0.1 Recap

Definition of a topology on a set X.

$$(X, \mathcal{O} \subset P(X))$$

E.g. $X = \mathbb{R}$, $\mathcal{O} = \text{set of "open" sets of } \mathbb{R}$ (as a metric space.) E.g. X is any metric space, $\mathcal{O} = \text{any metric open set}$

(The standard metric topology in \mathbb{R}).

Definition 0.1 Let (X, \mathcal{O}) be a topological space. A subset $\mathcal{B} \subset \mathcal{O}$ is called a basis for the topology, if every $U \in \mathcal{O}$ can be expressed as a union of elements of \mathcal{B} .

E.g. In \mathbb{R} metric, $\mathcal{B} = \{all \ open \ balls\}.$

Side example: $\bigcap_{n\in\mathbb{N}}(-\frac{1}{n},\frac{1}{n})=0$. Infinite intersection don't have to be open.

Example 0.2 The Lower Limit Topology

 $X = \mathbb{R}$

 $\mathcal{B}_{ll} = \{ [a, b) | a, b \in \mathbb{R} \}$

 $\mathcal{O}_{ll} = set \ of \ all \ possible \ unions \ of \ elements \ of \ \mathcal{B}_{ll}$

Proposition 0.3 Any interval of the form (a, b) is open in \mathbb{R}_{ll} .

Proof:
$$(a,b) = \bigcup_{n \in N > 0} [a + 1/n, b)$$

Definition 0.4 A set $Y \subset X$ is closed if $(X \setminus Y) \in O$.

[a,b) are both open and closed.

 $\mathcal{O}_{metric} \subset \mathcal{O}_{ll}$, because $B_{metric} \subset B_{ll}$.

 \mathbb{R}_{ll} has "more" open sets that \mathbb{R} metric. Say that the lower limit topology is finer metric topology.

Q) Is $\mathcal{O}_{metric} = \mathcal{O}_{ll}$? Is [a, b) open in the metric topology?

Definition 0.5 *Let* $A \subseteq X$. *Let* $x \in X$.

There is the following trichotomy:

- 1) There is some $U \in \mathcal{O}$ s.t. $x \in U$ and $U \subset A$. $-\dot{c}$ X is in the interior of A, $x \in intA$.
- 2) There is some $U \in \mathcal{O}$ s.t. $x \in U$ and $U \subset (X \setminus A)$. $x \in int(X \setminus A)$.
- 3) For all open sets $U \in O$ s.t. we have $U \cap A \neq \emptyset$ and $U \cap (X \setminus A) \neq \emptyset$ $x \in U$. X is in the boundary of A.

Example 0.6 In \mathbb{R} metric.

$$A = [a, b)$$
. $int(A) = (a, b)$

 $\mathit{boundary}(A) = \{a,b\}.$

$$int(X \backslash A) = (-\infty, a) \cup (b, \infty).$$

Definition 0.7 If $A \subset X$, then we say that $x \in X$, is a limit point of A, if either $x \in intA$ or $x \in boundaryA$. i.e. x is a limit point if $\forall U \subset \mathcal{O}$, s.t. $x \in U$, $U \cap A \neq \emptyset$

Definition 0.8 The closure of A, denoted \overline{A} is the set of limit points of A.

Proposition 0.9 *Let* $A \subset X$ *. Then:*

- 1. int(A) is open, i.e. $int(A) \in \mathcal{O}$.
- 2. \overline{A} is closed.
- 3. A is open iff A = int(A)
- 4. A is closed iff $A = \overline{A}$.

0.1.1 Finite Complement Topology

 $X = \mathbb{R}$

$$\mathcal{O} = \{ Y \subseteq X | X \backslash Y \text{ is finite} \}$$

Definition 0.10 (Subspace Topology) If (X, \mathcal{O}) is a topological space, and $Y \subset X$ is any set, then we can define a standard topology on Y, called the subspace topology.

Define
$$\mathcal{O}_y := \{U \cap Y | U \in \mathcal{O}\}$$

Definition 0.11 Let X and Y be topological spaces. A function $f: X \to Y$ is continuous, if for all $\forall V$ open in Y, $f^{-1}(V)$ is open in X.

Definition 0.12 $f: X \to Y$ is called a homeomorphism if it is continuous, one to one, onto and f^{-1} is continuous.