Assignment 5

Name: Guanqun Mao UCLA ID: 204777289

1.

P⇒¬Q, Q⇒¬P

Р	Q	¬P	¬Q	¬P∨¬Q [P⇒¬Q]	¬Q V ¬P [Q⇒¬P]
Т	F	F	Т	T	T
Т	Т	F	F	F	F
F	F	Т	Т	T	T
F	Т	Т	F	T	T

 $P \Leftrightarrow \neg Q, ((P \land \neg Q) \lor (\neg P \land Q))$

	, . (- ,	1//					
Р	Q	¬P∨¬Q [P⇒¬Q)]	Q∨P [¬Q⇒P]	(¬PV¬Q)∆(QVP) [P⇔¬Q]	PA¬Q	¬P∧Q	((P∧¬Q) V(¬P∧ Q))
Т	Т	F	Т	F	F	F	F
Т	F	Т	Т	T	Т	F	T
F	Т	Т	Т	T	F	Т	T
F	F	Т	F	F	F	F	F

2.

 $(Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)$

It's neither. (satisfiable)

It's not valid because there exists a M(Smoke \Rightarrow Fire) that doesn't belong to M(\neg Smoke \Rightarrow \neg Fire).

It's not unsatisfiable because $M((Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke \Rightarrow \neg Fire)) != \varnothing$.

Sı	moke	Fire	Smoke ⇒ Fire [¬Smoke V Fire]	¬Smoke ⇒ ¬Fire [Smoke ∨ ¬Fire]	(Smoke ⇒ Fire) ⇒ (¬Smoke ⇒ ¬Fire)
Т		Т	Т	Т	Т

Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	Т	Т

 $(Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)$

It's neither. (satisfiable)

It's not valid because there exists a M(Smoke \Rightarrow Fire) that doesn't belong to M((Smoke \lor Heat) \Rightarrow Fire)

It's not unsatisfiable because $M((Smoke \Rightarrow Fire) \Rightarrow ((Smoke \lor Heat) \Rightarrow Fire)) != \varnothing$.

Smoke	Fire	Heat	(Smoke ⇒ Fire)	(Smoke V Heat)	((Smoke V Heat) ⇒ Fire)	(Smoke ⇒ Fire) ⇒ ((Smoke ∨ Heat) ⇒ Fire)
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	F	Т	F	Т
Т	F	F	F	Т	F	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	F
F	F	F	Т	F	Т	Т

 $((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))$

It's valid because M(((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))) = whole set.

S	F	Н	SAH	S⇒F	H⇒F	(S∧H	(S⇒F	((S \)	((S⇒	((S \)
) ⇒ F)∨(H	H)⇒F	F)V(H)⇒F
							⇒F))⇒	H⇒F)) ⇒ ((S
								((S⇒)⇒	⇒F)
								F)V(((SA	⇔(H
								H⇒F)	H)⇒F	⇒F))
))	

Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	F	F	F	F	Т	Т	Т
Т	F	F	F	F	Т	Т	Т	Т	Т	Т
F	Т	Т	F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	F	Т	F	Т	Т	Т	Т	Т
F	F	F	F	Т	Т	Т	Т	Т	Т	Т

3.

(a)

Define variables: mythical, mortal, mammal, horned.

mythical ⇒ ¬mortal

 \neg mythical \Rightarrow (mortal \land mammal)

¬mortal ∨ mammal ⇒ horned

horned ⇒ magical

(b)

KB = (¬mythical ∨ ¬mortal) ∧

(mythical V (mortal ∧ mammal)) ∧

(¬(¬mortal V mammal) V horned) ∧

(¬horned V magical)

= $(\neg mythical \ \lor \ \neg mortal) \ \land \ (mythical \ \lor \ mortal) \ \land \ (mythical \ \lor \ mammal) \ \land \ ((mortal \ \land \ \neg mammal) \ \lor \ horned) \ \land \ (\neg horned \ \lor \ magical)$

= (¬mythical \vee ¬mortal) \wedge (mythical \vee mortal) \wedge (mythical \vee mammal) \wedge (mortal \vee horned) \wedge (¬horned \vee magical)

(c)

Use the knowledge base to prove that the unicorn is mythical:

KB:

1. (¬mythical ∨ ¬mortal)

2a. (mythical V mortal)

2b. (mythical V mammal)

3a. (mortal V horned)

3b. (¬mammal V horned)

4. (¬horned ∨ magical)

Assuming unicorn is not horned, adding to KB:

5. ¬horned

We can get following:

- 6. ¬mammal (3b+5)
- 7. mortal (3a+5)
- 8. mythical (2b+6)
- 9. ¬mythical (1+7)
- 10. empty set (8+9)

Therefore, a unicorn is horned is proved by contradiction.

Now that we have proved that unicorn is horned, we can add horned to KB.

- 1. (¬mythical V ¬mortal)
- 2a. (mythical V mortal)
- 2b. (mythical V mammal)
- 3a. (mortal V horned)
- 3b. (¬mammal ∨ horned)
- 4. (¬horned ∨ magical)
- 5. horned

Similarly, assuming unicorn is not magical, adding to KB:

- 6. ¬magical
- 7. ¬horned (4+6)
- 8. Empty set (5+7)

Therefore, a unicorn is magical is proved by contradiction.

We cannot prove a unicorn is mythical because no resolution can be made.