Session 1 - Continuous Probability

Year 12 Advanced Mathematics

Objectives:

- Identify and verify the conditions required for a valid Probability Density Function (PDF).
- Distinguish between Probability Density Functions (PDFs) and Cumulative Distribution Functions (CDFs)
- Apply PDFs and CDFs to calculate probabilities and solve problems involving quantiles (e.g., medians, percentiles).

Context

We need to have an understanding of some concepts from data, functions and integration.

Data:

- Discrete represents figures that can be counted, and there are defined gaps/precision between values.
 - o EG: number of students in a class.
- Continuous Represents measurements that can take any value within a given range. Rather, values that fluctuate.
 - o EG: Temperature of a classroom
 - We can consider temperature as a **continuous random variable**.

Functions/Integration:

- Continuous data can be represented through a continuous curve.
- The probability of a given range can be calculated by finding the area under the curve, through integration.
- We generally integrate a curve given by a function between a boundary, like a parabola between x = 0 and 2 etc.

Probability Density Functions (PDF)

PDF's are the graphical representation of continuous data as a curve.

PDF represents the density at a point, meaning how likely a value is to occur in that range.

The function provided to you f(x) is the probability density function p(x)

They have two specific qualities that make them PDF's.

- 1. The area under the whole curve is equal to 1, as all probabilities add to 1
- 2. The curve is positive, meaning it exists only in quadrant 1.

Area under a probability density function

The area under a probability density function is 1.

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

where $f(x) \ge 0$ (since $0 \le p(x) \le 1$)

Proving a PDF EG:

Questions about PDF's EG:

- A function is given by $f(x) = \begin{cases} \frac{3x^2}{26} & \text{for } 1 \le x \le 3 \\ 0 & \text{for all other } x \end{cases}$. Show that it is a continuous probability distribution.
- **b** A function is given by $f(x) = ax^2$ defined for the domain [0, 5]. Find the value of a for which this is a probability density function.

A probability density function has the equation $f(x) = \frac{x^4}{3355}$ over the domain [2, b]. Evaluate b.

Calculating Probabilities in PDF's

To calculate probabilities in a PDF, it is integrating the curve between a given boundary. That given boundary is the probability range in which we are calculating for.

Probabilities in probability density functions

 $P(X \le x) = \int_{a}^{x} f(x) dx$ where y = f(x) is a PDF defined in the domain [a, b].

 $P(a \le X \le b) = \int_a^b f(x) dx$ where y = f(x) is a PDF and a and b are in the defined domain.

Uniform Distributions

Every outcome has the same probability, meaning the function is linear and creates a polygon in which we can find the area of, generally speaking.

Uniform continuous probability distributions

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{for all other } x \text{ values} \end{cases}$$

Equal intervals along the x-axis will have the same probability.

The continuous probability distribution is defined by $f(x) = ax^2$ in the domain [0, 5].

- Evaluate a.
- b Find:

 - **i** $P(X \le 3)$ **ii** P(1 < X < 4) **iii** P(X > 2)

Cumulative Distribution Functions (CDF)

A CDF is similar to a PDF, where they now measure the total probability up to a particular value. It is like the running total of the area under the pdf.

Since it is values up to a specific value, we will always integrate between a top boundary of x as we can substitute that value in, and then the lower boundary of the given value.

Cumulative distribution function (CDF)

The cumulative distribution function is given by $F(x) = \int_a^x f(x) dx$ where y = f(x) is a PDF defined in the domain [a, b].

Questions will generally ask you to:

- 1. Find the cumulative distribution function, to do that we integrate between x and a
- 2. Use the CDF to find probabilities up to that point.

EG:

A continuous probability function is given by $f(x) = \frac{4x^3}{255}$ defined in the domain [1, 4].

- **G** Find the cumulative distribution function.
- **b** Use the CDF to find:

$$P(X \le 3)$$

ii
$$P(X < 1.6)$$

Mode

The mode of a curve is the maximum point. Therefore, by deriving the function, we can solve for the max point and prove a stationary point.

When answering a mode question, we must:

- 1. Derive the function to find the gradient
- 2. Make the derivative equal to 0 [f'(x) = 0]
- 3. Solve for the mode.
- 4. Now we need to prove its max, so we find the second derivative.
- 5. If the second derivative is less than zero [f''(x) < 0]

EG:

A continuous probability distribution is defined on the interval $1 \le x \le 5$ and has equation $f(x) = \frac{3x(6-x)}{92}$. Find the mode.

Quantiles

Quantiles refer to a specific cumulative quantity at a single point.

Examples include: Median (0.5), Percentile (every 0.01), Decile (0.1), Quartile (0.25)

To answer a question asking us to find a quantile, we must:

- 1. Find the CDF by integrating between x and a.
- 2. Make the CDF equal to the quantile.
- 3.

A continuous probability distribution is defined as $f(x) = \frac{x^4}{11605}$ in the domain [4, 9]. Find, correct to 2 decimal places:

- **a** the 1st quartile
- **b** the 38th percentile
- c the 7th decile

HOMEWORK

10.01 - PDF

- **5** Given the continuous probability distribution $f(x) = \begin{cases} kx^3 & \text{for } 0 \le x \le 5 \\ 0 & \text{for all other } x \end{cases}$ find the value of k.
- **6** A probability density function is given by $f(x) = ae^x$ over a certain domain. Find the exact value of a if the domain is:
 - [1, 3]

[1, 7]

- [0, 4]
- **7** A function is given by $f(x) = \frac{x^2}{72}$. Over what domain starting at x = 0 is this a probability density function?
- **8** A PDF is given by $f(x) = \frac{2x^5}{87381}$ over the interval $1 \le x \le b$. Find the value of b.

10.02 - Calculating Probabilities

- **4** The continuous random variable *X* has the PDF shown.
 - Evaluate a.
 - b Find:
 - *i* P(1 ≤ X ≤ 3)
- ii P(X < 2)
- iii $P(1 \le X \le 2)$
- iv $P(X \le 1)$

- **5** A continuous probability function is given by $f(x) = ke^x$, defined on the domain [1, 6].
 - Find the exact value of k.
 - b Find each exact probability:
 - i $P(2 \le X \le 5)$
- ii P(X < 4)
- iii $P(X \ge 3)$
- Show that $y = \sin x$ is a probability density function in the domain $\left| 0, \frac{\pi}{2} \right|$.
 - Find each exact probability:
 - $P\left(X \le \frac{\pi}{3}\right)$
 - $ii \quad P\bigg(0 < X < \frac{\pi}{4}\bigg)$
 - iii $P\left(X > \frac{\pi}{6}\right)$

10.03 - Cumulative Distribution Function

1 Find the cumulative distribution function for each continuous probability distribution.

a
$$f(x) = \frac{x^2}{9}$$
 defined in the domain [0, 3]

b
$$f(x) = \frac{4x^3}{1296}$$
 defined in the domain [0, 6]

c
$$f(x) = \frac{e^x}{e^4 - 1}$$
 in the interval $0 \le x \le 4$

d
$$f(x) = \frac{4(x-2)^3}{625}$$
 in the domain [2, 7]

e
$$f(x) = \frac{3x(8-x)}{135}$$
 in the domain [2, 5]

e
$$f(x) = \frac{1}{135}$$
 in the domain [2, 5]
2 a Find the cumulative distribution function for $f(x) = \begin{cases} \frac{5x^4}{7776} & \text{for } 1 \le x \le 6 \\ 0 & \text{for all other values} \end{cases}$

b Find:

i
$$P(X \le 3)$$

ii
$$P(X \le 2)$$

iii
$$P(X < 5)$$

iv
$$P(X > 4)$$

v
$$P(2 \le X \le 4)$$

3 A continuous probability distribution is given by $f(x) = \frac{4x^3}{2320}$ in the domain [3, 7].

Find the cumulative distribution function

b Find:

i
$$P(X \le 4)$$

ii
$$P(X \le 6)$$

iii
$$P(X \ge 5)$$

iv
$$P(X > 4)$$

v
$$P(4 \le X < 6)$$

10.04 - Quantiles

1 Find the median of each continuous random variable correct to 2 decimal places.

a
$$f(x) = \frac{3x^2}{511}$$
 defined on the interval $1 \le x \le 8$

b
$$f(x) = \frac{4x^3}{2401}$$
 defined in the domain [0, 7]

c
$$f(x) = \frac{5x^4}{16\,807}$$
 in the interval $0 \le x \le 7$

d
$$f(x) = \frac{3(x-3)^2}{16}$$
 in the domain [1, 5]

2 For each continuous probability distribution, find:

- i the 1st quartile
- ii the 2nd decile
- iii the 77th percentile

$$f(x) = \frac{3x^2}{973}$$
 defined in the domain [3, 10]

- **b** $f(x) = \frac{x^3}{324}$ defined in the interval $0 \le x \le 6$
- c $f(x) = \frac{5x^4}{3124}$ defined in the interval $1 \le x \le 5$

- 2