Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Révision cinématique - Résolution cinématique

Sciences Industrielles de l'Ingénieur

TD 03

Danse avec les robots

ICNA 2017

Savoirs et compétences :

« Danse avec les robots » est une attraction du Futuroscope de Poitiers. Le principe consiste à attacher deux personnes au bout d'un bras de robot 5 axes. Les personnes sont ainsi remués au rythme de la musique.

On appelle nacelle l'ensemble de solides composé des sièges, des harnais de sécurité et des 2 volontaires.

On donne sur la figure suivant le schéma cinématique spatial d'un des robots avec le paramétrage associé aux différents solides et aux liaisons.

L'ensemble des repères sont considérés orthonormés

- On note $\mathcal{R}_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ le repère supposé galiléen associé au sol de la salle de spectacle, appelé
- On note $\mathcal{R}_1 = (O_0; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ le repère associé à la chaise 1 et $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$ l'angle de rotation de la chaise 1 par rapport au bâti 0.
- On note $\mathcal{R}_2 = (A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ le repère associé à l'épaule **2**, $\overrightarrow{O_0A} = a\overrightarrow{z_0} + b\overrightarrow{x_1}$ et $\theta_2 = (\overrightarrow{x_1}, \overrightarrow{x_2}) =$

 $(\overrightarrow{z_1}, \overrightarrow{z_2})$ l'angle de rotation de l'épaule **2** par rapport à la chaise 1.

- On note $\mathcal{R}_3 = (B; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ le repère associé à l'avant-bras 3, $\overrightarrow{AB} = c \overrightarrow{x_2}$ et $\theta_3 = (\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{z_2}, \overrightarrow{z_3})$ l'angle de rotation de l'avant-bras 3 par rapport à l'épaule 2.
- On note $\mathcal{R}_4 = (C; \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$ le repère associé au bras 4, $\overrightarrow{BC} = d\overrightarrow{x_3}$ et $\theta_4 = (\overrightarrow{x_3}, \overrightarrow{x_4}) = (\overrightarrow{y_3}, \overrightarrow{y_4})$ l'angle de rotation du bras 4 par rapport à l'avant-bras 3.
- On note $\mathcal{R}_5 = (D; \overrightarrow{x_5}, \overrightarrow{y_5}, \overrightarrow{z_5})$ le repère associé à la nacelle 5, $\overrightarrow{CD} = e \overrightarrow{x_4}$ et $\theta_5 = (\overrightarrow{y_4}, \overrightarrow{y_5}) = (\overrightarrow{z_4}, \overrightarrow{z_5})$ l'angle de rotation de la nacelle 5 par rapport au bras 4.

Le centre de gravité de la nacelle 5 (siège + volontaire + harnais) est tel que $\overrightarrow{DG} = f \overrightarrow{x_4} + h \overrightarrow{z_5}$.

On définit la position du point G dans la base $\mathcal{B}_0 =$ $(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ telle que $\overrightarrow{O_0G} = x \overrightarrow{x_0} + y \overrightarrow{y_0} + z \overrightarrow{z_0}$.

Question 1 Tracer les figures planes de changement de repère.

Question 2 Exprimer la position du point G suivant

Objectif Valider que l'exigence d'accélération est satisfaite: l'accélération ressentie doit être au maximum de 3,5 g.

Question 3 Exprimer la vitesse du point G dans son mouvement par rapport au repère galiléen associé à 0, notée $V(G \in 5/0)$.

On limite désormais l'étude dans au cas où $\dot{\theta}_2$ = 1,45 rad s⁻¹, $\theta_3 = \theta_4 = \theta_5 = 0$.

Question 4 Exprimer l'accélération du point G dans son mouvement par rapport au repère galiléen associé à 0, notée $\Gamma(G \in 5/0)$.

Question 5 Conclure quant au respect de l'exigence d'accélération ressentie.

Xavier Pessoles 1 Révision cinématique

Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Révision cinématique - Résolution cinématique

l'Ingénieur

TD 03

Danse avec les robots

ICNA 2017

Savoirs et compétences :

« Danse avec les robots » est une attraction du Futuroscope de Poitiers. Le principe consiste à attacher deux personnes au bout d'un bras de robot 5 axes. Les personnes sont ainsi remués au rythme de la musique. On appelle nacelle l'ensemble de solides composé des sièges, des harnais de sécurité et des 2 volontaires.

On donne sur la figure suivant le schéma cinématique spatial d'un des robots avec le paramétrage associé aux différents solides et aux liaisons.

L'ensemble des repères sont considérés orthonormés directs.

• On note $\Re_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ le repère supposé galiléen associé au sol de la salle de spectacle, appelé bâti $\mathbf{0}$.

- On note $\mathcal{R}_1 = (O_0; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ le repère associé à la chaise $\mathbf{1}$ et $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1})$ l'angle de rotation de la chaise 1 par rapport au bâti 0.
- On note $\Re_2 = (A; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ le repère associé à l'épaule **2**, $\overrightarrow{O_0A} = a\overrightarrow{z_0} + b\overrightarrow{x_1}$ et $\theta_2 = (\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{z_1}, \overrightarrow{z_2})$ l'angle de rotation de l'épaule 2 par rapport à la chaise 1.
- On note $\Re_3 = (B; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ le repère associé à l'avant-bras $\mathbf{3}, \overrightarrow{AB} = c \overrightarrow{x_2}$ et $\theta_3 = (\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{z_2}, \overrightarrow{z_3})$ l'angle de rotation de l'avant-bras 3 par rapport à l'épaule 2.
- On note $\Re_4 = (C; \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$ le repère associé au bras $\mathbf{4}, \overrightarrow{BC} = d\overrightarrow{x_3}$ et $\theta_4 = (\overrightarrow{x_3}, \overrightarrow{x_4}) = (\overrightarrow{y_3}, \overrightarrow{y_4})$ l'angle de rotation du bras 4 par rapport à l'avant-bras 3.
- On note $\Re_5 = (D; \overrightarrow{x_5}, \overrightarrow{y_5}, \overrightarrow{z_5})$ le repère associé à la nacelle 5, $\overrightarrow{CD} = e \overrightarrow{x_4}$ et $\theta_5 = (\overrightarrow{y_4}, \overrightarrow{y_5}) = (\overrightarrow{z_4}, \overrightarrow{z_5})$ l'angle de rotation de la nacelle 5 par rapport au bras 4.

Le centre de gravité de la nacelle 5 (siège + volontaire + harnais) est tel que $\overrightarrow{DG} = f \overrightarrow{x_4} + h \overrightarrow{z_5}$.

On définit la position du point G dans la base $\mathscr{B}_0 = (\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ telle que $\overrightarrow{O_0G} = x \overrightarrow{x_0} + y \overrightarrow{y_0} + z \overrightarrow{z_0}$.

Question 1 Tracer les figures planes de changement de repère.

Correction

Exprimer la position du point G suivant $\overrightarrow{x_0}$.

Correction

Objectif Valider que l'exigence d'accélération est satisfaite : l'accélération ressentie doit être au maximum de 3,5 g.

Question 3 Exprimer la vitesse du point G dans son mouvement par rapport au repère galiléen associé à **0**, notée $V(G \in 5/0)$.

Correction

On limite désormais l'étude dans au cas où $\dot{\theta}_2 = 1,45 \, \text{rad} \, \text{s}^{-1}$, $\theta_3 = \theta_4 = \theta_5 = 0$.

Question 4 Exprimer l'accélération du point G dans son mouvement par rapport au repère galiléen associé à 0, notée $\Gamma(G \in 5/0)$.

Correction

Question 5 Conclure quant au respect de l'exigence d'accélération ressentie.

Correction