Nirma University

Institute of Technology

Semester End Examination (IR), May-2019

B.Tech. in Computer Engineering/Information Technology, Semester -VI CE601 – Design and Analysis of Algorithms

Exam No	o with Date	
Time: 3 I	Hours Max Marks: 100	
Instructio	ns: 1. Attempt all the questions. 2. Figures to right indicate full marks. 3. Draw neat sketches wherever necessary. 4. Assume suitable data wherever required.	
Q-1	Do as directed	16]
A CO-1 BL-2	Solve the following recurrences (give asymptotic tight bound)	[8]
	1. $n T_{(n)} = 2n T_{(n/2)} + \log n$	
	2. $t_n = \begin{cases} 1 & \text{if } n = 0 \\ 4t_{n-1} - 2^n & \text{otherwise} \end{cases}$	
B CO-1 BL-2	State and prove Master's Theorem for analysing the asymptotic behaviour of divide-and-conquer algorithms.	[8]
Q-2	Do as directed (any two)	[18]
A CO-2 BL-3	Prove that Travelling Salesman Decision Problem is NP Complete.	[9]
B CO-2 BL-3	Differentiate with suitable examples: 1.NP Hard and NP Complete 2.P and NP Problems	[9]
CO-2 BL-3	What is amortized analysis of an algorithm? Compare accounting method, potential method and aggregate analysis with suitable example.	[9]

Q-3 Do as directed

[16] [8]

A Write Kruskal's algorithm to find MST in a graph. Use binomial heap CO-3 to find edge with minimum weight and use disjoint set data structure to detect cycle and trace this algorithm on following

B Given the two heaps H and H' find the union of these two heaps. [8] CO-3 What are the applications of union of two heaps? BL-4

Section II

Q-4 Do as directed

[8]

Whether the Huffman code algorithm is greedy approach? Justify your opinion. Find the optimal Huffman code for the following set of frequencies based on first 8 Fibonacci numbers?

A:1 B:1 C:2 D:3 E:5 F:8 G:13 H:21

- B In an infinite array, the first n cells contains integers in sorted order and rest of the cells are filled with ∞. Device an algorithm that takes x as input and finds the position of x in the array in (logn) time. Value of n is not given. Give trace of your algorithm on suitable example.
- Q-5 Do as directed

 A Device a Dynamic Programing Algorithm to find the length of longest subsequence of a given sequence (of integers) such that all elements of subsequence are sorted in strictly decreasing order. Give trace of your algorithm on following sequence:

 [18]

Sequence: 5, 13, 8, 10, 14, 6, 12

OR

A Device Back tracking solution for finding Hamiltonian cycle for given [9]
CO-4 graph. Trace it for the following adjacency matrix of a graph.
BL-6 P P P

	A	В	C	D	E
A	1	0	1	0	0
В	0	1	1	0	1
C	1	1	0	1	0
D	0	1	1	0	0
E	1	0	0	1	0

B Discuss the applicability of Bellman Ford algorithm for different [9] CO-4 kinds of graphs and Find all pair shortest path for the following BL-3 graph using Bellman Ford algorithm.

Q-6 Do as directed (Any Two)

[16]

- A Differentiate beween FIFO Branch and Bound and Least Cost [8]

 CO-4
 Branch and Bound strategy. Compare implementation aspects of both the strategies using a suitable example. Evaluate both the strategies with respect to convergence time.
- B Apply Hungerian algorithm to assign the four tasks to four [8] co-4 operators. The assigning costs are given in Table. Evaluate Time complexity of the algorithm.

		Operators		1	
		1	2	3	4
	A	20	28	19	13
Tasks	В	15	30	31	28
	C	40	21	20	17
	D	21	28	26	12
)

CO-4 chessboard so that no two queens attack each other, Design an algorithm for solving N-Queen Problem using backtracking and evaluate time complexity.