Sec. 2.5 Sensitivity analysis of linear system

Goal: 1. Condition number

2. Sensitivity analysis

1. Condition number.

es. Consider
$$\begin{pmatrix} 0.780 & 0.563 \\ 0.913 & 0.659 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} 0.217 \\ 0.254 \end{pmatrix}$$
.

approximate solutions: $\vec{\lambda}^{(1)} = \begin{pmatrix} 0.341 \\ -0.087 \end{pmatrix}$, $\vec{\lambda}^{(2)} = \begin{pmatrix} 0.999 \\ 1.00 \end{pmatrix}$

Which me is preferred?

$$A\vec{x}^{(1)} - \vec{b} = \begin{pmatrix} 0.000001 \\ 0 \end{pmatrix}, \quad A\vec{x}^{(2)} - \vec{b} = \begin{pmatrix} 0.000780 \\ 0.000913 \end{pmatrix}.$$

If we want small residual, then it is preferred.

However, exact solution $\vec{\chi} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\|\vec{\chi}^{(1)} - \vec{\chi}\| < \|\vec{\chi}^{(2)} - \vec{\chi}\|$, $\vec{\chi}^{(2)}$ is more accurate.

Some understanding behind the problem:
$$\widehat{A} = \begin{pmatrix} 0.780 & 0.5630001095 \dots \\ 0.913 & 0.659 \end{pmatrix} \text{ is singular}$$

So A is nearly singular.

An $O(10^{-6})$ pertubation of the data will render the problem $A\vec{z} = \vec{b}$ insolvable.

Def: Condition number of A is $K_p(A) = \|A\|_p \cdot \|A^-\|_p$.

Recoll: For
$$\vec{\lambda} = (\lambda_1, \dots, \lambda_n)^T$$
, $\|\chi\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^k$, $\|\xi\|_p < \infty$, $\|\chi\|_{\infty} = \max_{1 \le i \le n} |\lambda_i|$

For $A \in \mathbb{C}^{n \times n}$, $\|A\|_p = \sup_{\|\vec{\lambda}\|_{p}} \|A\vec{\lambda}\|_p$, $\|\xi\|_{\infty} = \infty$

 $\|A\|_{1} = \max_{1 \leq i \leq n} \|A(i, i)\|_{1}$ $\|A\|_{\infty} = \max_{1 \leq i \leq n} \|A(i, i)\|_{1}$ $\|A\|_{2} \leq \|A\|_{F} := \left(\frac{n}{(i, j+1)} |\alpha_{i,j}|^{2}\right)^{\frac{1}{2}}$

eg.
$$A = \begin{pmatrix} 0.780 & 0.563 \\ 0.913 & 0.659 \end{pmatrix} \implies A^{-1} = 10^{6} \begin{pmatrix} 0.659 & -0.563 \\ -0.913 & 0.780 \end{pmatrix}$$

Theorem 1: 1. K(A) >1. (If A is unitary, K(A) =1)

- 2. K(A) is large if A is close to singular
- 3. $K(\Delta A) = K(A)$, (scaling invariant).
- 4. $K_2(A) = \frac{\sigma_{max}(A)}{\sigma_{min}(A)}$ where $\sigma_{max}(A)$ and $\sigma_{min}(A)$ are the maximal and minimal singular values of A, i.e. $\sigma(A) = \lambda \lambda (A^*A)$

Remark: 1. Small eigenvalues or determinant does NOT imply "near singular".

eg. &In M eigenvalues = & det(dIn) = dn

If $\alpha = 10^{-10}$, small, but $\mathcal{K}(dI_n) = \mathcal{K}(I_n) = 1$.

- 2. If A is normal, i.e. $A^*A = A \cdot A^*$, then $K(A) = \frac{|\lambda| \max(A)|}{|\lambda| \min(A)|}$
- 3. All eigenvalues are I does NOT imply small condition number.

es,
$$A = \begin{pmatrix} 1 & \lambda \\ & \ddots \\ & & \end{pmatrix}$$
, $A^{-1} = \begin{pmatrix} 1 & -\lambda \\ & \ddots \\ & & \end{pmatrix}$, $\chi_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = (|H|\lambda|)^{2}$

2. Sonsitivity analysis

Linear system: $A\vec{x} = \vec{b}$

perturbed linear system: $\hat{A}\hat{\lambda} = \hat{b}$ $|\hat{\lambda} - \lambda|| : \text{ absolute error}, \qquad \frac{||\hat{x} - \hat{\lambda}||}{||\hat{x}||} : \text{ relative error}$

(The sensitivity of the linear system has nothing to do with the numerical algorithm used).

Theorem 2: Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular and $A \overrightarrow{R} = \overrightarrow{b}$. If eps. K(A) < 1, then the stored linear system $\hat{A}\hat{x} = \hat{b}$ is nonsingular, and

$$\frac{\|\hat{x} - \vec{x}\|}{\|\vec{x}\|} \leq \frac{z \cdot eps \cdot K(A)}{|-eps \cdot K(A)}$$

To prove Theorem 2, we need the following Lemmas.

Lemma 1: If \hat{A} is the stored version of any $A \in \mathbb{R}^{m \times n}$, then $\hat{A} = A + E$, where $E \in \mathbb{R}^{m \times n}$ and $\|E\| \leq eps \cdot \|A\|$. eps : machine precisionproof: Let $\hat{A} = (\hat{a}_{ij})$. Then $\hat{a}_{ij} = a_{ij} (1 + \epsilon_{ij})$, where $|\epsilon_{ij}| \leq eps$ $\|E\| = \|\hat{A} - A\|_{1} = \max_{|\epsilon| \leq 1} \sum_{|\epsilon| \leq 1} |a_{ij} - a_{ij}| = \max_{|\epsilon| \leq 1} \sum_{|\epsilon| \leq 1} |a_{ij} \cdot \epsilon_{ij}| \leq eps \cdot \max_{|\epsilon| \leq 1} \sum_{|\epsilon| \leq 1} |a_{ij}| = eps \cdot \|A\|_{1}$. The proof for $\|\cdot\|_{\infty}$ is similar.

Lemma 2: Suppose $A\vec{x} = \vec{b}$ is penturbed to $(A+E)\hat{x} = (\vec{b}+\vec{e})$.

Then $\frac{\|\hat{x}-\vec{x}\|}{\|\vec{x}\|\|} \le \frac{\|A^T\|\cdot\|A\|}{|-\|A^T\|\cdot\|E\|} \left(\frac{\|\vec{e}\|}{\|\vec{b}\|} + \frac{\|E\|}{\|A\|}\right)$

 $Proof: A(\hat{x} - \vec{x}) = A\hat{x} - A\vec{x} = (\vec{b} + \vec{e} - E\hat{x}) - \vec{b} = \vec{e} - E\hat{x} = (\vec{e} + E\vec{x}) - E(\hat{x} - \vec{x})$ $\hat{x} - \vec{x} = A^{\dagger} [(\vec{e} + E\vec{x}) - E(\hat{x} - \vec{x})]$

By Conchy inequality and triangle inequality, $\|\hat{x} - \vec{x}\| \le \|A^{-1}\| \cdot \|\vec{e} + E\vec{x} - E(\vec{x} - \hat{x})\| \le \|A^{-1}\| \cdot (\|\vec{e}\| + \|E\vec{x}\| + \|E(\vec{x} - \hat{x})\|)$ $\le \|A^{-1}\| \cdot (\|\vec{e}\| + \|E\| \cdot \|\vec{x}\| + \|E\| \cdot \|\hat{x} - \vec{x}\|)$

 $(\|\hat{\mathbf{x}}\| \cdot \|\mathbf{y}\| + \|\hat{\mathbf{y}}\| \cdot \|\cdot \|\mathbf{y}\| \cdot \|\cdot \|\mathbf{x}\| + \|\mathbf{y}\| \cdot \|\mathbf{x}\| \cdot \|\mathbf{y}\| + \|\mathbf{y}\| \cdot \|\mathbf{y}\| \|\mathbf{y}$

 $\frac{\|\hat{\chi} - \vec{\chi}\|}{\|\vec{\chi}\|} \leq \frac{\|A^{-1}\|}{\|-\|A^{+}\| \cdot \|E\|} \left(\frac{\|\vec{e}\|}{\|\vec{\chi}\|} + \|E\| \right) = \frac{\|A^{-1}\| \cdot \|A\|}{\|-\|A^{-1}\| \cdot \|E\|} \cdot \left(\frac{\|\vec{e}\|}{\|A\| \cdot \|\vec{\chi}\|} + \frac{\|E\|}{\|A\|} \right)$

$$\frac{\|\hat{x} - \vec{x}\|}{\|\vec{x}\|} \leq \frac{\|A^{T}\| \cdot \|A\|}{\|-\|A^{T}\| \cdot \|e\|} \left(\frac{\|\vec{e}\|}{\|\vec{b}\|} + \frac{\|e\|}{\|A\|} \right)$$

proof of Theorem 2:

0 If \hat{A} is singular, then there is a nonzero vector \vec{z} such that $\hat{A}\vec{z}=\vec{0}$. $\hat{A}=A+E \Rightarrow (A+E)\vec{z}=0 \Rightarrow A\vec{z}=-E\vec{z} \Rightarrow \vec{z}=-A^{-1}E\vec{z}$ $\|\vec{z}\| \leq \|A^{-1}\|\cdot\|E\|\cdot\|\vec{z}\| \leq \|A^{-1}\|\cdot eps\cdot\|A\|\cdot\|\vec{z}\| = eps\cdot X(A)\cdot \|\vec{z}\| < \|\vec{z}\|$ contradicting! So \hat{A} is nonzingular. @ By Lemma 1, ||E|| & eps. ||A||, ||E|| & eps. ||B||,

Using Lemma z, we get

$$\frac{\|\hat{\mathbf{x}} - \vec{\mathbf{x}}\|}{\|\vec{\mathbf{x}}\|} \leq \frac{\|\mathbf{A}^{\mathsf{I}}\| \cdot \|\mathbf{A}\|}{\|\mathbf{I}^{\mathsf{I}}\| \cdot \|\mathbf{E}\|} \left(\frac{\|\vec{\mathbf{e}}\|}{\|\vec{\mathbf{f}}\|} + \frac{\|\mathbf{E}\|}{\|\mathbf{A}\|} \right) \leq \frac{\mathcal{R}(\mathsf{A})}{1 - \|\mathbf{A}^{\mathsf{I}}\| \cdot \|\mathbf{E}\|} \left(\frac{\mathsf{eps} + \mathsf{eps}}{1 - \|\mathbf{A}^{\mathsf{I}}\| \cdot \|\mathbf{E}\|} \right)$$

$$||E|| \leq eps. ||A|| \implies -||A^{-1}|| \cdot ||E|| \geqslant -||A^{-1}|| \cdot eps. ||A|| = -eps. K(A)$$

$$\implies ||-||A^{-1}|| \cdot ||E|| \geqslant |-eps. K(A) \implies \frac{1}{|-||A^{-1}|| \cdot ||E||} \leq \frac{1}{|-eps. K(A)|}$$
So $\frac{||\hat{X} - \hat{X}||}{||\hat{X}||} \leq \frac{2 \cdot eps. K(A)}{|-eps. K(A)|}$.