

Isabelle Mills

April 5, 2024

Lecture 1: 4/2/2024

A set $X \subseteq \mathbb{R}^n$ where $X \neq \emptyset$ is a vector space if:

- \overrightarrow{x} , $\overrightarrow{y} \in X \Longrightarrow \overrightarrow{x} + \overrightarrow{y} \in X$
- $\vec{x} \in X$ and $c \in \mathbb{R} \Longrightarrow c\vec{x} \in X$.

If
$$\phi = \{\vec{x}_1, \dots, \vec{x}_k\} \subset \mathbb{R}^n$$
, then we define: span $\phi = \text{span}\{\vec{x}_1, \dots, \vec{x}_k\} = \{c_1\vec{x}_1 + \dots + c_k\vec{x}_k \mid c_1, \dots, c_k \in \mathbb{R}\}.$

If $E \subseteq \mathbb{R}^n$ and $E = \operatorname{span} \phi$, then we say ϕ generates E.

Note that $\mathrm{span}\{\, \overrightarrow{x}_1, \ldots, \, \overrightarrow{x}_2 \}$ forms a vector space (this is trivial to check).

 $\{\vec{x}_1,\ldots,\vec{x}_k\}\subseteq\mathbb{R}^n$ is called linearly independent if:

$$\sum_{i=1}^{k} c_i \vec{x}_i = 0 \Longrightarrow \forall i \in \{1, \dots, k\}, \ c_i = 0.$$

If the above implication does not hold, then we call the set <u>linearly dependent</u>.

If $X \subseteq \mathbb{R}^n$ is a vector space, then we define the <u>dimension</u> of X as:

$$\dim(X) = \sup\{k \in \mathbb{N} \cup \{0\} \mid \exists \{\vec{x}_1, \dots, \vec{x}_k\} \subset X \text{ which is linearly independent}\}.$$

Also, we define any set containing $\vec{0}$ to be automatically linearly dependent. This includes the singleton: $\{\vec{0}\}.$

 $Q = \{\overrightarrow{x}_1, \dots, \overrightarrow{x}_k\}$ is a basis for X if:

- ullet Q is linearly independent.
- span Q = X

As an example of a basis, for \mathbb{R}^n we define the standard basis as the set $\{e_1, e_2, \dots, e_n\}$ where e_i is the vector whose ith element is 1 and whose other elements are 0. It is pretty trivial to check that this set is in fact a basis of \mathbb{R}^n .

<u>Proposition</u>: If $B = \{\vec{x}_1, \dots, \vec{x}_k\}$ is a basis of a vector space X, then:

1.
$$\forall \vec{v} \in X, c_1, \ldots, c_k \in \mathbb{R} s.t. \vec{v} = \sum_{i=1}^k c_i \vec{x}_i$$

This is true because $X=\operatorname{span} B.$ So by definition of a span, \overrightarrow{v} can be expressed as a linear combination of the vectors of B.

2. The c_i such that $\overrightarrow{v} = \sum_{i=1}^k c_i \, \overrightarrow{x}_i$ are unique.

Suppose that $\overrightarrow{v} = \sum c_i \overrightarrow{x}_i = \sum \alpha_i \overrightarrow{x}_i$. Then $\overrightarrow{0} = \sum (c_i - \alpha_i) \overrightarrow{x}_i$. Then since $\{\overrightarrow{x}_1, \ldots, \overrightarrow{x}_k\}$ are linearly independent, we know for all i that $c_i - \alpha_i = 0$. Hence, $c_i = \alpha_i$ for each i.

Theorem 9.2: Let $k \in \mathbb{N} \cup \{0\}$. If $X = \operatorname{span}\{\overrightarrow{x}_1, \dots, \overrightarrow{x}_k\}$, then $\dim(X) \leq k$.

Proof:

Suppose for the sake of contradiction that there exists a linearly independent set $Q = \{ \overrightarrow{y}_1, \dots, \overrightarrow{y}_{k+1} \} \subset X$ which spans X. Then, define $S_0 = \{ \overrightarrow{x}_1, \dots, \overrightarrow{x}_k \}$ and note that S_0 spans X.

Now by induction, assume for $i \in \{0,1,\ldots,k-1\}$, that S_i contains the first i vectors of Q in addition to k-i vectors of S_0 , and that $\operatorname{span} S_i = X$. Then since S_i spans X, we know that $y_{i+1} \in X$ is in the span of S_i . So, letting $\overrightarrow{x}_{n_1},\ldots,\overrightarrow{x}_{n_{k-i}}$ be the elements from S_0 in S_i , we know that there exists scalars $a_1,\ldots,a_{i+1},b_1,\ldots,b_{k-i}\in\mathbb{R}$ where $a_{i+1}=1$ such that:

$$\sum_{j=1}^{i+1} a_j \, \overrightarrow{y}_j + \sum_{j=1}^{k-i} b_j \, \overrightarrow{x}_{n_j} = \, \overrightarrow{0}$$

If all $b_j=0$, then we have a contradiction. This is because $\{\vec{y}_1,\ldots,\vec{y}_{k+1}\}$ is assumed to be linearly independent. So, having all $b_j=0$ implies that:

$$\sum_{j=1}^{i+1} a_j \, \vec{y}_j = \sum_{j=1}^{i+1} a_j \, \vec{y}_j + \sum_{j=i+2}^{k+1} 0 \cdot \, \vec{y}_j = \, \vec{0}$$

In turn this means that all $a_j=0$, which contradicts that $a_{i+1}=1$.

So, not all $b_j=0$. This means that for some j we must have that \overrightarrow{x}_{n_j} is in the span of $(S_i\setminus\{\overrightarrow{x}_{n_j}\})\cup\{\overrightarrow{y}_{i+1}\}$. Call this set S_{i+1} . Clearly, S_{i+1} contains the first i+1 vectors of Q. Also:

$$\operatorname{span} S_{i+1} = \operatorname{span} (S_i \cup \{ \overrightarrow{y}_{i+1} \}) = \operatorname{span} S_i = X.$$

So S_{i+1} satisfies the same conditions S_i did.

Now we get to the contradiction. Using the above reasoning, we will eventually construct $S_k = \{ \overrightarrow{y}_1, \ldots, \overrightarrow{y}_k \}$ which still spans X. However, since $\overrightarrow{y}_{k+1} \in X$, that means that \overrightarrow{y}_{k+1} equals some linear combination of the other \overrightarrow{y} in Q. This contradicts that Q is linearly independent. \blacksquare

Corollary: If $B = \{ \vec{x}_1, \dots, \vec{x}_k \}$ is a basis for X, then $\dim(X) = k$.

Proof:

Since B is linearly independent, by definition $\dim(X) \geq k$. Meanwhile, since B spans X, we know by the above theorem that $\dim(X) \leq k$. So $\dim(X) = k$.

Theorem 9.3: Suppose X is a vector space and dim(X) = n. Then:

(A) For $E = \{\vec{x}_1, \dots, \vec{x}_n\} \subset X$, we have that $X = \operatorname{span} E$ if and only if E is linearly independent.

Proof:

First, assume E is linearly independent. Then, note that for any $\overrightarrow{y} \in X$, we must have that $E \cup \{\overrightarrow{y}\}$ is linearly dependent because $|E \cup \{\overrightarrow{y}\}| > \dim(X)$. So, there exists $c_1, \ldots, c_n, c_{n+1} \in \mathbb{R}$ such that at least one c_i is nonzero and:

$$\sum_{i=1}^{n} c_i \, \overrightarrow{x}_i + c_{n+1} \, \overrightarrow{y} = \, \overrightarrow{0}$$

Now if $c_{n+1}=0$, we have a contradiction because E is linearly independent. So, we conclude that $c_{n+1}\neq 0$. Thus, by rearranging terms we can express y as a linear combination of the vectors of E. Therefore, $\operatorname{span} E=X$ since y can be any vector in X.

Secondly, assume E is not linearly independent. Then for some $\overrightarrow{x}_i \in E$, we have that $\operatorname{span} E = \operatorname{span}(E \setminus \{\overrightarrow{x}_i\})$. However, $|E \setminus \{\overrightarrow{x}_i\}| = n-1$. So if $X = \operatorname{span} E$, then $\dim(X) \leq |E \setminus \{\overrightarrow{x}_i\}| = n-1$, which contradicts our assumption that $\dim(X) = n$. Hence, $X \neq \operatorname{span} E$.

(B) X has a basis and every basis of X consists of n vectors.

Proof:

By the definition of $\dim(X)$, we know that there exists a linearly independent set of n vectors. By the previous part of this theorem, we also know that that set spans X. So, it is a basis of X. Meanwhile, by the corollary to theorem 9.2, we know that the number of vectors in a basis of X equals the dimension of X. Hence, all bases of X must have n vectors.

(C) If $1 \leq m \leq n$ and $\{\overrightarrow{y}_1, \ldots, \overrightarrow{y}_m\} \subset X$ is linearly independent, then X has a basis that contains $\overrightarrow{y}_1, \ldots, \overrightarrow{y}_m$.

Proof:

Let $S_0 = \{\vec{x}_1, \dots, \vec{x}_n\}$ be a basis of X and $Q = \{\vec{y}_1, \dots, \vec{y}_m\}$. Then by the same induction which we used to prove theorem 9.2, we can construct a basis: S_m , of X which contains $\vec{y}_1, \dots, \vec{y}_m$.

Let X and Y be vector spaces. A map $\mathbf{A}: X \longrightarrow Y$ is <u>linear</u> if $\mathbf{A}(c_1 \overrightarrow{x}_1 + c_2 \overrightarrow{x}_2) = c_1 \mathbf{A}(\overrightarrow{x}_1) + c_2 \mathbf{A}(\overrightarrow{x}_2)$ for all $\overrightarrow{x}_1, \overrightarrow{x}_2 \in X$ and $c_1, c_2 \in \mathbb{R}$.

Observations:

1. A linear map sends $\vec{0}$ to $\vec{0}$. This is because:

$$\mathbf{A}(\vec{0}) = \mathbf{A}(\vec{v} - \vec{v}) = \mathbf{A}(\vec{v}) - \mathbf{A}(\vec{v}) = \vec{0}.$$

2. If $\mathbf{A}: X \longrightarrow Y$ is a linear map and $B = \{\overrightarrow{x}_1, \dots, \overrightarrow{x}_k\}$ is a basis of X, then $\mathbf{A}\left(\sum\limits_{i=1}^k (c_i \overrightarrow{x}_i)\right) = \sum\limits_{i=1}^k c_i \mathbf{A}(\overrightarrow{x}_i)$ for all $c_1, \dots, c_k \in \mathbb{R}$.

Given two vector spaces X and Y, we define L(X,Y) to be the set of all linear transformations from X into Y. Also, we shall abbreviate L(X,X) as L(X).

$$\mathcal{N}(\mathbf{A}) = \text{"null space / kernel of } \mathbf{A} \text{"} = \{ \overrightarrow{x} \in X \mid \mathbf{A}(\overrightarrow{x}) = \overrightarrow{0} \}.$$

$$\mathscr{R}(\mathbf{A}) = \text{"range of } \mathbf{A} \text{"} = \{ \overrightarrow{y} \in Y \mid \exists \overrightarrow{x} \in X \ s.t. \ \mathbf{A} \overrightarrow{x} = \overrightarrow{y} \}.$$

<u>Proposition</u>: For any linear map $\mathbf{A}: X \longrightarrow Y$, $\mathcal{N}(\mathbf{A})$ and $\mathcal{R}(\mathbf{A})$ are vector spaces.

Proof:

- Assume $\vec{x}_1, \vec{x}_2 \in \mathcal{N}(\mathbf{A}) \subset X$ and $c \in \mathbb{R}$. Then:
 - $\mathbf{A}(\overrightarrow{x}_1 + \overrightarrow{x}_2) = \mathbf{A}(\overrightarrow{x}_1) + \mathbf{A}(\overrightarrow{x}_2) = \overrightarrow{0} + \overrightarrow{0} = \overrightarrow{0}$, which means that $\overrightarrow{x}_1 + \overrightarrow{x}_2 \in \mathcal{N}(\mathbf{A})$.
 - $\circ \mathbf{A}(c\overrightarrow{x}_1) = c\mathbf{A}(\overrightarrow{x}_1) = c\overrightarrow{0} = \overrightarrow{0}. \text{ So } c\overrightarrow{x}_1 \in \mathscr{N}(\mathbf{A}).$

This shows that $\mathcal{N}(\mathbf{A})$ is a vector space.

- Assume $\vec{y}_1, \vec{y}_2 \in \mathcal{R}(\mathbf{A}) \subset Y$ and $c \in \mathbb{R}$. Then:
 - $\begin{array}{l} \circ \ \ \text{We know there exists} \ \overrightarrow{x}_1, \ \overrightarrow{x}_2 \in X \ \text{such that} \ \mathbf{A}(\overrightarrow{x}_1) = \ \overrightarrow{y}_1 \ \text{and} \\ \mathbf{A}(\overrightarrow{x}_2) = \ \overrightarrow{y}_2. \ \text{In turn,} \ \mathbf{A}(\overrightarrow{x}_1 + \overrightarrow{x}_2) = \mathbf{A}(\overrightarrow{x}_1) + \mathbf{A}(\overrightarrow{x}_2) = \ \overrightarrow{y}_1 + \ \overrightarrow{y}_2. \\ \text{So} \ \overrightarrow{y}_1 + \ \overrightarrow{y}_2 \in \mathscr{R}(\mathbf{A}). \end{array}$
 - \circ Now continue letting $\overrightarrow{x}_1 \in X$ be a vector such that $\mathbf{A}(\overrightarrow{x}_1) = \overrightarrow{y}_1$. Then $\mathbf{A}(c\overrightarrow{x}_1) = c\mathbf{A}(\overrightarrow{x}_1) = c\overrightarrow{y}_1$. So $c\overrightarrow{y}_1 \in \mathscr{R}(\mathbf{A})$.

This shows that $\mathcal{R}(\mathbf{A})$ is a vector space.

$$\operatorname{rk}(\mathbf{A}) = \text{"rank of } \mathbf{A} \text{"} = \dim(\mathscr{R}(\mathbf{A})).$$

$$\operatorname{null}(\mathbf{A}) = "\underline{\operatorname{nullity}} \text{ of } \mathbf{A}" = \dim(\mathscr{N}(\mathbf{A})).$$

Rank-Nullity Theorem: Given any $\mathbf{A} \in L(X,Y)$, we have that $\dim(X) = \mathrm{rk}(\mathbf{A}) + \mathrm{null}(\mathbf{A})$.

Proof:

Let
$$\dim(X) = n$$
.

 $\mathscr{N}(\mathbf{A})\subseteq X$ is a vector space. So pick a basis $\{\overrightarrow{v}_1,\ldots,\overrightarrow{v}_k\}$ for $\mathscr{N}(\mathbf{A})$ where $k=\mathrm{null}(\mathbf{A})\leq \dim(X)$. Then by theorem 9.3, choose $\overrightarrow{w}_1,\ldots,\overrightarrow{w}_{m-k}$ such that $\{\overrightarrow{v}_1,\ldots,\overrightarrow{v}_k,\overrightarrow{w}_1,\ldots,\overrightarrow{w}_{n-k}\}$ is a basis of X. Note that $\dim(X)=n$.

Claim: $B = {\mathbf{A}(\vec{w}_1), \dots, \mathbf{A}(\vec{w}_{n-k})}$ is a basis of $\mathcal{R}(\mathbf{A})$.

• $\mathbf{A}(\overrightarrow{v_i}) = \overrightarrow{0}$ for all $i \in \{1, \dots, k\}$. So:

$$\mathcal{R}(\mathbf{A}) = \operatorname{span}\{\mathbf{A}(\overrightarrow{v}_1), \dots, \mathbf{A}(\overrightarrow{v}_k), \mathbf{A}(\overrightarrow{w}_1), \dots, \mathbf{A}(\overrightarrow{w}_{n-k})\}$$
$$= \operatorname{span}\{\mathbf{A}(\overrightarrow{w}_1), \dots, \mathbf{A}(\overrightarrow{w}_{n-k})\} = \operatorname{span} B$$

• *B* is linearly independent.

To see this, note that:
$$\sum_{i=1}^{n-k} (c_i \mathbf{A}(\overrightarrow{w}_i)) = \overrightarrow{0} \Longrightarrow \mathbf{A} \left(\sum_{i=1}^{n-k} c_i \overrightarrow{w}_i \right) = \overrightarrow{0}$$

Since we picked each $\overrightarrow{w}_1,\ldots,\overrightarrow{w}_{n-k}\in B$ so that they were not in $\mathcal{N}(A)$, we know that any vector in the span of B is not mapped to 0 by \mathbf{A} unless it is the zero vector. So

$$\sum_{i=1}^{n-k} c_i \vec{w}_i = \vec{0}$$

And since all the \vec{w}_i are linearly independent, all constants c_i equal 0.

So
$$\operatorname{rk}(\mathbf{A}) = n - k = \dim(X) - \operatorname{null}(\mathbf{A}).$$

Lecture 2: 4/4/2024

<u>Proposition</u>: Given $\mathbf{A} \in L(X,Y)$, then:

• **A** is injective if and only if $null(\mathbf{A}) = 0$.

Proof:

(\Longrightarrow) If ${\bf A}$ is injective, then since ${\bf A}(\vec{0})=\vec{0}$, we have that any vector $\vec{v}\neq\vec{0}$ is not in $\mathscr{N}({\bf A})$. So $\mathscr{N}({\bf A})=\{\vec{0}\}$, meaning $\operatorname{null}({\bf A})=0$.

(\iff) If $\operatorname{null}(\mathbf{A})=0$, then $\mathbf{A}(\overrightarrow{v})=\overrightarrow{0} \implies \overrightarrow{v}=\overrightarrow{0}$. So now assume $\mathbf{A}(\overrightarrow{v})=\mathbf{A}(\overrightarrow{u})$. Then $\mathbf{A}(\overrightarrow{v}-\overrightarrow{u})=\overrightarrow{0}$, meaning $\overrightarrow{v}=\overrightarrow{u}$. Hence \mathbf{A} is injective.

• A is surjective if and only if rk(A) = dim Y.

Proof:

(\Longrightarrow) If ${\bf A}$ is surjective then ${\mathscr R}({\bf A})=Y.$ So we automatically have that ${\rm rk}({\bf A})=\dim(Y)$

(\longleftarrow) If $\mathrm{rk}(\mathbf{A}) = \dim(Y)$, then there exists a linearly independent set of vectors $B \subset \mathscr{R}(\mathbf{A})$ containing $\dim(y)$ many vectors and spanning $\mathscr{R}(\mathbf{A})$. Then by theorem 9.3, since $B \subset \mathscr{R}(\mathbf{A}) \subseteq Y$, we know $\mathrm{span}\, B = Y$. So, $\mathscr{R}(\mathbf{A}) = Y$, meaning \mathbf{A} is surjective.

<u>Corollary</u>: Let $A \in L(X)$. Then A is bijective if and only if null(A) = 0.

Proof: (let $A: X \longrightarrow X$ be a linear map)

 (\Longrightarrow) If **A** is bijective, then automatically **A** is injective. So $\operatorname{null}(\mathbf{A})=0$ by the previous proposition.

(\Leftarrow) If $\operatorname{null}(\mathbf{A}) = 0$, then by the rank-nullity theorem, we know that $\operatorname{rk}(\mathbf{A}) = \dim(X)$. Thus \mathbf{A} is both injective and surjective, meaning \mathbf{A} is bijective.

For $\mathbf{A} \in L(X)$, when $\operatorname{null}(\mathbf{A}) = 0$, we call \mathbf{A} invertible and define $\mathbf{A}^{-1} : X \longrightarrow X$ by $\mathbf{A}^{-1}(\mathbf{A}(\overrightarrow{x})) = \overrightarrow{x}$ for all $\overrightarrow{x} \in X$.

Because $\bf A$ must be a bijective set function, we know that $\bf A^{-1}$ must also be a right-inverse of $\bf A$, meaning $\bf A(\bf A^{-1}(\vec x))=\vec x$.

Additionally, consider any $\vec{x}_1, \vec{x}_2 \in X$. Then let $\vec{x}_1' = \mathbf{A}^{-1}(\vec{x}_1)$ and $\vec{x}_2' = \mathbf{A}^{-1}(\vec{x}_2)$. Then since \mathbf{A} is a linear mapping, we know that for any $c_1, c_2 \in \mathbb{R}$:

$$\mathbf{A}(c_1\vec{x}_1' + c_2\vec{x}_2') = c_1\mathbf{A}(\mathbf{A}^{-1}(\vec{x}_1)) + c_2\mathbf{A}(\mathbf{A}^{-1}(\vec{x}_2)) = c_1\vec{x}_1 + c_2\vec{x}_2$$

So: $\mathbf{A}^{-1}(c_1\vec{x}_1 + c_2\vec{x}_2) = c_1\vec{x}_1' + c_2\vec{x}_2' = c_1\mathbf{A}^{-1}(\vec{x}_1) + c_2\mathbf{A}^{-1}(\vec{x}_2)$. Hence, we've shown that \mathbf{A}^{-1} is a linear mapping, meaning that $\mathbf{A}^{-1} \in L(X)$.

Let $\mathbf{A} \in L(X,Y)$ and $\mathbf{B} \in L(Y,Z)$. Then we define $\mathbf{B}\mathbf{A}: X \longrightarrow Z$ by the rule that $\overrightarrow{x} \mapsto \mathbf{B}(\mathbf{A}(\overrightarrow{x}))$.

We can trivially show that **BA** is a linear mapping. Consider any $\vec{x}_1, \vec{x}_2 \in X$ and $c_1, c_2 \in \mathbb{R}$. Then:

$$\mathbf{B}\mathbf{A}(c_1 \, \overrightarrow{x}_1 + c_2 \, \overrightarrow{x}_2) = \mathbf{B}(c_1 \mathbf{A}(\, \overrightarrow{x}_1) + c_2 \mathbf{A}(\, \overrightarrow{x}_2))$$

$$= c_1 \mathbf{B}(\mathbf{A}(\, \overrightarrow{x}_1)) + c_2 \mathbf{B}(\mathbf{A}(\, \overrightarrow{x}_2))$$

$$= c_1 \mathbf{B}\mathbf{A}(\, \overrightarrow{x}_1) + c_2 \mathbf{B}\mathbf{A}(\, \overrightarrow{x}_2)$$

This means that $\mathbf{BA} \in L(X, Z)$.

Let $\mathbf{A}, \mathbf{B} \in L(X, Y)$ and $c_1, c_2 \in \mathbb{R}$. Then we define $(c_1\mathbf{A} + c_2\mathbf{B}) : X \longrightarrow Y$ by the rule: $\overrightarrow{x} \mapsto c_1\mathbf{A}(\overrightarrow{x}) + c_2\mathbf{B}(\overrightarrow{x})$.

It is even more trivial to show that $(c_1\mathbf{A} + c_2\mathbf{B})$ is a linear map.

Let $\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$. We define the <u>norm</u> of \mathbf{A} as: $\|\mathbf{A}\| = \sup \{\|\mathbf{A}(\overrightarrow{x})\| \mid \overrightarrow{x} \in \mathbb{R}^n \text{ and } \|\overrightarrow{x}\| \leq 1\}.$

Throughout this section, we shall prove that $\|\cdot\|:L(\mathbb{R}^n,\mathbb{R}^m)\longrightarrow\mathbb{R}$ is well-defined and fulfills the properties of a general norm function.

<u>Proposition</u>: If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then ||A|| exists and is finite.

Proof:

Let $\{e_1, \ldots, e_n\}$ be the standard basis in \mathbb{R}^n . Then for any $\vec{x} \in \mathbb{R}^n$, there are unique $c_1, \ldots, c_n \in \mathbb{R}$ such that $\vec{x} = c_1 e_1 + \ldots + c_n e_n$.

Since we are working with the standard basis, we know: $\|\vec{x}\| = \sqrt{\sum_{i=1}^{n} c_i^2}$.

Thus, for $\|\vec{x}\| \le 1$, we must have that $|c_i| \le 1$ for each c_i . This means:

$$\|\mathbf{A}(\vec{x})\| = \left\|\sum_{i=1}^{n} c_i \mathbf{A}(e_i)\right\| \le \sum_{i=1}^{n} \|c_i \mathbf{A}(e_i)\| = \sum_{i=1}^{n} |c_i| \|\mathbf{A}(e_i)\| \le \sum_{i=1}^{n} \|\mathbf{A}(e_i)\|$$

Importantly, we must have that $\sum_{i=1}^{n} \|\mathbf{A}(e_i)\|$ is finite. Additionally, it is an upper bound to the set: $\{\|\mathbf{A}(\overrightarrow{x})\| \mid \overrightarrow{x} \in \mathbb{R}^n \text{ and } \|\overrightarrow{x}\| \leq 1\} \subseteq \mathbb{R}$.

So, we showed that the above set is bounded above. Also, the above set is nonempty because it must contain $\|\vec{0}\| = 0$. Thus by the least upper bound property of \mathbb{R} , we know that the supremum of this set exists in \mathbb{R} .

Hence, $\|\mathbf{A}\|$ exists and is finite.

Side note, the above proof also shows that $\|\mathbf{A}\| \geq 0$.

 $\underline{\text{Lemma}} \text{: For } \mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m) \text{ and } \overrightarrow{x} \in \mathbb{R}^n \text{, we have that } \|\mathbf{A}(\overrightarrow{x})\| \leq \|\mathbf{A}\| \|\overrightarrow{x}\|.$

Proof:

Case 1: $\vec{x} \neq \vec{0}$.

Then since $\|\vec{x}\| \neq 0$, we can say that:

$$\|\mathbf{A}(\vec{x})\| = \|\mathbf{A}(\vec{x})\| \frac{\vec{x}}{\|\vec{x}\|} \|\mathbf{A}(\vec{x})\| \frac{\vec{x}}{\|\vec{x}\|} \|\mathbf{A}(\vec{x})\| = \|\mathbf{A}(\vec{x})\| \|\mathbf{A}($$

Now
$$\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|} \in \mathbb{R}^n$$
 and $\left\|\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}\right\| = 1$. So, $\left\|\mathbf{A}\left(\frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}\right)\right\| \|\overrightarrow{x}\| \le \|\mathbf{A}\| \|\overrightarrow{x}\|$

Case 2:
$$\vec{x} = \vec{0}$$
.

Then trivially
$$\|\mathbf{A}(\overrightarrow{x})\| = \|\mathbf{A}(\overrightarrow{0})\| = 0 = \|\mathbf{A}\| \|\overrightarrow{0}\| = \|\mathbf{A}\| \|\overrightarrow{x}\|$$

<u>Proposition</u>: If $\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $0 \le \|\mathbf{A}\|$. Also $\|\mathbf{A}\| = 0$ if and only if \mathbf{A} is the unique function mapping all of \mathbb{R}^n to $\overrightarrow{0}$.

Proof:

We already showed previously that $\|\mathbf{A}\| \geq 0$. So, it now suffices to show that $\|\mathbf{A}\| = 0 \iff \mathcal{N}(\mathbf{A}) = \mathbb{R}^n$.

(\Longrightarrow) Assume that $\mathcal{N}(\mathbf{A}) \neq \mathbb{R}^n$. Then there exists $\overrightarrow{x} \in \mathbb{R}^n$ such that $\mathbf{A}(\overrightarrow{x}) \neq \overrightarrow{0}$. Since \overrightarrow{x} can't be $\overrightarrow{0}$, consider the vector $\widehat{x} = \frac{\overrightarrow{x}}{\|\overrightarrow{x}\|}$. By the linearity of \mathbf{A} , we know $\mathbf{A}(\widehat{x}) = \frac{1}{\|\overrightarrow{x}\|} \mathbf{A}(\overrightarrow{x}) \neq \overrightarrow{0}$. So, $\|\mathbf{A}(\widehat{x})\| > 0$. But $\|\mathbf{A}(\widehat{x})\|$ is in the set that $\|\mathbf{A}\|$ is a supremum of, which means that $\|\mathbf{A}\| \geq \|\mathbf{A}(\widehat{x})\| > 0$. Or in other words, $\|\mathbf{A}\| \neq 0$.

(
$$\Leftarrow$$
) Assume that $\mathcal{N}(\mathbf{A})=\mathbb{R}^n$. Then, $\sup\{\|\mathbf{A}(\overrightarrow{x})\|\mid \overrightarrow{x}\in\mathbb{R}^n \text{ and } \|\overrightarrow{x}\|\leq 1\}=\sup\{0\}=0$

<u>Corollary</u>: Given $\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$, we have that \mathbf{A} is uniformly continuous.

Proof:

Case 1: $\|\mathbf{A}\| \neq 0$, meaning we can divide by $\|\mathbf{A}\|$. By the previous proposition, $\|\mathbf{A}(\overrightarrow{x}) - \mathbf{A}(\overrightarrow{y})\| \leq \|\mathbf{A}\| \|\overrightarrow{x} - \overrightarrow{y}\|$ for all $\overrightarrow{x}, \overrightarrow{y} \in \mathbb{R}^n$. Hence, for any $\varepsilon > 0$, if we make $\|\overrightarrow{x} - \overrightarrow{y}\| < \frac{\varepsilon}{\|\mathbf{A}\|}$, then $\|\mathbf{A}(\overrightarrow{x}) - \mathbf{A}(\overrightarrow{y})\| < \varepsilon$.

Case 2: $\|\mathbf{A}\| = 0$.

Then $\bf A$ is a constant function, making it automatically uniformly continuous.

<u>Subcorollary</u>: Given $\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$. there exists $\vec{x} \in \mathbb{R}^n$ with $\|\vec{x}\| \leq 1$ such that $\|\mathbf{A}(\vec{x})\| = \|\mathbf{A}\|$.

Proof:

Let $S = \{ \overrightarrow{x} \in \mathbb{R}^n \mid ||\overrightarrow{x}|| \le 1 \}$ and consider the restriction $\mathbf{A}|_S$.

Since S is a closed and bounded subset of \mathbb{R}^n , we know that S is compact by the Heine-Borel theorem (see proposition 28 in Math 140A notes). This combined with the fact that $\mathbf{A}|_S$ is still continuous means that by the extreme value theorem, there is $\overrightarrow{x} \in S$ with:

$$\mathbf{A}(\overrightarrow{x}) = \mathbf{A}|_{S}(\overrightarrow{x}) = \sup\{\|\mathbf{A}(\overrightarrow{x})\| \mid \overrightarrow{x} \in \mathbb{R}^{n} \text{ and } \|\overrightarrow{x}\| \leq 1\}.$$

<u>Proposition</u>: If $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $||A + B|| \le ||A|| + ||B||$.

Proof:

Let
$$\overrightarrow{x} \in \mathbb{R}^n$$
 be a vector such that $\|\overrightarrow{x}\| \le 1$ and $\|\mathbf{A}(\overrightarrow{x})\| = \|\mathbf{A}\|$. Then: $\|\mathbf{A} + \mathbf{B}\| = \|(\mathbf{A} + \mathbf{B})(\overrightarrow{x})\| = \|\mathbf{A}(\overrightarrow{x}) + \mathbf{B}(\overrightarrow{x})\|$ $\leq \|\mathbf{A}(\overrightarrow{x})\| + \|\mathbf{B}(\overrightarrow{x})\| \leq \|\mathbf{A}\| + \|\mathbf{B}\|$

<u>Proposition</u>: If $\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $c \in \mathbb{R}$, then $||c\mathbf{A}|| = |c|||\mathbf{A}||$.

Proof:

Pick
$$\overrightarrow{x} \in \mathbb{R}^n$$
 satisfying $\|\overrightarrow{x}\| \le 1$ and $\|\mathbf{A}(\overrightarrow{x})\| = \|\mathbf{A}\|$. Then: $|c|\|\mathbf{A}\| = |c|\|\mathbf{A}(\overrightarrow{x})\| = \|c\mathbf{A}(\overrightarrow{x})\| = \|(c\mathbf{A})(\overrightarrow{x})\| \le \|c\mathbf{A}\|$.

Next, pick
$$\overrightarrow{y} \in \mathbb{R}^n$$
 satisfying $\|\overrightarrow{y}\| \le 1$ and $\|(c\mathbf{A})(\overrightarrow{x})\| = \|c\mathbf{A}\|$. Then: $\|c\mathbf{A}\| = \|(c\mathbf{A})(\overrightarrow{y})\| = \|c\mathbf{A}(\overrightarrow{y})\| = |c|\|\mathbf{A}\overrightarrow{y}\| \le |c|\|\mathbf{A}\|$.

Specifically because of the four propositions above, we have shown that $\|\cdot\|:L(\mathbb{R}^n,\mathbb{R}^m)\longrightarrow\mathbb{R}$ is well-defined and a valid norm. Consequently, by defining $d(\mathbf{A},\mathbf{B})=\|\mathbf{A}-\mathbf{B}\|$ for all $\mathbf{A},\mathbf{B}\in L(\mathbb{R}^n,\mathbb{R}^m)$, we can say that $L(\mathbb{R}^n,\mathbb{R}^m)$ is a metric space.

Before moving on, here is another corollary of the above statements.

Corollary: If
$$\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$$
 and $\mathbf{B} \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $\|\mathbf{B}\mathbf{A}\| \leq \|\mathbf{B}\| \|\mathbf{A}\|$.

Proof:

Pick
$$\overrightarrow{x} \in \mathbb{R}^n$$
 satisfying $\|\overrightarrow{x}\| \le 1$ and $\|(\mathbf{B}\mathbf{A})(\overrightarrow{x})\| = \|\mathbf{B}\mathbf{A}\|$. Then: $\|\mathbf{B}\mathbf{A}\| = \|(\mathbf{B}\mathbf{A})(\overrightarrow{x})\| = \|\mathbf{B}(\mathbf{A}(\overrightarrow{x}))\| \le \|\mathbf{B}\|\|\mathbf{A}(\overrightarrow{x})\| \le \|\mathbf{B}\|\|\mathbf{A}\|$.

Theorem 9.8: Let $\Omega \subset L(\mathbb{R}^n)$ be the set of all invertible linear mappings on \mathbb{R}^n .

(A) If
$$\mathbf{A}\in\Omega$$
, $\mathbf{B}\in L(\mathbb{R}^n)$, and $\|\mathbf{B}-\mathbf{A}\|<\frac{1}{\|\mathbf{A}^{-1}\|}$, then $\mathbf{B}\in\Omega$.

Proof:

Pick $\overrightarrow{x} \in \mathbb{R}^n$ such that $\|\overrightarrow{x}\| \leq 1$. Then:

$$\begin{split} \|\mathbf{A}(\overrightarrow{x})\| &= \|(\mathbf{A} - \mathbf{B} + \mathbf{B})(\overrightarrow{x})\| \\ &\leq \|(\mathbf{A} - \mathbf{B})(\overrightarrow{x})\| + \|\mathbf{B}(\overrightarrow{x})\| \\ &\leq \|\mathbf{A} - \mathbf{B}\| \|\overrightarrow{x}\| + \|\mathbf{B}(\overrightarrow{x})\| = \|\mathbf{B} - \mathbf{A}\| \|\overrightarrow{x}\| + \|\mathbf{B}(\overrightarrow{x})\| \end{split}$$

Meanwhile, note that $\|\mathbf{A}^{-1}\| \neq 0$. We know this because \mathbf{A}^{-1} must be invertible (because $\mathcal{N}(\mathbf{A}^{-1}) = \{ \vec{0} \}$) and the one linear transformation in $L(\mathbb{R}^n)$ with norm 0 is not invertible. So:

$$\tfrac{\parallel\overrightarrow{x}\parallel}{\parallel\mathbf{A}^{-1}\parallel} = \tfrac{\parallel\mathbf{A}^{-1}\mathbf{A}(\overrightarrow{x})\parallel}{\parallel\mathbf{A}^{-1}\parallel} \leq \tfrac{\parallel\mathbf{A}^{-1}\parallel\parallel\mathbf{A}(\overrightarrow{x})\parallel}{\parallel\mathbf{A}^{-1}\parallel} = \|\mathbf{A}(\overrightarrow{x})\|$$

Hence, $\frac{\|\overrightarrow{x}\|}{\|\mathbf{A}^{-1}\|} \leq \|\mathbf{B} - \mathbf{A}\| \|\overrightarrow{x}\| + \|\mathbf{B}(\overrightarrow{x})\|$. By rearranging terms, we get this expression: $\left(\frac{1}{\|\mathbf{A}^{-1}\|} - \|\mathbf{B} - \mathbf{A}\|\right) \|\overrightarrow{x}\| \leq \|\mathbf{B}(\overrightarrow{x})\|$.

Now, note that if $\|\mathbf{B}(\overrightarrow{x})\| = 0$ but $\overrightarrow{x} \neq \overrightarrow{0}$, then we must have that: $\frac{1}{\|\mathbf{A}^{-1}\|}-\|\mathbf{B}-\mathbf{A}\| \leq 0$. Or in other words, $\|\mathbf{B}-\mathbf{A}\| \geq \frac{1}{\|\mathbf{A}^{-1}\|}$. So, if $\|\mathbf{B} - \mathbf{A}\| < \frac{1}{\|\mathbf{A}^{-1}\|}$, then $\|\mathbf{B}(\overrightarrow{x})\| = 0$ only when $\overrightarrow{x} = \overrightarrow{0}$. Hence, $null(\mathbf{B}) = 0$ and \mathbf{B} is invertible.

(B) Ω is an open subset of $L(\mathbb{R}^n)$, and the mapping over Ω with the rule: $\mathbf{A}\mapsto \mathbf{A}^{-1}$, is continuous.

Proof:

Firstly, by part A we know that for any $\mathbf{A} \in \Omega$, if $r = \frac{1}{\|\mathbf{A}^{-1}\|}$, then $B_r(\mathbf{A}) \subseteq \Omega$. So, Ω is an open set in the metric space $L(\mathbb{R}^n)$.

Now let $A, B \in \Omega$ and recall from part A that:

$$\left(\frac{1}{\|\mathbf{A}^{-1}\|} - \|\mathbf{B} - \mathbf{A}\|\right) \|\overrightarrow{x}\| \le \|\mathbf{B}(\overrightarrow{x})\|.$$

Since we know ${\bf B}^{-1}$ exists, set $\vec{x} = {\bf B}^{-1}(\vec{y})$. Then the above expression becomes: $\left(\frac{1}{\|\mathbf{A}^{-1}\|} - \|\mathbf{B} - \mathbf{A}\|\right) \|\mathbf{B}^{-1}(\vec{y})\| \le \|\vec{y}\|.$ Because we are interested in ${\bf B}$ close to ${\bf A}$, we can assume that $\|\mathbf{B}-\mathbf{A}\|<rac{1}{\|\mathbf{A}^{-1}\|}.$ Thus it is safe to divide by $rac{1}{\|\mathbf{A}^{-1}\|}-\|\mathbf{B}-\mathbf{A}\|.$ So, setting $\vec{y} \in \mathbb{R}^n$ to be the vector satisfying $\|\vec{y}\| \leq 1$ and $\|{\bf B}^{-1}(\,\overline{y})\| = \|{\bf B}^{-1}\|$, we have that:

$$\|\mathbf{B}^{-1}\| = \|\mathbf{B}^{-1}(\overrightarrow{y})\| \le \frac{\|\overrightarrow{y}\|}{\frac{1}{\|\mathbf{A}^{-1}\|} - \|\mathbf{B} - \mathbf{A}\|} \le \frac{1}{\frac{1}{\|\mathbf{A}^{-1}\|} - \|\mathbf{B} - \mathbf{A}\|} = \frac{\|\mathbf{A}^{-1}\|}{1 - \|\mathbf{A}^{-1}\| \|\mathbf{B} - \mathbf{A}\|}$$

Lemma: Given $\mathbf{A} \in L(Z, W)$, $\mathbf{B}, \mathbf{C} \in L(Y, Z)$, and $\mathbf{D} \in L(X, Y)$, we have that A(B+C) = AB + AC and (B+C)D = BD + CD.

Proof:

$$\circ \mathbf{A}((\mathbf{B} + \mathbf{C})(\overrightarrow{v})) = \mathbf{A}(\mathbf{B}(\overrightarrow{v}) + \mathbf{C}(\overrightarrow{v})) = \mathbf{A}(\mathbf{B}(\overrightarrow{v})) + \mathbf{A}(\mathbf{C}(\overrightarrow{v}))$$

$$\circ (\mathbf{B} + \mathbf{C})(\mathbf{D}(\overrightarrow{v})) = \mathbf{B}(\mathbf{D}(\overrightarrow{v})) + \mathbf{C}(\mathbf{D}(\overrightarrow{v}))$$

Based on the above lemma, we have that $\mathbf{B}^{-1} - \mathbf{A}^{-1} = \mathbf{B}^{-1}(\mathbf{A} - \mathbf{B})\mathbf{A}^{-1}$. So:

$$0 \le \|\mathbf{B}^{-1} - \mathbf{A}^{-1}\| = \|\mathbf{B}^{-1}(\mathbf{A} - \mathbf{B})\mathbf{A}^{-1}\|$$

$$\le \|\mathbf{B}^{-1}\|\|(\mathbf{A} - \mathbf{B})\|\|\mathbf{A}^{-1}\| \le \frac{\|\mathbf{A}^{-1}\|^2}{1 - \|\mathbf{A}^{-1}\|\|\mathbf{B} - \mathbf{A}\|}\|\mathbf{B} - \mathbf{A}\|$$

Finally, assume $\mathbf{A} \in \Omega'$. This is fine because the mapping is automatically continuous at \mathbf{A} if $\mathbf{A} \notin \Omega'$. Then we have that:

$$\lim_{\|\mathbf{B} - \mathbf{A}\| \to 0} \left(\frac{\|\mathbf{A}^{-1}\|^2}{1 - \|\mathbf{A}^{-1}\| \|\mathbf{B} - \mathbf{A}\|} \|\mathbf{B} - \mathbf{A}\| \right) = \|\mathbf{A}^{-1}\|^2 \cdot 0 = 0.$$

So,
$$0 \le \lim_{\|\mathbf{B} - \mathbf{A}\| \to 0} (\|\mathbf{B}^{-1} - \mathbf{A}^{-1}\|) \le 0.$$

This means that
$$\|\mathbf{B}^{-1}-\mathbf{A}^{-1}\|\to 0$$
 as $\|\mathbf{B}-\mathbf{A}\|\to 0$. Or in other words:
$$\lim_{\mathbf{B}\to\mathbf{A}}(\mathbf{B}^{-1})=\mathbf{A}^{-1}.\ \blacksquare$$

Lecture 3: 4/9/2024