PARTIE 1 ET 2 DU PROJET R

Mouhamadou Moustapha WADE

Table of contents

1.1.2 Importation et mise en forme	2
1.1.2.1: Importer la base de données dans un objet de type data.frame nommé	
$\hbox{``projet''} \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	2
1.1.2.2: Sélectionner les variables mentionnées dans la section de description	2
1.1.2.3: Faire un tableau résumant les valeurs manquantes par variable	2
1.1.2.4: Vérifier s'il y a des valeurs manquantes pour la variable "key" dans la	
base de données "projet"	3
1.1.3 Création de variables	4
1.1.3.1: Renommer les variables spécifiées	4
1.1.3.2: Créer la variable sexe_2 qui vaut 1 si sexe est égal à "Femme"et 0 sinon	4
1.1.3.3: Créer le data.frame langues en extrayant les variables correspondantes	4
1.1.3.4: Créer la variable "parle" qui représente le nombre de langues parlées	
par le dirigeant de la PME	4
1.1.3.5: Sélectionner uniquement les variables "key" et "parle" pour obtenir	
l'objet "langues"	5
1.1.3.6 : Fusionner les data.frames "projet_final" et "langues" en utilisant la	
variable "key"	5
1.2 Analyses descriptives	6
1.2.2 Créer le tableau récapitulatif global avec toutes les analyses demandées $$.	7
1.3 Un peu de cartographie	16
1.3.2 Représentation spatiale des PME suivant le sexe	16
1.3.3 Représentation spatiale des PME suivant le niveau d'instruction 1	17
1.3.3Analyse spatiale de votre choix (projet cartographie)	19

1.1.2 Importation et mise en forme

```
# Installer et charger la bibliothèque readxl pour importer des fichiers Excel
library(readxl)
library(dplyr)
library(flextable)
library(gt)
```

1.1.2.1: Importer la base de données dans un objet de type data.frame nommé "projet"

```
projet <- read_excel("Base_Partie_1.xlsx")</pre>
```

1.1.2.2: Sélectionner les variables mentionnées dans la section de description

```
variables_selectionnees <-projet %>% select(-c("key"))
```

1.1.2.3: Faire un tableau résumant les valeurs manquantes par variable

	Variables	Valeurs_Manquantes
q1	q1	0
q2	q2	0
q23	q23	0
q24	q24	0
q24a_1	q24a_1	0
q24a_2	q24a_2	0
q24a_3	q24a_3	0
q24a_4	q24a_4	0
q24a_5	q24a_5	0

q24a_6	q24a_6	0
q24a_7	q24a_7	0
q24a_9	q24a_9	0
q24a_10	q24a_10	0
q25	q25	0
q26	q26	0
q12	q12	0
q14b	q14b	1
q16	q16	1
q17	q17	131
q19	q19	120
q20	q20	0
filiere_1	filiere_1	0
filiere_2	filiere_2	0
filiere_3	filiere_3	0
filiere_4	filiere_4	0
q8	q8	0
q81	q81	0
gps_menlatitude	<pre>gps_menlatitude</pre>	0
gps_menlongitude	<pre>gps_menlongitude</pre>	0
submissiondate	submissiondate	0
start	start	0
today	today	0

1.1.2.4: Vérifier s'il y a des valeurs manquantes pour la variable "key" dans la base de données "projet"

Variables	Valeurs_	_Manquantes
key		0

1.1.3 Création de variables

1.1.3.1: Renommer les variables spécifiées

1.1.3.2: Créer la variable sexe_2 qui vaut 1 si sexe est égal à "Femme"et 0 sinon

```
projet <- projet %>%
  mutate(sexe_2 = ifelse(sexe == "Femme", 1, 0))
```

1.1.3.3: Créer le data frame langues en extrayant les variables correspondantes

```
variables_langues <- grep("^q24a_", names(projet), value = TRUE)
langues <- projet %>%
  select(key, all_of(variables_langues))
```

1.1.3.4: Créer la variable "parle" qui représente le nombre de langues parlées par le dirigeant de la PME

```
langues <- langues %>%
  mutate(parle = rowSums(.[variables_langues]))
```

1.1.3.5: Sélectionner uniquement les variables "key" et "parle" pour obtenir l'objet "langues"

```
langues <- langues %>%
select(key, parle)
```

1.1.3.6 : Fusionner les data.frames "projet_final" et "langues" en utilisant la variable "key"

Variables	Valeurs_Manquantes
character	numeric
key	0
region	0
departement	0
sexe	0
q24	0
q24a_1	0
q24a_2	0
q24a_3	0
q24a_4	0
q24a_5	0
n: 35	

1.2 Analyses descriptives

```
# Charger les packages nécessaires
library(dplyr)
library(gtsummary)
library(lubridate)
library(ggplot2)
```

 $\#\#\#(1.2.1 \text{ Répartition suivant les variables sexe,niveau d'instruction, <math>\#\#\#\text{proprietaire ou locataire et statut juridique})$

Characteristic	N = 250
sexe	
Femme	191 (76%)
Homme	59 (24%)
niveau_instruction	, ,
Aucun niveau	79 (32%)
Niveau primaire	56 (22%)
Niveau secondaire	74 (30%)
Niveau Superieur	41 (16%)
proprietaire_locataire	,
Locataire	24 (9.6%)
Propriétaire	226 (90%)
statut_juridique	` ,
Association	6(2.4%)
GIE	179 (72%)
Informel	38 (15%)
SA	7 (2.8%)
SARL	13(5.2%)

Characteristic	N = 250
SUARL	7 (2.8%)

1.2.2 Créer le tableau récapitulatif global avec toutes les analyses demandées

Characteristic	N	Overall, $N = 250^1$	Femme, $N = 191$	Homme, $N = 59$
niveau_instruction, %	250			
Aucun niveau		32%	37%	15%
Niveau primaire		22%	25%	14%
Niveau secondaire		30%	29%	31%
Niveau Superieur		16%	8.9%	41%
proprietaire_locataire, $\%$	250			
Locataire		9.6	8.4	14
Propriétaire		90	92	86
statut_juridique, $\%$	250			
Association		2.4	1.6	5.1
GIE		72	78	51
Informel		15	17	10
SA		2.8	0.5	10
SARL		5.2	1.0	19
SUARL		2.8	2.1	5.1

^{1%}

1.2.2.1 Répartition par statut juridique , propriétaire locataire et niveau d'instruction par la variable sexe et différentes graphiques

```
# Créer le tableau récapitulatif pour la répartition par statut juridique etsexe
tableau_repartition_statut_sexe <- projet %>%
   tbl_cross(
    row =statut_juridique,
    col = sexe,
    percent = "row"
   )%>%
   add_p(source_note=TRUE)
tableau_repartition_statut_sexe
```

	Femme	Homme	Total
statut_juridique			
Association	3~(50%)	3~(50%)	6 (100%)
GIE	149 (83%)	30~(17%)	179 (100%)
Informel	32 (84%)	6 (16%)	38 (100%)
SA	1 (14%)	6 (86%)	7 (100%)
SARL	2(15%)	11 (85%)	13 (100%)
SUARL	4(57%)	3 (43%)	7 (100%)
Total	191 (76%)	59 (24%)	250 (100%)

```
# Créer le graphique pour mieux visualiser les résultats
graphique1<- ggplot(projet, aes(x = sexe, fill = statut_juridique)) +
    geom_bar(position = "fill") +
    labs(title = "Répartition du niveau d'instruction par sexe") +
    theme_minimal()
graphique1</pre>
```

Répartition du niveau d'instruction par sexe


```
# Créer le tableau récapitulatif pour la répartition par niveau d'instruction
#et sexe
tableau_repartition_niveau_sexe <- projet %>%
   tbl_cross(
      row =niveau_instruction,
      col = sexe,
      percent = "row"
   )%>%
   add_p(source_note=TRUE)
tableau_repartition_niveau_sexe
```

	Femme	Homme	Total
niveau_instruction			
Aucun niveau	70~(89%)	9 (11%)	79 (100%)
Niveau primaire	48~(86%)	8 (14%)	56 (100%)
Niveau secondaire	56~(76%)	18~(24%)	74 (100%)
Niveau Superieur	17~(41%)	24~(59%)	41 (100%)
Total	191~(76%)	59 (24%)	250~(100%)

```
# Créer le graphique pour mieux visualiser les résultats
graphique2 <- ggplot(projet, aes(x = sexe, fill = niveau_instruction)) +
    geom_bar(position = "fill") +
    labs(title = "Répartition du niveau d'instruction par sexe") +
    theme_minimal()
graphique2</pre>
```

Répartition du niveau d'instruction par sexe


```
# Créer le tableau récapitulatif pour la répartition de propriétaire/locataire suivant le
tableau_repartition_proprietaire_sexe <- projet %>%
  tbl_cross(
    row =proprietaire_locataire,
    col = sexe,
    percent = "row"
  )%>%
  add_p(source_note=TRUE)
```

tableau_repartition_proprietaire_sexe

	Femme	Homme	Total
proprietaire_locataire			

	Femme	Homme	Total
Locataire	16 (67%)	8 (33%)	24 (100%)
Propriétaire	175 (77%)	51 (23%)	226 (100%)
Total	191 (76%)	59 (24%)	250 (100%)

```
# Créer le graphique pour mieux visualiser les résultats
graphique3 <- ggplot(projet, aes(x = sexe, fill = proprietaire_locataire)) +
   geom_bar(position = "fill") +
   labs(title = "Répartition du proprietaire_locataire par sexe") +
   theme_minimal()
graphique3</pre>
```

Répartition du proprietaire_locataire par sexe

####1.2.2.2Priorisez une analyse par filière

```
library(gtsummary)
library(dplyr)

t1<-subset(projet,Arachide==1)%>%

dplyr:: select(sexe,niveau_instruction,statut_juridique,proprietaire_locataire,Arachide) %
    gtsummary::tbl_summary(
        by=Arachide,
        statistic = list(
        all_categorical()~ "{n}/{N} ({p}%)"
      ),
      missing = "no",
      percent = "column"
      ) %>%
    modify_header(label ~ "**variable**") %>%
    bold_labels()

t1
```

variable	1, N = 108
sexe	
Femme	93/108 (86%)
Homme	15/108 (14%)
${f niveau_instruction}$	
Aucun niveau	43/108 (40%)
Niveau primaire	23/108 (21%)
Niveau secondaire	34/108 (31%)
Niveau Superieur	8/108 (7.4%)
${ m statut_juridique}$	
Association	$2/108 \ (1.9\%)$
GIE	79/108 (73%)
Informel	23/108 (21%)
SA	$2/108 \ (1.9\%)$
SARL	$1/108 \ (0.9\%)$
SUARL	$1/108 \ (0.9\%)$
proprietaire_locataire	
Locataire	12/108 (11%)
Propriétaire	96/108 (89%)

```
t2<-subset(projet,Anacarde==1)%>%
  dplyr:: select(sexe,niveau_instruction,statut_juridique,proprietaire_locataire,Anacarde)
  gtsummary::tbl_summary(
    by=Anacarde,
```

```
statistic = list(
    all_categorical()~ "{n}/{N} ({p}%)"
),
    missing = "no",
    percent = "column"
) %>%
    modify_header(label ~ "**variable**") %>%
    bold_labels()
t2
```

variable	1, N = 61
sexe	
Femme	40/61 (66%)
Homme	$21/61 \ (34\%)$
${f niveau_instruction}$	
Aucun niveau	$13/61 \ (21\%)$
Niveau primaire	17/61~(28%)
Niveau secondaire	15/61~(25%)
Niveau Superieur	16/61~(26%)
${f statut_juridique}$	
Association	3/61~(4.9%)
GIE	35/61~(57%)
Informel	$12/61 \ (20\%)$
SA	$2/61 \ (3.3\%)$
SARL	$6/61 \ (9.8\%)$
SUARL	$3/61 \ (4.9\%)$
proprietaire_locataire	
Locataire	7/61~(11%)
Propriétaire	54/61 (89%)

```
) %>%
  modify_header(label ~ "**variable**") %>%
  bold_labels()
t3
```

variable	1, N = 89
sexe	
Femme	$68/89 \ (76\%)$
Homme	21/89 (24%)
$niveau_instruction$	
Aucun niveau	26/89~(29%)
Niveau primaire	24/89 (27%)
Niveau secondaire	25/89 (28%)
Niveau Superieur	14/89 (16%)
statut_juridique	
GIE	73/89 (82%)
Informel	5/89 (5.6%)
SA	3/89 (3.4%)
SARL	6/89 (6.7%)
SUARL	$2/89 \ (2.2\%)$
proprietaire_locataire	
Locataire	$11/89 \ (12\%)$
Propriétaire	78/89 (88%)

variable	1, N = 92
sexe	
Femme	77/92~(84%)
Homme	15/92~(16%)
${f niveau_instruction}$	
Aucun niveau	$11/92 \ (12\%)$
Niveau primaire	26/92~(28%)
Niveau secondaire	32/92~(35%)
Niveau Superieur	23/92~(25%)
statut_juridique	
Association	2/92 (2.2%)
GIE	77/92 (84%)
Informel	$3/92 \ (3.3\%)$
SA	3/92 (3.3%)
SARL	$5/92 \ (5.4\%)$
SUARL	2/92~(2.2%)
proprietaire_locataire	
Locataire	9/92 (9.8%)
Propriétaire	83/92 (90%)

variable	1, N = 108	1, N = 61	1, N = 89	1, N = 92	
sexe					
Femme	93/108~(86%)	40/61~(66%)	$68/89 \ (76\%)$	77/92~(84%)	
Homme	$15/108 \ (14\%)$	$21/61 \ (34\%)$	21/89 (24%)	$15/92 \ (16\%)$	
$niveau_instruction$					
Aucun niveau	$43/108 \ (40\%)$	$13/61 \ (21\%)$	26/89 (29%)	$11/92 \ (12\%)$	
Niveau primaire	$23/108 \ (21\%)$	$17/61 \ (28\%)$	24/89 (27%)	26/92 (28%)	
Niveau secondaire	34/108 (31%)	15/61~(25%)	25/89 (28%)	$32/92 \ (35\%)$	
Niveau Superieur	8/108 (7.4%)	$16/61 \ (26\%)$	14/89 (16%)	23/92~(25%)	
statut_juridique				, , , ,	
Association	$2/108 \ (1.9\%)$	$3/61 \ (4.9\%)$		$2/92 \ (2.2\%)$	
GIE	79/108 (73%)	35/61~(57%)	73/89 (82%)	77/92 (84%)	
Informel	23/108 (21%)	$12/61 \ (20\%)$	$5/89 \ (5.6\%)$	3/92 (3.3%)	
SA	2/108 (1.9%)	$2/61 \ (3.3\%)$	3/89 (3.4%)	$3/92 \ (3.3\%)$	
SARL	$1/108 \; (0.9\%)$	$6/61 \ (9.8\%)$	$6/89 \ (6.7\%)$	5/92 (5.4%)	
SUARL	1/108 (0.9%)	3/61 (4.9%)	$2/89 \ (2.2\%)$	2/92(2.2%)	
proprietaire locataire	·	. ,	. ,	,	

variable	1, N = 108	1, N = 61	1, N = 89	1, N = 92
Locataire	12/108 (11%)	7/61 (11%)	11/89 (12%)	9/92 (9.8%)
Propriétaire	96/108 (89%)	54/61 (89%)	78/89 (88%)	83/92 (90%)

1.3 Un peu de cartographie

```
library(sf)
library(ggplot2)
library(rnaturalearth)
library(RColorBrewer)
library(leaflet)
library(htmlwidgets)
library(dplyr)
## Obtenir les limites géographiques du Sénégal à partir de rnaturalearth
senegal <- ne_countries(country = "Senegal", returnclass = "sf")</pre>
```

###1.3.1 Charger les données depuis le fichier Excel et créer un objet sf

```
data <- readxl::read_excel("Base_Partie_1.xlsx")
projet_map <- st_as_sf(data, coords = c("gps_menlongitude", "gps_menlatitude"), crs = 4326
# Jointure spatiale entre les données de projet_map et les limites géographiques du Sénéga
projet_map <- st_join(projet_map, senegal)</pre>
```

1.3.2 Représentation spatiale des PME suivant le sexe

Dimension: XY

Bounding box: xmin: 227586.3 ymin: 1362012 xmax: 897104.7 ymax: 1845672

Projected CRS: WGS 84 / UTM zone 28N

```
names(sen_contours)[1] <-"region"
ggplot()+
    geom_sf(data=sen_contours,fill="beige",color="black")+
    geom_sf(data=projet_map,aes(color=sexe),size=2.5)+
    geom_sf_text(data=sen_contours,aes(label=region),size=2.5)+
    scale_color_manual(values = c("black", "red")) +
    theme_void()+
    theme(legend.position = "right")+
    labs(title="carte des PME par sexe",color="sexe")</pre>
```

carte des PME par sexe

1.3.3 Représentation spatiale des PME suivant le niveau d'instruction

```
# contours
   sen_contours <- st_read("Limite_Région.shp")</pre>
Reading layer `Limite_Région' from data source
  `C:\Users\utilisateur\Documents\Shiny2\Limite_Région.shp'
  using driver `ESRI Shapefile'
Simple feature collection with 14 features and 4 fields
Geometry type: POLYGON
Dimension:
               XY
Bounding box: xmin: 227586.3 ymin: 1362012 xmax: 897104.7 ymax: 1845672
Projected CRS: WGS 84 / UTM zone 28N
   names(sen_contours)[1] <-"region"</pre>
   ggplot()+
     geom_sf(data=sen_contours,fill="beige",color="black")+
     geom_sf(data=projet_map,aes(color=niveau_instruction),size=2.5)+
     geom_sf_text(data=sen_contours,aes(label=region),size=2.5)+
     scale_color_manual(values = c("blue", "red", "green", "yellow")) +
   theme_void()+
   theme(legend.position = "right")+
   labs(title="carte des PME par niveau d'instruction",color="niveau d'instruction")
```

carte des PME par niveau d'instruction

1.3.3Analyse spatiale de votre choix (projet cartographie)

```
library(sf)
  projet_map <- st_as_sf(projet, coords = c("gps_menlongitude", "gps_menlatitude")</pre>
                          , crs = 4326)
  # Par exemple, représenter le nombre de PME par situation proprietaire ou locataire
   # contours
   sen_contours <- st_read("Limite_Région.shp")</pre>
Reading layer `Limite_Région' from data source
  `C:\Users\utilisateur\Documents\Shiny2\Limite_Région.shp'
  using driver `ESRI Shapefile'
Simple feature collection with 14 features and 4 fields
Geometry type: POLYGON
Dimension:
               XY
Bounding box: xmin: 227586.3 ymin: 1362012 xmax: 897104.7 ymax: 1845672
Projected CRS: WGS 84 / UTM zone 28N
   names(sen_contours)[1] <-"region"</pre>
   ggplot()+
     geom_sf(data=sen_contours,fill="beige",color="black")+
     geom_sf(data=projet_map,aes(color=proprietaire_locataire),size=2.5)+
     geom_sf_text(data=sen_contours, aes(label=region), size=2.5)+
     scale_color_manual(values = c("blue", "green")) +
   theme void()+
   theme(legend.position = "right")+
   labs(title="carte des PME par situation proprietaire oulocataire",color="proprietaire_loc
```

carte des PME par situation proprietaire oulocataire


```
#Partie II
```

##2.1 Nettoyage et gestion des données

```
library(dplyr)
library(readxl)

# Importer les données de la feuille 1 du fichier Excel
data_feuille1 <- read_excel("Base_Partie 2.xlsx", sheet = 1)</pre>
```

###2.1.1 Renommer la variable "country_destination" en "destination" et remplacer les valeurs négatives par NA

```
data_feuille1 <- data_feuille1 %>%
  rename(destination = country_destination) %>%
  mutate(destination = ifelse(destination < 0, NA, destination))</pre>
```

###2.1.2 Créer une nouvelle variable avec des tranches d'âge de 5 ans en utilisant la variable "age"

```
Tranche_age<- data_feuille1 %>%
  mutate(age_group = cut(age, breaks = seq(0, max(age), by = 5)))
```

###2.1.3 Créer une nouvelle variable contenant le nombre d'entretiens réalisés par chaque agent recenseur

```
data_feuille1 <- data_feuille1 %>%
  group_by(enumerator) %>%
  mutate(num_entretiens = n()) %>%
  ungroup()
```

###2.1.4 Créer une nouvelle variable qui affecte aléatoirement chaque répondant à un groupe de traitement (1) ou de contrôle (0)

```
set.seed(123) # Pour reproduire les mêmes résultats aléatoires
data_feuille1 <- data_feuille1 %>%
  mutate(groupe_traitement = sample(c(0, 1), size = n(), replace = TRUE))
```

###2.1.5 Fusionner la taille de la population de chaque district avec l'ensemble de données

```
# Importer les données de la feuille 2 du fichier Excel
data_feuille2 <- read_excel("Base_Partie 2.xlsx", sheet = 2)</pre>
```

```
data_feuille1 <- data_feuille1 %>%
  left_join(data_feuille2, by = "district")
```

###2.1.6 Calculer la durée de l'entretien et indiquer la durée moyenne de l'entretien par enquêteur

```
a <- data_feuille1 %>%
  mutate(duree_entretien = endtime - starttime) %>%
  group_by(enumerator) %>%
  mutate(duree_moyenne_entretien = mean(duree_entretien)) %>%
  ungroup()
a
```

A tibble: 97 x 15

	id	starttime		endtime		${\tt enumerator}$	${\tt district}$	age	sex
	<dbl></dbl>	<dttm></dttm>		<dttm></dttm>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	2	2019-01-14	14:56:37	2019-01-14	15:11:10	6	1	33	1
2	3	2019-01-14	16:12:22	2019-01-14	16:45:52	6	1	43	0
3	4	2019-01-14	17:15:47	2019-01-14	17:45:47	6	1	28	0
4	7	2019-01-14	13:04:51	2019-01-14	13:27:38	8	3	24	0
5	8	2019-01-14	13:38:00	2019-01-14	14:31:16	8	3	29	0
6	10	2019-01-14	15:52:17	2019-01-14	16:33:39	8	6	22	1
7	11	2019-01-14	16:52:55	2019-01-14	17:13:39	8	6	21	0
8	12	2019-01-14	13:17:56	2019-01-14	19:01:39	9	6	20	0
9	13	2019-01-14	14:14:10	2019-01-14	18:05:26	9	6	21	1
10	14	2019-01-14	16:17:33	2019-01-14	16:41:51	9	6	20	0

- # i 87 more rows
- # i 8 more variables: children_num <dbl>, intention <dbl>, destination <dbl>,
- # num_entretiens <int>, groupe_traitement <dbl>, population <dbl>,
- # duree_entretien <drtn>, duree_moyenne_entretien <drtn>

###2.1.7 Renommer toutes les variables de l'ensemble de données en ajoutant le préfixe "endline_"

```
# Convert the data frame to a gt table
tab_data_feuille_1 <- gt(tableau_data_feuille_1)
tab_data_feuille_1</pre>
```

Variables	Valeurs	_Manquantes
endline_id		0
$endline_starttime$		0
$endline_endtime$		0
$endline_enumerator$		0
$endline_district$		0
$endline_age$		0
$endline_sex$		0
endline_children_num		0
$endline_intention$		0
$endline_destination$		20
endline_num_entretiens		0
endline_groupe_traitement		0
endline_population		0

##2.2Analyse et visualisation des données

###2.2.1 Tableau récapitulatif de l'age moyen et d'enfants moyen par district

```
#Analyse et visualisation des données
library(readxl)
library(ggplot2)
library(dplyr)
# Importer les données de la feuille 2 du fichier Excel
data_feuille2 <- read_excel("Base_Partie 2.xlsx", sheet = 2)

# Tableau récapitulatif de l'age moyen et d'enfants moyen par district

tab_Mean <- flextable::as_flextable(data_feuille1 %>% group_by(endline_district) %>% summa
tab_Mean
```

Enfant_Moyen	Age_Moyen	endline_district	
numeric	numeric	numeric	
1.5	29.6	1	
0.9	62.6	2	

endline_district	Age_Moyen	Enfant_Moyen
numeric	numeric	numeric
3	26.1	0.0
4	26.0	0.0
5	24.3	0.5
6	23.2	0.1
7	28.0	0.2
8	24.6	1.3

###2.2.2 Test de différence d'âge entre les sexes

```
# Charger les packages nécessaires
library(dplyr)
library(gtsummary)
# Créer une copie du dataframe data feuille1 pour éviter de modifier
#les données originales
data_feuille1_copy <- data_feuille1
# Sélectionner les colonnes "endline_sex" et "endline_age"
appli <- data_feuille1_copy %>%
  dplyr::select(endline_sex, endline_age) %>%
  # Créer un résumé de table avec gtsummary
  gtsummary::tbl_summary(by = endline_sex,
                         label = list(endline_age ~ "Tranche d'âge"),
                         statistic = list(endline_age ~ "{mean}"),
                         percent = "column") %>%
  # Ajouter le test de différence de moyennes
  add_difference(test = list(all_continuous() ~ "t.test")) %>%
  # Ajouter la statistique globale pour l'ensemble des données
  add_overall() %>%
  # Convertir en flextable (si vous souhaitez une sortie au format FlexTable)
  as_flex_table()
```

Afficher la table résumée appli

Characteristic	Overall, $N = 97^1$	$0, N = 86^1$	$1, N = 11^{1}$	$\mathbf{Difference}^2$	95% CI^{23}	p-value ²
Tranche d'âge	36	26	111	-85	-283, 113	0.4

 $¹_{\mathrm{Mean}}$

###2.2.3 Nuage de points : âge en fonction du nombre d'enfants

```
#Utilisons le package ggplot pour tracer le nuage de points en eliminant la valeur abérant
nuage_points_age_enfants <- ggplot(filter(data_feuille1,!(endline_age==999)), aes(x = endl
y = endline_children_num)) +
    geom_point() +
    labs(x = "Âge", y = "Nombre d'enfants") +
    ggtitle("Nuage de points : Âge en fonction du nombre d'enfants")
nuage_points_age_enfants</pre>
```

Nuage de points : Âge en fonction du nombre d'enfants

 $^{^2\}mathrm{Welch}$ Two Sample t-test

 $^{^{3}}$ CI = Confidence Interval

###2.2.4 Estimation de l'effet de l'appartenance au groupe de traitement sur l'intention de migrer

```
###2.2.5 Tableau de régression avec 3 modèles
```

```
# Chargez le package gtsummary s'il n'est pas déjà installé
library(gtsummary)

#installer les packages nécessaires
library(sjPlot)

# Modèle A : Modèle vide - Effet du traitement sur les intentions
model_A <- lm(endline_intention ~endline_groupe_traitement, data = data_feuille1)

# Modèle B : Effet du traitement sur les intentions en tenant compte de l'âge et du sexe
model_B <- lm(endline_intention ~ endline_groupe_traitement + endline_age + endline_sex, d

# Modèle C : Identique au modèle B mais en contrôlant le district
model_C <- lm(endline_intention ~ endline_groupe_traitement + endline_age + endline_sex +

# Créer un tableau récapitulatif des modèles
tableau_recapitulatif_modele <-tab_model(model_A, model_B, model_C, title = "Tableau de ré
show.ci = TRUE) # Afficher les intervalles de confiance

# Afficher le tableau récapitulatif, le test de différence d'âge, le nuage de points et le
tableau_recapitulatif_modele
```

Table 16: Tableau de régression

endline_intention				endline_in	tention		
Predictors (Intercept) endline groupe traitement endline age endline sex endline district Observations	Estimates 1.95 0.34	std. Error 0.23 0.35	m CI -Inf – Inf -Inf	p < 0.001 0.337	Estimates 2.08 0.27 -0.00 -0.86	std. Error 0.25 0.35 0.00 0.57	$\begin{array}{c} CI\\ \textbf{-Inf} - Inf\\ \textbf{-Inf} - Inf\\ \textbf{-Inf} - Inf\\ \textbf{-Inf} - Inf\\ \textbf{-Inf} - Inf \end{array}$
Observations	91				91		

	endline_intention	endline_intention
ho $ ho$ $ ho$ $ ho$ $ ho$ $ ho$ $ ho$ adjusted	0.010 / -0.001	0.036 / 0.005