

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : A61N 1/37, 1/39		A1	(11) International Publication Number: WO 00/41766 (43) International Publication Date: 20 July 2000 (20.07.00)
<p>(21) International Application Number: PCT/US00/00928</p> <p>(22) International Filing Date: 14 January 2000 (14.01.00)</p> <p>(30) Priority Data: 09/231,570 14 January 1999 (14.01.99) US</p> <p>(71) Applicant (<i>for all designated States except US</i>): THE MOWER FAMILY CHF TREATMENT IRREVOCABLE TRUST [US/US]; Suite 501, Two East Fayette Street, Baltimore, MD 21202 (US).</p> <p>(72) Inventor; and</p> <p>(75) Inventor/Applicant (<i>for US only</i>): MOWER, M., D., Morton, M. [US/US]; 3908 North Charles Street #1001, Baltimore, MD 21218 (US).</p> <p>(74) Agents: ROBERTS, Jon, L. et al.; Roberts Abokhair & Mardula, LLC, Suite 1000, 11800 Sunrise Valley Drive, Reston, VA 20191-5302 (US).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published</p> <p><i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>	
<p>(54) Title: ANTITACHYCARDIAL PACING</p> <p>(57) Abstract</p> <p>Protocols for antitachycardial pacing including biphasic stimulation administered at, or just above, the diastolic depolarization threshold potential; biphasic or conventional stimulation initiated at, or just above, the diastolic depolarization threshold potential, reduced, upon capture, to below threshold; and biphasic or conventional stimulation administered at a level set just below the diastolic depolarization threshold potential. These protocols result in reliable cardiac capture with a lower stimulation level, thereby causing less damage to the heart, extending battery life, causing less pain to the patient and having greater therapeutic effectiveness. In those protocols using biphasic cardiac pacing, a first and second stimulation phase is administered. The first stimulation phase has a predefined polarity, amplitude and duration. The second stimulation phase also has a predefined polarity, amplitude and duration. The two phases are applied sequentially. Contrary to current thought, anodal stimulation is first applied and followed by cathodal stimulation. In this fashion, pulse conduction through the cardiac muscle is improved together with the increase in contractility.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Title: ANTITACHYCARDIAL PACING

-2 Inventor: Morton M. Mower, M.D.

3 **Field of the Invention**

4 The present invention relates generally to implantable cardioverter/defibrillator with
5 antitachycardial pacing capabilities and/or a method of such pacing.

6 **Background of the Invention**

The typical implantable cardioverter/defibrillator (ICD) delivers an initial electrical countershock within ten to twenty seconds of arrhythmia onset, thereby saving countless lives. Improved devices have antitachycardia pacing capabilities in addition to cardioverting/defibrillating functions. These ICDs are capable of different initial responses to one or more tachycardia as well as a programmable sequence of responses to a particular arrhythmia.

The output energy level is generally set by a physician in accordance with a patient's capture threshold, determined at the time of heart implantation. This threshold represents the minimum pacing energy required to reliably stimulate a patient's heart. However, due to trauma associated with the stimulation, scar tissue grows at the interface between the implanted cardiac pacer leads and the myocardium. This scar tissue boosts the patient's capture threshold. To insure reliable cardiac capture, the output energy level is thus generally set at a level which is a minimum of two times greater than the initially measured capture threshold. A drawback to such an approach is that the higher stimulation level causes more trauma to the cardiac tissue than would a lower level of stimulation, and hence promotes the formation of scar tissue, thereby boosting the capture threshold.

The higher stimulation level also shortens battery life. This is not desirable, as a

shorter battery life necessitates more frequent surgery to implant fresh batteries.

Another drawback is the potential for patient discomfort associated with this higher stimulation level. This is because the higher stimulation level can stimulate the phrenic or diaphragmatic plexus or cause intercostal muscle pacing.

Lastly, the higher stimulation is less effective, due to entry block.

A need therefore exists for an ICD that can achieve reliable cardiac capture with a lower stimulation level, thereby causing less damage to the heart, extending battery life, causing less pain to the patient and having greater therapeutic effectiveness than current ICDs. A need also exists for an ICD that can better entrain the heart and can entrain portions of the heart from a greater distance.

Summary of the Invention

It therefore is an object of the present invention to provide an ICD with antitachycardial pacing capabilities, wherein the stimulation is administered with a voltage either at, just above, or just below the diastolic depolarization threshold potential.

It is another object of the present invention to sense whether cardiac capture has occurred, and if not, to administer additional stimulation.

It is another object of the present invention to provide the additional stimulation at a slightly higher voltage level than that level of stimulation which resulted in no capture.

It is another object of the present invention to repeat the stimulation - sensing cycle until cardiac capture has occurred.

It is another object of the present invention to provide stimulation using a biphasic waveform

The present invention accomplishes the above objectives by providing an implantable cardioverter-defibrillator with a unique constellation of features and capabilities. Protocols

1 disclosed include:

- 2 1/ biphasic stimulation administered at, or just above, the diastolic depolarization
3 threshold potential;
- 4 2/ biphasic or conventional stimulation initiated at, or just above, the diastolic
5 depolarization threshold potential, reduced, upon capture, to below threshold; and
- 6 3/ biphasic or conventional stimulation administered at a level set just below the
7 diastolic depolarization threshold potential.

8 As mentioned, the antitachycardial pacing protocols of the present invention can be
9 used in conjunction with biphasic pacing. The method and apparatus relating to biphasic
10 pacing comprises a first and second stimulation phase, with each stimulation phase having a
11 polarity, amplitude, shape, and duration. In a preferred embodiment, the first and second
12 phases have differing polarities. In one alternative embodiment, the two phases are of
13 differing amplitude. In a second alternative embodiment, the two phases are of differing
14 duration. In a third alternative embodiment, the first phase is in a chopped wave form. In a
15 fourth alternative embodiment, the amplitude of the first phase is ramped. In a fifth
16 alternative embodiment the first phase is administered over 200 milliseconds after completion
17 of a cardiac beating/pumping cycle. In a preferred alternative embodiment, the first phase of
18 stimulation is an anodal pulse at maximum subthreshold amplitude for a long duration, and
19 the second phase of stimulation is a cathodal pulse of short duration and high amplitude. It is
20 noted that the aforementioned alternative embodiments can be combined in differing
21 fashions. It is also noted that these alternative embodiments are intended to be presented by
22 way of example only, and are not limiting.

23 Enhanced myocardial function is obtained through the biphasic pacing of the present
24 invention. The combination of cathodal with anodal pulses of either a stimulating or

1 conditioning nature, preserves the improved conduction and contractility of anodal pacing
2 while eliminating the drawback of increased stimulation threshold. The result is a
3 depolarization wave of increased propagation speed. This increased propagation speed
4 results in superior cardiac contraction leading to an improvement in blood flow and in
5 increased access to reentrant circuits. Improved stimulation at a lower voltage level also
6 results in reduction in scar tissue buildup thereby reducing the tendency of the capture
7 threshold to rise; reduction in power consumption leading to increased life for pacemaker
8 batteries; and decreased pain to the patient.

Brief Description of the Drawings

Figs. 1A-1C illustrate examples of methodologies for treating arrhythmias.

Fig. 2 illustrates a schematic representation of leading anodal biphasic stimulation.

Fig. 3 illustrates a schematic representation of leading cathodal biphasic stimulation.

Fig. 4 illustrates a schematic representation of leading anodal stimulation of low level and long duration, followed by conventional cathodal stimulation.

Fig. 5 illustrates a schematic representation of leading anodal stimulation of ramped low level and long duration, followed by conventional cathodal stimulation.

Fig. 6 illustrates a schematic representation of leading anodal stimulation of low level and short duration, administered in series followed by conventional cathodal stimulation.

Fig. 7 illustrates an implantable cardioverter/defibrillator useable for implementing embodiments of the present invention.

Description of the Preferred Embodiments

22 The present invention relates to the use of antitachycardial pacing to break up
23 arrhythmia in the atrium. Figs. 1A through 1C illustrate examples of methodologies for
24 treating arrhythmias.

1 **Fig. 1A** illustrates a first methodology. Here, a sensor senses the onset of arrhythmia-
2 **102.** In a preferred embodiment, this sensor comprises an antitachycardial pacing algorithm.
3 Biphasic stimulation is then administered **104.** In varying embodiments, this stimulation is
4 either at, or just above the diastolic depolarization threshold. The ICD determines whether
5 capture has occurred **106.** If capture has not occurred, then stimulation continues at a slightly
6 higher level **108.** This stimulation - capture check - boost stimulation cycle continues until
7 capture occurs. If capture has occurred, then stimulation is continued for a predetermined
8 period of time **110.** In a preferred embodiment, stimulation is administered as long as the
9 arrhythmia persists.

10 In a preferred embodiment, stimulation pulses are administered at 80 to 100 percent of
11 the intrinsic rate with an approximately one to two second pause between each set of
12 stimulation pulses. Then either the number of pulses increases, or the timing between pulses
13 is adjusted. For example, in a preferred embodiment, the first pulse sequence can be at 80
14 percent of the intrinsic heart rate, the second pulse sequence at 82 percent, the third pulse
15 sequence at 84 percent, and so on. In a preferred embodiment a plurality of feedback loops
16 provide data such that the voltage can be adjusted to constantly skirt the capture threshold.
17 Stimulation is continued until the rhythm reverts.

18 **Fig. 1B** illustrates a second methodology. Here, a sensor senses the onset of
19 arrhythmia **112.** In varying embodiments of the second method, either biphasic or
20 conventional stimulation is then administered **114.** This stimulation level is set at or just
21 above the diastolic depolarization threshold potential. The ICD determines whether capture
22 has occurred **116.** If capture has not occurred, then stimulation continues at a slightly higher
23 level **118.** This stimulation - capture check - boost stimulation cycle continues until capture
24 occurs. If capture has occurred, then stimulation is gradually and continuously reduced to

1 below threshold, and continued 120. Then, if capture is lost, the stimulation is raised to a
2 slightly higher level and is again gradually and continuously reduced. This entire sequence is
3 repeated, such that the stimulation level hovers as close as possible to the lowest stimulation
4 level which provides capture. Stimulation continues until the rhythm reverts, for example,
5 when the antitachycardial pacing algorithm determines that pacing is no longer necessary.

6 **Fig. 1C** illustrates a third methodology. Here, a sensor senses the onset of arrhythmia
7 122. In varying embodiments of the third method, either biphasic or conventional stimulation
8 is then administered 124. This stimulation level is set just below the diastolic depolarization
9 threshold potential. The ICD determines whether capture has occurred 126. If capture has
10 not occurred, then stimulation continues at a slightly higher level 128. This stimulation -
11 capture check - boost stimulation cycle continues until capture occurs. If capture has
12 occurred, then stimulation is continued at below threshold level 130. If capture is lost then
13 the stimulation is raised to a slightly higher level and is gradually and continuously reduced.
14 This entire sequence is repeated, such that the stimulation level hovers as close as possible to
15 the lowest stimulation level which provides capture. Stimulation continues until the rhythm
16 reverts, for example, when the antitachycardial pacing algorithm determines that pacing is no
17 longer necessary.

18 Sensing

19 Sensing can be direct or indirect. For example, direct sensing can be based on data
20 from sensing electrodes. The ICD of the present invention includes sensing
21 circuits/electronics to sense an arrhythmia through one or more sensing and/or stimulating
22 electrodes. The sensing electronics sense the cardiac activity as depicted by electrical signals.
23 For example, as is known in the art, R-waves occur upon the depolarization of ventricular
24 tissue and P-waves occur upon the depolarization of atrial tissue. By monitoring these

1 electrical signals the control/timing circuit of the ICD can determine the rate and regularity of
2 the patient's heart beat, and thereby determine whether the heart is undergoing arrhythmia.
3 This determination can be made by determining the rate of the sensed R-waves and/or P-
4 waves and comparing this determined rate against various reference rates.

5 Direct sensing can be based upon varying criteria; such as, but not limited to, primary
6 rate, sudden onset, and stability. The sole criteria of a primary rate sensor is the heart rate.
7 When applying the primary rate criteria, if the heart rate should exceed a predefined level,
8 then treatment is begun. Sensing electronics set to sudden onset criteria ignore those changes
9 which occur slowly, and initiate treatment when there is a sudden change such as immediate
10 paroxysmal arrhythmia. This type of criteria would thus discriminate against sinus
11 tachycardia. Stability of rate can also be an important criteria. For example, treatment with a
12 ventricular device would not be warranted for a fast rate that varies, here treatment with an
13 atrial device would be indicated.

14 In alternative embodiments, sensing can be indirect. Indirect sensing can be based on
15 any of various functional parameters such as arterial blood pressure, rate of the
16 electrocardiogram deflections or the probability density function (pdf) of the
17 electrocardiogram. For example, whether or not to administer treatment can also be affected
18 by pdf monitoring of the time the signal spends around the baseline.

19 Sensing can also be augmented by stimulating the atria and observing and measuring
20 the consequent effects on atrial and ventricular function.

21 Thus, in a preferred embodiment, sensing electronics are based upon multiple criteria.
22 In addition, the present invention envisions devices working in more than one chamber such
23 that appropriate treatment can be administered to either the atrium or the ventricle in response
24 to sensing electronics based upon a variety of criteria, including those described above as well

1 as other criteria known to those skilled in the art.

2 **Stimulation**

3 Electrical stimulation is delivered via lead(s) or electrode(s). These leads can be
4 epicardial (external surface of the heart) or endocardial (internal surface of the heart) or any
5 combination of epicardial and endocardial. Leads are well known to those skilled in the art;
6 see, for example, United States Patent Nos. 4662377 to Heilman et al., 4481953 to Gold et
7 al., and 4010758 to Rockland et al., each of which is herein incorporated by reference in its
8 entirety.

9 Lead systems can be unipolar or bipolar. A unipolar lead has one electrode on the
10 lead itself, the cathode. Current flows from the cathode, stimulates the heart, and returns to
11 the anode on the casing of the pulse generator to complete the circuit. A bipolar lead has two
12 poles on the lead a short distance from each other at the distal end, and both electrodes lie
13 within the heart.

14 With the reference to Fig. 7, an exemplary system by which the present invention may
15 be embodied is illustrated. An automatic implantable cardioverter/defibrillator 2 is implanted
16 within the body of the patient and has a pair of output terminals, an anode 4 and a cathode 6.
17 The ICD 2 is coupled to a flexible catheter electrode arrangement 8 having a distal electrode
18 10 and a proximal electrode 12, each associated with the patient's heart. Other electrode
19 configurations may be employed, such as ring-type electrodes. As for external electrodes, an
20 anodal electrode 24 may be employed. The automatic ICD 2 includes sensing and detecting
21 circuitry, as well as pulse generating circuitry, the output of the latter being coupled to the
22 implantable electrodes 10, 12. The ICD 2 senses an arrhythmic condition of the heart and, in
23 response thereto, issues or emits cardioverting or defibrillating pulses to the heart, through the
24 implantable electrodes 10, 12.

1 The catheter electrode **8** is inserted intravenously to a position such that the distal
2 electrode **10** is positioned in the right ventricular apex **14** of the heart and the proximal
3 electrode **12** is positioned in the superior vena cava region **16** of the heart. It should be
4 appreciated that, as the term is used herein, the superior vena cava **16** may also include
5 portions of the right atrium **18**.

6 Conventional stimulation is well known to those skilled in the art and comprises
7 monophasic waveforms (cathodal or anodal) as well as multiphasic waveforms wherein the
8 nonstimulating pulses are of a minimal magnitude and are used, for example, to dissipate a
9 residual charge on an electrode.

10 **Figs. 2 through 6** depict a range of biphasic stimulation protocols. These protocols
11 have been disclosed in United States Patent Application No. 08/699,552 to Mower, which is
12 herein incorporated by reference in its entirety.

13 **Fig. 2** depicts biphasic electrical stimulation wherein a first stimulation phase
14 comprising anodal stimulus **102** is administered having amplitude **104** and duration **106**.
15 This first stimulation phase is immediately followed by a second stimulation phase
16 comprising cathodal stimulation **108** of equal intensity and duration.

17 **Fig. 3** depicts biphasic electrical stimulation wherein a first stimulation phase
18 comprising cathodal stimulation **202** having amplitude **204** and duration **206** is administered.
19 This first stimulation phase is immediately followed by a second stimulation phase
20 comprising anodal stimulation **208** of equal intensity and duration.

21 **Fig. 4** depicts a preferred embodiment of biphasic stimulation wherein a first
22 stimulation phase, comprising low level, long duration anodal stimulation **302** having
23 amplitude **304** and duration **306**, is administered. This first stimulation phase is immediately

1 followed by a second stimulation phase comprising cathodal stimulation **308** of conventional
2 intensity and duration. In differing alternative embodiments, anodal stimulation **302** is: 1) at
3 maximum subthreshold amplitude; 2) less than three volts; 3) of a duration of
4 approximately two to eight milliseconds; and/or 4) administered over 200 milliseconds post
5 heart beat. Maximum subthreshold amplitude is understood to mean the maximum
6 stimulation amplitude that can be administered without eliciting a contraction. In a preferred
7 embodiment, anodal stimulation is approximately two volts for approximately three
8 milliseconds duration. In differing alternative embodiments, cathodal stimulation **308** is: 1)
9 of a short duration; 2) approximately 0.3 to 1.5 milliseconds; 3) of a high amplitude; 4) in
10 the approximate range of three to twenty volts; and/or 5) of a duration less than 0.3
11 millisecond and at a voltage greater than twenty volts. In a preferred embodiment, cathodal
12 stimulation is approximately six volts administered for approximately 0.4 millisecond. In the
13 manner disclosed by these embodiments, as well as those alterations and modifications which
14 can become obvious upon the reading of this specification, a maximum membrane potential
15 without activation is achieved in the first phase of stimulation.

16 **Fig. 5** depicts an alternative preferred embodiment of biphasic stimulation wherein a
17 first stimulation phase, comprising anodal stimulation **402**, is administered over period **404**
18 with rising intensity level **406**. The ramp of rising intensity level **406** can be linear or non-
19 linear, and the slope can vary. This anodal stimulation is immediately followed by a second
20 stimulation phase comprising cathodal stimulation **408** of conventional intensity and duration.
21 In alternative embodiments, anodal stimulation **402**: (1) rises to a maximum subthreshold
22 amplitude less than three volts; (2) is of a duration of approximately two to eight
23 milliseconds; and/or (3) is administered over 200 milliseconds post heart beat. In yet other
24 alternative embodiments, cathodal stimulation **408** is: (1) of a short duration; (2)

1 approximately 0.3 to 1.5 milliseconds; (3) of a high amplitude; (4) in the approximate range
2 of three to twenty volts; and/or (5) of a duration less than 0.3 milliseconds and at a voltage
3 greater than twenty volts. In the manner disclosed by these embodiments, as well as those
4 alterations and modifications which can become obvious upon the reading of this
5 specification, a maximum membrane potential without activation is achieved in the first
6 phase of stimulation.

7 **Fig. 6** depicts biphasic electrical stimulation wherein a first stimulation phase,
8 comprising series 502 of anodal pulses, is administered at amplitude 504. In one
9 embodiment, rest period 506 is of equal duration to stimulation period 508, and is
10 administered at baseline amplitude. In an alternative embodiment, rest period 506 is of a
11 differing duration than stimulation period 508, and is administered at baseline amplitude.
12 Rest period 506 occurs after each stimulation period 508, with the exception that a second
13 stimulation phase, comprising cathodal stimulation 510 of conventional intensity and
14 duration, immediately follows the completion of series 502. In alternative embodiments: (1)
15 the total charge transferred through series 502 of anodal stimulation is at the maximum
16 subthreshold level; and/or (2) the first stimulation pulse of series 502 is administered over
17 200 milliseconds post heart beat. In yet other alternative embodiments, cathodal stimulation
18 510 is: (1) of a short duration; (2) approximately 0.3 to 1.5 milliseconds; (3) of a high
19 amplitude; (4) in the approximate range of three to twenty volts, and/or (5) of a duration less
20 than 0.3 milliseconds and at a voltage greater than twenty volts.

21 Determining Cardiac Capture

22 Capture can be determined by multiple means. First, capture or the loss thereof, can
23 be determined by monitoring cardiac rhythm. Loss of capture can result in a change in timing
24 of the heart beat.

1 Second, capture can be monitored through the development of a template. The
2 template can be based on parameters such as electrocardiogram data, mechanical motion
3 and/or probability density function data. Where the template is established pre-stimulation, a
4 change in the baseline signifies capture. Where the template is established after capture has
5 occurred, a change in the template characteristics signifies loss of capture. The templates can
6 be established and/or updated at any time.

7 Once capture occurs the stimulation protocol of the entrained sites is adjusted as
8 illustrated by Figs. 1A through 1C.

9 Having thus described the basic concept of the invention, it will be readily apparent to
10 those skilled in the art that the foregoing detailed disclosure is intended to be presented by
11 way of example only, and is not limiting. Various alterations, improvements and
12 modifications will occur and are intended to those skilled in the art, but are not expressly
13 stated herein. These modifications, alterations and improvements are intended to be
14 suggested hereby, and within the scope of the invention. Further, the pacing pulses described
15 in this specification are well within the capabilities of existing pacemaker electronics with
16 appropriate programming. Accordingly, the invention is limited only by the following claims
17 and equivalents thereto.

1 What is claimed is:

2 1. An implantable cardioverter-defibrillator (ICD), the ICD comprising:
3 sensing means for sensing the onset of arrhythmia;
4 output means for delivering, in response to the sensing means, electrical stimulation
5 of a predetermined polarity, amplitude, shape and duration to cause application of biphasic
6 stimulation at a first intensity level selected from the group consisting of: at the diastolic
7 depolarization threshold, below the diastolic depolarization threshold, and above the diastolic
8 depolarization threshold; and

9 means for determining whether capture has occurred;

10 wherein biphasic stimulation comprises:

11 a first stimulation phase with a first phase polarity, a first phase amplitude,
12 a first phase shape and a first phase duration; and
13 a second stimulation phase with a second phase polarity, a second phase
14 amplitude, a second phase shape and a second phase duration.

15 2. The ICD as in claim 1, wherein in the event that the means for determining
16 determines that capture has not occurred, the output means increases the stimulation intensity
17 level by predefined increments until capture occurs.

18 3. The ICD as in claim 1, wherein in the event that the means for determining
19 determines that capture has occurred, the output means continues biphasic stimulation for a
20 predetermined period of time.

21 4. The ICD as in claim 1, wherein in the event that the means for determining
22 determines that capture has occurred, the output means halts biphasic stimulation.

23 5. The ICD as in claim 1, wherein the first phase polarity is positive.

24 6. The ICD as in claim 1, wherein the first phase amplitude is less than the second

1 phase amplitude.

2 7. The ICD as in claim 1, wherein the first phase amplitude is ramped from a baseline
3 value to a second value.

4 8. The ICD as in claim 7, wherein the second value is equal to the second phase
5 amplitude.

6 9. The ICD as in claim 7, wherein the second value is at a maximum subthreshold
7 amplitude.

8 10. The ICD as in claim 9, wherein the maximum subthreshold amplitude is about 0.5
9 to 3.5 volts.

10 11. The ICD as in claim 7, wherein the first phase duration is at least as long as the
11 second phase duration.

12 12. The ICD as in claim 7, wherein the first phase duration is about one to nine
13 milliseconds.

14 13. The ICD as in claim 7, wherein the second phase duration is about 0.2 to 0.9
15 milliseconds.

16 14. The ICD as in claim 7, wherein the second phase amplitude is about two volts to
17 twenty volts.

18 15. The ICD as in claim 7, wherein the second phase duration is less than 0.3
19 milliseconds and the second phase amplitude is greater than 20 volts.

20 16. The ICD as in claim 1, wherein the first stimulation phase further comprises a
21 series of stimulating pulses of a predetermined amplitude, polarity and duration.

22 17. The ICD as in claim 16, wherein the first stimulation phase further comprises a
23 series of rest periods.

24 18. The ICD as in claim 17, wherein applying the first stimulation phase further

1 comprises applying a rest period of a baseline amplitude after at least one stimulating pulse.

2 **19.** The ICD as in claim 18, wherein the rest period is of equal duration to the
3 duration of the stimulating pulse.

4 **20.** The ICD as in claim 1, wherein the first phase amplitude is at a maximum
5 subthreshold amplitude.

6 **21.** The ICD as in claim 20, wherein the maximum subthreshold amplitude is about
7 0.5 to 3.5 volts.

8 **22.** The ICD as in claim 1, wherein the first phase duration is at least as long as the
9 second phase duration.

10 **23.** The ICD as in claim 1, wherein the first phase duration is about one to nine
11 milliseconds.

12 **24.** The ICD as in claim 1, wherein the second phase duration is about 0.2 to 0.9
13 milliseconds.

14 **25.** The ICD as in claim 1, wherein the second phase amplitude is about two volts to
15 twenty volts.

16 **26.** The ICD as in claim 1, wherein the second phase duration is less than 0.3
17 milliseconds and the second phase amplitude is greater than 20 volts.

18 **27.** The ICD as in claim 1, wherein the first stimulation phase is initiated greater than
19 200 milliseconds after completion of a cardiac beating cycle.

20 **28.** A method of operating an implantable cardioverter-defibrillator (ICD), the ICD
21 having output means for delivering electrical stimulation of a predetermined polarity,
22 amplitude, shape and duration, the method comprising:

23 sensing the onset of arrhythmia;

24 applying stimulation selected from the group consisting of biphasic stimulation and

1 conventional stimulation at a first intensity level selected from the group consisting of at the
2 diastolic depolarization threshold, below the diastolic depolarization threshold or above the
3 diastolic depolarization threshold;

4 determining whether capture has occurred;

5 increasing the stimulation intensity level by predefined increments until capture does
6 occurs; and upon capture,

7 continuing stimulation selected from the group consisting of biphasic stimulation and
8 conventional stimulation at a second intensity level below the diastolic depolarization
9 threshold.

10

11 29. A method of operating an implantable cardioverter-defibrillator (ICD), the
12 ICD having output means for delivering electrical stimulation of a predetermined polarity,
13 amplitude, shape and duration, the method comprising:

14 defining a first stimulation phase with a positive polarity, a first phase amplitude, a
15 first phase shape and a first phase duration, wherein said first phase amplitude is about 0.5 to
16 3.5 volts, wherein said first phase duration is about one to nine milliseconds and wherein said
17 first stimulation phase is initiated greater than 200 milliseconds after completion of a cardiac
18 beating cycle;

19 defining a second phase with a negative polarity, a second phase amplitude, a second
20 phase shape and a second phase duration, wherein said second phase amplitude is about four
21 volts to twenty volts and wherein said second phase duration is about 0.2 to 0.9 milliseconds;
22 and

23 sensing the onset of arrhythmia;

24 applying the first stimulation phase and the second stimulation phase in sequence to

1 the cardiac tissue;
2 determining whether capture has occurred; and
3 increasing the stimulation intensity level by predefined increments until capture
4 occurs.

5 **30.** A method of operating an implantable cardioverter-defibrillator (ICD), the
6 ICD having output means for delivering electrical stimulation of a predetermined polarity,
7 amplitude, shape and duration, the method comprising:
8 sensing the onset of arrhythmia;
9 applying biphasic stimulation at a first intensity level selected from the group
10 consisting of at the diastolic depolarization threshold, below the diastolic depolarization
11 threshold or above the diastolic depolarization threshold wherein biphasic stimulation
12 comprises:

13 a first stimulation phase with a first phase polarity, a first phase amplitude,
14 a first phase shape and a first phase duration; and
15 a second stimulation phase with a second phase polarity, a second phase
16 amplitude, a second phase shape and a second phase duration; and
17 determining whether capture has occurred.

18 **31.** An implantable cardiac stimulator device comprising:
19 plural electrodes;
20 sensing circuitry connected to the plural electrodes and adapted to sense the onset of
21 arrhythmia;
22 detecting circuitry connected to the sensing circuitry and adapted to detect whether
23 capture has occurred; and
24 pulse generating circuitry connected to the plural electrodes and adapted to generate,

1 in response to the sensing circuitry, electrical pulses of a predetermined polarity, amplitude,
2 shape and duration to cause application of biphasic stimulation at a first intensity level
3 selected from the group consisting of: at the diastolic depolarization threshold, below the
4 diastolic depolarization threshold, and above the diastolic depolarization threshold; and
5 wherein biphasic stimulation comprises:
6 a first stimulation phase with a first phase polarity, a first phase amplitude,
7 a first phase shape and a first phase duration; and
8 a second stimulation phase with a second phase polarity, a second phase
9 amplitude, a second phase shape and a second phase duration.

10 **32.** The implantable cardiac stimulator device as in claim 31, wherein, in the event
11 that the detecting circuitry determines that capture has not occurred, the pulse generating
12 circuitry increases the stimulation intensity level by predefined increments until capture
13 occurs.

14 **33.** The implantable cardiac stimulator device as in claim 31, wherein, in the event
15 that the detecting circuitry determines that capture has occurred, the pulse generating circuitry
16 continues biphasic stimulation for a predetermined period of time.

17 **34.** The implantable cardiac stimulator device as in claim 31, wherein, in the event
18 that the detecting circuitry determines that capture has occurred, the pulse generating circuitry
19 halts biphasic stimulation.

1/5

FIG. 1A

2/5

FIG. 1B

3/5

FIG. 1C

4/5

5/5

FIG. 6**FIG. 7**

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/00928

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61N1/37 A61N1/39

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 105 810 A (COLLINS KENNETH A ET AL) 21 April 1992 (1992-04-21) column 6, line 24-26 column 9, line 1 -column 11, line 57; claims 1-11; figures 1-3,7,8	1-7,20, 22,31-34
Y	US 5 718 720 A (PRUTCHI DAVID ET AL) 17 February 1998 (1998-02-17) column 15, line 7-18; figure 10	1-4, 31-34
A		5-27
Y	EP 0 870 516 A (VITATRON MEDICAL BV) 14 October 1998 (1998-10-14) the whole document	5,6,22
A		7-21, 23-27, 31-34
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the International search

7 June 2000

Date of mailing of the International search report

15/06/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Allen, E

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/00928

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 233 985 A (HUDRLIK TERRENCE R) 10 August 1993 (1993-08-10) column 2, line 42-55 column 7, line 5-23 column 8, line 68 -column 9, line 40 column 10, line 64 -column 12, line 37; figures 1,4-6	7,20
A	US 5 083 564 A (SCHERLAG BENJAMIN J) 28 January 1992 (1992-01-28) column 3, line 62 -column 4, line 31; claim 1	7,20
P,A	WO 99 36124 A (MOWER MORTON M) 22 July 1999 (1999-07-22) the whole document	1-27, 31-34
P,A	WO 00 01443 A (MOWER MORTON M) 13 January 2000 (2000-01-13) the whole document	1-27, 31-34
P,A	US 5 871 506 A (MOWER MORTON M) 16 February 1999 (1999-02-16) cited in the application the whole document	1-27, 31-34
P,A	WO 99 61101 A (MOWER MORTON M) 2 December 1999 (1999-12-02) the whole document	1-27, 31-34

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 00/00928

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5105810	A	21-04-1992	EP	0468720 A	29-01-1992
US 5718720	A	17-02-1998	EP	0952872 A	03-11-1999
			WO	9825672 A	18-06-1998
EP 0870516	A	14-10-1998	US	5741312 A	21-04-1998
US 5233985	A	10-08-1993	US	5156149 A	20-10-1992
			US	5265603 A	30-11-1993
			AU	656163 B	27-01-1995
			AU	9172891 A	23-02-1993
			CA	2110686 A	04-02-1993
			DE	69119242 D	05-06-1996
			DE	69119242 T	05-12-1996
			EP	0594627 A	04-05-1994
			JP	2520355 B	31-07-1996
			JP	6503741 T	28-04-1994
			US	5370665 A	06-12-1994
			WO	9301863 A	04-02-1993
			AU	642039 B	07-10-1993
			AU	8400491 A	02-03-1992
			CA	2087264 A	11-02-1992
			DE	69105511 D	12-01-1995
			DE	69105511 T	13-04-1995
			EP	0542890 A	26-05-1993
			JP	2906351 B	21-06-1999
			JP	5509020 T	16-12-1993
			WO	9202274 A	20-02-1992
			US	5411529 A	02-05-1995
			AU	651989 B	11-08-1994
			AU	8316891 A	08-07-1992
			CA	2095601 A,C	13-06-1992
			DE	69104494 D	10-11-1994
			DE	69104494 T	09-02-1995
			EP	0561781 A	29-09-1993
			JP	2808363 B	08-10-1998
			JP	6502778 T	31-03-1994
			WO	9210236 A	25-06-1992
US 5083564	A	28-01-1992	US	5320642 A	14-06-1994
WO 9936124	A	22-07-1999	AU	2321199 A	02-08-1999
WO 0001443	A	13-01-2000	AU	8282098 A	24-01-2000
			NO	20000162 A	01-03-2000
US 5871506	A	16-02-1999		NONE	
WO 9961101	A	02-12-1999	AU	4198499 A	13-12-1999