

• Хотим классифицировать объекты как «лодки» и «дома»

- Все объекты до береговой линии «лодки», выше линии «дома»
- Береговая линия выступает в роли решающей поверхности и разделяет эти два класса

• Эти лодки будут классифицированы как «дома», что не является верным

- Сначала все объекты представляются в математическом виде
- Затем, алгоритм ищет подходящую разделяющую поверхность

Новые (которые модель еще не видела) объекты, которые расположены ниже разделяющей поверхности, будут классифицированы как «лодки», а те, что выше линии – как «дома»

Метод опорных векторов (SVM)

► SVM – это алгоритм машинного обучения, который предлагает решение для задач регрессии и классификации

- ▶ Преимущества SVM:
 - ▶ «Робастный» к размеру выборки
 - «Робастный» устойчивый к чему-либо
 - Хорошо обучается как на «простых», так и на «сложных» данных
 - Использует «продвинутые» математические концепции для борьбы с переобучением
 - Красивая математическая концепция

Метод опорных векторов

Цель: Найти такую гиперплоскость, которая может разделить классы И имеет наибольший gap (a.k.a. margin maximization) между пограничными точками (a.k.a. support vectors, опорные вектора)

Метод опорных векторов: Ядра

Если данные не разделимы линейно, мы может использовать нелинейные отображения в пространство большей размерности (a.k.a. Kernels, ядра), в котором наши данные станут разделимы

Метод опорных векторов: Ядра

Если данные не разделимы линейно, мы может использовать нелинейные отображения в пространство большей размерности (a.k.a. Kernels, ядра), в котором наши данные станут разделимы