INF102 18H

Algoritmar, datastrukturar og programmering Mandatory assignment 2

Student – Andrey Belinskiy (zur008)

Hash maps

a) Insert the keys FBTZRVUJPO into an initially empty table of m=5 lists, using separate chaining. Use the hash function h(k)=(13*k)%m to transform the k 'th letter of the alphabet into a table entry

b) Insert the keys FBTZRVUJPO into an initially empty array of size m=16 using linear probing. Use the hash function h(k)=(13*k)%m to transform the k 'th letter of the alphabet into a table entry. Show the contents of the array on a single line

After inserting the keys into the array its content will look like this:

[P, U, Z, J, T, O, null, null, null, null, B, R, null, null, F, V]

Big-O Quiz part II

Function	f	0
а	2n + m	O(n + m)
b	n + nm	O(nm)
С	min(n, m)	O(min(n,m))
d	m + log(n) * m	O(log(n)*m)
е	1	0(1)
f	$1 + \frac{n}{2} + nm$	O(nm)
g	n + nm	O(nm)
h	n + m	O(n + m)
i	$\frac{mn^2}{2} + \frac{mn}{2}$	$O(mn^2)$
j	$2n^2 + 2mn + m^2$	$O(n^2 + m^2)$
k	n + m	O(n+m)
I	n + m	O(n+m)
m	$1 + \frac{m-1}{n}$	$O(\frac{m}{n})$
n	$1 + \frac{n}{m}$	$O(\frac{n}{m})$
O	$1 + \frac{n-1}{2m}$	$O(\frac{n}{m})$
р	???	O(m*n!)

• Function *n* runs infinitely if n = 1 && m = 1