Dr. William Howell, Professor

Homework #4-Reading Raw Data; Manipulating Data

Directions: Please submit one program file, one output file, and one log file for the entire assignment. Use comment statements to separate your answers. For questions that do not require a SAS program use comment statements. For example:

```
/*
```

```
Question #1d: my answer
Question #2a: my answer
*/
/*Question #4b: */
--SAS program—
/*Ouestion #5*/
```

Please make sure the log and output file contain only one run. For example, clear the screen for the log and output file and submit your program one last time before you upload your solutions to *Blackboard*. See lab 1 for the instructions on how to clear your output and log files.

Part I-Reading SAS data sets

- 1. Reading a Space-Delimited Raw Data File
 - **a.** Write a DATA step to create a new data set named **work.qtrdonation**. Read the space-delimited raw data file, which can be named as follows:

Windows	"&path\donation.dat"
UNIX	"&path/donation.dat"
z/OS (OS/390)	"&pathrawdata(donation)"

Partial Raw Data File

```
120265 . . . 25
120267 15 15 15 15
120269 20 20 20 20
120270 20 10 5 .
120271 20 20 20 20
```

b. Read the following fields from the raw data file:

Name	Type	Length
IDNum	Character	6
Qtr1	Numeric	8
Qtr2	Numeric	8
Qtr3	Numeric	8
Qtr4	Numeric	8

c. Write a PROC PRINT step to create the report below. The results contain 124 observations.

Partial PROC PRINT Output

0bs	IDNum	Qtr1	Qtr2	Qtr3	Qtr4
1	120265				25
2	120267	15	15	15	15
3	120269	20	20	20	20
4	120270	20	10	5	
5	120271	20	20	20	20

2. Reading a Delimited Raw Data File with Nonstandard Data Values

a. Write a DATA step to create a temporary data set, **prices**. Read the delimited raw data file named as follows:

Windows	"&path\pricing.dat"
UNIX	"&path/ pricing.dat"
z/OS (OS/390)	"&pathrawdata(pricing)"

All data fields are numeric.

Partial Raw Data File

```
210200100009*09JUN2011*31DEC9999*$15.50*$34.70
210200100017*24JAN2011*31DEC9999*$17.80*22.80
210200200023*04JUL2011*31DEC9999*$8.25*$19.80
210200600067*270CT2011*31DEC9999*$28.90*47.00
210200600085*28AUG2011*31DEC9999*$17.85*$39.40
```

b. Generate the report below. The results should contain 16 observations.

			201	1 Pricing		
0bs	ProductID	StartDate	EndDate	Cost	Sales Price	
1	210200100009	06/09/2011	12/31/9999	15.50	34.70	
2	210200100017	01/24/2011	12/31/9999	17.80	22.80	
3	210200200023	07/04/2011	12/31/9999	8.25	19.80	
4	210200600067	10/27/2011	12/31/9999	28.90	47.00	
5	210200600085	08/28/2011	12/31/9999	17.85	39.40	

3. Reading a Delimited File with Missing Values

a. Write a DATA step to create a temporary data set, **prices**. Use the asterisk-delimited raw data file, which can be named as follows:

Windows	"&path\prices.dat"
UNIX	"&path/prices.dat"
z/OS (OS/390)	"&pathrawdata(prices)"

Partial Raw Data File

210200100009*09JUN2007*31DEC9999*\$15.50*\$34.70 210200100017*24JAN2007*31DEC9999*\$17.80 210200200023*04JUL2007*31DEC9999*\$8.25*\$19.80 210200600067*270CT2007*31DEC9999*\$28.90 210200600085*28AUG2007*31DEC9999*\$17.85*\$39.40

There might be missing data at the end of some records. Read the following fields from the raw data file:

Name	Type	Length
ProductID	Numeric	8
StartDate	Numeric	8
EndDate	Numeric	8
UnitCostPrice	Numeric	8
UnitSalesPrice	Numeric	8

b. Define labels and formats in the DATA step to create a data set that generates the following output when they are used in the PROC PRINT step. The results should contain 259 observations.

				2007 Prices	
					Sales
		Start of	End of	Cost Price	Price per
0bs	Product ID	Date Range	Date Range	per Unit	Unit
	24.22.24.22.22	05/00/0007	42 /24 /0000	45.50	24.70
1	210200100009	06/09/2007	12/31/9999	15.50	34.70
2	210200100017	01/24/2007	12/31/9999	17.80	•
3	210200200023	07/04/2007	12/31/9999	8.25	19.80
4	210200600067	10/27/2007	12/31/9999	28.90	
5	210200600085	08/28/2007	12/31/9999	17.85	39.40

Part II-Manipulating data

4. Creating New Variables

- a. Write a DATA step that reads orion.customer to create work.birthday.
- b. In the DATA step, create three new variables: Bday2012, BdayDOW2012, and Age2012.
 - Bday2012 is the combination of the month of Birth_Date, the day of Birth_Date, and the constant of 2012 in the MDY function.
 - BdayDOW2012 is the day of the week of Bday2012.
 - Age2012 is the age of the customer in 2012. Subtract **Birth_Date** from **Bday2012** and divide the result by 365.25.
- c. Include only the following variables in the new data set: Customer_Name, Birth_Date, Bday2012, BdayDOW2012, and Age2012.
- **d.** Format **Bday2012** to appear in the form 01Jan2012. **Age2012** should be formatted to appear with no decimal places.
- e. Write a PROC PRINT step to create the report below. The results should contain 77 observations.

Partial PROC PRINT Output

		Birth_		Bday	
Obs	Customer_Name	Date	Bday2012	DOW2012	Age2012
1	James Kvarniq	27JUN1978	27JUN2012	4	34
2	Sandrina Stephano	09JUL1983	09JUL2012	2	29
3	Cornelia Krahl	27FEB1978	27FEB2012	2	34
4	Karen Ballinger	180CT1988	180CT2012	5	24
5	Elke Wallstab	16AUG1978	16AUG2012	5	34

5. Creating Multiple Variables in Conditional Processing

- a. Write a DATA step that reads orion.customer dim to create work.season.
- **b.** Create two new variables: **Promo** and **Promo2**.

The value of **Promo** is based on the quarter in which the customer was born.

- If the customer was born in the first quarter, then **Promo** is equal to *Winter*.
- If the customer was born in the second quarter, then **Promo** is equal to *Spring*.
- If the customer was born in the third quarter, then **Promo** is equal to *Summer*.
- If the customer was born in the fourth quarter, then **Promo** is equal to Fall.

The value of **Promo2** is based on the customer's age.

- For young adults, whose age is between 18 and 25, set **Promo2** equal to YA.
- For seniors, aged 65 or older, set **Promo2** equal to *Senior*.

Promo2 should have a missing value for all other customers.

- c. The new data set should include only Customer_FirstName, Customer_LastName, Customer_BirthDate, Customer_Age, Promo, and Promo2.
- **d.** Create the report below. The results should include 77 observations.

	Customer_	Customer_	Customer_		Customer_	
0bs	FirstName	LastName	BirthDate	Promo	Age	Promo2
1	James	Kvarniq	27JUN1978	Spring	33	
2	Sandrina	Stephano	09JUL1983	Summer	28	
3	Cornelia	Krahl	27FEB1978	Winter	33	
4	Karen	Ballinger	180CT1988	Fall	23	YA
5	Elke	Wallstab	16AUG1978	Summer	33	
6	David	Black	12APR1973	Spring	38	
7	Markus	Sepke	21JUL1992	Summer	19	YA
8	Ulrich	Heyde	16JAN1943	Winter	68	Senior

6. Creating Variables Unconditionally and Conditionally

- a. Write a DATA step that reads orion.orders to create work.ordertype.
- b. Create a new variable, DayOfWeek, that is equal to the weekday of Order_Date.
- **c.** Create the new variable **Type**, which is equal to the following:
 - Retail Sale if **Order_Type** is equal to 1
 - Catalog Sale if **Order_Type** is equal to 2
 - Internet Sale if Order_Type is equal to 3.
- **d.** Create the new variable **SaleAds**, which is equal to the following:
 - *Mail* if **Order_Type** is equal to 2
 - *Email* if **Order_Type** is equal to *3*.
- e. Do not include Order_Type, Employee_ID, and Customer_ID in the new data set.
- **f.** Create the report below. The results should contain 490 observations.

0bs	Order_ID	Order_ Date	Delivery_ Date	Туре	Sale Ads	Day Of Week	
1	1230058123	11JAN2007	11JAN2007	Retail Sale		5	
2	1230080101	15JAN2007	19JAN2007	Catalog Sale	Mail	2	
3	1230106883	20JAN2007	22JAN2007	Catalog Sale	Mail	7	
4	1230147441	28JAN2007	28JAN2007	Retail Sale		1	
5	1230315085	27FEB2007	27FEB2007	Retail Sale		3	

Part III- Supplemental exercises for STAT 625 and Honors credit

7. Reading a Tab-Delimited Raw Data File

a. Create a temporary data set, managers2. Use the tab-delimited raw data file, which can be named as follows:

Windows	"&path\managers2.dat"
UNIX	"&path/ managers2.dat"
z/OS (OS/390)	"&pathrawdata(managers2)"

Raw Data File

120102	Tom	Zhou M	108255	Sales Manager
120103	Wilson	Dawes M	87975	Sales Manager
120261	Harry	Highpoint	M	243190 Chief Sales Officer
121143	Louis	Favaron M	95090	Senior Sales Manager
121144	Renee	Capachietti	F	83505 Sales Manager
121145	Dennis	Lansberry	M	84260 Sales Manager

b. Read the following fields from the raw data file:

Name	Type
ID	Numeric
First	Character
Last	Character
Gender	Character
Salary	Numeric
Title	Character

- c. The new data set should contain only First, Last, and Title.
- **d.** Generate the report below. The results should contain six observations.

0bs	First	Last	Title
1	Tom	Zhou	Sales Manager
2	Wilson	Dawes	Sales Manager
3	Harry	Highpoint	Chief Sales Officer
4	Louis	Favaron	Senior Sales Manager
5	Renee	Capachietti	Sales Manager
6	Dennis	Lansberry	Sales Manager

8. Reading a Delimited File with Missing Values and Embedded Delimiters

a. Write a DATA step to create a temporary data set, **salesmgmt**. Use the raw data file, which can be named as follows:

Windows	"&path\managers.dat"
Windows	"&path\managers.dat"

Partial Raw Data File

```
120102/Tom/Zhou/M//Sales Manager/AU/11AUG1969/'06/01/1989'
120103/Wilson/Dawes/M/87975/Sales Manager/AU/22JAN1949/'01/01/1974'
120261/Harry/Highpoint/M/243190//US/21FEB1969/'08/01/1987'
121143/Louis/Favaron/M/95090/Senior Sales Manager/US/26NOV1969/'07/01/1997'
121144/Renee/Capachietti/F/83505/Sales Manager/US/28JUN1964
121145/Dennis/Lansberry/M/84260/Sales Manager/US/22NOV1949/'04/01/1976'
```

- **b. ID** is a numeric value. The **salesmgmt** data set should contain only the variables shown in the report below.
- **c.** Write a PROC PRINT step to generate the report below. The results should contain six observations.

PROC PRINT Output

Orion Star Managers							
0bs	ID	Last	Title	HireDate	Salary		
1	120102	Zhou	Sales Manager	01JUN1989			
2	120103	Dawes	Sales Manager	01JAN1974	87975		
3	120261	Highpoint		01AUG1987	243190		
4	121143	Favaron	Senior Sales Manager	01JUL1997	95090		
5	121144	Capachietti	Sales Manager	ē	83505		
6	121145	Lansberry	Sales Manager	01APR1976	84260		

9. Using the CATX and INTCK Functions to Create Variables

a. Write a DATA step that reads orion.sales to create work.employees.

In the DATA step, create a new variable, **FullName**. This variable is the combination of **First_Name**, a space, and **Last_Name**. Use the CATX function. You can find documentation about CATX in the SAS Help Facility or in the online documentation.

In the DATA step, create a new variable, **Yrs2012**. This variable is the number of years between January 1, 2012, and **Hire_Date**. Use the INTCK function. Documentation about INTCK can be found in the SAS Help Facility or in the online documentation.

- **b.** Format **Hire_Date** to appear in the form 31/01/2012.
- c. Give Yrs2012 a label of Years of Employment as of 2012.
- **d.** Create the report shown below. The results should contain 165 observations.

Partial PROC PRINT Output

			Years of Employment
0bs	FullName	Hire_Date	as of 2012
1	Tom Zhou	01/06/1993	19
2	Wilson Dawes	01/01/1978	34
3	Irenie Elvish	01/01/1978	34
4	Christina Ngan	01/07/1982	30
5	Kimiko Hotstone	01/10/1989	23

10. Using WHEN Statements in a SELECT Group to Create Variables Conditionally

- a. Write a DATA step that reads orion.nonsales to create work.gifts.
- **b.** Create two new variables, **Gift1** and **Gift2**. Use a SELECT group with WHEN statements. You can find documentation about the SELECT group with WHEN statements in the SAS Help Facility or in the online documentation.

If **Gender** is equal to F, then the listed variables equal the following values:

Gift1 is equal to *Scarf*.

Gift2 is equal to *Pedometer*.

If **Gender** is equal to M, then the listed variables equal the following values:

Gift1 is equal to *Gloves*.

Gift2 is equal to *Money Clip*.

If **Gender** is not equal to F or M, then the listed variables equal the following values:

Gift1 is equal to *Coffee*.

Gift2 is equal to *Calendar*.

- c. The new data set should include only Employee ID, First, Last, Gender, Gift1, and Gift2.
- **d.** Create the report below. The results should contain 235 observations.

Employee_ID	First	Last	Gender	Gift1	Gift2
120101	Patrick	Lu	М	Gloves	Money Clip
120104	Kareen	Billington	F	Scarf	Pedometer
120105	Liz	Povey	F	Scarf	Pedometer
120106	John	Hornsey	М	Gloves	Money Clip
120107	Sherie	Sheedy	F	Scarf	Pedometer