

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Fake News Analysis and Detection in German

Bachelor Thesis in Computational Linguistics at the LMU Munich Faculty for Languages and Literatures; 5th Jan. 2021

Presented by Laurin B. Gerhardt Supervised by Antonis Maronikolakis Examined by Prof. Dr. Hinrich Schütze

Motivation

- Fake news are a far-reaching problem
- → Examples
- 'fake news' = news content that is factually wrong, often intentionally so

Problem: Expertise and time required

- Can't keep up
- → Use machine learning to help
- → Most datasets for English

Analysis → **Datasets**

Fake News Dataset German (FNDatasetGerman)

- \rightarrow ~62 thousand entries from 2008 to 2018
- \rightarrow ~4.6 thousand of which are fake news
- → 3 sources for 'real' news, 4 for 'fake' (Stöckl, 2020)

GermanFakeNC

- → 490 articles (URLs, 65 not valid)
- → almost all contain false information
- → 33 valid sources, 12 invalids

(Vogel and Jiang, 2019)

	Legitimate		Fake			Legitimate		Fake	
	Title	Body	Title	Body		Title	Body	Title	Body
mean	7.000	395.54	11.05	317.520	mean	6.614	5.615	5.894	5.08
std	2.006	206.428	3.632	198.061	std	4.350	4.280	4.175	3.805
25%	6	239	9	239	25%	3	3	3	3
median	7	366	11	286	median	6	4	5	4
75%	8	511	13	344	75%	9	8	8	7

Table 3.2.: Tokens per Text

Table 3.3.: Letters per Token

	Legitimate		Fake			Legitimate		Fake	
	Title	Body	Title	Body		Title	Body	Title	Body
mean	1.185	24.049	1.555	20.989	mean	5.906	16.406	7.106	15.125
std	0.455	14.951	0.808	19.105	$\overline{}$ std	2.384	9.930	3.884	11.289
25%	1	14	1	14	25%	4	10	4	7
median	1	21	1	18	median	6	16	7	13
75%	1	31	2	23	75%	7	22	10	21

Table 3.4.: Sentences per Text

Table 3.5.: Tokens per Sentence

Article Bodies	our findings	
Fake news articles are shorter	agree	
Fake news uses fewer technical words	unclear	
Fake news contains fewer quotes	agree	
Fake news contain fewer nouns	agree	
Fake news contain more adverbs	agree	
Fake news (FN) and real news contain equally many determiners	FN has fewer	
Titles		
Fake news titles are longer	agree	
Fake news titles contain more proper nouns	agree	
Fake news titles contain fewer nouns	agree	
Fake news titles contain fewer determiners	opposite	

(Horne and Adalı, 2017)

Detection → **Methodology**

- Test set size = 33.3%
- Classes: True (= fake news), False (=real news)
- Classifiers: Logistic Regression, Random Forests,
 Complement Naive Bayes
- Text Representations:binary BoW, wordcounts, tf.idf
- → 9 experiments in two settings each:
- 'default' (default parameters),
- 'optimized' (inverse class weighting, stopword removal)

Detection → **Results**

			F1	
Classifier	Text Representation	default	optimized	
Complement	binary BoW	0.95	0.95	
Naive Bayes	word-counts	0.96	0.96	
rarve Dayes	tf.idf	0.92	0.92	
	binary BoW	0.99	0.99	
Logistic Regression	word-counts	0.99	0.98	
	tf.idf	0.97	0.96	
	binary BoW	0.93	0.95	
Random Forest	word-counts	0.93	0.95	
	tf.idf	0.94	0.96	

Table 4.1.: (minor) F1-scores for default and optimized parameters respectively

Detection → **Results**

		default	t	optimize	ed
Classifier	Text Representation	Legitimate	Fake	Legitimate	Fake
Complement	binary BoW	0.99	0.54	0.99	0.58
Naive Bayes	word-counts	0.98	0.68	0.98	0.70
raive Dayes	tf.idf	1.00	<.01	1.00	<.01
	binary BoW	0.99	0.92	0.99	0.96
Logistic Regression	word-counts	0.99	0.92	0.99	0.95
	tf.idf	0.99	0.73	0.96	0.94
	binary BoW	1.00	0.22	0.99	0.47
Random Forest	word-counts	0.99	0.22	0.99	0.49
	tf.idf	0.99	0.28	0.99	0.52

Table 4.2.: Accuracy-Scores for each class for default and optimized parameters respectively

Detection → **Results**

		Accuracy		
	F1	Legitimate	Fake	
default	0.94	0.99	0.40	
optimized	0.96	0.93	0.66	

Table 4.3.: Performance of the Logistic Regression Classifier using the binary BoW textrepresentation measured in (minor) F1-score and Accuracy score of each class

Concluding Remarks

- Substantial differences in human written text
- → Differences are similar in English and German
- Machine learning can help

Limitations

- Classification may rely on style and wording (see Schuster et al.,2020)
- Dataset(s) used are imbalanced

References

- Horne, B. D. and Adalı, S. (2017). This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. arXiv preprint arXiv:1703.09398.
- Schuster, T., Schuster, R., Shah, D. J., and Barzilay, R. (2020). The Limitations of Stylometry for Detecting Machine-Generated Fake News. Computational Linguistics, pages 1-12.
- Stöckl, A. (2020). Fake News Dataset German, Version 1. https://www.kaggle.com/astoeckl/fake-news-dataset-german. Last Access 5. Dec. 2020.
- Vogel, I. and Jiang, P. (2019). Fake News Detection with the New German Dataset "GermanFakeNC". In Digital Libraries for Open Knowledge 23rd International Conference on Theory and Practice of Digital Libraries, TPDL 2019, Oslo, Norway, September 9-12, 2019, Proceedings, pages 288-295.