Ⅲ Customer Churn Prediction for a Telecom Company – A Data Science Task

Task ID: 1 – Customer Churn Prediction for a Telecom Company

Expected Duration: 5 Days

Objective: Build a machine learning model to predict customer churn using historical telecom data.

1.Deliverables:

- **Exploratory Data Analysis (EDA)** Univariate & Bivariate insights with visualizations.
- **K** Feature Engineering Creation, encoding, scaling, and selection of predictive features.
- **Train/Test Split & Model Selection** Logistic Regression, SVM, Decision Tree, Random Forest, XGBoost, LightGBM.
- Performance Metrics Confusion matrix, ROC AUC score, and comparative model evaluation.
- **Final Report** Consolidated results with plots, tables, and recommendations.

2. Dataset Description

The dataset contains **10,000 customer records** with features covering demographics, contract details, billing information, and churn status.

Feature	Description	
CustomerID	Unique customer identifier	
Gender	Male or Female	
SeniorCitizen	Senior citizen status (1 = Yes, 0 = No)	
Tenure	Number of months with the company	
MonthlyCharges	Monthly bill amount	
TotalCharges	Total bill amount since joining	
Contract	Month-to-month, One year, Two year	
PaymentMethod	Billing payment method	
Churn	Target variable (1 = Churned, 0 = Stayed)	

3. Exploratory Data Analysis (EDA)

3.1 Univariate Analysis

Gender Distribution

• Male: **50.13%**

• Female: **49.87**%

✓ Balanced — minimal gender bias risk.

Senior Citizen Status

• Non-Senior: 50.07%

• Senior: **49.93**%

✓ Age group balance — low bias risk.

Tenure Summary

Metric	Value
Mean	35.96 months
Median	36 months
Min–Max	1–71 months

✓ Wide spread — steady acquisition & churn over time.

Monthly Charges Summary

Metric	Value
Mean	\$70.45
Median	\$70.59
Min–Max	\$20.00 - \$120.00

Even distribution; most pay around \$70/month.

Contract Distribution

• Month-to-month: 32.19%

One year: 34.55%Two year: 33.26%

✓ Balanced — avoids contract-type skew.

Payment Method Distribution

- All methods ~25% share
 - ✓ No payment-method bias.

Churn Distribution

- Non-Churn: **73.3**%
- Churn: **26.7%**

 $\underline{\wedge}$ Imbalanced — resampling or weighting may be required.

Total Charges Summary

Metric	Value
Mean	\$2,541.81
Median	\$2,117.14

Strongly dependent on **Tenure** × **Monthly Charges**.

3.2 Bivariate Analysis

Gender vs Churn

 $\ensuremath{\mathbb{Q}}$ No significant churn difference between genders.

Senior Citizen vs Churn

 $\ensuremath{\mathbb{Q}}$ Age has minimal churn impact.

Contract Type vs Churn

♀ Slightly higher churn in **1-year contracts**.

Payment Method vs Churn

P Churn is uniform across payment methods.

3.3 Correlation Insights

- Total Charges

 Tenure: 77% correlation
- - Multicollinearity must be handled.

4. Feature Engineering

Key Steps

- 1. **Train/Test Split** Stratified to preserve churn ratio.
- 2. **Data Cleaning** Checked duplicates, data types, leakage.
- 3. **Derived Features** Tenure groups, high monthly flag, autopay indicator, contract-payment combo.
- 4. **Encoding** One-hot & K-fold target encoding.
- 5. **Scaling** StandardScaler for numeric features.
- 6. Multicollinearity Removal Dropped redundant features (TotalCharges, AvgChargesPerMonth).
- 7. **Feature Selection** RandomForest + SelectFromModel confirmed **Contract**, **Tenure**, **MonthlyCharges** as top predictors.

5. Model Creation & Evaluation

Models Tested

- Logistic Regression
- SVM
- Decision Tree
- Random Forest
- AdaBoost
- XGBoost
- LightGBM

Setup

• Split: 80/20 stratified

• Tuning: GridSearchCV (3-fold CV)

• Metric: ROC AUC

Performance Summary

Model	ROC AUC	Best Params
SVM	0.5186	C=1, kernel='linear'
XGBoost	0.5089	n_estimators=200, max_depth=7
AdaBoost	0.5078	n_estimators=100
Decision Tree	0.5059	max_depth=3
Random Forest	0.5020	max_depth=5, n_estimators=200

Model	ROC AUC	Best Params
Logistic Regression	0.4853	C=10, penalty='l2'
LightGBM	0.4956	n_estimators=100, max_depth=5

6. Key Observations & Next Steps

- All models performed close to random guess (0.5 ROC AUC).
- SVM performed best but still insufficient for deployment.
- Likely Issues:
 - Features lack strong churn signal
 - o Possible data noise or hidden imbalance
 - Need domain-specific feature engineering

Next Actions:

- Gather behavioral & usage pattern data
- Explore advanced interaction features
- Try SMOTE/class weighting if imbalance impacts learning

Conclusion

The current dataset and features are **not sufficient** for accurate churn prediction.

The **SVM (C=1, linear kernel)** achieved the highest ROC AUC (**0.5186**) but requires significant feature and data enhancement before production use.