19° Mini Exam – 5-λεπτά

Ένα άτομο ζυγίζει στην επιφάνεια της γης WN. Το άτομο αυτό τοποθετείτε με την βοήθεια ενός διαστημοπλοίου σε ύψος h=2R_{γης} από την επιφάνεια της γης. Το βάρος του ατόμου,W', θα είναι:

(A)
$$W' = \frac{1}{2}W$$
 (B) $W' = \frac{1}{4}W$ (Γ) $W' = \frac{1}{3}W$ (Δ) $W' = \frac{1}{9}W$

Το βάρος του ατόμου στην επιφάνεια της γης είναι: $W=mg=\frac{GM_{\gamma\eta\varsigma}m}{R_{\gamma\eta\varsigma}^2}$

Το βάρος του ατόμου σε ύψος h=2R_{νης} πάνω από την επιφάνεια της γης είναι:

$$W' = \frac{GM_{\gamma\eta\varsigma}m}{\left(h + R_{\gamma\eta\varsigma}\right)^{2}} = \frac{GM_{\gamma\eta\varsigma}m}{\left(2R_{\gamma\eta\varsigma} + R_{\gamma\eta\varsigma}\right)^{2}} \Rightarrow W' = \frac{GM_{\gamma\eta\varsigma}m}{9R_{\gamma\eta\varsigma}^{2}}$$

Επομένως:
$$\frac{W'}{W} = \frac{\frac{GM_{\eta\eta\varsigma}m}{9R_{\eta\eta\varsigma}^2}}{\frac{GM_{\eta\eta\varsigma}m}{R_{\eta\eta\varsigma}^2}} \Rightarrow \frac{W'}{W} = \frac{1}{9}$$