

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(13)

(51) Internationale Patentklassifikation 6 : C09J 11/04, G02B 6/42		A1	(11) Internationale Veröffentlichungsnummer: WO 96/31572 (43) Internationales Veröffentlichungsdatum: 10. Oktober 1996 (10.10.96)
(21) Internationales Aktenzeichen: PCT/EP96/01448 (22) Internationales Anmeldedatum: 2. April 1996 (02.04.96)		(81) Bestimmungsstaaten: CN, JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: 195 12 427.8 3. April 1995 (03.04.95) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): INSTITUT FÜR NEUE MATERIALIEN GEMEINNÜTZIGE GMBH [DE/DE]; Universität des Saarlandes, Im Stadtwald, Gebäude 43, D-66123 Saarbrücken (DE).			
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): SCHMIDT, Helmut [DE/DE]; Im Königsfeld 29, D-66130 Saarbrücken-Güdingen (DE). MENNIG, Martin [DE/DE]; Mittelstrasse 5, D-66287 Quierschied (DE). JONSCHEK, Gerhard [DE/DE]; Grünwaldstrasse 12, D-66583 Spiesen-Elversberg (DE). GERHARD, Volker [DE/DE]; Saarbrücker Strasse 215, D-66125 Saarbrücken (DE).			
(74) Anwalt: BARZ, Peter, Kaiserplatz 2, D-80803 München (DE).			

(54) Title: COMPOSITE ADHESIVE FOR OPTICAL AND OPTO-ELECTRONIC APPLICATIONS

(54) Bezeichnung: KOMPOSITKLEBSTOFF FÜR OPTISCHE UND OPTOELEKTRONISCHE ANWENDUNGEN

(57) Abstract

A composite adhesive for optical and opto-electronic applications contains the following: (a) transparent polymers and/or polymerisable oligomers and/or monomers suitable for use as adhesive; (b) nanoscale inorganic particles; (c) if required, compounds for the surface modification of the inorganic particles; and (c) if required, a cross-linking initiator. The composite adhesive can be used for connecting individual components of optical or opto-electronic elements and for constructing such elements.

(57) Zusammenfassung

Ein Kompositklebstoff für optische und optoelektronische Anwendungen enthält a) als Klebstoff geeignete, transparente Polymere und/oder polymerisierbare Oligomere und/oder Monomere, b) nanoskalige anorganische Teilchen, c) gegebenenfalls Verbindungen zur Oberflächenmodifizierung der anorganischen Teilchen und d) gegebenenfalls einen Vernetzungsinitiator. Der Kompositklebstoff eignet sich zum Verbinden einzelner Komponenten von optischen oder optoelektronischen Elementen und zum Aufbau solcher Elemente.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Ireland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LK	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Eesti	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malewi		

WO 96/31572

PCT/EP96/01448

KOMPOSITKLEBSTOFF FÜR OPTISCHE UND OPTOELEKTRONISCHE ANWENDUNGEN

Die Erfindung betrifft einen Kompositklebstoff für optische und optoelektronische Anwendungen, z.B. zum Verbinden einzelner Komponenten wie Lichtleitfasern oder zum Aufbau von (Integriert-)Optischen Chips (IO-Chips), zur Herstellung von Lichtleitfaser-Chip-Kopplungen etc.

Derzeit werden in der Optoelektronik zum Verbinden von Komponenten aus verschiedenen Materialien, z.B. SiO_2 -Lichtleitfasern und IO-Chips aus Glas, Silicium, Lithiumniobat oder Halbleitern, und zum Aufbau von optischen Komponenten aus diesen Materialien verschiedene organische, transparente UV- oder thermisch härtende Klebstoffe eingesetzt.

Dabei wird höchste Präzision beim Justieren der zu verbindenden Teile verlangt ($\pm 0,1 \mu\text{m}$), damit z.B. bei Faser-Chip-Kopplungen die Lichtwellenleiter in der Faser und im Chip genau aufeinanderstoßen, so daß die Übertragungsverluste für das Licht minimiert werden können. Weiterhin wird gefordert, daß die Klebverbindung im Temperaturbereich von -45°C bis $+85^\circ\text{C}$ (bzw. $+135^\circ\text{C}$) stabil bleibt und nicht dejustiert wird.

Diese Anforderungen werden von herkömmlichen Klebstoffen nicht in zufriedenstellender Weise erfüllt. Sie reißen oft bei Temperaturen unterhalb -40°C und die Klebverbindung wird bei erhöhten Temperaturen, bedingt durch den relativ hohen thermischen Ausdehnungskoeffizienten des organischen Klebers, zu stark dejustiert oder der Klebstoff kann zerstört werden.

Es ist aus dem Stand der Technik bekannt, daß man z.B. das Aushärteverhalten (Schrumpfung) von transparentem Klebstoff verbessern kann, indem man fein gemahlenen (Partikelgröße im μm -Bereich), bereits ausgehärteten Klebstoff mit nicht gehärtetem vermischt. Dadurch erhöht sich jedoch zwangsläufig die

WO 96/31572

PCT/EP96/01448

2

Viskosität des Klebers, so daß je nach Anwendungsfall die Menge an zusetzbarem Feststoff auf wenige % begrenzt ist. Außerdem kann auf diese Weise keine qualitative Veränderung in den Eigenschaften (z.B. eine Erhöhung der thermischen Beständigkeit oder eine Verringerung des thermischen Ausdehnungskoeffizienten) des ausgehärteten Kompositklebers erzielt werden. Bei Verwendung anorganischer Pulver mit Partikelgrößen im μm - oder sub- μm -Bereich verringert sich die Transparenz durch Lichtstreuung. Dies trifft mit gewissen Einschränkungen auch auf agglomerierte Pulver aus nanoskaligen Primärpartikeln (z.B. Aerosile) zu.

Ziel der Erfindung ist es, Kompositklebstoffe für optische und optoelektronische Anwendungen bereitzustellen, die zumindest im Temperaturbereich von -45°C bis +85°C (besser noch bis 135°C) funktionstüchtig sind, eine geringe optische Streuung und Dämpfung ergeben und eine für die Anwendung ausreichende Klebkraft aufweisen. Außerdem sollen diese Klebstoffe eine für ihre Handhabung vorteilhafte Viskosität aufweisen.

20

Ein weiteres Ziel besteht darin, mit Hilfe dieser Kompositklebstoffe hergestellte optische und optoelektronische Elemente bereitzustellen.

5

Gegenstand der Erfindung sind Kompositklebstoffe für optische und optoelektronische Anwendungen, die dadurch gekennzeichnet sind, daß sie

30

- a) mindestens ein als Klebstoff geeignetes, transparentes Polymer und/oder polymerisierbares Oligomer und/oder polymerisierbares Monomer,
- b) nanoskalige anorganische Teilchen
- c) gegebenenfalls Verbindungen zur Oberflächenmodifizierung der anorganischen Teilchen und
- d) gegebenenfalls einen Vernetzungsinitiator enthalten.

35

WO 96/31572

PCT/EP96/01448

3

Überraschenderweise wurde gefunden, daß man bei agglomerat-freiem Einbau nanoskaliger Teilchen in organische bzw. organisch-anorganische Polymerklebstoffe nicht nur die optische Transparenz aufrechterhalten kann, sondern gleichzeitig einen 5 bis dahin unbekannten qualitativen Sprung in den mechanischen und thermomechanischen Eigenschaften erzeugen kann, der die Gebrauchseigenschaften der Kleber nachhaltig verbessert.

Entscheidend dafür ist, daß man die nanoskaligen Teilchen 10 nicht als agglomerierte Pulver sondern als stabilisierte, (im wesentlichen) agglomeratfreie Suspensionen in den Klebstoff integriert und (gegebenenfalls durch eine geeignete Oberflächenmodifikation der Teilchen) den agglomeratfreien Zustand auch nach Abzug des überschüssigen Lösungsmittels aus dem 15 Klebstoff beibehält. Dies geschieht z.B. durch eine Anpassung der Polarität von Matrix und Partikel. Auf diese Weise treten Matrix und Partikel aber auch in relativ starke Wechselwirkungsbeziehungen, die nach dem Aushärten des Klebstoffs zu 20 Grenzflächenstrukturen im Komposit führen, die vermutlich für die beobachteten qualitativen Eigenschaftsänderungen verantwortlich sind. Der nanodisperse Einbau wirkt sich vermutlich in zweifacher Weise aus:

Zum einen führt er zu Wechselwirkung zwischen Partikel und 5 Matrix, die das Matrixmaterial an den inneren Grenzflächen zu den Partikeln verändern und so zu inneren Grenzflächenstrukturen mit neuen Eigenschaften führen. Zum anderen wird durch den nanoskaligen Einbau bewirkt, daß der Volumenanteil dieser 30 inneren Grenzflächen am gesamten Kompositmaterial durch die große Oberfläche der Nanopartikel sehr groß wird, so daß die den Grenzflächen zuzuschreibenden Eigenschaftsänderungen auch makroskopisch deutlich beobachtbar werden.

Diese Art der Nanokompositierung erreicht man, indem man ent- 35 weder von naturgemäß agglomerierten Pulvern (z.B. Aerosilen) ausgeht und durch Dispergierung in einem geeigneten (klebstofffremden) Medium die weichen Agglomerate dauerhaft bricht

WO 96/31572

PCT/EP96/01448

4

(z.B. durch Verwendung von Methacrylsäure(ester), siehe Beispiel 1) oder daß man von vornherein stabilisierte nanoskalige Suspensionen (z.B. Kieselsole) einsetzt. Auch hier ist jedoch entscheidend, daß man (z.B. durch geeignete Oberflächenmodifikationen) den agglomeratfreien Zustand im Komposit aufrechterhält, um die oben beschriebene kausale Kette zur Erzeugung der neuen Eigenschaften zu realisieren.

Dies sei anhand der anliegenden Figuren 1 bis 4 erläutert.

10

Figur 1 zeigt die elektronenmikroskopische Aufnahme eines Kompositklebstoffs mit nanoskaligen SiO_2 -Partikeln in einer Epoxidharzmatrix. Durch die Art der Herstellung des Komposit und die dazu verwendeten Ausgangsstoffe (siehe Beispiel 3) erreicht man, daß der völlig agglomeratfreie Einbau der SiO_2 -Partikel auch im ausgehärteten Kleber (Figur 1) erhalten bleibt. Figur 2 zeigt am Beispiel einer Glasverklebung mit diesem Klebstoff, daß in diesem Fall die Transparenz des Klebstoffs völlig erhalten bleibt, was seinen Einsatz für optische Anwendungen besonders begünstigt. Sollte die Transparenz in einer anderen Anwendung stören, kann man sie durch den zusätzlichen Einbau größerer Teilchen und/oder durch lichtabsorbierende Zusätze auch verringern, ohne daß man die Gewinne an thermomechanischen Eigenschaften einbüßt, die in den Figuren 3 und 4 dokumentiert sind. Man erkennt in Figur 3, daß der thermische Ausdehnungskoeffizient z.B. im Temperaturbereich von 40 - 65°C von ca. 120 ppm/K mit wachsendem Füllgrad deutlich sinkt und bei einem Füllgrad von 40 Gewichtsprozent (entspricht ca. 20 Vol.-%) nur noch ca. 80 ppm/K beträgt. Dies ist gegenüber dem ungefüllten Klebstoff eine Abnahme um nicht weniger als 33%. Noch drastischer sind die Eigenschaftsänderungen bezüglich der thermischen Stabilität, wie aus Figur 4 hervorgeht. Während der Elastizitätsmodul des ungefüllten Klebstoffs für Temperaturen oberhalb der Transformations-temperatur (ca. 150°C) stetig sinkt, was auf eine Zerstörung des Materials hindeutet, ist bereits bei einem Füllgrad von

WO 96/31572

PCT/EP96/01448

5

nur 12 Vol.% sehr deutlich zu erkennen, daß zum einen die Elastizitätsmodulabnahme oberhalb T_g deutlich geringer als im ungefüllten Zustand ist und zum anderen der Klebstoff seine mechanischen Eigenschaften bis zu Temperaturen von 300°C beibehält.

Es sei darauf hingewiesen, daß die hohen Füllgrade mit einer Viskositätserhöhung des nicht ausgehärteten Klebstoffs um nur 2 - 3 Größenordnungen verbunden waren, was seine Anwendung nicht wesentlich behindert. Dies ist ebenfalls nur möglich, wenn (z.B. durch die Oberflächenmodifikation der Partikel) die Wechselwirkungen der Partikel mit der Klebstoffmatrix so eingestellt sind, daß auch im Klebstoff die Agglomeration der Partikel verhindert wird. Andernfalls erhält man ein pastöses, zähes Material, das als Klebstoff nicht verwendet werden kann.

Die erfindungsgemäßen Kompositklebstoffe für optische und optoelektronische Anwendungen zeichnen sich besonders dadurch aus, daß

- sie durch eine innere Grenzflächenphase neue mechanische und thermomechanische Eigenschaften aufweisen, insbesondere einen verringerten thermischen Ausdehnungskoeffizienten und eine erhöhte Temperaturbeständigkeit
- ihre optischen Eigenschaften durch die Nanopartikel in weiten Bereichen einstellbar sind; insbesondere ist es möglich, trotz hohem Füllgrad völlig transparente Klebstoffe zu realisieren.

Als erfindungsgemäß verwendbare Polymere eignen sich beliebige bekannte, als Klebstoffe verwendbare transparente Kunststoffe, z.B. Polyacrylsäure, Polymethacrylsäure, Polyacrylate, Polyacrylamide, Polycarbamide, Polymethacrylate, Polyolefine, Polystyrol, Polyamide, Polyimide, Polyvinylverbindungen, wie Polyvinylchlorid, Polyvinylalkohol, Polyvinylbutyral, entsprechende Copolymeren, z.B. Poly(ethylen-vinylacetat), Polyester, z.B. Polyethylenterephthalat oder Polydiallylphthalat, Poly-

WO 96/31572

PCT/EP96/01448

6

arylate, Polycarbonate, Polyether, z.B. Polyoxymethylen, Polyethylenoxid oder Polyphenylenoxid, Polyetherketone, Polysulfone, Polyepoxide, Fluorpolymere, Polysiloxane, Organopolysiloxane oder mit Metallen und Übergangsmetallen gebildete Heteropolysiloxane, wie sie z.B. in den EP-A-36648 und EP-A-223067 beschrieben sind, sowie Mischungen von zwei oder mehreren dieser Polymere, soweit sie miteinander verträglich sind. Anstelle der genannten Polymere können auch deren Oligomere und/oder Vorstufen (Monomere) eingesetzt werden.

10

Unter diesen Polymeren sind in organischen Lösungsmitteln lösliche, transparente Polymere, wie Polyacrylate, Polymethacrylate (z.B. PMMA), Epoxidharze und Polyvinylbutyral besonders bevorzugt.

15

Bei den nanoskaligen anorganischen Teilchen handelt es sich z.B. um Oxide wie CaO, ZnO, CdO, SiO₂, TiO₂, ZrO₂, CeO₂, SnO₂, PbO, Al₂O₃, In₂O₃ und La₂O₃; Sulfide wie CdS und ZnS; Selenide wie GaSe, CdSe oder ZnSe; Telluride wie ZnTe oder CdTe; Halogenide wie NaCl, KCl, BaCl₂, AgCl, AgBr, AgI, CuCl, CuBr, CdI₂ oder PbI₂; Carbide wie CeC₂; Arsenide wie AlAs, GaAs oder CeAs; Antimonide wie InSb; Nitride wie BN, AlN, Si₃N₄ oder Ti₃N₄; Phosphide wie GaP, InP, Zn₃P₂ oder Cd₃P₂; Carbonate wie Na₂CO₃, K₂CO₃, CaCO₃, SrCO₃ und BaCO₃; Carboxylate, z.B. Acetate wie CH₃COONa und Pb(CH₃COO)₄; Phosphate; Sulfate; Silicate; Titanate; Zirkonate; Aluminate; Stannate; Plumbate und entsprechende Mischoxide, deren Zusammensetzung vorzugsweise der Zusammensetzung herkömmlicher Gläser mit niedrigem thermischen Ausdehnungskoeffizienten entspricht, z.B. binäre, tertiäre oder quaternäre Kombinationen von SiO₂, TiO₂, ZrO₂ und Al₂O₃. Ebenfalls geeignet sind z.B. Mischoxide mit Perowskit-Struktur wie BaTiO₃ oder PbTiO₃. Außerdem können organisch modifizierte anorganische Teilchen wie z.B. partikuläre Polymethylsiloxane, methacrylfunktionalisierte Oxidpartikel und Salze der Methylphosphorsäure verwendet werden.

WO 96/31572

PCT/EP96/01448

7

Die Herstellung dieser nanoskaligen Partikel kann auf übliche Weise erfolgen, z.B. durch Flammhydrolyse, FlammPyrolyse und Plasmaverfahren [siehe A.N. Dubrovina et al., Kristallografiya, 26 (1981) 637-639], Kolloidtechniken [siehe E. Matijevic, "Preparation and Interaction of Colloids of Interest in Ceramics" in "Ultrastructure Processing of Advanced Ceramics", Hsg.: J.D. Mackenzie, D.R. Ulrich, John Wiley & Sons, New York (1988) 429, und andere Publikationen von E. Matijevic et al.], Sol-Gel-Prozesse [siehe R. Naß, H. Schmidt, Journal of Non-Crystalline Solids 121 (1990) 329-333; M.A. Anderson et al., Journal of Membrane Science, 39 (1988) 243-258], kontrollierte Nucleations- und Wachstumsprozesse [siehe z.B. L. Spanhel und M.A. Anderson, J. Amer. Chem. Soc. 113 (1991) 2826-2833; Iler, The Chemistry of Silica, Wiley & Sons, New York 1979], MOCVD-Verfahren [siehe G.B. Springfellow "Organometallic Vapor Phase Epitaxy; Theory and Practice", Academic Press, New York (1989), Emulsionsverfahren [siehe DE 4118185 A1] und die in den DE 4130550 A1 und DE 4133621 A1 beschriebenen Verfahren.

20

Die nanoskaligen Partikel haben gewöhnlich eine Teilchengröße von 1 bis 200 nm, vorzugsweise 2 bis 50 nm und insbesondere 5 bis 20 nm. Sie bestehen vorzugsweise aus anorganischen Materialien mit niedrigem thermischen Ausdehnungskoeffizienten, wobei Materialien mit einem Ausdehnungskoeffizienten $< 10^{-4}$ K⁻¹ besonders bevorzugt sind. Einen sehr niedrigen thermischen Ausdehnungskoeffizienten von 5×10^{-7} K⁻¹ haben z.B. SiO₂-Partikel, die beim Dispergieren in der Polymermatrix den zusätzlichen Vorteil einer thixotropen Wirkung besitzen. Dieser thixotrope Effekt beruht vermutlich auf der Ausbildung eines perkolierenden Gerüsts, bei dem die Partikel miteinander in Berührung sind. Die viskositätsverändernden Eigenschaften der nanoskaligen Teilchen lassen sich durch geeignete Oberflächenmodifizierung einstellen. Besonders bevorzugt sind stabilisierte kolloidale, nanodisperse Sole von anorganischen Teilchen wie z.B. Kieselsole der Fa. BAYER, SnO₂-Sole der Fa.

WO 96/31572

PCT/EP96/01448

8

Goldschmidt, TiO_2 -Sole der Fa. MERCK, SiO_2 -, ZrO_2 -,
 Al_2O_3 -, Sb_2O_3 -Sole der Fa. Nissan Chemicals oder Aerosil-
dispersionen der Fa. DEGUSSA.

5 Der Volumenanteil der nanoskaligen Teilchen in dem Kompositklebstoff beträgt gewöhnlich 1 bis 50 Vol.-%, vorzugsweise 1 bis 30 Vol.-% und insbesondere 5 bis 20 Vol.-%.

10 Die nanoskaligen Teilchen bestehen vorzugsweise aus einem Material, dessen Brechungsindex im UV-VIS-NIR-Wellenlängenbereich (10 bis 10.000 nm) annähernd dem Brechungsindex der Polymermatrix entspricht. Die Polymermatrix hat gewöhnlich einen Brechungsindex von 1,2 bis 2,0, vorzugsweise 1,3 bis 1,7. Falls ein bestimmtes Teilchenmaterial nicht den gewünschten Brechungsindex aufweist, können Brechungsindex-modifizierende Zusätze verwendet werden. Beispielsweise könnten SiO_2 -Partikel mit TiO_2 oder ZrO_2 modifiziert werden.

20 Die gegenseitige Anpassung der Brechungsindices von Polymermatrix und nanoskaligen Teilchen kann jedoch auch dadurch erfolgen, daß man zwei oder mehr miteinander verträgliche Polymere, Oligomere und Monomere (a) oder nichtreaktive Zusatzstoffe von unterschiedlichem Brechungsindex in einem Mengenverhältnis abmischt, bei dem der Brechungsindex der Polymermischung annähernd dem Brechungsindex der nanoskaligen Teilchen entspricht.

30 Beispielsweise kann bei Verwendung von Polymethylmethacrylat (PMMA) als transparenter Komponente a) Styrol zugemischt werden, das nach der Polymerisation zu Polystyrol eine Erhöhung des Brechungsindex bewirkt.

35 Zur Oberflächenmodifizierung der nanoskaligen Teilchen können z.B. Stoffe verwendet werden, die mehrere Funktionen (z.T. parallel) erfüllen können. Sie können z.B.

WO 96/31572

PCT/EP96/01448

9

1. die Agglomeration der Teilchen bei der Klebstoffherstellung verhindern
 2. das rheologische Verhalten der Kleber auch bei hohen Füllgraden (≥ 18 Vol.-%) durch Einstellen der Wechselwirkungskräfte zwischen den Teilchen und der Klebstoffmatrix und/oder anderen benachbarten Teilchen den Erfordernissen anpassen
 3. trotz hoher Füllgrade (≥ 18 Vol.-%) die Transparenz des Füllstoffs vor allem im VIS-NIR-Bereich aufrechterhalten
 4. durch Reaktionen mit der Klebstoffmatrix und/oder anderen Teilchen die mechanischen, thermomechanischen und die adhäsiven bzw. kohäsiven Eigenschaften der Klebstoffe im ausgehärteten Zustand in weiten Bereichen einstellen.
- 15 Als Oberflächenmodifikator, d.h. als oberflächenmodifizierende niedrigmolekulare organische (= kohlenstoffhaltige) Verbindung, die über mindestens eine funktionelle Gruppe verfügt, die mit an der Oberfläche der Pulverteilchen vorhandenen Gruppen und der Klebstoffmatrix reagieren und/oder (zumindest) wechselwirken kann, eignen sich insbesondere Verbindungen mit einem Molekulargewicht, das nicht höher als 500, vorzugsweise nicht höher als 350 und insbesondere nicht höher als 200 ist. Derartige Verbindungen sind vorzugsweise unter Normalbedingungen flüssig und weisen vorzugsweise nicht mehr als insgesamt 15, insbesondere nicht mehr als insgesamt 10 und besonders bevorzugt nicht mehr als 8 Kohlenstoffatome auf. Die funktionellen Gruppen, die diese Verbindungen tragen müssen, richten sich in erster Linie nach den Oberflächengruppen des jeweils eingesetzten nanoskaligen Materials und darüber hinaus auch nach der gewünschten Wechselwirkung mit der Klebstoffmatrix. So kann z.B. zwischen den funktionellen Gruppen der oberflächenmodifizierenden Verbindung und den Oberflächengruppen der Partikel eine Säure/Base-Reaktion nach Bronsted oder Lewis stattfinden (einschließlich Komplexbildung und Adduktbildung). Ein Beispiel für eine andere geeignete Wechselwirkung ist die Dipol-Dipol-Wechselwirkung. Beispiele für geeignete funktionelle Gruppen sind Carbonsäuregruppen, (primäre, sekundäre,

WO 96/31572

PCT/EP96/01448

10

tertiäre und quartäre) Aminogruppen und C-H-acide Gruppierungen. Es können auch mehrere dieser Gruppen gleichzeitig in einem Molekül vorhanden sein (Betaine, Aminosäuren, EDTA, usw.).

5

Demgemäß sind Beispiele für bevorzugte Oberflächenmodifikatoren gesättigte oder ungesättigte Mono- und Polycarbonsäuren (vorzugsweise Monocarbonsäuren) mit 1 bis 12 Kohlenstoffatomen (z.B. Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Pentansäure, Hexansäure, Acrylsäure, Methacrylsäure, Crotonsäure, Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Oxalsäure, Maleinsäure und Fumarsäure) sowie deren Ester (vorzugsweise C₁-C₄-Alkylester) und Amide, z.B. Methylmethacrylat.

15

Beispiele für weitere geeignete Oberflächenmodifikatoren sind quartäre Ammoniumsalze der Formel NR¹R²R³R⁴⁺X⁻ worin R¹ bis R⁴ gegebenenfalls voneinander verschiedene aliphatische, aromatische oder cycloaliphatische Gruppen mit vorzugsweise 1 bis 12, insbesondere 1 bis 6 Kohlenstoffatomen darstellen und X⁻ für ein anorganisches oder organisches Anion steht; Mono- und Polyamine, insbesondere solche der allgemeinen Formel R_{3-n}NH_n, worin n = 0, 1 oder 2 und die Reste R unabhängig voneinander Alkylgruppen mit 1 bis 12, insbesondere 1 bis 6 und besonders bevorzugt 1 bis 4 Kohlenstoffatomen darstellen (z.B. Methyl, Ethyl, n- und i-Propyl und Bütyl) und Ethylenpolyamine (z.B. Ethyldiamin, Diethylentriamin etc.); Aminosäuren; Imine; β-Dicarbonylverbindungen mit 4 bis 12, insbesondere 5 bis 8 Kohlenstoffatomen, wie z.B. Acetylacetone, 2,4-Hexandion, 3,5-Heptandion, Acetessigsäure und Acetessigsäure-C₁-C₄-alkylester; Silane, insbesondere Organoalkoxysilane, wie z.B. diejenigen, die zur Oberflächenmodifizierung von kolloidaler Kieselsäure eingesetzt werden (z.B. solche der allgemeinen Formel R_{4-m}Si(OR')_m worin die Gruppen R und R' unabhängig voneinander C₁-C₄-Alkyl darstellen und m 1, 2, 3 oder 4 ist); und modifizierte Alkoholate, bei denen ein Teil der OR-Gruppen

WO 96/31572

PCT/EP96/01448

11

(R wie oben definiert) durch inerte organische Gruppen substituiert ist.

5 Zur elektrostatischen Stabilisierung der nanoskaligen Teilchen können z.B. auch die für diesen Zweck bekannten Verbindungen wie z.B. NaOH, NH₃, KOH, Al(OH)₃ eingesetzt werden, sofern sie mit der Klebstoffmatrix verträglich sind.

10 Die Polymere, Oligomere oder Monomere a) und die nanoskaligen Teilchen b) und gegebenenfalls die oberflächenmodifizierenden Stoffe c) können entweder als solche oder vorzugsweise als Lösung in einem organischen Lösungsmittel oder in Wasser eingesetzt werden. Beispiele für geeignete Lösungsmittel sind Alkohole wie Butanol, Ketone wie Aceton, Ester wie Ethylacetat, Ether wie Tetrahydrofuran und aliphatische, aromatische und halogenierte Kohlenwasserstoffe wie Hexan, Benzol, Toluol und Chloroform.

20 Die Herstellung des erfindungsgemäßen Kompositklebstoffs kann auch verschiedene Weise erfolgen.

25 Beispielsweise kann man die nanoskaligen Partikel in einem der oben genannten Lösungsmittel und/oder einer der oben genannten polymerisierbaren oder härtbaren Verbindungen dispergieren, z.B. unter Rühren oder mittels Ultraschall. Die erhaltene Dispersion wird dann mit dem transparenten Polymer, Oligomer und/oder Monomer entweder als solchem oder verdünnt mit einem Lösungsmittel vermischt. Das zum Verdünnen verwendete Lösungsmittel ist entweder identisch mit dem für die Dispersion verwendeten Lösungsmittel oder damit mischbar. Selbstverständlich können die nanoskaligen Partikel auch in einer Lösung des transparenten Polymers, Oligomers und/oder Monomers dispergiert werden. Alternativ können das Polymer bzw. die polymerisierbaren Verbindungen a) in einer stabilisierten Dispersion (wässrig oder nichtwässrig) der nanoskaligen Teilchen

WO 96/31572

PCT/EP96/01448

12

gelöst oder gemischt werden, gegebenenfalls unter Zusatz der oberflächenmodifizierenden Stoffe c).

5 Im Falle der Verwendung von polymerisierbaren oder härtbaren Verbindungen enthält der Kompositklebstoff ferner einen Polymerisations-, Polyadditions- und/oder Polykondensations-katalysator, der die Vernetzung und Härtung thermisch und/oder photochemisch induzieren kann (kollektiv als "Vernetzungs-initiator" bezeichnet).

10 Als Photoinitiatoren können z.B. die im Handel erhältlichen Starter eingesetzt werden. Beispiele hierfür sind Irgacure® 184 (1-Hydroxycyclohexylphenylketon), Irgacure® 500 (1-Hydroxycyclohexylphenylketon, Benzophenon) und andere von der 15 Firma Ciba-Geigy erhältliche Photoinitiatoren vom Irgacure®-Typ; Darocur® 1173, 1116, 1398, 1174 und 1020 (erhältlich von der Firma Merck), Benzophenon, 2-Chlorthioxanthon, 2-Methyl-thioxanthon, 2-Isopropylthioxanthon, Benzoin, 4,4'-Dimethoxy-benzoin, Benzoinethylether, Benzoinisopropylether, Benzyldime-thylketal, 1,1,1-Trichloracetophenon, Diethoxyacetophenon und 20 Dibenzosuberon.

Als thermische Initiatoren kommen u.a. organische Peroxide in Form von Diacylperoxiden, Peroxydicarbonaten, Alkylperestern, 15 Dialkylperoxiden, Perketalen, Ketonperoxiden und Alkylhydro-peroxiden in Frage. Konkrete Beispiele für derartige thermische Initiatoren sind Dibenzoylperoxid, tert.-Butylperbenzoat und Azobisisobutyronitril.

30 Der Vernetzungsinitiator wird, wenn eingesetzt, gewöhnlich in einer Menge von 0,1 bis 5, vorzugsweise 0,5 bis 3 Gewichts-prozent, bezogen auf die Klebstoffzusammensetzung, angewandt.

35 Zur Erhöhung der Viskosität oder zur Herstellung lösungs-mittelfreier Kleber können die Lösungsmittel teilweise oder vollständig entfernt werden.

WO 96/31572

PCT/EP96/01448

13

Der fertige Kompositklebstoff wird auf das oder die zu verbindenden Substrate aufgetragen oder diese werden in den Klebstoff getaucht. Falls keine vernetzbaren (polymerisierbaren) Gruppen enthalten sind, kann die Härtung des Klebers durch gewöhnliche Trocknung bei Temperaturen von vorzugsweise unter 150°C erfolgen.

Falls der Kompositklebstoff eine vernetzbare Verbindung enthält, wird diese nach Auftragen des Klebstoffs auf das oder die zu verbindenden Substrate in Abhängigkeit von der Art des verwendeten Vernetzungsinitiators thermisch und/oder durch Bestrahlung (z.B. mit einer UV-Lampe oder einem Laser) vernetzt und gehärtet.

Die Härtungsbedingungen (Temperatur, UV-Wellenlänge etc.) richten sich nach den Zerfallsbedingungen des Vernetzungsinitiators. Die thermische Härtung erfolgt gewöhnlich bei Temperaturen unter 150°C.

Der erfindungsgemäße Kompositkleber eignet sich zum Verbinden einzelner Komponenten von optischen oder optoelektronischen Elementen, z.B. SiO₂-Lichtleitfasern, und optischen Bauteilen, z.B. aus Glas, Silicium, Lithiumniobat, organischen Polymeren oder anorganisch-organischen Kompositmaterialien oder Halbleitern, sowie zum Aufbau von optischen oder optoelektronischen Komponenten aus diesen Materialien.

Auf Grund seiner speziellen Zusammensetzung ermöglichen die erfindungsgemäßen Kompositkleber gegenüber herkömmlichen Klebern auf diesem Anwendungsgebiet eine Verringerung des thermischen Ausdehnungskoeffizienten, eine geringere Temperaturabhängigkeit des Elastizitätsmoduls, eine Erhöhung der thermischen Beständigkeit sowie eine schnellere und gleichmäßigere Härtung. Es wird vermutet, daß diese Eigenschaftsveränderungen zumindest zum Teil auf die Wirkung innerer Grenzflächen im Komposit zurückzuführen sind, da die Klebstoff-

WO 96/31572

PCT/EP96/01448

14

matrix an den inneren Grenzflächen durch die Wechselwirkung mit den nanoskaligen (oberflächenmodifizierten) Teilchen strukturell verändert wird.

- 5 Die folgenden Beispiele erläutern die Erfindung, ohne sie in irgendeiner Weise zu beschränken.

B e i s p i e l e

10 Beispiel 1

In 20 ml Methacrylsäuremethylester werden 4,5 g SiO₂-Partikel (Aerosil® R 972 der Fa. DEGUSSA) mittels Ultraschall dispergiert, mit 0,8 ml Styrol versetzt und nochmals mit Ultraschall 15 vermischt. Hierauf werden ca. 20 ml eines handelsüblichen Acrylat-Klebstoffs (Delo-Photobond® 412 oder 420 der Fa. Delo) zugegeben.

Der erhaltene Kompositklebstoff (SiO₂-Gehalt: ca. 10 Gew.-%) 20 zeigt thixotropes Fließverhalten. Er kann innerhalb von 10 Minuten mit einer Xenon-Lampe aus einem Abstand von 20 cm bestrahlt und gehärtet werden.

Beispiel 2

5

Klebstoffherstellung und Härtung erfolgen wie in Beispiel 1. Anstelle des Acrylat-Klebstoffs wird jedoch an UV-härtbarer Epoxidklebstoff (Vitralit® der Fa. Panacol-Elosol) verwendet. Das Gemisch aus dem Epoxidharz und der SiO₂-Dispersion in 30 Methacrylsäuremethylester besitzt eine um den Faktor 10 geringere Viskosität als die einzelnen Komponenten. Daher eignet sich der Klebstoff besonders für optische Anwendungen mit kleinem Klebespalt.

35

WO 96/31572

PCT/EP96/01448

15

Beispiel 3

10 g Nissan IPA-ST (Kieselsol von Nissan Chemical Industries, Ltd.; 30 Gew.-% SiO₂ in Isopropanol) werden unter Röhren mit 5 3 g einer TMAH-Lösung (1 Gew.-% Tetramethylammoniumhydroxid-pentahydrat in Isopropanol) versetzt. Anschließend werden unter Röhren 10 g Klebstoff (Panacol^R X-942-739-00, UV-härtendes Epoxidharz) hinzugefügt. Im nächsten Schritt wird das Lösungsmittel am Rotationsverdampfer bei 50°C und ca. 12 10 mbar abgezogen.

Als Klebstoff kann zum Beispiel auch ein cycloaliphatisches Diepoxid (z.B. 3,4-Epoxyhexylmethylepoxyhexylcarboxylat wie das Produkt K 126 der Fa. Degussa oder das 15 Produkt UVR-6110 der Fa. Union Carbide) dienen.

Dabei wird wie oben vorgegangen, jedoch müssen 2 - 4 Gew.-% (bezogen auf das eingesetzte Harz) Photostarter zugesetzt werden. Als Starter eignen sich kationische Photostarter wie 20 z.B. Degussa KI 85.

Die Aushärtung erfolgt mittels UV-Belichtung für 2 Min. bei einer Lampenleistung von 200 W.

5 Man erhält einen Kompositklebstoff, dessen Eigenschaften in den Figuren 1 bis 4 veranschaulicht bzw. dargestellt sind.

Beispiel 4

30 236,1 g 3-Glycidyloxypropyltrimethoxysilan (GPTS) werden mit 27,0 g Wasser 24 h unter Rückfluß gekocht. Anschließend wird entstandenes Methanol am Rotationsverdampfer bei 70°C abgezo- gen.

35 Zu 68,3 g des so hergestellten GPTS-Kondensats werden unter Röhren 100,0 g TMAH-modifiziertes Nissan IPA-ST Kieselsol

WO 96/31572

PCT/EP96/01448

16

(entspricht 30,0 g SiO₂, siehe Beispiel 3) gegeben. Als Photoinitiator werden 2,1 g Triarylsulfoniumhexafluoroantimonat (KI 85 der Fa. Degussa) zugegeben. Um lösungsmittelfreie Kleber zu erhalten, wird das Lösungsmittel (Isopropanol) bei 5 50°C und 12 mbar am Rotationsverdampfer entfernt.

Beispiel 5

47,6 g des GPTS-Kondensats aus Beispiel 4 werden unter Rühren 10 mit 69,0 g TMAH-modifiziertem Nissan IPA-ST Kieselsol (entspricht 20,7 g SiO₂, siehe Beispiel 3) versetzt und am Rotationsverdampfer bei 50°C und 12 mbar vom Lösungsmittel (Isopropanol) befreit. Anschließend werden 29,5 g eines cycloaliphatischen Diepoxids (K 126 der Fa. Degussa) und 2,1 15 g Photoinitiator (KI 85 der Fa. Degussa) unter Rühren zugegeben.

WO 96/31572

PCT/EP96/01448

17

P a t e n t a n s p r ü c h e

1. Kompositklebstoff für optische und optoelektronische Anwendungen, dadurch gekennzeichnet, daß er

5

- a) mindestens ein als Klebstoff geeignetes, transparentes Polymer und/oder polymerisierbares Oligomer und/oder polymerisierbares Monomer,
- b) nanoskalige anorganische Teilchen,
- c) gegebenenfalls Verbindungen zur Oberflächenmodifizierung der anorganischen Teilchen und
- d) gegebenenfalls einen Vernetzungsinitiator

10

enthält.

15

2. Kompositklebstoff nach Anspruch 1, dadurch gekennzeichnet, daß er 1 bis 50 Volumenprozent, vorzugsweise 1 bis 30 Volumenprozent, nanoskalige Teilchen enthält.

20

3. Kompositklebstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die transparenten Polymere, Oligomere und/oder Monomere a) ausgewählt sind aus Poly(meth)acrylsäure, Poly(meth)acrylaten, Poly(meth)acrylamiden, Polycarbamiden, Polyolefinen, Polystyrol, Polyamiden, Polyimiden, Polyvinylverbindungen, Polyestern, Polyarylaten, Polycarbonaten, Polyethern, Polyetherketonen, Polysulfonen, Polyepoxiden, Fluorpolymeren, Organopolysiloxanen, Polysiloxanen und Heteropolysiloxanen und den entsprechenden Monomeren und/oder Oligomeren.

30

4. Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die nanoskaligen Teilchen ausgewählt sind aus Oxiden, Sulfiden, Seleniden, Telluriden, Halogeniden, Carbiden, Arseniden, Antimoniden, Nitriden, Phosphiden, Carbonaten, Carboxylaten, Phosphaten, Sulfaten, Silikaten, Titanaten, Zirkonaten, Aluminaten, Stannaten, Plumbaten sowie Mischoxiden.

35

WO 96/31572

PCT/EP96/01448

18

5. Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die nanoskaligen Teilchen eine Teilchengröße von 1 bis 200 nm aufweisen.
- 5 6. Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Verbindungen zur Oberflächenmodifizierung der nanoskaligen Teilchen aus der Gruppe Carbonsäuren, Carbonsäureamide, Carbonsäureester, Aminosäuren, β -Diketone, Imide, Silane mit einer oder mehreren funktionellen Gruppen oder quartäre Ammoniumsalze der allgemeinen Formel $N^+R^1R^2R^3R^4X^-$ stammen, wobei die Reste R^1 bis R^4 , gleich oder verschieden voneinander, aliphatische, aromatische und/oder cycloaliphatische Gruppen sein können und X^- ein anorganisches oder organisches Anion darstellt.
- 10 7. Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zur Oberflächenmodifizierung der nanoskaligen Teilchen NaOH, NH_4OH , KOH und/oder $Al(OH)_3$ eingesetzt werden, sofern sie mit der Klebstoffmatrix verträglich sind.
- 15 8. Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Vernetzungsinitiator aus Photoinitiatoren und/oder organischen Peroxiden und/oder Azoverbindungen ausgewählt ist.
- 20 9. Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die nanoskaligen Teilchen und die aus den Komponenten a) und gegebenenfalls c) nach dem Härten entstehende Polymermatrix annähernd denselben Brechungsindex haben.
- 25 10. Kompositklebstoff nach Anspruch 9, dadurch gekennzeichnet, daß der Brechungsindex der nanoskaligen

WO 96/31572

PCT/EP96/01448

19

Teilchen und der Polymermatrix im Bereich von 1,2 bis 2,0, vorzugsweise 1,3 bis 1,7, liegt.

- 5 11. Optische und optoelektronische Elemente, dadurch gekennzeichnet, daß sie mit einem Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 10 verbundene Komponenten umfassen.
- 10 12. Verfahren zur Herstellung der optischen und optoelektronischen Elemente nach Anspruch 11, dadurch gekennzeichnet, daß man den Kompositklebstoff nach irgendeinem der Ansprüche 1 bis 10 auf die Verbindungsstelle der Komponenten aufbringt und die Verklebung thermisch oder photochemisch härtet.

15

WO 96/31572

PCT/EP96/01448

1/2

Fig. 1

Fig. 2

ERSATZBLATT (REGEL 26)

WO 96/31572

PCT/EP96/01448

2/2

FIGUR 3**FIGUR 4**

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 96/01448

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C09J11/04 G02B6/42

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 G06B C09J G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB,A,2 218 104 (ICI PLC) 8 November 1989 see claim 1; examples 1,2 ---	1
X	EP,A,0 219 242 (TORAY INDUSTRIES) 22 April 1987 see claim 1 ---	1
X	EP,A,0 609 841 (SUMITOMO ELECTRIC INDUSTRIES) 10 August 1994 see claims 1,12 ---	1
X	EP,A,0 459 614 (SOMAR CORP) 4 December 1991 see examples 1-5 ---	1
X	US,A,5 244 707 (SHORES A ANDREW) 14 September 1993 see claim 1 ---	1
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

2

Date of the actual completion of the international search

3 July 1996

Date of mailing of the international search report

04.07.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Schueler, D

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/01448

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US,A,5 343 544 (BOYD GARY T ET AL) 30 August 1994 see column 10, line 13; claims 16,18,20 ---	1
X	DATABASE WPI Section Ch, Week 9348 Derwent Publications Ltd., London, GB; Class A21, AN 93-383148 XP002006513 & JP,A,05 287 082 (NITTO DENKO CORP) , 2 November 1993 see abstract ---	1
X	PATENT ABSTRACTS OF JAPAN vol. 016, no. 457 (P-1426), 22 September 1992 & JP,A,04 163425 (NEC CORP), 9 June 1992, see abstract ---	1
X	PATENT ABSTRACTS OF JAPAN vol. 014, no. 406 (C-0754), 4 September 1990 & JP,A,02 153816 (SHIN ETSU CHEM CO LTD), 13 June 1990, see abstract ---	1
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 88-34014 XP002006514 & JP,A,62 295 029 (HITACHI KK) , 22 December 1987 see abstract ---	1
X	DATABASE WPI Section Ch, Week 9523 Derwent Publications Ltd., London, GB; Class A21, AN 95-175415 XP002007362 & JP,A,07 097 477 (NITTO DENKO CORP) , 11 April 1995 see abstract -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members		International Application No PCT/EP 96/01448	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A-2218104	08-11-89	AT-B- 393355 AU-B- 618805 AU-B- 3396989 BE-A- 1001707 CH-A- 678061 DE-A- 3914687 FR-A- 2631037 GR-B- 1000398 JP-A- 2110178 LU-A- 87512 NL-A- 8901112 SE-B- 470063 SE-A- 8901595	10-10-91 09-01-92 09-11-89 13-02-90 31-07-91 16-11-89 10-11-89 30-06-92 23-04-90 12-06-90 01-12-89 01-11-93 04-11-89
EP-A-0219242	22-04-87	AU-B- 6306286 AU-B- 6306386 CA-A- 1287427 CA-A- 1281114 DE-A- 3688117 EP-A,B 0216632 JP-A- 62174726 JP-C- 1646743 JP-B- 3009154 JP-A- 62174284 KR-B- 9403072 US-A- 4989955 US-A- 4732961	26-03-87 26-03-87 06-08-91 05-03-91 29-04-93 01-04-87 31-07-87 13-03-92 07-02-91 31-07-87 13-04-94 05-02-91 22-03-88
EP-A-0609841	10-08-94	JP-A- 6228515 JP-A- 7145360 JP-A- 6273637 CA-A- 2114689 US-A- 5422971	16-08-94 06-06-95 30-09-94 03-08-94 06-06-95
EP-A-0459614	04-12-91	JP-A- 4033916 JP-B- 7119273 CA-A- 2040628	05-02-92 20-12-95 01-12-91
US-A-5244707	14-09-93	US-A- 5401536	28-03-95

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat'l Application No
PCT/EP 96/01448

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A-5343544	30-08-94	AU-B- 7048994 CA-A- 2164108 EP-A- 0706670 PL-A- 312259 WO-A- 9501580	24-01-95 12-01-95 17-04-96 15-04-96 12-01-95

INTERNATIONALER RECHERCHENBERICHT

Inte	nales Aktenzeichen
PCT/EP 96/01448	

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES		
IPK 6	C09J11/04	G02B6/42

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 G06B C09J G02B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	GB,A,2 218 104 (ICI PLC) 8.November 1989 siehe Anspruch 1; Beispiele 1,2 ---	1
X	EP,A,0 219 242 (TORAY INDUSTRIES) 22.April 1987 siehe Anspruch 1 ---	1
X	EP,A,0 609 841 (SUMITOMO ELECTRIC INDUSTRIES) 10.August 1994 siehe Ansprüche 1,12 ---	1
X	EP,A,0 459 614 (SOMAR CORP) 4.Dezember 1991 siehe Beispiele 1-5 ---	1
X	US,A,5 244 707 (SHORES A ANDREW) 14.September 1993 siehe Anspruch 1 ---	1
	-/-	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung,

eine Benützung, eine Ausstellung oder andere Maßnahmen bezieht

'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipiell oder der ihr zugrundeliegenden Theorie angegeben ist

'X' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfunderischer Tätigkeit beruhend betrachtet werden

'Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfunderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nabeliegend ist

'A' Veröffentlichung, die Mitglied derselben Patentfamilie ist

2

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
3.Juli 1996	04.07.96
Name und Postanschrift der internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patendaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Schueler, D

INTERNATIONALER RECHERCHENBERICHT

unter wies Aktenzeichen
PCT/EP 96/01448

C(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US,A,5 343 544 (BOYD GARY T ET AL) 30.August 1994 siehe Spalte 10, Zeile 13; Ansprüche 16,18,20 ---	1
X	DATABASE WPI Section Ch, Week 9348 Derwent Publications Ltd., London, GB; Class A21, AN 93-383148 XP002006513 & JP,A,05 287 082 (NITTO DENKO CORP) , 2.November 1993 siehe Zusammenfassung ---	1
X	PATENT ABSTRACTS OF JAPAN vol. 016, no. 457 (P-1426), 22.September 1992 & JP,A,04 163425 (NEC CORP), 9.Juni 1992, siehe Zusammenfassung ---	1
X	PATENT ABSTRACTS OF JAPAN vol. 014, no. 406 (C-0754), 4.September 1990 & JP,A,02 153816 (SHIN ETSU CHEM CO LTD), 13.Juni 1990, siehe Zusammenfassung ---	1
X	DATABASE WPI Derwent Publications Ltd., London, GB; AN 88-34014 XP002006514 & JP,A,62 295 029 (HITACHI KK) , 22.Dezember 1987 siehe Zusammenfassung ---	1
X	DATABASE WPI Section Ch, Week 9523 Derwent Publications Ltd., London, GB; Class A21, AN 95-175415 XP002007362 & JP,A,07 097 477 (NITTO DENKO CORP) , 11.April 1995 siehe Zusammenfassung -----	1
2		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 96/01448

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
GB-A-2218104	08-11-89	AT-B- 393355 AU-B- 618805 AU-B- 3396989 BE-A- 1001707 CH-A- 678061 DE-A- 3914687 FR-A- 2631037 GR-B- 1000398 JP-A- 2110178 LU-A- 87512 NL-A- 8901112 SE-B- 470063 SE-A- 8901595	10-10-91 09-01-92 09-11-89 13-02-90 31-07-91 16-11-89 10-11-89 30-06-92 23-04-90 12-06-90 01-12-89 01-11-93 04-11-89
EP-A-0219242	22-04-87	AU-B- 6306286 AU-B- 6306386 CA-A- 1287427 CA-A- 1281114 DE-A- 3688117 EP-A,B 0216632 JP-A- 62174726 JP-C- 1646743 JP-B- 3009154 JP-A- 62174284 KR-B- 9403072 US-A- 4989955 US-A- 4732961	26-03-87 26-03-87 06-08-91 05-03-91 29-04-93 01-04-87 31-07-87 13-03-92 07-02-91 31-07-87 13-04-94 05-02-91 22-03-88
EP-A-0609841	10-08-94	JP-A- 6228515 JP-A- 7145360 JP-A- 6273637 CA-A- 2114689 US-A- 5422971	16-08-94 06-06-95 30-09-94 03-08-94 06-06-95
EP-A-0459614	04-12-91	JP-A- 4033916 JP-B- 7119273 CA-A- 2040628	05-02-92 20-12-95 01-12-91
US-A-5244707	14-09-93	US-A- 5401536	28-03-95

INTERNATIONALER RECHERCHENBERICHT

Inter. sales Aktenzeichen

PCT/EP 96/01448

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US-A-5343544	30-08-94	AU-B-	7048994	24-01-95