

Tutoriumsblatt 4 Rechnerarchitektur im SoSe 2020

Zu den Modulen G, H

Tutorium: Die Aufgaben werden in Tutorien-Videos vorgestellt, die am 14. Mai 2020 (17 Uhr) veröffentlicht werden.

Aufgabe T11: Minimierung mittels Karnaugh

(- Pkt.)

Minimieren Sie folgende Funktionen mit Hilfe des Karnaugh-Diagramms. Geben Sie dabei sowohl das jeweilige gezeichnete Karnaugh-Diagramm, als auch die zugehörige minimierte Funktion in disjunktiver Form an!

a.
$$y_1 = (x_1x_2\overline{x}_3) + (x_1\overline{x}_2\overline{x}_3) + (\overline{x}_1\overline{x}_2\overline{x}_3) + (\overline{x}_1x_2\overline{x}_3) + (x_1\overline{x}_2x_3) + (x_1x_2x_3)$$

b.
$$y_2 = (\overline{x}_2 x_3 x_4) + (\overline{x}_1 x_2 x_3 x_4) + (x_1 x_2 \overline{x}_3 x_4) + (\overline{x}_1 x_2 \overline{x}_3 x_4) + (\overline{x}_1 x_2 x_3 \overline{x}_4) + (\overline{x}_1 x_2 \overline{x}_3 \overline{x}_4) + (\overline{x$$

Resolutions regularity, $f_1(x_1, x_2, x_3)$

$$y_{2} = (\overline{\lambda}_{1} \, \overline{\lambda}_{3} \, \overline{\lambda}_{4}) + (\overline{\lambda}_{1} \lambda_{2}) + (\overline{\lambda}_{2} \lambda_{3} \lambda_{4}) + (\overline{\lambda}_{2} \lambda_{3} \lambda_{4})$$

Gegeben ist folgende Wahrheitstabelle:

a	Ъ	c	d	f(a,b,c,d)
0	0	0	0	0
0 0 0 0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1 0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1 0
1	1	1	1	0

- a. Geben Sie die Schaltfunktion von f in disjunktiver Normalform (DNF) an.
- b. Vereinfachen Sie die Funktion unter Verwendung eines Karnaugh-Diagramms.
- c. Nehmen Sie an, dass die Wahrheitstabelle wie oben gegeben ist, jedoch ohne die letzte Zeile. Das heißt, die neue Funktion f' ist auf dem Eingabe-4-Tupel (a=1, b=1, c=1, d=1) undefiniert. Wie wirkt sich das auf Ihre Möglichkeiten aus, die neue Funktion f' zu vereinfachen? Verdeutlichen Sie Ihre Antwort an einem neuen Karnaugh-Diagramm, und geben Sie eine möglichst einfache Darstellung von f' an.

$$\begin{array}{ll}
\left(\overline{\bigcap} \right) & f(a,b,c,d) \\
& = \left(\overline{a}\overline{b}c\overline{d} \right) + \left(\overline{a}\overline{b}cd \right) \\
& + \left(\overline{a}bc\overline{d} \right) + \left(\overline{a}bcd \right) \\
& + \left(abc\overline{d} \right) + \left(a\overline{b}cd \right) \\
& + \left(a\overline{b}c\overline{d} \right)
\end{array}$$

f(a,b,c,d)	
= ca+ac+bc	
= (catac + bc)	

(() Don't Care Argumente

- Nicht bei jeder Schaltfunktion sind alle der 2^n möglichen Kombinationen festgelegt
- Im Karnaugh-Diagramm kennzeichnen wir diese Fälle mit "D"
- Mit D gekennzeichnete Felder können verwendet werden müssen aber nicht

Vereinfachen Sie den folgenden Booleschen Term unter Anwendung des Algorithmus von a. Quine-McCluskey:

 $f(x)=\overline{x}_1\overline{x}_2\overline{x}_3\overline{x}_4+\overline{x}_1x_2x_3x_4+x_1\overline{x}_2\overline{x}_3\overline{x}_4+x_1\overline{x}_2\overline{x}_3x_4+x_1\overline{x}_2x_3x_4+x_1x_2\overline{x}_3\overline{x}_4+x_1x_2\overline{x}_3x_4$ Geben Sie dabei alle notwendigen Schritte an!

- Ъ. Berechnen Sie die Kosten vor und nach der Optimierung. Wie viel kann an Kosten eingespart werden?
- Begründen Sie, ob in diesem Beispiel auch eine Optimierung mittels Karnaugh-Diagrammen c. möglich wäre.

Gruppe	Minterm	Einsch	lägiger	Index
1	$\bar{x_1}x_2x_3x_4$	0111	=	7
	$x_1\bar{x_2}x_3x_4$	1011	=	11
	$x_1x_2\dot{x_3}x_4$	1101	=	13
2	$x_1 \bar{x_2} \bar{x_3} x_4$	1001	=	9
	$x_1x_2\bar{x_3}\bar{x_4}$	1100	=	12
3	$x_1 \bar{x_2} \bar{x_3} \bar{x_4}$	1000	=	8
4	$\bar{x_1}\bar{x_2}\bar{x_3}\bar{x_4}$	0000	=	0

Parmierse Vergleichen

Gruppe	Implikant	Einsch	lägig	er Index
1	$x_1\bar{x_2}x_4$	10*1	=	11,9
	$x_1\bar{x_3}x_4$	1*01	=	13,9
	$x_1x_2\bar{x_3}$	110*	=	12,13
	$\bar{x_1}x_2x_3x_4$	0111	=	7
2	$x_1\bar{x_2}\bar{x_3}$	100*	-	9,8
	$x_1 \bar{x_3} \bar{x_4}$	1*00	-	8,12
3	$x_2 x_3 x_4$	*000	=	8,0

Again Paarweise Vegleichen

If a pair of Induce have directly been represented Can just leave it out

Implikant	Einschlägiger Index				
$x_1 \bar{x_3}$	1*0*	=	13,9,8,12		
$x_1 \bar{x_2} x_4$	10*1	=	11,9		
$\bar{x_1}x_2x_3x_4$	0111	=	7		
$\bar{x_2}\bar{x_3}\bar{x_4}$	*000	=	8,0		

Quine - McClustey Verlahren

Schritt 1: Implikanten bestimmen

Schritt 2: Implikanten verkürzen => Primimplikanten

Schritt 3: Mit Primimplikanten verkürzte Boolsche Funktion bestimmen

In diesem Beispiel wäre auch eine Optimierung über K ohne weiters möglich, da bei dieser Variablenzahl eine Darstellung in der Matrix noch übersichtlich ist.

Zur Optimierung von Booleschen Funktionen mit mehr als 4 Variablen sollte dann das Quine-McCluskey-Verfahren angewandt werden.

$$f(x) = x_1 \bar{x}_3 + x_1 \bar{x}_2 x_4 + \bar{x}_1 x_2 x_3 x_4 + \bar{x}_2 \bar{x}_3 \bar{x}_4$$