芳烃 芳核上的亲电取代反应

一、芳烃的分类和命名

分	类	命名实例		备 注
		CH ₃ CH ₃ CH ₃ 1,2-二甲苯	CH ₃ CH ₃ 1,4-二甲苯 对二甲苯 p-dimethylbenzene	苯的二元取代物用邻、间、对或1,2-、1,3-、1,4-表示相邻、相隔、相对位置
苯型芳香品	单环芳烃	CH ₃ 1,2,3-三甲苯 连三甲苯 偏三甲苯 1,2,4-三甲苯 偏三甲苯 1,2,4-trimethylbenzene victrimethylbenzene unsymtrimethylbenzene	CH ₃ H ₃ C CH ₃ 1,3,5-三甲苯 均三甲苯 均三甲苯 symtrmethylbenzene symtrmethylbenzene	三个相同取代基的位置也可用连(vic)、偏(unsym)、均(sym)表示
烃		CH ₃ —CH—CH ₂ CH ₂ CH ₃ 2-苯基戊烷 2-phenylpentane NH ₂ 苯胺 phenylamine	本乙烯 styrene COOH 苯甲酸 benzoic acid	当 复 饱 或 基 基 等 环 化 数 基 基 等 环 作 为 取 基 基 等 环 作 为 取 基 基 等 环 作 为 取 本 基 基 等 环 化 基

分	类	命名实例	备注
To leave the second		本甲醛 苯酚 benzaldehyde phenol	
苯型芳香烃	单环芳烃	The state of the	当有基择团官他为不同,个为团的工作。
		$2-$ 氨基 $-5-$ 羟基苯甲醛 $3-$ 氨基 $-5-$ 溴苯酚 $2-$ amino $-5-$ hydroxybenzaldehyde $3-$ amino $-5-$ bromophenol 母体官能团的优先次序为: $-$ COOH, $-$ CHO, $-$ OH, $-$ NH $_2$, $-$ C \equiv C, $-$ C \equiv C, $-$ C \equiv C, $-$ R 常见的芳香烃基(Ar $-$): CH3 CGH5 $-$,Ph $-$ 本基 $o-$ CH3C6H4 $-$ 基甲基或苄基	

TWO IS A SECRETARY OF THE PARTY	
	备注
芳 1-萘磺酸(α-萘磺酸) 2-萘磺酸(β-萘磺 烃 COOH	各注代将苯作为取作为及。 将基,按上的人。 100章 非
	多苯代脂肪烃: 脂肪烃中两个或两个以上氢原子被苯环取的产物 (CH2 二苯甲烷 diphenylmethane 棚环芳香烃: 苯环共用相邻的碳原子相互稠合而成的化合物 (β) 7 (β) 6 (α) (α) (β) 7 (β) 6 (α) (α) (β) 7 (β) 6 (α) (α) (β) 7 (β) 7 (β) 6 (α) (β) 7 (β) 7 (β) 6 (α) (γ) (α) 8 (α) (α) (γ) (α) (α) 8 (α) (α) (γ) (α) (α) 8 (α) (α) (α) (α) (α) (α) (α) (α) (α) (α)

分类	命名实例	备注
非 苯 型 芳香烃	环戊二烯负离子 [18]轮烯	满足休克尔规则

二、苯的结构特点及物理性质

物	性状	苯及其同系物常温下多为液体,具特殊气味;相对密度和折光率较相应的链 烃和环烃高;不溶于水,大多具有毒性
理性	波谱	IR: 苯环 C — H 伸缩振动~3030cm ⁻¹ ; 苯环 C = C 骨架振动 1600~1400cm ⁻¹ ; Ar — H 面外弯曲振动 900~600cm ⁻¹
质	性质	1 H-NMR: 苯环上六个质子是等价的,由于屏蔽效应的存在,质子吸收峰明显移向低场, δ 值为 7.27;其他芳烃衍生物芳环上的质子 δ 值约为 6.58

三、苯及其衍生物的化学性质

及应证式	Ĭ.	$\begin{array}{c} H \\ \downarrow \\ + E - Nu \end{array} \longrightarrow \begin{array}{c} E \\ \downarrow \\ + H - Nu \end{array}$	y
友	Ŋ.	第一步: 亲电试剂从苯环上接受一对 π 电子,生成碳正离子中控制整个反应速率第二步: 与亲电试剂 E 相连的碳上的氢以质子形式从碳正环的六电子 π 体系	vu 中间体。此步较慢,
ž L			

	-		-	
L	æ	ъ.	-1	52
z			-9	9

			绥表
苯环上的亲电取代反应	硝化反应	+ 浓HNO ₃	硝基苯不易继续硝化
	磺化反应	$ + H_2SO_4(液)^{75 \sim 80 \circ C} $	进攻 试剂 为应 就化反应, 苯磺酸与稀酸 共热重新生成 苯和硫酸
	傅-克反应	Friedel-Crafts 烷基化反应: + RX Lewis 酸 R + HX + (CH ₃) ₂ CHCl AlCl ₃ CH(CH ₃) ₂	最常用的 Lewis 酸是 AlCl ₃

		
苯环氧化	$ \begin{array}{c c} \hline & O_{2s}V_{2}O_{5} \\ \hline & 400 \sim 500 {}^{\circ}C \end{array} $	
氧化反应 侧链氧化	CH_3 $KMnO_4$ $WK_2Cr_2O_7/H^*$ $COOH$ $KMnO_4$ $WK_2Cr_2O_7/H^*$ $COOH$ $COOH$ $COOH$ $CC(CH_3)_2$ $COOH$ $COOH$ $CC(CH_3)_3$ $COOH$	含有 α-H 的侧链无论长短,均被氧化为羧基
加成反应	H ₂ ,Ni 400-500℃ Cl H Cl H Cl H Cl H Cl	苯环不易发生 加成反应,需 特殊条件
侧链自由基反应	Cl ₂	烷基苯在光照 条件的基本 系统 条链 反生 系 系 条 条 条 条 条 条 条 条 条 条 条 条 条 条 条 条 条

四、取代苯亲电取代反应的定位规律

苯及取代苯硝化反应的相对反应速率:

取代基对反应速率的影响

OH

 10^{3}

CH₃

 \bigcup_{1}^{H}

 $\begin{array}{c}
\text{Cl} \\
3 \times 10^{-2}
\end{array}$

 1×10^{-7}

活化(致活)基团:能使芳环亲电取代反应活性提高的取代基,如羟基、甲基等

钝化(致钝)基团:能使芳环亲电取代反应活性降低的取代基,如卤素、硝基等

一取代苯的亲电取代反应的定位规律

邻、对位定位基:使亲电试剂主要进攻邻、对位的定位基。其结构特点是与苯环直接相连的原子多为饱和原子,且多数带有未共用电子对。除卤素外,绝大多数邻、对位定位基使苯环活化

间位定位基:使亲电试剂主要进攻间位的定位基。其结构特点是与苯环直接相连 的是带正电荷的原子或极性不饱和基团。间位定位基都可使苯环钝化 甲基:

亲

电

取

代

反应

定位

规

律和

活

性

的

理论

解释

$$CH_3$$
 O_2 O_2 O_2 O_3 O_4 O_2 O_4 O_4 O_4 O_4 O_5 O_4 O_5 O_5 O_6 O_7 O_8 $O_$

NO2 CH3 CH3 CH3 CH3 CH3 CH3 H→ NO2 最稳定

甲基是邻、对位致活定位基

- (1) 甲基是给电子基, 使碳正离子中间体稳定性增加
- (2)进攻邻对位时,三个极限式中包含一个叔正碳离子,对共振杂化体有主要贡献;而进攻间位时,三种极限式均为仲正碳离子

羟基:

$\begin{array}{c|c} OH & : \ddot{O}H & : \ddot{O}H \\ \hline & & & & \\ \hline & & & \\$

羟基是邻、对位致活定位基。进攻邻对位产生的碳正离子中间体共有四个极限式, 且包含一个较稳定的极限式。而进攻间位只有三个极限式,且没有明显稳定的极 限式

硝基:

$$\begin{array}{c|c} O^{-} & O^{-}$$

硝基是间位致钝定位基。进攻邻对位产生的碳正离子包含不稳定的极限式, 进攻间位无此不稳定极限式

亲 电 取 代 反 应 定 位 规 律 和 活 性 的 理 论 解 释

亲 电 取 代 反 应 定 位 规 律 和 活 性 的 理 论 解 释 卤素: 邻位 NO2 最稳定 对位 NO_2^+ H. NO₂ NO₂ H-最稳定 间位 NO_2^+

邻、对位致钝定位基

- (1) 进攻邻、对位产生的碳正离子中间体中有较稳定的氯鎓离子结构的极限式; 而进攻间位没有这种较稳定的极限式
- (2) 氯原子的供电子的p- π 共轭效应弱于其强吸电子诱导效应的影响,故其为钝化基团

取 代 苯 亲 电 取 代 反 应 的 经 验 规

OCH ₃ NHCOCH ₃ OCH ₃	均为邻、对位定 位基时,第三取 代基进入的位置 由定位能力强的 定位基决定
NHCOCH ₃ NO ₂	分别为邻、对位 定位基和间位定 位基时,第三取 代基进入的位置 由邻对位定位基 决定
COOH NO ₂	均为间位定位基 且处于1,3位时, 新基团主要进入 5位

律

五、萘的结构特点和化学性质

			级衣
	氧化反	茶的氧化: CH_sCOOH/CrO_s $1,4-$ 萘醌($\alpha-$ 萘醌) $+ O_2$ V_2O_s $400 \sim 500^{\circ}C$ 0	禁比苯易被氧 化,反应主α 发生在α条 上,可得到不同 产物
萘的化学性质	应	取代萘的氧化: NO2 OOH COOH NH2 HOOC HOOC	连有给电子基 的环较易被氧 化开环;连有 吸电子基的环 难被氧化开环
	还原反应	Birch 还原: Na 液氨 1,4-二氢萘	1,4-二氢萘难进一步还原
		氢化: Pt +3H2,Pt +3H2,Pt + 4	铂催化完全氢 化主要得顺式 十氢萘

六、蒽、菲和其他多环芳烃

七、非苯芳烃

续表 - H 环状 环戊二烯 环戊二烯正离子 环戊二烯负离子 环庚三烯负离子 4π 电子 6π 电子 8π 电子 环庚三烯正离子 无环状共轭体系 E, 8π电子 无芳香性 6π电子 无芳香性 无芳香性 芳香性 芳香性 负离 子的 芳香 = 性 环丙烯 环丁二烯 环丁二烯 环戊二烯 环庚三烯 环辛四烯 正离子 2π电子 双正离子 2π电子 负离子 6π电子 双负离子 正离子 双负离子 6π电子 6π电子 10π电子

(孙学斌)

