Lecture 2: Data Frame, Matrix, List Abhijit Dasgupta

September 19, 2018

Preamble

Practice makes perfect

- Start using RSeek
- Other resources on website http://www.araastat.com/BIOF339_PracticalR
- Beg, Borrow, Steal code that you need
 - R is open-source, so is meant to be shared

R coding conventions

```
# This is a comment, which doesn't get evaluated
1:3 # This is also a comment
## [1] 1 2 3
# Multi-line code
x < -c(1, 2,
      3, 4, 5, 6,
X
## [1] 1 2 3 4 5 6 7
```

Google has a style guide for how to write R code

R packages

R packages live on CRAN and its mirrors. To install an R package:

```
install.packages('dplyr', repos='http://cran.r-project.org')
```

or

```
knitr::include_graphics('lecture2_img/install_package.png')
```


R Packages

To use a package, or rather, use the functions from the package, you have to load it into R

library(dplyr)

We'll talk about packages later in the semester.

We will concentrate now on what is known as **Base R**, that is, the functions that are available when R is installed

Loading data

We will usually load CSV files, since they are the easiest for R. The typical suggestion if you have Excel data is to save the sheet as a CSV and then import it into R.

You can also load Excel files directly using either the readx1 or rio packages

The structure of data sets

Tables

- Data is typically in a rectangular format
 - spreadsheet, database table
 - CSV (comma-separated values) or TSV (tab-separated values) files
- Characteristic
 - Rows are observations
 - Columns are variables
 - Each column has the same number of observations

Tidy data is a particularly amenable format for data analysis.


```
data_spine <- read.csv('lecture2_data/Dataset_spine.csv')</pre>
```

head(data spine)

```
##
    Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
            63.02782
                      22.552586
                                            39,60912
                                                        40.47523
## 2
            39.05695 10.060991
                                            25.01538
                                                        28,99596
## 3
            68.83202 22.218482
                                            50.09219
                                                        46.61354
            69.29701 24.652878
## 4
                                            44.31124
                                                        44.64413
## 5
                                            28.31741
            49.71286 9.652075
                                                        40.06078
## 6
                                            25.12495
            40.25020
                    13,921907
                                                        26.32829
##
    Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
         98.67292
                                            0.7445035 12.5661
                               -0.254400
## 2
     114.40543
                                4.564259 0.4151857
                                                        12.8874
## 3
                                                        26.8343
     105.98514
                               -3.530317 0.4748892
## 4
     101.86850
                               11.211523
                                            0.3693453
                                                        23.5603
     108.16872
## 5
                                                        35.4940
                                7.918501
                                          0.5433605
## 6
        130.32787
                                            0.7899929
                                                         29.3230
                                2.230652
##
    Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
           14.5386
                       15.30468 -28.658501
                                                   43.5123
## 2
          17.5323
                       16.78486 -25.530607
                                                   16.1102
                       16 65897 _29 031888
## 3
           17 4961
                                                   19 2221
```

- Assumes that the first row has variable names
- Replaces spaces with.
- Keeps numeric and character variables together

View(data_spine) ## It looks like a matrix

	- KSIGGIO - FIII	Euit C	ode view Flots	Jession I	Jana Debu	Profile Tools W ~/ARAASTAT/FAES/BIO					-, ······	少 √り ☆' ■		Mon 9:45 AM	۷ :-
			- a- 61- (61ai	÷ - m -		~/ARAASTAT/FAES/BIC	rsss_Practice	aik - gii-pa	ges - Ratuulo					P NOTA	
•			o to file/function	<u> </u>	Addins +									■ BIOF33!	3_Practica
o) F	README.md ×	lecture2.Rmo	d* × data_spine ×	ectures.	Rmd ×										1
\	🔷 🙇 🔻 Fili	er												Q	
	Pelvic.incidence	Pelvic.tilt [‡]	Lumbar.lordosis.angle	Sacral.slope	Pelvic.radius	$\textbf{Degree.spondylolisthesi} \hat{\bar{s}}$	Pelvic.slope [‡]	Direct.tilt	Thoracic.slop $\hat{\bar{e}}$	Cervical.tilt	Sacrum.angle	Scoliosis.slope	Class.attribute	ê	
1	63.02782	22.5525860	39.60912	40.47523	98.67292	-0.2544000	0.744503464	12.5661	14.5386	15.30468	-28.658501	43.5123	Abnormal		
2	39.05695	10.0609915	25.01538	28.99596	114.40543	4.5642586	0.415185678	12.8874	17.5323	16.78486	-25.530607	16.1102	Abnormal		
3	68.83202	22.2184820	50.09219	46.61354	105.98514	-3.5303173	0.474889164	26.8343	17.4861	16.65897	-29.031888	19.2221	Abnormal		
4	69.29701	24.6528779	44.31124	44.64413	101.86850	11.2115234	0.369345264	23.5603	12.7074	11.42447	-30.470246	18.8329	Abnormal		
5	49.71286	9.6520749	28.31741	40.06078	108.16872	7.9185006	0.543360472	35.4940	15.9546	8.87237	-16.378376	24.9171	Abnormal		
6	40.25020	13.9219066	25.12495	26.32829	130.32787	2.2306517	0.789992856	29.3230	12.0036	10.40462	-1.512209	9.6548	Abnormal		
7	53.43293	15.8643361	37.16593	37.56859	120.56752	5.9885507	0.198919573	13.8514	10.7146	11.37832	-20.510434	25.9477	Abnormal		
8	45.36675	10.7556114	29.03835	34.61114	117.27007	-10.6758708	0.131972555	28.8165	7.7676	7.60961	-25.111459	26.3543	Abnormal		
9	43.79019	13.5337531	42.69081	30.25644	125.00289	13.2890182	0.190407626	22.7085	11.4234	10.59188	-20.020075	40.0276	Abnormal		
10	36.68635	5.0108841	41.94875	31.67547	84.24142	0.6644371	0.367700139	26.2011	8.7380	14.91416	-1.702097	21.4320	Abnormal		
11	49.70661	13.0409741	31.33450	36.66564	108.64827	-7.8259858	0.688009500	31.3502	16.5097	15.17645	-0.502127	18.3437	Abnormal		
12	31.23239	17.7158192	15.50000	13.51657	120.05540	0.4997514	0.608342758	21.4356	9.2589	14.76412	-21.724559	36.4449	Abnormal		
13	48.91555	19.9645562	40.26379	28.95100	119.32136	8.0288946	0.139478165	32.7916	7.2049	8.61882	-1.215542	27.3713	Abnormal		
14	53.57217	20.4608282	33.10000	33.11134	110.96670	7.0448029	0.081930993	15.0580	12.8127	12.00109	-1.734117	15.6205	Abnormal		
15	57.30023	24.1888846	47.00000	33.11134	116.80659	5.7669469	0.416721511	16.5158	18.6222	8.51898	-33.441303	13.2498	Abnormal		
16	44.31891	12.5379916	36.09876	31.78092	124.11584	5.4158251	0.664040876	9.5021	19.1756	7.25707	-32.893911	19.5695	Abnormal		
17	63.83498	20.3625071	54.55243	43.47247	112.30949	-0.6225266	0.560675371	10.7690	16.8116	11.41344	2.676002	17.3859	Abnormal		
18	31.27601	3.1446695	32.56300	28.13134	129.01142	3.6230201	0.534481238	31.1641	18.6089	8.44020	4.482424	24.6513	Abnormal		
19	38.69791	13.4447490	31.00000	25.25316	123.15925	1.4291858	0.306580540	28.3015	17.9575	14.75417	-14.252676	24.9361	Abnormal		
20	41.72996	12.2540741	30.12259	29.47589	116.58571	-1.2444025	0.468525928	28.5598	12.4637	14.19610	-20.392538	33.0265	Abnormal		
21	43.92284	14.1779585	37.83255	29.74488	134.46102	6.4516476	0.280446206	12.4719	16.8965	10.32658	-4.986668	22.4667	Abnormal		
22	54.91944	21.0623324	42.20000	33.85711	125.21272	2.4325614	0.175244572	23.0791	14.2195	14.14196	3.780394	24.9278	Abnormal		
23	63.07361	24.4138027	54.00000	38.65981	106.42433	15.7796968	0.666388008	11.9696	17.6891	7.63771	-14.183602	44.2338	Abnormal		
24	45.54079	13.0695976	30.29832	32.47119	117.98083	-4.9871296	0.567450078	23.8889	9.1019	7.70987	-19.379030	20.3649	Abnormal		
25	36.12568	22.7587528	29.00000	13.36693	115.57712	-3.2375625	0.126473707	25.6206	15.7438	11.55610	-18.108941	24.1151	Abnormal		
26	54.12492	26.6504886	35.32975	27.47443	121.44701	1.5712048	0.928687869	14.6686	13.5700	16.12951	-17.630363	28.1902	Abnormal		
27	26.14792	10.7594536	14.00000	15.38847	125.20330	-10.0931082	0.391971136	9.8710	8.6406	15.78046	-19.650163	43.9550	Abnormal		
28	43.58096	16.5088837	47.00000	27.07208	109.27163	8.9928157	0.594175694	30.4577	17.9700	10.79356	-25.180777	18.3196	Abnormal		
29	44.55101	21.9311466	26.78592	22.61986	111.07292	2.6523206	0.527891438	32.4275	10.2244	11.71324	-28.506125	28.0470	Abnormal		
30	66.87921	24.8919989	49.27860	41.98721	113.47702	-2.0058917	0.677267795	12.4271	8.2495	7.58784	-3.963385	27.3587	Abnormal		
31	50.81927	15.4022125	42.52894	35.41706	112.19280	10.8695655	0.678987086	7.1103	7.2481	9.94785	-17.379206	14.7187	Abnormal		

str(data spine) ## Structure of a dataset

```
'data.frame': 310 obs. of 13 variables:
   $ Pelvic.incidence
                                   63 39.1 68.8 69.3 49.7 ...
                             : num
##
   $ Pelvic.tilt
                                    22.55 10.06 22.22 24.65 9.65 ...
                             : num
   $ Lumbar.lordosis.angle
                                   39.6 25 50.1 44.3 28.3 ...
                             : num
##
   $ Sacral.slope
                                   40.5 29 46.6 44.6 40.1 ...
                             : num
##
   $ Pelvic.radius
                                   98.7 114.4 106 101.9 108.2 ...
                             : num
##
   $ Degree.spondylolisthesis: num
                                   -0.254 4.564 -3.53 11.212 7.919 ...
##
   $ Pelvic.slope
                                    0.745 0.415 0.475 0.369 0.543 ...
                             : num
##
   $ Direct.tilt
                                   12.6 12.9 26.8 23.6 35.5 ...
                             : num
##
   $ Thoracic.slope
                                   14.5 17.5 17.5 12.7 16 ...
                             : num
##
   $ Cervical.tilt
                                   15.3 16.78 16.66 11.42 8.87 ...
                             : num
                                    -28.7 -25.5 -29 -30.5 -16.4 ...
##
  $ Sacrum.angle
                       : num
##
  $ Scoliosis.slope
                                   43.5 16.1 19.2 18.8 24.9 ...
                             : num
   $ Class.attribute
                             : Factor w/ 2 levels "Abnormal", "Normal":
##
```

So this is a data.frame object with 310 observations and 13 variables, of which one is a factor and the rest are numeric

It looks like a list of things

Dataframes

Dataframes are the primary mode of storing datasets in R

They were revolutionary in that they kept heterogeneous data together

They share properties of both a matrix and a list

```
class(data_spine)

## [1] "data.frame"
```

Technically, a data.frame is a list of vectors (or objects, generally) of the same length

Matrices

A matrix is a rectangular array of data of the same type

```
matrix(0, nrow=2, ncol=4)
       [,1] [,2] [,3] [,4]
## [1,]
## [2,] 0 0 0
matrix(letters, nrow=2)
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] "a" "c" "e" "g" "i" "k" "m" "o" "q" "s" "u"
           "d" "f" "h" "i" "l" "n" "p" "r" "t"
## [2,] "b"
matrix(letters, nrow=2, byrow=T)
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] "a" "b" "c" "d" "e" "f" "g" "h" "i"
## [2,] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w"
```

Matrices

You can create a matrix from a set of *vectors* of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put columns together

```
cbind(c(1,2,3,4), c(10,20,30,40)) ## Column bind
```

```
## [,1] [,2]

## [1,] 1 10

## [2,] 2 20

## [3,] 3 30

## [4,] 4 40
```

Matrices

You can create a matrix from a set of *vectors* of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put rows together

```
example_matrix <- \mathbf{rbind}(\mathbf{c}(1,2,3,4), \mathbf{c}(10,20,30,40)) ## Row bind example_matrix
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

Extracting elements

```
example matrix
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
example matrix[1,] ## Extracts 1st row
## [1] 1 2 3 4
example matrix[,2:3] ## extracts 2nd & 3rd columns
## [,1] [,2]
## [1,] 2 3
## [2,] 20 30
example matrix[1,4]
## [1] 4
```

Matrix properties

```
example matrix
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
nrow(example matrix) ## Number of rows
## [1] 2
ncol(example matrix) ## Number of columns
## [1] 4
dim(example matrix) ## shortcut for above
## [1] 2 4
```

Matrix arithmetic

```
example matrix
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
example matrix + 5 ## Add 5 to each element
## [,1] [,2] [,3] [,4]
## [1,] 6 7 8 9
## [2,] 15 25 35 45
example matrix * 2 ## Multiply each element by 2
## [,1] [,2] [,3] [,4]
## [1,] 2 4 6 8
## [2,] 20 40 60 80
```

```
example matrix
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
example matrix2 <- rbind(3:6, 9:12)</pre>
example matrix2
## [,1] [,2] [,3] [,4]
## [1,] 3 4 5 6
## [2,] 9 10 11 12
example matrix + example matrix2
## [,1] [,2] [,3] [,4]
## [1,] 4 6 8 10
## [2,] 19 30 41 52
```

```
example_matrix
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

```
example_matrix2
```

```
## [,1] [,2] [,3] [,4]
## [1,] 3 4 5 6
## [2,] 9 10 11 12
```

example_matrix * example_matrix2 ## Not matrix multiplication, but
element-wise multiplication

```
## [,1] [,2] [,3] [,4]
## [1,] 3 8 15 24
## [2,] 90 200 330 480
```

```
rbind(example_matrix, example_matrix2)
```

```
## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 10 20 30 40

## [3,] 3 4 5 6

## [4,] 9 10 11 12
```

```
cbind(example_matrix, example_matrix2)
```

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 2 3 4 3 4 5 6
## [2,] 10 20 30 40 9 10 11 12
```

```
dim(example matrix2)
## [1] 2 4
t(example matrix2) ## Transpose of a matrix
## [,1] [,2]
## [1,] 3 9
## [2,] 4 10
## [3,] 5 11
## [4,] 6 12
example matrix %*% t(example matrix2) ## Matrix multiplication
## [,1] [,2]
## [1,] 50 110
## [2,] 500 1100
```

Lists

Lists are collections of arbitrary objects in R

```
## [[1]]
## [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
##
## [[3]]
## [1] TRUE TRUE FALSE
##
## [[4]]
## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 1 1
```

Extracting elements from lists

```
example_list[[3]]

## [1] TRUE TRUE FALSE

example_list[1:2]

## [[1]]
## [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
```

Extracting elements from lists

Named lists

```
example named list <- list('Names' = c('Andy', 'Brian', 'Harry'),</pre>
                      "YearsOfEducation" = c(12, 16, 16),
                      "Married" = c(TRUE, TRUE, FALSE),
                      'something' = matrix(1, nrow=2, ncol=3))
example named list[['Names']]
## [1] "Andy" "Brian" "Harry"
example named list$Names
## [1] "Andy" "Brian" "Harry"
example named list$Names[3]
## [1] "Harry"
```

Back to a Data Frame

A data.frame object is a **named list** where each element is of the same length

You can use both *matrix* and *list* functions to operate on data.frame objects!!

Data Frames

head(data spine)

```
##
    Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
            63.02782
                       22.552586
                                             39.60912
                                                         40.47523
## 2
            39.05695 10.060991
                                             25.01538
                                                         28.99596
## 3
            68.83202 22.218482
                                             50.09219
                                                         46.61354
## 4
            69.29701 24.652878
                                             44.31124
                                                         44.64413
## 5
            49.71286 9.652075
                                             28.31741
                                                         40.06078
## 6
            40.25020
                       13.921907
                                             25.12495
                                                         26.32829
    Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
##
## 1
         98.67292
                                -0.254400
                                             0.7445035
                                                          12.5661
## 2
                                                          12.8874
        114.40543
                                 4.564259
                                             0.4151857
## 3
     105.98514
                                -3.530317
                                            0.4748892
                                                          26.8343
## 4
     101.86850
                                11.211523
                                             0.3693453
                                                         23.5603
## 5
     108.16872
                                 7.918501
                                             0.5433605
                                                          35.4940
## 6
                                             0.7899929
                                                          29.3230
        130.32787
                                 2.230652
##
    Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
           14.5386
                                  -28.658501
                        15.30468
                                                     43.5123
           17.5323
## 2
                        16.78486
                                  -25.530607
                                                     16.1102
## 3
           17 4961
                        16 65297
                                  19 2221
```

Data Frames

```
dim(data_spine)

## [1] 310 13

nrow(data_spine)

## [1] 310

data_spine_small <- data_spine[1:4,] ## Matrix operation</pre>
```

```
data_spine_small[,2] ## Matrix extraction by position

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small[[2]] ## List extraction by position

## [1] 22.55259 10.06099 22.21848 24.65288
```

```
data_spine_small[['Pelvic.tilt']] ## Named list extraction

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small[,'Pelvic.tilt'] ## Data frame named column extraction

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small$Pelvic.tilt ## Dollar sign extraction

## [1] 22.55259 10.06099 22.21848 24.65288
```

My preference is for

```
1. data frame named column extraction
  data_spine_small[,'Pelvic.tilt'],
2. named list extraction
  data_spine_small[['Pelvic.tilt']]
3. Dollar-based extraction
  data spine small$Pelvic.tilt
```

```
data_spine_small[,c('Pelvic.tilt', 'Pelvic.slope','Class.attribute')]
```

```
## Pelvic.tilt Pelvic.slope Class.attribute
## 1 22.55259 0.7445035 Abnormal
## 2 10.06099 0.4151857 Abnormal
## 3 22.21848 0.4748892 Abnormal
## 4 24.65288 0.3693453 Abnormal
```

Filtering data frames

Boolean operators

Operator	Meaning
	Or
&	And
!	Not

Filtering data frames

```
data spine[data spine$Pelvic.tilt > 20, ]
```

```
##
       Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
                63.02782
                            22.55259
                                                    39.60912
                                                                  40.47523
## 3
                68.83202
                            22.21848
                                                    50.09219
                                                                  46.61354
## 4
                69.29701
                            24.65288
                                                    44.31124
                                                                  44.64413
## 14
                53.57217
                            20.46083
                                                    33.10000
                                                                  33.11134
## 15
                57.30023
                            24.18888
                                                    47.00000
                                                                  33.11134
## 17
                63.83498
                            20.36251
                                                    54.55243
                                                                  43.47247
## 22
                54.91944
                            21.06233
                                                    42.20000
                                                                  33.85711
## 23
                63.07361
                            24.41380
                                                    54.00000
                                                                  38.65981
## 25
                36.12568
                            22.75875
                                                    29.00000
                                                                  13.36693
## 26
                            26.65049
                54.12492
                                                    35.32975
                                                                  27.47443
## 29
                44.55101
                            21.93115
                                                    26.78592
                                                                  22.61986
## 30
                                                    49.27860
                66.87921
                            24.89200
                                                                  41.98721
## 35
                59.59554
                            31.99824
                                                    46.56025
                                                                  27.59730
## 39
                55.84329
                            28.84745
                                                    47.69054
                                                                  26.99584
## 44
                66.28539
                            26.32784
                                                    47.50000
                                                                  39.95755
## 46
                50.91244
                            23.01517
                                                    47.00000
                                                                  27.89727
## Δ7
                48 33364
                             22 2277R
                                                    26 12100
                                                                  26 10485
```

```
subset(data_spine, Pelvic.tilt > 20) ## is equivalent
```

Filtering data frames

```
data_spine[data_spine$Pelvic.tilt > 20 & data_spine$Pelvic.slope >
    0.85, ]
```

```
##
       Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 26
               54.12492
                           26.65049
                                                 35,32975
                                                              27.47443
## 76
               70.22145
                           39.82272
                                                 68.11840
                                                              30.39873
## 84
               81.10410
                           24.79417
                                                 77.88702
                                                              56.30993
## 99
               77.65512
                           22.43295
                                                 93.89278
                                                              55.22217
                        27.60261
## 106
                                                 50.94752
               65.00796
                                                              37.40536
## 112
               84.99896
                           29.61010
                                                83.35219
                                                              55.38886
## 129
               90.51396
                           28,27250
                                                 69.81394
                                                              62,24146
## 179
               80.65432
                           26.34438
                                                 60.89812
                                                              54.30994
                        23.13792
## 231
               65.61180
                                                 62.58218
                                                              42.47388
## 303
               54.60032
                           21.48897
                                                 29.36022
                                                              33.11134
##
       Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 26
            121.4470
                                     1.571205
                                                 0.9286879
                                                               14.6686
## 76
                                   145.378143
                                                               10.3840
           148.5256
                                                0.9466106
## 84
           151.8399
                                    65.214616
                                                0.9720056
                                                               10.5715
## 99
            123.0557
                                                               14.9502
                                    61.211187
                                                0.9249029
## 106
            116.5811
                                     7.015978
                                                 0.8673241
                                                               12.1292
            126 9130
                                    71 221175
                                                                7 0551
## 11つ
                                                 N 9988267
```

```
subset(data_spine, Pelvic.tilt > 20 & Pelvic.slope > 0.85)
```

Filtering data frames and selecting variables

```
##
      Direct.tilt Class.attribute
## 26
          14,6686
                         Abnormal
## 76
          10.3840
                         Abnormal
## 84
          10.5715
                         Abnormal
## 99
          14.9502
                         Abnormal
## 106
          12.1292
                         Abnormal
## 112
          7.0551
                         Abnormal
## 129 13.5739
                         Abnormal
                         Abnormal
## 179 20.0845
## 231
          30.0422
                           Normal
## 303
          30.8554
                           Normal
```

Adding a variable

```
data_spine_small[,'bad.angle'] <- c('No','Yes','No','No')
data_spine_small</pre>
```

```
##
    Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
           63.02782
## 1
                     22.55259
                                       39,60912
                                                   40.47523
## 2
          39.05695 10.06099
                                      25.01538
                                                   28.99596
          68.83202 22.21848
                                       50.09219 46.61354
## 3
## 4
           69.29701 24.65288
                                       44.31124
                                                  44.64413
## Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
    98.67292
                            -0.254400
                                       0.7445035 12.5661
## 2 114.40543
                            4.564259 0.4151857 12.8874
## 3 105.98514
                            -3.530317 0.4748892 26.8343
## 4 101.86850
                            11.211523 0.3693453 23.5603
##
    Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
         14.5386
                    15.30468 -28.65850
                                              43.5123
         17.5323
## 2
                    16.78486 -25.53061
                                            16.1102
## 3
    17.4861 16.65897 -29.03189 19.2221
## 4
         12.7074
                    11.42447 -30.47025 18.8329
##
    Class.attribute bad.angle
## 1
          Abnormal
                       No
## 2
          Ahnormal
                      VAC
```

```
data_spine_small$bad.angle <- ...
data_spine_small[['bad.angle']] <- ...</pre>
```

Removing a variable

```
data_spine_small[, -c(13,14)]

data_spine_small[,-c('Class.attribute', 'bad.angle')]

## The next two commands change the original data set

data_spine_small[c('Class.attribute', 'bad.angle')] <- NULL

data_spine_small[['bad.angle']] <- NULL</pre>
```

Creating derived variables

Creating derived variables

For deriving multiple variables into a data frame

head(mtcars)

```
##
                    mpg cyl disp hp drat
                                           wt qsec vs am gear carb
## Mazda RX4
                   21.0
                            160 110 3.90 2.620 16.46
                   21.0
## Mazda RX4 Wag
                             160 110 3.90 2.875 17.02
## Datsun 710
                   22.8
                          4 108 93 3.85 2.320 18.61 1
                   21.4
## Hornet 4 Drive
                          6 258 110 3.08 3.215 19.44 1 0
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
## Valiant
                   18.1
                             225 105 2.76 3.460 20.22
```

For deriving multiple variables into a data frame

For deriving multiple variables into a data frame

```
str(mtcars)
```

```
'data.frame': 32 obs. of 13 variables:
   $ mpg
                  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
            : num
  $ cyl : num
                  6 6 4 6 8 6 8 4 4 6 ...
  $ disp : num
                  160 160 108 258 360 ...
## $ hp : num
                  110 110 93 110 175 105 245 62 95 123 ...
  $ drat : num
                  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num
                  2.62 2.88 2.32 3.21 3.44 ...
  $ qsec : num
##
                  16.5 17 18.6 19.4 17 ...
  $ vs
                  0 0 1 1 0 1 0 1 1 1 ...
           : num
  $ am : num 1 1 1 0 0 0 0 0 0 ...
  $ gear : num
                  4 4 4 3 3 3 3 4 4 4 ...
  $ carb : num 4 4 1 1 2 1 4 2 2 4 ...
## $ kmpg
            : num 33.6 33.6 36.5 34.2 29.9 ...
   $ low.mpg: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 2 1 1 1 ...
```

Adding new data to a data frame

You can concatenate two data frames using rbind as long as the variable names and orders are the same

```
new_data = rbind(data_spine[1:4,], data_spine[c(8,22),])
new_data
```

```
##
     Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
             63.02782
                         22.55259
                                              39.60912
                                                           40.47523
## 2
             39.05695
                         10.06099
                                              25.01538
                                                           28.99596
## 3
                         22.21848
             68.83202
                                              50.09219
                                                           46,61354
## 4
             69.29701 24.65288
                                              44.31124 44.64413
## 8
             45.36675 10.75561
                                              29.03835 34.61114
## 22
             54.91944
                         21.06233
                                              42.20000
                                                           33.85711
##
     Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
          98.67292
                                  -0.254400
                                              0.7445035
                                                            12.5661
## 2
         114.40543
                                  4.564259
                                              0.4151857
                                                            12.8874
## 3
                                 -3.530317
                                                            26.8343
         105.98514
                                              0.4748892
## 4
                                  11.211523
         101.86850
                                              0.3693453
                                                            23.5603
## 8
         117.27007
                                 -10.675871
                                              0.1319726
                                                            28.8165
         125.21272
                                   2.432561
                                              0.1752446
                                                            23.0791
##
     Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
            14.5386
                         15.30468 -28.658501
                                                      43.5123
## 2
            17.5323
                         16.78486
                                   -25.530607
                                                      16.1102
## 3
                         16 65897
                                    17 4861
                                                      19 2221
```

Adding new data to a data frame

You can add columns of a new data frame to an existing data frame using cbind as long as the columns have no common names

```
##
    Pelvic.slope Class.attribute Sex Race
## 1
        0.7445035
                         Abnormal
                                   Μ
                                         W
## 2 0.4151857
                        Abnormal
                                        В
## 3 0.4748892
                        Abnormal
                                       As
## 4 0.3693453
                        Abnormal
                                         В
```