The elementary topos of (skeletal) finite sets

2020.04.03

3 April 2020

Mohamed Barakat

Julia Mickisch

Fabian Zickgraf

Mohamed Barakat

Email: mohamed.barakat@uni-siegen.de

Homepage: http://www.mathematik.uni-kl.de/~barakat/

Address: Walter-Flex-Str. 3 57068 Siegen

Germany

Julia Mickisch

Email: julia.mickisch@student.uni-siegen.de Homepage: https://github.com/juliamick/

Address: Walter-Flex-Str. 3

57068 Siegen Germany

Fabian Zickgraf

Email: fabian.zickgraf@uni-siegen.de Homepage: https://github.com/zickgraf/

Address: Walter-Flex-Str. 3

57068 Siegen Germany

Contents

1	The category of finite sets			
	1.1	GAP Categories	3	
	1.2	Attributes	3	
	1.3	Constructors	4	
	1.4	Tools	7	
	1.5	Examples	10	
2	The category of skeletal finite sets			
	2.1	Skeletal GAP Categories	22	
	2.2	Skeletal Attributes	22	
	2.3	Skeletal Constructors	23	
	2.4	Skeletal Tools	24	
	2.5	Skeletal Examples	25	
In	dev		38	

Chapter 1

The category of finite sets

1.1 GAP Categories

1.1.1 IsFiniteSet (for IsCapCategoryObject)

▷ IsFiniteSet(object) (filter)

Returns: true or false

The GAP category of objects in the category of finite sets.

1.1.2 IsFiniteSetMap (for IsCapCategoryMorphism)

▷ IsFiniteSetMap(object) (filter)

Returns: true or false

The GAP category of morphisms in the category of finite sets.

1.2 Attributes

1.2.1 AsList (for IsFiniteSet)

```
▷ AsList(M) (attribute)
```

Returns: a GAP set

) = Length(Set(L)).

The GAP set of the list used to construct a finite set S, i.e., AsList(FinSet(L)) = Set(L).

1.2.2 Length (for IsFiniteSet)

1.2.3 AsList (for IsFiniteSetMap)

 \triangleright AsList(f) (attribute)

Returns: a list

The relation underlying a map between finite sets, i.e., AsList(MapOfFinSets(S, G, T)) = G.

1.3 Constructors

1.3.1 FinSet (for IsList)

ightharpoonup FinSet(L) (operation)

Returns: a CAP object

Construct a finite set out of the list L, i.e., an object in the CAP category FinSets. The GAP operation Set must be applicable to L without throwing an error. Equality is determined as follows: FinSet(L1) = FinSet(L2) iff IsEqualForElementsOfFinSets(Immutable(Set(L1)), Immutable(Set(L2))). Warning: all internal operations use FinSetNC (see below) instead of FinSet. Thus, this notion of equality is only valid for objects created by calling FinSet explicitly. Internally, FinSet(L) is an alias for FinSetNC(Set(L)) and equality is determined as for FinSetNC. Thus, FinSet(L1) = FinSetNC(L2) iff IsEqualForElementsOfFinSets(Immutable(Set(L1)), Immutable(L2) iff IsEqualForElementsOfFinSets(Immutable(L2)).

```
Example -
gap> S := FinSet([1, 3, 2, 2, 1]);
<An object in FinSets>
gap> Display(S);
[ 1, 2, 3 ]
gap> L := AsList( S );
[ 1, 2, 3 ]
gap> Q := FinSet( L );
<An object in FinSets>
gap > S = Q;
true
gap> FinSet([1, 2]) = FinSet([2, 1]);
gap> M := FinSetNC([ , 1, 2, 3 ] );
<An object in FinSets>
gap> IsWellDefined( M );
false
gap> M := FinSetNC( [ 1, 2, 3, 3 ] );
<An object in FinSets>
gap> IsWellDefined( M );
false
```

1.3.2 FinSetNC (for IsList)

ightharpoons FinSetNC(L) (operation)

Returns: a CAP object

Construct a finite set out of the duplicate-free (w.r.t. IsEqualForElementsOfFinSets) and dense list L, i.e., an object in the CAP category FinSets. Equality is determined as follows: FinSetNC(L1) = FinSetNC(L2) iff IsEqualForElementsOfFinSets(Immutable(L1), Immutable(L2)).

```
gap> S := FinSetNC([1, 3, 2]);
<An object in FinSets>
gap> Display(S);
[1, 3, 2]
gap> L := AsList(S);
[1, 3, 2]
gap> Q := FinSetNC(L);
<An object in FinSets>
gap> S = Q;
true
gap> FinSetNC([1, 2]) = FinSetNC([2, 1]);
false
```

1.3.3 MapOfFinSets (for IsFiniteSet, IsList, IsFiniteSet)

```
\triangleright MapOfFinSets(S, G, T)
```

(operation)

Returns: a CAP morphism

Construct a map $\phi : S \to T$ of the finite sets S and T, i.e., a morphism in the CAP category FinSets, where G is a list of pairs in $S \times T$ describing the graph of ϕ .

```
_ Example
gap> S := FinSet([1, 3, 2, 2, 1]);
<An object in FinSets>
gap> T := FinSet( [ "a", "b", "c" ] );
<An object in FinSets>
gap> G := [ [ 1, "b" ], [ 3, "b" ], [ 2, "a" ] ];;
gap> phi := MapOfFinSets( S, G, T );
<A morphism in FinSets>
gap> IsWellDefined( phi );
true
gap> phi( 1 );
"b"
gap> phi( 2 );
"a"
gap> phi( 3 );
gap> List( S, phi );
[ "b", "a", "b" ]
gap> psi := [ [ 1, "b" ], [ 2, "a" ], [ 3, "b" ] ];;
gap> psi := MapOfFinSets( S, psi, T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
gap> phi = psi;
true
gap> psi := MapOfFinSetsNC( S, [ , [ 1, "b" ], [ 3, "b" ], [ 2, "a" ] ], T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( S, [ [ 1, "d" ], [ 3, "b" ] ], T );
<A morphism in FinSets>
```

```
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( S, [ 1, 2, 3 ], T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( S, [ [ 1, "b" ], [ 3, "b" ], [ 2, "a", "b" ] ], T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( S, [ [ 5, "b" ], [ 3, "b" ], [ 2, "a" ] ], T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( S, [ [ 1, "d" ], [ 3, "b" ], [ 2, "a" ] ], T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( S, [ [ 1, "b" ], [ 2, "b" ], [ 2, "a" ] ], T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
false
```

1.3.4 MapOfFinSetsNC (for IsFiniteSet, IsList, IsFiniteSet)

 \triangleright MapOfFinSetsNC(S, G, T)

(operation)

Returns: a CAP morphism

Construct a map $\phi: S \to T$ of the finite sets S and T, i.e., a morphism in the CAP category FinSets, where G is a duplicate-free and dense list of pairs in $S \times T$ describing the graph of ϕ .

```
_ Example .
gap> S := FinSetNC( [ 1, 3, 2 ] );
<An object in FinSets>
gap> T := FinSetNC( [ "a", "b", "c" ] );
<An object in FinSets>
gap> G := [ [ 1, "b" ], [ 3, "b" ], [ 2, "a" ] ];;
gap> phi := MapOfFinSetsNC( S, G, T );
<A morphism in FinSets>
gap> IsWellDefined( phi );
true
gap> phi( 1 );
"h"
gap> phi( 2 );
gap> phi( 3 );
"b"
gap> List( S, phi );
[ "b", "b", "a" ]
gap> psi := [ [ 1, "b" ], [ 2, "a" ], [ 3, "b" ] ];;
gap> psi := MapOfFinSetsNC( S, psi, T );
<A morphism in FinSets>
gap> IsWellDefined( psi );
```

```
true
gap> phi = psi;
true
```

1.4 Tools

1.4.1 IsEqualForElementsOfFinSets (for IsObject, IsObject)

 ${\scriptstyle \rhd} \ \, {\tt IsEqualForElementsOfFinSets(a,\ b)} \\$

(operation)

Returns: a boolean

Compares two arbitrary objects using the following rules:

- integers, strings and chars are compared using the operation =
- lists and records are compared recursively
- CAP category objects are compared using IsEqualForObjects (if available)
- CAP category morphisms are compared using IsEqualForMorphismsOnMor (if available)
- other objects are compared using IsIdenticalObj

Note: if CAP category objects or CAP category morphisms are compared using IsEqualForObjects or IsEqualForMorphismsOnMor, respectively, the result must not be fail.

```
_ Example
gap> IsEqualForElementsOfFinSets( 2, 2 );
gap> IsEqualForElementsOfFinSets( 2, "2" );
false
gap> IsEqualForElementsOfFinSets( [ 2 ], [ 2 ] );
gap> IsEqualForElementsOfFinSets([2],[2,3]);
false
gap> IsEqualForElementsOfFinSets([, 2], [2, 2]);
gap> IsEqualForElementsOfFinSets( rec( a := "a", b := "b" ),
                              rec( b := "b", a := "a")
>
gap> IsEqualForElementsOfFinSets( rec( a := "a", b := "b" ),
                              rec( a := "a" )
>
>
                            );
gap> IsEqualForElementsOfFinSets( rec( a := "a", b := "b" ),
                              rec( a := "a", b := "notb")
false
gap> M := FinSet([]);;
gap> N := FinSet([]);;
gap> m := FinSet( 0 );;
gap> id_M := IdentityMorphism( M );;
gap> id_N := IdentityMorphism( N );;
```

```
gap> id_m := IdentityMorphism( m );;
gap> IsEqualForElementsOfFinSets( M, N );
true
gap> IsEqualForElementsOfFinSets( M, m );
false
gap> IsEqualForElementsOfFinSets( id_M, id_N );
true
gap> IsEqualForElementsOfFinSets( id_M, id_m );
false
gap> IsEqualForElementsOfFinSets( id_M, id_m );
false
```

1.4.2 \in (for IsObject, IsFiniteSet)

```
\triangleright \setminus in(obj, M) (operation)
```

Returns: a boolean

Returns true if there exists an element in AsList(M) which is equal to obj w.r.t. IsEqualForElementsOfFinSets and false if not.

1.4.3 [] (for IsFiniteSet, IsInt)

```
\triangleright [] (M, i) (operation)
```

Returns: an object

Returns the *i*-th entry of the GAP set of the list used to construct a finite set S, i.e., FinSet(L)[i] = Set(L)[i].

1.4.4 Iterator (for IsFiniteSet)

```
▷ Iterator(M) (operation)
```

Returns: an iterator

An iterator of the GAP set of the list used to construct a finite set S, i.e., Iterator(FinSet(L)) = Iterator(Set(L)).

1.4.5 UnionOfFinSets (for IsList)

```
▷ UnionOfFinSets(L)
```

(operation)

Returns: a CAP object

Compute the set-theoretic union of the elements of L, where L is a list of finite sets.

1.4.6 ListOp (for IsFiniteSet, IsFunction)

1.4.7 FilteredOp (for IsFiniteSet, IsFunction)

```
    FilteredOp(M, f) (operation)
    Returns: a list
```

Returns FinSetNC(Filtered(AsList(M), f)).

1.4.8 FirstOp (for IsFiniteSet, IsFunction)

FirstOp(M, f)

(operation)

Returns: a list

Returns First (AsList(M), f).

1.4.9 EmbeddingOfFinSets (for IsFiniteSet, IsFiniteSet)

▷ EmbeddingOfFinSets(S, T)

(operation)

Returns: a CAP morphism

Construct the embedding $t: S \to T$ of the finite sets S and T, where S must be subset of T.

1.4.10 ProjectionOfFinSets (for IsFiniteSet, IsFiniteSet)

▷ ProjectionOfFinSets(S, T)

(operation)

Returns: a CAP morphism

Construct the projection $\pi: S \to T$ of the finite sets S and T, where T is a partition of S.

1.4.11 Preimage (for IsFiniteSetMap, IsFiniteSet)

 \triangleright Preimage(f, T_{-})

(operation)

Returns: a CAP object

Compute the preimage of T_{\perp} under the morphism f.

1.4.12 ImageObject (for IsFiniteSetMap, IsFiniteSet)

 \triangleright ImageObject(f, S_{-})

(operation)

Returns: a CAP object

Compute the image of S_{\perp} under the morphism f.

1.4.13 CallFuncList (for IsFiniteSetMap, IsList)

▷ CallFuncList(phi, L)

(operation)

Returns: a list

Returns the image of L[1] under the map phi assuming L[1] is an element of AsList (Source (phi)).

1.4.14 ListOp (for IsFiniteSet, IsFiniteSetMap)

▷ ListOp(F, phi)

(operation)

Returns: a list

Returns List(AsList(F), phi).

1.5 Examples

1.5.1 IsHomSetInhabited

1.5.2 PreCompose

```
- Example -
gap> S := FinSet([ 1, 2, 3 ] );
<An object in FinSets>
gap> T := FinSet( [ "a", "b" ] );
<An object in FinSets>
gap> phi := [ [ 1, "b" ], [ 2, "a" ], [ 3, "b" ] ];;
gap> phi := MapOfFinSets( S, phi, T );
<A morphism in FinSets>
gap> psi := [ [ "a", 3 ], [ "b", 1 ] ];;
gap> psi := MapOfFinSets( T, psi, S );
<A morphism in FinSets>
gap> alpha := PreCompose( phi, psi );
<A morphism in FinSets>
gap> List( S, alpha );
[ 1, 3, 1 ]
gap> IsOne( alpha );
false
```

1.5.3 IsEpimorphism and IsMonomorhism

```
gap> IsMonomorphism( phi );
true
gap> IsSplitMonomorphism( phi );
true
gap> IsEpimorphism( phi );
true
gap> IsSplitEpimorphism( phi );
true
gap> iota := ImageEmbedding( phi );
</A monomorphism in FinSets>
gap> pi := CoastrictionToImage( phi );
</An epimorphism in FinSets>
gap> PreCompose( pi, iota ) = phi;
true
```

1.5.4 Initial and Terminal Objects

```
_{-} Example
gap> M := FinSet([ 1, 2, 3 ] );
<An object in FinSets>
gap> IsInitial( M );
false
gap> IsTerminal( M );
false
gap> I := InitialObject( M );
<An object in FinSets>
gap> IsInitial( I );
true
gap> IsTerminal( I );
false
gap> iota := UniversalMorphismFromInitialObject( M );
<A morphism in FinSets>
gap> Display( I );
[ ]
gap> T := TerminalObject( M );
<An object in FinSets>
gap> Display( T );
[ "*" ]
gap> IsInitial( T );
false
gap> IsTerminal( T );
true
gap> pi := UniversalMorphismIntoTerminalObject( M );
<A morphism in FinSets>
gap> IsIdenticalObj( Range( pi ), T );
true
gap> t := FinSet( [ "Julia" ] );
<An object in FinSets>
gap> pi_t := UniversalMorphismIntoTerminalObjectWithGivenTerminalObject( M, t );
<A morphism in FinSets>
gap> List( M, pi_t );
[ "Julia", "Julia", "Julia" ]
```

1.5.5 Projective and Injective Objects

```
_ Example
gap> I := FinSet([]);
<An object in FinSets>
gap> T := FinSet([ 1 ] );
<An object in FinSets>
gap> M := FinSet( [ 2 ] );
<An object in FinSets>
gap> IsProjective( I );
true
gap> IsProjective( T );
true
gap> IsProjective( M );
gap> IsOne( EpimorphismFromSomeProjectiveObject( I ) );
true
gap> IsOne( EpimorphismFromSomeProjectiveObject( M ) );
true
```

```
\_ Example \_
gap> I := FinSet([]);
<An object in FinSets>
gap> T := FinSet([ 1 ] );
<An object in FinSets>
gap> M := FinSet( [ 2 ] );
<An object in FinSets>
gap> IsInjective( I );
false
gap> IsInjective( T );
gap> IsInjective( M );
gap> IsIsomorphism( MonomorphismIntoSomeInjectiveObject( I ) );
false
gap> IsMonomorphism( MonomorphismIntoSomeInjectiveObject( I ) );
true
gap> IsOne( MonomorphismIntoSomeInjectiveObject( M ) );
true
```

1.5.6 Product

```
gap> Display( P );
[ [ 1, "a" ], [ 1, "b" ], [ 2, "a" ], [ 2, "b" ], [ 3, "a" ], [ 3, "b" ] ]
```

1.5.7 Coproduct

```
_ Example
gap> S := FinSet([ 1, 2, 3 ] );
<An object in FinSets>
gap> Length(S);
gap> T := FinSet( [ "a", "b" ] );
<An object in FinSets>
gap> Length( T );
gap> C := Coproduct( T, S );
<An object in FinSets>
gap> Length( C );
gap> Display( C );
[[1, "a"], [1, "b"], [2, 1], [2, 2], [2, 3]]
gap> M := FinSet([ 1, 2, 3, 4, 5, 6, 7 ] );
<An object in FinSets>
gap> N := FinSet([ 1, 2, 3 ] );
<An object in FinSets>
gap> P := FinSet([1, 2, 3, 4]);
<An object in FinSets>
gap> C := Coproduct( M, N, P );
<An object in FinSets>
gap> AsList( C );
[[1,1],[1,2],[1,3],[1,4],[1,5],[1,6],
  [1,7],[2,1],[2,2],[2,3],[3,1],[3,2],
  [3,3],[3,4]]
gap> iota1 := InjectionOfCofactorOfCoproduct([M, N, P], 1);
<A morphism in FinSets>
gap> IsWellDefined( iota1 );
gap> AsList( iota1 );
[[1, [1, 1]], [2, [1, 2]], [3, [1, 3]], [4, [1, 4]],
  [5, [1, 5]], [6, [1, 6]], [7, [1, 7]]
gap> iota2 := InjectionOfCofactorOfCoproduct( [ M, N, P ], 2 );
<A morphism in FinSets>
gap> IsWellDefined( iota2 );
true
gap> AsList( iota2 );
[[1, [2, 1]], [2, [2, 2]], [3, [2, 3]]]
gap> iota3 := InjectionOfCofactorOfCoproduct( [ M, N, P ], 3 );
<A morphism in FinSets>
gap> IsWellDefined( iota3 );
gap> AsList( iota3 );
[[1,[3,1]],[2,[3,2]],[3,[3,3]],[4,[3,4]]]
gap> psi := UniversalMorphismFromCoproduct( [ M, N, P ],
                                     [ iota1, iota2, iota3 ]
```

1.5.8 Image

```
\_ Example _-
gap> S := FinSet([1, 2, 3]);
<An object in FinSets>
gap> T := FinSet( [ "a", "b", "c" ] );
<An object in FinSets>
gap> phi := [ [ 1, "b" ], [ 2, "a" ], [ 3, "b" ] ];;
gap> phi := MapOfFinSets( S, phi, T );
<A morphism in FinSets>
gap> I := ImageObject( phi );
<An object in FinSets>
gap> Length( I );
gap> IsMonomorphism( phi );
gap> IsSplitMonomorphism( phi );
false
gap> IsEpimorphism( phi );
false
gap> IsSplitEpimorphism( phi );
false
gap> iota := ImageEmbedding( phi );
<A monomorphism in FinSets>
gap> pi := CoastrictionToImage( phi );
<An epimorphism in FinSets>
gap> PreCompose( pi, iota ) = phi;
true
```

1.5.9 Coimage

```
__ Example
gap> S := FinSet([1, 2, 3]);
<An object in FinSets>
gap> T := FinSet( [ "a", "b", "c" ] );
<An object in FinSets>
gap> phi := [ [ 1, "b" ], [ 2, "a" ], [ 3, "b" ] ];;
gap> phi := MapOfFinSets( S, phi, T );
<A morphism in FinSets>
gap> I := Coimage( phi );
<An object in FinSets>
gap> Length( I );
gap> IsMonomorphism( phi );
false
gap> IsSplitMonomorphism( phi );
false
gap> IsEpimorphism( phi );
```

```
false
  gap> IsSplitEpimorphism( phi );
  false
  gap> iota := AstrictionToCoimage( phi );
  <A monomorphism in FinSets>
  gap> pi := CoimageProjection( phi );
  <An epimorphism in FinSets>
  gap> PreCompose( pi, iota ) = phi;
  true
```

1.5.10 Equalizer

```
_{-} Example .
gap> S := FinSet([1..5]);
<An object in FinSets>
gap> T := FinSet( [ 1 .. 3 ] );
<An object in FinSets>
gap> f1 := MapOfFinSets( S, [ [1,3],[2,3],[3,1],[4,2],[5,2] ], T );
<A morphism in FinSets>
gap> f2 := MapOfFinSets( S, [ [1,3],[2,2],[3,3],[4,1],[5,2] ], T );
<A morphism in FinSets>
gap> f3 := MapOfFinSets( S, [ [1,3],[2,1],[3,2],[4,1],[5,2] ], T );
<A morphism in FinSets>
gap> D := [ f1, f2, f3 ];
[ <A morphism in FinSets>, <A morphism in FinSets>, <A morphism in FinSets> ]
gap> Eq := Equalizer( D );
<An object in FinSets>
gap> Display( Eq );
[1, 5]
gap> iota := EmbeddingOfEqualizer( D );;
gap> IsWellDefined( iota );
true
gap> Im := ImageObject( iota );
<An object in FinSets>
gap> Display( Im );
[1,5]
gap> mu := MorphismFromEqualizerToSink( D );;
gap> PreCompose( iota, f1 ) = mu;
true
gap> M := FinSet( [ "a" ] );;
gap> phi := MapOfFinSets( M, [ [ "a", 5 ] ], S );;
gap> IsWellDefined( phi );
true
gap> psi := UniversalMorphismIntoEqualizer( D, phi );
<A morphism in FinSets>
gap> IsWellDefined( psi );
true
gap> Display( psi );
[["a"],[["a",5]],[1,5]]
gap> PreCompose( psi, iota ) = phi;
true
```

1.5.11 Pullback

```
_ Example
gap> M := FinSet( [ 1 .. 5 ] );
<An object in FinSets>
gap> N1 := FinSet( [ 1 .. 3 ] );
<An object in FinSets>
gap> iota1 := EmbeddingOfFinSets( N1, M );
<A monomorphism in FinSets>
gap> N2 := FinSet( [ 2 .. 5 ] );
<An object in FinSets>
gap> iota2 := EmbeddingOfFinSets( N2, M );
<A monomorphism in FinSets>
gap> D := [ iota1, iota2 ];
[ <A monomorphism in FinSets>, <A monomorphism in FinSets> ]
gap> int := FiberProduct( D );
<An object in FinSets>
gap> Display( int );
[[2,2],[3,3]]
gap> pi1 := ProjectionInFactorOfFiberProduct( D, 1 );
<A monomorphism in FinSets>
gap> int1 := ImageObject( pi1 );
<An object in FinSets>
gap> Display( int1 );
[2,3]
gap> pi2 := ProjectionInFactorOfFiberProduct( D, 2 );
<A monomorphism in FinSets>
gap> int2 := ImageObject( pi2 );
<An object in FinSets>
gap> Display( int2 );
[2,3]
```

1.5.12 Coequalizer

```
_{-} Example _{-}
gap> N := FinSet([1,3]);
<An object in FinSets>
gap> M := FinSet( [1,2,4] );
<An object in FinSets>
gap> f := MapOfFinSets( N, [ [1,1], [3,2] ], M );
<A morphism in FinSets>
gap> g := MapOfFinSets( N, [ [1,2], [3,4] ], M );
<A morphism in FinSets>
gap> C := Coequalizer( f, g );
<An object in FinSets>
gap> AsList( C );
[[1, 2, 4]]
gap> A := FinSet([1, 2, 3, 4]);
<An object in FinSets>
gap> B := FinSet([1, 2, 3, 4, 5, 6, 7, 8]);
<An object in FinSets>
gap> f1 := MapOfFinSets( A, [ [ 1, 1 ], [ 2, 2 ], [ 3, 3 ], [ 4, 8 ] ], B );
<A morphism in FinSets>
gap> f2 := MapOfFinSets( A, [ [ 1, 2 ], [ 2, 3 ], [ 3, 8 ], [ 4, 5 ] ], B );
```

```
<A morphism in FinSets>
gap> f3 := MapOfFinSets( A, [ [ 1, 4 ], [ 2, 2 ], [ 3, 3 ], [ 4, 8 ] ], B );
<A morphism in FinSets>
gap> C1 := Coequalizer( [ f1, f3 ] );
<An object in FinSets>
gap> AsList( C1 );
[[1, 4], [2], [3], [5], [6], [7], [8]]
gap> C2 := Coequalizer( [ f1, f2, f3 ] );
<An object in FinSets>
gap> AsList( C2 );
[[1, 2, 3, 8, 5, 4], [6], [7]]
gap> S := FinSet([1..5]);
<An object in FinSets>
gap> T := FinSet([1 .. 4]);
<An object in FinSets>
gap> f := MapOfFinSets( S, [ [1,2], [2,4], [3,4], [4,3], [5,4] ], T );
<A morphism in FinSets>
gap> g := MapOfFinSets( S, [ [1,2], [2,3], [3,4], [4,3], [5,4] ], T );
<A morphism in FinSets>
gap> C := Coequalizer( f, g );
<An object in FinSets>
gap> Display( C );
[[1],[2],[4,3]]
gap> S := FinSet([ 1, 2, 3, 4, 5 ] );
<An object in FinSets>
gap> T := FinSet([1, 2, 3, 4]);
<An object in FinSets>
gap> G_f := [[1, 3], [2, 4], [3, 4], [4, 2], [5, 4]];;
gap> f := MapOfFinSets( S, G_f, T );
<A morphism in FinSets>
gap> G_g := [[1,3],[2,3],[3,4],[4,2],[5,4]];;
gap> g := MapOfFinSets( S, G_g, T );
<A morphism in FinSets>
gap> D := [ f, g ];
[ <A morphism in FinSets>, <A morphism in FinSets> ]
gap> C := Coequalizer( D );
<An object in FinSets>
gap> AsList( C );
[[1],[2],[3,4]]
gap> pi := ProjectionOntoCoequalizer( D );
<An epimorphism in FinSets>
gap> AsList( pi );
[[1, [1]], [2, [2]], [3, [3, 4]], [4, [3, 4]]]
gap> mu := MorphismFromSourceToCoequalizer( D );;
gap> PreCompose( f, pi ) = mu;
gap> G_tau := [ [ 1, 2 ], [ 2, 1 ], [ 3, 2 ], [ 4, 2 ] ];;
gap> tau := MapOfFinSets( T, G_tau, FinSet( [ 1, 2 ] ) );
<A morphism in FinSets>
gap> phi := UniversalMorphismFromCoequalizer( D, tau );
<A morphism in FinSets>
gap> AsList( phi );
```

```
[[[1], 2], [[2], 1], [[3, 4], 2]]
gap> PreCompose( pi, phi ) = tau;
gap> S := FinSet([1, 2, 3, 4, 5]);
<An object in FinSets>
gap> T := FinSet([1, 2, 3, 4]);
<An object in FinSets>
gap> G_f := [[1, 2], [2, 3], [3, 3], [4, 2], [5, 4]];;
gap> f := MapOfFinSets( S, G_f, T );
<A morphism in FinSets>
gap> G_g := [[1, 2], [2, 3], [3, 2], [4, 2], [5, 4]];;
gap> g := MapOfFinSets( S, G_g, T );
<A morphism in FinSets>
gap> D := [ f, g ];
[ <A morphism in FinSets>, <A morphism in FinSets> ]
gap> C := Coequalizer( D );
<An object in FinSets>
gap> AsList( C );
[[1],[2,3],[4]]
gap> pi := ProjectionOntoCoequalizer( D );
<An epimorphism in FinSets>
gap> AsList( pi );
[[1,[1]],[2,[2,3]],[3,[2,3]],[4,[4]]]
gap> PreCompose( f, pi ) = PreCompose( g, pi );
gap> mu := MorphismFromSourceToCoequalizer( D );;
gap> PreCompose( f, pi ) = mu;
gap> G_tau := [ [ 1, 1 ], [ 2, 2 ], [ 3, 2 ], [ 4, 1 ] ];;
gap> tau := MapOfFinSets( T, G_tau, FinSet( [ 1, 2 ] ) );
<A morphism in FinSets>
gap> phi := UniversalMorphismFromCoequalizer( D, tau );
<A morphism in FinSets>
gap> AsList( phi );
[[[1],1],[[2,3],2],[[4],1]]
gap> PreCompose( pi, phi ) = tau;
true
gap> A := FinSet( [ "A" ] );
<An object in FinSets>
gap> B := FinSet( [ "B" ] );
<An object in FinSets>
gap> M := FinSetNC( [ A, B ] );
<An object in FinSets>
gap> f := MapOfFinSetsNC( M, [ [ A, A ], [ B, A ] ], M );
<A morphism in FinSets>
gap> g := IdentityMorphism( M );
<An identity morphism in FinSets>
gap> C := Coequalizer([f, g]);
<An object in FinSets>
gap> Length( C );
gap> Length( AsList( C )[ 1 ] );
```

```
2
gap> Display( AsList( C )[ 1 ][ 1 ] );
[ "A" ]
gap> Display( AsList( C )[ 1 ][ 2 ] );
[ "B" ]
```

1.5.13 Pushout

```
Example -
gap> M := FinSet( [ 1 .. 5 ] );
<An object in FinSets>
gap> N1 := FinSet([1, 2, 4]);
<An object in FinSets>
gap> iota1 := EmbeddingOfFinSets( N1, M );
<A monomorphism in FinSets>
gap> N2 := FinSet( [ 2, 3 ] );
<An object in FinSets>
gap> iota2 := EmbeddingOfFinSets( N2, M );
<A monomorphism in FinSets>
gap> D := [ iota1, iota2 ];
[ <A monomorphism in FinSets>, <A monomorphism in FinSets> ]
gap> int := FiberProduct( D );
<An object in FinSets>
gap> Display( int );
[[2, 2]]
gap> pi1 := ProjectionInFactorOfFiberProduct( D, 1 );
<A monomorphism in FinSets>
gap> pi2 := ProjectionInFactorOfFiberProduct( D, 2 );
<A monomorphism in FinSets>
gap> UU := Pushout( pi1, pi2 );
<An object in FinSets>
gap> Display( UU );
[[[1,1]],[[1,2],[2,2]],[[1,4]],[[2,3]]]
gap> iota := UniversalMorphismFromPushout( [ pi1, pi2 ], [ iota1, iota2 ] );
<A morphism in FinSets>
gap> U := ImageObject( iota );
<An object in FinSets>
gap> Display( U );
[ 1, 2, 4, 3 ]
gap> UnionOfFinSets( [ N1, N2 ] ) = U;
true
```

1.5.14 Cartesian lambda introduction

```
gap> S := FinSet([1..3]);
<An object in FinSets>
gap> R := FinSet([1..2]);
<An object in FinSets>
gap> f := MapOfFinSets(S, [[1,2],[2,2],[3,1]], R);
<A morphism in FinSets>
gap> IsWellDefined(f);
true
```

1.5.15 Topos properties

```
\_ Example
gap> M := FinSet( [ 1 .. 5 ] );;
gap> N := FinSet([1, 2, 4]);;
gap> P := FinSet([1, 4, 8, 9]);;
gap> G_f := [[1, 1], [2, 2], [3, 1], [4, 2], [5, 4]];;
gap> f := MapOfFinSets( M, G_f, N );;
gap> IsWellDefined( f );
true
gap> G_g := [ [ 1, 4 ], [ 2, 4 ], [ 3, 2 ], [ 4, 2 ], [ 5, 1 ] ];;
gap> g := MapOfFinSets( M, G_g, N );;
gap> IsWellDefined( g );
true
gap> DirectProduct( M, N );;
gap> DirectProductOnMorphisms( f, g );;
gap> CartesianAssociatorLeftToRight( M, N, P );;
gap> CartesianAssociatorRightToLeft( M, N, P );;
gap> TerminalObject( FinSets );;
gap> CartesianLeftUnitor( M );;
gap> CartesianLeftUnitorInverse( M );;
gap> CartesianRightUnitor( M );;
gap> CartesianRightUnitorInverse( M );;
gap> CartesianBraiding( M, N );;
gap> CartesianBraidingInverse( M, N );;
gap> ExponentialOnObjects( M, N );;
gap> ExponentialOnMorphisms( f, g );;
gap> CartesianEvaluationMorphism( M, N );;
gap> CartesianCoevaluationMorphism( M, N );;
gap> DirectProductToExponentialAdjunctionMap( M, N,
     UniversalMorphismIntoTerminalObject( DirectProduct( M, N ) )
> );;
gap> ExponentialToDirectProductAdjunctionMap( M, N,
     UniversalMorphismFromInitialObject( ExponentialOnObjects( M, N ) )
>);;
gap> M := FinSet([1, 2]);;
gap> N := FinSet( [ "a", "b" ] );;
gap> P := FinSet( [ "*" ] );;
gap> Q := FinSet( [ "§", "&" ] );;
gap> CartesianPreComposeMorphism( M, N, P );;
```

```
gap> CartesianPostComposeMorphism( M, N, P );;
gap> DirectProductExponentialCompatibilityMorphism( M, N, P, Q );;
```

1.5.16 Subobject Classifier

Chapter 2

The category of skeletal finite sets

2.1 Skeletal GAP Categories

2.1.1 IsCategoryOfSkeletalFinSets (for IsCapCategory)

▷ IsCategoryOfSkeletalFinSets(object)

(filter)

Returns: true or false

The GAP category of categories of skeletal finite sets.

2.1.2 IsSkeletalFiniteSet (for IsCapCategoryObject and IsCellOfSkeletalCategory)

▷ IsSkeletalFiniteSet(object)

(filter)

Returns: true or false

The GAP category of objects in the category of skeletal finite sets.

2.1.3 IsSkeletalFiniteSetMap (for IsCapCategoryMorphism and IsCellOfSkeletalCategory)

▷ IsSkeletalFiniteSetMap(object)

(filter)

Returns: true or false

The GAP category of morphisms in the category of skeletal finite sets.

2.2 Skeletal Attributes

2.2.1 Length (for IsSkeletalFiniteSet)

▷ Length(M)

(attribute)

Returns: an integer

The integer defining the skeletal finite set M, i.e., Length (FinSet (n)) = n.

2.2.2 AsList (for IsSkeletalFiniteSet)

▷ AsList(M)

(attribute)

Returns: a list

The list associated to a skeletal finite set, i.e., AsList(FinSet(n)) = [1 .. n].

2.3 Skeletal Constructors

2.3.1 CategoryOfSkeletalFinSets

```
▷ CategoryOfSkeletalFinSets()
```

(operation)

(global variable)

Returns: a CAP category

Construct a category of skeletal finite sets. Accepts the options overhead (default: true) and FinalizeCategory (default: true).

2.3.2 SkeletalFinSets

The default instance of the category of skeletal finite sets. It is automatically created while loading this package.

2.3.3 FinSet (for IsInt)

▷ FinSet(n) (operation)

Returns: a CAP object

Construct a skeletal finite set residing in the default instance of the category of skeletal finite sets SkeletalFinSets of order given by the nonnegative integer n.

```
Example
gap> m := FinSet( 7 );
<An object in SkeletalFinSets>
gap> IsWellDefined( m );
true
gap> n := FinSet( -2 );
<An object in SkeletalFinSets>
gap> IsWellDefined( n );
false
gap> n := FinSet( 3 );
<An object in SkeletalFinSets>
gap> IsWellDefined( n );
true
gap> p := FinSet( 4 );
<An object in SkeletalFinSets>
gap> IsWellDefined( p );
true
```

2.3.4 FinSet (for IsCategoryOfSkeletalFinSets, IsInt)

▷ FinSet(C, n) (operation)

Returns: a CAP object

Construct a skeletal finite set residing in the given category of skeletal finite sets C of order given by the nonnegative integer n.

2.3.5 MapOfFinSets (for IsSkeletalFiniteSet, IsList, IsSkeletalFiniteSet)

```
\triangleright MapOfFinSets(s, G, t)
```

(operation)

Returns: a CAP morphism

Construct a map $\phi : s \to t$ of the skeletal finite sets s and t, i.e., a morphism in the CAP category of s, where G is a list of integers in t describing the graph of ϕ .

2.4 Skeletal Tools

2.4.1 ListOp (for IsSkeletalFiniteSet, IsFunction)

2.4.2 EmbeddingOfFinSets (for IsSkeletalFiniteSet, IsSkeletalFiniteSet)

```
\triangleright EmbeddingOfFinSets(s, t)
```

(operation)

Returns: a CAP morphism

Construct the embedding $t: s \to t$ of the finite sets s and t, where s must be subset of t.

2.4.3 Preimage (for IsSkeletalFiniteSetMap, IsList)

```
▷ Preimage(phi, t)
```

(operation)

Returns: a CAP object

Compute the Preimage of t under the morphism phi.

2.4.4 ImageObject (for IsSkeletalFiniteSetMap, IsSkeletalFiniteSet)

Compute the image of s_ under the morphism phi.

2.4.5 CallFuncList (for IsSkeletalFiniteSetMap, IsList)

Returns the image of L[1] under the map phi assuming L[1] is a positive integer smaller or equal to Length (Source (phi)).

2.5 Skeletal Examples

2.5.1 SkeletalIsHomSetInhabited

2.5.2 Skeletal WellDefined

```
\_ Example \_
gap> s := FinSet( 7 );
<An object in SkeletalFinSets>
gap> t := FinSet( 4 );
<An object in SkeletalFinSets>
gap> psi := MapOfFinSets( s, [ 1, 3, 2, 3, 2, 4 ], t );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( s, [ 1, 3, 2, 3, 2, 4, -1 ], t );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( psi );
false
gap> psi := MapOfFinSets( s, [ 2, 3, 2, 5, 3, 2, 4 ], t );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( psi );
gap> psi:= MapOfFinSets( s, [ 1, 3, 2, 4, 3, 2, 4 ], t );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( psi );
true
```

2.5.3 Skeletal PreCompose

```
gap> m := FinSet( 3 );
<An object in SkeletalFinSets>
gap> n := FinSet( 5 );
```

```
<An object in SkeletalFinSets>
gap> p := FinSet( 7 );
<An object in SkeletalFinSets>
gap> psi := MapOfFinSets( m, [ 2, 5, 3 ], n );
<A morphism in SkeletalFinSets>
gap> phi := MapOfFinSets( n, [ 1, 4, 6, 6, 3 ], p );
<A morphism in SkeletalFinSets>
gap> alpha := PreCompose( psi, phi );
<A morphism in SkeletalFinSets>
gap> Display( alpha );
[ 3, [ 4, 3, 6 ], 7 ]
```

2.5.4 Skeletal Monomophisms and Epimophisms

```
_ Example
gap> m := FinSet( 3 );
<An object in SkeletalFinSets>
gap> n := FinSet( 5 );
<An object in SkeletalFinSets>
gap> p := FinSet( 7 );
<An object in SkeletalFinSets>
gap> psi := MapOfFinSets( m, [ 1, 3, 5 ], n );
<A morphism in SkeletalFinSets>
gap> IsEpimorphism( psi );
false
gap> IsSplitEpimorphism( psi );
false
gap> IsMonomorphism( psi );
gap> IsSplitMonomorphism( psi );
true
gap> psi := MapOfFinSets( p, [ 1, 3, 2, 3, 3, 2, 1 ], m );
<A morphism in SkeletalFinSets>
gap> IsEpimorphism( psi );
true
gap> IsSplitEpimorphism( psi );
gap> IsMonomorphism( psi );
false
gap> IsSplitMonomorphism( psi );
false
```

2.5.5 Skeletal Initial and Terminal Objects

```
gap> m := FinSet( 8 );
<An object in SkeletalFinSets>
gap> IsInitial( m );
false
gap> IsTerminal( m );
false
gap> i := InitialObject( m );
<An object in SkeletalFinSets>
```

```
gap> IsInitial( i );
true
gap> IsTerminal( i );
gap> iota := UniversalMorphismFromInitialObject( m );
<A morphism in SkeletalFinSets>
gap> AsList( i );
[ ]
gap> t := TerminalObject( m );
<An object in SkeletalFinSets>
gap> AsList( t );
[1]
gap> IsInitial( t );
false
gap> IsTerminal( t );
gap> pi := UniversalMorphismIntoTerminalObject( m );
<A morphism in SkeletalFinSets>
gap> IsIdenticalObj( Range( pi ), t );
true
gap> pi_t := UniversalMorphismIntoTerminalObjectWithGivenTerminalObject( m, t );
<A morphism in SkeletalFinSets>
gap> AsList( pi_t );
[ 1, 1, 1, 1, 1, 1, 1]
gap> pi = pi_t;
true
```

2.5.6 Projective and Injective Objects

```
<An object in SkeletalFinSets>
gap> IsInjective( I );
false
gap> IsInjective( T );
true
gap> IsInjective( M );
true
gap> IsIsomorphism( MonomorphismIntoSomeInjectiveObject( I ) );
false
gap> IsMonomorphism( MonomorphismIntoSomeInjectiveObject( I ) );
true
gap> IsOne( MonomorphismIntoSomeInjectiveObject( M ) );
true
```

2.5.7 Skeletal Product

```
___ Example -
gap> m := FinSet( 7 );
<An object in SkeletalFinSets>
gap> n := FinSet( 3 );
<An object in SkeletalFinSets>
gap> p := FinSet( 4 );
<An object in SkeletalFinSets>
gap> d := DirectProduct([ m, n, p ] );
<An object in SkeletalFinSets>
gap> AsList( d );
[ 1 .. 84 ]
gap> pi1 := ProjectionInFactorOfDirectProduct( [ m, n, p ], 1 );
<A morphism in SkeletalFinSets>
gap> Display( pi1 );
[ 84,
  2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
     4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6,
     gap> pi2 := ProjectionInFactorOfDirectProduct( [ m, n, p ], 2 );
<A morphism in SkeletalFinSets>
gap> Display( pi2 );
[ 84,
  [ 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
     3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 1, 2, 2, 2,
     2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1,
     2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3 ], 3
gap> pi3 := ProjectionInFactorOfDirectProduct([ m, n, p ], 3 );
<A morphism in SkeletalFinSets>
gap> Display( pi3 );
[ 84,
  [ 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2,
     3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3,
     4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4,
     1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4 ], 4
```

```
gap> psi := UniversalMorphismIntoDirectProduct([m, n, p], [pi1, pi2, pi3]);
<A morphism in SkeletalFinSets>
gap> psi = IdentityMorphism(d);
true
```

2.5.8 Skeletal Coproduct

```
_{-} Example _{	ext{-}}
gap> m := FinSet( 7 );
<An object in SkeletalFinSets>
gap> n := FinSet( 3 );
<An object in SkeletalFinSets>
gap> p := FinSet( 4 );
<An object in SkeletalFinSets>
gap> c := Coproduct( m, n, p );
<An object in SkeletalFinSets>
gap> AsList( c );
[ 1 .. 14 ]
gap> iota1 := InjectionOfCofactorOfCoproduct( [ m, n, p ], 1 );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( iota1 );
true
gap> Display( iota1 );
[7, [1, 2, 3, 4, 5, 6, 7], 14]
gap> iota2 := InjectionOfCofactorOfCoproduct( [ m, n, p ], 2 );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( iota2 );
true
gap> Display( iota2 );
[3, [8, 9, 10], 14]
gap> iota3 := InjectionOfCofactorOfCoproduct([ m, n, p ], 3 );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( iota3 );
true
gap> Display( iota3 );
[4, [11, 12, 13, 14], 14]
gap> psi := UniversalMorphismFromCoproduct( [ m, n, p ],
                                          [ iota1, iota2, iota3 ]
                                       );
<A morphism in SkeletalFinSets>
gap> psi = IdentityMorphism( Coproduct([ m, n, p ] ) );
true
```

2.5.9 Skeletal Image

```
gap> m := FinSet( 7 );
<An object in SkeletalFinSets>
gap> n := FinSet( 3 );
<An object in SkeletalFinSets>
gap> phi := MapOfFinSets( n, [7, 5, 5], m );
<A morphism in SkeletalFinSets>
```

```
gap> IsWellDefined( phi );
true
gap> ImageObject( phi );
<An object in SkeletalFinSets>
gap> Length( ImageObject( phi ) );
2
gap> s := FinSet( 2 );
<An object in SkeletalFinSets>
gap> I := ImageObject( phi, s );
<An object in SkeletalFinSets>
gap> Length( I );
2
```

```
gap> m := FinSet( 7 );
<An object in SkeletalFinSets>
gap> n := FinSet( 3 );
<An object in SkeletalFinSets>
gap> phi := MapOfFinSets( n, [ 7, 5, 5 ] ,m );
<A morphism in SkeletalFinSets>
gap> pi := ImageEmbedding( phi );
<A monomorphism in SkeletalFinSets>
gap> Display( pi );
[ 2, [ 5, 7 ], 7 ]
```

```
_{-} Example _{-}
gap> m := FinSet( 7 );
<An object in SkeletalFinSets>
gap> n := FinSet( 3 );
<An object in SkeletalFinSets>
gap> phi := MapOfFinSets( n, [ 7, 5, 5 ], m );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( phi );
true
gap> f := CoastrictionToImage( phi );
<An epimorphism in SkeletalFinSets>
gap> Display( f );
[3, [2, 1, 1], 2]
gap> IsWellDefined( f );
true
gap> IsEpimorphism( f );
true
gap> IsSplitEpimorphism( f );
gap> m := FinSet( 77 );
<An object in SkeletalFinSets>
gap> n := FinSet( 4 );
<An object in SkeletalFinSets>
gap> phi := MapOfFinSets( n, [ 77, 2, 25, 2 ], m );
<A morphism in SkeletalFinSets>
gap> IsWellDefined( phi );
gap> iota := ImageEmbedding( phi );
<A monomorphism in SkeletalFinSets>
```

```
gap> pi := CoastrictionToImage( phi );
<An epimorphism in SkeletalFinSets>
gap> Display( pi );
[ 4, [ 3, 1, 2, 1 ], 3 ]
gap> IsWellDefined( pi );
true
gap> IsEpimorphism( pi );
true
gap> IsSplitEpimorphism( pi );
true
gap> PreCompose( pi, iota ) = phi;
true
```

2.5.10 Skeletal Preimage

2.5.11 Skeletal Equalizer

```
_{-} Example _{-}
gap> S := FinSet( 5 );
<An object in SkeletalFinSets>
gap> T := FinSet( 3 );
<An object in SkeletalFinSets>
gap> f1 := MapOfFinSets( S, [ 3, 3, 1, 2, 2 ], T );
<A morphism in SkeletalFinSets>
gap> f2 := MapOfFinSets( S, [ 3, 2, 3, 1, 2 ], T );
<A morphism in SkeletalFinSets>
gap> f3 := MapOfFinSets( S, [ 3, 1, 2, 1, 2 ], T );
<A morphism in SkeletalFinSets>
gap> D := [ f1, f2, f3 ];;
gap> Eq := Equalizer( D );
<An object in SkeletalFinSets>
gap> Length( Eq );
2
gap> iota := EmbeddingOfEqualizer( D );
<A monomorphism in SkeletalFinSets>
gap> Display( iota );
[2, [1, 5], 5]
gap> phi := MapOfFinSets( FinSet( 2 ), [ 5, 1 ], S );;
gap> IsWellDefined( phi );
true
gap> psi := UniversalMorphismIntoEqualizer( D, phi );
```

```
<A morphism in SkeletalFinSets>
gap> IsWellDefined( psi );
true
gap> Display( psi );
[2, [2, 1], 2]
gap> PreCompose( psi, iota ) = phi;
true
gap> D := [ f2, f3 ];
[ <A morphism in SkeletalFinSets>, <A morphism in SkeletalFinSets> ]
gap> Eq := Equalizer( D );
<An object in SkeletalFinSets>
gap> Length( Eq );
gap> psi := EmbeddingOfEqualizer( D );
<A monomorphism in SkeletalFinSets>
gap> Display( psi );
[3, [1, 4, 5], 5]
```

2.5.12 Skeletal Pullback

```
\_ Example \_
gap> m := FinSet( 5 );
<An object in SkeletalFinSets>
gap> n1 := FinSet( 3 );
<An object in SkeletalFinSets>
gap> iota1 := EmbeddingOfFinSets( n1, m );
<A monomorphism in SkeletalFinSets>
gap> Display( iota1 );
[3, [1, 2, 3], 5]
gap> n2 := FinSet( 4 );
<An object in SkeletalFinSets>
gap> iota2 := EmbeddingOfFinSets( n2, m );
<A monomorphism in SkeletalFinSets>
gap> Display( iota2 );
[4, [1, 2, 3, 4], 5]
gap> D := [ iota1, iota2 ];
[ <A monomorphism in SkeletalFinSets>, <A monomorphism in SkeletalFinSets> ]
gap> Fib := FiberProduct( D );
<An object in SkeletalFinSets>
gap> Display( Fib );
gap> pi1 := ProjectionInFactorOfFiberProduct( D, 1 );
<A monomorphism in SkeletalFinSets>
gap> Display( pi1 );
[3, [1, 2, 3], 3]
gap> int1 := ImageObject( pi1 );
<An object in SkeletalFinSets>
gap> Display( int1 );
gap> pi2 := ProjectionInFactorOfFiberProduct( D, 2 );
<A monomorphism in SkeletalFinSets>
gap> Display( pi2 );
[3, [1, 2, 3], 4]
```

2.5.13 Skeletal Coequalizer

```
- Example _{	extstyle}
gap> s := FinSet( 5 );
<An object in SkeletalFinSets>
gap> t := FinSet( 4 );
<An object in SkeletalFinSets>
gap> f := MapOfFinSets( s, [ 3, 4, 4, 2, 4 ], t );
<A morphism in SkeletalFinSets>
gap> g := MapOfFinSets( s, [ 3, 3, 4, 2, 4 ], t );
<A morphism in SkeletalFinSets>
gap> D := [ f, g ];
[ <A morphism in SkeletalFinSets>, <A morphism in SkeletalFinSets> ]
gap> C := Coequalizer( D );
<An object in SkeletalFinSets>
gap> Length( C );
gap> pi := ProjectionOntoCoequalizer(D);
<An epimorphism in SkeletalFinSets>
gap> Display( pi );
[4, [1, 2, 3, 3], 3]
gap> tau := MapOfFinSets( t, [2, 1, 2, 2], FinSet( 2 ) );
<A morphism in SkeletalFinSets>
gap> phi := UniversalMorphismFromCoequalizer( D, tau );
<A morphism in SkeletalFinSets>
gap> Display( phi );
[3, [2, 1, 2], 2]
gap> PreCompose( pi, phi ) = tau;
true
gap> s := FinSet( 5 );
<An object in SkeletalFinSets>
gap> t := FinSet( 4 );
<An object in SkeletalFinSets>
gap> f := MapOfFinSets( s, [ 2, 3, 3, 2, 4 ], t );
<A morphism in SkeletalFinSets>
gap> g := MapOfFinSets( s, [ 2, 3, 2, 2, 4 ], t );
<A morphism in SkeletalFinSets>
gap> D := [ f, g ];
[ <A morphism in SkeletalFinSets>, <A morphism in SkeletalFinSets> ]
gap> C := Coequalizer( D );
```

```
<An object in SkeletalFinSets>
gap> Length( C );
gap> pi := ProjectionOntoCoequalizer( D );
<An epimorphism in SkeletalFinSets>
gap> Display( pi );
[4, [1, 2, 2, 3], 3]
gap> PreCompose( f, pi ) = PreCompose( g, pi );
true
gap> tau := MapOfFinSets( t, [1, 2, 2, 1 ], FinSet( 2 ) );
<A morphism in SkeletalFinSets>
gap> phi := UniversalMorphismFromCoequalizer( D, tau );
<A morphism in SkeletalFinSets>
gap> Display( phi );
[3, [1, 2, 1], 2]
gap> PreCompose( pi, phi ) = tau;
true
gap> s := FinSet( 2 );;
gap> t := FinSet( 3 );;
gap> f := MapOfFinSets( s, [ 1, 2 ], t );;
gap> IsWellDefined( f );
true
gap> g := MapOfFinSets( s, [ 2, 3 ], t );;
gap> IsWellDefined( g );
gap> C := Coequalizer([f, g]);
<An object in SkeletalFinSets>
gap> Length( C );
```

2.5.14 Skeletal Pushout

```
\_ Example .
gap> M := FinSet( 5 );
<An object in SkeletalFinSets>
gap> N1 := FinSet( 3 );
<An object in SkeletalFinSets>
gap> iota1 := EmbeddingOfFinSets( N1, M );
<A monomorphism in SkeletalFinSets>
gap> Display( iota1 );
[3, [1, 2, 3], 5]
gap> N2 := FinSet( 2 );
<An object in SkeletalFinSets>
gap> iota2 := EmbeddingOfFinSets( N2, M );
<A monomorphism in SkeletalFinSets>
gap> Display( iota2 );
[2, [1, 2], 5]
gap> D := [ iota1, iota2 ];
[ <A monomorphism in SkeletalFinSets>, <A monomorphism in SkeletalFinSets> ]
gap> Fib := FiberProduct( D );
<An object in SkeletalFinSets>
gap> Display( Fib );
```

```
gap> pi1 := ProjectionInFactorOfFiberProduct( D, 1 );
<A monomorphism in SkeletalFinSets>
gap> Display( pi1 );
[2, [1, 2], 3]
gap> pi2 := ProjectionInFactorOfFiberProduct( D, 2 );
<A monomorphism in SkeletalFinSets>
gap> Display( pi2 );
[2,[1,2],2]
gap> ## The easy way
> D := [ pi1, pi2 ];
[ <A monomorphism in SkeletalFinSets>, <A monomorphism in SkeletalFinSets> ]
gap> UU := Pushout( D );
<An object in SkeletalFinSets>
gap> Display( UU );
gap> kappa1 := InjectionOfCofactorOfPushout( D, 1 );
<A morphism in SkeletalFinSets>
gap> Display( kappa1 );
[3, [1, 2, 3], 3]
gap> kappa2 := InjectionOfCofactorOfPushout( D, 2 );
<A morphism in SkeletalFinSets>
gap> Display( kappa2 );
[2, [1, 2], 3]
gap> PreCompose( pi1, kappa1 ) = PreCompose( pi2, kappa2 );
gap> ## The long way
> Co := Coproduct( N1, N2 );
<An object in SkeletalFinSets>
gap> Display( Co );
gap> iota_1 := InjectionOfCofactorOfCoproduct( [ N1, N2 ], 1 );
<A morphism in SkeletalFinSets>
gap> Display( iota_1 );
[3, [1, 2, 3], 5]
gap> iota_2 := InjectionOfCofactorOfCoproduct( [ N1, N2 ], 2 );
<A morphism in SkeletalFinSets>
gap> Display( iota_2 );
[2, [4, 5], 5]
gap> alpha := PreCompose( pi1, iota_1 );
<A morphism in SkeletalFinSets>
gap> Display( alpha );
[2, [1, 2], 5]
gap> beta := PreCompose( pi2, iota_2 );
<A morphism in SkeletalFinSets>
gap> Display( beta );
[2, [4, 5], 5]
gap> Cq := Coequalizer( [ alpha, beta ] );
<An object in SkeletalFinSets>
gap> Display( Cq );
3
```

2.5.15 Skeletal Lift

```
- Example {	ilde{ }}
gap> m := FinSet( 5 );
<An object in SkeletalFinSets>
gap> n := FinSet( 4 );
<An object in SkeletalFinSets>
gap> f := MapOfFinSets( m, [ 2, 2, 1, 1, 3 ], n );
<A morphism in SkeletalFinSets>
gap> g := MapOfFinSets( m, [ 5, 5, 4, 4, 5 ], m );
<A morphism in SkeletalFinSets>
gap> IsColiftable( f, g );
true
gap> chi := Colift( f, g );
<A morphism in SkeletalFinSets>
gap> Display( chi );
[4, [4, 5, 5, 1], 5]
gap> PreCompose( f, Colift( f, g ) ) = g;
true
gap> IsColiftable( g, f );
false
gap> Colift( g, f );
fail
```

```
\_ Example _{-}
gap> m := FinSet( 3 );
<An object in SkeletalFinSets>
gap> n := FinSet( 4 );
<An object in SkeletalFinSets>
gap> f := MapOfFinSets( m, [ 2, 2, 1 ], m );
<A morphism in SkeletalFinSets>
gap> g := MapOfFinSets( n, [ 3, 2, 1, 2 ], m );
<A morphism in SkeletalFinSets>
gap> IsLiftable( f, g );
true
gap> chi := Lift( f, g );
<A morphism in SkeletalFinSets>
gap> Display( chi );
[3, [2, 2, 3], 4]
gap> PreCompose( Lift( f, g ), g ) = f;
gap> IsLiftable( g, f );
false
```

```
gap> Lift( g, f );
fail
gap> k := FinSet( 100000 );
<An object in SkeletalFinSets>
gap> h := ListWithIdenticalEntries( Length( k ) - 3, 3 );;
gap> h := Concatenation( h, [ 2, 1, 2 ] );;
gap> h := MapOfFinSets( k, h, m );
<A morphism in SkeletalFinSets>
gap> IsLiftable( f, h );
true
gap> IsLiftable( h, f );
false
```

2.5.16 Skeletal Colift

2.5.17 Skeletal topos properties

```
_{-} Example .
gap> M := FinSet( 4 );;
gap> N := FinSet( 3 );;
gap> P := FinSet( 4 );;
gap> G_f := [ 1, 2, 1, 3 ];;
gap> f := MapOfFinSets( M, G_f, N );;
gap> IsWellDefined( f );
gap> G_g := [ 3, 3, 2, 1 ];;
gap> g := MapOfFinSets( M, G_g, N );;
gap> IsWellDefined( g );
gap> DirectProduct( M, N );;
gap> DirectProductOnMorphisms( f, g );;
gap> CartesianAssociatorLeftToRight( M, N, P );;
gap> CartesianAssociatorRightToLeft( M, N, P );;
gap> TerminalObject( FinSets );;
gap> CartesianLeftUnitor( M );;
gap> CartesianLeftUnitorInverse( M );;
gap> CartesianRightUnitor( M );;
gap> CartesianRightUnitorInverse( M );;
gap> CartesianBraiding( M, N );;
gap> CartesianBraidingInverse( M, N );;
gap> ExponentialOnObjects( M, N );;
gap> ExponentialOnMorphisms( f, g );;
gap> CartesianEvaluationMorphism( M, N );;
```

Index

	IsFiniteSet
for IsFiniteSet, IsInt, 8	for IsCapCategoryObject, 3
	IsFiniteSetMap
AsList	for IsCapCategoryMorphism, 3
for IsFiniteSet, 3	IsSkeletalFiniteSet
for IsFiniteSetMap, 3	for IsCapCategoryObject and IsCellOfSkele-
for IsSkeletalFiniteSet, 22	talCategory, 22
.	IsSkeletalFiniteSetMap
\in	for IsCapCategoryMorphism and Is-
for IsObject, IsFiniteSet, 8	CellOfSkeletalCategory, 22
CallFuncList	Iterator
for IsFiniteSetMap, IsList, 9	for IsFiniteSet, 8
for IsSkeletalFiniteSetMap, IsList, 24	
CategoryOfSkeletalFinSets, 23	Length
catogory brancistari masta, 23	for IsFiniteSet, 3
EmbeddingOfFinSets	for IsSkeletalFiniteSet, 22
for IsFiniteSet, IsFiniteSet, 9	ListOp
for IsSkeletalFiniteSet, IsSkeletalFiniteSet,	for IsFiniteSet, IsFiniteSetMap, 9
24	for IsFiniteSet, IsFunction, 8
	for IsSkeletalFiniteSet, IsFunction, 24
FilteredOp	M. OCT. C.
for IsFiniteSet, IsFunction, 8	MapOfFinSets
FinSet	for IsFiniteSet, IsList, IsFiniteSet, 5
for IsCategoryOfSkeletalFinSets, IsInt, 23	for IsSkeletalFiniteSet, IsList, IsSkele-
for IsInt, 23	talFiniteSet, 24
for IsList, 4	MapOfFinSetsNC
FinSetNC	for IsFiniteSet, IsList, IsFiniteSet, 6
for IsList, 4	Preimage
FirstOp	for IsFiniteSetMap, IsFiniteSet, 9
for IsFiniteSet, IsFunction, 9	for IsSkeletalFiniteSetMap, IsList, 24
T 01:	ProjectionOfFinSets
ImageObject	for IsFiniteSet, IsFiniteSet, 9
for IsFiniteSetMap, IsFiniteSet, 9	for isi inteset, isi inteset, y
for IsSkeletalFiniteSetMap, IsSkeletalFiniteSet, 24	SkeletalFinSets, 23
${\tt IsCategoryOfSkeletalFinSets}$	UnionOfFinSets
for IsCapCategory, 22	for IsList, 8
${\tt IsEqualForElementsOfFinSets}$	•
for IsObject, IsObject, 7	