Unendliche Reihen Begriff

Gegeben sei die Zahlenfolge $(a_n)_{n \ge n_0}$, $n_0 \in N$.

Die Zahlenfolge $(s_n)_{n\geq n_0}$ mit $s_n\coloneqq\sum_{j=n_0}^n a_j$ heißt Partialsummenfolge oder unendliche Reihe, Bezeichnung: $\sum_{n=n_0}^\infty a_n$.

• Die Zahlen an heißen Glieder, die Zahlen sn Partialsummen der Reihe.

Der Unterschied zwischen an und sn lässt sich am Beispiel eines Sparkontos verdeutlichen. Die Glieder an sind die Ein- bzw. Auszahlungen, die Partialsummen s_n die jeweiligen Kontostände, z.B.

n	Ein- bzw. Auszahlung an	Kontostand s _n
1	378,00	378,00
2	-38,00	340,00
3	-400,00	-60,00
4	65,00	5,00
5	-78,23	-73,23
6	80,00	6,77
•••	•••	•••

ullet Ist die Reihe, also die Folge $(s_n)_{n\geq n_0}$ konvergent, so heißt der Grenzwert

$$s = \lim_{n \to \infty} s_n =: \sum_{n=n_0}^{\infty} a_n$$
 die Summe der Reihe. Im Falle der Konvergenz bezeichnet also
$$\sum_{n=n_0}^{\infty} a_n$$
 sowohl die Reihe als auch deren Summe!

• Die Reihe heißt (bestimmt oder unbestimmt) divergent, wenn die Partialsummenfolge die entsprechende Eigenschaft hat.

Beispiele:

1) Es sei $|a_n = a \cdot q^n|$ $(a \neq 0, q \neq 0, n = 0, 1, 2, ...)$ eine geometrische Folge.

Kennzeichen einer geometrischen Folge ist der konstante Quotient zweier aufeinander folgender Glieder: $a_{n+1}/a_n = q$ für jedes n. Die zugehörige

Partialsummenfolge
$$\sum_{n=0}^{\infty} a \cdot q^n$$
 heißt unendliche geometrische Reihe.

Für die endliche geometrische Reihe $s_n = a + aq + aq^2 + ... + aq^n$ gilt im Falle $q \neq 1$ die Summenformel $s_n = a \cdot \frac{1-q^{n+1}}{1-q}$, dabei ist a das Anfangsglied, q der

Quotient. Die Anzahl der Summanden ist gleich dem Exponenten (n+1) im Zähler (unabhängig vom Startindex). Aus dieser Summenformel ergibt sich die

Summe der unendlichen geometrischen Reihe $\sum_{n=0}^{\infty} a \cdot q^n = \frac{a}{1-q}$ (für |q| < 1).

Anwendung: Ein periodischer Dezimalbruch ist als Bruch $\frac{m}{n}$ darzustellen, z.B. $x=3,172=3,1727272...=:3,1+x_1$, für den periodischen Anteil $x_1=0,0727272...$ erhält man eine unendliche geometrische Reihe mit a=0,072=72/1000 und $q=10^{-2}$ und damit $x_1=\frac{a}{1-q}=\frac{72/1000}{99/100}=\frac{72}{990}=\frac{4}{55}$ sowie $x=\frac{31}{10}+\frac{4}{55}=\frac{349}{110}$.

Bei beliebiger Basis b gilt $q = b^{-p}$ (p... Periodenlänge).

2) Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + ...$ heißt harmonische Reihe.

Offensichtlich ist die Partialsummenfolge (s_n) streng monoton wachsend. Sie ist außerdem nicht beschränkt. Dies ergibt sich wie folgt:

Es sei k > 4 eine natürliche Zahl. Für alle $n \ge 2^k$ gilt

$$\underline{s_{n} \ge s_{2^{k}}} = 1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{2} + \underbrace{\frac{1}{5} + \dots + \frac{1}{8}}_{2^{k}} + \underbrace{\frac{1}{9} + \dots + \frac{1}{16}}_{16} + \dots + \underbrace{\frac{1}{2^{k-1} + 1}}_{2^{k}} + \dots + \underbrace{\frac{1}{2^{k}}}_{2^{k}} = \underbrace{1 + \frac{k}{2}}_{2^{k}}$$

$$> 1 + \underbrace{\frac{1}{2} + 2 \cdot \frac{1}{4}}_{16} + \dots + \underbrace{1 \cdot \frac{1}{16}}_{16} + \dots + \underbrace{1 \cdot \frac{1}{2^{k}}}_{2^{k}} = \underbrace{1 + \frac{k}{2}}_{2^{k}}$$

Da k beliebig groß wählbar ist, ergibt sich $\lim_{n\to\infty} s_n = \infty$. Die harmonische Reihe

ist also bestimmt divergent, Schreibweise $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$.

Absolute Konvergenz

Eine Reihe $\sum_{n=n_0}^{\infty} a_n$ heißt absolut konvergent, wenn die Reihe $\sum_{n=n_0}^{\infty} |a_n|$

konvergent ist. Eine konvergente, aber nicht absolut konvergente Reihe *) heißt bedingt konvergent.

Eine absolut konvergente Reihe ist dagegen stets im gewöhnlichen Sinne konvergent.

*) Derartige Reihen gibt es, z.B. die alternierende harmonische Reihe $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$.

Notwendiges Konvergenzkriterium

$$\sum_{n=n_0}^{\infty} a_n \text{ konvergent } \Rightarrow \overline{\lim_{n\to\infty} a_n = 0} \text{ . Anwendung meist in logisch "aquivalenter"}$$

Form: Glieder a_n konvergieren nicht gegen $0 \Rightarrow \text{Reihe } \sum a_n$ ist divergent .

Hinreichende Konvergenzkriterien

A) LEIBNIZ-Kriterium für alternierende Reihen

$$b_{n} \ge b_{n+1} > 0 \ (n \in \mathbb{N}) \land \lim_{n \to \infty} b_{n} = 0 \Rightarrow \sum_{n=0}^{\infty} (-1)^{n} b_{n} = b_{0} - b_{1} + b_{2} - b_{3} + - \dots$$
ist konvergent.

ist konvergent.

D.h., wenn die Beträge b_n der Glieder $a_n := (-1)^n b_n$ einer alternierenden Reihe eine monotone Nullfolge bilden, dann ist die Reihe konvergent.

Der Fehler bei Approximation der Reihensumme s durch die Partialsumme s_n ist höchstens gleich dem Betrag des ersten weggelassenen Gliedes: $|s-s_n| \le b_{n+1}$. Veranschaulichung: "Sprünge" (\Longrightarrow), abwechselnd nach rechts bzw. links mit immer kleiner werdender "Sprungweite" a_n . Die "Landepunkte" s_n nähern sich

dem Grenzwert s. Beispiel: Alternierende harmonische Reihe $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$

Zahlenwerte $s_1 = 1$, $s_2 = 0.5$, $s_3 = 0.8\overline{3}$, $s_4 = 0.58\overline{3}$, $s_5 = 0.78\overline{3}$, $s_6 = 0.61\overline{6}$, ...

Grenzwert $s = \ln 2 = 0.6931$

B) Vergleichskriterien für Reihen mit nichtnegativen Gliedern

Für Reihen mit nichtnegativen Gliedern $(a_n \ge 0)$ ist s_n monoton wachsend, für solche Reihen ist absolute Konvergenz identisch mit (gewöhnlicher) Konvergenz.

Es gilt in diesem Falle
$$\sum_{n=n_0}^{\infty} a_n < \infty$$
.

Divergenz ist gleichbedeutend mit bestimmter Divergenz: $\sum_{n=n_0}^{\infty} a_n = \infty$

Majoranten-Kriterium

$$0 \le a_n \le b_n \text{ (für } n \ge n_1 \ge n_0) \land \sum_{n=n_0}^{\infty} b_n \text{ konvergent} \implies \sum_{n=n_0}^{\infty} a_n \text{ konvergent}$$

Die Reihe $\sum\limits_{n=n_0}^{\infty}b_n$ heißt in diesem Falle konvergente Majorante von $\sum\limits_{n=n_0}^{\infty}a_n$.

(Anschaulich: Die Summe der Reihe $\sum b_n$ ist $<\infty$, damit gilt das Gleiche für die Reihe $\sum a_n$ mit den kleineren Gliedern.)

Minoranten-Kriterium

$$0 \le b_n \le a_n \text{ (für } n \ge n_1 \ge n_0) \land \sum_{n=n_0}^{\infty} b_n \text{ divergent} \implies \sum_{n=n_0}^{\infty} a_n \text{ divergent}$$

Die Reihe $\sum_{n=0}^{\infty} b_n$ heißt in diesem Falle divergente Minorante von $\sum_{n=0}^{\infty} a_n$.

(Anschaulich: Es ist $\sum b_n = \infty$, damit gilt wegen $a_n \ge b_n$ auch $\sum a_n = \infty$.)

Vergleichsreihen zur Anwendung von Majoranten- bzw. Minoranten-Kriterium

$$\label{eq:divergent} \mbox{Die Reihe} \ \ \sum_{n=1}^{\infty} \ \frac{1}{n^{\alpha}} \ \ ist \ \ \ \begin{cases} \mbox{konvergent} & \mbox{für} & \alpha > 1 \\ \mbox{divergent} & \mbox{für} & \alpha \leq 1 \end{cases}.$$

Die vereinfachte Anwendung der Vergleichskriterien verdeutlicht das folgende

Beispiel: $\sum_{n=1}^{\infty} \frac{n^2+4}{n^3+n^2+31}$, wegen der Dominanz der höchsten Potenzen in Zähler

und Nenner verhält sich die Reihe so wie die Reihe $\sum \frac{n^2}{n^3} = \sum \frac{1}{n}$. Diese ist divergent

(harmonische Reihe, $\alpha = 1$), also gilt auch $\sum_{n=1}^{\infty} \frac{n^2 + 4}{n^3 + n^2 + 31} = \infty$.

C) Quotienten- und Wurzelkriterium für Reihen mit beliebigen Gliedern

Rechenregeln

• $\sum_{n=n}^{\infty} a_n$ und $\sum_{n=n}^{\infty} b_n$ seien konvergent mit den Summen a bzw. b.

Dann gilt
$$\sum (a_n + b_n) = a + b$$
 und $\sum ca_n = c \cdot a$.

• $\sum_{n=n_0}^{\infty} a_n$ absolut konvergent \Leftrightarrow Die Glieder a_n lassen sich beliebig umordnen, ohne dass sich die Summe ändert.

• $\sum_{n=n_0}^{\infty} a_n$ und $\sum_{n=n_0}^{\infty} b_n$ seien absolut konvergent mit den Summen a bzw. b.

Dann gilt
$$\left(\sum_{i=0}^{\infty} a_i \right) \cdot \left(\sum_{i=0}^{\infty} a_i \right) = \sum_{i,j=0}^{\infty} a_i b_j = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} a_i b_{n-i} \right) = a \cdot b \right).$$
 Die Anordnung