

Taller Final Teoría de la computación

Sofía Robayo Bonilla

Escuela de Ingeniería, Ciencia y Tecnología.

29 de noviembre del 2020

1 Punto 2

Convierta el siguiente NFA en un DFA equivalente mediante el procedimiento enseñado en clase:

Figure 1

Respuesta:

Considere el NFA de la Figura 1, vamos a construir un DFA equivalente. Para ello, vamos a hacer la tabla de los estados que sería la siguiente:

	a	b
$\{q_{0}\}$	$\{q_2\}$	Ø
$\{q_1\}$	$\{q_0, q_1\}$	Ø
$\{q_2\}$	$\{q_1\}$	$\{q_1,q_2\}$
$\{q_0, q_1\}$	$\{q_0, q_1, q_2\}$	Ø
$\{q_0, q_2\}$	$\{q_1,q_2\}$	$\{q_1,q_2\}$
$\{q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_1,q_2\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_1,q_2\}$
Ø	Ø	Ø

A partir de esta tabla sabemos que el estado inicial es $E(\{q_0\}) = \{q_0, q_1\}$. Los estados de aceptación son $F = \{\{q_1\}, \{q_0, q_1\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\}$. Teniendo esto en cuenta, el autómata quedaría así:

2 Punto 7

Suponga que $\Sigma = \{a, b\}$. Diseñe un CFG en Forma Normal de Chomsky que genera el siguiente lenguaje:

L= $\{w \in \Sigma^* : \text{la longitud de } w \text{ es impar y tiene una } a \text{ en la mitad}\}$

Respuesta:

Para resolver este punto, consideremos $\Sigma = \{a,b\}$ y la siguiente gramática:

De esta manera la gramática genera el lenguaje L, porque S siempre va a ser impar sin importar el tamaño de w y siempre va a tener una a en la mitad dado que para terminar la cadena la única forma es reemplazar S por A que conlleva a a.

3 Punto 13

Suponga que $\Sigma = \{0,1\}.$ Diseñar una TM que decida el siguiente lenguaje:

$$\mathbf{L} = \{ww: w \in \Sigma^*\}$$

Respuesta:

http://turing machine simulator.com/shared/mvjdnnioug