

Department of Computer Science & Engineering CSE 251– Electronic Circuits

Semester Final Exam

Course Code: CSE 251

Teacher's Initial: SMRC

Semester: FL 21

Section: 5 (Five)

Full Marks: 50

All the questions must be answered. Symbols have their usual meanings.

Question 1 $[CO_1, 20]$

Determine the drain current (I_D) , gate-source voltage (V_{GS}) and the drain-source voltage (V_{DS}) at the Q-point of the following circuits. Also mention their operational modes (linear/saturation). [Given for both MOSFETs, $V_{TH} = 0.75$ V and $\mu_n C_{ox} W/L = 1.28$ mA/V². Ignore the short channel effect.]

Figure Q.1: Circuit Diagrams for Question-1.

Question 2 $[CO_2, 15]$

Choose a suitable bias circuit working in saturation mode from Figure Q.1, along with the associated Q-point values. Draw a Source Follower amplifier configuration by connecting proper input and output terminals to the bias circuit. Now determine, $g_{\rm m}$, $Z_{\rm in}$, $Z_{\rm out}$, $A_{\rm v0}$, $A_{\rm v}$, $G_{\rm v}$ and $v_{\rm out}$ of the Source Follower circuit. [Take, input source, $v_{\rm sig}=1.5{\rm V}$ peak sinusoid, source impedance, $R_{\rm sig}=888~{\rm k}\Omega$, load impedance, $R_{\rm L}=0.8~{\rm k}\Omega$ and the CLM parameter, $\lambda=25~{\rm \mu S}$]

EAST WIST

Question 3 $[CO_2, 7]$

Using the small signal model of MOSFET, derive the expression of the input impedance $(Z_{\rm in})$ of the following amplifier circuit.

Figure Q.3: Circuit Diagram for Question-3.

Question 4 $[CO_2, 8]$

Design CMOS logic circuit for the logic function, $F(x, y, z) = \overline{x + y.z}$