Data Structures

SY BTech(CSE)

Unit - 1

Introduction

PPT-8

Prof. Ms. Manisha A. Bhusa Dept. Of CSE COE Ambajogai

Objective:

Study of properties of asymptotic notations.

```
Properties:
       Let f(n) and g(n) be such that
         \lim f(n)
       n\rightarrow \infty g(n)
       exists, then
1.Function f(n) \in O(g(n)) if
         f(n) = c < \infty, also including the case in
                                               which limit is O
       n\rightarrow \infty g(n)
2. Function f(n) \in \Omega(g(n)) if
          \lim f(n) > 0, also including the case in
       n\rightarrow \infty g(n)
                                              which limit is \infty
3. Function f(n) \in \Theta(g(n)) if
             f(n) = c for some constant c
       n\rightarrow \infty g(n)
                                              such that 0 < c < \infty
```

Prove that $10n^2 + 9 \neq O(n)$ Solution:

$$f(n) = 10n^2 + 9$$

 $g(n) = n$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \frac{10n^2 + 9}{n}$$

$$= \infty$$

$$\therefore 10n^2 + 9 \neq O(n)$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty$$

Prove that
$$\sum_{i=1}^{\infty} i^2 = O(n^3)$$

$$f(n) = \sum_{i=1}^{n} i^{2}$$

= 1/2 n³ - 1/2 n
 $g(n) = n^{3}$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \frac{1/2}{n^3} - \frac{1}{2} \frac{n}{n}$$

=
$$\frac{1}{2} - \frac{1}{(2n^2)}$$

= $\frac{1}{2} < \infty$

$$f(n) = \sum_{i=1}^{\infty} i^2 = O(n^3)$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty$$

Prove that $5n^2 - 6n = \Theta(n^2)$ Solution:

$$f(n) = 5n^2 - 6n$$

 $g(n) = n^2$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \frac{5n^2 - 6n}{n^2}$$

$$\therefore 5n^2 - 6n = \Theta(n^2)$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c, \ 0 < c < \infty$$

Prove that
$$2n^2 2^n - n \log n = \Theta(n^2 2^n)$$

Solution:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

$$f(n) = 2n^2 2^n - nlogn$$

 $g(n) = n^2 2^n$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \frac{2n^2 2^n - n\log n}{n^2 2^n}$$

$$\therefore 2n^2 2^n - n \log n = \Theta(n^2 2^n)$$

Prove that
$$33n^3 + 4n^2 = \Omega(n^2)$$

Solution:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} > 0$$

$$f(n) = 33n^3 + 4n^2$$

 $g(n) = n^2$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \frac{33n^3 + 4n^2}{n^2}$$

$$= 33 n + 4$$

$$= \infty$$

AS
$$\infty > 0$$

∴
$$33n^3 + 4n^2 = \Omega(n^2)$$

Prove that
$$33n^3 + 4n^2 = \Omega(n^3)$$

Solution:

$$f(n) = 33n^3 + 4n^2$$

 $g(n) = n^3$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \frac{33n^3 + 4n^2}{n^3}$$

$$= 33 + 4/n$$

A\$ 33 > 0

$$\therefore$$
 33n³ + 4n² = $\Omega(n^3)$

Prove that n! = O(nⁿ) Solution:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c < \infty$$

$$n! = n(n-1)(n-2)---2 * 1$$

= $n^n [1 - 1/n] [1 - 2/n] --- 2/n * 1/n$

$$f(n) = n!$$
$$g(n) = n^n$$

lim
$$f(n) = p^{n} [1 - 1/n] [1 - 2/n] --- 2/n * 1/n$$

 $n \to \infty$ $g(n)$ p^{n}

As
$$1/\infty = 0$$

As
$$0 < \infty$$

$$n! = O(n^n)$$

Practical Complexities:

logn	n	n logn	n ²	n³	2 ⁿ
0	1	0	1	1	2
1	2	2	4	8	4
2	4	8	16	64	16
3	8	24	64	512	256
4	16	64	256	4096	65536
5	32	160	1024	32768	4294967296

2ⁿ Grows very rapidly with n.

Performance Measurement:

- It is concerned with obtaining the space and time requirements of a particular algorithm.
- It depends on 1. Compiler
 - 2. Options used
 - 3. Computer specifications
- To compute time of a program we need a clocking procedure.

Gettime(): Returns the current time in milliseconds.

```
Ex: Algo Main
           h1 = gettime();
           binsrch(a,n,x);
           h2 = gettime();
           t = h2 - h1;
           Write "Time: ",t;
      Assignment 1.pdf
```