

March 14, 2024

Molecular dynamics using SIESTA*

Ernane de Freitas Martins

*Based on previous presentations from Emilio Artacho and Marivi Fernandez-Serra, which can be found in the SIESTA webpage

What is this presentation about?

Outline

The potential energy surface - PES

Geometry optimization x molecular dynamics

Schlegel, H. B. J. Comput. Chem. (2003)

Adiabatic decoupling

Many body problem and how to move atoms

Algorithms for molecular dynamics

And more in the manual...

Molecular dynamics

Changes in the input file

More options in the manual

- Set runtype to MD:
 - MD.TypeOfRun Verlet, Nose, ...
- Set the initial time step:
 - MD.InitialTimeStep 1
- Set the final time step:
 - MD.FinalTimeStep 100
- Set the time step:
 - **MD.LengthTimeStep** 1 fs
- Set temperature/pressure
 - MD.TargetTemperature 300 K

Use of constraints

When relevant, one can constrain the movement of atoms

%block GeometryConstraints atom Cu %endblock GeometryConstraints or %block GeometryConstraints position from 1 to 48 %endblock GeometryConstraints

How to continue calculations not finished?

Both geometry optimization and molecular dynamics allow for that

- Files that can be read:
 - **SystemLabel.XV** (vel. and coord.)
 - SystemLabel.X_RESTART
 - X is the type of MD
- Manually:
 - Insert the last coordinates;
 - For MD, initial velocities will be generated in this case.
- The SystemLabel.{ANI,MDE} will be updated

Make sure files will be read

MD.UseSaveXV true

Controlling output data

Not everything is printed by default...

- Mulliken charges:
 - WriteMullikenPop 1
- Charges for MD:
 - PartialChargesAtEveryGeometry true
- Electrostatic potential:
 - **SaveElectrostaticPotential** true
- Total potential:
 - **SaveTotalPotential** true
- Coordinate steps:
 - *WriteCoorStep* true

How to post-process data?

Types of post-processing that can be done

- Files:
 - SystemLabel.MDE
 - Temperature, energy...
 - SystemLabel.out
 - Grep command can be used to extract information to be plotted.

To plot directly on the terminal

Executable plot_md.sh

To plot the energies:

plot_md.sh SystemLabel.MDE 1 2 #will plot the first and second columns of the MDE file To plot the energies from a grep command:

grep enth | plot_md.sh '<cat' 1 4 #will plot the first and fourth columns of the grep outcome If you want to define ranges:

plot_md.sh SystemLabel.MDE 1 2 5 10 #from step 5 to 10

How to post-process data?

Types of post-processing that can be done

Executable plot md.sh

How to visualize trajectories?

Files that can be used for that

- Files:
 - SystemLabel.ANI
 - Coordinates trajectory.
 - SystemLabel.STRUCT_OUT
 - Last coordinates;
 - Need to be converted into PDB:
 - ASE, for instance.

<ase convert SystemLabel.STRUCT_OUT SystemLabel.pdb>

vmd -xyz SystemLabel.ANI
vmd SystemLabel.pdb

Hands-on now

Let's try the tutorials! Questions before?

/leonardo_work/EUHPC_TD02_030/siesta-tutorials/day4-Thu/01-MolecularDynamics

Some outcomes

Examples of analysis that could be done

Some outcomes

Examples of analysis that could be done

The end

That's it!