# Human Computer Interaction CS449 – CS549

Week 11

### Measuring UX Methods

KÜRŞAT ÇAĞILTAY

#### Reminder - Due dates - Revised

- Assignment-5 Gesture based system December 10 Tuesday
- Assignment-6 End user based Usability testing of «Assignment-5»
  - December 17 Tuesday
- Draft Term project/proposal December 23 Monday (I strongly suggest you finish it early) – Contact me for your topic
- Term project submission January 10 Friday

### Term Project Groups?

 https://docs.google.com/spreadsheets/d/13NXBXdie9sRplnmM 7g20hy1IXFACs2ppr9WjtmRbtE/edit?gid=980975006#gid=980975006

### Method

Users

Tasks

Situation/Context



Tool



#### Determinants of usability rating





### **Evaluation Type**

Formative Evaluation

Summative Evaluation













Project timeline: Analysis, Design... >>>

Final product





### User Based Testing

## User Based Testing





#### Research Methods: Data Collection



# Quantitative Methods (Statistics)

- Efficiency
- Effectiveness
- Satisfaction



Qualitative Methods (Verbal - Mostly)

Satisfaction

### **Empirical Studies**

- To understand cause and effect
  - "When small size buttons are used, it decreases likelihood of completing a purchase"
- To make predictions
  - "When users type on a new keyboard, their typing speed increases."
- To test hypotheses
  - "There is no performance difference between reading from paper and screen."

#### **Population and Sample**



#### Hypothesis: "My new keyboard is easy to use"



#### **Observation vs Controlled Experiments?**

- Participants rated the system easy to use, because
  - they actually find the system easy to use?
  - they want to make you happy in your research?
- Knowing the reason for our observation helps us predict things about the world
  - But a mere observation will not help to find the answer!

### UX Experiment Design



### Controlled Experiments

Controlled experiments are means to isolate cause and effect



 What if there are potential two effects or if they potentially depend on each other?



### Experimental Variables



- Independent Variables (IV): the ones you control
- Aspects of the interface design (e.g. Color, Menu size)
- Characteristics of the testers (e.g. Male/Female, )
- Continuous: Time between clicks for double-click

- Dependent Variables (DV): the ones you measure
  - Efficiency & Effectiveness
  - Time to complete tasks
  - Number of errors
  - Satisfaction Scores



### Descriptive vs. Inferential

- Descriptive statistics
  - Summarize a group of numbers from a research
- Inferential statistics
  - Draw conclusions/make inferences that go beyond the numbers from a research study
  - Determine if a causal relationship exists between the Independent and Dependent Variables

### Data analysis and interpretation

#### descriptive

mean median mode variance standard deviation

#### <u>inferential</u>

t-test

analysis of variance

chi squared

### Summary Measures



### Measures of Central Tendency



#### Mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

- The most common measure of central tendency  $\mu = \frac{\overline{i=1}}{N}$
- E.g. Users completed tasks in 2 minutes average
- Affected by extreme values (outliers)





#### Median - Middle



- Robust measure of central tendency
- Not affected by extreme values





In an Ordered array, median is the "middle" number

#### Mode



- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may be no/several mode (s)





No Mode

#### Standard Deviation

...the descriptive statistic indicating the spread of a set of scores around the mean





### Comparing Standard Deviations











Mean = 
$$15.5$$
  
SD =  $4.57$ 

### Two IVs: Which one is true?

- There is a difference in typing speed between males and females
- There is no difference in typing speed between males and females



### Comparing Means: T-test

- inferential statistic indicating whether the means of two groups are significantly different from one another
- Compare means of dependent variable between two groups

- How to make t-test with Excel:
- https://toptipbio.com/t-tests-excel/
- https://www.youtube.com/watch?v=q0ckcKsSPXU









### Statistical Significance $\alpha = 0.05$

- A statistical significant effect exists if the probability that the difference occurred is below a certain significance level
- Significance level (α)
  - Lower significance level means higher evidence

• Arbitrary, but typical significance level:  $\alpha = 0.05$ 

- Significant results (p < α)</li>
  - There is a statistical significant difference
- Non-Significant results (p >= α)
  - We cannot conclude anything!



### Example: Gender & Typing CPS

What can we say from descriptive statistics?



|    | Male | Female |
|----|------|--------|
| 1  | 1.89 | 2.39   |
| 2  | 1.82 | 1.86   |
| 3  | 7.12 | 1.82   |
| 4  | 2.30 | 2.34   |
| 5  | 1.66 | 1.94   |
| 6  | 1.84 | 2.01   |
| 7  | 1.80 | 2.28   |
| 8  | 1.45 | 2.06   |
| 9  | 1.54 | 1.91   |
| 10 | 1.72 | 2.07   |

Average 2.314 2.068

### Example: Gender & Typing

- If we perform a paired t-test
- $p = 0.67 > \alpha = 0.05$ 
  - No significant difference between the conditions
  - We cannot conclude anything

|  |    | Male | Female |
|--|----|------|--------|
|  | 1  | 1.89 | 2.39   |
|  | 2  | 1.82 | 1.86   |
|  | 3  | 7.12 | 1.82   |
|  | 4  | 2.30 | 2.34   |
|  | 5  | 1.66 | 1.94   |
|  | 6  | 1.84 | 2.01   |
|  | 7  | 1.80 | 2.28   |
|  | 8  | 1.45 | 2.06   |
|  | 9  | 1.54 | 1.91   |
|  | 10 | 1.72 | 2.07   |

Average

2.314

2.068

# Example: Gender & Typing

- Let's assume we draw a different sample
- p = 0.028 < 0.05
  - Significant difference between the conditions
  - Typing speed results for female higher CPS than male
- One outlier between rejecting and accepting H0 indicates a weak statistical power!
- To increase power?

| -  | Male | Female |
|----|------|--------|
| 1  | 1.89 | 2.39   |
| 2  | 1.82 | 1.86   |
| 3  | 2.30 | 1.82   |
| 4  | 2.30 | 2.34   |
| 5  | 1.66 | 1.94   |
| 6  | 1.84 | 2.01   |
| 7  | 1.80 | 2.28   |
| 8  | 1.45 | 2.06   |
| 9  | 1.54 | 1.91   |
| 10 | 1.72 | 2.07   |

Average 1.832 2.068

### Experimental research: Between Subjects

#### **Independent Two Groups of test users:**

Each group uses only 1 of the systems





e.g. A/B testing

Independent sample t-test

### Experimental research: Matched Pairs

#### **Matched Pairs:**

Matching each participant with someone who is similar to them, and placing them in different conditions.



e.g. Old version vs New version of a Web site

### Dependent sample t-test

## Experimental research: Within Subjects

One group of test users

Each person uses both systems



#### Dependent sample t-test

# Analysis of variance ("ANOVA")

 the inferential statistic indicating the presence of a significant difference among the means of three or more groups



### Correlation

- The relationship between two variables of degree.
  - Positive: As one variable increases (or decreases) so does the other.
  - Negative: As one variable increases the other decreases.
  - Magnitude or strength of relationship
    - -1.00 to +1.00
  - Correlation does not equate to causation

# Correlation Studies



# Correlation Studies



#### **Correlation isn't Causation**



#### **Correlation isn't Causation**

Example: Storks and birthrate





Figure 1. Storks and the birth rate in Lower Saxony, Germany (1971–2000). Open circles show yearly birthrates in hundreds in Lower Saxony. Full squares show numbers pairs of storks in Lower Saxony. Dotted lines represent linear regression trend (y = mx + b).

Matthews, R. (2000), Storks Deliver Babies (p= 0.008). Teaching Statistics, 22: 36-38. doi:10.1111/1467-9639.00013

VALENTIN SCHWIND 46

#### Correlation: 78.92% (r=0.78915)

| 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |      |      |      |      |      |



| 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |      |      |      |      |      |

#### Worldwide non-commercial space launches

correlates with

#### Sociology doctorates awarded (US)

Correlation: 78.92% (r=0.78915)



# **Internal Validity:** accurately measure the relationship between the variables?

- Identification, documentation, and elimination of <u>confounds</u>
- High, when there are no alternative explanations for your results
  - The variation of your dependent variable is caused by the variation of your independent variable
- Low, when there are experimental effects can be explained through confounds, bias, history effects, maturation, etc
  - The variation of your dependent variable can by explained by the variation of confounds
- We aim for high internal validity
- e.g. Usability testing of Akbank vs Vakıfbank with Sabancı students?

Empirical Research

VALENTIN SCHWIND

VALENTIN SCHWIND

VALENTIN SCHWIND

## **External Validity**

- The extent to which results can be generalized
- High, when results of the study can be transferred to the real world
  - e.g. does the sample represent the general population?
- Low when the results cannot be applied to the population or real-life situations outside of the research setting
  - → ecological validity

#### **Next Week**

