1001011101111000001

1010011010001020 1011110001110

00110110 第五章 网络层

无类域间路由 CIDR

110001111

IP 地址问题

IP 正变成过渡流行的牺牲品

分类造成了数百万个地址浪费

➤ A类地址网络: 16 M 个地址(太大)

➤ C类地址网络: 256个地址(太小)

➤ B类地址网络: 65,536个地址(够用)

路由表膨胀

超过一半的B类网络拥有的主机数不超过50台主机

无类别域间路由--CIDR

- Classless InterDomain Routing
- □ 缓解了地址枯竭的趋势;控制甚至缩减了路由表的开销
- □ CIDR的基本思想描述在 RFC 1519 中
 - ▶分配IP地址的时候不再以类别来分,而是按照可变长的地址

块来分配(按需分配)

如:某用户需要

2000 个地址

例: IP 地址分配

- 一块地址从194.24.0.0开始,可用地址数为8192(2**13),即194.24.0.0/19
- > 剑桥申请2048个地址: 194.24.0.0~194.24.7.255
- ▶ 牛津申请4096个地址: 194.24.16.0~194.24.31.255
- > 爱丁堡申请1024个地址: 194.24.8.0~194.24.11.255

University	First address	Last address	How many	Written as
Cambridge	194.24.0.0	194.24.7.	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

CIDR路由

- □ 路由表必须扩展,增加一个 32-bit 的子网掩码
- □ 每个路由表有一个三元组

(IP address, subnet mask, outgoing line)

CIDR路由

当一个分组到来到的时候

- □ 分组中的目标IP地址(Destination IP) 被检查
- □ 目标IP和子网掩码进行与操作,获得目标网络地址,以查找 路由表
- □ 如果路由表中有多个表项匹配 (这些表项有不同的子网掩码), 使用子网掩码最长的那个表项 ◆

最长地址前缀选择子网掩码长的匹配项

目标IP

192.24.12.4:11000000. 00011000. 00001100. 00000100

路由表中有两个表项匹配

- □ 192.24.12.0/24 (11000000.00011000.00001100.00000000)
- □ 192.24.0.0/19 (11000000.00011000.00001100.00000000)

New York路由器的路由表

最长前缀匹配

目的网络	转出接口	
192.24.12.0/24	S 0	
192.24.0.0/19	S1	

如何计算可用的IP地址?

- □ 一个IP地址是194.24.6.112, 它的子网掩码是255.255.248.0; 等同于194.24.6.112/21
- □ 相应的子网络号是: 194.24.00000000.0
- □ 相应的主机位 32-21=11, 所以主机IP有2048个

到<mark>00000</mark> 111.11111111=7.255

路由聚合

- □ 缩减路由表规模
- □ 隔离路由翻动

Route summarization reduces routing table size by aggregating routes to multiple networks into one supernet.

怎样聚合?

200.199.48.0/24

200.199.49.0/24

200.199.50.0/24

200.199.51.0/24

聚合

200.199.48.0/22

不变的位数: 8+8+6=22

(网络位数或掩码位)

小结

- □ CIDR按需分配IP地址,遏制了IP地址枯竭的 趋势
- □ CIDR控制、缩减了路由表的规模
 - ▶路由聚合
 - ▶超网
- □ CIDR还带来了额外的好处: 隔离了路由翻动

思考题

- □ CIDR的功能是什么?
- □ 采用了CIDR技术,怎样完成路由聚合?
- □ 怎样计算一个无类网络的可用/合法IP地址?

1001011101111000001

001101100011111010100

20100110100010ZO

谢姚看

TITOTOOTOOOTITOOOT

1011110001110

致谢

本课程课件中的部分素材来自于: (1)清华大学出版社出 版的翻译教材《计算机网络》(原著作者: Andrew S. Tanenbaum, David J. Wetherall); (2) 思科网络技术学院教程; (3) 网络 上搜到的其他资料。在此,对清华大学出版社、思科网络技术学 院、人民邮电出版社、以及其它提供本课程引用资料的个人表示 衷心的感谢!

对于本课程引用的素材,仅用于课程学习,如有任何问题,请与我们联系!