Math 4301 Quiz 1

Hunter Matthews

05/25/23

Question 1

Let
$$A_n = \{x \in \mathbb{Q} : -3 + \frac{1}{4n^2 + n - 1} < x < \pi + \frac{(-1)^n}{3n - 1}\}, n \in \mathbb{N} \text{ and } A = \bigcup_{n=1}^{\infty} A_n. \text{ Find inf(A)}$$

Solution: The answer is -3.

Question 2

Let
$$A_n = \{x \in \mathbb{R} : 1 - \frac{1}{n^2} < x < 6 + \frac{\sqrt{2}}{n^2 + n + 5}\}$$
 and $A = \bigcap_{n=1}^{\infty} A_n$. Find sup(A)

Solution: The answer is 6

Question 3

Choose all correct answers (there might be more than one correct answer)

- (a) An ordered Field \mathbb{F} has archimedean property if and only if for all $x \in \mathbb{F}$, x > 0 there is $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < x$
- (b) The set \mathbb{R} of all real numbers is a complete ordered field.
- (c) The set $s = \{x \in \mathbb{Q} : 0 < x < \sqrt{2}\} \subseteq \mathbb{R}$ has both the greatest and the lest upper bounds in \mathbb{R} .
- (d) The set of all real numbers \mathbb{R} does not satisfy archimedean property.
- (e) The set $S = \{\frac{n^2 + (-1)^n}{n} : n \in \mathbb{N}\} \subseteq \mathbb{R}$ is bounded above.

Solution: The answers are A,B, and C.

Question 4

Choose all correct answers (there might be more than one correct answer)

- (a) Well-ordering property and the Principle of Mathematical induction are equivalent statements for the set of all natural numbers.
- (b) The set **Z** of all integers has the well-ordering property.
- (c) The set $A \{x \in \mathbb{Q} : 0 < x < 1\}$ has the greatest and the least upper bounds in \mathbb{Q} .
- (d) The set of \mathbb{Q} of all rational numbers is a complete ordered field.
- (e) If $s \subseteq \mathbb{Z}$, $0 \in S$ and (k-1), $(k+1) \in S$ whenever $k \in S$, then $S = \mathbb{Z}$.

Solution: The answers are A,C, and E.

(3)