

Н.И. Ильинкова, О.А.Кононова, Н.К.Филиппова

Приложение теории вычетов к вычислению интегралов

УДК 517.53/.55(075.8)

Решение о депонировании документа вынес Совет физического факультета, № 3 от 01.11.2012

Авторы:

Н. И. Ильинкова, О. А. Кононова, Н. К. Филиппова

Рецензенты:

Белявский С. С., канд. физ.-мат. наук, доцент кафедры прикладной математики и экономической кибернетики БГЭУ, Альсевич Л. А., канд. физ.-мат. наук, доцент кафедры высшей математики ФПМИ БГУ

Ильинкова Н. И. Приложение теории вычетов к вычислению интегралов [Электронный ресурс] : учеб.-метод. пособие / Н. И. Ильинкова, О. А. Кононова, Н. К. Филиппова. – Электрон. текстовые дан. – Минск : БГУ, 2012.

Настоящее пособие составлено на материале занятий по курсу математического анализа, изучаемого в третьем семестре на физическом факультете университета. В нем даны некоторые сведения из теории вычетов и методические указания по приложению этой теории к вычислению интегралов от аналитических функций с изолированными особыми точками, а также к вычислению некоторых типов определенных интегралов.

Пособие содержит значительное количество примеров с подробным описанием их решения, которые могут служить основой для самостоятельного освоения студентами соответствующего раздела теории функций комплексной переменной.

Настоящее пособие составлено на материале занятий по курсу математического анализа, изучаемого в третьем семестре на физическом факультете университета. В нем даны некоторые сведения из теории вычетов и методические указания по приложению этой теории вычислению интегралов от аналитических функций с изолированными особыми точками, а также к вычислению некоторых типов определенных интегралов. Пособие содержит значительное количество примеров с подробным описанием их решения, которые могут служить основой для самостоятельного освоения студентами соответствующего раздела теории функций комплексной переменной.

1. Вычисление вычетов.

1.1 Изолированные особые точки. Ряд Лорана.

Пусть функция f(z) аналитична в кольце $0 < |z - z_0| < R$ (если $z_0=\infty$, то в кольце $R<\left|z\right|<\infty$), а в самой точке z_0 не определена. Тогда точку z_0 называют изолированной особой точкой функции f(z) (и.о.т.).

Различают три типа особых точек:

а) z_0 – устранимая особая точка, если существует конечный предел $\lim f(z)$; $z \rightarrow z_0$

б)
$$z_0$$
- *полюс*, если $\lim_{z\to z_0} f(z)$ бесконечен (z_0 - полюс функции $f(z)$

тогда и только тогда, когда z_0 – нуль функции $\frac{1}{f(z)}$);

в) z_0 - существенно особая точка, если $\lim f(z)$ не существует.

Теорема Лорана . Пусть функция f(z) аналитична в кольце $r < |z-z_0| < R$. Тогда она единственным образом представляется в нем рядом Лорана

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n , \qquad (1.1)$$

 $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n \;, \tag{1.1}$ где $c_n = \frac{1}{2\pi i} \oint\limits_{C_0} \frac{f(t)}{(t-z_0)^{n+1}} dt \;, \; C_\rho : \; \left|z-z_0\right| = \rho \;\;, \;\; \rho \in (r,R),$ направление

обхода контура при этом - положительное, т.е. против часовой стрелки.

При этом ряд $\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}$ называют *главной* частью разложения, а ряд

$$\sum_{n=0}^{\infty} c_n (z-z_0)^n$$
 – его *правильной* частью.

Согласно теореме Лорана, функция f(z) в окрестности $0<|z-z_0|< R$ своей изолированной особой точки представляется рядом Лорана.

Справедливы следующие утверждения:

- а) z_0 устранимая особая точка \iff ряд Лорана f(z) не содержит главной части;
- б) z_0 полюс \Leftrightarrow в главной части ряда Лорана конечное число членов;
- в) z_0- существенно особая точка \iff в главной части ряда Лорана бесконечное число членов.

Пусть функция f(z) на множестве |z| > R расширенной комплексной плоскости не содержит особых точек, кроме $z = \infty$. Тогда точку $z = \infty$ называют изолированной особой точкой f(z).

Ряд Лорана f(z) в окрестности точки $z = \infty$:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n z^n , \tag{1.2}$$
 где $c_n = -\frac{1}{2\pi i} \oint_{C_\rho} \frac{f(t)}{(t-z_0)^{n+1}} dt , \ C_\rho : \ \left|z\right| = \rho , \ R < \rho < \infty .$

При этом ряд $\sum_{n=1}^{\infty} \frac{c_{-n}}{z^n}$ называют правильной частью разложения, , а

ряд
$$\sum_{n=0}^{\infty} c_n z^n$$
 – его главной частью.

Справедливы следующие утверждения:

- а) $z = \infty$ устранимая особая точка \iff ряд Лорана f(z) не содержит главной части;
- б)) $z = \infty$ полюс \Leftrightarrow в главной части ряда Лорана конечное число членов;
- в)) $z = \infty$ существенно особая точка \iff в главной части ряда Лорана бесконечное число членов.

1.2 Определение и способы вычисления вычетов.

Пусть функция f(z) аналитична в окрестности своей изолированной особой точки $z_0\colon 0\!<\!|z\!-\!z_0|\!<\!R$. Вычетом функции в точке z_0 называется число

$$\mathop{res}_{z=z_0} f(z) = \frac{1}{2\pi i} \oint_{C_{\rho}} f(t)dt, \quad 0 < \rho < R.$$
 (1.3)

Вычет функции равен коэффициенту c_{-1} в лорановском разложении функции в окрестности точки z_0

$$\mathop{res}_{z=z_0} f(z) = c_{-1} . \tag{1.4}$$

Вычет в устранимой особой точке равен нулю. В случае существенно особой точки для отыскания вычета функцию следует разложить в окрестности этой точки в ряд Лорана и найти коэффициент c_{-1} .

В случае простого полюса вычет функции находится по формуле

$$\mathop{res}_{z=z_0} f(z) = \lim_{z \to z_0} (f(z)(z - z_0)) . \tag{1.5}$$

Если функция в окрестности простого полюса представляется в виде отношения двух аналитических функций

$$f(z) = \frac{\varphi(z)}{\psi(z)} ,$$

где $\varphi(z_0) \neq 0, \psi(z_0) = 0$, но $\psi'(z_0) \neq 0$, то

$$\mathop{res}_{z=z_0} f(z) = \frac{\varphi(z_0)}{\psi'(z_0)} \ . \tag{1.6}$$

В случае полюса кратности п

$$\mathop{res}_{z=z_0} f(z) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (f(z)(z-z_0)^n) . \tag{1.7}$$

Вычетом аналитической функции f(z) в точке $z=\infty$ называется комплексное число

$$\mathop{res}_{z=\infty} f(z) = -\frac{1}{2\pi i} \oint_{C\rho} f(t)dt, \tag{1.8}$$

Где C_{ρ} – произвольный контур $|z|=\rho$, $\rho>R$, при условии, что функция на множестве |z|>R является аналитической и не имеет особых точек, отличных от точки $z=\infty$; направление обхода контура при этом – положительное, т.е. против часовой стрелки. Очевидно, что

$$\mathop{res}_{z=\infty} f(z) = -c_{-1} , \qquad (1.9)$$

где c_{-1} — соответствующий коэффициент ряда Лорана функции в окрестности точки $z=\infty$.

1.3 Основная теорема теории вычетов.

Теорема 1. (Основная теорема теории вычетов). Пусть функция f(z) аналитична в замкнутой области \overline{D}_{j} , за исключением конечного числа изолированных особых точек z_{k} , k=1,2,...n , лежащих внутри этой области. Тогда

$$\oint_{i} f(z)dz = 2\pi i \sum_{k=1}^{n} res_{k} f(z). \tag{1.10}$$

Указанная формула имеет большое практическое значение, так как обычно проще найти вычеты функции f(z)в ее особых точках, лежащих внутри контура, чем непосредственно вычислять сам интеграл.

Теорема 2. Пусть функция f(z) аналитична на расширенной комплексной плоскости, за исключением конечного числа изолированных особых точек z_k , k=1,2,...n, включая точку $z=\infty$. Тогда

$$\sum_{k=1}^{n} res_{z=z_{k}} f(z) + res_{z=\infty} f(z) = 0.$$

Применение этой теоремы зачастую позволяет упростить вычисление интеграла. Особенно можно выделить те случаи, когда особых точек функции, лежащих внутри замкнутого контура, намного больше, чем за его пределами.

1.4 Вычисление определенных интегралов с помощью теории вычетов.

а) вычисление интегралов вида $\int\limits_0^{2\pi} R(\cos\varphi,\sin\varphi)d\varphi$, где R – рациональная функция своих аргументов, ограниченная внутри промежутка интегрирования.

Замена $z=e^{i\varphi}$ приводит к $d\varphi=\frac{dz}{iz}$, $\cos\varphi=\frac{z^2+1}{2z}$, $\sin\varphi=\frac{z^2-1}{2iz}$. Очевидно, что |z|=1 при $\varphi\in[0,2\pi]$. Тогда

$$\int_{0}^{2\pi} R(\cos\varphi, \sin\varphi) d\varphi = \oint_{|z|=1}^{n} R_{1}(z) dz = 2\pi i \sum_{k=1}^{n} res_{k} f(z), |z_{k}| < 1. (1.11)$$

б) вычисление интегралов вида $\int_{-\infty}^{+\infty} f(x) dx$.

Теорема 3. Пусть функция f(z) аналитична в области ${\rm Im}\,z>0$, за исключением конечного числа точек z_k , ${\rm Im}\,z_k>0$, k=1,2,...n и непрерывна вплоть до границы этой области. Пусть существуют такие положительные числа R_0,M и δ , что для всех z, таких, что

$$\left|z\right|>R_{0},\operatorname{Im}z>0$$
 выполняется $\left|f(z)\right|<\dfrac{M}{\left|z\right|^{1+\delta}}$. Тогда

$$\int_{-\infty}^{+\infty} f(x)dx = 2\pi i \sum_{k=1}^{n} res_{k} f(z) , \text{ Im } z_{k} > 0.$$
 (1.12)

в) вычисление интегралов вида $\int_{-\infty}^{+\infty} e^{i\alpha x} f(x) dx \quad (\int_{-\infty}^{+\infty} f(x) \cos \alpha x dx,$

$$\int_{-\infty}^{+\infty} f(x) \sin \alpha x dx$$
.

Лемма Жордана . Пусть $\alpha>0$, функция f(z) аналитична всюду в верхней полуплоскости, включая действительную ось, за исключением конечного числа точек z_k , $\operatorname{Im} z_k>0$, k=1,2,...n и пусть $M_R=\max_{z\in C_R} |f(z)|\underset{R\to\infty}{\longrightarrow} 0, C_R: |z|=R, \operatorname{Im} z>0$. Тогда

$$\lim_{R\to\infty} \oint_{C_R} f(z)e^{i\alpha z}dz = 0.$$

Следствие. В случае выполнения условий леммы Жордана

$$\int_{-\infty}^{+\infty} e^{i\alpha x} f(x) dx = 2\pi i \sum_{k=1}^{n} res_{k} (f(z)e^{i\alpha z}), \text{ Im } z_{k} > 0, \alpha > 0.$$
 (1.13)

Замечание 1. Если функция f(z) принимает действительные значения при z=x, то, так как

$$\int_{-\infty}^{+\infty} e^{i\alpha x} f(x) dx = \int_{-\infty}^{+\infty} f(x) \cos \alpha x dx + i \int_{-\infty}^{+\infty} f(x) \sin \alpha x dx , \text{ To}$$

$$\int_{-\infty}^{+\infty} f(x) \cos \alpha x dx = \text{Re} \left\{ \int_{-\infty}^{+\infty} e^{i\alpha x} f(x) dx \right\} = \text{Re} \left\{ 2\pi i \sum_{k=1}^{n} res(f(z)e^{i\alpha z}) \right\}$$
(1.14)

$$\int_{-\infty}^{+\infty} f(x) \sin \alpha x dx = \operatorname{Im} \left\{ \int_{-\infty}^{+\infty} e^{i\alpha x} f(x) dx \right\} = \operatorname{Im} \left\{ 2\pi i \sum_{k=1}^{n} res(f(z)e^{i\alpha z}) \right\}$$
(1.15)

Замечание 2. Если α <0 и функция f(z) удовлетворяет условиям леммы Жордана в нижней полуплоскости ${\rm Im}\,z$ < 0, то

$$\int_{-\infty}^{+\infty} e^{i\alpha x} f(x) dx = -2\pi i \sum_{k=1}^{n} \operatorname{res}_{z=z_k} (f(z) e^{i\alpha z}) , \operatorname{Im}_{z_k} < 0, \alpha < 0.$$

2. Примеры вычисления интегралов.

І. Используя теорию вычетов, вычислить следующие интегралы от функций комплексной переменной z:

1.
$$\oint_C \frac{z+2}{(z-2)^2(z+1)} dz$$
, где C: $|z-2|=3$.

Решение. Подынтегральная функция аналитична внутри области, ограниченной замкнутым контуром C, за исключением точек z=2 и z=-1. Согласно (1.10),

$$\oint_C \frac{z+2}{(z-2)^2(z+1)} dz = 2\pi i (res_{z=2} f(z) + res_{z=-1} f(z)).$$

Точка z=2 есть полюс второго порядка и

$$\mathop{res}_{z=2} f(z) = \lim_{z \to 2} \frac{d}{dz} \left(\frac{z+2}{(z-2)^2(z+1)} (z-2)^2 \right) = -\frac{1}{9}.$$

Точка z=-1 – простой полюс и

$$\mathop{res}_{z=-1} f(z) = \lim_{z \to -1} \left(\frac{z+2}{(z-2)^2(z+1)} (z+1) \right) = \frac{1}{9}.$$

Итак интеграл равен:

$$\oint_C \frac{z+2}{(z-2)^2(z+1)} dz = 0.$$

2.
$$\oint \frac{e^z}{Cz^2 - 2iz + 8} dz$$
, где C: $|z + 2i| = 1$.

Решение. Подынтегральная функция имеет два простых полюса: z=2i и z=4i, причем лишь точка z=-2i лежит внутри контура С. Используя формулу (1.6) для простого полюса, получаем

$$\oint_C \frac{e^z}{z^2 - 2iz + 8} dz = 2\pi i \frac{e^z}{\left(z^2 - 2iz + 8\right)'}\bigg|_{z = -2i} = 2\pi i \frac{e^{-2i}}{-6i} = -\frac{\pi}{3} (\cos 2 + i \sin 2).$$

3.
$$\oint ctgzdz$$
, где C: $|z|=4$.

Решение. В области |z| < 4 функция имеет 3 простых полюса $z=0,\pm\pi$ и

$$\oint_C ctgzdz = 2\pi i \sum_{k=1}^3 res_{z=k} f(z) = 2\pi i \sum_{k=1}^3 \frac{\cos z_k}{(\sin z)'} = 6\pi i.$$

4.
$$\oint_{C} \frac{z^2}{z^4 + 16} dz$$
, где С: $\frac{x^2}{9} + \frac{y^2}{16} = 1$.

Решение. Особыми точками функции являются корни уравнения $z^4 + 16 = 0$:

$$z_k = 2e^{i\left(\frac{\pi}{4} + \frac{\pi}{2}k\right)}, \quad k = 1, 2, 3, 4.$$

Все эти точки лежат внутри области, ограниченной замкнутым контуром С и являются простыми полюсами. Следовательно,

$$\oint_C \frac{z^2}{z^4 + 16} dz = 2\pi i \sum_{k=1}^4 \frac{z_k^2}{\left(z^4 + 16\right)'} = 2\pi i \sum_{k=1}^4 \frac{1}{4z_k} = \frac{\pi i}{2} \sum_{k=1}^4 \frac{1}{2} e^{-i\frac{\pi(2k+1)}{4}} = 0.$$

5.
$$\oint \frac{\sin \pi z}{C(z^2 - 1)^2} dz$$
, где C: $x^2 + y^2 = 2x$.

Решение. Внутри контура С функция имеет особую точку z=1. Покажем, что это простой полюс. Для этого разложим $\sin \pi z$ в ряд Тейлора в окрестности точки z=1:

$$\frac{\sin(\pi(z-1)+\pi)}{(z-1)^2(z+1)^2} = \frac{-\sin\pi(z-1)}{(z-1)^2(z+1)^2} = \frac{-\pi(z-1)\left(1-\frac{\pi^2(z-1)^2}{3!}+\ldots\right)}{(z-1)^2(z+1)^2} = \frac{\varphi(z)}{(z-1)},$$

где
$$\varphi(z) = -\frac{\pi}{(z+1)^2} \left(1 - \frac{\pi^2(z-1)^2}{3!} + \dots \right)$$
 — аналитична в некоторой

окрестности точки z = 1и $\varphi(1) \neq 0$. Тогда

$$\oint_C \frac{\sin \pi z}{\left(z^2 - 1\right)^2} dz = 2\pi i \cdot \varphi(1) = -\frac{\pi^2 i}{2}.$$

6.
$$\oint z^5 \sin \frac{1}{z^2} dz$$
, где C: $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 5^{\frac{2}{3}}$.

Решение. Подынтегральная функция имеет единственную конечную особую точку z=0 в области, ограниченной контуром С и эта точка является существенно особой, т.к. ряд Лорана функции в окрестности z=0 имеет вид

$$z^{5} \sin \frac{1}{z^{2}} = z^{5} \left(\frac{1}{z^{2}} - \frac{1}{3!z^{6}} + \frac{1}{5!z^{10}} - \dots \right) = z^{3} - \frac{1}{3!z} + \frac{1}{5!z^{5}} - \dots ,$$

т.е. главная часть разложения имеет бесконечное число членов. Вычет в таком случае согласно (1.4) равен коэффициенту c_{-1} и равен $-\frac{1}{6}$. Итак

$$\oint_C z^5 \sin \frac{1}{z^2} dz = -\frac{\pi i}{3}.$$

7.
$$\oint_C \frac{1}{2-z} e^{\frac{1}{z}} dz$$
, где C: $|z+1+i|=4$.

Решение. Внутри круга |z+1+i| < 4 подынтегральная функция имеет особые точки z=2 и z=0. Легко установить, что z=2 есть простой полюс и согласно формуле (1.5)

$$\mathop{res}_{z=2} f(z) = \lim_{z \to 2} (f(z)(z-2)) = -e^{\frac{1}{2}}.$$

Для отыскания вычета в точке z=0 используем Лорановское разложение функции в окрестности этой точки и выделим коэффициент при $\frac{1}{z}$:

$$\frac{1}{2-z}e^{\frac{1}{z}} = \frac{1}{2}\left(1 + \frac{z}{2} + \frac{z^2}{2^2} + \dots\right)\left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots\right) = \dots + \frac{1}{z}\left(\frac{1}{2} + \frac{1}{2!2^2} + \frac{1}{3!2^3} + \dots\right) + \dots$$

Следуя (1.4), находим $\mathop{res}_{z=0} f(z) = c_{-1} = e^{\frac{1}{2}} - 1$. Окончательно

$$\oint_C \frac{1}{2-z} e^{\frac{1}{z}} dz = 2\pi i \left(-e^{\frac{1}{2}} + e^{\frac{1}{2}} - 1 \right) = -2\pi i.$$

8.
$$\oint_C \frac{z^8}{(z^8+1)(z-2)} dz$$
, где C: $|z|=1,5$.

Решение. Области, ограниченной контуром С, принадлежат 8 простых полюсов $z_k = e^{i\left(\frac{\pi}{8} + \frac{\pi k}{4}\right)}$, k = 1, 2, ... 8. В этом случае удобно использовать тот факт, что

$$\sum_{k=1}^{8} res_{z=z_{k}} f(z) = -(res_{z=\infty} f(z) + res_{z=2} f(z)).$$

В простом полюсе z=2 $\underset{z=2}{res} f(z) = \lim_{z \to 2} (f(z)(z-2)) = \frac{256}{257}$.

В окрестности бесконечно удаленной точки, например, |z| > 3, функция представляется рядом Лорана

$$\frac{z^{8}}{(z^{8}+1)(z-2)} = \frac{z^{8}}{z^{8}\left(1+\frac{1}{z^{8}}\right)} \cdot \frac{1}{z\left(1-\frac{2}{z}\right)} =$$

$$= \frac{1}{z}\left(1-\frac{1}{z^{8}}+\frac{1}{z^{16}}-\ldots\right)\left(1+\frac{2}{z}+\frac{2^{2}}{z^{2}}+\ldots\right) = \frac{1}{z}+\frac{c_{-2}}{z^{2}}+\frac{c_{-3}}{z^{3}}+\ldots$$

и следовательно $\mathop{res}_{z=\infty} f(z) = -c_{-1} = -1$. В итоге получаем

$$\oint_C \frac{z^8}{(z^8+1)(z-2)} dz = -2\pi i \left(\frac{256}{257} - 1\right) = \frac{2\pi i}{257}.$$

9.
$$\oint \frac{e^{\pi z}}{2z^2 - i} dz$$
, где C: $|z| = 1$.

Решение. Определим особые точки подынтегральной функции :

$$2z^2 - i = 0$$
, $z_k = \frac{1}{\sqrt{2}}e^{i\left(\frac{\pi}{4} + \pi k\right)}$, $k = 0,1$.

По определению это простые полюсы функции и $|z_k| < 1$. Поэтому

$$\oint_C \frac{e^{\pi z}}{2z^2 - i} dz = 2\pi i (\underset{z=z_0}{res} f(z) + \underset{z=z_1}{res} f(z)) = 2\pi i \left(\frac{e^{\frac{\pi}{2}(1+i)}}{4\sqrt{2}e^{i\frac{\pi}{4}}} + \frac{e^{\frac{\pi}{2}(-1-i)}}{4\sqrt{2}e^{i\frac{5\pi}{4}}}\right) = \pi(-1+i)ch\frac{\pi}{2}.$$
10. $\oint_C z \sin\frac{z+1}{z-1} dz$, где C: $|z| = 2$.

Решение. Для отыскания вычета в точке z=1 используем Лорановское разложение функции в окрестности этой точки и выделим коэффициент

при
$$\frac{1}{z-1}$$
:

$$((z-1)+1)\sin\left(1+\frac{2}{z-1}\right) = ((z-1)+1)\left\{\sin 1 \cdot \cos\frac{2}{z-1} + \cos 1 \cdot \sin\frac{2}{z-1}\right\} =$$

$$= ((z-1)+1) \left\{ \sin \left(1 - \frac{2}{(z-1)^2} + \dots\right) + \cos \left(\frac{2}{z-1} - \frac{4}{3(z-1)^3} + \dots\right) \right\} =$$

$$= \dots + 2(\cos 1 - \sin 1) \cdot \frac{1}{z-1} + \dots$$

Итак: $\underset{z=1}{res} f(z) = c_{-1} = 2(\cos 1 - \sin 1)$ и искомый интеграл равен

$$\oint_C z \sin \frac{z+1}{z-1} dz = 4\pi i (\cos 1 - \sin 1).$$

II. Используя теорию вычетов, вычислить следующие определенные интегралы:

11.
$$\int_{0}^{2\pi} \frac{d\varphi}{3-\sin\varphi}.$$

Решение. Следуя формуле (1.11), сделав замену $z=e^{i\varphi}$, $d\varphi=\frac{dz}{iz}$,

 $\cos \varphi = \frac{z^2 + 1}{2z}$, $\sin \varphi = \frac{z^2 - 1}{2iz}$, приводим интеграл к виду:

$$\int_{0}^{2\pi} \frac{d\varphi}{3 - \sin \varphi} = -2 \oint_{|z|=1} \frac{dz}{z^2 - 6iz - 1} .$$

Из двух особых точек $z=i\left(3\pm2\sqrt{2}\right)$ лишь точка $z=i\left(3-2\sqrt{2}\right)$ лежит внутри единичного круга и окончательно получаем:

$$\int_{0}^{2\pi} \frac{d\varphi}{3 - \sin\varphi} = -2 \oint_{|z|=1} \frac{dz}{z^{2} - 6iz - 1} = -4\pi i \frac{1}{2(3 - 2\sqrt{2})i - 6i} = \frac{\pi}{\sqrt{2}}.$$

$$12. \int_{0}^{2\pi} \frac{2\sin\varphi + \cos\varphi}{4\cos\varphi + 5} d\varphi.$$

Решение. Сделав замену $z = e^{i\varphi}$, преобразуем интеграл согласно (1.11) и, учитывая при вычислении интеграла лишь те особые точки функции, которые лежат внутри единичного круга, проводим вычисление интеграла с помощью теории вычетов:

$$\int_{0}^{2\pi} \frac{2\sin\varphi + \cos\varphi}{4\cos\varphi + 5} \, d\varphi = -0.5 \oint_{|z|=1} \frac{(2+i)z^2 + i - 2}{2z(z+2)(z+0.5)} dz =$$

$$= -\pi i \left(\underset{z=0}{res} f(z) + \underset{z=-0.5}{res} f(z) \right) = -\pi i \left(\frac{i-2}{2} - \frac{(2+i)0.25 + i - 2}{(2-0.5)} \right) = -\frac{\pi}{3}.$$
13.
$$\int_{0}^{2\pi} \frac{d\varphi}{\left(1 - 2a\cos x + a^2\right)^2} \quad \left(|a| < 1 \right).$$
Решение.
$$\int_{0}^{2\pi} \frac{d\varphi}{\left(1 - 2a\cos x + a^2\right)^2} = \oint_{|z|=1} \frac{dz}{iz \left(1 - a\frac{z^2 + 1}{z} + a^2\right)^2} =$$

$$= -\frac{i}{a^2} \oint_{|z|=1} \frac{zdz}{(z-a)^2 \left(z - \frac{1}{a}\right)^2} = -2\pi \frac{a^2 + 1}{\left(a^2 - 1\right)^3}.$$

$$14. \int_{0}^{2\pi} \frac{\cos^2 \varphi}{13 + 12\cos \varphi} d\varphi.$$

Решение.
$$\int_{0}^{2\pi} \frac{\cos^{2} \varphi}{13 + 12 \cos \varphi} d\varphi = -0.25i \oint_{|z|=1} \frac{(z^{2} + 1)^{2}}{z^{2} (6z^{2} + 13z + 6)} dz =$$

$$=0.5\pi \left(\underset{z=0}{\text{res }} f(z) + \underset{z=-\frac{2}{3}}{\text{res }} f(z) \right) = 0.5\pi \left(\frac{\left(z^2+1\right)^2}{6z^2+13z+6} \right)' \Big|_{z=0} +$$

$$+0.5\pi \left(\frac{(z^2+1)^2}{z^2(12z+13)}\right)\Big|_{z=-\frac{2}{3}} = \frac{13}{45}\pi.$$

$$15. \int_{-\infty}^{+\infty} \frac{dx}{\left(x^2+1\right)^2}.$$

Решение. Введем функцию $f(z) = \frac{1}{(z^2 + 1)^2}$, совпадающую на

действительной оси с подынтегральной функцией. Функция f(z) имеет в верхней полуплоскости полюс второго порядка z = i и удовлетворяет условиям теоремы 2. Согласно формуле (1.12), получаем:

$$\int_{-\infty}^{+\infty} \frac{dx}{\left(x^2 + 1\right)^2} = 2\pi i \operatorname{res}_{z=i} f(z) = 2\pi i \left(\frac{1}{\left(z + i\right)^2}\right)' \bigg|_{z=i} = \frac{\pi}{2}.$$
16.
$$\int_{-\infty}^{+\infty} \frac{x^4 + 1}{x^6 + 1} dx.$$

Решение. Функция $f(z) = \frac{z^4 + 1}{z^6 + 1}$ в верхней полуплоскости имеет три простых полюса:

$$z_k = e^{i\left(\frac{\pi}{6} + \frac{\pi k}{3}\right)}, \ k = 0,1,2$$

и условия теоремы 2 выполняются.. Далее на основании формулы (1.12) имеем:

$$\int_{-\infty}^{+\infty} \frac{x^4 + 1}{x^6 + 1} dx = 2\pi i \sum_{k=0}^{2} \underset{z=z_k}{res} f(z) = 2\pi i \sum_{k=0}^{2} \frac{z_k^4 + 1}{6z_k^5} =$$

$$= 2\pi i \sum_{k=0}^{2} \left(e^{-i\left(\frac{\pi}{6} + \frac{\pi k}{3}\right) + e^{-5i\left(\frac{\pi}{6} + \frac{\pi k}{3}\right)} \right) = \frac{4\pi}{3}.$$

$$17. \int_{-\infty}^{+\infty} \frac{x^2}{(x^2 + 4)(x^2 + 9)} dx.$$

Решение. Верхней полуплоскости принадлежат два простых полюса функции $f(z) = \frac{z^2}{(z^2+4)(z^2+9)}$: z=2i и z=3i. Согласно (1.12):

$$\int_{-\infty}^{+\infty} \frac{x^2}{(x^2+4)(x^2+9)} dx = 2\pi i \left(\frac{z^2}{(z+2i)(z^2+9)} \right) \Big|_{z=2i} + 2\pi i \times \left(\frac{z^2}{(z^2+4)(z+3i)} \right) \Big|_{z=3i} = \frac{32\pi}{5}.$$

$$\mathbf{18.} \int_{0}^{+\infty} \frac{x^2}{x^4+6x^2+25} dx.$$

Решение. Учитывая четность подынтегральной функции, преобразуем интеграл к виду:

$$\int_{0}^{+\infty} \frac{x^{2}}{x^{4} + 6x^{2} + 25} dx = 0.5 \int_{-\infty}^{+\infty} \frac{x^{2}}{\left(x^{2} + 3\right)^{2} + 16} dx.$$

Особыми точками функции $f(z) = \frac{z^2}{(z^2+3)^2+16}$ являются простые

полюса $z = 1 \pm 2i$ и $z = -1 \pm 2i$, два из которых лежат в верхней полуплоскости. Согласно (1.12):

$$0.5 \int_{-\infty}^{+\infty} \frac{x^2}{(x^2+3)^2+16} dx = \pi i \left(\underset{z_1=1+2i}{res} f(z) + \underset{z_2=-1+2i}{res} f(z) \right) =$$

$$=0.25 \pi i \left(\frac{z_1^2}{4z_1^3 + 12z_1} + \frac{z_2^2}{4z_2^3 + 12z_2} \right) = \frac{\pi}{2}.$$

$$19. \int_{-\infty}^{+\infty} \frac{x \sin x}{x^4 + 5x^2 + 4} dx.$$

Решение. Введем вспомогательную функцию $f(z) = \frac{ze^{iz}}{z^4 + 5z^2 + 4}$.

Очевидно, что при z=x значение $\mathrm{Im}\, f(z)$ совпадает с подынтегральной функцией. Функция f(z) удовлетворяет условиям леммы Жордана и, согласно замечанию 1 к лемме и формуле (1.15),получаем:

$$\int_{-\infty}^{+\infty} \frac{x \sin x}{x^4 + 5x^2 + 4} dx = \operatorname{Im} \left\{ 2\pi i \left(\frac{res}{z_1 = i} f(z) + \frac{res}{z_2 = 2i} f(z) \right) \right\} =$$

$$= \operatorname{Im} \left\{ 2\pi i \left(\frac{z_1 e^{iz_1}}{4z_1^3 + 10z_1} + \frac{z_2 e^{iz_2}}{4z_2^3 + 10z_2} \right) \right\} = \frac{\pi}{3} \left(\frac{1}{e} - \frac{1}{e^2} \right).$$

$$20. \int_{-\infty}^{+\infty} \frac{x^2 \cos x}{\left(x^2 + 1\right)^2} dx.$$

Решение. Введем вспомогательную функцию $f(z) = \frac{z^2 e^{lz}}{\left(z^2 + 1\right)^2}$.

Очевидно, что при z=x значение ${\rm Im}\, f(z)$ совпадает с подынтегральной функцией и лемма Жордана в данном случае выполняется. В верхней полуплоскости функция имеет полюс z=i кратности 2. Тогда

$$\int_{-\infty}^{+\infty} \frac{x^2 \cos x}{(x^2 + 1)^2} dx = \text{Re} \left\{ 2\pi i \left(\frac{z^2 e^{iz}}{z^2 + 1} \right)' \right|_{z=i} \right\} = 0.$$

$$21. \int_{-\infty}^{+\infty} \frac{e^{\alpha x}}{1 + e^x} dx ,$$

Решение. Введем вспомогательную функцию $f(z) = \frac{e^{cz}}{1+e^z}$. Выберем в качестве кривой интегрирования контур прямоугольника, состоящий из отрезка вещественной оси [-R,R] и отрезков прямых, соединяющих точки z=R и $z=R+2\pi i$, $z=R+2\pi i$ и $z=-R+2\pi i$ и $z=-R+2\pi i$ и z=-R.

Направление обхода границы прямоугольника — положительное. Отыщем особые точки функции $f(z) = \frac{e^{\alpha z}}{1+e^z}$: $z_k = Ln(-1) = i\pi(2k+1)$,

 $k=0,\pm 1,\pm 2,...$ Внутри прямоугольника находится лишь одна из особых точек: простой полюс $z=\pi i$. Поэтому согласно основной теореме о вычетах

$$\oint_{L} \frac{e^{\alpha z}}{1+e^{z}} dz = 2\pi i \cdot \underset{z=\pi i}{res} \frac{e^{\alpha z}}{1+e^{z}} = 2\pi i \frac{e^{\alpha \pi i}}{e^{\pi i}} = -2\pi i \cdot e^{\alpha \pi i}.$$

С другой стороны $\oint_L \frac{e^{\alpha z}}{1+e^z} dz = I_1 + I_2 + I_3 + I_4$, где $I_1 = \int_{-R}^R \frac{e^{\alpha x}}{1+e^x} dx$,

$$I_2 = \int\limits_0^{2\pi} rac{e^{lpha(R+iy)}}{1+e^{R+iy}} i dy$$
 , $I_3 = \int\limits_R^{-R} rac{e^{lpha(x+2\pi i)}}{1+e^{x+2\pi i}} dx$, $I_4 = \int\limits_{2\pi}^0 rac{e^{lpha(-R+iy)}}{1+e^{-R+iy}} i dy$. Приведем

интеграл I_3 к виду: $I_3 = -\int\limits_{-R}^R \frac{e^{\alpha x} \cdot e^{2\pi \alpha i}}{1 + e^x \cdot e^{2\pi i}} dx = -\int\limits_{-R}^R \frac{e^{\alpha x} \cdot e^{2\pi \alpha i}}{1 + e^x} dx$. Тогда

 $I_1 + I_3 = \left(1 - e^{2\pi \alpha i}\right) \int\limits_{-R}^R \frac{e^{\alpha x}}{1 + e^x} dx$. Оценим по модулю подынтегральную функцию интеграла I_2 :

$$\left| i \frac{e^{\alpha R + iy}}{1 + e^{R + iy}} \right| = \frac{e^{\alpha R}}{\left| 1 + e^R \cos y + i e^R \sin y \right|} = \frac{e^{\alpha R}}{\sqrt{e^{2R} + 1 + 2e^R \cos y}} \le \frac{e^{\alpha R}}{e^R - 1} = \frac{e^{(\alpha - 1)R}}{1 - e^{-R}}.$$

Очевидно, что при $R \to \infty$ интеграл $I_2 \to 0$ $\left(0 < \alpha < 1\right)$. Аналогично, оценим по модулю подынтегральную функцию интеграла I_4 :

$$\left| i \frac{e^{-\alpha R + iy}}{1 + e^{-R + iy}} \right| = \frac{e^{-\alpha R}}{\left| 1 + e^{-R} \cos y + i e^{-R} \sin y \right|} = \frac{e^{-\alpha R}}{\sqrt{e^{-2R} + 1 + 2e^{-R} \cos y}} \le \frac{e^{-\alpha R}}{1 - e^{-R}} \to 0$$

при $R \to \infty$ и одновременно интеграл $I_4 \to 0$.

Таким образом, при $R \to \infty$ получаем:

 $-2\pi i\cdot e^{lpha\pi i}=\left(1-e^{2\pilpha i}
ight)\int\limits_{-R}^{R}rac{e^{lpha x}}{1+e^{x}}dx$, откуда искомый интеграл равен:

$$\int_{-\infty}^{+\infty} \frac{e^{\alpha x}}{1 + e^x} dx = \frac{2\pi i}{e^{\pi \alpha i} - e^{-\pi \alpha i}} = \frac{\pi}{\sin \pi \alpha} .$$

III. Укажем способ вычисления несобственных интегралов, когда подынтегральная функция f(z) имеет особые точки на действительной оси.

22.
$$\int_{0}^{+\infty} \frac{\sin \alpha x}{x} dx \quad (\alpha > 0).$$

Решение. Введем вспомогательную функцию $f(z) = \frac{e^{i\alpha z}}{z}$

$$=\frac{e^{-\alpha y}\left(\cos\alpha x+i\sin\alpha x\right)}{x+iy} \quad . \text{ В случае, если } z=x\,, \text{Im}\!\left(\frac{e^{i\alpha z}}{z}\right)=\frac{\sin\alpha x}{x}\,.$$

Введенная функция имеет особую точку z=0 на вещественной оси – полюс первого порядка.

На множестве точек ${\rm Im}\,z>0$ рассмотрим замкнутый контур Γ , состоящий из отрезков вещественной оси [-R,-r], [r,R] и полуокружностей $C_R:|z|=R,\ C_r:|z|=r,{\rm Im}\,z\ge 0$.

В области D_{Γ} , ограниченной замкнутым контуром Γ , функция $f(z)=\frac{e^{i\alpha z}}{z}$ аналитична и интеграл $\int\limits_{\Gamma}\frac{e^{i\alpha z}}{z}dz$ =0.

С другой стороны

$$\int_{\Gamma} \frac{e^{i\alpha z}}{z} dz = \int_{C_R} \frac{e^{i\alpha z}}{z} dz + \int_{-R}^{-r} \frac{e^{i\alpha x}}{x} dx + \int_{C_r} \frac{e^{i\alpha z}}{z} dz + \int_{r}^{R} \frac{e^{i\alpha x}}{x} dx = 0,$$
 (2.1)

контур Γ проходим в положительном направлении. Заменив во втором интеграле x на -x, приводим его κ виду $-\int_{r}^{R} \frac{e^{i\alpha x}}{x} dx$ и объединяем с четвертым интегралом:

$$\int_{r}^{R} \frac{e^{i\alpha x} - e^{-i\alpha x}}{x} dx = 2i \int_{r}^{R} \frac{\sin \alpha x}{x} dx.$$

Интеграл $\int\limits_{C_R} \frac{e^{i\alpha z}}{z} dz$, согласно лемме Жордана, стремится к нулю при $R{
ightarrow}\infty$.

Для оценки интеграла $\int\limits_{C_r} \frac{e^{i\alpha z}}{z} dz$ используем лорановское разложение

функции $f(z) = \frac{e^{i\alpha z}}{z}$ в окрестности точки z=0

$$f(z) = \frac{e^{i\alpha z}}{z} = \frac{1 + i\alpha z + \frac{(i\alpha z)^2}{2} + ...}{z} = \frac{1}{z} + \chi(z) \ , \ \text{где} \ \chi(z) - \text{аналитическая}$$
 функция в окрестности точки z=0, $\ \chi(0) = i\alpha$.

Тогда интеграл
$$\int\limits_{C_r} \frac{e^{i\alpha z}}{z} dz = \int\limits_{C_r} \frac{1}{z} dz + \int\limits_{C_r} \chi(z) dz \; .$$

Так как функция $\chi(z)$ ограничена в окрестности точки z=0, то интеграл

 $\int\limits_{C_r} \chi(z) dz$ стремится к нулю при $r \to 0$. В интеграле $\int\limits_{C_r} \frac{1}{z} dz$, сделав замену

 $z=re^{i\varphi}, \varphi\in \left[\pi,0\right]$, получим $\int\limits_{C_r} \frac{1}{z}dz=\int\limits_{\pi}^{0} \frac{re^{i\varphi}i}{re^{i\varphi}}d\varphi=-\pi i$. Переходя в формуле

(2.1) к пределу при $R \to \infty, \ r \to 0$, получаем

$$2i\int_{0}^{+\infty} \frac{\sin \alpha x}{x} dx - \pi i = 0$$
, откуда следует, что
$$\int_{0}^{+\infty} \frac{\sin \alpha x}{x} dx = \frac{\pi}{2}.$$

Замечание . Очевидно, что при $\alpha < 0$ $\int\limits_0^{+\infty} \frac{\sin \alpha x}{x} dx = -\frac{\pi}{2}$.

Используемая литература

- 1. А.Г.Свешников, А.Н.Тихонов. Теория функций комплексной переменной. М.: Наука, 2010. 336с.
- 2. Ю.В.Сидоров, М.В.Федорюк, М.И.Шабунин. Лекции по теории функций комплексного переменного.— М.: Наука, 1989.— 480с.
- 3. И.И.Привалов. Введение в теорию функций комплексного переменного.— М.: Высшая школа, 1999.— 432с.
- 4. М.А.Лаврентьев, Б.В.Шабат. Методы теории функций комплексного переменного.— М.: Наука, 1988.—688с.
- 5. Л.И.Волковыский, Г.Л.Лунц, И.Г.Араманович. Сборник задач по теории функций комплексного переменного.— М.: Наука, 1970.— 320c.

Оглавление

1. Вычисление вычетов	3
1.1 Изолированные особые точки. Ряд Лорана	3
1.2 Определение и способы вычисления вычетов	4
1.3 Основная теорема теории вычетов	6
1.4 Вычисление определенных интегралов с помощью теории	
вычетов	6
2. Примеры вычисления интегралов.	88