Chapter 1 Module

§1.8 Tensor Algebra, symmetric algebra, and exterior algebra

- Algebra
- · Tenson algebra
- · Symmetric algebra
- Exterior algebra

(I) Algebra

Def. 8.1 Let R be a commutative ring, A is a ring, A is called an algebra if (1) (A, +) is a R module.

(2) For any $r \in R$, $a,b \in A$, we have r(ab) = (ra)b = a(rb). Remark. $\mu: A \otimes_{R} A \to A$ satisfy compatibility of ring structure

 $A \rightarrow A$ satisfy compatibility of ring structure and R module action. A = Aausociativity axiom.

①
$$\mu(\alpha \otimes b) = \alpha \cdot b \Rightarrow \mu(\alpha \otimes b) = (\alpha \otimes b) = \alpha \cdot (\alpha \otimes b)$$

$$= \mu(\alpha \otimes a \otimes b) = \alpha \cdot (\alpha \otimes b)$$

A ∈ RMod ⇒ A is an R module.

To show A is a ring:

- (A,+) is alelian group is a result of $A \in \mathbb{R}$ Mod.
- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ is a result of associativity axiom.
- $a \cdot (b+c) = a \cdot b + a \cdot c$ is from $\mu : A \otimes eA \rightarrow A$ def. $a \cdot (b+c) = a \cdot c + b \cdot c$

Det. 8.1' (1) If A has an identity element 1, A is called unital algobra.

(2) If A is commutative as a ring, it is called commutative algebra.

(3) If A is a divisible ring, A is called divisible algebra.

Example 8.1. Ring R is a \mathbb{Z} algebra.

Example 8.2. REXI, ..., Xn] and REEXI, ..., XnII are R commutative algebra.

Example 8.3 The matrix ring Mn(R) is a R algebra.

Example 8.4 Let A be a ring, R is a subring of Conter(A), then A is a R algebra.

(II) Tensor algebra.

Let M be a R module. For integer $r \ge 0$, set $T^r(M) = \bigotimes_{i=1}^r M$, $T^o(M) = R$.

For $a_1 \otimes \cdots \otimes a_m \in T^n(M)$ and $b_1 \otimes \cdots \otimes b_s \in T^s(M)$, we am define their tensor product $(a_1 \otimes \cdots \otimes a_m) \otimes (b_1 \otimes \cdots \otimes b_s) \in T^{r+s}(M)$.

This gives a bilinear map $T^{r(M)} \times T^{s(M)} \longrightarrow T^{r+s}(M)$, and this map is associative.

Def. The tensor algebra is defined as $T(M) := \theta r_{=0}^{+\infty} T^{r}(M).$

O It's clear that TUM) is a R module.

1 The ring structure of TCM) is given by tensor product.

Remark For free module M with rank M=n, $T^{r}UN$) is also free and rank $T^{r}UN$) = n^{r} . And T(M) is free module with rank $T(M)=+\infty$.

(III) Symmetric algebra.

For R module M, consider $T^*(IM)$ and symmetry group S_n , define a submodule $K^n_{\mathcal{A}}$ generated by elements

$$\alpha_{l} \otimes \cdots \otimes \alpha_{r} - \alpha_{6(1)} \otimes \cdots \otimes \alpha_{6(r)}$$
.

Then we obtain a quotient module

S'CM) := T'CM) / Kg.

For elements in small) we have

 $[a_1 \otimes \cdots \otimes a_r] = [a_{6(1)} \otimes \cdots \otimes a_{6(r)}],$

we call [a, & ... & ar I symmetric product of a, ,..., ar.

<u>Prop</u> Define $K_S = \bigoplus_{r=0}^{+\infty} K_S^r$ and

SCM) := \$\Pr_{=0}^{+\infty} \delta^{r}(M)\$

we have SUN) \(\tau \) TUM) /K&.

Treute TM) as an algebra, Ks is an ideal of TM), thus

SUM) is the quotient algebra, called symmetric algebra.

Romark. For free modele M with roak M=N, XET (M), define

Symr (x) = $\frac{1}{r!} \sum_{6 \in S_n} 6x$.

STIM) has a basis frej. 0... 0 gn] 11=ji=jz=... = jr=n}.

Thus rank $S^{n}(M) = C^{n}_{n+n-1}$.

Remark. For free module M with rank M = n and basis

e1, ..., en

we have basis of S^r(M) as

where $\alpha_1, \dots, \alpha_n = 0, \dots, r$ and $\alpha_1 + \dots + \alpha_n = r$.

To see rank $S^r(M) = C_{n+r-1}^r$, consider r balls

ntr-1 places

divide them into n groups by inserting n-1 dividers

 $C_{u+h-1}^{u+h-1} = C_{u+h-1}^{u+h-1}.$

Prop. We have an algebra homomorphism for free module M with rank M=n:

f: RCa,..., xn -> SW

 $\Sigma \alpha_{k_1 \cdots k_n} \alpha_i^{k_1} \cdots \alpha_n^{k_n} \mapsto \Sigma \alpha_{k_1 \cdots k_n} \Sigma \alpha_{k_n} \Sigma \alpha_{k_n$

(IV) Extenior algebra

Exterior algebra is ubiquitous in geometry, it plays crucial role in constructing De Rham cohomology.

Def. For $T^r(M)$, define $K = \alpha s$ submodule generated by elements $\alpha_1 \otimes \cdots \otimes \alpha_r$

where there exist $i \neq j$ s.t. $\alpha_i = \alpha_j$.

Define the quothent module as

$$\Lambda^{r}(M) := T^{r}(M) / K_{E}^{r}$$

its element is denoted as exterior product

$$\alpha_1 \wedge \cdots \wedge \alpha_n := [\alpha_1 \otimes \cdots \otimes \alpha_n].$$

Remark. (1) $\alpha_1 \wedge \dots \wedge \alpha_r = 0$ if $\exists i \neq j$ $\alpha_i = \alpha_j$

$$Proof. \quad \alpha_1 \wedge \cdots \wedge (\alpha_i + \alpha_j) \wedge \cdots \wedge \alpha_i + \alpha_j \wedge \cdots \wedge \alpha_n = 0$$

Expand the expression, we obtain the expected result.

(3) $\alpha_{6(1)} \wedge \cdots \wedge \alpha_{6(r)} = (-1)^{syn 6} \alpha_1 \wedge \cdots \wedge \alpha_r$

Pef. Let $K_E = \bigoplus_{r=0}^{+\infty} K_E^r$, then we have $\Lambda(M) := \bigoplus_{r=0}^{+\infty} \Lambda^r(M) \cong T(M)/K_E$.

This is called exterior algebra.

Remark. For free module M with rank M=n, if r>n we have $1^r(M)=0$.

Thus $\Lambda(M) = \bigoplus_{r=0}^{n} \Lambda^{r}(M)$. Rank $\Lambda(M) = 2^{n}$.

Proof. Rank $\Lambda^{r}(M) = C_{n}^{r}$ Rank $\Lambda(M) = I_{r=0}^{n} C_{n}^{r} = 2^{n}$

Remark. For $V_j = \mathbb{L}_i \Omega_{ij} e_i$ with e_i basis of M.

$$\begin{split} \mathcal{J}_{i} \wedge \cdots \wedge \mathcal{V}_{n} &= (\Sigma_{i_{i=1}}^{n} \ \Omega_{i_{1}1} \ e_{i_{j}}) \wedge \cdots \wedge (\Sigma_{i_{n=1}}^{n} \ \Omega_{i_{n}n} \ e_{i_{n}}) \\ &= \Sigma_{i_{i_{i}=1}}^{n} \cdots \Sigma_{i_{n=1}}^{n} \ \Omega_{i_{i_{1}}} \cdots \Omega_{i_{n}}^{i_{n}} \ e_{i_{1}} \wedge \cdots \wedge e_{i_{n}} \\ &= \Sigma_{i_{i_{i}=1}}^{n} \cdots \Sigma_{i_{n=1}}^{n} (-1)^{sgn} \left(\frac{1}{i_{1}} \cdots \frac{1}{i_{n}} \right) \ \Omega_{i_{1}1} \cdots \Omega_{i_{n}n} \ e_{i_{1}1} \cdots \wedge e_{i_{n}n} \\ &= \left| \begin{array}{c} \alpha_{i_{1}} \cdots - \alpha_{i_{n}} \\ \vdots & \vdots & \vdots \\ \alpha_{i_{n}} \cdots - \alpha_{i_{n}n} \end{array} \right| \ e_{i_{1}1} \cdots \wedge e_{i_{n}}. \end{split}$$

Prop 8.1. Let V', V, V'' be free R modules with rank n', n, n'', a short exact sequence

$$o \longrightarrow V' \xrightarrow{\varphi} V \xrightarrow{\psi} V'' \longrightarrow o$$

induces a natral isomorphism

$$A^{n'}(V') \otimes A^{n''}(V'') \stackrel{\cong}{\longrightarrow} A^{n}(V).$$

Proof. Notice rank $\Lambda^{n'}(V') = \operatorname{rank} \Lambda^{n}(V) = \operatorname{rank} \Lambda^{n''}(V'') = 1$.

We define
$$h: \Lambda^{n'}(V') \times \Lambda^{n''}(V'') \longrightarrow \Lambda^{n}(V)$$
 by

 $h\left(\left. \mathcal{V}_{1}' \mathcal{N} \cdots \mathcal{N} \right. \mathcal{V}_{n'}' \right. \right) := \left. \left. \phi \left(\mathcal{V}_{1}' \mathcal{N} \cdots \mathcal{N} \right. \psi^{-1} \left(\left. \mathcal{V}_{n''}' \right) \right. \right) = \left. \left. \left. \left. \phi \left(\mathcal{V}_{1}' \right) \mathcal{N} \cdots \mathcal{N} \right. \psi^{-1} \left(\left. \mathcal{V}_{n''}' \right) \right. \right) \right. \right.$

To show that h is well-defined, just hotice $\Psi^{-1}(V)$ is not uniquen but they differ with an element in Ken $Y = Im \mathcal{G}$. But $\Lambda^{r}(\mathcal{G}(V')) = 0$ for r > n'. Thus h is single-valued, thus well-defined

It's clear that h is bilinear.

$$\Lambda^{n'}(V') \times \Lambda^{n''}(V'') \xrightarrow{h} \Lambda^{n}(V)$$

$$\downarrow \emptyset$$

$$\Lambda^{n'}(V') \otimes \Lambda^{n''}(V'')$$

$$(V) = \text{Rank } \Lambda^{n'}(V') \otimes \Lambda^{n''}(V'') = 1.$$

Since Rank $\Lambda^n(V) = \text{Rank } \Lambda^n'(V') \otimes \Lambda^{n''}(V'') = 1$. To show \bar{h} is isomorphic, we only need to show \bar{h} is surjective. (Exercise)

Prop 8.2 Let $V=V'\oplus V''$ be direct sum of two free modules with finite rank, then for any $m\in \mathbb{Z}_+,$ we have

$$\Lambda^{m}(V) \cong \bigoplus_{r \in S=m} \Lambda^{r}(V') \otimes \Lambda^{s}(V''),$$

from which we obtain algebra isomorphism

$$\Lambda(V) \cong \Lambda(V') \otimes \Lambda(V'')$$
.

Proof. Let $e_1', \dots, e_{n'}$ be basis of V' and $e_1'', \dots, e_{n''}'$ be basis of V'', then $e_1', \dots, e_{n'}'$, e_n'' , e_n'' , e_n''

is bound of $V = V' \otimes V''$.

· For osrsm define

$$Q_r: \Lambda^r(V') \otimes \Lambda^{m-r}(V'') \longrightarrow \Lambda^m(V)$$

by $\operatorname{gr}(\mathcal{V}_{i_1}^{\prime}\Lambda\cdots\Lambda\mathcal{V}_{i_n}^{\prime\prime})\otimes (\mathcal{V}_{j_1}^{\prime\prime}\Lambda\cdots\Lambda\mathcal{V}_{j_{m-r}}^{\prime\prime})=\mathcal{V}_{i_1}^{\prime\prime}\Lambda\cdots\mathcal{V}_{i_r}^{\prime\prime}\Lambda\mathcal{V}_{j_1}^{\prime\prime}\Lambda\cdots\Lambda\mathcal{V}_{j_{m-r}}^{\prime\prime}.$ gr is manic module map.

- Define $g = \bigoplus_{r=0}^{m} g_r : \bigoplus_{r=0}^{m} \Lambda^r(V') \otimes \Lambda^{m-r}(V'') \longrightarrow \Lambda^m(V)$, g is monic.
- $\begin{array}{lll} & \underline{\mathcal{I}}_{r=0}^m & \text{rank } \Lambda^r \text{CV''}) & = \underline{\mathcal{I}}_{r=0}^m & \underline{\mathcal{C}}_{n'}^r & \underline{\mathcal{C}}_{n''}^m = \underline{\mathcal{C}}_{n+n'}^m = \text{rank } \Lambda^m \text{CV}) \,. \\ & \text{Thus } & \boldsymbol{\varphi} \text{ is isomorphism} \,. \end{array}$

This implies $\Lambda(V') \otimes \Lambda(V'') \cong \Lambda(V)$.

· Check the isomorphis is an algebra isomorphism.