Визуализация графов

Computer Science клуб, март 2014

Александр Дайняк, ФИВТ МФТИ

www.dainiak.com

- рёбра DFS-дерева (в «новые» вершины),
- обратные рёбра (в пройденные вершины).

- рёбра DFS-дерева (в «новые» вершины),
- обратные рёбра (в пройденные вершины).

- рёбра DFS-дерева (в «новые» вершины),
- обратные рёбра (в пройденные вершины).

- рёбра DFS-дерева (в «новые» вершины),
- обратные рёбра (в пройденные вершины).

- рёбра DFS-дерева (в «новые» вершины),
- обратные рёбра (в пройденные вершины).

- рёбра DFS-дерева (в «новые» вершины),
- обратные рёбра (в пройденные вершины).

При поиске в глубину рёбра графа разбиваются на два типа:

• рёбра DFS-дерева (в «новые» вершины),

При поиске в глубину рёбра графа разбиваются на два типа:

• рёбра DFS-дерева (в «новые» вершины),

При поиске в глубину рёбра графа разбиваются на два типа:

• рёбра DFS-дерева (в «новые» вершины),

При поиске в глубину рёбра графа разбиваются на два типа:

• рёбра DFS-дерева (в «новые» вершины),

При поиске в глубину рёбра графа разбиваются на два типа:

• рёбра DFS-дерева (в «новые» вершины),

При поиске в глубину рёбра графа разбиваются на два типа:

• рёбра DFS-дерева (в «новые» вершины),

При поиске в глубину рёбра графа разбиваются на два типа:

• рёбра DFS-дерева (в «новые» вершины),

Каждое обратное ребро вместе с путём по DFS-дереву образует фундаментальный цикл.

Каждое обратное ребро вместе с путём по DFS-дереву образует фундаментальный цикл.

Любая пара фундаментальных циклов либо не имеют общих рёбер, либо их пересечение — путь в DFS-дереве.

(Иначе противоречие с отсутствием циклов в дереве.)

Если DFS произвести в плоском графе, то каждый фундаментальный цикл будет сориентирован

• по часовой стрелке («вправо»)

Если DFS произвести в плоском графе, то каждый фундаментальный цикл будет сориентирован

- по часовой стрелке («вправо»)
- либо против часовой стрелки («влево»)

Фундаментальные циклы и стороны рёбер

Если DFS произвести в плоском графе, то каждый фундаментальный цикл будет сориентирован

• по часовой стрелке («вправо»)

• либо против часовой стрелки («влево»)

Тогда каждому обратному ребру тоже можно приписать одну из сторон {левая, правая}.

Точки возврата и нижние точки

Точки возврата ребра e — это вершины дерева, в которые попадают обратные рёбра, лежащие на циклах, содержащих e.

Точки возврата и нижние точки

Точки возврата ребра e — это вершины, в которые попадают обратные рёбра, лежащие на циклах, содержащих e.

Самая нижняя (ближайшая к корню дерева) точка возврата ребра e называется нижней точкой e и обозначается $\ell(e)$.

Развилки фундаментальных циклов

Развилка двух циклов, пересекающихся по рёбрам, — это тройка рёбер

- последнее общее ребро,
- и следующие за ним два ребра, относящиеся к различным циклам.

Фундаментальные циклы в укладке планарного графа

• Два цикла, имеющие общие рёбра, ориентированы одинаково т. и т.т., когда один цикл лежит внутри другого.

Фундаментальные циклы в укладке планарного графа

• Два цикла, имеющие общие рёбра, ориентированы одинаково т. и т.т., когда один цикл лежит внутри другого.

Фундаментальные циклы в укладке планарного графа

- Два цикла, имеющие общие рёбра, ориентированы одинаково т. и т.т., когда один цикл лежит внутри другого.
- Если циклы вложены друг в друга, то порядок вложения зависит от порядка, в котором на дереве расположены нижние точки обратных рёбер.

Основное свойство сторон рёбер в планарном графе

Для произвольной развилки e, e_1, e_2 в графе

• все обратные рёбра, заканчивающиеся строго выше $\ell(e_1)$, у которых циклы содержат e и e_2 , имеют одну сторону...

Основное свойство сторон рёбер в планарном графе

Для произвольной развилки e, e_1, e_2 в графе

- все обратные рёбра, заканчивающиеся строго выше $\ell(e_1)$, у которых циклы содержат e и e_2 , имеют одну сторону,
- а обратные рёбра, заканчивающиеся строго выше $\ell(e_2)$, у которых циклы содержат e и e_1 , имеют другую сторону.

ЛП-разбиение

На множестве обратных рёбер графа задано ЛП-разбиение на «левые» и «правые» рёбра, если для каждой развилки e, e_1 , e_2

- все обратные рёбра, заканчивающиеся строго выше $\ell(e_1)$, у которых циклы содержат e и e_2 , имеют одну сторону,
- а обратные рёбра, заканчивающиеся строго выше $\ell(e_2)$, у которых циклы содержат e и e_1 , имеют другую сторону.

У любого планарного графа есть ЛП-разбиение: доказали выше. Оказывается, если есть ЛП-разбиение, то граф планарен.

ЛП-разбиение

На множестве обратных рёбер графа задано ЛП-разбиение на «левые» и «правые» рёбра, если для каждой развилки e, e_1 , e_2

- все обратные рёбра, заканчивающиеся строго выше $\ell(e_1)$, у которых циклы содержат e и e_2 , имеют одну сторону,
- а обратные рёбра, заканчивающиеся строго выше $\ell(e_2)$, у которых циклы содержат e и e_1 , имеют другую сторону.

Таким образом, в ЛП-разбиении на пары обратных рёбер накладываются *ограничения* «равносторонности» и «разносторонности».

ЛП-разбиение приведённое, если для любого ребра e все обратные рёбра, ведущие в $\ell(e)$, относятся к одной стороне.

ЛП-разбиение приведённое, если для любого ребра e все обратные рёбра, ведущие в $\ell(e)$, циклы которых содержат e, относятся к одной стороне.

ЛП-разбиение приведённое, если для любого ребра e все обратные рёбра, ведущие в $\ell(e)$, циклы которых содержат e, относятся к одной стороне.

Утверждение. Любое ЛП-разбиение можно преобразовать к приведённому виду.

Доказательство. Пусть b_1 , b_2 — обратные рёбра, ведущие в $\ell(e)$.

ЛП-разбиение приведённое, если для любого ребра e все обратные рёбра, ведущие в $\ell(e)$, циклы которых содержат e, относятся к одной стороне.

Утверждение. Любое ЛП-разбиение можно преобразовать к приведённому виду.

Доказательство. Пусть b_1 , b_2 — обратные рёбра, ведущие в $\ell(e)$.

Если b_1 и b_2 не участвуют ни в каких ограничениях, то доказывать нечего.

ЛП-разбиение приведённое, если для любого ребра e все обратные рёбра, ведущие в $\ell(e)$, циклы которых содержат e, относятся к одной стороне.

Утверждение. Любое ЛП-разбиение можно преобразовать к приведённому виду.

Доказательство. Пусть b_1, b_2 — обратные рёбра, ведущие в $\ell(e)$. Если, скажем, b_2 вовлечено в ограничение, то это ограничение соответствует ребру e', лежащему ниже e.

ЛП-разбиение приведённое, если для любого ребра e все обратные рёбра, ведущие в $\ell(e)$, циклы которых содержат e, относятся к одной стороне.

Утверждение. Любое ЛП-разбиение можно преобразовать к приведённому виду.

Доказательство. Пусть b_1, b_2 — обратные рёбра, ведущие в $\ell(e)$. Если, скажем, b_2 вовлечено в ограничение, то это ограничение соответствует ребру e', лежащему ниже e.

Тогда b_1 тоже вовлечено в это ограничение...

Приведённое ЛП-разбиение

ЛП-разбиение приведённое, если для любого ребра e все обратные рёбра, ведущие в $\ell(e)$, циклы которых содержат e, относятся к одной стороне.

Утверждение. Любое ЛП-разбиение можно преобразовать к приведённому виду.

Доказательство. Пусть b_1, b_2 — обратные рёбра, ведущие в $\ell(e)$. Если, скажем, b_2 вовлечено в ограничение, то это ограничение соответствует ребру e', лежащему ниже e.

Тогда b_1 тоже вовлечено в это ограничение, и тогда b_1 и b_2 обязаны быть односторонними.

Продолжение ЛП-разбиения на рёбра дерева

Присвоим сторону не только обратным рёбрам, но и рёбрам дерева:

• сторона ребра дерева *e* равна стороне обратного ребра, цикл которого содержит *e* и конец которого выше всего.

Продолжение ЛП-разбиения на рёбра дерева

Присвоим сторону не только обратным рёбрам, но и рёбрам дерева:

- сторона ребра дерева *e* равна стороне обратного ребра, цикл которого содержит *e* и конец которого выше всего,
- в случае ничьи сторона выбирается произвольно.

Как по ЛП-разбиению строить укладку

Укладка = упорядочение рёбер в каждой вершине графа.

Два правых ребра в вершине упорядочиваем так:

• $e' \prec e''$, если $\ell(e')$ ниже $\ell(e'')$ в дереве,

Как по ЛП-разбиению строить укладку

Укладка = упорядочение рёбер в каждой вершине графа.

Два правых ребра в вершине упорядочиваем так:

- $e' \prec e''$, если $\ell(e')$ ниже $\ell(e'')$ в дереве,
- либо если $\ell(e') = \ell(e'')$, но у e'' есть ещё другие обратные рёбра, ведущие выше $\ell(e'')$ в этом случае e'' называется хордальным.

Левые рёбра упорядочиваем наоборот.

Как по ЛП-разбиению строить укладку

Полный порядок в вершине устроен так:

- сначала входящее ребро
- затем левые исходящие рёбра, окружённые своими левыми и правыми обратными рёбрами
- затем правые исходящие рёбра, окружённые своими левыми и правыми обратными рёбрами

Если рёбра ведут в одну и ту же вершину, то противоречие с ЛП-упорядочением правых входящих рёбер в вершине v.

Пусть у пересекающихся рёбер концы разные.

Пусть $\{e_1, e_2\}$ — развилка их циклов.

По свойству ЛП-разбиения, все обратные рёбра, относящиеся к e_1 и заканчивающиеся выше v_2 , являются правыми.

Пусть у пересекающихся рёбер концы разные.

Пусть $\{e_1, e_2\}$ — развилка их циклов.

По свойству ЛП-разбиения, все обратные рёбра, относящиеся к e_1 и заканчивающиеся выше v_2 , являются правыми.

Значит, e_1 само правое.

Пусть у пересекающихся рёбер концы разные.

Пусть $\{e_1, e_2\}$ — развилка их циклов.

По свойству ЛП-разбиения, все обратные рёбра, относящиеся к e_1 и заканчивающиеся выше v_2 , являются правыми.

Значит, e_1 само правое. Т.к. e_2 идёт после e_1 , то и e_2 правое.

Пусть у пересекающихся рёбер концы разные.

Пусть $\{e_1, e_2\}$ — развилка их циклов.

По свойству ЛП-разбиения, все обратные рёбра, относящиеся к e_1 и заканчивающиеся выше v_2 , являются правыми.

Значит, e_1 само правое. Т.к. e_2 идёт после e_1 , то и e_2 правое.

У нас $e_1 < e_2$, поэтому

• либо $\ell(e_1)$ ниже $\ell(e_2)$, но тогда u_1v_1 и u_2v_2 не могут быть оба правыми,

Пусть у пересекающихся рёбер концы разные.

Пусть $\{e_1, e_2\}$ — развилка их циклов.

По свойству ЛП-разбиения, все обратные рёбра, относящиеся к e_1 и заканчивающиеся выше v_2 , являются правыми.

Значит, e_1 само правое. Т.к. e_2 идёт после e_1 , то и e_2 правое.

У нас $e_1 \prec e_2$, поэтому

- либо $\ell(e_1)$ ниже $\ell(e_2)$, но тогда u_1v_1 и u_2v_2 не могут быть оба правыми,
- либо $\ell(e_1)=\ell(e_2)$ и e_2 хордально. Если $\ell(e_1)=\ell(e_2)$ ниже v_2 , то противоречие аналогично предыдущему пункту.

Пусть у пересекающихся рёбер концы разные.

Пусть $\{e_1, e_2\}$ — развилка их циклов.

По свойству ЛП-разбиения, все обратные рёбра, относящиеся к e_1 и заканчивающиеся выше v_2 , являются правыми.

Значит, e_1 само правое. Т.к. e_2 идёт после e_1 , то и e_2 правое.

У нас $e_1 < e_2$, поэтому

- либо $\ell(e_1)$ ниже $\ell(e_2)$, но тогда u_1v_1 и u_2v_2 не могут быть оба правыми,
- либо $\ell(e_1)=\ell(e_2)$ и e_2 хордально (e' соотв. обратное ребро). Пусть $\ell(e_1)=\ell(e_2)=v_2$. Тогда e' правое, но тогда u_1v_1 должно было быть левым по определению ЛП-разбиения.

Если конфликтующие ребра ведут в одну вершину v, то если $v=\ell(e_1)=\ell(e_2)$, получаем противоречие с приведённостью ЛП-разбиения.

Пусть, например, $\ell(e_2)$ ниже v.

Тогда должны быть односторонними все обратные рёбра, оканчивающиеся не ниже v, циклы которых содержат e_1 . То есть e_1 правое.

Пусть, например, $\ell(e_2)$ ниже v.

Тогда должны быть односторонними все обратные рёбра, оканчивающиеся не ниже v, циклы которых содержат e_1 . То есть e_1 правое.

Значит, e_2 тоже правое.

Пусть, например, $\ell(e_2)$ ниже v.

Тогда должны быть односторонними все обратные рёбра, оканчивающиеся не ниже v, циклы которых содержат e_1 . То есть e_1 правое.

 e_2 тоже правое. Тогда должно быть правое обратное ребро e', цикл которого содержит e_2 и которое оканчивается выше v.

Односторонность $u_1 v$ и e' противоречит определению ЛП-разбиения.

