Tema 2 - Metode Numerice

Facultatea de Automatică și Calculatoare Universitatea Politehnică București

May 5, 2018

Cuprins

1	Introducere	3
	1.1 Descompunerea valorilor singulare	3
2	Compresia imaginilor folosind DVS	4
	2.1 Cerinta 1 [15p]	5
	2.2 Cerinta 2 [20p]	5
3	Compresia imaginilor folosind analiza componentelor princi-	
	pale	6
	3.1 Cerinta 3 [25p]	6
	3.2 Cerinta 4 [15p]	7
	3.3 Cerinta 5 [25p]	7
4	Observatii	8
5	Bibliografie	9

1 Introducere

In recunoasterea formelor, selectia si extragerea caracteristicilor reprezinta o alegere decisiva pentru proiectarea oricarui clasificator. Selectia caracteristicilor poate fi vazuta si ca un proces de compresie de date, fiind similara cu o transformare liniara din spatiul initial al observatiilor intr-un spatiu cu mai putine dimensiuni. O astfel de transformare este necesara deoarece poate pastra o mare parte din informatii (prin eliminarea informatiilor redundante sau a celor mai putin semnificative) si permite aplicarea unor algoritmi eficienti doar intr-un spatiu de dimensiuni reduse.

Cele mai multe transformari utilizate pentru selectia caracteristicilor sunt cele liniare, in timp ce transformarile neliniare au o complexitate mai ridicata, sunt mai dificil de implementat, dar pot avea o eficienta mai mare asupra rezultatelor, exprimand mai bine dependenta dintre formele observate si caracteristicile selectate ale acestor forme.

1.1 Descompunerea valorilor singulare

Fiind data o matrice $A \in \mathbb{R}^{m*n}$, descompunerea valorilor singulare (DVS, in eng. singular value decomposition - SDV) ale matricei A este data de factorizarea $A = USV^T$, unde:

- 1. $U \in \mathbb{R}^{mxm}$ este o matrice ortonormata
- 2. $S \in R^{mxn}$ este o matrice diagonala
- 3. $V \in \mathbb{R}^{n \times n}$ este o matrice ortonormata

Elementele de pe diagonala principala a lui S sunt intotdeauna numere reale nenegative $(s_{ii} \geq 0 \text{ pentru } i = 1 : min(m, n))$ si se numesc valorile singulare ale matricei A. Acestea sunt asezate in ordine descrescatoare, astfel incat $s_{11} \geq s_{22} \geq ... \geq s_{rr} > s_{r+1r+1} = ... = s_{pp} = 0$, unde p = min(m, n).

Coloanele $u_j \in R^m$, j=1:m ale lui U se numesc vectori singulari stanga ai matricei A. Coloanele $v_j \in R^n$, j=1:n ale lui V se numesc vectori singulari dreapta ai matricei A.

De exemplu, pentru matricea:

$$A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$$

se obtine urmatoarea descompunere a valorilor singulare:

$$A = USV^T = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \\ 2/3 & -2/3 & -1/3 \end{bmatrix}$$

Figura 1: Descompunerea valorilor singulare pentru matricea A de dimensiune m*n, unde m > n.

Figura 2: Descompunerea valorilor singulare pentru matricea A de dimensiune m*n, unde n > m, $S = \Sigma$, $V^t = V^*$.

2 Compresia imaginilor folosind DVS

Descompunerea redusa a valorilor singulare presupune descompunerea (factorizarea) matricei A astfel: $A \approx A_k = U_k S_k V_k^T$, unde $A_k \in R^{mxn}$, $U_k \in R^{mxk}$, $S_k \in R^{kxk}$, $V_k^T \in R^{kxn}$.

Intuitiv, descompunerea redusa a valorilor singulare semnifica eliminarea valorilor singulare nule sau a valorilor singulare nule si a celor de o valoare mica din matricea S (reprezentand informatia mai putin semnificativa). Acest lucru presupune si eliminarea coloanelor si a liniilor corespunzatoare acestor valori singulare din matricele U, respectiv din V (vezi Figura 3).

In cele ce urmeaza, presupunem ca matricea A reprezinta modelarea matematica pentru o imagine alb-negru clara si matricea A_k este modelarea matematica pentru o imagine alb-negru aproximativa a imaginii clare. Ambele imagini au dimensiune m*n pixeli. Fiecare element (i, j) din matricele A si A_k corespunde intensitatii de gri a pixelului (i, j) din imagine. Prin urmare, elementele matricelor A si A_k au valori cuprinse intre 0 (corespunzatoare culorii negre) si 255 (corespunzatoare culorii albe).

Figura 3: Exemplu de descompunere redusa a valorilor singulare pentru matricea A m*n dimensionala, m>n. Aceasta descompunere presupune eliminarea portiunilor hasurate in alb din matricele U, S, respectiv V^t . Portiunile hasurate in gri (notate U_k , S_k , respectiv V_k^t) din matricele U, S, respectiv V se vor pastra. Astfel, matricea A_k va aproxima matricea initiala A.

2.1 Cerinta 1 [15p]

In cadrul acestei cerinte, va trebui sa scrieti o functie Octave pentru compresia unei imagini folosind descompunerea redusa a valorilor singulare. Semnatura functiei este: $function\ A_k=cerinta1\ (image,\ k)$, unde image reprezinta calea catre imagine si k numarul de valori singulare. Functia trebuie sa intoarca matricea A_k avand semnificatia de mai sus.

2.2 Cerinta 2 [20p]

Scrieti o functie pentru a obtine urmatoarele 4 grafice pentru o imagine:

- folosind descompunerea valorilor singulare:
- 1. reprezentati grafic toate $valorile\ singulare\$ ale matricei A in ordine descrescatoare.
 - folosind descompunerea redusa a valorilor singulare (cerinta 1), pentru diferite valori ale lui k (de exemplu, k poate fi [1:19 20:20:99 100:30: $\min(m,n)$]):
- 2. reprezentati grafic k (pe axa OX) si *informatia* data de primele k valori singulare (pe axa OY) calculata dupa formula:

$$\frac{\sum_{i=1}^{k} s_{ii}}{\sum_{i=1}^{\min(m,n)} s_{ii}}$$

3. reprezentati grafic k (pe axa OX) si *eroarea aproximarii* pentru matricea A (pe axa OY) calculata dupa formula:

$$\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (A(i,j) - A_k(i,j))^2}{m * n}$$

4. reprezentati grafic k (pe axa OX) si *rata de compresie* a datelor (pe axa OY) calculata dupa formula:

$$\frac{m*k+n*k+k}{m*n}$$

Justificare formula: Pentru obtinerea imaginii aproximative avem nevoie sa memoram doar matricele U_k , V_k^T si primele k elemente de pe diagonala principala a matricei S_k . In total, m^*k+n^*k+k elemente trebuie memorate. Astfel, stocarea acestora ocupa memorie mai putina comparativ cu memoria ocupata de matricea A pentru m^*n elemente. Tinant cont de faptul ca cea mai mare parte din informatia continuta in matrice este data de primele valori singulare, compresiea datelor folosind descompunerea redusa a valorilor singulare permite o economisire de memorie.

Semnatura functiei este $function \ cerinta2()$.

3 Compresia imaginilor folosind analiza componentelor principale

Scopul analizei componentelor principale (in eng. principal component analysis - PCA), este de a transforma date de tipul $A = [a_1, a_2, ..., a_n]$, dintr-un spatiu dimensional R^m intr-un spatiu dimensional R^k , unde $a_i \in R^m$ si k<m. Acest spatiu este dat de cele k componente principale (PC). Componentele principale sunt ortonormale, necorelate si reprezinta directia variatiei maxime. Prima componenta principala reprezinta directia variatiei maxime a datelor, urmand ca urmatoarele componente principale sa aduca variatii din ce in ce mai mici.

3.1 Cerinta 3 [25p]

Urmatorul algoritm calculeaza componentele principale folosind metoda DVS: Fiind data o matrice $A = [a_1, a_2, ..., a_n] \in \mathbb{R}^{m*n}$, unde $a_j \in \mathbb{R}^{m*1}$, j = 1:n:

- 1. Se calculeaza urmatoarea medie pentru fiecare vector $a_i \in R^{1*n}, i=1:m:$ $\mu_i = \frac{\sum_{j=1}^n a_i(j)}{n}.$
- 2. Se actualizeaza vectorii $a_i \in \mathbb{R}^{1*n}, i=1:m$ astfel: $a_i=a_i-\mu_i$.
- 3. Se construieste matricea $Z = \frac{A^T}{\sqrt{n-1}}, Z \in \mathbb{R}^{n*m}$.
- 4. Se calculeaza DVS pentru matricea Z: $Z = USV^T$.
- 5. Spatiul k-dimensional al componentelor principale (notat cu W) este dat de primele k coloane din matricea $V = [v_1, v_2, ..., v_m] \in R^{m*m}$: $W = [v_1, v_2, ..., v_k]$ (v_1 este prima PC, v_2 este a doua PC s.a.m.d).
- 6. Se calculeaza proiectia lui A in spatiul componentelor principale, adica matricea $Y = W^T A$.

7. Se aproximeaza matricea initiala astfel: $A_k = WY + \mu$, unde $\mu \in \mathbb{R}^{m*1}$ iar elementele μ_i ale vectorului μ au fost calculate la pasul 1.

Functia Octave care implementeaza acesta cerinta este: function $[A_k \ S] = \text{cerinta3(image, k)}$, unde image reprezinta calea catre imagine si k numarul de componente principale. Functia intoarce matricele A_k si S cu semnificatia prezentata in acest algoritm.

3.2 Cerinta 4 [15p]

Componentele principale se pot calcula folosind si un algoritm bazat pe matricea de covarianta. Pasii pentru acest algoritm sunt:

Fiind data o matrice $A = [a_1, a_2, ..., a_n] \in \mathbb{R}^{m*n}$, unde $a_j \in \mathbb{R}^{m*1}, j = 1 : n$:

- Pasii 1-2 sunt aceeasi ca la cerinta 3.
- Se construieste matricea de covarianta $Z = \frac{A*A^T}{n-1}, Z \in \mathbb{R}^{m*m}$.
- Se aplica functia eig asupra matricei Z: $[V\ S] = eig(Z)$.
- Spatiul k-dimensional al componentelor principale (notat cu W) este dat de primele k coloane din matricea $V = [v_1, v_2, ..., v_m] \in R^{m*m}$: $W = [v_1, v_2, ..., v_k]$.
- Pasii 6-7 sunt aceeasi ca la cerinta 3.

Functia Octave care implementeaza acesta cerinta este: function $[A_k \ S]$ = cerinta4(image, k), unde image reprezinta calea catre imagine si k numarul de componente principale. Functia intoarce matricele A_k si S cu semnificatia prezentata in acest algoritm.

3.3 Cerinta 5 [25p]

Folosind cerinta 3, scrieti o functie pentru a obtine urmatoarele <u>3 grafice</u> pentru o imagine:

- 1. reprezentati grafic vectorul diag(S). Pentru diferite valori ale lui k (de exemplu, k poate fi [1:19 20:20:99 $100:30:\min(m,n)$]):
- 2. reprezentati grafic k (pe axa OX) si *informatia* data de primele k valori singulare (pe axa OY) calculata dupa formula:

$$\frac{\sum_{i=1}^{k} s_{ii}}{\sum_{i=1}^{\min(m,n)} s_{ii}}$$

3. reprezentati grafic k (pe axa OX) si *eroarea aproximarii* pentru matricea A (pe axa OY) calculata dupa formula:

$$\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (A(i,j) - A_k(i,j))^2}{m * n}$$

4. reprezentati grafic k (pe axa OX) si *rata de compresie* a datelor (pe axa OY) calculata dupa formula:

$$\frac{2*k+1}{n}$$

Justificare formula: Matricea A are dimensiunea m*n. Pentru reconstructia matricei A este nevoie de W, Y si μ avand fiecare m liniii si k, k coloane, respectiv 1 coloana. Prin urmare, numarul de coloane m-dimensionale de stocat a fost redus de la n la 2*k+1.

Semnatura functiei este $function \ cerinta5()$.

4 Observatii

- 1. Imaginile de testare sunt doar in format alb-negru. Pentru a citi o imagine in program folositi functiile *imread* si *double* din Octave.
- 2. Pentru vizualizarea imaginilor pe care le obtineti folositi functiile *imshow* si *uint*8 din Octave. Aceasta cerinta nu este obligatorie (checker-ul verifica doar datele returnate de functiile obligatorii), dar va ajuta sa observati diferentele pe imaginile modificate.
- 3. Puteti sa definiti functii auxiliare in cazul in care aveti nevoie de acestea.
- 4. In rezolvarea temei, aveti voie sa folositi functiile din Octave (inclusiv functiie svd si eig) cu o singura restrictie: NU folositi functia princomp din Octave.
- 5. Fisierul Readme (cu extensia .pdf) va contine doua parti: graficele si interpretarea rezultatelor obtinute la cerintele 2 si 5. Cerintele 2 si 5 le testati pentru oricare 2 imagini aflate in directorul in din checker. Pentru a desena un grafic continand mai multe subgrafice se foloseste functia subplot. Tot in Readme puteti pune si poze cu imaginile obtinute la cerintele 2 si 5 daca considerati ca va ajuta la interpretarea rezultatelor.
- 6. Checker-ul face testarea automata doar a cerintelor 1, 3 si 4, cerintele 2 si 5 le vom corecta manual.
- 7. Arhiva .zip trebuie sa includa DOAR functiile pe care voi le scrieti, nu includeti in arhiva altceva.

5 Bibliografie

- 1. Richard L.Burden, J. Douglas Faires, Numerical Analysis,Editia 9, Subcapitolul 9.6
- $2. \ http://www.cs.utexas.edu/users/inderjit/public_papers/HLA_SVD.pdf$
- $3. \ https://en.wikipedia.org/wiki/Principal_component_analysis$