# TD LFA

09/04/2020

1. Donnez une grammaire algébrique pour engendrer le langage accepté par l'automate à pile  ${\cal M}\,$  :

$$M = [Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma = \{X, Z\}, q_0, \emptyset, Z, \delta]$$

dont la fonction de transition est donnée par la table :

| état             | lecture   | pile | nouvel état | empiler       |
|------------------|-----------|------|-------------|---------------|
| $\overline{q_0}$ | 1         | Z    | $q_0$       | XZ            |
| $q_0$            | 1         | X    | $q_0$       | XX            |
| $q_0$            | 0         | X    | $q_1$       | X             |
| $q_0$            | arepsilon | Z    | $q_0$       | $\varepsilon$ |
| $q_1$            | 1         | X    | $q_1$       | $\varepsilon$ |
| $q_1$            | 0         | Z    | $q_0$       | Z             |

**1.** 
$$G = [V, T, P, S]$$
, avec  $V = \{S, Z_{0,0}, Z_{0,1}, X_{0,0}, X_{0,1}, Z_{1,0}, Z_{1,1}, X_{1,0}, X_{1,1}\}$ ,  $T = \{0, 1\}$ , et  $P$  contenant les règles :

- Pour l'axiome  $S \rightarrow Z_{0,0} \mid Z_{0,1}$
- A partir de la transition 1  $Z_{0,0} \rightarrow 1X_{0,0}Z_{0,0} \mid 1X_{0,1}Z_{1,0}$   $Z_{0,1} \rightarrow 1X_{0,0}Z_{0,1} \mid 1X_{0,1}Z_{1,1}$
- A partir de la transition 2  $X_{0,0} \rightarrow 1X_{0,0}X_{0,0} \mid 1X_{0,1}X_{1,0}$  $X_{0,1} \rightarrow 1X_{0,0}X_{0,1} \mid 1X_{0,1}X_{1,1}$
- A partir de la transition 3  $X_{0,0} \rightarrow 0X_{1,0}$   $X_{0,1} \rightarrow 0X_{1,1}$
- A partir de la transition 4  $Z_{0,0} \to \varepsilon$
- A partir de la transition 5  $X_{1,1} \rightarrow 1$
- A partir de la transition 6  $Z_{1,0} \rightarrow 0Z_{0,0}$   $Z_{1,1} \rightarrow 0Z_{0,1}$

En notant  $A = Z_{0,0}$ ;  $B = Z_{0,1}$ ;  $C = X_{0,0}$ ;  $D = X_{0,1}$ ;  $E = Z_{1,0}$ ;  $F = Z_{1,1}$ ;  $G = X_{1,0}$ ;  $H = X_{1,1}$  nous obtenons:

$$N = \{S, A, B, C, D, E, F, H\},$$

$$T = \{0, 1\},$$

$$S$$

$$\begin{cases}
S \to A \mid B \\
A \to 1CA \mid 1DE \mid \varepsilon \\
B \to 1CB \mid 1DF \\
C \to 0G \mid 1CC \mid 1DG \\
D \to 0H \mid 1CD \mid 1DH \\
E \to 0A \\
F \to 0B \\
H \to 1
\end{cases}$$

Les variables productives sont :  $\{A, H, S, D, E\}$ , ce qui permet de supprimer B, C, F, G et nous obtenons :

$$N = \{S, A, D, E, H\},\$$

$$T = \{0, 1\},\$$

$$S$$

$$P \begin{cases} S \to A \\ A \to 1DE \mid \varepsilon \\ D \to 0H \mid 1DH \\ E \to 0A \\ H \to 1 \end{cases}$$

Tous les variables sont accessibles. On peut supprimer A (renommage) et substituer H et E pour obtenir :

$$\begin{split} N &= \{S, D\}, \\ T &= \{0, 1\}, \\ S \\ P \left\{ \begin{array}{l} S \rightarrow 1D0S \mid \varepsilon \\ D \rightarrow 01 \mid 1D1 \end{array} \right. \end{split}$$

Comme *D* engendre  $L_D = \{1^k 01^{k+1} \mid k \ge 0\}$ , ainsi 1D0 engendre  $L_{1D0} = \{1^{k+1} 01^{k+1}0 \mid k \ge 0\}$ . Ainsi, *S* engendre  $L_{1D0}^{\star}$ .

**2.** Sur l'alphabet  $\Sigma = \{1, 2, +, =\}$ , on considère l'ensemble des mots représentant une égalité numérique (vraie!). Par exemple :

• 
$$1 + 1 = 2$$

• 
$$1+2=1+2$$

$$\bullet$$
 1 + 2 + 1 = 2 + 2

Dans le TD précédent, on a construit un automate à pile qui accepte ce langage. Retrouvez la grammaire à partir de cet l'automate à pile suivant :  $M = [\{q_0, q_1, q_2, q_3\}, \{1, 2, +, =\}, \{Z, X, Y\}, q_0, \emptyset, Z, \delta]$ 

| _ |       |         |      |             | [(10/1  | 1/12/10. | ,,,,, | / · / <b>)</b> / | ( /  | 7 3/10/     | / 1     |
|---|-------|---------|------|-------------|---------|----------|-------|------------------|------|-------------|---------|
| é | tat   | lecture | pile | nouvel état | empiler |          | état  | lecture          | pile | nouvel état | empiler |
| ( | $q_0$ | 1       | Z    | $q_0$       | YZ      |          | $q_1$ | 1                | X    | $q_3$       | _       |
| ( | $q_0$ | 2       | Z    | $q_0$       | YXZ     |          | $q_3$ | arepsilon        | X    | $q_1$       | Y       |
| ( | $q_0$ | +       | Y    | $q_0$       | X       |          | $q_1$ | $^2$             | X    | $q_2$       | _       |
| ( | $q_0$ | 1       | X    | $q_0$       | YX      |          | $q_2$ | $\varepsilon$    | X    | $q_3$       | _       |
| ( | $q_0$ | 2       | X    | $q_0$       | YXX     |          | $q_1$ | +                | Y    | $q_1$       | X       |
|   | $q_0$ | =       | Y    | $q_1$       | X       |          | $q_3$ | $\varepsilon$    | Z    | $q_3$       |         |

#### Et voici une solution



#### Et voici la solution modifiée $q_2$ 2,X -> e,X -> -1,X -> q<sub>o</sub> $q_1$ $q_3$ =,Y -> X 1,Z -> YZ ε,X -> Y ε,Z -> -2,Z -> YXZ +,Y -> X +,Y -> X 1,X -> YX 2,X -> YXX

| état      | lecture | pile | nouvel état | empiler |
|-----------|---------|------|-------------|---------|
| <b>q0</b> | 1       | Z    | <b>q0</b>   | YZ      |
| <b>q0</b> | 2       | Z    | <b>q0</b>   | YXZ     |
| q0        | +       | Υ    | <b>q0</b>   | X       |
| q0        | 1       | X    | <b>q0</b>   | YX      |
| q0        | 2       | X    | <b>q0</b>   | YXX     |
| q0        | =       | Υ    | q1          | X       |
| q1        | 1       | X    | q3          | -       |
| q3        | 3       | X    | q1          | Y       |
| q1        | 2       | X    | q2          | -       |
| q2        | 3       | X    | q3          | -       |
| q1        | +       | Υ    | q1          | X       |
| q3        | 3       | Z    | q3          | -       |

### La grammaire qu'on peut déduire :

$$G = [V, T, P, S]$$
 avec

$$V = \{S; Z,i,j; X,i,j; Y,i,j \mid i,j \in \{0, 1, 2, 3\}\}$$

 $T = \{1, 2, =, +\}$ 

Et les ... 184 règles ...

49 variables!

| Pour l'axiome :                | $S \rightarrow Z,0,i$                      | pour i ∈ {0, 1, 2, 3}             |
|--------------------------------|--------------------------------------------|-----------------------------------|
| A partir de la transition 1 :  | $Z,0,i \rightarrow 1 Y,0,j Z,j,i$          | pour i, j ∈ {0, 1, 2, 3}          |
| A partir de la transition 2 :  | $Z$ ,0,i $\rightarrow$ 2 Y,0,j X,j,k Z,k,i | pour i, j, $k \in \{0, 1, 2, 3\}$ |
| A partir de la transition 3 :  | $Y,0,i \rightarrow + X,0,i$                | pour i ∈ {0, 1, 2, 3}             |
| A partir de la transition 4 :  | $X,0,i \rightarrow 1 Y,0,j X,j,i$          | pour i, $j \in \{0, 1, 2, 3\}$    |
| A partir de la transition 5 :  | $X,0,i \rightarrow 2 Y,0,j X,j,k X,k,i$    | pour i, j, $k \in \{0, 1, 2, 3\}$ |
| A partir de la transition 6 :  | $Y,0,i \rightarrow = X,1,i$                | pour i ∈ {0, 1, 2, 3}             |
| A partir de la transition 7 :  | $X,1,3 \rightarrow 1$                      |                                   |
| A partir de la transition 8 :  | $X,3,i \rightarrow Y,1,i$                  | pour i ∈ {0, 1, 2, 3}             |
| A partir de la transition 9 :  | $X,1,2 \rightarrow 2$                      |                                   |
| A partir de la transition 10 : | $X,2,3 \rightarrow \varepsilon$            |                                   |
| A partir de la transition 11 : | $Y,1,i \rightarrow + X,1,i$                | pour i ∈ {0, 1, 2, 3}             |
| A partir de la transition 12 : | $Z,3,3 \rightarrow \epsilon$               |                                   |

$$S \rightarrow Z,0,i$$

$$Z,0,i \rightarrow 1 Y,0,j Z,j,i \mid 2 Y,0,j X,j,k Z,k,i$$

$$Y,0,i \to + X,0,i = X,1,i$$

$$X,0,i \rightarrow 1 Y,0,j X,j,i \mid 2 Y,0,j X,j,k X,k,i$$

$$X,1,3 \rightarrow 1$$

$$X,3,i \rightarrow Y,1,i$$

$$X,1,2 \rightarrow 2$$

$$X,2,3 \rightarrow \epsilon$$

$$Y,1,i \rightarrow + X,1,i$$

$$Z,3,3 \rightarrow \epsilon$$

$$i \in \{0, 1, 2, 3\}$$

$$i, j, k \in \{0, 1, 2, 3\}$$

$$i \in \{0, 1, 2, 3\}$$

i, j, 
$$k \in \{0, 1, 2, 3\}$$

$$i \in \{0, 1, 2, 3\}$$

$$i \in \{0, 1, 2, 3\}$$

On cherche les productives !  $P_0 = \emptyset$ .

$$S \rightarrow Z,0,i$$

$$Z,0,i \rightarrow 1 Y,0,j Z,j,i \mid 2 Y,0,j X,j,k Z,k,i$$

$$Y,0,i \to + X,0,i = X,1,i$$

$$X,0,i \rightarrow 1 Y,0,j X,j,i \mid 2 Y,0,j X,j,k X,k,i$$

$$X,1,3 \rightarrow 1$$

$$X,3,i \rightarrow Y,1,i$$

$$X,1,2 \rightarrow 2$$

$$X,2,3 \rightarrow \epsilon$$

$$Y,1,i \rightarrow + X,1,i$$

$$Z,3,3 \rightarrow \epsilon$$

$$P_1 = \{X,1,2; X,1,3; X,2,3; Z,3,3\}.$$

$$S \rightarrow Z,0,i$$

$$Z,0,i \rightarrow 1 Y,0,j Z,j,i \mid 2 Y,0,j X,j,k Z,k,i$$

$$Y,0,i \to + X,0,i = X,1,i$$

$$X,0,i \rightarrow 1 Y,0,j X,j,i \mid 2 Y,0,j X,j,k X,k,i$$

$$X,1,3 \rightarrow 1$$

$$X,3,i \rightarrow Y,1,i$$

$$X,1,2 \rightarrow 2$$

$$X,2,3 \rightarrow \varepsilon$$

$$Y,1,i \rightarrow + X,1,i$$

$$Z,3,3 \rightarrow \epsilon$$

Y,0,2 Y,0,3

Y,1,2 Y,1,3

$$P_2 = \{X,1,2; X,1,3; X,2,3; Y,0,2; Y,0,3; Y,1,2; Y,1,3; Z,3,3\}.$$

$$S \rightarrow Z,0,i$$

$$Z,0,i \rightarrow 1 Y,0,j Z,j,i \mid 2 Y,0,j X,j,k Z,k,i Z,0,3$$

$$Y,0,i \to + X,0,i = X,1,i$$

$$X,0,i \to 1 Y,0,j X,j,i \mid 2 Y,0,j X,j,k X,k,i X,0,3$$

$$X,1,3 \rightarrow 1$$

$$X,3,i \to Y,1,i$$
  $X,3,2 X,3,3$ 

$$X,1,2 \rightarrow 2$$

$$X,2,3 \rightarrow \varepsilon$$

$$Y,1,i \rightarrow + X,1,i$$

$$Z,3,3 \rightarrow \epsilon$$

 $P_3 = \{X,0,3; X,1,2; X,1,3; X,2,3; X,3,2; X,3,3; Y,0,2; Y,0,3; Y,1,2; Y,1,3; Z,0,3; Z,3,3\}.$ 

S

 $S \rightarrow Z,0,i$ 

 $Z,0,i \rightarrow 1 Y,0,j Z,j,i \mid 2 Y,0,j X,j,k Z,k,i$ 

 $Y,0,i \to + X,0,i = X,1,i$ 

 $X,0,i \rightarrow 1 \ Y,0,j \ X,j,i \ 2 \ Y,0,j \ X,j,k \ X,k,i \ X,0,2$ 

 $X,1,3 \rightarrow 1$ 

 $X,3,i \rightarrow Y,1,i$ 

 $X,1,2 \rightarrow 2$ 

 $X,2,3 \rightarrow \varepsilon$ 

 $Y,1,i \rightarrow + X,1,i$ 

 $Z,3,3 \rightarrow \epsilon$ 

P<sub>4</sub>={S; X,0,2; X,0,3; X,1,2; X,1,3; X,2,3; X,3,2; X,3,3; Y,0,2; Y,0,3; Y,1,2; Y,1,3; Z,0,3; Z,3,3}.

$$S \rightarrow Z,0,i$$

$$Z,0,i \rightarrow 1 Y,0,j Z,j,i \mid 2 Y,0,j X,j,k Z,k,i$$

$$Y,0,i \to + X,0,i = X,1,i$$

$$X,0,i \rightarrow 1 Y,0,j X,j,i \mid 2 Y,0,j X,j,k X,k,i$$

$$X,1,3 \rightarrow 1$$

$$X,3,i \rightarrow Y,1,i$$

$$X,1,2 \rightarrow 2$$

$$X,2,3 \rightarrow \varepsilon$$

$$Y,1,i \rightarrow + X,1,i$$

$$Z,3,3 \rightarrow \epsilon$$

 $P_5$ ={S; X,0,2; X,0,3; X,1,2; X,1,3; X,2,3; X,3,2; X,3,3; Y,0,2; Y,0,3; Y,1,2; Y,1,3; Z,0,3; Z,3,3} =  $P_4$ 

On a donc seulement 14 variables productives.

On peut réécrire les règles qui restent !

 $\rightarrow$  Z,0,3  $Z,0,3 \rightarrow 1Y,0,3 Z,3,3$  | 2Y,0,2 X,2,3 Z,3,3 2Y,0,3 X,3,3 Z,3,3 =X,1,2 $Y,0,2 \to +X,0,2$ =X,1,3 $Y,0,3 \to +X,0,3$  $X,0,2 \rightarrow 1Y,0,3 X,3,2 \mid 2Y,0,2 X,2,3 X,3,2$ 2Y,0,3 X,3,3 X,3,2  $X,0,3 \rightarrow 1Y,0,2 X,2,3 \mid 1Y,0,3 X,3,3 \mid 2Y,0,2 X,2,3 X,3,3 \mid 2Y,0,3 X,3,2 X,2,3 \mid 2Y,0,3 X,3,3 X,3,3$  $X,1,3 \rightarrow 1$  $X,3,2 \rightarrow Y,1,2$  $X,3,3 \rightarrow Y,1,3$  $X,1,2 \rightarrow 2$  $X,2,3 \rightarrow \epsilon$  $Y,1,2 \rightarrow + X,1,2$  $Y,1,3 \to + X,1,3$  $Z,3,3 \rightarrow \epsilon$ 

- $\bullet$  S  $\rightarrow$  Z,0,3
- $\blacksquare$  Z,0,3  $\rightarrow$  1Y,0,3 Z,3,3  $\blacksquare$  2Y,0,2 X,2,3 Z,3,3  $\blacksquare$  2Y,0,3 X,3,3 Z,3,3
- $Y,0,2 \rightarrow +X,0,2$  =X,1,2
- (-) Y,0,3  $\rightarrow$  +X,0,3 | =X,1,3
- $X,0,2 \rightarrow 1Y,0,3 X,3,2 \mid 2Y,0,2 X,2,3 X,3,2 \mid 2Y,0,3 X,3,3 X,3,2$
- $X,0,3 \rightarrow 1,0,2 X,2,3 \mid 1,0,3 X,3,3 \mid 2,0,2 X,2,3 X,3,3 \mid 2,0,3 X,3,2 X,2,3 \mid 2,0,3 X,3,3 X,3,3$
- $X,1,3 \to 1$
- $X,3,2 \rightarrow Y,1,2$
- $X,3,3 \to Y,1,3$
- X,1,2  $\rightarrow$  2
- X,2,3  $\rightarrow \epsilon$
- $Y,1,2 \rightarrow + X,1,2$
- Y,1,3  $\rightarrow$  + X,1,3
- Z,3,3  $\rightarrow \epsilon$

Toutes les variables sont productives. Les seules variables effaçables sont X,2,3 et Z,3,3. Après suppression des effaçables On obtient :

$$S \rightarrow Z,0,3$$

$$Z,0,3 \to 1Y,0,3$$

$$Y,0,2 \to +X,0,2$$

$$=X,1,2$$

$$Y,0,3 \to +X,0,3$$

$$=X,1,3$$

$$X,0,2 \rightarrow 1Y,0,3 X,3,2 \mid 2Y,0,2 X,3,2$$

$$X,0,3 \to 1Y,0,2$$

$$X,1,3 \rightarrow 1$$

$$X,3,2 \rightarrow Y,1,2$$

$$X,3,3 \to Y,1,3$$

$$X,1,2 \rightarrow 2$$

$$Y,1,2 \rightarrow + X,1,2$$

$$Y,1,3 \rightarrow + X,1,3$$

On a trois renommages, qu'on supprime :  $(S \rightarrow Z,0,3)$ ;  $(X,3,2 \rightarrow Y,1,2)$ ;  $(X,3,3 \rightarrow Y,1,3)$ 

```
\rightarrow 1Y,0,3
                        2Y,0,2 2Y,0,3 Y,1,3
                        =X,1,2
Y,0,2 \to +X,0,2
                        | = X,1,3
Y,0,3 \to +X,0,3
X,0,2 \rightarrow 1Y,0,3 Y,1,2 \mid 2Y,0,2 Y,1,2 \mid 2Y,0,3 Y,1,3 Y,1,2
                        | 1Y,0,3 Y,1,3 | 2Y,0,2 Y,1,3 | 2Y,0,3 Y,1,2 | 2Y,0,3 Y,1,3 Y,1,3
X,0,3 \to 1Y,0,2
X,1,3 \rightarrow 1
X,1,2 \rightarrow 2
Y,1,2 \to + X,1,2
Y,1,3 \to + X,1,3
```

On substitue les règles pour X,1,2 et X,1,3 :

```
S \rightarrow 1 \text{ Y,0,3} | 2 Y,0,2 | 2 Y,0,3 Y,1,3

Y,0,2 \rightarrow + X,0,2 | = 2

Y,0,3 \rightarrow + X,0,3 | = 1

X,0,2 \rightarrow 1 Y,0,3 Y,1,2 | 2 Y,0,2 Y,1,2 | 2 Y,0,3 Y,1,3 Y,1,2

X,0,3 \rightarrow 1 Y,0,2 | 1 Y,0,3 Y,1,3 | 2 Y,0,2 Y,1,3 | 2 Y,0,3 Y,1,2 | 2 Y,0,3 Y,1,3 Y,1,3

Y,1,2 \rightarrow + 2

Y,1,3 \rightarrow + 1
```

Pour rendre plus lisible, on renomme les variables restants :

et nous obtenons :

$$S \rightarrow 1B \mid 2A \mid 2BF$$

$$A \rightarrow +C \mid =2$$

$$B \rightarrow +D \mid =1$$

$$C \rightarrow 1BE \mid 2AE \mid 2BFE$$

$$E \rightarrow +2$$

$$F \rightarrow +1$$

On remarque que C  $\rightarrow$  SE et aussi D  $\rightarrow$  1A | 2BE | SF

Après substitution de C, E et F on obtient

$$S \rightarrow 1B \mid 2A \mid 2B+1$$

$$A \rightarrow +S+2 \mid =2$$

$$B \rightarrow +D \mid =1$$

$$D \rightarrow 1A \mid 2B+2 \mid S+1$$

On substitue A et B pour obtenir

$$S \rightarrow 1+D \mid 1=1 \mid 2+S+2 \mid 2=2 \mid 2+D+1 \mid 2=1+1$$

$$D \rightarrow 1+S+2 \mid 1=2 \mid 2+D+2 \mid 2=1+2 \mid S+1$$

Ou après tri des règles

$$S \rightarrow 1=1 \mid 2=2 \mid 1+D \mid 2=1+1 \mid 2+S+2 \mid 2+D+1$$
  
 $D \rightarrow 1=2 \mid 2=1+2 \mid 1+S+2 \mid 2+D+2 \mid S+1$ 

## Bonne semaine de vacances

et

bonne santé!