Modeling Context

Modeling diffuse damage modeling

A test on the meshing and analysis software CASTEM gives us the geometry and the localization of the diffuse damage, around à fiber under axial stress.

Direction of the sollicitation **Modeling** crack Fiber Diffuse damage model Meshing Meshed diffuse damage model

Modeling

Local equations, limit and Initial conditions

Limit conditions

On AD: sinusoid thermal solicitation
On DC & AB: adiabatic behavior

ON BC: thermal exchange with ambient air

Studied element with limit conditions

Initial conditions

$$\begin{cases} \vec{T}^{0} (\grave{a} t = 0) = \vec{T}_{i} \\ \frac{\delta \vec{T}^{0}}{\delta t} (\grave{a} t = 0) = 0 \end{cases}$$

Local equations

Equilibre thermique

Thermal equilibrium
$$\rho \frac{\delta e}{\delta t} =$$

Loi de comportement (loi de Fourrier)

Thermal behavior

$$q = -\lambda \ grad T$$

On obtient l'équation de diffusion thermique :

$$\frac{\delta T}{\delta t} = \alpha \Delta T$$

Resolution procedure

Integration Schemes

Equation de diffusion

$$\frac{\delta T^{n+1}}{\delta t} = \alpha_{mat\acute{e}riau} \Delta T^{n+1}$$

Spatial discretization

$$\Delta\,T(M,t) = \frac{\delta^2 T}{\delta x^2} + \frac{\delta^2 T}{\delta y^2}$$

Finite difference method

$$\frac{\delta^2 T(x,y)}{\delta x^2} = \frac{T(x-h,y) + T(x+h,y) - 2T(x,y)}{h^2}$$

$$\Delta T_k = (T_{k-1} + T_{k+1} + T_{k-N} + T_{k+N}) - 4 T_k$$

temporal discretization

Time step
$$\Delta \ t \qquad t_n \in [0,T]$$

$$(1-\theta) \, \frac{\delta \, T^{\,n+1}}{\delta \, t} + \theta \, \frac{\delta \, T^{\,n}}{\delta \, t} = \frac{T^{\,n+1} - T^{\,n}}{\Delta \, t}$$

Crank-Nicholson scheme: $\theta = 1/2$

$$\frac{\delta T^{n+1}}{\delta t} = 2 \left(\frac{T^{n+1} - T^n}{\Delta t} \right) - \frac{\delta T^n}{\delta t}$$

Implicit scheme

The temperature at the point k and at the time t_n respects this relation

$$\frac{2}{\Delta t} \, T_k^{\, n} + \frac{\delta T_k^{\, n}}{\delta t} = T_k^{\, n+1} \left(\frac{2}{\Delta \, t} + \frac{4 \, \alpha_{\, i}}{h^2} \right) - \frac{\alpha_{\, i}}{h^2} \left(T_{k-1}^{\, n+1} + T_{k+1}^{\, n+1} + T_{k-N}^{\, n+1} + T_{k+N}^{\, n+1} \right)$$

Resolution procedure

Determination of the matrix equations to resolve

Construction of the matrix of rigidity

$$\begin{pmatrix}
-\frac{\alpha}{h^2} \\
-\frac{\alpha}{h^2} \\
\frac{2}{\Delta t} + \frac{4 \alpha}{h^2} \\
-\frac{\alpha}{h^2} \\
-\frac{\alpha}{h^2} \\
-\frac{\alpha}{h^2}
\end{pmatrix}^{T} \begin{pmatrix}
T_{k-1} \\
T_{k+1} \\
T_k \\
T_{k+N} \\
T_{k-N}
\end{pmatrix}^{n+1} = \frac{2}{\Delta t} T_k^n + \frac{\delta}{\delta t} T_k^n$$

K th * elementary * line of [M]

« elementary » Vector of temperature

Iterative resolution

$$\begin{cases}
[M] \overrightarrow{T}^{n+1} = \left(\frac{2}{\Delta t} \overrightarrow{T}^n + \frac{\delta \overrightarrow{T}^n}{\delta t}\right) \\
\frac{\overrightarrow{\delta T}^n}{\delta t} = -\frac{\overrightarrow{\delta T}^{n-1}}{\delta t} + 2\left(\frac{\overrightarrow{T}^n - \overrightarrow{T}^{n-1}}{\Delta T}\right)
\end{cases}$$

Method of penalization

$$\vec{T}_{global} = \begin{pmatrix} \vec{T}_u \\ \vec{T}_i \end{pmatrix} \qquad \vec{T}_i = \begin{pmatrix} T_{excitationt} \\ T_{ambiant} \end{pmatrix}$$

$$\vec{T}_i^{n+1} \approx \vec{T}_i^n$$

$$[M_{globale}] = \left(\begin{array}{ccc} [M] & 0 & 0 \\ 0 & K & 0 \\ 0 & 0 & K \end{array} \right)$$

Observation tools

Observation the temperature in the model

Output surface

Visualisation of a crack

Visualization of the mesh at a certain time

The cracks make the thermal diffusion slower

We can see a phase shift between the two surfaces

Observation of the temporal output

It gives:

The reponse time The phase shift The amplitude shift

Visualization of the input surface temperature (red) and of the output surface temperature (blue)

Observation the spectrum

Visualization of the amplitudes of the thermal solicitation (red) and of the thermal response (blue)

It gives:

The amplitude for each solicitation frequency

Aliasing of the Spectrum

The theorem of Shannon is validated

 $2f_{max} \leq f_e$

Influence of the frequency and of the cracks ratio

Influence of the cracks ratio

We change the cracks ratio between 0 and 16% while the frequency of the solicitation stay the same

There is an affine relation between:

- -the phase and the crack ratio
- -the amplitude and the crack ratio

Phase et amplitude relative en fonction du taux d'endommagement

Influence of the solicitation frequency

We change the frequency between 0,02 and 2.10-4 Hz with a 10% cracks ratio

The element has a low pass behavior

Lieu de Bode de la réponse

Validation of the ratio between the fiber diameter and the model length

Dispersion of the results

We try 10 random draw of the fibers positions with a 10% crack ratio and a 1/2500 Hz frequency

The ration between the model length and the fiber diameter is 1 to 10, as a result:

- A 10% error on the phase
- A 10% error on the amplitude

phase (rd)
Relative amplitude in function of the phase

Influence on the accuracy

The cracks ratio is known at more or less 3%

Relative amplitude in function of the cracks ratio

Conclusion on the results

Amplitude in function of the frequency for 3 different crack ratio

Lieu de Bode en gain de trois réponses