Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Группа Р3340 Кафедра Систем Управления и Информатики

Лабораторная работа №8 "Экспериментальное построение областей устойчивости линейной системы на плоскости двух параметров"

Выполнил					
	(фамилия, и.о.)	(подпись)			
Проверил	(фамилия, и.о.)	(подпись)			
""20г.	Санкт-Петербург,	20г.			
Работа выполнена с оценко	й				
Дата защиты ""	_20г.				

Цель работы

Ознакомление с экспериментальными методами построения областей устойчивости линейных динамических систем и изучение влияния на устойчивость системы ее параметров.

Исходные данные

Необхожимо исследовать границу устойчивости системы при g=0 , y(0)=1 и $T_1=0.1$ изменяя T_2 от 0.1 до 10.

Модель системы представлена на рисунке 1.

Рис. 1 – Модель исследуемой системы

1 Устойчивость системы

На рисунках 2-4 показаны переходные характеристики системы при различных K.

Рис. 2 — Устойчивая система при ${
m K}=7$

Рис. 3 — Не устойчивая система при ${\rm K}=17$

Рис. 4 — Система на границе устойчивости при ${\rm K}=11.3$

2 Анализ устойчивости системы

Из модели исследуемой системы можно вывести передаточную функцию:

$$W(s) = \frac{K}{T_1 T_2 s^3 + (T_1 + T_2) s^2 + s + K}$$
(1)

Для анализа устойчивости системы составим матрицу Гурвица.

$$G = \begin{bmatrix} T_1 + T_2 & K & 0 \\ T_1 T_2 & 1 & 0 \\ 0 & T_1 + T_2 & K \end{bmatrix}$$
 (2)

Из этой матрицы можно вывести зависимость K от T_1 и T_2 :

$$K = \frac{T_1 + T_2}{T_1 * T_2} \tag{3}$$

Произведем расчет границы устойчивости аналитически и сравним К.

Таблица 1 – Зависимость коэффициента от ошибки

T_2	0.1	0.3	0.5	1	1.5	3	4.5	6	7.5	9	10
1 '	11.33						l			l	
K_e	11.3	4.6	3.3	2.3	2	1.6	1.5	1.5	1.4	1.4	1.4

На рисунке 5 построено отношение K расчетного, при увеличении T_2 и K экспериментального.

Рис. 5 – Граница устойчивости

Вывод

В данной работе, изменяя параметры K и T_2 , а T_1 оставляя неизменным, с помощью математического моделирования и аналитических методов мы построили границы устойчивости системы исходя из условия Γ урвица.

Данные, полученные при математическом моделировании и аналитическом методе совпали.