Семинар 6

Задачи Ш.–Л. для оператора Лапласа в полярных координатах

Пример 1 (в круге). Найти СЗ и СФ задачи Ш.–Л.:

$$\int_{0}^{\infty} \Delta u + \lambda u = 0, \ 0 \le r < a,$$
 однородное ГУ — одно из трёх:

$$1) u|_{r=a} = 0,$$

2)
$$\frac{\partial u}{\partial r}\Big|_{r=a} = 0$$
,

3)
$$\left. \left(\frac{\partial u}{\partial r} + hu \right) \right|_{r=a} = 0$$
, $h = \text{const} > 0$.

Мы знаем, что для таких ГУ все СЗ $\lambda \ge 0$, причём СЗ $\lambda = 0$

есть только у задачи Неймана.

Будем искать СФ в виде

$$u(r,\varphi) = R(r)\Phi(\varphi) \not\equiv 0.$$

Поскольку
$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2}$$
, то, подставив эту функцию в ДУ $\Delta u + \lambda u = 0$, полу-

чим:

$$\frac{1}{r}\frac{d}{dr}\big(rR'(r)\big)\Phi(\varphi) + \frac{R(r)}{r^2}\Phi''(\varphi) + \lambda R(r)\Phi(\varphi) = 0.$$

Разделим переменные:

$$\frac{r\frac{d}{dr}(rR'(r))}{R(r)} + \lambda r^2 = -\frac{\Phi''(\varphi)}{\Phi(\varphi)} = \nu.$$

Для функции $\Phi(\varphi)$ получаем задачу Ш.–Л.:

$$\Phi''(\varphi) + \nu \Phi(\varphi) = 0,$$

$$\Phi(\varphi + 2\pi) \equiv \Phi(\varphi).$$

Её СЗ и СФ:

$$v_n = n^2$$
,

$$\Phi_0(\varphi) = 1, \qquad \Phi_n(\varphi) = \cos n\varphi \,, n = 1, 2, ..., \qquad \Phi_{-n}(\varphi) = \sin n\varphi \,, n = 1, 2, ...$$

$$\Phi_{-n}(\varphi) = \sin n\varphi$$
, $n = 1, 2, ...$

Для функции R(r) получим ДУ:

$$r^{2}R''(r) + rR'(r) + (\lambda r^{2} - n^{2})R(r) = 0.$$

В этом уравнении без ограничения общности можно считать $n \ge 0$.

а) если $\lambda = 0$, то это уравнение Эйлера:

$$r^2R''(r) + rR'(r) - n^2R(r) = 0.$$

Его ОР:

$$R(r) = \begin{cases} A + B \ln r, & n = 0, \\ Ar^{n} + Br^{-n}, & n = 1, 2, \dots \end{cases}$$

В силу ограниченности решения при r=0, имеем B=0. Тогда, опуская произ-

вольный множитель
$$A$$
, получим: $R(r) = \begin{cases} 1, & n = 0, \\ r^n, & n = 1, 2, ... \end{cases}$

б) если $\lambda > 0$, то сделаем замену $\sqrt{\lambda}r = t \geq 0$, тогда

$$rR'(r) = r\frac{dR}{dr} = \sqrt{\lambda}r\frac{dR}{d(\sqrt{\lambda}r)} = t\frac{dR}{dt}$$

и, аналогично,

$$r^2R''(r) = t^2 \frac{d^2R}{dt^2}.$$

Теперь ДУ принимает вид:

$$t^{2}\frac{d^{2}R}{dt^{2}} + t\frac{dR}{dt} + (t^{2} - n^{2})R = 0.$$

Это уравнение называется *уравнением Бесселя n-го порядка*. Любое его решение называется *цилиндрической функцией n-го порядка*. ОР можно записать в виде: $R = AJ_n(t) + BN_n(t)$,

где $J_n(t)$ — функция Бесселя n-го порядка, $N_n(t)$ — функция Неймана n-го порядка.

Все цилиндрические функции — квазипериодические.

При $t \to +\infty$ у всех цилиндрических функций амплитуда убывает пропорционально $\frac{1}{\sqrt{t}}$, а период стремится к 2π .

При малых t:

$$J_n(t) \sim t^n, \quad n \ge 0, \quad t \to 0 + 0,$$

 $N_0(t) \sim \ln t, \quad t \to 0 + 0,$
 $N_n(t) \sim -\frac{1}{t^n}, \quad n > 0, \quad t \to 0 + 0.$

Из условия ограниченности решения при

r=0 имеем B=0. Тогда, опуская произвольный множитель A, получим:

$$R=J_n(t),$$

т.е.

$$R(r) = J_n(\sqrt{\lambda}r).$$

Теперь подставим функцию $u(r, \varphi) = R(r)\Phi(\varphi)$ в ГУ.

1) $u|_{r=a} = 0$.

Отсюда получим:

$$R(a)=0.$$

Поскольку для задачи Дирихле все СЗ $\lambda > 0$, то $R(r) = J_n(\sqrt{\lambda}r)$, и должно выполняться равенство

$$J_n(\sqrt{\lambda}a)=0.$$

Функция Бесселя $J_n(t)$ имеет счётное число положительных нулей $t_k^{(n)},\,k=1,2,...$ (см. рисунок): $J_n\left(t_k^{(n)}\right) = 0$. Им будут соответствовать СЗ $\lambda_k^{(n)}$: $\sqrt{\lambda_k^{(n)}a} = t_k^{(n)}$. Таким образом, функции R(r), удовлетворяющие условию Дирихле R(a) = 0, имеют вид: $R_{nk}(r) = J_n \left(\sqrt{\lambda_k^{(n)}} r \right)$

Тогда получаем систему СФ задачи Дирихле в круге:

$$u_{0k}(r,\varphi) = R_{0k}(r)\Phi_0(\varphi) = J_0\left(\sqrt{\lambda_k^{(0)}}r\right), \qquad k = 1,2,...;$$

$$u_{nk}(r,\varphi) = R_{nk}(r)\Phi_n(\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\cos n\varphi, \qquad n = 1,2,...; \quad k = 1,2,...;$$

$$u_{-nk}(r,\varphi) = R_{nk}(r)\Phi_{-n}(\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\sin n\varphi, \qquad n = 1,2,...; \quad k = 1,2,...;$$

Они образуют ортогональную систему в круге:

$$\int\limits_{0}^{a}r\,dr\int\limits_{0}^{2\pi}u_{n_{1}k_{1}}(r,\varphi)u_{n_{2}k_{2}}(r,\varphi)\,d\varphi=0\text{, если }(n_{1},k_{1})\neq(n_{2},k_{2}).$$

Можно показать, что эта система полна. Поэтому других СФ у задачи Ш.–Л. нет. В силу теоремы Стеклова любую достаточно гладкую функцию $f(r, \varphi)$ можно разложить в ряд Фурье по СФ задачи Ш.–Л. в круге:

$$f(r,\varphi) = \sum_{n=-\infty}^{\infty} \sum_{k=1}^{\infty} C_{nk} u_{nk}(r,\varphi),$$

где

$$C_{nk} = \frac{1}{\|u_{nk}\|^2} \int_{0}^{a} r \, dr \int_{0}^{2\pi} f(r, \varphi) u_{nk}(r, \varphi) \, d\varphi.$$

Вычислим $||u_{nk}||^2$:

$$||u_{nk}||^2 = \int_0^a r \, dr \int_0^{2\pi} u_{nk}^2(r, \varphi) \, d\varphi = \int_0^a r R_{nk}^2(r) \, dr \int_0^{2\pi} \Phi_n(\varphi) \, d\varphi = ||R_{nk}||^2 \cdot ||\Phi_n||^2.$$

Мы знаем, что $\|\Phi_n\|^2 = \pi(1+\delta_{n0})$. Вычислим $\|R_{n0}\|^2$

$$||R_{nk}||^2 = \int_0^a r J_n^2 \left(\sqrt{\lambda_k^{(n)}} r \right) dr.$$

Сделаем замену: $\sqrt{\lambda_k^{(n)}}r=t$. Тогда $\|R_{nk}\|^2=rac{1}{\lambda_k^{(n)}}\int\limits_0^{\sqrt{\lambda_k^{(n)}}a}tJ_n^2(t)\,dt.$

$$||R_{nk}||^2 = \frac{1}{\lambda_k^{(n)}} \int_0^{\sqrt{h_k}} t J_n^2(t) dt.$$

Если $Z_n(t)$ — произвольная цилиндрическая функция n-го порядка, то справедлива формула:

$$\int tZ_n^2(t) dt = \frac{t^2}{2} \left[Z_n'^2(t) + \left(1 - \frac{n^2}{t^2} \right) Z_n^2(t) \right] + \text{const.}$$

(Вывод формулы см. в БК или в конце семинара.) Используя эту формулу, получа-

$$||R_{nk}||^2 = \frac{a^2}{2} \left[J_n'^2 \left(\sqrt{\lambda_k^{(n)}} a \right) + \left(1 - \frac{n^2}{\lambda_k^{(n)} a^2} \right) J_n^2 \left(\sqrt{\lambda_k^{(n)}} a \right) \right]. \tag{1}$$

Для условия Дирихле $J_n\left(\sqrt{\lambda_k^{(n)}}a\right)=0$, откуда

$$||R_{nk}||_1^2 = \frac{a^2}{2} J_n'^2 \left(\sqrt{\lambda_k^{(n)}} a \right).$$
 (2)

(Индекс 1 здесь означает ГУ первого рода.)

Тогда

$$||u_{nk}||_1^2 = ||R_{nk}||_1^2 \cdot ||\Phi_n||^2 = \frac{a^2}{2} J_n'^2 \left(\sqrt{\lambda_k^{(n)}} a \right) \pi (1 + \delta_{n0}).$$

Ответ: $\lambda_k^{(n)}$ — k-й положительный корень уравнения $J_n(\sqrt{\lambda}a) = 0, k = 1, 2, ...;$

$$u_{0k}(r,\varphi) = J_0\left(\sqrt{\lambda_k^{(0)}}r\right),$$

$$u_{nk}(r,\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\cos n\varphi, \qquad n = 1, 2, ...,$$

$$u_{-nk}(r,\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\sin n\varphi, \qquad n = 1, 2, ...;$$

$$||u_{nk}||_1^2 = \frac{a^2}{2}J_n'^2\left(\sqrt{\lambda_k^{(n)}}a\right)\pi(1+\delta_{n0}).$$

$$2) \left. \frac{\partial u}{\partial r} \right|_{r=a} = 0.$$

Отсюда получим:

$$R'(a)=0.$$

a) $\lambda = 0$.

Тогда

$$R(r) = \begin{cases} 1, & n = 0, \\ r^n, & n = 1, 2, \dots \end{cases}$$

ГУ R'(a)=0 удовлетворяет только функция R(r)=1 при n=0.

Обозначим: $\lambda_0^{(0)}=0$ — C3, $u_{00}(r)=R_{00}(r)\Phi_0(\varphi)=1$ — С Φ . Очевидно, $||u_{00}||^2 = \pi a^2$.

б) $\lambda > 0$.

Тогда

$$R(r) = J_n(\sqrt{\lambda}r).$$

Подставив в ГУ R'(a) = 0, получим:

$$\sqrt{\lambda}J_n'(\sqrt{\lambda}a)=0.$$

Это уравнение имеет счётное число положительных корней (они соответствуют точкам локального экстремума функции $J_n(t)$, см. рисунок): $\lambda_k^{(n)}$, k=1,2,... Тогда

$$R_{nk}(r) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right).$$

Из формулы (1) с учётом условия $J_n'\left(\sqrt{\lambda_k^{(n)}}a\right)=0$ получим:

$$||R_{nk}||_2^2 = \frac{a^2}{2} \left(1 - \frac{n^2}{\lambda_k^{(n)} a^2} \right) J_n^2 \left(\sqrt{\lambda_k^{(n)}} a \right).$$
 (3)

Ответ: $\lambda_0^{(0)} = 0$; $\lambda_k^{(n)}$ — k-й положительный корень уравнения $J_n'(\sqrt{\lambda}a) = 0$, k = 1, 2, ...;

$$u_{00}(r,\varphi)=1,$$

$$u_{0k}(r,\varphi) = J_0\left(\sqrt{\lambda_k^{(0)}}r\right),\,$$

$$u_{nk}(r,\varphi) = R_{nk}(r)\Phi_n(\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\cos n\varphi, \qquad n = 1, 2, ...,$$

$$u_{-nk}(r,\varphi) = R_{nk}(r)\Phi_{-n}(\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\sin n\varphi$$
, $n = 1, 2, ...;$

$$||u_{nk}||_2^2 = \frac{a^2}{2} \left(1 - \frac{n^2}{\lambda_k^{(n)} a^2} \right) J_n^2 \left(\sqrt{\lambda_k^{(n)}} a \right) \pi (1 + \delta_{n0}), \qquad k = 1, 2, ...,$$

$$||u_{00}||^2 = \pi a^2$$
.

3)
$$\left. \left(\frac{\partial u}{\partial r} + hu \right) \right|_{r=a} = 0, \ h = \text{const} > 0.$$

В этом случае все C3 $\lambda > 0$, поэтому

$$R_{nk}(r) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right),\,$$

где $\lambda_k^{(n)}$ — k-й положительный корень уравнения $\sqrt{\lambda}J_n'(\sqrt{\lambda}a) + hJ_n(\sqrt{\lambda}a) = 0$, k=1,2,...

Из формулы (1) с учётом этого уравнения можно получить два различных выражения для квадрата нормы:

$$|||R_{nk}||_{3}^{2} = \frac{a^{2}}{2} \left(1 - \frac{a^{2}h^{2} - n^{2}}{\lambda_{k}^{(n)}a^{2}} \right) J_{n}^{2} \left(\sqrt{\lambda_{k}^{(n)}}a \right) = \frac{a^{2}}{2} \left(1 + \frac{\lambda_{k}^{(n)}a^{2} - n^{2}}{a^{2}h^{2}} \right) J_{n}^{\prime 2} \left(\sqrt{\lambda_{k}^{(n)}}a \right).$$
 (4)

Ответ: $\lambda_k^{(n)}$ — k-й положительный корень уравнения $\sqrt{\lambda}J_n'(\sqrt{\lambda}a) + hJ_n(\sqrt{\lambda}a) = 0$, k = 1, 2, ...;

$$u_{0k}(r,\varphi) = J_0\left(\sqrt{\lambda_k^{(0)}}r\right),\,$$

$$u_{nk}(r,\varphi) = R_{nk}(r)\Phi_n(\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\cos n\varphi, \qquad n = 0, 1, ...,$$

$$u_{-nk}(r,\varphi) = R_{nk}(r)\Phi_{-n}(\varphi) = J_n\left(\sqrt{\lambda_k^{(n)}}r\right)\sin n\varphi$$
, $n = 1, 2, ...;$

$$\begin{split} &\|u_{nk}\|_3^2 = \frac{a^2}{2} \left(1 - \frac{a^2 h^2 - n^2}{\lambda_k^{(n)} a^2}\right) J_n^2 \left(\sqrt{\lambda_k^{(n)}} a\right) \pi (1 + \delta_{n0}) = \\ &= \frac{a^2}{2} \left(1 + \frac{\lambda_k^{(n)} a^2 - n^2}{a^2 h^2}\right) J_n'^2 \left(\sqrt{\lambda_k^{(n)}} a\right) \pi (1 + \delta_{n0}). \end{split}$$

Пример 2 (в круговом секторе). Найти СЗ и СФ задачи Ш.–Л.:

$$\{\Delta u + \lambda u = 0, \ 0 < r < \alpha, \ 0 < \varphi < \alpha, \ 0$$
 однородные ГУ при $r = \alpha, \ \varphi = 0, \ \varphi = \alpha.$

$$u(r,\varphi) = R(r)\Phi(\varphi) \not\equiv 0$$

$$\alpha$$
 По-прежнему будем искать СФ в виде: $u(r,\varphi) = R(r)\Phi(\varphi) \not\equiv 0$. После разделения переменных $\frac{r}{dr}\frac{d}{dr}(rR'(r))}{R(r)} + \lambda r^2 = -\frac{\Phi''(\varphi)}{\Phi(\varphi)} = \mu$

получим задачу Ш.–Л. для функции $\Phi(\varphi)$:

$$(\Phi''(\varphi) + \mu\Phi(\varphi) = 0, \quad 0 < \varphi < \alpha,$$

 $\{$ однородные ГУ при $\, arphi = 0, \qquad arphi = lpha. \,$

Пусть $\nu_n \ge 0$ и $\Phi_n(\varphi)$ — СЗ и С Φ этой задачи. Тогда для функции R(r) получим ДУ: $r^2R''(r) + rR'(r) + (\lambda r^2 - \nu_n)R(r) = 0.$

Решения этого уравнения, ограниченные при r=0, имеют вид (опуская постоянный множитель)

- а) при $\lambda = 0$: $R(r) = r^{\sqrt{\nu_n}}$
- б) при $\lambda > 0$: $R(r) = J_{\sqrt{\nu_n}}(\sqrt{\lambda}r)$.

СЗ $\lambda_k^{(n)}$ находятся из однородного ГУ при r=a. Тогда СФ имеют вид:

$$u_{nk}(r,\varphi) = R_{nk}(r)\Phi_n(\varphi) = J_{\sqrt{\nu_n}}\left(\sqrt{\lambda_k^{(n)}}r\right)\Phi_n(\varphi), \qquad k = 1, 2, \dots$$

Кроме этих СФ, в задаче Неймана имеется ещё СФ $u_{00}(r,\varphi)=1$, соответствующая СЗ

Для вычисления $\|u_{nk}\|^2 = \|R_{nk}\|^2 \cdot \|\Phi_n\|^2$ следует использовать формулы (2), (3), (4), в которых n надо заменить на $\sqrt{\nu_n}$.

ДЗ 6. БК с. 62 № 3 (найти СЗ, СФ и $||u_{nk}||^2$).

Дополнительный материал

Вывод формулы

$$\int t Z_n^2(t) dt = \frac{t^2}{2} \left[Z_n'^2(t) + \left(1 - \frac{n^2}{t^2} \right) Z_n^2(t) \right] + \text{const}$$

для произвольной цилиндрической функции n-го порядка $Z_n(t)$.

Запишем уравнение Бесселя n-го порядка, которому удовлетворяет функция $Z_n(t)$:

$$t^{2}Z_{n}^{"}(t) + tZ_{n}^{'}(t) + (t^{2} - n^{2})Z_{n}(t) = 0.$$

Умножим его на $Z'_n(t)$ и проинтегрируем:

$$\int t^2 Z_n''(t) Z_n'(t) dt + \int t Z_n'^2(t) dt + \int (t^2 - n^2) Z_n(t) Z_n'(t) dt = \text{const.}$$

Применим формулу интегрирования по частям к первому и последнему интегралу:

Примения формулу интегрирования по частям к первому и последнему интегралу.
$$\int t^2 \underbrace{Z_n''(t)Z_n'(t)\,dt}_{d\left(\frac{Z_n'^2(t)}{2}\right)} + \int tZ_n'^2(t)\,dt + \int (t^2-n^2)\underbrace{Z_n(t)Z_n'(t)\,dt}_{d\left(\frac{Z_n^2(t)}{2}\right)} = \frac{t^2}{2}Z_n'^2(t) - \int tZ_n'^2(t)\,dt + \int tZ_n'^2(t)\,dt + \frac{(t^2-n^2)}{2}Z_n^2(t) - \int tZ_n^2(t)\,dt = \text{const.}$$
 Отсюда
$$\int tZ_n^2(t)\,dt = \frac{t^2}{2}\Big[Z_n'^2(t) + \left(1 - \frac{n^2}{t^2}\right)Z_n^2(t)\Big] + \text{const,}$$
 ч.т.д.