

HiPerFRED²

 V_{RRM} 200 V =2x30A 35 ns

High Performance Fast Recovery Diode Low Loss and Soft Recovery Common Cathode

Part number

DPG60C200QB

Backside: cathode

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: TO-3P

- Industry standard outline compatible with TO-247
- RoHS compliant
- Epoxy meets UL 94V-0

Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{VJ} = 25^{\circ}C$			200	V
V _{RRM}	max. repetitive reverse blocking ve	oltage	$T_{VJ} = 25^{\circ}C$			200	V
I _R	reverse current, drain current	V _R = 200 V	$T_{VJ} = 25^{\circ}C$			1	μA
		$V_R = 200 V$	$T_{VJ} = 150^{\circ}C$			0.1	mΑ
V _F	forward voltage drop	I _F = 30 A	$T_{VJ} = 25^{\circ}C$			1.34	V
		$I_F = 60 \text{ A}$				1.63	V
		I _F = 30 A	T _{VJ} = 150°C			1.06	V
		$I_F = 60 \text{ A}$				1.39	V
I _{FAV}	average forward current	T _C = 140°C	T _{vJ} = 175°C			30	Α
		rectangular d = 0.5					
V _{F0}	threshold voltage	and addition only	T _{vJ} = 175°C			0.70	V
r _F	slope resistance	oss calculation only				10.5	mΩ
R _{thJC}	thermal resistance junction to case	9				0.95	K/W
R _{thCH}	thermal resistance case to heatsin	nk			0.25		K/W
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			160	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			360	Α
CJ	junction capacitance	V _R = 150 V f = 1 MHz	$T_{VJ} = 25^{\circ}C$		42		pF
I _{RM}	max. reverse recovery current	,	$T_{VJ} = 25^{\circ}C$		3		Α
		$I_F = 30 \text{ A}; V_R = 130 \text{ V}$	$T_{VJ} = 125$ °C		7		Α
t _{rr}	reverse recovery time	$I_F = 30 \text{ A}; V_R = 130 \text{ V}$ -di _F /dt = 200 A/µs	$T_{VJ} = 25^{\circ}C$		35		ns
)	$T_{VJ} = 125$ °C		55		ns

Package	Package TO-3P			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal 1)			50	Α	
T _{VJ}	virtual junction temperature		-55	i	175	°C	
T _{op}	operation temperature		-55	1	150	°C	
T _{stg}	storage temperature		-55	i	150	°C	
Weight				5		g	
M _D	mounting torque		0.8	1	1.2	Nm	
F _c	mounting force with clip		20		120	N	

Part number

D = Diode

P = HiPerFRED

G = extreme fast

60 = Current Rating [A]

C = Common Cathode

200 = Reverse Voltage [V] QB = TO-3P (3)

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DPG60C200QB	DPG60C200QB	Tube	30	502213

Similar Part	Package	Voltage class
DPG60C200HB	TO-247AD (3)	200
DPF60C200HB	TO-247AD (3)	200
DPF60C200HJ	ISOPLUS247 (3)	200

Equivalent Circuits for Simulation		* on die level	T _{VJ} = 175 °C	
$I \rightarrow V_0$	R_0	Fast Diode		
V _{0 max}	threshold voltage	0.7		V
R _{0 max}	slope resistance *	7.9		$m\Omega$

Outlines TO-3P

Dim.	Millir	neter	Inches	
DIIII.	min	max	min	max
Α	4.70	4.90	0.185	0.193
A1	1.30	1.50	0.051	0.059
A2	1.45	1.65	0.057	0.065
b	0.90	1.15	0.035	0.045
b2	1.90	2.20	0.075	0.087
b4	2.90	3.20	0.114	0.126
С	0.55	0.80	0.022	0.031
D	19.80	20.10	0.780	0.791
D1	16.90	17.20	0.665	0.677
Е	15.50	15.80	0.610	0.622
E1	13.50	13.70	0.531	0.539
е	5.45	5.45 BSC		BSC
Г	19.80	20.20	0.780	0.795
L1	3.40	3.60	0.134	0.142
ØР	3.20	3.40	0.126	0.134
ØP1	6.90	7.10	0.272	0.280
S	4.90	5.10	0.193	0.201

Fast Diode

Fig. 1 Forward current I_F versus V_F

Fig. 2 Typ. reverse recov. charge Q_{rr} versus $-di_F/dt$

Fig. 3 Typ. reverse recov. current $I_{\rm RM}$ versus $-{\rm di_F}/{\rm dt}$

Fig. 4 Typ. dynamic parameters Q_{rr} , I_{RM} versus T_{VJ}

Fig. 5 Typ. reverse recov. time t_{rr} versus $-di_{F}/dt$

Fig. 6 Typ. forward recov. voltage V_{FB} and t_{fr} versus di_{F}/dt

Fig. 7 Typ. recovery energy E_{rec} versus $-di_F/dt$

Fig. 8 Transient thermal impedance junction to case