

Problem

Conclusion & Demo

The Data

Recommendations

Modeling

Appendix

Outline

Loren ipsum dolor sit amet consectetur Lorem ipsum dolor sit amet consectetur adipiscing elit massa sociis mollis laculis. adipiscing elit massa sociis mollis iaculis, arcu fermentum per ullamcorper id at tempor remaintum per ullamcorper id at tempor turpis volutpat curae, quisque vitae montes magna sodales purus fringilla mattis sem nunc. turpis volutpat curae, quisque vitae montes magna sodales purus fringilla mattis sem nunc. Elementum tempor scelerisque metus hac lacus, sem rhoncus consequat mollis turpis porta, sem rhoncus consequat mollis turpis porta, vivamus bibendum porttitor suscipit. vivamus bibendum porttitor suscipit. Tristique curae mollis porta sed fusce tempor Tristique curae mollis porta sed fusce tempor lacus est mus magna taculis, eu ultricles lacus est mus magna jaculis, eu ultricies aliquet aptent diam accumsan varius auctor non Dapibus purus varius potenti sociosqu pulvinar quis ut sagittis, per turpis fermentum litora magnis class tincidunt, faucibus auctor magnis class tincidunt, faucibus auctor tristique inceptos erat vehicula eu. Platea tristique inceptos erat vehicula eu. Platea metus auctor blandit id cubilia dapibus parturient dictum risus volutpat, rhoncus metus auctor blandit id cubilia dapibus tristique bibendum praesent laoreet nulla parturient dictum risus volutpat, rhoncus Ornare pharetra sociosqu penatibus, gravida mi aliquam malesuada condimentum eu imperdiet at aliquam malesuada condimentum eu imperdiet at Tristique curae mollis porta sed fusce tempor lacus est nus magna iaculis, en ultricies lacus est nus magna iaculis, en ultricies aliquet aptent diam accumsan varius auctor non. Dapibus purus varius potenti sociosqu pulvinar. Carmentim litera quis ut sagittis, per turpis fermentum litora magnis class tincidunt, faucibus auctor tristique inceptos erat vehicula eu. Platea metus auctor blandit id cubilia dapibus trastigue inceptoe eras, do aprila destribus metus autor bandit i di aprila destribus parturient dettum risus alcomes, archite aptent dia accusan un archite autoria, destribus parturi varius potenti sociosus, archite aprila parturi saglititi, per tranchias successi acquiste, per tranchias successi acquiste, per tranchias successi anticordent, successi and per parturient detum fonestes successi de aprila parturiente detum bibandist i de acuti and partura parturiente detum risus volutypar i processi referente parturiente detum presente la parturiente de comprehente de la comprehente

The Problem

Create an algorithm that recommends books to readers.

The Data

	Books (Items)	Readers (Users)	Ratings
Goodreads Dataset	2,360,655	876,145	104,551,549
Genre: Children's Books	124,082	90,381	703,527
Sample used for modeling	3,512	7,684	91,567

Children's Books Ratings

	Rating
count	703,527
mean	3.987
min	1.00
25%	3.00
50%	4.00
75%	5.00
max	5.00

	Rating Frequency of Users
count	90,381
mean	7.78
min	1
25%	1
50%	2
75%	4
max	4,481

User Rating Frequency

	Average Rating Per User
count	90,381
mean	4.22
min	1.00
25%	4.00
50%	4.33
75%	5.00
max	5.00

User Rating Average

	Original Data: Average Rating Per User	Sample: Average Rating Per User
count	90,381	7,684
mean	4.22	4.13
min	1.00	1.50
25%	4.00	3.77
50%	4.33	4.17
75%	5.00	4.52
max	5.00	5.00

Original Data

Sample

Very Sparse: User by Item Matrix

	Item 1	Item 2	Item 3 □	> Item 3512
User 1	?	4	?	?
User 2	3	?	?	3
User 3	2	1	?	?
User 7684	?	?	5	?

0.34 % sparsity

Collaborative Filtering

- Memory-based
- Similarity matrix

Non-negative matrix factorization (NMF)

- Model-based
- "Latent factors"

Comparing the two models

	NMF	KNN
count	91567	91567
mean	0.56	0.35
min	0.00	0.00
25%	0.23	0.12
50%	0.47	0.29
75%	0.79	0.51
max	3.85	3.19

Comparing the two models

Average error by rating frequency of user

Average error by rating frequency of item

Conclusion

- Hybrid approach
 - New users: KNN
 - Existing users: NMF
- Considerations
 - Accuracy
 - Processing time
 - > File size

Demo

Recommendations for further work

- Look into book series
- Input keywords to search for actual titles
- Other model-based algorithms
 - Neural nets
- Other libraries
 - fastai

Thanks

Questions?

auroravhd@gmail.com www.linkedin.com/in/avdavid/

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.

Please keep this slide for attribution.

Algorithm	RMSE
KNNBasic	0.8839
KNNWithMeans	0.8326
KNNWithZScore	0.8537
KNNBaseline	0.7942
NMF	0.7961
SVD	0.7964

Parameters

KNNBaseline

```
bsl_options = {'method': 'sgd',
       'reg': .08,
       'learning_rate': .005,
       'n epochs': 40}
sim_options = {'name': 'msd',
       'min_support':1,
       'user based': False}
algo_knn = KNNBaseline(k=40, min_k=2, sim_options = sim_options, bsl_options =
bsl_options)
```

NMF

```
algo_nmf = NMF(n_factors=8, n_epochs=40, biased=True, reg_pu=0.8, reg_qi=2, reg_bu=.03, reg_bi=0.3)
```