AUTOMATIC CONTROL THEORY

Associate Professor. Nguyễn H. Nam

Department of Automation Engineering School of Electrical and Electronic Engineering

Email: nam.nguyenhoai@hust.edu.vn

Website: https://sites.google.com/view/masc-lab

Office: E416-C7

Chapter 2 Fundamental of analysis and design for control system

- 2.1 Laplace transform
- 2.2 Properties of Laplace transform
- 2.3 Application

- Solving circuit problem
- Resistor:

$$u = Ri$$

$$U(s) = RI(s)$$

$$G(s) = \frac{U(s)}{I(s)} = R$$

Capacitor:

$$i = C \frac{du}{dt}$$

$$I(s) = C[sU(s) - u(0)]$$

$$u(0) = 0$$
:

$$G(s) = \frac{U(s)}{I(s)} = \frac{1}{Cs}$$

Inductor:

$$\mathbf{u} = L \frac{di}{dt}$$

$$U(s) = L[sI(s) - i(0)]$$

$$i(0) = 0$$
:

$$G(s) = \frac{U(s)}{I(s)} = Ls$$

• Example: A R-L-C circuit.

• Transfer function: u(t) - input and y(t) - output.

$$G(s) = \frac{Y(s)}{U(s)}$$
 zero initial conditions

• Step response h(t):
$$u(t) = 1(t)$$
.
$$H(s) = \frac{G(s)}{s}$$

$$h(t) = L^{-1}\{H(s)\}$$

• Impulse response
$$g(t): u(t) = \delta(t)$$

$$Y(s) = G(s)$$

$$g(t) = L^{-1}\{G(s)\}$$

e(t) = r(t) - y(t), r: reference signal, y: plant's output Steady state error:

$$e(\infty) = \lim_{s \to 0} sE(s)$$

• Jean Baptiste Joseph Fourier (1768–1830), French Mathematician.

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

Existence condition:

$$\int_{-\infty}^{\infty} |f(t)| dt < \infty$$

• Inverse Fourier transform:

$$f(t) = F^{-1}{F(\omega)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t} d\omega$$

Fourier Transform Properties

Property	f(t)	$F(\omega)$
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(\omega) + a_2F_2(\omega)$
Scaling	f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
Time shift	f(t-a)	$e^{-j\omega a}F(\omega)$
Frequency shift	$e^{j\omega_0 t}f(t)$	$F(\omega - \omega_0)$
Modulation	$\cos(\omega_0 t) f(t)$	$\frac{1}{2}[F(\omega+\omega_0)+F(\omega-\omega_0)]$
Time differentiation	$\frac{df}{dt}$	$j\omega F(\omega)$
	$\frac{d^n f}{dt^n}$	$(j\omega)^n F(\omega)$
Time integration	$\int_{-\infty}^{t} f(t) dt$	$\frac{F(\omega)}{j\omega} + \pi F(0) \delta(\omega)$
Frequency differentiation	$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$
Reversal	f(-t)	$F(-\omega)$ or $F^*(\omega)$
Duality	F(t)	$2\pi f(-\omega)$
Convolution in t	$f_1(t) * f_2(t)$	$F_1(\omega)F_2(\omega)$
Convolution in ω	$f_1(t)f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$

Fourier Transform Pairs

f(t)	$F(\omega)$
$\delta(t)$	1
1	$2\pi \delta(\omega)$
u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$
$u(t+\tau)-u(t-\tau)$	$2\frac{\sin\omega\tau}{\omega}$
t	$\frac{-2}{\omega^2}$
sgn(t)	$\frac{2}{j\omega}$
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$
$e^{at}u(-t)$	$\frac{1}{a-j\omega}$
$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$
$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
$\cos \omega_0 t$	$\pi[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$
$e^{-at}\sin\omega_0tu(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$
$e^{-at}\cos\omega_0 t u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$