Sampling from probability distributions

Giri Iyengar

Sampling: When do we use it

- We want to simulate a complex system and need to know what can happen as the system operates
- Used in Economic forecasting, Financial modeling, Statistical Physics, Machine Learning
- ► Markov Chain Monte Carlo (MCMC) technique is a well-used simulation tool (You might have encountered it in your 401(k) modeling)

Some popular sampling techniques

- Inverse Transform Sampling
- Rejection Sampling
- Slice Sampling

- Start with the CDF (cumulative distribution function)
 - ▶ Integral of the PDF
- Invert it
- ▶ Uniformly sample a value from [0,1]. Interpret as a probability
- Use the inverse to find the corresponding value of the random variable

Triangular PDF

Corresponding CDF for Triangular PDF

Inverse Sampling in Action

Inverse Triangular PDF

CDF for Inverse Triangular PDF

- Given $f(x) = x, x \in [0,1]$ and $f(x) = 2 x, x \in (1,2]$
- ▶ We get F(x), the CDF as

►
$$F(x) = \frac{x^2}{2}, x \in [0,1]$$
 and $F(x) = 2x - \frac{x^2}{2} - 1, x \in (1,2]$

- ▶ From this, we can compute an inverse function of F(x), $F^{-1}(x)$ such that $F^{-1}F(x) = x$
- A little bit of Algebra shows that we get the inverse function of the CDF as

►
$$F^{-1}(y) = \sqrt{2y}, y \in [0, 0.5]$$
 and $F^{-1}(y) = 2 - \sqrt{2(1-y)}, y \in (0.5, 1].$

Now, to sample from this inverse CDF, we can do the following:

```
invcdf <- function(y) {
    if (y >= 0 && y <= 1) {
        ret <- ifelse(y < 0.5, sqrt(2*y), 2-sqrt(2*(1-y)))
    }
}
sample1 <- sapply(runif(20000), invcdf)
sdf = data.frame(sample1)</pre>
```


- ► Choose a function M(x) that is strictly larger than f(x) over the range
- Uniformly sample (x,y) over the range of x and y
- ▶ Accept all samples that are under the curve of f(x) and reject all samples that are above f(x)

Rejection Sampling in Action


```
sample.x = runif(20000,0,2)
accept = c()
fx \leftarrow function(x) \{if (x >= 0 \&\& x <= 2) \{y \leftarrow ifelse(x <= x <= 0)\}\}
# dnorm(sample.x[i], 0.5, 0.175)
for(i in 1:length(sample.x)){
 U = runif(1, 0, 1)
 if(dunif(sample.x[i], 0, 2)*3*U \le fx(sample.x[i])) {
   accept[i] = 'Y'
 else if(dunif(sample.x[i], 0, 2)*3*U > fx(sample.x[i])) {
  accept[i] = 'N'
T = data.frame(sample.x, accept = factor(accept, levels= c
```

We can plot the results along with the true distribution with the following code.

Slice Sampling

- First select an \hat{x} from the range of f(x)
- ▶ Then, vertically choose a \hat{y} that is between 0 and $f(\hat{x})$
- ▶ Draw a horizontal slice at this \hat{y}
- ▶ Uniformly sample between \hat{x}_{min} and \hat{x}_{max} at this \hat{y} .
- ▶ Repeat with this as the new \hat{x}

Extracted from the mcmc tutorial (part of the diversitree package)

```
library(diversitree)
```

```
## Loading required package: deSolve
##
## Attaching package: 'deSolve'
##
   The following object is masked from 'package:graphics':
##
       matplot
##
##
## Loading required package: ape
## Loading required package: subplex
## Loading required package: Rcpp
make.mvn <- function(mean, vcv) {</pre>
```

logdet <- as.numeric(determinant(vcv, TRUE)\$modulus)

Our target distribution has mean 0, and a VCV with positive covariance between the two parameters.

```
vcv <- matrix(c(1, 0.25, 0.25, 0.75), 2, 2)
lik <- make.mvn(c(0, 0), vcv)</pre>
```

Sample 10,000 points from the distribution, starting at c(0, 0).

```
set.seed(1)
samples <- mcmc(lik, c(0, 0), 20000, 1, print.every = 10000</pre>
```

```
## 10000: {-0.2465, 1.6853} -> -3.90028
## 20000: {-0.6881, 0.0283} -> -1.91646
```

The marginal distribution of V1 (the first axis of the distribution) should be a normal distribution with mean 0 and variance 1:

Slice Sampling with Triangular PDF

Try with Triangular PDF

```
set.seed(1)
lik <- function(x) { if (x >= 0 && x < 1) log(x) else log(x)
samples <- mcmc(lik, 0.0001, 20000, 1, lower=0.0001, upper=</pre>
```

```
## 20000: {1.8357} -> -1.80636
```

Slice Sampling with Triangular PDF

Warning in Ops.factor(left): '!' not meaningful for fac## Warning in if (!add) {: the condition has length > 1 and
element will be used

Using built-in R Sample function to do this without knowing any sampling

If you don't want to know how to do these sampling yourself, you can always just use the samp function in R

```
xgrid=seq(0,2,by=0.01)
fxgrid <- sapply(xgrid,fx)
nx <- sample(xgrid,10000,replace=TRUE,prob=fxgrid)</pre>
```

Compare sampling from a function and sampling from a PDF

R one liner

```
par(mfrow=c(1,1))
nx <- sample(seq(0,2,by=0.01),10000,replace=TRUE,prob=sapp)
hist(nx,30,freq=F)</pre>
```

