11 17	Z. Function growth.
2)	(MS) N= 10 100 100 100 1000 1000000
	() 10 000 N 105 106 107 10600 10000 01
	(D 1000N 104 105 106 107 108 108
•	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	f(Ng) = 1min = 1min . 60 sec. 10 ps = 6.10 ps = 6.10 ps
	(1) $N_1 = 60.10^6 = 60.10^2 = 6.10^3$ (4) $N_1 = \sqrt{6.10^2 \cdot 10^2} = \sqrt{6.10^5} = \sqrt{60} \cdot 10^5$
· .	$(2) N_1 = 6 \cdot 10^{\frac{109}{2}} \cdot 10^{-3} = 6 \cdot 10^{\frac{9}{4}} $ $(5) N_1 = \sqrt[3]{6 \cdot 10^{\frac{3}{2}} \cdot 10^{\frac{3}{2}}} = \sqrt[3]{6 \cdot 10^{\frac{3}{2}}}$
	(3) NI = 106.107 (6) 103 10 10 = 6.107 => 10 = 6.1010
* 5	$= \log_{10}\left(\frac{N}{10}\right) = \log_{10}(6\cdot10^{10}) \Rightarrow \log_{10}(N_1) - 1 = \log_{10}(6) + 10$
<u> </u>	$N_{*} = 10^{"} \cdot 10^{2q} \cdot 6 = 10^{17}$
8	$\frac{z}{n} = 37 \leq \ln \leq n \leq \frac{2}{n} \leq n \log_n \log_n \leq n \leq n \log_n \leq n \leq$
	nlg2n < n1.5 <
10)	$W_A(N) = O(1000 N \log_{10}(N))$ $W_B(N) = O(N)$
	For problem where N = 1000, Bo is bost (for small problem)
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
11)	$\lim_{N\to\infty} \frac{\log n}{n^a} \frac{(L \cdot H)}{1 + n \cdot \infty} \frac{1}{a \cdot n^{a-1}} = \lim_{n\to\infty} \frac{1}{a^n} = 0 \implies \log n = o(n^a) + o.$
ir M	N-100 Ma 1 N-100 an an
	$T_1 \approx f$, $T_2 \approx f$. (a) F . lu $\frac{T(n) + T_2(n)}{n \rightarrow \infty} = 2 \cdot \# 1$.
	True (c) True.
15)	$ \int T_1(n) = n+1, T_2(n) = n-1, f \downarrow = n. $
	$\lim_{n\to\infty} \frac{T_{1}^{2} - T_{2}^{2}}{f} = \lim_{n\to\infty} \frac{n^{2}+2n+1-n^{2}+2n-1}{n} = \lim_{n\to\infty} \frac{4n}{n} = 4 \neq 0 \to \mathbb{Z}[50]$
	Α-32 γ
((c	$\frac{1}{h^{2}} \frac{f(h)}{f(h)} = \frac{f(h)}{f} = \frac{f(h)}{f} = \frac{f(h)}{f}$
*	no Tz(h) noo f Tz(h)
16)	(a) True, (b) folx: Ti(n)=2n, Tz(n)=3n, f(n)=4n=> +, (n)-Tz(n)=-n ≠ o(4n)
	(c) True 3/2, L to Nich = L Pa) Felse. Tr(n) = n, Tr(n) = 1, f(n) = 2n
	$\forall n > 1$, $T_1(n) \leq f(n)$, $T_2(n) \leq f(n)$
0	
,	$\frac{T_1(n)}{T_2(n)} = n , A_{N,L} t_q \forall n \ge N $
d	Tiles & John - Sommer to Later For & Co
F-2	THEN KL LAKA
AND THE PROPERTY OF THE	

4)
$$T_{1}(n) = O(f(n))$$
, $T_{2}(n) = O(f(n))$

(a) The (b) $f_{2}(n)$ $f_{3}(n) = 0$, $T_{1}(n) = n$, $f_{3}(n) = 3n$.

(b) $T_{1}(n) = O(1)$ (true)

$$\int_{T_{2}(n)} T_{1}(n) \cdot L_{1} do \int_{P^{2}(n)} T_{1}(n) \cdot L_{2} do \int_{P^{2}(n)} T_{1}(n) \cdot L_{3} do \int_{P^{2}(n)}$$

Escaneado con CamScanner