Lecture 7: Complex Surveys

Maochao Xu

Department of Mathematics Illinois State University mxu2@ilstu.edu

Building blocks

Components of a complex survey: random sampling, ratio estimation, stratification, and clustering.

- Cluster sampling with replacement. Select a sample of *n* clusters with replacement
- Cluster sampling without replacement. Select a sample of n psus without replacement; π_i is the probability that psu *i* is included in the sample.
- Stratification.

Stratification. Let $\hat{t}_1, \dots, \hat{t}_H$ be unbiased estimators of the stratum totals t_1, \dots, t_H , and let $\hat{V}(\hat{t}_1), \dots, \hat{V}(\hat{t}_H)$ be unbiased estimators of the variances. Then estimate the population total by

$$\hat{t} = \sum_{h=1}^{H} \hat{t}_h$$

and its variance by

$$\hat{V}(\hat{t}) = \sum_{h=1}^{H} \hat{V}(\hat{t}_h).$$

Example: Estimate the prevalence of bed net use

- The sampling frame consisted of all rural villages of fewer than 3000 people in the Gambia
- The villages were stratified by three geographic regions (eastern, central and western) and by whether the village had a public health clinic (PHC) or not.
- In each region five districts were chosen with probability proportional to the district population as estimated in the 1983 national census.
- In each district four villages were chosen, again with probability proportional to census population: two PHC villages and two non-PHC villages.
- Six compounds were chosen more or less randomly from each village, and a researcher recorded the number of beds and nets, along with other information, for each compound.

Estimation Procedure

- Record the total number of nets for each compound.
- Estimate the total number of nets for each village by (number of compounds in the village) × (average number of nets per compound). Find the estimated variance of the total number of nets, for each village.
- Estimate the total number of nets for the PHC villages in each district. Repeat for the non-PHC villages in each district.
- Add the estimates from the two strata (PHC and non-PHC) to estimate the number of nets in each district; sum the estimated variances from the two strata to estimate the variance for the district.
- Use two-stage cluster sampling formulas to estimate the total number of nets for each region.
- Add the estimated totals for each region to estimate the total number of bed nets.
 Add the region variances as called for in stratified sampling.

Ratio Estimation in Complex Surveys

Combined ratio estimator

$$\hat{t}_{yrc} = \hat{B}t_x$$

where

$$\hat{B}=\frac{\hat{t}_y}{\hat{t}_x};$$

The mean squared error (MSE) of \hat{t}_{yrc} can be estimated by

$$\hat{V}(\hat{t}_{yrc}) = \left(\frac{t_x}{\hat{t}_x}\right)^2 \left[\hat{V}(\hat{t}_y) + \hat{B}^2 \hat{V}(\hat{t}_x) - 2\hat{B}\widehat{Cov}(\hat{t}_y, \hat{t}_x)\right].$$

$$\hat{t}_{yrs} = \sum_{h=1}^{H} \hat{t}_{yhr} = \sum_{h=1}^{H} t_{xh} \frac{\hat{t}_{yh}}{\hat{t}_{xh}},$$

with

$$\hat{V}(\hat{t}_{yrs}) = \sum_{h=1}^{H} \hat{V}(\hat{t}_{yhr}).$$

Sampling weights

In most large sample surveys, weights are used to calculate point estimates.

Stratified random sampling

$$\hat{t}_{\text{str}} = \sum_{h=1}^{H} \sum_{j \in \mathcal{S}_h} w_{hj} y_{hj},$$

where the sampling weight $w_{hj} = (N_h/n_h)$ can be thought of as the number of observations in the population represented by the sample observation y_{hj} . The probability of selecting the *j*th unit in the *h*th stratum to be in the sample is $\pi_{hj} = n_h/N_h$, so the sampling weight is simply the inverse of the probability of selection: $w_{hj} = 1/\pi_{hi}$.

In cluster sampling with equal probabilities

$$w_{ij} = \frac{NM_i}{nm_i} = \frac{1}{\text{probability that the } j \text{th ssu in the } i \text{th psu is in the sample}}$$

• For three-stage cluster sampling, the principle extends: Let w_p be the weight for the psu, $w_{s|p}$ be the weight for the ssu, and $w_{t|s,p}$ be the weight associated with the tsu (tertiary sampling unit). Then the overall sampling weight for an observation unit is

$$w = w_p \times w_{s|p} \times w_{t|s,p}.$$

Estimating a Distribution Function

Suppose the values for the entire population of N units are known. Then any quantity of interest may be calculated from the **probability mass function**,

$$f(y) = \frac{\text{number of units whose value is } y}{N}$$

or the cumulative distribution function (cdf)

$$F(y) = \frac{\text{number of units with value } \le y}{N} = \sum_{x \le y} f(x).$$

In probability theory, these are the probability mass function and cdf for the random variable Y, where Y is the value obtained from a random sample of size one from the population. Then $f(y) = P\{Y = y\}$ and $F(y) = P\{Y \le y\}$. Of course, $\sum f(y) = F(\infty) = 1$.

Estimating a Distribution Function

Any population quantity can be calculated from the probability mass function or cdf. The population mean is

$$\bar{y}_U = \sum_{\substack{\text{values of } y \\ \text{in population}}} yf(y).$$

The population variance, too, can be written using the probability mass function:

$$\begin{split} S^2 &= \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \bar{y}_U)^2 \\ &= \frac{N}{N-1} \sum_{y} f(y) \left[y - \sum_{x} x f(x) \right]^2 \\ &= \frac{N}{N-1} \left[\sum_{y} y^2 f(y) - \left(\sum_{x} x f(x) \right)^2 \right]. \end{split}$$

Quantile

 θ_q is 100qth quantile if

$$F(\theta_q) = q$$

if such a value exists. otherwise,

$$\theta_q \in [a,b]$$

where a is the largest population value of y with

and b is the smallest value of y with

$$F(y) > q$$
.

If q < 1/N, θ_q is the smallest value of y, and if q > 1 - 1/N, θ_q is the largest value of y.

Estimates

 Empirical probability mass function (epmf) to be the sum of the weights for all observations taking on the value y, divided by the sum of all the weights:

$$\hat{f}(y) = \frac{\sum_{i \in \mathcal{S}: y_i = y} w_i}{\sum_{i \in \mathcal{S}} w_i}.$$

 empirical cumulative distribution function (empirical cdf) is the sum of all weights for observations with values ≤ y, divided by the sum of all weights:

$$\hat{F}(y) = \sum_{x \le y} \hat{f}(x).$$

Estimated variance and quantiles

$$S^{2} = \frac{N}{N-1} \left[\sum_{y} f(y) \left\{ y - \sum_{x} x f(x) \right\}^{2} \right] = \frac{N}{N-1} \left[\sum_{y} y^{2} f(y) - \left\{ \sum_{y} y f(y) \right\}^{2} \right].$$

Then, substitute $\hat{f}(y)$ for every appearance of f(y) to obtain an estimate of the population characteristic. Using this method, then,

$$\hat{\mathbf{y}} = \sum_{\mathbf{y}} \mathbf{y} \hat{\mathbf{f}}(\mathbf{y}) = \frac{\sum_{i \in \mathcal{S}} w_i y_i}{\sum_{i \in \mathcal{S}} w_i}$$

and

$$\hat{S}^2 = \frac{N}{N-1} \left[\sum_{y} y^2 \hat{f}(y) - \left\{ \sum_{y} y \hat{f}(y) \right\}^2 \right].$$

Since the empirical cdf \hat{F} is a step function, we usually interpolate to find a unique value for the quantile.

Let y_1 be the largest value in the sample for which $\hat{F}(y_1) \le q$ and let y_2 be the smallest value in the sample for which $\hat{F}(y_2) \ge q$. Then

$$\hat{\theta}_q = y_1 + \frac{q - \hat{F}(y_1)}{\hat{F}(y_2) - \hat{F}(y_1)} (y_2 - y_1).$$

Example

Consider an artificial population of 1000 men and 1000 women. Each person's height is measured to the nearest centimeter.

- SRS of size 200: each person in the sample represents w_i = 10 persons in the population.
- Stratified sample of 160 women and 40 men. In the stratified sample, each woman has weight 1000/160 = 6.25 and each man has weight 1000/40 = 25.

Quantity	Population	SRS	Stratified with Weights	
Mean	168.6	168.9	169.0	
Median	167.3	168.8	167.6	
25th percentile	159.9	159.7	160.7	
90th percentile	183.2	183.4	181.5	
Variance, S^2	124.5	122.6	116.8	

Plotting data

 Self-weighting: To construct a relative frequency histogram for an SRS of size n, divide the range of the data into k bins with each bin having width b. Then the height of the histogram in the jth bin is

$$\operatorname{height}(j) = \frac{\operatorname{relative frequency for bin } j}{b} = \frac{\displaystyle\sum_{i \in \mathcal{S}} u_i(j)}{bn},$$

where $u_i(j) = 1$ if observation i is in bin j and 0 otherwise. If a sample is self-weighting, as with an SRS, a regular histogram of the sample data will estimate the population probability mass function.

 If a sample is not self-weighting a histogram of the raw data may underrepresent some parts of the population in the display. We can use the sampling weights to construct a histogram.

Divide the range of the data into k bins with each bin having width b. Now use the sampling weights w_i to find the height of the histogram in bin j:

$$\text{height}(j) = \frac{\sum_{i \in S} w_i u_i(j)}{b \sum_{i \in S} w_i}.$$

Dividing by the quantity $b \sum_{i \in S} w_i$ ensures that the total area under the histogram equals 1.

Smoothed density estimates are useful for displaying the shape of the estimated population data for a variable that takes on a wide range of values.

The kernel density estimation to survey data by incorporating the weights, with

$$\hat{f}(y;b) = \frac{1}{b \sum_{i \in S} w_i} \sum_{i \in S} w_i K\left[\frac{y - y_i}{b}\right].$$

Commonly used kernel functions include the normal kernel function $K_N(t) = \exp(-t^2/2)/\sqrt{2\pi}$ and the quadratic kernel function $K_Q(t) = \frac{3}{4}(1 - t^2)$ for |t| < 1. The sliding histogram described above corresponds to a box kernel with $K_B(t) = 1$ for $|t| \le 1/2$ and $K_B(t) = 0$ for |t| > 1/2; in that case, $\hat{f}(y;b)$ corresponds to the histogram height for a point y in the middle of a bin of width b.

The choice of *b*, called the bandwidth, determines the amount of smoothing to be used. Small values of *b* use little smoothing since the sliding window is small. A large value of *b* provides much smoothing since each point in the plot represents the weighted average of many points from the data.

Note that R uses local linear smoother with Gaussian kernel weights.

Design Effects

Design effect: the effect of the design on the variance of the estimator.

deff(plan,statistic)

 $= \frac{V(\text{estimator from sampling plan})}{V(\text{estimator from an SRS with same number of observation units})}.$

For estimating a mean from a sample with n observation units,

$$deff(plan,\hat{\hat{y}}) = \frac{V(\hat{\hat{y}})}{\left(1 - \frac{n}{N}\right)\frac{S^2}{n}}.$$

The design effect provides a measure of the precision gained or lost by use of the more complicated design instead of an SRS.

> If estimating a proportion, the SRS variance is approximately p(1-p)/n; if estimating another type of mean, the SRS variance is approximately S^2/n . So if the design effect is approximately known, the variance of the estimator from the complex sample can be estimated by (deff \times SRS variance).

We can estimate the variance of an estimated proportion \hat{p} by

$$\hat{V}(\hat{p}) = \text{deff} \times \frac{\hat{p}(1-\hat{p})}{n}$$

Design effect

Stratified sampling with proportional allocation.

$$\begin{split} \frac{V_{\text{prop}}}{V_{\text{SRS}}} &\approx \frac{\sum_{h=1}^{H} \frac{N_h}{N} S_h^2}{S^2} \\ &\approx \frac{\sum_{h=1}^{H} \frac{N_h}{N} S_h^2}{\sum_{h=1}^{H} \frac{N_h}{N} [S_h^2 + (\overline{y}_{Uh} - \overline{y}_U)^2]}. \end{split}$$

 Cluster sampling. The design effect for single-stage cluster sampling when all psus have M ssus is approximately

$$1 + (M - 1)ICC$$
.

The intraclass correlation coefficient (ICC) is usually positive in cluster sampling, so the design effect is usually larger than 1; cluster samples usually give less precision per observation unit than an SRS.

Design Effects and Confidence Intervals

If *n* observation units are sampled from a population of *N* possible observation units and if \hat{p} is the survey estimate of the proportion of interest, an approximate 95% CI for *p* is (assuming the finite population correction is close to 1):

$$\hat{p} \pm 1.96\sqrt{\operatorname{deff}}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

When estimating a mean rather than a proportion, if the sample is large enough to apply a central limit theorem, an approximate 95% CI is

$$\hat{\bar{y}} \pm 1.96 \sqrt{\text{deff}} \sqrt{\frac{\hat{S}^2}{n}},$$

