第一章

一维:

均值函数: $EX_{(t)} = \mu_X(t)$ 方差函数: $VarX_{(t)} = \sigma(t)$

一维分布: $F_t(x) = P(X_{(t)} \le x)$ uuu77nb

二维

协方差函数: $R_X(t,s) = Cov(X(t),X(s))$

$$= E\{(X(t) - \mu_X(t))(X(s) - \mu_X(s))\}$$

① $R_X(t-s) = R_X(0,t-s)$ ② $R_X(t)$ 为偶函数, $R_X(0) = VarX(t)$

自相关函数: $r_X(t,s) = E[X(t)X(s)]$

相关系数: $\rho_X(t,s) = \frac{R_X(t,s)}{\sigma(t)\sigma(s)}$

二维联合分布: $F_{t,s}(x_t, x_s) = P(X(t) \le x_t, X(s) \le x_s)$

性质:

对称性: $R_X(t,s) = R_X(s,t)$ $r_X(t,s) = r_X(s,t)$

非负定性: $\sum_{i=1}^{n} \sum_{i=1}^{n} b_i b_i R_X(t_i, t_i) \ge 0$

(因为 $Var(\sum_{j=1}^{n}b_{j}X(t_{j})) = E\{\sum_{j=1}^{n}b_{j}(X_{t_{j}}-\mu_{t_{j}})\}^{2}$ 令 $Y = \sum_{j=1}^{n}b_{j}(X_{t_{j}})$, 则 $Var(Y) = Cov(Y,Y) = E\{(Y - \mu_{Y})^{2}\} = E\{[\sum_{i=1}^{n}b_{i}(X_{t_{i}}-\mu_{t_{i}})][\sum_{j=1}^{n}b_{j}(X_{t_{j}}-\mu_{t_{j}})]\} =$ (拆括号,再合并) = $\sum_{i=1}^{n}\sum_{j=1}^{n}b_{i}b_{j}R_{X}(t_{i},t_{j})$

有限维分布族:

$$F_{t_1,t_2,\dots,t_n}(x_1,x_2,\dots,x_n) =$$

$$P\{X(t_1) \le x_1, X(t_2) \le x_2, \dots, X(t_n) \le x_n\}$$

对称性:对变量 $X(t_1),X(t_2)...$ 的排序无关

相容性: 当某些 $x \to \infty$ 时高位分布和边缘分布与相应的 低维分布是一致的,对m < n有:

$$F_{t_1,\dots,t_{m-1},t_m,\dots,t_n}(x_1,\dots,x_{m-1},x_m,\infty\dots,\infty)$$

$$=F_{t_1,\dots,t_{m-1},t_m}(x_1,\dots,x_m)$$

同分布: 两个随机变量 X_1,X_2 的分布函数 $F_{X_1}(x_1),F_{X_2}(x_2)$ 对任何×都是相等的,则他们是同分布的;若一个随机向量 $X=(X_1,\ldots,X_n)$ 和 $Y=(Y_1,\ldots,Y_n)$ 有相同的联合分布,则也称他们是同分布的。

独立增量过程: 对任意 $t_1 < t_2 ... < t_n \in T$ 随机变量 $X(t_2) - X(t_3), X(t_3) - X(t_2) ... X(t_n) - X(t_{n-1})$ 相互独立 平稳独立增量过程: 对任意 $t_1, t_2, X(t_1 + h) - X(t_1) = X(t_2 + h) - X(t_2)$ (左右同分布)

Poisson 过程是平稳独立增量过程

<u>独立和</u>: $X_n = \sum_{i=0}^n Z_i$, 过程 $\{X_n, n \ge 0\}$ 是独立增量过程,

成为独立和 (Z_i , i=0,1...) 是 iid 的随机变量

条件期望:

- (a) $X \perp Y \Rightarrow E(X|Y=y) = EX$
- (b) 平滑性: $EX = \int E(X|Y=y)dF_Y(y) = E[E(X|Y)]$
- (c) $E[\emptyset(X,Y)|Y=y] = E[\emptyset(X,y)|Y=y]$

离散条件期望:

- ①X 取 x 的条件概率 $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$
- ②X 的条件分布函数 $F(x|y) = P\{X \le x|Y = y\}$
- ③X 的条件期望 $E(X|Y = y) = \sum_{x} x P\{X = x|Y = y\}$

连续条件期望: (X,Y)~f(x,y)

- ①X 取 x 的条件概率 $P(X = x | Y = y) = \frac{f(x,y)}{f_Y(y)} = f(x | y)$
- ②X 的条件分布函数 $F(x|y) = \int_{-\infty}^{x} f(x|y) dx$
- ③X 的条件期望 $E(X|Y=y) = \int x f(x|y) dx (= g(y))$

矩母函数(连续): r.v. X 的矩母函数为 e^{tX} 的期望

$$g(t) = E(e^{tX}) = \int e^{tx} f(x) dx$$

矩母函数性质: 矩母函数唯一的确定了 X 的分布 $(f) E[X^n] = g^{(n)}(0), n \ge 1$ (g 的 n 阶导数在 0 的取值) $(f) E[X^n] = g_{X+Y}(t) = g_X(t)g_Y(t)$

随机和的矩母函数: 随机和 $Y=\sum_{k=1}^{N}X_k$,N 非负整数, X是 iid 的 ①EY=EN*EX ② $EY^2=EN*VarX+EN^2*E^2X$

 $4g_{Y}(t) = E[g_{X}(t)^{N}]$

生成函数(离散): 离散 r.v.X 的生成函数为 s^X 的期望

$$\emptyset_X(s) = \sum_{k=0}^{\infty} p_k s^k \ (p_k = P(X = k), k = 0,1...)$$

生成函数性质:

- 1 $p_0 = \emptyset_X(0), p_k = \frac{1}{k!} \frac{d^k}{ds^k} \emptyset_X(s)|_{s=0}, k = 1,2...$
- (3) $EX = \emptyset'_{r}(s)|_{s=1}$
- $(4) \quad E\{X(X-1)\cdots(X-r+1)\} = \frac{d^r}{ds^r} \emptyset_X(s)|_{s=1}$

随机和的生成函数:

$$\emptyset_Y(s) = E(s^Y) = E\{(\emptyset_X(s))^N\} = \emptyset_N(\emptyset_X(s))$$

第二章

Poisson 过程: 整数值随机过程{N(t), t≥0}满足:

①N(0)=0 ②N(t)是独立增量过程 (增量代表区间内发生的事件数)

③增量 N(s+t)-N(s)服从λt 的泊松分布:

$$P\{N(s+t) - N(s) = k\} = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$$

性质: $\underline{Var[N(t)]} = \underline{EN(t)} = \lambda t$

是泊松过程的四个假定:

- ① 不相交区间中事件发生的数目相互独立
- ② 增量 N(t+h)-N(t)的分布只依赖于区间长度 h
- ③ 存在 $\lambda > 0$, 当 $h \to 0$ 时,长度为 h 的小区间中时间至少发生一次的概率 $P\{N(t+h) N(t) \ge 1\} = \lambda h + o(h)$
- ④ 小区间(t,t+h]发生两个或两个以上事件的概率为 o(h)

跳跃时刻: $N(t) \sim Poi(\lambda)$

 $W_n=\inf\{t\geq 0 \colon N(t)=$

n} $n \ge 1$ 为第 n 个跳跃时刻。

 $\{W_n \le t\} \Leftrightarrow \{N(t) \ge n\}$

$$v_1$$
 v_2 v_3 v_4 v_4 v_5 v_6 v_8 v_8

 $\{\boldsymbol{W}_n > t\} \Leftrightarrow \{\boldsymbol{N}(t) < n\} \ \{\boldsymbol{W}_{k+1} > t\} \Leftrightarrow \{\boldsymbol{N}(t) \leq k\}$

 $\{W_{k+1} \le t\} \Leftrightarrow \{N(t) > k\}$

等号不能随便抹去;左=第 n 个事件在 t 时刻前到来;右 = t 时刻到来事件总个数大于等于 n。

其中时间间隔 $X_i \sim Exp(\lambda), i = 1, 2...$

跳跃时刻分布:

若 X_n , n=1,2...是均值为 $\frac{1}{\lambda}$ 的 iid 指数随机变量, $W_n \sim \Gamma(n,\lambda)$ 跳跃时刻联合分布: 前提: 给定N(t)=n

 W_1, \dots, W_n 的联合分布为 $f_{W_1 \cdots W_n}(w_1, \dots, w_n | N(t) = n) = \frac{n!}{t^n}$ 非齐次泊松过程:

①N(0)=0 ②N(t)是独立增量过程

$$(3)P\{N(s+t) - N(s) = k\} = \frac{(\int_{s}^{s+t} \lambda(u) du)^{k} e^{-\int_{s}^{s+t} \lambda(u) du}}{k!}$$

复合泊松过程: N(t)是泊松过程, Y_1, \ldots, Y_n 是 iid 的 r.v. $EY_i = \mu | VarY_i = \sigma^2 | Y_i \sim G(y), i = 1, 2 \ldots | X(t) = \sum_{i=1}^{N(t)} Y_i \mathbb{A} \sim 1.EX(t) = EN(t)EY = \lambda \mu t \ 2.VarX(t) = EN(t)VarY_1$

$$=\lambda t(\sigma^2+\mu^2)$$

3.若 $Y_1 = \cdots = Y_n = 1$, X(t) = N(t)

 $4.P(X(t) \le x) = \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} e^{-\lambda t} G^{(n)}(x)$ (卷积公式)

更新过程: 将泊松过程时间间隔的指数分布换成任意 $X_i, i=1,2...$ 是一连串非负、iid 的随机变量,分布为 $F(\mathbf{x}).$ 记 $W_n=0,\ W_n=\sum_{i=1}^n X_i,\ W_n$ 表示第 n 次事件发生时间. $N(t)=max\{n:W_n\leq t\}$ 为更新过程。

期望(更新函数) $m(t) = EN(t) = \lambda t$

$$(P\{N(t) = n\} = F^{(n)}(t) - F^{(n+1)}(t))$$

第三章

离散时间 Markov 链: 若对任何一列状态 i_0,\ldots,i_{n-1},i,j

及任何 $n \ge 0$,随机过程 $\{X_n, n \ge 0\}$ 满足 Markov 性质:

$$P\{X_{n+1}=j|X_0=i_0,\cdots,X_{n-1}=i_{n-1},X_n=i\}=P\{X_{n+1}=j|X_n=i\}$$

转移概率矩阵
$$\mathbb{P} \triangleq \begin{pmatrix} P_{00} & \cdots & P_{0n} \\ \vdots & \ddots & \vdots \\ P_{n0} & \cdots & P_{nm} \end{pmatrix} \begin{pmatrix} \sum_{i=0}^{n} P_{ji} = 1 (行和为 1, 列和不一定) \\ 0 \le P_{ij} \le 1 \end{pmatrix}$$

n 步转移概率: $P_{ii}^{(n)} = \sum_{k=0}^{\infty} P_{ik} P_{ki}^{(n-1)} = (\mathbb{P}^n)_{ii}$

Chapman-K 方程: $P_{ij}^{(n+m)} = \sum_{k=0}^{\infty} P_{ik}^n P_{kj}^m$

状态分类: 可达: ij 互达 \Leftrightarrow \exists n, $P_{ii}^{(n)} > 0$

 $\underline{\underline{\texttt{5}}} : \mathbf{ij} \, \overline{\texttt{5}} \, \underline{\texttt{5}} \, \exists \, n, m \, s. \, t. \, P_{ij}^{(n)} > 0, P_{ji}^{(m)} > 0 \Leftrightarrow \mathbf{d}(\mathbf{i}) = \mathbf{d}(\mathbf{j})$

不可约: 所有状态均互达, 即所有状态处于同一等价类

<u>周期</u>: x 的周期d(i) = 所有满足 $P_{ii}^{(n)} > 0$ 的 n 的最大公约数

非周期:状态 i 是非周期的 ⇔ d(i) = 1

周期的基本性质:

- 1. 状态 i 的周期为 $d(i) \Rightarrow \exists N \text{ s.t.} \forall n > N, P_{ii}^{(nd(i))} > 0$
- 2. 状态 i 的周期为 d, $P_{ij}^{(m)} > 0 \Rightarrow \exists N \text{ s.t.} \forall n > N, P_{ii}^{(m+nd)} \geq P_{mi}^{(m)} P_{ii}^{(d)} > 0$

<u>Th</u>:转移概率矩阵是<u>不可约、非周期的、有限状态</u>的

Markov 链⇒ ∃N s.t. ∀n > N, ℙⁿ所有元素均 > 0

常返与瞬过:

 $f_{ij}^{(n)}$ =从状态 i 出发,第 n 次转移后首次到达 j 的概率 = $P\{X_n=j,X_{n-1}\neq j,...,X_2\neq j|X_1=i\}$ ($f_{ij}^{(0)}=\mathbf{0}$) $f_{ii}^{(n)}$ =从状态 i 出发,第 n 次转移后首次回到 i 的概率 = $P\{X_n=i,X_{n-1}\neq i,...,X_2\neq i|X_1=i\}$ ($f_{ii}^{(0)}=\mathbf{0}$) $f_{ij}=\sum_{n=0}^{\infty}f_{ij}^{(n)}$ =从 i 出发,能到达 j 的概率。

$P(\text{从i出发至少返回i状态K次}) = f_{ii}^{K}$

常返: 状态 i 常返 \Leftrightarrow $f_{ii} = 1 \Leftrightarrow \sum_{n=1}^{\infty} P_{ii}^{(n)} = \infty$

瞬过: 状态 i 瞬过 \Leftrightarrow $f_{ii} < 1 \Leftrightarrow \sum_{n=1}^{\infty} P_{ii}^{(n)} < \infty$

步数T_{ij}: 0 时从 i 出发,首次到达 j 用的步数

两个等式: $P(T_{ij}=n)=f_{ij}^{(n)}$, $P(T_{ij}<\infty)=\sum_{n=1}^{\infty}f_{ii}^{(n)}=f_{ij}$

性质:若 i 常返且 ij 互达,j 也常返

常返时T_i: 从 i 出发首次回到 i 的时刻= $inf\{n \geq 1, X_n =$

 $i,X_k\neq i,k=1\dots n-1|X_0=i\}$

平均常返时 $\mu_i = ET_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$

零常返 $\Leftrightarrow \mu_i = +∞$ (无穷状态才可能出现零常返)

正常返⇔ μ_i < +∞ (有限状态的 Markov 链都是正常返)

极限分布: $\tau_i = \lim_{n \to \infty} P_{ii}^{(n)}$

Markov 链基本极限定理

- 1. 状态 i 瞬过/零常返 $\leftrightarrow \tau_i = \lim_{n \to \infty} P_{ii}^{(n)} = 0$
- 2. 状态 i 周期 di正常返⇔ $\tau_i = \lim_{n \to \infty} P_{ii}^{(n)} = \frac{d_i}{\mu_i}$
- . 状态 i 非周期正常返⇔ $au_i = \lim_{n \to \infty} P_{ii}^{(n)} = \frac{1}{\mu_i}$

遍历=非周期正常返

<u>Th</u>: 若状态 i 是遍历的,则 $\forall j \rightarrow i, \lim_{n \rightarrow \infty} P_{ji}^{(n)} = \lim_{n \rightarrow \infty} P_{ii}^{(n)} = \frac{1}{u_i}$

平稳分布: Markov 链的转移矩阵 $\mathbb{P}=(P_{ij})$, 若存在一个分布 $\{\tau_i, i \geq 0\}$ 满足 $\tau_i = \sum_{k=0}^{\infty} \tau_k P_{ki}$, 则成 $\{\tau_i, i \geq 0\}$ 是…

即满足(
$$\tau_0$$
 ···· τ_n) $\begin{pmatrix} P_{00} & \cdots & P_{0n} \\ \vdots & \ddots & \vdots \\ P_{n0} & \cdots & P_{nn} \end{pmatrix} = (\tau_0 \quad \cdots \quad \tau_n)$

重要结论:

<u>(极限分布⇒平稳分布)</u>若 Markov 链不可约、遍历、则 对 所 有 状 态 i , $\lim_{n\to\infty} P_{ij}^{(n)} = \tau_j$ 存在,且 $\Pi = (\tau_0 \dots \tau_n)$ 为平稳分布,即 $\Sigma_k \tau_k = 1$, $\Pi \mathbb{P} = \Pi$

<u>【平稳分布⇒极限分布】</u>若 Markov 链不可约、遍历,只存在一个平稳分布,该平稳分布就是 Markov 链的极限分布,即 $\forall i$, $\lim P_{ii}^{(n)} = \tau_i$

第四章

严平稳过程

设 $\{X(t), t \in T\}$ 为一随机过程,若对任意的 k 和对任意的 $t_1, ..., t_k \in T$ 和任何 h,有 $\{X(t_1 + h), ..., X(t_k + h)\}$ = $\{X(t_1), ..., X(t_k)\}$ (左右同分布),则称为~。

性质:

均值若存在,必常数: EX(t) = m(t) = m

方差若存在,必常数: $Var(X(t)) = \sigma^2 = E(X(t) - m)^2$ 协方差函数只与 t-s 有关: E(X(t) - m)(X(s) - m) =

 $E(X(t-s)-m)(X(0)-m) \quad (\ \ \mathbb{Z} \ \ R(h)=E(X(h)-m)(X(0)-m))$

严平稳过程 X 的**自相关函数**: $r(\tau) = EX(t)EX(t + \tau)$

标准自相关函数:
$$\rho(v) = \frac{R(v)}{\sigma^2} = \frac{R(v)}{R(0)}$$

 $(\rho(0) = 1, |\rho(v)| \le 1)$

宽平稳过程: 设 $\{X(t), t \in T\}$ 为一实值随机过程,如果对 $\forall t \in T$,有 $\mathbf{E}\mathbf{X}^2(t) < \infty$ (方差存在), $\mathbf{E}\mathbf{X}(t) = \mathbf{m}$ 及协方差函数 $\mathbf{E}(X(t) - \mathbf{m})(X(s) - \mathbf{m})$ 仅与 t-s 有关,则称 X~严平稳和宽平稳判断:

- 1. 二阶矩存在的严平稳是宽平稳
- 2. X 在时刻 t 的取指与 t 无关, 那么一定是严平稳
- 3. 注意看是平稳过程还是平稳序列!!!! 看 t 的范围

周期平稳过程: 设 $\{X(t),t\in T\}$ 为一平稳过程, 若存在正常数 κ 使 $X(t+\kappa)=X(t)$, 则成 X 为周期平稳过程, κ 为 X 的周期, 其协方差函数也是周期函数, 且周期也为 κ : $R(\tau+\kappa)=E(X(t+\tau+\kappa)-m)(X(t)-m)=E(X(t+\tau)-m)(X(t)-m)=R(\tau)$

复平稳过程: 设 $\{X(t), t \in T\}$ 为一<复值>随机过程,如果对 $\forall t \in T$,有 $EX^2(t) < \infty$ (方差存在),EX(t) = m 及 协 方 差 函 数 $E(X(t) - m)\overline{(X(s) - m)}$ (共轭) 仅与 t-s 有关,则~均值遍历性:

设 $\{X(t), -\infty < t < +\infty\}$ 为一平稳过程(或序列),若

$$\bar{X} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt = m$$

或

$$\bar{X} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} X(k) = m$$

则称X的均值有遍历性。

协方差遍历性:

设 $\{X(t), -\infty < t < +\infty\}$ 为一平稳过程(或序列), 若

$$\widehat{R}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-\pi}^{T} (X(t) - m)(X(t + \tau) - m) dt = R(\tau)$$

戓

$$\hat{R}(\tau) = \lim_{N \to \infty} \frac{1}{2N+1} \sum\nolimits_{k=-N}^{N} (X(k+\tau) - \widehat{m}_N)(X(k) - \widehat{m}_N) = R(\tau)$$

则称X的协方差具有遍历性。

随机过程遍历性=均值遍历性+协方差遍历性 均值遍历性定理:

- 1. $X = \{X_n, n = 0, \pm 1...\}$ 为平稳序列,其协方差函数为 $R(\tau)$,则X有均值遍历性 $\Leftrightarrow \lim_{N \to \infty} \frac{1}{N} \sum_{\tau=0}^{N-1} R(\tau) = 0$
- 2. $X = \{X_n, n = 0, \pm 1...\}$ 为 平 稳 过 程 , X有均值遍历性 $\Leftrightarrow \lim_{T \to \infty} \frac{1}{T} \int_0^{2T} \left(1 \frac{\tau}{2T}\right) R(\tau) d\tau = 0$

充分条件:

平稳序列: 若 $\lim_{t\to\infty} R(\tau) \to 0 \Rightarrow$ 具有均值遍历性

平稳过程: 若 $\int_{-\infty}^{+\infty} |R(\tau)| < \infty$ ⇒具有均值遍历性

协方差函数遍历性定理:

定义 $Y_{\tau}(t) = (X(t+\tau) - m)(X(t) - m)$,有 $EY_{\tau}(t) = R(\tau)$

 $X = \{X(t), -\infty < t < +\infty\}$ 为平稳过程

 $Y_{\tau} = \{Y_{\tau}(t), -\infty < t < +\infty\}$

给 定 τ , X 的 协 方 差 函 数 $R(\tau)$ 有 协 方 差 遍 历 性 \Leftrightarrow $\lim_{T\to 0} \frac{1}{T} \int_0^{2T} (1 - \frac{\tau_1}{2T}) (B(\tau_1) - R^2(\tau)) d\tau_1 = 0$ 其中, $B(\tau_1) = EX(t + \tau + \tau_1) X(t + \tau_1) X(t + \tau) X(t)$

充分条件

 $X = \{X_n, n = 0, \pm 1...\}$ 是均值为 0 的 Gauss 平稳过程: $\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} R^2(k) = 0 \Rightarrow$ 协方差函数有均值遍历性 **协方差函数的性质**:

- 1. 对称性: $R(\tau) = R(-\tau)$
- 有界性: |R(τ)| ≤ R(0)2
- 3. 非负定性:对任意时刻 t_n 及实数 a_n , n = 1,2...N, 有 $\sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m R(t_n t_m) \ge 0$
- 4. 平稳过程 n 阶导数的协方差函数为(导数存在即成立)

$$\text{Cov}\big(X^{(n)}(t),X^{(n)}(t+r)\big)=(-1)^nR^{2n}(\tau)$$

<u>功率谱密度</u>: $S(\omega) = \lim_{T \to \infty} E \frac{1}{2T} |F(\omega, T)|^2$ $F(\omega, T) = \int_{-T}^{T} X(t)e^{-j\omega t} dt \qquad R(0) = \frac{1}{2\pi} \int_{-T}^{+\infty} S(\omega) d\omega$

性质: $\bar{S}(\omega) = S(\omega) \ge 0$ $S(-\omega) = S(\omega)$

W-K 公式: 假定EX(t) = 0 且 $\int |R(\tau)|d\tau < \infty$

平稳过程: $S(\omega) = \int R(\tau) e^{-j\omega\tau} d\tau$ $R(\tau) = \frac{1}{2\pi} \int S(\omega) e^{j\omega\tau} d\omega$

偶 Fourier 变换的形式: $S(\omega) = 2 \int_0^\infty R(\tau) \cos \omega \tau \, d\tau$ $R(\tau) = \frac{1}{2} \int_0^\infty S(\omega) \cos \omega \tau \, d\omega$

平稳序列: $S(\omega) = \sum_{\tau=-\infty}^{\infty} R(\tau) e^{-j\omega\tau}$ $R(\tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) \cos \omega \tau \, d\omega$

有理谱密度: 由 $S(\omega) = \frac{P(\omega)}{Q(\omega)}$ 计算 $R(\tau)$

- 1. 留数定理: $\int_{-\infty}^{+\infty} f(z)dz = 2\pi i \sum_{k=1}^{n} Res[f(z), a_k]$, 取上半平面的留数!!!!!!
- $\begin{array}{c|c} R(\tau) & S(\omega) \\ \hline 1 & 2\pi\delta(\omega) \\ \hline \delta(\tau) & 1 \\ \end{array}$

2. 计算 m 级留数 $Res[f(z),a] = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} [(z-1)]$

a)^mf(z)] 常数协方差/功率谱:

$$\delta(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \end{cases} \int_{-\infty}^{\infty} \delta(x) dx = 1$$

三角函数协方差/功率谱

$$\begin{split} \cos\omega\tau_0 &= \frac{1}{2} (e^{i\omega\tau_0} + e^{-i\omega\tau_0}) & \sin\omega\tau_0 = \frac{1}{2i} (e^{i\omega\tau_0} - e^{-i\omega\tau_0}) \\ S(\omega) &= a\cos\omega\tau_0 \, , R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} a\cos\omega\tau_0 e^{i\omega\tau} \, d\omega = \\ &\frac{a}{4\pi} \int_{-\infty}^{\infty} e^{i\omega(\tau+\tau_0)} + e^{i\omega(\tau-\tau_0)} d\omega = \frac{a}{2} \delta(\tau+\tau_0) + \delta(\tau+\tau_0) \end{split}$$

公式

$$X \perp Y \Rightarrow EXY = EX * EY$$

离散概率分布	P(X = x)	矩母函数	EX	Var(X)
二项分布 $B(n,p)$,	$\binom{n}{x}p^x(1-p)^{n-x}$,	$(p\mathrm{e}^t + (1-p))^n$	np	np(1-p)
$0\leqslant p\leqslant 1$	$x=0,1,\cdots,n$			
Poisson 分布 $, \lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}, x = 1, 2, \cdots$	$\exp\{\lambda(\mathbf{e}^t-1)\}$	λ	λ
几何分布, 0 ≤ p ≤ 1	$p(1-p)^{x-1}$,	$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
	$x=1,2,\cdots$			
负二項分布	${x-1 \choose r-1} p^r (1-p)^{x-r},$	$\left(\frac{pe^t}{1-(1-p)e^t}\right)^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
参数为 r,p	$x=r,r+1,\cdots$			
连续概率分布	f(x)	g(t)	EX	VarX
均匀分布 U(a, b)	$\frac{1}{b-a}, a < x < b$	$\frac{e^{ta} - e^{tb}}{t(a-b)}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布, λ > 0	$\lambda e^{-\lambda x}, x \geqslant 0$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Γ 分布 $\Gamma(n,\lambda),\lambda>0$	$\frac{\lambda e^{-\lambda x} (\lambda x)^{n-1}}{(n-1)!}, x \geqslant 0$	$\left(\frac{\lambda}{\lambda - t}\right)^n$	$\frac{n}{\lambda}$	$\frac{n}{\lambda^2}$
正态分布 $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-u)^2/2\sigma^2}$	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$	μ	σ^2
Beta 分布 B(a, b),	$cx^{a-1}(1-x)^{b-1}, 0 < x < 1$		$\frac{a}{a+b}$	ab
->04>0	$C = \Gamma(a+b)$		a+b	$(a+b)^2(a+b+1)$