Robótica Espacial Space Robotics

Introduction

Vitor Santos Universidade de Aveiro, 2025

Why Space Robotics?

Why do we need robotics in space?

- Exploration beyond human reach
- Harsh conditions: vacuum, temperature extremes, radiation
- Cost and safety of human space travel

Applications

- Planetary exploration
- Satellite servicing and repairs
- Space station operations

Space Robotic Manipulation

Overview of Space Manipulators

Definition:

Robotic arms and manipulators used in space

• Examples:

- Canadarm2 (ISS operations)
- Robonaut (assisting astronauts)
- OSIRIS-REx (asteroid sampling)

Robotic Manipulation in Space

OSIRIS-REx Robotic Arm Operation

Challenges of Manipulation in Space

- Microgravity effects:
 - No ground reaction forces
- Precision issues:
 - Docking and servicing satellites
- Communication delays:
 - Autonomy vs. teleoperation

Key Sensors for Manipulation in Space

Force/Torque Sensors:

Contact-sensitive tasks

Cameras:

Visible, infrared, stereo vision

IMUs:

- Motion tracking for robotic arms
 - Base Motion Compensation (Mobile Manipulators)
 - Force Estimation in Free-Floating Manipulators
 - Teleoperation with Haptic Feedback, etc.

The Astrobee Free-flying Robot onboard ISS

Control and Algorithms in Space Manipulation

• Teleoperation vs. Autonomy

- o Direct human control via remote operation
- o Semi-autonomous operation with limited human intervention

• Impedance control: Handling delicate objects

- Adjusting robotic arm stiffness based on interaction force
- Used for satellite servicing and docking procedures

Machine learning: Adaptive grasping and control

- Al-driven manipulation for unknown objects
- Reinforcement learning techniques to optimize precision

Vision-based control:

- Object recognition and tracking using computer vision
- Integration of LiDAR and depth cameras for grasping in microgravity

Planetary Rovers

Historical Landmarks in Planetary and Lunar Exploration

- Lunokhod Rovers (Soviet Union, 1970s)
 - First remotely operated planetary rovers on the Moon
 - Equipped with cameras, scientific instruments, and solar panels
- Viking Probes (NASA, 1976)
 - First successful landers on Mars.
 - Conducted experiments searching for signs of life
- Huygens Probe (ESA, 2005)
 - o First landing on Titan, Saturn's largest moon
 - Captured images of Titan's surface and atmospheric data

Lunokhod 1 - 1970

Viking Probes on Mars, 1976

Overview of Mars Planetary Rovers

Definition:

 Mobile robots exploring planetary surfaces

Key Missions:

- Sojourner (1997, Mars Pathfinder)
- Spirit & Opportunity (2004, Mars)
- Curiosity (2012, Mars)
- Perseverance (2021, Mars)

Challenges in Rover Navigation

- Terrain:
 - Unpredictable and rough landscapes
- Communication latency:
 - o Delayed commands from Earth
- Energy management:
 - Solar vs. nuclear power

Key Sensors for Planetary Rovers

- Stereo cameras:
 - Depth perception
- LiDAR:
 - o 3D terrain mapping
- IMU + Wheel odometry:
 - Localization

LiDAR barely used so far

Wheel odometry very imprecise

Autonomous Navigation and Path Planning

SLAM

 Simultaneous Localization and Mapping

Vision-based navigation

Using Al and other techniques

• Path planning:

Reactive vs. global planning

Perseverance and Ingenuity: A Case Study

Perseverance Rover:

 Al-powered hazard detection, rock sample collection

• Ingenuity Helicopter:

First powered flight on another planet

Ingenuity first flight

How does Perseverance do to take a selfie?

Future of Space Manipulation and Planetary Rovers

- Al-powered robotic assistants for astronauts
- **Self-repairing robots** in orbit
- Autonomous space construction for habitats
- Swarm robotics for collective exploration
- Al-driven decision-making in real-time
- Under-ice rovers for Europa and Enceladus missions

Conclusions and Open Questions

- The role of robotics in deep space missions
- Ethical and safety concerns in autonomous exploration
- Next steps in research and development

