# What is a Category?

## sarah, leonhard, Andreas Meyer

## 6th July 2017

# 1 Definition of Categories

**Definition (Category):** A category  $\mathscr{C}$  has the following components:

- a collection of objects  $ob(\mathscr{C})$
- $\forall A, B \in ob(\mathscr{C})$ , a collection of maps (arrows, morphisms), denoted by,  $\mathscr{C}(A, B)$
- $\forall A, B, C \in ob(\mathscr{C})$ , a composition function

$$\mathscr{C}(B,C) \times \mathscr{C}(A,B) \to \mathscr{C}(A,C)$$
  
 $(g,f) \mapsto (g \circ f)$ 

•  $\forall A \in ob(\mathscr{C})$ , an element  $1_A \in \mathscr{C}(A,A)$ , called the identity on A

The following axioms have to be satisfied:

- identity laws:  $\forall f \in \mathcal{C}(A, B). \ f \circ 1_A = f = 1_B \circ f$
- associativity:  $\forall f \in \mathscr{C}(A, B), \ g \in \mathscr{C}(B, C), \ h \in \mathscr{C}(C, D). \ (h \circ g) \circ f = h \circ (g \circ f).$

## 2 Epis and Monis

TODO

## 3 Isomorphisms

**Definition (Isomorphism):** Let  $\mathscr C$  be a category and  $A, B \in ob(\mathscr C)$ . A map  $f: A \to B$  in  $\mathscr C$  is an isomorphism if there is a  $g: B \to A$  s.t.  $g \circ f = 1_A$  and  $f \circ g = 1_B$ . A and B are isomorphic in  $\mathscr C$  ( $A \cong B$ ) if there is an isomorphism between them.

## 4 Examples

- The category of sets, denoted as **Set**, is the category whose objects  $ob(\mathbf{Set})$  are sets. The arrows in **Set** are the functions between two  $A, B \in ob(\mathbf{Set})$ . The identity- function is defined as  $\forall A : set$ ,  $id_A : A \to A$ ,  $\forall x \in A \ f \ x = x$  The composition  $\circ$  is the composition of functions and this is associative. Proof: Assume sets A,B,C,D, functions  $f: A \to B, g: B \to C, h: C \to D$  and  $x \in A$ .  $((h \circ g) \circ f) \ x = ((h \circ g)(f \ x) = h(g(f \ x))$   $(h \circ (g \circ f)) \ x = h((g \circ f) \ x) = h(g(f \ x))$  Thus  $(h \circ g) \circ f = h \circ (g \circ f)$  holds.  $\square$
- The category of relations, denoted as  $\mathbf{Rel}$ , is the category whose objects are the sets The arrows are all binary relations between two  $A, B \in ob(\mathbf{Rel})$ The identity arrow is the identity function  $\forall A : set, id_A : A \to A, \ \forall x \in A \ f \ x = x$ The composition  $R \circ S, R \in \mathbf{Rel}(A, B), S \in \mathbf{Rel}(B, C), A, B, C \in ob(\mathbf{Rel})$  is defined as  $(x, y) \in R \circ S \leftrightarrow \exists z. (x, z) \in S \land (z, y) \in R$
- Categories similar to **Set** can be constructed for sets which have some additional structure and structurepreserving mappings between them. For example, there is a category **Poset** with partially ordered sets as

objects. It is defined similarly to **Set**, with the difference that the functions are monotone.

- A single poset  $(P, \leq)$  also gives rise to a category  $\mathscr{P}$  if we take elements of P to be the objects. There is a unique arrow in  $\mathscr{P}(A, B)$  iff  $A \leq B$ . The reflexivity requirement of  $\leq$  ensures that identity arrows exist for all objects. Also, the category has composition because the order is transitive.
- Vect<sub>k</sub> is the category of vector spaces over a field k, with linear transformations as arrows.
- There is a category **Grp** whose objects are groups; maps are given by group homomorphisms between two groups  $A, B \in ob(\mathbf{Grp})$ .
- A single group  $(G, \cdot)$  can also be seen as a category  $\mathcal{G}$ . There is a unique object G which represents the group itself, and arrows in  $\mathcal{G}(G, G)$  correspond to group elements.

The identity arrow is the unit element 1 of the group.

Composition operates on two group elements and has to be associative, so it is given by the group action. A group furthermore requires all elements to be invertible, thus we need each arrow  $\mathcal{G}(G,G)$  to be an isomorphism.

Dropping the last requirement, we get the category of a single monoid.

• Categories need not represent mathematical structures. They can be arbitrarily constructed by giving objects, arrows and arrow composition in a way that satisfies the axioms in the definition. For instance, the category 1 includes a single object and its identity map, without further specification what the object is. A category without non-trivial arrows is called discrete; removing all arrows except identities makes an arbitrary category discrete.

## 5 Dual categories

 $C^{op}$  denotes the dual category for any category C. One obtains  $C^{op}$  by reversing the arrows in C. For every sentence  $\Sigma$  in the language of category theory, the reversed sentence  $\Sigma^*$  exists, therefore any proof for any theorem yields for the dual theorem by the duality principle.

# 6 Terminal and Initial Objects

**Definition (Initial and terminal Objects):** In any category C, an object 0 is called initial iff for any object  $A \in C$ , there is an unique morphism  $0 \to A$ . an object 1 is called terminal iff for any object  $A \in C$ , there is an unique morphism  $A \to 1$ . A terminal object in C is initial in  $C^{op}$ .

#### 6.1 Proposition:

Initial and terminal objects are unique up to isomorphism.

#### 6.1.1 **Proof:**

Assume 0,0' are both inital objects in some category C and show that  $f: 0 \to 0', g: 0' \to 0$  form an unique isomorphism  $f \circ g$  between 0,0'. One can draw the following diagram:



Since 0 is initial, we know that f is unique, from the same argument follows uniqueness of  $g = f^{-1}$ . Therefore  $f \circ g$  and  $g \circ f$  is unique.

The same holds for terminal objects by duality.  $\Box$ 

Categories in which the terminal is identical to the initial object are called pointed category. Such objects zero objects.

#### **6.1.2** Example:

How to show that  $\emptyset$  is initial in Set and the one- element set  $\{x\}$  terminal?

• There is only the binary union function from  $\emptyset$  to any other set, since there are no arguments in the domain to use.

