Capítulo XI

Caminhos Mais Curtos de todos a todos os vértices

Algoritmo de Floyd-Warshall

Problema

Dado um grafo orientado (e pesado), como encontrar um caminho (pesado) mais curto de v para w, sendo v e w dois vértices quaisquer?

Caminho mais curto de 4 para 3

Caminho não pesado: 4, 3 Compr.: 1 Compr. pesado: 5

Caminho pesado: 4, 2, 3 Compr.: 2 Compr. pesado: 3

Observação: os pesos dos arcos podem ser negativos.

Algoritmos "de um para todos"

Quando todos os arcos têm pesos não negativos

Algoritmo de Dijkstra, com:

$$O(|V| \times \log |V| + |A|)$$

- o grafo em vetor de listas de incidências;
- a fila com prioridade adaptável em fila de Fibonacci e vetor.

$$O(|V|^2 \times \log |V| + |V| \times |A|) \sqrt{}$$

Quando algum arco tem peso negativo

Algoritmo de Bellman-Ford, com:

$$O(|V| \times |A|)$$

o grafo em vetor de arcos ou em lista de arcos.

$$O(|V|^2 \times |A|)$$

Observações

Se existe algum caminho de ${\color{red} v}$ para ${\color{red} w}$ e o grafo não tem ciclos de peso negativo, então:

- ullet há um caminho mais curto de v para w que é **simples**;
- ullet se um caminho mais curto de $oldsymbol{v}$ para $oldsymbol{w}$ tem a forma

$$v, \ldots, x, \ldots, w \pmod{x \in V},$$

então

$$v, \ldots, x$$
 e x, \ldots, w

são caminhos mais curtos de v para x e de x para w, respetivamente. O vértice x diz-se um **vértice intermédio** do caminho v, \ldots, x, \ldots, w .

Primeiro Problema a Resolver

Para todos os vértices $oldsymbol{v}$ e $oldsymbol{w}$, descobrir o comprimento dos caminhos mais curtos de $oldsymbol{v}$ para $oldsymbol{w}$

cujos vértices intermédios pertencem a V.

Primeiro Problema que Será Resolvido

Assuma-se que
$$V = \{0, 1, ..., |V| - 1\}$$
.

Para todos os vértices v e w,

descobrir o comprimento dos caminhos mais curtos de $oldsymbol{v}$ para $oldsymbol{w}$ cujos vértices intermédios pertencem a $\{0,1,\ldots,k\}$,

para
$$k=-1,0,1,\ldots,|V|-1$$
: $\mathcal{L}(v,w,k)$.

Resolução do Primeiro Problema

Comprimento dos caminhos mais curtos de v para w cujos vértices intermédios $\in \{0, 1, ..., k\}$, para k = -1, 0, 1, ..., |V| - 1: $\mathcal{L}(v, w, k)$.

- ullet Se k=-1 e v=w, $\mathcal{L}(v,w,k)=0$;
- Se k = -1, $v \neq w$ e $(v, w) \in A$, $\mathcal{L}(v, w, k) = peso(v, w)$;
- Se k = -1, $v \neq w$ e $(v, w) \notin A$, $\mathcal{L}(v, w, k) = +\infty$;
- Se $k \geq 0$,
 - **ou** o caminho não tem o vértice intermédio k e o seu comprimento é $\mathcal{L}(v,w,k-1)$;
 - **ou** o caminho tem o vértice intermédio k e o seu comprimento é $\mathcal{L}(v,k,k-1) + \mathcal{L}(k,w,k-1)$, porque não vale a pena considerar caminhos de v a k ou de k a w com o vértice intermédio k.

$$\mathcal{L}(v, w, k) = \min \left(\mathcal{L}(v, w, k-1), \mathcal{L}(v, k, k-1) + \mathcal{L}(k, w, k-1) \right)$$

Programação Dinâmica da Função \mathcal{L}

$$\mathcal{L}(v, w, k) = \begin{cases} 0 & k = -1 \ e \ v = w \\ \\ \text{peso}(v, w) & k = -1, \ v \neq w \ e \ (v, w) \in A \\ \\ +\infty & k = -1, \ v \neq w \ e \ (v, w) \not\in A \\ \\ \text{min}\left(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k - 1) + \mathcal{L}(k, w, k - 1)\right) & k \geq 0 \end{cases}$$

$\mathcal{L}(v,w,\!-\!1)$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	$+\infty$
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	$+\infty$	7	-4	5	0

$$\mathcal{L}(1,4,0) = \min(\mathcal{L}(1,4,-1), \mathcal{L}(1,0,-1) + \mathcal{L}(0,4,-1))$$

$$\min(+\infty, 7+6)$$

Algoritmo de Floyd-Warshall ($\{0\}$) [1962]

$\mathcal{L}(v,w,-1)$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	$+\infty$
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	$+\infty$	7	-4	5	0

$\mathcal{L}(v,w, extsf{0})$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	13
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	$+\infty$	7	-4	5	0

Algoritmo de Floyd-Warshall $(\{0, 1\})$

$\mathcal{L}(v,w, extsf{0})$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	13
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	$+\infty$	7	-4	5	0

$\mathcal{L}(v,w, extbf{1})$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	13
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	14	7	-4	4	0

Algoritmo de Floyd-Warshall $(\{0, 1, 2\})$

$\mathcal{L}(v,w, extbf{1})$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	13
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	14	7	-4	4	0

$\mathcal{L}(v,w, extsf{2})$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	13
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	14	7	-4	3	0

Algoritmo de Floyd-Warshall $({0, 1, 2, 3})$

$\mathcal{L}(v,w, extsf{2})$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	13
2	$+\infty$	$+\infty$	0	7	$+\infty$
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	14	7	-4	3	0

$\mathcal{L}(v,w,3)$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	-5
2	$+\infty$	$+\infty$	0	7	5
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	14	7	-4	3	0

Algoritmo de Floyd-Warshall $(\{0, 1, 2, 3, 4\})$

$\mathcal{L}(v,w, extsf{3})$	0	1	2	3	4
0	0	$+\infty$	$+\infty$	$+\infty$	6
1	7	0	1	-3	-5
2	$+\infty$	$+\infty$	0	7	5
3	$+\infty$	$+\infty$	$+\infty$	0	-2
4	14	7	-4	3	0

$\mathcal{L}(v,w, extsf{4})$	0	1	2	3	4
0	0	13	2	9	6
1	7	0	<u>-9</u>	-3	-5
2	19	12	0	7	5
3	12	5	-6	0	-2
4	14	7	-4	3	0

Utilização de uma tabela T de $|V| \times |V|$ com um Grafo sem Ciclos de Peso Negativo (1)

Sejam v e w dois vértices quaisquer e k = 0, 1, ..., |V| - 1.

Utilizando uma única tabela, o valor de $\mathcal{L}(v, w, k)$ pode corresponder a:

$$\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k - 1) + \mathcal{L}(k, w, k - 1))$$

$$\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k - 1) + \mathcal{L}(k, w, k))$$

$$\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k) + \mathcal{L}(k, w, k - 1))$$

$$\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k) + \mathcal{L}(k, w, k))$$

Mas:

- $\mathcal{L}(v, k, k) \leq \mathcal{L}(v, k, k-1)$ porque $\mathcal{L}(v, k, k) = \min(\mathcal{L}(v, k, k-1), \dots)$.
- Se $\mathcal{L}(v,k,k) < \mathcal{L}(v,k,k-1)$, há um ciclo de peso negativo de k a k.

Portanto, se o grafo não tiver ciclos de peso negativo:

$$\mathcal{L}(v,k,k) = \mathcal{L}(v,k,k-1)$$
.

Utilização de uma tabela T de $|V| \times |V|$ com um Grafo sem Ciclos de Peso Negativo (2)

Sejam v e w dois vértices quaisquer e k = 0, 1, ..., |V| - 1.

Utilizando uma única tabela, o valor de $\mathcal{L}(v, w, k)$ pode corresponder a:

$$\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k - 1) + \mathcal{L}(k, w, k - 1))$$
 $\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k - 1) + \mathcal{L}(k, w, k))$
 $\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k) + \mathcal{L}(k, w, k - 1))$
 $\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k - 1), \mathcal{L}(v, k, k) + \mathcal{L}(k, w, k))$

Mas:

- $\mathcal{L}(k, w, k) \leq \mathcal{L}(k, w, k-1)$ porque $\mathcal{L}(k, w, k) = \min(\mathcal{L}(k, w, k-1), \ldots)$.
- Se $\mathcal{L}(k, w, k) < \mathcal{L}(k, w, k 1)$, há um ciclo de peso negativo de k a k.

Portanto, se o grafo não tiver ciclos de peso negativo:

$$\mathcal{L}(k, w, k) = \mathcal{L}(k, w, k - 1)$$
.

Utilização de uma tabela T de $|V| \times |V|$ com um Grafo sem Ciclos de Peso Negativo (3)

Sejam v e w dois vértices quaisquer e k = 0, 1, ..., |V| - 1.

Utilizando uma única tabela, o valor de $\mathcal{L}(v, w, k)$ pode corresponder a:

$$\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k-1), \mathcal{L}(v, k, k-1) + \mathcal{L}(k, w, k-1))
\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k-1), \mathcal{L}(v, k, k-1) + \mathcal{L}(k, w, k))
\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k-1), \mathcal{L}(v, k, k) + \mathcal{L}(k, w, k-1))
\mathcal{L}(v, w, k) = \min(\mathcal{L}(v, w, k-1), \mathcal{L}(v, k, k) + \mathcal{L}(k, w, k))$$

Se o grafo não tiver ciclos de peso negativo:

$$\mathcal{L}(v,k,k)=\mathcal{L}(v,k,k-1)\;,\quad \mathcal{L}(k,w,k)=\mathcal{L}(k,w,k-1)$$
 e, no final do passo k , $T[v][w]=\mathcal{L}(v,w,k).$

Se o grafo tiver ciclos de peso negativo, no final do passo k:

$$T[v][w] \leq \mathcal{L}(v, w, k)$$
.

Deteção de Ciclos de Peso Negativo

Se existe algum ciclo de peso negativo, existe um caminho de **comprimento pesado negativo** da forma:

$$v_0, v_1, \ldots, v_{n-1}, v_n \pmod{n \geq 2}$$

onde:

- $v_0 = v_n$ e
- os vértices $v_0, v_1, \ldots, v_{n-1}$ são todos distintos.

Mas, nesse caso,

$$T[v_0][v_0] \leq \mathcal{L}(v_0, v_0, |V| - 1) \leq 0.$$

Portanto, basta testar se, no final, algum "elemento da diagonal" da tabela T é negativo.

Exemplo com Ciclos de Peso Negativo

$\mathcal{L}(,,-1)$	0	1	2	3
0	0	7	$+\infty$	6
1	$+\infty$	0	-3	$+\infty$
2	$+\infty$	$+\infty$	0	2
3	$+\infty$	0	$+\infty$	0

$\mathcal{L}(,, 0)$	0	1	2	3	
0	0	7	$+\infty$	6	
1	$+\infty$	0	-3	$+\infty$	
2	$+\infty$	$+\infty$	0	2	
3	$+\infty$	0	$+\infty$	0	

$\mathcal{L}(,,1)$	0	1	2	3	
0	0	7	4	6	
1	$1 + \infty$		-3	$+\infty$	
2	$2 + \infty$		0	2	
3	$+\infty$	0	-3	0	

$\mathcal{L}(,,2)$	0	1	2	3
0	0	7	4	6
1	$+\infty$	0	-3	-1
2	$+\infty$	$+\infty$	0	2
3	$+\infty$	0	-3	-1

$\mathcal{L}(,,3)$	0	1	2	3		
0	0	6	3	5		
1	$+\infty$	-1	-4	-2		
2	$+\infty$	2	-1	1		
3	$+\infty$	-1	-4	-2		

Caminhos Mais Curtos (1) (All-Pairs Shortest Paths)

```
Pair<L[][], Node[][]> floydWarshall( Digraph<L> graph )
    throws NegativeWeightCycleException
{
    int numNodes = graph.numNodes();
    L[][] length = new L[numNodes][numNodes];
    Node[][] via = new Node[numNodes][numNodes];
```

Caminhos Mais Curtos (2)

```
for every Node v in graph.nodes()
   for every Node w in graph.nodes()
      length[v][w] = +\infty;
      via[v][w] = -1;
for every Node v in graph.nodes()
   length[v][v] = 0;
for every Edge<L> e in graph.edges()
   Node[] endPoints = e.endNodes();
   length[endPoints[0]][endPoints[1]] = e.label();
```

Caminhos Mais Curtos (3)

```
for every Node k in graph.nodes()
   for every Node v in graph.nodes()
      for every Node w in graph.nodes()
          if (length[v][k] < +\infty && length[k][w] < +\infty)
             L \text{ newLength} = \text{length}[v][k] + \text{length}[k][w];
             if ( newLength < length[v][w] )</pre>
                 length[v][w] = newLength;
                 via[v][w] = k;
```

Caminhos Mais Curtos (4)

```
// Negative-weight cycles detection.
for every Node v in graph.nodes()
  if ( length[v][v] < 0 )
     throw new NegativeWeightCycleException();
return new PairClass<L[][], Node[][]>(length, via);
```

Complexidade do Algoritmo de Floyd-Warshall

Caminhos Mais Curtos

Implementação do

Grafo (V, A)

(grafo orientado e pesado, sem ciclos de peso negativo)

Deteção de Ciclos de Peso Negativo

(grafo orientado e pesado)

Matriz de adjacências

 $\Theta(|V|^3)$

Vetor de Listas de incidências

 $\Theta(|V|^3)$

Vetor ou Lista de arcos

 $\Theta(|V|^3)$

Construção de um Caminho (mecanismo)

via	0	1	2	3	4	
0	-1	4	4	4	-1	
1	-1	-1	4	-1	3	
2	4	4	-1	-1	3	
3	4	4	4	-1	-1	
4	1	-1	-1	2	-1	

$$P(1,2)$$
 via[1][2] = 4

$$P(1,4) \oplus P(4,2)$$

$$P(1,4)$$
 via[1][4] = 3

$$P(1,4)$$
 via[1][4] = 3 $P(1,3) \oplus P(3,4) \oplus P(4,2)$

$$P(1,3)$$
 via[1][3] = -1

$$P(1,3)$$
 via[1][3] = -1 [1,3] \oplus $P(3,4)$ \oplus $P(4,2)$

$$P(3,4)$$
 via[3][4] = -1

$$P(3,4)$$
 via[3][4] = -1 [1,3] \oplus [3,4] \oplus P(4,2)

$$P(4,2)$$
 $via[4][2] = -1$

$$[1,3,4] \qquad \oplus \quad [4,2]$$

 $[1,3,4] \oplus P(4,2)$

Construção de um Caminho (implementação)

via	0	1	2	3	4
0	-1	4	4	4	-1
1	-1	-1	4	-1	3
2	4	4	-1	-1	3
3	4	4	4	-1	-1
4	1	-1	-1	2	-1

$$P(1,2)$$
 via[1][2] = 4

$$P(1,4) \oplus P(4,2)$$

$$P(1,4)$$
 via[1][4] = 3

$$P(1,4)$$
 via[1][4] = 3 $P(1,3) \oplus P(3,4) \oplus P(4,2)$

$$P(1,3)$$
 via[1][3] = -3

$$P(1,3)$$
 via[1][3] = -1 [1[\oplus P(3,4) \oplus P(4,2)

$$P(3,4)$$
 via[3][4] = -1

$$[1[\oplus [3[\oplus P(4,2)$$

$$P(4,2)$$
 $via[4][2] = -1$

 $[1,3[\oplus P(4,2)$

[1, 3, 4]

NO FINAL

[1, 3, 4, 2]

Construção de um Caminho

```
// Assume-se que o método floydWarshall já foi executado, tendo
// retornado as matrizes length e via, e que existe caminho da
// origem para o destino (i.e., length[origin][destination] < +\infty).
List<Node> getPath( Node[][] via, Node origin, Node destination )
   List<Node> path:
   if ( origin == destination )
      path = new DoublyLinkedList<Node>();
   else
      path = pathIncompl(via, origin, destination);
   path.addLast(destination);
   return path;
```

```
DLL<Node> pathIncompl( Node[][] via, Node origin, Node destination )
  DLL<Node> path;
  Node intermediate = via[origin][destination];
  if ( intermediate ==-1 )
      path = new DLL<Node>();
     path.addLast(origin);
  else
      path = pathIncompl(via, origin, intermediate);
      path.append( pathIncompl(via, intermediate, destination) );
  return path;
                       DLL abrevia DoublyLinkedList
```

Complexidades de getPath

Temporal

Número de chamadas a pathIncompl:

•	uma por	cada	vértice	intermédio	\leq	V	-2
---	---------	------	---------	------------	--------	---	----

$$ullet$$
 uma por cada arco do caminho $\leq |V|-1$

Complexidade de cada chamada a pathIncompl: $\Theta(1)$

Total:
$$O(|V|)$$

Espacial

Número de vértces do caminho: O(|V|)