Conversion from NFA to DFA using subset construction method. * RE is already given the * Form NFA using thampsom construction method(Rule).

* Then wowent into DFA using subsit Construction method. Subset Construction Algorithm Input: An NFA. N. Output: A DFA D accepting the same language. Method: Algorithm construct a transition table Dtran for D. We use the following operation. operation Description

- peration

E-closuce(s) Set of NFA states reachable from NFA state

E-closuce(s) Set of Son E-transition alone. set of NFA states realthable from NFA state Sin. Ton E-transition alove. E-closuse sit of NFA state towhich there is a from some from strong on input symbol a from some NFA state sin T. (T, a)

free-1 Convert regular expression to minimized DFA. Step-1 Convert E-NFA for RE(9/b) * using thompson construction method. Step 2 Convert the given NFA to DFA using subset construction method. (x) find E-closure (d). SO, state with initial state 1. E-closure = §1, 2,3, 583 --- A A = & 1, 2, 3, 5, 8} > To find the transition of (A) state of the input symbol (a, b). Transition S(A,a) and S(A,b) state A = £ 4, 2, 3, 5, 84 Now, check the symbol (a) is having out from any state. $S(A,a) = 243 \approx 2011$

Then check (b) symbol is leaving out from any state. * find E-closure (6) = § 6, 7, 8, 2, 3, 5 } --= {2,3,5,6,7,8}---> To find the transition of B state of the input symbol (a, b) Transition S(B,a) and S(B,b) state B = 22, 3, 4, 5, 7, 8} Now, check the symbol (a) is leaving out from any state. There already find the E-closure that is state 8.

Then, check the symbol (6) is leaving out from any state. $S(B,a) = \sum A$ I have already find the E-closure 6 that is state C.

To find the transition of C state of the input symbol

(2 k) S(B, B) = § 63 Transition S(C,a) and S(C,b) state C = { 2,3,5,6,7,8} Now check the symbol (a) is leaving out from any state. $S(C,a) = \S 4Y$ Then, check the sembol (b) is leaving out from any state.

Then, check the sembol (b) is leaving out from any state.

S(C, b) = § 64. I have already find the E-closure 6 that is state .

Transition Digram

* Note: Accepting state in NFAir 8.

8 is element of (A, B, C)

SO, (A,B,C) are acceptance state in DFA.

Slop3 Minimization Boxess.

oplinized the OFA using transition table.

Total state = (A,B,C)

Seprate final non-accepting states final accepting states.

Transition Digram.

Convert regular expression to minimised DFA.

a (a/b) *B Step-1. Construct E-NFA for RE a(a/b) * 6 using.
Thompson construction method. Step-2 Convert the given NFA to DFA using subsit construction method.

(x) find E-Closure(a) So, start with initial state 1

So, start autre sin

$$E$$
-closure $\exists = \S 1\S - -- A$

-> To find the transition of A state of the input symbol

Transition S(A, a) and S(A, b).

Now check the symbol (a) is leaving out from any state.

theck the symbol (a)
$$S(A,a) = \{2\}$$
 | $a \circ A = \{2\}$ | $a \circ A$

(x) find E-closure (2) = {2,3,4,6,9} --- B & Then shock the symbol (b) is

Then check (b) symbol is leaving out from any state. $S(A,b) = no move of b | bon A = moraove of b | 1-b <math>\times$. To find the transition of B state of the input symbol (9,6). B= & 2,3,4,6,93 Transition S(B, a) and S(B, b). state B = {2,3,4,6,93 Now check the symbol (a) is leaving out from any state. S(B, a) = 2 5 4 2 5 *) find ϵ - closure(5) = \S 5, 8,93, 4, 63 = \ 3,4,5,6,893 --- @ Then Check (b) symbol is leaving out from any state. $S(B,b) = \{7,103\}$ (₹) find ∈ - closure (7,10) = } 7, 10, 8, 9, 3, 4, 6,} = { 3,4,6,7,8,9,10} --- (D) -> To find the transition of @ state of the input symbol Transition S(C, a) and S(C, b) state C = § 3,4,5,6,8,93 Now, check the symbol (a) is leaving out from any state. S(C, a) = \$ 5,4

I, already found the E- closurof 5

that is state 5

Transition Little Digram

Note: Accepting state in NFA was 10. And 10 was is element of state D.

So, I state is accepting state. That's final state.

Step-3: Minimization Process.

· Remove imreachable state.

· Separate the final and non-final state.

O Equivalance (To) = & A,B,Cf, &Df

I Equivalence (TT1) = 5 A}, & B,C, }, E)

2 Equivalence (TT2) = ¿A}, &B,C}, &O}

Transition table

Crans	carrie and
[9	Input
State	9 9 5
IA	/Bc / Ø /
Bo	Bc D
0	B. 191
9	The second secon

DFA [Transition Digrams

Ques-3 Convert Regular Expression (a b/ba)* to minimised

Step-1 Convert Regular Expression (ab/ba)* using thompson construction method.

Step-2 Convert the given NFA to DFA using subset construction method.

€ find ∈-dooure(s). so, state with initial state 1

€- closure(1) = § 4, e, 3, 6, to} ---- @ A = §1,2,3,6,10}

> To find the transition of (A) state of the input symbol transition S(A,a) and S(A,b) | state $A = \S1,2,3,6,103$

Now, check the symbol (a) is leaving out from any state.

S(A,a) = \(\frac{4}{3} \) \[\alpha \text{ an } A' \\ \alpha \text{ find } \(\in \text{-closure} (4) = \(\frac{5}{4} \) \] \[--- \text{B} \]

Then, chock the symbol S(A, b) is leaving out from any state. S(A, b) = 273 -- @ | bon A 6-57

* find e-closure (7) = \$79 --- @ To find the transition of B state of the input symbol (9,6) Transition S(B, a) and S(B, 6) State B = 843 Now that the symbol (a) is leaving out from any state. S(B,a) = no move | aon B $<math>4 \rightarrow a \times a$ Then, check the symbol (-b) is leaving out from any state. S(B,6) = 25} \times find \in - closure (5) = \S 5, 9, 10, 2, 3, 6} = \S 2, 3, 5, 6, 9, 10} --- \S > To find the transition of @ state of the input symbol (9,6) Territion S(Ga) and S(t, b) state C= 273 Now, check the symbol (a) is leaving out from any state. $S(C,a) = 284 \quad aon C$ 7-3-8x find the & closur (8) = § 8, 9, 10, 2, 3, 63 = {2,3,6,8,9,10g---E Then, check the symbol (b) is leaving out from any state. $S(5,6) = \text{no-move} \quad \text{bon C}$ $7 \rightarrow \times$

State	In	put
9	a	5
A= \$ 1,2,3,6,104	B	C
B = 244		9
C = { 73	E	
Q= §2,3,5,6,9,103	В	C
E= {2,3,6,8,9,10}	B	C

* Note: Accepting state in NFA. is 10

Jois element of & A, D, Eg

so, & A, D, Eg are acapting state in DFA

Step 3 Minimization Process.

OEquivalance = & A, DEJ, & B, CJ IEquivalance = & A, DEJ, & BJ, & CJ name new state (A, DE) as Z.

State	Jnp	ut 1 h	
A	8	C D	
C	E	C	
Z. E	B	C	T

Relace (ABE) as Z in Table.

State Q B	Input a b B c Z
Ten	ansilión Digión Table

Minimized DFA

Transition Degran

13