Exploring Environmental Factors and their Impact on Solar Power

Sandra Villamar, Zhenduo Wen, Zian Wang, Shixuan Wu, Zengrui Li

Agenda

- Introduction
- Initial Exploration of Variables
- Correlation to Power
- Extract Significant Variables
- Power Prediction

Introduction

Background

- Solar energy is a rapidly growing market.
- Predicting solar power output is vital.
 - Maintaining current solar plants
 - Deciding where to build next
- Power is normally modeled with irradiance data.
 - Measurements require specific sensors which are **costly in time and money**.
- We want to predict power using only weather and location features.

Objective

• Find the **weather** and **location features** that best **explain** solar **power** output.

Data

- Power output + environmental factors from 12 US sites over 14 months (2017 to 2018)
- 21K observations
- Features:

Location:

- Latitude
- Longitude

Time:

- Date
- Time sampled
- Season

Weather:

- Altitude
- Humidity
- Ambient temperature
- Wind speed
- Visibility
- Pressure
- Cloud Ceiling

Source:

Initial Exploration of Variables

Location of Solar Plants

Power

Why Classify by Climate?

Locations in the Same Climate Have Similar Power Output

Humidity, Temperature, Wind Speed

Visibility and Cloud Ceiling

Correlation to Power

Correlation for All Sites

-0.4

-0.2

-0.0

-0.2

-0.4

- -0.6

- -0.8

Correlation Between Variables

Correlation Between Variables

Extracting Variables that Explain Power

Variables that Explain Power

- Climate Type
- Temperature
- Humidity
- Cloud Ceiling
- Visibility

Temperature VS. Power

Humidity VS. Power

Why Consider both Temperature and Humidity?

Why is Power Bimodal?

Case Study

Kahului 's temperature remains rather **constant**.

We can conclude that for Kahului, **temperate alone** is **not** a good indicator of **power**.

Cloud Ceiling VS. Power

Visibility VS. Power

Power Prediction

Model Performance for different climates

Optimal Model	Climate Type	Training Set Size	RMSE	MAE	R²
GLM	hot-dry	4455	3.024	2.223	0.745
GLM	cold-dry	7630	4.316	3.211	0.599
HistGradBoosting Regression	hot-humid	2448	5.683	4.529	0.442
GradientBoosting Regression	cold-humid	4407	3.782	2.548	0.700

In total we have four climate types, we train the model for each climate type. The optimal model for each climate is listed above.

^{*} GLM: Generalized Linear Model
HistGradBoosting: Histogram Gradient Boosting Regression Model
"Optimal model" means achieving lowest average of RMSE and MAE

Stacking Model

Trade-offs of Stacking Model

Model	Climate	Training Set Size	RMSE	MAE	R²	Training Time (in seconds)
GLM	hot-dry	4455	3.024	2.223	0.745	0.4363
StackingReg	hot-dry	4455	3.029	2.188	0.743	8.8630
GLM	cold-dry	7630	4.316	3.211	0.599	0.5601
StackingReg	cold-dry	7630	4.249	3.142	0.611	15.6120
GradientBoosting	cold-humid	4407	3.782	2.548	0.700	1.3830
StackingReg	cold-humid	4407	3.768	2.521	0.711	9.3810
HistGradBoosting	hot-humid	2448	5.683	4.529	0.442	0.3631
StackingReg	hot-humid	2448	5.591	4.460	0.460535	6.2752

Conclusion

- In the absence of irradiance data, **environmental data** can be used to make **accurate predictions for solar power output**.
- Which variables best explain solar power output?
 - Climate type
 - Temperature
 - Humidity
 - Cloud ceiling
- Why is power bimodal?
 - \circ High humidity \rightarrow low power
 - Low humidity + high temperature → high power

Thank you!