在数字电路中,常用的组合电路有加法器、 编码器、译码器、数据分配器和多路选择器等。 下面几节分别介绍这几种典型组合逻辑电路的 基本结构、工作原理和使用方法。

2.1 加法器(Adders)

二进制(Binary)

在数字电路中,为了把电路的两个状态 ("1" 态和 "0"态)与数码对应起来,采用二进制。

二进制: 0,1两个数码,"逢二进一"。

2.1 加法器

加法器: 实现(realize)二进制加法运算的电路

2.1.1 半加器(Half adder)

半加:实现两个一位(bit)二进制数相加,不考虑来自低位(low bit)的进位(carry bit)。

半加器:

两个输入
$$\begin{cases} A \\ B \end{cases}$$
 表示两个同位相加的数

两个输出
$$\begin{cases} S -$$
表示半加和(half sum bit) $\\ C -$ 表示向高位的进位

逻辑符号:
$$A \sim \sum_{B \sim CO} S$$

半加器逻辑状态表

\boldsymbol{A}	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

逻辑表达式

$$S = A\overline{B} + \overline{A}B = A \oplus B$$

$$C = AB$$

2.1.2 全加器

全加:实现两个一位二进制数相加,且考虑来 自低位的进位。

全加器:

(1) 列逻辑状态表

$\overline{A_{\mathbf{i}}}$	$B_{\rm i}$	C_{i-1}	$S_{\mathbf{i}}$	$C_{\mathbf{i}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(2) 写出逻辑式

$$S_{i} = \overline{A}_{i}\overline{B}_{i}C_{i-1} + \overline{A}_{i}B_{i}\overline{C}_{i-1} + A_{i}\overline{B}_{i}\overline{C}_{i-1} + A_{i}B_{i}C_{i-1}$$

$$= A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i} = \overline{A}_{i}B_{i}C_{i-1} + A_{i}\overline{B}_{i}C_{i-1} + A_{i}B_{i}\overline{C}_{i-1} + A_{i}B_{i}C_{i-1}$$

$$= A_{i}B_{i} + B_{i}C_{i-1} + A_{i}C_{i-1}$$

N位全加器

将n个一位全加器串接起来

4位集成加法器及其扩展

全加器的功能扩展:集成全加器最多为4位,如果要构成8位或者更多位的加法器就必须由多片4位全加器串接(Series)而成。

2.2 编码器(Encoder)

◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇

把二进制码按一定规律编排,使每组代码具有一特定的含义,称为编码。具有编码功能的逻辑电路称为编码器。

n 位二进制代码有 2^n 种组合,可以表示 2^n 个信息。

要表示N个信息所需的二进制代码应满足

 $2^n \ge N$

2.2.1 二进制编码器

将输入信号编成二进制代码的电路。

例:设计一个编码器,满足以下要求:

- (1) 将 I_0 、 I_1 、... I_7 8个信号编成二进制代码。
- (2) 编码器每次只能对一个信号进行编码,不 允许两个或两个以上的信号同时有效。
- (3) 设输入信号高电平有效。
- (1) 分析要求:

输入有8个信号,即 N=8,根据 $2^n \ge N$ 的关系,即 n=3,即输出为三位二进制代码。

(2) 列编码表:

———— 输入	输出								
- 1削ノく	Y_2	Y_1	Y_0						
$\boldsymbol{I_0}$	0	0	0						
$oldsymbol{ar{I}_1^o}$	0	0	1						
I_2^{-}	0	1	0						
I_3^-	0	1	1						
I_4	1	0	0						
I_5	1	0	1						
I_6	1	1	0						
I_7	1	1	1						

(3) 写出逻辑式并转换成"与非"式

$$Y_{2} = I_{4} + I_{5} + I_{6} + I_{7} = \overline{I_{4} + I_{5} + I_{6} + I_{7}}$$

$$= \overline{I_{4} \cdot I_{5} \cdot I_{6} \cdot I_{7}}$$

$$Y_{1} = I_{2} + I_{3} + I_{6} + I_{7} = \overline{I_{2} + I_{3} + I_{6} + I_{7}}$$

$$= \overline{I_{2} \cdot I_{3} \cdot I_{6} \cdot I_{7}}$$

$$Y_{0} = I_{1} + I_{3} + I_{5} + I_{7} = \overline{I_{1} + I_{3} + I_{5} + I_{7}}$$

$$= \overline{I_{1} \cdot I_{3} \cdot I_{5} \cdot I_{7}}$$

(4) 画出逻辑图

2.2.2 二 - 十进制编码器

将十进制数 0~9 编成二进制代码的电路

8421BCD码编码表

列编码表:

<i>‡</i> ∆)	输 出									
输入	Y_3	Y_2	Y_1	Y_0						
$0 (I_0)$	0	0	0	0						
$1(I_1)$	0	0	0	1						
$2(I_2)$	0	0	1	0						
$3(I_3)$	0	0	1	1						
$4(I_4)$	0	1	0	0						
$5(I_{5})$	0	1	0	1						
$6(I_{6})$	0	1	1	0						
$7(I_7)$	0	1	1	1						
$8(I_8)$	1	0	0	0						
$9(I_9)$	1	0	0	1						

写出逻辑式并化成"或非"门和"与非"门

$$Y_{3} = \overline{I_{8} + I_{9}}$$

$$Y_{2} = \overline{I_{4} + I_{5} + I_{6} + I_{7}} = \overline{I_{4} + I_{6}} \cdot \overline{I_{5} + I_{7}}$$

$$Y_{1} = \overline{I_{2} + I_{3} + I_{6} + I_{7}} = \overline{I_{2} + I_{6}} \cdot \overline{I_{3} + I_{7}}$$

$$Y_{0} = \overline{I_{1} + I_{3} + I_{5} + I_{7} + I_{9}}$$

$$= \overline{I_{1} + I_{9}} \cdot \overline{I_{3} + I_{7}} \cdot \overline{I_{5} + I_{7}}$$

画出逻辑图

法二:

$$Y_{3} = \overline{I_{8} + I_{9}} = \overline{I_{8} \cdot I_{9}}$$

$$Y_{2} = \overline{I_{4} + I_{5} + I_{6} + I_{7}} = \overline{\cdot I_{4} \cdot I_{5} \cdot I_{6} \cdot I_{7}}$$

$$Y_{1} = \overline{I_{2} + I_{3} + I_{6} + I_{7}} = \overline{\cdot I_{2} \cdot I_{3} \cdot I_{6} \cdot I_{7}}$$

$$Y_{0} = \overline{I_{1} + I_{3} + I_{5} + I_{7} + I_{9}}$$

$$= \overline{\cdot I_{1} \cdot I_{3} \cdot I_{5} \cdot I_{7} \cdot I_{9}}$$

2.2.3 优先编码器

当有两个或两个以上的信号同时输入编码电路, 电路只能对其中一个优先级别高的信号进行编码。 即允许几个信号同时有效,但电路只对其中优 先级别高的信号进行编码,而对其它优先级别低 的信号不予理睬。

常用的优先编码器有8线—3线(74LS148、 CT54LS148等), 10线—4线8421BCD优先编码器 (74LS147、CT54LS147、CC40147等)。

CT74LS4147 编码器功能表

输 入 (低电平有效)										8421)	反码)	
$\overline{I_9}$	$\overline{I_8}$	$\overline{I_7}$	$\overline{I_6}$	$\overline{I_5}$	$\overline{I_4}$	$\overline{I_3}$	$\overline{I_2}$	$\overline{I_1}$	$\overline{Y_3}$	$\overline{Y_2}$	\overline{Y}_1	\overline{Y}_0
1	1	1	1	1	1	1	1	1	1	1	1	1
0	×	×	×	X	×	×	×	×	0	1	1	0
1	0	×	×	×	×	×	×	×	0	1	1	1
1	1	0	×	X	×	×	×	×	1	0	0	0
1	1	1	0	X	×	×	×	×	1	0	0	1
1	1	1	1	0	×	×	×	X	1	0	1	0
1	1	1	1	1	0	×	X	×	1	0	1	1
1	1	1	1	1	1	0	×	×	1	1	0	0
1	1	1	1	1	1	1	0	×	1	1	0	1
1	1	1	1	1	1	1	1	0	1	1	1	0

例:CT74LS147集成优先编码器(10线-4线)

74LS148器件管脚(pin)描述

 \overline{EI} 为使能输入端,低电平有效; $\overline{I_0} \sim \overline{I_7}$ 是输入信号,低电平有效; $\overline{Y_2} \sim \overline{Y_0}$ 是输出信号,采用反码输出; 为了扩展器件功能还增设有: 输出使能端 EO,编码选择端 \overline{GS} 。

74LS148真值表

			输	•	λ						1	输	出		
\overline{EI}	$\overline{I_0}$	$\overline{I_1}$	$\overline{I_2}$	$\overline{I_3}$	$\overline{I_4}$	$\overline{I_5}$	$\overline{I_6}$	$\overline{I_7}$	$\overline{Y_2}$	$\overline{Y_1}$	$\overline{Y_0}$			\overline{GS}	EO
1	×	×	×	×	×	×	×	×	1	1	1			1	1
0	1	1	1	1	1	1	1	1	1	1	1			1	0
0	×	×	X	×	X	X	×	0	0	0	0			0	1
0	×	×	X	×	X	×	0	1	0	0	1			0	1
0	×	×	×	×	×	0	1	1	0	1	0			0	1
0	×	×	X	×	0	1	1	1	0	1	1			0	1
0	×	×	×	0	1	1	1	1	1	0	0			0	1
0	×	×	0	1	1	1	1	1	1	0	1			0	1
0	×	0	1	1	1	1	1	1	1	1	0			0	1
0	0	1	1	1	1	1	1	1	1	1	1			0	1

编码器的功能扩展

采用2片74LS148将8线—3线优先编码器扩展为16线—4线优先编码器。

其中:

 $\overline{I_{15}} \sim \overline{I_0}$ 为输入信号, $\overline{Y_3} \sim \overline{Y_0}$ 为输出信号, \overline{S} 为扩展编码器使能输入端

