Some Restrictions in Higher-Kinded Systems

Lemon

April 19, 2025

Contents

1	Background														1										
2	Intuition																2								
3	Hov	v Rest	rictions	s Ca	me	\mathbf{to}	В	e ?																	2
	3.1	The H	armless	One	s																				2
		3.1.1	T-App																						2
		3.1.2	T-TAb	s.																					3
		3.1.3	T-TAp	р.																					3
	3.2	The T	rouble l	Iake	rs .																				3
		3.2.1	T-Var																						3
			T-Abs																						3
4	Bac	k to Γ,	$X::K_{1}$	$\vdash T$	$\frac{1}{2} :: 7$	k																			4
5	Tha	nks																							4
	This	note c	ame to	be a	fter	no	tici	ing	S	on	ne	d	eta	ail	s v	vh	en	re	ea	di	ng	g (Ch	ıap	ter
30.	0, Higher-Order Polymorphism of TAPL (Pierce, Benjamin C., 2002).																								

1 Background

One of the kinding rule for F_{ω} is as follow:

$$\frac{\Gamma, X :: K_1 \vdash T_2 :: \star}{\Gamma \vdash \forall X :: K_1 . T_2 :: \star}$$

We pose the question:

In the presumption, why does T_2 need to have the kind \star ?

2 Intuition

Intuitively, the kind " \star " are:

Types that can be inhabited with actual value.

We illustrate this idea with some examples:

- The type Int has kind " \star ", and we can construct values such as 10 : Int
- The type Maybe Char has kind "★", and we can construct values such as Just 'A': Maybe Char
- The type Maybe has kind " $\star \to \star$ ", and there is no value with the type just Maybe

3 How Restrictions Came to Be?

Consider some standard typing rules of F_{ω} (Something similar to the one in TAPL), with the judgment:

$$\Gamma \vdash t : T$$

In context Γ , the term t has type T

Because we are assigning a term t with a type T, T must have kind " \star " (Non- \star type cannot be inhabited)

When developing the metatheory, we will likely want to prove the theorem:

$$\Gamma \vdash t : T \Rightarrow \Gamma \vdash T : \star$$

What is the main challenge when proving this theorem? Let us consider the typing rule cases:

3.1 The Harmless Ones

3.1.1 T-App

$$\frac{\Gamma \vdash t_1: T_{11} \rightarrow T_{12} \qquad \Gamma \vdash t_2: T_{11}}{\Gamma \vdash t_1 \ t_2: T_{12}}$$

This is no trouble, IH will guarantee desired result

3.1.2 T-TAbs

$$\frac{\Gamma, X :: K_1 \vdash t_2 :: T_2}{\Gamma \vdash \lambda X :: K_1 . t_2 : \forall X :: K_1 . T_2}$$

This is no trouble, IH will guarantee $T_2:\star$ in extended context, and quantifying over the free variable will make $\forall X::K_1:T_2$ of kind \star again.

3.1.3 T-TApp

$$\frac{\Gamma \vdash t_1 : \forall X :: K_{11} \;.\; T_{12} \qquad \Gamma \vdash T_2 :: K_{11}}{\Gamma \vdash t_1 \; [T_2] \;: [T_2/X] T_{12}}$$

This is no trouble, IH will guarantee $\forall X :: K_{11} . T_{12}$ is of kind \star , and assuming some substitution lemma, $[T_2/X]T_{12}$ will be of kind \star too.

3.2 The Trouble Makers

3.2.1 T-Var

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T}$$

This will definitely cause issue if T is freely allowed to be anything (e.g. Maybe), then we will output a non- \star kinded type.

There are a few ways to fix this issue:

- 1. Add a precondition checking if Γ is "well-formed". Check whether all the type assigned to variables are actually of kind \star
- 2. "Check the input", make sure when context gets extended, the extension does not introduce a variable binding to non-⋆ type

In a sense, option 2 will preserve the well-formedness defined in option 1.

If we choose option 2, it will lead us to the next section

3.2.2 T-Abs

$$\frac{\Gamma \vdash T_1 :: \star \qquad \Gamma, x : T_1 \vdash t_2 : T_2}{\Gamma \vdash \lambda x : T_1 \ . \ t_2 : T_1 \rightarrow T_2}$$

The first presumption prevents non-* kinded types from being introduced to the context

4 Back to $\Gamma, X :: K_1 \vdash T_2 :: \star$

Back to why T_2 has to be of kind \star . A different way of phrasing this question might be:

Why can't T_2 be higher-kind?

This has to do with how " \forall " can be introduced. " \forall " can only be introduced via a kind abstraction. In TAPL's case, this will be $\lambda X :: K$. t, though in other text it might be $\Lambda X :: K$. t.

Regardless of the representation, the term t should have the type T_2 . And because T_2 can be given a value, it must be of kind \star

5 Thanks

To Ningning and Ethan for the discussion