

Modeling Spatiotemporal Multimodal Language with Recurrent Multistage Fusion

Paul Pu Liang, Ziyin Liu, Amir Zadeh, Louis-Philippe Morency

School of Computer Science, Carnegie Mellon University

{pliang, ziyinl, abagherz, morency}@cs.cmu.edu

Artificial Intelligence and Multimodal Language

Giving Artificial Intelligence the power to model human language is a core research challenge.

Robots and Virtual Agents

Multimodal Language Modalities

Challenge 1: Intra-modal Interactions

Intra-modal interactions exist within each modality independent of other modalities (temporal interactions).

Challenge 2: Cross-modal Interactions

Cross-modal interactions refer to interactions between modalities (spatial interactions).

- a) Multiple co-occurring interactions
- b) Different weighted combinations

Recurrent Multistage Fusion

Recurrent Multistage Fusion

Recurrent Multistage Fusion Network

Multistage Fusion Process

HIGHLIGHT: At each stage k, a subset of the multimodal signals represented in h_t will be automatically highlighted for fusion.

$$\mathbf{a}_t^{[k]} = f_H(\mathbf{h}_t \; ; \; \mathbf{a}_t^{[1:k-1]}, \Theta) \tag{1}$$

$$\widetilde{\mathbf{h}}_t^{[k]}$$
 = $\mathbf{h}_t \odot \mathbf{a}_t^{[k]}$

FUSE: The highlighted multimodal signals are simultaneously fused in a local fusion and then integrated with fusion representations from previous

$$\mathbf{s}_{t}^{[k]} = f_{F}(\tilde{\mathbf{h}}_{t}^{[k]}; \mathbf{s}_{t}^{[1:k-1]}, \Theta)$$
(3)

SUMMARIZE: After completing K stages of HIGHLIGHT and FUSE, the SUMMARIZE operation generates a cross-modal representation using all final fusion representations $\mathbf{s}_{t}^{[1:K]}$.

$$\mathbf{z}_t = \mathcal{S}(\mathbf{s}_t^{[1:K]}; \, \Theta) \tag{4}$$

Recurrent Multistage Fusion Network

Experiments

Datasets

- Multimodal Sentiment Analysis: CMU-MOSI
- Multimodal Emotion Recognition: IEMOCAP
- Multimodal Personality Traits Prediction: POM
- Language, visual and acoustic features extracted and aligned by P2FA.

Baseline Models

- Non-temporal Models
- Multimodal Temporal Graphical Models
- Multimodal Temporal Neural Networks

Results

Synchronized Interactions

Bimodal Interactions

Asynchronous Trimodal Interactions

Visualizations

- Attention weights change across multiple stages of fusion.
- Attention weights vary over time and adapt to the multimodal inputs.
- Language and acoustic modalities most commonly highlighted.

Conclusion

RMFN decomposes the multimodal fusion problem into multiple stages, each focused on a subset of multimodal signals. Multiple stages coordinate to capture both synchronous and asynchronous multimodal interactions.