Special unipotent representations of real classical groups and theta correspondence

Ma, Jia-Jun

(joint with Dan Barbasch, Binyong Sun and Chengbo Zhu)

Classical groups and special unipotent representations

	G	G	\mathbf{G}^{\vee}	
D_n	O(p, 2n - p)	$O(2n, \mathbb{C})$	$O(2n, \mathbb{C})$	D_n
C_n	$\mathrm{Sp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n
B_n	O(p, 2n + 1 - p)	$O(2n+1,\mathbb{C})$	$\operatorname{Sp}(2n,\mathbb{C})$	C_n
\tilde{C}_n	$\mathrm{Mp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$\operatorname{Sp}(2n,\mathbb{C})$	C_n
D_n	$O^*(n)$	$SO(2n, \mathbb{C})$	$SO(2n, \mathbb{C})$	D_n
C_n	$\operatorname{Sp}(p, n-p)$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n
A_n	U(p, n-p)	$\mathrm{GL}(n,\mathbb{C})$	$\mathrm{GL}(n,\mathbb{C})$	A_n
A_m	U(r, m-r)	$\mathrm{GL}(m,\mathbb{C})$	$\mathrm{GL}(m,\mathbb{C})$	A_m

Theorem (Barbasch-M.-Sun-Zhu)

Arthur-Barbasch-Vogan's conj. on special unipotent repn. holds for G: All $special \ unipotent \ representations$ of G are unitarizable.

Barbasch-Vogan's definition of unipotent representation

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\rightsquigarrow$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \lambda_{\mathcal{O}^{\vee}}$

- \leadsto the maximal primitive ideal $\mathcal{I}_{\mathcal{O}}$ with inf. char. $\lambda_{\mathcal{O}}$
- \blacksquare *Definition* (Barbasch-Vogan):

An irr. admissible G-repn. is called *special unipotent* if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

$$\iff \pi$$
 has inf. char. $\lambda_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi) = \overline{\mathcal{O}}$

- O: the Lusztig-Spaltenstein-Barbasch-Vogan dual of O, which is a (metaplectic) special nilpotent orbit.
- Unip $_{\mathcal{O}}(G) := \{ \text{ special unipotent repn. attached to } \mathcal{O} \}.$

Conjecture/Open problems

■ *Major open problem:* Classify the unitary dual of a reductive group:

 $\widehat{G}_{\text{unitary}} = \{ \text{ irr. unitary repn. of } G \}.$

- Philosophy: Unip(G) = the building blocks of the unitary dual.
- Conjecture: Unip $\check{\mathcal{O}}(G)$ consists of unitary representations.
- Question: How many elements are there in $\operatorname{Unip}_{\mathcal{O}}(G)$?
- **Question:** How to construct elements in $\mathrm{Unip}_{\check{\mathcal{O}}}(G)$?
- Barbasch-Vogan 1985: Complete classification of unipotent repn. of complex reductive groups.
- Vogan 1986: Classify the unitary dual of GL(n).
- Barbasch 1989: Classify the unitary dual of complex classical groups.
- Altas of Lie group: \rightsquigarrow complete answer for exceptional groups.

Counting (\mathfrak{g}, K) -module with a paticular asso. variety

- Fix an inf. char. $\mu \in \mathfrak{h}^*/W$
- $[\mu] := \mu + Q^* (Q^* \text{ is the root lattice}),$
- integral Weyl group

$$W(\mu) := \{ w \in W \mid \langle \mu - w\mu, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

Double cell \mathcal{D} in $\widehat{W}(\mu) \longleftrightarrow$ the special repn. $\tau_0 \in \mathcal{D}$ \longrightarrow truncated induction $j_{W(\mu)}^W \tau_0$

 $\xrightarrow{\text{Springer corr.}} \mathcal{O}.$

$$W_{\mu} := \{ w \in W \mid w \cdot \mu = \mu \}.$$

- $Coh_{[\mu]}(G)$: the coherent cont. repn. of G-modules based on $[\mu]$.
- Theorem:

$$\# \{ \pi \in \operatorname{Irr}_{\mu}(G) \mid \operatorname{AV}_{\mathbb{C}}(\pi) = \overline{\mathcal{O}} \} \leq \sum_{\substack{\tau \in \mathcal{D} \\ \mathcal{D} \hookrightarrow \mathcal{O}}} [\tau : 1_{W_{\mu}}] \cdot [\tau : \operatorname{Coh}_{[\mu]}(G)]$$

Counting unipotent representations I

- Example: $G = \operatorname{Sp}(2n, \mathbb{R})$
- Assume $\lambda_{\tilde{\mathcal{O}}} \in \rho + Q^*$ \leadsto special representation $\tau \leftrightarrow \mathcal{O}$
- ${\color{red} \bullet}$ $\operatorname{Coh}_{[\rho]}(G)$: the Coh. repn. based on $[\rho].$

$$\#\mathrm{Unip}_{\mathcal{O}^{\vee}}(G) = 2^l \cdot [\tau : \mathrm{Coh}_{[\rho]}(G)]$$

$$W(\lambda_{\check{\mathcal{O}}}) = S_n \ltimes \{\pm 1\}^n,$$

$$\operatorname{Coh}_{[\rho]}(\operatorname{Sp}(2n,\mathbb{R})) = \sum_{\substack{p,q,t,s,\\\sigma \in \widehat{S}_s}} \operatorname{Ind}_{S_t \times W_{2s} \times W_p \times W_q}^{W_n} \operatorname{sgn} \otimes (\sigma \times \sigma) \otimes \mathbf{1} \otimes \mathbf{1}.$$

- $[\tau:1_{W_{\lambda_{\tilde{\mathcal{O}}}}}]=1.$
- $[\tau : \operatorname{Coh}_{[\rho]}(G)]$ is counted by painted bi-partitions $\operatorname{PBP}(\check{\mathcal{O}})$.

Example of PBP

Nilpotent orbits with "good/bad parity"

■ Bad parity (must occurs with even multiplicity in $\check{\mathcal{O}}$):

$$\begin{cases} \text{even number}, & \text{when } \mathbf{G}^{\vee} \text{ is type } B \text{ or } D \\ \text{odd number}, & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}$$

 \blacksquare $\check{\mathcal{O}}$ has "good parity" if $\check{\mathcal{O}}$ only contains

$$\begin{cases} \text{odd rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B \text{ or } D \\ \text{even rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}$$

- \bullet $\lambda_{\mathcal{O}}$ is integral.
- Example of good parity:

Reduction to the "good parity"

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- \mathcal{O} decompose into two parts \mathcal{O}_g (good parity) and \mathcal{O}_b (bad parity).
- Assume $\mathcal{O}_b = \{r_1, r_1, \cdots, r_k, r_k\}$. Theorem (Let $\mathcal{O}_b' = \{r_1, \cdots, r_k\} \in \text{Nil}_{\text{GL}}$.)

$$\operatorname{Unip}_{\check{\mathcal{O}}_{b}'}(\operatorname{GL}_{\mathbb{R}}) \times \operatorname{Unip}_{\check{\mathcal{O}}_{g}}(\operatorname{Sp}_{\mathbb{R}}) \xrightarrow{1-1} \operatorname{Unip}_{\check{\mathcal{O}}}(\operatorname{Sp}_{\mathbb{R}})
(\pi', \pi_{0}) \mapsto \operatorname{Ind}_{\operatorname{GL}(|\check{\mathcal{O}}_{b}'|, \mathbb{R}) \times \operatorname{Sp}(2n_{0}, \mathbb{R}) \times U}^{\operatorname{Sp}(2n_{0}, \mathbb{R})}$$

$$\operatorname{Unip}_{\mathcal{\tilde{O}}_{b}'}(\operatorname{GL}_{\mathbb{R}}) = \left\{ \left. \operatorname{Ind} \bigotimes_{j=1}^{k} \operatorname{sgn}_{\operatorname{GL}(r_{j},\mathbb{R})}^{\epsilon_{j}} \, \right| \, \epsilon_{j} \in \mathbb{Z}/2\mathbb{Z} \, \right\}$$

- Use theta correspondence to construct $\operatorname{Unip}_{\check{\mathcal{O}}_q}(G)$.
- We assume $\check{\mathcal{O}}$ has good parity from now on.

Example of descent sequences

Kraft-Procesi's resolution of singularities of the closure of complex nilpotent orbits.

Descent of nilpotent orbits: $G = \operatorname{Sp}(2n, \mathbb{R})$

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

■ Descent sequence of real classical groups:

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

- G_{2k} is a symplectic group allow $G_0 = \operatorname{Sp}(0, \mathbb{R}) = \text{the trivial group}$.
- $\bullet \ G_{2k-1} = \mathcal{O}(p_k, q_k)$
- \mathcal{O}_i^{\vee} is nilpotent orbit of \mathbf{G}_i^{\vee}
- (G_i, G_{i-1}) forms a reductive dual pair.
- \mathcal{O}_i = delete the first col. of \mathcal{O}_{i+1} and may add one box back.

Example of descent sequences

Ohta's resolution of singularities of a nilpotent orbit closure in symmetric pairs.

Construction of elements in $\mathrm{Unip}_{\mathcal{O}}(G)$

- $\chi = \mathop{\otimes}_{j=0}^{2a} \chi_j$, a 1-dim repn. of $\prod_{j=0}^{2a} G_j$.
- $\chi_j \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth repn. of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-1}, G_{2a-2}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_0}$$

Theorem (Barbasch-M.-Sun-Zhu)

Let $\check{\mathcal{O}}^{\vee}$ be an orbit with good parity. Then

- either $\pi_{\chi} = 0$ or
- $\pi_{\chi} \in \mathrm{Unip}_{\tilde{\mathcal{O}}}(G)$ and unitarizable.
- Moreover,

$$\mathrm{Unip}_{\mathcal{O}^{\vee}}(G) = \{ \pi_{\chi} \mid \pi_{\chi} \neq 0 \}.$$

Example: Coincidences of theta lifting

Lift to
$$G = \operatorname{Sp}(6, \mathbb{R})$$
 from real forms of $\mathbf{G} = \operatorname{O}(4, \mathbb{C})$.
 $\check{\mathcal{O}} = 3^2 1^1 = \square$ and $\mathcal{O} = 2^3$. $\check{\mathcal{O}}' = 3^2 1^1 = \square$.
 $\operatorname{Sp}(6, \mathbb{R})$
 $\operatorname{O}(4,0)$ $\theta(\operatorname{sgn}^{+,-})$ $\theta(\operatorname{sgn}^{-,+})$
 $\operatorname{O}(3,1)$ $\theta(\mathbf{1})$ $\theta(\operatorname{sgn}^{+,-})$ $\theta(\operatorname{sgn}^{-,+})$
 $\operatorname{O}(2,2)$ $\theta(\mathbf{1})$ $\theta(\operatorname{sgn}^{+,-})$ $\theta(\operatorname{sgn}^{-,+})$
 $\operatorname{O}(1,3)$ $\theta(\mathbf{1})$ $\theta(\operatorname{sgn}^{+,-})$ $\theta(\operatorname{sgn}^{-,+})$
 $\operatorname{O}(0,4)$

Some comments

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 - Work of **Li**, **He**, and an idea of **Harris-Li-Sun** showing the nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:
 - **Geometry**: moment maps provide the upper bound.
 - Analysis: degenerate principal series force the <u>lower bound</u>.
 - Geometry meets Analysis: the equality.
- Exhaustion: Combinatorics (recent breakthrough!)
- Corollary: (using [Gomez-Zhu]) For π_{χ} ,

Whittaker cycle = Wavefront cycle.

Associated cycle formula I

■ Example $(G, G') = (\operatorname{Sp}(2n, \mathbb{R}), \operatorname{O}(p, q))$

- $\overline{\mathcal{O}} \cap \mathfrak{p} \supset \varphi(\varphi'^{-1}(\mathfrak{p}' \cap \mathcal{O}'))$ where \mathcal{O} is a cplx. nil. **G**-orbit.
- Upper bound of associated cycle: we can define

$$\vartheta^{\mathrm{geo}} \colon \mathcal{K}_{\mathcal{O}'}(G') \longrightarrow \mathcal{K}_{\mathcal{O}}(G)$$

such that

$$AC(\Theta(\pi')) \leq \vartheta^{geo}(AC(\pi')),$$

for any π' with $AV(\pi') \subset \overline{\mathcal{O}'}$

Associated cycle formula II

- Recall $(G, G') = (\operatorname{Sp}(2n, \mathbb{R}), \operatorname{O}(p, q))$
- For $\mathcal{L}' \in \mathcal{K}_{\mathcal{O}'}(G')$, $\mathcal{L} = \vartheta(\mathcal{L}') \in \mathcal{K}_{\mathcal{O}}(G)$,

$$\mathscr{L}_X = \vartheta_T(\mathscr{L}_{X'}) := \det^{(p-q)/2}|_{K_X} \otimes (\mathscr{L}'_{X'})^{K'_{2,X'}} \circ \alpha,$$

 $\alpha\colon K_X\longrightarrow K'_{1,X'}$: a homomorphism between isotropic subgroups.

- The twisting is crucial.
 - \Rightarrow admissible orbit data \rightsquigarrow admissible orbit data.
- Support of $\vartheta(\mathcal{L}')$ could be reducible.
- Stable range lifting trick: Suppose n > p + q.

$$\bigcup_{p,q} \mathrm{Unip}_{\mathcal{O}'^{\vee}}(\mathrm{O}(p,q)) \hookrightarrow \mathrm{Unip}_{\mathcal{O}^{\vee}}(\mathrm{Sp}(2n,\mathbb{R}))$$

Matching unipotent representations with PBP

- PBP($\check{\mathcal{O}}$) is complicate.
- $LS(\check{\mathcal{O}}) = \{AC(\pi_{\chi})\}$ is also complicate.
- Proof of Exhaustion
 Define descent of painted bi-partitions,
 compatible with the theta lifting!

$$\begin{array}{cccc} LS(\check{\mathcal{O}}) & \longleftarrow & PBP_{Sp_{\mathbb{R}}}^{ext}(\check{\mathcal{O}}) & \longleftarrow & Unip_{\check{\mathcal{O}}}(Sp_{\mathbb{R}}) \\ \\ \vartheta^{geo} & & \nabla \!\!\!\! & & \uparrow^{\theta} \\ LS(\check{\mathcal{O}}') & \longleftarrow & PBP_{O_{\mathbb{R}}}^{ext}(\check{\mathcal{O}}') & \longleftarrow & Unip_{\check{\mathcal{O}}'}(O_{\mathbb{R}}) \end{array}$$

$$\pi_{\tau} := \check{\Theta}(\pi_{\nabla(\tau)} \otimes \det^{\varepsilon_{\tau}})$$

$$\pi_{\tau} := \Theta(\pi_{\nabla(\tau)} \otimes \chi'_{\tau}) \otimes \chi_{\tau}$$

■ The injectivity of theta lifting is crucial!

Unipotent Arthur packet

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$:
 {local components of automorphic cusp. repn. }
 They are unitary by definition!
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial. Mæglin: $\pi_{\psi,\eta}$ is zero or multiplicity free $(\eta \in \operatorname{Irr}(\pi_1(Z_{\mathbf{G}^{\vee}}(\psi))))$. Warning: $\Pi_{\psi}^A(G) \cap \Pi_{\psi'}^A(G) \neq \emptyset$ in general.
- "Corollary":

$$\Pi_{\psi}^A(G) = \Pi_{\psi}^{ABV}(G)$$

Question: How to describe $\pi_{\psi,n}$ explicitly?

Dan Barabasch, M. , Binyong Sun and Chen-Bo Zhu Special unipotent representations: orthogonal and symplectic groups ArXiv e-prints: https://arxiv.org/abs/1712.05552v2

Thank you for your attention!