Bootstrap

1^{er} juin 2014

Ci-dessous, je comprends du sujet.

On considÃÍre un n-Ãfchantillon $\boldsymbol{X}^n=(X_1^n,...,X_n^n)$ indÃfpendantes et identiquement distribuÃfes suivant une loi dont on note F_X la fonction de rÃfpartition. On note le maximum $M_n=\max\{X_1,...,X_n\}$.

Cette loi appartient au domaine d'attraction de Gumbel. Autrement dit, il existe une suite (a_n, b_n) telle que

$$\frac{M_n - b_n}{a_n} \xrightarrow{L} G \tag{1}$$

o Ã
źGest la loi de Gumbel dont la fonction de r Ãľ
partition F_G s' Ãľcrit $\forall x\in\mathbb{R}$

$$F_G(x) = 1 - e^{-e^{-x}} (2)$$

Ce domaine est $\operatorname{tr} \tilde{A}$ is grand et de nombreuses lois classiques y appartiennent : exponentiel, gamma, logistique, log-normale, normale, ...

Dans cette situation, il a \tilde{A} l' \tilde{A} l' montr \tilde{A} l' par de Haan qu'on peut choisir la suite (a_n, b_n) comme suit

$$a_n = F_X^{-1} \left(1 - \frac{1}{en} \right) - F_X^{-1} \left(1 - \frac{1}{n} \right) \qquad b_n = F_X^{-1} \left(1 - \frac{1}{n} \right)$$
 (3)

L'objectif de l'Ãl'tude est de dÃl'terminer la distribution de M_n Ãă partir du seul Ãl'chantillon X^n . En dÃl'signant par P une loi quelconque, le paramÃl'tre d'intÃl'rÃl't est donc $TP = P(M_n < x) = E_P[1(M_n < x)]$ $\forall x \in \mathbb{R}$.

La distribution (exacte) de M_n s'Ãl'crit comme suit

$$T(P) = P(X_1 < x, ..., X_n < x) = [F_X(x)]^n$$
(4)

Asymptotiquement, comme la loi appartient au domaine d'attraction de Gumbel

$$P\left(\frac{M_n - b_n}{a_n} < x\right) \simeq F_G(x) \implies TP \simeq F_G(a_n x + b_n)$$
 (5)

Par commoditi $\pounds_{|}$, on considi $\pounds_{|}$ re donc aussi $\tilde{T}P = P\left(\frac{M_n - b_n}{a_n} < x\right)$.

La distribution bootstrap d'Efron de M_n s'crit comme suit

$$P_n^* = \left[1 - \left(\frac{n-1}{n}\right)^n\right] \delta_{X_{(n)}} + \dots + \left[\left(\frac{k}{n}\right)^n - \left(\frac{k-1}{n}\right)^n\right] \delta_{X_{(k)}} + \dots + \left(\frac{1}{n}\right)^n \delta_{X_{(1)}}$$
(6)

Fukuchi a montri \pounds_i qu'asymptotiquement cette loi convergeait vers un processus stochastique fonction du tirage effectuï \pounds_i . Faut-il dï \pounds_i velopper ce point ou utiliser un autre argument?

Si on tire seulement m avec m < n, on a

$$P_{m|n}^* = \left[1 - \left(\frac{n-1}{n}\right)^m\right] \delta_{X_{(n)}} + \dots + \left[\left(\frac{k}{n}\right)^m - \left(\frac{k-1}{n}\right)^m\right] \delta_{X_{(k)}} + \dots + \left(\frac{1}{n}\right)^m \delta_{X_{(1)}}$$
(7)

Fukuchi montre que m=o(n), $\tilde{T}P_{m|n}^*$ converge vers F_G avec la distance de Kolmogorov. Comme on ne connaï£_it pas a_n et b_n , on peut l'estimer comme suit et travailler par analogie.

$$\hat{a}_n = \hat{F}_X^{-1} \left(1 - \frac{1}{en} \right) - \hat{F}_X^{-1} \left(1 - \frac{1}{n} \right) \qquad \hat{b}_n = \hat{F}_X^{-1} \left(1 - \frac{1}{n} \right) \tag{8}$$

oï \pounds_i \hat{F}_X est la distribution empirique construite $i\pounds_i$ partir de l' $i\pounds_i$ chantillon X^n . C'est la version m out of n qui a priori fonctionne pour la distribution de M_n .

Je ne vois pas la diffï \pounds ; rence entre le bootstrap sous- \sharp \pounds ; chantillonnï \pounds ; et le m out of n. Sais-tu quelle est elle?

A priori, la vitesse de convergence est donni \pounds_i e par a_n . On peut alors faire une ri \pounds_i gression pour trouver a_n sous la forme n^{α} . Il y a un article de Bertail sur le sujet : on subsampling estimators with unknown rate of convergence. En regardant rapidement, l'article donne les preuves que $i\pounds_i$ a fonctionne sous condition de choisir les points $oi\pounds_i$ on regarde l' $i\pounds_i$ volution de la courbe lorsque m varie.

La fonction de ri $\pounds_{||}$ partition $\tilde{T}P_{m|n}^*$ est en escalier. On pourrait donc acci $\pounds_{||}$ li $\pounds_{||}$ rer la convergence en la lissant par exemple i $\pounds_{||}$ l'aide d'un noyau.