2001年3月

- $oxed{1}$ 以下に述べる主張について,正しいか正しくないか判定し,正しいときは証明を与え,正しくないときは反例を与えよ.
 - (1) 実数列 $\{a_n\}$ が $\lim_{n \to \infty} a_n = 0$ を満たすならば $\sum_{n=1}^{\infty} \frac{a_n}{n}$ は収束する .
 - (2) R 上で一様連続な実数値関数 f(x) に対し , $\alpha, \beta > 0$ が存在して

$$|f(x)| \le \alpha |x| + \beta (\forall x \in \mathbf{R}).$$

- 2 aを -1 でない実数とし、

$$A = \begin{pmatrix} a & a+1 & a+1 \\ a+1 & a & a+1 \\ a+1 & a+1 & a \end{pmatrix}$$

とおく。このとき、次の問いに答えよ。

- (1) 行列 A の固有値を求めよ。
- (2) 行列 A のそれぞれの固有値に対する固有ベクトルを求めよ。
- (3) 行列 A は対角化可能か。可能ならば実際に対角化し、不可能ならばその理由を述べよ。

- 3 素数 p を定める。
 - (1) p で割りきれない整数 a をとる。

$$1 \cdot a, \ 2 \cdot a, \cdots, \ (p-1) \cdot a$$

のそれぞれを p で割った余りは互いに異なることを示せ。 また、 a^{p-1} を p で割った余りは 1 に等しいことを示せ。

(2) 2 つの整数 c,d に対して、cd を p-1 で割った余りが 1 とする。 $a_1,a_2,...,a_n$ はどれも p より小さい正の整数とする。

$$b_i = (a_1 a_2 \cdots a_i)^c$$
 を p で割った余り , $i = 1, 2, ..., n$

とする。 b_1^d を p で割った余りは a_1 に等しいことを示せ。 また、 $p,d,b_1,b_2,...,b_n$ から $a_2,...,a_n$ の値を求める方法を述べよ。

(3) p=11, c=7 とする。(2) の性質を満たす d を $1 \leq d \leq 9$ の範囲で求めよ。 $0 \leq A_i \leq 8$ $(1 \leq i \leq 6)$ である整数 A_1,A_2,A_3,A_4,A_5,A_6 に対して、 $a_i=A_i+2$ とする。 これらの a_i から (2) の方法で得られる数列が、

$$\{b_1, b_2, b_3, b_4, b_5, b_6\} = \{5, 2, 3, 5, 4, 8\}$$

であるとき、数列 $A_1A_2A_3A_4A_5A_6$ を求めよ。

- |4| 以下の問に答えよ。
 - (1) 複素関数 $f(z) = e^{iz}/z$ を二つの上半円 $A = \{z \mid z = Re^{i\theta}, 0 \le \theta \le \pi\}$, $B = \{z \mid z = re^{i\theta}, 0 \le \theta \le \pi\}$, $0 < r < R < \infty$, 上で考えることにより、等式

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

を示せ。

(2) 複素関数 $f(z)=1/(z^4+1)$ を上半円上で考えることにより、等式

$$\int_0^\infty \frac{1}{x^4 + 1} dx = \frac{\pi}{2\sqrt{2}}$$

を示せ。

| 5 | 区間 [0,1] 上に Lebesgue 測度を考え、[0,1] 上の複素数値 2 乗可積分関数のつくる Hilbert 空間を $L^2[0,1]$ とする。 $f\in L^2[0,1]$ に対し

$$(Af)(x) := \int_0^x f(t) dt \qquad (x \in [0, 1])$$

と定める。

- (1) A が $L^2[0,1]$ 上の有界線形作用素であることを示せ。
- (2) A の共役作用素 A* を求めよ。
- (3) $A + A^*$ はどのような作用素か?
- $(4) ||(I+A)f|| \geq ||f||$ を示せ。(I は $L^2[0,1]$ 上の恒等作用素。)
- (5) A が固有値をもたないこと、すなわち、どのような $\lambda \in \mathbb{C}$ に対しても、

$$Af = \lambda f$$
 を満たす $f \in L^2[0,1]$ は $f = 0$ に限る

ことを示せ。

 $\boxed{6}$ 一変数関数 f の次の積分公式 (*) について以下の問に答えよ。

$$\int_0^1 f'(x)dx = f(1) - f(0).$$

- (1) f を [0,1] 上いたるところで微分可能であって f' が有界であるとする。この時、(*) が成立することを示せ。 $(ヒント: g_{\varepsilon}(x) \equiv (f(x+\varepsilon)-f(x))/\varepsilon, \varepsilon>0$,を考える。 ルベーグの収束定理と平均値の定理は使ってもよい。)
- (2) 区間 [0,1] 上の関数 f を次のように定める。まず、 $x\in(0,1)$ に対して、それを 3 進法で展開したときの小数 f 位の数を $a_{f}(x)$ と書く。 つまり $x=\sum_{i=1}^{\infty}a_{f}(x)/3^{f}$ 。 そして、

$$f(0) = 0,$$

$$f(x) = \sum_{j=1}^{b(x)} \chi(a_j(x))/2^j \quad (0 < x < 1),$$

$$f(1) = 1.$$

と定める。ここで、 χ は $\chi(0)=0, \chi(1)=1, \chi(2)=1,$ であって

$$b(x) = \min\{j \mid a_j(x) = 1\}.$$

ただし、 $\{j|a_j(x)=1\}=\emptyset$ の場合は $\min\{j\mid a_j(x)=1\}=\infty$ とする。

- (i) f のおおよそのグラフを描け。
- (ii) f は単調増加連続関数で、 ほとんどいたるところ f'=0 であることを示せ。

- 7 n 次元ユークリッド空間の点 $x=(x_1,...,x_n)$ の ノルムを $|x|=\sqrt{\sum\limits_{i=1}^n x_i^2}$ と書くとき、以下の間に答えよ。
 - (1) 2 変数関数 u_2 と 3 変数関数 u_3 を

$$u_2(x_1, x_2) = \log |x|$$
, $x = (x_1, x_2) \in \mathbf{R}^2$
 $u_3(x_1, x_2, x_3) = \frac{1}{|x|}$, $x = (x_1, x_2, x_3) \in \mathbf{R}^3$

とするとき、これらが各々 \mathbb{R}^2 、 \mathbb{R}^3 の原点以外 $(x \neq 0)$ で

$$-\Delta u = 0$$

を満たすことを示せ。

(ただし、
$$n$$
 変数関数 $u(x)$ $(x=(x_1,...,x_n))$ について $\Delta u=\sum_{i=1}^n \frac{\partial^2 u}{\partial x_i^2}$ 。)

(2) 2 次元ユークリッド空間 \mathbf{R}^2 の原点を中心とする単位球を $B=\{x=(x_1,x_2)|\quad |x|<1\}$ とし、問題

$$u - \Delta u + \langle x, \nabla u \rangle - |x| = 0$$
 B の中で

(*)

$$u(x) = 1$$
 ∂B の上で

を考える。ただし、 ∂B は B の境界、 $\nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}\right)$ で、 $<\cdot,\cdot>$ は \mathbf{R}^2 のスカラー積を表す。

(i) (1) の関数 u_2 を用いて $v = \exp(u_2)$ と定義するとき、v が連続かつほとんど いたるところで 2 回連続偏微分可能で、

$$v-\Delta v+< x, \nabla v>-|x|\leq 0$$
 B の中で
$$v(x)\leq 1 \qquad \partial B \quad \mathfrak{O}$$
上で

が成立することを示せ。上の不等号が成立する時、関数vを(*)の劣解という。

(ii) (i) とは逆に、

$$w-\Delta w+< x, \nabla w>-|x|\geq 0$$
 B の中で $w(x)>1$ ∂B の上で

が成立する時、関数wを(*)の優解という。(*)の優解をひとつ見つけよ。

- 图 正の整数 b に対して $a=b^2+1$ とし、 $\alpha=\sqrt{a+\sqrt{a}}$ とする。 有理数体 \mathbf{Q} に α を添加した体 $\mathbf{Q}(\alpha)$ が \mathbf{Q} の 4 次巡回拡大体 (ガロア拡大でガロア群が巡回群)であることを、次の順に証明せよ。
 - (1) α は、有理数係数の 4 次既約方程式

$$f(X) = X^4 - 2aX^2 + ab^2 = 0$$

の解であることを示し、この方程式の他の解をすべて求めよ。

(2)

$$\beta = \frac{\sqrt{a - \sqrt{a}}}{\sqrt{a + \sqrt{a}}}$$

をできるだけ簡単な式で表せ。(分母を有理化すること。)また、体 $\mathbf{Q}(\alpha)$ は、 \sqrt{a} および f(X)=0 のすべての解を含むことを示せ。

- (3) $\sqrt{a+\sqrt{a}}$ を $\sqrt{a-\sqrt{a}}$ に写す体 $Q(\alpha)$ の自己同型写像 σ に対して、 σ^2 が恒等写像 となることはないことを示し、ガロア群が巡回群であることを示せ。
- $oxed{9}$ (1) 実数係数の多項式環 $\mathbf{R}[X]$ から直積 $\mathbf{R} imes \mathbf{R}$ への写像 arphi を

$$\varphi : \mathbf{R}[X] \ni f(X) \mapsto (f(1), f(-1)) \in \mathbf{R} \times \mathbf{R}$$

で定める.このとき,次の問いに答えよ

- (i) φ は環準同型であることを示せ.
- (ii) *ϕ* は全射であることを示せ.
- (iii) φ の核はイデアル (X^2-1) であることを示せ .
- (2) 次の剰余環が整域であるかどうか調べよ.
 - (i) $\mathbf{R}[X]/(X^2-1)$
 - (ii) $\mathbf{R}[X]/(X^2+1)$

 $oxed{10}$ n 次直交行列全体の集合を O(n) とする。すなわち、

$$O(n) = \{ A \in M(n, R) \mid {}^{t}AA = E = A^{t}A \}$$

ここで、E は単位行列で、M(n,R) は n 次実正方行列全体の集合を表す。このとき、次を示せ。

- O(n) は積に関して群になる。
- O(n) に $M(n,R)=R^{n^2}$ の部分空間としての位相を与えるとき、O(n) はコンパクトである。
- (3) 次の2つの写像は、ともに連続である。

$$\varphi: O(n) \times O(n) \to O(n), \quad \varphi(A, B) = AB \quad (A, B \in O(n)),$$

$$\psi: O(n) \to O(n), \quad \psi(A) = A^{-1} \quad (A \in O(n)).$$

- 【11】 零でない実数 a に対して、 xyz 空間上の関数 $f(x,y,z)=(x^2+y^2+z^2)^a$ とする。 次の問いに答えよ。
 - (1) f の勾配ベクトル場 $(\nabla f)(x,y,z), \quad (x,y,z) \in \mathbf{R}^3$ は、球面 $S^2 = \{(x,y,z); x^2+y^2+z^2=1\}$ 上の各点で S^2 に垂直であることを示せ。
 - (2) ∇f の発散 $\operatorname{div}(\nabla f)$ を Δf とする。原点 (0,0,0) 以外の各点で $\Delta f=0$ となるような 定数 a を求めよ。
 - (3) t=0 のとき、 $\frac{1}{\sqrt{3}}(1,1,1)$ を通り、 $(\nabla f)(x(t),y(t),z(t))=(x'(t),y'(t),z'(t))$ を満たす曲線 P(t) について、P(t) と原点からの距離を計算せよ。ただし、x'(t) は x(t) の t に関する微分を表す。