Problem set 1 FYS3110

Sebastian G. Winther-Larsen

August 24, 2017

Problem 1.1(L)

The complex inner product $\langle u|v\rangle$ is linear in its second factor, which means: Given $|v\rangle = \alpha |v_1\rangle + \beta |v_2\rangle$, where $\alpha, \beta \in \mathbb{C}$, then $\langle u|v\rangle = \alpha \langle u|v_1\rangle + \beta \langle u|v_2\rangle$. However, the complex inner product is not linear in its first factor.

If
$$|u\rangle = \alpha |u_1\rangle + \beta |u_2\rangle$$
 then $\langle u| = \alpha^* \langle u_1| + \beta^* \langle u_2|$, now

$$\langle u|w\rangle = \alpha^* \langle u_1|w\rangle + \beta^* \langle u_2|w\rangle,$$
 (1)

for an arbitrary $|w\rangle$. This leads one to conclude that the complex inner product is *antilinear* in the first factor.

Problem 1.2(L)

The following property holds for the inner product of any two vectors $|\alpha\rangle$ and $|\beta\rangle$

$$\langle \beta | \alpha \rangle = \langle \alpha | \beta \rangle \tag{2}$$