Chapter 4 LINKED LISTS

Singly Linked Lists and Chains Representing Chains in C Linked Stacks and Queues Polynomials Additional List Operations Equivalence Classes Sparse Matrices Doubly Linked Lists

Heung-II Suk

https://milab.korea.ac.kr hisuk (AT) korea.ac.kr

Singly Linked Lists and Chains

- Representation of ordered lists
- Sequential representation
 - Successive items of a list are located a fixed distance apart
 - Insertion and deletion of arbitrary elements become expensive
- Linked representation
 - Items may be placed anywhere in memory
 - To access list elements
 - store the address or location of the next element in that list

three-letter words

Singly Linked Lists and Chains

- ♦ < data[i], link[i] > pair comprise a node
- data
- Elements are no longer in sequential order
- link
- Values are *pointers* to elements in the *data* array
- The list starts at *data*[8]=BAT
 - *first*=8
 - link[8]=3, which means it points to data[3], which contains CAT
- When we have come to the end of the ordered list
 - link equals zero

Usual way to draw a linked list

Singly Linked Lists and Chains

data

1 HAT

2 3 CAT

4 EAT

5 GAT

6 7 WAT

8 BAT

9 FAT

data

HAT

CAT

EAT

WAT

BAT

FAT

VAT

3

4

10

11

link

15

4

9

0

3

3

- Deletion
 - Deleting GAT from the list
 - Even though the link of GAT still contains a pointer to HAT, GAT is no longer in the list as it cannot be reached by starting at the first element of the list

Representing Chains in C

- Need the following capabilities
 - A mechanism for defining a node's structure, i.e., the fields it contains
 - Self-referential structures
 - A way to create new nodes when we need them
 - MALLOC
 - A way to remove nodes that we no longer need
 - free
- Example [List of words]

Representing Chains in C

- Example [List of words] (cont.)
 - Create a new empty list
 - listPointer first = NULL; /* contains the address of the start of the list */
 - Macro to test for an empty list
 - #define IS_EMPTY(first) (!(first))
 - Create a new node
 - MALLOC(first, sizeof(*first));
 - Place the word BAT into the list
 - strcpy(first→data, "BAT");
 - first→link = NULL;

Representing Chains in C

- Example [Two-node linked list]
 - a linked list of integers

```
void printList( listPointer first )
                                                                           printf( "The list contains: " );
listPointer create2()
                                                                           for(; first; first = first→link)
              /* create a linked list with two nodes */
              listPointer first, second;
                                                                                          printf( "%4D", first->data );
              MALLOC( first, sizeof(*first) );
                                                                           printf( "\n" );
              MALLOC( second, sizeof(*second) );
              second→link = NULL;
              second→data = 20;
              first→data=10;
                                           first \longrightarrow 10 \longrightarrow 20 0
              first→link = second;
              return first;
```


7

Representing Chains in C

Example [List insertion]

Inserting into an empty and nonempty list

Representing Chains in C

Example [List deletion]

List before and the function call delete(&first, NULL, first);

List after the function call delete(&first, y, $y \rightarrow link$);

Linked Stacks and Queues

- When several stacks and queues coexisted there was no efficient way to represent them sequentially
- Linked stack and queue
 - The direction of links for both the stack and the queue facilitate easy insertion and deletion of nodes

9

Representation *n* Stacks

```
#define MAX_STACKS 10 /* maximum number of stacks */
typedef struct {
    int key;
    /* other fields */
} element;

typedef struct stack *stackPointer;
typedef struct stack {
    element data;
    stackPointer link;
};

stackPointer top[MAX_STACKS];
```

- Assume that the initial condition for the stack
 ✓ top[i] = NULL, 0<= i < MAX_STACKS
- boundary condition
 ✓ top[i] = NULL iff the ith stack is empty

11

Push and Pop in the Linked Stacks

```
void push( int i, element item )
              /* add item to the ith stack */
              stackPointer temp;
              MALLOC( temp, sizeof(*temp) );
              temp→data = item;
              temp \rightarrow link = top[i];
              top[i] = temp;
element pop(inti)
              /* remove top element from the ith stack */
             stackPointer temp = top[i];
              element item;
              if(!temp)
                           return stackEmpty();
              item = temp→data;
              top[i] = temp \rightarrow link;
              free( temp );
                                         /* return to system memory */
              return item;
```


Representation m Queues

```
#define MAX_QUEUES 10 /* maximum number of queues */
typedef struct {
    int    key;
    /* other fields */
} element;

typedef struct queue *queuePointer;
typedef struct queue {
    element data;
    queuePointer link;
};

queuePointer front[MAX_STACKS], rear[MAX_STACKS];
```

- Assume that the initial condition for the queue
 ✓ front[i] = NULL, 0<= i < MAX_QUEUES
- boundary condition
 front[i] = NULL iff the ith queue is empty

13

Add to the Rear of a Linked Queue

Polynomials

Representing polynomials using linked lists

$$A(x) = a_{m-1}x^{e_{m-1}} + \dots + a_0x^{e_0}$$

where the a_i are nonzero coefficients and the e_i are nonnegative integer exponents such that $e_{m-1} > e_{m-2} > \dots > e_1 > e_0 \ge 0$

- We will represent each term as a node containing
 - coefficient field
 - exponent fields
 - a pointer to the next term

15

Representation of Polynomial

Declaration of polynomial terms

```
typedef struct polyNode *polyPointer;
typedef struct polyNode {
    int coef;
    int expon;
    polyPointer link;
};
polyPointer a, b, c;
```

coef	expon	link

Polynomials

$$a = 3x^{14} + 2x^8 + 1$$

$$b = 8x^{14} - 3x^{10} + 10x^6$$

17

Example: Adding Two Polys

$$a = 3x^{14} + 2x^{8} + 1$$
$$b = 8x^{14} - 3x^{10} + 10x^{6}$$

$$a\rightarrow expon == b\rightarrow expon$$

Example (cont.)

a→expon < b→expon

b	8	14	_	→	-3	10	_		10	6	0	
Result	11	14	_		-3	10	_		2	8	0	

a→expon > b→expon

Example (cont.)

Result 11 14 -3 10 -3 10 -3 0

20

19

Add Two Polynomials

```
polyPointer padd(polyPointer a, polyPointer b)
                               /* return a polynomial which is the sum of a and b */
                               polyPointer c, rear, temp;
                               int sum;
                               MALLOC( rear, sizeof(*rear) );
                               c = rear;
                                             /* initially give c a single node with no values */
                               while (a && b) {
                                              switch ( COMPARE(a→expon, b→expon) ) {
                                                            case -1: /* a→expon < b→expon */
                                                                           attach(b→coef, b→expon, &rear);
                                                            b= b\rightarrowlink; break; case 0: /* a\rightarrowexpon == b\rightarrowexpon */
To avoid having to search for the last node in
c each time we add a new node, we keep a
                                                                           sum = a \rightarrow coef + b \rightarrow coef;
                                                                           if (sum) attach(sum,a→expon,&rear);
pointer, rear, which points to the current last
                                                                           a = a \rightarrow link; b = b \rightarrow link; break;
node in c.
                                                            case 1: /* a→expon > b→expon */
                                                                           attach(a→coef, a→expon, &rear);
                                                                          a = a \rightarrow link;
                                             }
                               /* copy rest of list a and then list b */
                               for (; a; a=a\rightarrow link)
                                                             attach(a→coef, a→expon, &rear);
                               for (; b; b=b\rightarrowlink)
                                                             attach(b→coef, b→expon, &rear);
                               rear→link = NULL;
                               /* delete extra initial node */
                               temp = c;
                                            c = c \rightarrow link; free(temp);
                               return c;
```

21

Attaching A Term

```
void attach(float coefficient, int exponent, polyPointer *ptr)
             /* create a new node with coef = coefficient and expon = exponent, attach it to the node
                pointed to by ptr. ptr is updated to point to this new node */
              polyPointer temp;
              MALLOC( temp, sizeof(*temp) );
             temp→coef = coefficient;
             temp→expon = exponent;
              (*ptr)\rightarrow link = temp;
              *ptr = temp;
```


Erasing Polynomials

Assume to compute e(x) = a(x) * b(x) + d(x)

```
polyPointer a, b, d, e;
...
a = readPoly();
b = readPoly();
d = readPoly();
temp = pmult(a, b); /* only hold a partial result for d(x) */
e = padd(temp, d);
printPoly(e);
```

- We created temp(x) only to hold a partial result for d(x)
 - It would be useful to reclaim the nodes that are being used to represent temp(x)
- Erase()

23

Circular List Representation of Polynomials

- If the link field of the last node points to the first node in the list, all the nodes of a polynomial can be freed more efficiently
- Circular representation of $3x^{14} + 2x^8 + 1$

```
3 14 2 8 1 0 east
```


Available Space List

Chain: a singly linked list in which the last node has a null link

- ◆ An efficient erase algorithm for circular lists, by maintaining a list (as a chain) of nodes that have been "freed"
 - When a new node is needed, examine this list
 - If the list is not empty, then we may use one of its nodes
 - Only need to use *malloc* to create a new node when the list is empty
- This list is called the <u>available space list</u> or avail list
 - Initially, set avail to NULL
- ◆ Instead of using malloc and free, now use getNode and retNode

25

getNode Function

retNode And cerase Function

- retNode
 - Return a node to the available list

- cerase
 - Erase a circular list in a fixed amount of time independent of the number of nodes in the list

27

Zero Polynomial

- To avoid the special case of zero polynomial, each polynomial contains one additional node, a header node
 - The expon and coef fields of this node are irrelevant
- The representation
 - Zero polynomial

$$a = 3x^{14} + 2x^8 + 1$$

Summary

Two polynomials represented as circular lists with header node

Summary(cont.)

```
do {
              switch (COMPARE(a→expon, b→expon))
                                            /* a→expon < b→expon */
                                            attach(b→coef, b→expon, &lastC);
                                            b = b \rightarrow link;
                                            break;
              case 0:
                              /* a→expon = b→expon */
                             if (startA == a)
                                            done = TRUE;
                             else {
                                            sum = a \rightarrow coef + b \rightarrow coef;
                                            if (sum) attach(sum, a→expon, &lastC);
                                            a = a \rightarrow link; b = b \rightarrow link;
                             break;
              case 1:
                              /* a→expon > b→expon */
                             attach(a→coef, a→expon, &lastC);
                             a = a \rightarrow link;
} while (!done);
lastC \rightarrow link = c;
return c;
```


29

Additional List Operations

- Inverting (or reversing) a singly linked list
 - Invert the list pointed to by lead

```
listPointer invert(listPointer lead)
{

listPointer middle, trail;

middle = NULL;

while (lead) {

trail = middle;

middle = lead;

lead = lead→link;

middle→link = trail;
}

return middle;
}
```


31

Additional List Operations

Concatenating two chains

Additional List Operations

Inserting at the front of a circular list

33

Length of Linked List

Finding the length of a circular list

Equivalence Relations

- ightharpoonup Reflexive, $x \equiv x$
- Symmetric, if $x \equiv y$, then $y \equiv x$
- lacktriangle Transitive, if $x \equiv y$ and $y \equiv z$, then $x \equiv z$
- Definition: equivalence relations
 - A relation, \equiv , over a set, S, is said to be an *equivalence relation* over S iff it is *symmetric*, *reflexive*, and *transitive* over S
- Examples: partition a set S into equivalence classes
 - 0 = 4, 3 = 1, 6 = 10, 8 = 9, 7 = 4, 6 = 8, 3 = 5, 2 = 11, 11 = 0
 - Three equivalent classes: {0, 2, 4, 7, 11}; {1, 3, 5}; {6, 8, 9, 10}

35

A Rough Algorithm to Determine Equivalence

- Two phases
 - First phase
 - Read in and store the equivalence pairs <i, j>
 - Second phase
 - Begin at 0 and find all pairs of the form <0, j>
 - All pairs of the form $\langle j, k \rangle$ imply that k is in the same equivalence class as 0
 - Continue in this way until we have found, marked, and printed the entire equivalence class containing 0

```
void equivalence()
{
    initialize;
    while (there are more pairs) {
        read the next pair <i,j>;
        process this pair;
    }
    initialize the output;
    do {
        output a new equivalence class;
    } while (not done);
}
```


A More Detailed Version of The Equivalence Algorithm

- seq holds the header nodes of n lists
- out tells us whether or not the object i has been printed

```
void equivalence()
{
  initialize seq to NULL and out to TRUE
  while (there are more pairs) {
     read the next pair, <i, j>;
     put j on the seq[i] list;
     put i on the seq[j] list;
}
for (i=0; i<n; i++)
     if (out[i]) {
        out[i]= FALSE;
        output this equivalence class;
     }
}</pre>
```


37

Lists after pairs have been input

Sparse Matrices

- In Chapter 2, we could save space and computing time by retaining only the nonzero terms of sparse matrices
- Representing each column/row of a sparse matrix as a circularly linked list with a header node
 - Each node has a tag field that is used to distinguish between header nodes and entry nodes
 - Each header node has three additional fields: down, right, and next
 - down field: links into a column list
 - right field: links into a row list
 - next field: links the header nodes together
 - The header node for row *i* is also the head node for column *i*, and the total number of header nodes is max{# rows, # columns}

39

Sparse Matrices

- **Each entry node** has five fields in addition to the tag field: row, col, down, right, value
 - down field: links to the next nonzero term in the same column
 - right field: links to the next nonzero term in the same row

header node

element node

head field is not shown

Sparse Matrices

• If $a_{ij} \neq 0$, there is a node with tag field = entry

The list of header nodes has a header node that has the same structure as an entry node

- Total storage
 - A numRows × numCols matrix with numTerms nonzero terms needs max{numRows , numCols} + numTerms + 1 nodes
 - Total storage will be less than *numRows* × *numCols* when *numTerms* is sufficiently small

41

Linked Representation of The Sparse Matrix

Declarations for matrix representation

```
#define MAX_SIZE 50
                                    /* size of largest matrix */
typedef enum {head, entry} tagfield;
typedef struct matrixNode *matrixPointer;
typedef struct entryNode {
             int row;
            int col;
            int value:
};
typedef struct matrixNode {
            matrixPointer down;
            matrixPointer right;
            tagfield tag;
             union {
                                                   Two different types of nodes
                          matrixPointer next;
                          entryNode entry;
             } u;
};
matrixPointer hdnode[MAX_SIZE];
```


43

Sparse Matrices

- [Assignment #2] Programming project (Exercises 6)
 - Implement a complete linked list system to perform arithmetic on sparse matrices using our linked list representation
 - Create a user-friendly, menu-driven system that performs the following operations
 - mread: Read in a sparse matrix (Program 4.23)
 - *mwrite*: Write out a sparse matrix (Program 4.24)
 - *merase*: Erase a sparse matrix (Program 4.25)
 - madd: Create the sparse matrix d = a + b
 - mmult: Create the sparse matrix d = a * b
 - mtranspose: Create the sparse matrix $b = a^{T}$
 - Deadline: April 21 (end of the day)

Doubly Linked List

- In singly linked lists, it can move only in the direction of the links
- The only way to find the node that precedes a specific node is to start at the beginning of the list
- It is necessary to move in either direction: doubly linked list
- A node in a doubly linked list has at least three fields, a left link field (llink), a data field (data), and a right link field (rlink)

```
typedef struct node *nodePointer;
typedef struct node {
    nodePointer llink;
    element data;
    nodePointer rlink;
}
```


45

Doubly Linked List

Doubly linked circular list with a header node

- If ptr points to any node in a doubly linked list, then:
- An empty doubly linked list

Insert

```
void dinsert(nodePointer node, nodePointer newnode)
{
    /* insert newnode to the right of node */
    newnode→Ilink = node; /* (1) */
    newnode→rlink = node→rlink; /* (2) */
    node→rlink→Ilink = newnode; /* (3) */
    node→rlink-= newnode; /* (4) */
}
```


47

Delete

