Quantum Circuit Learning and SVM

Faris Sbahi

10/28/18

Introduction

- Approximate any analytical function (with sufficient number of qubits)
- Hybrid classical-quantum algorithm
- ▶ Parameterize quantum gates by some θ , optimize θ iteratively using gradient descent or the like
- ▶ Low-depth quantum circuit. Goal: realizable near-term

Algorithm

- ▶ Inputs: training data $\{\vec{x_i}\}$ with outputs $\{f(\vec{x_i})\}$
- ▶ Outputs: $\{y_i\}$ which closely approximates $\{f(\vec{x_i})\}$.
- ▶ In particular, minimizes some loss function (locally) e.g. quadratic loss for least-squares $\sum_i |y_i f(\vec{x_i})|^2$

Algorithm

- ▶ Inputs: training data $\{\vec{x_i}\}$ with outputs $\{f(\vec{x_i})\}$
- ▶ Outputs: $\{y_i\}$ which closely approximates $\{f(\vec{x_i})\}$.
- ▶ In particular, minimizes some loss function (locally) e.g. quadratic loss for least-squares $\sum_i |y_i f(\vec{x_i})|^2$
- 1. Encode data into quantum state. $|\psi_{in}(\vec{x_i})\rangle = U(\vec{x_i})|0\rangle$ for some unitary U
- 2. Apply θ -parameterized unitary. $|\psi_{out}(\vec{x_i})\rangle = U(\theta) |\psi_{in}(\vec{x_i})\rangle$
- 3. Measure expectation of some tensor products of Paulis i.e. some set of operators $\{B_j\} \subseteq \{I, X, Y, Z\}^{\otimes N}$. Output $y_i \equiv g(\{\langle B_j(\vec{x_i})\rangle\})$ using some function g.
- 4. Minimize loss L by tuning θ iteratively
- 5. Evaluate L on validation set $\{\vec{v_i}\}$ disjoint from $\{\vec{x_i}\}$

Quantum Circuit Learning Why QCL?

- Closed form exists for least-squares (orthogonal projection of vector of y_i's onto the column space of the data matrix)
- ▶ Hence, we can use HHL. But requires high depth.
- With QCL, we can solve iteratively and use a short-depth circuit

Example

- ▶ Consider 1-d input {x_i}
- ▶ Let $\{P_k\} = \{I, X, Y, Z\}^{\otimes N}$
- Expand $\rho_{in}(x) = |\psi_{in}(x)\rangle \langle \psi_{in}(x)| = \sum_k a_k P_k$
- ► Similarly, $\rho_{out}(x) = U(\theta)\rho_{in}(x)U(\theta)^{\dagger} = \sum_k b_k P_k$
- ▶ $b_m = \sum_k U_{(m,k)} a_k$ since this is a unitary change of basis
- Therefore, expectation measurement is a linear combination of input coefficients
- ▶ Constraint: row vector $U_{(m,k)}$ has unit norm for fixed m

Example

- ▶ Recall that for a single qubit, $\rho = \frac{1}{2}[I + \vec{a} \cdot \sigma]$, $|a| \leq 1$
- ▶ Rotate a = (0,0,1) about Y axis by some $\theta = \sin^{-1}(x_{in})$ for each of N qubits and call this ρ_{in}
- $\rho_{in} = \frac{1}{2^N} \otimes_{i=1}^N [I + xX_i + \sqrt{1 x^2}Z_i]$
- ► Hence, unitary transformation can give arbitrary Nth order polynomial
- Generalize to d dimensional input

Compute Gradient

- Assume chain of unitary transformations $U_{l:1}(\theta)$
- $ightharpoonup \langle B(heta)
 angle = \operatorname{tr}ig(BU_{l:1}(heta)
 ho_{\mathit{in}}U_{l:1}(heta)^\daggerig)$
- ▶ Assume $U_j(\theta) = \exp(-i\theta P_j/2)$ for pauli product P_j
- \blacktriangleright Use identity for commutator of arbitrary ρ with a Pauli product
- lacktriangle Gives gradient in terms of additional $U(\pm\pi/2)$ transformations

$$\begin{split} \frac{\partial \langle B \rangle}{\partial \theta_j} &= \frac{1}{2} \mathrm{Tr} \left[B U_{l:j+1} U_j \left(\frac{\pi}{2} \right) \rho_j U_j^\dagger \left(\frac{\pi}{2} \right) U_{l:j+1}^\dagger \right] \\ &- \frac{1}{2} \mathrm{Tr} \left[B U_{l:j+1} U_j \left(-\frac{\pi}{2} \right) \rho_j U_j^\dagger \left(-\frac{\pi}{2} \right) U_{l:j+1}^\dagger \right] \end{split}$$

- ► Linear classifier (e.g. perceptron): perform binary classification by separating labels in feature space with hyperplane.
- Data is not always separable
- Idea: Map data to higher dimensional space where data is separable
- Kernel function does this implicitly by providing a means to compute the inner product in that space

Definition 1. Let \mathcal{F} be a Hilbert space, called the feature space, \mathcal{X} an input set and x a sample from the input set. A feature map is a map $\phi: \mathcal{X} \to \mathcal{F}$ from inputs to vectors in the Hilbert space. The vectors $\phi(x) \in \mathcal{F}$ are called feature vectors.

Feature maps play an important role in machine learning, since they map any type of input data into a space with a well-defined metric. This space is usually of much higher dimension. If the feature map is a nonlinear function it changes the relative position between data points (as in the example of Figure 1), and a dataset can become a lot easier to classify in feature space. Feature maps are intimitely connected to kernels [16].

Definition 2. Let \mathcal{X} be a nonempty set, called the input set. A function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ is called a kernel if the Gram matrix K with entries $K_{m,m'} = \kappa(x^m, x^{m'})$ is positive semidefinite, in other words, if for any finite subset $\{x^1, ..., x^M\} \subseteq \mathcal{X}$ with $M \geq 2$ and $c_1, ..., c_M \in \mathbb{C}$,

$$\sum_{m,m'=1}^{M} c_m c_{m'}^* \kappa(x^m, x^{m'}) \ge 0.$$

By definition of the inner product, every feature map gives rise to a kernel.

Kernels

Theorem 1. Let $\phi: \mathcal{X} \to \mathcal{F}$ be a feature map. The inner product of two inputs mapped to feature space defines a kernel via

$$\kappa(x, x') := \langle \phi(x), \phi(x') \rangle_{\mathcal{F}}, \tag{1}$$

where $\langle \cdot, \cdot \rangle_{\mathcal{F}}$ is the inner product defined on \mathcal{F} .

Proof. We must show that the Gram matrix of this kernel is positive definite. For arbitrary $c_m, c_{m'} \in \mathbb{C}$ and any $\{x^1, ..., x^M\} \subseteq \mathcal{X}$ with $M \geq 2$, we find that

$$\sum_{m,m'=1}^{M} c_m c_{m'}^* \kappa(x_m, x_{m'}) = \langle \sum_m c_m \phi(x_m), \sum_{m'} c_{m'} \phi(x_{m'}) \rangle$$
$$= ||\sum_m c_m \phi(x_m)||^2 \ge 0$$

Definition 3. Let \mathcal{X} be a non-empty input set and \mathcal{R} a Hilbert space of functions $f: \mathcal{X} \to \mathbb{C}$ that map inputs to the real numbers. Let $\langle \cdot, \cdot \rangle$ be an inner product defined on \mathcal{R} (which gives rise to a norm via $||f|| = \sqrt{\langle f, f \rangle}$). \mathcal{R} is a reproducing kernel Hilbert space if every point evaluation is a continuous functional $F: f \to f(x)$ for all $x \in \mathcal{X}$. This is equivalent to the condition that there exists a function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ for which

$$\langle f, \kappa(x, \cdot) \rangle = f(x)$$
 (2)

with $\kappa(x,\cdot) \in \mathcal{R}$ and for all $f \in \mathcal{H}$, $x \in \mathcal{X}$.

- Can construct unique RKHS for any feature map
- Mercer's Theorem: If kernel k is positive, we can expand k (as a uniformly convergent series) in terms of eigenfunctions and eigenvalues of a positive operator that come from k.
- Representer Theorem: Even if were trying to solve an optimization problem in an infinite dimensional space H_k containing linear combinations of kernels centered on arbitrary x_i's, then the solution lies in the span of the n kernels centered on the x_is.

Optimization - Dual Formulation

maximize
$$f(c_1 \dots c_n) = \sum_{i=1}^n c_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i (\varphi(\vec{x_i}) \cdot \varphi(\vec{x_j})) y_j c_j$$

$$= \sum_{i=1}^n c_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i k(\vec{x_i}, \vec{x_j}) y_j c_j$$
subject to $\sum_{i=1}^n c_i y_i = 0$, and $0 \le c_i \le \frac{1}{2n\lambda}$ for all i .

- Use quadratic programming, coordinate descent, gradient descent, SMO...
- Representer's Theorem
- Only ever need to evaluate inner product in RKHS to train and test model

Explicit Classification

- Encode data, just as with QCL. This time, encode data under feature map transformation directly.
- $U_{\phi}(x) |0\rangle^{N} = |\Phi(x)\rangle$
- Hence, $K(x,z) = |\langle \phi(x) | \phi(z) \rangle|^2$
- Map must be hard to compute classically. Simple kernel like RBF allows efficient classical computation in infinite-dimensional Hilbert space. Large quantum Hilbert space is not enough.

- ▶ Consider feature map $U_{\phi}(x) = V_{\phi(x)}H^{\otimes n}V_{\phi(x)}H^{\otimes n}$ where $V_{\phi(x)} = exp\Big(i\sum_{S\subseteq [n]}\phi_S(x)\prod_{i\in S}Z_i\Big), |S|\leq 2$
- Conjecture: Classical evaluation of inner products generated from circuits with two basis changes and diagonal gates up to additive error is "hard"

- ▶ Consider feature map $U_{\phi}(x) = V_{\phi(x)}H^{\otimes n}V_{\phi(x)}H^{\otimes n}$ where $V_{\phi(x)} = exp\Big(i\sum_{S\subseteq [n]}\phi_S(x)\prod_{i\in S}Z_i\Big), \ |S|\leq 2$
- Conjecture: Classical evaluation of inner products generated from circuits with two basis changes and diagonal gates up to additive error is "hard"
- ightharpoonup n = d = 2 qubits
- $\phi_{\{i\}}(\vec{x}) = x_i$ and $\phi_{\{1,2\}} = (\pi x_1)(\pi x_2)$ with $\vec{x} \in (0, 2\pi]^2$
- ▶ Take some random unitary $V \in SU(4)$ and defined data "gap" $\Delta = 0.3$.
- ▶ Then, we define $\langle \Phi(x)|\ V^\dagger Z_1 Z_2 V\ |\Phi(x)\rangle \geq \Delta \implies +1$ label and -1 otherwise

- ▶ Now, apply θ -parameterized layers of I unitaries. $\theta \in \mathbb{R}^{2N(I+1)}$
- ▶ For binary classication, $y \in \{+1, -1\}$.
- ▶ In our case, $\vec{f} = Z_1 Z_2$ and $0 \le l \le 4$
- ▶ Measure $M_y = \frac{1}{2}(I + y\vec{f})$ with $\vec{f} = \sum_{z \in \{0,1\}^N} f(z) |z\rangle \langle z|$ and $f: \{0,1\}^n \to \{+1,-1\}$
- Obtain empricial distribution p_y(x) which is expectation of M_y sampled with repeated shots
- ▶ Classify by comparing $p_y(+1)$ to $p_{-1}(x)$ (can add bias as well)
- Define loss function to be average number of missclassifications

- How is this SVM?
- ► Decision rule for label: $m(x) = sgn(\langle \Phi(x) | W^{\dagger}(\theta) \vec{f} W(\theta) | \Phi(x) \rangle$
- ▶ Decompose density operator ρ_{in} and ρ_{out} in Pauli product basis $\{P_{\alpha}\}$.
- Expectation value of binary measurement and decision rule can be expressed in terms of $w_{\alpha}(\theta) = \text{tr} \Big[W^{\dagger}(\theta) \vec{f} W(\theta) P_{\alpha} \Big]$ and $\Phi_{\alpha}(x) = \langle \Phi(x) | P_{\alpha} | \Phi(x) \rangle$
- ▶ $m(x) = sgn(1/2^N \sum_{\alpha} w_{\alpha}(\theta) \Phi_{\alpha}(x))$. SVM separating hyperplane.
- ▶ Decomposition shows we should think of $|\phi(x)\rangle \langle \phi(x)|$ as the feature vectors i.e. feature vectors don't live directly in the Hilbert space $H=(\mathbb{C}^2)^{\otimes N}$. As expected, since global phase would make this problematic.