Time Constants for an RC Circuit and an LR Circuit

Ryan Coyne

May 2, 2023

1 Abstract/Procedure/Conclusion

In this lab, we measured the time constants, τ , for three RC and three LR circuits. Each RC circuit was set up as in Figure 1. The first had a resistor with a resistance of 100 Ω and a capacitor with a capacitance of 330 μ F. The second had a resistor with a resistance of 10 Ω and a capacitor with a capacitance of 100 μ F. The first had a resistor with a resistance of 10 Ω and a capacitor with a capacitance of 100 μ F. The LR circuits were set up as shown in Figure 2. They all used the same inductor with an inductance of 8.2 mH and a resistance of 6.5 Ω . The first had a resistor with a resistance of 10 Ω . The second had a resistor with a resistance of 33 Ω . The third had a resistor with a resistance of 100 Ω . The power source was a signal generator set to create a square wave with a frequency around 1 kHz and an amplitude of 5 V.

Figure 1: RC circuit: Experimental setup

Figure 2: LR circuit: Experimental setup

2 Data

	$C (\mu F)$	$R(\Omega)$	τ (s)	τ_{meas} (s)
1	330	100	0.033	0.036
2	100	10	0.0010	0.0011
3	100	33	0.0033	0.0036

Table 1: RC circuit: Capacitance and resistance.

	L(H)	$R(\Omega)$	τ (s)	τ_{meas} (s)
1	0.0082	16.5	0.000497	0.000078
2	0.0082	39.5	0.00021	0.00021
3	0.0082	106.5	0.000077	0.00051

Table 2: LR circuit: Inductance and resistance.

Figure 3: RC circuit 1 plot.

Figure 4: RC circuit 2 plot.

Figure 5: RC circuit 3 plot.

Figure 6: LR circuit 1 plot.

Figure 7: LR circuit 2 plot.

Figure 8: LR circuit 3 plot.

3 Calculations

(1)
$$Q = C\Delta V_c$$

(2) $\sigma_{R_1} = 5 \Omega$
 $\sigma_{R_2} = 1.65 \Omega$
 $\sigma_{R_3} = 0.5 \Omega$
 $\frac{\sigma_{R_1}}{R_1} = \frac{5 \Omega}{100 \Omega}$
 $\frac{\sigma_{R_2}}{R_2} = \frac{1.65 \Omega}{33 \Omega}$
 $\frac{\sigma_{R_3}}{R_3} = \frac{0.5 \Omega}{10 \Omega}$
 $\frac{\sigma_{R_1}}{R_1} = \frac{\sigma_{R_2}}{R_2} = \frac{\sigma_{R_3}}{R_3}$
 $= 5\%$
 $\sigma_{C_1} = 66 \mu F$
 $\sigma_{C_2} = 20 \mu F$
 $\frac{\sigma_{C_1}}{C_1} = \frac{66 \mu F}{330 \mu F}$

$$\frac{\sigma_{C_2}}{C_2} = \frac{20 \ \mu F}{100 \ \mu F}$$

$$\frac{\sigma_{C_1}}{C_1} = \frac{\sigma_{C_2}}{C_2}$$

$$= 20\%$$

$$(3) \quad \overline{\tau_1} = 330 \ \mu F \cdot 100 \ \Omega$$

$$= 0.033 \ s$$

$$\tau_{1,R} = 330 \ \mu F \cdot (100 + 5) \ \Omega$$

$$= 0.03465 \ s$$

$$\tau_{1,C} = (330 + 66) \ \mu F \cdot 100 \ \Omega$$

$$= 0.0396$$

$$\sigma_{\tau_1} = 0.0068 \ s$$

$$(4) \quad \sigma_{R_4} = 0.825 \ \Omega$$

$$\sigma_{R_5} = 1.975 \ \Omega$$

$$\sigma_{R_6} = 5.325 \ \Omega$$

$$\frac{\sigma_{R_4}}{R_4} = \frac{0.825 \ \Omega}{16.5 \ \Omega}$$

$$\frac{\sigma_{R_6}}{R_6} = \frac{1.975 \ \Omega}{39.5 \ \Omega}$$

$$\frac{\sigma_{R_6}}{R_6} = \frac{5.325 \ \Omega}{106.5 \ \Omega}$$

$$\frac{\sigma_{R_4}}{R_4} = \frac{\sigma_{R_5}}{R_5} = \frac{\sigma_{R_6}}{R_6}$$

$$= 5\%$$

$$(5) \quad \overline{\tau_4} = \frac{0.0082 \ H}{16.5\Omega}$$

$$= 0.000497 \ s$$

$$\tau_{4,R} = \frac{0.0082 \ H}{(16.5 + 0.825)\Omega}$$

$$= 0.000473 \ s$$

$$\sigma_{\tau_4} = \overline{\tau_4} - \tau_{4,R}$$

$$= 0.0000497 \ s - 0.000473 \ s$$

$$= 0.000024 \ s$$