迈索无线打印智盒 MS1000WF 应用指南

V1.01

版权声明

迈索无线打印智盒(产品型号: MS1000WF)是广州市白云 区迈索信息科技中心(以下简称"本中心")研发的产品,本中心拥有该产品相关的电路,固件,软件,协议(MSPP,迈索 Socket 打印协议),文档(包括不限于本应用指南)等原始的,完整的著作权。未经本中心书面授权,任何个人和组织不得以任何形式或手段,对 MS1000WF 相关的电路,固件,软件,协议,文档进行复制,抄袭,修改,破解等侵权行为,违者将承担相应法律责任。

本文档将不定期更新,增删改相关内容,恕不另行通知。

本文档所包含的全部内容,是作为不提供任何明确的或隐含的赔偿或担保的形式提供的。

广州市白云区迈索信息科技中心

2014.04.15

修订记录

版本	日期	修订内容
V1. 00	2014-4-15	第一稿发布。
V1. 01	2014-04-24	第1章"概述"中增加 MS1000WF 相关介绍。

目录

1.	概述	1
	1.1. MS1000WF 特点	1
	1.2. MS1000WF 外观	1
	1.3. MS1000WF 运行模式说明 2	2
2.	工作原理4	1
	2.1. 组网图	4
	2.2. 工作模式	4
	2.2.1. HTTP 方式 (GET/POST)	4
	2.2.2. Socket 方式	4
	2.3. 开发步骤 5	5
	2.3.1. Step 1,通读开发指南全文,熟悉工作原理	
	2.3.2. Step 2, 为 Web 服务器开发打印程序	
	2.3.3. Step 3, 将服务器地址等系统参数配置到 MS1000WF 中	
	2.3.4. Step 4, 将 MS1000WF 连接到本地 WiFi 网络,进行打印功能调试 5	
3.	系统参数及配置方法	
	3.1. 系统参数描述	
	3. 2. 参数配置方法 (XML)	
	3. 2. 1. Step 1,配置 XML 文件	
	3. 2. 2. Step 2,电脑通过 WiFi 连接到 MS1000WF	
	3. 2. 3. Step 3,打开 MS1000WF 配置助手,点击"连接"	
	3. 2. 4. Step 4, MS1000WF 配置助手上输入 set 命令	
	3. 2. 5. Step 5,选择准备好的 XML 配置文件进行发送	
	3. 2. 6. Step 6,输入"YES"确认配置,完成新参数修改配置	
	3. 2. 7. Step 7, 输入 "cmd=STA", 修改 MS1000WF 的 WiFi 无线组网方式为 STA (无线网络 20 20 20 20 20 20 20 20 20 20 20 20 20	
	线网络终端),以便连接到 WiFi 路由器进行打印工作	
	3.3.1. 浏览器登录 http://10.10.100.254	
	3. 3. 2. 进入 STA Setting 页面,配置目标 WiFi 网络入网参数	
	3. 3. 3. 进入 Work Mode 页面,修改 WiFi 无线组网方式为 STA	
4	HTTP GET/POST	
	4.1. 交互流程	
	4.1.1. 有数据需要打印的交互细节	
	4. 1. 2. 没有数据需要打印的交互细节	
	4. 2. Web 服务器打印程序开发要求	
	4. 2. 1. HTTP 响应数据要求是纯文本	
	4.2.2. 如何返回文本换行	
	4.2.3. 字符编码要求	3
	4.3. 简易程序,进行连通性测试29	9

迈索无线打印智盒 MS1000WF 应用指南

	4. 3. 1.	PHP 语言举例)
	4. 3. 2.	Java 语言举例 30)
	4.4. 实用程	星序,包括数据库读取和订单排版30)
	4.4.1.	PHP 语言举例 30)
	4.5. 高级写	b能: 动态生成二维码并打印31	1
	4.6. 实践参	>考33	3
	4. 6. 1.	如何区分不同的 MS1000WF 33	3
	4. 6. 2.	如何判断打印设备是否可用,是否缺纸34	1
	4. 6. 3.	如何判断订单打印是否成功34	1
	4. 6. 4.	如何避免打印 Web 服务器的异常错误返回信息36	3
5.	Socket 打印	印协议 37	7
	5.1. 报文组	5构	7
	5. 1. 1.	报文起始符和结束符37	7
	5. 1. 2.	报文头部37	7
	5. 1. 3.	77.57 2 2 3 7 7	
	5.2. 心跳扎	录文39)
	5. 2. 1.	心跳报文交互39)
	5. 2. 2.	心跳报文-REQ40)
	5. 2. 3.	心跳报文-REP)
	5.3. 命令排	B文41	1
	5. 3. 1.	命令码42	2
	5. 3. 2.	参数查询命令报文交互43	3
	5. 3. 3.	参数设置命令报文交互4	1
	5.4. 数据排	B文45	5
	5. 4. 1.	数据报文交互45	5
	5. 4. 2.	2,41,1,7	
	5. 4. 3.	数据报文-REP 45	5
		约束46	
	5. 5. 1.	约定46	3
	5 5 2	约束	ว

1. 概述

1.1. MS1000WF 特点

迈索无线打印智盒 MS1000WF[后文简称 MS1000WF]可应用于餐饮,仓库管理,连锁销售等需要应用无线自动打印票据的领域,方便应用系统迅速构建安全可控的无线自动打印解决方案。

MS1000WF 具有如下特点:

◆ 适配打印机类型

支持各种规格的票据打印机,只要打印机满足如下2个条件:

- ✓ 接口为 RS232 串口 (DB9)
- ✓ 支持 ESC/POS 兼容命令
- ◆ 支持 802.11b/g/n WiFi 无线
- ✓ 802.11b/g/n 无线标准,内置 WiFi 模块通过 FCC/CE 标准认证
- ✓ WPS 一键建立安全无线连接(注1)

◆ 支持多种 Web 系统对接方式

根据不同 Web 系统对接需求,提供三种工作模式:

- ✓ HTTP GET
- ✓ HTTP POST
- ✓ Socket
- ◆ 支持 QR Code 二维码打印
- ✓ 支持动态生成二维码并打印到相应的票据中,可以帮助应用系统更好地应用二维码(例如安全支付,扫描关注等等)。

◆ 支持本地化参数配置

✓ 支持系统参数(例如,服务器地址,票据标题,通讯密钥等)本地化配置,用户可以根据应用实际情况对系统参数进行查询修改;同时,修改方法为本地化方式,而不是异地厂家代为配置,或者通过网络远程配置,短信配置等等第三方远程配置方式,保证信息安全牢牢把握在用户自己手上,最大限度提高系统的安全性。

◆ 支持远程升级

✓ 长期提供远程软件升级服务。

1.2. MS1000WF 外观

MS1000WF 采用盒装形态,对外呈现:正面板(2 LED+1 按键),左右侧面板(分别搭配 4 LED)以及后面板:

注 1: WPS 方式下, 目前不支持 WPA2-PSK 加密方式。

功能件	所在位置	功能说明	
电源灯	前面板	电源指示	
WiFi 连接灯		MS1000WF 的 WiFi 无线组网为 STA,成功连接到其他 WiFi 网络;或者 MS1000WF 的 WiFi 无线组网为 AP,创 建的 WiFi 网络有终端接入	
恢复出厂配置按键	前面板	长按6秒以上放开后,MS1000WF恢复为出厂配置,将 WiFi 无线组网方式配置为 AP 接入点	
电源接口	后面板	连接5V2A 电源接口	
串口	后面板	通过 RS232串口线连接到打印设备上	
WPS 按键	后面板	一键安全连接按键,用以连接到支持 WPS 一键安全连接的 WiFi 网络设备上	
告警指示灯	左面板	黄色 LED 4个,用以指示不同的告警信息	
工作模式指示灯	右面板	绿色 LED 4个,用以指示 MS1000WF 当前的运行模式	

1.3. MS1000WF 运行模式说明

MS1000WF的 WiFi 无线组网支持如下两种方式:

- (1) **AP 模式**: 创建一个 WiFi 网络(SSID 为: MS1000WF, 没有密码)供电脑,平板等 WiFi 终端设备接入(支持 2 个设备),即此时 MS1000WF 作为一个 WiFi 接入点,可以和接入设备进行通信;
- (2) STA 模式:作为 WiFi 终端设备接入到现有的 WiFi 网络中,即 MS1000WF 为一个无

线网络的终端。

对应不同的 WiFi 无线组网方式, MS1000WF 将工作在不同的模式中:

- (1) **参数设置模式**:对应 WiFi 组网方式为 AP, MS1000WF 工作在特殊的参数设置模式,可以支持 XML 文件配置,也可以支持 Web 网页配置:
- XML 文件配置:通过软件将参数配置 XML 文件发送给 MS1000WF,可以设置所有系统参数,同时可以切换 WiFi 无线组网方式(单向,仅支持将 AP 修改为 STA)
- Web 网页配置: 登陆 MS1000WF 内置的 Web 服务器 (10.10.100.254, 默认用户名 ms1000wf, 密码 ms1000wf), 可以修改 STA 对应的目标 WiFi 网络接入参数, 同时可以 切换 WiFi 无线组网方式 (双向,支持 AP 和 STA 互相转换)。
- (2) 工作模式 (HTTP GET/POST/Socket): 对应 WiFi 组网方式为 STA, MS1000WF 工作在正常的工作模式,根据用户设置的 workmode 参数 (参考第3章), 运行在 HTTP GET 模式,或者 HTTP POST 模式,或者 Socket 模式。

下面是 MS1000WF 运行模式总图,可供阅读本应用指南时参考:

2. 工作原理

2.1.组网图

组网图如下所示,MS1000WF 通过 WiFi 路由设备接入应用系统网络,与 Web 服务器进行数据交互,将服务器发送过来的票据数据驱动打印机进行打印。

2.2. 工作模式

根据不同的 Web 系统对接需求,MS1000WF 提供了三种工作模式: HTTP GET 方式,HTTP POST 方式以及 Socket 方式。

下面对这些方式进行简单介绍,更详细的开发指南,请看后文专门章节。

2.2.1. HTTP 方式 (GET/POST)

由 MS1000WF 每隔一段时间主动发起对 Web 服务器的数据查询,服务器有数据返回便将该数据打印,无数据返回则等待下一个周期到来后再次发起查询。这种周期轮询的模式架构简单,对接方便,适合小型应用快速部署推向市场。缺点是采用轮询的方式,数据打印和设备状态上报会有最多一个周期的延迟(例如,30秒),无法做到即时打印和状态更新。

MS1000WF 向服务器发起查询的时候,HTTP GET 方式可以携带少量的参数数据,HTTP POST则可以携带较多的参数数据,可以根据实际情况进行选择。

2.2.2. Socket 方式

Socket 方式则是Web 服务器作为TCP Server,MS1000WF 作为TCP Client 相互之间建立Socket 通讯链路,实现即时通讯,因此可以实现即时订单打印,状态查询,参数在线查询修改等,功能强大,应用灵活,适合中大型系统部署。缺点是前期开发相比 HTTP 方式复杂一些,对Web 服务器的开发技术要求高一些。我司已经自主设计开发了一套安全高效的打印 Socket 通讯协议,全部开放给MS1000WF 的系统集成开发者使用。具体将在后文介绍。

2.3. 开发步骤

2.3.1. Step 1, 通读开发指南全文,熟悉工作原理

了解工作原理之后,选择适合自己应用系统实际情况的工作方式(HTTP GET/HTTP POST/Socket)。

2.3.2. Step 2, 为 Web 服务器开发打印程序

根据自己选择的工作方式,如果是 HTTP GET/POST,请参考第 4 章;如果是 Socket,请参考第 5 章,开发自己的打印程序,并部署到 Web 服务器上,确保部署之后能够正常访问。

2.3.3. Step 3,将服务器地址等系统参数配置到 MS1000WF 中

参考第3章,将服务器地址等必要的系统参数配置到 MS1000WF 中。根据所选择的工作模式,参考相应模式下的 XML 配置模版 (随应用指南文档包发布)。

2.3.4. Step 4, 将 MS1000WF 连接到本地 WiFi 网络,进行打印功能调试

根据调试结果,修改Web服务器上的打印程序,重复Step 2~4,直到打印效果满足需求。

3. 系统参数及配置方法

3.1. 系统参数描述

MS1000WF的参数,主要包括通用(目标 WiFi 入网参数,打印参数等)和专用(不同工作模式需要配置不同的参数项),详细信息如下表所示。

类型	参数名称	参数作用	取值说明	取值举例	必配
	ssid	目标 WiFi 网络 SSID	英文字符串,0~47字符	TP-LINK_ABCDEF	否
通用 目标 WiFi	auth	认证模式	五文字符串 0 9字符	OPEN, WPAPSK, WPA2PSK	否
网络参数	encry	加密算法	英文字符串,0~9字符	NONE, TKIP, AES	否
	key	密码	英文字符串,0~31字符	12345678	否
	pollcycle	打印作业轮询周期(秒)	数字字符,1~4个,1s~3600s	30	条件
	printcopynum	打印订单联数	数字字符,1 [~] 3个,1联 [~] 100 联	1	是
	printlogo	是否需要打印 LOGO	英文字符,1个,'Y'或者'N'	N	是
	printtitle	是否需要打印订单标题	英文字符,1个,'Y'或者'N'	Y	是
	printautocut	是否需要自动切纸	英文字符,1个,'Y'或者'N'	N	是
通用	beeperalarm	是否打印机故障响铃	英文字符,1个,'Y'或者'N'	Y	是
<u>/@</u> /11	msgbegin	订单数据有效性标识	英文字符串,0~15字符	空	否
	msgend	预留			否
	server	Web 服务器地址	英文字符串,最大63字符	注1	是
	title	订单标题	中英文字符串,最大63字符 (1个中文算2个字符)	XX 店票据	是
	workmode	工作模式	英文字符串,0~9字符	httpget/httppost/socket	是
HTTP GET	getpath	HTTP GET 路径	英文字符串,最大44字符	注2	条件
HTTP POST	postpath	HTTP POST 路径	英文字符串,最大49字符	注3	条件
11111 1 051	postdata	HTTP POST 数据	英文字符串,最大511字符	注4	条件
	beatduration	心跳帧周期	数字字符,1~3个,1s~250s	60	条件
	printersn	打印机序列号	数字英文字符串,固定8个	A1403001	条件
Socket	printersnmask	打印机序列号掩码	数字英文字符串,固定8个	12345678	条件
	serversn	服务器序列号	数字英文字符串,固定8个	ABCDEF01	条件
	serversnmask	服务器序列号掩码	数字英文字符串,固定8个	87654321	条件

注1: http://2.miso1.sinaapp.com,80

注2: /takeaway/test.php?cmd=1&sn=1

注3: /takeaway/test.php

注4: key=_QWERTYUIOsdfghjkcvbnmQWERTY&cmd=p&sn=1

迈索无线打印智盒 MS1000WF 应用指南

"必配"列说明:

- **否**:表示不是必须配置的项目(WiFi 参数可以通过 Web 页面配置,所以不强制要求 XML 文件配置);
- 是:表示必须配置,不管工作在那种模式下,这些参数都是需要配置的;
- **条件**:表示根据所设置的 workmode 参数,选定不同的工作模式,则需要配置该工作模式相关的参数。例如,如果工作模式为 httpget,那么 getpath 就是必须配置的参数,而 postpath,postdata 等参数就不需要配置了。

3.2. 参数配置方法(XML)

参数配置,就是将系统参数配置到定义好的一个 XML 模板文件中,然后将该 XML 文件发送给 MS1000WF 即可完成配置。下面详细介绍。

3.2.1. Step 1, 配置 XML 文件

用户根据需要,将相关参数填写到 XML 模板文件中。例如,下面是一个 HTTP GET 的配置文件 (MS1000WF-CFG. xml, 黑色字体处便是用户配置的内容。其他配置模板, 包括 HTTP POST, Socket, 请参考随本应用指南发布的文件):

```
<?xml version="1.0" encoding="utf-8"?>
   <ms1000wfset>
      <wifi>
          <ssid>MYSSID</ssid>
          <auth>WPA2PSK</auth>
          <encry>AES
          <key>12345678</key>
      </wifi>
      <general>
          <pollcycle>30</pollcycle>
          <printcopynum>1</printcopynum>
          <printlogo>N</printlogo>
          <printtitle>Y</printtitle>
          <printautocut>N</printautocut>
          <beeperalarm>Y</beeperalarm>
          <msgbegin></msgbegin>
          <msgend></msgend>
          <server>http://2.miso1.sinaapp.com,80</server>
          <title>HTTP GET</title>
          <workmode>httpget</workmode>
      </general>
      <httpget>
          <getpath>/takeaway/test.php?cmd=1&sn=1</getpath>
      </httpget>
      <httppost>
          <postpath></postpath>
          <postdata></postdata>
      </httppost>
      <socket>
          <beatduration></beatduration>
          <printersn></printersn>
          <printersnmask></printersnmask>
          <serversn></serversn>
          <serversnmask></serversnmask>
      </socket>
   </ms1000wfset>
```

说明 1: <server>和<getpath>组合为一个完整的 http 访问地址: http://2.miso1.sinaapp.com/takeaway/test.php?cmd=1&sn=1。 其中<server>参数中的 80 是指端口。

3.2.2. Step 2, 电脑通过 WiFi 连接到 MS1000WF

MS1000WF 出厂时,WiFi 无线组网方式为 AP(Access Point,接入点),SSID 为"MS1000WF",无加密,允许用户 PC/笔记本连接到 MS1000WF。同时,MS1000WF 启动了 TCP Server,等待客户端连接并接收从客户端发送的 XML 格式的配置文件。

电脑上启动无线网卡并查找 SSID 为"MS1000WF"的接入点并进行连接,连接之后,电脑将分配到 10.10.100.xxx 的 IP 地址(说明:下面截图以 Windows 8 为例子,其他 Windows 操作系统操作方法类似)。

点击连接到该网络:

正常连接到该网络,连接状态"受限",因为是局域网,没有通 Internet:

查看分配的 IP 地址,为 10.10.100.xxx(注意到网关地址: 10.10.100.254,这个就是 MS1000WF 的 TCP Server 地址):

3.2.3. Step 3, 打开 MS1000WF 配置助手,点击"连接"

MS1000WF 配置助手打开即可使用,无需修改任何配置,直接点击"连接":

可以看到正常连接到 MS1000WF 的 TCP Server,并且可以接收到其发送过来的要求输入指令的提示:

可以看到,可以输入三个命令: get, set 或者 cmd=STA, 三个命令作用如下:

get: 查看当前设备的配置

set: 修改配置

cmd=STA:将 MS1000WF的 WiFi 无线组网方式修改为 STA(Station,从机,可以连接到其他 WiFi 路由设备,以接入网络)

本节要配置新参数,因此需要选择命令"set"。

3.2.4. Step 4, MS1000WF 配置助手上输入 set 命令

在 MS1000WF 的发送窗口输入"set"命令,然后点击发送。

注意:要在输入指令等待进度条中间阶段时点击"发送",避免命令输入错过被接收的窗口。

发送 set 之后,系统进入等待接收 XML 配置文件阶段,每次等待30秒,用户需要在30秒之内传送完一个完整的 XML 配置文件,否则会不断重复等待接收文件:

3.2.5. Step 5, 选择准备好的 XML 配置文件进行发送

先点击"清除输入",将发送窗口中之前输入的"set"字符串删除干净:

然后,点击"加载文件",选择已经准备好的 XML 配置文件,将其内容加载到发送窗口中:

然后点击"发送",发送完成之后,如果文件配置正确语法检查存在错误,会提示错误信息;如果没有错误,则会将配置结果显示出来,供用户确认。

文件发送过程:

如果文件存在错误,或者在接收等待期间没有接收完整,则会提示处理错误,需要重新发送文件:

如果配置文件正确通过检查,则显示配置结果:

显示配置的最后,提示用户对配置结果输入确认指令:YES/NO/RB:

YES: 确认配置正确,则 MS1000WF 将配置持久化;

NO: 确认配置不正确,需要重新配置,则 MS1000WF 会重新等待接收 XML 配置文件;

RB: 确认需要回滚配置,则 MS1000WF 会自动回滚配置到上一次正确确认的配置。

注意:这里等待输入确认的时间是180秒,如果超时之后仍然没有输入确认指令,则 MS1000WF 会自动回滚配置到上一次正确确认的配置。

3.2.6. Step 6, 输入"YES"确认配置,完成新参数修改配置

检查配置结果正确无误,符合要求,则点击"清除输入"清空发送窗口内容,然后输入"YES" 命令点击"发送"进行确认:

迈索无线打印智盒 MS1000WF 应用指南

确认完毕, MS1000WF 返回配置完成的信息:

至此,参数配置完成。

如果确认参数不再需要改动了,那么应该将 MS1000WF 的 WiFi 无线组网方式修改为 STA, 以便重启系统之后根据用户配置的 workmode 参数,进入 HTTP GET 工作模式,或者 POST 工作模式,或者 Socket 工作模式。

3.2.7. Step 7,输入"cmd=STA",修改 MS1000WF 的 WiFi 无线组网方式为 STA (无线网络终端),以便连接到 WiFi 路由器进行打印工作

如下,在发送窗口输入"cmd=STA",点击发送,则 MS1000WF 自动重启并转为 STA 无线组网方式(此时可以观察到,MS1000WF 的 WiFi 无线组网方式为 AP 接入点时所创建的 SSID 为"MS1000WF"的 WiFi 网络,已经消失了),然后设备将开始根据配置的 WiFi 网络参数进行信号搜索并入网。

至此,MS1000WF开始根据用户配置的系统参数进行工作。

3.3. 参数配置方法(Web 网页)

系统参数里面的目标 WiFi 网络入网参数,也可以通过 MS1000WF 内置的 Web 服务器使用 网页形式进行修改。

类型	参数名称	参数作用	取值说明	取值举例	必配
	ssid	目标 WiFi 网络 SSID	英文字符串,0 [~] 47字 符	TP-LINK_ABCDEF	否
通用 目标WiFi	auth	认证模式	英文字符串,0~9字符	OPEN, WPAPSK, WPA2PSK	否
	encry	加密算法	英文字符串,0~9字符	NONE, TKIP, AES	否
	key	密码	英文字符串,0 [~] 31字 符	12345678	否

该方法和通常 WiFi 路由器的配置方法类似,这里便做简单介绍。

3.3.1. 浏览器登录 http://10.10.100.254

输入默认用户名 ms1000wf, 密码 ms1000wf:

登录之后界面如下:

说明:如果页面长时间没有响应,请手动刷新页面,或点击页面左侧的"System"项触发刷新。

迈索无线打印智盒 MS1000WF 应用指南

在该页面的"System"子页面上可以看到,当前的WiFi 无线组网方式为AP,以及SSID,MAC 地址等信息:

3.3.2. 进入 STA Setting 页面,配置目标 WiFi 网络入网参数

可以手动输入 SSID, 也可以点击右上角的 "Scan"扫描周边环境中的 WiFi 信号, 然后选择目标网络。

然后根据实际情况,配置认证模式,加密算法和密码,点击"save"进行保存。

注意,保存之后提示进行重启,可以暂时不重启,待下面修改 WiFi 无线组网方式为 STA 之后,再重启。

3.3.3. 进入 Work Mode 页面,修改 WiFi 无线组网方式为 STA

选择 STA mode 之后,点击"save"保存配置。 然后点击"Restart"使设置生效。

至此,MS1000WF 的 WiFi 网络参数配置完成。重新上下电 MS1000WF 开始工作。 特别注意:除了本小节描述的参数,其他参数请不要修改,否则可能造成模块损坏。

4. HTTP GET/POST

HTTP GET/POST 工作方式,由 MS1000WF 周期向 Web 服务器发起 HTTP 请求,得到合法数据便进行打印。GET 和 POST 相比较,POST 方式下能够在 HTTP 请求中携带更多的数据,同时服务器侧获取 HTTP 请求数据的方法有些区别。除此之外,两者工作原理是一致的,本章就以 HTTP GET 的方式介绍工作原理,POST 方式同样可以参考。

4.1. 交互流程

MS1000WF 周期访问 Web 服务器(向 Web 服务器发送 HTTP 请求命令):

- (1) 如果有数据需要打印,则 Web 服务器通过 HTTP 响应将数据发给 MS1000WF, MS1000WF 将 Web 服务器反馈回来的数据,驱动打印机打印出来;然后立即再次发起 HTTP 请求命令;
- (2) 如果没有数据需要打印,则 Web 服务器的 HTTP 响应报文不包含数据,MS1000WF 结束本轮打印任务。然后等待下一个查询周期到来再发起 HTTP 请求。

典型数据交互场景如下图所示:

4.1.1. 有数据需要打印的交互细节

- 1, MS1000WF 向 Web 服务器发起 HTTP GET 请求数据,例如访问如下地址: http://http://2.miso1.sinaapp.com//takeaway/test.php?cmd=1&sn=1
- 2, Web 服务器接收到 HTTP 查询之后,进行相关处理,如查询数据库获取数据,置位相关状态,然后发送 HTTP 响应报文返回待打印的数据给 MS1000WF:
- 3, MS1000WF 取得 Web 服务器响应数据,驱动打印机进行打印。

4.1.2. 没有数据需要打印的交互细节

- 1, MS1000WF 向 Web 服务器发起 HTTP GET 请求数据,例如访问如下地址: http://http://2.miso1.sinaapp.com//takeaway/test.php?cmd=1&sn=1
- 2, Web 服务器接收到 HTTP 查询之后,进行相关处理,如查询数据库发现没有数据需要打印,则不返回任何数据,发送的 HTTP 响应报文中,数据载荷长度为 0;
- 3, MS1000WF 取得 Web 服务器响应数据,发现数据长度为 0,无需驱动打印机进行打印。

4.2. Web 服务器打印程序开发要求

4.2.1. HTTP 响应数据要求是纯文本

由于 MS1000WF 会将 Web 服务器 HTTP 响应返回的数据透明送入打印机进行打印,因此,Web 服务器 HTTP 响应的数据应该是纯文本,而不应该带有特定的标记,例如 HTML 标记符。

通常第一次使用 MS1000WF 的用户在这个地方会有疑问。实际上通过浏览器的查看页面源代码功能就可以很清楚地说明 HTTP 的响应数据要求。下面我们通过分别查看两个页面的页面源代码进行说明。

注:可以使用火狐浏览器(Firefox)打开页面,然后在页面上右击选择"查看页面源代码"即可。

4.2.1.1. 页面 1: 纯文本形式

打印机访问该页面后,打印结果如下:

4.2.1.2. 页面 2: HTML 标记形式

打印机访问该页面后, 打印结果如下:

4.2.1.3. 页面 1 和页面 2 的对比

比较页面 1 和页面 2 可以发现,如果通过浏览器直接查看,他们的显示是一致的,但是页面 1 的源代码仍然是一样的信息,是一段纯文本,而页面 2 的源代码则是 HTML 文本。从而存在如下结果:

- (1) 打印机接收到 HTTP 数据直接透明打印,那么页面 1 会打印正确的预期内容,而页面 2 则会连 HTML 标记也一并打印出来,因为打印机并不是像浏览器一样解析 HTML 标记。对于打印机,HTML 标记也仅仅是文本字符。
- (2) 传输页面 1 的带宽流量消耗远小于页面 2。通过使用纯文本,可以节省带宽,最大化 HTTP 传输效率。

所以, Web 服务器在实现打印功能的时候, 应该将 HTTP 响应的数据实现为纯文本。具体

迈索无线打印智盒 MS1000WF 应用指南

如何实现,不同的开发语言有不同的实现形式,用户可以参考相关编程手册,下面的章节选取某些语言做程序示例。

4.2.2. 如何返回文本换行

4.2.2.1. PHP

文本换行符号"\n"。注意要用双引号括起来,如果是单引号,会被当作文本处理: echo "test1\ntest2" //正确换行,\n 作为换行控制符处理 echo 'test1\ntest2' //不正确,\n 作为文本处理

4.2.2.2. ASP

ASP 可以通过&vbCrLf 进行换行: vbCr=Chr(13) 回车符; vbLf=Chr(10) 换行符; vbCrLf=Chr(13) & Chr(10) 回车+换行符。

4.2.3. 字符编码要求

由于国产热敏打印机一般支持 GB18030,不支持 UTF-8,因此 Web 服务器如果返回的信息 是 UTF-8 编码的,要转化为 GB18030,否则中文可能出现乱码。例如,如果 Web 后台语言 是 PHP,则可以使用 iconv 函数进行转化,示例如下:

echo iconv("UTF-8", "GB18030", "中文打印");

如果 Web 服务器不返回中文信息,则没有限制。

4.3. 简易程序,进行连通性测试

4.3.1. PHP 语言举例

```
test.php
   1
        <?php
   2
             $command = $_GET['command'];
   3
   4
             switch ($command){
                  case "test":
   5
                      echo "1.\n";
echo "2.\n";
echo "3.\n";
echo "a.\n";
echo "b.\n";
   6
                                                   要打印的内容
   8
   9
  10
                       echo "c.\n";
 11
 12
                       break;
 13
 14
                  default:
 15
                       echo "default\n";
 16
                       break;
 17
 18
        ?>
19
```

打印结果如下:

4.3.2. Java 语言举例

```
testphp x printestjava x

(ARequestMapping("list")
public String list(Model model ,HttpServletRequest request,HttpServletResponse response) throws UnsupportedEncodingException{
response.setCharacterEncoding("GB18030");
String q="单价";
String p="金额";
model.addAttribute("b",new String(q.getBytes("GB18030")));
model.addAttribute("b",new String(q.getBytes("GB18030")));
model.addAttribute("t",new String(p.getBytes("GB18030")));
return forward("ddesk", "lista");
//ddesk: 页面所在包的名称
//lista: lista.jsp是页面
```

打印结果如下:

4.4. 实用程序,包括数据库读取和订单排版

实际应用系统中,订单数据的处理会复杂一些,通常涉及数据库读取订单数据,以及订单数据的状态更改(例如,从未打印更新为已打印)等等。需要用户根据实际需求进行设计。同时,也需要对订单的文字排版进行设计,提高订单的可读性。

4.4.1. PHP 语言举例

下面是一个 PHP 代码片段,可以参考如何输出可读性较好的订单:

打印结果如下:

4.5. 高级功能: 动态生成二维码并打印

MS1000WF 可以将用户输入的特定信息(英文字符,最大128个)动态生成相应的 QR 二维码,附加到订单中打印出来。

使用的方法是 Web 服务器在返回给打印机的订单数据中,用字符串"QRCODEBEGIN"和"QRCODEEND"将特定的需要转化为二维码的原始信息包括起来,接着再根据需要输出其他订单数据信息。那么打印机就会在打印完订单信息之后,附加相应的二维码。

下面举两个 PHP 的例子。

(1) 没有附加其他打印数据的情况:仅生成一个原始信息为"Hello, QR code!"的二维码:

```
test.php
  1
      <?php
  2
  3
           $command = $_GET['command'];
  4
  5
           switch ($command){
               case "test":
  6
                   echo "QRCODEBEGIN";
                  echo "Hello, QR code!";
echo "QRCODEEND";
  8
  9
 10
                   break;
 11
                                  二维码原始信息放在这里
               default:
 12
                   echo "default\n";
 13
 14
                   break;
 15
           }
 16
17 ?>
```

打印结果如下:

(2) 附加其他打印数据的情况: 在订单数据的后面添加一个原始信息为 "Hello, QR code!" 的二维码:

```
test.php
       <?php
            $command = $_GET['command'];
            switch ($command){
   case "test":
                    echo "QRCODEBEGIN";
echo "Hello, QR code!";
echo "QRCODEEND";
  8
 10
11
                      echo "This is my receipt with a QR Code attached below:\n";
                      break;
 13
                 default:
 14
                      echo "default\n";
 15
 16
                      break;
           }
 18
      ?>
 19
```

打印结果如下:

提示 1: 通常用户可以把二维码附加在正常的订单后面,提供扫一扫支付或者扫一扫关注等增值功能。订单形式参考如下:

4.6. 实践参考

4.6.1. 如何区分不同的 MS1000WF

为每台设备指定序列号,可以帮助管理平台构建"商店--序列号--打印设备"的一一对应关系,一方面增强系统数据安全,打印设备序列号如果错误,就读取不到数据;另一个方面,

迈索无线打印智盒 MS1000WF 应用指南

也方便维护,例如某个打印设备坏了,更换新的打印设备之后,只需要在管理后台更新"商店--序列号--打印设备"的关系即可。

设备的序列号可以在发起 HTTP 请求的时候发送给 Web 后台,例如,HTTP 地址如下,携带了打印机的设备序列号 "P0001":

HTTP://2.miso1.sinaapp.com/takeaway/test.php?command=test&sn=P0001

4.6.2. 如何判断打印设备是否可用,是否缺纸

具体请参考下面小节的描述。

4.6.3. 如何判断订单打印是否成功

MS1000WF 支持对打印订单成功或者失败的状态进行上报,同时支持上报打印机的可用状态和打印纸状态。状态上报通过在用户配置的服务器 HTTP 地址后面附加参数来实现(此为GET 方式。如果是 POST 方式,就是在用户配置的 POST 数据(key1=value1&key2=value2...的形式)后面附加),具体规范如下。

4.6.3.1. 上报信息项说明

序号	信息项	取值枚举	说明
			打印机可用状态。
1	printer	ok/nok	ok: 打印机可用(在线,且没有不可恢复错误);
1	printer	OK/ HOK	nok: 打印机不可用(不在线,或者存在不可恢复
			错误,例如打印头温度过高,电压过高等)。
			打印纸状态。
2	paper	alr/nalr/nu11	ok: 打印机有纸;
4		ok/nok/null	nok: 打印机缺纸;
			null: 打印纸状态未知。
			上一次订单打印结果。
3	1.00	ok/nok/null	ok: 打印成功;
3	lastprint	OK/HOK/HU11	nok: 打印失败;
			null: 打印结果未知。

4.6.3.2. 上报状态规范

MS1000WF 会上报如下 6 种组合的序号:

序号	printer	paper	lastprint	场景说明
1	ok	ok	null	周期内第1次 HTTP 查询,打印机可用,有纸,上一次订单打印的结果信息为 null (因为这是周期内首次查询,不存在上一次)
2	ok	nok	null	周期内第1次 HTTP 查询,打印机可用,缺纸, 上一次订单打印的结果信息为 null
3	nok	null	nu11	周期内第1次 HTTP 查询, 打印机不可用, 上一次订单打印的结果信息为 null
4	ok	ok	ok	周期内第 N 次 (N>1) HTTP 查询, 打印机可用, 有纸, 上一次 (N-1次) 的订单打印成功
5	ok	nok	nok	周期内第 N 次 (N>1) HTTP 查询, 打印机可用, 缺纸, 上一次 (N-1次) 的订单打印失败
6	nok	null	nok	周期内第 N 次(N>1)HTTP 查询,打印机不可 用,上一次(N-1次)的订单打印失败

每种组合所对应的对 HTTP 地址的附加变化如下(以 HTTP GET 为例):

序号	printer	paper	lastprint	HTTP 地址变化
1	ok	ok	null	http://usr_address?usr_paras &ps=1
2	ok	nok	null	http://usr_address?usr_paras &ps=2
3	nok	nu11	null	http://usr_address?usr_paras &ps=3
4	ok	ok	ok	http://usr_address?usr_paras &ps=4
5	ok	nok	nok	http://usr_address?usr_paras &ps=5
6	nok	null	nok	http://usr_address?usr_paras &ps=6

针对这些上报的信息,Web 服务器便可以随时监控到打印机的状态,并且根据上一次订单打印的结果,对具体订单进行更加准确的处理(如标记为完成打印,或者需要重新打印等)。下面是一个处理参考,Web 服务器可以根据实际情况进行具体处理。

序号	printer	paper	lastprint	Web 服务器处理举例
1	ok	ok	null	C.1 更新打印机状态; C.2 检查是否有正在等待打印结果确认的订单,如果有,则将其置为 失败 ; C.3 检查是否存在订单需要打印,如果有,返回该订单数据,否则结束处理
2	ok	nok	nul1	B.1 更新打印机状态; B.2 检查是否有正在等待打印结果确认的订单,如果有,则将其置为失败
3	nok	nul1	nul1	A.1 更新打印机状态; A.2 检查是否有正在等待打印结果确认的订单,如 果有,则将其置为失败

4	ok	ok	ok	C. 1 更新打印机状态; C. 2 检查是否有正在等待打印结果确认的订单,如果有,则将其置为 成功 ; C. 3 检查是否存在订单需要打印,如果有,返回该订单数据,否则结束处理
5	ok	nok		B.1 更新打印机状态; B.2 检查是否有正在等待打印结果确认的订单,如 果有,则将其置为失败
6	nok	nul1	nok	A. 1 更新打印机状态; A. 2 检查是否有正在等待打印结果确认的订单,如 果有,则将其置为失败

可以看到, 其实只需要分成 A, B 和 C 三类场景进行处理:

- A 类是打印机不可用的情况;
- B 类是打印机可用但是缺纸的情况:
- C类是打印机可用且有纸的情况。
- 三类场景的相同之处:三类情况下,都需要刷新打印机的状态;
- 三类场景的不同之处:对于 A 类和 B 类,不应该返回订单数据进行打印,而 C 类则需要返回订单数据(如果有)进行打印。

4.6.4. 如何避免打印 Web 服务器的异常错误返回信息

在 Web 服务器偶尔发生异常的时候,HTTP 响应可能变成一些错误信息,由于打印机的默认工作模式是接收到 HTTP 返回数据就将这些数据直接打印出来,所以这些错误信息也会被打印出来。这可能影响终端用户(例如,餐馆的前台服务员)的体验,系统供应商可能不希望这些错误的信息呈现给终端用户。

解决的方法是,为有效的订单数据添加一个独一无二的标识(字符串)。在订单数据的最开始,添加一个特殊的字符串,用来表征后面数据是有效的。打印机在接收到 Web 服务器返回的 HTTP 数据中,检查是否存在这个标识,如果存在,就将该标识后面的数据进行打印;如果不存在这个标识,就抛弃所接收到的数据,不进行打印。

这个标识就是参数 msgbegin (参考 3.1 节)。msgbegin 参数可以有如下两类取值:

(1) 不配置(留空),或者配置为"NULL"

是默认的配置,打印机会将接收到的任何 HTTP 响应数据都打印出来;

(2) 配置为其他字符串

例如,配置: msgbegin= "ORDERGO"。那么打印机只有在接收到包含 "ORDERGO" 这个字符串的数据,才会将该字符串之后的数据进行打印。例如,打印机接收到 HTTP 响应的数据为 "ORDERGO 你好",那么打印机会打印 "你好";如果打印机接收到 HTTP 响应的数据为 "你好",那么打印机将不打印任何的内容,因为没有检测到正确的标识"ORDERGO"。

5. Socket 打印协议

5.1.报文结构

MSPP (MSPP, Misoist Socket Print Protocol) 定义如下报文 (Datagram) 结构用于 Socket 数据交互:

起始符: @@@(0x40 0x40 0x40)

类型: 0x55/0x99/0xAA

序号: 16bits 数值

发送源: 32bits数值,=sn异或mask 发送目的: 32bits数值,=sn异或mask

载荷长度: 16bits数值数据载荷: 负载数据

结束符:###(0x23 0x23 0x23)

定义一个 N 个字节长度的报文(N>=20),分为报文前后标识,报文头部,报文载荷三大部分。其中,报文头部包括 5 个域,域内的数据,类似大端模式存放(对比报文字节序和域内字节序)。

5.1.1. 报文起始符和结束符

以三个连续的'@'(对应 ASCII 码的十六进制数为 0x40)作为报文的起始符,三个连续的'#'(对应 ASCII 码的十六进制数为 0x23)作为报文的结束符。 报文起始符和结束符一共占用 3+3=6 个字节。

则报文中起始符和结束符域取值如下:

5.1.2. 报文头部

报文头部一共13个字节,划分为5个域:

5.1.2.1. 类型(1 byte)

报文类型划分为:心跳报文 (0x55),命令报文 (0x99),数据报文 (0xAA),因此**类型域用 1 个字节表示**,值只能是 0x55/0x99/0xAA,其他值非法。

5.1.2.2. 序号(2 bytes)

报文的序号,占用 2 个字节,可用的序号范围 0x0000~0xFFFF,循环反转使用。 要求 MS1000WF 在响应服务器下发报文的时候,必须使用与服务器一致的报文序号,以便服务器进行判断识别。

5.1.2.3. 发送源(4 bytes)和发送目的(4 bytes)

注意到 XML 配置文件中,有如下参数: printersn, printersnmask, serversn, serversnmask:

类型	参数名称	参数作用	取值说明	取值举例	必配
	printersn	打印机序列号	数字英文字符串,固定8个	A1403001	根据工作模式
Socket	printersnmask	打印机序列号掩码	数字英文字符串,固定8个	12345678	根据工作模式
	serversn	服务器序列号	数字英文字符串,固定8个	ABCDEF01	根据工作模式
	serversnmask	服务器序列号掩码	数字英文字符串,固定8个	87654321	根据工作模式

这四个参数,便是用于计算发送源域和发送目的域的,其取值为十六进制数字符串,例如 printersn 配置为 A1403001, 视为 0xA1403001, 是一个 32bits 的数值。规定如下:

对于 MS1000WF 发送的报文:

发送源 = printersn 按位异或 printersnmask 发送目的 = serversn 按位异或 serversnmask

对于 Web 服务器发送的报文:

发送源 = serversn 按位异或 serversnmask 发送目的 = printersn 按位异或 printersnmask

以上表所取举例的值为例子, 计算结果如下:

参数	printersn	printersnmask	serversn	serversnmask
取值(十六进制)	A1403001	12345678	ABCDEF01	87654321
MS1000WF-发送源	printersn	î printersnmask	= 0xB3740	6679
MS1000WF-发送目的	serversn	serversnmask	= 0x2CA8x	AC20
服务器-发送源	serversn	î serversnmask	= 0x2CA8x	AC20
服务器-发送目的	printersn	î printersnmask	= 0xB3740	6679

因此,根据规定,报文中发送源和发送目的域的取值如下(以 MS1000WF 发起的报文为例):

	_	标识		_						报艺	大大	部						报文章	横	标识			
报文字节序	0	1	2	3	3 4 5 6 7 8 9						10	11	12	13	14	15	16 N-4			N-3	N-3 N-2 N-1		
报文域	ţ	己始农	5	类型		号			送源		7		目的]	载荷			数据载			结束符	Ŧ	
	(3B)		(1B)	(4B) (4B)		B)		(4)		(4B)		(2B)		((N-)		9)B)		(3B)					
域内取值(Hex)	40	40	40	XX	Х	X	B3	74	66	79	2C	A8	AC	20	Χ	Χ	Χ		Χ	23	23	23	

5.1.2.4. 载荷长度(2 bytes)

用以指示报文载荷域的长度,以字节为单位。

5.1.2.5. 举例

假设 MS1000WF 发起一个报文,报文类型为心跳报文,报文序号为 1,报文载荷一个字节,为 0x83,那么整个报文装载结果如下:

5.1.3. 报文载荷

报文载荷,对于心跳报文,载荷规定为1个字节,含义请参考5.2;

对于命令报文,其长度根据命令码字的不同而有变化,具体参考5.3;

对于数据报文,其长度变化,内容意义由 Web 服务器决定,MS1000WF 会按照报文字节序由低到高的顺序将数据发送给打印机驱动打印。

5.2. 心跳报文

心跳报文的报文类型域为 0x55。报文载荷为 0 个或者 1 个字节。

心跳报文用于维持 Web 服务器和 MS1000WF 之间的 Socket 持久连接,同时可用于检测打印机状态。报文周期可由 Web 服务器规定(配置参数: beatduration,单位秒),但要求不低于250 秒。

5.2.1. 心跳报文交互

一次完整的心跳交互,由服务器发送的心跳报文-REQ 发起,然后 MS1000WF 响应一个心跳报文-REP,在心跳报文-REP里面,携带当前的打印机状态和打印机打印纸状态。

说明:为了方便描述,引入-REQ和-REP后缀,用以表示某类型报文的发起(Request)和响应(Report)。

心跳报文交互图如下:

5.2.2. 心跳报文-REQ

心跳报文-REQ没有数据载荷,即载荷长度为 0,设报文序号为 1,则整个报文如下(服务器发送源和发送地址信息,请参考5.1.2.3):

5.2.3. 心跳报文-REP

心跳报文-REP 携带 1 个字节的数据载荷,该字节的含义如下:

比特位序列 比特位取值

7	6	5	4	3	2	1	0
1	0	0	0	0	0	Х	Х

bit7: 固定为1

bit6~bit2: 预留, 固定为0

bit1:打印纸状态,1为OK,0为NOK bit0:打印机状态,1为OK,0为NOK

因此,其合法的取值为:

✓ **0x80**: 打印机 NOK, 打印纸 NOK。这是异常状态, 例如, 打印机没有开机, 或者开机 了, 但是没有连接到 MS1000WF上面, 或者打印机出现高温高压等致命故障;

✓ 0x81: 打印机 OK, 打印纸 NOK, 这是打印机缺纸状态;

✓ 0x83: 打印机 OK, 打印纸 OK, 这是正常状态;

其他取值为非法取值,应抛弃。

假设打印机和打印纸状态正常,报文序号为1,那么整个心跳报文-REP如下:

	-	标识	—	-	报文头部												报文载荷	-	标识	_
报文字节序	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
报文域	ŧ	己始尔	÷	类型	序	号		发送	练		5	发送	目的]	载荷	长度	数据载荷	4	吉東名	÷
1以又以		(3B)		(1B)	(2	B)	(4B)			(4B)			(2B)		(1B)		(3B)			
域内取值(Hex)	域内取值(Hex) 40 40		40	55	00	01	В3	74	66	79	2C	A8	AC	20	00	01	83	23	23	23

5.3. 命令报文

命令报文的报文类型域为 0x99, 主要用于服务器查询 MS1000WF 的系统参数配置,或者修改某些系统参数。

对命令报文载荷域内容的规定如下:

命令报文载荷的第1个(设从1开始编号)字节,定义为命令码,每一个命令码对应到一个 具体的系统参数,具体参考;第2个字节是命令类型,如果是查询系统参数,那么命令类型 域为0x33,如果是要设置系统参数,那么命令类型域为0x66;第3个字节开始,是变化的 内容,根据查询/设置不同,REO还是REP不同等,进行变化。

下面先介绍命令码,然后介绍查询系统参数和设置系统参数的报文交互。

5.3.1. 命令码

命令码详细信息如下表所示:

序号	命令码 (DEC)	命令码 (HEX)	对应系统参数	参数值的形式 (查询,设置)	查询/设置	设置是否需 要复位生效
1	11	0B	ssid	字符串	查询	不涉及
2	12	0C	auth	字符串	查询	不涉及
3	13	OD	encry	字符串	查询	不涉及
4	14	0E	key	字符串	查询	不涉及
5	15	0F	pollcycle	数值(2 bytes)	查询/设置	否
6	16	10	printcopynum	数值(1 byte)(注1)	查询/设置	否
7	17	11	printlogo	数值(1 byte)	查询/设置	否
8	18	12	printtitle	数值(1 byte)	查询/设置	否
9	19	13	printautocut	数值(1 byte)	查询/设置	否
10	20	14	beeperalarm	数值(1 byte)	查询/设置	否
11	21	15	msgbegin	字符串	查询/设置	否
12	22	16	msgend	字符串	查询/设置	否
13	23	17	server	字符串	查询/设置	是
14	24	18	title	字符串/字节序(中文编码值)	查询/设置	否
15	25	19	workmode	字符串	查询/设置	是
16	26	1A	getpath	字符串	查询/设置	是
17	27	1B	postpath	字符串	查询/设置	是
18	28	1C	postdata	字符串	查询/设置	是
19	29	1D	beatduration	数值(1 byte)	查询/设置	否
20	30	1E	printersn	字符串	查询/设置	是
21	31	1F	printersnmask	字符串	查询/设置	是
22	32	20	serversn	字符串	查询/设置	是
23	33	21	serversnmask	字符串	查询/设置	是
24	100	64	专用于复位设备	无	设置	NULL

注 1: 'Y','N', 直接取字符对应 ASCII 数值

说明 1: 参数值的形式,分为字符串和数值。参考错误!未找到引用源。的配置 XML 文件中举例配置的值,那么查询 ssid,查询的结果为"MYSSID",是字符串的形式;而如果查询 pollcycle,那么查询的结果为一个 16bits 的数值,结果为: 0x001E(30 对应的十六进制数),即为数值形式,而不是一个字符串"30"。

说明 2: WiFi 参数不支持设置, 仅提供查询;

说明 3: 有些参数设置之后,需要复位设备才能够正确生效(复位设备可以通过服务器下发命令码为 100 的命令报文(设置)来实现)。

5.3.2. 参数查询命令报文交互

一次完整的参数查询报文交互,由服务器发送的命令报文(参数查询)-REQ 发起,然后 MS1000WF 响应一个命令报文(参数查询)-REP,在报文里面,携带所查询参数的当前配置值。

5.3.2.1. 命令报文(参数查询)-REQ

设报文序号是 1,服务器要查询pollcycle(轮询周期)这个参数,查5.3.1表格可知命令码为 0x0F;命令类型为查询,即 0x33,载荷长度为 2,因此该报文如下:

5.3.2.2. 命令报文(参数查询)-REP

MS1000WF 接收到服务器发过来的命令报文(参数查询)-REQ 之后,查看相应参数的配置,并将结果作为载荷发送给服务器。设当前 pollcycle 的配置为 30 (秒),那么命令报文(参数查询)-REP 如下:

命令结果域就是 pollcycle 的值, 2 个字节: 0x001E=30 (十进制)。

5.3.3. 参数设置命令报文交互

一次完整的参数设置报文交互,由服务器发送的命令报文(参数设置)-REQ 发起,报文中携带参数所要设置的新值,MS1000WF 将参数的值进行设置,然后响应一个命令报文(参数设置)-REP,在报文里面,携带参数设置的结果(成功或者失败)。

5.3.3.1. 命令报文(参数设置)-REQ

设报文序号是 1, 服务器要设置pollcycle (轮询周期) 这个参数, 查5.3.1表格可知命令码为 0x0F; 命令类型为设置,即 0x66; 载荷长度为 4 (命令码,命令类型,以及 2 字节的参数值),需要将参数值修改为 20 (秒,=0x0014),因此该报文如下:

	_	标识	_ -	_	报文头部													报文载荷						
报文字节序	0 1 2 3 4					5 6 7 8 9 10 11 12 13								13	14	15	16	17	18	19	19 20 2		22	
报文域	起始符 类型				类型 序号 发送源					发送目的 载荷长度					长度	命令码	命令类型	参数	效值	结	束符	F		
110,000	(3B)			(1B)	(2B)		(4B)				(4B)			(2B)		(1B)	(1B)	(2	(2B)		(3B)			
域内取值(Hex)	40	40	40	99	00	01	2C	A8	AC	20	В3	74	66	79	00	04	0F	66	00	14	23	23	23	

注意:

不同参数其参数值长度可能不同,根据参数实际情况变化。如果参数没有值,则是清零参数 配置。例如,下面这个是复位设备的命令,便是没有参数值的:

5.3.3.2. 命令报文(参数设置)-REP

MS1000WF 接收到服务器发过来的命令报文(参数设置)-REQ 之后,对相应参数进行配置,并将配置结果通过命令报文(参数设置)-REP 反馈给服务器。配置结果为 1 个字节: 0x44 表示配置成功,0x77 表示配置失败,其他值为非法。

设本次配置 pollcycle 成功 (则配置结果=0x44),那么命令报文(参数设置)-REP 报文如下:

5.4. 数据报文

数据报文的报文类型域为 0xAA。

5.4.1. 数据报文交互

Web 服务器将要打印的数据装载在数据报文-REQ 中,发送给 MS1000WF, MS1000WF 接收 到数据之后,进行打印,然后将打印的结果反馈给服务器(报文序号相同,以供服务器识别)。

5.4.2. 数据报文-REQ

数据报文-REQ 的数据载荷就是要打印的数据,设报文序号为 1,要打印的数据是"012345",那么数据载荷长度为 6 个字节,数据报文-REQ 如下:

5.4.3. 数据报文-REP

收到服务器发送的数据报文-REQ, MS1000WF 抽取数据载荷, 驱动打印机进行打印, 然后将打印的结果反馈给服务器。

打印结果占用1个字节,其含义如下:

比特位序列 比特位取值

7	6	5	4	3	2	1	0
1	0	0	0	0	Х	Х	Х

bit7: 固定为1

bit6~bit2:预留,固定为0

bit2: 订单打印结果,1为成功,0为失败 bit1:打印纸状态,1为OK,0为NOK bit0:打印机状态,1为OK,0为NOK

假设本次打印成功,那么打印结果=0x87,数据报文-REP如下:

	标识							报文头部 ▶									报文载荷	标识→		
报文字节序	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
报文域	起始符 (3B)		类型 (1B)	序 (2	号 B)	发送源 (4B)			发送目的 (4B)				载荷长度 (2B)		打印结果 (1B)	结束符 (3B)		Ť		
域内取值(Hex)	40	40	40	AA	00	01	B 3	74	66	79	2C	A8	AC	20	00	01	87	23	23	23

5.5. 约定&约束

5.5.1. 约定

MSPP 协议做如下约定:

- (1) 报文交互采用半双工,由 Socket 服务器发起报文交互,Socket 服务器需要接收到 MS1000WF 的响应报文,才能发起一轮新的报文交互(或者等待响应报文超时);
- (2) 如果进行命令报文或者数据报文交互,则可以不需要心跳报文;
- (3) MSPP 协议支持 Socket 服务器发送的报文中,发送目的为广播地址,定义广播地址如下:

OxFFFFFFF 按位异或 printersnmask

假设 printersnmask=0x12345678,那么广播地址=0xFFFFFFF^0x12345678=0xEDCBA987。 MS1000WF 对于使用广播地址的报文(前提是发送源合法),作为合法报文接受,并进行正常响应。

5.5.2. 约束

- (1) MS1000WF 默认为数据报文配置 3KB (3072B) 大小的接收缓存区,如果 Socket 服务器需要发送长度大于 3KB 的数据报文,需要提前沟通定制;
- (2) 系统参数配置保存在 MS1000WF 内部的非易失存储器中,由于非易失存储器的擦写寿命有限制(10,000 次规格),因此系统参数不宜频繁修改,否则超过擦写寿命将会导致存储器失效。