COMP5046 Natural Language Processing

Lecture 6: Part-of-Speech (POS) Tagging

Semester 1, 2020
School of Computer Science
The University of Sydney, Australia

The course update

Online Teaching Update

Lecture:

- Tue 2-4pm every week
- Live Streaming via Twitch
- Recording file via canvas

Tutorial:

- Tue 4pm, 5pm, 6pm
- Wed 4pm, 5pm
- Live Streaming via Zoom

Live QA:

- 9-10pm from Thu, Fri, Sat, Sun
- Live Streaming via Zoom

If you have any other questions, please post it to **EdStem**

The course update

Assessment Update

[Original Assessment Plan]

Assessment	Weight	Due	Length	
Lab exercises	10%	Multiple weeks (By Monday 6pm or Tuesday 6pm)	n/a	To pass UoS,
Assignment 1	20%	Week 8	n/a	achieve at least 40% (20 out of 50)
Assignment 2	20%	Week 14	n/a	To pass UoS,
Final exam	50%	Formal Exam Period	2 hours =	

[Updated Assessment Plan]

[Opuated Assessing	ent Pianij			
Assessment	Weight	Due	Length	
Lab exercises	10%	Multiple weeks (All by Tuesday 6pm)	n/a	To pass UoS,
Assignment 1	20%	Week 8	n/a	achieve at least 40% (24 out of 60)
Assignment 2	30%	Week 14	n/a	,
Oral Quiz – Case Study (5Qs interview style)	15%	1 day after the formal exam period via Zoom [the exact date will be announced soon]	15 mins	To pass UoS, achieve at least
Take-home Exam (Open Book)	25%	Formal exam period	1 hours	40% (16 out of 40)

Sample Q would be demonstrated in Week 13.

The course topics

What will you learn in this course?

Week 1: Introduction to Natural Language Processing (NLP) Week 2: Word Embeddings (Word Vector for Meaning) Week 3: Word Classification with Machine Learning I Week 4: Word Classification with Machine Learning II	NLP and Machine Learning
Week 5: Language Fundamental Week 6: Part of Speech Tagging Week 7: Dependency Parsing Week 8: Language Model	NLP Techniques
Week 9: Information Extraction I: Named Entity Recognition Week 10: Information Extraction II: Relation Extraction Week 11: Application I: Question and Answering Week 12: Application II: Machine Translation	Advanced Topic

Week 13: Future of NLP and Exam Review

LECTURE PLAN

Lecture 6: Part of Speech Tagging

- 1. Part-of-Speech Tagging
- 2. Baseline Approaches
 - 1. Rule-based Model
 - 2. Look-up Table Model
 - N-Gram Model
- 3. Probabilistic Approaches
 - 1. Hidden Markov Model
 - 2. Conditional Random Field
- 4. Deep Learning Approaches

Parts of Speech (or word classes)

A class of words based on the word's function, the way it works in a sentence

8 parts of speech are commonly listed

2000 years ago (starting with Aristotle)

Nouns	Verbs	Pronouns	Prepositions
Adverbs	Conjunctions	Participles	Articles
		Dionysius Thray	of Alexandria (c. 100 BCF)

Now (School Grammar) + articles or determiner

Nouns	Verbs	Pronouns	Prepositions
Adverbs	Conjunctions	Adjectives	Interjections

Part-of-Speech (English)

One basic kind of linguistic structure: syntactic word classes

Relatively fixed membership, and the repertoire differs more from language to language

Part-of-Speech Tag sets – Modern English

In modern (English) NLP, larger and more fine-grained tag sets are preferred.

Example

Penn Treebank 45 tags http://bit.ly/1gwbird

Brown Corpus 87 tags https://bit.ly/2FGtdLd

C7 Tagset 146 tags http://bit.ly/1Mh36KX

Trade-off between complexity and precision and whatever tag-set we use, there will be some words that are hard to classify.

Criteria for part-of-speech tagging

Three different criteria might be considered.

Distributional criteria: Where can the words occur?

Morphological criteria: What form does the word have? (E.g. - tion, -ize). What affixes can it take? (E.g. -s, -ing, -est).

 Notional(or semantic) criteria: What sort of concept does the word refer to? (E.g. nouns often refer to 'people, places or things'). More problematic: less useful for us

Criteria for part-of-speech tagging: Nouns

Three different criteria might be considered.

- **Distributional** criteria: Where can the nouns appear?

 For example, nouns can appear with possession: "his car", "her idea".
- *Morphological* criteria: What form does the word have? (E.g. tion, -ize). What affixes can it take? (E.g. -s, -ing, -est).
 - ness, -tion, -ity, and -ance tend to indicate nouns. (happiness, exertion, levity, significance).
- **Notional(or semantic)** criteria: What sort of concept does the word refer to?
 - Nouns generally refer to living things (mouse), places (Sydney), non-living things (computer), or concepts (marriage).

Criteria for part-of-speech tagging: Verbs

Three different criteria might be considered.

- **Distributional** criteria: Where can the verbs appear?

 Different types of verbs have different distributional properties. For example, base form verbs can appear as infinitives: "to jump", "to learn".
- Morphological criteria: What form does the word have? (E.g. tion, -ize). What affixes can it take? (E.g. -s, -ing, -est).
 words that end in -ate or -ize tend to be verbs, and ones that end in -ing are
 - often the present participle of a verb (automate, equalize; rising, washing)
- Notional(or semantic) criteria: What sort of concept does the word refer to?
 - Verbs refer to actions (observe, think, give).

POS tags in Penn Treebank

The Penn Treebank POS tagset.

1. CC	Coordinating conjunction	25. TO	to
2. CD	Cardinal number	26. UH	Interjection
3. DT	Determiner	27. VB	,
4. EX	Existential there	28. VBD	Verb, past tense
5. FW	Foreign word	29. VBG	Verb, gerund/present
6. IN	Preposition/subordinating		participle
	conjunction	30. VBN	Verb, past participle
7. JJ	Adjective	31. VBP	Verb, non-3rd ps. sing. present
8. ĴĴR	Adjective, comparative	32. VBZ	Verb, 3rd ps. sing. present
9. jjs	Adjective, superlative	33. WDT	wh-determiner
10. ĽS	List item marker	34. WP	wh-pronoun
11. MD	Modal	35. WP\$	Possessive wh-pronoun
12. NN	Noun, singular or mass	36. WRB	<i>wh</i> -adverb
13. NNS	Noun, plural	37. #	Pound sign
14. NNP	Proper noun, singular	38. \$	Dollar sign
15. NNPS	Proper noun, plural	39	Sentence-final punctuation
16. PDT	Predeterminer	40. ,	Comma
17. POS	Possessive ending	41. :	Colon, semi-colon
18. PRP	Personal pronoun	42. (Left bracket character
19. PP\$	Possessive pronoun	43 .)	Right bracket character
20. RB	Adverb	44. "	Straight double quote
21. RBR	Adverb, comparative	4 5. ′	Left open single quote
22. RBS	Adverb, superlative	46. "	Left open double quote
23. RP	Particle	47 . ′	Right close single quote
24. SYM	Symbol (mathematical or scientific)	48. "	Right close double quote
			1

Example of POS inference

Emma	has	а	beautiful	flower
NNP	VBZ	DT	JJ	NN

Parts-of-speech.Info

POS tagging	about Parts-of-speech.Info	
Enter a complete	sentence (no single words!) and click at "POS-tag!". The tagging works better	Adjective
when grammar and orthography are correct.		Adverb
Text:		Conjunction
Tiffany has a	beautiful flower	Determiner
		Noun
€ Ed	it text Finglish •	Number
0 L0	Ligisii	Preposition
		Pronoun
		Verb

POS Tagging: Issue

Given an input text, tag each word correctly:

```
There/ was/ still/ lemonade/ in/ the/ bottle/
```

- (Tag sets are quite counterintuitive!)
 - In the above, the bottle is a noun not a verb
 - but how does our tagger tell?
 - The still could be an adjective or an adverb
 - which seems more likely?

POS Tagging: Issue

Given an input text, tag each word correctly:

There/ was/ still/ lemonade/ in/ the/ bottle/

- (Tag sets are quite counterintuitive!)
 - In the above, the bottle is a noun not a verb
 - but how does our tagger tell?
 - The still could be an adjective or an adverb
 - which seems more likely?

adjective, still-er, still-est.

- 1 remaining in place or at rest; motionless; stationary: to stand still
- 2 free from sound or noise, as a place or persons; silent: to keep still about a matter.
- 3 subdued or low in sound; hushed: a still small voice
- 4 free from turbulence or commotion; peaceful; tranquil; calm: the still air.
- 5 without waves or perceptible current; not flowing, as water.
- 6 not effervescent or sparkling, as wine.
- 7 Photography, noting, pertaining to, or used for making single photographs, as opposed to a motion picture

adverb

- 10 at this or that time; as previously: Are you still here?
- 11 up to this or that time; as yet:

 A day before departure we were still lacking an itinerary.
- 12 in the future as in the past: Objections will still be made.
- 13 even; in addition; yet (used to emphasize a comparative): still more complaints; still greater riches.
- 14 even then; yet; nevertheless: to be rich and still crave more.

The purpose of POS Tagging

Essential ingredient in natural language applications

- Useful in and of itself (more than you'd think)
 - Text-to-speech: record, lead
 - Lemmatization: saw[v] see, saw[n] saw
 - Linguistically motivated word clustering
- Useful as a pre-processing step for parsing
- Useful as features to downstream systems.

LECTURE PLAN

Lecture 6: Part of Speech Tagging

- 1. Part-of-Speech Tagging
- 2. Baseline Approaches
 - Rule-based Model
 - 2. Look-up Table Model
 - N-Gram Model
- 3. Probabilistic Approaches
 - 1. Hidden Markov Model
 - 2. Conditional Random Field
- 4. Deep Learning Approaches

Part of Speech Tagging

Emma has a beautiful flower

Part of Speech Tagging

Emma has a beautiful flower

Open class (content) words			
Nouns	Adjec	tives red, happy	Abbreviations etc.
Common cat, dog	Adverbs quickly		Verbs
Proper IBM, John	Numbers		Main ran, ate
Closed class (functional) words		one, thousand, 1,983,213	Modal can had
Determiners the, some			
Conjunctions and, or Adpositions in, of, from			
Pronouns they, him	Partio	cles off, up	Punctuation ., ?, !

Rule-based POS Tagging

Basic idea:

Old POS taggers used to work in two stages, based on hand-written rules:

- the first stage identifies a set of possible POS for each word in the sentence (based on a lexicon), and
- the second uses a set of hand-crafted rules in order to select a POS from each of the lists for each word

IF Condition,
Then Conclusion

Rule-based POS Tagging

Basic idea:

- Assign each token all its possible tags.
- Apply rules that eliminate all tags for a token that are inconsistent with its context.

 Assign any unknown word tokens a tag that is consistent with its context (eg, the most frequent tag).

Rule-based POS Tagging

 Rule-based tagging often used a large set of hand-crafted contextsensitive rules.

Example (schematic):

Example					
the can	DT (determiner) MD (modal) NN (sg noun) VB (base verb)	⇒	the can	DT (determiner) MD (modal) NN (sg noun) VB (base verb)	X √ X

"Cannot eliminate all POS ambiguity."

Part of Speech Tagging

nma John

Emma likes John

Part of Speech Tagging

Emma likes John

Part of Speech Tagging: Lookup Table

	N	V
John	1	0
liked	0	2
Will	2	0
Emma	1	0

Emma likes John

Part of Speech Tagging: Lookup Table

	N	V
John	1	0
liked	0	2
Will	2	0
Emma	1	0

Emma likes John

Part of Speech Tagging: Lookup Table

Pick the largest number of the corresponding row

	N	V
John	1	0
liked	0	2
Will	2	0
Emma	1	0

Part of Speech Tagging

Emma will meet Will

Part of Speech Tagging

Pick the largest number of the corresponding row

	N	V	M
John	2	0	0
meet	0	3	0
Will	2	0	3
Emma	2	0	0

Part of Speech Tagging

Pick the largest number of the corresponding row

	N	V	M
John	2	0	0
meet	0	3	0
Will	2	0	3
Emma	2	0	0

Part of Speech Tagging: N-gram

A contiguous sequence of N items from a given sample of text

N=1 Emma will meet Will unigram

N=2 Emma will meet Will bigram

N=3 Emma will meet Will trigram

Part of Speech Tagging: N-gram

	N - M	M - V	V - N
john-will	1	0	0
will-meet	0	3	0
meet-will	0	0	1
emma-will	1	0	0
meet-john	0	0	1
will-will	1	0	0
meet-emma	0	0	1

Emma will meet Will

Part of Speech Tagging: N-gram

	N - M	M - V	V - N
john-will	1	0	0
will-meet	0	3	0
meet-will	0	0	1
emma-will	1	0	0
meet-john	0	0	1
will-will	1	0	0
meet-emma	0	0	1

Part of Speech Tagging: N-gram

	N - M	M - V	V - N
john-will	1	0	0
will-meet	0	3	0
meet-will	0	0	1
emma-will	1	0	0
meet-john	0	0	1
will-will	1	0	0
meet-emma	0	0	1

Part of Speech Tagging: N-gram

	N - M	M - V	V - N
john-will	1	0	0
will-meet	0	3	0
meet-will	0	0	1
emma-will	1	0	0
meet-john	0	0	1
will-will	1	0	0
meet-emma	0	0	1

LECTURE PLAN

Lecture 6: Part of Speech Tagging

- 1. Part-of-Speech Tagging
- 2. Baseline Approaches
 - Rule-based Model
 - 2. Look-up Table Model
 - N-Gram Model

3. Probabilistic Approaches

- 1. Hidden Markov Model
- 2. Conditional Random Field
- 4. Deep Learning Approaches

Hidden Markov Model: Idea

Emma will meet John

Hidden Markov Model: Idea

Hidden Markov Model (HMM)

Hidden Markov Model Hidden Markov Model What is 'hidden'? What is 'Markov Model'?

Markov Model

Andrei Andreyevich Markov

The purpose of introducing Markov Chain
An example of statistical investigation in the text of
`Eugene Onyegin' illustrating coupling of `tests' in chains.

- A stochastic model used to model randomly changing system
- Has the Markov property if the conditional probability distribution of future states of the process depends only upon the present state, not on the events that occurred before it.

Markov Model (MM): K-Order Markov Property

- Assumption: last **k** states are sufficient
 - (k=1) First-order Markov Process (Most Commonly used)

$$P(S_t | S_{t-1}, ..., S_0) = P(S_t | S_{t-1})$$

• (k=2) Second-order Markov Process

$$P(S_t | S_{t-1, \dots, S_0}) = P(S_t | S_{t-1, S_{t-2}})$$

Markov Model (MM): Example

Let's predict tomorrow weather in Sydney. Assume we have three classes

Class 1: Rainy

Class 2: Cloudy

Class 3: Sunny

NOTE: Tomorrow weather depends only on today's!

First order Markov Model

We found the weather change pattern based on the 1-year data.

		Tomorrow		
		Rainy Cloudy Sunn		Sunny
	Rainy	0.4	0.3	0.3
Today	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

$$S_{ij} = P(S_t = j | S_{t-1} = i)$$

Markov Model (MM): Example

Let's predict tomorrow weather in Sydney. Assume we have three classes

Class 1: Rainy

Class 2: Cloudy

Class 3: Sunny

NOTE: Tomorrow weather depends only on today's!

First order Markov Model

We found the weather change pattern based on the 1-year data.

		Tomorrow		
		Rainy Cloudy Sunny		
	Rainy	0.4	0.3	0.3
Today	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

If it is raining today, how will be the weather tomorrow?

$$S_{ij} = P(S_t = j | S_{t-1} = i)$$

$$S_{rainyrainy} = 0.4$$

$$S_{rainycloudy} = 0.3$$

$$S_{rainysunny} = 0.3$$

Markov Model (MM): Example

Let's predict tomorrow weather in Sydney. Assume we have three classes

Class 1: Rainy

Class 2: Cloudy

Class 3: Sunny

NOTE: Tomorrow weather depends only on today's!

First order Markov Model

We found the weather change pattern based on the 1-year data.

		Tomorrow		
		Rainy Cloudy Sunny		
	Rainy	0.4	0.3	0.3
Today	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

If it is raining today, how will be the weather tomorrow? Rainy!

$$S_{ij} = P(S_t = j | S_{t-1} = i)$$

$$S_{rainyrainy} = 0.4$$

$$S_{rainycloudy} = 0.3$$

$$S_{rainysunny} = 0.3$$

Markov Model (MM): Example

Transition Probabilities

We found the weather change pattern based on the 1-year data.

		Tomorrow		
		Rainy Cloudy Sunny		Sunny
	Rainy	0.4	0.3	0.3
Today	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

Markov Model (MM): Example

Visual illustration with diagram

- Each state corresponds to one observation
- Sum of outgoing edge weights is one

		Tomorrow		
	Rainy Cloudy Sunn		Sunny	
Today	Rainy	0.4	0.3	0.3
	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

Markov Model (MM): Example

State Transition Matrix

$$S_{ij} = P(S_t = j | S_{t-1} = i) \quad 1 \le i, \ j \ge N$$
$$S_{ij} \ge 0$$

$$S = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1N} \\ S_{21} & S_{22} & \dots & S_{2N} \\ S_{31} & S_{32} & \dots & S_{3N} \\ \vdots & \vdots & \vdots & \vdots \\ S_{N1} & S_{N2} & \dots & S_{NN} \end{bmatrix}$$

		Tomorrow		
		Rainy Cloudy St		Sunny
Today	Rainy	0.4	0.3	0.3
	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

		Time <i>t+1</i>		
		S1	S2	S3
Time	S1	0.4	0.3	0.3
t	S2	0.2	0.6	0.2
	S3	0.1	0.1	0.8

Markov Model (MM): Example

Sequence Probability

Q: What is the probability that the weather for the next 7 days will be "sun-rain-rain-sun-cloudy-sun" if it is sunny today?

$$P(S_3, S_3, S_3, S_1, S_1, S_3, S_2, S_3 \mid \text{model})$$

$$= P(S_3) \cdot P(S_3 \mid S_3) \cdot P(S_3 \mid S_3) \cdot P(S_1 \mid S_3) \cdot P(S_1 \mid S_3) \cdot P(S_1 \mid S_1) P(S_3 \mid S_1) P(S_2 \mid S_3) P(S_3 \mid S_2)$$

$$=1 \cdot (0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)$$

$$=1.536\times10^{-4}$$

$$S_{ij} = P(S_t = j | S_{t-1} = i)$$

Hidden Markov Model (HMM)

Hidden Markov Model (HMM)

Hidden Markov Models (HMMs) are a class of probabilistic graphical model that allow us to *predict a sequence of unknown (hidden) variables* from a set of observed variables.

hidden

- x states ←
- y possible observations
- a state transition probabilities
- **b** output probabilities
- States are hidden
- Observable outcome linked to states
- Each state has observation probabilities to determine the observable event

Hidden Markov Model (HMM)

Hidden Markov Models (HMMs) are a class of probabilistic graphical model that allow us to *predict a sequence of unknown (hidden) variables* from a set of observed variables.

hidden

- x states ←
- y possible observations
- a state transition probabilities
- **b** output probabilities
- States are hidden
- Observable outcome linked to states
- Each state has observation probabilities to determine the observable event

Hidden Markov Model (HMM)

Predicting the **weather** (state: hidden variable) based on the type of clothes that the person wears (observed event)

- Weather (hidden variable): sunny, cloudy, rainy
- Observed variables are the type of clothing the person worn

The arrows represent:

- Transition Probabilities: from a hidden state to another hidden state
- Emission Probabilities: from a hidden state to an observed variable

One or more observations allow us to make an inference about a sequence of hidden states

Hidden Markov Model (HMM)

Predicting the weather (state: hidden variable) based on the type of clothes that

In order to compute the joint probability of a sequence of hidden states, we need to assemble three types of information:

- **1. Initial state information** (a.k.a. **prior probability**) The initial probability of transitioning to a hidden state.
- **2. Transition probabilities** the probability of transitioning to a new state conditioned on a present state
- **3. Emission probabilities** the probability of transitioning to an observed state conditioned on a hidden state

Hidden Markov Model (HMM)

Predicting the weather (hidden variable) based on the type of clothes

Priors

Rainy	0.6
Cloudy	0.3
Sunny	0.1

Transitions

		Tomorrow		
		Rainy	Cloudy	Sunny
Today	Rainy	0.6	0.3	0.1
	Cloudy	0.4	0.3	0.2
	Sunny	0.1	0.4	0.5

Emissions

	Shirts	Jacket	Hoodies
Rainy	0.8	0.19	0.01
Cloudy	0.5	0.4	0.1
Sunny	0.01	0.2	0.79

Hidden Markov Model (HMM)

We had the list of clothes that Caren wears for three days

Firstly, just calculate the weather condition 'cloudy-cloudy-sunny' (Random Selection)

1. Calculate the probability that Caren could wear that clothing (with the weather condition 'cloudy – cloudy – sunny')

P(shirts | cloudy)*P(hoodie | cloudy)*P(hoodie | sunny)

2. Calculate the probability that weathers were 'cloudy – cloudy – sunny' $P(prior_cloudy) * P(cloudy | cloudy) * P(sunny | cloudy)$

P(shirts|cloudy)*P(hoodie|cloudy)*P(hoodie|sunny)* P(prior_cloudy)* P(cloudy|cloudy) * P(sunny|cloudy)

This is the probability when we assume the weather (cloudy – cloudy – sunny)

Hidden Markov Model (HMM)

The previous was the only probability when we assume the weather (cloudy – cloudy – sunny)

This is a complete set of 3^3 =27 cases of weather states for three days:

```
 \{x1=s1=sunny,\ x2=s1=sunny,\ x3=s1=sunny\},\ \{x1=s1=sunny,\ x2=s1=sunny,\ x3=s2=cloudy\},\ \{x1=s1=sunny,\ x2=s2=cloudy,\ x3=s1=sunny\},\ \{x1=s1=sunny,\ x2=s2=cloudy,\ x3=s1=sunny\},\ \{x1=s1=sunny,\ x2=s2=cloudy,\ x3=s3=rainy\},\ \{x1=s1=sunny,\ x2=s3=rainy,\ x3=s2=cloudy\},\ \{x1=s1=sunny,\ x2=s3=rainy,\ x3=s2=cloudy\},\ \{x1=s1=sunny,\ x2=s3=rainy,\ x3=s2=cloudy\},\ \{x1=s2=cloudy,\ x2=s1=sunny,\ x3=s3=rainy\},\ \{x1=s2=cloudy,\ x2=s1=sunny,\ x3=s2=cloudy\},\ \{x1=s2=cloudy,\ x2=s2=cloudy,\ x3=s2=cloudy\},\ \{x1=s2=cloudy,\ x2=s2=cloudy,\ x3=s2=cloudy\},\ \{x1=s2=cloudy,\ x2=s3=rainy,\ x3=s1=sunny\},\ \{x1=s2=cloudy,\ x2=s3=rainy,\ x3=s3=rainy\},\ \{x1=s3=rainy,\ x2=s1=sunny,\ x3=s1=sunny\},\ \{x1=s3=rainy,\ x2=s2=cloudy,\ x3=s3=rainy\},\ \{x1=s3=rainy,\ x2=s2=cloudy,\ x3=s3=rainy\},\ \{x1=s3=rainy,\ x2=s3=rainy,\ x3=s3=rainy\},\ \{x1=s3=rainy,\ x2=s3=rainy,\ x3=s2=cloudy\},\ \{x1=s3=rainy,\ x2=s3=rainy,\ x3=s2=cloudy\},\ \{x1=s3=rainy,\ x2=s3=rainy,\ x3=s2=cloudy\},\ \{x1=s3=rainy,\ x2=s3=rainy,\ x3=s2=cloudy\},\ \{x1=s3=rainy,\ x2=s3=rainy,\ x3=s3=rainy\},\ \{x1=s3=rainy,\ x3=s3=
```

Easy but slow solution: Exhaustive enumeration!

Hidden Markov Model (HMM): Evaluation

Do we need to calculate this much all the time?

This is a complete set of 3^3 =27 cases of weather states for three days:

```
 \{x1 = s1 = sunny, \ x2 = s1 = sunny, \ x3 = s1 = sunny\}, \ \{x1 = s1 = sunny, \ x2 = s1 = sunny, \ x3 = s2 = cloudy\}, \ \{x1 = s1 = sunny, \ x2 = s2 = cloudy, \ x3 = s1 = sunny\}, \ \{x1 = s1 = sunny, \ x2 = s2 = cloudy, \ x3 = s3 = rainy\}, \ \{x1 = s1 = sunny, \ x2 = s2 = cloudy, \ x3 = s3 = rainy\}, \ \{x1 = s1 = sunny, \ x2 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s1 = sunny, \ x2 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s1 = sunny, \ x2 = s3 = rainy, \ x3 = s1 = sunny\}, \ \{x1 = s2 = cloudy, \ x2 = s1 = sunny\}, \ \{x1 = s2 = cloudy, \ x2 = s1 = sunny\}, \ \{x1 = s2 = cloudy, \ x2 = s2 = cloudy, \ x3 = s3 = rainy\}, \ \{x1 = s2 = cloudy, \ x2 = s2 = cloudy, \ x3 = s2 = cloudy\}, \ \{x1 = s2 = cloudy, \ x2 = s3 = rainy, \ x3 = s1 = sunny\}, \ \{x1 = s2 = cloudy, \ x2 = s3 = rainy, \ x3 = s1 = sunny\}, \ \{x1 = s3 = rainy, \ x2 = s1 = sunny, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s2 = cloudy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s2 = cloudy, \ x3 = s3 = rainy\}, \ \{x1 = s3 = rainy, \ x2 = s2 = cloudy, \ x3 = s3 = rainy\}, \ \{x1 = s3 = rainy, \ x2 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s3 = rainy\}, \ \{x1 = s3 = rainy, \ x2 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x2 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1 = s3 = rainy, \ x3 = s2 = cloudy\}, \ \{x1
```


Now, Let's Apply this HMM to the Part of Speech Tagging Task!

Part of Speech Tagging: with HMM

Emma J

11

Database

Emma, John can meet Will

N N M V N

Pin will meet Emma

N M V N

Will John pin Emma

M N V N

Emma will pat Pin

N M V N

Part of Speech Tagging: with HMM

Emma John

Will

Pin

	N	V	M
Emma	4	0	0
John	2	0	0
Will	1	0	3
Pin	2	1	0
Can	0	0	1
Meet	0	2	0
Pat	0	1	0

Part of Speech Tagging: with HMM

Emission Probabilities

	N	V	M
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

Part of Speech Tagging: with HMM

	N	V	M	<e></e>
<\$>	3	0	1	0
N	1	1	3	4
V	4	0	0	0
M	1	3	0	0

Part of Speech Tagging: with HMM

	N	V	M	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
M	1/4	3/4	0	0

Part of Speech Tagging: with HMM

	N	V	M	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
М	1/4	3/4	0	0

Part of Speech Tagging: with HMM

Let's combine this!

Part of Speech Tagging: with HMM

Let's combine this!

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	М	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
M	1/4	3/4	0	0

John will Pin Will

Part of Speech Tagging: with HMM

Let's combine this!

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
М	1/4	3/4	0	0

John will Pin Will

Part of Speech Tagging: with HMM

Let's combine this!

	N	V	M
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can			

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	Λ/Λ	0	n	0

Question!

How many possibilities do we have for the sentence 'John will Pin Will'?

$$\langle S \rangle \xrightarrow{3/4} N \xrightarrow{1/3} M \xrightarrow{3/4} V \xrightarrow{4/4} N \xrightarrow{4/9} \langle E \rangle 0.0003858$$

Hidden Markov Model (HMM) with POS Tagging *Emissions*

Part of Speech Tagging: with HMM

Let's combine this!

	N	V	M
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can			

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
\/	Λ/Λ	0	0	0

Question!

How many possibilities do we have for the sentence 'John will Pin Will'?

POS Tagging: with HMM

	N	V	M
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

POS Tagging: with HMM

	N	v	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
М	1/4	3/4	0	0

Beam SearchGet rid of unlikely candidates

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

Beam SearchGet rid of unlikely candidates

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	М	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

Beam SearchGet rid of unlikely candidates

POS Tagging: with HMM

	N	V	M
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
M	1/4	3/4	0	0

John will Pin Will

Question!

How many possibilities do we have for the sentence 'John will Pin Will' NOW?

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
М	1/4	3/4	0	0

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
М	1/4	3/4	0	0

Viterbi Algorithm!

Assume we have only these options now

Viterbi Algorithm!

Assume we have only these options now

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	М	<e></e>
< S >	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

Viterbi Algorithm

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

John will

Pin

Will

Viterbi Algorithm

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

Pin

Will

Viterbi Algorithm

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	v	М	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

Pin

Will

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
V	4/4	0	0	0
М	1/4	3/4	0	0

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

	N	V	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	М	<e></e>
<s></s>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0


```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                        ; initialization step
      viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
  for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
     backpointer[s,t] \leftarrow arg^{N}  viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
bestpathprob \leftarrow \max^{N} viterbi[s, T] ; termination step
bestpathpointer \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s, T] ; termination step
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```


Out-of-Vocab

HMM Tagger Issue: #1. Unknown (OOV) Words

How to handle if there are any unknown words

Solution 1: Use N-grams to predict the correct Tag

Solution 2: Use morphology (prefixes, suffixes) or hyphenation

HMM Tagger Issue: #2. Independency Problem

HMM is only dependent on every state and its corresponding observed object. The sequence labeling, in addition to having a relationship with individual words, also relates to such aspects as the observed sequence length, word context and others.

Advanced HMM (MEMM or CRF)

The CRF model has addressed the labeling bias issue and eliminated two unreasonable hypotheses in HMM.

MEMM adopts local variance normalization while CRF adopts global variance normalization.

Conditional Random Field: Advantages

- Compared with HMM: Since CRF does not have as strict independence assumptions as HMM does, it can accommodate any context information.
- Compared with MEMM: Since CRF computes the conditional probability of global optimal output nodes, it overcomes the drawbacks of label bias in MEMM.

However,

CRF is highly *computationally complex at the training stage* of the algorithm. It makes it *very difficult to re-train the model* when newer data becomes available.

LECTURE PLAN

Lecture 6: Part of Speech Tagging

- 1. Part-of-Speech Tagging
- 2. Baseline Approaches
 - 1. Rule-based Model
 - 2. Look-up Table Model
 - N-Gram Model
- 3. Probabilistic Approaches
 - 1. Hidden Markov Model
 - Conditional Random Field
- 4. Deep Learning Approaches

RNN/LSTM/GRU in Part of Speech Tagging

Do LSTMs really work so well for PoS tagging?

(Horsmann and Zesch, 2017)

Do LSTMs really work so well for PoS tagging? – A replication study

Tobias Horsmann and Torsten Zesch

Language Technology Lab

Department of Computer Science and Applied Cognitive Science
University of Duisburg-Essen, Germany
{tobias.horsmann,torsten.zesch}@uni-due.de

Abstract

A recent study by Plank et al. (2016) found that LSTM-based PoS taggers considerably improve over the current state-of-theart when evaluated on the corpora of the Universal Dependencies project that use a coarse-grained tagset. We replicate this study using a fresh collection of 27 corpora of 21 languages that are annotated with fine-grained tagsets of varying size. Our replication confirms the result in general, and we additionally find that the advantage of LSTMs is even bigger for larger tagsets. However, we also find that for the very large tagsets of morphologically rich languages, hand-crafted morphological lexicons are still necessary to reach state-of-the-art performance.

ferty et al., 2001) and Hidden-Markov (HMM) implementations on corpora of various languages. Their evaluation concludes that the LSTM tagger reaches better results than the CRF and HMM tagger. The evaluation corpora were all annotated with a *coarse-grained* tagset with 17 tags. Thus, this LSTM tagger seems to be a well-performing, language-independent choice for learning models on coarse-grained tagsets. While for many tasks a coarse-grained tagset might be sufficient some tasks require more fine-grained tagsets.

We, thus, consider it worthwhile to explore if the results are reproducible using corpora with fine-grained tagsets. We use the LSTM tagger provided by Plank et al. (2016) and compare the results likewise to CRF and an off-the-shelf HMM tagger implementation. We compile a fresh set of 27 corpora of 21 languages which uses the commonly used *fine-grained* tagset of the respective

Do LSTMs really work so well for PoS tagging?

Corpora used in the experiments

			Tokens			
Group	Corpus Id	Source	(10^3)	# Tags	Annotation	Reference
Germanic	Danish	Copenhagen DTB	255	36	manual	(Buch-Kromann and Korzen, 2010)
	Dutch	Alpino	200	20	manual	(Bouma et al., 2000)
	English	Brown	1,100	180	manual	(Nelson Francis and Kuçera, 1964)
	German-1	Hamburg DTB	4,800	54	manual	(Brants et al., 2004)
	German-2	Tiger	880	54	manual	(Telljohann et al., 2004)
ern	German-3	Tüba-D/Z	1,500	54	manual	(Foth et al., 2014)
Ö	Icelandic	Mim	1,000	703	auto	(Helgadóttir et al., 2012)
	Norwegian	Norwegian DTB	1,300	19	manual	(Solberg et al., 2014)
	Swedish-1	Talbanken	96	25	manual	(Einarsson, 1976)
	Swedish-2	Stockholm-Umea	1,100	153	manual	(Ejerhed and Källgren, 1997)
	Braz.Portuguese	MAC-Morpho	1,000	82	manual	(Aluísio et al., 2003)
nic	French-1	Multitag	370	992	manual	(Paroubek, 2000)
Romanic	French-2	Sequoia	200	29	manual	(Candito et al., 2014)
\mathbf{R}_{0}	Italian	Turin Parallel	80	15	auto	(Bosco et al., 2012)
	Spanish	IULA DTB	550	241	manual	(Marimon et al., 2014)
	Croatian-1	Croatian DTB	200	692	manual	(Željko Agić and Ljubešić, 2014)
	Croatian-2	Hr500k	500	769	manual	(Ljubešić et al., 2016)
	Czech	Prague DTB	2,000	1,574	manual	(Bejček et al., 2013)
Slavic	Polish	Polish National Corpus	1,000	27	manual	(Przepiórkowski et al., 2008)
Sla	Russian	Russian Open Corpus	1,700	22	manual	(Bocharov et al., 2013)
	Slovak	MULTEXT-East	84	956	manual	(Erjavec, 2010)
	Slovene-1	IJS-ELAN	540	1,181	auto	(Erjavec, 2002)
	Slovene-2	SSJ	590	1,304	manual	(Krek et al., 2013)
	Afrikaans	AfriBooms	50	12	manual	(Augustinus et al., 2016)
iers	Finnish	FinnTreebank	170	1573	manual	(Voutilainen, 2011)
Others	Hebrew	HaAretz Corpus	11,000	22	auto	(Itai and Wintner, 2008)
	Hungarian	The Szeged Treebank	1,200	1,085	manual	(Csendes et al., 2005)

Do LSTMs really work so well for PoS tagging?

Coarse-grained PoS tag distribution of corpora by language group

Do LSTMs really work so well for PoS tagging?

(Horsmann and Zesch, 2017)

												— I	I MMH	POS Tagg	ger -	_
		l w	ord	Top	750						★					_
Lang.		Ngra	$ms \pm 1$	Char l	Ngrams	Clu	isters	Best	CRF	Hu	nPos		Lang.		W	o
Group	Corpus Id	All	OOV	All	OOV	All	OOV	All	OOV	All	OOV		Group	Corpus Id	All	
	Danish	90.9	53.3	90.3	69.3	89.5	67.6	96.1	82.4	94.9	74.2			Danish	94.9	
	Dutch	86.5	66.9	85.0	71.7	88.0	77.7	90.7	83.7	89.9	80.6			Dutch	91.1	
	English	87.5	45.1	90.3	70.1	89.1	64.0	94.6	80.2	93.8	77.7			English	91.9	
ic.	German-1	88.5	62.4	90.3	77.7	90.8	73.7	94.6	84.6	94.4	83.7		nic	German-1	93.6	
Germanic	German-2	87.2	60.3	90.9	77.7	90.8	76.1	95.2	87.1	94.9	85.4		Germanic	German-2	94.5	
еш	German-3	86.3	58.5	91.7	76.8	91.6	77.6	94.4	85.0	94.4	83.9		ieri	German-3	93.8	
0	Icelandic	67.5	14.2	76.5	45.1	68.3	28.9	80.9	53.6	79.8	51.9		0	Icelandic	76.0	
	Norwegian	92.4	77.1	91.6	80.6	92.8	82.7	96.1	89.7	95.5	86.5			Norwegian	95.8	
	Swedish-1	91.1	70.6	92.9	82.2	92.3	79.9	96.3	90.3	95.6	85.9			Swedish-1	94.9	
	Swedish-2	78.7	29.7	87.2	67.3	81.4	48.8	91.0	74.6	91.4	77.6			Swedish-2	86.5	
	B-Portug.	86.9	62.8	87.8	73.6	89.7	76.0	92.8	83.8	93.3	84.2			B-Portug.	93.3	
nic	French-1 81	81.9	40.1	85.9	66.5	81.6	58.2	89.2	75.7	88.2	71.8		Romanic	French-1	87.6	
Romanic	French-2	95.4	67.3	93.8	74.5	91.9	79.3	97.7	88.2	97.4	82.4		ma	French-2	97.5	
Ro	Italian	93.3	68.6	91.6	74.8	91.7	75.5	96.4	86.5	95.8	80.8		Ro	Italian	96.0	
	Spanish	88.5	45.5	94.5	78.2	88.1	58.8	96.4	83.5	96.6	83.6			Spanish	93.1	
	Croatian-1	69.0	18.6	80.6	56.3	75.2	47.2	84.9	65.4	84.7	66.7			Croatian-1	83.2	
	Croatian-2	66.3	15.9	78.5	54.4	73.5	44.8	83.4	63.9	82.6	63.9			Croatian-2	80.3	
	Czech	64.1	14.4	79.2	56.0	75.2	39.2	83.1	62.9	81.7	60.9			Czech	79.4	
Slavic	Polish	82.9	58.1	92.5	86.9	86.5	72.5	95.5	91.5	93.6	85.4		Slavic	Polish	86.9	
Sla	Russian	83.7	53.7	93.0	83.5	88.2	70.9	95.5	87.5	94.6	83.6		Sla	Russian	91.3	
-,	Slovak	67.7	14.9	80.5	57.8	65.6	31.9	83.5	63.8	82.9	61.6		•,	Slovak	78.7	
	Slovene-1	72.6	17.4	83.5	55.6	72.4	39.4	86.4	62.5	82.6	59.6			Slovene-1	81.9	
	Slovene-2	65.4	12.1	78.2	50.5	73.0	39.0	83.0	59.4	86.2	59.5			Slovene-2	79.9	
	Afrikaans	95.7	75.0	95.3	80.3	95.8	81.9	97.8	89.6	97.3	85.5			Afrikaans	97.3	
er	Finnish	62.6	10.0	77.1	48.5	67.8	33.8	82.3	56.7	81.3	55.8		er	Finnish	76.7	
Other	Hebrew	82.3	41.7	81.3	60.9	76.3	53.3	90.5	68.5	90.3	60.1		Other	Hebrew	89.9	
	Hungarian	72.7	13.9	86.7	63.3	72.0	31.7	89.9	69.6	89.4	69.5		9	Hungarian	84.7	

1000										ļ	
Lang.		W	ord	C	har	Word	l-Char	Word	-Char+	Hu	nPos
Group	Corpus Id	All	OOV	All	OOV	All	OOV	All	oov	All	OOV
	Danish	94.9	72.7	95.0	79.1	96.4	82.5	96.9	83.4	94.9	74.2
	Dutch	91.1	82.3	90.3	83.6	91.6	85.7	92.5	87.1	89.9	80.6
	English	91.9	65.9	92.3	77.4	94.1	79.6	94.9	80.9	93.8	77.7
ic.	German-1	93.6	78.3	94.1	84.5	95.6	87.6	96.0	88.3	94.4	83.7
Germanic	German-2	94.5	82.4	94.6	87.1	96.4	90.1	96.8	91.5	94.4	85.4
em	German-3	93.8	80.3	94.0	84.9	95.8	88.6	96.4	89.8	94.4	83.9
g	Icelandic	76.0	34.8	76.5	49.3	81.8	56.2	84.1	60.6	79.8	51.9
	Norwegian	95.8	86.2	95.7	88.2	96.6	90.3	96.9	90.3	95.5	86.5
	Swedish-1	94.9	81.4	95.3	86.7	96.2	89.0	96.7	89.8	95.6	85.9
	Swedish-2	86.5	54.3	88.9	74.3	91.8	78.5	92.5	80.4	91.4	77.6
	B-Portug.	93.3	82.4	93.9	87.4	95.0	90.3	95.1	90.8	93.3	84.2
Romanic	French-1	87.6	67.0	85.8	72.0	88.7	77.4	89.7	78.7	88.2	71.8
ma	French-2	97.5	80.4	97.4	83.4	98.1	87.7	98.3	88.7	97.4	82.4
Ro	Italian	96.0	81.3	95.6	84.2	96.5	85.9	97.1	86.9	95.8	80.8
	Spanish	93.1	63.3	96.4	85.5	96.9	86.1	97.2	87.0	96.6	83.6
	Croatian-1	83.2	55.5	83.8	67.5	88.1	72.8	89.1	75.2	84.7	66.9
	Croatian-2	80.3	52.4	81.1	63.8	84.9	69.1	86.8	72.4	82.6	63.9
0	Czech	79.4	49.1	81.0	62.7	85.8	68.7	87.7	72.4	81.7	60.9
Slavic	Polish	86.9	73.6	89.2	84.7	95.5	91.2	91.2	88.0	93.6	85.4
Si	Russian	91.3	73.2	94.6	85.8	95.3	86.9	96.0	88.4	94.6	83.6
	Slovak	78.7	44.9	80.6	65.0	85.3	69.7	86.6	71.4	82.9	61.6
	Slovene-1	81.9	44.5	83.9	61.1	86.0	62.6	87.9	65.7	82.6	59.6
	Slovene-2	79.9	47.9	82.0	63.4	85.8	67.4	87.5	70.1	86.2	59.5
_	Afrikaans	97.3	82.8	97.1	85.8	97.8	88.4	98.0	90.0	97.3	85.5
Other	Finnish	76.7	42.7	78.0	57.6	82.0	58.9	83.6	61.2	81.3	55.8
ō	Hebrew	89.9	60.2	89.2	66.9	92.2	69.7	92.9	72.1	90.3	60.1
	Hungarian	84.7	53.3	88.0	73.1	91.2	76.9	92.0	79.0	89.4	69.5

Table 2: Accuracy of CRF taggers (10fold CV)

Table 3: Accuracy of LSTM taggers (10fold CV)

LSTM-based POS Tagging

Ilustration of LSTM-based joint POS tagging and graph-based dependency parsing.

Summary

- M. Marcus, B. Santorini and M.A. Marcinkiewicz (1993). Building a large annotated corpus of English: The Penn Treebank. In Computational Linguistics, volume 19, number 2, pp. 313–330.
- Nguyen, D. Q., Dras, M., & Johnson, M. (2017). A novel neural network model for joint postagging and graph-based dependency parsing. arXiv preprint arXiv:1705.05952.
- Ling, W., Luís, T., Marujo, L., Astudillo, R. F., Amir, S., Dyer, C., ... & Trancoso, I. (2015). Finding function in form: Compositional character models for open vocabulary word representation. arXiv preprint arXiv:1508.02096.
- Horsmann, T., & Zesch, T. (2017). Do LSTMs really work so well for PoS tagging?—A replication study. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 727-736).
- Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c 2019. All rights reserved. Draft of October 2, 2019.