Lecture: Almost Elementarity and \mathcal{Z} -Stability - Section 9

Michael Francesco Ala

9 \mathcal{Z} -Stability of $C_r^*(\mathcal{G})$

Definition 9.0.1. A castle C is K-extendable to D if

$$\mathcal{C} = \{C_{i,j}^{\ell} \ : \ i, j \in E_{\ell}, \ \ell \in I\}, \qquad \mathcal{D} = \{D_{i,j}^{\ell} \ : \ i, j \in F_{\ell}, \ \ell \in I\}$$

where $E_{\ell} \subseteq F_{\ell}$, $C_{i,j}^{\ell} = D_{i,j}^{\ell}$ if $i, j \in E_{\ell}$, and

$$K \cdot \bigsqcup_{i,j \in E_{\ell}} C_{i,j}^{\ell} \subseteq \bigsqcup_{i,j \in F_{\ell}} D_{i,j}^{\ell}$$

Remark. Notice that the *index sets I* are the same between \mathcal{C} and \mathcal{D} above, meaning \mathcal{C} and \mathcal{D} have the same number of multisections.

Definition 9.0.2. A multisection $C = \{C_{i,j} : i, j \in E\}$ is **nested in** $D = \{D_{i,j} : i, j \in F\}$ with multiplicity $\geq N$ if

- every C-level is contained in a D-level,
- every \mathcal{D} -level contains more than N distinct \mathcal{C} -levels,
- for every $m, n \in F$, the map

$$\begin{cases} C \subseteq D_{n,n} \rbrace \cap \mathcal{C}^{(0)} & \to & \{C \subseteq D_{m,m} \rbrace \cap \mathcal{C}^{(0)} \\ C & \mapsto & r(D_{m,n}C) \end{cases}$$

is bijective.

Remark. There is quite a bit of hidden structure in these definitions. For instance, the maps $C \mapsto r(D_{m,n}C)$ have the following nice structure:

- $C \mapsto r(D_{n,n}C)$ is the identity
- $r(D_{n,m}r(D_{m,n}C)) = C$ (in other words, the maps $C \mapsto r(D_{m,n}C)$ and $C \mapsto r(D_{n,m}C)$ are inverses)
- $r(D_{n,k}r(D_{m,n}C)) = r(D_{m,k}C)$ (in other words, composing the maps $C \mapsto r(D_{m,n}C)$ and $C \mapsto r(D_{n,k}C)$ gives the map $C \mapsto r(D_{m,k}C)$).

Additionally, notice that the sets $\{C \subseteq D_{m,m}\} \cap \mathcal{C}^{(0)}$ all have the same cardinality, so every \mathcal{D} -level contains exactly the same number of \mathcal{C} -levels, which is > N.

Definition 9.0.3. Let \mathcal{C}, \mathcal{D} be castles. We say \mathcal{C} is **nested in** \mathcal{D} with multiplicity $\geq N$ if

- every multisection in \mathcal{C} nests in a unique multisection in \mathcal{D} with multiplicity $\geq N$,
- every multisection in \mathcal{D} admits at least one multisection in \mathcal{C} which nests in it with multiplicity $\geq N$ (there are no "superfluous" multisections in \mathcal{D})

Definition 9.0.4. Recall from Dolapo's talk, we constructed what we called a \mathcal{B} -compatible collection $\{h_B: B \in \mathcal{B}\} \subset C_c(\mathcal{G})$, and an $\mathcal{H}^{(0)} - \mathcal{B}^{(0)}$ -nesting system.

An \mathcal{B} -compatible collection is a collection of functions in $C_c(\mathcal{G})$ indexed by the bisections in \mathcal{B} , such that

- $s(h_B) = h_{s(B)}$, and $r(h_B) = h_{r(B)}$
- $h_{r(B)} * 1_B = h_B$, and $1_B * h_{s(B)} = h_B$
- $supp(h_B) \subseteq B$
- $h_B \equiv 1$ on B', where $B' \subseteq B$ is a compact bisection (the B''s arise from a compact castle $\mathcal{B}' \in \mathcal{B}$).

For each $(\mathcal{H}^p)^{(0)}$, let I_p denote those ℓ for which \mathcal{B}^ℓ nests in \mathcal{D}^p with multiplicity $\geq nN$.

Let $D \in (\mathcal{H}^p)^{(0)}$ and $\ell \in I_p$. We began by letting

$$\begin{split} P^{D,\ell} &= \{B \in (\mathcal{B}^{\ell})^{(0)} \ : \ B \subseteq D\}, \quad \text{implying} \ |P^{D,\ell}| \geq nN \\ P^{D,\ell}_i &\subset P^{D,\ell}, \ i = 1, ..., n \quad |P^{D,\ell}_i| = \left\lfloor |P^{D,\ell}|/n \right\rfloor \geq N \end{split}$$

We then obtained bijections $\Theta_{i,j}^{D,\ell}: P_j^{D,\ell} \to P_i^{D,\ell}$ such that

- $\bullet \ \Theta_{i,i}^{D,\ell} = \mathrm{id}, \qquad \Theta_{i,j}^{D,\ell-1} = \Theta_{j,i}^{D,\ell}, \qquad \Theta_{i,j}^{D,\ell} \circ \Theta_{j,k}^{D,\ell} = \Theta_{i,k}^{D,\ell}$
- $\forall D \in \mathcal{D}$ such that $s(D), r(D) \in (\mathcal{H}^p)^{(0)}$.

$$r(D\Theta_{i,j}^{s(D),\ell}(B)) = \Theta_{i,j}^{r(D),\ell}(r(DB)) \qquad \forall B \in P_{i,j}^{s(D),\ell}$$

Given $D \in (\mathcal{H}^p)^{(0)}$, let

$$R_{i,j}^{D,\ell} = \{B \in \mathcal{B}^{\ell} \ : \ s(B) \in P_{j}^{D,\ell}, \ \text{ and } \ r(B) = \Theta_{i,j}^{D,\ell}(s(B))\}, \qquad i,j = 1,...,n, \ \ell \in I_{p}$$

and finally set

$$Q_{i,j}^D := \bigsqcup_{\ell \in I_n} R_{i,j}^{D,\ell}$$

With this setup, and a function $\kappa: \mathcal{H}^{(0)} \to [0,1]$, we defined $\psi: M_n(\mathbb{C}) \to C_r^*(\mathcal{G})$ by

$$\psi(e_{ij}) = \sum_{D \in \mathcal{H}^{(0)}} \sum_{B \in Q_{i,j}^D} \kappa(D) h_B$$

Theorem 9.0.5. The maps ψ are c.p.c. order zero maps.

Proof. Define $\varphi: M_n(\mathbb{C}) \to C_r^*(\mathcal{G})^{**}$ by

$$\varphi(e_{ij}) = \sum_{D \in \mathcal{H}^{(0)}} \sum_{B \in Q_{i,j}^D} 1_B$$

By the properties of the maps $\Theta_{i,j}$, one can check that φ is in fact a *-homomorphism.

Next let $h_0 := \psi(1_n)$. We calculate

$$h_0 * \varphi(e_{i,j}) = \sum_{k=1}^n \sum_{D,D' \in \mathcal{H}^{(0)}} \sum_{B \in Q_{i,j}^D} \sum_{B' \in Q_{k,k}^{D'}} \kappa(D') h_{B'} * 1_B$$

but by the definition of a $\mathcal{B}\text{-compatible}$ system,

$$h_{B'} * 1_B = \begin{cases} h_B & \text{if } B' = r(B), \ D' = D, \ i = k \\ 0 & \text{otherwise} \end{cases}$$

and so our quintuple sum above collapses to simply

$$h_0 * \varphi(e_{i,j}) = \sum_{D \in \mathcal{H}^{(0)}} \sum_{B \in Q_{i,j}^D} \kappa(D) h_B = \psi(e_{i,j})$$

A similar calculation yields

$$\psi(e_{i,j}) = h_0 * \varphi(e_{i,j}) = \varphi(e_{i,j}) * h_0$$

which tells us that $\varphi: M_n(\mathbb{C}) \to C_r^*(\mathcal{G})^{**} \cap \{h_0\}'$, and a well-known structure theorem for cpc order zero maps tells us that ψ is indeed order zero.

Theorem 9.0.6. Let \mathcal{G} be lcHé, minimal, σ -compact, with $\mathcal{G}^{(0)}$ compact metrizable. If \mathcal{G} is almost elementary, then $C_r^*(\mathcal{G})$ is tracially \mathcal{Z} -stable.

Proof. Recall from Dolapo's talk that we've reduced the problem as follows. Given

•
$$\epsilon > 0$$
, $n \in \mathbb{N}$, $g \in C(\mathcal{G}^{(0)})_+$

- $F \subset C_c(\mathcal{G})$ finite, such that $\forall f \in F$
 - supp(f) is a compact subset of an open bisection V_f
 - $-\mu(\partial s(\operatorname{supp}(f))) = 0 \text{ for all } \mu \in M(\mathcal{G})$

we need to find cpc order zero maps $\psi: M_n(\mathbb{C}) \to C_r^*(\mathcal{G})$ such that

- 1. $1_{C_n^*(\mathcal{G})} \psi(1_n) \lesssim g$
- 2. $\forall x \in M_n(\mathbb{C})$ with ||x|| = 1 and $f \in F$, $||[\psi(x), f]||_r < \epsilon$.

Part 1: Broad Setup

Let m = |F|. We will start by writing $\mathcal{O}_f := \sup^{\circ} f$ for each $f \in F$. We will also use the symbols U_f to denote either \mathcal{O}_f or \mathcal{O}_f^{-1} : that is, any statement with an occurrence of a symbol U_f should be thought of as multiple separate statements with U_f replaced by each of \mathcal{O}_f and \mathcal{O}_f^{-1} .

Since \mathcal{G} is minimal, there is $\eta > 0$ such that $\mu(\operatorname{supp}^{\circ} g) > 2\eta$ for all $\mu \in M(\mathcal{G})$ (and $\eta < 1/2$ necessarily). Choose $N > \max\{2n^2/\epsilon, 1/\eta\}$.

Let

$$S := \bigcup_{f \in F} \left(\partial s(\mathcal{O}_f) \cup \partial r(\mathcal{O}_f) \right)$$

Since S has measure zero, by a lemma from Pawel's talk, there is $\delta > 0$ such that

$$\mu\left(\overline{B_\delta}(S)\right) < \frac{\eta}{(2|F|)^{N+1}}$$

Define the compact set

$$K := \mathcal{G}^{(0)} \cup igcup_{i=1}^{N+1} \left(igcup_{f_1, \dots, f_i \in F} \overline{U_{f_1}} \cdot \overline{U_{f_2}} \cdots \overline{U_{f_i}}
ight)$$

Finally, choose an open cover \mathcal{V} of $\mathcal{G}^{(0)}$ such that every member of \mathcal{V} has diameter less than δ , and for any $V \in \mathcal{V}$, $u, v \in V$, and $f \in F$,

$$|s(f)(u) - s(f)(v)| < \varepsilon/2n^2$$

Since \mathcal{G} is almost elementary, given our compact set K and open cover \mathcal{V} , by the theorem given in Pawel's talk, we can choose **open castles** $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ (aptly named a kinqdom) such that:

- $\overline{\mathcal{C}}$ and $\overline{\mathcal{D}}$ are compact,
- \mathcal{A} is \mathcal{K} -extendable to \mathcal{B} , and \mathcal{C} is K-extendable to \mathcal{D} ,
- \mathcal{A} is nested in \mathcal{C} with multiplicity nN,
- \mathcal{B} is nested in \mathcal{D} with multiplicity nN,
- $\mu\left(\mathcal{G}^{(0)}\setminus\bigsqcup\mathcal{A}^{(0)}\right)<\eta$, for all $\mu\in M(\mathcal{G})$.

Remark. Paweł only stated that we can obtain $\mathcal{G}^{(0)} \setminus \bigsqcup \mathcal{A}^{(0)} \lesssim_{\mathcal{G}} \mathcal{O}$, given an open set \mathcal{O} , so what gives? In the process of proving that theorem, they obtain an $\theta > 0$ such that

$$\mu(\mathcal{O}) > 2\theta \ge \mu(\mathcal{G}^{(0)} \setminus \bigsqcup \mathcal{A}^{(0)}) \qquad \forall \mu \in M(\mathcal{G})$$

from which it follows that $\mathcal{G}^{(0)} \setminus \bigsqcup \mathcal{A}^{(0)} \lesssim \mathcal{O}$ by groupoid strict comparison. So here, supp° g plays the role of \mathcal{O} , and η the role of θ .

Additionally, by a remark in section 8 (remark 8.10), we can also furnish

• $\forall i \leq N+1, f_1, ..., f_i \in F$, and C-level $C \in C^{(0)}$, either

$$C \subseteq s(U_{f_1} \cdot U_{f_2} \cdots U_{f_i}), \text{ or } C \cap s(U_{f_1} \cdot U_{f_2} \cdots U_{f_i}) = \emptyset$$

and moreover, if $C \subseteq s(U_{f_1} \cdot U_{f_2} \cdots U_{f_i})$, then s(D) = C and $U_{f_1} \cdot U_{f_2} \cdots U_{f_i} C = D$ for some $D \in \mathcal{D}$ (not necessarily a \mathcal{D} -level).

We remark that under these conditions, we can also obtain the following fact:

• for any \mathcal{D} -level $D \in \mathcal{D}^{(0)}$,

$$\forall f \in F \quad \text{either} \quad D \subseteq s(\mathcal{O}_f) \quad \text{or} \quad D \cap s(\mathcal{O}_f) = \emptyset \quad \text{and} \quad \text{either} \quad D \subseteq r(\mathcal{O}_f) \quad \text{or} \quad D \cap r(\mathcal{O}_f) = \emptyset$$

Part 2: Obtaining a Nesting System

We're going to inductively define \mathcal{D} -level sets by letting $\mathcal{D}_0^{(0)} = C^{(0)}$, and for k = 1, ..., N + 1,

$$\mathcal{D}_{k}^{(0)} = \left\{ D \in \mathcal{D}^{(0)} : D = r(U_{f_{k}} \cdots U_{f_{1}}C), f_{1}, ..., f_{k} \in F, C \in \mathcal{C}^{(0)} \right\} \setminus \bigsqcup_{i=0}^{k-1} \mathcal{D}_{i}^{(0)}$$

and then define

$$\mathcal{H}^{(0)} = \bigsqcup_{k=0}^{N} \mathcal{D}_k^{(0)}$$

(notice we're using everything except $\mathcal{D}_{n+1}^{(0)}$). In other words, $\mathcal{H}^{(0)}$ consists of those \mathcal{D} -levels D which are expressible as $D = r(U_{f_i} \cdots U_{f_1} C)$, for some i = 1, ..., N, some $f_j \in F$, and some $C \in \mathcal{C}^{(0)}$. The $\mathcal{D}_k^{(0)}$'s are just those D-levels which are expressible this way, and for which the minimal such i for which such an expression exists is i = k.

Part 3: The Order Zero Maps

Define $\kappa: \mathcal{H}^{(0)} \to [0,1]$ by $\kappa(D) = 1 - k/N$ if $D \in \mathcal{D}_k^{(0)}$, and define $\psi: M_n(\mathbb{C}) \to C_r^*(\mathcal{G})$ by

$$\psi(e_{ij}) = \sum_{D \in \mathcal{H}^{(0)}} \sum_{B \in Q_{i,j}^D} \kappa(D) h_B$$

which we know is cpc order zero. Let $h = 1_{C_r^*(\mathcal{G})} - \psi(1_n)$. By the final remark from Dolapo's talk, we have

$$\mu(\operatorname{supp}^{\circ} h) < 2\eta < \mu(\operatorname{supp}^{\circ} g) \qquad \forall \mu \in M(\mathcal{G})$$

$$\implies \operatorname{supp}^{\circ} h \lesssim_{\mathcal{G}} \operatorname{supp}^{\circ} g$$

By a result from Xin Ma's prior paper on the topic, this implies $h \lesssim g$ (Cuntz subequivalence), so $1_{C_x^*(\mathcal{G})} - \psi(1_n) \lesssim g$.

Now we'd like to take a look at the quantities $[\psi(e_{ij}), f]$. We're going to rearrange the expression a bit to get it into a manageable form (which, ironically, will appear at a glance less manageable).

Given $f \in F$, define

$$S_f = \left\{ D \in \mathcal{H}^{(0)} : D \subseteq s(\mathcal{O}_f), \ r(\mathcal{O}_f D) \in \mathcal{H}^{(0)} \right\}$$
$$R_f = \left\{ D \in \mathcal{H}^{(0)} : D \subseteq r(\mathcal{O}_f), \ r(\mathcal{O}_f^{-1} D) \in \mathcal{H}^{(0)} \right\}$$

and observe that the map $\sigma_f: S_f \to R_f$ defined by $\sigma_f(D) = r(\mathcal{O}_f D)$ is bijective.

We also need to know that $\sigma_f(D)$ occupies the same multisection of \mathcal{D} as D.

Define $\pi_f: S_f \to \mathcal{D}$ by requiring $\pi_f(D)$ be the \mathcal{D} -ladder taking D to $\sigma_f(D)$.

Now define $\theta_{i,j}^{f,D}:Q_{i,j}^D\to Q_{i,j}^{\sigma_f(D)}$ as follows. Given $B\in Q_{i,j}^D$, choose $\theta_{i,j}^{f,D}(B)$ such that

$$s(\theta_{i,j}^{f,D}(B)) = r(\pi_f(D)s(B)), \qquad r(\theta_{i,j}^{f,D}(B)) = r(\pi_f(D)r(B))$$

from which it follows that

$$\pi_f(D)B = \theta_{i,j}^{f,D}(B)\pi_f(D)s(B)$$

With these maps in place, we can write

$$[\psi(e_{i,j}), f] = \sum_{D \in \mathcal{H}^{(0)}} \sum_{B \in Q_{i,j}^D} \kappa(D)(f * h_B - h_B * f)$$

$$= \sum_{D \in S_f} \sum_{B \in Q_{i,j}^D} \kappa(D)f * h_B - \sum_{D \in R_f} \sum_{B \in Q_{i,j}^D} \kappa(D)h_B * f$$

$$= \sum_{D \in S_f} \sum_{B \in Q_{i,j}^D} \underbrace{\left(\kappa(D)f * h_B - \kappa(\sigma_f(D))h_{\theta_{i,j}^{f,D}(B)} * f\right)}_{:=\alpha_{D,B}}$$

To justify the jump from the first to the second line, first recall that for all $\mathcal{D} \in \mathcal{D}^{(0)}$, either $s(\mathcal{O}_f)$ of $D \cap s(\mathcal{O}_f) = \emptyset$, but in the latter case, for any $B \in Q_{i,j}^D$, by definition we have $r(B) \subseteq D$, and so $s(\mathcal{O}_f) \cap r(B) = \emptyset$, which implies $f * h_B = 0$. So we can ignore those D for which $D \not\subset s(\mathcal{O}_f)$, and similarly those $D \not\subset r(\mathcal{O}_f)$.

Additionally, suppose $\emptyset \neq D \in \mathcal{H}^{(0)}$ is such that $D \subseteq s(\mathcal{O}_f)$, but $r(\mathcal{O}_f D) \notin \mathcal{H}^{(0)}$ (so $D \notin S_f$). Then **necessarily** $D \in \mathcal{D}_N^{(0)}$, in which case $\kappa(D) = 0$, so these terms can safely be ignored as well.

Finally, jumping from the second to the third line is just what the bijections σ_f and $\theta_{i,j}^{f,D}$ were designed to accomplish.

This may at first seem uglier, but a nicety we're afforded is that the summands, which we've denote $\alpha_{D,B}$, are supported on a bisection, namely

$$\operatorname{supp}(\alpha_{D,B}) \subseteq \pi_f(D)B = \theta_{i,j}^{f,D}(B)\pi_f(D)s(B)$$

Let's denote the common bisection of these two formulas as B'. Take $\gamma \in B'$. Then we can write $\gamma = \alpha_1 \beta_1 = \beta_2 \alpha_2$ in two different ways choosing from these two different formulas for B', but in each case the pairs (α_1, β_1) and (β_2, α_2) are unique. We choose

$$\begin{array}{ll} \alpha_1 \in \pi_f(D)r(B) & \beta_1 \in B \\ \beta_2 \in \theta_{i,j}^{f,D}(B) & \alpha_2 \in \pi_f(D)s(B) \end{array}$$

Then notice that

$$h_B(\beta_1) = h_{s(B)}(s(\beta_1)) = h_{s(B')}(s(\gamma)) = h_{B'}(\gamma)$$

= $h_{r(B')}(r(\gamma)) = h_{r(\theta_{i,j}^{f,D}(B))}(r(\beta_2)) = h_{\theta_{i,j}^{f,D}}(\beta_2)$

and additionally, by virtue of our choice of open cover \mathcal{V} ,

$$|f(\alpha_1) - f(\alpha_2)| = |s(f)(s(\alpha_1)) - s(f)s(\alpha_2)| < \epsilon/2n^2$$

and so

$$|f * h_B(\gamma) - h_{\theta_{i,j}^{f,D}(B)} * f(\gamma)| = |f(\alpha_1)h_B(\beta_1) - h_{\theta_{i,j}^{f,D}(B)})(\beta_2)f(\alpha_2)|$$
$$= |h(\beta_1)||f(\alpha_1) - f(\alpha_2)| < \epsilon/2n^2$$

whence $||f * h_B - h_{\theta_{i,j}^{f,D}(B)} * f||_{\infty} \le \varepsilon/2n^2$.

We can also obtain a bound on $|\kappa(D) - \kappa(\sigma_f(D))|$. Suppose $D \in \mathcal{H}^{(0)}$, and suppose we can write $D = r(U_{f_1} \cdots U_{f_k}C)$ for some $k \leq N$. Recalling our handy fact that r(Ar(BC)) = r(ABC), we see that

$$\sigma_f(D) = r(\mathcal{O}_f D) = r(\mathcal{O}_f U_{f_1} \cdots U_{f_k} C) \in \mathcal{H}^{(0)} \sqcup \mathcal{D}_{N+1}^{(0)}$$

but this formula allows us to analyze "where in $\mathcal{H}^{(0)}$ " σ_f takes D.

- If $D \in \mathcal{D}_0^{(0)}$, then $\sigma_f(D) \in \mathcal{D}_0^{(0)} \sqcup \mathcal{D}_1^{(0)}$
- If $D \in \mathcal{D}_k^{(0)}$, k = 1, ..., N 1, then $\sigma_f(D) \in \mathcal{D}_{k-1}^{(0)} \sqcup \mathcal{D}_k^{(0)} \sqcup \mathcal{D}_{k+1}^{(0)}$
- If $D \in \mathcal{D}_N^{(0)}$, then $\sigma_f(D) \in \mathcal{D}_{N-1}^{(0)} \sqcup \mathcal{D}_N^{(0)}$ (we can't get $\mathcal{D}_{N+1}^{(0)}$ since it's disjoint from $\mathcal{H}^{(0)}$, and we've assumed σ_f maps back into $\mathcal{H}^{(0)}$).

In any of these cases, $|\kappa(D) - \kappa(\sigma_f(D))| < 1/N < \epsilon/2n^2$.

Putting these bounds together through an application of the triangle inequality, we get

$$\|\alpha_{D,B}\|_{r} = \|\alpha_{D,B}\|_{\infty}$$

$$\leq \underbrace{\left[\kappa(D) - \kappa(\sigma_{f}(D))\right]}_{\leq \epsilon/2n^{2}} \|f * h_{B}\|_{\infty} + \kappa(\sigma_{f}(D)) \underbrace{\|f * h_{B} - h_{\theta_{i,j}^{f,D}(B)} * f\|_{\infty}}_{\leq \epsilon/2n^{2}}$$

$$\leq \epsilon/n^{2}$$

Next, we observe that when $(D_1, B_1) \neq (D_2, B_2)$, then $\alpha_{D_1, B_1}^* \alpha_{D_2, B_2} = \alpha_{D_1, B_1} \alpha_{D_2, B_2}^* = 0$, and so $\|\alpha_{D_1, B_1} + \alpha_{D_2, B_2}\|_r = \max(\|\alpha_{D_1, B_1}\|_r, \|\alpha_{D_2, B_2}\|_r)$, and more generally

$$\|[\psi(e_{i,j}), f]\|_r = \max_{D, B} \|\alpha_{D,B}\|_r \le \epsilon/n^2$$

Then for any $x = \sum_{i,j} x_{i,j} e_{i,j} \in M_n(\mathbb{C})$ with ||x|| = 1, one has

$$\|[\psi(x), f]\|_r \le \sum_{i,j} \|[\psi(e_{ij}), f]\|_r \le \epsilon$$

as desired. \Box

10 Appendix A

Fact 10.0.1. Let A, B be bisections, and $C \subseteq \mathcal{G}^{(0)}$. Then r(Ar(BC)) = r(ABC).

Proof. This really just follows from writing out the explicit expressions, but we'll do one direction to be sure. Suppose $x \in r(Ar(BC))$, so there exist $a \in A$, $b \in B$ such that r(a) = x, s(a) = r(b), and $r(b) \in C$. Then clearly $y = abr(b) \in ABC$ and r(y) = x, so $x \in r(ABC)$.

Corollary 10.0.2. Recall the definition of a nesting of a multisection C into a multisection D with multiplicity $\geq N$. Then $r(D_{n,m}r(D_{m,n}C)) = C$, and $r(D_{n,k}r(D_{m,n}C)) = r(D_{m,k}C)$.

Fact 10.0.3. Let $S, T \in \mathcal{B}(\mathcal{H})$, and suppose $S^*T = ST^* = 0$. Then $||S + T|| = \max(||S||, ||T||)$.

Proof. First, notice that $||S|| = \left| \left| (S+T) \frac{S^*}{||S||} \right| \le \sup_{\|U\|=1} \|(S+T)U\| = \|S+T\|$, and similarly $\|T\| \le \|S+T\|$.

Notice that the conditions $S^*T = ST^* = 0$ imply ran $S \perp \operatorname{ran} T$ and $\ker S^{\perp} \perp \ker T^{\perp}$. Suppose ||x|| = 1. Write $y = P_{\ker S^{\perp}}x$ and $z = P_{\ker T^{\perp}}x$. Then

$$||(S+T)x||^2 = ||Sy + Tz||^2 = ||Sy||^2 + ||Tz||^2$$
 since $\langle Sy, Tz \rangle = 0$
= $||(S \oplus T)(y \oplus z)||^2$

and

$$\begin{split} \|y \oplus z\|^2 &= \|y\|^2 + \|z\|^2 = \|y + z\|^2 & \text{ since } \langle y, z \rangle = 0 \\ &= \|(P_{\ker S^{\perp}} + P_{\ker T^{\perp}})x\|^2 \\ &\leq \|x\|^2 = 1 & \text{ since } P_{\ker S^{\perp}} + P_{\ker T^{\perp}} \text{ is a projection, because } \ker S^{\perp} \perp \ker T^{\perp} \end{split}$$

whence $||S+T|| \le ||S\oplus T|| = \max(||S||, ||T||)$. Combined with the lower bounds above, this proves the result.

11 Appendix B

Old Nesting System

Define $C_0^{(0)} := \{ C \in C^{(0)} : C \cap S = \emptyset \}$. Observe that $\forall \mu \in M(\mathcal{G})$

$$\mu\left(\bigcup\{A\in\mathcal{A}^{(0)}: A\subseteq C, C\in\mathcal{C}_0^{(0)}\}\right) \ge 1-\eta-\eta/(2|F|)^{N+1}$$

Next, let

$$C_0'^{(0)} = \{ C \in C_0^{(0)} : \exists f \in F, \ D \in D^{(0)} \text{ s.t. } D = r(U_f C) \text{ and } D \cap S \neq \emptyset \}$$
$$C_1^{(0)} = C_0^{(0)} \setminus C_0'^{(0)}$$

A calculation reveals that for all $\mu \in M(\mathcal{G})$

$$\mu\left(\bigcup \mathcal{C}_{1}^{(0)}\right) \ge \mu\left(\bigcup \left\{A \in \mathcal{A}^{(0)} : A \subseteq C, C \in \mathcal{C}_{1}^{(0)}\right\}\right)$$

$$\ge 1 - \eta - \eta/(2|F|)^{N+1} - \eta/(2|F|)^{N}$$

We can continue this process inductively, obtaining collections $\mathcal{C}_k^{(0)}$, k < N, such that

- 1. $\forall C \in \mathcal{C}_k^{(0)}$, if $U_{f_i} \cdots U_{f_1} C$ is equal to some $D \in \mathcal{D}$ for some $f_1, ..., f_i \in F$, $i \leq k$, then $r(D) \cap S = \emptyset$,
- 2. for all $\mu \in M(\mathcal{G})$,

$$\mu\left(\bigcup C_k^{(0)}\right) \ge 1 - \eta\left(1 + \sum_{i=0}^k (2|F|)^{-(N+1-i)}\right)$$

In general, we have

$$\mathcal{C}_k^{(0)} = \left\{ C \in \mathcal{C}^{(0)} \ : \ \text{if} \ U_{f_1} \cdots U_{f_i} C = D \ \text{ for some } i \leq k \ \text{and} \ f_j \in F, \ \text{then} \ r(D) \cap S = \emptyset \right\}$$

In particular, we obtain $\mathcal{C}_N^{(0)}$, and the second condition above gives

$$\mu\left(\bigcup \mathcal{C}_{N}^{(0)}\right) > 1 - \eta \sum_{k=0}^{N+1} (2|F|)^{-k}$$
$$\sum_{k=0}^{N+1} (2|F|)^{-k} \le \sum_{k=0}^{\infty} (2|F|)^{-k} = \frac{1}{1 - 1/(2|F|)} \le 2$$
$$\mu\left(\bigcup \mathcal{C}_{N}^{(0)}\right) > 1 - 2\eta > 0$$

This is all to say that $\mathcal{C}_N^{(0)}$ is non-empty.

Next define $\mathcal{D}_0^{(0)} = \mathcal{C}_N^{(0)},$ and inductively define or k=1,...,N+1

$$\mathcal{D}_{k}^{(0)} = \left\{ D \in \mathcal{D}^{(0)} : D = r(U_{f_{k}} \cdots U_{f_{1}}C), f_{1}, ..., f_{k} \in F, C \in \mathcal{C}_{N}^{(0)} \right\} \setminus \bigsqcup_{i=0}^{k-1} \mathcal{D}_{i}^{(0)}$$

Note that some $\mathcal{D}_k^{(0)}$ may be empty, but this is not a problem. Define

$$\mathcal{H}^{(0)} = \bigsqcup_{k=0}^{N} \mathcal{D}_k^{(0)}$$

(notice we're using everything except $\mathcal{D}_{n+1}^{(0)}$). In other words, $\mathcal{H}^{(0)}$ consists of those \mathcal{D} -levels D which are expressible as $D = r(U_{f_i} \cdots U_{f_1} C)$, for some i = 1, ..., N, some $f_j \in F$, and some $C \in \mathcal{C}_N^{(0)}$. The $\mathcal{D}_k^{(0)}$'s are just those D-levels which are expressible this way, and for which the minimal such i for which such an expression exists is i = k.

Additionally, for every $D \in \mathcal{H}^{(0)}$, $D \cap S = \emptyset$.

Then we have

$$\mathcal{C}_N^{(0)} \subseteq \mathcal{H}^{(0)} \subseteq \mathcal{D}^{(0)}$$