MT4531/5731: (Advanced) Bayesian Inference Data augmentation - Auxiliary variables

Nicolò Margaritella

School of Mathematics and Statistics, University of St Andrews

Outline

Introduction

- 2 Example mixture of normals
- 3 NIMBLE analysis

Outline

Introduction

- 2 Example mixture of normals
- NIMBLE analysis

Data augmentation (1)

- Data augmentation occurs when...
 - we have missing data, and we include them in the analysis by treating them as unknown random variables.
 - (Remember also that prediction can be put into a missing data framework, as we have seen in the Exponential-Gamma example of Lecture 12.)

Data augmentation (2)

- Data augmentation also occurs when...
 - The likelihood of the data is intractable (or difficult to calculate), but, ...
 - conditionally on a collection of unobserved data or parameters (auxiliary quantities), likelihood becomes tractable (or simpler) and,...
 - posterior calculations become simpler and quicker. We can
 define auxiliary variables in such a way that the resulting
 posterior conditional distributions are easier to sample from
 and/or result in better mixing.

Data augmentation (3)

- So, in simple words, data augmentation occurs when we include missing data in the analysis, or auxiliary quantities (usually model parameters) that are not an essential part of the model.
- ullet Let x denote the observed data and y the auxiliary variables.
- Bayes' Theorem states that,

$$\pi(\boldsymbol{\theta}, \mathbf{y}|\mathbf{x}) \propto f(\mathbf{y}, \mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}).$$

- We use MCMC to sample from the posterior $\pi(\theta, y|x)$.
- However, we are interested in the posterior $\pi(\theta|\mathbf{x})$. This is the marginal posterior,

$$\pi(\boldsymbol{\theta}|\mathbf{x}) = \int \pi(\boldsymbol{\theta}, \mathbf{y}|\mathbf{x}) d\mathbf{y}.$$

• We simply obtain a sample from the joint posterior distribution and only use the realisations of θ .

Outline

1 Introduction

- 2 Example mixture of normals
- NIMBLE analysis

Example - mixture of normals (1)

- Consider a data set on the height of 700 women and 550 men.
- Suppose we have the list of heights, but we don't know which data points are from women and which are from men.

Example - mixture of normals (2)

• From the plot can we still infer the distribution of female and male heights?

The answer is yes!

Example - mixture of normals (3)

- We will assume that both mixture components (female and male) have the same precision s, which is fixed and known.
- The model is

$$X_1, \dots, X_n | \boldsymbol{\mu}, \pi \sim \mathsf{g}(\mathsf{x} | \boldsymbol{\mu}, \pi);$$
 (1)
 $\boldsymbol{\mu} \equiv (\mu_1, \mu_2) \sim \mathsf{N}(\phi, \lambda^{-1});$
 $\pi \sim \mathsf{Beta}(a, b),$

where the pdf of $g(x|\boldsymbol{\mu},\pi)$ is $\pi N(\mu_1,s^{-1})+(1-\pi)N(\mu_2,s^{-1})$

Example - mixture of normals (4)

The likelihood is

$$f(x_1, ..., x_n | \boldsymbol{\mu}, \pi) = \prod_{i=1}^n g(x_i | \boldsymbol{\mu}, \pi);$$

= $\prod_{i=1}^n \left[\pi N(\mu_1, s^{-1}) + (1 - \pi) N(\mu_2, s^{-1}) \right],$

which is a complicated function of μ and π and it will produce a difficult posterior to sample from!

Example - mixture of normals (5)

- \Rightarrow Define an allocation variable $Z_{i=1,...,n}$ which identifies to what mixture component each data point comes from; i.e. Z_i identifies whether observation i is male or female.
 - Using this auxiliary variable, we can rewrite our model as follows:

$$X_1, \dots, X_n | \mu, \pi \sim \mathsf{N}(\mu_{Z_i}, s^{-1});$$
 (2)
 $Z_1, \dots, Z_n \sim \mathsf{Bernoulli}(\pi);$ $(\mu_1, \mu_2) \sim \mathsf{N}(\phi, \lambda^{-1});$ $\pi \sim \mathsf{Beta}(a, b),$

which is the same model as (1)!

Example - mixture of normals (5)

• In fact we can rewrite (using what probability law?)

$$p(x_i|\mu,\pi) = \sum_{j=1}^{2} p(x_i|Z_i = j,\mu,\pi) p(Z_i = j|\mu,\pi)$$

and then

$$p(x_i|\mu,\pi) = p(x_i|Z_i = 1, \mu, \pi)p(Z_i = 1|\mu, \pi) + p(x_i|Z_i = 2, \mu, \pi)p(Z_i = 2|\mu, \pi),$$

= $N(\mu_1, s^{-1})\pi + N(\mu_2, s^{-1})(1 - \pi),$
= $g(x_i|\mu, \pi).$

Example - mixture of normals (6)

Let's look at the full conditionals now:

(1) $p(\pi|\mu, \mathbf{Z}, x)$ - Conditional on \mathbf{Z} , π is independent of the other parameters and the conditional distribution reduces to a Beta-Bernoulli model and we obtain

$$p(\pi|\boldsymbol{\mu}, \mathbf{Z}, x) = p(\pi|\mathbf{Z}) = \text{Beta}(a + n_1, b + n_2),$$

where
$$n_j = \sum_i \mathbb{1}(Z_i = j)$$
 with $j = \{1, 2\}$

Example - mixture of normals (7)

Let's look at the full conditionals now:

(2) $p(\mu|\mathbf{Z}, \pi, x)$ - Conditional on \mathbf{Z} , we know from which component each observation comes from! Therefore, conditionally on z, the conditional distribution reduces to two independent Normal-Normal models.

$$\mu_1 | \mu_2, \mathbf{Z}, \pi, x \sim \mathsf{N}(M_1, L_1^{-1});$$

 $\mu_2 | \mu_1, \mathbf{Z}, \pi, x \sim \mathsf{N}(M_2, L_2^{-1})$

where
$$n_j = \sum_i \mathbb{1}(Z_i = j)$$
, $L_j = \lambda + n_j s$, $M_j = \frac{\lambda \phi + s \sum_{i:z_i = j} x_i}{\lambda + n_i s}$ and $j = \{1, 2\}$.

Example - mixture of normals (8)

Let's look at the full conditionals now:

(3) $p(\mathbf{Z}|\boldsymbol{\mu}, \pi, x)$ - First observe that

$$p(\mathbf{Z}|\boldsymbol{\mu}, \pi, \mathbf{x}) \propto p(\mathbf{Z}, \boldsymbol{\mu}, \pi, \mathbf{x}) \propto p(\mathbf{x}|\mathbf{Z}, \boldsymbol{\mu})p(\mathbf{Z}|\pi),$$

hence,

$$\begin{split} \rho(\mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\pi}, \boldsymbol{x}) &= \prod_{i=1}^n \mathsf{N}(x_i|\mu_{z_i}, s^{-1}) \mathsf{Bernoulli}(z_i|\boldsymbol{\pi}), \\ &= \prod_{i=1}^n \left(\mathsf{N}(x_i|\mu_1, s^{-1})\boldsymbol{\pi} \right)^{z_i} \left(\mathsf{N}(x_i|\mu_2, s^{-1})(1-\boldsymbol{\pi}) \right)^{1-z_i}, \\ &\propto \prod_{i=1}^n \mathsf{Bernoulli}\left(z_i|\frac{\theta_{i,1}}{\theta_{i,1}+\theta_{i,2}} \right) \end{split}$$

with $\theta_{i,1} = \mathsf{N}(\mathit{x}_i|\mu_1, s^{-1})\pi$ and $\theta_{i,2} = \mathsf{N}(\mathit{x}_i|\mu_2, s^{-1})(1-\pi)$

Outline

1 Introduction

- 2 Example mixture of normals
- 3 NIMBLE analysis

Example - NIMBLE analysis (1)

- Model settings:
 - $s=1/\sigma^2$ where $\sigma=8$ cm is the SD of subjects' hight within each component.
 - a = 1, b = 1 for the Beta prior correspond to a Uniform prior on [0,1].
 - ullet $\phi=177 \mathrm{cm}$ is the mean of the prior on the component means.
 - $1/\sqrt{\lambda}=15$ cm is the SD of the prior on the component means.

NIMBLE analysis

Example - NIMBLE analysis (2)

 Let's take a look at the BUGS code for the 2-component mixture model:

```
MixtureCode <- nimbleCode({
# Specify the likelihood:
for (i in 1:N){
x[i] ~ dnorm(mu[t[i]],s)
t[i] <- z[i]+1
z[i] ~ dbin(pi,1)# auxiliary variable
}
# Prior specification:
mu[1] ~ dnorm(phi,lambda)
mu[2] ~ dnorm(phi,lambda)
pi ~ dbeta(1,1)
})
```

Example - NIMBLE analysis (3)

Example - NIMBLE analysis (4)

• Histograms of the heights of subjects assigned to each component, according to the posterior mode of z_j (right panel)

Watch out for multiple modes!

- If we run the sampler multiple times starting from the same initial values, sometimes it will settle on [females = 1, males = 2] and sometimes on [females = 2, males = 1].
- If the sampler were behaving properly, it would move back and forth between these two modes.
 But it gets stuck in one mode and stays there.
- Nevertheless, all parameters show good rate of convergence and mixing and we could just relabel the groups and then calculate the posterior summaries of interest

Try this at home

• Task: There is another interesting example of data augmentation in Section 2.5 of the lecture notes (Genetic Linkage) for you to read. This will also be useful to answer question 2 of tutorial 7.