Лабораторная работа № 5 Интерполяция Лагранжа

Вычисление интерполяционного полинома Лагранжа

Определение 1 (интерполяционного полинома Лагранжа и сеточного полинома). Пусть на отрезке [a;b] задана сетка $A = \langle \tau_0, \tau_1, ..., \tau_k \rangle$, где $\tau_0, \tau_1, ..., \tau_k \in [a;b]$ — её узлы, т.е $a \leq \tau_0 < \tau_1 < ... < \tau_k \leq b$. Кроме того, зафиксирована A-сеточная функция $f_A : A \to \mathbb{R}$, обозначаемая далее вектором $\mathbf{y} = [y_0, y_1, ..., y_k] \in \mathbb{R}^{k+1}(A)$, где $y_0 = f_A(\tau_0), y_1 = f_A(\tau_1), ..., y_k = f_A(\tau_k)$ и $\mathbb{R}^{k+1}(A)$ — нормированное пространство A-сеточных функций с чебышёвской нормой $\| \bullet \|$, для которой $\| \mathbf{y} \| = \max\{|y_0|, |y_1|, ..., |y_k|\}$).

Полином $L_k(\tau)$, определённый на отрезке [a;b], для которого выполняются равенства: $L_k(\tau_0) = y_0 = f_A(\tau_0), L_k(\tau_1) = y_1 = f_A(\tau_1), ..., L_k(\tau_k) = y_k = f_A(\tau_k)$, — называется интерполяционным полиномом Лагранжа для A-сеточной функции $y \in \mathbb{R}^{k+1}(A)$.

Полином $\Lambda_A(\tau) = (\tau - \tau_0) \cdot (\tau - \tau_1) \cdot ... \cdot (\tau - \tau_k)$, определённый на отрезке [a;b], называется A-сеточным полиномом.

Теорема 1 (об аналитическом виде интерполяционного полинома Лагранжа). Интерполяционный полином Лагранжа $L_k = L(A; {}^{\flat}y)$ для A-сеточной функции ${}^{\flat}y \in {}^{\flat}\underline{\mathbb{R}}^{k+1}(A)$ – единственен и имеет аналитический вид:

$$L_k(\tau) = \sum_{i=0}^k \frac{(\tau - \tau_0) \cdot \dots \cdot (\tau - \tau_{i-1}) \cdot (\tau - \tau_{i+1}) \cdot \dots \cdot (\tau - \tau_k)}{(\tau_i - \tau_0) \cdot \dots \cdot (\tau_i - \tau_{i-1}) \cdot (\tau_i - \tau_{i+1}) \cdot \dots \cdot (\tau_i - \tau_k)} y_i = \sum_{i=0}^k \frac{\Lambda_A(\tau)}{(\tau - \tau_i) \Lambda'_A(\tau_i)} y_i. \blacktriangleright$$

Определение 2 (сеточного отображения и остатка интерполяции Лагранжа). Сетка $A = \langle \tau_0, \tau_1, ..., \tau_k \rangle$ отрезка [a;b] определяет A-сеточное отображение $\hat{A}: C([a;b],\mathbb{R}) \to {}^{>} \underline{\mathbb{R}}^{k+1}(A)$, для которого $\hat{A}(f) = [f(\tau_0), f(\tau_1), ..., f(\tau_k)] \in {}^{>} \underline{\mathbb{R}}^{k+1}(A)$, если $f \in C([a;b],\mathbb{R})$. Кроме того, функция $Rest_A(\tau) = f(\tau) - L_k(\tau)$, где $L_k(\tau)$ — интерполяционный полином Лагранжа для A-сеточной функции $\hat{A}(f) \in {}^{>} \underline{\mathbb{R}}^{k+1}(A)$, называется остатком A-интерполяции Лагранжа для функции $f \in \underline{C}([a;b],\mathbb{R})$ на отрезке [a;b]. ▶

Теорема 2 (об остатке интерполяции Лагранжа в форме Коши). Если $f \in \underline{C}^{(k+1)}([a;b],\underline{\mathbb{R}})$, то в обозначениях *определения 4.2* для любой точки $\tau_* \in [a;b]$ остаток A-интерполяции Лагранжа $Rest_A(\tau) = f(\tau) - L_k(\tau)$ представим e форме Коши:

$$Rest_A(\tau_*) = f^{(k+1)}(\xi(\tau_*)) \cdot \frac{\Lambda_A(\tau_*)}{(k+1)!},$$

где $\xi(\tau_*) \in (a;b)$ — некоторая точка, зависящая от точки $\tau_* \in [a;b]$. Поэтому для чебышевской нормы $\|Rest_A\|$ в пространстве $\underline{C}^{(k+1)}([a;b],\underline{\mathbb{R}})$ справедливо неравенство:

$$\left\| Rest_A \right\| \le \frac{\left\| f^{(k+1)} \right\|}{(k+1)!} \cdot \left\| \Lambda_A \right\|. \blacktriangleright \tag{1}$$

Определение 3 (уклонения функции от нуля). Если $h \in \underline{C}([a;b],\underline{\mathbb{R}})$, то значение чебышевской нормы $||h|| = \max\{|h(\tau)| : \tau \in [a;b]\}$ называется уклонением функции h от нуля на отрезке [a;b].

Замечание 1 (об остатке интерполяции Лагранжа). Согласно форме Коши (1) остатка интерполяции Лагранжа абсолютная погрешность такой интерполяции для произвольной (k+1)-гладкой на отрезке [a;b] функции лимитируется только абсолютной погрешностью сеточного полинома Λ_{Δ} . Поэтому естественно возникает проблема оптимального расположения узлов сетки $A = \langle \tau_0, \tau_1, ..., \tau_k \rangle$, которое обеспечивало бы минимальное уклонение от нуля на отрезке [a;b] A-сеточного полинома Λ_A .

Теорема 3 (об оптимальном выборе схемы сеток для задачи интерполяции Лагранжа). Для задачи интерполяции Лагранжа на сетке $A = \langle \tau_0, \tau_1, ..., \tau_k \rangle \subset [a;b]$ в классе всех гладких на отрезке [a;b] функций минимальное уклонение от нуля сеточного полинома Λ_A будет минимальным, если использовать чебышевскую схему сеток:

$$A = \langle \tau_j = \frac{a+b}{2} - \frac{b-a}{2} \cdot \cos \frac{(2j+1)\pi}{2(k+1)} : j = \overline{0,k} \rangle.$$

Если $f\in\underline{C}^{(k+1)}([a;b],\underline{\mathbb{R}})$, то для остатка $\mathit{Rest}_A(\tau)=f(\tau)-L_{\underline{k}}(\tau)$ такой интерполяции Лагранжа функции справедлива оценка:

$$||Rest_A|| \le ||f^{(k+1)}|| \cdot \frac{1}{(k+1)!2^k}|.$$

Теорема 4 (Чебышёва). Пусть для гладкой функции $f \in \underline{C}^{(1)}([a;b],\underline{\mathbb{R}})$ на отрезке [a;b]задана схема чебышёвских сеток:

$$A_{(\bullet)} = (A_k = \langle \tau_j = \frac{a+b}{2} - \frac{b-a}{2} \cdot \cos \frac{(2j+1)\pi}{2(k+1)} : j = \overline{0,k} \rangle : k \in \mathbb{N}).$$

Тогда $L_{k} = L(A_{k}; \hat{A}_{k}(f)) \xrightarrow[k \to +\infty]{} f$.

номер фамилии студента в журнале, n – номер группы), используя равномерную сетку с 21 узлом, вычислить интерполяционный полином Лагранжа. Используя равномерную сетку с 41 узлом, представить графики функции f и вычисленного (с 21 равномерными узлами) интерполяционного полинома Лагранжа. Прокомментировать результаты интерполяции.

Для гладкой на отрезке [-1;1] функции f, используя чебышевскую сетку с 21 узлом, вычислить интерполяционный полином Лагранжа. Используя равномерную сетку с 41 узлом, представить графики функции f и вычисленного (с 21 чебышевскими узлами) интерполяционного полинома Лагранжа.

Прокомментировать результаты интерполяций с равномерными и чебышевскими узлами. ▶