Adaptación de Impedancias Propagación y Radiación - UNS

Objetivos

El objetivo de este laboratorio de simulación es diseñar e implementar redes de adaptación de impedancias, utilizando elementos de circuitos a parámetros distribuidos. Se utilizará el software MATLAB $^{\textcircled{R}}$ para encontrar las soluciones analíticas y se contrastará con las implementaciones basadas en modelos de línea de transmisión reales, utilizando las herramientas del paquete RF Toolbox.

Actividades

1. Considerando el circuito de la Figura 1:

Figura 1: Adaptación con transformador de $\lambda/4$.

- a) Diseñe un transformador de $\lambda/4$ para adaptar una carga $Z_L=300~\Omega$ a una línea de $Z_0=50~\Omega$, y grafique el módulo del coeficiente de reflexión en dB en función de la frecuencia. Encuentre el AB para el cual el mismo se mantiene por debajo de $-10~\mathrm{dB}$.
- b) Diseñe un transformador de $\lambda/4$ para una impedancia de carga de 125 Ω , determine el AB en este segundo diseño y compare los resultados con los de la carga de 300 Ω .
- c) Implemente el circuito de b) con líneas microstrip, para una frecuencia de diseño $f_0 = 1$ GHz. Compare ambos resultados y escriba una conclusión.

2. Sea el circuito de la Figura 2:

- a) Adapte una carga de $Z_L = 100 + j75 \Omega$ a una línea de transmisión de $Z_0 = 75 \Omega$ utilizando la técnica del stub simple en paralelo. Utilice como criterio de diseño que la distancia de la carga al stub sea la mínima posible y que la longitud del stub también sea la mínima posible.
- b) Implemente el circuito con líneas coaxiles RG-59, para una frecuencia de diseño $f_0=100$ MHz. Compare con el inciso a) y escriba una conclusión.

Figura 2: Adaptación con stub simple.

Figura 3: Adaptación con stub doble.

3. Sea el circuito de la Figura 3:

a) Adapte una carga de $Z_L=150~\Omega$ a una línea de $Z_0=50~\Omega$ utilizando la técnica de dos stubs en paralelo, colocando el primer stub a 0,375 λ desde la carga y con una separación entre ambos de $\lambda/8$. Implemente ambos stubs en circuito abierto.