On Satisficing in Quantitative Games

Suguman Bansal

University of Pennsylvania

Krishnendu Chatterjee

IST Austria

Moshe Y. Vardi

Rice University

@ TACAS 2021

Synthesis from Quantitative Constraints

Quantitative constraints

• Resource consumption, quality measures, rewards, etc

Controller with minimal battery consumption (Optimal)

 Controller ensures battery never goes below a critical threshold (good-enough)

Satisficing: To search for "good enough" solutions

- Herb A. Simons

Benefits of satisficing

Computationally Easier

Quantitative + Temporal

Amenable to combination of constraints

In this paper:

Formulate the Satisficing Problem in Quantitative Games

Approach 1: Via Optimization

• Inherits deficiencies of optimization 🕾

Approach 2: Via Automata-based methods

Demonstrates theoretical and empirical benefits

Quantitative Game

- States partitioned into two types
 - Each player owns one type of states
- Play
 - Begins in initial state
 - From each state, its player choses the next state
- Cost of a play:
 - Discounted-sum
 - For weight sequence A and discount factor d > 1,

$$DS(A,d) = A[0] + \frac{A[1]}{d} + \frac{A[2]}{d^2} + \cdots$$

Quantitative Game (cont...)

- Adversarial players
 - Max-player: To maximize cost of plays
 - Min-player: To minimize cost of plays

- Strategy for a player
 - Determines which state to go next based on the history of a play?

Satisficing Problem

- Strategies that obey a threshold
- Threshold could be a physical constraint

Satisficing Problem

Given a threshold value v,

Does the Max-Player have a strategy such that cost of all plays exceeds v?

Example: Threshold value 0.5

"Max-player wins"

Satisficing via Optimization

Optimization

- To compute the optimal cost
 - Optimal cost is when both players play optimally
 - Pseudo-polynomial time [Shapely 1950]

Satisficing via Optimization

Max-player wins iff Threshold ≤ Optimal Cost

Satisficing via Optimization: Drawbacks

- Same worst-case complexity as optimization
 - No improvement in complexity

- Unsound for Satisficing + Temporal Goals
 - Satisficing threshold: 0.5
 - Temporal goal: Visit v_1

So far on Satisficing

- Satisficing via Optimization
 - No complexity improvement over optimization
 - Unsound with temporally extended goals
- Quantitative + Qualitative goals is challenging [Kwiatkowska, FSE 2006]
 - Inherent incompatibility of techniques
 - Quantitative uses numerical methods
 - Qualitative uses automata-based methods
- Satisficing via an automata-based method?
 - Eliminate the incompatibility!

Comparison is the fundamental operation

Max-player wins

If cost of plays exceeds v

 $\equiv DS(A,d) > v$, where A is weight-sequence of a play

How to perform comparison?

Comparator automata

[Bansal, Chaudhuri, and Vardi. FoSSaCS 2018; Bansal et. al. CAV 2018; Bansal and Vardi, CAV 2019]

- Weight sequences are infinite-length words
 - Finite alphabet $\Sigma = \{-\mu, ..., \mu\}$ for integer $\mu > 0$

```
Given, discount factor d>1 equality or inequality relation R\in\{\leq,<,\geq,>,\neq,=\} integer \mu>0
```

Comparator automata (comparator) accepts $A \in \Sigma^{\omega}$ iff $DS(A, d) \mathbb{R} \setminus 0$

Comparator is ω -regular iff the discount factor is an integer

For integer discount factors,

Comparator is a deterministic safety/co-safety automata with $O(\mu)$ states

Satisficing via Comparators

Max-player wins

If cost of plays exceeds 0

- $\equiv DS(A,d) > 0$, where A is weight-sequence of a play
- When the discount factor is an integer
- $\equiv A$ is accepted by a comparator for >
- **≡** Comparator for > captures winning condition
- **≡** Safety/co-safety automata captures winning condition

Satisficing via Comparators: Reduction

Threshold value 0

Integer d>1Maximum of absolute value of weights μ

Deterministic safety/co-safety automata for Comparator for d, μ, R

Satisficing via Comparators: Reduction

Threshold value 0

Integer d>1Maximum of absolute value of weights μ

Deterministic safety/co-safety automata for Comparator for d, μ, R

Comparator automata with arbitrary thresholds

- Comparator automata (comparator) for d, R, μ , ν
 - Rational value v
 - Accepts weight sequence $A \in \Sigma^{\omega}$ iff DS(A, d) R v

Comparator is ω -regular iff the discount factor is an integer

Comparator for an integer discount factor is a deterministic safety/co-safety automata with $O(\mu \cdot n)$ states where n is a parameter in v

- Rational number has a lasso-word representation
- Product of comparator with lasso-word for threshold doesn't work
 - Transition on a × Transition on b → Transition on a+b?
 - Distorts the alphabet from $\{-\mu, ..., \mu\}$ to $\{-\mu + k ..., \mu + k\}$

Satisficing via Comparators: Algorithm

For integer discount factors d > 1,

- 1. Satisficing reduces to solving a safety/reachability game
- 2. Satisficing takes $O\big((|V|+|E|)\cdot \mu\cdot n\big)$ where threshold v has an n-bit representation

Optimization vs Comparators - I

300 benchmarks created from suite of LTLf benchmarks

Optimization: \sim 140/300

Comparator: ~ 285/300

Optimization vs Comparators - II

Winning in Parity Game iff
Exists satisficing strategy that satisfies the LTL formula

In a nutshell

On Satisficing in Quantitative Games

- Satisficing is an effective alternative to optimization
- Comparator-based approach is scalable, efficient, has broad applicability
- Fractional discount factors [Ongoing work]
 - Comparators for (additive) approximations of DS
 - Applications in planning under adversarial domains
- Algorithmic improvements: Leverage progress in qualitative reasoning
- Satisficing in other domains: MDPs, w/o partial information

Back-up slides

Optimization vs Comparators - III

Optimization-based

- Value Iteration
- Early-termination Heuristic

Comparator-based exhibits robust performance

