CourseraDeepLearning

April 26, 2018

Contents

1	week1						
	1.1	logistic regression	1				
	1.2		2				
	1.3	logistic regression gradient descent	2				
	1.4	vectorization	2				
2	week2						
	2.1	neural network representation	3				
	2.2	Activation function	4				
	2.3		5				
3	Week3						
	3.1	Deep neural network notation	6				
	3.2	Circuit theory and deep learning	6				
4	Wee	$\mathrm{ek4}$	6				
	4.1	Bias and variance	6				
	4.2		7				
	4.3		7				
	4.4	_	8				
	%#-	+header: :file (by-backend (html "tree.svg") (t 'nil)) %#+heade	r				
:in		nagick					

1 week1

1.1 logistic regression

the output of y in supervised learning problem are either zero or 1

- given $x \in \mathbb{R}^{n_x}$, want $\hat{y} = p(y = 1 \mid x)$, parameters $w \in \mathbb{R}^{n_x}$, $b \in \mathbb{N}$ output $\hat{y} = \sigma(w^t x + b)$, $\sigma(z) = \frac{1}{1 + e^{-z}}$. training example: $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$, want $\hat{y}^{(i)} \approx y^{(i)}$
 - loss function measure how good \hat{y} is when the true label is y $\boldsymbol{l}(\hat{y}, y) = -(y\log\hat{y} + (1-y)\log(1-\hat{y}))$ if y = 1, $\boldsymbol{l} = -\log\hat{y}$, want \hat{y} large if y = 0, $\boldsymbol{l} = -\log(1-\hat{y})$, want \hat{y} small

cost function entire training set measures how well we're doing an entire training set $j(w,b) = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{l}(\hat{y}^{(i)}, y^{(i)})$

1.2 gradient descent

- want to find w, b that minimize j(w, b)
- $w := w \alpha \frac{\partial j(w,b)}{\partial w}$

1.3 logistic regression gradient descent

$$\begin{split} \frac{\partial \boldsymbol{l}(a,y)}{\partial a} &= -\frac{y}{a} + \frac{1-y}{1-a} \\ \frac{\partial a}{\partial z} &= \frac{-e^{-x}}{(1+e^{-x})^2} = a(1-a) \\ \frac{\partial \boldsymbol{l}(a,y)}{\partial z} &= a(1-a)(-\frac{y}{a} + \frac{1-y}{1-a}) = a-y \end{split}$$

1.4 vectorization

simd single instantion multiple data

2 week2

2.1 neural network representaion

• 2 layer nn

$$\begin{split} z_1^{[1]} &= w_1^{[1]t} x + b_1^{[1]} \quad a_1^{[1]} = \sigma(z_1^{[1]}) \\ z_2^{[1]} &= w_2^{[1]t} x + b_2^{[1]} \quad a_2^{[1]} = \sigma(z_2^{[1]}) \\ z_3^{[1]} &= w_3^{[1]t} x + b_3^{[1]} \quad a_3^{[1]} = \sigma(z_3^{[1]}) \\ z_4^{[1]} &= w_4^{[1]t} x + b_4^{[1]} \quad a_4^{[1]} = \sigma(z_4^{[1]}) \\ z^{[2]} &= w^{[2]t} a^{[1]} + b^{[2]} \quad a^{[2]} = \sigma(z^{[2]}) \end{split}$$

$$\begin{pmatrix} | & | & \cdots & | \\ x^{(1)} & x^{(2)} & \cdots & x^{(n)} \\ | & | & \cdots & | \end{pmatrix}$$

2.2 Activation function

- \bullet sigmoid function
- hypobolic tangent function

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - (tanh(z))^2$$

 \bullet rectified linear unit

- Leaky ReLU
- sigmoid function: never use except for output
- \bullet tanh is better
- ReLU: commonly used

2.3 Random initialization

if w is 0 $a_1^{[1]}$ will be the same as $a_2^{[1]}$

3 Week3

3.1 Deep neural network notation

l is the

\$l\$th layer $n^{[l]} = \#units$ in layer l $a^{[l]} = g^{[l]}(z^{[l]})$ is activations in l

3.2 Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute

4 Week4

4.1 Bias and variance

Train set error	1%	15%	15%	1%
Dev set error	11%	16%	30%	0.5%
	high variance	high bias	high bias and variance	low

4.2 Basic recipe for machine learning

4.3 Regularization

$$\textbf{L2 regulation-logistic regression} \ \ \mathcal{J}(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)},y^{(i)}) + \frac{\lambda}{2m} ||w||_2^2$$

 λ is regularation parameter

$$\mathbf{neural\ network} \quad \bullet \ \mathcal{J}(w^{[1]}, b^{[1]}, \dots, w^{[L]}, b^{[L]}) = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||w^{[l]}||_F^2$$

Frobenius norm
$$-||w^{[l]}||^2 = \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} (w_{ij}^{[l]})^2$$

 $-dw^{[l]} = \cdots + \frac{\lambda}{m} w^{[l]}$

- Why regularation If we set $\lambda \to \text{big enough}$, the frobenius norm may tend to approach to 0, which will make some $w^{[l]}$ to be 0 as if hidden layer become just logistic regression, thus overfit may change to just right or high bias.
 - If we use tanh as activation function, $\lambda \uparrow$, $w^{[l]} \downarrow$, $z^{[l]} = w^{[l]}a^{[l-1]} + b^{[l]} \downarrow$, notice in tanh, when $z \to 0$, it tends to be linear function, thus handle the overfitting problem

dropout regulation

implementing dropout

Intuition • Can't rely on any one feature, so have to spread out weights since they can go away randomly

other methods • data augmentation i.e. picture : flip, rotate

• early stopping

4.4 Setting up your optimization problem

- normalizing inputs
- vanishing / exploding gradients
- Weight initialization for deep networks

• Gradient check for a neural network Take $W^{[1]}, b^{[1]}, \ldots, W^{[L]}, b^{[L]}$ and reshape into a big vector θ $\mathcal{J}(W^{[1]}, b^{[1]}, \ldots, W^{[L]}, b^{[L]}) = \mathcal{J}(\theta)$ Take $dW^{[1]}, db^{[1]}, \ldots, dW^{[L]}, db^{[L]}$ into $d\theta$ Now does $d\theta$ is the gradient of $\mathcal{J}(\theta)$

- for each i $d\theta_{approx}[i] = \frac{\mathcal{J}(\theta_1,\dots,\theta_i+\epsilon,\dots)-\mathcal{J}(\theta_1,\dots,\theta_i+\epsilon,\dots)}{2\epsilon} \approx \theta[i]$
- Check $\frac{||d\theta_{approx} d\theta||_2}{||d\theta_{approx}||_2 ||d\theta||_2}$
- don't use in training only in debug