Assignment 1 (Extreme cases $p \in \{0, n\}$). Consider a linear model $y = X\beta + \varepsilon$ where $X_{n \times p}$ is full column-rank and $\varepsilon \sim N_n(0, \sigma^2 I)$. Assume n = p. What are the estimators for β et σ^2 , the errors and the fitted values? Comment on it. Do the same for the cases p = 0 and p = 1.

- **Assignment 2** (Diagnostic). a) Figure 1 represents the the standardized residuals plotted against the fitted values for 4 different set of x_i 's. For every case, discuss the fit of the model and explain briefly how you could fix mis-fits, if any are present.
 - b) Figure 2 represents 4 gaussian Q-Q plots. In every case, the covariates do not come from a Gaussian distribution. Actually, they are generated from distributions with
 - i) tails heavier than gaussian;
 - ii) tails lighter than gaussian;
 - iii) positive skewness;
 - iv) negative skewness.

Match each case i)—iv) with a Q-Q plot from Figure 2 and comment.

Assignment 3 (confidence and prediction intervals). The following table gives the estimators, the standard errors and the correlations for the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$ fitted to n = 13 cement values from the example given in the course.

	Estimate	SE	Cor	Correlations of Estimates		
(Intercept)	48.19	3.913		(Intercept)	x1	x2
x1	1.70	0.205	x1	-0.736		
x2	0.66	0.044	x2	-0.416	-0.203	
x3	0.25	0.185	x3	-0.828	0.822	-0.089

- a) Explain how R calculates the standard errors and the correlations that appear in the above table.
- b) What is the prediction, under this model, of y when $x_1 = x_2 = x_3 = 1$? By how much it will change if instead $x_1 = 5$? And if $x_1 = x_2 = 5$?
- c) Using only the above information and the following quantiles $t_9(0.975) = 2.262$, $t_9(0.95) = 1.833$ of the student distribution with 9 degrees of freedom, calculate under this model the confidence intervals for β_0 , β_1 , β_2 et β_3 at significance level $\alpha = 0.95$. Calculate a 0.9 confidence interval for $\beta_2 \beta_3$.

Assignment 4. We fit the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$ to the cement dataset from the course (n = 13). R gives the following table :

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.19363
                        3.91330
                                 12.315 6.17e-07 ***
x1
             1.69589
                        0.20458
                                  8.290 1.66e-05 ***
                        0.04423 14.851 1.23e-07 ***
x2
             0.65691
             0.25002
                        0.18471
                                  1.354
                                           0.209
xЗ
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```


 $Figure\ 1-Standardised\ residuals\ vs\ fitted\ values,\ Gaussian\ models$

Figure 2 - Normal Q-Q plots for non Normal covariates.

- a) Explain in detail how R calculates the values in the columns "t value" and "Pr(>|t|)". What do these values mean? Comment the observed numbers in the table.
- b) Knowing that $\widehat{\mathrm{corr}}(\hat{\beta}_2, \hat{\beta}_3) = -0.08911$, what is the *p*-value for the null hypothesis $\beta_2 \beta_3 = 0$? For a 0.05 test, can we reject the null hypothesis?

Assignment 5 (best design). Consider the linear model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, \dots, n,$$

where $\beta_0, \beta_1 \in \mathbb{R}$, $\mathbb{E}[\epsilon] = 0$ and $\operatorname{Var} \epsilon = \sigma^2 I_n$ (and $n \geq 2$). This is called *simple linear regrssion*.

- (i). Write down the design matrix for this model and give a necessary and sufficient condition for it to be of full rank.
- (ii). Find the covariance matrix of the least squares estimator $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)^T$.
- (iii). Suppose that you can choose all the x_1, \ldots, x_n as you wish, but constrained to be in [-1, 1]. How would you choose them in order to minimise the variance of $\widehat{\beta}_1$?