Expt 6 – Opamp Amplifiers

EE 230 Analog Circuits Lab Joseph John 2021-22/I

Summary

Part A - Intro to General Purpose Opamps and LM 741

Part B – Inverting Amplifier Configuration

Part C – Non-inverting Amplifier Configuration

Part D – Single-Opamp Difference Amplifier

Part A - Intro to General Purpose Opamps and LM 741

DC Open-loop gain: 2x10⁵ V/V

Open-loop input resistance: $2 M\Omega$

Slew rate : $0.5 \text{ V/}\mu\text{s}$

Open-loop cut-off frequency: 5 Hz

Open-loop Output resistance : 75 Ω

CMRR (= A_d/A_{cm}) : 90 dB

Typical Parameters of 741 General Purpose Opamp

Part B – Inverting Amplifier Configuration

Part B – Inverting Amplifier Configuration

- Major features (as a Voltage Amplifiers)
- $R_{in} = R_1$
- R_{out} very low
- Not a good Voltage Amp (due to lower R_{in})
- Limited Voltage gain due to limitation on R₁
- Phase inversion between V_{in} and V_{out}

A Special Inverting Amplifier

$$\frac{V_{out}}{V_{in}} = \frac{-R_2}{R_1} \left(1 + \frac{R_4}{R_2} + \frac{R_4}{R_3} \right)$$

- Expt 6 circuit values:
- $R_1 = R_2 = R_4 = 1 M\Omega$, $R_3 = 120 k\Omega$
- $R_1 = R_2 = R_4 = 1 M\Omega$
 - R₁ chosen high to take care of the R_{in} issue of the standard inverting amplifier
- High voltage gain possible
 - Expt 6: $|A_{v}| = 10.3$

A good choice as a voltage amp

Opamp based Weighted Summer

Resistive Summer Circuit

- Problems
- Weights are coupled
 - Contribution of V₁ affected by weightage of V₂
- Quite cumbersome to design
 - For more than 2 inputs
- No possibility of gain

Opamp based Weighted Summer

- Problems
- Weights are independent
 - Contribution of V₁ depends only on its weightage
- Very easy to design
 - For any number of inputs
- Voltage gain possible

- Experiment
- $R_1 = R_2 = 6.8 \text{ k}\Omega$,
- $R_F = (6.8 k\Omega + 6.8 k\Omega)$
- V₁ = a unipolar sinewave (Max 5 V and Min 0 V);
- $V_2 = -2.5 \text{ V dc}$

Vout : 5 sin ωt

Part C – Non-inverting Amplifier

Non-inverting Amplifier

- Major features (as a Voltage Amplifiers)
- R_{in} very high
- R_{out} very low
- Choice of R₁ and R_F
 - Based on input bias current
- Excellent voltage amplifier

Closed-loop Gain, A_f

$$A_f = \frac{A}{1 + A\beta}$$

A_f of an Non-inv amp

Source: Microelectronic Circuits – 7e, Sedra & Smith, Chap 11

Part D – Difference Amplifier

Difference Amplifier

- Major Features
- Uses differential input signals
 - Inv and Non-inv used singleended inputs
- Works as a difference amp if $(R_4/R_3 = R_2/R_1)$
- $A_d = R_4/R_3$
- $A_{cm} = 0$ ideally
- CMRR = A_d/A_{cm} (ideally ∞)

Measurement of Common-mode Gain A_{cm}

- A_{cm} is a very small quantity (10⁻³ or 10⁻⁴ typ)
- Difficult to measure
- Need to do a careful measurement to minimize measurement errors

•
$$A_{cm} = V_{out}/V_{in}$$

Procedure

- $V_A = V_B = V_{in}$
- $V_{in} = 10 \sin \omega t (1 \text{ kHz})$
- Adjust R_2 (to satisfy the condition, $R_2/R_1 = R_4/R_3$)
- Adjust R2 to get the minimum possible V_{out}

•
$$A_{cm} = V_{out}/V_{in}$$

I-V Characteristics of a Zener and other Diodes

- Very useful circuit
- $R_1 = R_2 = R_3 = R_4 = 10 \text{ k}\Omega$,
- $R = 1 k\Omega$.
- $V_{out} = (V_A V_B) = I_D.R$
- Magnitude of V_{out} (in volts) will be the same as magnitude of I_D (in mA)
- Choice of V_{in}
 - Must be a triangular waveform
 - Must be low frequency (100 Hz to 1 kHz)

Application 1 – I-V Characteristics of a Zener Diodes

Zener 3.6 V, 1 kHz

Application 2 – I-V Characteristics of Silicon and Ge Diodes

IN914 – Signal diode, 1 kHz

Ge diode, 100 Hz

1 kHz

IN4007 1 kHz

IN4007 10 kHz

Application 3 – I-V Characteristics of LEDs

Measured in WEL Lab using a newly developed Data Acq Board

I-V Characteristics of LEDs – measured using our Difference Amplifier

Green LED (1.8 V), 1 kHz

Blue LED (2.6 V), 1 kHz

Red LED (1.8 V), 1 kHz

Yellow LED (1.9 V), 1 kHz

Interfacing LM35

Interfacing Circuit 3: Difference Amplifier (with $A_d = 10$)

Problem of noise

 Difference amplifier preferred

No conclusive results

Announcements

- Midsem Exam Sep 24 (Friday) 2:00 3:15pm (Weightage 18%)
 - Expts 1 to 6
 - SAFE/Codetantra

• No Quiz on Sep 24 Fri

Quiz 7 and Quiz 8 on Oct 1 Friday

Quiz instructions

Mobile Calculators NOT allowed

No formula sheets

Video Proctoring – Full view of your workspace