1

NCERT Discrete 10.5.2 -15

EE23BTECH11057 - Shakunaveti Sai Sri Ram Varun

Question: For what value of n, are the nth terms of two A.Ps: 63, 65, 67,... and 3, 10, 17,... equal? **Solution**:

Parameter	Sub-question	Description	Value
$x_i(0)$	$x_1(0)$	1 st term of 1 st A.P.	63
	$x_{2}(0)$	1^{st} term of 2^{nd} A.P.	3
d_i	d_1	Common difference of 1 st A.P.	2
	d_2	Common difference of 2 nd A.P.	7

TABLE I PARAMETERS USED

$$X(z) = x(0)z(z-1)^{-1} + dz(z-1)^{-2} \forall |z| > 1$$
 (1)

- 1) For the 1st A.P. $let x_1(n)$ be nth term:
 - a) Finding $x_1(n)$ for the 1st A.P:

$$x_1(0) = 63 (2)$$

$$x_1(0) + d_1 = 65 (3)$$

$$\implies x_1(n) = 63 + 2n \tag{4}$$

$$\therefore x_1(n) = 63u(n) + 2n \cdot u(n) \quad (5)$$

b) To find $X_1(z)$:

$$x_1(0) = 63 (6)$$

$$d_1 = 2 \tag{7}$$

$$\therefore X_1(z) = 63z(z-1)^{-1} + 2z(z-1)^{-2} \,\forall |z| > 1$$
(8)

 $n_2(0)$

b) To find $X_2(z)$:

$$x_2(0) = 3 (13)$$

$$d_2 = 7 \tag{14}$$

$$\therefore X_2(z) = 3z(z-1)^{-1} + 7z(z-1)^{-2} \,\forall |z| > 1$$
(15)

Fig. 1. Graphs of $x_1(n)$ and $x_2(n)$ and both are equal at n = 12

given,
$$x_1(n) = x_2(n)$$

$$\therefore 63 + 2n = 7n + 3 \tag{16}$$

$$5n = 60 \tag{17}$$

$$\implies n = 12$$
 (18)

(19)

∴ 13th terms of given two APs are equal.

- 2) For the 2nd A.P. $let x_2(n)$ be nth term:
 - a) Finding $x_2(n)$ for the for the 1st A.P:

$$x_2(0) = 3$$
 (9)

$$x_2(0) + d_2 = 10 (10)$$

$$\implies x_2(n) = 7n + 3 \tag{11}$$

$$\therefore x_2(n) = 3u(n) + 7n \cdot u(n) \tag{12}$$