Elements of Astrophysics

14 ottobre 2022

Indice

1	Contenuti	1
2	Introduzione	1
_	Struttura stellare 3.1 Equazione di stato	14

1 Contenuti

mar 27 set 2022 08:30

Si vedono:

Lezione 1

- introduzione
- struttura ed evoluzione stellare (incluso supernove)
- oggetti compatti:
 - ♦ nane bianche (incluso equazione di stato ed equazioni di struttura)
 - \$\display \text{stelle di neutroni (incluso pulsar, magnetar, osservazioni)}
 - ♦ buchi neri (incluso processi di accrescimento)
- onde gravitazionali (non fa parte dell'esame)
- galassie (incluso classificazione, morfologia, AGN)
- cosmologia (incluso scala delle distanze, legge di Hubble, equazione di FLRW, CMB)

Essi sono gli argomenti chiesti all'esame.

2 Introduzione

Si studia tutto l'intervallo di onde elettromagnetiche: dalle onde radio ai raggi gamma. Si studiano i corpi celesti tramite il loro spettro di corpo nero. A terra si vedono bene gli intervalli ottico, infrarosso e radio. Gli altri sono schermati dall'atmosfera.

Sviluppo dei metodi osservativi. Solamente nel XIX secolo si è sviluppata l'astronomia nell'infrarosso. Nel 1930 si comincia l'osservazione tramite segnali radio, ma è nel 1960 che nasce l'astronomia nell'ultravioletto, nei raggi X e nei raggi gamma. Dal 2015 si utilizzano le osservazioni tramite le onde gravitazionali.

Tecniche osservative. La risoluzione angolare in base al diametro D del telescopio e la lunghezza d'onda λ da osserva è

 $\theta \approx 1.22 \frac{\lambda}{D}$

Nel visibile, si possono distinguere a occhio nudo due oggetti distanti almeno 60 arcsec. Gli effetti atmosferici peggiorano la risoluzione, mentre varie tecniche interferometriche la possono migliorare. Di un oggetto celeste, si può misurare il flusso (in fotometria tramite il vettore di Poynting), lo spettro (spettroscopia), la polarizzazione (polarimetria).

Coordinate celesti. Esistono due sistemi di coordinate. Le coordinate celesti sono utilizzate nell'astronomia amatoriale. La posizione è definita in coordinate polari: ascensione retta (right ascension, RA, α), declinazione (declination, DEC, δ). L'ascensione retta si misura in ore da 0 a 24. La declinazione si misura in gradi da -90° a 90° .

In astronomia professionale, si utilizzano le coordinate galattiche il cui riferimento è il piano della galassia. L'origine delle coordinate è nel centro galattico. La longitudine l e la latitudine b sono entrambe definite in gradi.

Proiezioni. Si possono utilizzare due proiezioni. La proiezione azimutale equidistante presenta minime distorsioni, ma rappresenta solamente metà del cielo. La proiezione di Hammer-Aitoff rappresenta completamente il cielo, ma distorce fortemente i poli.

Onde infrarosse. Nel visibile, il centro galattico è oscurato da polveri galattiche. L'assorbimento nel piano galattico è una funzione della lunghezza d'onda e colpisce più la luce visibile dell'infrarosso

$$I = I_0 e^{-\alpha r}, \quad \alpha \propto \lambda^{-1}$$

L'infrarosso è assorbito dall'atmosfera, eccetto per alcune lunghezze d'onda in micrometri (J 1.25, H 1.65, K 2.2, L 3.45, M 4.7, N 10, Q 20, Z 35, nome lunghezza). Bisogna porre attenzione al rumore termico, in particolare per oggetti circa a $T=300\,\mathrm{K}$.

Microonde. Si osserva una radiazione uniforme di microonde a $T=2.728\,\mathrm{K}$. Sono presenti delle piccole misotropie, delle variazioni di circa $\Delta T=3.353\,\mathrm{mK}$ per effetto doppler di rotazione del Sole attorno al centro galattico. Rimuovendo tale effetto, si può ottenere il fondo di radiazione cosmica ($\Delta T=18\,\mu\mathrm{K}$). Questo indica che, all'inizio, l'universo non era perfettamente omogeneo e tali differenze hanno permesso la nascita di varie strutture celesti.

Onde radio. Tramite le onde radio, si sono scoperti segnali con intervalli sempre identici: la prima osservazione di radio pulsar. Inoltre, si sono osservate anche i quasar (i nuclei galattici attivi).

Raggi X. Si hanno avute le prime evidenze dei buchi neri (in particolare Cygnus X-1).

Raggi gamma. Si osservano i gamma-ray bursts. I flussi misurati sono costituiti da pochi fotoni a causa della lontananza.

Onde gravitazionali. Le onde gravitazionali sono predette dalla relatività generale. Esse sono distorsioni dello spazio-tempo come si propagano come un'onda. Sistemi binari di oggetti compatti sono le sorgenti più luminose. Anche le onde gravitazionali sono emesse a frequenze a seconda delle sorgenti.

Tramite le onde gravitazionali si è potuto osservare la presenza di buchi neri sopra le venti masse solari, limite per i buchi neri che emettono radiazione elettromagnetica?.

Lezione 2

Oltre a misurare l'intensità della radiazione di un corpo celeste, si può anche osservare la 2022 13:30

Oltre a misurare l'intensità della radiazione di un corpo celeste, si può anche osservare la radiazione in ogni banda di frequenza. Per la legge di Planck, la densità di energia ad una particolare frequenza è

$$u_{\nu} = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{\frac{h\nu}{k_B T}} - 1}$$

La densità di energia totale è

$$u = \int_0^\infty u_\nu \, d\nu = aT^4, \quad a \approx 7.6 \times 10^{-15} \, \text{cm}^{-3} \text{K}^{-4}$$

dove a è la costante di radiazione. Un corpo nero emette radiazione con un flusso f_{ν} ad una particolare frequenza. In astronomia, si utilizzano le unità CGS

$$[f_{\nu}] = \mathrm{s}^{-1} \mathrm{cm}^{-2} \mathrm{Hz}^{-1}$$

dove

$$1 \, \mathrm{W} = 10^7 \, \, \mathrm{s}^{-1}$$

Il flusso totale (detto bolometrico in quanto integrato su tutte le frequenze) è

$$f = \int_0^\infty f_\nu \, d\nu = \sigma T^4, \quad \sigma \approx 5.7 \times 10^{-5} \text{ s}^{-1} \text{cm}^{-2} \text{K}^{-4}$$

dove σ è la costante di Stefan-Boltzmann. La potenza emessa ad una frequenza da una stella è

$$L_{\nu} = f_{\nu}(r_{\star})4\pi r_{\star}^{2}, \quad [L] = s^{-1}Hz^{-1}$$

dove r_{\star} è il raggio della stella. La luminosità, cio
è la potenza irradiata, è

$$L = f(r_{\star})4\pi r_{\star}^{2}, \quad [L] = s^{-1}$$

Il flusso ad una distanza d è

$$f(d) = f(r_{\star}) \left(\frac{r_{\star}}{d}\right)^{2} = f(r_{\star}) \frac{4\pi r_{\star}^{2}}{4\pi d^{2}} = \frac{L}{4\pi d^{2}}$$

Il flusso è una quantità che si misura sempre. Sapendo la distanza con la stella, si può ricavare la sua luminosità

$$L = 4\pi d^2 f(d)$$

Esistono vari modi per misurare la distanza con una stella. Si vede il metodo della parallasse. Per una stella all'interno della galassia, si nota che, durante l'orbita della Terra, la stella si sposta. Sapendo di quanto si è spostata la Terra, e misurando gli angoli con la stella, si può ricavare la distanza per relazioni trigonometriche. Infatti, si consideri una stella sopra il sole rispetto la direzione perpendicolare al piano dell'eclittica. La distanza tra la stella ed il sole è

$$d\alpha \approx d_{\odot}$$

dove d_{\odot} è la distanza tra la Terra ed il sole, mentre α è l'angolo che la Terra ed il sole formano, prendendo la stella come vertice.

A causa delle grandi distanze tra gli oggetti celesti, si utilizza il parsec:

$$1\,\mathrm{pc} \approx 3.3\,\mathrm{ly}$$

esso è la distanza alla quale un oggetto ha spostamento nel cielo pari ad un arcosecondo, $\alpha=1\,\mathrm{arcsec}$. La stella più vicina è Proxima Centauri a $d\approx1.3\,\mathrm{pc}$. Il metodo della parallasse funziona per stelle fino a 100 pc (per riferimento, il raggio della Via Lattea è 10 kpc). Per stelle più distanti, non si riesce a distinguere lo spostamento nel cielo. In alcuni casi, si può misurare la luminosità

solamente usando informazioni dal flusso, ad esempio come varia oppure il suo spettro. Per stelle di cui si sa misurare la distanza, si ha

$$L = 4\pi d^2 f(d) = 4\pi r_{\star}^2 f(r_{\star})$$

Una stella emette una radiazione di corpo nero. Di esso, si conosce la relazione tra il flusso e la temperatura per

$$L = 4\pi r_{\star}^2 \sigma T^4$$

Si misura il flusso in funzione della frequenza, si misura la distanza e si ottiene la luminosità. Tramite lo spettro di corpo nero (legge di Wien oppure fittare la legge di Planck) si ricava la temperatura. Così, dalla relazione precedente, si ottiene il raggio della stella.

Magnitudine. Gli antichi greci classificavano le stelle in base alla luminosità. Il valore zero è attribuito alla stella più luminosa, mentre cinque la stella meno luminosa a occhio nudo. Nel XIX secolo, la magnitudine (apparente) viene legata al logaritmo del flusso

$$m = k - 2.5 \log_{10} f$$

Si sceglie la costante k in modo da fissare lo zero. In un primo sistema, la costante è scelta tale per cui la magnitudine m sia zero per la stella Vega:

$$m = -2.5 \log_{10} \frac{f}{f_{\text{Vega}}}$$

La stella più luminosa del cielo, Sirio, ha magnitudine m=-1.56. La magnitudine del sole è m=-26.73. Un fastidio è conoscere il flusso di Vega in ogni banda. Il sistema AB risolve tale problema:

$$m = -2.5 \log_{10} \frac{f}{f_0}$$

dove f_0 è fissato ed è lo stesso per ogni frequenza. Questo sistema è utilizzato nell'astronomia ottica.

Contrapposta alla magnitudine apparente, c'è quella assoluta M. Essa è la magnitudine di un oggetto a distanza di dieci parsec:

$$M \equiv m - 5\log_{10}\frac{d}{10\,\mathrm{pc}} = M_{\odot} - 2.5\log_{10}\frac{L}{L_{\odot}}$$

dove $M_{\odot} \approx 4.75$ e $L_{\odot} \approx 3.8 \times 10^{26} \, \mathrm{W}$ sono la magnitudine assoluta e la luminosità del sole.

Bande di frequenza. Le bande di frequenza sono denotate da pedici corrispondenti, ad esempio M_B . In ordine crescente di lunghezze d'onda:

- U, $0.365\,\mu\mathrm{m}$ con larghezza $\Delta\lambda = 0.068\,\mu\mathrm{m}$, ultravioletto;
- B, $0.44\,\mu\mathrm{m}$ con larghezza $\Delta\lambda = 0.098\,\mu\mathrm{m}$, blu-violetto;
- V, $0.55\,\mu\mathrm{m}$ con larghezza $\Delta\lambda = 0.089\,\mu\mathrm{m}$, verde;
- R, $0.70 \,\mu\text{m}$ con larghezza $\Delta \lambda = 0.22 \,\mu\text{m}$, rosso;
- I, $0.90 \,\mu\mathrm{m}$ con larghezza $\Delta \lambda = 0.24 \,\mu\mathrm{m}$, infrarosso vicino;
- J, H, K, L, M, N, Q, tutte nell'infrarosso.

Si utilizza anche il colore: la differenza tra le magnitudini, apparenti o assolute, di due bande. Ad esempio, un colore è indicato come B-V ed è un numero puro. Esso è legato alla temperatura superficiale di una stella. Equivale al rapporto tra i flussi in due bande di frequenza.

Determinazione della massa. Si sfruttano i sistemi binari. La metà delle stelle come il sole fanno parte di un sistema binario. Si consideri un sistema binario. Le due stelle ruotano attorno al centro di massa sullo stesso piano. Si visualizzino le orbite perpendicolarmente (si noti che le stelle sono diametralmente opposte nelle proprie orbite). Sia r_i la distanza tra il centro di massa e la stella M_i . Per definizione di centro di massa si ha

$$r_1 M_1 = r_2 M_2$$

La distanza tra le due stelle è

$$a = r_1 + r_2$$

Per Keplero, la velocità angolare di rivoluzione è

$$\omega^2 = G \frac{M_1 + M_2}{a^3}$$

Riuscendo a risolvere le due stelle nel cielo, si può misurare la separazione angolare (dal centro di massa)

$$r_1=\theta_1 d, \quad r_2=\theta_2 d \implies rac{r_1}{r_2}=rac{\theta_1}{\theta_2}=rac{M_2}{M_1}$$

dove d è la distanza con la Terra. Se si può misurare la distanza con il sistema, allora si ricava r_i e dunque a da cui pure la massa totale del sistema tramite Keplero.

Questo metodo non funzione per una stella isolata. In generale, è difficile misurarne la massa. Inoltre, il caso visto è semplice perché si guarda il sistema in modo perpendicolare, altrimenti bisogna anche considerare la direzione di vista rispetto la normale al piano dell'orbita.

Alle volte non si può risolvere la presenza di un sistema binario, tuttavia si può studiare lo spettro di emissione per dedurne la presenza. Ad esempio, si vedono comparire delle righe di assorbimento dell'idrogeno, elemento presente nelle stelle. In quanto, una delle due stelle si muove rispetto l'altra, si osserva un effetto doppler delle righe di assorbimento. Studiando lo spostamento periodico si può inferire la presenza di una stella.

Un altro caso, sono le binarie osservate di taglio rispetto al piano orbitale: una stella eclissa l'altra. Questo modo è utile per rilevare esopianeti: si misurano le eclissi dovute al passaggio dei pianeti di fronte la stella.

Lezione 3

mar 04 ott 2022 08:30

Per stelle con masse M tra 1 e 10 masse solari, la luminosità è proporzionale alla massa $M^{3.5}$.

Diagramma Hertzsprung-Russell. Nel diagramma Hertzsprung-Russell si rappresentano stelle a distanze note. Si pone il colore B-V sull'asse delle ascisse, mentre sull'asse delle ordine si pone la magnitudine assoluta in banda V. La temperatura cresce andando verso sinistra. Andando verso l'alto si hanno luminosità più alte. Si nota una diagonale discendente detta sequenza principale (main sequence) a cui appartengono la maggior parte delle stelle perché in questa zona esse trascorrono la maggior parte della propria vita. Tutte le stelle nella sequenza principale sono sostenute dalla fusione nucleare, in particolare fondendo idrogeno in elio. Esiste una frazione di stelle che si trovano sulla diagonale principale al di sopra della sequenza principale: questo è il ramo delle giganti (giant branch), le stelle in questa parte hanno raggi molto maggiori rispetto le altri. Ricordando che il colore è legato alla temperatura (in questo caso, maggiore verso sinistra), le stelle giganti hanno stessa luminosità delle stelle che piccano nel blu, ma hanno temperature più basse, per questo hanno un raggio maggiore secondo

$$L = 4\pi R^2 \sigma T^4$$

Sono presenti poche stelle nel ramo delle giganti perché è una fase breve di vita rispetto la sequenza principale.

Sono presenti degli oggetti compatti in basso a sinistra del diagramma: sono le nane bianche (white dwarves). Esse hanno stessa luminosità delle stelle che piccano nel rosso, ma hanno

temperatura molto maggiore; per questo hanno raggi più piccoli (domande d'esame!). Le nane bianche sono l'unico oggetto compatto che si riesce a mostrare nel diagramma H-R.

La massa cresce andando verso alto sinistra, ma esiste un limite superiore che causa l'implosione. Per stelle sulla sequenza principale, masse più grandi corrispondono a raggi più grandi. La vita decresce verso alto a sinistra, tali stelle sono più luminose, ma consumano più idrogeno per unità di tempo.

Si può analizzare lo spettro di una galassia per inferire la sua età: se sono presenti solo stelle rosse e non si formano stelle blu, allora la galassia è antica.

Classificazione. Le stelle sono classificate in base alla posizione nel diagramma H-R ed allo spettro di assorbimento del materiale sulla superficie della stella. In base allo spettro di assorbimento si assegnano delle lettere (OBAFGKM) ed esiste una correlazione tra lo spettro e la temperatura superficiale (O \leftrightarrow 40 000 K e M \leftrightarrow 2400 K). Si aggiunge un numero romano per indicare la posizione, ad esempio il sole è G2V, dove G2 \approx 5800 K. [immagine]

3 Struttura stellare

Il sole è composto in massa al 71% di idrogeno, al 27% di elio ed il restante 2% sono gli elementi più pesanti come carbonio, azoto, ossigeno, ferro, detti metalli in quanto più pesanti dell'elio (ma non sono metalli in senso chimico proprio). Le stelle sulla sequenza principale fondono idrogeno in elio rilasciando energia: lo 0.7% della massa dell'idrogeno diventa energia. Esistono processi più efficienti (circa 50%) per produrre energia.

Si formulano delle ipotesi per semplificare il modello di struttura stellare

- simmetria sferica;
- si trascura la rotazione, la velocità del fluido all'interno delle stelle è nulla;
- si trascurano gli effetti del campo magnetico;

Free-fall timescale – tempo scala di caduta libera. Si studia il moto di una particella sulla superficie di una stella quando si rimuove la pressione. Tale particella ha un'energia potenziale

$$dU = -\frac{GM \, dm}{R}$$

La particella cade verso il centro e trasforma l'energia potenziale in energia cinetica

$$\frac{1}{2} dm (d_t r)^2 = \frac{GM dm}{r} - \frac{GM dm}{R}$$

Il tempo necessario per collassare è

$$\begin{split} \tau &= -\int_{R}^{0} \left[2GM \left(\frac{1}{r} - \frac{1}{R} \right) \right]^{-\frac{1}{2}} \, \mathrm{d}r = -\frac{1}{\sqrt{2GM}} \int_{R}^{0} \sqrt{\frac{Rr}{R - r}} \, \mathrm{d}r \\ &= -\frac{1}{\sqrt{2GM}} \int_{R}^{0} \sqrt{\frac{r}{1 - \frac{r}{R}}} \, \mathrm{d}r, \quad x \equiv \frac{r}{R}, \quad \mathrm{d}x = \frac{\mathrm{d}r}{R} \\ &= \frac{1}{\sqrt{2GM}} \int_{0}^{1} \sqrt{\frac{xR}{1 - x}} R \, \mathrm{d}x = \left[\frac{R^{3}}{2GM} \right]^{\frac{1}{2}} \int_{0}^{1} \sqrt{\frac{x}{1 - x}} \, \mathrm{d}x = \left[\frac{R^{3}}{2GM} \right]^{\frac{1}{2}} \frac{\pi}{2} \end{split}$$

Si definisce la densità media come

$$\overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3}$$

Da cui

$$\tau = \left[\frac{3\pi}{32G\overline{\rho}}\right]^{\frac{1}{2}}, \quad \tau \propto \frac{1}{\sqrt{\overline{\rho}}}$$

Per le stelle di neutroni è importante la dipendenza del tempo di caduta libera τ dalla densità media $\overline{\rho}$. Per il sole si ha $\tau \approx 30\,\mathrm{min}$. Rispetto il tempo tipico di vita, l'implosione è immediata.

Equilibrio idrostatico. Si descrive l'andamento della pressione in funzione del raggio. Si consideri un elemento infinitesimo di volume A dr e di massa dm posto su di una sfera di raggio r, la stella. La forza gravitazionale sull'elemento è

$$-\frac{GM(r)\,\mathrm{d}m}{r^2}$$

Tale forza è bilanciata dal gradiente di pressione all'interno della stella. Dunque

$$-\frac{GM(r)\,\mathrm{d}m}{r^2} = \mathrm{d}P\,A$$

Considerato

$$dm = \rho(r)A dr$$

si ottiene

$$-\frac{GM(r)\rho(r)A\,\mathrm{d}r}{r^2} = \mathrm{d}P\,A \implies \boxed{\mathrm{d}_r P = -\frac{GM(r)\rho(r)}{r^2}}$$

Questa è l'equazione di equilibrio idrostatico. Le equazioni di struttura sono equazioni differenziali ordinarie accoppiate: non si possono risolvere analiticamente, ma solo numericamente.

Conservazione della massa. La massa di un guscio sferico è

$$dM = \rho(r)4\pi r^2 dr \implies \boxed{d_r M = \rho(r)4\pi r^2}$$

Questa è l'equazione di conservazione della massa.

Teorema. Si introduce il teorema del Viriale. Dall'equazione di equilibrio idrostatico si ottiene

$$\begin{split} \int_0^{r_\star} 4\pi r^3 \mathrm{d}_r P \, \mathrm{d}r &= -\int_0^{r_\star} 4\pi r^3 \frac{GM(r)\rho(r)}{r^2} \, \mathrm{d}r = -\int_0^{r_\star} 4\pi r^2 \frac{GM(r)\rho(r)}{r} \, \mathrm{d}r \\ &= -\int_0^{M_\star} \frac{GM(r) \, \mathrm{d}M}{r} = E_{\mathrm{grav}} < 0 \end{split}$$

cioè l'energia potenziale gravitazionale della stella. Inoltre, il primo membro diventa

$$\int_{0}^{r_{\star}} 4\pi r^{3} d_{r} P dr = \left[P(r) 4\pi r^{3} \right]_{0}^{r_{\star}} - 3 \int_{0}^{r_{\star}} 4\pi r^{2} P(r) dr \equiv E_{\text{grav}}$$

Il punto in cui la pressione si annulla è definito come il raggio della stella. Si trova un legame tra l'energia interna e l'energia gravitazionale. Si ipotizza che la stella sia costituita da un gas perfetto. Tramite relazioni termodinamiche vale

$$P = (\gamma - 1)e$$

dove $\gamma=\frac{c_p}{c_v}$ è il coefficiente di dilatazione adiabatica (detto anche indice adiabatico) ed e è la densità di energia interna. Dunque

$$E_{\text{grav}} = -3 \int_0^{r_*} 4\pi r^2 (\gamma - 1) e(r) dr = -3(\gamma - 1) E_{\text{thermal}}$$

Per un gas monoatomico classico, la pressione è

$$P = nk_BT$$
, $e = \frac{3}{2}nk_BT = \frac{P}{\gamma - 1} \implies \gamma = \frac{5}{3}$

dove n è il numero di particelle per unità di volume. Dunque

$$E_{\rm gr} = -3(\gamma - 1)E_{\rm th}$$
 = $-2E_{\rm th}$

Questo è il teorema del Viriale. La seconda uguaglianza è la sua conseguenza per una stella costituita da gas monoatomico classico.

Gas monoatomico classico. L'energia totale è la somma dell'energia termica e dell'energia potenziale. Si noti che il fluido non si muove e la stella non ruota: non si ha energia cinetica. Quindi, per un gas monoatomico classico

$$\boxed{E = E_{\rm gr} + E_{\rm th} = -E_{\rm th}} < 0$$

cioè la stella è un sistema stabile, legato. La relazione tra energia gravitazionale ed energia termica implica che il sole è un reattore termonucleare stabile, in grado di auto-controllo. Se aumenta l'energia termica, allora la stella si espande a causa dell'ulteriore pressione, l'energia gravitazionale diminuisce in modulo e per

$$-2E_{\rm th} = E_{\rm gr}$$

allora pure $E_{\rm th}$ deve diminuire in modulo, la stella quindi si stabilizza.

Gas relativistico. La pressione è data da due componenti: la pressione del gas dovuta alla temperatura e la pressione di radiazione dovuta ai fotoni. Si ipotizza che il contributo principale della pressione sia dovuto ai fotoni. Per il corpo nero, la pressione di radiazione è data da

$$P = \frac{1}{3}e, \quad \gamma = \frac{4}{3}$$

Da cui

$$-E_{\rm th} = E_{\rm gr}$$

L'energia totale è nulla, quindi il sistema è marginalmente legato: una perturbazione causa l'esplosione della stella. In questo modo, si può calcolare la massa massima di una stella sulla sequenza principale.

Lezione 4

Un altro modo di esprimere il teorema del Viriale è tramite la pressione mediata sul volume

ven 07 ott 2022 13:30

$$\overline{P} = \frac{\int_0^{r_\star} P4\pi r^2 \, \mathrm{d}r}{\int_0^{r_\star} 4\pi r^2 \, \mathrm{d}r} \implies \overline{P}V = \int_0^{r_\star} P4\pi r^2 \, \mathrm{d}r$$

Pertanto

$$E_{\rm gr} = -3\overline{P}V \iff \overline{P} = -\frac{1}{3V}E_{\rm grav}$$

In questo modo si può stimare la pressione media di una stella. Per prima cosa bisogna stimare l'energia gravitazionale

$$E_{\rm gr} = -\int_0^{r_\star} \frac{GM\rho 4\pi r^2}{r} \,\mathrm{d}r$$

questa equazione andrebbe calcolata numericamente risolvendo le equazioni di struttura stellare in quanto sia M che ρ dipendono dal raggio. Per risolverla analiticamente, si ipotizza una densità $\rho = \rho_{\star}$ costante. La massa della stella è

$$M = \frac{4}{3}\pi r_{\star}^{3} \rho_{\star}$$

Dunque,

$$E_{\rm gr} = -\int_0^{r_{\star}} \frac{G\left(\frac{4}{3}\pi r^3 \rho_{\star}\right) \rho_{\star} 4\pi r^2}{r} \, \mathrm{d}r = -\frac{3}{5} \frac{G M_{\star}^2}{r_{\star}}$$

L'energia reale dovrebbe essere maggiore in modulo perché al centro si ha una pressione maggiore ed essa pesa di più considerando $\frac{1}{r}$. Pertanto

$$E_{\rm gr} \approx -\frac{GM_{\star}^2}{r_{\star}}$$

La pressione media è

$$\overline{P} = -\frac{1}{3V} E_{\rm gr} \approx \frac{1}{3} \frac{GM_{\star}^2}{r_{\star}} \frac{1}{\frac{4}{3}\pi r_{\star}^3} = \frac{GM_{\star}^2}{4\pi r_{\star}^4}$$

Per il sole si ha $\overline{P} \approx 10^9$. Si può stimare l'energia termica di una stella utilizando

$$E_{\rm th} = -\frac{1}{2}E_{\rm gr} \approx \frac{1}{2}\frac{GM_{\star}^2}{r_{\star}}$$

Si ipotizza gas ideale monoatomico, da cui l'energia termica è

$$E_{\rm th} = \frac{3}{2} N k_B T_{\rm vir}$$

dove N è il numero di particelle e la temperatura calcolata in questo modo è detta temperatura viriale. Inoltre si ha

$$M_{\star} = N\overline{m}$$

dove \overline{m} è la massa media di una particella. Pertanto

$$\frac{3}{2}Nk_BT_{\rm vir} = \frac{1}{2}\frac{GM_{\star}N\overline{m}}{r_{\star}} \implies k_BT_{\rm vir} = \frac{1}{3}\frac{GM_{\star}}{r_{\star}}\overline{m}$$

Il sole è composto principalmente di idrogeno ionizzato (perché si suppone che la temperatura sia alta):

$$\overline{m} = \frac{m_e + m_p}{2} \approx \frac{1}{2} m_p$$

Dunque, la temperatura viriale del sole è

$$T_{\rm vir} \approx 10^6 \, {\rm K}$$

da intendere come una temperatura media.

Tempo scala di Kelvin-Helmholtz. Dal teorema del Viriale, si può anche stimare il tempo di vita di una stella per irraggiare completamente la propria energia interna in assenza di processi interni che creino altra energia. Infatti

$$t_{\rm KH} \approx \frac{E_{\rm KH}}{L} = -\frac{1}{2} \frac{E_{\rm gr}}{L} \approx \frac{G M_{\star}^2}{2 r_{\star} L}$$

dove L è la luminosità. Per il sole si ha 10^7 yr. Questa è una conferma che esiste un processo che genera continuamente energia in quanto il sistema solare ha circa 5 miliardi di anni, 5×10^9 yr.

Trasporto di energia. Per un gas, l'energia si può trasportare per convezione o radiazione (trasporto convettivo e radiativo). Nella convezione, l'energia è trasportata dalle particelle stesse. Nella radiazione, l'energia è trasportata dai fotoni.

Il trasporto convettivo è dominante in stelle più grandi del sole, viceversa per le stelle più piccole. Si studia l'equazione del trasporto radiativo.

Un fotone che trasporta l'energia radiativa viene continuamente assorbito da elettroni e poi riemesso: il fotone non è sempre il medesimo. Qua, però, si parla di urti per semplificare la trattazione. Sia n la densità volumica di numero d'urti. Allora il numero d'urti è

$$N = nd\sigma$$

dove d è la distanza percorsa e σ è la sezione d'urto (cross-section).

Si definisce il libero cammino medio l (mean free path). Essa è la distanza media tra due urti successivi. Dunque

$$l = \frac{1}{n\sigma}$$

Questa espressione va bene per un solo tipo di molecole (che determina n) ed un solo tipo di processo fisico (che determina la sezione d'urto). In generale si ha

$$l = \frac{1}{\sum_{i} n_{i} \sigma_{i}} = \frac{1}{\rho k}, \quad [k] = \text{cm}^{2} \text{g}^{-1}$$

dove ρ è la densità del gas e k è l'opacità. Questa dipende dalla densità, temperatura ed altri fattori.

Si può calcolare il tempo che un fotone impiega per arrivare in superficie. Si considera il sole. Si supponga che sia composto da elettroni e protoni: si ipotizza un processo di diffusione di Thomson la cui sezione d'urto è

$$\sigma_T = \frac{8\pi}{3} \left(\frac{l^2}{m_e c^2}\right)^2 \approx 6.7 \times 10^{-25} \,\mathrm{cm}^2$$

Si noti che, a causa della dipendenza dalla massa, la sezione d'urto con il protone è trascurabile rispetto a quella con l'elettrone. La densità di numero di elettroni è

$$n_e = \frac{\rho}{m_{\rm H}}, \quad \rho \approx 1.4 \, {\rm g \, cm^{-3}}$$

Il libero cammino medio risulta essere

$$l = \frac{1}{n_e \sigma_T} \approx 2 \, \text{cm}$$

Il tempo per arrivare alla superficie del sole è

$$\tau = \frac{l}{c} \left(\frac{R_{\odot}}{l} \right)^2 = \frac{R_{\odot}^2}{lc} \approx 52\,000\,\mathrm{yr}$$

dove le parentesi provengono dal random walk ed è il numero di urti per percorrere il raggio del sole

Si deriva la l'equazione del trasporto di energia. Un flusso emesso di fotoni viene assorbito e varia secondo

$$\mathrm{d}f = -k\rho f\,\mathrm{d}r$$

tutte le quantità sono funzioni del raggio. Inoltre, si sa

$$L(r) = f(r)4\pi r^2$$

Alla variazione di flusso corrisponde una variazione di pressione di radiazione

$$dP = -\frac{df}{c} = -\frac{k\rho f}{c} dr$$

La pressione di radiazione di un corpo nero è

$$P = \frac{1}{3}aT^4 \implies \mathrm{d}_T P = \frac{4}{3}aT^3 = \mathrm{d}_r P \,\mathrm{d}_T r = -\frac{k\rho f}{c} \,\mathrm{d}_T r$$

dove a è la costante di radiazione. Da cui risulta

$$\mathrm{d}_r T = -\frac{3}{4}\frac{k\rho f}{acT^3} = -\frac{3}{16}\frac{k\rho L}{\pi acT^3r^2}$$

L'equazione del trasporto radiativo è

$$d_r T = -\frac{3}{16} \frac{k\rho}{\pi a c r^2 T^3} L$$

dove ρ e T sono funzioni del raggio.

Lezione 5

mar 11 ott 2022 08:30

L'opacità è funzione di

$$k \propto \rho^{\beta} T^{\gamma}$$

A seconda della temperatura, ci sono diversi processi di assorbimento che dominano:

- A basse temperature, $T < 10^{4.5}\,\mathrm{K}$, si hanno processi di assorbimento bound-bound: l'elettrone è legato ad un atomo sia prima che dopo l'urto con un fotone. In questo caso, si possono determinare i parametri $\beta = 0.5$ e $\gamma = 4$.
- A temperature intermedie, $10^{4.5}\,\mathrm{K} < T < 10^7\,\mathrm{K}$, si hanno processi bound-free e free-free. Nel primo, l'elettrone è legato ad un atomo, poi viene ionizzato da un fotone e si separa dall'atomo. Nel secondo, un elettrone libero viene colpito da un fotone e rimane libero: si ha un processo di inverse Bremsstrahlung. I parametri sono $\beta=1$ e $\gamma=3.5$.
- Ad alte temperature, $T > 10^7 \,\mathrm{K}$, si ha scattering Thomson. I parametri sono $\beta = \gamma = 0$.

Conservazione dell'energia. Si introduce la potenza prodotta per unità di massa $\varepsilon(r)$ che descrive i processi di generazione dell'energia. Pertanto

$$\mathrm{d}m\,\varepsilon = \mathrm{d}L \implies 4\pi r^2 \rho\,\mathrm{d}r\,\varepsilon = \mathrm{d}L \implies \boxed{\mathrm{d}_r L = 4\pi r^2 \rho\varepsilon}$$

con ρ ed ε dipendenti dal raggio. Tuttavia, ε si può scrivere come funzione di densità e temperatura. Esso descrive processi di fusione nucleare (!). Le stelle sulla sequenza principale fondono idrogeno in elio.

Fusione nucleare. Esistono due processi per compiere questa di fusione. Per stelle come il sole, o meno massive, la catena dominante è la p-p chain, dove p sta per "protone". Si ha $\varepsilon \propto \rho T^4$. Per stelle più massive del sole, il ciclo dominante è CNO cycle (le sigle sono quelle degli atomi mediatori del processo) in cui $\varepsilon \propto \rho T^{17}$.

Catena protone-protone. Due nuclei di idrogeno sono fusi insieme generando un deuterio, un positrone ed un neutrino elettrico

$$p + p \rightarrow d + e^+ + \nu_e$$

Il positrone interagisce con gli elettroni liberi e si annichilisce producendo fotoni di radiazione γ . Il neutrino è debolmente interagente, cioè interagisce tramite l'interazione debole (mediata dai bosoni vettori?), pertanto hanno un cammino medio grande: un terzo di parsec. Il flusso di neutrini dal sole rivelato sulla Terra è circa $10^{11} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$.

Si è trovata una discrepanza tra il flusso stimato di neutrini elettronici e quelli rivelati: si è scoperto che i neutrini possono cambiare tipo. Questo può avvenire solamente se il neutrino è dotato di massa. Questo è in disaccordo con il modello standard secondo cui i neutrini non avrebbero massa.

Il nucleo di deuterio si fonde con un protone generando 3 He e un fotone in radiazione γ :

$$d+p \rightarrow {}^{3}\mathrm{He} + \gamma$$

Infine si ha

$$^{3}\mathrm{He} + ^{3}\mathrm{He} \rightarrow ^{4}\mathrm{He} + p + p$$

In totale si hanno bisogno di sei protoni liberi, ma se ne producono due altri. Al netto della reazione, si sono convertiti quattro protoni in un atomo di elio. La differenza in energia è

$$[m(4p) - m(^{4}\text{He})]c^{2} = 25.7 \,\text{MeV}$$

cioè circa lo 0.7% della massa dei quattro protoni: questa è l'efficienza del processo. I procedimenti di accrescimento dei buchi neri producono energia al 50% di efficienza.

Si può avere una stima del tempo necessario affinché una stella irraggi una frazione della propria massa. Si considera il 10% del sole. Tale tempo è

$$au = rac{M_{\odot}c^2 \cdot 10\% \cdot 0.7\%}{L_{\odot}} pprox 10^{10} \, {
m yr}$$

Ciclo carbonio-azoto-ossigeno. Questo è sempre un ciclo di fusione di idrogeno in elio per le stelle sulla sequenza principale, ma sono presenti degli intermediari. Si ha

$$p + {}^{12}\mathrm{C} \rightarrow {}^{13}\mathrm{N} + \gamma$$

Gli atomi di carbonio sono generati da cicli successivi: provengono da stelle già decadute. L'isotopo dell'azoto ottenuto decade velocemente tramite decadimento beta

$$^{13}N \rightarrow ^{13}C + e^{+} + \nu_{e}$$

Successivamente

$$p + {}^{13}\mathrm{C} \rightarrow {}^{14}\mathrm{N} + \gamma$$

poi

$$p + {}^{14}\text{N} \rightarrow {}^{15}\text{O} + \gamma$$

Si ha un altro decadimento beta

$$^{15}{\rm O} \rightarrow ^{15}{\rm N} + e^+ + \nu_e$$

Infine

$$p + {}^{15}{\rm N} \rightarrow {}^{12}{\rm C} + {}^{4}{\rm He}$$

Tale ciclo ha efficienza poco maggiore della catena protone-protone.

Descrizione catena protone-protone. Si ritorna alla catena protone-protone. Sebbene si considera il gas in modo classico, bisogna comunque tenere conto di effetti quantistici. I protoni si repellono tramite forza coulombiana. Tuttavia, a piccole scale $r_0 \approx 1.4 \times 10^{-13}$ cm, si ha anche l'interazione forte che domina la forza coulombiana ed avvicina i protoni. Il problema risulta avvicinarli a tale distanza. [immagine]

All'interno del sole si ha una temperatura $T \approx 10^7 \, \text{K}$. L'energia cinetica di una singola particella (un protone) di gas a tale temperatura è

$$K = \frac{3}{2}k_B T \approx 1 \, \mathrm{keV}$$

L'energia coulombiana ad r_0 è maggiore dell'energia cinetica

$$E_{\rm coul}(r_0) \approx 1 \, {\rm MeV}$$

Dunque, la distanza minima di avvicinamento tra due protoni per agitazione termine è mille volte maggiore della distanza necessaria al sopravvento dell'interazione forte. Sia r_1 la distanza tra i protoni per cui l'energia cinetica è pari all'energia elettrostatica. Per la distribuzione di energia di Stefan-Boltzmann, la frazione di protoni con energia maggiore dell'energia cinetica K è

$$e^{-\frac{E}{k_B t}} = e^{-1000} \approx 10^{-434}$$

Si supponga che il sole sia costituito solamente da idrogeno. Il numero di protoni è

$$N_p = \frac{M_\odot}{m_{\rm H}} \approx 10^{57}$$

Pertanto, non ci sono protoni che abbiano energia sufficiente a vincere la repulsione coulombiana. Per la fisica classica, la reazione nucleare protone-protone non potrebbe avvenire. Bisogna utilizzare la meccanica quantistica, in particolare l'effetto tunnel: una particella può oltrepassare una barriera di potenziale.

Lezione 6

ven 14 ott 2022 13:30

Si può risolvere il problema in due modi. Nel primo modo bisogna risolvere l'equazione di Schrödinger dipendente dal tempo considerando un protone che da destra va ad impattare sul protone posto nell'origine, ma così bisogna risolvere l'equazione numericamente. Il secondo modo è probabilistico: si considera un flusso di protoni entrante e si studia la percentuale in grado di oltrepassare la barriera. Questo metodo non dipende dal tempo: si può usare l'equazione di Schrödinger stazionaria:

$$\frac{\hbar^2}{2\mu}\nabla^2\varphi(r) = [V(r) - E]\varphi(r), \quad V(r) = \frac{e^2}{r}$$

dove $\mu = \frac{1}{2}m_p$ è la massa ridotta perché il problema è a due corpi. Vale $V(r_1) = E = K$ in quanto l'energia totale della particella è l'energia potenziale coulombiana. Dunque, si riscrive il potenziale come

$$V(r_1) = \frac{e^2}{r_1} = E \implies V(r) = \frac{Er_1}{r}$$

Per semplificare i calcoli, il potenziale tra r_0 ed r_1 si approssima con una barriera rettangolare la cui altezza è la media del potenziale pesata sul volume:

$$\langle V(r) \rangle = \frac{\int_{r_0}^{r_1} V(r) 4\pi r^2 dr}{\int_{r_0}^{r_1} 4\pi r^2 dr} \approx \frac{3}{2} E, \quad r_1 \gg r_0$$

Si calcola la probabilità che un protone possa oltrepassare la barriera. Nell'equazione di Schrödinger si sostituisce il potenziale con il valore costante calcolato in modo da semplificare i calcoli. L'equazione diventa

$$\begin{split} \frac{\hbar^2}{m_p} \nabla^2 \varphi(r) &= \frac{1}{2} E \varphi(r), \quad r_0 \leq r \leq r_1 \\ \frac{\hbar^2}{m_p} \frac{1}{r} \, \partial_r^2(r\varphi) &= \frac{1}{2} E \varphi \\ \frac{1}{r} \, \partial_r^2(r\varphi) &= \frac{m_p E}{2 \hbar^2} \varphi, \quad \beta^2 \equiv \frac{m_p E}{2 \hbar^2} \\ \partial_r^2(r\varphi) &= \beta^2 r \varphi \\ \varphi(r) &= \frac{A}{r} e^{\beta r} \end{split}$$

La soluzione (indipendente) con esponente negativo si può escludere per la condizione di quadrato-integrabilità. Interessa la frazione di protoni arrivati ad r_1 che sono in grado di arrivare a r_0 cioè oltrepassare la barriera. Tale frazione è anche la probabilità di tunneling:

$$\frac{|\varphi(r_0)|^2 4\pi r_0^2 dr}{|\varphi(r_1)|^2 4\pi r_1^2 dr} = e^{2\beta(r_0 - r_1)} \approx e^{-2\beta r_1} = \exp\left[-\frac{2}{\hbar} \sqrt{\mu E} \frac{e^2}{E}\right]$$
$$= \exp\left[-\frac{2\sqrt{\mu}}{\hbar} \frac{e^2}{\sqrt{E}}\right] = \exp\left[-\sqrt{\frac{E_G}{E}}\right]$$

Il termine $\sqrt{E_G}=\frac{2\sqrt{\mu}e^2}{\hbar}$ è la radice dell'energia di Gamow. In questo caso, essa vale

$$E_C \approx 500 \,\mathrm{keV}$$

La frazione di protoni che passano è $e^{-\sqrt{500}} \approx 10^{-10}$. Essa è bassa, tuttavia, molto maggiore di quanto calcolato con Stefan-Boltzmann. Confrontando tale valore con il numero di protoni calcolato nel sole, allora il numero di protoni che oltrepassano la barriera sono comunque 10^{47} . Senza effetto tunnel, non si potrebbe avere la fusione nucleare.

Equazioni di struttura stellare. Si riassumono le equazioni di struttura stellare. L'equazione di equilibrio idrostatico

$$\mathrm{d}_r P = -\frac{GM\rho}{r^2}$$

L'equazione di conservazione della massa

$$d_r M = 4\pi r^2 \rho$$

L'equazione del trasporto radiativo

$$\mathrm{d}_r T = -\frac{3Lk\rho}{16\pi r^2 acT^3}$$

L'equazione di conservazione dell'energia

$$d_r L = 4\pi r^2 \rho \varepsilon$$

I membri a sinistra e la densità sono le incognite. Infatti, l'opacità k e ε possono essere scritte in funzione della densità e della temperatura. Il sistema non è risolvibile: manca l'equazione di stato.

Equazione di stato. Detta equation of state (EoS). Essa descrive come la pressione dipende dalla densità, dalla temperatura e della composizione del gas:

$$P = P(\rho, T, \text{composizione})$$

In questo modo, il sistema è chiuso e si può determinare una soluzione univoca.

Tali equazioni vanno risolte numericamente scegliendo delle condizioni iniziali al centro della stella e si integra fin dove la pressione arriva a zero, cioè alla superficie della stella. Si sceglie il valore della densità e della temperatura al centro della stella. Bisogna anche decidere la composizione. Al centro, la massa e la luminosità sono nulle.

3.1 Equazione di stato

Si studia l'equazione di stato. Le frazioni di idrogeno, elio e metalli sono

$$X = \frac{\rho_{
m H}}{
ho}, \quad Y = \frac{
ho_{
m He}}{
ho}, \quad Z = \frac{
ho_{
m metalli}}{
ho}$$

Il gas nelle stelle è considerato classico e non relativistico; si passa ad un gas quantistico quando si studiano oggetti compatti. Oltre ad essere presente la pressione dovuta alla temperatura del gas, esiste anche la pressione di radiazione:

$$P = P_{\text{gas}} + P_{\text{rad}}$$

La pressione del gas deriva dalla teoria termodinamica classica

$$P_{\rm gas} = nk_BT = \frac{\rho}{m}k_BT$$

dove n è il numero di particelle per unità di volume e \overline{m} è la massa media per particella. Per più costituenti, la massa media è

$$\overline{m} = \frac{\sum n_i m_i}{\sum n_i} = \frac{\rho}{n} \implies n = \frac{\rho}{\overline{m}}$$

La dipendenza dell'equazione di stato dalla composizione rientra nella massa media \overline{m} . I numeri di particelle di idrogeno, elio e metalli per unità di volume sono

$$n_{\rm H} = \frac{\rho}{m_{\rm H}} X, \quad n_{\rm He} = \frac{\rho}{4m_{\rm H}} Y, \quad n_{\rm A} = \frac{\rho}{Am_{\rm H}} Z_A$$

Si approssima la massa del neutrone a quella del protone. Questi sono le densità per i singoli atomi, ma il gas è costituito da nuclei ed elettroni liberi: il gas è ionizzato. Il numero totale di particelle per unità di volume è

$$n = 2n_{\rm H} + 3n_{\rm He} + \sum_A \frac{1}{2} A n_A = \frac{\rho}{m_{\rm H}} \left[2X + \frac{3}{4}Y + \frac{1}{2}Z \right] = \frac{\rho}{2m_{\rm H}} \left[3X + \frac{1}{2}Y + 1 \right]$$

Si approssima il numero di nuclei di metalli e dei loro elettroni: la metà del nucleo è costituita da protoni a cui corrisponde un elettrone; inoltre non si scrive $\frac{A}{2}+1$ perché l'unità costituita dal nucleo è trascurabile rispetto $\frac{A}{2}$, soprattutto per elementi più pensanti. Si ricorda che X*Y+Z=1

La massa media risulta essere

$$\frac{\overline{m}}{m_{\rm H}} = \frac{\rho}{nm_{\rm H}} = \frac{2}{3X + \frac{1}{2}Y + 1}$$

La composizione non è la stessa per tutte le regioni della stella, ma dipende dal raggio. Per il sole, considerando tutto il volume, si ha

$$X = 0.71, \quad Y = 0.27, \quad Z = 0.02, \quad \overline{m} \approx 0.61 m_{\rm H}$$

A regioni più centrali si ha meno idrogeno a causa della fusione. Per il sole si ha

$$X = 0.34$$
, $Y = 0.64$, $Z = 0.02$, $\overline{m} \approx 0.85 m_{\rm H}$

Si studia la pressione di radiazione. Tramite l'ipotesi di corpo nero, si ottiene una pressione di radiazione

$$P_{\rm rad} = \frac{1}{3}aT^4$$

Dunque, l'equazione di stato è

$$P = P_{\text{gas}} + P_{\text{rad}} = \frac{\rho}{\overline{m}} k_B T + \frac{1}{3} a T^4$$