Matemática Discreta 2

1er Parcial curso 2003

23 / 5 / 2003

Resolución

1) a) Sean n > m enteros positivos. Hallar el resto de dividir 2^n -1 entre 2^m -1.

Res: Si n = qm+r con 0 <= r < m entonces $2^n - 1 = 2^n(qm+r) - 1 = (2^m)^q + (2^m-1)^q + (2^m-1)^q$

2^r-1

b) Demostrar que $4^n \equiv 4 \mod 6$ para todo entero $n \ge 1$.

Res1: $4^n \equiv 16$ $4^{n-2} \equiv 4$ $4^{n-2} \equiv 4^{n-1} \mod 6$, por lo tanto, por inducción se cumple (el paso base es trivial).

Res2: Por un lado $4^n \equiv 1^n \equiv 1 \mod 3$. $4^n \equiv 0^n \equiv 0 \mod 2$. Pero por el teorema chino del resto, $x \equiv 1 \mod 3$; $x \equiv 0 \mod 2$, si y solo si $x \equiv 4 \mod 6$.

2) Hallar todas las parejas de enteros positivos que verifican :

a.b = 22275.

mcd(a,b) = 15,

a ≤ b.

Res: a =a' 15 y b = b'15, de donde a'b' = $22275/15^2 = 99=3.3.11$. Por lo tanto, como mcd(a',b') =1, los posibles valores para (a',b') son (1, 99), (9, 11) y los correspondientes valores de (a,b) son

(15, 1485), (135, 165).

3) Hallar los naturales ≤ 1000, que tienen exactamente 3 divisores positivos distintos.

Res: Si n = p1^a1...pk^ak la cantidad de sus divisores será (a1+1)... (ak+1) la única forma que este producto de 3 es para k =1 y a1 = 2. Por lo tanto n debe ser el cuadrado de un primo. Los únicos n=p² con p primo y n <= 1000 son

4, 9, 25, 49, 121, 169, 289, 361, 529, 841 y 961.

4) Hallar el mínimo entero positivo que verifique el sistema de congruencias:

$$9x + 5 \equiv 14 \mod 45$$
, $12x + 6 \equiv 8 \mod 55$,

o probar que no existe ninguna solución. Justificar exponiendo un método de resolución.

Res: De la primer ecuación tenemos que $9x \equiv 9 \mod 45$, de lo cual $x \equiv 1 \mod 5$;

 $0 \equiv 0 \mod 9$ De la segunda $12x \equiv 2 \mod 55$, de lo cual $2x \equiv 2 \mod 5$ o sea $x \equiv 1 \mod 5$ $x \equiv 2 \mod 11$

Por lo tanto solamente quedan dos ecuaciones $x \equiv 1 \mod 5$; y $x \equiv 2 \mod 11$. Por el teorema Chino del resto, $x \equiv 46 \mod 55$ por lo que $x \equiv 46 + 55k$ y el menor de dichos valores positivos es $x \equiv 46$.

5) Demostrar que que si dos elementos a, b de un grupo verifican $(a.b)^3 = e$,

entonces $(b.a)^3 = e$.

Res: Si $(a.b)^3 = e$, entonces a.b a.b a.b = e, de donde $b a.b a = a^{-1} b^{-1}$. Por otro lado $(b.a)^3 = b.a b.a b.a = (b.a b.a) b.a = a^{-1} b^{-1} b.a = a^{-1} e.a = a^{-1}.a = e$.

- **6)** a) Testear si $H = \{ [1], [4], [16], [19], [31], [34] \}$ es un subconjunto de U_{45} .
- b) Testear si H es un subgrupo de (U_{45} , *) (* es el producto módulo 45)

Recordar que: $U_n = \{[x] \in Z_n, \mod(x,n) = 1\}.$

Res: Basta observar que mcd(4,45) =1 por lo que [4] está en U_{45} y que $H = \langle [4] \rangle$, ya que: [4]^2 = [16], [4]^3 = [19], [4]^4 = [31], [4]^5 = [34] y [4]^6 = [1].

Puntajes: 1) 9 : a) 5 b) 4
2) 6
3) 6
4) 8
5) 6
6) 5 : a) 1 b) 4