《高等微积分 2》第二周作业

本次作业请在第三周星期五 (3 月 6 日)24:00 点之前在网络学堂提交.

1 设 $f: \mathbf{R}^2 \to \mathbf{R}$ 是连续函数, 当 $x^2 + y^2 \to +\infty$ 时, $f(x,y) \to +\infty$. 证明: $f \in \mathbf{R}^2$ 上有最小值, 即存在 $(x_0, y_0) \in \mathbf{R}^2$, 使得

$$f(x,y) \ge f(x_0, y_0), \quad \forall (x,y) \in \mathbf{R}^2.$$

2 令 S 为平面上的单位圆周

$$S = \{(x, y)|x^2 + y^2 = 1\}.$$

- (1) 证明: $S \in \mathbf{R}^2$ 的闭集.
- (2) 设 $f: \mathbf{R}^2 \to \mathbf{R}$ 是连续函数. 证明: f 在 S 上能取到最大值与最小值, 即存在 $(x_0, y_0), (x_1, y_1) \in S$, 使得

$$f(x_0, y_0) \le f(x, y) \le f(x_1, y_1), \quad \forall (x, y) \in S.$$

- 3 对于二元函数 $f: \mathbf{R}^2 \to \mathbf{R}$, 判断如下断言是否正确, 并说明理由.
 - (1) 如果 f 在 (x_0, y_0) 处可微, 则 f 在 (x_0, y_0) 处连续.
 - (2) 如果 f 在 (x_0, y_0) 处可微, 则 f 在 (x_0, y_0) 处有各个方向的方向导数.
 - (3) 如果 f 在 (x_0, y_0) 处有各个方向的方向导数,则 f 在 (x_0, y_0) 处连续.
 - (4) 如果 f 在 (x_0, y_0) 处有各个方向导数,则对任何方向 $\mathbf{q} = (a, b)$,有

$$\frac{\partial f}{\partial \mathbf{q}}|_{(x_0,y_0)} = a \frac{\partial f}{\partial x}|_{(x_0,y_0)} + b \frac{\partial f}{\partial y}|_{(x_0,y_0)}.$$

4 设 $f(x,y) = \sqrt{|x^2 - y^2|}$. 在 (0,0) 处沿着哪些方向 f 的方向导数存在?

- 5 计算函数的各个偏导数.
 - $(1) f(x,y) = x^y.$
 - (2) $f(x,y) = \arctan \frac{y}{x}$.
 - (3) $f(x_1, ..., x_n) = \sqrt{x_1^2 + ... + x_n^2}$.
- 6 (1) $f(x,y) = \sqrt{|xy|}$ 在 (0,0) 处是否可微?
 - (2) 设 f 在 (0,0) 点的某个开球邻域 U 中有定义,且满足 $|f(x,y)| \le x^2 + y^2, \forall x, y \in U$. 证明: f 在 (0,0) 处可微,并计算它在 (0,0) 处的微分.
 - (3) 设 g 在 (0,0) 点的某个开球邻域 U 中有定义,且满足 $|g(x,y)| \leq \sqrt{x^2 + y^2}, \forall x, y \in U$. g 在 (0,0) 处是否一定可微?