${\bf Alg Num Zadanie 3}$

Paweł Luto, Mikołaj Kalejta

$\mathrm{May}\ 2025$

Contents

1	\mathbf{Wstep}	2
2	Zadania Z1–Z3: Rozwiązanie zbudowanych układów równań i interpolacja przekrojów	
	używając metody Gaussa	2
	2.1 Cel i założenia	2
	2.2 Z1: Budowa układu równań liniowych	2
	2.3 Z2: Rozwiązanie układu metodą eliminacji Gaussa	
	2.4 Z3: Interpolacja przekrojów funkcjami sklejanymi trzeciego stopnia	
3	Zadania Z4-Z5: Rozwiązanie zbudowanych układów równań i interpolacja przekrojów	
	używając metody iteracyjnej	6
	3.1 Z4: Rozwiązanie układu metodą iteracyjną Gaussa-Seidela	6
	3.2 Z5: Interpolacja przekrojów funkcji uzyskanej metodą iteracyjną	6
4	Porównanie obu metod	7

1 Wstęp

Celem ćwiczenia było numeryczne rozwiązanie równania Laplace'a

$$\Delta z = 0$$

na kole jednostkowym za pomocą metody różnic skończonych. Rozwiązanie zostało podzielone na kilka etapów (Z1–Z5), zgodnie z treścią zadań. W ramach pracy przeanalizowano również dokładność oraz zastosowano interpolację splajnami trzeciego stopnia w przekrojach rozwiązania.

2 Zadania Z1–Z3: Rozwiązanie zbudowanych układów równań i interpolacja przekrojów używając metody Gaussa

2.1 Cel i założenia

Celem części Z1–Z3 było rozwiązanie zagadnienia brzegowego Laplace'a:

$$\Delta z = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

w obszarze koła jednostkowego $D^2=\{(x,y)\in R^2\colon x^2+y^2\leq 1\}$ z określonymi warunkami brzegowymi z(x,y)=g(x,y) dla $x^2+y^2=1.$ W ramach zadania wykonano trzy etapy:

- Z1: Zbudowano układ równań liniowych dyskretyzujący problem dla siatki o kroku h = 2/N,
- Z2: Rozwiązano ten układ metodą eliminacji Gaussa,
- ullet Z3: Przybliżono wartości przekrojów funkcji z(x,y) wzdłuż osi OX i OY za pomocą funkcji sklejanych trzeciego stopnia.

2.2 Z1: Budowa układu równań liniowych

Siatkę obliczeniową utworzono, wybierając punkty wewnątrz koła jednostkowego w oparciu o krok h=2/N, gdzie N to liczba podziałów przedziału [-1,1]. Uwzględniono tylko te punkty, dla których $x^2+y^2\leq 1$.

Dla każdego wewnętrznego punktu siatki zastosowano pięciopunktowy schemat różnic skończonych:

$$\frac{z_{i+1,j} - 2z_{i,j} + z_{i-1,j}}{h^2} + \frac{z_{i,j+1} - 2z_{i,j} + z_{i,j-1}}{h^2} = 0$$

co daje:

$$-4z_{i,j} + z_{i+1,j} + z_{i-1,j} + z_{i,j+1} + z_{i,j-1} = 0$$

W przypadku, gdy sąsiad danego punktu znajdował się poza dziedziną (ale na brzegu), jego wartość zastępowano warunkiem brzegowym. Ostatecznie skonstruowano układ równań w postaci:

$$A \cdot \vec{z} = \vec{b}$$

gdzie:

- A macierz współczynników (rzadka, symetryczna, dodatnio określona),
- \vec{z} wektor wartości funkcji w punktach siatki,
- \vec{b} wektor wynikający z warunków brzegowych.

Figure 1: Siatka punktów wewnątrz koła jednostkowego (przykład dla N=15)

2.3 Z2: Rozwiązanie układu metodą eliminacji Gaussa

Po utworzeniu układu równań rozwiązano go metodą eliminacji Gaussa z częściowym wyborem elementu głównego. W wyniku otrzymano przybliżone wartości funkcji z(x,y) w punktach siatki. Następnie dane te przekształcono z postaci wektorowej do dwuwymiarowej siatki z[i,j] odzwierciedlającej rozkład funkcji w dziedzinie.

Poniżej przedstawiono wykresy przekrojów funkcji wzdłuż osi OX i OY (czyli z(x,0) i z(0,y)):

Figure 2: Przekrój z(x,0) uzyskany metodą Gaussa

Figure 3: Przekrój z(0,y) uzyskany metodą Gaussa

Oba wykresy pokazują wysoką zgodność z rozwiązaniem analitycznym w środkowej części dziedziny. Odchylenia przy brzegach wynikają z efektów numerycznych oraz interpolacji.

Figure 4: Rozkład błędu numerycznego między rozwiązaniem analitycznym a numerycznym.

Na wykresie przedstawiono lokalne różnice między rozwiązaniem numerycznym a dokładnym. Największe błędy występują przy brzegach koła, co jest efektem przybliżeń warunków brzegowych i ograniczonej liczby punktów siatki w tych obszarach. W centralnej części dziedziny błędy są bliskie zeru, co potwierdza wysoką dokładność metody Gaussa w obszarze właściwym.

2.4 Z3: Interpolacja przekrojów funkcjami sklejanymi trzeciego stopnia

Aby uzyskać gładki przebieg funkcji pomiędzy punktami siatki, przeprowadzono interpolację splajnem kubicznym wzdłuż przekrojów:

$$z(x,0): I_X \to R, \quad z(0,y): I_Y \to R$$

Dla danych w punktach siatki x_i (dla y=0) oraz y_i (dla x=0) skonstruowano funkcje sklejane w postaci:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Interpolację przeprowadzono za pomocą gotowej biblioteki ('scipy.interpolate.CubicSpline'), zapewniającej ciągłość pochodnych do drugiego rzędu. Poniżej przedstawiono wyniki interpolacji:

Figure 5: Interpolacja przekroju z(x,0) splajnem trzeciego stopnia

Figure 6: Interpolacja przekroju z(0,y) splajnem trzeciego stopnia

Interpolowane funkcje dobrze odwzorowują przebieg funkcji w dziedzinie. Gładkość i dokładność interpolacji potwierdza poprawność zarówno rozwiązania numerycznego, jak i wybranej metody aproksymacji.

3 Zadania Z4-Z5: Rozwiązanie zbudowanych układów równań i interpolacja przekrojów używając metody iteracyjnej

3.1 Z4: Rozwiązanie układu metodą iteracyjną Gaussa-Seidela

W tej części rozwiązano ten sam układ równań $A \cdot \vec{z} = \vec{b}$, jednak zamiast metody eliminacji Gaussa zastosowano iteracyjną metodę Gaussa-Seidela. Metoda ta polega na kolejnych iteracjach, w których każda nowa wartość $z_{i,j}^{(k+1)}$ obliczana jest na podstawie najnowszych dostępnych przybliżeń pozostałych wartości $z_{i,j}$.

Iterację prowadzono do momentu spełnienia kryterium zbieżności:

$$||z^{(k+1)} - z^{(k)}||_{\infty} < \varepsilon$$

gdzie $\varepsilon = 10^{-6}$. Początkowe przybliżenie ustalono jako wektor zerowy.

Wyniki zostały przekształcone do formy siatki dwuwymiarowej z[i,j]. Porównanie rozwiązania numerycznego z analitycznym przedstawiono na poniższym wykresie:

Figure 7: Rozkład błędu numerycznego metody Gaussa-Seidela względem rozwiązania analitycznego.

Wykres błędu potwierdza wysoką dokładność metody również przy podejściu iteracyjnym. Największe odchylenia widoczne są przy brzegu dziedziny, natomiast w centrum koła błąd pozostaje bliski zeru.

3.2 Z5: Interpolacja przekrojów funkcji uzyskanej metodą iteracyjną

Podobnie jak w części Z3, przeprowadzono interpolację splajnem trzeciego stopnia dla przekrojów z(x,0) oraz z(0,y), tym razem na podstawie danych otrzymanych metodą Gaussa-Seidela.

Figure 8: Interpolacja przekroju z(x,0) (metoda Gaussa-Seidela)

Figure 9: Interpolacja przekroju z(0, y) (metoda Gaussa-Seidela)

Wyniki interpolacji potwierdzają poprawność rozwiązania numerycznego uzyskanego metodą iteracyjną. Gładkość przebiegu funkcji i zgodność z wartościami analitycznymi świadczą o dobrej jakości obliczeń.

4 Porównanie obu metod

Aby porównać metody eliminacji Gaussa i iteracyjną metodę Gaussa-Seidela dla równania Laplace'a w kole jednostkowym, przeprowadzono następujące testy:

- ullet Pomiar czasu działania w zależności od liczby węzłów siatki N.
- Obliczenie błędu maksymalnego względem funkcji analitycznej.

• Porównanie różnic w rozwiązaniach obu metod na tej samej siatce.

Figure 10: Porównanie czasu działania metod Gaussa i Gaussa-Seidela

Figure 11: Porównanie błędu maksymalnego obu metod

Na podstawie przeprowadzonych testów można sformułować następujące wnioski:

• Obie metody dają bardzo zbliżone rozwiązania

- ullet Błąd numeryczny względem rozwiązania analitycznego jest niemal identyczny dla obu metod i maleje wraz ze wzrostem liczby węzłów siatki N.
- \bullet Główna różnica dotyczy czasu działania: metoda eliminacji Gaussa charakteryzuje się znacznie większą złożonością obliczeniową i dla dużych Nstaje się bardzo kosztowna obliczeniowo.
- Metoda Gaussa-Seidela, mimo że iteracyjna, konwerguje stosunkowo szybko i okazuje się znacznie bardziej efektywna czasowo dla większych siatek.

W związku z powyższym, w zastosowaniach wymagających dużych siatek (wysoka rozdzielczość), metoda Gaussa-Seidela wydaje się bardziej praktyczna z uwagi na mniejsze zapotrzebowanie na zasoby obliczeniowe, przy zachowaniu porównywalnej dokładności.