Assignment 2

David Gyaraki, Thao Le

Contents

1	Question 1	2
	1.1 (i)	2
	1.2 (ii)	4
	1.3 (iii)	8
	Question 2 2.1 (i)	15 15
	Question 3 3.1 (i)	15 15
	3.2 (ii)	

1 Question 1

1.1 (i)

```
# Get the quantile values
quant=quantile(lntotexp, seq(0.1, 0.9, by=.4))
n = length(lntotexp)

# Histogram of log of total medical expenditure
hist(lntotexp)
```

Histogram of Intotexp

Quantiles for log of total medical expenditure

integer(0)

In the quantile plot, the median is indicated by the red line, the 10^{th} and 90^{th} quantile are indicated by the blue and green lines.

We can see from the distribution of log of total medical expenditure that there are few values from 0 to 4. Thus, the quantile plot increases quickly in this region. From 4 to 6, we see an increase frequencies of observations, thus, the quantile plot increases slower. The most rapid increase in the quantile plot is observed between 6 and 10, which makes sense because that is the region where most observations lie. After 10, there are less observations and the quantile plot increases rapidly again.

Although the quantile plot increases rapidly in both regions from 0 to 4 and 10 to 12, we observed a much steeper increase from 0 to 4, thus, we can say that the distribution of log total medical expenditure is left-skewed. This is confirmed by looking at its histogram.

1.2 (ii)

```
# Quantile regression
q= c(0.1,0.25,0.5,0.75,0.9)
quant_reg = rq(lntotexp ~ . , tau = q, data = dfData)
```

summary(quant_reg)

```
Call: rq(formula = lntotexp ~ ., tau = q, data = dfData)
tau: [1] 0.1
Coefficients:
                    Std. Error t value Pr(>|t|)
           Value
(Intercept) 3.86704 0.48065
                               8.04549 0.00000
            0.01927 0.00601
age
                               3.20732 0.00135
female
           -0.01273 0.07579
                              -0.16794 0.86664
white
            0.07344 0.19533
                               0.37597 0.70697
totchr
            0.53919 0.02534
                              21.27920 0.00000
            0.39572 0.07851
                             5.04027 0.00000
suppins
Call: rq(formula = lntotexp ~ ., tau = q, data = dfData)
tau: [1] 0.25
Coefficients:
                    Std. Error t value Pr(>|t|)
           Value
(Intercept) 4.74732 0.30724
                             15.45160 0.00000
            0.01551 0.00399
                              3.88410 0.00010
age
female
           -0.01623 0.05328
                             -0.30462 0.76068
            0.33775 0.09662
                              3.49570 0.00048
white
totchr
            0.45918 0.01833
                              25.04804 0.00000
            0.38584 0.05992
                              6.43964 0.00000
suppins
Call: rq(formula = lntotexp ~ ., tau = q, data = dfData)
tau: [1] 0.5
Coefficients:
                    Std. Error t value Pr(>|t|)
           Value
(Intercept) 5.61116 0.35187 15.94656 0.00000
            0.01487 0.00406
age
                               3.66512 0.00025
female
           -0.08810 0.05406
                              -1.62961 0.10329
            0.53648 0.19319
                               2.77697 0.00552
white
totchr
            0.39427 0.01846
                              21.35942 0.00000
```

0.27698 0.05347

suppins

5.18025 0.00000

```
Call: rq(formula = lntotexp ~ ., tau = q, data = dfData)
tau: [1] 0.75
Coefficients:
                    Std. Error t value Pr(>|t|)
           Value
(Intercept) 6.59997 0.42690
                             15.46027 0.00000
age
            0.01825 0.00475
                               3.83862 0.00013
female
           -0.12194 0.06060
                              -2.01231 0.04428
white
            0.19319 0.25684
                              0.75219 0.45200
totchr
            0.37354 0.02286
                              16.33884 0.00000
            0.14885 0.06203
                               2.39991 0.01646
suppins
Call: rq(formula = lntotexp ~ ., tau = q, data = dfData)
tau: [1] 0.9
```

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	8.32264	0.54599	15.24309	0.00000
age	0.00592	0.00651	0.91022	0.36278
female	-0.15763	0.08914	-1.76831	0.07711
white	0.30522	0.24260	1.25811	0.20845
totchr	0.35795	0.03310	10.81289	0.00000
suppins	-0.01428	0.08642	-0.16527	0.86874

Looking at the results, we observe different coefficients across the different quantiles. Quite expectedly, we have increasing intercept coefficients, however the interesting part is the different significance of the coefficients in the different quantile regressions. We observe that for the 0.1 quantile, the female and white dummies are insignificant, for the 0.25 and 0.5 quantiles only the female dummy is insignificant, for the 0.75, interestingly the white dummy is insignificant while the female dummy turns out to be significant, and for the 0.9 quantile, only the chronic illness variable seems to be strongly significant with the female dummy slightly (at 10% level) significant too. These trends will lead to the conclusion that the different predictors likely have different dynamics across the groups of patients when ordered by medical expenditure. Being white significantly increases medical expenditure in the mid-groups but not in the tails of the expenditure distribution. Age and extra insurance are associated with significant increase in costs for low spending groups but not for the highest spenders, and gender comes into influence for the highest spenders only. Let us then look at the OLS results, coefficients and their significance levels.

```
# OLS Regression
OLS_reg = lm(lntotexp ~ . , data = dfData)
summary(OLS_reg)
```

```
Call:
lm(formula = lntotexp ~ ., data = dfData)
Residuals:
           1Q Median
   Min
                         3Q
                               Max
-6.2474 -0.7666 -0.0032 0.7827 3.8516
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.898155 0.295694 19.947 < 2e-16 ***
age
           0.012656
                    0.003595 3.520 0.000437 ***
female
          -0.076517 0.046110 -1.659 0.097132 .
           white
           totchr
suppins
           0.256811
                    0.046450 5.529 3.51e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.227 on 2949 degrees of freedom
                           Adjusted R-squared: 0.1955
Multiple R-squared: 0.1969,
F-statistic: 144.6 on 5 and 2949 DF, p-value: < 2.2e-16
```

When one looks at the OLS regression results, the model shows that most variables are statistically significant for explaining the logarithm of medical expenditure, except for the female dummy variable. The variables age, totchr and suppins all have positive effect on medical expenditure with less than 0.001 significance, and the variable white has a positive effect as well on 5% significance level. The interpretation of the coefficients can also be given as one unit increase in the independent variables (keeping all else equal) increases the medical expenditure by $(exp(\beta_k)-1)*100)$ percentage. We can see below, that a year of age increase will result in an estimated 1.274% increase in medical expenses. Similarly, being female reduces the expenses by -7.366% (although this is only significant at 10% level in the OLS model), being white is associated with 37.412% increase in medical expenses, an additional chronic illness will increase expenditure by 56.091% and having a supplementary private insurance will result in 29.280% increase in medical expenses.

```
(exp(OLS_reg$coefficients)-1)*100
```

(Intercept)	age	female	white	totchr	suppins
36336.450509	1.273661	-7.366254	37.411599	56.091416	29.280045

1.3 (iii)

First we can re-estimate the quantile regressions from 0.05 to 0.95 in the same model as in

```
Section 1.2.
  # Quantile regression in increments of 0.05
  q_005 = seq(0.05, 0.95, length.out=19)
  quant_reg_005 = rq(lntotexp ~ . , tau = q_005, data = dfData)
  qr_summary=summary(quant_reg_005)
  qr_summary
Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)
tau: [1] 0.05
Coefficients:
                   Std. Error t value Pr(>|t|)
           Value
(Intercept) 3.36557 0.68439 4.91765 0.00000
           0.01977 0.00893 2.21353 0.02694
age
female
          0.12068 0.10803 1.11704 0.26407
          -0.23365 0.23069 -1.01282 0.31123
white
totchr
            0.63345 0.02977
                            21.27576 0.00000
            0.41912 0.11495
                             3.64608 0.00027
suppins
Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)
tau: [1] 0.1
Coefficients:
           Value
                   Std. Error t value Pr(>|t|)
(Intercept) 3.86704 0.48065 8.04549 0.00000
           0.01927 0.00601 3.20732 0.00135
age
female
           -0.01273 0.07579 -0.16794 0.86664
white
           0.07344 0.19533 0.37597 0.70697
            0.53919 0.02534
                              21.27920 0.00000
totchr
            0.39572 0.07851
                            5.04027 0.00000
suppins
Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)
```

tau: [1] 0.15

Coefficients:

```
Std. Error t value Pr(>|t|)
          Value
(Intercept) 4.15640 0.41748
                             9.95605 0.00000
age
           0.01865 0.00537
                              3.47031 0.00053
female
           0.02271 0.07068
                             0.32138 0.74795
white
           0.15737 0.13749
                             1.14459 0.25247
           0.51204 0.02432
                             21.05569 0.00000
totchr
suppins
           0.39942 0.06989
                           5.71491 0.00000
```

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.2

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	4.47890	0.34615	12.93916	0.00000
age	0.01734	0.00454	3.81746	0.00014
female	-0.01323	0.06120	-0.21618	0.82886
white	0.25032	0.09454	2.64763	0.00815
totchr	0.48030	0.02012	23.86793	0.00000
suppins	0.40203	0.06042	6.65370	0.00000

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.25

Coefficients:

```
Value
                  Std. Error t value Pr(>|t|)
(Intercept) 4.74732 0.30724 15.45160 0.00000
age
           0.01551 0.00399 3.88410 0.00010
female
          -0.01623 0.05328
                           -0.30462 0.76068
           0.33775 0.09662
                           3.49570 0.00048
white
           0.45918 0.01833
                            25.04804 0.00000
totchr
           0.38584 0.05992 6.43964 0.00000
suppins
```

Call: rq(formula = Intotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.3

Coefficients:

```
Value Std. Error t value Pr(>|t|)
(Intercept) 5.18763 0.32873 15.78085 0.00000
age 0.01207 0.00428 2.82053 0.00483
female -0.03342 0.05733 -0.58296 0.55996
white 0.47252 0.07958 5.93801 0.00000
totchr 0.42963 0.01802 23.84426 0.00000
suppins 0.28488 0.05991 4.75485 0.00000
```

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.35

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	5.14852	0.32570	15.80777	0.00000
age	0.01458	0.00420	3.46956	0.00053
female	-0.06382	0.05469	-1.16706	0.24328
white	0.52359	0.12196	4.29323	0.00002
totchr	0.41297	0.01906	21.66773	0.00000
suppins	0.29115	0.05391	5.40044	0.00000

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.4

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	5.34247			0.00000
age	0.01400	0.00414	3.38472	0.00072
female	-0.08100	0.05366	-1.50939	0.13131
white	0.54055	0.17574	3.07593	0.00212
totchr	0.41102	0.01960	20.97561	0.00000
suppins	0.28977	0.05397	5.36882	0.00000

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.45

Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 5.53579 0.35381 15.64622 0.00000
age 0.01411 0.00407 3.46239 0.00054
female -0.06450 0.05189 -1.24309 0.21393

```
white 0.49315 0.19768 2.49466 0.01266
totchr 0.40721 0.01893 21.50765 0.00000
suppins 0.25994 0.05275 4.92812 0.00000
```

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.5

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	5.61116	0.35187	15.94656	0.00000
age	0.01487	0.00406	3.66512	0.00025
female	-0.08810	0.05406	-1.62961	0.10329
white	0.53648	0.19319	2.77697	0.00552
totchr	0.39427	0.01846	21.35942	0.00000
suppins	0.27698	0.05347	5.18025	0.00000

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.55

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	5.82910	0.39492	14.76022	0.00000
age	0.01416	0.00407	3.48048	0.00051
female	-0.09861	0.05257	-1.87593	0.06076
white	0.54989	0.26352	2.08671	0.03700
totchr	0.38758	0.01961	19.76391	0.00000
suppins	0.23471	0.05495	4.27124	0.00002

Call: $rq(formula = lntotexp ~ ., tau = q_005, data = dfData)$

tau: [1] 0.6

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	6.15907	0.44080	13.97262	0.00000
age	0.01506	0.00420	3.58836	0.00034
female	-0.10853	0.05583	-1.94395	0.05200
white	0.25683	0.31863	0.80602	0.42030
totchr	0.39562	0.02031	19.47553	0.00000
suppins	0.25798	0.05577	4.62590	0.00000

```
Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)
```

tau: [1] 0.65

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	6.36258	0.40648	15.65275	0.00000
age	0.01487	0.00461	3.22352	0.00128
female	-0.12887	0.05958	-2.16293	0.03063
white	0.28299	0.23108	1.22462	0.22082
totchr	0.38288	0.02194	17.44947	0.00000
suppins	0.20693	0.06372	3.24745	0.00118

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.7

Coefficients:

	Value	Std. Error	t value	Pr(> t)
(Intercept)	6.63358	0.40368	16.43281	0.00000
age	0.01444	0.00478	3.02030	0.00255
female	-0.12951	0.05988	-2.16259	0.03065
white	0.27653	0.21300	1.29828	0.19429
totchr	0.37716	0.02214	17.03824	0.00000
suppins	0.15564	0.06329	2.45903	0.01399

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.75

Coefficients:

```
Value Std. Error t value Pr(>|t|)
(Intercept) 6.59997 0.42690 15.46027 0.00000
age 0.01825 0.00475 3.83862 0.00013
female -0.12194 0.06060 -2.01231 0.04428
white 0.19319 0.25684 0.75219 0.45200
totchr 0.37354 0.02286 16.33884 0.00000
suppins 0.14885 0.06203 2.39991 0.01646
```

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.8

Coefficients:

Std. Error t value Pr(>|t|) Value (Intercept) 6.90999 0.36065 19.15991 0.00000 0.01785 0.00471 3.78762 0.00016 age -0.15788 0.06144 -2.56945 0.01023 female white 0.13863 0.11657 1.18927 0.23443 totchr 0.38143 0.02285 16.69225 0.00000 suppins 0.11425 0.06222 1.83630 0.06641

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.85

Coefficients:

Value Std. Error t value Pr(>|t|)(Intercept) 7.31366 0.46945 15.57926 0.00000 age 0.01407 0.00590 2.38227 0.01727 female -0.18200 0.07945 -2.29064 0.02205 white 0.28563 0.16208 1.76226 0.07813 totchr 0.36909 0.02806 13.15508 0.00000 suppins 0.10036 0.08226 1.21999 0.22257

Call: rq(formula = Intotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.9

Coefficients:

Value Std. Error t value Pr(>|t|) (Intercept) 8.32264 0.54599 15.24309 0.00000 0.00592 0.00651 0.91022 0.36278 age female -0.15763 0.08914 -1.76831 0.07711 white 0.30522 0.24260 1.25811 0.20845 totchr 0.35795 0.03310 10.81289 0.00000 -0.01428 0.08642 -0.16527 0.86874 suppins

Call: rq(formula = lntotexp ~ ., tau = q_005, data = dfData)

tau: [1] 0.95

Coefficients:

Value Std. Error t value Pr(>|t|)
(Intercept) 9.74213 0.57059 17.07369 0.00000
age -0.00606 0.00560 -1.08127 0.27967

```
      female
      -0.25712
      0.07341
      -3.50255
      0.00047

      white
      0.40026
      0.36872
      1.08554
      0.27777

      totchr
      0.31566
      0.02827
      11.16644
      0.00000

      suppins
      -0.04675
      0.07189
      -0.65032
      0.51553
```

Then we can plot the resulting quantile regression coefficient estimates along with their 95% confidence intervals, and include the OLS linear regression estimates as well for a comparison.

Finally, let's look at how the quantile regression coefficients compare to the OLS results and what their trend is. The graphs represent each coefficient estimate across quantiles (black dotted line) with their confidence intervals around them (shaded area). The OLS results are represented with the red continuous line along with the red dashed lines as the 95% CI. It seems that the

2 Question 2

2.1 (i)

When one takes the observation relative to the individual-level mean, we include the information present in all of the observations belonging to one panel group or time horizon. In this case, each observation's fitted value will consider information from the individual groups, thus controlling for group/time fixed effects.

3 Question 3

```
dfData2 = read.csv("assignment2b_2023.csv")
attach(dfData2)
```

3.1 (i)

```
(Intercept) school age agesq ethblack
-1.684458e+01 7.885342e-01 4.357356e-01 -9.978518e-04 -1.218389e+00
urban regne regnc regw asvabc
1.301322e+00 1.587785e+00 7.916813e-02 9.333638e-01 1.228122e-01
```

ethblack	agesq	age	school	(Intercept)
-2.299405e+00	-2.353938e-04	3.893922e-01	1.041934e+00	-1.339954e+01
	regw	regnc	regne	urban
	1.085347e+00	2.455961e-01	1.809202e+00	1.354014e+00

 eta_1 is smaller when including the variable asvabc (index test score, constant over time for each indivudual). This means that when accounting for the individual effect, the effect of years of schooling is smaller? NEED TO FINISH

3.2 (ii)