Jonathan da Silva Braga

Título do seu Trabalho

Natal – RN

Dezembro de 2017

Jonathan da Silva Braga

Título do seu Trabalho

Trabalho de Conclusão de Curso de Engenharia Mecatrônica da Universidade Federal do Rio Grande do Norte, apresentado como requisito parcial para a obtenção do grau de Bacharel em Engenharia Mecatrônica

Orientador: John Doe

Universidade Federal do Rio Grande do Norte – UFRN Departamento de Engenharia de Computação e Automação – DCA Curso de Engenharia Mecatrônica

> Natal - RNDezembro de 2017

Jonathan da Silva Braga

Título do seu Trabalho

Trabalho de Conclusão de Curso de Engenharia Mecatrônica da Universidade Federal do Rio Grande do Norte, apresentado como requisito parcial para a obtenção do grau de Bacharel em Engenharia Mecatrônica

Orientador: John Doe

Trabalho aprovado. Natal – RN, 08 de Dezembro de 2017:

Prof. Dr. Cicrano da Silva - Coorientador UFRN

MSc. Alguém externo - Convidado Empresa ou instituição

> Natal – RN Dezembro de 2017

AGRADECIMENTOS

Escreva aqui seus agradecimentos.

RESUMO

Escreva seu resumo aqui. Ele deve ser parágrafo único e sem récuo na primeira linha. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Palavras-chaves: palavra1. palavra2. palavra3.

ABSTRACT

Write here your abstract with the same rules. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords: keyword1. keyword2. keyword3.

LISTA DE ILUSTRAÇÕES

Figura 1 – Capacidade de instalada de geração elétrica no Brasil (MW)	13
Figura 2 — Estrutura do Consumo de fontes primárias	14
Figura 3 – Fontes de geração de energia elétrica (GWh)	19
Figura 4 – Smart Grid, comunicação inteligente entre todos os usuários	20
Figura 5 – Diagrama de conexão via websocket	23
Figura 6 – MySQL	24
Figura 7 - ESP8266	25
Figura 8 – NodeMCU	25
Figura 9 - SCT-013-000	26
Figura 10 – Visão geral do ambiente	27
Figura 11 – Tela inicial do sistema	28
Figura 12 – Chamada de API	29
Figura 13 – Esquema das tabelas do banco de dados	30
Figura 14 – Cadastro de um cômodo	31
Figura 15 – Lista dos cômodos cadastrados	31
Figura 16 – Cadastro de um dispositivo	32
Figura 17 – Listagem dos dispositivos cadastrados	32
Figura 18 – Tela de configuração dos parâmetros do sistema	33
Figura 19 – Demonstrativo do gasto de cada dispositivo	34
Figura 20 — Consumo geral de todos os dispositivos por cômodo ao longo do ano	34
Figura 21 – Consumo geral de todos os dispositivos por cômodo ao longo do mês atual	35
Figura 22 – Consumo geral de todos os dispositivos por cômodo ao longo do mês	
anterior	35
Figura 23 – Visão geral da gerência de um cômodo	36
Figura 24 – Vincular dispositivo ao cômodo	36
Figura 25 – Ações que podem ser realizadas no dispositivo vinculado $\dots \dots$	37
Figura 26 – Alerta exibido quando o consumo supera os 50% do previsto	37
Figura 27 – Alerta exibido quando o consumo supera os 80% do previsto	37
Figura 28 – Simulador de gastos	38
Figura 29 — Circuito demonstrativo para comunicação com o $power\ monitor\ .\ .\ .$	40
Figura 30 – Print screen do SHARPE em linha de comando e em interface gráfica.	43

LISTA DE TABELAS

Tabela 1 – Evolução dos cu	stos de energia elétrica em R\$/MWh	15
Tabela 2 – Capacidade inst	alada de geração elétrica no mundo, 2014 (GW)	16
Tabela 3 – Capacidade inst	alada de geração hidrelétrica no mundo, $2014~(GW)$	16
Tabela 4 – Relação Populaç	ão x Consumo por Região x Geração Elétrica por Região	17

LISTA DE ABREVIATURAS E SIGLAS

HTML HyperText Markup Language

CSS Cascading Style Sheets

API Application Programming Interface

HTTP HyperText Transfer Protocol

TCP Transmission Control Protocol

SQL Structured Query Language

SDK Software Development Kit

IoT Internet of Things

JSON JavaScript Object Notation

SCT Split-Core Current Transformer

REST Representational State Transfer

EPE Empresa de Pesquisa Energética

ANEEL Agência Nacional de Energia Elétrica

CEMIG Comapanhia Energética de Minas Gerais

SIN Sistema Interligado Nacional

IBGE Instituto Brasileiro de Geografia e Estatística

LISTA DE SÍMBOLOS

 Γ Letra grega Gama

 Λ Lambda

∈ Pertence

SUMÁRIO

1	INTRODUÇÃO	13
1.0.1	Setor Energético Brasileiro	15
1.0.2	Medição de Energia	17
1.0.3	Automação	18
1.1	Motivação	20
1.2	Objetivos	20
1.3	Estrutura do Trabalho	20
2	EMBASAMENTO TEÓRICO	22
2.1	Ferramentas e linguagens	22
2.1.1	Node.js	22
2.1.2	JavaScript	22
2.1.3	WebSocket	23
2.1.4	<i>SQL</i>	23
2.1.5	Fritzing	24
2.2	Componentes Físicos	24
2.2.1	ESP8266	24
2.2.2	Sensor de Corrente SCT 013-000	25
3	DESENVOLVIMENTO	27
3.1	Visão Geral	27
3.2	Software	27
3.3	Hardware	38
3.4	Resultados	40
4	CAPÍTULO 4	41
4.1	Seção	41
4.1.1	Subseção	42
4.2	Seção 2	43
5	CAPÍTULO 5	44
5.1	Seção	
6	CONCLUSÃO	45
	REFERÊNCIAS	46

1 INTRODUÇÃO

A eletricidade se tornou um pilar central na atualidade, sendo uma das principais fontes de força, calor e luz utilizada no mundo. Entrantando com o crescente consumo de energia elétrica nos últimos tempos, a demanda por produção da mesma teve um crecismento significativo, trazendo consigo impactos ambientais e econômicos. O Brasil por mais que possua em seu território grandes possibilidade para a construção de fontes de obtenção de energia, não está isento do problema da alta demanda por energia elétrica. Problema que se agravou em 2015 quando o país começou a passar por uma crise hídrica.

Como a Figura 1 mostra, a maior parte da energia elétrica gerada no Brasil é por meio de hidroelétricas, essa dependência energetica junto com a crise hídrica que o país sofreu cuminou em uma política de racionamento e aumento dos impostos - taxa inflacionária no consumo de energia elétrica - que impactou diretamente a vida de cada cidadão brasileiro, trouxe consequências, como o aumento do custo da energia elétrica. Segundos dados (G1, 2016) entre 2015 e 2016 a crise hídrica no Brasil não interferiu apenas na conta de luz mas trouxe um aumento na inflação do país.

Figura 1 – Capacidade de instalada de geração elétrica no Brasil (MW)

Fonte – (EPE-ANUÁRIO, 2017, p. 57).

O Consumo de energia elétrica é um dos principais indicadores de desenvolvimento e de qualidade de vida de um país. Esse índice é tão importate que reflete diretamente no rítimo de vida de uma populção, pois mostra se as atividades industriais de uma nação

está ou não em um bom rítimo e pode detectar se o comércio está em alta, devido aos bens e serviços que o povo adiquiriu. Porém um crescimento desordenado na população e um crescimento exponencial no consumo de enérgia pode acarretar em problemas para um determinado país. Analisando os dados (EPE-BALANÇO-FINAL, 2017), o consumo de energia elétrica no Brasil vem crescendo ao longo dos anos, o brasileiro vem consumindo mais energia elétrica, nos últimos 35 anos teve um crescimento médio de 6,72% dessa demanda, após a crise que o Brasil sofreu entre os anos 2002 e 2005 houve um crescimento de 4,91% na demanda energética do país. A Figura 2 nos mostra bem o cenário de crise energética que o Brasil vinha passando ao longo dos anos, até 2008 o país consumia mais do que produzia.

Figura 2 – Estrutura do Consumo de fontes primárias

Fonte - (EPE-BALANÇO-FINAL, 2017, p. 43).

O governo brasileiro tomou algumas medidas estratégicas para poder acompanhar a crescente demanda por energia elétrica, constituiu o planejamento da construção de mais de 80 usinas até 2020, hidroelétricas, temoelétricas e até usina nuclear. Um grande problema desse planjamento que o gorverno fez são os inumeros impactos ambientais e econômicos, um exemplo prático é a usina de de Belo Monte - Rio Xingu, Pará - obra que foi planejada para ser a quarta maior hidroelétrica do mundo, a maior do Brasil, com capacidade habastecer 40% das recidências, foi orçada em R\$ 30 bilhões deveria ter seu início de operação no segundo semestre de 2015 mas até os dias atuais não entrou em funcionamento. Vale salientar que a construção trouxe o desmatamento de áreas indígenas, alagamentos permanentes, comprometimento da fauna e flora e aumento da dificuldade dos transportes fluviais de comunidades ribeirinhas.

Analisando a grande demanda energetica que o brasileiro vem requerindo e levando em conta as consquências negativas do planejamento das 80 usinas, surgi uma questão

bastante recorrente: - "O que fazer? Constuir usinas mesmo sabendo dos impactos negativos que podem surgir, ou não construí-las e aumentar a tarifação pelo consumo de energia visando diminuir o consumo?- A resposta para essas e outras questões que podem aparecer não são fáceis. Entretanto o governo brasileiro optou por deixar o consumo de energia elétrica mais caro, principalmente nos horários de pico. A evolução da tarifa, pode ser observada na Tabela 1

Ano	1° Trimestre	2° Trimestre	3° Trimestre	4° Trimestre
2013	120,8	117,1	114,5	116,1
2014	121,1	127,6	134,4	141,9
2015	154,2	-	-	-

Tabela 1 – Evolução dos custos de energia elétrica em R\$/MWh

Uma medida totalmente cabível que ainda é desconhecida por alguns brasileiros é a chamada "exposição da informação", deixando sempre bem claro quanto o consumidor tem gastado ou consumindo ao longo do mês em sua recidência, isso é possível graças a equipamentos que estão sempre monitorando a rede elétrica. Segundo uma pesquisa realizada pela Associação Brasileira das Empresas de Serviços de Conservação de Energia, em seis anos o Brasil desperdiçou o equivalente a 250GWh em energia o que equivale a R\$62 bilhões, desperdíciu que se deu justamente a tamanha falta de infomação que o consumidor tem, se ao saber o quanto tem consumido ou gastado em tempo real o consumidor poderia se prevenir dos desperdícios.

1.0.1 Setor Energético Brasileiro

Ao passar dos anos o Brasil vem mostrando cada vez mais o seu potencial na produão de energia, o território brasileiro possibilita as várias formas de obtenção da eletricidade. Analisando os dados (EPE-ANUÁRIO, 2015, p.29) e comparando com a Tabela 2 nota-se que o Brasil subiu duas posoções no *Rank* de geração de energia elétrica, isso é reflexo do aumentou da capicidade de produção de energia que chegou na marca de 8,39%.

A maior produção de energia do Brasil provem das hidroelétricas, o país é referência mundial quando o assunto é obtenção de energia através de usinas hidroelétricas - Tabela 3 - isso é possível devido a sua alta concentração de rios de grande porte e ao grande volume de chuva que alimenta e reforça o poderio hídrico do país. A energia que a usina hidroelétrica fornece é conseguida através da energia hidráulica que provém do aproveitamento da força potencial e cinética das correntes de água,rio, mar. A água ao passar por tubulações com muita força e velociadade movimentas as turbinas fazendo com que elas girem em um velociadade suficiente para que os geradores acoplados nas turbinas, transformem

	2010	2011	2012	2013	2014
Mundo	5080,6	5305,0	5514,6	5736,2	6038,7
China	971,8	1069,5	1154,6	1267,7	1399,5
Estados Unidos	1039,1	1051,3	1063,0	1060,1	1074,6
Japão	284,9	287,3	293,3	300,8	313,4
Índia	213,1	246,0	260,3	283,0	310,8
Rússia	228,1	231,6	233,6	235,2	247,6
Alemanha	162,7	167,5	177,3	186,1	198,4
Canadá	132,3	132,9	130,7	133,3	136,8
Brasil	11,3	117,1	121,0	126,7	133,9

Tabela 2 – Capacidade instalada de geração elétrica no mundo, 2014 (GW)

Fonte – (EPE-ANUÁRIO, 2017, p. 29)

energia mecânica em energia elétrica, lembrando que a eficiência energética de uma usina hidroelétrica é de 65,2%. Após esse longo processo a energia extraída é enviada para estações de tratamento e após essa etapa é enviada para a matriz energetica que fará a distribuião da energia extraída.

	2010	2011	2012	2013	2014
Mundo	903,9	929,9	957,5	1000,4	1038,3
China	199,5	214,6	229,1	258,9	283,0
Brasil	80,7	82,5	84,3	86,0	89,2
Estados Unidos	78,8	78,7	78,7	79,2	79,7
Canadá	74,9	75,4	75,4	75.4	75.4

Tabela 3 – Capacidade instalada de geração hidrelétrica no mundo, 2014 (GW)

É do conhecimento de qualquer brasileiro que possua uma noção básica de geografia que a região norte é a região que possui a maior quantidade de rios, essa noção pode levar uma conclusão errada - A região norte é a que mais produz energia - pois nem todo rio tem potencial para que uma hidroelétrica se instale. Por sua vez as regiões sul e suldeste são as que mais necessitam de energia, devido a densidade populacional e a quantidade de insdutrias instaladas nas regiões. A Tabela 4 externa essa problemática de uma manéira bem visível. Perceb-se que por exemplo a região sudeste é a que produz mais energia, porém é a que mais gasta, sendo os gastos maiores do que os ganhos, já a região norte e nordeste são regiões que produzem mais do que gastam. Vendo esse total desequilíbrio de geração e consumo de energia, surgiu a necessidade da criação do Sistema Interligado Nacional (SIN). O SIN é constituido por todas as regiões brasileiras e é interconectado por meio de uma malha de trasmissão que propicia a transferência de energia entres os subsistemas, permitindo a obtenção de ganhos sinérgicos e explora a diversidade entre os regimes hidrológicos e das bacias. A integração dos recursos de geração e transmissão

Região	População	Consumo em GW	Capacidade Instalada de Geração Elétrica GW
Norte	17.707.783	12,197	25,484
Nordeste	56.915.936	12,109	29,803
Sudeste	86.356.952	74,584	44,810
Sul	29.439.773	19,173	31,681
Centro-Oeste	15 660 988	5 634	18 558

permite o atendimento ao mercado com segurança e economicidade.

Tabela 4 – Relação População x Consumo por Região x Geração Elétrica por Região

Fonte – (IBGE¹e EPE²)

1.0.2 Medição de Energia

Após enterder todo o funcionamento da geração e distribuição de energia no Brasil, é conveniente entender o processo de leitura do consumo de energia elétrica, assim como as questões que esse trabalho faz a respeito da eficácia. Tendo a possibilidade de atualizar esse sistema com novas tecnologias que proporcinam maior segurança e menores custos ao consumidor.

Os primeiros medidores de eletricidade foram utilizados na operação de lâmpadas em série, um vez que a tensão era constante, a corrente exigida por cada lâmpada era conhecida e todas estavam ligadas no mesmo interruptor, os medidores foram suficientes apenas para medir o gasto das lâmpadas em um tempo determinado, surgindo o termo lâmpada-hora. Em 1872 o pesquisador Samuel Gardiner trouxe a toda a primeira patente sobre um contator de energia, que era formado por uma lâmpada acoplada a um contador de energia DC controlado por um relógio e um eletroímã, ao passar do tempo várias outras patentes foram surgindo e tentando melhor o projeto de Samuel Gardiner, mas foi apenas em 1892 que que surgiu o primeiro medidor de watt-hora com precisão e confiabilidade suficiente para aplicação em medição de consumo de energia. Criado por Thomas Duncan, inicialmente seu objetivo era a medição de circuitos monofásicos, porém com o bom desempenho do aprelho modificações foram feitas para à medição de circuitos polifásicos de energia.

Atualmente a energia elétrica é quantificada através de um equipamento chamado medidor, que nos dias atuais a medição é feita em quilowatt-hora. Os medidores da atualidade são caracterizados por padrões da norma NBR 14519, o grupo de medidor mais utilizado pelas concessionárias nas residências é o grupo B.

¹(EPE-BALANÇO-FINAL, 2017)

²https://ww2.ibge.gov.br/home/estatistica/populacao/estimativa2009/estimativa.shtm

• Grupo B

E caracterizado por unidades consumidoras de baixa tensão, com tensões inferiores a 2,3KV. As unidades consumidores podem ser classificadas mediante a necessidade da concessionária responsável, geralmente o tipo B1 é residencial, tipo B2 são as residências rurais e estabelecimentos comerciais ou insdustriais são classificados como o tipo B3.

Estima-se que 92% dos medidores em funcionamento são eletromecânicos, pois são de baixa custo e de boa qualidade, com o erro máximo de 2% de seu valor nominal de operação. Não ter um medidor em uma unidade consumidora pode gerar transtornos tanto para concessionário, pois não saberá o quanto deve cobrar ao consumidor, como para o dono do estabelecimento, pois não terá o aporte devido prestado pela concessionária de energia.

1.0.3 Automação

Mesmo com a grande evolução que os medidores eletromecânicos sofreram ao longo do tempo, os dispositivos ainda apresentam pontos frágeis, dando uma grande margem ao erro. A grande quantidade de peças mecânicas presente no medidor, faz com que o mesmo possua algumas limitações: interferência na opreção na presença de corrente continua que causam deformações no fluxo magnético do leitor; diminuição da precisão quando são tratados de valores muito baixos. Hoje em dia existe uma forte tendência a substitução desses medidores eletromeânicos por medidores eletrônicos, irá possibilitar além de uma melhor precisão uma maior e melhor medição e até possibilitando uma leitura remota. Hoje no Brasil existe um projejto de lei (PL 2932/20015) que prevê a substitução de medidores de consumo de energia eletromecânicos por medidores eletromecânicos inteligentes em até 15 anos após a aprovação da lei.

A necessidade de contornar os desafios da crescente demanda energetica insentiva a busca por fontes alternativas e limpas de energia. O Brasil possui 42,30% de fontes renováveis da sua matriz energetica e esse número deve aumentar até 2021 onde alcançará a marca de 85,00% (as hidroelétricas estão inclusas nesse meio), segundo o Ministério de Minas e Energia. No Plano Decemal de Expansão de Energia (PDE) 2020, o gorveno brasileiro assume que a sustentabilidade é a chave mestra para a expenssão de atividades de geração de energia elétrica. A Figura 3 mostra que o Brasil vem investindo ao passar dos anos em fontes limpas de energias. Contudo também mostra que o Brasil ainda é muito dependente das hidrelétricas que apesar de ser uma fonte limpa e renovável traz malefícios como as grandes áreas alagadas em volta da represa, impactando no ciclo de vida das espécies e obriga populaões ribeirinhas a migrarem, isso mostra que não basta

apenas ter fontes limpas e renováveis de energia, é necessário buscar melhorias como as Smart Grids e técnicas como de Smart metering.

Fonte	2015	2016	Δ 16/15
Hidrelétrica	359-743	380.911	5,9%
Gás Natural	79.490	56.485	-28,9%
Biomassa²	47-394	49.236	3,9%
Derivados do Petróleo ³	25.657	12.103	-52,8%
Nuclear	14.734	15.864	7,7%
Carvão Vapor	18.856	17.001	-9,8%
Eólica	21.626	33.489	54,9%
Solar Fotovoltaica	59	85	44,7%
Outras ⁴	13.669	13.723	0,4%
Geração Total	581.228	578.898	-0,4%

¹ Inclui geração distribuída

Figura 3 – Fontes de geração de energia elétrica (GWh)

Fonte – (EPE-BALANÇO, 2017, p. 35).

As chamadas redes inteligentes de transmissão e distribuição de energia, smart grid, tem como objetivo conectar unidades descentralizadas de geração grande e pequena com o consumidor final. Assim nessa ideia o fluxo de energia se comunica de uma maneira bidirecional, a energia que é tradicionalmente gerada e distribuidas pelas concessionárias poderá ser gerada e integrada as redes elétricas apartir de unidades consumidoras. O grande pilar dessa tecnologia são os sensores instalados ao longo da rede elétrica que constantemente estão enviando informações referente ao consumo a concessionária, possibilitando um planejamento mais eficiente da rede. Aliado aos sensores na rede elétrica o consumidor recebe um medidor inteligente que também é integrado com a concessionária em tempo real.

² Inclui lenha, bagaço de cana e lixívia

³ Inclui óleo diesel e óleo combustível

Inclui outras fontes primárias, gás de coqueria e outras secundárias

Figura 4 – Smart Grid, comunicação inteligente entre todos os usuários

Fonte – (CEMIG,).

O trabalho apresentará uma forma barata e eficiente de monitorar a energia elétrica de uma residência em tempo real, possibilitanto ao usuário possuir informações valiosas a todo momento. O trabalho fará um paralelo com algumas das várias possibilidades de medição de consumo e monitoramento de energia, provando que através da prática de gerenciamento e monitoramento de energia é possível conscientizar o usuário do mau uso da energia elétrica. Então a partir desse dispositivo será possível entender como e onde a energia está sendo gasta, possibilitando mais informações ao usuário e ajudando para que ele tome as precauções certas para economizar.

O trabalho será dividido da seguinte maneira: No Capítulo 2

1.1 Motivação

O que lhe motiva a realizar este trabalho.

1.2 Objetivos

Objetivo geral e específicos.

1.3 Estrutura do Trabalho

Este trabalho apresenta uma introdução sobre o tema, mostrando os fatores que motivam a implantação da ideia, além da justificativa e dos objetivos. Em sequência, o Capítulo 2 aborda (...). O ??, por sua vez, explica a metodologia para ..., enquanto

o Capítulo 4 trata de (...). O Capítulo 5 apresenta (...). Por fim, o Capítulo 6 traz as principais conclusões e contribuições deste trabalho.

2 EMBASAMENTO TEÓRICO

O Power Monitor surgiu da necessidade da conscientização do gasto energético e da melhor compreensão da conta de luz. Baseado nesse conceito, foi desenvolvido um software que permite uma fácil comunicação com qualquer equipamento construído que tenha a finalidade de monitorar a energia elétrica e um hardware para demonstração da comunicação entre ambos. O sistema traz uma forma mais fácil e próxima do consumidor final de se quantificar a energia elétrica consumido em um estabelecimento. No lugar do Quilowatt-hora, medida que é usada atualmente, o software propõe mensurar o gasto energético em reais (R\$), trazendo a realidade do consumo mensal para mais próximo de cada brasileiro.

Esse capítulo trará os conceitos essenciais para o entendimento do trabalho, descrevendo todas as tecnologias utilizadas no desenvolvimento do software como do hardware.

2.1 Ferramentas e linguagens

No decorrer do desenvolvimento do *software* fez-se uso de algumas tecnologias e linguagens de programação que serão descrita no decorrer dessa seção.

2.1.1 *Node.js*

Node.js é um interpretador do código JavaScript (subseção 2.1.2), com o foco do uso da linguagem do lado do cliente para servidores. Com um objetivo simples que é ajudar desenvolvedores na criação de aplicações de alta escalabilidade, com códigos capazes de administrar e manipulazar várias conexões simultaneamente em um único servidor. O Node.js é baseado na runtime V8 JavaScript Engine. Foi desenvolvido por Ryan Danhl em 2009, e o seu desenvolvimento é mantido pela fundação Node.js e Linux Foundation.

2.1.2 JavaScript

JavaScript é uma linguagem de programação interpretada de alto nível, juntamente com HTML e CSS é uma das linguagens mais utilizadads no mundo web. Após o uso da linguagem as páginas web começaram a ter uma maior interatividade com o usuário. A grande maioria dos browsers tem um mecanismo de compilação dedicado para o JavaScript. Por ser uma linguagem multi-paradigma o JavaScript suporta paradigmas funcionais, orientados a eventos e até mesmo paradigmas de orientação a objeto. Inicialmente era usada apenas no lado do cliente em web browsers, mas atualmente está presente em vários

outros tipos de *softwares* incluindo servidores - como já foi discutido na subseção 2.1.1 - *databases* e até sistemas *desktop* como os leitores de PDF, programas de música e recentemente vem ganhando espaço no desenvolvimento de aplicativos para celular.

2.1.3 WebSocket

A ideia da tecnologia surgiu da problematica onde as comunicações entre servidor e aplicação era baseada na sobrecarga do HTTP, que não é indicado para aplicativos com baixa latência. O WebSocket define uma API que estabelece a conexão de soquete entre aplicação e servidor, resumidamente é uma conexão, baseada no protocolo TCP, persistente entre servidor e cliente onde ambas as partes podem enviar ou receber informações a qualquer momento. A forma como a conexão acontece é bem simples, o cliente e o servidor antes de tudo devem negociar o handshake - processo pelo qual os dois lados, geralmente cliente e servidor, passam para reconhcimento de ambos os lados e concretizar a comunicação - de atualização do HTTP e depois disso aplicar as regras assicronas do websocket, como mostra a Figura 5.

Figura 5 – Diagrama de conexão via websocket

Fonte - https://www.pubnub.com/learn/glossary/what-is-websocket/

2.1.4 *SQL*

A linguagem teve seu início dentro de um projeto chamado $System\ R$ que pertencia a IBM em meados dos anos 70. Structured Query Language, ou comumente conhecida como SQL é uma linguagem padrão de banco de dados, se tornou bastante conhecida e usada devido a sua simplicidade e facilidade de uso. Diferentemente das outras linguagens

de banco de dados a consulta em SQL especifica a forma do resultado e não o caminho para chegar nele, uma outra grande diferena é que a linguagem SQL é declarativa diferindo mais uma vez das outras linguagens que por sua vez são procedurais.

O MySQL é um sistema de gerenciamento de banco de dados que utiliza a linguagem SQL. Atualmente é o sistema mais popular em gerenciamento de banco de dados. Sua rápida popularização deve-se a fácil comuniação entre servidor e aplicação.

Figura 6 - MySql

Fonte - https://www.infoescola.com/wp-content/uploads/2011/01/mysql.jpg

2.1.5 Fritzing

O Fritzing é uma iniciativa open source que inicialmente foi designada a desenvolvedores amadores que gostasse de tirar a sua ideia do papel. Em poucas palavras a plataforma auxilia os desenvolvedores por meio de uma interface gráfica nas primeiras montagens com Arduino ou outro microcontrolador, sua intuitiva interface proporciona ao usuário uma rápida montagem do circuito em protoboard. O software vai além e permite com que os desenvolvedores tenha uma visão tanto da protoboar, como do esquemático elétrico.

2.2 Componentes Físicos

No decorrer do desenvolvimento do hardwaare fez-se uso de alguns componentes eletrônicos, microcontrolador que serão descritos nessa seção.

2.2.1 *ESP8266*

É um microcontrolador que é produzido por um fabricante chinês - Espressif - que tem como principal vantagem a comunicação Wi-Fi já integrada em seu circuito. O chip

teve seu auge em 2014 quando "estourou"na cultura *maker* com o ESP-01, essa placa permite que microcontroladores se conectem a uma rede sem fio fazendo conexões TCP/IP, tendo a capacidade de ser servidor ou cliente.

Figura 7 - ESP8266

Fonte - http://fabacademy.org/archives/2015/doc/images/esp-01.jpg

O NodeMcu é uma plataforma *IoT* totalmente *open source*. Tem como principal linguagem de script Lua, foi construído sobre o SDK ESP8266. A plataforma surgiu pouco tempo após o lançamento do ESP8266 (subseção 2.2.1). A plataforma logo conquistou o seu espaço, pois trazia um conjunto de circuitos já previamente embutido que o ESP8266 por si só não proporcionava.

Figura 8 – NodeMCU

Fonte - https://upload.wikimedia.org/wikipedia/commons/7/7e/NodeMCU_DEVKIT_1.0.jpg

2.2.2 Sensor de Corrente SCT 013-000

O Sensor é um ótimo transformador de corrente para leituras não invasivas, possuindo um fucionamento bem similar a de um alicate amperímetro. Com a seguinte especificação técnica:

- 100A no primário
- saída de 50mA no secundário

- Temperatura máxima 70°C
- Temperatura mínima −25°C

Para realizar a leitura da corrente sem a necessidade de contato elétrico o sensor de corrente alternada utiliza as propriedades magnéticas da corrente elétrica. O SCT é um sensor do tipo Transformador de Corrente, que resumidamente nada mais é que um conjunto de espiras que são colocadas ao redor do condutor ao qual se quer medir a corrente

Figura 9 - SCT-013-000

Fonte - https://uploads.filipeflop.com/2017/07/1-34.jpg

3 DESENVOLVIMENTO

O *Power Monitor* surgiu da necessidade da conscientização do gasto energético e da melhor compreensão da conta de luz. Baseado nesse conceito, foi desenvolvido um *software* que permite uma fácil comunicação com qualquer equipamento construído que tenha a finalidade de monitorar a energia elétrica e um *hardware* para demonstração da comunicação entre ambos. O sistema traz uma forma mais fácil e próxima do consumidor final de se quantificar a energia elétrica consumida em um estabelecimento. No lugar do Quilowatt-hora, medida que é usada atualmente, o *software* propõe mensurar o gasto energético em reais (R\$), trazendo a realidade do consumo mensal para mais próximo de cada brasileiro.

Nesse capítulo será mostrado todo o passo a passo para o desenvolvimento do software e hardware, juntamente com a comunicação entre ambos, por fim será mostrado os resultados obtidos.

3.1 Visão Geral

Em resumo pode-se ter uma visão geral de como o ambiente - software e hardware - funciona observando a Figura 10. O sistema web é responsável por fazer a comunicação entre o banco de dados e os dispositivos, já os eletrodomesticos são gerenciados pelo ESP8266 que possui uma comunicação direta via websocket com o sistema web.

Figura 10 – Visão geral do ambiente

3.2 Software

O controle dos dispositivos de um cômodo, que estão interligados com o *ESP8266* são controlados pelo *software*. Dessa forma todos os dispositivos que possuem comunicação

com o microcontrolador e que estão cadastrados nos sistema podem ser controlados (Ligar/Desligar) e também é possível ter um acompanhamento dos gastos.

O sistema possui uma interface web que pode ser acessada por qualquer dispositivo que tenha acesso a internet e possua um browser. O software possui uma interface de apenas um único usuário, ao acessar o sistema o usuário se depara com um visual bem agradável e fácil de se usar. Ao entrar no sistema o usuário visualiza a página principal, Figura 11, nela encontram-se as principais informações que o usuário irá precisar, como também mostrar as oções de cadastrar um novo dispositivo, listar os dispositivos, cadastrar um novo cômodo, listar um novo cômodo etc.

Figura 11 – Tela inicial do sistema

Todas as informações colhidas pelo servidor em node.js (subseção 2.1.1), são recebidas e tratadas pelo sistema web. Os dados são importantíssimos, pois mediante eles é que se torna possível a contrução dos gráficos e das previsões fornecidas pelo sistema. No Power Monitor a forma de comunicação com o banco de dados é feita mediante as chamadas de API, existe uma chamada para cada ação prevista no sistema. A Figura 12 retrata bem esse cenário, pode-se perceber que o end-point (expressão utilizada para se referenciar a um extremidade de um canal de comunicação, portanto, isso seria representado como a URL de um servidor ou serviço.) get-comodos é destinado a obtenção de todos os cômodos cadastrados já o end-point get-dispositivos é destinado a obtenção de todos os dispostivos cadastrados. O motivo da comunicação entre servidor web e sistema web ser feita via chamada de API é bem simples, pois qualquer sistema seja web, desktop ou qualquer outro tipo, basicamente precisa ter uma comunicação com a internet para poder funcionar, pois a comunicação entre servidor e sistema é baseada em uma rede local,

justamente para que o *software* não dependa de terceiros. Para uma perfeita comunicação o ambiente só precisa está configurado na mesma rede *Wi-Fi*.

```
// Recebe dispositivos
con.query("SELECT DISTINCT * FROM dispositivo ORDER BY nome", function (err, result, fields) {
   if (err) throw err;
   io.emit("get-dispositivos", result)
});

//Recebe Dispositivos ligados
con.query("SELECT id,estado,id_dispositivo,id_comodo FROM status_dispositivo WHERE estado = 1", function (err, result, fields){
    if(err) throw err;
   io.emit("get-dispositivos-on",result);
});

///Recebe Comodos
con.query("SELECT DISTINCT* FROM comodo ORDER BY nome;", function (err, result, fields) {
    if (err) throw err;
   io.emit("get-comodos", result)
});
```

Figura 12 – Chamada de API

O software pode ser dividido em duas partes, servidor web e interface web. O servidor foi desenvolvido usando a linguagem javascript (subseção 2.1.2) e para auxílio foi utilizado o framework node.js (subseção 2.1.1), a comunicação entre servidor e banco de dados é feita pelo MySQL Server (subseção 2.1.4). A interface web é o agente consumidor de todos esses serviços, com uma comunicação via webscoket (subseção 2.1.3) com o servidor é capaz de receber e enviar dados a qualquer instante. A combinação desses três serviços - servidor web, servidor do banco de dados e interface web - resultou em uma aplicação intuitiva e amigável, desenvolvida para dar o total suporte às análises do dados enviados pelo hardware. A Figura 13 representa o esquema das tabelas do banco de dados que foi utulizado no Power Monitor.

Como já foi apresentada a Figura 11 representa a tela inicial da interface web, vê-se que é possível visualizar o total gasto no mês decorrente, o progresso dos gastos por cômodo que por sua vez é baseado na espectativa de gasto mensal (Figura 18), a lista de todos os cômodos cadastrados e um gráfico mostrando o consumo por cômodo referente ao mês atual.

Figura 13 – Esquema das tabelas do banco de dados

As figuras: 14, 15, 16, 17 e 18, são relacionadas as telas de cadastro, listagem e de configuração da interface web. Nelas é possível cadastrar e listar comodôs e dispositivos assim como configurar alguns parâmetros do sistema como o preço da trarifa cobrado por KWh pela empresa resposável e a espectativa de gasto mensal.

Uma vez que os cômodos, dispositivos e parâmetros são cadastrados no sistema é possível gerencia-los através da edição ou exclusão dos dados, que se torna possível nas telas de listagem, para os cômodos e dispositivos, já os parâmetros do sistema na própria tela de configuração se faz a edição dos dados.

Figura 14 – Cadastro de um cômodo

Figura 15 – Lista dos cômodos cadastrados

Figura 16 – Cadastro de um dispositvio

Figura 17 – Listagem dos dispositivos cadastrados

Figura 18 – Tela de configuração dos parâmetros do sistema

Uma vez que todos os cômodos, dispositivos e parâmetros já se encontram cadastrados e já exista a comunicação establecida com o hardware (***), a interface web disponibiliza um séria de formas para visualização das informações coletadas e tratadas. Na Figura 19 é possível visualizar uma espécie de extrato do consumo de todos os dispositivos, podendo perceber quando foram ligados, quando foram desligados e assim resultando no total gasto. Já as figuras: 20, 21 e 22 referem-se aos gráficos que são contruídos baseados nas informações coletadas pelo sistema.

Os gráficos por sua vez são construídos mediante aos calculos que o sistema faz usando como base a Equação 3.1, o resustado dessa conta fornece ao sistema o consumo em reais (R\$) do dispostivo em um dado intervalo de tempo conhecido. Vale salientar que o resultado é o esperado já que o consumo do dispositivo (KWh) é pré definido pelo usuário (Figura 16), para o cálculo real do consumo usa-se a Equação 3.2 que leva em conta a corrente real que passa pelo dispositivo ao longo do tempo que ele permanece ligado. Com esses dados é que se torna possível a construção dos gráficos e extrado presentes no sistema.

$$\frac{consumo\ do\ dispositivo \times tempo\ de\ uso}{n\'umero\ de\ dias\ no\ m\^es} \times tarifa \tag{3.1}$$

$$\frac{(tens\~ao \times corrente) \times horas \ de \ uso \ pordia \times n\'umero \ de \ dias \ no \ m\^es}{1000}$$
(3.2)

Figura 19 – Demonstrativo do gasto de cada dispositivo

Figura 20 – Consumo geral de todos os dispositivos por cômodo ao longo do ano

Figura 21 – Consumo geral de todos os dispositivos por cômodo ao longo do mês atual

Figura 22 – Consumo geral de todos os dispositivos por cômodo ao longo do mês anterior

O softaware também possui um local específico para a gerência dos cômodos, um espaço destinado para a vinculação de dispositivos ao cômodo, visualização do total gasto em relação ao mês atual em forma de gráfico e a opção de ligar, desligar ou excluir o dispostivo do cômodo. As figuras: 23, 24 e 25 retratam o cenário descrito.

Figura 23 – Visão geral da gerência de um cômodo

Figura 24 – Vincular dispositivo ao cômodo

Figura 25 – Ações que podem ser realizadas no dispositivo vinculado

Outras duas funcionalidades do sistem são os alarmes que são gerados quando o usuário passa dos 50% e dos 80% do consumo esperado, cadastrado previamente pelo mesmo e também o simulador de gastos, onde é possível calcular o gasto mensal e diário que um dispositivo irá trazer para uma residência. As figuras 26, 27 e 28 retratam o descrito.

Figura 26 – Alerta exibido quando o consumo supera os 50% do previsto

Figura 27 – Alerta exibido quando o consumo supera os 80% do previsto

Figura 28 – Simulador de gastos

3.3 Hardware

O desenvolvimento do hardware para demonstação da comunicação com o power monitor envolve uma série de sensores e componentes eletrônicos. A plataforma de prototipagem eletrônica utilizada para a construção desse hardware, foi o ESP8266(subseção 2.2.1). O principal sensor utilizado foi o SCT 013-000 (subseção 2.2.2), que tem o papel de aferir dados da corrente que passa pelos dispositivos ao longo do tempo que o mesmo se encontra ligado, também vale destacar o uso do relé que é responsável por toda a lógica de liga e desliga do dispositivo. O ESP8266 faz o intermédio da comunicação entre hardware e servidor web, fazendo toda a comunicação eletrônica entre o sensor e o circuito montado (**), e enviando os dados recebidos pelo sensor de corrente para o banco de dados via comunicação websocket com o servidor web. Com relação aos dados enviados para o banco de dados, foi feito um algoritmo que quando identifica que o dispositivo está ligado fica verificando a corrente média que passa pelo dispositivo e quando o mesmo é desligado é calculada uma média das correntes, esse resultado é multiplicado pelo valor da tensão e assim é obtido o consumo (KWh) do dispositivo. Após esse processo a informação é levada ao banco de dados e consumida pela interface web.

É válido lembrar que, para a comunicação websocket é necessário o hardware e o softaware estarem conectados na mesma rede Wi-Fi. O grande motivo para a escolha do ESP8266 como plataforma de prototipagem foi a sua fácil comunicação com uma rede Wi-Fi, o código a seguir é um exemplo de como estabelecer a comunicação com uma rede sem fio.

```
#include <ESP8266WiFi.h>
const char* ssid = NOME DA REDE;
const char* password = SENHA;
WiFi.begin(ssid, password);
```

Após estabelecer a conecção o próximo passo será interligar o servidor web com o hardware através da comunicação por websocket, que será facilitada por meio da biblioteca SocketIOClient, ela fornece alguns métodos como: $emit^1$, on^2 e $connect^3$ que ajudam no momento de concretizar a comunicação total do hardware. A seguir terá um exemplo de como usar os métodos citados com o código anterior.

```
#include <SocketIOClient.h>
SocketIOClient socket;
const char* ssid = NOME DA REDE;
const char* password = SENHA;
String host = IP DO SERVIDOR WEB;
int port = PORTA QUE FOI FORNECIDA AO SERVIDOR WEB;
void led(String state) {
Serial.println("[led] " + state);
if (state == "\"state\":true") {
socket.emit("post-informacao","{\"data\":\"1\"}");
}
else {
socket.emit("post-informacao","{\"data\":\"0\"}");
}
void setup() {
        WiFi. begin (ssid, password);
        socket.on("ligar", ligar);
        socket.connect(host, port);
}
void loop() {
        socket.monitor();
}
```


Figura 29 — Circuito demonstrativo para comunicação com o $power\ monitor$

3.4 Resultados

 $[\]overline{\ }^{1}$ Função responsável por emitir os dados para o servidor web

 $^{^2 {\}rm Função}$ responsável por receber os dados do servidor web

 $^{^3 \}mathrm{Fun}$ ção responsável por estabelecer conecção com servidor web

4 CAPÍTULO 4

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

4.1 Seção

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur

auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

4.1.1 Subseção

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

4.2 Seção 2

O SHAPE é a sigla em inglês para Symbolic Hierarchical Automated Reliability and Performance Evaluator. Veja a Figura 30.

Figura 30 – Print screen do SHARPE em linha de comando e em interface gráfica.

Fonte – Elaborada pela autora.

5 CAPÍTULO 5

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

5.1 Seção

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

6 CONCLUSÃO

Escreva suas conclusões, limitações do seu trabalho, contribuições, trabalhos futuros, etc.

REFERÊNCIAS

CEMIG. O que são as redes inteligentes de energia. Disponível em: http://www.cemig.com.br/pt-br/A_Cemig_e_o_Futuro/sustentabilidade/nossos_programas-/Redes Inteligentes/Paginas/as redes inteligentes.aspx>. 20

CNI. Evolução dos custos com energia. Disponível em: http://www.portaldaindustria-com.br/agenciacni/noticias/2015/06/precos-de-insumos-importados-e-da-energia-puxam-a-alta-de-08-nos-custos-da-industria/>. 15

EMPRESA DE PESQUISA ENERGÉTICA. Anuário Estatístico de Energia Elétrica 2015 ano base 2014. Brasília, 2015. 232 p. 15

EMPRESA DE PESQUISA ENERGÉTICA. Anuário Estatístico de Energia Elétrica 2017 ano base 2016. Brasília, 2017. 232 p. 13, 16

EMPRESA DE PESQUISA ENERGÉTICA. Balanço Energético no Brasil. Rio de Janeiro, 2017. 61 p. 19

EMPRESA DE PESQUISA ENERGÉTICA. Balanço Energético no Brasil Relatório Final. Rio de Janeiro, 2017. 294 p. 14, 17