

Optimal strategies of liquid CO2 transportation for geological carbon storage : A case study of South Korea

강현진a,b, 이석구c, 조형태d, 이재원a,

a한국생산기술연구원 저탄소에너지그룹, b부산대학교 응용화학공학부 c한국에너지기술연구원 탄소전환연구실, d경희대학교 화학공학과

(j.lee@kitech.re.kr†)

Abstract

Geological CO₂ storage, a prominent facet among carbon capture and storage technologies aiming for net-zero emissions, has received substantial attention. Existing studies have investigated liquid CO₂ transportation conditions based on CO₂ emissions from individual plants through a central CO₂ hub terminal. Nevertheless, a misalignment persists between the CO₂ capture assumptions made in previous studies and the actual quantities necessitated for capture from various industrial sources. To address these challenges, we propose comprehensive liquid CO₂ transportation strategies incorporating numerous CO₂ emission sites and multiple CO₂ hub terminals in South Korea. Furthermore, we ascertain the optimal conditions for large-scale liquid CO₂ transportation. The results of this study are expected to contribute to the achievement of net-zero emissions by providing insights into the optimal conditions and transportation strategies for liquid CO₂ in South Korea.

Keywords: Carbon Capture and Storage (CCS), Geological CO2 storage, CO2 transportation, CO2 hub terminal, Techno-economic analysis

Method and Results

1.Introduction

- MOTIVATION
- With the growing severity of global warming attributed to greenhouse gas emissions, the implementation of post-combustion CO2 capture processes is on the rise in diverse industries, including power generation, steel production, and petrochemicals.
- If the substantial volume of CO2 gas, continuously separated from the capture process, is not directly integrated into utilization processes, <u>a volume reduction process is necessary for efficient storage and transportation</u>.
- <u>Liquefaction results in higher density compared to compressing it into high-pressure gas</u>.

	Pressure [bar]	Temperature [°C]	Density [kg/m3]
High-pressure gas	300	30	870
Liquid	20	-20	1030

- Then why do we need to ponder about the pressure conditions of liquid CO2?

- : Liquid CO2 has a higher density at lower pressures than at higher pressures.
- : <u>Liquefaction and boil-off gas re-liquefaction energy</u> depending on pressure can vary significantly.
- : Under low pressure conditions, the equilibrium temperature and heat capacity are lower, so the amount of boil-off gas produced during storage is higher.
- The development of ships to transport captured CO2 to utilization and storage sites is actively underway.
- CCS VALUE CHAIN
- Capture → Liquefaction → Buffer Tank → Ship Transport → Injection

Figure 1. CCS value chain

- OBJECTIVE
- A comparative analysis of CO2 transport pressures (6.5 bar, 7 bar, 10 bar, 15 bar, 20 bar) was conducted to determine the optimal pressure.

2. Methodology

■ DEFINE OF MASS FLOW RATE

 $W_c = \mathbf{m}[H_v(P_2, T_2) - H_v(P_1, T_1)]$ - If \mathbf{m} is defined, W_c is a function of \mathbf{P}

CACULATION BASIS

(CO2 capture amount) = (CO2 emission from sources) - (free quota)

- THE AMOUNT OF CO2 EMISSION
- The CO2 capture sources are assumed to be domestic <u>power plants</u>, <u>steel mills</u>, <u>oil refineries and petrochemicals</u>.
- i) Power plant coal-fired power plant (based on generated electricity)
 ii) Petrochemicals naphtha cracking facilities (based on annual ethylene production)
 iii) Steel mills furnace facilities (based on annual crude steel production)

Annual amount of CO2 entering the terminal $[m^3/h]$	6.5 bar	7 bar	10 bar	15 bar	20 bar
Ulsan	742	746	770	804	835
Yeosu	1,257	1,265	1,305	1,363	1,416
Daesan	2,619	2,634	2,719	2,839	2,949

3. Results & discussion

- Assumption LCO2 ship speed : 15knot Loading speed : $2,500m^3/hr$ Ship capacity= $40,000m^3$
- -There are three LCO2 Cluster, each of which is located in Daesan, Yeosu, and Ulsan
- -Captured CO2 is sent to the LCO2 terminal close to the source of discharge
- -Korea's CO2 emission sources are concentrated on the coast, and the leading CO2 reservoirs are Gunsan Basin and Ulleung Basin
- Figure 2. Distance between CO2 emission source and Storage
- DETERMINATION OF BUFFER TANK SIZE AND NUMBER

Liquid CO2 terminal	Ulsan	Yeosu	Daesan
Time required shipping [hr]	62	77	67
Minimum number of ships	1	2	4
Buffer tank size $[m^3]$	5,000 X 16	5,000 X 17	5,000 X 16

COMPARISON OF (RE-)LIQUEFACTION ENERGY

- Liquefaction and re-liquefaction energy tends to decrease linearly as pressure increases.
- Currently, liquefaction energy has been derived, and the amount of boil-off gas and reliquefaction energy are being derived.

Conclusion

- Density differences, liquefaction and re-liquefaction energy, the amount of boil-off gas, domestic CO2 emission and captured CO2, and expected capacity of storage site are considered to determine optimal liquid pressure for efficient transport and intermediate storage.
- Currently, the results of liquefaction energy have been derived, and the results of boil-off gas and re-liquefaction energy are being derived. By combining these results, we will present the optimal pressure for each scenario we set.