F	PT	T"/	ı,	152

NAME: FIRSTNAME:

February 2017 GROUP:.....

Physics Midterm n°2

Calculators and extra-documents not allowed.

Answer directly on exam sheets

Exercise 1 (7 points)

A solid of mass m=200g is moving in a slide which is made of a first straight part BC and a second circular part of center O and radius R. Frictions are neglected. The solid starts moving at point C without initial speed. Given α =(BOE) and β =(AOD).

- 1-a) Sketch forces acting on the solid at any point M between C and B.
- b) Use the kinetic energy theorem to express speed at point B. Origin of height axis is at point B. Path BC is at a slope of angle α .

Compute for BC = 2m; $g = 10m.s^{-2}$; $\alpha = 30^{\circ}$

2-	a) Use mechanical energy theorem to express speed at point A as function of BC, α ,	β, R	and	g.
	Compute numerically for $R = 0.5 \text{m}$; $\beta = 60^{\circ}$ and $g = 10 \text{m.s}^{-2}$.			

b) Sketch forces acting on the solid at point A. c) Use Newton's second law in Frenet's basis (\vec{u}_T, \vec{u}_N) to express the norm of reaction R_N at point A
c) Use Newton's second law in Frenet's basis (u_T, u_N) to express the norm of reaction R_N at point A
as function of m, g, BC, R, α and β.
3- For which minimal value of mechanical energy at point C can the solid reach point D?

Exercise 2 Study of a damped oscillation (6 points).

We are considering the motion of an object M of mass m along a semi-circle of radius R and center O. Frictions can be modelled by: $\vec{f} = -\alpha \vec{v}$.

The mass m is released at some angle θ_0 without initial speed.

1- Describe the exterior forces acting on point M and sketch them above.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2-a) Write Newton's second law. Then project this equation in Frenet's basis (\vec{u}_T, \vec{u}_N) .
b) Deduce from it the reaction R_N and the differential equation which is expressing the angle $\theta(t)$ as a
function of its derivatives $\overset{\circ}{\theta}$ and $\overset{\circ}{\theta}$.

EPITA / S₂ February 2017

c) Consider the case where to	the mass m is relea	sed at small angle	θ_0 such that one	can use t
approximation $sin(\theta) \approx \theta$. R function of friction coefficient	ewrite the different	ial equation and di	scuss the differen	t regimes
d) Illustrate those regimes with				
ay x 11 ab a a a a a a a a a a a a a a a a a	1 001 1 00 0(0).			

Exercise 3	Questions 1, 2 and	3 are independe	nt. (7 points)	
One adds a mass r a) Which tempera	contains a mass $m_1 = 200g$ $m_2 = 300g$ of water which ture θ_e would the total sys Given data: Heat capacity	is at temperature θ ₂ tem reach at equilil	=80°C. brium if heat capacity	
	· · · · · · · · · · · · · · · · · · ·			
				and the second s
b) One actually make the capacity C _{cal} .	easures a temperature θ_e =	= 50°C at thermal e	quilibrium. Compute	the calorimeter

EPITA / S₂ February 2017

2- A calorimeter, whose capacity is neglected, contains a mass $m_1 = 200g$ of water at temperature $\theta_1 =$
70°C. One put inside an ice cube of mass $m_2 = 80g$ which was in a freezer at temperature $\theta_2 = -23$ °C.
Compute the equilibrium temperature θe assuming that the whole ice cube has melted.
Data: Fusion latent heat of ice: $L_f = 300.10^3 J kg^{-1}$.
Heat capacity of water per mass unit: $c_w = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
Heat capacity of ice per mass unit: $c_i = 2.10^3 \text{JK}^{-1} \text{kg}^{-1}$
We would like to get a grown bethy oten at 27°C of total volume W = 250°C and which is obtained by
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 J K^{-1} k g^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.
nixing a volume V_1 of hot water at initial temperature θ_1 =70°C and a volume V_2 of cold water at nitial temperature θ_2 =15°C. Find volumes V_1 and V_2 by neglecting all thermal loss while mixing. Data: Heat capacity per mass unit of water: $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.