Fundamentals

SFWRENG 2CO3: Data Structures and Algorithms

Jelle Hellings

Department of Computing and Software McMaster University

Winter 2024

Engineering is the application of science and mathematics to solve practical problems.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- ▶ a deep understanding of what software (programs) do;
- mastery of a toolbox of fundamental tools to tackle programming challenges;
- ► capability to *analyze* software in depth.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- ▶ a deep understanding of what software (programs) do;
- mastery of a toolbox of fundamental tools to tackle programming challenges;
- capability to *analyze* software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- ▶ a deep understanding of what software (programs) do;
- mastery of a toolbox of fundamental tools to tackle programming challenges;
- capability to *analyze* software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

- ► Analysis of algorithms and data structures: *correctness* and *complexity*.
- Common design strategies for algorithms and data structures.
- ► A useful toolbox of standard fundamental algorithms and data structures.
- Graph representations and fundamental graph algorithms.

Engineering is the application of science and mathematics to solve practical problems.

Software engineering requires

- ▶ a deep understanding of what software (programs) do;
- ▶ mastery of a toolbox of *fundamental tools* to tackle programming challenges;
- capability to *analyze* software in depth.

This course introduces the analysis of software by studying and analyzing fundamental tools.

- Analysis of algorithms and data structures: *correctness* and *complexity*.
- Common design strategies for algorithms and data structures.
- A useful toolbox of standard fundamental algorithms and data structures.
- Graph representations and fundamental graph algorithms.

This course is *not* about learning how to program (basic programming is prior knowledge).

The basic building blocks of any problem that can be solved by a computer program.

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)

Procedures for solving problems that are suited for computer implementation.

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)

Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input and produces an output via a well-defined computational procedure.

The basic building blocks of any problem that can be solved by a computer program.

Definition (Algorithm)

Procedures for solving problems that are suited for computer implementation.

An algorithm takes one-or-more values as input and produces an output via a well-defined computational procedure.

Definition (Data structure)

Scheme to store and organize data in order to facilitate *efficient* access and modification.

We all have our own favorites.

4)

We all have our own favorites.

For the study of data structures and algorithms: Choice of programming language does *not really* matter (mostly).

We all have our own favorites.

For the study of data structures and algorithms: Choice of programming language does *not really* matter (mostly).

For *optimal* implementations, we sometimes need a lower-level toolbox. E.g., references or pointers when implementing data structures.

We all have our own favorites.

For the study of data structures and algorithms: Choice of programming language does *not really* matter (mostly).

For *optimal* implementations, we sometimes need a lower-level toolbox. E.g., references or pointers when implementing data structures.

Many programming languages suffice, e.g.,

- the book has many examples in Java;
- ► I will provide some examples in C++.

Feel free to experiment in your programming language of choice.

Problem

Given a list L and value v, return $v \in L$.

Problem

Given a list L and value v, return $v \in L$.

Problem

Given a list L and value v, return $v \in L$.

Algorithm Contains(L, v):

```
1: i, r := 0, false.

2: while i \neq |L| do

3: if L[i] = v then

4: r := \text{true}.

5: i := i + 1.

6: else

7: i := i + 1.

8: return r.
```

Problem

Given a list L and value v, return $v \in L$.

Algorithm Contains(L, v):

```
    i, r := 0, false.
    while i ≠ |L| do
    if L[i] = v then
    r := true.
    i := i + 1.
    else
    i := i + 1.
    return r.
```

Result: return true if $v \in L$ and false otherwise.

Problem

Given a list L and value v, return $v \in L$.

Algorithm Contains(L, v):

Input: *L* is an *array*, *v* a value.

```
1: i, r := 0, false.
```

2: while
$$i \neq |L|$$
 do

$$if L[i] = v then$$

4:
$$r := \text{true}$$
.

5:
$$i := i + 1$$
.

7:
$$i := i + 1$$
.

8: **return** *r*.

Result: return true if $v \in L$ and false otherwise.

Problem

Given a list L and value v, return $v \in L$.

Algorithm EVILCONTAINS(L, v):

Input: *L* is an *array*, *v* a value.

1: L := [].

2: return false.

Result: return true if $v \in L$ and false otherwise.

Problem

Given a list L and value v, return $v \in L$.

Algorithm Contains(L, v):

```
1: i, r := 0, false.
```

```
2: while i \neq |L| do
3: if L[i] = v then
```

4: r := true.

5: i := i + 1.

6: **else**

7: i := i + 1.

8: **return** *r*.

Problem

Given a list L and value v, return $v \in L$.

```
Algorithm Contains(L, v):
1: i, r := 0, false.
```

```
/* L is an array, v a value, i = 0, and r = false. */
```

```
2: while i \neq |L| do
```

```
3: if L[i] = v then
```

```
4: r := \text{true}.
```

5:
$$i := i + 1$$
.

7:
$$i := i + 1$$
.

```
/* r is true if v \in L and false otherwise. */
```

8: **return** *r*.

Problem

8: return r.

Given a list L and value v, return $v \in L$.

```
Algorithm Contains(L, v):
  1: i, r := 0, false.
    /* L is an array, v a value, i = 0, and r = false. */
    /* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
  2: while i \neq |L| do
     if L[i] = v then
     r := true.
     i := i + 1.
  5:
     else
  6:
         i := i + 1.
    /* r is true if v \in L and false otherwise. */
```

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = true, v \notin L[0, i) implies r = false. */
```

Prove the invariant holds /* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r =true, $v \notin L[0, i)$ implies r =false. */

Proof by induction

Prove the invariant holds

/* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r = true, $v \notin L[0, i)$ implies r = false. */

Proof by induction

Base case Prove invariant holds before the loop.

Hypothesis The invariant holds after the *j*-th, j < m, repetition of the loop.

Step Assume invariant holds when we start the *m*-th repetition of the loop. Prove invariant holds again when we reach the end of the *m*-th repitition.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Base case: Prove invariant holds before the loop

Input: *L* is an *array*, *v* a value.

```
    i, r := 0, false.
    /* L is an array, v a value, i = 0, and r = false. */
    while ....
```

Argument

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Base case: Prove invariant holds before the loop

Input: *L* is an *array*, *v* a value.

```
1: i, r := 0, false.
```

/* L is an array, v a value,
$$i = 0$$
, and $r = false. */$

2: **while**

```
1. L[0, i) with i = 0 is L[0, 0).
```

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Base case: Prove invariant holds before the loop

Input: L is an array, v a value.

- 1: i, r := 0, false.
 - /* L is an array, v a value, i = 0, and r =false. */
- 2: **while**

- 1. L[0, i) with i = 0 is L[0, 0).
- 2. L[0,0) is empty, hence $v \notin L[0,0)$.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Base case: Prove invariant holds before the loop

Input: *L* is an *array*, *v* a value.

```
1: i, r := 0, false.

/* L is an array, v a value, i = 0, and r = false. */
```

2: **while**

- 1. L[0, i) with i = 0 is L[0, 0).
- 2. L[0,0) is empty, hence $v \notin L[0,0)$.
- 3. Hence, r =false must hold (which is the case).

Prove the invariant holds /* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r =true, $v \notin L[0, i)$ implies r =false. */

Step: Prove invariant holds again when we reach the end of the *m*-th repitition.

```
    2: while i ≠ |L| do
        /* Invariant and i ≠ |L|. */
    3: if L[i] = v then
    4: r := true.
    5: i := i + 1.
    6: else
    7: i := i + 1.
        /* Invariant. */
```

Prove the invariant holds /* inv: $0 \le i \le |L|$, $v \in L[0, i)$ implies r =true, $v \notin L[0, i)$ implies r =false. */

Step: Prove invariant holds again when we reach the end of the *m*-th repitition.

```
    2: while i ≠ |L| do
        /* Invariant and i ≠ |L|. */
    3: if L[i] = v then
    4: r := true.
    5: i := i + 1.
    6: else
    7: i := i + 1.
        /* Invariant. */
```

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Step: Prove invariant holds again when we reach the end of the *m*-th repitition.

```
    2: while i ≠ |L| do
        /* Invariant and i ≠ |L|. */
    3: if L[i] = v then
    4: r := true.
    5: i := i + 1.
    6: else
    7: i := i + 1.
        /* Invariant. */
```

Argument

If-statement: Case distinction.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: If-case (L[i] = v holds).

```
    3: if L[i] = v then
        /* Invariant, i ≠ |L|, and L[i] = v */
    4: r := true.
    5: i := i + 1.
        /* Invariant. */
```

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: If-case (L[i] = v holds).

```
    3: if L[i] = v then
        /* Invariant, i ≠ |L|, and L[i] = v */
    4: r := true.
    5: i := i + 1.
        /* Invariant, */
```

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

1.
$$L[i] = v$$
, hence, $v \in L[0, i]$.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: If-case (L[i] = v holds).

```
3: if L[i] = v then

/* Invariant, i \neq |L|, and L[i] = v */
```

- 4: r := true.
- 5: i := i + 1. /* Invariant. */

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

- 1. L[i] = v, hence, $v \in L[0, i]$.
- 2. $i_{\text{new}} = i + 1$, hence, $v \in L[0, i_{\text{new}})$.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: If-case (L[i] = v holds).

```
    3: if L[i] = v then
        /* Invariant, i ≠ |L|, and L[i] = v */
    4: r := true.
```

5: i := i + 1. /* Invariant. */

Argument

After Line 5: prove that Invariant holds for the *updated* values r_{new} , i_{new} of r and i.

- 1. L[i] = v, hence, $v \in L[0, i]$.
- 2. $i_{new} = i + 1$, hence, $v \in L[0, i_{new})$.
- 3. Hence, r_{new} = true must hold (which is the case).

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: Else-case ($L[i] \neq v$ holds).

```
    6: if L[i] = v then ...else
        /* Invariant, i ≠ |L|, and L[i] ≠ v */
    7: i := i + 1.
        /* Invariant. */
```

Argument

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: Else-case ($L[i] \neq v$ holds).

```
6: if L[i] = v then ... else

/* Invariant, i \neq |L|, and L[i] \neq v */
```

7:
$$i := i + 1$$
. /* Invariant. */

Argument

After Line 7: prove that Invariant holds for the *updated* value i_{new} of i.

1. Assume r = true. Hence, $v \in L[0, i)$ by the invariant.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: Else-case ($L[i] \neq v$ holds).

```
    6: if L[i] = v then ...else
        /* Invariant, i ≠ |L|, and L[i] ≠ v */
    7: i := i + 1.
```

Argument

- 1. Assume r = true. Hence, $v \in L[0, i)$ by the invariant.
- 2. $i_{\text{new}} = i + 1$, hence, $v \in L[0, i_{\text{new}})$.

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: Else-case ($L[i] \neq v$ holds).

```
6: if L[i] = v then ... else

/* Invariant, i \neq |L|, and L[i] \neq v */
```

7: i := i + 1. /* Invariant. */

Argument

- 1. Assume r = true. Hence, $v \in L[0, i)$ by the invariant.
- 2. $i_{new} = i + 1$, hence, $v \in L[0, i_{new})$.
- 3. Hence, r = true must hold (which is the case).

Prove the invariant holds

```
/* inv: 0 \le i \le |L|, v \in L[0, i) implies r = \text{true}, v \notin L[0, i) implies r = \text{false}. */
```

Case distinction: Else-case ($L[i] \neq v$ holds).

```
6: if L[i] = v then ...else

/* Invariant, i \neq |L|, and L[i] \neq v */
```

7:
$$i := i + 1$$
.
/* Invariant. */

Argument

- 1. Assume r = false. Hence, $v \notin L[0, i)$ by the invariant.
- 2. $i_{\text{new}} = i + 1$ and $L[i] \neq v$, hence, $v \notin L[0, i_{\text{new}})$.
- 3. Hence, r = false must hold (which is the case).

Intermezzo: The correctness of Contains

We have proven the invariant holds

```
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */
6: while i ≠ |L| do ... end while /* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */
7: return r.
```

Questions

Intermezzo: The correctness of Contains

We have proven the invariant holds

```
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */
6: while i ≠ |L| do ... end while /* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */
7: return r.
```

Questions

1. Do we reach the end of the loop?

Intermezzo: The correctness of Contains

We have proven the invariant holds

```
/* inv: 0 ≤ i ≤ |L|, v ∈ L[0, i) implies r = true, v ∉ L[0, i) implies r = false. */
6: while i ≠ |L| do ... end while /* Invariant and ¬(i ≠ |L|). */
/* r is true if v ∈ L and false otherwise. */
7: return r.
```

Questions

- 1. Do we reach the end of the loop?
- 2. Assuming /* Invariant and $\neg(i \neq |L|) */$, Do we have /* r is true if $v \in L$ and false otherwise */?