二次関数 事前学習

1 中学校の復習 etc

1 以下のグラフを描け.

(1)
$$y = 2x + 3$$

(2)
$$y = -x + 1$$

(3)
$$y = \frac{1}{2}x + 1$$

(4)
$$y = x^2$$

4-292+

(5)
$$y = \frac{1}{2}x^2$$

$$(6) y = -2x^2$$

4= le

3 以下の二次方程式を解け. 【CONNECT 数 I 167~170 で計算力 UP!】

$$(1) \ x^2 + 2x + 1 = 0$$

$$(x+1)^2 = 0$$

$$(2) \ 4x^2 + 5x + 1 = 0$$

$$(4x+1)(x+1)=0$$

(3)
$$x^2 - 2x - 1 = 0$$

$$(4) \ 3x^2 + 4x - 1 = 0$$

$$=\frac{-412\sqrt{7}}{2}=-2\pm\sqrt{7}$$

4 以下の不等式・連立不等式を解け.

(1)
$$2x + 3 < x + 5$$

 $2x - x < 5 - 3$
 $x < 2$

(2)
$$3x - 5 \ge 5x + 11$$

 $3x - 5x \ge 11 + 5$
 $-2x \ge 16$
 $x \le -2$

(3)
$$\frac{1}{2}x + \frac{1}{3} \le \frac{1}{3}x - \frac{1}{6}$$

$$6x \left(\frac{1}{2}7c + \frac{1}{3}\right) \le 6x \left(\frac{1}{3}7c - \frac{1}{6}\right)$$

$$3x + 2 \le 2xc - 1$$

$$3xc - 2xc \le -1 - 2$$

$$xc \le -3$$

$$(4) \begin{cases} 3x-1 > x+1 & = 0 \\ x+7 \ge 6x-13 & = 0 \end{cases}$$

$$0 \quad 3x-1 > x+1 = 0$$

$$2x > 2$$

上國刊 类解分门

1< >C 54

苦手な人は... 【CONNECT 数 I 71~75 で練習!】

2 関数とグラフ

P86~P90 を参照し、下の欄に用語等をまとめる.

7	5	४	K	४	४	४	र	र	7	र	र	75	र	र	र	ठ	र	75	र
3																			n.
	20																		,
			,		i i														
ý																			
// ==						3.0%													
=																			
=																			*
						(*)													5
															N.				
		æ																	
										8 6								-a	

2.1 確認問題

1 関数 $f(x) = 2x^2 + 3x - 4$ について、以下の値を求めよ. (1) f(1)

$$f(1) = 2 \cdot |^2 + 3 \cdot | -4$$

$$= 2 + 3 - 4 = 1$$

(2)
$$f(-2)$$

$$f_{(-2)} = 2 \cdot (-2)^{2} + 3 \cdot (-2) - 4$$

$$= 8 - 6 - 4 = -2$$

(3)
$$f(a)$$

 $f(a) = 2 - a^2 + 3a - 4$

$$f(a+1) = 2(0+1)^{2} + 3(0+1) - 4 = 20^{2} + 40 + 2 + 30 + 3 - 4$$

$$= 2(0^{2} + 20 + 1) + 30 + 3 - 4 = 20^{2} + 70 + 1$$

2 関数
$$f(x) = -x^2 - 2x + 3$$
 について, 以下の値を求めよ.

(1) f(1)

$$f(1) = -1^2 - 2 \cdot 1 + 3$$

= -(-2+3=0

(2)
$$f(-3)$$

$$f(-3) = -(-3)^2 - 2 - (-3) + 3$$

$$= -9 + 6 + 3 = 0$$

(3)
$$f(a+1)$$

 $f(x) = -(x+3)(x-1)^{2}$
 $f(a+1) = -(a+1+3)(a+1-1)$
 $= -(a+4) \cdot a = -a^2-44$

(4)
$$f(2a^2+1)$$

$$f(a+1) = -(2a^{2}+1+3)(2b^{2}+(-1))$$

$$= -(2a^{2}+4)\cdot 2a^{2}$$

$$= -4a^{4}-4a^{2}$$

- **3** $y = 2x + 2 \ (-1 \le x \le 3)$ について、以下の問いに答えよ.
 - (1) 関数のグラフを描き、値域を求めよ.

(唐本) 0 € 4 € A

(2) 最大値, 最小値を求めよ.

- $\boxed{\mathbf{4}}$ y = -x 3 $(-5 \le x \le 1)$ について、以下の問いに答えよ.
 - (1) 関数のグラフを描き、値域を求めよ.

在国刊。

(2) 最大値, 最小値を求めよ.

- $\boxed{\mathbf{5}}$ $y=x^2$ $(-1 \le x \le 2)$ について, 以下の問いに答えよ.
 - (1) 関数のグラフを描き, 値域を求めよ.

左图判 (直立)は 0至分至分

(2) 最大値, 最小値を求めよ.

- **6** $y=-\frac{1}{2}x^2$ $(-2 \le x \le 4)$ について、以下の問いに答えよ. (1) 関数のグラフを描き、値域を求めよ.

(元) 横式了一个至分至0.

(2) 最大値, 最小値を求めよ.

2.2 本質的問題

| **1** | 関数 y=ax+b $(-2 \le x \le 3)$ の値域が $3 \le y \le 13$ となるように, 定数 a,b の値を求めよ.

X=3 2" 7=13.

$$x = 3 = -3$$

$$x = 3 = -20 + b$$

$$(3 = 30 + b)$$

$$3 = -2 \cdot b = 7$$

ai) acomet.

7e. 513 = -20+h

$$(a, L) = (2,7), (-2,9)$$

 $egin{aligned} \mathbf{2} & y = x^2 \end{aligned}$ の最小値, 最大値はあるだろうか. それぞれ検討せよ.

大かれ上人ているからは、個はいいいかしてまとりよっていての 1、最大值过7地。

一声が、最小値はりにこのなせり

y = 2x + 3 $(-1 \le x < 1)$ について、最小値、最大値はあるだろうか.それぞれ検討せよ.

庄园的。 ア=- (axt Y= 1 でる). 最い値1.

定義或コー|ミなく | でかり.

X=1ををうてかいのでは、 最大値はアナレ.

さらに...【CONNECT 数 I 121~128 で基礎力 UP!】

3 2 次関数

 $P91\sim P92$ を参照し、下の欄に自分の必要に応じて用語等をまとめる.

४४४४४४४४	7(7(7(7(7(7(7(7(7(7(7(7
	0 0 0	0 0 0	0 0 0	000
s si				N
				. 187
			× .	
				*
				. x

3.1 y 軸方向の平行移動

以下の2つのグラフを比較して、関係性を見つける

$$y = x^2, \qquad y = x^2 + 2$$

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$y = x^2$	25	16	9	4	(0	(4	9	16	25
$y = x^2 + 2$	27	(A	(/	6	3	2	3	6	11	(f	27

名底2" 华軸大厅に

上のグラフの様子を説明すと...

 $y=x^2+2$ のグラフは, $y=x^2$ のグラフを y 軸方向に_____だけ平行移動させたものである.

 $y=x^2+2$ の軸は () () 「 頂点は (0 ,) 一般化すると、以下のようになる.

- y 軸方向の平行移動 -

2 次関数 $y=ax^2+q$ のグラフは $y=ax^2$ のグラフを y 軸方向に だけ平行移動させたものである.

 $y=ax^2+q$ の軸は 其気 $(\chi=0)$,頂点は $(\chi=0)$,頂点は $(\chi=0)$

で車の書話で、「車」でも「アニロ」でも可、

3.1.1 練習問題

以下の二次関数のグラフを描き、その頂点と軸を求めよ.

T更点 (0, 2) 車由 X=0

頂点 (ロ,-1) 軸 た=0

顶点 (o,1) 軸 X=0

了更点 (v,-1) 車 2C=0.

3.2 x 軸方向の平行移動

以下の2つのグラフを比較して、関係性を見つける

$$y = 2x^2$$
, $y = 2(x-1)^2$

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$y = 2x^2$	to	32	18	4	2	0	2	8	. 18	31	to
$y = 2(x-1)^2$	72	50	32	41	S A	2	9	7	A	(A	32

上のグラフの様子を説明すると...

 $y=2(x-1)^2$ のグラフは, $y=2x^2$ のグラフを x 軸方向に_____ だけ平行移動させたものである.

- y 軸方向の平行移動 —

2 次関数 $y=a(x-p)^2$ のグラフは $y=ax^2$ のグラフを x 軸方向に _____ だけ平行移動させたものである.

 $y=a(x-p)^2$ の軸は $\chi=p$, 頂点は (p , q)

3.2.1 練習問題

以下の二次関数のグラフを描き、その頂点と軸を求めよ.

(2,0) THE

南 70=2

(2)
$$y = \frac{1}{2}(x+1)^2$$

成(-1,0) 車由 90=-

(3) $y = -3(x-3)^2$

孤 (7.0) 黄曲 1c=3

(4) $y = -\frac{1}{4}(x+2)^2$

TRE (-2,0)車 $\chi = -2$.

3.3 x, y 軸方向の平行移動

以下の2つのグラフを比較して、関係性を見つける

x -5		-4	-3	-2	-1	0	1	2	3	4	5
$y = 2x^2$	क्	32	18	8	2	0	2_	B	18	32	50
$y = 2(x-1)^2 + 2$	74	52	34	20	l°	.4.	1_	4	(0	20	74

上のグラフの様子を説明すると, $y=2(x-1)^2+2$ のグラフは... $y=2x^2$ のグラフを x 軸方向に _______ だけ平行移動させたものである.

- 平行移動 -

2次関数 $y = a(x-p)^2 + q$ のグラフは

 $y=ax^2$ のグラフを x 軸方向に $_$ $^{\frown}$, y 軸方向に $_$ だけ平行移動させたものである.

 $y = a(x-p)^2 + q$ の軸は り、頂点は り、

3.3.1 練習問題

以下の二次関数のグラフを描き、その頂点と軸を求めよ.

TD点(2,2) 車 X=2.

T克点 (-1,-2) 电由 1c=-1.

T脏 (2,1) 車由 1C=2

顶点 (-2,-1) 車 9(=-2,