10.02.2023, 14:21 OneNote

Двухпроходное кодирование кодом Хаффмана

5 января 2023 г. 1:24

Код Хаффмана предполагает, что мы знаем распределение вероятностей символов источника.

Т.к. в реальных задачах данное распределение вероятностей неизвестно:

- Можно оценить распределение вероятностей и передать его декодеру (двухпроходное кодирование)
- Можно оценивать распределение вероятностей адаптивно одинаковым образом используя уже закодированные/декодированные символы (адаптивное кодирование)
- Проход 1.
 - **1** Оценить θ (обозначим оценку через $\hat{\theta}$).
 - $oldsymbol{0}$ Кодировать $\hat{oldsymbol{ heta}}$. На выходе получим кодовые слова $oldsymbol{c}_1$.
- Проход 2.
 - ① Кодировать символы источника ${m x}$ используя $\hat{m heta}$. На выходе получим кодовые слова ${m c}_2$.
 - ② Сформировать кодовое слово из двух частей $m{c} = (m{c}_1, m{c}_2).$

Предположим, мы реализовываем код Хаффмана, оценили вероятности и хотим передать их. Осуществлять передачу самих вероятностей не рационально, т.к. они займут много бит итогового файла, файл может даже получиться больше исходного. Очевидно, тогда выгоды от сжатия никакой - одни убытки.

Рационально будет передать само дерево Хаффмана.

IF_WE_CANNOT_DO_AS_WE_WOULD_WE_SHOULD_DO_AS_WE_CAN

$$I(\mathbf{x}) = I_1(\mathbf{x}) + I_2(\mathbf{x})$$

При равномерном кодировании получим $50 \times 8{=}400$ бит.

X	Число появлений	Длина кодового	Кодовое			
	x в x , $\tau(x)$	слова, <i>I</i> (<i>x</i>)	слово	$\tau(x) \times I(x)$		
	1	6	010000	6		
F	1	6	010001	6		
	12	2	00	24		
W	5	3	100	15		
Е	4	4	0101	16		
С	2	5	01001	10		
Α	4	4	1010	16		
N	3	4	1011	12		
0	5	3	110	15		
Т	1	6	011110	6		
D	4	4	0110	16		
S	3	4	1110	12		
U	2	4	1111	8		
L	2	5	01110	10		
Н	1	6	011111	6		
Все	Bcero $I_2(x)$					

 $c_1 = (0\ 00\ 1000\ 001010\ 01101111\ 0110\ 1111,\ \mathsf{ASCII}(\mathsf{x}),...)$

 $\mathit{I}_1 = 29 + 8 \times 15 = 149$ бит, $\mathit{I} = \mathit{I}_1 + \mathit{I}_2 = 149 + 178 = 327$ бит.

На примере канонического кода Хаффмана

- Для заданного распределения вероятностей можно построить несколько одинаково эффективных кодов Хаффмана.
- Код Хаффмана называется каноническим, если его короткие кодовые слова лексикографически предшествуют более длинным.

	X	Длина кодового слова $I(x)$	Кодовое слово	
	_	2	00	
	0	3	010	
	W	3	011	
	Α	4	1000	
	D	4	1001	
	Е	4	1010	
	N	4	1011	
	S	4	1100	
	U	4	1101	
	С	5	11100	
	L	5	11101	
	F 6 H 6		111100	
			111101	
	-		111110	

На примере канонического кода Хаффмана

• Достаточно указать количество концевых вершин для ярусов с номерами $0,...,I_{max}$, где I_{max} – максимальная длина кодового слова.

	Ярус	Число	Число концевых	Диапазон	Затраты
		вершин	вершин <i>п</i> ;	значений <i>п;</i>	в битах
Ī	0	1	0	0 1	1
ı	1	2	0	02	2
	2	4	1	0 4	3
Ī	3	6	2	0 6	3
	4	8	6	08	4
	5	4	2	0 4	3
ı	6	4	4	0 4	3
	Total				19

 $c_1 = (0\ 00\ 001\ 010\ 0110\ 010\ 100\ \mathsf{ASCII}(\mathsf{x}),...)$

$$\mathit{I}_1 = 19 + 8 \times 15 = 139$$
 бит, $\mathit{I} = \mathit{I}_1 + \mathit{I}_2 = 139 + 178 = 317$ бит.

Скорость кодирования кодом Хаффмана

Theorem

Полное кодовое дерево, имеющее M концевых вершин, имеет M-1 промежуточных вершин. Поэтому, M+M-1=2M-1 бит достаточно для описания полного описания дерева.