# Convolution with Constant & Shared Memory





#### In This Lecture

- Quick Review of Previous Lectures
- Convolution Algorithm Basic
- Memory Hierarchies
- Convolution with Constant Memory
- Tiled Convolution
- Evaluating Tiled Convolution

## **GPU Hardware Architecture** (NVIDIA GP104 Pascal, GTX 1080)





20 SMs, each has 128 CUDA cores (SP)

#### **Unit of Computation for CUDA**

#### Thread

- Smallest/Primary Unit of Computation
- Maps to Streaming Processor (i.e. CUDA Core)

#### Warp

 A Group of 32 Threads Processed as a Unit by Hardware

#### Block

- Multidimensional Group of Threads
- Maps to Streaming Multiprocessor

#### Grid

- Multidimensional Group of Blocks
- 1 Grid per GPU



#### **CUDA Memory Structure**

#### Registers

- Used by a single thread
- Shared Memory
  - Shared by all threads in a block
- Global Memory
  - R/W by thread & host
- Constant Memory
  - Read only by device, initialized by host
- Texture Memory
  - Read only by device, initialized by host



## Allocating and Deallocating Device Memory Space

- Allocating Memory: allocates object in device global memory and returns pointer to it.
  - int \*dev C;
  - int size = N \*sizeof(int);
  - cudaMalloc((void\*\*)&dev C, size);



cudaFree(dev C)



### Transferring Data via cudaMemcpy



- cudaMemcpy( dev a, a, size, cudaMemcpyHostToDevice);
- cudaMemcpy(c, dev c, size, cudaMemcpyDeviceToHost);
- "dev\_a" and "dev\_c" are pointers to device data
- "a" and "c" are pointers to host data
- "size" is the size of the data
- "cudaMemcpyHostToDevice" and "cudaMemcpyDeviceToHost" tells cudaMemcpy the source and estination of the operation.

### Dimension & Indexing (1)

Built-In CUDA Variables for Block/Thread Dimension

```
myKernel<<< B,T >>> (arg1, arg2, ...);

■ B: a structure defining the number and dimension of blocks in a grid
■ T: a structure defining the number and dimension of threads in a block
dim3 grid(16,9,4);
dim3 block(32,16,4);
```

Keywords when retrieving each dimension

```
gridDim.x \rightarrow 16 gridDim.y \rightarrow 9 gridDim.z \rightarrow 4 blockDim.x \rightarrow 32 blockDim.y \rightarrow 16 blockDim.z \rightarrow 4
```

## Dimension & Indexing (2)

Built-In CUDA Variables for Indexing within Kernel Function

```
global void myKernel(arg1, arg2, ...)
 int bx = blockIdx.x;
 int by = blockIdx.y;
 int bz = blockIdx.z;
 int tx = threadIdx.x;
 int ty = threadIdx.y;
 int tz = threadIdx.z;
```

## Retrieving a Unique Location from CUDA Indices

- Normally each thread/block having multidimensional indices need to access 1D arrays
  - How each thread in a multidimensional nested grid structure can find the unique index of the <u>multidimensional data flattened to 1D</u> array from its blockld and threadld using the same expression for all threads?

```
uniq x coord → blockIdx.x*blockDim.x + threadIdx.x;
uniq y coord → blockIdx.y*blockDim.y + threadIdx.y;
uniq z coord → blockIdx.z*blockDim.z + threadIdx.z;
int col = blockIdx.x*blockDim.x + threadIdx.x;
int row = blockIdx.y*blockDim.y + threadIdx.y;
int dep = blockIdx.z*blockDim.z + threadIdx.z;
int index = col + row*NUMCOL + dep*NUMCOL*NUMROW;
int a[row][col][dep] = A[index];
```

### Using Indices within a Kernel

```
// Vector Summation (1D data)
 global void vectorAdd (int *A, int *B, int *C)
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    if (index < NUMSIZE) C[index] = A[index] + B[index];</pre>
}
// Matrix Summation (2D data)
 global void matrixAdd (int *A, int *B, int *C)
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int index = col + row * NUMCOL;
    if (col < NUMCOL && row < NUMROW) C[index] = A[index] + B[index];</pre>
```

#### Parallel (Square) Matrix Multiplication



The thread (of index i,j) computes the inner product of the vectors i and j shown in the image.

We can use multiple blocks when dealing with large sized matrices which do not fit into the max number of threads per SM.

## Tiled Matrix Multiplication Using Shared Memory

- Reduce Global Memory Access
  - Global Memory is slow
- Use On-chip Memory
  - We can use Shared Memory
  - Small size, but much faster!
  - Thus the data should be partitioned (tiled)

Quick review using cartoon . . .

## **Convolution Basic**

### **Objective**

## Convolution, an important parallel computation pattern

- Widely used in signal/image/video processing
- Foundational to stencil computation used in many science and engineering area

#### Important techniques

Taking advantage of cache memories

### **Convolution Computation**

- Each output element is a weighted sum of neighboring input elements
- The weights are defined as a convolution kernel (mask)
  - The same convolution mask is typically used for all elements of the array.

### **Gaussian Blur**

| <u>1</u><br>273 | 1 | 4  | 7  | 4  | 1 |
|-----------------|---|----|----|----|---|
|                 | 4 | 16 | 26 | 16 | 4 |
|                 | 7 | 26 | 41 | 26 | 7 |
|                 | 4 | 16 | 26 | 16 | 4 |
|                 | 1 | 4  | 7  | 4  | 1 |

Simple Integer Gaussian Kernel



- Commonly used for audio processing
  - Mask size is usually an odd number of elements for symmetry (5 in this example)
- Calculation of P[2]



### 1D Convolution Boundary Condition

- Calculation of output elements near the boundaries (beginning and end) of the input array need to deal with "ghost" elements
  - Different policies (zero, boundary replication, mirror, etc.)



## A 1D Convolution Kernel with Boundary Condition Handling

All elements outside input data is set to 0

```
global void basic 1D conv(float *N, float *M, float *P, int Mask Width, int Width)
{
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  int N start point = i - (Mask Width/2);
  float Pvalue = 0;
  if(i<Width){</pre>
     for (int j = 0; j < Mask Width; <math>j++) {
       if (N start point + j >= 0 && N start point + j < Width) {
         Pvalue += N[N start point + j]*M[j];
     P[i] = Pvalue;
```

## A 1D Convolution Kernel with Boundary Condition Handling

All elements outside input data is set to 0

```
global void basic 1D conv(float *N, float *M, float *P, int Mask Width, int Width)
int i = blockIdx.x*blockDim.x + threadIdx.x;
int N start point = i - (Mask Width/2);
float Pvalue = 0;
if(i<Width){</pre>
   for (int j = 0; j < Mask Width; <math>j++) {
     if (N start point + j >= 0 && N start point + j < Width) {
       Pvalue += N[N start point + j]*M[j];
                      Source of bad performance:
   P[i] = Pvalue;
                      1 floating-point operation per global memory access
```

#### **2D Convolution**

N

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 4 | 5 | 6 | 7 | 8 | 5 | 6 |
| 5 | 6 | 7 | 8 | 5 | 6 | 7 |
| 6 | 7 | 8 | 9 | 0 | 1 | 2 |
| 7 | 8 | 9 | 0 | 1 | 2 | 3 |

P

|  | 321 |  |  |
|--|-----|--|--|
|  |     |  |  |
|  |     |  |  |
|  |     |  |  |
|  |     |  |  |

 $\mathbf{M}$ 

| 1 | 2 | 3 | 2 | 1 |
|---|---|---|---|---|
| 2 | 3 | 4 | 3 | 2 |
| 3 | 4 | 5 | 4 | 3 |
| 2 | 3 | 4 | 3 | 2 |
| 1 | 2 | 3 | 2 | 1 |





| 1 | 4  | 9  | 8  | 5  |
|---|----|----|----|----|
| 4 | 9  | 16 | 15 | 12 |
| 9 | 16 | 25 | 24 | 21 |
| 8 | 15 | 24 | 21 | 16 |
| 5 | 12 | 21 | 16 | 5  |

#### 2D Convolution – Ghost Cells



```
global
void convolution 2D basic kernel(int* N, int* M, int* P, int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;
    if (Col < w && Row < h) {
        int pixVal = 0;
       N start col = Col - (maskwidth/2);
       N start row = Row - (maskwidth/2);
        for(int j = 0; j < maskwidth; ++j) {
            for (int k = 0; k < maskwidth; ++k) {
                int curRow = N start row + j;
                int curCol = N start col + k;
                // Verify we have a valid image pixel
                if (curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                   pixVal += N[curRow * w + curCol] * M[j*maskwidth+k];
            }
        // Write our new pixel value out
        P[Row * w + Col] = pixVal;
```

```
global
void convolution 2D basic kernel(int* N, int* M, int* P, int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;
    if (Col < w && Row < h) {
                                                                          Col
        int pixVal = 0;
       N start col = Col - (maskwidth/2);
       N start row = Row - (maskwidth/2);
                                                                Row -
        for (int j = 0; j < maskwidth; ++j) {
            for (int k = 0; k < maskwidth; ++k) {
                int curRow = N start row + j;
                int curCol = N start col + k;
                // Verify we have a valid image pixel
                if (curRow > -1 && curRow < h && curCol > -1 &&
                   pixVal += N[curRow * w + curCol] * M[j*mas]
            }
        // Write our new pixel value out
        P[Row * w + Col] = pixVal;
```

```
global
void convolution 2D basic kernel(int* N, int* M, int* P, int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;
    if (Col < w && Row < h) {
                                                                        N start col
        int pixVal = 0;
       N start col = Col - (maskwidth/2);
                                                          N start row
       N start row = Row - (maskwidth/2);
        for(int j = 0; j < maskwidth; ++j) {
            for (int k = 0; k < maskwidth; ++k) {
                int curRow = N start row + j;
                int curCol = N start col + k;
                // Verify we have a valid image pixel
                if(curRow > -1 && curRow < h && curCol >
                                                                                       16 25 24 21
                    pixVal += N[curRow * w + curCol] * M
                                                                                       15 24 21 16
            }
        // Write our new pixel value out
        P[Row * w + Col] = pixVal;
```

```
global
void convolution 2D basic kernel(int* N, int* M, int* P, int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;
    if (Col < w && Row < h) {
       int pixVal = 0;
       N start col = Col - (maskwidth/2);
       N start row = Row - (maskwidth/2);
       for (int j = 0; j < maskwidth; ++j) {
           for (int k = 0; k < maskwidth; ++k) {
               int curRow = N start row + j;
               int curCol = N start col + k;
               // Verify we have a valid image pixel
               if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                   pixVal += N[curRow * w + curCol] * M[j*maskwidth+k];
                               Source of bad performance:
                               1 floating-point operation per global memory access
        // Write our new pixel
       P[Row * w + Col] = pixV
```

#### **Access Pattern for M**

- M is referred to as mask (a.k.a. kernel, filter, etc.)
- Calculation of all output P elements need M
- Total of O(PxM) reads of M
- M is not changed during kernel
- M elements are accessed in the same order when calculating all P elements

## **Memory Hierarchies**

#### **Programmer View of CUDA Memories**

#### Each thread can:

- Read/write per-thread registers (~1 cycle)
- Read/write per-block shared memory (~5 cycles)
- Read/write per-grid global memory (~500 cycles)
- Read/only per-grid constant memory (~5 cycles with caching)



### **General Memory Hierarchies**

- If every time we needed a piece of data, we had to go to main memory to get it, computers would take a lot longer to do anything
- On today's processors (CPU), main memory accesses take hundreds of cycles
- One solution: Caches

#### Cache

- Cache is unit of volatile memory storage
- A cache is an "array" of cache lines
- Cache line can usually hold data from several consecutive memory addresses
- When data is requested from memory, an entire cache line is loaded into the cache, in an attempt to reduce main memory requests

### Scratchpad vs. Cache

- Scratchpad (shared memory in CUDA) is another type of temporary storage used to relieve main memory contention.
- In terms of distance from the processor, scratchpad is similar to L1 cache.
- Unlike cache, scratchpad does not necessarily hold a copy of data that is also in main memory
- It requires explicit data transfer instructions, whereas cache doesn't

#### **Cache Coherence Protocol**

 A mechanism for caches to propagate updates by their local processor to other caches (processors)



## CPU and GPU have different caching philosophy

#### CPU L1 caches are usually coherent

- L1 is also replicated for each core
- Changeable data can be cached in L1
- Updates to local cache copy invalidates copies in other caches
- Expensive in terms of hardware and disruption of services

#### GPU L1 caches are usually incoherent

Avoid caching for changing data (Constant Memory)

#### **How to Use Constant Memory**

- Host code allocates, initializes variables the same way as any other variables that need to be copied to the device
- Use cudaMemcpyToSymbol (dest, src, size) to copy the variable into the device memory
- This copy function tells the device that the variable will not be modified by the kernel and can be safely cached.

# More on Constant Caching

- Each SM has its own L1 cache
  - Low latency, high bandwidth access by all threads
- However, there is no way for threads in one SM to update the L1 cache in other SMs
  - No L1 cache coherence



This is not a problem if a variable is NOT modified by a kernel.

# **Convolution**with Constant Memory

# Improving convolution kernel

- Use tiling for the N array element (will see later)
- Use constant memory for the M mask
  - it's typically small and is not changed
  - can be read by all threads in the grid

Host Memory copy to Constant Memory

## 1D Convolution with Constant Memory

```
global void convolution 1D basic kernel (float *N, float *P, int Mask Width, int Width)
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  int N start point = i - (Mask Width/2);
  float Pvalue = 0;
  if( i<Width ) {</pre>
      for (int j = 0; j < Mask Width; <math>j++)
      {
          if (N start point + j >= 0 && N start point + j < Width) {
              Pvalue += N[N start point + j]*M[j];
      P[i] = Pvalue;
```

## 1D Convolution with Constant Memory

```
global void convolution 1D basic kernel(float *N, float *P, int Mask Width, int Width)
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  int N start point = i - (Mask Width/2);
  float Pvalue = 0;
  if( i<Width ) {</pre>
      for (int j = 0; j < Mask Width; <math>j++)
      {
          if (N_start_point + j >= 0 && N_start point + j < Width) {</pre>
              Pvalue += N[N start point + j]*M[j];
                          2 floating-point operations per global memory access(N)
      P[i] = Pvalue;
```

# **Tiling & Convolution**

# **Tiling & Convolution**

- Calculation of adjacent output elements involve shared input elements
  - E.g., N[2] is used in calculation of P[0], P[1], P[2], P[3], and P[4] assuming a 1D convolution Mask\_Width of 5



• We can load all the input elements required by all threads in a block into the shared memory to reduce global memory accesses

# Input Data Needs(?)

- Assume that we want to have each block to calculate T output elements
  - T + Mask\_Width -1 input elements are needed to calculate T output elements
  - T + Mask\_Width -1 is usually not a multiple of T, except for small T values



# **Definition – output tile**



- Each thread block calculates an output tile
- Each output tile width is O\_TILE\_WIDTH
  - O\_TILE\_WIDTH is 4 in this example

# **Definition - Input Tiles**



 Each input tile has all values needed to calculate the corresponding output tile.

#### Thread to Input and Output Data Mapping



- For each thread:
  - index\_i = index\_o n
- where n is (Mask\_Width-1)/2
  - n is 2 in this example (because Mask\_Width is 5)

# **Design Options**

#### Design#1:

The size of each thread block matches the size of an output tile

- All threads participate in calculating output elements
- blockDim.x would be 4 in our example
- Some threads need to load more than one input element into the shared memory

#### Design#2:

The size of each thread block matches the size of an input tile

- Some threads will not participate in calculating output elements
- blockDim.x would be 8 in our example
- Each thread loads one input element into the shared memory

## **Design#1: 1D Tiled Convolution Kernel**

```
void convolution(int* N, int* P, int numPhase)
                                           // (int)ceil((float)I TILE WIDTH/O TILE WIDTH)
shared int Nds[I TILE WIDTH];
int tx = threadIdx.x;
int index o = blockIdx.x * O_TILE_WIDTH + tx;
int index i = index o-(MASK WIDTH/2);
int pValue = 0;
for(int i=0; i<numPhase; i++) {</pre>
    int ds i = tx + i*O_TILE_WIDTH;
    if(ds i < I TILE WIDTH) {</pre>
        if((index i >= 0) && (index i < ARRAY SIZE)) {</pre>
            Nds[ds i] = N[index i];
        }else{
            Nds[ds i] = 0;
    index i += O TILE WIDTH;
  syncthreads();
if (index o<ARRAY SIZE) {</pre>
    for(int i = 0; i < MASK WIDTH; i++) {</pre>
        pValue += M[i] * Nds[i+tx];
    P[index o] = pValue;
```

# Design#1: 1D Tiled Convolution main

## **Practice: Tiled 1D Convolution Design #2**

- Copy Sample Skeleton Code
  - cp -r /home/share/19\_Convolution ./[FolderName]
  - cd [FolderName]
- Notepad: TiledConvolution.cu 코드 Kernel function 완성
- Compile & run program
  - make
  - ./EXE

## **Design#2: 1D Tiled Convolution Kernel**

```
global void convolution(int* N, int* P)
   shared int Nds[I TILE WIDTH];
  int tx = threadIdx.x;
  int index o = blockIdx.x * O TILE WIDTH + tx;
  int index i = index o-(MASK WIDTH/2);
  int pValue = 0;
  if(index i >= 0 && index i < ARRAY SIZE) {</pre>
      Nds[tx] = N[index i];
  }else{
      Nds[tx] = 0;
    syncthreads();
  if (tx < O TILE WIDTH && index o < ARRAY SIZE) {
      for(int i = 0; i < MASK WIDTH; i++) {</pre>
          pValue += M[i] * Nds[i+tx];
      P[index o] = pValue;
```

# Design#2: 1D Tiled Convolution main

## **Design#2: 2D Tiled Convolution Kernel**

```
global void convolution(int* N, int* P)
   shared int Nds[I TILE WIDTH][I TILE WIDTH];
  int tx = threadIdx.x; int ty = threadIdx.y;
  int Col o = blockIdx.x * O TILE WIDTH + tx;
  int Row o = blockIdx.y * O TILE WIDTH + ty;
  int Col i = Col o-(MASK WIDTH/2);
  int Row i = Row o-(MASK WIDTH/2);
  int pValue = 0;
  if(Col i >= 0 && Col i < ARRAY WIDTH && Row i >= 0 && Row i < ARRAY HEIGHT) {
      Nds[ty][tx] = N[Row i*ARRAY WIDTH+Col i];
  }else{
      Nds[ty][tx] = 0;
   syncthreads();
  if (tx<0 TILE WIDTH && ty<0 TILE WIDTH && Col o<ARRAY WIDTH && Row o<ARRAY HEIGHT) {
      for (int i = 0; i < MASK WIDTH; i++) {
          for (int j = 0; j < MASK WIDTH; <math>j++) {
              pValue += M[i][j] * Nds[i+ty][j+tx];
      P[Row o*ARRAY WIDTH+Col o] = pValue;
```

# Design#2: 2D Tiled Convolution main

```
#define ARRAY WIDTH
                       1024
#define ARRAY HEIGHT
                        512
#define MASK WIDTH
#define O TILE_WIDTH
#define I TILE WIDTH
                       O TILE WIDTH+MASK WIDTH-1
 constant int M[MASK WIDTH];
int main(){
   // Set Grid/Block Dimensions
   dim3 T(I TILE WIDTH, I TILE WIDTH);
   dim3 B((int)ceil((float)ARRAY WIDTH/O TILE WIDTH),
            (int)ceil((float)ARRAY HEIGHT/O TILE WIDTH));
   // Launch Kernel
   convolution<<<B, T>>>(d N,d P);
```

# **Evaluating Tiling Efficiency**

## **Example1: An 4-elements Convolution Tile**

#### Nds



P 8 9 10 11

For Mask\_Width=5, we load 4+5-1=8 elements (8 memory loads)

# **Example1: Evaluating Re-use**

- P[8] uses N[6], N[7], N[8], N[9], N[10]
- P[9] uses N[7], N[8], N[9], N[10], N[11]
- P[10] use N[8], N[9], N[10], N[11], N[12]
- P[11] use N[9], N[10], N[11], N[12], N[13]

#### Nds



# **Example1: Evaluating Re-use**

- P[8] uses N[6], N[7], N[8], N[9], N[10]
- P[9] uses N[7], N[8], N[9], N[10], N[11]
- P[10] use N[8], N[9], N[10], N[11], N[12]

DIALITY OF THE PROPERTY OF THE

(4+5-1)=8 elements loaded 4\*5 global memory accesses replaced by shared memory accesses This gives a bandwidth reduction of 20/8 = 2.5

#### Nds



#### **Example2: An 8-elements Convolution Tile**

#### Nds



P

| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|---|----|----|----|----|----|----|
|---|---|----|----|----|----|----|----|

For Mask\_Width=5, we load 8+5-1=12 elements (12 memory loads)

# **Example2: Evaluating Reuse**

- P[8] uses N[6], N[7], N[8], N[9], N[10]
- P[9] uses N[7], N[8], N[9], N[10], N[11]
- P[10] use N[8], N[9], N[10], N[11], N[12]

• • • • • • • • • •

- P[14] uses N[12], N[13], N[14], N[15], N[16]
- P[15] uses N[13], N[14], N[15], N[16], N[17]

#### Nds



# **Example2: Evaluating Reuse**

- P[8] uses N[6], N[7], N[8], N[9], N[10]
- P[9] uses N[7], N[8], N[9], N[10], N[11]
- P[10] use N[8], N[9], N[10], N[11], N[12]

(8+5-1)=12 elements loaded 8\*5 global memory accesses replaced by shared memory accesses This gives a bandwidth reduction of 40/12 = 3.3





#### **Evaluating Reuse: General 1D tiled convolution**

- O\_TILE\_WIDTH+MASK\_WIDTH -1 elements loaded for each input tile
- O\_TILE\_WIDTH\*MASK\_WIDTH global memory accesses replaced by shared memory accesses
- This gives a reduction factor of

This ignores ghost elements in edge tiles.

| O_TILE_WIDTH   | 16  | 32  | 64  | 128 | 256 |
|----------------|-----|-----|-----|-----|-----|
| MASK_WIDTH= 5  | 4.0 | 4.4 | 4.7 | 4.9 | 4.9 |
| MASK_WIDTH = 9 | 6.0 | 7.2 | 8.0 | 8.5 | 8.7 |

## **Evaluating Reuse: 2D Convolution Tiles**

- (O\_TILE\_WIDTH+MASK\_WIDTH-1)<sup>2</sup> input elements need to be loaded into shared memory
- The calculation of each output element needs to access MASK\_WIDTH<sup>2</sup> input elements
- O\_TILE\_WIDTH<sup>2</sup> × MASK\_WIDTH<sup>2</sup> global memory accesses are converted into shared memory accesses
- The reduction ratio is

```
\frac{\text{O_TILE_WIDTH}^2 \times \text{MASK_WIDTH}^2}{(\text{O_TILE_WIDTH} + \text{MASK_WIDTH} - 1)^2}
```

#### **Bandwidth Reduction for 2D**

The reduction ratio is

O\_TILE\_WIDTH
$$^2 \times MASK_WIDTH^2$$
  
(O\_TILE\_WIDTH+MASK\_WIDTH-1) $^2$ 

| O_TILE_WIDTH   | 8    | 16 | 32   | 64   |
|----------------|------|----|------|------|
| MASK_WIDTH = 5 | 11.1 | 16 | 19.7 | 22.1 |
| MASK_WIDTH = 9 | 20.3 | 36 | 51.8 | 64   |

- Tile size has significant effect on the memory bandwidth reduction ratio.
- This often argues for larger shared memory size