



# **Fetal AI: Fetal Health Classification System**

## **Final Project Report**

Prepared For: Smart-Internz Applied Data Science Guided Project

**By:** Hrituraj Shashikant Narvekar

Affiliation: D Y Patil Agriculture and Technical University, Talsande

**Date:** 18 July 2025





### **Abstract**

FetalAI is a machine learning-based web application that classifies fetal health into Normal, Suspect, or Pathological categories using cardiotocography (CTG) data from the fetal\_health.csv dataset (2126 records, 21 features). An optimized XGBoost model, integrated with a Flask web interface, achieves a test accuracy of ~90% and a macro F1-score of ~0.85. The system provides a user-friendly platform for healthcare providers and expectant parents, with API support for medical system integration, enhancing prenatal care efficiency.





# Contents

| 1  | Introduction                                                | 4 |
|----|-------------------------------------------------------------|---|
|    | 1.1 Project Overview                                        | 4 |
|    | 1.2 Objectives                                              | 4 |
| 2  | Project Initialization and Planning Phase                   | 4 |
|    | 2.1 Problem Statement                                       | 4 |
|    | 2.2 Proposed Solution                                       | 4 |
|    | 2.3 Initial Project Planning                                | 5 |
| 3  | Data Collection and Preprocessing Phase                     | 5 |
|    | 3.1 Data Collection Plan and Raw Data Sources               | 5 |
|    | 3.2 Data Quality Report                                     | 5 |
| 4  | Model Development Phase                                     | 5 |
|    | 4.1 Model Selection Report                                  | 5 |
|    | 4.2 Initial Model Training Code, Validation, and Evaluation | 5 |
| 5  | Model Optimization and Tuning Phase                         | 7 |
|    | 5.1 Tuning Documentation                                    | 7 |
|    | 5.2 Model Performance                                       | 7 |
|    | 5.3 Final Model Selection                                   | 7 |
| 6  | Results                                                     | 7 |
|    | 6.1 Output Description                                      | 7 |
| 7  | Advantages & Disadvantages                                  | 8 |
|    | 7.1 Advantages                                              | 8 |
|    | 7.2 Disadvantages                                           | 8 |
| 8  | Conclusion                                                  | 8 |
| 9  | Future Scope                                                | 8 |
| 10 | Appendix                                                    | 8 |
|    | 10.1 Source Code                                            | 8 |
|    | 10.2 Project Resources                                      | 9 |





### 1 Introduction

### 1.1 Project Overview

FetalAI automates fetal health classification using CTG data, leveraging an XG-Boost model deployed via a Flask application. The dataset (fetal\_health.csv) contains 2126 records with 21 features (e.g., baseline value, accelerations) and a target variable (fetal\_health: 1=Normal, 2=Suspect, 3=Pathological). The system includes a web interface (index.html, result.html) and API, supporting prenatal care decision-making.

### 1.2 Objectives

- Achieve a macro F1-score > 0.85 for fetal health classification.
- Develop an intuitive web interface for CTG input and prediction display.
- Provide API support for medical system integration.
- Reduce specialist workload through automated CTG analysis.

### 2 Project Initialization and Planning Phase

#### 2.1 Problem Statement

| PS  | I am         | I'm trying   | But         | Because     | Which       |
|-----|--------------|--------------|-------------|-------------|-------------|
| No. | (Customer)   | to           |             |             | makes me    |
|     |              |              |             |             | feel        |
| PS- | Expectant    | Monitor my   | I lack      | CTG data is | Anxious     |
| 1   | parent       | baby's       | medical     | complex     | about fetal |
|     |              | health       | expertise   | _           | safety      |
| PS- | Obstetrician | Assess fetal | Manual CTG  | It requires | Overwhelmed |
| 2   |              | health       | analysis is | specialized | by          |
|     |              | quickly      | slow        | skills      | workload    |
| PS- | Midwife      | Provide      | I can't     | Limited     | Insecure    |
| 3   |              | accurate     | interpret   | access to   | about       |
|     |              | prenatal     | CTG data    | tools       | patient     |
|     |              | care         | reliably    |             | outcomes    |

Table 1: Problem Statements for FetalAI

### 2.2 Proposed Solution

FetalAI employs an XGBoost model trained on preprocessed CTG data, integrated into a Flask web application. Key features include data preprocessing (StandardScaler, stratified sampling), model training, and a web interface for user input and predictions.





| User  | Task                 | Story  | Priority |
|-------|----------------------|--------|----------|
| Story |                      | Points |          |
| USN-1 | Preprocess CTG       | 2      | High     |
|       | dataset with scaling |        |          |
|       | and splitting        |        |          |
| USN-2 | Train XGBoost model  | 3      | High     |
|       | on preprocessed data |        |          |
| USN-3 | Integrate XGBoost    | 3      | High     |
|       | model with Flask     |        |          |
|       | application          |        |          |
| USN-4 | Develop web form for | 2      | High     |
|       | CTG input and        |        | _        |
|       | prediction display   |        |          |

Table 2: Product Backlog for FetalAI

### 2.3 Initial Project Planning

### 3 Data Collection and Preprocessing Phase

#### 3.1 Data Collection Plan and Raw Data Sources

The dataset was sourced from the Kaggle Repository (https://www.kaggle.com/datasets/andrewmvd/fetal-health-classification), containing 2126 records in CSV format (~47 KB) with 21 CTG features and a target variable.

### 3.2 Data Quality Report

| Dataset      | Data Quality<br>Issue   | Severity | Resolution Plan                    |
|--------------|-------------------------|----------|------------------------------------|
| fetal_health | ClassImbalance          | High     | Stratified sampling, class weights |
| fetal_health | Potential Outliers      | Moderate | Identify and cap using IQR         |
| fetal_health | Missing Values (if any) | Low      | Impute with mean or remove rows    |

Table 3: Data Quality Issues for FetalAI

# 4 Model Development Phase

#### 4.1 Model Selection Report

**Selected Model: XGBoost** due to its superior test accuracy ( $\sim$ 90%) and macro F1-score ( $\sim$ 0.85).

### 4.2 Initial Model Training Code, Validation, and Evaluation





| Section   | Description                                                                     |
|-----------|---------------------------------------------------------------------------------|
| Data      | The dataset contains 2126 records with 21 CTG features and                      |
| Overview  | a target variable                                                               |
|           | (fetal <sub>h</sub> ealth: $1 = Normal$ , $2 = Suspect$ , $3 = P$ athological). |
| Scaling   | Features scaled using StandardScaler, saved as                                  |
|           | scaler.pkl.                                                                     |
| Handling  | Stratified 80%-20% train-test split, class weights in XGBoost.                  |
| Class Im- |                                                                                 |
| balance   |                                                                                 |
| Outlier   | Outliers identified using IQR, capped or removed.                               |
| Detection | 9 - 2                                                                           |
| Target    | fetal health adjusted from 1,2,3 to 0,1,2 for XGBoost.                          |
| Adjust-   |                                                                                 |
| ment      |                                                                                 |

Table 4: Data Preprocessing Steps for FetalAI

| Model      | Description                                       |  |
|------------|---------------------------------------------------|--|
| Logistic   | Linear model with multinomial loss, suitable for  |  |
| Regression | balanced datasets. Limited for complex            |  |
|            | relationships.                                    |  |
| Random     | Ensemble of decision trees, robust to class       |  |
| Forest     | imbalance. Less efficient for large datasets.     |  |
| XGBoost    | Gradient boosting model, excels in handling class |  |
|            | imbalance and complex feature interactions.       |  |

Table 5: Models Evaluated for FetalAI

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from xgboost import XGBClassifier
from sklearn.metrics import classification report
import joblib
df = pd.read csv('data/fetal health.csv')
X = df.drop('fetal_health', axis=1)
y = df['fetal health']
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
joblib.dump(scaler, 'scaler.pkl')
y = adjusted = y - 1
X_train, X_test, y_train, y_test = train_test_split(X_scaled,
   y_adjusted, test_size=0.2, random_state=42, stratify=y_adjusted)
model = XGBClassifier(use label encoder=False, eval metric='mlogloss
   ', random state=42)
model.fit(X train, y train)
joblib.dump(model, 'fetalai model.pkl')
y_pred = model.predict(X_test)
```





| <pre>print(classification_report(y_test,</pre> | y_pred, | <pre>target_names=['Normal',</pre> |
|------------------------------------------------|---------|------------------------------------|
| 'Suspect', 'Pathological']))                   |         |                                    |

| Model   | Performance Metrics   |  |
|---------|-----------------------|--|
| XGBoost | Test Accuracy: ~90%,  |  |
|         | Macro F1-Score: ∼0.85 |  |

Table 6: XGBoost Performance

### 5 Model Optimization and Tuning Phase

### 5.1 Tuning Documentation

```
from sklearn.model_selection import GridSearchCV
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [3, 6, 9],
    'learning_rate': [0.01, 0.1, 0.3],
    'subsample': [0.7, 0.8, 1.0]
}
grid_search = GridSearchCV(XGBClassifier(use_label_encoder=False,
    eval_metric='mlogloss', random_state=42), param_grid, cv=5,
    scoring='fl_macro', n_jobs=-1)
grid_search.fit(X_train, y_train)
joblib.dump(grid_search.best_estimator_, 'fetalai_model.pkl')
```

Optimized parameters: n\_estimators=200, max\_depth=6, learning\_rate=0.1, subsample=0.8.

#### 5.2 Model Performance

| Model       | Test Accuracy | Macro F1-Score |
|-------------|---------------|----------------|
| XGBoost     | ~88%          | ~0.82          |
| (Baseline)  |               |                |
| XGBoost     | ~90%          | ~0.85          |
| (Optimized) |               |                |

Table 7: Optimized XGBoost Performance

#### 5.3 Final Model Selection

The optimized XGBoost model was selected for its improved accuracy and F1-score, enhancing performance on minority classes (Suspect, Pathological).

#### 6 Results

#### 6.1 Output Description

The Flask application (app.py) provides:





- index.html: Form for inputting 21 CTG features.
- result.html: Displays prediction (e.g., "Normal"), numeric value (1, 2, 3), and message (e.g., "Consult a healthcare provider").
- API: Returns JSON with fetal health prediction.

Example: Input baseline value=120 yields "Normal (1)" with "Normal fetal health" message.

### 7 Advantages & Disadvantages

### 7.1 Advantages

- High accuracy (~90%) for reliable fetal health predictions.
- User-friendly web interface accessible to non-experts.
- API support for medical system integration.
- Effective handling of class imbalance via XGBoost.

### 7.2 Disadvantages

- Limited to three health categories, potentially missing nuanced cases.
- Requires valid numerical inputs without robust validation.
- XGBoost offers limited interpretability compared to simpler models.

#### 8 Conclusion

FetalAI successfully delivers an automated fetal health classification system, achieving high accuracy and usability. It streamlines prenatal care, reduces specialist workload, and supports timely interventions, with potential for clinical and research applications.

### 9 Future Scope

- Add SHAP or LIME for model interpretability.
- Enhance input validation in the Flask app.
- Expand dataset with diverse CTG scenarios.
- Deploy on a cloud platform using Docker.

### 10 Appendix

#### 10.1 Source Code

Files: app.py, train\_model.py, index.html, result.html, fetalai\_model.pkl, scaler.pkl, requirements.txt.





## 10.2 Project Resources

- $\bullet \ \ \textbf{GitHub Repository}: \ \ https://github.com/hriturajnarvekar 27/Fetal AI$
- Project Demo:

https://drive.google.com/file/d/1W00EohHYTf5H2AKWee4P80wGS8kUMSGB/view