

Effects of Fiber Finish on Mechanical, Low and High Speed Impact of Glass Fiber Reinforced Composites

Ramakrishna Iyer*, Timothy Woo^ξ, John Osterndorf^ξ and Dan Prillaman^ξ

*: US Army, RDECOM - TARDEC, Warren, MI 48397 §: US Army, RDECOM - ARDEC, Picatinny, NJ 07801

Matthew Dabrowski[§], Bill Chen[£], Yong Lei[£] and Jerry Chung[§]

§: Novus Technologies Corporation, NY, NY, 10031 £: Frontier Performance Polymers Corporation, Dover, NJ 07801

Feridun Delale and Benjamin Liaw

The City College of New York, NY, NY, 10031

maintaining the data needed, a including suggestions for redu	and completing and reviewing the cing this burden, to Washington should be aware that notwithsta	e collection of information. Sen Headquarters Services, Directo	nd comments regarding this orate for Information Opera	burden estimate or a tions and Reports, 12	tions, searching existing data sources, gathering and ny other aspect of this collection of information, 115 Jefferson Davis Highway, Suite 1204, Arlington ling to comply with a collection of information if it		
1. REPORT DATE 12 MAY 2011		2. REPORT TYPE N/A		3. DATES COVERED -			
4. TITLE AND SUBTITLE Effects of Fiber Finish on Mechanical, Low and Higher and Glass Fiber Reinforced Composites			gh speed	5a. CONTRACT NUMBER W56HZV-09-C-0569			
				5b. GRANT NUMBER			
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
R. Iyer; T. Woo; J. Osterndorf; D. Prillaman M. Dabrowski; B. Chen; Y. Lei; J. Chung; F. Delale; B. Liaw			5e. TASK NUMBER				
				5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army, RDECOM-TARDEC, Warren, MI 48307 US Army. RDECOM-ARDEC, Picatinny, NJ 07801 Novus Technologies Corp. NY, NY 10031 Frontier Performance Polymers Corporation, Dover, NJ 07801 The City College of New York, NY, NY 10031					8. PERFORMING ORGANIZATION REPORT NUMBER 21823		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
_	COM-TARDEC 65	501 E 11 Mile Rd	Warren, MI	TACOM/TARDEC/RDECOM			
48397-5000, USA					11. SPONSOR/MONITOR'S REPORT NUMBER(S) 21823		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited							
13. SUPPLEMENTARY The original doc	NOTES ument contains co	olor images.					
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSI	FICATION OF:	17. LIMITATION	18.	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	NUMBER OF PAGES 35			

Report Documentation Page

Form Approved OMB No. 0704-0188

Polymer Matrix Composites

- Large Variety In Material Type And Cost
 - Matrix: type, cost, properties
 - Reinforcement: shape, material, cost

- Promising Advantages
 - Much lower density than metals
 - Excellent specific strength and stiffness to weight ratio
 - High damping & fatigue endurance
 - Low thermal coefficient
 - Good corrosion resistance
- Potential Application For Lightweight Energy Absorbing Materials

PMC Impact Performance

Mechanisms For Dissipating Energy Delamination

Impact Performance

Structural Integrity

Adjustable Interfacial Adhesion

- Matrix
 - Mechanical Properties
 - Chemical Properties
 - Physical Properties
- Reinforcing Fiber
 - Types of Fiber
 - Thickness/count
 - Weave type
 - Finish/sizing

Interfacial Adhesion

Significance Of This Research

- Investigate The Effects Of Four Glass Fiber Finishes On Mechanical Properties And Low/High Speed Impact Performance
 - Greige
 - Heat-burnt
 - Volan
 - Silane
- Correlate The High Speed Impact Properties With Mechanical Properties
- Correlate The High Speed Impact Properties With The Interfacial Adhesion (To be done in the near future)

Part 1

Experimental Procedures

Unclassified

Materials

- Matrix Resins
 - Polypropylene Film
 - Polyester resin system
 - 98.5 wt% Aropol® 7241T-15 (46% styrene)/1.5wt% Methyl ethyl ketone peroxide (MEKP)
 - Vinyl Ester
 - 98.12wt% Derakane 411-350/1.5wt% MEKP/0.03wt% 2,4-Pentanedione/0.05wt% dimethylamine/0.3wt% cobalt naphthenate
- Glass Fiber: Hexcel® 1581 Series Glass Fiber Fabrics

Fabric	Finish	Weave	Weight	Thickness
1581-F12	None (Heat-burnt HB)	8H Satin	298 g/m ²	2.16x10 ⁻⁴ m
1581- GR	Greige	8H Satin	298 g/m ²	2.16x10 ⁻⁴ m
1581-F16	Volan	8H Satin	298 g/m ²	2.16x10 ⁻⁴ m
1581-F69	Silane	8H Satin	298 g/m ²	2.16x10 ⁻⁴ m

Glass Fabric Fabrication Process Novus

Heating

1581- F12

Finishing

1581- F16 (Volan)

1581- F69 (Silane)

1581- GR

Compression Molding

For Fabricating PP Composite Specimens

- Vacuum Hot Press
 - Evenly Distribute And Lay Up Fabric Sheets And PP Film Based On The Requirements Of The Thickness And Fiber Content
 - Put Closed Mold Into Compression Press
 - Compression Mold At 235°C Under 1.5 MPa For 70 Min
 - Cool Down And De-mold

Vacuum Infusion

For Producing Polyester Or Vinyl Ester Composite Specimens

Process

- Lay down glass fiber, peel ply, and flow channel
- Place vacuum conduit around mold, hook conduit end to vacuum pump
- Seal the set-up and resin inlet
- Turn on pump (achieve >1 torr vacuum)
- Formulate resin and connect resin inlet to resin mixture
- Start resin infusion
- Stop the pump when the infusion is completed

Tensile Property Testing

- Universal Tensile Tester
 - 200KN Capacity
- Standard
 - ASTM D3039

Flexural Property Testing

- Universal Tensile Tester
 - 10KN Capacity
- Standard
 - ASTM D790

NOVUS

Low Speed Impact Testing

- Sample: ¼" panels
- Instrumented Impact Tester
 - Speed up to 10 ft/s
- Standard
 - ASTM D3763
- Tup
 - A custom designed impact tup

High Speed Impact Testing

- Sample: ½" panels
- Standard
 - Mil-STD-662F
- High Speed ImpactProjectiles As Per Mil-STD-662F
- Data Collection
 - Velocity (V₅₀) and Impact Energy at 50% probability of penetration
 - Impact Energy Absorption

Part 2

Experimental Results

Unclassified 15

Areal Density And Fiber Content

3.2mm Thick Composite Specimens

Reinforcement	Finish	Matrix	Fiber Content (%)
	Heat Burnt (No Finish)	PP	71.0
Hexcel 1581-F12		Polyester	70.0
	(140 Timbil)	Vinyl ester	66.2
	Greige (Starch and Oils)	PP	67.0
Hexcel 1581-GR		Polyester	65.6
		Vinyl ester	71.2
	Volan	PP	64.0
Hexcel 1581-F16		Polyester	69.0
		Vinyl ester	65.2
	Silane	PP	70.0
Hexcel 1581-F69		Polyester	64.7
		Vinyl ester	66.2

Unclassified 16

Flexural Strength And Modulus

Effects of Matrix Resins And Glass Surface Finishes

- PP Has Significantly Lower Flexural Properties
- Volan Finish Has Highest Flexural Properties

Tensile Strength And Modulus

Effects of Matrix Resins And Glass Surface Finishes

- PP Has Slightly Lower Tensile Strength and Modulus
- Volan Finish Has Better Overall Tensile Properties

Tensile Elongation

Effects of Matrix Resins And Glass Surface Finishes

Heat Burnt Finish Has Highest Tensile Elongation

Low Speed Impact Performance

Effects of Temperatures On PP Composites

- Greige Finish Has Best Low-Speed Impact Performance
- Impact Performance Decreases With Increase In Temperature

Low Speed Impact Performance

Effects of Temperatures On Polyester Composites

Greige Finish Has Best Low Speed Impact Performance

Low Speed Impact Performance

Effects of Temperatures On Vinyl Ester Composites

Greige Finish has Best Low Speed Impact Performance

Effects Of Resins And Fiber Finishes

Low Speed Impact Performance At Ambient

Greige Finish: Highest Low Speed Impact Performance

High Speed Impact Performance

NOVUS

V₅₀ And V₅₀/Areal Density for 3.2mm Samples

- Greige Finish Has Highest High Speed Impact Performance
- PP Composite Has Highest High-Speed Impact Efficient

High Speed Impact Performance No.

Impact Energy And Impact Energy Per Areal Density for 3.2mm Samples

- Greige Finish Has Highest High Speed Impact Performance
- PP Composite Has Highest High-Speed Impact Efficient

Silane

High Vs. Low Speed Impact

Impact Energy Comparison at Ambient for 3.2mm Samples

Results From Low Speed Impact Can Not Predict High Speed Impact Performance Between Different Resin Systems

Impact Energy Absorption

- Impact Energy Absorption Increases With Projectile Velocity
- Greige Finish Has Higher Impact Energy Absorption
- PP Resin Has Lower Impact Energy Absorption

Impact Energy Vs. Strength

Impact Energy Is Nearly Proportional To Tensile Strength

Impact Energy Vs. Modulus

No Obvious Correlation With Tensile Or Flexural Modulus

Impact Energy Vs. Elongation

No Obvious Correlation Observed

Part 3

Conclusion

Unclassified 31

High Vs. Low Speed Impact

Impact Energy Comparison at Ambient

Results From Low Speed Impact Can Not Predict High Speed Impact Performance Between Different Resin Systems

Summary And Conclusion

- Surface Finish On Glass Fiber Fabrics Affects Mechanical Properties As Well As Impact Performance Of Resulted Composites
- GR Finish Results In Higher Impact Resistance
- Despite its Low Mechanical Properties, PP Composite Has Better Impact Resistance
- Tensile Strength May Be A Critical Factor For Attaining High Impact Resistance

Acknowledgements

- RDECOM-TARDEC: US Army's Tank
 Automotive Research, Development &
 Engineering Center
 - ☐ Contract Number: W56HZV-09-C-0569
- RDECOM-ARDEC: US Army's Armament Research, Development & Engineering Center
 - ☐ Contract Number: W15QKN-08-C-0533

THANK YOU

Any Questions?

Unclassified 35