PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-247990

(43) Date of publication of application: 19,09,1997

(51)Int.CI.

HO2P 7/63 HO2M 7/48

(21)Application number: 08-051717

(71)Applicant: YASKAWA ELECTRIC CORP

(22)Date of filing:

08.03.1996

(72)Inventor: RYU HIDETOSHI

SOKUZA SATORU

(54) INVERTER DEVICE AND METHOD FOR CONTINUING OPERATION AT INSTANTANEOUS BREAK

(57)Abstract:

PROBLEM TO BE SOLVED: To continue the operation even in a system with large load inertia by realizing the PI control of the value multiplied by two kinds of deceleration rates to control the deceleration time, and stopping the deceleration if the voltage reaches the value before detecting the power failure, or the DC intermediate voltage is boosted during the deceleration. SOLUTION: A PI controller 16 operates the deceleration rate 1 by the target value of the DC intermediate voltage and the detected value so that an AC motor is smoothly decelerated in a short transmission interruption, and operates the deceleration rate 2 by the change of rate of the DC intermediate voltage, and realizes the PI control by the value multiplied by these two deceleration rates. The rotational speed of an AC motor is smoothly reduced. When a voltage boosting detection circuit 17 detects the boosting of the DC intermediate voltage, or the boosting of the voltage over the voltage before detecting the power failure is

detected by a voltage detection circuit 18, a deceleration stopping means 19 is operated to stop the deceleration. The dropping/boosting ratio of the DC intermediate voltage is reduced to continue the operation irrespective of the size of the load inertia.

LEGAL STATUS

[Date of request for examination]

23.04.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3201460

[Date of registration]

22.06.2001

[Number of appeal against examiner's decision

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

、(19)日本国特許庁(JP)

(12) 特 許 公 報 (B2)

(11)特許番号

特許第3201460号

(P3201460)

(45)発行日 平成13年8月20日(2001.8,20)

(24)登録日 平成13年6月22日(2001.6,22)

(51) Int.Cl.'		徽別記号	ΡI		
H02P	7/63	302	H 0 2 P	7/63	302H
H02M	7/48		H02M	7/48	F
		7			M

謝求項の数2(全 7 頁)

(21)出顧番号	特願平8-51717	(73)特許権者	000006622	
			株式会社安川電機	
(22)出顧日	平成8年3月8日(1996.3.8)		福岡県北九州市八幡西区黒崎城石2番1	
			号	
(65)公開番号	特別平9-247990	(72)発明者	館 英俊	
(43)公開日	平成9年9月19日(1997.9.19)		福岡県北九州市八幡西区黒崎城石2番1	
審查請求日	平成11年4月23日(1999.4.23)	*	号 株式会社安川電機内	
	•	(72)発明者	則座 哲	
			福岡県北九州市八幡西区黒崎城石2番1	
	4:		号 株式会社安川電機内	
		(74)代理人	100088328	
			弁理士 金田 暢之 (外2名)	
		審査官	片岡 弘之	
		-		
			最終買に続く	
		II .		

(54) 【発明の名称】 インパータ装置およびその瞬停時運転継続方法

(57) 【特許請求の範囲】

【請求項1】 交流電動機を負荷とするPWMインパータ装置における交流電源の瞬時停電に対処する運転継続方法において、停電検出信号によりインパータは減速を開始させ、減速中は直流中間電圧が一定となるように、直流中間電圧の目標値と検出値より減速レート1を演算し直流中間電圧の変化率より減速レート2を演算し、前記2つの減速レートを乗じた値をPI制御することにより減速時間を制御し、停電検出前の電圧になるか減速中に直流中間電圧が上昇すると、減速を停止することを特 10 徴とするインパータの瞬停時運転継続方法。

【請求項2】 交流電動機を負荷とするPWMインバー 夕装置において、交流電源の瞬時停電を検出する停電検 出手段と、該停電検出手段からの停電検出出力でインバ ータにより交流電動機を減速させ、減速中は直流中間電 圧が一定となるように、直流中間電圧の目標値と検出値より減速レート1を演算し直流中間電圧の変化率より減速レート2を演算し、前記2つの減速レートを乗じた値をPI制御することにより減速時間を制御し、停電検出前の電圧になるか減速中に直流中間電圧が上昇すると、前記減速を停止させる減速時間制御回路を有することを特徴とするインバータ装置。

【発明の詳細な説明】

--[-0-0-0 1]----

【発明の属する技術分野】本発明は、電動機駆動用イン パータ装置の瞬停時における運転継続技術に関する。

[0002]

【従来の技術】交流電源電圧の整流回路と、整流電圧の 平滑用であると共にインバータの直流中間回路をなす平 滑用コンデンサと、直流/交流変換をするインバータ部 .とを主な回路構成要素とし、交流電動機をその負荷となす電圧形インパータにおいて、従来は瞬停時の運転を継続する方法として、下記に示すような方法がとられていた。特開平6-165579号公報に開示された方法は、平滑用コンデンサの端子電圧(中間電圧)がレベル1以下に下がれば交流電動機を減速させ、減速に伴う回生電力により中間電圧がレベル2以上に上がれば交流電動機を増速させ、以後前記の如く中間電圧の増減に従い加減速制御を繰り返すことにより、中間電圧の降下率の

【0003】また、特開平4-91696号公報に開示された方法は、瞬停時の停電検出回路の作動によりインパータ回路の速度指令を僅かに下げる減速度指令を送出し、電動機を回生動作をさせることで、インパータ回路電圧の低下を防止するものである。さらに、特開平5-308781号公報に開示されてた方法は、停電検出信号により交流電動機へのトルク指令を零とし磁束指令を小さくすることによって継続運転時の電力損失を小さくし、平滑コンデンサに蓄えられたエネルギーで瞬停時の運転継続をまかなうようにしている。

[0004]

低減を図るものである。

【発明が解決しようとする課題】ところが、従来技術では、用途により負荷が変わるシステムでは、許容できる速度までの減速時間の設定が難しい。減速時間の設定が遅いと異常な低電圧になってしまったり、減速時間の設定が短いと減速と加速をくり返し、モータに振動を与える問題が生じたりする。特に負荷イナーシャが大きいシステムに適用した場合、直流母線電圧(VPN)の降下および上昇の変化が急峻なために制御不能となり、過電圧や低電圧保護が動作して運転継続できないという問題があった。そこで、本発明は、従来技術の問題点に鑑みて、負荷イナーシャが大きいシステムでも瞬停中に過電圧や低電圧保護が動作することなく、運転継続できることを目的とする。

[0005]

【課題を解決するための手段】上記問題を解決するため、本発明は、交流電動機を負荷とするPWMインパータ装置における交流電源の瞬時停電に対処する運転継続方法において、停電検出信号によりインパータは減速を開始させ、減速中は直流中間電圧が一定となるように、40直流中間電圧の変化率より減速レート1を演算し直流中間電圧の変化率より減速レート2を演算し、前記2つの減速レートを乗じた値をモータがスムーズに減速するようにPI制御することにより減速時間を制御し、停電検出前の電圧になるか減速中に直流中間電圧が上昇すると、減速を停止することを特徴とする。また、交流電動機を負荷とするPWMインパータ装置において、交流電源の瞬時停電を検出する停電検出手段と、該停電検出手段からの停電検出出力でインパータにより交流電動機を減速させ、減速中は直流中間電圧が一定とな50

るように、直流中間電圧の目標値と検出値より減速レート1を演算し直流中間電圧の変化率より減速レート2を演算し、前記2つの減速レートを乗じた値をモータがスムーズに減速するようにPI制御することにより減速時間を制御し、停電検出前の電圧になるか減速中に直流中間電圧が上昇すると、前記減速を停止させる減速時間制御回路を有することを特徴とする。

【0006】このような本発明の構成によれば、交流電源の瞬時停電発生時に、その負荷電動機に対するインパータの運転指令を、前記直流中間電圧の低下/上昇度合いをパラメータとして減速モードと減速停止モードを併用することによって、前記直流中間電圧の降下/上昇率を低減して運転継続を図ることができる。さらに、停電検出前の電圧になるか減速中に直流中間電圧が上昇すると、PI制御による減速を停止させる。

[0007]

【発明の実施の形態】本発明の実施の形態について図面 を用いて説明する。図1は本発明のインバータの装置全 体を示す概要構成図、図2は停電検出中の減速時間と周 波数指令を選択するシーケンス回路のプロツク図、図3 は停電検出中にPI制御で直流電圧が一定になるように 滅速時間を制御し、滅速中に直流電圧が上昇するか停電 検出前の電圧になると減速を停止する減速時間制御回路 のプロツク図、図4は停賃発生時のタイムチヤートであ る。図1において、主回路部は、交流電源から交流電力 を直流電力に変換する整流器1と、この整流器1からの 直流電力を平滑する平滑コンデンサ2と、この平滑コン デンサを介して送られる直流電力を任意の周波数に変換 するPWMインパータ回路3とから構成されている。ま た、4は交流電源側の電磁接触器であり、5はPWMイ ンバータ回路3の出力で駆動制御される交流電動機であ る。

【0008】また主回路部に接続する制御部は、図1に 示すように、出力周波数を設定する周波数設定器6と、 電動機5の加減速時間を設定する加減速時間設定器7 と、平滑コンデンサ2の直流電圧を検出する電圧検出回 路8と、停電を検出し停電検出中の減速時間と周波数指 令を設定するシーケンス回路9と、停電検出中にPI制 御で直流電圧が一定になるように減速時間を制御する減 速時間制御回路10と、設定された加減速時間で出力周 波数の加減速を行うソフトスタータ11と、このソフト スタータ11からの出力信号をもとにインパータ回路3 をPWM制御するPWM制御回路12と、このPWM制 御回路12からの出力信号をもとにインバータ回路3の トランジスタを駆動するベースドライブ回路13から構 成される。図2に示すように、シーケンス回路9は、電 圧検出回路8からの低電圧検出出力あるいは外部からの 停電検出出力に基づいて、停電時の周波数指令、減速時 間を選択するスイッチ手段21、22を有する。

【0009】また、図3に示すように、減速時間制御回

5

・路は大きくは2つに分けて構成され、1つは、減速時間制御のために、直流電圧の指令と検出値の偏差より減速時間を制御する減速レート制御回路14と、直流電圧の変化率より減速時間を制御する減速レート制御回路15と、PI制御器16とであり、いま1つは、停電中に減速を停止するために、直流電圧の上昇を検出する回路17と、直流電圧が停電検出前の電圧より上昇しているかを検出する回路18と、直流電圧の上昇を検出するか、または直流電圧が停電検出前の電圧より上昇すると減速を停止する回路19から構成される。次に、本実施例のインバータ装置における停電検出中の運転継続制御方法について説明する。なお、図4は本インバータ装置で停電が発生した時のタイムチャートで、(a)は交流電源の入切状態、(b)は停電検出用接点の開閉状態、

(c) は運転指令の状態、(d) は中間電圧 V P N の変化、および (f) はインバータの出力周波数をそれぞれ示す。

【0010】いま、交流電源の瞬時停電が発生すると、電磁接触器4(図1)が開になるか、又は平滑コンデンサ2の直流電圧が低電圧検出レベル以下になり直流電圧を検出する電圧検出回路8は停電を検出する。停電を検出すると、図2に示すように、停電検出中の信号が11、となり、この信号11、か、電圧検出回路8の検出出力によりシーケンス回路9は、スイッチ手段21、22によって周波数指令を0に切り替え、減速時間を設定された停電検出中の減速時間に切り替える。交流電動機5を駆動制御するインバータ3を運転状態から減速モードに変更させた場合、交流電動機の減速量に対応する回転エネルギーは、前記インバータ部を経由する回生電力となって前記直流中間回路をなす平滑用コンデンサ2を充電 30し、その端子電圧を上昇させる。

【0011】また、停電検出中の信号が11なると、図 3に示すように、電圧検出回路8より検出した直流電圧 が入力電圧の設定値 ×1.35になるように直流電圧の レベルと直流電圧の変化率を見ながら減速レートをPI 制御する。図3において、減速レート制御回路14のK 1は、直流電圧のレベルに応じて減速時間を制御する係 数(減速レート K1=1.0の時は設定した減速時間 で減速し、K1>1.0の時は減速時間が短くなり、K 1く1.0の時は減速時間が長くなる)であり、減速レ 40 ート制御回路15のK2は、直流電圧の変化率に応じて 減速時間を制御する係数である。減速レート制御回路1 4は、減速中に直流電圧の目標値とフィードバック値を 比較し、フィードバック値が目標値より高い場合、減速 レートの係数が1.0より小さい値となり減速時間が長 くなる。フィードバック値が目標値より低い場合、減速 レートの係数が1.0より大きい値となり減速時間が短 くなる。減速時間が短くなると、平滑コンデンサに回生 エネルギーが帰り、直流電圧が上昇する。また、減速レ ート制御回路15は、減速中に直流電圧の変化率をチェ 50

6

ックし、直流電圧が下降している場合は、減速レートを 1.0とし、設定した減速時間で減速する。直流電圧が 上昇している場合、減速レートは1.0より小さい値と なり、設定した減速時間より長い時間で減速する。減速 時間が長くなると、平滑コンデンサに回生エネルギーが 帰らず、直流電圧が上昇しない。

【0012】PI制御器16は、モータがスムーズに減速するように、直流電圧の目標値とフィードバック値より演算した減速レートと直流電圧の変化率より演算した減速レートを乗算した値で減速レーについてPI制御を行なう。このようにして、交流電動機の回転速度は、急激に低下することなく緩やかな低下にとどまり、瞬時の停電中に電動機を運転継続することになる。そして、負荷イナーシヤが大きく減速時間の設定が短い場合は、直流電圧が急激に上昇して過電圧が発生するため、電圧上昇検出回路17が直流電圧の上昇を検出するか、または直流電圧が停電検出前の電圧より上昇するのを電圧検出回路18で検出すると、減速停止手段19が作動して減速を停止するため、図3の回路の出力の減算周波数(ある一定時間で減速する周波数)を0にし停電中の減速を停止する。

【0013】インバータの交流電源の瞬時停電が回復すると、電磁接触器が閉でかつ、直流電圧が低電圧検出レベル以上になり、図2の停電検出信号が'0'となり、通常に設定された加減速時間で周波数設定値まで加速又は、減速する駆動制御を実行することになる。

[0014]

【発明の効果】以上述べたように、本発明によれば、交流電動機を負荷とするPWMインパータにおける交流電源の瞬時停電に対処する制御方法として、前記インパータの直流中間電圧の低下/上昇の度合いに応じて、前記インパータに対する運転指令を、PI制御による減速モードと減速停止モードを併用することによって、前記直流中間電圧の降下/上昇率の低減が図られ、負荷イナーシャの大小に関係なく、運転継続が可能となり、交流電動機をその主要構成要案となすライン設備等の運転の信頼性の向上を図ることができる。

【図面の簡単な説明】

【図1】本発明のインパータの装置全体を示す概要構成 図

【図2】停電検出中の減速時間と周波数指令を選択する シーケンス回路のプロツク図

【図3】停電検出中にPI制御で直流電圧が一定になるように減速時間を制御し、減速中に直流電圧が上昇するか停電検出前の電圧になると減速を停止する減速時間制御回路のプロツク図

【図4】停電が発生した時のタイムチャート 【符号の説明】

- 1 整流器
- 2 平滑コンデンサ

(4)

	, ,	8
. 3	PWMインパータ	12 PWM制御回路
4	電磁接触器	13 ベースドライブ回路
5	交流電動機	14 減速レート制御回路
6	周波数設定器	15 減速レート制御回路
7	加減速時間設定器	16 PI制御器
8	電圧検出回路	17 電圧上昇検出回路
9	シーケンス回路	18 停電前電圧検出回路
10	減速時間制御回路	19 減速停止手段
11	ソフトスタート	21、22 スイッチ手段

【図2】

[図1]

[図3]

[図4]

.フロントページの続き

(56) 参考文献 特開 昭60-170498 (JP, A) (58) 調査した分野 (Int. Cl. ⁷, DB名) 特開 昭64-81693 (JP, A) H02P 5/408 - 5/412 特開 平3-89895 (JP, A) H02P 7/628 - 7/632 特開 平4-156203 (JP, A) H02P 21/00 特別 平8-33394 (JP, A) H02M 7/42 - 7/98