

Neural Network & Deep Learning Keras & TensorFlow

Hichem Felouat hichemfel@gmail.com

Regression MLPs

Regression MLPs

1) If you want to **predict a single value** (e.g., the price of a house, given many of its features), then you just need a **single output neuron**, its output is the predicted value.

2) For multivariate regression (i.e., to predict multiple values at once), you need one output neuron per output dimension. For example, to locate the center of an object in an image, you need to predict 2D coordinates, so you need two output neurons.

Regression MLPs

Typical regression MLP architecture:

Hyperparameter	Typical value			
input neurons	One per input feature			
hidden layers	Depends on the problem, but typically 1 to 5			
neurons per hidden layer	Depends on the problem, but typically 10 to 100			
output neurons	1 per prediction dimension			
Hidden activation	ReLU (relu)			
Output activation	None, or ReLU/softplus (if positive outputs) or logistic/tanh (if bounded outputs)			
Loss function	MSE (mean_squared_error) or MAE/Huber (if outliers)			

Regression MLPs - Available losses

Regression losses

- MeanSquaredError class
- MeanAbsoluteError class
- MeanAbsolutePercentageError class
- MeanSquaredLogarithmicError class
- CosineSimilarity class
- mean_squared_error function
- mean_absolute_error function
- mean_absolute_percentage_error function
- mean_squared_logarithmic_error function
- cosine_similarity function
- Huber class
- huber function
- LogCosh class
- log_cosh function

https://keras.io/api/losses/

Binary classification:

 We just need a single output neuron using the logistic activation function (sigmoid) 0 or 1.

Multilabel Binary Classification:

We need one output neuron for each positive class.

For example: you could have an email classification system that predicts whether each incoming email is spam or not-spam and simultaneously predicts whether it is an urgent or nonurgent email. In this case, you would need two output neurons, both using the logistic activation function.

Multiclass Classification:

We need to have one output neuron per class, and we should use the softmax activation function

for the whole output layer.

For example:

classes 0 through 9 for digit image classification [28, 28].

Multi-Class

Multi-Label

Integers: Labels [2, 0, 1]

one-hot : Labels [[0 0 1], [1 0 0], [0 1 0]]

To convert categorical features to such integer codes, we can use the **OrdinalEncoder**. This estimator transforms each categorical feature to one new feature of integers (0 to n_categories - 1).

[[1. 3. 2.]

Datetime Feature Engineering: we can extract the component of the date-time part (year, quarter, month, day, day_of_week, day_of_year, week_of_year, time, hour, minute, second, day_part) from the given date-time variable.

```
df["Date"] = pd.to_datetime(df["Date"])
df["year"] = df["Date"].dt.year
df["month"] = df["Date"].dt.month
df["day"] = df["Date"].dt.day
df["week_of_year"] = df["Date"].dt.weekofyear
df["day of year"] = df["Date"].dt.dayofyear
df= df.drop(["Date"], axis=1)
print(df.info())
```

	date_issued	date_issued:year	date_issued:month	date_issued:day
0	2013-06-11	2013	6	11
1	2014-05-08	2014	5	8
2	2013-10-26	2013	10	26
3	2015-08-20	2015	8	20
4	2014-07-22	2014	7	22

Label Encoding (LabelEncoder) is a popular encoding technique for handling categorical variables. In this technique, each label is assigned a unique integer based on alphabetical orderingwith value between 0 and n_classes-1.

The country names do not have an **order** or **rank**. But, when label encoding is performed, the country names are ranked based on the alphabets. Due to this, there is a very high probability that the model captures the relationship between countries such as India < Japan < US.

One-Hot Encoding is another popular technique for treating categorical variables. It simply creates additional features based on the number of unique values in the categorical feature. Every unique value in the category will be added as a feature.

Country	Age	Salary	Country	Age	Salary	0	1	2	Age	Salary
India	44	72000	0	44	72000	1	0	0	44	72000
US	34	65000	2	34	65000	0	0	1	34	65000
Japan	46	98000	1	46	98000	0	1	0	46	98000
US	35	45000	2	35	45000	0	0	1	35	45000
Japan	23	34000	1	23	34000	0	1	0	23	34000

Importing one hot encoder from sklearn.preprocessing import OneHotEncoder

```
# Creating one hot encoder object onehotencoder = OneHotEncoder()
```

Reshape the 1-D country array to 2-D as fit_transform expects 2-D and finally fit the object

X = onehotencoder.fit_transform(my_data.Country.values.reshape(-1,1)).toarray()

print(X)

Typical classification MLP architecture

Hyperparameter	Binary classification		Multiclass classification
input neurons	One per input feature	One per input feature	One per input feature
hidden layers neurons per hidden layer	Depends on the problem	Depends on the problem	Depends on the problem
output neurons	1	1 per label	1 per class
Hidden activation	ReLU (relu)	ReLU (relu)	ReLU (relu)
Output layer activation	Logistic (sigmoid)	Logistic (sigmoid)	Softmax (softmax)
Loss function	binary_crossentropy	binary_crossentropy	Cross entropy

Multiclass classification: sparse_categorical_crossentropy [Labels are Integers] categorical_crossentropy [Labels are one-hot]

Classification MLPs - Cross Entropy

Loss function for binary (yes/no) classification

$$L(\mathbf{y}, \widehat{\mathbf{y}}; \boldsymbol{\theta}) = -\sum_{i=1}^{n} (y_i \cdot \log \widehat{y}_i + (1 - y_i) \cdot \log[1 - \widehat{y}_i])$$

Loss function for multi-class classification.

$$L(\boldsymbol{y}, \widehat{\boldsymbol{y}}; \boldsymbol{\theta}) = -\sum_{i=1}^{n} \sum_{k=1}^{k} (y_{ik} \cdot \log \widehat{y}_{ik})$$

- Ground truth: y
- Prediction: $\widehat{\boldsymbol{y}}$
- Loss function: $L(y, \hat{y})$

Classification MLPs - Available losses

Probabilistic losses

- BinaryCrossentropy class
- CategoricalCrossentropy class
- SparseCategoricalCrossentropy class
- Poisson class
- binary_crossentropy function
- categorical_crossentropy function
- sparse_categorical_crossentropy function
- poisson function
- KLDivergence class
- kl_divergence function

https://keras.io/api/losses/

Evaluation Metrics

Evaluation Metrics - Available metrics

Accuracy metrics

- Accuracy class
- BinaryAccuracy class
- CategoricalAccuracy class
- TopKCategoricalAccuracy class
- SparseTopKCategoricalAccuracy class

Probabilistic metrics

- BinaryCrossentropy class
- CategoricalCrossentropy class
- SparseCategoricalCrossentropy class
- KLDivergence class
- Poisson class

Regression metrics

- MeanSquaredError class
- RootMeanSquaredError class
- MeanAbsoluteError class
- MeanAbsolutePercentageError class
- MeanSquaredLogarithmicError class
- CosineSimilarity class
- LogCoshError class

Classification metrics based on True/False positives & negatives

- AUC class
- Precision class
- Recall class
- TruePositives class
- TrueNegatives class
- FalsePositives class
- FalseNegatives class
- PrecisionAtRecall class
- SensitivityAtSpecificity class
- SpecificityAtSensitivity class

Image segmentation metrics

MeanIoU class

Hinge metrics for "maximum-margin" classification

- Hinge class
- SquaredHinge class
- CategoricalHinge class

https://keras.io/api/metrics/

Evaluation Metrics - Regression

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

Evaluation Metrics - Classification

Confusion matrix

Predicted class

Evaluation Metrics - Classification

Metric	Formula	Interpretation
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	How accurate the positive predictions are
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Coverage of actual negative sample
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Hybrid metric useful for unbalanced classes

Evaluation Metrics - Classification

Multilabel binary classification:

Hamming loss

AMBIENCE

0

0

0

0

0

- Accuracy
- Hamming loss

TEXT	SERVICE	FOOD	ANECI
but the staff was so horrible to us	1	0	0
to be completely fair the	0	1	1

0

0

the food is uniformly exceptional with a very ... where gabriela personaly

greets you and recomm ...

only redeeming facto...

for those that go once and dont enjoy it all i...

True labels

0

0

0

0

True labels	
ANECDOTES	PRICE

Predicted labels

SERVICE	FOOD	ANECDOTES	PRICE	AMBIENCE		
0	1	0	0	0		
1	1	0	0	0		
0	0	0	1	0		
1	0	0	0	0		
1	0	0	0	0		

Total number of predictions (TNP) = 25
Total number of incorrect predictions (TNIP) = 8

0

Accuracy = TNIP/TNP =
$$8/25 = 0.32$$

Custom Loss and Custom Metrics

Sometimes there is no good loss/metrics available or you need to implement some modifications.

```
# calculate cross entropy
def custom_loss_function(y_true, y_pred):
 return loss
# Calculate accuracy percentage between two lists
def accuracy metric(y true, y pred):
 return accuracy
# Compiling the model
model.compile(optimizer="sqd", loss=custom loss function, metrics=[accuracy metric])
# Training and evaluating the model
history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_split=0.2)
```

Custom Loss and Custom Metrics

If you want a different threshold:

model.compile(loss=create_my_loss(2.0), optimizer="adam")

	Underfitting	Just right	Overfitting
Symptoms	High training errorTraining error close to test errorHigh bias	Training error slightly lower than test error	 Very low training error Training error much lower than test error High variance
Regression illustration			my
Classification illustration			

- The bias is known as the difference between the prediction of the values by the ML model and the correct value. Being high in biasing gives a large error in training as well as testing data.
- Its recommended that an algorithm should always be low biased to avoid the problem of underfitting.
- The variability of model prediction for a given data point which tells us spread of our data is called the variance of the model. The model with high variance has a very complex fit to the training data and thus is not able to fit accurately on the data which it hasn't seen before.

- · Supervised Learning Under the Hood
 - supervised learning: y = f(x), f is unknown.
 - Goals
 - \bullet Find a model \hat{f} that best approximates: f : $\hat{f} \approx f$
 - \hat{f} can be Logistic Regression, Decision Tree, Neural Network,...
 - Discard noise as much as possible
 - End goal: \hat{f} should achieve a low predictive error on unseen datasets.
- Difficulties in Approximating f
 - \circ Overfitting: $\hat{f}(x)$ fits the training set noise.
 - \circ Underfitting: \hat{f} is not flexible enough to approximate f.
- Generalization Error
 - \circ Generalization Error of \hat{f} : Does \hat{f} generalize well on unseen data?
 - It can be decomposed as follows:

$$\hat{f} = bias^2 + variance + irreducible error$$

 \circ Bias: error term that tells you, on average, how much $\hat{f} \neq f$.

If the training set was very skewed, with some classes being **overrepresented and others underrepresented**, it would be useful to set the **class_weight** argument when calling the fit().

sample_weight: Per-instance weights could be useful if **some instances were labeled by experts** while others were labeled using a crowdsourcing platform: you might want to give more weight to the former.

- If you are not satisfied with the performance of your model, you should go back and tune the hyperparameters.
- Try another optimizer Gradient Descent, Momentum Optimization, Nesterov Accelerated Gradient, AdaGrad, RMSProp, Adam, Nadam
- Try tuning model hyperparameters such as the number of layers, the number of neurons per layer, and the types of activation functions to use for each hidden layer.
- Try tuning other hyperparameters, such as the number of epochs and the batch size.
- □ Once you are satisfied with your model's validation accuracy, you should evaluate it on the test set to estimate the generalization error before you deploy the model to production.

How to Save and Load Your Model

Keras use the HDF5 format to save both the model's architecture (including every layer's hyperparameters) and the values of all the model parameters for every layer (e.g., connection weights and biases). It also saves the optimizer (including its hyperparameters and any state it may have).

model.save("my_keras_model.h5")

Loading the model:

model = keras.models.load_model("my_keras_model.h5")

In case we use custom loss/metric function:

model = keras.models.load_model("my_keras_model.h5", compile=False)

DL is a subfield of ML, developed by several researchers.

Artificial Intelligence

Machine Learning

Deep Learning

ACM Turing Award 2019 (Nobel Prize of Computing) Yann LeCun, Geoffrey Hinton, and Yoshua Bengio

Machine Learning

Deep Learning

- In ML, features are engineered and then extracted from raw data (e.g., text, image, sound, etc.) in a separate process to model learning for classification.
- The features are then passed through data to train a model that will be capable of making predictions.
- Engineering of features is, however, a tedious process for several reasons: Takes a lot of time, Requires expert knowledge.
- Extracted features often lack a structural representation reflecting abstraction levels in the problem at hand.

 DL aims at learning automatically representations from large sets of labeled data:

The machine is powered with raw data.

Automatic discovery of representations.

- Representations at different levels of abstraction are learned by simple non-linear transformations (non-linear activation functions).
- The composition of several transformations can approximate very complex functions.

Example:

In text processing:

- Sentences are made of words
- Words are made of letters
- Letters are made of edges.

In image processing:

- Objects are made of local parts (e.g., head, torso, etc.)
- Local parts are made of lines and corners.
- Corners and lines are made of edges.

Deep Learning DL - wipo

Deep Learning DL - wipo

Al in industrial sectors

Highest growth rates

in patent filings between 2013 and 2016

134% Transportation

84% Telecommunications

40% \(\square \)
Life and medical sciences

36% Personal devices, computing and HCI

Several DL models have been proposed:

- Convolutional neural networks (CNNs).
- Autoencoders (Aes).
- Recurrent neural networks (RNNs).
- Generative adversarial networks (GANs).
- Faster RCNN and Mask RCNN.

Thank you for your attention

Hichem Felouat ...