Отчет о выполнении лабораторной работы 2.1.6

Эффект Джоуля Томпсона

Выполнил: Тимонин Андрей

Группа: Б01-208

Дата: 03.05.2023

1 Введение

Цели работы:

- 1. Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры;
- 2. Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

В работе используются:

- 1. трубка с пористой перегородкой;
- 2. труба Дьюара;
- 3. термостат;
- 4. термометры;
- 5. микровольтметр;
- 6. балластный;
- 7. манометр;
- 8. дифференциальная термопара.

2 Теоретическая справка

Эффектом Джоуля-Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

В работе исследуется изменение температуры идеального газа при его течении по трубке с пористой перегородкой (рис.1).

Рассматривая 2 произвольных сечения записываем уравнение

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right)$$

Учитывая некоторые формулы мы получаем, что

$$\mu_{D-T} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p}$$

При этом температура инверсии для газа Ван-дер-Ваальса:

$$T_{\text{\tiny HHB}} = \frac{2a}{Rb}$$

3 Экспериментальная установка

Рис. 1 Схема экспериментальной установки

Некоторые элементы установки:

- 1. трубка с пористой перегородкой
- 2. пористая перегородка
- 3. труба Дьюара
- 4. кольцо
- 5. змеевик
- 6. балластный баллон
- 7. вольтметр
- 8. верхний спай термопары
- 9. нижний спай термопары
- 10. пробка из пенопласта

4 Экспериментальные данные

Nº	T, MB	Р, бар
1	-0.126 ± 0.001	4.00 ± 0.05
2	-0.107 ± 0.001	3.50 ± 0.05
3	-0.092 ± 0.001	3.00 ± 0.05
4	-0.070 ± 0.001	2.50 ± 0.05

Таблица 1. Результаты измерение при температуре 20.74 °C

No	T, MB	Р, бар
1	-0.132 ± 0.001	4.00 ± 0.05
2	-0.111 ± 0.001	3.50 ± 0.05
3	-0.095 ± 0.001	3.00 ± 0.05
4	-0.075 ± 0.001	2.50 ± 0.05
5	-0.053 ± 0.001	2.00 ± 0.05

Таблица 2. Результаты измерение при температуре 30.60 °C

No	T, MB	Р, бар
1	-0.126 ± 0.001	4.00 ± 0.05
2	-0.107 ± 0.001	3.50 ± 0.05
3	-0.088 ± 0.001	3.00 ± 0.05
4	-0.071 ± 0.001	2.50 ± 0.05
5	-0.060 ± 0.001	2.20 ± 0.05

Таблица 3. Результаты измерение при температуре 40.60 °C

Nº	T, MB	Р, бар
1	-0.122 ± 0.001	4.00 ± 0.05
2	-0.104 ± 0.001	3.50 ± 0.05
3	-0.087 ± 0.001	3.00 ± 0.05
4	-0.060 ± 0.001	2.40 ± 0.05
5	-0.056 ± 0.001	2.00 ± 0.05

Таблица 4. Результаты измерение при температуре 50.19 °C

График 1. Зависимость $\triangle T$ от $\triangle P$ в эксперименте

Гемпература, 6 С	0-10	10-20	20-30	30-40	40-50
MKB/°C	38,9	39,8	40,7	41,6	42,5

Таблица 5. Зависимость чувствительности термопары медь-константан от температуры

50-80 60-70 70-80 80-90 90-1	Temmeparypa, °C	50-60	60-70				
				70-80	80-90	90-100	
MRB/0C 43,3 44,1 44.9 45.6		42.0			10771112		

Таблица 6. Зависимость чувствительности термопары медь-константан от температуры

Из графика имеем соответствующие коэффициенты:

•
$$\mu_{20.72} = 0.90 \pm 0.05 \frac{K}{\text{fap}}$$

•
$$\mu_{30.06} = 0.91 \pm 0.03 \frac{K}{6ap}$$

•
$$\mu_{40.06} = 0.86 \pm 0.06 \frac{K}{6ap}$$

•
$$\mu_{50.19} = 0.80 \pm 0.06 \frac{K}{6ap}$$

	Углекислый газ (СО2)						
t, °C	P , \mathbf{a}_{TM}						
	1	20	100	200			
-25	1,650	0,000	-0,005	-0,012			
0	1,290	1,402	0,022	0,005			
20	1,105	1,136	0,070	0,027			
40	0,958	0,966	0,262	0,066			
60	0,838	0,833	0,625	0,125			
80	0,735	0,724	0,597	0,196			
100	0,649	0,638	0,541	0,256			
200	0,373	0,358	0,315	0,246			

Таблица 6. Табличные данные коэффициента Джоуля-Томпсона для CO_2

Найдем относительные погрешности полученных данных:

$$\Delta\mu_{20.72} = \frac{|0.9 - 1.105|}{1.105} \cdot 100\% = 18\% \tag{1}$$

$$\Delta\mu_{30.06} = \frac{|0.91 - 1.031|}{1.031} \cdot 100\% = 12\% \tag{2}$$

$$\Delta\mu_{40.06} = \frac{|0.86 - 0.958|}{0.958} \cdot 100\% = 10\% \tag{3}$$

$$\Delta\mu_{50.19} = \frac{|0.80 - 0.898|}{0.898} \cdot 100\% = 11\% \tag{4}$$

Замечание: Мы создавали разность давлений порядка 4 бар. Относительную погрешность можно считать с некоторым приближением относительно 1 атм.

График 2. Зависимость μ от $\frac{1}{T}$

Табличные коэффициенты газа Ван-дер-Ваальса для углекислого газа:

$$a = 0.36 \frac{\Pi \text{a} \cdot \text{m}^6}{\text{моль}^2}$$

$$b = 4.2 \cdot 10^{-5} \frac{\text{m}^3}{\text{моль}}$$
(5)

5 Выводы

- Полученные коэффициенты Джоуля-Томпсона отличаются от табличных в интервале от 10-20 %;
- Углекислый газ действительно охлаждался в ходе эксперимента. Такое поведение подтверждает теорию;

- Трение, которое возникает в пористой пробке, значительно влияет вначале эксперимента до момента установления температуры в трубке;
- Полученные при расчете коэффициенты газа Ван-дер-Вальса имееют огромную погрешность и не соответствуют теории. Получить адекватную оценку температуры инверсии таким способом для углекислого газа невозможно.