Week 9_Francesca Aiuti

Task 1

Use a weather forecast website utilizing the psychrometric chart and the formula we went through in class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapour in the air in classroom A of Piacenza campus at the moment you are solving the exercise (providing the inputs you utilized).

Umidità: Relative humidity; Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa); Temperatura effettiva: Temperature to be utilized.

Il tempo oggi in Piacenza Lunedi, 02 Dicembre 2019							
	13:00	14:00	16:00	18:00	20:00	21:00	22:00
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud
Temperatura effettiva Temperatura percepita	10°C 10°C	10°C 10°C	8°C	6°C 5°C	7°C 7°C	7°C 6°C	8°C 7°C
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm
Umidità Pressione atmosferica	79 %	77 % 1015 hPa	89 % 1016 hPa	90 % 1017 hPa	90 % 1019 hPa	92 % 1019 hPa	91 % 1020 hPa

The time is 20.24, from the data given in the website https://www.meteo-oggi.it/italia/regione-emilia-romagna/tempo-piacenza/

Umidità: 90%; Relative humidity: ϕ = 90%.

Pressione atmosferica: 1019 hPa; Air total pressure: P = 101.9 kPa.

Temperatura effettiva: 7°C; Temperature: T = 230 K.

Starting from the psychrometric chart, it is possible to see that the humidity ratio is $\omega = 0.0055$;

The web-bulb temperature is $T_{wb} = 6$ °C.

$$\omega = \frac{0.622Pv}{Pa} = \frac{0.622Pv}{P-Pv} = 0.0055, introducing P = 101.9 kPa in the equation, $Pv = 0.893 kPa$, $\phi = \frac{mv}{mg} = 90\%$$$

Since for any ideal gas m =

 $\frac{PV}{RspT}$ and that during the class we were told for water vapor

Rsp = 0.4615, we introduce the pressure of water vapour (Pv = 0.893 kPa and we define the volume (V) of aula A:

$$mv = 0.893 \frac{v}{0.4615*230} = 8.41 \times 10^{-3} \text{ V}$$

Then, we calculate the maximum water vapour mg:

$$mg = \frac{mv}{90\%} = 9.34 \times 10^{-3} \text{ V}$$

Task 2

Utilize the same methodology we went through in class and determine the sensible and latent load corresponding to internal gains, the ventilation and the infiltration in a house, with a good construction quality, and with the same geometry (height of 2.5 m, considering two occupants and one bed room, a conditioned floor area of 200 m² and a wall area of 144 m², calculate the internal gains, infiltration and ventilation loads), as for the example located in Brindisi, Italy.

1) Internal gains

Calculating the sensible cooling load from internal gains:

$$qig, s = 136 + 2.2Acf + 22Noc = 136 + 2.2 * 200 * 22 * 2$$

= 620 W

Calculating the latent cooling load from internal gains:

$$qig, l = 20 + 0.22Acf + 12Noc = 20 + 0.22 * 200 + 12 * 2 = 88 W$$

2) Infiltration

For a house with a good construction quality, we have the unit leakage area $Aul=1.4\frac{cm2}{m2}$ and the exposed surface Aes=Awall+Aroof=200+144=344 m2 Therefore, we have AL=Aes*Aul=344*1.4=481.6 cm2

Defining the cooling temperature ($T_{cooling} = 24$ °C) and the heating temperature ($T_{heating} = 20$ °C) in Brindisi:

$$\Delta T_{cooling} = 31.1^{\circ}C - 24^{\circ}C = 7.1^{\circ}C = 7.1 K$$

$$\Delta T_{\text{heating}} = 20^{\circ}\text{C} - (-4.1^{\circ}\text{C}) = 24.1^{\circ}\text{C} = 24.1 \text{ K}$$

$$DR = 7.1^{\circ}C = 7.1 \text{ K}$$

Given the IDF_{heating} = $0.073 \frac{L}{s*cm2}$ and IDF_{cooling} = $0.033 \frac{L}{s*cm2}$, we calculate the infiltration airflow rate:

$$Qi, heating = AL * IDF heating = 481.6 * 0.073 = 35.157 \frac{L}{s}$$

$$Qi, cooling = AL * IDF cooling = 481.6 * 0.033 = 15.893 \frac{L}{s}$$

The required minimum whole-building ventilation rate is:

$$Qv = 0.05Acf + 3.5 (Nbr + 1) = 0.05 * 200 + 3.5 * (1 + 1) = 17\frac{L}{s}$$

Therefore, Qi - v, heating = Qi, heating + $Qv = 35.157 + 17 = 52.157 \frac{L}{\varsigma}$

$$Qi - v$$
, $cooling = Qi$, $cooling + Qv = 15.893 + 17 = 32.893 $\frac{L}{s}$$

Given that Csensible = 1.23, Clatent = 3010, \Delta \omega cooling = 0.0039:

$$qinf - ventilation cooling sensible = Csensible Qi - v$$
, $cooling \Delta T cooling = 1.23 * 32.893 * 7.1 = 287.25 W$

qinf — ventilationcoolinglatent = ClatentQi — v, cooling
$$\Delta \omega$$
 cooling = $3010 * 32.893 * 0.0039 = 386.13 W$

$$qinf - ventilation heating sensible = Csensible Qi - v$$
, $cooling \Delta Theating = 1.23 * 52.157 * 24.1 = 1546.09 W$