

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

October 1, 2014

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 1: Introducing Hidden Markov Models

Modelling pairs of sequences

Input: sequence of words; Output: sequence of labels

Input	British	left	waffles	on	Falkland	Islands
Output1	N	N	V	Р	N	N
Output2	N	V	N	Р	N	N
:						

- N Noun, e.g. islands
- V Verb, e.g. leave, left
- P Preposition, e.g. on

Modelling pairs of sequences

Input: sequence of words; Output: sequence of labels						
Input	British	left	waffles	on	Falkland	Islands
Output1	N	N	V	Р	N	N
Output2	N	V	N	Р	N	N
÷						

- ▶ 3 states: S = {N, V, P}
- ▶ Input sequence: $x_1, x_2, ..., x_n$
- ▶ Output sequence: $t_1, t_2, ..., t_n$ where $t_i \in \mathcal{S}$
- ► How many output sequences?

Modelling pairs of sequences

Input: sequence of characters; Output: sequence of labels

Input	北京大学生比赛	7 chars
Output1	BIBIIBI	7 labels
Output2	BIIIBBI	7 labels
:		7 labels

B Begin word

I Inside word

BIBIIBI 北京—大学生—比赛 (Beijing student competition)

BIIIBBI 北京大学—生—比赛 (Peking University Health Competition)

- ▶ Input: x
- ▶ Output space: $\mathcal{Y}(x)$
- ▶ Output: $y \in \mathcal{Y}(x)$
- ▶ We want to learn a function f such that f(x) = y

Conditional model

► Construct function *f* using a conditional probability:

$$f(x) = \arg\max_{y \in \mathcal{Y}(x)} p(y \mid x)$$

- ▶ We can construct this function *f* using two principles:
 - Discriminative learning: find the best output y given input x
 - Generative modelling: model the joint probability p(x, y) to find $p(y \mid x)$

Generative Model

▶ Start from the joint probability p(x, y):

$$p(x,y) = p(y)p(x \mid y)$$

Also:

$$p(x,y) = p(x)p(y \mid x)$$

Bayes Rule:

$$p(y \mid x) = \frac{p(y)p(x \mid y)}{p(x)}$$

Generative Model

► Bayes Rule:

$$p(y \mid x) = \frac{p(y)p(x \mid y)}{p(x)}$$

where:

$$p(x) = \sum_{y \in \mathcal{Y}(x)} p(x, y) = \sum_{y \in \mathcal{Y}(x)} p(y)p(x \mid y)$$

► So using a generative model, we can find the best output *y* using:

$$p(y \mid x) = \frac{p(y)p(x \mid y)}{\sum_{y \in \mathcal{Y}(x)} p(y)p(x \mid y)}$$

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 2: Algorithms for Hidden Markov Models

$$\text{Model } \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

Hidden Markov Model Algorithms

- ► HMM as parser: compute the best sequence of states for a given observation sequence.
- HMM as language model: compute probability of given observation sequence.
- HMM as learner: given a corpus of observation sequences, learn its distribution, i.e. learn the parameters of the HMM from the corpus.
 - ► Learning from a set of observations with the sequence of states provided (states are not hidden) [Supervised Learning]
 - ► Learning from a set of observations without any state information. [Unsupervised Learning]

HMM as Parser

$$\pi = \begin{array}{|c|c|c|} A & 0.25 \\ \hline N & 0.75 \end{array}$$

$$a = \begin{vmatrix} a_{i,j} & A & N \\ A & 0.0 & 1.0 \\ N & 0.5 & 0.5 \end{vmatrix}$$

	$b_i(o)$	clown	killer	problem	crazy
b =	Α	0	0	0	1
	N	0.4	0.3	0.3	0

The task: for a given observation sequence find the most likely state sequence.

HMM as Parser

- ▶ Find most likely sequence of states for killer clown
- Score every possible sequence of states: AA, AN, NN, NA
 - ▶ P(killer clown, AA) = $\pi_A \cdot b_A(killer) \cdot a_{A,A} \cdot b_A(clown) = 0.0$
 - ▶ P(killer clown, AN) = $\pi_A \cdot b_A(killer) \cdot a_{A,N} \cdot b_N(clown) = 0.0$
 - ► P(killer clown, NN) = $\pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(clown) = 0.75 \cdot 0.3 \cdot 0.5 \cdot 0.4 = 0.045$
 - ▶ P(killer clown, NA) = $\pi_N \cdot b_N(killer) \cdot a_{N,A} \cdot b_A(clown) = 0.0$
- ▶ Pick the state sequence with highest probability (NN=0.045).

HMM as Parser

- ▶ As we have seen, for input of length 2, and a HMM with 2 states there are 2² possible state sequences.
- ▶ In general, if we have q states and input of length T there are q^T possible state sequences.
- ▶ Using our example HMM, for input *killer crazy clown problem* we will have 2⁴ possible state sequences to score.
- Our naive algorithm takes exponential time to find the best state sequence for a given input.
- ▶ The **Viterbi algorithm** uses dynamic programming to provide the best state sequence with a time complexity of $q^2 \cdot T$

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 3: Viterbi Algorithm for HMMs

- ▶ For input of length $T: o_1, ..., o_T$, we want to find the sequence of states $s_1, ..., s_T$
- \triangleright Each s_t in this sequence is one of the states in the HMM.
- So the task is to find the most likely sequence of states:

$$\arg\max_{s_1,\ldots,s_T} P(o_1,\ldots,o_T,s_1,\ldots,s_T)$$

The Viterbi algorithm solves this by creating a table V[s,t] where s is one of the states, and t is an index between $1, \ldots, T$.

- Consider the input killer crazy clown problem
- So the task is to find the most likely sequence of states:

$$\arg\max_{s_1,s_2,s_3,s_4} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, s_4)$$

► A sub-problem is to find the most likely sequence of states for *killer crazy clown*:

$$\arg\max_{s_1,s_2,s_3} P(\textit{killer crazy clown}, s_1, s_2, s_3)$$

▶ In our example there are two possible values for s_4 :

$$\begin{aligned} \max_{s_1,\dots,s_4} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, s_4) &= \\ \max \left\{ \max_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, N), \\ \max_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, A) \right\} \end{aligned}$$

► Similarly:

$$\max_{s_1,...,s_3} P(\textit{killer crazy clown}, s_1, s_2, s_3) = \\ \max \left\{ \max_{s_1,s_2} P(\textit{killer crazy clown}, s_1, s_2, N), \\ \max_{s_1,s_2} P(\textit{killer crazy clown}, s_1, s_2, A) \right\}$$

Putting them together:

```
P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, N) = \\ \max \left\{ P(killer\ crazy\ clown, s_1, s_2, N) \cdot a_{N,N} \cdot b_N(problem), \\ P(killer\ crazy\ clown, s_1, s_2, A) \cdot a_{A,N} \cdot b_N(problem) \right\} \\ P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, A) = \\ \max \left\{ P(killer\ crazy\ clown, s_1, s_2, N) \cdot a_{N,A} \cdot b_A(problem), \\ P(killer\ crazy\ clown, s_1, s_2, A) \cdot a_{A,A} \cdot b_A(problem) \right\} \\
```

The best score is given by:

$$\max_{s_1,\dots,s_4} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, s_4) = \\ \max_{N,A} \left\{ \max_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, N), \\ \max_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, A) \right\}$$

► Provide an index for each input symbol: 1:killer 2:crazy 3:clown 4:problem

$$V[N,3] = \max_{s_1,s_2} P(killer \ crazy \ clown, s_1, s_2, N)$$

$$V[N,4] = \max_{s_1,s_2,s_3} P(killer \ crazy \ clown \ problem, s_1, s_2, s_3, N)$$

Putting them together:

$$V[N,4] = \max\{V[N,3] \cdot a_{N,N} \cdot b_{N}(problem),$$

$$V[A,3] \cdot a_{A,N} \cdot b_{N}(problem)\}$$

$$V[A,4] = \max\{V[N,3] \cdot a_{N,A} \cdot b_{A}(problem),$$

$$V[A,3] \cdot a_{A,A} \cdot b_{A}(problem)\}$$

- ► The best score for the input is given by: max { V[N, 4], V[A, 4]}
- ► To extract the best sequence of states we backtrack (same trick as obtaining alignments from minimum edit distance)

- ▶ For input of length T: o_1, \ldots, o_T , we want to find the sequence of states s_1, \ldots, s_T
- \triangleright Each s_t in this sequence is one of the states in the HMM.
- For each state q we initialize our table: $V[q,1] = \pi_q \cdot b_q(o_1)$
- ▶ Then compute for t = 1...T 1 for each state q:

$$V[q,t+1] = \max_{q'} \left\{ V[q',t] \cdot \mathsf{a}_{q',q} \cdot b_q(o_{t+1}) \right\}$$

▶ After the loop terminates, the best score is $\max_q V[q, T]$

Learning from Fully Observed Data

$$\pi = \begin{array}{|c|c|c|} \hline A & 0.25 \\ \hline N & 0.75 \\ \hline \end{array}$$

$$a = egin{array}{c|ccc} a_{i,j} & A & N \\ A & 0.0 & 1.0 \\ N & 0.5 & 0.5 \end{array}$$

$$b = \begin{array}{|c|c|c|c|c|c|c|c|}\hline b_i(o) & clown & killer & problem & crazy\\\hline A & 0 & 0 & 0 & 1\\\hline N & 0.4 & 0.3 & 0.3 & 0\\\hline \end{array}$$

Viterbi algorithm:

V	killer:1	crazy:2	clown:3	problem:4
Α				
N				

Learning from Fully Observed Data

$$\pi = \begin{array}{|c|c|c|} \hline A & 0.25 \\ \hline N & 0.75 \\ \hline \end{array}$$

$$a = egin{array}{c|ccc} a_{i,j} & A & N \\ A & 0.0 & 1.0 \\ N & 0.5 & 0.5 \end{array}$$

$$b = \begin{array}{|c|c|c|c|c|c|}\hline b_i(o) & clown & killer & problem & crazy\\\hline A & 0 & 0 & 0 & 1\\\hline N & 0.4 & 0.3 & 0.3 & 0\\\hline \end{array}$$

Viterbi algorithm:

V	killer:1	crazy:2	clown:3	problem:4
Α	0	0.1125	0	0
N	0.225	0	0.045	0.00675

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 4: HMM as a Language Model

$$\text{Model } \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

Hidden Markov Model Algorithms

- ► HMM as parser: compute the best sequence of states for a given observation sequence.
- HMM as language model: compute probability of given observation sequence.
- HMM as learner: given a corpus of observation sequences, learn its distribution, i.e. learn the parameters of the HMM from the corpus.
 - ► Learning from a set of observations with the sequence of states provided (states are not hidden) [Supervised Learning]
 - ► Learning from a set of observations without any state information. [Unsupervised Learning]

- Find $P(killer\ clown) = \sum_{y} P(y, killer\ clown)$
- ▶ $P(killer\ clown) = P(AA, killer\ clown) + P(AN, killer\ clown) + P(NN, killer\ clown) + P(NA, killer\ clown)$

- ► Consider the input *killer crazy clown problem*
- ▶ So the task is to find the sum over all sequences of states:

$$\sum_{s_1,s_2,s_3,s_4} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, s_4)$$

▶ A sub-problem is to find the most likely sequence of states for *killer crazy clown*:

$$\sum_{s_1,s_2,s_3} P(\textit{killer crazy clown}, s_1, s_2, s_3)$$

▶ In our example there are two possible values for s₄:

$$\sum_{s_1,...,s_4} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, s_4) = \\ \sum_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, N) + \\ \sum_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, A)$$

Very similar to the Viterbi algorithm. Sum instead of max, and that's the only difference!

► Provide an index for each input symbol: 1:killer 2:crazy 3:clown 4:problem

$$V[N,3] = \sum_{s_1,s_2} P(killer \ crazy \ clown, s_1, s_2, N)$$

$$V[N,4] = \sum_{s_1,s_2,s_3} P(killer \ crazy \ clown \ problem, s_1, s_2, s_3, N)$$

Putting them together:

$$V[N,4] = V[N,3] \cdot a_{N,N} \cdot b_N(problem) + V[A,3] \cdot a_{A,N} \cdot b_N(problem)$$

$$V[A, 4] = V[N, 3] \cdot a_{N,A} \cdot b_A(problem) + V[A, 3] \cdot a_{A,A} \cdot b_A(problem)$$

▶ The best score for the input is given by: V[N,4] + V[A,4]

- ▶ For input of length $T: o_1, \ldots, o_T$, we want to find $P(o_1, \ldots, o_T) = \sum_{y_1, \ldots, y_T} P(y_1, \ldots, y_T, o_1, \ldots, o_T)$
- \triangleright Each y_t in this sequence is one of the states in the HMM.
- For each state q we initialize our table: $V[q,1] = \pi_q \cdot b_q(o_1)$
- ▶ Then compute recursively for t = 1 ... T 1 for each state q:

$$V[q,t+1] = \sum_{q'} \left\{ V[q',t] \cdot a_{q',q} \cdot b_q(o_{t+1})
ight\}$$

- ▶ After the loop terminates, the best score is $\sum_{q} V[q, T]$
- So: Viterbi with sum instead of max gives us an algorithm for HMM as a language model.
- ► This algorithm is sometimes called the *forward algorithm*.

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 5: Supervised Learning for HMMs

Hidden Markov Model Algorithms

- ► HMM as parser: compute the best sequence of states for a given observation sequence.
- HMM as language model: compute probability of given observation sequence.
- HMM as learner: given a corpus of observation sequences, learn its distribution, i.e. learn the parameters of the HMM from the corpus.
 - ► Learning from a set of observations with the sequence of states provided (states are not hidden) [Supervised Learning]
 - ► Learning from a set of observations without any state information. [Unsupervised Learning]

$$\text{Model } \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

Constraints :
$$\sum_i \pi_i = 1, \sum_j a_{i,j} = 1, \sum_o b_i(o) = 1$$

HMM Learning from Labeled Data

- ▶ The task: to find the values for the parameters of the HMM:
 - \blacktriangleright π_A, π_N
 - $\triangleright a_{A,A}, a_{A,N}, a_{N,N}, a_{N,A}$
 - \blacktriangleright $b_A(killer), b_A(crazy), b_A(clown), b_A(problem)$
 - \blacktriangleright $b_N(killer), b_N(crazy), b_N(clown), b_N(problem)$

Labeled Data L

Let's say we have *m* labeled examples:

$$L=(x_1,y_1),\ldots,(x_m,y_m)$$

- ► Each $(x_{\ell}, y_{\ell}) = \{o_1, \dots, o_T, s_1, \dots, s_T\}$
- ▶ For each (x_{ℓ}, y_{ℓ}) we can compute the probability using the HMM:

```
• (x_1 = killer, clown; y_1 = N, N):

P(x_1, y_1) = \pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(clown)
```

- $(x_2 = killer, problem; y_2 = N, N)$: $P(x_2, y_2) = \pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(problem)$
- $(x_3 = crazy, problem; y_3 = A, N)$: $P(x_3, y_3) = \pi_A \cdot b_A(crazy) \cdot a_{A,N} \cdot b_N(problem)$
- $(x_4 = crazy, clown; y_4 = A, N)$: $P(x_4, y_4) = \pi_A \cdot b_A(crazy) \cdot a_{A,N} \cdot b_N(clown)$
- $(x_5 = problem, crazy, clown; y_5 = N, A, N)$:
- $P(x_5, y_5) = \pi_N \cdot b_N(problem) \cdot a_{N,A} \cdot b_A(crazy) \cdot a_{A,N} \cdot b_N(clown)$ $(x_6 = clown, crazy, killer; y_6 = N, A, N)$:

- We can easily collect frequency of observing a word with a state (tag)
 - f(i, x, y) = number of times i is the initial state in (x, y)
 - f(i, j, x, y) = number of times j follows i in (x, y)
 - f(i, o, x, y) = number of times i is paired with observation o
- ▶ Then according to our HMM the probability of x, y is:

$$P(x,y) = \prod_{i} \pi_{i}^{f(i,x,y)} \cdot \prod_{i,j} a_{i,j}^{f(i,j,x,y)} \cdot \prod_{i,o} b_{i}(o)^{f(i,o,x,y)}$$

According to our HMM the probability of x, y is:

$$P(x,y) = \prod_{i} \pi_{i}^{f(i,x,y)} \cdot \prod_{i,j} a_{i,j}^{f(i,j,x,y)} \cdot \prod_{i,o} b_{i}(o)^{f(i,o,x,y)}$$

▶ For the labeled data $L = (x_1, y_1), \dots, (x_\ell, y_\ell), \dots, (x_m, y_m)$

$$P(L) = \prod_{\ell=1}^{m} P(x_{\ell}, y_{\ell})$$

$$= \prod_{\ell=1}^{m} \left(\prod_{i} \pi_{i}^{f(i, x_{\ell}, y_{\ell})} \cdot \prod_{i, j} a_{i, j}^{f(i, j, x_{\ell}, y_{\ell})} \cdot \prod_{i, o} b_{i}(o)^{f(i, o, x_{\ell}, y_{\ell})} \right)$$

According to our HMM the probability of x, y is:

$$P(L) = \prod_{\ell=1}^{m} \left(\prod_{i} \pi_{i}^{f(i,x_{\ell},y_{\ell})} \cdot \prod_{i,j} a_{i,j}^{f(i,j,x_{\ell},y_{\ell})} \cdot \prod_{i,o} b_{i}(o)^{f(i,o,x_{\ell},y_{\ell})} \right)$$

▶ The log probability of the labeled data $(x_1, y_1), \dots, (x_m, y_m)$ according to HMM with parameters θ is:

$$L(\theta) = \sum_{\ell=1}^{m} \log P(x_{\ell}, y_{\ell})$$

$$= \sum_{\ell=1}^{m} \sum_{i} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

- \bullet $\theta = (\pi, a, b)$
- ▶ $L(\theta)$ is the log probability of the labeled data $(x_1, y_1), \dots, (x_m, y_m)$
- We want to find a θ that will give us the maximum value of $L(\theta)$
- Find the θ such that $\frac{dL(\theta)}{d\theta} = 0$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

▶ The values of π_i , $a_{i,j}$, $b_i(o)$ that maximize $L(\theta)$ are:

$$\pi_{i} = \frac{\sum_{\ell} f(i, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(k, x_{\ell}, y_{\ell})}$$

$$a_{i,j} = \frac{\sum_{\ell} f(i, j, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(i, k, x_{\ell}, y_{\ell})}$$

$$b_{i}(o) = \frac{\sum_{\ell} f(i, o, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{o' \in V} f(i, o', x_{\ell}, y_{\ell})}$$

Labeled Data:

```
x1,y1: killer/N clown/N
x2,y2: killer/N problem/N
x3,y3: crazy/A problem/N
x4,y4: crazy/A clown/N
x5,y5: problem/N crazy/A clown/N
x6,y6: clown/N crazy/A killer/N
```

▶ The values of π_i that maximize $L(\theta)$ are:

$$\pi_i = \frac{\sum_{\ell} f(i, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(k, x_{\ell}, y_{\ell})}$$

 \blacktriangleright $\pi_N = \frac{2}{3}$ and $\pi_A = \frac{1}{3}$ because:

$$\sum_{\ell} f(N, x_{\ell}, y_{\ell}) = 4$$

$$\sum_{\ell} f(A, x_{\ell}, y_{\ell}) = 2$$

▶ The values of $a_{i,j}$ that maximize $L(\theta)$ are:

$$a_{i,j} = \frac{\sum_{\ell} f(i,j,x_{\ell},y_{\ell})}{\sum_{\ell} \sum_{k} f(i,k,x_{\ell},y_{\ell})}$$

▶ $a_{N,N} = \frac{1}{2}$; $a_{N,A} = \frac{1}{2}$; $a_{A,N} = 1$ and $a_{A,A} = 0$ because:

$$\sum_{\ell} f(N, N, x_{\ell}, y_{\ell}) = 2 \qquad \sum_{\ell} f(A, N, x_{\ell}, y_{\ell}) = 4$$

$$\sum_{\ell} f(N, A, x_{\ell}, y_{\ell}) = 2 \qquad \sum_{\ell} f(A, A, x_{\ell}, y_{\ell}) = 0$$

▶ The values of $b_i(o)$ that maximize $L(\theta)$ are:

$$b_i(o) = \frac{\sum_{\ell} f(i, o, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{o' \in V} f(i, o', x_{\ell}, y_{\ell})}$$

▶ $b_N(killer) = \frac{3}{10}$; $b_N(clown) = \frac{4}{10}$; $b_N(problem) = \frac{3}{10}$ and $b_A(crazy) = 1$ because:

$$\sum_{\ell} f(N, killer, x_{\ell}, y_{\ell}) = 3 \qquad \sum_{\ell} f(A, killer, x_{\ell}, y_{\ell}) = 0$$

$$\sum_{\ell} f(N, clown, x_{\ell}, y_{\ell}) = 4 \qquad \sum_{\ell} f(A, clown, x_{\ell}, y_{\ell}) = 0$$

$$\sum_{\ell} f(N, crazy, x_{\ell}, y_{\ell}) = 0 \qquad \sum_{\ell} f(A, crazy, x_{\ell}, y_{\ell}) = 4$$

$$\sum_{\ell} f(N, problem, x_{\ell}, y_{\ell}) = 3 \qquad \sum_{\ell} f(A, problem, x_{\ell}, y_{\ell}) = 0$$

x1,y1: killer/N clown/N x2,y2: killer/N problem/N x3,y3: crazy/A problem/N x4,y4: crazy/A clown/N

x5,y5: problem/N crazy/A clown/N x6,y6: clown/N crazy/A killer/N

$$\pi = \begin{array}{|c|c|} \hline A & 0.25 \\ \hline N & 0.75 \\ \hline \end{array}$$

	$a_{i,j}$	Α	Ν
a =	Α	0.0	1.0
	Ν	0.5	0.5

	$b_i(o)$	clown	killer	problem	crazy
b =	Α	0	0	0	1
	Ν	0.4	0.3	0.3	0

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 6: Lagrange Multipliers

Hidden Markov Model

$$\text{Model } \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

Constraints :
$$\sum_i \pi_i = 1, \sum_j a_{i,j} = 1, \sum_o b_i(o) = 1$$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

- \bullet $\theta = (\pi, a, b)$
- ▶ $L(\theta)$ is the log probability of the labeled data $(x_1, y_1), \dots, (x_m, y_m)$
- We want to find a θ that will give us the maximum value of $L(\theta)$
- Find the θ such that $\frac{dL(\theta)}{d\theta} = 0$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

- Find the θ such that $\frac{dL(\theta)}{d\theta}=0$ and $\theta=(\pi,a,b)$
- ▶ Split up $L(\theta)$ into $L(\pi), L(a), L(b)$
- ▶ Let $\nabla L = \forall i, j, o : \frac{\partial L(\pi)}{\partial \pi_i}, \frac{\partial L(a)}{\partial a_{i,j}}, \frac{\partial L(b)}{\partial b_i(o)}$
- We must also obey constraints: $\sum_{k} \pi_{k} = 1, \sum_{k} a_{i,k} = 1, \sum_{k} b_{i}(o) = 1$

$$L(\pi) = \sum_{\ell=1}^{m} \sum_{i} f(i, x_{\ell}, y_{\ell}) \log \pi_{i}$$

- Let us focus on $\nabla L(\pi)$ (the other two: a and b are similar)
- For the constraint $\sum_k \pi_k = 1$ we introduce a new variable into our search for a maximum:

$$L(\pi,\lambda) = L(\pi) + \lambda(1 - \sum_{k} \pi_{k})$$

- $ightharpoonup \lambda$ is called the Lagrange multiplier
- \blacktriangleright λ penalizes any solution that does not obey the constraint
- lacktriangleright The constraint ensures that π is a probability distribution

$$\frac{\partial L(\pi)}{\partial \pi_{i}} = \frac{\partial}{\partial \pi_{i}} \underbrace{\sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell}) \log \pi_{i}}_{\text{the only part with variable } \pi_{i}} + \underbrace{\sum_{\ell=1}^{m} \sum_{j:j \neq i} f(j, x_{\ell}, y_{\ell}) \log \pi_{j}}_{\text{no } \pi_{i} \text{ so derivative is } 0}$$

• We want a value of π_i such that $rac{\partial L(\pi,\lambda)}{\partial \pi_i}=0$

$$\frac{\partial}{\partial \pi_{i}} \sum_{\ell=1}^{m} \left(f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \lambda (1 - \sum_{k} \pi_{k}) \right) = 0$$

$$\frac{\partial}{\partial \pi_{i}} \sum_{\ell=1}^{m} \left(\underbrace{\frac{f(i, x_{\ell}, y_{\ell}) \log \pi_{i}}_{\partial \pi_{i}} + \lambda - \underbrace{\lambda \pi_{i}}_{\partial \pi_{i}} - \lambda \sum_{j: j \neq i} \pi_{j}}_{\partial \pi_{i}} \right) = 0$$

$$\frac{\partial L(\pi)}{\partial \pi_{i}} = \frac{\partial}{\partial \pi_{i}} \sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{\ell=1}^{m} \sum_{j:j\neq i} f(j, x_{\ell}, y_{\ell}) \log \pi_{j}$$
the only part with variable π_{i} no π_{i} so derivative is 0

• We can obtain a value of π_i wrt λ :

$$\frac{\partial L(\pi, \lambda)}{\partial \pi_{i}} = \underbrace{\sum_{\ell=1}^{m} \frac{f(i, x_{\ell}, y_{\ell})}{\pi_{i}} - \lambda}_{\text{see previous slide}} - \lambda = 0$$

$$\pi_{i} = \underbrace{\sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell})}_{\lambda} \tag{1}$$

▶ Combine π_i s from Eqn (1) with constraint $\sum_k \pi_k = 1$

$$\lambda = \sum_{k} \sum_{\ell=1}^{m} f(k, x_{\ell}, y_{\ell})$$

$$\frac{\partial L(\pi)}{\partial \pi_{i}} = \frac{\partial}{\partial \pi_{i}} \sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{\ell=1}^{m} \sum_{j:j\neq i} f(j, x_{\ell}, y_{\ell}) \log \pi_{j}$$
the only part with variable π_{i} no π_{i} so derivative is 0

► The value of π_i for which $\frac{\partial L(\pi,\lambda)}{\partial \pi_i} = 0$ is Eqn (2) which can be combined with the value of λ from Eqn (3).

$$\pi_i = \frac{\sum_{\ell=1}^m f(i, x_\ell, y_\ell)}{\lambda} \tag{2}$$

$$\lambda = \sum_{k} \sum_{\ell=1}^{m} f(k, x_{\ell}, y_{\ell})$$
 (3)

$$\pi_{i} = \frac{\sum_{\ell=1}^{m} f(i, x_{\ell}, y_{\ell})}{\sum_{k} \sum_{\ell=1}^{m} f(k, x_{\ell}, y_{\ell})}$$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

▶ The values of π_i , $a_{i,j}$, $b_i(o)$ that maximize $L(\theta)$ are:

$$\pi_{i} = \frac{\sum_{\ell} f(i, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(k, x_{\ell}, y_{\ell})}$$

$$a_{i,j} = \frac{\sum_{\ell} f(i, j, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(i, k, x_{\ell}, y_{\ell})}$$

$$b_{i}(o) = \frac{\sum_{\ell} f(i, o, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{o' \in V} f(i, o', x_{\ell}, y_{\ell})}$$

Natural Language Processing

Anoop Sarkar anoopsarkar.github.io/nlp-class

Simon Fraser University

Part 7: Unsupervised Learning for HMMs

Hidden Markov Model

$$\text{Model } \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

Hidden Markov Model Algorithms

- ► HMM as parser: compute the best sequence of states for a given observation sequence.
- HMM as language model: compute probability of given observation sequence.
- HMM as learner: given a corpus of observation sequences, learn its distribution, i.e. learn the parameters of the HMM from the corpus.
 - ► Learning from a set of observations with the sequence of states provided (states are not hidden) [Supervised Learning]
 - ► Learning from a set of observations without any state information. [Unsupervised Learning]

Unlabeled Data $U = x_1, \ldots, x_m$:

```
x1: killer clown
x2: killer problem
x3: crazy problem
x4: crazy clown
```

- ▶ y1, y2, y3, y4 are unknown.
- ▶ But we can enumerate all possible values for y1, y2, y3, y4
- ▶ For example, for x1: killer clown

```
x1,y1,1: killer/A clown/A p_1 = \pi_A \cdot b_A(killer) \cdot a_{A,A} \cdot b_A(clown) x1,y1,2: killer/A clown/N p_2 = \pi_A \cdot b_A(killer) \cdot a_{A,N} \cdot b_N(clown) x1,y1,3: killer/N clown/N p_3 = \pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(clown) x1,y1,4: killer/N clown/A p_4 = \pi_N \cdot b_N(killer) \cdot a_{N,A} \cdot b_A(clown)
```

- Assume some values for $\theta = \pi$, a, b
- ▶ We can compute $P(y \mid x_{\ell}, \theta)$ for any y for a given x_{ℓ}

$$P(y \mid x_{\ell}, \theta) = \frac{P(x, y \mid \theta)}{\sum_{y'} P(x, y' \mid \theta)}$$

▶ For example, we can compute $P(NN \mid killer \ clown, \theta)$ as follows:

$$\frac{\pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(clown)}{\sum_{i,j} \pi_i \cdot b_i(killer) \cdot a_{i,j} \cdot b_j(clown)}$$

▶ $P(y \mid x_{\ell}, \theta)$ is called the *posterior probability*

- Compute the posterior for all possible outputs for each example in training:
- For x1: killer clown
 x1,y1,1: killer/A clown/A P(AA | killer clown, θ)
 x1,y1,2: killer/A clown/N P(AN | killer clown, θ)
 x1,y1,3: killer/N clown/N P(NN | killer clown, θ)
 x1,y1,4: killer/N clown/A P(NA | killer clown, θ)
- For x2: killer problem
 x2,y2,1: killer/A problem/A P(AA | killer problem, θ)
 x2,y2,2: killer/A problem/N P(AN | killer problem, θ)
 x2,y2,3: killer/N problem/N P(NN | killer problem, θ)
 x2,y2,4: killer/N problem/A P(NA | killer problem, θ)
- Similarly for x3: crazy problem
- ► And x4: crazy clown

▶ For unlabeled data, the log probability of the data given θ is:

$$L(\theta) = \sum_{\ell=1}^{m} \log \sum_{y} P(x_{\ell}, y \mid \theta)$$
$$= \sum_{\ell=1}^{m} \log \sum_{y} P(y \mid x_{\ell}, \theta) \cdot P(x_{\ell} \mid \theta)$$

- ▶ Unlike the fully observed case there is no simple solution to finding θ to maximize $L(\theta)$
- ▶ We instead initialize θ to some values, and then iteratively find better values of θ : θ ⁰, θ ¹, . . . using the following formula:

$$\begin{array}{rcl} \theta^t & = & \arg\max_{\theta} Q(\theta, \theta^{t-1}) \\ \\ & = & \sum_{\ell=1}^m \sum_{y} P(y \mid x_\ell, \theta^{t-1}) \cdot \log P(x_\ell, y \mid \theta) \end{array}$$

$$egin{aligned} heta^t &=& rg \max_{ heta} Q(heta, heta^{t-1}) \ Q(heta, heta^{t-1}) &=& \sum_{\ell=1}^m \sum_{y} P(y \mid x_\ell, heta^{t-1}) \cdot \log P(x_\ell, y \mid heta) \ &=& \sum_{\ell=1}^m \sum_{y} P(y \mid x_\ell, heta^{t-1}) \cdot \ \left(\sum_{i} f(i, x_\ell, y) \cdot \log \pi_i \ &+ \sum_{i,j} f(i, j, x_\ell, y) \cdot \log a_{i,j} \ &+ \sum_{i,o} f(i, o, x_\ell, y) \cdot \log b_i(o)
ight) \end{aligned}$$

$$g(i, x_{\ell}) = \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot f(i, x_{\ell}, y)$$

$$g(i, j, x_{\ell}) = \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot f(i, j, x_{\ell}, y)$$

$$g(i, o, x_{\ell}) = \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot f(i, o, x_{\ell}, y)$$

$$egin{array}{ll} heta^t &=& rg \max_{\pi,a,b} \sum_{\ell=1}^m \sum_i g(i,x_\ell) \cdot \log \pi_i \ &+ \sum_{i,j} g(i,j,x_\ell) \cdot \log a_{i,j} \ &+ \sum_{i,o} g(i,o,x_\ell) \cdot \log b_j(o) \end{array}$$

$$egin{aligned} Q(heta, heta^{t-1}) &= \sum_{\ell=1}^m \ \sum_i g(i, x_\ell) \log \pi_i + \sum_{i,j} g(i,j,x_\ell) \log a_{i,j} + \sum_{i,o} g(i,o,x_\ell) \log b_i(o) \end{aligned}$$

▶ The values of π_i , $a_{i,j}$, $b_i(o)$ that maximize $L(\theta)$ are:

$$\pi_{i} = \frac{\sum_{\ell} g(i, x_{\ell})}{\sum_{\ell} \sum_{k} g(k, x_{\ell})}$$

$$a_{i,j} = \frac{\sum_{\ell} g(i, j, x_{\ell})}{\sum_{\ell} \sum_{k} g(i, k, x_{\ell})}$$

$$b_{i}(o) = \frac{\sum_{\ell} g(i, o, x_{\ell})}{\sum_{\ell} \sum_{o' \in V} g(i, o', x_{\ell})}$$

EM Algorithm for Learning HMMs

- ▶ Initialize θ^0 at random. Let t = 0.
- ► The EM Algorithm:
 - ► E-step: compute expected values of y, $P(y \mid x, \theta)$ and calculate g(i, x), g(i, j, x), g(i, o, x)
 - M-step: compute $\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1})$
 - ▶ Stop if $L(\theta^t)$ did not change much since last iteration. Else continue.
- ► The above algorithm is guaranteed to improve likelihood of the unlabeled data.
- ▶ In other words, $L(\theta^t) \ge L(\theta^{t-1})$
- But it all depends on θ^0 !

Acknowledgements

Many slides borrowed or inspired from lecture notes by Michael Collins, Chris Dyer, Adam Lopez, and Luke Zettlemoyer from their NLP course materials. All mistakes are my own.