Class 2 – What is Econometrics?

Pedram Jahangiry

What is econometrics?

Econometrics is the branch of economics that:

develops and uses **statistical methods** for **estimating** economic **relationships**

Typical goals of econometric analysis

- Estimating relationships between economic variables
- ☐ Testing economic theories and hypotheses
- ☐ Forecasting economic variables

Steps in econometric analysis

- 1) Specifying the models (Economic vs Econometric models)
- 2) Collecting the data needed to quantify the models
- 3) Quantfiying the models with the data
- ☐ Economic models (mostly skipped!)
 - Often use optimizing behaviour, equilibrium modeling, ...
 - Establish relationships between economic variables
- Econometric models
 - Quantify / Test relationships between economic variables
 - Attempt to quantitatively bridge gap between economic theory and the real world.

Different kinds of economic data sets

Econometric analysis requires data

- ☐ Cross-sectional data
- ☐ Time series data
- ☐ Panel/Longitudinal data
- ☐ Pooled cross sections

Cross-sectional data sets

- Sample of individuals, households, firms, cities, states, countries, or other units of interest at a given point of time/in a given period
- Cross-sectional observations are more or less independent
- For example, pure random sampling from a population

A Key feature: Ordeding of the data does NOT matter!

Cross-sectional data set on wages and other characteristics

	TABLE 1.1	A Cross-Sectional	Data Set on W	ages and Other	ndividual Charac	teristics
	obsno	wage	educ	exper	female	married
	1	3.10	11	2	1	0
	2	3.24	12	22	1	1
	3	3.00	11	2	0	0
	4	6.00	8	44	0	1
	5	5.30	12	7	0	1
						<i></i>
	525	11.56	16	5	0	1
	526	3.50	14	5	1	0
Ī						
	· ·	\				
				`		Voors of
	0	bservation numbe	er F	lourly wage	Years of	Years of experience

Pedram Jahangiry

experience

education

Time series data

- Observations of a variable or several variables over time
- For example, stock prices, consumer price index, gross domestic product, automobile sales, ...
- Time series observations are typically serially correlated
- Data frequency: daily, weekly, monthly, quarterly, annually, ...
- Typical features of time series: trends and seasonality

• A Key feature: Ordeding of the data DOES matter! Past events can influence future events!

Time series data on minimum wages and related variables

ABLE 1.3	Minimum Wage, U	nemployment, ar	d Related Data	for Puerto Rico	
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
			1.	. 1	\(\) .
				. \	
	./		/		
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7
erage min		Average coverage rate		Unemploy rate	ment

US data, minimum wage vs unemployment!

Panel or longitudinal data

- The same cross-sectional units are followed over time
- Panel data have a cross-sectional and a time series dimension
- Ordering in the cross section of a panel data does not matter

Two-year panel data on city crime statistics

TA	BLE 1.5	A Two-Year Pa	anel Data Set	on City Crime	Statistics			
(obsno	city	year	murders	population	unem	police	Each city has two time
	1	1	1986	5	350,000	8.7	440	series observations
	2	1	1990	8	359,200	7.2	471	20.100 0200. 1440
	3	2	1986	2	64,300	5.4	75	
	4	2	1990	1	65,100	5.5	75	Number of
								police in 1986
		•	•					
							· K	
	297	149	1986	10	260,700	9.6	286	Number of
	298	149	1990	6	245,000	9.8	334	police in 1990
	299	150	1986	25	543,000	4.3	520	- L
	300	150	1990	32	546,200	5.2	493	© Cent

Pooled cross sections

- Two or more cross sections are combined in one data set
- Cross sections are drawn independently of each other
- Pooled cross sections often used to evaluate policy changes
- Example: Drop in property taxes in 1994
 - Evaluate effect of change in property taxes on house prices
 - Random sample of house prices for the year 1993
 - A new random sample of house prices for the year 1995
 - Compare before/after (1993: before reform, 1995: after reform)

Pooled cross sections on housing prices

Model of job training and worker productivity

- What is effect of additional training on worker productivity?
- Formal economic theory not really needed to derive equation:

• Other factors may be relevant, but these are the most important

Econometric model of job training and worker productivity

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 training + u \\ \text{Hourly wage} \\ \text{Years of formal education} \\ \text{Years of work-} \\ \text{force experience} \\ \text{Weeks spent in job training} \\ \text{Weeks spent in job training} \\ \text{e.g. innate ability, Quality of education, family background ...} \\ \text{Outlied to the wage} \\ \text{Possible of the wage} \\ \text{Result of the wage} \\ \text{Result of education, family background ...} \\ \text{Result of education ...} \\ \text{Result of education, family ...} \\ \text{Result of edu$$

- ullet Most of econometrics deals with the specification of the error u
- Econometric models may be used for hypothesis testing
 - For example, the parameter β_3 represents "effect of training on wage"
 - How large is this effect? Is it different from zero?

Causality and the notion of ceteris paribus

Definition of causal effect of x on y:

"How does variable y change if variable x is changed but all other relevant factors are held constant"

- ☐ Most economic questions are ceteris paribus questions
- ☐ In reality it will not be possible to literally hold all else equal (Observational vs Experimental data)
- ☐ Econometrics analysis allows us to address ceteris paribus questions.

Correlation VS. Causation

- ☐ Regression results cannot prove causality!
- ☐ For example, if variables Y and X are correlated statistically, then:
 - Y might "cause" X.
 - X might "cause" Y.
 - Some third factor might "cause" both.
 - The relationship might have happened by chance :
 Spurious correlation

Results from regression analyses always should be viewed with some caution!

Could a taller FED chair mean rates rise?

