

PLATO 2.0 PLAnetary Transits and Oscillations of Stars

PLATO FEE-to-DPU Interface Requirement Document (IRD)

Subtitle Issue for Software SRR / iPDR

Ref. PLATO-DLR-PL-IC-0002

Issue Draft B

Date 23.10.2017

	Name	Date	Signature
Prepared:	Karsten Westerdorff, DLR	20.10.2017	
Checked:	Class Ziemke, DLR		
	Bernd Ulmer, DLR/IBU		
	Alexander Koncz, DLR		
	Philippe Plasson, LESIA		
	Tom Kennedy, MSSL		
	Matthias Wieser, OHB		
Approved:	Peter Becker, DLR		
Authorized:	Gisbert Peter, DLR		

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 2 / 36

CHANGE HISTORY

Issue	Change	Approved	Date
1	Initial release	K.Westerdo rff	05.04.2017
1.1	Changed or added FEE-DPU-IF531,-532, -533, -914, -927, -539, -912, -913, -543, -925, -926, -548, -923, -924, -937, -900, -551, -921, -919, -920, -556, -558, -559, -562, -563, -565, -566, -567, -934, -587, -589, -828, -830, -840, -844, -936, -863, -935, -594, -871, -873, -874, -875, -878, -881, -888, -891, -896, -897		23.10.2017
•			

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 3 / 36

EXPORTED MODULES FROM IBM DOORS

Module	Module ID		
/PLATO/Payload/S	Software/FEE-DPU IRD	0000036e	
Exported Version	Current Version, Last change: 23.10.2017		
-	doors://RMC-		
	075001WTS.intra.dlr.de:36677/?version=2&prodID=0&urn=urn:telelogic::1-		
	53ede90401644d27-M-0000036e		
Exported View	Export View		
Pages in this	5 - 36		
document			

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 4 / 36

TABLE OF CONTENTS

1	ľ	PRESENTATION OF THE DOCUMENT	5
	1.1	Purpose of the Document	5
	1.2	2 Application	5
	1.3	Responsibility	5
2	ľ	REFERENCES	
	2.1	Applicable Documents	6
	2.2		6
	2.3		
	2.4	Glossary & Acronyms	6
3	ı	MISSION AND BACKGROUND	9
	3.1	The PLATO Mission	9
	3.2	2 Instrument Architecture	9
	3.3	B Data Processing System (DPS) Architecture 1	10
4	:	Spacewire Interface 1	13
5	ľ	FEE-Modes 1	15
6	•	Windowing 1	16
7	(Configuration Interface 2	22
8	ľ	Data Interface 3	31
9	ľ	Pattern Generation 3	35
10) /	APPENDIX 3	36

PRESENTATION OF THE DOCUMENT

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B Date: 23.10.2017

Page: 5 / 36

1 PRESENTATION OF THE DOCUMENT

1.1 **Purpose of the Document**

This document describes the requirements for the interface between the F-FEE / F-DPU and N-FEE / N-DPU. Because both interfaces are equal in most ways, the requirements are summarized in a common document. Spedific requirements for F-FEE / F-DPU or N-FEE / N-DPU interface will be highlighted.

Because the FEE must support a subset of RMAP only, this documents tailors the according standard. Interface-relevant details of the FEE- and DPU-implementation will be specified as well. Finally the FDIR measures will be covered by this document.

1.2 **Application**

This document shall be used as an applicable document for the PLATO sub-units N-FEE, N-DPU, F-FEE and F-DPU development.

With reference to the upper level requirements, this ICD specifies all network layers of the corresponding sub-units.

1.3 Responsibility

This document is prepared and written by DLR. DLR will update the document with the input of all parties of the concerning sub-systems.

REFERENCES

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 6 / 36

2 REFERENCES

2.1 **Applicable Documents**

	Title	Reference
AD01	N-FEE URD (User Requirement Document)	PLATO-OHB-PL-RS-0005, Issue 3, Draft 1 (03/2017)
AD02	F-FEE URD (User Requirement Document)	PLATO-OHB-PL-RS-0005, Issue 3, Draft 1 (03/2017)
AD03	MEU URD (User Requirement Document)	PLATO-DLR-PL-RS-003, Issue 4, Draft 5 (03/2017)
AD04	FEU URD (User Requirement Document)	PLATO-DLR-PL-RS-004, Issue 4, Draft (03/2017)
AD05	PLATO Software System Specification	PLATO-DLR-PL-RS-006, Issue 1.1, Oct2015

2.2 Applicable ECSS Standards

	Title	Reference
AD20	SpaceWire - Links, nodes, routers and	ECSS-E-ST-50-12C
	networks	
AD21	SpaceWire protocol identification	ECSS-E-ST-50-51C
AD22	SpaceWire - Remote memory access	ECSS-E-ST-50-52C
	protocol	

Remark: At next issue, ECSS-E-ST-50-12C might be renumbered to: ECSS-E-ST-50-50E

2.3 Reference Documents

	Title	Reference
RD01	PLATO FEE Windowing - Technical Note	PLATO-DLR-PL-TN-018, Issue 1.3 (11/2016)
RD02	PLATO SIMICAm Patter Requirements	PLATO-LESIA-PL-TN-023, Issue 1.1 (03/2017)
RD03	PLATO CCD Definition	PLATO-MSSL-PL-TN-008

2.4 Glossary & Acronyms

AIT	Assembly, Integration and Test	
AIV	Assembly, Integration and Verification	
AOCS	Attitude and Orbit Control System	
ASW	Application SoftWare	
BSW	Boot SoftWare	
CCD	Charge Coupled Device	
CIDL	Configuration Item Data Lists	
CNES	Centre National d'Études Spatiales	
DLR	German Aerospace Center	
DMA	Direct Memory Access	
DPS	Data Processing System	
DPU	Data Processing Unit	
DSU	Debug Support Unit	
EEPROM	Electrically Erasable Programmable Read-Only Memory	

REFERENCES

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 7 / 36

FOCE	Floridated Consumal Commands For January				
EGSE	Electrical Ground Support Equipment				
EM	Engineering Model				
ESA	European Space Agency				
ESTEC	European Space Research & Technology Centre				
F-DPU	Fast camera DPU				
FEE	Front End Electronics				
FEU	Fast Electronics Unit				
FGS	Fine Guidance System				
FM	Flight Model				
FoV	Field of View				
FPA	Focal Plane Assembly				
Gb	Gigabit				
GS	Ground Station				
GSE	Ground Support Equipment				
HK	Housekeeping data				
HKTM	Housekeeping telemetry				
HW	Hardware				
I/F	Interface				
ICU	Instrument Control Unit				
kbps	Kilobit per second				
Mb	Megabit				
Mbps	Megabit per second				
Мрх	Mega-pixel				
MEU	Main Electronics Unit				
MGSE	Mechanical Ground Support Equipment				
MOC	Mission Operation Centre				
N-DPU	Normal camera DPU				
OB	Optical bench				
OBCP	On-Board Control Procedure				
OGSE	Optical Ground Support Equipment				
P/L	Payload Payload				
PDAAS	Plato Data Acquisition and Analysis System				
PDC	PLATO ground Data Centre				
PFM	Proto Flight Models				
PI	Principal Investigator				
PICD	Payload Interface Control Document (Part B)				
PLATO	PLAnetary Transits and Oscillations				
PLM	Payload Module				
PLTM	Payload Module Payload Telemetry				
PLTIVI	PLATO Payload Consortium				
	part per million				
ppm	Pixel				
Px QM	Qualification Model				
RMAP	Remote Memory Access Protocol				
SOC	Science Operation Centre				
SpW	SpaceWire Structured Thermal Madel				
STM	Structural Thermal Model				
SVM	Service Module				
SW	Software				
SWT	Science Working Team				
TBC	To Be Confirmed				
TBD	To Be Determined/Defined				

REFERENCES

Ref.: PLATO-DLR-PL-I C-0002

Issue: Draft B
Date: 23.10.2017
Page: 8 / 36

CCSDS	Consultative Committee for Space Data Systems
PUS	Packet Utilization Standard
ECSS	European Cooperation for Space Standardization
APID	Application Identifier
PID	Process Identifier
PCAT	Packet Category
SICD	Software Interface Control Document

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017

Page: 9 / 36

3 MISSION AND BACKGROUND

3.1 The PLATO Mission

PLATO is an M-class mission candidate of the European Space Agency's Science programme Cosmic Vision 2015-2025 foreseen to be launched by 2026. "PLAnetary Transits and Oscillations of stars" aims to characterise exoplanetary systems by detecting planetary transits and conducting asteroseismology of their parent stars.

PLATO is the next generation planetary transit experiment; its objective is to characterize exoplanets and their host stars in the solar neighbourhood. While it builds on the heritage from CoRoT and Kepler, the major breakthrough to be achieved by PLATO will come from its strong focus on bright targets, typically with $mV \le 11$. The PLATO targets will also include a large number of very bright and nearby stars, with $mV \le 8$.

The prime science goals of PLATO are:

- * the detection and characterization of exoplanetary systems of all kinds, including both the planets and their host stars, reaching down to small, terrestrial planets in the habitable zone;
- * the identification of suitable targets for future, more detailed characterization, including a spectroscopic search for biomarkers in nearby habitable exoplanets;
- * a full characterisation of the planet host stars, via asteroseismic analysis: this will provide us with the masses, radii and ages of the host stars, from which masses, radii and ages of the detected planets will be determined.

These ambitious goals will be reached by ultra-high precision, long (few years), uninterrupted photometric monitoring in the visible of very large samples of bright stars, which can only be done from space. The resulting high quality light curves will be used on the one hand to detect planetary transits, as well as to measure their characteristics, and on the other hand to provide a seismic analysis of the host stars of the detected planets, from which precise measurements of their radii, masses, and ages will be derived. For the brightest targets, planets are also expected to be detectable through the modulation of stellar light reflected on the planet surface, and/or through the astrometric wobble induced on the star by the planet orbital motion.

The PLATO space-based data will be complemented by ground-based follow-up observations, in particular very precise radial velocity monitoring, which will be used to confirm the planetary nature of the detected events and to measure the planet masses.

The full set of parameters of the systems with detected exoplanets will thus be measured, including all characteristics of the host stars and their orbits, radii, masses, and ages of the planets. Measurements of the radii and masses will be used to derive the planet mean densities and therefore will give insight on their internal structure and composition. The orbital parameters, together with the precise knowledge of all characteristics of the host star, will enable us to estimate the temperature and radiation environment of the planets. Finally, the knowledge of the age of the exoplanetary systems will allow us to put them in an evolutionary perspective.

See [RD1] for further details on the PLATO mission.

3.2 Instrument Architecture

The instrumental concept proposed by the PLATO Payload Consortium is based on a multi-camera approach, involving a set of several normal instruments monitoring stars fainter than mV=8, plus a low number of fast instruments observing extremely bright stars with magnitudes brighter than mV=8.

The telescope is based on a fully dioptric design, working in an extended visible light range. It has been designed to be able to observe a very large field, with respect to a sufficient pupil diameter.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 10 / 36

The 24 normal cameras are arranged in four sub-groups of 6 cameras. All 6 cameras of each sub-group have exactly the same Field of View (FOV), and the lines of sight of the four sub-groups are offset by $+/-9.2^{\circ}$ of their FOV of about 38°. This particular configuration allows surveying a very large field at each pointing, with various parts of the field monitored by 24, 12 or 6 normal cameras.

This strategy optimizes both the number of targets observed at a given noise level and their brightness. It is assumed that the satellite will be rotated around the mean line of sight by 90° every 3 months, resulting in a continuous survey of exactly the same region of the sky.

Each camera is equipped with its own CCD focal plane array, comprised of 4 CCDs. The CCDs work in full frame mode for the normal cameras, and in frame transfer mode for the fast cameras.

Each FPA is associated to a Front End Electronics (FEE). The camera (after Instruments tests) is delivered for PLM AIT with its FEE box attached to the rest of the camera by a temporary structure which shall be removed during the integration of the camera on the optical bench. The camera is delivered with FEE and FPA connected together by their flexi-cables. For safety reasons, these links shall never be disconnected after the delivery of the camera to PLM.

There are several units, the AEUs, which provide secondary voltages for the FEEs. 4 N-AEU boxes provides voltages for the normal FEEs/cameras, one N-AEU for one batch of 8 normal cameras. One F-AEU provides the voltages for the two fast FEEs/cameras. Additionally the F-AEU contains a synchronization module which provides hardware synchronization signals to the FEEs (synchronizing the CCD read-out), power supplies (synchronizing the DC/DC converters) in the AEU and to the SVM (synchronizing the thermal temperature control of the TOUs).

3.3 Data Processing System (DPS) Architecture

The PLATO payload data processing system is made up of the DPUs and the ICU, with data routed through a SpaceWire network. The ICUs are connected to the SVM through SpaceWire links.

There are 12 normal DPUs. Each N-DPU is responsible for processing the data of 2 normal cameras. The processing cadence for N-DPUs is 25 sec.

There are 2 fast DPUs gathered in one electronic box named FEU (Fast Electronic Unit). Each F-DPU is responsible for processing the data of one fast camera. The processing cadence for F-DPUs is 2.5 sec.

The F-DPUs have a supplementary function: they are responsible for providing angle error data as Fine Guidance System (FGS) measurements directly to the SVM AOCS.

There are 2 ICU channels which work in cold redundancy. The ICU is responsible for the management of the payload, the communication with the Service Module (SVM), the compression of scientific data before transmitting them as telemetry to the SVM.

The following figure gives an overview of the PLATO data processing system architecture and of the data flow rates. It focuses on the sharing of the main functions and the data flows. It is a simplified view of the hardware architecture.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B Date: 23.10.2017 Page: 11 / 36

Figure: PLATO on-board data flow

Due to fault tolerance reasons and in order to optimize the resources (mass, volume, harness), the physical implementation of the architecture described above foresees to split the 12 N-DPUs in 2 groups of 6 N-DPUs. Each group of 6 N-DPUs is gathered in a box called Main Electronic Unit (MEU).

In the same way, the two cold redundant ICU channels are gathered in a same box.

The figure below shows the Payload architecture:

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 12 / 36

Figure: PLATO Payload Electrical Architecture

Spacewire Interface

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B Date: 23.10.2017 Page: 13 / 36

Spacewire Interface 4

Between FEE and DPU Spacewire is the only electrical interface. RMAP and a PLATO specific data-protocol will be used at the higher layers of the Spacewire-network.

	Title	Spac	ewir	e Interface							
FEE-DPU-I 529		electrical pliant to st			parameters	of	the	Spacewire	interface	shall	be

	Title:	Grounding
FEE-DPU-IF- 530	TBD	

	Title: Sp	acewi	re Speed	- Up	link										
F 0 4	All Spacewir (from DPU to			FEE	and	DPU	shall	run	with	40	Mbps	±	5%	in	uplink

Title: Spacewire Speed - Downlink											
	All Spacewire links between FEE and DPU shall run with 100 Mbps ± 5% in downlin	ık									
532	from FEE to DPU).										

	Title: Spacewire Timing Margin
FEE-DPU-IF-	SpaceWire link elements shall be compliant to following budget:
533	- Jitter + Skew of Encoder and associated drivers including unit connector: max. 27%
	of 1/SpW data-signal-rate
	- Jitter + Skew of Decoder and associated receivers including unit connector: max.
	42% of 1/SpW data-signal-rate
	- Jitter + Skew of cable between units including: max. 21% of 1/SpW data-signal-
	rate

Note: A margin 10% of 1/SpW data-signal-rate is left for safety reason.

	Title:		Space	wir	e Liı	nk-S	tart										
FEE-DPU-IF-	The	DPU	shall	be	the	ma	ster	on tl	ne	Spac	cewire	e-inter	face.	After	powe	er-up	the
Spacewire-interface of the FEE shall be in Autostart-Mode. The DPU shall responsible for starting the Spacewire-link.											shall	be					

	Title: Spacewire Error Register
FEE-DPU-IF-	The FEE shall provide a Spacewire error register to store the reason of a Spacewire
927	disconnect. The reason for a disconnect could be disconnect by DPU, parity error,
	escape error, character sequence error and credit-error.

	Title: DPU Spacewire-Address
	All Spacewire packets sent by the FEE and targeting the DPU shall have the logical
534	address 0x50.

Note: This address is only valid inside the FEE-DPU network, but will not be visible in other Spacewire-networks in the payload-system.

	Title: F	EE Spacev	vire-Add	Iress							
FEE-DPU-IF- 536	All Spacew address 0x	•	sent by	the DPU	and	targeting	the FE	E shall	have t	the	logical

Spacewire Interface

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 14 / 36

Note: This address is only valid inside the FEE-DPU network, but will not be visible in other Spacewire-networks in the payload-system. Therefore, the FEE cannot be directly addressed from the platform or the ICU.

	Title: Spacewire Routing
	The Spacewire-connection between FEE and DPU shall be direct, without any router.
538	Logical address routing is used for the FEE-DPU interface.

	Title: Spacewire Timecode Generation
	The FEE shall generate a time-code on arrival of the external synchronization signal
539	from the AEU.

Note: The time-code value shall be compliant to [AD22]. The lower 6-bit of the time-code shall be incremented on every synchronization-signal. The control-flags (bit 7 and 8) shall be set to 0.

Note: The time-code will signal the beginning of the read-out phase.

	Title: Timecode Link (F-FEE)	
	The Spacewire time-code of the F-FEE sh	all be send only over one Spacewire-link.
541	The Spacewire-link is selectable in the F-FE	E-configuration.

	Title:	Time	code A	Acc	uracy	•							
FEE-DPU-IF-	The	time-code	shall	be	sent	within	1	microsecond	after	arrival	of	the	external
913	synchronization signal.												

FEE-Modes

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 15 / 36

5 FEE-Modes

Title: **FEE Modes**FEE-DPU-IF543

- Stand-By Mode
- Calibration-Mode

- Calibration-Pattern-Mode

- Windowing-Mode

- Windowing-Pattern-Mode

- Partial-Readout-Mode

Title: **Default Mode**FEE-DPU-IF544

After power-on the FEE shall be in stand-by-mode.

Title: Stand-By-Mode

FEE-DPU-IF545
The purpose of the stand-by-mode is to configure the FEE. Most of the configurationsettings may be locked outside the stand-by-mode. All other modes shall be entered from the stand-by-mode.

FEE-DPU-IF546
In the calibration-mode a half-CCD (N-FEE) or four half-CCDs (F-FEE) will be transmitted to the DPU. Because the bandwidth to the DPU is limited, a complete CCD-image cannot be transmitted at once. Therefore the transmission is stretched over two cycles.

Title: Calibration-Pattern-Mode

FEE-DPU-IF925 In the calibration-pattern-mode is almost identical to the calibration-mode, but synthetic data pattern shall be transferred instead of actual CCD data.

Title: Windowing-Mode

FEE-DPU-IF547

Windowing-Mode

In the windowing-mode the full CCD will be read out, but only regions of interests will be transmitted to the DPU.

Title: Windowing-Pattern-Mode

FEE-DPU-IF926

In the windowing-pattern-mode is almost identical to the windowing-mode, but synthetic data pattern shall be transferred instead of actual CCD data.

FEE-DPU-IF548

Partial-Readout-Mode
In the partial readout mode most of the lines shall be dumped during readout to avoid over-saturation in ambient conditions.

Title: Mode Change

FEE-DPU-IF923

The mode shall be changed always on the external sync-signal.

Title: **Emergency Stand-By**FEE-DPU-IF924

The FEE shall return to stand-by-mode immediately if a special command "emergency stand-by" is sent by the DPU.

Title: CCD Read Out Order (N-FEE)

FEE-DPU-IF937

The sequence of CCD read out in the N-FEE shall be configurable. For test purpose it shall be possible always the same CCD at every external sync impulse.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 16 / 36

6 Windowing

Title: Coordinate System and Orientation

The coordinate system for the windowing is derived from the CCD read-out scheme. Right and left side of the CCD have seperate coordinate-systems. The origin of both coordinate-systems is the first pixel read from the CCD.

Figure: Coordinate-system of the N-camera and the orientation of the windows

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 17 / 36

Figure: Coordinate-system of the F-camera and the orientation of the windows

Title: Window-Parameters

FEE-DPU-IF551

A window shall be defined by the following three parameters:
- Y-coordinate == CCD row
- CCD-side (bit 13: 0 = left, 1 = right) and X-coordinate == CCD column (bits 12:0)
- insertion position in the active window-list (N-FEE only)
Each parameter is 16-bit width, containing a 2-bit identifier and a 14-bit value.

Figure: Structure of the window parameters

15	13	12		0					
01b			Y coordinate (row)						
10b	side		X coordinate (column)						
11b		active window position							

Note: The active window list is an array generated in the N-FEE, which holds all window touched by the current read-out line. The example in requirement FEE-DPU-IF-559 highlights the active windows in red.

Note: The active window position is optional parameter needed for a special implementation in the N-FEE. With this approach the position of the active window is preprocessed to save additional memory and logic in the N-FEE FPGA. It is recommend to generate a bit mask for the next line, similar to the F-FEE, without using the active window position.

Title:	Window Lists

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 18 / 36

FEE-DPU-IF- A window shall be defined for a specific CCD. So, there shall be four separate lists with window-definitions.

Title: Window List Size (N-FEE)

The N-FEE shall store up to 115,000 window-coordinates, summarized over the four window-lists.

Title: Window List Size (F-FEE)

FEE-DPU-IF906

Window-List Size (F-FEE)

The F-FEE shall store up to 700 window-coordinates, summarized over the four window-lists.

Title: Windows per CCD (F-FEE)

FEE-DPU-IF921

The F-FEE shall be able to process 512 windows per CCD.

Title: Maximum Windows per Row (N-FEE)

FEE-DPU-IF919

The N-FEE shall be able to handle up to 766 active windows per line.

This number results from a worst estimation, where 6 pixel wide windows cover alle pixels in the line without overlapping = (2255 pixels per line + 40 pre-/overscan) / 6

* 2

Title: Maximum Windows per Column (N-FEE)

The F-FEE shall be able to handle up to 128 windows per column.

This number results from a technical worst-case estimation of having at maximum a quarter of the windows in one line.

Title: Window-List Pointer Registers

FEE-DPU-IF554
For each window-list there shall be two registers, which contain the address-pointer and the length of the list. The length shall be given in number of parameter-words (16-bit words). Pointer- and length-register shall be programmable by the DPU.

Note: Because 4 window-lists must be handled, there shall be 4 pointer- and 4 length-registers.

Title: Window Definition (N-FEE)

FEE-DPU-IF556

A window list for the N-FEE shall have the following structure: The Y-coordinate shall be defined once per row. After the Y-coordinate, tuples of X-coordinate and active-window-position (optional) follow. At a new row the next Y-coordinate is stated in the list.

Title: **Window-List Sorting (N-FEE)**FEE-DPU-IF558

The window-list for the N-FEE shall be sorted by the Y-coordinate (row) first and by the X-coordinate (column) second.

Title: Window Definition (F-FEE)

FEE-DPU-IF559

A window list for the F-FEE shall consist of X/Y-coordinate tuples.

Title: Window-List Sorting (F-FEE)

FEE-DPU-IF561

The window-list for the F-FEE shall be sorted by the X-coordinate (column) first and by the Y-coordinate (row) second.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 19 / 36

Note: The sorting is different for N-FEE and F-FEE is different because of the amount of windows to handle and the resulting implementation. The F-FEE can scan all window-definition during a line read-out. So it can prepare a bit-mask for the next line. In contrast the N-FEE must focus on the windows touching the current read-out line for preparing the bit-mask.

Figure: Window-list examples for N-FEE and F-FEE

For the N-FEE option A is without active-window-position (recommend) and option B is with

N-FE	E(C)pti	ion	A)

N-FEE (Option A)
4045h (Y: 4000h + 69d)
80D9h (X: 8000h + 217d)
4047h (Y: 4000h + 71d)
80E9h (X: 8000h + 233d)
404Bh (Y: 4000h + 75d)
80E0h (X: 8000h + 224d)
404Ch (Y: 4000h + 76d)
80EFh (X: 8000h + 239d)
404Dh (Y: 4000h + 77d)
80D6h (X: 8000h + 214d)
4053h (Y: 4000h + 83d)
80D9h (X: 8000h + 217d)
4056h (Y: 4000h + 86d)
80D1h (X: 8000h + 209d)
80E2h (X: 8000h + 226d)
80EFh (X: 8000h + 239d)

N-FEE (Option B)

4045h (Y: 4000h + 69d)
80D9h (X: 8000h + 217d)
C000h (X: E000h + 0d)
4047h (Y: 4000h + 71d)
80E9h (X: 8000h + 233d)
C001h (X: E000h + 1d)
404Bh (Y: 4000h + 75d)
80E0h (X: 8000h + 224d)
C000h (X: E000h + 0d)
404Ch (Y: 4000h + 76d)
80EFh (X: 8000h + 239d)
C001h (X: E000h + 1d)
404Dh (Y: 4000h + 77d)
80D6h (X: 8000h + 214d)
C000h (X: E000h + 0d)
•

F-FEE

80D1	.h (X: 8000h + 209d)
4056	h (Y: 4000h + 86d)
80D6	Sh (X: 8000h + 214d)
404D	h (Y: 4000h + 77d)
80D9	h (X: 8000h + 217d)
4045	h (Y: 4000h + 69d)
4053	h (Y: 4000h + 83d)
80E0	h (X: 8000h + 224d)
404B	h (Y: 4000h + 75d)
80E2	h (X: 8000h + 226d)
4056	h (Y: 4000h + 86d)
80E9	h (X: 8000h + 233d)
4047	h (Y: 4000h + 71d)
80EF	h (X: 8000h + 239d)
404C	h (Y: 4000h + 76d)
4056	h (Y: 4000h + 86d)

Title: Window List Upload

904

Windowing

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 20 / 36

FEE-DPU-IF- It shall be possible to change the window-list outside the read-out phase.

Note: At the F-FEE this could be done during shift to the CCD-store-section and after readout. At the N-FEE new window coordinates could be uploaded during the read-out of another CCD.

	Title:	Windo	w Size						
	All windov	vs shall	have the same s	ize. The	size of	the windov	vs shall	be configu	ırable in
563	a range of	2x2 to	32x32 pixels in	one-pixe	el steps.	X and Y size	ze can b	e differen	t.

Note: The default imagette size for normal and fast cameras is 6x6 pixels. For the FGS a windows size of 9x9 may be needed from the F-FEE. At the first cycle, before the fine-pointing is established, bigger windows will be requested for the guide-stars. In this case the windows size can be increased to 32x32 pixels and only the 30 guide-stars will be transferred to the F-DPU.

	inte. Window Size Modification
FEE-DPU-IF- 565	In windowing-mode it shall be possible the change the window-size outside read-out.
	Title: Window Overlapping
FEE-DPU-IF-	The FEE shall support overlapping windows.

Window Size Medification

	Title: Parallel Overscan Transfer at N-FEE
FEE-DPU-IF-	The N-FEE shall be able to transmit complete lines from parallel overscan area in
566	separate packets. The number of parallel overscan lines shall be configurable in a
	range from 0 to 31.

Note: The overscan-lines will be used for the smearing correction. For this purpose lines on the top of the actual image will be shifted out the CCD.

	Title: Parallel Overscan Transfer at F-FEE
FEE-DPU-IF-	The F-FEE shall be able to transmit parts from parallel overscan area in separate
567	packets. The number of parallel overscan lines shall be configurable in a range from 0
	to 10. The F-FEE shall transmit only columns, which are a vertical projection of a
	window. The F-FEE shall derive the relevant columns from the window-list.

Note: At the F-FEE at maximum 10 parallel overscan lines are accessible, because of the structure of the CCD. The first 5 lines will be dark lines and second 5 lines will be actual parallel overscan lines, if lines 0..4 are dumped during shift from the image into the storage area.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 21 / 36

Figure: The following figure illustrates the transferred pixel from the parallel overscan in the $\overline{\text{F-FEE}}$

	Title:	Maximu	m Par	allel Over	scan	Pixels	(F-FEE	:)			
FEE-DPU-IF-	The F-FEE	shall be	able t	o transfer	50%	of the	parallel	overscan	pixels for	each	CCD
934	half.										

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 22 / 36

7 Configuration Interface

	Title: RMAP for Configuration and Status
FEE-DPU-IF-	A subset of the remote-memory-access-protocol (RMAP), as defined in AD22, shall be
570	used to configure the FEE and to gather status or housekeeping-information from the
	FFF

Note: The FEE may implement the full RMAP protocol, but only RMAP requests and replies described in this chapter must be supported.

	Title: FEE Register Interface
FEE-DPU-IF-	The FEE-configuration and the FEE-status shall be accessed by registers via RMAP.
572	This means, for each function, parameter or status a dedicated address shall be
	specified.
	The register shall be plain. I.e. there will be no support for any kind of queues or
	buffers on a single address. The content of buffers shall be fully mapped into the
	RMAP address range.

	Title: RMAP	Memory Align	ment							
FEE-DPU-IF-	The address for	a RMAP-access	shall be	32-bit	aligned.	A RMAP	access	shall	have a	a
573	size of multiple 3	32-bit words.								

	Title: R	MAP	Data Byte	Encod	ling					
FEE-DPU-IF-	The encodir	ng of 3	32-bit word	ds shall	be big-endi	an, so	the m	nost significan	t byte	(MSB)
574	shall be sen	nt first	and the le	ast sigr	nificant byte	(LSB)	shall b	oe sent last.		

	Title:	F	EE Addre	ess Ma	ар							
	The	RMAP	memory	shall	be	divided	into	areas	for	critical	configuration,	general
575	conf	iguratio	on, housel	keepin	g ar	nd windo	wing.					

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 23 / 36

Figure: Address map of the FEE

Critical Configuration Area	0000	0000	$0 \times 0 0$
(verified write)	OOFC	0000	0x00
	0100	0000	0x00
General Configuration Area			
(unverified write)			
		0000	0×00 0×00
Housekeeping Area			
		0000	
	0000	0000	0800
Not supported			
	FFFC	007F	0×00
		0080	
Windowing Area			
(unverified write)			
(dilverilled write)			
	_	00FF 0100	
Not supported	0000	0100	UXUU
Not supported			
	FFFC	FFFF	0xFF
	1110	TITE	UALL

	Title: Critical Configuration Area			
FEE-DPU-IF-	The address-range 0x0000_0000 to 0x0000_00FF shall be reserved for critical			
	configuration settings, like FEE-mode, subsystem power, etc. A write access to this			
	address-range shall be done by a RMAP verified-write-request. Registers in the critic			
	configuration-area shall be readable by a RMAP read-request.			

Title: General Configuration Area

FEE-DPU-IF579
The address-range 0x0000_0100 to 0x0000_06FF shall be reserved for non-critical configuration settings, like CCD timing settings. A write access to this address-range shall be done by a RMAP unverified-write-request. Registers in the general configuration-area shall be readable by a RMAP read-request.

	Title: Housekeeping Area
FEE-DPU-IF-	The address-range 0x0000_0700 to 0x0000_07FF shall be reserved for housekeeping
580	and status information. Registers in the general configuration-area shall be readable
	by a RMAP read-request.

	litle: Windowing Area
	The address-range 0x0080_0000 to 0x00FF_FFFF shall be reserved for the window-
581	lists. A write access to this address-range shall be done by a RMAP unverified-write-
	request. Registers in the windowing-area shall be readable by a RMAP read-request.

	Title:	RMAP Verified Write Request
FEE-DPU-IF	A RMAP-v	erified-write-request with a fixed data-length of 4 bytes shall be used by the
582	DPU to se	t register-values in the critical configuration-area of the FEE.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 24 / 36

Figure: Request-packet for verified write access

0	logical address = 0x51
1	protocol id = 0x01
2	instruction = $0x7C$
3	key = 0xD1
4	initiator address = 0x50
5	transaction id (MSB)
6	transaction id (LSB)
7	ext. address
8	address (MSB)
9	address
10	address
11	address (LSB)
12	data length (MSB) = 0x00
13	data length = 0x00
14	data length = 0x04
15	header CRC
16	data (MSB)
17	data
18	data
19	data (LSB)
20	data CRC

	Title: Verified Write- Instruction Field			
FEE-DPU-IF-	For a write request to the critical configuration area, the RMAP instruction shall be			
583	0x7C. Regarding AD22 this means:			
	- Bits 7:6 = b01, for RMAP request			
	- Bits 5:2 = b1111, for "write, incrementing address, verify before write, send reply"			
	- Bits 1:0 = b00, for length of reply address field is 0			

	Title:	Verified Write-Length Field
FEE-DPU-IF- 584	The data	length of a verified write request shall be fixed to 4 bytes.

	Title: RMAP Unverified Write Request
FEE-DPU-IF-	A RMAP-verified-write-request shall be used by the DPU to set register-values in the
585	general-configuration-area or in the windowing-area of the FEE.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 25 / 36

Figure: Request-packet for unverified write access

0	logical address = 0x51
1	protocol id = 0x01
2	instruction = 0x6C
3	key = 0xD1
4	initiator address = 0x50
5	transaction id (MSB)
6	transaction id (LSB)
7	ext. address
8	address (MSB)
9	address
10	address
11	address (LSB)
12	data length (MSB)
13	data length
14	data length (LSB)
15	header CRC
16	data
	(MSB first)
	(IVISE IIISC)
N	data CRC

	Title: Unverified Write – Instruction Field
FEE-DPU-IF-	For a write request to the critical configuration area, the RMAP instruction shall be
586	0x6C. Regarding AD22 this means:
	- Bits 7:6 = b01, for RMAP request
	- Bits 5:2 = b1011, for "write, incrementing address, do not verify before write, send
	reply"
	- Bits 1:0 = b00, for length of reply address field is 0

	Title:	Unverified	l Write – L	ength Field					
	The data I	ength of a	unverified	write request	shall be a	multiple of	4 bytes.	The data	а-
587	length sha	II be less th	nan or equa	al to 16,384 B	ytes.				

	Title: RMAP Read Request
FEE-DPU-IF-	A RMAP read-request shall be used by the DPU to get the content of any FEE-register.
588	

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 26 / 36

Figure: Request-packet for read access

r-b	acket for read access
0	logical address = 0x51
1	protocol id = 0x01
2	instruction = 0x4C
3	key = 0xD1
4	initiator address = 0x50
5	transaction id (MSB)
6	transaction id (LSB)
7	ext. address
8	address (MSB)
9	address
10	address
11	address (LSB)
12	data length (MSB)
13	data length
14	data length (LSB)
15	header CRC

	Title: RMAP Read – Instruction Field
FEE-DPU-IF-	For a read request to the critical configuration area, the RMAP instruction shall be
589	0x4C. Regarding AD22 this means:
	- Bits 7:6 = b01, for RMAP request
	- Bits 5:2 = b0011, for "read, incrementing address"
	- Bits 1:0 = b00, for length of reply address field is 0

	Title:	RMAP	Read -	Data Le	ngth	Field					
FEE-DPU-IF-	The data	length (of a read	request	shall	be a	multiple	of 4 byte	s. The	e data-length	shall
590	be less th	an or e	qual to 1	6,384 By	tes.						

Title:	RMAP Request – Key Field
FEE-DPU-IF- The ke	y-field in a RMAP request shall be 0xD1.

	Title: RMAP Request – Initiator Address Field
FEE-DPU-IF- 592	The initiator address field in a RMAP request shall be 0x50.

	Title:	RMAP Request – Transaction ID Field
FEE-DPU-IF- 826	The DPU	shall increment the transaction ID for each RMAP request.

	Title: RMAP Request – Address Field
	The address field in a RMAP request shall contain the FEE register address. The
827	address shall be aligned to 32-bit, i.e. bits 0 and 1 are zero. The extended address
	will not be used and shall be zero.

	RMAP Request - Header and Data CRC Field
FEE-DPU-IF- 828	The header and data CRC of a RMAP request shall be calculated by DPU and FEE as described in AD03.

Title:	RMAP Request – Header CRC Check	

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 27 / 36

FEE-DPU-IFR29

The FEE shall check the header CRC for a RMAP request.

Title: RMAP Request – Data CRC Check

FEE-DPU-IF830

Title: RMAP Request – Data CRC Check

The FEE shall check the data CRC for a RMAP write request.

Title: RMAP Reply

FEE-DPU-IF- The FEE shall send a RMAP-reply to any RMAP request to Spacewire address 0x51.

Figure: RMAP-reply packet to a write-request

logical address = 0x500 1 protocol id = 0x012 instruction 3 status 4 target address = 0x51 5 transaction id (MSB) transaction id (LSB) 6 7 header CRC

Figure: RMAP-reply packet to a read-request

0	logical address = 0x50
1	protocol id = 0x01
2	instruction = 0x0C
3	status
4	target address = 0x51
5	transaction id (MSB)
6	transaction id (LSB)
7	reserved = 0
8	data length (MSB)
9	data length
10	data length (LSB)
11	header CRC
12	doto
	data
	(MSB first)
data-length + 12	data CRC

Title: RMAP Reply – Logical Address

FEE-DPU-IF834 The logical-address for the Spacewire-routing shall contain the initiator address from the request-packet.

Title: RMAP Reply – Instruction Field

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 28 / 36

FEE-DPU-IF- The instruction field of the RMAP-reply shall have the following content:

- Bits 7:6 shall be set to b00 to indicate a reply-packet.

- Bits 5:2 shall contain the command from the request-packet.
- Bits 1:0 shall contain the reply-address length from the request-packet.

Title: RMAP Reply – Status Field

FEE-DPU-IF836

The status-field in the RMAP-reply shall contain 0 if the command execution was successful. An error in the RMAP request execution shall cause a non-zero status-field according to AD22. The following status-codes shall be supported by the FEE: 0-7, 12.

Title: RMAP Reply – Target Field

FEE-DPU-IF837

The target address field in the RMAP-reply shall contain 0x51.

Title: RMAP Reply – Transaction ID Field

FEE-DPU-IF838

The transaction ID field in the RMAP-reply shall contain of copy of transaction ID in the corresponding RMAP request.

Title: RMAP Read Reply – Data Length Field

FEE-DPU-IF839
The data-length field in the RMAP-reply shall contain of copy of data-length in the corresponding RMAP read-request.

FEE-DPU-IF-840 Title: RMAP Reply – Header and Data CRC Field
The header and data CRC of a RMAP reply shall be calculated by DPU and FEE as described in AD03.

Title: RMAP Reply – Header CRC Check

FEE-DPU-IF868

The DPU shall check the header CRC for a RMAP reply.

Title: RMAP Reply – Data CRC Check

FEE-DPU-IF841

Title: RMAP Reply – Data CRC Check

The DPU shall check the data CRC for a RMAP read reply.

Title: RMAP Reply - Transaction ID Check

FEE-DPU-IF907 The DPU shall try to match the RMAP-reply to the RMAP-request by checking the transaction-ID.

Title: RMAP Reply Period

FEE-DPU-IF842

The FEE shall send a reply for every RMAP request inside 10 milliseconds after the end of the request-packet.

Title: RMAP-FDIR – Request Timeout

FEE-DPU-IF843 repeat the request.

RMAP-FDIR – Request Timeout
a RMAP request inside 100 milliseconds, it shall repeat the request.

Title: RMAP Write to I llegal Addresses

FEE-DPU-IF844

RMAP write requests to unused addresses or across memory borders shall be reported by the FEE with status-code 1.

Note: Because the address does not exists, the write itself will be ignored by the FEE.

Title: RMAP Read from Unused Addresses

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 29 / 36

RMAP read requests to unused addresses shall be reported by the FEE as successful (status = 0) and shall return 0 as data.

Title: Open RMAP requests

Before a RMAP request is send by the DPU, all other RMAP request shall be closed (i.e. replied).

Title: RMAP-FDIR – Invalid Header CRC in Request

FEE-DPU-IF846

RMAP request, where the check of the header CRC fails, shall be ignored by the FEE.

Note: The DPU will retry to send the RMAP request after a time-out.

Title: RMAP-FDIR – Invalid Data CRC in Request

FEE-DPU-IF847

If the data-CRC-check of a RMAP write-request fails, the FEE shall reply with statuscode 4.

Title: RMAP-FDIR – Invalid Key

FEE-DPU-IF848 RMAP requests with a key other than 0xD1 shall be replied by the FEE with statuscode 3.

Title: RMAP-FDIR – Invalid Logical FEE-Address

FEE-DPU-IF849

RMAP requests to a logical address other than 0x51 shall be replied by the FEE with status-code 12.

Note: No reply shall be send to the DPU on an invalid protocol-ID.

Title: RMAP-FDIR – Invalid or Unsupported Instruction

FEE-DPU-IF852

RMAP-FDIR – Invalid or Unsupported Instruction

If a RMAP request contains an instruction other than 0x7C, 0x6C or 0x4C, the FEE shall reply with status-code 2.

Title: RMAP-FDIR – Invalid Verified Write Data Length

FEE-DPU-IF853

Title: RMAP-FDIR – Invalid Verified Write Data Length

If a RMAP verified-write-request contains a data-length other than 4, the FEE shall reply with status-code 1.

Title: RMAP-FDIR – Data Length to Large

FEE-DPU-IF854

Title: RMAP-FDIR – Data Length to Large

If a RMAP-request contains a data-length larger than 16,384 Bytes, the FEE shall reply with status-code 6.

Title: RMAP-FDIR – Invalid Header CRC in Reply
The DPU shall ignore RMAP-reply packets, where the header CRC-check failed.

Title: RMAP-FDIR – Invalid Data CRC in Reply

The DPU shall repeat the RMAP read-request, when the header data CRC-check failed.

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 30 / 36

	Title: RMAP-FDIF	! - Invalid Target Address	
FEE-DPU-IF 860	The DPU shall repeat to invalid.	he RMAP request, when the target address in the RMAP reply	/ is

	Title:	RMAP-FDIR – Invalid Status
FEE-DPU-IF 861	The DPU	shall repeat the RMAP request, when the status the RMAP reply is not zero.

	Title:	RMAP-FDIR -	Invalid Tran	saction ID				
	If the tran	saction-ID of a	RMAP reply do	oes not match	any open	request,	the DPU	shall
862	repeat the	RMAP request.						

	Title: RMAP-FDIR – Request Repeats
	The DPU shall retry a RMAP-request after a fail. The time between retries shall be
863	configurable in a range of 0-10 seconds. The maximum number of retries shall be
	configurable in a range of 031.

	Title:	RMA	P-FDIR	- DPU I	Error Cou	ınter							
FEE-DPU-IF-	The DPU	shall	contain	an error	-counter,	which	shall	be	incremented	on	any	kind	of
864	RMAP erre	or (tir	ne-out, r	eply-sta	tus not 0,	invalid	l reply	ν).					

	Title:		RMAP-	FDIR -	DPU E	rror Re	port					
FEE-DPU-IF-	The	DPU	shall	report	every	RMAP	error	in	the	housekeeping-data	with	an
865	unar	nbigud	ous coc	le.								

	Title:	RMAP-FDIR - Multiple Errors
FEE-DPU-IF- 935	If multiple	e errors occure in a RMAP request, only one error shall be reported.

Data Interface

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B Date: 23.10.2017 Page: 31 / 36

8 **Data Interface**

Data Packet Format

FEE-DPU-IF- For the transfer of image- and housekeeping-data from FEE to DPU a proprietary packet-format shall be used. The FEE data-packet consists of a 10 byte header and a data-field with variable length.

Figure: Data and HK packet-structure, including Spacewire-address and protocol-ID Data and HK Packet

Title: **Data Packet Header**

FEE-DPU-IF- The first two bytes of the data-packet are the logical address and the protocol-ID regarding AD20. Bytes 2 to 8 contain the header of the data packet with the following

- 16-bit data-length, given in number of bytes
- 16-bit type
- 16-bit frame-counter
- 16-bit sequence-counter

	Title: Data Packet Byte Encoding
FEE-DPU-IF-	The encoding of 16-bit or 32-bit words shall be big-endian, so the most significant
872	byte (MSB) is in lower address and the least significant byte (LSB) in the higher
	address. The endianness is applicable for header and data field.

Windowing Packet Length (N-FEE)	
In windowing-mode the N-FEE data packets shall have a length of 18250 bytes. Cethe last packet of the current image may be shorter.	Only

	Title: Windowing Packet Length (F-FEE)
074	In windowiwng-mode the F-FEE data packets shall have a length of 128 bytes. Only the last packet of the current image may be shorter.

Data Interface

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 32 / 36

Page: 32 / 36

Note: Because the F-FEE does not have an external memory and the block-RAMs inside the FPGA are limited the send buffer cannot hold more than 128 Bytes.

		Title: Data Packet Length in Calibration-Mode
FEE	075	In windowing-mode the N-FEE data packets shall have a length of 18248 bytes. Only
	073	the last packet of the current image may be shorter.

Note: The length of 18250 was choosen to hold 4 complete lines in a packet (10 byte header + 2 bytes * 4560 pixels * 4 lines).

Note: Because a pixel has size of 16 bit, the length must be always aligned to 16-bit.

	Title:	Spacewire Protocol ID for FEE-Data
	In PLATO	the protocol-ID 0xF0 shall be used for FEE data packets.
876		

Note: Regarding to AD21, chapter 5.2.5, the protocol IDs 0xF0 to 0xFE can be defined by the project.

	Title:	Data Packet Field: Length
FEE-DPU-IF- 877	Bytes 2 ar	nd 3 of the data-packet-header contain the data-length in bytes.

	Title: Data Packet Field: Type
FEE-DPU-IF	Bytes 4 and 5 of the data-packet-header contains additional information about the
878	packet-content. The type-field is defined in the following way:
	- bits 15:11 = reserved for future usage
	- bit 10:8 = mode: 0 = calibration mode, 1= calibration pattern mode, 2 = windowing
	mode, 3 = windowing pattern mode, 4 = partial read-out mode
	- bit 7 = last packet: 1 = last packet of the this type in the current read-out-cycle
	- bit 6 = CCD side: 0 = left side (side E), 1 = right side (side F)
	- bits 5:4 = CCD number: tbd.
	- bits 3:2 = frame number after sync
	- bits $1:0$ = packet type: 0 = data packet, 1 = overscan data, 2 = housekeeping
	packet

Note: Because the data for left and right CCD-side is send in different packets, there will be a last packet for left CCD-side and a last packet for the right CCD-side. Also the last packet with HK or overscan data must contain the last-packet-flag.

	Data Packet Field: Frame Counter
FEE-DPU-IF- 880	The frame-counter shall be incremented after every full CCD read-out cycle, i.e. in the N-DPU every 25 seconds, in the F-DPU every 2.5 seconds.

	Data Packet Field: Sequence Counter
	The FEE shall have a sequence-counter for each CCD. The sequence-counter shall be
881	set to zero at beginning of every CCD-read-out. The sequence counter shall be a
	global counter for all kinds of data packets.

Note: Because HK packet is send before the image data, the HK sequence-counter will be 0 and the sequence-counter of first image-packet will be 1.

	Title:	Sequence Cou	ınter Con	sistency	-Check	•			
	Before	window-assembly	the DPU	shall che	ck the	sequence-co	unter of	f the	received
882	packets	to confirm the ex	pected ord	der of the	packet	ts in the mem	nory.		

Data Interface

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 33 / 36

Title: Data Packet Field: Data

FEE-DPU-IF883
Depending on the type-field, the data-field contains either image-data or housekeeping-data.

Title: Image Data Format

FEE-DPU-IF884 The image data is transferred as 16-bit integer values, each value representing one pixel.

Title: CCD-Side Data-Separation

FEE-DPU-IF885

Title: CCD-Side Data-Separation
The data of the right- and left CCD-side shall be sent in separate packets.

Title: Data Read-Out Order

FEE-DPU-IF901

Title: Data Read-Out Order

The data should be transferred in the order of the CCD read-out.

Figure: Example for data-order in windowing-mode

Title: **Data Transfer Consistency**The data transfer from the FEE to the DPU shall be deterministic for a specific set of windows. So, the order of the packets shall be the identical for every transfer. Especially the order of the left and right CCD-side packets shall be consistent over consecutive data-transfers.

Motivation: For a specific set of windows the DPU will prepare a list of copy-operation. This copy-list will help to quickly assemble the windows for further processing. If the packets would arrive in random order, the copy-operations must be calculated in real-time and the assembly-operation would take much longer.

	Title: Housekeeping Data Format
	The format, i.e. the position of each HK-value, of the N-FEE and F-FEE housekeeping
888	data shall be fixed.

code.

Data Interface

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 34 / 36

Note: The FEE may generate several HK packets. But the structure must correspond always with the sequence number.

	Title: HK-Packet Generation Period
FEE-DPU-IF-	At every CCD-readout a HK packet shall be generated. This means the HK packet will
889	be send every 6.25 seconds (N-FEE) or 2.5 seconds (F-FEE).
	Title: HK-Packet Position
FEE-DPU-IF- 890	The HK packet shall be send before the image data.
	Title: Data FDIR – Sequence Check Failed
FEE-DPU-IF-	If the sequence counter has not the expected value, the DPU shall dump the
891	corresponding packets.
	Title: Data FDIR – EEP
FEE-DPU-IF-	If an EEP occurs, the F-DPU shall dump the corresponding packet.
892	
	Title: Data FDIR – DPU Error Counter
FEE-DPU-IF- 893	The DPU shall contain an error-counter, which shall be incremented on any kind of
093	data error.
	Title: Data FDIR - DPU Error Report
FEE-DPU-IF- 894	The DPU shall report every data error in the housekeeping-data with an unambiguous code

Pattern Generation

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B Date: 23.10.2017 Page: 35 / 36

9 **Pattern Generation**

Pattern Generation FEE-DPU-IF- If the FEE is calibration-pattern-mode or in windowing-pattern-mode, the FEE shall send artificial data pattern instead of CCD-Data. The pattern shall be the same for windowing and calibration mode.

Title: **Pattern Structure** FEE-DPU-IF- The data pattern shall have the following structure: - Bits [15:13] = time-code % 8 - Bits [12:11] = CCD number - Bit [10] = CCD side: 0 = left side, 1 = right side - Bit [9:5] = X-coordinate % 32 - Bit [4:0] = Y-coordinate % 32 The details of pattern are defined in RD02.

Note: For a dedicated coordinate each pixel has the same content in windowing-patternmode and in calibration-pattern-mode.

Figure: structure of the data pattern

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Timecode [2:0]			CC	CD	side			Row [4:0]				С	olum [4:0]	n	

APPENDIX

Ref.: PLATO-DLR-PL-IC-0002

Issue: Draft B
Date: 23.10.2017
Page: 36 / 36

10 APPENDIX