

Transferring GANs: generating images from limited data

MSCV2, University of Bourgogne

Student: Yunke LI, Chen ZHU, Qi YANG

Supervisor: Abdul QAYYUM

1 Introduction

1 Introduction

Transfer learning: idea

Contribution

- Evaluation of several transfer configurations
- How the relation between source and target domains impacts the results
- Evaluation of the transfer from unconditional GANs to conditional GANs on two commonly used methods

Evaluation Metrics

1.Frechet Inception Distance

$$FID(\mathbb{P}_r, \mathbb{P}_g) = \|\mu_r - \mu_g\| + Tr(\mathbf{C}_r + \mathbf{C}_g - 2(\mathbf{C}_r \mathbf{C}_g)^{1/2}),$$

2. Independent Wasserstein (IW) critic

$$\operatorname{IW}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right) = \mathbb{E}_{x \sim \mathcal{X}_{1}}\left(\hat{D}\left(x\right)\right) - \mathbb{E}_{x \sim \mathcal{X}_{2}}\left(\hat{D}\left(x\right)\right)$$

Generator/discriminator transfer configuration

Generator	Se	cratch	Pre-trained		
Discriminator	Scratch Pre-trained		Scratch	Pre-trained	
$\overline{\text{FID}}\left(\mathcal{X}_{data}^{tgt}, \mathcal{X}_{gen}^{tgt}\right)$	32.87	30.57	56.16	24.35	
$\frac{\text{FID}\left(\mathcal{X}_{data}^{tgt}, \mathcal{X}_{gen}^{tgt}\right)}{\text{IW}\left(\mathcal{X}_{val}^{tgt}, \mathcal{X}_{gen}^{tgt}\right)}$	-4.27	-4.02	-6.35	-3.88	

Scratch
 Pretrain(ImageNet)

(a) Unconditional GAN(FID)

(b) Unconditional GAN(IW)

https://blog.csdn.net/qq_38912915

5K

256 1 / 22 2 26 0 / 10 5 72 7 / 15 2

From scratch

Size of the target dataset

Target samples

Table 2: FID/IW for different sizes of the target set (LSUN Bedrooms) using ImageNet as source dataset.

500K

Pre-trained (ImageNet)

1M

	om scratch	256.1/-33.3		73.7/-15.3	45.5/-7.4		24.9/-3.6	
P	re-trained	93.4/-22.5	74.3/-16.3	47.0/-7.0	29.6/-4.56	24.4/-4.0	21.6/-3.2	18.5/-2.8
11K								
10K								
100K			H K					
1M								

Source and target domains

Table 3: Datasets used in the experiments.

			-	
Source datasets	ImageNet [38]	Places [48]	Bedrooms [45]	CelebA [27]
Number of images	1M	2.4M	3M	200K
Number of classes	1000	205	1	1
Target datasets	Flower [31]	Kitchens [45]	LFW [19]	Cityscapes [6]
Number of images	8K	50K	13K	3.5K
Number of classes	102	1	1	1

101-000 nation along sald/tradital

Table 4: Distance between target real data and target generated data FID/IW $(\mathcal{X}_{data}^{tgt}, \mathcal{X}_{gen}^{tgt})$.

$\begin{array}{c} \text{Source} \rightarrow \\ \text{Target} \downarrow \end{array}$	Scratch	${\bf ImageNet}$	Places	Bedrooms	CelebA
Flowers	71.98/-13.62	54.04/-3.09	66.25/-5.97	56.12/-5.90	67.96/-12.64
Kitchens	42.43/-7.79	34.35/-4.45	34.59/ -2.92	28.54 /-3.06	38.41/-4.98
$_{ m LFW}$	19.36/-8.62	9.65/-5.17	15.02/-6.61	7.45/-3.61	7.16/-3.45
Cityscapes	155.68/-9.32	122.46 /-9.00	151.34/-8.94	123.21/-8.44	130.64/ -6.40

Source datasets:

ImageNet, Places, LSUN Bedrooms , CelebA

Target:

Oxford Flowers, LSUN Kitchens, LFW CityScapes

Selecting the pre-trained model

Table 4: Distance between target real data and target generated data FID/IW $(\mathcal{X}_{data}^{tgt}, \mathcal{X}_{gen}^{tgt})$.

$\begin{array}{c} \text{Source} \rightarrow \\ \text{Target} \downarrow \end{array}$	Scratch	${\bf ImageNet}$	Places	Bedrooms	CelebA
Flowers	71.98/-13.62	54.04/-3.09	66.25/-5.97	56.12/-5.90	67.96/-12.64
Kitchens	42.43/-7.79	34.35/-4.45	34.59/- 2.92	28.54 /-3.06	38.41/-4.98
$_{ m LFW}$	19.36/-8.62	9.65/-5.17	15.02/-6.61	7.45/-3.61	$\boldsymbol{7.16/\text{-}3.45}$
Cityscapes	155.68/-9.32	122.46 /-9.00	51.34/-8.94	123.21/-8.44	130.64/ -6.40

Table 5: Distance between source generated data \mathcal{X}_{gen}^{src} and target real data \mathcal{X}_{data}^{tgt} , and distance between source real \mathcal{X}_{data}^{src} and generated data \mathcal{X}_{gen}^{src} .

	$\begin{array}{c} \text{Source} \rightarrow \\ \text{Target} \downarrow \end{array}$	${\bf ImageNet}$	Places	Bedrooms	CelebA
$ ext{FID}\left(\mathcal{X}_{gen}^{src}, \mathcal{X}_{data}^{tgt} ight)$	Flowers Kitchens LFW	237.04 183.27 333.54	251.93 180.63 333.38	278.80 70.06 329.92	284.74 254.12 151.46
	Cityscapes	233.45	181.72	227.53	292.66
$\overline{\mathrm{FID}\left(\mathcal{X}^{src}_{gen},\mathcal{X}^{src}_{data} ight)}$	Source	63.46	55.66	17.30	75.84

5 Transferring to conditional GANs

- Conditional GAN adaptation
- Auxiliary Classifier GAN (AC-GAN)

generator, discriminator

Cond Concat

- Input: connects condition and input noise
- Randomly initialize: the weights of the layer connected to 'cond concat'

Cond BNorm

- the conditioning prior is embedded in the batch normalization layers of the generator
- copying the values from the unconditional GAN to all classes

5 Transferring to conditional GANs

Results

Table 6: Per-class and overall FID for AC-GAN. Source: Places, target: LSUN

Init	Iter	Bedr	Bridge	Church	Classr	Confer	Dining	Kitchen	Living	Rest	Tower	Avg.	All
	250	298.4	310.3	314.4	376.6	339.1	294.9	314.2	316.5	324.4	301.0	319.0	352.4
Scratch	2500	195.9	135.0	133.0	218.6	185.3	173.9	167.9	189.3	159.5	125.6	168.4	137.3
	25000	72.9	78.0	52.4	106.7	76.9	40.1	53.9	56.1	74.7	59.8	67.2	49.6
	250	168.3	122.1	148.1	145.0	151.6	144.2	156.9	150.1	113.3	129.7	142.9	107.2
Pre-trained	2500	140.8	96.8	77.4	136.0	136.8	84.6	85.5	94.9	77.0	69.4	99.9	74.8
	25000	59.9	68.6	48.2	79.0	68.7	35.2	48.2	47.9	44.4	49.9	55.0	42.7

- ► 10K images per class
- for 25K iterations

5 Transferring to conditional GANs

Results

6 Conclusions

- GAN and cGAN use pre-trained models to achieve good results in a shorter time(shorter iterations) or with fewer data.
- In the selection of pre-training models, **density** is more important than diversity.
- The effect of using transfer learning is the best in **both G and D**. Only D: not obvious, only G: worse.

Thank you!