Medios Granulares y Dinámica Peatonal

Try Maradoniano

Grupo 4:

Nicolás Matías Margenat Juan Burda Bruno Enzo Baumgart

72.25 - Simulación de Sistemas

8 de noviembre, 2024 Instituto Tecnológico de Buenos Aires

Introducción

Introducción Sistema Real

Partido de rugby

Modelo operacional - SFM

$$m_i \ddot{r}_i = \mathbf{F}_{G_i} + \mathbf{F}_{D_i}$$

•
$$\mathbf{F}_{G_i} = \sum_{j=1, j \neq i}^{N_p} \left[(-\varepsilon_{ij} k_n) \mathbf{e}_{ij}^n \right] g(\varepsilon_{ij})$$
 donde $g(x) = \begin{cases} x & \text{si } x \leq 0 \\ 0 & \text{si } x > 0 \end{cases}$

•
$$\mathbf{F}_{D_i} = m_i \frac{\left(v_{di}\mathbf{e}_i^{\text{target}} - \mathbf{v}_i\right)}{\tau_i}$$

•
$$\varepsilon_{ij} = r_{ij} - (R_i + R_j)$$

Heurística de elusión

•
$$\mathbf{n}_c^{ij} = \mathbf{e}^{ij} A_p e^{-d_{ij}/B_p} \cos(\theta_j)$$

•
$$\mathbf{n}_c^{iw} = \mathbf{e}^{iw} A_p \, e^{-d_{iw}/B_p} \cos(\theta_w)$$

•
$$\mathbf{e}_a = \sum_{j=1}^{N_j} \mathbf{n}_c^{ij} + \sum_{w \in W} \mathbf{n}_c^{iw} + \mathbf{e}_t^i$$

Implementación

Implementación

while Roja no colisionó con alguna azul || Roja no hizo el try:

guardarEstado(estadoSimulación)

correrIteración(estadoSimulación)

end

Simulaciones

Parámetros Fijos

- m = 80 kg
- r = 0.32 m
- $k = 1.2 \times 10^5 \text{ kg/s}^2$
- $v_{\rm azul^{max}} = 3.8 \text{ m/s}$ $\tau_{\rm azul} = 0.5 \text{ s}$
- $v_{\text{rojo}^{\text{max}}} = 4 \text{ m/s}$ $\tau_{\text{rojo}} = 0.3 \text{ s}$

• $\Delta t = 0.001 \text{ s}$

Parámetros Variables

• $N_i \in [1, 41]$

- $A_p \in [1, 12]$
- $B_p \in [0.3, 9.7] \text{ m}$

• $\mathbf{x}_M = \max\{x(t) : t \in [0, t_{final}]\}$

• $\phi_t = C_t/C_r$ donde C_t es la cantidad tries, y C_r la cantidad de simulaciones hechas

Elección de Ap y Bp

 $N_j = 15$ 500 realizaciones

Elección de Ap y Bp

 $N_j = 15$ 1000 realizaciones

$$N_j = 30$$

 $A_p = 2$
 $B_p = 8.1 \text{ m}$

https://youtu.be/vAkRktt5YPw

 ϕ_t en función de N_j

 $A_p = 2$ $B_p = 8.1 \text{ m}$ 1000 realizaciones

Distancia máxima recorrida en función de $\,N_{j}\,$

$$A_p = 2$$

 $B_p = 8.1 \text{ m}$
 $1000 \text{ realizaciones}$

Conclusiones

Conclusiones

- Mayor cantidad de jugadores azules, entonces:
 - Menor probabilidad de que el jugador rojo haga un try
 - Menor distancia máxima alcanzada por el jugador rojo

¡Gracias por su atención!