- 1. .
- a. 1024
- b. 10
- c. 4,087
- d. 5
- e. 4

- 2.3. 2n ou n
- 4. N-3
- 5. Lg(n)+1
- 6. Execução de código
- 7. .
- a. Comparacao de arrays
- b. N-1
- 8. Pior
- 9. Sim porque temos que testar todos os elementos para garantir nossa resposta
- 1. $\Theta(n)$

```
int tam = 100, menor, maior;
int array[tam];
for(int i = 0 ; i<tam; i++){
   if(array[i]>maior)maior=array[i];
   if(array[i]<menor)menor = array[i];
}</pre>
```

- 10. O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo $\Theta(n)$. A segunda opção tem custo $\Theta(n)$ para ordenar mais $\Theta(\lg n)$ para a pesquisa binária
- 11..
- a. F
- b. V
- c. V
- d. V
- e. V
- f. F
- g. F
- h. V
- i. F

3.

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = Ig(n)	F	V	V	V	V	V	V	V
$f(n) = n \cdot lg(n)$	F	F	F	V	V	V	٧	V
f(n) = 5n + 1	F	F	V	V	V	V	V	V
$f(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	V
$f(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	٧	V
$f(n) = n^5 - 999999n^4$	F	F	F	F	F	F	٧	V

4.

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	Ω(n²)	Ω(n³)	Ω(n⁵)	Ω(n ²⁰)
f(n) = Ig(n)	V	V	F	F	F	F	F	F
$f(n) = n \cdot lg(n)$	V	V	V	V	F	F	F	F
f(n) = 5n + 1	V	V	٧	V	F	F	F	F
$f(n) = 7n^5 - 3n^2$	V	V	V	V	V	V	V	F
f(n) = 99n ³ - 1000n ²	٧	V	٧	V	V	V	F	F
$f(n) = n^5 - 99999n^4$	V	٧	٧	V	V	V	٧	F

	⊖ (1)	⊖ (lg n)	⊖ (n)	⊖ (n.lg(n))	⊖ (n²)	⊖ (n³)	⊖ (n⁵)	⊖ (n ²⁰)
f(n) = Ig(n)	F	F	V	F	F	F	F	F
$f(n) = n \cdot lg(n)$	F	F	F	V	F	F	F	F
f(n) = 5n + 1	F	F	٧	F	F	F	F	F
$f(n) = 7n^5 - 3n^2$	F	F	F	F	F	F	V	F
$f(n) = 99n^3 - 1000n^2$	F	F	F	F	F	V	F	F
$f(n) = n^5 - 99999n^4$	F	F	F	F	F	F	V	F

12. n x
$$\Theta$$
(n2) = Θ (n3)

13. Neste caso, temos duas etapas e o custo total será a soma das mesmas, logo: $\mathbf{\Theta}(n.\lg n) + \mathbf{\Theta}(\lg n) = \mathbf{\Theta}(n.\lg n)$

14. .

a.
$$h(n) + g(n) - f(n) \Rightarrow [99n8] + [n.lg(n)] - [3n2 - 5n - 9] \Rightarrow O(n8), \Omega(n8)$$
 e $\Theta(n8)$

b.
$$\Theta(h(n)) + \Theta(g(n)) - \Theta(f(n)) \Rightarrow \Theta(n8) + \Theta(n.lg(n)) - \Theta(n2) \Rightarrow O(n8),$$

 $\Omega(n8) \in \Theta(n8)$

c.
$$f(n) \times g(n) \Rightarrow \Theta(n2) \times \Theta(n.lg(n)) \Rightarrow O(n3.lg(n)), \Omega(n3.lg(n)) \in \Theta(n3.lg(n))$$

d.
$$g(n) \times l(n) + h(n) \Rightarrow \Theta(n.lg(n)) \times \Theta(n.lg(n)) + \Theta(n8) \Rightarrow O(n8), \Omega(n8)$$

e.
$$\mathbf{O}(n8)$$
 e) $f(n)$ x $g(n)$ x $l(n) \Rightarrow \mathbf{O}(n2)$ x $\mathbf{O}(n.lg(n))$ x $\mathbf{O}(n.lg(n)) \Rightarrow O(n4)$
.lg3 (n)), $\Omega(n4)$.lg3 (n)) e $\mathbf{O}(n4)$.lg3 (n))

f.
$$\Theta(\Theta(\Theta(\Theta(f(n))))) \Rightarrow O(n2), \Omega(n2) \in \Theta(n2)$$

15. .

a. Para satisfazer a inequação c >3

b.
$$(c = 4 e m = 5,7) e (c = 5 e m = 2,7)$$

c. O = limite superior, ou seja, não pode ser n.

16.,

a. C=4 m = 3

b. C = 5 e m = 2

c. O = limite inferior, ou seja, não pode ser n^3.

17.,

a. ?

b. Limite justo $- n^2$

c. Limite justo seria n^2

8. ARQUIVO SEPARADO

16.
$$PIOR = O(n) MELHOR = O(1)$$

17.n+2 e n+1 O(n) → ambos casos

 $18.(2n+1)n \rightarrow O(n^2)$

19. $f(n) = (lg(n) + 1) * n = n * lg(n) + n O(n x lg(n)), \Omega(n x lg(n)) e \Theta(n x lg(n))$

9. (n-2)+1 - O(n)

10.

```
int tam = 100, menor, maior;
int array[tam];

for(int i = 0 ; i<tam; i++){
    if(array[i]>maior)maior=array[i];
    if(array[i]<menor)menor = array[i];
}</pre>
```

MELHOR: (n-1)*2 --- O(n)

PIOR: (n-1)*2 --- O(n)

20.

	Constante	Linear	Polinomial	Exponencial
3n		\		
1	\			
(3/2)n		\		
2n³			V	
2 ⁿ				/
3n ²			/	
1000	V			
(3/2) ⁿ				/

21.
$$f6(n) = 1 f2(n) = n f1(n) = n2 f5(n) = n3 f4(n) = (3/2)n f3(n) = 2n$$

22.
$$f6(n) = 64 f3(n) = log8(n) f2(n) = lg(n) f9(n) = 4n f1(n) = n.log6(n) f5(n) = n.lg(n) f4(n) = 8n2 f7(n) = 6n3 f8(n) = 82n$$

$$23.1 e 2 - 2 e 4 - 3 e 1 - 4 e 3$$

11.Binaria, desde que ordenado.