TERMIN 5 - zadaci za samostalan rad

Zadatak 1.

Ispitati da li postoji i ako postoji odrediti matricu $A \in \mathcal{M}_3(\mathbb{R})$ takvu da je:

- a) matrica A invertibilna, a njen prostor kolona neka ravan;
- b) prostor kolona matrice A ravan x + y + z = 0.

* * *

Zadatak 2.

Ispitati da li postoji i ako postoji odrediti matricu A takvu da je:

a)
$$C(A) = Lin \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
 i $R(A) = C(A^T) = Lin \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$;

b)
$$C(A) = Lin \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
 i $R(A) = C(A^T) = Lin \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$.

* * *

Zadatak 3.

Neka je $\mathcal{A}: V_3 \to V_3$ linearno preslikavanje takvo da je $\mathcal{A}\left(\overrightarrow{i}\right) = \overrightarrow{j}, \mathcal{A}\left(\overrightarrow{j}\right) = \overrightarrow{k}$ i $\mathcal{A}\left(\overrightarrow{k}\right) = \overrightarrow{i}$. Ne određujući matricu A tog preslikavanja, dokazati da je $A^3 = I$.

* * *

Zadatak 4.

Neka je $\mathcal{R}: \mathbb{R}^3 \to \mathbb{R}^3$ refleksija u odnosu na ravan $\pi: x+2y+3z=0$. Odrediti matricu R operatora \mathcal{R} u odnosu na standardnu bazu.

* * *

Zadatak 5.

Neka je $\mathcal{P}_{\overrightarrow{a}}: \mathbb{R}^3 \to \mathbb{R}^3$ ortogonalno projektovanje na pravu određenu vektorom $\overrightarrow{a} = (2, 1, 2)$. Odrediti matricu P_a preslikavanja $\mathcal{P}_{\overrightarrow{a}}$ u odnosu na standardnu bazu prostora \mathbb{R}^3 .

Zadatak 6.

Dokazati da za svaku matricu $A \in \mathcal{M}_n$ važi:

- a) $Ker(A) \subseteq Ker(A^2)$;
- b) $Ker(A) = Ker(A^2)$, ako je matrica A regularna.

Zadatak 7.

Za svako od sljedećih tvrđenja ustanoviti da li je tačno ili ne:

- a) Ako je $A \in \mathcal{M}_3$ i ako postoje vektori $\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3} \in \mathbb{R}^3$ takvi da su vektori $A\overrightarrow{v_1}, A\overrightarrow{v_2}, A\overrightarrow{v_3}$ linearno nezavisni, tada je matrica A regularna.
- b) Neka je $A \in \mathcal{M}_{3,2}$ i neka je $Ker(A) = \{\overrightarrow{0}\}$. Ako su $B, C \in \mathcal{M}_{2,3}$ matrice takve da je AB = AC, tada je B = C.

Zadatak 8.

Neka je $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$ linearno preslikavanje za koje vrijedi

$$\mathcal{A}(0,1,1) = (-4,4a,-2), \quad \mathcal{A}(1,0,-1) = (2,-2,a) \quad i \quad \mathcal{A}(2,1,2) = (-6,8a-2,a-4).$$

- a) Odrediti $a \in \mathbb{R}$ ako je rank(A) = 1.
- b) Odrediti $a \in \mathbb{R}$ ako je rank(A) = 2 i A(-a, 1, -1) = (0, 0, 0).

Za oba rješenja naći Ker(A) i Im(A).

Zadatak 9.

Odrediti linearnu transformaciju \mathcal{A} vektorskog prostora \mathbb{R}^4 takvu da bude:

a)
$$Im(A)=Lin\{(1,3,-1,0),(2,4,0,-1)\};$$

b)
$$Ker(A) = Lin\{(3, 2, -1, 1)\};$$

c)
$$Im(A) = Lin\{(1, 3, -1, 0), (2, 4, 0, -1)\} i Ker(A) = Lin\{(3, 2, -1, 1)\}.$$

Zadatak 10.

Odrediti

- a) matricu skaliranja koja preslikava $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ u $\begin{bmatrix} 6 \\ 9 \end{bmatrix}$;
- b) matricu projektovanja koja preslikava $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ u $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$;
- c) matricu refleksije koja preslikava $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ u $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$;
- d) matricu rotacije koja preslikava $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$ u $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$.