Week 4: Sequence alignment

- Global alignment
 - Dynamic programming
 - Needleman-Wunsch algorithm
- Local alignment
 - Smith-Waterman algorithm
 - BLAST

Sequence evolution

Then betwee A & B. change by & celetion. C & B. The frint prediction, B & D rather present his trackers. Then formed. - Kenny William

Sequence alignment

Sequences can be aligned by allowing for gaps and mismatches.

ACTGATTCA

ACTGATTCA

ACTG-ATTCA

ACGCA-TCA

AC-GCATCA

AC-GCAT-CA

Which alignment is correct?

A scoring scheme:

- Match: 2
- Mismatch: -3
- Gap: -2

We will come back to this!

$$2+2-3-3+2-2+2+2+2$$
 $2+2-2+2-3-3+2+2+2$ $2+2-2+2-2+2+2+2+2$ $= 4$ $= 8$

Alignment is gap placement.

How many possible alignments?

Solve a given complex problem by:

- 1. Breaking it into **subproblems** and
- 2. Storing the results of subproblems to avoid computing the same results again.

Two key properties of a problem that suggest that the given problem can be solved using DP.

- 1. Overlapping Subproblems
 - Given problem can be recursively broken down into subproblems that can be related to each other. That is, total no. of subproblems is polynomial.
- 2. Optimal Substructure
 - The optimal solution can be produced by combining optimal solutions of subproblems.

Richard Bellman

Optimal decision processes, involved time series & planning - thus 'dynamic' & 'programming'.

"It's impossible to use the word dynamic in a pejorative sense"; DP was "something not even a Congressman could object to."

Hemachandra/Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

$$F_0 := 0; F_1 := 1;$$

 $F_n = F_{n-1} + F_{n-2}, \text{ for all } n \ge 2.$

A trivial algorithm for computing F_n :

```
naive_fib(n):
   if n ≤ 1: return n
   else: return naive_fib(n - 1) +
        naive_fib(n - 2)
```


Hemachandra/Fibonacci numbers: $F_0 := 0$; $F_1 := 1$; $F_n = F_{n-1} + F_{n-2}$, for all $n \ge 2$.

Never recompute a subproblem F(k), $k \le n$, if it has been computed before.

Memoization: Remembering previously computed values.

Improved algorithm for computing F_n :

```
memo = \{ \}
fib(n):
    if n in memo: return memo[n]
    else if n = 0: return 0
    else if n = 1: return 1
    else: f = fib(n - 1) + fib(n - 2)
    memo[n] = f
     return f
```


These values are already computed and stored in memo when runtime processes these nodes of the recursion.

- 1. Overlapping Subproblems
- 2. Optimal Substructure

DP ≈ recursion + memoization (reuse)

- Remember (memoize) previously solved "subproblems"; e.g., in Fibonacci, we memoized the solutions to the subproblems F_{ϱ} , F_{1} , \cdot • F_{n-1} , while unraveling the recursion.
- If we encounter a subproblem that has already been solved, reuse solution.
- Runtime ≈ (no. of subproblems) * (time per subproblem)

- 1. Scoring function: substitution matrix & gap penalty
- 2. Matrix initialization & filling
- 3. Traceback

Step 1

A scoring scheme:

- Match: 1

- Mismatch: -2

- Gap: -1

	_	G	С	A	Т
_					
G					
A					
Т					

- 1. Scoring function: substitution matrix & gap penalty
- 2. Matrix initialization & filling
- 3. Traceback

$$M(0, j) = j*p$$
 $Step 2$
 $M(i, 0) = i*p$
 $M(i, j) = MAX(M(i-1, j) + p, top$
 $M(i, j-1) + p, left$
 $M(i-1, j-1) + S(A_i, B_j)$ diagonal

	_	G	С	A	Т
_					
G					
A					
Т					

- 1. Scoring function: substitution matrix & gap penalty
- 2. Matrix initialization & filling
- 3. Traceback

$$M(0, j) = j*p$$
 $Step 2$
 $M(i, 0) = i*p$
 $M(i, j) = MAX(M(i-1, j) + p, top$
 $M(i, j-1) + p, left$
 $M(i-1, j-1) + S(A_i, B_j)$ diagonal

	_	G	С	A	Т
_	0	-1	-2	-3	-4
G	-1				
A	-2				
Т	-3				

- 1. Scoring function: substitution matrix & gap penalty
- 2. Matrix initialization & filling
- 3. Traceback

	_	G	С	A	т
_	0	-1	-2	-3	-4
G	-1	?			
A	-2				
т	-3				

	_	G	С	A	Т
_	0	-1	-2	-3	-4
G	-1	-2			
A	-2				
Т	-3				

	_	G	С	A	Т
_	0	-1	-2	-3	-4
G	-1←	2			
A	-2				
т	-3				

	_	G	С	A	Т
_	0 ,	-1	-2	-3	-4
G	-1	1			
A	-2				
Т	-3				

	_	G	С	A	Т
_	0 ,	-1	-2	-3	-4
G	-1	1			
A	-2				
Т	-3				

- 1. Scoring function: substitution matrix & gap penalty
- 2. Matrix initialization & filling
- 3. Traceback

```
M(0, j) = j*p Step 2
M(i, 0) = i*p
M(i, j) = MAX( M(i-1, j) + p, top M(i, j-1) + p, left M(i-1, j-1) + S(A<sub>i</sub>, B<sub>j</sub>) ) diagonal
```


- 1. Scoring function: substitution matrix & gap penalty
- 2. Matrix initialization & filling
- 3. Traceback

Align GCAT with GAT

GCAT G-AT

top left diagonal

Step 3

- 1. Scoring function: substitution matrix & gap penalty
- 2. Matrix initialization & filling
- 3. Traceback

Align ATGCT with ATTACA

M(0,	j)	= j*p	
M(i,	0)	= i*p	
M(i,	j)	= MAX(M(i-1, j) + p,
			M(i, j-1) + p,
		M(i-1,	$j-1) + S(A_i, B_j)$

top

left

diagonal

2	_	A	Т	Т	A	С	A
_							
Α							
Т							
G							
С							
T							

Global & local alignment

A local alignment of strings s and t is an alignment of a substring of s with a substring of t.

Smith-Waterman algorithm

Similar to Needleman-Wunsch, with 3 changes:

- First row/column set to 0.
- No negative scores, set to 0.
- Backtrack from cell with highest score, stop at 0.

	-	G	С	A	Т
_					
G					
С					
Т					

Smith-Waterman algorithm

Similar to Needleman-Wunsch, with 3 changes:

- First row/column set to 0.
- No negative scores, set to 0.
- Backtrack from cell with highest score, stop at 0.

$$M(0, j) = 0$$
 $M(i, 0) = 0$
 $M(i, j) = MAX($
 $M(i-1, j) + p, top$
 $M(i, j-1) + p, left$
 $M(i-1, j-1) + S(A_i, B_j)$ diagonal

Align GCAT with GCT

GC GC

	ı	G	С	A	т
_	0	0	0	0	0
G	0	1	0	0	0
С	0	0	2	1	0
Т	0	0	1	1	2