

Département Génie Electrique

Traitement du signal

Pr. Olivier Bernard

Lab. CREATIS – Univ. of Lyon, France olivier.bernard@insa-lyon.fr

Echantillonnage et quantification

L'enseignement du traitement du signal en 4GE

Compétences à acquérir au sein de ce cours

Etre capable de modéliser l'opération d'échantillonnage

Connaitre les propriétés liées à l'échantillonnage / quantification

Etre capable de dimensionner un système d'échantillonnage / quantification

Connaître le fonctionnement (dans les grandes lignes) de différents systèmes d'échantillonnage / quantification

Eléments de modélisation indispensables pour comprendre l'échantillonnage

Eléments de base pour comprendre la modélisation

1) Relation fondamentale

$$x(t) \cdot \delta(t) = x(0) \cdot \delta(t)$$

$$\delta_{T_e}(t) = \sum_{k=-\infty}^{+\infty} \delta(t - k \cdot T_e)$$

3) TF d'un peigne de Dirac

$$TF\{\delta_{T_e}(t)\} = F_e \cdot \delta_{F_e}(f) = F_e \sum_{k=-\infty}^{+\infty} \delta(f - k \cdot F_e)$$

$$\operatorname{avec} F_e = \frac{1}{T_e}$$

$$\begin{cases} x(t-t_0) = x(t) * \delta(t-t_0) \\ X(f-f_0) = X(f) * \delta(f-f_0) \end{cases}$$

Eléments de base pour comprendre la modélisation

5) Signal rectangle et sa transformée

$$x(t) = rect(t) = \begin{cases} 1 \text{ si } t \in \left[-\frac{1}{2}, \frac{1}{2}\right] & \longleftarrow \\ 0 \text{ sinon} \end{cases} \qquad X(f) = sinc(f) = \frac{\sin(\pi f)}{\pi f}$$

$$x(t) = rect\left(\frac{t}{T}\right) = \begin{cases} 1 \text{ si } t \in \left[-\frac{T}{2}, \frac{T}{2}\right] & \text{TF} \\ 0 \text{ sinon} & X(f) = T \cdot sinc(Tf) \end{cases}$$

Passage par zéros tous les $f = \pm \frac{k}{T}$

Echantillonnage des signaux

Notions - Définition

Echantillonnage des signaux: une nécessité

Exemples d'application d'une telle chaîne de traitement

- Systèmes embarqués
- Téléphonie mobile
- GPS / Appareils photo numériques, ...

Questions

- De l'information est elle perdue lors de l'échantillonnage des signaux ?
- Peut-on restituer totalement le signal analogique à partir de ses échantillons ?

Echantillonnage des signaux - Situation idéale

Echantillonnage idéal

$$x_e(t) = x(t) \cdot \delta_{T_e}(t)$$

$$x_e(t) = \sum_{k=-\infty}^{+\infty} x(kT_e) \cdot \delta(t - kT_e)$$

- T_e est un pas d'échantillonnage régulier
- $F_e = 1/T_e$ est la fréquence d'échantillonnage

Transformée de Fourier d'un signal échantillonné

$$X_{e}(f) = TF\{x_{e}(t)\} = TF\{x(t) \cdot \delta_{T_{e}}(t)\}$$

$$= X(f) * (F_{e} \cdot \delta_{F_{e}}(f))$$

$$= F_{e} \cdot X(f) * \delta_{F_{e}}(f)$$

$$= F_{e} \cdot X(f) * \sum_{k=-\infty}^{+\infty} \delta(f - kF_{e})$$

$$= F_{e} \cdot \sum_{k=-\infty}^{+\infty} X(f) * \delta(f - kF_{e})$$

$$= F_{e} \cdot \sum_{k=-\infty}^{+\infty} X(f - kF_{e})$$

Le spectre d'un signal échantillonné est forcément périodique!

Transformée de Fourier d'un signal échantillonné

lacktriangle Importance du choix de la fréquence d'échantillonnage $m{F_e}$

$$F_e = 2F_{max}$$

$$F_e < 2F_{max}$$

Repliement de spectre

Le repliement de spectre c'est quoi exactement ?

Mélange d'information qui modifie substantiellement le signal d'origine

- Création de fausses informations qui peuvent être dramatiques
- Echantillonnage d'une fonction cosinus avec $F_e = f_0 + \varepsilon$ $(F_e < 2F_{max})$

Démonstration en annexes

Restitution d'un signal correctement échantillonné

Raisonnement dans le domaine fréquentiel

• Filtrage du signal échantillonné par un filtre passe-bas

$$X_R(f) = X_e(f) \cdot H_{bas}(f)$$

Restitution d'un signal correctement échantillonné

- ► La restitution d'un signal analogique n'est pas possible lorsque
 - $F_e < 2F_{max}$

Aucun filtre ne permet de revenir au motif spectral original lorsqu'il y a eu du recouvrement de spectre lors de l'échantillonnage

On parlera de bruit dû au recouvrement de spectre

On cherchera à quantifier le bruit dû au recouvrement de spectre

- Théorème de Shannon
 - Si $F_e \ge 2F_{max}$ alors les spectres périodisés ne se recouvrent pas
 - Reconstruction du signal analogique de départ théoriquement possible !
 - Si $F_e < 2F_{max}$ il y a recouvrement de spectre
 - → On ne peut pas reconstituer le signal analogique de départ et l'information est déformée!
 - Condition requise pour être sûr de ne pas introduire de fausses informations lors de l'opération d'échantillonnage:

$$F_e > 2F_{max}$$

 \rightarrow Cela sous-entend que le signal analogique de départ possède une fréquence F_{max} , c'est-à-dire qu'il soit à bande limité dans l'espace de Fourier

Echantillonnage des signaux - Situation moins idéale...

- Les signaux réels ne sont pas naturellement à bande limitée
 - Présence naturelle de bruit souvent considéré comme additif

$$x(t) = v(t) + b(t)$$

• Utilisation d'un filtre anti-repliement afin de créer un signal à bande de fréq. limitée

 $X_{AR}(f) = X(f) \cdot H_{AR}(f)$

→ Préservation de la partie utile du signal

Filtre anti-repliement afin de créer un signal à bande de fréquences limitée

FREQUEZCE

- Les signaux réels ne sont pas naturellement à bande limitée
 - Une fois filtré, le signal peut être échantillonné

Les filtres anti-repliement réels

Les filtres « rectangles » sont des filtres idéaux et n'existent pas en analogique

On implémentera un filtre passe-bas avec une bande de transition définie par un CdC

ullet On aura toujours du bruit au-delà de $F_{coupure}$ que l'on cherchera à maitriser !

Dimensionnement d'une chaine d'acquisition

- Caractérisation des erreurs en terme d'énergie ou de rapport signal à bruit (RSB) ou Signal to Noise Ratio (SNR)
- Théorème de Parseval
 - Energie d'un signal x(t) ayant pour transformée de Fourier X(f)

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt = \int_{-\infty}^{+\infty} |X(f)|^{2} df$$
temps fréquence

• $|X(f)|^2$ correspond à la densité spectrale et jouera un rôle déterminant pour la caractérisation des signaux aléatoires

Bilan de la chaine d'acquisition

 $|Y(f)|^2 \approx |X(f)|^2 + |B(f)|^2$ si le bruit est décorrélé avec x(t)

 $|Y(f)|^2 \approx |X(f)|^2 + |B(f)|^2$ si le bruit est décorrélé avec x(t)

 $|Y(f)|^2 \approx |X(f)|^2 + |B(f)|^2$ si le bruit est décorrélé avec x(t)

$$|Y(f)|^2 \approx |X(f)|^2 + |B(f)|^2$$
 si le bruit est décorrélé avec $x(t)$

• Signal filtré par un filtre anti-repliement H(f) avant échantillonnage

ullet Le signal filtré est ensuite échantillonné ullet erreur/bruit de repliement de spectre E_r

- puis converti en binaire par le CAN
- \rightarrow erreur/bruit de quantification E_q

Erreur due au repliement de spectre

- Avec repliement de spectre dans la bande [-Fe/2, Fe/2]
 - Energie du signal utile (ici dans la bande [-Fe/2, Fe/2])

$$E_{xu} = \int_{-F_e/2}^{+F_e/2} |X(f)|^2 df$$

• Energie de l'erreur de repliement, avec filtre anti-repliement $H_{AR}(f)$

Ce qui est au-delà de $F_e/2$ et en dessous de $-F_e/2$ se replie dans la bande [-Fe/2, Fe/2]

$$E_{xr} = \int_{-\infty}^{-F_e/2} |X(f) \cdot H(f)|^2 df + \int_{+F_e/2}^{+\infty} |X(f) \cdot H(f)|^2 df = 2 \int_{+F_e/2}^{+\infty} |X(f) \cdot H(f)|^2 df$$

Rapport Signal à Bruit (RSB) dû au repliement

$$RSB = \frac{E_{xu}}{E_{xr}}$$
, soit en dB $RSB_{dB} = 10 \log_{10} \left(\frac{E_{xu}}{E_{xr}}\right)$

Le filtre anti-repliement a pour but de contrôler ce RSB

Quantification des signaux

Quantification

Schéma classique pour la quantification

Utilisation de deux éléments: un échantillonneur bloqueur et un convertisseur A/N

Echantillonneur bloqueur

Maintient constant les niveaux de tensions analogiques à convertir

Quantification

Convertisseurs analogique / numériques (CAN)

Plage d'entrée du CAN

P (volts, ampères, ...)

Nombre de bits en sortie

 $N: 2^N$ niveaux possibles

Pas de quantification

$$\Delta = P/2^N$$

Sortie numérique

Erreur de quantification

$$e[k] = x_q[k] - x[k]$$

 $e[k] = x_q[k] - x[k]$ avec $x_q[k]$ signal quantifié x[k] signal discret idéal

Quantification

- lacktriangle Propriétés de l'erreur de quantification e[k]
 - Bruit de densité de probabilité uniformément répartie entre 0 et Δ
 - Moyenne nulle
 - Energie E_q

$$E_q = \frac{P^2}{12 \cdot 2^{2N}}$$

ullet Pour un signal d'entrée d'écart type σ_x , le rapport signal / bruit (RSB) en dB est

$$RSB_q = 6.02 N + 10.8 - 20 \log_{10} \left(\frac{P}{\sigma_x}\right)$$

Quantification

- \triangleright Cas des signaux gaussiens d'écart type σ_x (volts)
 - ullet Amplitudes suivent une distribution gaussienne de moyenne nulle et d'écart type $\sigma_{\!\scriptscriptstyle \mathcal{X}}$

- Propriété importante: 1 échantillon sur $15000 > 4\sigma_x$
- Plage d'entrée du convertisseur CAN: $P=8\sigma_x$ volts
- RSB = 6.02 N 7.27 dB
- Pour un RSB d'environ 90 dB (qualité audio), il faut au moins N=16 bits

Bilan de la chaine d'acquisition

Bilan de la chaine d'acquisition: signal, bruit

Qualité du signal d'entrée et du bruit

- Energies totales: E_x , E_b
- Energie du signal total $E_t = E_x + E_b$ si le bruit est décorrélé du signal
- dans la bande utile: E_{tu} , E_{xu} , E_{bu}

► Filtre anti-repliement

- Dégrade le signal dont les énergies deviennent E_{xf} , E_{xuf}
- Modifie le bruit dont les énergies deviennent normalement $E_{bf} < E_b$ et $E_{buf} < E_{bu}$

Echantillonnage

• Ramène tout le bruit et le signal au delà de $F_e/2$ dans la bande en dessous de $F_e/2$ avec une énergie totale E_r

CAN

• Dégrade le signal \rightarrow erreur/bruit de quantification E_q

Bilan des RSB

- Signal d'entrée
 - $RSB_t = 10 \cdot \log_{10} \left(\frac{E_x}{E_h} \right)$
- → calculé sur l'ensemble du signal
- $RSB_{tu} = 10 \cdot \log_{10} \left(\frac{E_{xu}}{E_{bu}} \right)$
- → calculé dans la bande utile
- Signal à la sortie du filtre anti-repliement

•
$$RSB_{tf} = 10 \cdot \log_{10} \left(\frac{E_{xf}}{E_{bf}} \right)$$

- $RSB_{uf} = 10 \cdot \log_{10} \left(\frac{E_{xuf}}{E_{buf}} \right)$
- Signal échantillonné
 - $RSB_e = 10 \cdot \log_{10} \left(\frac{E_{xuf}}{E_{buf} + E_{ru}} \right)$

Signal numérique à la sortie du CAN

•
$$RSB_n = 10 \cdot \log_{10} \left(\frac{E_{xuf}}{E_{buf} + E_{ru} + E_q} \right)$$

Les énergies s'additionnent seulement si les différents signaux sont décorrélés!

Dimensionnement de la chaine d'acquisition

- ightharpoonup Choix de F_e filtre anti-repliement (ordre, type) CAN (Nb bits, dynamique)
- On cherche
 - La fréquence d'échantillonnage la plus basse possible
 - → Coût de calcul, consommation des circuits, coût de la techno. haute fréquence
 - Un filtre anti-repliement analogique le moins complexe possible
 - → Ordre élevé complexe et couteux à réalisé, erreurs dues au gain et à la phase...
 - Le CAN avec le moins de bits possible, et une dynamique minimale
 - → Coût des composants, puissance de calcul nécessaire
 - On cherchera à conserver un signal de qualité (information utile) « acceptable » par rapport à l'application visée
 - On part de $RSB_{tu} = 10 \cdot \log_{10} \left(\frac{E_{xu}}{E_{bu}}\right)$ \rightarrow c'est le mieux que l'on puisse obtenir
 - On va avoir à la fin $RSB_n=10\cdot\log_{10}\left(\frac{E_{xuf}}{E_{buf}+E_{ru}+E_q}\right)$ qui doit être « acceptable » pour l'application et à coût minimal

Technologies des différents convertisseurs analogiques / numériques

- Il existe principalement 4 types de CAN
 - Approximations successives
 - Flash (résistance et comparateurs)
- Double rampe
- Sigma-Delta
- ► Le choix de la technologie repose sur 3 points
 - Vitesse de conversion (fréquence d'échantillonnage)
 - Résolution (nombre de bits de conversion)
 - Coût

Fréquence d'échantillonnage

CAN - flash

- Flash
 - $F_e \in [10MHz, 1GHz]$
 - Résolution entre 8 et 12 bits
 - Conversion en parallèle de la valeur à quantifier
 - Technologie coûteuse en composants (donc en taille) et une plus forte consommation
 - Utilisé en vidéo numérique, imagerie médicale
- Basé sur le principe de pont de division de tension

$$U_2 = U \cdot \frac{R_2}{R_1 + R_2}$$

► Illustration d'un CAN flash avec N=3 bits

• Utilisation de N résistances et $2^N - 1$ comparateurs

• La tension V_a sera comparée en parallèle à 7 valeurs de tension V_{Ri}

$$V_{R1} = \frac{13}{16} \cdot V_{Ref}$$

$$V_{R2} = \frac{11}{16} \cdot V_{Ref}$$

•
$$V_{R3} = \frac{9}{16} \cdot V_{Ref}$$

• [...]

•
$$V_{R7} = \frac{1}{16} \cdot V_{Ref}$$

Niveaux de quantifications

• Si $V_a > V_{Ri}$ alors la sortie du comparateur associée vaut 1

► Illustration d'un CAN flash avec N=3 bits

• Utilisation de N résistances et $2^N - 1$ comparateurs

CAN - approximations successives

Approximations successives

- $F_e \in [10kHz, 1MHz]$
- Résolution entre 12 et 16 bits
- Conversion en série (pas à pas) de la valeur à quantifier => nécessite un bloqueur
- Utilisé dans les microcontrôleurs

Basé sur le principe recherche par dichotomie

- On démarre avec 1 0 0
- Si $V_a > V_{associ\acute{e}e}$ alors on garde $1\ 0\ 0$ sinon on garde $0\ 0\ 0$
- On teste X 1 0
- Si $V_a > V_{associ\acute{e}e}$ alors on garde $X \ 1 \ 0$ sinon on garde $X \ 0 \ 0$
- On teste *X X* 1
- Si $V_a > V_{associ\acute{e}e}$ alors on garde X X 1 sinon on garde X X 0

Illustration d'un CAN par approximations successives

- R.A.S → Registre à approximations successives
 - → Réalise la fonction suivante

Si $V_{ent\'ee} > 0$ alors on garde 1~0~0 sinon on garde 0~0~0

• CNA igoplus convertit le code binaire en une tension $V_{associ\'ee}$ qui dépendra de V_{ref}

That's all folks

Annexes

Illustration du repliement de spectre

Recouvrement de spectre

► Le recouvrement de spectre c'est quoi exactement ?

Mélange d'information qui modifie substantiellement le signal d'origine

- Création de fausses informations qui peuvent être dramatiques
- Illustration: échantillonnage d'une fonction cosinus

• Que se passe t'il si l'on échantillonne x(t) avec $F_e = f_0 + \varepsilon$ $(F_e < 2F_{max})$?

Recouvrement de spectre

► Illustration: échantillonnage d'une fonction cosinus

• Echantillonnage de x(t) avec $F_e = f_0 + \varepsilon$ $(F_e < 2F_{max})$

$$X_{e}(f) = \frac{1}{2} \left(\delta \left(f - f_{0} + (f_{0} + \varepsilon) \right) + \delta \left(f + f_{0} - (f_{0} + \varepsilon) \right) + \cdots \right) \cdot F_{e}$$

$$X_{e}(f) = \frac{1}{2} \left(\delta \left(f + \varepsilon \right) + \delta \left(f - \varepsilon \right) + \cdots \right) \cdot F_{e}$$

 $cos(2\pi\varepsilon t)$ avec ε fréquence apparente

Modélisation de la transformée de Fourier pour les signaux périodiques

Transformée de Fourier des signaux périodiques

- Illustration de la puissance de ces outils: étude des signaux périodiques
 - Modélisation

$$x_p(t) = \sum_{k=-\infty}^{+\infty} x(t - kT_e)$$

$$= \sum_{k=-\infty}^{+\infty} x(t) * \delta(t - kT_e)$$

$$= x(t) * \sum_{k=-\infty}^{+\infty} \delta(t - kT_e)$$

 $= x(t) * \delta_{T_{\rho}}(t)$

$$x_p(t) = x(t) * \delta_{T_e}(t)$$

Transformée de Fourier des signaux périodiques

- Illustration de la puissance de ces outils: étude des signaux périodiques
 - Transformée de Fourier

$$X_{p}(f) = TF\{x_{T_{e}}(t)\} = TF\{x(t) * \delta_{T_{e}}(t)\}$$

$$= X(f) \cdot \left(F_{e} \cdot \delta_{F_{e}}(f)\right)$$

$$= F_{e} \cdot X(f) \cdot \delta_{F_{e}}(f)$$

$$= F_{e} \cdot X(f) \cdot \sum_{k=-\infty}^{+\infty} \delta(f - kF_{e})$$

$$= F_{e} \cdot \sum_{k=-\infty}^{+\infty} X(kF_{e}) \cdot \delta(f - kF_{e})$$

Le spectre d'un signal périodique est forcément discret!

On aura un spectre de raies tous les F_e !