

Tiesinių lygčių sistemų sprendimas: Atspindžio ir QR skaidos algoritmai

Temoje aiškinama:

- Motyvuojamas TLS sprendimo algoritmų patobulinimas, kai tiesioginio etapo pertvarkymuose panaudojamos visos lygtys
- Kaip apskaičiuoti 3D geometrinio vektoriaus atspindžio plokštumos atžvilgiu koordinates ir kaip parinkti atspindžio plokštumą, kad gauti tam tikras pasirinktas atspindžio vektoriaus koordinates;
- Atspindžio pakeitimo išplėtimas į n-matę erdvę;
- Atspindžio pakeitimo panaudojimas QR algoritmui sukurti;
- QR skaidos algoritmas;
- Kokios yra algebrinės lygties sprendimui taikomos programinės funkcijos MATLAB ir Python terpėse

Prisiminkime: kintamųjų eliminavimu paremti algoritmai

Gauso algoritmas

Gauso-Žordano algoritmas

A x = b; $A^{-1}A x = A^{-1}b$; $x = A^{-1}b$;

Atvirkštinės matricos algoritmas

Taikome Gauso-Žordano algoritmą

$$\mathbf{A}^{-1} = \mathbf{X}$$

LU skaidos algoritmas

$$Ax = b \implies LUx = b \implies Ly = b \implies$$

$$\Rightarrow \mathbf{L}\mathbf{y} = \mathbf{b} \Rightarrow \mathbf{y} \Rightarrow \mathbf{U}\mathbf{x} = \mathbf{y} \Rightarrow \mathbf{x}$$

- Jeigu viename iš Gauso algoritmo vykdymo žingsnių vedančio elemento skaitinė reikšmė maža, galimos ženklios apvalinimo paklaidos;
- Apvalinimo paklaidos mažesnės, taikant atspindžio algoritmą (QR algoritmas, Hausholderio algoritmas)
- Atspindžio algoritmo idėją galima paaiškinti pagal du vektoriais aprašomus geometrinius veiksmus:
 - ✓ Kaip apskaičiuoti 3D geometrinio vektoriaus atspindžio duotos plokštumos atžvilgiu koordinates;
 - ✓ Kaip parinkti atspindžio plokštumą, kad gauti tam tikras pasirinktas atspindžio vektoriaus koordinates

Atspindžio algoritmo idėja: vektoriaus atspindys plokštumos atžvilgiu 3D erdvėje

$$\vec{\mathbf{z}}' = \vec{\mathbf{z}} - 2\vec{\boldsymbol{\omega}}(\vec{\boldsymbol{\omega}} \cdot \vec{\mathbf{z}}) = \begin{cases} z_x \\ z_y \\ z_z \end{cases} - 2 \begin{cases} \omega_x \\ \omega_y \\ \omega_z \end{cases} \left\{ \{\omega_x \quad \omega_y \quad \omega_z \} \begin{cases} z_x \\ z_y \\ z_z \end{cases} \right\} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{cases} z_x \\ z_y \\ z_z \end{cases} - 2 \{\omega_x \} \left\{ \omega_x \quad \omega_y \quad \omega_z \} \begin{cases} z_x \\ z_y \\ z_z \end{cases} = [\mathbf{E}] \{\mathbf{z}\} - 2 \{\mathbf{\omega}\} \{\mathbf{\omega}\}^T \{\mathbf{z}\} = ([\mathbf{E}] - 2 \{\mathbf{\omega}\} \{\mathbf{\omega}\}^T) \{\mathbf{z}\}$$

Atspindžio algoritmo idėja: veidrodis, atspindintis duotą vektorių į duotą atspindį

Jeigu žinome $\{z\}$ ir jo atspindį $\{z'\}$, plokštumos normalę galime apskaičiuoti taip:

$$\{\omega\} = \frac{\{\mathbf{z}\} - \{\mathbf{z}'\}}{\|\{\mathbf{z}\} - \{\mathbf{z}'\}\|}$$

$$\left\| \left\{ \mathbf{v} \right\} \right\| = \sqrt{\sum_{i=1}^{n} v_{i}^{2}}$$

- vektoriaus Euklido norma ("ilgis"), n- erdvės matavimų skaičius

Atspindžio algoritmo idėja: apibendrinimas

1. Pagal formule
$$\{\mathbf{z}'\} = [\mathbf{Q}]\{\mathbf{z}\}$$
, $[\mathbf{Q}] = [\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^T$

vektorius $\{z\}$ pertvarkomas į jo atspindį atžvilgiu plokštumos, kurios normalės vektorius yra $\{\omega\}$

2. Pagal formulę
$$\{\omega\} = \frac{\{\mathbf{z}\} - \{\mathbf{z}'\}}{\|\{\mathbf{z}\} - \{\mathbf{z}'\}\|}$$
 nustatoma normalė veidrodžio

plokštumos, kuris atspindi duotą vektorių į duotą jo atspindį. Duotųjų atspindimo $\{\mathbf{z}\}$ vektoriaus ir atspindžio vektorių $\{\mathbf{z}'\}$ Euklido normos turi būti lygios, t.y. $\|\{\mathbf{z}\}\| = \|\{\mathbf{z}'\}\|$

Atspindžio pakeitimo išplėtimas į n-matę erdvę

<u>Uždavinys:</u> koks turėtų būti $\{\omega\}$, kad atspindėto vektoriaus {z'} visos koordinatės būtų =0, išskyrus pirmaja?

$$\{\mathbf{z}'\} = sign(z_1) \| \{\mathbf{z}\} \| \begin{cases} 1 \\ 0 \\ 0 \end{cases}$$

 $\{\mathbf{z}'\} = sign(z_1) \| \{\mathbf{z}\} \| \begin{cases} 1 \\ 0 \\ 0 \end{cases}$ - Atspindžio norma turi būti lygi vektoriaus $\{\mathbf{z}\}$ normai

$$\{\omega\} = \frac{\{\mathbf{z}\} - \{\mathbf{z}'\}}{\|\{\mathbf{z}\} - \{\mathbf{z}'\}\|}$$

$$[\mathbf{Q}] = [\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^T$$

Taikydami atspindžio matricą, galime apskaičiuoti bet kurio vektoriaus atspindį atžvilgiu plokštumos, kurios normalė yra $\{\omega\}$

3D atveju suformuluotos ir geometriškai paaiškintos priklausomybės pritaikomos n-matėje tiesinėje erdvėje:

$$\{\mathbf{z}'\} = sign(z_1) \|\{\mathbf{z}\}\| \begin{cases} 1\\0\\0\\\vdots\\0 \end{cases} \qquad \{\mathbf{\omega}\} = \frac{\{\mathbf{z}\} - \{\mathbf{z}'\}}{\|\{\mathbf{z}\} - \{\mathbf{z}'\}\|} \qquad [\mathbf{Q}] = [\mathbf{E}] - 2\{\mathbf{\omega}\} \{\mathbf{\omega}\}^T$$

- Taikant formulę $\{z'\} = [Q]\{z\}$ bet koks n-matis vektorius $\{z\}$ gali būti pertvarkytas į tos pačios normos ("ilgio") vektorių $\{z'\}$, turinčio tik pirmąją nenulinę koordinatę;
- Kiekviena {z'} koordinatė yra vektoriaus {z} koordinačių tiesinė kombinacija. Tai seka iš matricų daugybos veiksmo apibrėžimo;

Kiekviena atspindžio matrica yra simetrinė ir ortogonalioji:

$$[\mathbf{Q}] = [\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T};$$

$$[\mathbf{Q}]^{T} = ([\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T})^{T} = [\mathbf{E}]^{T} - 2(\{\boldsymbol{\omega}\}^{T})^{T}\{\boldsymbol{\omega}\}^{T} = [\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T};$$

$$[\mathbf{Q}]^{T}[\mathbf{Q}] = ([\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T})([\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T}) =$$

$$= [\mathbf{E}][\mathbf{E}] - 2\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T}[\mathbf{E}] - 2[\mathbf{E}]\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T} + 4\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T}\{\boldsymbol{\omega}\}\{\boldsymbol{\omega}\}^{T} = [\mathbf{E}];$$

- Kad gauti ortogonaliosios matricos inversiją (t.y. atvirkštinę matricą), pakanka atlikti transponavimo veiksmą. Jo sudėtingumas žymiai mažesnis, nei atvirkštinės matricos apskaičiavimas pagal bendrąjį algoritmą. Jeigu skaičiuosime aritmetikos veiksmus, transponavimo veiksmo sudėtingumas =0;
- Jeigu ortogonalioji matrica simetrinė, jos atvirkštinė matrica yra ji pati, t.y. ${f [Q]}$ = ${f [Q]}^{\!{}^{\!{}^{\!{}^{\!{}^{\!{}}}}}}$
- Svarbiausia: duotą vektorių visuomet galime pertvarkyti bet kurį kitą tos pačios normos vektorių, taikydami ortogonalųjį koordinačių pakeitimą

Atspindžio pakeitimo panaudojimas QR algoritmui sukurti

Atspindžio algoritmo taikymas lygčių sistemos pertvarkymui 1

 Duota lygčių sistemos koeficientų ir laisvųjų narių matrica:

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 1 & -1 & -1 & 1 & 0 \\ 2 & 1 & -1 & 2 & 9 \\ 3 & 1 & 2 & -1 & 7 \end{bmatrix}$$

 Kiekvienas stulpelis laikomas vektoriumi, kuriam gali būti pritaikytas atspindžio pakeitimas; Taikant formulę [A']= [Q] [A], vienas ir tas pats atspindžio pakeitimas pritaikomas kiekvienam stulpeliui. T.y. matricos [A'] eilutės gaunamos, tiesiškai kombinuojant matricos [A] eilutes (t.y. sprendžiamos sistemos lygtis)

 Matricomis [A'] ir [A] aprašomų lygčių sistemų sprendiniai yra tokie patys

Atspindžio algoritmo taikymas lygčių sistemos pertvarkymui 3

atspindetas vektorius
$$\{\mathbf{z}'\} = sign(1)\sqrt{1^2 + 1^2 + 2^2 + 3^2} \begin{cases} 1\\0\\0\\0 \end{cases} = \begin{cases} 3.873\\0\\0\\0 \end{cases}$$

$$\{\boldsymbol{\omega}\} = \frac{\{\mathbf{z}\} - \{\mathbf{z}'\}}{\|\{\mathbf{z}\} - \{\mathbf{z}'\}\|}$$
0.2582 0.2582 0.

Pertvarkomi visi stulpeliai, tačiau nuliai gaunami tik tame, pagal kuri buvo apskaiciuota matrica Q. Toks stulpelių pertvarkymas reiškia, kad lygtys buvo tiesiškai kombinuojamos

$$\|\{\mathbf{z}\} - \{\mathbf{z}'\}\|$$

$$\left[\mathbf{Q}^{(1)}\right] = \left[\mathbf{E}\right] - 2\{\mathbf{\omega}\}\{\mathbf{\omega}\}^{T} =$$

1.2910

$$\begin{bmatrix} \mathbf{A}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 2 \\ 1 & -1 & -1 & 1 & 0 \\ 2 & 1 & -1 & 2 & 9 \\ 3 & 1 & 2 & -1 & 7 \end{bmatrix} = \begin{bmatrix} 3.8730 \\ 0.0000 \\ -0.0000 \\ -0.0000 \end{bmatrix}$$

1.0328

0.7746

10.5862

Pvz_SMA_3_1_posukio_paaiskinimas.m

Atspindžio algoritmo taikymas lygčių sistemos pertvarkymui 4

atspindetas vektorius
$$\{\mathbf{z}'\} = sign(-1.103)\sqrt{1.103^2 + 0.7974^2 + 0.6961^2} \begin{cases} 1\\0\\0 \end{cases} = \begin{cases} -1.5275\\0\\0 \end{cases}$$

$$\{\omega\} = \frac{\{\mathbf{z}\} - \{\mathbf{z}'\}}{\|\{\mathbf{z}\} - \{\mathbf{z}'\}\|}$$

$$\begin{bmatrix} \mathbf{Q}^{(2)} \end{bmatrix} = \begin{bmatrix} \mathbf{E} \end{bmatrix} - 2\{\mathbf{\omega}\}\{\mathbf{\omega}\}^T = \begin{bmatrix} 0.7210 & -0.5220 & -0.4557 \\ -0.5220 & 0.0233 & -0.8526 \\ -0.4557 & -0.8526 & 0.2557 \end{bmatrix}$$

Pertvarkomas tik matricos blokas (2:n,2:n+1) (t.y. pirmoji lygtis nebekinta). Todėl erdvės, kurioje atliekamas atspindys, išmatavimas sumažėja.

3.8730	1.2910		1.0328	0.7746	10.5862	u				
						3.8730	1.2910	1.0328	0.7746	10.5862
0.0000	$\lceil \mathbf{O}^{(2)} \rceil$	-1.1013 -1.01	-1.0114	1.0785	-2.9886 3.0228	= 0.0000	-1.5275	-1.0911	-0.0000	-2.8368
0.0000	[م]	0.7974	-1.0228	2.1569		0.0000 -0.0000	0	-1.1719	0.1393	3.3067
-0.0000		0.6961	1.9658	-0.7646	-1.9658			1.8356		
						0.0000	0.000	2.0000	2.0000	

 $\mathbf{A}^{(2)}$

Atspindžio algoritmo taikymas lygčių sistemos pertvarkymui 5

atspindetas vektorius
$$\{\mathbf{z}'\} = sign(-1.1719)\sqrt{1.1719^2 + 1.8356^2} \begin{cases} 1 \\ 0 \end{cases} = \begin{cases} -2.1778 \\ 0 \end{cases}$$

$$\left\{\boldsymbol{\omega}\right\} = \frac{\left\{\boldsymbol{z}\right\} - \left\{\boldsymbol{z}'\right\}}{\left\|\left\{\boldsymbol{z}\right\} - \left\{\boldsymbol{z}'\right\}\right\|}$$

vektorius {z}

$$\left[\mathbf{Q}^{(3)}\right] = \left[\mathbf{E}\right] - 2\left\{\mathbf{\omega}\right\} \left\{\mathbf{\omega}\right\}^{T} = \begin{bmatrix} 0.5381 & -0.8429 \\ -0.8429 & -0.5381 \end{bmatrix}$$

 $\mathbf{A}^{(3)}$

$$\begin{bmatrix} \mathbf{A}^{(3)} \end{bmatrix} = \begin{bmatrix} 0.0000 \\ 0.0000 \\ -0.0000 \end{bmatrix}$$

3.2274

3.8730

0.0000

-2.1778

2.2040

Atliekamas Gauso algoritmo atgalinis etapas

X =

- 2.5000
- 4.0000
- -3.0000
- -1.5000

Atspindžio algoritmas esant singuliariai matricai

1.0000	1.0000	1.0000	1.0000	2.0000	
1.0000	1.0000	-1.0000	1.0000	9.1429	
1.0000	1.0000	-2.0000	4.0000	14.0000	
-1.0000	-1.0000	1.0000	4.0000	-7.0000	
			atsp	indžio per	e nulinį stulpelį z=0, tvarkymo netaikome, t.y. gsnį praleidžiame
2.0000	2.0000	-1.5000	1.0000	16.0714	
0	0	1,5000	1.0000	-4.9286	
0	0 4	0.5000	4.0000	-0.0714	
0	0	-1.5000	4.0000	7.0714	
		1			
2.0000	2.0000	-1.5000	1.0000	16.0714	
0	0	1.5000	1.0000	-4.9286	
0	0	1.5811	-2.5298	-6.7311	
0	0	-0.0000	-5.0596	-2.1684	

Atgalinis žingsnis toks pats, kaip ir Gauso algoritmo, kai matrica singuliari *Pvz_SMA_3_3_atspindzio_QR_algoritmas_singular.m*

Atspindžio algoritmas ir Gauso algoritmas – tikslumo

X =

2.5000

4.0000 -3.0000

-1.5000

0.1332

0.0444 0 -0.1776

2.50004.0000

-3.0000

-1.5000

-0.0888

0.3553

liekana = 1e-14 *

X =

liekana = 1e-14 *

sulyginimas

Atspindžio algoritmas

$$\begin{bmatrix} \mathbf{A}^{(3)} \end{bmatrix} = \begin{bmatrix} 3.8730 & 1.2910 & 1.0328 & 0.7746 & 10.5862 \\ 0.0000 & -1.5275 & -1.0911 & -0.0000 & -2.8368 \\ 0.0000 & 0.0000 & -2.1778 & 2.2040 & 3.2274 \\ -0.0000 & 0.0000 & -0.0000 & 1.2418 & -1.8628 \end{bmatrix}$$

Gauso algoritmas, parenkant didžiausią vedantįjį elementą

Taikydami **atspindžio algoritmą**, didžiausią liekaną gavome mažesnę, o liekanas – tolygiau pasiskirsčiusias tarp sistemos lygčių, negu taikydami **Gauso algoritmą**

Nesuklyskime, eksperimentiškai vertindami algoritmų savybes:

Gauso algoritmas, parenkant didžiausią vedantįjį elementą

```
x =
2.5000
4.0000
-3.0000
-1.5000

liekana = 1e-14 *
0
-0.0888
0.3553
0
```

liekana =

0

Gauso algoritmas, kai vedantis elementas imamas toks, kokį gauname įstrižainėje

Tiesioginį algoritmo žingsnį <u>pavyko</u> atlikti sveikaisiais skaičiais. Bendruoju atveju taip nepavyktų, todėl paklaidos gautųsi didesnės. Paeksperimentuokite.

Atspindžio algoritmas MATLAB

Pvz_SMA_3_2_atspindzio_QR_algoritmas.m A1=[A,b]% Tiesioginis etapas (atspindziai): for i=1:n-1z=A1(i:n,i);zp=zeros(size(z)); zp(1)=norm(z);omega=(z-zp);omega=omega/norm(omega); Q=eye(n-i+1)-2*omega*omega';A1(i:n,:)=Q*A1(i:n,:);end % Atgalinis etapas toks pats, kaip ir Gauso algoritmo: x=zeros(n,1);for i=n:-1:1 x(i,:) = (A1(i,n+1)-A1(i,i+1:n)*x(i+1:n,:))/A1(i,i);

end

Atspindžio algoritmas Python

Pvz_SMA_3_02_atspindzio_QR_algoritmas.m

```
A1=np.hstack((A,b))
# tiesioginis etapas(atspindziai):
for i in range (0,n-1):
    z=A1[i:n,i]
    zp=np.zeros(np.shape(z)); zp[0]=np.linalg.norm(z)
    omega=z-zp; omega=omega/np.linalg.norm(omega)
    Q=np.identity(n-i)-2*omega*omega.transpose()
   A1[i:n,:]=Q.dot(A1[i:n,:])
# atgalinis etapas:
x=np.zeros(shape=(n,1))
for i in range (n-1,-1,-1):
   x[i,:]=(A1[i,n:n+nb]-A1[i,i+1:n]*x[i+1:n,:])/A1[i,i]
```

Atspindžio algoritmas: apibendrinimai (1)

- Atspindžio algoritmas paremtas lygčių tiesiniu kombinavimu, siekiant gauti nulius žemiau matricos pagrindinės įstrižainės. Todėl atspindžio algoritmas yra Gauso algoritmo apibendrinimas;
- Gauso algoritme tiesinės kombinacijos gaunamos, pridedant ar atimant vedančią lygtį iš žemiau esančių. Atspindžio algoritme tiesinėse kombinacijose dalyvauja visos lygtys;

Atspindžio algoritmas: apibendrinimai (2)

- Atspindžio algoritme po kiekvieno atspindžio <u>matricos</u> <u>stulpelių normos nepakinta</u>. Todėl tikėtina, kad lygčių tiesinėmis kombinacijomis nesukursime stulpelių, kurių visi koeficientai absoliutiniu dydžiu yra labai maži;
- Nereiktų galvoti, kad atspindžio algoritmu gauti sprendiniai visuomet tikslesni, nei gautieji Gauso algoritmu. Galima pateikti tam prieštaraujančių pavyzdžių, ypač kai lygčių skaičius nedidelis, arba kai lygtis išsprendžiama svaikaisiais skaičiais;
- Svarbiausia tai, kad atspindžio algoritmu pertvarkant lygčių sistemą, galima jai suteikti tam tikrą reikalingą pavidalą. Vystant algoritmą toliau, galima atlikti matricos QR skaidą, sukurti tikrinių reikšmių apskaičiavimo algoritmus ir pan.

QR skaidos algoritmas

QR skaida

Atspindžio algoritmas išskaido lygčių sistemos matricą į ortogonalųjį ir trikampį daugiklius:

Ortogonaliųjų matricų sandauga yra ortogonalioji matrica:

$$\left[\mathbf{Q}\right]^T \left[\mathbf{A}\right] = \left[\mathbf{R}\right]$$

$$[A] = [Q][R]$$

— QR skaida

Ortogonaliųjų matricų sandauga yra ortogonalioji matrica - jrodymas:

$$([\mathbf{C}_{1}][\mathbf{C}_{2}]\cdots[\mathbf{C}_{k}])^{T}([\mathbf{C}_{1}][\mathbf{C}_{2}]\cdots[\mathbf{C}_{k}]) =$$

$$=[\mathbf{C}_{k}]^{T}\cdots[\mathbf{C}_{2}]^{T}[\mathbf{C}_{1}]^{T}[\mathbf{C}_{1}][\mathbf{C}_{2}]\cdots[\mathbf{C}_{k}] = [\mathbf{E}]$$

$$[\mathbf{E}]$$

Ortogonalūs daugikliai

Todėl matrica [Q] yra ortogonalioji, tačiau nebe simetrinė(!) matrica:
$$\begin{bmatrix} \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} & \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} & \cdots & \begin{bmatrix} 1 & [0 & \cdots & 0] \\ [0] & \vdots & & \vdots \\ 0 & \cdots & 0 \end{bmatrix} & \begin{bmatrix} Q^{(1)} \end{bmatrix} [A] = [R]$$

Skirtingų simetrinių matricų sandauga nėra simetrinė matrica

Matricos [Q] apskaičiavimas

$$\begin{bmatrix} \mathbf{Q} \end{bmatrix}^T = \begin{bmatrix} \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix} & \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} & \cdots & \begin{bmatrix} 1 & \begin{bmatrix} 0 & \cdots & 0 \end{bmatrix} \\ \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} & \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} \end{bmatrix}$$

$$\mathbf{V} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} \quad \mathbf{V} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} \quad \mathbf{V} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} \quad \mathbf{V} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix}$$

$$\mathbf{Q} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix}^T \quad \mathbf{Q} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix}^T$$

$$\mathbf{Q} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix}^T \quad \mathbf{Q} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix}^T$$

$$\mathbf{Q} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix}^T \quad \mathbf{Q} \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}^{(1)} \end{bmatrix}^T$$

$$\left[\mathbf{Q}^{(i)}\right] = \left[\mathbf{Q}^{(i)}\right]^T$$

QR skaidos taikymas tiesinių lygčių sistemų sprendimui

$$[\mathbf{A}]\{\mathbf{x}\} = \{\mathbf{b}\}; \quad [\mathbf{A}] = [\mathbf{Q}][\mathbf{R}]$$

$$[\mathbf{Q}][\mathbf{R}]\{\mathbf{x}\} = \{\mathbf{b}\}$$
Trikampė matrica
$$[\mathbf{R}]\{\mathbf{x}\} = [\mathbf{Q}]^T \{\mathbf{b}\}$$

- •Privalumas: Kartą apskaičiavę skaidos daugiklius, juos galime naudoti pakartotinai, esant vis kitokiam laisvųjų narių vektoriui;
- Privalumas: Trikampėje matricoje stulpelių normos lieka tokios pačios, kaip ir išeities matricoje
- Privalumas: Algoritmas veikia ir tuo atveju, kai matricos R įstrižainėje yra nulių. T. y. skaida galioja ir singuliarioms lygčių sistemoms;
- Trūkumas: Daugikliai užima daugiau atminties, nei pradinė matrica

QR skaidos algoritmas MATLAB

Pvz_SMA_3_4_sistemos_sprendimas_taikant_QR_skaida.m

```
 \begin{vmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{vmatrix} \begin{vmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{vmatrix}  
% Tiesioginis etapas - QR skaida
Q=eye(n);
for i=1:n-1
      z=A(i:n,i);
      zp=zeros(size(z));
      zp(1) = sign(z(1)) * norm(z);
      omega=(z-zp); omega=omega/norm(omega);
      Qi=eye(n-i+1)-2*omega*omega;
     A(i:n,:)=Qi*A(i:n,:);
       Q=Q*[eye(i-1), zeros(i-1, n-i+1); zeros(n-i+1, i-1), Qi];
     Q(:,i:n) = Q(:,i:n)*Qi;
end
% Atgalinis etapas
b1=0'*b;
x=zeros(n,nb);
for i=n:-1:1
      x(i,:)=(b1(i,:)-A(i,i+1:n)*x(i+1:n,:))/A(i,i);
end
```

QR skaidos algoritmas Python

Pvz_SMA_3_04_sistemos_sprendimas_taikant_QR_skaida.py

```
Q=np.identity(n)
for i in range (0,n-1):
    z=A[i:n,i]
    zp=np.zeros(np.shape(z)); zp[0]=np.linalg.norm(z)
    omega=z-zp; omega=omega/np.linalg.norm(omega)
    Qi=np.identity(n-i)-2*omega*omega.transpose()
    A[i:n,:]=Qi.dot(A[i:n,:])
    Q=Q.dot(
            np.vstack(
                np.hstack((np.identity(i),np.zeros(shape=(i,n-i)))),
                np.hstack((np.zeros(shape=(n-i,i)),Qi))
```

atgalinis etapas:

```
b1=Q.transpose().dot(b);
x=zeros(shape=(n,nb));
for i in range (n-1,-1,-1):
    x[i,:]=(b1[i,:]-A[i,i+1:n]*x[i+1:n,:])/A[i,i];
```

QR skaidos algoritmas Python (ver.2)

Pvz_SMA_3_04_sistemos_sprendimas_taikant_QR_skaida.py

for i in range (n-1,-1,-1):

x[i,:]=(b1[i,:]-A[i,i+1:n]*x[i+1:n,:])/A[i,i];

Kokios yra algebrinės lygties sprendimui taikomos programinės funkcijos MATLAB ir Python terpėse

MATLAB funkcijos algoritmams, paremtiems koeficientų matricos pertvarkymu

x=A\b % "atvirkštinė dalyba". Algoritmas paremtas LU skaida

L = chol(A) % Choleckio skaida

```
[Q,R] = qr(A) \% QR skaida
```

x = linsolve(A,B) % kombinuotas metodas, taiko LU skaida ir % atspindzius

Y = inv(X) % atvirkstines matricos apskaiciavimas. % Neekonomiska naudoti x=inv(A)*b, geriau x=A\b

Python funkcijos algoritmams, paremtiems koeficientų matricos pertvarkymu

```
X=np.linalg.solve(A,b) # TLS sprendimas
```

```
P,L,U=scipy.linalg.lu(A) # LU skaida. Gaunamas lygciu eiles
# tvarkos pakeitimu vektorius P ir
# trikampiai daugikliai
```

LU,P=scipy.linalg.lu_factor(A) # LU daugikliai vienoje matricoje X=scipy.linalg.lu_solve((LU,P),b) #sprendimas panaudojant LU

L = np.linalg.cholesky(A) # Choleckio skaida

```
Q,R = np.linalg.qr(A) # QR skaida
```

Y = np.linalg.inv(X) # atvirkstines matricos apskaiciavimas

SMA_03_Klausimai savikontrolei(1):

- 1. Kas yra atspindžio matrica;
- 2. Kaip rasti atspindinčios plokštumos normalės vektorių, kai žinomas vektorius ir jo atspindys;
- 3. Kokią sąlygą turi tenkinti vektorius, kad jį būtų galima laikyti atspindžio vektoriumi duotajam vektoriui;
- 4. Ką reiškia matricos ortogonalumas. Įrodykite, kad atspindžio matrica visuomet ortogonalioji ;
- Paaiškinkite, kodėl išplėstąją lygčių sistemos koeficientų matricą padauginus iš atspindžio matricos kairėje pusėje, jos sprendinys nepasikeičia;
- 6. Paaiškinkite, kaip sprendžiama lygčių sistema, taikant atspindžio metodą;
- Ar galima taikyti atspindžio algoritmą, kai lygčių sistemos koeficientų matrica yra singuliari;

SMA_03_Klausimai savikontrolei(2):

- 8. Kodėl taikant atspindžio algoritmą, pertvarkytos koeficientų matricos stulpelių normos nepakinta;
- 9. Kas yra QR skaida;
- Ką galima pasakyti apie QR skaidos daugiklio Q ortogonalumą ir simetriškumą;
- 11. Kaip QR skaida pritaikoma lygčių sistemai spręsti. Kuo toks būdas geresnis už tiesiogiai pritaikytą atspindžio metodą;