CLAIMS

1	1.	A me	thod of treating a waste stream, the method comprising the steps of:
2		a	conducting at least a portion of the waste stream to a treatment vessel for
3			treatment comprising contact with a first biological population having a first-
4			biological population profile;
5		b.	drawing off a portion of the waste stream;
6		c.	controlling the drawn-off portion of the waste stream so as to maintain, in the
7			drawn-off portion, a second biological population having a second-biological
8			population profile different from the first-biological population profile; and
9		. d .	returning a fraction of the drawn-off portion to the treatment vessel following
10			contact with the second biological population, the returned fraction including a
1.1			portion of the second biological population.
12			
1	2.	The r	nethod of claim 1 wherein the second biological population exhibits a lower solids
2	yield	and a h	igher waste-digestion efficiency relative to the first biological population.
3			
1 -	3.	The r	method of claim 1 wherein the second biological population includes a higher
2	prop	ortion o	f facultative aerobes than the first biological population.
3			
1	4.	The r	method of claim 1 wherein the second biological population includes a higher
2	prop	ortion o	f facultative anaerobes than the first biological population.
3			

1	5.	The method of claim 1 wherein the second biological population includes a higher
2	propo	rtion of nitrifiers than the first biological population.
3		
1	6.	The method of claim 1 wherein the second biological population includes a lower
2	propo	rtion of filamentous biology than the first biological population.
3	1	
1	7.	The method of claim 1 wherein the second biological population inhibits the formation of
2	filame	entous biology more than the first biological population.
3		
1	8.	The method of claim 1 wherein the returned fraction contains a higher level of biological
2	nutrie	ents than the waste stream.
3		
1	9.	The method of claim 1 wherein the returned fraction contains a higher level of cBOD
2	than t	he waste stream.
3		
1	10.	The method of claim 1 wherein the returned fraction contains a higher level of nitrates
2	than t	he waste stream.
3		
1	11.	The method of claim 1 wherein control of the drawn-off portion is effected through
2	maint	tenance of a target ORP range.
3		
1	12.	The method of claim 1 wherein control of the drawn-off portion is effected through
2	main	tenance of a target specific oxygen uptake rate range.

1	13.	The metho	od of claim 1 wherein control of the drawn-off portion is effect	ed through
2	maint	enance of a	target specific nitrate uptake rate range.	
3		b		
1	14.	The metho	od of claim 1 wherein the controlling step comprises:	
2	,	a. add	ding, to the drawn-off portion, a quantity of activated sludge to	achieve a target
3	•	sus	spended solids concentration;	
4		b. mix	xing the drawn-off portion without aeration to achieve anaerob	oic conditions
5		wit	thout substantial sulfide generation;	1
6		c. allo	owing settling to produce a decantable volume having a high c	BOD and
7		am	monia content and a low ORP,	
8	the fra	ction of the	drawn-off portion conducted to the treatment vessel being tak	en from the
9	decan	table volume	e.	
9	decan	able volume	e	
	decan		e. od of claim 14 wherein the drawn-off portion is contained in an	offline vessel,
10	15.	The metho		•
10	15.	The metho	od of claim 14 wherein the drawn-off portion is contained in an	ing:
10 1 2	15.	The metho decanted dra	od of claim 14 wherein the drawn-off portion is contained in an	ng: to produce
10 1 2 3	15.	The methodecanted draa. add	od of claim 14 wherein the drawn-off portion is contained in an awn-off portion being conditioned for re-use by steps comprising a portion of the waste stream material to the offline vessel	ng: to produce
10 1 2 3 4	15.	The methodecanted draa. add	od of claim 14 wherein the drawn-off portion is contained in an awn-off portion being conditioned for re-use by steps comprising a portion of the waste stream material to the offline vessel rein a mixture having a second target suspended solids concen	ng: to produce
10 1 2 3 4 5	15.	The methodecanted draft. a. add the b. rem	od of claim 14 wherein the drawn-off portion is contained in an awn-off portion being conditioned for re-use by steps comprising a portion of the waste stream material to the offline vessel rein a mixture having a second target suspended solids concen	ng: to produce tration; and
10 1 2 3 4 5 6	15. the un	The methodecanted draft. a. add the b. rem	awn-off portion being conditioned for re-use by steps comprised in a portion of the waste stream material to the offline vessel rein a mixture having a second target suspended solids concentration about half of the mixture.	ng: to produce tration; and

1	17.	The r	nethod of claim 14 wherein the target suspended solids concentration ranges from
2	3000	to 5000) mg/l.
3		•	
1	18.	The r	method of claim 14 wherein the decantable volume is at least 25%.
2			
1	19.	The r	method of claim 1 wherein the controlling step comprises:
2		a.	adding, to the drawn-off portion, a quantity of activated sludge to achieve a target
3			suspended solids concentration;
4		b.	mixing the drawn-off portion without aeration to achieve anaerobic conditions
5			without substantial sulfide generation;
6		c.	mixing and aerating until a positive ORP is achieved;
7		d.	mixing without aeration to achieve anaerobic conditions; and
8		e.	allowing settling to produce a high-load decantable volume,
9	the fr	action o	of the drawn-off portion conducted to the treatment vessel being taken from the
10	decar	ntable v	olume.
11			
1	20.	The n	method of claim 19 wherein the undecanted drawn-off portion is re-used by steps
2	comp	rising:	
3		f.	replacing the drawn-off fraction with activated sludge, and adding sufficient
4			waste stream material to achieve a second target suspended solids concentration;
5.			and
6		g.	repeating steps (b) through (e).

	1	21.	The r	method of claim 20 v	wherein th	e second ta	rget suspended solids o	concentration is not
	2	more	than ab	oout 7,500 mg/l.	•	l l		
	3		,	,				
	1	22.	The r	method of claim 20 v	wherein af	ter about tv	vo repetitions of steps ((f) and (g) the
	2	undec	anted o	drawn-off portion is	treated acc	cording to s	steps comprising:	
	3	1	h.	removing about 1/	/3 of the u	indecanted o	drawn-off portion; and	
	4	,	i.	repeating steps (a)	through ((h).		
	5							
	1	23.	The r	method of claim 19 v	wherein the	e target sus	pended solids concentr	ration ranges from
	2	about	5,000 1	mg/l to about 7,500 i	mg/l.	;		
	3							•
	1	24.	The n	method of claim 1 wl	herein the	controlling	step comprises:	
	2		a. ,	adding, to the drav	wn-off por	rtion, a quai	ntity of activated sludg	e to achieve a target
	3			suspended solids of	concentrat	ion;		
	4		b.	mixing the drawn-	off portio	n without a	eration to achieve anae	erobic conditions
	5			without substantia	ıl sulfide g	generation;		
	6		c.	mixing and aeratir	ng until a p	positive OR	P is achieved;	
	7		d.	mixing without ae	ration to a	chieve ana	erobic conditions;	
	8		e.	allowing settling t	o produce	a decantab	le volume;	
	9		f.	mixing and aeratir	ng until a p	positive OR	P is achieved; and	
	10		g.	allowing settling to	o produce	a low-load	decantable volume,	
	11	the fra	ection o	of the drawn-off port	ion condu	cted to the	treatment vessel being	taken from the
•	12	decant	table vo	olume.				

1	25.	The method of claim 24 wherein the	undecanted drawn-off portion is re-used by steps	
2	comp	rising:		
3		h. replacing the drawn-off fract	ion with activated sludge, and adding sufficient	
4		waste stream material to achi	ieve a second target suspended solids concentration;	
5		and		
6		i. repeating steps (b) through (g).	
7				,
1	26.	The method of claim 25 wherein the	second target suspended solids concentration is not	
2	more	than about 7,500 mg/l.		
3				
1	27.	The method of claim 25 wherein aft	er about two repetitions of steps (h) and (i) the	
2	unde	canted drawn-off portion is treated acc	ording to steps comprising:	
3		j. removing about 1/3 of the ur	ndecanted drawn-off portion; and	_
4		k. repeating steps (a) through (j).	
5				
1	28.	The method of claim 24 wherein the	e target suspended solids concentration ranges from	
2	abou	t 5,000 mg/l to about 7,500 mg/l.		
3				
1 -	29.	The method of claim 1 wherein the	controlling step comprises:	
2		a. adding, to the drawn-off por	tion, a quantity of activated sludge to achieve a target	
3		suspended solids concentrat	ion;	
4		b. mixing the drawn-off portion	n with aeration to achieve aerobic conditions and low	
5		ammonia content:		

6	c.	stopping the aeration;	
7	d. ,	adding and mixing additional waste stream material;	
8	e.	mixing and aerating until the ORP is positive and dissolved oxy	gen content is
9		present;	
10	f.	stopping the mixing and the aeration; and	
11	, g _:	allowing settling to produce a decantable volume having a high	content of
12	, , , , ,	facultative aerobes and nitrifiers,	
13	the fraction of	of the drawn-off portion conducted to the treatment vessel being ta	ken from the
14	decantable v	volume.	
15			
1	30. The 1	method of claim 29 further comprising the step of repeating steps (d) through (f) at
2	least twice p	prior to the settling step.	
3	1		
1	31. The r	method of claim 29 wherein the undecanted drawn-off portion is co	onditioned for re-
2	use by steps	comprising:	
3	a.	removing about 1/3 of the undecanted drawn-off portion;	
4	b.	adding additional activated sludge to replace the removed undec	anted drawn-off
5		portion; and	
6	c.	adding additional waste stream material to achieve a second targ	et suspended
7		solids concentration.	
8			
1	32. The r	nethod of claim 31 wherein the second target suspended solids con	centration is not
2	more than ab	oout 7,500 mg/l.	

1	33.	The method of claim 29 wherein the target suspended solids concentration ranges from
2	about	,500 mg/l to about 7,500 mg/l.
3		
1	34.	The method of claim 1 wherein the controlling step comprises:
2		a. adding, to the drawn-off portion, a quantity of activated sludge to achieve a targe
3		suspended solids concentration;
4		b. mixing the drawn-off portion without aeration to achieve anaerobic conditions
5		without substantial sulfide generation;
6		c. stopping the mixing for a period of time;
7		d. mixing;
8		e. mixing and aerating until the ORP is positive; and
9		f. allowing settling to produce a decantable volume having a high content of
10		facultative anaerobes and facultative aerobes,
11	the fi	tion of the drawn-off portion conducted to the treatment vessel being taken from the
12	deca	ible volume.
13		
1	35.	The method of claim 34 wherein the undecanted drawn-off portion is conditioned for re
2	use b	the step of:
3 .		g. adding additional waste stream material to achieve a second target suspended
4		solids concentration.
5		
1	36.	The method of claim 35 further comprising the step of repeating steps (b) through (g).

1	37.	The method of claim 35 wherein the undecanted	drawn-off portion is p	repared for re-use	
2	by rem	noving about 1/3 of the undecanted drawn-off por	tion.		
3	·			. •	
1	38.	The method of claim 35 wherein the second targ	get suspended solids co	ncentration is not	
2	more t	than about 10,000 mg/l.			• .
3					
1	39.	The method of claim 34 wherein the target susp	ended solids concentra	tion ranges from	
2	about :	3,000 mg/l to about 10,000 mg/l.			
. 3					
1	40.	The method of claim 1 wherein the controlling s	step comprises:	<u>†</u>	
2		a. adding, to the drawn-off portion, a quant	ity of activated sludge	to achieve a target	
3		suspended solids concentration;			
4		b. mixing the drawn-off portion without ae	ration to achieve anaer	obic conditions	
5		without substantial sulfide generation;	r.		
6		c. mixing and aerating until the ORP is pos	sitive;		
7		d. stopping the aeration but continuing the	mixing; and		
8		e. allowing settling to produce a high-load	decantable volume and	i a volume	
9		containing settled solids,	,		
10	the fra	action of the drawn-off portion conducted to the tr	eatment vessel being t	aken from the	
11	decant	table volume.			
12		•			
1	41.	The method of claim 40 wherein additional trea	tment is provided by st	teps further	•
2	compr	rising:			

3		f.	adding additional activated sludge to produce a concentrated mi	xture; and
4		g.	repeating steps (b) through (f) until the volume containing settle	d solids
5		,	corresponds to a target volume.	
1	42.	The n	nethod of claim 41 wherein the target volume is about 90 to 95% o	of the drawn-off
2	portic	n.		
3				
1	43.	The n	nethod of claim 41 further comprising the steps of:	' ,
2		a.	determining a solids content of the concentrated mixture;	
3	•	b.	disposing of the concentrated mixture as waste if the solids cont	ent exceeds a
4			predetermined threshold; and	
5		c.	if the solids content does not exceed the predetermined threshold	d, (i) adding an
6			additional portion of the waste stream material to the concentrat	ed mixture, (ii)
7			mixing, (iii) allowing settling to produce a decantable volume, (iv) drawing off
8			the decantable volume, and (v) repeating steps (i) through (iv) u	ntil no further
9			increase in solids content is achieved.	
10				
1	44.	The n	nethod of claim 43 wherein the predetermined threshold high solid	ls content is about
2		90%	of the drawn-off portion.	
3				
1	45.	The n	nethod of claim 40 wherein the target suspended solids concentrat	ion ranges from
2	about	5,000 r	mg/l to about 7,500 mg/l.	
3				
1	46	The n	pethod of claim 1 wherein the controlling step comprises:	

'ATENT APPLICATION ATTY. DOCKET NO.: KEY-003

2	a.	adding, to the drawn-off portion, a quantity of activated sludge to achieve a target
3		suspended solids concentration;
4	b.	mixing the drawn-off portion without aeration to achieve anaerobic conditions
5		without substantial sulfide generation;
6	c.	mixing and aerating until the ORP is positive;
7	d.	stopping the aeration but continuing the mixing;
8	e.	allowing settling;
9	h.	aerating and mixing until a positive ORP is achieved; and
10	i.	allowing settling to produce a low-load decantable volume and a volume
11		containing settled solids,
12	the fraction	n of the drawn-off portion conducted to the treatment vessel being taken from the
13	decantable	volume.
14		
1	47. The	e method of claim 46 wherein additional treatment is provided by steps further
2	comprising	;:
3	j.	adding additional activated sludge to produce a concentrated mixture; and
4	k.	repeating (b) through (j) until the volume containing settled solids corresponds to
5		a target volume.
6		,
1	48. The	e method of claim 47 wherein the target volume is about 90 to 95% of the drawn-off
2	portion.	
3		
1	49. The	e method of claim 47 further comprising the steps of:

2	a. determining a solids content of the concentrated mixture;
3	b. disposing of the concentrated mixture as waste if the solids content exceeds a
4	predetermined threshold; and
5	c. if the solids content does not exceed the predetermined threshold, (i) adding an
6	additional portion of the waste stream material to the concentrated mixture, (ii)
7	mixing, (iii) allowing settling to produce a decantable volume, (iv) drawing off the
8	decantable volume, and (v) repeating steps (i) through (iv) until no further increase in
9	solids content is achieved.
10	
1	50. The method of claim 49 wherein the predetermined threshold high solids content is about
2	90% of the drawn-off portion.
3	
1	51. The method of claim 46 wherein the target suspended solids concentration ranges from
2	about 5,000 mg/l to about 7,500 mg/l.
3	
1	52. The method of claim 1 wherein the treatment vessel contains disposable solids,
2	introducing the returned fraction to the treatment vessel causing the disposable solids to increase
3	in concentration at the expense of biology.
4	
1	53. The method of claim 1 wherein the treatment vessel contains disposable solids,
2	introducing the returned fraction to the treatment vessel causing the disposable solids to decrease
3	in nutrient content.
4	

1	54.	An ap	pparatus for treating a waste stream comprising:
2		a.	a first treatment vessel;
3		b.	means for conducting at least a portion of the waste stream to the first treatment
4		. '	vessel for treatment comprising contact with a first biology population having a
5			first-biology population profile;
6		c. .	means for drawing off a portion of the waste stream prior to introduction into the
7			first treatment vessel;
8		d.	a second treatment vessel for receiving the drawn-off portion of the waste stream;
9		e.	means for controlling the drawn-off portion of the waste stream so as to maintain,
10			in the second treatment vessel, a second biology population having a second-
11			biology population profile different from the first-biology population profile; and
12		f.	means for conducting a fraction of the drawn-off portion from the second
13			treatment vessel to the first treatment vessel following contact with the second
14			biology population, the returned fraction including a portion of the second biology
15			population.
16			

1 55. The apparatus of claim 54 further comprising an overflow weir of variable height.