Μελέτη Ροών Φορτίου

Αντώνης Παπαβασιλείου, ΕΜΠ Βασισμένο στο Βουρνά [1]

Περιεχόμενα

- Εισαγωγή
- Μοντέλα συνιστωσών ΣΗΕ
 - Παράσταση γραμμών μεταφοράς
 - Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών
 - Παράσταση μετασχηματιστών
 - Παράσταση γεννητριών
 - Παράσταση φορτίων
- Εξισώσεις ροών φορτίου
- Θεμελίωση του προβλήματος ρών φορτίου
- Τεχνικές επίλυσης προβλήματος ροών φορτίου
 - Μέθοδος Gauss
 - Μέθοδος Gauss-Seidel
 - Μέθοδος Newton-Raphson

Εισαγωγή

Ανάλυση ροών φορτίου

- Δεδομένα σημείου λειτουργίας ενός συστήματος ηλεκτρικής ενέργειας:
 - Καταναλώσεις φορτίων
 - Παραγωγή ενεργού ισχύος γεννητριών
 - Τάσεις γεννητριών
- Η ανάλυση ροών φορτίου υπολογίζει από αυτά τα δεδομένα:
 - Τάσεις κατά μέτρο και γωνία σε όλους τους ζυγούς
 - Ροές ενεργού και αέργου ισχύος σε όλες τις γραμμές

Χρησιμότητα μελετών ροών φορτίου

- Επιλογή οικονομικής λειτουργίας γεννητριών
- Έλεγχος πως οι τάσεις και ροές είναι εντός προκαθορισμένων ορίων λειτουργίας
- Μελέτη επιπτώσεων διαταραχών (απώλεια γραμμής, γεννήτριας, κτλ)
- Μελέτες ανάπτυξης και επέκτασης συστήματος παραγωγής και μεταφοράς

Μοντέλα συνιστωσών ΣΗΕ

Παράσταση γραμμών μεταφοράς

Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών

Παράσταση μετασχηματιστών

Παράσταση γεννητριών

Παράσταση φορτίων

Μοντέλα συνιστωσών ΣΗΕ

- Η μελέτη ροών φορτίου αναφέρεται στη συμμετρική κατάσταση συστήματος
- Άρα η ανάλυση βασίζεται σε μονοφασικά ισοδύναμα κυκλώματα
- Οι παράμετροι εκφράζονται στο ανά μονάδα σύστημα
- Θα δούμε μοντέλα για τα ακόλουθα:
 - Γραμμές μεταφοράς
 - Εγκάρσιοι πυκνωτές και αυτεπαγωγές
 - Μεταχηματιστές
 - Γεννήτριες
 - Φορτία

Αλλαγή σημειολογίας

- Σε προηγούμενα κεφάλαια, χρησιμοποιούμε **μαύρα στοιχεία** για να συμβολίσουμε σύνθετες αντιστάσεις / αγωγιμότητες, και μιγαδική ισχύ
- Στο κεφάλαιο αυτό χρησιμοποιούμε μαύρα στοιχεία για διανύσματα και πίνακες

Μοντέλα συνιστωσών ΣΗΕ

Παράσταση γραμμών μεταφοράς

Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών

Παράσταση μετασχηματιστών

Παράσταση γεννητριών

Παράσταση φορτίων

Παράσταση γραμμών μεταφοράς

- Οι γραμμές μεταφοράς αναπαρίστανται με το **ονομαστικό π** (κεφάλαιο 5)
- y_{ij} : αγωγιμότητα σειράς
- y_{sij} , y_{sji} : εγκάρσιες αγωγιμότητες

$$y_{ij} = g_{ij} + jb_{ij}$$

 $y_{sij} = g_{sij} + jb_{sij}$ (10.1)
 $y_{sji} = g_{sji} + jb_{sji}$

Μοντέλα συνιστωσών ΣΗΕ

Παράσταση γραμμών μεταφοράς

Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών

Παράσταση μετασχηματιστών

Παράσταση γεννητριών

Παράσταση φορτίων

Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών

• Οι εγκάρσιοι πυκνωτές και οι αυτεπαγωγές αναπαρίστανται με μια απλή αγωγιμότητα y_i

$$y_i = jb_i$$
 (10.2)

- Η παράμετρος b_i είναι:
 - Θετική για πυκνωτή
 - Αρνητική για αυτεπαγωγή

Μοντέλα συνιστωσών ΣΗΕ

Παράσταση γραμμών μεταφοράς

Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών

Παράσταση μετασχηματιστών

Παράσταση γεννητριών

Παράσταση φορτίων

Παράσταση μετασχηματιστών

- Οι μετασχηματιστές παριστάνονται με το ισοδύναμο κύκλωμα του κεφαλαίου 4, όπου συνήθως αγνοούμε την αγωγιμότητα μαγνητίσεως
- Άρα χρησιμοποιούμε μόνο μια αγωγιμότητα σειράς, όπως στο σχήμα
- Το σχήμα αναφέρεται σε μετασχηματιστή με σταθερό λόγο μετασχηματισμού
- Υπάρχουν και μετασχηματιστές ρύθμισης, όπου η σχέση μετασχηματισμού διαφέρει από το λόγο ονομαστικών τάσεων

Μοντέλα συνιστωσών ΣΗΕ

Παράσταση γραμμών μεταφοράς

Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών

Παράσταση μετασχηματιστών

Παράσταση γεννητριών

Παράσταση φορτίων

Παράσταση γεννητριών

• Οι γεννήτριες αναπαρίστανται σαν πηγές ενεργού και αέργου ισχύος:

$$S_G = P_G + jQ_G \qquad (10.3)$$

- S_G : μιγαδική παραγόμενη ισχύς
- P_G : παραγόμενη ενεργός ισχύς
- Q_G : παραγόμενη άεργος ισχύς
- Δύο διατάξεις ελέγχου ρυθμίζουν τις σύγχρονες γεννήτριες:
 - **Αυτόματος ρυθμιστής τάσης** (APT): διατηρεί σταθερό το μέτρο τερματικής τάσης ρυθμίζοντας το ρεύμα διεγέρσεως
 - Ρυθμιστής στροφών: κρατά σταθερή την ενεργό ισχύ προσαρμόζοντας τη μηχανική ισχύ
- Άρα στις μελέτες ροής φορτίου κρατάμε σταθερά τα εξής:
 - το μέτρο τάσης και
 - την παραγωγή ενεργού ισχύος

Μοντέλα συνιστωσών ΣΗΕ

Παράσταση γραμμών μεταφοράς

Παράσταση εγκάρσιων πυκνωτών και αυτεπαγωγών

Παράσταση μετασχηματιστών

Παράσταση γεννητριών

Παράσταση φορτίων

Παράσταση φορτίων

- Φορτία δύο ειδών:
 - Φορτίο σταθερής ενεργού και αέργου ισχύος (α)
 - Φορτίο με σταθερή αγωγιμότητα (β)
- Μιγαδική ισχύς φορτίου τύπου (α):

$$S_D = P_D + jQ_D \qquad (10.4)$$

- *P*_D: ενεργός ισχύς που απορροφά το φορτίο
- Q_D : άεργος ισχύς που απορροφά το φορτίο
- Το φορτίο τύπου (β) γράφεται ως εξής:

$$y_i = g_i + jb_i \quad (10.5)$$

Εξισώσεις ροών φορτίου

Γενικευμένος ζυγός συστήματος ηλεκτρικής ενέργειας

Γενικευμένος ζυγός συστήματος ηλεκτρικής ενέργειας

- Η γραμμή μεταξύ των ζυγών k και m παριστάνεται με το ονομαστικό πι
- Μία ή περισσότερες γραμμές ή μετασχηματιστές είναι συνδεδεμένες με το ζυγό k
- Εγκάρσια σύνθετη αγωγιμότητα y_k : οποιοσδήποτε συνδυασμός πυκνωτών, αυτεπαγωγών ή φορτίων με σταθερή αγωγιμότητα
- Η γεννήτρια στο ζυγό k εγχύει ρεύμα \hat{I}_{Gk} (και μιγαδική ισχύ S_{Gk})
- Το φορτίο στο ζυγό k απορροφά ρεύμα \hat{I}_{Dk} (και μιγαδική ισχύ S_{Dk})
- ullet Η τάση στο ζυγό k συμβολίζεται με \widehat{V}_k , η τάση στο ζυγό m με \widehat{V}_m
- Το ρεύμα που ρέει στη γραμμή από το ζυγό k στο ζυγό m συμβολίζεται με \hat{l}_{km}

Η μέθοδος των κόμβων στη θεωρία δικτύων

- Μέθοδος των κόμβων: μια μηχανική διαδικασία στη θεωρία δικτύων για τη διατύπωση n-1 (μιγαδικών) εξισώσεων (όπου n ο αριθμός των κόμβων στο δίκτυο) σε n-1 (μιγαδικούς) αγνώστους όπου οι άγνωστοι είναι οι τάσεις στον κάθε κόμβο του δικτύου
- Η ιδέα είναι να εκφράσουμε το νόμο ρευμάτων Kirchhoff για κάθε κόμβο του δικτύου, αλλά όπου τα ρεύματα εκφράζονται συναρτήσει των τάσεων, χρησιμοποιώντας τον ορισμό της σύνθετης αντίστασης / αγωγιμότητας
- Και αφού υπολογίσουμε τις τάσεις μπορούμε να υπολογίσουμε τα ρεύματα που εισάγονται από μη-παθητικά στοιχεία (πηγές ρεύματος στη θεωρία κυκλωμάτων, γεννήτριες και φορτία τύπου α στα ΣΗΕ) στον κάθε κόμβο του δικτύου
 - Οι πηγές τάσεις στη θεωρία κυκλωμάτων αναπαρίστανται ως υπερ-κόμβοι / supernodes (https://en.wikipedia.org/wiki/Nodal analysis)
- Ο μετασχηματισμός από τάσεις σε ρεύματα γίνεται με το λεγόμενη **πίνακα** αγωγιμοτήτων
- Στις ακόλουθες διαφάνειες, υπολογίζουμε τον πίνακα αγωγιμοτήτων για τις μελέτες ροών φορτίου

Ρεύματα συναρτήσει τάσεων

• Το ρεύμα \hat{I}_{km} ισούται με (νόμος ρευμάτων Kirchhoff στο σημείο A):

$$\hat{I}_{km} = (y_{skm} + y_{km})\hat{V}_k - y_{km}\hat{V}_m \quad (10.6)$$

• Νόμος ρευμάτων Kirchhoff στο ζυγό k (δεδομένου ότι η εγκάρσια αγωγιμότητα απορροφά ρεύμα $y_k \hat{V}_k$):

$$\hat{I}_{Gk} - \hat{I}_{Dk} = y_k \hat{V}_k + \sum_{m \in A(k)} \hat{I}_{km} \quad (10.7)$$

όπου

$$A(k) = \{m: y_{km} \neq 0\}$$
 (10.8)

είναι το σύνολο ζυγών που είναι διασυνδεδεμένοι με το ζυγό k

Πίνακας αγωγιμοτήτων

• Αντικαθιστώντας την (10.6) στην (10.7) παίρνουμε

$$\hat{I}_{Gk} - \hat{I}_{Dk} = \left(y_k + \sum_{m \in A(k)} (y_{skm} + y_{km})\right) \hat{V}_k - \sum_{m \in A(k)} y_{km} \hat{V}_m \quad (10.9)$$

• Ορίζουμε:

$$Y_{kk} = y_k + \sum_{m \in A(k)} (y_{skm} + y_{km}) \quad (10.10)$$

$$Y_{km} = -y_{km} (10.11)$$

• Η (10.9) γράφεται ως εξής:

$$\hat{I}_{Gk} - \hat{I}_{Dk} = Y_{kk}\hat{V}_k + \sum_{m \in A(k)} Y_{km}\hat{V}_m \qquad (10.12)$$

• Τα στοιχεία Y_{kk} και Y_{kk} ανήκουν στον **πίνακα αγωγιμοτήτων** της μεθόδου των κόμβων της θεωρίας δικτύων

Μιγαδικές εξισώσεις ροής φορτίου

- Στις μελέτες ροής φορτίου, οι γνωστές ή ζητούμενες ποσότητες σε κάθε ζυγό είναι οι μιγαδικές ισχείς παραγωγής S_{Gk} και φορτίσεων S_{Dk}
- Στο ανά μονάδα σύστημα ίσες με

$$S_{Gk} = \hat{V}_k \hat{I}_{Gk}^*$$
 (10.13)
$$S_{Dk} = \hat{V}_k \hat{I}_{Dk}^*$$

Συνδυάζοντας τις (10.12) και (10.13):

$$S_{Gk} - S_{Dk} = Y_{kk}^* V_k^2 + \hat{V}_k \sum_{m \in A(k)} Y_{km}^* \hat{V}_m^* \quad (10.14)$$

• Για ένα σύστημα n ζυγών, μπορούν να γραφούν n εξισώσεις (10.14), οι οποίες ονομάζονται **μιγαδικές εξισώσεις ροής φορτίου**

Εξισώσεις ροής φορτίου σε πραγματική μορφή

• Χρησιμοποιούμε τον παρακάτω συμβολισμό για να εκφράσουμε τις πραγματικές εξισώσεις που αντιστοιχούν στις (10.14):

$$\hat{V}_k = V_k e^{j\delta_k} (10.15)$$

$$Y_{km} = G_{km} + jB_{km}$$

• Αντικαθιστώντας τις (10.15) στις (10.14) και ξεχωρίζοντας πραγματικά και φανταστικά μέρη, παίρνουμε τις **εξισώσεις ροής** φορτίου σε πραγματική μορφή:

$$P_{Gk} - P_{Dk} = V_k^2 G_{kk} - V_k \sum_{m \in A(k)} V_m \alpha_{km} (10.16)$$

$$Q_{Gk} - Q_{Dk} = -V_k^2 B_{kk} - V_k \sum_{m \in A(k)} V_m \beta_{km} (10.17)$$

όπου

$$\alpha_{km} = -G_{km}\cos(\delta_k - \delta_m) - B_{km}\sin(\delta_k - \delta_m) \quad (10.18)$$

$$\beta_{km} = -G_{km}\sin(\delta_k - \delta_m) + B_{km}\cos(\delta_k - \delta_m) \quad (10.19)$$

Θεμελίωση του προβλήματος ρών φορτίου

Θεμελίωση σε ένα σύστημα δύο ζυγών

- Η γραμμή μεταξύ των ζυγών
 1 και 2 παριστάνεται με το ονομαστικό πι
- Στο ζυγό 2 υπάρχει εγκάρσια αγωγιμότητα y_2
- Γεννήτριες υπάρχουν στους ζυγούς 1 και 2 με παραγόμενες μιγαδικές ισχείς S_{G1} και S_{G2} αντίστοιχα

Εξισώσεις ροής φορτίου συστήματος 2 ζυγών

 Το σύστημα των εξισώσεων ροής φορτίου αποτελείται από 2 μιγαδικές εξισώσεις:

$$S_{G1} - S_{D1} = Y_{11}^* V_1^2 + \hat{V}_1 Y_{12}^* \hat{V}_2^* \quad (10.20)$$

$$S_{G2} - S_{D2} = Y_{22}^* V_2^2 + \hat{V}_2 Y_{21}^* \hat{V}_1^* \quad (10.21)$$

όπου

$$Y_{11} = y_{12} + y_{s12}$$

 $Y_{12} = Y_{21} = -y_{12}$
 $Y_{22} = y_2 + y_{12} + y_{s21}$

Σκοπός των εξισώσεων ροής φορτίου και βαθμοί ελευθερίας

- Σκοπός: η επίλυση των (10.20) και (10.21) για τον υπολογισμό των τάσεων \hat{V}_1 και \hat{V}_2 , καθώς και της ροής ισχύος στη γραμμή
- Ποσότητες που σχετίζονται με κάθε ζυγό k:
 - Η μιγαδική ισχύς που παράγεται στο ζυγό k, S_{Gk}
 - Η μιγαδική ισχύς που καταναλώνεται στο ζυγό k, S_{Dk}
 - Η τάση του ζυγού κατά μέτρο και γωνία, \hat{V}_k
- Τι ξέρουμε ήδη;
 - Ζήτηση φορτίων
 - Άρα μένουν δύο μιγαδικές εξισώσεις με 4 μιγαδικές μεταβλητές
 - Άρα δύο ακόμη μιγαδικές μεταβλητές μπορούν να οριστούν αυθαίρετα
- Πρέπει να αφήσουμε την ισχύ της μίας γεννήτριας **ελεύθερη** (slack), γιατί αν προκαθορίσουμε τόσο το S_{G1} όσο και το S_{G2} τότε δεν υπάρχει καμία βεβαιότητα ότι θα ικανοποιούμε την αρχή διατήρησης της ενέργειας

Ζυγός ταλάντωσης / ζυγός αναφοράς

- Έστω ότι αφήνουμε την ισχύ S_{G1} ελεύθερη
- Μπορούμε να επιλέξουμε αυθαίρετα ακόμη μία μιγαδική μεταβλητή
- ullet Ας διαλέξουμε αυθαίρετα την τάση της ελεύθερης γεννήτριας, \widehat{V}_1
- Ο ζυγός 1 ονομάζεται ζυγός ταλάντωσης / ζυγός αναφοράς (slack bus / swing bus)
- Πλεονέκτημα προσδιορισμού της τιμής της τάσης \hat{V}_1 : η εξίσωση (10.20) αποδεσμεύεται από τις υπόλοιπες, και μπορεί να επιλυθεί ως προς S_{G1} όταν έχει λυθεί το υπόλοιπο σύστημα
- Στο παράδειγμα 2 ζυγών, το μόνο που μένει είναι να λυθεί μία εξίσωση (η (10.21)) ως προς \hat{V}_2

Σε περίπτωση που έχετε χαθεί

- Αν όλα αυτά φαίνονται λίγο αφηρημένα, πάμε στο παράρτημα
- Η άσκηση 1 λύνει ένα παράδειγμα 2 κόμβων
- Η άσκηση 2 δείχνει ότι αν δεν αφήσουμε ελεύθερη την ενεργό ισχύ σε έναν κόμβο τότε το σύστημα εξισώσεων δεν έχει λύση

Το γενικό πρόβλημα

- Το γενικό πρόβλημα ανάγεται στην επίλυση n-1 μιγαδικών εξισώσεων σε n-1 άγνωστες μιγαδικές μεταβλητές
- Το σύστημα μπορεί να μετατραπεί σε 2(n-1) πραγματικές εξισώσεις με 2(n-1) μεταβλητές
- Μία σοβαρή υπολογιστική δυσκολία είναι πως οι εξισώσεις αυτές είναι μη γραμμικές
- Για την επίλυση των μη γραμμικών εξισώσεων, θα δούμε σε λίγο ορισμένους επαναληπτικούς αλγορίθμους

Επιλέγοντας το μέτρο τάσης: ζυγοί P-V

- Σε μερικές πριπτώσεις είναι επιθυμητό να καθορίσουμε το μέτρο τάσης ενός ή περισσότερων ζυγών
- Άρα πρέπει να ελευθερώσουμε κάποια άλλη μεταβλητή
- Μια επιλογή είναι να ελευθερώσουμε την άεργο παραγωγή του εν λόγω ζυγού, γιατί η άεργος παραγωγή εξαρτάται από την τάση (και θέλουμε να αποφύγουμε ένα σύστημα χωρίς λύση)
- Αυτό αντιστοιχεί στον τρόπο που ρυθμίζονται οι γεννήτριες ώστε να έχουν σταθερό μέτρο τάσης και σταθερή ενεργό παραγωγή
- Όπως θα δούμε σε λίγο, τέτοιοι ζυγοί με προκαθορισμένο μέτρο τάσης και προκαθορισμένη ενεργό ισχύ ονομάζονται ζυγοί P-V

Βέλτιστη ροή φορτίου εναλλασσόμενου ρεύματος (ACOPF)

- Αν αφήσουμε τις ισχείς S_{G1} και S_{G2} ελεύθερες, έχουμε άπειρες δυνατές επιλογές
- Αυτό μας επιτρέπει να ορίσουμε ένα πρόβλημα βελτιστοποίησης (π.χ. να βρούμε τη λύση με το ελάχιστο κόστος λειτουργίας)
- Αυτό το πρόβλημα ονομάζεται **βέλτιστη ροή φορτίου** εναλλασσόμενου ρεύματος (alternating current optimal power flow) και έχει ελκύσει μεγάλο ενδιαφέρον στη βιβλιογραφία τα τελευταία χρόνια
 - Γραμμικές προσεγγίσεις (DCOPF) [3]
 - Χαλαρώσεις βασισμένες σε κωνικό προγραμματισμό δευτέρου βαθμού [4]
 - Χαλαρώσεις βασισμένες σε ημιορισμένο προγραμματισμό [5]

Γενική θεμελίωση της ανάλυσης ροών φορτίου: είδη ζυγών

- Σε κάθε ζυγό k αντιστοιχούν τέσσερις πραγματικές μεταβλητές:
 - Έγχυση πραγματικής ισχύος: $P_k = P_{Gk} P_{Dk}$
 - Έγχυση αέργου ισχύος: $Q_k = Q_{Gk} Q_{Dk}$
 - Μέτρο τάσης: V_k
 - Φασική γωνία τάσης: δ_k
- Τρεις κατηγορίες ζυγών
 - Ζυγός ταλάντωσης / ζυγός αναφοράς
 - Η πραγματική και άεργος ισχύς αφήνονται ελεύθερες
 - Το μέτρο και η γωνία τάσης θεωρούνται γνωστά
 - Συνήθως διαλέγουμε γωνία τάσης $\delta=0$
 - Ζυγός φορτίου / ζυγός PQ
 - Η έγχυση ενεργού ισχύος (P) και αέργου ισχύος (Q) θεωρούνται γνωστές
 - Ζυγός παραγωγής / ζυγός PV
 - Η έγχυση ενεργού ισχύος (Ρ) και το μέτρο τάσης (V) θεωρούνται γνωστά

Γενική θεμελίωση: μεταβλητές ως προς τις οποίες επιλύουμε

- Αριθμούμε τους ζυγούς ως εξής σε ένα σύστημα n ζυγών με m ζυγούς φορτίου / ζυγούς PQ:
 - Ζυγός 1: ζυγός ταλάντωσης
 - Ζυγοί 2 έως n-m: ζυγοί παραγωγής / ζυγοί PV
 - Ζυγοί n-m+1 έως n: ζυγοί φορτίου / ζυγοί PQ
- Ελάχιστος αριθμός μεταβλητών που περιγράφουν την κατάσταση του συστήματος:
 - Φασικές γωνίες τάσεων όλων των ζυγών εκτός από το ζυγό ταλάντωσης: δ_2 έως δ_n
 - Μέτρα τάσεων όλων των ζυγών φορτίου: V_{n-m+1} έως V_n
- Γιατί περιγράφουν την κατάσταση συστήματος; Άπαξ και γνωρίζουμε τις τάσεις όλων των ζυγών, έχουμε επιλύσει πλήρως το σύστημα και όλα τα υπόλοιπα ακολουθούν
- Οι μεταβλητές αυτές αποτελούν το διάνυσμα κατάστασης χ
 - Έχει διάσταση n-1+m
 - Και άρα χρειαζόμαστε n-1+m ανεξάρτητες εξισώσεις για να έχουμε μοναδική λύση

Γενική θεμελίωση: οι εξισώσεις ενεργού ισχύος

• n-1 εξισώσεις πραγματικής ισχύος (10.16), μία για κάθε ζυγό εκτός από το ζυγό ταλάντωσης:

$$\mathbf{b}_P = \mathbf{f}_P(\mathbf{x}) \ (10.22)$$

• \mathbf{b}_P , \mathbf{f}_P : διανύσματα διάστασης n-1, το στοιχείο που αντιστοιχεί στο ζυγό k ορίζεται ως εξής:

$$b_{Pk} = P_{Gk} - P_{Dk} \quad (10.23)$$

$$f_{Pk} = V_k^2 G_{kk} - V_k \sum_{m \in A(k)} V_m \alpha_{km} \quad (10.24)$$

όπου τα α_{km} έχουν οριστεί στην (10.18)

Γενική θεμελίωση: οι εξισώσεις αέργου ισχύος

• m εξισώσεις αέργου ισχύος (10.17), μία για κάθε ζυγό φορτίου:

$$\mathbf{b}_Q = \mathbf{f}_Q(\mathbf{x}) \ (10.25)$$

• \mathbf{b}_Q , \mathbf{f}_Q : διανύσματα διάστασης m, το στοιχείο που αντιστοιχεί στο ζυγό k ορίζεται ως εξής:

$$b_{Qk} = Q_{Gk} - Q_{Dk} \quad (10.26)$$

$$f_{Qk} = -V_k^2 B_{kk} - V_k \sum_{m \in A(k)} V_m \beta_{km} \quad (10.27)$$

όπου τα β_{km} έχουν οριστεί στην (10.19)

Γενική θεμελίωση: πρόβλημα σε μορφή πινάκων

• Οι παραπάνω n-1+m πραγματικές εξισώσεις μπορούν να γραφούν σε μορφή πινάκων:

$$b = f(x) (10.28)$$

όπου:

$$\mathbf{b} = \begin{bmatrix} \mathbf{b}_P \\ \mathbf{b}_Q \end{bmatrix}, \mathbf{f}(\mathbf{x}) = \begin{bmatrix} \mathbf{f}_P \\ \mathbf{f}_Q \end{bmatrix}$$
 (10.29)

$$\mathbf{x} = \begin{bmatrix} \boldsymbol{\delta} \\ \mathbf{V} \end{bmatrix} \quad (10.30)$$

• Τα διανύσματα δ και V περιέχουν τα στοιχεία:

$$\mathbf{\delta} = [\delta_2, \dots, \delta_n]^T$$

$$\mathbf{V} = [V_{n-m+1}, \dots, V_n]^T$$

Γενική θεμελίωση: υπολογισμός ροών γραμμών

- Άπαξ και έχουμε λύσει ως προς τις τάσεις, έχουμε περιγράψει πλήρως το σύστημα
- Οι ροές των γραμμών δίνονται από τις εξής εξισώσεις:

$$P_{km} = V_k^2 (g_{km} + g_{skm}) - V_k V_m \alpha_{km}$$
 (10.31)

$$Q_{km} = -V_k^2 (b_{km} + b) - V_k V_m \beta_{km}$$
 (10.32)

• Προσοχή: τα g_{km} , b_{km} , ... είναι τα πραγματικά και φανταστικά μέρη της αγωγιμότητας σειράς της αντίστοιχης γραμμής (όχι του μη διαγωνίου στοιχείου του πίνακα αγωγιμοτήτων $Y_{km} = -y_{km}$ των σχέσεων (10.18) και (10.19))

Γιατί δε χρησιμοποιήσαμε τη μέθοδο των κόμβων;

- Η μέθοδος των κόμβων απαιτεί συγκεκριμένη δομή στο κύκλωμα:
 πηγές τάσης και ρεύματος
- Στη ροή φορτίου κάποια από τα δεδομένα δεν είναι σε αυτή τη μορφή (π.χ. οι ζυγοί φορτίου προκαθορίζουν την ενεργό και άεργο ισχύ)
- Ωστόσο η μέθοδος των κόμβων εξηγεί πώς τα ρεύματα μεταφράζονται σε τάσεις, και μας επιτρέπει να δουλέψουμε το πρόβλημα μόνο ως προς τάσεις, χωρίς να ασχολούμαστε με ρεύματα στη διατύπωση του προβλήματος

Τεχνικές επίλυσης προβλήματος ροών φορτίου

Μέθοδος Gauss

Μέθοδος Gauss-Seidel

Μέθοδος Newton-Raphson

Επαναληπτικές μέθοδοι για την επίλυση μη γραμμικών εξισώσεων

- Οι εξισώσεις ροής φορτίου μπορούν να γραφούν στην ακόλουθη γενική μορφή: $\mathbf{g}(\mathbf{x}) = 0 \quad (10.34)$
- Γενική διαδικασία επίλυσης με επαναληπτική μέθοδο:
- 1. Θεώρηση αρχικής τιμής του διανύσματος κατάστασης $\mathbf{x} = \mathbf{x}^{(0)}$. Μηδενισμός του μετρητή επαναλήψεων i=0.
- 2. Αντικατάσταση της $\mathbf{x}^{(i)}$ για τον υπολογισμό των $\mathbf{g}(\mathbf{x}^{(i)})$ και έλεγχος αν ικανοποιούνται οι εξισώσεις (10.34).
- 3. Αν οι εξισώσεις (10.34) δεν ικανοποιούνται, χρησιμοποιούμε την $\mathbf{x}^{(i)}$ και $\mathbf{g}(\mathbf{x}^{(i)})$ για να υπολογίσουμε μια καινούρια προσέγγιση $\mathbf{x}^{(i+1)}$. Ενημερώνουμε το μετρητή επαναλήψεων i=i+1.
- 4. Αντικαθιστούμε την $\mathbf{x}^{(i+1)}$ στις εξισώσεις (10.34) και επαναλαμβάνουμε τα βήματα 2 και 3 μέχρι να ικανοποιηθούν οι (10.34)

Τεχνικές επίλυσης προβλήματος ροών φορτίου

Μέθοδος Gauss

Μέθοδος Gauss-Seidel

Μέθοδος Newton-Raphson

Μέθοδος Gauss

• Γράφουμε τις εξισώσεις ροής φορτίου στην εξής μορφή (fixed point mapping):

$$\mathbf{x} = \mathbf{H}(\mathbf{x}) \ (10.35)$$

• Χρησιμοποιούμε την (10.35) για τον προσδιορισμό μιας καλύτερης προσέγγισης στην επανάληψη i+1:

$$\mathbf{x}^{(i+1)} = \mathbf{H}(\mathbf{x}^{(i)})$$
 (10.36)

• Αν η ακολουθία $\mathbf{x}^{(i)}$ συγκλίνει, το όριό της είναι λύση του συστήματος (10.35)

Εφαρμογή της μεθόδου Gauss στις εξισώσεις ροής φορτίου

• Για να φέρουμε τις εξισώσεις ροής φορτίου στη μορφή (10.35), αναδιατάσσουμε την (10.14) ως εξής:

$$\hat{V}_k = \frac{1}{Y_{kk}} \left(\frac{P_k - jQ_k}{\hat{V}_k^*} - \sum_{m \in A(k)} Y_{km} \hat{V}_m \right)$$

• Άρα η επαναληπτική διαδικασία για τη μέθοδο Gauss γίνεται:

$$\widehat{V}_{k}^{(i+1)} = \frac{1}{Y_{kk}} \left(\frac{P_{k}^{(i)} - jQ_{k}^{(i)}}{\left[\widehat{V}_{k}^{(i)}\right]^{*}} - \sum_{m \in A(k)} Y_{km} \widehat{V}_{m}^{(i)} \right)$$

Μερικές παρατηρήσεις για τη μέθοδο Gauss

- Δεδομένου ότι η $\hat{V}_1 = V_1$ είναι γνωστή, η (10.38) εφαρμόζεται για τους ζυγούς $k=2,\dots,n$
- Για τους ζυγούς φορτίου η έγχυση αέργου ισχύος Q_k είναι σταθερή και γνωστή εκ των προτέρων
- Για τους ζυγούς παραγωγής το μέτρο τάσης είναι σταθερό και γνωστό εκ των προτέρων, από τη (10.38) κρατάμε μόνο τη νέα γωνία της τάσης
- Πλεονεκτήματα και μειονεκτήματα:
 - Εύκολη υλοποίηση (+)
 - Αργή σύγκλιση (-)
 - Η μέθοδος ενδέχεται να μη συγκλίνει και αν ακόμα υπάρχει λύση της (10.35) (-)

Τεχνικές επίλυσης προβλήματος ροών φορτίου

Μέθοδος Gauss

Μέθοδος Gauss-Seidel

Μέθοδος Newton-Raphson

Μέθοδος Gauss-Seidel

• Βελτιωμένη μορφή της μεθόδου Gauss:

$$x_k^{(i+1)} = h_k(x_1^{(i+1)}, \dots, x_{k-1}^{(i+1)}, x_k^{(i)}, \dots, x_N^{(i)})$$
 (10.39)

όπου
$$N = n - 1 + m$$

• Διαφορά με τη μέθοδο Gauss: για τον υπολογισμό του k στοιχείου του διανύσματος \mathbf{x} στην επανάληψη i+1 χρησιμοποιούνται οι μεταβλητές x_j με j< k που έχουν ήδη υπολογιστεί στην παρούσα επανάληψη

Εφαρμογή της μεθόδου Gauss-Seidel στις εξισώσεις ροής φορτίου

• Εφαρμογή της μεθόδου στο πρόβλημά μας:

$$\hat{V}_{k}^{(i+1)} = \frac{1}{Y_{kk}} \left(\frac{P_{k}^{(i)} - jQ_{k}^{(i)}}{\left[\hat{V}_{k}^{(i)}\right]^{*}} - \sum_{m \in A_{1}(k)} Y_{km} \hat{V}_{m}^{(i+1)} - \sum_{m \in A_{2}(k)} Y_{km} \hat{V}_{m}^{(i)} \right) (10.40)$$

όπου:

- $A_1(k)$: το υποσύνολο των ζυγών που συνδέονται με το ζυγό k, για τους οποίους έχει ήδη υπολογιστεί η τάση στην επανάληψη i+1
- $A_2(k)$: το υποσύνολο των ζυγών που συνδέονται με το ζυγό k, για τους οποίους δεν έχει ακόμα υπολογιστεί η τάση στην επανάληψη i+1

Τεχνικές επίλυσης προβλήματος ροών φορτίου

Μέθοδος Gauss

Μέθοδος Gauss-Seidel

Μέθοδος Newton-Raphson

Μέθοδος Newton-Raphson

• Η εξίσωση (10.28) μπορεί να γραφεί στη μορφή:

$$f_1(x_1, ..., x_N) = b_1$$

 $f_2(x_1, ..., x_N) = b_2$ (10.41)
...
 $f_N(x_1, ..., x_N) = b_N$

- Ιδέα της μεθόδου Newton: γραμμικοποίηση της (10.41) γύρω από το σημείο $\mathbf{x}^{(i)}$ χρησιμοποιώντας το ανάπτυγμα Taylor
- Για παράδειγμα, εφαρμόζοντας στο αρχικό σημείο $\mathbf{x}^{(0)}$:

$$f_{1}(x_{1},...,x_{N}) \simeq f_{1}\left(x_{1}^{(0)},...,x_{N}^{(0)}\right) + \sum_{j=1}^{N} \frac{\partial f_{1}}{\partial x_{j}}(x_{j} - x_{j}^{(0)})$$
... (10.42)
$$f_{N}(x_{1},...,x_{N}) \simeq f_{N}\left(x_{1}^{(0)},...,x_{N}^{(0)}\right) + \sum_{j=1}^{N} \frac{\partial f_{N}}{\partial x_{j}}(x_{j} - x_{j}^{(0)})$$

Μέθοδος Newton-Raphson σε μορφή πινάκων

• Οι εξισώσεις (10.42) μπορούν να γραφούν στην ακόλουθη μορφή με χρήση πινάκων:

$$\mathbf{b} = \mathbf{f}(\mathbf{x}) \simeq \mathbf{f}(\mathbf{x}^{(0)}) + \mathbf{J}(\mathbf{x}^{(0)})(\mathbf{x} - \mathbf{x}^{(0)})$$
 (10.43)

όπου

$$\mathbf{J}(\mathbf{x}^{(0)}) = \left[\frac{\partial f_i}{\partial x_i}\right] \quad (10.44)$$

είναι ο Ιακωβιανός πίνακας (Jacobian matrix) της διανυσματικής συνάρτησης ${f f}$ υπολογισμένος στο σημείο ${f x}^{(0)}$

Επαναλήψεις Newton-Raphson

• Λύνοντας την (10.43) ως προς **x**, έχουμε

$$\mathbf{x} = \mathbf{x}^{(0)} + \mathbf{J}(\mathbf{x}^{(0)})^{-1} (\mathbf{b} - \mathbf{f}(\mathbf{x}^{(0)}))$$
 (10.45)

• Ο γενικός τύπος για την επανάληψη i+1 είναι:

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \mathbf{J}(\mathbf{x}^{(i)})^{-1} (\mathbf{b} - \mathbf{f}(\mathbf{x}^{(i)}))$$
 (10.46)

• Τερματισμός: όταν η διαφορά $\mathbf{b} - \mathbf{f}(\mathbf{x}^{(i)})$ γίνει μικρότερη από ένα κατώφλι ακριβείας

Μερικές παρατηρήσεις για τη μέθοδο Newton-Raphson

- Πολύ καλή ταχύτητα σύγκλισης (+)
- Προϋποθέτει αντιστροφή του Ιακωβιανού πίνακα σε κάθε επανάληψη, το οποίο απαιτεί αρκετή μνήμη και χρόνο (-)
- Έχουν προταθεί παραλλαγές που απφοφεύγουν αντιστροφή του πίνακα σε κάθε επανάληψη
- Επικρατέστερη παραλλαγή: ταχεία αποσυζευγμένη ροή φορτίου (fast decoupled power flow)
 - Ιδέα: στενή σχέση μεταξύ (ενεργού ισχύος, γωνίας) και (αέργου ισχύος, τάσης) για να αντιστραφούν δύο μικρότεροι πίνακες

Βιβλιογραφία

- [1] Κ. Βουρνάς, Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας, Συμμετρία, 2001
 - Προσοχή στην έκδοση (2001), κάποια από τα παραδείγματα χρησιμοποιούν διαφορετικά δεδομένα από τη νεώτερη έκδοση
- [2] Glover, J. Duncan, Mulukutla S. Sarma, and Thomas Overbye. Power system analysis & design, SI version. Cengage Learning, 2012
- [3] A. Papavasiliou, Optimization Models in Electricity Markets, Cambridge University Press
- [4] Farivar, Masoud, and Steven H. Low. "Branch flow model: Relaxations and convexification—Part I." *IEEE Transactions on Power Systems* 28.3 (2013): 2554-2564.
- [5] Lavaei, Javad, and Steven H. Low. "Zero duality gap in optimal power flow problem." *IEEE Transactions on Power systems* 27.1 (2011): 92-107.

Επιπλέον ασκήσεις

Άσκηση 1

- Έστω το σύστημα του σχήματος, όπου τα μεγέθη είναι εκφρασμένα ανά μονάδα
- Έχουμε ήδη λύσει το σύστημα στις διαφάνειες του κεφαλαίου 5, εδώ το επαναδιατυπώνουμε με τις εξισώσεις ροής φορτίου

Εξισώσεις ροής φορτίου σε μιγαδική μορφή

- Θέλουμε να εκφράσουμε τις εξισώσεις (10.20) και (10.21)
- Έχουμε τα εξής στοιχεία για τον πίνακα αγωγιμοτήτων:

$$Y_{11} = \frac{1}{0.0413 + j0.4852} = 0.17417 - j2.0462$$

$$Y_{12} = -\frac{1}{0.0413 + j0.4852} = -0.17417 + j2.0462$$

$$Y_{22} = 0.17417 - j2.0462$$

$$Y_{21} = -0.17417 + j2.0462$$

• Άρα οι δύο εξισώσεις γίνονται

$$S_{G1} = (0.17417 + j2.0462)1.125^2 + 1.125(-0.17417 - j2.0462)\hat{V}_2^*$$

-0.5 - j0.25 = (0.17417 + j2.0462) $V_2^2 + \hat{V}_2(-0.17417 - j2.0462)1.125$

• Βλέπουμε ότι πράγματι η δεύτερη εξίσωση μπορεί να λυθεί πρώτα, και όταν έχει προσδιοριστεί το V_2 τότε μπορούμε να υπολογίσουμε το S_{G1} από την πρώτη εξίσωση

Εξισώσεις ροής φορτίου σε πραγματική μορφή και λύση

- Για την αριθμητική επίλυση, μπορούμε να στραφούμε στις (10.16) (10.19): $-0.5 = 0.17417 V_2^2 + (V_2 \cos \delta)(-0.17417)(1.125) + (V_2 \sin \delta)(2.0462)(1.125) \\ -0.25 = 2.0462V_2^2 + (V_2 \sin \delta)(-0.17417)(1.125) + (V_2 \cos \delta)(-2.0462)(1.125)$
- Εισάγοντας σε έναν επιλυτή μη γραμμικών συστημάτων:

$$V_2 = 0.9483$$

 $\delta = -12.3^{\circ}$

 Με αυτή τη λύση, μπορούμε εύκολα να λύσουμε την εξίσωση ροής φορτίου του ζυγού 1 για να υπολογίσουμε ότι

$$S_{G1} = 0.514 + j0.4186$$

- Παρατηρούμε ότι $S_{G1}-S_{D2}=0.514+j0.4186-(0.5+j0.25)=0.1692 \angle 85^\circ$
- Και επίσης γνωρίζουμε ότι η σύνθετη αντίσταση από τον κόμβο 1 στον κόμβο 2 είναι $0.0413+j0.4852=0.4869\angle 85^\circ$

Άσκηση 2

- Επιστρέφουμε στο παράδειγμα της προηγούμενης άσκησης, και δείχνουμε ότι αν προκαθορίσουμε την ενεργό και άεργο ισχύ τότε οι εξισώσεις ροής φορτίου δεν έχουν εφικτή λύση
- Έστω για παράδειγμα ότι επιλέγουμε $S_{G1}=0.614+j0.4186$ (αντί 0.514+j0.4186)
- Τότε μπορούμε να αποδείξουμε ότι οι (10.20) και (10.21) δεν μπορούν να ικανοποιούνται (επιχείρημα στην επόμενη διαφάνεια)

Άσκηση 2: το επιχείρημα

• Γνωρίζουμε ότι η παθητική αντίσταση της γραμμής 1-2 πρέπει να υπακούει τη σχέση

$$S = \frac{V^2}{Z^*}$$

- Όπου S η μιγαδική ισχύς που τη διαρρέει, V^2 το τετράγωνο του μέτρου της διαφοράς τάσης στα άκρα της γραμμής, και Z η σύνθετη αντίσταση της γραμμής
- Αν φιξάρουμε την έγχυση μιγαδικής ισχύος στο ζυγό 1, επειδή έχουμε ήδη φιξάρει και την απορρόφηση ισχύος στο ζυγό 2, αυτό σημαίνει ότι έχουμε προαποφασίσει το S
- Και αν τύχει η γωνία της μιγαδικής ισχύος να μη συμπίπτει με αυτήν της σύνθετης αντίστασης της γραμμής, σημαίνει πως η παραπάνω ισότητα δεν μπορεί να ικανοποιείται
- Για αυτόν ακριβώς το λόγο είναι χρήσιμος ο ζυγός ταλάντωσης: δίνουμε στον εαυτό μας την ελευθερία να του αναθέσουμε την απαραίτητη ενεργό και άεργο ισχύ ώστε να έχει λύση το σύστημα εξισώσεων της ροής φορτίου

Άσκηση 3

• Ας υλοποιήσουμε τη μέθοδο Gauss για το παράδειγμα της άσκησης 1

$$S_{k} = Y_{kk}^{*} V_{k}^{2} + \hat{V}_{k} \sum_{m \in A(k)} Y_{km}^{*} \hat{V}_{m}^{*} \Rightarrow$$

$$Y_{kk}^{*} V_{k}^{2} = S_{k} - \hat{V}_{k} \sum_{m \in A(k)} Y_{km}^{*} \hat{V}_{m}^{*} \Rightarrow$$

$$Y_{kk}^{*} \hat{V}_{k} \hat{V}_{k}^{*} = S_{k} - \hat{V}_{k} \sum_{m \in A(k)} Y_{km}^{*} \hat{V}_{m}^{*} \Rightarrow$$

$$\hat{V}_{k}^{*} = \frac{1}{Y_{kk}^{*}} (\frac{S_{k}}{\hat{V}_{k}} - \sum_{m \in A(k)} Y_{km}^{*} \hat{V}_{m}^{*}) \Rightarrow$$

$$\hat{V}_{k} = \frac{1}{Y_{kk}} (\frac{S_{k}^{*}}{\hat{V}_{k}^{*}} - \sum_{m \in A(k)} Y_{km}^{*} \hat{V}_{m}^{*})$$

• Άρα

$$\hat{V}_{k}^{(i+1)} = \frac{1}{Y_{kk}} \left(\frac{P_{k}^{(i)} - jQ_{k}^{(i)}}{\left[\hat{V}_{k}^{(i)}\right]^{*}} - \sum_{m \in A(k)} Y_{km} \hat{V}_{m}^{(i)} \right)$$

Μέθοδος Gauss για το σύστημα 2 κόμβων

- Υπενθυμίζουμε ότι επί της ουσίας καλούμαστε να λύσουμε μόνο τον κόμβο 2, ο κόμβος 1 είναι μια απλή αντικατάσταση
- Άρα θέλουμε να υλοποιήσουμε την εξής επανάληψη

$$\hat{V}_{2}^{(i+1)} = \frac{1}{Y_{22}} \left(\frac{P_2 - jQ_2}{\left[\hat{V}_{2}^{(i)}\right]^*} - Y_{21}\hat{V}_1 \right)$$

• Με αντικατάσταση αριθμητικών τιμών:

$$\hat{V}_{2}^{(i+1)} = \frac{1}{0.17417 - j2.0462} \left(\frac{-0.5 + j0.25}{\left[\hat{V}_{2}^{(i)}\right]^{*}} - (-0.17417 + j2.0462)1.125 \right)$$

Σύγκλιση

• Αρχικοποιούμε την τάση $\widehat{V}_2^{(0)}=1$

• Ή και στο $\widehat{V}_2^{(0)}=0.1$

Άσκηση 4

• Ας υλοποιήσουμε τη μέθοδο Gauss-Seidel για το παράδειγμα της άσκησης 1

• Αφού υπάρχει μόνο ένας κόμβος, η μέθοδος Gauss-Seidel είναι ακριβώς η μέθοδος Gauss

Άσκηση 5

- Ας υλοποιήσουμε τη μέθοδο Newton-Raphson για το παράδειγμα της άσκησης 1
- Πάλι εστιάζουμε στον κόμβο 2, αφού ο κόμβος 1 είναι μια απλή αντικατάσταση
- Υπενθυμίζουμε ότι το σύστημα μη γραμμικών εξισώσεων που θέλουμε να λύσουμε στον κόμβο 2 είναι

$$-0.5 = 0.17417 V_2^2 + (V_2 \cos \delta)(-0.17417)(1.125) + (V_2 \sin \delta)(2.0462)(1.125)$$

$$-0.25 = 2.0462V_2^2 + (V_2 \sin \delta)(-0.17417)(1.125) + (V_2 \cos \delta)(-2.0462)(1.125)$$

• Άρα έχουμε

$$\boldsymbol{b} = \begin{bmatrix} -0.5 \\ -0.25 \end{bmatrix}$$

$$\mathbf{f}(\mathbf{x}^{(k)}) = \begin{bmatrix} 0.17417[V_2^{(k)}]^2 + \left(V_2^{(k)}\cos\delta^{(k)}\right)(-0.17417)(1.125) + \left(V_2^{(k)}\sin\delta^{(k)}\right)(2.0462)(1.125) \\ 2.0462[V_2^{(k)}]^2 + \left(V_2^{(k)}\sin\delta^{(k)}\right)(-0.17417)(1.125) + \left(V_2^{(k)}\cos\delta^{(k)}\right)(-2.0462)(1.125) \end{bmatrix}$$

• Στην επόμενη διαφάνεια υπολογίζουμε τον Ιακωβιανό πίνακα

Ιακωβιανός πίνακας

• Ο Ιακωβιανός πίνακας είναι

$$\frac{\partial f_1}{\partial V_2} = 0.34834V_2 - 0.19594\cos\delta + 2.302\sin\delta$$

$$\frac{\partial f_1}{\partial \delta} = 0.19594V_2\sin\delta + 2.302V_2\cos\delta$$

$$\frac{\partial f_2}{\partial V_2} = 4.0924V_2 - 0.19594\sin\delta - 2.302\cos\delta$$

$$\frac{\partial f_2}{\partial \delta} = -0.19594V_2\cos\delta + 2.302V_2\sin\delta$$

Γενική επανάληψη Newton-Raphson

Η γενική επανάληψη εκφράζεται ως εξής:

$$\begin{split} & \begin{bmatrix} V_2^{(k+1)} \\ \delta^{(k+1)} \end{bmatrix} \\ &= \begin{bmatrix} V_2^{(k)} \\ \delta^{(k)} \end{bmatrix} \\ &+ \begin{bmatrix} 0.34834V_2^{(k)} - 0.19594\cos\delta^{(k)} + 2.302\sin\delta^{(k)} & 0.19594V_2^{(k)}\sin\delta^{(k)} + 2.302V_2^{(k)}\cos\delta^{(k)} \\ 4.0924V_2^{(k)} - 0.19594\sin\delta^{(k)} - 2.302\cos\delta^{(k)} & -0.19594V_2^{(k)}\cos\delta^{(k)} + 2.302V_2^{(k)}\sin\delta^{(k)} \end{bmatrix}^{-1} \left(\begin{bmatrix} -0.5 \\ -0.25 \end{bmatrix} \right) \\ &- \begin{bmatrix} 0.17417[V_2^{(k)}]^2 - 0.19594\left(V_2^{(k)}\cos\delta^{(k)}\right) + 2.302\left(V_2^{(k)}\sin\delta^{(k)}\right) \\ 2.0462[V_2^{(k)}]^2 - 0.19594\left(V_2^{(k)}\sin\delta^{(k)}\right) - 2.302\left(V_2^{(k)}\cos\delta^{(k)}\right) \end{bmatrix} \right) \end{split}$$

Σύγκλιση

- Αρχικοποιούμε την τάση $\widehat{V}_2^{(0)}=1$
- Ξεκάθαρα ταχύτερη σύγκλιση από τη μέθοδο Gauss

- Ή και στο $\widehat{V}_2^{(0)}=0.1$
- Αλλά εδώ ο αλγόριθμος βρίσκει την εναλλακτική (αμεπιθύμητη) λύση που είχαμε βρει όταν λύναμε και με τη διτετράγωνη εξίσωση!

