I shall prove 3-SAT is NP complete by proving SAT \leq_{ρ} 3-SAT. In order to do this, we are to provide an algorithm or effective procedure \mathcal{A} that is capable of constructing an instance of 3-SAT from an instance of SAT in polynomial time, and construct it in such a way that one if satisfiable if and only if the other one is satisfiable.

Let

$$B = \bigwedge_{i=1}^{m} \left\{ l_{i1} \vee \ldots \vee l_{ir_i} \right\}$$

be an instance of SAT, where r_i is the number of literals in the *i*th term of B. We shall define the following effective procedure \mathcal{P} : For any arbitrary B_i , we shall construct E_i as follows:

• If
$$r_i = 1$$
,
$$E_i = (l_{i1} \lor y_1 \lor y_2) \land \{l_{i1} \lor \overline{y_1} \lor y_2\} \land (l_{i1} \lor y_1 \lor \overline{y_2}) \land (l_{i1} \lor \overline{y_1} \lor \overline{y_2})$$

• If
$$r_i = 2$$
,
$$E_i = (l_{i1} \lor l_{i2} \lor y_1) \land (l_{i1} \lor l_{i2} \lor \overline{y_1})$$

- If $r_i = 3$, $E_i = B_i$.
- If $r_i \ge 4$, then

$$E_{i} = (l_{i1} \lor l_{i2} \lor y_{1}) \land (\overline{y_{1}} \lor y_{2} \lor l_{i3}) \land (\overline{y_{2}} \lor y_{3} \lor l_{i4})$$

$$\land \dots$$

$$\land (\overline{y_{(r-4)}} \lor y_{(r_{i}-3)} \lor l_{i(r_{i}-2)}) \land (\overline{y_{(r_{i}-3)}} \land l_{i(r_{i}-1)} \land l_{ir_{i}})$$

where each y_j are new variables. We shall prove $E = \bigwedge_{i=1}^{m'} E_i$ is satisfiable iff B is satisfiable.

 (\Rightarrow) Assume $(\overrightarrow{b}, \overrightarrow{u})$ is an assignment for the x, y variables respectively s.t. $E(\overrightarrow{b}, \overrightarrow{u}) = 1$. Then, for any arbitrary E_i , there is at least some literal that evaluates to one under this assignment. Let us consider by cases.

(1: $r_i = 1$). Assume $B_i(\overrightarrow{b}) = 0$. Then $l_{i1}(\overrightarrow{b}) = 0$. But since $E_i(\overrightarrow{b}, \overrightarrow{u}) = 1$, we must have

$$(y_1 \lor y_2) \land \ldots \land (\overline{y_1} \lor \overline{y_2})(\overrightarrow{u}) = 1$$

But it is trivial to see that any of the possible assignments makes some terms true and others false simultaneously, which is a contradiction. So $B_i(\overrightarrow{b}) = 1$.

 $(2: r_i = 2)$. Assume $B_i(\overrightarrow{b}) = 0$. Since $E_i(\overrightarrow{b}, \overrightarrow{u}) = 1$ we must have

$$[y_1 \land y_2](\overrightarrow{u}) = 1 \Rightarrow \bot$$

Then $B_i(\overrightarrow{b}) = 1$.

(3: $r_i = 3$). Trivial.

(4: $r_i \ge 4$). Assume $B(\overrightarrow{b}) = 0$. Then E_i is an expression of the form $y_1 \land (\overline{y_1} \lor y_2) \land (\overline{y_2} \lor y_3) \land \ldots \land \overline{y_{r_i-2}}$. Necessarily, y_1 must be true, which entails y_2 must be true, which inductively entails y_k is true for any k. But then the last term is false. (\bot)

In all possible cases, $B_i(\overrightarrow{b}) = 1$ for any i. Then $B(\overrightarrow{b}) = 1$.

 (\Leftarrow) Assume \overrightarrow{b} is an assignment s.t. $B(\overrightarrow{b}) = 1$. Take an arbitrary B_i . Since it is true under \overrightarrow{b} , there is at least one fixed j_0 s.t. $l_{ij_0}(\overrightarrow{b}) = 1$. Let us define the assignment \overrightarrow{u} as follows:

$$u_1 = u_2 = \dots = u_{j_0-2} = 1$$

 $u_{j_0-1} = u_{j_0} = \dots = u_k = 0$

for all k variables y_1, \ldots, y_k . We shall prove this assignment makes $E(\overrightarrow{b}, \overrightarrow{u}) = 1$. For this to occur, suffices that $E_i(\overrightarrow{b}, \overrightarrow{u}) = 1$. There are four possible cases.

(1: $r_i = 1$). In this case, each term in the series of conjuctions will either be anterior to the appearence of l_{ij_0} , posterior to it, or will be the term with l_{ij_0} . If it is the term with l_{ij_0} it will be true by assumption. If it is anterior it will contain at least one y_k , and by definition this will be true. If it is posterior it will contain at least one \overline{y}_{ik} and it will be true.

 $(2: r_i = 2)$. By def. of E_i , both terms contain all l_{ij} , so both terms will contain l_{ij_0} and will be true.

(3: $r_i = 3$). Trivial.

(4: $r_i \ge 4$). Observe that E_i will be of the form

$$E_{i} = (l_{i1} \lor l_{i2} \lor y_{1})$$

$$= (\overline{y_{1}} \lor y_{2}lorl_{i3})$$
True for the same reason
$$\vdots$$

$$= (\overline{y_{(j_{0}-3)}} \lor y_{j_{0}-2} \lor l_{i(j_{0}-1)})$$

$$= (\overline{y_{(j_{0}-2)}} \lor y_{(j_{0}-1)} \lor l_{ij_{0}})$$

$$= (\overline{y_{(j_{0}-1)}} \lor y_{j_{0}} \lor l_{i(j_{0}+1)})$$

$$\vdots$$

$$= (\overline{y_{r_{i}-2}} \lor l_{i(r_{i}-1)} \lor l_{ir})$$

all true.