ベクトルが張る空間

 $m \times n$ 型行列 A で写れる範囲を Im A として定義した。

 \boldsymbol{x} を n 次元ベクトルとすると、 $\operatorname{Im} A$ は次のようなものといえる。

ref: 行列と行列式の基礎 p6~8、ref: プログラミングのための線形代数 p135

な をいろいろ動かしたときの、

y = Ax が動ける範囲が Im A

ここで、A を列ベクトルを並べたもの $A = (\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n)$ として書き、

 \boldsymbol{x} も成分 x_1, \ldots, x_n で書けば、

$$oldsymbol{y} = egin{pmatrix} oldsymbol{a}_1 & \cdots & oldsymbol{a}_n \end{pmatrix} egin{pmatrix} x_1 \ dots \ x_n \end{pmatrix} = x_1 oldsymbol{a}_1 + \cdots + x_n oldsymbol{a}_n$$

つまり、

数 x_1, \ldots, x_n をいろいろ動かしたときの、

 $x_1 \boldsymbol{a}_1 + \cdots + x_n \boldsymbol{a}_n$ が動ける範囲が $\operatorname{Im} A$

であり、この線形結合が動ける範囲を「ベクトル $oldsymbol{a}_1,\ldots,oldsymbol{a}_n$ の張る空間」 という。

$$\langle \boldsymbol{a}_1,\ldots,\boldsymbol{a}_k \rangle$$

あるいは

$$span\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k\}$$

によって表し、これを $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k$ が張る空間という。

ベクトルが張る空間は部分空間

 $oldsymbol{\cdot}$ ベクトルが張る空間は部分空間 $oldsymbol{v}_1,\ldots,oldsymbol{v}_k\in\mathbb{R}^n$ が張る空間 $\langleoldsymbol{v}_1,\ldots,oldsymbol{v}_k
angle$ は部分空間である

[Todo 1: ref: 行列と行列式の基礎 p94 命題 3.1.2]

 $oldsymbol{\vartheta}$ 部分空間の張る空間は部分空間 $V \subset \mathbb{R}^n$ を部分空間、 $oldsymbol{v}_1, \ldots, oldsymbol{v}_k \in V$ とすると、

$$\langle \boldsymbol{v}_1, \ldots, \boldsymbol{v}_k \rangle \subset V$$

≥ 証明

[Todo 2: ref: 行列と行列式の基礎 p94 命題 3.1.4]

ベクトルが張る空間の幾何的解釈

ベクトル $\mathbf{a}_1,\ldots,\mathbf{a}_n$ の張る空間 $\langle \mathbf{a}_1,\ldots,\mathbf{a}_n \rangle$ は、 $\mathbf{a}_1,\ldots,\mathbf{a}_n$ で定まる平面の一般化といえる。(ここで、点は 0 次元平面、直線は 1 次元平面と考える。)

- $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ がすべて \boldsymbol{o} なら、 \boldsymbol{o} ただ一点が $\langle \boldsymbol{a}_1, \ldots, \boldsymbol{a}_n \rangle$
- a_1, \ldots, a_n がすべて一直線上にあれば、その直線が $\langle a_1, \ldots, a_n \rangle$

• a_1, \ldots, a_n がすべて平面上にあれば、その平面が $\langle a_1, \ldots, a_n \rangle$

たとえば \mathbb{R}^3 において座標を(x,y,z) とするとき、xy 平面は \mathbb{R}^3 の部分空間である。

ightharpoonup 座標部分空間 $\{1,2,\ldots,n\}$ の部分集合 I に対して、 $x_i\,(i\in I)$ 以外の座標がすべて 0 である部分集合は \mathbb{R}^n の部分集合である。

このようなものを座標部分空間といい、 \mathbb{R}^I と書く。

$$\mathbb{R}^I = \langle \boldsymbol{e}_i \mid i \in I \rangle$$

と表すこともできる。

ベクトルが張る空間と有限従属性

・ 有限従属性定理の抽象版 $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \in \mathbb{R}^n$ とする $\langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \rangle$ に含まれる k 個よりも多い個数のベクトルの 集合は線形従属である

[Todo 3: ref: 行列と行列式の基礎 p41 (問 1.14)]

.....

Zebra Notes

Туре	Number
todo	3