Listing of Claims:

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1. (Currently Amended) A compound of formula (I),

$$\begin{array}{c} R^{4} \\ R^{5} \\ R^{6} \end{array} \stackrel{R^{2}}{\longrightarrow} \begin{array}{c} (\operatorname{CH}_{2})_{n} \\ X \\ X \\ \end{array} \stackrel{H}{\longrightarrow} \begin{array}{c} O \\ R^{1} \\ \end{array} \qquad (I)$$

the *N*-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen;

R1 is C1-6alkyl

R² is hydrogen, hydroxy, C₁₋₆alkyl, or C₃₋₆alkynyl;

R³ is a radical selected from

$$-(CH2)8-NR8R9$$
 (a-1),
-O-H (a-2), or
-O-R¹⁰ (a-3),

wherein

s is 0, 1, 2 or 3;

R⁸ is -CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl,

 $di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyloxyC_{1-6}alkyl, C_{1-6}alkylcarbonylaminoC_{1-6}alkyl, piperidinylC_{1-6}alkylaminocarbonyl, C_{1-6}alkyloxy,$

 $thienyl C_{1\text{--}6}alkyl, \, pyrrolyl C_{1\text{--}6}alkyl, \, aryl C_{1\text{--}6}alkyl piperidinyl, \,$

arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl,

 $halo indozolyl piperidinyl C_{1\text{--}6} alkyl, \, or \,$

 $arylC_{1\text{--}6}alkyl(C_{1\text{--}6}alkyl)aminoC_{1\text{--}6}alkyl;$

R⁹ is hydrogen or C₁₋₆alkyl; and

 R^{10} is $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl or di(C $_{1\text{-}6}$ alkyl)aminoC $_{1\text{-}6}$ alkyl; or R^3 is a group of formula

$$-(CH_2)_t$$
-Z- (b-1),

wherein

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

wherein each R¹² independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 O

 $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkylamino, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkenyl, morpholino, $C_{1\text{-}6}$ alkylimidazolyl, or pyridinyl $C_{1\text{-}6}$ alkylamino; and each R^{13} independently is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C_{1-6} alkyl, C_{1-6} alkyloxy, di(C_{1-6} alkyl)amino, di(C_{1-6} alkyl)amino C_{1-6} alkyloxy or C_{1-6} alkyloxycarbonyl

aryl is phenyl or phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

with the proviso that when

n is 0, X is N, R^4 is C_{1-6} alkyl, R^2 is hydrogen, R^3 is a group of formula (b-1), t is 0, Z is the heterocyclic ring system (c-2) wherein said heterocyclic ring system Z is attached to the rest of the molecule with a nitrogen atom, and R^{12} is hydrogen; then at least one of the substituents R^4 , R^5 or R^6 is other than hydrogen, halo, C_{1-6} alkyl or C_{1-6} alkyloxy.

- 2. (Previously Presented) A compound as claimed in claim 1 wherein n is 0 or 1; X is N or CR⁷, wherein R⁷ is hydrogen; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is a radical selected from (a-1) or (a-2) or is group of formula (b-1); s is 0, 1 or 2; R⁸ is C₁₋₆alkyl or arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; t is 0, 1 or 2; Z is a heterocyclic ring system selected from (c-1), (c-3), (c-4), (c-5) or (c-11); each R¹² independently is hydrogen or C₁₋₆alkyloxyC₁₋₆alkylamino; each R¹³ independently is hydrogen; and R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo or C₁₋₆alkyl.
- 3. (Previously Presented) A compound according to claim 1 wherein n is 0 or 1; X is N; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is a radical of formula (a-1) or is a group of formula (b-1); s is 0; R⁸ is arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; t is 0; Z is (c-1); each R¹² independently is hydrogen or C₁₋₆alkyloxyC₁₋₆alkylamino; each R¹³ independently is hydrogen; and R⁴, R⁵ and R⁶ are each independently selected from hydrogen or halo.
- 4. (Currently Amended) A compound selected from compound No 5, compound No 9, and compound No 2 and compound No 1:

compound 5;

compound 9
$$.C_2H_2O_4$$
 (1:2) ; and

compound 2
$$.C_2H_2O_4$$
 (2:5) ; and

and the *N*-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof.

- 5. (Cancelled)
- 6. (Previously Presented) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as an active ingredient a therapeutically effective amount of a compound according to claim 1.
- 7. (Cancelled)
- 8. (Currently Amended Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of formula (I)

$$\begin{array}{c} R^{4} \\ R^{5} \\ R^{5} \end{array} \begin{array}{c} R^{2} \\ R^{3} \end{array} \begin{array}{c} (CH_{2})_{n} \\ X \\ X \end{array} \begin{array}{c} H \\ N \\ R^{1} \end{array} \hspace{0.5cm} (I)$$

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

R³ is a radical selected from

$$-(CH2)S-NR8R9$$
 (a-1),
-O-H (a-2), or
-O-R¹⁰ (a-3),

wherein

s is 0, 1, 2 or 3;

 R^8 is –CHO, $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl,

 $di(C_{1-6}alkyl)aminoC_{1-6}alkyl, C_{1-6}alkyloxyC_{1-6}alkyl, C_{1-6}alkylcarbonylaminoC_{1-6}alkyl, piperidinylC_{1-6}alkyl, piperidinylC_{1-6}alkylaminocarbonyl, C_{1-6}alkyloxy,$

thienylC₁₋₆alkyl, pyrrolylC₁₋₆alkyl, arylC₁₋₆alkylpiperidinyl,

arylcarbonylC₁₋₆alkyl, arylcarbonylpiperidinylC₁₋₆alkyl,

haloindozolylpiperidinylC₁₋₆alkyl, or

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl;

R⁹ is hydrogen or C₁₋₆alkyl; and

 R^{10} is $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl or di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl;

or R³ is a group of formula

$$-(CH_2)_t-Z-$$
 (b-1),

wherein

(c-11)

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

wherein each R¹² independently is hydrogen, C₁₋₆alkyl, aminocarbonyl, hydroxy,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N

 $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkylamino, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl $C_{1\text{-}6}$ alkyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl $C_{1\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkyl, aryl $C_{2\text{-}6}$ alkenyl, morpholino, $C_{1\text{-}6}$ alkylimidazolyl, or pyridinyl $C_{1\text{-}6}$ alkylamino; and each R^{13} independently is hydrogen, piperidinyl or aryl;

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

 $-O-CH_2-O$ (d-1),

 $-O-(CH_2)_2-O-$ (d-2),

-CH=CH-CH=CH- (d-3), or

 $-NH-C(O)-NR^{14}=CH-$ (d-4),

wherein R^{14} is C_{1-6} alkyl;

aryl is phenyl or phenyl substituted with halo, C_{1-6} alkyl or C_{1-6} alkyloxy.

9. (Cancelled)

- 10. (Withdrawn) A method for enhancing the effectiveness of chemotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.
- 11. (Withdrawn) A method for enhancing the effectiveness of radiotherapy of comprising administration of a compound according to claim 1, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
- 12. (Currently Amended- Withdrawn) A combination of a compound of formula (I) with a chemotherapeutic agent

$$\begin{array}{c}
R^4 \\
R^5 \\
R^6
\end{array}$$

$$\begin{array}{c}
R^2 \\
R^3
\end{array}$$

$$\begin{array}{c}
(CH_2)_n \\
X
\end{array}$$

$$\begin{array}{c}
H \\
N \\
N
\end{array}$$

$$\begin{array}{c}
(I) \\
\end{array}$$

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen;

R¹ is C₁₋₆alkyl or thienyl;

R² is hydrogen, hydroxy, C₁₋₆alkyl, C₃₋₆alkynyl or taken together with R³ may form =O;

R³ is a radical selected from

$$-(CH_2)_s - NR^8R^9$$
 (a-1),

$$-O-R^{10}$$
 (a-3),

wherein

s is 0, 1, 2 or 3;

R⁸-and₂R¹⁰ are each independently selected from –CHO, C₁₋₆alkyl,

hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino,

 $di(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl,\ C_{1\text{-}6}alkyloxycarbonyl,\ C_{1\text{-}6}alkylcarbonylaminoC_{1\text{-}6}alkyl,$

 $piperidinyl C_{1\text{--}6} alkylamino carbonyl, \ piperidinyl, \ piperidinyl C_{1\text{--}6} alkyl,$

 $piperidinyl C_{1\text{--}6} alkylamino carbonyl, \ C_{1\text{--}6} alkyloxy, \ thienyl C_{1\text{--}6} alkyl,$

 $pyrrolylC_{1\text{--}6}alkyl,\,arylC_{1\text{--}6}alkylpiperidinyl,\,arylcarbonylC_{1\text{--}6}alkyl,$

 $arylcarbonylpiperidinyl C_{1\text{--}6} alkyl, \ halo indozolylpiperidinyl C_{1\text{--}6} alkyl, \ or$

 $arylC_{1\text{-}6}alkyl(C_{1\text{-}6}alkyl)aminoC_{1\text{-}6}alkyl; \ and$

R⁹ is hydrogen or C₁₋₆alkyl;

or R³ is a group of formula

$$-(CH_2)_t-Z-$$
 (b-1),

wherein

t is 0, 1, 2 or 3;

Z is a heterocyclic ring system selected from

$$R^{12}$$
 HN NH R^{12} R^{1

$$HN \int R^{12}$$
(c-11)

wherein each R¹² independently is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino,

hydroxy, aryl,

 $C_{1\text{-}6}$ alkylamino $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyloxy

 C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, aryl C_{1-6} alkylamino, morpholino, C_{1-6} alkylamino; pyridinyl C_{1-6} alkylamino;

each R¹³ independently is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

$$-O-CH_2-O$$
 (d-1),

$$-O-(CH_2)_2-O-$$
 (d-2),

-CH=CH-CH=CH-
$$(d-3)$$
, or

$$-NH-C(O)-NR^{14}=CH-$$
 (d-4),

wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl or phenyl substituted with halo, C_{1-6} alkyl or C_{1-6} alkyloxy.

13. (Withdrawn) A process for preparation of a compound as claimed in claim 1, comprising

a) hydrolysis of intermediates of formula (VIII),

b) cyclization of intermediates of formula (X), into compounds of formula (I) wherein X is CH, herein referred to as compounds of formula (I-j), and s.

c) condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) wherein R^h is C₁₋₆alkyl, into compounds of formula (I), wherein X is N, herein referred to as compounds of formula (I-i), in the presence of a carboxylic acid.

14. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 2.

- 15. (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 3.
- 16 (Previously Presented) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 4.
- 17. (Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 2.
- 18. (Withdrawn) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 2, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.
- 19. (Withdrawn) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 2, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
- 20. (Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 3.
- 21. (Withdrawn) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 3, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.

22. (Withdrawn) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 3, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.

- 23. (Withdrawn) A method of treating in a subject a PARP mediated disorder, said method comprising administering to the subject a therapeutically effective amount of a compound of claim 4.
- 24. (Withdrawn) A method for enhancing the effectiveness of chemotherapy comprising administration of a compound according to claim 4, in a therapeutically effective amount so as to increase sensitivity of cells to chemotherapy, prior to administration of said chemotherapy.
- 25. (Withdrawn) A method for enhancing the effectiveness of radiotherapy comprising administration of a compound according to claim 4, in a therapeutically effective amount so as to increase sensitivity of cells to ionizing radiation, prior to administration of said radiotherapy.
- 26 (Withdrawn) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 2.
- 27 (Withdrawn) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 3.
- 28 (Withdrawn) A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of claim 4.
- 29. (Cancelled)
- 30. (Cancelled)