Университет ИТМО

Институт прикладных компьютерных наук Глубокое обучение и генеративный искусственный интеллект

ОТЧЕТ ПО 2-Й ЛАБОРАТОРНОЙ РАБОТЕ курса «Эволюционные вычисления»

ВВЕДЕНИЕ В ЭВОЛЮЦИОННЫЕ ВЫЧИСЛЕНИЯ

Студент: Группа № M4130

Батурина Ксения Александровна

СОДЕРЖАНИЕ

BI	ВЕДЕ	НИЕ	3					
1	BITS COUNT							
	1.1	Кодирование решений в данной реализации	4					
	1.2	Результаты расчётов	5					
2	TRAVELLING SALESMAN PROBLEM							
	2.1	Оптимальный маршрут	6					
	2.2	Подбор параметров	7					
3	MO	ONA LISA8						
4	BOI	ВОПРОСЫ						
	4.1	К какому типу по структуре решений относится каждая из						
		рассмотренных задач?	9					
	4.2	Как закодированы решения в задаче коммивояжёра?	9					
	4.3	Что является генотипом, а что фенотипом в задаче						
		воспроизведения картины?	9					

ВВЕДЕНИЕ

Цель работы:

Получить представление о возможностях применения эволюционных алгоритмов для решения различных классов задач и программных средств для их разработки.

Задачи работы:

- 1. Скачать проект, содержащий фреймворк Watchmaker.
- 2. Выполнить работу с примерами: Bits count, Travelling salesman problem, Mona Lisa.
- 3. Ответить на вопросы:
 - К какому типу по структуре решений относится каждая из рассмотренных задач?
 - Как закодированы решения в задаче коммивояжёра?
 - Что является генотипом, а что фенотипом в задаче воспроизведения картины?

1 BITS COUNT

1.1 Кодирование решений в данной реализации

В данной реализации битовые строки представлены классом BitString. Pacсмотрим, как решения закодированы в данной структуре данных:

1. Конструкторы:

- BitString(int length): Создает объект BitString заданной длины с массивом целых чисел для хранения битов.
- BitString(int length, Random rng): Создает объект
 BitString заданной длины и заполняет его случайными
 битами, используя генератор случайных чисел rng.
- BitString(String value): Создает объект BitString на основе строки value, где каждый символ 1 или 0 представляет соответствующий бит.

2. Методы:

- getBit(int index): Возвращает бит по указанному индексу.
- setBit(int index, boolean set): Устанавливает бит по указанному индексу в заданное значение.
- flipBit(int index): Инвертирует бит по указанному индексу.
- countSetBits(): Подсчитывает количество установленных битов (битов со значением 1).
- countUnsetBits(): Подсчитывает количество сброшенных битов (битов со значением 0).
- toNumber(): Преобразует битовую строку в целое число типа
 BigInteger.
- swapSubstring(BitString other, int start, int length):
 Меняет подстроку текущей битовой строки с подстрокой другой битовой строки, начиная с позиции start и длиной length.

Таким образом, решения в данной реализации закодированы в виде массива целых чисел, где каждое целое число представляет группу битов, а методы класса BitString обеспечивают манипуляции с этими битами.

1.2 Результаты расчётов

В соответствии с заданием была проведена серия запусков для решения задачи с размерностями 20, 50 и 100. В таблице ниже приведено количество итераций алгоритма для всех запусков и расчет средних значений.

Таблица 1 — Результаты расчёта количества итераций алгоритма от размерности проблемы.

Размерность	Run 1	Run 2	Run 3	Run 4	Run 5	Среднее
20	30	33	19	36	25	28,6
50	1856	5714	1094	2519	4356	3107,8
100	5676697	15910562	129085	24867563	20868152	13490411,8

2 TRAVELLING SALESMAN PROBLEM

2.1 Оптимальный маршрут

Найденный оптимальный маршрут: Paris → Luxembourg → Brussels → Amsterdam → Copenhagen → Stockholm → Helsinki → Berlin → Vienna → Athens → Rome → Madrid → Lisbon → Dublin → London → Paris.

Дистанция: 10494,0 км.

Рисунок 1 — Оптимальный маршрут

2.2 Подбор параметров

При стандартных параметрах алгоритма (pop: 300, gen: 100, elite: 3, Truncation Selection (50%)) оптимальный маршрут, описанный выше, находится за 1,86 секунд.

Были проведены запуски с различными параметрами алгоритма. В частности, удалось достичь стабильного нахождения оптимального пути за 0.023 секунд при параметрах (pop: 50, gen: 100, elite: 3, Truncation Selection (50%)).

3 MONA LISA

Качество решения задачи оценивалось субъективно. Говорят, что самая значимая часть этой картины — это улыбка, по этому критерию (а также по значению функции приспособленности) и был выбран «лучший» вариант.

Таблица 2 — Результаты оптимизации подбора полигонов для воспроизведения картины.

Решение	Итерация	Фитнесс	Кол-во полигонов и углов	Рисунок
плохое	70784	226670,45	22 полигонов, 162 углов	
среднее	39578	232315.14	35 полигонов, 238 углов	
хорошее	63149	194167	39 полигонов, 318 углов	

4 ВОПРОСЫ

4.1 К какому типу по структуре решений относится каждая из рассмотренных задач?

- **Bits count.** Тип решений: Бинарные. Решение представляет собой битовую строку (каждый бит может быть 0 или 1), и задача заключается в подсчете количества установленных битов 1 в этой строке.
- **TSP.** Тип решений: Комбинаторные. Решение представляет собой перестановку городов и является комбинаторным объектом.
- Mona Lisa. Тип решений: Вещественнозначные. Решение список полигонов, где параметры (координаты вершин, цвет, прозрачность) могут принимать вещественные значения. Каждый полигон описывается набором вещественных чисел.

4.2 Как закодированы решения в задаче коммивояжёра?

В данной реализации решения закодированы в виде списка строк, представляющих порядок посещения городов в маршруте.

Таким образом, в данной реализации каждая особь представляет маршрут, который является перестановкой городов. Эти маршруты эволюционируют с использованием различных стратегий, представленных интерфейсом TravellingSalesmanStrategy.

4.3 Что является генотипом, а что фенотипом в задаче воспроизведения картины?

Генотип представляет собой список полигонов, каждый из которых описывается своими характеристиками, такими как координаты вершин, цвет и прозрачность.

Фенотип в данной задаче является изображением, созданным на основе генотипа. Полигоны из списка генотипа используются для построения изобра-

жения, которое приближается к целевому изображению (в данном случае, к картине Моны Лизы).