

Wirtschaftsmathematik

Prof. Dr. Stefan Böcker, FRM

24. Mai 2025

Wirgeben Impulse

Outline

- 1 Intro
- 2 Using R
- 3 RMarkdown Examples

Slide with bullets

- Bullet 1
- Bullet 2
- Bullet 3

Use \alert to highlight some text

Some enumeration

- 1 The first item
- 2 Stuff
- 3 Nonsense

Squared Paper

\squared{} (or \kariert{}) can be used to produce squared paper

Squared Paper

<pre> (or) can be used to produce lined paper</pre>							

Outline

- 1 Intro
- 2 Using R
- 3 RMarkdown Examples

Slide with R output

summary(cars)

```
## speed dist
## Min. : 4.0 Min. : 2
## 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4 Mean : 43
## 3rd Qu.:19.0 3rd Qu.: 56
## Max. :25.0 Max. :120
```

Slide with graphics

Slide with mathematics

Quantile score for observation y. For 0 :

$$S(y_t, q_t(p)) = \begin{cases} p(y_t - q_t(p)) & \text{if } y_t \ge q_t(p) \\ (1 - p)(q_t(p) - y_t) & \text{if } y_t < q_t(p) \end{cases}$$

Average score over all percentiles gives the best distribution forecast:

$$QS = \frac{1}{99T} \sum_{p=1}^{99} \sum_{t=1}^{T} S(q_t(p), y_t)$$

9

Outline

- 1 Intro
- 2 Using R
- 3 RMarkdown Examples

R Figure

The following code generates the plot on the next slide (taken from help(bxp) and modified slightly):

R Figure

Example from help(bxp)

R Table

A simple knitr::kable example:

Tabelle 1: (Parts of) the mtcars dataset

	mpg	cyl	disp	hp	drat	wt	qsec
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02
Datsun 710	22.8	4	108	93	3.85	2.320	18.61
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44

Resources

For more information:

- See the RMarkdown repository for more on RMarkdown
- See the binb repository for more on binb
- See the binb vignettes for more examples.