Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat* BAREM DE EVALUARE ŞI DE NOTARE

Test 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_2 = b_1 \cdot q = 6$, $b_3 = b_1 \cdot q^2 = 18$	3p
	$b_1 + b_2 + b_3 = 2 + 6 + 18 = 26$	2p
2.	$f(x) = g(x) \Leftrightarrow x^2 - 3x + 2 = 2x - 4 \Leftrightarrow x^2 - 5x + 6 = 0$	2p
	Suma dintre abscisele punctelor de intersecție a graficelor celor două funcții este egală cu 5	3 p
3.	$4x = 9 - 6x + x^2 \Rightarrow x^2 - 10x + 9 = 0$	3 p
	x = 1, care convine, $x = 9$, care nu convine	2 p
4.	Mulțimea A are 50 de elemente, deci sunt 50 de cazuri posibile	1p
	În mulțimea A sunt 7 numere naturale, deci sunt $50-7=43$ de cazuri favorabile	2p
	nr. cazuri favorabile 43	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{43}{50}$	2p
5.	Punctul $M(-2,3)$ este mijlocul laturii BC	2p
	Ecuația medianei din A este $y = 3$	3 p
6.	$4\sin^{2}x + 4\sin x \cos x + \cos^{2}x - 4\cos x \sin x + 4\cos^{2}x = 4 \Leftrightarrow 4\left(\sin^{2}x + \cos^{2}x\right) + \cos^{2}x = 4$	3p
	$\cos^2 x = 0$, de unde obținem $x = \frac{\pi}{2}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(x)) = \begin{vmatrix} x & 3 \\ -3 & x \end{vmatrix} = x \cdot x - (-3) \cdot 3 =$	3p
	$=x^2-(-9)=x^2+9$, pentru orice număr real x	2 p
b)	$A(2020-x)+A(2020+x) = \begin{pmatrix} 2020-x & 3 \\ -3 & 2020-x \end{pmatrix} + \begin{pmatrix} 2020+x & 3 \\ -3 & 2020+x \end{pmatrix} = \begin{pmatrix} 4040 & 6 \\ -6 & 4040 \end{pmatrix} =$	3 p
	$= 2 \begin{pmatrix} 2020 & 3 \\ -3 & 2020 \end{pmatrix} = 2A(2020), \text{ pentru orice număr real } x$	2 p
c)	$ \binom{n}{-3} \binom{3}{-3} \binom{2-n}{3} \binom{3}{-3} \binom{2-n}{-3} = 2 \binom{-6}{-3} \binom{3}{-6} \Leftrightarrow \binom{-n^2+2n-9}{-6} \binom{6}{-6} \binom{-12}{-6} = \binom{-12}{-6} \binom{6}{-6} \binom{-12}{-12} $	3р
	$n^2 - 2n - 3 = 0$ și, cum n este număr natural, obținem $n = 3$	2p
2.a)	$N = \sqrt{\sqrt{33}^2 + \sqrt{31}^2} = \sqrt{33 + 31} =$	3 p
	$=\sqrt{64}=8\in\mathbb{N}$	2 p
b)	$x * x = x\sqrt{2}$, $x * x * x = x\sqrt{3}$, unde $x \in M$	2p
	$(x\sqrt{3})^2 = 300 \Leftrightarrow x^2 = 100 \text{ si, cum } x \in M \text{, obținem } x = 10$	3 p

c)
$$f(x+y) = \sqrt{-2020(x+y)} =$$
 2p $= \sqrt{-2020x + (-2020y)} = \sqrt{(f(x))^2 + (f(y))^2} = f(x) * f(y)$, pentru orice $x, y \in (-\infty, 0]$ 3p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{1 \cdot (x^2 + 5) - (x - 2) \cdot 2x}{(x^2 + 5)^2} =$	3p
	$= \frac{5+4x-x^2}{\left(x^2+5\right)^2} = \frac{(5-x)(x+1)}{\left(x^2+5\right)^2}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x-2}{x^2 + 5} = \lim_{x \to +\infty} \frac{1 - \frac{2}{x}}{x \left(1 + \frac{5}{x^2}\right)} = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 5$	1p
	$x \in (-\infty, -1] \Rightarrow f'(x) \le 0$, deci f e descrescătoare pe $(-\infty, -1]$; $x \in [-1, 5] \Rightarrow f'(x) \ge 0$, deci f e crescătoare pe $[-1, 5]$ și $x \in [5, +\infty) \Rightarrow f'(x) \le 0$, deci f e descrescătoare pe $[5, +\infty)$	2p
	Cum $\lim_{x \to -\infty} f(x) = 0$, $f(-1) = -\frac{1}{2}$, $f(5) = \frac{1}{10}$ și $\lim_{x \to +\infty} f(x) = 0$, obținem $-\frac{1}{2} \le f(x) \le \frac{1}{10}$, pentru orice număr real x	2 p
2.a)	$F'(x) = \left(\frac{\ln x}{x^3}\right)' = \frac{\frac{1}{x} \cdot x^3 - \ln x \cdot 3x^2}{x^6} = \frac{x^2 \left(1 - 3\ln x\right)}{x^6} =$	3 p
	$=\frac{1-3\ln x}{x^4}=f(x)$, pentru orice $x \in (0,+\infty)$, deci F este o primitivă a funcției f	2p
	$\int_{1}^{e} f(x) dx = F(x) \Big _{1}^{e} = \frac{\ln x}{x^{3}} \Big _{1}^{e} =$	3 p
	$= \frac{\ln e}{e^3} - \frac{\ln 1}{1^3} = \frac{1}{e^3}$	2p
c)	$= \frac{\ln e}{e^3} - \frac{\ln 1}{1^3} = \frac{1}{e^3}$ $\int_{e}^{e^2} x^2 F(x) dx = \int_{e}^{e^2} \frac{\ln x}{x} dx = \frac{\ln^2 x}{2} \Big _{e}^{e^2} =$	3 p
	$=\frac{\ln^2 e^2 - \ln^2 e}{2} = \frac{2^2 - 1^2}{2} = \frac{3}{2}$	2p