MA-110 Linear Algebra and Differential Equations

Rekha Santhanam

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> January 30, 2024 Lecture 10 D3

Linear Span: Definition

Given a collection $S = \{v_1, v_2, ..., v_n\}$ in a vector space V, the *linear span* of S, denoted $\operatorname{Span}(S)$ or $\operatorname{Span}\{v_1, ..., v_n\}$, is the set of all linear combinations of $v_1, v_2, ..., v_n$, i.e.,

$$\mathsf{Span}(S) = \{v = a_1v_1 + \dots + a_nv_n, \text{ for scalars } a_1, \dots, a_n\}.$$

Let $\{v_1, \ldots, v_n\}$ be *n* vectors in \mathbb{R}^n , $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$. Note:

- If $v_1, ..., v_n$ are in \mathbb{R}^m , $\text{Span}\{v_1, ..., v_n\} = C(A)$. Thus v is in $\text{Span}\{v_1, ..., v_n\} \iff Ax = v$ is consistent.
- ② Span $\{v_1, ..., v_n\} = \mathbb{R}^m \iff Ax = v$ is consistent for all $v \in \mathbb{R}^m \iff A$ has m pivots. This implies, $m \le n$.
- **③** Let m = n. Then A is invertible $\iff A$ has n pivots \iff Ax = v is consistent for every v in $\mathbb{R}^n \iff \operatorname{Span}\{v_1, \dots, v_n\} = \mathbb{R}^n$.

Example: Span $\{e_1, \ldots, e_n\} = \mathbb{R}^n$.

Linear Span: Examples

Examples:

- **1** Span $\{0\} = \{0\}.$
- ② If $v \neq 0$ is a vector, $Span\{v\} = \{av, \text{ for scalars } a\}$. Geometrically (in \mathbb{R}^m): $Span\{v\} = \text{ the line in the direction of } v$ passing through the origin.
- If A is $m \times n$, then $Span\{A_1, \ldots, A_n\} = C(A)$.
- If $v_1, ..., v_k$ are the special solutions of A, then Span $\{v_1, ..., v_k\} = N(A)$.

Remark: All of the above are subspaces.

Exercise: Span(S) is a subspace of V. Why?

Linear Span: Examples

• Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 5 \\ 12 \\ 13 \end{pmatrix}$. Is $v = \begin{pmatrix} 1 & 0 & 4 \end{pmatrix}^T$ in Span $\{v_1, v_2, v_3, v_4\}$?

Set
$$A = \begin{pmatrix} v_1 & \cdots & v_4 \end{pmatrix}$$
, and $b = \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix}$.
Recall $Ax = b$ is solvable $\iff 5b_1 - b_2 - b_3 = 0$.
 $\implies v$ is not in Span $\{v_1, v_2, v_3, v_4\}$, and $w = \begin{pmatrix} 1 & 0 & 5 \end{pmatrix}^T = 4v_1 + (-1)v_3$ is in it.

Observe: $v_2 = 2v_1$ and $v_4 = 2v_1 + v_3$. Hence v_2 , v_4 are in $Span\{v_1, v_3\} \Rightarrow Span\{v_1, v_2, v_3, v_4\} = Span\{v_1, v_3, \}$. Thus, $C(A) = \text{the plane } P: (5x - y - z = 0) = Span\{v_1, v_3\}$.

Question:

Is the span of two vectors in \mathbb{R}^3 always a plane?

Rekha Santhanam Lecture 10 D3

Linear Span: Examples

Let
$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}$?

Is $v = \begin{pmatrix} 4 & 3 & 5 \end{pmatrix}^T$ in Span $\{v_1, v_2, v_3, v_4\}$? If yes, write v as a linear combination of v_1 , v_2 , v_3 and v_4 .

Let $A = (v_1 \cdots v_4)$. The question can be rephrased as:

Question: Is v in C(A), i.e., is Ax = v solvable? If yes, find a solution.

Exercise: $Ax = \begin{pmatrix} a & b & c \end{pmatrix}^T$ is consistent $\iff 2a - b - c = 0$.

Observe and prove:

(i) that Span $\{v_1, v_2, v_3, v_4\} = C(A)$ is a plane! (ii) that v is in

Span $\{v_1, v_2, v_3, v_4\}$ (and $w = \begin{pmatrix} 4 & 3 & 4 \end{pmatrix}^T$ is not).

Solve Ax = v using the row reduced form of A to get particular solution: $\begin{pmatrix} 4 & -1 & 0 & 0 \end{pmatrix}^T$ and $v = 4v_1 + (-1)v_2$.

Rekha Santhanam

Linear Independence: Example

With
$$v_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 4 \\ 5 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 6 \\ 7 \\ 5 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 4 \\ 6 \\ 2 \end{pmatrix}$

Observe: $v_3 = v_1 + v_2$ and $v_4 = -2v_1 + 2v_2$.

Hence v_3 and v_4 are in Span $\{v_1, v_2\}$.

Therefore, Span
$$\{v_1, v_2\}$$
 = Span $\{v_1, v_2, v_3, v_4\}$
= $C(A)$ = the plane $P: (2x-y-z=0)$.

Question: Is the span of two vectors in \mathbb{R}^3 always a plane? A: Not always. If v is a multiple of w, then $\text{Span}\{v,w\} = \text{Span}\{w\}$, which is a line through the origin or zero.

Question: If v and w are not on the same line through the origin? A: Yes. v, w are examples of *linearly independent* vectors.

Rekha Santhanam

Linear Independence: Definition

The vectors
$$v_1$$
, v_2 ,..., v_n in a vector space V , are *linearly independent* if $a_1v_1 + \cdots + a_nv_n = 0 \Rightarrow a_1 = 0, \ldots, a_n = 0$.

Equivalently, for every nonezero $(a_1, ..., a_n)^T$ in \mathbb{R}^n , we have $a_1v_1 + \cdots + a_nv_n \neq 0$ in V.

The vectors v_1, \ldots, v_n are *linearly dependent* if they are not linearly independent. i.e., we can find $(a_1, \ldots, a_n)^T \neq 0$ in \mathbb{R}^n , such that $a_1v_1 + \cdots + a_nv_n = 0$ in V.

Observe: When $V = \mathbb{R}^m$, if $A = (v_1 \cdots v_n)$, then

$$Ax = x_1v_1 + \cdots + x_nv_n = 0 \text{ has a non-trivial solution,}$$

 $\Leftrightarrow N(A) \neq 0 \Leftrightarrow v_1, \dots, v_n$ are linearly **dependent** and

$$Ax = x_1v_1 + \cdots + x_nv_n = 0$$
 has only the **trivial** solution

 $\Leftrightarrow N(A) = 0 \Leftrightarrow v_1, \dots, v_n$ are linearly **independent**.