1004/74

(21) Application No. 7345/75 (31) Convention Application No.

(22) Filed 21 Feb. 1975

(32) Filed 25 Feb. 1974 in

(33) Denmark (DK)

(44) Complete Specification published 1 March 1978 (51) INT. CL. B23K 9/00 25/00

G05F 1/02

(52) Index at acceptance

B3R 32D2 32J 36 37A1A 37A1B 37A1C 37A1D 37A1E

G3R 20 4 (72) Inventors SVEN AAGE LUND ERIK KONGSHAVN ERIK OSTGAARD

(54) A METHOD AND AN APPARATUS FOR AUTOMATIC ELECTRIC WELDING

We, Akademiet for de tekniske VIDENSKABER, SVEJSECENTRALEN, a Danish institution, of No. 346, Park Allé, 2600 Glostrup, Denmark, do hereby declare the 5 invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following state-

The invention relates to a method and an apparatus for automatic electric fusion welding of the kind where at least two currentcarrying welding electrodes, each electrically series-connected common with а

15 workpiece are used simultaneously, being electrodes mounted a joint holder which is moved manually or mechanically in relation to a work piece, and where at least one of the welding electrodes

20 is a consumable electrode which is fed to the welding point by means of a mechanical feeding device.

Within welding technology, numerous methods are known and used for mechanized 25 electric fusion welding comprising the use of one or more current-carrying consumable electrodes and a more or less automatic control of the welding process.

The methods are known and used in a 30 long series of variants, in part with regard to the design of the consumable electrodes, which may be solid or cored, in the form of wires or strips, and bare or coated or fluxfilled, and in part as regards the nature of

35 the shielding used for the molten weld metal, which shielding can be carried out by means of a slag cover from a molten flux or by means of a shielding gas which is blown across the molten material.

The methods are furthermore known and used in different degrees of mechanization, either as semi-automatic processes in which a welding nozzle is moved manually in relation to a work piece while at the same - 45 time the welding electrode is fed mechanically through the welding nozzle, or as fully mechanized processes in which the movement of the welding nozzzle in relation to the work piece as well as the feeding of the welding electrode to the welding point are 50 effected mechanically.

With a view to achieving the highest possible welding rate, a series of methods have been developed where two or more welding electrodes are used simultaneously mounted 55 in a joint holder which is moved as a total unit in relation to the work piece.

A feature common to all the said methods is the necessity of an automatic control of the melting process which can ensure a 60 uniform melting of the welding electrodes and maintain an even flow of the desired amount of welding heat and molten material to the welding point.

In the case of the known methods, the 65 necessary self-adjustment of the melting process is achieved by means of a feedback control which during the welding process constantly tends to maintain a predetermined distance between the melting end of the 70 welding electrode and the surface of the molten pool formed on the surface of the work piece. This is achieved by means of an automatic control of the rate of feed for the welding electrode or of the electric 75 power supplied in the form of the electric potential betwen the welding electrode and the work piece and the electric current flowing between the welding electrode and the work piece.

Thus, the methods so far known are based on an unavoidable linking together of said mechanical and electric parameters and may in conformity herewith be divided into two principal groups:

In the first group, which has particularly been applied in welding with covered electrodes and in welding with bare electrodes under flux cover, the electric potential present at any time between the welding elec- 90

trode and the work piece is used for controlling the rate of feed of the welding electrode in such a way that said potential is constantly as far as possible maintained at 5 a value set in advance. When this feedback, control is used in combination with a welding power source having a drooping voltage-current characteristic curve, a total control of the melting process is obtained 10 with a substantially maintained, constant distance from the tip of the electrode to the surface of the molten pool and with a substantially maintained, constant quantity of molten electrode metal per time unit.

In the other group, which has particularly been applied in welding with a shielding gas, a constant rate of feed for the welding electrode is used, after which the control of the distance from the tip of the elec-20 trode to the surface of the molten pool and the rate of melting are controlled purely electrically by the use of a constant-potential welding power source having a substantially flat current-voltage characteristic curve. By 25 this means a feedback control effect is achieved so that random variations in the distance from the tip of the electrode to the surface of the molten pool and thereby in the electric potential between the welding 30 electrode and the work piece are automatically compensated for by a change in the welding current and thereby in the rate of melting for the electrode fed at a constant rate. By a suitable choice of preset co-35 ordinated values of the welding parameters there will also in this case be achieved a total control of the melting process with a substantially maintained, constant distance from the melting end of the electrode to the 40 surface of the molten pool and with a substantially maintained, constant quantity of molten electrode metal per time unit.

In prior art methods for fully mechanized fusion welding the welding speed, that is to 45 say the speed of movement of the electrode holder in relation to the work piece, is set at a predetermined, constant value which thereupon, if necessary, has to be re-adjusted manually by the welding operator if random 50 variations in the geometry of the welding groove or other conditions require a local change in the welding heat supplied or in the quantity of molten electrode metal per unit of length of the welded joint. In a few 55 cases it has, however, been attempted to use sensors in the welding groove in front of the welding point in order thereby to obtain an expedient automatic regulation of the speed of movement of the electrode 60 holder.

All the methods for automatic fusion welding described and known so far have, however, substantial shortcomings in respect of control, shortcomings which so far 65 have prevented a complete command of and

automation of the welding processes and which consequently have precluded the use of the methods from a number of desirable fields of application within modern highly

productive welding industry.

These shortcomings must first and foremost be ascribed to the fact that the known methods are all based on a feedback control by which the distance from the melting end of the welding electrode to the surface of the 75 molten pool is maintained constant. The result of this is necessarily that the electrode will always tend to follow a sagging molten pool. At any tendency towards an incipient burn-through of the welding groove and 80 consequently towards a sagging of the molten pool the welding electrode will automatically follow so as to maintain the distance. The result of this is that the molten pool will be pressed further down, and this process con- 85 tinues until a total burn-through of the work piece occurs.

This undesirable consequence of the prior art methods presents very great difficulties in the production of welded joints with a 90 regular and complete penetration throughout the thickness of the work piece in the case of highly productive one-sided auto-matic welding. Frequently, this forces the workshops to use a more time-consuming 95 two-sided welding with the expensive turning of large work pieces, as e.g. complete welded ship's sections, deriving therefrom.

The unavoidable linking together of the mechanical and electric welding parameters 100 in the case of the prior art control methods for the melting process proper in addition has the considerable drawback that there is no free control parameter at disposal for an automatic regulation of the preset welding 105 heat flow and quantity of molten electrode metal per time unit, or for an automatic regulation of the speed of movement of the electrode holder and thereby of the welding heat deposited and the quantity of molten 110 weld metal per unit of length of the welded joint in relation to random variations present in the cross-section of the welding groove.

Such random variations in cross-section, particularly variations in the gap between 115 the two edges to be welded together, are unavoidable in practice in the production of large plate structures where the individual welded joints may be more than 20m long. In the case of the prior art control methods, 120 the result of these random variations is a correspondingly uneven penetration into and filling up of the welding grooves, and in order that this may be avoided the workshops are forced to perform an exceedingly accurate 125 and very expensive pre-machining of the plate edges.

For the same reason, it has in practice been necessary to use a reduced electric welding power and an uneconomical low 130

welding rate corresponding thereto. In addition, it has in certain cases been necessary to rely on a manual readjustment of the welding process according to the welding process according to the welding groove, a method which is rather unreliable, in particular in the case of submerged are welding where the welding are, the molten pool and the total heated welding zone are completely concealed under a thick layer of welding flux.

Finally, the prior art methods present a considerable unreliability as regards the 15 quality of the finished welded joints in the case of variations in groove dimensions, and this necessitates comprehensive inspection and time-consuming repair work after welding and thereby a welding productivity and 20 economy that are essentially below the optimum result achievable in principle.

It is the object of the present invention to indicate a method for automatic electric fusion welding, which can be used in all the 25 variants known per se and described above with regard to types of electrodes and ways of shielding the motten weld metal, which method permits a complete automation of the welding process as a whole, and which strongly reduces or completely eliminates the shortcomings mentioned above of the methods so far known and used.

The present invention provides a method for automatic fusion welding of the kind 35 where at least two current-carrying welding electrodes, each electrically series-connected with a common work piece, are used simultaneously, said electrodes being mounted in a joint holder which is moved manually or 40 mechanically in relation to the work piece, at least one of the welding electrodes being a consumable electrode which is fed to the welding point by means of a mechanical feeding device, the welding 45 electrodes being mounted and fed at a relative angle of between 0° and 180° in such a way that they meet at a point of intersection where they are randomly in physical contact, and where the melting of 50 electrode material takes place in a joint arc

Experiments have surprisingly proved it possible to maintain a stable joint melting in the point of intersection of the electrodes 55 even by the use of conventional welding power sources, presumably because a protruding part, if any, of one of the electrodes is quickly melted away by the total current flowing from the electrodes to the work piece.

60 By the method according to the invention there is, as compared to the methods so far known for automatic fusion welding, firstly achieved the very essential advantage that the melting ends of the welding electrodes are 65 now at any time during the course of the

welding process kept at a point of intersection, or a line of intersection in the case of strip electrodes, which remains fixed in relation to the joint holder, and can therefore be kept in a stationary position at any required distance from the work piece quite independently of random variations in the position of the surface of the molten pool formed on the surface of the work piece.

By the release from the compulsory fixation, characteristic of prior art methods, of the distance from the tip of the electrode to the surface of the molten pool it has been possible completely to eliminate the very essential drawback that the electrode follows 80 a sagging molten pool and via a self-increasing process can give rise to a total burn-through of the work piece.

Now, an incipient burn-through of the welding groove and a lowering of the molten pool deriving therefrom no longer leads to a self-increasing process, but only to a corresponding increase in the distance from the melting ends of the electrodes to the surface of the molten pool. The method according to the invention hereby creates quite new possibilities for the production of welded joints with a regular and complete penetration of work pieces in highly-productive automatic one-sided welding, which in turn 95 may entail considerable advantages for the welding industry both as regards economy and production.

Secondly, by the method according to the invention the very essential advantage has been gained over the methods so far known that it has now become possible to have a free control parameter at disposal from the control of the melting process proper. This additional control parameter may then be used for the direct automatic control of the welding process as a whole, e.g. for automatically compensating for unavoidable local random variations in the cross-section of the welding groove.

The control parameter thus released may for example be used directly for controlling the welding rate, that is to say the speed of movement of the electrode holder in relation to the work piece, or for controlling the electric power supplied per unit of time as a function of random variations in the distance from the tips of the electrodes to the surface of the molten pool in such a way that the welding can be carried out with a filling up of the welding groove to a constant level in relation to the surface of the work piece irrespectively of random variations occurring in the cross-section of the groove.

The method according to the invention 125 thus creates a series of new possibilities for fully automatic fusion welding within rational large-scale production with an optimization of the welding processes which may result in considerable advantages for the 130

welding industry as regards both economy and production.

For the person skilled in the art within welding technology who is familiar with the 5 technique known so far for automatic fusion welding and with the welding methods and feedback control methods, principles and apparatuses used within this field there will accordingly directly be created a long series 10 of evident and obvious possibilities for carrying out the method according to the in-

vention in practice. When once the basic principle invented and described relating to the relative mount-15 ing of the electrodes and their feeding to the common point of intersection is known

it will only be a matter of routine work for the person skilled in the art to apply the method expediently in practice within the 20 numerous methods and processes, known per se, for automatic electric fusion welding, and the embodiments of the invention described here and in the following can therefore solely be regarded as illustrating ex-

25 amples and not as an exhaustive description of the possibilities of application as a whole of the method.

A particularly expedient embodiment of the method according to the invention is 30 characterized in that the electric potential, present at any time during the welding process, between the welding electrodes is used by means of a feedback control for controlling the rate of feed of the melting 35 ends of the electrodes in such a way that said potential is constantly as far as possible maintained at a preset value, which is preferably less than 10% of the potential used during the welding process between the

40 electrodes and the work piece. This offers an essentially increased guarantee that the tips of the electrodes will at any time during the welding process remain fixed at or in the immediate vicinity of the said 45 point of intersection where the joint melting

of electrode material takes place.

Even if it is possible, as mentioned above, to obtain a stable joint melting at the point of intersection, it will in many cases be 50 expedient to add the feedback control to ensure that the electrodes, in case of random variations in the melting, will not move too far from the common point of melting.

In certain cases the feedback control will 55 furthermore directly be capable of providing the above-mentioned free control parameter for controlling the welding process as a

An expedient embodiment of the method 60 according to the invention with the feedback control added to it is characterized in that said control of the rate of feed of the melting ends of the welding electrodes is performed by controlling the rate at which the 65 mechanical feeding devices feed the elec-

trodes to the welding point.

By this means, a particularly simple method is achieved for keeping the melting ends of the electrodes fixed at or in the immediate vicinity of the joint point of melt- 70 ing which is geometrically fixed in relation to the holder for the electrodes. At the same time such simplification is obtained that the invention can be applied with known techniques which have been tested 75 in practice for automatic welding with arc voltage feedback control of the rate of feed of the electrodes.

Another expedient embodiment of the method according to the invention compris- 80 ing the additional feedback control is characterized in that said control of the rate of feed of the melting ends of the welding electrodes is performed by controlling the intensity of the electric currents flowing through 85 the electrodes and back through the work

piece.

By this means, a particularly simple purely electric control is achieved for keeping the melting ends of the electrodes fixed at or 90 in the immediate vicinity of the joint point of melting, which is geometrically fixed in relation to the holder for the electrodes. At the same time, such simplification is obtained that the invention can be applied with 95 known techniques which have been tested in practice for automatic welding with constant electrode feeding rate in connection with the use of conventional power sources.

Still another expedient embodiment of the 100 method acording to the invention comprising the additional feedback control is characterized in that said control of the rate of feed of the melting ends of the welding electrodes performed by controlling the speed 105 at which the holder for the electrodes is moved in relation to the work piece.

By this means a particularly simple method for automatically controlling the welding process as a whole is obtained. By 110 the use of the prior art methods for controlling the melting rate of the electrodes on the basis of the electric potential between the electrodes and the work piece a total feedback control is achieved which ensures a 115 constant penetration into and filling up of a welding groove irrespectively of random variations, if any, in the cross-section of the

When the level of the surface of the 120 molten pool rises, the distance from the molten pool to the electrodes is reduced. This causes the electric potential between the electrodes and the work piece to drop, and this in turn in a way known per se increases 125° the melting rate of the electrodes. By this means, the melting ends of the electrodes are removed a slight distance from each other, and this increases the electric potential between the electrodes. According to the in- 130

vention, this potential is used to increase the speed at which the holder for the electrodes is moved in relation to the work piece. This causes the electrodes to be moved for-5 wards until they are situated above a point in the welding groove where the surface of the molten pool has not yet reached the level desired. By this means, the distance between the electrodes and the surface of 10 the molten pool is increased thereby increasing the electric potential between the electrodes and the work piece. This causes a reduction of the melting rate of the electrodes, reduces the distance between the elec-15 trodes, reduces the electric potential between these two electrodes and thereby in turn reduces the speed at which the holder is moved in relation to the work piece until the surface of the molten pool has reached 20 the level desired also in this place.

The feedback control process described above repeats itself automatically until the entire welding groove has been filled up to the level desired, irrespectively of local ran
25 don variations, if any, in the cross-section

of the groove.

A particularly expedient embodiment of the method according to the invention is characterized in that at any time during 30 the welding process one of the electrodes is supplied with a welding current which produces a current density in the electrode material which is higher, preferably up to 25% higher, than the current densities which at the same time are produced in the remaining electrode by the welding currents flowing through them.

This offers an essentially increased guarantee that the tips of the electrodes are at any time during the welding process kept fixed at or in the immediate vicinity of the point of intersection where the joint melting of the

electrode material takes place.

When a higher current density is applied 45 to one of the electrodes so that thereby it tends to melt more quickly than the remaining electrode or electrodes, a corresponding tendency to a bias is incorporated in the total melting process. The electrode or electrodes with lower current densities will constantly tend to pass the point of melting, but this causes the protruding parts to carry the total welding current whereby they are quickly melted away, so that the joint point 55 of melting is kept geometrically fixed as desired

If furthermore the additional feedback control mentioned above is used, the incorporated tendency to a bias in the total meltion of a well-defined control signal in the form of an electric potential between the electrodes relative to each other.

Without such an incorporated bias, con-65 trol signals are only generated on account of random variations in the release of drops of molten metal from the tips of the electrodes, and this offers a less stable and thereby less precise control.

A particularly expedient embodiment of 70 the method according to the invention comprising the additional feedback control is characterized in that one of the electrodes is chosen to be so much thinner than the remaining electrodes and is melted at so low 75 a welding current and at so low a feeding rate that it only contributes less than 10%, preferably less than 5%, of the total quantity of molten material per unit of time.

By this means, a particularly simple 80 method is obtained for keeping the melting end of a single conventional welding electrode fixed at a point which is geometrically fixed in relation to the electrode holder. In this case, the thin electrode functions substantially only as a measuring electrode which senses and thereby via the feedback control keeps the melting end of the electrode supplying the greater part of molten material and electric power to the work 90 piece, in a stationary position.

At the same time such simplification is obtained that the invention can applied with known techniques for automatic fusion welding which have been tested in practice 95

and without any problems.

Finally, a particularly expedient embodiment of the method according to the invention is characterized in that at least one of the electrodes is a nonconsumable electrode 100 fixed in relation to the holder.

By this means, a particularly simple method is likewise obtained for keeping the melting end of a single conventional welding electrode fixed at a point which is geometrically fixed in relation to the electrode holder. If furthermore the additional feedback control described above is used, the non-consumable electrode will also in this case function as a measuring electrode which senses and thereby via the feedback control keeps the melting end of the electrode, which supplies the molten material to the workpiece, in a stationary position.

In the form here described the method will be particularly well suited for welding under an inent shielding gas, and the nonconsumable electrode, which is a manner known per se may consist of a refractory metal-ceramic material, will, besides functioning as a measuring electrode, at the same time, if it be desired, in the conventional manner be capable of transmitting the greater part or a substantial part of the electric heat power transmitted to the work piece.

The invention also relates to an apparatus for use in carrying out the method according to the invention, said apparatus comprising at least two current-carrying electrodes, each arranged to be electrically 130

series-connected with a common work piece, said electrodes being mounted in a joint holder which can be moved manually or mechanically in relation to the work piece, 5 at least one of the welding electrodes being arranged to be fed through a welding nozzle for continuous melting at a welding point by means of a mechanical feeding device and the holder being arranged for holding 10 the welding electrodes at a relative angle of between 0° and 180° in such a way that they meet at a point of intersection, where they can be randomly in physical contact, whereby a joint arc can be established be-15 tween the electrodes and the work piece, said apparatus further comprising a feedback control device which via an electric potential measuring device is connected to the welding electrodes and which is so 20 arranged that the electric potential between the welding electrodes occurring at any time during the welding process can be used for controlling the feeding rate of the melting ends of the electrodes in such a way that 25 said potential can be substantially maintained at a preset value which is less than 10% of the potential used during the welding process between the electrodes and the work piece.

This offers an essentially increased guarantee that the tips of the electrodes can at any time during the welding be kept fixed at or in the immediate vicinity of said point of intersection where the joint melting of the 35 electrode material takes place.

An expedient embodiment of the apparatus according to the invention is characterized in that said feed-back control device is connected to the mechanical feeding devices and is so arranged that said control of the rate of feed of the melting ends of the welding electrodes is performed by controlling the rate at which the electrodes are fed to the welding point.

By this means, a particularly simple embodiment is obtained, it being possible in a simple way to link said feedback control device directly to the apparatuses for automatic welding which are already known and have been tested in practice for welding with arc voltage feedback control of the rate of

feed of the electrodes.

By this means, a particularly simple embodiment is likewise obtained, it being possible in this case in a simple way to link said feedback control device directly together with the aparatuses for automatic welding which are already known and have been tested in practice for welding with constant for rate of feed of the electrodes in connection with the use of conventional power sources.

Still another expedient embodiment of the apparatus according to the invention is characterized in that said feedback control 65 device is connected to a mechanism for

moving the holder for the electrodes and is so arranged that said control of the rate of feed of the melting ends of the welding electrodes is performed by controlling the speed at which the holder is moved in relation to 70 the work piece.

Another expedient embodiment of the apparatus according to the invention is characterized in that the feed-back control device is connected to the welding power 75 sources and is arranged in such a way that said control of the rate of feed of the melting ends of the welding electrodes is performed by controlling the intensity of the electric currents which flow through the 80 electrodes and back through the work piece.

By this means, a particularly simple embodiment of an apparatus with a total feedback control of the welding process as a whole is obtained, it being possible also in this case in a very simple way to link said feedback control device directly together with the apparatuses, which are already known for conventional automatic fusion welding, and with the associated prior art 90 mechanisms for moving holders for welding electrodes.

Finally, a particularly expedient embodiment of the apparatus according to the invention is characterized in that at least one 95 of the electrodes is a nonconsumable electrode which is fixed in relation to the holder.

By this means, there is correspondingly obtained a particularly simple embodiment of an apparatus which is especially well suited for welding under an inert shielding gas and in particular with a single continuously melting electrode, it being possible in a very simple way to link said feedback control device and the nonconsumable electrode, which in a manner known per se may consist of a refractory metal-ceramic material, together directly with the apparatuses for automatic welding under a shielding gas which are already known and have been tested in practice.

Below, the invention will be explained in greater detail with reference to the accompanying drawings.

Fig. 1 diagrammatically illustrating the 115 principle of the method for automatic electric fusion welding,

Fig. 2 diagrammatically illustrating the principle of the method comprising an additional feedback control.

120

Fig. 3 diagrammatically illustrating the principle of the invention comprising the use of a thin measuring electrode and

Fig. 4 diagrammatically illustrating the principle of the method comprising the use 125° of a nonconsumable electrode.

Fig. 1 diagrammatically illustrates the the principle of a method for automatic electwo current-carrying welding electrodes 1 tric fusion welding comprising the use of 130

7

and 2 which have the form of wires or strips and are mounted in a joint holder 3 which is moved manually or mechanically in relation to a work piece 4. The electric power for 5 heating the electrodes and for melting electrode material off the melting ends 9 and 10 of the electrodes is supplied by welding power sources 15 and 16 which in the conventional manner feed an electric welding 10 current through the electrodes, from these further on through an electrically conductive welding arc 19 or an electrically conductive pool of molten slag to the work piece 4 and back to the power sources 15 and 16. The 15 welding electrodes 1 and 2 are in conventional manner fed for being continuously melted at the welding point through welding nozzles 11 and 12 in the holder 3 by means of mechanical feeding devices 5 and 6.

The method according to the invention is carried out in accordance with the following

principle:

The welding electrodes 1 and 2 are mounted and red at a relative angle 7 of 25 between 0° and 180° in such a way that they meet at a point of intersection 8 where the melting of electrode material takes place In the case of electrodes 1 and 2 in the form of strips, the plane of which electrodes must 30 be supposed to be at right angles to the plane of the paper, the point of intersection becomes a line of intersection 8 which is at right angles to the plane of the paper.

Hereby a joint point of melting 8 is 35 formed which is geometrically fixed in relation to the holder 3 and from which the molten electrode material in the form of drops runs in a joint flow 19 to the work piece 4 and is deposited on the latter in a

40 pool of molten material 20.

By this geometrical fixation of the point of melting 8 for the electrodes it becomes possible to maintain or control the distance from the melting ends 9 and 10 of electrodes to 45 the work piece 4 as desired, quite independent of random variations in the position of the surface of the molten pool 20, and this feature is actually the main purpose of the invention.

At the same time, a free control parameter is achieved hereby, that is to say a control parameter which is no longer bound to the automatic control of the melting process proper and which consequently can be used 55 freely for the automatic control of the weld-

ing process as a whole.

In the prior art methods for automatic electric fusion welding the total number of control parameters in the form of welding 60 current, are voltage between the tip of the electrode and the work piece, the rate of feed of the electrode towards the welding point as well as derivatives of the said parameters etc. are compulsorily linked together 65 in a feedback control system which controls the melting process by maintaining the distance from the tip of the electrode to the surface of the molten pool at a value set in advance. If variations in this value or in the remaining parameters set in advance for the 70 welding process as a whole are desired, they must consequently in the case of the prior art methods be performed manually by the welding operator during the course of the weld-

Thanks to the geometrical fixation of the joint point of melting 8 for the electrodes which is achieved by the method according to the invention said compulsory linking together of the total number of control para- 80 meters is eliminated, and one control parameter is released, which can be chosen substantially freely and which can be used for an expedient automatic control of one of parameters welding which the case of the prior art methods it has been necessary to adjust manually according to

the welding operator's estimate.

By practical experiments with submerged arc welding with two electrodes in confor- 90 mity with the method according to the invention it has in a convincing manner proved possible to achieve a stable geometrical fixation of the joint point of melting and an otherwise stable and regular welding pro- 95 cess, when the feed rate of the electrodes in relation to the electric power supplied is such that the electrodes constantly meet in the point of intersection 8. This surprising stability must be supposed to be based on 100 the fact that the protruding end of an electrode, which tends to pass through the point of intersection, will, due to the electric contact with the other electrode, be made to carry the total welding current which from 105 both electrodes flows to the work piece, and will therefore quickly melt away. Hereby an unexpected selfadjusting effect is produced which ensures that the melting ends 9 and 10 of the welding electrodes are kept 110 fixed at or in the immediate vicinity of the joint point of melting 8.

Fig. 1 shows only a single illustrating example among the innumerable embodiments of the method according to the invention. 115 For the person skilled in the art, who is familiar with the technique so far known for automatic fusion welding, it will be obvious to use the basic principle invented relating to the relative mounting of the 120 electrodes and their feeding to the common point of melting in connection with all existing variants of electric fusion welding.

Thus, the welding electrodes 1 and 2 used may be of any known type, solid or cored, 125 coated or bare, with or without a filling of flux, and the electrodes used simultaneously may be of the same type or of different types and have the same or relatively differing dimensions.

The shielding of the molten welding material 19 and 20 may likewise be of any known nature, such as a slag cover with a molten flux (bare metal arc welding, sub-5 merged are welding, electro-slag welding etc. or a shielding gas (argon arc welding, CO₂-arc welding, plasma-arc welding, electrogas-arc welding etc).

The method according to the invention 10 may furthermore be used for any known welding purpose, including welding of butt-, corner- and fillet welds as well as surfacing by welding a layer of weld metal onto the

surface of a work piece.

The method may, as shown in Fig. 1, be carried out with the use of only two welding electrodes 1 and 2, but it is equally possible to use three or more electrodes which meet at a joint point of intersection 8, and the in-20 dividual electrodes may be fed and melted with the same or with relatively differing rates of feed and welding currents.

The relative angles 7 between the electrodes may be chosen freely between 0° and 25 180° when only a geometrically well-defined point of intersection 8 is established, and a possible third and fourth electrode need not be situated in the same plane as the two

first electrodes.

The inclination of the electrodes in relation to the work piece 4 may be chosen freely from 0° to 90°, by which means a focusing of the flow of molten material 19 in any direction desired can be achieved.

The angles between the electrodes 1 and 2 on the one hand and the direction of movement of the holder 3 in relation to the work piece 4 on the other hand may, as indicated in the example in Fig. 1, be chosen to be 90°, 40 but may, incidentally, be chosen freely from 0° to 180°

The holder 3 with the welding nozzles 11 and 12 may be of any known type, and the movement of the holder 3 in relation to the 45 work piece 4 may be performed manually or mechanically in any manner known per se, e.g. by means of a travelling carriage which travels directly on the surface of the work piece or on a separate rail arrange-50 ment.

The mechanical feeding devices 5 and 6 may be of any known type and may in a manner known per se be mounted in rigid connection with the holder 3 or be separated 55 from the latter. The motive power for the feeding devices may in a manner known per se be obtained by means of electric motors with separate current supplies or with tappings from the welding power sources 15 60 and 16, or purely mechanically, e.g. by means of hydraulic or pneumatic motors.

The welding power sources 15 and 16 may be of any known D.C.- or A.C.-type with drooping current-voltage characteristic or of 65 the constant potential or constant current

type. As shown in Fig. 1, a separate power source may be used for each electrode, but it is equally possible to use a joint power source with separate tappings for the individual electrodes.

Feedback control of the rate of feed and the melting of the individual welding electrodes may be performed in any known manner, for example by a control based on the electric potential between the tips of 75 the electrodes and the work piece controlling the rate of feed or the welding power, and the control principle may be the same for all electrodes or be different for each individual electrode of the number of elec- 80 trodes used simultaneously.

The above-mentioned free control parameter, which is provided by the method according to the invention for welding with a geometrically fixed point of melting, offers 85 the person skilled in the art numerous obvious possibilities of controlling the welding

process as a whole.

The free control parameter may substantially be chosen freely among the different 90 parameters incorporated in the prior art methods for controlling the melting process proper. The person skilled in the art will here be able to select the mechanical or electric parameter which will be most ex- 95 pedient in a given welding process and which will be able to produce the most well-defined and expedient control signal.

In turn, the person skilled in the art freely choose to use this control signal for the 100 automatic feedback control of one or more of the welding parameters which so far, in prior art methods, it has been necessary for the welding operator to adjust manually. This choice will depend on what will be 105 most expedient in the case of a given welding process and a given welding task. As obvious examples may be mentioned the control of the speed at which the holder is moved in relation to the work piece, the con- 110 trol of the distance between the holder and the work piece or the control of a greater or smaller weaving movement for the holder for an expedient distribution of the welding heat in the work piece.

As the same time it will be obvious for the person skilled in the art in a manner known per se to use this new possibility of feedback control for an incorporated fully automatic optimization of the whole weld- 120 ing process, e.g. in order to obtain the maximum welding rate within limits set in advance for the permissible power supplied per unit of length of a welding joint.

Fig. 2 diagrammatically shows the prin- 1252 ciple of a particularly expedient embodiment of the method acording to the invention.

The illustrating example chosen is the same as in Fig. 1 apart from the fact that here a potential measuring device 14 has 130

been added which is in electric connection with the welding electrodes 1 and 2 and with a feedback control device 13 which in turn is in connection with the welding power 5 sources 15 and 16 and, via tappings on the latter, with electric motors 17 and 18 for the mechanical feeding devices 5 and 6.

The electric potential present at any time during the welding process between the weld-10 ing electrodes 1 and 2 is measured currently and is used, in a manner known per se, as control signal in a feedback control of the rate of feed of the melting ends 9 and 10 of the electrodes 1 and 2 in such a way that 15 said potential is constantly maintained as far as possible at a preset value.

By random variations in the release of drops of molten metal from the melting ends of the welding electrodes, corresponding 20 random variations will occur in the distances from the tips 9 and 10 of the electrodes to the surface of the molten pool 20 produced on the surface of the work piece and consequently in the electric potentials between 25 the individual electrodes and the work piece. This in turn gives rise to random variations in the electric potential between the electrodes in relation to each other. The additional feedback control automatically com-30 pensates for these random variations, and when the reference value, set in advance for the feedback control, for the electric potential between the electrodes is set at a low value, preferably at less than 10% of 35 the arc voltage between the electrodes 1 and 2 and the work piece 4, there will be a corresponding additional guarantee that the tips 9 and 10 of the electrodes will constantly be located at or in the immediate vicinity of 40 the point of intersection 8.

The detailed principles for the design of the feedback control will be well-known to the person skilled in the ant who is familiar with the prior art technique for the feed-45 back control of electric welding processes in general. The feedback control may, for example, in a manner known per se function in such a way that variations in potential above or below the preset reference value 50 produce corresponding increases or decreases in the preset rates of feed for the electrodes

If in the case of a given task it is regarded as being more expedient, the feedback con-55 trol may also function unitaterally, e.g. in such a way that any variation in potential from the preset reference value gives rise to an increase in the preset rates of feed for the electrodes, or possibly in such a way that 60 variations in potential directly cause the feeding proper of the electrodes, in which case the motors 17 and 18 may be step motors.

In certain welding processes it will be ex-65 pedient to use constant rates of feed for the electrodes and instead, in a manner known per se, let the feedback control adjust the intensity of the welding current flowing through the electrodes 1 and 2 and back via the work piece 4. This influences the 70 rate at which welding metal is melted off the electrodes, which in turn determines the rate of feed of the melting ends 9 and 10 of the electrodes 1 and 2.

Finally, it might be expedient to let the 75 feedback control adjust the speed at which the holder 3 is moved in relation to the work piece 4. The result of this is, as mentioned above, a feedback control of the welding process as a whole which, firstly, en- 80 sures the geometrical fixation desired of the joint point of melting of the electrodes and, secondly, makes possible a filling up of welding material to a constant level desired irrespectively of random variations occurring in 85 the geometry of the work piece.

Fig. 3 diagrammatically shows the principle in still another particularly expedient embodiment of the method according to the invention.

In the illustrating example chosen two electrodes are used, one of which, 2a, is essentially thinner than the main electrode 1a. The electrodes are mounted at a relative angle 7a and are fed through the weld- 95 ing nozzles 11a and 12a in the holder 3a to the joint point of melting 8a by means of mechanical feeding devices 5a and 6a driven by the motors 17a and 18a.

In this example, the welding currents for 100 the electrodes are supplied via separate tappings from a joint welding power source 15a which at the same time supplies current to the motors 17a and 18a. A potential measuring device 14a is in electric connection with 105 the welding power source 15a and thereby with the motors 17a and 18a.

On of the electrodes 2a is chosen to be so much thinner than the main electrode la and is melted with so low a welding current 110 and at so low a rate of feed that it only contributes less than 10%, preferably less than 5%, of the total quantity of molten material per unit of time.

In this way, the welding process will 115 function in the normal way know per se in automatic fusion welding with a single electrode la with the addition, however, of a thin consumable measuring electrode 2a which does not interfere with the melting 120 process in general, but which constantly by its melting end 10a senses and via the feedback control 13a adjusts the position of the melting end 9a of the main electrode so that the latter is constantly kept fixed at the de- 125 sired distance from the holder 3a independent of random variations in the distance from the tip 9a of the electrode to the surface of the molten pool 20 produced on the work piece 4.

130

Fig. 4 diagrammatically shows the principle of a further particularly expedient embodiment of the method according to the in-

In the illustrating example here chosen, two electrodes are used, one of which 1b is fed for being continuously melted at the welding point. The electrodes are mounted in the welding nozzles 11b and 12b in the 10 holder 3b at a relative angle 7b, and the electrode 1b is fed to the point of inter-

section 8b with the electrode 2b by means of the mechanical feeding device 5b which is driven by the motor 17b.

In this example, the welding currents are supplied to the electrodes via separate welding power sources 15b and 16b, one of which 15b at the same time supplies current to the motor 17b. A potential measuring de-20 vice 14b is in electric connection with the electrodes and with a feedback control device 13b which in turn is in connection with the welding power source 15b and thereby with the motor 17b.

On of the electrodes is chosen as a nonconsumable electrode 2b and is kept fixed in the welding nozzle 12b in such a position that the end surface 10b is located at or in the immediate vicinity of the point of inter-30 section 8b with the other electrode 1b.

By this means, the welding process will function in the normal way known per se in automatic fusion welding with a nonconsumable electrode and with the addition of 35 a further current-carrying consumable electrode which supplies the quantity of molten welding metal desired, but with the very essential improvement made possible by the present invention that the nonconsumable 40 electrode 2b now at the same time functions as a measuring electrode which constantly by its tip 10b senses and via the feedback control adjusts the position of the melting end 9b of the consumable electrode, so that 45 the latter is constantly, as far as possible, kept fixed at the desired distance from the holder 3b irrespectively of random variations in the distance from the tip 9b of the electrode to the surface of the molten pool 20

50 produced on the surface of the work piece 4. Figs. 1 to 4 at the same time indicate the arrangement in principle of apparatuses for carrying out the methods according to the invention, and the components of the appara-55 tuses and their mode of operation have been described in principle and in detail in the

text accompanying said figures.

As regards the embodiments of the apparatuses shown in the drawings and des-60 cribed above it has not been regarded necessary or expedient to offer further detailed directions for the arrangement, construction and mode of operation of the individual components, apparatuses and feedback con-65 trol devices etc. These details are all in-

cluded in the prior art technique and are used daily in practice. Further, they may be designed and combined in numerous different ways which are well-known and obvious to the person skilled in the art who is familiar 70 with the technique known so far within the field of automatic electric fusion welding and with the welding and feedback control principles and apparatuses methods, ordinarily used within this field.

WHAT WE CLAIM IS:

1. A method for automatic electric fusion welding of the kind where at least two current-carrying welding electrodes, each electrically series-connected with a common 80 work piece, are used simultaneously, said electrodes being mounted in a joint holder which is moved manually or mechanically in relation to the work piece, at least one of the welding electrodes being a consumable 85 electrode which is fed to the welding point by means of a mechanical feeding device, the welding electrodes being mounted and fed at a relative angle of between 0° and 180° in such a way that they meet at a 90 point of intersection where they are randomly in physical contact, and where the melting of electrode material takes place in a joint arc between the electrodes and the work

2. A method as claimed in claim 1 wherein at any time during the welding process, the electric potential, present between the welding electrodes, is used, by means of feedback control, for controlling the rate of feed 100 of the melting ends of the electrodes and in such a way that said potential is substantially maintained at a preset value, which value is less than 10% of the potential used during the welding process between the elec- 105

trodes and the work piece.

3. A method as claimed in claim 2 wherein said control of the rate of feed of the melting ends of the welding electrodes is performed by controlling the rate at which the mechani- 110 cal feeding devices feed the electrodes to the welding point.

4. A method as claimed in claim 2 wherein said control of the rate of feed of the melting ends of the welding electrodes is per- 115 formed by controlling the intensity of the electric currents which flow through the electrodes and back through the work piece.

5. A method as claimed in claim 2 wherein said control of the rate of feed of the melt- 120 ing ends of the welding electrodes is performed by controlling the speed at which the holder for the for the electrodes is moved in relation to the work piece.

6. A method as claimed in claim 1 or 2 125 wherein at any time during the welding process, a welding current is forced through one of the electrodes, which welding current produces a current density in the electrode material, said current density being up to 130

25% higher than the current densities which are simultaneously produced in the remaining electrodes by the welding currents flow-

ing through them.

11

7. A method as claimed in claim 2 wherein one of the electrodes is thinner than the remaining electrodes and is melted with a reduced rate of feed such that it contributes less than 10% of the total quantity of 10 molten material per unit of time.

8. A method as claimed in claim 1 or 2 wherein at least one of the electrodes is a nonconsumable electrode fixed in relation

to the holder.

9. Apparatus for automatic fusion welding for carrying out the method claimed in claim 1 and comprising at least two currentcarrying electodes, each arranged to be electrically series-connected with a common

20 work piece, at least one of the welding in a joint holder which can be moved manually or mechanically in relation to the work piecet, at least one of the welding arranged he electrodes being ŧΩ

25 fed through a welding nozzle for continuous melting at a welding point for continuous melting at a welding point by means of a mechanical feeding device, and the holder being arranged for holding the 30 welding electrodes at a relative angle of

between 0° and 180° in such a way that they can meet at a point of intersection, where they can be randomly in physical contact, whereby a joint arc can be esta-

35 blished between the electrodes and the work piece, said apparatus further comprising a feedback control device which is connected via an electric potential measuring device

to the welding electrodes and which is 40 arranged in such a way that the electric potential, present at any time during the welding process between the welding electrodes, can be used for controlling the rate of feed of the melting ends of the electrodes

45 and so that said potential can be substan-

tially maintained at a preset value, which value is less than 10% of the potential used during the welding process between the electrodes and the work piece.

10. Apparatus as claimed in claim 9 where- 50 in said feedback control device is connected to the mechanical feeding device and is so arranged that said control of the rate of feed of the melting ends of the welding electrodes is performed by controlling the rate at which 55 the electrodes are fed to the welding point.

11. Apparatus as claimed in claim 9 wherein said feedback control device is connected to the welding power sources and is arranged in such a way that said control of 60 the rate of feed of the melting ends of the welding electrodes is performed by control-ling the intensity of the electric currents which flow through the electrodes and back through the work piece.

12. Apparatus as claimed in claim 9 wherein said feedback control device is connected to a mechanism for moving the holder for the electrodes and is so arranged that said control of the rate of feed of the melting 70 ends of the welding electrodes is performed by controlling the speed at which the holder is moved in relation to the work piece.

13. Apparatus as claimed in claim 9 wherein at least one of the electrodes is a 75 nonconsumable electrode which is fixed in

relation to the holder.

14. A method for automatic electric fusion welding substantially as described above with reference to the accompanying 80 drawings.

15. Apparatus for carrying out the method claimed in claim 1 and substantially as described above with reference to Figure 2, 3 or 4 of the accompanying drawings. . 85

For the Applicants, CARPMAELS & RANSFORD, Chartered Patent Agents, 43 Bloomsbury Square, London, WCIA 2RA.

Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1978. Published at the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

1 502 288 COMPLETE SPECIFICATION
4 SHEETS This drowing is a reproduction of the Original on a reduced scale.
SHEET 1

1 502 288 COMPLETE SPECIFICATION
4 SHEETS This drawing is a reproduction of the Original on a reduced scale.
SHEET 2

1 502 288 COMPLETE SPECIFICATION
4 SHEETS This drawing is a reproduction of the Original on a reduced scale.
SHEET 3

1 502 288 COMPLETE SPECIFICATION
4 SHEETS
This drawing is a reproduction of the Original on a reduced scale.
SHEET 4

