Neural Networks

NLP in one day

Giant squid axon

- Large axon used to control squid locomotion
- Electrical properties investigated by Hodgkin and Huxley in 1952

Input and output

Action potential

	x ₁ Placental	x ₂ Lactates	y (output) Mammal
Dog	1	1	1
Cat	1	1	1
Bull shark	1	0	0
Pigeon	0	1	0
Lizard	0	0	0

	x ₁ Placental	x ₂ Lactates	y (output) Mammal
Dog	1	1	1
Cat	1	1	1
Bull shark	1	0	0
Pigeon	0	1	0
Lizard	0	0	0
ner features mensions) x_n — bia	w_1 w_1 w_n	w_2	$b + \sum_{i=1}^{n} w_i x$

		x ₁ Placental	x ₂ Lactates	y (output) Mammal
	Dog	1	1	1
	Cat	1	1	1
	Bull shark	1	0	0
	Pigeon	0	1	0
	Lizard	0	0	0
	her features mensions)	w_1	w_2	•
(all	x_n —	$\frac{w_n}{1}$		$b + \sum_{i=1}^{n} w_i x$
	bia	as		

Representational power of a perceptron

$$O = \begin{cases} 1 & \text{if } b + \sum_{i=1}^{n} w_i x_i \\ 0 & \text{otherwise} \end{cases}$$

For a two parameter problem, the decision boundary is given by:

1 if
$$b + w_1 x_1 + w_2 x_2 > 0$$

$$w_1 x_1 + w_2 x_2 = -b$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{b}{w_2}$$

i.e. a perceptron can only represent linearly separable problems.

Some linearly separable problems

AND

	X ₁	<i>X</i> ₂	0
а	0	0	0
b	0	1	0
С	1	0	0
d	1	1	1

OR

	<i>X</i> ₁	<i>X</i> ₂	o
а	0	0	0
b	0	1	1
С	1	0	1
d	1	1	1

Thank you

angus.roberts@kcl.ac.uk

https://www.kcl.ac.uk/people/angus-roberts