Basics of Quantitative Genetics

Peter von Rohr

2021-10-01

Background

- Central Dogma of Molecular Biology
- \rightarrow Genotypes are the basis for phenotypic expression
 - Start with simple model
- ightarrow one locus that affects quantitative trait

Population

Terminology

- ▶ alleles: variants occuring at a given genetic Locus
- **bi-allelic**: only two alleles, e.g., G_1 and G_2 at a given locus G in population
- genotype: combination of two alleles at locus G in an individual
- **homozygous**: genotypes G_1G_1 and G_2G_2 where both alleles identical
- **heterozygous**: genotype G_1G_2 different alleles

Frequencies in Example Population

genotype frequencies

$$f(G_1G_1) = \frac{4}{10} = 0.4$$

 $f(G_1G_2) = \frac{3}{10} = 0.3$
 $f(G_2G_2) = \frac{3}{10} = 0.3$

allele frequencies

$$f(G_1) = f(G_1G_1) + \frac{1}{2} * f(G_1G_2) = 0.55$$

 $f(G_2) = f(G_2G_2) + \frac{1}{2} * f(G_1G_2) = 0.45$

Hardy-Weinberg Equilibrium

allele frequencies

$$f(G_1) = p, f(G_2) = q = 1 - p$$

genotype frequencies

Alleles	G_1	G_2
G ₁	$f(G_1G_1) = p^2$	$f(G_1G_2) = p * q$
G ₂	$f(G_1G_2) = p * q$	$f(G_2G_2) = q^2$

$$f(G_1G_1) = p^2$$
, $f(G_1G_2) = 2pq$, $f(G_2G_2) = q^2$

Genotypic Values

Population Mean

 Expected value of genotypic value V as discrete random variable

$$\mu = V_{11} * f(G_1G_1) + V_{12} * f(G_1G_2) + V_{22} * f(G_2G_2)$$

$$= a * p^2 + d * 2pq + (-a) * q^2$$

$$= (p - q)a + 2pqd$$

Breeding Values Definition

The breeding value of an animal i is defined as two times the difference between the mean value of offsprings of animal i and the population mean.

Derivation of Breeding value for G_1G_1

	Mates of S		
	$f(G_1)=p$	$f(G_2)=q$	
Parent S			
$f(G_1)=1$	$f(G_1G_1)=p$	$f(G_1G_2)=q$	

Computation of Breeding value for G_1G_1

$$\mu_{11} = p * a + q * d$$

The breeding value BV_{11} corresponds to

$$BV_{11} = 2 * (\mu_{11} - \mu)$$

$$= 2 (pa + qd - [(p - q)a + 2pqd])$$

$$= 2 (pa + qd - (p - q)a - 2pqd)$$

$$= 2 (qd + qa - 2pqd)$$

$$= 2 (qa + qd(1 - 2p))$$

$$= 2q (a + d(1 - 2p))$$

$$= 2q (a + (q - p)d)$$

Computation of Breeding value for G_2G_2

$$\mu_{22} = pd - qa$$

The breeding value BV_{22} corresponds to

$$BV_{22} = 2 * (\mu_{22} - \mu)$$

$$= 2 (pd - qa - [(p - q)a + 2pqd])$$

$$= 2 (pd - qa - (p - q)a - 2pqd)$$

$$= 2 (pd - pa - 2pqd)$$

$$= 2 (-pa + p(1 - 2q)d)$$

$$= -2p (a + (q - p)d)$$

Computation of Breeding value for G_1G_2

$$\mu_{12} = 0.5pa + 0.5d - 0.5qa = 0.5[(p - q)a + d]$$

The breeding value BV_{12} corresponds to

$$BV_{12} = 2 * (\mu_{12} - \mu)$$

$$= 2 (0.5(p - q)a + 0.5d - [(p - q)a + 2pqd])$$

$$= 2 (0.5pa - 0.5qa + 0.5d - pa + qa - 2pqd)$$

$$= 2 (0.5(q - p)a + (0.5 - 2pq)d)$$

$$= (q - p)a + (1 - 4pq)d$$

$$= (q - p)a + (p^2 + 2pq + q^2 - 4pq)d$$

$$= (q - p)a + (p^2 - 2pq + q^2)d$$

$$= (q - p)a + (q - p)^2d$$

$$= (q - p)[a + (q - p)d]$$

Summary of Breeding Values

Genotype	Breeding Value	
$G_1 G_1$ $G_1 G_2$ $G_2 G_2$	$2qlpha \ (q-p)lpha \ -2plpha$	

with
$$\alpha = a + (q - p)d$$

Allele Substitution

$$BV_{12} - BV_{22} = (q - p)\alpha - (-2p\alpha)$$

$$= (q - p)\alpha + 2p\alpha$$

$$= (q - p + 2p)\alpha$$

$$= (q + p)\alpha$$

$$= \alpha$$

$$BV_{11} - BV_{12} = 2q\alpha - (q - p)\alpha$$
$$= (2q - (q - p))\alpha$$
$$= \alpha$$

Dominance Deviation I

$$V_{11} - BV_{11} = a - 2q\alpha$$

$$= a - 2q [a + (q - p)d]$$

$$= a - 2qa - 2q(q - p)d$$

$$= a(1 - 2q) - 2q^{2}d + 2pqd$$

$$= [(p - q)a + 2pqd] - 2q^{2}d$$

$$= \mu + D_{11}$$

Dominance Deviation II

$$V_{12} - BV_{12} = d - (q - p)\alpha$$

= $d - (q - p)[a + (q - p)d]$
= $[(p - q)a + 2pqd] + 2pqd$
= $\mu + D_{12}$

$$V_{22} - BV_{22} = -a - (-2p\alpha)$$

$$= -a + 2p [a + (q - p)d]$$

$$= [(p - q)a + 2pqd] - 2p^2d$$

$$= \mu + D_{22}$$

Summary of Values

Genotype	genotypic value	Breeding Value	Dominance Deviation
G_iG_j	V_{ij}	BV_{ij}	D_{ij}
G_1G_1	а	$2q\alpha$	$-2q^2d$
G_1G_2	d	$(q-p)\alpha$	2pqd
G_2G_2	— a	$-2p\alpha$	$-2p^2d$

Decomposition of Genotypic Values

$$V_{ij} = \mu + BV_{ij} + D_{ij}$$

Variances

$$Var[X] = \sum_{x_i \in \mathcal{X}} (x_i - \mu_X)^2 * f(x_i)$$

 $\begin{array}{ccc} \text{where} & \mathcal{X}\colon & \text{set of all possible x-values} \\ & f(x_i) & \text{probability that x assumes the value} \\ & \text{of x_i} \\ & \mu_X & \text{expected value $E[X]$ of X} \end{array}$

Variance Computation

$$\sigma_G^2 = Var[V] = (V_{11} - \mu)^2 * f(G_1G_1)$$

$$+ (V_{12} - \mu)^2 * f(G_1G_2)$$

$$+ (V_{22} - \mu)^2 * f(G_2G_2)$$

where $\mu = (p - q)a + 2pqd$ the population mean.

Simplification

$$\sigma_G^2 = Var[V] = (BV_{11} + D_{11})^2 * f(G_1G_1)$$

$$+ (BV_{12} + D_{12})^2 * f(G_1G_2)$$

$$+ (BV_{22} + D_{22})^2 * f(G_2G_2)$$

Result

$$\sigma_G^2 = 2pq\alpha^2 + (2pqd)^2$$
$$= \sigma_A^2 + \sigma_D^2$$

Two and more Loci

- Two loci G and H having an effect on the same quantitative trait.
- ► Effect of one locus can have an influence on the effect of the other locus
- → Interaction between loci.
 - Interaction is quantified by

$$I_{GH} = V - V_G - V_H$$

where V is the total genotypic value, V_G and V_H correspond to the genotypic values due to loci G and H, respectively

Decomposition and Collecting Terms

Genotypic values can be decomposed as

$$V_G = \mu_G + BV_G + D_G$$
$$V_H = \mu_H + BV_H + D_H$$

Collecting terms leads to

$$V = V_G + V_H + I_{GH} = \mu + U + D + I$$

with
$$\mu = \mu_G + \mu_H$$
, $U = BV_G + BV_H$, $D = D_G + D_H$ and $I = I_{GH}$

Can be generalized to more than two loci.