

#### EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta ....095

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Militar$ 

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

# La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I ( 20p )

- (4p) a) Să se determine coordonatele punctului de intersecție al dreptei  $\frac{x+2}{3} = \frac{y-1}{1} = \frac{z-4}{-1}$  cu planul z = 0.
- (4p) b) Să se determine valoarea numărului  $sin^2 2007 + cos^2 2007$ .
- (4p) c) Să se determine coordonatele punctelor de intersecție dintre elipsa  $9x^2 + 4y^2 25 = 0$  și dreapta x = 0.
- (4p) d) Să se determine modulul vectorului  $\vec{v} = \vec{i} + \vec{j} + \vec{k}$ .
- (2p) e) Să se determine modulul numărului complex 1+i.
- (2p) f) Să se determine aria unui triunghi care are lungimea unei laturi 10 și lungimea înălțimii corespunzătoare ei 6.

## SUBIECTUL II ( 30p ) 1.

- (3p) a) Să se determine restul împărțirii polinomului  $X^3 1$  la polinomul  $X^2 + X + 1$ .
- (3p) b) Să se calculeze numărul  $\log_5 2 \cdot \log_2 5$ .
- (3p) c) Să se determine soluția reală a ecuației  $5^x = 7^x$ .
- (3p) d) Să se determine partea întreagă a numărului  $\pi$ .
- (3p) e) Să se determine probabilitatea ca un element  $n \in \{9,10,11,12,13\}$  să verifice relația  $\lg n < 1$ .
  - **2.** Se consideră funcția  $f: \mathbf{R} \to \mathbf{R}$ ,  $f(x) = \cos 2x$ .
- (3p) a) Să se calculeze f'(x),  $x \in \mathbb{R}$ .
- (3p) b) Să se determine  $\lim_{x\to\pi} \frac{f(x)-1}{x-\pi}$ .
- (3p) c) Să se arate că  $f(x+\pi) = f(x), \forall x \in \mathbb{R}$ .
- (3p) d) Să se calculeze  $\int_{0}^{\frac{\pi}{4}} f(x)dx$ .
- (3p) e) Să se determine  $\lim_{n\to\infty} \frac{\cos 2n}{n}$



### SUBIECTUL III (20p)

Se consideră funcția  $f: \mathbf{R} \setminus \mathbf{Q} \to \mathbf{R} \setminus \mathbf{Q}$ ,  $f(x) = 1 + \frac{1}{x}$ ,  $x \in \mathbf{R} \setminus \mathbf{Q}$  și șirurile  $(F_n)_{n \in \mathbf{N}}$  și  $(a_n)_{n \in \mathbf{N}}$  date prin relațiile de recurență:  $F_{n+1} = F_n + F_{n-1}$ ,  $n \in \mathbf{N}^*$ ,  $F_0 = 0$ ,  $F_1 = 1$ ,  $a_{n+1} = f(a_n)$ ,  $n \in \mathbf{N}$ ,  $a_0 \in \mathbf{R} \setminus \mathbf{Q}$ . Notăm  $f_n = \underbrace{f \circ f \circ \dots \circ f}_{n \circ ri}$ ,  $n \in \mathbf{N}^*$ .

- (4p) a) Să se arate că funcția f este bijectivă.
- (4p) | b) Să se arate că  $F_n \neq 10$ , pentru orice  $n \in \mathbb{N}$ .
- (4p) c) Să se determine  $n \in \mathbb{N}$ , astfel ca  $F_n = 21$ .
- (2p) d) Utilizând eventual metoda inducției matematice, să se demonstreze că  $F_n = \frac{1}{\sqrt{5}} \left( \left( \frac{1+\sqrt{5}}{2} \right)^n \left( \frac{1-\sqrt{5}}{2} \right)^n \right), \ \forall n \in \mathbb{N}.$
- (2p) e) Să se arate că  $a_n = f_n(a_0), \forall n \in \mathbb{N}^*$ .
- (2p) Să se arate că  $f_n(x) = \frac{F_{n+1} \cdot x + F_n}{F_n \cdot x + F_{n-1}}, \forall x \in \mathbf{R} \setminus \mathbf{Q}, \forall n \in \mathbf{N}^*.$
- (2p) g) Să se calculeze  $\lim_{n \to \infty} a_n$ .

### SUBIECTUL IV (20p)

Pentru  $n \in \mathbf{N}^*$  se consideră funcțiile  $f_n : \left(0, \frac{\pi}{2}\right) \to \mathbf{R}$ ,  $f_n(x) = \frac{\operatorname{tg}^n x}{\operatorname{tg}^n x + \operatorname{ctg}^n x}$ ,  $g_n : \left(0, \frac{\pi}{2}\right) \to \mathbf{R}$ ,  $g_n(x) = \frac{\operatorname{ctg}^n x}{\operatorname{tg}^n x + \operatorname{ctg}^n x}$ ,  $x \in \left(0, \frac{\pi}{2}\right)$ .

- (4p) a) Să se arate că  $f_n\left(\frac{\pi}{2} x\right) = g_n(x), \forall n \in \mathbb{N}^*, \forall x \in \left(0, \frac{\pi}{2}\right).$
- (4p) b) Să se determine  $\lim_{x \to \frac{\pi}{2}} f_n(x)$  și  $\lim_{x \to 0} g_n(x)$ ,  $n \in \mathbb{N}^*$ .
- (4p) c) Să se calculeze  $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} f_1(x) dx.$
- (2p) d) Să se arate că funcțiile  $f_n$  sunt crescătoare iar funcțiile  $g_n$  sunt descrescătoare,  $\forall n \in \mathbb{N}^*$ .
- (2p) e) Să se arate că  $\int_{\frac{\pi}{4}-a}^{\frac{\pi}{4}+a} f_n(x) dx = \int_{\frac{\pi}{4}-a}^{\frac{\pi}{4}+a} g_n(x) dx = a$ , pentru orice  $a \in \left(0, \frac{\pi}{4}\right), \forall n \in \mathbb{N}^*$ .
- (2p) f) Să se determine  $\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx$ , unde  $0 < a < b < \frac{\pi}{4}$ .
- (2p) g) Să se determine  $\lim_{n\to\infty} \int_{\frac{\pi}{10}}^{\frac{\pi}{3}} f_n(x) dx$ .