The Wild Bunch

Multilingual Keyword Spotting

... in any language!

What is keyword spotting?

What is keyword spotting?

Automatically detecting specific words from a continuous audio

What is keyword spotting?

Automatically detecting specific words from a continuous audio

Few-Shot Keyword Spotting in Any Language

Mark Mazumder¹, Colby Banbury¹, Josh Meyer^{2*}, Pete Warden³, Vijay Janapa Reddi¹

¹Harvard University, USA ²Coqui, Germany ³Google, USA

{markmazumder,cbanbury}@g.harvard.edu, josh@coqui.ai, petewarden@google.com, vj@eecs.harvard.edu

Abstract

We introduce a few-shot transfer learning method for keyword spotting in any language. Leveraging open speech corpora in nine languages, we automate the extraction of a large multilingual keyword bank and use it to train an embedding model. With just five training examples, we fine-tune the embedding model for keyword spotting and achieve an average F_1 score of 0.75 on keyword classification for 180 new keywords unseen by the embedding model in these nine languages. This embedding model also generalizes to new languages. We achieve an aver-

Which corpora did we use?

O1 Multilingual Spoken Words Corpus

1-second recordings of different words, automatically extracted from continuous audio

https://mlcommons.org/en/multilingual-spoken-words/ Multilingual Spoken Word Corpus

50

23,400,000

124GB

Languages

1-second spoken words

Full Dataset Size

Which corpora did we use?

01 Multilingual Spoken Words Corpus

1-second recordings of different words, automatically extracted from continuous audio

O2 Google Speech Commands

Only to extract 1-second audio clips of background noise

30 English Keywords

was
and
you
that
are
his
this
its

for
have
what
had
they
from
were
your

not but one there also all boy

can said with two him about out

Data Preparation

30

English keywords

1,000 samples each from MSWC

1

Background noise

Random extractions from GSC

31

Category

Classification task

Wav2Vec2

Whisper

Wav2Vec2

Whisper

3.2. Few-shot Transfer Learning

For 5-shot transfer learning (Fig. 1b), we use five target samples to fine-tune a 3-class softmax layer (with target, unknown, and background categories) on the output feature vector of the embedding layers, along with 128 non-target samples drawn from a precomputed bank of 5,000 "unknown" utterances in the nine embedding languages. When training KWS models in languages not seen by the embedding model (e.g., in Welsh), non-target samples are still drawn from this bank, i.e., to train a KWS model in Welsh a user would only need to collect 5 target samples of a Welsh keyword, without also needing to collect non-target examples in Welsh. The weights in the embedding layers are frozen when fine-tuning; we only update the softmax layer. Across 256 total training samples, approximately 45% are in the target category (random augmentations of the five target examples using the same strategy as Sec. 3.1), 45% are negative samples drawn from the precomputed set of non-target words, and 10% are background noise (Sec. 5.1.2).

"random augments of the five target examples" until you have 128 samples...

Data Preparation

45%

Target word examples

45%

Non-target word examples

10%

Background noise

For a total of 256 data points

English

"people"

81%

English

"people"

81%

Chinese

"日本"

75%

English

"people"

81%

Chinese

"日本"

75%

For a total of 256 data points

Next Steps...

Next Steps ...

01 Train a multilingual embedding model

Which performs better KWS – Monolingual or Multilingual embedding?

O2 Test keyword spotting on more languages

Original authors claimed this can be

O3 Hyperparameter optimization

Try to improve embedding accuracy and keyword spotting accuracy

Next Steps...

O1 Train a multilingual embedding model

Which performs better KWS – Monolingual or Multilingual embedding?

The Wild Bunch

Multilingual Keyword Spotting

... in any language!

The Wild Bunch

Monolingual Keyword Spotting

... in any language!

Next Steps...

01 Train a multilingual embedding model

Which performs better KWS – Monolingual or Multilingual embedding?

O2 Test keyword spotting on more languages

Original authors claimed this model can be used for KWS in any language!

Next Steps ...

01 Train a multilingual embedding model

Which performs better KWS – Monolingual or Multilingual embedding?

O2 Test keyword spotting on more languages

Original authors claimed this model can be used for KWS in any language!

O3 Hyperparameter optimization

Try to improve embedding accuracy and keyword spotting accuracy

Thank you!

Do you have any questions?

Bingyang Hou Jae Ihn Behrooz Qiassi

Min Zeng