Word Embedding en chinois

Réalisation par : Lu Chenxin Xu Jitao Sous supervision de : M. Stéphane Canu

PLAN

- 1. Introduction
- 2. Jeux de données
- 3. Modèles existants de Word Embedding
- 4. Evaluations de Word Embedding
- 5. Résultats et Conclusions
- 6. Bibliographie

1. Introduction

- Contexte : Les jeux de données (les corpus) en chinois
- **Objectifs**: Comparer les méthodes de Word Embedding existantes
 - Trouver des données textuelles en chinois utilisables
 - Identifier les modèles existants
 - Proposer des bons critères de comparaison
 - Choisir une tâche en aval pour comparer les Word Embedding

2. Jeux de données

• Sport : 15.74%

• Divertissement: 11.08%

• Maison : 3.90%

• Loterie : 0.90%

• Propriété : 2.40%

Éducation : 5.02%

• Mode : 1.60%

• Affaire : 7.54%

• Constellation: 0.43%

Jeu de vidéo : 2.92%

Société : 6.08%

Science et Technologie : 19.49%

• Action: 18.47%

• Finance et Économie : 4.44%

2. Jeux de données

- Sources : un corpus de nouvelles de THUCTC
- Deux fichiers séparés : Les jeux de données d'apprentissage et de test
- Un exemple contient une nouvelle
- Étiquettes : Le type de nouvelles
- Nombre de classes : 11 (Nous avons éliminé 3 classes qui ont moins de 10000 exemples)
- Tailles:
 - Le jeu de données d'apprentissage : 109989
 - Le jeu de données de test : 103369

3. Modèles existants de Word Embedding

- 1. Word2Vec
- 2. GloVe
- 3. FastText
- 4. ELMo

3.1 Word2Vec

- Skip-gram et CBOW
- Hierarchical Softmax
- Negative Sampling

3.2 GloVe

- La matrice de co-occurrence
- La relation linéaire entre les mots

3.3 FastText

- N-gram
- Hierarchical Softmax
- Une méthode de classification de texte

Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N . The features are embedded and averaged to form the hidden variable.

3.4 ELMo

- représentation contextualisée
- Bi-LSTM
- Une concaténation d'une représentation non-contextualisée et deux représentations contextualisées
- Deux couches de LSTM représentent différents caractéristiques :
 Sémantique et Syntaxique

4. Evaluations de Word Embedding

- Évaluation non-contextualisée
 - Relations Morphologiques
 - Duplication: "tian"(jour) → "tian tian"(tous les jours)
 - Semi-fixation : "yi"(un) \rightarrow "di yi" (première)
 - Relations Sémantiques : par exemple, les capitales de pays
- Évaluation contextualisée
 - La classification de texte : TextCNN

4.2 TextCNN

4.2 TextCNN

DENSE: dim 11

CNN Pipeline

CNN for ELMo

5. Résultats et Conclusions

	Méthode	Geography	Nature	History	People	Semantic
N ¬и	FastText SkipGram	0.359	0.14	0.0	0.207	0.276
	FastText CBOW	0.222	0.133	0.007	0.102	0.178
\` ¬и	>Word2Vec SkipGram	0.325	0.173	0.0	0.213	0.264
	Word2Vec CBOW	0.179	0.18	0.0	0.218	0.179
	GloVe	0.184	0.105	0.007	0.202	0.163

Méthode	A	AB	Prefix	Suffix	Morphological
FastText SkipGram	0.013	0.018	0.077	0.18	0.081
FastText CBOW	0.011	0.015	0.129	0.25	0.115
Word2Vec SkipGram	0.018	0.029	0.048	0.095	0.052
Word2Vec CBOW	0.023	0.043	0.111	0.127	0.082
GloVe	0.004	0.001	0.019	0.018	0.012

5. Résultats et Conclusions

5. Résultats et Conclusions

- Sémantique → Skip Gram
- Morphologique → CBOW
- FastText → Meilleur!!!
- ELMo \rightarrow À explorer
- Transformer → BERT...

6. Bibliographie

- Piotr BOJANOWSKI et al. "Enriching Word Vectors with Subword Information".
 In: CoRR abs/1607.04606 (2016). arXiv: 1607.04606. URL: http://arxiv.org/abs/1607.04606.
- 2] Armand JOULIN et al. "Bag of Tricks for Efficient Text Classification". In: CoRR abs/1607.01759 (2016). arXiv: 1607.01759. URL: http://arxiv.org/abs/1607.01759.
- Yoon Kim. "Convolutional Neural Networks for Sentence Classification". In: CoRR abs/1408.5882 (2014). arXiv: 1408.5882. URL: http://arxiv.org/ abs/1408.5882.
- [4] Shen LI et al. "Analogical Reasoning on Chinese Morphological and Semantic Relations". In: CoRR abs/1805.06504 (2018). arXiv: 1805.06504. URL: http://arxiv.org/abs/1805.06504.
- Tomas MIKOLOV, Kai CHEN et al. "Efficient Estimation of Word Representations in Vector Space". In: CoRR abs/1301.3781 (2013). arXiv: 1301.3781.
 URL: http://arxiv.org/abs/1301.3781.
- [6] Tomas MIKOLOV, Ilya SUTSKEVER et al. "Distributed Representations of Words and Phrases and their Compositionality". In: CoRR abs/1310.4546 (2013). arXiv: 1310.4546. URL: http://arxiv.org/abs/1310.4546.
- [7] Jeffrey PENNINGTON, Richard SOCHER et Christopher D. MANNING. "GloVe: Global Vectors for Word Representation". In: Empirical Methods in Natural Language Processing (EMNLP). 2014, p. 1532-1543. URL: http://www.aclweb.org/anthology/D14-1162.
- [8] Matthew E. PETERS et al. "Deep contextualized word representations". In: CoRR abs/1802.05365 (2018). arXiv: 1802.05365. URL: http://arxiv.org/ abs/1802.05365.
- [9] Ashish Vaswani et al. "Attention Is All You Need". In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762.

