1

4 Zusammenfassung: Vektorräume

4.1 Definition

Definition: Reeller Vektorraum

Ein reeller Vektorraum ist eine Menge $V (\neq \emptyset)$ mit zwei Verknüpfungen:

$$+: V \times V \to V: (\vec{a}; \vec{b}) \mapsto \vec{a} + \vec{b}$$
 (Addition)

$$\cdot : \mathbb{R} \times V \to V : (\lambda, \vec{a}) \mapsto \lambda \cdot \vec{a}$$
 (skalare Multiplikation)

mit folgenden Eigenschaften:

Für beliebige Elemente $\vec{a}, \vec{b}, \vec{c} \in V$ und für beliebige Skalare $\lambda, \mu \in \mathbb{R}$ gilt:

(1) Kommutativgesetz: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

(2) Assoziativgesetz: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$

(3) Es gibt ein Element $\vec{0} \in V$, für das gilt: $\vec{a} + \vec{0} = \vec{a}$ für jedes Element $\vec{a} \in V$.

(4) Für jedes Element $\vec{a} \in V$ gibt es ein Element $-\vec{a} \in V$, so dass gilt: $\vec{a} + (-\vec{a}) = \vec{0}$.

(5) Assoziativgesetz: $\lambda \cdot (\mu \cdot \vec{a}) = (\lambda \cdot \mu) \cdot \vec{a}$

(6) Distributivgesetz: $\lambda \cdot (\vec{a} + \vec{b}) = \lambda \cdot \vec{a} + \lambda \cdot \vec{b}$

(7) Distributivgesetz: $(\lambda + \mu) \cdot \vec{a} = \lambda \cdot \vec{a} + \mu \cdot \vec{a}$

(8) Für jedes Element $\vec{a} \in V$ gilt: $1 \cdot \vec{a} = \vec{a}$

Die Elemente von V werden als Vektoren bezeichnet. Das Element $\vec{0}$ heisst Neutralelement.

Bemerkung

Damit eine Menge V mit einer Addition und einer skalaren Multiplikation ein Vektorraum ist, muss also gelten:

- (a) Wenn ich zwei beliebige Elemente aus V addiere, liegt das Ergebnis wieder in V.
- (b) Wenn ich ein beliebiges Element aus V mit einem Skalar $\lambda \in \mathbb{R}$ multipliziere, liegt das Ergebnis wieder in V.
- (c) Die Regeln (1)-(8) aus der Definition werden eingehalten.

Satz

Für einen Vektorraum V gilt:

- (1) $0 \cdot \vec{a} = \vec{0}$ für jeden Vektor $\vec{a} \in V$.
- (2) $\lambda \cdot \vec{0} = \vec{0}$ für jeden Skalar $\lambda \in \mathbb{R}$.
- (3) $(-1) \cdot \vec{a} = -\vec{a}$ für jeden Vektor $\vec{a} \in V$.

Beispiele

 $\mathbb{P}_n[x]$ Der Vektorraum der Polynome vom Grad $\leq n$

 $\mathbb{R}^{m \times n}$ Der Vektorraum der reellen $m \times n$ -Matrizen

 \mathbb{R}^n Der Vektorraum der Vektoren mit n reellen Komponenten; Addition und skalare Multiplikation sind komponentenweise definiert (wie in \mathbb{R}^2 und \mathbb{R}^3).

4.2 Unterräume

Definition: Unterraum

Eine Teilmenge U eines Vektorraums V heisst Unterraum von V, wenn U selber auch ein Vektorraum ist.

Satz (Unterraumkriterien)

Eine Teilmenge $U \neq \emptyset$ eines Vektorraums V ist genau dann ein Unterraum von V, wenn gilt:

- (1) Für beliebige Elemente $\vec{a}, \vec{b} \in U$ ist $\vec{a} + \vec{b} \in U$.
- (2) Für jeden Skalar $\lambda \in \mathbb{R}$ und jeden Vektor $\vec{a} \in U$ ist $\lambda \cdot \vec{a} \in U$.

Bemerkung

Aus dem Satz folgt insbesondere, dass jeder Unterraum U das Neutralelement $\vec{0}$ enthält: Also gilt: Falls $\vec{0} \notin U$, dann ist U kein Unterraum.

Definition: Linearer Spann

Gegeben sind ein reeller Vektorraum V sowie Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n \in V$.

Die Menge aller Linearkombinationen

$$\operatorname{span}\left(\vec{b_1}, \vec{b_2}, ..., \vec{b_n}\right) = \left\{\lambda_1 \cdot \vec{b_1} + \lambda_2 \cdot \vec{b_2} + ... + \lambda_n \cdot \vec{b_n} \mid \lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{R}\right\}$$

heisst linearer Spann (auch: lineare Hülle) der Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$.

Beispiele

- $\{\vec{0}\}$ ist ein Unterraum von jedem Vektorraum V.
- $\mathbb{P}_{2}[x]$ ist ein Unterraum von $\mathbb{P}_{4}[x]$.
- Die Menge aller symmetrischen 2×2 -Matrizen $S^{2\times 2}$ ist ein Unterraum von $\mathbb{R}^{2\times 2}$.
- Eine Gerade ist genau dann ein Unterraum von \mathbb{R}^2 bzw. \mathbb{R}^3 , wenn sie durch den Ursprung geht.
- Eine Ebene ist genau dann ein Unterraum von \mathbb{R}^3 , wenn sie durch den Ursprung geht.
- Der lineare Spann span $(\vec{b_1}, \vec{b_2}, ..., \vec{b_n})$ von Vektoren $\vec{b_1}, \vec{b_2}, ..., \vec{b_n} \in V$ ist ein Unterraum von V.

4.3 Basis und Dimension

Definition: Erzeugendensystem

Wir betrachten einen reellen Vektorraum V. Eine Menge $\{\vec{b_1}, \vec{b_2}, ..., \vec{b_n}\}$ von Vektoren $\vec{b_k} \in V$ heisst Erzeugendensystem von V, wenn gilt: $V = \operatorname{span}(\vec{b_1}, \vec{b_2}, ..., \vec{b_n})$.

Definition: Basis

Wir betrachten einen reellen Vektorraum V. Eine Menge $\mathcal{B} = \{\vec{b_1}, \vec{b_2}, ..., \vec{b_n}\}$ von Vektoren $\vec{b_k} \in V$ heisst *Basis* von V, wenn gilt:

- (1) $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}$ ist ein Erzeugendensystem von V.
- (2) Die Vektoren $\vec{b_1}, \vec{b_2}, ..., \vec{b_n}$ sind linear unabhängig.

Es gelten die folgenden Zusammenhänge:

Die Vektormenge $\mathcal{B} = \{\vec{b}_1; \vec{b}_2; ...; \vec{b}_n\}$ ist eine Basis des Vektorraums V.

 \mathcal{B} definiert ein Koordinatensystem für den Vektorraum V.

Jeder Vektor $\vec{a} \in V$ lässt sich als Linearkombination von $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ schreiben: $\vec{a} = \lambda_1 \cdot \vec{b}_1 + \lambda_2 \cdot \vec{b}_2 + \dots + \lambda_n \cdot \vec{b}_n$

 $\frac{1}{V = \operatorname{span}(\vec{b}_1, \vec{b}_2, ..., \vec{b}_n), \text{ d.h. } \{\vec{b}_1, \vec{b}_2, ..., \vec{b}_n\}}$ ist ein Erzeugendensystem von V.

Die Koeffizienten $\lambda_1, \lambda_2, ..., \lambda_n$ dieser Linearkombination sind eindeutig.

 $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ sind linear unabhängig.

für den Fall $V = \mathbb{R}^m$

Das lineare Gleichungssystem $B \cdot \vec{x} = \vec{a}$ ist für jedes $\vec{a} \in \mathbb{R}^m$ lösbar.

Das lineare Gleichungssystem $B \cdot \vec{x} = \vec{0}$ hat genau eine Lösung: $\vec{x} = \vec{0}$.

Dabei ist B die $m \times n$ -Matrix, die entsteht, wenn wir die Vektoren $\vec{b_1}, \vec{b_2}, ..., \vec{b_n}$ nebeneinander schreiben.

Satz

Wir betrachten die Vektoren $\vec{b_1}, \vec{b_2}, ..., \vec{b_n} \in \mathbb{R}^n$ sowie die $n \times n$ -Matrix B, die entsteht, wenn wir die Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ nebeneinander schreiben.

Dann sind die folgenden Aussagen äquivalent:

- (1) Die Vektoren $\vec{b_1}, \vec{b_2}, ..., \vec{b_n}$ bilden eine Basis von \mathbb{R}^n .
- (2) rg(B) = n
- (3) $det(B) \neq 0$
- (4) B ist invertierbar.
- (5) Das LGS $B \cdot \vec{x} = \vec{c}$ hat eine eindeutige Lösung.

Bemerkung

Ein Vektorraum hat i.A. unendlich viele verschiedene Basen.

Wichtige Basen

Für
$$\mathbb{R}^n$$
: Standardbasis $S = \{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ mit

$$\vec{e}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \vec{e}_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, ..., \vec{e}_{n} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

Für
$$\mathbb{P}_n[x]$$
: Monombasis $\mathcal{M} = \{1, x, x^2, ..., x^n\}$

Definition

Wir betrachten einen reellen Vektorraum V. Jede Basis von V besteht aus gleich vielen Vektoren; die Anzahl Vektoren in einer Basis von V heisst Dimension von V. Bezeichnung: $\dim(V)$.

4.4 Komponentendarstellung bezüglich beliebiger Basen

$$\alpha_1, \alpha_2, ..., \alpha_n$$
 und $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$
in ihrer Komponentendarstellung
bzgl. S einsetzen in
 $\vec{a} = \alpha_1 \cdot \vec{b}_1 + \alpha_2 \cdot \vec{b}_2 + ... + \alpha_n \cdot \vec{b}_n$

Komponentendarstellung bzgl
$$S$$

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Komponentendarstellung bzgl
$$\mathcal{B}$$

$$\vec{a} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}_{\mathcal{B}}$$

LGS
$$B \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}_{\mathcal{S}}$$
 nach $\alpha_1, \alpha_2, \dots, \alpha_n$ auflösen.

Dabei ist B die Matrix, die entsteht, wenn wir die Vektoren $\vec{b}_1, \vec{b}_2, ..., \vec{b}_n$ nebeneinander schreiben.