# Sol Genomics Network Associating genes with phenotypes

Designer: Naama Menda

Presenter: Robert Buels







# What is the Sol Genomics Network?

# www.sgn.cornell.edu

- •Clade-oriented database for solanaceous species (tomato, potato, pepper, ...), and coffee.
- •Bioinformatics hub for tomato genome sequencing

### **Overall Stats**

17% of sequencing is complete
12% of BACs are reported finished
9% of BACs are available for download







# Solanaceae genes and phenotypes

- Database schema
- User interface:
  - Gene search and detail pages
  - Phenotype data
  - User-editable database

• Summary: Gene-phenotype associations







## Database schema

- Loci may have multiple phenotypes
- Phenotypes are individuals of populations (mutants, mapping, introgression lines..) May be associated with multiple loci.









# SGN gene search page





# SGN gene display page



# Allele data- with - links to phenotype data (user editable)

### Known alleles

### [Add new allele]

| Allele | Allele | Cunanuma | Mode of     | Phonotype                                            | Accessions |        |
|--------|--------|----------|-------------|------------------------------------------------------|------------|--------|
| symbol | name   | Synonyms | inheritance | Phenotype                                            | Accessions |        |
| 1      | ghost  | ab       | recessive   | Ghost phenotype. Incomplete chlorophyll              | 3          | [Edit] |
|        |        |          |             | deficiency, starting green, later breaking to white. |            |        |

### Sequence annotations

# Sequence annotation:

- SGN unigenes
- GenBank

### SGN Unigenes

SGN-U.318588

### GenBank accessions

GI:9937100 d Lycopersicon esculentum plastid terminal oxidase (PTOX) mRNA, complete cds; nuclear gene encoding plastid protein.

GI:10505365 & Lycopersicon esculentum plastid quinol oxidase mRNA, complete cds.

### Literature annotation

# Literature annotation

### PubMed

PMID:10938359 ₽

### Ontology annotations

### Ontology annotation:

- GO and PO
- Solanaceae phenotype ontology (under development)

### Biological process:

GO:0009266 @ response to temperature stimulus

GO:0009644 @ response to high light intensity

GO:0009657 @ plastid organization and biogenesis

GO:0009658 de chloroplast organization and biogenesis

GO:0016117 @ carotenoid biosynthesis

### Molecular function:

GO:0009916 @ alternative oxidase activity

### Cellular component:

GO:0009579 d thylakoid

### Plant structure:

PO:0009001 @ fruit

PO:0009005 @ root

PO:0009046 @ flower

# Any SGN user can add comments

### User comments

No user comments.

Add comment



# SGN phenotype database

Phenotypes are recorded for <u>'individuals'</u>: accessions from a population

SGN individual: LA0295

Only the owner - can edit the object

Link back to the locus page

Logged-in users can submit images

### Individual details

[New] [Edit] [Delete]

Individual Name: LA0295

Individual Description:

Population: TGRC monogenic mutant population

Uploaded by: Roger Chetelat

### Associated loci: plastid terminal oxidase









Ghost phenotype. Incomplete chlorophyll deficiency, starting green, later breaking to white.





### Mapping data

No map available for this individual

### Known alleles

Locus name Allele symbol Phenotype

Available germplasms None

Available gerifiplasifis

plastid terminal oxidase

### Ontology annotations

Solanaceae phenotype:

SP:0000057 leaf variegation SP:0000052 white leaf SP:0000017 chlorophyll content

### User comments

No user comments

Add comment

Mutant phenotypes are usually annotated with Solanaceaespecific subset of descriptors



Permissions are object and user-type dependent:

- → Curator
- → Submitter
- → User
- Some objects can be edited only by the owner (submitter) (Locus, allele, accession, image objects have owners.)

Submitters can add new objects and annotations to an existing object (load a new image to a locus owned by another submitter).

- Submitters can also request ownership of an existing locus object to obtain edit permission (manual email).
- Other objects can be edited by users (synonyms, tags, comments)

# Who can become submitter/user?

- → Anyone can create an SGN user account
- Any user willing to load or update data may obtain a submitter user-type

sol genomics network





# User–editable database: The form framework

Locus details The locus details are [New] [Cancel Edit] [Delete] printed in an editable Locus name \* plastid terminal oxida -short arm Locus symbol \* form when clicking ptox Gene activity terminal oxidase the 'Edit' button Description Tomato-EXPEN 2000 Chromosome 11 🔻 Arm short 🔻 (\* denotes required field.) Reset form Store Locus synonyms 2: gh ghost [add/remove] plastid terminal oxidase is a TGRC gene de Locus editor: Naama Menda Last modified on: 2006-06-01 Accessions and images LA0295 ..... (8 images)







# User–editable database: Community-based curation

# Users can add, edit, and obsolete:

- Genes
- Alleles
- Phenotypes ('individuals')
- Images

Soon: Form framework for ontology annotation (requires ontology browser, literature associations and evidence codes)

| Naama Menda n bnail   small   medium   large |
|----------------------------------------------|
| n                                            |
| n                                            |
| n                                            |
|                                              |
| bnail   small   medium   large               |
|                                              |
|                                              |
|                                              |







# Summary: Gene-phenotype associations

Database of SOL genes:

Tomato: ~1,800

Potato: 1,000

Pepper: 600

Petunia: 400

Eggplant: 200

• SOL phenotypes:

6 populations with 6,000 individual accessions.

8,000 images associated to both genes and phenotypes.

- •Data can be added by users and associated with a gene and/or phenotype (alleles, images, maps, sequences, literature).
- Data differs in what users have permissions to edit it:
  - curators (SGN staff), submitters and object owners (SGN verified users)
  - users (SOL community members).







# Summary: Gene-phenotype associations

# How?

- Coming soon: more user-editable data!
  - ontology annotations on genes
  - phenotype ontology
    - quantitative data + statistical analysis of QTLs

# Why?

Solanaceae share a highly conserved genome, yet extremely diverse phenotypic variation.

The small number of <u>different</u> phenotypes with a known gene sequence calls for a comparative approach for revealing gene function and their associated phenotypes.







# Acknowledgments

# SGN is:

### Senior Staff



Lukas Mueller Director



Naama Menda Postdoctoral Fellow

### **Bioinformatics Analysts**



Beth Skwarecki



Robert Buels



Richard "Marty" Kreuter



Adri Mills



Chris Carpita

### Interns

- · Bob Albright
- · Johnathon Schultz



