Defensive Honeypots for IP IoT Devices:

Quantitative Comparison between Vanilla and Sandboxed Honeypots

Franek Kruczynski

September 2025

Contents

1	Inti	coduction	1
	1.1	Background	1
	1.2	Aims & Objectives	1
		1.2.1 Aim	1
		1.2.2 Objectives	1
	1.3	Product Review	2
		1.3.1 Scope	2
		1.3.2 Audience	2
2	Bac	ekground Review	3
	2.1	Existing Approaches	3
	2.2	Related Literature	3
3	Methodology & Techniques		
	3.1	Approach	4
	3.2	Technologies	4
	3.3	Version Control & Management	4
4	Project Management		
	4.1	Activities	5
	4.2	Schedule and Time Management	5
	4.3	Data Management	5
	4.4	Deliverables	5
5	Ref	erences	6

Introduction

1.1 Background

Abstract of the project goes here

The Internet of Things (IoT) is vastly expanding, driving a brand new and complex wave of device inter-connectivity worldwide, with an approximate 27-billion devices by the end of 2025(Jinesh, 2025).

1.2 Aims & Objectives

1.2.1 Aim

To evaluate the effectiveness of containment and sandboxing mechanisms, in preventing malware propagation (specifically its spread into external systems) within a IoT IP device Honeypot framework. Such will be achieved through quantitatively comparing the same malware programs on two separate Honeypots, contained high-interaction against vanilla low-interaction.

1.2.2 Objectives

The objectives are as follows:

- Design, develop and deploy a secure Honeynet framework within Virtual Machines,
- To deploy two separate Honeypots:
 - 1. Vanilla Honeypot: Low-interaction with no advanced security,
 - 2. Sandboxed Honeypot: High-interaction within a secured container.

- To create and design a virtual network, providing both logical addressing to all IoT IP devices, Virtual Machines and, providing security through sub-netting. In essence mimicking a small office network.
- To collect and store the following malware properties for quantitative comparison and analysis:
 - 1. Network traffic,
 - 2. Payloads,
 - 3. Malware type
 - 4. Activity data
 - **5.** Propagation attempts outside the container.
- Quantitatively compare the data of all malware, and conclude whether attack behaviors differ based on environment.

1.3 Product Review

1.3.1 Scope

The project involves the design, development and deployment of a contained IoT Honeynet environment for a range of various IoT IP devices and varying Honeypots, within a small office network. Each executed piece of malware will have its data collected from both Honeypots, which will then be stored and processed within a separate Virtual Machine outside the environments subnet.

It is designed to evaluate the successfulness of a high-interaction contained Honeypot against a low-interaction implementation, with the aim to further support pre-existing research regarding malware propagation and identify attacker behaviour patterns (Kocaogullar, 2023).

1.3.2 Audience

Who is this project for?

Background Review

2.1 Existing Approaches

Add on to 1.1, provide overview of similar products and why they aren't sufficient

2.2 Related Literature

Self explanatory

- Look through thesis provided by supervisor

Methodology & Techniques

3.1 Approach

- Link back to objectives?
 - Two separate VMs
 - Lab VM = honeypots

Analysis VM = protected

3.2 Technologies

3.3 Version Control & Management

Introduce GitHub & Supervisor Google Drive

Project Management

4.1 Activities

4.2 Schedule and Time Management

- Calendar - Allocating times during week

4.3 Data Management

- How is this data going to be stored? (Analysis VM using pcaps) - CSV files for extracting

4.4 Deliverables

References

Bibliography

```
Jinesh (2025). How Many IoT Devices Are There in 2025? URL: https://autobitslabs.com/how-many-iot-devices-are-there/.
```

Kocaogullar, Y et al. (2023). Hunting High or Low: Evaluating the Effectiveness of High-Interaction and Low-Interaction Honeypot. URL: https://kar.kent.ac.uk/102122/1/STAST2022.pdf.

Oosterhof, Michel (n.d.). What is Cowrie? URL: https://docs.cowrie.org/en/latest/README.html#what-is-cowrie.