

CROWD COUNTING Multi-Scale Convolutions Using Co-prime Dilation Rates

Goutam Das, Department of Computer Science & Engineering, IIT Kanpur

Mentor: Bebina Hidangmayum Devi

(01) Introduction

- Counting people in dense crowds is important for safety and planning, but traditional methods struggle with dense crowd and scale changes.
- This model uses a Counting Network which uses convolutions to estimate crowd density from images, aiming for accurate predictions across different crowd densities.

02) Objective

- Develop a model that accurately predicts crowd count using multi-scale features.
- Focus on improving counting in complex, dense scenes with diverse crowd sizes.

03

3) Approach

Counting Network: A counting network is implemented, focusing on improvement over traditional counters.

- A Front-End Net as a backbone
- A Multi-scale convolutions Module: coprime dilation rates (e.g., [1,2,3]) are used to capture details at various scales, ensuring all pixels are considered without gaps.

06

Results & Analysis

Comparative performance with Adaptive Density Map Generator

Dataset	CSRNet with Generator	Current Model
SanghaiTech A	MAE: 238	MAE:187
	MSE: 397	MSE: 253
SanghaiTechB	MAE: 85	MAE: 78
	MSE: 121	MSE:96

Note: The current model trained only for 30 epochs

Visual Analysis of performance

Ground Truth Density Map

Predicted Map for Counter (the scale is different)

(04) Model Description

The Counting Network combines:

- Front-End Net: First 10 layers of VGG-16 are used. Extracts primary features from images.
- Dual Convolution Columns: Two parallel convolution layers (3x3 and 5x5 kernels) with coprime dilation rates to capture multi-scale crowd features without redundancy.

05) Model Training and Evaluation

- Dataset: Uses the ShanghaiTech dataset (Parts A and B) to train and test on different crowd densities.
- Loss Function: Mean Squared Error (MSE) measures differences between predicted and actual GT-dot maps.
- This measures pixel wise difference between the counter output and the ground truth map.
- PyTorch is used for implementation of this model.

Refrences:

- 1. Crowd counting method via a dynamic-refined density map network : Yanbo Liu, Guo Cao, Zixian Ge, Yingxiang Hu
- 2. Adaptive Density Map Generartion for crowd counting
- 3. Single-Image Crowd Counting via Multi-Column Convolutional Neural Network : Yingying Zhang; Desen Zhou; Siqin Chen; Shenghua Gao; Yi Ma