Connexité par arc

Cours	
1	Parties connexes par arcs
	1.1 Chemin continu
	1.2 Composantes connexes par arcs, connexite par arcs
	1.3 Image d'un connexe par arcs par une application continue
2	Le cas de $\mathbb R$
3	Caractérisation des fonctions de plusieurs variables qui sont constantes
4	Annexes
	4.1 Complément : Ouverts et fermés dans un connexe par arcs
	4.2 Complément : caractérisation des fonctions de plusieurs variables qui sont constantes
Exercic	ees
Exe	ercices et résultats classiques à connaître
	Intérieur, adhérence et connexité par arcs
	Connexité de la somme de deux connexes par arcs
	Connexité de la réunion convexes d'intersection non vide
Exe	ercices
	its problèmes d'entrainement

Sauf mention contraire, on travaille dans un espace vectoriel normé $(E, \|\cdot\|)$.

1 Parties connexes par arcs

1.1 Chemin continu

<u>Définition.</u> Soit A une partie de E. Pour $a, b \in A$, on appelle chemin continu (ou : arc) joignant a à b dans A toute application :

$$\varphi \,:\, [0,1] \to E$$

telle que :

- φ est continue
- $\forall t \in [0,1], \ \varphi(t) \in A$
- $\varphi(0) = a \text{ et } \varphi(1) = b$

Remarque.

- L'image (directe) $\varphi([0,1])$ s'appelle parfois le **support** du chemin.
- Par abus, $\gamma: [\alpha, \beta] \to E$ continue, à valeurs dans A et telle que $\gamma(\alpha) = a$ et $\gamma(\beta) = b$ s'appelle aussi **chemin**: on se ramène à la définition en composant φ par $t \mapsto (1-t)\alpha + t\beta$ ou γ par $t \mapsto \frac{t-\alpha}{\beta-\alpha}$.

Définition. On définit une relation binaire sur A en disant que $a\mathcal{R}b$ lorsqu'il existe un chemin continu joignant $a \grave{b} dans A$.

Proposition. \mathcal{R} est une relation d'équivalence sur A.

1.2 Composantes connexes par arcs, connexite par arcs

Définition. Soit A une partie de E.

- On appelle composantes connexes par arcs de A les classes d'équivalences de la relation \mathcal{R} .
- On dit que A est connexe par arcs lorsqu'il y a une unique composante connexe par arcs, qui est A.

Proposition. Les composantes connexes par arcs de A forment une partition de A.

Exemple. Une partie convexe de E est connexe par arcs.

Définition. Une partie A de E est étoilée s'il existe $a \in A$ tel que :

$$\forall x \in A, [a, x] \subset A$$

où [a, x] désigne le segment d'extrémités a et x:

$$[a,x] = \{(1-t)a + tx, t \in [0,1]\}$$

Proposition. Une partie étoilée de E est connexe par arcs.

1.3 Image d'un connexe par arcs par une application continue

Théorème.

Soit E et F deux espaces vectoriels normés, $f:E\to F$ et A une partie de E. Si A est connexe par arcs et f continue, alors f(A) est connexe par arcs.

Exemple. Montrer que $GL_n(\mathbb{R})$ n'est pas connexe par arcs.

2 Le cas de \mathbb{R}

Proposition. Les parties connexes par arcs de $\mathbb R$ sont les intervalles.

Remarque. Ainsi, dans \mathbb{R} , les trois expressions « connexe par arcs », « convexe » et « intervalle » désignent la même notion. C'est spécifique à \mathbb{R} .

Théorème des valeurs intermédiaires.

Soit $f:A\subset E\to\mathbb{R}$. Si f est continue, et que A est connexes par arcs, alors f vérifie la propriété des valeurs intermédiaires : pour tout $a,b\in A, f$ prend toute valeur intermédiaire entre f(a) et f(b).

Remarque.

- La conclusion peut aussi s'écrire : f(A) est un intervalle.
- Dans le cas où $f(a) \leq f(b)$, pour tout γ tel que $f(a) \leq \gamma \leq f(b)$, il existe $c \in A$ tel que :

$$\gamma = f(c)$$

3 Caractérisation des fonctions de plusieurs variables qui sont constantes

Théorème.

Soit $f:E\to F$ une fonction définie et de classe \mathcal{C}^1 sur U ouvert, avec E et F deux espaces vectoriels normés de dimension finie. On suppose U connexe par arcs. Alors :

f est constante sur $u \iff df$ est nulle sur U

П

4 Annexes

4.1 Complément : Ouverts et fermés dans un connexe par arcs

Ce qui suit est hors programme.

Proposition. Soit A une partie connexe par arcs de E et $X \subset A$. Si X est à la fois un ouvert relatif et un fermé relatif de A, alors $X = \emptyset$ ou X = A.

Preuve. Supposons $X \neq \emptyset$. Fixons $a \in A$ et prenons $x \in X \subset A$. On va montrer que $a \in X$.

• Comme A est connexe par arc, il existe un chemin continu $\varphi:[0,1]\to A$ tel que $\varphi(0)=a$ et $\varphi(1)=x$. On note alors:

$$D = \{t \in [0,1], \ \varphi(t) \in X\} = \varphi^{-1}(X)$$

• Par hypothèse, X est un fermé relatif de A, donc il existe F fermé tel que $X=F\cap A.$ Alors :

$$\begin{split} D &= \varphi^{-1}(X) \\ &= \varphi^{-1}(F \cap A) \\ &= \varphi^{-1}(F) \text{ car } \varphi \text{ à valeurs dans } A \end{split}$$

est un fermé relatif de [0,1] comme image réciproque d'un fermé par une application continue.

• D est une partie de $\mathbb R$ non vide (contient 1) et minorée (par 0) donc admet une borne inférieure notée m. Mais D est un fermé relatif de [0,1] qui est fermé, donc D est fermé, et donc $m \in D$.

On raisonne par l'absurde en supposant que $m \neq 0$.

 Par hypothèse, X est un ouvert relatif de A, donc il existe Ω ouvert tel que X = Ω ∩ A. Alors :

$$\begin{split} D &= \varphi^{-1}(X) \\ &= \varphi^{-1}(\Omega \cap A) \\ &= \varphi^{-1}(\Omega) \text{ car } \varphi \text{ à valeurs dans } A \end{split}$$

est un ouvert relatif de [0,1] comme image réciproque d'un ouvert par une application continue.

• Comme D est un ouvert relatif de [0,1], et que $m \in D$, il existe $\eta > 0$ tel que :

$$]m-\eta, m+\eta[\cap [0,1]\subset D$$

ce qui contredit la définition de la borne inférieure. C'est donc que m=0, et donc $0\in D$, i.e. $a=\varphi(0)\in X$.

On a montré que $X = \emptyset$ ou X = A.

Corollaire. Une application continue, localement constante, sur une partie connexe par arcs, est constante

Preuve. Soit $f:A\to F$ continue, localement constante, sur A connexe par arcs. Fixons $a\in A.$ On note :

$$X = f^{-1}\big(\{f(a)\}\big) = \{x \in A, \ f(x) = f(a)\}$$

- $\{f(a)\}$ est fermé, et f est continue, donc X est un fermé relatif de A.
- f est localement constante, donc si $x \in X$, il existe $\eta > 0$ tel que :

$$\forall y \in B(x, \eta) \cap A, \ f(y) = f(x)$$

et donc, comme $f(x)=f(a),\ B(x,\eta)\cap A\subset X.$ On a montré que X est un ouvert relatif de A.

Par la propriété précédente, comme X est non vide car contient a, c'est que X=A, et donc f est constante sur A. \square

4.2 Complément : caractérisation des fonctions de plusieurs variables qui sont constantes

Théorème.

Soit $f: E \to F$ une fonction définie et de classe \mathcal{C}^1 sur U ouvert, avec E et F deux espaces vectoriels normés de dimension finie. On suppose U connexe par arcs. Alors :

f est constante sur $u \iff \mathrm{d} f$ est nulle sur U

Remarque. On a déjà établi le résultat dans le cas où U est convexe.

Preuve.

- Si f est constante, sa différentielle est nulle.
- Supposons que df soit nulle sur U. Soit $a \in U$ et $X = \{b \in U, f(a) = f(b)\} = f^{-1}(\{f(a)\})$. Alors d'une part X est un fermé relatif de U comme image réciproque du fermé $\{f(a)\}$ par f continue. D'autre part, pour tout $x \in X, x \in U$ et U ouvert donc il existe r > 0 tel que $B(x,r) \subset U$. La boule B(x,r) étant convexe, et la différentielle de f étant nulle sur cette boule, f y est constante, égale à f(x) et donc à f(a). On a montré que $B(x,r) \subset X$, et donc que X est un ouvert.

X étant à la fois ouvert et fermé relatif de U, et non vide, le résultat précédent s'applique et on en déduit que X=U. Par suite, f est constante sur U.

Exercices et résultats classiques à connaître

Intérieur, adhérence et connexité par arcs

48.1

Illustrer qu'il existe une partie A telle que :

- (a) \mathring{A} connexe par arc et A non connexe par arcs.
- (b) A connexe par arcs et \mathring{A} non connexe par arcs.
- (c) \overline{A} connexe par arcs et A non connexe par arcs.

Connexité de la somme de deux connexes par arcs

48.2

Soit E un \mathbb{K} -espace vectoriel de dimension finie, A et B deux parties connexes par arcs de E.

- (a) Montrer que $A \times B$ est connexe par arcs.
- (b) En déduire que $A+B=\{a+b,\ a\in A,\ b\in B\}$ est connexe par arcs.

Connexité de la réunion de convexes d'intersection non vide

48.3

Soit $(C_i)_{i \in I}$ une famille de parties convexes de E espace vectoriel normé de dimension finie. Montrer que, si $\bigcap_{i \in I} C_i \neq \emptyset$, alors $\bigcup_{i \in I} C_i$ est connexe par arcs.

2024-2025 http://mpi.lamartin.fr 5/7

48.4

Est-ce que l'ensemble $\mathcal{D}_n(\mathbb{R})$ des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$ est connexe par arcs?

48.5

Est-ce que le groupe orthogonal $O_n(\mathbb{R})$ est connexe par arcs?

48.6

- (a) Montrer que $GL_n(\mathbb{R})$ n'est pas connexe par arcs.
- (b) Montrer que $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs.

48.7

Soit E un espace normé de dimension finie, et A un partie non vide, connexe par arcs, de E. Montrer que si $f:A\to\{0,1\}$ est continue, alors f est constante.

Petits problèmes d'entrainement

48.8

Montrer que :

$$\{(x,y) \in \mathbb{R}^2, \ xy = 1\}$$

est la réunion de deux composantes connexes par arcs.

48.9

Soit E un espace normé de dimension finie, et $(A_n)_{n\in\mathbb{N}}$ une suite de parties connexes par arcs de E. On suppose que, pour tout $n\in\mathbb{N}, A_n\cap A_{n+1}\neq\emptyset$. Montrer que $\bigcup_{n\in\mathbb{N}}A_n$ est connexe par arcs.

48.10

Soit $f:I\to\mathbb{R}$ une application continue et injective sur I intervalle de longueur non nulle. Montrer que f est strictement monotone.

On définit :

$$[-1,1] \rightarrow \mathbb{R}$$

$$t \mapsto \begin{cases} \left(t^2 \cos \frac{1}{t}, t^2 \sin \frac{1}{t}\right) & \text{si } t \neq 0 \\ (0,0) & \text{si } t = 0 \end{cases}$$

Montrer que f est dérivable sur [-1,1], et que f'([-1,1]) n'est pas connexe par arcs.

On pourra pour cela minorer la norme euclidienne de f'(t).

48.12

Soit E un espace normé de dimension finie, et A une partie connexe par arcs de E.

- (a) Montrer que A ne peut pas être l'union disjointe de deux ouverts relatifs non vides de A.
- (b) Montrer que A ne peut pas être l'union disjointe de deux fermés relatifs non vides de A.

48.13

Soit E un espace normé de dimension finie $n \ge 2$. Montrer que la sphère unité $S = \{x \in E, ||x|| = 1\}$ est connexe par arcs.

48.14

Soit $n \in \mathbb{N}^*$. On note $\mathrm{GL}_n^+(\mathbb{R})$ l'ensemble des matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $\det(M) > 0$.

- (a) En utilisant le pivot de Gauss, montrer que toute matrice $M \in GL_n(\mathbb{R})$ peut s'écrire comme produit de matrices de transvection et de dilatation.
- (b) En déduire que $\mathrm{GL}_n^+(\mathbb{R})$ est connexe par arcs.
- (c) Déterminer les composantes connexes par arcs de $\mathrm{GL}_n(\mathbb{R})$.
- (d) Montrer que $GL_n(\mathbb{C})$ est connexe par arcs.

Connexité par arc

48.15

Montrer qu'il n'existe aucune application continue injective de $[0,1]^2$ dans [0,1].

48.16

Soit E un espace normé de dimension finie, et A une partie quelconque de E. On suppose que $(U_i)_{i\in I}$ est une partiition de A constitués d'ouverts relatifs de A (non vides) et connexes par arcs. Alors les U_i sont exactement les composantes connexes par arcs de A.

48.17

Soit E un espace normé de dimension finie, et A une partie de E. On appelle

extérieur d'une partie l'intérieur de son complémentaire.

Montrer que, si C est une partie connexe par arcs qui rencontre l'intérieur et l'extérieur de A, alors C rencontre la frontière de A.

48.18

Soit $n \geqslant 2$ et $f: \mathbb{R}^n \to \mathbb{R}$ une fonction continue. On suppose qu'il existe $a \in \mathbb{R}$ tel que $f^{-1}(\{a\})$ soit un singleton. Montrer que f admet un extremum global sur \mathbb{R}^n .

48.19

On définit :

$$A = \left\{ \left(x, \sin \frac{1}{x} \right), \ x \in \mathbb{R}_+^* \right\}$$

Montrer que A est connexe par arcs, mais que \overline{A} ne l'est pas.