From [22, Section 3], for every θ , we have

$$\mathbb{E}[\|U(\boldsymbol{x}, k\Delta t; \theta) - U_n(\boldsymbol{x}, k\Delta t; \theta)\|^2] \le K_{k\Delta t, U(\cdot, 0), \theta} \lambda_{N+1}^{-1}(\theta), \tag{D.15}$$

where $K_{k\Delta t,U(\cdot,0),\theta}$ is a constant depending on time $k\Delta t$ and the initial condition $U(\cdot,0)$, and θ . Without loss of generality, we assume that $K_{k\Delta t,U(\cdot,0),\theta}$ is non-decreasing in k (otherwise we can replace $K_{k\Delta t,U(\cdot,0),\theta}$ with $\tilde{K}_{k\Delta t,U(\cdot,0),\theta}$:= $\max_{1\leq i\leq k} K_{i\Delta t,U(\cdot,0),\theta}$. Given the initial condition $U(\boldsymbol{x},0)$ and $P_nU(\boldsymbol{x},0)$, we denote the probability measures of $U(\boldsymbol{x},k\Delta t;\theta)$ and $U_n(\boldsymbol{x},T;\theta)$ by $\nu_{U(\cdot,0)}(k\Delta t)$ and $\nu_{n,U_n(\cdot,0)}(k\Delta t)$, respectively. Moreover, the joint probability measure of $(U(\boldsymbol{x},k\Delta t;\theta),U_n(\boldsymbol{x},k\Delta t;\theta))$ has marginal distributions $\nu_{U(\cdot,0)}(k\Delta t)$ and $\nu_{n,U_n(\cdot,0)}(k\Delta t)$, respectively. From Eq. (D.15), we can deduce that:

$$W_2^2(\nu_{U(\cdot,0)}(k\Delta t), \nu_{n,U_n(\cdot,0)}(k\Delta t)) \leq \mathbb{E}[\|U(\boldsymbol{x}, k\Delta t; \theta) - U_n(\boldsymbol{x}, k\Delta t; \theta)\|^2]$$

$$\leq \sup_{\theta,U(\boldsymbol{x},0)} K_{T,U(\cdot,0),\theta} \lambda_{N+1}^{-1}(\theta).$$
(D.16)

Furthermore, using the definition of the local squared W_2 distance in Eq. (2.4), we have:

$$W_{2,\delta}^{2,e}(U(\cdot, k\Delta t; \theta), U_n(\cdot, k\Delta t; \theta)) \leq \sup_{\theta, U(\boldsymbol{x},0)} \mathbb{E}[\|U(\boldsymbol{x}, k\Delta t; \theta) - U_n(\boldsymbol{x}, k\Delta t; \theta)\|^2]$$

$$\leq \sup_{\theta, U(\boldsymbol{x},0)} K_{T,U(\cdot,0),\theta} \lambda_{N+1}^{-1}(\theta).$$
(D.17)

Similarly, we can conclude that:

$$W_{2,\delta}^{2,e}(\hat{U}(\cdot,k\Delta t;\hat{\theta}),\hat{U}_n(\cdot,k\Delta t;\hat{\theta})) \leq \sup_{\hat{\theta},U(\boldsymbol{x},0)} K_{T,U(\cdot,0),\theta} \lambda_{N+1}^{-1}(\hat{\theta}).$$
 (D.18)

Given the same initial condition $U(\mathbf{x},0) = \hat{U}(\mathbf{x},0)$, using the triangle inequality of the Wasserstein distance [14], we have

$$W_{2,\delta}^{2,e}(U(\boldsymbol{x},t;\theta),\hat{U}(\boldsymbol{x},t;\hat{\theta})) \leq 3W_{2,\delta}^{2,e}(U(\cdot,k\Delta t;\theta),U_n(\cdot,k\Delta t;\theta))$$

$$+3W_{2,\delta}^{2,e}(\hat{U}(\cdot,k\Delta t;\hat{\theta}),\hat{U}_n(\cdot,k\Delta t;\hat{\theta})) + 3W_{2,\delta}^{2,e}(U_n(\boldsymbol{x},t;\theta),\hat{U}_n(\boldsymbol{x},t;\hat{\theta})))$$

$$\leq 3W_{2,\delta}^{2,e}(U_n(\boldsymbol{x},t;\theta),\hat{U}_n(\boldsymbol{x},t;\hat{\theta})) + 3\sup_{\theta,U(\boldsymbol{x},0)} K_{T,U(\cdot,0),\theta}\lambda_{N+1}^{-1}(\theta)$$

$$+3\sup_{\hat{\theta},U(\boldsymbol{x},0)} K_{T,U(\cdot,0),\hat{\theta}}\lambda_{N+1}^{-1}(\hat{\theta}).$$
(D.19)