Mech 325 Fluid Power Selection Guide

Learning Objectives

- To learn the basic specifications used in fluid power
- 2. To learn how actuators are sized
- To learn how pumps are sized
- 4. To learn basic motor selection

Fluid Power Selection Guide

Cushions

Top Level Design Requirements

- Application requirements include:
 - Loads (Recognize Mechanical Advantage)
 - Speeds
 - Power Supplies
 - Temperatures
 - Cleanliness
 - Etc.

applications of cylinders for providing a variety of fundamental mechanical motions.

STRAIGHT LINE TOGGLE 3RD CLASS LEVER THRUST INCREASED 2ND CLASS LEVER 1ST CLASS LEVER PRACTICALLY HORIZONTAL CONTINUOUS STRAIGHT LINE MOTION STRAIGHT LINE PARALLEL MOTION ROTARY MOTION STRAIGHT PUSH IN TWO DIRECTIONS MOTION MULTIPLIED 2.1 FAST ROTARY MOTION 4 POSITIVE POSITIONS MOTION TRANSFERRED USING WITH TWO CYLINDERS TRAMMEL PLATE TO A DISTANT POINT ENGINE BEARING STEEP SCREW NUT

Example

Working Pressure and Loads

theoretical push and pull forces for cylinders

CUSTOMARY U.S. UNITS

Cyt. Bore or Piston Rod. Dia.	Cyl. Bore Size	Area (sq. in.)		CYL	INDER AT				RCE IP		NDS		Displacement per inch
{in.}	(¢ mm)		50	80	100	500	750	1000	1500	2000	2500	3000	gf Stroke (gallons)
5/8	15.9	.307	15	25	31	154	230	307	461	614	768	921	.0013
1	25.4	.785	39	65	79	392	588	785	1,177	1			
1-3/8	34.9	1.490	75	119	149	745	1,118	1,490	2,235	2,980	3,725		
1-1/2	38.1	1.767	88	142	177	885	1,325	1,770	2,651	3,540		,	
1-3/4	44.5	2.410	121	193	241	1,205	1,808	2,410	3,615	4,820		7,230	1
2	50.8	3.140	157	251	314	1,570	2,357	3,140	4,713	6,280	7,850	9,420	
2-1/2	63.5	4.910	245	393	491	2,455	3,682	4,910	7,364	9,820		14,730	
3	76.2	7.070	354	566	707	3,535	3,502	7,070	10,604	14,140		21,210	l
3-1/4	82.6	8.300	415	664	830	4,150	6,225	8,300	12,450	16,600		24,900	
3-1/2	88.9	9.620	481	770	962	4,810	7,215	9,620	14,430	19,240		28,860	.0416
4	101.6	12.570	628	1,006	1,257	6,285	9,428	12,570	18,856	25,140	31,425	37,710	.0544
5	127.0	19.640	982	1,571	1,964	9,820	14,730	19,640		39,280	49,100	58,920	.0850
5-1/2	139.7	23.760	1,188	1,901	2,376	11,880	17,820	23,760	35,640		59,400	71,280	.1028
6	152.4	28.270	1,414	2,262	2,827	14,135	21,203	28,270	42,406	56,540	70,675	84,810	.1224
7	177.8	38.490	1,924	3,079	3,849	19,245	28,868	38,490	57,736	76,980		115,470	.1666
8	203.2	50.270	2,513	4,022	5,027	25,135	37,703	50,270	75,406	100,540			.2176
8-1/2	215.9	56.750	2,838	4,540	5,675	28,375	42,563	56,750		113,500	- ,		.2455
10	254.0	78.540	3,927	6,283	7,854	39,270	58,905	78,540		157,080			.3400
12	304.8	113.100	5,655	9,048	11,310	56,550	84,825		169,650				.4896

table b-1

NOTE: Deduct Force of Poston Rod Size from Bore Size for Pull Applications,

Cylinder Stroke Determination

- One must recognize that hydraulic actuators act as columns under load.
- Recall from solid mechanics that Euler Buckling utilizes an effective length based on the end constraints.

Rather than specifying the column's effective length, many design codes provide column formulas that employ a dimensionless coefficient K called the *effective-length factor*. K is defined from

$$L_e = KL \tag{13-10}$$

Specific values of K are also given in Fig. 13-12. Based on this generality, we can therefore write Euler's formula as

$$P_{\rm cr} = \frac{\pi^2 E I}{(KL)^2}$$
 (13-11)

OI

$$\sigma_{\rm cr} = \frac{\pi^2 E}{(KL/r)^2} \tag{13-12}$$

Here (KL/r) is the column's *effective-slenderness ratio*. For example, note that for the column fixed at its base and free at its end, we have K = 2, and therefore Eq. 13–11 gives the same result as Eq. 13–9.

Fig. 13-12

Supports for Cylinders Vary

Cylinder Mounting Types

CYLINDER MOUNTING CLASSES

FOR CYLINDERS THAT ARE RECOMMENDED TO 3000 PSI WORKING AND 5000 PSI NON SHOCK SERVICE

	CLASS 1 - GROUP 1	CLASS 2 - GROUP 2	CLASS 1 — GROUP 3
	FIXED MOUNTS which absorb force on cylinder centerline.	PIVOT MOUNTS which absorb force on cylinder centerline.	FIXED MOUNTS which do not absorb force on the centerline.
HEAVY-DUTY SERVICE		-1171	naguri markur um.
For Tension Loads —	Mtg. Styles HB, TC, E Mtg. Styles JB, TB, E	Mtg. Styles DD, D, DB, BB Mtg. Styles BB, DD, D, DB	Mtg. Styles C, CP Mtg. Styles C, CP
MEDIUM-DUTY SERVICE For Thrust Loads — For Tension Loads —	Mtg. Styles H, JB Mtg. Styles J, HB	<u>-</u>	Mtg. Styles G, GP, F, FP Mtg. Styles G, GP, F, FP
LIGHT-DUTY SERVICE For Thrust Loads — For Tension Loads —	Mtg. Style J Mtg. Style H	= ,,	Mtg. Styles CBP, CB * Mtg. Styles CBP, CB *

Mounting style CB recommended for maximum pressure of 500 p.s.i. in short stroke applications (to 5"), Longer strokes permit higher
pressures. The use of a thrust key is recommended with this mounting. For more detailed information see manufacturer's product catalog.

table b-3

noncenterline cylinder/support

Stroke Factors

Stroke Factors are "Effective Lengths" for Piston Rods

piston rod - stroke selection table

RECOMMENDED MOUNTING STYLES FOR MAXIMUM STROKE AND THRUST LOADS	ROD END CONNECTION	CASE	STROKE
CLASS 1 — GROUPS 1 OR 3 Long stroke cylinders for thrust loads should be mounted using a heavy-duty mounting style at one end, firmly fixed	FIXED AND RIGIDLY GUIDED.	1 1111	.50
and aligned to take the principle force. Additional mount- ing should be specified at the opposite end, which should be used for alignment and support. An intermediate sup- port may also be desirable for long stroke cylinders mount-	PIVOTED AND RIGIDLY GUIDED		.70
ed horizontally. Machine mounting pads can be adjustable for support mountings to achieve proper alignment.	SUPPORTED BUT NOT RIGIDLY GUIDED		2.00
CLASS 2 — GROUP 2 Style — Trunnion on Head	PIVOTED AND RIGIDLY GUIDED	ıv 📗	1,00
Style - Intermediate Trunnion	PIVOTED AND RIGIDLY GUIDED	v []	: 1.50
Style — Trunnion on Cap or Style — Clevis on Cap	PIVOTED AND RIGIDLY GUIDED	vı 🔟 🖳	2.00

How to Use the Table

The selection of a piston rod for thrust (push) conditions requires the following steps:

- 1. Determine the types of cylinder mounting style and rod end connection to be used. Then consult the table 4 [page b-5] and find the "stroke factor" that corresponds to the conditions used.
- 2. Using this stroke factor, determine the "basic length" from the equation:

Basic = Actual X Stroke Length = Stroke X Factor

Determination of Rod Diameter

Stop Tubes

Stop Tube

On applications where it is necessary to allow the piston to "bottom out" on the front end, cylinders may be ordered with a stop tube. The stop tube should especially be considered on long strokes if the length between supports exceeds 10 times the rod diameter.

Piston Speed

table b-5

One of the factors involved in determining the speed of a hydraulic cylinder piston is fluid flow in connecting lines, generally measured in gallons per minute, introduced to, or expelled from, cap end cylinder port. (Due to piston rod displacement, the flow at head end port will be less than at cap end.) Fluid velocity, however, is measured in feet per second. In connecting lines this velocity should generally be limited to 15 feet per second to minimize fluid turbulence, pressure loss and hydraulic shock.

ES .		TON OD		FLU										
CYLINDER BORE-INCHES	AINCHES	AREA SO. IN.	CYLINDER NET AREA SO. IN.	AT 10 PER M PIST VELO	FT. INUTE ON		THROUG	FLUID VI H EXTRA					SPEED.	
	à			G.P.M.	C.F.M.	1/4	3/8	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2
	0	0	0.785	0.41	0.054	1.82	0.92	0.56	0.30	0.183	0.102	0.074	0.045	
1	1/2	0.196	0.589	0.30	0.041	1.33	0.68	0.41	0.21	0.134	0,075	0.055	0.033	
	5/8	0.307	0,478	0.16	0.033	0.71	0.36	0.22	0.12	0.071	0.040	0.029	0,017	
	0	0	1.77	0.92	0.123	4.09	2.09	1.259	0.680	0.410	0.230	0.167	0.100	
11/2	5/8	0.307	1.46	0.76	0.101	3.38	1.73	1.040	0.562	0.338	0.190	0.138	0.082	
	1	0.785	0.98	0.51	0.068	2.27	1.16	0.699	0.378	0.228	0.128	0.093	0.055	
	0	0	3.14	1.63	0.218	7.27	3.71	2.238	1.209	0.728	0,408	0.296	0.177	
	5/8	0.307	2.84	1.48	0.197	6.56	3.35	2.019	1.091	0.657	0,368	0.267	0.160	
2	1	0.785	2.36	1.23	0.164	5.45	2.79	1.678	0.907	0.546	0.306	0.222	0.133	
	1-3/8	1,485	1.66	0.86	0.115	3.84	1.96	1.180	0.638	0,384	0.215	0.156	0.094	
	0	0	4.91	2.55	0.341	11.36	5.80	3.496	1.890	1.138	0.638	0.463	0.277	
	5/8	0.307	4.60	2.39	0.319	10.65	5.44	3.278	1.771	1,067	0.598	0.434	0.260	
2%	1	0.785	4.12	2.14	0.286	9.54	4.87	2.937	1.587	0.956	0.536	0.389	0.233	
- /2	1-3/8	1,485	3.42	1.78	0.237	7,93	4.05	2.439	1.318	0.794	0.445	0.323	0.193	
	1-3/4	2,405	2,50	1.30	0.174	5.96	2.96	1.783	0.963	0,580	0.325	0.236	0.141	
_	0	0	8.30	4.31	0.576	19.20	9.81	5.909	3.193	1.923	1.078	0.783	0.468	
	1	0.785	7.51	3.90	0.521	17.38	8.88	5.349	2.891	1.741	0.976	0.708	0.424	
3%	1-3/8	1.485	6.81	3.54	0.473	15.77	8.05	4.851	2,622	1.579	0.885	0.642	0.384	
3/4	-	2.405	5.89	3.06	0.409	13.64	6.96	4.196	2.268	1.366	0.765	0.556	0.333	
	1-3/4		5.15	2.68	0.357	11.93	6.09	3.671	1.984	1.195	0.670	0.486	0.291	
	2	3.142	12.57	6.53	0.872	29.09	14.85	8.95	4.84	2.91	1.63	1.19	0.709	
	0	0	-		0.818	27.27	13.93	8.39	4.54	2.73	1.53	1.11	0.665	
	1	0.785	11.78	6.12	0.769	25.65	13.10	7.89	4.27	2.57	1.44	1.05	0.625	
4	1-3/8	1,485	11.08	5,76	-		12.01	7.24	3.91	2.36	1.32	0.96	0.574	
	1-3/4	2,405	10.16	5.28	0.705	23.52		6.71	3.63	2.19	1.22	0.89	0,532	
	2	3.142	9,42	4.89	0.654	21.82	11.14	-		1.78	1.00	0.72	0.432	
	2-1/2	4.909	7.66	3.98	0.532	17.73	9.05	5.45	2.95	4.55	2.55	1.85	1,108	
	0	0	19.64	10.20	1.363	45.45	23.21	13.99	7,56		2.45	1.78	1.064	-
	1	0.785	18.85	9.79	1.308	43.64	22.28	13.43	7,26	4.37		1.71	1.024	
	1-3/8	1.485	18.15	9.43	1,260	42.01	21.45	12.93	6.99	4.21	2.36			
5	1-3/4	2,405	17.23	8,95	1.196	39.88	20.37	12.27	6.63	3,99	2.24	1.63	0.973	
J	2	3.142	16,49	8.57	1.144	38.18	19.50	11.75	6.35	3.82	2.14	1.56	0.931	*****
	2-1/2	4.909	14.73	7,65	1.022	34.09	17.41	10.49	5.67	3,41	1.91	1.39	0.831	
	3	7.069	12.57	6.53	0.872	29.09	14.85	8.95	4.84	2.91	1.63	1.19	0,709	
	3-1/2	9.621	10.01	5.21	0.695	23.18	11.84	7.13	3.86	2.32	1.30	0.95	0.565	
	0	0	28.27	14.69	1.962	65.45	33.42	20.14	10.88	6.55	3.67	2.67	1,596	
	1-3/8	1.485	26.79	13.92	1.859	62.01	31.67	19.08	10.31	6.21	3,48	2,53	1.512	
	1-3/4	2.405	25.87	13.44	1.795	59.68	30.58	18.43	9.96	5.60	3.36	2.44	1.460	
6	2	3.142	25.13	13.06	1.744	58.18	29.71	17.90	9.67	5.83	3.27	2.37	1.418	
U	2-1/2	4,909	23,37	12.14	1.622	54.1	27.6	16.64	8.99	5.42	3.04	2.20	1.32	
	3	7.069	21.21	11.02	1.472	49.1	25.1	15.10	8.16	4,92	2.76	2.00	1.20	
	3-1/2	9.621	18.65	9.69	1.294	43.2	22.1	13.29	7.18	4.32	2.42	1.76	1.05	
	4	12.566	15.71	8.16	1.090	36.4	18.6	11.19	6.05	3.64	2.04	1.48	0.89	

MECH 325

Piston Acceleration

$$g = \frac{V^2}{S} \times .0000517$$

Nomenclature

V = Velocity in feet per minute

S = Distance in inches

= Force in pounds

W = Weight of load in pounds

= Force factor

f = Friction of load on machine ways in pounds

Power Requirements

electric motor horsepower

ELECTRIC MOTOR HORSEPOWER REQUIRED TO DRIVE A HYDRAULIC PUMP

GPM	100	200	250	300	400	500	750	1000	1250	1500	2000	2500	3000
	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PSI	PS1	PSI	PS1
1/2	.04	.07	.09	.11	.14	.18	.26	.35	.44	.53	.70	.88	1,10
1	.07	.14	.18	.21	.28	.35	.52	.70	.88	1.05	1.40	1.76	1,92
1-1/2	.10	.21	.26	.31	.41	.52	.77	1.03	1.29	1.55	2.06	2.58	3,09
2	.14	.28	.35	.42	.56	.70	1.04	1.40	1.76	2.10	2.80	3.53	4.20
2-1/2	.17	.34	.43	.51	.69	.86	1.29	1.72	2.15	2.58	3.44	4.30	5.14
3	.21	.42	.53	.63	.84	1,05	1.56	2.10	2.64	3.15	4.20	5.28	6.30
3-1/2	.24	.48	.60	.72	.96	1.20	1.80	2.40	3.00	3.60	4.80	6.00	7.20
4	.28	.56	.70	.84	1.12	1.40	2.08	2.80	3.52	4.20	5.60	7.04	8.40
5	.35	.70	.88	1.05	1.40	1.75	2.60	3.50	4.40	5.25	7.00	8.80	10.50
6	.42	.84	1.05	1.26	1.68	2.10	3.12	4.20	5.28	6,30	8.40	10.56	12.60
7	.49	.98	1.23	1.47	1.96	2.45	3.64	4.90	6.16	7.35	9.80	12.32	14.70
8	.56	1.12	1.40	1.68	2.24	2.80	4.16	5.60	7.04	8.40	11.20	14.08	16.80
9	.62	1.24	1.55	1.86	2.48	3.10	4.65	6.18	7.73	9.28	12.40	15.56	18.58
10	.70	1.40	1.75	2.10	2.80	3.50	5.20	7.00	8.80	10.50	14.00	17.60	21.00
11	.77	1.54	1.93	2.31	3.08	3.85	5.72	7.70	9.68	11.50	15.40	19.36	23.10
12	.84	1.68	2.10	2.52	3.36	4,20	6.24	8.40	10.50	12.60	16.80	21.00	25.20
13	.89	1.78	2.23	2.67	3.56	4,45	6.68	8.92	11.20	13.40	17.80	22.40	26.72
14	.96	1.92	2.40	2.88	3.84	4,80	7.20	9.60	12.00	14.40	19.20	24.00	28.80
15	1.05	2.10	2.63	3.15	4.20	5.25	7.80	10.50	13.20	15.70	21.00	26.40	31.50
16	1.10	2.20	2.75	3.30	4.40	5.50	8.25	11.00	13.80	16.50	22.00	27.60	33.00
17	1.17	2,34	2.93	3.51	4.68	5.85	8.78	11.70	14.60	17.60	23.40	29.20	35.10
18	1.26	2.52	3.15	3.78	5.04	6.30	9.35	12.60	15.80	18.90	25.20	31.60	37.80
19	1.30	2.60	3.25	3.90	5.20	6.50	9.75	13.00	16.30	19.50	26.00	32.60	39.00
20	1.40	2.80	3.50	4.20	5.60	7.00	10.40	14.00	17.60	21.00	28.00	35.20	42.00
25	1.75	3.50	4.38	5.25	7.00	8.75	13,10	17.50	21.90	26.20	35.00	43.80	52.50
30	2.10	4.20	5.25	6.30	8.40	10.50	15,60	21.00	26.40	31.50	42.00	52.80	63,00
35	2.45	4.90	6.13	7.35	9.80	12.20	18,40	24.50	30.60	36.70	49.00	61.20	73.50
40	2.80	5.60	7.00	8.40	11.20	14.00	20.80	28.00	35.20	42.00	56.00	70.40	84.00
45	3.15	6.30	7.87	9.45	12.60	15.80	23.60	31.50	39.40	47.30	63.00	78.80	94.50
50	3.50	7.00	8.75	10.50	14.00	17.50	26.00	35.00	44.00	52.50	70.00	88.00	105.00
55	3.85	7.70	9.63	11.60	15.40	19.30	28.60	38.50	48.40	57.80	77.00	96.80	115.50
60	4.20	8.40	10.50	12.60	16.80	21.00	31.20	42.00	52.80	63.00	84.00	105.60	126,00
65	4.55	9.10	11.40	13.60	18.20	22.80	33.80	45.50	57.20	68.20	90.00	114.40	136.50

table C-1

The table c-1, above is based on a pump efficiency of 85%, and is calculated from the formula:

					3	PHAS	SE M	ото	R ST	ART	ERS					_						_
1/2 TO 20 H.P. MGTOR H.P. 3 Ø	1/2		3/4		1		1-1/2	!	2		3		5		7-1/2	!	10		15		20	
VOLTAGE	220	440	220	440	220	440	220	440	220	440	220	440	220	440	220	440	220	440	220	440	220	440
Nema Starter Size Full Load Current Fuses — Amps { Std. N.E.C. Dual Element Circuit Breaker Max. Amps. Minimum Wire Sizes { R. RW, T, TW RH	l 15	00 1.0 15 4 15 14	00 2.8 15 5 15 14	00 1.4 15 4 15 14	00 3.5 15 8 15 14	00 1.8 15 4 15 14	00 5.0 15 8 15 14	00 2.5 15 5 15 14	0 6.5 20 12 15 14	00 3.3 15 8 15 14	0 9.0 25 15 20 14	0 4.5 15 10 15 14	1 15 40 25 30 12	0 7.5 20 15 15 14	1 22 60 30 50 10	1 11 30 20 20 14	2 28 70 45 50 8	1 14 35 25 30 12	2 40 100 60 70 6	2 20 50 30 40 10	3 52 150 80 100 4	2 26 70 49 50 8
Always specify voltage and frequency,									''		'''	.,	,	17	10		, .	12	ъ	10	6	8

					3 PF	IASE	мот	OR S	TART	ERS										
25 TO 200 H.P. MOTOR H.P. 3 Ø	25		30		40		50		60		75		100		125		150		200	
VOLTAGE	220	440	220	440	220	440	220	440	220	440	220	440	220	440	220	440	220	440	220	440
Nema Starter Size ⊕ Full Load Current Fuses — Amps { Std. N.E.C. Dual Element Circuit Breaker Max. Amps, Minimum Wire Sizes { R, RW, T, TW RH	3 64 175 100 125 3	2 32 80 50 50 8	3 78 200 125 100 1	39 100 60 70 6	4 104 300 175 175 00	3 52 150 80 100 4 6	4 125 350 200 200 000 00	3 63 175 100 125 3	5 150 400 225 225 2000 000	4 75 200 125 125 2 3	5 185 500 300 300 300 0000	4 93 250 150 150 0	5 246 600 400 400 500 350	4 123 350 200 200 000 00	6 310 - 450 - -	5 155 400 250 250 250 0000 000	6 360 - 600 -	5 180 450 300 300 300 0000	6 480 - - - -	5 240 600 400 400 500 350
Always specify voltage and frequency,	L	_															l		Ì	

				SII	NGLE	PHA	SE N	ото	R ST	ART	ERS									
1/6 TO 5 H.P. MOTOR H.P. 1 ø	1/6		1/4		1/3		1/2		3/4		1		1-1/2		2		3		5	- 10
VOLTAGE	115	230	115	230	115	230	115	230	115	230	115	230	115	230	115	230	115	230	115	230
 Full Load Current Fuses — Amps. Std. N.E.C. 	4.4 15	2.2 15	5.8 20	2.9 15	7.2 25	3.6 15	9,8 30	4,9 15	13.8 45	6.9 25	16 50	8 25	20 60	10 30	24 80	12 40	34 100	17 60	56	28 90
Circuit Breaker Max. Amps. Min. Wire Sizes – R, RH, RW, T, TW	15 14	15 14	15 14	15 14	15 14	15 14	30 14	15 14	40 12	20 14	40 12	20 14	50 10	30 14	70 10	30 14	100 6	50 10	-	70 8

				W	IRE 8	& CO	NDU	IT SI	ZES			_								
WIRE SIZE AWG or MCM	14	12	10	8	6	4	3	2	1	0	00	000	0000	250	300	350	400	500	750	1000
MAXIMUM 3 WIRES IN CONDUIT CON	15 15 1/2	20 20 1/2	30 30 3/4	40 45 3/4	55 65 1	70 85 1-1/4	80 100 1-1/4	95 115 1-1/4	110 130 1-1/2	125 150 2	145 175 2	165 200 2	195 230 2-1/2	215 255 2-1/2		260 310 3	280 335 3	320 380 3	400 475 3-1/2	455 545
Volts Drop Per Ampere (1 Phase Volts Per 100 Ft. – 80% P.F. (3 Phase Volts	.4762 .4167	.3125 .2632	.1961 .1677	.1250 .1087	.0833 .0714	.0538 .0463	.0431 .0379	.0370 .0323	.0323 .0278	.0269 .0231	.0222 .0196	.0190 .0163	.0161 .0139	.0147 .0128	.0131	.0121 .0106	.0115	.0101	nnec	.0081

standard enclosures for electric motors

Open

The open motor is one having ventilating openings which permit passage of external cooling air over and around the windings.

Drip-Proof

The drip-proof motor is an open motor in which ventilating openings are so constructed that drops of liquid or solids falling on the machine at any angle not greater than 15 degrees from the vertical cannot enter the machine.

Guarded

A guarded motor is an open motor in which ventilating openings are limited to specified size and shape to prevent insertion of fingers or rods to avoid accidental contact with rotating or electrical parts.

Splash-Proof

A splash-proof motor is an open motor in which ventilating openings are so constructed that drops of liquid or solid particles falling on the machine or coming toward the machine in a straight line at any angle not greater than 100 degrees from the vertical cannot enter the machine.

Totally-Enclosed

A totally-enclosed motor is a motor so enclosed as to prevent the free exchange of air between the inside and outside of the case, but not airtight.

Totally-Enclosed Nonventilated (TENV)

A totally-enclosed nonventilated (TENV) motor is a totally-enclosed motor which is not equipped for cooling by means external to the enclosing parts.

Totally-Enclosed Fan-Cooled (TEFC)

A totally-enclosed fan-cooled (TEFC) motor is a totally enclosed motor with a fan to blow cooling air across the external frame. It is a popular motor for use in dusty, dirty, and corrosive atmospheres.

Encapsulated

Encapsulated motor is an open motor in which the windings are covered with a heavy coating of material to protect them from moisture, dirt, abrasion, etc. Some encapsulated motors have only the coil noses coated. In others, the encapsulation material impregnates the windings even in the coil slots. With this complete protection, the motors can often be used in applications which formerly demand totally enclosed motors.

Explosion-Proof

An explosion-proof motor is a totally enclosed motor designed and built to withstand an explosion of gas or vapor within it, and to prevent ignition of gas or vapor surrounding the machine by sparks, flashes or explosions which may occur within the machine casing.

three-phase motor design

Design "B" — A Design "B" motor is a 3-phase squirrel-cage motor designed to withstand full-voltage starting and developing lock-rotor and breakdown torques adequate for general application.

Design "C" — A Design "C" motor is a 3-phase squirrel-cage motor designed to withstand full-

voltage starting, developing locked-rotor torque for special high torque applications.

Design "D" — A Design "D" motor is a 3-phase squirrel-cage motor designed to withstand full-voltage starting, developing 275 percent locked-rotor torque (generally referred to as a "high slip" motor).

Power Take Off (PTO)

PTO TORQUE & HORSEPOWER RATINGS

Intermittent service refers to an On-Off operation under load. If maximum HP and/or torque is used for extended periods of time, (5 min. or more every 15 min.) this is considered "Continuous Service" and HP rating of PTO should be reduced by multiplying intermittent value below by .70. Applications with PTO output shaft speed above 2000 RPM, regardless of duration, are to be considered "Continuous" duty. MAX rated output shaft speed for all Muncie PTOs is 2500 RPM.

Fire Pump applications are calculated within a different category listed on page 3 and are derated by multiplying intermittent value below by .80.

Below is a chart showing the Intermittent and calculated continuous Torque rating of the PTOs included in this catalog. The Application pages may have lower ratings for these PTOs listed. The Application page rating may be adjusted to limit the PTO output to a rating which will not exceed the transmission manufacturers rating. The transmission manufacturer does not differentiate between Intermittent and Continuous; therefore, the Application page rating is never to be exceeded. Refer to this page when there is a question of the rating (Intermittent or Continuous) for the PTO as it is manufactured.

PTO Series	SPEED RATIO	INTERMITTENT HP@1000 RPM	INTERMITTENT Torque LBS. FT.	CONTINUOUS Torque LBS. FT.	INTERMITTENT [KW]@1000 RPM	INTERMITTENT TORQUE (NM)	CONTINUOUS TORQUE [NM]
SG	10	25	130	91	[19]	[176]	[123]
TG	04	54	285	200	[40]	[386]	[270]
	05	51	270	189	[38]	[366]	[256]
	06	47	245	172	[35]	[332]	[232]
	07	44	230	161	[33]	[312]	[218]
	08	44	230	161	[33]	[312]	[218]
	09	39	205	144	[29]	[278]	[195]
	12H	40	180	126	[30]	[244]	[171]
	13H	40	180	126	[30]	[244]	[171]
	15H	37	195	137	[28]	[264]	[185]
	18H	33	175	123	[25]	[237]	[166]
CS6/8	03	57	300	210	[43]	[407]	[285]
	04	57	300	210	[43]	[407]	[285]
	05	57	300	210	[43]	[407]	[285]
	06	57	300	210	[43]	[407]	[285]
	07	57	300	210	[43]	[407]	[285]
	09	52	275	193	[39]	[373]	[261]
	12	52	275	193	[39]	[373]	[261]
	14	52	275	193	[39]	[373]	[261]
SH6/8	05	76	400	280	[57]	[542]	[379]
	07	76	400	280	[57]	[542]	[379]
	09	71	375	263	[53]	[508]	[356]
	12	62	325	228	[46]	[441]	[309]
	13	62	325	228	[46]	[441]	[309]
RG	13	26	140	N/A	[19]	[190]	N/A
RL	03	38	200	N/A	[28]	[271]	N/A
	05	38	200	N/A	[28]	[271]	N/A
82	05	95	500	350	[71]	[678]	[475]
	08	85	450	315	[63]	[610]	[427]
	10	78	410	287	[58]	[556]	[389]
	12	71	375	263	[53]	[508]	[356]
	13	71	375	263	[53]	[508]	[356]
	15	67	350	245	[50]	[475]	[332]
	19	57	300	210	[43]	[407]	[285]

PT0 SERIES	SPEED RATIO	INTERMITTENT HP@1000 RPM	INTERMITTENT TORQUE LBS. FT.	CONTINUOUS Torque LBS. FT.	INTERMITTENT [KW]@1000 RPM	INTERMITTENT Torque [nm]	CONTINUOUS Torque [nm]
83	05	95	500	N/A	[71]	[678]	N/A
	06	95	500	N/A	[71]	[678]	N/A
	12	71	375	N/A	[53]	[508]	N/A
FR62	06	29	150	105	[22]	[203]	[142]
FR63	06	36	190	133	[27]	[258]	[181]
FR64	06	36	190	133	[27]	[258]	[181]
GA6B	05	30	158	111	[22]	[214]	[150]
GM6B	05	30	158	111	[22]	[214]	[150]
GB10	06	42	220	154	[31]	[298]	[209]
	07	36	190	133	[27]	[258]	[181]
	09	29	150	105	[22]	[203]	[142]
CD10	05	76	400	280	[57]	[542]	[379]
	06	73	385	270	[54]	[522]	[365]
	07	68	360	252	[51]	[488]	[342]
	08	64	336	235	[48]	[456]	[319]
	10	59	310	217	[44]	[420]	[294]
	12	50	260	182	[37]	[352]	[246]
	15	43	225	158	[32]	[305]	[214]
CD40	07	114	600	420	[85]	[813]	[569]
	12	93	490	343	[70]	[664]	[465]
CS10	05	95	500	350	[71]	[678]	[475]
/11	06	91	480	336	[68]	[651]	[456]
	07	86	450	315	[64]	[610]	[427]
	08	80	420	294	[60]	[569]	[398]
	10	73	385	270	[54]	[522]	[365]
CS20	06	62	325	228	[46]	[440]	[308]
/21	07	58	305	214	[43]	[414]	[290]
	08	56	295	207	[42]	[400]	[280]
	10	55	290	203	[41]	[393]	[275]
	12	48	250	175	[36]	[338]	[237]
	15	38	200	140	[28]	[271]	[190]
CS41	07	114	600	420	[85]	[813]	[569]
	10	103	545	382	[76]	[739]	[517]
	12	93	490	343	[70]	[664]	[465]