

WHO SURVIVED IN THE TITANIC?

Was it a random group of people? Or were there any underlying factors which helped specific cohort of people to have a better chance at survival? We will find out!

GROUP 5: VISHU AGARWAL, ANKITA KUNDRA, BRUCE KIM, MARIO GONZALEZ, JESPER LI MSBA. The University of Texas at Austin

What are we trying to do?

- Everyone is aware of one of the deadliest peacetime maritime disasters, sinking of the RMS Titanic. Among the ~2200 passengers, only ~700 could survive
- At first, it would seem that the survival of passengers was just based on luck and nothing more. But what if there were some factors which played a vital role in determining the survival chances?
- This is exactly what we will try to do in this project determine the factors driving the survival rate of passengers on the Titanic!

How will we do that?

- We have sourced a dataset containing information about the passengers on the Titanic from <u>Kaggle</u>
- This dataset contains information like age, gender, fare, ticket class etc. We will analyze this information and build a model which can learn from the data to -
 - Provide insights into factors influential in determining the survival chances
 - Predict the survival chances of passengers in the test data

We will be using a two —fold approach for this analysis

Exploratory data analysis (EDA)

- Identify variables as categorical vs. numerical
- Visualize distribution of both variables
- Visualize survival rates among both types of variables
- Treat variables with missing values

Modelling

- Classification tree
- Random forest
- Boosting
- Logistic Regression
- KNN

Exploratory Data Analysis

Variables (Predictors) present in the data have been identified as **Numerical** variables vs. **Categorical** variables

Numerical Variables	Description
Age	Age of passenger in years
SibSp	# of siblings/spouses aboard the Titanic
Parch	# of parents/children aboard the Titanic
Fare	Passenger fare price

Categorical Variable	Description
Survived	Survival (0 = No; 1 = Yes)
Pclass	Ticket class $(1 = 1^{st}; 2 = 2^{nd}; 3 = 3^{rd})$
Sex	Gender (Male; Female)
Cabin	Cabin number
Embarked	Port of Embarkation

Visualizing Numerical variables

Fare Distribution

Siblings / Spouse Distribution

Parents / Children Distribution

Survival rate by Numerical variables

Age: We observe better survival rate among children

Fare: Survival rate seem to be proportional to the fare

Family Size: Family size of 2-4 seemed to survived the most

Outcome

Died

Survived

Visualizing Categorical variables

Ticket Class Distribution

Embarkation Distribution

Outcome

Died

Survival rate by Categorical variables

Ticket Class: First class passenger seem to have better chance of survival **Gender**: Survival proportion among female was way better than male

Embark City: This does not seem to be playing a great role

Treating variables with missing values

Predictors Age, Cabin and Embarked have missing values. Below is a quick summary of how we imputed values in Age and Cabin column. Embarked does not seem to have much effect on survival, so we did not treat it

Age

- Values missing for 177 (out of 891) records
- Mean Age = 26.7 years
- Standard Deviation (S.D.) = 14.5
- Imputed value = Mean \pm S.D.

Hence, we assigned random values between the mean \pm S.D. to missing values in Age column

Cabin

- Values missing for 687 (out of 891) records
- Contains cabin number for all passengers (example – A1, A2, C3, D13)

Since >70% of records do not have Cabin number populated, we transformed this variable into a binary variable where 1 denotes that cabin information is present and vice versa

Modeling

Preparing the data for modeling

Туре	List of Variables included in model
Numerical	Age
	Fare
	Gender
Categorical	Class
	Siblings / Spouse
	Parents / Children

Library used: rpart

Classification Tree

- Aggressively build a complex tree with:
 - Minimum variables required to create a node (minsplit) 4
 - Minimum complexity parameter (cp) 0.0005
- This gives us a complex tree containing 108 nodes
- Plotting the errors vs. cp curve, we find that the minimum error corresponds to the tree with 15 nodes (cp = 0.006).
 Hence, we will perform pruning using this cp parameter

Accuracy: 84.5%

Library used: rpart

Classification Tree

	Test Data		
70		No	Yes
Predicted Data	No	177	35
	Yes	10	69

The pruned tree correctly predicts that 177 people died and 69 people survived. The accuracy of this model is 84.5%

Library used: random forest

Accuracy: 82.1%

Random Forest

No Yes No 174 39 Yes 13 65

- Number of variables chosen for each iteration is 2
- Model predicts that Survival of the passengers is mostly influenced by Sex, Fare and Age
- The random forest model correctly predicts that 176 people died and 68 people survived in the test data. The accuracy of this model is 82.1%

Library used: Boosting

Gradient Boosting

	Test Data		
70		No	Yes
Predicted Data	No	180	43
	Yes	7	61
		Accu	racy: 82.8%

- Transformed the 'Survival' variable to 1s and 0s
- Number of trees = 1000 and shrinkage parameter
 = 0.01 was used to build the model
- Again, Gender has the highest influence on survival
- The boosting model correctly predicts that 180 people died and 61 people survived. The accuracy of this model is 82.8%

Accuracy: 83.2%

Library used: glm

Logistic Regression

```
coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.967757
                       0.565618
                                  3.479 0.000503 ***
Polass
           -1.083040
                      0.169695 -6.382 1.74e-10 ***
                       0.239174
            2.687319
                                 11.236 < 2e-16
Sex
                       0.008940 -3.824 0.000131
           -0.034188
Age
SibSp
           -0.405980
                       0.140352
                                 -2.893 0.003821 **
Parch
            0.008177
                       0.135383
                                  0.060 0.951835
            0.004005
                       0.002936
                                  1.364 0.172594
Fare
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 805.96 on 599 degrees of freedom
Residual deviance: 537.86 on 593 degrees of freedom
AIC: 551.86
```

	Test Data		
TO		No	Yes
Predicted Data	No	178	40
	Yes	9	64

Categorical variables – Survival and Age were transformed to 1s and 0s

- The model summary suggests that the variables Parch and Fare are not significant. AIC reduces to 549.8 if we remove the Parch variable.
- The Logistic Regression model correctly predicts that 178 people died and 64 people survived in the test data. The accuracy of this model is 83.2%

Accuracy: 79.1%

Library used: kknn

k-Nearest Neighbors

	Test Data		
TO OT		No	Yes
Predicted Data	No	165	39
Ÿ.	Yes	22	65

The variables were scaled because KNN makes use of Euclidian Distance to calculate

 The %Misclassification error is minimum for the test data when k value is 11

nearestneighbors

 The KNN model correctly predicts that 165 people died and 65 people survived in the test data. The accuracy of this model is 79.1%

Conclusion

- We get a similar story from all the models:
 Most influential variables:
 - Sex
 - Fare
 - Age
- We get the maximum accuracy of **84.5**% by using the classification tree model.

Model	Accuracy
Classification Tree	84.5%
Random Forest	82.1%
Gradient Boosting	82.8%
Logistic Regression	83.2%
KNN	79.1%