

What means "Estimation"?

- ▶ A sender transmits a signal $s_{\Theta}(t)$ which depends on an **unknown** parameter Θ
- ▶ The signal is affected by noise, we receive $r(t) = s_{\Theta}(t) + noise$
- ▶ We want to **find out** the correct value of the parameter
 - based on samples from the received signal, or the full continuous signal
 - ▶ available data is noisy => we "estimate" the parameter
- ▶ The found value is $\hat{\Theta}$, **the estimate** of Θ ("estimatul", rom)
 - lacktriangle there will always be some estimation error $\epsilon = \hat{\Theta} \Theta$
- Examples:
 - ▶ Unknown amplitude of constant signal: r(t) = A + noise, estimate A
 - ▶ Unknown phase of sine signal: $r(t) = \cos(2\pi f t + \phi)$, estimate ϕ
 - Record speech signal, estimate/decide what word is pronounced

Estimation vs Decision

- ▶ Consider the following estimation: r(t) = A + noise, estimate A
- ► For detection, we have to choose between **two known values** of *A*:
 - ▶ i.e. A can be 0 or 5 (hypotheses H_0 and H_1)
- ► For estimation, A can be anything => we choose between infinite number of options for A:
 - ▶ A might be any value in \mathbb{R} , in general

Estimation vs Decision

- ▶ Detection = Estimation constrained to only a few discrete options
- ▶ Estimation = Detection with an infinite number of options available
- The statistical methods used are quite similar
 - In practice, distinction between Estimation and Detections is somewhat blurred
 - (e.g. when choosing between 1000 hypotheses, do we call it "Detection" or "Estimation"?)

Available data

- ▶ The available data is the received signal r(t)
 - lacktriangle affected by noise, and depending on the unknown Θ
- ▶ We consider **N** samples from r(t), taken at some sample times t_i

$$\mathbf{r} = [r_1, r_2, ... r_N]$$

- ▶ Each sample r_i is a random variable that depends on Θ (and the noise)
 - lacktriangle Each sample has a distribution that depends on Θ

$$w_i(r_i;\Theta)$$

- ▶ The whole sample vector \mathbf{r} is a N-dimensional random variable that depends on Θ (and the noise)
 - \blacktriangleright It has a N-dimensional distribution that depends on Θ

$$w(\mathbf{r};\Theta)$$

Types of estimation

- \blacktriangleright We consider estimating a parameter Θ under two circumstances:
- 1. No distribution is known about the parameter, except maybe some allowed range (e.g. $\Theta > 0$)
 - ▶ The parameter can be any value in the allowed range, equally likely
- 2. We know a distribution $p(\Theta)$ for Θ , which tells us the values of Θ that are more likely than others
 - ▶ this is known as a priori distribution (i.e. "known beforehand")

Maximum Likelihood definition

- When no distribution is known about the parameter, we use a method known as Maximum Likelihood Estimation (MLE)
- ► The distribution of the received data, $w(\mathbf{r}; \Theta)$, is known as the **likelihood function**
 - we know the vector r we received, so this is a constant
 - ▶ the unknown variable in this function is Θ

$$L(\Theta) = w(\mathbf{r}; \Theta)$$

- ► Maximum Likelihood Estimation: The estimate *Theta* is **the value that maximizes the likelihood of the observed data**
 - i.e. the value Θ that maximizes $w(r; \Theta)$

$$\hat{\Theta} = \arg\max_{\Theta} L(\Theta) = \arg\max_{\Theta} w(r; \Theta)$$

If Θ is allowed to live only in a certain range, restrict the maximization only to that range.

Computations

Find maximum by setting derivative to 0

$$\frac{dL(\Theta)}{d\Theta}=0$$

► We can also maximize **natural logarithm** of the likelihood function ("log-likelihood function")

$$\frac{d\ln(L(\Theta))}{d\Theta}=0$$

Computations

Method:

1. Find the function

$$L(\Theta) = w(\mathbf{r}; \Theta)$$

2. Set the condition that derivative of $L(\Theta)$ or $ln((L(\Theta)))$ is 0

$$\frac{dL(\Theta)}{d\Theta} = 0$$
, or $\frac{d\ln(L(\Theta))}{d\Theta} = 0$

- 3. Solve and find the value $\hat{\Theta}$
- 4. Check that second derivative at point $\hat{\Theta}$ is negative, to check that point is a maximum
 - ▶ because derivative = 0 for both maximum and minimum points

Examples:

Estimating a constant signal in gaussian noise:

- ▶ Find the Maximum Likelihood estimate of a constant value A from 5 noisy measurements $r_i = A + noise$ with values [5, 7, 8, 6.1, 5.3]. The noise is AWGN $\mathcal{N}(\mu = 0, \sigma^2)$.
- Solution: at whiteboard.
- lacktriangle The estimate \hat{A} is the average value of the samples (not surprisingly)

General signal in AWGN

- ▶ Consider that the true underlying signal is $s_{\Theta}(t)$
- ► Consider AWGN noise $\mathcal{N}(\mu = 0, \sigma^2)$.
- ▶ The samples r_i are taken at sample moments t_i
- ► The samples r_i have normal distribution with average $s_{\Theta}(t_i)$ and variance σ^2
- $lackbox{ Overall likelihood function} = \operatorname{product}$ of likelihoods for each sample r_i

$$L(\Theta) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(r_i - s_{\Theta}(t_i))^2}{2\sigma^2}}$$
$$= \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2}}$$

The log-likelihood is

$$\ln(L(\Theta)) = \underbrace{\ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right)}_{constant} - \frac{\sum (r_i - s_{\Theta}(t_i))^2}{2\sigma^2}$$

General signal in AWGN

$$\frac{d\ln\left(L(\Theta)\right)}{d\Theta}=0$$

means

$$\sum (r_i - s_{\Theta}(t_i))^2 \frac{ds_{\Theta}(t_i)}{d\Theta} = 0$$

Estimating the frequency f of a cosine signal

- ▶ Find the Maximum Likelihood estimate of the frequency f of a cosine signal, from 10 noisy measurements $r_i = cos(2\pi f t_i) + noise$ with values [...]. The noise is AWGN $\mathcal{N}(\mu = 0, \sigma^2)$. The sample times $t_i = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]$
- Solution: at whiteboard.

The likelihood function is:

True frequency = 0.070000, Estimate = 0.071515

ML Estimation and ML Detection

- ▶ In ML Estimation, the estimate $\hat{\Theta}$ is the value that maximizes the likelihood function
- ▶ In ML Detection, the decision criterion $\frac{w(r|H_1)}{w(r|H_0)} \gtrsim 1$ means "choose the hypothesis that maximizes the likelihood function".
- ▶ Therefore it is the same principle, merely in a different context:
 - ▶ in Detection we are restricted to a few predefined options
 - ▶ in Estimation we are unrestricted => choose the maximizing value