中国科学技术大学数学科学学院 2020~2021 学年第 2 学期考试试卷 A 卷

课程名称:	线性	生代数 A1		课程代码:MATH1004		04
开课院系:	数等	2科学学院		考试形式:闭卷		
姓名:		学号:		专	业:	
题号	1~6	7	8	9	10	总分
得分						

- 说明: 1. 若某题有 a、b 两个版本,则选择其中1个版本,多做不得分.
 - 2. 不得使用计算器等电子设备.
- 一、简答题. 每小题 6 分, 共 36 分. 需简要说明理由或举出例子, 结果需化简.
- 1. 写出一个 2 阶实方阵A, 满足 $A^4 A^2 + I = 0$.
- 2. 已知复方阵A的特征多项式为 $x^4 + x^3 + 1$. 写出 A^3 的特征多项式.
- 3. 已知复方阵A的 Jordan 标准形为 $J_{2021}(0)$. 写出 A^{100} 的 Jordan 标准形.
- 4. 对于任意复方阵A,是否一定存在复方阵B,使得 $B^2 = A$?
- 5. 若n阶复方阵A, B都可以相似成对角阵,则AB是否一定可以相似成对角阵?
- 6. 若n阶复方阵A,B满足对于任意 $x \in \mathbb{C}$ 和 $k \in \mathbb{N}$ 都有 $rank(xI A^k) = rank(xI B^k)$,则A与B是否一定相似?

- 二、解答题. 每小题 16 分, 共 64 分. 需给出详细解答和证明过程.
- 7. 设复方阵A,B的特征多项式都等于其最小多项式,即 $\varphi_A = d_A$, $\varphi_B = d_B$. 证明: 当且仅当 φ_B 整除 φ_A 时,存在列满秩矩阵P使得AP = PB.

8. 设m,n是正整数,映射 $f: \mathbb{C}^{m \times m} \to \mathbb{C}^{n \times n}$ 满足:对于任意 $X,Y \in \mathbb{C}^{m \times m}$ 和 $\lambda \in \mathbb{C}$,有f(X+Y)=f(X)+f(Y), $f(\lambda X)=\lambda f(X)$,f(XY)=f(X)f(Y), $f(I_m)=I_n$. 证明:f是单射并且m整除n.

- 9a. (1) 把实方阵 $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 3 \end{pmatrix}$ 表示成A = QR的形式,其中Q是正交方阵,R是上三角方阵,R的对角元素都是正数. (2) 证明上述表示方式是唯一的.
- 9b. 设m,n是正整数, $f(x) = \prod_{i=1}^{m} (x u_i) \pi g(x) = \prod_{j=1}^{n} (x v_j)$ 是给定的复系数多项式,V是次数≤m+n-1的复系数多项式全体构成的复线性空间,V上的线性变换 $\rho: x^i \mapsto x^i g(x), x^{m+j} \mapsto x^j f(x), \forall i=0,1,\cdots,m-1, j=0,1,\cdots,n-1.$ (1)求 ρ 在V的基 $x^{m+n-1},\cdots,x,1$ 下的矩阵A. (2)证明: $\det(A) = \prod_{i,j} (u_i v_j)$.

- 10a. 设实二次型 $Q(x_1,x_2,x_3) = ax_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + ax_2x_3$. (1) 求a = 0时Q的相合标准形. (2) 求所有实数a使得Q是正定的.
- 10b. 设 \mathcal{A} 是线性空间V上的线性变换, U_1,U_2,U_3 分别是 $\alpha,\beta,\alpha+\beta\in V$ 生成的 \mathcal{A} 循环子空间。证明:若 α,β 相对于 \mathcal{A} 的最小多项式 d_α,d_β 互素,则 $U_3=U_1\oplus U_2$.

参考答案与评分标准

1.
$$\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$
 2. $x^4 + (x+1)^3$ 3. $\operatorname{diag}\left(\underbrace{J_{21}(0), \cdots, J_{21}(0)}_{21 \uparrow}, \underbrace{J_{20}(0), \cdots, J_{20}(0)}_{79 \uparrow}\right)$

- 4. 不一定. 例如: $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 不是任何矩阵的平方.
- 5. 不一定. 例如: $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $AB = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 不可相似成对角.
- 6. 不一定. 例如: $A = \text{diag}(J_3(1), 1) = B = \text{diag}(J_2(1), J_2(1))$ 不相似. 设 $k \ge 1$. $A^k = A$ 相似, $B^k = B$ 相似. 当 $x \ne 1$ 时, $\text{rank}(xI A^k) = \text{rank}(xI B^k) = 4$. 当x = 1时, $\text{rank}(xI A^k) = \text{rank}(xI B^k) = 2$.

7. 充分性: 设
$$\alpha$$
使得 $d_{A,\alpha}=d_A=\varphi_A$,则 $\beta=\frac{\varphi_A}{\varphi_B}(A)$ α满足 $d_{A,\beta}=\varphi_B$. (4分)

$$设P_1 = (\beta, A\beta, \cdots, A^{k-1}\beta), \quad k = \deg(\varphi_B), \quad \text{Mrank}(P_1) = k, \quad AP_1 = P_1C, \tag{4 分)$$

其中
$$C$$
是 φ_B 的友方阵. 设 $B = P_2CP_2^{-1}$,则 $P = P_1P_2^{-1}$ 满足要求. (4分)

必要性:设可逆方阵
$$Q=(P*)$$
.由 $AQ=Q\begin{pmatrix} B & * \\ O & C \end{pmatrix}$,得 φ_B 整除 $\varphi_A=\varphi_B\varphi_C$. (4分)

8. 假设存在
$$A \neq O$$
使 $f(A) = O$. 对任意 i, j ,存在 $P, Q \in \mathbb{C}^{m \times m}$ 使 $E_{ij} = PAQ$. (4分)

故所有
$$f(E_{ij}) = 0$$
,与 $f(I_m) = I_n$ 矛盾. 因此, f 是单射. (4分)

$$记A_i = f(E_{ii}).$$
 由所有 E_{ii} 相似、幂等,得所有 A_i 相似、幂等. (4分)

故
$$\operatorname{tr}(A_i) = \operatorname{rank}(A_i)$$
是常数,记作 r . 因此, $n = \sum \operatorname{tr}(A_i) = mr$, (4分)

9a. (1) 计算过程略. 得
$$Q = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{-2}{\sqrt{14}} & \frac{-1}{\sqrt{21}} \\ \frac{1}{\sqrt{6}} & \frac{3}{\sqrt{14}} & \frac{-2}{\sqrt{21}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{14}} & \frac{4}{\sqrt{21}} \end{pmatrix}$$
, $R = \begin{pmatrix} \sqrt{6} & \frac{3\sqrt{6}}{2} & \sqrt{6} \\ 0 & \frac{\sqrt{14}}{2} & \frac{2\sqrt{14}}{7} \\ 0 & 0 & \frac{3\sqrt{21}}{7} \end{pmatrix}$. (12 分)

(2) 若
$$A = Q_1 R_1 = Q_2 R_2$$
,则 $Q_2^{-1} Q_1 = R_2 R_1^{-1}$ 是上三角的正交阵,进而是单位阵. (4 分)

9b. (1) 设
$$f(x) = \sum_{i=0}^{m} a_i x^i$$
, $g(x) = \sum_{j=0}^{n} b_j x^j$, 则 $A = \begin{pmatrix} a_m & & b_n \\ \vdots & \ddots & \vdots & \ddots \\ \vdots & \ddots & a_m & \vdots & \ddots & b_n \\ a_0 & \ddots & \vdots & b_0 & \ddots & \vdots \\ & \ddots & \vdots & & \ddots & \vdots \\ & & a_0 & & & b_0 \end{pmatrix}$. (6分)

$$(2) WA = \begin{pmatrix} 0 & U \\ V & 0 \end{pmatrix}, \quad \sharp + U = \begin{pmatrix} g(u_1) & & \\ & \ddots & \\ & & g(u_m) \end{pmatrix} \begin{pmatrix} u_1^{m-1} & \cdots & u_1 & 1 \\ \vdots & \cdots & \vdots & \vdots \\ u_m^{m-1} & \cdots & u_m & 1 \end{pmatrix},$$

$$V = \begin{pmatrix} f(v_1) & & \\ & \ddots & \\ & & f(v_n) \end{pmatrix} \begin{pmatrix} v_1^{n-1} & \cdots & v_1 & 1 \\ \vdots & \cdots & \vdots & \vdots \\ v_n^{n-1} & \cdots & v_n & 1 \end{pmatrix}, W = \begin{pmatrix} u_1^{m+n-1} & \cdots & u_1 & 1 \\ \vdots & \cdots & \vdots & \vdots \\ u_m^{m+n-1} & \cdots & u_m & 1 \\ v_1^{m+n-1} & \cdots & v_1 & 1 \\ \vdots & \cdots & \vdots & \vdots \\ v_n^{m+n-1} & \cdots & v_n & 1 \end{pmatrix}.$$
(6 $\mbox{$\beta$}$)

$$\det(A) = \frac{(-1)^{mn} \det(U) \det(V)}{\det(W)} = \frac{\prod_{i} g(u_i) \prod_{j} f(v_j) \prod_{i < j} (u_j - u_i) \prod_{i < j} (v_j - v_i)}{\prod_{i < j} (u_j - u_i) \prod_{i < j} (v_j - v_i)} = \prod_{i, j} (u_i - v_j). \tag{4 }$$

10a. (1)
$$Q = x_2^2 + x_3^2 + x_1(x_2 + x_3) = (\frac{1}{2}x_1 + x_2)^2 + (\frac{1}{2}x_1 + x_3)^2 - \frac{1}{2}x_1^2 = y_1^2 + y_2^2 - y_3^2$$
. (6 分)

$$(2) Q = x^{T} A x, \quad 其中A = \begin{pmatrix} a & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{a}{2} \\ \frac{1}{2} & \frac{a}{2} & 1 \end{pmatrix}. \quad Q$$
是正定的 \Leftrightarrow
$$\begin{cases} a > 0 \\ a - \frac{1}{4} > 0 \\ -\frac{1}{4} a^{3} + \frac{5}{4} a - \frac{1}{2} > 0 \end{cases}$$
 (6 分)

解得
$$\sqrt{2}-1 < a < 2$$
. (4 分)

10b. 根据 Bezout 定理,存在多项式
$$u,v$$
使得 $ud_{\alpha}+vd_{\beta}=\gcd(d_{\alpha},d_{\beta})=1.$ (4分)

设
$$\gamma \in U_1 \cap U_2$$
,则 $d_\alpha(\mathcal{A})\gamma = d_\beta(\mathcal{A})\gamma = 0$,得 $\gamma = 0$. (4 分)

显然,
$$U_3 \subset U_1 + U_2$$
. 综上, $U_3 = U_1 \oplus U_2$. (4分)