This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound of Formula I:

$$A - D - B$$
 (I)

or a pharmaceutically acceptable salt thereof, wherein

A is a substituted moiety of up to 40 carbon atoms of the formula: L (M L¹)_q, where L is a 5 or 6 membered cyclic structure bound directly to D, L¹ comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at least one atom, q is an integer of from 1 3; and each cyclic structure of L and L¹ contains 0 4 members of the group consisting of nitrogen, oxygen and sulfur, and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6 member cyclic structure bound directly to D containing 0.4 members of the group consisting of nitrogen, oxygen and sulfur,

wherein L¹-is substituted by at least one substituent selected from the group consisting of SO₂R_{x5}.-C(O)R_x-and-C(NR_y) R_{z5}

R_y is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per halo,

R_z is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

R. is R. or NR R. where R. and R. are

a) independently hydrogen,

a carbon based moiety of up to 30 carbon atoms optionally containing

heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen, or

 $-OSi(R_f)_3$ -where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

e)—one of R_a or R_b is C(O), a C_1 - C_5 divalent alkylene group or a substituted C_1 - C_5 divalent alkylene group bound to the moiety. L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C_1 - C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

where B is substituted, L is substituted or L¹ is additionally substituted, the substituents are selected from the group consisting of halogen, up to per halo, and Wn, where n is 0-3;

wherein each W is independently selected from the group consisting of CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)R^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, -NR

wherein Q is O, S, $N(R^7)$, $(CH_2)_m$, C(O), -CH(OH), $(CH_2)_mO$, $(CH_2)_mS$, $(CH_2)_mN(R^7)$, $O(CH_2)_m$ $-CHX^a$, CX^a_2 , $S(CH_2)_m$ and $N(R^7)(CH_2)_m$, where m=1-3, and X^a is halogen; and

Ar is a 5 or 6 member aromatic structure containing 0.2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally substituted by halogen, up to per halo, and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of CN, CO_2R^7 , $C(O)R^7$, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents selected from the group consisting of CN, CO_2R^7 , $CO_$

A is a substituted moiety of the formula:

 $-L-M-L^1$

wherein

L is phenyl, pyridinyl or pyrimidinyl,

L¹ is phenyl, pyridinyl or pyrimidinyl,

M is -O- or -S-,

wherein L¹ is substituted by -C(O)NR_aR_b and

A is optionally additionally substituted with halogen, up to per-halo, and optionally substituted with 1-3 substituents independently selected from the group consisting of halogen, CN, CO_2R^7 , $C(O)R^7$, $C(O)NR^7R^7$, NO_2 , OR^7 , NR^7R^7 , $NR^7C(O)OR^7$, $NR^7C(O)R^7$, C_{10} alkyl, up to per-halosubstituted C_{1} - C_{10} alkyl C_{1} - C_{10} alkoxy, and up to per-halosubstituted C_{1} - C_{10} alkoxy, and

wherein

-R_a and R_b are independently

- a) hydrogen,
- b) $C_1 C_{10}$ alkyl,

- c) C_{3-10} cycloalkyl,
- d) $\underline{C_6}$ - $\underline{C_{12}}$ aryl,
- e) C_{3-12} hetaryl having 1-3 heteroatoms selected from O, N and S,
- f) C_{3-12} cycloalkyl having 0-3 heteroatoms selected from N, S and O,
- g) C_7 - C_{24} alkaryl,
- h) substituted C_{1-10} alkyl,
- i) substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms selected from N, S and O,
- j) <u>substituted C₆₋₁₂ aryl</u>,
- k) substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- l) <u>substituted C₇₋₂₄ alkaryl</u>,

where R_a and R_b are a substituted group, they are substituted by

- i) halogen up to per halo,
- ii) hydroxy,
- iii) C_{1-10} alkyl,
- iv) C₁₋₁₀ alkoxy,
- v) up to per-halosubstituted C₁ -C₆ alkyl,
- vi) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- vii) C_{6-12} aryl,
- viii) $-C(O)R_g$ where R_g is C_{1-10} alkyl;

<u>or</u>

-R_a and R_b combine together to form a 6 membered heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 6 membered heterocyclic structure of 1-3 heteroatoms selected from N, S and O,

where the substituents are selected from the group consisting of

- a) halogen up to per halo,
- b) hydroxy,
- c) C_{1-10} alkyl,
- d) C₃₋₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and N,
- e) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- f) C_{1-10} alkoxy,
- g) C_6 - C_{12} aryl,
- h) up to per-halosubstituted C_{1-6} alkyl,
- i) up to per-halosubstituted C₆ -C₁₂ aryl,

- j) up to per halosubstituted C₃-C₁₂ cycloalkyl having 0-3 heteroatoms selected from N, S and O,
- k) up to per-halosubstituted C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O, and
- 1) $-C(O)R_g$, where R_g is C_{1-10} alkyl;

<u>or</u>

-one of R_a or R_b is -C(O)-, a C_1 - C_5 divalent alkylene group or a substituted C_1 - C_5 divalent alkylene group bound to the moiety L^1 to form a cyclic structure with at least 5 members,

wherein the substituents of the substituted C₁-C₅ divalent alkylene group are selected from the group consisting of

- a) halogen,
- b) hydroxy,
- c) C_1 - C_{10} alkyl,
- d) C₃ -C₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and N,
- e) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- f) C_{1-10} alkoxy,
- g) C₆ -C₁₂ aryl,
- h) up to per halo substituted C₁₋₆ alkyl
- i) up to per halo substituted C₆ -C₁₂ aryl,
- j) up to per halo substituted C₃-C₁₂ cycloalkyl having 0-3 heteroatoms selected from N, S and O,
- k) up to per halo substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O, and
- 1) $-C(O)R_g$ where R_g is C_{1-10} alkyl

or

- R_a and R_b are independently -OSi(R_f)₃ where R_f is
- a) hydrogen,
- b) C_{1-10} alkyl,
- c) C_{1-10} alkoxy,
- d) C₃-C₁₀ cycloalkyl having 0-3 heteroatoms selected from O, S and N,
- e) C_{6-12} aryl,
- f) C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from O, S and N,
- g) substituted C₁₋₁₀ alkyl,

- h) substituted C₁-C₁₀ alkoxy,
- i) substituted C₃-C₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and N,
- j) substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from O, S, and N, and
- k) substituted phenyl,

where R_f is a substituted group it is substituted by halogen up to per halo, hydroxy, C_{1-10} alkyl, and up to per halo substituted C_{1-6} alkyl,

and

B is phenyl or pyridinyl;

and wherein B is optionally substituted with halogen, up to per-halo, and optionally substituted with 1-3 substituents independently selected from the group consisting of halogen, CN, CO_2R^7 , $C(O)R^7$, $C(O)NR^7R^7$, NO_2 , OR^7 , NR^7R^7 , $NR^7C(O)OR^7$, $NR^7C(O)OR^7$, $NR^7C(O)R^7$, $NR^7C(O$

- (a) hydrogen,
- (b) C_{1} - C_{10} alkyl,
- (c) up to per-halosubstituted C₁-C₁₀ alkyl,
- (d) C_1 - C_{10} alkoxy,
- (e) up to per-halosubstituted C₁-C₁₀ alkoxy,
- (f) phenyl, or
- (g) up to per-halosubstituted phenyl.
 - 2. Cancelled
- 3. (Currently Amended) A compound as in claim 1 wherein M is <u>-O-one or more bridging groups selected from the group consisting of O, S, N(R⁷), (CH₂)_m, C(O), CH(OH), (CH₂)_mO, (CH₂)_mS, (CH₂)_mN(R⁷), O(CH₂)_m, CH₂, S (CH₂) and N(R⁷)(CH₂)_m, (CH₂)_m, where m=1-3, X^a is halogen</u>

and where R⁷ is as defined in claim 1.

- 4. (Original) A compound as in claim 1 wherein the cyclic structures of B and L bound directly to D are not substituted in the ortho position by-OH.
- 5. (Original) A compound as in claim 1 wherein the cyclic structures of B and L bound directly to D are not substituted in the ortho position by a moiety having an ionizable hydrogen and a pKa of 10 or less.
- 6. (Currently Amended) A compound of claim 1 wherein B of Formula I is phenyl, and B is optionally substituted with 1-3 substituents which are independently -CN, -NO₂, halogen, C₁-C₁₀ alkyl, up to per-halosubstituted C₁-C₁₀ alkoxy, up to per-halosubstituted C₁-C₁₀ alkoxy, C(O)NR⁷R⁷, phenoxy and C(O)NR⁷R⁷ substituted phenoxy

a substituted or unsubstituted six member aryl moiety or six member hetaryl moiety, said hetaryl moiety having 1 to 4 members selected from the group of hetaryl atoms consisting of nitrogen, oxygen and sulfur with the balance of the hetaryl moiety being carbon.

- 7. (Currently Amended) A compound of claim 1 wherein B of Formula I is phenyl, and B is optionally substituted with 1-3 substituents which are independently halogen, C₁-C₁₀ alkyl, up to per-halosubstituted C₁-C₁₀ alkyl or C₁-C₁₀ alkoxy an unsubstituted phenyl—group, an unsubstituted pyridyl group, an unsubstituted pyrimidinyl, a phenyl group substituted by a substituent selected from the group consisting of halogen and Wn wherein W and n are as defined in claim 1, a pyrimidinyl group substituted by a substituent selected from the group constituting of halogen and Wn, whereas W and n are as defined in Claim 1, or a substituted pyridyl group substituted by a substituent selected from the group consisting of halogen and Wn wherein W and n are as defined in claim 1.
- 8. (Currently Amended) A compound of claim 6 1 wherein B of Formula I is a substituted phenyl group, a substituted pyrimidinyl group, or substituted pyridyl group phenyl, substituted 1 to 3 times by 1 or more substituents selected from the group consisting of -CN, halogen, $C_1-C_6 C_{10}$ alkyl, $C_1-C_6 C_{10}$ alkoxy, -OH, up to per halo substituted $C_1-C_6 C_{10}$ alkyl, up to per halo substituted $C_1-C_6 C_{10}$ alkoxy or phenyl substituted by halogen up to per halo.

9. (Currently Amended) A compound of claim 1, wherein L is phenyl, substituted with 1-3 substituents which are, independently, -CN, -C₁-C₁₀ alkyl, up to per-halosubstituted -C₁-C₁₀ alkyl, -NO₂, -C₁-C₁₀ alkoxy, or halogen

, the six member cyclic structure bound directly to D, is a substituted or unsubstituted 6 member aryl moiety or a substituted or unsubstituted 6 member hetaryl moiety, wherein said hetaryl moiety has 1 to 4 members selected from the group of heteroatoms consisting of nitrogen, oxygen and sulfur with the balance of said hetaryl moiety being carbon, wherein the one or more substituents are selected from the group consisting of halogen and Wn wherein W and n are as defined in claim 1.

- 10. (Currently Amended) A compound of claim 8, wherein L is phenyl, substituted with 1-3 substituents which are, independently, -CN, -C₁-C₁₀ alkyl, up to per-halosubstituted -C₁-C₁₀ alkyl, -NO₂, -C₁-C₁₀ alkoxy, or halogen , the 6-member cyclic structure bound directly to D; is a substituted phenyl, unsubstituted phenyl, substituted pyrimidinyl, unsubstituted pyrimidinyl, substituted pyridyl or unsubstituted pyridyl group.
- 11. (Currently Amended) A compound of claim 1, wherein said substituted cyclic moiety L^1 is phenyl or pyridinyl, optionally substituted with 1-3 substituents independently selected from the group consisting of halogen, -CN, CO_2R^7 , $C(O)R^7$, $C(O)NR^7R^7$, NO_2 , OR^7 , NR^7R^7 , $NR^7C(O)OR^7$, $NR^7C(O)R^7$, C_1 - C_{10} alkyl, up to per-halosubstituted C_1 - C_{10} alkyl C_1 - C_{10} alkoxy and up to per-halosubstituted C_1 - C_{10} alkoxy and halogen

comprises a 5 to 6 membered aryl-moiety or hetaryl-moiety, wherein said heteraryl moiety comprises 1 to 4 members selected from the group of heteroatoms consisting of nitrogen, oxygen and sulfur.

- 12. (Currently Amended) A compound of claim 1, wherein said substituted cyclic moiety L¹ is pyridinyl phenyl, pyridinyl or pyrimidinyl.
- 13. (Currently Amended) A compound of claim 6 3, wherein said substituted cyclic moiety L¹ is pyridinyl phenyl, pyridinyl or pyrimidinyl.
 - 14. (Currently Amended) A compound of claim 7 6, wherein said

substituted cyclic-moiety L1 is pyridinyl phenyl, pyridinyl or pyrimidinyl.

- 15. (Currently Amended) A compound of claim 8, wherein said substituted cyclic moiety L¹ is pyridinyl phenyl, pyridinyl or pyrimidinyl.
- 16. (Currently Amended) A compound of claim 9, wherein said substituted cyclic moiety L¹ is pyridinyl phenyl, pyridinyl or pyrimidinyl.
- 17. (Currently Amended) A compound of claim 10, wherein said substituted cyclic moiety L¹ is pyridinyl phenyl, pyridinyl or pyrimidinyl.
- 18. (Currently Amended) A compound of claim 14, wherein M is $\underline{\text{O}}$ -one or more bridging groups selected from the group consisting of O, S $N(R^7)$, $(CH_2)_m$, C(O), CH(OH), $(CH_2)_mO$, $(CH_2)_mS$, $(CH_2)_mN(R^7)$, $O(CH_2)_m$ -CHX^a, CX^a_2 , S $(CH_2)_m$ and $N(R^7)(CH_2)_m$, where m=1-3, X^a is halogen and R^7 is hydrogen or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen up to per halo.
- (Currently Amended) A compound of claim 15, wherein M is $\underline{-O}$ one or more bridging groups selected from the group consisting of O, $S = N(R^7)$, $(CH_2)_m = C(O)$, CH(OH), $(CH_2)_m = C(CH_2)_m = C(CH_$
- 20. (Currently Amended) A compound of claim 16, wherein M is $\underline{-O}$ -one or more bridging groups selected from the group consisting of $\overline{-O}$, $\overline{S} = N(R^7)$, $\overline{(CH_2)_m} = \overline{C(O)}$, $\overline{CH(OH)}$, $\overline{(CH_2)_m} = \overline{O}$, $\overline{CH_2} = \overline{O}$, \overline{O} , $\overline{CH_2} = \overline{O}$, \overline{O} , \overline
- 21. (Currently Amended) A compound of claim 17, wherein M is $\underline{\text{O}}$ -one or more bridging groups selected from the group consisting of O, $S = N(R^7)$, $(CH_2)_m = C(O)$, CH(OH), $(CH_2)_m = C(CH_2)_m =$

hydrogen or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen up to per halo.

- 22. (Original) A compound of claim 1 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.
- 23. (Currently Amended) A compound of claim $\underline{12}$ $\underline{13}$ wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.
- 24. (Original) A compound of claim 18 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.
- 25. (Original) A compound of claim 19 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.
- 26. (Original) A compound of claim 20 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.
- 27. (Original) A compound of claim 21 wherein L^1 is additionally substituted 1 to 3 times by one or more substituents selected from the group consisting of C_1 - C_{10} alkyl, up to per halo substituted C_1 - C_{10} alkyl, -CN, -OH, halogen, C_1 - C_{10} alkoxy and up to per halo substituted C_1 - C_{10} alkoxy.
- 28. (Currently Amended) A compound of claim 1 wherein L^1 is substituted by $-C(O)R_*$ $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently
- m) hydrogen,
- n) $C_1 C_{10}$ alkyl,
- o) phenyl,

- p) pyridinyl,
- q) C₃₋₁₂ cycloalkyl having 0-3 heteroatoms selected from N, S and O,
- r) substituted C_{1-10} alkyl,
- s) substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms selected from N, S and O,
- t) substituted phenyl,
- u) substituted pyridinyl,

where R_a and R_b are a substituted group, they are substituted by

- i) halogen up to per halo,
- ii) hydroxy,
- iii) C₁₋₁₀ alkyl,
- iv) C_{1-10} alkoxy,
- v) up to per-halosubstituted C₁ -C₆ alkyl, and
- vi) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- vii) C₆₋₁₂ aryl, or
- viii) -C(O)R_g where R_g is C₁₋₁₀ alkyl.
- 29. (Currently Amended) A compound of claim 12 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkoy 1 wherein L^1 is not phenyl and is substituted by $-SO_2R_*$.
- 30. (Currently Amended) A compound of claim 13 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkoy 1 wherein L^1 is substituted only by $-C(O)R_*$.
- 31. (Currently Amended) A compound of claim 14 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy (Currently Amended) A compound of claim 1 wherein L^1 is substituted only by $-SO_2R_x$ NR_aR_b .
- 32. (Currently Amended) A compound of claim 15 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkoxy (Original) A compound of claim 1 wherein L^1 is substituted

by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b .

33. (Currently Amended) A compound of claim 16 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy (Currently Amended) A compound of claim 13 wherein L^1 is substituted by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b , and R_a and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy

a) independently hydrogen,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen, or

OSi(R_f)₃-where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

- b) R_a and R_b together form a 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 5-7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or
- c) one of R_a or R_b is -C(O), a C_1 - C_5 -divalent alkylene group or a substituted C_1 - C_5 -divalent alkylene group-bound to the moiety. L to form a cyclic structure with at least 5-members, wherein the substituents of the substituted C_1 - C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.
- 34. (Currently Amended) A compound of claim 17 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkoxy (Currently Amended) A compound of claim 14 18 wherein L^1

is substituted by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b and R_a and R_b are independently <u>hydrogen</u>, C_1 <u>-C₆ alkyl or C₁ -C₆ alkoxy</u>

hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.

35. (Currently Amended) A compound of claim 18 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy (Currently Amended) A compound of claim 15 19 wherein L^1 is substituted by $-C(O)R_x$, wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy

hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.

36. (Currently Amended) A compound of claim 19 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy (Currently Amended) A compound of claim 16 20 wherein L^1 is substituted by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy

hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.

37. (Currently Amended) A compound of claim 21 wherein L^1 is substituted by $-C(O)NR_aR_b$ and $-R_a$ and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy (Currently Amended) A compound of claim 17 21 wherein L^1 is substituted by $-C(O)R_x$ or $-SO_2R_x$, wherein R_x is NR_aR_b and R_a and R_b are independently hydrogen, C_1 $-C_6$ alkyl or C_1 $-C_6$ alkoxy

hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing

heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen.

38. (Currently Amended) A compound of Formula I:

$$A - D - B \tag{I}$$

or a pharmaceutically acceptable salt thereof, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: L (M L¹)_{q5} where L is a 6 membered aryl moiety or a 6 membered hetaryl moiety bound directly to D, L¹ comprises a substituted cyclic moiety having at least 5 members, M is a bridging group having at least one atom, q is an integer of from 1-3; and each cyclic structure of L and L¹ contains 0-4 members of the group consisting of nitrogen, oxygen and sulfur, and

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6 member cyclic structure bound directly to D containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur,

wherein L¹ is substituted by at least one substituent selected from the group consisting of SO₂R_{x5}.—C(O)R_x and C(NR_y) R_z, R_y is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per halo,

R_z is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

Rx is Rz or NRaRb where Ra and Rb are

a) independently hydrogen,

-a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain

heteroatoms selected from N, S and O and are optionally substituted by halogen, or

—OSi(R_f)₃ where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

b) R_a and R_b together form a 5.7 member heterocyclic structure of 1.3 heteroatoms selected from N, S and O, or a substituted 5.7 member heterocyclic structure of 1-3 heteroatoms selected from N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

c)—one of R_a or R_b is C(O), a C_1 - C_5 divalent alkylene group or a substituted C_1 - C_5 divalent alkylene group bound to the moiety. L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C_1 - C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and—carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

where B is substituted, L is substituted or L¹ is additionally substituted, the substituents are selected from the group consisting of halogen, up to per halo, and Wn, where n is 0-3;

wherein each W is independently selected from the group consisting of CN, CO_2R^7 , $C(O)NR^7R^2$, $C(O)-R^7$, NO_2 , OR^7 , SR^7 , NR^7R^7 , $NR^7C(O)OR^7$, $NR^7C(O)R^7$, Q Ar, and carbon based moieties of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents independently selected from the group consisting of CN, CO_2R^7 , $C(O)R^7$, $C(O)NR^7R^7$, OR^7 , SR^7 , NR^7R^7 , NO_2 , $NR^7C(O)R^7$, $NR^7C(O)OR^7$ and halogen up to per halo; with each R^7 independently selected from H or a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen,

, where m= 1-3, and X^a is halogen;

Ar is a 5 or 6 member aromatic structure containing 0.2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally substituted by halogen, up to per halo, and optionally substituted by Z_{n1}, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of CN, CO₂R⁷, C(O)R⁷, C(O)NR⁷R⁷, NO₂, OR⁷, SR⁷ NR⁷R⁷, NR⁷C(O)OR⁷, NR⁷C(O)OR⁷, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents are selected from the group consisting of CN, CO₂R⁷, COR⁷, C(O)NR⁷R⁷, OR⁷, SR⁷, NO₂, NR⁷R⁷, NR⁷C(O)R⁷, and NR⁷C(O)OR⁷, with R⁷ as defined above; and

wherein M is one or more bridging groups selected from the group consisting of O , $S_{-}, N(R^7)_{-}, (CH_2)_m, C(O)_{-}, CH(OH)_{-}, (CH_2)_mO_{-}, (CH_2)_mS_{-}, (CH_2)_mN(R^7)_{-}, \\ O(CH_2)_m - CHX^a_{-}, CX^a_{-2}, -S_{-}(CH_2)_m - and -N(R^7)(CH_2)_m, where m=1-3, X^a_{-} is halogen$

A is a substituted moiety of the formula:

$$-L-M-L^1$$

wherein

L is phenyl or pyridinyl

L¹ is phenyl or pyridinyl and

M is -O- or -S-

wherein

 L^1 is substituted by $-C(O)NR_aR_b$ and

A is optionally additionally substituted with halogen, up to per-halo, and optionally substituted with 1-3 substituents independently selected from the group consisting of

methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl,

up to per-halosubstituted methyl, ethyl, propyl, butyl, isopropyl, isobutyl, secbutyl and tert-butyl,

OR⁷, where R⁷ is hydrogen; methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl,

NR⁷R⁷, where each R⁷ is independently hydrogen, , ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl,

NO₂, and -CN;

wherein

-R_a and R_b are independently

- v) <u>hydrogen</u>,
- w) $C_1 C_{10}$ alkyl,
- x) C_{3-10} cycloalkyl,
- y) \underline{C}_6 - \underline{C}_{12} aryl,
- z) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from O, N and S,
- aa) C₃₋₁₂ cycloalkyl having 0-3 heteroatoms selected from N, S and O,
- bb) C₇-C₂₄ alkaryl,
- cc) substituted C_{1-10} alkyl,
- dd) substituted C₃₋₁₀ cycloalkyl, having 0-3 heteroatoms selected from N, S and O,
- ee) <u>substituted C₆₋₁₂ aryl</u>,
- ff) substituted C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- gg) substituted C₇₋₂₄ alkaryl,

where R_a and R_b are a substituted group, they are substituted by

i) halogen up to per halo,

ii) hydroxy,

iii) C_{1-10} alkyl,

iv) C₁₋₁₀ alkoxy,

v) up to per-halosubstituted C₁ -C₆ alkyl,

vi) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,

vii) C₆₋₁₂ aryl,

viii) -C(O)R_g where R_g is C₁₋₁₀ alkyl;

or

-R_a and R_b combine together to form a 6 membered heterocyclic structure of 1-3 heteroatoms selected from N, S and O, or a substituted 6 membered heterocyclic structure of 1-3 heteroatoms selected from N, S and O,

where the substituents are selected from the group consisting of

- a) halogen up to per halo,
- b) hydroxy,
- c) C_{1-10} alkyl,
- d) C₃₋₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and N,
- e) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- f) C_{1-10} alkoxy,
- g) C₆ -C₁₂ aryl,
- h) up to per-halosubstituted C₁₋₆ alkyl,
- i) up to per-halosubstituted C₆ -C₁₂ aryl,
- j) up to per halosubstituted C₃-C₁₂ cycloalkyl having 0-3 heteroatoms selected from N, S and O,
- k) up to per-halosubstituted C_3 - C_{12} hetaryl having 1-3 heteroatoms selected from N, S and O, and
- 1) $-C(O)R_g$, where R_g is C_{1-10} alkyl;

<u>or</u>

-one of R_a or R_b is -C(O)-, a C_1 - C_5 divalent alkylene group or a substituted C_1 - C_5 divalent alkylene group bound to the moiety L^1 to form a cyclic structure with at least 5 members,

wherein the substituents of the substituted C_1 - C_5 divalent alkylene group are selected from the group consisting of

- a) halogen,
- b) hydroxy,
- c) C_1 - C_{10} alkyl,
- d) C₃ -C₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and N,
- e) C₃₋₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O,
- f) C_{1-10} alkoxy,
- g) C_6 - C_{12} aryl,
- h) up to per halo substituted C₁₋₆ alkyl
- i) up to per halo substituted C₆ -C₁₂ aryl,
- j) up to per halo substituted C₃-C₁₂ cycloalkyl having 0-3 heteroatoms selected from N, S and O,
- k) up to per halo substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from N, S and O, and

1) -C(O) R_g where R_g is C_{1-10} alkyl

or

- R_a and R_b are independently -OSi(R_f)₃ where R_f is
- a) hydrogen,
- b) C_{1-10} alkyl,
- c) C_{1-10} alkoxy,
- d) C₃-C₁₀ cycloalkyl having 0-3 heteroatoms selected from O, S and N,
- e) C_{6-12} aryl,
- f) C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from O, S and N,
- g) substituted C₁₋₁₀ alkyl,
- h) substituted C₁-C₁₀ alkoxy,
- i) substituted C₃-C₁₂ cycloalkyl having 0-3 heteroatoms selected from O, S and

<u>N</u>,

j) substituted C₃-C₁₂ hetaryl having 1-3 heteroatoms selected from O, S, and

N, and

k) substituted phenyl,

where R_f is a substituted group it is substituted by halogen up to per halo, hydroxy, C_{1-10} alkyl, and up to per halo substituted C_{1-6} alkyl,

<u>and</u>

B is selected from the group consisting of phenyl and pyridinyl and wherein B is optionally substituted with halogen, up to pre-halo, and optionally substituted with 1-3 substituents independently selected from the group consisting of methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl, up to per-halosubstituted methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl, OR⁷, where R⁷ is hydrogen; methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl, up to per-halosubstituted alkoxy of the formula OR⁷, where R⁷ is methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl, NR⁷R⁷, where each R⁷ is independently hydrogen, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl, NO₂ and -CN.

39. (Currently Amended) A compound of Formula I:

$$A - D - B \tag{I}$$

or a pharmaceutically acceptable salt thereof, wherein

D is -NH-C(O)-NH-,

A is a substituted moiety of up to 40 carbon atoms of the formula: L (M L¹)_q, where L is a substituted or unsubstituted phenyl or pyperitoneal moiety bound directly to D, L¹ comprises a substituted phenyl, peritoneal or pyrimidinyl moiety, M is a bridging group having at least one atom, q is an integer of from 1-3; and

B is a substituted or unsubstituted phenyl or pyridine group bound directly to D,

wherein L¹-is substituted by at least one substituent selected from the group consisting of SO₂R_{x5}. -C(O)R_x and -C(NR_y) R_{z5}

 R_y is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally halosubstituted, up to per halo, and;

R_z is hydrogen or a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

Rx is Rz or NRaRh where Ra and Rh are

a) independently hydrogen,

a carbon based moiety of up to 30 carbon atoms optionally containing heteroatoms selected from N, S and O and optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen, or

-OSi(R_f)₃-where R_f is hydrogen or a carbon based moiety of up to 24 carbon atoms optionally containing heteroatoms selected from N, S and O and

optionally substituted by halogen, hydroxy and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

b) R_a and R_b together form a 5.7 member heterocyclic structure of 1.3 heteroatoms selected from N, S and O, or a substituted 5.7 member heterocyclic structure of 1.3 heteroatoms selected from N, S and O substituted by halogen, hydroxy or carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen; or

e) one of R_a or R_b is C(O), a C_1 C_5 divalent alkylene group or a substituted C_1 C_5 divalent alkylene group bound to the moiety. L to form a cyclic structure with at least 5 members, wherein the substituents of the substituted C_1 C_5 divalent alkylene group are selected from the group consisting of halogen, hydroxy, and carbon based substituents of up to 24 carbon atoms, which optionally contain heteroatoms selected from N, S and O and are optionally substituted by halogen;

where B is substituted, L is substituted or L¹ is additionally substituted, the substituents are selected from the group consisting of halogen, up to per halo, and Wn, where n is 0-3;

wherein each W is independently selected from the group consisting of CN, $-CO_2R^7$, $-C(O)NR^7R^2$, $-C(O)-R^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, -

Ar is a 5 or 6 member aromatic structure containing 0 2 members selected from the group consisting of nitrogen, oxygen and sulfur, which is optionally

substituted by halogen, up to per halo, and optionally substituted by Z_{n1} , wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of CN, CO_2R^7 , $C(O)R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7$, and a carbon based moiety of up to 24 carbon atoms, optionally containing heteroatoms selected from N, S and O and optionally substituted by one or more substituents selected from the group consisting of CN, CO_2R^7 , CO_2R^7 , $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7R^7$, $C(O)R^7$, $C(O)R^7$, $C(O)R^7$, $C(O)R^7$, and $C(O)R^7$, a

A is a substituted moiety of the formula:

 $-L-M-L^1$,

wherein

L is phenyl

L¹ is pyridinyl and

M is -O-,

wherein

L¹ is substituted by -C(O)NR_aR_b and

A is optionally additionally substituted with halogen, up to per-halo, and optionally substituted with 1-3 substituents independently selected from the group consisting of methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl, up to per-halosubstituted methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl, OR⁷, NR⁷R⁷, NO₂, and -CN;

each R⁷ is independently hydrogen, methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl,

-Ra and Rb are independently

- a) hydrogen,
- b) $C_1 C_{10}$ alkyl,
- c) C_{1-10} alkyl substituted by

- i) halogen up to per halo,
- ii) methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl,
- iii) up to per-halosubstituted methyl or ethyl,
- vi) pyridinyl and
- vii) phenyl

and

B is phenyl,

wherein B is optionally substituted with halogen, up to pre-halo, and optionally substituted with 1-3 substituents independently selected from the group consisting of methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl, up to per-halosubstituted methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl and tert-butyl, OR⁷, where R⁷ is hydrogen; methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl, and up to per-halosubstituted alkoxy of the formula OR⁷, where R⁷ is methyl, ethyl, propyl, butyl, isopropyl, isobutyl, sec-butyl or tert-butyl, wherein the cyclic structures of B and L bound directly to D are not substituted in the ortho position by-OH.

- 40. (Original) A compound as in claim 38 wherein the cyclic structures of B and L bound directly to D are not substituted in the ortho position by-OH.
- 41. (Original) A compound as in claim 38 wherein the cyclic structures of B and L bound directly to D are not substituted in the ortho position by a moiety having an ionizable hydrogen and a pKa of 10 or less.
- 42. (Original) A compound as in claim 39 wherein the cyclic structures of B and L bound directly to D are not substituted in the ortho position by-OH.
- 43. (Original) A compound as in claim 39 wherein the cyclic structures of B and L bound directly to D are not substituted in the ortho position by a moiety having an ionizable hydrogen and a pKa of 10 or less.
- 44. (Currently Amended) A compound as in claim 38 wherein substituents for B and L and additional substituents for L¹, are selected from the group consisting of methyl, methoxy, halogen, t-butyl and trifluoromethyl.

- C_{1} -_- C_{10} -alkyl-up to per halo substituted C_{1} -_- C_{10} -alkyl, CN, OH, halogen, C_{1} -_- C_{10} -alkoxy and up to per halo substituted C_{1} -_- C_{10} -alkoxy.
- 45. (Currently Amended) A compound as in claim 39 wherein substituents for B and L and additional substituents for L¹, are selected from the group consisting of methyl, methoxy, halogen, t-butyl and trifluoromethyl.
- C_{1} -_- C_{10} -alkyl up to per halo substituted C_{1} -_- C_{10} -alkyl, CN, OH, halogen, C_{1} -_- C_{10} -alkoxy and up to per halo substituted C_{1} -_ C_{10} -alkoxy.
- 46. (Currently Amended) A compound of claim 38 wherein L^1 is pyridyl and R_a and R_b are independently hydrogen, methyl, ethyl or propyl substituted by $C(O)R_*$ or $SO_2 R_*$.
- 47. (Currently Amended) A compound of claim 39 wherein R_a and R_b are independently hydrogen, methyl, ethyl or propyl L^1 substituted by $C(O)R_*$ or SO_2 $R_{*\bar{}}$.
- 48. (Currently Amended) A compound of claim 46 wherein L^1 is substituted by $\underline{C(O)HCH_3}$ substituted by $\underline{C(O)R_*R_*}$ is $\underline{NR_aR_b}$ and $\underline{R_a}$ and $\underline{R_b}$ are independently $\underline{R_z}$.
- 49. (Currently Amended) A compound of claim 47 wherein L^1 is substituted by $\underline{C(O)HCH_3}$ substituted by $\underline{C(O)R_xR_x}$ is $\underline{NR_aR_b}$ and $\underline{R_a}$ and $\underline{R_b}$ are independently $\underline{R_z}$.
- 50. (Currently Amended) A compound of claim 1 which is a pharmaceutically acceptable salt of a compound of formula I of claim 1 which is
- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or

b) an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

selected from the group consisting of

- a) basic salts of organic acids and inorganic acids selected from the group consisting of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulphonic acid, trifluorosulphonic acid, benzenesulfonic acid, p toluene sulphonic acid (tosylate salt), 1 napthalene sulfonic acid, 2 napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid; and
- b) acid salts of organic and inorganic bases containing cations selected from the group consisting of alkaline cations, alkaline earth cations, the ammonium cation, aliphatic substituted ammonium cations.
- 51. cancelled
- 52. cancelled
- 53. (Currently Amended) A compound of claim 38 which is a pharmaceutically acceptable salt of a compound of formula I claim 38 which is
- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or
- b) an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

 selected from the group consisting of
- a) basic salts of organic acids and inorganic acids selected from the group

consisting of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulphonic acid, trifluorosulphonic acid, benzenesulfonic acid, p toluene sulphonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid; and

- b) acid salts of organic and inorganic bases containing cations selected from the group consisting of alkaline cations, alkaline earth cations, the ammonium cation, aliphatic substituted ammonium cations and aromatic substituted ammonium cations.
- 54. (Currently Amended) A compound of claim 39 which is a pharmaceutically acceptable salt of a compound of formula I of claim 39 which is
- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluene sulfonic acid (tosylate salt), 1-napthalene sulfonic acid, 2-napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or
- b) an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.

 selected from the group consisting of
- a) basic salts of organic acids and inorganic acids selected from the group consisting of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulphonic acid, trifluorosulphonic acid, benzenesulfonic acid, p toluene sulphonic acid (tosylate salt), 1 napthalene sulfonic acid, 2 napthalene sulfonic acid, acetic acid, trifluoroacetic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid; and
- b) acid salts of organic and inorganic bases containing cations selected

from the group consisting of alkaline cations, alkaline earth cations, the ammonium cation, aliphatic substituted ammonium cations and aromatic substituted ammonium cations.

- 55. (Currently Amended) A pharmaceutical composition for the treatment of a cancerous cell growth mediated by raf kinase comprising a compound of claim 1 or a pharmaceutically acceptable salt of a compound of formula I, and a physiologically acceptable carrier.
- 56. Cancelled
- 57. Cancelled
- 58. (Currently Amended) A pharmaceutical composition for the treatment of a cancerous cell growth mediated by raf kinase comprising a compound of claim 38 and a physiologically acceptable carrier of claim 55 wherein the compound of formula I is that defined in claim 38.
- 59. (Currently Amended) A pharmaceutical composition for the treatment of a cancerous cell growth mediated by raf kinase comprising a compound of claim 39 and a physiologically acceptable carrier of claim 55 wherein the compound of formula I is that defined in claim 39.
- 60. (Currently Amended) A pharmaceutical composition as in claim 55 wherein the compound of claim 1 is a pharmaceutically acceptable salt of a compound of formula I therein A compound selected from the group consisting of

3-tert butyl phenyl ureas of Table 1-above;

5-tert-butyl-2-methoxyphenyl ureas of Table 2 above;

5 (trifluoromethyl)-2 phenyl ureas of Table 3 above;

3 (trifluoromethyl) 4 chlorophenyl-ureas of Table 4 above;

3-(trifluoromethyl) 4-bromophenyl ureas of Table 5 above;

5 (trifluoromethyl) 4 chloro-2 methoxyphenyl ureas of Table 6 above; and

ureas 101-103 in Table 7 above.

61. (Currently Amended) A pharmaceutical composition as in claim 58 wherein the compound of claim 38 is a pharmaceutically acceptable salt of a compound of formula I therein A compound selected from the group consisting of the 3 tert butyl phenyl ureas:

N (3 tert butylphenyl) N' (4 (3 (N-methylcarbamoyl)phenoxy)phenyl urea and

N (3 tert butylphenyl) N' (4 (3 (N-methylcarbamoyl)phenoxy)phenyl urea and N (3 tert butylphenyl) N' (4 (4 acetylphenoxy)phenyl urea;

the 5-tert-butyl-2-methoxyphenyl ureas:

N (5 tert butyl 2 methoxyphenyl) N' (4 (1,3 dioxoisoindolin 5 yloxy)phenyl) urea,

N-(5-tert-butyl-2-methoxyphenyl) N' (4-(1-oxoisoindolin-5-yloxy)phenyl) urea,

N (5 tert butyl 2 methoxyphenyl) N' (4 (4 methoxy 3 (N-

methylcarbamoyl)phenoxy)phenyl) urea and

N (5 tert butyl 2 methoxyphenyl) N' (4 (3 (N-methylcarbamoyl)phenoxy)phenyl) urea;

the 2-methoxy-5-trifluoromethyl)phenyl ureas:

N (2-methoxy-5-(trifluoromethyl)phenyl) N' (3-(2-carbamoyl-4-pyridyloxy)phenyl) urea.

N (2 methoxy 5 (trifluoromethyl)phenyl) N' (3 (2 (N methylcarbamoyl) 4 pyridyloxy)phenyl) urea,

N (2 methoxy 5 (trifluoromethyl)phenyl) N' (4 (2 carbamoyl 4 pyridyloxy)phenyl) urea,

N (2-methoxy-5 (trifluoromethyl)phenyl) N' (4-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,

N (2 methoxy 5 (trifluoromethyl)phenyl) N' (4 (2 (N methylcarbamoyl) 4 pyridylthio)phenyl) urea,

N (2 methoxy 5 (trifluoromethyl)phenyl) -N' (2 chloro 4 (2 (N methylcarbamoyl)(4 pyridyloxy))phenyl) urea and

N (2-methoxy-5 (trifluoromethyl)phenyl) N' (3-chloro-4 (2-(N-methylcarbamoyl)(4-pyridyloxy))phenyl) urea;

the 4-chloro-3 (trifluoromethyl)phenyl ureas:

N (4 chloro-3 (trifluoromethyl)phenyl) N' (3 (2 carbamoyl-4 pyridyloxy)phenyl)

urea,

N-(4 chloro 3 (trifluoromethyl)phenyl) N'-(3-(2 (N-methylcarbamoyl) 4-pyridyloxy)phenyl) urea,

N (4-chloro-3-(trifluoromethyl)phenyl) N' (4-(2-carbamoyl-4-pyridyloxy)phenyl) urea and

N (4 chloro-3 (trifluoromethyl)phenyl) N' (4 (2 (N-methylcarbamoyl) 4-pyridyloxy)phenyl) urea.

the 4-romo 3 (trifluoromethyl)phenyl ureas:

N (4 bromo 3 (trifluoromethyl)phenyl) N' (3 (2 (N-methylcarbamoyl) 4 pyridyloxy)phenyl) urea,

N (4 bromo 3 (trifluoromethyl)phenyl) N' (4 (2 (N-methylcarbamoyl) 4 pyridyloxy)phenyl) urea,

N (4 bromo 3 (trifluoromethyl)phenyl) N' (3 (2 (N methylcarbamoyl) 4 pyridylthio)phenyl) urea,

N (4 bromo -3 (trifluoromethyl)phenyl) N' (2 chloro 4 (2 (N-methylcarbamoyl)(4-pyridyloxy))phenyl) urea and

N (4 bromo 3 (trifluoromethyl)phenyl) N (3 chloro 4 (2 (N methylcarbamoyl)(4-pyridyloxy))phenyl) urea; and

the 2-methoxy-4-chloro-5-(trifluoromethyl)phenyl-ureas:

N (2-methoxy 4-chloro-5-(trifluoromethyl)phenyl) N' (3-(2-(N-methylcarbamoyl)-4-pyridyloxy)phenyl) urea,

N-(2-methoxy 4 chloro-5 (trifluoromethyl)phenyl) N' (4 (2 (N-methylcarbamoyl) 4-pyridyloxy)phenyl) urea,

N (2-methoxy 4-chloro-5 (trifluoromethyl)phenyl) N' (2-chloro-4 (2-(N-methylcarbamoyl)(4-pyridyloxy))phenyl) urea and

N (2 methoxy 4 chloro-5 (trifluoromethyl)phenyl) N' (3 chloro-4 (2 (N-methylcarbamoyl)(4 pyridyloxy))phenyl) urea.

62. (Currently Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering an effective amount of a compound of Formula I of claim 1.

- 63. cancelled
- 64. (Currently Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering an effective amount of a compound of Formula I of claim 38.
- 65. (Currently Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering an effective amount of a compound of Formula I of claim 39.
- 66. Cancelled
- 67. Cancelled
- 68. (NEW) A compound as in claim 1 wherein B, L and L¹ follow one of the following of combinations:

B= phenyl, L=phenyl and L¹ is phenyl,

B= phenyl, L=pyridinyl and L¹ is phenyl,

B=pyridinyl, L= phenyl and L¹ is phenyl, or

B= phenyl, L=phenyl and L¹ is pyridinyl.

- 69. (NEW) A pharmaceutical composition for the treatment of a cancerous cell growth comprising a compound of claim 68 and a physiologically acceptable carrier.
- 70. (NEW) A pharmaceutical composition for the treatment of a cancerous cell growth which comprises a pharmaceutically acceptable salt of claim 68, wherein said salt is
- a) a basic salt of an organic acid or inorganic acid which is hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, trifluoromethanesulfonic acid, acetic acid, trifluoroacetic acid, sulfonic acid, malic acid, tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, or mandelic acid; or
- b) an acid salt of an organic or inorganic base containing an alkali metal cation, an alkaline earth metal cation, an ammonium cation, an aliphatic substituted ammonium cation or an aromatic substituted ammonium cation.