Group Theory

Week 1 Exercises

Topics: Groups, Subgroups, Homomorphisms

Awez

Exercise 1 1

Solution (Q2.4.1). f(x) = x and g(x) = x, even though f and g are surjective $f \cdot g$ is not.

Solution (Q2.4.2). Let S be the set of functions from [0, 1] to [2, 3]. For a function to be a binary operation on set T, it's domain is defined to be $T \times T$ and it should return a value from T, but when we take two functions from S, their composition might not be in S, it might not even be defined, for example take $f, g: [0,1] \to [2,3]$ and f(x) = x + 2 then g(f(x)) is not even defined, hence composition is not a binary operation.

Solution (Q2.4.3). No, because a binary operation on set S is a function with domain $S \times S$, but here it's not defined $\forall (a, b) \in S$, for eg. (b, a).

Solution (Q3.3.1). 1. Identity is 0, for $x \in \mathbb{Z}$, -x is it's inverse.

- 2. Identity is the identity matrix I, for an invertible matrix A, inverse is A^{-1} .
- 3. Identity is f(x) = x, inverse is $f^{-1}(x)$.
- 4. Identity is $\phi(x,y) = (x,y)$, inverse is $\phi^{-1}(x,y)$, for a symmetry $\phi(x,y)$.

Solution (Q3.3.2). Since for a group G, identity $e \in G$ is such that $\forall a \in G, a \cdot e = e \cdot a = a$, suppose e and f both are identities, then

$$e \cdot f = f \tag{1}$$

$$=e$$
 (2)

$$= e$$

$$\implies e = f.$$
(2)
$$(3)$$

Hence proved that identity is unique.

Solution (Q3.3.3). In a group G, a' is said to be the inverse of a iff $a \cdot a' = a' \cdot a = e$ where e is identity. Suppose we have two identities a_1 and a_2 of a, then

$$a_1 \cdot a \cdot a_2 = (a_1 \cdot a)a_2 \tag{4}$$

$$= e \cdot a_2 \tag{5}$$

$$=a_2 \tag{6}$$

$$a_1 \cdot a \cdot a_2 = a_1 \cdot (a \cdot a_2) \tag{7}$$

$$= a_1 \cdot e \tag{8}$$

$$= a_1 \implies a_1 = a_2. \tag{9}$$

Hence proved that inverse of any $a \in G$ is unique.

Solution (Q3.3.4). Since there exists unique inverse a' of a,

$$a \cdot b = a \cdot c \tag{10}$$

$$\implies a' \cdot a \cdot b = a' \cdot a \cdot c \tag{11}$$

$$\implies e \cdot b = e \cdot c \tag{12}$$

$$\implies b = c.$$
 (13)

Hence proved.

Exercise 1 Awez

Note: In the following solutions, to prove H (a subset of G) can form a subgroup of G, which is a group itself I've just proved H is closed and it contains identity, i.e for $a, b \in H$, $a \cdot b \in H$. This is sufficient since all $a, b \in H$ satisfy the other three conditions required for H to be a group since they are already in G which is a group. First, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$, $\forall a, b, c \in H$ which is true since a, b, c are also in group G. The other two are true since ${\cal H}$ does contain the identity.

Solution (Q4.4.1). Since H is a subgroup of G, by definition H has same operation as G, hence $\forall a \in H$, $a \in G$. Since H is a group, it also has an identity, let it be $e' \in H$. Now $\forall a \in H$, $a \cdot e' = e' \cdot a = e'$, but $\forall a \in G, a \cdot e = e \cdot a = e$, since they're the same operation, cancellation gives e = e'. Hence $e \in H$.

Solution (Q4.4.2). Assuming addition under integers, the set of odd integers isn't a subgroup, it isn't even a group since two odd numbers upon adding don't give an odd number. Whereas the set of even numbers is a subgroup, since it's a group, under the same operation as of integers. The set $\{kn \mid k \in \mathbb{Z}\}$ are all subgroups for each $n \in \mathbb{Z}$ of integers.

Solution (Q4.4.3). Any subgroup H of G containing all the elements of set S must have at least all the elements of S, since H is closed under it's operation. Thus the smallest possible subgroup of G containing all the elements of S can be S.

Solution (Q4.4.4). $H \cap K$ is a subgroup of G because let $a, b \in H \cap K$, then $a \cdot b$ is also in H, similarly $a \cdot b$ is also in K. Thus $a \cdot b \in H \cap K$. Thus $H \cap K$ forms a group and is a subgroup of G. $H \cup K$ is not a subgroup of G because if $a \in H - K \subseteq H$ and $b \in K - H \subseteq K$ then we can't even guarantee $a \cdot b$ is in $H \cup K$ thus it's not even a group in first place. With similar arguments we can prove $T = \bigcap_{i \in I} H_i$ is a subgroup of G by taking $a, b \in T$. Since a, b belong to each of H_i , $a \cdot b$ also belongs to each of H_i thus is in T. There for T is a group with same operator as G and thus a subgroup of G.

Solution (Q5.3.1).

Figure 1: The group of symmetries associated with this are identity, rotation about center by 120° , by 240°

Solution (Q6.4.1). Let U and V be groups with operations \cdot_U and \cdot_V respectively and $a \in U$ and a' be it's inverse. Let the function $\phi:U\to V$ be a homomorphism. Then

$$\phi(a \cdot_U a') = \phi(a) \cdot_V \phi(a') \tag{14}$$

$$\phi(e_U) = \phi(a) \cdot_V \phi(a') \tag{15}$$

$$e_V = \phi(a) \cdot_V \phi(a') \tag{16}$$

(17)

since we know that $\phi(e_U) = e_V$ where e is identity. Similarly we can show that

$$e_V = \phi(a') \cdot_V \phi(a) \tag{18}$$

$$e_V = \phi(a) \cdot_V \phi(a)$$

$$\implies \phi(a) \cdot_V \phi(a') = e_V = \phi(a') \cdot_V \phi(a)$$

$$\implies \phi(a') = (\phi(a))'$$
(20)

$$\implies \phi(a') = (\phi(a))' \tag{20}$$

Thus, homomorphism takes inverse of an element (a) to inverse of it's image.

Exercise 1 Awez

Solution (Q6.4.2). Let $a, b \in K$. Then $\phi(a) = \phi(b) = e_V$. Also

$$\phi(a \cdot_U b) = \phi(a) \cdot_V \phi(b) \tag{21}$$

$$= e_V \tag{22}$$

$$\implies a \cdot b \in K$$
 (23)

Thus, K is a group under same operation as of U thus is a subgroup of U.

Solution (Q6.4.3). Let $a,b\in H$, i.e $\exists a_0,b_0\in U$ such that $\phi(a_0)=a$ and $\phi(b_0)=b$. Then

$$\phi(a_0 \cdot_U b_0) = \phi(a_0) \cdot_V \phi(b_0) \tag{24}$$

$$= a \cdot_V b \tag{25}$$

$$\Longrightarrow \exists c_0 \in U(a_0 \cdot_U b_0) \text{ such that } \phi(c_0) = a \cdot_V b \tag{26}$$

$$\implies a \cdot_V b \in V \tag{27}$$

Thus, K forms a subgroup of V, known as image of ϕ .