Notes Machine Learning by Andrew Ng on Coursera

Sparsh Jain

September 25, 2020

Contents

1	Inti	roduction	3
	1.1	Supervised Learning	3
		1.1.1 Regression Problem	3
		1.1.2 Classification Problems	3
	1.2	Unsupervised Learning	3
2	Lin	ear Regression with One Variable	4
	2.1	Notations	4
	2.2	Supervised Learning	4
	2.3	Gradient Descent	5
	2.4	Gradient Descent for Linear Regression	5
3	Lin	ear Algebra	6
	3.1	Matrix	6
	3.2	Vector	6
	3.3	Addition and Scalar Multiplication	7
	3.4	Matrix Multiplication	7
	3.5	Inverse and Transpose	7
4	Lin	ear Regression with Multiple Variables	9
	4.1	Notations	9
	4.2	Hypothesis	9
	4.3		10
		4.3.1 Feature Scaling	10
			11
		4.3.3 Learning Rate	11
	4.4		11
		4.4.1 Features	11
			11
	4.5		12
		4.5.1 Non Invertibility of X^TX	

5	Oct	ave Tutorial	13			
6	Cla	Classification				
	6.1	Logistic Regression	14			
	6.2	Decision Boundary	15			
	6.3	Cost Function	15			
	6.4	Advanced Optimization:	17			
	6.5	Multi-Class Classification	18			
		6.5.1 One vs All	18			
7	Regularization 19					
	7.1	Problem of Overfitting	19			
	7.2	Addressing Overfitting	19			
	7.3	Cost Function	20			
	7.4	Regularized Linear Regression				
	7.5	Regularized Logistic Regression				
8	Neural Networks 23					
	8.1	Non-Linear Hypothesis	23			
	8.2	Neural Networks	23			
	8.3	Model Representation				
	8.4	Notations	24			
	8.5	Forward Propagation				
	8.6	Multi-Class Classification	26			

Introduction

Machine learning (task, experience, performance) can be classified into Supervised and Unsupervised learning.

1.1 Supervised Learning

Supervised learning can be basically classified into *Regression* and *Classification* problems.

1.1.1 Regression Problem

Regression problems work loosely on continuous range of outputs.

1.1.2 Classification Problems

Classification problems work loosely on discrete range of outputs.

1.2 Unsupervised Learning

An example is *Clustering Problem*.

Check Lecture1.pdf for more details.

Linear Regression with One Variable

2.1 Notations

m = number of training examples x's = 'input' variables / features y's = 'output' variables / 'target' variables (x, y) = single training example $(x^{(i)}, y^{(i)}) = i^{th} \text{ example}$

2.2 Supervised Learning

We have a data set (*Training Set*). Training Set \rightarrow Learning Algorithm \rightarrow h (hypothesis, a function $X \rightarrow Y$)

To Represent h

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost

$$\underset{\theta_0, \ \theta_1}{\text{minimize}} \frac{1}{2m} \sum_{1}^{m} (h_{\theta}(x) - y)^2$$

Cost Function

Squared Error Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{1}^{m} (h_{\theta}(x) - y)^2$$

$$\underset{\theta_0, \ \theta_1}{\operatorname{minimize}} J(\theta_0, \theta_1)$$

2.3 Gradient Descent

Finds local optimum:

- 1. Start with some value
- 2. Get closer to optimum

Algorithm

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta) \ \forall j$$

where $\alpha = \text{learning rate}$

Important!

Simultaneous Update!

$$temp_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) \ \forall j$$
$$\theta_j := temp_j \ \forall j$$

2.4 Gradient Descent for Linear Regression

Cost function for linear regression is convex!

Batch Gradient Descent: Each step of gradient descent uses all training examples.

Check Lecture2.pdf for more details.

Linear Algebra

3.1 Matrix

Rectangular array of numbers:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Dimension of the matrix: #rows x #cols (2 x 3)

Elements of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$A_{ij} = "i, j \text{ entry" in the } i^{th} \text{ row, } j^{th} \text{ col}$$

3.2 Vector

An $n \times 1$ matrix.

$$y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

 $y_i = i^{th}$ element

Note: Uppercase for matrices, lowercase for vectors.

3.3 Addition and Scalar Multiplication

Add/Subtract (element by element) matrices of same dimention only! Multiply/Divide (all elements) a matrix by scalar!

3.4 Matrix Multiplication

 $m \times n$ matrix multiplied by $n \times o$ matrix gives a $m \times o$ matrix.

Properties

- 1. Matrix Multiplication is *not* Commutative.
- 2. Matrix Multiplication is Associative.
- 3. Identity Matrix (I): 1's along diagonal, 0's everywhere else in an $n \times n$ matrix. AI = IA = A.

3.5 Inverse and Transpose

Inverse

Only square $(n \times n)$ matrices may have an inverse.

$$AA^{-1} = A^{-1}A = I$$

Matrices that don't have an inverse are *singular* or *degenerate* matrices.

Transpose

Let A be an $m \times n$ matrix and let $B = A^T$, then

$$B_{ij} = A_{ji}$$

Example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
$$B = A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

Check Lecture3.pdf for more details.

Linear Regression with Multiple Variables

4.1 Notations

n = number of features $x^{(i)} = \text{input (features) of } i^{th} \text{ training example}$ $x_j^{(i)} = \text{value of feature } j \text{ of } i^{th} \text{ training example}$

4.2 Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convinience, define $x_0 = 1$. So

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \theta^T x$$

4.3 Gradient Descent

Hypothesis: $h_{\theta}(x) = \theta^{T}x$ $= \theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n}$ Parameters: θ $= \theta_{0}, \theta_{1}, \dots, \theta_{n}$ Cost Function: $J(\theta) = J(\theta_{0}, \theta_{1}, \dots, \theta_{n})$ $= \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$

Gradient Descent:

Repeat {
$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

$$= \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}, \dots, \theta_{n})$$

$$= \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)} - y^{(i)}) x_{j}^{(i)})$$
}(simultaneously update $\forall j = 0, 1, \dots, n$)

4.3.1 Feature Scaling

Idea: Make sure features are on a similar scale.

Get every feature into approximately a $-1 \le x_i \le 1$ range.

4.3.2 Mean Normalization

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

General Rule

$$x_i \leftarrow \frac{x_i - \mu_i}{S_i}$$

where

$$\mu_i = \text{average value of } x_i$$

$$S_i = \text{range (max - min)} \qquad or$$

$$= \sigma(\text{standard deviation})$$

4.3.3 Learning Rate

 $J(\theta)$ should decrease after every iteration. #iterations vary a lot.

Example Automatic Convergence Test: Declare convergence if $J(\theta)$ decreases by less than ϵ (say 10^{-3}) in one iteration.

If $J(\theta)$ increases, use smaller α . Too small α means slow convergence.

To choose α , try ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

4.4 Features and Polynomial Regression

4.4.1 Features

Get an insight in your problem and choose better features (may even combine/separate features).

Ex: size = length \rightarrow breadth.

4.4.2 Polynomial Regression

Ex:

$$x_1 = size$$

$$x_2 = size^2$$

$$x_3 = size^3$$

4.5 Normal Equation

Solve for θ analytically!

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$$

$$X = \begin{bmatrix} (x^{(1)})^T \\ (x^{(2)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix}$$

$$= \begin{bmatrix} x_0 & x_1 & \dots & x_n \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1^{(1)} \\ y_2^{(2)} \\ \vdots \\ y_m^{(m)} \end{bmatrix}$$

$$\theta = (X^T X)^{-1} X^T y$$

$$\in \mathbb{R}^{m+1}$$

$$\theta \in \mathbb{R}^m$$

Inverse of a matrix grows as $O(n^3)$, use wisely.

4.5.1 Non Invertibility of X^TX

Use 'pinv' function in Octave (pseudo-inverse) instead of 'inv' function (inverse).

If X^TX is non-invertible, common causes are

- 1. Redundant features (linearly dependent)
- 2. Too many features $(m \le n)$. In this case, delete some features or use regularization

Check Lecture4.pdf for more details.

Chapter 5 Octave Tutorial

Check Lecture 5.pdf for more details.

Classification

Classify into categories (binary or multiple).

6.1 Logistic Regression

$$0 \le h_{\theta}(x) \le 1$$
 $h_{\theta}(x) = g(\theta^T x)$
 $g(z) = \frac{1}{1 + e^{-z}}$ g is called a sigmoid function or a logistic function.
$$h_{\theta}(x) = \frac{1}{1 + e^{\theta^T x}}$$

Interpretation of Hypothesis Output

$$h_{\theta}(x) = \text{estimated probability that } y = 1 \text{ on input } x$$

 $h_{\theta}(x) = P(y = 1|x; \theta) = \text{probability that } y = 1, \text{ given } x, \text{ parameterized by } \theta$

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

6.2 Decision Boundary

Predict:
$$y = 1$$
 if $h_{\theta}(x) \ge 0.5$
$$(\theta^{T} x \ge 0)$$
Predict: $y = 0$ if $h_{\theta}(x) < 0.5$
$$(\theta^{T} x < 0)$$

$$\theta^{T} x = 0$$
 is the decision boundary.

Non-linear Decision Boundaries

Use same technique as polynomial regression for features.

6.3 Cost Function

Training Set :
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ./dots, (x^{(m)}, y^{(m)})\}$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$x_0 = 1$$

$$y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameter θ ?

Linear Regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$\text{Cost}(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

Logistic Regression:

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & y = 1\\ -\log(1 - h_{\theta}(x)) & y = 0 \end{cases}$$
$$\operatorname{Cost}(h_{\theta}(x), y) = 0 \text{ if } h_{\theta}(x) = y$$
$$\operatorname{Cost}(h_{\theta}(x), y) \to \inf \text{ if } y = 0 \text{ and } h_{\theta}(x) \to 1$$
$$\operatorname{Cost}(h_{\theta}(x), y) \to \inf \text{ if } y = 1 \text{ and } h_{\theta}(x) \to 0$$

Note: y = 0 or 1 always.

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} (y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))) \right]$$

To fit parameters θ :

$$\underset{\theta}{\operatorname{minimize}} J(\theta)$$

To make a prediction given a new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent:

Simultaneously update all θ_j

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Plug in the derivative

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Don't forget feature scaling!

6.4 Advanced Optimization:

Something better than gradient descent:

- 1. Conjugate Gradient
- 2. BFGS
- 3. L-BFGS

Advantages:

- 1. No need to manually pick α
- 2. Often faster than gradient descent

Disadvantages:

1. More complex

Use libraries! Beware of bad implementations!

How to use: We first need to provide a function that evaluates the following two functions for a given input value of θ .

- 1. $J(\theta)$
- 2. $\frac{\partial}{\partial \theta_j} J(\theta)$

Then we can use octave's fminunc() optimization algorithm along with the optimset() function that creates an object containing the options we want to send to fminunc().

6.5 Multi-Class Classification

6.5.1 One vs All

Build a separate binary classifier $h_{\theta}^{(i)}(x)$ for each class against all other classes.

$$h\theta^{(i)} = P(y = i|x;\theta) \ \forall i$$

On a new input x, to make a prediction, pick the class i that maximizes $h_{\theta}^{(i)}(x)$

Check Lecture 6.pdf for more details.

Regularization

7.1 Problem of Overfitting

- 1. Underfitting (High Bias)
- 2. Right Fit
- 3. Overfitting (High Variance)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h\theta(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

7.2 Addressing Overfitting

Options:

- 1. Reduce the number of features
 - Manually select which features to keep
 - Model selection algorithm (later)
- 2. Regularization
 - Keep all the features, but reduce the magnitude/values of parameters θ_i
 - \bullet Works well when we have a lot of features, each of which contributes a bit to predicting y

7.3 Cost Function

Say our overfitting hypothesis is $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$. Suppose, we penalize and make θ_3, θ_4 very small

minimize
$$\left(\frac{1}{2m}\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2 + 1000\theta_3^2 + 1000\theta_4^2\right)$$

Regularization

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$.

- Simpler hypothesis
- Less prone to overfitting

Which parameters to penalize?

- Features: x_1, x_2, \dots, x_{100}
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

Note: The convention, we don't regularize θ_0 but it doesn't make very much difference.

 λ here is regularization parameter.

What if λ is set too high (say 10^{10})? Underfitting!

7.4 Regularized Linear Regression

Updated $J(\theta)$:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

 $\mathop{\mathrm{minimize}}_{\theta} J(\theta)$

Gradient Descent:

Repeat{

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left((h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \right) + \frac{\lambda}{m} \theta_{j} \right] \quad \forall j \in \{1, 2, \dots, n\}$$

$$\equiv \theta_{j} := \theta_{j} (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\}$$

Normal Equation:

$$X = \begin{bmatrix} \begin{pmatrix} x^{(1)} \end{pmatrix}^T \\ \begin{pmatrix} x^{(2)} \end{pmatrix}^T \\ \vdots \\ \begin{pmatrix} x^{(m)} \end{pmatrix}^T \end{bmatrix}$$

$$y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$\theta = \begin{pmatrix} X^T X + \lambda \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} (\in \mathbb{R}^{(n+1)\times(n+1)}) \begin{pmatrix} -1 \\ -X^T y & \in \mathbb{R}^{n+1} \end{pmatrix}$$

Non-Invertibility

Suppose $m \leq n$,

$$\theta = \left(X^T X\right)^{-1} X^y$$

If $\lambda > 0$,

$$\theta = \begin{pmatrix} X^T X + \lambda \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & 1 & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \end{pmatrix}^{-1} - X^T y$$

Not a problem!

7.5 Regularized Logistic Regression

Cost Function:

$$J(\theta) = -\left[\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)}\log h_{\theta}(x^{(i)}) + (1 - y^{(i)})\log(1 - h_{\theta}(x^{(i)})\right)\right] + \frac{\lambda}{2m}\sum_{j=1}^{n}\theta_{j}^{2}$$

Gradient Descent:

Repeat{

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} \left((h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \right) + \frac{\lambda}{m} \theta_{j} \right] \quad \forall j \in \{1, 2, \dots, n\}$$

$$\equiv \theta_{j} := \theta_{j} (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\}$$

Advanced Optimization:

Check Lecture7.pdf for more details.

Neural Networks

8.1 Non-Linear Hypothesis

If #features is high, hypothesis could have extremely high #terms. Hence the need for non-linear hypothesis.

8.2 Neural Networks

- Origins: Algorithms that try to mimic brain.
- Widely used in 80s and early 90s; diminished in late 90s.
- Resurgance: State-of-the-art technique for many applications.

8.3 Model Representation

Neuron Model: Logistic Unit

- 1. input layer
- 2. hidden layer / computation layer
- 3. output layer
- 4. activation function (g())

parameters \equiv weights

8.4 Notations

$$\begin{aligned} a_i^{(j)} &= activation \text{ of unit } i \text{ in layer } j \\ \Theta^{(j)} &= \text{matrix of weights controlling} \\ &\quad \text{function mapping from layer } j \text{ to} \\ &\quad \text{layer } j+1 \end{aligned}$$

Example:

$$\begin{aligned} & \text{layer 1} : \{x_1, x_2, x_3\} \\ & \text{layer 2} : \{a_1^{(2)}, a_2^{(2)}, a_3^{(2)}\} \\ & \text{layer 3} : \{a_1^{(3)}\} \end{aligned}$$

$$a_1^{(2)} = g\left(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3\right)$$

$$a_2^{(2)} = g\left(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3\right)$$

$$a_3^{(2)} = g\left(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3\right)$$

$$h_{\Theta}(x) = a_1^{(3)} = g\left(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(1)}a_3^{(2)}\right)$$

Note: If network has s_j units in layer j, and s_{j+1} units in layer j+1, then

$$\Theta^{(j)} \in \mathbb{R}^{s_{j+1} \times (s_j+1)}$$

8.5 Forward Propagation

$$\begin{split} z_1^{(2)} &= \Theta_{10}^{(1)} x_0 + \Theta_{11}^{(1)} x_1 + \Theta_{12}^{(1)} x_2 + \Theta_{13}^{(1)} x_3 \\ z_2^{(2)} &= \Theta_{20}^{(1)} x_0 + \Theta_{21}^{(1)} x_1 + \Theta_{22}^{(1)} x_2 + \Theta_{23}^{(1)} x_3 \\ z_3^{(2)} &= \Theta_{30}^{(1)} x_0 + \Theta_{31}^{(1)} x_1 + \Theta_{32}^{(1)} x_2 + \Theta_{33}^{(1)} x_3 \\ a_1^{(2)} &= g(z_1^{(2)}) \\ a_2^{(2)} &= g(z_2^{(2)}) \\ a_3^{(2)} &= g(z_3^{(2)}) \end{split}$$

Vectorized Implementation

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 3 \end{bmatrix}, \ x_0 = 1$$
$$z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_2^{(2)} \\ z_3^{(2)} \end{bmatrix}$$

$$a^{(1)} = x \qquad \qquad \in \mathbb{R}^4$$

$$z^{(2)} = \Theta^{(1)}a^{(1)} \qquad \qquad \in \mathbb{R}^3$$

$$a^{(2)} = g(z^{(2)}) \qquad \qquad \in \mathbb{R}^3$$

$$\mathbf{Add} \ a_0^{(2)} = 1 \qquad \qquad \rightarrow a^{(2)} \in \mathbb{R}^4$$

$$z^{(3)} = \Theta^{(2)}a^{(2)}$$

$$h_{\Theta}(x) = a^{(3)} = g(z^{(3)})$$

Other network architechtures are possible!

Non-linear classification example: XOR/XNOR

 x_1, x_2 are binary (0 or 1)

$$y = x_1 \text{ XOR } x_2$$
 or
= $x_1 \text{ XNOR } x_2$ $\equiv \text{NOT}(x_1 \text{ XOR } x_2)$

¹ Simple example: AND

$$x_0 = 0$$

$$x_1, x_2 \in \{0, 1\}$$

$$y = x_1 \text{ AND } x_2$$

$$\Theta_{10}^{(1)} = -30$$

$$\Theta_{11}^{(1)} = 20$$

$$\Theta_{12}^{(1)} = 20$$

$$h_{\Theta}(x) = g(-30 + 20x_1 + 20x_2)$$

$$\begin{array}{c|cccc} x_1 & x_2 & h_{\Theta}(x) \\ \hline 0 & 0 & g(-30) \approx 0 \\ 0 & 1 & g(-10) \approx 0 \\ 1 & 0 & g(-10) \approx 0 \\ 1 & 1 & g(10) \approx 1 \\ \hline \end{array}$$

We can combine AND, OR, NOT, (NOT x_1) AND (NOT x_2) to get XNOR, XOR, etc.

8.6 Multi-Class Classification

Extension of One-vs-All Method!

Example: Say 4 classes, so 4 output units. So, $y \in \mathbb{R}^4$ with 1 in corresponding class and 0 elsewhere.

 $^{^1 \}rm Work$ out more examples (OR, NOT, (NOT $x_1)$ AND (NOT $x_2)!$ Check Lecture8.pdf for more details.