535/2 PHYSICS Paper 2 Oct./Nov. 2022 21/4 hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Certificate of Education

PHYSICS

Paper 2

2 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Answer any five questions.

Any additional question(s) answered will not be marked.

Mathematical tables and silent non-programmable scientific calculators may be used.

These values of physical quantities may be useful to you:

Acceleration due to gravity = 10 ms^{-2} .

Specific heat capacity = $4200 \text{ Jkg}^{-1}K^{-1}$.

Specific heat capacity of copper = $400 \text{ Jkg}^{-1}K^{-1}$.

Specific latent heat of fusion of water = 340000 Jkg^{-1} .

Speed of sound in air $= 320 \text{ ms}^{-1}$.

Velocity of electromagnetic waves = $3.0 \times 10^8 \text{ ms}^{-1}$.

© 2022 Uganda National Examinations Board

Turn Over

1.	(a)	(i)	State three fundamental quantities of measurements	nts. (03 marks)				
1.	(a)	(ii)		(i) . (01 mark)				
	(b)	Des	scribe a simple laboratory experiment to determine thall piece of stone.	e density of a (04 marks)				
	(c)	A sin a	A spring balance reads 120 g when a metal block is suspended from it in air and reads 100 g when the block is completely immersed in water.					
			culate the:					
	A We	(i) (ii)	volume of the block. density of the block.	(02 marks) (02 marks)				
	(d)	A re	ectangular block of dimensions $4 \text{ cm} \times 6 \text{ cm} \times 9 \text{ cm}$ had 0.6 kg . Find the maximum pressure it can exert on its second	as a mass support. (04 marks)				
2.	(a)	Wha	at is meant by conduction of heat?	(01 mark)				
	(b)	Desc dete	cribe ways the fixed points of a thermometric scale carermined.	n be (<i>06 marks</i>)				
	(c)	The ice and steam points on an ungraduated thermometer are found to be 194 mm apart. What temperature is recorded in °C when the length of the mercury thread is 68 mm above the ice point mark? (03 marks)						
	(d)	Brie	fly explain the meaning of greenhouse effect.	(03 marks)				
	(e)	Expl wher	lain the fact that a dull surface feels hotter than a shiny n both are in the same environment.	surface (03 marks)				
3.	(a)	(i)	State the principle of rectilinear propagation of light.	(01 mark)				
		(ii)	(ii) An opaque object is placed between an extended source of light and a screen. Sketch a labelled diagram to show regions of the shadow formed when the screen is very far from the object.					
		(iii)	y is a serious by plane n					
	(b)	Describe the method of determining the focal length of a thin convex lens using a distant object. (01 mark) (04 marks)						
	(c)	(i) (ii)	What is critical angle as applied to light?	(0.				
		\- - /		r. 02 marks)				
			2	- marks)				

(d) (i) A monochromatic light is incident at the air-glass boundary as shown in Figure 1.

If the refractive index of glass is 1.5, find the value of angle i.

(03 marks)

- (ii) State **two** reasons why convex mirrors are used as driving mirrors. (02 marks)
- 4. (a) Define the following as applied to wave motion:

(i) Nodes. (01 mark)

(ii) Antinodes. (01 mark)

(b) What are progressive waves? (01 mark)

(c) A tuning fork making 200 vibrations in 2 s produces sound which travels at 320 ms⁻¹ through air. Find the:

(i) frequency of the sound. (02 marks)

(ii) wavelength of the sound. (02 marks)

(d) Figure 2 shows a pattern of straight water waves moving in direction *AB* incident to a barrier *CD*.

Fig. 2

Copy the diagram and show the pattern for the wave after hitting the barrier. (02 marks)

Turn Over

	(e)	(1)	State the condition for resonance to occur.	(01 mark)		
		(ii) With the aid of a labelled diagram, describe an experiment to demonstrate resonance due to sound waves. (05 marks)				
		(iii)	State one application of resonance.	(01 mark)		
5.	(a)	Define the following:				
		(i)	Adhesion.	(01 mark)		
		(ii)	Cohesion.	(01 mark)		
	(b)	State	the factors that affect surface tension.	(03 marks)		
	(c)	(i) With the aid of a diagram describe an experiment to demonstrate how a siphon works. (04 marks)				
		(ii)	Give one use of siphon in everyday life.	(01 mark)		
	(d)	Explain what happens to atmospheric pressure as one goes higher and higher from the ground. (03 marks)				
	(e)	The smaller piston of a hydraulic jack has an area 0.2 m ² . A force of 20 N is applied on the smaller piston to raise a car resting on the larger piston of area 2 m ² . Find the force that raises the car. (03 marks)				
6.	(a)	Describe the structure of an atom. (02 marks)				
	(b)	What are radioisotopes? (01 m				
	(c)	A nuclide P of mass number 214 and atomic number 82 decays to nuclide Q with the emission of two alpha particles and a beta particle.				
		(i)	Write a nuclear equation for the decay process.	(02 marks)		
		(ii)	Determine the mass number and atomic number of Q .	(02 marks)		
	(d)	(i)	What is half-life of a radioactive material?	(01 mark)		
		(ii) The half-life of a radioactive element is 2 hours. If the initial mass of the element is 48 g, find the mass that decays after 8 hours. (03 mar)				
	(e)	State	two industrial applications of radioactivity.	(02 marks)		

(f) (i) What is nuclear fission?

(01 mark)

- (ii) State the condition necessary for nuclear fission reaction to take place. (01 mark)
- (iii) State one condition for nuclear fusion to occur. (01 mark)
- 7. (a) (i) What is meant by electrical resistance? (01 mark)
 - (ii) Derive an expression for the effective resistance of two resistors connected in parallel. (04 marks)
 - (b) Resistors of resistances 3 Ω and 9 Ω are connected across a battery of emf 10 V and internal resistance of 2.75 Ω as shown in Figure 3.

Calculate the:

- (i) total resistance in the circuit. (02 marks)
- (ii) power dissipated in the 3 Ω resistor. (03 marks)
- (c) (i) What is the major cause of electrical power losses along the transmission line. (01 mark)
 - (ii) Explain how the power losses can be minimised. (02 marks)
- (d) (i) Draw and label the structure of a dry cell. (02 marks)
 - (ii) Briefly explain how to charge a lead acid accumulator. (01 mark)

- 8. (a) (i) Differentiate between ferromagnetic and non-ferromagnetic materials. (01 mark)
 - (ii) State two examples of each of the materials in (a)(i). (02 marks)
 - (b) Sketch the magnetic field pattern of the following:
 - (i) Bar magnet. (01 mark)
 - (ii) Bar magnet in the earth's field with its south pole facing the earth's north. (02 marks)
 - (c) (i) State the three factors which affect the magnitude of the force on a current carrying conductor in a magnetic field. (03 marks)
 - (ii) Describe with the aid of a diagram, how the step down transformer works. (04 marks)
 - (iii) A transformer has 200 turns on the primary coil and 1000 turns on the secondary coil. If a voltage of 1600 V is fed to the primary coil, calculate the voltage on the secondary coil.

(iv) State any two causes of energy losses in a transformer. (01 mark)