HPB(芯链)硬件加速引擎总体方案

本文对 HPB 硬件加速引擎的总体方案进行详细规划

HPB 硬件加速引擎是一款基于 ARM + FPGA 架构的 FPGA 定制化加速网卡,其在硬件 TCP/IP 协议栈基础上,配合 HPB 加速单元,实现 HPB 体系架构下的网络流量卸载及高吞吐、高并发链接处理,通过修改调整缓存方式可以支持并发处理几百条流到几百万条 TCP 并发链接的维护处理。

HPB 硬件加速引擎总体架构图

子模块描述

该系统由五个大模块构成

一、MAC + PHY 模块

这是 FPGA 厂商提供的标准 IP, 支持 1G/10G 自适应模式,可选 32 位低时延 10 G 以太网 MAC 或 64 位以太网 MAC,支持 10G 数据速率

- 选择 PHY 层的外部 XGMII 或内部 FPGA 接口
- 在客户端发送及接收接口上支持 AXI4-Stream 协议
- 支持缺损空闲计数以实现最大数据吞吐量;在各种条件下保持最小 IFG 并提供线路速率性能
- 针对所有设备支持包含带内 FCS 和不含带内 FCS 的缺损空闲计数
- 全面的统计收集
- 支持双向 802.3 和 802.1Qbb (基于优先级) 流量控制
- 提供 MDIO STA 主接口以管理 PHY 层
- · 支持 VLAN、巨型帧和 WAN 模式
- 定制前导模式
- 独立 TX 及 RX 最大传输单元 (MTU) 帧长度

• 可任意定制;针对功能性的行业资源使用 详细模块信息,参考 FPGA 厂商提供的用户手册

二、TOE 模块

该模块为适应 HPB 架构的硬件 TCP/IP 协议栈模块,通过片上 CPU 及上位机 PC 管理,代替 CPU 执行网络协议打包的方案,使用特定的硬件电路来完成以太网包头的处理。 本模块的具体功能如下:

- 1. 网络报文解析与分发,不属于本 HPB 加速引擎处理的报文送交 CPU 处理,会话报文组装发送,属于加速报文,交由硬件加速处理单元处理
 - 2. HPB 节点间通讯会话表维护
- 3. 会话报文可靠性处理,报文错误重传,报文乱序调整等网络可靠性处理。 暂时不支持 IP 分片报文

TOE 模块分三个子模块实现

1、TOE 模块,报文发送与接收处理模块,上行方向,TOE 模块主要实现网络报文 提取,提取报文的核心五元组信息用于后续处理,报文分析同时将报文分块 缓存至 Memory 中

下行方向,TOE 模块根据处理结果对报文进行组装发送,发送时,接收从MSG模块来的报文描述符,提取发送缓存 Memory 中的数据,组装报文发送出去。

子模块框图如下:

TOE 模块子模块列表

100 侯玖] 侯玖列农					
模块名称	功能描述				
RX_MEM	接收报文缓冲区域,将接收到的报文存入缓冲区域,同时				
	将关键信息送入队列管理,TCP 报文最关键的信息位于报				
	文头 Cell 中,核心处理均基于报文的第一个 Cell 进行处				
	理,RX_MEM 将报文进行 cell 粒度的存储,提高 ram 的利				
	用率,链表方式进行管理.				
PKT_iQue	报文入队列处理模块,提取各个通路的报文的第一个				
	cell,并对 Cell 队列进行管理				
PKT_AN	Packet Analysis,报文解析模块,用于对提取的报文 Cell				
	进行解析,识别以太网报文的各个字段,构造描述符,以				
	为后续模块使用				
TCP_RX	Tcp 报文入口方向处理, 判断 tcp 报文是否乱序,进行调				
	序等处理				
PKT_EDIT	报文编辑,对需要进行处理的报文根据解析结果进行处				
	理,组合成合适的报文,或者 MSG 组,交送后续模块进行				
	处理				
TCP_TAB/TCP_POLL	TCP 序列表, TCP_TAB 是一个 Memory, 支持多个读写接口,				
	记录 TCP 链接的序列表,与 TCP_POLL 共同构成接收与发				
	送 TCP 会话表, TCP_POLL 实现地址递增,轮询表项,发现				
	内容过期,发出表项删除命令				
PKT_oQue	发送报文组装模块,从TX_MEM(发送缓存区域)提取报文				
	Cell, 组合成标准以太网报文, 交送报文编辑模块进行报				
	文编辑				

TCP_TX	Tcp 报文出口方向处理, Tcp 报文输出方向处理, 读取对
	应会话的信息,得到输出报文的封装头信息
MSG_TA	发送消息处理,接收来自 MSG 模块的发送方向的消息,进
	行消息解析与预处理。

TOE 关键寄存器定义

寄存器名	含义	
cfg_toe_mode_loop	环回模式模式寄存器	
cfg_toe_mode_reorder	是否使能乱序缓存	
cfg_toe_mode_ins_err	是否插入间隔的错误	
cfg_toe_mode_sess_ne	会话不存在时是否丢弃该报文	
cfg_toe_mode_dupack_en	是否使能 dupack 发送	
cfg_toe_mode_ins_err1	是否插入连续错误	
cfg_toe_mode_ins_bp	是否插入反压模式	
cfg_toe_mode_cell_gap	包间隔控制	

TOE 子模块核心表项定义

$\label{tem:table_item} $$ Tcp_table_item[TAB_DWID*1+127 +: $$$	001]	表项有效位
$\label{tem:table_item} $$ Tcp_table_item[TAB_DWID*1+126 +: $$$	001]	收到 ack 报文的标记
<pre>Tcp_table_item[TAB_DWID*1+125 +:</pre>	001]	收到 fin 报文的标记
<pre>Tcp_table_item[TAB_DWID*1+124 +:</pre>	001]	收到 rst 报文的标记
<pre>Tcp_table_item[TAB_DWID*1+120 +:</pre>	004]	记录收到的 win scale,
控制发送速率		
<pre>Tcp_table_item[TAB_DWID*1+112 +:</pre>	008]	统计收到的乱序报文个
数		
<pre>Tcp_table_item[TAB_DWID*1+096 +:</pre>	016]	接收到有效数据的时间
截		
<pre>Tcp_table_item[TAB_DWID*1+064 +:</pre>	032]	接收到报文的源 IP
<pre>Tcp_table_item[TAB_DWID*1+048 +:</pre>	016]	接收到报文的源 PORT
<pre>Tcp_table_item[TAB_DWID*1+000 +:</pre>	048]	接收到报文的源 MAC
<pre>Tcp_table_item[TAB_DWID*0+096 +:</pre>	032]	TCP 会话的初始 seqn
<pre>Tcp_table_item[TAB_DWID*0+064 +:</pre>	032]	当期预期的 seqn, 判断
是否乱序		
<pre>Tcp_table_item[TAB_DWID*0+032 +:</pre>	032]	收到的 ackn\$, 用于释放
发送方向的数据		
<pre>Tcp_table_item[TAB_DWID*0+016+:0</pre>	16] Y	女到的 window,用于控制
发送数据速率		
$\label{top_table_item} $$ Tcp_table_item[TAB_DWID*0+012 +: $$$	004]	发送的 dupack 报文统

计,控制发送 dupack 的速率

Tcp_table_item[TAB_DWID*0+008 +: 004] 接收的 dupack 报文统

计,触发发送方向的数据快速重传

Tcp_table_item[TAB_DWID*0+000 +: 008] 本地的接收window,准

备发给对端的

2、MSG 模块,报文 TCP 头信息处理模块,对输入的 tcp 按流记录,区分 message 的起始,申请 message id 等一系列流消息处理功能

完善中。

3、BDP 模块,TCP/IP 链接表维护,对链接表描述符进行扫描,更新,处理超时,处理重传,慢启动,拥塞避免等功能,所有操作均基于 message 描述符进行。

完善中。

三、用户 FIF0

此模块是一个特殊的双端口 FIFO,属于 HPB 加速处理报文,在经过 TOE 模块后,被送往该 FIFO 的加速缓存区,不属于 HPB 的其他普通网络报文,将通过 PCIE DMA 通道,直接上送上位机 PC,交由 PC 及处理,该模块由一个通用的多端口 FIFO 与一部分空调逻辑共同构成。

四、HPB Block Logic

HPB 专用加速逻辑,用于 HPB 特定的通讯报文接受处理与特殊通讯报文发送处理,比如共识广播报文、block 确认报文等 HPB 自定义区块通讯报文处理

五、PCI with DMA

该模块为 FPGA 厂商提供的支持 SG-DMA 特性的 PCIE Hard IP, 具体功能请参考 FPGA 厂商 IP 用户手册。

如上就是 HPB 硬件加速引擎的总体方案,下周我们会开源加速引擎芯片核心模块的代码。

官方网站: http://gxn.io/