

Assume $X_1, \dots, X_n \sim N(\mu, 1)$. If only the values of (1) $Z_i = LX_i J$, $i=1,\dots, m$ are available (only the integer part), (2) $Z_n = \frac{L(0X_i)J}{(0)J}$, $i=1,\dots, m$ are available (only up to the first decimal point). how the MLEs are calculated? Construct the code to compare those estimators's variance with Craner-Rao bound when whole X_i values are available.

Sol) For $Z_{\lambda} = \lfloor X_{\lambda} \rfloor$, the distribution of Z_{λ} becomes discrete. The probability mass function of Z_{λ} is calculated as follows.

$$P(Z_i=g) = P(L|X_i|\leq g) = P(X_i|X_i=g) - P(X_i|X_i=g) = \frac{1}{2}(2+1-\mu) - \frac{1}{2}(2+\mu) \quad \text{for } z\in \mathbb{Z}.$$

$$L(\mu;z_{\lambda}) = \prod_{i=1}^{n} P(Z_{\lambda}=z_{\lambda})$$

$$L(\mu) \equiv \log L(\mu;z_{\lambda}) = \sum_{i=1}^{n} \log \left(\Phi(z_{\lambda}+i|z_{\lambda}) - \Phi(z_{\lambda}-z_{\lambda}) \right)$$

$$\frac{\partial L}{\partial \mu} = \sum_{k=1}^{n} \frac{-\phi(\overline{e_{k}} + (\gamma_{k}) + \phi(\overline{e_{k}} + \gamma_{k})}{\overline{\phi}(\overline{e_{k}} + (\gamma_{k}) - \overline{\phi}(\overline{e_{k}} + \gamma_{k})}}.$$
 To find the solution of $\frac{\partial L}{\partial \mu} = 0$ iteratively.

first set $\mu_0 = Z + 0.5$. (since $E(x_i) = \mu$ and $X_i = Z_i + f(x_i)$, assume $E(f(x_i))$ to be approximately 0.5.)

Next, using the iterative relation $M = M + \left(\sum_{k=1}^{n} \frac{-\phi(\overline{\tau}_{k} + (\gamma_{k}) + \phi(\overline{\tau}_{k} - \gamma_{k})}{\overline{\phi}(\overline{\tau}_{k} + (\gamma_{k}) - \overline{\phi}(\overline{\tau}_{k} - \gamma_{k})}\right) \cdot \Delta$

 $(k \ge 1, \Delta : \text{ step size})$, solve μ numerically until it converges.

Similarly, for the case (2), we can obtain u with stightly ME-ME-1 + () - 0(72+0.17M) + 8(22-M)) . A modified relation: On the other hand, when intact information Xi (i=1...m) are provided.

MLE (and UMVUE) of μ is given as \overline{X} with the distribution

 $\times N(\mu, \frac{1}{n})$. Graner—Rao bound is calculated as follows. $(=\frac{1}{n})$

$$\times \sim N(\mu, \frac{1}{n})$$
, (romer—Rao bound is calculated as tollows. (-n)
$$\times \sim N(\mu, 1) \rightarrow f_{X}(x) = \frac{1}{\sqrt{n}} \exp\left(-\frac{(x-\mu)^{2}}{2}\right) \qquad log f_{X}(x) = -\frac{(x-\mu)^{2}}{2} - log (Iut)$$

$$= I(\lambda) = I \qquad I(\lambda) = I \qquad (\lambda I(\lambda))^{-1} = \frac{1}{\lambda}$$