一、预习测试 (10分)

法法器预习测试				
活动时间	2025.09.02 12:00 - 2026.01.06 23:59	公布成绩	交卷后立即公布	
公布答案	不公布试题和答案	成绩比例	0.00%	
答题限时	30 分钟	允许尝试次数	1	
测试形式	个人测试	计分规则	最高得分	
完成指标	提交测试			
试试题:目前测试中共有 最后交卷时间	72道判断颇,8道单选题 ,已配置 100 分 试题	交卷方式	成绩	
2025.09.27 10:21	测试试题	手动交卷	80.0	

二、原始数据 (20分)

三、结果与分析 (60分)

1. 数据处理与结果 (30分)

(1) 用比较法验证 $f_y = n * f_x$

测试条件:时基信号为 0.5ms/dit , $\,f_x=200Hz\,$

波形个数 n	信号频率 f_y/Hz	测得扫描频率 \hat{f}_x/Hz
1	198.800	198.800
2	397.800	198.900
3	596.700	198.900
4	795.300	198.825
5	993.700	198.740

最终结果
$$ar{f}_x = rac{1}{5}\sum_{i=1}^5 \hat{f}_{xi} = 198.833 Hz$$

相对误差
$$E=rac{|ar{f}_x-f_x|}{f_x}=0.6\%$$

(2) 用李萨如图形测量未知信号的频率

信号发生器背后输出的~50Hz的电压,作为 f_{y_0}

频率比 $f_x:f_y$	1:1	1:2	1:3	2:1	2:3
图形	见下图1	见下图2	见下图3	见下图4	见下图5
垂直交点数 N_y	2	4	6	2	6
水平交点数 N_x	2	2	2	4	4
读出 f_x/Hz	50.020	100.300	150.040	25.020	74.980
计算 f_y/Hz	50.020	50.150	50.017	50.040	49.987

最终结果
$$ar{f}_y = \sum\limits_{i=1}^5 f_{y_i} = 50.043 Hz$$

相对误差
$$E=rac{|ar{f}_y-f_{y_0}|}{f_{y_0}}=0.09\%$$

附李萨如图形:

(3) 二极管正向导通电压的测量

光标法测量结果:

输入电压的峰-峰值 U_{1P-P}/V	输出半波电压的峰值 U_{2P}/V
4.84	1.88

正向导通电压 $U_{
m Fill}=rac{1}{2}U_{1P-P}-U_{2P}=0.54V$

(4) RC电路输入输出波形相位差的测量

光标法测量结果:

波形时间差 $\Delta t/ms$	周期 T/ms
0.106	0.492

相位差 $\Delta arphi = rac{\Delta t}{T} imes 360^\circ = 77.6^\circ$

2. 误差分析 (20分)

- 1. 示波器上波形有一定的宽度,使用光标法测量 u 或者 t 时存在一定的系统误差
- 2. 在"用李萨如图形测量未知信号的频率"的实验中,由于信号发生器精度有限,很难得到稳定的李萨如图形
- 3. 在"用李萨如图形测量未知信号的频率"的实验中,由于信号发生器不够稳定,有时调节到几乎稳定的状态数秒后又图形开始翻转,这反映出实际信号与信号发生器示数存在偏差,从而引入误差
- 4. 光标法测量时,由于不一定能准确找到波峰,会对 t 或者 f 的测量引入一定的误差
- 5. 调整波形个数为整数个,调节李萨如图形到达稳定状态等操作中都存在一定的主观性,从而引入误差。

3. 实验探讨 (10分)

本次实验学习了示波器和信号发生器的使用方法,并用这些设备完成了"用比较法验证 $f_y=n*f_x$ ","用李萨如图形测量未知信号的频率","二极管正向导通电压的测量","RC电路输入输出波形相位差的测量"四个实验,综合性较强。通过这次实验,我对物理实验的操作方法以及实验数据的处理有了更好的把握。

四、思考题 (10分)

1. 示波器为什么能显示被测信号的波形?

(a-灯丝,b-阴极,c-栅极,d-聚焦阳极,e-加速极)

如图,阴极在灯丝的加热下发出电子。控制栅极比阴极电位低,因此只有初速度较大的电子才能通过栅极。聚焦阳极电位高,引发电场,对电子射线有聚焦作用。加速极电位更高,加速电子。

给两块偏转板 X ,Y 加上电压后,电子束通过时运动方向会发生偏转。而不难证得,亮点的偏转位移与水平、垂直偏转电压成正比,从而会在示波器上显示相应的波形。

2. 在观察李萨如图形时为什么总是不断地来回翻转,翻转快慢受那种因素影响?

李萨如图形之所以会不断翻转,是因为两信号频率并非严格的整数倍关系,导致两信号的相位差在 不断变化。

翻转快慢与两信号相位差变化的快慢有关,而后者取决于 f_x 与 f_y 实际的倍数关系与整数倍关系的差值。

3. 如果示波器发生波形左移或右移时应该如何调整才能使其稳定?

需要使示波器的扫描信号与被测信号同步,即使它们的频率存在整数倍关系。可以用 TRIG LEVEL 调节扫描脉冲的电压和周期大小,使波形稳定下来