Die Eigendynamik von Systemen verstehen

Frank Schweitzer

fschweitzer@ethz.ch

Gliederung

- I. Einfach versus komplex
- II. Komplexität durch Interaktion
- III. Soziale Systeme

Einfach versus komplex
Was ist einfach?

Was ist einfach?

Das mathematische Pendel

- Dynamik: $\ddot{\alpha} = -\omega_0^2 \sin \alpha$, $\omega_0^2 = g/I$
- Linearisierung: $\alpha \approx x/I$

5 / 24

- Vorteil: wir haben alles verstanden
- Nachteil beim Wissenstransfer in die reale Welt
 - das Pendel bleibt leider stehen
 - Ursache: "wenn man in der realen Welt etwas bewegen will, muß man Widerstände überwinden" ⇒ kostet Energie
- Lösung: das getriebene Pendel

$$\ddot{\alpha} = -\omega_0^2 \sin \alpha - \gamma \dot{\alpha} + A \sin(\omega_A t)$$

Einfach versus komplex └ Das getriebene Pendel

Einfach zu komplex?

Verschiedene dynamische Regimes

Einfach versus komplex

Komplexe Dynamik ⇔ komplexe Ursachen?

- auch einfache Systeme können komplexes Verhalten zeigen
- unterschiedliches Systemverhalten
 ⇔ gleiche Dynamik
 - ► Einfluß von Kontrollparametern (A)
 - Verzweigung des Lösungsverhaltens (Bifurkationen)
 - ⇒ verschiedene dynamische Regimes

Was passiert, wenn wir viele einfache Systeme verkoppeln?

Komplexe Systeme

• große Zahl von (heterogenen) Subsystemen (Elementen, Prozessen, Agenten, ...), die miteinander wechselwirken

Komplexität durch Interaktion

Komplexität durch Interaktion

- Der Mikro-Makro-Link:
 - In welcher Beziehung stehen die Eigenschaften der Elemente und ihre Interaktion of der "mikroskopischen" Ebene zur Dynamik und den Eigenschaften des Gesamtsystems auf der "makroskopischen" Ebene?
- "einfache" Elemente ⇔ komplexe Dynamik?

FTH Zürich

... ein illustratives Beispiel

- Agenten-basierte Simulation (MAS)
- Problem (keine Information vorgegeben):
 - ▶ finde neue Ressourcen (Rohstoffe, Märkte)
 - ⇒ Exploration des Zustandsraumes
 - verbinde diese Ressourcen mit der Basis
 - ⇒ kostengünstiges Netzwerk aufbauen
 - adaptiere Netzwerk, wenn Ressourcen verbraucht sind
- Resultat (relevante Information selbst generiert):
 - Lösung wird "kreiert" (nicht vorgegeben)

Simulation

Chemische Kommunikation

 Brownsche Agenten "schreiben" und "lesen" chemische Information

Hölldobler, B. and Möglich, M.: The foraging system of Pheidole militicida (Hymenoptera: Formicidae), Insectes Sociaux 27/3 (1980) 237-264

└─ Multi-Agenten-Simulation

Selbstorganisation

- spontane Entstehung, Höherentwicklung und Ausdifferenzierung von Ordnungsstrukturen
- kollektive Phänomene, Emergenz von neuen Systemqualitäten

Self-Organization is the process by which individual subunits achieve, through their cooperative interactions, states characterized by new, emergent properties transcending the properties of their constitutive parts.

Biebricher, C. K.; Nicolis, G.; Schuster, P. Self-Organization in the Physico-Chemical and Life Sciences EU Report 16546 (1995)

☐ Selbstorganisation

Einfach zu komplex?

Zwei Wege für das Anwachsen von Komplexität

Verlust von Strukturen -> Unordnung wächst

Entstehung von Strukturen -> Ordnung wächst

Swiss Federal Institute of Technology Zurich

Fazit

Komplexität durch Interaktion

- einfache Systeme
 - generieren komplexe Eigendynamik (abhängig vom Kontrollparameter)
- komplexe Systeme
 - Eigendynamik aus der Wechselwirkung von Agenten
 - Emergenz neuer Eigenschaften "sinnvolles Verhalten": Problemlösen, Optimieren

Frage:

- Emergenz von quantitativen Gesetzmäßigkeiten durch kollektive Interaktionen?
 - ► Einsicht durch Datenanalyse

Soziale Systeme

- SG: Dynamik von Unternehmen und sozialen Organisationen
- komplexe Systeme aus vielen interagierenden Subsystemen
- Beispiel: Gewerkschaften (Schweden 1900-1940)
 - ▶ 60 Gewerkschaften mit ca 10.000 lokalen Gruppen

Soziale Systeme └─ Größenverteilung

> • Gibt es statistische Gesetzmäßigkeiten für die Größenverteilung? ⇒ log-normal Verteilung

F. Liljeros et al. (2003)

☐ Größenverteilung

Was heißt das für die zugrundeliegende Wachstumsdynamik?

- $x_i(t)$ Größe der Gewerkschaft i zur Zeit t
- "law of proportionate growth" (Gibrat 1931)

$$x_i(t+1) - x_i(t) = b_i(t)x_i(t)$$

- $b_i(t)$: Zufallszahlen \Rightarrow multiplikativer Zufallsprozeß
- jährliche Wachstumsrate

$$g(t) = \ln \left\{ \frac{x(t+1)}{x(t)} \right\}$$

• Wahrscheinlichkeit p(g|x), skaliert mit $\sigma(x)$

$$p(g|x) \sim \frac{1}{\sigma(x)} \mathcal{F}\left(\frac{g}{\sigma(x)}\right) \; ; \quad \sigma(x) \sim x^{\beta}$$

Soziale Systeme

Einfach zu komplex?

F. Liljeros et al. (2003)

 Größenverteilung, Wachstumsraten und mittlere Größenschwankungen der Gewerkschaftsgruppen folgen einem klaren empirische Gesetz Soziale Systeme

Einfach zu komplex?

Struktur von Organisationen

Interne Strukturen von Organisationen

 Zahl der lokalen Gewerkschaftsgruppen (n), die eine Gewerkschaft der Größe x bilden

$$n \sim x^{1-\alpha}$$
; $\alpha = 0.31 \pm 0.05$

F. Liljeros et al. (2003)

 Möglichkeit universaler Mechanismen für die Struktur von Organisationen

Swiss Federal Institute of Technology Zurich

Soziale Kontakte

- subjektiv, schwierig zu quantifizieren ...
- relativ eindeutig: sexuelle Kontakte
 - Daten: 2810 Personen (Alter: 18-74) (Schweden, 1996)

F. Liljeros et al. (2001)

Einfach zu komplex? Soziale Systeme Soziale Kontakte

- Resultat: $P(k) \sim k^{-\alpha}$
 - (w) $\alpha = 2.54 \pm 0.2$ (k > 4), $\alpha_{tot} = 2.1 \pm 0.3$ ($k_{tot} > 20$)
 - \sim (m) $\alpha = 2.31 \pm 0.2$ (k > 5), $\alpha_{tot} = 1.6 \pm 0.3$ (20 $< k_{tot} < 400$)

Was heißt das für die zugrundeliegende Interaktionsdynamik?

- skalenfreies Netzwerk ⇒ bevorzugte Verbindung zu Knoten mit hoher Vernetzung ("the rich get richer")
- keine ausgezeichnete Skala ⇒ keine Separation einer "core group"

Einfach zu komplex?

_Zusammenfassung

- einfache Systeme offenbaren komplexes Verhalten
 - Beispiel: Pendel
- komplexe Systeme offenbaren einfache Gesetzmäßigkeiten
 - Beispiel: Gewerkschaftsgröße, Verteilung sexueller Kontakte
- Eigendynamik komplexer Systeme: Resultat von Wechselwirkungen vieler (einfacher) Elemente
 - Emergenz von "sinnvollem" Verhalten, Adaptation
 - Entstehung "höherer" Ordnung (Strukturen, statistische Gesetze)

Dank

Einfach zu komplex? L Ende

- an meine Lehrer/innen
- an meine Mitarbeiter/innen
- an meine Kolleg/innen

Herzliche Einladung

zum Apero im Dozentenfoyer.

Bitte benutzen Sie die Fahrstühle ins Stockwerk J

Einfach zu komplex?

Ende