

Acc1 = 6.84 Acc2 = 6.94Acc3 = 4.37

FIGURE 1 – Moyenne des scores et écart-types effectué sur les différences de bases donnés pour un facteur de décimation M. Les multiple bases sont obtenue en faisant varié l'indice de départ entre 1 et M. La moyenne des scores est obtenue sur un réseau de taille 1024, avec un jeu d'hyper-paramètre suivant Feedback gain $\alpha=0.8$, Input gain $\beta:0.01$; Interconnctivity gain $\gamma=0.01$ et Interconnectivity density: $\alpha=0.01$

FIGURE 2 – Moyenne des scores et écart-types effectué sur les différences de bases donnés pour un facteur de décimation M. Les multiple bases sont obtenue en faisant varié l'indice de départ entre 1 et M. La moyenne des scores est obtenue sur un réseau de taille 2025, avec un jeu d'hyper-paramètre suivant Feedback gain $\alpha = 0.8$, Input gain $\beta : 0.01$; Interconnctivity gain $\gamma = 0.01$ et Interconnectivity density : = 0.01

FIGURE 3 – Moyenne des scores et écart-types effectué sur les différences de bases donnés pour un facteur de décimation M. Les multiple bases sont obtenue en faisant varié l'indice de départ entre 1 et M. La moyenne des scores est obtenue sur un réseau de taille 4096, avec un jeu d'hyper-paramètre suivant Feedback gain $\alpha = 0.8$, Input gain $\beta : 0.01$; Interconnctivity gain $\gamma = 0.01$ et Interconnectivity density $\gamma = 0.01$

1 Recherche du meilleur α pour une taille de réseaux de 1024

2 Recherche du meilleur α pour une taille de réseaux de 2025

3 Recherche du meilleur α pour une taille de réseau 4096

Pour une taille de réseau on obtient un $\alpha = 0.48$

