1 Danksagungen

Die erforderlichen Berechnungen wurden auf dem Linux-HPC-Cluster der Technischen Universität Dortmund (LiDO3) durchgeführt, in Teilen durch die Forschungsgroßgeräte-Initiative der Deutschen Forschungsgemeinschaft (DFG) unter der Projektnummer 271512359 gefördert.

2 Einleitung

- 2.1 Motivation und Problemstellung
- 2.2 Zielsetzung und Vorgehensweise
- 2.3 Übersicht

3 Grundlagen

(Die benutzten) Vortragsthemen vom Anfang hier als eigene Unterkapitel beschreiben.

4 Verwandte Arbeiten

Beschreiben warum andere Quellen nicht ausreichend waren und weshalb der eigene Ansatz jene fehlende Themen ergänzt.

5 Fachliches Vorgehen

Keine technischen Details (wie z.B. Implementierung)

5.1 Projektorganisation

Wie sind wir vorgegangen... auf alles bezogen. Wer hat an welchen Kapiteln mitgearbeitet.

5.1.1 Creature Animator

Die Gruppe der Creature Animator hat sich in zwei Untergruppen aufgeteilt. In der ersten Phase hat sich die erste Untegruppe damit beschäftigt, den ML-Agents Walker in eine neue Trainingsumgebung einzubauen und die Skripte dynamischer zu gestalten, damit diese in der zweiten Arbeitsphase verwendet und erweitert werden konnten. Währenddessen versuchte die andere Untergruppe den ML-Agents Walker das Schlagen beizubringen. Die beiden Untergruppen haben sich wöchentlich mittwochs getroffen, um von ihren Fortschritten und Problemen zu berichten. Dabei wurden die Ergebnisse in Protokollen festgehalten, welche in einem GitHub Wiki abgelegt wurden.

In der zweiten Phase, welche nach der Bereitstellung der ersten generierten Kreaturen von der Creature Generator Gruppe begann, veränderten sich die Aufgabenbereiche der beiden Untergruppen. Die "Schlagen"-Gruppe arbeitete seit dem an einer Erweiterung von Nero-RL, sodass Nero-RL anstelle von ML-Agents zum Trainieren der Kreaturen genutzt werden kann. Die Aufgabe der "Trainingsumgebung"-Gruppe war es den neuen Kreaturen das Fortbewegen beizubringen und der Creature Generator Gruppe Feedback zu den Kreaturen zu geben. Dabei arbeiteten die Gruppenmitglieder an verschiedenen kleineren Aufgaben. Jan beschäftigte sich mit dem Training und dem Finden und Ausprobieren neuer Rewardfunktionen, Nils arbeitete an der dynamischen Generierung von Arenen und dem Landen von Konfigurationeinstellungen aus Dateien und Carsten testete verschiedene Parameter aus und implementierte das Erstellen von NavMeshes zur Laufzeit. In der zweiten Phase lösten "On-Demand"-Treffen die regelmäßigen Treffen zwischen den beiden Untergruppen ab, um mehr Zeit zum Arbeiten an den Aufgaben zu haben. Zudem wurden anstelle der Treffen nur noch die wichtigsten Punkte protokolliert. Ansonsten wurden Probleme und Fehler direkt als Issue in den entsprechenden GitHub Repositories hinterlegt.

$\tt ,Training sumgebung/Movement "-Gruppe"$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Carsten Kellner	Jannik Stadtler
Jan Beier	Niklas Haldorn
Nils Dunker	

Tabelle 5.1: Die zwei Untergruppen und ihre Mitglieder

5.2 Creature Generation

5.3 Creature Animation

5.3.1 Trainingsumgebung

ML-Agent Walker -> Eigene Umgebung, gleicher Walker ->

- zu Statisch Umgebung -> Dynamischer gestalten/ Mehr feature
- Kreatur austauschen -> L-System ging nicht -> Jona/Markus Methode nutzen

LiDO3

Das RL-Training benötigt viele Rechenressourcen. Die ersten Trainingstests mit der ML-Agents-Walker-Umgebung haben gezeigt, dass eine Trainingsdauer von über einen Tag auf aktueller Hardware zu erwarten ist. Deswegen muss das Training auf einen Server laufen. Als besondere Anforderungen benötigen die Server eine Nvidia Grafikkarte, um mit CUDA¹ pytorch² zu beschleunigen.

Aufgrund der Einschränkungen stand nur LiDO3³, der HPC der TU Dortmund, da andere Rechenknoten wie z.B. Noctua 2⁴ von der Universität Paderborn Grafikarten nur für Forschungsprojekte mit bestimmter Reichweite zur Verfügung stellen. Der Zugang zu LiDO3 wurde durch unsere PG-Betreuer gestellt.

Konfiguration

Da die Trainingungebung auf den ML-Agent-Walker basiert, waren viele Konfiguration fest-codiert. Zuerst wurden diese über den Unity-Inspektor änderbar gemacht. Als mit dem aktiven Training auf LIDO begonnen wurde, stellte sich diese Methode als nicht flexible genug heraus. Die Trainingsumgebung musste für jede Änderung neu gebaut werden. Deshalb wurde ein neues System geschrieben, welches über Dateien die Konfiguration dynamisch lädt.

 $^{^{1}} https://developer.nvidia.com/cuda-zone$

 $^{^2 {}m https://pytorch.org/}$

 $^{^3}$ https://www.lido.tu-dortmund.de/cms/de/home/

⁴https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua2

5.3.2 Training

Generalisierung

- PPO
- ML-Agents
- Nero?

5.4 Terraingeneration

6 Technische Umsetzung

Bei der Erläuterung der Wahl der Hierarchie für Knochen nur deskriptiv darauf eingehen; keine Details oder Begründung erforderlich. Dies übernimmt die Creature-Generator Gruppe. Eingehen auf Status Quo.

6.1 Creature Animation

6.1.1 Trainingsumgebung

Im Folgenden soll der Aufbau der Trainingsumgebung beschrieben werden, welche es erlaubt verschiedenste Kreaturen ohne große Anpassungen zu trainieren. Die Umgebung ist dabei aus den folgenden Klassen aufgebaut:

- DynamicEnviormentGenerator
 - TerrainGenerator
 - Verschiedenen Konfigurationsdateien
 - DebugScript
- allen anderen modifizierten ML-Agents Skripten

In diesen Abschnitt wird nur auf den Aufbaue des DynamicEnviormentGenerator sowie dessen Hilfsklassen und nicht auf die ML-Agent-Skripte eingegangen. Die Hilfsklassen sind der TerrainGenerator, GenericConfig und dessen Implementierungen sowie das DebugScript. Erstere ist verantwortlich für die Generierung des Terrains, die ConfigDateien laden dynamisch die Einstellungen aus einer Datei und das letzte Skript beinhaltet hilfreiche Debug-Einstellungen. Die grundsätzliche Idee der Trainingsumgebung stammt von dem ML-Agents-Walker. Da an diesem keine Versuche mit Unterschiedlichen Umgebungen und Kreaturen durchgeführt wurden, ist der Aufbau des Projekts nicht dynamisch genug.

Dynamic Enviorment Generator

Zur dynamischen Umsetzung der Trainingsarena werden alle Objekte zur Laufzeit erstellt. Die Generierung der Arena läuft dann wie folgt ab:

- 1. Erstellen von n Arenen, wobei n eine zu setzende Variable ist.
- 2. Füge ein Ziel für die Kreatur in die Arena ein

3. Generiere die Kreatur

Die einzelnen (Teil)-Arenen bestehen aus einem Container-Objekt unter dem ein Terrain und vier Wall-Prefabs angeordnet sind. Diese Prefabs und weitere Elemente wie Texturen werden dynamisch aus einem Ressourcen-Ordner geladen, damit möglichst wenige zusätzliche Konfigurationen den Editor verkomplizieren. Das Terrain wird mit leeren Terraindaten vorinitialisiert und später befüllt. Hierbei kann die Position des Container-Objects in der Szenen wie folgt berechnet werden:

$$\begin{pmatrix} \lceil \frac{\text{Anzahl der Arenen}}{\sqrt{\text{Anzahl der Arenen}}} \rceil \\ 0 \\ \text{Anzahl der Arenen} & \text{mod } \sqrt{\text{Anzahl der Arenen}} \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 (6.1)

Alle anderen Objektpositionen müssen danach neu im lokalen Koordinatensystem gesetzt werden. Da die Unity-Standard-Texturen sehr hell sind sind, werden die Texturen bei der Initialisierung mit ML-Agents-Texturen, welche dunkler sind, getauscht. An das Terrain werden zuletzt Collider und ein TerrainGenerator-Skript angefügt.

In Schritt 2. der Arenagenerierung muss beachtet werden, dass nach dem Erstellen des Zielobjekts das WalkTargetScript hinzugefügt wird. Am Ende des Erstellungsprozesses wird der Walker erstellt. Hierzu wird ein von den Creature-Generator-Team bereitgestelltes Paket¹ benutzt. Das Paket stellt ein Klasse bereit, welche mit zwei Skript-Objekte konfiguriert wird. Zusätzlich wird ein seed übergeben, welcher reproduzierbare Kreaturen erlaubt. Die erstelle Kreatur muss danach mit den entsprechenden ML-Agent-Skripten versehen werden. Hierzu wird ein WalkerAgent Objekt als String übergeben. Dies ermöglicht es, mehrere unterschiedliche Agent-Skripte durch eine Änderung im Editor zu setzen. Somit können Reward-Funktion und Observation für zwei unterschiedliche Trainingsversuche getrennt, in eigenen Dateien, entwickelt werden.

TerrainGenerator

Da ein typisches Spieleterrain im Gegensatz zum ML-Agents-Walker-Terrain nicht flach ist, wurde ein neues Objekt erstellt, welches sowohl die Generierung von Hindernissen, als auch eines unebenen Bodens erlaubt. Um ein möglichst natürlich erscheinendes Terrain zu erzeugen wird ein Perlin-Noise verwendet. Dieses spiegelt jeweils die Höhe des Terrains an einen spezifischen Punkt wider. Im späteren Projektverlauf wurde dieses Skript durch den Terraingenerator des dazugehörigen Teams ersetzt.

Konfigurationsobjekte

Da sich die statische Konfiguration des ML-Agents-Walker als problematisch erwies, wurde die Konfiguration über die Laufzeit des Projekts dynamischer gestaltet. Zuerst wurden alle Konfigurationen im DynamicEnviormentGenerator gespeichert. Was unübersichtlich war und zu ständigen neubauen des Projektes führte. Deshalb wurde eine GenericConfig

¹https://github.com/PG649-3D-RPG/Creature-Generation

 $\begin{tabular}{lll} Abbildung 6.1: Konfigurations m\"{o}glich keiten & des & {\tt DynamicEnviormentGenerator} & im & Unity-Editor. \end{tabular}$

Abbildung 6.2: Ein Beispiel der generierten Trainingsumgebung mit mehreren Arenen.

Klasse eingeführt, welche die im Editor eingestellten Optionen für die einzelnen Teilbereiche Terrain, Arena und ML-Agent in Json-Format in den Streaming-Asset-Ordner speichert. Da dieser Ordner beim bauen des Projekts in das fertige Spiel übertragen wird, sind diese Konfigurationen automatisiert dort vorhanden.

Im Fall, dass das Spiel ohne Editor gestartet wird, was meist beim Training der Fall ist, lädt das generische Objekt aus den Json-Dateien die Einstellungen und ersetzt die Editorkonfiguration damit. Hierdurch ist ein ändern der Konfiguration des Spiels ohne neu-erstellen der Binärdateien ermöglicht. Diese Konfigurationsart fügt Abhängigkeiten zu dem Unity eigenen JsonUtility² hinzu.

6.1.2 WalkerAgent/blabla

Jan mach mal! Irgendwo auch Generalisierung

- UML von den Klassen
- $\bullet \ \ Walker Agent/Joint Drive Controller/Target Controller$
- Reward Funktion

6.1.3 LiDO3

Wie bereits erwähnt, werden die Berechnungen jeweils auf den HPC der TU Dortmund ausgeführt. Um auf LiDO3 zu arbeiten wird mit Hilfe eines Gatewayservers auf das Cluster zugegriffen. Der Zugriff ist ausschließlich über das TU Dortmund Netzwerk möglich. Über den Gatewayserver kann ein Zugriff auf die Rechenressourcen direkt über die Shell oder über Skripte angefordert werden. Da die Shell-Methode einen dauerhaften Login erfordern würde, wird mit Skripten gearbeitet. Diese bestehen aus Konfigurationen für LiDO3 und den eigentlich Programmteil, welcher ausgeführt werden soll. LiDO3 nutzt als Jobmanager Slurm, weshalb die Skripte die Slurm-Syntax nutzen. Eine ausführliche Beschreibung die LiDO3 Konfiguration findet sich im Benutzerhandbuch[1];

```
#!/bin/bash -1
#SBATCH -C cgpu01
#SBATCH -c 20
#SBATCH --mem=40G
#SBATCH --gres=gpu:2
#SBATCH --partition=long
#SBATCH --time=48:00:00
#SBATCH --job-name=pg_k40
#SBATCH --output=/work/USER/log/log_%A.log
#SBATCH --signal=B:SIGQUIT@120
#SBATCH --mail-user=OUR_MAIL@tu-dortmund.de
#SBATCH --mail-type=ALL
```

²https://docs.unity3d.com/ScriptReference/JsonUtility.html

```
GAME_NAME="GAME_NAME"

GAME_PATH="/work/USER/games/$GAME_NAME"

module purge
module load nvidia/cuda/11.1.1

source /work/USER/anaconda3/bin/activate
conda activate /work/mmarplei/grudelpg649/k40_env

chmod -R 771 $GAME_PATH

cd $GAME_PATH

srun mlagents-learn /work/smnidunk/games/config/Walker.yaml --run-id=$GAME_NAME --env=t.x86_64
```

In dem Beispielskript 6.1.3 sind Anweisungen an die LiDO-Umgebung jeweils mit einem Kommentarzeichen gefolgt von SBATCH gekennzeichnet. Die Konfiguration wird so gewählt, dass eine maximale Laufzeit mit exklusiven Ressourcenrechten auf den Rechenknoten besteht. Zusätzlich muss sichergestellt werden, dass eine Grafikkarte zur Verfügung steht. Diese stehen auf den cgpu01-Rechenknoten mit jeweils 20 CPU-Kernen und 48 Gigabyte RAM zur Verfügung. Die maximale Laufzeit des Prozesses ist bei den GPU-Knoten auf long begrenzt, was 48 Stunden entspricht. Es wird jeweils ein Log mitgeschrieben, aus dem der Trainingsfortschritt gelesen werden kann und bei besonderen Ereignissen eine Mail geschickt, um sofort benachrichtigt zu werden, falls der Job fertig ist oder fehlschlägt.

Kompatibilitätsprobleme

Um das beschriebene Skript auszuführen, muss auf LiDO3 eine ML-Agents-Umgebung installiert werden. Dabei handelt es sich um ein Python Umgebung, mit PyTorch und CUDA. In dem Slurm-Skript 6.1.3 ist die Einrichtung einer funktionierenden Umgebung dargestellt.

```
// LIDO UMGEBUNGSVARIABLEN
module purge
module load nvidia/cuda/11.1.1

source <anaconda3-path>/bin/activate
conda activate <env_to_install>
conda install torchvision torchaudio cudatoolkit=11.1 -c pytorch
python -m pip install mlagents==0.29.0 --force-reinstall
python -m pip install /work/mmarplei/grudelpg649/torch-1.10.0a0+git3c15822-cp39-cp39-linux_x86_
```

6 Technische Umsetzung

Für die Python-Installation wurde auf Anaconda³ zurückgegriffen. Die installierte Anaconda-Arbeitsumgebung kann für die folgenden Schritte genutzt werden, indem die Slurm-Skripte diese am Anfang laden. CUDA kann als Kernelmodul in verschiedenen Versionen geladen werden oder per Anaconda installiert werden.

Problematisch ist die Installation von PyTorch, da ab Version 1.5 die Installationsbinärdateien keine Unterstützung für die von LiDO3 genutzten NVIDIA Tesla K40 Grafikarten bietet. Es besteht die Möglichkeit PyTorch zu bauen um die Unterstürzung zu erhalten. Dies musste für unsere Arbeitsumgebung nicht gemacht werden, da die PG-Betreuer ein Paket mit einer für LiDO funktionierenden PyTorch-Version von einer vorherigen PG zur Verfügung stellen konnten. Wie in 6.1.3 dargestellt müssen zuerst die Abhängigkeiten von PyTorch, dann ML-Agents und zuletzt die spezielle PyTorch Version installiert werden, da sonst die Abhängigkeiten Probleme bereiten.

³https://www.anaconda.com/

7 Vorläufige Ergebnisse

Unterkapitel nach Erkenntnissen. Metrik nach der bewertet wird erörtern. Objektiv ohne Wertung der Ergebnisse.

7.1 Diskussion

Diskussion der Ergebnisse in Bezug auf die initiale Zielsetzung.

8 Ausblick