Probabilistic Method and Random Graphs Lecture 10. Second Moment Method and Lovász Local Lemma

Xingwu Liu

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 6 of Probability and Computing.

Comments, questions, or suggestions?

Recap of Lecture 9

 Derive a deterministic algorithm from expectation argument

 Markov's Ine.: graphs with arbitrarily big girth and chro. number

First Moment method

Recap of Lecture 9

• Chebyshev's Ine.:
$$\Pr(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}$$

•
$$\Pr(X = 0) \le \Pr(|X - \mathbb{E}[X]| \ge \mathbb{E}[X]) \le \frac{\operatorname{Var}[X]}{\mathbb{E}[X^2]} \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}$$
 moment

• When $X \ge 0$, $\Pr(X > 0) > \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}$

•
$$\Pr(X > \theta \mathbb{E}[X]) \ge \frac{(1-\theta)^2 (\mathbb{E}[X])^2}{\text{Var}[X] + (1-\theta)^2 (\mathbb{E}[X])^2}$$

 $\ge (1-\theta)^2 \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}, \theta \in (0,1)$

Second moment method

Main Probabilistic Methods

- Counting argument
- First-moment method
- Second-moment method
- Lovasz local lemma

App.: Erdős distinct sum problem

- $S \subset \mathbb{R}^+$ has distinct subset sums
 - different subsets have different sums
 - Example: $S = \{2^0, 2^1, \dots 2^k\}$
- Fix $n \in \mathbb{Z}^+$. Let f(n) be the max size of $S \subset [n]$ which has distinct subset sums.
- Easy lower bound: $f(n) \ge \lfloor \ln_2 n \rfloor + 1$
- Erdős promised 500\$: $f(n) \le \lfloor \ln_2 n \rfloor + c$
 - Now offered by Ron Graham?

An easy upper bound

- Assume k-set $S \subseteq [n]$ has distinct subset sums
- There are 2^k subset sums
- Each subset sum $\in [nk]$
- So, $2^k \le nk$
- $k \le \ln_2 n + \ln_2 k \le \ln_2 n + \ln_2 (\ln_2 n + \ln_2 k)$ $\le \ln_2 n + \ln_2 (2\ln_2 n)$ $= \ln_2 n + \ln_2 \ln_2 n + 1$
- Can it be tighter? Yes!

A tighter upper bound

- Intuition underlying the proof:
 - A small interval ([nk]) has many (2^k) distinct sums
- If the sums are not distributed uniformly
 - Most of the sums lie in a much smaller interval
 - k must be smaller
 - It is the case by Chebyshev's Inequality

Proof:
$$f(n) = \ln_2 n + \frac{1}{2} \ln_2 \ln_2 n + O(1)$$

- Fix a k-set $S \subset [n]$ with distinct subset sums
- X: the sum of a random subset of S

•
$$\mu = \mathbb{E}[X], \sigma^2 = Var[X]$$

•
$$\Pr(|X - \mu| \ge \alpha\sigma) \le \frac{1}{\alpha^2} \Rightarrow$$

$$1 - \frac{1}{\alpha^2} \le \Pr(|X - \mu| < \alpha\sigma) \Rightarrow$$

$$1 - \frac{1}{\alpha^2} \le \sum_{|i - \mu| < \alpha\sigma} \Pr(X = i)$$

Proof:
$$f(n) = \ln_2 n + \frac{1}{2} \ln_2 \ln_2 n + O(1)$$

- Fix a k-set $S \subset [n]$ with distinct subset sums
- X: the sum of a random subset of S

•
$$\mu = \mathbb{E}[X], \sigma^2 = Var[X]$$

•
$$\Pr(|X - \mu| \ge \alpha\sigma) \le \frac{1}{\alpha^2} \Rightarrow$$

$$1 - \frac{1}{\alpha^2} \le \Pr(|X - \mu| < \alpha\sigma) \Rightarrow$$

$$1 - \frac{1}{\alpha^2} \le \sum_{|i - \mu| < \alpha\sigma} \Pr(X = i) \le \frac{2\alpha\sigma}{2^k}$$

Since Pr(X = i) is either 0 or 2^{-k}

Proof (continued)

• Estimating σ (assume $S = \{a_1, ..., a_k\}$):

$$\sigma^{2} = \frac{a_{1}^{2} + \dots + a_{k}^{2}}{4} \le \frac{n^{2}k}{4} \Rightarrow \sigma \le \frac{n\sqrt{k}}{2}$$

$$\Rightarrow 1 - \frac{1}{\alpha^{2}} \le \frac{2\alpha\sigma}{2^{k}} \le \frac{\alpha n\sqrt{k}}{2^{k}}$$

$$\Rightarrow n \ge \frac{2^{k}\left(1 - \frac{1}{\alpha^{2}}\right)}{\alpha\sqrt{k}}$$

• This holds for any $\alpha > 1$. Let $\alpha = \sqrt{3}$

•
$$n \ge \frac{2}{3\sqrt{3}} \frac{2^k}{\sqrt{k}} \Rightarrow k \le \ln_2 n + \frac{1}{2} \ln_2 \ln_2 n + O(1)$$

Application: threshold function

- Consider a property P of random graph $G_{n,p}$
- Threshold function t(n) for P is such that

$$\lim_{n\to\infty} \Pr(G_{n,p} \text{ has } P) = \begin{cases} 0 \text{ if } p = o(t(n)) \\ 1 \text{ if } p = \omega(t(n)) \end{cases}$$

- Example (clique number c(G): max clique size)
 - $P: c(G) \ge 4$
 - $t(n) = n^{-\frac{2}{3}}$ is the threshold function for P

Proof: when
$$p = o(n^{-\frac{2}{3}})$$

- S: a 4-subset of the n vertices
- X_S : indicator of whether S spans a clique
- $X = \sum_{S} X_{S}$: the number of 4-cliques

•
$$\mathbb{E}[X] = \binom{n}{4} p^6 = \Theta(n^4 p^6) = o(1)$$

By Markov's inequality

$$\Pr(c(G) \ge 4) = \Pr(X > 0) \le \mathbb{E}[X] = o(1)$$

Proof: when
$$p = \omega(n^{-\frac{2}{3}})$$

- To derive $Pr(X > 0) \rightarrow 1$
 - By Chebychev's Ineq.: $\Pr(X = 0) \le \frac{\operatorname{Var}[X]}{(\mathbb{E}[X])^2}$
 - Try to show $Var[X] = o(\mathbb{E}[X])^2$
- Recall $Var[X] = \sum_{S} Var[X_S] + \sum_{S \neq T} Cov(X_S, X_T)$
- X_S is an indicator $\Rightarrow \operatorname{Var}[X_S] \leq \mathbb{E}[X_S]$
- $Cov(X_S, X_T) \le \mathbb{E}[X_S X_T]$ $= \Pr(X_S = 1, X_T = 1)$ $= \mathbb{E}[X_S] \Pr(X_T = 1 | X_S = 1)$

And $Cov(X_S, X_T)=0$ if independent

Proof: estimating the variance

- $Var[X] \le \sum_{S} \mathbb{E}[X_S] + \sum_{S} \mathbb{E}[X_S] \sum_{T \sim S} Pr(X_T = 1 | X_S = 1)$ = $\sum_{S} \mathbb{E}[X_S] \Delta_S$
- $\Delta_S = 1 + \sum_{|T \cap S|=2} \Pr(X_T = 1 | X_S = 1)$ $+ \sum_{|T \cap S|=3} \Pr(X_T = 1 | X_S = 1)$ $= 1 + \binom{n-4}{2} \binom{4}{2} p^5 + \binom{n-4}{1} \binom{4}{3} p^3$ $= o(n^4 p^6) = o(\mathbb{E}[X])$
- $Var[X] = o(\mathbb{E}[X]^2) \Rightarrow Pr(X = 0) \le \frac{Var[X]}{\mathbb{E}[X]^2} = o(1)$ $\Rightarrow Pr(X > 0) \to 1$

Main Probabilistic Methods

- Counting argument
- First-moment method
- Second-moment method
- Lovász local lemma

Lovász local lemma: motivation

- Can we avoid all bad events?
- Given bad events $A_1, A_2, ... A_n$, is $\Pr(\cap_i \overline{A_i}) > 0$?
 - Applicable to SAT, coloring, Ramsey theory...
- Two special cases
 - $\sum_{i} \Pr(A_i) < 1 \Rightarrow \Pr(\cap_i \overline{A_i}) \ge 1 \sum_{i} \Pr(A_i) > 0$
 - Independent $\Rightarrow \Pr(\cap_i \overline{A_i}) = \prod (1 \Pr(A_i)) > 0$
- What if *almost* independent?

Lovász local lemma: symmetric version

- Dependency graph
 - Undirected simple graph on $S = \{A_1, A_2, ... A_n\}$
 - A_i is independent of its non-neighborhood $S \setminus \Gamma^+(A_i)$
 - $\Gamma(A_i) \triangleq \Gamma^+(A_i) \setminus \{A_i\}$
- Theorem: $\Pr(\cap_i \overline{A_i}) > 0$ if $4pd \le 1$, where $p = \max_i \Pr(A_i)$ and $d = \max_i |\Gamma(A_i)|$.
- By Erdös&Lovász in 1973 for Erdős 60th birthday

Lovász

Erdos

Lovász local lemma: proof

- Standard trick
 - Chain rule: $\Pr(\cap_i \overline{A_i}) = \prod_{i=1}^n \Pr(\overline{A_i} | \cap_{i=1}^{i-1} \overline{A_i})$
 - Valid only if each $\bigcap_{j=1}^{i-1} \overline{A_j}$ has nonzero probability
 - Hold if each term $\Pr(\overline{A_i} | \bigcap_{j=1}^{i-1} \overline{A_j}) > 0$
- Claim: for any $t \ge 0$ and $A, B_1, B_2, ... B_t \in S$,

1.
$$\Pr(\bigcap_{j=1}^t \overline{B_j}) > 0$$

$$\underline{2.}\Pr(A|\cap_{j=1}^t \overline{B_j}) < \frac{1}{2d}$$

Inductive proof of the claim

- Basis: t=0. Both 1 and 2 of the claim hold
- **Hypothesis**: the claim holds for all t' < t
- Induction
 - For **1**, $\Pr(\bigcap_{j=1}^t \overline{B_j})$ = $\Pr(\overline{B_t}|\bigcap_{j=1}^{t-1} \overline{B_j}) \Pr(\bigcap_{j=1}^{t-1} \overline{B_j}) > 0$
 - For **2**, let $\{C_1, ... C_x\} = \{B_1, ... B_t\} \cap \Gamma(A)$, and $\{D_1, ... D_y\} = \{B_1, ... B_t\} \setminus \Gamma(A)$
 - $x \le d, x + y = t$

Proof: induction for 2

- If x=0, A is independent of $\{B_1, ..., B_t\}$ and $\Pr(A \mid \bigcap_{j=1}^t \overline{B_j}) = \Pr(A) < \frac{1}{2d}$
- Assume x > 0. Then y < t.

•
$$\Pr(A \mid \bigcap_{j=1}^{t} \overline{B_{j}}) = \frac{\Pr(A \cap (\bigcap_{j=1}^{t} \overline{B_{j}}))}{\Pr(\bigcap_{j=1}^{t} \overline{B_{j}})}$$

$$\leq \frac{\Pr(A \cap (\bigcap \overline{D_{j}}))}{\Pr((\bigcap \overline{C_{j}}) \cap (\bigcap \overline{D_{j}}))} = \frac{\Pr(A \mid \bigcap \overline{D_{j}})}{\Pr((\bigcap \overline{C_{j}}) \mid \bigcap \overline{D_{j}})}$$

$$= \frac{\Pr(A)}{1 - \Pr((\bigcup C_{j}) \mid \bigcap \overline{D_{j}})} < \frac{p}{1 - \frac{d}{2d}} \leq \frac{1}{2d}$$

General case

Application to (k,s)-SAT

- (*k*,*s*)-CNF
 - Any clause has k literals
 - Any Boolean variable appears in at most s clauses
- Theorem: Any (k, s)-CNF is satisfiable if $s \le \frac{1}{4} \frac{2^k}{k}$
 - Randomly assign values to the Boolean variables
 - A_i : the event that the *i*th clause is not satisfied
 - $\Pr(\bigcap \overline{A_i}) > 0 \Leftrightarrow \text{satisfiable}$
 - $p = \Pr(A_i) = 2^{-k}, d \le ks$
 - $s \le \frac{1}{4} \frac{2^k}{k} \Rightarrow 4pd \le 1 \Rightarrow \Pr(\bigcap \overline{A_i}) > 0 \Rightarrow \text{satisfiable}$

Application to Ramsey Number R(k)

- Counting argument: $R(k) \ge k2^{\frac{k}{2}} \left[\frac{1}{e\sqrt{2}} + o(1) \right]$ [1947]
- Best result: $R(k) \ge k2^{\frac{k}{2}} \left[\frac{\sqrt{2}}{e} + o(1) \right]$ [1975, Spencer]
 - Randomly color edges of K_n in red/blue
 - *S*: a *k*-subset of the vertices
 - A_S : S is monochromatic
 - $p = \Pr(A_S) = 2^{1 \binom{k}{2}}, d \le \binom{k}{2} \binom{n}{k-2}$
 - By Stirling's formula, $4pd \le 1$ if $n \le k2^{\frac{k}{2}} \left[\frac{\sqrt{2}}{e} + o(1) \right]$
- Can we say something about R(k, t)?

Non-symmetric LLL

- Theorem: $\Pr(\cap_i \overline{A_i}) > 0$ if $\forall i, \sum_{j \in \Gamma(A_i)} \Pr(A_j) < \frac{1}{4}$
 - [Spencer, 1975]
 - The sense of "local"
- Follow the proof of symmetric LLL, with induction on m to show that $\Pr(A \mid \bigcap_{i=1}^m \overline{B_i}) < 2\Pr(A)$
- Application:

$$R(k,t) > t^{\frac{\binom{k}{2}-2}{k-2}+o(1)}$$
 with k fixed and $t \to \infty$

Proof:
$$R(k,t) > t^{\frac{\binom{k}{2}-2}{k-2}+o(1)}$$

- Randomly color edges of K_n , p in red, (1-p) in blue
- S: a k-set of the vertices; T: a t-set of the vertices
- A_S : S is a red clique; B_T : T is a blue clique

•
$$\Pr(A_S) = p^{\binom{k}{2}}, \Pr(B_T) = (1 - p)^{\binom{t}{2}}$$

- Any event has at most $\binom{t}{2}\binom{n}{k-2}$ neighbors being A_S ,
- at most $\binom{\bar{n}}{t}$ neighbors being B_T Let $n=t^{\frac{1}{\beta+\epsilon}}$, $p=n^{-\epsilon-\beta+\delta}$, $\beta=\frac{k-2}{\binom{k}{2}-2}$, $0<\delta<\epsilon$, we have $\binom{t}{2}\binom{n}{k-2}p^{\binom{k}{2}} + \binom{n}{t}(1-p)^{\binom{t}{2}} < \frac{1}{4}$

A stronger non-symmetric LLL

• $\Pr(\cap \overline{A_i}) > 0$ if there are $x_1, x_2, ..., x_n \in (0,1)$ s.t.

$$\forall i, \Pr(A_i) \le x_i \prod_{j \in \Gamma(A_i)} (1 - x_j)$$

- Similar proof, but
 - Prove $\Pr(A_i | \bigcap_{j=1}^t \overline{B_j}) \le x_i$
 - Use chain rule to lower-bound the <u>numerator</u> $\Pr(\cap \overline{C_j} \mid \cap \overline{D_j})$ by $\prod_{j \in \Gamma(A_i)} (1-x_j)$
- Spencer, 1977

$$R(k,t) \ge c \left(\frac{t}{\ln t}\right)^{\frac{k+1}{2}} \left(1 - o(1)\right)$$

- Follow the proof of $R(k,t) > t^{\frac{\binom{k}{2}-2}{k-2}+o(1)}$
 - Define events A_S and B_T for any k-set S and t-set T
 - Let $p = c_1 n^{-\beta}$, $t = c_2 n^{\beta} \ln n$, $x_S = (1 + \epsilon) \Pr(A_S)$ $x_T = e^{c_3 n^{\beta} \ln^2 n} \Pr(A_S)$, with $\beta = \frac{2}{k+1}$, $\epsilon > 0$
 - Apply LLL
- Best until 2010
 - Bohman&Keevash: $R(k,t) \ge c \left(\frac{t}{\ln t}\right)^{\frac{k+1}{2}} (\ln t)^{\frac{1}{k-2}}$

Major open problem

- Determine $\alpha(k)$ s.t. $R(k,t) = t^{\alpha(k)+o(1)}$
- Spencer 1975: $\alpha(k) \ge \frac{\binom{k}{2}-2}{k-2}$ Spencer 1977: $\alpha(k) \ge \frac{k+1}{2} = \frac{\binom{k}{2}-1}{k-2}$
 - Best for 40+ years
 - How tight is it?
- $\alpha(k) \le k 1$ since $R(k, t) \le {k+t-2 \choose k-1}$
- Conjecture: $\alpha(k) = k 1$
 - Yes for k=3
 - Unknown for larger k

• This local lemma is so strong. Is it ultimate?

Local lemma is to determine a curve surrounding a *safe zone*. Safe: $Pr(\cap_i \overline{A_i}) > 0$ any set of events with the probabilities

Tight Bound of Lovász local lemma

- General (Non-symmetrical) case
- $\Pr(\cap \overline{A_i}) > 0$ if

• By James B. Shearer @IBM in 1985

James Shearer

Tight Bound of Lovász local lemma

Symmetrical case

•
$$\Pr(\bigcap \overline{A_i}) > 0$$
 if
$$p < \begin{cases} \frac{(d-1)^{d-1}}{d^d} & \text{when } d > 1\\ \frac{1}{2} & \text{when } d = 1 \end{cases}$$

• Corollary: $Pr(\cap \overline{A_i}) > 0$ if $edp \le 1$

Application

- Any (k,s)-CNF is satisfiable if $s \le \frac{1}{e} \frac{2^k}{k}$
 - Known: satisfiable if $s \le \frac{1}{4} \frac{2^k}{k}$
 - Tight bound of $s: \left(\frac{2}{e} + o\left(\frac{1}{\sqrt{k}}\right)\right) \frac{2^k}{k}$ [Gebauer et al. 2011]
 - Can we efficiently find a satisfying assignment?

Algorithmic aspects

- Like other probabilistic methods, LLL proves existence non-constructively
- Unlike other probabilistic methods, LLL doesn't lead to efficient algorithms
 - Directly sampling has an exponentially small lower bound of success probability
 - Say, $\Pr(\cap \overline{A_i}) \ge \prod (1 x_i)$ for general version
- Is there an efficient algorithm?

Constructive Lovász Local Lemma

- Initiated by Joszef Beck in 1991
 - Under strong conditions on neighborhood size
 - In terms of coloring, SAT ...
- Breakthrough by Robin Moser&Gabor Tardos in 2009, Kashyap Kolipaka and Mario Szegedy in 2011
 - Events are generated by independent random variables
 - If Shearer's condition is met, an assignment avoiding all events occurs can be found in linear time

Gabor Tardos

Mario Szegedy

The assignment algorithm

```
For X \in \mathcal{X} do
      v_X \leftarrow a random evaluation of X
  FndFor
  While (some A occurs) do
      Arbitrarily pick an event A that occurs
      For X \in vbl(A) do
          v_X \leftarrow a random evaluation of X
      EndFor
  EndWhile
  Return (v_X)_{X \in \mathcal{X}}
• vbl (A) \subset \Upsilon: the set of variables determining A
```

Directions of LLL research

- Local conditions
 - Cluster LLL
 - Random walk
- Algorithms (Inspired by <u>Moser&Tardos</u>)
 - Efficient beyond Shearer's bound?
 - Efficient for abstract events?

Comparing probabilistic methods

- All dependent vs almost independent
 - Counting (union bound): mutually exclusive
 - First moment: linearity doesn't care dependence
 - Second moment: pairwise dependence
 - LLL: global dependence

References

- Spencer. Ramsey's theorem-A new lower bound. 1975
- Spencer. Asymptotic lower bounds for Ramsey functions. 1977
- James B. Shearer. On a Problem of Spencer. 1985
- Robin Moser and Gabor Tardos. A constructive proof of the general Lovasz Local Lemma. 2009
- Polipaka and Szegidy. Moser and Tardos Meet Lovász. 2011

http://www.openproblemgarden.org/

2021/1/8 47

Thank you

Appendix

Proof of Symmetric LLL

- Standard trick
 - Chain rule: $\Pr(\cap_i \overline{A_i}) = \prod_{i=1}^n \Pr(\overline{A_i} | \bigcap_{j=1}^{i-1} \overline{A_j})$
 - Valid only if each $\bigcap_{j=1}^{i-1} \overline{A_j}$ has nonzero probability
 - Hold if each term $\Pr(\overline{A_i} | \bigcap_{j=1}^{i-1} \overline{A_j}) > 0$
- Claim: for any $t \ge 0$ and $A, B_1, B_2, ... B_t \in S$,

1.
$$\Pr(\bigcap_{j=1}^t \overline{B_j}) > 0$$

$$\underline{2.}\Pr(A|\cap_{j=1}^t \overline{B_j}) < x_i$$

Inductive proof of the claim

- Basis: t=0. Both 1 and 2 of the claim hold
- **Hypothesis**: the claim holds for all t' < t
- Induction
 - For **1**, $\Pr(\bigcap_{j=1}^t \overline{B_j})$ = $\Pr(\overline{B_t}|\bigcap_{j=1}^{t-1} \overline{B_j}) \Pr(\bigcap_{j=1}^{t-1} \overline{B_j}) > 0$
 - For **2**, let $\{C_1, ... C_x\} = \{B_1, ... B_t\} \cap \Gamma(A)$, and $\{D_1, ... D_y\} = \{B_1, ... B_t\} \setminus \Gamma(A)$
 - $x \le d, x + y = t$

Proof: induction for 2

- If x = 0, A is independent of $\{B_1, ... B_t\}$ and $\Pr(A \mid \bigcap_{j=1}^t \overline{B_j}) = \Pr(A) < \frac{1}{2d}$
- Assume x > 0. Then y < t.

•
$$\Pr(A \mid \bigcap_{j=1}^{t} \overline{B_{j}}) = \frac{\Pr(A \cap (\bigcap_{j=1}^{t} \overline{B_{j}}))}{\Pr(\bigcap_{j=1}^{t} \overline{B_{j}})}$$

$$\leq \frac{\Pr(A \cap (\bigcap \overline{D_{j}}))}{\Pr((\bigcap \overline{C_{j}}) \cap (\bigcap \overline{D_{j}}))} = \frac{\Pr(A \mid \bigcap \overline{D_{j}})}{\Pr((\bigcap \overline{C_{j}}) \mid \bigcap \overline{D_{j}})}$$

Use chain rule to lower-bound $\Pr(\cap \overline{C_j} \mid \cap \overline{D_j})$

General case

Example: congestion-free path planning

- Setting:
 - *n* pairs of users to communicate
 - Pair i can choose a path from m-set F_i
- Can the paths be pair-wise edge-disjoint?
- Yes, if any path in F_i shares edges with at most $k \leq \frac{m}{8n}$ paths in F_j

Proof

- Each pair randomly choose a path in F_i
- $E_{i,j}$: the paths of pairs i and j share edges
 - $\Pr(E_{i,j}) \le \frac{k}{m} \triangleq p$
 - $E_{i,j}$ is independent of $E_{i',j'}$ if $i',j' \notin \{i,j\}$
 - $|\Gamma(E_{i,j})| < 2n \triangleq d$
- $4dp \leq 1$
- $\Pr(\cap \overline{E_{i,j}}) > 0$ by local lemma

A stronger non-symmetric LLL

- Still true if $4dp \le 1$ replaced by $ep(d+1) \le 1$
 - Similar proof, but
 - Prove $\Pr(A \mid \bigcap_{j=1}^t \overline{B_j}) \le \frac{1}{d+1}$
 - Use chain rule to lower-bound the numerator $\Pr(\bigcap \overline{C_j} \mid \bigcap \overline{D_j})$ by $\left(1 \frac{1}{d+1}\right)^a > e^{-1}$
- By Lovasz 1977
- Example
 - $k \ge 9$: k-uniform k-regular hypergraphs are 2-colorable
 - Uniform: each edge connects the same # of vertices
 - Regular: each vertex has the same degree