Let $(E_1E_1x^n)$ a finite measure space $(x^n(E_1) < \infty)$ let f_n be a sequence of real valued functions st. $f_n \rightarrow f$ almost everywhere. Then for each E>0there exists a set A s.t. $x^n(A^n) < E$ and $f_n \rightarrow E$ uniformly on A.

Pf for each of define $g_n(x) = \sup_{j \ge n} |f_j(x) - f(x)|$ so g_n is finite are (for a suff large) $g_n \ge 0$ and $g_n \to 0$ almost everywhere. $g_n \to 0$ almost everywhere $\Rightarrow g_n \to 0$ in measure $(n(E) < \infty)$.

We con find an n_R , for each k (.t. $([x:g_{n_R}] > k]) < <math>[x:g_{n_R}] > k$

Define the sets $A_R = \{x: gn_R(sc) \leq L_R \}$ then let $A = \bigcap_R A_R \qquad \bigwedge_A(A^c) = \bigwedge_A(\bigcup_R A_R^c) \leq \sum_R \bigwedge_A(A^c)$ $\leq \sum_R \epsilon 2^{-k} = \epsilon$

If $n \ge nR$ $|f_n - f| \le g_{nR} \le R$ as we're on the

So $f_n \to f$ uniformly on A.

This motivates a del?:

Almost viilorn convergence

So $f_n \to f$ almost uniformly on $(E_1 E_1 n)$ if for every $E \ni A \in E$ with $\mu(A^c) \subset E$ s.t. $f_n \to f$ uniformly on A.