

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół:

1 Kulig Mate

1.Kulig Mateusz 2.Ryś Przemysław

	AGH	Fizyka	techniczna	
		Laborator		
	Rok akademic	cki: 2022/2023	Semestr V	Grupa: 2
	Temat ćwicze	nia:		
Filtry bierne i filtry aktywne RC (A-2 + A-4)				1)
	Data wykonai	nia ćwiczenia	Data oddania sprawozdania	Ocena
		06.12.2022	20.12.2022	

1 Cel ćwiczenia

Celem ćwiczenia jest zbadanie charakterystyk i odpowiedzi na skok jednostkowy filtrów pracujących w różnych konfiguracjach układowych.

2 Aparatura

W ćwiczeniu użyliśmy następujących przyrządów:

- Oscyloskop
- Generator napiecia
- Zasilacz
- Filtr dolnoprzepustowy bierny I-rzędu (RC)
- Filtr górnoprzepustowy bierny I-rzędu (CR)
- Filtr Krytyczny
- Filtr Butterwortha

3 Analiza danych

3.1 Filtr dolnoprzepustowy bierny I-rzędu (RC)

Za pomocą zworki wybraliśmy dla filtru dolnoprzepustowego wartość oporu $R=2k\Omega$, która daje wartość stałej czasowej $\tau=4,4\mu s.$

3.1.1

Na generatorze ustawiliśmy przebieg sinusoidalny o amplitudzie 400 [mVpp]. Jednorazowo zmierzyliśmy amplitudę sygnału wejściowego i wynosiła ona $U_{\rm in}=203,37 [{\rm mV}]$. Następnie dokonaliśmy serii pomiarów zmieniając częstotliwości w zakresie od 1 do 60000 [Hz]. Pomiary przedstawiono w tabeli 1. Charakterystykę amplitudową przedstawiono na wykresie 2. Wzmocnienie w pasmie przepustowym filtru wynosi $K=\frac{U_{out}}{U_{in}}=\frac{201}{203,37}\approx 0,9883$. Następnie dopasowaliśmy krzywe do punktów pomiarowych w pasmie przepustowym oraz zaporowym. Częstotliwość graniczna to częstotliwość dla której wzmocnienie maleje o 3 dB w paśmie przepustowym zatem, by móc obliczyć częstotliwość graniczną wyznaczamy punkt przecięcia linii regresji dopasowanej do przepustowej części charakterystyki pomniejszonej o czynnik 3 z linią regresji dla części zaporowej. Obliczamy zatem równanie:

$$10^{-16} \cdot \ln(x) - 0,1018 - 3 = -3,738 \cdot \ln(x) + 36,167.$$

Po przekształceniach otrzymujemy szukaną wartość, która wynosi $f_g \approx 36316$ [Hz]. Wartość teoretyczna częstotliwości granicznej wynosi $f_{teo} = 36$ [kHz], zatem uzyskana przez nas wartość jest jej bardzo bliska. Nachylenie charakterystyki N w pasmie zaporowym mówi nam o ile dB maleje wzmocnienie na jedną dekadę. Zatem korzystając z danych z tabeli 1 otrzymujemy $N = \frac{-5,2593-(-1,1087)}{\frac{60000-20000}{100000}} = \frac{-4,1506}{0,4} \approx -10,377 [\frac{\mathrm{dB}}{\mathrm{dekadę}}].$

Rys. 1: Charakterystyka amplitudowa dla filtru dolnoprzepustowego.

Tab. 1: Tabela zależności wzmocnienia od częstotliwości dla filtru dolnoprzepustowego.

f [Hz]	$U_o [mV]$	$20 \cdot log(K)$
100	201	-0,1018
200	201	-0,1018
300	201	-0,1018
600	201	-0,1018
1000	201	-0,1018
2000	201	-0,1018
3000	200	-0,1451
6000	199	-0,1887
10000	195	-0,3650
20000	179	-1,1087
30000	159	-2,1378
40000	141	-3,1814
50000	125	-4,2275
60000	111	-5,2593

3.1.2

Dla wejściowego sygnału prostokątnego o amplitudzie 400 [mVpp] i okresie większym niż 10-20 stałych czasowych badanego filtru (skok jednostkowy) dokonaliśmy pomiaru odpowiedzi układu. W tym celu odczytaliśmy 16 par punktów (napięcie + czas) na narastającym odcinku odpowiedzi filtru. Do zebranych danych dopasowaliśmy zależność eksponencjalną(rysunek 2) i wyznaczyliśmy stałą czasową filtru. Wynosi ona $\tau_{eks}=4,7[\mu s]$. Wartość teoretyczna wynosi z kolei $\tau_{teo}=4,4[\mu s]$, zatem jest ona bliska wartości otrzymanej przez nas.

Rys. 2: Odpowiedź filtru dolnoprzepustowego na skok jednostkowy.

Tab. 2: Tabela zależności odpowiedzi układu na skok jednostkowy od czasu dla filtru dolnoprzepustowego.

2,7 96,6	
4,05 122,15	
l '	5
5,4 142,8	
6,75 156,45	5
8,1 168	
9,45 174,65	5
10,8 180,95	5
12,15 184,45	5
13,5 187,6	
14,85 189,7	
16,2 191,45	5
17,55 192,5	
18,9 193,2	
20,25 193,55	5

3.2 Filtr górnoprzepustowy bierny I-rzędu (CR)

Za pomocą zworki wybraliśmy dla filtru dolnoprzepustowego wartość pojemność C=220pF, która daje wartość stałej czasowej $\tau=4,4\mu s$.

3.2.1

Na generatorze ustawiliśmy przebieg sinusoidalny o amplitudzie 400 [mVpp]. Jednorazowo zmierzyliśmy amplitudę sygnału wejściowego i wynosiła ona $U_{\rm in}=205 [{\rm mV}]$. Następnie dokonaliśmy serii pomiarów zmieniając częstotliwości w zakresie od 1 do 400 [kHz]. Pomiary przedstawiono w tabeli 3. Charakterystykę amplitudową przedstawiono na wykresie 4. Wzmocnienie w pasmie przepustowym filtru wynosi $K=\frac{U_{out}}{U_{in}}=\frac{192}{205}\approx 0,9366$. Następnie dopasowaliśmy krzywe do punktów pomiarowych w pasmie przepustowym oraz zaporowym. Częstotliwość graniczna to częstotliwość dla której wzmocnienie maleje o 3 dB w paśmie przepustowym zatem, by móc obliczyć częstotliwość graniczną wyznaczamy punkt przecięcia linii regresji dopasowanej do przepustowej części charakterystyki pomniejszonej o czynnik 3 z linią regresji dla części zaporowej. Obliczamy zatem równanie:

$$10,1373 \cdot ln(x) - 2,3259 - 3 = 7,3654 \cdot ln(x) - 79,611.$$

Po przekształceniach otrzymujemy szukaną wartość, która wynosi $f_g \approx 29064[Hz]$. Wartość teoretyczna częstotliwości granicznej wynosi $f_{teo} = 36 [\text{kHz}]$, zatem uzyskana przez nas wartość jest jej bliska. Nachylenie charakterystyki N w pasmie zaporowym mówi nam o ile dB maleje wzmocnienie na jedną dekadę. Zatem korzystając z danych z tabeli 3 otrzymujemy $N = -11,3336 - (-28,6188) \approx 17,2852 [\frac{\text{dB}}{\text{dekadę}}]$.

Rys. 3: Charakterystyka amplitudowa dla filtru górnoprzepustowego.

Tab. 3: Tabela zależności wzmocnienia od częstotliwości dla filtru górnoprzepustowego.

f [Hz]	$U_o [mV]$	$20 \cdot log(K)$
1000	7,6	-28,6188
2000	13	-23,9562
3000	18,8	-20,7519
6000	34,7	-15,4285
10000	55,6	-11,3336
20000	98	-6,4106
30000	127	-4,1590
40000	145	-3,0077
50000	158	-2,2619
60000	165	-1,8854
100000	179	-1,1780
200000	190	-0,6600
300000	192	-0,5691
400000	192	-0,5691

3.2.2

Dla wejściowego sygnału prostokątnego o amplitudzie 400 [mVpp] i okresie większym niż 10-20 stałych czasowych badanego filtru (skok jednostkowy) dokonaliśmy pomiaru odpowiedzi układu. W tym celu odczytaliśmy 11 par punktów (napięcie + czas) na narastającym odcinku odpowiedzi filtru. Do zebranych danych dopasowaliśmy zależność eksponencjalną(rysunek 4) i wyznaczyliśmy stałą czasową filtru. Wynosi ona $\tau_{eks}=4,5[\mu s]$. Wartość teoretyczna wynosi z kolei $\tau_{teo}=4,4[\mu s]$, zatem jest ona bliska wartości otrzymanej przez nas.

Rys. 4: Odpowiedź filtru górnoprzepustowego na skok jednostkowy.

Tab. 4: Tabela zależności odpowiedzi układu na skok jednostkowy od czasu dla filtru górnoprzepustowego.

$x [\mu s]$	[mV]
0	0
2,5	109,475
5	$65,\!25$
7,5	38,8
10	23,575
12,5	14,15
15	8,7
17,5	5,8
20	3,625
22,5	2,2175
25	1,1

3.3 Filtr pasmowo-przepustowy o tej samej częstotliwości granicznej

Stałe czasowe dla obu filtrów pozostały jak w poprzednich punktach $\tau = 4,4\mu s$.

3.3.1

Na generatorze ustawiliśmy przebieg sinusoidalny o amplitudzie 400 [mVpp]. Jednorazowo zmierzyliśmy amplitudę sygnału wejściowego i wynosiła ona $U_{\rm in}=200 [{\rm mV}]$. Następnie dokonaliśmy serii pomiarów zmieniając częstotliwości

w zakresie od 2 do 400 [kHz]. Pomiary przedstawiono w tabeli 5. Charakterystykę amplitudową przedstawiono na wykresie 5. Wzmocnienie w pasmie przepustowym filtru wynosi $K=\frac{U_{out}}{U_{in}}=\frac{100.3}{200}\approx 0,502$. Następnie dopasowaliśmy krzywe do punktów pomiarowych w pasmie zaporowym po jednej jak i drugiej stronie charakterystyki.

Częstotliwość graniczna jest to punkt na osi odciętych, w którym przecinają się proste regresji dopasowane do punktów pomiarowych po obu stronach części zaporowej charakterystyki. Obliczamy go więc rozwiązując poniższe równanie:

$$7,2584 \cdot ln(x) - 78,935 = -8,927 \cdot ln(x) + 93,088.$$

Po przekształceniach otrzymujemy szukaną wartość, która wynosi $f_g \approx 41286[Hz]$. Nachylenie charakterystyki N w pasmie zaporowym mówi nam o ile dB maleje, bądź rośnie wzmocnienie na jedną dekadę. Zatem korzystając z danych z tabeli 5 otrzymujemy, że po lewej stronie charakterystyki wzmocnienie rośnie $N=-4,4747-(-23,9562)\approx 16,4815[\frac{\mathrm{dB}}{\mathrm{dekadę}}]$. Z kolei po prawej stronie charakterystyki wzmocnienie maleje $N=\frac{-22,4847-(-10,0036)}{\frac{400000-100000}{1000000}}=\frac{-12,4811}{0,3}\approx -41,6036[\frac{\mathrm{dB}}{\mathrm{dekadę}}]$.

Rys. 5: Charakterystyka amplitudowa dla filtru pasmowo-przepustowego.

Tab. 5: Tabela zależności wzmocnienia od częstotliwości dla filtru pasmowo-przepustowego.

f [Hz]	$U_o [mV]$	$20 \cdot log(K)$
2000	13	-23,9562
3000	18,5	-20,8916
6000	34,2	-15,5546
10000	53,4	-11,6843
15000	72	-9,0884
20000	86,7	-7,4747
25000	95	-6,6806
30000	100	-6,2351
35000	100,3	-6,2091
40000	99,8	-6,2525
50000	95,7	-6,6168
60000	88,8	-7,2668
100000	64,8	-10,0036
200000	35,2	-15,3042
300000	22,2	-19,3080
400000	15,4	-22,4847

3.3.2

Dla wejściowego sygnału prostokątnego o małej amplitudzie 400 [mVpp] i okresie większym niż 10-20 stałych czasowych badanego filtru (skok jednostkowy) dokonaliśmy pomiaru odpowiedzi układu. W tym celu odczytaliśmy 17 par punktów (napięcie + czas) i odpowiedź przedstawiliśmy na rysunku 6. Czas, dla którego sygnał osiąga maksimum to $\tau = 5[\mu s]$ i jest bliski stałej czasowej filtrów RC i CR. Symulowany kształt przebiegu przedstawiliśmy na rysunku 7.

Tab. 6

0 0 2 48,2 4 70 5 72,2 6 69,6 8 62,4 10 50,4 12 37,6 14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2 30 2	$x [\mu s]$	[mV]
4 70 5 72,2 6 69,6 8 62,4 10 50,4 12 37,6 14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2	0	0
5 72,2 6 69,6 8 62,4 10 50,4 12 37,6 14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2		48,2
6 69,6 8 62,4 10 50,4 12 37,6 14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2		
8 62,4 10 50,4 12 37,6 14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2	_	72,2
10 50,4 12 37,6 14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2	6	69,6
12 37,6 14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2	_	62,4
14 29,6 16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2		
16 21,6 18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2	12	37,6
18 15,4 20 11,4 22 8,6 24 5,8 26 4,6 28 3,2	14	29,6
20 11,4 22 8,6 24 5,8 26 4,6 28 3,2	16	21,6
22 8,6 24 5,8 26 4,6 28 3,2	18	15,4
24 5,8 26 4,6 28 3,2	20	11,4
26 4,6 28 3,2	22	8,6
28 3,2	24	5,8
	26	4,6
30 2	28	
	30	2

Rys. 6: Odpowiedź filtru pasmowo-przepustowego na skok jednostkowy.

Rys. 7: Symulowana odpowiedź filtru pasmowo-przepustowego na skok jednostkowy.

3.4 Filtry dolnoprzepustowe aktywne II-rzędu (Krytyczny i Butterwortha)

W ostatnim punkcie ćwiczenia zbadaliśmy dwa filtry aktywne dolnoprzepustowe: Krytyczny i Butterwortha.

3.4.1

Na generatorze ustawiliśmy przebieg sinusoidalny o amplitudzie 400 [mVpp]. Jednorazowo zmierzyliśmy amplitudę sygnału wejściowego i wynosiła ona $U_{\rm in}=202 [{\rm mV}]$. Następnie dokonaliśmy serii pomiarów zmieniając częstotliwości w zakresie od 0,1 do 60 [kHz]. Pomiary przedstawiono w tabeli 7. Charakterystykę amplitudową dla filtru krytycznego przedstawiono na wykresie 8, a charakterystykę Butterwortha na wykresie 9. Wzmocnienie w pasmie przepustowym zarówno dla filtru krytycznego jak i Butterwortha wynosi $K=\frac{U_{out}}{U_{in}}=\frac{207}{202}\approx 1,0248$, i jest ono praktycznie takie samo jak wzmocnienie teoretyczne równe 1. Następnie dopasowaliśmy krzywe do punktów pomiarowych w pasmie przepustowym oraz zaporowym. Częstotliwość graniczna to częstotliwość dla której wzmocnienie maleje o 3 dB w paśmie przepustowym zatem, by móc obliczyć częstotliwość graniczną wyznaczamy punkt przecięcia linii regresji dopasowanej do przepustowej części charakterystyki pomniejszonej o czynnik 3 z linią regresji dla części zaporowej. Równanie dla filtru krytycznego:

$$-0.021 \cdot ln(x) + 0.367 - 3 = -11.14 \cdot ln(x) + 97.358.$$

Równanie dla filtru Butterwortha:

$$-4 \cdot 10^{-5} \cdot ln(x) + 0.231 - 3 = -12.61 \cdot ln(x) + 113.42.$$

Po przekształceniach otrzymujemy wartości częstotliwości granicznej które wynoszą odpowiednio:

Filtr krytyczny: $f_q \approx 5767[Hz]$,

Filtr Butterwortha: $f_g \approx 10037[Hz]$.

Wartość teoretyczna częstotliwości granicznej wynosi:

Filtr krytyczny: $f_{teo} \approx 9947 [Hz]$,

Filtr Butterwortha: $f_{teo} \approx 10231[Hz]$.

Wartości teoretyczne dla użytych przez nas filtrów wynoszą dla krytycznego $f_{teo} = 9947, 184[{\rm Hz}]$, dla Butterwortha $f_{teo} = 10230, 867[{\rm Hz}]$. W drugim przypadku widzimy dużą zgodność, natomiast dla filtru krytycznego występuje odstępstwo od wartości teoretycznej. Nachylenie charakterystyki N w pasmie zaporowym mówi nam o ile dB maleje wzmocnienie na jedną dekadę. Zatem korzystając z danych z tabeli $_4aotrzymujemy$:

$$\begin{aligned} \text{Filtr krytyczny: } N &= \frac{-25,279 - (-5,3904)}{\frac{60000 - 10000}{100000}} = \frac{-19,8886}{0,5} \approx -39,777 [\frac{\text{dB}}{\text{dekadę}}], \\ \text{Filtr Butterwortha: } N &= \frac{-25,2792 - (-2,81997)}{\frac{60000 - 10000}{100000}} = \frac{-22,45923}{0,5} \approx -44,919 [\frac{\text{dB}}{\text{dekadę}}]. \end{aligned}$$

Rys. 8: Charakterystyka amplitudowa dla filtru krytycznego.

Rys. 9: Charakterystyka amplitudowa dla filtru Butterwortha.

Tab. 7: Tabela zależności wzmocnienia od częstotliwości dla filtru krytycznego oraz filtru Butterwortha.

f [Hz]	U_o (Krytyczny) [mV]	U_o (Butterwortha) [mV]	$20 \cdot log(K)$ (Krytyczny)	$20 \cdot log(K)$ (Butterwortha)
100	207	207	0,21238	0,21238
200	209	208	0,295898	0,254239
300	209	208	0,295898	0,254239
600	208	206	0,254239	0,170317
1000	206	206	0,170317	0,170317
2000	200	206	-0,08643	0,170317
3000	191	205	-0,48636	0,12805
6000	156	194	-2,24454	-0,35099
10000	108,6	146	-5,39043	-2,81997
20000	47	56	-12,6651	-11,1433
30000	27	29	-17,4798	-16,8591
60000	11	11	-25,2792	-25,2792

3.4.2

Na wejście filtru podaliśmy przebieg prostokątny częstotliwości 1 [kHz], którego amplituda na wejściu wynosiła 202 [mVpp]. Dokonaliśmy pomiaru odpowiedzi układu na skok jednostkowy czyli pomiaru dziewięciu punktów napięcie + czas, których wartości przedstawiono w tabeli 8. Odpowiedź na skok jednostkowy przedstawiliśmy na wykresach, odpowiednio dla krytycznego rysunek 10 i dla Btterwortha rysunek 11. Powyższe odpowiedzi porównaliśmy z wynikami symulacji. W tym celu do kalkulatora filtrów wprowadziliśmy odpowiednie wartości rezystancji(tabela 12) dla schematu użytego w ćwiczenia(rysunek 13). W wyniku tego otrzymaliśmy symulowane odpowiedzi na skok jednostkowy przedstawione odpowiednio dla filtru krytycznego na rysunku 14 oraz dla filtru Butterwortha na rysunku 15. Wyznaczone przez nas odpowiedzi dobrze odpowiadają symulacji. Czas narastania jest zbliżony do 0,0001 sekundy, obie odpowiedzi dążą do amplitudy wejściowej, a dla filtru Butterwortha można zauważyć lekkie zafalowanie.

Tab. 8: Dane pomiarowe dla odpowiedzi na skok jednostkowy dla przebiegu prostokątnego o amplitudzie 400 [mVpp]

$x [\mu s]$	[mV] krytyczny	[mV] Butterworth
0	0	0
10	12,175	27,55
20	69,35	81,7
30	110,2	133
40	142,75	170,05
50	163,4	191,425
60	177,65	201,4
70	185,725	203,775
80	190,95	202,825

Rys. 10: Odpowiedź filtru krytycznego na skok jednostkowy.

Rys. 11: Odpowiedź filtru Butterwortha na skok jednostkowy.

Typ filtru	KRYTYCZNY	BUTTERWORTH
Symbol	Wartość	Wartość
R_1	$10 \mathrm{k}\Omega$	10kΩ
R_2	10kΩ	10kΩ
C_1	1.6nF	1.1nF
C_2	1.6nF	2.2nF
$R_{\rm F}$	$22\mathrm{k}\Omega$	22kΩ
R_{G}	∞ (rozwarcie)	∞ (rozwarcie)

Rys. 12: Wartości wprowadzone do symulacji.

Rys. 13: Schemat użytego filtru aktywnego.

Rys. 14: Symulowana odpowiedź filtru krytycznego na skok jednostkowy.

Rys. 15: Symulowana odpowiedź filtru Butterwortha na skok jednostkowy.