Lista nr 6 z matematyki dyskretnej

- 1. Oblicz dwie ostatnie cyfry w rozwinięciu dziesiętnym liczby 71^{71} . $Wskaz \acute{o}wka$: przyda się chińskie twierdzenie o resztach.
- 2. Rozwiąż układ kongruencji:

$$\begin{cases} x \equiv 2 \pmod{5} \\ x \equiv 3 \pmod{7} \\ x \equiv 4 \pmod{13} \end{cases}$$

- 3. Wykaż, że jeśli $2^n 1$ jest liczbą pierwszą, to n jest liczbą pierwszą.
- 4. Wykaż, że jeśli $a^n 1$ jest liczbą pierwszą, to a = 2.
- 5. Wykaż, że jeśli $2^n + 1$ jest liczbą pierwszą, to n jest potęgą liczby 2.
- 6. (-) Określ liczbę podzielną przez 7, która leży najbliżej liczby 10¹⁰⁰⁰⁰⁰.
- 7. Niech $a, b \in \mathbb{Z}$. Pokaż, że $a^3|b^2$ implikuje $a|b^2$.
- 8. Pokaż, że $n^5 n$ jest podzielne przez dla 30 każdego naturalnego n.
- 9. Podaj dwie ostatnie cyfry liczby $9^{8^{7^{6^{5^{4^{3^{2^{1}}}}}}}$ w rozwinięciu dziesiętnym.
- 10. Z szachownicy 8 × 8 wyjmujemy jedno pole białe i jedno czarne. Czy w każdym wypadku pozostałą część szachownicy można pokryć kostkami domina?