

物理 試卷二 試題答題簿

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 宣布開考後,考生須首先在第1頁之適當位置 填寫考生編號;並在第1、3、5、7及9頁之適當 位置貼上電腦條碼。
- (二) 本試卷共有甲、乙、丙和丁**四部**。每部有八條 多項選擇題和一條佔10分的結構式題目。考生須 選答任何**兩部**中的**全部**試題。
- (三) 結構式題目的答案須寫在所提供的答題簿中。 多項選擇題應以HB鉛筆把與答案相應的圓圈 塗滿。每題只可填畫一個答案,若填畫多個 答案,則該題不給分。
- (四) 如有需要,可要求派發方格紙及補充答題紙。每一紙張均須填寫考生編號、填畫試題編號方格,貼上電腦條碼,並用繩縛於答題購內。
- (五) 考試完畢,試題答題簿及答題簿須**分別**繳交。
- (六) 本試卷的附圖未必依比例繪成。
- (七) 試題答題簿最後兩頁附有本科常用的數據、公式 和關係式以供參考。
- (八) 試場主任宣布停筆後,考生不會獲得額外時間貼上 電腦條碼及填畫試題編號方格。

©香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2022 請在此貼上電腦條碼

|--|

Q.1:多項選擇題

1.1 物體保持着沿軌道繞地球運動的最小速度為 7.9 km s⁻¹, 而 & 逸速度則為 11.2 km s⁻¹。

如果將物體以速度 9.5 km s⁻¹ 水平發射,它的運動軌道為何?假設大氣阻力可忽略不計。

- 圓形軌道 A.
- B. 橢圓軌道
- 拋物線軌道 C.
- 沿一直線運道 D.

 \bigcirc \bigcirc

D

1.2

三顆相同的恆星 $X \times Y$ 和 Z 位於邊長 L 的全等三角形的頂點。它們均繞三角形的中心 O 以 角速度 ω 作勻速圓周運動。以下哪項為 ω 與L的關係?

В C Α D

- $\omega \propto \sqrt{L^3}$ B.
- $\omega \propto \sqrt{\frac{1}{L}}$ C.
- D. $\omega \propto \sqrt{L}$
- 1.3 於地球表面將一衛星從靜止發射,它進入離地球表面高度 R 的軌道作勻速圓周運動, 其中 R 為地球半徑。在這過程中,衛星的動能增加為 K。衛星相應的引力勢能改變為 多少?
 - A. -2K
 - -KB.
 - C. +2K
 - D. +K

2022-DSE-PHY 2-2

- D

1.4 在下圖所示的雙星系統中,大質量的恆星 M 幾乎是靜止的。恆星 S 沿橢圓軌道繞 M 運動,該軌道的長軸為 BD。

一遙遠的觀察者 O處於恆星 S 的軌道平面,其視線方向跟 BD 垂直。以下哪一線圖正確顯示所觀察到 S的徑向速度 v_r 跟時間 t的變化? S 依次序 A-B-C-D-A 作逆時針運動,它所處位置 A \times B \times C 和 D 亦相應地標在線圖上。

A.

Ė

C.

D.

Α

В

С

 \circ

D

1.5 在同一星團內,一藍色恆星和一紅色恆星的視星等相同。如果藍色恆星的表面溫度是紅色恆星的兩倍, $\frac{藍色恆星的半徑}{\triangle(0)}$ 之比為何?

- A. 1:4
- B. 1:2
- C. 2:1
- D. 4:1

A

D

1.6 兩遙遠的恆星 X和 Y的絕對星等相同,但以肉眼觀察時,X較 Y看似亮 4 倍。 X的恆星 視差跟 Y的恆星視差之比為何?

Α.	1:4
B.	1:2

C. 2:1 D. 4:1

D

 \bigcirc

1.7 一遙遠物體的鈣 H 譜線 (396.8 nm) 在觀測得的吸收光譜中看似位於 395.8 nm。從這項資料可推斷出該物體

A. 以756 km s-1的速率趨向地球。

B. 以756 km s-1的速率遠離地球。

C. 以不小於 756 km s⁻¹的速率趨向地球。

D. 以不小於 756 km s⁻¹的速率遠離地球。

1.8 下面的赫羅 (H-R) 圖顯示一系列的主序星。

下表列出三顆主序星 X、Y和 Z的性質。它們哪顆距離地球超過 10 pc?

恆星	視星等	光譜類型
X	0	F
Y	5	В
Z	4	K

٨	口右	· v
Α.	77 73	X

B. 只有 Y

C. 只有X和Z

D. 只有 Y和 Z

A B C D

Q.1:結構式題目

已知:月球的質量=0.0123×地球的質量 月球的半徑=0.273×地球的半徑

- (a) 根據牛頓萬有引力定律,估算月球表面的重力加速度 gM 與地球表面的重力加速度 gE 之比。你的答案須準確至三位有效數字。 (2分)
- (b) 科學家計劃將機械人送往月球的背面,以在該處建造射電望遠鏡來觀測電磁波。

圖 1.1

- (i) 於地球和月球之間的某點 N,地球和月球的引力互相平衡。估算 N **跟地球中心**的 距離,以地球-月球的平均間距 D 表達。 (2分)
- (ii) 要將一物體從地球表面的 A 點發射並最終能抵達月球,物體須有足夠能量以達到點 N。估算機械人的最小發射速度。已知:在地-月系統中,物體從 A 到 N 的引力勢能改變為 $6.12 \times 10^7 \, \mathrm{J \, kg^{-1}}$ 。 (2分)
- (c) 宇宙的年齡約為 140 億年(即 14000 百萬年)。科學家發現在宇宙初期(即宇宙誕生後 0.4 至 1000 百萬年),其中的氫原子發射出波長 21 cm 的電磁波。由於宇宙隨時間膨脹, 我們現今觀察到這些殘留電磁波的波長經已被拉長至不同程度,這視乎這些電磁波於 何時產生(見圖 1.2)。

現今所觀察到殘留電磁波的波長 (m)

圖 1.2

(i) 寫出以上所述波長被「拉長」的現象的名稱。

- (1分)
- (ii) (b) 部的射電望遠鏡可用以觀察這些殘留電磁波,其覆蓋頻率範圍包括 $f_c = 20 \text{ MHz}$ 。推斷 f_c 所對應電磁波的波長 λ ,並寫出這種電磁波的名稱。 (2分)
- (iii) 根據圖 1.2 鑑定在 (c)(ii) 中的電磁波來自哪時期 (I 至 V)。

(1分)

乙部:原子世界

Q.2:多項選擇題

2.1

上面每圖都顯示一 α 粒子被一固定的帶電粒子 $P(\mathbf{沒有}$ 在圖中顯示,但處於虛線區域內) 散射的路徑。如果該兩粒子的相互作用只有靜電力,從哪圖可推斷出 P 必定是帶正 電荷?

- A. 只有(3)
- В. 只有(1)和(2)
- C. 只有(2)和(3)
- D. (1)、(2)和(3)
- 2.2 下列有關氦的吸收光譜的描述,哪些正確?
 - **(1)** 氦原子只能吸收能量等於氦兩能級間能量差的光子。
 - (2) 氦的吸收光譜中的暗線,跟其發射光譜中的譜線脗合。
 - (3) 光譜中的暗線對應被氦原子所吸收的光子的波長。
 - 只有(1)和(2) A.
 - B. 只有(1)和(3)
 - C. 只有(2)和(3)
 - D. (1)、(2)和(3)

В С D Α

D

 \bigcirc

Α

 \bigcirc

- 2.3 在某原子中的電子其能級**依比例**繪畫如圖。從 E_3 至 E_1 的電子躍遷發射出綠色譜線。哪一 電子躍遷會發射出紅色譜線?已知:可見光譜約為 400 nm 至 750 nm

- A. E_3 至 E_2
- E_4 至 E_2 В.
- E_2 至 E_1 C.
- E_4 至 E_1

- C D В

D

D

 \bigcirc

- 2.4 根據玻爾氫原子模型,當氫原子發射一光子,以下哪項有關原子內電子的物理量會減少?
 - (1) 電子的軌道半徑
 - (2) 電子的角動量
 - (3) 電子的動能
 - A. 只有(1)和(2)
 - B. 只有(1)和(3)
 - C. 只有(2)和(3)
 - D. (1)、(2)和(3)
- 2.5 以一光學顯微鏡觀察一樣本。如果物鏡的直徑為 $10 \, \text{mm}$,而間距為 $3 \times 10^{-6} \, \text{m}$ 的兩點僅可被分辨,推斷物鏡至樣本的間距 L 和所用光的波長 λ 的可能組合。

	L / cm	λ / nm				
A.	5	410	A	В	C	D
В.	4	615	\cap	0	\bigcirc	\bigcirc
C.	3	410	O	\cup	\cup	\cup
D.	2	615				

- 2.6 把電壓 V₀ 施於一透射電子顯微鏡 (TEM) 的陽極,以產生德布羅意波長為 0.01 nm 的電子束。要使波長減至 0.005 nm,陽極電壓應為多少?
 - A. $\frac{V_0}{4}$
 - B. $\frac{V_0}{2}$
 - C. $2V_0$
 - D. $4V_0$

下列哪項有關其操作的敍述是正確的?

- (1) 隧穿電流隨樣本表面的傳導性而增加。
- (3) 當以固定高度模式掃描,尖端與樣本表面之間的距離改變屬原子標度。
- A. 只有(1) Α В C D 只有(2) В. \bigcirc \bigcirc 0 \bigcirc C. 只有(1)和(3) D. 只有(2)和(3)
- 2.8 下列哪項屬於納米標度?
 - (1) 人類毛髮的直徑
 - (2) 金原子核的大小
 - (3) 冠狀病毒 (例如 COVID-19) 粒子的大小
 - A. 只有(1) A B C D
 B. 只有(3) O O O
 C. 只有(1)和(2)
 D. 只有(2)和(3)

Q.2:結構式題目

當單色光照射一金屬面,會發射出能量涵蓋某範圍的電子。該單色光每一光子帶 4.97 × 10⁻¹⁹ J 的能量。

- (a) (i) 如果該單色光的強度增加,解釋上述範圍會否受影響。 (2分)

以不同波長 λ 的單色光逐一照射該金屬面。相應發射出電子的最大動能 KE_{max} ,可透過量度遏止電勢 V_s 而得到。圖 2.1 顯示所標繪的 KE_{max} 對 λ 線圖。

圖 2.1

(b) 如果所用單色光的波長為 4.0×10⁻⁷ m, 求相應的遏止電勢。

(2分)

(c) 求該金屬的功函數,以 eV 為單位。

- (3分)
- (d) 如果採用功函數較大的另一金屬,豎直軸上的截距會增加、減少還是保持不變? (1分)

Q.3:多項選擇題

3.1 現有三款燈 $P \cdot Q$ 和 $R \cdot$

燈	額定功率/W	發光效能 / lm W-1
P	6	100
Q	8	110
R	10	85

各燈在相同的條件下以其額定功率分別運作,哪燈最亮?哪燈所耗能量最少?

	最亮	所耗能量最少				
A.	\mathcal{Q}	P	Α	В	C	D
B.	${\mathcal Q}$	Q	\cap	0	\bigcirc	\bigcirc
C.	R	P		\circ	\circ	\circ
D.	R	\mathcal{Q}				

3.2 圖示一光通量為 6000 lm 的燈置於一水平鏡之上 3 m 處,而一書本水平放置在燈的同一高度。燈光被鏡反射到書本。如果鏡把光能 100%反射,求書本朝向鏡的一面的照明度。

3.3 一水力發電站的上儲水庫和下儲水庫的水位高度差為 80 m,發電站的渦輪提供 1000 MW 的總輸出功率。假設發電站的整體效率為 80%,估算水通過渦輪的流率,以 kg s⁻¹ 表達。 $(g=9.81~{\rm m~s^{-2}})$

A.	$1.02 imes 10^6$	A	В	C	D
B.	$1.27 imes 10^6$	\cap	\bigcirc	0	\bigcirc
C.	1.52×10^6	O	\cup	\cup	\cup
D.	1.59×10^6				

- 根據能源效益標籤計劃 (EELS),下列哪項有關一部評為 1級的空調機的敍述是正確的? 3.4
 - A. 它的能源效益較一部評為 5級的雪櫃高。
- Α В С D
- 它的耗電功率必定較一部評為5級的空調機 B. 小。
- \bigcirc \bigcirc \bigcirc
- C. 它的能源效益必定高於同類冷卻能力空調機的 平均能源效益。
- 它的能源效益必定低於同類冷卻能力空調機的 D. 平均能源效益。
- 3.5 一空調機的性能係數 (COP) 為 4.0。如果以輸入功率相同而性能係數為 6.0 的另一空調機 取代,釋放至室外環境的總熱排放率會增加
 - 29 % . A.
 - 33 % •
 - 40 % C.

B.

D. 50% •

- Α В D
- \bigcirc \bigcirc \bigcirc
- 3.6 圖示邊長 1m的立方容器浸沒於溫度為 20℃的水中,其底部座落於一 30℃的金屬面上。 容器充滿 50 ℃ 的某液體。容器壁的 U-值為 10 W m⁻² K⁻¹。求熱能於圖示一刻從容器傳導 出的率。

- 900 W A.
- 1100 W B.
- C. 1300 W
- D. 1700 W

В C D Α

- (2) 車輪 電動機/ 電池組 電池組
- (3) 電動機/ 電池組 電池組

哪圖最有可能對應車輛 (i) 加速及 (ii) 制動的情況?

	加速	制動				
A.	(3)	(2)	Α	В	C	D
B.	(3)	(1)		0	\bigcirc	\bigcirc
C.	(1)	(2)	O	\cup	\cup	\cup
D.	(1)	(3)				

- 3.8 風力渦輪機所產生的功率取決於哪些因素?
 - (1) 空氣密度
 - (2) 風速
 - (3) 渦輪機扇葉的長度
 - A. 只有(1)和(2)
 - B. 只有(1)和(3)
 - C. 只有(2)和(3)
 - D. (1)、(2)和(3)

3

	r
	L

Q.3: 結構式題目

陳先生計劃在他家屋頂安裝太陽光電系統作家居發電之用。

- (a) 系統中每塊太陽能板的面積為 1.934 m²。當太陽能板於晴空時正向太陽,其輸出的電壓和電流分別為 38 V 和 10 A。已知:地球表面每單位面積接收到太陽輻射的最大功率為 1000 W m⁻²
 - (i) 求該太陽能板的輸出功率,並估算其效率。 (2分)
 - (ii) 要達至接近而不超過 10 kW 的發電容量,求應安裝這些太陽能板的數目以及相應的最小屋頂面積。 (2分)
- (b) 陳先生可參與「上網電價計劃」,將其太陽光電系統透過一個反相器連接電力公司的輸電網絡,如圖 3.1 所示。此後可把所產生的可再生能源售予電力公司。

- (i) 為什麼需要安裝一個反相器於太陽能板和交流輸電網絡之間? (1分)
- (ii) 以一整年計,香港平均每日有 4.5 小時的有效日照。估算一發電容量為 10 kW 的太陽 光電系統每年可提供的最大能量,以 kW h 表達。 (1分)
- (iii) 試就實際所產生的電能遠低於在 (b)(ii) 的估算值提出一主要原因。 (1分)
- (iv) 已知:就容量低於 10 kW的可再生能源系統,按上網電價計劃每 kWh的收購價為 \$5,而每年最多可把 10000 kWh 所產生的可再生能源售予電力公司。如果這種系統的初始 建造成本為 \$200000,而每年的保養成本為 \$5000,估算需多少年才可收回投資資本。 (2 分)
- (c) 相比風力發電系統,指出太陽光電系統用作家居發電的一項優點。 (1分)

Q.4:多項選擇題

4.1 志堅患有近視,他需配戴 -1.5 D 的眼鏡以矯正遠點至正常位置。一天他的眼鏡損毀了,他找 到先前所配戴 -1.25 D 的眼鏡。志堅以這副眼鏡可清楚看得多遠?

A.	距離眼睛 0.25 m
B.	距離眼睛 0.68 m
C.	距離眼睛 4 m

C. 距離眼睛 4 m D. 距離眼睛 7.5 m

4.2 圖示有兩東光纖 X 和 Y 的光纖內窺鏡。相干束 X 負責像的傳輸,不相干束 Y 則負責輸送 光以照亮目標。Z 是一條可通過內窺鏡軸的管道。

下列哪項敍述正確?

- (1) 束 X不能用以輸送光作照明。
- (2) 束 Y不能用作像的傳輸。
- (3) 通過管道 Z可插入工具以摘取組織樣本作醫學化驗。

A.	只有 (1)	Α	В	C	D
B.	只有 (2)	\cap	0	\cap	\bigcirc
C.	只有 (1) 和 (3)	O	\circ	\circ	\circ
D.	只有 (2) 和 (3)				

下圖顯示一位聽覺正常人士和一位有聽力損失的長者的聽覺閾曲線。

下列哪項敍述正確?

- (1) 曲線 Y是屬於該長者的。
- 該長者的耳朵對 2000 Hz 一帶的聲音最靈敏。 (2)
- (3) 該長者的聽力損失於低頻聲音較嚴重。

A.	只有 (1)	A	В	C	D
B.	只有 (2)	\bigcirc	0	\bigcirc	\bigcirc
C.	只有 (1) 和 (3)		\circ	\circ	
D.	只有 (2) 和 (3)				

4.4 暴露於聲強級 90.0 dB 的環境 8 小時可導致聽力損失。於這環境傳到面積為 $0.503~{
m cm}^2$ 的耳膜 的能量為多少?已知:聽覺閾的強度為 10-12 W m-2

A.	1.45 J	Α	В	C	D
	$1.45 \times 10^{-3} \text{ J}$	\circ	0	\bigcirc	\bigcirc
C.	$1.81 \times 10^{-4} \text{ J}$	\circ			\circ
D.	$2.42 \times 10^{-5} \text{ J}$				

4.5 下列哪項有關一材料對超聲波的聲阻抗的敍述是正確的?

- 它代表一超聲波束通過該材料時所遇到阻礙的 D A. Α 大小。 B. 它的值隨該材料的質量增加。
- C. D. 由聲阻抗相同的兩組織所形成分界面的反射是 完美的。

4.6	當以· 目的	一超聲掃描器檢查較大的器官,超聲波須能達到體內 ?	习深處。	,下列!	那項有!	功 達 致 這
	(1) (2) (3)	在皮膚塗抹一層耦合凝膠,以填充換能器和皮膚之間 採用超聲波頻率較低的換能器 採用解像度更高的換能器	的空氣	.間隙		
	A.	只有 (1) 和 (2)	A	В	С	D
	B. C. D.	只有 (1) 和 (3) 只有 (2) 和 (3) (1)、(2) 和 (3)	0	0	0	0
4.7		且織中 20 keV 和 60 keV 的 X 射線的線衰減係數分別為 0.7 keV 的 X 射線分別穿過 20 cm 厚的軟組織後,它們的強用同。 2.1 × 10 ⁻⁷			• •	
		7.1×10^{-6}	_			_
		1.4×10^{-5} 1.5×10^{-2}	0	0	0	0
4.8		新層造影 (CT)、放射性核素成像 (RNI)和 X 射線放射攝影 間,由短至長排列為	杉 (XP) I	的典型:	掃描成(象和處理
	A.	RNI < CT < XP 。	A	В	С	D
	В.	$XP < RNI < CT \circ$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	C.	$CT < XP < RNI \circ$	\cup	\circ	\cup	\cup
	D.	$XP < CT < RNI \circ$				

Q.4:結構式題目

(a) 有關空氣、皮膚和肌肉的一些資料表列如下。

	密度 (kg m ⁻³)	聲音的速率 (m s ⁻¹)
空氣	1.20	340
皮膚	1000	1520
肌肉	1040	1630

(i) 求肌肉的聲阻抗。

(1分)

- (ii) 當進行掃描時,一超聲波換能器跟皮膚表面的法線成 5°角。求超聲波束從空氣進入 皮膚後的折射角。 (2分)
- (iii) 據此解釋為什麼以超聲波換能器掃描時,換能器跟皮膚表面應要保持垂直。 (2分)
- (b) 圖 4.1(a) 的放射性核素成像是一名病者的骨掃描。圖 4.1(b) 顯示一人的胸部 X 射線成像。

圖 4.1(b)

- (i) 試就**放射源的本質**和**成像產生的機理**,比較圖 4.1(a) 和圖 4.1(b) 的成像如何產生。 你的答案不須提及所用探測儀器以及其偵測機理。 (3分)
- (ii) 放射性核素成像可提供 X 射線放射攝影成像未能提供的一些資訊。試簡單解釋。 (2分)

試卷完

本試卷所引資料的來源,將於香港考試及評核局稍後出版的《香港中學文憑考試試題專輯》內列明。

請勿在此頁書寫。

寫於此頁的答案,將不予評閱。

數據、公式和關係式

數據

摩爾氣體常數 阿佛加德羅常數 重力加速度 萬有引力常數 在真空中光的速率

電子電荷 電子靜止質量 真空電容率 真空磁導率 原子質量單位

天文單位 光年

斯特藩常數

秒差距 普朗克常數 $N_{\rm A} = 6.02 \times 10^{23} \, \rm mol^{-1}$ $g = 9.81 \text{ m s}^{-2}$ (接近地球) $G = 6.67 \times 10^{-11} \,\mathrm{N} \,\mathrm{m}^2 \,\mathrm{kg}^{-2}$ $c = 3.00 \times 10^8 \,\mathrm{m \ s^{-1}}$ $q_e = 1.60 \times 10^{-19} \,\mathrm{C}$ $m_e = 9.11 \times 10^{-31} \text{ kg}$ $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 \,\mathrm{N}^{-1} \,\mathrm{m}^{-2}$ $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H}\,\mathrm{m}^{-1}$ $u = 1.661 \times 10^{-27} \text{ kg}$

(1u相當於 931 MeV)

 $AU = 1.50 \times 10^{11} \,\mathrm{m}$ $lv = 9.46 \times 10^{15} \, m$

 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$

 $pc = 3.09 \times 10^{16} \text{ m} = 3.26 \text{ ly} = 206265 \text{ AU}$

 σ = 5.67 × 10⁻⁸ W m⁻² K⁻⁴ $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

直線運動

匀加速運動:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^{2}$$

$$v^{2} = u^{2} + 2as$$

數學

直線方程 y = mx + c

弧長

柱體表面面積 = $2\pi rh + 2\pi r^2$

柱體體積 = $\pi r^2 h$

球體表面面積 = $4\pi r^2$

 $=\frac{4}{2}\pi r^3$ 球體體積

細小角度

 $\sin \theta \approx \tan \theta \approx \theta$ (角度以 radians 表達)

天文學和航天科學

II = -	GMm
0 –	r

引力勢能

 $\left| \frac{\Delta f}{f_0} \right| \approx \frac{v}{c} \approx \left| \frac{\Delta \lambda}{\lambda_0} \right|$

能量和能源的使用

 $\frac{Q}{t} = \kappa \frac{A(T_{\rm H} - T_{\rm C})}{d}$ 傳導中能量的傳遞率

熱傳送係數 U-值

 $P = \frac{1}{2} \rho A v^3$

風力渦輪機的最大功率

原子世界

$$\frac{1}{2}m_{\rm e}v_{\rm max}^{2} = hf - \phi$$
 愛恩斯坦光電方程

$$E_{\rm n} = -\frac{1}{n^2} \left\{ \frac{m_{\rm e} q_e^4}{8h^2 \varepsilon_0^2} \right\} = -\frac{13.6}{n^2} \,\text{eV} \,\,$$
 氫原子能級方程

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

德布羅意公式

$$\theta \approx \frac{1.22\lambda}{d}$$

瑞利判據 (解像能力)

醫學物理學

$$\theta \approx \frac{1.22\lambda}{d}$$

瑞利判據 (解像能力)

焦強 =
$$\frac{1}{f}$$

透鏡的焦強

$$L = 10 \log \frac{I}{I_0}$$

$$Z = \rho c$$

強度級 (dB)

$$Z = \rho c$$

聲阻抗

$$\alpha = \frac{I_{\rm r}}{I_0} = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$$

反射聲強係數

 $I = I_0 e^{-\mu x}$

經過介質傳送的強度

A1. $E = mc \Delta T$ 加熱和冷卻時的能量轉移

A2.
$$E = l \Delta m$$

A2. $E = l \Delta m$ 物態變化時的能量轉移

A3.
$$pV = nRT$$

A3. pV = nRT 理想氣體物態方程

A4.
$$pV = \frac{1}{3} Nmc^2$$
 分子運動論方程

A5.
$$E_{\rm K} = \frac{3RT}{2N_{\rm A}}$$
 氣體分子動能

B1.
$$F = m \frac{\Delta v}{\Delta t} = \frac{\Delta p}{\Delta t}$$
 \uparrow

B2. 力矩 =
$$F \times d$$
 力矩

B3.
$$E_P = mgh$$
 重力勢能

B4.
$$E_{\rm K} = \frac{1}{2} m v^2$$
 動能

B6.
$$a = \frac{v^2}{r} = \omega^2 r$$
 向心加速度

B7.
$$F = \frac{Gm_1m_2}{r^2}$$
 牛頓萬有引力定律

C1.
$$\Delta y = \frac{\lambda D}{a}$$
 雙縫干涉實驗中條紋的間距

C2.
$$d \sin \theta = n\lambda$$
 衍射光栅方程

C3.
$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 單塊透鏡方程

D1.
$$F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$$
 庫倫定律

D2.
$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
 點電荷的電場強度

D3.
$$E = \frac{v}{d}$$

D3. $E = \frac{V}{d}$ 平行板間的電場 (數值)

D4.
$$R = \frac{\rho l}{A}$$
 電阻和電阻率

D5.
$$R = R_1 + R_2$$
 串聯電阻器

D6.
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 並聯電阻器

$$D7. \quad P = IV = I^2 R$$

D7. $P = IV = I^2R$ 電路中的功率

D8.
$$F = BQv \sin \theta$$

D8. $F = BQv \sin \theta$ 磁場對運動電荷的作用力

D9.
$$F = BIl \sin \theta$$

D9. $F = BIl \sin \theta$ 磁場對載流導體的作用力

D10.
$$B = \frac{\mu_0 I}{2\pi r}$$

D10. $B = \frac{\mu_0 I}{2\pi r}$ 長直導線所產生的磁場

D11.
$$B = \frac{\mu_0 NI}{l}$$
 螺線管中的磁場

D12.
$$\varepsilon = N \frac{\Delta \Phi}{\Delta t}$$
 感生電動勢

D13.
$$\frac{V_s}{V_p} \approx \frac{N_s}{N_p}$$
 變壓器副電壓和 原電壓之比

E2.
$$t_{\frac{1}{2}} = \frac{\ln 2}{k}$$
 半衰期和衰變常數

E3.
$$A = kN$$

放射強度和未衰變的

E4.
$$\Delta E = \Delta mc^2$$
 質能關係式