Show all work clearly and in order. Please box your answers. 10 minutes.

1. A partial order relation on a set X is a relation on X that has what three properties?

reflexive anti Symmetric

2. An equivalence relation on a set X is a relation on X that has what three properties?

rflexive

3. Define the relation R on \mathbb{R} by

xRy if and only if $\lceil x \rceil = \lceil y \rceil$.

(a) Show that R is an equivalence relation on \mathbb{R} .

proof:

Ris reflexive: YXEIR, TX7=TX7, Therefore XRX

Ris symmetric: Let x, y \(\) R and suppose xRy

so \(\text{X} \) = \(\text{Y} \)

Therefore \(\text{Y} \text{X} \)

Ris transitive: Let \(\text{X}, \text{Y} \) \(\text{E} \)

Ris transitive: Let \(\text{X}, \text{Y} \) \(\text{E} \)

So \(\text{X} \) = \(\text{F} \) \(\text{P} \)

So \(\text{X} \) = \(\text{F} \) \(\text{P} \)

Therefore \(\text{X} \)

There fare XRZ.

(b) Show that R is not an order relation on \mathbb{R} .

of: Ris not an order relation on R.

Ris not antisymmetric: (countrexample). Consider for example x = 6.3 and y = 6.4, x = 6.3 and y = 6.4, x = 6.3 and y = 6.4, x = 6.3 and x = 6.3 and x = 6.3 and x = 6.3 for x = 6.3 (c) Find a representative for the equivalence class [4.67] that is not equal to 4.67.

(my number with ceiling 5 would be correct other than 4.67) 4.32189

(d) Draw the real line \mathbb{R} , then draw an label the equivalence class [4.67] under the relation R.