算子、矩阵、相加

赵晓菲

2023年7月31日

矩阵的伴随

对于一个矩阵 A,我们将其伴随矩阵记为 A^{\dagger} 或 A^{*} 。

矩阵 A 的伴随矩阵 A^{\dagger} 定义为其转置的复共轭。即 $A^{\dagger}=(A^T)^*$ 。

对于复数矩阵,矩阵元素的复共轭是将每个元素取复共轭。

伴随矩阵用于描述矩阵的共轭转置,并在量子力学中非常重要。

自伴(厄米)矩阵

如果一个矩阵的伴随矩阵等于其本身,即 $A^{\dagger}=A$,那么这个矩阵被称为自伴(厄米)矩阵。

自伴矩阵在量子力学中具有特殊的性质,它的特征值都是实数,且对应 的特征向量都是正交的。

自伴矩阵在量子力学中的应用非常广泛,比如描述物理量的算符,其中 的厄米性质保证了量子力学中物理量的测量结果都是实数。

自伴(厄米)矩阵及其特征值

命题:自伴(厄米)矩阵的特征值必须是实数。

考虑一个自伴(厄米)矩阵 M,即 $M^{\dagger} = M$ 。假设 λ 是它的第 i 个特征值,而 $|v_i\rangle$ 是对应的特征向量。根据特征值问题的定义,我们有:

$$M|v_i\rangle = \lambda|v_i\rangle$$

对于向量 $M|v_i\rangle$,我们可以计算其与 $|v_i\rangle$ 的内积(注意,这是 M 将 $|v_i\rangle$ 旋转后的一个向量):

$$\langle v_i | M | v_i \rangle = \langle v_i | h | v_i \rangle = \lambda \langle v_i | v_i \rangle$$

其中 h 是厄米矩阵 M 在 $|v_i\rangle$ 上的伴随矩阵。由于 M 是自伴矩阵,h 与 M 相等,即 $h = M^{\dagger} = M$ 。

 4/5

自伴(厄米)矩阵及其特征值

由于 M = h,上述等式可以重写为:

$$\langle v_i | M | v_i \rangle = \langle v_i | M | v_i \rangle^* = \lambda \langle v_i | v_i \rangle$$

进一步,我们可以推导出:

$$\lambda = \lambda^*$$

这意味着 λ 必须是实数,因为它等于其复共轭。

因此,得出结论:自伴(厄米)矩阵的特征值一定是实数。