Week2_Lab_MM1

March 18, 2018

MOOC: Understanding queues

Python Lab

Week II: M/M/1 queue simulation

In this lab, we are going to simulate the evolution of the number of customers in a M/M/1 queue. Let λ and μ represent the arrival and departure rates. We simulate the following events: arrival of a new client in the system, or departure of a client from the system. Additionally, we record the value of the number of customers in the system at these instants.

1) We assume that the system is not empty. For $\lambda = 4$ and $\mu = 5$, what is the probability Pa that the next event is an arrival?

2) Assume that the system is not empty. The time before the next event (departure or arrival) follows an exponential distribution. What is the rate of this exponential distribution?

- 3) The implementation of the function $generate_MM1(lambda_=4, mu=5, N0 = 5, Tmax=200)$ with entries
 - lambda, mu: arrival and departure rates
 - N0: initial number of customers in the system
 - Tmax: time interval over which the evolution of the queue is simulated

and outputs

- T: vector of instants of events (arrivals or departures) over [0,Tmax]
- N: vector of the number of customers in the system at instants in T

is given below. Execute this code to plot the evolution the number of clients in the system against time.

```
In [31]: def generate_MM1(lambda_=4,mu=5,N0=5,Tmax=200):
          function generate\_MM1(N0 = 5, Tmax=200)
          generates an MM1 file
          INPUTS
          lambda, mu: arrival and departure rates
          NO:
                      initial state of the system (default = 5)
          Tmax:
                       duration of the observation (default = 200)
          OUTPUTS
          _____
          T:
                      list of time of events (arrivals or departures) over [0,T]
                      list of system states (at T(t): \mathbb{N}->\mathbb{N}+1 or \mathbb{N}->\mathbb{N}-1)
          N:
          HHHH
          seed(20)
                           # initial instant
          tau = 0
                = [0]
                          # list of instants of events
                = [NO]
                           # initial state of the system, list of state evolutions
          while T[-1] < Tmax:
              if N[-1] == 0:
                  tau = -1./lambda_*log(rand()) # inter-event time when N(t)=0
                  event = 1 # arrival
              else:
                  tau = -1./Rate(lambda_,mu)*log(rand()) # inter-event time when N(t)>0
                  event = 2*(rand()<Pa(lambda_,mu))-1</pre>
                   # +1 for an arrival (with probability Pa), -1 for a departure
              N = N + [N[-1] + event]
              T = T + \lceil T \lceil -1 \rceil + tau \rceil
          T = T[:-1] # event after Tmax is discarded
          N = N[:-1]
          return T, N
```

```
In [32]: # Plotting the number of clients in the system
T,N = generate_MM1()
rcParams['figure.figsize'] = [15,3]
plot(T,N,'.b')
xlabel('Time')
ylabel('Number of customers')
```

Out[32]: <matplotlib.text.Text at 0x7f831460f048>

4) Letting now $\lambda = 4$ and $\mu = 3$, what do you notice when running the function generate_MM1? What is the value of the number of customers at Tmax = 200?

Out[33]: <matplotlib.text.Text at 0x7f83145057b8>

1 Your answers for the exercise