = a^k$$

1.3.1 Exemple EDO

$$\frac{dy}{dt} = ay \to y(t) = Ce^{at}$$

$$y(0) = Ce^{a \cdot 0} = Ce^{0} = C$$

$$y(t) = y(0)e^{at}$$

$$\frac{d^{2}y}{dt^{2}} + \omega^{2}y = 0$$

$$my'' = -ky$$

$$\lambda^{2} + \frac{k}{m} = 0 \to \lambda = \pm j\sqrt{\frac{k}{m}} = \pm j\omega$$

$$y(t) = C_1 e^{j\omega t} + C_2 e^{-j\omega t} = Asin(\omega t) + Bcos(\omega t)$$