Sktipt der Analysis für Informatiker WS12/13 UPB

Prof. Dr. Eike Lau

19.10.2012 -

Inhaltsverzeichnis

1.	Men	igen	1
	1.1.	Definition	1
	1.2.	Beispiele	1
	1.3.	Definition	2
	1.4.	de Morgansche Regeln	3
		1.4.1. Beweis	3
	1.5.	Prinzip der vollständigen Induktion	3
		Satz / Beispiel	3
	1.7.	Kombinatorik	4
		1.7.1. Definition	4
	1.8.	Definition	5
	1.9.	Bemerkung	5
	1.10.	Definition	5
		. <u>Lemma</u>	6
	1.12.	Geometrische Anordnung: Pascalsches Dreieck	6
	1.13.	. <mark>Satz</mark>	6
		1.13.1. Beweis	6
	1.14.	Binomische Formel	7
		1.14.1. Beweis:	7
	1.15.	Definition	7
	1.16.	. <mark>Satz</mark>	7
		1.16.1. Beweis	7
	1.17.	. Bemerkung - Zusammenhang zwischen anordnung und Teilmengen	8
			_
2.		reelen Zahlen	9
		Körper - Definition	9
		1	10
	2.3.	1	10
		0	10
			11
	2.4.		11
		1	11
	2.5.	0	11
			11
			11
	2.6.	Bemerkung	12

In halts verzeichn is

۹.	Schluss	15
	2.10.4. Dewels 2u 2	14
	2.10.4. Beweis zu 2	
	2.10.3. Beispiel	14
	2.10.2. Beweis	13
	2.10.1. Bemerkung	13
	2.10. Definition	
	2.9.1. Beweis	
	2.9. Satz - Bernoullische Ungleichung	
	2.8.1. Beweis	
	2.8. Satz	
	2.7. Definition	12
	2.6.1. Folge	12

Kapitel 1.

Mengen

1.1. Definition

1)

Eine Menge ist eine Ansammlung verschiedener Objekte.

2)

Die Objekte einer Menge heißen Elemente.

Notation:

 $a \in M$ heißt: a ist Element der Menge M $a \notin M$ heißt: a ist kein Element der Menge M 3)

Sei M eine Menge. Eine Menge U heißt Teilmenge von M, wenn jedes Element von U auch ein Element von M ist.

Notation:

 $U\subseteq M$ heißt: Uist Teilmenge der Menge M $U\not\subseteq M$ heißt: Uist keine Teilmenge der Menge M

1.2. Beispiele

1)

Sei M die Menge aller Studierenden in L1, W die Menge aller weiblichen Studierenden in L1, F die Menge aller Frauen.

Dann gilt: $W \subseteq M, W \subseteq F, M \not\subseteq F, F \not\subseteq M$.

2)

Die Menge der natürlichen Zahlen: $+N = \{1, 2, 3, ...\}$

G sei Menge der geraden natürlichen Zahlen. $G:=\{n\in\mathbb{N}|\ n\ \mathrm{gerade}\ \}$

$$G := \{2m | m \in \mathbb{N}\}$$

$$N := \{2, 4, 6, 8, \ldots\}$$

Es gilt $G \subseteq \mathbb{N}$, $\mathbb{N} \not\subseteq G$.

3)

Die Menge der ganzen Zahlen:

$$\mathbb{Z} = \{0, -1, 1, -2, 2, ...\}$$

4)

Menge der rationalen Zahlen:

$$\mathbb{Q} = \frac{a}{b} | a, b \in \mathbb{Z}, b \neq 0 \}$$

5)

Die Menge ohne Elemente heißt leere Menge.

Symbol:
$$\emptyset = \{\}$$

Bemerkung

Für jede Menge M gilt: $\emptyset \subseteq M$

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}$$

1.3. Definition

Sei M eine Menge, $U, V \subseteq M$ Teilmengen.

1)

Die Vereinigung von U und V ist $U \cup V := \{x \in M | x \in U \text{ oder } x \in V\}$

2)

Der Durchschnitt von U und V ist $U \cap V := \{x \in M | x \in U \text{ oder } x \in V\}$

3)

Die Differenzmenge von U und V ist $U/V := \{x \in U | x \notin V\}$

4)

Das Komplement von U ist $U^c = M/U = \{x \in M | x \notin U\}$

Beispiel

Sei $M = \mathbb{N}$.

$$\{1,3\} \cup \{3,5\} = \{1,3,5\}$$

$$\{1,3\} \cap \{3,5\} = \{3\}$$

 $\{1,3\}\cap\{2,4,7\}=\emptyset$, also sind $\{1,3\}$ und $\{2,4,7\}$ disjunkt.

$${1,2,3}/{3,4,5} = {1,2}$$

 ${1,3,5}^c = {2,4,6,7,8,...}$

1.4. de Morgansche Regeln

M Menge, $U, V \subseteq M$ Teilmengen.

$$1)(U \cup V)^c = U^c \cap V^c$$
$$2)(U \cap V)^c = U^c \cup V^c$$

1.4.1. Beweis

1)

Sei $x \in M$. Es gilt: $x \in (U \cup V)^c \Leftrightarrow x \notin U \cup V \Leftrightarrow x \notin U \text{ und } x \notin V$ $\Leftrightarrow x \in U^c \text{ und } x \in V^c \Leftrightarrow x \in U^c \cap V^c$

2) Übungsaufgabe

1.5. Prinzip der vollständigen Induktion

Für jedes $n \in \mathbb{N}$ sei eine Aussage A(n) gegeben. Ziel: Beweisen, dass A(n) für jedes $n \in \mathbb{N}$ wahr ist. Dafür reicht es zu zeigen:

- 1) Induktionsanfang: A(1) ist wahr.
- 2) Induktionsschritt: Wenn für ein $n \in \mathbb{N}$ A(n) wahr ist, dann ist auch A(n+1) wahr.

1.6. Satz / Beispiel

Für jede natürliche Zahln gilt: $1+2+3+\ldots+n=\frac{n(n+1)}{2}$

Probe:

Kapitel 1. Mengen

Beweis des Satzes (mit Induktion)

Abkürzung: S(n) = 1 + 2 + ... + nAussage: $A(n) : S(n) = \frac{n(n+1)}{2}$

1) IA:
$$n = 1$$
 $S(1) = 1 = \frac{1 \cdot 2}{2}$
2) IS: $n \to n+1$

2) IS:
$$n \to n+1$$

Annahme: A(n) gilt, $S(n) = \frac{n(n-1)}{2}$ Zu zeigen: A(n+1) gilt, $S(n+1) = \frac{(n+1)(n+2)}{2}$

$$S(n+1) = S(n) + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+2)(n+1)}{2}$$

Dies beendet den Beweis.

Zur Vereinfachung der Notation: Seien $a_1, a_2, a_3,...,a_n$ Zahlen $n \in \mathbb{N}$

Setze
$$\sum_{k=1}^{n} := a_1 + a_2 + \dots + a_n$$

Allgemeiner: Sei $l, m \in \mathbb{N}, l \leq m \leq n$

$$\Rightarrow \sum_{k=l}^{m} a_k := a_l + a_{l+1} + \dots + a_m$$

Aussage von Satz 1.6:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

1.7. Kombinatorik

1.7.1. Definition

Seien A,B Mengen. Das kartesische Produkt von A und B ist definiert als $A \times B :=$ $\{(a,b)|a\in A,b\in B\}$

Die Elemente von $A \times B$ heißen geordnete Paare.

Beispiel:
$$\{1,7\} \times \{2,3\} = \{(1,2),(1,3),(7,2),(7,3)\}$$

Allgemeiner: Gegeben seien Mengen $A_1,...,A_k$ mit $k \in \mathbb{N}$. Das kartesische Produkt

von
$$A_1, ..., A_k$$
 ist $A_1 \times ... \times A_k = \{(a_1, ..., a_k) | a_i \in A_i \text{ für } i = 1, ..., k\}$
Elemente von $A_1 \times ... \times A_k$ heißen k-Tupel.
Falls $A_1 = A_2 = ... = A_k = A$, schreibe auch $\underbrace{A \times ... \times A}_{k-Mol} = A^k$

1.8. Definition

Eine Menge A ist endlihe, wenn A nur endlich viele Elemente hat. Dann bezeichnet #A = |A| die Anzahl der Elemente von A.

Wenn A nicht endlich ist, dann schreiben wir $\#A = \infty$.

Beispiele:
$$\#\emptyset = 0, \ \#\mathbb{N} = \infty, \ \#\{1, 3, 5, 1\} = 3$$

1.9. Bemerkung

1)

Sei A Menge, $U, V \subseteq A$ disjunkte Teilmengen. Dann: $\#(U \cup V) = \#U + \#V$

2)

Seien $A_1, ..., A_k$ endliche Mengen, $k \in \mathbb{N}$.

Dann: $\#(A_1 \times A_2 \times ... \times A_k = \#A_1 \cdot \#A_2 \cdot ... \cdot \#A_k)$

1.10. Definition

1)

Für
$$n \in \mathbb{N}$$
 setze $n! = 1 \cdot 2 \cdot \dots \cdot n = \prod_{k=1}^{n} k$ \leftarrow Produkt Setze $0! = 1$

2)

Für
$$k, n \in \mathbb{Z}$$
 mit $0 \le k \le n$ sei $\binom{n}{k := \frac{n!}{k!(n-k)!}}$ $\leftarrow \underline{\text{Binomialkoeffizient}}$

- TABELLE -

Beispiel:
$$\binom{5}{2} = \frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10$$

Bemerkung:
$$\binom{n}{0} = 1 = \binom{n}{n}$$

1.11. Lemma

Für
$$0 \le k \le n$$
 gilt: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Beweis

$${\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(k-1)(n-k)!} + \frac{(n-1)!}{k!(n-1-k)!}} = \frac{k(n-k)! + (n-k)(n-1)!}{k!(n-k)!} = \frac{n(n-1)!}{k!(n-k)!} = {n \choose k}$$

1.12. Geometrische Anordnung: Pascalsches Dreieck

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
Folge
$$\binom{n}{k} \in \mathbb{N} \forall 0 \le k \le n$$
1.13. Satz

1.13. Satz

Sei A unendliche Menge

A = n

Sei $k \in \mathbb{Z}$ mit 0 < k < n

 $P_k(A) := \{ U \subseteq A | \#U = k \}$

Menge aller k-elementigen Teilmengen von A, dann gilt $\#P_k(A) = \binom{n}{k}$

1.13.1. Beweis

Vorüberlegung: Sei k=0 oder k=n
$$P_0(A) = \{\emptyset\} P_n(A) = A$$
 $\#P_0(A) = 1 = \binom{n}{0} \#P_n(A) = 1 = \binom{n}{n} \checkmark$

Jetzt Induktionsbeweis nach n. I.A.: n=0 Dann k=0 $\sqrt{}$

I.S.: $n \rightarrow n+1$ Sei #A= n+1

 $0 \le k \le n+1$ Falls k=0 oder k=n+1: fertig

Sei also 0 < k < n+1

Wähle $a \in A$ Sei B=A $\{a\}$ \$

Dann A = B \cup {a}, #B = n

Man kann die Wahl einer k-elementigen Teilmenge U von A so strukturieren.

1. Entscheiden ob $a \in U$ oder $a \notin U$

2.a Wenn a∉ U: Wähle k Elemente aus B.

2.b Wenn $a \in U$: Wähle k-1 Elemente aus B.

Daraus folgt:

$$\#P_k(A) = \#P_k(B) + P_{k-1}(B) \stackrel{I.V.}{=} \binom{n}{k} + \binom{n}{k-1} \stackrel{1.11}{=} \binom{n+1}{k} \square$$

1.14. Binomische Formel

Seien a,b Zahlen, $n \in \mathbb{N}$ Dann $(a+b)^n = \binom{n}{0}a^n + binomn1a^(n-1)b + binomn2a^(n-2)b^2 + \cdots + \binom{n}{n-1}ab^(n-1) + \binom{n}{n}b^n\underline{z.B.:}(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$

1.14.1. Beweis:

Schreibe
$$(a+b)^n = \underbrace{(a+b)(a+b)\cdots(a+b)}_{nFaktoren}$$

Ausmultiplizieren:

Erhalte Terme der Form $a^{(n-k)}b^k = \text{Anzahl}$ der Möglichkeiten aus n
 Faktoren k mal b zu wählen.

Das ist $\binom{n}{k}_{Satz1.13}$

Folgerung: Setze a=b=1
$$a^{(n-k)}b^k = 1$$

 $(a+b)^n = 2^n = \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n-1} + \binom{n}{n}$

1.15. Definition

Sei A endliche Menge

Eine Anordnung von A ist ein n-Tupel $(a_1, a_2, \dots, a_{n-1}, a_n)$ mit $a_i \in A \forall$ i und j $a_i = a_j$ wenn $i \neq j$

Beispiel Anordnung von $\{1, 2, 3\}$: (123)(132)(213)(231)(312)(321)

1.16. Satz

Sei A endliche, nicht leere Menge
,#A=n Dann ist die Anzahl der Anordnungen von A
 =!n

1.16.1. Beweis

Induktion nach n

$$I.A.: n = 1 klar$$

I.S.:
$$n \rightarrow n + 1Sei \# A = n + 1$$

Wahl einer Anordnung von A kann man so unterteilen:

- 1 Wähle 1 Element $a_1 \in A(n+1)$ Möglichkeiten
- 2 Wähle Anordnung von $A \{a_1\}$

$$\#(A \{a_1\}) = n \Rightarrow n!$$
 Möglichkeiten bei 2.
Insgesamt $(n+1)n! = (n+1)!$ Möglichkeiten \square

1.17. Bemerkung - Zusammenhang zwischen anordnung und Teilmengen

```
Sei A endliche Menge mit \#A = n0 \le k \le n

Sei (a_1, a_2, \dots, a_n) Anordnung von A

\rightarrow Teilmenge U := \{a_1, a_2, \dots, a_n\}. Dann

U \subseteq A, \#U = kU \in P_k(A)

Jedes U \in P_k(A) entsteht so, aber mehrfach:

Anordnungen von U Anordnungen von AU

k (n-k!) mal

n! \#Anordnungen von <math>AU

k = n!

MU

MU
```

Kapitel 2.

Die reelen Zahlen

Was sind reelle Zahlen? Präzise Konstruktion ist umfangreich. Axiomatische Zerlegung Beschreibung der reelen Zahlen durch ihre Eigenschaften(Axiome).

- 1 Grundrechenarten \rightarrow Körper
- 2 Ungleichungen \rightarrow Angeordneter Körper
- 3 Lückenlosigkeit

2.1. Körper - Definition

Ein Körper ist eine Menge K mit 2 Rechenoperationen: Addition(+) und Multiplikation(*).

So, dass folgende 9 Eigenschaften erfüllt sind:

Addition:

- 1 (a+b)+c = a+(b+c) Assoziativ $\forall a, b, c \in K$
- 2 a+b = b+a Kommutativität
- 3 Es gibt ein Element $0 \in K$ so, dass $0+a=a+0=a \ \forall a \in K$ Nullelement
- $4 \ \forall a \in K \ \exists! b \in K \ \text{mit a+b=0} \ \text{Additives Inverses}$

Bemerkung 1 $0 \in K$ ist eindeutig.

Beweis zu 1
$$\acute{0} \in K$$
 mit $\acute{0}+a=a \ \forall a \in K$, dann $0=\acute{0}+0=0+\acute{0}=\acute{0}\square$

Bemerkung 2 Das b in 4. ist eindeutig.

Notation
$$b = -a$$
 (Negatives von a)

Beweis zu 2 Sei
$$\acute{b}+a=0.b=b+0=b+(a+\acute{b})=(b+a)+\acute{b}=0+\acute{b}=\acute{b}\square$$

Kapitel 2. Die reelen Zahlen

Multiplikation:

5 $a^*(b^*c) = (a^*b)^*c \ \forall a, b, c \in K$ außerdem sei $a^*b=ab$

6 ab = ba $\forall a, b \in K$

7 $\exists ! 1 \in K \text{ mit } 1 \neq 0 \text{ so, dass } 1a = a \forall a \in K$

8 $\forall a \in K \ a \neq 0 \exists ! b \in K \text{ mit ab} = 1$

Bemerkung 1 ist eindeutig. b in 8 ist eindeutig.

Bezeichnung b aus 8 b= $a^{(}-1)$

Beweis analog \square

Distributivgesetz

9
$$a^*(b+c) = ab+ac \forall a, b, c \in K$$

Weitere Bezeichnung: a-b:=a+(-b) $\frac{a}{b}$:= ab(-1) für b \neq 0
Die üblichen Bedeutungen folgen aus den Axiomen 1-9
z.B. -(-a)=a a(b-c)= ab-ac, a(-b)=-(ab)

2.2. Beispiel

Q ist ein Körper

 $\mathbb Z$ ist kein Körper, da 8 nicht gegeben ist.

2.3. Beispiel

$$\mathbb{F}_2 = \{0,1\} \begin{tabular}{c|cccc} $+ & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \\ \end{tabular} & * & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{tabular}$$

2.3.1. Bemerkung

Sei K <u>endlicher</u> Körper Dann gilt $\#K = p^r$ wobei p Primzahl, $r \in \mathbb{N}$ $\forall q = p^r \in !$ Körper K mit #K = q

2.3.2. Notation

$$\mathbf{a} \in \mathbf{K}, \, \mathbf{n} \in \mathbb{N}$$
 Setzte $a^n := \underbrace{a * a \cdots * a}_{n-Faktoren}$
$$a^0 := 1$$

$$a^(-n) := (a^(-1))^n$$

$$\Rightarrow a^n \text{ definiert wenn } \mathbf{a} \neq 0 \,, \, \mathbf{n} \in \mathbb{N} \text{ Regeln der Potenzrechnung}$$

$$a^(n+m) = a^n * a^m, \, a^(n*m) = (a^n)^m \text{ für } \mathbf{a} \neq 0 \, \mathbf{n}, \mathbf{m} \in \mathbb{Z}$$
 Beweis: Übung

2.4. Angeordnete Körper - Definition

Ein angeordnerter Körper ist ein Körper K, für dessen Elemente eine "kleiner Beziehung" i definiert ist so, dass folgende Eigenschaften erfüllt sind.

- 1 $\forall a, b \in K$ gilt genau eine der drei Relationen ajb, a=b, bja
- 2 Für $a,b,c \in K$ gilt, wenn $ajb \wedge bjc \Rightarrow ajc$ (Transitivität)
- 3 Wenn $a,b,c \in K$ gilt: Wenn $a,b \Rightarrow (a+c)_i(b+c)$
- 4 Für a,b,c \in K gilt: Wenn ajb und 0jc, dann acjbc

2.4.1. Beispiel

```
a¿b heißt b¡a a \le b heißt a¡b \lor a=b a \in K heißt positiv, wenn a ¿ 0 a \in K heipt negativ, wenn a ¡ 0
```

2.5. Bemerkung

1. Wenn aj
0 dann -aj
0 2. $\forall a \in \mathbb{K} \text{ mit } a \neq 0 \text{ ist } a^2 \geq 0$ 3.1
j0 denn $1=1^2 \Rightarrow \square$

2.5.1. Beweis zu 1

$$a_{i}0\overset{\Rightarrow}{3}a+(-a)_{i}0+(-a)\Rightarrow 0_{i}-a\square$$

2.5.2. Beweis zu 2

- 2Möglichkeiten a.) a
¿ $\!0$ oder b.) a
¿ $\!0$
- a.) $a \neq 0 \Rightarrow a^*a \neq 0 \Rightarrow a^2 \neq 0$
- b.) Wenn aj0 dann -aj0 $a^2 = (-a)^2 > 0$

2.6. Bemerkung

Sei K ein angeordneter Körper
$$0;1\Rightarrow 0+1;1+1\Rightarrow 1+1;1+1+1$$
 usw. Für $n\in\mathbb{N}$ setze $n:=\underbrace{1+1+\cdots+1}_{nSummanden}\in\mathbb{K}$ Dann $0;1;2;3;\cdots$ in K

2.6.1. Folge

Verschiedene natürliche Zahlen bleiben in K verschieden \to Fasse $\mathbb N$ als Teilmenge von K auf.

Dann auch $\mathbb{Z} = \{a - b | a, b \in \mathbb{N}\} \subseteq K$ Dann auch $\mathbb{Q} = \{\frac{a}{b} | a, b \in \mathbb{N}b \neq 0\} \subseteq K$ Insbesondere ist K unendlich! z.B. \mathbb{F}_2 hat keine Anordnung wie Definition 2.4

2.7. Definition

Sei K ein angeordneter Körper, a
 K. Der Absolutbetrag von a ist definiert als |a|:a:=
 $\begin{cases} a & \text{wenn } a \geq 0 \\ -a & \text{wenn } a < 0 \end{cases}$

2.8. Satz

Sei K angeordneter Körper a∈K dann gilt:

- $1 \ a = 0 \text{wenn} |a| = 0$
- $2 |a| \le a \le |a|$
- 3 Dreiecksungleichung: $|a b| \le |a| + |b|$
- 4 Untere Dreiecksungleichung: $|a-b| \geq |a| |b|$

2.8.1. Beweis

- 1 Klar.
- 2 Wenn $a \ge 0$: $|a| = a \ge 0 \Rightarrow -|a| \le 0 \le a = |a|$ Wenn a < 0 dann -|a| = 0 < 0 < |a|

3 Es gilt
$$-|a| \le a \le |a|$$
, $-|b| \le b \le |b|$
Wenn $a + b > 0$ dann $|a + b| = a + b \le |a| + b \le |a| + |b|$
Wenn $a + b < 0$ dann $|a + b|$? $-(a + b) = (-a) + (-b) \le |a| + |b|$

$$4 (a - b) + b = a \Rightarrow |a| = |(a - b) + b| \le |a - b| + |b| \Rightarrow |a| - |b| \le |a - b|_{\square}$$

2.9. Satz - Bernoullische Ungleichung

Sei K angeordneter Körper, $a \in K$, a > -1 und $n \in \mathbb{N}_0 = \{0\} \cup \mathbb{N}$ Dann gilt $(1+a)^n \ge 1 + na^*$

2.9.1. Beweis

Induktion nach n

Anfang n=0
$$(1+a)^0 = 1 = 1 + 0 * a\sqrt{}$$

I.V. *gelte

I.S. Schritt
$$n \to n+1$$
 Annahme $(1+a) + 1 = (1+a)(1+a)^n \ge (1+a)(1+na) = 1 + (n+1)a + na^2 \ge 1 + (n+1)a$ weil $a^2 \ge 0 \Rightarrow na^2 \ge 0_{\square}$

2.10. Definition

Sei K angeordneter Körper $M\subseteq K$ eine Teilmenge $a\in K$

- 1 M \leq a heißt x \leq a \forall x \in M Analog M \geq a etc.
- 2 a heißt obere Schranke von M, wenn M≤a
- 3 M heißt nach oben beschränkt, wenn M eine obere Schranke hat. Analog nach unten beschränkt. M heißt beschränkt, wenn M nach oben ∧ unten berschränkt ist.
- 4 a heißt Maximum von M wenn $M \le a$ und $a \in M$ Minimum analog.

Notation: a=max(M) bzw. a=min(M)

2.10.1. Bemerkung

Wenn M ein Maximum hat, ist es eindeutig.

2.10.2. Beweis

Sei a,b \in M, M \leq a , M \leq b dann b \leq a und a \leq b \Rightarrow a=b $_{\square}$

2.10.3. Beispiel

 $K=\mathbb{Q}$

- 1 M=N Sei $a \in \mathbb{Q}a \leq \mathbb{N}$ $a \leq n \ \forall n \in \mathbb{N}$ N ist nach unten beschränkt $1=\min(\mathbb{N})$. N ist nicht nach oben beschränkt.
- 2 M= $\{\frac{-1}{n}|n \in \mathbb{N}\}0$ ∉M -1=min(M)⇒ M nach unten beschränkt M<0 ⇒ M ist nach oben beschränkt hat aber kein Maximum
- 3 $M = \{\frac{-1}{n} | n \in \mathbb{N}\} \cup \{0\} \min(M) = -1 | max(M) = 0$
- 4 M= \emptyset hat kein Maximum und kein Minimum jedes a $\in \mathbb{Q}$ erfüllt a \le M und M \le a

2.10.4. Beweis zu 2

Sei a
∈M, dann
$$a=\frac{-1}{n},$$
n ∈ N $\frac{-1}{n1}$ ∈M
 $n+1>n\Rightarrow\frac{1}{n+1}<\frac{1}{n}\Rightarrow\frac{-1}{n+1}>\frac{-1}{n}\Rightarrow$ M
 $\not=\frac{-1}{n}$ a keine obere Schranke $_\square$

2.11. Satz

Sei K angeordneter Körper

- 1 Wenn M⊂K endlich und nicht leer, dann hat M ein Maximum und Minimum
- 2 (Wohlordnungsprinzip) Jede nichtleere Teilmenge $M \subset \mathbb{N}$ hat ein Minimum

2.11.1. Beweis

zu 1 Klar.

zu 2 M ist nicht leer.

Wähle $n \in M \{1, 2, \dots, n\} \cap M$ endlich und nicht leer, dann $\min(\{1, 2, \dots, n\} \cap M) = \min(M)_{\square}$

2.12. Vollständigkeit - Definition

Sei K angeordneter Körper, $M \subseteq K$ a $\in K$ aheißt kleinste obere Schranke oder Supremum von M wenn:

- 1 M≤a und
- 2 kein b∈K mit b<a M
 erfüllt

a heißt größte untere Schranke oder Infimum von M wenn:

 $1 \text{ a} \leq \text{a} \text{ und}$

2 Kein b \in K mit a<b b \le M erfüllt.

Notation a=sup(M) bzw. a=inf(M)

2.12.1. Bemerkung

Wenn a=max(M) dann a=sup(M)

2.12.2. Beweis

Sei a=
$$\max(M) \Rightarrow M \le a$$

Seib\underline{a} \in M, \$\underline{a} \not\le b \Rightarrow M \not\le b \Rightarrow a = \sup\(M\)_{\square}\$

2.12.3. Bemerkung

Wenn ein Supremum existiert, dann ist es eindeutig

2.12.4. Beweis

Angenommen a,b sind Suprema von M \Rightarrow M \leq a , M \leq b \Rightarrow a \leq b , b \leq a \Rightarrow a=b

2.12.5. Beispiel

$$\sup(\{\tfrac{-1}{n}|n\in\mathbb{N}\})=0$$

Kapitel 2. Die reelen Zahlen

Anhang A.

Schluss

12
tabu, die FAQ der Newsgroup de.text.tex und natürlich der scr
guide immer sehr hilfreich.