Network Analysis

Shara He, Adanya Johnson

6/7/2021

Preparing Data

```
# Read in data
load("~/Desktop/School/GatesLab/NetworkAnalysis/FullMatrices.Rdata")

# Preview all data
# View(outReg)
```

Extract Submatrices for each Person

```
submatrix = list()
for (x in 1:length(outReg)) {
   submatrix = append(submatrix, list(outReg[[x]][["regression_matrix"]][1:26,1:26]))
}
# Convert all submatrices into double type
feature_names = c("energetic", "enthusiastic", "content", "irritable", "restless", "worried", "guilty",
subdf = list()
subdf_pos = list()
for (x in 1:length(outReg)) {
   subdf[[x]] = matrix(unlist(submatrix[x]), ncol = 26, byrow = FALSE, dimnames = list(feature_names, fe
   subdf_pos[[x]] = pmax(subdf[[x]], 0)
}
```

Extract Directed Graphs for each Person

```
dir_graph = list()
dir_graph_pos = list()
for(x in 1:length(outReg) ){
 dir_graph[[x]] = graph.adjacency(subdf[[x]], mode = "directed", weighted = TRUE)
 dir_graph_pos[[x]] = graph.adjacency(subdf_pos[[x]], mode = "directed", weighted = TRUE)
}
dir_graph[[19]]
## IGRAPH 989e814 DNW- 26 114 --
## + attr: name (v/c), weight (e/n)
## + edges from 989e814 (vertex names):
## [1] energetic ->enthusiastic energetic
                                              ->down
## [3] energetic ->fatigue energetic
                                              ->tension
## [5] energetic ->ruminate
                                  energetic
                                              ->avoid_act
```

```
## [7] enthusiastic->energetic
                                  enthusiastic->positive
## [9] enthusiastic->tension
                                  enthusiastic->procrast
## [11] content
                   ->irritable
                                  content
                                             ->restless
## [13] content
                   ->worried
                                  content
                                              ->guilty
## [15] content
                   ->angry
                                  content
                                              ->down
## + ... omitted several edges
dir_graph_pos[[19]]
## IGRAPH aee728f DNW- 26 73 --
## + attr: name (v/c), weight (e/n)
## + edges from aee728f (vertex names):
## [1] energetic
                   ->enthusiastic enthusiastic->energetic
## [3] enthusiastic->positive
                                  content
                                              ->positive
##
   [5] irritable ->worried
                                  irritable
                                              ->angry
## [7] irritable
                  ->threatened irritable
                                              ->ruminate
## [9] restless
                   ->worried
                                  restless
                                              ->angry
## [11] restless
                   ->threatened restless
                                              ->avoid_people
## [13] worried
                   ->irritable
                                              ->restless
                                  worried
## [15] worried
                   ->guilty
                                  worried
                                              ->afraid
## + ... omitted several edges
```

Metrics for each Person

```
density = list()
overall_weight = list()
edge_weights = list()
global_efficiency = list()
variable degrees = list()
variable_strengths = list()
betweenness = list()
cluster = list()
for(x in 1:length(outReg)) {
  density[[x]] = edge_density(dir_graph[[x]], loops = FALSE)
  overall_weight[[x]] = sum(strength(dir_graph[[x]]))
  edge_weights[[x]] = edge_attr(dir_graph_pos[[x]], "weight")
  global_efficiency[[x]] = efficiency(dir_graph_pos[[x]],
                                     type = c("global"),
                                     weights = edge_weights[[x]])
  variable_degrees[[x]] = degree(dir_graph[[x]])
  variable_strengths[[x]] = strength(dir_graph[[x]])
  betweenness[[x]] = estimate_betweenness(dir_graph_pos[[x]], cutoff=-1, weights =edge_weights[[x]])
  cluster[[x]] = cluster_walktrap(dir_graph_pos[[x]],
                                  weights = E(dir_graph_pos[[x]])$edge_weights,
                                  steps = 4)
print(paste0("Density of the first person's graph: ", round(density[[1]], 4)))
```

```
print(paste0("Overall Weight of the first person's graph: ", round(overall_weight[[1]], 4)))
## [1] "Overall Weight of the first person's graph: 10.6119"
print(paste0("Global Efficiency of the first person's graph: ", round(global_efficiency[[1]], 4)))
## [1] "Global Efficiency of the first person's graph: 12.5183"
print("Degree of each variable in the first person's graph: ")
## [1] "Degree of each variable in the first person's graph: "
print(variable_degrees[[1]])
##
      energetic enthusiastic
                                   content
                                              irritable
                                                             restless
                                                                           worried
##
                                         3
                                                       8
##
                      afraid
                                 anhedonia
                                                             hopeless
                                                                               down
         guilty
                                                   angry
##
                                        12
                                                                   11
                                                                                  8
              1
##
       positive
                     fatigue
                                   tension
                                                             accepted
                                                                         threatened
                                            concentrate
##
              7
                                         7
                                                       3
                                                                    1
##
       ruminate
                   avoid act
                                  reassure
                                               procrast
                                                                hours
                                                                         difficult
##
             13
                                                       2
##
      unsatisfy avoid_people
##
              1
print("Strengths of each variable in the first person's graph: ")
## [1] "Strengths of each variable in the first person's graph: "
print(variable_strengths[[1]])
##
      energetic enthusiastic
                                   content
                                              irritable
                                                             restless
                                                                           worried
##
     0.76229416
                  0.96384765
                                0.47966325
                                             0.83037658
                                                           0.57779129
                                                                        1.20858363
                      afraid
                                                                               down
##
         guilty
                                 anhedonia
                                                  angry
                                                             hopeless
     0.02643344 -0.01065439
                                                                        0.74160674
##
                                0.82426251
                                             0.99845363
                                                           0.89364307
##
       positive
                     fatigue
                                   tension
                                            concentrate
                                                             accepted
                                                                        threatened
##
     0.95930381
                  0.00000000
                                0.76755289
                                             0.18317240
                                                           0.14779364
                                                                        0.16860533
##
       ruminate
                   avoid act
                                                                         difficult
                                  reassure
                                               procrast
                                                                hours
##
     0.79906030
                  0.47042696
                                0.04843503
                                           -0.06829517 -1.55552557
                                                                       -0.56623424
##
      unsatisfy avoid_people
                  0.75406944
##
     0.20728066
print("Betweenness Centrality of each variable in the first person's graph: ")
## [1] "Betweenness Centrality of each variable in the first person's graph: "
print(betweenness[[1]])
##
      energetic enthusiastic
                                              irritable
                                   content
                                                             restless
                                                                           worried
##
                                         0
                                                     40
                                                                                  0
##
                      afraid
                                 anhedonia
                                                             hopeless
                                                                               down
         guilty
                                                  angry
##
                                                                                 37
              0
                           10
                                        49
                                                     26
                                                                   85
##
       positive
                     fatigue
                                   tension
                                                             accepted
                                                                        threatened
                                            concentrate
##
             46
                            0
                                         2
                                                                    0
##
       ruminate
                                  reassure
                                                                         difficult
                   avoid_act
                                               procrast
                                                                hours
##
            111
                                         0
                                                                    0
                                                                                 0
##
      unsatisfy avoid_people
##
              0
```

```
print("Clustering Walktrap of each variable in the first person's graph: ")
## [1] "Clustering Walktrap of each variable in the first person's graph: "
print(cluster[[1]])
## IGRAPH clustering walktrap, groups: 11, mod: 0.27
## + groups:
     $`1`
##
     [1] "concentrate" "difficult"
##
##
     $`2`
##
##
     [1] "angry"
                        "down"
                                        "ruminate"
                                                       "avoid act"
                                                                       "avoid people"
##
##
     $`3`
##
     [1] "content" "positive" "accepted"
##
##
     $`4`
##
     + ... omitted several groups/vertices
```

Computing Metric Summary Statistics

```
density_mean = mean(unlist(density))
density_sd = sd(unlist(density))
density_range = range(unlist(density))
overall weight mean = mean(unlist(overall weight))
overall_weight_sd = sd(unlist(overall_weight))
overall_weight_range = range(unlist(overall_weight))
global_efficiency_mean = mean(unlist(global_efficiency))
global efficiency sd = sd(unlist(global efficiency))
global_efficiency_range = range(unlist(global_efficiency))
variable_degrees_mat = do.call(rbind, variable_degrees)
variable_degrees_mean = apply(variable_degrees_mat, 2, mean)
variable_degrees_sd = apply(variable_degrees_mat, 2, sd)
variable_degrees_range = apply(variable_degrees_mat, 2, range)
variable_strengths_mat = do.call(rbind, variable_strengths)
variable_strengths_mean = apply(variable_strengths_mat, 2, mean)
variable_strengths_sd = apply(variable_strengths_mat, 2, sd)
variable_strengths_range = apply(variable_strengths_mat, 2, range)
betweenness_mat = do.call(rbind, betweenness)
betweenness mean = apply(betweenness mat, 2, mean)
betweenness_sd = apply(betweenness_mat, 2, sd)
betweenness_range = apply(betweenness_mat, 2, range)
# store all summary stats in a df, build out table functionalities
net_stat = data.frame("Density" = c(density_mean, density_sd, density_range), "Overall Weight" = c(over
row.names(net_stat) = c("Mean", "Standard Deviation", "Minimum", "Maximum")
```

```
# attr(net_stat, "row.names")
typeof(row.names(net_stat))

## [1] "character"

kt = knitr::kable(x =net_stat, row.names =TRUE, col.names = c("Density", "Overvall Weight", "Global Eff
# net_stat %>%
kt
```

	Density	Overvall Weight	Global Efficiency
Mean	0.1651923	10.90231	24.557177
Standard Deviation	0.0643016	10.72964	33.724137
Minimum	0.0461538	-32.41157	1.450913
Maximum	0.3230769	33.45451	187.580449

```
# kable_styling(kt, latex_options = "striped", full_width = F)
```

Plots and Distribution

Distribution across each network-wide metric using data

```
# Combine in network-wide metrics into a dataframe
network_df = data.frame(
  "Density" = unlist(density),
  "Overall Weight" = unlist(overall_weight),
  "Global Efficiency" = unlist(global_efficiency))
# Violin Plots
density_plot = ggplot(network_df, aes(y = Density, x = "")) +
  geom_violin() +
  stat_summary(fun=mean, geom="point", shape=23, size=2) +
 xlab("Density") +
 ylab("")
efficiency_plot = ggplot(network_df, aes(y = Global.Efficiency, x = "")) +
  geom_violin() +
  stat_summary(fun=mean, geom="point", shape=23, size=2) +
 xlab("Global Efficiency") +
 ylab("")
overall_weight_plot = ggplot(network_df, aes(y = Overall.Weight, x = "")) +
  geom_violin() +
  stat_summary(fun=mean, geom="point", shape=23, size=2) +
 xlab("Overall Weight") +
 ylab("")
grid.arrange(density_plot, efficiency_plot, overall_weight_plot, ncol = 3,
             top=textGrob("Network-Wide Distributions"))
```

Network-Wide Distributions

The above plot illustrates that the density, global efficiency, and overall weight measurements are set at different scales and show different distributions. Density shows a relatively symmetrical distribution, whereas global efficiency shows a right-skewed distribution and overall weight shows a left-skewed distribution.

Plot distributions across each variable-level metric

```
# Variable Degrees Boxplot
ggplot(stack(data.frame(variable_degrees_mat)), aes(x ="" , y = values)) +
  geom_boxplot() +
  facet_wrap(~ ind, ncol = 13) +
  ggtitle("Variable Degrees Distributions") +
  xlab("Variables") +
  ylab("Measurement Value") +
  theme( strip.text = element_text(size = 7))
```

Variable Degrees Distributions


```
# Variable Degrees Violin Plot
ggplot(stack(data.frame(variable_degrees_mat)), aes(x ="" , y = values)) +
    geom_violin() +
    facet_wrap(~ ind, ncol = 13) +
    ggtitle("Variable Degrees Distributions") +
    xlab("Variables") +
    ylab("Measurement Value") +
    theme( strip.text = element_text(size = 7)) +
    stat_summary(fun=mean, geom="point", shape=23, size=1)
```

Variable Degrees Distributions


```
# Variable Strengths Boxplot
ggplot(stack(data.frame(variable_strengths_mat)), aes(x ="" , y = values)) +
  geom_boxplot() +
  facet_wrap(~ ind, ncol = 13) +
  ggtitle("Variable Strengths Distributions") +
  xlab("Variables") +
  ylab("Measurement Value") +
  theme( strip.text = element_text(size = 7))
```

Variable Strengths Distributions


```
# Variable Strengths Violin Plot
ggplot(stack(data.frame(variable_strengths_mat)), aes(x ="" , y = values)) +
    geom_violin() +
    facet_wrap(~ ind, ncol = 13) +
    ggtitle("Variable Strengths Distributions") +
    xlab("Variables") +
    ylab("Measurement Value") +
    # ylim(-5,5) +
    theme( strip.text = element_text(size = 7)) +
    stat_summary(fun=mean, geom="point", shape=23, size=1)
```

Variable Strengths Distributions


```
# Betweenness Boxplot
ggplot(stack(data.frame(betweenness_mat)), aes(x ="" , y = values)) +
  geom_boxplot() +
  facet_wrap(~ ind, ncol = 13) +
  ggtitle("Betweenness Distributions") +
  xlab("Variables") +
  ylab("Measurement Value") +
  theme( strip.text = element_text(size = 7))
```

Betweenness Distributions


```
# Betweenness Violin Plot
ggplot(stack(data.frame(betweenness_mat)), aes(x ="" , y = values)) +
  geom_violin() +
  facet_wrap(~ ind, ncol = 13) +
  ggtitle("Betweenness Distributions") +
  xlab("Variables") +
  ylab("Measurement Value") +
  theme( strip.text = element_text(size = 7)) +
  stat_summary(fun=mean, geom="point", shape=23, size=1)
```

Betweenness Distributions

The above violin plots help to visualize the skewness in some of the variable distributions. Specifically, many of the variables show a right skewed distribution for betweenness. However, these distributions are not visibly apparent when we graph only the average measurement value, such as in the comparison plot below.

Plot the average measurement value for variable-level metrics

```
var_level_df = data.frame(
   variable = feature_names, variable_degrees_mean, variable_strengths_mean, betweenness_mean)
colnames(var_level_df) =
   c("Variable", "Variable Degrees", "Variable Strengths", "Betweenness")
ggplot(data.frame(stack(var_level_df),
   variable = c(feature_names, feature_names, feature_names)),
   aes(x = values, y = variable)) +
   geom_point() +
   geom_line(group = 1, orientation = "y") +
   facet_wrap( ~ ind, scales = "free") +
   ggtitle("Average Comparisons on Variable Level Metrics") +
   ylab("Variables") +
   xlab("Average Measurement Value")
```

Warning in stack.data.frame(var_level_df): non-vector columns will be ignored

Average Comparisons on Variable Level Metrics

