

王让定 朱 莹 主 编石守东 钱江波 副主编

清华大学出版社

48学时(3学分)

学时安排

周芳: ustbzhou@126.com

信息楼1203B

课程中心: cc.ustb.edu.cn

——课件和作业发布

雨课堂:课程通知,在线授课,小测验,

考勤等

推荐教材

✓ 汇编语言与接口技术

—— 王让定,朱莹 清华大学出版社

✓ 微型计算机技术及其应用(没有规)

——戴梅萼 清华大学出版社

学习本课程目的

- 1. 进一步理解计算机五个组成部分之间的关系,理解主机和输入输出设备之间的通信原理,掌握基本输入输出接口芯片的工作原理;
- 2. 掌握汇编程序设计语言;
- 3. 掌握微机接口芯片的设计原理和接口程序编程;

和计算机组成原理的关系

- > 具体化计算机组成结构
 - · 具体的CPU芯片、存储器芯片、接口芯片
- > 连接各组成部件成整机
 - 芯片间信号配合, 机器各部件正确理解

- > 接近机器语言的编程语言让机器工作
 - 汇编语言

学好这门课程的几点建议

- □ 专业基础必修课,学习掌握单片机、DSP、PLC等控制芯片基础;学习掌握系统程序编写的基础
- □ 抓住教学过程中的3个环节
 - □上课:主动参与、发现、探究
 - □作业:独立完成
- □ 收获与时间成正比

考核要求

闭/开卷考试

成绩组成:

- ▶ 卷面成绩 (70%)
- ▶ 平时成绩(30%)
 平时成绩包括:作业、报告、小测验、出勤

相关的专业术语

- 1. 位(Bit) [],
- 2. 字节 (Byte)
- 3. 字长和字 (Word)
- 4. 位编号
- 5. 指令、指令系统和程序
- 6. 寄存器
- 7. 译码器

3. 字和字长

机器字长是微处理器一次处理的位数,是衡量CPU工作性能的一个重要参数。不同类型的CPU有不同的字长。

如: Intel 4004 是 4 位 8080 是 8 位

8088/8086/80286 是 16 位

80386/80486、Pentium 是 32 位

一个双字定为32位,

1 DWord = 2 Word= 4 Byte

位 1或0

1位

字节 1100 0011

8位

字 1100 0011 0011 1100 高字节 低字节

16位

双字 1100 0011 0011 1100 1100 0011 0011 1100 32位 高字 低字

4. 位编号

为便于描述,对字节,字和双字中的各位进行编号。 从低位开始,从右到左依次为 0、1、2...

双字的编号依此类推,为31~0

5. 指令、指令系统、程序

- 一个CPU能执行什么操作,是工程人员设计和制造好的,是固定的,用户不能改变。
 - •指令: CPU能执行的一个基本操作。 如: 取数、加、减、乘、除、存数等
 - •指令系统: CPU所能执行的全部操作。 不同的CPU, 其指令系统不同。
 - 程序:用户为解决的问题,编写的指令序列; 构成程序的指令在存储器中一般都是顺序存放; 要破坏这种顺序性,必须由转移指令操作。

6. 寄存器

- ●寄存器是用来存放数据和指令的一种基本逻辑部件
- 根据存放信息表示的含义不同, 有指令寄存器、数据寄存器、地址寄存器等。

寄存器的逻辑表示:

寄存器的电路组成:

7. 译码器

译码器是将输入代码转换成相应输出信号的逻辑电路。

如: 2-4译码器, 3-8译码器

指令是CPU能执行的一个基本操作; CPU的设计者对CPU的所有指令进行编码; 用户用编码形式的指令进行编程,程序存放在内存中; CPU从内存取来编码形式的指令; 对指令进行译码,发出执行该指令功能所需的信号。

1 微型计算机

以微处理器(CPU)为中心,加上只读存储器(ROM)、读写存储器(RAM),以及输入/输出(I/O)接口电路和系统总线(BUS)接口所组成的计算机称微型计算机。

微型计算机特点:

- 体积小,重量轻
- 价格低廉
- 可靠性高,结构灵活
- 应用面广

2 微处理器发展过程

intel

pentium®

EXTREME EDITION

2 微处理器发展过程

第一代——4位或低档8位微处理器(4004、8008) 第二代——中高档8位微处理器(8080、Z80、MC6800、8085) 第三代——16位微处理器(8086、8088、Z8000、MC6800、80286)

第四代——32位高档微处理器(80386、80486)

第五代——64位高档微处理器(Pentium 、 Power PC)

多核微处理器——

型号	Intel 酷睿i7 4770K(盒)	Intel 酷睿i7 4960X	Intel 酷睿i7 3960X 至尊 版(盒)	Intel 酷睿i7 3770K(盒)	Intel 酷睿i7 3930K(盒)	Intel 酷睿i7 4770
价格/商家	¥ 2100 2014-09-05 219商家在售	¥ 7699 2014-09-05 176商家在售	¥ 6850 2014-09-05 196商家在售	¥ 1920 2014-09-05 208商家在售	¥3650 2014-08-29 192商家在售	¥ 1940 2014-09-05 218商家在售
CPU頻	车					
CPU主	频 3.5GHz	3.6GHz	3.3GHz	3.5GHz	3.2GHz	3.4GHz
最大智	频 3.9GHz	4GHz	3.9GHz	3.9GHz	3.8GHz	
外频	100MHz					
倍频	39倍		36倍	=T-Fèlique		
不锁频 CPU 插				可不锁频	可不锁频	
插槽类		LGA 2011	LGA 2011	LGA 1155	LGA 2011	LGA 1150
针脚数			2011pin	1155pin		
CPU内核	\					
核心代号	Haswell	Ivy Bridge-E	Sandy Bridge-E	Ivy Bridge	Sandy Bridge-E	Haswell
CPU架构] Haswell		Sandy Bridge			
核心数量	四核心	六核心	六核心	四核心	六核心	四核心
线程数	八线程	十二线程	十二线程	八线程	十二线程	八线程
制作工艺	22纳米	22纳米	32纳米	22纳米	32纳米	22纳米
热设计功耗(7	TDP) 84W	130	130W	77W	130W	84W
CPU缓存	Ŧ					
二级缓有	4×256KB		6*256KB			
三级缓存	z 8MB	15MB	15MB	8MB	12MB	8MB
技术参数	t					
指令集	SSE 4.1/4.2, AVX 2.0		MMX, SSE (1, 2, 3, 4.1, 4.2), EM64T, VT AES, AVX		SSE4.2, AVX	+
内存控制	器 双通道DDR3 1333/1600	四通道 DDR3 1866	DDR3-1066/1333/160	00 双通道DDR3 1600/133	DDR3-1600	我关注的 DDR3 1333/1600
支持最大内	1存 32GB		64GB	32GB	64GB	意见反馈
超线程技	术 支持	支持	支持	支持	支持	^
虚拟化技	术 Intel VT	Intel VT	Intel VT	Intel VT	Intel VT	返回顶部
64位处理	器	是	是	是	是	是
						>

Intel 公司CPU芯片发展历程

推出年代	CPU 芯片	寄存器位数	数据线宽度	地址线宽度	最大主频 MHz
1971.11	4004	4	4		0.1
1972.4	8008	8	8	14	0.2
1974.4	8080	8	8	16	2
1978.6	8086	16	16	20	10
1979.6	8088	16	8	20	8
1982.2	80286	16	16	24	16
1985.10	80386	32	32	32	33
1989.4	80486	32	32	32	66
1993.3	Pentium	32	64	32	100
1995.11	Pentium Pro	32	64	32	200
1997.5	Pentium II	32	64	36	450
1999.2	Pentium III	32	64	36	1000

3 微型机发展概况

第一代(1971年----1973年)

特点: 1 采用PMOS工艺,速度较低。

- 2 字长4—8位。
- 3 引出脚一般为16—24根。
- 4 基本指令执行时间在4---10us以上。

第二代(1973年----1979年)

特点: 1 采用NMOS工艺。

- 2 字长8位。
- 3 引出脚一般为40—42根。
- 4 基本指令执行时间在2us左右。
- 5 具有多种寻地址、多级中断、DMA功能。
- 6 软件丰富、配有高级语言。

第三代(1978年----80年代初)

- 特点: 1 采用HMOS工艺。
 - 2 字长16位。
 - 3 引出脚一般达132根。
 - 4 基本指令执行时间达lus以下。
 - 5 巨大的寻址能力(达千兆字节)、多通用寄存器结构。

第四代(80年代初----至今)

- 特点: 1 采用CMOS工艺。
 - 2 字长32位--64位。
 - 3 基本指令执行时间达0.1us以下。
 - 4 引入RISC技术。

4 微型计算机系统

微型计算机的基础上加上系统软件和各种外部设备。

系统软件主要包括:操作系统、诊断程序、编译程序等。

5 微型计算机的基本结构

微型机的基本结构

五大部件

%炎8位 微处理器结构示意图

6 微机工作过程

程序在计算机里面是以指令的形式存储的,指令是计算机可以识别的命令,是一系列的二进制代码。

程序存储:将编写好的程序放入计算机的内存,程序中的每条指令是按顺序存放的。

程序控制:控制器从存储器中一条一条地取出指令、分析指令、根据不同的指令向各部件发出完成该指令的控制信号。

以8位微机为例进行说明

任务:

将整数10和20相加,将结果放入内存地址为30H的单元中。

分析:

在计算机中,两个数不能直接相加,首先应将一个整数10放入累加器AL中,再使AL与另一个整数20相加,结果就在AL中,然后将AL中的内容放到指定的内存单元中。

程序存储:

地址	内容		汇编语言		
20H	01110100	~ 将一个数10放入	MOV AL, 10		
21H	00001010	AL中	MOV AL, 10		
22H	00110100	AL中的数加上	ADD AL, 20		
23H	00010100	20	THE THE		
24H	01010011	将AL中的数放入30H	MOV [30H], AL		
25H	00110000	单元			
26H	01000011	停止操作	шт		
		运行后的结果	HLT		
30H	00011110				

上述过程只是完成了CPU和存储器之间的操作,如要进行输入/输出操作,则还要涉及到CPU和输入输出设备、输入输出接口之间的通信过程。

以键盘输入为例:

-输入设备:键盘

7 计算机的总线技术

总线是多个部件间的公共连线,用于在各个部件之间传输信息。通常分为:内总线和系统总线

- 系统总线
 - > 数据总线
 - > 地址总线
 - > 控制总线

微型机的基本结构

计算机系统的四层总线结构

微机系统中的局部总线(插板级总线)

微机系统中的外总线(通信总线)

"10"号位置是指以太网线接口,也称之为"RJ-45接口"。这要主板集成了网卡才会提供的,它是用于网络连接的双绞网线与主板中集成的网卡进行连接

"4": PS/2接口, 其鼠标的接口为绿色、键盘的接口为紫色, 另外也可以从PS/2接口的相对位置来判断: 靠近主板的是键盘接口, 其上方的是鼠标接口

"7"号和"9"号位置都是USB接口。它是一种串行接口,目前最新的标准是3.2版。目前基本所有外设都可以这种设备接口,如Modem、打印机、扫描仪、数码相机等。

"8":IEEE 1394接口,串行标准。即插即用、热拨插。如数码相机、高档扫描仪等

"6": RS-232接口, 串行接口DB-9

"5": 并行接口,如GPIB接口

"11": 音频接口

总线的性能指标

1) 宽度

指总线一次同时传送的数据位数,即常说的32位、64位等。

2) 频率

总线工作时每秒钟能传输数据的次数。总线频率越高,传输的速度越快。

3) 传输率(带宽)

传输率指总线工作时每秒钟可传送的数据量,用MB/s表示。

$$Q = W \times F / N$$

传输速率=总线宽度×总线频率/8

总线宽度越宽, 总线频率越高, 则总线传输速率越快

例:总线频率为33.3MHz,总线宽度32位,则:

传输速率=32b/8×33.3 MHz =133.2MB/s

总线性能比较

