LU Decomposition

05 October 2018 12:03

$$ax + by = c$$
$$dx + ey = f$$

Row Formulation:

$$\begin{array}{c|c}
\hline
\bullet & \begin{bmatrix} a & b \\ d & e \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c \\ f \end{bmatrix}$$

Column Formulation:

•
$$x \begin{bmatrix} a \\ d \end{bmatrix} + y \begin{bmatrix} b \\ e \end{bmatrix} = \begin{bmatrix} c \\ f \end{bmatrix}$$

More generally

$$\circ \ x_1v_1+x_2v_2+\cdots+x_Nv_N=b$$

- $v_1 \dots v_N$ need to be linearly independent for a unique solution to always exist
 - Can then fully span N-dimensions to reach any point

Gaussian Elimination:

$$\bullet \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \rightarrow \begin{bmatrix} p_1 & u & u & b_1 \\ 0 & p_2 & u & b_2 \\ 0 & 0 & p_3 & b_3 \end{bmatrix}$$

◆ Augmented matrix [A|b]

- Solve original equation using 'back substitution', i.e. $p_1=b_3$
- Viewing as matrix multiplication

$$\circ [i] - c[j]$$
 reads as substract c * j from row i

$$\circ \ E_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ c & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, replace \ i,j \ elements \ with \ c$$

lacktriangle Then multiply original matrix A with E_{ij}

- Last N(null space dim) rows of ΠΕ
 - o give a basis for LEFT null space of A

LU Decomposition:

• In general, 3 operations for a 3x3

$$\circ E_{32}E_{31}E_{21}A = u$$

$$\circ A = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} u$$

• Lower Triangular matrix

$$\circ L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1}$$

- A = Lu
 - o Pivots in L must be 1
 - 0 values in upper half
 - o Pivots in u can be any value
 - 0 values in lower half
 - \circ det(A) = det(L) det(U)
 - \circ det(L) = 1 (product of diagonals)
 - \circ det(U) = product of diagonals

O vector is always part of the vector space

- Inner Product
 - for column vectors
 - $\langle x, y \rangle = y^H x$
 - □ H Hermitian transpose
 - when y is complex, use complex conjugate of each element
 - \Box Otherwise, $\langle x, y \rangle = y^T x$
- Norm (Induced)

$$||x||_2 = \sqrt{\langle x, x \rangle} \, ('l2 \, norm')$$

- 'lp norm': $||x||_p = \sqrt[p]{\langle x, x \rangle}$, $(p \ge 1)$
- two matrices
 - o inner product 'element by element' product

induced norm

$$|A|| = \sqrt{\sum |a_{i,j}|^2}$$

- Orthogonal Matrices
 - If the vectors in the matrix A form an orthogonal basis then

$$AA^H = A^H A = I$$

$$A^H = A^{-1}$$

 \circ preserves induced norm: if y = Ax

$$||y||^2 = y^H y = (Ax)^H Ax = x^H A^H Ax$$

$$= x^H x = ||x||^2$$

- Orthogonal Subspaces
 - o E is a vector space, with V and W subspaces
 - <V,W>=0 if every vector in V is orthogonal to every vector in W
 - Check against basis of subspace
 - Orthogonal complement
 - subspace of all vectors orthogonal to V:

$$\Box V^{\perp} (E = V \oplus V^{\perp})$$

- Linear Mapping
 - o domain X n dimension
 - o range Y m dimension
 - $\circ A m x n$
 - o consider basis elements of X

for n-dimension rotate - do n 2D rotates

• Cauchy-Schwartz inequality

$$\circ |\langle x,y\rangle| \leq ||x|| ||y||$$

• Angle:
$$\frac{\cos\theta}{||x|| ||y||}$$

- o minimally similar when
 - $\langle x, y \rangle = 0$ -> orthogonal

$$|x| = |y| = 1$$
 -> orthonormal

- maximally similar when one is the rescaled version of the other
- Linear independence

$$\circ \ c_1 v_1 + c_2 v_2 + c_3 v_3 + \dots + c_n v_n \neq 0$$

- for all $c_i \neq 0$
- Span
 - o a set of vectors T in vector space E
 - o take all linear combinations of T
 - gives $V = span\{T\}$
 - V is a 'sub-space; of E
- Basis and Dimension
 - \circ if $span\{T\} = E$
 - T forms a basis for E
 - Cardinality of T = dimension of E
- Rank A = number of pivots of A in echelon form
- Range Space
 - o set of values in Y that are reach from X
 - \circ $R(A) = span\{column \ space \ of \ A\}$
 - dimension = rank A
- Null Space
 - set of values in X that are transformed to 0 in Y
 - dimension = n rank A
 - if >0, mapping is **not invertible**
 - n= dimension of A
 - Computing Nullspace
 - perform Gaussian elimination of Ax = 0
 - pivot columns
 - free columns
 - find simultaneous equations
 - find pivot variables in terms of free variables
 - special solution
 - assign a free variable to 1, others to 0get one special solution
 - Null space
 - linear combination of the special solutions

Discrete-Time

12 November 2018 23:07

Linear Convolution:

• A Linear Mapping from \mathcal{R}^n to \mathcal{R}^m

$$\begin{array}{c} \circ \ \ y_n = \displaystyle \sum_k h_k x_{n-k} \\ \quad \bullet \ \ x_i = 0 \ for \ i \not \in \{0, \dots, n-1\} \\ \circ \ \ \text{Model this as y = Ax} \\ \circ \ \ m = n+k \ -1 \end{array}$$

- Toeplitz matrix
 - o Same entry along every left->right diagonal
 - Example with k = 3

■ n=3, m = 3+3-1 = 5

$$h_0$$
 0 0
○ $A = h_1 \quad h_0 \quad 0$
 $h_2 \quad h_1 \quad h_0$
0 $h_2 \quad h_1$
0 0 h_2

Circulant Convolution: Circulant Matrices:

- A is nxn square
- X is **periodic** outside the interval (n)

23 October 2018 18:06

$$\det(A) = \sum (-1)^{i+j} a_{ij} M_{ij} \quad , for \ fixed \ i \ or \ j$$

Cofactor Matrix - don't multiply by the element

Properties:

- Exchange two rows -> sign of det changes
 - Two equal rows -> det = 0
- det same after row reduction
- Scaling a row by T -> scales det by T
- det is linear for a single row
- For an upper triangle matrix
 - det = product of diagonals
- If A is singular, det(A) = 0
- For square matrices A,B
 - o det(AB) = det(A)det(B)

•
$$\det(A^{-1}) = \frac{1}{\det(A)}$$

- $det(cA) = c^n det(A)$, where A is nxn
- $\det(A^T) = \det(A)$

Inverse using cofactors:

$$\bullet \ A^{-1} = \frac{1}{\det(A)}C^T$$

$$\circ C_{ij} = (-1)^{i+j} M_{ij}$$

Rank:

- For square matrix A, nxn
 - o rank(A) = n if and only if $det(A) \neq 0$
- For matrix A, mxn
 - \circ $rank(A) \leq min(n, m)$
 - $\circ rank(AB) \leq min(rank(A), rank(B))$

Trace:

- Sum of elements along the main diagonal
- Also, trace(ABC) = trace(BCA) = trace(CAB)

Eigen / Diagonalization

23 October 2018 18:06

Eigenvalues:

- A nxn matrix will have n eigenvalues
- Same eigen values for A and A^T

•
$$\sum \lambda = trace(A)$$

•
$$\prod \lambda = \det(A)$$

Solving:

•
$$(A - \lambda I)x = 0$$

• $\det(A - \lambda I) = 0$

- Plug values of λ into $(A \lambda I)x = 0$
 - o To find eigenvector
 - **Families** of eigenvectors
- Consider A = B + cI
 - A has B's eigenvalues + c

• if
$$-B$$
, reverse $sign + C$

- o A has same eigenvectors as B
- (upper) triangular matrix
 - o eigenvalues are the diagonal values

Matrix Diagonalization:

- place independent eigenvectors of A into S
- place eigenvalues of A into diagonal of a matrix, λ

Can diagonalize when:

- eigenvalues are diff
- · values same, but eigenvectors independent

•
$$AS = S\lambda$$

• $A = S\lambda S^{-1}$
• $S^{-1}AS = \lambda$

• if A and B are diagonalizable, they share same S

$$\circ$$
 iff - AB = BA

•
$$A^{k} = S\lambda^{k}S^{-1}$$

• λ_{1}^{k} 0 0
• $\lambda^{k} = 0$ λ_{2}^{k} 0
• 0 λ_{3}^{k}

• assuming square and invertible

$$\circ A^{-1} = (S\lambda S^{-1})^{-1} = (S^{-1})^{-1}\lambda^{-1}S^{-1} = S\lambda^{-1}S^{-1}$$

- Markov Process
 - difference equation
 - \circ get A find eigen
 - can compute S, λ^k, S^{-1} solution is easier
 - o properties of A:
 - all entries >= 0
 - each column sums to 1
 - $\lambda_1 = 1 (u_1 is steady state)$
 - others: $|\lambda_i| \leq 1$
- Circulant Matrices

Symmetric

29 October 2018 08:23

Real: Symmetry: $A = A^T$ Complex: $A^{*T} = A^H = A$

- complex conjugate then transpose
- said to be Hermitian

Eigenvalues are ALWAYS real

Eigenvectors are Orthogonal

• $A = Q\lambda Q^{-1} = Q\lambda Q^{T} (Q^{H} for complex)$

Proof for orthogonal:

- $Ax = \lambda_1 x$, $Ay = \lambda_2 y$
- $(\lambda_1 x)^H y = (Ax)^H y$
- $x^H \lambda_1 y = x^H A^H y$ $x^H \lambda_1 y = x^H A y = x^H \lambda_2 y$
- $\lambda_1 \neq \lambda_2$ $\circ x^H y == 0$
 - x and y are perpendicular

Positive Definite Hermitian Matrices:

- $x^H A x > 0$
- all $\lambda_i > 0$
- all pivots satisfy d_i > 0
 (without row exchanges)
- semi-positive (≥)

Proof (Real):

- Assume $A = A^T$
- $Ax = \lambda x$ (1)
- take complex conjugate
- $A^*x^* = \lambda^*x^*$
- A is real (***)
- $Ax^* = \lambda^*x^*$
- transpose both sides
- $(Ax^*)^T = (\lambda^* x^*)^T$ $\circ x^{*^T} A^T = \lambda^* x^{*^T} \Rightarrow x^{*^T} A = \lambda^* x^{*^T}$
- multiply from RHS by x, to get norm
- $x^{*^T}Ax = \lambda^* x^{*^T} x$ (2)
- from (1), multiply form LHS by x^{*T}

$$\circ x^{*^T}Ax = x^{*^T}\lambda x = \lambda x^{*^T}x (3)$$

- combine (2) and (3)
 - $\circ \ \lambda^* x^{*^T} x = \ \lambda x^{*^T} x$
 - $\circ \lambda^* \big| |x| \big|^2 = \lambda \big| |x| \big|^2$
- since $||x||^2 > 0$ (unless x = 0)
 - \circ $\lambda^* == \lambda$
 - o eigenvalues are always real

For Complex case:

- (***) is replaced with
- $\bullet \ \ A^{*^T} = A^H = A$

Ax=b

A: mxn, b: m

04 November 2018

m=n: (square)

m>n: (tall - more rows)

m<n: (fat - more columns)

A maps from Cⁿ to C^m

- b is in C^m
- · existence rows
 - if range(A) = C^m
 - -> full row rank rank(A)=m
 - a solutions always exists
 - $m \le n$ (fat/square)
 - else
 - if b not in range(A)
 - □ no solutions exists
- uniqueness columns
 - o if solution exists, it is unique
 - if null space of A is trivial
 - -> full column rank rank(A)=n
 - $m \ge n$ (tall/square)
 - o solution is not unique if
 - null space of A is non-trivial

Four Fundamental Subspaces:

- Range and Null of A and A^T
- C^m covered by range(A) and null(A^T)
 - these two are orthogonal complements
- C^N covered by range(A^T) and null(A)
 - these two are orthogonal complements

Inverse:

- Left Inverse: BA=I tall (full column rank)
- Right Inverse: AC = I fat (full row rank)

Projections: (Orthogonal)

- view in lower dimension subspace $V \in H$
- $\hat{x} \in V$, s. t. $||x \hat{x}|| \le ||x v||$ for all $v \in V$
 - $\circ x \hat{x} \perp V$
 - o difference is orthogonal to the subspace
 - \circ \hat{x} is unique
- $\hat{x} = Px$, where P depends on V, not x
- - *Idempotent* P(Px) = Px *for all* $x \in H$
 - \circ Self-Adjoint $P = P^H$
- Finding P
 - N < M
 - Project x from C^m onto subspace Cⁿ
 - Vectors a₁ ... a_n span Cⁿ (the subspace V)
 - Each a_i has m entries
 - Stack together to form A C^{mxn} rank(A)=n

$$\bigcirc P = A(A^{H}A)^{-1}A^{H}$$

$$\circ P - C^{mxm} - rank(P) = n - det(P) = 0$$

■ If n=m, det(P)=1

Gram-Schmidt Process

05 November 2018 12:14

Make a matrix A orthogonal - so that $A^H = A^{-1}$

- Start with n independent vectors
- Get n orthogonal vectors
- Finally get n orthonormal vectors

- 1. Start with three independent vectors, a,b,c
- **2.** Choose **A = a**

a.
$$q_1 = \frac{A}{||A||}$$

3.
$$B = b - \hat{b} = b - Pb = b - A(A^{H}A)^{-1}A^{H}b$$

 $B = b - \frac{AA^{T}}{A^{T}A}b$

4.
$$C = c - \frac{AA^T}{A^TA}c - \frac{BB^T}{B^TB}c$$

5. Can continue for d, e, etc.

Full Column Rank Case

04 November 2018 15:09

Full column rank case:

- tall (or square)
- if solution exits it is unique
- either find unique solution
- or least-squares approximation
 - o minimise L2 norm

•
$$\left|\left|Ax_{LS} - b\right|\right|_{2} \le \left|\left|Ax - b\right|\right|_{2}$$

 \circ If solution exists, x_{LS} is that solution

Least Squares Minimization:

•
$$\hat{x}$$
 minimizes $||Ax - b||$

$$\circ iff A^H A \hat{x} = A^H b$$

•
$$A^{H}A\hat{x} = A^{H}b \Rightarrow A^{H}(b - A\hat{x}) = 0$$

 $\circ \hat{x} = Px$

Full Row Rank Case

05 November 2018 11:23

Full row rank case:

- fat(or square)
- At least one solution exists
- If solution not unique
 - \circ Let x_p be one solution to Ax = b
 - Any other solution
 - $x = x_p + z \text{ with } z \in \mathcal{N}(A)$

Minimum Norm Solution:

• minimize ||x|| s.t. Ax = b• $x_{MN} = A^H (AA^H)^{-1} b$

$$\bullet \ x_{MN} = A^H (AA^H)^{-1} b$$

SVD aim - 'diagonalize' and matrix - not just square and/or full rank ones

Every Matrix $A \in \mathbb{C}^{mxn}$ can be factored as:

- $A = U\Sigma V^H$
- $U \overline{U^H U} = I$, columns u_i , dimensions $m \times m$
- $\Sigma non negative diagonal entires \sigma_i$, dimensions $m \times n$
- $V V^H V = I$, columns v_i , dimensions $n \times n$

 $A^HA = V\Sigma^H U^H U\Sigma V^H = V\Sigma^H \Sigma V^H = V\Lambda V^{-1}$

- $\Sigma^H \Sigma dimension n x n$
- Singlaur values squared, σ_i^2 , are the eigenvalues of $A^H A$ o and v_i are the eigenvectors

Similarly, $AA^H = U\Sigma V^H V\Sigma^H U^H = U\Sigma \Sigma^H U^H = U\Lambda U^{-1}$

- $\Sigma\Sigma^H$ dimension $m \times m$
- Singlaur values squared, σ_i^2 , are the eigenvalues of AA^H
 - $\circ \;\;$ and u_i are the eigenvectors

Eigenvector Decomposition of A^HA and AA^H will give us all the information for the SVD of A

Reduced SVD:

- truncate to get rid of zero valued eigen values/vectors
- so for A with rank r

$$\circ A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^H$$

Pseudoinverses and SVD:

- the minimum norm least squares solution to Ax = b
 - $\circ x = A^+b$
 - $\circ \ \hat{x} = V \Sigma^+ U^H b$
 - o where A⁺ is the **pseudoinverse** of A
 - $A = U\Sigma V^H$
 - $A^+ = V\Sigma^+U^H$

Matrices U and V:

- $A, A^H A$ and $AA^H have$ same rank r
- All have r non-zero eigen values
- $A^{H}A$ has n-r zero eigen values
- AA^H has m-r zero eigen values

Filling U and V:

• sort by descending magnitude of corresponding eigen values

$$AV = U\Sigma$$

- $Av_i = \sigma_i u_i$
- $v_i's$ are in the row space of A $range(A^H)$
 - o for i corresponding to non-zero eigen values
 - o form a basis for the row space of A
 - since are orthonormal
- the v_i 's corresponding to zero eigen values
 - from a basis for null(A)
- $u_i's$ are in the column space of A range(A)
 - o for i corresponding to non-zero eigen values
 - $\circ\;$ form a basis for the column space of A
 - since are orthonormal
- the $u_i's$ corresponding to zero eigen values
 - o from a basis for $null(A^H)$

Summarize:

- $\mathcal{R}(A)$ $= span\{U_1\}$
- $\mathcal{N}(A) = span\{V_2\}$
- $\mathcal{R}(A^H) = span\{V_1\}$
- $\mathcal{N}(A^H) = span\{U_2\}$