		Manieg	a								
In [18]:	impor impor	t nump t matp t pand	as as pd	plot as plt							
In [19]:	from	sklear et = p	n.preproc	election im essing impo v("Wine.csv	rt Standa		•				
Out[19]:	0 1 2	14.23 13.20 13.16	1.71 1.78	2.43 2.14 2.67	15.6 11.2 18.6	127 100 101	2.80 2.65 2.80	3.06 2.76 3.24	flavanoid_Phenols 0.28 0.26 0.30	Proanthocyanins 2.29 1.28 2.81	5.6 4.3 5.6
	3 4 173	14.37 13.24 	2.59	2.50 2.87 2.45	16.8 21.0 20.5	113 118 95	3.85 2.80 1.68	3.49 2.69 0.61	0.24 0.39 0.52	2.18 1.82 1.06	7.8 4.3 7.7
	174 175 176	13.40 13.27 13.17	3.91 4.28 2.59	2.482.262.37	23.0 20.0 20.0	102 120 120	1.80 1.59 1.65	0.75 0.69 0.68	0.43 0.43 0.53	1.41 1.35 1.46	7.3 10.2 9.3
In [20]:	178 rov	vs × 14	columns	2.74	24.5	96	2.05	0.76	0.56	1.35	9.2
Out[20]: In [21]:	X = d	ataset		0:13].value 13].values	s						
	cov_d	ata ([[1. 0.	28910112,	0.0943969 0.2368149	3, -0.15	592947,	0.13669791,	0.27079823, 0.5463642 ,			
		.0 . .0 . .0 . .0 .	09439694, 335167 , 56129569, 2115446 , 12897954,	-0.4110065 -0.3687104 0.1640454 0.1150772	, 0.16 9, 0.29 3, -0.19 7, 1. 8, 0.18	404547, 297713, 201056], ,	0.2885004, -0.22074619, 0.44336719, 0.00965194,	-0.0545751 , 0.24898534, 0.28658669, 0.25888726,			
		0-] 0- 0- 0]	31023514, 32111332, 27395522, 27079823, 21440123,	-0.3513698 -0.2767685 -0.0545751 0.1957837	, 0.44 6, 0.36 5, -0.44 , 0.28 7, -0.25	336719, 192172, 059693], 658669, 629405,	1. , -0.19732684, -0.08333309, 0.23644061,	-0.08333309, 0.01873198, 1. , 0.19995001,			
		[0.3 1. 0.4 [0.3	28910112, , 43368134, 23681493, 8645635,	0.8645635 0.6999493 -0.4110065 1.	, 0.126 , -0.446 6, 0.496 9, 0.115 , -0.53	897954, 99353 , 811488], 507728, 789961,	-0.32111332, 0.61241308, -0.35136986, 0.65269177,	0.21440123, -0.05513642, 0.19578377, -0.1723794,			
		[-0. -0. -0.	15592947, 4499353, 26263963, 13669791,	-0.5378996 -0.5032696 -0.2207461	3, 0.18 1, 1. , -0.31 9, 0.00	623045, , 138519], 965194,	0.36192172, -0.3658451, -0.19732684,	-0.25629405, 0.13905701, 0.23644061, -0.02524993,			
		-0.0 -0.0 -0.1 -0.0	5463642 , 05513642, 52181319, 0717472 , 43368134,	-0.1723794 -0.4288149 -0.5612956 0.5434785	4, 0.256 , 0.136 4, 0.316 9, -0.076 7, -0.266	888726, 905701, 610011], 466689, 263963,	0.01873198, -0.02524993, -0.27395522, 0.29554425,	0.19995001, 1. , 0.0553982 , -0.52181319,			
		0.0 0.0 1.0	07234319, 69994936, 56546829, 64372004,	0.7871939 1. -0.1920105	3, 0.000 , -0.500 , 0.310 6, 0.220	391123, 32696 , 276108], 362626,	-0.27676855, 0.5190671, -0.44059693,	0.06600394, -0.42881494, 0.39335085, 0.31610011,			
In [23]:		0.: t seab	23618345, orn as sn	0.3127610	8, 1.			0.31010011,			
Out[23]:	0 -	1 0.09	40.21 <mark>-</mark> 0.310	0.270.290.24 .05 5 0.340.41	_			- 1.0 - 0.8			
	4 - <mark>0</mark> ω -0	.310.29 270.05	0.44 <mark>10</mark> 50.290.08	0.290.130.12 .08±0.320.35 1 0.21 0.2	0.36 -0.20 0.260.24	0.0190.27 0.20.05§	0.280.44 0.06 6 0.39	- 0.6 - 0.4			
	9 -0. 2 -0	240.41 .160.29	0.12 <mark>-0.35</mark> 0.190.36-0	0.21 1 0.86 0.2 0.86 1 0.260.450.54 0.240.610.65	-0.54 <mark>0.65</mark> - -1 -0.37	0.17 <mark>0.54</mark> 0.14 <mark>0.26</mark>	0.79 <mark>0.49</mark> -0.5-0.31	- 0.2 - 0.0			
	01 11 •).	07 2 0.5€ 0720.30	50.0750.270. 7.003 1 9.280.	0.2-0.05 5 0.17 .0550.43 0.54 .066 0.7 0.79 0.39 0.5 0.49	0.26	0.52 1 (0.43 <mark>0.57</mark>	0.570.24 1 0.31	0.2 0.4			
	X_tra	o 1	2 3 test, y_t	4 5 6	7 8	9 10	11 12	est_size=0.2,	random_state=	0)	
	X_tra X_tes	in = s t = sc	transfor	nsform(X_tr							
T.s.	X_tra X_tes	in = pc	a.transfo	ansform(X_t rm(X_test)		anc	io				
In [27]: In [28]: Out[28]:	expla	ined_v	ariance	pca.explai .19318394])	neu_vari	unce_rat	±0_				
<pre>In [29]: Out[29]:</pre>	princ	ipal_D	, colum f	taFrame(dat ns = ['prin 1 principal co	cipal co		l', 'principa	al component	2'])		
	0 1 2 3		-2.17884 -1.80819 1.09829 -2.55584	2	-1.072185 1.578223 2.221243 -1.662104						
	4 137 138		1.85698 -0.50101 0.33045	 2	0.241573 2.684532 2.433962						
	139 140 141 142 rov		0.010976 2.89176 -2.44830	7	1.995855 -0.771555 -2.113603						
In [30]:	from	sklear	n.pipelin	e import ma lo <i>PCA con</i>			datos				
	pca_p	ipe.fi <i>extrae</i>	t(X) el model	line(sc, pc o entrenado e.named_ste	del pip						
In [34]:	pd Da d	taFram ata	e(= modelo	_pca.compon t.iloc[:, 0	ents_,		nombres a lo	os ejes.			
Out[34]:		Alcoho 0.144329 0.483652		id Ash 38 -0.002051 31 -0.316069	-0.2393	320 0.1	41992 0.39	enols Flavanoid 94661 0.42293 65040 0.00336	4 -0		2 Color_ 313429 039302
	sns.h	eatmap	(componen	_pca.compon tes.T, anno	_						
Out[37]:	<axes< td=""><td>Supplo</td><td>0.14 -0.25 -0.0021</td><td></td><td></td><td>-0.48 -0.22 -0.32</td><td></td><td>- 0.4</td><td></td><td></td><td></td></axes<>	Supplo	0.14 -0.25 -0.0021			-0.48 -0.22 -0.32		- 0.4			
	5 - 4 - 8 -		-0.24 0.14 0.39			0.011 -0.3 -0.065		- 0.2 - 0.0			
	9 8 7		0.42 -0.3 0.31 -0.089			0.0034 -0.029 -0.039 -0.53		- –0.2			
	12 11 10		0.3 0.38 0.29			0.28 0.16 -0.36		0.4			
In [13]:	class	ifier	– Logisti =	model impor cRegression in, y_train	(random_		sion				
Out[13]:	•	Lo	gisticRe								
	y_pre	d ([1, 3	, 2, 1, 2	<pre>predict(X_t , 1, 1, 3, , 2, 2, 3,</pre>	2, 2, 3,			, 2, 1, 2, 1,			
	cm =	confus ([[14,	ion_matri 0, 0],		_	atrix					
	# Vis from X_set	[1,	15, 0], 0, 6]] ng the Tr tlib.colo t = X_tra) <i>aining set</i> rs import L in, y_train	istedCol	·					
	<pre>X_set, y_set = X_train, y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),</pre>										
	<pre>for i, j in enumerate(np.unique(y_set)): plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],</pre>										
	plt.l plt.s *c* a ve pr	egend(how() rgumen	t looks l ce in cas	e its lengt	h matche	s with *	x* & *y*. P1	lease use the		as value-mapp ord-argument or points.	•
	c a ve pr 2D ar *c* a ve pr	rgumen eceden ray wi rgumen eceden	t looks l ce in cas th a sing t looks l ce in cas	ike a single its lengt le row if y ike a single its lengt	e numeri h matche ou inten e numeri h matche	c RGB or s with * d to spe c RGB or s with *	RGBA sequence x* & *y*. Pl cify the same RGBA sequence x* & *y*. Pl	ce, which sho lease use the e RGB or RGBA ce, which sho lease use the	uld be avoided *color* keywo value for all uld be avoided	as value-mapp rd-argument or points. as value-mapp rd-argument or	provide a ing will ha
		4 -	_	Logistic R			•	• 1 • 2 • 3			
	2	2 -		• **	3.	. 6					
	ш.	0 -				••••					
	-2 -4			•				•			
In [17]:		ualisi	_	-2 st set resu rs import L			2	4			
	X_set X1, X plt.c	, y_se 2 = np ontour	<pre>t = X_tes .meshgrid f(X1, X2,</pre>	t, y_test (np.arange(np.arange(classifier 0.75, cmap	start = 2 start = 2 .predict	X_set[:, X_set[:, (np.arra	1].min() - 1 y([X1.ravel()	l, stop = X_s	et[:, 1].max()]).T).reshape(+ 1, step = 0 + 1, step = 0 X1.shape),	
	plt.y for i p	lim(X2 , j <mark>in</mark> lt.sca itle('	<pre>.min(), X enumerat tter(X_se</pre>	2.max()) e(np.unique t[y_set ==	j, 0], X map(('re	_set[y_s d', 'gre	et == j, 1], en', 'blue')))(i), label =	j)		
	plt.x plt.y plt.l plt.s	label(label(egend(how() <mark>rgumen</mark>	'PC1') 'PC2')) t looks l	ike a singl	e numeri	c RGB or	•			as value-mapp	_
	ve property ve property ve property are property are	eceden ray wi rgumen eceden ray wi rgumen	ce in cas th a sing t looks l ce in cas th a sing t looks l	e its lengt le row if y ike a singl e its lengt le row if y ike a singl	h matche ou intende e numeri h matche ou intende e numeri	s with * d to spe c RGB or s with * d to spe c RGB or	x* & *y*. Placify the same RGBA sequence x* & *y*. Placify the same RGBA sequence	lease use the RGB or RGBAce, which sho lease use the RGB or RGBAce, which sho	*color* keywo value for all uld be avoided *color* keywo value for all uld be avoided	rd-argument or points. as value-mappord-argument or points. as value-mapp	provide a ing will ha provide a ing will ha
	ve pro 2D ar	eceden	ce in cas	e its lengt le row if y	h matche	s with * d to spe	x* & *y*. Pl cify the same	lease use the		rd-argument or	
		3 -			• •	. •	90	2 3			
	PC2	1 -) -		•	• •		•				
	-1 -2 -3	2 -		•••							
	-3	5 -	-4	-2	PC	0	2	4			
	Creade Isabel	o por: Manieg	a								