Phase and Group velocity of EM waves

Tools required:

http://demonstrations.wolfram.com/GroupAndPhaseVelocity/

Objective:

To understand the nature of EM waves travelling in a medium with the help of Phase and Group velocities.

Theory: Any real signal consists of travelling-waves of many different frequencies, which travel together as a group, at a speed that will always be less than or equal to the speed of light in vacuum. To gain some insight into what may happen when a real signal travels through a dispersive medium, we consider adding two waves of equal amplitude. When two travelling waves with unit amplitude $f_1(z,t) = \cos(k_1z-\omega_1t)$ and $f_2(z,t) = \cos(k_2z-\omega_2t)$ are added, we get

$$f_1(z,t) + f_2(z,t) = \cos(k_1 z - \omega_1 t) + \cos(k_2 z - \omega_2 t)$$

$$= 2\cos\left(\frac{\Delta k}{2}z - \frac{\Delta\omega}{2}t\right)\cos\left(\overline{k}\cdot z - \overline{\omega}\cdot t\right)$$

Where,
$$\frac{\Delta k}{2} \equiv \frac{k_1 - k_2}{2}$$
, $\frac{\Delta \omega}{2} \equiv \frac{\omega_1 - \omega_2}{2}$, $\overline{k} \equiv \frac{k_1 + k_2}{2}$ and $\overline{\omega} \equiv \frac{\omega_1 + \omega_2}{2}$

The result is a fast oscillating wave that travels with a phase velocity $v_p = \frac{\omega}{\overline{k}}$ and the

 $2\cos\left(\frac{\Delta k}{2}z-\frac{\Delta\omega}{2}t\right)$ amplitude of this wave is being modulated in space and time by

 $v_g = \frac{\Delta \omega/2}{\Delta k/2} = \frac{\Delta \omega}{\Delta k}$ modulated wave travels at the group velocity given by

Observation table

S. No	Δω	Δk	Wave pattern of the resultant waves	$\mathbf{V}_{\mathbf{g}}$
1	0.02	0.02		
2	0.04	0.04		
3	0.06	0.06		
4	0.08	0.08		
5	0.1	0.1		
6	0.2	0.2		
7	0.3	0.3		
8	0.4	0.4		
9	0.5	0.5		

Inferences:

- 1) Are the wave patterns for various values of $\Delta\omega$ and Δk same? If not, why?
- 2) Comment on the Phase velocity (Vp) of the waves for increased values of $\Delta\omega$ and Δk .
- 3) When do we see V_p and V_g being the same.
- 4) Draw a typical dispersion relation curve (w-k curve) for $V_p = V_g$ and $V_p \neq V_g$ cases.