Содержание

1	Опр	еделения и формулировки						
	1.1	4						
	1.2							
	1.3							
	1.4							
	1.5	Тавтология для правила modus ponens. Закон контрапозиции						
	1.6	Дистрибутивность конъюкции и дизъюнкции						
	1.7	Равные множества. Подмножество. Пустое множество						
	1.8	Операции над множествами: объединение, пересечение, разность, симметрическая раз-						
		ность						
	1.9	Неформальное определение конечного множества и подсчёта						
		Правило суммы. Декартово произведение множеств. Правило произведения						
		Тавтологии: транзитивность импликации, доказательство от противного						
		Законы де Моргана. Аналоги законов де Моргана для кванторов						
	1.13	Ограниченные кванторные высказывания и их запись через неограниченные квантор-						
	1 1 1	ные высказывания						
		Принцип математической индукции						
		Принцип полной математической индукции						
		Бинарное отношение на множествах A и B . Бинарное отношение на множестве A						
		Функция. Аргументы и значения						
		Область определения функции. Область значений функции. Тотальные функции						
		Начальный отрезок натурального ряда. Конечная последовательность элементов мно-						
	1.20	жества A . Бесконечная последовательность элементов множества A						
	1.21	Инъекция. Примеры инъекции и не инъекции						
		Сюръекция. Примеры сюръекции и не сюръекции						
		Биекция. Обратная функция						
		Композиция функций. Ассоциативность композиции						
		Принцип Дирихле						
		Конечное множество. Мощность конечного множества						
		Образ и полный прообраз						
	1.28	Выражение мощности полного прообраза множества через мощности прообраза от-						
		дельных элементов						
		Сравнение конечных множеств с помощью инъекций, сюръекций, биекций 10						
		Лемма про тотальную функцию из конечного множества в себя						
	1.31	Количество слов длины n в алфавите из k символов. Количество тотальных функ-						
		ций из n-элементного множества в k-элементное. Количество всех функций из n-						
		элементного множества в k- элементное						
		Количество размещений из n по k: определение и формула						
		Перестановка. Количество перестановок n-элементного множества						
		Количество сочетаний из n по k: определение и формула						
	1.35	Индикаторная функция. Биекция между подмножествами и индикаторными функ-						
	1 26	циями. Количество подмножеств п-элементного множества						
		Выражение для бинома. Биномиальные коэффициенты и числа сочетаний 11 Треугольник Паскаля. Формулировка задачи о монотонных путях в квадранте и связь						
	1.57	этой задачи с треугольником Паскаля						
	1 38	Числа Фибоначчи: определение и явная формула						
		Мультиномиальные коэффициенты. Определение и формула для их вычисления 12						
		Сочетания с повторениями. Определение через разложение $(x_1+x_2+\ldots+x_n)^k$ и через						
	1.10	количество решений уравнения						
	1.41	Сочетания с повторениями. Определение через количество мультимножеств с элемен-						
		тами из n-элементного множества. Формула для вычисления						
	1.42	Формула включений и исключений для 2, 3 и п множеств						
		Выражение характеристических функций для $A\cap B, \overline{A}, A\setminus B, A\cup B$ через характе-						
		ристические функции для A и B						
	1.44	Количество сюръекций из п-элементного множества в k-элементное						

2

1.45	Формула для числа разбиений n-элементного множества на k непустых непомеченных	1.0
	классов. Связь с числом сюръекций	13
1.46	Задача о числе беспорядков. Формула для количества беспорядков на n-элементном	
	множестве. Доля беспорядков среди всех перестановок	13
	Определение бесконечного множества	14
	Свойства сравнения множеств	14
1.49	Счётное множество. Примеры счётных множеств	14
	Свойства счётных множеств	14
1.51	Теорема про объединение конечного или счётного числа конечных или счётных мно-	
	жеств. Следствие про декартово произведение счётных множеств. Лемма про добав-	
	ление конечного или счётного множества к бесконечному	14
1.52	Множество мощности континуум. Примеры множеств мощности континуум	15
	Сохранение сравнения мощностей при декартовом произведении. Мощность декарто-	
1.00	вой степени $\mathbb R$ и множества бесконечных последовательностей действительных чисел	15
1.54	Теорема Кантора-Бернштейна	15
	Теорема Кантора и следствия из неё	15
		10
1.00	Теоретико-множественные операции над бинарными отношениями. Область опреде-	1 5
1 55	ления, область значений бинарного отношения	15
	Обратное отношение. Композиция отношений	16
	Свойства обратного отношения и композиции	16
1.59	Свойства бинарных отношений: рефлексивность, антирефлексивность, симметрич-	
	ность, антисимметричность, транзитивность	16
1.60	Обратное отношение, свойства бинарных отношений в терминах ориентированных	
	графов	16
1.61	Задание бинарного отношения с помощью матрицы. Выражение свойств бинарных	
	отношений, обратного отношения, композиции отношений в терминах матриц	17
1.62	Транзитивное замыкание отношения, его свойства	17
1.63	Построение транзитивного замыкания по заданному отношению	17
	Простой неориентированный граф. Матрица смежности и матрица инцидентности.	
	Связь графа с бинарными отношениями на конечных множествах	17
1.65	Степень вершины. Теорема о сумме степеней вершин. Лемма о рукопожатиях	17
	Путь в графе. Начало, конец, длина пути. Связанные вершины. Связный граф	18
	Отношение достижимости в графе, его свойства. Отношение достижимости как тран-	
2.01	зитивное замыкание	18
1.68	Отношение эквивалентности. Примеры. Построение отношения эквивалентности по	10
1.00	разбиению множества	18
1.60	Теорема о том, что отношение эквивалентности делит множество на классы эквива-	10
1.09	лентности. Компоненты связности графа	18
	лентности. Компоненты связности графа	10
Воп	росы на доказательство	20
2.1	Дистрибутивность конъюкции и дизъюнкции (доказать один из законов). Закон кон-	_0
2.1	трапозиции: доказательство и пример применения	20
2.2	Связь тавтологий и теоретико-множественных тождеств. Пример доказательства теорети	
2.2		
0.2	множественного тождества при помощи соответствующей тавтологии	20
2.3	Доказательства тавтологий: транзитивность импликации, доказательство от против-	00
0.4	ного. Доказательство законов де Моргана	20
2.4	Принцип математической индукции. Обоснование и пример применения	21
2.5	Упорядоченная пара по Куратовскому. Доказательство основного свойства: $(x_1, y_1) =$	
	$(x_2, y_2) \Leftrightarrow x_1 = x_2, \ y_1 = y_2 \dots \dots$	21
2.6	Доказательство того, что если $f:A \to B$ — биекция, то f^{-1} — также биекция	21
2.7	Композиции сохраняют классы тотальных, инъективных, сюръективных и биектив-	
	ных функций	22
2.8	Доказательство принципа Дирихле. Доказательство корректности определения мощ-	
	ности конечного множества	22
2.9	Сравнение конечных множеств с помощью инъекций, сюръекций, биекций	22
2.10	Лемма про тотальную функцию из конечного множества в себя	23

2.11	Количество слов длины n в алфавите из k символов. Количество тотальных функций из n-элементного множества в k-элементное. Количество всех функций из n-	
	элементного множества в k-элементное	23
2.12	Формула для количества размещений из n по k. Подсчёт числа инъекций и биекций.	23
		24
	Биекция между подмножествами и индикаторными функциями. Количество подмножеств n-элементного множества. Комбинаторное доказательство формулы $C_n^0 + C_n^1 +$	24
	Теорема о совпадении биномиальных коэффициентов и чисел сочетаний. Доказательство формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$ с помощью бинома	24
2.16	Решение задачи о монотонных путях в квадранте. Связь этой задачи с треугольником Паскаля	25
2.17	Свойства биномиальных коэффициентов: каждое число в треугольнике Паскаля (за исключением крайних единиц) равно сумме двух соседних чисел, которые стоят выше в треугольнике; симметричность строк треугольника Паскаля	25
2.18	Задача о монотонных путях по прямой: разрешены любые ходы. Два способа вычисления ответа	25
2.19	Задача о монотонных путях по прямой: разрешены ходы на 1 или 2 клетки. Рекуррентная и явная формула	26
2.20	Свойства биномиальных коэффициентов: возрастание чисел в первой половине треугольника Паскаля; оценка для $\binom{2n}{n}$	27
2.21	Равенство количества подмножеств с чётным и нечётным числом элементов. Комби-	21 27
2.22		28
		28
	Задача о количестве монотонных путей из п шагов из точки 0 в точку к. Связь с	
		28
2 25		$\frac{29}{29}$
		$\frac{20}{29}$
	Формула для числа разбиений п-элементного множества на k непустых непомеченных	3 0
2.28	Задача о числе беспорядков. Формула для количества беспорядков на n-элементном	
2.29	Свойства сравнения множеств. Примеры счётных множеств. Счётность множества	30
2.30		31 32
2.31	Теорема про объединение конечного или счётного числа конечных или счётных множеств. Следствие про декартово произведение счётных множеств. Лемма про добавление конечного или счётного множества к бесконечному	33
2.32	Счётность множества рациональных чисел; декартовой степени \mathbb{N}^k ; множества всех слов в конечном или счётном алфавите	33
2.33	Несчётность множества бесконечных последовательностей из нулей и единиц	34
2.34	Следующие множества имеют мощность континуум: $\mathcal{P}(\mathbb{N}), \ \mathcal{P}(A)$, где A -счетно; отрезок $[0;1]$	34
2.35	Континуальность интервала $(0;1)$, полуинтервала $[0;1)$, произвольного интервала $(a;b)$	35
2.36	Сохранение сравнения мощностей при декартовом произведении. Континуальность	$\frac{35}{35}$
2.37	Теорема Кантора-Бернштейна. Равносильность двух формулировок. Пример приме-	
9 90		36
		37
		37
		38
2.41	Критерий транзитивности отношения. Отношение, являющееся одновременно рефлек-	
	сивным и антирефлексивным. Отношение, являющееся одновременно симметричным и антисимметричным. Транзитивность пустого и одноэлементного отношения	38

2.42	Выражение композиции отношений через матрицы. Критерий транзитивности отно-	
	шения в терминах матриц	39
2.43	Свойства транзитивного замыкания. Транзитивность пересечения любого непустого	
	семейства транзитивных отношений. Существование и единственность транзитивного	
	замыкания	39
2.44	Построение транзитивного замыкания по заданному отношению	40
2.45	Теорема о сумме степеней вершин. Лемма о рукопожатиях. Число рёбер в полном	
	графе на п вершинах, число рёбер в булевом кубе	40
2.46	Связность графа перестановок, в котором проведены рёбра между перестановками,	
	получающимися друг из друга переворотом начального отрезка	41
2.47	Свойства отношения достижимости в графе. Построение отношения эквивалентности	
	по разбиению множества	42
2.48	Теорема о том, что отношение эквивалентности делит множество на классы эквива-	
	лентности	42

1 Определения и формулировки

1.1 Таблица истинности логических связок

A	B	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \equiv B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

1.2 Равносильные высказывания. Тавтологии

Если два разных составных высказывания означают по сути одно и то же, то есть принимают одинаковое логическое значение при одинаковых значениях входящих в них элементарных высказываний. В этом случае мы говорим, что высказывания равносильны

Высказывание, которое истинно при любых значениях входящих в него элементарных высказываний называется $\pmb{maemonozue}\check{\pmb{u}}$. Тавтологии не обязательно имеют вид логических тождеств. Например, $A \to A$ — тавтология

1.3 Коммутативность и ассоциативность конъюнкции и дизъюнкции

Коммутативность: $A \wedge B \equiv B \wedge A$, $A \vee B \equiv B \vee A$

Ассоциативность: $(A \land B) \land C \equiv A \land (B \land C), (A \lor B) \lor C \equiv A \lor (B \lor C)$

Справедливость этих тождеств ясна из определения конъюнкции и дизъюнкции. Первая истинна, когда все члены истинны (необязательно членов два), вторая — когда хотя бы один истинен

1.4 Тавтологии упрощения для \land, \lor, \rightarrow

Пусть X - константа, тогда имеем mав mas no ruu у прощения:

$$X \wedge 0 \equiv 0, \ X \wedge 1 \equiv X$$

$$X \lor 0 \equiv X$$
, $X \lor 1 \equiv 1$

$$X \to 1 \equiv 1, \ X \to 0 \equiv \neg X$$

$$0 \to X \equiv 1, \ 1 \to X \equiv X$$

Их справедливость очевидна из таблиц истинности связок

Некоторые теоремы о тавтологиях доказываются здесь - 2.2

1.5 Тавтология для правила modus ponens. Закон контрапозиции

Правило modus ponens можно записать в виде такой тавтологии: $A \wedge (A \to B) \to B$

Это правило описывает стандартный шаг математического рассуждения, что из истинности высказывания A и составного высказывания «если A, то B», мы говорим, что истинно B

Закон контрапозиции: $A \to B \equiv \neg B \to \neg A$

Некоторые теоремы о тавтологиях доказываются здесь - 2.2

1.6 Дистрибутивность конъюкции и дизъюнкции

Первый: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$

Второй: $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

Доказательство - 2.1

1.7 Равные множества. Подмножество. Пустое множество

$$A = B \stackrel{\text{def}}{\Leftrightarrow} \forall x (x \in A \equiv x \in B)$$

Множества A и B называются paeнымu, если каждый элемент множества A является элементом множества B, а каждый элемент множества B является элементом множества A

$$A \subseteq B \stackrel{\text{def}}{\Leftrightarrow} \forall x (x \in A \to x \in B)$$

Множество A является **подмножеством** множества B, если каждый элемент множества A принадлежит множеству B (обозначение $A \subseteq B$)

Пустое множество (обозначение \varnothing) не содержит ни одного элемента. Другими словами, высказывание $x \in \varnothing$ ложно для любого x

1.8 Операции над множествами: объединение, пересечение, разность, симметрическая разность

Имеем два множества: A и B. C ними можно выполнять следующие опреации:

Объединение множеств. $A \cup B$. Это множество, состоящее из тех элементов, которые принадлежат хотя бы одному из множеств A и B. Формально это определение выглядит так:

$$(x \in A \cup B) \equiv (x \in A) \lor (x \in B)$$

Пересечение множеств. $A \cap B$. Это множество, состоящее из тех элементов, которые принадлежат обоим множествам A и B. Формально:

$$(x \in A \cap B) \equiv (x \in A) \land (x \in B)$$

Разность множеств. $A \setminus B$. Это множество, состоящее из тех элементов, которые принадлежат множеству A, но не принадлежат множеству B. В формальной записи это определение выглядит так:

$$(x \in A \setminus B) = (x \in A) \land \neg (x \in B)$$

Симметрическая разность множеств. $A\triangle B$. Это множество, состоящее из тех элементов, которые принадлежат ровно одному из множеств: либо A, либо B. Формально:

$$(x \in A \triangle B) = ((x \in A) \land \neg (x \in B)) \lor (\neg (x \in A) \land (x \in B))$$

1.9 Неформальное определение конечного множества и подсчёта

Конечное множество — это такое множество, в котором конечное количество элементов, то есть оно *конечно*, если его элементы можно nepecumamb

Неформально nodcчёт осуществляется так: «вот первый элемент, вот второй, вот третий, ...». Если такой подсчёт заканчивается, то последнее названное число и будет количеством элементов в множестве, т.е. множество конечно

Более строгое описание подсчёта такое: это такая последовательность элементов множества (a_1, a_2, \ldots, a_n) в которой все элементы различны, принадлежат множеству и каждый элемент множества входит в последовательность (причём ровно один раз)

1.10 Правило суммы. Декартово произведение множеств. Правило произведения

Правило суммы. Для конечных непересекающихся множеств $A, B \ (A \cap B = \varnothing)$ выполняется равенство $|A \cup B| = |A| + |B|$

Декартово произведение множеств. $(A \times B)$. Это множество, состоящее в точности из всех таких упорядоченных пар (a, b), то есть последовательностей длины 2, в которых $a \in A, b \in B$. Если множества конечны, то декартово произведение можно нарисовать в виде прямоугольника: столбцы — элементы A, строки — элементы B, на пересечении столбца a и строки b расположена пара $(a, b) \in A \times B$

Правило произведения. Для конечных множеств $A,\ B$ выполняется равенство $|A\times B|=|A|\cdot |B|$

1.11 Тавтологии: транзитивность импликации, доказательство от противного

Транзитивность импликации: $((A \to B) \land (B \to C)) \to (A \to C)$

Доказать от противного можно эту же тавтологию. Предположим, что высказывание ложно при каких-то значениях элементарных высказываний

Из таблицы истинности импликации видим, что тогда заключение $A \to C$ внешней импликации ложно, а посылка $(A \to B) \land (B \to C)$ истинна

Из ложности $A \to C$ заключаем, что A=1, C=0. Истинность конъюнкции означает, что истинны оба члена конъюнкции, в частности $B \to C=B \to 0=1$. Это возможно лишь при B=0. Но тогда $A \to B=1 \to 0=0$, а мы уже установили, что $A \to B=1$. Пришли к противоречию. \square

1.12 Законы де Моргана. Аналоги законов де Моргана для кванторов

Тавтологии $\neg(A \land B) \equiv \neg A \lor \neg B, \ \neg(A \lor B) \equiv \neg A \land \neg B$ называются законами де Моргана

Аналоги законов для кванторов: $\neg \forall x A(x) \equiv \exists x \neg A(x), \ \neg \exists x A(x) \equiv \forall x \neg A(x)$

1.13 Ограниченные кванторные высказывания и их запись через неограниченные кванторные высказывания

В ограниченном кванторном высказывании x пробегает не все возможные значения, а лишь множество, ограниченное некотррым условием. Формальная запись такова:

$$\forall x \in A \ B(x)$$
 и $\exists x \in A \ B(x)$

В неограниченных кванторных высказываниях это выглядит так:

$$\forall x(x \in A \to B(x))$$
 и $\exists x(x \in A \land B(x))$

1.14 Принцип математической индукции

Принцип математической индукции. Пусть для последовательности утверждений $A_0, A_1, \ldots, A_n, \ldots$, занумерованных натуральными числами, верны утверждения

База индукции: A_0 истинно **Шаг индукции:** $A_N \to A_{n+1}$ истинно для любого n. Посылку импликации A_n называют индуктивным предположением. Тогда A_n истинно $\forall n$

Положим, что n принимает только натуральные значения и запишем это в виде формулы (вместо A_n пишем A(n):

$$(A(0) \land \forall n(A(n) \to A(n+1))) \to \forall nA(n)$$

Доказательство - 2.4

1.15 Принцип полной математической индукции

Пусть для последовательности утверждений $A_0, A_1, \ldots, A_n, \ldots$, занумерованных натуральными числами, истинно утверждение: «для любого n из истинности A_i при всех i < n следует истинность A_n ». Тогда A_n истинно $\forall n$

В виде формулы это можно записать так:

$$\forall n((\forall k < n \ A(k)) \to A(n)) \to \forall n A(n)$$

1.16 Упорядоченная пара по Куратовскому

Для упорядоченных пар выполняется свойство: $(x_1, y_1) = (x_2, y_2) \Leftrightarrow x_1 = x_2, y_1 = y_2$

Упорядоченной парой по Куратовскому (x,y) будем называть множество $\{\{x\},\{x,y\}\}$ Доказательство - 2.5

1.17 Бинарное отношение на множествах A и B. Бинарное отношение на множестве A

Бинарное отношение R на множествах A и B - это подмножество декартового произведения $A \times B$

Если $(x,y) \in R$, то говорят, что x и y находятся в отношении R (порядок важен). Вместо $(x,y) \in R$ также пишут xRy

Бинарное отношение R на множетсвах A,A называют бинарным отношением на множестве A

1.18 Функция. Аргументы и значения

Функцией f из множества A в множество B будем называть такое бинарное отношение $f\subseteq A\times B$, что для каждого $a\in A$ есть не более одной пары $(a,b)\in f$

Элементы множества A называются apryментами функции, а элементы множества B - значе- ниями функции

1.19 Область определения функции. Область значений функции. Тотальные функции

Область определения Dom f функции из A в B - это множество тех a, для которых существует такой b, что $(a,b) \in f$. Формальная запись такова:

$$Dom(f) = \{x \in A \mid \exists y \in B : y = f(x)\}\$$

Если ${\rm Dom}(f)=A,$ то функция называется **томальной** (=всюду определнной). Нетотальные функции называют ${\it частичными}$

Область значений Range f - это множество тех b, для котороых существует такой a, что $(a,b) \in f$. Формальная запись определния такова:

$$\mathrm{Range}(f) = \{y \in B \mid \exists x \in A : y = f(x)\}$$

1.20 Начальный отрезок натурального ряда. Конечная последовательность элементов множества A. Бесконечная последовательность элементов множества A

Начальный отрезок натурального ряда - множество вида $[n] = \{x : x < n, x \in \mathbb{N}\}$. Оно состоит из чисел $0, 1, \dots, n-1$, всего n чисел

Конечная последовательность элементов множества A - это тотальная функция $[n] \to A$ Бесконечная последовательность элементов множества A - тотальная функция $\mathbb{N} \to A$

1.21 Инъекция. Примеры инъекции и не инъекции

Инъекция - тотальная функция $f: A \to B$, если значения функции в различных точках различны. То есть: f-инъекция, если $x_1 \neq x_2$ влечет $f(x_1) \neq f(x_2)$

Пример: пусть $f:\mathbb{N}\to\mathbb{N}$ задается формулой $f(x)=x^2$. Эта функция, во-первых, тотальна, а во-вторых, инъективна, так как если $x_1,x_2\in\mathbb{N}$ и $x_1^2=x_2^2$, то $x_1=x_2$

Контрпример: $g:\mathbb{R}\to\mathbb{R},\ g(x)=x^2.$ Она также тотальная, но не инъективна, так как g(-1)=g(1)=1

1.22 Сюръекция. Примеры сюръекции и не сюръекции

Сюръекция - тотальная функция $f:A\to B$, если область значений совпадает со всем множеством B, то есть Rangef=B. Другими словами, f сюръекция, если для всякого элемента $y\in B$ найдется такой элемент $x\in A$, что f(x)=y

Пример: рассмотрим функцию $g: \mathbb{R} \to \mathbb{R}_{\geq 0}$, задаваемую формулой $g(x) = x^2$. Эта функция тотальна и сюръективна, так как для любого $y \in \mathbb{R}_{\geq 0}$ существует $x \in \mathbb{R}$, что $x^2 = y$

Контрпример: рассмотрим функцию $f: \mathbb{R} \to \mathbb{R}$, задваемую той же формулой. Эта функция тотальна, но не сюръективна, так каак не существует такого $x \in \mathbb{R}$, при котором f(x) = -1

1.23 Биекция. Обратная функция

Тотальная функция $f:A\to B$ называется биекцией, если она одновременно является инъекцией и сюръекцией

Для биекции $f:A\to B$ определена **обратная функция** $f^{-1}:$ если f отображает x в y, то обратная функция f^{-1} отображает y в x. Иными словами, $(x,y)\in f\Leftrightarrow (y,x)\in f^{-1}$

1.24 Композиция функций. Ассоциативность композиции

Для функции $f:A\to B$ и функции $g:B\to C$ композицией $g\circ f$ этих функций является такая функция $A\to C$, которая определена на тех x из $\mathrm{Dom}(f)$, для которых f(x) принадлежит $\mathrm{Dom}(g)$, и равна g(f(x)). Формальная запись выглядит так:

$$(x,z) \in g \circ f \Leftrightarrow \exists y \in B : (x,y) \in f \bowtie (y,z) \in g$$

Порядок записи функций в композиции согласован с порядком записи функций в привычном обозначении g(f(x)) и порядок функций в композиции важен

Ассоциативность композиции: $(f \circ g) \circ h = f \circ (g \circ h)$

Пример композиции. Пусть f(x)=x+1, g(x)=2x — функции из целых чисел в целые числа. Тогда $(g\circ f)(x)=2x+2, \ (f\circ g)(x)=2x+1$

1.25 Принцип Дирихле

Принцип Дирихле можно представить на кроликах

Если k>n и k кроликов рассажены по n клеткам, то хотя бы в одной клетке сидит как минимум два кролика

Более формально (занумеруем клетки, и пусть в клетку с номером i посажено r_i кроликов): Если $k>n,\ r_1,\dots,r_n$ - натуральные числа и $r_1+\dots+r_n=k,$ то для какого-то i выполняется неравенство $r_i>1$

1.26 Конечное множество. Мощность конечного множества

Множество A называется κ онечным, если для некоторого натурального n существует биекция $f:[n]\to A$

Число n называется размером (=мощностью) A и обозначается |A|

1.27 Образ и полный прообраз

Пусть $X \subseteq A$. Функция f сопоставляет ему **образ** $f[X] \subseteq B$ подмножества X. По определению f[X] состоит в точности из тех элементов множества B, которые являеются значениями элементов из X. Формально это выгялдит так:

$$f[X] = \{b \in B \mid \exists x \in X : b = f(x)\}\$$

Заметим, что если в качестве X взять само множество A, то легко увидеть, что f[A] = Range(f)

Пусть $Y \subseteq B$. Полный прообраз $f^{-1}[Y]$ состоит в точности из тех элементов A, значения которых лежат в Y. Запишем формально:

$$f^{-1}[Y] = \{ a \in A : f(a) \in Y \}$$

Аналогично образу, нетрудно заметить, что $f^{-1}[B] = Dom(f)$, то есть прообраз всего множества B совпадает с областью определения функции

1.28 Выражение мощности полного прообраза множества через мощности прообраза отдельных элементов

$$|f^{-1}[Y]| = \sum_{b \in Y} |f^{-1}[\{b\}]|$$

1.29 Сравнение конечных множеств с помощью инъекций, сюръекций, биекций

Для тотальных функций из конечного множества в конечное выполняются следующие свойства:

- 1. Если $f:A\to B$ инъекция, то $|A|\leqslant |B|$
- 2. Если $f:A\to B$ сюръекция, то $|A|\geqslant |B|$
- 3. Если $f:A\to B$ биекция, то |A|=|B|

1.30 Лемма про тотальную функцию из конечного множества в себя

Для тотальных функций из конечного множества в себя выполнены следующие свойства:

- 1. Если $f:A\to A$ инъекция, то f сюръекия
- 2. Если $f:A\to A$ сюръекия, то f инъекция

1.31 Количество слов длины n в алфавите из k символов. Количество тотальных функций из n-элементного множества в k-элементное. Количество всех функций из n-элементного множества в k- элементное

Количество слов длины n **в алфавите** A **из** k **символов.** Слово - это последовательность $a_1 \dots a_n$, где $a_i \in A$. Или же, множество слов длины n - это декартова степень A^n . По формуле произведения получаем, что количество слов равно k^n

Количество тотальных функций из конечного n-элементного множества A в конечное k-элементное множество B. Этих функций столько же, сколько есть слов длины n в алфавите из k элементов, то есть k^n

Количество всех функций из n-элементного множества в k-элементное. Таких функций $(k+1)^n$

1.32 Количество размещений из n по k: определение и формула

Определение. Размещение из n по k - это слово длины k в алфавите из n символов, в котором все символы разные. Считаем, что алфавит состоит из чисел $1, 2 \dots n$

Формула.
$$A_n^k = n(n-1)(n-2) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

1.33 Перестановка. Количество перестановок п-элементного множества

Перестановкой конечного множества A нызывается любая биекция $f:A \to A$

Количество перестановок множества, состоящего из n элементов равно n!

1.34 Количество сочетаний из n по k: определение и формула

Определение. Сочетанием из n элементов по k называют подмножество n-элементного множества, в котором ровно k элементов

Формула.
$$C_n^k = \frac{n!}{(n-k)!k!}$$

1.35 Индикаторная функция. Биекция между подмножествами и индикаторными функциями. Количество подмножеств n-элементного множества

Через $\mathcal{P}(X)$ обозначаем множество всех подмножеств X. Если X содержит n элементов, то можно узнать сколько элементов в $\mathcal{P}(X)$. Для этого зададим биекцию между подмножествами X и тотальными функциями $X \to \{0,1\}$. Эта биекция сопоставляет множеству X его **индикаторную** функцию $\chi \mathcal{S}: X \to \{0,1\}$. Она определяется так:

$$\chi \mathcal{S}(x) = \begin{cases} 1, & x \in \mathcal{S} \\ 0, & otherwise \end{cases}$$

Количество подмножеств n-элементного множества равно 2^n

1.36 Выражение для бинома. Биномиальные коэффициенты и числа сочетаний

Рассматривается бином $(x+y)^n$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \binom{n}{0} y^n + \binom{n}{1} y^{n-1} x + \ldots + \binom{n}{n-1} y x^{n-1} + \binom{n}{n} x^n$$

 $\binom{n}{k}$ - числа, называющиеся биномиальными коэффициентами

При этом они представляют собой в точности числа сочетаний из n по k: $\binom{n}{k} = C_n^k$

1.37 Треугольник Паскаля. Формулировка задачи о монотонных путях в квадранте и связь этой задачи с треугольником Паскаля

Задача про монотонные пути в квадранте. Мы двигаем фишку по точкам плоскости с целыми координатами. Путём из точки (0,0) в точку (a,b) мы называем конечную последовательность точек (то есть пар целых чисел), первая равна (0,0), а последняя равна (a,b). Путь будем называть монотонным, если для каждой пары соседних точек $(x_1,y_1), (x_2,y_2)$ в этой последовательности выполнено $x_1 \leqslant x_2, \ y_1 \leqslant y_2$

За один шаг возможно увеличить абсциссу на 1 или увеличить ординату на 1, то есть из точки (x,y) можем пойти в (x+1,y) или в (x,y+1). Обозначим количество различных монотонных путей из точки (0,0) в точку (a,b) за T(a,b). Из правила суммы следует рекуррентное соотношение

$$T(a,b) = T(a-1,b) + T(a,b-1)$$

Получается, что все пути в (a,b) разбиваются на две группы: те, в которых на последнем шаге увеличивалась абсцисса, и те, в которых на последнем шаге увеличивалась ордината. Это первое и второе слагаемое в T(a,b) соответственно. Также нужно такое условие: T(0,b) = T(a,0) = 1

Теперь считаем количество монотонных путей для (a,b):

 $1 \quad 5 \quad 15 \quad 35 \quad 70$

1 4 10 20 35

1 3 6 10 15

1 2 3 4 5

1 1 1 1 1

И тут мы видим, что это треугольник Паскаля, но повернутый на 135 градусов

Отсюда выводится число путей $T(a,b)=\binom{a+b}{a}=\frac{(a+b)!}{a!b!}$

Вернуться к разделу с доказательствами: 2.16

1.38 Числа Фибоначчи: определение и явная формула

Числа Фибоначчи **определяются** так: $F_0=0,\ F_1=1,\ F_{n+2}=F_{n+1}+F_n$

Также можно записать формулу, выражающую n-й член как функцию от n: $F_n = \frac{\psi^n - \phi^n}{\sqrt{5}}$, где $\psi = \frac{1+\sqrt{5}}{2}$, $\phi = \frac{1-\sqrt{5}}{2}$

1.39 Мультиномиальные коэффициенты. Определение и формула для их вычисления

Определение. Мультиномиальными коэффициентами называются коэффициенты в разложении $(x_1+x_2+\ldots+x_k)^n$ по мономам $x_1^{a_1}x_2^{a_2}\ldots x_k^{a_k}$. Формально можно записать это так:

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{a_1 + \dots + a_k = n} {n \choose a_1, a_2, \dots, a_k} x_1^{a_1} x_2^{a_2} \dots x_k^{a_k}$$

Формула. $\binom{n}{a_1,a_2,\dots,a_k}=rac{n!}{a_1!a_2!\dots a_k!}\;(a_1+\dots+a_k=n)$

1.40 Сочетания с повторениями. Определение через разложение $(x_1 + x_2 + \ldots + x_n)^k$ и через количество решений уравнения

Имеется разложение:

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{\alpha = (a_1, \dots, a_k) \\ a_1 + \dots + a_k = n}} \binom{n}{\alpha} x^{\alpha}$$

Моном $x_1^{a_1}x_2^{a_2}\dots x_n^{a_n}$ имеет степень $a_1+\dots+a_n$ и мономы совпадают тогда и только тогда, когда соответствующие последовательности показателей равны. Поэтому нам нужно найти количество решений уравнения

$$a_1 + \ldots + a_n = k$$

в натуральных числах. Это число традиционно называется числом сочетаний с повторениями из n по k. Обозначим его

$$\left(\left(\begin{array}{c}n\\k\end{array}\right)\right)$$

Пояснение формулы - обязательно (см. в след. пункте)

1.41 Сочетания с повторениями. Определение через количество мультимножеств с элементами из n-элементного множества. Формула для вычисления

Формула.
$$\binom{n}{k} = \binom{n+k-1}{k}$$

Сочетания из n по k-это k-элементные подмножества n элементного множества. Выражение «с

повторениями» означает, что теперь элементы считаются с кратностями a_i (натуральные числа). Приходим к новому понятию мультимножества: порядок элементов не важен, но важно, сколько раз элемент попал в мультимножество. В отличие от обычных множеств, в мультимножество каждый элемент входит с некоторой кратностью. Размер мультимножества - сумма кратностей. Сочетание с повторениями из n по k-это мультимножество с элементами из [n] размера k.

1.42 Формула включений и исключений для 2, 3 и n множеств

Для двух множеств. $|A \cup B| = |A| + |B| - |A \cap B|$

Для трех множеств.
$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

Для
$$n$$
 множеств. $|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + \ldots + |A_n| - |A_1 \cap A_2| - |A_1 \cap A_3| - \ldots + |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + \ldots + (-1)^{n+1} |A_1 \cap A_2 \cap \ldots \cap A_n|$

В первой строчке правой части равенства выписаны мощности всех множеств. Во второй — мощности всех попарных пересечений множеств (со знаком минус). Далее выписываем пересечения троек, четвёрок и т.д. множеств с чередующимися знаками

1.43 Выражение характеристических функций для $A \cap B$, \overline{A} , $A \setminus B$, $A \cup B$ через характеристические функции для A и B

 \overline{A} — дополнение множества A до множества $U:\overline{A}=U\setminus A$

Запишем так:

$$\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x)$$

$$\chi_{\overline{A}}(x) = 1 - \chi_A(x)$$

$$\chi_{A \setminus B}(x) = \chi_A(x) \cdot (1 - \chi_B(x))$$

$$\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_A(x) \cdot \chi_A(x) = 1 - (1 - \chi_A(x))(1 - \chi_B(x))$$

1.44 Количество сюръекций из n-элементного множества в k-элементное

Количество сюръекций n-элементного множества в k-элементное равно

$$\sum_{p=0}^{k} (-1)^p \binom{k}{p} (k-p)^n = k^n - \sum_{p=1}^{k} (-1)^{p+1} \binom{k}{p} (k-p)^n$$

1.45 Формула для числа разбиений n-элементного множества на k непустых непомеченных классов. Связь с числом сюръекций

 $\Phi(n,k)$ - число разбиений n-элементного множества на k непустых непомеченных классов. Surj(n,k) - число сюръекций n- элементного множества в k-элементное. Тогда верны следующие утверждения:

$$\Phi(n,k) = \sum_{\substack{l_1,\dots,l_n\geqslant 0\\1\cdot l_1+2l_2+\dots+nl_n=n\\l_1+\dots+l_n=k}} \frac{\frac{n!}{l_1!l_2!\dots l_n!(1!)^{l_1}(2!)^{l_2}\dots(n!)^{l_n}}}$$

$$\operatorname{Surj}(n,k) = \Phi(n,k)\cdot k!$$

1.46 Задача о числе беспорядков. Формула для количества беспорядков на n-элементном множестве. Доля беспорядков среди всех перестановок

Количество беспорядков задается формулой $n! \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!}\right)$

Доля беспорядков равна
$$\sum\limits_{k=0}^{n}\frac{(-1)^{k}}{k!}$$

1.47 Определение бесконечного множества

Бесконечным называется множество, которое не является конечным. Конечное определено тут - 1.26

Для тотальных функций из конечного множества в конечное выполняются такие свойства:

- 1. если $f:A\to B$ инъекция, то $|A|\leqslant |B|$
- 2. если $f:A\to B$ сюръекция, то $|A|\geqslant |B|$
- 3. если $f:A\to B$ биекция, то |A|=|B|

1.48 Свойства сравнения множеств

Для равномощных множеств верно:

Peфлексивность: |A| = |A|

 ${\it Cummempuчнocmb:}\; |A| = |B|\; {\rm paвносильнo}\; |B| = |A|$

Транзитивность: из |A| = |B| и |B| = |C| следует |A| = |C|

Справедливы и такие свойства:

 $Peфлексивность: |A| \leqslant |A|$

Транзитивность: из $|A| \le |B|$ и $|B| \le |C|$ следует $|A| \le |C|$

1.49 Счётное множество. Примеры счётных множеств

Множество называется *счетным*, если оно равномощно множеству натуральных чисел $\mathbb{N} = \{0, 1, 2, \ldots\}$

Примеры

- 1. Множество четных натуральных чисел $2\mathbb{N} = \{x : x = 2y, y \in \mathbb{N}\}$. Биекция задаётся отображением, которое можно прочитать в определении: $x \mapsto 2x$. Это отображение сюръективно в силу определения $2\mathbb{N}$. Но оно и инъективно: из 2x = 2y следует x = y
- 2. Множество квадратов натуральных чисел $\{x: x=y^2, y\in \mathbb{N}\}$. Биекция задаётся отображение ем $x\mapsto x^2$. Это отображение сюръективно в силу определения множества квадратов и инъективно, так как из $x^2=y^2$ следует x=y для любых неотрицательных действительных чисел (а не только целых неотрицательных)

1.50 Свойства счётных множеств

Существуют такие свойства счетных множеств:

- 1. Если в бесконечной последовательности $a_0, a_1, \ldots, a_n, \ldots$ встречаются все элементы множества A, то A конечно или счетно
 - 2. Пусть множество A счетно и существует сюръекция $f:A\to B$. Тогда B конечно или счетно
 - 3. Всякое подмножество счетного множества конечно или счетно
 - 4. Всякое бесконечное множество содержит счётное подмножество
 - 5. Объединение двух счётных множеств счётно

1.51 Теорема про объединение конечного или счётного числа конечных или счётных множеств. Следствие про декартово произведение счётных множеств. Лемма про добавление конечного или счётного множества к бесконечному

Объединение конечного или счётного числа конечных или счётных множеств конечно или счётно Декартово произведение двух счётных множеств $A \times B$ счётно

Если X — бесконечное множество, а A — конечное или счётное, то $X \cup A$ равномощно X

1.52 Множество мощности континуум. Примеры множеств мощности континуум

Множество имеет мощность континуум, если оно равномощно множеству бесконечных двоичных последовательностей $\{0,1\}^{\mathbb{N}}$

Примеры

- 1. Множество $\mathcal{P}(\mathbb{N})$ всех подмножеств натуральных чисел имеет мощность континуум. Установим явную биекцию. Подмножеству $S\subseteq\mathbb{N}$ сопоставим индикаторную функцию $\chi_S:\mathbb{N}\to\{0,1\}$. Это по определению и есть бесконечная двоичная последовательность. Это соответствие взаимно однозначно по определению равенства последовательностей
- 2. Если A счетное множество. То $\mathcal{P}(A)$ также имеет мощность континуум. Любую биекцию $\alpha:\mathbb{N}\to A$ можно продолжить до биекции между подмножествами: сопоставим подмножеству $S\subseteq\mathbb{N}$ множество $\overline{\alpha}(S)$, состоящее из тех a, прообразы которых лежат в S. По построению это сюръекция. Но $\overline{\alpha}$ также и инъекция: по свойствами биекции α из равенства $\overline{\alpha}(S_1)=\overline{\alpha}(S_2)$ следует $S_1=S_2$

1.53 Сохранение сравнения мощностей при декартовом произведении. Мощность декартовой степени $\mathbb R$ и множества бесконечных последовательностей действительных чисел

Лемма (сохранение сравнения) Если $|A_1|=|A_2|\,u\,|B_1|=|B_2|,\,{
m mo}\,\,|A_1 imes B_1|=|A_2 imes B_2|$

Действительные числа \mathbb{R} равномощны $\mathbb{R} \times \mathbb{R}$. (Другими словами, $|\mathbb{R}^{\mathbb{N}}| = |\mathbb{R}|$)

Множество бесконечных последовательностей действительных чисел имеет мощность континуум

1.54 Теорема Кантора-Бернштейна

Приведем две формулировки

- 1. Если $|A| \le |B|$ и $|B| \le |A|$, то |A| = |B|. Если для множеств A и B существует инъекция из A в B и инъекция из B в A, то существует и биекция между A и B
 - 2. Пусть $A_2 \subseteq A_1 \subseteq A_0$ и A_2 равномощно A_0 . Тогда все три множества равномощны

1.55 Теорема Кантора и следствия из неё

Теорема. Никакое множество X не равномощно множеству $\mathcal{P}(X)$ своих подмножеств Следствия:

- 1. Для любого множества X имеем $|X| < |\mathcal{P}(X)|$
- 2. Для любого натурального числа n выполняется $n < 2^n$
- 3. Множества всех множеств не существует

1.56 Теоретико-множественные операции над бинарными отношениями. Область определения, область значений бинарного отношения

Пусть R - бинарное отношение на множествах A и B, тогда:

$$Dom(R) = \{ x \in A \mid \exists y \in B : (x, y) \in R \}$$

$$Range(R) = \{ y \in B \mid \exists x \in A : (x, y) \in R \}$$

Поскольку бинарные отношения являются множествами, с ними можно делать любые теоретикомножественные операции. Пусть R_1, R_2 — бинарные отношения на множествах A и B. Тогда $R_1 \cap R_2, R_1 \cup R_2, R_1 \setminus R_2$ — тоже бинарные отношения на множествах A и B. Можно рассмотреть также дополнение: $\overline{R} = (A \times B) \setminus R$

1.57 Обратное отношение. Композиция отношений

Пусть R - бинарное отношение на множествах A и B, тогда:

- 1. Обратное отношение $R^{-1} = \{(b, a) \mid a \in A, b \in B, (a, b) \in R\}$
- 2. Если R_1 бинарное отношение на множествах A и B, а R_2 на множествах B и C, тогда $R_2 \circ R_1 = \{(a,c) \mid a \in A, c \in C, \exists b \in B : (a,b) \in R_1 \land (b,c) \in R_2\}$

1.58 Свойства обратного отношения и композиции

Свойства:

- 1. $Dom(R^{-1}) = Range(R), Range(R^{-1}) = Dom(R)$
- $2. (R^{-1})^{-1} = 1$
- 3. Пусть R бинарное отношение на множествах A и B, S бинарное отношение на B и C, T бинарное отношение на C и D. Тогда выполнена ассоциативность: $T \circ (S \circ R) = (T \circ S) \circ R$
- 4. Пусть R бинарное отношение на A и B, S бинарное отношение на B и C. Тогда $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

1.59 Свойства бинарных отношений: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность

Пусть R — бинарное отношение на множестве A

R называется...

- 1. рефлексивным, если $\forall x \in A$ выполнено $(x,x) \in R$. Или же $id_A \subseteq R$
- 2. антирефлексивным, если $\forall x \in A$ выполнено $(x,x) \notin R$. Или же $id_A \cap R = \emptyset$
- 3. симметричным, если $\forall x, y \in A$ из $(x, y) \in R$ следует $(y, x) \in R$. Или же $R^{-1} = R$
- 4. антисимметричным, если $\forall x,y \in A$ из $(x,y) \in R$ и $(y,x) \in R$ следует x=y. Или же $R^{-1} \cap R \subseteq id_A$
 - 5. транзитивным, если $\forall x, y, z \in A$ из $(x, y) \in R$ и $(y, z) \in R$ следует $(x, z) \in R$

1.60 Обратное отношение, свойства бинарных отношений в терминах ориентированных графов

Обратное отношение определено здесь - 1.57

В терминах графов можно описать такие свойства бинарных отношений:

- 1. Чтобы нарисовать граф обратного отношения R^{-1} , нужно в графе отношения R поменять направления стрелочек
 - 2. В графе рефлексивного отношения любая вершина имеет петлю
 - 3. В графе антирефлексивного отношения любая вершина не имеет петли
- 4. В графе симметричного отношения у каждой стрелочки есть противоположно направленная стрелочка
 - 5. В графе антисимметричного отношения нет противоположно направленных стрелочек
- 6. В графе транзитивного отношения для любой пары стрелочек (x,y) и (y,z) есть замыкающая их стрелочка (x,z)

1.61 Задание бинарного отношения с помощью матрицы. Выражение свойств бинарных отношений, обратного отношения, композиции отношений в терминах матриц

Пусть R — отношение на конечных множествах A и B. Занумеруем элементы этих множеств: $A = \{a_1, \ldots, a_n\}, B = \{b_1, \ldots, b_m\}$. Построим матрицу размера $n \times m$. Строки матрицы соответствуют первым координатам, а столбцы — вторым. На пересечении i-той строки и j-того столбца ставится 1, если $(a_i, b_j) \in R$, иначе ставится 0

Пример. Пусть $A = \{1, 2, 3, 4\}, B = \{1, 2, 3\}, R = \{(1, 1), (1, 2), (2, 3), (4, 1)\}.$ Тогда матрица отношения R выглядит так:

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

1.62 Транзитивное замыкание отношения, его свойства

Пусть R - бинарное отношение на множестве A. **Транзитивным замыканием отношения** R называется наименьшее по включению транзитивное бинарное отношение на множестве A, содержащее отношение R. Обозначение: R^*

Свойства транзитивного замыкания отношения:

- 1. Если R транзитивное отношение, то $R^* = R$
- 2. Для любого отношения R выполнено $R^* = R^{**}$

1.63 Построение транзитивного замыкания по заданному отношению

Пусть R - бинарное отношение на множестве A, тогда верно следующее

$$R^* = R \cup R^2 \cup R^3 \cup \ldots \cup R^n \cup \ldots$$

1.64 Простой неориентированный граф. Матрица смежности и матрица инцидентности. Связь графа с бинарными отношениями на конечных множествах

Простой неориентированный граф — это конечное множество вершин V и множество рёбер E. Рёбрами являются 2-элементные подмножества множества V

Матрица смежности графа. На пересечении i-й строки и j-го столбца стоит 1, если вершины i,j соседние (соединены ребром); иначе там стоит 0

Матрица инцидентности графа. На пересечении i-й строки и j-го столбца стоит 1, если вершина i инцидентна ребру j; иначе там стоит 0

Если $e = \{u, v\} \in E$, то вершины u, v называются концами ребра e. Концы ребра называются смежными вершинами или cocedsmu

Говорят также, что ребро $e = \{u, v\}$ иниидентно вершине u (как и вершине v)

Каждый граф G задаёт бинарное отношение A_G на множестве вершин $V:(x,y)\in A_G$, если $\{x,y\}\in E(G)$. Это отношение обладает следующими свойствами: $\mathit{симметричность},\ (x,y)\in A_G$ равносильно $(y,x)\in A_G \forall x,y\in V$, и $\mathit{антирефлексивность},\ (x,x)\notin A_G \forall x\in V$ (у каждого ребра ровно два конца)

Матрица смежности графа — это матрица соответствующего ему бинарного отношения

1.65 Степень вершины. Теорема о сумме степеней вершин. Лемма о рукопожатиях

Степень вершины - количество соседей вершины v (оно же количество инцидентных её рёбер). Обозначается, как d(v)

Теорема. Сумма степеней всех вершин графа равна удвоенному числу его рёбер

Лемма. В любом графе количество вершин с нечётными степенями чётно

1.66 Путь в графе. Начало, конец, длина пути. Связанные вершины. Связный граф

Путь по графу — это такая последовательность вершин v_0, v_1, \ldots, v_t , в которой стоящие рядом члены (вершины v_i и v_{i+1} при всех допустимых i) соединены ребром

Вершина v_0 называется **началом** пути

Вершина v_t называется концом

Длиной пути называется число рёбер в нём, то есть t

Вершины v и w называются **связанными**, если существует путь с началом в v и концом w

Граф называется связным, если любые две его вершины связаны

1.67 Отношение достижимости в графе, его свойства. Отношение достижимости как транзитивное замыкание

Отношение достижимости $R \subseteq V \times V$ на его множестве вершин V. Вершины u,v находятся в этом отношении, если они связанные

Свойства. (Лемма)

- 1. (рефлексивность) $(v,v) \in R$ (вершина достижима из себя самой)
- 2. (симметричность) $(v_1, v_2) \in R$ равносильно $(v_2, v_1) \in R$
- 3. (транзитивность) если $(v_1, v_2) \in R$ и $(v_2, v_3) \in R$, то $(v_1, v_3) \in R$

Отношением достижимости в графе G является транзитивное замыкание отношения $id_V \cup A_G$. Вершины u и v связанные, если u=v, или существует путь из u в v какой-то длины: 1, 2, 3 и т.д. Поэтому отношение достижимости равно $id_V \cup A_G \cup A_G^2 \cup A_G^3 \dots$, что и является транзитивным замыканием отношения $id_V \cup A_G$ по теореме 1.63

1.68 Отношение эквивалентности. Примеры. Построение отношения эквивалентности по разбиению множества

Отношение эквивалентности - отношение R на некотором множестве A, которое одновременно рефлексивно: $xRx \forall x \in A$, симметрично: если xRy, то $yRx \forall x,y \in A$ и транзитивно: если xRy и yRz, то $xRz \forall x,y,z \in A$

Отношение достижимости на вершинах простого неориентированного графа является отношением эквивалентности, как доказано в лемме 1.67

Пример построения отношения. Пусть A разбито в дизъюнктное объединение множеств A_i :

$$A = \bigcup_{i} A_i, \quad A_i \cap A_j = \emptyset, \ if i \neq j$$

Тогда пары (x,y), для которых выполняется условие $x \in A_i, y \in A_i$ для некоторого i, образуют отношение эквивалентности

Рефлексивность и симметричность очевидны из определения. Транзитивность легко проверяется. Пусть $x,y\in A_i;y,z\in A_j$. Так как $A_i\cap A_j\supseteq\{y\}\neq\varnothing$, то $A_i=A_j$. Значит (x,z) также находится в отношении

1.69 Теорема о том, что отношение эквивалентности делит множество на классы эквивалентности. Компоненты связности графа

Теорема. Любое отношение R, являющееся отношением эквивалентности на множестве A, делит A на классы эквивалентности — непересекающиеся подмножества множества A, при этом любые

два элемента одного класса находятся в отношении R, а любые два элемента разных классов не находятся в отношении R

Компоненты связности. В случае отношения достижимости на простом неориентированном графе классами эквивалентности называются компоненты связности графа. Если граф связный, у него одна компонента связности. В общем случае компоненты связности совпадают с областями достижимости C(v) вершины v

2 Вопросы на доказательство

2.1 Дистрибутивность конъюкции и дизъюнкции (доказать один из законов). Закон контрапозиции: доказательство и пример применения

Дистрибутивность конъюнкции. $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$

Доказательство. Разберем случаи: когда A=0 и A=1

Если A=0, то левая часть равна 0, а правая $-0 \lor 0 \equiv 0$

Если A=1, то тождество обращается в $1 \wedge (B \vee C) \equiv (1 \wedge B) \vee (1 \wedge C)$. Так как $1 \wedge X=X$, получаем, что обе части обращаются в $B \vee C$.

Дистрибутивность дизъюнкции доказывается аналогично

Закон контрапозиции. $A \to B \equiv \neg B \to \neg A$

Доказательство. Используем представление импликации через дизъюнкцию $(A \to B \equiv \neg A \lor B)$ для обеих частей тождества. Получаем равносильное тождество $\neg A \lor B \equiv \neg \neg B \lor \neg A$. При этом $\neg \neg B \equiv B$, а дизъюнкция коммутативна, поэтому это тождество — тавтология.

Примеры. Докажем с помощью закона контрапозиции утверждение о том, что если $a_1+\ldots+a_n>n,$ то какое-то $a_i>1$

Доказательство. Пусть A- утверждение $a_1+\ldots+a_n>n,\,B$ - утверждение, что какое-то $a_i>1.$ Нужно доказать, что $A\to B.$ По контрапозиции, это то же самое, что $\neg B\to \neg A.$ $\neg B$ означает, что все слагаемые не больше $1\colon a_1\leqslant 1,\ldots,a_n\leqslant 1.$ Складываем неравенства и получаем, что $a_1+\ldots+a_n\leqslant \underbrace{1+\ldots+1}_{n\ times}=n.$ таким образом получили $\neg A.$

2.2 Связь тавтологий и теоретико-множественных тождеств. Пример доказательства теоретико-множественного тождества при помощи соответствующей тавтологии

С помощью тавтологий можно доказывать различные теоретико-множественные тождества

Например, докажем, что равенство $(A \cap B) \setminus C = (A \setminus C) \cap B$ выполняется для любых A, B, C Из определений получим:

$$(x \in (A \cap B) \setminus C) \equiv (x \in A \cap B) \land \neg (x \in C) \equiv ((x \in A) \land (x \in B)) \land \neg (x \in C)$$
$$(x \in (A \setminus C) \cap B) \equiv (x \in A \setminus C) \land (x \in B) \equiv ((x \in A) \land \neg (x \in C)) \land (x \in B)$$

Поэтому логическая формула, соответствующая равенству в множествах, имеет вид

$$(A \wedge B) \wedge \neg C \equiv (A \wedge \neg C) \wedge B$$

Эта формула является тождеством, потому что конъюнкция коммутативна и ассоциативна. Значит, и равенство с множествами выполняется для всех множеств A, B, C. То есть она тавтологична. \square

2.3 Доказательства тавтологий: транзитивность импликации, доказательство от противного. Доказательство законов де Моргана

Транзитивность импликации.
$$((A \to B) \land (B \to C) \to (A \to C))$$

Доказательство от противного. Предположим, что формула ложна при каких-то значениях элементарных высказываний

Из таблицы истинности импликации видим, что тогда заключение $A \to C$ внешней импликации ложно, а посылка $(A \to B) \land (B \to C)$ истинна

Из ложности $A \to C$ заключаем, что A=1, C=0. Истинность конъюнкции означает, что истинны оба члена конъюнкции, в частности $B \to C=B \to 0=1$. Это возможно лишь при B=0. Но тогда $A \to B=1 \to 0=0$, а мы уже установили, что $A \to B=1$. Пришли к противоречию. \square

Законы де Моргана.
$$\neg(A \land B) \equiv \neg A \lor \neg B, \ \neg(A \lor B) \equiv \neg A \land \neg B$$

Доказательства.

1. Отрицание конъюнкции ложно тогда и только тогда, когда конъюнкция истинна, то есть A=B=1. Дизъюнкция ложна тогда и только тогда, когда каждый её член ложен, то есть $\neg A=\neg B=0$. Эти условия равносильны.

2. Отрицание дизъюнкции истинно тогда и только тогда, когда дизъюнкция ложна, то есть A=B=0. Конъюнкция истинна тогда и только тогда, когда каждый её член истинен, то есть $\neg A=\neg B=1$. Эти условия равносильны.

2.4 Принцип математической индукции. Обоснование и пример применения

Принцип математической индукции описан здесь - 1.14 и 1.15

Пример применения индукции. При любом n выполнено равенство $1+2+\ldots+n=\frac{n(n+1)}{2}$

Доказательство. Обозначим это равенство как A_n и докажем по индукции

База индукции. Докажем истинность A_1 . Действительно, $1=\frac{1\cdot 2}{2}$ - верно

Шаг индукции. Предположим, что A_n верно, то есть $1+2+\ldots+n=\frac{n(n+1)}{2}$. Прибавив к обеим частям (n+1) получим:

$$1+2+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}$$

получили утверждение A_{n+1} . Таким образом, согласно принципу математической индукции заключаем, что A_n верно для любого n.

2.5 Упорядоченная пара по Куратовскому. Доказательство основного свойства: $(x_1, y_1) = (x_2, y_2) \Leftrightarrow x_1 = x_2, \ y_1 = y_2$

Определение упорядоченной пары по Куратовскому приведено здесь - 1.16

Teopema. $(x_1, y_1) = (x_2, y_2) \Leftrightarrow x_1 = x_2, y_1 = y_2$

Доказательство. Пусть $(x_1, x_2) = (y_1, y_2)$. Это означает, что

$$\{\{x_1\}, \{x_1, y_1\}\} = \{\{x_2\}, \{x_2, y_2\}\}\$$

Теперь разберем два случая

1. $x_1=y_1$. В этом случае $\{x_1,y_1\}=\{x_1\}$, поэтому $(x_1,y_1)=\{\{x_1\}\}$. Значит, множество $\{\{x_2\},\{x_2,y_2\}\}$ состоит из одного элемента. Это возможно только если $x_2=y_2$, то есть $(x_2,y_2)=\{x_2\}\}$. Из равенства $\{\{x_1\}\}=\{\{x_2\}\}$ заключаем $x_1=x_2$. Отсюда, $x_1=x_2=y_1=y_2$

 $2. \ x_1 \neq y_1.$ Тогда множество $\{x_1, y_1\}$ состояит из двух элементов, и оно должно быть равно либо $\{x_2\}$, либо $\{x_2, y_2\}$. Первое невозможно, так как двухэлементное множество не может быть равно одноэлементному. Значит, $\{x_1, y_1\} = \{x_2, y_2\}$. С другой стороны, одноэлементное множество $\{x_1\}$ должно быть равно одноэлементному множеству $\{x_2\}$. Значит, $x_1 = x_2$ и $y_1 = y_2$.

2.6 Доказательство того, что если $f:A \to B$ — биекция, то f^{-1} — также биекция

Докажем, что f^{-1} - функция, то есть что если $(y, x_1) \in f^{-1}$ и $(y, x_2) \in f^{-1}$, то $x_1 = x_2$. Перепишем: если $(x_1, y) \in f$ и $(x_2, y) \in f$, то $x_1 = x_2$. Отсюда понимаем, что f - инъекция. А следовательно, f^{-1} - функция

Теперь докажем, что f^{-1} - тотальна, то есть $\forall y \in B \exists x \in A \ (y,x) \in f^{-1}$. Перепишем: $\forall y \in B \exists x \in A \ (x,y) \in f$. Отсюда заключаем, что f - сюръекция. А отсюда вытекает, что f^{-1} тотальна

Докажем, что f^{-1} - инъекция, то есть если $(y_1,x)\inf^{-1}$ и $(y_2,x)\in f^{-1}$, то $y_1=y_2$. Перепишем: если $(x,y_1)\in f$ и $(x,y_2)\in f$, то $y_1=y_2$. Это определение функции f. Отсюда вытекает, что f^{-1} - инъекция

Докажем теперь, что f^{-1} - сбръекция, то есть $\forall x \in A \exists y \in B(y,x) \in f^{-1}$. Перепишем: $\forall x \in A \exists y \in B(x,y \in f)$. Это означает тотальность функции f, а из этого следует сюръективность f^{-1}

Так как f^{-1} и инъекция, и сюръекция, она биекция.

2.7 Композиции сохраняют классы тотальных, инъективных, сюръективных и биективных функций

Формулировка.

- 1. Если $f:A\to B,\ g:B\to C$ тотальны, то и $g\circ f$ тоже тотальная
- 2. Если $f:A\to B,\ g:B\to C$ инъекции, то и $g\circ f$ тоже инъективна
- 3. Если $f:A\to B,\ g:B\to C$ сюръекции, то и $g\circ f$ тоже сюръективна
- 4. Если $f:A\to B,\ g:B\to C$ биекции, то и $g\circ f$ тоже биективна

Доказательства

- 1. Пусть $x \in A$. Так как f тотальна, то $\exists y \in B : y = f(x)$. Так как g тотальна, то $\exists z \in C : z = g(y)$. По определению композиции $z = (g \circ f)(x)$, что доказывает тотальность $g \circ f$
- 2. $g \circ f$ тотальная. Пусть $(g \circ f)(x_1) = (g \circ f)(x_2)$. По определению композиции это равносильно $g(f(x_1)) = g(f(x_2))$. Так как g инъекция, то $f(x_1) = f(x_2)$. Так как f инъекция, то $x_1 = x_2$
- 3. Доказано, что $g \circ f$ тотальна. Из определению сюръективности g заключаем, что $\forall z \in C \exists y \in B: g(y) = z$. При этом f сюръекция, значит $\forall y \exists x \in A: f(x) = y$. По определению композиции $(g \circ f)(x) = g(f(x)) = z$, что и означает, что $g \circ f$ сюръективна
 - 4. Из утверждений 2 и 3 следует биективность $g \circ f$.

2.8 Доказательство принципа Дирихле. Доказательство корректности определения мощности конечного множества

Теорема. Занумеруем клетки, и пусть в клетку с номером i посажено r_i кроликов:

Если $k>n,\ r_1,\dots,r_n$ - натуральные числа и $r_1+\dots+r_n=k,$ то для какого-то i выполняется неравенство $r_i>1$

Доказательство. Предположим противное: пусть для всех r_i выполнено $r_i \leqslant 1$. Сложим все эти неравенства и получим $r_1 + \ldots + r_n \geqslant n$. Так как $r_1 + \ldots r_n = k$, получили $k \leqslant n$, что противоречит условию k > n.

Теорема о корректности определения мощности конечного множества. Пусть $f:[n] \to A, \ g:[m] \to A$ - две биекции, тогда n=m

Доказательство. Докажем от противного. Предположим, что $n \neq m$. Пусть, для опредленности, n > m. Знаем, что \exists биекция $g^{-1}: A \to [m]$ и функция $g^{-1} \circ f: [n] \to [m]$ (тоже биекция). По приницпу Дирихле [n] - кролики, а [m] - клетки. Кроликов больше, чем клеток \to в какой-то клетке два кролика, то есть $\exists i, j \in [n]$, для которых $g^{-1} \circ f(i) = g^{-1} \circ f(j)$. Таким образом получаем противоречие, в котором $g^{-1} \circ f$ инъективна.

2.9 Сравнение конечных множеств с помощью инъекций, сюръекций, биекций

Формулировка. Для тотальных функций из конечного множества в конечное выполняются следующие свойства:

- 1. Если $f:A\to B$ инъекция, то $|A|\leqslant |B|$
- 2. Если $f:A\to B$ сюръекция, то $|A|\geqslant |B|$
- 3. Если $f:A\to B$ биекция, то |A|=|B|

Доказательства

1. Обозначим через $a_i, i \in B$ количество элементов $a \in A$, для которых f(a) = i (то есть размер

полного прообраза $f^{-1}[\{i\}]$)

Так как f – инъекция, то $a_i \leqslant 1 \forall i \in B$. Тогда

$$|A| = \sum_{i \in B} a_i \leqslant \sum_{i \in B} 1 = |B|$$

Так как f - тотальная и $|f^{-1}[Y]| = \sum_{b \in Y} |f^{-1}[\{b\}]|$, то каждый $x \in A$ входит ровно в один прообраз какого-то $y \in B$

2. Так как f – сюръекция, то $a_i \geqslant 1 \forall i \in B$. Тогда

$$|A| = \sum_{i \in B} a_i \geqslant \sum_{i \in B} 1 = |B|$$

3. Так как 1 и 2 утверждение верны, то данный факт также верный.

2.10 Лемма про тотальную функцию из конечного множества в себя

Формулировка. Для тотальных функций из конечного множества в себя выполнены следующие свойства:

- 1. Если $f:A\to A$ инъекция, то f сюръекия
- 2. Если $f:A\to A$ сюръекия, то f инъекция

Доказательства

- 1. Пусть f инъекция, тогда |f[A]| = |A| = n. Значит, f сюръекция
- 2. Если f— сюръекция. В силу утверждения 1.28, $|f^{-1}(A)| = \sum_{b \in A} |f^{-1}[\{b\}]|$. Так как f сюръекция, то $|f^{-1}[\{b\}]| \geqslant 1$. Значит, $|f^{-1}[\{b\}]| = 1$, а значит f инъективна.

2.11 Количество слов длины n в алфавите из k символов. Количество тотальных функций из n-элементного множества в k-элементное. Количество всех функций из n-элементного множества в k-элементное

Количество слов. Слово — это последовательность $a_1, \ldots a_n$, где $a_i \in A$. То есть множество слов длины n — это декартова степень A^n . По формуле произведения получаем, что количество слов равно k^n .

Количество тотальных функций. Этих функций столько же, сколько есть слов длины n в алфавите из k символов

Занумеруем элементы $A:a_1,a_2\ldots a_n$. Сопоставим тотальной функции $f:A\to B$ слово $\beta(f)=b_1b_2\ldots b_n$ длины n в алфавите B по правилу: $b_i=f(a_i)$. Фактически, это таблица значений функции (если мы зафиксировали порядок элементов A). Получаем биекцию с множеством слов длины n в алфавите из k символов

Значит, количество тотальных функций из A в B равно количеству слов длины n в алфавите из k символов и равно k^n .

Количество всех функций. Рассмотрим элемент **void** $\notin B$. Тотальные функции из A в $B \cup \{ \mathbf{void} \}$ находятся во взаимно однозначном соответствии с функциями из A в B: значение **void** мы рассматриваем как указание на то, что функция из A в B не определена. Ответ: $(k+1)^n$

2.12 Формула для количества размещений из n по k. Подсчёт числа инъекций и биекций

Теорема.
$$A_n^k = \frac{n!}{(n-k)!}$$

Доказательство. Представляем размещение как результат нескольких последовательных выборов: выбираем первый член последовательности, затем второй и т.д. На первом шаге есть n вариантов. На втором - уже n-1: результат первого выбора использовать невозможно

Размещениям взаимно однозначно отвечают пути по дереву вариантов. А каж- дый путь задаётся выбором одного из вариантов ветвления. Пронумеруем эти вари- анты в порядке возрастания. Получаем биекцию между размещениями из n по k и декартовым произведением

$$[n] \times [n-1] \times \ldots \times [n-k+1]$$

где [n] - множество $\{1, 2, \ldots\}$

Подсчёт числа инъекций и биекций. Посчитаем количество инъективных функций из к-элементного множества в n-элементное. Сопоставляем такой функции f слово $\beta(f)$ длины k в алфавите из nсимволов: $\beta(f)_i = f(i)$. Нас интересуют те функции, у которых значения в различных точках различны. Им отвечают слова, в которых символы не повторяются, то есть в точности размещения из n по k, то есть $A_n^k = \frac{n!}{(n-k)!}$.

2.13 Формула для количества сочетаний из n по k

Теорема. $C_n^k = \frac{n!}{(n-k)!k!}$

$$C_n^k \cdot k! = A_n^k$$

Доказательство. Перепишем формулу, как $C_n^k \cdot k! = A_n^k$ Построим функцию $f: A_n^k \to C_n^k$. Размещению $x = (x_1, \dots, x_k)$ сопоставим сочетание $\{x_1, \dots, x_k\}$

Такая функция сюръективна, так как элементы любого конечного множества можно расположить в последовательность. Однако она не инъективна, но можно вычислить $f^{-1}[\{S\}]$, где S произвольное сочетание. Существует k! способов упорядочить k элементов

Всопмним, что
$$|f^{-1}[Y]| = \sum_{b \in Y} |f^{-1}[\{b\}]|$$
, отсюда следует $C_n^k \cdot k! = A_n^k$.

2.14Биекция между подмножествами и индикаторными функциями. Количество подмножеств п-элементного множества. Комбинаторное доказательство формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$

Определние индикаторной функции дано здесь - 1.35

Докажем, что индикаторные функции χ_A и χ_B равны тогда и только тогда, когда подмножества A и B равны. Из определений ясно, что A=B равносильно $A\triangle B=\varnothing$, где

$$A \triangle B \equiv (A \setminus B) \cup (B \setminus A)$$

обозначет симметрическую разность. Если $x \in A \triangle B$, то $\chi_A(x) \neq \chi_B(x)$. И наоборот, если $\chi_A(x) \neq \chi_B(x)$ $\chi_B(x)$, to $x \in A \triangle B$

 $S \mapsto \chi_S$ - биекция $\mathcal{P}(X) \to \{0,1\}^X$. Поскольку количество тотальных функций уже подсчитано, получаем и количество подмножеств

Утверждение. Количество подмножеств n-элементного множества равно 2^n

Доказательство. Найдём количество двоичных слов (то есть слов из 0 и 1) длины n, в которых ровно k единиц

На двоичное слово длины n смотрим как на таблицу значений индикаторной функции подмножества [n]. Если в слове k единиц, это означает, что в соответствующем подмножестве k элементов. Поэтому ответом будет число сочетаний C_n^k .

Теорема.
$$C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$$

Комбинаторное доказательство формулы. С одной стороны, мы посчитали, что таких подмножеств 2^n . С другой стороны, подмножества n-элементного множества бывают пустые, одноэлементные, ..., n-элементные. k-элементных подмножеств n-элементного множества имеется C_n^k . Отсюда следует утверждение теоремы.

Теорема о совпадении биномиальных коэффициентов и чисел соче-2.15таний. Доказательство формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$ с помощью бинома

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \binom{n}{0} y^n + \binom{n}{1} y^{n-1} x + \dots + \binom{n}{n-1} y x^{n-1} + \binom{n}{n} x^n$$

Теорема.
$$\binom{n}{k} = C_n^k$$

Доказательство. Будем переходить от левой части бинома к правой в два этапа. Раскрываем скобки и получаем сумму выражений вида $xyyx\dots$, где всего сомножителей n, а каждый из них - это x или y. Количество таких сомножителей равно количеству слов длины n в алфавите $\{x,y\}$, то есть 2^n

Теперь приведём подобные. Мы знаем, что сложение и умножение коммутативны и ассоциативны. Поэтому все слагаемые с одинаковым количеством x и y равны x^ky^{n-k} , где k — количество символов x (а количество символов y равно n-k, потому что других символов в этих выражениях нет)

Итак, $\binom{n}{k}$ равен количеству слагаемых с k символами x и n-k символами y, а это количество равно количеству двоичных слов с k единицами, то есть C_n^k .

Доказательство формулы $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$ с биномом.

Подставим в бином Ньютона
$$x=y=1.$$
 Тогда получим, что
$$(1+1)^2=2^n=C_n^0+C_n^1+\ldots+C_n^n$$
 \square

2.16 Решение задачи о монотонных путях в квадранте. Связь этой задачи с треугольником Паскаля

Формулировка, решение задачи, а также ее связь с Паскалем тут - 1.37

2.17 Свойства биномиальных коэффициентов: каждое число в треугольнике Паскаля (за исключением крайних единиц) равно сумме двух соседних чисел, которые стоят выше в треугольнике; симметричность строк треугольника Паскаля

Теорема.
$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

Доказательство. Рассмотрим T(k, n-k). С одной стороны, $T(k, n-k) = C_n^k$. С другой стороны, из формулы упомянутой в 1.37 получаем

$$T(k,n-1) = T(k-1,n-k) + T(k,n-k-1) = C_{n-1}^k + C_{n-1}^{k-1}$$

Теорема. Каждая строка треугольника Паскаля симметрична относительно середины

Доказательство. В n-й строке треугольника Паскаля записаны биномиальные коэффициенты $\binom{n}{0},\binom{n}{1},\ldots,\binom{n}{n}$

Симметрия относительно середины означает, что $\binom{n}{k} = \binom{n}{n-k}$

Это равенство сразу ясно из формулы бинома $(x+y)^n$: выражение не изменяется при перестановке x и y, значит, коэффициенты при x^ky^{n-k} и $x^{n-k}y^k$ одинаковы. Из формулы для числа сочетаний

$$\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!} = \binom{n}{n-k}$$

это также очевидно следует (переставим сомножители в знаменателе)

2.18 Задача о монотонных путях по прямой: разрешены любые ходы. Два способа вычисления ответа

Есть клетчатая лента, по которой можно двигать фишку. Клетки пронумерованы целыми числами. В начале фишка находится в клетке 0. Далее её можно сдвигать вправо. Нужно подсчитать, сколько есть различных способов попасть в клетку с номером n

Нужно найти количество всех монотонно возрастающих последовательностей целых чисел, первый член которых равен 0, а последний равен n. Обозначим это количество T(n)

Нетрудно найти T(n) при малых n

 ${\bf n}={\bf 0}$. Единственная монотонная последовательность, начинающаяся и заканчивающаяся на 0:

это (0). Поэтому T(0) = 1

 ${f n}={f 1}.$ Единственная монотонная последовательность, начинающаяся на 0 и заканчивающаяся на 1: это (0,1). Поэтому T(1)=1

 ${f n}={f 2}.$ Монотонных последовательностей, начинающихся на 0 и заканчивающаяся на 2 уже две: это (0,1,2) и (0,2). Поэтому T(2)=2

При росте n количество вариантов растёт и уже легко ошибиться в подсчёте. Вместо этого попробуем найти соотношение между этими числами. Оно имеет вид

$$T(n) = T(n-1) + T(n-2) + \ldots + T(0)$$

для любого n

Докажем эту формулу. Обозначим через X множество всех монотонных последовательностей, начинающихся с 0 и заканчивающихся на n. Разделим последовательности на группы, в зависимости от последнего хода. То есть группу X_i образуют те монотонные последовательности, которые имеют вид $0, \ldots, i, n$

Ясно, что каждая последовательность попала ровно в одну группу и группы не пересекаются (смотрим на последний ход или на предпоследний член последовательности). По правилу суммы получаем

$$|X| = |X_0| + |X_1| + |X_2| + \ldots + |X_{n-1}|$$

С другой стороны, $|X_i| = T(i)$ (монотонные последовательности, начинающиеся в 0 и заканчивающиеся в i). Отсюда и получается наша формула

Пользуясь индукцией и доказанной формулой, докажем формулу для $T(n): T(n) = 2^{n-1} \ \forall \ n \geqslant 1$

База: при
$$n=1:\ T(0)=2^{1-1}=1$$

Шаг индукции. Индуктивное предположение: $T(n) = 2^{n-1}$. Поэтому верно:

$$T(n+1) = T(n) + T(n-1) + T(n-1) + \dots + T(0) = T(n) + T(n) = 2^{n-1} + 2^{n-1} = 2^{(n+1)-1}$$

Есть и другой способ посчитать это число. Давайте задавать протокол движения клетками, в которых побывала фишка. Клетки 0 и n всегда будут, поэтому их пропустим. Получаем протокол движения в виде двоичного слова длины n-1: в позиции i стоит 1, если фишка побывала в i-й клетке, иначе стоит 0. Любое двоичное слово задаёт протокол ровно одного движения. Поэтому получили биекцию между способами переместить фишку из 0 в n и двоичными словами длины n-1. А это количество мы уже подсчитывали: таких слов ровно 2^{n-1}

Ещё один способ увидеть ответ: количество таких путей совпдает с количеством подмножеств множества $\{1,2,\ldots,n-1\}$. Каждому пути взаимно однозначно соответствует множество клеток с номерами от 1 до n-1, на которых побывала фишка

2.19 Задача о монотонных путях по прямой: разрешены ходы на 1 или 2 клетки. Рекуррентная и явная формула

Теперь нужно подсчитать количество монотонно возрастающих последовательностей целых чисел, первый член которых равен 0, последний равен n, а разность между двумя соседними принимает только значения 1 или 2. Такие последовательности — это протоколы движения фишки по клеточкам. Каждому способу движения отвечает ровно одна последовательность и по ней этот способ движения так же однозначно определяется

Обозначим количество таких последовательностей H_n . При этом, $H_{n+2} = H_{n+1} + H_n$

Все последовательности, заканчивающиеся на n+2, разделяются на две непересекающиеся группы:

$$0, \ldots, n, n+2$$

 $0, \ldots, n+1, n+2$

Это так, потому что в клетку n+2 можно попасть либо с клетки n, либо с клетки n+1, на месте многоточий возможно вставить любую последовательность чисел, в которой разности между соседними числами равны 1 или 2

Количество таких последовательностей при малых n легко высчитать. При $n\leqslant 2$ получаются те же числа, что в пункте 2.18, так как ограничения на длину шага выполняются при $n\leqslant 2$ для любой последовательности. Итак, $H_0=H_1=1,\ H_2=2$

Продолжив, получим последовательность Фибоначчи: $1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

Реккурентная формула. $H_0=1,\ H_1=1,\ H_{n+2}=H_{n+1}+H_n \forall n\geqslant 0$

Явная формула. $F_n=\frac{\psi^n-\phi^n}{\sqrt{5}},$ где $\psi=\frac{1+\sqrt{5}}{2},\ \phi=\frac{1-\sqrt{5}}{2}.$ То же самое, что здесь - 1.38

2.20 Свойства биномиальных коэффициентов: возрастание чисел в первой половине треугольника Паскаля; оценка для $\binom{2n}{n}$

Утверждение. В первой половине строки треугольника Паскаля числа возрастают

Доказательство. Нужно воспользоваться формулой для числа сочетаний. Запишем условие возрастания биномиальных коэффициентов в виде

$$\binom{n}{k-1} < \binom{n}{k} \Leftrightarrow 1 < \frac{\binom{n}{k}}{\binom{n}{k-1}}$$

$$1 < \frac{\binom{n}{k}}{\binom{n}{k-1}} = \frac{n!}{k!(n-k)!} \cdot \frac{(k-1)!(n-k+1)!}{n!} = \frac{n-k+1}{n} \Leftrightarrow 2k < n+1$$

Значит, $\binom{n}{k}$ попадает в первую половину строки треугольника Паскаля.

Утверждение. $\binom{2n}{n} \geqslant \frac{2^{2n}}{2n+1}$

Доказательство. Из предыдущего утверждения и того, что сумма чисел в n-й строке треугольника Паскаля равна 2^n , сумма всех биномиальных коэффициентов из 2n по k равна 2^{2n} , а средний коэффициент — самый большой. Всего коэффициентов 2n+1, поэтому

$$(2n+1)\binom{2n}{n} \geqslant 2^{2n} \Leftrightarrow \binom{2n}{n} \geqslant \frac{2^{2n}}{2n+1}$$

2.21 Равенство количества подмножеств с чётным и нечётным числом элементов. Комбинаторное и аналитическое доказательства

Формулировка. Если n > 0, тогда количество подмножеств n-элементного множества с нечётным количеством элементов равно количеству подмножеств n-элементного множества с чётным количеством элементов

Комбинаторное доказательство. Рассмотрим n-элементное множество [n]. Разобьём подмножества [n] на пары:

$$\{\{n-1\} \cup S, S\}$$
, где $S \subseteq [n-1]$

В каждой паре одно из множеств содержит чётное количество элементов, а другое — нечётное. Получаем биекцию из множества подмножеств с чётным числом элементов в множество подмножеств с нечётным числом элементов. \Box

Аналитическое доказательство. Количество k-элементных подмножеств n-элементного множества равно $\binom{n}{k}$

Формула бинома: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$. Подставим в неё 1=-x=y

Получаем:

$$0 = \sum_{k=0}^{n} {n \choose k} (-1)^k 1^{n-k} = \sum_{k \text{ even}} {n \choose k} - \sum_{k \text{ odd}} {n \choose k}$$

Отсюда следует, что подмножеств с четным и нечетным числом элементов поровну.

2.22 Мультиномиальные коэффициенты: два доказательства формулы для их вычисления

Формулировка.
$$\binom{n}{a_1,a_2,\dots,a_k} = \frac{n!}{a_1!a_2!\dots\cdot a_k!} \; (a_1+\dots+a_k=n)$$

Комбинарное доказательство. При раскрытии скобок в равенстве из 1.39 получаются слагаемые, каждое из которых имеет вид $x_1x_2x_3\ldots$: первая переменная взята из первой скобки, вторая — из второй, и т.д. Это слово w в алфавите $\{x_1,\ldots,x_k\}$, в котором n букв. После перестановок переменных из этого слова получается моном $x_1^{a_1}x_2^{a_2}\ldots x_k^{a_k}$, где a_i — количество букв x_i в слове w

Значит, мультиномиальный коэффициент $\binom{n}{a_1,\dots a_k}$ равен количеству слов в алфавите $\{x_1,\dots,x_k\}$, длина которых равна n, а количество вхождений каждого символа задаётся числами a_1,\dots,a_k

Итак, нам нужно посчитать количество слов длины n, в которых a_1 букв x_1, \ldots, a_k букв x_k ($a1+\ldots+a_k=n$). Временно забудем, что в нашем слове есть одинаковые буквы. Существует n! слов длины n, в которых все буквы разные.

Теперь вспомним, что у нас есть одинаковые буквы и поймём, сколько раз мы посчитали каждое слово. Можно как угодно переставлять буквы x_j . Этих букв a_j , существует a_j ! перестановок этих букв

Таким образом, по правилу произведения каждое слово посчитано $a_1! \cdot \ldots \cdot a_k!$ раз. То есть, когда мы насчитали n! слов, мы на самом деле посчитали каждое слово много раз, а именно $a_1! \cdot \ldots \cdot a_k!$ раз (это число не зависит от слова). Следовательно, всего существует $\frac{n!}{a_1!a_2!\ldots\cdot a_k!}$ разных слов.

Алгебраическое доказательство. Нужно посчитать количество слов длины n, в которых a_1 букв x_1,\ldots,a_k букв x_k . Сначала выберем, на каких местах будут стоять буквы x_1 . Нужно выбрать a_1 мест из имеющихся n— всего есть $\binom{n}{a_1}$ варинатов сделать это. Далее для букв x_2 . Нужно выбрать a_2 мест из оставшихся $n-a_1$. Вариантов сделать это $\binom{n-a_1}{a_2}$. И так далее пока не дойдем до букв x_k , для которых останется $n-a_1-\ldots-a_{k-1}$ мест. Вариантов сделать такой выбор - $\binom{n-a_1-\ldots-a_{k-1}}{a_k}$

Теперь выведем равенство:
$$\binom{n}{a_1}\binom{n-a_1}{a_2}\cdot\ldots\cdot\binom{n-a_1-\ldots-a_{k-1}}{a_k} = \frac{n!}{a_1!(n-a_1)!}\frac{(n-a_1)!}{a_2!(n-a_1-a_2)!}\cdot\ldots\cdot\frac{(n-a_1-\ldots-a_{k-1})}{a_k!0!} = \frac{n!}{a_1!a_2!\ldots a_k!}$$

2.23 Сочетания с повторениями. Формула для вычисления

 $oldsymbol{\Phi}$ ормулировка. Если $inom{n}{k}$ - число сочетаний с повторениями, то $inom{n}{k}$

Доказательство. Моном $x_1^{a_1}x_2^{a_2}\dots x_k^{a_k}$ имеет степень $a_1+\dots+a_n$ и мономы совпадают только тогда, когда соответствующие последовательности показателей равны. Поэтому нам нужно найти количество решений уравнения $a_1+\dots+a_n=k$ в натуральных числах

Установим взаимно однозначное соответствие между решениями этого уравнения и k-элементными подмножествами (n+k-1)-элементного множества. Сделаем это, используя задачи о разделе монет

Выстроим монеты в ряд и разделим их перегородками, чтобы указать, кому какие монеты отходят. Первый получает монеты, которые расположены до первой перегородки, второй — те, которые лежат между первой и второй, и т.д. Получается, $a_1=0,\ a_2=2,\ a_3=0,\ a_4=2,\ a_5=0,\ a_6=1,\ a_7=2$

Итак, у нас есть позиции, на каждую из которых можно поставить либо монету, либо перегородку. Всего позиций n+k-1, а монет — k. Любой выбор k-элементного подмножества позиций, на котором стоят перегородки, возможен, и каждому такому выбору отвечает ровно одно решение уравнения. \Box

2.24 Задача о количестве монотонных путей из n шагов из точки 0 в точку k. Связь с числом сочетаний с повторениями

Монотонный путь, состоящий из n шагов, по прямой из 0 в k — это другое название такой строго возрастающей последовательности целых чисел $x_1 < \ldots < x_{n+1}$, что $x_1 = 0, \ x_{n+1} = k$

Такой монотонный путь однозначно задаётся выбором n-1 числа в интервале от 1 до k-1 (путь монотонный, поэтому эти числа он обязан проходить в порядке возрастания)

Поэтому количество таких путей равно количеству (n-1)-элементных подмно- жеств (k-1)-элементного множества, то есть $\binom{k-1}{n-1}$.

Связь с числом сочетаний с повторениями. Заметим, что путь однозначно задаётся последовательностью длин ходов: $l_1 = x_2 - x_1 = x_2, \dots \ l_n = x_{n+1} - x_n = k - x_n$. В сумме эти числа обязаны давать k

Мы получаем разные решения для уравнения $a_1 + \ldots + a_n = k$ и $l_1 + \ldots + l_n = k$, так как в первом случае мы искали решения в *неотрицательных* целых числах. А во втором нам нужны решения в *положительных* целых числах. Однако эти два уравнения можно связать записав:

$$a_1 + \ldots + a_n = k - n$$

2.25 Формула включений и исключений для п множеств

Предполагаем, что все множества A_i содержатся в некотором множестве (универсуме). Например, можно считать универсумом объединение всех этих множеств, обозначим его A. Количество элементов в множестве S выражается как сумма индикаторной функции по всему универсуму:

$$|S| = \sum_{u \in A} \chi_S(u)$$

Теперь применим формулу

$$\chi_A(x) = 1 - (1 - \chi_{A_1}(x)) (1 - \chi_{A_2}(x)) \dots (1 - \chi_{A_n}(x))$$

и раскроем скобки в полученном выражении. При раскрытии скобок получается -1, которая сокращается с первой 1 в формуле. Остальные слагаемые получаются так: выберем непустое множество J тех скобок, из которых берём слагаемое - χ_{A_i} , из остальных скобок выбираем 1. Получается слагаемое, которое имеет вид произведения индикаторных функций со знаками:

$$-(-1)^k \prod_{i \in J} \chi_{A_i} = (-1)^{k+1} \chi_{A_J}$$
, где $k = |J|$

а через A_j обозначено пересечение тех множеств, индексы которых попадают в множество J, то есть

$$A_J = \bigcap_{i \in J} A_i$$

Отсюда имеем:

$$\chi_A(x) = \sum_{J \neq \varnothing} (-1)^{|J|+1} \chi_{A_J}(x)$$

Суммирование по всему универсуму этого равенства даст в левой части мощность объединения, а в правой — формулу включений и исключений

$$|A| = \sum_{x} \chi_A(x) = \sum_{x} \sum_{J \neq \varnothing} (-1)^{|J|+1} \chi_{A_J}(x) = \sum_{J \neq \varnothing} (-1)^{|J|+1} |A_J|$$

2.26 Количество сюръекций из n-элементного множества в k-элементное

Теорема. Количество сюръекций п-элементного множества в k-элементное равно

$$\sum_{p=0}^{k} (-1)^{p} {k \choose p} (k-p)^{n} = k^{n} - \sum_{p=1}^{k} (-1)^{p+1} {k \choose p} (k-p)^{n}$$

Чтобы найти количество сюръекций, нужно из всего количества тотальных функций, их k^n , вычесть количество не-сюръекций. Чтобы найти количество не-сюръекций, применим формулу включений и исключений

Не-сюръекции $[n] \to [k]$ — это те тотальные функции, область значений которых не содержит хотя бы одно из чисел $\{0,1,2,\ldots,k-1\}$ то есть объединение множеств

$$A(0) \cup A(1) \cup \ldots \cup A(k-1),$$

где A(i) - множество тех функций, которые не принимают значения i

Все множества A(i) имеют размер $(k-1)^n$

Для формулы включений и исключений нужно ещё подсчитать размер пересечений таких множеств. Рассмотрим пересечение p множества A(i). Это функции, которые не принимают некоторые p значений. Таких функций столько же, сколько тотальных функций из n-элементного множества в (k-p)-элементное, то есть $(k-p)^n$

А всего разных наборов из p множеств A(i) столько же, сколько p-элементных подмножеств k-элементного множества, то есть $\binom{k}{p}$. Поэтому формула включений и исключений для данного семейства множеств приобретает вид, указанный в теореме.

2.27 Формула для числа разбиений n-элементного множества на k непустых непомеченных классов. Связь с числом сюръекций

Формула.

$$\Phi(n,k) = \sum_{\substack{l_1,\dots,l_n \geqslant 0\\ 1 \cdot l_1 + 2l_2 + \dots + nl_n = n\\ l_1 + \dots + l_n = k}} \frac{n!}{l_1! l_2! \dots l_n! (1!)^{l_1} (2!)^{l_2} \dots (n!)^{l_n}}$$

Доказательство. Рассмотрим разбиение на классы конкретных размеров (потом нужно будет просуммировать получившиеся результаты). Пусть имеется l_i классов размера $i, 1 \leqslant i \leqslant n$. Ясно, что все эти числа неотрицательные, причём их сумма должна быть равна числу классов $(l_1 + \ldots + l_n = k)$. В этих классах содержится $1 \cdot l_1 + 2 \cdot l_2 + \ldots + n \cdot l_n$ элементов, и это число должно быть равно n - размеру всего множества

Допустим, что классы у нас различимые. Существует $\binom{n}{\alpha}$ разбиений на такие различимые классы. Это мультиномиальный коэффициент, где в последовательности α встречается l_i раз число i. Было доказано, что $\binom{n}{\alpha} = \frac{n!}{(1!)^{l_1}(2!)^{l_2}...(n!)^{l_n}}$. Классов размера i имеется l_i штук, значит, имеется l_i ! их перестановок

Таким образом, всего имеется $l_1!l_2!\dots l_n!$ возможных перестановок имеющихся классов. Значит, именно столько раз мы учли каждое разбиение в формуле для $\binom{n}{\alpha}$, и на это число надо поделить. Перебрав все возможные варианты разбиений на классы конкретных размеров, получаем формулу из формулировки теоремы.

Связь с числом сюръекций. Обозначим через Surj(n,k) число сюръекций n-элементного множества в k-элементное

$$Surj(n, k) = \Phi(n, k) \cdot k!$$

Доказательство. Рассмотрим какую-нибудь сюръекцию из n-элементного множества в k-элементное $\{a_1,\ldots,a_k\}$. В результате мы разбили n-элементное множество на k непустых помеченных классов: в i-тый класс попадут элементы, образ которых равен a_i . Сюръективность функции обеспечивает непустоту классов

Таким образом, число сюръекций из n-элементного множества в k-элементное равно числу разбиений n-элементного множества на k непустых помеченных классов. Если классы непомеченные, то k классов можно переставлять k! способами

Получается, если теперь посчитать число разбиений с непомеченными классами, то мы каждое разбиение с помеченными классами посчитали k! раз.

2.28 Задача о числе беспорядков. Формула для количества беспорядков на n-элементном множестве. Доля беспорядков среди всех перестановок

Формулировка. Количество беспорядков задаётся формулой

$$n! \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!} \right)$$

Доказательство. Зафиксируем n и обозначим через B_i , где $i=1,\ldots,n$, множество тех перестановок, для которых $a_i=i$. Тогда $B_1\cup\ldots\cup B_n-$ множество перестановок с неподвижными точками. Дополнением к этому объединению будет в точности множество беспорядков

Применим формулу включений и исключений к множеству $B_1 \cup \ldots \cup B_n$. Для этого нужно по-

считать размеры множеств $\bigcap_{i \in S} B_i$ для всевозможных $S \subseteq [n]$. Перестановки из такого пересечения - это перестановки, оставляющие на месте элементы из S, и переставляющие остальные элементы произвольным образом. Таких перестановок ровно (n-|S|)! штук. Таким образом, для всякого S верно

$$\left| \bigcap_{i \in S} B_i \right| = (n - |S|)!$$

Множеств S размера k всего $\binom{n}{k}$, так что по формуле включений и исключений мы получаем

$$|B_1 \cup \ldots \cup B_n| = \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} \cdot (n-k)! = \sum_{k=1}^n (-1)^{k+1} \frac{n!}{k!},$$

а для количества беспорядков

$$n! - \sum_{k=1}^{n} (-1)^{k+1} \frac{n!}{k!} = \frac{n!}{0!} + \sum_{k=1}^{n} (-1)^k \frac{n!}{k!} = n! \left(\sum_{k=0}^{n} \frac{(-1)^k}{k!} \right)$$

Доля беспорядков.

$$\sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

2.29 Свойства сравнения множеств. Примеры счётных множеств. Счётность множества целых чисел

Для равномощных множеств верно:

Peфлексивность: |A| = |A|

Симметричность: |A| = |B| равносильно |B| = |A|

Транзитивность: из |A| = |B| и |B| = |C| следует |A| = |C|

Доказательство.

Рефлексивность: тождественное отображение $id: x \mapsto x$ задаёт биекцию между A и A

Симметричность: для всякой биекции $f:A\to B$ существует обратная функция $f^{-1}:B\to A$ и она также биекция (в силу 2.6)

Транзитивность: композиция $g\circ f$ биекций $f:A\to B$ и $g:B\to C$ является биекцией (в силу 2.7).

Примеры счетных множеств приведены в пункте 1.49

Утверждение. Множество целых чисел счетно

Доказательство. Если из элементов множе- ства A можно составить последовательность $a_0, a_1, \ldots, a_n, \ldots$, в которой каждый элемент множества A встречается ровно один раз, то эта последовательность задаёт искомую биекцию $\mathbb{N} \to A$, а именно $i \mapsto a_i$

Для целых чисел такую последовательность построить очень легко. Перечисляем целые числа в порядке возрастания абсолютной величины, положительное число предшествует своему противоположному:

$$0, 1, -1, 2, -2, 3, -3, \dots$$

2.30 Свойства счётных множеств

Выделяют следующие свойства:

- 1. Пусть в бесконечной последовательности $a_0, a_1, \ldots, a_n, \ldots$ встречаются все элементы множества А. Тогда А конечно или счётно
 - 2. Пусть множество A счётно и существует сюрбекиия $f:A\to B$. Тогда B конечно или счётно
 - 3. Всякое подмножсетво счётного множества конечно или счётно
 - 4. Всякое бесконечное множество содержит счётное подмножество
 - 5. Объединение двух счётных множеств счётно

Доказательство.

- 1. Уберем из этой последовательности те элементы a_j , которые встречались в ней раньше: $a_j = a_i$ для какого-то i < j. В результате останется последовательность (конечная или бесконечная), в которой каждый элемент A встречается ровно один раз. В первом случае множество A конечное, во втором счётное.
 - 2. Выпишем элементы A в последовательность

$$a_0, a_1, a_2, a_3, \dots$$

Тогда последовательность

$$f(a_0), f(a_1), f(a_2), f(a_3), \dots$$

содержит все элементы B и это множество конечно или счётно согласно п.1.

3. Рассмотрим счётное множество A и его подмножество B. Выпишем элементы A в последовательность

$$a_0, a_1, a_2, a_3, \dots$$

Вычеркнем из этой последовательности те элементы, которые не лежат в B. В результате останется последовательность элементов B - конечная или бесконечная. В первом случае множество будет конечным, во втором счётным.

4. Доказательство. Рассмотрим произвольное бесконечное множество X. Нам надо выписать бесконечную последовательность из некоторых его элементов, не обязательно всех, в которой элементы не повторяются

Первый элемент a_0 возьмём произвольно. Поскольку X бесконечно, в нем есть ещё элементы, возьмём любой из них как a_1 . И так далее. В общем случае, когда нам нужно выбрать очередной элемент a_n , мы рассматриваем подмножество $\{a_0,\ldots,a_{n-1}\}$. Оно конечно, потому не совпадает со всем множеством X (которое по предположению бесконечно). Значит, в X есть элементы, не лежащие в этом подмножестве - и мы можем взять любой из них в качестве a_n

Получили бесконечную последовательность из элементов X, и множество элементов этой последовательности образует искомое счётное подмножество множества X.

5. Доказательство. Рассмотрим два счётных множества A и B; каждое из них можно записать в последовательность, содержащую каждый элемент множества ровно один раз:

$$a_0, a_1, a_2, a_3, \dots b_0, b_1, b_2, b_3, \dots$$

Теперь построим последовательность элементов $A \cup B$, чередуя элементы из A с элементами из B :

$$a_0, b_0, a_1, b_1, a_2, b_2, \dots$$

Ясно, что в этой последовательности встречаются все элементы объединения. По п.1 множество $A \cup B$ конечно или счётно. Первый случай невозможен, так как уже в A (или в B) по отдельности бесконечно много элементов.

2.31 Теорема про объединение конечного или счётного числа конечных или счётных множеств. Следствие про декартово произведение счётных множеств. Лемма про добавление конечного или счётного множества к бесконечному

Теорема. Обдединение конечного или счётного числа конечных или счётных множеств конечно или счётно

Доказательство. Пусть есть семейство счётных множеств A_0, A_1, A_2, \ldots , не более чем счётное. Расположим элементы каждого множества семейства в последовательность и объединим эти последовательности в дважды бесконечную таблицу:

```
A_0: a_{00} \ a_{01} \ a_{02} \ a_{03} \ \dots \ A_1: a_{10} \ a_{11} \ a_{12} \ a_{13} \ \dots \ A_2: a_{20} \ a_{21} \ a_{22} \ a_{23} \ \dots \ A_3: a_{30} \ a_{31} \ a_{32} \ a_{33} \ \dots
```

В первой строке мы последовательно выписали элементы A_0 , во второй - элементы A_1 и так далее. Если какое-то A_i конечно, то часть позиций в строке остаётся незаполненной. Аналогично, часть строк в таблице может быть незаполненной, если семейство конечно

Теперь соединяем эти последовательности в одну, двигаясь по диагоналям

$$a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, a_{03}, a_{12}, a_{21}, a_{30}, \dots$$

и пропуская незаполненные клетки. В полученной последовательности присутствуют все элементы объединения. В силу 2.30 получаем конечное или счётное множество.

Следствие. Декартово произведение двух счётных множеств $A \times B$ счётно

Доказательство. Декартово произведение - множество всех упорядоченных пар вида (a,b), в которых $a \in A$ и $b \in B$. Разделим пары на группы, объединив пары с одинаковой первой компонентой (каждая группа имеет вид $\{a\} \times B$ для какого-то $a \in A$). Каждая группа счётна, поскольку находится во взаимно однозначном соответствии с B (пара определяется своим вторым элементом), и групп столько же, сколько элементов в A, то есть счётное число.

Доказательство. Удобно доказывать этот факт в случае $A \cap X = \emptyset$. Для этого нужно перейти от A к $A \backslash X$, последнее множество конечно или счётно (2.30)

Из 2.30 следует, что в X есть счётное подмножество B. Объединение счётного множества и конечного или счётного множества - счётно. Значит, B равномощно $B \cup A$. Пусть $f: B \to B \cup A$ - биекция. Рассмотрим отображение

$$g(x) = \begin{cases} f(x), & \text{ если } x \in B \\ x, & \text{ если } x \notin B \end{cases}$$

из X в $X \cup A$. Это биекция: обратное отображение задаётся формулой

$$g^{-1}(x) = \begin{cases} f^{-1}(x), & \text{ если } x \in B \cup A; \\ x, & \text{ если } x \notin B \cup A. \end{cases}$$

2.32 Счётность множества рациональных чисел; декартовой степени \mathbb{N}^k ; множества всех слов в конечном или счётном алфавите

Утверждение. Множество рациональных чисел $\mathbb Q$ счётно

Доказательство. Каждой паре (p,q) целых чисел, в которой $q \neq 0$, соответствует число $(p/q) \in \mathbb{Q}$. Получаем сюръекцию $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ на \mathbb{Q} . Множество $\mathbb{Z} \setminus \{0\}$ бесконечно и потому счётно (как подмножество счётного множества). Декартово произведение счётных множеств счётно. Из 2.30: множество рациональных чисел также счётно.

Утверждение. Декартова степень \mathbb{N}^k счётна

Доказательство. Докажем индукцией по k. Шаг индукции: равенство $\left|\mathbb{N}^{k+1}\right| = \left|\mathbb{N} \times \mathbb{N}^{k}\right|$ и применение к его правой части 2.31

 \mathbb{N}^k - множество последовательностей натуральных чисел длины k. Требуемая биекция из \mathbb{N}^{k+1} в $\mathbb{N} \times \mathbb{N}^k$ имеет вид

$$f:(x_1,x_2,\ldots,x_k,x_{k+1})\mapsto(x_1,(x_2,\ldots,x_k,x_{k+1}))$$

Таким образом, множество слов длины k в счётном алфавите счётно для любого k. То же самое верно и для слов в любом конечном алфавите (занумеруем символы и получим биекцию с подмножеством \mathbb{N}^k).

Словом называется конечная последовательность элементов некоторого множества (алфавита). Множество всех слов в конечном или счётном алфавите счётно. Это множество является объединением множеств, равномощных \mathbb{N}^k (или подмножеству \mathbb{N}^k для конечного алфавита), возможных значений длины счётное множество. Применяем теорему из 2.31.

2.33 Несчётность множества бесконечных последовательностей из нулей и единиц

Теорема. Множество бесконечных последовательностей нулей и единиц, несчётно

Доказательство. Для любой функции $f: \mathbb{N} \to \{0,1\}^{\mathbb{N}}$ докажем, что f не сюръекция (значит, и не биекция)

Обозначим $a_i = f(i)$, а члены последовательности a_i обозначим a_{i0}, a_{i1}, \ldots Запишем члены последовательностей a_i слева направо, а саму последовательность a_0, a_1, \ldots расположим сверху вниз. Получится бесконечная таблица:

$$egin{array}{llll} a_0 &=& a_{00} & a_{01} & a_{02} & \dots \ a_1 &=& a_{10} & a_{11} & a_{12} & \dots \ a_2 &=& a_{20} & a_{21} & a_{22} & \dots \ dots &dots &dots & dots & dots$$

Теперь рассмотрим «диагональную» последовательность в этой таблице, то есть последовательность

$$a_{00}, a_{11}, a_{22}, \dots$$

и заменим в ней все биты на противоположные. Другими словами, положим $b_i = 1 - a_{ii}$ и рассмотрим последовательность $b = (b_0, b_1, b_2, \ldots)$. Последовательность b отличается от любой последовательности a_i в i-й позиции, поскольку $b_i = 1 - a_{ii} \neq a_{ii}$. Поэтому $b \notin f[\mathbb{N}]$.

2.34 Следующие множества имеют мощность континуум: $\mathcal{P}(\mathbb{N}),\ \mathcal{P}(A),$ где A-счетно; отрезок [0;1]

Определение континуума, а также примеры множеств мощности континуум даны здесь - 1.52

Теорема. Отрезок [0,1] имеет мощность континуум

Получаем бесконечную двоичную дробь с целой частью 0. Такие дроби находятся во взаимно однозначном соответствии с бесконечными двоичными последовательностями (отбрасываем целую часть и разделитель). Верно и обратное: бесконечной двоичной последовательности соответствует ровно одно число (принцип вложенных отрезков). Однако функция из последовательностей в числа не взимно однозначна. Некоторым числам соответствуют две последовательности. А именно, это происходит, когда число попадает на границу очередного отрезка. Тогда мы можем относить его как к левой, так и к правой половине. В результате, например, последовательности 1001111 . . . и 101000 . . . соответствуют одному и тому же числу

Назовём плохими те последовательности, в которых есть 0, но все цифры равны 1, начиная с некоторого места. Первое условие исключает из плохих последовательностей $111\dots$ Заметим, что эта последовательность, и только она, соответствует числу 1, правому концу отрезка

Построенное выше соответствие задаёт биекцию между числами отрезка [0,1] и неплохими последовательностями

Плохих последовательностей счётное множество. Каждое двоичное слово (то есть конечная двоичная последовательность, возможно, пустая) продолжается до плохой последовательности добавлением бесконечного суффикса 0111 ... Это биекция, так как в каждой плохой последовательности однозначно определён бесконечный суффикс 0111 ...

Поэтому добавление плохих последовательностей не меняет мощности множества по лемме из 2.31. $\hfill\Box$

2.35 Континуальность интервала (0;1), полуинтервала [0;1), произвольного интервала (a;b) (где ${\bf a}<{\bf b}$), множества действительных чисел ${\mathbb R}$

Теорема. Интервал (0,1) и полуинтервал [0,1) имеют мощность континуум

Доказательство. Отрезок является объединением интервала и двухэлементного множества (концы отрезка). Из леммы 2.31 следует искомое. Аналогично для полуинтервала.

Теорема. Интервал (0,1) равномощен любому интервалу (a,b) (считаем, что a < b)

Доказательство. Доказательство. Можно задать биекцию явным образом: функция f(x)=a+x(b-a) биективно отображает интервал (0,1) в интервал (a,b). Можно увидеть эту биекцию на картинке: каждой точке меньшего интервала однозначно соответствует точка большего интервала. \square

Теорема. Множество действительных чисел $\mathbb R$ континуально

Доказательство. Все интервалы равномощны по предыдущему следствию. Зададим биекцию между интервалом (0,1) и $(-\pi/2,\pi/2)$

Биекция интервала $(-\pi/2,\pi/2)$ и всех действительных чисел задаётся функцией $\operatorname{tg} x$ (монотонной и непрерывной на интервале $(-\pi/2,\pi/2)$. Взяв композицию двух биекций, получаем биекцию между интервалом (0,1) и прямой $\mathbb R$.

2.36 Сохранение сравнения мощностей при декартовом произведении. Континуальность $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}, \mathbb{R} \times \mathbb{R}, \mathbb{R}^{k}, \mathbb{R}^{\mathbb{N}}$

Лемма (сохранение сравнения) Если $|A_1| = |A_2| \, u \, |B_1| = |B_2|$, mo $|A_1 \times B_1| = |A_2 \times B_2|$

Доказательство. Пусть $f: A_1 \to A_2, g: B_1 \to B_2$ - биекции. Они существуют по условию леммы. Определим функцию $h: A_1 \times B_1 \to A_2 \times B_2$ следующим правилом: h(x,y) = (f(x),g(y)). Это инъекция, так как из $(f(x_1),g(y_1)) = (f(x_2),g(y_2))$ следует $x_1 = x_2, y_1 = y_2$ в силу инъективности f,g. Но это и сюръекция, так как $(x',y') = h(f^{-1}(x'),g^{-1}(y'))$.

Континуальность $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$.

Доказательство. Паре последовательностей

$$(x_0, x_1, x_2, x_3, \ldots; y_0, y_1, y_2, y_3, \ldots)$$

сопоставим последовательность

$$x_0, y_0, x_1, y_1, x_2, y_2, x_3, y_3, \dots$$

Это отображение взаимно однозначное, то есть обратное к нему выделяет из последовательности отдельно чётные и отдельно нечётные члены. \Box

Континуальность $\mathbb{R} \times \mathbb{R}$. Действительные числа \mathbb{R} равномощны $\mathbb{R} \times \mathbb{R}$

Доказательство. Аналогично, отрезок [0,1] равномощен квадрату $[0,1] \times [0,1]$ и т.п.

Индукцией по k получаем, что все декартовы степени множества мощности континуум имеют мощность континуум. В частности, на прямой «столько же» точек, сколько на плоскости или в трёхмерном пространстве. Георг Кантор придумал теорию множеств в попытках обосновать понятие размерности. Он был очень обескуражен полученным результатом. Мощность множества

размерности не различает.

Континуальность $\mathbb{R}^{\mathbb{N}}$. Множество бесконечных последовательностей действительных чисел имеет мощность континуум.($|\mathbb{R}^{\mathbb{N}}| = |\mathbb{R}|$)

Доказательство. \mathbb{R} равномощно $\{0,1\}^{\mathbb{N}}$ - множеству всех бесконечных двоичных последовательностей. Пусть $\varphi: \mathbb{R} \to \{0,1\}^{\mathbb{N}}$ - биекция. Сопоставим последовательности $\vec{x} = (x_0, x_1, \ldots)$ действительных чисел последовательность бесконечных двоичных последовательностей $\varphi(x_0), \varphi(x_1), \ldots$

Последовательность последовательностей - это полубесконечная таблица $\Phi_{ij} = \varphi\left(x_i\right)_j$, заполненная нулями и единицами (аналогичная таблице, которую мы использовали в диагональном рассуждении). Функция $\vec{x} \mapsto \Phi$ является биекцией (так как φ биекция) - каждой последовательности действительных чисел ставится в соответствие полубесконечная таблица из нулей и единиц

Теперь из этой таблицы сделаем бесконечную двоичную последовательность, нумеруя пары (i,j) в том же порядке, в котором мы это делали при доказательстве $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ (см. теорему 8.14). Это ещё одна биекция: между бесконечными двоичными таблицами и бесконечными двоичными последовательностями. Композиция двух построенных биекций даёт биекцию $\mathbb{R}^{\mathbb{N}}$ на $\{0,1\}^{\mathbb{N}}$. Осталось применить φ^{-1} , и искомая биекция из $\mathbb{R}^{\mathbb{N}}$ в \mathbb{R} построена.

2.37 Теорема Кантора–Бернштейна. Равносильность двух формулировок. Пример применения: континуальность множества тотальных функций $\mathbb{N} \to \mathbb{N}$

Формулироки теоремы Кантора-Бернштейна.

- 1. Если $|A| \leqslant |B|u|B| \leqslant |A|$, то |A| = |B|. Иными словами, если для множеств A и B существует ингекиия из A в B и ингекиия из B в A, то существует и биекиия между и B
- 2. Пусть $A_2\subseteq A_1\subseteq A_0$ и A_2 равномощно A_0 . Тогда все три множества равномощны

Доказательство равносильности формулировок.

Из теоремы 1 следует теорема 2. Пусть $A_2 \subseteq A_1 \subseteq A_0$ и A_2 равномощно A_0 , то есть существует биекция $f:A_0\to A_2$. Скажем, что $A=A_0, B=A_1$. Тогда существует инъекция $A\to B$ - это функция f. Также существует инъекция из B в A - это тождественная функция g(x)=x. Отсюда по теореме 1 получаем, что существует биекция из A в B, то есть множества A_0 и A_1 равномощны (а, значит, и все три равномощны)

Из теоремы 2 следует теорема 1. Пусть существует инъекция $f:A\to B$ и инъекция $g:B\to A$. Скажем, что $A_0=A,A_1=g[B],A_2=g[f[A]]$. Отсюда ясно, что $A_2\subseteq A_1\subseteq A_0$, и также A_2 равномощно A_0 . Отсюда по теореме 2 получаем, что A_0 равномощно A_1 . Но так как B равномощно A_1 , а $A_0=A$, получаем равномощность A и B.

Пример применения. Докажем, что множество $\mathbb{N}^{\mathbb{N}}$ тотальных функций $\mathbb{N} \to \mathbb{N}$ имеет мощность континуум, применив теорему Кантора-Бернштейна (во второй формулировке).

Заметим, что $\{0,1\}^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}} \subseteq \mathbb{R}^{\mathbb{N}}$. Действительно, любая функция $\mathbb{N} \to \{0,1\}$ является функцией $\mathbb{N} \to \mathbb{N}$, а любая функция $\mathbb{N} \to \mathbb{N}$ является функцией $\mathbb{N} \to \mathbb{R}$. По теореме из 2.36 множество $\mathbb{R}^{\mathbb{N}}$ континуально, то есть равномощно $\{0,1\}^{\mathbb{N}}$. По теореме Кантора-Бернштейна $\mathbb{N}^{\mathbb{N}}$ равномощно $\{0,1\}^{\mathbb{N}}$

2.38 Теорема Кантора-Бернштейна. Доказательство одной из формулировок

Доказательство второй формулировки. Пусть дана функция $g: X \to Y$, и $C \subseteq D \subseteq X$. Тогда $f[C] \subseteq f[D]$ (по определению образа)

По условию теоремы есть биекция $f:A_0\to A_2$. При такой биекции множество A_1 переходит в множество $A_3\subseteq A_2$ (то есть $A_3=f[A_1]$). Аналогичным образом A_2 переходит в множество $A_4\subseteq A_3$ (так как $A_2\subseteq A_1, A_4=f[A_2], A_3=f[A_1]$). Продолжая эту конструкцию, мы получаем убывающую последовательность множеств

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \dots$$

При этом $f[A_i] = A_{i+2}$. Самое большое множество A_0 разбито на непересекающиеся слои $C_i = A_i \backslash A_{i+1}$ и сердцевину $C = \bigcup_i A_i$

Слои C_0, C_2, C_4, \ldots равномощны. Функция f осуществляет биекцию между A_{2n} и A_{2n+2} , и та же функция f осуществляет биекцию между A_{2n+1} и A_{2n+3} . При этом $A_{2n+1} \subseteq A_{2n}$ и $A_{2n+3} \subseteq A_{2n+2}$. Значит, функция f осуществляет биекцию между $C_{2n} = A_{2n} \setminus A_{2n+1}$ и $C_{2n+2} = A_{2n+2} \setminus A_{2n+3}$:

$$C_0 \xrightarrow{f} C_2 \xrightarrow{f} C_4 \xrightarrow{f} \dots$$

То же самое можно сказать про слои с нечётными номерами:

$$C_1 \xrightarrow{f} C_3 \xrightarrow{f} C_5 \xrightarrow{f} \dots$$

Теперь можно построить биекцию $g:A_0\to A_1$. Пусть $x\in A_0$. Тогда g(x) определяется так: если $x\in C_{2k}$ при некотором k, то g(x)=f(x), в противном случае (то есть если $x\in C_{2k+1}$ при некотором k или $x\in C$), то g(x)=x.

2.39 Примеры применения теоремы Кантора—Бернштейна: континуальность множества тотальных функций $\mathbb{N} \to \mathbb{N}$; равномощность квадрата и круга

Пример применения-1. Континуальность множества тотальных функций $\mathbb{N} \to \mathbb{N}$

 \mathcal{A} ок-во по второй формулировке. Заметим, что $\{0,1\}^{\mathbb{N}}\subseteq\mathbb{N}^{\mathbb{N}}\subseteq\mathbb{R}^{\mathbb{N}}$. Действительно, любая функция $\mathbb{N}\to\{0,1\}$ является функцией $\mathbb{N}\to\mathbb{N}$, а любая функция $\mathbb{N}\to\mathbb{N}$ является функцией $\mathbb{N}\to\mathbb{R}$. По теореме 2.36 множество $\mathbb{R}^{\mathbb{N}}$ континуально, то есть равномощно $\{0,1\}^{\mathbb{N}}$. По теореме Кантора–Бернштейна $\mathbb{N}^{\mathbb{N}}$ равномощно $\{0,1\}^{\mathbb{N}}$

Пример применения-2. Квадрат (с внутренностью) равномощен кругу

Из круга можно вырезать маленький квадрат и устроить гомотетию с исходным квадратом. Аналогично, из квадрата можно вырезать маленький круг и устроить гомотетию с исходным кругом. Отсюда по теореме Кантора-Бернштейна (в первой формулировке) следует равномощность квадрата и круга

2.40 Теорема Кантора и следствия из неё

Теорема. Никакое множество X не равномощно множеству $\mathcal{P}(X)$ своих подмножсеств

Доказательство. Пусть f - тотальная функция из множества X в $\mathcal{P}(X)$. Докажем, что она не сюръекция (значит, и не биекция). Для этого построим множество $Y\subseteq X$, отличающееся от f(x) для всех $x\in X$. Чтобы задать Y, нужно пересказать диагональное рассуждение, переходя от бесконечных двоичных последовательностей к подмножествам \mathbb{N} . Мы его проводили, когда доказывали несчётность множества $\{0,1\}^{\mathbb{N}}$ (теорема 2.33)

Рассмотрим множество

$$Y = \{x \in X : x \notin f(x)\}.$$

По построению множества $Y, x \in Y \Leftrightarrow x \notin f(x)$

Докажем, что Y не лежит в образе f[X], то есть отличается от любого $f(x), x \in X$. Пусть это не так, тогда Y = f(z) для некоторого $z \in X$. Тогда

$$z \in Y \Leftrightarrow z \notin f(z) \Leftrightarrow z \notin Y$$

(первое - по построению множества Y, второе - по предположению f(z) = Y). Пришли к противоречию. Следовательно, Y ничему не соответствует.

Следствия из теоремы.

- 1. Для любого множества X имеем $|X| < |\mathcal{P}(X)|$
- 2. Для любого натурального числа n выполнено $n < 2^n$
- 3. Множества всех множеств не существует

Доказательства следствий.

- 1. По теореме Кантора, не существует биекции между X и $\mathcal{P}(X)$. С другой стороны, существует инъекция $f: X \to \mathcal{P}(X): f(x) = \{x\}$. Поэтому по определению $|X| < |\mathcal{P}(X)|$.
- 2. Рассмотрим конечное множество X из n элементов. По предыдущему следствию, $|X| < |\mathcal{P}(X)|$. В множестве $\mathcal{P}(X)$ имеется 2^n элементов. Отсюда получаем, что $n < 2^n$.
- 3. От противного: предположим, что совокупность всех множеств U является множеством. Заметим, что все подмножества множества U (и вообще все подмножества любых множеств!) являются его элементами. Поэтому множество $\mathcal{P}(U)$ всех подмножеств U является подмножеством U. Значит, есть инъекция $\mathcal{P}(U) \to U$. В обратную сторону инъекция есть всегда: для любого множества X отображение $x \mapsto \{x\}$ является инъекцией X в $\mathcal{P}(X)$. По теореме Кантора-Бернштейна U равномощно $\mathcal{P}(U)$, что противоречит теореме Кантора.
- 2.41 Критерий транзитивности отношения. Отношение, являющееся одновременно рефлексивным и антирефлексивным. Отношение, являющееся одновременно симметричным и антисимметричным. Транзитивность пустого и одноэлементного отношения

Утверждение. Отношение R на множестве A транзитивно тогда и только тогда, когда $R \circ R \subseteq R$

¹Гомотетия - преобразование плоскости, переводящее точку M в M_1 , т.ч. $\overrightarrow{OM_1} = k\overrightarrow{OM}$. O-центр, k-коэффициент, отличный от 0

Доказательство. Пусть отношение R транзитивно. Рассмотрим какую-нибудь пару $(a,b) \subseteq R \circ R$. Это означает, что для некоторого $y \subseteq A(a,y), (y,b) \in R$. По транзитивности R получаем, что $(a,b) \in R$. Значит, выполняется включение $R \circ R \subseteq R$

Обратно, пусть $R \circ R \subseteq R$. Возьмём две пары (x,y) и (y,z) из отношения R. По определению композиции $(x,z) \in R \circ R$. Поскольку квадрат отношения лежит в нём самом, получаем, что $(x,z) \in R$. То есть доказали транзитивность отношения.

Пример-1. Нужно, чтобы $\forall x \in A$ было выполнено $(x,x) \in R$ и $(x,x) \notin R$. Это невозможно, если в множестве A содержится хотя бы один элемент. Если же множество A пусто, то единственное бинарное отношение на множестве A — это пустое отношение. Оно является одновременно и рефлексивным, и антирефлексивным

Пример-2. Пусть какое-то $(x,y) \in R$. В силу симметричности $(y,x) \in R$, а в силу антисимметричности получаем, что x=y. Таким образом, если R одновременно симметрично и антисимметрично, то в него могут попасть только пары вида (x,x), то есть $R \subseteq id_A$. Обратно: ясно, что любое бинарное отношение R, для которого выполнено $R \subseteq id_A$, является одновременно симметричным и антисимметричным

Пример-3. Пустое бинарное отношение \varnothing на любом множестве A является транзитивным, потому что в импликации $(x,y) \in \varnothing \land (y,z) \in \varnothing \rightarrow (x,z) \in \varnothing$ левая часть всегда ложна, а импликация всегда истинна. Можно также сказать, что $\varnothing \circ \varnothing = \varnothing$, то есть выполнен критерий транзитивности. Любое отношение, содержащее ровно одну пару, также является транзитивным. Пусть $R = \{(a,b)\}$. Тогда, если $a \neq b$, то $R \circ R = \varnothing$, а если a = b, то $R \circ R = \{(a,a)\}$. То есть снова выполнен критерий транзитивности $R \circ R \subseteq R$

2.42 Выражение композиции отношений через матрицы. Критерий транзитивности отношения в терминах матриц

Пусть M_R и M_S - матрицы отношений R и S (R - бинарное отношение на множествах A и B, S - бинарное отношение на множествах B и C, элементы множества B в обеих матрицах пронумерованы одинаково)

Тогда матрица отношения $S\circ R$ получается так: берём матрицу $M_R\cdot M_S$, после чего меняем все числа, превосходящие 1, на 1. Пусть $(a_i,c_k)\in S\circ R$. Ээто означает, что $\exists\ b_j,$ что $(a_i,b_j)\in R, (b_j,c_k)\in S$. Значит, при вычислении элемента (i,k) матрицы $M_R\cdot M_S$ в сумме $\sum_l M_R(i,l)M_S(l,k)$ возникло ненулевое число. А значит, элемент (i,k) матрицы $M_R\cdot M_S$ будет положительным. Аналогично рассуждаем, если $(a_i,c_k)\notin S\circ R$

Пусть M — матрица бинарного отношения R. Пусть матрица N получается из матрицы $M \cdot M$ заменой всех элементов, больших 1, на 1. Тогда отношение R транзитивно тогда и только тогда, когда в матрице N каждый элемент не превосходит элемента матрицы M, стоящего на том же месте (иными словами, не бывает такого, что в матрице N стоит 1 на том месте, где в матрице M стоит 0). Это наблюдение следует из утверждения 2.41 и того, как считается матрица композиции

Пример. Пусть матрица отношения
$$R$$
 равна $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Тогда матрица отношения $R \circ R : \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. На месте $(2,2)$ в этой матрице стоит 1, а в исходной -0

Следовательно, R не транзитивно

2.43 Свойства транзитивного замыкания. Транзитивность пересечения любого непустого семейства транзитивных отношений. Существование и единственность транзитивного замыкания

Свойства транзитивного замыкания приведены здесь - 1.62

Доказательства

1. Пусть R - транзитивно. Проверим, что R - его транзитивное замыкание. Действительно, R транзитивно, $R\subseteq R$, и для любого транзитивного T, если $R\subseteq T$, то $R\subseteq T$. Значит, по определению, $R^*=R$

2. По определению R^* транзитивно. Осталось применить п. 1

Лемма о транзитивности пересечения непустого... Пусть $R_i, i \in I$ — произвольный непустой набор транзитивных отношений на множестве A. Тогда их пересечение $\bigcap_{i \in I} R_i$ также транзитивно (это также отношение на множестве A)

Доказательство. Возьмём любые $(x,y), (y,z) \in \bigcap_{i \in I} R_i$. Раз они лежат в пересечении, то они лежат в каждом R_i . Так как каждое R_i транзитивно, имеем $(x,z) \in R_i$ для всех i. Отсюда $(x,z) \in \bigcap_{i \in I} R_i$.

Теорема о существовании и единственности транзитивного замыкания. Для любого бинарного отношения R на множестве A существует его транзитивное замыкание R^*

Доказательство. Рассмотрим все транзитивные отношения R_i на множестве A, содержащие отношение R (обозначим $i \in I$). Этот набор непуст: ему точно принадлежит полное бинарное отношение. Значит, можно рассмотреть его пересечение $\bigcap_{i \in I} R_i$

По предыдущей лемме это отношение также транзитивно. Далее, поскольку $R \subseteq R_i$ для каждого i, то $R \subseteq \bigcap_{i \in I} R_i$. Наконец, если T - какое-то транзитивное отношение на множестве A, то оно присутствует в этом наборе $R_i, i \in I$. А это означает, что $\bigcap_{i \in I} R_i \subseteq T$.

Единственность транзитивного замыкания легко следует из определения. Действительно, если бы R_1^* и R_2^* были бы транзитивными замыканиями отношения R, то тогда имеем $R_1^* \subseteq R_2^*$ и $R_2^* \subseteq R_1^*$, откуда следует, что $R_1^* = R_2^*$

2.44 Построение транзитивного замыкания по заданному отношению

Пусть R - бинарное отношение на множестве A. Тогда

$$R^* = R \cup R^2 \cup R^3 \cup \dots R^n \cup \dots$$

Доказательство. Пусть T - бинарное отношение $R \cup R^2 \cup R^3 \cup \dots R^n \cup \dots$ Докажем, что $R^* = T$

Докажем, что T транзитивно. Возьмём произвольные $(x,y),(y,z)\in T.$ Тогда существуют $k,s\in\mathbb{N},$ что $(x,y)\in R^k,(y,z)\in R^s.$ Отсюда $(x,z)\in R^{k+s},$ а, значит, $(x,z)\in T$

Поскольку T транзитивно, отсюда немедленно получаем, что $R^* \subseteq T$

Докажем, что для любого $n\in\mathbb{N}\setminus\{0\}$ выполнено $R^n\subseteq R^*$ (следоватьно, $T\subseteq R^*$) База очевидна: $R^1=R\subseteq R^*$ по определению транзитивного замыкания. Шаг: пусть $R^n\subseteq R^*$. Возьмём произвольное $(x,z)\in R^{n+1}$. Поскольку $R^{n+1}=R\circ R^n$, по определению композиции отношений существует y, для которого $(x,y)\in R^n$ и $(y,z)\in R$. По предположению индукции $(x,y)\in R^*$ и $(y,z)\in R^*$. Так как R^* транзитивно, получаем, что $(x,z)\in R^*$. Таким образом, доказано, что $R^{n+1}\subseteq R^*$

Поскольку доказаны оба включения $R^* \subseteq T$ и $T \subseteq R^*$, заключаем, что $T = R^*$.

Примечание. Если множество A конечно, то отношения в бесконечной цепочке

$$R \cup R^2 \cup R^3 \cup \dots R^n \cup \dots$$

с какого-то места начнут повторяться, потому что существует только конечное множество бинарных отношений на конечном множестве A. Так что для конечных множеств это будет по существу конечное объединение

2.45 Теорема о сумме степеней вершин. Лемма о рукопожатиях. Число рёбер в полном графе на n вершинах, число рёбер в булевом кубе

Теорема и лемма приведены тут - 1.65

Доказательство теоремы

Применим метод двойного подсчёта. Под таким громким названием скрывается очень простой факт: если посчитать сумму элементов матрицы по строкам, то получится такое же число, как и при суммировании элементов матрицы по столбцам

Давайте посчитаем количество 1 в матрице инцидентности графа. В строке i количество 1 равно количеству инцидентных вершине i рёбер, то есть степени этой вершины. Значит, сумма 1 по

строкам равна сумме степеней вершин

В каждом столбце матрицы инцидентности ровно две 1, так как у ребра ровно два конца. Значит, сумма 1 по столбцам равна удвоенному количеству рёбер

Обе суммы равны общему количеству 1 в матрице инцидентности, а значит, равны между собой. \Box

Доказательство леммы

Эта лемма следует из предыдущей теоремы. Сумма степеней всех вершин - это всегда чётное число, поэтому нечётных слагаемых в этой сумме должно быть чётное количество

Число ребер в полном графе. В полном графе K_n имеется n вершин, и каждая пара вершин соединена ребром

Степень каждой вершины равна (n-1) (вершина связана ребром со всеми остальными). Поэтому сумма степеней вершин равна n(n-1). А количество рёбер в два раза меньше: $\frac{n(n-1)}{2}$

Число ребер в булевом кубе. Вершины булева куба Q_n (булев куб размерности n)двоичные слова длины n. Два слова u и v соседние в булевом кубе, если и только если одно можно получить из другого инвертированием ровно одной позиции. (Инвертирование означает изменение значения: с 0 на 1 или с 1 на 0)

Скажем, 0100 и 0101 соседние в Q_4 , а 0100 и 0011 - нет

Количество вершин в булевом кубе Q_n равно 2^n , это количество двоичных слов длины n

Степень каждой вершины равна n: есть ровно n позиций, инвертирование каждой даёт соседа и других соседей нет. Поэтому количество рёбер в булевом кубе Q_n равно $n2^n/2=n2^{n-1}$

2.46 Связность графа перестановок, в котором проведены рёбра между перестановками, получающимися друг из друга переворотом начального отрезка

Множество вершин графа F_n - это множество S_n всех перестановок на множестве $\{1,2,\ldots,n\}$. Удобнее представлять перестановки как размещения из n по n. Две перестановки связаны ребром в графе F_n , если одна получается из другой переписыванием некоторого начального отрезка перестановки в обратном порядке (назовём такое преобразование переворотом). Вот пример переворота:

$$(4,3,2,6,1,5) \rightarrow (6,2,3,4,1,5)$$

Докажем, что переворотами можно упорядочить любую последовательность

Доказательство индукцией по n. База n=2 очевидна: есть всего две перестановки и одна получается из другой переворотом всей последовательности

Шаг индукции. Предполагаем, что любую перестановку чисел из $\{1,2,\ldots,n\}$ возможно упорядочить переворотами. Рассмотрим перестановку чисел из $\{1,2,\ldots,n+1\}$. Выделим в ней начальный отрезок, заканчивающийся $n+1:(x_1,\ldots,x_i,n+1,x_{i+1},\ldots,x_n)$. Выполним переворот этого отрезка, а затем переворот всей последовательности, получаем

$$(x_1, \dots, x_i, n+1, x_{i+1}, \dots, x_n) \to (n+1, x_i, \dots, x_1, x_{i+1}, \dots, x_n) \to \\ \to (x_n, \dots, x_{i+1}, x_1, \dots, x_i, n+1)$$

В полученной перестановке n+1 уже стоит на своём месте. Пользуясь индуктивным предположением, упорядочим теперь начальный отрезок длины n

Отсюда легко получить связность графа F_n . Из любых двух перестановок π, σ существуют пути в (1, 2, ..., n). Путь из π, σ получается соединением пути из π в (1, 2, ..., n) и переворотом пути из σ в (1, 2, ..., n).

2.47 Свойства отношения достижимости в графе. Построение отношения эквивалентности по разбиению множества

Свойства отношения приведены тут - 1.67

Доказательство свойств

Так как v - путь (длины 0), вершина v связанная с самой собой

Если $v_1u_1\dots u_sv_2$ -путь в графе, то $v_2u_s\dots u_1v_1$ -также путь (записываем те же вершины, но в обратном порядке). Поэтому достижимость v_2 из v_1 равносильна достижимости v_1 из v_2

Если в графе есть пути $v_1u_1\dots u_sv_2$ и $v_2w_1\dots w_tv_3$ (то есть $(v_1,v_2)\in R$ и $(v_2,v_3)\in R$), то в этом графе есть также и путь $v_1u_1\dots u_sv_2w_1\dots w_tv_3$, то есть $(v_1,v_3)\in R$ (вершина v_3 достижима из v_1).

Пример описан здесь - 1.68

2.48 Теорема о том, что отношение эквивалентности делит множество на классы эквивалентности

Теорема сформулирована тут - 1.69

Доказательство. Для каждого $x \in A$ рассмотрим множество $C(x) = \{y : xRy\}$ тех y, для которых верно xRy. Это и есть обещанные классы эквивалентности. Чтобы это доказать, нужно проверить три условия:

- 1. Объединение всех множеств вида C(x) совпадает с множеством A
- 2. Два множества C(x) и C(y) либо не пересекаются, либо совпадают
- $3.\ C(x)=C(y)$ в том и только том случае, когда xRy (то есть R совпадает с отношением «принадлежать одному классу», как в примере 1.68)
- 1. В силу рефлексивности множество C(x) содержит x в качестве своего элемента: $x \in C(x)$, поскольку xRx. Отсюда следует, что объединение всех этих множеств совпадает с A
- 2. Пусть $z \in C(x) \cap C(y)$, то есть верно xRz и yRz. Симметричность даёт zRy. Теперь применим транзитивность к xRz и zRy, заключаем, что xRy и по симметричности yRx

Пусть $t \in C(y)$, то есть yRt. Применим транзитивность к xRy и yRt, заключаем, что xRt, то есть $t \in C(x)$. Значит, $C(y) \subseteq C(x)$. Аналогично доказывается, что $C(x) \subseteq C(y)$, так что C(x) = C(y)

3. Если для каких-то x,y верно xRy, то x и y оба лежат в одном классе, а именно, в C(x). Обратно, если x и y лежат в каком-то C(z), то по определению имеем zRx и zRy. Симметричность даёт xRz, после чего транзитивность даёт xRy.