CS 330: Network Applications & Protocols

Network Layer

Galin Zhelezov
Department of Physical Sciences
York College of Pennsylvania

Overview of Network Layer

- Introduction
- Virtual Circuit and Datagram Networks*
- Router Architectures
- IP: Internet Protocol
- Routing algorithms
- Routing in the Internet
- Broadcast and multicast routing

Overview of Network Layer

- Introduction
- Virtual Circuit and Datagram Networks*
- Router Architectures
- IP: Internet Protocol
- Routing algorithms
- Routing in the Internet
- Broadcast and multicast routing

Protocol Layers

Top-Down Approach

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Network Layer

- Network layer provides host to host communication service
 - Network layer protocols in every host, router
 - A router is used to examine the header fields of all IP datagrams passing through it

Two Key Network-Layer Functions

- Forwarding move packets from a single router's input to the appropriate router output
 - Happens within a single router
 - Routers contain a forwarding table to determine output

- Routing determine the complete route taken by packets from the source host to the destination host
 - Complete route may include multiple routers
 - Requires routing algorithms and knowledge of other routers on the network
 - Routing algorithms are used to update a router's forwarding tables

Interplay Between Routing and Forwarding

- Routing algorithm determines end-end-path through network
- Forwarding table determines local forwarding at this router

• Example:

Packet arrives with a header
value of 0111, it is output on port
2 of the router

Network layer: data plane, control plane

Data plane

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

Control plane

- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

A Third Network-Layer Function

Connection Setup

- 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- Before datagrams flow, two end hosts and intervening routers establish virtual connection
- Network vs. Transport layer connection service:
 - Network connection is between two hosts (may also involve intervening routers in case of Virtual Circuits)
 - Transport connection is between two processes

Overview of Network Layer

- Introduction
- Virtual Circuit and Datagram Networks*
- Router Architectures
- IP: Internet Protocol
- Routing algorithms
- Routing in the Internet
- Broadcast and multicast routing

Connection-oriented or Connectionless Service

- Network Layer can provide either connection-oriented or connectionless service (just like in the Transport Layer, TCP/UDP)
 - Virtual Circuit Networks provide Network Layer connection-oriented service
 - Datagram Networks provide Network Layer connectionless service
- Unlike the Transport Layer
 - Services are offered as a host-to-host services
 - The network can provide *either* connection-oriented *or* connectionless service, but not both
 - Implemented in the core of the network (i.e. the routers)

Virtual Circuit Networks

- Provide Network Layer connection-oriented service
- Requires that each connection be setup before data can flow
- Each packet carries a Virtual Circuit identifier (not destination host address)
- Every router on source-to-destination path maintains "state" for each connection that passes through it
- Router resources (e.g. bandwidth, buffers) may be allocated to a Virtual Circuit during setup
 - Dedicated resources = Predictable service

Virtual Circuit Implementation

A Virtual Circuit consists of:

- (1) A path between the source and destination hosts
 - This path is made of a series of links and routers
- (2) Virtual Circuit numbers, one number for each link along the path
- (3) Entries in the forwarding tables of the routers along the path
- A packet belonging to virtual circuit carries a virtual circuit number (rather than dest address)
 - VC number can be changed on each link
 - At each router along the path, a new VC number comes from the forwarding table

Virtual Circuit Forwarding Table

Each VC router maintains connection state information

- When a connection is setup, entries are added to the VC forwarding table
- When a connection is torn down, entries are removed from the table

Incoming Interface	Incoming VC #	Outgoing Interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
•••	•••		

Virtual Circuits Signaling Protocols

- Protocols used to setup, maintain, and teardown VCs
 - All protocol message pass through all routers on the way to the destination
 - As messages pass through routers, routers setup the VC

Datagram Networks

- Requires no call setup at network layer
- Routers contain no state about end-to-end connections
- No network-level concept of a "connection"
- Packets are forwarded using destination host address
 - To send a packet, a host puts a destination address on the packet and simply inserts it into the network

Datagram Forwarding Table

- Each router contains a forwarding table that maps a packet's destination address to an output link on the router
 - 4 billion possible IP addresses so rather than list individual destination addresses, list range of addresses (aggregate table entries)
 - Use Longest-Prefix Matching to determine which address-range a packet falls into

Building a Router Forwarding Table

- Given a router with multiple output links, specify ranges of addresses to determine which addresses are output on which output link
 - Example below shows a router with four output links
 - Packet with destination 200.23.24.17 would go out on interface 1
 - Packet with destination 122.17.10.1 would go out on interface 3

Destination Address Ranges	Destination Address Ranges (again)	Outgoing Link Interface
11001000 00010111 00010000 00000000 - 11001000 00010111 00010111 11111111	200.23.16.0 - 200.23.23.255	0
11001000 00010111 00011000 00000000 - 11001000 00010111 00011000 11111111	200.23.24.0 - 200.23.24.255	1
11001000 00010111 00011001 00000000 - 11001000 00010111 00011111 11111111	200.23.25.0 - 200.23.31.255	2
otherwise		3

Longest-Prefix Matching

- An implementation of ranged matching
- When searching the forwarding table for given destination address, use the longest address prefix that matches the destination address
 - Example 1: $11001000 00010111 00010110 10100001 \rightarrow 0$
 - Example 2: 11001000 00010111 00011000 10101010 \rightarrow 1
 - Matches multiple table entries, send out on interface that has the longest match

Destination Address Ranges	Destination Address Ranges (again)	Outgoing Link Interface
11001000 00010111 00010*** *****	200.23.16.0 - 200.23.23.255	0
11001000 00010111 00011000 *****	200.23. <mark>24.0 -</mark> 200.23.24.255	1
11001000 00010111 00011*** *****	200.23. <mark>24.0 -</mark> 200.23.31.255	2
otherwise		3

Datagram Network or Virtual Circuit Network

- Internet (Datagram Network)
 - Data exchange among computers
 - "Elastic" service, no strict timing requirements
 - Many link types
 - Different characteristics
 - Uniform service difficult
 - "Smart" end systems (computers)
 - Can adapt, perform control, error recovery
 - Simple inside network, complexity at "edge"

- ATM (Virtual Circuit Network)
 - Evolved from telephony
 - Like human conversation:
 - Strict timing, reliability requirements
 - Need for guaranteed service
 - "Dumb" end systems
 - Telephones
 - Complexity inside network

Overview of Network Layer

- Introduction
- Virtual Circuit and Datagram Networks*
- Router Architectures
- IP: Internet Protocol
- Routing algorithms
- Routing in the Internet
- Broadcast and multicast routing

Router Architecture Overview

- Routers have two key functions
 - Run routing algorithms
 - Forward datagrams from incoming to outgoing link

Input Port Functions

Decentralized Switching

- Given datagram destination, lookup output port using the forwarding table in input port memory
- Complete input port processing at 'line speed', or close to it
- If datagrams arrive faster than they can be processed, queue them up

Switching Fabrics

- Used to transfer packets from input buffers to appropriate output buffers
- Switching rate is the rate at which packets can be transfer from inputs to outputs
 - Often measured as multiple of input/output line rate
 - If N inputs, switching rate N times line rate is desirable
- Three types of switching fabrics

Switching Via Memory

Used in first generation routers

- Traditional computers with switching under direct control of CPU
- Packet copied to system's memory
- Speed limited by memory bandwidth (2 bus crossings per datagram)

Still used in some systems today

Switching Via a Bus

- Datagram is transferred from input port memory to output port memory via a shared bus
 - Prepend header internal to router to get packet to appropriate output port
- Must deal with bus contention
 - Switching speed limited by bus bandwidth
- Example: 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

Switching Via Interconnection Network

- Overcomes bus bandwidth limitations
- Banyan networks, crossbar, other interconnection nets
 - Interconnect contains 2*N buses that connects N input ports to N output ports
- Can forward multiple packets at the same time (unless they are destined for same output)
- Example: The Cisco 12000 switches 60
 Gbps through the interconnection network

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later:
 green packet
 experiences HOL
 blocking

Output Ports

- Buffers outgoing datagrams as required
 - When datagrams arrive from fabric faster than they can be transmitted
 - Datagram (packets) can be lost due to congestion, lack of buffers
- Scheduling to choose among queued datagrams for transmission
 - Priority scheduling who gets best performance, network neutrality
- Data Link Layer communication with router/host at other end of outgoing link
- Physical Layer bit transmission

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gpbs link: 2.5 Gbit buffer
- recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

Scheduling mechanisms

- · scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy: if packet arrives to full queue: who to discard?
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

Scheduling policies: priority

priority scheduling: send highest priority queued packet

- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - real world example?

Scheduling policies: still more

Round Robin (RR) scheduling:

- multiple classes
- cyclically scan class queues, sending one complete packet from each class (if available)
- real world example?

Scheduling policies: still more

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?

