§4. Теорема Лагранжа

Теорема Лагранжа. Если функция y = f(x) непрерывна на отрезке [a,b], а также дифференцируема на интервале (a,b), то на интервале (a,b) найдётся хотя бы одна точка c, для которой будет справедливо равенство:

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{4.1}$$

Равенство (4.1) называется формулой Лагранжа.

Теорема Лагранжа не требует специального доказательства. Она следует из теоремы Коши при g(x) = x.

Замечание 4.1. Формулу Лагранжа (4.1) можно переписать в виде
$$f(b) - f(a) = f'(c)(b-a)$$
. (4.2)

Пример 4.1. Проверить справедливость теоремы Лагранжа для функции $f(x) = -x^2 + 2x$, заданной на отрезке [1, 3].

▶Функция f(x) непрерывна на отрезке [1, 3] как элементарная и дифференцируема на интервале (1, 3), f'(x) = -2x + 2, поэтому на интервале (1, 3) есть точка c, для которой будет справедлива формула (4.1), имеющая в данном случае вид: $\frac{f(3) - f(1)}{3 - 1} = f'(c)$ или $\frac{-3 - 1}{2} = f'(c)$, откуда следует равенство: f'(c) = -2. Сравнив его с выражением для производной f'(x), получаем уравнение: -2c + 2 = -2, отсюда имеем $c = 2 \in (1, 3)$. \blacktriangleleft

1°. Геометрическая интерпретация теоремы Лагранжа. Пусть функция y = f(x) удовлетворяет на отрезке [a, b] условиям теоремы Лагранжа, AB -хорда, соединяющая точки A(a, f(a)), B(b, f(b)) графика Γ этой функции (рис. 4.1). Отношение $\frac{f(b) - f(a)}{b - a}$ из равенства (4.1) есть угловой коэффициент хорды AB, а производная f'(c) является угловым коэффициентом касательной T, проведённой к Γ в точке C(c, f(c)). Итак, заключаем, что на графике данной функции существует хотя бы одна точка C(c, f(c)), касательная T в которой к графику функции Γ параллельна его хорде AB (рис. 4.1).

Рис. 4.1. К геометрической интерпретации теоремы Лагранжа

Рис. 4.2. К примеру 4.2 (парабола $y = -x^2 + 2x$ на отрезке [1,3])

Пример 4.2. На дуге параболы $y = -x^2 + 2x$ между точками A(1,1), B(3,-3) найти точку C(c,y(c)), касательная T в которой параллельна хорде AB. Написать уравнение этой касательной.

- ▶В примере 4.1 показано, что функция $y = -x^2 + 2x$ на отрезке [1, 3] удовлетворяет условиям теоремы Лагранжа и найдена точка c = 2. Так как y(c) = y(2) = 0, то C(2,0) (рис. 4.2). Уравнение T получим, подставив в равенство (2.2) из главы 1 координаты точки C и y'(c) = -2: y 0 = -2(x 2). После очевидных преобразований приходим к уравнению T: 2x + y 4 = 0. ◀
- **2°.** Физическая интерпретация теоремы Лагранжа. Пусть функция s = s(t), описывающая прямолинейное движение точки на промежутке $[t_1, t_2]$, удовлетворяет на этом промежутке условиям теоремы Лагранжа, тогда из (4.1) следует равенство:

$$\frac{s(t_2) - s(t_1)}{t_2 - t_1} = s'(t^*), \tag{4.3}$$

где $t^* \in (t_1, t_2)$. Итак, на интервале (t_1, t_2) есть момент времени t^* , в который мгновенная скорость движения $s'(t^*)$ равна средней скорости движения на отрезке $[t_1, t_2]$.

Пример 4.3. Прямолинейное движение точки на промежутке времени [0, 2] задано уравнением $s(t) = 2t^2 - t + 1$. Найти момент времени t^* , в который мгновенная скорость движения равна средней скорости движения на отрезке [0, 2].

- ► Напишем формулу (4.3) для данной функции: $\frac{s(2)-s(0)}{2-0}=4t*-1$, отсюда получаем уравнение для t*: 3=4t*-1. Следовательно, t*=1. \blacktriangleleft
- **3°. Формула конечных приращений.** Формула Лагранжа (4.2) справедлива как для случая a < b, так и для случая a > b. Запишем её в другой форме. Возьмём любое значение $x_0 \in (a,b)$ и придадим ему приращение Δx такое, чтобы $x_0 + \Delta x \in [a,b]$. Напишем формулу (4.2) для промежутка $[x_0, x_0 + \Delta x]$ при $\Delta x > 0$ или для промежутка $[x_0 + \Delta x, x_0]$ при $\Delta x < 0$:

$$f(x_0 + \Delta x) - f(x_0) = \Delta f(x_0) = f'(c)\Delta x,$$
 (4.4)

c — число, заключённое между x_0 и $x_0 + \Delta x$. Положим: $c = x_0 + \theta \cdot \Delta x$, $\theta \in (0,1)$, при этом равенство (4.4) принимает вид:

$$\Delta f(x_0) = f'(x_0 + \theta \cdot \Delta x) \Delta x. \tag{4.5}$$

Соотношения (4.4) и (4.5) являются точными равенствами и справедливы для конечных значений Δx . Каждое из них называется формулой конечных приращений в отличие от приближённого равенства

$$\Delta f(x_0) \approx f'(x_0) \Delta x,$$
 (4.6)

называемого формулой бесконечно малых приращений. Формулы (4.5) и (4.6) можно переписать в виде

$$\Delta f(x_0) = df(x_0 + \theta \cdot \Delta x), \tag{4.7}$$

$$\Delta f(x_0) \approx df(x_0). \tag{4.8}$$

Пример 4.4. Используя формулу конечных приращений, для функции $f(x) = x^2 - 2x$ на отрезке [1, 5] найти точку c, в которой дифференциал совпадает с приращением функции на этом отрезке.

► Напишем формулу (4.4) для данной функции: $f(5) - f(1) = (2c - 2) \cdot 4$, отсюда находим c: $16 = 8(c - 1) \Rightarrow c = 3$. \blacktriangleleft

*4°. Вычисление односторонних производных.

Следствие из теоремы Лагранжа. Пусть функция y = f(x) дифференцируема на интервале (a, b), кроме, быть может, точки $x_0 \in (a, b)$, где она непрерывна. Если существует конечный или бесконечный $\lim_{x \to x_0 = 0} f'(x) = A$, то $\exists f'_-(x_0)$ и $f'_-(x_0) = A$. Аналогично, если существует $\lim_{x \to x_0 + 0} f'(x) = B$, то $f'_+(x_0) = B$.

► На интервале (a, b) рассмотрим точку $x_0 + \Delta x$, тогда на отрезке, концами которого служат точки $x_0 + \Delta x$ и x_0 для функции f(x) выполнены условия теоремы Лагранжа. Формулу Лагранжа (4.1) здесь можно переписать так:

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0 + \theta \Delta x), \tag{4.9}$$

где θ -некоторое число из интервала (0,1). Так как существует $\lim_{\Delta x \to -0} f'(x_0 + \theta \Delta x) = \lim_{x \to x_0 = 0} f'(x) = A$, то при $\Delta x \to -0$ существует предел и левой части равенства (4.9), по определению равный $f'_-(x_0)$, при этом $f'_-(x_0) = A$.

Замечание 4.3. Для функции y = f(x), удовлетворяющей на интервале (a, b) условиям следствия из теоремы Лагранжа справедливы равенства:

$$f'(x_0 - 0) = f'_{-}(x_0), \ f'(x_0 + 0) = f'_{+}(x_0), \ x_0 \in (a,b).$$
 (4.10)

Пример 4.5. Найти $f'_{-}(0)$, $f'_{+}(0)$ и f'(0), если $f(x) = \arcsin \frac{1-x^2}{1+x^2}$.

►
$$D(f) = \mathbf{R}$$
, $f'(x) = \begin{cases} 2/(1+x^2), & x < 0, \\ -2/(1+x^2), & x > 0 \end{cases}$ (пример 7.6 главы 1). Имеем:

$$f'_{-}(0) = f'(-0) = \lim_{x \to -0} 2/(1+x^2) = 1, \ f'_{+}(0) = f'(+0) = \lim_{x \to +0} (-2/(1+x^2)) = -1 \ (\text{cm}.$$

(4.10)). Так как $f'_{-}(0) \neq f'_{+}(0)$, то в силу замечания 1.3 предыдущей главы заключаем, что в точке x = 0 данная функция не имеет производной. ◀

Пример 4.6. Найти $f'_{-}(2)$ и $f'_{+}(2)$, если $f(x) = \sqrt[3]{(x-2)^2}$.

►
$$f'(x) = \frac{2}{3\sqrt[3]{x-2}}$$
, $x \ne 2$. Из (4.9) имеем: $f'_{-}(2) = f'(2-0) =$

$$= \lim_{x \to 2^{-0}} \frac{2}{3\sqrt[3]{x-2}} = -\infty \text{ и } f'_{+}(2) = f'(2+0) = \lim_{x \to 2^{+0}} \frac{2}{3\sqrt[3]{x-2}} = +\infty. \blacktriangleleft$$

5°. Применение теоремы Лагранжа для доказательства неравенств.

Пример 4.7. Используя теорему Лагранжа, доказать неравенство $|\arctan b - \arctan a| \le |b - a|$ для любых действительных значений a и b.

▶При a=b данное соотношение верно и является равенством. Функция $f(x) = \arctan gx$ на промежутке [a,b] (при a < b) или на промежутке [b,a] (при a > b) удовлетворяет условиям теоремы Лагранжа, поэтому из формулы (4.1) следует равенство $\arctan ga = \frac{b-a}{1+c^2}$ или $|\arctan ga = \frac{|b-a|}{1+c^2}$, где c < - число, находящееся между a и b. Заменяя в этом равенстве дробь $\frac{1}{1+c^2}$ ($0 < \frac{1}{1+c^2} \le 1$ для $\forall c \in (a,b)$) на 1, приходим к доказываемому неравенству. \blacktriangleleft