

Università degli Studi di Milano Bicocca
Scuola di Scienze
Dipartimento di Informatica, Sistemistica e Comunicazione
Corso di laurea in Informatica

1° Progetto: Sezione riguardante Algebra lineare numerica Sistemi lineari con matrici sparse simmetriche e definite positive

Risoluzione di sistemi lineari per matrici sparse, simmetriche e definite positive con il metodo di Cholesky

Obiettivi del Progetto

- Implementazione del codice che verrà utilizzato per la risoluzione dei sistemi
- Ricerca di altre soluzioni software (librerie di linguaggi o software Open Source) oltre a
 MatLab per l'esecuzione del codice
- Registrare e confrontare le prestazioni ottenute, in particolare:
 - Il tempo necessario alla risoluzione del sistema
 - La memoria utilizzata durante l'algoritmo
 - L'accuratezza del risultato ottenuto (l'errore relativo)
- Confrontare i risultati ottenuti su sistemi operativi diversi (Windows e Linux)
- Valutare quale sia la scelta migliore considerando sia le prestazioni che i costi di ciascun metodo di risoluzione, tenendo conto anche della facilità d'uso e della documentazione

Dati Tecnici della Macchina Utilizzata

Clock	2,40 GHz
Memoria RAM	8,00 GB
Processore	<u>Intel i7-5500U</u>

I test effettuati su Linux e Windows sono stati eseguiti sulla stessa macchina, operando una partizione della memoria

Software Utilizzati

Per svolgere il progetto sono stati utilizzati i seguenti software:

- MatLab
- Scilab
- GNU Octave

Nelle prossime diapositive introdurremo brevemente ogni strumento software sopraelencato

Versione Utilizzata: R2019a, 64 bit

MatLab è uno strumento software ampiamente utilizzato per l'analisi statistica e numerica sviluppato da MathWorks.

Compatibile con gli OS Linux, macOS e Windows. Possiede una ricca documentazione e un ampio numero di file d'aiuto.

Matlab, però, non è gratuito:

Versione Utilizzata: 6.0.2

Scilab è uno strumento software Open Source per l'analisi numerica sviluppato da Scilab Enterprises.

Compatibile con gli OS Linux, macOS e Windows. La sintassi è molto simile a quella utilizzata in MatLab, tuttavia i due programmi non sono completamente compatibili (anche se la community ha creato un convertitore MatLab \rightarrow Scilab).

Non vi è alcun costo per la licenza, a sfavore però della documentazione estremamente scarna e di un ridotto numero di file d'aiuto.

Versione Utilizzata: 5.1.0

Similmente a quanto detto per Scilab, GNU Octave è uno strumento software Open Source per l'analisi numerica scritto interamente in C++, ed è compatibile con gli OS Linux, macOS e Windows. La sintassi è simile a quella utilizzata in MatLab. Per quanto riguarda la documentazione, è reperibile online all'indirizzo https://octave.sourceforge.io/docs.php, e risulta piuttosto esaustiva, fornendo una descrizione ed esempi di utilizzo di ogni funzione/libreria nativa.

Premesse

- Le matrici Flan_1565 e StocF-1465 non sono state considerate nei grafici in quanto il pc utilizzato non è stato in grado di risolverle per questioni di memoria.
- La matrice ex15 su Scilab non è stata considerata nei grafici in quanto il software non riconosceva questa matrice come sparsa, simmetrica e definita positiva.

CONFRONTO TRA I DIVERSI SOFTWARE NELLO STESSO SISTEMA OPERATIVO

Tempo di Esecuzione Windows

Nome matrice | Numero righe/colonne | Numero di non zeri

Tempo di Esecuzione Linux

Accuratezza Windows

Nome matrice | Numero righe/colonne | Numero di non zeri

Accuratezza Linux

Memoria Utilizzata Windows

Nome matrice | Numero righe/colonne | Numero di non zeri

Memoria Utilizzata Linux

CONFRONTO TRA STESSO SOFTWARE NEI DIVERSI SISTEMI OPERATIVI

Tempo di Esecuzione MatLab

Nome matrice | Numero righe/colonne | Numero di non zeri

Accuratezza MatLab

Memoria Utilizzata MatLab

Tempo di Esecuzione Octave

Nome matrice | Numero righe/colonne | Numero di non zeri

Accuratezza Octave

Memoria Utilizzata Octave

Tempo di Esecuzione Scilab

Nome matrice | Numero righe/colonne | Numero di non zeri

Accuratezza Scilab

Memoria Utilizzata Scilab

1	cfd1.mat	shallow_water1.mat	cfd2.mat	parabolic_fem.mat	apache2.mat	G3_circuit.mat
	70656	81920	123440	525825	715176	1585478
	1825580	32768	3085406	3674625	4817870	7660826
Scilab Windows	424	49	877	469	2254	2623
Scilab Linux	390	47	771	422	2096	2334

Conclusioni

Scilab

Scilab è risultato il software più lento, con il maggior utilizzo di memoria, ma con l'errore più basso nella risoluzione dei sistemi lineari. Essendo gratuito, sembrerebbe un'ottima alternativa a MatLab, vista la sua estrema precisione. Tuttavia i tempi di esecuzione risultano essere estremamente maggiori, nonché il software con l'affidabilità minore: non sempre infatti sembra arrivare ad una conclusione dell'algoritmo.

Matlab

MatLab risulta essere il software più rapido nella risoluzione dei sistemi, soprattutto su Linux, nel quale inoltre occupa anche una quantità di memoria inferiore rispetto all'ambiente Windows. MatLab Linux risulta quindi una scelta più che valida per la nostra azienda, presupponendo l'assenza di problemi legati al budget.

Octave

Analizzando infine i risultati di Octave, il software non sembra avere una marcata differenza con MatLab:

Pur avendo quest'ultimo dei risultati lievemente migliori nel tempo di esecuzione e nell'accuratezza, la memoria occupata è inferiore utilizzando Octave.

Avendo poi, a differenza di Scilab, una alta affidabilità e una ricca documentazione, Octave risulta essere una più che valida alternativa gratuita a MatLab.

Le analisi effettuate non evidenziano nette differenze prestazionali, tuttavia Linux risulta essere il sistema operativo migliore tra i due. Inoltre, essendo gratuito, rappresenta la scelta migliore sia in termini di prestazioni che di costi.

Scelta Finale

È evidente che la scelta tra i vari sistemi operativi e i programmi da utilizzare in un ipotetico scenario lavorativo sono direttamente correlati con la sfera di competenza dell'azienda: È infatti triviale supporre che le priorità di aziende ospedaliere o agenzie governative siano diverse da quelle di una semplice startup. Tuttavia, è possibile concludere che Scilab non rappresenti la scelta migliore né in ambito Open Source né presupponendo un budget illimitato. Dunque, la scelta migliore è rappresentata da Octave o da MatLab, in base alle necessità e alla disponibilità economica dell'azienda in questione.

