$Geometrie\ WS2018/19$

Dozent: Prof. Dr. Arno Fehm

10. Oktober 2018

In halts verzeichnis

Ι	Endliche Gruppen	2
	1 Erinnerung und Beispiele	2
II	Kommutative Ringe	5
Ш	Körpererweiterungen	6
Anl	hang	8
Inde	ex	8

Vorwort

Kapitel I

Endliche Gruppen

1. Erinnerung und Beispiele

▶ Erinnerung 1.1

Eine <u>Gruppe</u> ist ein Paar (G,*) bestehend aus einer Menge G und einer Verknüpfung $*: G \times G \to G$, dass die Axiome Assoziativität, Existenz eines neutralen Elements und Existenz von Inversen erfüllt, und wir schreiben auch G für die Gruppe (G,*). Die Gruppe G ist <u>abelsch</u>, wenn g*h=h*g für alle $g,h\in G$. Eine allgemeine Gruppe schreiben wir multiplikativ mit neutralem Element 1, abelsche Gruppen auch additiv mit neutralem Element 0.

Eine Teilmenge $H \subseteq G$ ist eine <u>Untergruppe</u> von G, in Zeichen $H \subseteq G$, wenn $H \neq \emptyset$ und H abgeschlossen ist unter der Verknüpfung und den Bilden von Inversen. Wir schreiben 1 (bzw. 0) auch für die triviale Untergruppe $\{1\}$ (bzw. $\{0\}$) von G.

Eine Abbildung $\varphi:G\to G'$ zwischen Gruppen ist ein Gruppenhomomorphismus , wenn

$$\varphi(g_1 \cdot g_2) = \varphi(g_1) \cdot \varphi(g_2) \quad \forall g_1, g_2 \in G$$

und in diesem Fall ist

$$Ker(\varphi) = \varphi^{-1}(\{1\})$$

der Kern von φ . Wir schreiben $\mathrm{Hom}(G,G')$ für die Menge der Gruppenhomomorphismen $\varphi:G\to G'$.

■ Beispiel 1.2

Sei $n \in \mathbb{N}$, K ein Körper und X eine Menge.

- (a) $\operatorname{Sym}(X)$, die $\operatorname{symmetrische} \operatorname{Gruppe}$ aller Permutationen der Menge X mit $f \cdot g = g \circ f$, insbesondere $S_n = \operatorname{Sym}(\{1, ..., n\})$
- (b) \mathbb{Z} sowie $\mathbb{Z}/n\mathbb{Z} = \{a + n\mathbb{Z} \mid a \in \mathbb{Z}\}$ mit der Addition
- (c) $GL_n(K)$ mit der Matrizenmultiplikation, Spezialfall $GL_1(K) = K^{\times} = K \setminus \{0\}$
- (d) Für jeden Ring R bilden die Einheiten R^{\times} eine Gruppe unter der Multiplikation, zum Beispiel $\operatorname{Mat}_n(K)^{\times} = \operatorname{GL}_n(K), \mathbb{Z}^{\times} = \mu_2 = \{1, -1\}$

■ Beispiel 1.3

Ist (G,\cdot) eine Gruppe, so ist auch (G^{op},\cdot^{op}) mit $G=G^{op}$ und $g\cdot^{op}h=h\cdot g$ eine Gruppe.

▶ Bemerkung 1.4

Ist G eine Gruppe und $h \in G$, so ist die Abbildung

$$\tau_h = \begin{cases} G \to G \\ g \mapsto gh \end{cases}$$

eine Bijektion (also $\tau_h \in \text{Sym}(G)$) mit Umkehrabbildung $\tau_{h^{-1}}$.

Satz 1.5

Sei G eine Gruppe. Zu jeder Menge $X\subseteq G$ gibt es eine kleinste Untergruppe $\langle X\rangle$ von G, die X enthält, nämlich

$$\langle X \rangle = \bigcap_{X \subseteq H \le G} H$$

▶ Bemerkung 1.6

Man nennt $\langle X \rangle$ die von X erzeugte von G. Die Gruppe G heißt endlich erzeugt , wenn $G = \langle X \rangle$ für eine endliche Menge $X \subseteq G$.

Satz 1.7

Ein Gruppenhomomorphismus $\varphi: G \to G'$ ist genau dann ein Isomorphismus, wenn es einen Gruppenhomomorphismus $\varphi': G' \to G$ mit $\varphi' \circ \varphi = \mathrm{id}_G$ und $\varphi \circ \varphi' = \mathrm{id}_{G'}$ gibt.

■ Beispiel 1.8

Ist G eine Gruppe, so bilden die <u>Automorphismen</u> $\operatorname{Aut}(G) \subseteq \operatorname{Hom}(G,G)$ eine Gruppe unter $\varphi \circ \varphi' = \varphi' \circ \varphi$. Für $\varphi \in \operatorname{Aut}(G)$ und $g \in G$ schreiben wir $g^{\varphi} = \varphi(g)$.

Satz 1.9

Einen Gruppenhomomorphismus $\varphi: G \to G'$ ist genau dann injektiv, wenn $\operatorname{Ker}(\varphi) = 1$.

■ Beispiel 1.10

Sei $n \in \mathbb{N}$, K ein Körper.

- (a) $\operatorname{sgn}: S_n \to \mu_2$ ist ein Gruppenhomomorphismus mit Kern die alternierende Gruppe A_n .
- (b) det: $GL_n(K) \to K^{\times}$ ist ein Gruppenhomomorphismus mit Kern $SL_n(K)$.
- (c) $\pi_{n\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, \ a \mapsto a + n\mathbb{Z}$ ist ein Gruppenhomomorphismus mit Kern $n\mathbb{Z}$
- (d) Ist A eine abelsche Gruppe, so ist

$$[n]: \begin{cases} A \to A \\ x \to nx \end{cases}$$

ein Gruppenhomomorphismus mit Kern A[n], die n-Torsion von A und Bild nA.

(e) Ist G eine Gruppe, so ist

$$\begin{cases} G \to G^{op} \\ g \mapsto g^{-1} \end{cases}$$

ein Isomorphismus.

Definition 1.11 (Zykel, disjunkte Zykel)

Seien $n, k \in \mathbb{N}$. Für paarweise verschiedene Elemente $i_1, ..., i_k \in \{1, ..., n\}$ bezeichnen wir mit $(i_1...i_k)$ des $\sigma \in S_n$ gegeben durch

$$\begin{split} &\sigma(i_j)=i_{j+1}\quad\text{für }j=1,...,k-1\\ &\sigma(i_k)=i_1\\ &\sigma(i)=i\quad\text{für }i\in\{1,...,n\}\backslash\{i_1,...,i_k\} \end{split}$$

Wir nennen $(i_1...i_k)$ eine k- $\underline{\text{Zykel}}$. Zwei Zykel $(i_1...i_k)$ und $(j_1...j_l) \in S_n$ heißen $\underline{\text{disjukt}}$, wenn $\{i_1,...,i_k\} \cap \{j_1,...,j_l\} = \emptyset$.

Satz 1.12

Jedes $\sigma \in S_n$ ist das Produkt von Transpositionen (das heißt 2-Zykeln).

Lemma 1.13

Disjunkte Zykel kommutieren, das heißt sind $\tau_1, \tau_2 \in S_n$ disjunkte Zykel, so ist $\tau_1 \tau_2 = \tau_2 \tau_1$.

Beweis. Sind $\tau_1 = (i_1...i_k)$ und $\tau_2 = (j_1...j_l)$ so ist

$$\tau_1 \tau_2(i) = \tau_2 \tau_1(i) = \begin{cases} \tau_1(i) & i \in \{i_1 ... i_k\} \\ \tau_2(i) & i \in \{j_1 ... j_l\} \\ i & \text{sonst} \end{cases}$$

Satz 1.14

Jedes $\sigma \in S_n$ ist ein Produkt von paarweise disjunkten k-Zykeln mit $k \geq 2$ eindeutig bis auf Reihenfolge (sogenannte Zykelzerlegung von σ).

Also ein 3-Zykel und ein 2-Zykel.

Beweis. Induktion nach $N = |\{i \mid \sigma(i) \neq i\}|.$

$$N=0$$
: $\sigma=\mathrm{id}$

 $\underline{N > 0}$: Wähle i_1 mit $\sigma(i_1) \neq i_1$, betrachte $i_1, \sigma(i_1), \sigma^2(i_1), \dots$ Da $\{1, \dots, n\}$ endlich und σ bijektiv ist, existiert ein minimales $k \geq 2$ mit $\sigma^k(i_1) = i_1$. Setze $\tau_1 = (i_1 \sigma(i_1) \dots \sigma^{k-1}(i_1))$. Dann ist $\sigma = \tau_1 \circ \tau_1^{-1} \sigma$, und nach Induktionshypothese ist $\tau_1^{-1} \sigma = \tau_2 \circ \dots \circ \tau_m$ mit disjunkten Zyklen τ_2, \dots, τ_m .

Eindeutigkeit ist klar, denn jedes i kann nur in einem Zykel $(i \sigma(i)...\sigma^{k-1}(i))$ vorkommen.

Kapitel II

Kommutative Ringe

Kapitel III

$K\"{o}rpererweiterungen$

Index

alternierende Gruppe, 3	symmetrische Gruppe, 2
Automorphismen, 3	
Gruppe, 2 abelsch, 2	Untergruppe, 2 erzeugte, 3
endlich erzeugt, 3 Gruppenhomomorphismus, 2	${\rm Zykel,\ 4} \\ {\rm disjukt,\ 4}$
Kern, 2	Zykelzerlegung, 4