Package 'carbonr'

December 3, 2024

```
Title Calculate Carbon-Equivalent Emissions
Version 0.2.2
Description Provides a flexible tool for calculating carbon-equivalent emissions. Mostly us-
      ing data from the UK Government's Greenhouse Gas Conversion Factors re-
      port <https://www.gov.uk/government/publications/</pre>
      greenhouse-gas-reporting-conversion-factors-2024>, it facilitates transparent emis-
      sions calculations for various sectors, including travel, accommodation, and clinical activi-
      ties. The package is designed for easy integration into R workflows, with additional sup-
      port for 'shiny' applications and community-driven extensions.
License LGPL (>= 3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Suggests knitr,
      purrr,
      rmarkdown,
      testthat (>= 2.0.0)
Config/testthat/edition 2
Imports airportr,
      checkmate,
      cowplot,
      dplyr,
      emojifont,
      ggplot2,
      ggpp,
      htmltools,
      lubridate,
      magrittr,
      readxl,
      rlang,
      shiny,
      shinydashboard,
      sp,
      stringr,
      tibble,
      tidyr,
      tidyselect
```

2 Contents

Depends R (>= 2.10) **LazyData** true

VignetteBuilder knitr

Contents

Index

add_inputs
airplane_emissions
airports
airport_finder
anaesthetic_emissions
building_emissions
carbonr
carbon_price_credit
check_CPI
clinical_theatre_data
clinical_theatre_emissions
construction_emissions
degree_conversion
distance_calc
electrical_emissions
example_clinical_theatre
ferry_emissions
gg_value_box
hotel_emissions
household_emissions
import_CPI
land_emissions
material_emissions
metal_emissions
office_emissions
output_display
paper_emissions
plastic_emissions
rail_emissions
rail_finder
raw_fuels
relative_gti
seaports
seaport_finder
shiny_emissions
stations
total_output
vehicle_emissions

62

add_inputs 3

add_inputs

Create multiple textInput functions in Shiny

Description

For use in the shiny_emissions() function. Adding an unknown quantity of textInputs.

Usage

```
add_inputs(numeric_input, label, value)
```

Arguments

numeric_input Name of numerical input that controls the number of items to add.

label Label of new textInput.

value Value of new textInput.

Value

Returns textInput for use in the shiny_emissions() function.

Examples

```
if(interactive()) {
ui <- shinydashboard::dashboardPage(header = shinydashboard::dashboardHeader(),</pre>
                                      sidebar = shinydashboard::dashboardSidebar(),
                                      shinydashboard::dashboardBody(
                                      shiny::fluidRow(
                                      shiny::column(12, align = "left",
                                      shiny::splitLayout(shinydashboard::box(width = NULL,
                                      shiny::numericInput("newbox_add",
                                                           "Number of new boxes:",
                                                           value = 0, min = 0),
                                      shiny::uiOutput("newbox_input"))))))
server <- function(input, output) {</pre>
  K_plane <- shiny::reactive({ input$newbox_add })</pre>
  output$newbox_input <- shiny::renderUI({ add_inputs(numeric_input = K_plane(),</pre>
                                                        label = "New Box:",
                                                        value = "textbox") })
shiny::shinyApp(ui, server)
```

4 airplane_emissions

airplane_emissions

Calculate CO2e emissions from an airplane journey

Description

This function calculates the CO2e emissions between airports based on the provided parameters. The distances are calculated using the "airport_distance" function from the "airportr" package.

Usage

```
airplane_emissions(
   from,
   to,
   via = NULL,
   num_people = 1,
   radiative_force = TRUE,
   include_WTT = TRUE,
   round_trip = FALSE,
   class = c("Average passenger", "Economy class", "Business class",
        "Premium economy class", "First class")
)
```

Arguments

from	Three-letter IATA code corresponding to the departure airport. You can check the IATA code using the "airport_finder" function.
to	Three-letter IATA code corresponding to the destination airport. You can check the IATA code using the "airport_finder" function.
via	Optional. Vector of three-letter IATA codes corresponding to airports for any layovers or stops along the route.
num_people	Number of people taking the flight. Must be a single numerical value.
radiative_forc	ce
	Logical. Determines whether radiative forcing should be taken into account. It is recommended to set this parameter as TRUE since emissions from airplanes at higher altitudes have a greater impact on climate change than those at ground level.
include_WTT	Logical. Determines whether emissions associated with extracting, refining, and transporting fuels should be included. It is recommended to set this parameter as TRUE.
round_trip	Logical. Determines if the flight is round trip (return) or one-way. Default is FALSE (one-way).
class	Class flown in. Options include "Average passenger", "Economy class", "Business class", "Premium economy class", and "First class".

Details

The distances are calculated using the "airport_distance" function from the "airportr" package. This means that the distances between locations uses the Haversine formula. This is calculated as the crow flies.

airports 5

Value

Returns CO2e emissions in tonnes.

Examples

airports

Table of airport detail data

Description

This dataset is adapted from the airportr package. Full credit and acknowledgment go to the original authors of the airportr package for their contribution. A dataset containing names, codes, locations, altitude, and timezones for airports.

Usage

airports

Format

A data frame with 7698 rows and 14 variables:

OpenFlights ID OpenFlights database ID

Name Airport name, sometimes contains name of the city

City Name of the city served by the airport

IATA 3-letter IATA code

ICAO 4-letter ICAO code

Country Country name as in OpenFlights database. Note that country names may not be ISO 3166-1 standard.

Country Code ISO 3166-1 numeric country code

Country Code (Alpha-2) Two-letter ISO country code

Country Code (Alpha-3) Three-letter ISO country code

Latitude Latitude in decimal degrees

Longitude Longitude in decimal degrees

Altitude Altitude in feet

UTC Hours offset from UTC

DST Daylight Savings Time. One of E (Europe), A (US/Canada), S (South America), O (Australia), Z (New Zealand), N (None) or U (Unknown)

Timezone Timezone in Olson format

Type Type of airport (e.g., large airport, medium airport, small airport)

Source Source of data, generally sourced from OurAirports

6 airport_finder

Source

```
https://cran.r-project.org/package=airportr
```

airport_finder Fin

Find the airport code for an airport

Description

Find the name, city, country, and IATA code of an airport. For use in the airplane_emissions function.

Usage

```
airport_finder(
  name,
  city,
  country,
  IATA_code,
  distance = 0.1,
  ignore.case = FALSE
)
```

Arguments

name Name of the airport.

city City that the airport is in.

country Country that the airport is in.

IATA_code The IATA code.

distance Maximum distance allowed for a match between the name/country/city given,

and that of the value in the data set.

ignore.case If FALSE, the check for is case-sensitive. If TRUE, case is ignored.

Value

Data frame containing the name, city, country, and IATA code of an airport.

Examples

```
# Can get the IATA code from the name of an airport. Gets similar matches.
airport_finder(name = "Bristo")

# Can get the IATA code from the name and city of an airport
airport_finder(name = "Bristo", country = "United Kingdom")

# Can find the name and city of an airport given the IATA code
airport_finder(IATA_code = "BRS")
```

anaesthetic_emissions 7

anaesthetic_emissions Anaesthetic Emissions

Description

Estimates the CO2e emissions associated with different anaesthetic agents.

Usage

```
anaesthetic_emissions(
  desflurane = 0,
  sevoflurane = 0,
  isoflurane = 0,
  N20 = 0,
  methoxyflurane = 0,
  propofol = 0
)
```

Arguments

desflurane Amount of desflurane used in KG (default: 0).

sevoflurane Amount of sevoflurane used in KG (default: 0).

isoflurane Amount of isoflurane used in KG (default: 0).

N20 Amount of nitrous oxide (N2O) used in KG (default: 0).

methoxyflurane Amount of methoxyflurane used in KG (default: 0).

propofol Amount of propofol used in KG (default: 0).

Details

These estimates are based on available literature and may vary depending on factors such as specific anaesthetic agents, usage conditions, and waste gas management practices.

Value

The total CO2e emissions in tonnes.

References

- McGain F, Muret J, Lawson C, Sherman JD. Environmental sustainability in anaesthesia and critical care. Br J Anaesth. 2020 Nov;125(5):680-692. DOI: 10.1016/j.bja.2020.06.055. Epub 2020 Aug 12. PMID: 32798068; PMCID: PMC7421303.
- ACS Sustainable Chem. Eng. 2019, 7, 7, 6580–6591. Publication Date: January 20, 2019.
- Sherman, Jodi MD*; Le, Cathy; Lamers, Vanessa; Eckelman, Matthew PhD. Life Cycle Greenhouse Gas Emissions of Anesthetic Drugs. Anesthesia & Analgesia 114(5):p 1086-1090, May 2012. DOI: 10.1213/ANE.0b013e31824f6940. Link

Examples

```
anaesthetic_emissions(desflurane = 200, sevoflurane = 30, N20 = 5)
```

8 building_emissions

building_emissions Building emissions

Description

Further options are given in the raw_fuels function.

Usage

```
building_emissions(
  water_supply = 0,
  water_trt = TRUE,
  water_unit = c("cubic metres", "million litres"),
  electricity_kWh = 0,
  electricity_TD = TRUE,
  electricity_WTT = TRUE,
  heat_kWh = 0,
  heat_TD = TRUE,
  heat_WTT = TRUE
```

Arguments

water_supply	Amount of water used in the building.	
water_trt	logical. Default TRUE. Whether to include emissions associated with water treatment for used water.	
water_unit	Unit for water_supply variable. Options are "cubic metres" or "million litres".	
electricity_kWh		
	Electricity used in kWh.	
electricity_TD	logical. Default TRUE. Whether to include emissions associated with grid losses.	
electricity_WTT		
	logical. Default TRUE. Whether to include emissions associated with extracting, refining, and transporting fuels.	
heat_kWh	heat and steam used in kWh.	
heat_TD	logical. Default TRUE. Whether to include emissions associated with grid losses.	
heat_WTT	logical. Default TRUE. Whether to include emissions associated with extracting, refining, and transporting fuels.	

Value

Returns CO2e emissions in tonnes.

References

Descriptions from 2022 UK Government Report: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022

carbonr 9

Examples

carbonr

carbonr: Calculate Carbon-Equivalent Emissions

Description

The carbonr package provides a flexible tool for calculating carbon-equivalent emissions.

Author(s)

```
Maintainer: Lily Clements <lily@idems.international> (ORCID)
```

See Also

See the README on GitHub

carbon_price_credit

Calculate carbon price credit

Description

This function calculates the carbon price credit for a given jurisdiction, year, period, and CO2e value. It uses CPI (Carbon Price Index) data to determine the carbon price for the specified jurisdiction and time period. The carbon price credit is calculated by multiplying the CO2e value by the corresponding carbon price.

Usage

```
carbon_price_credit(
   jurisdiction = NULL,
   year = NULL,
   period = 0,
   manual_price = NULL,
   co2e_val
)
```

Arguments

jurisdiction

A character string specifying the jurisdiction for which the carbon price credit should be calculated.

year

An optional numeric value specifying the year for which the carbon price credit should be calculated. If NULL, the most recent year available in the CPI data will

be used.

10 check_CPI

period	An optional numeric value specifying the period within the specified year for which the carbon price credit should be calculated. If 1, the function will use the first period if it is available; if 2, the function will use the second period if it is available. If 0, the function will calculate the mean between the first and second period.
manual_price	An option to manually input a carbon price index to override the value in the World Bank Data. This should be a value of the carbon credit price per tCO2e.
co2e_val	A numeric value specifying the CO2e (carbon dioxide equivalent) value for which the carbon price credit should be calculated.

Value

The calculated carbon price credit in USD (\$).

Examples

```
# Calculate carbon price credit for the United Kingdom in the year 2000,
# period 2, and CO2e value of 100
carbon_price_credit("United Kingdom", 2022, 2, co2e_val = 100)
# Or manually enter a value
carbon_price_credit(manual_price = 66.9, co2e_val = 100)
```

check_CPI

Check which jurisdictions are in the Carbon Credits data

Description

Find jurisdictions available in the Carbon Credits data. If a jurisdiction is specified, find the years associated with that jurisdiction.

Usage

```
check_CPI(jurisdiction = NULL, period = FALSE)
```

Arguments

jurisdiction (optional) A character string specifying the jurisdiction to filter the data by.
period (logical) If TRUE, include the Period column in the output data frame.

Value

A vector or data frame containing the information.

Examples

```
which_jur <- check_CPI()
which_years <- check_CPI(jurisdiction = "Switzerland")
which_years_and_period <- check_CPI(jurisdiction = "Switzerland", period = TRUE)</pre>
```

Description

Get the clinical theatre emissions after a data frame is inputted into the function.

Usage

```
clinical_theatre_data(
  data,
  time,
  date_format = c("%d/%m/%Y"),
  wet_clinical_waste = 0,
  wet_clinical_waste_unit = c("tonnes", "kg"),
  desflurane = 0,
  sevoflurane = 0,
  isoflurane = 0,
  methoxyflurane = 0,
  N20 = 0,
  propofol = 0,
  water_supply = 0,
  water_trt = TRUE,
  water_unit = c("cubic metres", "million litres"),
  electricity_kWh = 0,
  electricity_TD = TRUE,
  electricity_WTT = TRUE,
  heat_kWh = 0,
  heat_TD = TRUE,
  heat_WTT = TRUE,
  glass = 0,
  board = 0,
  mixed = 0,
  paper = 0,
  average = 0,
  average_film = 0,
  average_rigid = 0,
  HDPE = 0,
  LDPE = 0,
  LLDPE = 0,
  PET = 0,
  PP = 0,
  PS = 0,
  PVC = 0,
  glass_WD = 0,
 glass_waste_disposal = c("Closed-loop", "Combustion", "Landfill", "Open-loop"),
  board_WD = 0,
  mixed_WD = 0,
  paper_WD = 0,
 paper_waste_disposal = c("Closed-loop", "Combustion", "Composting", "Landfill"),
```

```
average_WD = 0,
  average_film_WD = 0,
  average_rigid_WD = 0,
 HDPE_WD = 0,
 LDPE_WD = 0,
 LLDPE_WD = 0,
 PET_WD = 0,
 PP_WD = 0,
 PS_WD = 0,
 PVC_WD = 0,
  fridges = 0,
  freezers = 0,
  electric_waste_disposal = c("Landfill", "Open-loop"),
 glass\_units = c("kg", "tonnes"),
 paper_units = c("kg", "tonnes"),
  plastic_units = c("kg", "tonnes"),
 electrical_units = c("kg", "tonnes"),
  include_cpi = FALSE,
  jurisdiction = NULL,
 year = NULL,
 period = 0,
 manual_price = NULL,
 gti_by = c("default", "month", "year"),
 overall_by = c("default", "month", "year"),
  single_sheet = FALSE
)
```

Arguments

data Data frame containing all data to be used in the emissions calculation time Variable in data that corresponds to the time. date_format The date format for the time variable (optional, default: c("%d/%m/%Y")). Variable in data that corresponds to the theatre name. name wet_clinical_waste Amount of (wet) clinical waste that is usually incinerated. wet_clinical_waste_unit Unit for wet_clinical_waste variable. Options are "tonnes" or "kg". desflurane Amount of desflurane used in KG (default: 0). sevoflurane Amount of sevoflurane used in KG (default: 0). Amount of isoflurane used in KG (default: 0). isoflurane methoxyflurane Amount of methoxyflurane used in KG (default: 0). N20 Amount of nitrous oxide (N2O) used in KG (default: 0). Amount of propofol used in KG (default: 0). propofol Amount of water used in the building. water_supply water_trt logical. Default TRUE. Whether to include emissions associated with water treatment for used water. Unit for water_supply variable. Options are "cubic metres" or "million water_unit

litres".

electricity_kWh

Electricity used in kWh.

electricity_TD logical. Default TRUE. Whether to include emissions associated with grid losses.

electricity_WTT

logical. Default TRUE. Whether to include emissions associated with extracting,

refining, and transporting fuels.

heat_kWh heat and steam used in kWh.

heat_TD logical. Default TRUE. Whether to include emissions associated with grid losses.

heat_WTT logical. Default TRUE. Whether to include emissions associated with extracting,

refining, and transporting fuels.

glass Numeric value representing the amount of glass. Default is 0.

board Numeric value indicating the weight of paperboard. Default is 0.

mixed Numeric value indicating the weight of mixed paper. Default is 0.

paper Numeric value indicating the weight of paper. Default is 0.

average Numeric value indicating the weight of average plastic. Default is 0.

average_film Numeric value indicating the weight of average film plastic. Default is 0.

average_rigid Numeric value indicating the weight of average rigid plastic. Default is 0.

HDPE Numeric value indicating the weight of HDPE plastic. Default is 0.

LDPE Numeric value indicating the weight of LDPE plastic. Default is 0.

LLDPE Numeric value indicating the weight of LLDPE plastic. Default is 0.

PET Numeric value indicating the weight of PET plastic. Default is 0.

PP Numeric value indicating the weight of PP plastic. Default is 0.

PS Numeric value indicating the weight of PS plastic. Default is 0.

PVC Numeric value indicating the weight of PVC plastic. Default is 0.

glass_WD Numeric value representing the amount of glass waste with disposal. Default is

0.

glass_waste_disposal

Character vector specifying the waste disposal method to use for metal for calculating emissions. Possible values: "Closed-loop", "Combustion", "Landfill", "Open-loop". Default is "Closed-loop". See details for more information.

board_WD Numeric value indicating the weight of paperboard disposed of using waste dis-

posal methods. Default is 0.

mixed_WD Numeric value indicating the weight of mixed paper disposed of using waste

disposal methods. Default is 0.

paper_WD Numeric value indicating the weight of paper disposed of using waste disposal

methods. Default is 0.

paper_waste_disposal

Character vector specifying the waste disposal method for paper to use for calculating emissions. Possible values: "Closed-loop", "Combustion", "Composting", "Landfill". Default is "Closed-loop". See details for more information.

average_WD Numeric value indicating the weight of average plastic disposed of using waste

disposal methods. Default is 0.

average_film_WD

Numeric value indicating the weight of average film plastic disposed of using waste disposal methods. Default is 0.

average_rigid_WD		
	Numeric value indicating the weight of average rigid plastic disposed of using waste disposal methods. Default is \emptyset .	
HDPE_WD	Numeric value indicating the weight of HDPE plastic disposed of using waste disposal methods. Default is 0.	
LDPE_WD	Numeric value indicating the weight of LDPE plastic disposed of using waste disposal methods. Default is 0.	
LLDPE_WD	Numeric value indicating the weight of LLDPE plastic disposed of using waste disposal methods. Default is \emptyset .	
PET_WD	Numeric value indicating the weight of PET plastic disposed of using waste disposal methods. Default is 0.	
PP_WD	Numeric value indicating the weight of PP plastic disposed of using waste disposal methods. Default is \emptyset .	
PS_WD	Numeric value indicating the weight of PS plastic disposed of using waste disposal methods. Default is \emptyset .	
PVC_WD	Numeric value indicating the weight of PVC plastic disposed of using waste disposal methods. Default is 0.	
fridges	Numeric value indicating the weight of fridges. Default is 0.	
freezers	Numeric value indicating the weight of freezers. Default is 0.	
electric_waste_		
	Character vector specifying the waste disposal method for electrical items to use for calculating emissions. Possible values: "Landfill", "Open-loop". Default is "Landfill". See details for more information.	
glass_units	Character vector specifying the units of the emissions related to glass. Possible values: "kg", "tonnes". Default is "kg".	
paper_units	Character vector specifying the units of the emissions related to paper. Possible values: "kg", "tonnes". Default is "kg".	
plastic_units	Character vector specifying the units of the emissions related to plastic materials. Possible values: "kg", "tonnes". Default is "kg".	
electrical_unit		
	Character vector specifying the units of the emissions related to electrical materials. Possible values: "kg", "tonnes". Default is "kg".	
include_cpi	Logical variable specifying whether to calculate carbon price credit as well as emissions.	
jurisdiction	A character string specifying the jurisdiction for which the carbon price credit should be calculated. Available jurisdictions can be found by check_CPI().	
year	An optional numeric value specifying the year for which the carbon price credit should be calculated. If NULL, the most recent year available in the CPI data will be used.	
period	An optional numeric value specifying the period within the specified year for which the carbon price credit should be calculated. If 1, the function will use the first period if it is available; if 2, the function will use the second period if it is available. If \emptyset , the function will calculate the mean between the first and second period.	
manual_price	An option to manually input a carbon price index to override the value in the World Bank Data.	
gti_by	The grouping type for calculating the GTI ("default", "month", "year").	

overall_by
The grouping type for the total output plot ("default", "month", "year"). This is a plot of the emissions if include_cpi = FALSE, otherwise is the CPI value.

Single_sheet
Options are NULL, TRUE or FALSE. This is whether to give the summaries in a single sheet display, or as a list containing the table and ggplot2 objects. If NULL then no graphical output is given.

Value

Returns list containing two objects. A table containing CO2e emissions for each row of data (and carbon price index in USD if include_cpi is TRUE), and a ggplot2 object plotting the CO2e emissions. The second object is a single sheet containing summaries if single_sheet = TRUE.

Examples

```
# Example with dummy data
df <- \ data.frame(time = c("10/04/2000", "10/04/2000", "11/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/2000", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/200", "10/04/20", "10/04/20", "10/04/20", "10/04/20", "10/04/20
                                                                                                                "11/04/2000", "12/04/2000", "12/04/2000"),
                                                                          theatre = rep(c("A", "B"), times = 3),
                                                                          clinical_waste = c(80, 90, 80, 100, 120, 110),
                                                                          electricity_kwh = c(100, 110, 90, 100, 100, 110),
                                                                          general_waste = c(65, 55, 70, 50, 60, 30)
 clinical_theatre_data(df, time = time, name = theatre,
                                                                        wet_clinical_waste = clinical_waste,
                                                                         wet_clinical_waste_unit = "kg",
                                                                          desflurane = 10,
                                                                          average = general_waste,
                                                                          plastic_units = "kg",
                                                                          electricity_kWh = electricity_kwh,
                                                                         include_cpi = TRUE,
                                                                          jurisdiction = "Australia",
                                                                          year = 2023,
                                                                          single_sheet = FALSE)
```

```
clinical_theatre_emissions

Clinical Emissions
```

Description

Calculate carbon-equivalent emissions following an operating theatre

Usage

```
clinical_theatre_emissions(
  wet_clinical_waste,
  wet_clinical_waste_unit = c("tonnes", "kg"),
  desflurane = 0,
  sevoflurane = 0,
  isoflurane = 0,
  methoxyflurane = 0,
  N20 = 0,
```

```
propofol = 0,
water_supply = 0,
water_trt = TRUE,
water_unit = c("cubic metres", "million litres"),
electricity_kWh = 0,
electricity_TD = TRUE,
electricity_WTT = TRUE,
heat_kWh = 0,
heat_TD = TRUE,
heat_WTT = TRUE,
glass = 0,
board = 0,
mixed = 0,
paper = 0,
average = 0,
average_film = 0,
average_rigid = 0,
HDPE = 0,
LDPE = 0,
LLDPE = 0,
PET = 0,
PP = 0,
PS = 0,
PVC = 0,
glass_WD = 0,
glass_waste_disposal = c("Closed-loop", "Combustion", "Landfill", "Open-loop"),
board_WD = 0,
mixed_WD = 0,
paper_WD = 0,
fridges = 0,
freezers = 0,
electric_waste_disposal = c("Landfill", "Open-loop"),
electrical_units = c("kg", "tonnes"),
paper_waste_disposal = c("Closed-loop", "Combustion", "Composting", "Landfill"),
average_WD = 0,
average_film_WD = 0,
average_rigid_WD = 0,
HDPE_WD = 0,
LDPE_WD = 0,
LLDPE_WD = 0,
PET_WD = 0,
PP_WD = 0,
PS_WD = 0,
PVC_WD = 0,
glass_units = c("kg", "tonnes"),
paper_units = c("kg", "tonnes"),
plastic_units = c("kg", "tonnes")
```

Arguments

```
wet_clinical_waste
```

Amount of (wet) clinical waste that is usually incinerated.

wet_clinical_waste_unit

Unit for wet_clinical_waste variable. Options are "tonnes" or "kg".

desflurane Amount of desflurane used in KG (default: 0).
sevoflurane Amount of sevoflurane used in KG (default: 0).
Amount of isoflurane used in KG (default: 0).

methoxyflurane Amount of methoxyflurane used in KG (default: 0).

N20 Amount of nitrous oxide (N2O) used in KG (default: 0).

propofol Amount of propofol used in KG (default: 0).

water_supply Amount of water used in the building.

water_trt logical. Default TRUE. Whether to include emissions associated with water treat-

ment for used water.

water_unit Unit for water_supply variable. Options are "cubic metres" or "million

litres".

electricity_kWh

Electricity used in kWh.

 ${\tt electricity_TD\ logical.\ Default\ TRUE.\ Whether\ to\ include\ emissions\ associated\ with\ grid\ losses.}$

electricity_WTT

logical. Default TRUE. Whether to include emissions associated with extracting,

refining, and transporting fuels.

heat_kWh heat and steam used in kWh.

heat_TD logical. Default TRUE. Whether to include emissions associated with grid losses.

heat_WTT logical. Default TRUE. Whether to include emissions associated with extracting,

refining, and transporting fuels.

glass Numeric value representing the amount of glass. Default is 0.

board Numeric value indicating the weight of paperboard. Default is 0.

mixed Numeric value indicating the weight of mixed paper. Default is 0.

paper Numeric value indicating the weight of paper. Default is 0.

average Numeric value indicating the weight of average plastic. Default is 0.

average_film Numeric value indicating the weight of average film plastic. Default is 0.

average_rigid Numeric value indicating the weight of average rigid plastic. Default is 0.

Numeric value indicating the weight of HDPE plastic. Default is 0.

LDPE Numeric value indicating the weight of LDPE plastic. Default is 0.

LLDPE Numeric value indicating the weight of LLDPE plastic. Default is 0.

PET Numeric value indicating the weight of PET plastic. Default is 0.

PP Numeric value indicating the weight of PP plastic. Default is 0.

PS Numeric value indicating the weight of PS plastic. Default is 0.

PVC Numeric value indicating the weight of PVC plastic. Default is 0.

glass_WD Numeric value representing the amount of glass waste with disposal. Default is

0.

glass_waste_disposal

Character vector specifying the waste disposal method to use for metal for calculating emissions. Possible values: "Closed-loop", "Combustion", "Landfill", "Open-loop". Default is "Closed-loop". See details for more information.

plastic_units

board_WD Numeric value indicating the weight of paperboard disposed of using waste disposal methods. Default is 0. mixed_WD Numeric value indicating the weight of mixed paper disposed of using waste disposal methods. Default is 0. Numeric value indicating the weight of paper disposed of using waste disposal paper_WD methods. Default is 0. fridges Numeric value indicating the weight of fridges. Default is 0. freezers Numeric value indicating the weight of freezers. Default is 0. electric_waste_disposal Character vector specifying the waste disposal method for electrical items to use for calculating emissions. Possible values: "Landfill", "Open-loop". Default is "Landfill". See details for more information. electrical_units Character vector specifying the units of the emissions related to electrical materials. Possible values: "kg", "tonnes". Default is "kg". paper_waste_disposal Character vector specifying the waste disposal method for paper to use for calculating emissions. Possible values: "Closed-loop", "Combustion", "Composting", "Landfill". Default is "Closed-loop". See details for more information. average_WD Numeric value indicating the weight of average plastic disposed of using waste disposal methods. Default is 0. average_film_WD Numeric value indicating the weight of average film plastic disposed of using waste disposal methods. Default is 0. average_rigid_WD Numeric value indicating the weight of average rigid plastic disposed of using waste disposal methods. Default is 0. HDPE_WD Numeric value indicating the weight of HDPE plastic disposed of using waste disposal methods. Default is 0. Numeric value indicating the weight of LDPE plastic disposed of using waste LDPE_WD disposal methods. Default is 0. Numeric value indicating the weight of LLDPE plastic disposed of using waste LLDPE_WD disposal methods. Default is 0. PET_WD Numeric value indicating the weight of PET plastic disposed of using waste disposal methods. Default is 0. PP_WD Numeric value indicating the weight of PP plastic disposed of using waste disposal methods. Default is 0. PS_WD Numeric value indicating the weight of PS plastic disposed of using waste disposal methods. Default is 0. Numeric value indicating the weight of PVC plastic disposed of using waste PVC_WD disposal methods. Default is 0. glass_units Character vector specifying the units of the emissions related to glass. Possible values: "kg", "tonnes". Default is "kg". Character vector specifying the units of the emissions related to paper. Possible paper_units values: "kg", "tonnes". Default is "kg".

Character vector specifying the units of the emissions related to plastic materi-

als. Possible values: "kg", "tonnes". Default is "kg".

construction_emissions 19

Value

Returns CO2e emissions in tonnes.

Examples

```
# clinical theatre emissions for the default options, with 100kg of wet clinical waste
clinical_theatre_emissions(wet_clinical_waste = 100, wet_clinical_waste_unit = "kg")
```

construction_emissions

Calculate emissions from construction

Description

: This function calculates the construction emissions based on the input parameters.

Usage

```
construction_emissions(
  aggregates = 0,
  average = 0,
  asbestos = 0,
  asphalt = 0,
  bricks = 0,
  concrete = 0,
  insulation = 0,
  metals = 0,
  soils = 0,
  mineral_oil = 0,
  plasterboard = 0,
  tyres = 0,
  wood = 0,
  aggregates_WD = 0,
  average_WD = 0,
  asbestos_WD = 0,
  asphalt_WD = 0,
  bricks_WD = 0,
  concrete_WD = 0,
  insulation_WD = 0,
  metals_WD = 0,
  soils_WD = 0,
  mineral_oil_WD = 0,
  plasterboard_WD = 0,
  tyres_WD = 0,
  wood_WD = 0,
  units = c("kg", "tonnes"),
 waste_disposal = c("Closed-loop", "Combustion", "Composting", "Landfill", "Open-loop")
```

Arguments

aggregates The weight of aggregates used in construction. Default is \emptyset .

average The weight of average material used in construction. Default is \emptyset .

asbestos The weight of asbestos used in construction. Default is 0.

The weight of asphalt used in construction. Default is 0.

The weight of bricks used in construction. Default is 0.

The weight of concrete used in construction. Default is 0.

insulation The weight of insulation material used in construction. Default is 0.

metals The weight of metals used in construction. Default is 0. soils The weight of soils used in construction. Default is 0.

mineral_oil The weight of mineral oil used in construction. Default is 0.

plasterboard The weight of plasterboard used in construction. Default is 0.

tyres The weight of tyres used in construction. Default is 0.

wood The weight of wood used in construction. Default is 0.

aggregates_WD The weight of aggregates disposed of as waste. Default is 0.

average_WD The weight of average material disposed of as waste. Default is 0.

asbestos_WD The weight of asbestos disposed of as waste. Default is 0.

bricks_WD The weight of asphalt disposed of as waste. Default is 0.

The weight of bricks disposed of as waste. Default is 0.

The weight of concrete disposed of as waste. Default is 0.

insulation_WD The weight of insulation material disposed of as waste. Default is 0.

metals_WD The weight of metals disposed of as waste. Default is 0. soils_WD The weight of soils disposed of as waste. Default is 0.

mineral_oil_WD The weight of mineral oil disposed of as waste. Default is 0.

plasterboard_WD

The weight of plasterboard disposed of as waste. Default is 0.

tyres_WD The weight of tyres disposed of as waste. Default is 0. wood_WD The weight of wood disposed of as waste. Default is 0.

units The units in which the emissions should be returned ("kg" or "tonnes"). De-

fault is 0.

waste_disposal The method of waste disposal. Options are, "Closed-loop", "Combustion",

"Composting", "Landfill", "Open-loop". Default is "Closed-loop". See

details for more information on this.

Details

The function calculates the construction emissions based on the input quantities of different materials used in construction and the quantities of those materials disposed of as waste. The emissions values are obtained from a data source and are multiplied by the corresponding quantities to calculate the total emissions. The units of emissions can be specified as either kilograms (kg) or tonnes.

All assume Primary material production for the material used in construction, except soils which assumes Closed-loop

degree_conversion 21

The waste disposal method can be selected from the options: "Closed-loop", "Combustion", "Composting", "Landfill", or "Open-loop". Note that: "Closed-loop" is valid for aggregates, average, asphalt, concrete, insulation, metal, soils, mineral oil, plasterboard, tyres, and wood. "Combustion" is valid for average, mineral oil, and wood. "Composting" is valid for wood only. "Landfill" is valid for everything except average, mineral oil, and tyres. "Open-loop" is valid for aggregates, average, asphalt, bricks, concrete, If one of these is used for a value that does not provide it, then an "NA" is given.

Value

The calculated construction emissions as a numeric value in tonnes.

Examples

degree_conversion

Convert degrees to radians

Description

Convert degrees to radians.

Usage

```
degree_conversion(deg)
```

Arguments

deg

Degree value to convert.

Value

Value in radians.

Examples

```
# Convert 90 degrees into radians
degree_conversion(90)
```

22 electrical_emissions

Description

Calculate distances between locations in miles using the Haversine formula. This is calculated as the crow flies.

Usage

```
distance_calc(lat1, lat2, long1, long2)
```

Arguments

lat1	Latitude of the first location.
lat2	Latitude of the second location.
long1	Longitude of the first location.
long2	Longitude of the second location.

Value

Distance between locations in miles

Examples

```
\# Distance between the London Eye and the Eiffel Tower in miles distance_calc(51.5033, 48.8584, 0.1196, 2.2945)
```

```
electrical_emissions Calculate Electrical Emissions
```

Description

This function calculates the emissions produced from different electrical items and their waste disposal based on the specified inputs. It considers emissions from primary material production and waste disposal of electrical items.

Usage

```
electrical_emissions(
  fridges = 0,
  freezers = 0,
  large = 0,
  IT = 0,
  small = 0,
  alkaline_batteries = 0,
  LiIon_batteries = 0,
  fridges_WD = 0,
```

electrical_emissions 23

```
freezers_WD = 0,
large_WD = 0,
IT_WD = 0,
small_WD = 0,
alkaline_batteries_WD = 0,
LiIon_batteries_WD = 0,
NiMh_batteries_WD = 0,
waste_disposal = c("Landfill", "Open-loop"),
units = c("kg", "tonnes")
```

Arguments

fridges Numeric value indicating the weight of fridges. Default is 0. freezers Numeric value indicating the weight of freezers. Default is 0.

large Numeric value indicating the weight of large electrical items. Default is 0.

IT Numeric value indicating the weight of IT (Information Technology) equipment.

Default is 0.

small Numeric value indicating the weight of small electrical items. Default is 0.

alkaline_batteries

Numeric value indicating the weight of alkaline batteries. Default is 0.

LiIon_batteries

Numeric value indicating the weight of Lithium-ion batteries. Default is 0.

 ${\tt NiMh_batteries} \quad Numeric \ value \ indicating \ the \ weight \ of \ Nickel \ Metal \ Hydride \ batteries. \ Default$

is 0.

fridges_WD Numeric value indicating the weight of fridges disposed of using waste disposal

methods. Default is 0.

freezers_WD Numeric value indicating the weight of freezers disposed of using waste disposal

methods. Default is 0.

large_WD Numeric value indicating the weight of large electrical items disposed of using

waste disposal methods. Default is 0.

IT_WD Numeric value indicating the weight of IT equipment disposed of using waste

disposal methods. Default is 0.

small_WD Numeric value indicating the weight of small electrical items disposed of using

waste disposal methods. Default is 0.

alkaline_batteries_WD

Numeric value indicating the weight of alkaline batteries disposed of using waste disposal methods. Default is 0.

LiIon_batteries_WD

Numeric value indicating the weight of Lithium-ion batteries disposed of using waste disposal methods. Default is 0.

NiMh_batteries_WD

Numeric value indicating the weight of Nickel Metal Hydride batteries disposed of using waste disposal methods. Default is θ .

waste_disposal Character vector specifying the waste disposal method to use for calculating

emissions. Possible values: "Landfill", "Open-loop". Default is "Landfill". "Open-loop" is the process of recycling material into other products. "Landfill"

the product goes to landfill after use.

units Character vector specifying the units of the emissions output. Possible values:

"kg", "tonnes". Default is "kg".

Value

The calculated electrical emissions as a numeric value in tonnes.

Examples

```
example_clinical_theatre
```

Clinical Theatre Data

Description

This dataset contains activities within a clinical theatre setting related to healthcare services or medical supplies. It is structured to facilitate analysis of healthcare operations, costs, and estimate CO2e emissions.

Usage

```
example_clinical_theatre
```

Format

A data frame with 4,386 rows and 6 columns, including:

time The date of transaction or activity in DDMMYYYY format.

prices The cost associated with each transaction or activity in AUD, related to services provided or medical supplies used.

quantities The amount or volume of a product or service provided, indicating the number of items used or procedures performed.

prodID A unique identifier for each type of product or service, such as medical supplies, medications, or surgical procedures.

retID A code identifying the department, supplier, or healthcare provider involved in the transaction, or the entity receiving the product or service.

description Categorises the clinical theatre activities into medical specialties or types of procedures, with 'ent' (Ear, Nose, and Throat), 'colorectal', 'hbt' (hematology or blood treatment), 'ortho' (orthopedics), 'paedsurg' (pediatric surgery), and 'gensurg' (general surgery).

Details

The dataset provides an overview of clinical theatre operations.

ferry_emissions 25

_			
ferrv	emis	SIONS	:

Calculate CO2e emissions from ferry journeys

Description

A function that calculates CO2e emissions between ferry ports.

Usage

```
ferry_emissions(
  from,
  to,
  via = NULL,
  type = c("Foot", "Car", "Average"),
  num_people = 1,
  times_journey = 1,
  include_WTT = TRUE,
  round_trip = FALSE
)
```

Arguments

from	Port code for the port departing from. Use seaport_finder to find port code.
to	Port code for the port arriving from. Use seaport_finder to find port code.
via	Optional. Takes a vector containing the port code that the ferry travels through. Use seaport_finder to find port code.
type	Whether the journey is taken on foot or by car. Options are "Foot", "Car", "Average".
num_people	Number of people taking the journey. Takes a single numerical value.
times_journey	Number of times the journey is taken.
include_WTT	logical. Recommended TRUE. Whether to include emissions associated with extracting, refining, and transporting fuels.
round_trip	Whether the journey is one-way or return.

Details

The distances are calculated using the Haversine formula. This is calculated as the crow flies.

Value

Returns CO2e emissions in tonnes for the ferry journey.

Examples

```
# Emissions for a ferry journey between Belfast and New York City
seaport_finder(city = "Belfast")
seaport_finder(city = "New York")
ferry_emissions(from = "BEL", to = "BOY")
```

26 gg_value_box

	-	
$\alpha\alpha$	_value_	hov
55	varue	

Create a Value Box for Reports

Description

This function creates a value box for use in reports.

Usage

```
gg_value_box(values, information, icons)
```

Arguments

values A vector of numeric values to be displayed in the value box.

information A vector of strings providing information or labels for the values.

icons A vector of Font Awesome unicode symbols to be displayed as icons.

Details

This function creates a value box with customizable values, information, and icons. The function takes inputs for the values, information, icons, and color of the value box. The values and information are provided as vectors, while the icons are specified using Font Awesome unicode symbols. The color of the value box can be customized using a factor variable. The resulting value box is a ggplot2 object that can be further customized or combined with other plots or elements in a report.

Value

A ggplot2 object with a value box for report use.

References

Modified from Stack Overflow post: https://stackoverflow.com/questions/47105282/valuebox-like-function-for-static-reports

Examples

```
# Create a value box with custom values and icons
gg_value_box(
  values = c(100, 500, 1000),
  information = c("Sales", "Revenue", "Customers"),
  icons = c("\U0000f155", "\U0000f155", "\U0000f0f7")
)
```

hotel_emissions 27

hotel_emissions

Calculate CO2e emissions from a hotel stay

Description

Indirect emissions from a stay at a hotel. Values to calculate emissions are from UK government 2024 report.

Usage

```
hotel_emissions(location = "UK", nights = 1, rooms = 1)
```

Arguments

location	Location of the hotel stay. Current accepted locations are "UK", "UK (London)", "Australia", "Belgium", "Brazil", "Canada", "Chile", "China", "Colombia", "Costa Rica", "Egypt", "France", "Germany", "Hong Kong, China", "India", "Indonesia", "Italy", "Japan", "Jordan", "Korea", "Malaysia", "Maldives", "Mexico", "Netherlands", "Oman", "Philippines", "Portugal", "Qatar", "Russia", "Saudi Arabia", "Singapore", "South Africa", "Spain", "Switzerland", "Thailand", "Turkey", "United Arab Emirates", "United States", "Vietnam".
nights	Number of nights stayed in the hotel.
rooms	Number of rooms used in the hotel.

Value

Tonnes of CO2e emissions for a stay in a hotel.

Examples

```
# Emissions for a two night stay in Australia.
hotel_emissions(location = "Australia", nights = 2)
```

household_emissions

Calculate household material emissions

Description

Calculate household material emissions

Usage

```
household_emissions(
  glass = 0,
  clothing = 0,
  food = 0,
  drink = 0,
  compost_from_garden = 0,
  compost_from_food_and_garden = 0,
```

```
board = 0,
mixed = 0,
paper = 0,
fridges = 0,
freezers = 0,
large_electrical = 0,
IT = 0,
small_electrical = 0,
alkaline_batteries = 0,
LiIon_batteries = 0,
NiMh_batteries = 0,
aluminuim_cans = 0,
aluminuim_foil = 0,
mixed_cans = 0,
scrap = 0,
steel\_cans = 0,
average = 0,
average_film = 0,
average_rigid = 0,
HDPE = 0,
LDPE = 0,
LLDPE = 0,
PET = 0,
PP = 0,
PS = 0.
PVC = 0,
glass_WD = 0,
books_WD = 0,
clothing_WD = 0,
gcb_waste_disposal = c("Closed-loop", "Combustion", "Landfill"),
household_residual_waste = 0,
hh_waste_disposal = c("Combustion", "Landfill"),
food_WD = 0,
drink_WD = 0,
compost_from_garden_WD = 0,
compost_from_food_and_garden_WD = 0,
compost_waste_disposal = c("Anaerobic digestion", "Combustion", "Composting",
  "Landfill"),
aluminuim_cans_WD = 0,
aluminuim_foil_WD = 0,
mixed_cans_WD = 0,
scrap_WD = 0,
steel\_cans\_WD = 0,
metal_waste_disposal = c("Closed-loop", "Combustion", "Landfill", "Open-loop"),
board_WD = 0,
mixed_WD = 0,
paper_WD = 0,
paper_waste_disposal = c("Closed-loop", "Combustion", "Composting", "Landfill"),
average_WD = 0,
average_film_WD = 0,
average_rigid_WD = 0,
HDPE_WD = 0,
```

```
LDPE_WD = 0,
LLDPE_WD = 0,
PET_WD = 0,
PP_WD = 0,
PS_WD = 0,
PVC_WD = 0,
fridges_WD = 0,
freezers_WD = 0,
large_electrical_WD = 0,
IT_WD = 0,
small_electrical_WD = 0,
alkaline_batteries_WD = 0,
LiIon_batteries_WD = 0,
NiMh_batteries_WD = 0,
electric_waste_disposal = c("Landfill", "Open-loop"),
units = c("kg", "tonnes")
```

Arguments

glass Numeric value representing the amount of glass. Default is 0.

clothing Numeric value representing the amount of clothing. Default is 0.

food Numeric value representing the amount of food. Default is 0.

drink Numeric value representing the amount of drink. Default is 0.

compost_from_garden

Numeric value representing the amount of compost from garden waste. Default is \emptyset .

compost_from_food_and_garden

Numeric value representing the amount of compost from food and garden waste.

Default is 0.

board Numeric value indicating the weight of paperboard. Default is 0.

mixed Numeric value indicating the weight of mixed paper. Default is 0.

paper Numeric value indicating the weight of paper. Default is 0.

fridges Numeric value indicating the weight of fridges. Default is 0.

freezers Numeric value indicating the weight of freezers. Default is 0.

large_electrical

Numeric value indicating the weight of large electrical items. Default is 0.

IT Numeric value indicating the weight of IT (Information Technology) equipment.

Default is 0.

small_electrical

Numeric value indicating the weight of small electrical items. Default is 0.

alkaline_batteries

Numeric value indicating the weight of alkaline batteries. Default is 0.

LiIon_batteries

Numeric value indicating the weight of Lithium-ion batteries. Default is 0.

NiMh_batteries Numeric value indicating the weight of Nickel Metal Hydride batteries. Default

aluminuim_cans Numeric value indicating the weight of aluminum cans. Default is 0.

aluminuim_foil Numeric value indicating the weight of aluminum foil. Default is 0. Numeric value indicating the weight of mixed metal cans. Default is 0. mixed_cans Numeric value indicating the weight of metal scrap. Default is 0. scrap Numeric value indicating the weight of steel cans. Default is 0. steel_cans average Numeric value indicating the weight of average plastic. Default is 0. average_film Numeric value indicating the weight of average film plastic. Default is 0. Numeric value indicating the weight of average rigid plastic. Default is 0. average_rigid Numeric value indicating the weight of HDPE plastic. Default is 0. **HDPE** Numeric value indicating the weight of LDPE plastic. Default is 0. LDPE Numeric value indicating the weight of LLDPE plastic. Default is 0. LLDPE Numeric value indicating the weight of PET plastic. Default is 0. PET PP Numeric value indicating the weight of PP plastic. Default is 0. Numeric value indicating the weight of PS plastic. Default is 0. PS PVC Numeric value indicating the weight of PVC plastic. Default is 0. Numeric value representing the amount of glass waste with disposal. Default is glass_WD books WD Numeric value representing the amount of books waste with disposal. Default clothing_WD Numeric value representing the amount of clothing waste with disposal. Default is 0. gcb_waste_disposal Character value specifying the waste disposal method for glass, clothing, and books waste (options: "Closed-loop", "Combustion", "Landfill"). Default is "Closed-loop". See details for more information.

household_residual_waste

Numeric value representing the amount of household residual waste. Default is θ .

hh_waste_disposal

food_WD

Character value specifying the waste disposal method for waste (options: "Combustion", "Landfill"). Default is "Combustion". See details for more information.

Numeric value indicating the weight of food disposed of using waste disposal

methods. Default is 0.

drink_WD Numeric value indicating the weight of drink disposed of using waste disposal

methods. Default is 0.

compost_from_garden_WD

Numeric value indicating the weight of compost from garden waste disposed of using waste disposal methods. Default is 0.

 ${\tt compost_from_food_and_garden_WD}$

Numeric value indicating the weight of compost from garden and food waste disposed of using waste disposal methods. Default is 0.

 ${\tt compost_waste_disposal}$

Character value specifying the waste disposal method for compost waste (options: "Anaerobic digestion", "Combustion", "Composting", "Landfill"). Default is "Anaerobic digestion". See details for more information.

aluminuim_cans_WD

Numeric value indicating the weight of aluminum cans disposed of using waste disposal methods. Default is 0.

aluminuim_foil_WD

Numeric value indicating the weight of aluminum foil disposed of using waste disposal methods. Default is 0.

mixed_cans_WD Numeric value indicating the weight of mixed metal cans disposed of using waste disposal methods. Default is 0.

Scrap_WD Numeric value indicating the weight of metal scrap disposed of using waste disposal methods. Default is 0.

steel_cans_WD Numeric value indicating the weight of steel cans disposed of using waste disposal methods. Default is 0.

metal_waste_disposal

Character vector specifying the waste disposal method to use for metal for calculating emissions. Possible values: "Closed-loop", "Combustion", "Landfill", "Open-loop". Default is "Closed-loop". See details for more information.

board_WD Numeric value indicating the weight of paperboard disposed of using waste disposal methods. Default is 0.

Numeric value indicating the weight of mixed paper disposed of using waste disposal methods. Default is 0.

paper_WD Numeric value indicating the weight of paper disposed of using waste disposal methods. Default is 0.

paper_waste_disposal

Character vector specifying the waste disposal method for paper to use for calculating emissions. Possible values: "Closed-loop", "Combustion", "Composting", "Landfill". Default is "Closed-loop". See details for more information.

average_WD Numeric value indicating the weight of average plastic disposed of using waste disposal methods. Default is 0.

average_film_WD

Numeric value indicating the weight of average film plastic disposed of using waste disposal methods. Default is 0.

average_rigid_WD

Numeric value indicating the weight of average rigid plastic disposed of using waste disposal methods. Default is \emptyset .

HDPE_WD Numeric value indicating the weight of HDPE plastic disposed of using waste disposal methods. Default is 0.

LDPE_WD Numeric value indicating the weight of LDPE plastic disposed of using waste disposal methods. Default is 0.

LLDPE_WD Numeric value indicating the weight of LLDPE plastic disposed of using waste disposal methods. Default is 0.

PET_WD Numeric value indicating the weight of PET plastic disposed of using waste disposal methods. Default is 0.

PP_WD Numeric value indicating the weight of PP plastic disposed of using waste disposal methods. Default is 0.

PS_WD Numeric value indicating the weight of PS plastic disposed of using waste disposal methods. Default is 0.

PVC_WD Numeric value indicating the weight of PVC plastic disposed of using waste disposal methods. Default is 0.

fridges_WD Numeric value indicating the weight of fridges disposed of using waste disposal methods. Default is 0.

32 import_CPI

freezers_WD Numeric value indicating the weight of freezers disposed of using waste disposal methods. Default is 0.

large_electrical_WD

Numeric value indicating the weight of large electrical items disposed of using waste disposal methods. Default is 0.

IT_WD Numeric value indicating the weight of IT equipment disposed of using waste disposal methods. Default is 0.

small_electrical_WD

Numeric value indicating the weight of small electrical items disposed of using waste disposal methods. Default is 0.

alkaline_batteries_WD

Numeric value indicating the weight of alkaline batteries disposed of using waste disposal methods. Default is 0.

LiIon_batteries_WD

Numeric value indicating the weight of Lithium-ion batteries disposed of using waste disposal methods. Default is 0.

NiMh_batteries_WD

Numeric value indicating the weight of Nickel Metal Hydride batteries disposed of using waste disposal methods. Default is \emptyset .

electric_waste_disposal

Character vector specifying the waste disposal method for electrical items to use for calculating emissions. Possible values: "Landfill", "Open-loop". Default is "Landfill". See details for more information.

units Character vector specifying the units of the emissions output. Possible values: "kg", "tonnes". Default is "kg".

Details

*_waste_disposal methods: "Open-loop" is the process of recycling material into other products. "Closed-loop" is the process of recycling material back into the same product. "Combustion" energy is recovered from the waste through incineration and subsequent generation of electricity. "Compost" CO2e emitted as a result of composting a waste stream. "Landfill" the product goes to landfill after use. "Anaerobic digestion" energy is recovered from the waste through anaerobic digestion.

Value

The calculated household emissions as a numeric value in tonnes.

Examples

```
household_emissions(glass = 100, clothing = 10, glass_WD = 10, units = "kg")
```

import_CPI

Import CPI data from an Excel file

Description

This function uses the downloaded data from the World Bank Carbon Pricing Dashboard (https://carbonpricingdashboard It imports data from an Excel file containing CPI (Carbon Price Index) data. It filters the data for ETS (Emissions Trading Scheme) instruments, performs necessary transformations, and returns a processed data frame.

land_emissions 33

Usage

```
import_CPI(path, sheet = "Data_Price", skip = 2)
```

Arguments

path A character string specifying the file path of the Excel file.

sheet A character string specifying the name of the sheet in the Excel file to read data

from.

skip An integer specifying the number of rows to skip while reading the Excel sheet.

Value

A processed data frame containing CPI data.

land_emissions

Calculate CO2e emissions from land-travel journeys

Description

A function that calculates CO2e emissions on a journey on land.

Usage

```
land_emissions(
 distance,
 units = c("miles", "km"),
 vehicle = c("Cars", "Motorbike", "Taxis", "Bus", "National rail", "International rail",
    "Light rail and tram", "London Underground", "Coach"),
  fuel = c("Petrol", "Diesel", "Unknown", "Battery Electric Vehicle",
    "Plug-in Hybrid Electric Vehicle"),
  car_type = c("Average car", "Small car", "Medium car", "Large car", "Mini",
   "Supermini", "Lower medium", "Upper medium", "Executive", "Luxury", "Sports",
    "Dual purpose 4X4", "MPV"),
 bike_type = c("Average", "Small", "Medium", "Large"),
 bus_type = c("Local bus (not London)", "Local London bus", "Average local bus"),
  taxi_type = c("Regular taxi", "Black cab"),
 TD = TRUE,
  include_WTT = TRUE,
  include_electricity = TRUE,
  owned_by_org = TRUE
)
```

Arguments

distance Distance in km or miles of the journey made (this can be calculated with other

tools, such as google maps.).

units Units for the distance travelled. Options are "km" or "miles".

num Number of passengers if vehicle is one of coach, tram, or tube. Otherwise,

number of vehicles used.

34 material_emissions

vehicle	Vehicle used for the journey. Options are "Cars", "Motorbike", "Taxis", "Bus", "National rail", "International rail, "Coach", "Light rail and tram", "London Underground". Note: car, taxi, motorbike is per vehicle.	
fuel	Fuel type used for the journey. For car, "Petrol", "Diesel", "Unknown", "Battery Electric Vehicle", "Plug-in Hybrid Electric Vehicle" are options. ##' "hybrid electric" and "battery electric" account for electricity kWh emissions.	
car_type	Size/type of vehicle for car. Options are c("Average car", "Small car", "Medium car", "Large "Mini", "Supermini", "Lower medium", "Upper medium", "Executive", "Luxury", "Sports", "Dual purpose 4X4", "MPV"),. Small denotes up to a 1.4L engine, unless diesel which is up to 1.7L engine. Medium denotes 1.4-2.0L for petrol cars, 1.7-2.0L for diesel cars. Large denotes 2.0L+ engine.	
bike_type	Size of vehicle for motorbike. Options are "Small", "Medium", "Large", or "Average". Sizes denote upto 125cc, 125cc-500cc, 500cc+ respectively.	
bus_type	Options are "local_nL", "local_L", "local", or "average". These denote whether the bus is local but outside of London, local in London, local, or average.	
taxi_type	Whether a taxi is regular or black cab. Options are "Regular taxi", "Black cab".	
TD	logical. Whether to account for transmission and distribution (TD) for electric vehicles (only car and van)	
include_WTT	logical. Well-to-tank (include_WTT) - whether to account for emissions associated with extraction, refining and transportation of the fuels (for non-electric vehicles).	
include_electricity		
	logical. Whether to account for for electric vehicles (car and van).	
owned_by_org	logical. Whether the vehicle used is owned by the organisation or not (only for car, motorbike).	

Value

Tonnes of CO2e emissions per mile travelled.

Examples

```
# Emissions for a 100 mile car journey
land_emissions(distance = 100)

# Emissions for a 100 mile motorbike journey where the motorbike is 500+cc
land_emissions(distance = 100, vehicle = "Motorbike", bike_type = "Large")
```

material_emissions

Material (and waste) emissions

Description

Material (and waste) emissions

material_emissions 35

Usage

```
material_emissions(
  glass = 0,
  board = 0,
 mixed = 0,
  paper = 0,
  fridges = 0,
  freezers = 0,
  large_electrical = 0,
  IT = 0,
  small_electrical = 0,
  alkaline_batteries = 0,
  LiIon_batteries = 0,
  NiMh_batteries = 0,
  aluminuim_cans = 0,
  aluminuim_foil = 0,
  mixed_cans = 0,
  scrap = 0,
  steel\_cans = 0,
  average = 0,
  average_film = 0,
  average_rigid = 0,
  HDPE = 0,
  LDPE = 0,
  LLDPE = 0,
  PET = 0,
  PP = 0,
  PS = 0,
  PVC = 0,
  glass_WD = 0,
 glass_waste_disposal = c("Closed-loop", "Combustion", "Landfill", "Open-loop"),
  industrial_waste = 0,
  industrial_waste_disposal = c("Combustion", "Landfill"),
  aluminuim_cans_WD = 0,
  aluminuim_foil_WD = 0,
  mixed_cans_WD = 0,
  scrap_WD = 0,
  steel\_cans\_WD = 0,
 metal_waste_disposal = c("Closed-loop", "Combustion", "Landfill", "Open-loop"),
  board_WD = 0,
  mixed_WD = 0,
  paper_WD = 0,
 paper_waste_disposal = c("Closed-loop", "Combustion", "Composting", "Landfill"),
  average_WD = 0,
  average_film_WD = 0,
  average_rigid_WD = 0,
  HDPE_WD = 0,
  LDPE_WD = 0,
  LLDPE_WD = 0,
  PET_WD = 0,
  PP_WD = 0,
  PS_WD = 0,
```

36 material_emissions

```
PVC_WD = 0,
  fridges_WD = 0,
  freezers_WD = 0,
 large_electrical_WD = 0,
  IT_WD = 0,
  small_electrical_WD = 0,
 alkaline_batteries_WD = 0,
 LiIon_batteries_WD = 0,
 NiMh_batteries_WD = 0,
 electric_waste_disposal = c("Landfill", "Open-loop"),
 aggregates = 0,
 construction_average = 0,
 asbestos = 0,
 asphalt = 0,
 bricks = 0,
  concrete = 0,
  insulation = 0,
 metals = 0,
 soils = 0,
 mineral_oil = 0,
 plasterboard = 0,
  tyres = 0,
 wood = 0,
  aggregates_WD = 0,
  construction_average_WD = 0,
  asbestos_WD = 0,
  asphalt_WD = 0,
 bricks_WD = 0,
  concrete_WD = 0,
  insulation_WD = 0,
 metals_WD = 0,
  soils_WD = 0,
 mineral_oil_WD = 0,
 plasterboard_WD = 0,
 tyres_WD = 0,
 wood_WD = 0,
 construction_waste_disposal = c("Closed-loop", "Combustion", "Composting", "Landfill",
    "Open-loop"),
  construction_units = c("kg", "tonnes"),
 metal_units = c("kg", "tonnes"),
glass_units = c("kg", "tonnes"),
 paper_units = c("kg", "tonnes"),
 plastic_units = c("kg", "tonnes"),
 electrical_units = c("kg", "tonnes")
)
```

Arguments

glass Numeric value representing the amount of glass. Default is 0.

board Numeric value indicating the weight of paperboard. Default is 0.

mixed Numeric value indicating the weight of mixed paper. Default is 0.

paper Numeric value indicating the weight of paper. Default is 0.

fridges Numeric value indicating the weight of fridges. Default is 0.

freezers Numeric value indicating the weight of freezers. Default is 0.

large_electrical

Numeric value indicating the weight of large electrical items. Default is 0.

IT Numeric value indicating the weight of IT (Information Technology) equipment. Default is 0.

. . .

small_electrical

Numeric value indicating the weight of small electrical items. Default is 0.

alkaline_batteries

Numeric value indicating the weight of alkaline batteries. Default is 0.

LiIon_batteries

Numeric value indicating the weight of Lithium-ion batteries. Default is 0.

NiMh_batteries Numeric value indicating the weight of Nickel Metal Hydride batteries. Default

is 0.

aluminuim_cans Numeric value indicating the weight of aluminum cans. Default is 0.

aluminuim_foil Numeric value indicating the weight of aluminum foil. Default is 0.

mixed_cans Numeric value indicating the weight of mixed metal cans. Default is 0.

scrap Numeric value indicating the weight of metal scrap. Default is 0.

steel_cans Numeric value indicating the weight of steel cans. Default is 0.

average Numeric value indicating the weight of average plastic. Default is 0.

Average_film Numeric value indicating the weight of average film plastic. Default is 0.

average_rigid Numeric value indicating the weight of average rigid plastic. Default is 0.

Numeric value indicating the weight of HDPE plastic. Default is 0.

LDPE Numeric value indicating the weight of LDPE plastic. Default is 0.

LLDPE Numeric value indicating the weight of LLDPE plastic. Default is 0.

PET Numeric value indicating the weight of PET plastic. Default is 0.

PP Numeric value indicating the weight of PP plastic. Default is 0.

PS Numeric value indicating the weight of PS plastic. Default is 0.

PVC Numeric value indicating the weight of PVC plastic. Default is 0.

glass_WD Numeric value representing the amount of glass waste with disposal. Default is

0.

glass_waste_disposal

Character vector specifying the waste disposal method to use for metal for calculating emissions. Possible values: "Closed-loop", "Combustion", "Landfill", "Open-loop". Default is "Closed-loop". See details for more information.

industrial_waste

Numeric value representing the amount of household residual waste. Default is \emptyset .

 $industrial_waste_disposal$

Character vector specifying the waste disposal method to use for metal for calculating emissions. Possible values: "Combustion", "Landfill". Default is "Combustion". See details for more information.

aluminuim_cans_WD

Numeric value indicating the weight of aluminum cans disposed of using waste disposal methods. Default is 0.

aluminuim_foil_WD

Numeric value indicating the weight of aluminum foil disposed of using waste disposal methods. Default is 0.

mixed_cans_WD Numeric value indicating the weight of mixed metal cans disposed of using waste disposal methods. Default is 0.

Scrap_WD Numeric value indicating the weight of metal scrap disposed of using waste disposal methods. Default is 0.

steel_cans_WD Numeric value indicating the weight of steel cans disposed of using waste disposal methods. Default is 0.

metal_waste_disposal

Character vector specifying the waste disposal method to use for metal for calculating emissions. Possible values: "Closed-loop", "Combustion", "Landfill", "Open-loop". Default is "Closed-loop". See details for more information.

Numeric value indicating the weight of paperboard disposed of using waste disposal methods. Default is 0.

Numeric value indicating the weight of mixed paper disposed of using waste disposal methods. Default is 0.

paper_WD Numeric value indicating the weight of paper disposed of using waste disposal methods. Default is 0.

paper_waste_disposal

Character vector specifying the waste disposal method for paper to use for calculating emissions. Possible values: "Closed-loop", "Combustion", "Composting", "Landfill". Default is "Closed-loop". See details for more information.

average_WD Numeric value indicating the weight of average plastic disposed of using waste disposal methods. Default is 0.

average_film_WD

Numeric value indicating the weight of average film plastic disposed of using waste disposal methods. Default is 0.

average_rigid_WD

Numeric value indicating the weight of average rigid plastic disposed of using waste disposal methods. Default is θ .

HDPE_WD Numeric value indicating the weight of HDPE plastic disposed of using waste disposal methods. Default is 0.

LDPE_WD Numeric value indicating the weight of LDPE plastic disposed of using waste disposal methods. Default is 0.

LLDPE_WD Numeric value indicating the weight of LLDPE plastic disposed of using waste disposal methods. Default is 0.

PET_WD Numeric value indicating the weight of PET plastic disposed of using waste disposal methods. Default is 0.

PP_WD Numeric value indicating the weight of PP plastic disposed of using waste disposal methods. Default is 0.

PS_WD Numeric value indicating the weight of PS plastic disposed of using waste disposal methods. Default is 0.

PVC_WD Numeric value indicating the weight of PVC plastic disposed of using waste disposal methods. Default is 0.

fridges_WD Numeric value indicating the weight of fridges disposed of using waste disposal methods. Default is 0.

freezers_WD Numeric value indicating the weight of freezers disposed of using waste disposal

methods. Default is 0.

large_electrical_WD

Numeric value indicating the weight of large electrical items disposed of using waste disposal methods. Default is 0.

waste disposal methods. Default is v

IT_WD Numeric value indicating the weight of IT equipment disposed of using waste

disposal methods. Default is 0.

small_electrical_WD

Numeric value indicating the weight of small electrical items disposed of using waste disposal methods. Default is \emptyset .

alkaline_batteries_WD

Numeric value indicating the weight of alkaline batteries disposed of using waste disposal methods. Default is 0.

LiIon_batteries_WD

Numeric value indicating the weight of Lithium-ion batteries disposed of using waste disposal methods. Default is 0.

NiMh_batteries_WD

Numeric value indicating the weight of Nickel Metal Hydride batteries disposed of using waste disposal methods. Default is \emptyset .

electric_waste_disposal

Character vector specifying the waste disposal method for electrical items to use for calculating emissions. Possible values: "Landfill", "Open-loop". Default is "Landfill". See details for more information.

construction_average

The weight of average material used in construction. Default is 0.

asbestos The weight of asbestos used in construction. Default is 0.

The weight of asphalt used in construction. Default is 0.

The weight of bricks used in construction. Default is 0.

The weight of concrete used in construction. Default is 0.

insulation The weight of insulation material used in construction. Default is 0.

metals The weight of metals used in construction. Default is \emptyset . soils The weight of soils used in construction. Default is \emptyset . The weight of mineral oil used in construction. Default is \emptyset .

plasterboard The weight of plasterboard used in construction. Default is 0.

tyres The weight of tyres used in construction. Default is 0.

wood The weight of wood used in construction. Default is 0.

aggregates_WD $\;\;$ The weight of aggregates disposed of as waste. Default is 0.

construction_average_WD

The weight of average material disposed of as waste. Default is θ .

asbestos_WD The weight of asbestos disposed of as waste. Default is 0.

asphalt_WD The weight of asphalt disposed of as waste. Default is 0.

bricks_WD The weight of bricks disposed of as waste. Default is 0.

concrete_WD The weight of concrete disposed of as waste. Default is 0.

insulation_WD The weight of insulation material disposed of as waste. Default is 0.

metals_WD The weight of metals disposed of as waste. Default is 0.

soils_WD The weight of soils disposed of as waste. Default is 0.

mineral_oil_WD The weight of mineral oil disposed of as waste. Default is 0. plasterboard_WD

The weight of plasterboard disposed of as waste. Default is 0.

tyres_WD The weight of tyres disposed of as waste. Default is 0. wood_WD The weight of wood disposed of as waste. Default is 0.

construction_waste_disposal

Character vector specifying the waste disposal method for electrical items to use for calculating emissions. Options are, "Closed-loop", "Combustion", "Composting", "Landfill", "Open-loop". Default is "Closed-loop". Note that: "Closed-loop" is valid for aggregates, average, asphalt, concrete, insulation, metal, soils, mineral oil, plasterboard, tyres, and wood. "Combustion" is valid for average, mineral oil, and wood. "Composting" is valid for wood only. "Landfill" is valid for everything except average, mineral oil, and tyres. "Open-loop" is valid for aggregates, average, asphalt, bricks, concrete, If one of these is used for a value that does not provide it, then an "NA" is given.

construction_units

Character vector specifying the units of the emissions related to construction. Possible values: "kg", "tonnes". Default is "kg".

metal_units Character vector specifying the units of the emissions related to metal. Possible

values: "kg", "tonnes". Default is "kg".

glass_units Character vector specifying the units of the emissions related to glass. Possible

values: "kg", "tonnes". Default is "kg".

paper_units Character vector specifying the units of the emissions related to paper. Possible

values: "kg", "tonnes". Default is "kg".

plastic_units Character vector specifying the units of the emissions related to plastic materi-

als. Possible values: "kg", "tonnes". Default is "kg".

electrical_units

Character vector specifying the units of the emissions related to electrical materials. Possible values: "kg", "tonnes". Default is "kg".

Details

*_waste_disposal methods: "Open-loop" is the process of recycling material into other products. "Closed-loop" is the process of recycling material back into the same product. "Combustion" energy is recovered from the waste through incineration and subsequent generation of electricity. "Compost" CO2e emitted as a result of composting a waste stream. "Landfill" the product goes to landfill after use. "Anaerobic digestion" energy is recovered from the waste through anaerobic digestion.

Value

The calculated household emissions as a numeric value in tonnes.

Examples

```
material_emissions(glass = 100, glass_WD = 10, glass_units = "kg")
```

metal_emissions 41

metal_emissions

Metal Emissions

Description

This function calculates the emissions produced from different metal sources based on the specified inputs. It considers emissions from primary material production and waste disposal of various metal types.

Usage

```
metal_emissions(
   aluminuim_cans = 0,
   aluminuim_foil = 0,
   mixed_cans = 0,
   scrap = 0,
   steel_cans = 0,
   aluminuim_cans_WD = 0,
   aluminuim_foil_WD = 0,
   mixed_cans_WD = 0,
   scrap_WD = 0,
   steel_cans_WD = 0,
   steel_cans_WD = 0,
   vaste_disposal = c("Closed-loop", "Combustion", "Landfill", "Open-loop"),
   units = c("kg", "tonnes")
)
```

Arguments

waste_disposal

aluminuim_cans Numeric value indicating the weight of aluminum cans. Default is 0. aluminuim_foil Numeric value indicating the weight of aluminum foil. Default is 0. mixed_cans Numeric value indicating the weight of mixed metal cans. Default is 0. Numeric value indicating the weight of metal scrap. Default is 0. scrap Numeric value indicating the weight of steel cans. Default is 0. steel_cans aluminuim_cans_WD Numeric value indicating the weight of aluminum cans disposed of using waste disposal methods. Default is 0. aluminuim_foil_WD Numeric value indicating the weight of aluminum foil disposed of using waste disposal methods. Default is 0. mixed_cans_WD Numeric value indicating the weight of mixed metal cans disposed of using waste disposal methods. Default is 0. Numeric value indicating the weight of metal scrap disposed of using waste scrap_WD disposal methods. Default is 0. steel_cans_WD Numeric value indicating the weight of steel cans disposed of using waste disposal methods. Default is 0.

Character vector specifying the waste disposal method to use for calculating

emissions. Possible values: "Closed-loop", "Combustion", "Landfill", "Open-loop". Default is "Closed-loop". "Open-loop" is the process of recycling material into other products. "Closed-loop" is the process of recycling material

42 office_emissions

back into the same product. "Combustion" energy is recovered from the waste through incineration and subsequent generation of electricity. "Landfill" the product goes to landfill after use.

product goes to fanding as

units Character vector specifying the units of the emissions output. Possible values:

"kg", "tonnes". Default is "kg".

Value

The function returns the calculated CO2-equivalent emissions as a numeric value in tonnes.

Examples

```
metal_emissions(aluminuim_cans = 1.4, units = "tonnes")
```

office_emissions

Office emissions

Description

Office emissions

Usage

```
office_emissions(
  specify = FALSE,
  office_num = 1,
  WFH_num = 0,
  WFH_hours = 0,
  WFH_type = c("Office Equipment", "Heating"),
  water_supply = 0,
  water_trt = TRUE,
  water_unit = c("cubic metres", "million litres"),
  electricity_kWh = 0,
  electricity_TD = TRUE,
  electricity_WTT = TRUE,
  heat_kWh = 0,
  heat_TD = TRUE,
  heat_WTT = TRUE
)
```

Arguments

specify	logical. Whether an average should be used, or if the amount of energy used will be specified.
office_num	If specify = FALSE, the number of individuals in the office.
WFH_num	Number of people working from home.
WFH_hours	Number of hours working from home (per individual).
WFH_type	Whether to account for "Office Equipment" and/or "Heating". Default is both.
water_supply	Amount of water used in the office.

output_display 43

water_trt	logical. Default TRUE. Whether to include emissions associated with water treatment for used water.	
water_unit	Unit for water_supply variable. Options are "cubic metres" or "million	
	litres".	
electricity_kWh		
	Electricity used in kWh.	
electricity_TD	logical. Default TRUE. Whether to include emissions associated with grid losses.	
electricity_WTT		
	logical. Default TRUE. Whether to include emissions associated with extracting, refining, and transporting fuels.	
heat_kWh	heat and steam used in kWh.	
heat_TD	logical. Default TRUE. Whether to include emissions associated with grid losses.	
heat_WTT	logical. Default TRUE. Whether to include emissions associated with extracting, refining, and transporting fuels.	

Value

Returns CO2e emissions in tonnes.

References

Descriptions from 2022 UK Government Report: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2022

Examples

output_display

Display a grid of plots and tables

Description

This function generates a grid of plots and tables, including a value box, data table, relative GPI plot, and total output plot.

```
output_display(
  data = x$data,
  time = time,
  date_format = c("%d/%m/%Y"),
  name = theatre,
  relative_gpi_val = emissions,
  gti_by = c("default", "month", "year"),
  plot_val = carbon_price_credit,
  plot_by = "default",
  pdf = TRUE
)
```

44 paper_emissions

Arguments

data The data frame containing the data. time The variable representing the time dimension. date_format The date format for the time variable (optional, default: "%d/%m/%Y"). name The variable representing the grouping variable. relative_gpi_val The variable representing the relative GPI (Growth to Previous Index) value. The grouping type for calculating the GTI ("default", "month", "year"). gti_by plot_val The variable to plot in the total output plot. The grouping type for the total output plot ("default", "month", "year"). plot_by

Whether to export the plots to a PDF file (default: TRUE).

Details

pdf

The function utilises other auxiliary functions such as relative_gti() and total_output().

Value

A grid of plots and tables showing the value box, data table, relative GPI plot, and total output plot.

paper_emissions Paper Emissions

Description

This function calculates the emissions produced from different paper sources based on the specified inputs. It considers emissions from primary material production and waste disposal of paper materials.

```
paper_emissions(
  board = 0,
  mixed = 0,
  paper = 0,
  board_WD = 0,
  mixed_WD = 0,
  paper_WD = 0,
  waste_disposal = c("Closed-loop", "Combustion", "Composting", "Landfill"),
  units = c("kg", "tonnes")
)
```

plastic_emissions 45

Arguments

board	Numeric value indicating the weight of paperboard. Default is 0.
mixed	Numeric value indicating the weight of mixed paper. Default is 0.
paper	Numeric value indicating the weight of paper. Default is 0.
board_WD	Numeric value indicating the weight of paperboard disposed of using waste disposal methods. Default is \emptyset .
mixed_WD	Numeric value indicating the weight of mixed paper disposed of using waste disposal methods. Default is 0.
paper_WD	Numeric value indicating the weight of paper disposed of using waste disposal methods. Default is \emptyset .
waste_disposal	Character vector specifying the waste disposal method to use for calculating emissions. Possible values: "Closed-loop", "Combustion", "Composting", "Landfill". Default is "Closed-loop". "Closed-loop" is the process of recycling material back into the same product. "Combustion" energy is recovered from the waste through incineration and subsequent generation of electricity. "Compost" CO2e emitted as a result of composting a waste stream. "Landfill" the product goes to landfill after use.
units	Character vector specifying the units of the emissions output. Possible values: "kg", "tonnes". Default is "kg".

Value

The function returns the calculated paper emissions as a numeric value in tonnes.

Examples

```
paper_emissions(board = 10, board_WD = 10, paper = 100, paper_WD = 100, units = "kg")
```

plastic_emissions

Calculate Plastic Emissions

Description

This function calculates the emissions produced from different plastic sources based on the specified inputs. It considers emissions from primary material production and waste disposal of plastic materials.

```
plastic_emissions(
  average = 0,
  average_film = 0,
  average_rigid = 0,
  HDPE = 0,
  LDPE = 0,
  LLDPE = 0,
  PET = 0,
  PP = 0,
  PS = 0,
```

46 plastic_emissions

```
PVC = 0,
    average_WD = 0,
    average_film_WD = 0,
    average_rigid_WD = 0,
    HDPE_WD = 0,
    LDPE_WD = 0,
    LLDPE_WD = 0,
    PET_WD = 0,
    PET_WD = 0,
    PS_WD = 0,
    PVC_WD = 0,
    units = c("kg", "tonnes")
)
```

Arguments

LDPE_WD

	,	
	average	Numeric value indicating the weight of average plastic. Default is 0.
	average_film	Numeric value indicating the weight of average film plastic. Default is 0.
	average_rigid	Numeric value indicating the weight of average rigid plastic. Default is 0.
	HDPE	Numeric value indicating the weight of HDPE plastic. Default is 0.
	LDPE	Numeric value indicating the weight of LDPE plastic. Default is 0.
	LLDPE	Numeric value indicating the weight of LLDPE plastic. Default is 0.
	PET	Numeric value indicating the weight of PET plastic. Default is 0.
	PP	Numeric value indicating the weight of PP plastic. Default is 0.
	PS	Numeric value indicating the weight of PS plastic. Default is 0.
	PVC	Numeric value indicating the weight of PVC plastic. Default is 0.
	average_WD	Numeric value indicating the weight of average plastic disposed of using waste disposal methods. Default is \emptyset .
average_film_WD		
		Numeric value indicating the weight of average film plastic disposed of using waste disposal methods. Default is θ .
average_rigid_WD		
		Numeric value indicating the weight of average rigid plastic disposed of using waste disposal methods. Default is 0.
	HDPE_WD	Numeric value indicating the weight of HDPE plastic disposed of using waste

Numeric value indicating the weight of LLDPE plastic disposed of using waste disposal methods. Default is 0.

Numeric value indicating the weight of LDPE plastic disposed of using waste

PET_WD Numeric value indicating the weight of PET plastic disposed of using waste

disposal methods. Default is 0.

disposal methods. Default is 0.

disposal methods. Default is 0.

PP_WD Numeric value indicating the weight of PP plastic disposed of using waste dis-

posal methods. Default is \emptyset .

PS_WD Numeric value indicating the weight of PS plastic disposed of using waste dis-

posal methods. Default is 0.

PVC_WD Numeric value indicating the weight of PVC plastic disposed of using waste

disposal methods. Default is 0.

rail_emissions 47

units Character vector specifying the units of the emissions output. Possible values: "kg", "tonnes". Default is "kg".

Value

The calculated plastic emissions as a numeric value in tonnes.

Examples

```
# Calculate plastic emissions using default values
plastic_emissions()

# Calculate plastic emissions with specific quantities and waste disposal
# method
plastic_emissions(average = 100, HDPE = 50, PET = 25, units = "tonnes")
```

rail_emissions

Calculate CO2e emissions from a train journey

Description

A function that calculates CO2e emissions between train stations in the UK.

Usage

```
rail_emissions(
  from = NULL,
  to = NULL,
  via = NULL,
  distance = 0,
  num_people = 1,
  times_journey = 1,
  include_WTT = TRUE,
  round_trip = FALSE
)
```

Arguments

from	Station departing from.
to	Station arriving to
via	Optional. Takes a vector containing the stations the train travels via.
distance	Distance travelled in kilometres (default \emptyset . Ignored if values are given in from and to).
num_people	Number of people taking the journey. Takes a single numerical value.
times_journey	Number of times the journey is taken.
include_WTT	logical. Recommended TRUE. Whether to include emissions associated with extracting, refining, and transporting fuels.
round_trip	Whether the journey is one-way or return.

48 rail_finder

Details

The distances are calculated using the Haversine formula. This is calculated as the crow flies. As a result, inputting the "via" journeys will make for a more reliable function.

Value

Returns CO2e emissions in tonnes for the train journey.

Examples

```
# Emissions for a train journey between Southampton Central and
# Manchester Piccadilly Station
rail_emissions("Southampton Central", "Manchester Piccadilly")

# Emissions for a train journey between Bristol Temple Meads and
# London Paddington via Bath, Swindon, and Reading
# Use the \code{rail_finder} function to find the name of London Paddington
rail_finder(region = "London")
# Then calculate emissions
rail_emissions("Bristol Temple Meads", "Paddington", via = c("Bath Spa",
"Swindon", "Reading"))
# Alternatively state the distance of a journey
rail_emissions(distance = 100)
```

rail_finder

Find the station code for a train station

Description

Find the name, area, and code of a train station in the UK. For use in the rail_emissions function.

Usage

```
rail_finder(
   station,
   region,
   county,
   district,
   station_code,
   distance = 0.1,
   ignore.case = FALSE
)
```

Arguments

station Name of train station.

Region the train station is in. One of c("London", "Scotland", "Wales Cymru", "North West", "West Midlands", "North East", "East", "South East",
"East Midlands", "Yorkshire And The Humber", "South West", NA).

County
County the train station is in.

district District the train station is in.

station_code Code of the train station.

distance Maximum distance allowed for a match between the name/country/city given, and that of the value in the data set.

ignore.case If FALSE, the check for is case-sensitive. If TRUE, case is ignored.

Value

Data frame containing the station code, station name, region, county, district, latitude, and longitude of a train station in the UK.

Examples

```
# Can get the station code from the station. Gets similar matches.
rail_finder(station = "Bristo")

# Can get the code from the station and city.
rail_finder(station = "Bristo", county = "Bristol")

# Can find the name and district of a train station given the IATA code
rail_finder(station_code = "BRI")
```

raw_fuels

Raw Fuels Emissions

Description

Raw Fuels Emissions

```
raw_fuels(
 num_people = 1,
 butane = 0,
 CNG = 0,
 LPG = 0,
 LNG = 0,
 natural_gas = 0,
 natural_gas_mineral = 0,
 other_petroleum_gas = 0,
 propane = 0,
 aviation = 0,
 aviation_fuel = 0,
 burning_oil = 0,
 diesel = 0,
 diesel_mineral = 0,
 fuel_oil = 0,
 gas_oil = 0,
 lubricants = 0,
 naptha = 0,
 petrol_biofuel = 0,
```

```
petrol_mineral = 0,
residual_oil = 0,
distillate = 0,
refinery_miscellaneous = 0,
waste_oils = 0,
marine_gas = 0,
marine_fuel = 0,
coal_industrial = 0,
coal_electricity_gen = 0,
coal_domestic = 0,
coking_coal = 0,
petroleum_coke = 0,
coal_home_produced_gen = 0,
bioethanol = 0,
biodiesel = 0,
biomethane = 0,
biodiesel_cooking_oil = 0,
biodiesel_tallow = 0,
biodiesel_HVO = 0,
biopropane = 0,
bio_petrol = 0,
renewable_petrol = 0,
wood_log = 0,
wood\_chips = 0,
wood_pellets = 0,
grass = 0,
biogas = 0,
landfill_gas = 0,
butane_units = c("kwh", "litres", "tonnes"),
CNG_units = c("kwh", "litres", "tonnes"),
LPG_units = c("kwh", "litres", "tonnes"),
LNG_units = c("kwh", "litres", "tonnes"),
natural_gas_units = c("kwh", "cubic metres", "tonnes"),
natural_gas_mineral_units = c("kwh", "cubic metres", "tonnes"),
other_petroleum_gas_units = c("kwh", "litres", "tonnes"),
propane_units = c("kwh", "litres", "tonnes"),
aviation_units = c("kwh", "litres", "tonnes"),
aviation_fuel_units = c("kwh", "litres", "tonnes"),
burning_oil_units = c("kwh", "litres", "tonnes"),
diesel_units = c("kwh", "litres", "tonnes"),
diesel_mineral_units = c("kwh", "litres", "tonnes"),
fuel_oil_units = c("kwh", "litres", "tonnes"),
gas_oil_units = c("kwh", "litres", "tonnes"),
lubricants_units = c("kwh", "litres", "tonnes"),
naptha_units = c("kwh", "litres", "tonnes"),
petrol_biofuel_units = c("kwh", "litres", "tonnes"),
petrol_mineral_units = c("kwh", "litres", "tonnes"),
residual_oil_units = c("kwh", "litres", "tonnes"),
distillate_units = c("kwh", "litres", "tonnes"),
refinery_miscellaneous_units = c("kwh", "litres", "tonnes"),
waste_oils_units = c("kwh", "tonnes"),
marine_gas_units = c("kwh", "tonnes"),
```

```
marine_fuel_units = c("kwh", "tonnes"),
 coal_industrial_units = c("kwh", "tonnes"),
 coal_electricity_gen_units = c("kwh", "tonnes"),
 coal_domestic_units = c("kwh", "tonnes"),
 coking_coal_units = c("kwh", "tonnes"),
 petroleum_coke_units = c("kwh", "tonnes"),
 coal_home_produced_gen_units = c("kwh", "tonnes"),
 bioethanol_units = c("litres", "GJ", "kg"),
 biodiesel_units = c("litres", "GJ", "kg"),
 biomethane_units = c("litres", "GJ", "kg"),
 biodiesel_cooking_oil_units = c("litres", "GJ", "kg"),
 biodiesel_tallow_units = c("litres", "GJ", "kg"),
 biodiesel_HVO_units = c("litres", "GJ", "kg"),
 biopropane_units = c("litres", "GJ", "kg"),
 bio_petrol_units = c("litres", "GJ", "kg"),
 renewable_petrol_units = c("litres", "GJ", "kg"),
 wood_log_units = c("kwh", "tonnes"),
 wood_chips_units = c("kwh", "tonnes"),
 wood_pellets_units = c("kwh", "tonnes"),
 grass_units = c("kwh", "tonnes"),
 biogas_units = c("kwh", "tonnes").
 landfill_gas_units = c("kwh", "tonnes")
)
```

Arguments

num_people Number of people to account for.

butane amount of Butane used.

CNG amount used. Compressed natural gas (CNG). A compressed version of the

natural gas used in homes. An alternative transport fuel.

LPG amount used. Liquid petroleum gas. Used to power cooking stoves or heaters

off-grid and fuel some vehicles (e.g. fork-lift trucks and vans).

LNG amount used. Liquefied natural gas. An alternative transport fuel.

natural_gas amount used. Standard natural gas received through the gas mains grid network

in the UK.

natural_gas_mineral

amount used. Natural gas (100% mineral blend) factor is natural gas not obtained through the grid and therefore does not contain any biogas content. It can be used for calculating bespoke fuel mixtures.

other_petroleum_gas

amount used. Consists mainly of ethane, plus other hydrocarbons, (excludes

butane and propane).

propane amount used.

aviation amount used. Fuel for piston-engined aircraft - a high octane petrol (aka AV-

GAS).

aviation_fuel amount used. Fuel for turbo-prop aircraft and jets (aka jet fuel). Similar to

kerosene used as a heating fuel, but refined to a higher quality.

burning_oil amount used. Main purpose is for heating/lighting on a domestic scale (also

known as kerosene).

diesel amount used. Standard diesel bought from any local filling station (across the board forecourt fuel typically contains biofuel content). diesel_mineral amount used. Diesel that has not been blended with biofuel (non-forecourt diesel). fuel_oil amount used. Heavy oil used as fuel in furnaces and boilers of power stations, in industry, for industrial heating and in ships. amount used. Medium oil used in diesel engines and heating systems (also gas_oil known as red diesel). lubricants amount used. Waste petroleum-based lubricating oils recovered for use as fuels amount used. A product of crude oil refining - often used as a solvent. naptha petrol_biofuel amount used. Standard petrol bought from any local filling station (across the board forecourt fuel typically contains biofuel content). petrol_mineral amount used. Petrol that has not been blended with biofuel (non forecourt petrol). residual_oil amount used. Waste oils meeting the 'residual' oil definition contained in the 'Processed Fuel Oil Quality Protocol'. amount used. Waste oils meeting the 'distillate' oil definition contained in the distillate 'Processed Fuel Oil Quality Protocol'. refinery_miscellaneous amount used. Includes aromatic extracts, defoament solvents and other minor miscellaneous products amount used. Recycled oils outside of the 'Processed Fuel Oil Quality Protocol' waste_oils definitions. amount used. Distillate fuels are commonly called "Marine gas oil". Distilmarine_gas late fuel is composed of petroleum fractions of crude oil that are separated in a refinery by a boiling or "distillation" process. amount used. Residual fuels are called "Marine fuel oil". Residual fuel or marine_fuel "residuum" is the fraction that did not boil, sometimes referred to as "tar" or "petroleum pitch". coal_industrial amount used. Coal used in sources other than power stations and domestic use. coal_electricity_gen amount used. Coal used in power stations to generate electricity. amount used. Coal used domestically. coal_domestic amount used. Coke may be used as a heating fuel and as a reducing agent in a coking_coal blast furnace. petroleum_coke amount used. Normally used in cement manufacture and power plants. coal_home_produced_gen amount used. Coal used in power stations to generate electricity (only for coal produced in the UK). bioethanol amount used. Renewable fuel derived from common crops (such as sugar cane and sugar beet). biodiesel amount used. Renewable fuel almost exclusively derived from common natural oils (for example, vegetable oils). biomethane amount used. The methane constituent of biogas. Biogas comes from anaerobic digestion of organic matter.

biodiesel_cooking_oil amount used. Renewable fuel almost exclusively derived from common natural oils (such as vegetable oils). biodiesel_tallow amount used. Renewable fuel almost exclusively derived from common natural oils (such as vegetable oils). biodiesel_HVO amount used. amount used. biopropane bio_petrol amount used. renewable_petrol amount used. wood_log amount used. wood_chips amount used. wood_pellets amount used. Compressed low quality wood (such as sawdust and shavings) made into pellet form amount used. grass biogas amount used. A naturally occurring gas from the anaerobic digestion of organic materials (such as sewage and food waste), or produced intentionally as a fuel from the anaerobic digestion of biogenic substances (such as energy crops and agricultural residues). landfill_gas amount used. Gas collected from a landfill site. This may be used for electricity generation, collected and purified for use as a transport fuel, or be flared off butane_units units that the gas is given in. Options are "tonnes", "litres", "kwh". units that the gas is given in. Options are "tonnes", "litres", "kwh". CNG_units units that the gas is given in. Options are "tonnes", "litres", "kwh". LPG_units units that the gas is given in. Options are "tonnes", "litres", "kwh". LNG_units natural_gas_units units that the gas is given in. Options are "tonnes", "cubic metres", "kwh". natural_gas_mineral_units units that the gas is given in. Options are "tonnes", "cubic metres", "kwh". other_petroleum_gas_units units that the gas is given in. Options are "tonnes", "litres", "kwh". units that the gas is given in. Options are "tonnes", "litres", "kwh". propane_units aviation_units units that the fuel is given in. Options are "tonnes", "litres", "kwh". aviation_fuel_units units that the fuel is given in. Options are "tonnes", "litres", "kwh". burning_oil_units units that the fuel is given in. Options are "tonnes", "litres", "kwh". diesel_units units that the fuel is given in. Options are "tonnes", "litres", "kwh". diesel mineral units units that the fuel is given in. Options are "tonnes", "litres", "kwh". fuel_oil_units units that the fuel is given in. Options are "tonnes", "litres", "kwh". gas_oil_units units that the fuel is given in. Options are "tonnes", "litres", "kwh".

units that the fuel is given in. Options are "tonnes", "kwh".

lubricants_units

```
naptha_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
petrol_biofuel_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
petrol_mineral_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
residual_oil_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
distillate_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
refinery_miscellaneous_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
waste_oils_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
marine_gas_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
marine_fuel_units
                  units that the fuel is given in. Options are "tonnes", "litres", "kwh".
coal_industrial_units
                  units that the fuel is given in. Options are "kwh", "tonnes".
coal_electricity_gen_units
                  units that the fuel is given in. Options are "kwh", "tonnes".
coal_domestic_units
                  units that the fuel is given in. Options are "kwh", "tonnes".
coking_coal_units
                  units that the fuel is given in. Options are "kwh", "tonnes".
petroleum_coke_units
                  units that the fuel is given in. Options are "kwh", "tonnes".
coal_home_produced_gen_units
                  units that the fuel is given in. Options are "kwh", "tonnes".
bioethanol_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
biodiesel_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
biomethane_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
biodiesel_cooking_oil_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
biodiesel_tallow_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
biodiesel_HVO_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
biopropane_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
bio_petrol_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
renewable_petrol_units
                  units that the biofuel is given in. Options are "litres", "GJ", "kg".
```

Details

This function calculates CO2e emissions from a wide variety of fuels, considering different unit conversions for each type of fuel. It supports the calculation of emissions from commonly used fuels such as diesel, petrol, natural gas, and biodiesel, as well as more specific fuels like aviation fuel, marine fuel, and landfill gas.

Unit conversions are done internally based on the specified units for each type of fuel (e.g., kWh, litres, tonnes). The function is useful for assessing the carbon footprint associated with different fuel sources over a specified time period.

Value

A data frame with calculated emissions in tonnes of CO2e for each type of fuel input.

References

- DEFRA Conversion Factors for Greenhouse Gas (GHG) Reporting: https://www.gov.uk/government/collections/goconversion-factors-for-company-reporting
- Descriptions from 2021 UK Government Report: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2021

Examples

```
# Calculate emissions for 100 litres of diesel and 500 kWh of natural gas:
raw_fuels(
    diesel = 100, diesel_units = "litres",
    natural_gas = 500, natural_gas_units = "kwh",
)

# Calculate emissions for 10 tonnes of aviation fuel:
raw_fuels(
    aviation_fuel = 10, aviation_fuel_units = "tonnes",
)
```

56 relative_gti

relative_gti

Relative GTI Plot

Description

Calculate and plot the relative growth to index (GTI) over time

Usage

```
relative_gti(
  data = data,
  time = time,
 date_format = c("%d/%m/%Y"),
 name = theatre,
 val = emissions,
 gti_by = c("default", "month", "year")
```

Arguments

The data frame containing the data. data The variable representing the time dimension. time The date format for the time variable (optional, default: c("%d/%m/%Y")). date_format The variable representing the grouping variable. name The variable representing the value. val

gti_by The grouping type for calculating the GTI ("default", "month", "year").

Value

A ggplot2 object showing the relative GTI (Growth to Index) over time.

Examples

```
# Example dataset
emission_data <- data.frame(</pre>
 theatre = c("Theatre A", "Theatre A", "Theatre B", "Theatre B", "Theatre A", "Theatre B"),
 emissions = c(200, 250, 150, 180, 300, 220),
 \mathsf{date} = \mathsf{c}("01/01/2023", "01/02/2023", "01/01/2023", "01/02/2023", "01/03/2023", "01/03/2023")
# Using the relative_gti function
relative_gti_plot <- relative_gti(</pre>
  data = emission_data,
  time = date,
  date_format = "%d/%m/%Y", # Date format used in the dataset
 name = theatre,
  val = emissions,
  gti_by = "default" # Calculating based on default time period
# Plot the relative GTI
print(relative_gti_plot)
```

seaports 57

seaports	Dataset of different seaports	
	* **	

Description

A dataset containing the country, country code, city, city code, and coordinates of seaports

Usage

```
data(seaports)
```

Format

```
A data frame with 8736 rows and 7 variables:
```

```
country Name of the country with the port
```

city Name of the city with the port

country_code Code of the country name

port_code Code of the city port

latitude Latitude of the port

longitude Longitude of the port

Source

https://www.kaggle.com/therohk/world-seaport-airport-dataset-and-codes/script

seaport_finder	Check the code or name of a seaport	
----------------	-------------------------------------	--

Description

Find the name and/or code of a seaport. For use in the $ferry_emissions$ function.

Usage

```
seaport_finder(city, country, port_code, distance = 0.1, ignore.case = FALSE)
```

Arguments

city	Name of the city.
country	Name of the country.
port_code	Name of the port.

distance Maximum distance allowed for a match between the country/city given, and that

of the value in the data set.

ignore.case If FALSE, the check is case-sensitive. If TRUE, case is ignored.

58 stations

Value

Data frame containing the country, city, country code, port code, latitude, and longitude of a seaport.

Examples

```
# Look up the city of Aberdeen to find the port_code for it
seaport_finder(city = "Aberdeen")

# Search for a country and city and it finds matches
seaport_finder(country = "United", city = "borunemouth", ignore.case = TRUE)
```

shiny_emissions

Run 'shiny' App to Calculate Carbon Emissions

Description

Runs a GUI to the functions in the 'carbonr' package to calculate carbon-equivalent emissions.

Usage

```
shiny_emissions()
```

Value

'shiny' app to calculate carbon-equivalent emissions

Examples

```
if(interactive()){shiny_emissions()}
```

stations

Dataset of UK train stations

Description

A dataset containing the city, station code, and coordinates of seaports

```
data(stations)
```

total_output 59

Format

```
A data frame with 2608 rows and 4 variables:
```

Source

```
https://www.data.gov.uk/dataset/ff93ffc1-6656-47d8-9155-85ea0b8f2251/national-public-transport-https://www.theguardian.com/news/datablog/2011/may/19/train-stations-listed-rail#data
```

total_output

Calculate Total Output and Generate Plot

Description

This function calculates the total output and generates a plot based on the specified parameters.

Usage

```
total_output(
  data = x$data,
  time = time,
  date_format = c("%d/%m/%Y"),
  name = theatre,
  val = carbon_price_credit,
  plot_by = c("default", "month", "year")
```

Arguments

data The data frame containing the data.

time The variable representing the time dimension.

date_format The date format for the time variable (optional, default: c("%d/%m/%Y")).

name The variable representing the grouping variable.

val The variable to calculate the total output for (default: carbon_price_credit).

plot_by The grouping type for the total output plot ("default", "month", "year").

60 vehicle_emissions

Details

This function calculates the total output by grouping the data based on the specified parameters (grouping variable and time dimension). It then summarises the specified variable (CPI or emissions) using the sum function. The resulting data is used to create a line plot showing the total output over time, with each group represented by a different color. The plot can be grouped by the default grouping, month, or year, based on the plot_by parameter.

Value

A ggplot object showing the total output plot.

vehicle_emissions

Calculate CO2e emissions from land-travel journeys

Description

A function that calculates CO2e emissions on a journey on land.

Usage

```
vehicle_emissions(
    distance,
    units = c("miles", "km"),
    num = 1,
    vehicle = c("Cars", "Motorbike"),
    fuel = c("Petrol", "Diesel", "Unknown", "Battery Electric Vehicle",
        "Plug-in Hybrid Electric Vehicle", "Hybrid", "CNG", "LPG"),
    car_type = c("Average car", "Small car", "Medium car", "Large car", "Mini",
        "Supermini", "Lower medium", "Upper medium", "Executive", "Luxury", "Sports",
        "Dual purpose 4X4", "MPV"),
    bike_type = c("Average", "Small", "Medium", "Large"),
    TD = TRUE,
    include_WTT = TRUE,
    include_electricity = TRUE,
    owned_by_org = TRUE
)
```

Arguments

distance Distance in km or miles of the journey made (this can be calculated with other tools, such as google maps.). units Units for the distance travelled. Options are "km" or "miles". num Number of vehicles used. vehicle Vehicle used for the journey. Options are "Cars", "Motorbike". Fuel type used for the journey. For car, "Petrol", "Diesel", "Unknown", fuel "Battery Electric Vehicle", "Plug-in Hybrid Electric Vehicle" are options. Additionally "Hybrid" is an option if the car_type is one of "Average car", "Small car", "N Additionally "CNG" and "LPG" are options if the car_type is one of "Average car", "Medium car", Note that "Plug-in Hybrid Electric Vehicle" does not give values if car_type == "Mini" "hybrid electric" and "battery electric" account for electricity kWh emissions.

vehicle_emissions 61

car_type	Size/type of vehicle for car. Options are c("Average car", "Small car", "Medium car", "Large "Mini", "Supermini", "Lower medium", "Upper medium", "Executive", "Luxury", "Sports", "Dual purpose 4X4", "MPV"),. Small denotes up to a 1.4L engine, unless diesel which is up to 1.7L engine. Medium denotes 1.4-2.0L for petrol cars, 1.7-2.0L for diesel cars. Large denotes 2.0L+ engine.	
bike_type	Size of vehicle for motorbike. Options are "Small", "Medium", "Large", or "Average". Sizes denote upto 125cc, 125cc-500cc, 500cc+ respectively.	
TD	logical.Whether to account for transmission and distribution (TD) for electric vehicles (only car and van)	
include_WTT	logical. Well-to-tank (include_WTT) - whether to account for emissions associated with extraction, refining and transportation of the fuels (for non-electric vehicles).	
include_electricity		
	logical. Whether to account for for electric vehicles (car and van).	
owned_by_org	logical. Whether the vehicle used is owned by the organisation or not (only for car, motorbike).	

Value

Tonnes of CO2e emissions per mile travelled.

Examples

```
# Emissions for a 100 mile car journey
vehicle_emissions(distance = 100)
```

```
# Emissions for a 100 mile motorbike journey where the motorbike is 500+cc
vehicle_emissions(distance = 100, vehicle = "Motorbike", bike_type = "Large")
```

Index

* datasets	plastic_emissions, 45
airports, 5	
example_clinical_theatre, 24	rail_emissions,47
seaports, 57	rail_finder,48
stations, 58	raw_fuels,49
	relative_gti, 56
add_inputs, 3	
airplane_emissions, 4	seaport_finder, 57
airport_finder, 6	seaports, 57
airports, 5	shiny_emissions, 58
anaesthetic_emissions, 7	stations, 58
building_emissions, 8	total_output, 59
carbon_price_credit,9	vehicle_emissions, 60
carbonr, 9	
carbonr-package (carbonr), 9	
check_CPI, 10	
clinical_theatre_data, 11	
clinical_theatre_emissions, 15	
construction_emissions, 19	
degree_conversion, 21	
distance_calc, 22	
-14	
electrical_emissions, 22	
example_clinical_theatre, 24	
ferry_emissions, 25	
gg_value_box, 26	
hotel_emissions, 27	
household_emissions, 27	
import_CPI, 32	
land_emissions, 33	
meterial emissions 24	
material_emissions, 34	
metal_emissions, 41	
office_emissions, 42	
output_display, 43	
paper_emissions, 44	