Journal 3-2

Ankur Mishra

February 2018

1 Timeline

Feb 2	Research Computer	I'll have a couple
	Vision Techniques by	algorithms
	going through CS231n	implemented and have
	from Stanford	a better background
		of how to approach
		the CV related
		problem
Feb 9	Begin implementing	Have kNN running
	RL algorithm in the	alongside VizDoom
	doom environment	and Get Lecture 3 in
	and Continue Viewing	course
	Karapathy's Lectures	
Feb 16	Continue viewing	Get to Lecture 6 in
	Karapathy's Lectures.	Course, Have a NN
	Implement a basic	doing some image
	Neural Network doing	detection in VizDoom
	image detection in	
	VizDoom	
Feb 23	Continue viewing	Get to Lecture 9 in
	Karapathy's Lectures.	Course. CNN that
	Implement a CNN	does basic image
	that does basic image	detection in VizDoom
	proessing and	
	detection in VizDoom	

2 Progress

This week I continued researching Linear Classification from Karapathy's CS231n Lectures. I learned about basic loss functions, such as Muliclass SVM Loss and made my own linear classifier in Python. Here is an excerpt from some notes I took while watching his lecture:

2.1 Muliclass SVM Loss

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{yi} + 1) \tag{1}$$

where j is the object with the highest score. y_i is the object which is trying to be classified. The loss of the function itself is:

$$L = 1/N \sum_{i=1}^{N} L_i \tag{2}$$

3 Project Discussion

Since progress has slowed since I got sick and last week we had vistors, I'm pushing my goal from last week to have a functional object detection algorithm by another two weeks. I will also have to work a little outside of class to account for some missed time but I hope to catch up so that I can get closer to my original deadline. Also, I have to start working on making my code work along side my agent this week.