

Informe Curva de Rotación

Profesor: Leonardo Bronfman Auxiliar: Danilo Sepúlveda

Tarea 2 - Primavera 2025

1 Introducción (1 puntos)

Elaborar una introducción que permita contextualizar los cálculos a realizar. Referirse a conceptos importantes como el plano galáctico, coordenadas galácticas, V_{LSR} y Velocidad terminal. Se espera que la Introducción siga un desarrollo coherente y armónico.

2 Curva de rotación (1.5 puntos)

- a) (0.3 pto) Marco Teórico.
- b) (0.2 pto) Detalle del algoritmo.
- c) (1 pto) Curva de rotación: V_{Rot} vs R y $\omega(R)$ vs R.

3 Corrugación del plano (1.5 puntos)

- a) (0.3 pto) Marco Teórico.
- b) (0.2 pto) Detalle del algoritmo.
- c) (1 pto) Corrugación del plano: Z(R) vs R.

4 Ajuste de modelo de masa (1.5 puntos)

- a) (0.3 pto) Marco Teórico.
- b) (0.2 pto) Detalle del algoritmo.
- c) (0.8 pto) Ajuste de los modelos a la curva de rotación (datos ajuste + gráfico).
- d) (0.2 pto) Determinar la masa gravitacional total al interior del círculo solar, $M(R_{\odot})$

Modelos a ajustar:

Masa puntual: $M = M_0$ Disco uniforme: $M = \pi r^2 S$

Esfera uniforme: $M = \frac{4}{3}\pi r^3 \rho$ Masa puntual + esfera uniforme: $M = M_0 + \frac{4}{3}\pi r^3 \rho$ Masa puntual + disco uniforme: $M = M_0 + \pi r^2 S$

Notar que M_0 corresponde a una masa puntual (unidades de masas solares M_\odot), ρ una densidad volumétrica de masa uniforme (unidades de $\frac{M_\odot}{kpc^3}$) y S una densidad superficial de masa uniforme (unidades de $\frac{M_{\odot}}{kpc^2}$).

5 Análisis y Conclusiones (0.5 puntos)

Resumir lo realizado y comentar los resultados obtenidos. Analizar los resultados y compararlos con lo esperado según la teoría/observaciones vistas en clase.

6 Anexos

Agregue como anexo los códigos que escriba. Estos no tienen puntaje asociado, pues son parte del procedimiento.