A.20 Theorem. For every natural number n > 3, $2^n < n!$.

Proof. Let P(n) be the statement $2^n < n!$ for n > 3. We consider the base case where n = 4.

For P(4),

$$2^4 < 4!,$$

 $16 < 24.$

Since the base case is true, we will prove by induction. Suppose now, $2^k < k!$ for k > 3. We want to show $2^{k+1} < (k+1)!$. Multiplying both sides by k+1,

$$(k+1)2^k < (k+1)k!$$

Observing the right side of (1) and remembering algebra, for any natural number z, z! = z(z-1)!. Substituting z for k+1,

$$z(z-1)! = (k+1)(k+1-1)!$$

= $(k+1)k!$
= $(k+1)!$.

Now we find (1) to be

$$(k+1)2^k < (k+1)!. (1)$$

Suppose we compare the left side of (2) to the left side of the hypothesis. Assuming $k \ge 4$, we can say 2 < (k+1) is true. Factoring, we find $2^{k+1} = (2)2^k$. Because 2 < (k+1), we can say

$$2^{k+1} < (k+1)2^k < (k+1)!,$$

 $2^{k+1} < (k+1)!.$

Since P(k+1) is true, given P(k) is true, and the base case of P(n=4) is true, $2^n < n!$ for every natural number n > 3 is true by induction.