Notes for General Topology by Tom Leinster

Zhao Wenchuan

April 13, 2021

Chapter 1

Topological Spaces

1.1 Review of Metric Spaces

Definition 1.1.1. Let X be a set. A *metric* on X is a function $\rho: X \times X \to \mathbb{R}_{\geq 0}$, such that $\forall x, y, z \in X$, the following (metric axioms) holds:

M1. $\rho(x,y) = 0 \iff x = y \text{ (identity of indiscernibles)};$

M2. $\rho(x, y) = \rho(y, x)$ (symmetry).

M3. $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$ (triangle inequality);

A metric space is a set together with a metric on it, or more formally, a pair (X, ρ) where X is a set and ρ is a metric on X.

Example 1.1.1.

1. The function $\rho_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ defined by $\forall p \in \overline{\mathbb{R}}_{\geq 1}, \, \forall x, y \in \mathbb{R}^n$,

$$\rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}},$$

is a metric on \mathbb{R}^n . Clearly it satisfies identity of indiscernibles and symmetry. For triangle inequality, it is suggested by Minkowski inequality.

Given $x \in \mathbb{R}^3$, $r \in \mathbb{R}_{\geq 0}$, and

$$B_{\rho} = \left\{ y \in \mathbb{R}^3 \mid \rho(x, y) \le r \right\}.$$

 $\forall p,q \in \overline{\mathbb{R}}_{\geq 1}$, it is true that, $\forall x,y \in \mathbb{R}^n$,

$$p \le q \implies \rho_p(x, y) \ge \rho_q(x, y).$$

Thus, $B_p \subseteq B_q$.

Geometrically, as p=1, B is a octahedron in \mathbb{R}^3 with center x and radius r; as p=2, B is a sphere in \mathbb{R}^3 with center x and radius r. It is easy to observe that as $p \to \infty$, B tends to a cube in \mathbb{R}^3 with center x and edge length 2r; i.e.,

$$\rho_{\infty}(x,y) = \lim_{p \to \infty} \rho_p(x,y) = \sup_{i \in \{1,...,n\}} |x_i - y_i|.$$

2. Let $f:(X,\rho)\to\mathbb{R}^n$ with $X\subseteq\mathbb{R}^m$ be a continuous map on X. Let $x,y\in X$, then $\rho':f[X]\times f[X]\to\mathbb{R}_{\geq 0}$ defined by

$$\rho_p'(x,y) = \int_0^1 f(\ell(t)) d_p s(t)$$

where

$$\ell(t) = x + t(y - a)$$

and

$$d_p s(t) = \left(\sum_{i=1}^m \left| \frac{dg_i}{dt}(t) \right|^p \right)^{\frac{1}{p}} dt.$$

with $p \geq \overline{\mathbb{R}}_{\geq 1}$ is a metric on f[X].

Fix x and given $r \in \mathbb{R}_{\geq 0}$, the set

$$B_p = \left\{ y \in \mathbb{R}^m : \rho'_p(x, y) \le r \right\}$$

describes a set "attached" on f[X] with center x. If p=2, m=2 and n=3, and $f:[0,2\pi)\times[0,2\pi)\to\mathbb{R}^3$ is defined by

$$f(\lambda, \phi) = \begin{cases} r \cos \lambda \sin \phi, \\ r \sin \lambda \sin \phi, \\ r \cos \phi, \end{cases}$$

then ρ'_2 here is a great circle metric defined by

$$\rho_2'(x,y) = r\arccos(\sin x_\phi \sin y_\phi + \cos x_\phi \cos y_\phi \cos(x_\lambda - y_\lambda)).$$

3. Let $a,b \in \mathbb{R}$ with $a \leq b$, and $p \in \overline{\mathbb{R}}_{\geq 1}$, and C[a,b] denote the set of continuous function $[a,b] \to \mathbb{R}$.

Then d_p defined by $\forall f, g \in C[a, b]$,

$$\rho_p(f,g) = \left(\int_a^b |f - g|^p\right)^{\frac{1}{p}}$$

is a metric on C[a, b].

Similar to ρ_p on \mathbb{R}^n ,

$$B_p = \{g \mid \rho(f, g) \le r\}$$

defines a set with "center" f and "radius" $r \in \mathbb{R}_{>0}$.

It also implies that, on $C[a, b], \forall p, q \in \overline{\mathbb{R}}_{\geq 1}, \forall x, y \in \mathbb{R}^n$

$$p \le q \implies d_p(f,g) \ge d_q(f,g),$$

and, naturally, $B_p \subseteq B_q$. This is a straight corollary from the same case of d_p on \mathbb{R}^n .

4. Let A be a set. The Hamming metric ρ on a set A^n is given by $\forall x, y \in A^n$

$$\rho(x,y) = \# \{ i \in \{1,\ldots,n\} : x_i \neq y_i \}.$$

An example from Wikipedia. The word "karolin" and "kathrin" can be considered as tuples

$$x = (k, a, r, o, l, i, n), y = (k, a, t, h, r, i, n).$$

For all $i \in \{0, \dots, 6\} \setminus \{0, 1, 4, 6\}$, $x_i \neq y_i$, and $\#(\{0, \dots, 6\} \setminus \{0, 1, 4, 6\}) = 3$, thus

$$\rho(x,y) = 3.$$

5. Let (M, ρ) be a metric space (for example, $\rho = \rho_2$ on \mathbb{R}^n), and $X, Y \in \mathcal{P}(M)$. The Hausdorff metric ρ_H on $\mathcal{P}(M)$ is defined by

$$\rho_{\mathrm{H}}(X,Y) = \max \left\{ \sup_{x \in X} \rho(x,Y), \sup_{y \in Y} \rho(X,y) \right\},\,$$

where $\rho(a, B) = \inf_{b \in B} \rho(a, b)$ for all $B \in \mathcal{P}(M)$ and $a \in M$.

This metric can be used to measure how close two figures (as sets of points) are.

Definition 1.1.2. Let X be a metric space, let $x \in X$, and $\varepsilon > 0$. The open ball with center x and radius ε , or more briefly the open ε -ball about x is the subset

$$B(x,\varepsilon) = \{ y \in X : \rho(x,y) \le \varepsilon \} \subseteq X.$$

Similarly, the closed ε -ball around x is

$$\overline{B}(x,\varepsilon) = \{ y \in X : \rho(x,y) \le \varepsilon \} \subseteq X.$$

Note 1.1.1. Clearly, the word "ball" does not mean it should look like a ball. Clearly, for all $x \in \mathbb{R}^3$, the ball $\{y \in \mathbb{R}^3 : \rho_{\infty}(x,y) < 1\}$ is a cube without its surface.

And it is interesting to think that on C[a, b] with conditions above,

$$\{g \in C[a,b] : \rho_p(f,g) < 1\}$$

defines a open ball in C[a, b].

Note 1.1.2. For hamming metric ρ with conditions above, for $\varepsilon \in \mathbb{R}_{(0,1)}$, the ball

$${y \in A^n : \rho(x,y) < 1} = {x}.$$

is a singleton.

Definition 1.1.3. Let X be a metric space.

(i) A subset U of X is open in X (or an open subset of X) iff

$$\forall u \in U, \exists \varepsilon \in \mathbb{R}_{>0}, B(u, \varepsilon) \subseteq U.$$

(ii) A subset V is closed in X iff $X \setminus V$ is open in X.

Note 1.1.3. Equivalently, U is open in X iff $\exists \varepsilon \in \mathbb{R}_{>0}$,

$$U = \bigcup_{x \in U} B(x, \varepsilon);$$

and V is closed in X iff

$$V = X \setminus \bigcup_{x \in U} B(x, \varepsilon) = \bigcap_{x \in U} (X \setminus B(x, \varepsilon)),$$

by De Morgan's Law.

Definition 1.1.4. Let X be a metric space, let $\{x_n\}_{n=1}^{\infty}$ be a sequence in X and let $x \in X$. Then $\{x_n\}$ converges in X iff

$$\exists x \in X, \lim_{n \to \infty} d(x_n, x) = 0.$$

Explicitly, then, $\{x_n\}$ converges to x iff

$$\forall \varepsilon \in \mathbb{R}_{>0}, \exists N \in \mathbb{N}_{>1}, \forall n \in \mathbb{N}_{>N}, \quad d(x_n, x) < \varepsilon.$$

Note 1.1.4.

1. Equivalently, $\{x_n\}$ converges in X iff

$$\exists x \in X, \ \forall \varepsilon \in \mathbb{R}_{>0}, \#(\{x_n\} \cap B(x,\varepsilon)) = \aleph_0 \land \#(\{x_n\} \setminus B(x,\varepsilon)) < \aleph_0.$$

In other words, $B(x,\varepsilon)$ contains all but finitely many x_n .

2. Let $X \subseteq S$. $\{x_n\}$ converges to $x \in S$ does not means it need to converge in X. For example $\mathbb{Q} \subseteq \mathbb{R}$, the sequence

$$\left\{x_n = \frac{1}{x} + r : r^2 = 2\right\}_{n \in \mathbb{N}}$$

does converge to $\sqrt{2} \in \mathbb{R}$, but $\sqrt{2} \notin \mathbb{Q}$, so $\{x_n\}$ converges in \mathbb{R} , but does not converge in \mathbb{Q} .

Lemma 1.1.1. Let X be a metric space and $V \subseteq X$. Then V is closed in X iff

$$\forall \{x_n\}_{n=1}^{\infty} \subseteq V, \ \forall x \in X, \quad \lim_{n \to \infty} d(x_n, x) = 0 \implies x \in V.$$

Proof. Suppose V is closed in X, then $X \setminus V$ is open in X. Suppose $\exists x \in X \setminus V$, such that $\exists \{x_n\}_{n=1}^{\infty} \subseteq V$, $\{x_n\}$ converges to x, then $\forall \varepsilon \in \mathbb{R}_{>0}$, $B(x,\varepsilon) \cap \{x_n\} \neq \emptyset$. $\{x_n\} \subseteq V$, so $B(x,\varepsilon) \cap V \neq \emptyset$. This implies that $X \setminus V$ is not open, then V is not closed (for if V is closed, then $X \setminus V$ is open). It is contradicted to the assumption.

Now, suppose V is not closed in X, then $X \setminus V$ is not open. Then, $\exists p \in X \setminus V$, such that $\forall \varepsilon \in \mathbb{R}_{>0}$, $B(p,\varepsilon) \cap V \neq \emptyset$. This implies there are some $\{x_n\}_{n=1}^{\infty} \subseteq V$, such that $B(p,\varepsilon)$ contains all but finite elements in $\{x_n\}$. Thus, $\{x_n\}$ converges to $p \in X \setminus V$, contradicting to the conditions.

Lemma 1.1.2. Let X be a metric space, and \mathcal{T} be the family of open subsets of X. Then,

- (i) \mathcal{T} is closed under arbitrary union.
- (ii) \mathcal{T} is closed under finite intersection.
- (iii) $\emptyset, X \in \mathcal{T}$.

Proof.

1. Let I be an index set. For all $i \in I$, let $U_i \in \mathcal{T}$. Then for some $\varepsilon \in \mathbb{R}_{>0}$,

$$U_i = \bigcup_{x \in U_i} B(x, \varepsilon).$$

Let $U = \bigcup_{i \in I} U_i$, then we have,

$$U = \bigcup_{i \in I} \bigcup_{x \in U_i} B(x, \varepsilon) = \bigcup_{x \in U} B(x, \varepsilon)$$

for some $\varepsilon \in \mathbb{R}_{>0}$.

- 2. Let C be the family of closed subsets of X, and let $U, V \in C$. Then for all $\{u_n\}_{n=1}^{\infty} \subseteq U, \forall u \in X, \{u_n\} \text{ converges to } u \text{ implies that } u \in U. \text{ It also holds for } U \cup V \supseteq U. \text{ Similarly, for all } \{v_m\}_{m=1}^{\infty}, \forall v \in X, \{v_m\} \text{ converges to } v \text{ implies } v \in V. \text{ It also holds for } U \cup V \supseteq V. \text{ Thus } U \cup V \text{ is closed.}$ Then, $X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V)$ is open, where $X \setminus U$ and $X \setminus V$
 - Then, $X \setminus (U \cup V) = (X \setminus U) \cap (X \setminus V)$ is open, where $X \setminus U$ and $X \setminus V$ are open for U and V are closed.

3. $\emptyset = \bigcup_{i \in \emptyset} U_i$ for all $U_i \in \mathcal{T}$, so \emptyset is open. $\emptyset = U \cap V$ for all mutually disjoint closed subsets $U, V \subseteq X$, so \emptyset is closed, so $X = X \setminus \emptyset$ is open.

Lemma 1.1.3. Let X be a metric space, and \mathcal{C} be the family of all closed subsets of X. Then,

- (i) C is closed under arbitrary intersection.
- (ii) C is closed under finite union.
- (iii) $\emptyset, X \in \mathcal{C}$.

Proof. Let \mathcal{T} be the family of all open subset of X, and let I be any index set.

1. It has been proved that \mathcal{T} is closed under arbitrary union, so by De Morgan's law, for any $i \in I$, if $U_i \in \mathcal{T}$, then

$$X \setminus \bigcup_{i \in I} U_i = \bigcap_{i \in I} (X \setminus U_i) \in \mathcal{C}.$$

- 2. It has been proved in Lemma 1.1.2.
- 3. It has been proved that \emptyset is open in X. So $X = X \setminus \emptyset$ is closed in X.

Definition 1.1.5. Let (X, ρ) and (Y, ρ') be metric spaces. A function $f: (X, \rho) \to (Y, \rho)$ is *continuous* on a point $p \in X$ iff

$$\forall \varepsilon \in \mathbb{R}_{>0}, \ \exists \delta \in \mathbb{R}_{>0}, \ \forall x \in B(p, \delta), \quad f(x) \in B(f(p), \varepsilon).$$

Note 1.1.5.

- 1. If ρ is a discrete metric on X, then $B(p,\delta)=\{p\}$ for all δ . Then, by definition, for all ε , $f(x) \in B(f(p),\varepsilon)$. So f is continuous everywhere.
- 2. On the contrary, if ρ' is a discrete metric on Y, but for all $p \in X$, ρ suffices for all $\delta \in \mathbb{R}_{>0}$, $\#B(p,\delta) \geq \aleph_0$, then for some $\varepsilon \in \mathbb{R}_{>0}$, for all $\delta \in \mathbb{R}_{>0}$, there exists $x \in B(p,\delta)$, such that $f(x) \notin B(f(p),\varepsilon)$. Thus f is not continuous on such p.

Lemma 1.1.4. Let (X, ρ) and (Y, ρ') be metric spaces and let $f: (X, \rho) \to (Y, \rho)$ be a function. The following are equivalent:

- (i) f is continuous on X;
- (ii) for all open $U \subseteq Y$, the preimage $f^{-1}[U] \subseteq X$ is open;
- (iii) for all closed $V \subseteq Y$, the preimage $f^{-1}[V] \subseteq X$ is closed.

Proof. For (i) \Longrightarrow (ii), suppose f is continuous on X, then, by Definition 1.1.5, for all $p \in X$, there exists $B(p, \delta)$, such that $f(x) \in B(f(p), \varepsilon)$.