EyesStudio 2016

Программа, позволяющая отслеживать траекторию глаз с веб-камеры, либо из видео файла. Главные требования к видео — положение головы должно быть фиксировано, отсутствие сильных бликов на зрачках.

Программа является бесплатной для использования в некоммерческих целях.

1. Описание главного окна

Окно программы можно разделить на три части.

Слева – выбор пациента и управление списком пациентов. Здесь Вы видите три кнопки и список, созданных пользователей. Возможно добавить нового пользователя, отредактировать его или удалить. В случае удаления, так же удаляются и все записи данного пользователя (при этом видеозаписи не удаляются).

По центру — детальная информация выбранной записи. Здесь Вы можете выбрать одну из существующих записей текущего пользователя. Посмотреть график зависимости X координаты зрачка для левого и правого глаза, а так же изображение, соответствующее выбранному кадру на графике (зеленая вертикальная черта). В правого глаза вертикальная черта. В прафике (зеленая вертикальная черта). В прафике (зеленая вертикальная черта). В прафике (зеленая вертикальная черта). В прафике (зеленая вертикальная черта).

Справа – панель управления текущей записью и списком записей. Здесь можно добавить запись с веб-камеры, либо из файла. Запустить анализ видеозаписи, удалить запись. Остальные кнопки будут описаны ниже и служат для редактирования записи.

2. Анализ видео

Чтобы запустить анализ видео нажмите кнопку из видео камеры или выбрать из списка, предварительно добавленное видео (кнопка из видео файла) и нажать кнопку анализировать. Если вы нажили из видео камеры, то вас попросят ввести индекс камер (обычно вводят 0 для использования камеры по умолчанию, если к компьютеру подключено несколько камер, введите необходимый номер). Откроется окно детектирования.

2.1 Алгоритм детектирования

На данный момент доступен только алгоритм, основанный на бинаризации. Нажмите на кнопку Бинаризация.

2.2 Калибровка

Здесь задаются некоторые параметры, необходимые для последующего детектирования.

Нажмите **Левый** и мышкой выделите область левого глаза. Нажмите **Правый** и мышкой выделите область правого глаза. Нажмите **Калибровка** и проведите калибровочный отрезок, который будет соответствовать на изображении расстоянию, указанному в текстовом поле. Обычно достаточно выбрать в качестве калибровочного отрезка диаметр радужной оболочки глаза и калибровочное значения равное 12 мм. Для более точной калибровки, можно использовать линейку, установленную в плоскости лица.

Для удобства можно остановить видео, нажав кнопку Старт / Пауза.

В случае, если разрешение изображения достаточно большое, для ускорения процесса детектирования рекомендуется его уменьшить. Для этого вы можете воспользоваться ползунком. Не стоит слишком сильно уменьшать изображение, т.к. от этого снизится точность детектирования.

2.3 Преобразование изображения

Здесь задаются параметры бинаризации изображения. Используя ползунок добейтесь наиболее четкого отображения зрачков без посторонних шумов. Возможно для этого вам нужно будет вернуться на предыдущий шаг и уменьшить области для левого и правого глаза.

Так же здесь можно установить, будет ли использоваться сглаживание и/или нормализация. Иногда данные параметры могут повысить устойчивость к шумам.

Вы можете выбрать и расширенные возможности. Здесь представлено шесть компонент изображения R,G,B,H,S,V. Для каждой компоненты, можно установить нижний и верхний порог бинаризации, а результирующее изображение будет являться суммой (логическая операция И) выбранных компонент. Что бы выбрать компоненту необходимо установить флажок, рядом с соответствующей буквой.

2.4 Детектирование

Нажмите на кнопку **Начать** для запуска анализа видео. Если вы анализируете видеопоток с камеры, то необходимо указать сколько будет длиться запись (в минутах) и в диалоговом окне выбрать путь к файлу, куда будет сохраняться видео. Также можете выбрать способ определения координат зрачка — **Медиана** или **Среднее**. Обычно медиана работает точнее, зато **Среднее** чуть быстрее (но не значительно). Установка флажка **Скрыть изображения**, может ускорить процесс. Рядом с флажком отображается прогресс детектирования. В текстовое поле комментарии, можно внести некоторые полезные записи.

На графике снизу, через 10 секунд начинает строиться зависимость X координаты левого и правого зрачка (в миллиметрах) от времени (в секундах). На графике справа зависимость Y от X (траектория движения).

При нажатии на кнопку Пауза детектирование приостанавливается. Однако, если ведется запись с камеры, время не останавливается, таким образом, общая длительность записи становится меньше. При нажатии Сначала текущий прогресс будет потерян и анализ начнется с первого кадра.

После успешного детектирования появится сообщение. Нажмите Ок. Окно детектирования закроется. Откроется главное окно программы.

3. Редактирование записи

Теперь вы можете устранить вручную неточности машинного детектирования.

Есть возможность произвести интерполяцию выбросов и нулевых значений. Для этого нажмите кнопку Интерполировать выбросы. Для сглаживания кривой нажмите Сглаживание. При этому вы можете отменить результат последней интерполяции или сглаживания. Фактор интерполяции имеет следующий смысл: во сколько раз приращение координаты должно отличаться от медианы приращений по всей записи, что бы считать данное значение выбросом.