

PATENT ABSTRACTS OF JAPAN

[Date of final disposal for application]
[Patent number]

(11) Publication number : 09-326902
(43) Date of publication of application : 16.12.1997

(51) Int.CI. 1/04
B41J 2/525
H04N 1/028
H04N 1/19
H04N 1/48

(21) Application number : 08-144679 (71) Applicant : FUJI PHOTO FILM CO LTD
(22) Date of filing : 06.06.1996 (72) Inventor : KATAYAMA TORU

(54) METHOD FOR CORRECTING PICTURE ELEMENT DEVIATION IN SUBSCANNING DIRECTION OF LINEAR IMAGE SENSOR

(57) Abstract:

PROBLEM TO BE SOLVED: To correct a deviation between colors in an output image resulting from a deformation (picture element deviation) in the subscanning direction of each of R, G, B linear image sensors.

SOLUTION: A test chart 102 on which a linear image 100 extended in a main scanning direction X is carried is read in 2-dimension by each of R, G, B linear image sensors 1r, 1g, 1b and an image data file is generated for each picture element of each main scanning line. Based on the image data file, a picture element deviation amount corresponding to a color slurring in the subscanning direction between the picture element of the G linear image sensor 1g and the picture elements of the same picture element number of the remaining image sensors 1r, 1g is calculated for each picture element number to generate a picture element deviation correction table. Actually in the case that the image information carried on the original is read by each of R, G, B linear image sensors 1r, 1g, 1b as image data, the read image data are corrected based on the picture element deviation correction table.

Copyright (C); 1998,2000 Japanese Patent Office

LEGAL STATUS

[Date of request for examination]
[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

【0022】一方、図2に示す画像読み取り装置10Rは、ハウジングの上部に、原稿載置台52が開閉自在に配置されている。原稿載置台52には、反射型読み取り原稿(单に、反射原稿ともいう。)FRを載せるための透明なガラス板54が設けられるとともに、このガラス板54上には、原稿押え板56が振動自在に配置される。なお、図2においても、図1、図14～図16に示したものと対応するものには同一の符号を付け、その詳細な説明を省略する。

【0023】図2において、ハウジング内には、反射原稿FRからの反射光Lの光路を変更する反射光学系である第1および第2ミラーユニット61、62と、これら第1および第2ミラーユニット61、62を副走査方向Yに移送させる移送機構60と、第1および第2ミラーユニット61、62を介して得られた画像情報を有する光学系16により集光された光Lに含まれた画像情報を光電的に読み取る結像部18とが配置される。

【0024】第1ミラーユニット61には、反射原稿FRに照明光Lを照射するための照明用光源64a、64bと、反射原稿FRからの鉛直の光路を水平方向に変更して第2のミラーユニット62に導くための反射ミラー66とが配置される。これら照明用光源64a、64bと反射ミラー66とは、副走査方向Yと直交する(図2において、紙面と直交する)主走査方向Xに延びた長尺な構成とされている。

【0025】第1ミラーユニット61を構成する反射ミラー66により反射された反射光Lの光路は、第2ミラーユニット62を構成する、主走査方向Xに延びた長尺な反射ミラー76、78によりさらに2回光路が変更され、結像光学系16に導かれる。

【0026】結像部18は、光Lの光路状に配置されかつ結像光学系16に一体的に設けられた3色分解プリズム32r、32g、32b、32bを有し、各プリズム32r、32g、32bの光出射面には、CCDリニアイメージセンサ1r、1g、1bが接着剤により固定されている。

【0027】移送機構60は、第1および第2ミラーユニット61、62を副走査方向Yへ移送するステッピングモータ70を備え、このステップモータ70の駆動軸側に回転軸72が連結される。この回転軸72に第1紐状体73と第2紐状体74とが巻かれ、これら第1および第2紐状体73、74は、図示しない複数のブリを介して第1および第2ミラーユニット61、62に對して結合され、第1ミラーユニット61を第2ミラーユニット62の移送速度の2倍の速度で移送する周知の構成となっている。換言すれば、第1ミラーユニット61の移送速度の半分の移送速度で第2ミラーユニット62を移送するよう正在しているので、第1ミラーユニット61の移送距離の半分の距離だけ第2ミラーユニット62が向かっている。

【0033】この場合、直線画像100の副走査方向Yへの移送中に、例えば、画像情報の読み取り中に、反射原稿FRと結像光学系16との間の反射光Lの光路長が一定の距離に保持され、ピントがずれることがない。

【0028】このようにして、第1および第2のミラーユニット61、62が、図2中、実線で示す位置から二点鎖線の位置まで移送されることにより、反射原稿FRに担持された画像情報を、リニアイメージセンサ1r、1g、1bからの出力信号のレベルを同じにするためである。

【0034】副走査方向Yの一定範囲の読み取り範囲は、図6に示すリニアイメージセンサ1の副走査方向Yの鉛直範囲Dmaxを含む範囲であることを前提として、テストチャート102を前記所定範囲に取り付けて、テストチャート102を前記所定範囲内に配置され、傾き等によって直線画像100が読取範囲内からはみ出さないだけの余裕を考慮したライン数とする。

【0035】そこで、図7に示すように、テストチャート102を前記した一定範囲(2ライン分)とする。)、読み込んだとき、リニアイメージセンサ1r、1g、1b毎に、その測定データである、7500画素×2ライン個からなる画像データファイル104r、104g、104b(代表的には、画像データファイル104と呼ばれる。)を作成する(ステップS2)。画像データファイル104r、104g、104bの各アドレスには、14ビットの画像データSr、Sg、Sbが配備されている。この画像データファイル104r、104g、104bに記憶されている内容のイメージは、図16に示した、副走査湾曲特性Rchd、Gchd、Bchdと同等である。

【0036】次に、副走査方向Yの画像ずれ量(位置ずれ量)を計算する(ステップS3)。この場合、任意の1色、この実施の形態では、G色用のリニアイメージセンサ1gを基準とし、このリニアイメージセンサ1gを構成する各画素と残りのリニアイメージセンサ1r、1bを構成する同一画素番号の画素との間の副走査方向Yの色ずれに対応する画素ずれ量を計算して、その色ずれに対応する画素ずれ量を計算する。この実施の形態では、8次式に近似する(ステップS4)。この実施の形態では、8次式に近似することにより、近似的精度が向上した。すなわち、Gチャンネルの日チャンネルの日チャンネル(Nx)を表す近似式を用いて計算すれば、次の(1)式で与えられる。

(1) 式において、画像ずれ量近似関数Egb(Nx)から、画素番号1から画素番号7500までの各画素についての補正画像ずれ量Dgb'、Dgr'を求め、求めた補正画像ずれ量Dgb'、Dgr'をメモリに格納して記憶する(ステップS5)。なお、補正画素ずれ量Dgb'、Dgr'は、補正回路の種類(加算器を使用するか等)に応じて、画素ずれ量Egb(Nx)を表す近似式または8次近似式ともいう。) Egb(Nx)

【0037】この画像ずれ量DgbとDgrとが算出されると、図8に示すG用画像データSb(Nx)を矢印J方向に0、1画素ずつずらし、ずらした位置毎に図8示すG用画像データSb(Nx)から画像毎に減算して、その差が最小となるずれ量を画像ずれ量Dgbとする。同様に、画素番号Nxの画像の画像ずれ量Dgrと(GチャンネルとRチャンネル間)は、図8に示すB用画像データSb(Nx)を矢印J方向に0、1画素ずつずらし、ずらした位置毎に減算して、その差が最小となるずれ量を画像ずれ量Dgrとする。同様に、画素番号Nxの画像の画像ずれ量DgbとDgrとが算出されると、図9は、10画素毎に得られた2種類の画像を模式的にプロットして示している。図9は、10画素毎に得られた2種類の画像ずれ量DgbとDgrの中、画像ずれ量Dgb(Nx)とDgr(Nx)に基づき画素番号Nxを変換して、その差が最小となるずれ量Dgbとするよう

【0038】そこで、画素番号Nxの画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印K方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0039】図3は、図1例および図2例の画像読み取り装置10Rに適用可能であって、この発明の一実施の形態が適用された補正テーブル作成装置79の概略的な構成を示している。なお、この図3は、後に説明するように、画素ずれ補正装置179の構成をも示している。

【0040】図3において、上述したように、原稿FR(F、FR)の画像情報を把持した光しがズームレンズを含む結像光学系16を介し、3色分解プリズム32r、32g、32bを通じて結像部18を構成するリニアイメージセンサ1r、1g、1bに入射する。リニアイメージセンサ1r、1g、1bからの出力信号は、それぞれ、図示しない信号処理基板に搭載される、オフセットと利得の調整可能な可変利得増幅器80r、80g、80bを介して14ビットの分解能のA/D変換器82r、82g、82bとA/D変換器82r、82g、82bとに供給され、画像データSr、Sg、Sbが補正テーブル作成部84に供給される。この場合、画像読み取りの高速化のために、可変利得増幅器80r、80g、80bとは、リニアイメージセンサ1r、1g、1bを構成する図示しない奇数画素転送部と偶数画素転送部毎に駆けても良い。

【0041】次に、図4に示す補正テーブル作成用フローチャートをも参照してリニアイメージセンサ1r、1g、1bの副走査湾曲(図16参照)を補正するための補正テーブルの作成方法について説明する。

【0042】まず、図5中に示す、主走査方向Xに延びる直線画像(横一本線)100が持持されたテストチャート102を、図11に示す原稿カセット1r、1g、1bに取り付け、または図2に示す原稿載置台52に反射原稿FRとして載せる。そして、そのテストチャート102に担当された直線画像100を含む副走査方向Yの一定範囲を結像光学系16、3色分解プリズム32r、32g、32bを介してリニアイメージセンサ1r、1g、1bにより読み取る(ステップS1)。なお、補正画素ずれ量Dgb'、Dgr'は、補正回路の種類(加算器を使用するか等)に応じて、画素ずれ量Egb(Nx)を表す近似式または8次近似式ともいう。) Egb(Nx)

【0043】この画像ずれ量DgbとDgrとが算出されると、図6に示すリニアイメージセンサ1の副走査方向Yの鉛直範囲Dmaxを含む範囲である。同様に、Gチャンネル基準のRチャンネルの画素ずれ量DgbとDgrとが算出されると、図8に示すB用画像データSb(Nx)を矢印J方向に0、1画素ずつずらし、ずらした位置毎に図8示すG用画像データSb(Nx)から画像毎に減算して、その差が最小となるずれ量を画像ずれ量Dgbとする。同様に、画素番号Nxの画像の画像ずれ量DgbとDgrとが算出されると、図9は、10画素毎に得られた2種類の画像を模式的にプロットして示している。図9は、10画素毎に得られた2種類の画像ずれ量DgbとDgrの中、画像ずれ量Dgb(Nx)とDgr(Nx)に基づき画素番号Nxを変換して、その差が最小となるずれ量Dgbとするよう

【0044】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印K方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0045】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印L方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0046】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印M方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0047】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印N方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0048】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印O方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0049】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印P方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0050】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印Q方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0051】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印R方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0052】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印S方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0053】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印T方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0054】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印U方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0055】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印V方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0056】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印W方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0057】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印X方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0058】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印Y方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0059】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印Z方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0060】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印A方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0061】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印B方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0062】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印C方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0063】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印D方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0064】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印E方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0065】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印F方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0066】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印G方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0067】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印H方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0068】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印I方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0069】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印J方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0070】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印K方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0071】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印L方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0072】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印M方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0073】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印N方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0074】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印O方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0075】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印P方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0076】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印Q方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0077】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印R方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0078】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印S方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0079】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印T方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0080】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すG用画像データSb(Nx)を矢印U方向に0、1画素分ずつずらし、ずらした位置毎にG用画像データSbから画像毎に減算して、その差が最小となるずれ量Dgbとするよう

【0081】次に、これら2種類の画像ずれ量DgbとDgrとが算出されると、図9に示すB用画像データSb(Nx)を矢印V方向に0、1画素分ずつずらし、ずらした位置毎にB用画像データSbから画像

量 D_{gr} 、 $D_{gr'}$ の符号をえた値または比の値として求めることができる。上述の 8 次近似式 E_{gj} 、 E_{gr} より、各画素の補正画素ずれ量 D_{gr} 、 $D_{gr'}$ は、内挿あるいは外挿の補間演算で求められる。

【0043】そして、実際に、原稿 F に担持された画像情報をリニアイメージセンサ $1r$ 、 $1g$ 、 $1b$ により画像データ S_r 、 S_g 、 S_b として読み取ったときに、各画素データ S_r 、 S_g 、 S_b を画素ずれ量補正テーブル 110 を利用して補正することにより、画素ずれ量が補正された画像データ S_{ra} 、 S_{ga} ($S_{ga} = S_g$)、 S_{ba} を得ることができる。

【0044】図 11 は、補正前後の実測例を示しており、補正前の画素ずれ量（差であるので、相対画素ずれ量である。） D_{gr} がピーカーピークで約 6.3 ライン分（+0.5 ~ -4.8）であるに対し、補正後の画素ずれ量 $D_{gr'}$ がピーカーピークで約 0.7 ライン分（+0.4 ~ -0.3）に低減することができた。なお、上述の手法を、他の複数の画像読み取り装置に適用した結果、全ての画像読み取り装置を構成するリニアイメージセンサの全画素領域において、読み解像度が 160 ドット/mm の場合に 1/3 画素以下に画素ずれ量を低減することができた。

【0045】このようにして得られた画素ずれ量が補正された画像データ S_{ra} 、 S_{ga} ($S_{ga} = S_g$)、 S_{ba} (図 3 参照) に基づいて、ディスプレイ上に表示させたとき、または例えば、CMYK の各製版用フィルムを作成し、または直接印刷版を作成して、カラー画像を印刷したとき、ディスプレイ上または印刷紙上の出力画像における各色間の色ずれを視認することができない程度に低減することができた。

【0046】ただし、実際上、リニアイメージセンサ 1 が湾曲しているので、この湾曲に対応して、正確には、基準とした色、すなわち G 色のリニアイメージセンサ 1g の各画素について、図 12 に示すように、主走査方向 X に延びる仮の直線 114 からの偏位量 d_x を計算する（ステップ S 6）。なお、この場合にも、1.0 画素毎に読み取った画像データ S_g から 8 次近似式 E_g を作成し、その 8 次近似式 E_g の画素番号に対応する各値と仮の直線 114 との間の値を偏位量 d_x とするものとする。

【0048】そして、この偏位量 d_x を先に作成した画素ずれ量補正テーブル 110 の各補正後画素ずれ量 D_{gb} 、 D_{gr} 、 $D_{gr'}$ および G チャンネル用の補正画素ずれ量 D_g に、この偏位量 d_x を加算した補正テーブル 112

を用いて補正する（ステップ S 7）。

【0049】このようにして G チャンネルの湾曲を考慮した補正テーブル 112 を使用することにより、画素ずれ量に基づく色ずれを低減することが可能となるとともに、同時に、上述した出力画像上の画像のゆがみを低減することができる。

【0050】最終的には、図 3 に示す補正テーブル作成装置 79 において、補正テーブル作成部 84 を、点線で示すように、補正処理部 118 に変更し、その補正処理部 118 に補正テーブル 110 を接続しておこにより、補正処理部 118 の出力信号として、画素ずれ量の補正された画像データ S_{ra} 、 S_{ga} 、 S_{ba} を得ることができる。

【0051】なお、この発明は上述の実施の形態に限らず、この発明の主旨を逸脱することなく種々の構成を採り得ることはもちろんである。

【0052】【発明の効果】以上説明したように、この発明によれば、R、G、B 用各リニアイメージセンサおよび（または）光学系の走査方向の湾曲（画素ずれ）を原因とする出力画像上の色闇のずれを補正することができるという効果が達成される。

【0053】また、この発明によれば、上記湾曲を原因とする出力画像上のゆがみ（曲がり）を除去することができるという効果が達成される。

【図面の簡単な説明】
【図 1】この発明の一実施の形態の適用される透過原稿用の画像読み取り装置の一部構成を示す斜視図である。
【図 2】この発明の一実施の形態の適用される反射原稿用の画像読み取り装置の一部構成を示す斜視断面図である。
【図 3】補正テーブル作成装置と画素ずれ補正装置の構成を示す回路ブロック図である。
【図 4】補正テーブル作成の説明に供されるフローチャートである。
【図 5】テストチャートの読み説明に供される斜視図である。

【図 6】リニアイメージセンサの最大画素ずれ量の説明に供される線図である。
【図 7】画像データファイルの構成を示す線図である。
【図 8】画素ずれ量の計算の説明に供される線図である。
【図 9】近似式の算出の説明に供される線図である。
【図 10】補正テーブルの構成を示す線図である。
【図 11】補正前の画素ずれ量の比較説明に供される線図である。

【図 14】一般的に、IC パッケージ構造のリニアイメージセンサの構成説明に供される斜視図である。
【図 15】R、G、B 用各リニアイメージセンサが色分解プリズムに取り付けられた状態を示す斜視図である。
【図 16】R、G、B 用各リニアイメージセンサの湾曲状態を示す線図である。
【符号の説明】
1 (1r, 1g, 1b) …リニアイメージセンサ
P…光
L…光
10 T…透過原稿用画像読み取り装置
10 R…反射原稿
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235<br

【図4】

【図6】

【図10】

【図7】

【図9】

