US-PAT-NO: 6438664

DOCUMENT-IDENTIFIER: US 6438664 B1

TITLE: Microcode patch device and method for

patching microcode

using match registers and patch

routines

DATE-ISSUED: August 20, 2002

INVENTOR-INFORMATION:

NAME CITY

STATE ZIP CODE COUNTRY

McGrath; Kevin J. Los Gatos CA

N/A N/A

Pickett; James K. Austin TX

N/A N/A

ASSIGNEE INFORMATION:

NAME CITY STATE

ZIP CODE COUNTRY TYPE CODE

Advanced Micro Devices, Sunnyvale CA

N/A N/A 02

Inc.

APPL-NO: 09/ 428635

DATE FILED: October 27, 1999

INT-CL: [07] G06F009/00,G06F012/00 ,G06F013/00

US-CL-ISSUED: 711/154, 711/102 , 711/165 , 711/202 ,

712/245

US-CL-CURRENT: 711/154, 711/102 , 711/165 , 711/202 ,

712/245

FIELD-OF-SEARCH: 711/102; 711/103; 711/202; 711/213; 711/154; 711/165

; 712/244 ; 712/245 ; 714/8

REF-CITED:

U.S. PATENT DOCUMENTS

PAT-NO ISSUE-DATE PATENTEE-NAME

US-CL

4028678	June 1977	Moran
N/A	$\frac{N/A}{A}$	N/A
4028679	June 1977	Divine
N/A	N/A	N/A
4028683	June 1977	Divine et al.
N/A	N/A 1077	N/A
4028684 N/A	June 1977 N/A	Divine et al.
4044338	August 1977	Wolf
N/A	N/A	N/A
4319079	March 1982	Best
N/A	N/A	N/A
4400798	August 1983	Francis et al.
N/A	N/A	N/A
4453212	June 1984	Gaither et al.
N/A	N/A	N/A
4482953	November 1984	Burke
N/A	N/A	N/A
4542453	September 1985	Patrick et al
N/A	N/A	N/A
$\frac{4577319}{N}$	March 1986	Takeuchi et al.
N/A 4610000	<u>N/A</u> September 1986	N/A Lee
N/A	N/A	N/A
4751703	June 1988	Picon et al.
N/A	N/A	N/A
4802119	January 1989	Heene et al.
N/A	N/A	──N/A
4807115	February 1989	Torng
N/A	N/A	N/A
4807857	February 1989	Wolf et al.
N/A	N/A	N/A
4839797	June 1989	Katori et al.
N/A	$\frac{N/A}{1}$	N/A
4857612	August 1989	Bacskai
N/A 4858105	N/A August 1989	N/A Kuriyama et al.
N/A	N/A	N/A
4928223	May 1990	Dao et al.
N/A	N/A	N/A
4982360	January 1991	Johnson et al.
	-	

N/A	N/A	N/A
5053631	October 1991	Perlman et al.
N/A	N/A	N/A
5053949	October 1991	Allison et al.
N/A	<u>N/A</u>	N/A
5058048	October 1991	Gupta et al.
N/A	N/A May 1992	N/A Larsen
5115500 N/A	N/A	N/A
5129067	July 1992	Johnson
N/A	N/A	N/A
5136697	August 1992	Johnson
N/A	N/A	N/A
5167026	November 1992	Murray et al.
N/A	N/A	N/A
5202967	April 1993	Matsuzaki et al.
N/A	$\frac{N/A}{10000}$	N/A
5212693	May 1993 N/A	Chao et al.
N/A 5226126	July 1993	McGarland et al.
N/A	N/A	N/A
5226130	July 1993	Favor et al.
N/A	N/A	N/A
5233696	August 1993	Suzuki
N/A	N/A	N/A
5235686	August 1993	Bosshart
N/A	N/A	N/A
5295247	March 1994	Chang et al.
N/A 5299318	<u>N/A</u> March 1994	N/A Bernard et al.
N/A	N/A	N/A
5321830	June 1994	Nakamura et al.
N/A	N/A	N/A
5333292	July 1994	Takemoto et al.
N/A	N/A	N/A
5337415	August 1994	DeLano et al.
N/A	N/A	N/A
5355463	October 1994	Moeller
N/A 5357627	N/A October 1994	N/A Miyazawa et al.
N/A	N/A	N/A
5367571	November 1994	Bowen et al.
N/A	N/A	$\frac{26WGH}{N/A}$
5371864	December 1994	Chuang
N/A	N/A	N/A
5379301	January 1995	Sato et al.

,	/_	1
N/A	N/A	N/A
5394558	February 1995	Arakawa et al.
N/A	N/A	N/A
5394559	February 1995	Hemmie et al.
N/A	N/A	N/A
5425036	June 1995	Liu et al.
N/A	N/A	N/A
5430851	July 1995	Hirata et al.
N/A	N/A	N/A
·	August 1995	
5440632		Bacon et al.
N/A	N/A	N/A
5442760	August 1995	Rustad et al.
N/A	N/A	N/A
<u>5454100</u>	September 1995	Sagane
N/A	<u>N/A</u>	N/A
5459844	October 1995	Eickemeyer et al.
N/A	N/A	N/A
5481713	January 1996	Wetmore et al.
N/A	n/A	N/A
5488710	January 1996	Sato et al.
N/A	N/A	$\frac{\text{DGO}}{\text{N}/\text{A}}$
5488729	January 1996	Vegesna et al.
N/A		
	N/A	N/A
FF00040	M	THE STREET OF STREET
5500942	March 1996	Eickemeyer et al.
N/A	N/A	N/A
N/A 5504923	N/A April 1996	N/A Ando
N/A 5504923 N/A	N/A April 1996 <u>N/A</u>	N/A Ando N/A
N/A 5504923 N/A 5509130	N/A April 1996	N/A Ando
N/A 5504923 N/A	N/A April 1996 <u>N/A</u>	N/A Ando N/A
N/A 5504923 N/A 5509130	N/A April 1996 <u>N/A</u> April 1996	N/A Ando N/A Trauben et al.
N/A 5504923 N/A 5509130 N/A	N/A April 1996 N/A April 1996 N/A July 1996	N/A Ando N/A Trauben et al. N/A
N/A 5504923 N/A 5509130 N/A 5535329	N/A April 1996 N/A April 1996 N/A July 1996 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 July 1996	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al.
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A July 1996 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A July 1996 N/A September 1996	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al.
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A September 1996	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al.
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A 5566298	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A Cotober 1996	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A Boggs et al.
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A Cotober 1996 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A Boggs et al. N/A
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A 5566298 N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A Cotober 1996 N/A February 1997	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A Boggs et al. N/A Brown et al.
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A Cotober 1996 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A Boggs et al. N/A
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A 5566298 N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A Cotober 1996 N/A February 1997	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A Boggs et al. N/A Brown et al.
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A 5566298 N/A 5600806 N/A	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A Cotober 1996 N/A February 1997 N/A	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A Boggs et al. N/A Brown et al.
N/A 5504923 N/A 5509130 N/A 5535329 N/A 5537629 N/A 5553301 N/A 5559975 N/A 5560028 N/A 5600806 N/A 5619666	N/A April 1996 N/A April 1996 N/A July 1996 N/A July 1996 N/A September 1996 N/A September 1996 N/A September 1996 N/A Cotober 1996 N/A February 1997 N/A April 1997	N/A Ando N/A Trauben et al. N/A Hastings N/A Brown et al. N/A New et al. N/A Christie et al N/A Sachs et al. N/A Boggs et al. N/A Brown et al. N/A Christie et al

N/A	N/A	N/A
5625787	April 1997	Mahin et al.
N/A	N/A	N/A
5630083	May 1997	Carbine et al.
N/A	N/A	N/A
5636374	June 1997	Rodgers et al.
N/A 5655097	N/A August 1997	N/A Witt et al.
N/A	N/A	N/A
5664134	September 1997	Gallup et al.
N/A	N/A	N/A
5689672	November 1997	Witt et al.
N/A	N/A	N/A
5694348	December 1997	Guttag et al.
N/A	N/A	N/A
5694587 N/A	December 1997	Webb et al. N/A
5696955	N/A December 1997	Goddard et al.
N/A	N/A	N/A
5713035	January 1998	Farrell, et al
N/A	N/A	N/A
5740413	April 1998	Alpert et al.
N/A	N/A	N/A
5742794	April 1998	Potter
N/A 5752259	<u>N/A</u> May 1998	N/A
N/A	N/A	Tran N/A
5764884	June 1998	Van Fleet
N/A	N/A	N/A
5790843	August 1998	Borkenhagen et al.
N/A	N/A	N/A
5790860	August 1998	Wetmore et al.
N/A 5794063	N/A	N/A
N/A	August 1998 N/A	$\frac{\mathtt{Favor}}{\mathrm{N/A}}$
5796972	August 1998	Johnson et al.
N/A	N/A	N/A
5796973	August 1998	Witt et al.
N/A	N/A	N/A
5796974	August 1998	Goddard et al.
712/211	<u>N/A</u>	N/A
5799144 N/A	August 1998 N/A	Mio N/A
5829012	October 1998	Marlan et al.
711/102	N/A	N/A
5845102	December 1998	Miller et al.

N/A	N/A	N/A
5872946	February 1999	Narayan et al.
712/204	N/A	N/A
5884058	March 1999	Narayan et al.
N/A	N/A	N/A
5901225	May 1999	Ireton et al.
714/7	<u>N/A</u>	N/A
5920710	July 1999	<u>Tran</u> et al
N/A	N/A	N/A
5933629	August 1999	Mahalingaiah, et al
N/A	N/A	N/A
5983337	November 1999	Mahalingaiah et al.
712/32	N/A	N/A
6009513	December 1999	Mahalingaiah, et al.
N/A	N/A	N/A
6141740	October 2000	Mahalingaiah et al.
711/215	N/A	N/A
6158018	December 2000	Bernasconi et al.
714/8	N/A	·N/A
6161172 ,	December 2000	Narayan et al.
N/A	N/A	N/A
6192468	February 2001	Mahalingaiah, et al.
N/A	N/A	N/A

FOREIGN-PAT-NO US-CL	FOREIGN PATENT PUBN-DATE	DOCUMENTS COUNTRY
259095	March 1988	EP
381471	August 1990	EP
03079031	April 1991	EP
640 916	March 1995	EP
0651320	May 1995	EP
2227584	August 1990	GB
459232	December 1991	GB
2263985	August 1993	GB
2263987	August 1993	GB
2281422	March 1995	GB

OTHER PUBLICATIONS

XP 000552115, "Breakpoints in Masked Microcontrollers To Fix Latent Software Defects", Michael Wilinson, Motorola Technical Developments, Nov. 1995, 1 page.

Mike Johnson, "Superscalar Microprocessor Design", AMD, Jan. 24, 1994, pp. 71-75.

Intel, "Pentuim Processor User's Manual", vol. 3, Architecture and Programming Manual, 1993, 7 pages.

Intel, "Pentium Processor Family User's Manual", vol. 1, Pentium Processor Family Data Book, 1994, 6 pages.

Michael Slater, "AMD's K5 Designed to Outrun Pentium", Microprocessor Report, Oct. 24, 1994, MicroDesign Resources, 7 pages.

Sebastian Rupley and John Clyman, "P6: The Next Step!", Pc Magazine, Sep. 12, 1995, 16 pages.

Tom R. Halfhill, "AMD K6 Takes On Intell P6", BYTE, Jan. 1996, 4 pages.

IBM Technical Disclosure Bulletin Entitled, "On-Site ROS Patch Mechanism", vol. 30, No. 5, Oct. 1987, New York, USA, pp. 158-160.

Scherpenberg, F.A., et al., Electronics De 1984 A 1985: Electronics Wee, "Asynchronous Circuits Accelerate Access to 256-K Read-Only Memory", pp. 141-145.

ART-UNIT: 2187

PRIMARY-EXAMINER: Gossage; Glenn

ATTY-AGENT-FIRM: Conley, Rose & Tayon, PC Kowert; Robert C.

ABSTRACT:

Random access memory (RAM) may be provided in a processor for implementing $% \left(1\right) =\left(1\right) +\left(1\right)$

microcode patches. The patch RAM may loaded by a microcode routine that is

part of the normal microcode contained in a microcode read only memory (ROM)

unit of the processor. When the processor powers-up, it uses its internal **ROM**

microcode only if no **patches** are installed. If patches are installed and a

microcode line is accessed for which a patch is enabled, the patch is executed

instead of the microcode line. A patch may be enabled by setting a match

register with the address of the microcode instruction line in the microcode

ROM that is to be patched. Whenever the microcode ROM address matches the

contents of a match register, control is transferred to the patch RAM. The

patch RAM may have a plurality of fixed entry points each corresponding to a different match register.

38 Claims, 6 Drawing figures

Exemplary Claim Number: 1

Number of Drawing Sheets: 6

		KWIC					_
--	--	------	--	--	--	--	---

Abstract Text - ABTX (1):

Random access memory (RAM) may be provided in a processor for implementing $% \left(1\right) =\left(1\right) +\left(1\right)$

microcode patches. The patch RAM may loaded by a microcode routine that is

part of the normal microcode contained in a microcode read only memory (ROM)

unit of the processor. When the processor powers-up, it uses its internal ROM

microcode only if no patches are installed. If patches are

installed and a microcode line is accessed for which a patch is enabled, the patch is executed instead of the microcode line. A patch may be enabled by

setting a match

register with the address of the microcode instruction line in the microcode

ROM that is to be patched. Whenever the microcode ROM address matches the

contents of a match register, control is transferred to the patch RAM. The

patch RAM may have a plurality of fixed entry points each corresponding to a different match register.

Brief Summary Text - BSTX (17):

Another problem with fetching microcode patches from external memory, or

even from internal caches, is performance. In many conventional processors,

the width of data returned by memory or cache accesses is smaller than the

width of microcode instructions fetched from the microcode ROM of the

processor. Thus, if a microcode patch is fetched from external memory or from

a cache, multiple memory accesses will be required to load a patched microcode

instruction, as compared to a single wide fetch from the processor's microcode

 ${\bf \underline{ROM}}$. Furthermore, the latency for memory accesses is typically much longer

than for fetches from the internal microcode ROM. Thus, microcode patches

fetched from external memory or cache typically have an adverse effect on

processor performance since fetching such a patch typically requires more and slower accesses.

Brief Summary Text - BSTX (19):

Another problem with conventional microcode patch mechanisms concerns triggering the patch. One technique has been to provide a tag memory in the

processor having one bit for every location in the microcode $\ensuremath{\mathsf{ROM}}\xspace$. If a

particular microcode $\underline{\mathtt{ROM}}$ location is to be $\underline{\mathtt{patched}},$ then the corresponding bit

is set in the tag memory. However, for typical microcode ROM sizes, this

technique may require thousands of bits of tag memory.

Additionally, timing

may be complicated to access all the bits of the tag memory for each microcode

ROM fetch in order to check if a patch is enabled.

Brief Summary Text - BSTX (22):

An amount of random access memory (RAM) may be provided in a processor for

implementing microcode patches. The **patch** RAM may loaded by a microcode

routine that is part of the normal microcode contained in a microcode $\ensuremath{\mathbf{ROM}}$ unit

of the processor. When the processor powers-up it uses its internal **ROM**

microcode only if no <u>patches</u> are installed. However, if patches are installed

and if a microcode line is accessed for which a patch is enabled, the patch is

executed instead of the microcode line.

Brief Summary Text - BSTX (23):

A patch may be enabled by setting a match register with
the address of the

microcode instruction line in the microcode ROM that is to be patched. A

processor may include several such match registers. Whenever the microcode ROM

address matches the contents of one of the match registers, control is

transferred to the patch RAM. The patch RAM may have a plurality of fixed

entry points each corresponding to one of the match registers. Thus, when an

MROM address matches a match register, control is passed to the patch RAM at

the fixed entry point corresponding to the matching match register. To disable

a match register, its contents may be written with a value

that will never match any ROM address, e.g. -1.

Brief Summary Text - BSTX (24):

Whenever a match is detected between an MROM address and a match register,

the microcode instruction line from the $\underline{\mathtt{ROM}}$ is disabled and control is

transferred to the appropriate entry point in the patch RAM.
In some

embodiments, a delay slot may also be issued from the ${\hbox{\tt ROM}}$ while control is

being transferred to the fixed entry point in the patch ROM. Thus, there may

be a two cycle bubble in the MROM unit pipeline whenever control is transferred

from the microcode **ROM to the patch** RAM since both the matching address line

and the delay slot line from the $\underline{\mathtt{ROM}}$ are cancelled. In a preferred embodiment,

the <u>patch</u> RAM is a contiguously addressed extension of the microcode ROM.

Therefore, regular microcode jump or branch instructions may be used when

exiting a patch routine to return to the ROM. Thus, when exiting a patch

routine there is no need to cancel any instructions and patch routines may be

exited and MROM operation resumed with no delay.

Detailed Description Text - DETX (33):

Turning now to FIG. 3, a more detailed illustration is provided of a portion

of MROM unit 34 that illustrates a mechanism for implementing patches to the

microcode. MROM storage 64 may include a read only memory (ROM) portion 64a

and a patch RAM portion 64b. The ROM portion 64a is where
microcode

instruction lines are typically accessed. In a preferred embodiment, ${\bf ROM}$ 64a

holds up to 3K microcode lines or triads and patch RAM 64b stores up to 64

triads. In a preferred embodiment, patch RAM 64b exists in the same address

space as \underline{ROM} 64a and is addressed contiguously with \underline{ROM} 64a. For example, in

the embodiment in which the size of $\underline{{\tt ROM}}$ 64a is 3072 (3K) lines and the size of

patch RAM 64b is 64 lines, the microcode address range for ROM 64a would be

0x000 to 0xBFF and the address range for **patch** RAM 64b would be 0xC00 to 0xC3F.

A line from **ROM** 64a or **patch** RAM 64b is selected according to an address from

next address register 94. The selected line is provided to output register 80.

In a preferred embodiment, each line or triad includes 3 microcode instructions

OP1, OP2 and OP3, and a sequence control field. The sequence control field may

include a branch target address and a control portion. The control portion may

include information to determine whether or not the branch should be taken.

The microcode instructions OP1 through OP3 are output to MROM early decode 66.

Detailed Description Text - DETX (35):

The address from next address register 94 is also supplied to a comparator

84. Comparator 84 compares the address to values stored in a number of match

registers 88. In one embodiment, match registers 88 include eight match

registers where each match register stores 12 bits corresponding to a location

in the 12 bit address space of MROM storage 64. Values are programmed into the

match registers as described below. If the address from next address register

94 matches one of match registers 88, then a patch from patch RAM 64b will be

implemented. When an address from next address register 94 matches the address

stored in one of match registers 88, comparator 84 selects a corresponding

patch \underline{RAM} address from \underline{look} up table 90. The selected address in look up table

90 is supplied to MUX 86. In a preferred embodiment, the addresses in look up

table 90 are hard wired to correspond to particular ones of match registers 88.

An example of look up table values for particular match registers for one embodiment is as follows:

Detailed Description Text - DETX (37):

Thus, when the next MROM storage address matches one of match registers 88,

the MROM access sequence jumps to the address indicated by look up table 90.

The microcode line that was fetched from $\underline{\mathbf{ROM}}$ 64a into output register 80 is

cancelled and a **patch from patch RAM** 64b is executed instead starting from the

address indicated by look up table 90. Any delayed branch effects from jumping

to the patch RAM are also cancelled. For example, in embodiments where

branches are delayed by one cycle, both the line from **ROM** 64a that triggered

the patch and the next line (the branch delay slot) are cancelled. Thus, in

such an embodiment, whenever MROM unit 34 switches to a microcode patch in

patch RAM 64b a two-cycle bubble in the MROM pipeline will be incurred.

Detailed Description Text - DETX (39):

In a preferred embodiment, the patch $\underline{\textbf{RAM}}$ locations indicated by $\underline{\textbf{look up}}$

table 90 form a vector table that points to a location in the rest of patch RAM

64b where the rest of the patch routine is located. In the example described

above for look up table 90, the vector table entry points are located at every

other address (e.g. offsets 00, 02, 04. . .) to allow for branch delay slots

at the intervening addresses (e.g. offsets 01, 03, 05. ..)

Detailed Description Text - DETX (40):

Once control is transferred to $\underline{\mathtt{patch}}$ RAM 64b execution continues from $\underline{\mathtt{patch}}$

RAM 64b until a **patch** line jumps back into the **ROM**. In a preferred embodiment,

in which the patch RAM exists as part of the MROM address
space, a jump from

the $\underline{\text{patch}}$ RAM 64b to $\underline{\text{ROM}}$ 64a may be treated as any other microcode jump or

branch. Thus, while there may be a two cycle bubble when entering the **patch**

RAM 64b as described above, there is no delay when jumping back to **ROM** 64a from

patch RAM 64b. There is no delay when jumping back to ROM
64a because there is

no need to cancel a $\underline{\mathtt{patched}}$ microcode line or branch delay slot. The \mathtt{patch}

routine simply includes a normal microcode jump with a **ROM** target address.

Detailed Description Text - DETX (41):

Thus, using the mechanism described above in FIG. 3, any microcode line of

ROM 64a may be **patched** by a routine loaded in **patch** RAM 64b. To invoke a

patch, one of match registers 88 is programmed with the address corresponding

to the line of MROM 64a desired to be patched. Note that the sizes and address

ranges of $\underline{{\tt ROM}}$ 64a and $\underline{{\tt patch}}$ RAM 64b described above were merely examples for

certain embodiments, other sizes may be employed as desired. Similarly, the

number of match registers may be varied. Additionally, instead of being hard

wired, in some embodiments look up table 90 may be programmable. Also note

that sequencer 92, MUX 86, incrementer 82, look up table 90, match registers 88

and comparator 84 may all be considered to be part of sequence controller 65 from FIG. 2.

Detailed Description Text - DETX (48):

The header may also include a flag to indicate that a particular patch

should be executed immediately after the patch RAM is loaded. In the example

above, an init flag is included for this purpose. When this flag is set it

causes a jump to a particular patch RAM location immediately after patch RAM

64b is loaded. This feature allows the patch RAM to contain a microcode

routine that is run immediately after the patch is loaded and before normal

processor operation resumes. Such a patch routine that is executed immediately

after loading the patch RAM may be useful for fixing or changing internal

processor values that are not associated with microcode $\underline{\mathtt{ROM}}$ routines and

therefore cannot be patched by setting one of match registers
88 to correspond

to a line in **ROM** 64a. For example, it may be necessary to change an internal

processor configuration register to disable a hardware optimization that has

been determined to be faulty. A microcode patch may be loaded into patch RAM

64b to appropriately change the internal configuration register. That patch

may be placed at the init entry point which is jumped to after the patch RAM is

loaded when the init flag is set. Typically this type of patch only needs to

be run once, such as during a power-up software routine. When such a patch is

loaded and the init flag is set, the microcode patch RAM loader will notice

that the init flag is set and jump to the init entry point and the patch will

be executed. Note that this mechanism provides a second way to enter patch RAM

64b in addition to using match registers 88. In a preferred embodiment, the

init entry point in patch RAM 64b is a fixed location. This mechanism may be

used to fix other processor bugs in addition to bugs in the microcode itself.

Detailed Description Text - DETX (50):

The header also includes values for the match registers 88. The match

register values may indicate an address value for each match

register which is

to trigger a patch. The address value to be loaded in a particular match

register corresponds to the address of a line or triad in ROM 64a. As

described, if **ROM** 64a is accessed at an address matching an address loaded in

one of the match registers, then a $\underline{\mathtt{patch}}$ is executed from \mathtt{patch} RAM 64b instead

of the accessed \underline{ROM} line and/or delayed branch slot from the ROM. In a

preferred embodiment, each match register indicates a fixed entry point into

patch RAM 64b as described above. A match register and its corresponding patch

may be disabled by setting the value in the microcode patch block header for

that match register with a value that will not match any MROM address. In a

preferred embodiment, a match register is disabled by setting it to -1 (e.g. 0xFFF).

Detailed Description Text - DETX (55):

Turning now to FIG. 4, a diagram is provided illustrating a method of

operation for microcode patching. One or more patches are loaded into a patch

RAM, such as patch RAM 64b of FIG. 3, as indicated at 100. In one embodiment,

the one or more microcode patches may be stored in the system memory of ${\bf a}$

computer system. A microcode <u>patch</u> loader stored in microcode **ROM** 64a (FIG. 3)

may be called to load the microcode patch data from the system memory into the

microcode patch RAM. Also, as indicated at 100, values are set for match

registers. These values may also be read from system memory, such as in the

microcode patch header described above. An MROM routine may begin (102).

During the execution of MROM routines, MROM addresses are generated in the

microcode unit to access microcode instruction lines in the microcode memory

(104). As each MROM address is generated, the address is compared to the match

registers, as indicated at 106. If no match is detected (at 108), the

addressed microcode line is dispatched from the microcode memory (e.g. ROM 64a)

to be decoded and executed and normal operation continues, as indicated at 118.

However, if a match is detected (at 108), the microcode unit jumps to a patch

RAM location corresponding to the matching match register, as indicated at 110.

Any MROM line and delayed branch slots that were dispatched from the microcode

ROM when the address that triggered the match was generated are cancelled, as

indicated at 112. Thus, instead of executing the microcode instruction line

indicated by the address that matched one of the match registers, a patch is

executed from the patch RAM, as indicated at 114. Upon the completion of the

patch, the patch routine jumps back to the microcode ROM, as indicated at 116.

Typically the $\underline{\text{patch}}$ will jump back to the next $\underline{\text{ROM}}$ address that would have been

accessed from the microcode $\underline{\mathtt{ROM}}$ before the $\underline{\mathtt{patch}}$ was initiated. Note that the

diagram of FIG. 4 is merely illustrative of the logical operation of a

microcode patching method according to one embodiment. FIG. 4 is not meant to

necessarily imply a specific pipeline sequence of operations.

Detailed Description Text - DETX (56):

Turning now to FIG. 5, a diagram is provided illustrating a method for

loading microcode patches. First, any desired microcode patches are written

and assembled (into a microcode patch block (MPB) for example) as indicated at

120. Typically, such patches are written and assembled by a processor

manufacturer. However, in some embodiments users may be able to write and

assemble their own patches. Typically a microcode patch is written and

assembled like other microcode routines. However, the microcode patches may be

formatted in a particular format, such as described above in which the patches

are located in a microcode patch block having a header and a patch data

portion. Typically system software, such as an operating system or BIOS,

stores the microcode patch block in system memory, as indicated at 122. In

some embodiments, the patch block may be made accessible only in certain

processor mode(s) and/or current privilege level(s) (CPL).

patches may then be loaded into the patch RAM. This may be accomplished by

calling a microcode patch RAM loader, as indicated at 124. In a preferred

embodiment, the patch RAM loader is a microcode routine stored in the microcode

ROM. In a preferred embodiment, the patch RAM loader function is called via a

write to a model specific register with another register pointing to the

microcode patch block in system memory. The MSR used to invoke the patch RAM

loader (PRL) may be referred to as MSR PRL, and the register used to point to

the location of the patch block in memory may be referred to as the pointer

register. Thus, to load a microcode patch block, the linear address of the

start of the microcode patch block in system memory is loaded in the pointer

register and a write model specific register (WRMSR) instruction to MSR PRL is

executed, as also indicated at 124. The patch RAM loader then installs the

patch data as indicated at 126. In one embodiment, paging and segmentation are

arranged such that the patch RAM loader does not encounter any page faults or

segmentation faults while accessing the microcode patch block in system memory.

This allows the microcode patch loader routine to be simplified. If the patch

data is successfully installed, a processor register may be updated with a

patch ID from the microcode patch block header to indicate the successful

installation, as also indicated at 126. In a preferred embodiment, this

register is MSR 8Bh. The microcode patch RAM loader then checks to see if the

init flag from the microcode patch block header is set, as indicated at 128.

If the flag is not set, then the patch installation is complete and normal

processor operation resumes, as indicate at 132. If the init flag is set, then

an init patch is executed, as indicated at 130. For example, if the patch RAM

loader determines that the init flag is set, it jumps to a fixed location, e.g.

0xC10, which locates the beginning of the initialization patch. As mentioned

above, executing such an initialization patch may be desirable if it is

necessary to fix or change something in the processor that is not associated

with a $\underline{\mathtt{ROM}}$ microcode routine, and therefore a normal $\underline{\mathtt{patch}}$ using the match

registers cannot be triggered. For example, if one of the internal

configuration registers of the processor needs to be changed in order to

disable a faulty hardware optimization, an initialization patch may be executed

to implement that change.

Detailed Description Text - DETX (57):

Typically the loading of the patch data into the patch RAM is performed by

the system software or BIOS during initialization of the processor, e.g. after

power-up or reset. However, in some embodiments, a software application may

load a <u>patch into the patch</u> RAM and use the <u>patch</u> to redefine certain lines of

microcode instructions in the microcode \underline{ROM} . For example, an application could

use a patch to redefine a microcoded instruction by setting a match register to

the address that indicates the beginning of the microcode routine to implement

the microcoded instruction that is intended to be redefined. The application

can then provide its own microcode as a patch to change the definition of the

instruction. However, in typical embodiments, the microcode patch block ID's

are not made available to application users and the microcode patch block data

is encrypted so that the use of microcode patches may be controlled.

Current US Cross Reference Classification - CCXR (1): 711/102

Current US Cross Reference Classification - CCXR (3): 711/202

US-PAT-NO:

5790856

DOCUMENT-IDENTIFIER: US 5790856 A

TITLE:

Methods, apparatus, and data

structures for data driven

computer patches and static analysis of

same

DATE-ISSUED:

August 4, 1998

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE COUNTRY

Lillich; Alan W.

Los Gatos

CA

N/A N/A

ASSIGNEE INFORMATION:

NAME

CITY

STATE

ZIP CODE COUNTRY TYPE CODE

Apple Computer, Inc. Cupertino

CA

N/A 02

APPL-NO:

08/ 436945

DATE FILED: May 8, 1995

INT-CL:

[06] G06F009/45

US-CL-ISSUED:

395/703, 395/712

US-CL-CURRENT:

717/163, **717/168**

FIELD-OF-SEARCH:

395/700; 395/650 ; 395/705 ; 395/710 ;

395/712 ; 395/653

; 395/703

REF-CITED:

U.S. PATENT DOCUMENTS

PAT-NO

ISSUE-DATE

PATENTEE-NAME

US-CL

5155847

October 1992

Kirouac et al.

05/27/2004, EAST Version: 1.4.1

395/600	N/A	N/A
5325533	June 1994	McInerney et al.
395/700	N/A	N/A
5359730	October 1994	Marron
395/650	N/A	N/A
5369766	November 1994	Nakano et al.
395/700	N/A	N/A
<u>5369770</u>	November 1994	Thomason et al.
395/725	N/A	N/A
5375241	December 1994	Walsh
395/700	N/A	N/A
<u>5408665</u>	April 1995	Fitzgerald
395/700	N/A	N/A
5481713	January 1996	Wetmore et al.
395/705	N/A	N/A
<u>5519866</u>	May 1996	Lawrence et al.
395/700	N/A	N/A

OTHER PUBLICATIONS

Thompson et al., "Apple, IBM Bring Power To the Desktop," Byte Magazine, Apr. 1994, p. 44, vol. 19, No. 4.

Thelen, Randy, "Under the Hood: the Power Mac's Run-Time Architecture,"
Byte Magazine, Apr. 1994, p. 131, vol. 19, No. 4.

Apple Computer Inc., "Insided Macintosh: PowerPC System Software,"
Addison-Wesley Publishing Co, pp. 1-20--1-34 and pp. 1-66--1-68, 1994.

"Inside Macintosh: PowerPC System Software," Apple Computer, Inc., 1994, Addison-Wesley Publishing Company.

ART-UNIT:

236

PRIMARY-EXAMINER:

Kriess; Kevin A.

ASSISTANT-EXAMINER:

Corcoran, III; Peter J.

ATTY-AGENT-FIRM:

Hickman Beyer & Weaver, LLP

ABSTRACT:

The present invention teaches a variety of methods, apparatus and data structures for providing data driven patching. According to one embodiment, patches are stored in a known format in a discernible location. In the

described embodiment, each fragment code may have a corresponding patch

library. This enables the patches to be located and analyzed in a quiescent

state. In a method aspect of the present invention, the operating system, or a

separate utility program, can evaluate and selectively add patches. Therefore,

the present invention introduces a patch integrity validation layer into the

patching process. In another method aspect, the invention teaches evaluating

the patches in a quiescent state whereby the patches introduced by a program or

a combination of programs may be exhaustively evaluated prior to execution.

41 Claims, 14 Drawing figures

Exemplary Claim Number: 1

Number of Drawing Sheets: 10

]	KWIC
---	------

Brief Summary Text - BSTX (9):

The system routines for the 68K operating system reside mainly in ROM.

However, to provide flexibility for any subsequent development, application

code written for execution within the 68K operating system must be kept free of

any specific ROM addresses. For this reason, all calls to system routines are

passed indirectly through a trap table resident in RAM. This indirect

mechanism permits the $\underline{\mathtt{ROM}}$ addressing of system routines to vary, or to be

replaced by patch routines, without affecting the operation
of applications

which utilize the system routines.

Brief Summary Text - BSTX (10):

The 68K $\underline{patching}$ paradigm 100 includes application code 102 having at least

one ATRAP instruction 104, low memory locations 106, a trap dispatcher 108, a

trap table 110, $\underline{\text{ROM}}$ 120 having system code 122, and RAM 130 including at least

one patch code 132. While the operating system routines reside mainly in ROM

120 (in their original state), information regarding the locations of the

operating system routines is encoded in compressed form within ROM 120. Upon

system start up, this information is decompressed and the trap table 110 is $\,$

formed in RAM 130.

Brief Summary Text - BSTX (16):

One example of a redirection to a patched system routine is symbolized in

FIG. 2 by dashed flow control lines 150 and 152. Similar to the non-patched

system routine described previously, an ATRAP instruction 104 calling a patched

system routine will initiate a process in which the trap dispatcher 108 will

look up the system routine corresponding to the ATRAP
instruction 104.

However, in the patched case, address.sub.-- 1 will point to patch code 132

located in RAM 130 rather than the original system routine. Thus dashed flow

control line 150 illustrates jumping to the patch code 132 and dashed flow

control line 152 illustrates jumping back to the application code 102 after the $\,$

patch code 132 has finished executing.

Current US Cross Reference Classification - CCXR (1): 717/168