Deep Learning Model: Flavour

Classification Results

- Overall Accuracy: 77% (BDT) \rightarrow **81%.**
- The most significant improvement: ν_e CC:
 - Precision: 0.76% → 0.89%, Recall: 0.60% → 0.84%.
 - Why? Pre-Train learns generalizable representation of what a physically EM shower.
- First Identification of Tau Neutrinos:
 - Promising first step: 11 true ν_{τ} CC events correctly identified (BDT had 0% Precision).
 - Why? Pre-Train created a feature space where rare events <u>could</u> became *separable* from other classes.

Class	Precision	Recall
ν_e CC	0.89	0.84
$\nu_{\mu} { m CC}$	0.82	0.94
$\stackrel{,}{ u_{ au}} { m CC} \ { m NC}$	$\boldsymbol{0.79}$	0.00
NC	0.73	0.58

	True	True	True	True
Pred.	$ u_e$	$ u_{\mu}$	$ u_{ au}$	NC
$ u_e$	13,395	789	103	726
$ u_{\mu}$	$1,\!864$	$72,\!208$	1,705	12,748
$ u_{ au}$	0	0	11	3
NC	603	$3,\!537$	$2,\!596$	18,403

Deep Learning Model: Visible Energy

Regression Results

- **E_vis**: magnitude of visible_momentum
 - For CC it corresponds to Incoming Neutrino Energy.
 - For NC it corresponds to Hadrons Energy.
- Remarkable improvement in energy reconstruction:
 - Eliminated bias for ν_e CC.
 - The resolution is almost halved for all classes.

