AMORTIZIRANA ANALIZA

- koristi se ža ogem prospečnog vremena izvršavanja niža operacija nad nekom strukturom podleteka, po operaciji
- u nizu u operacija može se ologoditi da je jedna, ili nekoliko njin, izuzetno "skupa" (skupe) idok su sve ostale jetitine
- sto ji s prosjekom?
- amortizirana analiza garantira prosjetho vrijeme u najgorem služaju

I T(n) = ukupna cijena nita od n operacija NE Jo

(T(n)/n = prosjet na cijena po operaciji)

Agregatua analiza

odnosi se na svoku operaciju, ako se u nizu od n operacije može nelaziti nekoliko tipova operacije

Operacije na stogn

Push (Six) - sterlja x na stog S - O(1)

Pop (S) - uzima element s vrha stoga S - O(1)

Multipop (Sik) - uzima k elemenata s vrha stoga S. U koliko

S sadiži manje od k elemenata, ova

metoda prazni stog

MULTIPOP (S, k)

while not STACK-EMPTY (S) and k>0

Pop (S)

k
k
k
k
1

PUSH (S1x) () +) 1

- Pop (S) - 1 - Multipop (S, R) - min (S, R) grdje je s longi elemenata na stogu S

traliza vremena izvršavanja n operacije u nizu na Stogn velicine n

- Wijeme izvršavanja MULTIPOP operacije je O(n)
 (m maj gorem slučaju)
- n operacije => $T(u) = O(n^2)$ => T(u)/n = O(u)- mije ostra ∇
- Zasto

tgregatina analiza

- maj Pop operacija rukljuicujući i MULTIPOP speraciji) je u najgorem sluiciju jednak maju PUSH operacije - boroj. Push operacije na stogu veličine u ji najviše n

Lekeyniek: T(n) = O(n) - T(n)/n = O(n)/n = O(1) T(n)/n je emertizirano vrijem izvršavanja

"cijena"

Inkrementiranje binarnog brojaza

mojaë je spremljen kao binarom bnoj-koji je Siestoji od k bitora u polju A[0,--,k-1] . vrijednost bropa $\bar{c} \; \bar{c} \; : \; k + 1$ $x = \sum_{i=0}^{k+1} A \; \bar{c} \; i \; = 0$

inicipelno x=0

geracije: olodavanje 1 (mod 2*)

Vrijednos +	A[7) A[6]	A[] A[4] A[3	A (2) A (i)	A[0] Ukup cijei
0	0 0	0 0 0	0 0	0 0
0	0 0	0 0 0	0 0	1 1
2	0 0	0 0 0	0 1	0 3
3	0 0	0 0 0	0 1	1 4
4	0 0	0 0 0	100	7
5	0 0	0 0 0	1 0 1	8
6	0 0	0 0 0	1 1 0	10
7	0 0	0 0 0	1 1 1	11
8	0 0	0 0 1	0 0 0	15
9	0 0	0 0 1	0 0 1	16
10	0 0 0	0 1 0	1 0	18
11	0 0 0	0 1 0	1 1	19
12	0 0 0	0 1 1	00	22
13	0 0 0	0 1 1	0 1	23
14	0 0 0	0 1 1	1 0	25
15	0 0 0	0 1 1	1 1	26
16	000		00	31

```
INCREMENT (A)
100
while i < A. length and A[i] == 1
A [i] ← 0
                               magnée vrijednosti
 1 ← 1+1
                               od o do 2 12 - 1
end while
if i < A. length
  A[i] + 0
```

Labatak: Ocijeniti Vrijeme izvršavanja u najgoremi Slutajn miza od n INCREMENT operacija. + Jephna INCREMENT Operacija: O(k) =) T(n) = O(nk) =) T(n)/n = O(k)Lozemo li bolje? (nismo u svakom poziru promijenili Svaki od k bitora) A[k] A[k-1] --- A[3] A[2] A[1] A[0] Svaka Svaka Svaka Svaka osma Ceturta druga operacije kupan hori okretanja bitova u n poziva: $t(n) = \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \leq n \sum_{i=0}^{k-1} \frac{1}{2^i} < n \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i = n \cdot \frac{1}{1-\frac{1}{2}}$

= 2n = O(n)

 $= \int \frac{1}{(n)} \left| n \right| = \frac{Q(n)}{n} = O(1)$ $=) \left[\frac{T(n)}{n} = O(1) \right]$

Metoda kreditivanja

- ideja: m nitu od n operacija svakoj pridružimo bumortitivamu cijemi kojom ćemo kreditivati" vrijeme itvršavanje budućih operacija
- kako?

Operacije na stogu

Strama cijene Amertizirane cijene
Push 1
Pop 1
Pop 0
Multipop min (k,s)
Multipop o

Strana cijena: Ci

i-te goracije

Nora hiti:

Zi Ĉi z Si Ci

i=1

Amorti zirana Ĉi

cija i-te

greracije

kredit: $\sum_{i=1}^{n} \hat{c_i} - \sum_{i=1}^{n} c_i \ge 0$

Ratmotrimo postavyanje tanjura na stogii konobraru se placia stavljanje tanjura na stog, uzimanje jednog i uzimanje k tanjura prema stvarnim cijenama.

> Darsyno je platiti konstravu sveko Stavjanji tanje 2#. Zosto

Post, Push, Post, Pop, Multipop (2)
$$n=5$$

1 1 1 1 1

2\$ 2\$ 0\$ 0\$

 $\sum_{i=1}^{n} \hat{c_i} = 6$

Ope RACIDA	SNARHA	AMORT.	KREDIT (Z)	
Pus #	1 \$	2\$	1 #	
Posh	1\$	2\$	') W 1	kredit hvijek
PusH	1 \$	2#	3\$	mara biti nenegativan
Pop	1\$	0\$	2\$	
MUCTI POP (2)	2\$	0\$	0 4	
Na krajn	n	$Gi = \sum_{i=1}^{n}$	i Ĉi	
	$\sum_{\lambda=1}^{\frac{1}{2}} \hat{C}_{i} \geq$	$\sum_{i=1}^{r} c_i$	→ J. € 31,,	nj
	Ne Zno	emo kol	iko ĉe biti	
	operacije	una pr	iped o	

Metada potencipala

- Wodi se pojem potencijela: kohiko plaćamo konduće operacije na strukturi podetaka \mathcal{D} C_1 C_2 C_3 C_4 C_4 C_5 C_6 C_7 C_8 C_8 C_9 $C_$

amortizinana cijena

$$\hat{C}_{i} = \hat{C}_{i} + \hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i-1})$$

$$\stackrel{\wedge}{=} \hat{C}_{i} = \sum_{i=1}^{n} (\hat{C}_{i} + \hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i-1}))$$

$$= \sum_{i=1}^{n} \hat{C}_{i} + \sum_{i=1}^{n} (\hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i-1}))$$

$$(\hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i}) + \hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i-1})$$

$$= \sum_{i=1}^{n} \hat{C}_{i} + \hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i})$$

$$= \sum_{i=1}^{n} \hat{C}_{i} + \hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i})$$

$$= \sum_{i=1}^{n} \hat{C}_{i} + \hat{\Phi}(D_{i}) - \hat{\Phi}(D_{i})$$

Also je $\bar{D}(D_n) \ge \bar{D}(D_0)$ onde je $\bar{Z}(\hat{c}) \ge \bar{Z}(\hat{c})$ Takođe je potrebno $\bar{D}(D_n) \ge \bar{D}(D_0)$ $\forall i \notin I_n$ ge ne znamo koliko će se operacija izvršiti unaprijed

Operacije na stogn

De broj elemenata na stagn

\$(Do) · o adatte slipedi \$\int(\tau_i) ≥ \int(\ta_0), \tien 7

$$\hat{C}_{i} = C_{i} + \bar{\Phi}(D_{i}) - \bar{\Phi}(\bar{D}_{i-1}) \qquad \bar{\Phi}(D_{i}) = S + 1$$

$$= 1 + (S+1-S)$$

$$= 2$$

1ULT/POP

$$\Phi(D_{in}) = S(20) \quad k' = min(k_1 s)$$

$$\Phi(D_i) = S - k'(20)$$

$$\hat{C}_{i} = C_{i} + \bar{\Phi}(D_{i}) - \bar{\Phi}(D_{i-1})$$

$$= x^{l} + s - x^{l} + s$$

$$= 0$$

$$\frac{1}{2} \left(D_{i+1} \right) = S \stackrel{?}{>} 0$$

$$\bar{D}(D_i) = b_i$$
 \leftarrow broj fedinica nekon i-te operacije $\bar{D}(D_0) = 0$ $\bar{D}(D_0) \geq \bar{D}(D_0)$ $\forall i$

Dinamitke teblice (vektori)

- motivacije: dinamički vektor (STL) vector (--->

omortiziona voleme itorisonamie n Operacija koje se sostoji od

* I HSERT

- ako tablice/ veletor ima baren jedun Slobodnu lokecijn (T. num c T. size) onde je 011)

- ako je tablica prima (T. mm = T. size) olocipaj (2 puta) veću, prepisi prvu i ubaci novi element

*Detete:

- Obrisi element 12 tablice stvarapici

jednu nan slobodnu memorijsku lokaciju

boroj elementate u tablici - eko je maryi ad velicine tablice, Fracajio Zamjein postopér tablica manjon.

- faktor ispunjenorti (Cood factor)

 $O(T) = \begin{cases} 11, & T. \text{ num} = 0 \\ T. \text{ num} \\ \hline T. \text{ size} \end{cases}, \qquad T. \text{ num} \neq 0$

- Felium postici O(T) = O(1)

Prosireuji tablice

- postizemo operacijom TABLE-INSTRT (T,x)

- Inicipalno, T. mm = T. size = 0

TABLE - I ASERT (T, x)

If T. Gize = 0

alociraj tablicu T velicine 1 T-site=1

spanzija Olociraj tablica T' velicine 2.T. size

prepriši sve elemente iz T u T'

dealociraj T

T = T (pointeri)

T-size = 2.T. size

ubaci x u T

T. mm = T. mm +1

nici pelno

X

M

T. MAAAA = 1

T. site = 2

 $C_i = \begin{cases} i & i-1=2^k \text{ } 2a \text{ } neki \text{ } k \end{cases}$ ne ploci Sofraina cipena: $\frac{1}{\sum_{i=1}^{n} c_{i}} \leq n + \sum_{j=0}^{n} 2^{j} \leq n + \frac{2^{\lfloor qn+1 \rfloor}}{2^{-1}} \leq n + \frac{2^{\lfloor n-1 \rfloor}}{1}$ =) \(\sum_{i=1}^{\infty} c_i \) \(\alpha \) \(\lambda \) =) T(n)/n = O(1)Metoda kreditivanja AMORTIZIRANA MARNA TABLE- | HIERT TABLE - I HIERT TABLE - I HITER TABLE INSERT (EXP) TAP TABLE INVERT 3 TABLE INSERT 2 (EXA) TABLE INJERT Za ubacivanje kredita 1122 propisivanji prilikom studicé elespensité kredita ta nelesi od postsjećih 1 \$ 0/m/2 elemente om I

- Odmah trije ekspanzije T. mm = T- size $\Phi(T) = 2.T. size - T- size = T. size$ nicijelno, mmo = 0 size = 0, $\Phi(T_{\tilde{v}}) = 0$

$$\hat{C}_{i}^{r} = C_{i} + \Phi(T_{i}) - \Phi(T_{i-1})$$

num; = Ti. num Pite; = Ti. Site

- nakon ekspanzie
$$8i2e_i = 1i2e_{i-1}$$
 $\hat{C}_i = C_i + \hat{\Phi}(T_i) - \hat{\Phi}(T_i)$
 $= 1 + (2, mm_i - 8i2e_i) - (2, mm_{i-1} - 8i2e_{i-1})$
 $= 1 + (2, mm_i - 8i2e_i) - (2, mm_{i-1} - 8i2e_{i-1})$
 $= 1 + 2 = 3$

Neposredno pri je ekspanzie $8i2e_i = 2 i2e_{i-1}$
 $8i2e_{i-1} = num_{i-1} = num_{i-1}$
 $\Rightarrow ri2e_i = 2 (mm_i - 1)$
 $\hat{C}_i = C_i + \hat{\Phi}(T_i) - \hat{\Phi}(T_{i-1})$
 $= mm_i + (2, me_i - 8i2e_i) - (2, mm_{i-1} - 8i2e_{i-1})$
 $= n_i + (2, n_i - 2(n_{i-1})) - (2(n_{i-1}) - (n_{i-1}))$
 $= n_i + (2m_i - 2n_{i-1}) - (2m_{i-1} - 2n_{i-1})$
 $= 2+2-1 = 3$