Лабораторная работа №2

студента группы ИТ-222

Мокрищева Николая Павловича

Выполнение:	 Защита:	

ПРОЕКТИРОВАНИЕ СЕТЕЙ ETHERNET

Цель работы: Приобретение практических знаний и навыков в проектировании локальных сетей.

Содержание работы

Вариант №7

Согласно варианту задания спроектируйте локальную сеть, принимая во внимание возможность увеличения числа компьютеров. При проектировании необходимо решить следующие задачи:

пределить топологию сети и тип кабельной системы.

одобрать необходимое сетевое оборудование.

азработать подробную схему сети.

ассчитать PDV и PVV.

Таблица вариантов заданий

	№	Спецификация Ethernet	Количество комнат	Расстояние между соседними комнатами (м)	Число компьютеров в каждой комнате
7,	, 22	10Base-5	3	30	3

Ход работы

Вариант №7

1. Постановка задачи

Спроектировать локальную сеть Ethernet по спецификации 10Base-5 для 3 комнат, находящихся на расстоянии 30 метров друг от друга. В каждой комнате располагается по 3 компьютера. Необходимо рассчитать задержку детектирования коллизий (PDV) и сокращение межпакетного интервала (PVV).

2. Выбор кабеля и оборудования

Тип кабеля: Для реализации сети используется толстый коаксиальный кабель, соответствующий спецификации 10Base-5.

- **Кабель:** Толстый коаксиальный кабель RG-8, поддерживающий передачу данных на скорости 10 Мбит/с.
- Длина:
 - о Для соединения компьютеров в каждой комнате требуется около 5-10 метров кабеля. Поскольку в каждой комнате 3 компьютера и между комнатами 30 метров, общая длина коаксиального кабеля составит:
 - \circ Длина между комнатами: 30 метров \times 2 = 60 метров
 - о Длина внутри комнат: 10 метров × 3 комнаты = 30 метров
 - \circ Итого: 60 метров + 30 метров = 90 метров (с запасом).
- Цена: За 90 метров кабеля заплатим 23400 рублей (260 рублей/метр)

Рис 1. Коаксиальный кабель

Трансиверы:

- **Количество:** Каждому компьютеру требуется 1 трансивер. Поскольку в каждой комнате по 3 компьютера, потребуется 9 трансиверов.
- Трансивер: Трансивер модуль SFP+, 10GBASE-SW/SR, LC, mm, 850nm, 300m SFP-
- **Цена:** 1 трансивер стоит 1300 рублей. Чтобы купить 9 трансиверов, нужно будет заплатить 1300 * 9 = 11700 рублей.

Рис 2. Трансивер

Кабель (витая пара):

- **Количество:** Чтобы подключить компьютеры к сети нужно около 2 метров витой пары. Так как у нас 9 компьютеров, то получаем, что нам нужно 9 * 2 = 18 метров.
- Кабель: Витая пара DEXP TP5c51UUTP025G.
- **Цена:** Минимальный размер данного кабеля 25 метров, за него нужно заплатить 450 рублей.

Рис 3. Кабель (витая пара)

Коннекторы:

- **Количество:** Нужно 2 коннектора на соединения 1 компьютера. Так что в итоге нам нужно 2 * 9 = 18 шт.
- **Коннектор:** <u>Коннектор cat.5e UTP RJ45 штекер 8P8C, неэкранированный, быстрозажимной, 10 шт.</u>
- **Цена:** 140 рублей 10 штук. Нам нужно минимум 18, следовательно, 140 * 2 = 280 рублей.

Рис 4. Коннекторы

Терминаторы:

- **Количество:** Нужно по одному терминатору на каждом конце коаксибельного кабеля для предотвращения отражения сигнала. Следовательно, нам понадобится 2 штуки, которые уже продаются в комплекте.
- **Терминатор:** <u>HYR-0116X (GB-116X) (BNC-7017X) (BNC-E50P)</u>, <u>Разъем BNC</u>, <u>штекер, терминатор 50 Ом</u>
- **Цена:** Так как данные терминаторы уже продаются в комплекте по 2 штуки, нам нужно будет заплатить 210 рублей.

Рис 5. Терминаторы

Кабельные стяжки:

- **Количество:** В реальности, чтобы провода не занимали много места, могут пользоваться кабельными стяжками. Чтобы красиво уложить провода в 3 комнатах, думаю, должно хватить 30-40 стяжек, но для запаса возьмём значительно больше.
- **Стяжки:** <u>Хомут стяжка для проводов / кабелей нейлоновый (кабельная стяжка)</u> сверхпрочная Power Lock, 2,5х100мм.
- **Цена:** 100 рублей за 100 штук, чего более чем должно хватить для того, чтобы провести удобные кабель каналы.

Рис 6. Кабельные стяжки

3. Схема сети

Рис 7. Схема сети

4. Расчёт времени задержки и детектирования коллизий

Задержка детектирования коллизий (PDV) определяется продолжительностью передачи кадра по самому длинному пути.

 $PDV = (НачСегмент + ЗадержкаРаспространения * Длина) + (ПромежСегмент + ЗадержкаРаспространения *Длина) + <math>\cdots$ + (КонечныйСегмент + ЗадержкаРаспространения * Длина)

Для расчёта были взяты справочные данные из методического пособия.

$$PDV = (11.8 + 0.0866 * 5) + (46.5 + 0.0866 * 30) + (46.5 + 0.0866 * 30) + (169.5 + 0.0866 * 5)$$
$$= 280.362 \text{ Hc}.$$

Расчет сокращения межпакетного интервала показывает насколько сократиться интервал между двумя последовательными кадрами, переданными по самому длинному пути. Сокращение межпакетного интервала (PVV) определяется изменением длины кадра в начальном и промежуточном сегментах.

HачCегмент + Π ромежCегмент + \cdots + Π ромежCегмент

Для расчета взяла справочные данные из методического пособия.

$$PVV = 16 + 11 + 11 = 38 \text{ Hc.}$$

Вывод: в ходе проектирования локальной сети на основе спецификации Ethernet 10Base-5 были приобретены важные практические навыки. Для сети, состоящей из трех комнат, была выбрана топология шины с использованием коаксиального кабеля RG-8 в качестве основной линии связи. Каждое устройство подключалось через трансивер, что соответствует стандарту 10Base-5. На концах коаксиального кабеля установлены терминаторы для предотвращения отражений сигнала.

Был проведен расчет задержки детектирования коллизий (PDV), основанный на времени распространения сигнала по самому длинному пути в сети. Согласно стандарту, максимальная задержка не должна превышать 575 наносекунд, а итоговый расчет показал 280,36 наносекунд, что соответствует нормам. Также был рассчитан полезный объем вещания (PVV), который отражает интервал между передачей последовательных пакетов по длинной линии сети. Максимально допустимое значение — 49 наносекунд, а расчетное значение составило 38 наносекунд, что также укладывается в допустимые пределы.

Работа позволила приобрести опыт не только в расчетах сетевых параметров (PDV и PVV), но и в подборе оборудования и материалов для создания сети, предусматривающей возможность дальнейшего расширения.