Problem Set 3*

Xiaowei Zhang[†]

Problem 1

For α^* in the dual problem to be the same as u^* in the canonical form, we will have N=M. For the two inequalities to be the same, i.e. $0 \le \alpha_i \le C$ the same as $Au \le a$. We let $A = \begin{bmatrix} -I \\ I \end{bmatrix}$ where I is the identity matrix of NxN. Let $\vec{0}$ be the column vector of size N where every entry in $\vec{0}$ is 0 and \vec{C} be the column vector of same size where every entry is C. $a = \begin{bmatrix} \vec{0} \\ \vec{C} \end{bmatrix}$. $v = \begin{bmatrix} -1 & -1 & \dots & -1 & -1 & -1 \end{bmatrix}$, a row vector of size 1xN. $B = \begin{bmatrix} y_1 & y_2 & y_3 & \dots & y_N \end{bmatrix}$, b = 0. L = 2N. H will be the NxN matrix such that the $H(i, j) = y_i y_j < \phi(x_i), \phi(x_j) >$ for every i, j = 1...N.

Problem 2

Assume there exists some training point $k \in \{1...N\}$ such that $0 < \alpha_k^* < C$, then $C - \alpha_k^* > 0$, that is $\xi_k^* = 0$. We then have $y_k(< w^*, \phi(x_k) > +b^*) = 1 - \xi_k^* = 1$. y_k is either -1 or 1, so $y_k^2 = 1$. We multiply both sides with y_k , that is, $< w^*, \phi(x_k) > +b^* = y_k$. $b^* = y_k - \sum_{i=1}^N \alpha_i^* y_i < \phi(x_i), \phi(x_k) >$

^{*}Due: Nov 2, 2021, Student(s) worked with: SAMUEL MALNATI

[†]NetID: xz561, Email: xz561@scarletmail.rutgers.edu