Synthèse sur les vecteurs, droites et plans de l'espace Page 72

Colinéarité

• \vec{u} et \vec{v} non nuls sont colinéaires si, et seulement si, il existe un réel k tel que $\vec{u} = k\vec{v}$

Coplanarité

• \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires si, et seulement si, il existe trois réels a, b et c non tous nuls tels que $a\overrightarrow{u} + b\overrightarrow{v} + c\overrightarrow{w} = \overrightarrow{0}$.

Base de l'espace

- Triplet (i, j, k) de vecteurs non coplanaires.
- Coordonnées de u = xi + yj + zk dans cette base : (x; y; z). Repère de l'espace
- Quadruplet (O ; \vec{i} , \vec{j} , \vec{k}) où O est un point et (\vec{i} , \vec{j} , \vec{k}) est une base de l'espace.

Caractérisation vectorielle d'un plan

- Si \vec{u} et \vec{v} sont deux vecteurs non colinéaires de la direction d'un plan \mathcal{P} , alors (\vec{u}, \vec{v}) est une base de \mathcal{P} .
- Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs non colinéaires, l'ensemble des points M tels que $\overrightarrow{AM} = x\overrightarrow{u} + y\overrightarrow{v}$, avec x et y réels quelconque, est un plan passant par A.

Vecteurs de l'espace

Représentation paramétrique

Droite passant par A(x_A ; y_A ; z_A) et de vecteur directeur

$$\overrightarrow{u}(a;b;c): \begin{cases} x = x_{\mathsf{A}} + at \\ y = y_{\mathsf{A}} + bt \text{ avec } t \in \mathbb{R}. \\ z = z_{\mathsf{A}} + ct \end{cases}$$

Plans de l'espace

Droites de l'espace

• \mathcal{P} et \mathcal{P}_2 sont sécants selon la droite $d(\vec{u}, \vec{v})$ et \vec{w} ne sont pas coplanaires). • \mathcal{P}_2 et \mathcal{P}_3 sont parallèles : (\vec{u}, \vec{v}) est une base de \mathcal{P}_2 et de \mathcal{P}_3 .

- d_1 et \mathcal{P} sont sécants en M ($\overrightarrow{u_1}$, \overrightarrow{v} et \overrightarrow{w} ne sont pas coplanaires).
- d_2 est parallèle à \mathcal{P} ($\overrightarrow{u_2}$, \overrightarrow{v} et \overrightarrow{w} sont coplanaires).

- d_1 et d_2 sont parallèles ($\vec{u_1}$ et $\vec{u_2}$ sont colinéaires).
- d_1 et Δ sont sécantes $(\overrightarrow{u_1}$ et \overrightarrow{v} ne sont pas colinéaires).
- d_2 et Δ ne sont pas coplanaires (\vec{u}_2 et \vec{v} ne sont pas colinéaires).

