

Skin Cancer Detection

Cher Wee Zheng, Ng Wei, Ryan Yong

We Are

You Are

Table of contents

O1 Introduction & Problem Statement

02

EDA & Preprocessing

03 Model

04

App Demo

05 Cd

Conclusion

3

Trigger Warning

The following presentation contains material that may be disturbing, harming or traumatizing to some audiences. Viewer discretion is advised.

Skin Cancer

Source: CNA

Cancerous

Cancerous

Non-cancerous

⁴Joseph Liu

⁺Joseph Liu

Who is Joseph?

Joseph is a PR construction foremen and father of 2

⁴Joseph Liu

Who is Joseph?

Joseph is a PR construction foremen and father of 2

What are his goals?

Joseph wants to pay off his 30 year hdb loan.

Joseph Liu

Who is Joseph?

Joseph is a PR construction foremen and father of 2

What are his concerns?

Joseph noticed a large black spot on his forearm

What are his goals?

Joseph wants to pay off his 30 year hdb loan.

Joseph Liu

Who is Joseph?

Joseph is a PR construction foremen and father of 2

What are his concerns?

Joseph noticed a large black spot on his forearm

What are his goals?

Joseph wants to pay off his 30 year hdb loan.

What's the issue?

Joseph does not want to spend unnecessary money

What should Joseph do?

Left with no choice, Joseph arranges for an online telemedicine appointment with SingHealth

Video Consultation

Hi Doctor King, I noticed these spots on my arm which weren't there before. Should I be worried?

Can you move the camera for me to take a closer look?

Ok Ok

Hi Joseph, due to the video quality, I am unable to properly assess the spot. Can you come down to the nearest polyclinic for me to perform a dermoscopy?

Huh? More tests? Then I pay money and call you for me to come down. Waste my money! Waste my time! Forget it la!

-End of Call-

Types of Examination

Biopsy

Problem Statement

Can we develop a model to be able to **effectively** and **accurately** distinguish between a benign or malignant skin cancer spot visually, improving visual tests and **reducing the necessity** for more **invasive** biopsies?

Key Objectives

Maximise

Accurate diagnosis/treatment at polyclinic level

02

Unnecessary specialist referrals

Reduce

Costs

03

Development Process

Exploration	Modelling	Tuning	Implementation		
An overview of the dataset gathered and how the data is preprocessed	Using our dataset, develop an effective and accurate model	Improve our chosen model by altering its hyperparameters	We work together with you to upload our app in your systems		

O2 EDA & Preprocessing

Modelling Process

Modelling Process Training Data Image Processing

Our Data are all images!

How does models see images?

Images are **composed of pixels**Each pixel contains **Red**, **Green and Blue** information.

Normally **0-1 or 0-255** to representing each **color's intensity**.

0.63

0.63

0.51

0.49

Finding 1:
Based on the average of RGB value, Benign tends to be brighter than Malignant

0.806

0.596

0.806

0.596

0.806

0.596

0.581

Finding 3: Benign images more "red" than Malignant, red pixels mostly > 0.75

Other than the black pixels from Malignant, both Green and Blue pixels mostly distributed between 0.45 - 0.7 intensities

0.806

0.596

Expected

Outliers

Benign Outlier (RGB < 0.35)

Malignant Outlier (Red > 0.75, Green and Blue > 0.45)

Image Preprocessing

Standardization - Resize image to 299*299 pixel

In order to obtain discriminative internal features for improved performance, we also adopt an image preprocessing method to reduce variance of images and enhance inherent characteristics of images.

Image Preprocessing

Standardization - Scale the RGB from 0-255 to 0-1

Original Pixel Information			Normalizing the Pixel Info			After Normalized Pixel Info				
0	16	32		0/255	16/255	32/255		0.00	0.06	0.13
64	4	8		64/255	4/255	8/255		0.25	0.02	0.03
128	255	2		128/255	255/255	2/255		0.50	1.00	0.01

Instead of using StandardScaler, we can just simply divide the original intensity value with 255 to normalize the value.

Image Preprocessing

Augmentation - Generate new transformed images

Model

. • Modelling Process

Residual Neural Network

162 Layers

Combination of ResNetV2 and VGG16

782 Layers

Self-Developed CNN model

8 Layers

Support Vector Machine

The chosen Sequential CNN Model

Model Tuning

Learning rate: 0.0001, 0.001

Number of epochs: 5, 10, 20

RandomSearchCV: 6 iterations

App Demo

Hi Doctor King, I noticed these spots on my arm which weren't there before. Should I be worried?

Please upload to the app pictures of your spots, I'll have a look.

<image1.jpeg> <image2.jpeg> <image3.jpeg>

Hi Joseph, I am going to refer you to a specialist for further tests.

Oh I see, I didn't want to visit a specialist since I wasn't sure if it was serious, but since you recommended, I guess I will do it now. Thank you!

You're welcome Joseph! Glad I was able to help.

Conclusion

Cost Benefit Analysis

	Visual	Image Detection	Biopsy
Accuracy	60%	89%	95%
Cost	\$100-\$200	\$20-\$30	\$500 - \$3000
Relative Survival Rate*	~95%	~98.7%	~99.5%

SEER stage	5-year relative survival rate
Localized	>99%
Regional	74%
Distant	35%
All SEER stages combined	94%

50

Performance

Improvement of ~50% compared to visual tests

Instant

Frees up biopsy labs for greater efficiency

Online Applicability

Able to be onboarded and implemented with existing video consultation services

Conclusion

Calculation of Relative Survival Rate

How does machine see images?

Histogram - Malignant & Benign

Histogram - Malignant & Benign

Benign Image - Statistic

Malignant Image - Statistic

Histogram - Malignant vs Benign

"Real men don't quit smoking, Real men fight cancer."

— wz

