Matt Forbes Math 312 Assignment 1 May 13, 2011

Problem 1 1

Problem 2 2

3 Problem 3

Goal: Prove $\forall a \in \mathbb{R} \ s.t. -1 < a < 1, \forall n \in \mathbb{N} : |a|^n \le \frac{|a|}{n(1-|a|)+|a|}$.

Lemma $\forall x \in \mathbb{R}, n \in \mathbb{N}: 0 \le x \le 1 \Rightarrow x^n \le 1$ 3.1

Proof by induction:

Let $x \in \mathbb{R}$ be such that $0 \le x \le 1$. Define $P(n): x^n \leq 1$.

Basis: $P(1) = x^1 \le 1$, which is trivially true.

Inductive Hypothesis (I.H.): let $k \in \mathbb{N}$ be arbitrary; Assume P(k) is true. $x^k \le 1$ by I.H.

 $xx^k \le x$ by OM. $x^{k+1} \le x$ by def. of powers.

 $x^{k+1} \le 1$ by transitiviy.

P(k+1) is true, thus $P(k) \Rightarrow P(k+1)$.

 $\forall x \in \mathbb{R}, n \in \mathbb{N}, 0 \le x \le 1 \Rightarrow x^n \le 1.$

Lemma $\forall x \in \mathbb{R} \ s.t. \ 0 \le x \le 1 : \ x \le \frac{1}{x}$ 3.2

Let $x \in \mathbb{R}$ be such that $0 \le x \le 1$. $x \le 1$, so $\frac{1}{x} \ge 1$ by 312 Notes 2.2.2(g).

By transitivity, $x \leq \frac{1}{x}$.

3.3 Proof

```
Let n \in \mathbb{N}, a \in \mathbb{R} s.t. -1 < a < 1

Set b = -1 + |a|.

0 < |a| < 1 so -1 < b < 0.

By Bernouilli's inequality, (1+b)^{n+1} \ge 1 + b(n+1).

Substituting b = -1 + |a|: (1+-1+|a|)^{n+1} \ge 1 + (-1+|a|)(n+1).

|a|^{n+1} \ge 1 - n(1-|a|) - 1 + |a|.
```

- 4 Problem 4
- 5 Problem 5
- 6 Problem 6