Исследование генетического алгоритма

Цель: найти глобальный максимум при помощи генетического алгоритма и исследовать влияние параметров алгоритма на результат

Исходные данные:

- Используемые распределения: пуассоновское распределение и экспоненциальное распределение
- Параметры генетического алгоритма:
- размер популяции (population_size)
- количество поколений (generations)
- вероятность скрещивания (P_crossover)
- вероятность мутации (P_mutation)
- размер выборки для отбора (selection_size)
- Используемые библиотеки:
- import numpy as np
- import matplotlib.pyplot as plt

1. Закон распределения: пуассоновское распределение (N = 100 000, λ = 150)

Установим следующие исходные значения:

population_size = 500 generations = 100 P_crossover = 0.5 P_mutation = 0.15 selection_size = 15

Функция для использования распределения Пуассона:

np.random.poisson(lamda, size=N)

Результат выполнения:

Полученный максимум: 204 Реальный максимум: 204

Сравним результаты при различных значениях размера популяции.

Результат при population_size = 100:

Полученный максимум: 194 Реальный максимум: 204

Результат при population_size = 5000:

Полученный максимум: 211 Реальный максимум: 211

Сравним результаты при различных значениях количества поколений

Pезультат при generations = 50:

Полученный максимум: 199 Реальный максимум: 204 Pезультат при generations = 250:

Полученный максимум: 204 Реальный максимум: 204

Сравним результаты при различных значениях вероятности кроссовера

Pезультат при P_crossover = 0.1:

Pезультат при P_crossover = 0.94:

Полученный максимум: 200 Реальный максимум: 208

ксимум: 200 Полученный максимум: 183 имум: 208 Реальный максимум: 205

Сравним результаты при различных значениях вероятности мутации

Pезультат при $P_{mutation} = 0.05$:

Полученный максимум: 195 Реальный максимум: 201

Pезультат при P_mutation = 0.5:

Полученный максимум: 196 Реальный максимум: 208

Сравним результаты при различных значениях размера выборки для отбора

Результат при selection_size = 1:

Полученный максимум: 189

Результат при selection_size = 50:

Полученный максимум: 198 Реальный максимум: 205

2. Закон распределения: экспоненциальное распределение (N = 100 000, λ = 150)

Установим аналогичные исходные значения:

population_size = 500 generations = 100 P_crossover = 0.5 P_mutation = 0.15 selection_size = 15

Функция для использования экспоненциального распределения:

np.random.poisson(lamda, size=N)

Результат выполнения:

Полученный максимум: 200 Реальный максимум: 210

Сравним результаты при различных значениях размера популяции.

Реальный максимум

100

80

Результат при population_size = 100:

Полученный максимум: 201 Реальный максимум: 207

20

192

Сходимость генетического алгоритма 206 204 202 Лучшее значение 200 198 196 194

40

Поколение

60

Результат при population_size = 5000:

Полученный максимум: 200 Реальный максимум: 203

Сравним результаты при различных значениях количества поколений

Pезультат при generations = 50:

Pезультат при generations = 250:

Полученный максимум: 194 Полученный максимум: 198 Реальный максимум: 213 Реальный максимум: 203

Сравним результаты при различных значениях вероятности кроссовера

Pезультат при P_crossover = 0.1:

Pезультат при P_crossover = 0.94:

Полученный максимум: 193 Реальный максимум: 207

Полученный максимум: 192 Реальный максимум: 206

Сравним результаты при различных значениях вероятности мутации

Pезультат при P_mutation = 0.05:

Полученный максимум: 197 Реальный максимум: 200

Поколение

Pезультат при P_mutation = 0.5:

Полученный максимум: 204 Реальный максимум: 205

Сравним результаты при различных значениях размера выборки для отбора

Результат при selection_size = 1:

Результат при selection_size = 50:

Полученный максимум: 193 Реальный максимум: 206

Полученный максимум: 198 Реальный максимум: 205

Выводы:

- При одних и тех же значениях параметров результат выполнения для распределения Пуассона и экспоненциального распределения сильно различается.
- При использовании распределения Пуассона наиболее важны размер популяции и размер выборки для отбора особей.
- При использовании экспоненциального распределения наиболее важны количество поколений и вероятность мутации.
- График сходимости при слишком маленьком размере выборки особей для отбора или слишком большой вероятности скрещивания имеет зигзагообразный вид, характер колебаний напоминает кардиограмму.
- График сходимости при слишком малой вероятности скрещивания возрастает крайне медленно.