[®] Offenl gungsschrift[®] DE 3143060 A1

(5) Int. Cl. ³: C 08 G 18/80

C 08 G 18/32 C 09 D 3/72 C 09 D 5/40 C 09 D 5/42

DEUTSCHES PATENTAMT

- 21) Aktenzeichen:
- 2 Anmeldetag:
- 43 Offenlegungstag:

P.31 43 060.0 30. 10. 81 11. 5. 83

(7) Anmelder:

Chemische Werke Hüls AG, 4370 Marl, DE

② Erfinder:

Gras, Rainer, Dipl.-Chem. Dr.; Hübel, Werner, Dipl.-Chem. Dr.; Schnurbusch, Horst, Dipl.-Chem. Dr., 4690 Herne, DE; Wolf, Elmar, Dipl.-Chem. Dr., 4350 Recklinghausen, DE

Pulverlacke auf der Basis von blockierten Isophorondiisocyanataddukten

Die Erfindung betrifft neue E-Caprolactam blockierte IPDI-Addukte, die durch Umsetzung mit allphatischen Diaminen erhalten werden. Derartige Addukte eignen sich u.a. für die Herstellung von lagerstabilen Pulverlacken; bei Verwendung von 4(3-Aminopropylamino)-2,2,4,4-tetramethylpiperidin werden Pulverlacke mit im Makromolekül eingebautem UV-Stabilisator erhalten. (31 43 060)

Patentansprüche:

5

10

- 1. Blockierte IPDI-Addukte, erhalten durch Umsetzung von IPDI, dessen NCO-Gruppen zu 10 bis 90 % mit E-Capro-lactam blockiert wurden, mit einer der Anzahl freier NCO-Gruppen äquivalenten Menge aliphatischer Diamine mit 2 bis 40 C-Atomen, wobei das Diamin 2 sterisch ungehinderte primäre und/oder sekundäre Aminostickstoffe aufweist und einen oder mehrere cycloaliphatische oder heterocyclische 5- bis 8gliedrige Ringe enthält.
- 2. Blockierte IPDI-Addukte entsprechend Anspruch 1, dadurch gekennzeichnet, daß ihr Molekulargewicht unter 1 500 und ihr Schmelz-punkt zwischen 60 und 170 °C liegt.
- 3. Blockierte IPDI-Addukte entsprechend Anspruch 1, dadurch gekennzeichnet, daß man als Diamin Ethylendiamin, Tetramethylendiamin,
 20 2-Methyl-pentamethylendiamin-1.5, Hexamethylendiamin oder 2,2,4(2,4,4)-Trimethyl-hexamethylendiamin-1.6.
- 4. Blockierte IPDI-Addukte entsprechend Anspruch 1,
 dadurch gekennzeichnet,
 daß man als Diamin 3-Aminomethyl-3,5,5-trimethyl-cyclohexylamin oder 4,4'Diaminodicyclohexylmethan einsetzt.
- 5. Blockierte IPDI-Addukte entsprechend Anspruch 1,
 dadurch gekennzeichnet,
 daß man als Diamin 4(3-Aminopropyl-amino)-2,2,6,6tetramethylpiperidin einsetzt.

- 6. Verfahren zur Herstellung von blockierten IPDI-Addukten entspr chend Anspruch 1, dadurch gekennzeichnet, daß man zunächst IPDI mit £-Caprolactam auf bekannte Weise partiell blockiert und anschließend die freien NCO-Gruppen mit einer äquivalenten Menge oder im Unterschuß an Diaminen bei einer Temperatur über 130 °C umsetzt.
- 7. Verwendung der blockierten IPDI-Addukte entsprechend der Ansprüche 1 bis 5 zur Herstellung von Pulver-lacken.
- 8. Verwendung der blockierten IPDI-Addukte zur Herstellung von Pulverlacken entsprechend Anspruch 7, dadurch gekennzeichnet, daß das OH/NCO-Verhältnis 1: n mit 0,8 < n < 1,2 beträgt.
- 9. Verwendung der blockierten IPDI-Addukte entsprechend Anspruch 5 zur Herstellung von Pulverlacken mit erhöhter UV-Stabilität.
- 10. Verwendung der blockierten IPDI-Addukte entsprechend
 25 Anspruch 9,
 dadurch gekennzeichnet,
 daß das OH/NCO-Verhältnis 1: n mit 0,8 < n < 1,2 beträgt.

0.7.3761

CHEMISCHE WERKE HÜLS AG - RSP PATENTE -

Pulverlacke auf der Basis von blockierten Isophorondiisocyanataddukten

Pulverlacke sind feinpulverige Kunststoff-Compounds, die aus einer in der Wärme vernetzbaren Verbindung, einem Harz und einem Vernetzungsmittel, einem Härter sowie Zusatzstoffen, wie Pigmenten, Farbstoffen, Füllstoffen, Verlaufmitteln, Katalysatoren u. a. bestehen. Pulverlacke werden beispielsweise durch Wirbelsintern oder im elektrostatischen Verfahren auf Metall- bzw. Kunststoffflächen aufgetragen. So kann das Pulver nach dem zuletzt genannten Verfahren mit Hilfe einer Zerstäubungspistole auf die Metalloberfläche unter Anlegung einer Potentialdifferenz von etwa 50 000 V appliziert werden. Es bildet sich dabei ein regelmäßiger Überzug auf der Metalloberfläche aus, während der Überschuß, der nicht mehr auf dem Metall haftet, wiedergewonnen werden kann.

15

20

Der so elektrostatisch mit Pulverlack überzogene Gegenstand wird anschließend in einem Ofen erhitzt. Dabei findet die Härtung des Überzugs statt, der somit seine endgültigen mechanischen und chemischen Eigenschaften annimmt.

Die Anforderungen, die an Pulverlacksysteme gestellt werden, sind vielfältiger Art. Sie reichen von einer guten Lagerbeständigkeit der Pulverlacke bis zur Abriebfestigkeit und Chemikalienbeständigkeit der erhaltenen Überzüge. In der Praxis haben sich mit &-Caprolactam blockierte Isocyanat-Addukte auf Isophorondiisocyanat (IPDI)-Basis zur Härtung von hydroxylgruppenhaltigen Polyestern und Epoxidharzen durchgesetzt. Dafür lassen sich eine Reihe von Gründen anführen.

Einmal haben die aliphatischen Isocyanat, wie z. B. IPDI, gegenüb r den aromatischen den Vorteil, beim Einbrennen und Altern nicht zu v rgilben. Zum and r n ist es mit Hilfe der Blockierung möglich, die Isocyanat mit den zu

härtenden Polyol n zu mischen, ohne daß s bereits bei Raumtemperatur zu iner Reaktion kommt.

Schließlich weisen die Addukte auf IPDI-Basis eine enge Molgewichtsverteilung auf, die für einen guten Verlauf des ausgehärteten Pulvers Voraussetzung ist. Mit großer Wahrscheinlichkeit ist die gezielte Adduktbildung des IPDI auf die unterschiedliche Reaktivität der aliphatischen und cycloaliphatischen NCO-Gruppe zurückzuführen.

10

15

30

35

5

Ausschließlich mit &-Caprolactam blockiertes IPDI schmilzt bei 53 bis 55 °C; die daraus hergestellten Pulver backen beim Lagern zusammen. Es ist daher notwendig, von höherschmelzenden IPDI-Addukten auszugehen; z. B. kann ein Teil der NCO-Gruppen mit einem Polyol als Kettenverlängerungsmittel umgesetzt werden (vgl. DE-AS 21 05 777, DE-OS 25 42 191 und US-PS 3 931 117).

Nach dem Verfahren der DE-OS 29 29 224 kann man auch IPDI-20 Oligomere als Pulverhärter einsetzen.

Die Darstellung von blockierten IPDI-Addukten, die durch kontrollierte Kettenverlängerung von partiell mit E-Capro-lactam blockiertem IPDI mit aliphatischen Diaminen erhält-lich sind, wurde in der Literatur bisher nicht beschrieben.

Die Umsetzung von Polyisocyanaten mit niedermolekularen primären und sekundären Polyaminen zu Harnstoffen ist be-kannt.

Sie wird bei der Herstellung von Biuretpolyisocyanaten beobachtet und stellt dort eine unerwünschte Nebenreaktion dar (vgl. DE-OS 22 61 065, DE-OS 26 09 995 und US-PS 3 903 126).

Die Umsetzung von Isocyanaten mit aliphatischen Aminen r-

folgt mit so großer Heftigkeit, daß "sie vor allen anderen Isocyanatreaktionen den Vorzug hat" (vgl. Houben-Weyl, Methoden der Organischen Chemie, Band XIII, Seite 132). Diese außerordentlich hohe Reaktivität dürfte auch die Ursache dafür sein, daß die direkte Reaktion zwischen aliphatischen Diaminen und Polyisocyanaten zu den entsprechenden Harnstoffderivaten bisher wenig untersucht worden ist.

Zwar sind die symmetrischen Harnstoffderivate im Prinzip auch durch direkte Umsetzung von Polyisocyanaten mit Wasser nach dem Verfahren der DE-OS 23 41 065 erhältlich, doch muß hierbei in Kauf genommen werden, daß bei der Adduktbildung gasförmige Reaktionsprodukte entstehen, die sorgfältig entfernt werden müssen.

Es wurde jetzt ein Weg gefunden, um gezielt Harnstoffderivate des IPDI darzustellen, die durch kontrollierte Kettenverlängerung von partiell mit &-Caprolactam blockiertem

IPDI mit einem aliphatischen Diamin erhältlich sind. Pulverlacke auf Basis dieser neuen blockierten IPDI-Addukte
zeichnen sich insbesondere durch eine verbesserte Lagerbeständigkeit aus.

Gegenstand der Erfindung sind die in den Ansprüchen be
schriebenen blockierten IPDI-Addukte, das Verfahren zu

ihrer Herstellung sowie ihre Verwendung zur Herstellung

von Pulverlacken.

Die erfindungsgemäß einsetzbaren Diamine sind nichtaromatischer Art. Sie enthalten 2 bis 40 C-Atome und können
einen oder mehrere cycloaliphatische oder heterocyclische
5- bis 8gliedrige Ringe enthalten. Die beiden reaktiven
primären und/oder sekundären Aminogruppen dürfen sterisch
nicht gehindert sein. Dies schließt nicht aus, daß das
Diamin beispielsweise eine weitere sterisch gehinderte
sekundär od r tertiär Aminogrupp enthalten kann. Beispielhaft seien genannt:

10

15

- unverzweigt primäre Alkylendiamine, wie Ethylendiamin, Trimethylendiamin, Tetramethylendiamin, Hexamethylendiamin, Octamethylendiamin und das C₃₆-Diamin.

5

- verzweigte primäre Alkylendiamine, wie 2,2,4(2,4,4)-Trimethyl-hexamethylendiamin und 2-Methyl-pentamethylendiamin
- cycloaliphatische primäre und sekundäre Diamine, wie 1,4-Diaminocyclohexan, 2,4-Diamino-1-methylcyclohexan, 4,4-Diaminodicyclohexylmethan, 4,4-Diamino-3,3',5,5-tetramethyldicyclohexylmethan und 3-Aminomethyl-3,5,5-trimethylcyclohexylamin (Isophorondiamin)

- heterocyclische Diamine, wie 4(3-Aminopropyl-amino)-2,2,6,6-tetramethylpiperidin (APTMP)
- Die zuletzt aufgeführte Verbindung zählt auch zu den Diaminen im Sinne dieser Erfindung, da die sekundäre Aminogruppe im Piperidinring sterisch gehindert ist. Diese V rbindung ist von großem Interesse, da sie es gestattet,
 permanent UV-stabilisierte Kunststoffe, insbesondere auch
 Pulverlacke, herzustellen. APTMP ist hier nicht nur einfach Additiv eines Kunststoffes, sondern es ist direkt
 in das Polymer eingebaut.
- Die erfindungsgemäßen blockierten IPDI-Addukte besitzen ein Molekulargewicht, das vorzugsweise unter 1 500 liegt. Der Schmelzpunkt liegt zwischen 60 und 170 °C. Der Gehalt an Harnstoffgruppen (berechnet als -HN-C-NH-) liegt in
- der Regel zwischen 2 und 16 Gewichtsprozent, vorzugsweise zwischen 6 und 14 Gewichtsprozent. Der Gehalt an NCO-Gruppen, die durch E-Caprolactam blockiert sind, beträgt üblicherweis 8 bis 18 Gewichtsprozent, vorzugsweis 10 bis 15 Gewichtsprozent.

Die beschriebenen IPDI-Addukte eignen sich als Härter für Epoxide sowie für alle Verbindungen, die Zerewitinoff-aktive Wasserstoffe aufweisen. Die Aushärtung erfolgt oberhalb von 160 °C, vorzugsweise bei 170 bis 200 °C.

- Anwendungsgebiete sind die Herstellung von Einbrennlacken sowie insbesondere von lagerstabilen Pulverlacken, mit denen metallische und nichtmetallische Gegenstände, z. B. Glas und Kunststoffe, beschichtet werden können.
- Derartige PUR-Pulverlacke weisen eine Korngröße auf, die unter 100 µ liegt. Sie enthalten neben blockierten IPDI-Addukten und den üblichen Lackzusätzen hydroxylgruppenhaltige Polyester oder Epoxidverbindungen mit mehr als einer 1,2-Epoxidgruppe im Molekül. Das OH/NCO-Verhältnis liegt im allgemeinen bei 1: n mit 0,8 < n < 1,2, bevorzugt im Bereich mit 0,95 < n < 1,05.

Die hydroxylgruppenhaltigen Polyester stellen im wesentlichen die Ester folgender Säuren und Alkohole dar:

- 1. Aromatische Polycarbonsäuren, wie Phthalsäure, Isophthalsäure, Terephthalsäure, Benzol-1,3,5-tricarbonsäure, Trimellithsäure, daneben auch anteilig monofunktionelle Carbonsäuren, z. B. Benzoesäure sowie
 acyclische Polycarbonsäuren, wie Adipinsäure, 2,4,4und 2,2,4-Trimethyladipinsäure, Sebacinsäure, Dodecandicarbonsäure.
- 2. Diole, wie Ethylenglykol, Propandiol-1.2, Butandiol-1.3, Butandiol-1.4, 2,2-Dimethylpropandiol-1.3, Hexandiol-1.6, 2,2-Bis(4-hydroxycyclohexyl)propan, Cyclo-hexandiol-1.2, Diethylenglykol, 2,2-Bis(4-hydroxyphe-nyl)propan, 1,4-Dihydroxymethylcyclohexan.
 - 3. Polyole, wie Glycerin, Hexantriol, Trimethylolpropan, Trimethylolethan, Sorbit u. a.

35

..20

Die Polyester werden in an sich bekannter Weise durch Verestern der Säuren oder Anhydride oder durch Umestern der niederen Alkylester, gegebenenfalls in Gegenwart üblicher Katalysatoren, hergestellt, wobei durch geeignete Wahl des COOH/OH-Verhältnisses Endprodukte erhalten werden, deren Hydroxylzahl zwischen 40 und 240 liegt.

Unter den Epoxiden sind vor allem höhermolekulare Verbindungen geeignet, die infolge ihres symmetrischen Aufbaus bzw. der Größe der an die 1,2-Epoxidgruppe gebundenen Kohlenstoffatome fest sind und Hydroxylgruppen enthalten. Die Epoxidverbindungen können sowohl gesättigt als auch ungesättigt, aliphatisch, cycloaliphatisch, aromatisch und/oder heterocyclisch sein.

Bevorzugt werden für diesen Zweck Festharze eingesetzt, deren Epoxiäquivalentgewicht zwischen 500 und 2 500 liegt. Darunter fallen insbesondere die Polyglycidylpolyether des 2,2-Bis-(4-hydroxyphenyl)-propans, die beispielsweise aus 2,2-Bis-(4-hydroxyphenyl)-propan mit Epichlorhydrin im Molverhältnis 1: n mit 1,9 > n > 1,2 in Anwesenheit von wäßrigem Alkalihydroxid erhältlich sind.

Die Erweichungstemperaturen der Polyepoxide und Polyester dürfen einerseites nicht zu hoch liegen, damit sich die Polyepoxide und/oder Polyester mit den blockierten IPDI-Addukten und den üblichen Zusätzen bei Temperaturen zwischen etwa 70 und 120 °C verarbeiten lassen. Andererseits dürfen sie aber auch nicht zu niedrig liegen, damit die aus den Gemischen hergestellten Pulver nicht zusammenklumpen. Der untere Aufschmelzpunkt muß daher über 40 °C liegen.

Zu den üblichen Zusätzen zählen insbesondere Farbstoffe und Pigmente, Füllstoffe, Verlaufmittel, Katalysatoren sowie Stabilisator n.

5

10

15

20

Die Verlaufmittel dienen zur Verbess rung der Verlaufseigenschaften der Überzüge. Es handelt sich um sehr unterschiedliche chemische Verbindungen bzw. deren Gemische,
z. B. polymere und monomere Verbindungen, wie Acetale,
Ether, z. B. Vinylisobutylether, Ester, z. B. n-Butylacrylat, Siliconharze, fluorierte Alkylester. Derartige
Verlaufmittel werden in Mengen von 0,5 bis 5 Gewichtsprozent, bezogen auf den Gesamtansatz, zugesetzt. Die genaue chemische Struktur der im Handel angebotenen Produkte, wie Modaflow[®] (Hersteller: Fa. Monsanto) und
Acrylat 4F[®] (Hersteller: BASF), ist unbekannt.

Um die Härtungsgeschwindigkeit zu erhöhen, kann man als Katalysatoren Organozinnverbindungen, wie z. B. Dibutylzinndilaurat (DBTL), Zinn(II)-octoat, Tributylzinnacetat u. a. in Mengen von 0,1 bis 5 %, bezogen auf 100 Gewichtsteile des Polyesters oder Polyepoxids, einsetzen.

Die erfindungsgemäß hergestellten Überzüge zeichnen sich durch ausgezeichnete Witterungsbeständigkeit und gute Farbbeständigkeit aus.

Experimenteller Teil

Die erfindungsgemäßen pulverförmigen Überzugsmittel werden durch die nachstehenden Beispiele illustriert:

Beispiele

30 A Herstellung blockierter Isophorondiisocyanat-Addukte

A 1 Zu 444 Gewichtsteilen IPDI wurden bei 120 °C 226 Gewichtsteile &-Caprolactam portionsweise so zugegeben, daß die Temperatur des Reaktionsgemisches nicht über 125 °C anstieg. Nach beendeter &-Caprolactamzugabe wurde noch so lange weiter erhitzt, bis dr NCO-Gehalt des Reaktionsgemisches 12,5 %

35

5

10

erreicht hatte. Anschließend wurde auf 160 °C aufgeheizt und unter intensiver Rührung innerhalb von ca. 10 Minuten 170 Gewichtsteile Isophorondiamin (IPD) zugegeben. Nach beendeter IPD-Zugabe wurde das Reaktionsgemisch auf Raumtemperatur abgekühlt.

Das Reaktionsprodukt war fest und hatte einen Schmelzbereich von 160 bis 170 °C (beginnende Zersetzung); der blockierte NCO-Gehalt betrug 10 %.

Analog zu dem im Beispiel A 1 beschriebenen Herstellungsverfahren wurden die in der nachfolgenden Tabelle aufgelisteten Verbindungen hergestellt.

10

•	
C	
	•
Ç	J
	•
)

84 100 122 97 87 Schmelzb reich 80 92 93 93 % NCO (block. E-Caprolactam Mole Zusammensetzung Hexamethylendiamin-1,6 4(x-Aminopropylamino-N-Cyclohexylpropandi-2,2,6,6-tetramethyl- $^{C}_{36}$ -Diamin- $^{(H_2N-(CH_2)_{36}-NH_2)}$ Diamin Isophorondiamin Isophorondiamin piperidin Mole amin-1,3 Mole IPDI Bsp. Nr.

Tab

2

 \mathbf{r}

0.z. 3761

- W . 12

B Herstellung der Polyester

- B 1 9 Mol (1 746 g) Dimethylterephthalat, 4 Mol (416 g) 2.2-Dimethylpropandiol-1,3, 3,75 Mol (540 g) 1,4-Dimethylolcyclohexan und 2,5 Mol (335 g) Trimethylol-5 propan wurde in einem 5 1-Glaskolben mit Hilfe eines Ölbades erwärmt. Nachdem die Stoffe zum größten Teil aufgeschmolzen waren, wurde bei einer Temperatur von 160 °C 0.05 Gewichtsprozent Di-n-butylzinnoxid als Veresterungskatalysator zugesetzt. Die erste Methanol-10 abspaltung trat bei ca. 170 °C Sumpftemperatur auf. Dabei sorgte ein Stickstoffstrom von ca. 30 1/h für eine bessere Austragung des Methanols. Die Umesterung war nach 14 Stunden abgeschlossen, als die Sumpftemperatur 220.0C erreicht hatte. Der Polyester 15 wurde auf 210 °C abgekühlt und durch Evakuierung bei ca. 1 mm Hg weitgehend von flüchtigen Anteilen befreit.
- 20 Physikalische Daten:

Hydroxylzahl:

Säurezahl:

Schmelzbereich:

Glasumwandlungstemperatur (DTA):

Viskosität bei 160 °C:

100 - 105 mg KOH/g

2 mg KOH/g

85 - 91 °C

85 - 91 °C

ca. 20 000 mPa s

- B 2 10 Mol (1 660 g) Terephthalsäure, 10 Mol (1 940 g)
 Dimethylterephthalat, 6,25 Mol (737,5 g) Hexandiol1,6, 2 Mol (288 g) Dimethylolcyclohexan, 10,5 Mol
 (1 092 g) Neopentylglykol und 2,9 Mol (388,6 g) Trimethylolpropan wurden, wie in Beispiel B 1 beschrieben, zur Veresterung bzw. Umesterung gebracht.
- 35 Physikalische Daten:

Hydroxylzahl: 55 - 61 mg KOH/g
Säurezahl: 4 - 6 mg KOH/g

Schmelzbereich: 75 - 80 °C

Glasumwandlungstemperatur (DTA): 45 - 55 °C

Viskosität bei 160 °C: 35 000 mPa s

5 C Epoxidharz

10

15

20

25

Es wurden zwei Epoxidharze auf Basis eines Adduktes aus 2,2-Bis-(4-hydroxyphenyl)-propan (Dian) und Epichlor-hydrin verwendet, welche zuerst einer HCl-Abspaltung unterworfen und anschließend mit weiterem Dian umgesetzt wurden.

Nach Angabe des Herstellers hatten die EP-Harze folgende physikalische Daten:

 C 1 EP-Äquivalentgewicht
 900 - 1 000

 EP-Wert
 0,10 - 0,11

 OH-Wert
 0,34

 Schmelzbereich
 96 - 104 °C

 C 2 EP-Äquivalentgewicht
 1 700 - 2 000

 EP-Wert
 0,05 - 0,059

OH-Wert 0,36 Schmelzbereich 125 - 132

D Beispiele für erfindungsgemäße Polyurethanpulverlacke

D la Klarlack

100 Gewichtsteile des gemahlenen Polyesters gemäß
Beispiel B 1 wurden mit 46,2 Gewichtsteilen blokkiertem Isocyanat-Addukt gemäß Beispiel A 2 und
0,73 Gewichtsteilen Λerylat-Verlaufmittel in der
Schmelze bei Temperaturen von 120 bis 140 °C mit
einem Intensivrührer homogenisiert. Nach dem Erkalten wurd die homogene Schmelze gebrochen und
anschließend mit einer Stiftmühl auf eine Korngröße von < 100 μ gemahlen. Das so hergestellte

0.2. 3761

Klarlack-Pulver wurde mit ein r elektrostatischen Pulverspritzanlage bei 60 kV auf entfettete Stahl-bleche appliziert und in einem Umlufttrocken-schrank bei Temperaturen zwischen 170 und 200 °C eingebrannt.

Tabelle 2

5

10	Einbrenn- bedingungen	Мес	Mechanische Kenndaten						
	Zeit/Temp.	SD	нк	нв	ET	GS	Imp.		
	12'/200 °C	50-60	192	125	>10	0	> 82		
	15'/190 °C	43-60	195	111	>10	0	> 82		
15	18'/180 °C	40-50	196	111	>10	0	> 82		
	23'/170 °C	55-65	192.	125	>10	0	> 82		

Die Abkürzungen in dieser und in den folgenden Tabellen bedeuten:

Imp. rev. = Impact reverse in inch · 1b △ 11,52 g·m

30 <u>D 1b Pigmentierter Lack</u>

542,9 Gewichtsteile Polyester gemäß Beispiel B 1
282,1 Gewichtsteile blockiertes Isocyanat-Addukt
gemäß Beispiel A 2
35 600,0 Gewichtsteile W ißpigment (TiO₂)
75,0 Gewichtsteil Verlaufmittel - Masterbatch
(10 % Acrylat in Polyester gemäß Beispiel B 1)

3143060

0.Z. 3761

Die gemahlenen Produkte Polyester, blockiertes Isocyanat, Verlaufmittel-Masterbatch werden mit dem Weißpigment in einem Kollergang innig vermischt und anschließend im Extruder bei 100 bis 130 °C homogenisiert. Nach dem Erkalten wird das Extrudat gebrochen und mit einer Stiftmühle auf eine Korngröße < 100 µ gemahlen. Das so hergestellte Pulver wird mit einer elektrostatischen Pulverspritzanlage bei 60 kV auf entfettete Eisenbleche appliziert und in einem Umlufttrockenschrank bei Temperaturen zwischen 170 und 200 °C eingebrannt.

Tabelle 3

15	Einbrenn- bedingungen	Mechanische Kenndaten						
	Zeit/Temp.	SD	нк	нв	ET	GS		GG 60°≮
·	20'/200 °C	60-80	191	125	9,4-10,3	0	> 82	94
20	201/180 °C	70-90	190	111	4,9-6,1	0	80	98
	25'/180 °C	60-70	192	125	5,8- 7,8	0	50	96
		I	187	111	9,1-10,4	0	80	99
	35'/170 °C	60-80	189	111	7,8- 9,4	0	60	97

25 <u>D 1c Pigmentierter Lack</u>

Nach dem in Beispiel D 1b beschriebenen Verfahren wurde der Pulverlack mit folgender Rezeptur hergestellt, appliziert und zwischen 160 und 200 °C eingebrannt.

632,5 Gewichtsteile Polyester gemäß Beispiel B 2 192,5 Gewichtsteile blockiertes Isocyanat gemäß

Beispiel A 2

600,0 Gewichtsteil Weißpigment (TiO₂)

75,0 Gewichtsteil Verlaufmittel-Masterbatch (10 %

Acrylat im Polyester gemäß B ispiel B 2)

30

35

Tabelle 4

				_				
•	Einbrenn-		Med	han	Lsche Ke	nnda	aten	
	bedingungen	·						
5	Zeit/Temp.	SD	нк	нв	ET	GS	Imp.	GG
				<u> </u>	·		rev.	60°≰
	·	70-80	189	111	7,1-8,5	0	50	95
	10'/200 °C	60-75	188	111	>10	O	> 82	96
	15'/200 °C	60-80	191	111	>10	O	> 82	94
10	151/180 °C	60-70	190	111	6,8-8,1	0	40	98
	20'/180 °C	60-80	187	125	8,1-9,1	O	80	95
		70-90	185	111	>10	0	> 82	97
		70-80	186	111	5,9-6,9	0	20	94
		60-80	187	111	7,5-9,1	0	70	94
15	30'/170 °C	50-70	191	125	>10	0	> 82	96
	- (50-70	190	111	4,1-4,5	0	20	93
	35'/160 °C	60-70	189	111	5,1-5,7	0	30	97

D 2a Pigmentierter Lack

Nach dem in Beispiel D 1b beschriebenen Verfahren wurde der Pulverlack mit folgender Rezeptur hergestellt, appliziert und zwischen 170 und 200 °C eingebrannt.

25

20

521,5 Gewichtsteile Polyester gemäß Beispiel B 1 303,5 Gewichtsteile blockiertes Isocyanat gemäß Beispiel A 4

600,0 Gewichtsteile Weißpigment (TiO2)

75,0 Gewichtsteile Verlaufmittel-Masterbatch gemäß Beispiel D 1b

3143060

Tabelle 5

5

10

25

Einbrenn-	Mechanische Kenndaten								
bedingungen									
Zeit/Temp.	SD	нк	нв	ET	GS	Imp.	GG		
İ						rev.	60%		
20'/200 °C	60-80	190	111	8,7-10,3	0	70	92		
20'/180 °C	55-85	189	111	4,4- 5,9	0	10	90		
25'/180 °C	70-90	192	111	5,1-6,7	0	30	93		
301/180 °C	60-90	188	111	6,8- 9,9	0	70	90		
35'/170 °C	85-95	191	111	5,7- 6,8	0	40	92		

D 2b Pigmentierter Lack

Nach dem in Beispiel D 1b beschriebenen Verfahren wurde der Pulverlack mit folgender Rezeptur hergestellt, appliziert und zwischen 160 und 200 °C eingebrannt.

20 615,6 Gewichtsteile Polyester gemäß Beispiel B 2 209,4 Gewichtsteile blockiertes Isocyanat gemäß Beispiel A 4

600,0 Gewichtsteile Weißpigment (TiO2)

75,0 Gewichtsteile Verlaufmittel-Masterbatch gemäß Beispiel D 1c

BNSDOCID: <DE___3143060A1_I_>

Tabelle 6

		γ 		 -						
	Einbrenn-		Med	hani	ische Kenn	ndat	ten			
	bedingungen									
5	Zeit/Temp.	SD	нк	нв	ET	GS	Imp.	GG		
							rev.	60%		
	8'/200 °C	55-70	185	111	8,8- 9,2	0	40	93		
	10'/200 °C	50-80	182	125	> 10	O	70	91		
	151/200 °C	55-70	181	125	> 10	0	> 82	95		
10	15'/180 °C	50-70	190	111	8,7- 9,4	0	70	90		
	20'/180 °C	65-75	189	125	> 10	0	50	94		
	25'/180 °C	80-95	192	111	> 10	0	> 82	92		
	20'/170 °C	55-65	192	125	4,2- 5,7	0	20	94		
	25'/170 °C	60-80	195	111	6,4-7,8	0	30	92		
15	30'/170 °C	70-90	189	125	9,4-10,5	0	60	95		
	301/160 °C	80-90	189	111	2,8- 3,5	0	10	91		
	35'/160 °C	80-100	190	111	4,2- 4,9	0	20	90		

D 3a Pigmentierter Lack

Nach dem in Beispiel D 1b beschriebenen Verfahren wurde der Pulverlack mit folgender Rezeptur hergestellt, appliziert und zwischen 170 und 200 °C eingebrannt.

514,9 Gewichtsteile Polyester gemäß Beispiel B 1 310,1 Gewichtsteile blockiertes Isocyanat gemäß

Beispiel A 5

600,0 Gewichtsteile Weißpigment (TiO2)

75,0 Gewichtsteile Verlaufmittel-Masterbatch gemäß Beispiel D 1b

20

3143060

0.Z. 3761

Tabelle 7

Einbrenn- bedingungen		Mechanische Kenndaten							
Zeit/Temp.	SD	нк	нв	ET	GS	Imp.	GG 60 ° ≹		
20'/200 °C	55-75	191	111	8,9-10,4	0	80	88		
				4,3- 5,7	0	10	91		
	70-90	194	125	5,0- 6,8	0	20	86		
301/180 °C	65-85	193	111	6,2-8,8	0	60	87		
35'/170 °C	60-90	192	111	5,5- 6,6	0	30	90		

Die Glanzhaltung während der UV-Bestrahlung mit OSRAM-Vitalux-Sonnenstrahlern war im Vergleich zu Addukten, die nicht APTMP enthielten, deutlich erhöht.

D 3b Pigmentierter Lack

Nach dem in Beispiel D 1b beschriebenen Verfahren wurde der Pulverlack mit folgender Rezeptur hergestellt, appliziert und zwischen 160 und 200 °C eingebrannt.

25 610,3 Gewichtsteile Polyester gemäß Beispiel B 2 214,7 Gewichtsteile blockiertes Isocyanat gemäß Beispiel A 5

600,0 Gewichtsteile Weißpigment (TiO2)

75,0 Gewichtsteile Verlaufmittel-Masterbatch gemäß Beispiel D 1c

30

5

10

Tabelle 8

5

10

15

20

Einbrenn-	Mechanische Kenndaten						-
bedingungen							
Zeit/Temp.	SD	нк	HB	ET G		Imp.	GG
			<u> </u>			rev.	60°⊀
8'/200 °C	50-60	193	125	8,5-8,8	0	70	85
101/200 °C	70-80	188	111	9,1-10,7	0	> 82	91
15'/200 °C	60-80	186	125	> 10	0	> 82	89
15'/180 °C	65-70	194	111	7,8-8,1	0	70	86
20'/180 °C	60-65	188	125	9,5-10,6	0	> 82	89
25'/180 °C	60-80	195	111	> 10	0	> 82	92
20'/170 °C	60-70	195	125	4,1-5,6	0	30	89
25'/170 °C	75-90	191	111	6,0-8,1	0	40	91
301/170 °C	60-70	191	125	8,8- 9,9	0	70	88
301/160 °C	60-65	195	125	2,5-3,1	0	10	87
35'/160 °c	65-85	196	125	4,2-5,2	0	20	90

E Beispiele für erfindungsgemäße Epoxid-Pulverlacke

E 1 Pigmentierter Lack

Nach dem in Beispiel D 1b beschriebenen Verfahren wurde der Pulverlack mit folgender Rezeptur hergestellt, appliziert und zwischen 170 und 200 °C einzebrannt.

348,0 Gewichtsteile Epoxid gemäß Beispiel C 1
415,5 Gewichtsteile Epoxid gemäß Beispiel C 2
361,5 Gewichtsteile blockiertes Isocyanat gemäß Beispiel A 2
300,0 Gewichtsteile Weißpigment (TiO₂)
75,0 Gewichtsteile Verlaufmittel-Masterbatch (10 % Modaflow im Epoxid gemäß Beispiel C 1)

BNSDOCID: <DE___3143060A1_I_>

Tabelle 9

5

10

15

20

25

Einbrenn- bedingungen	Mechanische Kenndaten							
Zeit/Temp.	SD	нк	нв	ET	GS	Imp.	GG	
						· -	1 _	
20'/200 °C	50-60	200	125	8,4-9,1	0	70	92	
20'/180 °C	60-80	205	111	1,9-3,0	0	10	94	
25'/180 °C	70-90	204	125	2,5-3,8	0	20.	92	
30'/180 °C	65-85	201	125	5,1-6,4	0	50	93	

E 2 Pigmentierter Lack

Nach dem in Beispiel D 1b beschriebenen Verfahren wurde der Pulverlack mit folgender Rezeptur hergestellt, appliziert und zwischen 170 und 200 °C einbrannt.

328,9 Gewichtsteile Epoxid gemäß Beispiel C 1

395,6 Gewichtsteile Epoxid gemäß Beispiel C 2

399,6 Gewichtsteile blockiertes Isocyanat gemäß Bei-

spiel A 5

300,0 Gewichtsteile Weißpigment (TiO2)

75,0 Gewichtsteile Verlaufmittel-Masterbatch gemäß

Beispiel E 1

Tabelle 10

30	Einbrenn- bedingungen	Mechanische Kenndaten						
	Zeit/Temp.	នា	нк	IIB	ET	GS	Imp.	GG 60 ° ≵
	20'/200 °C	55-70	201	125	8,5-9,6	Ο.	80	92
	20'/180 °C	65-70	211	125	2,1-3,1	0	20	9,0
35	25'/180 °C	60-80	205	125	5,3-6,9	0	40	89
	301/180 °C	70-90	208	125	5,7-8,9	0	70	92
	351/170 °C	60-80	207	125	2,8-4,1	0	20	90

3143060

0.2. 3761

Die Glanzhaltung während der UV-Bestrahlung mit OSRAM-Vitalux-Sonnenstrahlern war im Vergleich zu Addukten, die nicht APTMP enthielten, deutlich erhöht.