Statistical Learning

Example: buy apples on the market and classify them.

Observe labeled examples (training)

- Build model
- 3 Evaluate on new data (testing)

Assumptions of Statistical Learning

Online Learning

Alexander Mey, Tom Viering

TU Delft

Assumptions:

Data generation process

- is 'fixed', does not change
- is independent of 'us'

When is this assumption NOT OK?

Investment

Consider investment:

- we build a model that predicts which stocks to buy / sell.
- our model is used by a very large hedgefund

Problem:

- Actions of our model influence the data.
- Data generation process changes over time.

2 / 16

YUDelft 3/16 **YU**Delft 4/16

Spam Filter

Consider spam filtering:

- we build a spam filter for GMail
- Model predicts: spam / no spam.

Problems:

- Actions of our model heavily influences data generation process.
- Data changes a lot over time.

Online Learning: Motivation

- We want no assumptions on the data generation process.
- We do not want training/testing separation.
- We want to be able to deal with dynamic/streaming data.

TUDelft.

6 / 16

5 / 16

TUDelf

Online Learning: General Idea

We consider learning a game with 2 players.

• We make prediction, adversary generates data.

We will discuss two settings in Online Learning:

- 1 Online Learning with Expert Advice (Tom)
- Online Convex Optimization (Alexander)

Online Learning with Expert Advice: Example

2 stock brokers (experts) each day t tell us what stocks we should buy and sell.

- t = 1 Our turn: choose confidence in experts $p_t = (0.5, 0.5)$.
 - Higher confidence in expert $i \rightarrow$ higher value of p_t^i .
- t = 1 Adversary turn: choose $z_t = (100, 0)$.
 - z_t^i is the loss of expert i.
- t = 1 **Our loss** in this round: $I_d(p_t, z_t) = p_t^T z_t = 50$.
 - $I_d(p_t, z_t)$ is the "dot loss", other loss also possible.
 - This could mean we have lost 50 euros on day t = 1.
- t = 2 Our turn: choose p_t
- t = 2 Adversary turn: choose z_t
- t = 2 Our loss $I_d(p_t, z_t)$

Online Learning with Expert Advice

We have d experts, each time step t give some advice.

Online Learning Procedure

- For t = 1, ..., n
 - Our turn: we choose a distribution $p_t \in \Delta_d$ on d experts.
 - Adversary turn: Adversary chooses $z_t \in \mathcal{Z}$ (losses of d experts).
 - Our loss is I(p_t, z_t).
- $p_t \in \Delta_d$ means $p_t = (p_t^1, ..., p_t^d) \in [0, 1]^d$ and $\sum_{i=1}^d p_t^i = 1$.
- \mathcal{Z} is specified later.
- We will consider two losses: I_m (mix loss), I_d (dot loss).
- If we completely believe expert k on day t, then $p_t = e_k$.
- Example (d = 3), then $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, etc...

Expert Regret

- We cannot guarantee small loss.
- Instead, we analyze the expert regret R_n^E

$$R_n^E = \sum_{t=1}^n I(p_t, z_t) - \min_i \sum_{t=1}^n I(e_i, z_t)$$
 (1)

• Expert regret: loss compared to best (fixed) expert.

Goal: algorithm that chooses p_t that guarantees small R_n^E .

• 'Small regret' means R_n^E does not grow linearly with n

Mix Loss Setting

The mix loss (investment) is:

$$I_{m}(p_{t}, z_{t}) = -ln\left(\sum_{i=1}^{d} p_{t}^{i} e^{-z_{t}^{i}}\right)$$
 (2)

- In this setting $z_t^i \in (-\infty, \infty]$, $\mathcal{Z} = (-\infty, \infty]^d$.
- If $p_t = e_i$, then $I_m(p_t, z_t) = z_t^i$.

For mix loss the expert regret simplifies:

$$R_n^E = \sum_{t=1}^n I_m(p_t, z_t) - \min_i \sum_{t=1}^n I(e_i, z_t)$$

$$R_n^E = \sum_{t=1}^n I_m(p_t, z_t) - \min_i \sum_{t=1}^n z_t^i$$

Example: what can go wrong? (mix loss)

t = 1 we choose $p_1 = (\frac{1}{2}, \frac{1}{2})$.

t = 1 adversary chooses $z_1 = (0, 1)$.

t = 1 we get loss $I_m(p_1, z_1) = 0.38$.

t = 2 we choose $p_2 = (1,0)$ since e_1 performed pretty good.

t = 2 adversary turn, $z_2 = (\infty, 0)$.

t=2 we get loss $I_m(p_2,z_2)=z_2^1=\infty \to R_n^E=\infty!$

11 / 16

TUDelt

10 / 16

Mix Loss: Aggregating Algorithm (AA)

- How to guarantee small regret against any adversary?
 - Answer: 'spread our chances' / be conservative.
- Define cumulative loss of expert *i* up to time *t*:

$$L_t^i = \sum_{s=1}^t z_s^i \tag{3}$$

AA strategy:

$$p_t^i = \frac{e^{-L_{t-1}^i}}{C_{t-1}} \tag{4}$$

13 / 16

where $C_{t-1} = \sum_{j=1}^d e^{-L^j_{t-1}}$ ensures $\sum_i p^i_t = 1$ (normalization).

• In first round, $p_t^i = 1/d$ for all experts i, since $L_0^i = 0$ for all i. Note $C_0 = d$.

Aggregating Algorithm: Theoretical Guarantee

Theorem (AA, mix loss)

For any adversary, for any n>0, if I is the mix loss I_m , we have for AA that

$$R_n^E \le ln(d) \tag{5}$$

Proof: see lecture.

Note that the expert regret does not grow at all if n increases!

TUDelft 14 / 16

Dot Loss: Exp Strategy

Dot loss:

$$I_d(p_t, z_t) = p_t^T z_t (6)$$

- For the dot loss we have to assume $z_t^i \in [0,1]$, $\mathcal{Z} = [0,1]^d$.
- Exp Strategy for dot loss. Very similar to AA
- We require as input a learning rate $\eta \in (0, \infty)$.
- Strategy:

$$p_t^i = \frac{e^{-\eta L_{t-1}^i}}{\sum_{j=1}^d e^{-\eta L_{t-1}^j}} \tag{7}$$

Exp Strategy: Theoretical Guarantee (Dot Loss)

Theorem (Exp Strategy, Dot Loss)

For any adversary, for any n > 0, if I is the dot loss I_d , we have for the Exp Strategy that

$$R_n^E \le n\frac{\eta}{8} + \frac{\ln(d)}{\eta} \tag{8}$$

Proof: Chapter (2.2) in ¹.

If we set $\eta = \sqrt{\frac{8\log(d)}{n}}$ then

$$R_n^E \le \sqrt{\frac{n}{2} \log(d)} \tag{9}$$

and then R_n^E does not grow linearly in n!

15 / 16

¹S. Bubeck (2011). "Introduction to online optimization". In: Lecture Notes, pp. 1–86