José William Rodrigues Pereira¹

Orientador: Profo Dr. Tarcisio Fernandes Leão²

 $^1 \langle \mathsf{josewrpereira@gmail.com} \rangle$

 $^2 \langle \mathsf{leao@ifsp.edu.br} \rangle$

01 de Agosto de 2018

Sumário

- 1 Introdução
- 2 Desenvolvimento
- 3 Metodologia
- 4 Resultados
- 5 Conclusão
- 6 Referencias

Introdução

000

Lógica Paraconsistente (DA SILVA FILHO, 2006)

- Ferramenta promissora para tomada de decisão;
- Robótica, Eng. Produção, Logística, Medicina, Automação e Controle, etc.

Ideia de uso da Lógica Paraconsistente (DA SILVA FILHO; ABE, 2011)

- Conjunto de axiomas e regras de inferência;
- Objetiva representar formalmente um raciocínio válido.

José W. R. Pereira 01 de Agosto de 2018

Introdução

0.00

Geral

Realizar a análise e implementação da **Lógica Paraconsistente Anotada Evidencial** $E\tau$ **(LPA** $E\tau$) em um sistema embarcado para atuar no controle dinâmico de um sistema físico.

Específicos

- **E**studar a LPA $E\tau$ e desenvolver um algoritmo a ser embarcado para atuar no controle de um sistema físico;
- Realizar a construção de um sistema físico para o controle de velocidade em um motor CC.

Relevância do Trabalho

Introdução

000

Iniciar pesquisa de aplicação da LPA $E\tau$ em sistemas de controle:

Balisar um novo caminho para trabalhos futuros, expondo pontos positivos, dificuldades iniciais e possibilidades para se trabalhar com a LPA $E\tau$ em sistemas de controle.

Sistema de Controle

Definição(NISE, 2009)

"Um sistema de controle consiste em subsistemas e processos (ou plantas) constrídos com o objetivo de se obter uma saída desejada com desempenho desejado para uma entrada específica fornecida."

O paradigma

A lógica clássica como paradigma na trascrição do mundo físico.

A quebra do paradigma

Questionamento e produção de ferramental para o tratamento de contradições e incertezas.

Lógica Clássica - O paradigma

A origem (DA SILVA FILHO, 2006)

Grécia Antiga: Tópicos de Aristóteles 340 a.C.

Princípios da Lógica (DA SILVA FILHO, 2006)

- **1** Princípio de Identidade: $A \rightarrow A$ ou $\forall x(x = x)$;
- **2** Princípio do Terceiro Excluído: $A \lor \neg A \text{ ou } \forall x (Ax \lor \neg Ax)$;
- **3** Princípio da Não Contradição: $\neg(A \land \neg A)$ ou $\forall x \neg (Ax \land \neg Ax)$.

Lógica Paraconsistente - A quebra do paradigma

Criadores (KRAUSE, 2004)

- Newton Carneiro Affonso da Costa (1929-presente data)
- Stanislaw Jaskiwski (1906-1965)

Desenvolvimento: Costa, Subrahmanian e Vago (KRAUSE, 2004)

- Lógica Paraconsistente Anotada
- extensão a uma Lógica de Predicados Paraconsistente Anotada de primeira ordem

A Proposição

Para toda **proposição** P há um par de valores, chamada de **anotação**, (μ, λ) , onde μ é o **grau de evidência favorável** e λ é o **grau de evidência desfavorável**, representada como $P_{(\mu,\lambda)}$.

Lógica Paraconsistente Anotada Evidencial au (LPAE au) (DA

SILVA FILHO, 2006)

$$\tau = \{(\mu, \lambda) \mid \mu, \lambda \in [0, 1] \subset \Re\}$$

Quadrado Unitário no Plano Cartesiano

$$(\mu,\lambda)\leftrightarrow(x,y)$$

Reta Perfeitamente Definida

$$(\mu, \lambda) \leftrightarrow (x, y)$$

$$\mu + \lambda = 1$$

■
$$\mu + \lambda - 1 = 0$$

■ Grau de contradição

$$G_{ct} = \mu + \lambda - 1$$

$$-1 \leqslant G_{ct} \leqslant 1$$

Reta Perfeitamente Indefinida

$$(\mu, \lambda) \leftrightarrow (x, y)$$

$$\mu - \lambda = 0$$

- Grau de certeza
 - $G_c = \mu \lambda$
 - \blacksquare $-1 \leqslant G_c \leqslant 1$

A proposição e a anotação

A proposição

P: A velocidade de rotação é máxima.

A anotação

- Grau de evidência favorável 0 (μ_0): Valor de referência;
- Grau de evidência favorável 1 (μ_1): Valor da variável controlada.
 - $\blacksquare \ \mu_1 = 1 \lambda$

Fonte: Próprio autor

Região de controle Liga-Desliga no reticulado da LPAE au

Fonte: Próprio autor

Região de zona morta no reticulado da LPAE au

Região de travamento no reticulado da LPAE au

Região ativa no reticulado da LPA $E\tau$

Região ativa no reticulado da LPAE au

Valores de correção para a condição de contradição

Limite Inferior	Alvo	Limite Superior	Valor de Correção	
9,5	10	10,5	δ_0	
10,5	11	11,5	δ_1	
11,5	12	12,5	δ_2	
12,5	13	14,0	δ_3	
14,0	15	15,5	δ_4	
15,5	16	17,0	δ_5	
17,0	18	19,0	δ_6	
19,0	20	21,0	δ_7	
21,0	22	23,0	δ_8	
23,4	24	25,4	δ_9	
25,4	27	28,4	δ_{10}	
28,4	30	31,4	δ_{11}	
Fonte: Próprio autor				

Desenvolvimento

Valores de correção para a condição de contradição

Limite Inferior	Alvo	Limite Superior	Valor de Correção	
31,4	33	34,4	δ_{12}	
34,4	36	37,4	δ_{13}	
37,4	39	40,9	δ_{14}	
40,9	43	44,9	δ_{15}	
44,9	47	48,9	δ_{16}	
48,9	51	53,4	δ_{17}	
53,4	56	58,9	δ_{18}	
58,9	62	64,9	δ_{19}	
64,9	68	71,3	δ_{20}	
71,3	75	78,3	δ_{21}	
78,3	82	86,3	δ_{22}	
86,3	91	100,0	δ_{23}	
Fonto: Próprio autor				

Materiais - Equipamentos e componentes

- Microcontrolador de núcleo ARM;
- Placa de desenvolvimento *Tiva*TM TM4C123GH6PM (Texas Instruments);
- Drive para acionamento do tipo Pulse Width Modulation (PWM) com tecnologia CMOS (IRF540);
- Motor de corrente contínua;
- Disco compacto (CD);
- Sensor ótico;
- Fonte de alimentação chaveada 12V 10W.

Metodologia 00000

Construção do Sistema Físico

(d) Motor CC

(c) Placa de desenvolvimento

26 / 41

José W. R. Pereira 01 de Agosto de 2018

Sistema construído

(f) Planta de testes

27 / 41

José W. R. Pereira 01 de Agosto de 2018

- Sistema Operacional GNU/Linux Debian 8 (Jessie);
- GNOME Shell;
- Editores de texto e código fonte: Vim e Emacs;
- Compilador GCC para ARM (arm-none-eabi-gcc);
- GNU make;
- Processador de texto LATEX- pdfTEX;
- Pacotes geradores de figuras TikZ, PGF e GNU pic (Groff);
- Gerador de gráficos GNUPlot;
- Terminal de comunicação Minicom;
- Gravador para microcontrolador ARM LM4Flash.

Método

■ Levantamento do modelo matemático do sistema protótipo;

00000

- Verificação da qualidade do modelo (erro percentual médio < 5%);
- Definição dos requisitos de desempenho do sistema;
- Realizar o controle utilizando um controlador PI:
- Realizar o controle utilizando um controlador I PA $E\tau$.

Modelo do Sistema em Malha Aberta - Formato Canônico

$$\frac{C(s)}{R(s)} = \frac{K}{s+a} = \frac{0.4}{s+0.4}$$

$$\frac{C(s)}{R(s)} = \frac{K}{s+a} = \frac{0.4}{s+0.4}$$
 $\frac{C(s)}{R(s)} = \frac{1}{\tau s+1} = \frac{1}{2.5s+1} = g(t)$

Qualidade do Modelo

Erro Relativo Percentual

%erro =
$$\frac{100}{N}$$
. $\sum_{p=0.00}^{n=22,40} \frac{|r[n] - c[n]|}{r[n]}$ (1)

Onde:

r: valor real;

c: valor calculado;

n: número da amostra aquisitada;

N : número total de amostras.

Qualidade do Modelo

Tabela 1: Erro Relativo Percentual para intervalos determinados por au

Intervalo de amostras	erro médio relativo
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	3,16 %
2 a 3 τ	3,38 %
$\overline{}$ 3 a 4 $ au$	2,00 %
4 a 5 $ au$	2,29 %
> 5 $ au$	0,82 %

Requisitos de desempenho do sistema

- Tempo de subida: $\leq 2\tau$ do tempo de subida em malha aberta;
- Sobressinal: $\leq 10\%$:
- Erro de regime estacionário: ≤ 5%.

Controlador PI e L $PAE\tau$

Controlador LPA $E\tau$

Conclusão

A LPA $E\tau$ foi capaz de controlar o sistema proposto para as configurações liga/desliga e PI. Os resultados são iniciais do ponto de vista da utilização no controle dinâmico de sistemas e apresenta-se como promissora a sua exploração associado com inteligência artificial ou sistema adaptativo, para a geração dos parâmetros de controle.

Conclusão

Contribuições do trabalho

- Aplicação da LPA $E\tau$ em um sistema de controle;
- Compreensão da LPA $E\tau$ e suas formas de aplicação;
- Aplicação bem sucedida mediante requisitos de desempenho do sistema;
- Apresentação de uma nova proposta para realização do controle dinâmico de sistemas;
- Aplicação de um método de validação da nova proposta;
- Investigação das possibilidades e áreas distintas de aplicação;
- Ampliação do conhecimento sobre a LPAET sob uma perspectiva até então não explorada;
- Possibilitar uma linha de pesquisa tendo como base o estudo da LPA $E\tau$ aplicada ao controle de sistemas;
- Evidenciar possibilidades de trabalhos futuros:

Conclusão

Sugestões para trabalhos futuros:

- Controle de sistemas não lineares;
- Aplicar o controlador LPA $E\tau$ em um sistema de segunda ordem e avaliar as implicações, limitações e potenciais;
- Controle de sistemas críticos;
- Utilizar um sistema operacional de tempo real para geranciar o controlador;
- lacktriangle Melhoria da geração do parâmetro δ , utilizando algum algoritmo adaptativo, inteligência alrificial ou alguma técnica que permita um melhor ajuste deste valor de correção.

Referências

DA SILVA FILHO, J. I. Métodos de aplicações da lógica paraconsistente anotada de anotação com dois valores-lpa2v. Revista Seleção Documental, Santos, v. 1, n. 1, p. 18–25, Março 2006.

🗐 DA SILVA FILHO, J. I.; ABE, J. M. Aspectos de lógica e teoria da ciência: Pesquisa e métodos de aplicações da lógica paraconsistente anotada em sistemas de inteligência artificial. *Instituto de Estudos* Avançados da Universidade de São Paulo, São Paulo, p. 50-83, 2011.

KRAUSE, D. Lógica paraconsistente. Scientific American Brasil, São Paulo, n. 30, p. 70-77, Nov 2004.

NISE, N. Engenharia de sistemas de controle. 3ª. ed. Califórnia: LTC. 2009.

Agradecimentos

Agradeço a todos!

