13주차 1차시 유비쿼터스

【학습목표】

- 1. 유비쿼터스 개념과 네트워킹 개념에 대해 설명할 수 있다.
- 2. 유비쿼터스 네트워킹 기술과 5가지 기술적 특징에 대해 설명할 수 있다.

학습내용1 : 유비쿼터스

다양한 형태의 내장형 컴퓨터를 의식하지 않고 통신과 컴퓨팅을 즐길 수 있는 유비쿼터스 컴퓨팅의 시대로 정의한다. 2005~2020년경에 전혀 새로운 유비쿼터스 문화가 탄생할 것으로 예견되어진다.

1. 유비쿼터스 5가지 특징

가시성(visibility)

복잡성(complexity)

간결성(abstraction)

연결성(connection)

비가시성(invisibility)

2. 유비쿼터스 5대 연구 주제

- 간결성을 확보하기 위해서는 현재 설계 집적도의 한계인 10만개 정도의 컴포넌트 수준을 뛰어넘어 100만개 이상의 요소로 구성되는 고집적 컴포넌트 설계 기술이 요구
- 1,000개 이상의 프로세서를 병렬로 연결할 수 있는 병렬 시스템 기술의 발전도 필요
- 연결성 확보 측면에서는 네트워크에서 제공하는 채널수 확대
- 모든 채널의 멀티미디어화 등과 같은 서비스의 질적 측면과 서비스 환경에 있어서의 변화 요구
- 일상생활의 모든 객체가 서로 연결되기 위해 가상공간의 주소가 128비트의 길이를 지닌 IPv6 주소 체계로의 전환

3. 유비쿼터스 이용 분야

[표] 유비쿼터스 이용 분야

분야	이용목적	기능특성	RFID의 목표가격대
군사, 의료	군용품/의료기기의 관리	위치특정, 진단기능, 보안	10만원 정도
교통(자동지불)	차량주행중의 자동지불	주행차량의 지불 인증보안	만원 정도
접속제어, 유통 (컨테이너, 팔렛)	인원의 접속제어 컨테이너 팔레트, 가축 등의 추적	RFID의 도난/ 분실을 약간 상정한 보안	천~오천원
항공, 세탁, 가구, 미술품	항공수하물, 세탁물, 고급가구, 미술품의 관리	고속 판독 위조방지	백~천원
제조(공장), 소매 (고가아이템), 목재	오피스나 공장 자산관리 제품 목재 등의 추적	위조방지기능 추적	50원 정도
소매(저가 아이템), 교통(티켓팅)	소매제품의 추적 교통기관의 티켓 (종이베이스)의 추적	저가격, 저기능 추적	10원 이하

학습내용2 : 유비쿼터스 네트워킹과 컴퓨팅

1. 센서 기술 지원

- 유비쿼터스 네트워크는 우리가 살고 있는 보이는 세상과 보이지 않는 세상의 도처에 편재이를 통해 언제, 어디서, 어떠한 기기를 이용하더라도 고속으로 네트워크 이용 가능하다.
- 유비쿼터스 네트워크는 사람을 중심으로 가상공간과 물리공간을 연결하는 핵심체이며, 센서와 태그 등을 통해 수집된 정보들을 이용자에게 전달하는 동시에 이용자의 정보를 로봇이나 구동 장치, 칩 등에도 전달한다.
- 유비쿼터스 네트워크를 통해 칩과 칩, 센서와 센서 간의 긴밀한 연결도 이루어지지만, 가입자 영역에서 최소한 수십에서 수백 Mbps급 정보 처리가 가능해야 한다.

2. 초고속 무선 기술

- 대용량 트래픽과 고속 무선 접속 지원, 고도의 이동성 관리 등을 구현하는 초고속 무선 LAN 또는 초광대역 무선 기술이 요구된다.
- 개인의 요구나 특성에 따라 이용 환경을 설정할 수 있는 지능형 단말기와 자체에 인증 및 안전성 기능을 내장한 고신뢰, 고내성 단말기가 요구된다.
- 가상공간과 물리공간 간의 상황 정보 연결도 필수적이며, 물리공간에서 일어나는 모든 상황 변화에 대한 인식이 센서 등을 통해 지속적으로 수행되고 센서와 센서, 센서와 사람 간에 정보가 실시간으로 공유되어야 한다.

3. 위치 정보 제공

- 가상공간과 물리공간의 공통된 주소와 위치 정보를 이용하여 네트워크를 통해 추적할 수 있어야 함
- 지리 정보 시스템(GIS)과 위치 측정 시스템(GPS), 그리고 물리공간에서의 주소 등이 목적에 따라 다양한 방식으로 연결되어야 함
- 가상공간과 물리공간의 윤리적, 법·제도적 업무 절차 등도 유비쿼터스 환경의 연결 체계에서 매우 중요한 문제
- 가상공간과 물리공간을 연결하는 다리는 차세대 컴퓨팅 기술을 통해 실현

4. 차세대 컴퓨팅 기술의 새로운 패러다임

웨어러블(wearable): 웨어러블 컴퓨터는 말그대로 입을 수 있는 것에 PC 기능을 담은 컴퓨터로 초기에 미국 군사용으로 개발 되기 시작하였으나 패션, 통신기기, 디지털 제품까지 영역을 넓혀가고 있다. 이제는 기계, 물리, 의류, 감성공학, 심리 등 전 산업에 걸쳐 IT가 활용되고 융합되고 있다. 따라서 최근에 나오고 있는 웨어러블 컴퓨터인 스마트워치, 스마트밴드, 스마트 안경, 스마트 밸트 등 몸에 장착할 수 있는 IT기기 들을 통칭하여 웨어러블 기기라고 부르고 있다.

노매딕 컴퓨팅: 네트워크의 이동성을 극대화하여 특정 장소가 아니라 어디서든지 컴퓨터를 사용할 수 있게 하는 기술로 "어디서든 연결된(always connected)" 환경을 실현

퍼베이시브 컴퓨팅 : 모든 사물에 컴퓨터를 심어 도처에 컴퓨터가 편재될 수 있도록 하는 기술

조용한 컴퓨팅 : 사물에 심어진 컴퓨터들이 주인이 의식하지 않아도 마치 하인처럼 정해진 일을 묵묵히 수행하는 것을 실현하는 컴퓨팅 기술

감지 컴퓨팅 : 센서 등을 통해 컴퓨터가 미리 정보를 감지해 사용자가 필요로 할 때 정보를 제공하는 기술이다

1회용 컴퓨팅 : 모든 사물에 컴퓨터를 심을 수 있도록 컴퓨터를 1회용 종이만큼이나 저렴하게 만드는 기술

학습내용3 : 유비쿼터스 네트워크 기술

- 현재에도 데이터 통신을 위하여 브로드밴드 및 모바일, satellite, 무선 랜, 블루투스, HomeRF 등의 네트워크 기반 기술들이 있다.
- 지금까지의 IPv4 주소 체계의 기술들 간에 호환성문제가 큰 문제로 제기되고 있었다.
- 특히, IPv4는 이미 그 바닥을 드러낸 상태였으며, 90년대 말부터 시작된 IPv6의 도입은 이제 IPv6 백본의 테스트 단계O를 거쳐 이제 서서히 막을 올리고 있다.
- IPv6의 128비트의 어드레스 범위와 강력한 보안 및 이전의 ARP와 IGMP의 IPv6로의 결합은 IPv6의 많은 기능을 더해주었다. 때문에 유비쿼터스 시대가 도래되면서 모든 IP베이스의 네트워크에서의 네트워크 제품들은 IPv6의 기술로 대체되고 무장되어 기존의 고정된 통신 환경에서의 IP뿐만 아니라 한 이동 단말에서의 Mobile IP의 기술 개발 역시 앞으로 더욱 두드러질 것이며, 그 적용분야 또한 더욱 다양해지고 있다.
- 특히 무선 랜이나 블루투스, HomeRF같은 PAN 같은 네트워크 역시 앞으로 더욱 활기를 띄게 될 것이며, 유비쿼터스 네트워크는 한 지역 내에서만 국한된 것이 아닌 인터넷으로의 자유로운 접속한 전 세계적인 네트워크로 접속 및 이용이 가능하게 된다.

[그림] 유비쿼터스 네트워크

[학습정리]

- 1. 블루투스(Bluetooth) 기술을 이용하여 노트북, PDA, 그리고 다른 휴대전화 등과 케이블 없이도 접속하여 음성과 데이터를 주고받을 수 있다.
- 2. 감지 컴퓨팅은 센서 등을 통해 컴퓨터가 미리 정보를 감지해 사용자가 필요로 할 때 정보를 제공하는 기술이다.
- 3. 모바일 휴대전화를 이용하여 음악 콘텐츠를 다운로드하거나 휴대전화와 무선 PDA에 뉴스 프로그램 등의 영상을 스트리밍 기술로 전송이 가능하다.