CENG 463 Machine Learning

Lecture 01 - Introduction

About the Course

Lecturer: Asst. Prof. Nesli Erdoğmuş

E-mail: neslierdogmus@iyte.edu.tr

Exams: One midterm (~30%) and one final (~40%)

Assignments/projects: There will be a few programming assignments (to be completed in Python). Assignments will be initiated in lab sessions where Python will be introduced.

Course material: Slides, assignments and grades will be posted on cms.iyte.edu.tr.

Cheating: You're expected to solve the questions in the assignments and exams individually. Any copying of assignments and answers in the exam will be penalized according to the university policy.

References

- Christopher Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
- Ethem Alpaydın, Introduction to Machine Learning (2nd Edition). MIT Press, 2010.
- Ethem Alpaydın, Yapay Öğrenme (in Turkish). Boğaziçi University Press, 2011.
- Richard Duda, Peter Hart and David Stork, Pattern
 Classification (2nd Edition). John Wiley & Sons, 2001.
- Stanford University's online course by Andrew Ng:
 Introduction to Machine Learning
 https://www.coursera.org/course/ml

 There is an 60-70% overlap between that course and ours.

Machine Learning is Everywhere

- Spam e-mail filters learn to detect spam mails.
- Amazon uses a learning algorithm to recommend you new books based on the book you have just selected.
- Facebook uses face recognition algorithms for auto-tagging.
- US postal service automatically recognizes handwriting to read postal codes.

Closely related to:

- Data mining
- \circ Al
- Pattern Recognition
- Robotics
- Computer Vision

Good to Know

This course requires some background in:

- Linear Algebra
 - Matrices, vectors and operations of these
 - Eigenvalues and Eigenvectors
 - Singular Value Decomposition
- Statistics
 - Basic concepts (mean, variance etc.)
 - Gaussian Distribution
 - Bayesian Rule
- Optimization
 - Gradient descent, learning rate etc.

What is Machine Learning?

- Arthur Samuel (1959): Machine Learning can be defined as 'the field of study that gives computers the ability to learn without being explicitly programmed'.
- Calculating tax returns for example, is not learning!
- It is learning if we only say what to / how to learn.
 - Example: Computing the location of white pixels of handwritten numbers and learning the distribution within the square.

What is Machine Learning?

Tom Mitchell (1998) Well-posed Learning Problem:

"A computer program is said to **learn** from **experience E** with respect to some **task T** and some **performance measure P**, if its performance on **T**, as measured by **P**, improves with experience **E**."

What is Machine Learning?

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

Example: Spam filter

- T is classifying emails as spam and non-spam.
- P is the ratio of detected spams / real spams.
- E is user's feedback.
- If with added experience E, its performance P on task T increases, then it is learning!

What is T, P and E in Amazon book recommender?

Why we make computers learn?

Learning is used when:

- Human expertise does not exist or very expensive due to the huge amount of data (Amazon recommender)
- Humans are unable to explain their expertise (speech recognition, object recognition)
- Solution changes in time (routing on a computer network)
- Solution needs to be adapted to particular cases (user biometrics)

Types of Learning

Machine learning algorithms:

Supervised learning:

The 'right' answers are given while learning.

Unsupervised learning:

There is no 'right' or 'wrong' answer, there are groups/clusters to be identified.

Reinforcement learning:

There is no 'right' or 'wrong' answer, but the machine learns to make right decisions with a reward-penalty system.

Supervised Learning: Classification

Example: Bank credit scoring

- Differentiating between low-risk and high-risk customers based on their income and savings.
- There are two classes to be distinguished from each other. This is called classification.
- Classifier has two parameters: θ₁
 and θ₂

IF income > θ_1 **AND** savings > θ_2 :

THEN: low-risk ELSE: high-risk

Supervised Learning: Regression

Example: Housing price prediction

 There are no classes but there is a continuous valued output (price) with respect to an attribute (size). This is called regression.

Classification or Regression?

Should you treat these as classification or as regression problems?

- Problem 1: You have a large stock of a certain product in your company. You want to predict how many items will be sold next month.
- Problem 2: Spam e-mail detection.
- Problem 3: Navigating a car, estimating the angle of the steering.
- Problem 4: Deciding if a person is male or female given his/her photo?

Model Selection

We need a model, for which the parameters are learned from the training samples.

Cost Function

To find the parameters of our model, we need a cost function to minimize.

- y: real prices (red crosses)
- Our hypothesis: $h(x)=\theta_0+\theta_1x$
- First sample cost: $(y^{(1)} h(x^{(1)}))^2$
- Total cost:
 Σ(y⁽ⁱ⁾ h(x⁽ⁱ⁾))²

Now, we have different types of instances but we do not have 'labels'. We cluster (group) the samples using some features.

Example: How many different types of parts?

What may be the features x_1 and x_2 ?

Bioinformatics: Learning motifs

Supervised or Unsupervised?

Should you use a supervised or unsupervised learning algorithm?

- Problem 1: Given email labeled as spam/not spam, learn a spam filter.
- Problem 2: Given a set of news articles found on the web, group them into sets of articles about the same story.
- Problem 3: Given a database of customer data, automatically discover market segments and group customers into these segments.
- Problem 4: Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.

Reinforcement Learning

Reinforcement learning is learning what to do - how to map situations to actions- so as to maximize a numerical reward signal.

• Learner: Agent

• Environment: States

• What to do: Action

Result: Reward or punishment

observation

The environment is a modeled as a stochastic finite state machine with inputs (actions sent from the agent) and outputs (observations and rewards sent to the agent)

Reinforcement Learning

- The basic idea is simply to capture the most important aspects of the real problem facing a learning agent interacting with its environment to achieve a goal.
- Reinforcement learning is different from supervised learning, that is learning from examples provided by a knowledgeable external supervisor. In reinforcement learning, the agent learns through interactions.

Reinforcement Learning

Trade-off between exploration and exploitation:

- To obtain a lot of reward, a reinforcement learning agent must prefer actions that it has tried in the past and found to be effective in producing reward.
- But to discover such actions, it has to try actions that it has not selected before.
- → The agent has to exploit what it already knows in order to obtain reward, but it also has to explore in order to make better action selections in the future.