中国海洋大学全日制本科课程期末考试试卷

	年		考试科目:			_	
	试卷类型:	卷	命题人: <u>_</u>	既率统计教研	开组_ 审核人	·	
考	试说明:本语	果程为 <u>闭卷</u> >	考试,共_3_	_页,除考场	规定的必需	用品外还可	携带的文
具有		0					
	题号	_	=	Ξ	四	总分	
	得分						
2生-	☑ 師 / 廿 c 目	版 伝服り	人 北 10	Δ)			J
	择题 (共 6 点 >随机事件 <i>A,</i>				0.6, 则 <i>P(B)</i>	= ()
	.4, B. 0.5,				, ,	`	
2. 两个相	目互独立的随	机变量X~N	$Y(2,1^2), Y \sim N$	(3,2 ²), 则2Y	<i>−</i> 3 <i>X</i> ~()	
A. <i>N</i>	(0,5), B.	N(0,11),	C. <i>N</i> (0,7),	D. <i>N</i> (0,25)			
3. 二维随	∮机变量(Χ,Υ)~N(1,1,4,4	(1,0.5), Z = Z	X — Y, 则Coı	$\rho(X,Z)=($)	
A. 0 .	.5, B. 1,	C. 2,	D. 4				
4. 随机变	€量X,Y的数等	学期望分别为	为-2和2,方	差分别为1和	$\square 4, \ \rho_{xy} = -$	-0.5, 根据切	比雪夫不
等式估	$\dag P\{ X+Y $	≥ 6}为()				
A. ≤	1/12, B.	≥ 1/12,	C. ≤ 1/6,	$D. \ge 1/6$			
5. 设(X ₁	(X_2,\cdots,X_{10})	取自总体肌	灵从N(1,3 ²):	分布的样本	<i>、S</i> ² 是样	本方差,则	$\int D(S^2) =$
()						
A. 18	8, B. 20,	C. 162,	D. 180				
6. 某班有	f100名学生,	假设学生的	的概率统计课	程成绩服从	正态分布N(μ, σ^2), 其中	μ,σ 2未知
做假设	检验 <i>H</i> ₀ : <i>μ</i> ≥	$60, H_1: \mu <$	60,则要用至	间的检验统计	量为(),给定显	著性水平
$\alpha = 0.0$	05,则拒绝域	为()				
A. <i>t</i>	$=\frac{10\bar{X}-600}{S},t$	$\leq -t_{0.05}(99)$), В.	$t = \frac{10\bar{X} - 600}{\sigma}$	$t \le -t_{0.025}$	(99),	
				概家练计		而 土3百	+

C.
$$t = \frac{10\bar{X} - 600}{S}, t \ge t_{0.05}(99),$$
 D. $t = \frac{10\bar{X} - 600}{\sigma}, t \ge t_{0.025}(99).$

二、填空题(共6题,每题3分,共18分)

- 1. 10 个球中有 3 个黑球 7 个白球,做不放回抽取,每次抽取一个球,则第四次恰好抽到黑球的概率 .
- 2. 设X,Y相互独立,且都服从参数为 λ 的泊松分布,令U=2X+Y,V=2X-Y,则 $\rho_{UV}=$
- 3. 总体X服从期望为 3 的指数分布, X_1,X_2,\cdots,X_n 为来自总体X的一个样本,则当 $n\to +\infty$ 时, $Y_n=\frac{1}{n}\sum_{i=1}^nX_i^2$ 依概率收敛于______.
- 4. 设 $X_1, X_2, \cdots, X_{2020}$ 为来自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个样本, 其中参数 μ, σ^2 均未知, 则 μ 的置信水平为0.95的双侧置信区间为
- 5. 离散型随机变量X,Y相互独立,X,Y的可能取值分别为 $\{1,2\}$, $\{1,2,3\}$,已知 $P\{X=1,Y=1\}=P\{X=1,Y=2\}=P\{X=2,Y=1\}=0.2$,则 $P\{X=2,Y=3\}=$ ______.
- 6. 已知连续型随机变量X的概率密度函数为 $f(x) = Ae^{-2x^2-3x+4}$,则X的方差 $D(X) = ______.$

三、计算题(共5题,共60分)

- 1. (8 分)对人口进行普查知某种疾病的患病率为0.05,对该疾病患者进行核酸检测为阳性的概率为0.99,而对未患病者进行核酸检测阳性的概率为0.1
 - (1) 任选一人进行核酸检测,检测为阴性的概率是多大?
 - (2) 已知某人核酸检测为阳性,则其患该种疾病的概率是多大?
- 2. (6分)已知X服从期望为2的指数分布,对X进行100次观察,则X > 3的次数恰好为 10次的概率是多大?
- 3. (18 分) 二维连续型随机变量(*X*, *Y*)的概率密度 $f(x,y) = \begin{cases} ke^{-3x-2y}, x > 0, y > 0 \\ 0, 其它 \end{cases}$
 - (1) 求k的值; (2) 求X, Y的边缘密度; (3) 确定X, Y的独立性; (4) 求条件密度 $f_{X|Y}(x|y)$;
 - (5) 求概率 $P\{X > 1 | Y = 2\}$; (6) 求Z = X + Y的概率密度函数。
- 4. (12 分) 已知二维离散型随机变量(X,Y)的分布律:

X Y	-1	0	3	5
1	0.05	0.1	0.05	0.05
2	0.1	0.05	0.1	0.05

------概率统计 ------ 第 2 页 共 3 页 +

3	0.2	0.1	0.05	0.1

- (1) 求X,Y的期望; (2) 求X,Y的方差; (3) 求X,Y的协方差和相关系数。
- 5. $(10 \ \beta)$ 总体X的密度函数为 $f(x) = \begin{cases} e^{-(x-\theta)}, & x \ge \theta \\ 0, & x < \theta \end{cases}$, X_1, X_2, \dots, X_n 为来自该总体的一个样本,试求 $(1)\theta$ 的矩估计和最大似然估计;(2) 判断两个估计量是否无偏。
- 6. (6分) 概率统计课程测验,抽的100个学生的分数样本均值为 \bar{X} = 75,样本方差 S^2 = 25,假设分数服从正态分布,(1)请写出对 σ^2 进行区间估计的枢轴量,并说明其服从什么分布;(2) σ^2 的置信度为0.98的置信区间。(用抽样分布的上分位数表示即可)

四、证明题(4分)

设总体 $X\sim N(0,3^2)$, $Y\sim N(1,4^2)$,且相互独立, X_1,X_2,\cdots,X_9 是来自总体X的样本, Y_1,Y_2,\cdots,Y_{10} 是来自总体Y的样本, $\bar{X}=\frac{1}{9}\sum_{i=1}^9 X_i$, $\bar{Y}=\frac{1}{10}\sum_{i=1}^{10} Y_i$, $S^2=\frac{1}{9}\sum_{i=1}^{10} (Y_i-\bar{Y})^2$,(S>0),试证明 $\frac{4\bar{X}}{S}\sim t(9)$.

+------概率统计 ------- 第3页 共3页 +