Az ARM processzorok rövid áttekintése

Sajnos nem egyszerű átlátni, hogy a csipgyártók milyen ARM licenszeket vásárolnak, és a különböző ARM magok milyen tulajdonságokkal rendelkeznek. Ezért arra gondoltam, hogy egy rövid dokumentumban összefoglalom azokat az információkat, melyek segítenek átlátni a káoszt.

Fontos tisztában lenni azzal, hogy az ARM cég csak licenszeket árul. A lapkagyártók az ARM által biztosított mag köré különféle perifériákat integrálnak, majd az így elkészült terméket árulják processzorként vagy mikrovezérlőként.

A helyzetet tovább bonyolítja, hogy az ARM mag is "réteges" felépítésű. Legbelül az utasítások végrehajtását végző részegységek találhatók; a továbbiakban ezt ISA

architektúrának (vagy röviden architektúrának) fogom nevezni. Azt ARM az utasításvégrehajtó egységek mellé opcióként különböző, szorosan integrált dolgokat biztosít, például MMUt, FPU-, cache-t, megszakításvezérlőt. Az opcionális elemekkel ellátott terméküket az ARM "család"nak nevezi.

Például egy (Texas) OMAP3530-as processzorban egy ARM Cortex-A8 "családú" mag található, melynek architektúrája ARMv7.Sajnos a "család" és az architektúra között nem egyértelmű a kapcsolat, ezért egy kis táblázatot készítettem azokról az ARM magokról, melyekkel találkozhatunk a piacon. A táblázat nem teljes, és csak áttekintő

Architektúra	Család	Megjegyzés	Gyártó termékcsaládja
ARMv4	ARM7TDMI	Klasszikus ARM és Thumb¹ utasításkészlet, tipikusan mikrovezérlőben használják kis fogyasztása miatt. Ezek a mikrovezérlők nagyon olcsók, 1000 Ft alatt már lehet kapni. Új fejlesztéshez már nem ajánlott, az ATMEL ezt jelzendő külön terkékcsaládot fejlesztett ki: az AT91SAM3S-t.	ATMEL AT91SAM7 NXP LPC2000 ST STR7
	ARM920T / ARM922	MMU-val és cache-sel ellátott mag, Linux futtatására alkalmas.	ATMEL AT91SAM9200
ARMv5TE	ARM966 / ARM968	Az "E" betű a DSP utasítások támogatását jelenti. Linux futtatására nem alkalmas.	ST STR9 (már nem gyártják) NXP LPC2900
	ARM926	DSP utasítások és Java bytekód támogatás, MMU és cache, így alkalmas a Linux futtatására. Opcionálisan FPU. Az egyik legnépszerűbb mag.	ATMEL AT91SAM9 NXP LCP3000 Freescale i.MX21 Texas OMAP1
ARMv6	ARM1136 / ARM1176	DSP, SIMD utasítások, Java bytekód támogatás, opcionálisan FPU. MMU és cache van benne, így Linux futtatására alkalmas. Mobiltelefonokban találkozhatunk vele (pl. Nokia, Samsung). Az egyik legnépszerűbb mag.	Texas OMAP2 Freescale i.MX31
	ARM Cortex-M0	lgen kis fogyasztású mikrovezérlőkbe szánt mag, sem MMU, sem cache nincs benne. Csak a Thumb2 utasításkészletet támogatja.	NXP LPC1100
	ARM Cortex-M1	FPGA-kba szánt mag, csak IP ² szinten áll rendelkezésre. Csak a Thumb2 utasításkészletet támogatja. Sem MMU, sem cache nincs benne, így a Linux nem fut rajta.	Actel Altera
ARMv7	ARM Cortex-A8 / Cortex-A9 / Cortex-A5	Csúcskategóriás applikációs processzorok. DSP és SIMD utasítások, FPU, MMU, cache, Java bytekód támogatás. A9 és A5 felkészítve a többprocesszoros (14) működésre. Linux futtatására alkalmas.	Texas OMAP3 (Beagleboard) Freescale i.MX51
	Cortex-M3	Nagy teljesítményű mikrovezérlőkbe szánt mag, a Thumb2 utasításkészletet támogatja, cache nincs benne, de opcionálisan MPU-t kérhet hozzá a csipgyártó (szoktak is, kivéve Stellaris LM3S100). Linux nem fut rajta, de még így is a az egyik legnépszerűbb mag.	ATMEL AT91SAM3 NXP LPC1700 ST STM32 Texas Stellaris LM3S

A hagyományos ARM utasítások a 16 bites megfelelője. Redukált mérethez redukált funkcionalitás (és redukált teljesítmény [MIPS]) társul. Nagyjából 25-30 %-nyi hely takarítható meg Intellectual Property

Megjegyezném, hogy új fejlesztésre a Cortex család ajánlott, a többi mag támogatása még egy ideig biztosan megmarad, de még semmi olyan nem volt a világtörténelemben, ami előbb-utóbb el ne múlott volna. Mivel a Cor-

tex család teljesen kiváltja a régebbi megoldásokat (ARM7 \rightarrow Cortex-M, ARM9/ARM11 \rightarrow Cortex-A), ezért én inkább a fejlettebb technikát használom, ahol csak lehet.