III. Church's Lambda Calculus

Yuxi Fu

BASICS, Shanghai Jiao Tong University

Origin

Foundation of mathematics was very much an issue in the early decades of 20th century.

Cantor, Frege, Russel's Paradox, Principia Mathematica, NBG/ZF

Combinatory Logic and λ -Calculus were originally proposed as part of foundational systems, which are based on a concept of function rather than a concept of set.

Combinatory Logic

Schönfinkel [4Sep.1889-1942, Russian] proposed Combinatory Logic as a variable free presentation of functions [1924].

von Neumann [28Dec.1903-8Feb.1957] used a combinatory notation in his formulation of set theory.

Curry [12Sep.1900-1Sep.1982] reinvented Combinatory Logic in an effort to formalize the notion of substitution.

Lambda Calculus

Alonzo Church [14Jun.1903-11Aug.1995] invented the λ -calculus with a foundational motivation [1932].

The ambition to provide a foundation for mathematics failed after the discovery of Kleene-Rosser Paradox.

As a foundation for computation and programming, the λ -calculus has been extremely successful.

What is CL/λ About

 ${\sf CL}/\lambda$ was proposed to describe the basic properties of function abstraction, application, substitution.

In λ the concept of abstraction is taken as primitive.

In CL it is defined in terms of more primitive operators.

Synopsis

- 1. Syntax and Semantics
- 2. Church-Rosser Property
- 3. Definability

1. Syntax and Semantics

Lambda Calculus is a functional model of computation.

Syntax

Grammar for λ -term:

$$M := x \mid \lambda x.M \mid M \cdot M',$$

where x is a variable, $\lambda x.M$ is an abstraction term, and $M \cdot M'$ is an application term.

 $\lambda x_1.\lambda x_2...\lambda x_k.M$ is often abbreviated to $\lambda x_1x_2...x_k.M$ or $\lambda \widetilde{x}.M$, $M\cdot M'$ to MM', and $(...((MM_1)M_2)...M_{k-1})M_k$ to $MM_1M_2...M_K$.

Let \equiv be the syntactic (grammar) equality.

Operational Semantics

Structural Semantics:

```
(\lambda x.M)N \rightarrow M\{N/x\}, \beta \text{ reduction}

MN \rightarrow M'N, \text{ if } M \rightarrow M', \text{ structural rule}

MN \rightarrow MN', \text{ if } N \rightarrow N', \text{ eager evaluation}

\lambda x.M \rightarrow \lambda x.M', \text{ if } M \rightarrow M', \text{ partial evaluation.}
```

Let \to^* be the reflexive and transitive closure of \to . The β -conversion relation = is the equivalence closure of \to^* .

Bound Variable, Closed Term

The variable x in $\lambda x.M$ is bound. (α -conversion) A variable in a term is free if it is not bound. (notation fv(M))

A λ -term is closed if it contains no free variables.

Redex

The following reductions make use of α -conversion:

$$(\lambda xy.yxx)((\lambda uv.v)y) \rightarrow \lambda z.z((\lambda uv.v)y)((\lambda uv.v)y)$$
$$\rightarrow \lambda z.z(\lambda v.v)((\lambda uv.v)y)$$
$$\rightarrow \lambda z.z(\lambda v.v)(\lambda v.v).$$

An alternative evaluation strategy:

$$(\lambda xy.yxx)((\lambda uv.v)y) \rightarrow (\lambda xy.yxx)(\lambda v.v) \rightarrow \lambda y.y(\lambda v.v)(\lambda v.v).$$

A subterm of the form $(\lambda x.M)N$ is called a redex, and $M\{N/x\}$ a reduct of the reduction that contracts the redex.

λ -Term as Proof

A combinator is a closed λ -term. Some famous combinators are:

$$\mathbf{I} \stackrel{\text{def}}{=} \lambda x.x,
\mathbf{K} \stackrel{\text{def}}{=} \lambda xy.x,
\mathbf{S} \stackrel{\text{def}}{=} \lambda xyz.xz(yz).$$

It is easy to see that I = SKK. Logical interpretation of I, K, S.

Theorem. $\forall M \in \Lambda^0. \exists L \in \{K, S\}^+. L \rightarrow^* M.$

A Term that Generates All

Let **X** be $\lambda z.z$ **KSK**. Then **K** = **XXX** and **S** = **X**(**XX**).

Corollary. $\forall M \in \Lambda^0. \exists L \in \{X\}^+. L = M.$

Normal Form

Let Ω be $(\lambda x.xx)(\lambda x.xx)$. Then

$$\Omega o \Omega o \Omega o \dots$$

This is the simplest divergent λ -term.

A λ -term M is in normal form if $M \to M'$ for no M'.

We will show that the normal form of a term is unique.

Fixpoint

Lemma. $\forall F. \exists X. FX = X$.

Proof. Define the fixpoint combinator **Y** by

$$\mathbf{Y} \stackrel{\text{def}}{=} \lambda f.(\lambda x. f(xx))(\lambda x. f(xx)).$$

It is easily seen that F(YF) = YF.

However it is not the case that $\mathbf{Y}F \to^* F(\mathbf{Y}F)$.

Fixpoint

The Turing fixpoint Θ is defined by AA, where

$$A \stackrel{\text{def}}{=} \lambda xy.y(xxy).$$

Clearly

$$\mathbf{\Theta}F \rightarrow^* F(\mathbf{\Theta}F).$$

Fixpoint

Suppose we need to find some F such that Fxy = FyxF.

The equality follows from $F = \lambda xy.FyxF$.

So we may let F be a fixpoint of $\lambda f.\lambda xy.fyxf$.

Reduction Strategy

lazy reduction, head reduction, leftmost reduction, standard reduction, Gross-Knuth reduction, . . .

A reduction $M \to N$ is a head reduction, notation $M \to_h N$, if it is obtained by applying the β -reduction, the structural rule and the partial evaluation rule.

The reflexive and transitive closure of \rightarrow_h is denoted by \rightarrow_h^* .

2. Church-Rosser Property

Church-Rosser Theorem

Although the reduction \rightarrow is nondeterministic, it has the following confluence (diamond, Church-Rosser) property:

▶ If $M \to^* M'$ and $M \to^* M''$, then some M''' exists such that $M' \to^* M'''$ and $M'' \to^* M'''$.

In other words the result of evaluating a λ -term is unique.

Proof of Church-Rosser Theorem

Define the reduction \rightarrow inductively as follows:

- (i) $M \rightarrow M$;
- (ii) if $M \rightarrow M'$ then $\lambda x.M \rightarrow \lambda x.M'$;
- (iii) if $M \rightarrow M'$ and $N \rightarrow N'$ then $MN \rightarrow M'N'$;
- (iv) if $M \twoheadrightarrow M'$ and $N \twoheadrightarrow N'$ then $(\lambda x.M)N \twoheadrightarrow M'\{N'/x\}$.

Fact. If M woheadrightarrow M' and N woheadrightarrow N' then $M\{N/x\} woheadrightarrow M'\{N'/x\}$.

Fact. → satisfies the confluence property.

Fact. \rightarrow^* is the transitive closure of \rightarrow .

Implication of Church-Rosser Theorem

Fact. If M = N then $M \to^* Z$ and $N \to^* Z$ for some Z.

Fact. If *N* is a nf of *M* then $M \rightarrow^* N$.

Fact. Every λ -term has at most one nf.

Fact. If M, N are distinct nf's, then $M \neq N$.

Theorem. The theory λ is consistent.

3. Definability

Church Numeral

Church introduced the following encoding of numbers:

$$c_n \stackrel{\mathrm{def}}{=} \lambda f x. f^n(x).$$

Rosser defined the following arithmetic operations:

$$\mathbf{A}_{+} \stackrel{\mathrm{def}}{=} \lambda xypq.xp(ypq),$$
 $\mathbf{A}_{\times} \stackrel{\mathrm{def}}{=} \lambda xyz.x(yz),$
 $\mathbf{A}_{\mathrm{exp}} \stackrel{\mathrm{def}}{=} \lambda xy.yx.$

Boolean Term

The Boolean values are encoded by:

$$\begin{array}{ccc} \mathbf{true} & \overset{\mathrm{def}}{=} & \lambda xy.x, \\ \mathbf{false} & \overset{\mathrm{def}}{=} & \lambda xy.y. \end{array}$$

The term "if B then M else N" is represented by

BMN.

Pairing

The pairing and projections can be defined as follows:

$$[M, N] \stackrel{\text{def}}{=} \lambda z. \textit{if } z \textit{ then } M \textit{ else } N,$$

$$\pi_0 \stackrel{\text{def}}{=} \lambda z. z \textit{ true},$$

$$\pi_1 \stackrel{\text{def}}{=} \lambda z. z \textit{ false}.$$

Barendregt Numeral

Barendregt introduced the following encoding of natural numbers:

$$\begin{bmatrix}
0 \end{bmatrix} \stackrel{\text{def}}{=} \mathbf{I}, \\
 \begin{bmatrix}
n+1 \end{bmatrix} \stackrel{\text{def}}{=} [\text{false}, \lceil n \rceil].$$

We call the normal forms $[0], [1], [2], \ldots$ numerals.

The successor, predecessor and test-for-zero can be defined by

$$\mathbf{S}^{+} \stackrel{\mathrm{def}}{=} \lambda z.[\mathbf{false}, z],$$
 $\mathbf{P}^{-} \stackrel{\mathrm{def}}{=} \lambda z.z \, \mathbf{false},$
 $\mathbf{Zero} \stackrel{\mathrm{def}}{=} \lambda z.z \, \mathbf{true}.$

Lambda Definability

A k-ary function f is λ -definable if there is a combinator F such that for all numbers n_1, \ldots, n_k one has the following terminating head reduction path

$$F\lceil n_1 \rceil \ldots \lceil n_k \rceil \rightarrow_h^* \lceil f(n_1, \ldots, n_k) \rceil$$

if $f(n_1, \ldots, n_k)$ is defined, and the following divergent head reduction path

$$F \lceil n_1 \rceil \dots \lceil n_k \rceil \rightarrow_h \rightarrow_h \rightarrow_h \rightarrow_h \dots$$

if $f(n_1, \ldots, n_k)$ is undefined.

Numerals are Solvable

Fact. $\forall n. \lceil n \rceil KII \rightarrow_h^* I.$

Definability of Initial Function

The zero function, successor function and projection functions are λ -defined respectively by

$$\mathbf{Z} \stackrel{\text{def}}{=} \lambda x_1 \dots x_k . \lceil 0 \rceil,$$

$$\mathbf{S}^+ \stackrel{\text{def}}{=} \lambda x . [\mathbf{false}, x],$$

$$\mathbf{U}_i^k \stackrel{\text{def}}{=} \lambda x_1 \dots x_k . x_i.$$

These terms admit only head reduction.

Definability of Composition

Suppose
$$f, g_1(\widetilde{x}), \ldots, g_k(\widetilde{x})$$
 are λ -defined by F, G_1, \ldots, G_k .
 Then $f(g_1(\widetilde{x}), \ldots, g_k(\widetilde{x}))$ is λ -defined by
$$\lambda \widetilde{x}. (G_1 \widetilde{x} \mathbf{KII}) \ldots (G_k \widetilde{x} \mathbf{KII}) F(G_1 \widetilde{x}) \ldots (G_k \widetilde{x}).$$

Definability of Recursion

Consider the function *f* defined by the recursion:

$$f(\widetilde{x},0) = h(\widetilde{x}),$$

$$f(\widetilde{x},y+1) = g(\widetilde{x},y,f(\widetilde{x},y)).$$

Suppose h, g are λ -defined by H, G respectively.

Intuitively f is λ -defined by F such that

$$F \to_h^* \lambda \widetilde{x} y. if \mathbf{Zero}(y) \text{ then } H\widetilde{x} \text{ else } G\widetilde{x}(\mathbf{P}^- y)(F\widetilde{x}(\mathbf{P}^- y)).$$

By the Fixpoint Theorem we may define F by

$$\Theta\left(\lambda f.\lambda \widetilde{x}y.if \mathbf{Zero}(y) \text{ then } H\widetilde{x} \text{ else } G\widetilde{x}(\mathbf{P}^{-}y)(f\widetilde{x}(\mathbf{P}^{-}y))\right).$$

Definability of Minimization

Let μ_P be defined as follows:

$$\mu_P \stackrel{\text{def}}{=} \Theta(\lambda hz.if Pz \text{ then } z \text{ else } h[\text{false}, z]).$$

If $P[n] \rightarrow_h^*$ false for all n, then

$$\mu_{P}\lceil 0 \rceil \rightarrow_{h}^{*} \text{ if } P\lceil 0 \rceil \text{ then } \lceil 0 \rceil \text{ else } \mu_{P}\lceil 1 \rceil$$
 $\rightarrow_{h}^{*} \mu_{P}\lceil 1 \rceil$
 $\rightarrow_{h}^{*} \text{ if } P\lceil 1 \rceil \text{ then } \lceil 1 \rceil \text{ else } \mu_{P}\lceil 2 \rceil$
 $\rightarrow_{h}^{*} \mu_{P}\lceil 2 \rceil$
 $\rightarrow_{h}^{*} \dots,$

and consequently $\mu_P[0]$ is unsolvable.

Definability of Minimization

Suppose $g(\widetilde{x},z)$ is a total recursive function and $f(\widetilde{x})$ is define by

$$\mu z.(g(\widetilde{x},z)=0).$$

Assume that g is λ -defined by G.

Then f is λ -defined by

$$F \stackrel{\text{def}}{=} \lambda \widetilde{x}. \mu_{\lambda z. \mathbf{Zero}(G\widetilde{x}z)} \lceil 0 \rceil.$$

Kleene Theorem

Theorem [Kleene, 1936]. All recursive functions are λ -definable.

Reference

H. Barendregt, 1984.

The Lambda Calculus: Its Syntax and Semantics.

Volume 103 of Studies in Logic and Foundations of Mathematics, North-Holland.

F. Cardone and J. Hindley, 2009.

Lambda Calculus and Combinators in 20th Century.

Handbook of the History of Logic (D. Gabbay and J. Woods eds.), Volume 5: Logic from Russel to Church, 723-817, Elsevier.

D. Scott, 2012.

 λ -Calculus: Now and Then.

ACM Turing Centenary Celebration, June 15-16, 2012.