Обработка и анализ медицинских изображений медицински

Проект

Данные

EDA

Linear models

CNN model

Pipeline

TG-Bot

Что дальше?

Состав команды

Веселовский Леонид

@Ivveselovskiy
Ivveselovskiy@edu.hse.ru

EDA Linear models TG-Bot

Воробьёв Андрей

@Saprentum amvorobev@edu.hse.ru EDA CNN model Pipeline

Родионов Никита

@white_shpengler narodionov_3@edu.hse.ru EDA CNN model TG-Bot

Куратор: Никифоров Михаил

Описание проекта

Основная идея проекта – создание сервиса, позволяющего в режиме онлайн по МРТ снимку определить вид опухоли головного мозга

Наша модель умеет различать 4 вида класса: 3 вида опухоли (глиома, менингиома, опухоль гипофиза), а также снимки здорового мозга

Для реализации этого проекта мы использовали пакетную модель tensorflow CNN EfficientNetB3. А так же используется контейнер для линейного стека слоёв sequential

Эксперименты с параметрами были автоматизированы в Airflow

Полученная модель была обёрнута в Телеграм-бот, задеплоенный на виртуальный сервер рег.ру

Команда

Проект

Данные

EDA

Linear models

CNN model

Pipeline

TG-Bot

Что дальше?

Описание данных

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset

Class 1: glioma

Class 2: meningioma Class 3: no tumor

Class 4: pituitary

Overall number of Training subset files: 5712

Number of Class 1 files (Training set): 1321 Number of Class 2 files (Training set): 1339 Number of Class 3 files (Training set): 1595 Number of Class 4 files (Training set): 1457

Overall number of Testing subset files: 1311

Number of Class 1 files (Testing set): 300 Number of Class 2 files (Testing set): 306 Number of Class 3 files (Testing set): 405 Number of Class 4 files (Testing set): 300

Разведочный анализ

Разведочный анализ

Линейные модели (SVM & OVR)

Первым этапом все изображения приводились к одному формату (Image Size = (244,244), color_mode = 'grayscale')

После чего делали Flatten Images, для того чтобы перевести изображения в представление 1D вектора. На выходе получили матрицу с **50176** признаками

Для уменьшения размерности провели РСА преобразования, отобрав 2250 признаков, после чего обучали линейные модели

LinearSVC

LogisticRegression(multi_class='ovr')

Test Accuracy Classification		recall	f1-score	support	Test Accuracy: Classification		recall	f1-score	support
0	0.80	0.78	0.79	151	0	0.86	0.83	0.84	151
1	0.80	0.79	0.79	164	1	0.84	0.83	0.83	164
2	0.96	0.96	0.96	199	2	0.98	0.98	0.98	199
3	0.92	0.96	0.94	142	3	0.94	0.98	0.96	142
accuracy			0.88	656	accuracy			0.91	656
macro avg	0.87	0.87	0.87	656	macro avg	0.90	0.91	0.90	656
weighted avg	0.88	0.88	0.88	656	weighted avg	0.91	0.91	0.91	656

Команда

Проект

Данные

EDA

Linear models CNN model

Pipeline

CNN EfficientNetB3

Было решено использовать CNN модель, ниже представлен код модели

```
base_model = tf.keras.applications.efficientnet.EfficientNetB3(include_top = False , weights = 'imagenet' ,
                                                               input_shape = img_shape, pooling= 'max')
model = Sequential([
    base_model,
    BatchNormalization(axis= -1 , momentum= 0.99 , epsilon= 0.001),
    Dense(256, kernel_regularizer = regularizers.l2(l= 0.01) , activity_regularizer = regularizers.l1(0.005),
         bias_regularizer= regularizers.l1(0.005) , activation = 'relu'),
    Dropout(rate= 0.4, seed = 75),
    Dense(num_class , activation = 'softmax')
])
model.compile(Adamax(learning_rate = 0.001) , loss = 'categorical_crossentropy', metrics = ['accuracy'])
```

CNN EfficientNetB3

После обучения мы уже имеем хорошее accuracy, превосходящее простые линейные модели.

Проводился ряд экспериментов с перебором гиперпараметров для подбора наиболее точных значений:

Bias & ad	ctivity regularizer value =	0.05; dropout = 0.4	Bias & activit
Kernel regularizer value	Test accuracy	Test Loss	Dropout rate
0.014	0.9375	3.719017744064331	0.25
0.015	0.9375	3.950064182281494	0.30
0.016	0.96875	3.703428030014038	0.35
0.017	0.953125	3.8614089488983154	0.40
0.018	0.953125	3.69682240486145	0.45
0.019	0.859375	4.495482444763184	0.50

Bias & activity regularizer value = 0.007 (modified in accordance with the best test results); kernel regularizer value = 0.017					
Dropout rate	Test accuracy	Test Loss			
0.25	0.953125	3.2740769386291504			
0.30	0.9375	3.5424821376800537			
0.35	0.953125	3.719808578491211			
0.40	0.96875	3.842622756958008			
0.45	0.984375	4.059911251068115			
0.50	0 921875	4 190309524536133			

Kernel regularizer value = 0.017; dropout =0.4						
Bias & activity regularizer values	Test accuracy	Test Loss				
0.003	0.953125	3.5733211040496826				
0.004	0.984375	3.984596014022827				
0.005	0.9375	3.8716304302215576				
0.006	0.921875	3.865628957748413				
0.007	0.984375	3.7739477157592773				
0.008	0.921875	3.8522238731384277				

Pipeline & Airflow

На этапе раннего прототипа локально реализована часть пайплайна на базе **Airflow**.

{Kernel_reg_train_dag.py:135} INFO - Training process is performed with the following kernel regularizer hyperparameter:0.025

Главный (на данный момент) **DAG** осуществляет переборку заданных гиперпараметров модели в автоматическом режиме. Значение гиперпараметра, используемого в каждом запуске, фиксируется логе.

```
{Kernel_reg_train_dag.py:169} INFO - Training process executed successfully with following results
{Kernel_reg_train_dag.py:170} INFO - Train Loss: , 2.6332006454467773
{Kernel_reg_train_dag.py:171} INFO - Train Accuracy: , 1.0
{Kernel_reg_train_dag.py:172} INFO - Validation Loss: , 2.5505058765411377
{Kernel_reg_train_dag.py:173} INFO - Validation Accuracy: , 1.0
{Kernel_reg_train_dag.py:174} INFO - Test Loss: , 2.6259500980377197
{Kernel_reg_train_dag.py:175} INFO - Test Accuracy: , 0.9375
```

Логгируются также и метрики качества. На основании данных из логов удается отслеживать влияние изменения определенного гиперпараметра модели на точность предсказаний, **без** необходимости вносить изменения каждый раз вручную.

Telegram Bot

Был реализован телеграмм-бот, который принимает на вход снимок МРТ и возвращает предсказанный класс.

Бот развёрнут на сервисе рег.ру

Ссылка на гифку с работой бота:

https://github.com/Nicky-

Georgia/mri_tumor_classification/blob/main/gif_bot.gif

Проект

Данные

EDA

Linear models

CNN model

Pipeline

TG-Bot

Что дальше?

Дальнейшее развитие проекта

Развёртывание полноценного пайплайна с использованием сервиса s3

Контейнеризация приложения

Развитие модели, уточнение гипперпарметров с целью повышения её качества

Дальнейшая разработка сервиса и добавление новых фич для него