НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ім. Ігоря СІКОРСЬКОГО» НАВЧАЛЬНО-НАКУОВИЙ ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Звіт за темою:

«Дослідження алгоритмів реалізації арифметичних операцій над великими числами»

Виконали студенти групи ФІ-32мн Баєвський Констянтин, Шифрін Денис, Кріпака Ілля

1 Мета практикуму

Практично ознайомитися із принципами баєсівського підходу в криптоаналізі,та безпосерденьо побудувати детерміністичну та стохастичну матриці для заданих розподілів.

1.1 Постановка задачі та варіант

Треба виконати	Зроблено
Описати побудову алгоритму	✓
Порахувати таблицю ймовірностей $P(M C)$	~
Показати детермінитичну та стохастичну	✓
функції	
Порахувати середні витрати для	✓
вирішуючих функцій	

2 Хід роботи/Опис труднощів

Для виконання лабораторної роботи була обрана мова програмування Python та бібліотека для роботи з таблицями Pandas, написані функції для отримання розподілу шифротекстів та сумісного розподілу відкритих текстів та шифротекстів.

З цього було отримано відповідні таблиці ймовірностей, яких вже були побудовані детерміністичну та стохастичні функції, а також обраховані середні втрати.

Під час виконання роботи виникли труднощі з певною невідповідністю формату даних при їх завантаженні у код, тому на початку було застосовано деякий препроцесінг з вхідними даними та отримано зручні для роботи таблиці.

3 Результати дослідження

У ході роботи було визначили, що детерміністична та стохастична вийшли не однаковими, але обоє значень серденьої похибки у обох функцій вийшли однаковими. У результаті отримали, що ніякій із функцій надати перевагу не можемо, вони обоє добре підходять для нашого розподілу.

3.1 Опис алгоритму

Для побудови детерміністичної функції та стохастичних функцій наведемо наступний алгоритм.

Заува ження. Одразу зазначимо, що алгоритми подібні та відрізняються лише у останньому кроці. Для послідовності опису наведемо повні кроки.

Алгоритм .1. 1. Алгоритм із побудови детерміністичної вирішуючої функції.

- Обчислюємо P(C) за формулою: $\forall C: P(C) = \sum_{(M,k): E_k(M) = C} P(M,k).$
- Обчислюємо P(M,C) за формулою: $\forall (M,C): P(M,C) = \sum_{k:E_k(M)=C} P(M,k).$
- Обчислюємо P(M|C) за формулою $\dfrac{P(M,C)}{P(C)}.$
- Із обчислених значень умовних ймовірностей вибираємо максимальні значення. Та присвоюємо 1 до тих комірок у матриці де зустріли його.

- 2. Алгоритм із побудови стохастичної вирішуючої функції.
 - Обчислюємо P(C) за формулою: $\forall C: P(C) = \sum_{(M,k): E_k(M) = C} P(M,k).$
 - Обчислюємо P(M,C) за формулою: $\forall (M,C): P(M,C) = \sum_{k:E_k(M)=C} P(M,k).$
 - Обчислюємо P(M|C) за формулою $\dfrac{P(M,C)}{P(C)}.$
 - Із обчислених значень умовних ймовірностей вибираємо макимальні значення. Та у тих рядках, де максимальне значення повторюється s разів присвоюємо коміркам значення $\frac{1}{s}$.

3.2 Таблиця ймовірностей

Таблиця ймовірностей набула наступної форми.

#	Θ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0		A A94737	0.085714	0.09	0.0	0.0	0.0	0.0	0.09	0.1	0.0		0.245455	0.18			0.171429			0.085714
1	0.0		0.257143		0.342857	0.1		0.081818	0.09		0.171429		0.081818	0.0			0.085714	0.0		0.085714
2	0.105882		0.23/143	0.10	0.342637	0.1		0.0	0.09		0.171429		0.081818		0.105882		0.085714			0.085714
-																				
3	0.0		0.085714		0.085714		0.085714		0.09		0.085714		0.081818	0.0			0.085714			0.171429
4	0.094118	0.084211	0.038095	0.0	0.0	0.044444	0.07619	0.036364	0.04	0.044444	0.038095	0.04	0.072727	0.04	0.0	0.036364	0.0	0.0	0.133333	0.0
5	0.047059	0.0	0.114286	0.0	0.0	0.0	0.114286	0.0	0.08	0.044444	0.07619	0.04	0.0	0.04	0.094118	0.036364	0.07619	0.0	0.0	0.038095
6	0.094118	0.042105	0.038095	0.04	0.0	0.0	0.0	0.072727	0.04	0.177778	0.038095	0.0	0.0	0.0	0.094118	0.036364	0.038095	0.038095	0.044444	0.038095
7	0.047059	0.126316	0.038095	0.08	0.0	0.0	0.038095	0.0	0.04	0.044444	0.0	0.04	0.0	0.08	0.047059	0.145455	0.038095	0.0	0.044444	0.0
8	0.0	0.0	0.038095	0.0	0.114286	0.0	0.038095	0.036364	0.0	0.044444	0.07619	0.04	0.036364	0.12	0.047059	0.036364	0.0	0.07619	0.044444	0.038095
9	0.047059	0.0	0.038095	0.08	0.038095	0.044444	0.07619	0.0	0.04	0.0	0.038095	0.0	0.036364	0.08	0.094118	0.0	0.07619	0.07619	0.0	0.038095
10	0.0	0.084211	0.0	0.04	0.07619	0.133333	0.038095	0.036364	0.04	0.088889	0.0	0.0	0.036364	0.0	0.047059	0.072727	0.038095	0.038095	0.0	0.038095
11	0.0	0.126316	0.07619	0.08	0.114286	0.0	0.0	0.036364	0.0	0.044444	0.07619	0.0	0.036364	0.0	0.047059	0.0	0.0	0.038095	0.088889	0.038095
12	0.047059	0.084211	0.0	0.08	0.07619	0.088889	0.0	0.036364	0.04	0.0	0.038095	0.04	0.0	0.0	0.0	0.0	0.038095	0.114286	0.0	0.114286
13	0.047059	0.042105	0.0	0.0	0.0	0.133333	0.038095	0.072727	0.0	0.0	0.07619	0.12	0.0	0.0	0.047059	0.072727	0.0	0.0	0.133333	0.038095
14	0.094118	0.0	0.038095	0.0	0.038095	0.044444	0.038095	0.036364	0.0	0.0	0.038095	0.2	0.072727	0.0	0.0	0.0	0.114286	0.038095	0.044444	0.0
15	0.047059	0.042105	0.0	0.08	0.0	0.044444	0.038095	0.036364	0.08	0.0	0.0	0.04	0.109091	0.04	0.0	0.0	0.038095	0.07619	0.044444	0.07619
16	0.094118	0.042105	0.0	0.08	0.07619	0.0	0.038095	0.0	0.08	0.044444	0.07619	0.0	0.0	0.04	0.141176	0.0	0.0	0.0	0.088889	0.038095
17	0.141176	0.0	0.038095	0.04	0.0	0.044444	0.0	0.036364	0.08	0.088889	0.0	0.04	0.0	0.12	0.047059	0.0	0.07619	0.0	0.044444	0.038095
18	0.047059	0.042105	0.07619	0.04	0.038095	0.133333	0.038095	0.072727	0.04	0.044444	0.0	0.0	0.036364	0.08	0.0	0.036364	0.038095	0.0	0.0	0.038095
19	0.047059	0.0	0.038095	0.0	0.0	0.088889	0.0	0.0	0.04	0.133333	0.0	0.04	0.072727	0.0	0.188235	0.036364	0.0	0.07619	0.088889	0.0

Рис. 1: Таблиця умовних ймовірностей для обчислення вирішуючих функцій.

3.3 Детерміністична та стохастична матриці

У ході обчислень було отримано наступні функції.

																/, -, -,					
	C1 ÷	C2 ÷	C3 ÷	C4 ÷	C5 ÷	C6 ÷	C7 ÷	C8 ÷	C9 ÷	C10 ÷	C11 ÷	C12 ÷	C13 ÷	C14 ÷	C15 ÷	C16 ÷	C17 ÷	C18 ÷	C19 ÷	C20 ÷	C21 ÷
1	Ciphertexts	Θ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2	Messages	17	2	1	1	1	10	2	3	Θ	6	1	Θ	Θ	Θ	19	3	Θ	Θ	4	3

Рис. 2: Детерміністична вирішуюча функція зображена у формі відображень. (ШТ — ВТ)

Також серденє значення втрат вийшло таким:

- Для детерміністичної вирішуючої функції значення втрат становить: 0.786.
- Для стохастичної вирішуючої функції значення втрат становить: 0.78599.

#	MO	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19
CO	Θ	Θ	Θ	0	0	0	0	Θ	0	Θ	0	0	Θ	0	0	Θ	Θ	1	0	0
C1	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C2	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	0	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C3	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C4	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	Θ
C5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0.33	Θ	Θ	0.33	Θ	Θ	Θ	Θ	0.33	Θ
C6	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C7	Θ	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C8	0.25	0.25	0.25	0.25	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	Θ	0	Θ	Θ
C9	Θ	Θ	Θ	Θ	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C10	Θ	0.5	0.5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C11	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C12	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C13	0.5	Θ	0.5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	0	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C14	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	1
C15	Θ	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C16	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	0	Θ	Θ	0	Θ	Θ	Θ	Θ
C17	0.5	Θ	0.5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ
C18	Θ	Θ	Θ	Θ	0.5	Θ	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0.5	Θ	Θ	Θ	Θ	Θ	Θ
C19	Θ	Θ	Θ	1	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0	Θ	Θ	Θ	Θ	Θ	Θ	Θ	0

Рис. 3: Стохастична вирішуюча функція.

4 Висновки

За допомогою реалізації практикуму "Баєсівський підхід в криптоаналізі: побудова і дослідження детерміністичної та стохастичної вирішуючих функцій" дізналися на практиці як повинен відбуватися баєсівський підхід у криптоаналізі. Також були долучені до створення такого собі «маленького» прикладу із побудови вирішуючих функцій для заданого розподілу повідомлень.