Distribuciones notables III. Distribuciones continuas

Distribución uniforme

Con R, es unif

Una v.a. continua X tiene distribución uniforme sobre el intervalo real (a,b) (a < b), y lo indicaremos con U(a,b), si su función de densidad es

1/45

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{si } a < x < b \\ 0 & \text{si } x \leqslant a \text{ o } x \geqslant b \end{cases}$$

Una variable U(a,b) modela la elección de un punto del intervalo (a,b) de manera "equiprobable" (mejor isodensa)

 Para acabar este tema veremos algunas distribuciones continua notables.

- En concreto veremos las distribuciones uniforme, normal o gaussiana y exponencial.
- Al final del tema y de forma OPCIONAL se estudian las aproximaciones de la distribución binomial y Poisson por la normal.

Distribución uniforme

$$U(1,5): \quad f_X(x) = \begin{cases} \frac{1}{4} & \text{si } 1 < x < 5 \\ 0 & \text{si } x \leqslant 1 \text{ o } x \geqslant 5 \end{cases}$$

2/45

Distribución uniforme

Integrando, la función de distribución obtenemos:

$$F_X(x) = \begin{cases} 0 & \text{si } x \leqslant a \\ \frac{x-a}{b-a} & \text{si } a < x < b \\ 1 & \text{si } b \leqslant x \end{cases}$$

Distribució de U(1,5)

5/45

Esperanza y varianza

Sea X una v.a. U(a, b)

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f_X(x) dx = \int_a^b x \frac{1}{b-a} dx$$
$$= \left[\frac{x^2}{2(b-a)} \right]_a^b = \frac{b+a}{2}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} \cdot f_{X}(x) dx = \int_{a}^{b} x^{2} \frac{1}{b-a} dx$$

$$= \left[\frac{x^{3}}{3(b-a)} \right]_{a}^{b} = \frac{b^{3} - a^{3}}{3(b-a)} = \frac{b^{2} + ab + a^{2}}{3}$$

$$Var(X) = E(X^{2}) - (E(X))^{2} = \frac{b^{2} + ab + a^{2}}{3} - \left(\frac{b+a}{2} \right)^{2}$$

$$= \frac{(b-a)^{2}}{12}$$

Resumen v.a. uniforme en el intervalo (a,b)

$X \equiv U(a)$	n, b).	
$D_X = (a, b)$	<u> </u>	
$f_X(x) = f_X(x) = \left\{\right.$	$\frac{1}{b-a}$	si $a < x < b$
	0	$si x \leqslant a o x \geqslant b$
(0	si <i>x</i> ≤ <i>a</i>
$ F_X(x) = P(X \leqslant X) = F_X(x) = \langle$	$\frac{x-a}{b-a}$	si $a \leqslant x \leqslant b$
	í	si $b \leqslant x$
$E(X) = \frac{a+b}{2}$		
$E(X) = \frac{a+b}{2}$ $Var(X) = \frac{(b-a)^2}{12}$		

Distribución normal

Una v.a. X sigue una ley normal o gaussiana de parámetros μ y σ , y lo indicaremos con $N(\mu, \sigma)$, cuando tiene función de densidad

$$f_X(x) = rac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$$
 para $\mathsf{todo}x \in \mathbb{R}$

Cuando $\mu=0$ y $\sigma=1$, diremos que la v.a. normal es estándar, y la indicaremos usualmente con Z

$$f_Z(x) = rac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
 para todo $x \in \mathbb{R}$

Con R, es norm

Resumen de distribución normal o gaussiana.

$X \equiv N(\mu, \sigma)$.
$D_X = (-\infty, +\infty)$
$f_{x}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^{2}/(2\sigma^{2})}.$
$ F_X(x) = P(X \le X) = $ No tiene expresión, tablas o función de R
$E(X) = \mu$
$Var(X) = \sigma^2$

9/45

Distribución normal

La distribución normal es una de les más importantes y utilizadas en estadística, porque aproxima muy bien muchos fenómenos:

- Alturas, inteligencia,...
- Calificaciones, aciertos, errores de medida, ...

Además,

 Muchas variables aleatorias consistentes en tomar una muestra de N elementos y calcular alguna cosa (por ejemplo, la media) tienen distribución aproximadamente normal cuando N es grande, aunque que las distribuciones de los elementos individuales no lo sean

Distribución normal

La gráfica de f_X es la conocida campana de Gauss

Densidad N(0,1); normal estándar

Propiedades

Sea X una v.a. $N(\mu, \sigma)$

• f_X es simétrica respecto de $x = \mu$:

$$f_X(\mu - x) = f_X(\mu + x)$$

y tiene el máximo en $x = \mu$

En particular, si Z es una N(0,1), entonces $f_Z(-x)=f_Z(x)$, y f_Z toma el valor máximo en x=0

5

Propiedades

• Esta simetría hace que las áreas de la izquierda de $\mu - x$ y de la derecha de $\mu + x$ sean iguales

$$F_X(\mu - x) = P(X \le \mu - x)$$

= $P(X \ge \mu + x) = 1 - F_X(\mu + x)$

13/45

Propiedades

Sea X una v.a. $N(\mu, \sigma)$

- $E(X) = \mu$
- $Var(X) = \sigma^2$
- Su desviación típica es σ

En particular, si Z es una normal estándar, E(Z)=0 y Var(Z)=1.

Propiedades

• En una N(0,1), esta simetría hace iguales las áreas a la izquierda de -z y a la derecha de z

$$F_Z(-z) = P(Z \leqslant -z) = P(Z \geqslant z) = 1 - F_Z(z)$$

14/45

Distribución normal

Aumentar la μ desplaza a la derecha el máximo de la densidad, y con el toda la curva

$$\mu_1 < \mu_2$$

5

Distribución normal

Augmentar la σ achata la curva: al aumentar la varianza, los valores se alejan más del valor medio.

 $\sigma_1 < \sigma_2$

17/45

Estandarización o tipificación de una v.a. normal

Teorema

Si
$$X$$
 es una $v.a.$ $N(\mu, \sigma)$, entonces $Z = \frac{X - \mu}{\sigma}$ es $N(0, 1)$.

Las probabilidades de una normal estándar Z determinan las de cualquier X con distribución $N(\mu, \sigma)$:

$$P(X \leqslant x) = P\left(\frac{X - \mu}{\sigma} \leqslant \frac{x - \mu}{\sigma}\right) = P\left(Z \leqslant \frac{x - \mu}{\sigma}\right)$$

$$P(y \leqslant X \leqslant x) = P\left(\frac{y - \mu}{\sigma} \leqslant \frac{X - \mu}{\sigma} \leqslant \frac{x - \mu}{\sigma}\right)$$

$$= P\left(\frac{y - \mu}{\sigma} \leqslant Z \leqslant \frac{x - \mu}{\sigma}\right)$$

Distribución normal

El efecto combinado es

$$\mu_1 < \mu_2, \ \sigma_1 < \sigma_2$$

18/45

Cálculo de probabilidades

 F_Z no tiene expresión conocida. La podemos calcular con R (pnorm), o, de forma manual, con tablas. Las tablas para calcular F_Z están en el espacio Moodle de la asignatura.

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

$$F_Z(0.75) = 0.7734, \ F_Z(1.02) = 0.8461, \ F_Z(0.06) = 0.5239$$

 $F_Z(-0.75) = 1 - F_Z(0.75) = 0.2266, \ F_Z(-0.88) = 0.1894$

Cálculo de probabilidades

Z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	0
					:					
					:					
-1.0	0.1379	0.1401	0.1423	0.1446	0.1469	0.1492	0.1515	0.1539	0.1562	0.1587
-0.9	0.1611	0.1401	0.1423	0.1440	0.1409	0.1432	0.1762	0.1339	0.1302	0.1841
	0									
-0.8	0.1867	0.1894	0.1922	0.1949	0.1977	0.2005	0.2033	0.2061	0.2090	0.2119
-0.7	0.2148	0.2177	0.2206	0.2236	0.2266	0.2296	0.2327	0.2358	0.2389	0.2420
-0.6	0.2451	0.2483	0.2514	0.2546	0.2578	0.2611	0.2643	0.2676	0.2709	0.2743
-0.5	0.2776	0.2810	0.2843	0.2877	0.2912	0.2946	0.2981	0.3015	0.3050	0.3085
-0.4	0.3121	0.3156	0.3192	0.3228	0.3264	0.3300	0.3336	0.3372	0.3409	0.3446
-0.3	0.3483	0.3520	0.3557	0.3594	0.3632	0.3669	0.3707	0.3745	0.3783	0.3821
-0.2	0.3859	0.3897	0.3936	0.3974	0.4013	0.4052	0.4090	0.4129	0.4168	0.4207
-0.1	0.4247	0.4286	0.4325	0.4364	0.4404	0.4443	0.4483	0.4522	0.4562	0.4602
0.0	0.4641	0.4681	0.4721	0.4761	0.4801	0.4840	0.4880	0.4920	0.4960	0.5000

$$F_Z(-0.75) = 0.2266, F_Z(-0.88) = 0.1894$$

21/45

Cálculo de cuantiles

Les tablas también se pueden utilizar para "calcular" cuantiles (con R, qnorm).

Si queremos saber el valor de z tal que $P(Z \le z) = q$, buscamos en la tabla la entrada q (o la más próxima) y miramos a que z corresponde.

0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	0.5000 0.5398 0.5793 0.6179 0.6554 0.6915 0.7257 0.7580 0.7881 0.8159	0.5000 0.5040 0.5398 0.5438 0.5793 0.5832 0.6179 0.6217 0.6554 0.6591 0.6915 0.6950 0.7257 0.7291 0.7580 0.7611 0.7881 0.7910 0.8159 0.8186	0.5000 0.5040 0.5080 0.5398 0.5438 0.5478 0.5793 0.5832 0.5871 0.6179 0.6217 0.6255 0.6554 0.6591 0.6628 0.6915 0.6950 0.6985 0.7257 0.7291 0.7324 0.7580 0.7611 0.7642 0.7881 0.7910 0.7939 0.8159 0.8186 0.8212	0.5000 0.5040 0.5080 0.5120 0.5398 0.5438 0.5478 0.5517 0.5793 0.5832 0.5871 0.5910 0.6179 0.6217 0.6255 0.6293 0.6554 0.6591 0.6628 0.6644 0.6915 0.6950 0.6985 0.7019 0.7257 0.7291 0.7324 0.7357 0.7580 0.7611 0.7642 0.7673 0.7881 0.7910 0.7939 0.7967 0.8159 0.8186 0.8212 0.8238	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

¿Cuál es el valor de z tal que $P(Z \le z) = 0.7357$? z = 0.63

Cálculo de probabilidades

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

$$P(0.25 < Z < 0.75) = P(Z < 0.75) - P(Z < 0.25)$$

$$= 0.7734 - 0.5987 = 0.1747$$

$$P(-0.3 < Z < 0.3) = P(Z < 0.3) - P(Z < -0.3)$$

$$= P(Z < 0.3) - 1 + P(Z < 0.3)$$

$$= 2P(Z < 0.3) - 1 = 0.2358$$

22/45

Cálculo de cuantiles

	0.0	0.01	0.00	0.00	0.04	0.08	0.00		0.00	0.00
Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

¿Cuál es el valor de z tal que $P(Z \leqslant z) = 0.8357$? Entre 0.97 y 0.98

```
qnorm(0.8357)
## [1] 0.9769377
```

745

Con las normales no estándar...

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

Sea X una v.a. N(1,2). ¿Qué vale $P(X \leq 2)$?

$$P(X \le 2) = P(Z \le \frac{2-1}{2} = 0.5) = 0.6915$$

25/45

Con las normales no estándar...

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

Sea X una v.a. N(0.5, 1.5).

¿Qué vale $P(X \leq 1.5)$?

¿Para qué x se tiene que $P(X \leqslant x) = 0.834$?

Con las normales no estándar...

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
110 110	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

Sea X una v.a. N(1,2). ¿Para qué valor de x se tiene que $P(X \le x) = 0.7939$?

$$0.7939 = P(X \leqslant x) = P\left(Z \leqslant \frac{x-1}{2}\right)$$
$$\Rightarrow \frac{x-1}{2} = 0.82 \Rightarrow x = 2.64$$

26/45

Distribución exponencial

Una v.a. continua X tiene distribución exponencial de parámetro λ , y lo indicaremos con $Exp(\lambda)$, si su función de densidad es

$$f_X(x) = \begin{cases} 0 & \text{si } x \leqslant 0 \\ \lambda e^{-\lambda x} & \text{si } x > 0 \end{cases}$$

Efectivamente esta función es densidad

$$\int_0^\infty \lambda e^{-\lambda t} dt = \lim_{x \to \infty} \left[-e^{-\lambda t} \right]_0^x = \lim_{x \to \infty} -e^{-\lambda x} + 1 = 1$$

Con R es exp

Distribución exponencial

La distribución exponencial es el equivalente continuo de la distribución geométrica discreta en el sentido de carecer de memoria

Si X es una v.a. que mide el tiempo entre dos ocurrencias de un determinado acontecimiento, y el tiempo que pueda tardar en pasar el acontecimiento es independiente del que llevemos esperando hasta ahora, entonces X es exponencial.

- Tiempo que tarda una partícula radioactiva en desintegrarse
- Tiempo en que espera un enfermo en la cola de un servicio de urgencias

29/45

Distribución exponencial

Por tanto

$$F_T(t) = \begin{cases} 0 & \text{si } t \leq 0 \\ P(T \leq t) = 1 - P(T > t) = 1 - e^{-\lambda t} & \text{si } t > 0 \end{cases}$$

Derivando

$$f_T(t) = F_T'(t) = \left\{ egin{array}{ll} 0 & ext{si } t \leqslant 0 \ \lambda e^{-\lambda t} & ext{si } t > 0 \end{array}
ight.$$

Es $Exp(\lambda)$

Distribución exponencial

Teorema

Si tenemos un proceso de Poisson de parámetro λ por unidad de tiempo, el tiempo que pasa entre dos acontecimientos consecutivos es una v.a. $Exp(\lambda)$

Si sabemos que la v.a. X_t que da el numero de acontecimientos en el intervalo de]0,t] es $Po(\lambda t)$

Consideremos la v.a. T que da el tiempo transcurrido entre dos sentenciosamente consecutivos.

$$P(T > t) = P(0 \text{ acontecimientos en el intervalo }]0, t])$$

= $P(X_t = 0) = \frac{(\lambda t)^0}{0!} e^{-\lambda t} = e^{-\lambda t}$

30/45

Resumen de distribución exponencial

$X \equiv E \times p(\lambda)$.							
$D_X = (0, +\infty)$							
$f_{x}(x) = \langle$	0	si <i>x</i> ≤ 0					
$\lambda e^{-\lambda x}$ si $x > 0$							
$F_X(x) = P(X \leqslant X) = \langle$	0	si <i>x</i> ≤ 0					
X(x)-Y(x)	$1 - e^{-\lambda}$	$x ext{ si } x > 0$					
$E(X) = \frac{1}{\lambda} \ Var(X) = \frac{1}{\lambda^2}$							

Propiedad de la falta de memoria

Teorema

Si X es una v.a. $Exp(\lambda)$, entonces

$$P(X > s + t | X > s) = P(X > t)$$
 para todo $s, t > 0$

La probabilidad de que, a partir de un cierto momento, tengamos que esperar más de una cantidad de tiempo t para que pase el acontecimiento que cuenta X, no depende del tiempo que llevemos esperando.

Ejemplo

Acabamos de observar la división de una bacteria. ¿Cuál es la probabilidad de que tengamos que esperar más de 5 minutos hasta la siguiente división?

$$P(T > 5) = 1 - P(T \le 5) = 1 - F_T(5)$$

= $1 - (1 - e^{-\frac{1}{2} \cdot 5}) = e^{-\frac{5}{2}} = 0.0821$

Acabamos de observar la división de una bacteria. ¿Cuál es la probabilidad de que tengamos que esperar entre 5 y 10 minuto hasta la próxima división?

$$P(5 < T < 10) = P(T < 10) - P(T < 5)$$

$$= F_T(10) - F_T(5)$$

$$= (1 - e^{-\frac{1}{2} \cdot 10}) - (1 - e^{-\frac{1}{2} \cdot 5})$$

$$= e^{-\frac{5}{2}} - e^{-5}$$

Ejemplo

Supongamos que en un determinada infección por una bacteria el número de bacterias que se reproducen por división en un intervalo de tiempo es un proceso de Poisson, y que de media se divide una bacteria cada 2 minutos.

Si X_t es el número de bacterias que se dividen en t minutos, X_t es $Po(\lambda t)$, con λ el número medio bacterias que se dividen en un minuto: $\lambda = \frac{1}{2}$.

Sea T el tempo entre dos divisiones bacterias consecutivas. Por lo que hemos visto, T es $Exp(\frac{1}{2})$.

Ejemplo

33/45

¿Cuál es el valor esperado y la desviación típica del tiempo que transcurre entre dos divisiones sucesivas?

La esperanza es

$$E(T) = \frac{1}{\lambda} = \frac{1}{\frac{1}{2}} = 2$$

La desviación típica es

$$\sigma_T = \sqrt{Var(T)} = \sqrt{\frac{1}{\lambda^2}} = \frac{1}{\lambda} = 2$$

34/45

(OPCIONAL)Aproximación de una binomial por una normal

Sea X una v.a. B(n,p), de manera que $E(X) = n \cdot p$ y $Var(X) = n \cdot p \cdot q$ (donde q = 1 - p)

Si n es grande y p no esta cerca de 0 o 1, entonces X es aproximadamente $N(np, \sqrt{npq})$

B(30,0.47) y N(30*0.47,sqrt(30.0.47*0.53)

37/45

(OPCIONAL)Aproximación de una binomial por una normal

Sea $X \sim B(30, 0.47)$: $\mu = 30 \cdot 0.47$ y $\sigma = \sqrt{30 \cdot 0.47 \cdot 0.53}$

```
dbinom(13,30,0.47)
## [1] 0.134361
PY=function(x){pnorm(x,30*0.47,sqrt(30*0.47*0.53))}
PY(13.5)-PY(12.5)
## [1] 0.1339606
```


(OPCIONAL)Aproximación de una binomial por una normal

Teorema

Sea X una v.a. B(n,p), con n grande y p que no está cerca de 0 o 1. Sea Y una v.a. $N(n \cdot p, \sqrt{n \cdot p \cdot q})$. Entonces

$$P(X = k) \approx P(k - 0.5 \leqslant Y \leqslant k + 0.5)$$

De la suma ± 0.5 para corregir el efecto que tiene aproximar una v.a. discreta por una continua se la denomina corrección de continuidad de Fisher.

Hay diversas heurísticas para decidir qué quiere decir "n grande y p no cerca de 0 o 1". Por ejemplo:

$$n \geqslant 20$$
, $n \cdot p \geqslant 10$ y $n \cdot (1-p) \geqslant 10$

38/45

(OPCIONAL)Aproximación de una binomial por una normal

Si X es una v.a. B(n, p) con n grande y p que no este cerca de 0 ni de 1,

$$\frac{X - E(X)}{\sqrt{Var(X)}} = \frac{X - np}{\sqrt{npq}}$$

se aproxima por una normal estándar Z:

$$P(X = k) \approx P\left(\frac{k - 0.5 - np}{\sqrt{npq}} \leqslant Z \leqslant \frac{k + 0.5 - np}{\sqrt{npq}}\right)$$

(OPCIONAL)Aproximación de una binomial por una normal

Si X es una v.a. B(n, p) con n gran y p que no esté cerca cde 0 ni de 1 , y Z es una v.a. normal estándar:

$$P(X \le k) \approx P\left(Z \le \frac{k + 0.5 - np}{\sqrt{npq}}\right)$$

$$P(X \ge k) \approx P\left(\frac{k - 0.5 - np}{\sqrt{npq}} \le Z\right)$$

$$P(a \le X \le b) \approx P\left(\frac{a - 0.5 - np}{\sqrt{npq}} \le Z \le \frac{b + 0.5 - np}{\sqrt{npq}}\right)$$

41/45

Ejemplo

Y si no tenemos a mano R? Podemos emplear la tabla de la distribución N(0,1):

$$X \sim B(100, 0.5) \Rightarrow E(X) = n \cdot p = 50, \ \sigma_X = \sqrt{npq} = 5$$

$$Z = \frac{X - 50}{5} \sim N(0, 1)$$

$$P(40 \le X \le 49)$$

$$\approx P\left(\frac{40 - 0.5 - 50}{5} \le Z \le \frac{49 + 0.5 - 50}{5}\right)$$

$$= P(-2.1 \le Z \le -0.1)$$

$$= F_Z(-0.1) - F_Z(-2.1)$$

$$= 1 - F_Z(0.1) - 1 + F_Z(2.1)$$

$$= F_Z(2.1) - F_Z(0.1) = 0.9821 - 0.5398 = 0.4423$$

Ejemplo

Lanzamos 100 veces una moneda con probabilidad de cara $\frac{1}{2}$. Probabilidad de sacar 40 y 49 caras?

X=número de caras en 100 lanzamientos de una moneda X es B(100,0.5)

Nos piden $P(40 \leqslant X \leqslant 49)$

pbinom(49,100,0.5)-pbinom(39,100,0.5)
[1] 0.4426053

(OPCIONAL)Aproximación de una Poisson por una normal

Sea X una v.a. $Po(\lambda)$, por lo tanto $E(X) = Var(X) = \lambda$ Si λ es grande, entonces X es aproximadamente $N(\lambda, \sqrt{\lambda})$

Pois(150) y N(150,sqrt(150)

(OPCIONAL)Aproximación de una Poisson por una normal

Teorema

Sea X una v.a. $Po(\lambda)$, con λ grande. Sea Y una v.a. $N(\lambda, \sqrt{\lambda})$ (recordar que $E(X) = Var(X) = \lambda$). Entonces

$$P(X = k) \approx P(k - 0.5 \leqslant Y \leqslant k + 0.5)$$

Por lo tanto, si X es una v.a. $Po(\lambda)$ con λ grande,

$$\frac{X-\lambda}{\sqrt{\lambda}}$$

se aproxima por una normal estándar Z, en el sentido anterior

$$P(X = k) \approx P\left(\frac{k - 0.5 - \lambda}{\sqrt{\lambda}} \leqslant Z \leqslant \frac{k + 0.5 - \lambda}{\sqrt{\lambda}}\right)$$