5-6 Additional Practice

Inverse Relations and Functions

1. Identify the inverse relation. Is it a function?

x	4	3	9	2	8	1
у	5	-1	6	3	5	7

2. Let f(x) = 5x - 1. Write an equation for f^{-1} . Sketch the graphs of f and f^{-1} on the same coordinate plane. Is f^{-1} a function?

- 3. Find the inverse of the function $f(x) = x^2 + 10x + 25$. Identify an appropriate restriction of its domain.
- **4.** Sketch the graph of $f(x) = 3 \sqrt[3]{x+2}$ and verify that the inverse is a function. Then write an equation for f^{-1} .

5. Use composition to determine whether f and g are inverse functions.

$$f(x) = \frac{1}{5}x - 3$$
, $g(x) = 5x + 15$

6. Describe and correct the error a student made in finding the inverse of the function $f(x) = x^2 - 25$.

$$y = x^2 - 25$$

$$x = v^2 - 25$$

$$\sqrt{x} = \sqrt{y^2 - 25}$$

$$\sqrt{x} = y - 5$$

$$\sqrt{x} + 5 = y$$

$$f^{-1}(x) = \sqrt{x} + 5$$

- 7. A coffee can is in the shape of a cylinder, with a radius r and height h.
 - **a.** Find the formula that gives the radius of the paint can in terms of the volume, *V*.
 - b. Describe any restrictions on the formula.
 - c. What is the radius of a coffee can with volume 46.25π in.³ and height is 7.4 in.?