Producer Theory

EC 201: Principles of Microeconomics

Kyle Raze Winter 2020

Prologue

Housekeeping

Midterm 2: Grades posted.

• You should have received an email with your score, an approximate grade, and an attachment with your answer choices.

Discussions

• Upcoming worksheets important for final exam preparation.

Optional Short Essays

- One percentage point of extra credit per essay (up to four total).
- Submit on Canvas.
- Due by 10:00 on Monday of Week 10 (before lecture).
- See guidelines in the syllabus.

Agenda

Goal: Understand the tradeoffs that producers face.

- How do producers make decisions?
- Where does the supply curve come from?

Q: Why should you care?

• A: Useful insights for entrepreneurs, managers, and policymakers.

Outline

- 1. Costs of production (today).
- 2. Firms in competitive markets (Wednesday).
- 3. Monopoly (next week).

Profit

Assumption: Firms seek to maximize profit.

• Profit = total revenue - total cost

Q: Do all businesses try to maximize profit?

- Publicly-traded firms?
- Family businesses?
- Non-profit organizations?

Profit Maximization

To maximize profit, a producer must answer several interrelated questions:

- How much should I produce?
- What price should I set?
- How much labor should I hire? How much capital should I purchase?
- Should I shut down or keep producing?

Profit Maximization

Answers to those questions depend on

- 1. Production technology \longrightarrow cost structure.
- 2. Market structure \longrightarrow ability to set prices.
- 3. Short-run vs. long-run.

Costs of Production

Costs

Total cost = explicit cost + implicit cost

Explicit cost

- Tangible, out-of-pocket expenses.
- e.g., wages, rent, raw materials, maintenance, taxes, etc.

Costs

Total cost = explicit cost + implicit cost

Implicit cost

- Opportunity cost of already-owned resources.
- Forgone value of the next-best investment
 - \longrightarrow no out-of-pocket payments.
- e.g., starting a different business, investing in the stock market, etc.

Costs

Example

Need \$100,000 to start a business and the interest rate is 5%.

Option 1: Borrow \$100,000.

• Explicit cost = \$5,000.

Option 2: Use \$40,000 from savings and borrow \$60,000.

- Explicit cost = $$3,000 \longrightarrow 5\%$ interest on the loan.
- Implicit cost = $$2,000 \longrightarrow 5\%$ forgone interest on the \$40,000 from savings.

Total cost = \$5,000 for either option.

Accounting vs. Economic Profits

Accounting profit

= total revenue - explicit cost

Economic profit

= total revenue - (explicit cost + implicit cost)

Q: Which of the following is true?

- **A.** Accounting profit > economic profit.
- **B.** Accounting profit < economic profit.

Accounting vs. Economic Profits

Positive accounting profit doesn't always mean that a firm is doing well.

- 1. Economic profit < 0
 - ⇒ Current business is less profitable than the next-best option.
- 2. Economic profit = 0
 - ⇒ Current business is just as profitable as the next-best option.
- 3. Economic profit > 0
 - ⇒ Current business is more profitable than the next-best option.

Production Technology

Output: The product that a firm produces.

Inputs: Resources used in a firm's production process to produce output.

- Land: natural resources, site of business, etc.
- Labor: workers, managers, etc.
- Capital: machinery, computers, vehicles, etc.

Production function: Mathematical description of the relationship between inputs and output in a firm's production process.

Inputs \longrightarrow production technology \longrightarrow output

Total Product

Definition

Total amount of output from a given quantity of input.

Example: Labor (L), holding other inputs constant.

Marginal Product

Definition

Change in total product from a oneunit increase in an input.

Example: Labor (L), holding other inputs constant.

Diminishing Marginal Product

Idea

Marginal product
eventually decreases
as more of one input is
used with a fixed
quantity of other
inputs.

Q: Suppose you are a watermelon farmer. If the price of a watermelon is \$5 and the market wage is \$2000 per month, how many workers should you hire?

Workers (L)	Watermelons (Q)	Marginal Product	Marginal Product × P	Wage
0	0	_	_	\$2000
1	1000	1000	\$5000	\$2000
2	1800	800	\$4000	\$2000
3	2400	600	\$3000	\$2000
4	2800	400	\$2000	\$2000
5	3000	200	\$1000	\$2000

Think at the margin: Keep hiring as long as Marginal Product \times P \geq Wage.

A: You should hire 4 workers.

Input: Land → must pay \$1000 per month in rent, regardless of the number of watermelons grown.

Input: Labor → market wage is \$2000 per month.

Workers (L)	Watermelons (Q)	Cost of Land	Cost of Labor	Total Cost
0	0	\$1000	\$0	\$1000
1	1000	\$1000	\$2000	\$3000
2	1800	\$1000	\$4000	\$5000
3	2400	\$1000	\$6000	\$7000
4	2800	\$1000	\$8000	\$9000
5	3000	\$1000	\$10000	\$11000

Input: Land \longrightarrow must pay \$1000 per month in rent, regardless of the number of watermelons grown.

Input: Labor → market wage is \$2000 per month.

Total Cost Curve

Watermelons (Q)	Total Cost
0	\$1000
1000	\$3000
1800	\$5000
2400	\$7000
2800	\$9000
3000	\$11000

Total Cost

Origin story

Production function + input prices

→ total cost curve.

Q: Why is the total cos curve S-shaped?

A: Diminishing marginal product.

Production Decisions

Q: How does a firm decide how much output to produce?

To increase profit, should it produce more or fewer units?

A: Think at the margin.

- If the cost of additional units is less than the revenue from selling them, then profits rise as production increases.
- If the cost of additional units exceeds the revenue from selling them, then profits decline as production increases.

Marginal Cost

Definition

Change in total cost that arises from a oneunit increase in output.

Fixed vs. Variable Costs

Total cost = fixed costs + variable costs

Fixed costs

- Costs that **do not vary** with the quantity of output produced.
- e.g., rent, cost of equipment, loan payments, etc.
- Do not contribute to marginal cost.

Fixed vs. Variable Costs

Total cost = fixed costs + variable costs

Variable costs

- Costs that **vary** with the quantity of output produced.
- e.g., wages, cost of raw materials, etc.
- Contribute to marginal cost.

Fixed vs. Variable Costs

Fixed costs (FC)

Costs that **do not vary** with
Q.

Variable costs (VC)

vary with Q.

Average Fixed Cost

Definition

$$AFC = FC \div Q$$

Decreases as Q rises

→ more output

spread over same fixed cost.

Average Variable Cost

Definition

$$AVC = VC \div Q$$

Average Total Cost

Definition

$$ATC = TC \div Q$$

= $AFC + AVC$

Efficient scale = Q that minimizes ATC.

Average Total Cost

Efficient scale = Q that minimizes ATC.

Q < efficient scale: Falling AFC pulls ATC down.

Q > efficient scale:Rising AVC pulls ATC up.

Average Total Cost + Marginal Cost

 $MC < ATC \Longrightarrow ATC$ is falling.

 $MC > ATC \Longrightarrow ATC$ is rising.

MC crosses ATC at the Q that minimizes ATC.

Short-Run vs. Long-Run

Short-Run

Some inputs are fixed.

- e.g., land, factories, assembly-line robots, etc.
- Fixed inputs \longrightarrow fixed cost.

Long-Run

All inputs are variable

- e.g., firms can build new factories or sell existing ones.
- Firms use most efficient mix of inputs for any Q (e.g., factory with lowest ATC).

Long-Run ATC

A firm can choose from three factory sizes: S, M, L.

Each factory size has its own short-run ATC curve.

The firm can change to a different factory size in the long run, but not in the short run.

Long-Run ATC

In the long run, a firm will choose the factory size that minimizes long-run ATC given the production level.

Long-Run ATC

Typical long-run average total cost curve.

 Traced out by numerous shortrun ATC curves.

However, LRATC can take a variety of forms.

Depends on returns to scale.

Returns to Scale

Economies of scale

- Long-run ATC falls as the quantity of output rises.
- Increased specialization among workers.
- More common when Q is low.
- e.g., tech start-ups?

Returns to Scale

Constant returns to scale

- Long-run ATC stays the same as the quantity of output rises.
- e.g., restaurant chains?

Returns to Scale

Diseconomies of scale

- Long-run ATC rises as the quantity of output rises.
- Coordination problems in large firms.
- Failure to control costs.
- More common when Q is high.
- e.g., hospitals?