Lecture 10

10.1 Finishing up last example

- Consider this example where we left-off from last class:
 - * In a Zogby Poll conducted with 1,203 likely voters nationwide between Sep 24-28, 2023, Donald Trump led Joe Biden, 52.5 percent to 47.5 percent, among those expressing a preference.
 - * This is a tracking poll. In the previous three-day window of the poll (Sep 21-23), Trump led Biden 55.6 to 44.4 percent (N=1,203).
 - * According to the poll, Trump's lead shrunk by about six points in three days. How confident are we that this change is not due to sampling error?
 - * Set it up:
 - * The parameter we seek is now $p_1 p_2$, where p_1 = Trump's true support in the first poll (Sep 21-23) and p_2 = Trump's true support in the second poll.
 - * The polls may be considered two binomial experiments in which Y_1 is the number of "successes" (here, the # favoring Trump) in the first poll, (no ideological agenda) and Y_2 is the number of of such "successes" in the second poll.
 - * An intuitive estimator for this quantity would be $\hat{p}_1 \hat{p}_2$, where the p-hats are the proportions of respondents favoring Trump in the two polls. Is it an unbiased estimator for $p_1 p_2$?

$$E(\widehat{p}_1 - \widehat{p}_2) = E(\widehat{p}_1) - E(\widehat{p}_2)$$

$$= E\left(\frac{Y_1}{n_1}\right) - E\left(\frac{Y_2}{n_2}\right) [\widehat{p}_1 \text{ and } \widehat{p}_2 \text{ are functions of the RVs } Y_1, Y_2]$$

$$= \frac{1}{n_1} E(Y_1) - \frac{1}{n_2} E(Y_2)$$

$$= \frac{1}{n_1} n_1 p_1 - \frac{1}{n_2} n_2 p_2 [E(Y) = np \text{ if } Y \text{ is distributed binomial}]$$

$$= p_1 - p_2.$$

- * Our next step is to say how precise $\hat{p}_1 \hat{p}_2$ tends to be as an estimator of $p_1 p_2$.
- * We do this by figuring out what the estimator's standard error is. It's

$$\sqrt{VAR(\widehat{p}_1 - \widehat{p}_2)} = \sqrt{VAR(\widehat{p}_1) + VAR(\widehat{p}_2)} \text{ [assume samples drawn independently]}$$

$$= \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

* We make the substitution

$$(\widehat{p}_1 - \widehat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}}$$

* Plugging in, we have

$$(55.6 - 52.5) \pm z_{\alpha/2} \sqrt{\frac{(55.6)(100 - 55.6)}{1,203} + \frac{(52.5)(100 - 52.5)}{1,203}}$$

 $3.1 \pm z_{\alpha/2}(2.031).$

* Do you recall how we find $z_{\alpha/2}$? We type qnorm($\frac{\alpha}{2}$), substituting our chosen α . You'll remember that $z_{\alpha/2}$ associated with an $\alpha=.05$ is $z_{.025}=-1.96$. So our 95% CI is:

$$3.1 \pm 1.96(2.031) = 3.1 \pm 3.98$$
, or $[-.9, 7.1]$.

- * We are 95% confident that the true change between the two polls was between -.9 and 7.1 percentage points.
- Note that this CI includes zero. So another interpretation of this CI is that we are not 95% confident that there was zero change between the two polls. And this, of course, is what we really wanted to know: was there truly any movement between Oct 21-23 and Oct 24-26?
- Now, does the 90% confidence interval about our point estimate include zero?
 - Let's see: our alpha is .10.
 - typing qnorm(.05) gives us -1.64. So our 90% CI is:

$$3.1 \pm 1.64(2.031) = 3.1 \pm 3.33$$
, or [-.23, 6.43].

- Still no cigar. At what level of confidence would we be satisfied that there was movement between the two surveys?
- Think: we wish to find some α^* such that the lower bound of the $100 * (1 \alpha)$ CI is greater than zero. That is, find some α^* meeting this criterion:

$$\alpha^* : 3.1 - z_{\alpha^*/2}(2.031) > 0.$$

• To do this, manipulate the expression

$$-z_{\alpha^*/2}(2.031) > -3.1$$

$$z_{\alpha^*/2} < \frac{3.1}{2.031}$$

$$z_{\alpha^*/2} < 1.5263$$

• So for any alpha such that $z_{\alpha/2} < 1.5263$, we will be $100 * (1 - \alpha)$ percent confident that the true change was greater than zero. How do we find this α ? Well, if

$$z_{rac{lpha}{2}} = -\Phi^{-1}\left(rac{lpha}{2}
ight)$$
, then $\Phi\left(-z_{rac{lpha}{2}}
ight) = rac{lpha}{2}$, and $lpha = 2\Phi\left(-z_{rac{lpha}{2}}
ight)$.

- So in this particular case, $\alpha = 2\Phi(-1.5263)$.
 - To find this alpha, we now type pnorm(-1.5263) in R, which is the CDF of the standard
 Normal evaluated at its argument. This returns .063.
 - Thus $\alpha/2 = .063$ and alpha is thus .126.
 - And thus if we are working with confidence intervals of 100 * (1 .126) = 87.4% or smaller, we will conclude that there was true movement between the two polls.

10.2 Hypothesis Testing

- This way of framing the question motivates a process known as **hypothesis testing**. A hypothesis test consists of four elements:
 - 1. A **null hypothesis about a parameter**, which we write as H_0 .
 - This is typically either what the "conventional wisdom" says is the the value of the parameter—or that the parameter is equal to zero.
 - 2. An alternative hypothesis about the parameter, H_A .
 - This is typically that the parameter is equal to *something different* than the null hypothesis. It may be more specific: that the parameter is either greater than or less than the null hypothesis.
 - 3. A test statistic derived from an estimator of the parameter.
 - 4. A rejection region.
 - The RR specifies the range of values of the test statistic for which the null H_0 is to be *rejected* in favor of the alternative H_A .
- Choosing the rejection region:
 - RR's are associated with two kinds of error:
 - * Type I error (a.k.a. a "false positive") is made if H_0 is rejected when H_0 is actually true.
 - · $Pr(\text{Type I error}) = \alpha$. (Yes, the very same α we've been working with.)
 - * Type II error (a.k.a. a "false negative") is made if H_0 is accepted when H_A is actually true.
 - · $Pr(\text{Type II error}) = \beta$.
 - α and β are two very practical ways to measure the goodness of a statistical test. We call α the test's **level of significance**. We call the quantity 1β the test's **statistical power**. In the best of all worlds, we want a test's level of significance to be low and its power to be high. In reality, we always face a tradeoff between these two goals.

 To illustrate this tradeoff, consider the data from which we constructed the earlier CI about Trump and Biden. Let's re-pose this question in terms of a hypothesis test, where

$$H_0: p_1 - p_2 = 0$$

$$H_A : p_1 - p_2 \neq 0$$

- Here our *test statistic* is the difference between our two sample proportions, $\hat{p}_1 \hat{p}_2$. And our rejection region includes the values of the statistic for which we reject the null for our chosen α .
 - * Here, the rejection region are those values of $\hat{p}_1 \hat{p}_2$ for which the constructed CI does not include zero. This would lead us to say (with $100 * (1 \alpha)$ % confidence) that the change between the two polls was greater than zero.
 - * What is this region? Let's look at our CI again:

$$(\widehat{p}_1 - \widehat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}}.$$

* Had $(\widehat{p}_1 - \widehat{p}_2)$ been big enough that $(\widehat{p}_1 - \widehat{p}_2) - z_{\alpha/2} \sqrt{\frac{\widehat{p}_1(1-\widehat{p}_1)}{n_1} + \frac{\widehat{p}_2(1-\widehat{p}_2)}{n_2}} > 0$, then our CI would not have incorporated zero. That is, if

$$\begin{array}{ccc} (\widehat{p}_{1}-\widehat{p}_{2}) & > & z_{\alpha/2}\sqrt{\frac{\widehat{p}_{1}(1-\widehat{p}_{1})}{n_{1}}+\frac{\widehat{p}_{2}(1-\widehat{p}_{2})}{n_{2}}} \\ \\ \frac{(\widehat{p}_{1}-\widehat{p}_{2})}{\sqrt{\frac{\widehat{p}_{1}(1-\widehat{p}_{1})}{n_{1}}+\frac{\widehat{p}_{2}(1-\widehat{p}_{2})}{n_{2}}}} & > & z_{\alpha/2}, \end{array}$$

we should reject the null and accept H_A .

- * So, a few questions:
- * what sample sizes would we have needed for our difference in sample proportions $(\hat{p}_1 \hat{p}_2)$ to have been found statistically different from zero with 95% confidence?

(Assume $n_1 = n_2 = n$.)

$$\frac{3.1}{\sqrt{\frac{(55.6)(100-55.6)}{n} + \frac{(52.5)(100-52.5)}{n}}} > 1.96$$

$$\frac{3.1}{\sqrt{\frac{4962.4}{n}}} > 1.96$$

$$\frac{3.1}{1.96} > \sqrt{\frac{4962.4}{n}}$$

$$\left(\frac{3.1}{1.96}\right)^2 > \frac{4962.4}{n}$$

$$n > 1,983.7$$

* We would have needed two samples of at least 1,984 in size.

10.3 Hypothesis tests vis-a-vis confidence intervals

- Now let's pose the following question:
 - The conventional wisdom is that our parameter θ is equal to a certain value. Specifically the null hypothesis says $\theta = \theta_0$.
 - I have theoretical reasons to believe that $\theta \neq \theta_0$. This is my alternative hypothesis.
 - I've obtained a point estimate $\hat{\theta}$ that is not equal to θ_0 .
 - This, of course, does not in itself destroy the null hypothesis. Why? Because it's
 possible that the null is true and I happened to get this very different estimate from the
 null simply by chance.
 - This leads to a key question:
- Having obtained a point estimate $\hat{\theta} \neq \theta_0$, how sure am I now that θ is not equal to θ_0 ?
 - This is the question we ask when we conduct *hypothesis tests*.
 - Often this value is $\theta_0 = 0$, but in practice it can be any value.
 - Regardless of the value of θ_0 , we can fully define the distribution of our estimator, $\hat{\theta}$ if θ_0 is true.

- We know that CLT tells us that the standardized version of *any* estimator $\widehat{\theta}$ that is a linear combination of i.i.d. random variables is distributed Normal in large samples: $\frac{\widehat{\theta} \mu_{\widehat{\theta}}}{\sigma_{\widehat{\theta}}} N(0,1)$.
- of course $\mu_{\widehat{\theta}} = E\left(\widehat{\theta}\right)$ and if $\widehat{\theta}$ unbiased and if θ_0 is true then by definition $E\left(\widehat{\theta}\right) = \theta_0$.
- So now rewrite as $\frac{\widehat{\theta}-\theta_0}{\sigma_{\widehat{\theta}}}$ $\sim N\left(0,1\right)$
- And this is the distribution of the standardized version of our estimator $\hat{\theta}$ "under the null." It is centered around 0, but due to *chance variation* in the sampling process individual estimates are closer or further away from 0 in a pattern described by the standard Normal density.
- [Draw another density curve.] Sometimes it's easier to envision this as the unstandardized version of $\widehat{\theta}$. It is centered about θ_0 , but due to *chance variation* in the sampling process individual estimates are closer or further away from θ_0 in a pattern described by the Normal density with variance $\sigma_{\widehat{\theta}}^2$.

10.4 A Two-Tailed Hypothesis Test

- With these tools in place, we can conduct hypothesis tests.
- Recall that such tests consist of:
 - 1. A **null hypothesis about a parameter**, which we write as H_0 .
 - This is typically either what the "conventional wisdom" says is the the value of the parameter—or that the parameter is equal to zero.
 - 2. An alternative hypothesis about the parameter, H_A .
 - This is typically that the parameter is equal to *something different* than the null hypothesis. It may be more specific: that the parameter is either greater than or less than the null hypothesis.
 - 3. A test statistic derived from an estimator of the parameter.
 - 4. A rejection region.
 - The RR specifies the range of values of the test statistic for which the null H_0 is to be *rejected* in favor of the alternative H_A .

- We begin by picking a level of confidence, α . Recall that this is the probability of a Type I error, that is Pr (reject $H_0|H_0$ true). Typically in our discipline this number is .05, or 5 percent.
- We then look at the standard Normal density curve, and identify the range of extreme values of $\widehat{\theta}$ that we will observe α percent of the time in repeated sampling.
- These extreme values are those greater than $z_{\frac{\alpha}{2}}$ and those less than $-z_{\frac{\alpha}{2}}$, where $\Phi\left(-z_{\frac{\alpha}{2}}\right)=\frac{\alpha}{2}$.
- Values in these ranges are the **rejection region** for our test. If $\widehat{\theta}$ falls in the rejection region, we reject $H_0: \theta = \theta_0$ in favor of $H_A: \theta \neq \theta_0$.
- If $\widehat{\theta}$ does not fall in the rejection region, we fail to reject $H_0: \theta = \theta_0$.
- In practice, we are usually working with the unstandardized version of our estimator, and so:
 - We reject H_0 if $\widehat{\theta} < \theta_0 z_{\frac{\alpha}{2}}\sigma_{\widehat{\theta}}$ or if $\widehat{\theta} > \theta_0 + z_{\frac{\alpha}{2}}\sigma_{\widehat{\theta}}$.
 - Otherwise, we fail to reject H_0 .

10.5 A One-Tailed Hypothesis Test

- Now consider a case where we have a stronger alternative hypothesis.
- Specifically, our hypothesis is **signed**. Rather than $H_A: \theta \neq \theta_0$, I have theoretical reason to claim say, $H_A: \theta > \theta_0$
- How does this change things?
- We again pick a level of confidence, α , again typically 5 percent.
- We then look at the standard Normal density curve, and identify the range of values of $\widehat{\theta}$ greater than θ_0 that we will observe α percent of the time in repeated sampling.
- Draw ONE-TAILED HYPOTHESIS TEST diagram on board

10.6 Cooking the books

- So here's the thing. Let's say you have a test statistic (some realization of $\widehat{\theta}$) whose value is greater than θ_0 . You make a *ex post* ("based on actual results") hypothesis that $H_A: p_1 p_2 \ge 0$ and conduct a one-tailed hypothesis test. This hypothesis is not based on theory. Are you cooking the books?
 - Yes. Knowing that $\hat{\theta} > \theta_0$, to reject H_0 with a one-tailed test, you need

$$\widehat{\theta} > z_{\alpha}$$
.

– But to reject H_0 with a two-tailed test, you need

$$\widehat{\theta} > z_{\frac{\alpha}{2}}.$$

- Typically political scientists are skeptical of one-tailed tests because they can look awfully post hoc. Most of the hypothesis tests you'll see in journals are two-tailed.