

IFA 빅테이티 분석을 통한 선수 WAGE 예측 프로그램 개발 및 활용 방안

● WAGE 예측의 문제점 인식

Wage 지급의 편향성 불공정한 WAGE 지급 방식

○ 분석과 예측을 위한 아이디어 팀에 따른 WAGE 지급 그래프 확인

가중치 계산

WAGE 예측 공식 계산

○ 인공지능 학습 및 실제 예측 트레인 & 테스트 데이터 사전 분리

변수 선정

19년도 데이터 예측 결과

20년도 데이터 예측 결과

WAGE 예측 활용 선수 이적이나 재계약 or 능력 변화에 따른 WAGE 변화 예측

선수와 구단 간 주급 협상 프로그램 구현

北岸

FIFA 빅데이터 분석을 통한 선수 WAGE 예측 프로그램 개발 및 활용 방안

FIFA 데이터 소개

- ✓ sofifa.com에서 매주 업데이트되는 축구 선수 데이터.
- ✓ 실제 축구 선수들, 관계자들이 참고할 정도로 높은 데이터 정확도로 유명하다.

- ✓ Kaggle에서 sofifa 2019, 2020데이터를 다운받아 Python으로 분석을 실시.
- ✓ 약 1만8천명의 축구선수, 100여 가지 선수 정보 를 나타내는 데이터이다.

주요 정	보 컬럼
ID	선수 고유번호
Name	이름
Age	나이
Nationality	국적
Club	소속 팀
Position	포지션
Overall	현재 능력치
Potential	미래 능력치
Wage	주급
Value	예상 이적료
International Reputation	국제적 명성도
Reactions	반응 속도
Composure	침착성
Loaned From	임대 클럽
Contract Valid Until	계약 기간

선수 정보 중 WAGE를 예측

WAGE 지급 방식의 편향성

✓ 소수의 인원에게 WAGE가 쏠려 있다.

WAGE 지급 방식의 불공정성

✓ 선수들이 자신의 능력에 맞는 WAGE를 받는다고 볼 수 없음.

편향성과 불공정성을 해결하기 위한 아이디어

실물 경제로 단순화하여 모델링 시민 선수 사는 지역 재산 WAGE 선수의 이산형 정보들을 자동차 Real Face TV International Reputation 욧 Position 가방 Loaned From 시계 Age

- 1. 하위 WAGE 선수들의 다양한 능력 수치를 낮은 값으로 줄여야 함.
- 2. 상위 WAGE 선수들은 적은 능력 수치 증가에도 WAGE가 기하급수적으로 증가해야 함.
- 3. WAGE 지급 주체인 팀을 알아야 예측이 가능함.

아이디어 실현 과정

WAGE 예측을 위한 과정

1. '팀WAGE표' 제작

표를 통해 팀이 소속 선수에게 어떻게 WAGE를 지급하는지 수치화. 선수들을 능력보다 소속된 <mark>팀</mark>으로 우선 평가.

2. 공식 적용

가<mark>증치</mark>를 곱한 선수 능력치가 '팀WAGE표'에 따라 조정되는 <mark>공식</mark> 제작.

'팀WAGE표'

	ClubWageMean	ClubWeight25	ClubWeight50	ClubWeight75	ClubWeight100	ClubWageMin
	팀 WAGE 평균 (총액으로 생각)	전체 선수 최저 WAGE 대비 팀 내 하위 25%인 선수의 주급은 몇 배인가?	전체 선수 최저 WAGE 대비 팀 내 하위 50%인 선수의 주급은 몇 배인가?	전체 선수 최저 WAGE 대비 팀 내 하위 75%인 선수의 주급은 몇 배인가?	전체 선수 최저 WAGE 대비 팀 내 하위 100%인 선수의 주급은 몇 배인가?	팀 내 최소 WAGE
Real Madrid	Real Madrid 20335		127.5	240	420	1170
FC Barcelona	17654	21	125	205	565	520
• • • •						
KFC Uerdinge 05	325	1	2	3	6	130
CD Huachipato	245	1	1	2	7	130
FSV Zwickau	137	1	1	1	2	130
Cork City	130	1	1	1	1	130

팀

'팀WAGE표' 그래프

가중치

선수에게 적용 가능한 가중치 5가지 (5 Weights) Age, International Reputation, Position, Real Face, Loaned From

가중치

선수에게 적용 가능한 가중치 5가지 (5 Weights) Age, International Reputation, Position, Real Face, Loaned From

공식 계산

WAGE 예측을 위한 공식 1

팀에 따라 선수의 능력치를 조정하기 위해

$$PredictWage = \beta(\frac{\alpha-1}{\alpha})^2 + \frac{\gamma}{\alpha}$$

α: ClubWeight100, 75, 50, 25 중 1개

β: 선수의 능력치 중 1개

 γ : 전체 모든 β 의 최솟값

실제 계산에서는

<mark>α</mark>: ClubWeight100,

β: 5 Weights * ClubWageMin 을 사용.

(PPT에선 이해를 위해 간략하게 표현. 실제 적용 공식은 약간 상이함.)

공식 계산

K-107 BIG DATA

공식 1에 대한 그래프를 통한 설명

- \checkmark 팀 WAGE 그래프에 따라 β 가 반영되는 것이 다르다.
- \checkmark β값이 팀에 따라 조정되며 최소 β 인 γ 는 보장하는 공식이다.

WAGE 예측을 위한 공식 2

공식 1에서 조정되지 못한 선수 중 하위 WAGE선수들을 재조정하기 위해

```
if (ClubWeight100=1 & 선수의 PredictWage <= 팀 내 하위 100%(전체)): PredictWage = -20 elif (ClubWeight75=1 & 선수의 PredictWage <= 팀 내 하위 75%): PredictWage = -20 elif (ClubWeight50=1 & 선수의 PredictWage <= 팀 내 하위 50%): PredictWage = -20 elif (ClubWeight25=1 & 선수의 PredictWage <= 팀 내 하위 25%): PredictWage = -20 else: pass
```

- ✓ PredictWage를 '팀WAGE표'에 맞게 다시 조정하는 과정이다.
 - ✓ -20 수치는 그래프와 상관관계를 확인하여 나온 값이다.

공식 계산

K-107 BIG DATA

공식 2에 대한 데이터 프레임을 통한 설명.

Cf. 전체 축구 선수 최저 LogWage: 48.751973

	100	
	LogWage	PredictLogWage
count	20.000000	20.000000
mean	50.879468	79.800000
std	3.914737	1.852452
min	48.751973	76.000000
25%	48.751973	78.000000
50%	48.751973	80.000000
75%	50.475281	81.000000
max	59.687076	83.000000

	LogWage	PredictLogWage
count	18.000000	18.000000
mean	53.415718	89.944444
std	5.237938	3.826721
min	48.751973	82.000000
25%	48.751973	87.000000
50%	52.198589	91.000000
75%	55.645204	93.000000
max	62.557500	94.000000

	Club	Name	LogWage	PredictLogWage
10512	Wellington Phoenix	C. Elliot	48.751973	78
11943	Wellington Phoenix	L. Cacace	48.751973	78
13420	Wellington Phoenix	S. Singh	48.751973	78
11711	Wellington Phoenix	B. Waine	48.751973	79
11730	Wellington Phoenix	A. Rufer	48.751973	85
12888	Wellington Phoenix	D. Fox	48.751973	85
13217	Wellington Phoenix	F. Kurto	48.751973	20 ⁸⁵
136		R. Lowry	48.751973	- 20 ₈₅
115	피해자	L. Fenton	48.751973	86
135		A. Durante	48.751973	86
13763	Wellington Phoens	T. Doyle	48.751973	86
5770	Wellington Phoenix	R. Krishna	62.557500	91
11249	Wellington Phoenix	D. Williams	48.751973	91
11333	Wellington Phoenix	N. Burns	48.751973	91
7931	Wellington Phoenix	M. Kopczyński	59.687076	92
9126	Wellington Phoenix	S. Taylor	55.645204	122

	Club	None	1 11/	Decided anti-
	Club	Name	LogWage	PredictLogWage
13425	Incheon United FC	Kim Jin Ya	48.751973	76
11350	Incheon United FC	Lim Eun Soo	48.751973	78
12762	Incheon United FC	Jeong Dong Yun	48.751973	78
11870	Incheon United FC	Kim Dong Min	48.751973	78
13527	Incheon United EC	Jung San	48.751973	78
106		Kim Jung Ho	48.751973	78
107	피해자	Lee Jeong Bin	48.751973	-2 0 ₈
11(Lee Jin Hyung	48.751973	79
13587	Incheon United	Yun Sang Ho	48.751973	80
8560	Incheon United FC	Kwak Hae Seong	55.645204	80
8551	Incheon United FC	Kim Yong Hwan	55.645204	80
11152	Incheon United FC	Kim Dae Jung	48.751973	80
11636	Incheon United FC	Kang Ji Yong	48.751973	81
12296	Incheon United FC	K. Appiah-Kubi	48.751973	81
12994	Incheon United FC	Ko Seul Ki	48.751973	81
13122	Incheon United FC	Lee Yun Pyo	48.751973	81
9099	Incheon United FC	Kim Dong Suk	55.645204	82
12236	Incheon United FC	Choi Jong Hoan	48.751973	82
7104	Incheon United FC	G. Bunoza	59.687076	82
7622	Incheon United FC	Nam Joon Jae	59.687076	83

	Club	Name	LogWage	PredictLogWage
12722	1. FC Kaiserslautern	J. Scholz	48.751973	82
11143	1. FC Kaiserslautern	F. Botiseriu	48.751973	82
12237	1. FC Kaiserslautern	C. Sickinger	48.751973	ant and a
12043	1. FC Kaiserslautern	L. Gottwalt	48.751973	- 29 ₇
11577	1. FC Kaiserslautern	T. Bergmann	48.751973	87
10855	1. FC Kaiserslautern	D. Schad	48.751973	87
14299	1. FC Kaiserslautern	C. Kühlwetter	48.751973	90
13332	1. FC Kaiserslautern	O. Özdemir	48.751973	90
14261	1. FC Kaiserslautern	W. Hesl	48.751973	90
6686	1. FC Kaiserslautern	L. Spalvis	62.557500	92
7812	1. FC Kaiserslautern	K. Kraus	59.687076	92
5830	1. FC Kaiserslautern	M. Albæk	62.557500	93
9715	1. FC Kaiserslautern	F. Dick	55.645204	93
9639	1. FC Kaiserslautern	J. Löhmannsröben	55.645204	93
10055	1. FC Kaiserslautern	C. Hemlein	55.645204	93
10390	1. FC Kaiserslautern	A. Hainault	55.645204	93
8312	1. FC Kaiserslautern	J. Biada	55.645204	94
7774	1. FC Kaiserslautern	T. Thiele	59.687076	94

WAGE 예측을 위한 공식 3

공식 2 계산에서 무고하게 조정된 피해자 선수들을 위한 공식

공식 2에서 계산된 *PredictWage를 선수의 Total_(선수 등력 통합 파생변수)과 Value를 이용해 계산.*

PredictWage1 = PredictWage - (전체 선수 Total 최댓값-선수 Total)*7 - (전체 선수 Value 최댓값- 선수 Value)*10

- ✓ PredictWage1을 선수 능력을 약간 반영하여 재조정하는 과정이다.
 - ✓ 7, 10 수치는 그래프와 상관관계를 확인하여 나온 값이다.

공식 계산

공식 3에 대한 산점도를 통한 설명.

✓ 공식 2 적용 후 생긴 비정상적인 산점도를 공식 3으로 해소

공식 계산

'팀WAGE표'+ 선수의 가중치 5개 + 공식1,2,3 을 이용한 실제 ClubWageMin에서 PredictWage1으로의 변화

ClubLogWageMin의 결정계수

XGBRegressor(n_estimators=500) 로그 변환된 MSE: 92,973 로그 변환된 RMSE: 9.642 결정계수 R2: 0.37

PredictedLogWage1의 결정계수

XGBRegressor(n_estimators=500) 로그 변환된 MSE: 20.863 로그 변환된 RMSE: 4.568 결정계수 R2: 0.859

✔ 모든 공식의 계산이 완료된 PredictWage1 컬럼 하나만으로도 xgb 85.9%의 예측률을 보임.

인공지능

트레인&테스트 데이터 사전 분리

- ✓ 19년도 데이터의 80%를 트레인 데이터, 20%를 테스트 데이터로 결정.
- ✓ 먼저 테스트 데이터를 분리하지 않으면 독립변수와 종속변수의 관계가 반영된 그래프, 평균 등으로 테스트 데이터의 답이 나타나버림.
- ✓ 간단한 처리(NaN값 제거, 단위 변경 등)만 해준 뒤 바로 분리하고 테스트 데이터는 피클로 저장.
- ✓ 트레인 데이터만을 가지고 아아디어 적용 후, 트레인 데이터의 80%를 훈련 데이터, 20%를 검증 데이터로 분리하여 모델을 훈련, 검증하고 난 뒤 피클로 저장했던 테스트 데이터로 예측을 진행.

원	데이터셋	,
트레인 데이	IĦ	테스트 데이터
훈련 데이터	검증 데이터	테스트 데이터

최종 선정 컬럼 13가지

원	l본, 범주화, 파생변수로 구분	공식 적용 내용에 따른 구분				
원본 5	InternationalReputation, RealFace, LoanedFrom, Overall, LogValue	AgeWeight, InternationalReputation, RealFace, LoanedFrom, PositionClassWeight	가중치 5			
범주화 2	AgeWeight, PositionClassWeight	Overall, LogValue	선수 능력 2			
파생변수 6	ClubLogWageMean, ClubWeight100, ClubWeight75, ClubWeight50, ClubWeight25, PredictLogWage1	ClubLogWageMean, ClubWeight100, ClubWeight75, ClubWeight50, ClubWeight25'	팀WAGE표 5			
		PredictLogWage1	공식 계산 1			

인공지능

검증 데이터 결과

- ✓ Log 변환한 값으로 테스트함.
- ✓ 트레인 데이터의 80%를 훈련 데이터로, 20%를 검증 데이터로 나눠 테스트한 결과, R^2가 LGBM : 96.5%, XGB : 96.6% 예측을 보였음.
- ✓ RMSE와 변수중요도를 확인한 결과가 비슷하여 신뢰가능한 검증된 모델임을 확인.

DecisionTree, RandomForest, LGBM, XGB에서 변수 중요도

테스트 데이터 결과

- ✓ 트레인 데이터에서 만든 '팀WAGE표'를 테스트 데이터의 팀에 맞춰 그대로 붙여줌.
- ✓ 테스트 데이터는 트레인 데이터에서와 똑같은 가중치&수치 대입과 계산 과정을 거침.
- ✓ 트레인 데이터로 훈련시킨 모델에서 예측한 테스트 데이터의 LogWage는 LGBM : 95.3%, XGB : 95.3% 예측을 보였음.
- ✓ RMSE와 변수중요도를 확인한 결과가 비슷하여 신뢰 가능한 결과로 최종 결론.

DecisionTree, RandomForest, LGBM, XGB에서 변수 중요도

인공지능

20년도 WAGE 예측

19년도 '팀WAGE표'와 20년도 선수 데이터를 이용하여 20년도 WAGE를 예측.

✓ 20년에 새로 데뷔한 신인도 예측 가능, 다만 19년도에 없던 팀에 소속된 선수는 예측 불가.

20년도 WAGE 예측 결과

- ✓ 19년도 '팀WAGE표'를 20년도에 그대로 붙여주고 19년도에서 이용한 공식과 수치를 그대로 적용.
- ✓ 19년도 전체 데이터로 훈련시킨 모델을 통한 20년도 전체 데이터의 LogWage 예측은 LGBM : 93%, XGB : 92.9% 을 보였음.
- ✓ 능력 수치 변동됐지만(무조건 나이는 한 살 더 먹음) 팀과 WAGE가 그대로 유지된(계약에 의해) 선수들이 무려 3833명이기 때문에 예측률이 떨어진 것으로 판단.
- ✓ RMSE와 변수중요도를 확인한 결과가 비슷하여 신뢰 가능한 결과로 최종 결론.

DecisionTree, RandomForest, LGBM, XGB에서 변수 중요도

선수 이적 & 재계약 시 WAGE 예측 프로그램 개발

✓ 훈련된 인공지능을 이용하여 선수 이름과 이적 or 재계약 희망 팀을 입력하면 예측 WAGE가 나옴
 ✓ 신인도 예측이 가능하며 '팀WAGE표'가 있는 팀이면 예측이 가능.

19년도 데이터로 19년도 가상 이적 예측

19년도 '구단WAGE표'와 20년도 선수 데이터로 20년도 가상 이적 예측

transfer('H. Son', "Manchester United")												
Name LastClub Wage19 CurrentClub TransferClub PredictWage20 Difference19												
0	H. Son	Tottenham Hotspur	16250.0	Tottenham Hotspur	Manchester United	29143	12893.0					

선수와 팀 간 WAGE 협상용으로 활용 가능

- ✓ 선수는 프로그램을 이용하여 이적 or 재계약 할 팀에서 자신이 받을 적정 WAGE를 미리 알고 협상에 임하여 불이익을 피할 수 있다.
 - ✓ 팀은 프로그램을 이용하여 오버페이를 방지할 수 있다.

소긷

- 1. FIFA데이터와 같은 소득&재산 등 돈 관련 데이터 분석에 자신이 생김.
- 2. 능력을 높이는 것도 중요하지만 능력을 인정해 주는 곳에 있어야 한다.
- 3. 인공지능만 믿을 것이 아니라 분석가가 우선적으로 계산해야 한다.
- 4. 인공지능 알고리즘 공부를 더 많이 해야겠다.
- 5. '팀WAGE표'의 세분화와 공식들의 개선, 선수 계약기간까지 반영 한다면 R^2가 더 오를 수 있을 것이다.
- 6. 웹서비스나 어플로 프로그램을 구현하여 상용화하겠다.

최소 Wage부터 정렬하여 해당 Wage를 받는 선수 숫자

Wage	130	260	390	520	650	780	910	1040	1170	1300	1430	1560	1690	1820	1950	2080	2210	2340	2470	2600	2730	2860	2990	3120
Counts	3866	2234	1508	987	716	551	392	335	264	252	238	200	188	147	149	108	136	124	109	115	94	103	64	83

이러면 100%예측이다.

훈련 데이터에서 Total 컬럼 만들기.

평균과 표준편차 알아보기

```
print('Reactions 평균: ',df.Reactions.mean())
print('Reactions 표준편차: ',df.Reactions.std())
```

Reactions 평균: 61.84375872661268 Reactions 표준편차: 8.99182501655843

```
print('Composure 평균: ',df.Composure.mean())
print('Composure 표준편차: ',df.Composure.std())
```

Composure 평균: 58.66699246020664 Composure 표준편차: 11.364099005853578

```
print('Potential 평균: ',df.Potential.mean())
print('Potential 표준편차: ',df.Potential.std())
```

Potential 평균: 71.3573722423904 Potential 표준편차: 6.127127303729245

표준점수로 변환

df.Reactions = (df.Reactions-df.Reactions.mean())/df.Reactions.std()*10 +50
df.Composure = (df.Composure-df.Composure.mean())/df.Composure.std()*10 +50
df.Potential = (df.Potential-df.Potential.mean())/df.Potential.std()*10 +50

가중평균으로 Total 컬럼 생성

클럽 LogWage 곡선 제작

훈련 데이터에서 ClubWeight컬럼들 만들기

- 25, 50, 75, max로 계산
- 클럽의 가장 높은 LogWage를 전체의 최저 LogWage대비 몇 배인지 계산하여
- 클럽 LogWage 곡선으로 적용한다.
- 이 가중치는 다른 가중치를 더욱 배가 시켜준다. 예를 들어 강남에서 사는 사람에게 자동차가 있다면 그 자동차는
- 타지역보다 비싼 자동차일테니 다른 지역의 자동차들보다 강남가중치를 주는 것이 마땅하다는 생각에서 시작했다.

!! 쉽게 새로운 컬럼 만드는 방법!!

df['Multiple'] = 1

```
ClubWeight100 = pd.DataFrame(np.zeros(df.shape[0]).columns=['ClubWeight100'])
ClubWeight 75 = pd. DataFrame(np.zeros(df.shape[0]), columns=['ClubWeight 75'])
ClubWeight50 = pd.DataFrame(np.zeros(df.shape[0]),columns=['ClubWeight50'])
ClubWeight25 = pd.DataFrame(np.zeros(df.shape[0]),columns=['ClubWeight25'])
```

df = pd.concat([df.ClubWeight100.ClubWeight75.ClubWeight50.ClubWeight25], axis=1)

for i in range(df.shape[0]): df.ClubWeight100[i] = df[df.Club==df.Club[i]].LogWage.describe()[7]/df.LogWage.min() df.ClubWeight75[i] = df[df.Club==df.Club[i]].LogWage.describe()[6]/df.LogWage.min()

df.ClubWeight50[i] = df[df.Club==df.Club[i]].LogWage.describe()[5]/df.LogWage.min() df.ClubWeight25[i] = df[df.Club==df.Club[i]].LogWage.describe()[4]/df.LogWage.min()

훈련 데이터에서 컬럼들의 상관계수

이산형 데이터 컬럼들의 상관계수

연속형 데이터 컬럼들의 상관계수

K-107

KNeighborsRegressor(n_neighbors=3)

로그 변환된 MSE: 17.178 로그 변환된 RMSE: 4.145 결정계수 B2: 0.884

LinearRegression()

로그 변환된 MSE: 16.678 로그 변환된 RMSE: 4.084 결정계수 R2: 0.887

Ridge(alpha=0.05)

로그 변환된 MSE: 7.658 로그 변환된 RMSE: 2.767 결정계수 R2: 0.948

RandomForestRegressor(n_estimators=1000)

로그 변환된 MSE: 7.237 로그 변환된 RMSE: 2.69 결절계수 B2: 0.951

LGBMRegressor(n_estimators=1500)

로그 변환된 MSE: 5.146 로그 변환된 RMSE: 2.268 결정계수 R2: 0.965

[15:25:13] WARNING: src/objective/regress

XGBRegressor(n_estimators=2500)

로그 변환된 MSE: 5.01 로그 변환된 RMSE: 2.238 결정계수 R2: 0.966

훈련 데이터와 검증 데이터에서의 R^2와 변수 중요도

테스트 데이터에 가중치 대입

훈련데이터에서 계산한 수치(평균, 중앙값, 표준편차 등등)들을 그대로 테스트 데이터에 적용해야한다. 테스트 데이터에서는 아무런 값의 계산이 있어서는 안된다.

Age 가중치

```
# Age 哲書
df test['AgeVeight'] = df test['Age']
def change value from(x):
   if x in [30,31]: out = 1,375
   elif x in [29,32]: out = 1.333
   elif x in [28,33]: out = 1,333
   elif x in [27,34]: out = 1.333
   elif x in [26,35]: out = 1,229
   elif x in [25.36]; out = 1.229
   elif x in [24,37]: out = 1,229
    elif x in [23,38]: out = 1.229
   elif x in [22,39]: out = 1,229
   elif x in [21,40]: out = 1.146
   elif x in [20,41]: out = 1,146
   elif x in [19.42]; out = 1
   elif x in [18,43,44,45]: out = 1
   elif x in [16.17.46.47]; out = 1
   return float(out)
df test.AgeWeight = df test.Age.apply(lambda x: change value from(x))
df_test.AgeWeight
        1.333
        1.375
        1.229
        1.229
        1.229
        1.229
2982
        1.333
        1.375
        1.375
        1.333
```

InternationalReputation 가중치

```
#InternationalReputation변환
def change(x):
    cat = ''
    if x == 1: cat = 1
    elif x == 2: cat = 1.36
    elif x == 3: cat = 1.54
    elif x == 4: cat = 1.68
    elif x == 5: cat = 1.78
    return float(cat)
df test['InternationalReputationWeight'] = df test.InternationalReputation. #
                                       apply(lambda x: change(x))
df_test.InternationalReputationWeight
        1.68
10
5718
        1.00
11780
        1.00
8245
        1.00
        1.00
1794
        1.00
2982
        1.00
2190
        1.00
6670
        1.00
11536
        1.00
```

RealFace 가중치

```
def change(x):
    cat = ''
    if x == 0: cat = 1
    elif x ==1: cat = 1.38
    return cat
df test['BealFaceWeight'] = df test.BealFace.apply(lambda x: change(x))
df test.RealFaceWeight
10
         1.38
5718
         1.00
11780
         1.00
         1.00
8245
9673
         1.00
1794
         1.00
2982
         1.00
2190
         1.00
6670
        1.00
11536
        1.00
```

Total 컬럼 생성

```
<u>K-107</u>
```

```
df_test.Reactions = (df_test.Reactions-61.84375872661268)/ # 8.99182501655843*10 +50

df_test.Composure = (df_test.Composure-58.66699246020664)/ # 11.364099005853578*10 +50

df_test.Potential = (df_test.Potential-71.3573722423904)/ # 6.127127303729245*10 +50

# 가운병교

df_test['Total'] = (df_test.Reactions*48 + df_test.Composure*38 + df_test.Potential*35)/(48*38*35)
```

테스트 데이터에 가중치 대입과 Total 컬럼 생성

LoanedFrom 가중치

```
PositionClass 가중치
```

1.13

1.07

1.00

1.07

```
def change(x):
    cat = ''
    if x == 0: cat = 1
    elif x ==1: cat = 1.15
    return cat
df test['LoanedFromWeight'] = df test.LoanedFrom.apply(lambda x: change(x))
df_test.LoanedFromWeight
        1.0
5718
       1.0
11780
      1.0
8245
       1.0
9673
       1.0
       1.0
1794
2982
       1.0
2190
       1.0
6670
        1.0
                                                                           2982
11536
        1.0
                                                                           2190
                                                                           6670
                                                                           11536
```

```
def change(x):
   cat = ''
   if x == 'GoalKeeper': cat = 1
   elif x == 'Defender': cat = 1.07
   elif x == 'Medfielder': cat = 1.07
    elif x == 'Foward' : cat = 1.13
    return cat
df test['PositionClassWeight'] = df test.PositionClass.apply(lambda x: change(x))
df test.PositionClassWeight
        1.13
10
        1.00
5718
        1.00
11780
8245
        1.00
        1.07
9673
1794
        1.13
```


df_join = pd.merge(df_test, df_train1,on='Club')
df_join

	Wage	Name	Age	Nationality	Overall	Potential	Club
0	26650	R. Lewandowski	29	Poland	90	80.426376	FC Bayern München
1	26650	R. Lewandowski	29	Poland	90	80.426376	FC Bayern München
2	26650	R. Lewandowski	29	Poland	90	80.426376	FC Bayern München
3	26650	R. Lewandowski	29	Poland	90	80.426376	FC Bayern München
4	26650	R. Lewandowski	29	Poland	90	80.426376	FC Bayern München
76750	130	Rayco	21	Spain	62	49.416738	CD Lugo
76751	130	Rayco	21	Spain	62	49.416738	CD Lugo
76752	130	Rayco	21	Spain	62	49.416738	CD Lugo
76753	130	Rayco	21	Spain	62	49.416738	CD Lugo
76754	130	Rayco	21	Spain	62	49.416738	CD Lugo

훈련데이터의 클럽 관련 컬럼들을 테스트데이터에 삽입

df_train = pd.read_pickle('./dataset/나혼자FIFA_훈련데이터최종.pkl')

df_train1 = df_train[['Club','ClubWeight100','ClubWeight75','ClubWeight50',

df_train1	'ClubWeigh 'ClubLogWa	ht2b';'ClubLogWageMean', 'ClubLogWageMedian', ageMin']]							
	Club	ClubWeight100	ClubWeight75	ClubWeight50	ClubWeight25	ClubLogWageMean	ClubLogWageMedian	ClubLogWageMin	
0	FC Barcelona	2.298240	2.090291	1.988824	1.622995	91.552604	96.959097	62.557500	
1	Real Madrid	2.237408	2.122623	1.991895	1.654479	93.004187	97.108826	70.656134	
2	Real Madrid	2.237408	2.122623	1.991895	1.654479	93.004187	97.108826	70.656134	
3	Real Madrid	2.237408	2.122623	1.991895	1.654479	93.004187	97.108826	70.656134	
4	Real Madrid	2.237408	2.122623	1.991895	1.654479	93.004187	97.108826	70.656134	
14319	Atlético Huila	1.141394	1.000000	1.000000	1.000000	49.613627	48.751973	48.751973	
14320	Chamois Niortais Football Club	1.224301	1.141394	1.000000	1.000000	51.929775	48.751973	48.751973	
14321	New York Red Bulls	1.425160	1.366217	1.141394	1.000000	57.836026	55.645204	48.751973	
14322	Lech Poznań	1.449298	1.283179	1.224301	1.000000	58.365376	59.687076	48.751973	

1.141394

1.000000

55.645760

55.645204

48.751973

14324 rows × 8 columns

Excelsion

1.470892

1.224301

14323

df_train

76755 rows × 38 columns

48.751973

48.751973

48.751973

48.751973

48.751973

<pre>df_join = df_join.drop_duplicates()</pre>
df_join

Wage

	···ugo	1441110	, igo	mationality	O TOTAL	· otomiciai	Olub	•4140	оросіаі	
0	26650	R. Lewandowski	29	Poland	90	80.426376	FC Bayern München	10010000.0	2152	
20	650	P. Will	19	Germany	61	59.209255	FC Bayern München	68250.0	1627	
40	650	L. Mai	18	Germany	64	70.633858	FC Bayern München	110500.0	1402	
60	11050	K. Coman	22	France	83	75.530117	FC Bayern München	4420000.0	1918	
80	650	F. Evina	17	Germany	63	65.737600	FC Bayern München	94250.0	1645	
76634	260	Matheus Jesus	21	Brazil	65	57.577169	Portimonense SC	107250.0	1769	
76657	130	Pepê	20	Brazil	62	55.945083	Portimonense SC	74750.0	1604	
76680	650	Wilson Manafá	23	Portugal	70	55.945083	Portimonense SC	260000.0	1802	
76703	1560	S. Nakajima	23	Japan	78	70.633858	Portimonense SC	1820000.0	1951	

62 49.416738

Club

CD Lugo

61750.0

Value Special Prefer

Name Age Nationality Overall Potential

Spain

df_te df_te df_te	df_test = df_join.sort_values(by='Wage', ascending=False) df_test = df_test.reset_index() df_test drop('index',axis=1,inplace=True) df_test['Club', 'Name','ClubWeight100', 'ClubWeight75', 'ClubWeight50',							
	Club	Name	ClubWeight100	ClubWeight75	ClubWeight50	ClubWeight25	ClubLogWageMean	ClubLogWageMin
0	FC Barcelona	L. Suárez	2.298240	2.090291	1.988824	1.622995	91.552604	62.557500
1	FC Barcelona	Coutinho	2.298240	2.090291	1.988824	1.622995	91.552604	62.557500
2	Real Madrid	Casemiro	2.237408	2.122623	1.991895	1.654479	93.004187	70.656134
3	FC Barcelona	Piqué	2.298240	2.090291	1.988824	1.622995	91.552604	62.557500
4	Manchester United	P. Pogba	2.139041	2.012069	1.962605	1.708364	90.809410	69.479371

1.000000

1.000000

1.000000

1.283179

1.328871

1.000000

1.000000

1.000000

1.224301

1.283179

1.000000

1.000000

1.000000

1.141394

1.141394

50.566985

50.566985

50.566985

59.612481

60.928494

1.283179

1.283179

1.283179

1.366217

1.425160

3577

3578

3579

3580

3581

AS Béziers

AS Béziers

CD Lugo

SKN St. Pölten

AS Béziers S. Beusnard

J. Saki

Cidinho

Rayco

R. Ljubicic

3582 rows x 38 columns

130

Rayco 21

76726

df test['PredictLogWage'] = 1

for i in range(df test.shape[0]):

K-10

테스트 데이터에서 PredictLogWage1컬럼 생성

```
df test.PredictLogWage[i] = 2*(df test.ClubWeight100[i]-1)* #
   (df test.AgeWeight[i]*df test.InternationalReputationWeight[i]* #
   df test.RealFaceWeight[i]*df test.PositionClassWeight[i]*df test.LoanedFromWeight[i]* #
   df_test.ClubWeight75[i]*df_test.ClubLogWageMin[i])+48.75197323201151
df_test['PredictLogWage1'] = df_test.PredictLogWage
# 선수 한 명씩 추출
for i in range(df test.shape[0]):
   #클럽의 최소LogWage와 최대LogWage의 배수가 1이고
   if df test.ClubWeight100[i] == 1:
       # 이 선수의 능력치가 클럽의 하위 100%에 속하면 능력치를 0으로 만든다
       if df test.PredictLogWage[i]<=df test[df test.Club==df test.Club[i]].PredictLogWage.describe()[7]:
           df_test.PredictLogWage1[i] = -20
   # 클럽의 최소LogWage와 75% LogWage의 배수가 1이고
   if df test.ClubWeight75[i] == 1:
       # 이 선수의 능력치가 클럽의 하위 75%에 속하면 능력치를 0으로 만든다.
       if df test.PredictLogWage[i]<=df test[df test.Club==df test.Club[i]].PredictLogWage.describe()[6]:
           df_test.PredictLogWage1[i] = -20.
   # 클럽의 최소LogWage와 50% LogWage의 배수가 1이고
   if df_test.ClubWeight50[i] == 1:
       # 이 선수의 능력치가 클럽의 하위 50%에 속하면 능력치를 0으로 만든다.
       if df_test.PredictLogWage[i] <= df_test[df_test.Club==df_test.Club[i]].PredictLogWage.describe()[5]:
           df test.PredictLogWage1[i] = -20
   # 클럽의 최소LogWage와 25% LogWage의 배수가 1이고
   if df test.ClubWeight25[i] == 1:
       # 이 선수의 능력치가 클럽의 하위 25%에 속하면 능력치를 0으로 만든다.
       if df_test.PredictLogWage[i] <=df_test[df_test.Club==df_test.Club[i]].PredictLogWage.describe()[4]:
          df_test.PredictLogWage1[i] = -20
```


테스트 데이터에 가중치 적용과 공식 계산 후 그래프 모습

테스트 데이터 예측 결과

K-fold CV average score: 0.94

r2: 0.9194785254069993

MSE: 12.25 RMSE: 3.50

KNeighborsRegressor(n_neighbors=3)

로그 변환된 MSE: 23.979 로그 변환된 RMSE: 4.897 결정계수 R2: 0.842

LinearRegression()

로그 변환된 MSE: 18.826 로그 변환된 RMSE: 4.339 결정계수 R2: 0.876

Ridge(alpha=10)

로그 변환된 MSE: 10.997 로그 변환된 RMSE: 3.316 결정계수 R2: 0.928

RandomForestRegressor(n_estimators=700)

로그 변환된 MSE: 10.225 로그 변환된 RMSE: 3.198 결정계수 R2: 0.933

LGBMRegressor(n_estimators=1200)

로그 변환된 MSE: 7.101 로그 변환된 RMSE: 2.665 결정계신 P2: 0.053

[15:36:05] WARNING: src/objective/regres

XGBRegressor(n_estimators=2500)

로그 변환된 MSE: 7.078 로그 변환된 RMSE: 2.66 결정계수 R2: 0.953

테스트 데이터 예측 결과의 변수 중요도와 Wage로 변환 한 뒤 산점도 표시

Uruguay

Barcelona Barcelona

Brazil Brazil

19년도 테스트 데이터에서 Wage 상위 12명과 하위 15명에서의 1대1 예측 결과 Spain

Piqué

31199

29166

Korea

United

Lee Tae

129

155

Republic

France

Manchester

United

27299

27181

Foot 63

L. Rajot

129

215

France Austria

N.

129

126

Poland

FC Bayern

München

Lewandowski Vázguez

26649

37208

Gambia

Spain

Real

Madrid

26649

26407

A. M. Kanté Irigoyemborde

129

130

France

129

136

Brazil

City

Manchester

Fernandinho

24050

21530

France

France

23399

27759

France

V. Viot J. Saki

129

116

129

123

Spain

Nacho

23399

23691

129

128

France

Spain

22750

21975

Brazil

129

147

Belaium

Manchester

Kompany

22099

Predictions

C. Gutiérrez

129

129

Chile

Nationality

129

146

Jena

129

131

Rogerson Brügmann

129

136

Coutinho

Casemiro
37049
33973
Germany
FC Carl Zeiss Jena

22603 Austria Spain Lugo 129 129 120 196

19년도 전체 데이터로 공식 적용하여 훈련시킨 모델의 정확도

[LightGBM] [Warning] Unknown parameter: colsample_bylevel LGBMRegressor(colsample_bylevel=0.6, colsample_bytree=0.6, learning_rate=0.2, max_depth=5, n_estimators=3000, num_leaves=5, reg_lambda=10, subsample=0.8)

훈련데이터의 로그 변환된 MSE: 2.734 훈련데이터의 로그 변환된 RMSE: 1.654 훈련데이터의 결정계수 R2: 0.982

[08:54:56] WARNING: src/objective/regression_obj.cu:152: reg:linear is now dex XGBRegressor(colsample_bylevel=0.7, colsample_bytree=0.7, max_depth=5,

n_estimators=2000, subsample=0.8) I ౽그 변화되 MSF: n 7ng

훈련데이터의 로그 변환된 MSE: 0.709 훈련데이터의 로그 변환된 RMSE: 0.842 훈련데이터의 정계수 R2: 0.995

선수가 대략적으로 주전으로 뛸 가능성이 있는 팀을 보여줌.

- 1. 이적하려는 선수의 포지션과 이적하려는 구단의 같은 포지션 선수들을 Overall과 Potential로 비교하여 구단 내 1위가 된다면 즉시 주전 전력감으로 생각.
- 2. 1위는 아니라고 해도 구단 내 같은 포지션에서 능력치가 최소인 선수보다 높다면 엔트리에 들어갈 수 있다고 생각.
- 3. 각각을 판단하는 함수를 정의.

```
def entry33(player):
   name = df[df.Name==player]
   position = name.PositionClass2.values[0]
   clubs = df[df.PositionClass2.values==position].Club.unique()
   teams = []
   for club in clubs:
       if name.Overall.values>df[df.Club==club][df[df.Club==club].PositionClass2==position].Overall.min():
           if name.Potential.values>df[df.Club==club][df[df.Club==club].PositionClass2==position].Potential.min():
              teams.append(club)
   df teams = pd.DataFrame(teams , columns=['Club'])
   df_ioin = df[['Club', 'ClubWageMean']]
   df entry33 = pd.merge(df teams, df ioin.on='Club')
   df_entry33 = df_entry33.drop_duplicates()
   df entry33 = df entry33.sort values(by='ClubWageMean', ascending=False)
   df_entry33.drop('index',axis=1,inplace=True)
   print('멘트리 포함 가능한 팀의 수: ', len(df_entry33))
   return df_entrv33.T
```

```
def best11(player):
   name - df[df.Name--player]
   position = name.PositionClass2.values[f]
   clubs = df[df.PositionClass2.values==position].Club.unique()
   teams = []
   for club in clubs:
       if name.Overall.values>=df[df.Club==club][df[df.Club==club].PositionClass2==position].Overall.max():
           if name.Potential.values>=df[df.Club==club][df[df.Club==club].PositionClass2==position].Potential.max():
               teams.append(club)
   df_teams = pd.DataFrame(teams , columns=['Club'])
   df_ioin = df[['Club', 'ClubWageMean']]
   df_best11 = pd.merge(df_teams, df_ioin.on='Club')
   df_best11 = df_best11.drop_duplicates()
   df_best11 = df_best11.sort_values(by='ClubWageMean', ascending=False)
   df_best11 = df_best11.reset_index()
   df_best11.drop('index'.axis=1.inplace=True)
   print('주전 가능한 팀의 수: ', len(df best11))
   return of best11.T
```


19년도 주급WAGE표를 20년도 선수 정보에 붙여준 뒤 19년도 전체 훈련데이터로 학습한 모델로 20년도 선수의 WAGE를 예측

LGBMRegressor(colsample_bytree=0.8, learning_rate=0.2, max_depth=5,

n_estimators=3000, num_leaves=5, reg_lambda=10, subsample=0.8)

로그 변환된 MSE: 10.895 로그 변환된 RMSE: 3.301 결정계수 R2: 0.929

[08:57:59] WARNING: src/objective/regression_obj.cu:152: reg:linear is now d

XGBRegressor(colsample_bylevel=0.7, colsample_bytree=0.7, max_depth=5,

n_estimators=2000, subsample=0.8)

로그 변환된 MSE: 10.965 로그 변환된 RMSE: 3.311 결정계수 R2: 0.929

