Capítulo 1

Os Computadores HV-1, HV-2 e HIPO

Neste Tópico, estudaremos três computadores hipotéticos: HV-1, HV-2 e HIPO. O estudo do funcionamento destes três computadores nos auxiliará na compreensão do funcionamento dos computadores reais e também no aprendizado de conceitos fundamentais da programação de computadores, tais como os conceitos de variável e programa armazenado.

Uma pessoa que denominaremos **usuário** utilizará os computadores mencionados anteriormente para resolver seus problemas de processamento de dados. Cada um dos três computadores poderá funcionar sem a interferência do usuário até que a solução total do problema seja fornecida a ele.

1.1 O Computador HV-1

O computador HV-1 é formado pelos seguintes componentes:

- Um gaveteiro com 100 gavetas;
- Uma calculadora com mostrador e teclado;
- Um pequeno quadro-negro denominado EPI;
- Um porta-cartões;
- Uma folha de saída; e
- Um **operador** do sistema, uma pessoa chamada CHICO, com lápis, apagador de quadro-negro e giz.

1.1.1 Gaveteiro

O gaveteiro consiste numa sequência de gavetas numeradas de 00 a 99. O número de cada gaveta é denominado seu **endereço**. Cada gaveta contém um pequeno quadro-negro, onde é escrito um número sempre com 3 algarismos (por exemplo, 102, 003, etc.) e outras informações que veremos mais tarde. O gaveteiro é construído de tal maneira que valem as seguintes regras de utilização:

- 1. em qualquer momento, no máximo uma gaveta pode estar aberta;
- 2. a leitura do quadro-negro de uma gaveta não altera o que nele está escrito (gravado);
- 3. a escrita de uma informação no quadro-negro de uma gaveta é sempre precedida do apagamento do mesmo; e
- 4. somente o operador CHICO tem acesso ao gaveteiro.

1.1.2 Calculadora

Trata-se de uma calculadora usual, com teclado para entrada de números, teclas das quatro operações aritméticas básicas, tecla '=' e um mostrador, que denominaremos **acumulador**. Não há tecla de ponto (ou vírgula) decimal ou outra tecla adicional qualquer. Há dois tipos de operações efetuadas com essa calculadora:

- carga de um número no acumulador. Para isso, pressiona-se a tecla '=' (garantindo-se assim o encerramento de alguma operação prévia) e a seguir "digitam-se" os algarismos do número a ser carregado, o qual aparece no acumulador;
- 2. operação aritmética. Esta é sempre feita entre o número que está no acumulador e um segundo número. Para isso, pressiona-se a tecla da operação desejada, digita-se o segundo número e pressiona-se a tecla '='. O resultado da operação aparece no acumulador.

Assim como o gaveteiro, a calculadora só pode ser utilizada pelo CHICO.

1.1.3 EPI

Trata-se de quadro-negro independente do gaveteiro, com a forma \square , onde será escrito um número entre 00 e 99, correspondendo a um endereço de gaveta do gaveteiro. O número nele escrito indica sempre o "Endereço da Próxima Instrução", donde sua abreviatura. O conceito de "intrução" será explicado adiante.

Somente o CHICO tem acesso ao EPI.

1.1.4 Porta-Cartões

É um dispositivo similar aos porta-cigarros onde são empilhados maços de cigarro a serem vendidos. O porta-cartões funciona de acordo com as seguintes regras:

- 1. cartões com informações são colocados exclusivamente pela parte superior, um a um; quando um cartão contém um número, este é sempre escrito com 3 algarismos, como por exemplo, 101, 003, etc;
- 2. cartões são retirados da extremidade inferior, um de cada vez, aparecendo na mesma ordem em que foram colocados no dispositivo;
- 3. a retirada de cartões só pode ser feita pelo CHICO; e
- 4. a colocação de cartões só pode ser feita pelo usuário.

1.1.5 Folha de Saída

Trata-se de uma folha de papel onde pode ser escrito um número em cada linha, utilizando-se sempre linhas consecutivas. Somente o CHICO pode escrever nessa folha; somente o usuário pode ler o que já foi escrito.

1.1.6 Operador

Resumindo as diversas características descritas, vemos que o operador CHICO é a única pessoa que tem acesso ao gaveteiro, à calculadora, ao EPI, e é o único que pode retirar cartões do porta-cartões e escrever na folha de saída. Ele executa estritamente ordens recebidas, não podendo tomar nenhuma iniciativa própria, executando alguma ação fora da especificação dessas ordens.

O CHICO trabalha sempre em um de dois estados diferentes:

- Estado de carga, onde ele exclusivamente transcreve informações de cartões, lidos do porta-cartões, para gavetas do gaveteiro.
- 2. Estado de execução, onde ele executa ordens gravadas nas gavetas. Os detalhes do funcionamento desses estados serão explicados adiante.

A comunicação entre o usuário e o operador é feita exclusivamente através das unidades porta-cartões e folha de saída. O CHICO sabe fazer "de cabeça" uma única operação aritmética: incrementar de 1 o conteúdo do EPI.

1.1.7 Programando o HV-1

Para resolver um problema usando o computador HV-1, o usuário deve planejar uma sequência de ordens (o programa) a serem executadas pelo CHICO. Cada uma dessas ordens é denominada instrução. Um exemplo de instrução é o seguinte: "some o conteúdo da gaveta de endereço 41 ao conteúdo do acumulador". A fim de se produzir a execução correta das instruções e na sequência adequada, elas são escritas nas gavetas do gaveteiro. Paa executar uma instrução da sequência, o CHICO segue os seguintes passos:

- 1. consulta o EPI, onde está escrito o endereço E da próxima instrução;
- 2. incrementa de 1 o conteúdo do EPI, apagando o valor anterior e escrevendo o novo valor (o qual neste caso será E+1);
- 3. abre a gaveta de endereço E; nesta gaveta ele deve encontrar uma instrução I, que é lida;
- 4. fecha a gaveta E; e
- 5. executa I.

Após finalizados esses passos, o CHICO recomeça do passo 1, com exceção de um caso explicado a seguir. Se a execução da instrução I não acarretar alteração no conteúdo do EPI, a próxima instrução a ser executada será a da gaveta de endereço E+1, devido ao passo 2. Se uma instrução acarretar alteração no EPI, mudando o seu conteúdo para X, a próxima instrução a ser executada será a da gaveta de endereço X; diz-se que houve um **desvio** para X.

As instruções escritas nas gavetas do gaveteiro constituem um **programa armazenado**. Para conseguir a execução de um programa, o usuário deve produzir, inicialmente, o armazenamento desse programa no gaveteiro, passando portanto a constituir um programa armazenado. Isso é feito da seguinte forma:

- o usuário escreve cada instrução em um cartão, precedida de um endereço; assim, cada cartão do programa contém um par ordenado (E,I), onde E é um endereço e I uma instrução;
- 2. o CHICO é colocado em estado de carga de programa;
- 3. o usuário coloca o conjunto de cartões do programa no porta-cartões, em qualquer ordem;
- 4. como o CHICO está em estado de carga, ele lê um cartão com um par (E,I); abre a gaveta de endereço E; escreve em seu quadro-negro a instrução I; fecha essa gaveta;
- 5. o CHICO repete o passo 4 até ler o último cartão de programa, após o que ele é colocado em **estado de execução de programa**.

Após o encerramento da carga do programa, o CHICO é colocado em estado de execução de programa. Isso é feito por meio de um cartão especial, que deve encerrar o conjunto de cartões de programa. A forma desse cartão é "EXECUTE X", onde X é um número escrito pelo usuário; será o endereço da gaveta onde se encontra a primeira instrução a ser executada.

Ao ler esse cartão, o CHICO apaga o EPI e escreve o mesmo valor X; a seguir, ele vai para o passo 1 da execução de uma instrução, como exposto no início deste item.

Para completar este quadro, resta descrever como o CHICO entra em estado de carga de programa. Vamos supor que, na verdade, esse estado seja o estado "normal" do CHICO; ele só pode sair desse estado ao tentar carregar um cartão "EXECUTE X". Estando em estado de execução, ele só sai desse estado nos dois casos seguintes:

- 1. através da execução da instrução "pare a execução";
- 2. se ocorrer algum erro durante a execução.

Um exemplo do caso 2 é o de o CHICO tentar executar uma instrução inválida, isto é, não conhecida.

1.1.8 Instruções do HV-1

O conteúdo de uma gaveta de endereço E, isto é, o número gravado em seu quadro-negro, será representado por cE. Assim, c10 indicará o conteúdo da gaveta 10. Indicaremos por cAC o conteúdo do acumulador; este será abreviado por AC.

Soma

- Instrução: "some o cE ao AC".
- Significado: some o cE ao cAC e coloque o resultado no AC; o cE não se altera.
- Execução: o CHICO efetua os seguintes passos:
 - 1. digita a tecla '+' da calculadora;
 - 2. abre a gaveta de endereço E;
 - 3. lê o número escrito nessa gaveta (cE) e digita-o na calculadora;
 - 4. fecha a gaveta E; e
 - 5. digita '=' na calculadora.

Daqui em diante, em lugar de escrevermos "gaveta de endereço E", escreveremos simplesmente E. Também deixaremos de mencionar explicitamente que é o CHICO quem efetua os passos da execução.

Carga no AC

- Instrução: "carregue o cE no AC".
- Significado: copie o cE no AC; o cE não muda.
- Execução:
 - 1. digita '=';
 - 2. abre E;
 - 3. lê cE e digita-o; e
 - 4. fecha E.

Armazenamento do AC

- Instrução: "armazene o cAC em E".
- Significado: copie o cAC em E; o cAC não muda (oposto da instrução anterior).
- Execução:
 - 1. abre E;
 - 2. apaga o cE;
 - 3. lê o cAC e o escreve em E; e
 - 4. fecha a gaveta.

Impressão

- Instrução: "imprima o cE".
- Significado: o cE é transcrito na folha de saída.
- Execução:
 - 1. abre E;
 - 2. lê cE e escreve seu valor na próxima linha da folha de saída; e
 - 3. fecha a gaveta.

Note que supusemos haver espaço na folha de saída. No caso contrário, o CHICO aguarda até ser fornecida nova folha.

Leitura

- Instrução: "leia um cartão e guarde em E".
- Significado: o conteúdo do próximo cartão do porta-cartões é lido e transcrito para E;
- Execução:
 - 1. abre E;
 - 2. retira um cartão do porta-cartões;
 - 3. lê o conteúdo do cartão e escreve o seu valor em E;
 - 4. joga fora o cartão; e
 - 5. fecha E.

Note que supusemos haver cartão no porta-cartões. Em caso contrário, o CHICO aguarda a colocação de pelo menos um cartão no porta-cartões.

Desvio Condicional

- \bullet Instrução: "se cAC $\neq 0,$ desvie para E".
- Significado: se há um número diferente de 0 no AC, a próxima instrução a ser executada está em E, caso contrário não há nada a fazer (isto é, a próxima instrução a ser executada estará na gaveta seguinte à que contém esta instrução).
- Execução:
 - 1. lê o cAC; e
 - 2. se cAC≠0 então apaga o EPI e escreve E no mesmo.

Pare

- Instrução: "pare".
- Significado: encerra a execução do programa.
- Execução:
 - 1. entrega a folha de saída para o usuário; e
 - 2. entra no estado de carga.

1.1.9 Exemplo de Programa

Considere o seguinte problema:

" É dada uma sequência de números inteiros positivos; determinar sua soma".

Suponhamos que o usuário do computador HV-1 planeje resolver o problema da seguinte maneira:

- 1. cada número da sequência é escrito em um cartão;
- 2. dois cartões adicionais contendo o número 0 são colocados um imediatamente antes do primeiro cartão da sequência, e o outro logo após o último cartão;
- o programa é escrito em cartões já no formato de carga de programa como mostrado na tabela abaixo:

endereço	instrução
01	leia um cartão e guarde em 11
02	leia um cartão e guarde em 12
03	imprima o c12
04	carregue no AC o c11
05	some o c12 ao AC
06	armazene o cAC em 11
07	carregue o c12 no AC
08	se cAC $\neq 0$, desvie para 02
09	imprima o c11
10	pare

- 4. é formada uma pilha de cartões com a seguinte ordem: programa EXECUTE 01 cartões conforme 1 e 2 acima. Essa pilha é colocada no porta-cartões. Teremos nesta unidade, portanto, os cartões denominados cartões de programa e cartões de dados, precedendo e seguindo, respectivamente, o cartão EXECUTE; e
- 5. terminada a execução, é recebida a folha de saída, onde estarão impressos os números da sequência, seguidos da soma procurada.

Para compreendermos como funciona o processo descrito pelo programa e pelos cartões de dados, vejamos um exemplo concreto.

Seja a sequência 100, 5 e 31. Os cartões de dados conterão, conforme 1 e 2, os seguintes valores, pela ordem: 000, 100, 005, 031 e 000. Suponhamos que o CHICO tenha carregado o programa e tenha encontrado o cartão EXECUTE 01. Como vimos na Sub-Seção 1.1.7, ele apaga o EPI, escreve nele o número 01, e começa a executar as instruções do programa conforme os passos 1 a 5 descritos no início daquela Sub-Seção.

Se nós fizermos um acompanhamento do papel do CHICO na execução do programa, obteremos a tabela de execução a seguir:

\mathbf{g}	pc	cAC	c11	c12	fs	cEPI
	000,100,005,031,000					01
01	100,005,031,000		000			02
02	005,031,000		000	100		03
03	005,031,000		000	100	100	04
04	005,031,000	000	000	100	100	05
05	005,031,000	100	000	100	100	06
06	005,031,000	100	100	100	100	07
07	005,031,000	100	100	100	100	08
08	005,031,000	100	100	100	100	02
02	031,000	100	100	005	100	03
03	031,000	100	100	005	100,005	04
04	031,000	100	100	005	100,005	05
05	031,000	105	100	005	100,005	06
06	031,000	105	105	005	100,005	07
07	031,000	005	105	005	100,005	08
08	031,000	005	105	005	100,005	02
02	000	005	105	031	100,005	03
03	000	005	105	031	100,005,031	04
04	000	105	105	031	100,005,031	05
05	000	136	105	031	100,005,031	06
06	000	136	136	031	100,005,031	07
07	000	031	136	031	100,005,031	08
08	000	031	136	031	100,005,031	02
02		031	136	000	100,005,031	03
03		031	136	000	100,005,031,000	04
04		136	136	000	100,005,031,000	05
05		136	136	000	100,005,031,000	06
06		136	136	000	100,005,031,000	07
07		000	136	000	100,005,031,000	08
08		000	136	000	100,005,031,000	09
09		000	136	000	100,005,031,000,136	10
10		000	136	000	100,005,031,000,136	

onde "g" é o número da gaveta com a instrução, "pc" é o porta-cartões, "fs" é a folha de saída e "cEPI" é o conteúdo do EPI.

1.2 O Computador HV-2

As instruções do computador HV-1 estão escritas por extenso, diferindo assim dos números armazenados em outras gavetas, como as de endereço 11 e 12 no programa exemplo da Sub-Seção 1.1.9. Consiguiremos uma grande simplificação de notação e de funcionamento se codificarmos as instruções, transformando-as também em número. Como veremos mais tarde, isso permitirá inclusive a substituição, com relativa facilidade, do operador CHICO por dispositivos eletrônicos. Para simplificar a compreensão, suponhamos que cada gaveta do gaveteiro contenha um quadro-negro da seguinte forma:

onde o CHICO só pode escrever números de 3 algarismos, como 001, 015, 152, etc. O novo computador assim obtido receberá a sigla HV-2.

No computador HV-2, as instruções deverão ser necessariamente codificadas como números de 3 algarismos, para podermos gravá-las no gaveteiro. Elas terão a forma CEE, onde C é um dígito de 1 a 7 e corresponde ao **código da instrução**; EE é um número de 00 a 99 e corresponde ao endereço da gaveta empregada na execução da instrução, denominado **código de endereço**. As instruções vistas na Seção 1.1.8 serão codificadas conforme a tabela dada a seguir:

instrução codificada	instrução		
1EE	carregue o cEE no AC		
2EE	armazene o cAC em EE		
3EE	leia um cartão e guarde em EE		
4EE	imprima o cEE		
5EE	some o cEE ao AC		
6EE	se cAC $\neq 0$ desvie para EE		
7EE	pare		

Lembremos que cEE significa conteúdo (agora sempre com 3 dígitos) da gaveta de endereço EE. Na instrução "pare" usamos sempre EE=00.

Por exemplo, a instrução 512 encontrada pelo CHICO em alguma gaveta é interpretada por ele como "some o conteúdo da gaveta 12 ao conteúdo do acumulador e guarde o resultado no acumulador". Na tabela dada a seguir apresentamos o programa da Sub-Seção 1.1.9 codificado para o computador HV-2:

endereço	instrução codificada
01	311
02	312
03	412
04	111
05	512
06	211
07	112
08	602
09	411
10	700

Observe um fato muito importante: é impossível, no modelo HV-2, distinguir-se o conteúdo de uma gaveta como correspondendo a uma instrução codificada ou a um número manipulado por certas instruções, o que não era o caso do modelo HV-1. Por exemplo, seguindo a execução do programa exemplo da Sub-Seção 1.1.9, vemos, na décima quarta linha, que a gaveta 11 recebe o conteúdo 105, correpondendo ao número "cento e cinco" (resultado da soma até esse momento) e não à instrução "carregue no AC o c05". Como pode o CHICO distinguir esses dois significados? Na verdade, a distinção é feita através da situação em que o CHICO se encontra ao se utilizar de uma gaveta (no caso, a 11). Assim, se ele estiver abrindo uma gaveta (no caso, a 11) à procura da próxima instrução a ser executada, o seu conteúdo será interpretado como sendo uma instrução codificada (no caso, a instrução 105). Por outro lado, se essa gaveta for aberta durante a execução de uma instrução, o seu conteúdo será usado como um valor numérico (no caso, o número 105).

A idéia de se armazenar as instruções da mesma maneira que os dados é atribuída ao famoso matemático americano John Von Neumann, que em meados da década de 1940 propôs esse esquema. Esse conceito foi um dos motivos que possibilitou a rápida evolução dos computadores daí para frente.

A codificação, por meio de números, de instruções que manipulam números é, em essência, a idéia fundamental. Uma idéia análoga foi aplicada na década de 1930 pelo matemático alemão Gödel, o qual codificou numericamente teoremas sobre números, permitindo assim se enunciar teoremas sobre teoremas, chegando ao seu famoso "teorema da incompletude" dos sistemas axiomáticos.