# Modelo de Datos y diseño de BD

## INTRODUCCIÓN

- Universo de Discurso: es la visión del mundo real que tiene el diseñador de la BD.
- Modelo de Datos: es un conjunto de conceptos, reglas y convenciones que nos permiten describir los datos del universo de discurso. Es un elemento fundamental para el diseño de la BD en todos los niveles.

## Modelo de Datos y diseño de BD

# Las propiedades del universo de discurso son:

- Estáticas. Son invariantes con el tiempo y se refiere a las que son estructura de los datos.
- Dinámicas. Varían con el tiempo. Se refieren a los valores que se almacenan en la estructura de datos.

## Modelo de Datos y diseño de BD

#### El modelo de datos tiene dos componentes:

- Estática: está formada por una serie de objetos permitidos en el modelo (entidades, atributos, dominios, interrelaciones) y objetos no permitidos o restricciones, que pueden ser de dos tipos: inherentes (vienen impuestas por la misma naturaleza del modelo, el cual no admite ciertas entidades o asociaciones) y de usuario (aquellas que permiten captar la semántica del universo de discurso).
- Dinámica: son los valores que van tomando los distintos objetos del modelo. Sobre los valores se pueden realizar las operaciones de selección (localizar una ocurrencia o conjunto de ocurrencias de una entidad) y de acción (inserción, borrado o modificación de una o varias ocurrencias).

# Modelo de Datos y diseño de BD Modelo de datos convencionales y conceptuales

#### **Modelos Convencionales:**

- Modelo relacional. (El más importante y común).
- Modelo Jerárquico.
- Modelo en red.

### Modelos conceptuales:

Modelo Entidad – Relación.

Modelo RM/T.

Modelo Abial.

## Modelo de Datos y diseño de BD Modelo de datos convencionales y conceptuales

| Diferencias entre ambos tipos de modelos                     |                                                               |  |
|--------------------------------------------------------------|---------------------------------------------------------------|--|
| Modelos convencionales                                       | Modelos conceptuales                                          |  |
| Menor capacidad semántica                                    | Mayor capacidad semántica                                     |  |
| Útiles en etapas posteriores del proceso de diseño de la BD. | Útiles en las primeras etapas del proceso de diseño de la BD. |  |
| Interfaz entre el informático y el sistema                   | Interfaz entre el usuario y el informático.                   |  |
| Instrumentados en los SGBD comerciales                       | No en general.                                                |  |
| "Más próximos" al ordenador.                                 | Mayor nivel de abstracción.                                   |  |

### Modelo relacional.

Se basa en la utilización de tablas. A estas tablas se las denomina Relaciones en la cuales a las columnas se las llama Campos o Atributos y a las filas se las llama Tuplas.

Los modelos relacionales utilizan lenguajes de especificación, es decir, que las operaciones actúan sobre un conjunto de registros y pueden dar como resultado un conjunto de registros. Por ejemplo, obtener las matrículas de los coches que haya arreglado "Luis Pérez" con fecha "10-2-2002".

Los SGBD más comerciales como el Access, DB2, etc... son relacionales.

#### Modelo Relacional

#### Reparaciones:

| Nombre mec     | Fecha reparacion | Matricula  |
|----------------|------------------|------------|
| Luis Pérez     | 10-2-2002        | J-1234-X   |
| Luis Pérez     | 10-2-2002        | SE-2314-KF |
| Andrés Gómez   | 10-2-2002        | GR-4321-Y  |
| Andrés Gómez   | 11-2-2002        | SE-2314-KF |
| Antonio García | 10-2-2002        | B-2123-OP  |
| Antonio García | 11-2-2002        | SE-2314-KF |

#### Coches:

| Matricula  | Num Kilometros |
|------------|----------------|
| J-1234-X   | 1500           |
| GR-4321-Y  | 30000          |
| SE-2314-KF | 75000          |
| B-2123-OP  | 17800          |

## Modelo de datos jerárquico.

Se basa en la utilización de la estructura de datos en Árbol. En este tipo de estructuras existe un nodo "raíz" y cada nodo tiene un "hijo". IMS de IBM es un SGBD basado en este modelo.



### Características del modelo jerárquico:

- Su estructura es muy rígida, ya que pretende modelar todas las relaciones como una estructura.
- Es un modelo muy eficiente.
- No se adapta a las simetrías naturales (al dar de alta o dar de baja).
- Redundancia. La poca flexibilidad del modelo obliga a introducir redundancia para reflejar asociaciones que no representan una jerarquía.
- Utilizan lenguajes navegacionales, es decir, que recupera o actualiza los datos registro a registro.

#### Modelo de datos en red.

Se basa en la estructura de datos Grafo. En los grafos existen una serie de nodos o vértices y una serie de aristas que intercomunican y relacionan esos nodos entre sí. ADABAS es un SGBD en red.

#### Características del modelo en red:

- Es menos eficiente que el modelo jerárquico, pero dispone de mayor flexibilidad.
- Mayor capacidad semántica.
- Utiliza lenguajes navegacionales.