实验十四 直流电桥测量电阻 实验报告

钱思天 1600011388 No.8 2017年12月11日

1 实验数据与处理

1.1 平衡电桥测量结果

表 1: 不同 R_x 不同 R_1/R_2 (均 E=4.0V & $R_h=0\Omega$) 测量结果

测量值 各待测项 $R_x \& \frac{R_1}{R_2}$		$R_0(\Omega)$	$R_0'(\Omega)$	$\Delta n(R)$	$R_x(\Omega)$	$\Delta R_0(\Omega)$	S
R_{x1}	500/500	47.9	47.8	4.0	47.9	0.1	1.9×10^3
	50/500	3600	3575	4.0	360.0	25	5.8×10^{2}
R_{x2}	500/500	360.0	361.0	4.0	360.0	1.0	1.4×10^3
	500/500(交换)	360.0	361.0	4.0	360.0	1.0	1.4×10^3
R_{x3}	500/500	4059	4005	4.0	4059.0	54	3.0×10^2

表 2: R_{x2} 不同测量条件测量结果

测量值 各待测项						
	$R_0(\Omega)$	$R_0'(\Omega)$	$\Delta n(R)$	$R_x(\Omega)$	$\Delta R_0(\Omega)$	S
各测量条件						
$E = 4.0V \& R_h = 0\Omega \&$	360.0	361.0	4.0	360.0	1.0	1.4×10^{3}
$R_1/R_2 = 500/500$	300.0	301.0	4.0	300.0	1.0	1.4 × 10
$E = 2.0V \& R_h = 0\Omega \&$	360.0	362.0	4.0	360.0	2.0	7.2×10^{2}
$R_1/R_2 = 500/500$	000.0	002.0	1.0	300.0		,,2 / 10
$E = 4.0V \& R_h = 0\Omega \&$	3600	3650	4.0	360.0	50.0	2.9×10^{2}
$R_1/R_2 = 500/5000$	3000	3000	4.0	300.0	50.0	2.3 × 10
$E = 4.0V \& R_h = 3.0k\Omega \&$	360	340	5.5	360.0	10.0	2.0×10^{2}
$R_1/R_2 = 500/500$	300	340	0.0	300.0	10.0	2.0 × 10

关于灵敏度 S 的计算, 利用公式

$$S = \frac{\Delta n}{\Delta R_x/R_x} = \frac{\Delta n}{\Delta R_0/R_0}$$

可计算出各S的实测值,已附于数据表内。

至于 S 的理论值,根据公式

$$S = \frac{S_G E}{R_1 + R_2 + R_3 + R_4 + (R_g + R_h)(2 + \frac{R_1}{R_x} + \frac{R_0}{R_2})}$$

将 $S_G^{-1} = 1.3 \times 10^{-6} (A/格)$ 及 $R_g = 47\Omega$ 代入,得下表:

表 3: 不同 R_x 不同 R_1/R_2 (均 E=4.0V & $R_h=0\Omega)S$ 理论值计算结果

R_x	R_{x1}		R_{x3}		
R_1/R_2	500/500	50/500	500/500	500/500(交换)	500/500
S	1.8×10^3	6.2×10^{2}	1.6×10^3	1.6×10^{3}	3.2×10^2

下计算交换桥臂法测得的 R_{x2} 及其不确定度 σ_{x2} : 利用公式

$$R = \sqrt{R_{01} \cdot R_{02}}$$

$$\sigma = \sqrt{\left(\frac{\partial R}{\partial R_{01}}\right)^2 \sigma_{R_{01}}^2 + \left(\frac{\partial R}{\partial R_{02}}\right)^2 \sigma_{R_{02}}^2 + (\delta R)^2}$$

$$\left(\frac{\partial R}{\partial R_{01}}\right)^2 \sigma_{R_{01}}^2 = \frac{R_{02}}{4R_{01}} \cdot \left(\frac{0.1\% \times R_{01}}{\sqrt{3}}\right)^2 = 0.011$$

$$\left(\frac{\partial R}{\partial R_{02}}\right)^2 \sigma_{R_{02}}^2 = \frac{R_{01}}{4R_{02}} \cdot \left(\frac{0.1\% \times R_{02}}{\sqrt{3}}\right)^2 = 0.011$$

$$(\delta R_x)^2 = \left(\frac{0.2R_x}{S}\right)^2 = 0.0026$$

得

$$R_{x2} = \sqrt{R_{01} \cdot R_{02}} = 360.0(\Omega)$$

$$\sigma_{x2} = \sqrt{(\frac{\partial R}{\partial R_{01}})^2 \sigma_{R_{01}}^2 + (\frac{\partial R}{\partial R_{02}})^2 \sigma_{R_{02}}^2 + (\delta R)^2} = 0.2(\Omega)$$

$$R_{x2} \pm \sigma_{x2} = (360.0 \pm 0.2)\Omega$$

表 4: 所测金属丝直径

所测直径 d_1 d_2 d_3 d_4 d_5 d_6 d_7 d_8 d_9 d_{10} 读数 d_i/mm 0.325 0.320 0.321 0.320 0.318 0.317 0.319 0.317 0.316 0.314

耒	5.	逐个依次添加砝码所得卡丝位置	1
1	·) ·		1

次数 i	本次添加砝码质量 $\Delta m_i/g$	砝码总重量 m_i/g	正向位置 r/cm	反向位置 r'/cm	平均位置 \bar{r}/cm	逐差长度 $\delta L/cm$
0	99.97	99.97	2.86	2.87	2.87	0.60
1	199.94	299.91	2.97	2.98	2.98	0.60
2	200.00	499.91	3.09	3.1	3.10	0.59
3	199.98	699.89	3.23	3.23	3.23	0.58
4	199.98	899.87	3.36	3.35	3.36	0.57
5	199.91	1099.78	3.47	3.46	3.47	-
6	199.92	1299.70	3.57	3.58	3.58	-
7	200.05	1499.75	3.68	3.69	3.69	-
8	199.50	1699.25	3.80	3.81	3.81	-
9	200.07	1899.32	3.92	3.92	3.92	_

1.1.1 梁的弯曲测量杨氏模量

表 6: 实验所用砝码组

砝码编号 i 1 2 3 4 5 6 砝码质量 $\Delta m_i/g$ 200.11 200.81 200.03 200.11 200.57 200.14

表 7: 梁的宽度

宽度 a_i/mm a_1 a_2 a_3 a_4 a_5 a_6 读数 9.94 9.92 9.90 9.84 9.86 9.84

表 8: 梁的厚度

厚度 h_i/mm h_1 h_2 h_3 h_4 h_5 h_6 读数 1.499 1.521 1.532 1.519 1.541 1.539

表 9: 逐个依次添加砝码所得梁最低点位置

次数 i	本次添加砝码质量 $\Delta m_i/g$	砝码总重量 m_i/g	正向位置 λ/mm	反向位置 λ'/mm	平均位置 $\bar{\lambda}/mm$	逐差长度 $\delta\Lambda/mm$
1	200.11	200.11	37.585	37.460	37.523	-2.458
2	200.81	400.92	36.770	36.692	36.731	-2.503
3	200.03	600.95	35.932	35.827	35.880	-2.503
4	200.11	801.06	35.111	35.018	35.065	_
5	200.57	1001.63	34.271	34.185	34.228	_
6	200.14	1201.77	33.422	33.332	33.377	_

1.2 一次测量物理量测量数值及其不确定度

1.2.1 利用 CCD 测量金属的杨氏模量

在本实验中,一次测量物理量分别是铁丝的长度,以及螺旋测微计的 零点位置。利用公式:

$$\sigma = \frac{e}{\sqrt{3}}$$

及实际测量数据可得下表:

表 10: 本实验中一次测量物理量及其不确定度 物理量 铁丝长度 $L \pm \sigma_L/cm$ 螺旋测微计零点读数 $d_0 \pm \sigma_d/mm$ 值 80.41 ± 0.06 -0.003 ± 0.002

1.2.2 利用光杠杆测量金属的杨氏模量

在本实验中,一次测量物理量分别是铁丝的长度,螺旋测微计的零点 位置,光杠杆臂长以及望远镜的工作距离。利用公式:

$$\sigma = \frac{e}{\sqrt{3}}$$

及实际测量数据可得下表:

表 11: 本实验中一次测量物理量及其不确定度

物理量 铁丝长度 $L\pm\sigma_L/cm$ 螺旋测微计零点读数 $d_0\pm\sigma_d/mm$ 工作距离 $R\pm\sigma_R/cm$ 光杠杆臂长 $D\pm\sigma_D/cm$ 数值 77.60±0.06 -0.003 ± 0.002 136.49 ± 0.06 9.20 ± 0.01

1.2.3 梁的弯曲测量杨氏模量

在本实验中,一次测量物理量分别是金属梁的有效长度及螺旋测微计 的零点位置。利用公式:

$$\sigma = \frac{e}{\sqrt{3}}$$

及实际测量数据可得下表:

数值

表 12: 本实验中一次测量物理量及其不确定度 物理量 金属梁有效长度 $L\pm\sigma_L/cm$ 螺旋测微计零点读数 $h_0\pm\sigma_h/mm$ 23.32 ± 0.01 -0.021 ± 0.02

1.3 用逐差法和最小二乘法处理数据

1.3.1 利用 CCD 测量金属的杨氏模量

根据前文所展示的实验数据,可作 \bar{r} 与 m 关系图如下:

从图中可以看出, \bar{r} 与 m 成基本呈线性关系,计算得 $r \approx 0.999$,故确实存在线性关系,下面分别用逐差法和最小二乘法进行数据处理。

逐差法 之前的数据处理中已经计算了各次逐差的值,列表如下:

表 13: 逐差结果数据表

逐差次数 $\bar{r}_5 - \bar{r}_0$ $\bar{r}_6 - \bar{r}_1$ $\bar{r}_7 - \bar{r}_2$ $\bar{r}_8 - \bar{r}_3$ $\bar{r}_9 - \bar{r}_4$ 逐差长度 $\delta L_i/mm$ 0.60 0.60 0.59 0.58 0.57

利用公式,有:

$$\delta L = \frac{1}{5} \sum_{i=1}^{5} \delta L_i = 0.588(mm)$$

下计算不确定度: A 类:

$$\sigma_{\bar{L}} = \sqrt{\frac{\sum_{i=1}^{5} (\delta L_i - \overline{\delta L})^2}{5 \times 4}} = 0.006(mm)$$

B 类:

$$e_L = \sum_{i=1}^{5} \frac{e+e}{5} = 0.02(mm) \Rightarrow \sigma = \frac{e}{\sqrt{3}} = 0.012(mm)$$

总不确定度:

$$\sigma_L = \sqrt{\sigma^2 + \sigma_{\bar{L}}^2} = 0.013(mm)$$

综上,得;

$$\delta L \pm \sigma_L = 0.588 \pm 0.013 (mm)$$

最小二乘法 设

$$\bar{r} = k \times m + b$$

考虑到需要计算的物理量,我们对截距进行分析:

$$k = \frac{\sum_{i=0}^{9} (\bar{r}_i - \bar{r})(m_i - \bar{m})}{\sum_{i=0}^{9} (m_i - \bar{m})^2} = 5.88 \times 10^{-4} (mm/g)$$

下计算不确定度: 首先计算 \bar{r} 的不确定度: A 类:

$$\sigma_r = \sqrt{\frac{1 - r^2}{10 - 2} \sum_{i=0}^{9} (\bar{r}_i - \bar{r})^2} = 0.009(mm)$$

B 类:

$$\sigma = \frac{e+e}{\sqrt{3}} = 0.012(mm)$$

总不确定度:

$$\sigma_{\bar{r}} = \sqrt{\sigma^2 + \sigma_r^2} = 0.015(mm)$$

得 k 的不确定度:

$$\sigma_k = \frac{\sigma}{\sqrt{\sum_{i=0}^{9} (m_i - \bar{m})^2}} = 6 \times 10^{-6} (mm/g)$$

故:

$$k \pm \sigma_k = (5.88 \pm 0.06) \times 10^{-4} (mm/g)$$

1.3.2 利用光杠杆测量金属的杨氏模量

根据前文所展示的实验数据,可作 \bar{r} 与m关系图如下:

从图中可以看出, \bar{r} 与 m 成基本呈线性关系,计算得 $r \approx 0.999$,故确实存在线性关系,下面分别用逐差法和最小二乘法进行数据处理。

逐差法 之前的数据处理中已经计算了各次逐差的值,列表如下:

 利用公式,有:

$$\delta L = \sum_{i=1}^{5} \delta L_i = 1.540(cm)$$

下计算不确定度: A 类:

$$\sigma_{\bar{L}} = \sqrt{\frac{\sum_{i=1}^{5} (\delta L_i - \overline{\delta L})^2}{5 \times 4}} = 0.011(cm)$$

B 类:

$$e_L = \sum_{i=1}^{5} \frac{e+e}{5} = 0.02(cm) \Rightarrow \sigma = \frac{e}{\sqrt{3}} = 0.012(cm)$$

总不确定度:

$$\sigma_L = \sqrt{\sigma^2 + \sigma_{\bar{L}}^2} = 0.016(cm)$$

综上,得;

$$\delta L \pm \sigma_L = 1.540 \pm 0.016(cm)$$

最小二乘法 设

$$\bar{r} = k \times m + b$$

考虑到需要计算的物理量,我们对截距进行分析:

$$k = \frac{\sum_{i=0}^{9} (\bar{r}_i - \bar{r})(m_i - \bar{m})}{\sum_{i=0}^{9} (m_i - \bar{m})^2} = 1.545 \times 10^{-3} (cm/g)$$

下计算不确定度: 首先计算 \bar{r} 的不确定度: A 类:

$$\sigma_r = \sqrt{\frac{1 - r^2}{10 - 2} \sum_{i=0}^{9} (\bar{r}_i - \bar{r})^2} = 0.016(cm)$$

B 类:

$$\sigma = \frac{e+e}{\sqrt{3}} = 0.012(cm)$$

总不确定度:

$$\sigma_{\bar{r}} = \sqrt{\sigma^2 + \sigma_r^2} = 0.020(cm)$$

得 k 的不确定度:

$$\sigma_k = \frac{\sigma}{\sqrt{\sum_{i=0}^{9} (m_i - \bar{m})^2}} = 1.1 \times 10^{-5} (cm/g)$$

故:

$$k \pm \sigma_k = (1.545 \pm 0.011) \times 10^{-3} (cm/g)$$

1.3.3 梁的弯曲测量金属的杨氏模量

根据前文所展示的实验数据,可作 $\bar{\lambda}$ 与 m 关系图如下: 从图中可以看出, $\bar{\lambda}$ 与 m 成基本呈线性关系,计算得 $\lambda \approx -0.9999$,故确实存在线性关系,下面分别用逐差法和最小二乘法进行数据处理。

逐差法 之前的数据处理中已经计算了各次逐差的值,列表如下:

表 15: 逐差结果数据表

逐差次数 $r_0 - r_3$ $r_1 - r_4$ $r_2 - r_5$ 逐差长度 $\delta \Lambda_i / mm$ 2.458 2.503 2.503

利用公式,有:

$$\delta\Lambda = \frac{1}{5} \sum_{i=1}^{5} \delta\Lambda_i = 2.488(mm)$$

下计算不确定度: A 类:

$$\sigma_{\bar{\Lambda}} = \sqrt{\frac{\sum_{i=1}^{3} (\delta \Lambda_i - \overline{\delta \Lambda})^2}{3 \times 2}} = 0.015(mm)$$

B 类:

$$e_{\Lambda} = \sum_{i=1}^{3} \frac{e+e}{3} = 0.008(mm) \Rightarrow \sigma = \frac{e}{\sqrt{3}} = 0.005(mm)$$

总不确定度:

$$\sigma_{\Lambda} = \sqrt{\sigma^2 + \sigma_{\bar{\Lambda}}^2} = 0.016(mm)$$

综上,得;

$$\delta\Lambda \pm \sigma_{\Lambda} = 2.488 \pm 0.016 (mm)$$

最小二乘法 设

$$\bar{\lambda} = k \times m + b$$

考虑到需要计算的物理量,我们对截距进行分析:

$$k = \frac{\sum_{i=0}^{5} (\bar{r}_i - \bar{r})(m_i - \bar{m})}{\sum_{i=0}^{5} (m_i - \bar{m})^2} = -4.14 \times 10^{-3} (mm/g)$$

下计算不确定度: 首先计算 $\bar{\lambda}$ 的不确定度: A 类:

$$\sigma_r = \sqrt{\frac{1-r^2}{6-2} \sum_{i=0}^{9} (\bar{r}_i - \bar{r})^2} = 0.017(mm)$$

B 类:

$$\sigma = \frac{e+e}{\sqrt{3}} = 0.005(mm)$$

总不确定度:

$$\sigma_{\bar{r}} = \sqrt{\sigma^2 + \sigma_r^2} = 0.018(mm)$$

得 k 的不确定度:

$$\sigma_k = \frac{\sigma}{\sqrt{\sum_{i=0}^{9} (m_i - \bar{m})^2}} = 2 \times 10^{-5} (mm/g)$$

故:

$$k \pm \sigma_k = (-4.14 \pm 0.02) \times 10^{-3} (mm/g)$$

1.4 分别计算金属的杨氏模量

1.4.1 利用 CCD 测量金属的杨氏模量

原理公式:

$$E = \frac{4mgL}{\pi d^2 \Delta r}$$

逐差法计算 由于相隔 5 项逐差,可以将公式改写如下:

$$E = \frac{4\bar{m}gL}{\pi\bar{d}^2(\frac{\delta L}{5})} = 1.68 \times 10^{11} (Pa)$$

各量不确定度如下:

$$\sigma_m = \sqrt{\frac{\sum_{i=1}^{9} (m_i - \bar{m})^2}{9 \times 8}} = 0.05(g)$$

$$\sigma_L = 0.06(cm)$$

对于金属丝直径:

$$\bar{d} = \frac{1}{10} (\sum_{i=1}^{10} d_i) - d_0 = \bar{d}_{read} - d_0$$

得:

$$\sigma_d = \sqrt{\sigma_{d_{read}}^2 + \sigma_{d_0}^2}$$

由于 σ_{d_0} 已知,下求 $\sigma_{d_{read}}$:

A 类:

$$\sigma_{\bar{d}} = \sqrt{\frac{\sum_{i=1}^{10} (d_{readi} - \bar{d}_{read})^2}{10 \times 9}} = 0.0005(mm)$$

B 类:

$$e_d = \sum_{i=1}^{3} \frac{e}{3} = 0.004(mm) \Rightarrow \sigma = \frac{e}{\sqrt{3}} = 0.002(mm)$$

得总不确定度:

$$\sigma_{d_{read}} = \sqrt{\sigma_{\bar{d}}^2 + \sigma^2} = 0.002(mm)$$

得:

$$\sigma_d = \sqrt{\sigma_{d_{read}}^2 + \sigma_{d_0}^2} = 0.003(mm)$$

从而:

$$\sigma_E = \sqrt{(\frac{\partial E}{\partial \bar{m}})^2 \sigma_m^2 + (\frac{\partial E}{\partial L})^2 \sigma_L^2 + (\frac{\partial E}{\partial \bar{d}})^2 \sigma_d^2 (\frac{\partial E}{\partial (\frac{\delta L}{5})})^2 \sigma_{(\frac{\delta L}{5})}^2} = 0.03 \times 10^{11} (Pa)$$

故:

$$E \pm \sigma_E = (1.68 \pm 0.03) \times 10^{11} (Pa)$$

最小二乘法计算 由于斜率已知,可将公式改写如下:

$$E = \frac{4gL}{\pi \bar{d}^2 k} = 1.69 \times 10^{11} (Pa)$$

不确定度计算如下:

$$\sigma_L = 0.06(cm)$$

$$\sigma_d = \sqrt{\sigma_{d_{read}}^2 + \sigma_{d_0}^2} = 0.003(mm)$$

从而:

$$\sigma_E = \sqrt{(\frac{\partial E}{\partial L})^2 \sigma_L^2 + (\frac{\partial E}{\partial \bar{d}})^2 \sigma_d^2 + (\frac{\partial E}{\partial k})^2 \sigma_k^2} = 0.01 \times 10^{11} (Pa)$$

故:

$$E \pm \sigma_E = (1.69 \pm 0.01) \times 10^{11} (Pa)$$

1.4.2 利用光杠杆测量金属的杨氏模量

原理公式:

$$E = \frac{8FLR}{\pi d^2 D\Delta r}$$

逐差法计算 由于相隔 5 项逐差,可以将公式改写如下:

$$E = \frac{8\bar{m}gLR}{\pi\bar{d}^2(\frac{\delta L}{\epsilon})D} = 1.66 \times 10^{11}(Pa)$$

最小二乘法计算 由于斜率已知,可将公式改写如下:

$$E = \frac{8gLR}{\pi \bar{d}^2 kD} = 1.65 \times 10^{11} (Pa)$$

1.4.3 梁的弯曲测量金属的杨氏模量

原理公式:

$$E = \frac{Gl^3}{4\lambda ah^3}$$

逐差法计算 由于相隔 3 项逐差,可以将公式改写如下:

$$E = \frac{\bar{m}gl^3}{4ah^3(\frac{\delta\Lambda}{3})} = 2.14 \times 10^{11}(Pa)$$

2 分析与讨论 12

最小二乘法计算 由于斜率已知,可将公式改写如下:

$$E = \frac{gl^3}{4ah^3|k|} = 2.14 \times 10^{11}(Pa)$$

2 分析与讨论

2.1 Δr 偏大

考虑到开始时钢丝没有拉直,因此,最初的一两个砝码会将金属丝拉直,而在这过程中,相应的 Δr 也会偏大。

2.2 Δr 偏小

若开始时,装置的调节未做好,使得下端圆柱与限转螺丝存在摩擦,则最初时刻的 Δr 会因存有摩擦力而较小。

3 收获和感想

在课下准备本次实验的时候,我其实并没有感到非常紧张。一来,室 友已做过这个实验,可以向他取经;二来,我自己在高中也做过这个实验。

但是,真正实际操作的时候,我却并没有像想象中那般轻松。

一来,进行实验的时候,有一些长度的测量对"身材"提出了要求; 二来,我的 CCD 似乎对我有一些意见······

当然了,结束实验进行总结时,我不由的感叹实验设计的精妙。

在我看来,测量杨氏模量的重要一环,在于将微小的形变放大。无论 是搭配了显微镜的 CCD,光杆杆还是读数显微镜,都是为了完成这一目 标。推而广之,许多实验中,实验设计里都存在着这些将不可观测量转化 为可观测量的精妙构想。

在实验课程的学习中,我也要培养自己的实验设计能力,培养自己设计将无法直接测量的物理量进行转化,将低精度测量量转化为高精度的测量量的能力。