Regression Discontinuity Designs

Matias D. Cattaneo Princeton University

January 4, 2022

Outline

Designs and Frameworks

2 Estimation and Inference

Falsification and Validation

Extrapolation and Other Topics

Causal Inference & Program Evaluation

- Main goal: learn about treatment effect of policy or intervention.
- If treatment randomization available, easy to estimate treatment effects.
- If treatment randomization not available, turn to observational studies.
 - ▶ Selection on Observables, Instrumental Variables, Selection on Unobservables, etc.
- Regression Discontinuity (RD) designs.
 - ▶ Simple and objective. Requires little information, if design available.
 - Might be viewed as a "local" randomized trial.
 - ► Easy to "falsify" and easy to interpret.
 - ► Careful: very local!

RD Designs: Building Block

- Triplet: score, cutoff, treatment.
 - Units receive a score.
 - ▶ A treatment is assigned based on the score and a *known* cutoff.
 - ► The treatment

is offered to units whose score is greater than the cutoff. is withheld from units whose score is less than the cutoff.

• Under assumptions, the abrupt change in the probability of treatment assignment allows us to learn about causal treatment effects.

RD Designs: Taxonomy

• Frameworks.

- ▶ Identification: Continuity/Extrapolation, Local Randomization.
- Score: Continuous, Many Repeated, Few Repeated.

• Settings.

- Sharp, Fuzzy, Kink, Kink Fuzzy.
- Multiple Cutoff, Multiple Scores, Geographic RD.
- Dynamic, Continuous Treatments, Time, etc.

• Parameters of Interests.

- ▶ Average Effects, Quantile/Distributional Effects, Partial Effects.
- ▶ Heterogeneity, Covariate-Adjustment, Differences, Time.
- Extrapolation.

RCTs vs. (Sharp) RD Designs

- Notation: $(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n.$
- Treatment: $T_i \in \{0,1\}, T_i$ independent of $(Y_i(0), Y_i(1), X_i)$.
- **Data**: $(Y_i, T_i, X_i), i = 1, 2, ..., n$, with

$$Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0 \\ Y_i(1) & \text{if } T_i = 1 \end{cases}$$

• Average Treatment Effect:

$$au_{\text{ATE}} = \mathbb{E}[Y_i(1) - Y_i(0)] = \mathbb{E}[Y_i|T=1] - \mathbb{E}[Y_i|T=0]$$

RCTs vs. (Sharp) RD Designs

- Notation: $(Y_i(0), Y_i(1), X_i), i = 1, 2, ..., n, X_i \text{ score.}$
- Treatment: $T_i \in \{0, 1\}, \quad T_i = \mathbb{1}(X_i \ge c), \quad c \text{ cutoff.}$
- **Data**: $(Y_i, T_i, X_i), i = 1, 2, ..., n$, with

$$Y_i = \begin{cases} Y_i(0) & \text{if } T_i = 0 \\ Y_i(1) & \text{if } T_i = 1 \end{cases}$$

• Average Treatment Effect at the cutoff (Continuity-based):

$$\tau_{\mathtt{SRD}} = \mathbb{E}[Y_i(1) - Y_i(0) | X_i = c] = \lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]$$

• Average Treatment Effect in a neighborhood (LR-based):

$$\tau_{\text{LR}} = \mathbb{E}[Y_i(1) - Y_i(0) | X_i \in \mathcal{W}] = \frac{1}{N_1} \sum_{X_i \in \mathcal{W}, T_i = 1} Y_i - \frac{1}{N_0} \sum_{X_i \in \mathcal{W}, T_i = 0} Y_i$$

$$\tau_{\mathtt{SRD}} = \underbrace{\mathbb{E}[Y_i(1) - Y_i(0) | X_i = c]}_{\mathtt{Unobservable}} = \underbrace{\lim_{x \downarrow c} \mathbb{E}[Y_i | X_i = x]}_{\mathtt{Estimable}} - \underbrace{\lim_{x \uparrow c} \mathbb{E}[Y_i | X_i = x]}_{\mathtt{Estimable}}$$

 T_i independent of $(Y_i(0), Y_i(1))$ for all $X_i \in \mathcal{W} = [c - w, c + w]$ + exclusion restriction

Fuzzy RD Designs

- Imperfect compliance.
 - probability of receiving treatment changes at c, but not necessarily from 0 to 1.
- Canonical Parameter:

$$\begin{split} \tau_{\text{FRD}} &= \frac{\mathbb{E}[(Y_i(1) - Y_i(0)(D_i(1) - D_i(0)))|X_i = c]}{\mathbb{E}[D_i(1)|X_i = c] - \mathbb{E}[D_i(0)|X_i = c]} \\ &= \frac{\lim_{x \downarrow c} \mathbb{E}[Y_i|X_i = x] - \lim_{x \uparrow c} \mathbb{E}[Y_i|X_i = x]}{\lim_{x \downarrow c} \mathbb{E}[D_i|X_i = x] - \lim_{x \uparrow c} \mathbb{E}[D_i|X_i = x]} \end{split}$$

where
$$Y_i(t) = Y_i(0)(1 - D_i(t)) + Y_i(1)D_i(t)$$
 and $D_i(t) = D_i(0)(1 - T_i) + D_i(1)T_i$.

- Similarly for Local Randomization framework.
- Different interpretations under different assumptions.

(a) Sharp RD

(b) Fuzzy RD (one-sided compliance)

(Sharp and Fuzzy) Kink RD Designs

- Treatment assigned via continuous score formula, but slope changes discontinuously at "kink" point (c).
- SKRD Parameter:

$$\tau_{\text{KRD}} = \frac{\lim_{x \downarrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x]}{\lim_{x \downarrow c} \frac{d}{dx} b(x) - \lim_{x \uparrow c} \frac{d}{dx} b(x)}$$

where b(x) known function inducing "kink".

• FKRD Parameter:

$$\tau_{\text{KRD}} = \frac{\lim_{x \downarrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c} \frac{d}{dx} \mathbb{E}[Y_i | X_i = x]}{\lim_{x \downarrow c} \frac{d}{dx} \mathbb{E}[D_i | X_i = x] - \lim_{x \uparrow c} \frac{d}{dx} \mathbb{E}[D_i | X_i = x]}$$

• Different interpretation under different assumptions.

Multi-cutoff, Multi-Score, Geographic RD Designs

- Multi-cutoff RD designs.
 - $C_i \in \mathcal{C}$ with $\mathcal{C} = \{c_1, c_2, \cdots, c_J\}$ or $\mathcal{C} = [\underline{c}, \overline{c}].$
 - $\,\blacktriangleright\,$ Two strategies: normalize-and-pool ($\tilde{X}_i=X_i-C_i),$ or cutoff-by-cutoff analysis.
 - Different interpretation under different assumptions.

• Multi-score RD designs.

- $\mathbf{X}_i = (X_{1i}, X_{2i}, \dots, X_{di})'$ and $\mathbf{c} = (c_1, c_2, \dots, c_d)'$.
- Can always be mapped back to Multi-cutoff RD designs.
- ▶ Leading special cases: Test scores, geography (d = 2).
- ▶ Different interpretation under different assumptions.

• Other RD-like designs.

- ▶ RD in density and bunching designs.
- ▶ RD in time.
- Dynamic RD designs.
- ▶ etc.

(a) Multi-cutoff:

(b) Multi-score: $\tau_{\text{SRD}}(x,c) = \mathbb{E}[Y_i(1) - Y_i(0) | X_i = x, C_i = c] \qquad \tau_{\text{SRD}}(x_1,x_2) = \mathbb{E}[Y_i(1) - Y_i(0) | X_{1i} = x_1, X_{2i} = x]$

$$\tau_{SRD}(x_1, x_2) = \mathbb{E}[Y_i(1) - Y_i(0) | X_{1i} = x_1, X_{2i} = x_1,$$

Highlights and Main Takeaways

- RD designs exploit "variation" near the cutoff.
- Causal effect is different (in general) than RCT.
- No "overlap" (sharp) so extrapolation is unavoidable (local or global).
- Graphical analysis is both very useful and very dangerous.
- \bullet Need to work with data near cutoff \Longrightarrow bandwidth or window selection.
- There exist many design-specific falsification/validation methods.

Outline

Designs and Frameworks

2 Estimation and Inference

Falsification and Validation

4 Extrapolation and Other Topics

Empirical Illustration: Head Start (Ludwig and Miller, 2007,QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

RD Packages: Python, R, Stata

https://rdpackages.github.io/

- rdrobust: estimation, inference and graphical presentation using local polynomials, partitioning, and spacings estimators.
 - rdrobust, rdbwselect, rdplot.
- rddensity: discontinuity in density tests (manipulation testing) using both local polynomials and binomial tests.
 - rddensity, rdbwdensity.
- rdlocrand: covariate balance, binomial tests, randomization inference methods (window selection & inference).
 - rdrandinf, rdwinselect, rdsensitivity, rdrbounds.
- rdmulti: multiple cutoffs and multiple scores.
- rdpower: power, sample selection and minimum detectable effect size.

RD Plots

- Main ingredients:
 - Global smooth polynomial fit.
 - ▶ Binned discontinuous local-means fit.
- Main goals:
 - ▶ Graphical (heuristic) representation.
 - Detention of discontinuities.
 - Representation of variability.
- Tuning parameters:
 - Global polynomial degree.
 - ► Location (ES or QS) and number of bins.
- Great to convey ideas but horrible to draw conclusions.

Estimation and Inference Methods

- Continuity/Extrapolation: Local polynomial approach.
 - ▶ Localization: bandwidth selection (trade-off bias and variance).
 - ▶ Point estimation: "flexible" (nonparametric).
 - Inference: robust bias-corrected methods.
- Local Randomization: finite-sample and large-sample inference.
 - ▶ Localization: window selection (via local independence implications).
 - ▶ Point estimation: parametric, finite-sample (Fisher) or large-sample (Neyman/SP).
 - ▶ Inference: randomization inference (Fisher) or large-sample (Neyman/SP).
- Many refinements and other methods exist (EL, Bayesian, Uniformity, etc.).
 - ▶ Do not offer much improvements in applications.
 - ▶ Can be overly complicated (lack of transparency).
 - Can depend on user-chosen tuning parameters (lack of replicability).

Continuity/Extrapolation: Local Polynomial Methods

- Global polynomial regression: not recommended.
 - ▶ Runge's Phenomenon, counterintuitive weights, overfitting, lack of robustness.
- Local polynomial regression: captures idea of "localization".

Choose low poly order (p) and weighting scheme $(K(\cdot))$

Choose bandwidth h: MSE-optimal or CE-optimal

Construct point estimator $\hat{\tau}$ (MSE-optimal $h \implies$ optimal estimator)

Conduct robust bias-corrected inference (CE-optimal $h \implies$ optimal distributional approximation)

Local Polynomial Methods

- Idea: approximate regression functions for control and treatment units locally.
- "Local-linear" (p=1) estimator (w/ weights $K(\cdot)$):

$$-h \le X_i < c:$$

$$c \le X_i \le h:$$

$$Y_i = \alpha_- + (X_i - c) \cdot \beta_- + \varepsilon_{-,i}$$

$$Y_i = \alpha_+ + (X_i - c) \cdot \beta_+ + \varepsilon_{+,i}$$

- ► Treatment effect (at the cutoff): $\hat{\tau}_{SRD}(h) = \hat{\alpha}_{+} \hat{\alpha}_{-}$
- Can be estimated using linear models (w/ weights $K(\cdot)$):

$$Y_i = \alpha + \tau_{\text{SRD}} \cdot T_i + (X_i - c) \cdot \beta_1 + T_i \cdot (X_i - c) \cdot \gamma_1 + \varepsilon_i, \qquad |X_i - c| \le h$$

• Given p, K, h chosen \implies weighted least squares estimation.

Local Polynomial Methods: Choosing bandwidth (p = 1)

• Mean Square Error Optimal (MSE-optimal).

$$h_{ exttt{MSE}} = C_{ exttt{MSE}}^{1/5} \cdot n^{-1/5}$$
 $C_{ exttt{MSE}} = C(K) \cdot rac{ extst{Var}(\hat{ extst{r}}_{ extst{SRD}})}{ extst{Bias}(\hat{ extst{r}}_{ extst{SRD}})^2}$

• Coverage Error Optimal (CE-optimal).

$$h_{\mathrm{CE}} = C_{\mathrm{CE}}^{1/4} \cdot n^{-1/4} \qquad \qquad C_{\mathrm{CE}} = C(K) \cdot \frac{\mathsf{Var}(\hat{\tau}_{\mathtt{SRD}})}{|\mathsf{Bias}(\hat{\tau}_{\mathtt{SRD}})|}$$

• Key idea:

▶ Trade-off bias and variance of $\hat{\tau}_{SRD}(h)$. Heuristically:

$$\uparrow$$
 Bias $(\hat{\tau}_{SRD})$ \Longrightarrow $\downarrow \hat{h}$ and \uparrow Var $(\hat{\tau}_{SRD})$ \Longrightarrow $\uparrow \hat{h}$

- ▶ Implementations: IK first-generation while CCT second-generation plug-in rule. They differ in the way $Var(\hat{\tau}_{SRD})$ and $Bias(\hat{\tau}_{SRD})$ are estimated.
- ▶ Rule-of-thumb: $h_{\text{CE}} \propto n^{1/20} \cdot h_{\text{MSE}}$.

Conventional Inference Approach

• "Local-linear" (p=1) estimator (w/ weights $K(\cdot)$):

$$-h \le X_i < c:$$

$$c \le X_i \le h:$$

$$Y_i = \alpha_- + (X_i - c) \cdot \beta_- + \varepsilon_{-,i}$$

$$Y_i = \alpha_+ + (X_i - c) \cdot \beta_+ + \varepsilon_{+,i}$$

- ► Treatment effect (at the cutoff): $\hat{\tau}_{SRD}(h) = \hat{\alpha}_{+} \hat{\alpha}_{-}$
- Construct usual t-test. For $H_0: \tau_{SRD} = 0$,

$$T(h) = \frac{\hat{\tau}_{\text{SRD}}}{\sqrt{\hat{\mathsf{V}}}} = \frac{\hat{\alpha}_{+} - \hat{\alpha}_{-}}{\sqrt{\hat{\mathsf{V}}_{+} + \hat{\mathsf{V}}_{-}}} \approx_{d} \mathcal{N}(0, 1)$$

• Naïve 95% Confidence interval:

$$I(h) = \left[\hat{\tau}_{SRD} \pm 1.96 \cdot \sqrt{\hat{V}} \right]$$

Robust Bias Correction Approach

• Key Problem:

$$T(h_{\text{MSE}}) = \frac{\hat{ au}_{\text{SRD}}}{\sqrt{\hat{V}}} \approx_d \mathcal{N}(\mathsf{B}, 1) \quad \neq \quad \mathcal{N}(0, 1)$$

- B captures bias due to misspecification error.
- RBC distributional approximation:

$$T^{\text{bc}}(h) = \frac{\hat{\tau}_{\text{SRD}} - \hat{\mathsf{B}}_n}{\sqrt{\hat{\mathsf{V}}}} = \underbrace{\frac{\hat{\tau}_{\text{SRD}} - \mathsf{B}_n}{\sqrt{\hat{\mathsf{V}}}}}_{\approx_d \ \mathcal{N}(0,1)} + \underbrace{\frac{\mathsf{B} - \hat{\mathsf{B}}}{\sqrt{\hat{\mathsf{V}}}}}_{\approx_d \ \mathcal{N}(0,\gamma)}$$

- \triangleright $\hat{\mathsf{B}}$ is constructed to estimate leading bias B, that is, misspecification error.
- RBC 95% Confidence Interval:

$$I_{\mathrm{RBC}} = \left[\begin{array}{cc} \left(\hat{ au}_{\mathrm{SRD}} - \hat{\mathsf{B}} \right) & \pm & 1.96 \cdot \sqrt{\hat{\mathsf{V}} + \hat{\mathsf{W}}} \end{array} \right]$$

Empirical Illustration: Head Start (Ludwig and Miller, 2007,QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

D

Variable

Ages 5-9, Head Start-related causes, 1973-1983

Bandwidth or poverty range

(counties) with nonzero weight

Ages 5-9, injuries, 1973-1983

Ages 5-9, all causes, 1973-1983

Ages 25+, Head Start-related causes,

Number of observations

Main results

Specification checks

1973-1983

TABLE III

THE CITED OF CITE	Dibconinicini	20111111120	-	

REGRESSION	DISCONTINUITY	ESTIMATES	OF THE	EFFECT	OF	HEAD	Start	ASSISTANCE	ON	MORTALITY	
											-

527

-1.895**

(0.980)

[0.036]

0.195

(3.472)

[0.924]

(4.311)

[0.415]

2.204

(5.719)

[0.700]

-3.416

Nonparametric estimator

-1.198*

(0.796)

[0.081]

2.426

(2.476)

[0.345]

0.053

(3.098)

[0.982]

6.016

(4.349)

[0.147]

36

-1.114**

(0.544)

[0.027]

0.679

(1.785)

[0.755]

(2.253)

[0.558]

5.872

(3.338)

[0.114]

-1.537

2.177

18

961

Control mean

3.238

22.303

40.232

131.825

Parametric

Flexible

quadratic

-2.558**

(1.261)

[0.021]

0.775

(3.401)

[0.835]

-2.927

(4.295)

[0.505]

2.574

(6.415)

[0.689]

16

863

Flexible

linear

-2.201**

(1.004)

[0.022]

-0.164

(3.380)

[0.998]

(4.268)

[0.317]

2.091

(5.581)

[0.749]

-3.896

8

484

	REGRESSION	DISCONTINUITY	ESTIMATES OF	THE	EFFECT	OF	H
=							

Local Randomization Framework

• **Key idea**: treatment assignment as-if randomly assigned "near" cutoff. There exists window $\mathcal{W} = [-w, w]$, with -w < c < w, such that

for all
$$X_i \in \mathcal{W} \Longrightarrow T_i$$
 independent of $(Y_i(0), Y_i(1))$

and possibly other conditions hold (e.g., knowledge of assignment mechanism).

- Conceptually different from continuity/extrapolation based methods.
- ▶ Challenge: window (neighborhood) selection.
- ► Challenge: small sample (estimation and) inference.
- Two Steps (analogous to local polynomial methods):
 - Given window W, (estimation and) inference is "standard": superpopulation, large-samples designed-based methods, randomization inference methods.
 - Select windows W based on idea of local randomization.
 - ▶ As-if randomly assigned assumption can be relaxed somewhat, but it is strong.
- Catch: as-if random assumption good approximation only very near cutoff!

 T_i independent of $(Y_i(0), Y_i(1))$ for all $X_i \in \mathcal{W} = [c - w, c + w]$ + exclusion restriction

Local Randomization: Finite-sample and Large-sample Methods

- ullet Given ${\mathcal W}$ where local randomization holds:
 - ▶ Randomization inference (Fisher): sharp null, finite-sample exact.
 - ▶ Design-based (Neyman): large-sample valid, conservative.
 - ▶ Large-sample standard: random potential outcomes, large-sample valid.
- All methods require window (W) selection, and choice of statistic. First two also require choice/assumptions assignment mechanism. Covariate-adjustments (score or otherwise) possible.
- ullet \mathcal{W} selection:
 - ► Find neighborhood where (pre-intervention) covariate-balance holds.
 - ▶ Find neighborhood where outcome and score independent.
 - Domain-specific or application-specific choice.

 T_i independent of $(Y_i(0), Y_i(1))$ for all $X_i \in \mathcal{W} = [c - w, c + w]$ + exclusion restriction

Choosing W_0 using predetermined covariate Z

Empirical Illustration: Head Start (Ludwig and Miller, 2007,QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

D

Variable

Ages 5-9, Head Start-related causes, 1973-1983

Bandwidth or poverty range

(counties) with nonzero weight

Ages 5-9, injuries, 1973-1983

Ages 5-9, all causes, 1973-1983

Ages 25+, Head Start-related causes,

Number of observations

Main results

Specification checks

1973-1983

TABLE III

THE CITED OF CITE	Dibconinicini	20111111120	-	

REGRESSION	DISCONTINUITY	ESTIMATES	OF THE	EFFECT	OF	HEAD	Start	ASSISTANCE	ON	MORTALITY	
											-

527

-1.895**

(0.980)

[0.036]

0.195

(3.472)

[0.924]

(4.311)

[0.415]

2.204

(5.719)

[0.700]

-3.416

Nonparametric estimator

-1.198*

(0.796)

[0.081]

2.426

(2.476)

[0.345]

0.053

(3.098)

[0.982]

6.016

(4.349)

[0.147]

36

-1.114**

(0.544)

[0.027]

0.679

(1.785)

[0.755]

(2.253)

[0.558]

5.872

(3.338)

[0.114]

-1.537

2.177

18

961

Control mean

3.238

22.303

40.232

131.825

Parametric

Flexible

quadratic

-2.558**

(1.261)

[0.021]

0.775

(3.401)

[0.835]

-2.927

(4.295)

[0.505]

2.574

(6.415)

[0.689]

16

863

Flexible

linear

-2.201**

(1.004)

[0.022]

-0.164

(3.380)

[0.998]

(4.268)

[0.317]

2.091

(5.581)

[0.749]

-3.896

8

484

	REGRESSION	DISCONTINUITY	ESTIMATES OF	THE	EFFECT	OF	H
=							

Outline

Designs and Frameworks

2 Estimation and Inference

Second Second

4 Extrapolation and Other Topics

Falsification and Validation

• RD plots and related graphical methods:

- Always plot data: main advantage of RD designs. (Check if RD design!)
- ▶ Plot histogram of X_i (score) and its density. Careful: boundary bias.
- ▶ RD plot $\mathbb{E}[Y_i|X_i=x]$ (outcome) and $\mathbb{E}[Z_i|X_i=x]$ (pre-intervention covariates).
- Be careful not to oversmooth data/plots.

• Sensitivity and related methods:

- Score density continuity: binomial test and continuity test.
- Pre-intervention covariate no-effect (covariate balance).
- Placebo outcomes no-effect.
- ▶ Placebo cutoffs no-effect: informal continuity test away from c.
- ▶ Donut hole: testing for outliers/leverage near c.
- ▶ Different bandwidths: testing for misspecification error.
- Many other setting-specific (fuzzy, geographic, etc.).

Empirical Illustration: Head Start (Ludwig and Miller, 2007,QJE)

• Problem: impact of Head Start on Infant Mortality

• Data:

 $Y_i = \text{child mortality 5 to 9 years old}$

 T_i = whether county received Head Start assistance

 $X_i = 1960 \text{ poverty index} \quad (c = 59.1984)$

 Z_i = see database.

• Potential outcomes:

 $Y_i(0) = \text{child mortality if had not received Head Start}$

 $Y_i(1) = \text{child mortality if had received Head Start}$

• Causal Inference:

$$Y_i(0) \neq Y_i|T_i = 0$$
 and $Y_i(1) \neq Y_i|T_i = 1$

Outline

Designs and Frameworks

2 Estimation and Inference

Falsification and Validation

4 Extrapolation and Other Topics

RD Effects Away from the Cutoff

- RD designs are credible, robust and easy to use.
- Main drawback: identification is "local" (not even causal if strict!).
- ullet Ongoing research: How to extrapolate RD effects away from c?
 - ▶ Internal vs. External validity.

• Available methods:

- Marginal effects: changes at the cutoff.
- Local randomization: effects near the cutoff.
- ▶ Covariate-adjustment local effects: selection-on-observables near the cutoff.
- Proxy variables: trace-out evolution of outcome away from cutoff.
- ▶ Setting specific: fuzzy RD, multi-cutoff RD, etc.

Multi-Cutoff RD Designs

- RDD with multiple cutoffs are common in practice.
- Researchers usually pool cutoffs by re-centering the running variable.
- Questions:
 - ▶ What parameter is identified when pooling?
 - ▶ What are the parameters of interest in this context?
 - ▶ Can variation in cutoffs be exploited to identify them?

"Classical" Regression Discontinuity designs

• Potential outcomes: $(Y_i(1), Y_i(0))$, with treatment effect:

$$\tau_i = Y_i(1) - Y_i(0)$$

- Running variable (score): X_i .
- Treatment indicator: $D_i = D_i(X_i) = 1$ if treated, 0 otherwise.
- Observed outcome: $Y_i = Y_i(1)D_i + Y_i(0)(1 D_i)$.
- Sharp design: $D_i = \mathbb{1}(X_i \geq c)$.
- Under smoothness,

$$\mathbb{E}[\tau_i \mid X_i = c] = \lim_{x \to c^+} \mathbb{E}[Y_i \mid X_i = x] - \lim_{x \to c^-} \mathbb{E}[Y_i \mid X_i = x]$$

RD with multiple cutoffs: motivation

• Frequently, programs or policies have multiple cutoffs.

Table: Progresa (Mexico)

Region	Cutoff	Obs
27	691.0	828
6	751.0	541
5	751.5	3,116
4	753.0	1,189
3	759.4	933
28	853.3	175

Table: P-900 (Chile)

	,	
Region	Cutoff	Obs
7	42.4	157
6,8	43.4	497
13	46.4	959
9	47.4	197
2,5,10	49.4	560
1,3,4	51.4	190
-		

RD with multiple cutoffs

- Common empirical approach: pooling.
 - ▶ $C_i \in \mathcal{C}$ (random) cutoff faced by unit i.
 - ▶ Discrete cutoffs: $C = \{c_0, c_1, ..., c_J\}$.
 - Re-centered running variable: $\tilde{X}_i = X_i C_i$.
 - ► Pooled estimand:

$$\tau^p = \lim_{x \to 0^+} \mathbb{E}[Y_i \mid \tilde{X}_i = x] - \lim_{x \to 0^-} \mathbb{E}[Y_i \mid \tilde{X}_i = x]$$

• What parameter is this approach identifying?

Normalizing-and-Pooling Analysis

$$\tau^p = \lim_{x \to 0^+} \mathbb{E}[Y_i \mid \tilde{X}_i = x] - \lim_{x \to 0^-} \mathbb{E}[Y_i \mid \tilde{X}_i = x]$$

Identification under pooling

If the CEFs and $f_{X|C}(x|c)$ are continuous at the cutoffs,

$$\tau^p = \sum_{c,c} \mathbb{E}[\tau_i \mid X_i = c, C_i = c] \omega(c)$$

where

$$\omega(c) = \frac{f_{X|C}(c|c)\mathbb{P}[C_i = c]}{\sum f_{X|C}(c|c)\mathbb{P}[C_i = c]}$$

Difference between TE across subgroups

- Consider two cutoffs $c_0 < c_1$.
- For a given value of X_i , difference in ATEs has two components:
 - ▶ Direct effect: impact of moving a person from one cutoff to the other one.
 - ▶ Indirect effect: switching cutoffs shifts the distribution of individual characteristics.
- Example:
 - ▶ Treatment is giving fertilizer to poor farmers. Cutoffs differ across regions.
 - ▶ Direct effect: regions have different soil characteristics, weather, etc.
 - ▶ Indirect effect: farmers in one region may be more entrepreneurial, educated, etc.

Difference between TE across subgroups

• Formally:

$$\begin{split} \tau(c_1,c_0) - \tau(c_1,c_1) &= \mathbb{E}[\tau_i|X_i = c_1,C_i = c_0] - \mathbb{E}[\tau_i|X_i = c_1,C_i = c_1] \\ &= \int \underbrace{[\tau(c_1,c_0,u) - \tau(c_1,c_1,u)]}_{\text{direct effect}} f_{U|X,C}(u|c_1,c_0) d\mu \\ &+ \int \tau(c_1,c_1,u) \underbrace{[f_{U|X,C}(u|c_1,c_0) - f_{U|X,C}(u|c_1,c_1)]}_{\text{indirect effect}} d\mu \end{split}$$

Extrapolating RD Treatment Effects using Multiple Cutoffs

- Two drawbacks of the pooling approach:
 - ▶ It discards variation that can identify parameters of interest,
 - Unclear policy relevance: it combines TEs at different cutoffs for different populations.
- What are the parameters of interest in this context?
- Potential CEFs:

$$\mu_d(x,c) := \mathbb{E}[Y_i(d)|X_i = x, C_i = c], \qquad d \in \{0,1\}$$

• (Conditional) ATE:

$$\tau(x,c) := \mathbb{E}[\tau_i \mid X_i = x, C_i = c] = \mu_1(x,c) - \mu_0(x,c)$$

Score

Summary

- Researchers usually pool different cutoffs together.
 - ▶ Identified parameter is a weighted average of TEs.
 - Not necessarily what the researcher was looking for.
 - Discards potentially useful information.
- We can exploit variation in cutoffs to study TE heterogeneity.
 - ▶ Response function: how the TE changes with X.
 - ▶ External validity: how the TE changes across subpopulations.

Thank you!

https://rdpackages.github.io/