ментом системы безопасности являются механизмы обеспечения целостности БД (журнализация транзакций, резервное копирование). Большое внимание уделяется безопасности самой СУБД: для её функционирования выделен специальный сервер под управлением надежной операционной системы Windows 2000 Server.

Основная часть программ, входящих в состав АИС, разработаны в среде Delphi 6. Кроме этого, существуют модули созданные на основе Web — технологий (IIS, ASP). При разработке программных модулей АИС были учтены необходимые требования по безопасности, предъявляемые к программным продуктам, что позволило повысить надежность как программных модулей так и АИС в целом. В будущем планируется сертифицировать эти программные продукты.

Большую важность для АИС имеет целостность учебно-методической информации (расписания, учебные планы, планы-графики учебного процесса и т.д.). Для хранения этой информации используется общий сетевой ресурс с ограниченным доступом.

Серьезную опасность для целостности и конфиденциальности данных, хранимых в АИС, представляет персонал. Решением этой проблемы являются организационные мероприятия.

Таким образом, при проектировании и реализации автоматизированной информационной системы «Учебная часть» были учтены необходимые требования по защищенности данных, система безопасности комплекса была промоделирована с использованием корреляционной математической модели системы безопасности [2]. Существующие механизмы обеспечения целостности и конфиденциальности информации обеспечивают необходимый уровень защищенности среды.

Библиографический список

- 1. MS SQL Server 2000. Справочник администратора. М.: «Эком», 2002
- 2. Демурчев Н.Г., Шульгин А.О. Корреляционная модель безопасности распределенной вычислительной системы. // Сборник докладов краевой конференции «Молодежь и наука III тысячелетия», Ставрополь, 2002.

С.В. Матвеева, Г.А. Шевцова

Россия, г. Москва РГГУ

СОЗДАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ ПОДДЕРЖКИ УЧЕБНОГО ПРОЦЕССА ПРИ ПОДГОТОВКЕ СПЕЦИАЛИСТОВ ПО ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Информационная система должна обеспечивать поддержку учебного процесса сразу по комплексу дисциплин, обладающих одинаковыми свойствами. Как правило, лабораторные и практические работы студентов по ряду дисциплин представляют собой последовательное выполнение заданий, каждое из которых рассчитано на закрепление теоретического материала, выполнение ряда однотипных задач с разными параметрами. К таким дисциплинам относятся технические курсы, связанные с изучением математических, физических законов, построением технических устройств, а также различных моделей систем защиты информации. Любое задание, требующее от студента выполнения его по некоторому алгоритму последовательных действий, может быть с успехом проведено в конкретной информационной системе.

Применение универсального интерфейса для нескольких дисциплин имеет ряд положительных моментов:

 Разработка своего рода стандарта для лабораторных и практических работ одного курса (стандартизация правил работы в системе приводит к уменьшению времени, необходимого на освоение в ней пользователя);

- Ускорение и упрощение работ по разработке новых заданий для обучающихся (использование универсальной системы позволит избежать повторного решения проблем, связанных с созданием интерфейсов для пользователей, отладку взаимодействия их в информационной системе);
- Экономическая целесообразность применения универсальной информационной системы.

Структура информационной системы поддержки учебного процесса может состоять из следующих компонентов:

- 1. Программный комплекс пользовательских интерфейсов системы (это основной элемент системы, как правило, состоящий из интерфейса преподавателя, в котором происходит конструирование конкретных работ из блоков с заданиями; интерфейса студента, последовательно предоставляющего обучаемому ряд заданий и сохраняющего результаты выполнения в виде отчета; интерфейса взаимодействия, обеспечивающего работу каждого студента с определенным вариантом конкретного задания, написанного одним из преподавателей).
- 2. Информационное наполнение системы (этот элемент может выглядеть следующим образом: блоки с заданиями, созданные разработчиками и разбитые по темам лабораторных и практических работ; конфигурация лабораторных и практических работ файлы, содержащие алгоритм выполнения работы, каждая работа может быть представлена множеством вариантов для всех студентов; методические материалы, созданные преподавателем в помощь студентам, выполняющим лабораторные и практические работы; отчеты студентов о проделанных работах).
- 3. Технические средства системы (компьютерный класс, объединенный в локальную сеть, системы видеоконференцсвязи, презентационное оборудование, программно-аппаратные комплексы поддержки учебного процесса).
- 4. Субъекты информационной системы (студенты, преподаватели, разработчики модулей с заданиями, администраторы).

Н.А. Егорова Россия, г. Пенза, ПГУ

УЧЕБНАЯ МОДЕЛЬ ЗАЩИЩЕННОЙ СИСТЕМЫ ПЕРЕДАЧИ ДАННЫХ

В процессе подготовки кадров в области информационной безопасности автоматизированных систем важно сформировать у будущих специалистов системный подход к проблеме защиты данных, передаваемых по каналам связи, от совокупности преднамеренных и непреднамеренных атак. Известно, что преднамеренные атаки могут проводиться: с целью подавления сеанса связи; навязывания ложной информации оконечному оборудованию данных через каналы связи; перехвата передаваемой информации из канала связи и т.п. Одним из возможных инструментов для формирования системного подхода у студентов является организация лабораторных работ по реализации средств защиты данных от атак и исследованию их свойств, а также исследованию свойств системы передачи данных, в которой эти средства применяются. Для этого необходимо разработать программную имитационную модель защищенной системы передачи данных, подвергающейся воздействию атак. В докладе описывается модель, состоящая из источника информации, внешнего и внутреннего кодеров/декодеров, маскиратора, дискретного канала связи, источника атакующих воздействий и приемника. В соответствии с моделью разработано программное обеспечение, работающее в операционных системах Windows 98/2000. Разработка имитационной модели велась с учетом ее использования в семнадцатичасовом цикле лабораторных работ. Главной задачей данного