1 Extended fields

Let F be a totally ordered field. Let $F_{\infty} = F \cup \{\bot, \top\}$. We define operations + and \cdot on F_{∞} so that (for all $a \in F_{\infty}$ and for all $p \in F, p > 0$) from top down:

All other cases of all operations and relations preserve their behavior from F. We keep the product between negative numbers and $\{\bot, \top\}$ undefined.

2 Farkas-like conjecture

Let $A \in F_{\infty}^{m \times n}$ and $b \in F^m$. Exactly one of the following is true:

- $\exists x \in F^n$ such that $0 \leq x$ and $A x \leq b$
- $\exists y \in F^m$ such that $0 \leq y$ and $(-A^T)$ $y \leq 0$ and $b^T y < 0$

3 Counterexample

$$A = \begin{pmatrix} \bot & \top \\ \top & \bot \end{pmatrix} \qquad b = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

Both are true.

4 Remark

For all other versions of Farkas lemma that I tried to generalize to F_{∞} similar counterexample still applies. However, they might work if it was forbidden for a row of A to contain both \bot and \top and alike for a column.

5 New attempt

Let $A \in F_{\infty}^{m \times n}$ and $b \in F_{\infty}^{m}$. Assuming that no row and no column of A contains both \bot and \top elements and that A does not have \bot on any row where b has \bot , exactly one of the following is true:

- $\exists x \in F^n$ such that $0 \leq x$ and $A x \leq b$
- $\exists y \in F^m$ such that $0 \leq y$ and $(-A^T)$ $y \leq 0$ and $b^T y < 0$

6 Proof idea

We need to do the following steps in given order:

- 1. Delete all rows of (A|b) where A has \perp or b has \top (they are tautologies).
- 2. Delete all columns of A that contain \top (they force respective variables to be zero).
- 3. If b contains \perp then the $(\exists x)$ part cannot be satisfied, but y = 0 satisfies the other part. Stop here.
- 4. Assume there is no \perp in b. Use the normal Farkas. Whichever solution Farkas outputs, extend it with zeros on all deleted positions.

7 Proof sketch

- $A \in F_{\infty}^{I \times J}$
- $b \in F_{\infty}^{I}$
- hA: no row i is allowed to have both $A_{i,\star}\ni\bot$ and $A_{i,\star}\ni\top$
- hAb: no row i is allowed to have both $b_i = \top$ and $A_{i,\star} \ni \top$
- if $\bot \in b$ then easy; from now on assume $\bot \notin b$
- $I' := \{ i \in I \mid b_i \neq \top \land \bot \notin A_{i,\star} \}$
- $J' := \{ j \in J \mid \top \notin A_{\star,j} \}$
- $A' := A \upharpoonright (I' \times J')$
- $A' \in F^{I' \times J'}$
- $b' := b \upharpoonright I'$
- $b' \in F^{I'}$
- $(\exists x) \implies (\exists x') \dots \text{ easy}$
- $(\exists x') \implies (\exists x) \dots \text{ easy}$
- assume $\exists y \in F^I$ such that $0 \leq y$ and $(-A^T)$ $y \leq 0$ and $b^T y < 0$
 - use $y' := y \upharpoonright I'$
 - $y' \in F^{I'}$
 - $0 \le y'$ from $0 \le y$

• given
$$j \in J'$$
 show: $((-A'^T) \ y')_j = \sum_{i \in I'} y'_i \cdot (-A'^T)_{j,i} \le 0$
using: $((-A^T) \ y)_j = \sum_{i \in I'} y'_i \cdot (-A^T)_{j,i} + \sum_{i \in I \setminus I'} y_i \cdot (-A^T)_{j,i} \le 0$
suffices: $\sum_{i \in I \setminus I'} y_i \cdot (-A^T)_{j,i} = 0$

fix $i \in I \setminus I'$ and show $y_i \cdot (-A)_{i,j} = 0$

- from our I' we have either $b_i = \top$ or $\bot \in A_{i,\star}$
- show $\bot \notin (-A^T)_{\star,i}$ that is $\top \notin A_{i,\star}$ by contradiction $\top \in A_{i,\star}$
 - if $b_i = \top$ then contradicts hAb
 - if $\bot \in A_{i,\star}$ then contradicts hA
- show $y_i = 0$ by contradiction $y_i > 0$
 - if $b_i = \top$ then $b^T y = \top \ge 0$ (we need $\bot \notin b$ here)
 - if $\bot \in A_{i,\star}$ hence $\top \in (-A^T)_{\star,i}$ then $((-A^T) \ y)_j = \top > 0$ (we need $\bot \notin (-A^T)_{\star,i}$ here)
- show $(-A)_{i,j} \neq \bot$
 - special case of what we already have
- we need to show $b'^Ty' = \sum_{i \in I'} y_i' \cdot b_i' < 0$ suffices... $\sum_{i \in I \setminus I'} y_i \cdot b_i = 0$ show $y_i = 0$ by the same arguments as above finish using $\bot \notin b$
- assume $\exists y' \in F^{I'}$ such that $0 \leq y'$ and $(-A'^T)$ $y' \leq 0$ and $b'^Ty' < 0$
 - use y := y' extended with 0 on $I \setminus I'$
 - $y \in F^I$
 - $0 \le y$ is trivial
 - assume $j \in J'$ and calculate... $((-A^T) y)_j = \sum_{i \in I'} y_i \cdot (-A^T)_{j,i} + \sum_{i \in I \setminus I'} y_i \cdot (-A^T)_{j,i} = \sum_{i \in I'} y_i' \cdot (-A'^T)_{j,i} + \sum_{i \in I \setminus I'} 0 \cdot (-A^T)_{j,i} = ((-A'^T) y')_j + \sum_{i \in I \setminus I'} [0 \text{ or } \bot] \le ((-A'^T) y')_j \le 0$ assume $j \notin J'$ hence $\top \in A_{\star,i}$ hence $\bot \in (-A^T)$.

assume $j \notin J'$ hence $\top \in A_{\star,j}$ hence $\bot \in (-A^T)_{j,\star}$ and calculate... $((-A^T) y)_j = \sum_{i \in I} y_i \cdot (-A^T)_{j,i} = [\ge 0] \cdot \bot + (\dots) = \bot \le 0$

• $b^T y = \sum_{i \in I'} y_i \cdot b_i + \sum_{i \in I \setminus I'} y_i \cdot b_i = \sum_{i \in I'} y_i' \cdot b_i' + \sum_{i \in I \setminus I'} 0 \cdot b_i = b'^T y' < 0$ (note that we used $\bot \notin b$ for $0 \cdot b_i = 0$ in the last equality)