Some basic matrix algebra: Vectors

•
$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix}$$
: an array of n real numbers, $x_1, \dots, x_p \in \mathbb{R}$

- Geometrically? directed line in p dimensional space with i-th entry x_i along the i-th axis.
- Vector operations: for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$
 - addition: $\mathbf{x} + \mathbf{y}, \mathbf{x} \mathbf{y}$
 - scaler multiplication: $c\mathbf{x}$, for $c \in \mathbb{R}$
 - span $(\mathbf{x}_1, \dots, \mathbf{x}_k) = \{c_1\mathbf{x}_1 + \dots + c_k\mathbf{x}_k, c_i \in \mathbb{R}\}$: linear combination of vectors
 - $-\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}$ are linearly dependent if $\exists a_1,\cdots,a_k$, not all zero, s.t. $a_1\mathbf{x}_1+\cdots+a_k\mathbf{x}_k=0$.
 - * what this implies: at least one vector in the set can be written as a linear combination of the other vectors
 - * example

- If the set of vectors are not linearly dependent, we say they are linearly independent.

Vectors

- length of a vector: $L(\mathbf{x}) = \sqrt{x_1^2 + x_2^2 + \dots + x_p^2}$
- angle between the vectors: $\cos(\angle(\mathbf{x}, \mathbf{y})) = \frac{x_1y_1 + x_2y_2 + \cdots x_py_p}{L(\mathbf{x})L(\mathbf{y})}$

- inner product $\mathbf{x}^T\mathbf{y} = x_1y_1 + x_2y_2 + \cdots + x_py_p$: sum of component products
- relation between angle and inner product: $\cos(\angle(\mathbf{x}, \mathbf{y})) = \frac{\mathbf{x}^T \mathbf{y}}{L(\mathbf{x})L(\mathbf{y})}$
- \mathbf{x} and \mathbf{y} are perpendicular when the angle between the two is $\pi/2$ (or $3\pi/2$) and we write $\mathbf{x} \perp \mathbf{y}$
- $\mathbf{x} \perp \mathbf{y}$ if and only if $\mathbf{x}^T \mathbf{y} = 0$.
- projection of a vector \mathbf{x} on a vector \mathbf{y} : $\frac{\mathbf{x}^T \mathbf{y}}{L(\mathbf{y})^2} \mathbf{y}$

Vectors

• Euclidean distance between the two vectors:

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_p - y_p)^2} = \sqrt{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}$$

- In general, any distance measure can be used, but it has to satisfy
 - $-d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
 - $-d(\mathbf{x}, \mathbf{y}) > 0 \text{ if } \mathbf{x} \neq \mathbf{y}$
 - $-d(\mathbf{x}, \mathbf{y}) = 0 \text{ if } \mathbf{x} = \mathbf{y}$
 - $-d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$ for any point $\mathbf{z} \in \mathbb{R}^p$.

Matrix

• matrix $\mathbf{A}_{n \times p}$: collection of numbers with n rows and p columns

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{np} \end{bmatrix}$$

or use $\mathbf{A} = \{a_{ij}\}$

• column of space of \mathbf{A} , $C(\mathbf{A}) = \operatorname{span}(\mathbf{a}_1, \dots, \mathbf{a}_p) = \{c_1\mathbf{a}_1 + \dots + c_p\mathbf{a}_p | c_i \in \mathbb{R}\}$, where $\mathbf{a}_1, \dots, \mathbf{a}_p$ are the columns of \mathbf{A} .

$$C(\mathbf{X}^T) = ?$$

• matrix operations

$$- \mathbf{A}^T = \{a_{ji}\}$$

$$- \mathbf{A} + \mathbf{B} = \{a_{ij} + b_{ji}\}, \mathbf{A} - \mathbf{B} = \{a_{ij} - b_{ji}\}\$$

$$-c\mathbf{A} = \{ca_{ij}\}, c \in R$$

$$- \mathbf{A}_{n \times p} \mathbf{B}_{p \times m} = \left\{ \sum_{k=1}^{p} a_{ik} b_{kj} \right\}$$

 $-\operatorname{rank}(\mathbf{A}) = \operatorname{the maximum number of linearly independent rows (columns).}$

- trace
$$(\mathbf{A}) = \sum_{i=1}^{p} a_{ii}$$

Square Matrix

• Determinant: $det(\mathbf{A}) = |\mathbf{A}| = \sum (-1)^{|\pi|} a_{1\pi(1)} \cdots a_{p\pi(p)}$, the summation is over all permutations π of $\{1,\ldots,p\}$, and $|\pi|=0$ if the permutation can be written as a product of an even number of transposition and $|\pi|=1$ otherwise.

- Inverse: if there exists **B** such that AB = BB = I, then **B** is called the inverse of **A** and denoted by A^{-1} .
 - Inverse exists if the k columns of \mathbf{A} are linearly independent.
- Orthogonal Matrices: $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}$
 - $-\mathbf{q}^T\mathbf{q} = I(i=j)$: length of the column=1 and i and j-th columns are orthogonal.

Projection Matrix

• A square matrix \mathbf{P} is called a projection matrix in \mathbb{R}^p if and only if $\mathbf{P} = \mathbf{P}^T = \mathbf{P}^2$ (idempotent).

$$\mathbf{P} = \mathbf{X}(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T.$$

Then, the matrix **P** projects any vector in \mathbb{R}^n onto the column space $C(\mathbf{X})$ of \mathbf{X} .

Eigenvalues and Eigenvectors

- Eigenvalues and eigenvectors: For $\mathbf{A}: p \times p, \exists \lambda \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^p$ s.t. $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$, then we say λ is the eigenvalue and \mathbf{v} is the eigenvector of \mathbf{A} .
- Spectral Decomposition: Let **A** be a $p \times p$ square symmetric matrix. Then, **A** has p pairs of eigenvalues and (normalized) eigenvectors pairs. Specifically, **A** can be written as

$$\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^T = \sum_{i=1}^p \lambda_i \mathbf{v}_i \mathbf{v}^T,$$

where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ and $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_p]$ is an orthonormal matrix consisting of eigenvectors.

• Let $\lambda_1, \ldots, \lambda_p$ be eigenvalues of **A**. Then,

$$|\mathbf{A}| = \prod_{i=1}^p \lambda_i$$

and

$$\operatorname{trace}(\mathbf{A}) = \sum_{i=1}^{p} \lambda_i.$$

Quadratic forms

- Study of variance and interrelationship is often based on (squared of) distances.
- Squared distances can be expressed in terms of matrix product called quadratic forms.

Let **A** be $p \times p$ square and symmetric matrix. Consider a quadratic form Q:

$$Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{i,j} x_i a_{ij} x_j$$

- **A** is said to be non-negative definite $(\mathbf{A} \geq 0)$ if $Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$, $\forall \mathbf{x} \in \mathbb{R}^p$.
- If = holds only for $\mathbf{x} = \mathbf{0}$, \mathbf{A} is said to be positive definite $\mathbf{A} > 0$.
- **A** is positive definite $\Leftrightarrow \lambda_i > 0, \forall i = 1, \dots, p$

Why?

- For $\mathbf{A} > 0$, let $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^T$ be the spectral decomposition of \mathbf{A} . Then, $\mathbf{A}^{-1} = \mathbf{V}\Lambda^{-1}\mathbf{V}^T$.
- For $\mathbf{A} > 0$, $\mathbf{V}\Lambda^{1/2}\mathbf{V}^T$ where $\Lambda^{1/2} = \operatorname{diag}(\sqrt{\lambda_i})$ is called the square root of \mathbf{A} and denoted by $\mathbf{A}^{1/2}$.