

Printed Circuit Board Design Workshop

PCB Layout Design Naim Fuad, CID

Department of Electrical and Electronic Engineering

PCB Layout Design PCB Construction

Solder Mask

Copper Layer

Substrate

Double Layer PCB

Top Layer

Bottom Layer

1 - Substrate FR4

PCB Layout Design PCB Construction – cont.

2 – Copper Track

3 – Solder Mask

PCB Layout Design PCB Construction – cont.

2 - Silk Screen

3 – Vias

PCB Layout Design Component Package Type

PCB Layout Design Component Package Type – Example

Arduino Uno

AVR ATmega328P

PCB Layout Design
Component Package Type – Example Arduino 328 Based

Arduino Uno

Arduino Nano

Component Package Type – Example Datasheet

Note:

Dimensions D and E1 do not include mold Flash or Protrusion.
 Mold Flash or Protrusion shall not exceed 0.25mm (0.010").

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	-	2	4.5724	
A1	0.508	2	_	10
D	34.544	-5	34.798 N	lote 1
E	7.620	-	8.255	30.0
E1	7.112	2	7.493	Note 1
В	0.381	23	0.533	
B1	1.143		1.397	
B2	0.762	-	1.143	23.
L	3.175	2	3.429	
C	0.203	2	0.356	
eB	-	-	10.160	
е	2.5	540 TYP	1	

09/28/01

*****	TITLE	DRAWING NO.	REV.
Atmel San Jose, CA 95131	28P3, 28-lead (0.300"/7.62mm Wide) Plastic Dual Inline Package (PDIP)	28P3	В

ATmega328 Datasheet (Page28)

Component Package Type – Example Datasheet TQFP

TQFP

COMMON DIMENSIONS (Unit of measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
A	- 7		1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
E	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
В	0.30	12	0.45	
c	0.09	1.7	0.20	
L	0.45		0.75	
e		0.80 TYP		

Notes

- This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- Lead coplanarity is 0.10mm maximum.

2010-10-20

32A, 32-lead, 7 x 7mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP) DRAWING NO. REV. 32A C

ATmega328 Datasheet (Page24)

Component Package Type – Example Datasheet UFBGA

UFBGA

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
A			0.60	
A1	0.12	· · · · ·	0.070	
A2	0.38	BREF	33	S
b	0.25	0.30	0.35	1
b1	0.25	·	a one	2
D	3.90	4.00	4.10	
D1	8	2.50 BSC	8	
E3.90	4.00	4.10		
E1	8	2.50 BSC		
e	0.50 BSC	8		

Note1: Dimension "b" is measured at the maximum ball dia. in a plane parallel to the seating plane.

Note2: Dimension"b1" is the solderable surface defined by the opening of the solder resist layer.

SOIL	der resist layer.				07/06/10
Atmel	Package Drawing Contact: packagedrawings@atmel.com	TITLE 32CC1, 32-ball (6 x 6 Array), 4 x 4 x 0.6 mm package, ball pitch 0.50 mm, Ultra Thin, Fine-Pitch Ball Grid Array (UFBGA)	GPC CAG	DRAWING NO. 32CC1	REV.

ATmega328 Datasheet (Page25)

Component Package Type – Example Datasheet VQFN

VQFN

ATmega328 Datasheet (Page26)

PCB Layout Design THT – Supported Holes / Unsupported Holes

Figure 4.1.6 Through Solder Joints: Supported Holes

On single-sided printed boards, the component leads are placed in unsupported holes, the ends of the leads are clinched to one side, and the solder joint formed on the copper pads that surround the drilled hole (usually on the secondary side of the printed board). There is no plating or solder in the barrel of the drilled hole. See Figure 4.1.7. [IPC-AJ-820A – 3.5.1.2]

Figure 4.1.7 Through Solder Joints: Unsupported Holes

Examples of the most common through-hole components are shown in Figures 4.1.8 and 4.1.9

PCB Layout Design Axial & Radial Lead Through-Hole Component

PCB Layout Design Axial & Radial Lead Through-Hole Component

PCB Layout Design Miscellaneous Through-Hole Package

8-Pin (TO-99)

PCB Layout Design Miscellaneous Through-Hole Package

PCB Layout Design Molded Body & Chip Surface Mount Package

Molded Body Capacitor Non-polarized (CAPM)

Molded Body Capacitor Polarized (CAPMP)

Molded Body Diode (DIOM)

Molded Body Diode Non-polarized (DIOMN)

Molded Body Fuse (FUSM)

Molded Body Inductor Precision (INDMP)

Molded Body Inductor (INDM)

Molded Body LED (LEDM)

Molded Body Resistor (RESM)

PCB Layout Design Molded Body & Chip Mount Package

PCB Layout Design Concave & Flat Lead Surface Mount

PCB Layout Design Concave & Flat Lead Surface Mount

PCB Layout Design Gull Wing Lead Component Package

Bottom Terminal Surface Mount Leaded Package

PCB Layout Design Bottom Terminal Surface Mount Leaded Package

PCB Layout Design Miscellaneous Surface Mount ICs and Discrete

PCB Layout Design Miscellaneous Surface Mount ICs and Discrete

PCB Layout Design Component Placement – Electrical Functionality

Electrical Functionality

- -Pull-up or pull-down resistor for unused logic pins
- -Special Keep out areas, specific voltage, capacitive or inductive plane
- -Separation of circuit by frequency

PCB Layout Design Component Placement – Keepout Areas

Component Placement - Circuit Distribution By Frequency

a) HF Interaction via Motherboard

Low Frequency Circuits Medium Frequency Circuits High Frequency Circuits

PWB should be separated into areas for different frequency circuits

b) General HF-Board

PCB Layout Design Component Placement – Mechanical Functionality

Mechanical Functionality

- -Height restriction
- -Predefined location i.e adjustment, heat dissipation

Schematic Editing Component Placement - Example

Schematic Editing Design Rule

Refer Manufacturer's Rules and Limitation

Schematic Editing Layer Setup

Refer Manufacturer's Rules and Limitation

Schematic EditingLayers

Schematic Editing Single Sided PCB Layout Example

FRONT

BACK

COMPONENT LAYOUT (FRONT LAYER VIEW)

Schematic Editing File Export – Gerber Export

Plot		\times
Plot format: Output direct Gerber V PLOT/ Included Layers: F.Cu B.Cu F.SilkS	General Options: ☐ Plot sheet reference on all layers ☐ Plot footprint values ☐ Plot footprint references	Drill marks: None Scaling:
☐ F.Mask ☐ B.Mask ☐ Dwgs.User ☑ Edge.Cuts ☐ Margin ☐ F.CrtYd ☐ B.CrtYd ☐ F.Fab	□ Do not tent vias □ Exclude PCB edge layer from other layers □ Exclude pads from silkscreen □ Use auxiliary axis as origin □ Mirrored plot □ Negative plot □ Check zone fills before plotting Solder Mask Options:	1:1 V Plot mode: Filled V Line width: (mm): 0.1
	Clearance: 0.051 mm Width: 0.25 mm Gerber Options: Use Protel filename extensions Include extended (X2) attributes	Coordinate Format —
Output messages:		
Show: All Errors	☑ Warnings ☑ Infos ☑ Actions Sa	ave Report File
Run DRC	Plot Close	Generate Drill Files

Schematic Editing File Export – Drill Export

Generate Drill Files			×
Output Directory: PLOT/			
File Format: © Excellon O Gerber X2 (experimental) Drill Units: © Millimeters O Inches Zeros Format: © Decimal format O Suppress leading zeros O Suppress trailing zeros O Keep zeros	Drill Map File Format: ○ HPGL ○ PostScript ● Gerber ○ DXF ○ SVG ○ PDF Excellon Drill File Options: □ Mirror Y axis □ Minimal header ☑ PTH and NPTH holes in single file Drill Origin:	Default Via Drill: Use Netclass values Micro Vias Drill: Use Netclass values Holes Count: Plated pads: 52 Non-plated pads: 6 Through vias: 0 Micro vias: 0 Buried vias: 0	Generate Drill File Generate Map File Generate Report File Close
Precision: 3:3	Absolute Auxiliary axis		
Messages:			