	Roll No:
1	

Q1. A 1.0 microgm speck of dust is trapped to roll inside a tube of length L = 1.0 micrometer. The tube is capped at both ends and the motion of speck is considered along the length.

(a) Modeling this as a one-dimensional infinite square well, determine the value of the quantum number 'n' if the speck has an energy of 1.0 microJoule.

(b) What is the probability of finding this speck within 0.1 micrometer (0.45<x<0.55) of the center of the tube.

(c) How much energy is needed to excite this speck to an energy level next to 1 microJoule ? Compare this excitation energy with the thermal energy at room temperature (T=300 K).

[2+2+2 Marks]

a)
$$\frac{n^2 \pi^2 t^2}{2 m L^2} = 10^6$$
 Joule $\Rightarrow \frac{1}{2}$ marks
$$\frac{n^2 \times (3.14)^2 \times (1.05 \times 10^{-34})^2}{2 \times 10^{-9} \times (10^{-6})^2} = 10^6$$

$$n = 1.356 \times 10^{+20}$$
Africa full marks
$$(4 \text{ if } n \sim 10^{19} - 10^{21})$$

Because n is too large, this actually Can be Considered as a classical analogue of the Quantum problem.

(C) Excitation Energy $\Delta E = E_{n+1} - E_n = \frac{(2n+1) \pi^2 h^2}{2mL^2}$ or $\Delta E \simeq \frac{n \pi^2 h^2}{mL^2}$ [because n = m > 1]

 $\Delta E \sim 14.74 \times 10^{-2} + Joule$ $\Delta E \sim 9.21 \times 10^{-8} \text{ eV} \longrightarrow 0$

Thermal Energy = KBT = 2.6 × 10 -2 eV. _____ Marks

Roll No:	70,00

Q2. A particle with energy E is bound in a finite square well potential with height U and width 2L (as shown in the figure below)

- (a) Consider the case E<U, obtain the energy quantization condition for the symmetric wave functions in terms of K and α , where K= $\sqrt{2mE/\hbar^2}$ and $\alpha = \sqrt{2m(U-E)/\hbar^2}$
- (b) Apply this result to an electron trapped at a defect site in a crystal. Modeling the defect as a finite square well potential with height 5 eV and width 200 pm, calculate the ground state energy?

(c) Calculate the total number of bound states with symmetric wavefunction?

[2+2+2 Marks]

(a) Inside the well (-L < x < L), the particle is free The wavefunction Symmetric about x=0 is $Y_T(x) = A \cos Kx$, where $K = \sqrt{\frac{2mE}{\hbar^2}}$

outside the well,

Boundary Conditions at X=L implies

" AK Sink L = Coxe - XL (1) marks
for proper
boundary
Condition
either at

or, See
$$\left(\frac{\sqrt{2mE}}{\hbar}L\right) = \frac{U}{E}$$

$$Sec^{2}(VE) = \frac{5}{E}$$
or $GS(VE) = \frac{\sqrt{E}}{21236}$

Gr. State Energy > | E, = 1.1475

Else Cut I mark.

Egn (2) Can also be written as $Cos(0) = \frac{\theta}{2.236} \qquad (\theta = \sqrt{E})$ Because Coso lies between 0 and 1 (for all 0) O Should be < 2.236 But there exists no solution of the above transendental extration for 0 \le 2.236 except the ground State. Hence there exists only one bound state for U= SeV. $\forall \pi(x) = B e^{-x}$: $\forall \pi(x) = C e^{-x}$ Else Cost I mank.

Ro	II	N	0	:

Q3. A scanning tunneling microscope (STM) can be approximated as an electron tunneling into a step potential $[V(x)=0 \text{ for } x\leq 0,\ V(x)=V_0 \text{ for } x>0]$. The tunneling current (or probability) in a STM reduces exponentially as a function of the distance from the sample. Considering only single electron-electron interaction, an applied voltage of 5 V and sample work function of 7 eV, calculate the amplification in the tunneling current if the separation is reduced from 2 atoms to 1 atom thickness.

(Take approximate size of an atom to be 3 Angstrom)

[3 Marks]

Tunnelling Current (or probabability)

I
$$\sim e^{-2d \times}$$
, $d = \sqrt{2m|(U-E)|}$ Correct

Expansion

Now, an applied votate of 5V for a Single electron

will generate answer a potential $V = SeV$

Also the work, function $\Phi = E = 7eV$.

Momentum or wavevector

of \bar{e}

Marks for Correct

Value of d

To Separation is reduced from 2-atoms to 1-atom

thickness,

Amplification in Tunnelling Current $= \frac{e^{-2d \times 1}}{e^{-2d \times 2}} \left[\begin{array}{c} x_1 = 3 \, \text{A} \\ x_2 = 6 \, \text{A} \end{array} \right]$
 $= e^{+2.\times 7.27 \times 10^2 \times 3 \times 10^{-10}}$
 $= e^{-3.36}$
 $= 78$

Marks e