Domaine de définition d'une fonction : solutions des exercices

1.
$$f(x) = \frac{\sqrt{2x - 10}}{x - 7}$$

C.E.
$$\begin{cases} 2x - 10 \ge 0 \\ x - 7 \ne 0 \end{cases} \Leftrightarrow \begin{cases} x \ge 5 \\ x \ne 7 \end{cases} ; \operatorname{dom} f = \left[5, +\infty\right[\setminus \left\{7\right\} \right].$$

$$2. \qquad f(x) = \frac{2}{x^2 + 3x}$$

C.E.
$$x^2 + 3x \neq 0 \Leftrightarrow x \cdot (x+3) \neq 0 \Leftrightarrow (x \neq 0) \land (x \neq -3)$$
; dom $f = R \setminus \{-3,0\}$.

3.
$$f(x) = \frac{4x - 1}{\sqrt{5 - 2x}}$$

C.E.
$$5-2x > 0 \Leftrightarrow x < \frac{5}{2}$$
; $dom f = \left[-\infty, \frac{5}{2}\right]$.

$$4. \qquad f(x) = \sqrt{\frac{3x-1}{x+4}}$$

C.E.
$$\frac{3x-1}{x+4} \ge 0$$
; dom $f =]-\infty, -4[\cup [\frac{1}{3}, +\infty[$.

En effet, voici le tableau de signes relatif à la condition d'existence :

X		- 4		1/3	
3x-1	ı	ı	ı	0	+
x + 4	-	0	+	+	+
$\frac{3x-1}{x+4}$	+	X	-	0	+

5.
$$f(x) = \frac{\sqrt{3x-1}}{\sqrt{x+4}}$$

C.E.
$$\begin{cases} 3x - 1 \ge 0 \\ x + 4 > 0 \end{cases} \Leftrightarrow \begin{cases} x \ge 1/3 \\ x > -4 \end{cases} \Leftrightarrow x \ge \frac{1}{3} ; \operatorname{dom} f = \left[\frac{1}{3}, +\infty \right[.$$

6.
$$f(x) = \sqrt{x^2 - 11x + 18}$$

C.E.
$$x^2 - 11x + 18 \ge 0$$
; dom $f =]-\infty,2] \cup [9,+\infty[$

En effet, voici le tableau de signes relatif à la condition d'existence :

X		2		9	
$x^2 - 11x + 18$	+	0	-	0	+

7.
$$f(x) = \frac{2+x}{\sqrt{4x-1}}$$

C.E.
$$4x-1>0 \Leftrightarrow x>\frac{1}{4}$$
; $dom f = \left|\frac{1}{4},+\infty\right|$.

8.
$$f(x) = \sqrt{\frac{x^2 - 25}{8 - x}}$$

C.E.
$$\frac{x^2 - 25}{8 - r} \ge 0$$
; dom $f =]-\infty, -5] \cup [5,8[$.

En effet, voici le tableau de signes relatif à la condition d'existence :

X		- 5		5		8	
$x^2 - 25$	+	0	1	0	+	+	+
8-x	+	+	+	+	+	0	-
$\frac{3x-1}{x+4}$	+	0	1	0	+	X	-

9.
$$f(x) = \frac{1}{x^2 + 2x + 5}$$

C.E.
$$x^2 + 2x + 5 \neq 0$$
; dom $f = \mathbf{R}$ (en effet, le dénominateur n'a pas de racine car $\Delta = -16$).

10.
$$f(x) = \frac{\sqrt{x+3}}{\sqrt{x^2-4}}$$

C.E.
$$\begin{cases} x+3 \ge 0 \\ x^2-4>0 \end{cases} \Leftrightarrow \begin{cases} x \ge -3 \\ x^2-4>0 \end{cases}$$
. Discutons la condition $x^2-4>0$.

х		-2		2	
$x^2 - 4$	+	0	-	0	+

Il faut donc x < -2 ou x > 2. Simultanément, il faut $x \ge -3$.

Ci-dessous, sont représentés en vert les réels qui satisfont à :

- 1°/ la condition $x \ge -3$ sur la première droite;
- 2° / la condition x < -2 ou x > 2 sur la deuxième droite;
- 3°/ ces deux conditions simultanément sur la troisième droite (il s'agit donc d'une représentation du domaine de définition de la fonction).

Conclusion: $dom f = [-3,-2] \cup]2,+\infty[$.