ESPACES VECTORIELS

EXEMPLES D'APPLICATIONS LINÉAIRES

1 Exemples géométriques

1.1 Application nulle, identité, symétrie centrale et homothétie

Soit E un \mathbb{K} -espace vectoriel.

Transformation	Application linéaire associée	
Identité	$f : E \rightarrow E$	
	$x \mapsto x$	
Application nulle	$f : E \rightarrow E$	
	$x \mapsto 0_E$	
Symétrie centrale par rapport à l'origine 0_E	$f : E \rightarrow E$	
	$x \mapsto -x$	
Homothétie $H(0,\lambda),\;\lambda\in\mathbb{R}$	$f : E \rightarrow E$	
	$x \mapsto \lambda x$	

1.2 Projection

Soient E un espace vectoriel sur \mathbb{K} , F et G deux espaces vectoriels supplémentaires dans E. L'application

$$\begin{array}{cccc} p & : & E = F \oplus G & \rightarrow & F \\ & u = x + y & \mapsto & p(u) = x, \end{array}$$

où $(x,y) \in F \times G$ est appelé **projection** sur F parallèlement à G. Elle vérifie l'égalité

$$p^2 = p$$
,

où $p^2 = p \circ p$.

2 Autres applications linéaires

Opérateur	Application linéaire associée	
Dérivée	$D: \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \to \mathcal{C}^0(\mathbb{R}, \mathbb{R})$	
	$f \mapsto f'$	
	$I: \mathcal{C}^0(\mathbb{R},\mathbb{R}) \to \mathcal{C}^1(\mathbb{R},\mathbb{R})$	
Intégrale	$f \mapsto \int_0^x f(t)dt$	
Polynômes	$ \begin{array}{cccc} f & : & \mathbb{R}_n[X] & \to & \mathbb{R}_{n+1}[X] \\ & & P(X) & \mapsto & XP(X) \end{array} $	

1 IONISX