Unit V. Amines

A. Introduction

- 1. Structure
- 2. Nomenclature
- 3. Chirality
- 4. Basicity

B. Synthesis of Amines

- 1. Alkylation
 - a. $S_N 2$
 - b. Gabriel Synthesis
- 2. Reductive Amination
- 3. Acylation-Reduction
- 4. Reduction of Azides
- 5. Reduction of Nitriles
- 6. Hofmann Rearrangement

C. Reactions of Amines

- 1. Eliminations
 - a. Hofmann
 - b. Cope
- 2. Formation of Diazonium Salts
 - a. Alkyl Amines
 - b. Aryl Amines
 - c. Example

Suggesting reading: Chapter 24

Suggested problems: 24.30, 24.31, 24.35-24.46, 24.49, 24.50, 24.53, 24.54, 24.56, 24.61-24.63

2. Nomenclature

b. Common Names

piperidine

morpholine

pyrrolidine

aziridine

aniline

c. Classification of sp³ N by C-N connectivity

Amine Summary

From:

1. Alkyl halide

S_N2 (overalkylation)

Gabriel Synthesis (1°)

Azide reduction (adds -NH₂)

Nitrile reduction (adds -CH₂NH₂)

2. Aldehyde/ketone - Reductive amination

H₂NOH for 1°, RNH₂ for 2°, R₂NH for 3°

3. Acyl Chloride - Acylation-Reduction (adds -R)

NH₃ for 1°, RNH₂ for 2°, R₂NH for 3°

4. Amide - Hofmann Rearrangement

5. Ar-NO₂ (H₂/Pd)

To:

1. Alkene

Hofmann Elimination

Cope Elimination

2. Diazonium Salt (NaNO2, HCI)

Ar-Br (CuBr)

Ar-CI (CuCI)

Ar-CN (CuCN)

Ar-OH (H_3O^+/H_2O)

Ar-H (H₃PO₂)

Ar-I (KI)