МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики

Направление подготовки: «Прикладная математика и информатика» Магистерская программа: «Вычислительные методы и суперкомпьютерные технологии»

Образовательный курс «Методы глубокого обучения для решения задач компьютерного зрения»

ОТЧЕТ

по лабораторной работе №4

«Начальная настройка весов полностью связанных и сверточных нейронных сетей»

Выполнили:

студенты группы 381603м4 Кривоносов Михаил Герасимов Дмитрий Уваров Денис

Оглавление

Цель работы	3
Задачи	
Тренировочные и тестовые данные	
Схемы конфигураций сетей	
Сравнение результатов обучения	
Выволы	11

Цель работы

Применить методы обучения без учителя для настройки начальных значений весов сетей, построенных при выполнении предшествующих практических работ.

Задачи

- 1. Выбрать архитектуры полностью связанных нейронных сетей, построенных при выполнении предыдущих лабораторных работ.
- 2. Разработать модели автокодировщиков применительно к выбранным архитектурам нейронных сетей.
- 3. Обучить построенные глубокие модели.
- 4. Обучить выбранные архитектуры с начальной инициализацией весов сетей значениями, полученными в ходе обучения без учителя.
- 5. Протестировать обученные нейронные сети

Тренировочные и тестовые данные

Ввиду различий обработки данных для предыдущих работ, начальный трехмерный массив данных преобразуется для каждой модели по-разному:

- 1. Преобразование в трехмерный массив, один из индексов которого соответствует номеру кадра видеоряда, а два остальных размеру кадра. Затем данные случайным образом делятся на обучающую и тестовую выборки в отношении 33% к 67%. Полученные массивы X_{train} , X_{test} , y_{train} , y_{test} передаются в нейронной сети для дальнейшей работы с ними.
- 2. Преобразование в хронологическую развертку для каждого пикселя с учетом его окрестности (поле 5×5 , элементы, выходящие за пределы исходного поля, отождествляем с нулем), тем самым для каждого пикселя получаем трехмерную подматрицу размера $5\times5\times300$. Тем самым получается выборка из 262144 элементов, где в качестве каждого элемента указанная подматрица. Затем данные случайным образом делятся на обучающую и тестовую выборки в отношении 67% к 33%. Так как полученная выборка достаточно большого объёма, то необходимо уменьшить размер выборки вдвое. Полученные массивы X_{train} , X_{test} , y_{train} , y_{test} передаются в нейронной сети для дальнейшей работы с ними.

Размер исходных данных: трёхмерная матрица размером 512 × 512 × 300.

Схемы конфигураций сетей

В данной работе рассмотрим три различных конфигурации нейронной сети:

1. Настройка весов для полностью связной сети с одним скрытым слоем

Рисунок 1. Схема нейронной сети

Полученные результаты:

Рисунок 2. Точность на тренировочной и тестовой выборках в зависимости от номера эпохи.

Результаты получены для сети со следующими параметрами:

- Функция активации скрытого слоя: **Relu**;
- Количество нейронов на скрытом слое: 300;
- В качестве функции потерь используется **LogisticLoss**.

2. Настройка весов для полностью связной сети с двумя скрытыми слоями

Рисунок 3. Схема нейронной сети

Полученные результаты:

Рисунок 4. Точность на тренировочной и тестовой выборках в зависимости от номера эпохи.

Результаты получены для сети со следующими параметрами:

- Функция активации первого скрытого слоя: **Relu**;
- Количество нейронов на первом скрытом слое: 300;
- Функция активации второго скрытого слоя: **Tanh**;
- Количество нейронов на втором скрытом слое: 300;
- В качестве функции потерь используется **HingeLoss**.

3. Архитектура для сверточной нейронной сети

Рисунок 5. Схема нейронной сети

Полученные результаты:

Рисунок 6. Точность на тренировочной и тестовой выборках в зависимости от номера эпохи.

Результаты получены для сети со следующими параметрами:

• В качестве функции потерь используется LogisticLoss.

4. Архитектура для сверточной нейронной сети

Рисунок 7. Схема нейронной сети

Полученные результаты:

Рисунок 8. Точность на тренировочной и тестовой выборках в зависимости от номера эпохи.

Результаты получены для сети со следующими параметрами:

• В качестве функции потерь используется **HingeLoss**.

Сравнение результатов обучения

Было произведено сравнение результатов, полученных в предыдущих лабораторных работах для однотипных конфигураций нейронных сетей.

Сравнение проводилось на основе точности, достигнутой на тестовой выборке на каждой из эпох.

1. Полностью связная сеть с одним скрытым слоем

Рисунок 9. Сравнение результатов.

2. Полностью связная сеть с двумя скрытыми слоями

Рисунок 10. Сравнение результатов.

3. Сверточная нейронная сеть

Рисунок 11. Сравнение результатов.

4. Сверточная нейронная сеть

Рисунок 12. Сравнение результатов.

Выводы

Таким образом дополнительная начальная настройка весов с помощью автокодировщиков не дала прироста на рассмотренных архитектурах нейронных сетей.

Так как в библиотеке MXNet не реализован функционал слоёв с операциями типа unpooling, то такие слои были исключены из архитектур.