Media transmisyjne

mgr inż. Krzysztof Szałajko

Media miedziane

Pojęcia

- Napięcie
 - stosunek pracy wykonanej podczas przenoszenia ładunku elektrycznego między punktami (V)
- Natężenie
 - stosunek wartości ładunku elektrycznego przepływającego przez wyznaczoną powierzchnię do czasu przepływu ładunku (A)
- Oporność
 - wielkość charakteryzująca reakcję ośrodka na przepływ prądu elektrycznego (Ω)
- Tłumienność
 - Wielkość tłumienia określa spadek mocy sygnału przepływającego przez łącze transmisyjne

Specyfikacja kabla

Szybkość sieci LAN
Typ kabla lub maksymalny zasięg
10 Mb/s

BASE – pasmo podstawowe (baseband)
Broad - szerokopasmowe

Specyfikacja kabla – oczekiwania wydajności

- Szybkość transmisji
- Rodzaj transmisji
 - Cyfrowa (w paśmie podstawowym)
 - Analogowa (szerokopasmowa)
- Odległość, jaką może pokonać sygnał, po której będzie możliwa jego prawidłowa interpretacja

Specyfikacja kabla (10BASE5)

- Standard z 1980 r.
- 10 10 Mb/s
- BASE pasmo podstawowe
- 5 możliwość przesyłania danych na odległość około 500 metrów
- Gruby kabel koncentryczny (thicknet)
- Wampirki

Specyfikacja kabla (10BASE2)

- Standard z 1980 r.
- 10 10 Mb/s
- BASE pasmo podstawowe
- 2 możliwość przesyłania danych na odległość 185 metrów
- kabel koncentryczny
- trójniki

Specyfikacja kabla (10BASE-T)

- Standard z 1990 r.
- 10 10 Mb/s
- BASE pasmo podstawowe
- T skrętka
- wtyki 8P8C ("RJ45")
- Wykorzystywana 2 i 3 para kabli (pomarańczowa i zielona)

Kabel koncentryczny

- Przewód elektryczny
 najczęściej miedziany lub aluminiowy, zdarzają
 się linki stalowe
- Izolacja wewnętrzna (dielektryk)
 od jej wymiarów oraz od stałej dielektrycznej
 zależy impedancja falowa kabla

Kabel koncentryczny

- Ekran
 drugi, niezbędny element przewodzący, chroni
 sygnał przed zakłóceniami
 elektromagnetycznymi z otoczenia
- Izolacja zewnętrzna chroni kabel przed uszkodzeniami mechanicznymi, wilgocią, itp.

Kabel koncentryczny

Kable koncentryczne dzielimy według ich impedancji falowej:

- 50 Ω (np.: H1500, H1000, H1001, H500, 9913, RG214, RG213, H155, RG58, RG316, TRILAN2, TRILAN4, RG178, RG174)
- 75 Ω (np.:RG59, TRISET113, RG6U, CB100F)
- inne impedancje stosowane raczej w aplikacjach specjalistycznych

Kabel UTP (U/UTP) – skrętka nieekranowana

Kabel UTP – skrętka nieekranowana

- 4 pary skręconych ze sobą przewodów
- Każdy przewód pokryty materiałem izolacyjnym
- Skręcenie przewodów powoduje zmniejszenie oddziaływania zakłóceń RFI i EMI
- Liczba skręceń poszczególnych par jest różna – zmniejszenie przesłuchu pomiędzy parami

Kabel UTP – skrętka nieekranowana Przesłuch

Szum elektryczny w kablu pochodzący z sygnałów z innych przewodów.

Jeżeli dwa przewody znajdują się blisko siebie, i nie są skręcone, energia z jednego może się przenieść na sąsiedni przewód.

Kabel UTP – skrętka nieekranowana

EMI (electromagnetic interference) zakłócenia elektromagnetyczne

RFI (radio frequency interfenrence) zakłócenia wywołane falami radiowymi

Każdy przewód w kablu może absorbować elektryczne sygnały z innych przewodów oraz źródeł elektrycznych. Jeżeli wynikowy szum elektryczny osiągnie wystarczająco wysoki poziom sygnał ulegnie zniekształceniu.

Kabel UTP – skrętka nieekranowana

Zalety

- Łatwość instalacji
- Cena
- Średnica kabla

Wady

- Podatność na zakłócenia
- Mniejsza odległość między wzmacniaczami sygnału niż w przypadku kabli koncentrycznych i światłowodowych

Kabel STP – skrętka ekranowana

Kabel STP – skrętka ekranowana

- Łączy techniki
 - Ekranowania
 - Znoszenia
 - Skręcania przewodów
- Redukuje przesłuch i sprzęganie pomiędzy parami żył
- Chroni przed zakłóceniami zewnętrznymi

Kabel STP – skrętka ekranowana

- Wymaga uziemienia na obu końcach kabla
 Jeśli będzie ono niewłaściwie wykonane kabel
 stanie się bardzo podatny na wszelkie
 zakłócenia z zewnątrz
- Większe rozmiary, waga, koszt kabla
- Trudniejszy w montażu

Kabel ScTP (FTP, F/UTP) – skrętka ekranowana folią

Koszulka

Kabel ScTP (FTP) – skrętka ekranowana

- Hybryda kabla STP i UTP
- Możliwe nazewnictwo: ekranowany kabel UTP
- Możliwe nazewnictwo: skrętka foliowana

T568a kabel prosty

T568a kabel skrosowany

T568b kabel prosty

T568b kabel skrosowany

Rodzaje skrętki

- U nieekranowane (ang. unshielded)
- F ekranowane folią (ang. foiled)
- S ekranowane siatką (ang. shielded)
- SF ekranowane folią i siatką

Spotykane konstrukcje kabli:

- U/UTP (dawniej UTP) skrętka nieekranowana
- F/UTP (dawniej FTP) skrętka foliowana
- U/FTP skrętka z każdą parą w osobnym ekranie z folii.
- F/FTP skrętka z każdą parą w osobnym ekranie z folii dodatkowo w ekranie z folii
- SF/UTP (dawniej STP) skrętka ekranowana folią i siatką
- S/FTP (dawniej SFTP) skrętka z każdą parą foliowaną dodatkowo w ekranie z siatki
- SF/FTP (dawniej S-STP) skrętka z każdą parą foliowaną dodatkowo w ekranie z folii i siatki

Klasa skrętki

Klasy skrętki wg europejskiej normy EN 50173:

- klasa A realizacja usług telefonicznych z pasmem częstotliwości do 100 kHz;
- klasa B okablowanie dla aplikacji głosowych i usług terminalowych z pasmem częstotliwości do 4 MHz;
- klasa C (kategoria 3) obejmuje typowe techniki sieci LAN wykorzystujące pasmo częstotliwości do 16 MHz
- klasa D (kategoria 5) dla szybkich sieci lokalnych, obejmuje aplikacje wykorzystujące pasmo częstotliwości do 100 MHz;
- klasa E (kategoria 6) rozszerzenie ISO/IEC 11801/TIA wprowadzone w 1999, obejmuje okablowanie, którego wymagania pasma są do częstotliwości 250 MHz (przepustowość rzędu 200 Mb/s). Przewiduje ono implementację Gigabit Ethernetu (4x 250 MHz = 1 GHz) i transmisji ATM 622 Mb/s;
- klasa EA (kategoria 6A) wprowadzona wraz z klasą FA przez ISO/IEC 11801 2002:2 Poprawka 1. Obejmuje pasmo do częstotliwości 500 MHz;
- klasa F (kategoria 7) opisana w ISO/IEC 11801 2002:2. Możliwa jest realizacja aplikacji wykorzystujących pasmo do 600 MHz. Różni się ona od poprzednich klas stosowaniem kabli typu S/FTP (każda para w ekranie plus ekran obejmujący cztery pary) łączonych ekranowanymi złączami. Dla tej klasy okablowania jest możliwa realizacja systemów transmisji danych z prędkościami przekraczającymi 1 Gb/s;
- klasa FA (kategoria 7A) wprowadzona przez ISO/IEC 11801 2002:2 Poprawka 1. Obejmuje pasmo do częstotliwości 1000 MHz;

Patchcord

Gotowy kabel sieciowy o znormalizowanej długości.

Media optyczne

Światłowody

- Światło wykorzystywane w światłowodach stanowi jeden z rodzajów energii elektromagnetycznej.
- Energia ta w postaci fal przemieszcza się przez próżnię, powietrze, szkło czy inne materiały.
- Długość fali odróżnia poszczególne rodzaje energii elektromagnetycznej.

Długość fali

Okres fali - czas, po jakim fala znajduje się w tej samej fazie. Okres mierzymy w jednostkach czasu.

Długość fali - droga jaką przebędzie fala w ciągu trwania okresu. Długość fali mierzymy w jednostkach długości.

Częstotliwość fali jest to ilość okresów w ciągu sekundy. Częstotliwość mierzymy w Hertzach.

Widmo elektromagnetyczne

Wszystkie typy fal elektromagnetycznych ułożone w kolejności od największej do najmniejszej długości fali.

Fala elektromagnetyczna

- Wszystkie fale elektromagnetyczne poruszają się w próżni z tą samą prędkością ok. 300 000 km/s
- Ludzkie oko dostrzega fale elektromagnetyczne w zakresie 700 – 400 nm (nanometrów)

Fala elektromagnetyczna

- Przez światłowód przesyłane jest światło podczerwone (o niewiele dłuższej fali od światła widzialnego – czerwonego, stąd nazwa)
- Światło podczerwone używane jest również m.in. w Twoim pilocie od telewizora
- W światłowodzie używane są fale o długościach: 850nm, 1310nm, 1550nm.

Promień światła

- Fala elektromagnetyczna, która wyszła ze źródła porusza się po linii prostej zwanej promieniem.
- Apertura numeryczna światłowodu apertura numeryczna rdzenia to zakres kątów padania, pod którymi promienie światła mogą wejść w światłowód, aby zostać całkowicie odbite.
- Mody ścieżki, którymi promień światła może się poruszać podczas przechodzenia przez światłowód.

- 1 rdzeń
- 2 płaszcz
- 3 separator
- 4 przędza poliamidowa
- 5 koszulka

- Każdy kabel światłowodowy w sieciach komputerowych składa się z dwóch szklanych światłowodów umieszczonych w oddzielnych osłonach
- Przesyłają one informacje w przeciwnych kierunkach

- Płaszcz
 - Jest wykonany z tlenków krzemu
 - Ma mniejszy współczynnik załamania światła niż rdzeń
 - Promienie ulegają całkowitemu odbiciu wewnętrznemu na granicy rdzenia i płaszcza

- Separator (bufor)
 - Zazwyczaj plastikowy
 - Chroni rdzeń i płaszcz przed uszkodzeniem
- Element wzmacniający
 - Zapobiega rozciąganiu światłowodu podczas instalacji
- Koszulka zewnętrzna
 - Chroni przed wytarciem

Źródło światła

- Podczerwone diody LED
 - Nieznacznie tańsze
 - Wymagają zachowania mniejszego bezpieczeństwa
- Lasery VCSEL (Vertical Cavity Surface Emitting Lasers)
 - Przesyłają dane na większe odległości

Światłowód jednomodowy

- Światło przesyłane jest tylko jednym modem
- Koszulka zazwyczaj jest koloru żółtego
- Rdzeń ma średnicę od 8 10 mikrometrów
- Oznaczenie 9/125 wskazuje, że rdzeń ma 9 mikrometrów, a płaszcz 125mikrometrów
- Źródło światła laser w podczerwieni dostający się do rdzenia pod kątem 90 stopni

Światłowód jednomodowy

Stosowane w światłowodzie jednomodowym laserowe źródło światła o fali większej niż długość światła widzialnego może spowodować poważne uszkodzenie oczu.

Nigdy nie należy patrzeć na końcówkę światłowodu, którego drugi koniec podłączony jest do urządzenia.

Należy również pamiętać o zakładaniu zaślepek ochronnych na końcówki światłowodu oraz na nieużywane porty w przełącznikach bądź routerach.

Światłowód wielomodowy

- Światło przesyłane jest pewną skończoną ilością modów
- Rdzeń standardowo ma średnicę 62,5 lub 50 mikrometrów
- Promień światła wejdzie w światłowód, jeśli pada pod kątem mieszczącym się w zakresie jego apertury numerycznej

Urządzenia transmisyjne - nadajnik

- Dioda LED
 - wytwarza światło podczerwone o długości fali równej 850 nm lub 1310 nm
 - wykorzystywane w światłowodach wielomodowych
 - do skupienia światła na końcu światłowodu stosowana jest soczewka

Urządzenia transmisyjne - nadajnik

- Laser
 - wytwarza światło podczerwone o długości fali równej 1310 nm lub 1550 nm
 - wykorzystywane w światłowodach jednomodowych na dużych dystansach
 - konieczne jest zastosowanie szczególnej ostrożności

Urządzenia transmisyjne - odbiornik

- Fotodioda PIN
 - wrażliwe na światło o częstotliwościach 850 nm, 1310 nm, 1550 nm
 - gdy padnie na nią światło o odpowiedniej częstotliwości zaczyna wytwarzać prąd

Urządzenia transmisyjne - złącza

- SC (Subscriber Connector)
 - Najczęściej stosowane w światłowodach wielomodowych

Urządzenia transmisyjne - złącza

- ST (Straight Tip)
 - najczęściej stosowane w światłowodach jednomodowych, dostępna wersja dla światłowodów wielomodowych
 - zatrzask obrotowy

Urządzenia transmisyjne - złącza

- LC (Lucent Connector / Little Connector / Local Connector)
 - blokada zatrzaskowa zapobiegająca przypadkowemu wypięciu się kabla

Tłumienie sygnału

- Rozpraszanie
 - Mikroskopijne zniekształcenia struktury rdzenia odbijają i rozpraszają część energii świetlnej
- Pochłanianie
 - Kiedy promień trafia na pewne typy zanieczyszczeń chemicznych traci swoją energię

Tłumienie sygnału

 Chropowatości występujące między rdzeniem, a płaszczem, powstałe podczas produkcji

Instalacja światłowodu

- Głównym powodem zbyt dużej tłumienności sygnału jest niewłaściwa instalacja
- Zbyt duże wygięcie światłowodu może powodować mikroskopijne uszkodzenia
 - Aby temu zapobiec instalacja następuje poprzez wykorzystanie tzw. rury przelotowej.
- Po położeniu kabla, końcówki należy odpowiednio przyciąć i wypolerować

Instalacja światłowodu

- Instalacja złączy na końcach światłowodu
- Utrzymanie światłowodu w czystości
- Końcówki czyścić pozbawioną włókien szmatką i alkoholem izopropylowym
- Przeprowadzenie testów światłowodu
 - miernik utraty mocy optycznej
 - reflektometr optyczny

Media bezprzewodowe

802.11 to grupa standardów IEEE dotyczących sieci bezprzewodowych

Nazwa	Szybkości (Mb/s)	Pasmo częstotliwości (GHz)	Uwagi
802.11	1, 2	2,4	Pierwszy standard czasami określany jako 802.1y
802.11a	6, 9, 12, 18, 24, 36, 48, 54	5	Publikacja 1999, urządzenia w 2001
802.11b	1, 2, 5.5, 11	2,4	Rozszerzenie 802.1y do pracy z prędkością 5.5 oraz 11 Mb/s , 1999
802.11g	1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54	2,4	Zgodny wstecz z 802.11b, 2003
802.11n	100, 150, 300, 450, 600	2,4 lub 5	Wyższe wymagania co do prędkości na rynku od 2006, max. 4 jednoczesne kanały w trybie MIMO
802.11ac	433, 867, 1300, 1733,, 6928	2,4 lub 5	Wyższe wymagania co do prędkości na rynku od 2012, max. 8 jednoczesnych kanałów w trybie MIMO

^{*} MIMO (Multiple-Input Multiple-Output) - zwielokrotnienie anten wyjściowych i wejściowych, zwielokrotnienie wysyłanych i odbieranych sygnałów radiowych

Nawiązanie połączenia

- Klient zaczyna nasłuchiwać zgodnego urządzenia (skanowanie aktywne lub pasywne)
 - Skanowanie aktywne
 - Wysłanie ramki próbkującej z węzła do sieci (zawiera SSID)
 - Gdy odnaleziony zostanie AP o danym SSID punkt ten wyśle ramkę z odpowiedzią
 - Skanowanie pasywne
 - Węzeł nasłuchuje ramek zarządzających
 - Po odebraniu ramki z SSID sieci, z którą miał się połączyć samoczynnie, następuje próba połączenia

Komunikacja

- Trzy typy ramek: sterująca, zarządzająca i danych
- Ramka sieci bezprzewodowej może mieć 2346 bajtów, jednak w praktyce, poprzez ograniczenia spowodowane do podłączenia infrastruktury bezprzewodowej do Ethernetu wynosi ona 1518 bajtów
- Potwierdzenia ACK
- Kolizje

