Professor: Hans Knüpfer Tutor: Leon Happ

Aufgabe 5.1

Da $\sup_k \|g_k\|_{L^\infty(X,\mu)}$ beschränkt ist, muss auch $\|g\|_{L^\infty(X,\mu)}$ beschränkt sein. Insbesondere ist also $C := \operatorname{ess\,sup}_{x \in E_\epsilon} |g_k - g| < \infty$ und es existiert eine integrable Funktion $h_k \ge |f| |g_k - g|$. Es gilt

$$\lim_{k \to \infty} \int_X |f_k g_k - fg| \, \mathrm{d}\mu = \lim_{k \to \infty} \int_X |f_k g_k - fg_k + fg_k - fg| \, \mathrm{d}\mu$$

$$\leq \lim_{k \to \infty} \int_X |f_k - f| |g_k| \, \mathrm{d}\mu + \lim_{k \to \infty} \int_X |f| |g_k - g| \, \mathrm{d}\mu$$

Wir nutzen die Hölderungleichung

$$\leq \lim_{k \to \infty} ||f_k - f||_{L^1(X,\mu)} \cdot ||g_k||_{L^\infty(X,\mu)} + \int_X |f| \lim_{k \to \infty} |g_k - g| \,\mathrm{d}\mu$$

Da $f_k \to f$ in $L^1(X,\mu)$ erhalten wir $\lim_{k \to \infty} ||f_k - f||_{L^1(X,\mu)} = 0$

$$= 0 + \int_{X} |f| \lim_{k \to \infty} |g_k - g| \,\mathrm{d}\mu$$

Sei $E_{\epsilon} := \{x \in X : |f(x)| < \frac{1}{\epsilon}\}$. Dann gilt nach der Ungleichung von Chebychev $\mu(x \setminus E_{\epsilon}) \le \epsilon \int_X f \, \mathrm{d}\mu = \epsilon \cdot C$ für ein $C \in \mathbb{R}$.

$$= \lim_{k \to \infty} \int_{E_{\epsilon}} |f| |g_k - g| \, \mathrm{d}\mu + \int_{X \setminus E_{\epsilon}} |f| |g_k - g| \, \mathrm{d}\mu$$

Der zweite Term geht gegen 0 für $k \to \infty$ nach Lemma 3.34, da $\mu(X \setminus E_{\epsilon}) < \infty$ ist.

$$= \lim_{k \to \infty} \int_{E_{\epsilon}} |f| |g_k - g| \, \mathrm{d}\mu$$

Wir benutzen den Satz von der dominierten Konvergenz

$$= \int_{E_{\epsilon}} |f| \lim_{k \to \infty} |g_k - g| d\mu$$

$$= \int_{E_{\epsilon} \cap \operatorname{spt}(\lim_{k \to \infty} |g_k - g|)} |f| \lim_{k \to \infty} |g_k - g| d\mu$$

Wir benutzen die Hölderungleichung

$$\begin{split} & \leq \int_{E_{\epsilon} \cap \operatorname{spt}(\lim_{k \to \infty} |g_k - g|)} |f| \cdot \|\lim_{k \to \infty} |g_k - g| \|_{L_{\infty}(\operatorname{spt}(\lim_{k \to \infty} |g_k - g|), \mu)} \\ & \leq \mu(E_{\epsilon} \cap \operatorname{spt}(\lim_{k \to \infty} |g_k - g|)) \cdot \sup_{x \in E_{\epsilon} \cap \operatorname{spt}(\lim_{k \to \infty} |g_k - g|)} |f| \cdot \|\lim_{k \to \infty} |g_k - g| \|_{L_{\infty}(\operatorname{spt}(\lim_{k \to \infty} |g_k - g|), \mu)} \\ & \leq \mu(\operatorname{spt}(\lim_{k \to \infty} |g_k - g|)) \cdot \epsilon \cdot \|\lim_{k \to \infty} |g_k - g| \|_{L_{\infty}(\operatorname{spt}(\lim_{k \to \infty} |g_k - g|), \mu)} \end{split}$$

Da $g_k \to g$ punktweise fast überall, ist $\mu(\mathrm{spt}(\lim_{k \to \infty} |g_k - g|)) = 0$

Aufgabe 5.2

(a) Es gilt für $f \in L^1(X,\mu) \cap L^\infty(X,\mu)$ $f_{L^p(X,\mu)}$

$$||f||_{L^{p}(X,\mu)} = \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}}$$

$$= \left(\int_{X} |f||f|^{p-1} d\mu\right)^{\frac{1}{p}}$$

$$\leq \left(||f||_{L^{1}(X,\mu)} ||f^{p-1}||_{L^{\infty}(X,\mu)}\right)^{\frac{1}{p}}$$

$$= ||f||_{L^{1}(X,\mu)}^{\frac{1}{p}} \cdot ||f||_{L^{1}(X,\mu)}^{\frac{p-1}{p}}$$

Insbesondere ist also $||f||_{L^p(X,\mu)} < \infty$ und damit $f \in L^p(X,\mu)$. Da f beliebig gewählt war, folgt damit die Aussage.

(b) Sei $f \in L^q(X, \mu)$. Dann gilt

$$\int_X |f|^p \,\mathrm{d}\mu = \int_X |1||f|^p \,\mathrm{d}\mu$$

Wegen $1 \leq \frac{q}{p}$ erhalten wir mit der Hölderungleichung

$$\leq \|1\|_{L^{\frac{q}{q-p}}(X,\mu)} \cdot \|f^p\|_{L^{\frac{q}{p}}(X,\mu)}$$

$$= \left(\int_X |1|^{\frac{q}{q-p}} d\mu\right)^{\frac{q-p}{q}} \cdot \left(\int_X |f^p|^{\frac{q}{p}}\right)^{\frac{p}{q}}$$

$$= \mu(X)^{1-\frac{p}{q}} \cdot \left(\int_X |f|^q\right)^{\frac{p}{q}}$$

$$\left(\int_X |f|^p d\mu\right)^{\frac{1}{p}} = \mu(X)^{\frac{1}{p}-\frac{1}{q}} \cdot \left(\int_X |f|^q\right)^{\frac{1}{q}}$$

$$\|f\|_{L^p(X,\mu)} \leq C(\mu(X),p,q) \cdot \|f\|_{L^q(X,\mu)}$$

Insbesondere ist also $||f||_{L^p(X,\mu)} < \infty$ und damit $f \in L^p(X,\mu)$. Da f beliebig gewählt war, folgt damit die Aussage.

Aufgabe 3

(a) Es gilt

$$0 = \lim_{k \to \infty} \int_X |f_k - f| \, \mathrm{d}\mu \ge \lim_{k \to \infty} \int_X f_k - f \, \mathrm{d}\mu = \lim_{k \to \infty} \int_X f_k \, \mathrm{d}\mu - \int_X f \, \mathrm{d}mu,$$

also erhalten wir die Ungleichung $\int_X f \,\mathrm{d}\mu \, \geq \lim_{k \to \infty} \int_X f_k \,\mathrm{d}\mu \,$ und

$$0 = \lim_{k \to \infty} \int_X |f_k - f| \, \mathrm{d}\mu \ge \lim_{k \to \infty} \int_X f - f_k \, \mathrm{d}\mu = \int_X f \, \mathrm{d}mu - \lim_{k \to \infty} \int_X f_k \, \mathrm{d}\mu,$$

also erhalten wir die Ungleichung $\lim_{k\to\infty}\int_X f_k\,\mathrm{d}\mu\geq\int_X f\,\mathrm{d}\mu$. Beide Ungleichungen zusammen ergeben $\lim_{k\to\infty}\int_X f_k\,\mathrm{d}\mu=\int_X f\,\mathrm{d}\mu$. Nun verwenden wir die Dreiecksungleichung in der Form $|x-y|\geq||x|-|y||$ Es gilt daher

$$\lim_{k \to \infty} \int_X |f_k - f| \, \mathrm{d}\mu \ge \lim_{k \to \infty} \int_X ||f_k| - |f|| \, \mathrm{d}\mu.$$

Nun können wir die eben bewiesene Aussage anwenden und erhalten $\lim_{k\to\infty}\int_X|f_k|\,\mathrm{d}\mu=\int_X|f|\,\mathrm{d}\mu$.

- (b) f_k sind messbare Funktionen mit $f_k \to f$ μ -f.ü. und $\forall k \colon |f_k| \le g$ μ -f.ü., wobei g integrabel, also Insbesondere $g \in L^1(X,\mu)$ ist. Mit Bemerkung 3.27(i) (oder 3.26(i) je nach Version des Skriptes) folgt $f_k \to f$ in $L^1(X,\mu)$
- (c) Sei $E_{\epsilon} = \{x \in X : |f(x) f_k(x)| \le \epsilon\}$. Dann gilt

$$\int_{X} |f_{k} - f| d\mu = \int_{X \setminus E_{\epsilon}} |f_{k} - f| d\mu + \int_{E_{\epsilon}} |f_{k} - f| d\mu$$

$$\leq \mu(X \setminus E_{\epsilon}) \cdot \sup_{x \in X \setminus E_{\epsilon}} |f_{k} - f| + \mu(E_{\epsilon}) \cdot \sup_{x \in E_{\epsilon}} |f_{k} - f|$$

Da $\sup_{k} \|f_k\|_{L^{\infty}(X,\mu)}$ beschränkt ist, muss auch $\|f\|_{L^{\infty}(X,\mu)}$ beschränkt sein. Insbesondere ist also $C := \sup_{x \in E_{\epsilon}} |f_k - f| < \infty$.

$$= \mu(\{x \in X : |f_k(x) - f(x)| > \epsilon\}) \cdot C + \mu(X) \cdot \epsilon$$

Es gilt $\mu(X) < \infty$, da μ ein endliches Maß ist. Nun betrachten wir den Grenzwert und erhalten per Definition der Maßkonvergenz

$$\lim_{k \to \infty} \mu(\{x \in X : |f_k(x) - f(x)| > \epsilon\}) \cdot C + \mu(X) \cdot \epsilon = 0 + \mu(X) \cdot \epsilon.$$

Im Limes $\epsilon \to 0$ folgt die Behauptung

$$\lim_{k \to \infty} \int_X |f_k - f| \, \mathrm{d}\mu = 0$$