§ 16.3 二元函数的连续性

一、二元函数的连续性概念

定义: 设函数 f(x,y) 定义在 D 上,点 $P_0 \in D$. 若 $\forall \varepsilon > 0$, $\exists \delta > 0$,只要 $P \in U(P_0; \delta) \cap D$,就有 $|f(P) - f(P_0)| < \varepsilon$,

则称f(x,y) 关于集合 D 在点 P_0 连续.

- 注: (1) 若 P_0 是D的孤立点,则 P_0 是f(x,y)的连续点。
 - (2) 若 P_0 是 D 的聚点,则 f(x,y) 关于集合 D 在点 P_0 连续等价于

$$\lim_{\substack{P\to P_0\\P\in D}} f(P) = f(P_0).$$

否则称 P_0 是 f(x,y)的不连续点(或间断点).

注: 若 f(x,y) 在 D 上任何点都关于集合 D 连续,则称 f(x,y)为 D 上的连续函数.

例1、设
$$f(x,y) = \begin{cases} 1, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$$
, 讨论 $f(x,y)$

在 (0,0) 处的连续性。

例2、讨论函数

$$f(x,y) = \begin{cases} \frac{x^{\alpha}}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases} (\alpha > 0)$$

在 (0,0) 处的连续性。

※ 全增量与偏增量

称
$$\Delta z = \Delta f(x_0, y_0) = f(x, y) - f(x_0, y_0)$$

= $f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$

为函数f(x,y)在点 P_0 的全增量.

• 函数 f(x,y) 在点 P_0 连续 \Leftrightarrow

$$\lim_{\substack{(\Delta x, \Delta y) \to (0,0) \\ (x,y) \in D}} \Delta z = 0$$

如果在全增量中取 $\Delta x = 0$ 或 $\Delta y = 0$,则相应得到的增量称为偏增量,分别记作

$$\Delta_x f(x_0, y_0) = f(x_0 + \Delta x, y_0) - f(x_0, y_0),$$

$$\Delta_y f(x_0, y_0) = f(x_0, y_0 + \Delta y) - f(x_0, y_0).$$

注: 函数的全增量不等于相应的两个偏增量之和。

• $\lim_{\Delta x \to 0} \Delta_x f(x_0, y_0) = 0 \Leftrightarrow 固定 y = y_0, f(x, y_0)$ 作为 x 的函数在点 x_0 连续,称 f(x, y)在 (x_0, y_0) 对x连续.

• $\lim_{\Delta y \to 0} \Delta_y f(x_0, y_0) = 0 \Leftrightarrow$ 固定 $x = x_0$, $f(x_0, y)$ 作为 y 的函数 在点 y_0 连续,称 f(x, y) 在 (x_0, y_0) 对 y 连续.

命题: 若f(x,y) 在其定义域的内点 (x_0,y_0) 连续,则 f(x,y) 在 (x_0,y_0) 对 x 和 y 都连续。 反之不真。

如: 函数 $f(x,y) = \begin{cases} 1, & xy \neq 0 \\ 0, & xy = 0 \end{cases}$, 则 f(x,y) 在

(0,0) 处不连续。

但 f(0,y) = f(x,0) = 0, 它在 (0,0) 处对 x 和对 y 分别都连续.

定理1: (复合函数的连续性) 设函数 $u = \varphi(x, y)$ 和 $v = \psi(x, y)$ 在点 $P_0(x_0, y_0)$ 的某邻域内有定义,并在点 P_0 连续; f(u, v) 在点 $Q_0(u_0, v_0)$ 的某邻域内有定义,并在点 Q_0 连续,其中

$$u_0 = \varphi(x_0, y_0), \ v_0 = \psi(x_0, y_0).$$

则复合函数 $g(x, y) = f(\varphi(x, y), \psi(x, y))$ 在点 P_0 也 连续.

二元初等函数:由常量及具有不同自变量 x,y 的一元基本初等函数经过有限次四则运算和复合运算生成的函数。

如:
$$x^2y + \frac{1}{y}$$
, $\frac{\sin(xy)}{x^2 + y^3}$, e^{x+y^2} 等。

注: 二元初等函数在其定义域内连续。

例3、求下列函数的极限。

(1)
$$\lim_{(x,y)\to(0,0)} \frac{\sqrt{xy+1}-1}{xy}$$
;

(2)
$$\lim_{(x,y)\to(0,1)} \frac{\sin x}{\ln(1+xy)}$$
.

二、有界闭域上连续函数的性质

定理2(有界性与最值性): 若二元函数 f(x,y)在有界闭域 $D \subset R^2$ 上连续,则 f(x,y)在 D 上有界,且能取得最大值与最小值.

定理3(一致连续性):若函数 f(x,y) 在有界闭域 $D \subset \mathbb{R}^2$ 上连续,则 f 在 D 上一致连续.即 $\forall \varepsilon > 0$,存 在只依赖于 ε 的 $\delta > 0$,使得对一切满足 $\rho(P,Q) < \delta$ 的点 $P,Q \in D$,必有 $|f(P) - f(Q)| < \varepsilon$.

定理3(介值性): 设函数 f(x,y) 在区域 $D \subset \mathbb{R}^2$ 上连续, 若 P_1 , P_2 为 D 中任意两点, 且 $f(P_1) < f(P_2)$, 则对任何满足不等式

$$f(P_1) < \mu < f(P_2)$$

的实数 μ , 必存在点 $P_0 \in D$, 使得 $f(P_0) = \mu$.

习题16-3: 1(2)(3)、7