Maharaja Agrasen Institute of Technology ETCS 211

Computer Graphics & Multimedia UNIT 1

BRESENHAM'S LINE DRAWING ALGORITHMS

The Bresenham's Line Algorithm

The Bresenham's algorithm is another incremental scan conversion algorithm

The big advantage of this algorithm is that it uses only integer calculations

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWING

Bresenham's Line Algorithm

cont..

- •For a given value of x
 - one pixel lies at distance t_k above the line, and
 - one pixel lies at distance $\hat{s_k}$ below the line

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWING ALGORITHMS

Bresenham's Line Algorithm

cont..

Decision parameter

Bresenham's Line Algorithm

$$p_k = (s_k - t_k)$$

- •If $p_k < 0$, then closest pixel is below <u>true line</u> (s_k smaller)
- •If $p_k \ge 0$, then closest pixel is above <u>true line</u> (t,ksmaller)
- •We must calculate the new values for p_k as we move along the line.

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWIN

5

cont..

Algorithm

- 1. Input line end points
- 2. Load (x_0,y_0) to plot the first point.
- Calculate dx,dy, 2dy and 2dy-2dx and obtain the starting value of the decision parameter as p₀=2dy-dx
- At each x_k along the line, starting at k=0, perform the following test

if $p_k < 0$, the next point plot is (x_k+1, y_k) and

 $\begin{array}{c} p_{k+1} = p_k + 2 dy \\ \text{Other wise, the next point to plot is } (x_k + 1, \ y_k + 1) \ \text{and} \\ p_{k+1} = p_k + 2 dy - 2 dx \end{array}$

5. Repeat step-4 dx times.

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWIN

6

Starting and Ending position of the line are (1, 1) and (8, 5). Find intermediate points.

Example

(Bresenham's Line Algorithm)

Bresenham's Line Algorithm

cont..

Special cases

- · Special cases can be handled separately
 - Horizontal lines ($\Delta y = 0$)
 - Vertical lines ($\Delta x = 0$)
 - Diagonal lines ($|\Delta x| = |\Delta y|$)
- directly into the frame-buffer without processing them through the line-plotting algorithms.

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWING ALGORITHMS 10

отезеннанга лідопинні сханірів тупете M<=1

Suppose we want to draw a line starting at pixel (2,3) and ending at pixel (12,8).	dx = 12 - 2 = 0 dy = 8 - 3 = 5 p0 = 2dy - dx		2dy = 1 2dy - 2	0 dx = -10	
Algorithm		t	р	P(x)	P(y)
1.Input the two line endpoints and store left		0	0	2	3
endpoint as (x0,y0) 2.Pre-calculate the values dx, dy, 2dy and 2dy -			-10	3	4
dx 3.Color pixel (x0.y0) 4.Let p₀= 2dy –dx 5.At each x.along the line, starting with k=0:		2	0	4	4
		3	-10	5	5
		4	0	6	5
If $p_k<0$, then the next point to plot is (x_k+1,y_k) , and $p_{k+1}=p_k+2$ dy (Down pixel will be selected) Otherwise, the next point to plot is (x_k+1,y_k+1) , and $p_{k+1}=p_k+2$ dy -2 dx (Upper pixel will be			-10	7	6
			0	8	6
			-10	9	7
selected)		8	0	10	7
6.Repeat Step-4 dx times		9	-10	11	8
		10	0	12	8
MAIT, CSE, CGM, UI	NIT 1 BRESENHAM'S LINE D	RAWING			

Differentiate between DDA Algorithm and Bresenham's Line Algorithm:

DDA Algorithm	Bresenham's Line Algorithm		
1. DDA Algorithm use floating point, i.e., Real Arithmetic.	Bresenham's Line Algorithm use fixed point, i.e., Integer Arithmetic		
2. DDA Algorithms uses multiplication & division its operation	2.Bresenham's Line Algorithm uses only subtraction and addition its operation		
Bresenham's Line Algorithm in line drawing	Bresenham's Algorithm is faster than DDA Algorithm in line because it involves only addition & subtraction in its calculation and uses only integer arithmetic.		
4. DDA Algorithm is not accurate and efficient as Bresenham's Line Algorithm.	Bresenham's Line Algorithm is more accurate and efficient at DDA Algorithm.		
5.DDA Algorithm can draw circle and curves but are not accurate as Bresenham's Line Algorithm	5. Bresenham's Line Algorithm can draw circle and curves with more accurate than DDA Algorithm.		

Anti-aliasing

- Anti-aliasing is a method of fooling the eye that a jagged edge is really smooth.
- Due to low resolution aliasing effect will occur, which can be removed by increasing the screen resolution.

Jagged edges due to aliasing

Circle after applying antialiasing

13

Some more Examples

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWING

Reducing Aliasing

· By increasing Resolution

The aliasing effect can be minimized by increasing resolution of the raster display.

IT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWING ALGORITHMS

Disadvantage of improving resolution

- More memory requirement (Size of frame buffer will become
- · Large) More scan conversion time

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWN ALGORITHMS

Anti-aliasing Methods

- · Super-sampling method or post filtering
- · Area sampling or Pre filtering

MAIT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWING

._

Super-sampling Method (Cont....)

- In this method every individual pixel is subdivided in to sub-pixel.
- In this method we count the number of pixel which are overlapped by the object.
- The intensity value of a pixel is the average of the intensity values of all the sampled sub-pixels with in that pixel.
- In this method every pixel on the screen have different intensity.

IT, CSE, CGM, UNIT 1 BRESENHAM'S LINE DRAWING

18

Super-sampling for a line object having Non-Zero width.

e/a	2/9	n/e
6/9	4	600
	6/9	1/4

Super-sampling Method (Cont....)

- Pixel at upper right corner is assigned 7/9 because seven of its nine-sub pixels are inside the object area.
- At what intensity the pixel will glow?
 (1 X 7/9 + .5 X 2/9, 0X7/9+ 0.5 X 2/9, 0X7/9+.5X2/9)
 R G B

Blending of background color and object color will occur only in area of pixel where object overlaps.

29 7/9 6/3 8/9

1.What will be the intensity of center pixel? Answer- (1 X 1+.5X0, 0X1+.5X0, 0X1+.5X0) 2.What will be the intensity of lower right side pixel? Answer- (1X1/9 + .5X8/9, 0X1/9+.5X8/9, 0X1/9+.5X8/9)

Intensity Variation on pixels after Super sampling method

Write Formula for Blending of Colors for following Conditi

- 1. Object Background is (.5,.5,.5)
- 2.Object Color is (1,1,0)

Write Formula for Blending of Colors for following Conditions

- 1. Object Background is (.5,.5,.5)
- Object Color is (1,1,1)

Area Sampling Method

This figure shows how line with a non-Zero width have different intensity value at each pixel on the screen

Q & A

- 1. The Cartesian slope-intercept equation for a straight line is
- a) y = m.x + b b) y = b.x + m c) y = x.x + m
- d) y = b + m.m
- 2. For lines with slope magnitude |m|<1, ?x can be_ a) A set corresponding vertical deflection
- b) A set proportional to a small horizontal deflection voltage c) Only a d) All of the mentioned

- 3. On raster system, lines are plotted with
- a) Lines
- b) Dots
- d) None of the mentioned

- Expansion of line DDA algorithm is
 Digital difference analyzer
 Direct differential analyzer

- c) Digital differential analyzerd) Data differential analyzer
- 5. Which algorithm is a faster method for calculating pixel positions?
 a) Bresenham's line algorithm
- b) Parallel line algorithm
- c) Mid-point algorithm d) DDA line algorithm
- 6. The disadvantage of lineDDA is a) Time consuming

- b) Faster c) Neither a nor b
- d) None of the mentioned

- 10. The algorithm which uses multiple processors to calculate pixel positions is
- a) Midpoint algorithm
- b) Parallel line algorithm
 c) Bresenham's line algorithm
- d) All of the mentioned
- 11. Coordinate references in the polyline function are stated as
- a) Relative coordinate valuesb) Absolute coordinate values
- c) Current position
- d) Real coordinate values

- 7. An accurate and efficient raster line-generating algorithm is
- a) DDA algorithm
- b) Mid-point algorithm
- c) Parallel line algorithm
 d) Bresenham's line algorithm
- 8. In Bresenham's line algorithm, if the distances d1 < d2 then decision parameter Pk is_
- a) Positive b) Equal
- c) Negative d) Option a or c
- 9. Which is the best line algorithm to balance the processing load among the processers?
- a) Parallel line algorithm
 b) DDA line algorithm
- c) Bresenham's line algorithm
- d) Position Bresenham's line algorithm