

Low-power, high-sensitivity infrared (IR) sensor for presence and motion detection

Product status link

STHS34PF80

Product summary								
Order code	STHS34PF80TR							
Temperature range [°C]	-40 to +85							
Package	LGA-10L							
Packing	Tape and reel							

Product resources

AN5867 (device application note)
TN0018 (design and soldering)

Features

Key features

- High-sensitivity infrared presence and motion detection sensor
- Reach up to 4 meters without lens for objects measuring 70 x 25 cm²
- Integrated silicon IR filter
- SMD friendly
- Capable of detecting stationary objects
- Capable of distinguishing between stationary and moving objects
- 80° field of view
- · Factory calibrated
- Low power
- · Embedded smart algorithm for presence / motion detection

Electrical specifications

Supply voltage: 1.7 V to 3.6 V

• Supply current: 10 μA

- 2-wire I²C / 3-wire SPI serial interface
- Programmable ODRs from 0.25 Hz to 30 Hz
- One-shot mode

Sensing specifications

IR sensitivity: 2000 LSB/°C

RMS noise: 25 LSB_{rms}

Operating wavelength: 5 μm to 20 μm

Local temperature sensor accuracy: ±0.3 °C

Package specifications

- LGA 10-lead, 3.2 x 4.2 x 1.455 (max) mm
- ECOPACK and RoHS compliant

Applications

- Presence and proximity sensing
- Alarm / security systems
- Home automation
- Smart lighting
- IoT
- Smart lockers
- Smart wall pads

Description

The STHS34PF80 is an uncooled, factory-calibrated, infrared motion and presence detection sensor with operating wavelength between 5 μ m and 20 μ m.

The STHS34PF80 sensor has been designed to measure the amount of IR radiation emitted from an object within its field of view. The information is digitally processed by the ASIC, which can be programmed to monitor motion, presence, or an overtemperature condition.

Thanks to its exceptional sensitivity, the STHS34PF80 can detect the presence of a human being at a distance up to 4 meters without the need of an optical lens.

The STHS34PF80 is housed in a small 3.2 x 4.2 x 1.455 (max) mm 10-lead LGA package.

DS13916 - Rev 2 page 2/40

1 Overview

The STHS34PF80 is an infrared sensor that can be used to detect the presence of stationary and moving objects as well as overtemperature conditions. It measures the object's IR radiation with unique TMOS technology to detect its presence or motion when the object is inside the field of view.

An optical band-pass filter is deposited over the sensor limiting its operating range within the wavelengths of 5 μ m to 20 μ m, making it insensitive to visible light and other bands.

The sensor is based on a matrix of floating vacuum thermal transistors MOS (TMOS) connected together and acting as a single sensing element. A state-of-the-art thermal isolation is achieved thanks to ST's unique MEMS manufacturing technologies, allowing the sensor to translate the smallest temperature changes into electrical signals that, in turn, are fed to the ASIC.

The sensor is split into two parts, one exposed to IR radiation and the other one shielded. Differential reading between the two parts is implemented to remove the effect of sensor self-heating.

The STHS34PF80 embeds a high-accuracy temperature sensor to measure the ambient temperature and to enable measuring the precise IR radiation of an object.

The ASIC also implements dedicated smart processing to detect / discriminate between stationary and moving objects and which can assert dedicated interrupts.

Different ODRs from 0.25 Hz to 30 Hz and a one-shot mode are available.

The STHS34PF80 is equipped with an I^2C / 3-wire SPI interface and is housed in an OLGA 3.2 x 4.2 x 1.455 mm 10L package compatible with SMD mounting.

The field of view guaranteed by the package is 80°.

Figure 1. Block diagram

DS13916 - Rev 2 page 3/40

Pin description

Figure 2. Pin configuration (package bottom view)

Table 1. Pin description

Pin number	Name	Function
1	SCL / SPC	I ² C / SPI serial interface clock
2	RES	Reserved (connect to GND)
3	CS	I ² C / SPI interface selection (1: I ² C enabled; 0: SPI enabled)
4	SDA / SDI/O	I ² C / SPI serial data line
5	NC	Leave floating (do not connect)
6	VDD	Power supply
7	GND	0 V supply
8	GND	0 V supply
9	VDD	Power supply
10	INT	Interrupt signal

DS13916 - Rev 2 page 4/40

3 Sensor and electrical specifications

Conditions at V_{DD} = 1.8 V, T = 25 °C.

Table 2. Sensor specifications

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
T _{bit}	Temperature output data (object and ambient)		_	16	_	Bit
T _{amb_s}	Ambient temperature sensitivity		_	100	_	LSB/°C
T _{obj_s}	Object temperature sensitivity ⁽²⁾	15 °C to 35 °C		2000		LSB/°C
т.	Ambient temperature sensor accuracy	-10 °C to 60 °C		±0.3		°C
T _{amb_a}	Ambient temperature sensor accuracy	-40 °C to 85 °C		±0.6		
		ODR [3:0] = 0001		0.25		
		ODR [3:0] = 0010		0.5		
		ODR [3:0] = 0011		1.0		
ODB	Object and ambient to make a set of data and	ODR [3:0] = 0100		2.0		Hz
ODR	Object and ambient temperature output data rate	ODR [3:0] = 0101		4.0		ПΖ
		ODR [3:0] = 0110		8.0		
		ODR [3:0] = 0111		15.0		
		ODR [3:0] = 1xxx		30.0		
RMS noise	AVG_TMOS = 32 ⁽³⁾			25		LSB _{rms}
FFOV	Full field of view ⁽⁴⁾			80		Degree

^{1.} Typical specifications are not guaranteed.

- 3. T_{obj} RMS noise can be different based on the AVG_TMOS value. Further detailed information can be found in Table 19.
- 4. Angle to have 50% IR intensity.

Table 3. Electrical specifications

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
V _{DD}	Supply voltage		1.7	_	3.6	V
I _{DD}	Cupply gurrent	128 average @ 1 Hz ODR		10		
	Supply current	32 average @ 1 Hz ODR		5		μA
Idd _{PDN}	Power-down supply current			1.5		μA
T _{OP}	Operating temperature range (refer to Table 5)		-40	_	85	°C

1. Typical specifications are not guaranteed.

DS13916 - Rev 2 page 5/40

^{2.} The object temperature sensitivity is specified for full field-of-view coverage by a blackbody with more than 99% emissivity and default gain mode configuration (CTRL0 (17h)). The accuracy specifications apply under settled isothermal conditions only.

Table 4. DC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
DC input c	haracteristics					
V_{IL}	Low-level input voltage (Schmitt buffer)	-	-	-	0.3 * VDD	V
V _{IH}	High-level input voltage (Schmitt buffer)	-	0.7 * VDD	-	-	V
DC output	characteristics					
V_{OL}	Low-level output voltage		-	-	0.2	V
V _{OH}	High-level output voltage		VDD - 0.2	-	-	V

Table 5. Operating temperature range

CTRL0 (17h)	Operating temperature range	∆Temp = Tamb_room – Tamb_sensor
Default gain mode	-40 ~ 85 °C	± 2 °C
Default gain mode	10 ~ 40 °C	± 10 °C
Wide mode	-40 ~ 85 °C	-90 ~ 50 °C

Considering IR radiation measurement methodology, the output signal of TMOS is sensitive to temperature differences between the ambient temperature of the sensor itself and the ambient temperature of the room where the sensor takes the measurement. This delta of temperature could impact the operating temperature of the sensor. Depending on the target application, the user can select different gain modes to cover the proper range of the operating temperature and the delta of the temperature between the ambient temperature of the room and the ambient temperature of the sensor as described in Table 5.

The gain mode can be selected in the gain mode register (CTRL0 (17h)) when the device is in power-down mode. Note that this register restores its default value whenever the boot/reboot procedure is performed, so the user needs to set wide mode whenever the device is turned on in case the application needs to cover a broad operating temperature range and the delta between the temperature of the room in which the object is located and the temperature of the environment in thermal coupling with the sensor (in other words, the temperature inside the application).

DS13916 - Rev 2 page 6/40

3.1 Communication interface characteristics

3.1.1 SPI - serial peripheral interface

Subject to general operating conditions for V_{DD} and T_{OP} .

Table 6. SPI slave timing values

Symbol	Parameter		Value ⁽¹⁾		Unit
Symbol	Parameter	Min	Тур	Max	Unit
f _{c(SPC)}	SPI clock frequency			10	MHz
t _{c(SPC)}	SPI clock period	100			
t _{high(SPC)}	SPI clock high	45			
t _{low(SPC)}	· , ,				
CS setup time (mode 3)		5			
t _{su(CS)}	CS setup time (mode 0)	20			
CS hold time (mode 3)		40			ns
เท(CS)	CS hold time (mode 0)	20			
$t_{su(SI)}$	SDI input setup time	15			
t _{h(SI)}	SDI input hold time	15			
t _{v(SO)}	SDO valid output time			50	
t _{dis(SO)}	SDO output disable time			50	
C _{load}	Bus capacitance			100	pF

^{1.} Values are evaluated at 10 MHz clock frequency for SPI with 3 wires, based on characterization results, not tested in production.

Figure 3. SPI slave timing diagram

Note: Measurement points are done at 0.3·VDD and 0.7·VDD for both ports.

DS13916 - Rev 2 page 7/40

3.1.2 I²C - inter-IC control interface

Subject to general operating conditions for V_{DD} and T_{OP} .

Table 7. I²C slave timing values

Combal	Boundary	I ² C fast	mode ⁽¹⁾⁽²⁾	I ² C fast mo	ode plus ⁽¹⁾⁽²⁾	Unit
Symbol	Parameter	Min	Max	Min	Max	Unit
f _(SCL)	SCL clock frequency	0	400	0	1000	kHz
t _{w(SCLL)}	SCL clock low time	1.3		0.5		
t _{w(SCLH)}	SCL clock high time	0.6		0.26		μs
t _{su(SDA)}	SDA setup time	100		50		ns
t _{h(SDA)}	SDA data hold time	0	0.9	0		
t _{h(ST)}	START/REPEATED START condition hold time	0.6		0.26		
t _{su(SR)}	REPEATED START condition setup time	0.6		0.26		
t _{su(SP)}	STOP condition setup time	0.6		0.26		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	1.3		0.5		
	Data valid time		0.9		0.45	
	Data valid acknowledge time		0.9		0.45	
C _B	Capacitive load for each bus line		400		550	pF

- 1. Data based on standard I²C protocol requirement, not tested in production.
- $2. \quad \textit{Data for } \textit{I}^{\textit{2}}\textit{C fast mode and } \textit{I}^{\textit{2}}\textit{C fast mode plus have been evaluated by characterization, not tested in production}$

SDA

START

Figure 4. I²C slave timing diagram

Note: Measurement points are done at 0.3·VDD and 0.7·VDD for both ports.

DS13916 - Rev 2 page 8/40

3.2 Absolute maximum ratings

Stress above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
VDD	Supply voltage	-0.3 to 4.8	V
Vin	Input voltage on any control pin	-0.3 to VDD+0.3	V
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

DS13916 - Rev 2 page 9/40

4 Optical specifications

Table 9. Optical specification

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
FFOV	Full field of view	At 50% intensity		80		Degree

^{1.} Typical specifications are not guaranteed.

Figure 5. Typical field of view measurements

Figure 6. Filter transmittance typical curve

DS13916 - Rev 2 page 10/40

5 Digital interfaces

The registers embedded inside the STHS34PF80 can be accessed through both an I²C and a 3-wire SPI slave interface.

The serial interfaces are mapped to the same pins. The selection between the two interfaces is made through the CS pin, refer to Table 1. Pin description.

5.1 I²C interface

Following the correct protocols, the device behaves as an I²C slave. The registers embedded inside the ASIC device may be accessed through the I²C serial interfaces.

There are two signals associated with the I²C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to VDD through an external pull-up resistor. When the bus is free, both the lines are high.

All transactions begin with a start (ST) and are terminated by a stop (SP) (see Figure 7). A high to low transition on the SDA line while SCL is high defines a start condition (ST). A low to high transition on the SDA line while SCL is high defines a stop condition.

Figure 7. Start and stop conditions

After the ST signal has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the ST condition contains the address of the slave in the first 7 bits (SAD) and the eighth bit is W = 0 which indicates that the master is transmitting data to the slave (SAD+W). When a slave address (SAD) is sent, each device in the system compares the first seven bits after a start condition (ST) with its slave address. If they match, the device considers itself addressed by the master.

The slave address of the STHS34PF80 is SAD=1011010.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse (SAK). A receiver which has been addressed must generate an acknowledge after each byte of data has been received.

After the SAK from slave (STHS34PF80) the master sends an 8-bit subaddress (SUB): the 7 LSB represent the actual register address while the MSB has no meaning. For this I²C the auto increment is always active. Since auto increment is enabled by default, the SUB (register address) is automatically incremented to allow multiple data read/write at increasing addresses. When the slave receives the subaddress it responds with an ACK.

After this SAK from the slave, the master can do a write (single or multiple) or a read (single or multiple).

When the master wants to write, it sends a DATA (8-bit) and the slave responds with SAK. At this point if the master wants to close the communication, it sends a stop condition (SP) otherwise, it sends a new DATA.

When the master wants to read, it sends a repeated start condition (SR) and resends the slave address (SAD) with a read bit (R = 1) (SAD+R). The slave responds with a SAK and sends the DATA (8-bit) to the master to read. The master responds with a MAK (master acknowledge) if it wants to read from the next SUB address, otherwise it responds with a NMAK (no master acknowledge) and closes the communication, sending a stop condition (SP).

DS13916 - Rev 2 page 11/40

5.1.1 I²C read and write sequences

The previous sequences are used to perform actual write and read sequences described in the following tables.

Table 10. Transfer when the master is writing one byte to slave

Master	ST	SAD+W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 11. Transfer when master is writing multiple bytes to slave

Master	ST	SAD+W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 12. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 13. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

DS13916 - Rev 2 page 12/40

5.2 SPI interface

The ASIC SPI is a bus slave. The SPI allows writing and read the registers of the device. The serial interface interacts with the application using 3 wires: CS, SPC, SDI/O.

5.2.1 SPI write

Figure 8. SPI write protocol

The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Additional data in multiple byte writes.

Figure 9. Multiple byte SPI write protocol (2-byte example)

DS13916 - Rev 2 page 13/40

5.2.2 SPI read

Figure 10. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clocks pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSB first).

The multiple write command is also available in 3-wire mode.

DS13916 - Rev 2 page 14/40

6 Smart digital algorithms

The STHS34PF80 embeds smart digital algorithms to support the following three detection modes. These embedded smart digital features are supported with default gain mode (CTRL0 (17h) = F1h), but they are not available when wide mode (CTRL0 (17h) = 81h) is configured.

- · Presence detection
- Motion detection
- Ambient temperature shock detection

6.1 Presence detection

Presence detection is performed by observing the difference between the two output signals of each low-pass filter (LPF_P_M & LPF_P) from the TMOS raw data of TOBJECT.

Then, the difference of the two signals is compared with the two thresholds of PRESENCE_THS and HYST_PRES which can be configured for the target application. Finally, the presence detection flag signal (PRES_FLAG) is set when the difference of the two filtered signals exceeds the threshold value as described in the figure below. When the PRES_FLAG is asserted, the LPF_P output remains at its last value. The LPF_P starts processing again the input data, providing filtered output when the PRES_FLAG is de-asserted

TOBJECT

LPF_P_M

LPF_P

FREEZE

PRESENCE_THS

OR

PRESENCE_THS - HYST_PRESENCE

TOGGLE

TOGGLE

Figure 11. Block diagram of presence detection algorithm

DS13916 - Rev 2 page 15/40

6.2 Motion detection

Motion detection is performed by observing the difference between the two output signals of each low-pass filter (LPF P M & LPF M) from the TMOS raw data of TOBJECT.

Then, the difference of the two signals is compared with the two thresholds of MOTION_THS and HYST_MOT which can be configured for the target application. Finally, the motion detection flag signal (MOT_FLAG) is set when the difference of the two filtered signals exceeds the threshold value as described in the figure below.

Figure 12. Block diagram of motion detection algorithm

6.3 Ambient temperature shock detection

Ambient temperature shock detection is supported with the output signal of LPF_A_T and the signal of TAMBIENT. The difference of the two signals is compared with the hysteresis of TAMB_SHOCK_THS and HYST_TAMBS. The detection of the ambient shock flag (TAMB_SHOCK_FLAG) is set when the difference of the two signals (LPF_A_T & TAMBIENT) exceeds the threshold values to indicate a sudden change of ambient temperature.

Figure 13. Block diagram of ambient temperature shock detection algorithm

DS13916 - Rev 2 page 16/40

7 Application schematics

The device power supply must be provided through the VDD line, a power supply decoupling capacitor (100 nF) must be placed as near as possible to the supply pins of device (VDD). Depending on the application, an additional capacitor of 1 μ F could be placed on the VDD line to avoid power noise on VDD.

The functionality of the device and the measured data outputs are selectable and accessible through the I²C and SPI digital interface as shown in the following figures.

Figure 14. Application schematic with I²C connection

DS13916 - Rev 2 page 17/40

Table 14. Internal pin status

Pin number	Name	Default pin status
1	SCL / SPC	Default: input without pull-up
2	RES	
3	CS	Default: input with pull-up
4	SDA / SDI/O	Default: input without pull-up
5	NC	
6	VDD	
7	GND	
8	GND	
9	VDD	
10	INT	Default: input without pull-up

DS13916 - Rev 2 page 18/40

8 Soldering guidelines

The soldering profile depends on the number, size and placement of components on the application board. For this reason, it is not possible to define a unique soldering profile for the sensor only. The customer should use a time and temperature reflow profile based on PCB design and manufacturing expertise. In any case, the soldering profile should not exceed profiles as specified in Jedec J-STD-020.

LGA packages show metal traces on the side of the package so solder material must be avoided on the side of package during reflow.

The product package is not sealed as there is a 0.1 mm hole on the bottom of the package as illustrated in Figure 17. OLGA-10L (3.2 x 4.2 x 1.455 mm) package outline and mechanical data. A dry reflow process such as convection reflow is recommended. Vapor phase reflow is not suitable for this type of optical component.

A "no-wash" assembly process has to be used. "Self-cleaning" / "no flux" solder paste are to be used.

The product top surface can be eventually protected by suitable tape during reflow and other manufacturing steps to avoid contamination or scratches on the optical filter section of the component.

Any residual material (such as water, dust, or any contamination on top of the optical window) causes lower sensitivity of the IR measurment.

For land pattern and soldering recommendations, consult technical note TN0018 available on www.st.com.

DS13916 - Rev 2 page 19/40

9 Register mapping

Table 15. Register map

Name	Туре	Register address	Default	Function and comment
Reserved		00h - 0Bh		Reserved
LPF1	RW	0Ch	04h	
LPF2	RW	0Dh	22h	
Reserved		0Eh		Reserved
WHO_AM_I	R	0Fh	D3h	Who am I
AVG_TRIM	RW	10h	03h	
Reserved		11h - 16h		Reserved
CTRL0	RW	17h	F1h	
Reserved		18h - 1Ch		Reserved
SENS_DATA	RW	1Dh		
Reserved		1Eh - 1Fh		Reserved
CTRL1	RW	20h	00h	
CTRL2	RW	21h	00h	
CTRL3	RW	22h	00h	Interrupt control
STATUS	R	23h		
Reserved		24h		Reserved
FUNC_STATUS	R	25h		
TOBJECT_L	R	26h		
TOBJECT_H	R	27h		
TAMBIENT_L	R	28h		
TAMBIENT_H	R	29h		
TOBJ_COMP_L	R	38h		
TOBJ_COMP_H	R	39h		
TPRESENCE_L	R	3Ah		
TPRESENCE_H	R	3Bh		
TMOTION_L	R	3Ch		
TMOTION_H	R	3Dh		
TAMB_SHOCK_L	R	3Eh		
TAMB_SHOCK_H	R	3Fh		

Reserved registers must not be changed. Writing to those registers may cause permanent damage to the device.

DS13916 - Rev 2 page 20/40

9.1 Embedded functions page register mapping

Table 16. Embedded functions page register map

Name	Туре	Register address	Default	Function and comment
PRESENCE_THS	RW	20h - 21h	C8h	
MOTION_THS	RW	22h - 23h	C8h	
TAMB_SHOCK_THS	RW	24h - 25h	0Ah	
HYST_MOTION	RW	26h	32h	
HYST_PRESENCE	RW	27h	32h	
ALGO_CONFIG	RW	28h	00h	
HYST_TAMB_SHOCK	RW	29h	02h	
RESET_ALGO	RW	2Ah	00h	

DS13916 - Rev 2 page 21/40

10 Registers description

10.1 LPF1 (0Ch)

RW - default = 04h

7	6	5	4	3	2	1	0
-	-	LPF_P_M2	LPF_P_M1	LPF_P_M0	LPF_M2	LPF_M1	LPF_M0

LPF_P_M[2:0]	Low-pass filter configuration for motion and presence detection, see Table 17.
LPF_M[2:0]	Low-pass filter configuration for motion detection, see Table 17.

Table 17. Low-pass filter configuration

LPF_P_M[2:0] / LPF_M[2:0] / LPF_P[2:0] / LPF_A_T[2:0]	Low-pass filter configuration
000	ODR/9
001	ODR/20
010	ODR/50
011	ODR/100
100	ODR/200
101	ODR/400
110	ODR/800

10.2 LPF2 (0Dh)

RW - default = 22h

7	6	5	4	3	2	1	0
-	-	LPF_P2	LPF_P1	LPF_P0	LPF_A_T2	LPF_A_T1	LPF_A_T0

LPF_P[2:0]	Low-pass filter configuration for presence detection, see Table 17.
LPF_A_T[2:0]	Low-pass filter configuration for ambient temperature shock detection, see Table 17.

10.3 WHO_AM_I (0Fh)

Read only – default = D3h

7	6	5	4	3	2	1	0
1	1	0	1	0	0	1	1

14/110 444 1	D : 11 (15 (1)) All
WHO AM I	Device identification – Who am I
· · · · · · · · · · · · · · · · · · ·	

DS13916 - Rev 2 page 22/40

10.4 AVG_TRIM (10h)

RW - default = 03h

7	6	5	4	3	2	1	0
0	0	AVG_T1	AVG_T0	0	AVG_TMOS2	AVG_TMOS1	AVG_TMOS0

AVG_T[1:0]	Select the number of averaged samples for ambient temperature, see Table 18.
AVG_TMOS[2:0]	Select the number of averaged samples for object temperature, see Table 19.

Table 18. Averaging selection for ambient temperature

AVG_T[1:0]	Number of averaged samples for ambient temperature
00	8 (default)
01	4
10	2
11	1

Table 19. Averaging selection for object temperature and noise

AVG_TMOS [2:0]	Number of averaged samples for object temperature	RMS noise (LSB _{rms})
000	2	90
001	8	50
010	32	25
011	128 (default)	20
100	256	15
101	512	12
110	1024	11
111	2048	10

DS13916 - Rev 2 page 23/40

10.5 CTRL0 (17h)

RW - default = F1h

7	6	5	4	3	2	1	0
1	GAIN2	GAIN1	GAIN0	0	0	0	1

GAIN[2:0]

Enables the device to cover a wide operating temperature range for applications that might be thermally heated inside of the application.

(000: wide mode; 111: default gain mode)

Refer to the ranges in Table 5. Operating temperature range for the wide mode and default gain modes.

10.6 SENS_DATA (1Dh)

RW - default = 00h

7	6	5	4	3	2	1	0
SENS7	SENS6	SENS5	SENS4	SENS3	SENS2	SENS1	SENS0

SENS[7:0]

Provides the sensitivity value in the embedded linear algorithm for compensating ambient temperature variations in the object temperature.

This register is written during factory calibration to indicate the sensitivity of the device and this value is used in the embedded linear algorithm for compensating ambient temperature variations in the object temperature.

If the sensitivity is changed by the optical material (that is, cover material) and the embedded compensation algorithm is required, the sensitivity data need to be revised accordingly.

Sensitivity can be calculated with the following formula by reading the SENS_DATA (1Dh) register.

Sensitivity = value of 1Dh (signed two's complement) x 16 + 2048

DS13916 - Rev 2 page 24/40

10.7 CTRL1 (20h)

RW - default = 00h

7	6	5	4	3	2	1	0
0	-	-	BDU	ODR3	ODR2	ODR1	ODR0

BDU	Enables the block data update feature for output registers TOBJECT (26h and 27h) and TAMBIENT (28h and 29h).
ODR[3:0]	Output data rate, refer to Table 20 for ODR configuration

Table 20. ODR configuration

ODR [3:0]	ODR frequency [Hz]	Time [ms]
0000	Power-down mode	-
0001	0.25	4000
0010	0.5	2000
0011	1	1000
0100	2	500
0101	4	250
0110	8	126
0111	15	66.67
1xxx	30	33.33

Refer to AN5867 (Section 3.3 Continuous mode) on www.st.com for the details of entering power-down mode and changing the ODR in continuous mode.

Device power consumption depends on the AVG_TMOS configuration and continuous mode at different ODRs as described in the following table.

Table 21. Current consumption at different ODRs and AVG_TMOS setting

AVG TMOS [2:0]	One-shot mode	Continuous mode – current consumption (μA) vs ODR								
AVG_TWOS [2.0]	Current consumption (μA) @ 1Hz	0.25 Hz	0.5 Hz	1 Hz	2 Hz	4 Hz	8 Hz	15 Hz	30 Hz	
000 (2)	3.23	3.2	3.52	4.39	6.58	10.54	18.32	33.45	64.50	
001 (8)	3.74	3.27	3.82	4.9	7.23	11.4	20.62	38.3	74.94	
010 (32)	5	3.6	4.48	6.26	9.58	17.05	30.75	59	115.65	
011 (128)	10	4.89	7.07	11.44	19.65	37.25	71.85			
100 (256)	16.89	6.55	10.55	18.02	33.1	65.5				
101 (512)	31.16	10.05	17.45	32.25	59.50					
110 (1024)	56.34	16.97	31.3	57.60						
111 (2048)	113	30.86	58.97							

DS13916 - Rev 2 page 25/40

10.8 CTRL2 (21h)

RW (bit 4: write only) – default = 00h

7	6	5	4	3	2	1	0	
воот	-	-	FUNC_ CFG_ACCESS	-	0	0	ONE_SHOT	

воот	Reboot OTP memory content. Self-clearing upon completion. Default value : 0 (0: normal mode; 1: reboot memory content)
FUNC_CFG_ACCESS	Enable access to the registers ⁽¹⁾ for embedded functions. Default value: 0 (0: disable access to the embedded function page; 1: enable access to the embedded function page)
ONE_SHOT	Trigger one-shot acquisition. Self-clearing upon completion. Default value: 0 (0 : idle mode; 1 : new data set is acquired)

^{1.} It is not possible to write or read registers in the main page if this bit is set to 1. In order to go back to the main page, this bit should be written to 0.

10.9 CTRL3 (22h)

RW - default = 00h

7	6	5	4	3	2	1	0
INT_H_L	PP_OD	INT_MSK2	INT_MSK1	INT_MSK0	INT_LATCHED	IEN1	IEN0

INT_H_L	Interrupt active-high & active-low. Default value: 0 (0: active high; 1: active low)
PP_OD	Push-pull / open-drain selection on the INT pin. Default value: 0 (0: push-pull; 1: open drain)
INT_MSK[2:0]	Interrupt masks for flag of FUNC_STATUS (25h), see Figure 16.
INT_LATCHED	Sets latched mode of DRDY on the INT pin. (0: pulsed mode on the INT pin; 1: latched mode on the INT pin)
IEN[1:0]	Configures the signal routed to the INT pin, see Table 22.

The DRDY signal on the INT pin is set to either pulsed or latched mode using the INT_LATCHED bit. If IEN[1:0] = 10 (INT_OR routed to the INT pin), INT_LATCHED must be set to 0.

Figure 16. INT_OR

PRES_FLAG , MOT_FLAG, TAMB_SHOCK_FLAG from FUNC_STATUS (25h)

DS13916 - Rev 2 page 26/40

[❖] INT_OR is enabled by IEN[1:0] = "10"

Table 22. IEN[1:0] configuration

IEN[1:0]	INT pin				
00	high-Z				
01	Data ready (DRDY)				
10	INT_OR				

STATUS (23h) 10.10

Read only – default = 00h

7	6	5	4	3	2	1	0
-	-	-	-	-	DRDY	-	-

Data ready for TAMBIENT, TOBJECT, TAMB_SHOCK, TPRESENCE, TMOTION. This bit is reset to 0 when reading the DRDY FUNC_STATUS (25h) register.

(0: no set of output data is available; 1: new set of output data is available)

10.11 FUNC_STATUS (25h)

Read only - default = 00h

7	6	5	4	3	2	1	0
-	-	-	-	-	PRES_FLAG	MOT_FLAG	TAMB_ SHOCK_FLAG

PRES_FLAG	Presence detection flag. This bit goes to 1 when there is presence detection. It returns back to 0 when there is no presence detection. Default value: 0
	(0: no presence is detected; 1: presence is detected)
MOT_FLAG	Motion detection flag. This bit goes to 1 when there is motion detection. It returns back to 0 when there is no motion detection. Default value: 0
	(0: no motion is detected; 1: motion is detected)
TAMB_SHOCK_FLAG	Ambient temperature shock detection flag. This bit goes to 1 when there is ambient temperature shock detection. It returns back to 0 when there is no ambient temperature shock detection. Default: 0
	(0: no ambient temperature shock is detected; 1: ambient temperature shock is detected)

TOBJECT_L (26h) 10.12

Read only – default = 00h

7	6	5	4	3	2	1	0
TOBJECT7	TOBJECT6	TOBJECT5	TOBJECT4	TOBJECT3	TOBJECT2	TOBJECT1	TOBJECT0

TOBJECT[7:0] TOBJECT LSB data

page 27/40

10.13 TOBJECT_H (27h)

Read only - default = 00h

7	6	5	4	3	2	1	0
TOBJECT15	TOBJECT14	TOBJECT13	TOBJECT12	TOBJECT11	TOBJECT10	TOBJECT9	TOBJECT8

TOBJECT[15:8] TOBJECT MSB data

The TOBJECT (object temperature) output value is 16-bit data that represents the amount of infrared radiation emitted from the objects inside the field of view. It is composed of TOBJECT_H (27h) and TOBJECT_L (28h). The value is expressed as two's complement.

10.14 TAMBIENT_L (28h)

Read only - default = 00h

7	6	5	4	3	2	1	0
TAMBIENT7	TAMBIENT6	TAMBIENT5	TAMBIENT4	TAMBIENT3	TAMBIENT2	TAMBIENT1	TAMBIENT0

TAMBIENT[7:0] Ambient temperature LSB data

10.15 TAMBIENT_H (29h)

Read only - default = 00h

7	6	5	4	3	2	1	0	
TAMBIENT15	TAMBIENT14	TAMBIENT13	TAMBIENT12	TAMBIENT11	TAMBIENT10	TAMBIENT9	TAMBIENT8	1

TAMBIENT[15:8] Ambient temperature MSB data

The TAMBIENT (ambient temperature) output value is 16-bit data that represents the temperature of the environment in thermal coupling with the sensor. It is composed of TAMBIENT_H (28h) and TAMBIENT_L (29h). The value is expressed as two's complement and its sensitivity is 100 LSB/°C.

10.16 TOBJ_COMP_L (38h)

Read only - default = 00h

7	6	5	4	3	2	1	0	
TOBJ_COMP7	TOBJ_COMP6	TOBJ_COMP5	TOBJ_COMP4	TOBJ_COMP3	TOBJ_COMP2	TOBJ_COMP1	TOBJ_COMP0	

TOBJ_COMP[7:0] Compensated LSB data for object temperature output

DS13916 - Rev 2 page 28/40

10.17 TOBJ COMP H (39h)

Read only – default = 00h

7	6	5	4	3	2	1	0
TOBJ_COMP15	TOBJ_COMP14	TOBJ_COMP13	TOBJ_COMP12	TOBJ_COMP11	TOBJ_COMP10	TOBJ_COMP9	TOBJ_COMP8

TOBJ_COMP[15:8] Compensated MSB data for object temperature output

The TOBJ_COMP output value is 16-bit data that represents the amount of infrared radiation emitted from the objects inside the field of view compensated through the embedded algorithm for compensating ambient temperature variations (refer to application note AN5867 on www.st.com for the details of the compensation algorithm). The output data is composed of TOBJ_COMP_H (39h) and TOBJ_COMP_L (38h). The value is expressed as two's complement.

10.18 TPRESENCE L (3Ah)

Read only - default = 00h

7	6	5	4	3	2	1	0
TPRESENCE7	TPRESENCE6	TPRESENCE5	TPRESENCE4	TPRESENCE3	TPRESENCE2	TPRESENCE1	TPRESENCE0

TPRESENCE[7:0] Presence detection output using embedded algorithms, LSB data

10.19 TPRESENCE H (3Bh)

Read only - default = 00h

7 6 5 4 3 2 1 0

TPRESENCE15 TPRESENCE14 TPRESENCE13 TPRESENCE12 TPRESENCE11 TPRESENCE10 TPRESENCE9 TPRESENCE8

TPRESENCE[15:8] Presence detection output using embedded algorithms, MSB data

The TPRESENCE (presence) output value is 16-bit data that contains the presence data. It is composed of TPRESENCE_H (3Bh) and TPRESENCE_L (3Ah). The value is expressed as two's complement.

10.20 TMOTION L (3Ch)

Read only - default =00h

 7
 6
 5
 4
 3
 2
 1
 0

 TMOTION 7
 TMOTION 6
 TMOTION 5
 TMOTION 4
 TMOTION 3
 TMOTION 2
 TMOTION 1
 TMOTION 0

TMOTION[7:0] Motion detection output using embedded algorithms, LSB data

10.21 TMOTION_H (3Dh)

Read only - default = 00h

7 6 5 4 3 2 1 0 **TMOTION 15 TMOTION 14 TMOTION 13 TMOTION 12 TMOTION 11 TMOTION 10 TMOTION 9 TMOTION 8**

TMOTION[15:8] Motion detection output using embedded algorithms, MSB data

The TMOTION (motion) output value is 16-bit data that contains the motion data. It is composed of TMOTION_H (3Dh) and TMOTION_L (3Ch). The value is expressed as two's complement.

DS13916 - Rev 2 page 29/40

10.22 TAMB_SHOCK_L (3Eh)

Read only - default = 00h

7	6	5	4	3	2	1	0	
TAMB_SHOCK7	TAMB_SHOCK6	TAMB_SHOCK5	TAMB_SHOCK4	TAMB_SHOCK3	TAMB_SHOCK2	TAMB_SHOCK1	TAMB_SHOCK0	

TAMB_SHOCK[7:0] Ambient shock detection output using embedded algorithms, LSB data

10.23 TAMB_SHOCK_H (3Fh)

Read only - default = 00h

/	6	5	4	3	2	1	0
TAMB_SHOCK15	TAMB_SHOCK14	TAMB_SHOCK13	TAMB_SHOCK12	TAMB_SHOCK11	TAMB_SHOCK10	TAMB_SHOCK9	TAMB_SHOCK8

TAMB_SHOCK[15:8] Ambient shock detection output using embedded algorithms, MSB data

The TAMB_SHOCK (ambient temperature shock) output value is 16-bit data that contains the ambient temperature shock data. It is composed of TAMB_SHOCK_H (3Fh) and TAMB_SHOCK_L (3Eh). The value is expressed as two's complement.

DS13916 - Rev 2 page 30/40

11 Embedded functions description

The following registers are used to configure the embedded functions page. These registers are accessible when the FUNC CFG ACCESS bit in CTRL2 (21h) is set to 1.

11.1 FUNC_CFG_ADDR (08h)

RW - default = 00h

7 6 5 4 3 2 1 0 FUNC_CFG_ADDR[7:0]

FUNC_CFG_ADDR[7:0]

Address of embedded feature that has to be read or written according to the configuration bits in the PAGE_RW (11h) register.

11.2 FUNC_CFG_DATA (09h)

RW - default = 00h

7 6 5 4 3 2 1 0

FUNC_CFG_DATA[7:0]

FUNC_CFG_DATA[7:0]

Data byte that is read or written to the address of the page indicated by FUNC_CFG_ADDR (08h) according to the configuration bit in PAGE_RW (11h).

11.3 PAGE_RW (11h)

RW default = 00h

7	6	5	4	3	2	1	0
0	FUNC_CFG _WRITE	FUNC_CFG _READ	0	-	-	-	-

FUNC_CFG_WRITE	When set to 1, enables the write procedure for the embedded functions.
FUNC_CFG_READ	When set to 1, enables the read procedure for the embedded functions.

DS13916 - Rev 2 page 31/40

12 Embedded functions registers description

Detailed write and read procedures for the embedded functions registers are explained in application note AN5867 (refer to sections 2.1.1 and 2.1.2, respectively) on www.st.com.

12.1 PRESENCE_THS (20h - 21h)

Presence threshold for presence detection algorithm. This value is 15-bit unsigned. The default value is 200 (00C8h).

7	6	5	4	3	2	1	0
PRESENCE_THS7	PRESENCE_THS6	PRESENCE_THS5	PRESENCE_THS4	PRESENCE_THS3	PRESENCE_THS2	PRESENCE_THS1	PRESENCE_THS0
15	14	13	12	11	10	9	8
-	PRESENCE_THS14	PRESENCE_THS13	PRESENCE_THS12	PRESENCE_THS11	PRESENCE_THS10	PRESENCE_THS9	PRESENCE_THS8

12.2 MOTION THS (22h - 23h)

Motion threshold for motion detection algorithm. This value is 15-bit unsigned. The default value is 200 (00C8h).

7	6	5	4	3	2	1	0
MOTION_THS7	MOTION_THS6	MOTION_THS5	MOTION_THS4	MOTION_THS3	MOTION_THS2	MOTION_THS1	MOTION_THS0
15	14	13	12	11	10	9	8
-	MOTION_THS14	MOTION_THS13	MOTION_THS12	MOTION_THS11	MOTION_THS10	MOTION_THS9	MOTION_THS8

12.3 TAMB_SHOCK_THS (24h - 25h)

Ambient temperature shock threshold for Tambient shock detection algorithm. This value is 15-bit unsigned. The default value is 10 (000Ah).

7	6	5	4	3	2	1	0
TAMB_SHOCK7	TAMB_SHOCK6	TAMB_SHOCK5	TAMB_SHOCK4	TAMB_SHOCK3	TAMB_SHOCK2	TAMB_SHOCK1	TAMB_SHOCK0
15	14	13	12	11	10	9	8
-	TAMB_SHOCK14	TAMB_SHOCK13	TAMB_SHOCK12	TAMB_SHOCK11	TAMB_SHOCK10	TAMB_SHOCK9	TAMB_SHOCK8

12.4 HYST_MOTION (26h)

Hysteresis configuration value for motion detection algorithm. It is an 8-bit unsigned value in the registers. The default value is 32h.

7	6	5	4	3	2	1	0
HYST_MOTION7	HYST_MOTION6	HYST_MOTION5	HYST_MOTION4	HYST_MOTION3	HYST_MOTION2	HYST_MOTION1	HYST_MOTION0

12.5 HYST_PRESENCE (27h)

Hysteresis configuration value for presence detection algorithm. It is an 8-bit unsigned value in the registers. The default value is 32h.

7	6	5	4	3	2	1	0
HYST_							
PRESENCE7	PRESENCE6	PRESENCE5	PRESENCE4	PRESENCE3	PRESENCE2	PRESENCE1	PRESENCE0

DS13916 - Rev 2 page 32/40

12.6 ALGO_CONFIG (28h)

Algorithm configuration with 00h default value

7	6	5	4	3	2	1	0
-	-	-	0	INT_PULSED	COMP_TYPE	SEL_ABS	0

When 1, the flags as a result of the algorithms are pulsed (high for ODR defined) on the INT pin. Default value (0: latched mode; 1: pulsed mode)				
COMP_TYPE	Enables the embedded linear algorithm for compensating ambient temperature variations in the object temperature. Default value: 0			
	(0: disabled; 1: enabled)			
SEL ABS	Selects the absolute value in the presence detection algorithm. Default value: 0			
SLL_ADS	(0: ABS is not applied; 1: ABS is applied)			

The COMP_TYPE bit can be set to enable the embedded algorithm for compensating ambient temperature variations in the object temperature under the condition of CTRL0 (17h) GAIN[2:0] = 111. If CTRL0 (17h) GAIN[2:0] is set as 000, the embedded compensation algorithm is not supported. Note that enabling the embedded compensation algorithm may cause the signal to have higher RMS noise. For further configuration guidelines, refer to the application note.

12.7 HYST_TAMB_SHOCK (29h)

Hysteresis configuration value for ambient temperature shock detection algorithm. It is an 8-bit unsigned value in the registers. The default value is 02h.

/	6	5	4	3	2	1	0
HYST_TAMB_							
SHOCK7	SHOCK6	SHOCK5	SHOCK4	SHOCK3	SHOCK2	SHOCK1	SHOCK0

12.8 RESET_ALGO (2Ah)

RW - default = 00h

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	ALGO_ENABLE _RESET

	When this bit is set to 1, it executes a reset of the algorithms. Default value: 0
ALGO_ENABLE_RESET	(0 : no reset of algorithms;
	1: reset of algorithms)

The ALGO_ENABLE_RESET bit must be set to 1 in power-down mode in order to reset the algorithm properly. This register allows a reset of the algorithm when relevant parameters (threshold, hysteresis, SEL_ABS, or low-pass filter configuration) are modified.

When the user changes one or more of these parameters, it is necessary to execute a reset operation of the algorithms before restarting a new measurement.

Refer to AN5867 (Section 7.4 Resetting the algorithm) on www.st.com for the details of the reset procedure.

DS13916 - Rev 2 page 33/40

13 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

13.1 OLGA-10L 3.2 x 4.2 x 1.455 mm package information

Figure 17. OLGA-10L (3.2 x 4.2 x 1.455 mm) package outline and mechanical data

Dimensions are in millimeter unless otherwise specified. General Tolerance is +/-0.1mm unless otherwise specified.

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Width [W]	3.2	±0.1
Length [L]	4.2	±0.1
Height [H]	1.455	MAX

DM00488758_6

DS13916 - Rev 2 page 34/40

Revision history

Table 23. Document revision history

Date	Version	Changes			
25-May-2023 1 Initial release		Initial release			
		Added Table 4. DC characteristics			
05-Jul-2023	2	Added Section 3.2 Absolute maximum ratings			
		Minor textual updates			

DS13916 - Rev 2 page 35/40

Contents

1	Over	view	. 3
2	Pin d	lescription	.4
3	Sens	or and electrical specifications	. 5
	3.1	Communication interface characteristics	. 7
		3.1.1 SPI - serial peripheral interface	. 7
		3.1.2 I ² C - inter-IC control interface	. 8
	3.2	Absolute maximum ratings	. 9
4	Optio	cal specifications	10
5	Digita	al interfaces	11
	5.1	I ² C interface	11
		5.1.1 I ² C read and write sequences	12
	5.2	SPI interface	13
		5.2.1 SPI write	13
		5.2.2 SPI read	
6	Smar	rt digital algorithms	15
	6.1	Presence detection	15
	6.2	Motion detection	16
	6.3	Ambient temperature shock detection	16
7	Appli	ication schematics	17
8	Solde	ering guidelines	19
9	Regis	ster mapping	20
	9.1	Embedded functions page register mapping	21
10	Regis	sters description	22
	10.1	LPF1 (0Ch)	22
	10.2	LPF2 (0Dh)	22
	10.3	WHO_AM_I (0Fh)	22
	10.4	AVG_TRIM (10h)	23
	10.5	CTRL0 (17h)	24
	10.6	SENS_DATA (1Dh)	24
	10.7	CTRL1 (20h)	25
	10.8	CTRL2 (21h)	26
	10.9	CTRL3 (22h)	26
	10.10	STATUS (23h)	27
		FUNC_STATUS (25h)	

	10.12	TOBJECT_L (26h)	. 27
	10.13	TOBJECT_H (27h)	. 28
	10.14	TAMBIENT_L (28h)	. 28
	10.15	TAMBIENT_H (29h)	. 28
	10.16	TOBJ_COMP_L (38h)	. 28
	10.17	TOBJ_COMP_H (39h)	. 29
	10.18	TPRESENCE_L (3Ah)	. 29
	10.19	TPRESENCE_H (3Bh)	. 29
	10.20	TMOTION_L (3Ch)	. 29
	10.21	TMOTION_H (3Dh)	. 29
	10.22	TAMB_SHOCK_L (3Eh)	. 30
	10.23	TAMB_SHOCK_H (3Fh)	. 30
11	Embe	edded functions description	.31
	11.1	FUNC_CFG_ADDR (08h)	. 31
	11.2	FUNC_CFG_DATA (09h)	. 31
	11.3	PAGE_RW (11h)	. 31
12	Embe	edded functions registers description	.32
	12.1	PRESENCE_THS (20h - 21h)	. 32
	12.2	MOTION_THS (22h - 23h)	. 32
	12.3	TAMB_SHOCK_THS (24h - 25h)	. 32
	12.4	HYST_MOTION (26h)	. 32
	12.5	HYST_PRESENCE (27h)	. 32
	12.6	ALGO_CONFIG (28h)	. 33
	12.7	HYST_TAMB_SHOCK (29h)	. 33
	12.8	RESET_ALGO (2Ah)	. 33
13	Packa	age information	.34
	13.1	OLGA-10L 3.2 x 4.2 x 1.455 mm package information	. 34
Revi	ision h	nistory	.35
List	of tab	es	.38
	of figu		39

List of tables

Table 1.	Pin description	. 4
Table 2.	Sensor specifications	. 5
Table 3.	Electrical specifications	. 5
Table 4.	DC characteristics	. 6
Table 5.	Operating temperature range	. 6
Table 6.	SPI slave timing values	. 7
Table 7.	I ² C slave timing values	
Table 8.	Absolute maximum ratings	. 9
Table 9.	Optical specification	10
Table 10.	Transfer when the master is writing one byte to slave	
Table 11.	Transfer when master is writing multiple bytes to slave	12
Table 12.	Transfer when master is receiving (reading) one byte of data from slave	12
Table 13.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 14.	Internal pin status	18
Table 15.	Register map	20
Table 16.	Embedded functions page register map	21
Table 17.	Low-pass filter configuration	
Table 18.	Averaging selection for ambient temperature	23
Table 19.	Averaging selection for object temperature and noise	23
Table 20.	ODR configuration	25
Table 21.	Current consumption at different ODRs and AVG_TMOS setting	25
Table 22.	IEN[1:0] configuration	27
Table 23.	Document revision history	35

List of figures

Figure 1.	Block diagram	. 3
Figure 2.	Pin configuration (package bottom view)	. 4
Figure 3.	SPI slave timing diagram	. 7
Figure 4.	I ² C slave timing diagram	. 8
Figure 5.	Typical field of view measurements	10
Figure 6.	Filter transmittance typical curve	10
Figure 7.	Start and stop conditions	11
Figure 8.	SPI write protocol	13
Figure 9.	Multiple byte SPI write protocol (2-byte example)	13
Figure 10.	SPI read protocol in 3-wire mode	14
Figure 11.	Block diagram of presence detection algorithm	15
Figure 12.	Block diagram of motion detection algorithm	16
Figure 13.	Block diagram of ambient temperature shock detection algorithm	16
Figure 14.	Application schematic with I ² C connection	17
Figure 15.	Application schematic with SPI connection	17
Figure 16.	INT_OR	26
Figure 17.	OLGA-10L (3.2 x 4.2 x 1.455 mm) package outline and mechanical data	34

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

DS13916 - Rev 2 page 40/40