

Prediction of Appointment No Show

Presented by Abeer Almdani | Rana Alzahrani

Outlines

- Introduction and problem statement
- Design
- Data
- Feature Engineering
- Algorithms and Models
- Tools

Introduction and problem statement

Patients make appointments at clinics or hospitals to be checked by a doctor. Some of the patients do not show up for their appointments. This results in loss of valuable resources in terms of physician time and staffing allocation which could have been used more productively. We will predict if the person shows up or not using a few classification algorithms.

Design

Data source

Classification Moduls

Evaluation

Data

EDA and Feature Engineering

- String Binary (yes,no) --> (0,1)
- String type--> int
- Age > 0
- Neighbourhood --> dummies (81 cols)
- Adding features
 - Days
 - Morning
 - Appointment Day
 - Appointment Month
 - Scheduled Day
 - Scheduled Month
 - Week Day
- Deleting useful features
 - Scheduled Date
 - Appointment Date
 - Appointment ID
 - Patient ID

Data

- Data Size before Engineering and UnderSampling:
 - Number of rows: 110,528
 - Number of columns: 14
- Data Size after Engineering and UnderSampling:
 - Number of rows: 74,175
 - Number of columns: 98
- Target = No Show
- Features = Gender, ScheduledDay,
 AppointmentDay Age, Neighbourhood, Scholarship,
 Hipertension, Diabetes, Alcoholism, Handcap,
 SMS_received, Scheduled_Day, Scheduled_Month,
 Weekday, days

Splinted Data

Algorithms and Models

Modules	AccuracyTr	Validation Score	Grid search
BaseLine	79.80	79.869	C=1
Logistic regression	79.52%	79.65%	C=1
Knn	99.36%	80.25%	n_estimators= 161
Decision Tree	86.78%	77.75%	max_depth=21
Random Forest	99.29%	79.36%	n_neighbors=55
Extra Trees	99.29%	78.04%	-
XGBClassifier	87.33%	80.25%	-
Polynomial 2	99.20%	99.09%	-

55-nearest neighbors algorithm is the best algorithm

Standard classification metric

- Score of train set: 0.99358
- Score of validation set: 0.8025
- Score of test set: 0.79861
- Accuracy: 0.79861
- Precision: 0.33333
- Recall: 0.00045
- F1_Score: 0.0009

dealing with over and under fitting

- Standard Scaler
- Adding Features
- Delateing Features
- minimize and maximize training and validation set
- Validation score increase 5.85

Tools

- Sklearn
- Numpy
- Pandas
- Seaborn
- Python
- Anaconda
- Canva
- Github
- Zoom
- Jupyter notebook

Thanks

Any question?