东南大学

电力电子技术

第16讲

主讲教师: 王念春

380419124@qq. com

交流—直流 (AC-DC) 变换(二)

3

二、三相可控整流电路

P142页第11题: 在三相半波可控整流电路中,如果触发脉冲出现在自然点之前,能否进行换流?可能会出现什么情况?

窄脉冲, 宽脉冲, 单个发, 同时发。

什么是窄脉冲?

什么是宽脉冲?

什么是单个发?

什么是同时发?

整流电路中不变的因数:

三相脉冲间隔相差120度,由同步电路通过 检测电压过零点来保证,也是电力系统稳 定运行的基本特征。

窄脉冲单个发

窄脉冲同时发

宽脉冲单个发

宽脉冲同时发

P142页第11题:在三相半波可控整流电路中,如果触发脉冲出现在自然点之前,能否进行换流?可能会出现什么情况? 结论:

(1) 窄脉冲单个发:

有输出电压波形,一个周期内每相输出不同,输出不对称。

(2) 窄脉冲同时发:

有输出电压波形,输出电压低,输出波形与脉冲不对应。

(3) 宽脉冲单个发:

有输出电压波形,输出电压最大,不可控。

(4) 宽脉冲同时发:

8

有输出电压波形,输出电压最大,不可控。

东南大学

电力电子技术

第17讲

主讲教师: 五念春

380419124@qq. com

- (1) 电阻性负载 共阴极接法
 - 1) α=0 自然换流点导通原则: 阳极电位高的元件
 - 2) *α*≤30°

以 α =30°为例,负载电流处于临界状态 θ =120°

3) $\alpha > 30^{\circ}$

 α =60° 为例,直流电流变得不连续。 θ <120°

 $\alpha=30$ ° 仿真波形

 α =60° 仿真波形

元件上的电压

$$u_{T1} = \begin{tabular}{ll} i & VT_1 通 \\ i & u_{ab} & VT_2 通 \\ i & u_{ac} & VT_3 通 \\ i & u_a & i 都不通 \end{tabular}$$

结论:

①
$$a = 0^{\circ}, u_d$$
最大

- ② a £ 30°,电流连续 θ =120°
- ③ $\alpha>30^{\circ}$,电流断续, $\theta=150^{\circ}-\alpha$

直流平均电压 $U_{\rm d}$

① $\alpha \le 30^{\circ}$ $U_{d} = \frac{1}{2p} \sum_{6}^{5p+a} \sqrt{2}U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} \sqrt{3}U_{2} \cos a = 1.17U_{2} \cos a$

② $\alpha > 30^{\circ}$

$$U_{d} = \frac{1}{\frac{2p}{3}} \oint_{6+a}^{p} \sqrt{2}U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} U_{2} [1 + \cos(\frac{p}{6} + a)] = 0.675 U_{2} [1 + \cos(\frac{p}{6} + a)]$$

 $\alpha = 150$ ° 时, $U_{\rm d} = 0$,故电阻性负载下三相半波可控整流电路的移相范围为150°

晶闸管承受的最大反向电压U_{RM}为线电压峰值

$$U_{RM} = \sqrt{6}U_2$$

(2) 电感性负载

 $\alpha \leq 30$ °时,大电感负载电压波形与电阻负载时相同。

 $\alpha > 30°$ 后,负载电感 L_d 中感应电势 e_L 的作用,使得交流 电压过零时晶闸管不会关断。

大电感负载 $\alpha=60$ ° 仿真波形

直流平均电压 $U_{\rm d}$

$$U_d = 1.17U_2 \cos a$$

晶闸管电流

$$I_{dT} = \frac{1}{3}I_{d}$$

$$I_{T} = \sqrt{\frac{120}{360}I_{d}^{2}} = \frac{1}{\sqrt{3}}I_{d} = 0.578I_{d}$$

$$I_{2} = I_{T}$$

晶闸管承受的最大正、反向峰值电压均为线电压峰值

$$U_{TM} = \sqrt{6}U_2$$

东南大学

电力电子技术

第18讲

主讲教师: 五念春

380419124@qq. com

2、三相桥式全控整流电路

2、电感性负载 $\omega L_{\rm d} >> R_{\rm d}$

1) $\alpha = 0^{\circ}$

 u_a 最大, u_b 最小, VT_1 、 VT_6 通, $u_d=u_{ab}$
 u_a 最大, u_c 最小, VT_1 、 VT_2 通, $u_d=u_{ac}$
 u_b 最大, u_c 最小, VT_2 、 VT_3 通, $u_d=u_{bc}$
 u_b 最大, u_a 最小, VT_3 、 VT_4 通, $u_d=u_{ba}$
 u_c 最大, u_a 最小, VT_4 、 VT_5 通, $u_d=u_{ca}$
 u_c 最大, u_b 最小, VT_5 、 VT_6 通, $u_d=u_{cb}$
 i_T 为120° 宽的矩形波

$$U_{T1} = \begin{subarray}{ll} 0 & VT1通 \begin{subarray}{ll} VT3通 \begin{subarray}{ll} VT3通 \begin{subarray}{ll} VT5通 \begin{subarray}{ll} b \end{subarray}$$

2) 0° < a £ 60° 以α=30° 为例

a - Þ u_d ↓

α=60° 时

 $u_{\rm d}$ 出现过零点。

3) $\alpha > 60^{\circ}$

 $u_{\rm d}$ 负面积, $L_{\rm d}$ 作用, $e_{\rm L}$ + $u_{\rm 2l}$ >0 仍通

 $\alpha=90^\circ$ 时, $\mathbf{u}_{d}=0$ 。移相范围 90°

 $\alpha=30$ ° 仿真波形

 α =60° 仿真波形

 $\alpha = 90$ ° 大电感负载仿真波形

4) 基本数量关系

直流平均电压 U_d

$$U_{d} = \frac{1}{\frac{p}{3}} \frac{\frac{2p}{3} + a}{3} \sqrt{6}U_{2} \sin wt dwt = 2.34U_{2} \cos a$$

晶闸管电流与三相半波时相同,即平均值为

$$I_d = \frac{U_d}{R_d} \qquad \qquad I_{dT} = \frac{1}{3}I_d \qquad \qquad I_T = \frac{I_d}{\sqrt{3}}$$

变压器次级绕组电流有效值为

$$I_2 = \sqrt{\frac{1}{2p}} \hat{\mathbf{g}} I_d^2 \frac{2p}{3} + (-I_d)^2 \frac{2p}{3} \dot{\mathbf{u}} = \sqrt{\frac{2}{3}} I_d$$

其值比三相半波时高2倍,说明绕组的利用率提高了。

5) 对触发脉冲的要求 宽脉冲 双窄脉冲

(2) 电阻性负载

$$\alpha \leq 60^{\circ}$$

=60°是电阻负载下电流连续与否的临界点

>60°

 $\alpha=30$ ° 仿真波形

 α =60° 仿真波形

 $\alpha = 90$ ° 电阻仿真波形

(2) 电阻性负载输出电压公式

$$U_d = \frac{1}{p/3} \frac{p}{6} \sqrt{2} U_{2l} \sin wtd(wt)$$

=
$$2.34U_2[1+\cos(\frac{p}{3}+a)]$$

东南大学

电力电子技术

第19讲

主讲教师: 五念春

380419124@qq. com

三相半波可控整流电路大电感负载+续流二极管分析 教材中没有分析,后面作业题有这种情况。

续流二极管特点:阻力小,电感从它释放能量,这时负载电压为零。

 $\alpha <=30$ °情况下,输出波形 大电感负载,纯电阻负载,大电感负载+续流二极管是相同的,输出电压的表达式也是相同的。

$$U_{d} = \frac{1}{\frac{2p}{3}} \frac{5}{6}^{p+a} \sqrt{2}U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} \sqrt{3}U_{2} \cos a = 1.17U_{2} \cos a$$

三相半波可控整流电路大电感负载+续流二极管分析

续流二极管特点: 阻力小, 电感从它释放能量, 这时负 载电压为零。

 $\alpha>=30$ °情况下,大电感负载上由于电感通过变压器副边 续流, 电压出现负值。有续流二极管后, 电感从续流二极 管续流,负载上电压不会出现负值。下面给出 $\alpha=60$ °的 波形。

三相半波可控整流电路大电感负载+续流二极管分析

从波形可以看出,与纯电阻负载下波形一致,因些输出电压的表达式为:

$$U_{d} = \frac{1}{2p} \underbrace{\frac{p}{6}}_{6+a} \sqrt{2} U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} U_{2} [1 + \cos(\frac{p}{6} + a)] = 0.675 U_{2} [1 + \cos(\frac{p}{6} + a)]$$

结论:

① **a≤**30°

$$U_{d} = \frac{1}{\frac{2p}{3}} \frac{6}{6}^{5p+a} \sqrt{2}U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} \sqrt{3}U_{2} \cos a = 1.17U_{2} \cos a$$

② α>30°

$$U_{d} = \frac{1}{\frac{2p}{3}} \oint_{6+a}^{p} \sqrt{2}U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} U_{2} [1 + \cos(\frac{p}{6} + a)] = 0.675 U_{2} [1 + \cos(\frac{p}{6} + a)]$$

分析过程与三相半波整流电路相同,直接给出结论。与三相桥式全控整流电路纯电阻负载相同。

结论:

① **a≤**60°

$$U_d = \frac{1}{\frac{p}{3}} \frac{2p}{3} + a \sqrt{6}U_2 \sin wt dwt = 2.34U_2 \cos a$$

② α>60°

$$U_d = \frac{1}{p/3} \frac{p}{3} \sqrt{2} U_{2l} \sin wtd(wt) = 2.34 U_2 [1 + \cos(\frac{p}{3} + a)]$$

三相桥半控整流电路大电感负载

在半控整流电路中,电感续流通过二极管与晶闸管进行,与单相半控整流电路分析类似,直接给出结论。与纯电阻负载全控整流电路相同,但要注意:存在失控问题。

结论:

(1) **a≤**60°

$$U_{d} = \frac{1}{\frac{p}{3}} \frac{\partial^{2p}_{3}}{\partial^{3}_{+a}} \sqrt{6}U_{2} \sin wt dwt = 2.34U_{2} \cos a$$

② α>60°

$$U_d = \frac{1}{p/3} \frac{p}{3} \sqrt{2} U_{2l} \sin wtd(wt) = 2.34 U_2 [1 + \cos(\frac{p}{3} + a)]$$

三相桥半控整流电路大电感负载+续流二极管

解决了半控电路的失控问题,但输出电压表达式相同。

结论:

(1) **a≤**60°

$$U_{d} = \frac{1}{\frac{p}{3}} \frac{\partial^{2p}_{3}}{\partial^{3}_{4a}} \sqrt{6}U_{2} \sin wtdwt = 2.34U_{2} \cos a$$

② α>60°

$$U_d = \frac{1}{p/3} \frac{p}{3} \sqrt{2} U_{2l} \sin wtd(wt) = 2.34 U_2 [1 + \cos(\frac{p}{3} + a)]$$

串联的特征:

- (1) 元件中流过的电流相同;
- (2) 总电压为串联电压相加。

电路知识中有电阻,电感,电容的串联,这些元件的串联比较简单,没有什么条件。

两个三相半波可控整流电路的串联比较复杂,要满足一条的条件,这个条件就是负载要为大电感负载。

下面对比一下大电感负载情况下三相半波电路与三相桥式电路参数,看看是否满足串联的特征:

三相半波可控整流电路输出电压:

$$U_{d} = \frac{1}{\frac{2p}{3}} \frac{5}{6}^{p+a} \sqrt{2}U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} \sqrt{3}U_{2} \cos a = 1.17U_{2} \cos a$$

三相桥式可控整流电路输出电压:

$$U_{d} = \frac{1}{\frac{p}{3}} \frac{\partial^{2p}_{3}}{\partial^{3}_{4a}} \sqrt{6}U_{2} \sin wt dwt = 2.34U_{2} \cos a$$

 $1.17U_2\cos\alpha$

 $2.34U_2\cos\alpha$

输出电压满足两个三相半波可控整流电路串联的特征,三相桥式可控整流电路输出电压为三相半波可控整流电路的一倍。

元件中流过的电流是否相同呢?

三相半波可控整流电路,大电感负载情况下,每个晶闸管每个波头内导通120°,每个周期内导通120°,得出流过晶闸管电流的平均值、有效值与负载电流平均值I_d间的关系(负载电流平直,因此,负载电流平均值与有效值相等):

$$I_{dT} = \frac{1}{3}I_d$$
 晶闸管电流的平均值
$$I_T = \sqrt{\frac{120}{360}I_d^2} = \frac{1}{\sqrt{3}}I_d = 0.578I_d \longrightarrow$$
 晶闸管电流的有效值

元件中流过的电流是否相同呢?

三相桥式可控整流电路,大电感负载情况下,每个晶闸管每个波头内导通60°,每个周期内连续导通两个波头累计导通120°,得出流过晶闸管电流的平均值、有效值与负载电流平均值I_d间的关系(负载电流平直,因此,负载电流平均值与有效值相等):

$$I_{dT} = \frac{1}{3}I_d$$
 晶闸管电流的平均值
$$I_T = \sqrt{\frac{120}{360}I_d^2} = \frac{1}{\sqrt{3}}I_d = 0.578I_d \longrightarrow$$
 晶闸管电流的有效值

通过分析对比流过晶闸管电流的平均值与有效值,得出结论:

三相半波可控整流电路与三相桥式整流电路,流过每个晶闸管电流的平均值与有效值相等,也即流过元件的电流相同。

满足串联的两个特征:

- (1) 元件中流过的电流相同;
- (2) 总电压为串联电压相加。

因此,在大电感负载情况下,三相桥式可控整流电路,可以看成是两个三相半波可控整流电路的串联。

串联的特征:

- (1) 元件中流过的电流相同;
- (2) 总电压为串联电压相加。

纯电阻负载情况下,三相桥式整流电路能否看成是两个三相关波可按整流电路的串联呢?

纯电阻负载情况下,输出电压分成两个表达式,在负载电流连续的情况下,大家可以按前面的情况进行分析; 在负载电流继续的情况下,同样按前面的方法分析,就可以得出结论。要点:输出电压是否为一倍,流过的电流是否相同? 东南大学

电力电子技术

第 20 讲

主讲教师: 五念春

380419124@qq. com

第14题:现有单相半波、单相桥式、三相半波三种电路,直流平均电流I_d都是40A,问串在晶闸管中的保护用熔断器电流是否一样大?为什么?

思考要点:

- (1) 首先要了解熔断器的保护特性,熔断器的保护特性是流过它的电流有效值来决定的。与平均值无关;
 - (2) 题目中是平均值相等,如何转换成有效值呢?
 - (3) 波头的概念,波头持续的时间。
- (A) 单相半波电路,不失一般性,波头为180度,晶闸管平均电流与负载平均电流相等;
- (B) 单相桥式电路,不失一般性,波头为180度,晶闸管平均电流为负载电流一半;
- (C) 三相半波电路,不失一般性,波头为120度,晶闸管的平均电流为负载电流的1/3。

很明显流过每个晶闸管电流的平均值不相等,时间不相同,有效值也不相同,因此保护用的熔断器电流是不相同的。

第12题: 三相半波可控整流电路,如果A相的触发脉冲消失,试绘制出电阻性负载下的直流电压U_d波形。(电感性负载请同学们自己思考,难度比较大,要点后面会给出来)

思考要点: 晶闸管什么情况下关断

电阻性负载以30°为临界点,有电流连续与断续两种情况,因此,如果A相触发脉冲丢失,同样,也有分析两种不同情况。下面分别进行讨论。

第12题: 三相半波可控整流电路,如果A相的触发脉冲消失,试绘制 出电阻性负载下的直流电压Un波形。(电感性负载请同学们自己思 考,难度比较大,要点后面会给出来)【为简化画图与分析,这里 给出B相触发脉冲丢失的情况】

思考要点: 晶闸管什么情况下关断

$$\alpha = 0$$
 ° 波形

第12题: 三相半波可控整流电路,如果A相的触发脉冲消失,试绘制 出电阻性负载下的直流电压Un波形。(电感性负载请同学们自己思 考,难度比较大,要点后面会给出来)【为简化画图与分析,这里 给出B相触发脉冲丢失的情况】

思考要点: 晶闸管什么情况下关断

第12题: 三相半波可控整流电路,如果A相的触发脉冲消失,试绘制 出电阻性负载下的直流电压Un波形。(电感性负载请同学们自己思 考,难度比较大,要点后面会给出来)【为简化画图与分析,这里 给出B相触发脉冲丢失的情况】

思考要点: 晶闸管什么情况下关断

第12题:三相半波可控整流电路,如果A相的触发脉冲消失,试绘制出电阻性负载下的直流电压U_d波形。

加深: 如何推导出这种情况下输出电压的表达式呢?

$$\alpha = 0$$
 ° 波形

$$U_d = \frac{2}{3}U_d|_{a=0^{\circ}} + \frac{1}{3}U_d|_{a=120^{\circ}}$$

第12题:三相半波可控整流电路,如果A相的触发脉冲消失,试绘制出电阻性负载下的直流电压Ud波形。

加深: 如何推导出这种情况下输出电压的表达式呢?

$$U_d = \frac{2}{3}U_d \Big|_{a=30^{\circ}} + \frac{1}{3}U_d \Big|_{a=150^{\circ}} = 0 = \frac{2}{3}U_d \Big|_{a=30^{\circ}}$$

第12题:三相半波可控整流电路,如果A相的触发脉冲消失,试绘制出电阻性负载下的直流电压Ud波形。

加深: 如何推导出这种情况下输出电压的表达式呢?

$$U_d = \frac{2}{3}U_d\big|_{\mathbf{a}=60^\circ}$$

第12题: 三相半波可控整流电路,如果A相的触发脉冲消失,试绘制出电阻性负载下的直流电压Ud波形。

(电感性负载分析要点)还是晶闸管的关断问题,在电感续流的作用下,晶闸管如何关断,核心:,这个是分析要点。电感放出去的能量不能大于电感吸收的能量,也即负半周的面积不能大于正半周的面积

α=0°波形

东南大学

电力电子技术

第 21 讲

主讲教师: 五念春

380419124@qq. com

第15题:三相半波可控整流电路,大电感负载, U_2 =220V, R_d =10 Ω ,求 α =45° 时直流平均电压 U_d ,晶闸管电流平均值及有效值,并画出输出直流电压 U_d 及晶闸管电流 I_T 的波形。

要点: 首先要根据电路的结构与负载性质及控制角 α 的大小正确选择计算公式。

(1) 直流平均电压U_d

$$U_{d} = \frac{1}{\frac{2p}{3}} \frac{5p+a}{6+a} \sqrt{2}U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} \sqrt{3}U_{2} \cos a = 1.17U_{2} \cos a$$

 $U_d = 1.17U_2 \cos a = 1.17' 220' \cos 45^\circ = 182.0(V)$

第15题:三相半波可控整流电路,大电感负载, U_2 =220V, R_d =10 Ω ,求 α =45° 时直流平均电压 U_d ,晶闸管电流平均值及有效值,并画出输出直流电压 U_d 及晶闸管电流i_T的波形。

(2) 晶闸管电流平均值及有效值

负载电流平均值
$$I_d = \frac{U_d}{R_d} = \frac{182}{10} = 18.2(A)$$

晶闸管电流平均值
$$I_{dT} = \frac{1}{3}I_d = \frac{1}{3}$$
′ 18.2=6.07(A)

晶闸管电流有效值
$$I_T = \frac{I_d}{\sqrt{3}} = \frac{18.2}{\sqrt{3}} = 10.51(A)$$

第15题:三相半波可控整流电路,大电感负载, U_2 =220V, R_d =10 Ω ,求 α =45° 时直流平均电压 U_d ,晶闸管电流平均值及有效值,并画出输出直流电压 U_d 及晶闸管电流i $_{\mathsf{T}}$ 的波形。

(3) 直流电压ud及晶闸管电流i T的波形

62

第16题:上题如负载两端并接续流二极管,此时直流平均电压U_d及直流平均电流I_d多少?晶闸管及续流二极管的电流平均值及有效值各是多少?画出输出直流电压u_d,晶闸管及续流二极管电流波形。

要点: 首先要根据电路的结构与负载性质及控制角 α 的大小正确选择计算公式。

(1) 直流平均电压U_d及直流平均电流I_d

$$U_{d} = \frac{1}{2p} \underbrace{\frac{p}{6}}_{6+a} \sqrt{2} U_{2} \sin wt dwt = \frac{3\sqrt{2}}{2p} U_{2} [1 + \cos(\frac{p}{6} + a)] = 0.675 U_{2} [1 + \cos(\frac{p}{6} + a)]$$

$$U_d = 0.675' 220[1 + \cos(30^\circ + 45^\circ)] = 186.93(V)$$

$$I_d = \frac{U_d}{R_d} = \frac{186.93}{10} = 18.69(A)$$

第16题:上题如负载两端并接续流二极管,此时直流平均电压U_d及直流平均电流I_d多少?晶闸管及续流二极管的电流平均值及有效值各是多少?画出输出直流电压u_d,晶闸管及续流二极管电流波形。

(2) 晶闸管及续流二极管的电流平均值

晶闸管一个周期内导通多少时间? 180°-30°-45°=105°

续流二极管一个周期内导通多少时间? 3*(120°-105°)=45°

第16题:上题如负载两端并接续流二极管,此时直流平均电压U_d及直流平均电流I_d多少?晶闸管及续流二极管的电流平均值及有效值各是多少?画出输出直流电压u_d,晶闸管及续流二极管电流波形。

(3) 晶闸管及续流二极管的电流有效值

晶闸管一个周期内导通多少时间? 180°-30°-45°=105°

续流二极管一个周期内导通多少时间? 3*(120°-105°)=45°

$$I_{dT_{\eta}} = \sqrt{\frac{105^{\circ}}{360^{\circ}}} I_{d} = \sqrt{\frac{105^{\circ}}{360^{\circ}}}$$
,18.69 = 10.09(A) 晶闸管电流有效值

$$I_{dD_{\text{f}} \times \text{d}} = \sqrt{\frac{45^{\circ}}{360^{\circ}}} I_{d} = \sqrt{\frac{45^{\circ}}{360^{\circ}}}$$
 ' $18.69 = 6.61$ (A) 续流二极管电流有效值

65

P142习题

第16题:上题如负载两端并接续流二极管,此时直流平均电压U_d及直流平均电流I_d多少?晶闸管及续流二极管的电流平均值及有效值各是多少?画出输出直流电压u_d,晶闸管及续流二极管电流波形。

(4) 直流电压u_d, 晶闸管及续流二极管电流波形

东南大学

电力电子技术

第 22 讲

主讲教师: 五念春

380419124@qq. com

3、 换流重叠现象

1 、换流压降 a 相向b相换流

"1"时,VT₂触通,开始换流

$$i_b: 0 - i_a: I_d$$

"2" 时, i, 图 Id, i, 图 0

 VT_1 、 VT_2 同时导通时间为换流重叠时间, μ 角内, VT_1 、 VT_2 都通,相当于短路。

假想电流 $i_k:0$ - I_d

$$i_a=i_{a0}$$
 - i_k $i_{a0}=I_d$

$$i_b = i_{b0} + i_k$$
 $i_{b0} = 0$

$$i_k = I_d$$
 $i_a = 0$ $i_b = I_d$ 换流结束

虚拟环流概念

 i_{k} 时, L_{B} 上产生感应电势

a相:
$$L_B \frac{di_k}{dt}$$
 左 (一) 右 (+)

b相:
$$L_B \frac{di_k}{dt}$$
 左 (+) 右 (-)

$$u_b - u_a = 2L_B \frac{di_k}{dt}$$

$$u_d = u_b - L_B \frac{di_k}{dt} = u_b - \frac{u_b - u_a}{2} = \frac{u_a + u_b}{2}$$

换流压降

 $u_{\rm a}$ 、 $u_{\rm b}$ 的平均值 与 μ =0的相比,少了部分面积,称换流压降 $\triangle U_{\rm d}$

$$DU_d = \frac{1}{2p/m} \dot{\mathbf{Q}}^{\mathsf{a}+\mathsf{m}} (u_b - u_d) d\mathbf{W} t = \frac{m}{2p} \dot{\mathbf{Q}}^{\mathsf{a}+\mathsf{m}} L_B \frac{di_k}{dt} d\mathbf{W} t$$

$$= \frac{m}{2p} \mathbf{\hat{Q}}^{\mathsf{a}+\mathsf{m}} L_{\mathsf{B}} \mathsf{w} \frac{di_{\mathsf{k}}}{d\mathsf{w}t} d\mathsf{w}t = \frac{m}{2p} \mathbf{\hat{Q}}^{\mathsf{l}_{\mathsf{d}}} \mathsf{w} L_{\mathsf{B}} di_{\mathsf{k}} = \frac{m}{2p} \mathsf{w} L_{\mathsf{B}} I_{\mathsf{d}} = \frac{mX_{\mathsf{B}}}{2p} I_{\mathsf{d}}$$

注意表达式中积分对象的转换

三相半波m=3

m相整流的概念

三相桥式m=6

2、换流重叠角μ计算

$$u_a = \sqrt{2}U_2 \cos(\mathbf{W}t + \frac{\mathsf{p}}{m})$$

$$u_b = \sqrt{2}U_2 \cos(\mathbf{W}t - \frac{\mathbf{p}}{m})$$

$$\frac{di_k}{dt} = \frac{1}{2L_B} (u_b - u_a) = \frac{1}{2L_B} 2\sqrt{2}U_2 \sin \frac{p}{m} \sin wt$$

$$di_k = \frac{1}{WL_R} \sqrt{2}U_2 \sin \frac{P}{m} \sin Wt dWt$$

$$\mathbf{\hat{Q}}^{I_d} di_k = \frac{\sqrt{2}U_2 \sin \frac{\mathbf{p}}{m}}{X_B} \mathbf{\hat{Q}}^{a+m} \sin \mathbf{w}t d\mathbf{w}t$$

$$I_d = \frac{\sqrt{2}U_2 \sin \frac{p}{m}}{X_B} [\cos a - \cos(a + m)]$$

$$\cos \mathbf{a} - \cos(\mathbf{a} + \mathbf{m}) = \frac{X_B I_d}{\sqrt{2}U_2 \sin \frac{\mathbf{p}}{m}} \left\langle$$
 样波 U_2 , $m = 3$
$$\left\langle$$
 标式 $\sqrt{3}U_2$, $m = 6 \right\rangle = \frac{2I_d X_B}{\sqrt{6}U_2}$

 α 、 I_a 的大小对 μ 的影响

换流重叠现象的影响:谐波 - 、cosi -

换流重叠的本质原因:变压器漏感要释放能量

3、考虑换流重叠后的直流平均电压

$$U_d = \frac{1.17}{2.34} U_2 \cos(a + \frac{m}{2}) \cos \frac{m}{2}$$

已知 U_2 、 L_B 、 I_d 时,可按 I_d μ D U_d

已知 U_2 、 L_B 、 R_d 时,可按 U_d = U_d '- ΔU_d 和回路电压方程计算 I_d 、 U_d Þ μ

$$U_d = U_d$$
 - $\mathbf{V}U_d$

注意有两种题目类型,教材P119页例题为第2种。

东南大学

电力电子技术

第 23 讲

主讲教师: 五念春

380419124@qq. com

教材P119页例题。

三相桥式全控整流电路对直流电动机负载供电,其中直流电机反反电势E=200V,回路电阻 $R_d=1\Omega$,平波电抗器的电感 L_d 的数值很大,整流变压器副边漏抗 $L_B=1$ mH,整流桥输入交流相电压 $U_2=220V$,移相控制角 $\alpha=60$ °,求整流桥输出直流电压 U_d 、直流电流 I_d 和换相重叠角 μ 。

75

三相桥式全控整流电路对直流电动机负载供电,其中直流电机反反电势E=200V,回路电阻 $R_d=1\Omega$,平波电抗器的电感 L_d 的数值很大,整流变压器副边漏抗 $L_B=1$ mH,整流桥输入交流相电压 $U_2=220V$,移相控制角 $\alpha=60$ °,求整流桥输出直流电压 U_d 、直流电流 I_d 和换相重叠角 μ 。

如果不考虑换相重叠角,求出输出电压 U_d'

$$U_d' = 2.34 U_2 \cos a = 2.34' 220' \cos 60^\circ = 257.5(V)$$

考虑换相重叠角后,输出电压与电流与不考虑换相重叠角不同,可以 用下面方程得出:

$$\label{eq:continuity} \begin{split} & \mathop{\dagger}\limits_{\mathbf{I}} \boldsymbol{U}_{\boldsymbol{d}} = \boldsymbol{U}_{\boldsymbol{d}}^{'} - \mathbf{V}\boldsymbol{U}_{\boldsymbol{d}} \\ & \mathop{\dagger}\limits_{\mathbf{I}} \boldsymbol{U}_{\boldsymbol{d}} - \boldsymbol{E} = \boldsymbol{I}_{\boldsymbol{d}}\boldsymbol{R}_{\boldsymbol{d}} \end{split}$$

三相桥式全控整流电路对直流电动机负载供电,其中直流电机反反电势E=200V,回路电阻 $R_d=1\Omega$,平波电抗器的电感 L_d 的数值很大,整流变压器副边漏抗 $L_B=1$ mH,整流桥输入交流相电压 $U_2=220V$,移相控制角 $\alpha=60$ °,求整流桥输出直流电压 U_d 、直流电流 I_d 和换相重叠角 μ 。

$$\dot{\mathbf{f}} U_d = U_d' - \mathbf{V} U_d
\dot{\mathbf{f}} U_d - E = I_d R_d$$

$$\mathbf{V} U_d = \frac{mX_B}{2p} I_d = \frac{6}{2p} ' 10^{-3} ' 314 ' I_d = 0.3I_d
U_d = U_d' - \mathbf{V} U_d = 257.5 - 0.3I_d$$

$$257.5 - 0.3I_d - E = I_d R_d$$

$$I_d = \frac{257.5 - 200}{1.3} = 44.23(\mathbf{A})$$

三相桥式全控整流电路对直流电动机负载供电,其中直流电机反反电势E=200V,回路电阻 $R_d=1\Omega$,平波电抗器的电感 L_d 的数值很大,整流变压器副边漏抗 $L_B=1$ mH,整流桥输入交流相电压 $U_2=220V$,移相控制角 $\alpha=60$ °,求整流桥输出直流电压 U_d 、直流电流 I_d 和换相重叠角 μ 。

$$U_d = U_d^{'} - VU_d = 257.5 - 0.3I_d$$

$$I_d = \frac{257.5 - 200}{1.3} = 44.23(A)$$

$$U_d = U_d^{'} - VU_d = 257.5 - 0.3' 44.23 = 244.23(V)$$

教材P119页例题。

三相桥式全控整流电路对直流电动机负载供电,其中直流电机反反电势E=200V,回路电阻 $R_d=1\Omega$,平波电抗器的电感 L_d 的数值很大,整流变压器副边漏抗 $L_B=1$ mH,整流桥输入交流相电压 $U_2=220V$,移相控制角 $\alpha=60$ °,求整流桥输出直流电压 U_d 、直流电流 I_d 和换相重叠角 μ 。

$$\cos a - \cos(a + m) = \frac{X_B I_d}{\sqrt{2} U_2 \sin \frac{p}{m}} = \frac{X_B I_d}{\sqrt{2} \cdot \sqrt{3} U_2 \sin \frac{p}{6}} = \frac{2I_d X_B}{\sqrt{6} U_2}$$

$$\cos a - \cos(a + m) = \frac{2I_d X_B}{\sqrt{6}U_2} = \frac{2' 44.23' 10^{-3}' 314}{\sqrt{6}' 220} = 0.0515$$

$$cos(60^{\circ} + m) = cos 60^{\circ} - 0.0515 = 0.5 - 0.0515$$
 $= 3.36^{\circ}$

79 AC-DC

三相桥式全控整流电路,通过电抗器 L_d 向直流电动机供电。已知变压器副边电压 U_2 =100V ,变压器每相线绕组漏感(折算到副边) L_B =100uH,直流平均电流 I_d =150A,求漏抗引起的换相压降 ΔU_d 及 α =0° 时的重叠角 μ 。

答:这种题目类型为已知负载电流1点大小。

$$VU_d = \frac{mX_B}{2p}I_d = \frac{6}{2p}$$
' 10^{-4} ' 314' $150 = 4.5(V)$

81

教材P143页18题。

三相桥式全控整流电路,通过电抗器 L_d 向直流电动机供电。已知变压器副边电压 U_2 =100V ,变压器每相线绕组漏感(折算到副边) L_B =100uH,直流平均电流 I_d =150A,求漏抗引起的换相压降 ΔU_d 及 α =0° 时的重叠角 μ 。

$$\cos \mathbf{a} - \cos(\mathbf{a} + \mathbf{m}) = \frac{X_B I_d}{\sqrt{2} U_2 \sin \frac{\mathbf{p}}{m}} = \frac{X_B I_d}{\sqrt{2} \cdot \sqrt{3} U_2 \sin \frac{\mathbf{p}}{6}} = \frac{2I_d X_B}{\sqrt{6} U_2}$$

1- cos m=
$$\frac{2I_d X_B}{\sqrt{6}U_2} = \frac{2'150'10^{-4}'314}{\sqrt{6}'100} = 0.038457$$

 $\cos m = 1 - 0.038457 = 0.96154 \triangleright m = 15.94^{\circ}$

作业:

P.142 习题 17、20

20题本质上是第12题的具体应用,大家参照第12题做即可。