An overview of data calibration algorithms of NeuLAND in the R^3B setup

Yanzhao Wang¹, Paula Ulrich¹, Igor Gasparic², Andreas Zilges¹

¹ University of Cologne, Institute for Nuclear Physics, Germany

² GSI Helmholtzzentrum für Schwerionenforschung, Germany

HK 44.4 DPG-Frühjahrstagung Cologne 2025

Supported by BMBF (05P21PKFN1)

Email: ywang@ikp.uni-koeln.de

NeuLAND setup in R³B

K. Boretzky et al., Nucl. Instrum. Methods. Phys. Res. B 1014, 165701 (2021)

NeuLAND setup in R³B

K. Boretzky et al., Nucl. Instrum. Methods. Phys. Res. B 1014, 165701 (2021)

NeuLAND setup in R³B

Geometry:

- 26 planes
- $\bullet~250\times250\,\mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

Measurements:

- interaction position
- interaction time
- energy deposition

NeuLAND

Processes of digitization

Physical interactions:

Digitization of PMT signals:

Time measurement and TDC calibration

Time measurement with clocks:

Real time calculation:

$$T_{\text{real}} = T_{\text{coarse}} - T_{\text{fine}}$$

- \bullet $T_{\rm real}$: Time value relative to START detector
- T_{coarse} : Clock cycles with a frequency of $200\,\mathrm{MHz}$
- T_{fine} : Fine channel numbers (TDL)

Time measurement and TDC calibration

Time measurement with clocks:

Real time calculation:

$$T_{\text{real}} = T_{\text{coarse}} - T_{\text{fine}}$$

- ullet $T_{\rm real}$: Time value relative to START detector
- ullet $T_{
 m coarse}$: Clock cycles with a frequency of $200\,{
 m MHz}$
- T_{fine} : Fine channel numbers (TDL)

[1] J. Kalisz, Metrologia 41, 17 (2003)

Position, time and energy calibration parameters

Position-Time calibration:

Interaction time:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot extstyle{C_e}} + extstyle{t_{ extstsf{sync}}}$$

Interaction position:

$$x = rac{C_e}{2} \left(t_r - t_l + t_{ extsf{offset}}
ight)$$

PMT saturation effect²:

Incident light level (RV)

^[1] Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

Position, time and energy calibration parameters

PMT saturation effect²:

Incident light level (RV)

Position-Time calibration:

Interaction time:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot extstyle{C_e}} + extstyle{t_{ extstsf{sync}}}$$

Interaction position:

$$x = rac{C_e}{2} \left(t_r - t_l + t_{ extsf{offset}}
ight)$$

Energy calibration relations:

Light attenuation effect:

$$I_{\mathsf{PMT}} = E_{\mathsf{dep}} \cdot \exp(-\alpha \cdot l)$$

PMT saturation:

$$I_{\mathsf{sat}} = I_{\mathsf{PMT}} \cdot / \left(1 + \frac{\lambda}{\lambda} \cdot I_{\mathsf{PMT}}\right)$$

PMT gain:

$$W = \mathcal{G} \cdot I_{\mathsf{sat}} + W_0$$

^[1] Photomultiplier tubes: basics and applications, 3a, Hamamatsu (Nov. 2007), p. 197

Side view of NeuLAND

Procedures

Obtain the positions of bars with signals

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

New position calibration

Time differences of adjacent PMTs:

Calibration steps:

Collect time differences of adjacent PMT signals

Parameter fitting:

New position calibration

Time differences of adjacent PMTs:

Calibration steps:

- Collect time differences of adjacent PMT signals
- Normalize the distribution and convert to the CDF for each bar

Parameter fitting:

New position calibration

Time differences of adjacent PMTs:

Calibration steps:

- Collect time differences of adjacent PMT signals
- Normalize the distribution and convert to the CDF for each bar
- 3 Linear fitting of the CDF within its quantiles of 0.05 to 0.95

Parameter fitting:

Fitting function:

$$y = a \cdot x + 0.5 - a \cdot b$$

Calculation of parameters:

$$C_e = 2 \cdot a \cdot \mathsf{bar} \; \mathsf{length}$$

$$t_{\text{offset}} = b$$

Current energy calibration method (WIP)

Energy calibration relations:

Light attenuation effect for both PMTs:

$$I_{\mathsf{PMT}} = E_{\mathsf{dep}} \cdot \exp(-\alpha \cdot l)$$
 (1)

PMT saturation:

$$I_{\mathsf{sat}} = I_{\mathsf{PMT}} \cdot / (1 + \frac{\lambda}{\lambda} \cdot I_{\mathsf{PMT}})$$
 (2)

PMT gain:

$$W = \mathcal{G} \cdot I_{\mathsf{sat}} + W_0 \tag{3}$$

Assumptions

PMT saturation factor differs from gain factor by a constant value:

$$\lambda = 0.00175 \times \mathcal{G}$$

- 2 Cosmic muon's stopping power: 1.73 MeV cm⁻¹
- 3 Adjacent PMTs have the same gain factor

Calculation of parameters:

- PMT baseline W_0 is determined by the minimum cut on signal widths (i.e. trailing time leading time).
- Calculation of attenuation factor:

$$\alpha = \ln((W_r - W_0)/(W_l - W_0))/(2 \cdot x)$$

Calculation of gain factor:

$$\mathcal{G} = \frac{W - W_0}{I_{\text{PMT}}(1 - 0.00175(W - W_0))}$$

PMT gains from each event:

Parameter fine tuning with Millepede-II

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1},...,g_{m},p_{1}^{j},...,p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 p_1^j , : l local parameters for the jth μ track

n : the total number of μ tracks

Parameter fine tuning with Millepede-II

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}: m$ global parameters

 p_1^j , : l local parameters for the jth μ track

n : the total number of μ tracks

Features

- Simultaneous fitting of all parameters
- Separation to global and local parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction
- Calibration relation must be linear

Parameter fine tuning with Millepede-II

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}:m$ global parameters

 $p_{1\ldots l}^{j}: l$ local parameters for the jth μ track

n : the total number of μ tracks

Features

- Simultaneous fitting of all parameters
- Separation to global and local parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction
- Calibration relation must be linear

Fine tuning on C_e :

Fine tuning on t_{offset} :

Summary and outlook

Summary

- Principle of digitization processes
- Calibration with TDC for time values
- Calibration with time values for physical values
- Fine tuning with the Millepede-II algorithm

Outlook

- Improve energy calibration
- Apply Millepede-II algorithm on energy-related parameters
- Verify energy parameters via simulation

