Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### Definition

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### Definition

1. 
$$\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$$

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### Definition

Inner Product: An inner product is a function  $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$  with the following properties for all  $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ , and  $a, b \in \mathbb{F}$ .

1.  $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$  Note: If  $\mathbb{F} = \mathbb{R}$ , then we omit the conjugate!

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### **Definition**

- 1.  $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$  Note: If  $\mathbb{F} = \mathbb{R}$ , then we omit the conjugate!
- 2.  $\langle a\mathbf{u} + b\mathbf{v}, \mathbf{w} \rangle = a \langle \mathbf{u}, \mathbf{w} \rangle + b \langle \mathbf{v}, \mathbf{w} \rangle$

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### **Definition**

- 1.  $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$  Note: If  $\mathbb{F} = \mathbb{R}$ , then we omit the conjugate!
- 2.  $\langle a\mathbf{u} + b\mathbf{v}, \mathbf{w} \rangle = a \langle \mathbf{u}, \mathbf{w} \rangle + b \langle \mathbf{v}, \mathbf{w} \rangle$
- 3.  $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### **Definition**

- 1.  $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$  Note: If  $\mathbb{F} = \mathbb{R}$ , then we omit the conjugate!
- 2.  $\langle a\mathbf{u} + b\mathbf{v}, \mathbf{w} \rangle = a \langle \mathbf{u}, \mathbf{w} \rangle + b \langle \mathbf{v}, \mathbf{w} \rangle$
- 3.  $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$
- 4.  $\langle \mathbf{v}, \mathbf{v} \rangle = 0$  if and only if  $\mathbf{v} = \mathbf{0}$ .

Let  $V = \mathbb{C}^n$  and  $\mathbb{F} = \mathbb{C}$ . Then the following function is an inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\mathbf{y}}^{\top} \mathbf{x} = \sum_{k=1}^{n} x_k \overline{y_k}$$

Note: we sometimes abbreviate  $\overline{\mathbf{v}}^{\top}$  as  $\mathbf{v}^*$ 

Let  $V = \mathbb{C}^n$  and  $\mathbb{F} = \mathbb{C}$ . Then the following function is an inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\mathbf{y}}^{\top} \mathbf{x} = \sum_{k=1}^{n} x_k \overline{y_k}$$

Note that if we are in the real numbers, then we omit the conjugate of y.

Note: we sometimes abbreviate  $\overline{\mathbf{y}}^{\top}$  as  $\mathbf{y}^*$ 

Property 1:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ 

Property 1: 
$$\langle \mathbf{x}, \mathbf{y} 
angle = \overline{\langle \mathbf{y}, \mathbf{x} 
angle}$$
  $\langle \mathbf{x}, \mathbf{y} 
angle$ 

Property 1: 
$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k}$$

Property 1: 
$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k$$

Property 1: 
$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{\overline{y_k}} x_k}$$

Property 1: 
$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{y_k} x_k} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}}$$

Property 1: 
$$\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{y_k} x_k} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

Property 1:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ 

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{\overline{y_k} x_k}} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

Property 1:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ 

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{y_k} x_k} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle$$

Property 1:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ 

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{y_k} x_k} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = \sum_{k=1}^{n} (ax_k + by_k) \overline{z_k}$$

Property 1:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ 

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{\overline{y_k} x_k}} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = \sum_{k=1}^{n} (ax_k + by_k) \overline{z_k} = \sum_{k=1}^{n} ax_k \overline{z_k} + by_k \overline{z_k}$$

Property 1:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ 

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{\overline{y_k} x_k}} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = \sum_{k=1}^{n} (ax_k + by_k) \overline{z_k} = \sum_{k=1}^{n} ax_k \overline{z_k} + by_k \overline{z_k} = \sum_{k=1}^{n} ax_k \overline{z_k} + \sum_{k=1}^{n} by_k \overline{z_k}$$

Property 1:  $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ 

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{k=1}^{n} x_k \overline{y_k} = \sum_{k=1}^{n} \overline{y_k} x_k = \sum_{k=1}^{n} \overline{\overline{\overline{y_k} x_k}} = \overline{\sum_{k=1}^{n} y_k \overline{x_k}} = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$$

$$\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = \sum_{k=1}^{n} (ax_k + by_k) \overline{z_k} = \sum_{k=1}^{n} ax_k \overline{z_k} + by_k \overline{z_k} = \sum_{k=1}^{n} ax_k \overline{z_k} + \sum_{k=1}^{n} by_k \overline{z_k} = a \langle \mathbf{x}, \mathbf{z} \rangle + b \langle \mathbf{y}, \mathbf{z} \rangle$$

Property 3,4: 
$$\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$$
 and  $\langle \mathbf{x}, \mathbf{x} \rangle = 0$  if and only if  $\mathbf{x} = \mathbf{0}$ 

$$\langle \mathbf{x}, \mathbf{x} \rangle$$

Property 3,4:  $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$  and  $\langle \mathbf{x}, \mathbf{x} \rangle = 0$  if and only if  $\mathbf{x} = \mathbf{0}$ 

$$\langle \mathbf{x}, \mathbf{x} \rangle = \sum_{k=1}^{n} x_k \overline{x_k}$$

Property 3,4:  $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$  and  $\langle \mathbf{x}, \mathbf{x} \rangle = 0$  if and only if  $\mathbf{x} = \mathbf{0}$ 

$$\langle \mathbf{x}, \mathbf{x} \rangle = \sum_{k=1}^{n} x_k \overline{x_k} = \sum_{k=1}^{n} |x_k|^2$$

Property 3,4:  $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$  and  $\langle \mathbf{x}, \mathbf{x} \rangle = 0$  if and only if  $\mathbf{x} = \mathbf{0}$ 

$$\langle \mathbf{x}, \mathbf{x} \rangle = \sum_{k=1}^{n} x_k \overline{x_k} = \sum_{k=1}^{n} |x_k|^2 \ge 0$$

Property 3,4:  $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$  and  $\langle \mathbf{x}, \mathbf{x} \rangle = 0$  if and only if  $\mathbf{x} = \mathbf{0}$ 

$$\langle \mathbf{x}, \mathbf{x} \rangle = \sum_{k=1}^{n} x_k \overline{x_k} = \sum_{k=1}^{n} |x_k|^2 \ge 0$$

In addition, the only time  $\sum_{k=1}^{n} |x_k|^2 = 0$  is when all components are 0 or if  $\mathbf{x} = \mathbf{0}$ 

#### Definition

Dot Product: The dot product of two vectors in  $\mathbb{R}^n$  is a function given by

$$\langle \mathbf{x}, \mathbf{y} 
angle = \mathbf{y}^{ op} \mathbf{x}$$

#### Definition

Dot Product: The dot product of two vectors in  $\mathbb{R}^n$  is a function given by

$$\langle \mathbf{x}, \mathbf{y} 
angle = \mathbf{y}^{ op} \mathbf{x}$$

#### **Theorem**

The dot product is an inner product.

#### Definition

Dot Product: The dot product of two vectors in  $\mathbb{R}^n$  is a function given by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{y}^{\top} \mathbf{x}$$

#### Theorem

The dot product is an inner product.

#### Proof.

The 2 previous slides prove this.

#### Definition

Dot Product: The dot product of two vectors in  $\mathbb{R}^n$  is a function given by

$$\langle \mathbf{x}, \mathbf{y} 
angle = \mathbf{y}^{ op} \mathbf{x}$$

#### **Theorem**

The dot product is an inner product.

#### Proof.

The 2 previous slides prove this.



Note: For this course, we will only consider this inner product unless stated otherwise

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### Definition

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### Definition

1. 
$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$$

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### **Definition**

- 1.  $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$
- 2.  $||c\mathbf{x}|| = |c| ||\mathbf{x}||$

Let  $(V, \mathbb{F})$  be a vector space where V is the set our vectors come from and  $\mathbb{F}$  is the set our scalars come from (You can think of this as  $\mathbb{R}$  or  $\mathbb{C}$ )

#### **Definition**

- 1.  $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$
- 2.  $||c\mathbf{x}|| = |c| ||\mathbf{x}||$
- 3.  $\|\mathbf{x}\| = 0$  if and only if  $\mathbf{x} = \mathbf{0}$

### Induced Norms

### **Theorem**

Let  $(V, \mathbb{F})$  be a vector space with some inner product  $\langle \cdot, \cdot \rangle$ . Then the induced norm of this space is

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

### **Induced Norms**

#### **Theorem**

Let  $(V, \mathbb{F})$  be a vector space with some inner product  $\langle \cdot, \cdot \rangle$ . Then the induced norm of this space is

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$$

### Proof.

We can prove all 3 properties from the previous slide as consequences of us using the inner product.



If  $V = \mathbb{R}^n$  and  $\mathbb{F} = \mathbb{R}$ , then the induced norm is often called the "Euclidean Norm" and denoted as follows

If  $V = \mathbb{R}^n$  and  $\mathbb{F} = \mathbb{R}$ , then the induced norm is often called the "Euclidean Norm" and denoted as follows

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^{\top}\mathbf{x}}$$

If  $V = \mathbb{R}^n$  and  $\mathbb{F} = \mathbb{R}$ , then the induced norm is often called the "Euclidean Norm" and denoted as follows

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^{\top}\mathbf{x}} = \sqrt{\sum_{k=1}^n x_k^2}$$

If  $V = \mathbb{R}^n$  and  $\mathbb{F} = \mathbb{R}$ , then the induced norm is often called the "Euclidean Norm" and denoted as follows

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^{\top}\mathbf{x}} = \sqrt{\sum_{k=1}^n x_k^2}$$

For this course, we will consider only this norm unless stated otherwise.

### **Unit Vector**

### Definition

Unit Vector: We say a vector is a unit vector if it has norm 1. In other words,  $\mathbf{x}$  is a unit vector if and only if

$$\|\mathbf{x}\|=1$$

### **Unit Vector**

### Definition

Unit Vector: We say a vector is a unit vector if it has norm 1. In other words,  $\mathbf{x}$  is a unit vector if and only if

$$||x|| = 1$$

If we have any vector,  $\mathbf{x} \neq \mathbf{0}$ , then we can find a vector pointing in the same direction, but is also of *unit length* by doing:

$$\mathbf{y} = \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

### **Distance**

For us, we can think of distance between vectors as "how large is the difference between two vectors", or in other words, we say

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} - \mathbf{x}\|$$

Note: this idea is closely related to "Metric Spaces" 1, which you will see in an analysis course.

Johnathan Rhyne (CU Denver) Math 3191 Inner Products and Orthogonality

10 / 13

<sup>1</sup>https://en.wikipedia.org/wiki/Metric\_space#Definition





Using the law of cosines<sup>a</sup>, we have that

$$\left\|\mathbf{y}-\mathbf{x}\right\|^{2}=\left\|\mathbf{x}\right\|^{2}+\left\|\mathbf{y}\right\|^{2}-2\left\|\mathbf{x}\right\|\left\|\mathbf{y}\right\|\cos(\theta)$$



Using the law of cosines<sup>a</sup>, we have that

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$$

$$(\mathbf{y} - \mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) = \mathbf{x}^{\top}\mathbf{x} + \mathbf{y}^{\top}\mathbf{y} - 2 \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$$



Using the law of cosines<sup>a</sup>, we have that

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$$

$$(\mathbf{y} - \mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) = \mathbf{x}^{\top}\mathbf{x} + \mathbf{y}^{\top}\mathbf{y} - 2 \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$$

Which (assuming that  $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$ ) can be solved for  $\theta$  to get

$$\theta = \cos^{-1}\left(\frac{\mathbf{x}^{\top}\mathbf{y}}{\|\mathbf{x}\|\,\|\mathbf{y}\|}\right)$$

<sup>a</sup>https:

//en.wikipedia.org/wiki/Law\_of\_cosines



Using the law of cosines<sup>a</sup>, we have that

$$\|\mathbf{y} - \mathbf{x}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$$

$$(\mathbf{y} - \mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) = \mathbf{x}^{\top}\mathbf{x} + \mathbf{y}^{\top}\mathbf{y} - 2 \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta)$$

Which (assuming that  $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$ ) can be solved for  $\theta$  to get

$$heta = \cos^{-1}\left(rac{\mathbf{x}^{ op}\mathbf{y}}{\|\mathbf{x}\|\,\|\mathbf{y}\|}
ight)$$

In higher dimensions and other vector spaces, this is how we define the angle between vectors

//en.wikipedia.org/wiki/Law\_of\_cosines

<sup>&</sup>lt;sup>a</sup>https:

# Orthogonality

Let  $(V, \mathbb{F})$  be a vector space where V denotes the set our vectors come from,  $\mathbb{F}$  is the set our scalars come from, and we have some inner product  $\langle \cdot, \cdot \rangle$ .

### Definition

Orthogonal Vectors: We say that 2 vectors,  $(\mathbf{x}, \mathbf{y} \in V)$  are orthogonal (or perpendicular) if

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

# Orthogonality

Let  $(V, \mathbb{F})$  be a vector space where V denotes the set our vectors come from,  $\mathbb{F}$  is the set our scalars come from, and we have some inner product  $\langle \cdot, \cdot \rangle$ .

#### Definition

Orthogonal Vectors: We say that 2 vectors,  $(\mathbf{x}, \mathbf{y} \in V)$  are orthogonal (or perpendicular) if

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

Note that assuming we have non-zero vectors, the angle between **x**, **y** would be 90°!

# Orthogonality

Let  $(V, \mathbb{F})$  be a vector space where V denotes the set our vectors come from,  $\mathbb{F}$  is the set our scalars come from, and we have some inner product  $\langle \cdot, \cdot \rangle$ .

#### Definition

Orthogonal Vectors: We say that 2 vectors,  $(\mathbf{x}, \mathbf{y} \in V)$  are orthogonal (or perpendicular) if

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

Note that assuming we have non-zero vectors, the angle between x, y would be 90°!

Since orthogonality is closely tied to our inner product, we will use our standard one for this course.

# Special Case for Orthogonality

#### **Theorem**

If  $V = \mathbb{R}^n$  (or equivalently  $\mathbb{C}^n$ ) with the usual inner product, then  $\mathbf{0}$  is orthogonal to every vector.

#### Proof.

Let  $\mathbf{x} \in \mathbb{R}^n$  and  $\langle \cdot, \cdot \rangle$  denote the standard inner product, then we have that

 $\langle \mathbf{0}, \mathbf{x} \rangle$ 

# Special Case for Orthogonality

#### **Theorem**

If  $V = \mathbb{R}^n$  (or equivalently  $\mathbb{C}^n$ ) with the usual inner product, then  $\mathbf{0}$  is orthogonal to every vector.

### Proof.

Let  $\mathbf{x} \in \mathbb{R}^n$  and  $\langle \cdot, \cdot \rangle$  denote the standard inner product, then we have that

$$\langle \mathbf{0}, \mathbf{x} \rangle = \sum_{k=1}^{n} 0 \cdot x_k = 0$$