

Escola Politécnica da Universidade de São Paulo

Departamento de Engenharia de Computação e Sistemas Digitais

PCS 3635 – Laboratório Digital 1

Turma 2 - Professor Edson Toshimi Midorikawa

Bancada A3

Experiência 2

Um fluxo de dados simples

Nome Completo
Igor Pontes Tresolavy
Thiago Antici de Souza Rodrigues

n°USP 12553646 12551412

Introdução

Esta experiência consiste no primeiro contato com FPGAs e ferramentas de simulação e síntese de descrições de hardware em VHDL da disciplina de Laboratório Digital I.

Partindo dos circuitos integrados vistos na primeira experiência e de descrições em VHDL de seus funcionamentos, um fluxo de dados é confeccionado (também em VHDL), simulado (através do uso do ModelSim/QuestaSim, para fim de testes) e sintetizado em FPGA (utilizando o Quartus).

Descrição do Projeto

1.1.1. Componente contador_163

Estudando o código-fonte do componente contador_163.vhd, concluiu-se que seu funcionamento é idêntico ao do circuito integrado 74ALS163 (ou seu equivalente CMOS, 74HC163), visto na primeira experiência dessa disciplina.

Em seguida, executou-se o testbench e notou-se que, no caso de teste 10, a saída esperada não condiz com a obtida em simulação. No entanto, a mesma inconsistência está presente na tabela 1 da apostila da experiência 2, o que indica erro na confecção da mesma. Caso se leve em consideração o sinal D=1011, a saída do caso 10 de teste, (e, por conseguinte, o caso 11, com Q=0001 e RCO=0) estão condizentes com o funcionamento correto do contador.

Teste	Descrição	Descrição Sinais de Entradas	
condições iniciais	Todas as entradas inativadas	CLR=1, LD=1, D=0000, ENP=0, ENT=0, CLOCK=0	Q=0000, RCO=0
1	Aciona clock 2x com entradas inativadas	CLR=1, LD=1, D=0000, ENP=0, ENT=0, acionar CLOCK 2 vezes	Q=0000, RCO=0
2	Aciona clock (somente) com clear ativado	CLR=0, LD=1, D=0000, ENP=0, ENT=0, acionar CLOCK	Q=0000, RCO=0
3	Aciona clock 5x com sinais de enable ativados	CLR=1, LD=1, D=0000, ENP=1, ENT=1, acionar CLOCK 5 vezes	Q=0101, RCO=0
4	Aciona clock com load ativado e dado=1011	CLR=1, LD=0, D=1011, ENP=0, ENT=0, acionar CLOCK	Q=1011, RCO=0
5	Aciona clock 4x com sinais de enable ativados	CLR=1, LD=1, D=0000, ENP=1, ENT=1, acionar CLOCK 4 vezes	Q=1111, RCO=1
6	Aciona clock 2x com enp=0 e ent=1	CLR=1, LD=1, D=0000, ENP=0, ENT=1, acionar CLOCK 2 vezes	Q=1111, RCO=1
7	Aciona clock 2x com enp=1 e ent=0	CLR=1, LD=1, D=0000, ENP=1, ENT=0, acionar CLOCK 2 vezes	Q=1111, RCO=0
8	Aciona clock 2x com sinais de enable ativados	CLR=1, LD=1, D=0000, ENP=1, ENT=1, acionar CLOCK 2 vezes	Q=0001, RCO=0
9	Aciona clock com clear e load ativados e dado=1001	CLR=0, LD=0, D=1001, ENP=1, ENT=1, acionar CLOCK	Q=0000, RCO=0
10	Aciona clock com load ativado e dado=1011	CLR=1, LD=0, D=1001, ENP=1, ENT=1, acionar CLOCK	Q=1001, RCO=0
11	Aciona clock 6x com sinais de enable ativados	CLR=1, LD=1, D=1001, ENP=1, ENT=1, acionar CLOCK 6 vezes	Q=1111, RCO=1

Tabela 1 da apostila - plano de testes para o componente "contador 163"

Forma de onda do testbench do componente contador_163

nota: foi necessário incluir um comando que utiliza o sinal "caso" (um *assert caso* = 0) em todos os *testbenchs* que possuíam esse sinal, para que fosse possível traçar sua forma de onda (caso contrário, o sinal não aparece na aba de *Objects* do QuestaSim).

1.1.2. Componente comparador_85

Analogamente ao caso do componente anterior, a descrição VHDL do componente comparador_85 se comporta identicamente ao comparador 7485, cujo circuito integrado também foi utilizado na primeira experiência da disciplina.

Teste	Sinais de Entradas	Saídas esperadas
condições iniciais	A>Bin=0, A=Bin=1, A <bin=0, a="0000," b="0000</td"><td>A>Bout=0, A=Bin=1, A<bout=0< td=""></bout=0<></td></bin=0,>	A>Bout=0, A=Bin=1, A <bout=0< td=""></bout=0<>
1	A>Bin=0, A=Bin=1, A <bin=0, a="0110," b="0110</td"><td>A>Bout=0, A=Bin=1, A<bout=0< td=""></bout=0<></td></bin=0,>	A>Bout=0, A=Bin=1, A <bout=0< td=""></bout=0<>
2	A>Bin=1, A=Bin=0, A <bin=0, a="0110," b="0110</td"><td>A>Bout=1, A=Bin=0, A<bout=0< td=""></bout=0<></td></bin=0,>	A>Bout=1, A=Bin=0, A <bout=0< td=""></bout=0<>
3	A>Bin=0, A=Bin=0, A <bin=1, a="0110," b="0110</td"><td>A>Bout=0, A=Bin=0, A<bout=1< td=""></bout=1<></td></bin=1,>	A>Bout=0, A=Bin=0, A <bout=1< td=""></bout=1<>
4	A>Bin=0, A=Bin=1, A <bin=0, a="0001," b="0000</td"><td>A>Bout=?, A=Bin=?, A<bout=?< td=""></bout=?<></td></bin=0,>	A>Bout=?, A=Bin=?, A <bout=?< td=""></bout=?<>
5	A>Bin=1, A=Bin=0, A <bin=0, a="0001," b="0000</td"><td>A>Bout=?, A=Bin=?, A<bout=?< td=""></bout=?<></td></bin=0,>	A>Bout=?, A=Bin=?, A <bout=?< td=""></bout=?<>
6	A>Bin=0, A=Bin=0, A <bin=1, a="0001," b="0000</td"><td>A>Bout=?, A=Bin=?, A<bout=?< td=""></bout=?<></td></bin=1,>	A>Bout=?, A=Bin=?, A <bout=?< td=""></bout=?<>
7	A>Bin=0, A=Bin=1, A <bin=0, a="0011," b="1100</td"><td>A>Bout=?, A=Bin=?, A<bout=?< td=""></bout=?<></td></bin=0,>	A>Bout=?, A=Bin=?, A <bout=?< td=""></bout=?<>
8	A>Bin=1, A=Bin=0, A <bin=0, a="0011," b="1100</td"><td>A>Bout=?, A=Bin=?, A<bout=?< td=""></bout=?<></td></bin=0,>	A>Bout=?, A=Bin=?, A <bout=?< td=""></bout=?<>
9	A>Bin=0, A=Bin=1, A <bin=0, a="0011," b="1100</td"><td>A>Bout=?, A=Bin=?, A<bout=?< td=""></bout=?<></td></bin=0,>	A>Bout=?, A=Bin=?, A <bout=?< td=""></bout=?<>

Tabela 2 da apostila - plano de testes para o componente "comparador 85"

Utilizando o testbench dado, completou-se a tabela 2 da apostila da seguinte maneira:

Teste	Entradas	Saídas
4	A>Bin=0, A=Bin=1, A <bin=0, a="0001,<br">B=0000</bin=0,>	A>Bout=1, A=Bout=0, A <bout=0< td=""></bout=0<>
5	A>Bin=1, A=Bin=0, A <bin=0, a="0001,<br">B=0000</bin=0,>	A>Bout=1, A=Bout=0, A <bout=0< td=""></bout=0<>

6	A>Bin=0, A=Bin=0, A <bin=1, a="0001,<br">B=0000</bin=1,>	A>Bout=1, A=Bout=0, A <bout=0< th=""></bout=0<>
7	A>Bin=0, A=Bin=1, A <bin=0, a="0011,<br">B=1100</bin=0,>	A>Bout=0, A=Bout=0, A <bout=1< td=""></bout=1<>
8	A>Bin=1, A=Bin=0, A <bin=0, a="0011,<br">B=1100</bin=0,>	A>Bout=0, A=Bout=0, A <bout=1< td=""></bout=1<>
9	A>Bin=0, A=Bin=1, A <bin=0, a="0011,<br">B=1100</bin=0,>	A>Bout=0, A=Bout=0, A <bout=1< td=""></bout=1<>

Forma de onda do testbench do componente comparador_85

1.1.3. Componente ram_16x4

Teste	Descrição	ição Sinais de Entradas	
condições iniciais	Entradas inativadas com memoria selecionada clk=0, endereco=0000, dado_entrada=0000, we=1, ce:		dado_saida=0001
1	Leitura de todas as posições da memória	eitura de todas as posições da memória endereco varia de 0000 até 1111	
2	Escrita do dado 1111 na posição 10 da memoria	dado=1111, endereco=1010, we=0, clk=↑	dado_saida=1111
3	Escrita do dado 1111 na posição 4 da memoria	dado=1111, endereco=0100, we=0, clk=↑	?
4	Leitura de todas as posições da memória	endereco varia de 0000 até 1111	?

Tabela 3 da apostila - plano de testes do componente "ram_16x4"

A partir do código-fonte do componente, concluiu-se que o mesmo se trata de uma memória ram com 4 bits de endereçamento e dados de 4 bits. Além disso, a memória possui os sinais de controle equivalentes a um "clock enable" e um "write enable", ambos ativos baixos, que controlam a escrita de dados na memória (para uma operação de escrita, ambos devem estar em nível lógico 0 na borda de subida do clock).

Completou-se a tabela 3 da apostila da seguinte maneira:

Teste	Entradas	Saídas
3	dado=1111, endereco=0100, we=0, clk=↑	dado_saida=1111
4	endereco varia de 0000 até 1111	dado_saida conforme MIF, exceto pelos endereços 4 e 10, cujos valores condizem com o que foi escrito nos casos de teste anteriores (dado=1111)

Forma de onda do testbench do componente ram_16x4

1.2. Atividade 2 - Projeto e Simulação de um Fluxo de Dados

Primeiramente, completou-se o código VHDL fornecido da maneira especificada abaixo:

Componente ram_16x4:

```
component ram_16x4 is

port (

std_logic;

endereco : in std_logic_vector(3 downto 0);

dado_entrada : in std_logic_vector(3 downto 0);

we : in std_logic;

ce : in std_logic;

dado_saida : out std_logic_vector(3 downto 0)

end component;
```

 Interligação das portas de entrada do comparador com a saída da memória e os sinais das chaves:

 Interligação entre as portas de entrada e saída da memória, e as entradas do comparador e saídas do contador:

• Finalmente, para os sinais de debug:

```
140 db_contagem <= s_endereco;
141 db_memoria <= s_dado;</pre>
```

• Plano de testes:

#	Operação	Sinais de controle	Resultado esperado	Resultado observado
c.i.	Condições iniciais	clock=0 enable=0 reset=0 escreve=0 chaves=0000	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	
1	Zerar contador e observar a saída da memória	reset=1 clock↑	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	
2	Ajustar chaves para 0001	chaves=0001	igual=1 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	
3	Ajustar chaves para 1111	<completar></completar>	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	
4	Incrementar endereço para 2 e ajustar chaves para 0100	<completar></completar>	igual=1 - fim=0 db_contagem=0010 (2) db_memoria=0100 (4)	
5	Ajustar chaves para 1010 e acionar sinal "escreve" (escrita do dado 1010 no endereço 2 da memória)	<completar></completar>	igual=1 - fim=0 db_contagem=0010 (2) db_memoria=1010 (A)	
6	Zerar contador e ajustar chaves para 1111	<completar></completar>	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	
7	Incrementar endereço para 2 (verificar dado gravado)	<completar></completar>	igual=0 - fim=0 db_contagem=0010 (2) db_memoria=1010 (4)	
8	Incrementar endereço até F	<completar></completar>	igual=0 - fim=1 db_contagem=1111 (F) db_memoria=0100 (4)	
9	Ajustar chaves para 0100	<completar></completar>	igual=1 - fim=1 db_contagem=1111 (F) db_memoria=0100 (4)	

Tabela 4 da apostila - plano de testes para o circuito digital da atividade 2

Para verificar-se se o circuito integrado seguia as nossas especificações, completou-se o plano de testes da tabela 4 da apostila, como mostra a tabela a seguir:

#	Operação	Sinais de controle	Resultado esperado	Resultado observado
c.i	Condições iniciais	clock=0 enable=0 reset=0 escreve=0 chaves=0000	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)
1	Zerar contador e observar a saída da memória	reset=1 clock ↑	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)
2	Ajustar chaves para 0001	chaves=0001	igual=1 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	igual=1 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)
3	Ajustar chaves para 1111	chaves=1111	igual=0 - fim=0 db_contagem=0000 (0)	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)

			db_memoria=0001 (1)	
4	Incrementar endereço para 2 e ajustar chaves para 0100	chaves=0100 enable=1 2 x clock ↑ enable=0	igual=1 - fim=0 db_contagem=0010 (2) db_memoria=0100 (4)	igual=1 - fim=0 db_contagem=0010 (2) db_memoria=0100 (4)
5	Ajustar chaves para 1010 e acionar sinal "escreve" (escrita do dado 1010 no endereço 2 da memória)	chaves=1010 escreve=1 clock ↑ escreve=0	igual=1 - fim=0 db_contagem=0010 (2) db_memoria=1010 (A)	igual=1 - fim=0 db_contagem=0010 (2) db_memoria=1010 (A)
6	Zerar contador e ajustar chaves para 1111	chaves=1111 reset=1 clock ↑ reset=0	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)	igual=0 - fim=0 db_contagem=0000 (0) db_memoria=0001 (1)
7	Incrementar endereço para 2 (verificar dado gravado)	enable=1 2 x clock ↑ enable=0	igual=0 - fim=0 db_contagem=0010 (2) db_memoria=1010 (A)	igual=0 - fim=0 db_contagem=0010 (2) db_memoria=1010 (A)
8	Incrementar endereço até F	enable =1 13 x clock ↑	igual=0 - fim=1 db_contagem=1111 (F) db_memoria=0100 (4)	igual=0 - fim=1 db_contagem=1111 (F) db_memoria=0100 (4)
9	Ajustar chaves para 0100	chaves=0100	igual=1 - fim=1 db_contagem=1111 (F) db_memoria=0100 (4)	igual=1 - fim=1 db_contagem=1111 (F) db_memoria=0100 (4)

Como exposto acima, todos os resultados observados condizem com os esperados.

Abaixo, segue a forma de onda resultante da execução do plano de testes acima. Conclui-se que a codificação foi feita de maneira correta, pois a forma de onda segue os resultados esperados.

Forma de onda do *testbench* do circuito_exp2_ativ_2

1.3. Atividade 3 - Síntese e Teste do Circuito na Placa FPGA

Após isso, com base em tutoriais encontrados no moodle da disciplina, procedeu-se com a criação de um projeto no Quartus e a compilação parcial (*Analysis & Synthesis*) do código fonte para a FPGA DE0-CV. Por conseguinte, realizou-se o planejamento dos pinos com o *Pin Planner*.

Sinal	Pino na Placa DE0-CV	Pino na FPGA
CLOCK	botão KEY0	PIN_U7
ZERA	botão KEY1	PIN_W9
CONTA	chave SW0	PIN_U13
CHAVE(0)	chave SW1	PIN_V13
CHAVE(1)	chave SW2	PIN_T13
CHAVE(2)	chave SW3	PIN_T12
CHAVE(3)	chave SW4	PIN_AA15
ESCREVE	chave SW5	PIN_AB15
DB_CONTAGEM(0)	Led LEDR0	PIN_AA2
DB_CONTAGEM(1)	Led LEDR1	PIN_AA1
DB_CONTAGEM(2)	Led LEDR2	PIN_W2
DB_CONTAGEM(3)	Led LEDR3	PIN_Y3
FIM	Led LEDR4	PIN_N2
DB_MEMORIA(0)	Led LEDR5	PIN_N1
DB_MEMORIA(1)	Led LEDR6	PIN_U2
DB_MEMORIA(2)	Led LEDR7	PIN_U1
DB_MEMORIA(3)	Led LEDR8	PIN_L2
IGUAL	Led LEDR9	PIN_L1

Tabela 5 da apostila - designação de pinos da FPGA DE-CV para o circuito digital da atividade 3

Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	Reserved	Current Strength	Slew Rate
chaves[3]	Input	PIN AA15	4A	B4A NO	2.5 V (default)		12mA (default)	
_ chaves[2]	Input	PIN_T12	4A	B4A_N0	2.5 V (default)		12mA (default)	
_ chaves[1]	Input	PIN_T13	4A	B4A_N0	2.5 V (default)		12mA (default)	
_ chaves[0]	Input	PIN_V13	4A	B4A_N0	2.5 V (default)		12mA (default)	
clock	Input	PIN_U7	3A	B3A_N0	2.5 V (default)		12mA (default)	
_ conta	Input	PIN_U13	4A	B4A_N0	2.5 V (default)		12mA (default)	
db_contagem[3]	Output	PIN_Y3	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
db_contagem[2]	Output	PIN_W2	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
db_contagem[1]	Output	PIN_AA1	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
db_contagem[0]	Output	PIN_AA2	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
db_memoria[3]	Output	PIN_L2	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
db_memoria[2]	Output	PIN_U1	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
db_memoria[1]	Output	PIN_U2	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
db_memoria[0]	Output	PIN N1	2A	B2A NO	2.5 V (default)		12mA (default)	1 (default)
escreve	Input	PIN_AB15	4A	B4A_N0	2.5 V (default)		12mA (default)	
ut fim	Output	PIN_N2	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
igual igual	Output	PIN_L1	2A	B2A_N0	2.5 V (default)		12mA (default)	1 (default)
_ zera	Input	PIN W9	3A	B3A NO	2.5 V (default)		12mA (default)	

Ligação dos sinais da descrição nos pinos da FPGA

Visão Register Transfer Level

Finalmente, compilou-se por completo o projeto e gerou-se o arquivo .gar.

Planejamento da Aula Prática

Na aula prática, planeja-se programar a FPGA disponibilizada no laboratório com a síntese do projeto e executar o plano de testes descrito na tabela 4 da apostila, exposta na seção anterior. Todo o experimento será documentado na forma de um relatório e entregue ao fim da aula, junto ao arquivo .qar gerado na etapa anterior. Caso haja tempo, pretende-se realizar, também, o desafio proposto na apostila.