Operacinės sistemos

Kompiuterio magistralės.

Magistralė tai –

- Ryšio kelias jungiantis du ar daugiau kompiuterio įtaisus.
- Tai yra bendra duomenų perdavimo terpė, paprastai "viešoji" (angl. broadcast).
- Paprastai laidininkų rinkinys, kurio kiekvienu laidininku siunčiamas dvejetainis signalas.
- Jeigu tai laidininkų rinkinys, tai vienu metu galima siųsti visą dvejetainių vienetų ir nulių grupę.

Magistralės plotis

- Nurodo kiek laidininkų sudaro magistralę.
- Laiko momentu 1 laidininku siunčiamas 1 dvejetainis skaičius. Rodo, kiek bitų galima siųsti vienu metu.
- Adresų magistralės plotis nusako maksimalią kompiuterio sistemos atminties talpą.
- Adresuojamos atminties talpa nustatoma naudojant 2^N formulę, čia N – magistralės laidininkų skaičius.
- Duomenų magistralės plotis nulemia kompiuterinės sistemos našumą. Pavyzdžiui, jei duomenų magistralės plotis yra 8 bitai, o kiekvienos instrukcijos ilgis 16 bitų, procesorius turės kreiptis į atmintį du kartus kiekvieno instrukcijos ciklo metu.

Kompiuterių architektūroje **magistrale** vadinamas posistemis, skirtas duomenims perduoti kompiuterio viduje arba tarp kompiuterių

Skiriamos

- Iygiagrečiosios magistralės, kai duomenys perduodami naudojant kiekvienam bitui atskirą liniją,
- nuosekliosios magistralės, kai duomenys perduodami bitas po bito per tą pačią liniją (nuosekliu kodu)

Lygiagrečiosios magistralės

- Lygiagrečiosiose magistralėse sąvoka "magistralės plotis" atitinka signalinių linijų skaičių arba, kitais žodžiais, vienu metu perduodamų informacijos bitų skaičių
- Starto ir duomenų perdavimo ar priėmimo ciklo pabaigą nurodo sinchrosignalas

Nuosekliosios magistralės

- Nuosekliosiose magistralėse naudojama viena signalinė linija (gali būti naudojami du atskiri kanalai perdavimo ir priėmimo srautams atskirti)
- Informacijos bitai perduodami nuosekliai
- Duomenys dažniausiai apjungiami į paketus, į kuriuos įeina ir tarnybinė informacija: starto bitai, paketų antraštės, sinchro signalai, lyginumo bitai ar kontrolinės sumos, stop-bitai

Sisteminės magistralės

- Aukščiausiojo hierarchijos struktūros lygmens kompiuterį sudaro CPĮ, atmintis ir Į/I komponentės. Kad kompiuteris vykdytų pagrindines funkcijas, šios komponentės tam tikru būdu tarpusavyje sujungtos. Kompiuterio pagrindinių funkcijų vykdymas užtikrina programų vykdymą. Taigi hierarchijos struktūros aukščiausiojo lygmenss kompiuterį galima aprašyti:
- pirma, nusakant jo visų komponenčių išorinę "veiklą", t.y. kokiais valdymo signalais ir duomenimis jos keičiasi su kitomis komponentėmis;
- antra, nusakant tarpusavio ryšių struktūrą ir kontrolės sistemą, kurią reikia užtikrinti norint šią struktūrą valdyti.

Sisteminės magistralės

Magistralės struktūra

Pagal atliekamą funkciją magistralės skirstomos į:

- adresų,
- duomenų,
- valdymo linijas.

Valdymo linijos

Valdymo linijomis (atsako į klausimus kas? ir kada?) siunčiama informacija:

- komandinė (tai kas bus vykdoma),
- sinchronizavimo.

Paprastai valdymo linijomis siunčiami šie valdymo signalai (komandinė informacija):

- Rašyti į atmintį {Memory Write}.
- Skaityti iš atminties {Memory Read}.
- Rašyti į įvesties–išvesties prievadą {I/O Write}.
- Skaityti iš įvesties—išvesties prievado {I/O Read}.
- Siuntimo patvirtinimas {ACK Transfer}.

Operacijų vykdymas magistralėje

Atliekamas tokia tvarka:

- "Gauti" magistralę naudojimuisi.
- Skaityti arba rašyti duomenis:
 - Rašyti duomenis (duomenų rašymo operacijos atveju).
 - Pasirinktam moduliui siunčiamas magistralės
 - reikalavimas; iš pasirinkto modulio laukiama duomenų
 - (duomenų skaitymo operacijos atveju).

Rašymo operacija

 Duomenų rašymas (duomenys perduodami iš procesoriaus ar įvesties įtaiso į atmintį). Gaunama magistralė (a dalis). Nurodoma, kad magistralėje esantys duomenys turi būti įrašyti į adresuotą ląstelę (paveikslo a dalis). Duomenys įrašomi (paveikslo b dalis).

Iš to kyla skirtingais parametrais apibūdinamų magistralių poreikis. Magistralių tipai:

- lokalios,
- sisteminės,
- išplėtimo.

Kiekviena magistralė apskaičiuota konkrečiam duomenų pralaidumui. Viena magistralė nuo kitos magistralės atskirtos specialiu įrenginiu siekiant izoliuoti atminties-procesoriaus srautą nuo įvestiesišvesties srauto. Šis įrenginys gali būti spartinančioji atmintis ar tiltas.

Apibūdinti šias magistrales galima taip:

- Lokali jungia procesorių ir spartinančiąją atmintį.
 - Trumpiausia.
 - Sparčiausia magistralė kompiuteryje.
- Sisteminė jungia pagrindines kompiuterio komponentes.
- Didelio našumo jungia didelės spartos ĮI įrenginius prie sisteminės magistralės.
- Išplėtimo jungia Įl įrenginius prie sisteminės magistralės arba prie didelio našumo magistralės.

- vidinės magistralės, jungiančios tarpusavyje vidinius kompiuterio komponentus pagrindinėje plokštėje
- *išorinės magistralės*, jungiančios įvairius kompiuterio išorinius (periferinius) įtaisus prie pagrindinės plokštės
- Jei ryšys jungia tarpusavyje tik du aparatinės įrangos komponentus, jį vadiname **prievadu** (*port*) - nuosekliu ar lygiagrečiu

Būdingi trūkumai:

- Silpnoji pagrindinių kompiuterio komponenčių,
- periferinių įrenginių sąveikos vieta, t. y. ribotas maksimalus magistralės pralaidumas (duomenų kiekis baitais arba bitais per 1 s).
- Magistralės pralaidumas sąlygojamas:
 - įrenginių prijungtų prie magistralės skaičius,
 - magistralės ilgio.

 Pavyzdys. PCI magistralės pralaidumas yra 132 MB/s. (Pačios pirmosios magistralės atveju.)
 Jeigu disko prijungto prie magistralės maksimalus pralaidumas yra 40 MB/s, o vaizdo plokštei reikalingas pralaidumas yra 128 MB/s, tuomet norint užtikrinti pastarąjį, disko atveju maksimalaus pralaidumo išgauti nepavyktų.

- Procesoriaus magistralė. Ją naudoja valdymo schemų rinkinys (chipset) informacijos mainams su procesoriumi. Kai kurie šaltiniai ją vadina sistemine magistrale. Dabar dažniausiai ji vadinama FSB (Front Side Bus)
- Kešo magistralė. Šiuolaikiniuose procesoriuose naudojama dideliam pralaidumui užtikrinti. Čia ji dažniausiai vadinama BSB - Back Side Bus.
- Atminties magistralė. Taip vadinama magistralė, jungianti atminties posistemį su valdymo schemų rinkiniu (*chipset*) ir procesoriumi. Kai kuriose sistemose tai ta pati procesoriaus magistralė.

- Lokalinė I/O magistralė. Taip vadinama didelės spartos įvesties ir išvesties magistralė, jungianti sparčius I/O įtaisus su atminties posistemiu, su valdymo schemų rinkiniu (chipset) ir procesoriumi. Dabar populiariausia – PCI.
- Standartinė I/O magistralė. Tai nedidelės spartos įvesties ir išvesties magistralė, jungianti tokius I/O įtaisus, kaip pelė, klaviatūra. Gera seniems įtaisams prijungti. Populiariausia anksčiau – ISA, dabar - USB.
- Greitoji grafikos magistralė (AGP Accelerated Graphics Port). Taip vadinama didelės spartos magistralė, jungianti grafikos posistemį su valdymo schemų rinkiniu (chipset) ir procesoriumi.
- Naujoji grafikos magistralė (PCIe PCI Express). Taip vadinama didelės spartos magistralė, pakeitusi AGP

Valdymo schemų rinkinys Z68 (chipset)

Features	Benefits	
Support for 2nd Generation Intel* Core™ processors	 Supports the 2nd generation Intel[®] Core[™] processors with Intel[®] Turbo Boost Technology⁴ 2.0, Intel[®] Pentium[®] processor, and Intel[®] Celeron[®] processor. Intel Z68 Express Chipset also enables overclocking features of unlocked 2nd generation Intel Core processors. 	
Support for HDMI, DisplayPort, eDP and DVI 2	 High Definition Multimedia Interface (HDMI) delivers uncompressed HD video and uncompressed multi-channel audio in a single cable, supporting all HD formats including 720p, 1080i and 1080p. Dual Independent Display expands the viewable workspace to two monitors. 	
Multi-Monitor support	Multi-monitor support with Windows 7.*	
Intel* Rapid Storage Technology ¹ 10.5	 With additional hard drives added, provides quicker access to digital photo, video and data files with RAID O, 5, and 10, and greater data protection against a hard disk drive failure with RAID 1, 5, and 10. 	0
	 Support for greater than 2.2 TB HDD RAID configurations. 	
	• Support for external SATA (eSATA) enables the full SATA interface speed outside the chassis, up to 3 Gb/s	
Intel* Smart Response Technology	 Improves PC performance when adding a Solid-State Drive to automatically cache frequently used applications stored on a large-capacity HDD. 	
Intel* Rapid Recover Technology	 Intel's latest data protection technology provides a recovery point that can be used to quickly recover a system should a hard drive fail or if there is data corruption. The clone can also be mounted as a read-only volume to allow a user to recover individual files. 	
Intel* High Definition Audio ²	 Integrated audio support enables premium digital surround sound and delivers advanced features such as multiple audio streams and jack re-tasking. 	
Universal Serial Bus (USB)³	 Hi-Speed USB 2.0 provides greater enhancement in performance with a design data rate of up to 480 megabits per second (Mbps) with up to 14 USB 2.0 ports. 	
USB 2.0 Rate Matching Hub	 Enables lower power requirements and manages the transition of the communication data rate from the high speed of the host controller to the lower speed of USB full-speed/low-speed devices. 	_
Serial ATA (SATA) 6Gb/s³	 Next-generation high-speed storage interface supporting up to 6 Gb/s transfer rates for optimal data access with up to 2 SATA ports. 	
Serial ATA (SATA) 3 Gb/s	High-speed storage interface supporting up to 4 SATA ports.	
eSATA ³	 SATA interface designed for use with external SATA devices. Provides a link for 3 Gb/s data speeds to eliminate bottlenecks found with current external storage solutions. 	_
SATA Port Disable	 Enables individual SATA ports to be enabled or disabled as needed. This feature provides added protection of data by preventing malicious removal or insertion of data through SATA ports. Especially targeted for eSATA ports. 	
PCI Express 2.0* Interface	 Offers up to 5 GT/s for fast access to peripheral devices and networking with up to 8 PCI Express 2.0 x1 ports, configurable as x2 and x4 depending on motherboard designs. 	
USB Port Disable	 Enables individual USB ports to be enabled or disabled as needed. This feature provides added protection of data by preventing malicious removal or insertion of data through USB ports. 	22
Intel* Integrated 10/100/1000 MAC	Support for the Intel* Gigabit Network Connection.	

Valdymo schemų rinkinys Z170

Z170, H170, H110

Specifications	Z170	H170	H110	
Processor Support	Skylake-S LGA 1151			
CPU Overclocking	Yes	No	No	
Processor PCIe Configuration	1x16 or 2x8 or 1x8+2x4 1x16			
Chipset PCI-E Lanes (Gen)*	20(3.0)	16(3.0)	6(2.0)	
Max PCIe Storage (x4 M.2 or x2 SATA Express)	3	2	0	
DMI Version	DMI3 (8GT/s)	DMI3 (8GT/s)	DMI2 (5GT/s)	
Independent Display Ports/Pipes	3/3	3/3	3/2	
Mem/DIMMs Per Channel	2/2	2/2	2/1	
USB Total (USB 3.0)	14(10)	14(8)	10(4)	
Total SATA 6Gb/s	6	6	4	
Maximum HSIO Lanes**	26	22	14	
Features	Z170	H170	H110	
Intel Smart Sound Technology	Yes	Yes	No	
Intel RST12 for SATA/PCI-E RAID	Yes	Yes	No	
Intel Smart Response Technology	Yes	Yes	No	
Intel Small Business Advantage	No	Yes (select boards)	No	
Intel Small Business Basics	No	Yes	Yes ²⁴	

FSB (Front Side Bus)

- Taip vadinama Intel firmos procesoriuose esanti magistralė
- P-M, P-M2, P-4 ir P8 procesoriuose naudojama identiška (organizacijos ir protokolo atžvilgiu) 64 bitų magistralė su keturguba perdavimo sparta (QDR - Quad Data Rate)
- FSB vieną ar kelis procesorius jungia su VSR "šiaurine" mikroschema (*Northbridge*)
- Kiekviename takte per ją perduodama komanda arba 4 duomenų porcijos po 8 baitus

FSB (Front Side Bus)

- FSB sinchronizacijos dažnis yra nuo 200-266 MHz (P-4/P-4E) iki 266-400 MHz (Core 2) (2008 m.)
- Tai atitinka 800-1066 ir 1066-1600 MHz, arba
 6,4-8,5 GB/s ir 8,5-12,8 GB/s
- FSB trūkumas kelių branduolių ar kelių procesorių sistemoje – nepakankamas pralaidumas dirbant su atmintimi arba išore (pvz., klasterių ryšių sistemoje)

FSB (Front Side Bus)

The Front Side Bus is a key component contributing to overall system performance. **Processor** Front Side Bus RAM Graphics

BSB (Back-side bus)

 Tai magistralė, naudojama sujungti procesorių su kešo atmintimi (paprastai L2).

 Jei ji naudojama kartu su FSB, tai vadinama dual-bus architektūra arba Dual Independent

Bus (DIB).

Pentium II procesoriaus modulis, kuriame matomas procesorius (kairėje) ir L2 kešo atmintis (dešinėje)

Plug and play

- Tai kompiuterio magistralė arba įrenginio specifikacija, kuri reiškia įrenginio aptikimą sistemoje be fizinio įrenginio konfigūravimo ar vartotojo įsikišimo sprendžiant resursų konfliktus.
- Šiuo metu naudojamos Plug and play sąsajos:
- Firewire (IEEE-1394)
- PCI, Mini PCI
- PCI Express, Mini PCI Express
- PCMCIA, PC Card, ExpressCard
- Universal Serial Bus (USB)

PC magistralių evoliucija

ISA (Industry Standard Architecture)

- 8 bitai duomenų (8088, 4.77 MHz)
- 1984 m. išplėsta iki 16 bitų (dėl 80286, 8 MHz)
- lėta, bet turi labai daug tinkamų periferinių įtaisų
- 8 bitų plokštės ("kortos") naudoja tik jos dalį

ISA trūkumai

- Mažas greitis
- Ribotas pertraukimų skaičius, jie fiksuoti įrangoje
- Ribotas įvedimo/išvedimo adresų skaičius, taip pat fiksuotas įrangoje
- Sudėtingas konfigūravimas, nėra konfliktų sprendimo
- Prastas įžeminimas ir energijos perdavimas
- Nedokumentuoti magistralės standartai, kurie skyrėsi tarp gamintojų ir sistemų

ISA (Industry Standard Architecture)

Penkios 16-bitų ir viena 8-bitų ISA jungtys pagrindinėje plokštėje

TSA 16-bit, Madge 4/16 Mbit/s TokenRing NIC.

ISA 16-bit, Ethernet 10Base-5/2 NIC.

MCA (Micro Channel Architecture)

- Micro Channel Architecture (MCA) buvo 16- arba 32-bitų lygiagreti kompiuterių magistralė sukurta IBM 1987, su tikslu pakeisti ISA "didesne ir geresne".
- Nesuderinama su ISA.
- Turėjo mažai tinkamų periferinių įtaisų.

MCA (Micro Channel Architecture)

EISA (Extended Industry Standard Architecture)

- Compaq atsvara MCA;
- Suderinama su ISA;
- 32 bitai duomenų;
- efektyvus magistralės arbitražas;
- nėra plačiai naudojama:
 - didesnė sistemos kaina
 - mažai plokščių su EISA
 - lėtesnė už VLB ir PCI

EISA (Extended Industry Standard Architecture)

- EISA naudojusios kompanijos:
- AST Research
- Compaq Computer
- Epson
- Hewlett-Packard
- NEC
- Olivetti
- Tandy
- WYSE
- Zenith Data Systems.

EISA (Extended Industry Standard Architecture)

- EISA naudojusios kompanijos:
- AST Research
- Compaq Computer
- Epson
- Hewlett-Packard
- NEC
- Olivetti
- Tandy
- WYSE
- Zenith Data Systems.

EISA techniniai duomenys

Magistralės plotis	32 bitai
Suderinama su	8 bit ISA, 16 bit ISA, 32 bit EISA
kontaktai	98 + 100 inlay
Vcc	+5 V, −5 V, +12 V, −12 V
dažnis	8.33 MHz
Teorinė duomenų perdavimo sparta (32 bit)	Apie 33 MB/s (8.33 MHz × 4 baitai)
Naudojama duomenų perdavimo sparta (32 bit)	Apie 20 MB/s

EISA (Extended Industry Standard Architecture)

SCSI Valdiklis (Adaptec AHA-1740)

ELSA Winner 1000 (ISA ir EISA)

PCI magistralė

- Periferinių komponenčių sujungimo magistralė (angl. Peripheral Component Interconnect – PCI):
 - Naujas magistralės standartas kompanijos Intel pasiūlyta rinkai 1990 metų pradžioje.
 - Viena PCI magistralė sugeba aptarnauti 10 periferinių įrenginių.
 - PCI nuo 2.1 versijos leidžia magistralės taktinį dažnį padidinti iki 66
 MHz.
 - Veikdama originaliu 33 MHz dažniu, 32 bitų atveju maksimalus magistralės pralaidumas yra 132 MB/s, o 64 bitų atveju 264 MB/s. Naujos kartos PCI-X 64 bitų ir 133 MHz (maksimalus 533 MHz) atveju pralaidumas 1 GB/s, gali būti ir žymiai didesnis.
 - Kadangi PCI magistralė gali būti išplėsta iki 64 bitų, tai šiuo atveju lizdai yra ilgesni.
 - Veiksmų taktavimas magistralėje yra sinchroninis.

PCI magistralė

Prijungtiems įrenginiams suteikia tiesioginį priėjimą prie pagrindinės atminties, tačiau prie sisteminės magistralės prijungta papildomai panaudojant tiltą (angl. Bridge).

- Tiltas veikia kaip duomenų buferis.
- Elektroninė tilto schema PCI magistralės spartą keičia nepriklausomai nuo procesoriaus spartos.
- Tai suteikia lankstumą, t. y. PCI gamintojai tiksliai žino ką gaminti.
- Norint PCI magistralę suderinti su nauju rinkoje pasirodžiusiu procesoriumi pakanka sukurti naują tilto elektroninę schemą.
- Tiltas taip pat suteikia galimybę PCI magistralę naudoti su kitų firmų procesoriais (ne Intel).

Struktūros ypatumai

PCI gali veikti kaip 32 bitų arba 64 bitų magistralė. Ją sudaro 49 privalomos + 51 pasirinktina linija.

49 privalomose signalinėse linijose išskirtinos tokios funkcinės linijų grupės:

- Sisteminės linijos.
- Adresų ir duomenų linijos (iš jų 32 linijos bendros duomenims ir adresams + pertraukties ir galiojimo linijos).

Naudojamas laikinis multipleksavimas.

- Mažiau kontaktų.
- Mažesni matmenys.
- Mažesnė kaina.
- Sąsajos valdymo linijos.
- Arbitravimo linijos (nėra bendros).
- Klaidos signalų linijos.

Struktūros ypatumai

51 pasirinktinoje linijoje išskirtinos tokios funkcinės linijų grupės:

- Pertraukčių (nėra bendros).
- Spartinančiosios atminties veikimo palaikymo linijos.
- Išplėtimo iki 64 bitų linijos (32 adresų ir duomenų linijos + papildomos šios grupės linijos).
- JTAG/ribinio nuskaitymo linijos (testavimo procedūroms pagal IEEE 1149.1 standartą).

PCI privalumai

- Didėjant procesoriaus dažniui, PCI sparta galėjo likti ta pati, sudarydama FSB dažnio dalį
- Plug and Play technologija leidžia automatiškai konfigūruoti PĮ be IRQ, DMA ir I/O adresų nustatymo trumpikliais ar jungikliais
- PCI valdymo principai (PCI bus mastering) leidžia kitiems įtaisams valdyti magistralę ir persiųsti informaciją nedalyvaujant procesoriui

PCI magistralė

Trys 5-voltų 32-bitų PCI lizdai pagrindinėje plokštėje

Gbit PCI LAN adapteris

46

PC architektūra su PCI

PCI Express magistralė

- PCI tolesnio vystymo kryptis perėjimas prie didelės spartos nuoseklaus duomenų perdavimo.
- Buvo pasiūlyta kurti trečiosios kartos įvesties ir išvesties magistralę 3GIO (3rd Generation IO), kuri vėliau buvo pavadinta PCI Express

PCI Express magistralė

Siekiama, kad ji būtų naudojama įvairiuose rinkos segmentuose – stalo ir mobiliuosiuose kompiuteriuose, serveriuose, darbo stotyse, ryšio priemonėse.

Nauja sąvoka – komutatorius, pakeičiantis magistralę su daugeliu prisijungimo vietų:

Sluoksniuota PCI Express architektūra

PCI Express fizinio ryšio diagrama

Duomenų ryšio sluoksnis prideda duomenų integralumo funkcijas

PCI Express magistralė

Sukūrimo metai	2004
Sukūrė	Intel • Dell • IBM • HP
Keičia	AGP ● PCI ● PCI-X
Plotis bitais	1–32
Įrenginių	Vienas įrenginys viename galiniame jungies taške
skaičius	PCI Express komutatoriai gali sukurti papildomus galinius taškus bei dalintis viena jungtimi su keletu įrenginių
Sparta	Takelyje (kiekviena kryptimi):

PCI Express magistralė

Kiti PCI Express privalumai:

- žemas sunaudojamos energijos kiekis;
- "karšto pakeitimo" palaikymas;
- kokybiškos aptarnavimo strategijos;
- klaidų aptikimo galimybė keliuose lygmenyse;
- kelių lygmenų technologija, palaikanti paketų komutavimą.

PC su PCI Express

PCI Express magistralė

PCI Express lizdai (nuo viršaus: ×4, ×16, ×1 ir ×16), palyginimas su tradiciniu 32 bitų PCI lizdu (apatinis)

WLAN PCI Express Mini Card

MiniPCI ir MiniPCI Express

MiniPCI Express MiniPCI 000000092 AUX G0330540468 **Z** ДКД P-12-246/2002 0 IIII/IIII progress, a comparation of the property of the pr

AGP (Accelerated Graphics Port)

 Paspartinta grafikos jungtis (AGP) – didelio greičio taškas į tašką magistralė, skirta prijungti vaizdo plokštei prie kompiuterio pagrindinės plokštės. Nuo 2004 metų pakeista PCI Express magistrale.

Sukurta	1997
Sukurė	Intel
Pakeista	PCI Express (2004)
Plotis bitais	32
Įrenginių skaičius	1 įrenginys/lizde
Talpa	iki 2133 MB/s
Tipas	Lygiagreti 58

AGP (Accelerated Graphics Port)

AGP Pro Universal

- Intel procesoriuje Nehalem įvedė QuickPath Interconnect (QPI - vietoj anksčiau naudotos FSB)
- Ji tai padarė 5 metais vėliau nei AMD, įvedusi HyperTransport
- Pirmą kartą tokio tipo magistralė pasirodė dar anksčiau, kai DEC inžinieriai sukūrė Alpha 21364 (EV7)

- QPI naudoja dvi 20 bitų magistrales (atskiras kiekvienai krypčiai). Iš 20 bitų 16 skirti duomenims perduoti, o likę 4 – kontrolei ar protokolo tarnybinei informacijai
- Tai duoda 6,4 GT/s spartą (arba 12,8 GB/s) kiekviena kryptimi
- FSB maksimalus dažnis šiuolaikiniuose Intel procesoriuose lygus 400 MHz; adresams perduoti reikia dviejų taktų (200 MT/s), o duomenys perduodami QDR režimu, pasiekiant 1,6 GT/s spartą. Kadangi duomenų magistralė 64 bitų, FSB duoda sumarinį 12,8 GB/s pralaidumą, tačiau tik viena kryptimi

Klausimai

- 1. Kas yra kompiuterio magistralė?
- 2. Į kokias rūšis skirstomos kompiuterio magistralės?
- 3. Kas yra Intel QuickPath Interconnect?
- 4. Kas buvo sukurtas pirmiau: Intel QuickPath Interconnect ar HyperTransport technologija (HT)?
- 5. Kuo skiriasi PXI ir PCI?
- 6. Kiek yra PCI Express versijų?
- 7. Kam reikalinga BSB (Back-side bus) magisralė?
- 8. Kokie yra būdingi kompiuterių magistralių trūkumai?

Ačiū už dėmesį!