

Lineare Algebra für Informatik - Woche 13

Cosmin Aprodu

Technische Universität München

Online, 08 Juli 2021

Eigenschaften symmetrischer Matrizen

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch, also $A = A^T$. Sei $U \subseteq \mathbb{R}^n$ mit $U \neq \{0\}$, so dass für alle $u \in U$ gilt: $A \cdot u \in U$.

 \rightarrow Dann enthält *U* einen *Eigenvektor* von *A*.

Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und seien $\lambda \neq \mu$ zwei Eigenvektoren von A.

 \rightarrow Dann gilt für alle $v \in E_{\lambda}$ und $w \in E_{\mu}$, dass v und w orthogonal (auch senkrecht) zueinander sind, also:

$$\langle v, w \rangle = 0$$

Erinnerung: $O_n(\mathbb{R}) = \{A \in \mathbb{R}^{n \times n} \mid A^T \cdot A = I_n\}$ ist die **orthogonale Gruppe**.

Hauptachsentransformation: Für jede symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ gibt es eine **Orthonormalbasis** von \mathbb{R}^n bestehend aus *Eigenvektoren* von A. Anders gesagt:

- Es gibt $S \in O_n(\mathbb{R})$, so dass $S^{-1}AS(=S^TAS)$ eine *Diagonalmatrix* ist.
- A ist diagonalisierbar.

Weitere Eigenschaften

Sei $A \in \mathbb{R}^{m \times n}$. Dann ist die Matrix $A^T \cdot A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit (alle Eigenwerte von A sind positiv).

Singulärwertzerlegung: Sei $A \in \mathbb{R}^{m \times n}$ eine Matrix von Rang r = rg(A). Dann gibt es die orthogonale Matrizen $U \in O_m(\mathbb{R})$ und $V \in O_n(\mathbb{R})$, sowie die positive reelle Zahlen $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$, so dass:

$$\Sigma := U^T \cdot A \cdot V = egin{pmatrix} \sigma_1 & & dots & dots & 0 \ & \ddots & & 0 \ & & \sigma_r & dots &$$

 \rightarrow Die äquivalente Gleichung $A = U \cdot \Sigma \cdot V^T$ heißt **Singulärwertzerlegung** von A.