Lecture 5: Logistic regression & NFL kickers

Skidmore College

Preamble:

```
library(tidyverse)
nfl_kick <- read.csv("https://raw.githubusercontent.com/statsbylopez/StatsSport
head(nfl_kick)</pre>
```

##		Team	Year	GameMinute	Kicker	Distance	ScoreDiff	Grass	Temp	Success	
##	1	PHI	2005	3	Akers	49	0	FALSE	72	0	
##	2	PHI	2005	29	Akers	49	-7	FALSE	72	0	
##	3	PHI	2005	51	Akers	44	-7	FALSE	72	1	
##	4	PHI	2005	14	Akers	43	14	TRUE	82	0	
##	5	PHI	2005	60	Akers	23	0	TRUE	75	1	
##	6	PHI	2005	39	Akers	34	-3	TRUE	68	1	

Warm-Ups 1/2

- ▶ Identify the longest field goal kicked by each kicker
- ▶ Identify the rate of successful field goals in each season

Warm ups 3/4

- Surfaces with Grass == FALSE occur on turf. What is the rate of field goals made on each surface?
- ► Identify the rate of successful field goals kicked between 48 and 52 yards

Review: multivariate linear regression

Model:

$$y_i = \beta_0 + \beta_1 * x_{i1} + \beta_2 * x_{i2} + \ldots + \beta_{p-1} * x_{i,p-1} + \epsilon_i$$

Assumptions:

- $ightharpoonup \epsilon_i \sim N(0, \sigma^2)$
- $ightharpoonup \epsilon_i, \epsilon_{i'}$ independent for all i, i'
- Linear relationship between y and x

Example: NFL kickers

```
library(tidyverse)
nfl_kick <- read.csv("https://raw.githubusercontent.com/statsbylopez/StatsSport
head(nfl_kick)</pre>
```

##		Team	Year	${\tt GameMinute}$	Kicker	Distance	ScoreDiff	Grass	Temp	Success
##	1	PHI	2005	3	Akers	49	0	FALSE	72	0
##	2	PHI	2005	29	Akers	49	-7	FALSE	72	0
##	3	PHI	2005	51	Akers	44	-7	FALSE	72	1
##	4	PHI	2005	14	Akers	43	14	TRUE	82	0
##	5	PHI	2005	60	Akers	23	0	TRUE	75	1
##	6	PHI	2005	39	Akers	34	-3	TRUE	68	1

Example: NFL kickers

```
fit_0 <- lm(Success ~ Distance, data = nfl_kick)
ggplot(data = nfl_kick, aes(Distance, Success)) +
  geom_jitter()</pre>
```


Example: NFL kickers

```
fit_0 <- lm(Success ~ Distance, data = nfl_kick)
qqnorm(fit_0$resid)</pre>
```


What are the problems?

Logistic regression model

Model:
$$log(\frac{P(y=1)}{1-P(y=1)}) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \ldots + \beta_{p-1} * x_{p-1}$$

Comments:

- ► Dependent variable: log-odds
 - What are odds?
- ► Model checks more complex
- Uses z test statistics for parameters

Logistic regression model

Model:
$$log(\frac{P(y=1)}{1-P(y=1)}) = \beta_0 + \beta_1 * x_1$$

Extract probabilities:

►
$$P(y = 1)$$
:

Estimated logistic regression model

Estimated model:

$$log(\frac{P(y=1)}{1-P(y=1)}) = \hat{\beta_0} + \hat{\beta_1} * x_1 + \hat{\beta_2} * x_2 + \dots + \hat{\beta_{p-1}} * x_{p-1}$$

Slope interpretation:

- \triangleright $\hat{\beta}_1$:
- $ightharpoonup e^{\hat{eta}_1}$:

Slope interpretation: $e^{\hat{\beta_1}}$

tidy(fit_1)

Estimate the probability of a successful 50-yard field goal:

tidy(fit_1)

Estimate the probability of a successful 51-yard field goal:

Use your answers on the previous slides to estimate the odds of a 51-yard field goal relative to the odds of a 50-yard field goal. Where else do you see this number?

Model checking

- ▶ Model checking for logistic regression relies on assessment of fit
 - Are the predicted probabilities accurate?
 - Ex: 48 to 52 yard field goals

```
long_FG <- filter(nfl_kick, Distance >= 48, Distance <= 52)
long_FG %>%
summarise(ave_success = mean(Success))
```

```
## ave_success
## 1 0.6510989
```

Categorical predictors

Estimated model

Categorical predictors

tidy(fit_2)

Slope interpretation: $e^{\hat{\beta}_1}$

Categorical predictors

tidy(fit_2)

Slope interpretation: $e^{\hat{\beta}_2}$