Cohomology of $\mathfrak{osp}(1|2)$ acting on linear differential operators on the supercircle $S^{1|1}$

Imed Basdouri Mabrouk Ben Ammar*

February 5, 2008

Abstract

We compute the first cohomology spaces H^1 ($\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu}$) ($\lambda, \mu \in \mathbb{R}$) of the Lie superalgebra $\mathfrak{osp}(1|2)$ with coefficients in the superspace $\mathfrak{D}_{\lambda,\mu}$ of linear differential operators acting on weighted densities on the supercircle $S^{1|1}$. The structure of these spaces was conjectured in [4]. In fact, we prove here that the situation is a little bit more complicated. (To appear in LMP.)

Mathematics Subject Classification (2000). 53D55

Key words: Cohomology, Orthosymplectic superalgebra.

1 Introduction

The space of weighted densities with weight λ (or λ -densities) on S^1 , denoted by:

$$\mathcal{F}_{\lambda} = \left\{ f(dx)^{\lambda}, \ f \in C^{\infty}(S^1) \right\}, \quad (\lambda \in \mathbb{R}),$$

is the space of sections of the line bundle $(T^*S^1)^{\otimes^{\lambda}}$. Let $\operatorname{Vect}(S^1)$ be the Lie algebra of all vector fields $F\frac{d}{dx}$ on S^1 , $(F \in C^{\infty}(S^1))$. With the *Lie derivative*, \mathcal{F}_{λ} is a $\operatorname{Vect}(S^1)$ -module. Alternatively, the $\operatorname{Vect}(S^1)$ action can be written as follows:

$$L_{F\frac{d}{dx}}^{\lambda}(f(dx)^{\lambda}) = (Ff' + \lambda fF')(dx)^{\lambda}, \tag{1.1}$$

where f', F' are $\frac{df}{dx}$, $\frac{dF}{dx}$.

Let A be a differential operator on S^1 . We see A as the linear mapping $f(dx)^{\lambda} \mapsto (Af)(dx)^{\mu}$ from \mathcal{F}_{λ} to \mathcal{F}_{μ} (λ , μ in \mathbb{R}). Thus the space of differential operators is a Vect(S^1) module, denoted $\mathcal{D}_{\lambda,\mu}$. The Vect(S^1) action is:

$$L_X^{\lambda,\mu}(A) = L_X^{\mu} \circ A - A \circ L_X^{\lambda}. \tag{1.2}$$

^{*}Département de Mathématiques, Faculté des Sciences de Sfax, BP 802, 3038 Sfax, Tunisie. E.mails:basdourimed@yahoo.fr, mabrouk.benammar@fss.rnu.tn

If we restrict ourselves to the Lie subalgebra of $\text{Vect}(S^1)$ generated by $\left\{\frac{d}{dx}, x\frac{d}{dx}, x^2\frac{d}{dx}\right\}$, isomorphic to $\mathfrak{sl}(2)$, we get a family of infinite dimensional $\mathfrak{sl}(2)$ modules, still denoted $\mathcal{D}_{\lambda,\mu}$.

P. Lecomte, in [5], found the cohomology spaces $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$ and $H^2(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$. These spaces appear naturally in the problem of describing the deformations of the $\mathfrak{sl}(2)$ -module \mathcal{D} of the differential operators acting on $\mathcal{S}^n = \bigoplus_{k=-n}^n \mathcal{F}_{\frac{1+k}{2}}$. More precisely, the first cohomology space $H^1(\mathfrak{sl}(2); V)$ classifies the infinitesimal deformations of a $\mathfrak{sl}(2)$ module V and the obstructions to integrability of a given infinitesimal deformation of V are elements of $H^2(\mathfrak{sl}(2); V)$. Thus, for instance, the infinitesimal deformations of the $\mathfrak{sl}(2)$ module \mathcal{D} are classified by:

$$\mathrm{H}^{1}\left(\mathfrak{sl}(2);\mathcal{D}\right)=\oplus_{k=0}^{n}\mathrm{H}^{1}\left(\mathfrak{sl}(2);\mathcal{D}_{\frac{1-k}{2},\frac{1+k}{2}}\right)\oplus\oplus_{k=-n}^{n}\mathrm{H}^{1}\left(\mathfrak{sl}(2);\mathcal{D}_{\frac{1+k}{2},\frac{1+k}{2}}\right).$$

In this paper we are interested to the study of the corresponding super structures. More precisely, we consider here the superspace $S^{1|1}$ equipped with its standard *contact structure* 1-form α , and introduce the superspace \mathfrak{F}_{λ} of λ -densities on the supercircle $S^{1|1}$.

Let $\mathcal{K}(1)$ be the Lie superalgebra of contact vector fields, \mathfrak{F}_{λ} is naturally a $\mathcal{K}(1)$ - module. For each λ , μ in \mathbb{R} , any differential operator on $S^{1|1}$ becomes a linear mapping from \mathfrak{F}_{λ} to \mathfrak{F}_{μ} , thus the space of differential operators becomes a $\mathcal{K}(1)$ -module denoted $\mathfrak{D}_{\lambda,\mu}$.

To the symplectic Lie algebra $\mathfrak{sl}(2)$ corresponds the ortosymplectic Lie superalgebra $\mathfrak{osp}(1|2)$ which is naturally realized as a subalgebra of $\mathcal{K}(1)$. Restricting our $\mathcal{K}(1)$ -modules to $\mathfrak{osp}(1|2)$, we get $\mathfrak{osp}(1|2)$ -modules still denoted \mathfrak{F}_{λ} , $\mathfrak{D}_{\lambda,\mu}$.

We compute here the first cohomology spaces $H^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu})$, $(\lambda, \mu \text{ in } \mathbb{R})$, getting a result very close to the classical spaces $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$. Especially, these spaces have the same dimension. Moreover, we give explicit formulae for all the non trivial 1-cocycles.

These spaces arise in the classification of infinitesimal deformations of the $\mathfrak{osp}(1|2)$ module of the differential operators acting on $\mathfrak{S}^n = \bigoplus_{k=1-n}^n \mathfrak{F}_{\frac{k}{2}}$. We hope to be able to
describe in the future all the deformations of this module.

2 Definitions and Notations

2.1 The Lie superalgebra of contact vector fields on $S^{1|1}$

We define the supercircle $S^{1|1}$ through its space of functions, $C^{\infty}(S^{1|1})$. A $C^{\infty}(S^{1|1})$ has the form:

$$F(x,\theta) = f_0(x) + \theta f_1(x),$$

where x is the even variable and θ the odd variable: we have $\theta^2 = 0$. Even elements in $C^{\infty}(S^{1|1})$ are the functions $F(x,\theta) = f_0(x)$, the functions $F(x,\theta) = \theta f_1(x)$ are odd elements. Note p(F) the parity of a homogeneous function F.

Let $Vect(S^{1|1})$ be the superspace of vector fields on $S^{1|1}$:

$$\operatorname{Vect}(S^{1|1}) = \left\{ F_0 \partial_x + F_1 \partial_\theta \quad F_i \in C^{\infty}(S^{1|1}) \right\},\,$$

where ∂_{θ} and ∂_{x} stand for $\frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial_{x}}$. The vector fields $f(x)\partial_{x}$, and $\theta f(x)\partial_{\theta}$ are even, the vector fields $\theta f(x)\partial_{x}$, and $f(x)\partial_{\theta}$ are odd. The superbracket of two vector fields is bilinear and defined for two homogeneous vector fields by:

$$[X, Y] = X \circ Y - (-1)^{p(X)p(Y)} Y \circ X.$$

Denote \mathfrak{L}_X the Lie derivative of a vector field, acting on the space of functions, forms, vector fields,...

The supercircle $S^{1|1}$ is equipped with the standard contact structure given by the following even 1-form:

$$\alpha = dx + \theta d\theta$$
.

We consider the Lie superalgebra $\mathcal{K}(1)$ of contact vector fields on $S^{1|1}$. That is, $\mathcal{K}(1)$ is the superspace of conformal vector fields on $S^{1|1}$ with respect to the 1-form α :

$$\mathcal{K}(1) = \{X \in \text{Vect}(S^{1|1}) \mid \text{there exists } F \in C^{\infty}(S^{1|1}) \text{ such that } \mathfrak{L}_X(\alpha) = F\alpha\}.$$

Let us define the vector fields η and $\overline{\eta}$ by

$$\eta = \partial_{\theta} + \theta \partial_{x}, \quad \overline{\eta} = \partial_{\theta} - \theta \partial_{x}.$$

Then any contact vector field on $S^{1|1}$ can be written in the following explicit form:

$$X_F = F\partial_x + \frac{1}{2}\eta(F)(\partial_\theta - \theta\partial_x) = -F\overline{\eta}^2 + \frac{1}{2}\eta(F)\overline{\eta}, \text{ where } F \in C^\infty(S^{1|1}).$$

Of course, $\mathcal{K}(1)$ is a subalgebra of $\text{Vect}(S^{1|1})$, and $\mathcal{K}(1)$ acts on $C^{\infty}(S^{1|1})$ through:

$$\mathfrak{L}_{X_F}(G) = FG' + \frac{1}{2}(-1)^{(p(F)+1)p(G)}\overline{\eta}(F) \cdot \overline{\eta}(G). \tag{2.3}$$

Let us define the contact bracket on $C^{\infty}(S^{1|1})$ as the bilinear mapping such that, for a couple of homogenous functions F, G,

$$\{F,G\} = FG' - F'G + \frac{1}{2}(-1)^{p(F)+1}\overline{\eta}(F) \cdot \overline{\eta}(G),$$
 (2.4)

Then the bracket of $\mathcal{K}(1)$ can be written as:

$$[X_F, X_G] = X_{\{F, G\}}.$$

2.2 The superalgebra $\mathfrak{osp}(1|2)$

Recall the Lie algebra $\mathfrak{sl}(2)$ is isomorphic to the Lie subalgebra of $\mathrm{Vect}(S^1)$ generated by

$$\left\{\frac{d}{dx}, x\frac{d}{dx}, x^2\frac{d}{dx}\right\}.$$

Similarly, we now consider the orthosymplectic Lie superalgebra as a subalgebra of $\mathcal{K}(1)$:

$$\mathfrak{osp}(1|2) = \mathrm{Span}(X_1, X_x, X_{x^2}, X_{x\theta}, X_{\theta}).$$

The space of even elements is isomorphic to $\mathfrak{sl}(2)$:

$$(\mathfrak{osp}(1|2))_0 = \operatorname{Span}(X_1, X_x, X_{x^2}) = \mathfrak{sl}(2).$$

The space of odd elements is two dimensional:

$$(\mathfrak{osp}(1|2))_1 = \operatorname{Span}(X_{x\theta}, X_{\theta}).$$

The new commutation relations are

$$[X_{x^2}, X_{\theta}] = -X_{x\theta}, [X_x, X_{\theta}] = -\frac{1}{2}X_{\theta}, [X_1, X_{\theta}] = 0,$$

$$[X_{x^2}, X_{x\theta}] = 0, [X_x, X_{x\theta}] = \frac{1}{2}X_{x\theta}, [X_1, X_{x\theta}] = X_{\theta},$$

$$[X_{x\theta}, X_{\theta}] = \frac{1}{2}X_x.$$

2.3 The space of weighted densities on $S^{1|1}$

In the super setting, by replacing dx by the 1-form α , we get analogous definition for weighted densities *i.e.* we define the space of λ -densities as

$$\mathfrak{F}_{\lambda} = \left\{ \phi = F(x, \theta) \alpha^{\lambda} \mid F(x, \theta) \in C^{\infty}(S^{1|1}) \right\}. \tag{2.5}$$

As a vector space, \mathfrak{F}_{λ} is isomorphic to $C^{\infty}(S^{1|1})$, but the Lie derivative of the density $G\alpha^{\lambda}$ along the vector field X_F in $\mathcal{K}(1)$ is now:

$$\mathfrak{L}_{X_F}(G\alpha^{\lambda}) = \mathfrak{L}_{X_F}^{\lambda}(G)\alpha^{\lambda}, \quad \text{with } \mathfrak{L}_{X_F}^{\lambda}(G) = \mathfrak{L}_{X_F}(G) + \lambda F'G.$$
 (2.6)

Or, if we put $F = a(x) + b(x)\theta$, $G = g_0(x) + g_1(x)\theta$,

$$\mathfrak{L}_{X_F}^{\lambda}(G) = L_{a\partial_x}^{\lambda}(g_0) + \frac{1}{2} bg_1 + \left(L_{a\partial_x}^{\lambda + \frac{1}{2}}(g_1) + \lambda g_0 b' + \frac{1}{2} g'_0 b \right) \theta.$$
 (2.7)

Especially, we have

$$\begin{cases} \mathfrak{L}_{X_a}^{\lambda}(g_0) = L_{a\partial_x}^{\lambda}(g_0), & \mathfrak{L}_{X_a}^{\lambda}(g_1\theta) = \theta L_{a\partial_x}^{\lambda + \frac{1}{2}}(g_1), \\ \mathfrak{L}_{X_{b\theta}}^{\lambda}(g_0) = (\lambda g_0 b' + \frac{1}{2} g'_0 b)\theta & \mathfrak{L}_{X_{b\theta}}^{\lambda}(g_1\theta) = \frac{1}{2} b g_1. \end{cases}$$

Of course, for all λ , \mathfrak{F}_{λ} is a $\mathcal{K}(1)$ -module:

$$[\mathfrak{L}_{X_F}^{\lambda},\mathfrak{L}_{X_G}^{\lambda}]=\mathfrak{L}_{[X_F,X_G]}^{\lambda}$$

We thus obtain a one-parameter family of $\mathcal{K}(1)$ -modules on $C^{\infty}(S^{1|1})$ still denoted by \mathfrak{F}_{λ} .

2.4 Differential Operators on Weighted Densities

A differential operator on $S^{1|1}$ is an operator on $C^{\infty}(S^{1|1})$ of t he following form:

$$A = \sum_{i=0}^{\ell} \widetilde{a}_i(x,\theta) \partial_x^i + \sum_{i=0}^{\ell} \widetilde{b}_i(x,\theta) \partial_x^i \partial_\theta.$$

In [4], it is proved that any local operator A on $S^{1|1}$ is in fact a differential operator.

Of course, any differential operator defines a linear mapping from \mathfrak{F}_{λ} to \mathfrak{F}_{μ} for any λ , $\mu \in \mathbb{R}$, thus the space of differential operators becomes a family of $\mathcal{K}(1)$ and $\mathfrak{osp}(1|2)$ modules denoted $\mathfrak{D}_{\lambda,\mu}$, for the natural action:

$$\mathfrak{L}_{X_F}^{\lambda,\mu}(A) = \mathfrak{L}_{X_F}^{\mu} \circ A - (-1)^{p(A)p(F)} A \circ \mathfrak{L}_{X_F}^{\lambda}. \tag{2.8}$$

3 The space $H^1(\mathfrak{osp}(1|2);\mathfrak{D}_{\lambda,\mu})$

3.1 Lie superalgebra cohomology (see [2])

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a Lie superalgebra and $A = A_0 \oplus A_1$ a \mathfrak{g} module. We define the *cochain* complex associated to the module as an exact sequence:

$$0 \longrightarrow C^0(\mathfrak{g}, A) \longrightarrow \cdots \longrightarrow C^{q-1}(\mathfrak{g}, A) \xrightarrow{\delta^{q-1}} C^q(\mathfrak{g}, A) \cdots$$

The spaces $C^q(\mathfrak{g}, A)$ are the spaces of super skew-symmetric q linear mappings:

$$C^{0}(\mathfrak{g}, A) = A, \quad C^{q}(\mathfrak{g}, A) = \bigoplus_{\mathfrak{q}_{0} + \mathfrak{q}_{1} = \mathfrak{q}} \operatorname{Hom}(\bigwedge^{\mathfrak{q}_{0}} \mathfrak{g}_{0} \otimes S^{q_{1}}\mathfrak{g}_{1}, A).$$

Elements of $C^q(\mathfrak{g}, A)$ are called *cochains*. The spaces $C^q(\mathfrak{g}, A)$ is \mathbb{Z}_2 graded:

$$C^{q}(\mathfrak{g}, A) = C_{0}^{q}(\mathfrak{g}, A) + C_{1}^{q}(\mathfrak{g}, A), \text{ with } C_{p}^{q}(\mathfrak{g}, A) = \bigoplus_{\substack{q_{0}+q_{1}=q\\q_{1}+r=p \mod 2}} \operatorname{Hom}(\bigwedge^{q_{0}} \mathfrak{g}_{0} \otimes S^{q_{1}}\mathfrak{g}_{1}, A_{r}).$$

The linear mapping δ^q (or, briefly δ) is called the *coboundary operator*. This operator is a generalization of the usual Chevalley coboundary operator for Lie algebra to the case of Lie superalgebra. Explicitly, it is defined as follows. Take a cochain $c \in C^q(\mathfrak{g}, A)$, then for q_0, q_1 with $q_0 + q_1 = q + 1$, $\delta^q c$ is:

$$\begin{split} \delta^q c(g_1, & \dots, g_{q_0}, h_1, \dots, h_{q_1}) \\ &= \sum_{1 \leq s < t \leq q_0} (-1)^{s+t-1} c([g_s, g_t], g_1, \dots, \hat{g}_s, \dots, \hat{g}_t, \dots, g_{q_0}, h_1, \dots, h_{q_1}) \\ &+ \sum_{s=1}^{q_0} \sum_{t=1}^{q_1} (-1)^{s-1} c(g_1, \dots, \hat{g}_s, \dots, g_{q_0}, [g_s, h_t], h_1, \dots, \hat{h}_t, \dots, h_{q_1}) \\ &+ \sum_{1 \leq s < t \leq q_1} c([h_s, h_t], g_1, \dots, g_{q_0}, h_1, \dots, \hat{h}_s, \dots, \hat{h}_t, \dots, h_{q_1}) \\ &+ \sum_{s=1}^{q_0} (-1)^s g_s c(g_1, \dots, \hat{g}_s, \dots, g_{q_0}, h_1, \dots, h_{q_1}) \\ &+ (-1)^{q_0-1} \sum_{s=1}^{q_1} h_s c(g_1, \dots, g_{q_0}, h_1, \dots, \hat{h}_s, \dots, h_{q_1}). \end{split}$$

where g_1, \ldots, g_{q_0} are in \mathfrak{g}_0 and h_1, \ldots, h_{q_1} in \mathfrak{g}_1 . The relation $\delta^q \circ \delta^{q-1} = 0$ holds. The kernel of δ^q , denoted $Z^q(\mathfrak{g}, A)$, is the space of q cocycles, among them, the elements in the range of δ^{q-1} are called q coboundaries. We note $B^q(\mathfrak{g}, A)$ the space of q coboundaries.

By definition, the q^{th} cohomology space is the quotient space

$$H^{q}(\mathfrak{g}, A) = Z^{q}(\mathfrak{g}, A)/B^{q}(\mathfrak{g}, A).$$

One can check that $\delta^q(C^q_p(\mathfrak{g}, A)) \subset C^{q+1}_p(\mathfrak{g}, A)$ and then we get the following sequences

$$0 \longrightarrow C_p^0(\mathfrak{g}, A) \longrightarrow \cdots \longrightarrow C_p^{q-1}(\mathfrak{g}, A) \xrightarrow{\delta^{q-1}} C_p^q(\mathfrak{g}, A) \cdots,$$

where p = 0 or 1. The cohomology spaces are thus graded by

$$H_p^q(\mathfrak{g}, A) = \operatorname{Ker} \delta^q|_{C_p^q(\mathfrak{g}, A)} / \delta^{q-1}(C_p^{q-1}(\mathfrak{g}, A)).$$

3.2 The main theorem

The main result in this paper is the following:

Theorem 3.1. The cohomology spaces $H_n^1(\mathfrak{g},\mathfrak{D}_{\lambda,\mu})$ are finite dimensional. An explicit description of these spaces is the following:

1) The space $H_0^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})$ is

$$H_0^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R} & \text{if } \lambda = \mu, \\ 0 & \text{otherwise.} \end{cases}$$
 (3.9)

A base for the space $H_0^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\lambda})$ is given by the cohomology class of the 1-cocycle:

$$\Upsilon_{\lambda,\lambda}(X_F) = F'. \tag{3.10}$$

2) The space $H_1^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})$ is

$$H_1^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R}^2 & \text{if } \lambda = \frac{1-k}{2}, \ \mu = \frac{k}{2}, \\ 0 & \text{otherwise.} \end{cases}$$
(3.11)

A base for the space $H_1^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\frac{1-k}{2},\frac{k}{2}})$ is given by the cohomology classes of the 1-cocycles:

$$\Upsilon_{\frac{1-k}{2},\frac{k}{2}}(X_F) = \overline{\eta}^2(F)\overline{\eta}^{2k-1},
\widetilde{\Upsilon}_{\frac{1-k}{2},\frac{k}{2}}(X_F) = (k-1)\eta^4(F)\overline{\eta}^{2k-3} + \eta^3(F)\overline{\eta}^{2k-2}.$$
(3.12)

Note that the 1-cocycle $\widetilde{\Upsilon}_{\frac{1-k}{2},\frac{k}{2}}$ coincides with the 1-cocycle γ_{2k-1} given by Gargoubi et al. in [4]. The proof of Theorem 3.1 will be the subject of subsection 3.4.

3.3 Relationship between $H^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})$ and $H^1(\mathfrak{sl}(2),\mathcal{D}_{\lambda,\mu})$

Before proving the theorem 3.1 we present here some results illustrating the analogy between the cohomlogy spaces in super and classical settings.

First, note that:

- 1) As a $\mathfrak{sl}(2)$ -module, we have $\mathfrak{F}_{\lambda} \simeq \mathcal{F}_{\lambda} \oplus \Pi(\mathcal{F}_{\lambda+\frac{1}{2}})$ and $\mathfrak{osp}(1|2) \simeq \mathfrak{sl}(2) \oplus \Pi(\mathfrak{h})$, where \mathfrak{h} is the subspace of $\mathcal{F}_{-\frac{1}{2}}$ spanned by $\{dx^{-\frac{1}{2}}, xdx^{-\frac{1}{2}}\}$ and Π is the change of parity.
- 2) As a $\mathfrak{sl}(2)$ -module, we have for the homogeneous components of $\mathfrak{D}_{\lambda,\mu}$:

$$(\mathfrak{D}_{\lambda,\mu})_0 \simeq \mathcal{D}_{\lambda,\mu} \oplus \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}$$
 and $(\mathfrak{D}_{\lambda,\mu})_1 \simeq \Pi(\mathcal{D}_{\lambda+\frac{1}{2},\mu} \oplus \mathcal{D}_{\lambda,\mu+\frac{1}{2}}).$

Proposition 3.1. Any 1-cocycle $\Upsilon \in Z^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu})$, is decomposed into (Υ', Υ'') in $Hom(\mathfrak{sl}(2); \mathfrak{D}_{\lambda,\mu}) \oplus Hom(\mathfrak{h}; \mathfrak{D}_{\lambda,\mu})$. Υ' and Υ'' are solutions of the following equations:

$$\Upsilon'([X_{g_1}, X_{g_2}]) - \mathfrak{L}_{X_{g_1}}^{\lambda, \mu} \Upsilon'(X_{g_2}) + \mathfrak{L}_{X_{g_2}}^{\lambda, \mu} \Upsilon'(X_{g_1}) = 0, \tag{3.13}$$

$$\Upsilon''([X_g, X_{h\theta}]) - \mathfrak{L}_{X_g}^{\lambda,\mu} \Upsilon''(X_{h\theta}) + \mathfrak{L}_{X_{h\theta}}^{\lambda,\mu} \Upsilon'(X_g) = 0, \tag{3.14}$$

$$\Upsilon'([X_{h_1\theta}, X_{h_2\theta}]) - \mathfrak{L}_{X_{h_1\theta}}^{\lambda, \mu} \Upsilon''(X_{h_2\theta}) - \mathfrak{L}_{X_{h_2\theta}}^{\lambda, \mu} \Upsilon''(X_{h_1\theta}) = 0, \tag{3.15}$$

here, g, g_1 , g_2 are polynomials in the variable x, with degree at most 2, and h, h_1 , h_2 are affine functions in the variable x.

Proof. The equations (3.13), (3.14) and (3.15) are equivalent to the fact that Υ is a 1-cocycle. For any X_F , $X_G \in \mathfrak{osp}(1|2)$,

$$\delta\Upsilon(X_F,X_G) := \Upsilon([X_F,X_G]) - \mathfrak{L}_{X_F}^{\lambda,\mu}\Upsilon(X_G) + (-1)^{p(F)p(G)}\mathfrak{L}_{X_G}^{\lambda,\mu}\Upsilon(X_F) = 0.$$

According to the \mathbb{Z}_2 -grading, the even component Υ_0 and the odd component Υ_1 of any 1-cocycle Υ can be decomposed as $\Upsilon_0 = (\Upsilon_{000}, \Upsilon_{00\frac{1}{2}}, \Upsilon_{110}, \Upsilon_{11\frac{1}{2}})$ and $\Upsilon_1 = (\Upsilon_{010}, \Upsilon_{01\frac{1}{2}}, \Upsilon_{100}, \Upsilon_{10\frac{1}{2}})$, where

$$\begin{cases}
\Upsilon_{000} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda,\mu}, \\
\Upsilon_{00\frac{1}{2}} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}, \\
\Upsilon_{110} : \mathfrak{h} \to \mathcal{D}_{\lambda,\mu+\frac{1}{2}}, \\
\Upsilon_{11\frac{1}{2}} : \mathfrak{h} \to \mathcal{D}_{\lambda+\frac{1}{2},\mu}
\end{cases}$$
 and
$$\begin{cases}
\Upsilon_{010} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda,\mu+\frac{1}{2}}, \\
\Upsilon_{01\frac{1}{2}} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda+\frac{1}{2},\mu}, \\
\Upsilon_{100} : \mathfrak{h} \to \mathcal{D}_{\lambda,\mu}, \\
\Upsilon_{10\frac{1}{2}} : \mathfrak{h} \to \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}.
\end{cases}$$

The decomposition $\Upsilon = (\Upsilon', \Upsilon'')$ given in proposition 3.1 corresponds to

$$\Upsilon' = (\Upsilon_{000}, \Upsilon_{00\frac{1}{2}}, \Upsilon_{010}, \Upsilon_{01\frac{1}{2}}) \quad \mathrm{and} \quad \Upsilon'' = (\Upsilon_{110}, \Upsilon_{11\frac{1}{2}}, \Upsilon_{100}, \Upsilon_{10\frac{1}{2}}).$$

By considering the equation (3.13), we can see the components Υ_{000} , $\Upsilon_{00\frac{1}{2}}$, Υ_{010} and $\Upsilon_{01\frac{1}{2}}$ as 1-cocycles on $\mathfrak{sl}(2)$ with coefficients respectively in $\mathcal{D}_{\lambda,\mu}$, $\mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}$, $\mathcal{D}_{\lambda,\mu+\frac{1}{2}}$, and $\mathcal{D}_{\lambda+\frac{1}{2},\mu}$.

The first cohomology space $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$ was computed by Gargoubi and Lecomte [3, 5]. The result is the following:

$$H^{1}(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu}) \simeq \begin{cases}
\mathbb{R} & \text{if } \lambda = \mu \\
\mathbb{R}^{2} & \text{if } (\lambda,\mu) = (\frac{1-k}{2}, \frac{1+k}{2}) \text{ where } k \in \mathbb{N} \setminus \{0\} \\
0 & \text{otherwise.}
\end{cases} (3.16)$$

The space $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\lambda})$ is generated by the cohomology class of the 1-cocycle

$$C'_{\lambda}(F\frac{d}{dx})(fdx^{\lambda}) = F'fdx^{\lambda}.$$
 (3.17)

For $k \in \mathbb{N} \setminus \{0\}$, the space $H^1(\mathfrak{sl}(2); \mathcal{D}_{\frac{1-k}{2}, \frac{1+k}{2}})$ is generated by the cohomology classes of the 1-cocycles, C_k and \tilde{C}_k defined by

$$C_k(F\frac{d}{dx})(fdx^{\frac{1-k}{2}}) = F'f^{(k)}dx^{\frac{1+k}{2}}$$
 and $\widetilde{C}_k(F\frac{d}{dx})(fdx^{\frac{1-k}{2}}) = F''f^{(k-1)}dx^{\frac{1+k}{2}}.$ (3.18)

We shall need the following description of $\mathfrak{sl}(2)$ invariant mappings.

Lemma 3.2. Let

$$A: \mathfrak{h} \times \mathcal{F}_{\lambda} \to \mathcal{F}_{\mu}, \qquad (hdx^{-\frac{1}{2}}, fdx^{\lambda}) \mapsto A(h, f)dx^{\mu}$$

be a bilinear differential operator. If A is $\mathfrak{sl}(2)$ -invariant then

$$\mu = \lambda - \frac{1}{2} + k$$
, where $k \in \mathbb{N}$

and the following relation holds

$$A_k(h, f) = a_k(hf^{(k)} + k(2\lambda + k - 1)h'f^{(k-1)}), \quad where \quad k(k-1)(2\lambda + k - 1)(2\lambda + k - 2)a_k = 0.$$

Proof. A straightforward computation.

Now, let us study the relationship between these 1-cocycles and their analogues in the super setting. We know that any element $\Upsilon \in Z^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})$ is decomposed into $\Upsilon = \Upsilon' + \Upsilon''$ where $\Upsilon' \in Hom(\mathfrak{sl}(2), \mathfrak{D}_{\lambda,\mu})$ and $\Upsilon'' \in Hom(\mathfrak{h}, \mathfrak{D}_{\lambda,\mu})$. The following lemma shows the close relationship between the cohomology spaces $H^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})$ and $H^1(\mathfrak{sl}(2), \mathcal{D}_{\lambda,\mu}).$

Lemma 3.3. The 1-cocycle Υ is a coboundary for $\mathfrak{osp}(1|2)$ if and only if Υ' is a coboundary for $\mathfrak{sl}(2)$.

Proof. It is easy to see that if Υ is a coboundary for $\mathfrak{osp}(1|2)$ then Υ' is a coboundary over $\mathfrak{sl}(2)$. Now, assume that Υ' is a coboundary for $\mathfrak{sl}(2)$, that is, there exists $A \in \mathfrak{D}_{\lambda,\mu}$ such that for all g polynomial in the variable x with degree at most 2

$$\Upsilon'(X_g) = \mathfrak{L}_{X_g}^{\lambda,\mu} \widetilde{A}.$$

By replacing Υ by $\Upsilon - \delta \widetilde{A}$, we can suppose that $\Upsilon' = 0$. But, in this case, the map Υ'' must satisfy, for all h, h_1, h_2 polynomial with degree 0 or 1 and g polynomial with degree 0,1 or 2, the following equations

$$\mathcal{L}_{X_g}^{\lambda,\mu} \Upsilon''(X_{h\theta}) - \Upsilon''([X_g, X_{h\theta}]) = 0,$$

$$\mathcal{L}_{X_{h_1\theta}}^{\lambda,\mu} \Upsilon''(X_{h_2\theta}) + \mathcal{L}_{X_{h_2\theta}}^{\lambda,\mu} \Upsilon''(X_{h_1\theta}) = 0.$$
(3.19)

$$\mathfrak{L}_{X_{h_1\theta}}^{\lambda,\mu} \Upsilon''(X_{h_2\theta}) + \mathfrak{L}_{X_{h_2\theta}}^{\lambda,\mu} \Upsilon''(X_{h_1\theta}) = 0.$$
 (3.20)

1) If Υ is an even 1-cocycle then Υ'' is decomposed into $\Upsilon''_{00}:\mathfrak{h}\otimes\mathcal{F}_{\lambda+\frac{1}{2}}\to\mathcal{F}_{\mu}$ and $\Upsilon_{01}'':\mathfrak{h}\otimes\mathcal{F}_{\lambda}\to\mathcal{F}_{\mu+\frac{1}{2}}$. The equation (3.19) tell us that Υ_{00}'' and Υ_{01}'' are $\mathfrak{sl}(2)$ invariant bilinear maps. Therefore, the expressions of Υ''_{00} and Υ''_{01} are given by Lemma 3.2. So, we must have $\mu = \lambda + k = (\lambda + \frac{1}{2}) - \frac{1}{2} + k$ (and then $\mu + \frac{1}{2} = \lambda - \frac{1}{2} + k + 1$). More precisely, using the equation (3.20), we get up to a factor:

$$\Upsilon = \begin{cases} 0 & \text{if } k(k-1)(2\lambda+k)(2\lambda+k-1) \neq 0 & \text{or } k=1 \text{ and } \lambda \notin \{0, -\frac{1}{2}\}, \\ \delta(\theta \partial_{\theta} \partial_{x}^{k}) & \text{if } (\lambda, \mu) = (\frac{-k}{2}, \frac{k}{2}), \\ \delta(\partial_{x}^{k} - \theta \partial_{\theta} \partial_{x}^{k}) & \text{if } (\lambda, \mu) = (\frac{1-k}{2}, \frac{1+k}{2}) & \text{or } \lambda = \mu. \end{cases}$$

2) If Υ is an odd 1-cocycle then Υ'' is decomposed into $\Upsilon''_{00}:\mathfrak{h}\otimes\mathcal{F}_{\lambda}\to\mathcal{F}_{\mu}$ and $\Upsilon''_{01}:\mathfrak{h}\otimes\mathcal{F}_{\lambda+\frac{1}{2}}\to\mathcal{F}_{\mu+\frac{1}{2}}$. As in the previous case, the expressions of Υ''_{00} and Υ''_{01} are given by Lemma 3.2. So, we must have $\mu=\lambda-\frac{1}{2}+k$ (and then $\mu+\frac{1}{2}=(\lambda+\frac{1}{2})-\frac{1}{2}+k$.) More precisely, using the equation (3.20), we get:

$$\Upsilon = \begin{cases} 0 & \text{if} \quad k(k-1)(2\lambda + k - 1) \neq 0 \\ \delta(\theta) & \text{if} \quad \mu = \lambda - \frac{1}{2}, \\ \delta(\partial_{\theta}) & \text{if} \quad \mu = \lambda + \frac{1}{2}, \\ \delta(\theta \partial_{x}^{k}) & \text{if} \quad (\lambda, \mu) = (\frac{1-k}{2}, \frac{k}{2}). \end{cases}$$

Now, the space $Z^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})$ of 1-cocycles is \mathbb{Z}_2 -graded:

$$Z^{1}(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu}) = Z^{1}(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})_{0} \oplus Z^{1}(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})_{1}. \tag{3.21}$$

Therefore, any element $\Upsilon \in Z^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})$ is decomposed into an even part Υ_0 and odd part Υ_1 . Each of Υ_0 and Υ_1 is decomposed into two components: $\Upsilon_0 = (\Upsilon_{00}, \Upsilon_{11})$ and $\Upsilon_1 = (\Upsilon_{01}, \Upsilon_{10})$, where

$$\left\{ \begin{array}{ll} \Upsilon_{00} : \mathfrak{sl}(2) & \to (\mathfrak{D}_{\lambda,\mu})_0, \\ \Upsilon_{11} : \mathfrak{h} & \to (\mathfrak{D}_{\lambda,\mu})_1, \end{array} \right. \text{ and } \left\{ \begin{array}{ll} \Upsilon_{01} : \mathfrak{sl}(2) & \to (\mathfrak{D}_{\lambda,\mu})_1, \\ \Upsilon_{10} : \mathfrak{h} & \to (\mathfrak{D}_{\lambda,\mu})_0. \end{array} \right.$$

The components Υ_{11} and Υ_{10} of Υ_0 and Υ_1 are also decomposed as follows: $\Upsilon_{11} = \Upsilon_{110} + \Upsilon_{11\frac{1}{2}}$ and $\Upsilon_{10} = \Upsilon_{100} + \Upsilon_{10\frac{1}{2}}$, where $\Upsilon_{110} \in Hom\left(\mathfrak{h}, \mathcal{D}_{\lambda,\mu+\frac{1}{2}}\right)$, $\Upsilon_{11\frac{1}{2}} \in Hom\left(\mathfrak{h}, \mathcal{D}_{\lambda+\frac{1}{2},\mu}\right)$, $\Upsilon_{100} \in Hom\left(\mathfrak{h}, \mathcal{D}_{\lambda,\mu}\right)$, $\Upsilon_{10\frac{1}{2}} \in Hom\left(\mathfrak{h}, \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}\right)$.

As in [1], the following lemma gives the general form of each of Υ_{110} and $\Upsilon_{11\frac{1}{2}}$.

Lemma 3.4. Up to a coboundary, the maps Υ_{110} , $\Upsilon_{11\frac{1}{2}}$, Υ_{100} and $\Upsilon_{10\frac{1}{2}}$ are given by

$$\Upsilon_{110}(X_{h\theta}) = a_0 h \theta \partial_x^k + a_1 h' \theta \partial_x^{k-1} \quad and \quad \Upsilon_{11\frac{1}{2}}(X_{h\theta}) = b_0 h \partial_\theta \partial_x^k + b_1 h' \partial_\theta \partial_x^{k-1},$$

$$\Upsilon_{110}(X_{h\theta}) = c_0 h \theta \partial_x^k + c_1 h' \theta \partial_x^{k-1} \quad and \quad \Upsilon_{11\frac{1}{2}}(X_{h\theta}) = d_0 h \partial_\theta \partial_x^k + d_1 h' \partial_\theta \partial_x^{k-1},$$

where the coefficients a_i , b_i , c_i , and d_i are constants.

Proof. The coefficients a_i , b_i , c_i , and d_i a priori are some functions of x, but we shall now prove $\partial_x a_i = \partial_x b_i = 0$ (and similarly $\partial_x c_i = \partial_x d_i = 0$). To do that, we shall simply show that $\mathfrak{L}_{\partial_x}^{\lambda,\mu}(\Upsilon_{11}) = 0$.

First, for all h polynomial with degree 0 or 1, we have

$$(\mathfrak{L}_{\partial_x}^{\lambda,\mu}\Upsilon_{11})(X_{h\theta}) = \mathfrak{L}_{\partial_x}^{\lambda,\mu}(\Upsilon_{11}(X_{h\theta})) - \Upsilon_{11}([\partial_x, X_{h\theta}]). \tag{3.22}$$

On the other hand, from Lemma 3.3, it follows that, up to a coboundary, Υ_{00} is a linear combination of some 1-cocycles for sl(2) given by (3.17) and (3.18). So, we have $\Upsilon_{00}(\partial_x) = 0$ and then

$$\mathfrak{L}_{X_{h\theta}}^{\lambda,\mu}(\Upsilon_{00}(\partial_x))=0.$$

Therefore, the equation (3.22) becomes, for all h,

$$-\left(\mathfrak{L}_{\partial_x}^{\lambda,\mu}\Upsilon_{11}\right)(X_{h\theta}) = \Upsilon_{11}([\partial_x, X_{h\theta}]) - \mathfrak{L}_{\partial_x}^{\lambda,\mu}(\Upsilon_{11}(X_{h\theta})) + \mathfrak{L}_{X_{h\theta}}^{\lambda,\mu}(\Upsilon_{00}(\partial_x)). \tag{3.23}$$

The right-hand side of (3.23) is nothing but $\delta \Upsilon_0(\partial_x, X_{h\theta})$. But, Υ_0 is a 1-cocycle, then $\mathfrak{L}_{\partial_x}^{\lambda,\mu}(\Upsilon_{11}) = 0$. Lemma 3.4 is proved.

Proof of Theorem 3.1 3.4

The first cohomology space $H^1(\mathfrak{osp}(1|2);\mathfrak{D}_{\lambda,\mu})$ inherits the \mathbb{Z}_2 -grading from (3.21) and is decomposed into odd and an even subspaces:

$$\mathrm{H}^1(\mathfrak{osp}(1|2);\mathfrak{D}_{\lambda,\mu})=\mathrm{H}^1_0(\mathfrak{osp}(1|2);\mathfrak{D}_{\lambda,\mu})\oplus\mathrm{H}^1_1(\mathfrak{osp}(1|2);\mathfrak{D}_{\lambda,\mu}).$$

We compute each part separetly.

1) Let Υ_0 be a non trivial even 1-cocycle for $\mathfrak{osp}(1|2)$ in $\mathfrak{D}_{\lambda,\mu}$. According to the \mathbb{Z}_2 grading, Υ_0 should retain the following general form: $\Upsilon_0 = \Upsilon_{000} + \Upsilon_{00\frac{1}{2}} + \Upsilon_{110} + \Upsilon_{11\frac{1}{2}}$ such that

$$\begin{cases}
\Upsilon_{000} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda,\mu}, \\
\Upsilon_{00\frac{1}{2}} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda\frac{1}{2}f,\mu+\frac{1}{2}}, \\
\Upsilon_{110} : \mathfrak{h} \to \mathcal{D}_{\lambda,\mu+\frac{1}{2}}, \\
\Upsilon_{11\frac{1}{2}} : \mathfrak{h} \to \mathcal{D}_{\lambda+\frac{1}{2},\mu}.
\end{cases} (3.24)$$

Then, by using Lemma 3.3, we deduce that, up to coboundary, Υ_{000} and $\Upsilon_{00\frac{1}{2}}$ can be expressed in terms of C'_{λ} , C_k and \widetilde{C}_k where $\lambda \in \mathbb{R}$ and $k \in \mathbb{N} \setminus \{0\}$. We thus consider three cases:

i)
$$\lambda = \mu$$
, $\Upsilon_{000} = \alpha C'_{\lambda}$, and $\Upsilon_{00\frac{1}{2}} = \beta C'_{\lambda\frac{1}{2}f}$.

ii)
$$(\lambda, \mu) = (\frac{1-k}{2}, \frac{1+k}{2}), \Upsilon_{000} = \alpha_1 C_k + \alpha_2 \widetilde{C}_k$$
, and $\Upsilon_{00\frac{1}{2}} = 0$.

iii)
$$(\lambda, \mu) = (\frac{-k}{2}, \frac{k}{2}), \Upsilon_{000} = 0$$
 and $\Upsilon_{00\frac{1}{2}} = \alpha_1 C_k + \alpha_2 \widetilde{C}_k$.

Put $\Upsilon' = \Upsilon_{000} + \Upsilon_{00\frac{1}{2}}$ and $\Upsilon'' = \Upsilon_{110} + \Upsilon_{11\frac{1}{2}}$. In each case, the 1-cocycle Υ_0 must satisfy

$$\begin{cases}
\Upsilon''[X_g, X_{\theta h}] &= \mathfrak{L}_{X_g}^{\lambda, \mu} \Upsilon''(X_{\theta h}) - \mathfrak{L}_{X_{\theta h}}^{\lambda, \mu} \Upsilon'(X_g), \\
\Upsilon'[X_{\theta h_1}, X_{\theta h_2}] &= \mathfrak{L}_{X_{\theta h_1}}^{\lambda, \mu} \Upsilon''(X_{\theta h_2}) + \mathfrak{L}_{X_{\theta h_2}}^{\lambda, \mu} \Upsilon''(X_{\theta h_1}),
\end{cases}$$
(3.25)

where h, h_1 , and h_2 are polynomials of degree 0 or 1, g polynomial of degree 0, 1 or 2. Now, thanks to Lemma 3.4, we can write

$$\Upsilon_{110}(X_{h\theta}) = a_0 h\theta \partial_x^k + a_1 h'\theta \partial_x^{k-1}$$
 and $\Upsilon_{11\frac{1}{2}}(v_{h\theta}) = b_0 h\partial_\theta \partial_x^k + b_1 h'\partial_\theta \partial_x^{k-1}$.

Let us now solve the equations (3.25). We obtain $\lambda = \mu$ and $\Upsilon_{\lambda,\lambda}(X_F) = F'$. This completes the proof of part 1).

2) Consider a non trivial odd 1-cocycle Υ_1 for $\mathfrak{osp}(1|2)$ in $\mathfrak{D}_{\lambda,\mu}$ and its decomposition $\Upsilon_1 = \Upsilon_{010} + \Upsilon_{01\frac{1}{2}} + \Upsilon_{100} + \Upsilon_{10\frac{1}{2}}$, where

$$\begin{cases}
\Upsilon_{010} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda,\mu+\frac{1}{2}}, \\
\Upsilon_{01\frac{1}{2}} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda+\frac{1}{2},\mu}, \\
\Upsilon_{100} : \mathfrak{h} \to \mathcal{D}_{\lambda,\mu}, \\
\Upsilon_{10\frac{1}{2}} : \mathfrak{h} \to \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}.
\end{cases} (3.26)$$

We must have $(\lambda, \mu) = (\frac{1-k}{2}, \frac{k}{2})$ with $k \in \mathbb{N} \setminus \{0\}$. Moreover $\Upsilon_1 = \Upsilon_{000} + \Upsilon_{00\frac{1}{2}} + \Upsilon_{110} + \Upsilon_{11\frac{1}{2}}$ is a 1-cocycle for $\mathcal{K}(1)$ if and only if

$$\begin{cases}
\Upsilon_{010} &= \alpha_1 C_k + \alpha_2 \widetilde{C}_k \\
\Upsilon_{01\frac{1}{2}} &= \beta_1 C_{k-1} + \beta_2 \widetilde{C}_{k-1} \\
\Upsilon''[X_g, X_{\theta h}] &= \mathfrak{L}_{X_g}^{\lambda,\mu} \Upsilon''(X_{\theta h}) - \mathfrak{L}_{X_{\theta h}}^{\lambda,\mu} \Upsilon'(X_g), \\
\Upsilon'[X_{\theta h_1}, X_{\theta h_2}] &= \mathfrak{L}_{X_{\theta h_1}}^{\lambda,\mu} \Upsilon''(X_{\theta h_2}) + \mathfrak{L}_{X_{\theta h_2}}^{\lambda,\mu} \Upsilon''(X_{\theta h_1}),
\end{cases} (3.27)$$

where $\Upsilon' = \Upsilon_{010} + \Upsilon_{01\frac{1}{2}}$ and $\Upsilon'' = \Upsilon_{100} + \Upsilon_{10\frac{1}{2}}$.

As above, we then can write

$$\Upsilon_{100}(X_{h\theta}) = a_0 h \theta \partial_x^k + a_1 h' \theta \partial_x^{k-1} \text{ and } \Upsilon_{10\frac{1}{2}}(v_{h\theta}) = b_0 h \partial_\theta \partial_x^k + b_1 h' \partial_\theta \partial_x^{k-1}.$$

According to Lemma 3.3, the map Υ_1 is a non trivial 1-cocycle if and only if at least one of the maps Υ_{010} and $\Upsilon_{01\frac{1}{2}}$ is a non trivial 1-cocycle for $\mathfrak{sl}(2)$, that means $(\alpha_1,\alpha_2,\beta_1,\beta_2) \neq (0,0,0,0)$. Let us determine the linear maps Υ_{100} and $\Upsilon_{10\frac{1}{2}}$. Up to factor, we get:

$$\Upsilon_1 = \alpha_1 \Upsilon_{\frac{1-k}{2}, \frac{k}{2}} + \alpha_2 \widetilde{\Upsilon}_{\frac{1-k}{2}, \frac{k}{2}} + a_0 \delta(2\theta \partial_x^k).$$

Thus, the cohomology classes of $\Upsilon_{\frac{1-k}{2},\frac{k}{2}}$ and $\widetilde{\Upsilon}_{\frac{1-k}{2},\frac{k}{2}}$ generate $H_1^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\frac{1-k}{2},\frac{k}{2}})$. The proof is now complete.

References

- [1] I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelbene and K. Kammoun Cohomology of the Lie Superalgebra of Contact Vector Fields on $\mathbb{R}^{1|1}$ and Deformations of the Superspace of Symbols, math.RT/0702645.
- [2] Fuchs D B, Cohomology of infinite-dimensional Lie algebras, Plenum Publ. New York, 1986.
- [3] H. Gargoubi, Sur la géométrie de l'espace des opérateurs différentiels lineaires sur \mathbb{R} , Bull. Soc. Roy. Sci. Liège. Vol. 69, 1, 2000, 2147.

- [4] H. Gargoubi, N. Mellouli and V. Ovsienko Differential Operators on Supercircle: Conformally Equivariant Quantization and Symbol Calculus, Letters in Mathematical Physics (2007) **79**: 5165.
- [5] P. B. A. Lecomte, On the cohomology of $\mathfrak{sl}(n+1;\mathbb{R})$ acting on differential operators and $\mathfrak{sl}(n+1;\mathbb{R})$ -equivariant symbols, Indag. Math. NS. 11 (1), (2000), 95 114.
- [6] A. Nijenuis, R. W. Richardson Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. **73** (1967), 175–179.