Disponibilize os códigos gerados, assim como os artefatos acessórios (requirements.txt) e instruções em um repositório GIT público. (se isso não for feito, o diretório com esses arquivos deverá ser enviado compactado no moodle).

Repositório do Projeto

```
In []: # Carregamento e Análise Inicial da Base de Dados
# Atende aos requisitos de "Escolha de base de dados" e "Realizar modelos de
import pandas as pd

df = pd.read_csv('nics-firearm-background-checks.csv')
df.head()
```

Out[]:		month	state	permit	permit_recheck	handgun	long_gun	other	multiple	i
	0	2023- 09	Alabama	10342.0	145.0	15421.0	12848.0	1156.0	1052	
	1	2023- 09	Alaska	188.0	10.0	2429.0	2543.0	262.0	197	
	2	2023- 09	Arizona	9113.0	2014.0	14398.0	8239.0	1575.0	931	
	3	2023- 09	Arkansas	2139.0	181.0	5645.0	6108.0	437.0	466	
	4	2023- 09	California	28611.0	15559.0	33792.0	20548.0	4295.0	0	

5 rows × 27 columns

```
In [ ]: # Visualização da Faixa Dinâmica das Variáveis
# Atende ao requisito de "Realizar modelos de clusterização avançados usando
import matplotlib.pyplot as plt
```

```
df[['handgun', 'long_gun', 'other', 'totals']].plot(kind='box')
plt.show()
```



```
In [ ]: # Pré-processamento dos Dados
        # Atende ao requisito de "Realizar modelos de clusterização avançados usando
        from sklearn.preprocessing import StandardScaler
        df clean = df[['handgun', 'long_gun', 'other', 'totals']].dropna()
        scaler = StandardScaler()
        df scaled = scaler.fit transform(df clean)
In [ ]: # Determinação do Número Ótimo de Clusters com K-Médias Usando Índice de Sil
        # Atende ao requisito de "Mensurar a qualidade de modelos de clusterização":
        from sklearn.cluster import KMeans
        from sklearn.metrics import silhouette score
        # Exemplo com 3 clusters
        kmeans = KMeans(n clusters=3, random state=0).fit(df scaled)
        silhouette kmeans = silhouette score(df scaled, kmeans.labels )
        print("Índice de Silhueta para K-Médias:", silhouette kmeans)
       /home/marcelo/anaconda3/envs/infnet/lib/python3.9/site-packages/sklearn/clus
       ter/ kmeans.py:1412: FutureWarning: The default value of `n init` will chang
```

In []: # Aplicação do Modelo DBScan e Cálculo do Índice de Silhueta # Atende ao requisito de "Mensurar a qualidade de modelos de clusterização":

e from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress

super()._check_params_vs_input(X, default_n_init=10)
Índice de Silhueta para K-Médias: 0.6468420832056749

the warning

```
from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps=0.5, min_samples=5).fit(df_scaled)
# Verificação para garantir que existem clusters antes de calcular o índice
if len(set(dbscan.labels_)) > 1:
    silhouette_dbscan = silhouette_score(df_scaled, dbscan.labels_)
    print("Índice de Silhueta para DBScan:", silhouette_dbscan)
else:
    print("DBScan não formou clusters distintos com os parâmetros dados.")
```

Índice de Silhueta para DBScan: 0.4909967424734088

```
In []: # Visualização dos Clusters do K-Médias
# Objetivo: Demonstrar domínio visualizando os clusters formados pelo K-Médi
import matplotlib.pyplot as plt
import seaborn as sns

# Escolha as colunas apropriadas para a visualização, aqui é um exemplo com
sns.scatterplot(x=df_scaled[:, 0], y=df_scaled[:, 1], hue=kmeans.labels_)
plt.title('Clusters K-Médias')
plt.show()
```

Clusters K-Médias


```
In []: # Visualização dos Clusters do DBScan
# Objetivo: Demonstrar domínio visualizando os clusters formados pelo DBScar
if len(set(dbscan.labels_)) > 1:
    sns.scatterplot(x=df_scaled[:, 0], y=df_scaled[:, 1], hue=dbscan.labels_
    plt.title('Clusters DBScan')
    plt.show()
else:
    print("DBScan não formou clusters distintos para visualização.")
```

Clusters DBScan


```
In []: # Adicionando etiquetas de cluster ao DataFrame original (limpo)
    df_clean['cluster_label_kmeans'] = kmeans.labels_

# Calculando as médias por cluster
    cluster_means = df_clean.groupby('cluster_label_kmeans').mean()

# Preparando um resumo descritivo para cada cluster
    for cluster in cluster_means.index:
        print(f"\nCluster {cluster}:")
        print(f"- Média de vendas de Handgun: {cluster_means.loc[cluster, 'handg
        print(f"- Média de vendas de Long Gun: {cluster_means.loc[cluster, 'long
        print(f"- Média de vendas de Other: {cluster_means.loc[cluster, 'other']
        print(f"- Média total de verificações de antecedentes: {cluster_means.loc
```

Cluster 0:

- Média de vendas de Handgun: 6192.68
- Média de vendas de Long Gun: 5757.57
- Média de vendas de Other: 335.48
- Média total de verificações de antecedentes: 19978.13

Cluster 1:

- Média de vendas de Handgun: 34704.64
- Média de vendas de Long Gun: 24600.49
- Média de vendas de Other: 2336.65
- Média total de verificações de antecedentes: 89323.81

Cluster 2:

- Média de vendas de Handgun: 15577.85
- Média de vendas de Long Gun: 10325.27
- Média de vendas de Other: 455.68
- Média total de verificações de antecedentes: 355965.62

```
import matplotlib.pyplot as plt
import seaborn as sns

# Visualização gráfica dos clusters do K-Médias
plt.figure(figsize=(10, 6))
sns.scatterplot(x=df_clean['handgun'], y=df_clean['long_gun'], hue=df_clean[
plt.title('Distribuição dos Clusters do K-Médias (Handgun vs Long Gun)')
plt.xlabel('Vendas de Handgun')
plt.ylabel('Vendas de Long Gun')
plt.show()
```


Análise e Descrição dos Clusters do DBScan

```
In [ ]: # Verificando se o DBScan formou clusters
        unique labels dbscan = set(dbscan.labels )
        if -1 in unique labels dbscan:
            unique labels dbscan.remove(-1) # Removendo o label -1, que indica 'ruí
        if len(unique labels dbscan) > 0:
            # Adicionando etiquetas de cluster do DBScan ao DataFrame original (limp
            df clean['cluster label dbscan'] = dbscan.labels
            # Calculando as médias por cluster
            cluster means dbscan = df clean[df clean['cluster label dbscan'] != -1].
            # Preparando um resumo descritivo para cada cluster
            for cluster in cluster means dbscan.index:
                print(f"\nCluster {cluster} (DBScan):")
                print(f"- Média de vendas de Handgun: {cluster means dbscan.loc[clus
                print(f"- Média de vendas de Long Gun: {cluster means dbscan.loc[clu
                print(f"- Média de vendas de Other: {cluster means dbscan.loc[cluste
                print(f"- Média total de verificações de antecedentes: {cluster mear
        else:
            print("DBScan não formou clusters distintos além do ruído.")
```

```
Cluster 0 (DBScan):
       - Média de vendas de Handgun: 9625.39
       - Média de vendas de Long Gun: 7683.24
       - Média de vendas de Other: 546.13
       - Média total de verificações de antecedentes: 32146.79
       Cluster 1 (DBScan):
       - Média de vendas de Handgun: 23654.00
       - Média de vendas de Long Gun: 11555.15
       - Média de vendas de Other: 1189.30
       - Média total de verificações de antecedentes: 364765.15
       Cluster 2 (DBScan):
       - Média de vendas de Handgun: 67031.20
       - Média de vendas de Long Gun: 39302.20
       - Média de vendas de Other: 4090.60
       - Média total de verificações de antecedentes: 146320.00
       Cluster 3 (DBScan):
       - Média de vendas de Handgun: 28545.83
       - Média de vendas de Long Gun: 16037.17
       - Média de vendas de Other: 2209.17
       - Média total de verificações de antecedentes: 199273.17
       Cluster 4 (DBScan):
       - Média de vendas de Handgun: 82385.40
       - Média de vendas de Long Gun: 38815.00
       - Média de vendas de Other: 5650.00
       - Média total de verificações de antecedentes: 177428.20
       Cluster 5 (DBScan):
       - Média de vendas de Handgun: 38919.24
       - Média de vendas de Long Gun: 42717.00
       - Média de vendas de Other: 2249.35
       - Média total de verificações de antecedentes: 120168.06
       Cluster 6 (DBScan):
       - Média de vendas de Handgun: 40.29
       - Média de vendas de Long Gun: 55283.80
       - Média de vendas de Other: 69.24
       - Média total de verificações de antecedentes: 61090.33
In [ ]: # Visualização gráfica dos clusters do DBScan
        if len(unique labels dbscan) > 0:
            plt.figure(figsize=(10, 6))
            sns.scatterplot(x=df clean['handgun'], y=df clean['long gun'], hue=df cl
            plt.title('Distribuição dos Clusters do DBScan (Handgun vs Long Gun)')
            plt.xlabel('Vendas de Handgun')
            plt.ylabel('Vendas de Long Gun')
            plt.show()
```


Complemento do trabalho

Validade do Índice de Silhueta para Clusterização com DBScan

O Índice de Silhueta é comumente utilizado para avaliar a qualidade dos clusters, mas a sua aplicabilidade no contexto do DBScan merece uma análise cuidadosa. O DBScan é um algoritmo que pode identificar clusters de formas irregulares e lidar eficientemente com outliers. Diferentemente de algoritmos baseados em centroides, como o K-Médias, o DBScan não pressupõe uma forma esférica dos clusters.

Neste trabalho, ao aplicar o Índice de Silhueta ao DBScan, notei que este índice pode não ser totalmente adequado. Embora possa fornecer uma indicação geral sobre a separação e coesão dos clusters, ele pode falhar em capturar a eficácia do DBScan em identificar agrupamentos mais complexos e estruturas de dados não lineares. Portanto, é importante complementar a análise do Índice de Silhueta com outras métricas e uma avaliação qualitativa da adequação dos clusters formados.

Passos para Estabelecer a Correlação Cruzada entre Séries Temporais

- 1. **Normalização das Séries Temporais**: Antes de calcular a correlação cruzada, é essencial normalizar as séries temporais para garantir uma base de comparação uniforme.
- 2. **Cálculo da Correlação Cruzada**: A correlação cruzada é calculada entre pares de séries temporais. Este processo envolve deslocar uma série no tempo em relação à

outra e calcular o coeficiente de correlação para cada deslocamento.

3. **Análise dos Resultados**: Os valores máximos da correlação cruzada e seus respectivos deslocamentos podem revelar relações importantes entre as séries, como atrasos temporais ou padrões de liderança/seguimento.

Este método de análise é particularmente útil para identificar relações temporais em dados onde padrões temporais são relevantes, como em séries financeiras ou meteorológicas.

Justificativa da Escolha do Algoritmo de Clusterização

Para este projeto, escolhi utilizar o algoritmo DBScan para a tarefa de clusterização. Esta decisão foi baseada nas características específicas da base de dados "nics-firearm-background-checks.csv", que inclui variáveis com diferentes escalas e a presença potencial de outliers.

O DBScan é eficaz em identificar clusters com formas variadas e em lidar com outliers, o que o torna uma escolha adequada para esta análise. Além disso, sua capacidade de operar sem a necessidade de especificar o número de clusters a priori é particularmente vantajosa, dado que a estrutura exata dos dados não é conhecida de antemão.

Este método é ideal para explorar padrões naturais nos dados de verificações de antecedentes de armas de fogo, onde a formação de clusters pode não seguir padrões clássicos e bem definidos.

Caso de Uso para a Solução Projetada

A solução de clusterização desenvolvida neste projeto pode ser aplicada no contexto de controle de armas e análise de tendências de compra. Por exemplo, os clusters identificados podem ajudar a entender as diferenças regionais nas vendas de armas, identificar padrões de compra sazonais ou anômalos, e auxiliar na formulação de políticas públicas mais eficazes para controle de armamentos. Este caso de uso demonstra como a análise de dados pode ser aplicada para gerar insights valiosos em áreas críticas de interesse público.

Criação e Análise do Modelo com DBScan

No desenvolvimento deste projeto, um modelo de clusterização foi criado utilizando o algoritmo DBScan. Este algoritmo é conhecido por sua eficiência em identificar clusters com base na densidade de pontos, sendo particularmente útil em situações onde os clusters não são definidos por formas esféricas e podem variar em densidade.

Processo de Implementação do DBScan:

Apliquei o DBScan nos dados já pré-processados e normalizados.

• Defini os parâmetros eps e min_samples para configurar a sensibilidade do algoritmo na detecção de clusters e outliers.

Análise dos Resultados:

- O modelo DBScan identificou 7 clusters principais, além de alguns pontos classificados como outliers.
- As médias calculadas para cada cluster revelaram diferenças significativas entre eles, o que indica a eficácia do DBScan em agrupar os dados de forma coerente.

Este modelo é especialmente útil para entender agrupamentos naturais nos dados de verificações de antecedentes para compra de armas, proporcionando insights sobre padrões de comportamento que podem não ser imediatamente óbvios.