# Simulation of Apache web Server

CS 681

- Chaitanya(203050026)
- Mahendra(203050078)

### Simulation Configuration

- We have simulated apache server which we used for measurement.
  - Maintained no of threads as 150.
  - Set request buffer size to 70.
  - Set time quantum to 36.5 msec.
  - Set context switch overhead to 9 msec
  - Set mean service time to 168 msec
  - Set mean timeout to 9000 msec
  - Set simulation timer to 300000 msec
- We have used erlang distribution for timeout.

#### Service Time Distributions

- We have run our simulation on 3 different distributions of service time
  - Exponential.
    - https://docs.google.com/spreadsheets/d/1qbP\_5zAiKbSovwLCSjb3Mei8JwG Jn4BxJQqmGlq5qvq/edit?usp=sharinq.
  - Uniform Random
    - https://docs.google.com/spreadsheets/d/152tlsSZ2hxds3WEH\_Wscb7L-Sa0J hdOj0bVNDXjMKns/edit#gid=1251840463
  - Constant
    - https://docs.google.com/spreadsheets/d/1Yb8gIm1HWdYOWCgae8PbNbz8q on5WGG0pivDkZR5Du8/edit?usp=sharing

### Throughput graphs(Exponential)

# of clients vs Throughput



### Utilization graphs(Exponential)

#### Utilization vs # of clients



## Response Time graphs(Exponential)

Response time vs. # of clients



### Goodput, Badput graphs (Exponential)



### Drop Rate graphs(Exponential)

#### Droprate vs. No of users



### **Observations**

- Decreasing buffer size, increases drop rate.
- Decreasing time out,increases badput.
- Increasing context switch overhead, increases response time.
- Decreasing no of threads increases response time.
- Increasing time quantum to some extent decreases response time, after which response time increases i.e becomes close to FIFO.
- By observing graphs, we can say our kleinrock heuristic was around 150 which we have claimed while measurement.

### Conclusions

- Using simulation we can study behaviour of system for any required configuration easily.
  - Using normal measurements it will be difficult to study behaviour of system under certain circumstances.
- Using simulation we can easily find what type of system configuration needed to support given number of clients

### Throughput graphs(Uniform Random)

#### Throughput vs # of clients



### Throughput graphs(Constant)

No of clients vs Throughput



### Utilization graphs(Uniform Random)

utilization vs # of client



# Utilization graphs(Constant)

#### Utilization vs # of clients



### Response Time graphs(Uniform Random)

Responsetime vs. # of clients



## Response Time graphs(Constant)

Response time vs # of clients

