ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ФИЗИКИ

Кафедра Квантовой Электроники и Радиоспектроскопии

Поляризованные электронные спиновые состояния центров окраски в гексагональном нитриде бора

Магистр 2-го курса, гр. 06-929 <u>Федоров Аркадий Петрович</u> Научный руководитель: к.ф.-м.н., доцент Орлинский Сергей Борисович

Количество опубликованных статей по h-BN в год

THE POWER

Объект исследования

HQ Graphene h-BN

 $E_e = 2$ МэВ с плотностью потока частиц $6 \cdot 10^{18} \ {
m cm}^{-2}$, при $T = 300 \ {
m K}$

a = 2.502 Å	a = 90°
b = 2.502 Å	β = 90°
c = 6.617 Å	γ = 120°

THE POLY SE

Метод исследования

Спектрометр ЭПР Bruker ELEXSYS 580/680

Лазер и оптоволоконный кабель

Цель и задачи

Убедиться, что электронным облучением можно создать оптически адресуемые дефекты бора вакансионного типа V_B^- в кристалле h-BN.

Анализ и интерпретация полученных экспериментальных результатов, определение основных спектроскопических показателей спектров ЭПР (параметров спинового Гамильтониана).

Изучение кристалла h-BN в канонических ориентациях (B||C, B⊥C) с применением стационарной и импульсной ЭПР спектроскопии в X (9.4 ГГц) и W (94 ГГц) диапазонах при температурах T = 10, 25, 50 K.

Анализ сверхтонкого взаимодействия дефекта с окружающими магнитными ядрами в кристалле.

THUBERCH SE

Спектр ЭПР h-BN в X-диапазоне

THEFON LE

Энергетический порядок спиновых подуровней

Энергетический порядок спиновых подуровней

Природа искусственно созданных центров

Энергетические уровни h-BN для a) <u>одного б) трех</u> эквивалентных ядер азота

HABEPCHIE

Природа искусственно созданных центров

Энергетические уровни h-BN для a) <u>одного б) трех</u> эквивалентных ядер азота

$$f(\theta \mid \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp(\frac{-(\theta - \mu)^2}{2\sigma^2})$$

$$\sum (I_{exp} - y_{fit}(g, A, D, \sigma))^2$$

	$\sigma = 0^{\circ}$	$\sigma = 4.25^{\circ}$
Низкополевой	6.9 ± 0.2	0.25 ± 0.03
Высокополевой	7.1 ± 0.2	1.01 ± 0.1

Уширение линий ЭПР в h-BN

Спектры ЭПР для образцов облученных разными способами

Kianinia, M.,
Soltamov, V. et al.
Initialization and
read-out of intrinsic
spin defects in a van
der Waals crystal at
room temperature.

Nat. Mater. 19, 540-

545 (2020).

Gottscholl, A.,

Выводы

Электронным облучением в кристалле h-BN были получены те же центры, что и в образце h-BN облученном нейтронами.

По экспериментальным данным ЭПР спектроскопии определены основные параметры спинового Гамильтониана, такие как: g-фактор, величина расщепления в нулевом поле D и константа сверхтонкого взаимодействия A с разрешенными (семью) компонентами сверхтонкой структуры, вызванными взаимодействием парамагнитного центра (дефекта) с тремя эквивалентными ядрами азота, что однозначно идентифицирует исследуемый триплетный центр как вакансию бора V_B^- .

Определен знак D, благодаря чему был сделан вывод о распределении электронной спиновой плотности в плоскости слоев кристалла h-BN. Данная информация поможет в будущем при проведении экспериментов методом ДЭЯР.

Выявлена природа уширения линий ЭПР в h-BN и посчитан вклад разупорядоченных слоев в интегральную интенсивность линии, из чего был сделан вывод, что образец облученный электронами лучше по качеству, чем облучённый нейтронами.

Апробация

Статья

Федоров А. П., Исследование геологических кернов нефтесодержащих пород методом электронного парамагнитного резонанса // Сборник статей IX Международной научно-практической конференции. – Пенза: МЦНС «Наука и Просвещение», 2021. – С.10-13.

Конференция

Мурзаханов Ф.Ф., <u>Федоров А.П.</u>, Гольдберг М.А., Авксентьев А.И, Шуртакова Д.В. Исследование примесных (медь и железо) фосфатов кальция (гидроксиапатит и трикальцийфосфат) методом электронного парамагнитного резонанса. XXVIII Международная конференции аспирантов и молодых учёных "Ломоносов" Москва МГУ им. Ломоносова 12.04.2021 - 23.04.2021

Конкурс докладов IX международной научно-практической конференции «НАУЧНЫЕ ИССЛЕДОВАНИЯ МОЛОДЫХ УЧЕНЫХ», МЦНС «Наука и Просвещение», 17.02.2021, диплом I степени.

Благодарности

Автор работы выражает благодарность своему научному руководителю Орлинскому Сергею Борисовичу за помощь в интерпретации полученных данных и всестороннюю поддержку при написании магистерской диссертации. Также автор благодарит Мамина Георгия Владимировича за ценные идеи и консультацию во время обсуждения экспериментальных результатов.

$$\mathbf{H} = g\mu \mathbf{BS} + D(S_z - S(S+1)/3) + E(S_x - S_y) + \mathbf{S}A\mathbf{I}$$

^{14}N
I = 1
NA(%) = 99.63
2nI + 1 = 7 переходов

lw	$1.3 \text{ mT} \pm 0.06$
g	2.000 ± 0.0005
D	3600 MΓ _{II} ± 2
Е	50 МГц ± 2.5
A	47 МГц ± 1

Симуляция высоко полевой компоненты спектра

Gottscholl, A., Kianinia, M., Soltamov, V. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

Gottscholl, A., Kianinia, M., Soltamov, V. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

Оптическая накачка

HABEDCH LE

Lego like 2D materials

Технические характеристики ЭПР спектрометров

Bruker ELEXSYS-680		
Рабочая частота	94 ГГц (W-band)	
Мощность	100 мВт, 400 мВт, 2 Вт	
Резонатор	Одномодовый	
Магнит	Сверхпроводящий	
Основная катушка	6 T	
Катушка развертки	0.2 T	
Методы	CW, Pulse	
Чувствительность	10 ⁹ спин/Гс	

Bruker ESP-300		
Рабочая частота	9,1-9,8 ГГц (X-band)	
Стабильность частоты	10 ⁻⁶	
Максимальная мощность	200 мВт	
Диапазон магнитных полей	0-1.6 T	
Максимальная амплитуда модуляции	30 Э	
Стабильность поля	10 ⁻⁶	
Методы	CW, Pulse	
Чувствительность	10 ¹⁰ спин/Гс	

2D material: h-BN sheet


```
mu = 0;
sigma = 11;
x = (-90:0.1:90);
y_norm = normpdf(x,mu,sigma);
y_norm = y_norm/max(y_norm);
```


