Assignment 3: Data Exploration

Chenjia Liu

Fall 2023

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

Directions

- 1. Rename this file <FirstLast>_A03_DataExploration.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Assign a useful name to each code chunk and include ample comments with your code.
- 5. Be sure to answer the questions in this assignment document.
- 6. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 7. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai.

TIP: If your code extends past the page when knit, tidy your code by manually inserting line breaks.

TIP: If your code fails to knit, check that no install.packages() or View() commands exist in your code.

Set up your R session

1. Check your working directory, load necessary packages (tidyverse, lubridate), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX_Neonicotinoids_Insects_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON_NIWO_Litter_massdata_2018-08_raw.csv). Name these datasets "Neonics" and "Litter", respectively. Be sure to include the subcommand to read strings in as factors.

getwd()

[1] "C:/Users/15638/Desktop/DUKE/FALL2023/ENV872/EDE_Fall2023"

library(tidyverse)

```
## -- Attaching core tidyverse packages ------ tidyverse 2.0.0 -- ## v dplyr 1.1.3 v readr 2.1.4 ## v forcats 1.0.0 v stringr 1.5.0
```

```
## v ggplot2
               3.4.3
                         v tibble
                                     3.2.1
## v lubridate 1.9.2
                                     1.3.0
                         v tidyr
               1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(lubridate)
Neonics - read.csv("./Data/Raw/ECOTOX_Neonicotinoids_Insects_raw.csv", stringsAsFactors = TRUE)
Litter - read.csv("./Data/Raw/NEON_NIWO_Litter_massdata_2018-08_raw.csv",stringsAsFactors = TRUE)
```

Learn about your system

2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicology of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.

Answer:Neonicotinoids are active substances used in plant protection products to control harmful insects. Neonicotinoids transfuse into pollen grains, nectar, cell sap and the food synthesized in the plants treated by them. These chemicals are highly neurotoxic in their mode of action to insects and other arthropods and act on the nicotinic acetylcholine receptor

3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer:Litter and Woody debris are important parts of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes to structure and roughness, thereby influencing water flows and sediment transport

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON_Litterfall_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: 1.Liter and fine woody debris sampling is executed at terrestrial NEON sites that contain woody vegetation >2m tall 2.One litter trap pair (one elevated trap and one ground trap) is deployed, either radomly or targated denpends on the aerial percent coverage, for every 400 m2 plot area, resulting in 1-4 trap pairs per plot. 3. Ground traps are sampled once per year. Target sampling frequency for elevated traps varies by vegetation present at the site.

Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

dim(Neonics)

```
## [1] 4623 30
```

6. Using the summary function on the "Effect" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

colnames(Neonics)

```
[1] "CAS.Number"
                                             "Chemical.Name"
##
##
    [3] "Chemical.Grade"
                                            "Chemical.Analysis.Method"
##
   [5] "Chemical.Purity"
                                             "Species.Scientific.Name"
        "Species.Common.Name"
                                             "Species.Group"
##
##
   [9] "Organism.Lifestage"
                                            "Organism.Age"
                                            "Exposure.Type"
## [11] "Organism.Age.Units"
  [13] "Media.Type"
                                            "Test.Location"
  [15] "Number.of.Doses"
                                             "Conc.1.Type..Author."
## [17] "Conc.1..Author."
                                            "Conc.1.Units..Author."
## [19] "Effect"
                                            "Effect.Measurement"
                                             "Response.Site"
## [21] "Endpoint"
       "Observed.Duration..Days."
                                            "Observed.Duration.Units..Days."
## [23]
## [25] "Author"
                                            "Reference.Number"
## [27] "Title"
                                            "Source"
                                            "Summary.of.Additional.Parameters"
## [29] "Publication. Year"
```

summary(Neonics\$Effect)

##	Accumulation	Avoidance	Behavior	Biochemistry
##	12	102	360	11
##	Cell(s)	Development	Enzyme(s)	Feeding behavior
##	9	136	62	255
##	Genetics	Growth	Histology	Hormone(s)
##	82	38	5	1
##	Immunological	Intoxication	Morphology	Mortality
##	16	12	22	1493
##	Physiology	Population	Reproduction	
##	7	1803	197	

Answer: The most common effects are population and mortality. We are specifically intertested in these effects because we want to know how the presense of Neonics affect the population (reduce population), and the size of population is related to mortality, which could increase as the result of Neonics.

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.[TIP: The sort() command can sort the output of the summary command...]

```
summary(Neonics$Species.Common.Name)
```

##	Honey Bee	Parasitic Wasp
## ##	667 Buff Tailed Bumblebee	285
##	183	Carniolan Honey Bee 152
##	Bumble Bee	Italian Honeybee
##	140	113
##	Japanese Beetle	Asian Lady Beetle
##	94	76
##	Euonymus Scale	Wireworm
##	75	Minuta Directo Pur
## ##	European Dark Bee 66	Minute Pirate Bug 62
##	Asian Citrus Psyllid	Parastic Wasp
##	60	58
##	Colorado Potato Beetle	Parasitoid Wasp
##	57	51
##	Erythrina Gall Wasp	Beetle Order
##	49	47
## ##	Snout Beetle Family, Weevil 47	Sevenspotted Lady Beetle 46
##	True Bug Order	Buff-tailed Bumblebee
##	45	39
##	Aphid Family	Cabbage Looper
##	38	38
##	Sweetpotato Whitefly	Braconid Wasp
##	37	33
##	Cotton Aphid 33	Predatory Mite 33
## ##	Ladybird Beetle Family	Parasitoid
##	30	30
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ground Beetle Family
##	29	27
##	Rove Beetle Family	Tobacco Aphid
## ##	27 Chalcid Wasp	27 Convergent Lady Beetle
##	25	25
##	Stingless Bee	Spider/Mite Class
##	25	24
##	Tobacco Flea Beetle	Citrus Leafminer
##	24	23
##	Ladybird Beetle	Mason Bee
## ##	23 Mosquito	22 Argentine Ant
##	22	21
##	Beetle	Flatheaded Appletree Borer
##	21	20
##	Horned Oak Gall Wasp	Leaf Beetle Family
##	20	20
##	Potato Leafhopper	Tooth-necked Fungus Beetle
##	20 Cadling Math	20
## ##	Codling Moth 19	Black-spotted Lady Beetle
##	19	18

##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
##	18	18
##	Mirid Bug 18	Mulberry Pyralid 18
##	Silkworm	Vedalia Beetle
##	18	vedalia beetle 18
##	Araneoid Spider Order	Bee Order
##	17	17
##	Egg Parasitoid	Insect Class
##	17	17
##	Moth And Butterfly Order	Oystershell Scale Parasitoid
##	17	17
##	Hemlock Woolly Adelgid Lady Beetle	Hemlock Wooly Adelgid
##	16	16
##	Mite	Onion Thrip
##	16	16
##	Western Flower Thrips	Corn Earworm
##	15	14
##	Green Peach Aphid	House Fly
##	14	14
##	Ox Beetle	Red Scale Parasite
##	14 Spined Soldier Bug	14
##	Spined Soldier Bug 14	Armoured Scale Family 13
##	Diamondback Moth	Eulophid Wasp
##	13	13
##	Monarch Butterfly	Predatory Bug
##	13	13
##	Yellow Fever Mosquito	Braconid Parasitoid
##	13	12
##	Common Thrip	Eastern Subterranean Termite
##	12	12
##	Jassid	Mite Order
##	12	12
##	Pea Aphid	Pond Wolf Spider
##	12	12
##	Spotless Ladybird Beetle	Glasshouse Potato Wasp
##	. 11	10
##	Lacewing	Southern House Mosquito
##	Tree Spotted Lader Poetla	10
##	Two Spotted Lady Beetle 10	Ant Family 9
##	Apple Maggot	(Other)
##	9	670
ir m	3	010

sort(summary(Neonics\$Species.Common.Name))

Apple Maggot	Ant Family	##
9	9	##
Lacewing	Glasshouse Potato Wasp	##
10	10	##
Two Spotted Lady Beetle	Southern House Mosquito	##

##	10	10
##	Spotless Ladybird Beetle	Braconid Parasitoid
##	11	12
##	Common Thrip	Eastern Subterranean Termite
##	12	12
##	Jassid	Mite Order
##	12	12
##	Pea Aphid 12	Pond Wolf Spider 12
## ##	Armoured Scale Family	Diamondback Moth
##	13	13
##	Eulophid Wasp	Monarch Butterfly
##	13	13
##	Predatory Bug	Yellow Fever Mosquito
##	13	13
##	Corn Earworm	Green Peach Aphid
##	14	14
##	House Fly	Ox Beetle
##	14	14
##	Red Scale Parasite	Spined Soldier Bug
##	14	14
##	Western Flower Thrips	Hemlock Woolly Adelgid Lady Beetle
##	15	16
##	Hemlock Wooly Adelgid	Mite
##	16	16
##	Onion Thrip	Araneoid Spider Order
##	16	17 E Pitit
##	Bee Order	Egg Parasitoid
## ##	17 Insect Class	Moth And Putterfly Order
##	Insect class	Moth And Butterfly Order 17
##	Oystershell Scale Parasitoid	Black-spotted Lady Beetle
##	17	18
##	Calico Scale	Fairyfly Parasitoid
##	18	18
##	Lady Beetle	Minute Parasitic Wasps
##	18	18
##	Mirid Bug	Mulberry Pyralid
##	18	18
##	Silkworm	Vedalia Beetle
##	18	18
##	Codling Moth	Flatheaded Appletree Borer
##	19	20
##	Horned Oak Gall Wasp	Leaf Beetle Family
##	20	20
## ##	Potato Leafhopper	Tooth-necked Fungus Beetle
## ##	20 Argentine Ant	20 Beetle
## ##	Argentine Ant	21
##	Mason Bee	Mosquito
##	22	22
##	Citrus Leafminer	Ladybird Beetle
##	23	23
##	Spider/Mite Class	Tobacco Flea Beetle

##	24	24
##	Chalcid Wasp	Convergent Lady Beetle
##	25	25
##	Stingless Bee	Ground Beetle Family
##	25	27
##	Rove Beetle Family	Tobacco Aphid
##	27	27
##	Scarab Beetle	Spring Tiphia
##	29	29
##	Thrip Order	Ladybird Beetle Family
##	29	30
##	Parasitoid	Braconid Wasp
##	30	33
##	Cotton Aphid	Predatory Mite
##	33	33
##	Sweetpotato Whitefly	Aphid Family
##	37	38
##	Cabbage Looper	Buff-tailed Bumblebee
##	38	39
##	True Bug Order	Sevenspotted Lady Beetle
##	45	46
##	Beetle Order	Snout Beetle Family, Weevil
##	47	47
##	Erythrina Gall Wasp	Parasitoid Wasp
##	49	51
##	Colorado Potato Beetle	Parastic Wasp
##	57	58
##	Asian Citrus Psyllid	Minute Pirate Bug
##	60	62
##	European Dark Bee	Wireworm
##	66	69
##	Euonymus Scale	Asian Lady Beetle
##	75	76
##	Japanese Beetle	Italian Honeybee
##	94	113
##	Bumble Bee	Carniolan Honey Bee
##	140	152
##	Buff Tailed Bumblebee	Parasitic Wasp
##	183	285
##	Honey Bee	(Other)
##	667	670

Answer: The 6 most commonly studied species in the dataset from most to least are: 1. Honey Bee 2. Parasitic Wasp 3. Buff Tailed Bumblebee 4. Carniolan Honey Bee 5. Bumble Bee 6. Italian Honeybee. We are interested in bees because they are the major pollinator for the agriculture, and they are greatly affected by the use of systemic pesticides such as Neonics. Our food security and resources is strongly related to the presence of bees.

8. Concentrations are always a numeric value. What is the class of Conc.1..Author. column in the dataset, and why is it not numeric?

```
class(Neonics$Conc.1..Author.)
```

```
view(Neonics$Conc.1..Author.)
```

Answer:It is a factor. It is not numeric because there are not only number in this column, but there are other objects, such as 'NR'

Explore your data graphically (Neonics)

9. Using geom_freqpoly, generate a plot of the number of studies conducted by publication year.

```
ggplot(Neonics) +
geom_freqpoly(aes(x = Publication.Year), bins = 50)
```


10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

```
ggplot(Neonics) +
geom_freqpoly(aes(x = Publication.Year, color = Test.Location), bins = 50)
```


Interpret this graph. What are the most common test locations, and do they differ over time?

Answer:The most common location before 2000 is field natural. But after 2000, the lab became the most common location and the count of publication has also increase a lot. The publication reached peak between 2010 and 202.

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX_CodeAppendix for more information.

[TIP: Add theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) to the end of your plot command to rotate and align the X-axis labels...]

```
ggplot(Neonics) +
  geom_bar(aes(x = Endpoint))+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```


Answer:The most common endpoints are LOEL and NOEL. LOEL:Lowest-observable-effect-level: lowest dose (concentration) producing effects that were significantly different (as reported by authors) from responses of controls (LOEAL/LOEC) NOEL:No-observable-effect-level: highest dose (concentration) producing effects not significantly different from responses of controls according to author's reported statistical test (NOEAL/NOEC)

Explore your data (Litter)

[1] "2018-08-02" "2018-08-30"

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

```
#class(Litter$collectDate) #It's a factor
Litter$collectDate <- as.Date(Litter$collectDate, format = "%Y-%m-%d")
class(Litter$collectDate)

## [1] "Date"

view(Litter)
unique(Litter$collectDate)</pre>
```

13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

unique(Litter\$namedLocation)

```
## [1] NIWO_061.basePlot.ltr NIWO_064.basePlot.ltr NIWO_067.basePlot.ltr
## [4] NIWO_040.basePlot.ltr NIWO_041.basePlot.ltr NIWO_063.basePlot.ltr
## [7] NIWO_047.basePlot.ltr NIWO_051.basePlot.ltr NIWO_058.basePlot.ltr
## [10] NIWO_046.basePlot.ltr NIWO_062.basePlot.ltr NIWO_057.basePlot.ltr
## 12 Levels: NIWO_040.basePlot.ltr ... NIWO_067.basePlot.ltr
```

summary(Litter\$namedLocation)

Answer: 'Unique' is able to directly tell how many levels in the data, When using 'summary', we need to count number of levels but it also provide more information, ie. count of each location

14. Create a bar graph of functionalGroup counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

```
ggplot(Litter) +
geom_bar(aes(x = functionalGroup))
```


15. Using geom_boxplot and geom_violin, create a boxplot and a violin plot of dryMass by functional-Group.

```
ggplot(Litter) +
geom_boxplot(aes(x = functionalGroup, y = dryMass))
```



```
ggplot(Litter) +
geom_violin(aes(x = functionalGroup, y = dryMass))
```


Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: In this case, only boxplot can show the IQR, median, and outliers, and the different length of the lines on both side of the box tell us the skewness of data. We can only see the range of our data from the violin plot in this case.

What type(s) of litter tend to have the highest biomass at these sites?

Answer:Needles tend to have the highest biomass at these sites.