INTRODUCTION TO LIE ALGEBRAS - EXERCISES

- 1. For each of the following cases you are given a set $\mathfrak g$ and a bracket $[\ ,\]$ on $\mathfrak g$. Addition of elements of $\mathfrak g$ and scalar multiplication by elements of the complex field $\mathbb C$ are to be understood in the obvious sense. In which of these cases is $\mathfrak g$ a Lie algebra over $\mathbb C$? Give reasons for your answers.
 - (i) $\mathfrak{g} = \mathbb{C}$ and [x, y] = x y.
 - (ii) $\mathfrak{g} = \mathbb{C}$ and $[z, w] = z\bar{w} w\bar{z}$.
 - (iii) $\mathfrak{g} = \text{set of all symmetric } n \times n \text{ matrices } (n > 1) \text{ with complex entries and}$

$$[X,Y] = XY - YX.$$

(iv) $\mathfrak{g} = \text{set of all continuous complex-valued functions on the interval } [0,1]$ and

$$[f, g](x) = f(x) \int_0^1 g(t) dt - g(x) \int_0^1 f(t) dt.$$

(v) \mathfrak{g} = set of all differentiable complex-valued functions on the interval [0,1],

$$[f,g] = f \frac{\mathrm{d}g}{\mathrm{d}x} - g \frac{\mathrm{d}f}{\mathrm{d}x}.$$

(vi) $\mathfrak{g} = \text{set of all complex } n \times n \text{ matrices and}$

$$[X,Y] = XY^T - YX^T,$$

where the superscript T indicates matrix transposition.

- **2.** Let n be a natural number and for $i, j, k \in \{1, \ldots, n\}$ with i < j, let $c_{ij}^k \in \mathbb{F}$ be a scalar. Let \mathfrak{g} and \mathfrak{h} be Lie algebras. Assume that \mathfrak{g} has a basis (X_1, \ldots, X_n) such that $[X_i, X_j] = \sum_{k=1}^n c_{ij}^k X_k$ for all i < j and assume that \mathfrak{h} has a basis (Y_1, \ldots, Y_n) such that $[Y_i, Y_j] = \sum_{k=1}^n c_{ij}^k Y_k$ for all i < j. Show that the linear map $\varphi : \mathfrak{g} \to \mathfrak{h}$ defined by $\varphi(X_i) = Y_i$ is an isomorphism of Lie algebras.
- **3.** Let \mathfrak{g} be the vector space of all those complex-valued functions of 2n variables $q_1, \ldots, q_n, p_1, \ldots, p_n$ which have partial derivatives of all orders with respect to all variables. Addition of these functions and their scalar multiplication by elements of the field \mathbb{C} are understood in the obvious sense. The *Poisson bracket* $\{F, G\}$ of two functions $F, G \in \mathfrak{g}$ is defined by the formula

$$\{F,G\} = \sum_{i=1}^{n} \left(\frac{\partial F}{\partial q_i} \frac{\partial G}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial G}{\partial q_i} \right).$$

Prove that $[F,G]=\{F,G\}$ satisfies all axioms of a Lie bracket.