Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Original): A compound of formula I

$$\begin{array}{c|c}
R^{2} & R^{1} \\
R^{3} & C \\
C & M
\end{array}$$

in salt or zwitterionic form wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R² is hydrogen, hydroxy, or C₁-C₄-alkyl optionally substituted by hydroxy;

L and M are (a bond and -CH₂-CH₂-), (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is C_1 - C_2 -alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bond; R^4 is C_1 - C_4 -alkyl;

 R^5 is C_1 -alkyl substituted by -SO-R⁶, -S(=O)₂-R⁶, -CO-R⁶, -CO-O-R⁶, -CO-NH-R⁶ or -R⁷, or R^5 is C_2 - C_{10} -alkyl substituted by -O-R⁶, -S-R⁶, -SO-R⁶, -S(=O)₂-R⁶, -CO-R⁶, -O-CO-R⁶, -CO-O-R⁶, -NH-CO-R⁶, -CO-NH-R⁶ -R⁷ or -R⁸,

or R⁵ is C₂-C₁₀-alkenyl or C₂-C₁₀-alkynyl optionally substituted by -R⁷ or -R⁸;

R⁶ is a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur,

or R⁶ is C₁-C₁₀-alkyl optionally substituted by C₁-C₁₀-alkoxy, -O-R⁷, a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R⁷ is a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur; and

 R^8 is a C_3 - C_{15} -carbocyclic group.

Claim 2. (Original): A compound according to claim 1, wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R² is hydroxy;

L and M are (a bond and $-CH_2-CH_2-$), ($-CH_2-$ and $-CH_2-CH_2-$) or ($-CH_2-CH_2-$ and $-CH_2-$) respectively and J is C_1-C_2 -alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bond; R^4 is C_1 - C_4 -alkyl;

R⁵ is C₁-alkyl substituted by -CO-R⁶ or -CO-NH-R⁶,

or R^5 is C_2 - C_{10} -alkyl substituted by -O- R^6 , -S- R^6 , -O-CO- R^6 or - R^8 ,

or R⁵ is C₂-C₁₀-alkenyl or C₂-C₁₀-alkynyl optionally substituted by -R⁸;

R⁶ is a C₃-C₁₅-carbocyclic group,

or R^6 is C_1 - C_{10} -alkyl optionally substituted by C_1 - C_{10} -alkoxy, O- R^8 or a C_3 - C_{15} -carbocyclic group; and

R⁸ is a C₃-C₁₅-carbocyclic group.

Claim 3. (Original): A compound according to claim 2, wherein

R¹ and R³ are each independently a C₃-C₁₀-carbocyclic group, preferably phenyl, or a 5- to 9-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur, preferably thienyl;

R² is hydroxy;

L and M are (a bond and -CH₂-CH₂-), (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is C_1 - C_2 -alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bond; R^4 is C_1 - C_4 -alkyl;

R⁵ is C₁-alkyl substituted by -CO-R⁶ or -CO-NH-R⁶,

or $\ensuremath{\mathsf{R}}^5$ is $\ensuremath{\mathsf{C}}_2\text{-}\ensuremath{\mathsf{C}}_5\text{-alkyl}$ substituted by -O-R 6 , -S-R 6 , -O-CO-R 6 or -R 8 ,

or R⁵ is C₂-C₄-alkenyl or C₂-C₈-alkynyl optionally substituted by -R⁸;

 R^6 is a C_3 - C_{10} -carbocyclic group, preferably phenyl,

or R^6 is C_1 - C_{15} -alkyl optionally substituted by C_1 - C_4 -alkoxy, O- R^8 or a C_3 - C_{10} -carbocyclic group; and

R⁸ is a C₃-C₁₀-carbocyclic group, preferably phenyl.

Claim 4. (Currently amended): A compound according to claim 1, that is also a compound of formula la

wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R² is hydrogen, hydroxy, or C₁-C₄-alkyl optionally substituted by hydroxy;

J and K are both independently C₁-C₂-alkylene,

or one of J and K is a bond and the other is C₁-C₂-alkylene;

L is C₁-C₂-alkylene;

R4 is C1-C4-alkyl;

R⁵ is C₄-C₈-alkyl-C₂-C₈-alkyl substituted by -OR⁶, -O-CO-R⁶ or -CO-O-R⁶; and

R⁶ is C₁-C₈-alkyl, a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur.

Claim 5. (Currently amended): A compound according to claim 4, wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group;

R² is hydroxy;

J is a bond;

K is C₁-C₂-alkylene;

L is C₁-C₂-alkylene;

R⁴ is C₁-C₄-alkyl;

R⁵ is C₄-C₈-alkyl-C₂-C₈-alkyl substituted by -OR⁶; and

 R^6 is a C_3 - C_{15} -carbocyclic group.

Claim 6. (Currently amended): A compound according to claim 5, wherein

R¹ and R³ are each independently a C₃-C₁₀-carbocyclic group, preferably phenyl;

R² is hydroxy;

J is a bond;

K is C₁-C₂-alkylene;

L is C₁-C₂-alkylene;

R⁴ is methyl;

R⁵ is C₄-C₄-alkyl-C₂-C₄-alkyl substituted by -OR⁶; and

R⁶ is a C₃-C₁₀-carbocyclic group, preferably phenyl.

Claim 7. (Original): A compound according to claim 1, which is also a compound of formula XVI

where T is as shown in the following table:

Claim 8. (Original): A compound according to claim 1, which is also a compound of formula XVI where T is as shown in the following table:

Claim 9. (Original): A compound according to claim 1, which is also a compound of formula XVII

where T is as shown in the following table:

Claim 10. (Currently amended): A compound according to any one of the preceding-claims_1 in combination with at least one drug substance which is selected from the group consisting of an anti-inflammatory, a bronchodilator, an antihistamine, a decongestant or and an anti-tussive drug substance.

Claim 11. (Currently amended): A <u>pharmaceutical composition comprising as active ingredient a compound according to any one of the preceding claims 1 for use as a pharmaceutical.</u>

Claims 12.-15. Cancelled

Claim 16. (Original): A process for the preparation of a compound of formula I as claimed in claim 1 which comprises:

(i) (A) reacting a compound of formula II

$$\begin{array}{c|c}
R^2 & \downarrow \\
R^3 & \downarrow \\
C & \downarrow \\
O & \downarrow \\
M
\end{array}$$

or a protected form thereof where R¹, R², R³, R⁴, J, L and M are as defined in claim 1, with a compound of formula III

where R⁵ is as defined in claim 1 and X is chloro, bromo or iodo;

(B) reacting a compound of formula IV

$$\begin{array}{c|c}
R^2 & \downarrow \\
R^3 & C & O & J & \downarrow \\
 & \downarrow & M & N & R^5
\end{array}$$
IV

or a protected form thereof where R¹, R², R³, R⁵, J, L and M are as defined in claim 1, with a compound of formula V

where R4 is as defined in claim 1 and X is chloro, bromo or iodo;

(C) for the preparation of compounds of formula I where R⁵ is -Q-NH-CO-R⁶, reacting a compound of formula VI

$$\begin{array}{c|c}
R^2 & \downarrow & \downarrow \\
R^3 & \downarrow & \downarrow & \downarrow \\
R^3 & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow & \downarrow \\
M & \downarrow & \downarrow & \downarrow \\
M & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow \\
N$$

or a protected form thereof where R^1 , R^2 , R^3 , R^4 , J, L and M are as defined in claim 1 and Q is C_1 - C_{10} -alkylene, with a compound of formula VII

or an amide-forming derivative thereof wherein R⁶ is as defined in claim 1; or

(D) for the preparation of compounds of formula I where R^5 is C_1 - C_{10} -alkyl substituted by a C_3 - C_{15} -carbocyclic group that is substituted by carboxy, converting a compound of formula I where R^1 , R^2 , R^3 , R^4 , J, L and M are as defined in claim 1 and R^5 is C_1 - C_{10} -alkyl substituted by a C_3 - C_{15} -carbocyclic group that is substituted by either -COO- C_6 - C_{10} -aryl or -COO- C_7 - C_{15} -aralkyl; and (ii) recovering the product in salt or zwitterionic form.

Claim 17. (Original): A compound of formula VI

$$\begin{array}{c|c}
R^2 & \downarrow & \downarrow & \downarrow \\
R^3 & C & \downarrow & \downarrow & \downarrow \\
R^3 & C & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
C & \downarrow & \downarrow & \downarrow & \downarrow \\
M & \downarrow & \downarrow & \downarrow & \downarrow \\
M & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow & \downarrow \\
N & \downarrow & \downarrow \\
N & \downarrow & \downarrow & \downarrow \\
N$$

in salt or zwitterionic form wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R² is hydrogen, hydroxy, or C₁-C₄-alkyl optionally substituted by hydroxy;

L and M are (a bond and -CH₂-CH₂-), (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is C_1 - C_2 -alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bond; R^4 is C_1 - C_4 -alkyl; and

Q is C₁-C₁₀-alkylene.

Claim 18. (New): A pharmaceutical composition according to claim 11 wherein the compound is a single enantiomer.

Claim 19. (New): A pharmaceutical composition comprising as active ingredient a compound according to claim 1 in combination with another drug substance selected from the group consiting of an anti-inflammatory, a bronchodilator, an antihistamine, a decongestant and an anti-tussive drug substance, optionally together with a pharmaceutically acceptable diluent or carrier.

Claim 20. (New): A method of treating a condition mediated by the muscarinic M3 receptor in a subject in need of such treatment, which comprises administering to said subject an effective

amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 21. (New): A method of treating an inflammatory or obstructive airways disease in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 22. (New): A method according to claim 20, in which the compound of formula I is a single enantiomer.