Hungarian algorithm: Theoretical bases

The Hungarian algorithm is recognized as a predecessor of the **primal-dual method** for linear programming, designed one year later by Dantzig, Ford and Fulkerson.

- 1. Initialize with any (u_i) and (v_j) satisfying $u_i + v_j \le c_{ij}$ (i, j = 1, ..., n);
- 2. find a maximum matching M (König) in the subgraph $\mathbf{G}^0 = (\mathbf{U}, \mathbf{V}; \mathbf{E}^0)$ of G = (U, V; E) that only contains the edges of E that satisfy $u_i + v_j = c_{ij}$ (i.e., such that $\overline{c}_{ij} = 0$);
- 3. if M is perfect then it has maximum weight $w(M) = \sum_{k=1}^{n} (u_k + v_k)$, hence stop;
- 4. else G^0 must contain (Hall) a subset $U' \subseteq U$ such that |U'| > |F(U')|: update the current covering system through (Egerváry)

$$\begin{cases}
 u_i &:= u_i + 1 \text{ for } i \in U'; \\
 v_j &:= v_j - 1 \text{ for } j \in F(U'),
\end{cases}$$
(12)

thus keeping $u_i + v_j = c_{ij}$, but increasing the value of $\sum_{k=1}^n (u_k + v_k)$ by |U'| - |F(U')| > 0 and go to 2 (possibly new edges satisfy $u_i + v_j = c_{ij}$).

Pseudo-polynomial time complexity, but the two 1s in (12) can be replaced by $\min\{u_i+v_j-c_{ij}:i\in U',j\in F(U')\}$

⇒ Polynomial time complexity ■