MANE – 6650 – 01 Theory of Compressible Flow

Spring Semester 2011 HOMEWORK #5 **DUE: May 3, 2011**

- 1. Given a converging diverging nozzle with a ratio of exit cross section area A_e to throat cross section area A_t , $A_e/A_t=10$. The stagnation pressure at the inlet is $P_o=3$ (atm). The static pressure along the exit is $P_e=1$ (atm). Assume a 1-D flow and $A_t=1(\text{in}^2)$.
 - i. Is an isentropic flow solution (subsonic or subsonic supersonic) all along the nozzle possible? Explain.
 - ii. Find the area of the cross section 1 where a normal shock wave stands in the given flow.

2. A perfect gas ($\gamma = 1.4$) is accelerated in steady flow from stagnation pressure $P_o = 7.83$ (atm) and stagnation temperature $T_0 = 300$ K to $P_2 = 1$ (atm), then brought to rest by a waving shock (see diagram). Find the pressure P_3 of the stagnant gas behind the shock and shock speed.

3. Solve the pressure distribution over a diamond profile of 10% thickness given at a supersonic flow with M_{∞} = 2.0 and zero angle of attack (α = 0°). Calculate the lift and drag coefficients of the profile.

4. Solve the following shock structure (find M_1 , M_2 , β_1):

