73.019: Advanced Photogrammetry Lab #6: Aerial Triangulation with Drone Images

전일서

1.데이터셋 준비

(1) 영상

2019년 6월 26일 연도에서 Mavic pro 플랫폼을 사용하여 촬영된 영상이다(지도 위치는 이전 과제에서 여러 번 언급하였으니 생략). Mavic pro에 탑재되어 있는 카메라 센서의 스펙은 다음과 같다.

초점 거리 : 4.73(mm)

해상도 : 4000x3000

픽셀 사이즈 : 0.00157424(mm)

영상 샘플은 다음과 같다.

Mavic pro의 촬영한영상은 촬영 방향으로의 영상 길이가 짧은 형태가 된다. 촬영 경로는 아래 그림에 포함하고 있다. 종중복도는 60~80%, 횡중복도는 30~40%로 구성되어 있다. 한 개의 스트립에 7개의 영상이 있는 세 개의 스트립을 형성하는 총 21장의 영상을 선택하였다.

총 영상 수: 18

종중복도 : 60~80%

횡중복도: 30~40%

스트립 수:3

한 스트립 당 영상 수:7

비행 높이 : 70m 비행 고도 : 97m

(2) GCP

GCP는 대상 지역의 절대적인 위치를 정밀하게 결정 짓게 해주기 위해 취득하는 점이다. 드론으로 대상 지역을 촬영하는 동시에 범위 영역 내에서 식별 가능한 인공 표지를 두어 그 위치를 GPS RTK로 측량한다. 문제 2번에서는 총 3번의 실험을 실행할 것이다. 이에 해당하는 모든 실험에서 동일한 GCP를 사용하였다. 영상에서 식별 가능한, 드론 영상의 위치 조정에 사용 가능한 GCP는 총 13개다. GCP를 취득한 인공 표지의 예시는 다음과 같다.

GCP 좌표 값과 분포도는 다음과 같다.

Marker_ID	Easing(X)(m)	Northing(Y)(m)	Altitude(m)
1	149664.507	387122.1818	32.688
2	149665.962	387154.6132	33.7
3	149643.55	387166.5103	36.646
4	149666.892	387164.6279	33.221
5	149671.228	387189.5324	29.777
6	149665.615	387218.0569	29.379
7	149645.738	387253.2367	30.946
8	149642.016	387207.2864	31.601
9	149704.216	387222.9904	26.984
10	149737.214	387197.0881	27.298
11	149725.302	387161.2943	27.381
12	149725.43	387124.4574	27.344
13	149723.185	387195.753	27.278

- 2. 포토스캔으로 (1) EO초기 값과 영상 매칭점을 이용한 번들 조정 (2) GCP만을 이용한 번들 조정 (3) 둘 다를 이용한 번들 조정
- * 카메라 캘리브레이션은 사전에 하지 않았으며, 제조사에서 제공하는 파라미터를 입력하여, 셀프 캘리브레이션 하였다. 자세 값을 함께 초기 EO로 입력하여 영상을 처리 한 경우, 오차가 크게 생 겨 자세 값은 넣어주지 않았다.
- (1) EO초기 값과 영상 매칭점을 이용한 번들 조정

아래의 표는 EO초기 값과 영상 매칭점을 이용한 번들 조정 하였을 때의 결과이다. 영상의 수평 정확도는 3m, 수직 정확도는 5m로 설정하였다. (다음 2가지 실험에도 동일하게 정확도를 설정하 였다.) 수평 수직 전체에 대한 RMSE의 평균은 87cm정도를 보이고 있고, Z값에서 약 80cm의 이동을 보이며, 가장 조정이 많이 일어난 것으로 볼 수 있다.

Photo_ID	Accuracy_X/Y_(m)	Accuracy_Z_(m)	RMSE (m)	X_error(m)	Y_error(m)	Z_error(m)
1	3	5	0.574688	-0.31328	0.080676	-0.47499
2	3	5	0.21646	-0.05489	-0.07394	-0.1959
3	3	5	0.301853	-0.10635	-0.05326	-0.27743
4	3	5	0.447514	0.141593	-0.2085	-0.36979
5	3	5	0.808988	0.122313	-0.34299	-0.7224
6	3	5	1.180303	0.069232	-0.26531	-1.14801
7	3	5	0.696503	0.161921	0.2832	0.615383
8	3	5	1.128216	0.190978	0.197556	1.094244
9	3	5	1.471254	0.269932	0.376442	1.39643
10	3	5	1.419037	0.19779	0.246372	1.383419
11	3	5	1.211906	0.143136	0.394721	1.136848
12	3	5	0.810136	0.371525	0.426943	0.579663
13	3	5	1.131618	-0.16453	-0.03008	-1.11919
14	3	5	0.641806	0.168112	-0.0849	-0.61355
15	3	5	0.429678	-0.12898	-0.12465	-0.39045
16	3	5	0.390728	-0.272	-0.22768	-0.16385
17	3	5	0.581152	-0.44671	-0.31307	-0.20045
18	3	5	0.694629	-0.34981	-0.28153	-0.52998
Mean			0.870101	0.230136	0.253728	0.799835

다음의 표는 취득한 지상 기준점(여기서는 참 값으로 여겨짐)과 위에서 영상에 태깅된 지상 기준점이 조정하면서 생긴 차이를 보여준다. 수평 정확도는 0.001m, 수직 정확도는 0.005m로 설정하였다. (다음의 실험에도 동일하게 정확도를 설정하였다.) 수평 수직 전체에 대한 RMSE의 평균은 5m 정도를 보이고 있고, Z값에서 약 3.3281m의 이동을 보이며, 가장 조정이 많이 일어난 것으로 볼 수 있다.

Marker_ID	X_error(m)	Y_error(m)	Z_error(m)	Accurac(XY/Z)	Error(m)	Projections	Error(pix)
1	0.49823	5.319837	-5.10588	0.001/0.005	7.39046	3	0.212138
2	0.322102	2.78551	-3.32606	0.001/0.005	4.350341	4	0.683092
3	1.657128	1.849815	-3.89791	0.001/0.005	4.621858	5	0.654069
4	0.287968	2.056647	-2.82128	0.001/0.005	3.503193	5	0.281395
5	0.035084	0.364569	-1.73872	0.001/0.005	1.776876	12	0.416055
6	0.412769	-1.60561	-1.94292	0.001/0.005	2.554081	7	0.372142
7	1.599008	-4.14521	-4.12898	0.001/0.005	6.065314	2	0.134873
8	1.884658	-0.84868	-2.7794	0.001/0.005	3.463707	6	0.57936
9	-2.21273	-2.12996	-1.85195	0.001/0.005	3.586453	5	0.303753
10	-4.50699	-0.28857	-2.64244	0.001/0.005	5.232471	3	0.254006
11	-3.6292	2.401295	-2.95643	0.001/0.005	5.260963	5	0.326583
12	-3.64262	5.11187	-5.38679	0.001/0.005	8.27148	2	0.039318
13	-3.52664	-0.19019	-1.99078	0.001/0.005	4.054206	7	0.333005
Check points	2.37855	2.785662	3.328097		4.949105		0.419251

두 표를 함께 해석해보면, GPS가 수평, 수직 정확도를 각각 0.001m, 0.005m 가지는 경우에 총 에러가 약 5m정도 나는 것을 의미한다고 볼 수 있다.

조정된 카메라 파라미터 결과는 다음과 같다. 초점 거리가 비교적 많이 조정되었으며, 주점의 y좌

표가 많이 이동한 것을 볼 수 있다. 영상만을 이용하여 조정하였기 때문에 영상의 매칭 포인트의 영향을 받아 내부적인 카메라 파라미터가 많이 조정된 것으로 생각해볼 수 있다.

Variable Adjusted(mm)
C 4.0972
XP 0.0001
YP -0.0380

(2) GCP만을 이용한 번들 조정

아래의 표는 GCP만을 이용한 번들 조정 하였을 때의 결과이다. 영상의 수평 정확도는 3m, 수직 정확도는 5m로 설정하였다. 수평 수직 전체에 대한 RMSE의 평균은 6.5526m 정도를 보이고 있고, Z값에서 6.4833m 의 이동을 보이며, 가장 조정이 많이 일어난 것으로 볼 수 있다. (1)에서 1m이 내의 오차를 보였던 것과 달리 GCP가 참이라는 가정 하에 영상의 초기 EO는 6m이상의 오차를 가지고 있었던 것으로 보인다.

Photo_ID	Accuracy_X/Y_(m)	Accuracy_Z_(m)	RMSE (m)	X_error(m)	Y_error(m)	Z_error(m)
1	3	5	6.586233	0.432236	0.262301	6.566798
2	3	5	6.559574	0.690805	0.157162	6.521204
3	3	5	6.329119	0.664983	0.178909	6.291545
4	3	5	6.317588	0.966052	-0.00564	6.243287
5	3	5	6.215968	0.894376	-0.08463	6.150706
6	3	5	6.293195	0.852494	0.000339	6.235187
7	3	5	7.128017	1.00673	0.772487	7.014156
8	3	5	7.133721	0.863123	0.713097	7.045317
9	3	5	7.262939	1.046201	0.830407	7.13906
10	3	5	7.229943	0.948591	0.694487	7.133718
11	3	5	7.188031	1.01579	0.824032	7.068021
12	3	5	7.123232	1.29405	0.804634	6.958335
13	3	5	6.189497	0.830523	0.249883	6.128431
14	3	5	6.190643	1.078814	0.215907	6.092093
15	3	5	6.026694	0.668675	0.233704	5.984922
16	3	5	6.091633	0.514999	0.124183	6.068554
17	3	5	6.081732	0.375172	0.045556	6.069978
18	3	5	5.99829	0.341983	0.052975	5.988299
Mean			6.552558	0.804755	0.337211	6.483312

다음의 표는 취득한 지상 기준점이 각 영상에 투영되면서 조정된 결과를 보여준다. 수평 정확도는 0.001m, 수직 정확도는 0.005m로 설정하였다. (다음의 실험에도 동일하게 정확도를 설정하였다.) 총 사용한 지상 기준점은 10개이며, 검사점은 3개이다. 지상기준점의 수평 수직 전체에 대한 RMSE의 평균은 3cm 정도를 보이고 있고, Z값에서 약 2.8cm의 이동을 보이며, 가장 조정이 많이 일어난 것으로 볼 수 있다. 검사점은 외곽으로 고루 퍼져 있는 3개의 점을 선택하였다. 검사점의 수평 수직 전체에 대한 RMSE 평균은 6cm, 수직에 대한 평균 에러는 4cm로 수평 에러와 비교적비슷한 수준을 보이고 있다. 검사점의 위치는 다음의 그림에 빨간 동그라미로 표시되어 있다.

Marker_ID	X_error(m)	Y_error(m)	Z_error(m)	Accurac(XY/Z)	Error(m)	Projections	Error(pix)
1	0.003549	0.031324	0.040997	0.001/0.005	0.051715	3	0.220575
2	-0.02969	0.032963	-0.05645	0.001/0.005	0.071795	4	0.82749
3	0.001318	-0.00203	-0.0054	0.001/0.005	0.005923	5	0.695961
4	-0.0037	-0.00323	-0.01209	0.001/0.005	0.013048	5	0.446412
5	0.00431	-0.00369	0.007491	0.001/0.005	0.009397	12	0.551306
6	0.026991	0.064354	0.014803	0.001/0.005	0.071338	7	0.487
7	-0.00134	-0.00375	0.001765	0.001/0.005	0.004356	2	0.157008
8	-0.00049	0.003644	0.012774	0.001/0.005	0.013292	6	0.712419
9	0.003205	0.009623	-0.03226	0.001/0.005	0.03382	5	0.463933
10	0.007424	0.012081	-0.00861	0.001/0.005	0.01659	3	0.37981
11	0.007598	0.016326	0.038082	0.001/0.005	0.042125	5	0.613159
12	0.020081	-0.02672	-0.0631	0.001/0.005	0.071408	2	0.070386
13	-0.01035	-0.01571	0.029875	0.001/0.005	0.035304	7	0.515276
Control points	0.007901	0.014953	0.028404		0.033058		0.523133
Check points	0.023577	0.042796	0.040233		0.063293		0.626446

조정된 카메라 파라미터 결과는 다음과 같다. 초점 거리는 약 0.02mm, 주점의 위치가 0.01mm 단위로 조정된 것을 확인할 수 있다.

Variable	Adjusted(mm)
C	4.7157
XP	0.0122
YP	-0.0113

(3) 초기 EO와 영상 매칭점, GCP를 사용하여 번들 조정

아래의 표는 초기 EO와 영상 매칭점, GCP를 사용하여 번들 조정 하였을 때의 결과이다. 영상의 수평 정확도는 3m, 수직 정확도는 5m로 설정하였다. 수평 수직 전체에 대한 RMSE의 평균은 6.4901m 정도를 보이고 있고, Z값에서 6.4171m 의 이동을 보이며, 가장 조정이 많이 일어난 것으 로 볼 수 있다.

Photo_ID	Accuracy_X/Y_(m)	Accuracy_Z_(m)	RMSE (m)	X_error(m)	Y_error(m)	Z_error(m)
1	3	5	6.510291	0.43527	0.269243	6.490142
2	3	5	6.482624	0.693069	0.164421	6.443372
3	3	5	6.250761	0.667287	0.186502	6.212242
4	3	5	6.23865	0.967182	0.002553	6.163222
5	3	5	6.135015	0.89393	-0.07786	6.06904
6	3	5	6.211296	0.852045	0.007843	6.152573
7	3	5	7.046033	1.015223	0.768479	6.930032
8	3	5	7.052721	0.87459	0.710768	6.962096
9	3	5	7.183609	1.058846	0.828813	7.056638
10	3	5	7.151597	0.962197	0.693597	7.052548
11	3	5	7.11152	1.029044	0.823273	6.988348
12	3	5	7.049597	1.307207	0.803037	6.880637
13	3	5	6.111599	0.831308	0.258177	6.04929
14	3	5	6.112226	1.080098	0.223554	6.011882
15	3	5	5.946231	0.671142	0.241241	5.903308
16	3	5	6.009381	0.516285	0.132172	5.985703
17	3	5	5.99894	0.376469	0.053356	5.986877
18	3	5	5.914346	0.341639	0.060736	5.904158
Mean			6.490058	0.850458	0.467005	6.417124

다음의 표는 취득한 지상 기준점이 각 영상에 투영되면서 조정된 결과를 보여준다. 수평 정확도는 0.001m, 수직 정확도는 0.005m로 설정하였다. 총 사용한 지상 기준점은 10개이며, 검사점은 3 개이다. 지상기준점의 수평 수직 전체에 대한 RMSE의 평균은 3cm 정도를 보이고 있고, Z값에서 약 2.8cm의 이동을 보이며, 가장 조정이 많이 일어난 것으로 볼 수 있다. 검사점은 외곽으로 고루 퍼져 있는 3개의 점을 선택하였다. 검사점의 수평 수직 전체에 대한 RMSE 평균은 6cm, 수직에 대한 평균 에러는 4cm로 Y좌표 에러와 비교적 비슷한 수준을 보이고 있다. 검사점의 위치는 (2)의 그림과 동일하다.

Marker_ID	X_error(m)	Y_error(m)	Z_error(m)	Accurac(XY/Z)	Error(m)	Projections	Error(pix)
1	0.003525	0.031293	0.041279	0.001/0.005	0.051919	3	0.220411
2	-0.03004	0.033181	-0.05834	0.001/0.005	0.073532	4	0.825581
3	0.001455	-0.00208	-0.00672	0.001/0.005	0.00718	5	0.692865
4	-0.00372	-0.00319	-0.01253	0.001/0.005	0.013459	5	0.449491
5	0.004173	-0.00371	0.008132	0.001/0.005	0.009864	12	0.552695
6	0.02694	0.064478	0.015363	0.001/0.005	0.071548	7	0.488279
7	-0.00133	-0.00365	0.001076	0.001/0.005	0.004033	2	0.156056
8	-0.00058	0.003672	0.013552	0.001/0.005	0.014052	6	0.713852
9	0.003267	0.009589	-0.0322	0.001/0.005	0.03376	5	0.463547
10	0.007462	0.012123	-0.00894	0.001/0.005	0.016809	3	0.375906
11	0.006793	0.016621	0.039463	0.001/0.005	0.043356	5	0.610225
12	0.019834	-0.02624	-0.06181	0.001/0.005	0.07002	2	0.070766
13	-0.01033	-0.01571	0.029877	0.001/0.005	0.035297	7	0.515341
Control points	0.007838	0.014861	0.028262		0.032879		0.523364
Check points	0.023626	0.042952	0.04162		0.064306		0.625356

조정된 카메라 파라미터 결과는 다음과 같다. 초점 거리와 주점의 위치가 0.01mm 단위로 조정된 것을 확인할 수 있다. C 4.7098 XP 0.01169 YP 0.01241

3. 매틀랩 코드로 번들 조정

마찬가지로 3가지 경우를 나누어 실험한다. (1)에서는 공액점을 새로 생성하지 않고, GCP를 이용하되, 몇 개의 점은 GCP(2번과 동일한 점)로 이용한다.

데이터 구성

IO_t: 2번의 (3)에서 셀프 캘리브레이션으로 조정된 파라미터를 이용한다.

EO_i: 드론 영상에 태깅된 초기 EO 값을 이용한다.

GP_i: 지상기준점 취득 값을 이용한다.

IP_m: 각 영상에 태깅된 공액점의 서로간의 인덱스를 포토스캔에서 추출하여 이용한다.

True

EO_t: 2.(3)의 결과를 참 값으로 가정한다.

GP_t: 2.(3)의 결과를 참 값으로 가정한다.

정확도 설정

```
std_IP = sscanf( '0.005', '%f' ); %% Standard deviation of image point
measurement error [mm]
std_GCP = sscanf( '0.003', '%f' ); %% Standard deviation of ground point
measurement error [m]
std_GPS = sscanf( '5', '%f' ); %% Standard deviation of GPS measurement
errors [m]
std_INS = sscanf( '0.1', '%f' ); %% Standard deviation of INS measurement
errors [rad]
```

코드

영상의 EO를 constraint로 이용한 경우는 AT_Estimate_Ke.m, GCP만을 constraint로이용한경우는 AT_Estimate_Kg.m, 영상의 EO와 GCP 모두를 이용한 경우는 AT_Estimate_KeKg.m에 작성되어 있다. 각 코드에 해당하는 파일은 Ke, Kg, KeKg 폴더로 링크되어 있다.

(1) 초기 영상 EO와 공액점을 이용한 번들 조정 (EO constraint)

총 8번 반복하여 수렴한 값을 얻을 수 있었다. 직접적으로 Reduced Normal Matrix를 구성하여 EO_i를 제약조건으로 IP_m을 조정한 뒤, 다음의 Design Matrix, Normal Matrix, Correlation Matrix, Reduced Normal Matrix를 가시화 하였다. 블록 대각행렬로 잘 형성 된 것을 확인할 수 있다.

Design Matrix	Normal Matrix	Correlation Matrix	Reduced Normal
			Matrix

영상 점의 초기 값과의 잔차는 가장 클 때가 약 300 마이크로미터의 차이를 보이고, 히스토 그램에 따르면 그 사이 안에서 분포는 비교적 고르게 있는 것으로 보인다.

마지막 iteration값과의 잔차는 0.5 이내로 대 부분 분포하고 있다.

EO의 조정 전 초깃값의 참값과의 x, y, z에 대 한 차이를 보여준다. 600mm에서 1200mm까지 의 차이를 보여준다.

EO의 조정 후 값의 참값과의 x, y, z에 대한 차이를 보여준다. 대략 500 mm에서 1000mm 사이로 차이를 보인다.

EO의 조정 전 초깃값의 참값과의 o, p, k에 대한 차이를 보여준다. 비교적 오메가와 피치 각에 대한 차이가 많이 나고 있는 것으로 볼수 있다.

EO의 조정 후 값의 참값과의 o, p, k에 대한 차이를 보여준다. 조정 후에도 각 값의 차이는 많이 나고 있다... R 행렬 구성이 포토스캔의 방식과 매틀랩에서 작성한 방식이 다를 수도 있다.

지상점의 차이는 수평은 -2m에서 -0.7cm 까지 차이가 나고 있다. Z는 5m까지 나고 있는 것 으로 볼 수 있다.

조정 이후의 결과는 x는 2cm이내로, y는 6cm 이내로, z도 6cm이내로 참 값과 차이가 나는 것으로 볼 수 있다.

GP의 초기 값과 참 값과의 차이다. z가 비교적 큰 차이를 보이고 있다.

GP의 참값과의 차이가 조정 후에는 0으로 수렴한 것으로 볼 수 있다.

다음의 평가 요약에 따르면, 2번의 결과와 마찬가지로 Z에서 가장 큰 조정을 보인 것을 확인할수 있다. EO_i-Before Estimation는 EO_t에 포토스캔의 2.(3)처리 과정 값을 넣었기 때문에 둘의비교를 의미한다고 볼 수 있다. 마찬가지로 Z에서 약 6.5m의 조정을 보였다. 2.(3)과 0.1m 수준으로 차이가 나는 것을 알 수 있다. EO_e - After Estimation 도 마찬가지로 포토스캔의 2.(3)처리 과정과의 비교를 의미한다. 조정 이후에도 X와는 9.6cm, Y는 6cm, Z는 약 6.5m 정도 차이가 나는 것으로 볼 수 있다. GP_e를 살펴보면, 수평 오차는 약 1.2m, 수직 오차는약 5.2m 정도 보이는 것으로 볼 수 있다.

EO i - Be	fore Estima	tion				
_			Zc[mm] On	nega[deg]	Phi[deg] Ka	appa[deq]
Minimum:					9 -68.796971	
3.670265						
Maximum:	-536.300	-127.400	-6027.470	111.300181	88.769945	
4.195828						
	-793.200	-371.978	-6355.999	20.035473	11.753537	
0.749902						
Std dv.:	161.981	125.478	268.448	62,298323	49.447836	2.177638
RMS :	832.114	402.805	6545.776	65.620989	50.905405	2.310312
	002,111	102.000	00101770	00.020303	00.300100	2.010012
EO e - Af	ter Estimat	ion				
_	Xc[mm]	Yc[mm]	Zc[mm] Or	nega[deg]	Phi[deg] Ka	appa[deq]
Minimum:	-1359.700	-1251.000	-7093.609	-24.84107	5 -130.134754	1 -
4711.1008						
Maximum:	461.800	237.700	-5544.740	59.308726	145.807425	
5532.3182						
Average:	-793.244	-372.006	-6355.931	23.491458	47.395639	
2092.3408						
Std dv.:	511.518	453.468	367.842	34.296885	124.068073	
4946.3307	57					
RMS :	963.277	593.432	6550.535	41.959345	133.309307	
5394.5900						
GP i - Be	fore Estima	tion				
_	X[mm]	Y[mm]	Z[mm]			
Minimum:	-26.900					
Maximum:	30.000	26.200	61.813			
Average:	-2.108 13.614	-8.954	2.446			
Std dv.:	13.614	23.634	33.049			
RMS :	13.790	25.405	33.147			

GP e - After Estimation

	X [mm]	Y [mm]	Z[mm]
Minimum:	-2278.300	-1472.000	-6118.187
Maximum:	-118.100	2207.900	-4227.552
Average:	-1105.192	361.369	-4953.707
Std dv.:	718.446	1055.850	547.310
RMS :	1356.245	1120.843	5184.949

빨간색 선은 true를 의미하고, 초록색은 초기 EO, 파랑색은 조정 EO를 의미한다. 눈에 띄게 조정된 것으로 보이지는 않는다.

(2) 지상 기준점과 공액점을 이용한 번들 조정 (GCP constraint)

(발산) 같은 조건에서 Kg만 이용하도록 A행렬을 구성하였지만 계속해서 발산하였다.. 시간 관계상 원인은 찾지 못하였다...

```
Iteration 1
     In <u>AT_Estimate_Kg</u> (<u>line 203</u>)
 경고: 행렬이 목이 행렬에 가깝거나 준독이 행렬(badly scaled)일 수 있습니다. 결과값이 부정확할 수 있습니
= 1.512397e-23.
 > In <u>AT_Estimate_Kg</u> (<u>line 203</u>)
 (No. 105)
Iteration 3
경고: 행렬이 목이 행렬에 가깝거나 준독이 행렬(badly scaled)일 수 있습니다. 결과값이 부정확할 수 있습니
= 2.857200e-25.
                AT_Estimate_Kg (line 203)
(Keration 4
경고: 행렬이 독이 행렬에 가깝거나 준독이 행렬(badly scaled)일 수 있습니다. 결과값이 부정확할 수 있습니
RDOMD = 1,741244e-29.
 > In <u>AT_Estimate_Kg</u> (<u>line 203</u>)
(Interation 5 (
     In <u>AT_Estimate_Kg</u> (<u>line 203</u>)
기 (Artestinate Asset)
Iteration 6
경고: 행렬이 목이 행렬에 가깝거나 준독이 행렬(badly scaled)일 수 있습니다. 결과값이 부정확할 수 있습니
RDOND = 6.166467e-61.
> In AT_Estimate_Kg (line 203)
Iteration 7
> In <u>AT_Estimate_Kg</u> (<u>line 203</u>)
2 in <u>AT Estimate_Kg</u> (<u>line co</u>)
Iteration 8
경고: 행렬이 특히 행렬에 가깝거나 준독이 행렬(badly scaled)일 수 있습니다. 결과값이 부정확할 수 있습니
ROMD = 1.110203e-191.
> In <u>AT Estimate_Kg</u> (<u>line 203</u>)
```

(3) 둘 다를 이용한 번들 조정 (EO + GCP constraint)

총 11번 반복하여 수렴한 값을 얻을 수 있었다. 직접적으로 Reduced Normal Matrix를 구성하여 EO_i를 제약조건으로 IP_m을 조정한 뒤, 다음의 Design Matrix, Normal Matrix, Correlation Matrix, Reduced Normal Matrix를 가시화 하였다. 블록 대각행렬로 잘 형성 된 것을 확인할 수 있다.

300 마이크로미터의 차이를 보이고, 히스토그램 분포하고 있어 조정이 된 것으로 볼 수 있다. 에 따르면 그 사이 안에서 분포는 비교적 고르 게 있는 것으로 보인다.

영상 점의 초기 값과의 잔차는 가장 클 때가 약 마지막 iteration값과의 잔차는 0.5 이내로 대부분

다음의 평가 요약에 따르면, 2번의 결과와 마찬가지로 Z에서 가장 큰 조정을 보인 것을 확인할 수 있다. EO_i-Before Estimation는 EO_t에 포토스캔의 2.(3)처리 과정 값을 넣었기 때문에 둘의 비교를 의미한다고 볼 수 있다. 마찬가지로 Z에서 약 6.3m의 조정을 보였다. 2.(3)과 0.1m 수준으로 차이가 나는 것을 알 수 있다. EO e - After Estimation 도 마찬가지로 포토스캔의 2.(3)처리 과정과의 비교를 의미하낟. 조정 이후에도 X와는 7.6cm, Y는 1m, Z는

5.8cm정도 차이가 나는 것으로 볼 수 있다. 비교적 지상기준점에 대한 조정은 2.(3) 결과와 많이 차이나지 않는 것으로 보인다.

EO_i - Bet	fore Estima	tion				
	Xc[mm]	Yc[mm]	Zc[mm] Om	nega [deg]	Phi[deg] Ka	appa[deg]
Minimum: 3.670265	-1177.200	-521.900	-7016.577	-63.205499	-68.796971	_
Maximum: 4.195828	-536.300	-127.400	-6027.470	111.300181	88.769945	
	-793.200	-371.978	-6355.999	20.035473	11.753537	
Std dv.:	161.981	125.478	268.448	62.298323	49.447836	2.177638
RMS :	832.114	402.805	6545.776	65.620989	50.905405	2.310312
	002.111	102.000	0010.770	00.020909	00.300100	2,010011
EO_e - Aft	ter Estimat	ion				
					Phi[deg] Ka	
Minimum: 4711.28682		-1616.300	-2098.914	-25.959776	5 -129.812353	1 -
Maximum: 5532.56430		3024.300	388.674	59.774770	145.064414	
	116.700	237.661	-130.264	22.946801	47.269620	
	751.753	1007.994	569.531	34.494491	124.053698	
	761.284	1027 225	585.091	<i>1</i> 1 001007	122 240520	
5394.50092		1037.233	363.091	41.001907	133.240339	
3334.30032	2.5					
GP i - Bet	fore Estima	tion				
_	X [mm]	Y[mm]	Z [mm]			
Minimum:	-26.900	Y[mm] -64.500	-41.279			
		26.200				
Average:	-2.108	-8.954	2.446			
Std dv.:	13.614	23.634	33.049			
RMS :	13.790	25.405	33.147			
GP_e - Aft	ter Estimat					
	X [mm]	Y [mm]	Z[mm]			
Minimum:	-50.100	-64.400 152.100 23.831	-140.661			
Maximum:	28.900	152.100	66.537			
Average:	-6.577	23.831	-5.169			
Std_dv.:	19.017	64.900	51.676			
RMS :	20.212	69.478	51.955			

빨간색 선은 true를 의미하고, 초록색은 초기 EO, 파랑색은 조정 EO를 의미한다. 눈에 띄게 조정된 것으로 보이지는 않는다. 초기 값이 더 true에 가까운 것으로 보인다....

