Advanced Network Technologies

Multimedia 2/2

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dr. Wei Bao | Lecturer School of Computer Science

SIP: Session Initiation Protocol [RFC 3261]

long-term vision:

- > all telephone calls, video conference calls take place over Internet
- people identified by names or e-mail addresses, rather than by phone number Assignment Project Exam Help
- ocan reach callee (if callee so desires), no matter where callee roams, no matter what produce callee is comently using

Add WeChat powcoder

SIP provides mechanisms for call setup:

- determine current IP address of callee:
- maps mnemonic identifier Assignment Project Exam Helphress
- -for caller to let callee know she wants to://powcoalemanagement:
 establish a called WeChat powcoaler

 add new media streams
- so caller, callee can agree on media type, encoding
- to end call

- change encoding during call
- invite others
- transfer, hold calls

Example: setting up call to known IP address

Setting up a call (cont'd)

- codec negotiation:
- rejecting a call
 - suppose Bob doesn't have
 - PCM µlaw encoder replies "busy," "gone,"

 Assignment Project Exam Help payment required," - Bob will instead reply with
 - 606 Not Acceptatives Repoly, coder. com "forbidden"
 - listing his encoders. Alice
 - can then send new
 - INVITE message,
 - advertising different
 - encoder

- Bob can reject with
- media can be sent
- VeChat powceder or some
 - other protocol

Name translation, user location

- caller wants to call callee, > result can be based on:
 but only has callee's name time of day (work, home) or e-mail address.
- Assignment Project leradopte want boss to need to get IP address of call you at home) callee's current hast://powcoder.com status of callee (calls sent
 - user moves around Add WeChat to voicemail when callee is
 - Dynamic Host Configuration already talking to Protocol (DHCP) (dynamically someone) assign IP address)
 - user has different IP devices
 (PC, smartphone, car device)

- one function of SIP server: registrar
- when Bob starts SIP client, client sends SIP REGISTER message to Bob's registrar server Assignment Project Exam Help

register message: https://powcoder.com

```
REGISTER sip:domain.com WeChat powcoder
```

Via: SIP/2.0/UDP 193.64.210.89

From: sip:bob@domain.com

To: sip:bob@domain.com

Expires: 3600

- another function of SIP server: proxy
- Alice sends invite message to her proxy server

 - proxy responsible for routing SIP messages to callee, possibly through multiple proxies

 https://powcoder.com
- https://powcoder.com

 Bob sends response back through same set of SIP proxies
- > proxy returns Bob's Alpde Spensbate Bob's
 - contains Bob's IP address
- > SIP proxy analogous to local DNS server

SIP example: alice@umass.edu calls bob@poly.edu

Networkigsupport for Multimedia

https://powcoder.com

Add WeChat powcoder

Network support for multimedia

Three broad approaches towards providing network-level support for multimedia apps

Approach	Granularity	Guarantee	Mechanisms	Comple x	Deployed?
1. Making best of best effort service	equally		Support(all at app)	Help	everywhere
2. Differentiated service			der com Packet mark, scheduling, policing powcode	medium	some
3. Per- connection QoS	Per- connection flow	Soft or hard after flow admitted	Packet mark, scheduling policing	high	Little to none

Providing multiple classes of services

- thus far: making the best of best effort service
 - one-size fits all service model
- > alternative: multiple classes of service
 - partition traffic Anto Element Project Exam Help
 - network treats different classes of traffic differently (analogy: VIP service versus regular servident ps://powcoder.com

y granularity: differentiald WeChat powcoder service among multiple

classes, not among individual connections

How: ToS bits

Multiple classes of services: scenarios

Scenario 1: mixed HTTP and VoIP

- > example: 1Mbps VoIP (Video and Voice), HTTP share 1.5 Mbps link.
 - HTTP bursts can congest router, cause video/audio loss
 - want to give priority to audio over HTTP

Principle 1

packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

Principles for QOS guarantees

- what if applications misbehave (VoIP sends higher than declared rate)
 - policing: force source adherence to bandwidth allocations
- marking, policing

Assignment Project Exam Help

Principle 2 provide protection for one class from others

Principles for QOS guarantees (con't)

allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn't use its allocation

Principle 3
while providing protection, it is desirable to use resources as efficiently as possible

Scheduling and policing mechanisms

- scheduling: choose next packet to send on link
- > FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy. A saignment Brojectue: Who discard?
 - tail drop: drop arriving packet com
 - priority: drop/remove on priority basis
 - random: drop/Acthoverahabiphwcoder

departures

high priority queue

(waiting area)

priority scheduling: send highest priority queued packet

non-preemptive

Assignment Project Exam

arrivals

> multiple classes, with different priorities

- class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.

- real world example?

Round Robin (RR) scheduling:

- multiple classes, with equal priority
- ocyclically scan class queues, sending one complete packet from each class (if axilable) ment Project Exam Help

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class gets weighted amount of service in each cycle
 Assignment Project Exam Help

https://powcoder.com

Weighted Fair Queuing (WFQ):

- Each class i is assigned a weight w_i
- > Guarantee: if there are class i packets to send (during some interval) then class i receives a fraction of service which is $w_i/(\sum w_j)$ Assignment Project Exam Help
- > On a link with transmission rate R, class i achieves throughput $Rw_i/(\Sigma w_j)$ https://powcoder.com

WFQ is part of routers QoS [Cisco 2012]

Add We Charles | Classify arrivals | Classify

Example:

One link has capacity 1 Mbps. Three flows: Flow 1 is ensured with 0.5 Mbps data rate; Flow 2 is ensured with 0.25 Mbps, Flow 3 is ensured with 0.25 Mbps.

Weighted queuehttps: 2/pwyecp,dersepm

Efficiency: Add WeChat powcoder

When flow 3 has nothing to transmit, but flow 1 and flow 2 have many packets to send

Flow 1: 2/3 Mbps

Flow 2: 1/3 Mbps

Assignment Project Form Help

https://powcoder.com

Add WeChat powcoder

Policing mechanisms

- *goal:* to limit traffic to not exceed declared parameters (the rate at which a class or flow is allowed to inject packets into the network)
- > Three important policing criteria (differing on the time scale):
 - > 1. (long term) Assignmento Projectkt sante sed per unit of time (in the long run)
 - e.g., 6000 packet provider.com
 - 2. peak rate: limit the number of packets can be sent over a relatively shorter period of time, e.g., 6000 pkts per minute (ppm) in average but 3000 packets per 5 second peak rate max.
 - 3. (max.) burst size: max number of pkts sent "instantaneously" into the networks, e.g., 1500 packets.

Policing mechanisms: implementation

token bucket: limit input to specified burst size and average rate (useful to police the flow)

- bucket can hold b tokens
- > a packet must remove a token from bucket to be transmitted into the network
- > tokens generated at rate *r token/sec* unless bucket full (token ignored)
- > over interval of length t: number of packets admitted less than or equal to (rt + b)
- > Token-generation rate r limits the rate at which packets enter the network t->0, b packets $t->\infty$, (rt+b)/t = r packets/second

Policing and QoS guarantees

Combining token bucket and WFQ to provide guaranteed upper bound on delay, i.e., QoS guarantee!

Packets arrive while the bucket is full (b₁). The last packet has a maximum delay of D_{max}. L packet size.

Differentiated services in reality

- > want "qualitative" service classes
 - relative service distinction: Platinum (VIP), Gold, Silver
- > scalability: simple sing comments Reministratively complex functions at edge routers (or hosts)

 https://powcoder.com

Add WeChat powcoder

edge router:

- per-flow traffic management
- marks packets assignment Project Exam Help
 - > E.g. Alice' traffic : highs://powcodercom
 - > Bob's traffic: high
 - > Chris's traffic: low

Add WeChat powcoder

core router:

- per class traffic management
- buffering and scheduling based on marking at edge
- Red packets vs green packets

Edge-router packet marking

- profile: pre-negotiated rate r, burst (bucket) size b
- packet marking at edge based on per-flow profile

Example:

- class-based marking: packets of different classes marked differently
- > intra-class marking: conforming portion of flow marked differently compared with non-conforming one
 - Bob agrees to transmit at 1Mbps, but he is transmitting at 2Mbps
 - Half of them (conforming) are marked green.
 - Others (non-conforming) are marked red (lower priority) or dropped.

Example

- > green > yellow >red .
 - > 2Mbps linassing the property of the Holps
 - Green if conforming, red if not conforming https://powcoder.com
 - Chris, web browsing traffic
 - > Yellow Add WeChat powcoder
 - > Priority queue in the core network
- Bob can guarantee 1Mbps data rate
- If Bob transmits >1Mbps
 - If Chris transmits at 1Mbps, all red will be dropped. Bob gets1Mbps
 - If Chris transmits at <1Mbps, some red will still get through.</p>

Classification, conditioning

- user declares traffic profile (e.g., rate, burst size)
- traffic metered, shaped if non-conforming

Assignment Project Exam Help

the meter compares the incoming flow to the negociated traffic profile. Network administrator can decide whether to remark, forward, delay, or drop a non- conforming packet

Per-connection QoS guarantees

basic fact of life: cannot support traffic demands beyond link capacity

Principle 4

call admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs

Wirelesisnand mobile metworks

https://powcoder.com

Add WeChat powcoder

characteristics of selected wireless links

IEEE 802.11 WiFi

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30m	2.4 Ghz
802.11a	1999	54 Mbps	30m	5 Ghz
802.11g	12303men	154 Moject E	sam H	2.14 Ghz
802.11n (WiFi 4)	2009 https://	600 Mbps powcoder	70m .com	2.4, 5 Ghz
802.11ac (WiFi 5)	2013	3.47Gpbs	70m	5 Ghz
802.11ax (WiFi 6)	202dd W	VeChat pov	wender	2.4, 5 Ghz
802.11af	2014	35 – 560 Mbps	1 Km	unused TV bands (54-790 MHz)
802.11ah	2017	347Mbps	1 Km	900 Mhz

all use CSMA/CA for multiple access, and have base-station and adhoc network versions

Wireless network taxonomy

	single hop	multiple hops	
infrastructure (e.g., APs)	spontent the sect station (WiFi, cellular) which connects to larget part perhapowoode	nodes to connect to larger	
no infrastructure	no hade station of hat po- connection to larger Internet (Bluetooth, ad hoc nets)	to larger Internet. May have to relay to reach other a given wireless node MANET, VANET	

Wire leis man Rrothal Part Entite tics

https://powcoder.com

Add WeChat powcoder

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates the push matre (eath Elean) Help
- interference from other sources: standardized wireless network frequences: (e.g., y2:40 Hz) shared by other devices (e.g., phone);
- devices (e.g., phone);
 Add WeChat powcoder
 multipath propagation: radio signal reflects off objects
 ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

dB decibel

Iogarithmic unit used to express the ratio of two (power) values

```
> 10*log_{10} ( P_S/P_N )
```

$$P_{\rm S}/P_{\rm N}=10$$
 10 dB

Assignment Project Exam Help 20 dB

$$P_{\rm S}/P_{\rm N}=100$$
 20 dB

$$\rightarrow P_s/P_N=1000$$
 30 dBhttps://powcoder.com

>

Wireless Link Characteristics (2)

- > SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
 - BER: bit error rategnment Project Exam Help
- > SNR versus BER tradents://powcoder.com
 - given physical layer modulation:
 increase power -> increase Sinchat pow codes
 decrease BER
 - Different physical layer modulation:

Quadrature amplitude modulation Binary Phase-shift keying Higher data rate -> Higher BER

...... QAM256 (8 Mbps)

— — • QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless Link Characteristics (2)

- > SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
 - BER: bit error rate nment Project Exam
- > SNR versus BER tradents://powcoder.com
 - given SNR, BER requirement: choose modulation to achieve highest eChat pow codes throughput
 - 15 dB, require 10⁻³ BER
 - Which modulation?
 - QAMI6

....... QAM256 (8 Mbps)

– - QAM16 (4 Mbps)

BPSK (1 Mbps)

Wireless network characteristics (3)

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B,A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Assignment Project/Exam Help

https://powcoder.com

Add WeChat powcoder

Code Division Multiple Access (CDMA)

- unique "code" (chipping sequence) assigned to each user;
- all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - length of sequence: M
 - allows multiple users ignorant and open the point and open the point of the point
 - orthogonal: https://powcoder.com
 - inner product of $c_{i,1}$ $c_{i,2}$ $c_{i,m}$ and $c_{i,2}$ $c_{i,m}$ is $\sum_{m} c_{i,m} c_{i,m}$ $c_{i,m}$
 - inner product(user i's chipping sequence, user j's chipping sequence) =0
 - inner product(user i's chipping sequence, user i's chipping sequence) =M
- > encoded signal = (original data) X (chipping sequence)
- > decoding: inner-product of encoded signal and chipping sequence

CDMA encode/decode

User i receives user i's signals

uses its chipping sequence to send and to receive: receive the correct bits

User 2 receives user I's signals

Use 1's chipping sequence to send and use 2's chipping sequence to receive: receive nothing!

Reason: I's chipping sequence is orthogonal to 2's chipping sequence.

CDMA: two-sender interference

