Lecture 2: Agents and Environments

EECS 492:

Intro to Artificial Intelligence
Benjamin Kuipers (for Emily Mower-Provost)

Thinking Across Disciplines

- AI is intrinsically inter-disciplinary.
 - The phenomenon is the Mind.
 - Our tools are computational.
 - We build models that can be tested.
- As Engineering artifacts:
 - How well do they perform?
- As Scientific hypotheses:
 - How well do they explain the data?
 - How do they compete against other hypotheses?

"Airplanes in the Sky"

- One jet flies north at 400 mph.
- One jet flies east at 300 mph.
- One hour later:
 - How far apart are they?
 - How fast are they separating?

"Airplanes in the Sky"

- One jet flies north at 400 mph.
- One jet flies east at 300 mph.
- One hour later:
 - How far apart are they?
 - How fast are they separating?

"Airplanes in the Sky"

- One jet flies north at 400 mph.
- One jet flies east at 300 mph.
- One hour later:
 - How far apart are they?
 - How fast are they separating?

- Who's on board?
- Where did they come from?
- Where are they going?
- Do they have enough fuel?
- Why are they going there?
- What will they do when they get there?

The Two Cultures (C. P. Snow)

- Given a description of a situation . . .
 - One approach is to abstract it to a simplified skeleton, that supports modeling and inference.
 Powerful, useful conclusions can be drawn.
 - Another approach is to find more connections with many other situations and descriptions.
 Powerful, useful conclusions can be drawn.
- Both approaches are important.
 - Often, they fail to communicate.
 - To do AI, you need them both.

Agents

- An agent interacts with its environment via
 - Sensors (that receive percepts) and
 - Actuators (that perform actions).

Rational Agent

- A rational agent "does the right thing"
 - i.e. maximizes some performance measure.
- "For each possible percept sequence
 - a rational agent should select an action that is expected to maximize its performance measure,
 - given the evidence provided by the percept sequence and whatever built-in knowledge the agent has." [p.37]
 - (but best decision does not imply best outcome)

Task Environments

- These are the "problems" that
 agents are the "solutions" to.
- Performance measure
- Environment
- Actuators
- Sensors

Properties of Task Environments

- Fully observable vs partially observable
- Deterministic vs stochastic
- Episodic vs sequential
- Static vs dynamic
- Discrete vs continuous
- Single agent vs multi-agent
- Known vs unknown

What is the task environment for an intelligent robotic wheelchair?

Wheelchair Task Environment

- Performance measure
- Environment

• Actuators

• Sensors

Modeling robot interaction with a continuous environment

Agent = Architecture + Program

- Four (non-trivial) kinds of agent programs:
 - Table-driven agents (trivially intractable)
 - Simple reflex agents
 - Model-based reflex agents
 - Goal-based agents
 - Utility-based agents

Simple Reflex Agent

• Condition-action rules react to current percept.

Intelligent Wheelchair as Simple Reflex Agent

- Obstacle suddenly appears => Stop!
 - (can you think of other cases?)

Model-Based Reflex Agent

• Uses a model to estimate state from percept.

Intelligent Wheelchair as Model-Based Reflex Agent

- "Turn right" =>
 - Go straight to next decision point
 - If it has exactly one option described as "right", move to that gateway.
 - Otherwise repeat
 - Depart from that gateway on next path segment
- Build a local map from observations
 - Use the map for motion planning

Goal-Based Agent

• Explicitly considers how to achieve its goal.

Intelligent Wheelchair as Goal-Based Agent

- Given destination place =>
 - Search a topological map to find a route to destination.
 - Follow first path segment to next decision point.
 - Select and follow next path segment. Repeat.

Utility-Based Agent

• Trades off among goals based on its utilities.

Intelligent Wheelchair as Utility-Based Agent

• Slow down and go wide around a blind corner. (Why?)

The Intelligent Wheelchair at Class-Change Time

- At 5 Hz, Vulcan generates and evaluates 300-500 potential smooth trajectories.
 - Jong Jin Park, PhD, UM ME, 2016.

Learning Agent

• Learning can improve any aspect of an agent.

Intelligent Wheelchair as Learning Agent

- Learning the cognitive map.
- Learning the driver's preferences.
- Learning to move safely and comfortably.

Simple Agent Models

- Simple models are very useful.
 - Models of the world.
 - Models of the agents.
 - ...
- What are their limits?
- Why should we care?

Common Sense in Medicine

- Gerry Sussman built an inference engine and a knowledge base, and filled the KB with axioms about medicine.
 - Patients, symptoms, diseases
 - Good outcomes, bad outcomes
 - Actions and their results
 - Etc.
- (tell `(has_temperature the_patient 104))
- (ask `(therapy the_patient ?x))

Common Sense in Medicine

```
• (tell '(has_temperature the_patient 104))
```

```
- ... fever ...
```

- ... infection ...

- ... bacteria ...

... (goal (kill bacteria)) ...

• (ask '(therapy the_patient ?x))

_

Common Sense in Medicine

- (tell '(has_temperature the_patient 104))
 - ... fever ...
 - ... infection ...
 - ... bacteria ...
 - ... (goal (kill bacteria)) ...
- (ask '(therapy the_patient ?x))
 - (therapy the_patient (boil the_patient))

Common Sense in Medicine

- This story is a joke.
 - What is the serious message?
- Inferences are made using simple models.
 - Comprehensive models are intractable.
 - But simple models can omit important things.
- Look for examples of common sense.
 - Use **simple models** to draw conclusions.
 - Check those conclusions with **other models**.

Examples of Common Sense

- Don't boil the patient!
- ... others? ...

Bottom Line

- Think of Artificial Intelligence in terms of agents, interacting with environments.
- Reflexes respond directly to perceptions:
 - dumb, but fast.
- An AI agent builds models:
 - to **infer** world state from observations,
 - to **predict** world futures after actions,
 - to **evaluate** utility of states and trajectories.
- We may well need multiple models.