关系及其运算

离散数学一集合论

南京大学计算机科学与技术系

提要

NANSTREE DE NANSTR

- 关系的定义(复习)
- 关系的表示(复习)
- 关系的运算
- 0-1矩阵运算
- 关系的性质

有序对(Ordered pair)

- (a, b)是集合{{a}, {a, b}}的简写
- 次序的体现
 - (x,y)=(u,v) iff $x=u \perp y=v$

若 ${\{x\},\{x,y\}\}}={\{u\},\{u,v\}\}}$,则 ${\{x\}}={\{u\}}$ 或 ${\{x\}}={\{u,v\}}$,因此 ${x=u}$ 。假设 ${y\neq v}$

- (1) 若x=y, 左边={ $\{x\}$ }, 而 $v\neq x$, : 右边 \neq { $\{x\}$ };
- (2) 若x≠y,则必有 $\{x,y\}=\{u,v\}$, 但y既非u,又非v,矛盾。

- 对任意集合A, B笛卡尔积 $A \times B = \{(a, b) | a \in A, b \in B\}$
- 例: $\{1,2,3\} \times \{a,b\} = \{(1,a),(3,a),(3,a),(3,a),(3,b)\}$

例题

•
$$A = \{1,2\}, \rho(A) \times A = ?$$

• |A|=m, |B|=n, $|A \times B|=?$

(二元) 关系的定义

- 若A, B是集合,从A到B的一个关系是A×B的一个子集.
 - 集合, 可以是空集
 - 集合的元素是有序对

- 关系意味着什么?
 - 两类对象之间建立起来的联系!

从A到B的二元关系

- 笛卡尔乘积的子集
 - "从A到B的关系"R; R⊆A×B
 - 若*A*=*B*: 称为"集合*A*上的(二元)关系"
- 例子
 - 常用的数学关系:不大于、整除、集合包含等
 - 网页链接、文章引用、相互认识

特殊的二元关系

- 集合A上的空关系Ø: 空关系即空集
- 全域关系 E_A : $E_A = \{ (x, y) | x, y \in A \}$
- 恒等关系 $I_A: I_A = \{(x, x) \mid x \in A \}$

函数是一种特殊的关系

- 函数 *f* : *A*→*B*
- $R=\{(x,f(x))|x\in A\}$ 是一个从A到B的一个关系

关系的表示

NANANA DEL VENTO

假设 $A=\{a,b,c,d\}, B=\{\alpha,\beta,\gamma\}$ // 假设为有限集合

• 集合表示: $R_1 = \{(a, \beta), (b, \alpha), (c, \alpha), (c, \gamma)\}$

0-1矩阵

有向图

二元关系和有向图

关系 *R*⊆*A*×*B*

A和B是集合

有序对集合

 $(x,y) \in R$

若A=B, R中存在序列: (x_1,x_2) , $(x_2,x_3),...,(x_{n-1},x_n)$

有向图 (V_D, E_D)

顶点集 $V_D = A \cup B$

有向边集 E_D

从x到y有一条边

图D中存在从 x_1 到 x_n 的长度为n-1的通路

关系的运算(1)

- 关系是集合, 所有的集合运算对关系均适用
 - 例子:
 - 自然数集合上: "<"∪"=" 等同于 "≤"
 - 自然数集合上: "≤" ∩ "≥"等同于"="
 - 自然数集合上: "<" ">"等同于∅

关系的运算(2)

- 与定义域和值域有关的运算
 - $\bullet \quad \operatorname{dom} R = \{x \mid \exists y \ (x,y) \in R\}$
 - ran $R = \{y \mid \exists x (x,y) \in R\}$
 - fld $R = \text{dom } R \cup \text{ran } R$
 - $R \uparrow A = \{(x,y) \mid x \in A \land xRy\} \subseteq R$
 - $R[A] = \{ y \mid \exists x (x \in A \land (x,y) \in R) \} = \operatorname{ran}(R \uparrow A) \subseteq \operatorname{ran}R$
- 例: $A = \{1,2,3,4,5\}, B = \{1,3,5,6\}, A$ 上关系R: $R = \{(1,2), (1,4),(2,3),(3,5),(5,2)\},$

 $\mathcal{K}R^{\uparrow}B \setminus R[B]$

关系的运算(3)

- 逆运算
 - $R^{-1} = \{ (x, y) \mid (y,x) \in \mathbb{R} \}$
 - 注意:如果R是从A到B的关系,则 R^{-1} 是从B到A的。
 - $(R^{-1})^{-1} = R$
 - 例子: $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$
 - $(x, y) \in (R_1 \cup R_2)^{-1} \Leftrightarrow (y, x) \in (R_1 \cup R_2)$
 - \Leftrightarrow $(y, x) \in R_1 \otimes (y, x) \in R_2$
 - \Leftrightarrow $(x, y) \in R_1^{-1}$ $\vec{\mathbf{x}}(x, y) \in R_2^{-1}$

关系的运算(4)

• 关系的复合(合成, Composition)

设 $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$,

 R_1 与 R_2 的复合(合成), 记为 R_2 R_1 , 定义如下:

 $R_2 R_1 = \{(a, c) \in A \times C \mid \exists b \in B \ ((a, b) \in R_1 \land (b, c) \in R_2) \}$

• $(a, c) \in R_2 R_1$ 当且仅当 $a \in A, c \in C$, 且存在 $b \in B$, 使得 $(a, b) \in R_1, (b, c) \in R_2$

关系的复合运算:举例

 $R_1^2 = \{(a, a), (a, b), (a, d)\}$

• 设 $A = \{a, b, c, d\}, R_1, R_2$ 为A上的关系,其中: $R_1 = \{(a, a), (a, b), (b, d)\}$ $R_2 = \{(a, d), (b, c), (b, d), (c, b)\}$ 则: $R_2 \cap R_1 = \{(a, d), (a, c), (a, d)\}$ $R_1 \cap R_2 = \{(c, d)\}$

关系的复合运算的性质(1)

- 结合律
 - 给定 $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$, $R_3 \subseteq C \times D$, 则:

$$(R_3 R_2) R_1 = R_3 (R_2 R_1)$$

• 证明左右两个集合相等.

关系的复合运算的性质(2)

- 复合关系的逆关系
 - 给定 $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$, 则:

$$(R_2 R_1)^{-1} = R_1^{-1} R_2^{-1}$$

- 同样,证明左右两个集合相等
 - $(x, y) \in (R_2 \cap R_1)^{-1} \Leftrightarrow (y, x) \in R_2 \cap R_1 \Leftrightarrow$ $\exists t \in B \ ((y, t) \in R_1 \land (t, x) \in R_2) \Leftrightarrow$ $\exists t \in B \ ((t, y) \in R_1^{-1} \land (x, t) \in R_2^{-1}) \Leftrightarrow$ $(x, y) \in R_2^{-1} \circ R_1^{-1}$

关系的复合运算的性质(3)

- 对集合并运算满足分配律
 - 给定F⊆A×B, G⊆B×C, H⊆B×C, 则:

$$(G \cup H) \circ F = (G \circ F) \cup (H \circ F)$$

- 对集合交运算: (G ∩ H) F ⊆ (G F) ∩ (H F)
 - 注意: 等号不成立。

A={
$$a$$
}, B={ s , t }, C={ b };
F={ $(a$, s), $(a$, t)}, G={ $(s$, b)}, H={ $(t$, b)};
G \cap H= \emptyset , (G) F) \cap (G) F)={ $(a$, b)}

0-1 矩阵运算

- 令0-1矩阵 $M_1 = [a_{ij}], M_2 = [b_{ij}]$:
 - $C=M_1 \wedge M_2$: $c_{ij}=1$ iff. $a_{ij}=b_{ij}=1$
 - $C=M_1 \vee M_2$: $c_{ij}=1$ iff. $a_{ij}=1$ 或 $b_{ij}=1$
- 令 $r \times s$ 矩阵 $M_1 = [a_{ij}]$; $s \times t$ 矩阵 $M_2 = [b_{ij}]$:
 - $C = \frac{M_1 \otimes M_2: c_{ij} = 1 \text{ iff.}}{\exists k (a_{ik} = 1 \land b_{kj} = 1)}$

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

关系运算的矩阵法(1)

命题

$$egin{align} M_{R_1 \cup R_2} &= M_{R_1} \lor M_{R_2} \ M_{R_1 \cap R_2} &= M_{R_1} \land M_{R_2} \ M_{R_2 \circ R_1} &= M_{R_1} igotimes M_{R_2} \ \end{pmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$M_{R_2 \circ R_1} = M_{R_1} \otimes M_{R_2}$$

证明:

For $n \ge 2$, and R a relation on a finite set A, we have $M_{R^n} = M_R \otimes M_R \otimes \Lambda \otimes M_R$ (n factors)

关系的性质: 自反性 reflexivity

- 集合*A*上的关系 *R* 是:
 - 自反的 reflexive: 定义为: 对所有的 $a \in A$, $(a,a) \in R$
 - 反自反的 irreflexive: 定义为: 对所有的 $a \in A$, $(a,a) \notin R$

注意区分"非"与"反"

- - {(1,1), (1,3), (2,2), (2,1), (3,3)} 是自反的
 - {(1,2), (2,3), (3,1)} 是反自反的
 - $\{(1,2), (2,2), (2,3), (3,1)\}$ 既不是自反的,也不是反自反的

自反性与恒等关系

• $R \in A$ 上的自反关系 $\Leftrightarrow I_A \subseteq R$,

这里 I_A 是集合A上的恒等关系,即: $I_A = \{(a,a) | a \in A \}$

直接根据定义证明:

- ⇒ 只需证明: 对任意(a,b), 若 $(a,b) \in I_A$, 则 $(a,b) \in R$
- \leftarrow 只需证明: 对任意的a, 若 $a \in A$, 则 $(a,a) \in R$

关系的性质:对称性 Symmetry

- 集合A上的关系R是:

 - 反对称的 anti-~: 定义为: $\overline{\Xi(a,b)} \in R$ 且 $(b,a) \in R$,则a=b
- - $\{(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)\}$ 是对称的
 - {(1,2),(2,3),(2,2),(3,1)} 是反对称的

理解对称性

- 关系R满足对称性:对任意(a,b),若 $(a,b) \in R$,则 $(b,a) \in R$ 关系R是对称的 $\Leftrightarrow \forall < a,b > (< a,b > \in R \Rightarrow < b,a > \in R)$
- 注意: ∅是对称关系。
- 反对称并不是对称的否定:

(
$$\diamondsuit$$
: *A*={1,2,3}, *R*⊆*A*×*A*)

- $\{(1,1),(2,2)\}$ 既是对称的,也是反对称的
- ②是对称关系,也是反对称关系。

对称性与逆关系

- R 是集合A上的对称关系 $\Leftrightarrow R^{-1}=R$
 - \Rightarrow 证明一个集合等式 $R^{-1}=R$
 - 若 $(a,b) \in R^{-1}$, 则 $(b,a) \in R$, 由R的对称性可知 $(a,b) \in R$, 因此: $R^{-1} \subseteq R$; 同理可得: $R \subseteq R^{-1}$;
 - \leftarrow 只需证明: 对任意的(a,b) 若 $(a,b) \in R$, 则 $(b,a) \in R$

- 集合A上的关系R是
 - 传递的 transitive: 若 $(a,b) \in \mathbb{R}$, $(b,c) \in \mathbb{R}$, 则 $(a,c) \in \mathbb{R}$
- 设 $A = \{1,2,3\}, R \subseteq A \times A$
 - {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,3)} 传递的
 - {(1,2),(2,3),(3,1)} 是非传递的
 - {(1,3)}?
 - Ø?

关系R是传递关系 $\Leftrightarrow \forall (a,b,c)(((a,b) \in R \land (b,c) \in R) \Rightarrow (a,c) \in R)$

传递性与关系的乘幂

- 关系的复合(乘)运算满足结合律,可以用 R^n 表示 $R \circ R \circ ... \circ R$ (n是正整数)
- 命题: $(a,b) \in R^n$ 当且仅当: 存在 $t_1, t_2, ..., t_{n-1} \in A$, 满足: $(a,t_1), (t_1,t_2), ..., (t_{n-2},t_{n-1}), (t_{n-1},b) \in R$ 。
 - 对n>=1用数学归纳法: n=1, trivial. 奠基n=2,直接由关系复合的定义可得; 归纳基于: $R^n=R^{n-1}\circ R$
- 集合A上的关系R是传递关系 $\Leftrightarrow R^2$ $\subseteq R$
 - 必要性: ⇒任取 $(a,b) \in R^2$,根据上述命题以及R的传递性可得 $(a,b) \in R$
 - 充分性: \Leftarrow 若 $(a,b)\in R$, $(b,c)\in R$, 则 $(a,c)\in R^2$, 由 $R^2\subseteq R$ 可得: $(a,c)\in R$, 则 R是传递关系

一些常用关系的性质

	=	<u>≤</u>	<		=3	Ø	E
自反	✓	√	×	√	√	×	✓
反自反	×	×	√	×	×	√	×
对称	√	×	×	x	√	√	✓
反对称	√	√	√	√	×	√	×
传递	✓	✓	✓	√	√	√	✓

关系运算与性质的保持

	自反	反自反	对称	反对称	传递
R_1^{-1}	√	√	√	√	√
$R_1 \cap R_2$	√	√	√	√	✓
$R_1 \cup R_2$	√	√	√	×	×
$R_1^{\circ}R_2$	√	×	×	×	×

小结

- 关系: 笛卡尔积的子集
- 关系的运算
 - 集合运算; 复合运算; 逆
- 0-1矩阵运算
- 关系的性质
 - reflexivity, ir-~; symmetry, anti-~; transitivity
 - 图特征: 矩阵特征

作业

• 见课程QQ群

