IN THE CLAIMS:

1 2	1.	(Cancelled) An apparatus that provides at least one estimated effective age of a product during the entire life of the product, comprising:
3		at least one sensor equipped on the product that provides data about
4		an environmental condition;
5		a device equipped on the product that uses said data to calculate an
6		age acceleration factor for said product for at least one of said sensors;
7		at least one accumulator equipped on the product that provides the
8		estimated effective age for said product, based upon said age acceleration
9		factor; and
0		a display equipped on the product capable of presenting said
1		estimated effective age to a user of said product.
1	2.	(Cancelled) The apparatus of claim 1, wherein said sensor includes an analog
2		to digital conversion function, and wherein said device that uses said data to
3		calculate an age acceleration factor is a digital processor.
1	3.	(Currently Amended) An apparatus that provides at least one estimated
2		effective age of a product during the entire life of the product, comprising:
3		at least one sensor equipped on the product that provides data about
4		an environmental condition, the sensor further includes an analog to digital
5		conversion function;
6		a device equipped on the product that uses said data to calculate an
7		age acceleration factor for said product for at least one of said sensors, said
8		device is a digital processor programmed to use said data to calculate an
9		Arrhenius estimation of said age acceleration factor;
0		at least one accumulator equipped on the product that provides the
ı		estimated effective age for said product, based upon said age acceleration
2		factor: and

13	a display equipped on the product capable of presenting said estimated
14	effective age to a user of said product.
15	The apparatus of claim 2, wherein said digital processor is programmed to
16	compute an Arrhenius estimate of said age acceleration.
1	4. (Cancelled) The apparatus of claim 2, wherein said digital processor is
2	programmed to compute a Coffin-Manson estimate of age acceleration.
1	5. (Cancelled) The apparatus of claim 2, wherein said digital processor is
2	programmed to compute a Hallberg-Peck estimate of age acceleration.
1 2	6. (Cancelled) The apparatus of claim 2, wherein said accumulator is at least partially implemented in nonvolatile storage.
1 2	7. (Cancelled) The apparatus of claim 6, wherein said nonvolatile storage is a ferroelectric memory.
2	8. (Cancelled) The apparatus of claim 6, wherein said nonvolatile storage is a flash memory.
1 2	9. (Cancelled) The apparatus of claim 6, wherein said nonvolatile storage is a hard disk.
1	10. (Cancelled) The apparatus of claim 6, wherein said nonvolatile storage is a
2	volatile memory element, with continuity of power provided by a battery.
1	11. (Cancelled) The apparatus of claim 1, wherein said sensor produces an
2	analog voltage output, said analog voltage output varying substantially
3	linearly responsive to a change in temperature, wherein said voltage output is
4	said data.
1	12. (Currently Amended) An apparatus that provides at least one estimated
2	effective age of a product during the entire life of the product, comprising:
3	at least one sensor equipped on the product that produces data in the
4	form of an analog voltage output that varies substantially linearly responsive

J	to a change in temperature,
6	a device equipped on the product that uses said data to calculate an
7	age acceleration factor for said product for at least one of said sensors, said
8	device is a VCO, said VCO producing a VCO output signal having a
9	frequency that varies substantially exponentially responsive to a linear
10	voltage change on an input of the VCO;
11	at least one accumulator equipped on the product that provides the
12	estimated effective age for said product, based upon said age acceleration
13	factor; and
14	a display equipped on the product capable of presenting said estimated
15	effective age to a user of said product.
16	The apparatus of claim 11, wherein said device that uses said data to calculate an age
17	acceleration factor for said product is a VCO, said VCO producing a VCO output
18	signal having a frequency that varies substantially exponentially responsive to a
19	linear voltage change on an input of the VCO.
1	13. (Previously presented) The apparatus of claim 12, wherein said accumulator
2	is a counter; said counter being implemented, at least in part, in a nonvolatile
3	or effectively nonvolatile technology, and wherein said counter is clocked by
4	the VCO output signal.
1	14. (Original) The apparatus of claim 13, wherein said display is electrically
2	coupled to selected bits of said counter.

i	15. (Cancelled) A method for producing one or more estimates of effective age
2	of a product, during the entire life of the product, comprising the steps of:
3	sensing, using a sensor equipped on the product one or more
4	environmental conditions;
5	computing, using a computer equipped on the product, an age
6	acceleration factor for each of the environmental conditions sensed, using a
7	model that relates the environmental condition to the age acceleration factor;
8	computing, using the computer equipped on the product, effective age
9	values, using said acceleration factors;
10	storing, using a storage equipped on the product, said effective age
11	values into nonvolatile storage; and
12	displaying, using a display equipped on the product, said effective age
13	values to a user of said product on a display.
1	16. (Cancelled) The method of claim 15, wherein the step of computing an age
2	acceleration factor comprises the use of the Arrhenius equation, the Hallberg
3	Peck equation, or the Coffin-Manson equation.

1	17. (Cancelled) The method of claim 15, wherein the step of computing effective
2	age values further comprises the steps of:
3	time integrating the age acceleration factor for each of the
4	environmental conditions sensed, resulting in an effective age for the product
5	according to each said model;
6	computing a normalized effective age for some or all of the effective
7	ages by dividing the instant effective age by a wall clock age;
8	computing an effective life used value for some or all of the effective
9	ages by dividing the instant effective age by a predetermined estimate of life
10	of the product; and
11	computing an effective life remaining value for some or all of the
12	effective ages by subtracting said effective life used value from "1".
l	18. (Cancelled) The method of claim 15, wherein the step of displaying said
2	effective age values further comprises the steps of:
3	determining if any of said values are outside of predetermined ranges
4	and ·
5	alerting the user if any of said values are outside of predetermined
6	ranges by lighting a light, sounding an audible alarm, or presenting said
7	values on said display.
1	19. (Previously presented) An apparatus that provides at least one estimated
2	effective age of a product comprising:
3	at least one sensor that provides data about an environmental
4	condition;
5	a device that uses said data to calculate an age acceleration factor for
6	said product for at least one of said sensors;
7	at least one accumulator that provides the estimated effective age for

a display capable of presenting said estimated effective age to a use of said product; wherein the at least one sensor includes an analog to digital conversion function, and wherein said device that uses said data to calculate an age acceleration factor is a digital processor wherein said digital processor is programmed to compute a Hallberg-Peck estimate of age acceleration.	8	said product, based upon said age acceleration factor; and
wherein the at least one sensor includes an analog to digital conversion function, and wherein said device that uses said data to calculate an age acceleration factor is a digital processor wherein said digital processor is	9	a display capable of presenting said estimated effective age to a user
function, and wherein said device that uses said data to calculate an age acceleration factor is a digital processor wherein said digital processor is	10	of said product;
acceleration factor is a digital processor wherein said digital processor is	11	wherein the at least one sensor includes an analog to digital conversion
• • • • • • • • • • • • • • • • • • • •	12	function, and wherein said device that uses said data to calculate an age
programmed to compute a Hallberg-Peck estimate of age acceleration.	13	acceleration factor is a digital processor wherein said digital processor is
	14	programmed to compute a Hallberg-Peck estimate of age acceleration.

•

1	20. (Previously presented) A method for producing one or more estimates of
2	effective age of a product, comprising the steps of:
3	sensing one or more environmental conditions;
4	computing an age acceleration factor for each of the environmental
5	conditions sensed, using a model that relates the environmental condition to
6	the age acceleration factor;
7	computing effective age values, using said acceleration factors;
8	storing said effective age values into nonvolatile storage; and
9	displaying said effective age values to a user of said product on a
10	display;
11	wherein the step of computing an age acceleration factor comprises the use of
12	the Arrhenius equation, the Hallberg-Peck equation, or the Coffin-Manson
13	equation.

	1	21. (Previously presented) A method for producing one or more estimates of
	2	effective age of a product, comprising the steps of:
•		
	3	sensing one or more environmental conditions;
	4	computing an age acceleration factor for each of the environmental
	4	conditions sensed, using a model that relates the environmental condition to
	5	•
	6	the age acceleration factor;
	7	computing effective age values, using said acceleration factors;
	8	storing said effective age values into nonvolatile storage; and
	9	displaying said effective age values to a user of said product on a
	10	display;
	11	wherein the step of computing effective age values further comprises the
3	12	steps of:
	- :	
·	13	time integrating the age acceleration factor for each of the
	14	environmental conditions sensed, resulting in an effective age for the product
	15	according to each said model;
	16	computing a normalized effective age for some or all of the effective
	17	ages by dividing the instant effective age by a wall clock age;
	18	computing an effective life used value for some or all of the effective
	19	ages by dividing the instant effective age by a predetermined estimate of life
	20	of the product; and
	21	computing an effective life remaining value for some or all of the
	22	effective ages by subtracting said effective life used value from "1".