Feature set analysis for chess $\exists UNN$ networks Tesis de Licenciatura

Martín Emiliano Lombardo

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

2024

Introducc<u>ión</u>

Ajedrez

- Dos jugadores
- Suma cero

Humano vs. Computadora

Humano vs. Computadora

Humano vs. Computadora

Ajedrez como árbol

Introducción

Motores de ajedrez (Chess Engines)

Exploran el árbol de juego (Minimax, MCTS, etc.)

Introducción 0000€00000

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas

Introducción

0000000000

Motores de ajedrez (Chess Engines)

- Exploran el árbol de juego (Minimax, MCTS, etc.)
- Utilizan funciones de evaluación en las hojas
- La evaluación se propaga hacia arriba, según el algoritmo

Función de evaluación

(adelanto) Feature set: ¿Cómo transformar la posición a un vector?

(adelanto) Feature set: ¿Cómo transformar la posición a un vector?

Motores de ajedrez (breve historia)

asdasd

■ Text visible on slide 1

asdasd

- Text visible on slide 1
- Text visible on slide 2

asdasd

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 3

- Text visible on slide 1
- Text visible on slide 2
- Text visible on slide 4 asdasd

Contenido

Introducción

- 1 Introducción
- 2 Engine
- 3 Feature set
 - Motivación
 - Definición
 - Operadores
 - Feature sets conocidos
 - Resumen
- 4 BUNN (NNUE)
- 5 Training
- 6 Experimentos
- 7 Conclusión

Feature set

¿Cómo transformar la posición a un vector?

Motivación

¿Cómo transformar la posición a un vector?

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).

Definición

Un feature set S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un feature.

Definición

Definición

Un **feature set** S_P se define con un conjunto S y un predicado asociado P(e), donde:

- **S** es un conjunto de conceptos (rol, color, celda, número, etc.).
- P(e) es un predicado que determina si e está presente (o activo) en la posición (implícita).
- Cada elemento en S_P es un feature.
- Cada feature es un valor en el vector de entrada, valiendo 1 si está activo y 0 si no.

Ejemplos de S

Definición

Información posicional:

Files =
$$\{a, b, ..., h\}$$

Ranks = $\{1, 2, ..., 8\}$
Squares = $\{a1, a2, ..., h8\}$

a8 168 c8 d8 e8 f8 g8 168 3 a3 b3 c3 d3 e3 f3 g3 h3 2 a2 b2/c2 d2/e2 f2/g2 x2

Información sobre las piezas:

Roles = { & Pawn, ② Knight, & Bishop, 罩 Rook, 豐 Queen, 堂 King $Colors = {\bigcirc White, ullet Black}$

Ejemplo completo

Definición

	Feature set	
	$(\text{Files} \times \text{Colors})_P$	$(\text{Files} \times \text{Roles})_Q$
Active features	$\langle a, \bigcirc \rangle, \langle a, \bullet \rangle, \langle c, \bullet \rangle,$	$\langle a, \& \rangle, \langle c, & \rangle, \langle c, \& \rangle,$
	$\langle c, \bigcirc \rangle, \langle d, \bigcirc \rangle, \langle h, \bullet \rangle$	$\langle d, \mathring{\triangle} \rangle, \langle h, \mathring{\underline{a}} \rangle$

 $P(\langle f, c \rangle)$: there is a piece in file f with color c. $Q(\langle f, r \rangle)$: there is a piece in file f with role r.

Operadores

Operación: Suma \oplus (concatenación)

Hay veces que es útil combinar información de dos feature sets

Operadores

Operación: Suma \oplus (concatenación)

Hay veces que es útil combinar información de dos feature sets

$$S_P,\, T_Q$$
 : feature sets $S_P\oplus T_Q=(S\cup T)_R$ where $R(e)=egin{cases} P(e) & ext{if } e\in S \ Q(e) & ext{if } e\in T \end{cases}$

Operación: Producto \times (and)

$$S_P imes T_Q = (S imes T)_R$$
 where $R(\langle e_0, e_1
angle) = P(e_0) \ \land \ Q(e_1)$

Feature sets conocidos

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

■ Es pequeño: $64 \times 6 \times 2 = 768$ *features*

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ *features*
- Es completo: contiene toda la información de la posición

Feature set: ALL

La codificación más natural de una posición de ajedrez

ALL:
$$(SQUARES \times ROLES \times COLORS)_P$$

 $P(\langle s, r, c \rangle)$: there is a piece in square s with role r and color c

- Es pequeño: $64 \times 6 \times 2 = 768$ *features*
- Es completo: contiene toda la información de la posición
- Es muy rápido computar cuáles features están activas

Feature set: KING-ALL ó "KA"

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

 $KING-ALL = SQUARE_K \times ALL$ K(s): s is the square of the king of the side to move

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{K} imes ext{All}$$

 $K(s)$: s is the square of the king of the side to move

Es grande: $64 \times 768 = 49152$ *features*

Feature set: KING-ALL 6 "KA"

Feature sets conocidos

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{\mathcal{K}} imes ext{All}$$

 $\mathcal{K}(s)$: s is the square of the king of the side to move

- **E**s grande: $64 \times 768 = 49152$ *features*
- Es muy rápido como All

Feature sets conocidos

Los engines modernos usan variaciones del siguiente feature set. Permite entender la posición en relación a la posición del rey:

$$ext{King-All} = ext{Square}_{\mathcal{K}} imes ext{All}$$
 $\mathcal{K}(s)$: s is the square of the king of the side to move

- **E**s grande: $64 \times 768 = 49152$ *features*
- Es muy rápido como All
- Entrenarlo require un dataset más grande y lleva más tiempo (no me meto acá)

Feature sets: resumen

- **S**: set of concepts (roles, colors, squares, files, ranks, etc.).
- P(e): predicate that defines when the feature e is present in the (implicit) position.
- **S**_P: a feature set. Every element in S_P is a feature. Features that satisfy P are active.
- $S_P \times T_Q = (S \times T)_R$ where $R(\langle e_0, e_1 \rangle) = P(e_0) \wedge Q(e_1)$

(AUNN) NNUE

ЗUИИ: Efficiently Updatable Neural Networks

ЗUИИ: **N**eural **N**etworks

- El input es un vector one-hot generado por el feature set.
 - Debe tener pocos *features* activos (rala): introduce una cota superior.
- La red es una *feedforward* clásica con dos capas ocultas.

Linear layer

Figure: Linear layer operation comparison. Figures from [18].

ЗUИИ: **E**fficient **U**pdates

Figure: Partial tree of feature updates (removals and additions) for (SQUARES × COLORS) (white's point of view) in a simplified 3x3 pawn-only board.

ЗUИИ: Tradeoff

motivacion comparacion de burns

Training

Experimentos

¿Qué hay que definir para entrenar una red?

■ Feature set: determina la codificación y los patrones que se pueden aprender

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2
- Método de entrenamiento: PQR/target scores; determina el formato de las muestras y la loss function

- Feature set: determina la codificación y los patrones que se pueden aprender
- Dataset: datos de entrenamiento, visto anteriormente
- **Arquitectura de la red**: el tamaño de cada capa; L_1 y L_2
- **Método de entrenamiento**: PQR/target scores; determina el formato de las muestras y la loss function
- Hiperparámetros: learning rate, batch size, epochs, etc.

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red

- Loss (train y val.): indica la calidad de las predicciones.
 - Permite detectar overfitting y otros problemas
- Puzzle accuracy: porcentaje de movimientos acertados en puzzles de Lichess.
 - Sólo hay un movimiento correcto
 - Proxy (muy malo) de la fuerza de la red
- Elo relativo: la medida más común para comparar engines.
 - Se realizan torneos de 100ms por movimiento
 - El elo es calculado a partir de Ordo

Busco fijar el setup de entrenamiento con valores razonables

Busco fijar el setup de entrenamiento con valores razonables

■ El feature set va a cambiar cada experimento

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Entonces queda por determinar...

■ La arquitectura de la red $(L_1 \ y \ L_2)$

Busco fijar el setup de entrenamiento con valores razonables

- El feature set va a cambiar cada experimento
- El dataset está fijo
- El método de entrenamiento principal es *target scores*

Entonces queda por determinar...

- La arquitectura de la red $(L_1 \ y \ L_2)$
- Los hiperparámetros

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ **Learning rate**: 0.0005

Exponential decay: 0.99

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ **Learning rate**: 0.0005

Exponential decay: 0.99

■ Batch size: 16384

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

Learning rate: 0.0005

Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ Learning rate: 0.0005

■ Exponential decay: 0.99

■ **Batch size**: 16384

■ **Epoch size**: 100 million

cada epoch realiza 6104 batches

Los hiperparámetros fueron seleccionados en base al trainer oficial de Stockfish:

■ **Learning rate**: 0.0005

Exponential decay: 0.99

■ Batch size: 16384

Epoch size: 100 million

cada epoch realiza 6104 batches

■ Epochs: 256

■ cada run observa 25.6 billion samples

Baseline: experimento

Sólo queda buscar parámetros L_1 y L_2 razonables. Realizo una búsqueda en grilla con:

- $\blacksquare \ \mathsf{L1} \in \{256, 512, 1024, 2048\}$
- L2 ∈ {32, 64, 128, 256}

El feature set a utilizar es $\mathrm{ALL}[768]$.

Baseline: resultados

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.

Baseline: conclusión

- L2=32. El performance cae dramáticamente si L2 aumenta, utilizo el más bajo.
 - Sería buena idea probar valores más chicos de L2.
- L1=512. Es el mejor valor para L2=64 y L2=128, y en margen de error para L2=32.
 - Además es el más rápido de entrenar.

ntroducción Engine Feature set 3UMI (NNUE) Training Experimentos Conclusión

Axis encoding: motivación

Figure: Weights of **a neuron** in the L1 layer, which are connected to features in ALL where the role is Ξ Rook. The intensity represents the weight value, and the color represents the sign (although not relevant).

Conclusión

Ajedrez

asdasd