Конспект по Математическому Анализу

Коченюк Анатолий 11М

Глава 1

Производные высших порядков

```
f:(a,b)\to\mathbb{R}
```

 \Box f –дифференцируема на (a;b) $\exists f'$ также дифференцируема на (a,b) (f')'=f'' это называется двойной производной

Замечание 1.1. Из дифференцируемости \implies непрерывность, т.е. $\exists (f')' \implies f'$ – непрерывна \implies в итоге исходная функция $f' \in C^1(a;b)$, т.е. была непрерывно дифференцуруема (гладкая)

Аналогично по индукции определяется n-ая производная (производная n-го порядка) от $f^{(n)} = (f^{(n-1)})'$, если правая часть имеет смысл Обозначения:

- f^n Лагранж
- $\frac{d^n f}{dx^n}$ Лейбниц
- $D^n f$ Коши $(D: f \to f')$ оператор дифференцирования)

Если n мало, то часто пишут нужное количество чёрточек f'', p'''. Аналогия с римскими цифрами I, II, III, иногда пишут f^{IV}, f^V

Определение 1.1. Функция f называется n раз дифференцурумеой на множестве $E \in \mathbb{R}$, если она n раз дифференцируема в каждой точке E

Если f n раз дифференцируема на множестве E и $f^{(n)}$ – непрерывна, то говорят, что f n раз непрерывно дифференцируема на E, Класс $C^n(E)$ (C^n – гладкая)

Замечание 1.2. Из n раз дифференцируемости \implies все $f^{(k)}, k = \overline{1, n-1}$ – непрерывны, m.e. $f \in C^k(E)$ Kcmamu $f^0 = f$ (0-ая производная) $C = C^0$

Определение 1.2. Функция f называется бесконечно дифференцируемой на E, если в $\forall x \in E \exists$ производные всех порядков

```
Класс таких функция называется C^{\infty}(E) e^x, \sin x, \cos x \in C^{\infty}(\mathbb{R}) \sqrt{x}, \ln x \in C^{\infty}(0; +\infty)
```

Определение 1.3. f называется бесконечное число раз непрерывно дифференцируемой, если производная любого порядка существует и непрерывна

Ясно, что классы $C^n(E)$ "уменьшаются" с ростом n

Лемма 1.1. $\forall n \in \mathbb{N}$ $C^n(E) \supset C^{n+1}(E) \supset C^{\infty}(E)$, причём все включения строгие

 \mathcal{A} оказательство. Предъявим функцию $f_n: f_n \in C^n(\mathbb{R})$, но $f_n \not\in C^{n+1}(\mathbb{R})$, т.е. $f_n^{(n)}$ – не дифференцируема Заведём последовательность функций $f_n(x) = \begin{cases} \frac{x^{n+1}}{(n+1)!} &, x>0 \ (\geqslant) \\ 0 &, x\leqslant 0 \ (<) \end{cases}$

Очевидно
$$f'_n = f_{n-1}, n \in \mathbb{N}$$

$$n = 0 \quad f_0(x) = \begin{cases} x, x > 0 \\ 0, x \leqslant 0 \end{cases}$$

 $f_0 \not\in C^1(\mathbb{R})$, у неё в 0 разрыв 1-го рода $f_0'(-0)=0, f_0'(+0)=1$ Таким образом $d_n^{(n)}=f_0\in C(\mathbb{R}),$ но $f_n^{(n+1)}=f_0'\not\in C(\mathbb{R})$

1.1 Дифференциал f

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x)$$

$$df = f'(x_0) dx \quad df(x_0, dx) = f'(x_0) dx$$
 или $(df(x_0))(dx) = f'(x_0) dx$ дифференциал – линейная функция от приращения $\Delta x = dx$ – это один аргумент точка x_0 – параметр
$$f'(x_0) = \frac{df(x_0, dx)}{dx}$$
 – это не зависит от dx
$$\frac{df}{dx} = f'(x)$$

Определение 1.4 (Дифференциал n-го порядка). $\Box f - n$ раз дифференцируема в $x_0 \in E$ $(f: E \to \mathbb{R})$ Величина

$$d^n f(x_0, dx) = f^{(n)}(x_0) dx^n$$

называется дифференциалом n-го порядка в точке x_0 $dx^n = (dx)^n = dx \cdot dx \cdot \dots \cdot dx$ dx – единый символ $d(x^n) = nx^{n-1}dx$

Замечание 1.3. Дифференциал – это обычное число т.е. это числовая функция

Теорема 1.1 (Теорема об арифметических действиях со старшими производными). $\Box f, g:(a;b) \to \mathbb{R}\ u\ n$ раз дифференцируемы в $x_0 \in (a;b)$. Тогда

1.
$$\forall \alpha \beta \in \mathbb{R} \quad (\alpha f(x) + \beta g(x))^{(n)} \mid_{(x_0)} = \alpha f^{(n)}(x_0) + \beta g^{(n)}(x_0)$$

2. Формула Лейбница
$$(fg)^{(n)}\mid_{x=x_0}=\sum\limits_{k=0}^n C_n^k f^{(k)}(x_0)g^{(n-k)}(x_0)$$

Доказательство. (по индукции)

л = 1 всё известно
$$(fg)' = f'g + fg'$$
 $n \to n+1$ п.1 — очевиден $(\alpha f + \beta g)^{(n+1)} = \left((\alpha f + \beta g)^{(n)}\right)' = (\alpha f^{(n)} + \beta g^{(n)})' = \dots$ $(fg)^{(n+1)} = \left(\sum_{k=0}^n C_n^k f^{(k)} g^{(n-k)}\right)' = \sum_{k=0}^n C_n^k \left(f^{(k)} g^{(n-k)}\right)' = \sum_{k=0}^n C_n^k \left(f^{(k+1)} g^{(n-k)} + f^{(k)} g^{(n-k+1)}\right) = \sum_{k=0}^n C_n^k f^{(k+1)} g^{(n-k)} + \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g^{(n-k)} + \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g^{(n-k+1)}$

Примеры:

1.
$$(x^{\alpha})^{(n)} = \alpha \cdot (\alpha - 1) \dots (\alpha - n + 1) x^{\alpha - n}$$

2.
$$\Box \alpha = -1$$
 $\left(\frac{1}{x}\right)^{(n)} = \frac{(-1)^n n!}{x^{n+1}}$ Дз – проверить В

3.
$$(\ln x)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n}$$
 ДЗ – проверить

4.
$$(a^x)^{(n)} = ((a^x)')^{(n-1)} = (a^x \ln a)^{(n-1)} = a^x (\ln a)^n$$

5

5.
$$L = \langle \cos, \sin \rangle = \{ \alpha \cos x + \beta \sin x \mid \alpha, \beta, x \in \mathbb{R} \}$$

 $P : L \to L$ "поворот на 90 градусов против часовой стрелки"
 $(P(\cos))(x) = \cos(x + \frac{\pi}{2}) \quad (P(\sin))(x) = \sin(x + \pi/2)$
 $\sin^{(n)} = P^n(\sin) \quad \cos^{(n)} = P^n(\cos)$

1.2 Формула Тейлора

 $\supset T_n(x)$ какой-то многочлен степени $n \in \mathbb{Z}_+$

$$\forall x_0 \in \mathbb{R} \quad T_n(x) = \sum_{k=0}^n a_k(x-x)^k$$
 $n=1$ $T_n(x) = ax+b = a(x-x_0)+b-ax_0$ $a_1=a$ $a_0=b+ax_0$ $n \to n+1$ $T_{n+1}(x) = P_n(x) \cdot (x-x_0)+T_{n+1}(x_0)$ P_n – какой-то многочлен, на который мы делим $P_n(x) = \sum_{k=0}^n b_k(x-x_0)$ всё $f(x) = f(x_0) + \int_{x_0}^x T_n^{(m)} = \sum_{k=m}^n a_k k(k-1) \cdot (k-m+1)(x-x_0^{k-m})$ $T_n^{(m)}(x_0) = a_m m(m-1) \dots 1 = a_m \cdot m!$ $a_m = \frac{T_n^{(m)}(x_0)}{m!}$ — готовая формула для a_m Т.О.

$$T_n(x) = \sum_{k=0}^n \frac{T_n^{(k)}(x_0)}{k!} (x - x_0)^k$$

- $\exists f$ произвольная функция $(a;b) \to \mathbb{R}$
- $\exists f n$ раз дифференцируемая а $x_0 \in (a; b)$

Конечно, формула

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

неверна, но оказывается, что она даёт хорошее приближение к функции f

Определение 1.5. Многочленом Тейлора степени n для функции f в точке x_0 называется

$$T_{n,x_0}(f) = \sum_{k=0}^{n} \frac{f^k(x_0)}{k!} (x - x_0)$$

T - Тейлор Taylor

Определение 1.6. Остаток $R_{n,x_0}f(x) = f(x) - T_{n,x_0}f(x)$ (остаточный член)

Определение 1.7. Формула Тейлора

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x)$$

Пока что эта формула полностью бессодержательная и просто является переписанным определением остатка

Содержание появляется, когда что-то говориться о R_{n,x_0} в смысле малости, ограниченности и m.n.

Существуют разные форму записи этого остатка: Пеано, Лагранжа и Коши.

Лемма 1.2.
$$\forall m = \overline{0,n} \quad f^{(m)}(x_0) = T_{n,x_0}^{(m)}(x_0)$$

Доказательство. было доказано, что $T(x) = \sum_{k=0}^{n} a_k (x - x_0)^k \implies T^{(m)}(x_0) = m! a_m$ Из этого $\implies T_{n,x_0}^{(m)} f(x_0) = a_m \cdot m! = f^{(m)}(x_0) \qquad m = \frac{f^{(m)}(x_0)}{m!}$

Замечание 1.4. Существует единственный многочлен степени n, обладающим свойством из леммы выше (для данной функции f(x)) и именно он и есть многочлен Тейлора

Теорема 1.2 (Формула Тейлора - Пеано). $\exists n \in \mathbb{N}, \exists f - n \text{ раз дифференцируема в } x_0 \in (a;b).$ Тогда

$$f(x) = T_{n,x_0} f(x) + o((x - x_0)^n) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n)$$

m.e. $R_{n,x_0}f(x) = o((x-x_0)^n)$

Доказательство. Для упрощения записи пишем T(x) вместо $T_{n,x_0}f(x)$ и R(x) вместо $R_{n,x_0}f(x)$ Дано R(x) = f(x) - T(x) и по лемме $f^{(m)}(x_0) = T^{(m)}(x_0) \forall m = \overline{0,m}$ т.е. $R^{(m)}(x_0) = 0 \forall m = \overline{0,n}$

Достаточно доказать такую лемму

Лемма 1.3. if $R^{(m)}(x_0)=0$ $\forall m=\overline{0,n} \Longrightarrow R(x)=o\left((x-x_0^n)\right)$ Из этой Леммы очевидно следует теорема

Доказательство. n=0 $R(x)=f(x)-T(x)=f(x)-f(x_0)$ $T_{0,x_0}f(x)=f(x_0)$

т.к. f – непрерывна в 0 $f(x) - f(x_0) = 0(1), x \to x_0$ (по определению)

(0 - дифференцируемость – непрерывность)

n=1 $R(x)=f(x)-T_{1,x_0}f(x)=f(x)-f(x_0)-f'(x_0)(x-x_0)=o(x-x_0)$ (по определению дифференцируемости в x_0)

$$n \to n+1 \ \exists \ R_(x) = 0 \ ((x-x_0)^m), \text{ r.e. } \frac{R(x)}{(x-x_0)^m} \to 0 \quad x \to x_0 \ (x \neq x_0) \quad m = \overline{0,n}$$

Надо показать, что
$$R(x)=o\left((x-x_0)^{n+1} \iff \frac{R(x)}{(x-x_0)^{n+1}}\right) \to 0$$
, при $x\to x_0$

Воспользуемся языком последовательностей (языком Гейне)

 $\exists x_i \rightarrow x_0$ и $x_i \neq x_0$ – произвольная последовательность

Считаем x_i лежит между x_0 и x

Рис. 1.1: хѕ

 $R'(c_i)$ – уже удовлетворяет индукционному предположению

$$R-n+1$$
 раз дифференцируема $\implies \tilde{R}=R'$ и .. дифференцируемо в x_0 и $\tilde{R}^{(m)}(x_0)=0, m=\overline{0,n}\implies \frac{\tilde{R}(c_i)}{(c_i-x_0)^n}\to 0, c_i\to x_0$

Определение 1.8. Формула Тейлора для $x_0 = 0$ называется формулой Маклорена

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$

Замечание 1.5. \square выполнено условие теоремы и \square $P_n(x)$ – это такой многочлен степени n:f(x)= $P_n(x) + o((x - x_0)^n) => P_n(x) = T_{n,x_0}f(x)$

Иногда это замечание берут в качестве определения многочлена Тейлора

Eсли f-n раз дифференцируема в x_0 (т.е. условие теоремы), то оба определения совпадают но, если f – не дифференцируема, то второе определение шире

Пример 1.1.
$$f(x) = \begin{cases} 0 & , x \notin \mathbb{Q} \\ x^n, x \in \mathbb{Q} \end{cases}$$

f – непрерывна на $\hat{\mathbb{R}}$ (непрерывна только в 0), в остальных точках разрыв

 $T.e.\$ это означает, что f – не дифференцируема при $x \neq 0$

 $f''(0)=\lim_{x\to 0}rac{f'(x)-f'(x_0)}{x-0}$ – eta, т.к. f'(x) – не определена

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \begin{cases} 0 & , x \notin \mathbb{Q} \\ x^{n - 2} & , x \in \mathbb{Q} \end{cases} = 0$$

Y f omcymcmsyem $T_{2,0}f(x) \implies T_{\geq 2,0}f(x)$ тоже не существует

Но $P_{n-1}(x)$ в смысле второго определения существует $P_{n-1} \equiv 0$

 $f(x) = 0 + o(x^{n-1}) \iff cama \ f \ ecmb \ p(x^{n-1})$

Теорема 1.3 (Глобальная формула Тейлора). $\Box f = n+1$ раз дифференцируема на (a;b)

 $\exists \ \phi$ – произвольная функция, 1 раз дифференцируемая на (a;b) и $\phi' \neq 0$ на (a;b) $\exists \ x_0 \in (a;b)$ Тогда $\forall x \in (a;b)$

 $\exists C_x$, лежащие между x_0, x :

$$R_{n,x_0}f(x) = \frac{\phi(x) - \phi(x_0)}{\phi'(c_x)n!} f^{(n+1)}(c_x)(x - c_x)^n$$

Доказательство. На (a;b) рассмотрим функцию

$$F(t) = f(x) - T_{n,x}f(t) = f(x) - \left(f(t) + \frac{f'(t)}{1!}(x-t) + \frac{f''(t)}{2!}(x-t)^2 + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^4\right) \quad x$$

- как бы фиксируется, а *t* - как бы меняется

f-(n+1) раз дифференцируема на $(a;b) \implies F(t)--1$ раз дифференцируема

$$F'(t) = = -\left(f'(t) + (-f'(t)) + f''(t)(x-t) + f''(t)(x-t)(-1) + \frac{f'''(t)}{2!}(x-t)^2 + \dots + \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1}(-1) + \frac{f^{(n+1)}(t)}{n!}(x-t)^{n-1}(-1) + \frac{f^{(n+1)}(t)}{n!}(x-t)^{n-1}(x-t$$

Применим к
$$F$$
 и ϕ формулу Коши. $\exists C_x$ между $x_0,x: \frac{F(x)-F(x_0)}{\phi(x)-\phi(x_0)} = \frac{F'(C_x)}{\phi'(C_x)}$ Заметим: $F(x) = F(t) \mid_{t=0} = 0; \quad F(x_0) = f(x) - T_{n,x_0}f(x) = R_{n,x_0}f(x)$
$$\frac{0-R_{n,x_0}f(x)}{\phi(x)-\phi(x_0)} = \frac{\left(-\frac{f^{(n+1)}(C_x)}{n!}\right)(x-C_x)^n}{\phi'(C_x)}$$
 $R_{n,x_0}f(x) = \frac{\phi(x)-\phi(x_0)}{\phi'(C_x)n!} \cdot f^{(n+1)}(C_x) \cdot (x-C_x)^n$

Следствие 1.1. 1. $\Box \phi(t) = x - t$ $\phi(x) = 0$ $u \phi(x_0) = x - x_0$ $\phi'(t) = -1$

$$R_{n,x_0}f(x) = \frac{-(x-x_0)}{(-1)n!}f^{(n+1)}(C_x)\cdot(x-C_x)^n = \frac{f^{(n+1)}(C_x)}{n!}(x-x_0)(x-C_x)^n$$

$$\exists \theta \in [0;1]: (x-C_x) = (1-\theta)(x-x_0) \quad \theta = \frac{C_x - x_0}{x-x_0} \quad C_x = x_0 \quad \theta = 0 \quad C_x = x \quad \theta = 1$$

$$R_{n,x_0}f(x)=\frac{f^{(n+1)}(C_x)}{n!}(1-\theta)^n(x-x_0)^{n+1},\ \text{ide }\theta=\frac{C_x-x_0}{x-x_0}\in[0;1]$$

Остаточный член в формуле Коши

2.
$$\Box \phi(t) = (x-t)^{n+1}$$
 $\phi(x) = 0$, $\phi(x_0) = (x-x_0)^{n+1}$ $\phi'(t) = -(n+1)(x-t)^4$

$$R_{n,x_0} = \frac{0 - (x - x_0)^{n+1}}{-(n+1)(x - C_x)^n n!} f^{(n+1)}(C_x) \cdot (x - C_x)^n = \frac{f^{(n+1)}(x)}{(n+1)!} (x - x_0)^{n+1}$$

3. Формула Лагранжа – частный случай формулы Тейлора-Лагранжа для n=0

$$f(x) - f(x_0) = f'(C_x) \cdot (x - x_0)$$

- 4. \Box известно, что $|f^{(n+1)}(x)| \leq M$ на (a;b) Тогда $|R_{n,x_0}f(x)| \leq \frac{M}{(n+1)!} |x-x_0|^{n+1}$
- 5. Сравним Тейлора-Пеано и Тейлора-Лагранжа

Из Пеано $R_{n,x_0}f(x) = O\left((x-x_0)^{n+1}\right)$ (в случае, если f^{n+1} локально ограничено в x_0) $O\left((x-x_0)^{n+1}\right) = o\left((x-x_0)^n\right)$, но $o\left((x-x_0)^n\right) \neq O\left((x-x_0)^{n+1}\right)$

$$R_{n,x_0}f(x) = \frac{f^{(n+1)}(C_x)}{(n+1)!}(x-x_0)^{n+1}$$

6. Снова рассмотрим в качестве $f(x) = T_n(x)$ – многочлен Лагранжа

$$m.\kappa. T_n^{(n+1)}(x) \equiv 0$$

Из формулы Тейлора-Лагранжа: $T_n(x) = \sum_{k=0}^n \frac{T_n^{(k)}(x_0)}{k!} (x - x_0)^k + 0$

7. $f-\infty$ число раз дифференцируема на (a;b) $f\in C^\infty(a;b)$

 \Box все $f^{(k)}(x)$ равномерно ограничено на $(a;b)\longleftrightarrow\exists M:|f^{(k)}(x)|\leqslant M\forall k\in\mathbb{Z}^+, \forall x\in(a;b)$

$$|R_{n,x_0}f(x)| \leq \frac{M}{(n+1)!} |x - x_0|^{n+1} \quad \forall n$$

$$\implies |f(x) - T_{n,x_0}f(x)| = |R_{n,x_0}f(x)| \leqslant \frac{M}{(n+1)!}|x - x_0|^{n+1} \to 0, n \to \infty, m.\kappa. \frac{|x - x_0|^{n+1}}{(n+1)!} \to 0, n \to \infty$$

$$f(x) = \lim_{n \to \infty} T_{n,x_0} f(x)$$

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Ряд Тейлора

Любую n раз дифференцируемую функцию можно разложить c помощью формулы Тейлора-Пеано Ho не любую, даже ∞ раз дифференцируемую функцию можно представить рядом Тейлора

Eсли функция в x_0 совпадает со своим рядом Tейлором, они называются аналитическими

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

$$f \in C^{\infty}(\mathbb{R}), f^{(k)}(0) = 0$$
 $T_{n,0}f(x) \equiv 0 \implies p$ яд Тейлора $\equiv 0$

1.3 Преобразование уравнений и неравенств

(1) f(x) (2) g(x) = 0

Если любой корень (1) является корнем (2), то (2) – следствие (1) (корни не теряются) $f(x) \implies g(x)$ Если любой корень (1) является корнем (2) и любой корень (2) является корнем (1), то уравнения называются равносильными $f(x) \iff g(x)$

корни не теряются и лишние не появляются

Типичные преобразования:

приведение подобных слагаемых

$$f(x) + h(x) = g(x) + h(x)$$

$$f(x) = g(x)$$

приведение расширяет ОДЗ, добавление же, наоборот, сужает

$$f + h = g + h \Longleftrightarrow \begin{cases} f = g \\ \text{ОДЗ} \end{cases}$$

Деление на общий множитель Не делим, а расщипляем

$$\overline{fh = gh \iff fh - gh = 0 \iff} (f - g)h = 0$$

Когда можно "делить"?

Когда область определения функции h это всё \mathbb{R} и $h(x) \neq 0 \forall x$

Возведение в квадрат

$$\overline{f(x) = g(x)} \implies f^2(x) = g^2(x)$$

1.4 Формулы (ряды) Тейлора для элементарных функций

1.
$$f(x) = e^x$$

Ясно, что
$$(e^x)^{(k)} = e^x \quad (e^x)^{(k)} \mid_{x=0} = 1$$

Формула Тейлора-Пеано
$$e^x = \sum\limits_{k=0}^n \frac{1}{k!} x^k + o(x^n)$$

Формула Тейлора-Лагранжа
$$e^x = \sum\limits_{k=0}^n \frac{x^k}{k!} + \frac{e^{\theta}}{(n+1)!} x^{n+1}$$
 $\theta \in [0,x], x>0$ (либо $x \in [x,0],$ если $x<0$)

или
$$e^x=\sum\limits_{k=0}^n rac{x^k}{k!}+rac{e^{ heta x}}{(n+1)!}x^{n+1}, heta \in [0,1]$$

Из этого
$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \leqslant \frac{e^{\theta x} \cdot |x|^{n+1}}{(n+1)!}$$

Если
$$x$$
 – фиксирована $\frac{e^{\theta x}\cdot|x|^{n+1}}{(n+1)!}\to 0, n\to +\infty$

$$\implies \left|e^x - \sum_{k=0}^n \frac{x^k}{k!}\right| \to 0, n \to +\infty \Longleftrightarrow e^x = \sum_{k=0}^\infty \frac{x^k}{k!} \ (\text{по определению ряда}) - \text{аналитическая функция}$$

в частности
$$x=1$$
 $e=\sum_{k=0}^{\infty}\frac{1}{k!}$

Теорема 1.4. e – uppayuonanshoe

Доказательство. Пусть не так $\implies e = \frac{m}{n}, m, n \in \mathbb{N}$

Т.к. 2 < e < 3 – известная грубая оценка, то $e \notin \mathbb{Z}$

$$\implies n \geqslant 2$$

Пишем Формулу Тейлора-Лагранжа $e=\frac{m}{n}=\sum\limits_{k=0}^{n}\frac{1}{k!}+\frac{e^{\theta}}{(n+1)!}\cdot 1^{n+1}$

$$(n+1)!m = \sum_{k=0}^n \frac{n!}{k!} + \frac{e^{\theta}}{n+1} \implies \frac{e^{\theta}}{n+1} \in \mathbb{Z}$$
, что невозможно, т.к. $n+1\geqslant 3$ $1< e^{\theta} < 3$

$$f(x) = \sin x$$

$$f^{(k)}(x) = (D^k \sin)x = \sin(x + \frac{\pi k}{2})$$

 $L=<\sin x,\sin x>=\{a\cos x+b\sin x|a,b\in\mathbb{R}\}$ – линейное пространство

$$L \to \mathbb{R}^2$$
 $a\cos x + b\sin x \to (a,b)$

$$D:L\to L$$

$$D\begin{pmatrix} \cos x \\ \sin x \end{pmatrix} = \begin{pmatrix} -\sin x \\ \cos x \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos x \\ \sin x \end{pmatrix} \quad \alpha = \frac{\pi}{2}$$

$$(\sin x)^{(m)} = \sin(x + \frac{\pi m}{2}) \quad x_0 = 0$$

$$(\sin x)^{(2k)} \mid_{x=0} = \sin(0 + \pi k) = 0$$

$$(\sin x)^{(2k+1)}|_{x=0} = \sin(\frac{\pi}{2} + \pi k) = (-1)^m$$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + O(x^{2n+1}) \Phi T \Pi$$

 $\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \frac{\sin \theta}{(2x+3)!} x^{2n+3}$ $\theta \in [0,1]$ (формулы как бы до (n+1) просто (n+1)-ое слагаемое не учитывается)

T.K.
$$\left|\frac{\sin\theta x \cdot x^{2n+3}}{(2n+3)!}\right| \leqslant \frac{|x|^{2n+3}}{(2n+3)!} \to 0, n \to \infty$$

T.o.
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

3.
$$f(x) = \cos x$$
 – всё по аналогии

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(2^{2n}) \Phi T \Pi$$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + \frac{\cos \theta x}{(2n+2)!} x^{2n+2}$$

$$\Phi T \Pi \left| \cos x - \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} \right| \le \left| \frac{\cos \theta x}{(2n+2)!} x^{2n+2} \right|$$

 $\cos x$ – аналитическая функция

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

$$e^{ix} = \sum_{k=0}^{\infty} \frac{(i)^k}{k!} x^k = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} + \sum_{k=0}^{\infty} \frac{i(-1)^k}{(2k+1)!} x^{2k+1} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b)$$

$$e^{\pi i} = -1$$

4.
$$f(x) = \ln(1+x)$$

$$f'(x) = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2}$$

$$f^{III}(x) = \frac{2}{(1+x)^3}$$

$$f^{IV} = -\frac{2\cdot 3}{(1+x)^4}$$

$$f^{(n)} = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n}$$

$$f^{(n)}(0) = (-1)^n \cdot (n-1)!$$
 $x_0 = 0$

$$\ln(1+x) = \sum_{k=0}^{n} \frac{f^{(n)}(0)}{n!} x^{n} + \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} = \sum_{k=1}^{n} \frac{(-1)^{n+1}}{n} \cdot x^{n} + \frac{(-1)^{n+2} n!}{(1+\theta x)^{n+1} \cdot (n+1)!} x^{n+1} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} \dots + \frac{(-1)^{n+1} x^{n}}{n} + \frac{(-1)^{n+2} x^{n+1}}{(1+\theta x)^{n+1} (n+1)} \Phi T \Pi$$

$$\Phi T\Pi \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} \dots + \frac{(-1)^{n+1}x^n}{n} + o(x^n)$$

При каких x ряд Тейлора будет сходиться к $\ln(1+x)$

$$|R_n(x)| = \left| \frac{x^{n+1}}{(1+\theta x)^{n+1}(n+1)} \right| \to 0, n \to \infty$$

$$\theta \in [0,1]$$

$$x = 1 \quad \left| \frac{1}{(1+\theta)^{n+1}(n+1)} \right| \to 0$$

Фокус авансом $\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots$

$$\exists |x| < 1$$

$$\ln(1+x) = \int_{0}^{\infty} \frac{dt}{1+t} = \int_{0}^{x} (1-t+t^2-t^3...)dt = (t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4})|_{0}^{x} = x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$$

5.
$$f(x) = (1+x)^{\alpha}, \alpha \in \mathbb{R} \setminus 0$$

$$f'(x) = \alpha(1+x)^{\alpha-1}$$

$$f''(x) = \alpha(\alpha - 1)(1 + x)^{\alpha - 2}$$

$$f^{(k)} = \alpha(\alpha - 1)(\alpha - 2) \dots (\alpha - k + 1)(1 + x)^{\alpha - k}$$

$$f^{(k)}(0) = \alpha \dots (\alpha - k + 1)$$

Если $\alpha \in \mathbb{N}$, то есть некторое N $f^{(N)}(x) = 0$

A если α – ненатуральное ненулевое число, то производная считается бесконечное число раз

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!} \cdot x + \frac{\alpha(\alpha-1)}{2!} x^2 + \ldots + \frac{\alpha(\alpha-1)(\alpha-2) \dots (\alpha-n+1)}{n!} x^n + o(x^n)$$

$$\frac{1}{1+x} = (1+x)^{-1} = 1 - x + \frac{(-1)(-1-1)}{2!}x^2 + \frac{(-1)(-1-1)(-1-2)}{3!}x^3 + \dots = 1 - x + x^2 - x^3 + \dots + (-1)x^n + o(x^n)$$

$$\frac{1}{(1+x)^2} = (1+x)^{-2} = 1 - \frac{2}{1!}x + \frac{-2(-3)}{2!}x^2 + \frac{(-2)(-3)(-4)}{3!}x^3 + \dots + \frac{(-2)\dots(-n-1)}{n!}x^n + o(x^n) = 1 - 2x + 3x^2 - 4x^3 + \dots + (-1)^n(n+1)x^n + o(x^n)$$

$$\frac{1}{(1+x)^2} = -\left(\frac{1}{1+x}\right) = (1-x+x^2-x^3+\dots+(-1)x^n+\dots)' = 1 - 2x + 3x^2 + \dots + (-1)^{n+1}nx^{n-1} + \dots$$

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!}x^3 + \dots = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots$$

$$6. \ f(x) = \operatorname{tg} x$$

$$\operatorname{tg} x = \frac{\sin x}{\cos x} = \frac{x - \frac{x^3}{31} + \frac{x^5}{51} + O(x^7)}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + O(x^8)} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7)}{1 + t} = (x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7))(1 + t + t^2 + O(t^3) + (x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7))(1 + (\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}) + (1 + (\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720})^2 + o(x^5)) = (x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7))(1 + (\frac{x^2}{2} - \frac{x^4}{24}) + (\frac{x^4}{4} + o(x^5)) = (x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7))(1 + \frac{x^2}{2} + \frac{5}{24}x^4 + o(x^5)) = (x - \frac{x^3}{6} + \frac{x^5}{120}) + (\frac{x^3}{24} - \frac{x^5}{120}) + (\frac{5}{24}x^5) + o(x^5) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$$
 до $o(x^5)$