

Text Processing using Machine Learning

Language Modelling

Liling Tan
04 Dec 2019

5,500 GRADUATE ALUMNI

120 & LEADERSHIP PROGRAMMES

TRAINING OVER

120,000 DIGITAL LEADERS

PROFESSIONALS

Overview

N-gram Language Modelling

- N-grams, Skip-grams, So many -grams
- Perplexity and Entropy
- Limitations

Neural Language Modelling

- Cost functions
- Tricks to prevent overfitting

N-gram Language Modelling

Language Modelling is task of predicting which word comes next

• Predict next word x_i , given all context words up till the current word, $x_1, ..., x_{i-1}$

Language Model aka. assigning probability of text as an accumulated probability of all individual words given their contexts

Calculate Probability of a Sentence

$$P(X) = \prod_{i=1}^{I} P(\mathbf{x_i} | \mathbf{x_1}, \dots, \mathbf{x_{i-1}})$$
Next word
Context

P("he likes to drink coffee")

- = P(he) + P(likes | he) + P(to | he likes)
 - + P(drink | he likes to) + P(coffee | he likes to drink)

How to compute:

$$P(X) = \prod_{i=1}^{I} P(\mathbf{x_i} | \mathbf{x_1}, ..., \mathbf{x_{i-1}})$$

Count("he likes to drink coffee")

- = Count(he) * Count(likes | he) * Count(to | he likes)
 - * Count(drink | he likes to)
 - * Count(coffee | he likes to drink)

How to compute:

$$P(X) = \prod_{i=1}^{l} P(\mathbf{x_i} | \mathbf{x_1}, ..., \mathbf{x_{i-1}})$$

- Count ("he likes to drink coffee")

 = Count (he) * Count (likes besite bount (to | he likes)

 * Count (drink bhankes to)

 - * Count(coffee | he likes to drink)

How to compute:

$$P(X) = \prod_{i=1}^{l} P(\mathbf{x_i} | \mathbf{x_1}, ..., \mathbf{x_{i-1}})$$

P(drink | he likes to) ≈ Count(drink | likes to)

P(coffee | he likes to drink) ≈ Count(coffee | to drink)

Ngram Language Model

Calculate Probability of a Sentence

$$P(X) = \prod_{i=1}^{I} P(\mathbf{x_i} | \mathbf{x_{i-n}}, \dots, \mathbf{x_{i-1}})$$
Next word Context (specified window)

P("he likes to drink coffee")

- = P(he) + P(likes | he) + P(to | he likes)
 - + P(drink | likes to) + P(coffee | to drink)

Ngram Language Model

Count and divide

$$P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i)}{c(x_{i-n+1}, \dots, x_{i-1})}$$

Add smoothing to deal with zero counts

$$P(x_i \mid x_{i-n+1}, \dots, x_{i-1}) = \lambda P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) + (1 - \lambda)P(x_i \mid x_{1-n+2}, \dots, x_{i-1})$$

Evaluating Language Model

Log-likelihood:

$$LL(\mathcal{E}_{test}) = \sum_{E \in \mathcal{E}_{test}} \log P(E)$$

Per-word Log Likelihood:

$$WLL(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} \log P(E)$$

Per-word (Cross) Entropy:

$$H(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} -\log_2 P(E)$$

Perplexity:

$$ppl(\mathcal{E}_{test}) = 2^{H(\mathcal{E}_{test})} = e^{-WLL(\mathcal{E}_{test})}$$

Perplexity

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$\sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$

Normalized by number of words

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

Inverse probability of test set

Perplexity

- Maximizing probability = Minimizing perplexity
- What is perplexity in Deep Learning models?

NLLoss =
$$\ln \mathcal{L}(\theta) = -\sum_{i=1}^{n} y_i \ln(\hat{y})$$
 Lower is better!!!

CE = $\mathcal{L}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} y_i \ln(\hat{y})$

Generating text with Ngram LM

While not </s>:

calculate probability of possible next words choose a word from the top N most probable

<context> = "<s> he likes to"

P(drink | <context>) > P(coffee | <context>)

Limitations of Ngram Language Models

- Storage and retrieving ngrams probabilities
- Sparsity and smoothing hacks
- Context windows limits long-distance dependencies
- Frequencies says little about semantics

The Shannon Game

Life is like a box of _____

- Life is too short to miss out on the beautiful things like a double _____
- Science is organized knowledge, wisdom is organized

The Shannon Game

Life is like a box of chocolate

 Life is too short to miss out on the beautiful things like a double cheeseburger

 Science is organized knowledge, wisdom is organized life

Language Model Evaluation

 A language model that can predict the right words, i.e. assign a higher probability to words that occurs is a better model

- Traditionally, LM is evaluated on perplexity
- Perplexity is the inverse probability of the test set, normalized by the number of words

Environment Setup

Open Anaconda Navigator.

Go to the PyTorch installation page, copy the command as per configuration: https://pytorch.org/get-started/locally/

Fire up the terminal in Anaconda Navigator.

Start a Jupyter Notebook.

Download http://bit.ly/ANLP-Session5NgramLM

Import the .ipynb to the Jupyter Notebook

RNN vs N-gram Language Model

N-gram model

RNN with increased complexity

Model	Perplexity
Interpolated Kneser-Ney 5-gram (Chelba et al., 2013)	67.6
RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)	51.3
RNN-2048 + BlackOut sampling (Ji et al., 2015)	68.3
Sparse Non-negative Matrix factorization (Shazeer et al., 2015)	52.9
LSTM-2048 (Jozefowicz et al., 2016)	43.7
2-layer LSTM-8192 (Jozefowicz et al., 2016)	30
Ours small (LSTM-2048)	43.9
Ours large (2-layer LSTM-2048)	39.8

From https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Deep Language Models

Calculate weights/features of context

Based on the weights, compute probabilities

 Optimize weights using gradient descent to minimize errors on probabilities computation

A Neural Probabilistic Language Model

(Bengio et al. 2004)

Figure 1: Neural architecture: $f(i, w_{t-1}, \dots, w_{t-n+1}) = g(i, C(w_{t-1}), \dots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

likes
$$\begin{bmatrix} 2.5 \\ 1.9 \\ 1.3 \\ -0.2 \\ 2.8 \end{bmatrix}$$
 to

to
$$\begin{bmatrix} 1.9 \\ -1.2 \\ 1.3 \\ -0.3 \\ 0.8 \end{bmatrix}$$
 \longrightarrow $tanh(W_1x + b_1) =$

Lookup function

likes
$$\begin{bmatrix} 2.5 \\ 1.9 \\ 1.3 \\ -0.2 \\ 2.8 \end{bmatrix}$$
 to $\begin{bmatrix} 1.9 \\ -1.2 \\ 1.3 \\ -0.3 \\ 0.8 \end{bmatrix}$ — $\underbrace{ \begin{bmatrix} 1.5 \\ -0.7 \\ 1.5 \\ -1.6 \\ 1.4 \end{bmatrix} }_{\text{tanh}(W_1x + b_1)} = \begin{bmatrix} 1.5 \\ -0.7 \\ 1.5 \\ -1.6 \\ 1.4 \end{bmatrix}$

Transform

likes
$$\begin{bmatrix} 2.5 \\ 1.9 \\ 1.3 \\ -0.2 \\ 2.8 \end{bmatrix}$$
 to $\begin{bmatrix} 1.9 \\ -1.2 \\ 1.3 \\ -0.3 \\ 0.8 \end{bmatrix}$ — $\begin{bmatrix} 1.5 \\ -0.7 \\ 1.5 \\ -1.6 \\ 1.4 \end{bmatrix}$

likes
$$\begin{bmatrix} 2.5 \\ 1.9 \\ 1.3 \\ -0.2 \\ 2.8 \end{bmatrix}$$
 to
$$\begin{bmatrix} 1.9 \\ -1.2 \\ 1.3 \\ -0.3 \\ 0.8 \end{bmatrix} \longrightarrow \begin{bmatrix} \tanh(W_1 x + b_1) \end{bmatrix} = \begin{bmatrix} 1.5 \\ -0.7 \\ 1.5 \\ -1.6 \\ 1.4 \end{bmatrix}$$
 Similar context gets similar hidden states

Similar words gets similar vector

Loss Function for Language Models

Loss function on step t is usual cross-entropy between our predicted probability distribution $\hat{y}^{(t)}$, and the true next word $y^{(t)} = x^{(t+1)}$:

$$J^{(t)}(\theta) = CE(\boldsymbol{y}^{(t)}, \hat{\boldsymbol{y}}^{(t)}) = -\sum_{j=1}^{|V|} y_j^{(t)} \log \hat{y}_j^{(t)}$$

Average this to get overall loss for entire training set:

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J^{(t)}(\theta)$$

Deep Language Models

Calculate weights/features of context

Based on the weights, compute probabilities

 Optimize weights using gradient descent to minimize errors on probabilities computation

 When do we stop? If we have softmax as the last layer activation, cost function is most probably?

Cost Function for Neural LM

Negative Log Loss Function (torch.nn.NLLoss)

Maximum Likelihood Estimation (MLE) ==
 Minimize the NLLoss of all sentences

 i.e. Find the parameters that make the sentences in the training data most likely

Tricks to Prevent Overfitting

- Shuffle the input sentences
 - Imagine seeing "Justin Bieber is the best singer, baby, baby, baby, oh" 100x at the start of the corpus...
- Early stopping based on some validation set

Dropout during training

Tricks to Prevent Overfitting

- Shuffle the input sentences
 - Imagine seeing "Justin Bieber is the best singer, baby, baby, baby, oh" 100x at the start of the corpus...
- Early stopping based on some validation set

Dropout during training

Mini-batching makes training much faster

Mini-batching

Operations w/o Minibatching

Operations with Minibatching

Summary

LM + RNN Knowledge Checklist

Language Modelling

- LM is predicting the next word given history
- Negative Log Loss as cost function for simple LM
- Shuffle data, stop early on validation set, always dropout

Recurrent Neural Nets

(Almost) Everything is a Sequence in Language

- Natural language is full of sequential data
- Word == sequence of characters
- Sentence == sequence of words
- Dialog/Discourse == sequence of sentences

Recurrent Neural Net (RNN)

(Input + Prev_Hidden) -> Hidden -> Output

Recurrent Neural Net (RNN)


```
(Input + Empty_Hidden) -> Hidden -> Output
(Input + Prev_Hidden) -> Hidden -> Output
(Input + Prev_Hidden) -> Hidden -> Output
(Input + Prev_Hidden) -> Hidden -> Output
```

Feed-Forward Neural Nets


```
x = torch.tensors([0,14,29,...])
Context/Input
           embedding = nn.Embedding()
  Lookup
           embed = embedding(x)
            lin = nn.Linear()
 Transform
            prediction = lin(embed)
           x = torch.max(prediction)
  Label
```

Feed-Forward Neural Nets


```
Context/Input x = torch.tensors([0, 14, 29, ...])
  Lookup
            model = nn.Sequential(...)
            prediction = model(x)
 Transform
            x = torch.max(prediction)
  Label
```

PyTorch RNNCell Module

RNNCell

[SOURCE]

An Elman RNN cell with tanh or ReLU non-linearity.

$$h'= anh(w_{ih}x+b_{ih}+w_{hh}h+b_{hh})$$

If nonlinearity is 'relu', then ReLU is used in place of tanh.

Parameters: • input_size – The number of expected features in the input x

- **hidden_size** The number of features in the hidden state h
- **bias** If False, then the layer does not use bias weights *b_ih* and *b_hh*.

Default: True

• **nonlinearity** – The non-linearity to use. Can be either 'tanh' or 'relu'.

Default: 'tanh'

Semi Hand-rolled Recurrent Neural Nets (RNN)


```
Context/Input
   Lookup
  Transform
       Label
```

```
x = torch.tensors([0,14,29,...])
embedding = nn.Embedding()
model = nn.Sequential(...)
rnn = nn.RNNCell()
hiddens = []
for x i in x:
  embed = embedding(x i)
  hiddens.append(rnn(embed))
prediction = model(hiddens.flatten())
x = torch.max(prediction)
```

Recurrent Neural Nets (RNN) with PyTorch


```
Context/Input x = torch.tensors([0, 14, 29, ...])
  Lookup
             model = nn.Sequential(
                      nn.Embedding, nn.RNN,
                      nn.Linear, nn.ReLU)
 Transform
             prediction = model(x)
             x = torch.max(prediction)
     Label
```

RNN: Unrolling in Time

Sequence Predictions

Token Tagging

 RNN generates a prediction per token, so we can do most NLP annotations where each token comes with their respective tag, e.g. POS, NER, etc.

Sequence Tagging

Sequence Tagging

Sequence Predictions

Token Tagging

 RNN generates a prediction per token, so we can do most NLP annotations where each token comes with their respective tag, e.g. POS, NER, etc.

Sentence/Text Classification

 Put the end or aggregate of the hidden layer(s) under Softmax to produce probabilistic classifier

Text Classification

Text Classification

Sequence Predictions

Token Tagging

 RNN generates a prediction per token, so we can do most NLP annotations where each token comes with their respective tag, e.g. POS, NER, etc.

Sentence/Text Classification

 Put the end or aggregate of the hidden layer(s) under Softmax to produce probabilistic classifier

Sequence Generation

 Using the previous hidden layer as input to predict the next most probable word

Summary

LM + RNN Knowledge Checklist

Language Modelling

- LM is predicting the next word given history
- Negative Log Loss as cost function for simple LM
- Shuffle data, stop early on validation set, always dropout

Recurrent Neural Net

- Treat each word as a "layer" that needs its own weights
- Pass hidden layer from previous to next word
- Predict at each time step or at the end

References (for generation)

Reference Code for Generation

- Character RNN Generation (PyTorch Docs)
 - https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html
- Character RNN Generation (NLP for PyTorch)
 - https://github.com/joosthub/PyTorchNLPBook/tree/master/chapters/chapte
 r_7/7_3_surname_generation

- Spro's Char RNN
 - https://github.com/spro/practical-pytorch/tree/master/char-rnn-generation

Fin