

Graphics

Andrew Redd, PhD. R Bootcamp 2020

Plots

Packages

Must have

- ggplot2 (https://cran.r-project.org/package=ggplot2)
- viridis (https://cran.r-project.org/package=viridis)

Extras to check out

ggridges (https://cran.r-project.org/package=ggplot2)

Thought Exercise:

What are we trying to do with graphics?

Example: What are the components?

Graphics Systems in R

- 1. Base
- 2. Grid
- 3. Grammar

Base Graphics

Don't waste your time.

Grid Graphics

An even bigger waste of time.

Grammar of Graphics

The grammar of graphics is built with different components or blocks.

Building blocks: Aesthetics

- Aesthetics
 - location
 - size
 - shape
 - height
 - width
 - area
 - color
 - fill
 - border
 - transparency
 - time/animation

Building •blocks•: Data

- Aesthetics...
- Data
 - map variables from data to aesthetics
 - Statistics, i.e. how to summarize the data:
 - outliers, Q1, Median Q3, outliers → Box plots
 - binning → histograms
 - density → density, violin, etc.
 - smoothing: loess, splines, etc.

Building blocks: Coordinates

- · Aesthetics...
- Data
- · Coordinate System
 - Cartesian
 - Geographic
 - Polar
 - Scaling
 - Logarithmic
 - Square-root

Building blocks: Facets

- · Aesthetics...
- · Data
- · Coordinate System
- Facets
 - Grid
 - Strip
 - Wrap

Terminology

Terminology

Data

What we are visualizing

Geometry

The type of visualization.

Mapping

How variables translate variables from data to aesthetic components of the graph.

Statistic

If and how variables are to be summarized prior to being mapped to aesthetics.

Terminology

Terminology

Coordinates

How Axes are displayed.

Facets

How a visualization is to be broken into parts.

Position

How elements should be positioned; sitter, stacked, dodge, etc.

Example

Example

ebola.plot1

We can do better.

Layers

Terminology

Layers

Layers are the combination of a geometry, data, mapping, statistic, and position.

Graphs may have and often do have many layers in them.

Layered Example

Layered Example

ebola.plot2

Changing Aesthetics

ebola.plot3

A comment about color

ebola.plot3 + scale_color_viridis_d()

Themes

Themes are what control the non-data elements of a visualization

- Axes
- Grid
- Background
- · Legend positioning, etc.

Built-in themes

- theme_grey
- theme_bw
- theme_linedraw
- theme_light

- theme_dark
- theme_minimal
- theme_classic

Theme Example, Dark

ebola.plot3 + scale_color_viridis_d() + theme_dark()

Theme Example, Minimal

ebola.plot3 + scale_color_viridis_d() + theme_minimal()

Customizing themes

```
ebola.plot3 + scale_color_viridis_d() + theme_minimal() +
    theme(legend.position="top"
        , strip.background=element_rect(fill='black')
        , strip.text= element_text(color='gold', face='bold'))
```


Reuse your theme

The Shortcut qplot (quick plot)

```
plotting.data <- ebola.data %>% filter(`Case def.`=='Confirmed')
qplot(`Total cases`, `Total deaths`, color = Country, data=plotting.data)
```


Exercises with Bordeaux Wines

- 1. Parker Points vs. Coates Points
- 2. Parker Points or Coates Points vs. Price
- 3. Price by First Growth or Cult Wine
- 4. A plot that includes at least
 - 1. Price
 - 2. Parker Points or Coates Points
 - 3. two of First Growth, Cult Wine, Pomerol, or Vintage Superstar

Solution: Preliminary

Fix the wine data so that the labels for indicators are a little nicer.

```
library(magrittr)
```

```
Message:##
## Attaching package: 'magrittr'
Message:## The following object is masked from 'package:purrr':
##
       set names
##
Message: ## The following object is masked from 'package: tidyr':
##
##
       extract
#assign back pipe
wine <- read.csv("data/Bordeaux.csv") %>%
```

Solution: Parker Points vs. Coates Points

qplot(data=wine, ParkerPoints, CoatesPoints, geom='point')

Solution: Parker Points vs. Price

```
qplot(data=wine, ParkerPoints, Price, geom='point') +
    labs(y = 'Price(\uA3)', x="Robert Parker Rating (Max:100)")
```


Solution: Price by First Growth Box plot

```
qplot(data=wine, x=FirstGrowth, y=Price
, geom='boxplot', group=FirstGrowth) #< must include a group.</pre>
```


Solution: Price by First Growth Density

ggplot(data=wine) + geom_density(aes(x=Price, fill=FirstGrowth), alpha=0.5)+
 scale_fill_viridis_d()

Solution: Price by First Growth Violins

ggplot(data=wine) + geom_violin(aes(y=Price, x=FirstGrowth, fill=FirstGrowth))+
 scale_fill_viridis_d()

Solution: Price by First Growth Guitar Plot

ggplot(data=wine) + geom_violin(aes(y=Price, x=FirstGrowth, fill=FirstGrowth))+
 scale fill viridis d()

Solution: all the variables.

```
all.the.variables <- ggplot(data=wine) +
   # Five variables here.
   geom point(aes( x = ParkerPoints, y = CoatesPoints
                  , col = Price, shape = Pomerol:VintageSuperstar
             # Jitter the position to avoid over-plotting
              , position=position jitter(.4, .4))+
   # grid for two more variables
   facet grid( FirstGrowth~CultWine
              , labeller=label both
              ) + #^ Labels have both variable name and level.
   # Make colors pop for high value wines.
   scale color viridis c(trans = 'log10', option="inferno", end=0.75) +
   labs( x = "Robert Parker Rating (Max:100)"
       , y = "Clive Coates Rating (Max:20)"
        , color = 'Price(\uA3)')
```

Solution: all the variables.

all.the.variables

