ECE4802/CS4801 Assignment #3

- * Due: 11:59 pm on Nov 28, 2018 (submit a soft copy in .pdf file format via Canvas)
- * This assignment does not require any programming.
 - **1. Computing RSA by hand**. Let p = 43; q = 37; b = 23 be your initial parameters. You may use a calculator for this problem, but you should show all intermediate results.
 - **a.** Key generation: Compute N and $\varphi(N)$. Compute the private key $k_{priv} = a = b^{-1} \mod \varphi(N)$ using the extended Euclidean algorithm. Show all intermediate results.
 - **b. Encryption:** Encrypt the message X = 91 by applying the square and multiply algorithm (first, transform the exponent to binary representation). Show all intermediate results.
 - **c.** *Decryption:* Decrypt the ciphertext *Y* computed above by applying the square and multiply algorithm. Show all intermediate results.
 - **2.** Eve records the transmission of an RSA-encrypted message in **Question 1**. Eve also knows the public key to be $k_{pub} = (N, b)$. Your goal is to recover the message X that has been encrypted with RSA in **Question 1 Part b**.
 - **a.** Give the equation for the decryption of *Y*. Which variables are not known to Eve? Can Eve recover *X*? If so, how? If not, why?
 - **b.** To recover the private key a, Eve has to compute $a = b^{-1} \mod \varphi(N)$. Can Eve recover $\varphi(N)$?
 - **c.** Compute the message *X*. (*Hint:* Start by factoring $N = p \cdot q$. Then use $\varphi(N)$ to compute *b*)
 - **d.** Can Eve do the same message recovery attack (as in (c)) for *large N*, e.g., |N| = 1024 bit?
 - **e.** Eve recovers a message-ciphertext pair (*X*, *Y*). Can she recover the private key *a*?
 - **3.** Find the followings using Extended Euclidean Algorithm.
 - a. $17^{-1} \mod 37$.
 - b. $13^{-1} \mod 91$.
 - c. 13^{-1} mod 448.
 - d. 16^{-1} mod 4725.