Portux

Technical Reference

taskit GmbH

Seelenbinderstr. 33 D-12555 Berlin Germany Tel. +49 (30) 611295-0 Fax +49 (30) 611295-10 http://www.taskit.de

© taskit GmbH, Berlin

All rights reserved. This document and the products referred to herein are copyrighted works of *taskit* GmbH. Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form, without the express written permission of *taskit* GmbH. If however, your only means of access is electronic, permission to print one copy is hereby granted. Neither *taskit* GmbH nor *taskit*'s distributors assume any liability arising from the use of this manual/reference or any product described herein.

Table of contents

1. Introduction	5
2. Technical properties	6
2.1. Portux920T	6
2.1.1. CPU	
2.1.2. Memory	
2.1.3. Interfaces on-board	
2.1.4. Interfaces PXB (portux extension bus)	6
2.1.5. Supply voltage	6
2.1.6. Firmware	
2.1.7. Starterkit (eurocard version)	
2.2. Portux Panel-PC	
2.2.1. CPU	
2.2.2. Memory	
2.2.3. Interfaces	
2.2.4. Firmware	
2.2.5. Starterkit	
3. The interface to the AT91RM9200	
3.1. Description	
3.2. Physical address space	9
3.3. The parallel input / output controller	11
3.4. PIO-controller register addresses	13
3.5. PIO-controller multiplexing	
4. Hardware	
4.1. Portux920T	
4.1.1. Mainboard layout Portux920T EU4.1.2. Mainboard layout Portux920T SW	
4.1.2. Mainboard layout Portux9201 SW4.2. Portux Panel-PC hardware	
4.2.1. Connexion plug arrangement4.2.2. Top panel dimensions	
4.2.3. Mainboard layout	
4.2.4. Mainboard dimensions	
4.2.5. On-board connectors	
5. Hardware extensions	
5.1. PXB description	38

Portux	Technical Reference	taskit GmbH
5.2 PXR nin a	ssignment	40
-		
6.1 DRGU add		

1. Introduction

The Portux is an industrial computer that is based on the Atmel ® AT91RM9200 microcontroller. A 920T arm-core with 180 MHz is working inside it. The AT91RM9200 has a plurality of integrated devices like USB-host and client, SPI, I²C, Ethernet MAC and 4 USARTs.

The Portux is available in 2 different versions: The Portux920T is a half size euroboard single computer are the perfect building block for hardware developers. The Portux Panel-PC comes to you with a robust housing and a display.

The *Portux920T* is available in 2 different versions: the Portux920T EU (Europaboard version) can be integrated into 19-inch racks and the Portux920T SW (Sandwich version) allows sandwich assembly.

The *Portux Panel-PC* is also available in 2 different versions: one with a robust aluminium case and one without that case to integrate it in your own case.

Both versions of the Portux Panel-PC are delivered with a display and a matrix keyboard integrated in the front panel. The jacks for the ethernet, USB, PS/2, RS-232 and the slot for the MMC/SD card are soldered to the circuit board.

By default the Portux is delivered with an adapted Linux and the bootloader U-Boot. If the Portux should only start running the "Portux QuickStartGuide" can be read immediately.

If the bootloader, the contents of the rootfilesystem or the modules of the Linux kernel ought to be modified then the "Portux LinuxGuide" must be read.

The technical reference and the "AT91RM9200 Manual" are used as a reference book for developing own hardware extensions or to write own kernel modules. To create your own applications it is used rarely.

2. Technical properties

2.1. Portux920T

2.1.1. CPU

- Atmel ® AT91RM9200
- ARM920T core
- 200 MIPS at 180 Mhz
- Memory Management Unit
- 16 kb data cache and 16 kb instructions cache

2.1.2. Memory

- 16 MiB flash (100,000 erase cycles typical per sector)
- 64 MiB SDRAM
- 16 KB internal SRAM
- 128 KB internal EEPROM

2.1.3. Interfaces on-board

- 2 synchronous / asynchronous serial interfaces (TTL compatible). The first serial port is also equipped with a Debug interface (UART with RX / TX).
- 10/100 Base-T ethernet MAC via 8P8C connector (Eurocard version) or two 4-pin rows (Sandwich version)
- JTAG
- MCI (Multimedia card interface, MMC and SD-card compatible)
- Portux Extension Bus via 96-pin connector (Eurocard version) or pin row (Sandwich version)

2.1.4. Interfaces PXB (portux extension bus)

- 2 synchronous / asynchronous serial interfaces (TTL compatible)
- USB 2.0 host
- USB 2.0 client
- SPI (Serial Peripheral Interface) with master / slave mode and 4 chip-selects
- TWI (Two Wire Interface) for Atmel ® EEPROM
- I²C bus (via TWI)
- PIF-bus (8 bit bus with 4 chip-selects)

2.1.5. Supply voltage

- Eurocard version: 6.5 24 V (cable clamp)
- Sandwich version: 3.3 V (on PXB)

2.1.6. Firmware

- U-Boot 1.1.2 (2004.12.23) or a newer version
- Linux kernel 2.6.xx or newer version
- GNU toolchain with GCC 3.4.2 and DGB for crosscompiling
- Nano-X Window System 0.9 with NXLIB v0.44
- JamVM 1.2 and GNU-classpath

2.1.7. Starterkit (eurocard version)

- Firmware CD
- Serial data cable
- Crosswired ethernet cable
- DBGU adapter
- Power Pack

2.2. Portux Panel-PC

2.2.1. CPU

- Atmel ® AT91RM9200
- ARM920T core
- 200 MIPS at 180 Mhz
- Memory Management Unit
- 16 kb data cache and 16 kb instructions cache

2.2.2. Memory

- 16 MiB flash (100,000 erase cycles typical per sector)
- 64 MiB SDRAM
- 16 KB internal SRAM
- 128 KB internal EEPROM

2.2.3. Interfaces

- 4 synchronous / asynchronous serial interfaces (TTL compatible)
- Debug interface (UART with RX / TX)
- USB 2.0 host
- USB 2.0 client
- SPI (Serial Peripheral Interface) with master / slave mode and 4 chip-selects
- TWI (Two Wire Interface) for Atmel ® EEPROM
- I²C bus (via TWI)
- 10/100 Base-T ethernet MAC
- JTAG
- MCI (Multimedia card interface, MMC and SD-card compatible)
- PIF-bus (8 bit bus with 4 chip-selects)

2.2.4. Firmware

- U-Boot 1.1.2 (2004.12.23) or a newer version
- Linux kernel 2.6.xx or newer version
- GNU toolchain with GCC 3.4.2 and DGB for crosscompiling
- Nano-X Window System 0.9 with NXLIB v0.44
- JamVM 1.2 and GNU-classpath

2.2.5. Starterkit

- Firmware CD
- Serial data cable
- Crosswired ethernet cable
- DBGU adapter
- Power Pack

3. The interface to the AT91RM9200

3.1. Description

The integrated devices of the AT91RM9200 can be programmed using registers. In most cases these registers are controlled by the operating system (Linux) and are not programmed directly on the Portux. Therefore only a general description of the addresses will be given here.

Excepting the parallel input / output controller (PIO), it will be accessed directly in many cases and is documented completely.

Of cause the Portux can be programmed directly without the use of the operating system. This is done by the boot loader U-Boot for example.

We refer the interested to the Atmel ® data sheet for the AT91RM9200 here, which contains a complete documentation of all interfaces.

3.2. Physical address space

After the execution of the **remap** command the 4 GiB physical address space is separated as showed in the following table. Accessing these addresses directly is only possible if the MMU is deactivated. As soon as the MMU is activated the visible address space is changed completely.

If read / write functions onto memory addresses are to be accomplished direct in the application, the corresponding address space has to be mapped to the virtual address space using **mmap** or **ioremap** under Linux.

Ad	dres	s	S	ize	Po	ortu	x	Portux	Device	D	evice	
0x00 0x0F		000 FFF	256	MiB		000 0FF		Internal (mapped)	_	Inter	-	
					0x00 0x00	100 1FF		Internal	l ROM			
					0x00 0x00	200 2FF		Internal	l SRAM			
					0x00 0x00	300 3FF		USB host	-			
					0x00 0x0F	400 FFF		undefine	ed			
0x10 0x1F		000 FFF	256	MiB	0x10 0x10	000 FFF	000 FFF	16 MiB I	Flash	EBI Chip	select	0
0x20 0x2F	000 FFF	000 FFF	256	MiB		000 FFF	000 FFF	64 MiB S	SDRAM	EBI Chip	select	1
0x30 0x3F		000 FFF	256	MiB						EBI Chip	select	2

Ad	dres	s	Size	Port	ux	Portux Device	Device
		000 FFF	256 MiB				EBI Chip select 3
0x50 0x5F			256 MiB				EBI Chip select 4
0x60 0x6F		000 FFF	256 MiB				EBI Chip select 5
0x70 0x7F		000 FFF	256 MiB				EBI Chip select 6
0x80 0x8F		000 FFF	256 MiB				EBI Chip select 7
0x90 0x9F		000 FFF	256 MiB				undefined
0xA0 0xAF		000 FFF	256 MiB				undefined
0xB0 0xBF		000 FFF	256 MiB				undefined
0xC0 0xCF		000 FFF	256 MiB	0xC0 000 0xC0 41H		4,125 MiB Dataflash	
0xD0 0xDF		000 FFF	256 MiB				undefined
0xE0 0xEF		000 FFF	256 MiB				undefined
			255 MiB	0xFF FA	000	Timer counter 0	
0xFF	FFE	FFF	1020 KiB	0xFF FA	040	Timer counter 1	peripheral
				0xFF FA	080	Timer counter 2	
				0xFF FA	1 000	Timer counter 3	
				0xFF FA	1 040	Timer counter 4	
				0xFF FA4	1 080	Timer counter 5	
				0xFF FB(000	USB device port	
				0xFF FB4	1 000	Multimedia card interface	
				0xFF FB8	3 000	Two Wire Interface (I ² C)	
				0xFF FB0	000	Ethernet MAC	
				0xFF FC	000	USART0	
				0xFF FC4	1 000	USART1	
				0xFF FC8	3 000	USART2	

Address Size		Portux	Portux Device	Device
		0xFF FCC 000	USART3	
		0xff FE0 000	SPI	
0xff fff 000	4 KiB	0xFF FFF 400	PIO controller A	_
0xff FFF FFF		0xFF FFF 600	PIO controller B	Peripherals
		0xFF FFF 800	PIO controller C	

Table 1: Physical Address Space

3.3. The parallel input / output controller

The AT91RM9200 comes with 3 PIO controllers, each may manage up to 32 programmable I/O ports. Each I/O port is associated with a bit number in the 32 bit register of the user interface. Each I/O port may be configured for general purpose I/O or assigned to a function of an integrated peripheral device. In doing so multiplexing with 2 integrated devices is possible. That means a pin may be used as GPIO, device A or device B.

Survey of the PIO controller properties:

- interrupt on level changing for each I/O port individually configurable
- glitch filter; pulse that are lower than a half clock cycle are ignored
- multi drive ability
- programmable pull up resistor at each I/O port
- pin data status register; the level of the I/O port may be read out at any time
- synchronous output; this enables the possibility to clear and set several I/O ports with one write cycle

Pull-up resistor

Each I/O port has an integrated pull-up resistor. After a reset the pull-ups are activated at each pin. The value of the resistor lies between 100 and 200 k Ω . The pull-up resistor can be activated or deactivated by setting the PIO_PUER (pull-up enable register) or PIO_PUDR (pull-up disable register). Writing these registers results in setting or deleting the corresponding bits in the PIO_PUSR (pull-up status register). Reading a 1 in the the PIO_PUSR means that the pull-up is deactivated, reading a 0 means the the pull-up is activated.

I/O port or integrated peripheral

If a pin is multiplexed with the functions of one or two integrated devices the selection is controlled via the PIO_PER (PIO enable register) or the PIO_PDR (PIO disable register). The result of a write operation into these registers is the PIO_PSR (PIO status register). A value of 0 indicates that the corresponding pin is controlled by an integrated device, a value of 1 indicates that the corresponding pin is controlled by the PIO controller.

Selecting peripheral A or B

The PIO controller provides multiplexing for up to two peripheral functions. The selection is done by writing the register PIO_ASR (A select register) or rather PIO_BSR (B select register). The selection can be read out from the PIO_ABSR (AB select status register), where 0 means peripheral A is selected and 1 means peripheral B is selected. The selection only affects the output, the inputs of the peripheral are always connected to the corresponding pins. Setting the registers PIO_ASR and PIO_BSR has only an effect if the I/O is deactivated thus PIO_PDR is set for the corresponding pin.

Output control

If an I/O port is controlled by the PIO controller (setting of PIO_PER) then one pin can be used as Output. This is achieved by writing the PIO_OER (output enable register) and PIO_ODR (output disable register). The result of this operation can be read out from the PIO_OSR (output status register). If the corresponding bit is 0 the I/O port is only used as input, if it is 1 the I/O port is driven by the PIO controller.

The level of an output can be set by writing the register PIO_SODR (set output data register) and PIO_CODR (clear output data register). These writing operations set or clear the corresponding bit in the PIO_ODSR (output data status register). Writing into PIO_OER and PIO_ODR or rather PIO_SODR and PIO_CODR will set the corresponding bit in PIO_OSR or rather PIO_ODSR independently of whether the corresponding pin is driven by the PIO controller or is assigned to an internal device. This allows to configure the I/O port before it is driven by the PIO controller. Thus the first level of a pin can be a assigned.

Synchronous output

In some applications it can be desirable to operate several I/O port in one write / delete cycle. This can be achieved by writing the registers PIO_OWER (output write enable register) and PIO_OWDR (output write disable register). This results in setting / deleting the corresponding bit in the PIO_OWSR (output write status register). PIO_OWSR is used by the PIO Controller as a PIO_ODSR write authorization mask. The level of the pins that are configured in that way can now be set directly by writing the PIO_ODSR and not over the indirection with PIO_SODR or PIO_CODR. Therewith a synchronous output is ensured.

After reset the synchronous output is disabled, that means PIO OWSR resets at 0x0.

Multi drive control (open drain)

Each I/O port can be independently programmed in Open Drain mode. This permits several drivers to be connected to one I/O line which can be driven low by each driver. An external pull-up resistor (or enabling of the internal one) is generally required to guarantee a high level on the line. An I/O pin can be set into Open Drain Mode by writing the registers PIO_MDER (multi driver enable register) and PIO_MDDR (multi driver disable register).

PIO_MDSR (Multi-driver Status Register) indicates the pins that are configured to work in open drain mode.

Inputs

The level on each I/O line can be read through PIO_PDSR (Peripheral Data Status Register). This register indicates the level of the I/O lines regardless of their configuration. Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.

Input glitch filter

Optional input glitch filters are independently programmable on each I/O line. When the glitch filter is enabled, a glitch with a duration of less than 1/2 master clock (MCK) cycle is automatically rejected, while a pulse with a duration of 1 master clock cycle or more is accepted. For pulse durations between 1/2 master clock cycle and 1 master clock cycle the pulse may or may not be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be visible it must exceed 1 master clock cycle. The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register), PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. When the glitch filter is enabled, it does not modify the behaviour of the inputs on the peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt detection.

The glitch filters require that the PIO Controller clock is enabled.

Input change interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an input change on an I/O line.

As Input change detection is possible only by comparing two successive samplings of the input of the I/O line, the PIO Controller clock must be enabled.

The Input Change Interrupt is controlled by writing PIO_IER (Interrupt Enable Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and disable the input change interrupt by setting and clearing the corresponding bit in PIO_IMR (Interrupt Mask Register).

The input change interrupt is available, regardless of the configuration of the I/O line. When an input change is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt line is asserted.

If an input change occurs on several I/O lines at the same time a single interrupt signal is generated.

When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that all the interrupts that are pending when PIO_ISR is read must be handled.

3.4. PIO-controller register addresses

Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface registers. Each register is 32 bits wide.

Bit 0 of a register in the PIO controller A represents the I/O pin PA0, bit 8 represents PA8

and so on.

Thus it is possible to program every single I/O port individually for each feature. The address of a register is a result from the offset of the below mentioned table in addition to the base address of the corresponding PIO controller (0xFF FFF 400 PIO controller A, 0xFF FFF 600 PIO controller B and 0xFF FFF 800 PIO controller C).

Offset	Name	Register	Access	Reset Value	Value: 0	Value: 1
0x0000	PIO_PER	PIO Enable Register	WO	_	No Effect	Enable PIO
0x0004	PIO_PDR	PIO Disable Register	WO	_	No Effect	Disable PIO
0x0008	PIO_PSR	PIO Status Register	RO	0x00000000	PIO is inactive	PIO is active
0x000C		Reserved				
0x0010	PIO_OER	Output Enable Register	WO	_	No Effect	Output Enabled
0x0014	PIO_ODR	Output Disable Register	WO	_	No Effect	Output Disabled
0x0018	PIO_OSR	Output Status Register	RO	0x00000000	Only Input	Output Enabled
0x001C		Reserved				
0x0020	PIO_IFER	Input Filter Enable Register	WO	_	No Effect	Input Filter Enabled
0x0024	PIO_IFDR	Input Filter Disable Register	WO	-	No Effect	Input Filter Disabled
0x0028	PIO_IFSR	Input Filter Status Register	RO	0x0000000	Input Filter Disabled	Input Filter Enabled
0x002C		Reserved				
0x0030	PIO_SODR	Set Output Data Register	WO	_	No Effect	High Level
0x0034	PIO_CODR	Clear Output Data Register	WO	_	No Effect	Low Level
0x0038	PIO_ODSR	Output Data Status Register	WR	0x0000000	Low Level	High Level
0x003C	PIO_PDSR	Pin Data Status Register	RO		Low Level	High Level
0x0040	PIO_IER	Interrupt Enable Register	WO	-	No Effect	Interrupt Enable

Portux

Offset	Name	Register	Access	Reset Value	Value: 0	Value: 1
0x0044	PIO_IDR	Interrupt Disable Register	WO	-	No Effect	Interrupt Disable
0x0048	PIO_IMR	Interrupt Mask Register	RO	0x00000000	Interrupt Disabled	Interrupt Enabled
0x004C	PIO_ISR	Interrupt Status Register	RO	0x0000000	No Input Change Detected	Input Change Detected
0x0050	PIO_MDER	Multi Driver Enable Register	WO	-	No Effect	Multi Driver Enable
0x0054	PIO_MDDR	Multi Driver Disable Register	WO		No Effect	Multi Driver Disable
0x0058	PIO_MDSR	Multi Driver Status Register	RO	0x0000000	Multi Driver Disabled	Multi Driver Enabled
0x005C		Reserved				
0x0060	PIO_PUDR	Pull-up Disable Register	WO	-	No Effect	Pull-up Disable
0x0064	PIO_PUER	Pull-up Enable Register	WO	-	No Effect	Pull-up Enable
0x0068	PIO_PUSR	Pull-up Status Register	RO	0x00000000	Pull-up Enabled	Pull-up Disabled
0x006C		Reserved				
0x0070	PIO_ASR	Peripheral A Select Register	WO	_	No Effect	Select Peripheral A
0x0074	PIO_BSR	Peripheral B Select Register	WO	-	No Effect	Select Peripheral B
0x0078	PIO_ABSR	AB Status Register	RO	0x00000000	Peripheral A Selected	Peripheral B Selected
0x007C		Reserved				
0x009C						
0x00A0	PIO_OWER	Output Write Enable Register	WO	_	No Effect	Enables Writing PIO_ODSR
0x00A4	PIO_OWDR	Output Write Disable Register	WO	_	No Effect	Disables Writing PIO_ODSR
0x00A8	PIO_OWSR	Output Write	RO	0x00000000	Writing	Writing

Offset	Name	Register	Access	Reset Value	Value: 0	Value: 1
		Status Register			PIO_ODSR Disabled	PIO_ODSR Enabled
0x00AC		Reserved				

Table 2: PIO controller register addresses

3.5. PIO-controller multiplexing

When programming the PIO controller you have to consider if a I/O pin is assigned to a function of an internal or external device. Only I/O pins that do not perform functions or whose functions are not used or that are not driven by the operating system can be controlled by the user manually without side effects.

Here it is again expressly pointed out that the input of a pin is always connected with the input of an internal device, independently of the programming of the PIO controller. That is, a possibly running driver reacts to the activities of the pin and thus with unexpected behaviour also can produce system crashes. Below mentioned table shows the multiplexing of the I/O pins on the three PIO controllers A, B and C.

PIO Controller A Multiplexing

		PI	O Contr	coller A			Poi	rtux	
CPU line	I/O Line	Periphe	ral A	Periph	Peripheral B		Function	IC/X	PXB in
		Function	Device	Function	Device				
42	PA0	MISO	SPI	PCK3	PIO Clock	I/O	MISO	X1-A IC7-A	A19
43	PA1	MOSI	SPI	PCK0	PIO Clock	I/O	MOSI	X1-C IC7-A	C19
44	PA2	SPCK	SPI	IRQ4	_	I/O	SPCK	X1-A IC7-A	A20
45	PA3	NPCS0	SPI	IRQ5	_	I/O	NPCS0	IC7-A	_
46	PA4	NPCS1	SPI	PCK1	PIO Clock	I/O	PXB	X1-C	C20
47	PA5	NPCS2	SPI	TXD3	USART3	I/O	PXB	X1-A	A30
48	PA6	NPCS3	SPI	RXD3	USART3	I/O	PXB	X1-C	C29
49	PA7	ETXCK / EREFCK	ETH	PCK2	PIO Clock	I/O	EREFCK	IC18-A	_
50	PA8	ETXEN	ETH	MCCDB	MCI	I/O	ETXEN	IC18-A	_
51	PA9	ETX0	ETH	MCDB0	MCI	I/O	ETX0	IC18-A	_
52	PA10	ETX1	ETH	MCDB1	MCI	I/O	ETX1	IC18-A	_
53	PA11	ECRS / ECRSDV	ETH	MCDB2	MCI	I/O	ECRSDV	IC18-A	-

		PI	O Contr	coller A			Poi	rtux	
CPU line	I/O Line	Periphe	ral A	Periph	neral B	Reset State	Function	IC/X	PXB in
		Function	Device	Function	Device				
54	PA12	ERX0	ETH	MCDB3	MCI	I/O	ERX0	IC18-A	_
55	PA13	ERX1	ETH	TCLK0	TC0	I/O	ERX1	IC18-A	_
58	PA14	ERXER	ETH	TCLK1	TC1	I/O	ERXER	IC18-A	_
59	PA15	ENDC	ETH	TCLK2	TC2	1/0	EMDC	IC18-A	_
60	PA16	EMDIO	ETH	IRQ6	_	I/O	EMDIO	IC18-A	_
61	PA17	TXD0	USART0	TIOA0	TC0	I/O	TXD0	Х6	_
64	PA18	RXD0	USART0	TIOB0	TC0	I/O	RXD0	Х6	_
65	PA19	SCK0	USART0	TIOA1	TC1	I/O	RI0	Х6	_
66	PA20	CTS0	USART0	TIOB1	TC1	I/O	CTS0	Х6	_
67	PA21	RTS0	USART0	TIOA2	TC2	I/O	RTS0	Х6	_
68	PA22	RXD2	USART2	TIOB2	TC2	I/O	PXB	X1-C	C24
69	PA23	TXD2	USART2	IRQ3	_	I/O	PXB	X1-A	A25
70	PA24	SCK2	USART2	PCK1	PIO Clock	I/O	PXB	X1-C	C23
71	PA25	TWD	TWI / I ² C	IRQ2	_	I/O	TWD	X1-C IC8 IC21-A	A17
72	PA26	TWCK	TWI / I ² C	IRQ1	_	I/O	TWCK	X1-C IC8 IC21-A	C17
73	PA27	MCCK	MCI	TCLK3	TC3	I/O	MCCK	X4	_
74	PA28	MCCDA	MCI	TCLK4	TC4	I/O	MCCDA	X4	_
77	PA29	MCDA0	MCI	TCLK5	TC5	I/O	MCDA0	X4	_
78	PA30	DRXD	DBGU	CTS2	USART2	1/0	DRXD	Х6	_
79	PA31	DTXD	DBGU	RTS2	USART2	I/O	DTRD	Х6	_

Table 3: PIO controller A multiplexing

PIO Controller B Multiplexing

		PI	O Contr	roller B			Poi	rtux	Portux			
CPU line	I/O Line	Periphe	ral A	Periph	neral B	Reset State	Function	IC/X	PXB in			
		Function	Device	Function	Device							
80	PB0	TF0	SSC0	RTS3	USART3	1/0	PXB	X1-A	A31			
81	PB1	TK0	SSC0	CTS3	USART3	1/0	PXB	X1-C	C31			
82	PB2	TD0	SSC0	SCK3	USART3	I/O	PXB	X1-C	C25			
83	РВ3	RD0	SSC0	MCDA1	MCI	1/0	MCI	X4	_			
84	PB4	RK0	SSC0	MCDA2	MCI	1/0	MCI	X4	_			
85	PB5	RF0	SSC0	MCDA3	MCI	1/0	MCI	X4	_			
86	PB6	TF1	SSC1	TIOA3	TC3	1/0	PXB	X1-C	C28			
87	PB7	TK1	SSC1	TIOB3	TC3	1/0	PXB	X1-C	C30			
88	PB8	TD1	SSC1	TIOA4	TC4	1/0	PXB	X1-A	A24			
89	PB9	RD1	SSC1	TIOB4	TC4	1/0	PXB	X1-A	A27			
90	PB10	RK1	SSC1	TIOA5	TC5	1/0	PXB	X1-A	A29			
91	PB11	RF1	SSC1	TIOB5	TC5	1/0	PXB	X1-A	A32			
92	PB12	TF2	SSC2	ETX2	ETH	1/0	I/O	SW1	_			
95	PB13	TK2	SSC2	ETX3	ETH	1/0	I/O	SW1	_			
96	PB14	TD2	SSC2	ETXER	ETH	1/0	I/O	SW1	_			
97	PB15	RD2	SSC2	ERX2	ETH	1/0	I/O	SW1	_			
98	PB16	RK2	SSC2	ERX3	ETH	1/0	I/O	IC10	_			
99	PB17	RF2	SSC2	ERXDV	ETH	1/0	PXB	X1-C	C22			
100	PB18	RI1	USART1	ECOL	ETH	1/0	RI1	Х3	_			
101	PB19	DTR1	USART1	ERXCK	ETH	1/0	DTR1	Х3	_			
102	PB20	TXD1	USART1	_	_	1/0	TXD1	Х3	_			
103	PB21	RXD1	USART1	_	_	1/0	RXD1	Х3	_			
104	PB22	SCK1	USART1	_	_	1/0	DCD0	Х6	_			
118	PB23	DCD1	USART1	_	_	1/0	DCD1	Х3	_			
119	PB24	CTS1	USART1	_	_	1/0	CTS1	Х3	_			
120	PB25	DSR1	USART1	EF100	ETH	1/0	DSR1	Х3	_			
121	PB26	RTS1	USART1	_	_	1/0	RTS1	Х3	_			
122	PB27	PCK1	PIO Clock	_	-	1/0	PXB	X1-A	A21			
123	PB28	FI1	-	-	-	1/0	PXB	X1-A	A13			
124	PB29	IRQ1	_	_	_	I/O	IRQ0	IC21-A	_			

Table 4: PIO controller B multiplexing

PIO Controller C Multiplexing

		PI	O Contr	coller C			Poi	rtux	
CPU line	I/O Line	Periphe	ral A	Periph	neral B	Reset State	Function	IC/X	PXB in
		Function	Device	Function	Device				
17	PC0	BFCK	Burst Flash	-	-	I/O	I/O	X1-C LED1	C14
18	PC1	BFRDY / SMOE	Burst Flash	-	_	I/O	1/0	X1-C LED2	C15
21	PC2	BFAVD	Burst Flash	_	_	I/O	IRQ	IC18-A	-
22	PC3	BFBAA / SMWE	Burst Flash	_	_	I/O	-SDRS232	X3 X6	_
23	PC4	BFOE	Burst Flash	-	_	1/0	SDETHER	IC18-A	_
24	PC5	BFWE	Burst Flash	_	_	I/O	PXB	X1-A	A22
25	PC6	NWAIT	_	_	_	1/0	PXB	X1-A	A10
161	PC7	A23	_	_	_	A23	A23	IC14-A	-
162	PC8	A24	_	-	-	A24	A24	IC14-A	_
163	PC9	A25 / CFRNW	_	-	_	A25	A25	IC14-A	_
11	PC10	NCS4 / CFCS	-	-	-	NCS4	PXB	X1-C	C11
12	PC11	NCS5 / CFCE1	-	-	-	NCS5	PXB	X1-A	A12
13	PC12	NCS6 / CFCE2	_	-	_	NCS6	PXB	X1-C	C12
14	PC13	NCS7	_	_	_	NCS7	PXB	X1-C	C21
15	PC14	_	_	-	-	1/0	PXB	X1-A	A26
16	PC15	-	_	-	-	1/0	PXB	X1-C	C26
201	PC16	D16	_	-	-	1/0	D16	IC5-A	-
202	PC17	D17	_	-	-	1/0	D17	IC5-A	-
203	PC18	D18	_	-	-	1/0	D18	IC5-A	-
204	PC19	D19	_	_	_	1/0	D19	IC5-A	_
205	PC20	D20	_	_	_	1/0	D20	IC5-A	_
026	PC21	D21	_	_	_	1/0	D21	IC5-A	_
207	PC22	D22	_	_	-	1/0	D22	IC5-A	-
028	PC23	D23	_	-	-	1/0	D23	IC5-A	_

	PIO Controller C						Poi	rtux	
CPU line	I/O Line	Peripheral A		Periph	Peripheral B		Function	IC/X	PXB in
		Function	Device	Function Device					
1	PC24	D24	_	_	_	I/O	D24	IC5-A	_
2	PC25	D25	_	_	_	I/O	D25	IC5-A	_
3	PC26	D26	_	_	_	1/0	D26	IC5-A	_
4	PC27	D27	_	_	_	I/O	D27	IC5-A	_
5	PC28	D28	_	_	_	1/0	D28	IC5-A	_
6	PC29	D29	_	_	_	1/0	D29	IC5-A	_
9	PC30	D30	_	_	_	I/O	D30	IC5-A	_
10	PC31	D31	_	_	_	1/0	D31	IC5-A	_

Table 5: PIO controller C multiplexing

4. Hardware

4.1. Portux920T

4.1.1. Mainboard layout Portux920T EU

Portux920T EU

A1 Battery slot

X1 PXB - Portux Extension Bus

See chapter 5: "PXB pin assignment"

X3 RS232-2 D-Sub jack

Pin	Assignment
1	-DCD
2	RXD

Pin	Assignment
3	TXD
4	-DTR
5	GND
6	-DSR
7	-RTS
8	-CTS
9	-RI
()	CGND

X4 MMC/SD Card slot

X5 Ethernet 8P/8C (RJ-45) jack

X6 RS232-1 D-Sub jack

The first serial port (USART0) of the AT91RM9200 as well as the debug unit (DBGU) are connected to this D-Sub jack.

The debug unit is a simple UART that is only operating the RXD and TXD lines. These signals are connected to the DTR and DSR lines of the USART0, that is not operating these lines. These signals are called DTXD and DRXD.

A cabling description to create an adapter for common RS232 null modem cables can be found in the appendix.

Pin	Assignment
1	-DCD
2	RXD
3	TXD
4	DTXD
5	GND
6	DRXD
7	-RTS
8	-CTS
9	-RI
()	CGND

X7 Vin

Press down the orange cable holder, then insert the cable and release the orange cable holder.

X8 JTAG

The signal NRST (pin 15) is connected by the resistor J2. J2 is populated with a 0 ohm resistor.

Pin	Assignment	Pin	Assignment
1	VCC	2	VCC
2	NTRST	4	VCC
3	TDI	6	VCC
4	TMS	8	VCC
5	TCK	10	VCC
6	TCK	12	VCC
7	TDO	14	VCC
8	NRST	16	VCC

X20 Bootmode

Atmel ® boot mode selector for debug unit on X6 (see Atmel ® Manual)

SW1

4 row DIP switch. Position ON pulls the corresponding I / O line to LOW level. Before the DIP switch is uses it necessary to activate the integrated pull-up resistors (see chapter 3.3).

Switch	I/O line
1	PB12
2	PB13
3	PB14
4	PB15

4.1.2. Mainboard layout Portux920T SW

A1 Battery slot

X1 PXB

See chapter 5: "PXB pin assignment"

X2 RS232-1 connector

The first serial port (USART0) of the AT91RM9200 as well as the debug unit (DBGU) are connected to this connector.

The debug unit is a simple UART that is only operating the RXD and TXD lines. These signals are connected to the DTR and DSR lines of the USART0, that is not operating these lines. These signals are called DTXD and DRXD.

A cabling description to create an adapter for common RS232 null modem cables can be found in the appendix.

Pin	Assignment	Pin	Assignment
1	-DCD	2	DRXD
3	RXD	4	-RTS
5	TXD	6	-CTS
7	DTXD	8	-RI

9 GND 10 VCC

X4 MMC

Slot for MMC/SD cards.

X5 Ethernet (two 4-pin rows)

Pin	1	2	3	4	5	6	7	8
Assignment	TD+	TD-	CT	CGND	CGND	СТ	RD+	RD

X8 JTAG

The signal NRST (pin 15) is connected by the resistor J2. J2 is populated with a 0 ohm resistor.

Pin	Assignment	Pin	Assignment
1	VCC	2	VCC
2	NTRST	4	VCC
3	TDI	6	VCC
4	TMS	8	VCC
5	TCK	10	VCC
6	TCK	12	VCC
7	TDO	14	VCC
8	NRST	16	VCC

X9 RS232-2 connector

Pin	Assignment	Pin	Assignment
1	-DCD	2	DSR
3	RXD	4	-RTS
5	TXD	6	-CTS
7	DTR	8	-RI
9	GND	10	VCC

X11 Ethernet LED green

X12 Ethernet LED yellow

X20 Bootmode

Atmel ® boot mode selector for debug unit on X2 (see Atmel ® Manual)

SW1

4 row DIP switch. Position ON pulls the corresponding I / O line to LOW level. Before the DIP switch is uses it necessary to activate the integrated pull-up resistors (see chapter 3.3).

Switch	I/O line
1	PB12
2	PB13
3	PB14
4	PB15

4.2. Portux Panel-PC hardware

4.2.1. Connexion plug arrangement

X5 Ethernet jack

The pin assignment is only valid for the 8pin onboard strip.

Pin	1	2	3	4	5	6	7	8	()
Assignment	TD+	TD-	CT	CGND	CGND	CT	RD+	RD	CGND

X6 RS232-1 D-Sub jack

The first serial port (USART0) of the AT91RM9200 as well as the debug unit (DBGU) are connected to this D-Sub jack.

The debug unit is a simple UART that is only operating the RXD and TXD lines. These signals are connected to the DTR and DSR lines of the USART0, that is not operating these lines. These signals are called DTXD and DRXD.

A cabling description to create an adapter for common RS232 null modem cables can be found in the appendix.

Pin	Assignment		
1	-DCD		
2	RXD		
3	TXD		
4	DTXD		
5	GND		
6	DRXD		
7	-RTS		
8	-CTS		
9	-RI		
()	CGND		

X3 RS232-2 D-Sub jack

Pin	Assignment	
1	-DCD	
2	RXD	
3	TXD	
4	-DTR	
5	GND	
6	-DSR	
7	-RTS	
8	-CTS	
9	-RI	
()	CGND	

X4 SD / MMC card slot

X14 USB-device jack

X15 USB-host jack

X26 PS/2 jack

Power

This is the power button to switch the Portux Panel-PC on or off.

Vin jack

Connect a taskit or any other power supply with 7 to 30 Volt direct current to this jack. Where the positive pole is the pin in the middle and the negative pole is the circle around that pin.

4.2.2. Top panel dimensions

4.2.3. Mainboard layout

- A1 RTC battery slot
- X1 Portux Extension Bus
- X2 RS232-1 / DBGU strip
- X3 RS232-2 jack
- X4 MMC/SD card slot
- X5 Ethernet jack
- X6 RS232-1 / DBGU jack
- X7 Power supply (Vin)
- X8 JTAG strip
- X9 RS232-2 strip
- X10 Ground pin
- X11 Connector for Ethernet ACT LED
- X12 Connector for Ethernet Receive LED
- X13 3.3V output
- X14 USB-device jack
- X15 USB-host jack
- X16 B/W LCD strip
- X17 5V output
- X18 Touch screen connector
- X20 Jumper for Atmel bootmode selection
- X21 Backlight power supply for LCD/CSTN displays
- X22 CSTN strip
- X26 PS/2 jack
- X27 I/O lines / Matrix keyboard connector
- X28 TFT strip
- X29 IR sensor connection
- X30 RS422/485 strip
- X32 Reset jumper
- X33 Buzzer connector
- X36 USB host strip
- X37 One Wire Bus strip
- X39 TFT Power Supply connector
- X40 USB device strip
- X42 PS/2 strip
- SW1 4 bit user switch (PIO controller B)

4.2.4. Mainboard dimensions

4.2.5. On-board connectors

A1 Battery

Fastener for an 3V lithium battery to provide power for the internal real time clock.

X1 PXB

The Portux can be equipped with a 96-pin strip to connect hardware extension to the Portux Extension Bus (PXB). Pin assignment see chapter 5.2.

X2 RS232-1

The first serial port (USART0) of the AT91RM9200 as well as the debug unit (DBGU) are connected to this D-Sub jack.

The debug unit is a simple UART that is only operating the RXD and TXD lines. These

signals are connected to the DTR and DSR lines of the USART0, that is not operating these lines. These signals are called DTXD and DRXD.

A cabling description to create an adapter for common RS232 null modem cables can be found in the appendix.

Pin	Assignment	Pin	Assignment
1	-DCD	2	DRXD
3	RXD	4	-RTS
5	TXD	6	-CTS
7	DTXD	8	-RI
9	GND	10	VCC

X7 Vin - fastener for power supply

Connect to a regulated power supply (7V - 30V DC) via a 2-pole cable. Usage: Push down the orange cable carrier and insert the corresponding cable and release the orange cable holder.

X8 JTAG

The signal NRST (pin 15) is connected by the resistor J2. J2 is populated with a 0 ohm resistor.

Pin	Assignment	Pin	Assignment
1	VCC	2	VCC
2	NTRST	4	VCC
3	TDI	6	VCC
4	TMS	8	VCC
5	TCK	10	VCC
6	TCK	12	VCC
7	TDO	14	VCC
8	NRST	16	VCC

X9 RS232-2

Pin	Assignment	Pin	Assignment
1	-DCD	2	-DSR
3	RXD	4	-RTS
5	TXD	6	-CTS

7	-DTR	8	-RI
9	GND	10	VCC

X10 GND

Common ground of the circuit board.

X11 Ethernet LED

Strip to connect a led to display the ethernet link (act) state (green led on the RJ-45 jack).

X12 Ethernet LED

Strip to connect a led to display the ethernet FDX (col) state (yellow led on the RJ-45 jack).

X13 3.3V

3.3 Volt power supply for peripheral devices.

X16 B/W LCD

Connector socket to connect a B/W LC display.

X17 5V

5 Volt power supply for peripheral devices.

X18 Touch

Strip to connect a touchscreen.

X20 Boot

Jumper for Atmel boot mode selection.

X21 LCD/CSTN HV supply

Power supply for B/W LCD and CSTN displays.

X22 CSTN

Connector socket to connect a CSTN display.

X27 Keyb

This strip is connected to the Atmel ATmega32 controller. When the matrix keyboard is

connected to this strip (pin 9-20) there are 6 user programmable I/O lines available (pin 3-8). If there is no matrix keyboard connected then there are 8 user programmable I/O lines (pin 3-10) available.

Pin	Assignment	Pin	Assignment
1	+3V3	2	NC
3	MAT_H (I/O)	4	MAT_G (I/O)
5	MAT_F (I/O)	6	MAT_E (I/O)
7	MAT_D (I/O)	8	MAT_C (I/O)
9	MAT_B (I/O, Keyb)	10	MAT_A (I/O, Keyb)
11	MAT_1 (Keyb)	12	MAT_2 (Keyb)
13	MAT_3 (Keyb)	14	MAT_4 (Keyb)
15	MAT_5 / TP1 (Keyb)	16	MAT_6 / TP2 (Keyb)
17	MAT_7 / TP3 (Keyb)	18	MAT_8 / TP4 (Keyb)
19	Ground (Keyb)	20	+3V3 (Keyb)

X28 TFT

Connector socket to connect a TFT display.

X29 IR

Connector for IR receiver.

Pin	Assignment			
1	GND			
2	VCC			
3	IR_RCV			

X30 RS422/485

Pin	Assignment	Pin	Assignment
1	5V VCC	2	12V VCC
3	GND	4	GND
5	TXD-	6	TXD+
7	RXD-	8	RXD+
9	RGND	10	3V3 VCC

X32 Res

Portux Panel-PC reset switch. Short-circuit to perform a system restart.

X33 Buzzer

Strip to connect an 3.3V inductive buzzer.

X36 USB host

Pin	1	2	3	4	5
Assignment	5V VCC	D-	D+	GND	NC

X37 One Wire Bus

Pin	Assignment			
1	VCC			
2	DATA			
3	GND			

X39 TFT Power Supply

Connector for a high voltage power supply pack to power a TFT display.

X40 USB device

Pin	1	2	3	4	5
Assignment	VBUS	D-	D+	GND	NC

X42 PS2

Pin	1	2	3	4	6
Assignment	DATA	RESET	GND	VCC	CLK

SW1

4 row DIP switch. Position ON pulls the corresponding I / O line to LOW level. Before the DIP switch is uses it necessary to activate the integrated pull-up resistors (see chapter 3.3).

Switch	I/O line	
1	PB12	
2	PB13	
3	PB14	
4	PB15	

5. Hardware extensions

5.1. PXB description

The PXB – **P**ortux Extension **B**us consists of a 96-pin strip.

By the PXB a 16-Bit data line as well as a 26-Bit address line, USB host, USB device and various I/O lines of the Atmel ® AT91RM9200 are made available.

The I/O lines are assigned to the PIO controllers A, B and C of the Atmel ® AT91RM9200 and may be configured for general purpose I/O or assigned to a function of an integrated peripheral device (see chapter 3.5).

The following table shows the usable interfaces across the PXB bus:

Peripheral	Signals	Multiplexing	Portux	Device
EBI	A0-A25	A23 - PC7 A24 - PC8 A25 - PC9	Yes	SDRAM Flash
	D0-D15	-	Yes	SDRAM Flash
	NWR0	-	Yes	Flash
	NWR1	-	No	-
	NWR3	-	No	_
	NCS3	-	No	_
	NCS4	PC10	No	-
	NCS5	PC11	No	-
	NCS6	PC12	No	-
	NCS7	PC13	No	-
	NRD	-	Yes	Flash
	BFCK	PC0	Yes	LED1
	BFRDY/ SMOE	PC1	Yes	LED2
	BFAVD	PC2	No	_
	BFBAA/ AMWE	PC3	No	-
	BFOE	PC4	No	_
	BFWE	PC5	No	_
USB Host	HDMA	-	No	_
	HDPA	-	No	-
USB Device	DDM	-	No	-
	DDP	-	No	_
SPI	MISO	PA0	Yes	Dataflash (NPSCO)

Peripheral	Signals	Multiplexing	Portux	Device
	MOSI	PA1	Yes	Dataflash (NPSCO)
	SPCK	PA2	Yes	Dataflash (NPSCO)
	NPSC1	PA4	No	_
	NPSC2	PA5	No	-
	NPSC3	PA6	No	-
TWI/I ² C	TWD	PA25	Yes	RTC TWI-EEPROM (not equipped)
	TWCK	PA26	Yes	RTC TWI-EEPROM (not equipped)
USART2	RXD2	PA22	No	-
	TXD2	PA23	No	-
	SCK2	PA24	No	-
USART3	RXD3	PA5	No	-
	TXD3	PA6	No	-
	SCK3	PB2	No	-
	RTS3	PB0	No	-
	CTS3	PB1	No	-
Compact- Flash Interface	CFOE	-	No	
	CFWE	_	No	-
Inccreace	CFIOR	_	No	-
	CFIOW	_	No	-
	CFRNW	PC9	No	-
	CFCS	PC10	No	-
	CFCE1	PC11	No	-
	CFCE2	PC12	No	-
	NWAIT	PC6	No	-
Others	FIQ	-	No	-
	NRST	-	Yes	_
I/O	PB6	-	No	_
	PB7	-	No	_
	PB8	-	No	-
	PB9	-	No	_
	PB10	-	No	-
	PB11	-	No	_
	PB17	_	No	-

Peripheral	Signals	Multiplexing	Portux	Device
	PB27	-	No	-
	PC5	-	No	-
	PC14	-	No	_

Units that are operated by the EBI can not be used concurrent. For example if you decide to implement a compact flash interface, the chip selects 4-6 are not available for connecting another static memory (e.g. Flash).

If you decide to use the USART3, the chip selects 2 and 3 of the SPI-bus are not available. So you can only connect one further SPI device in addition to the serial data flash on the circuit board to chip select 1.

5.2. PXB pin assignment

The 3 32-pin stripes are marked with a, b and c on the circuit board, the single pins are numbered serially from 1 to 32. The assignment of the pins is shown in the following table.

PXB pin assignment row a:

Pin	Assignment	Function	Device
1	GND	GND	_
2	VCC	VCC	_
3	NWR0	NWR0	EBI
4	NCS3	NCS3	EBI
5	A1	A1	_
6	D0	D0	_
7	D2	D2	_
8	D4	D4	_
9	D6	D6	_
10	PC6	I/O	_
		NWAIT	_
11	A3	A3	_
12	PC11	I/O	_
		NCS5	_
13	PB28	I/O	_
		FIQ	
14	HDMA	HDMA	USB-Host
15	HDPA	HDPA	USB-Host

Pin	Assignment	Function	Device
16	DDM	DDM	USB-Dev
17	PA25	I/O TWD IRQ2	- TWI/I2C -
18	VCC	VCC	_
19	PA00	I/O MISO PCK3	- SPI PIO-Clock
20	PA02	I/O SPCK IRQ4	- SPI -
21	PB27	I/O PCK0	- PIO-Clock
22	PC05	I/O BFWE	- Burst Flash
23	VCC	VCC	-
24	PB08	I/O TD1 TIOA4	- SSC1 TC4
25	PA23	I/O TXD2 IRQ3	USART2
26	PC14	I/O	_
27	PB09	I/O RD1 TIOB4	- SSC1 TC4
28	VCC	VCC	_
29	PB10	I/O RK1 TIOA5	- SSC1 TC5
30	PA05	I/O NPCS2 TXD3	- SPI USART3
31	PB00	I/O TF0 RTS3	- SSC0 USART3
32	PB11	I/O RF1 TIOB5	- SSC1 TC5

PXB pin assignment row b:

Pin	Assignment	Function	Device
1	D8	D8	-
2	D9	D9	_
3	D10	D10	_
4	D11	D11	_
5	D12	D12	-
6	D13	D13	_
7	D14	D14	_
8	D15	D15	_
9	A4	A4	_
10	A5	A5	_
11	A6	A6	_
12	A7	A7	_
13	A8	A8	_
14	A9	A9	_
15	A10	A10	_
16	A11	A11	_
17	A12	A12	_
18	A13	A13	_
19	A14	A14	_
20	A15	A15	_
21	A16	A16	_
22	A17	A17	_
23	A18	A18	_
24	A19	A19	_
25	A20	A20	_
26	A21	A21	_
27	A22	A22	_
28	A23	A23	_
29	A24	A24	_
30	A25	A25	_
31	NWR1	NWR1	EBI
32	NWR3	NER3	EBI

PXB pin assignment row c:

Pin	Assignment	Function	Device
1	GND	GND	_
2	VCC	VCC	_
3	NRD	NRD	EBI
4	A0	A0	_
5	NRST	NRST	
6	D1	D1	_
7	D3	D3	_
8	D5	D5	_
9	D7	D7	_
10	A2	A2	_
11	PC10	NCS4/ CFCS	-
12	PC12	NCS6/ CFCE1	_
13	GND	GND	-
14	PC00	I/O BFCK	- Burst Flash
15	PC01	I/O BFRDY/SMOE	Burst Flash
16	DDP	DDP	USB-Dev
17	PA26	I/O TWCK IRQ1	- TWI/I ² C -
18	GND	GND	_
19	PA01	I/O MOSI PCK3	- SPI PIO Clock
20	PA04	I/O NPCS1 PCK1	- SPI PIO Clock
21	PC13	I/O NSC7	-
22	PB17	I/O RF2 ETX2	- SSC2 ETH
23	PA24	I/O SCK2 TIOA1	- USART2 TC1
24	PA22	I/O RXD2 TIOB2	- USART2 TC2

Pin	Assignment	Function	Device
25	PB02	I/O TDO SCK3	- SSC0 USART3
26	PC15	I/O	_
27	GND	GND	_
28	PB06	I/O TF1 TIOA3	- SSC1 TC3
29	PA06	I/O NPCS3 RXD3	- SPI USART3
30	PB07	I/O TK1 TIOB3	- SSC1 TC3
31	PB01	I/O TKO CTS3	- SSC0 USART3
32	GND	GND	-

6. Appendix

6.1. DBGU-adapter

Jack and plug will be installed into an empty adapter case (RS232), the connections can be soldered with flexible wire.