БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и информатики

Лабораторная работа № 2 Вариант 20 Многокритериальные задачи

Работу выполнила

Коренчук Анна Олеговна студентка 3 курса 10 группы

20. Имеется вычислительная сеть, имеющая топологию "звезда", то есть множество $N=\{1, 2, ..., n\}$ параллельно работающих компьютеров, первый из которых выполняет роль концентратора. Имеется задание объёмом W единиц информации, которое необходимо выполнить на данных компьютерах. При этом концентратор помимо выполнения своей части задания, которая составляет не более 25% объёма задания, также обмен информацией между компьютерами. Производительность i-го компьютера составляет c_i единиц объёма информации в единицу времени по выполнению задания, формированию пересылаемой информации и обработке полученной информации. Между компьютерами должен происходить обмен информацией по каналам связи, через концентратор, но с условием сохранения баланса, то есть суммарный объём информации, передаваемой от компьютера другим компьютерам, должен быть равен суммарному информации, получаемому компьютером. Оба суммарных объёма составляют 30% объёма информации задания, первоначально концентратора объём переданного компьютеру. Для компьютерами состоит из 30% процентов информации своей части задания и всей информации передаваемой между компьютерами. Скорость передачи по каналу (1,j) равна v_{1j} единиц информации в

единицу времени. Пусть также задано множество $M \subseteq \{(1,j) \mid j \in \mathbb{N}, j \neq 1\}$ "контролируемых" каналов связи. Требуется распределить задание между компьютерами, минимизирующее время выполнения задания и минимизирующее суммарный труфик по "контролируемым" каналам связи.

Решение

Управляемые переменные: x_i ,где i = 1,...,n- объем задания для i -го компютера, $i = \overline{1,n}$.

Неуправляемые переменные: y_{ij} — объем информации, передаваемой между компьютером i и j

Ограничения задачи имеют вид:

- $x_i \ge 0, i = \overline{1, n}$
- $x_1 \le 0.25W$ Концентратор(i=1) выполняет не более 25% объёма задания
- $\sum_{i=1}^{n} x_i = W$ (Имеется задание объёмом W единиц информации, которое необходимо выполнить на данных компьютерах)
- $\sum_{j=1}^{n} y_{ij} = \sum_{j=1}^{n} y_{ji} = 0.3x_i$, $j \neq i$, $i = \overline{2,n}$ суммарный объём информации, передаваемой от компьютера другим компьютерам, должен быть равен суммарному объёму информации, получаемому компьютером. Оба суммарных объёма составляют 30% объёма информации задания, первоначально переданного компьютеру
- $\sum_{j=2}^{n} y_{1j} = \sum_{j=2}^{n} y_{j1} = 0.3x_1 + \sum_{i=2}^{n} \sum_{j=2}^{n} y_{ij}$ Для концентратора объём обмена с компьютерами состоит из 30% процентов информации своей части задания и всей информации передаваемой между компьютерами.

Т.к производительность i-го компьютера составляет c_i единиц объёма информации в единицу времени по выполнению задания и x_i - объем задания для i -го компютера, значит

$$f_1(x) = \max_{\overline{1,n}} \left(\frac{x_i}{c_i}\right) \to min$$

Т.к. требуется минимизировать суммарный трафик по "контролируемым" каналам связи и суммарный объём информации, передаваемой от компьютера другим компьютерам, должен быть равен суммарному объёму информации, получаемому компьютером, то

$$f_2(x) = \sum_{(1,j)\in M} 0.6x_i \to min$$

<u>Для решения (1)</u> : $f_1(x)$ будет минимальной, если $\frac{x_i}{c_i} = const.$

Пусть
$$\frac{x_i}{c_i}=\alpha$$
. Тогда, т.к. $\sum_{i=1}^n x_i=W$, получим $\sum_{i=1}^n \frac{x_i}{c_i} c_i=\alpha \sum_{i=1}^n c_i=W$

• $\alpha c_1 < 0.25W$.

Тогда
$$\alpha = \frac{W}{\sum_{i=1}^n c_i}$$
, план $x_1^{(1)} = (\frac{W}{\sum_{i=1}^n c_i} c_1, ..., \frac{W}{\sum_{i=1}^n c_i} c_n)$

• $\alpha c_1 = 0.25W$

то принимаем $x_1 = 0.25W$, а для остальных $\alpha \sum_{i=2}^n c_i = 0.75W$

$$x_1^{(2)} = (0.25W, \frac{0.75W}{\sum_{i=2}^n c_i} c_2, \dots, \frac{0.75W}{\sum_{i=2}^n c_i} c_n)$$

Для решения (2): $f_2(x)$ будет минимальной, если $x_i = 0 \ (1,i) \in M$

Получаем оптимальный план x_2 :

$$x_{i} = \begin{cases} 0, (1, i) \in M \\ 0.25W, i = 1 \\ 0.75W \\ \hline n - 1 - |M|, (1, i) \notin M \end{cases}$$

Сведем к однокритериальной задаче с помощью введения метрик в пространство целевых функций:

$$h(x) = \sqrt{(f_1(x) - f_1(x_1))^2 + (f_2(x) - f_2(x_2))^2} \rightarrow min$$

Результат

Пусть W=60 , $c_1=1$, $c_2=2,\ c_3=3$

(1,2) - контролируемый канал

Для решения воспользуемся WolframAlpfa(в первом случае $x_1=x_1^{(1)}$ во втором случае $x_1=x_1^{(2)}$)

minimize sqrt((max[x , y/2 , z/3] - 30)^2+(0.6*y)^2) over x>=0 , y>=0 , z>=0 , x+y+z=60 , x<0.25*60

minimize $sqrt((max[x, y/2, z/3] - 30*0.75)^2+(0.6*y)^2)$ over x>=0, y>=0, z>=0, x+y+z=60, x=0.25*60

