Introdução ao Programa R: Aplicações básicas em Estatística

Gilberto Rodrigues Liska; Josiane Rodrigues; Juliano Bortolini gilbertoliska@ufscar.br; josirodrigues@ufscar.br; julianobortolini@ufmt.br

Material de Apoio

Sumário

- Introdução
- Estatística Descritiva
- Referências
- 4 Considerações finais

Introdução

- Agora que já sabemos importar, arrumar, transformar, criar funções e elaborar gráficos, vamos ver aplicações básicas do programa R em Estatística.
- Em algum momento de sua trajetória acadêmica, ENEM, vestibulares, concursos etc., nos deparamos com tabelas e gráficos.
- Em várias áreas, não somente a da Estatística, tabelas e gráficos aparecem de forma bastante natural, como a judicial, farmacêutica, econômica etc. Até mesmo na televisão.

https://pixabay.com/images/

- Nessa aula iremos utilizar o R para construção de tabelas deid-2774737/ frequência e os principais gráficos.
- Para melhor entendimento dessa aula, é desejável que o aluno tenha feito um curso de estatística básica. Contudo, caso não o tenha feito, não será um empecilho para prosseguimento dessa aula, já que o foco será o R.

Sumário

- Introdução
- Estatística Descritiva
 - Dados Qualitativos
 - Dados Quantitativos Discretos
 - Dados Quantitativos Contínuos
- Referências
- Considerações finais

Introdução

 A elaboração de gráficos e tabelas em Estatística está contida em sua área mais elementar, a Estatística Descritiva.

Estatística Descritiva

É a etapa inicial da análise (análise exploratória de dados) utilizada para descrever e resumir os dados

Fonte: https://pixabay.com/ images/id-3614768/

Métodos

Tabelas, gráficos, porcentagens e medidas de tendência central, variabilidade etc.

 Muitas análises de dados requerem apenas o uso de métodos exploratórios (descritivos).

Estatística Descritiva

Dados

- Para ilustrar os métodos, vamos utilizar o conjunto de dados Tab1.txt, apresentado na aula 3, exemplo 7.
- O conjunto de dados traz informações do sexo, idade, peso, altura, renda e número de faltas de 40 alunos de uma turma em uma universidade.
- Crie um novo script em seu computador. Carregue o conjunto de dados.

Arquivo	Editar	Formatar Ex	ibir Ajuda	3		
ld	Sexo	Idade	Peso	Altura	Renda	Faltas
1	1	23	62	1.610	1	1
2	0	24	57	1.624	2	2
3	1	20	73	1.647	2	0
4	1	20	80	1.656	3	1
5	0	18	70	1.677	2	2
6	0	19	61	1.692	2	3
7	1	23	89	1.698	2	0
8	1	21	64	1.713	2	1
9	1	21	65	1.716	1	2
10	1	22	71	1.717	1	1
11	0	20	73	1.731	1	0
12	1	22	71	1.749	1	2
13	1	26	70	1.750	1	2
14	0	22	62	1.752	1	0
15	0	20	67	1.753	2	5
16	0	21	68	1.758	3	2
17	1	24	A1	1 785	2	1

Figura 1: Bloco de notas do arquivo Tab1.

Lembrete

 Esse arquivo também está disponível em pasta virtual por meio do link https: //ldrv.ms/u/s!AvxsaQZPoPWdrxYOYHC1wUnvT2gW?e=qBws6w

Dados

Tabela 1: Informação do sexo (M=0,F=1), idade, peso, altura e renda $(B=1,M=2\ e\ A=3)$ e número de faltas de 40 alunos de uma turma de uma universidade.

ld	Sexo	Idade(anos)	Peso(Kg)	Altura(m)	Renda	Faltas	ld	Sexo	Idade(anos)	Peso(Kg)	Altura(m)	Renda	Faltas
1	1	23	62	1.610	1	1	21	0	18	54	1.803	2	1
2	0	24	57	1.624	2	2	22	0	19	65	1.811	3	2
3	1	20	73	1.647	2	0	23	1	19	75	1.816	2	0
4	1	20	80	1.656	3	1	24	1	26	74	1.826	3	1
5	0	18	70	1.677	2	2	25	0	21	66	1.827	1	2
6	0	19	61	1.692	2	3	26	0	19	67	1.828	2	3
7	1	23	89	1.698	2	0	27	0	22	83	1.829	1	0
8	1	21	64	1.713	2	1	28	0	18	84	1.841	3	1
9	1	21	65	1.716	1	2	29	1	25	72	1.842	2	2
10	1	22	71	1.717	1	1	30	1	24	74	1.853	1	1
11	0	20	73	1.731	1	0	31	0	26	66	1.861	2	0
12	1	22	71	1.749	1	2	32	0	23	70	1.887	2	2
13	1	26	70	1.750	1	2	33	0	19	72	1.889	3	2
14	0	22	62	1.752	1	0	34	1	23	73	1.891	1	0
15	0	20	67	1.753	2	5	35	1	26	86	1.898	2	5
16	0	21	68	1.758	3	2	36	0	27	71	1.904	3	2
17	1	24	61	1.785	2	1	37	0	27	77	1.915	2	1
18	0	19	68	1.786	2	3	38	1	18	57	1.921	2	3
19	0	23	59	1.799	2	2	39	1	24	67	1.929	2	2
20	1	19	66	1.802	3	3	40	0	25	73	1.977	2	3

Organização e representação de dados qualitativos

Tabela 2: Representação tabular de uma variável qualitativa

Variável	f_i	f _{ri}
Nível 1	f_1	f_{r1}
Nível 2	f_2	f_{r2}
:	:	:
Nível k	f_k	f_{rk}
TOTAL	$f_1+f_2+\cdots+f_k=n$	$f_{r1}+\cdots+f_{rk}=1.0000$

- f_i: Frequência absoluta da categoria i (número de indivíduos que pertencem à categoria i).
- $f_{ri} = \frac{f_i}{n}$: Frequência relativa da classe *i*.

Fonte: https://pixabay. com/images/ id-3689669/

Representação tabular e gráfica de dados qualitativos

Exemplo 1

Com base na tabela 1:

- (a) Construir a distribuição de frequências da renda dos 40 alunos de uma turma em uma universidade.
- (b) Construir gráficos apropriados.

Fonte: https://pixabay.com/ images/id-1673582/

Representação tabular de dados qualitativos

Exemplo 1 (a) no R

```
# Lembrete: para chamar arquivo externo siga os passos a seguir
#1°) mudar diretorio: Session
#2°) set working directory
#3°) choose directory
#4°) escolher pasta com arquivo "Tab1.txt"
#apos mudar diretorio, chamar o arquivo
dados=read.table("Tab1.txt", h=TRUE)
var=dados[,6]; var
## calcular o n
n=length(var); n
## tabular os valores da variavel
tvar=table(var); tvar # freq. absoluta
# freq. relativa
fr=tvar/n: fr
# freq percentual
fp=fr*100; fp
```


Representação tabular de dados qualitativos

Exemplo 1 (a)

Com os resultados da rotina anterior, podemos completar a tabela de distribuição de frequências da variável renda.

Tabela 3: Distribuição de frequências absolutas e relativas da renda dos 40 alunos de uma turma em uma universidade.

Renda	f	f_r
Baixa (1)	11	0,275
Média (2)	21	0,525
Alta (3)	8	0,200
TOTAL	40	1.000

•
$$f_{r1} = \frac{f_1}{r} = \frac{11}{40} = 0,275$$

•
$$f_{r2} = \frac{f_2}{n} = \frac{21}{40} = 0,525$$

• $f_{r3} = \frac{f_3}{n} = \frac{8}{40} = 0,200$

Representação gráfica de dados qualitativos

```
Exemplo 1 (b) no R
```

```
## criando gráfico de pizza
pie(tvar) #versao padrao do R
pie(tvar, col=rainbow(6),
    labels=c("BAIXA", "MÉDIA", "ALTA"),
    main="Dados de renda")
## para colocar as porcentagens no grafico
varv <- paste(c("BAIXA", "MÉDIA", "ALTA"), "\n", (tvar/n)*100,"%", sep=" ")</pre>
pie(tvar, col=c(2,3,4), labels=varv, main="Dados de renda")
# gráfico de pizza 3D
library(plotrix)
?pie3D # pedindo ajuda
pie3D(tvar,labels=rendav,explode=0.1,theta=pi/4,start=10,
      main="Gráfico de setores da renda ")
## grafico de barras
barplot(tvar, col=rainbow(4), ylab="Frequências absolutas",
        names=c("BAIXA", "MÉDIA", "ALTA"))
```

Representação gráfica de dados qualitativos

Figura 2: Gráfico de pizza da renda dos 40 alunos de uma turma em uma universidade.

Figura 3: Gráfico de barras da renda dos 40 alunos de uma turma em uma universidade

Exemplo 2

Com base na tabela 1:

- (a) Construir a distribuição de frequências do número de faltas dos 40 alunos de uma turma em uma universidade.
- (b) Construir gráficos apropriados.

Os dados da tabela 1 são os seguintes:

1	2	0	1	2	3	0	1	2	1
0	2	2	0	5	2	1	3	2	3
1	2	0	1	2	3	0	1	2	1
0	2	2	0	5	2	1	3	2	3

Fonte: https://pixabay.com/ images/id-158647/


```
Exemplo 2 (a) no R
## com os dados carregados do exemplo 1
falta=dados[,7]; falta
n=length(falta); n

## frequencias
faltat=table(falta); faltat # freq. absoluta
fr=faltat/n; fr # freq. relativa
fp=fr*100; fp # freq. percentual
```


Representação tabular de dados quantitativos discretos

Exemplo 2 (a)

Com os resultados da rotina anterior, podemos completar a tabela de distribuição de frequências da variável nº de faltas.

Tabela 4: Distribuição de frequências absolutas e relativas do número de faltas de 40 alunos de uma turma em uma universidade, no último semestre

Faltas	f	f_r	f_p
0	8	0,20	20%
1	10	0,25	25%
2	14	0,35	35%
3	6	0,15	15%
5	2	0,05	5%
TOTAL	40	1,00	100%

•
$$f_{r1} = \frac{f_1}{n} = \frac{8}{40} = 0,20$$

•
$$f_{r2} = \frac{f_2}{n} = \frac{10}{40} = 0,25$$

•
$$f_{r3} = \frac{f_3}{n} = \frac{14}{40} = 0,35$$

•
$$f_{r4} = \frac{f_4}{n} = \frac{6}{40} = 0,15$$

•
$$f_{r5} = \frac{f_5}{n} = \frac{2}{40} = 0,05.$$

Representação gráfica de dados quantitativos discretos

Figura 4: Gráfico de barras do número de faltas dos 40 alunos de uma turma em uma universidade, no último semestre.

Figura 5: Gráfico de linhas do número de faltas dos 40 alunos de uma turma em uma universidade, no último semestre.

- (1) Determinar o número de classes k, para o qual podem ser utilizados os seguintes critérios:
 - A familiaridade do pesquisador com os dados.
 - Critério baseado no número de observações n.

Tabela 5: Número ideal de classes baseado no número de observações

Número de Observações (n)	Número de Classes
Até 100 Acima de 100	\sqrt{n} (Inteiro mais próximo) 5 $log_{10}(n)$ (Inteiro mais próximo)

- Sturges
- Scott
- Freedman-Diaconis

(2) Determinar a **Amplitude de Classe** (*C*): Que é a diferença entre os limites superior e inferior de uma determinada classe.

$$C = \frac{A}{k-1}$$

em que $A=x_{\max}-x_{\min}$, x_{\max} e x_{\min} é o maior e menor valor observado da variável X, respectivamente, e k é o número de classes.

(3) Determinar o **limite inferior** da primeira classe (LI_1) :

$$LI_1 = x_{\min} - \frac{C}{2}$$

(4) Determinar as **Classes**: Sejam LI_i e LS_i os limites inferior e superior da classe i, respectivamente. Logo

$$LI_{1} = x_{\min} - \frac{C}{2}$$

$$LS_{1} = LI_{1} + C$$

$$LI_{2} = LS_{1}$$

$$\vdots$$

$$LI_{i+1} = LS_{i}$$

$$LS_{i+1} = LI_{i+1} + C$$

$$\vdots$$

$$LS_{k} = LI_{k} + C \quad \text{ou} \quad LS_{k} = x_{\max} + \frac{C}{2}$$

(5) Determinar o **ponto médio da classe** (\bar{X}_i) e as **Frequências Absoluta** (f_i) , **Relativa** (fr_i) e **Percentual** (fp_i) . O mesmo pode ser feito para as frequências acumuladas (F).

$$\bar{X}_i = \frac{LS_i + LI_i}{2}$$

$$f_i = \text{total de elementos na classe } i$$

$$fr_i = \frac{f_i}{n}$$

$$fp_i = fr_i \times 100\%$$

$$F_i = f_1 + f_2 + \dots + f_i$$

$$F_{ri} = f_{r1} + f_{r2} + \dots + f_{ri}$$

$$F_{pi} = f_{p1} + f_{p2} + \dots + f_{pi}$$

Tabela 6: Representação genérica de uma tabela de distribuição de Frequências de uma variável quantitativa contínua, em que f representa a frequência absoluta e F a frequência acumulada absoluta. Da mesma forma obtém-se as outras frequências.

Classe	$ar{X}_i$	f	f _r	f_p	Fp
$[LI_1;LS_1)$	$\frac{LS_1 + LI_1}{LS_2 + LI_2}$	f_1	f_{r1}	f_{p1}	$Fp_1=f_{p1}$
$[LI_2; LS_2)$	$\frac{LS_2 + LI_2}{2}$	f ₂	f_{r2}	f_{p2}	$Fp_2 = f_{p1} + f_{p2}$
:	\vdots $LS_k + LI_k$:		:	:
$[LI_k; LS_k)$		f_k	f_{rk}	f_{pk}	$Fp_k = f_{p1} + \cdots + f_{pk}$
TOTAL	$\bar{X} = \sum_{i=1}^k f_{ri} \times \bar{X}_i$	n	1,00	100,00%	_

Exemplo 3

Com base na tabela 1:

- (a) Construir a distribuição de frequências da **altura** dos 40 alunos de uma turma em uma universidade (Tabela 1).
- (b) Construir gráficos apropriados.
- (c) Calcule a média, mediana, desvio padrão, variância e amplitude da variável.

Os dados da tabela 1 são os seguintes:

1,61	1,62	1,65	1,66	1,68	1,69	1,70	1,71	1,72	1,72
1,73	1,75	1,75	1,75	1,75	1,76	1,78	1,79	1,80	1,80
1,80	1,81	1,82	1,83	1,83	1,83	1,83	1,84	1,84	1,85
1,86	1,89	1,89	1,89	1,90	1,90	1,91	1,92	1,93	1,98


```
Exemplo 3 (a) no R
```

```
## com os dados do exemplo 1 carregado
# numero de classes
head(dados)
var=dados[.5]
n=length(var)
                       #numero de observações
k=round(sqrt(n)); k
                       #numero de classes
# amplitude da classe
varmin=min(var): varmin
varmax=max(var): varmax
c=(varmax-varmin)/(k-1); c
# limites das classes
LI1=varmin - c/2; LI1
LSk=varmax + c/2: LSk
LimClass=seq(LI1, LSk, c); LimClass
```


Exemplo 3 (b) no R

```
### histograma
hist(var)
              #versao padrao do R
# histograma com frequencias de acordo com as classes construídas
hist(var. breaks=LimClass. col=rainbow(8))
# histograma com frequencias de acordo com as classes construídas,
# n° de classes e eixos ajustados
h=hist(alt, breaks=LimClass, main="Histograma das alturas",
       xlab="Altura (metros)", ylim=c(0,15),
       ylab="Frequências absolutas",
       col="lightgreen",axes=FALSE)
# ajustando eixo horizontal
axis(1,at=LimClass,pos=-0.5)
# ajustando eixo vertical
axis(2,at=seq(0,30,by=1))
#poligono de frequencia
points(h$mids,h$counts,type="1",lwd=2)
```



```
Exemplo 3 (a) continuação no R
# ponto medio da classes
h$mids
## frequências simples
fa=h$counts; fa # frequencia absoluta
fr=fa/n; fr # frequencia relativa
fp=fr*100; fp # frequencia percentual
## frequencias acumuladas
Fa=c(0, cumsum(fa)); Fa
                          # freq. acumulada absoluta
Fr=Fa/n; Fr
                          # freq. acumulada relativa
Fp=Fr*100; Fp
                          # freq. acumulada pecentual
## media da altura (dados agrupados)
xbar=sum(fr*h$mids)
xbar
```


Exemplo 3 (b) continuação no R

```
## grafico de ogiva (frequencia absoluta acumulada)
Fa # objeto Fa criado anteriormente
plot(LimClass,Fa,
     vlab="Frequência absoluta", xlab="Altura (metros)",
     axes=F, panel.first=grid(), lwd=2, col="red", cex.lab=1.2)
points(LimClass,Fa,type="b",
       pch=16,col="red", panel.first=grid())
axis(1,at=round(LimClass,3),pos=-0.05, cex.axis=1)
axis(2,at=seq(0,40,by=5), cex.axis=1.2, las=2)
## grafico de ogiva (frequencia relativa acumulada)
Fr # objeto Fr criado anteriormente
plot(LimClass,Fr,type="b",
     ylab="Frequência relativa", xlab="Altura (metros)".
     axes=F, panel.first=grid(), lwd=2, col="red", cex.lab=1.2)
points(LimClass,Fr,type="b",
       pch=16,col="red", panel.first=grid())
axis(1,at=round(LimClass,3),pos=-0.05, cex.axis=1)
axis(2,at=seg(0,1,by=0.1), cex.axis=1.2, las=2)
```


Representação tabular de var. quantitativas contínuas

Exemplo 3 (a)

Com os resultados da rotina anterior, podemos completar a tabela de distribuição de frequências da variável altura.

Tabela 7: Distribuição de Frequências da variável altura em uma amostra de 40 alunos de uma universidade.

Classe	\bar{X}_i	f_i	fr _i	fp_i	F_i	Fp_i
[1, 573; 1, 647)	1,610	2	0,05	5,00	2	5,00
[1,647;1,720)	1,683	8	0,20	20,00	10	25,00
[1,720;1,793)	1,757	8	0,20	20,00	18	45,00
[1,793;1,867)	1,830	13	0,33	32,50	31	77,50
[1, 867; 1, 940)	1,904	8	0,20	20,00	39	97,50
[1,940;2,014)	1,977	1	0,03	2,50	40	100,00
TOTAL	1,793	40	1,00	100,00	_	_

Representação gráfica de var. quantitativas contínuas

Exemplo 3 (b) - Histograma e Polígono de frequência

Figura 6: Histograma e polígono de frequência da altura de 40 alunos de uma universidade.

Representação gráfica de var. quantitativas contínuas

Exemplo 3 (b) - Gráfico de Ogiva

Figura 7: Gráfico de Ogiva da altura de 40 alunos de uma universidade.

Representação gráfica de var. quantitativas contínuas

Interpretação da Ogiva

- 1 Observar legenda dos eixos.
- A partir de um valor do eixo x trace uma linha paralela ao eixo y até tocar a linha da ogiva. Verificar o valor da projeção em y. INTERPRETAÇÃO: Existem y valores abaixo do valor x. EX.: Aproximadamente 50% dos alunos tem altura até 1,80 metros.
- S A partir de um valor do eixo y trace uma linha paralela ao eixo x até tocar a linha da ogiva. Verificar o valor da projeção em x.
 INTERPRETAÇÃO: Existem x valores abaixo do valor y.
 EX.: Abaixo de 1,90 metros, existem aproximadamente 85% dos alunos.

Representação gráfica de var. quantitativas contínuas

Exemplo 3 (b) (cont.)

Com o auxílio da Ogiva construída anteriormente, responda as seguintes perguntas:

- (a) Qual altura (aproximadamente) que compreende 20% dos alunos mais baixos?
- (b) Qual a porcentagem (aproximadamente) de alunos com altura superior a 1,90 m?

Fonte: https://pixabay. com/images/ id-2797403/

Exemplo 3 (b) (cont.)

SOLUÇÃO (a): Com o auxílio da ogiva, traçar uma reta paralela ao eixo horizontal, partindo de 0,2 até tocar na ogiva e encontrar o valor correspondente no eixo horizontal.

Figura 8: Ogiva da altura de 40 alunos de uma universidade.

Resposta: A altura que compreende 20% dos alunos mais baixos é de 1,70 m (aproximadamente).

Exemplo 3 (b) (cont.)

SOLUÇÃO (b): Com o auxílio da ogiva, traçar uma reta paralela ao eixo vertical, partindo de 1,9 até tocar na ogiva e encontrar o valor correspondente no eixo vertical.

Figura 9: Ogiva da altura de 40 alunos de uma universidade.

Resposta: A porcentagem de alunos com altura superior a 1,90 m é de 10% (aproximadamente).

Medidas descritivas

Exemplo 3 (c) no R

```
## medidas descritivas para os dados de altura
median(var)  # mediana
mean(var)  # média

A=max(var)-min(var); A # amplitude

# variancia
Varh=sum((var-hbarra)^2)/(n-1); Varh

# ou simplesmente
var(var)

# desvio padrao
DPh=sqrt(Varh); DPh
# ou simplesmente
sd(var)
```

OBS.:

As medidas acima poderiam ser calculadas usando algumas das funções criadas na aula 3.

Prática

Exercício

Com base na tabela 1:

- (a) Construir a distribuição de frequências do **peso** dos 40 alunos de uma turma em uma universidade (Tabela 1).
- (b) Construir gráficos apropriados.
- (c) Calcule a média, mediana, desvio padrão, variância e amplitude da variável.

Os dados da tabela 1 são os seguintes:

62	57	73	80	70	61	89	64	65	71
73	71	70	62	67	68	61	68	59	66
54	65	75	74	66	67	83	84	72	74
66	70	72	73	86	71	77	57	67	73

Sumário

- Introdução
- Estatística Descritiva
- Referências
- Considerações finais

Bibliografia do curso

- COOK, D.; SWAYNE, D. F. Interactive and Dynamic Graphics for Data Analysis with R, Springer, 2007.
- CRAWLEY, M. J. The R Book, John Wiley & Sons Ltd, 2007.
- DALGAARD, P. Introductory Statistics with R. New York, NY: Springer New York, 2008. doi 10.1007/978-0-387-79054-1
- HENRY, M.; STEVENS, H. A Primer of Ecology with R, Springer, 2009.
- OLIVEIRA, P. F.; GUERRA, S.; MCDONNELL, R. Ciência de Dados com R: Introdução. Brasília: Editora IBPAD, 2018. (disponível on line em https://www.ibpad.com.br/o-que-fazemos/publicacoes/introducao-ciencia-de-dados-com-r/)
- TATTAR, P. N.; RAMAIAH, S.; MANJUNATH, B. G. A course in Statistics with R, John Wiley & Sons, 2016.

Fonte: https://pixabay.com/ images/id-2022464/

Bibliografia do curso

- VANCE A. Data Analysts Captivated by R's Power. Disponível em: http://www.nytimes.com/2009/01/07/technology/business-computing/07program. html?_r=0. Acesso em 30 abril. 2020.
- VERZANI, J. Getting Started with RStudio, O'Reilly Media, Inc., 2011.
- WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis, Springer, 2009.
- WILKINSON, L. The Grammar of Graphics. Springer-Verlag New York, 2 ed, 2005. 691 p, doi 10.1007/0-387-28695-0.
- ZUUR, A. F.; IENO, E. N.; MEESTERS, E. A Beginner's Guide to R. New York, NY: Springer New York, 2009. doi 10.1007/978-0-387-93837-0

Fonte: https://pixabay.com/ images/id-42701/

Sumário

- Introdução
- Estatística Descritiva
- Referências
- Considerações finais

Pensamento

"No futuro, o pensamento estatístico será tão necessário para a cidadania eficiente como saber ler e escrever."

Fonte: https:

Herbert George Wells (escritor britânico, autor de

"A guerra dos mundos" e "A máquina do tempo")

Obrigado!

Esperamos que esse curso tenha contribuído (ou contribuirá), de alguma forma com a formação de vocês, em sua trajetória acadêmica e/ou profissional.