Thapar Institute of Engineering & Technology, Patiala

Department of Electronics and Communication Engineering

UEC639 - Digital Communication

B. E. (Third Year): Semester-V (ENC)

<u>Tutorial-1</u>

Q1	Determine the Fourier transform of the following signal and its highest frequency
	component
	$x_2(t) = A \sin(2\pi f t) / \pi t$
Q2	Find the Nyquist rate and Nyquist interval for the following signals
	(i) $x_1(t) = 10 \sin(2000 \pi t) \cos(6000 \pi t)$
	(ii) $x_2(t) = Sin(200 \pi t) / \pi t$
	(iii) $x_3(t) = \left(\frac{\sin(200 \pi t)}{\pi t}\right)^2$
Q3	Express the sampling expression for low-pass signal in time-domain. Using this
	expression, derive the sampling expression for low-pass signal in frequency-domain.
Q4	Derive the reconstruction equation (sampling theorem) to obtain the continuous-time
	signal from its sampled version. Discuss about the interpolation function.
Q5	Define the sampling theorem for band-pass signal in time-domain
Q6	Given the signal
	$m(t) = 10\cos 2000\pi t \cos 8000\pi t$
	(a) What is the minimum sampling rate based on the low-pass uniform sampling theorem?
	(b) Repeat (a) based on the bandpass sampling theorem.