Computer Science 331

Analysis of Algorithms

Mike Jacobson

Department of Computer Science University of Calgary

Lectures #7-8

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #7-8

Computer Science 331

Lectures #7-8

Objective

Measuring Efficiency

What sorts of measures could we use? The following are all (sometimes) important:

- Running Time no one wants to wait too long for programs to execute
- Memory Used by Data (Storage Space) time is (sort of) unconstrained, but any computer can run out of memory
- Memory Used by Code an issue if a program is to be stored on a low-memory device (like a smart card)
- Time to Code —- programmers must be paid and software development usually has deadlines!

Our focus will be on running time and storage space.

Outline

- Objective
- Types of Analysis
- Worst-Case Analysis of Running Time
 - A Single Statement
 - A Sequence of Subprograms
 - A Conditional Statement
 - A Loop
 - A Nested Loop
 - A Simple Recursive Program
 - Lower Bounds
- References

Mike Jacobson (University of Calgary)

How Do We Measure Efficiency?

How can we compare algorithms or programs?

• Run the Code and Time the Execution.

Problem: Execution time is influenced by many factors:

- Hardware (How fast is the CPU? How many of them?)
- Compiler and System Software (Which OS?)
- Simultaneous User Activity (Potentially affected by the time of day when the program was executed)
- Choice of Input Data (Running times can vary on inputs, even inputs of the same "size")
- Programmer's Skill
- Analyze the Code

Advantage: Only influenced by choice of data

Disadvantage: Can be quite difficult!

We typically try to do both (analysis supported by execution timings).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #7-8

What Will We Measure?

Most of the time, in this course, running time and storage space will be measured in an abstract machine-independent way.

Running Time:

• Number of primitive operations or "steps" (programming language statements) used

Ignores; Different costs of operations: multiplication. Example: if the input is a single integer, which can be virtually as large as

Storage Space:

- Number of words of machine memory used, assuming each word can store the same (fixed) number of bits
- Ignores:

Memory hierarchy differences, cache vs main rife reporty. have different costs!

Types of Analysis

Worst-Case Analysis

Consider the maximal amount of resources (such as longest running time) used by the algorithm, on any input of a given size

Jpper bound on running time (guarantee that the algorithm will not take any longer for any input of the given size.

or some algorithm, worst-case occurs farily often May be difficult to determine average case. (le: searching an array for an element not in it).

Disadvantage of This Type of Analysis:

May rarely occur: (Array in reverse order is worst case for a variation of quicksort)

How Do We Wish To Measure Resources?

We will try to measure the amount of resources (time or space) used as a function of the "input size." (defined in various ways, depending on the type of input considered).

Example: if the input is an array, the appropriate measure of input size is (usually):

array length, i.e., number of elements

we want, the appropriate measure of input size is:

• the bit-length of the integer, i.e., number of bits in its binary representation

Complication: executions of a program on different inputs with the same

Average-Case Analysis

Consider the average (or "expected") amount of resources (such as average running time) used by the algorithm, for an input of a given size

Advantage of This Type of Analysis:

Captures resource consumption for typical inputs
Disadvantages of This Type of Analysis:

Typically requires probabilistic analysis.

In some, but not all cases, the worst-case and average-case running times (or amount of storage space used) are approximately the same.

Other Kinds of Analysis

Best-case Analysis:

- minimal amount of resources (such as shortest running time) used by the algorithm, on any input of a given size
- occasionally of interest, but usually together with other measures (eg. see whether best and worst cases running times are close)

Amortized Analysis:

- ratio of total cost of a sequence of operations to the number of operations in the sequence
- similar to average case, except that no assumptions about input distribution are required
- mostly beyond scope of the course, but some results will be mentioned

Mike Jacobson (University of Calgary)

Case: Program is a Single Statement

Example: x := 1

Amount to charge:

• 1 unit (eg. single arithmetic/Boolean operation, comparison, or assignment)

Example: x := y := 1

Amount to charge:

- 2 units (one per assignment)
- be careful with compound statements
- one line does not always equal one unit!

Worst-Case Analysis of Running Time

Objective and Strategy

Objective: use code (or pseudocode) to estimate the worst-case running time of a program (or algorithm).

Useful Values:

- Worst-case running time (exact)
- Upper and lower bounds on worst-case running time (easier, often sufficient)

Strategy: consider subprograms ...

- beginning with individual statements . . .
- then considering progressively larger subprograms . . .
- until the whole program has been considered.

Mike Jacobson (University of Calgary)

Case: Program is a Sequence of Subprograms

Structure to Consider: S_1 ; S_2

Worst-Case Running Time: If

- worst-case running time of S_1 is T_1 , and
- worst-case running time of S_2 is T_2 ,

then

• worst-case running time of entire program is at most:

Explanation (upper bound because...):

Worst case of S1 may not be worst case of S2

Worst-Case Analysis of Running Time

Case: Program is a Conditional Statement

Structure to Consider:

```
if c then
  S_1
else
  S_2
end if
```

Worst-Case Running Time: if

- worst-case running time to evaluate c is T,
- worst-case running time of S_1 is T_1 , and
- worst-case running time of S_2 is T_2 ,

then

• worst-case running time of program is:

Mike Jacobson (University of Calgary)

Worse of the two + Condition

Worst-Case Analysis of Running Time A Loop

First Objective: Counting Executions of the Loop Body

Recall that a *Loop Variant* is an integer-valued function f_I of variables such that

- the value of f_L decreases by at least 1 each time loop body is executed:
- the test G is **false** if the value of f_I is ≤ 0

The existence of a loop variant implies that the loop terminates if each evaluation of G and each execution of the loop body terminates.

Useful fact: number of executions of loop body is *less than or equal to* the value of f_L immediately before execution of the loop begins

Case: Program is a Loop

Structure to Consider:

while G do S end while

We need to know:

- the worst-case cost to evaluate G
- the worst-case cost to execute S
- the maximum number of executions of the loop body

Problem:

it is not even clear that this will halt!

Mike Jacobson (University of Calgary)

Worst-Case Analysis of Running Time A Loop

Next Objective: Bounding Total Running Time

Suppose:

- Loop body is executed at most k times
- Worst-case cost for each evaluation of the loop test G is T_1
- Worst-case cost for each execution of the loop body S is $\leq T_2$

Then:

- Total cost for all evaluations of test G is at most: (K+1)T1
- *Total* cost for *all* executions of loop body is at most:
- Therefore, the *total* cost to execute the loop is at most: + kT2

If cost of *j*th iteration of S is $T_2(j)$:

(k+1)T1 + Sum from j = 1 to k of T2(j)

Maximum number of executions of the loop body:

f(n.0) = n-0=n

3 units (two comparisons, one

boolean operation), or constant c
Worst-case cost for an execution of the loop body:

Example

Suppose A is an integer array with length n, key is an integer, and the following code is executed.

$$i := 0$$

while $((i < n) \text{ and } (A[i] <> key))$ do
 $i := i + 1$
end while

Loop Variant for this program's loop:

i increaces after each iteration, so f(n,i) decreases 2(addition and assignment), or c2 $f(n, i) \le 0$ if $i \ge n$ and the loop terminates if $i \ge n$

What about 2nd condition in test?

Example, Continued

Worst-case cost to evaluate test:

Mike Jacobson (University of Calgary)

3(n+1) + 2n = 5n + 3

Worst-Case Analysis of Running Time A Nested Loop

Case: Program is a Nested Loop

Case: Program Calls Itself a Constant Number of Times

Structure to Consider:

```
while G_1 do
  while G_2 do
  end while
end while
```

Method:

Compute worst case of inside loop.

Compute cost of outer loop using computed inner loop cost as worst case cost of outer loop body.

Example: Fibonacci Number Program

```
int Fib(n)
  if n == 0 then
    return 0
  else if n == 1 then
    return 1
  else
    return Fib(n-1) + Fib(n-2)
  end if
```

n==0, n==1, n-1, n-2, Fib+Fib, return

Objective: Writing an Expression for the Running Time

Let T(n) be the number of steps used on input n. Then 2 when n = 03 when n = 16 + T(n-1) + T(n-2) when n >= 2(Add steps from previous if/elses)

This is an example of a recurrence relation:

- T(n) expressed using the same function T evaluated at smaller inputs
- Explicit (non-recursive) values of T given for small inputs n (base cases)

Computer Science 331

Worst-Case Analysis of Running Time

Finding a Lower Bound

In order to prove that the worst-case running time of a program P is at *least* T, for input size N (for a fixed N):

- Find a valid input I of size N (where "valid" means that P's precondition is satisfied)
- Count the number of steps used by P on input I
- If this number is greater than or equal to T then you have proved what we want!

Why This Works:

 worst-case cannot be less than the running time of any particular input

Analysis of Recursive Programs

The following exercises on computing bounds on T(n) can be solved using mathematical induction.

Exercises:

1 Use the above information to prove that

$$T(n) \leq 6 \times 2^n - 6$$

for every integer n > 0.

2 Use the above information to prove that

$$T(n) \leq 6 \times fib(n+1) - 6$$

for every integer $n \ge 0$.

Computer Science 331

Worst-Case Analysis of Running Time Lower Bounds

Finding a Lower Bound, Continued

In order to prove that the worst-case running time of a program P is at least T(n), for a function T(n):

- Find a collection $l_1, l_2, l_3, l_4, \dots$ of inputs, where l_i is a valid input of size *i* for all i > 1
- Show that the number of steps used by P on input I_i is greater than or equal to T(i), for every integer $i \geq 1$

A Common Mistake

Some people try to prove that the worst-case running time of a program Pis at most T(n), for a function T(n), by doing the following:

- They give a collection l_1, l_2, l_3, \ldots of inputs, where l_i is a valid input of size i for all i > 1
- They show (generally, correctly) that the number of steps used by P on input I_i is less than or equal to T(i), for every integer $i \ge 1$.
- They then conclude that the worst-case running time of P on inputs of size n is at most T(n) (for all n)

Why This is Incorrect:

 This does not prove that there are no inputs for which the running time is larger Further Reading ...

Introduction to Algorithms, Sections 2.2-2.3

• includes *much* more material about this topic

Mike Jacobson (University of Calgary)

Computer Science 331