第2次作业:第1题

模型部分

最大公约数的求法

设 x = qy + p, 其中 x \ge y, y > p\$, 现在证明

$$gcd(x, y) = gcd(y, p).$$

对于 x 与 y 的任意公因数 r,有 r|x 且 r|y,又因为 x=qy+p,所以 r|p。因此 r 是 y 和 p 的公因数。由 r 的任意性知 $\gcd(x,y)|\gcd(y,p)$ 。同理可得 $\gcd(y,p)|\gcd(x,y)$ 。由于它们互相整除,所以 $\gcd(x,y)=\gcd(y,p)$ 。

在代码中, 我使用递归的方式来求解二者的最大公约数:

```
int CP_GCDLCM::gcd(int x, int y) {
   return y ? gcd(y, x % y) : x;
}
```

其中 x % y 即为式中的 p_{\bullet}

最小公倍数的求法

由唯一分解定理知任意正整数x可被唯一表示为质数幂的乘积:

$$x=\prod_{i=1}p_i^{lpha_i},$$

其中 $p_1 = 2, p_2 = 3, p_3 = 5, \cdots$ 。

假设需要求 $x=\prod_{i=1}p_i^{lpha_i}$ 和 $y=\prod_{i=1}p_i^{eta_i}$ 的最小公倍数。则由定义知

$$egin{aligned} \operatorname{lcm}(x,y) &= \prod_{i=1} p_i^{\max(lpha_i,eta_i)}, \ \gcd(x,y) &= \prod_{i=1} p_i^{\min(lpha_i,eta_i)}. \end{aligned}$$

注意到 $\alpha_i + \beta_i = \max(\alpha_i, \beta_i) + \min(\alpha_i, \beta_i)$, 故

$$egin{aligned} xy &= \prod_{i=1} p_i^{lpha_i} \cdot \prod_{i=1} p_i^{eta_i} \ &= \prod_{i=1} p_i^{lpha_i + eta_i} \ &= \prod_{i=1} p_i^{\max(lpha_i,eta_i)} \cdot \prod_{i=1} p_i^{\min(lpha_i,eta_i)} \ &= \operatorname{lcm}(x,y) \cdot \gcd(x,y), \end{aligned}$$

因此
$$\operatorname{lcm}(x,y) = \frac{xy}{\gcd(x,y)}$$
。

如何编译及运行

```
g++ CP_GCDLCM.h CP_GCDLCM.cpp CP_GCDLCMMain.cpp -o CP_GCDLCMMain.exe
```

即可编译得到可执行文件 CP_GCDLCM. exe。运行该可执行文件,输入

10 4

即可得到满足作业要求的输出:

2 20 请按任意键继续...

其中第一行表示输入的两个正整数的最大公约数,第二行表示输入的两个正整数的最小公倍数。

验证部分

在本次作业中, 我设计了五组数据:

测试点编号	测试数据	最大公约数	最小公倍数
1	x=1,y=1001	1	1001
2	x = 1000000007, y = 1000000009	1	1000000016000000063
3	x = 40000, y = 40000	40000	40000
4	x = 4551, y = 147723	123	5465751
5	x = 124634, y = 460282	1234	46488482

其中覆盖了:

- 两个数中有一个为正整数 1 的特殊情况 (测试点 1) ;
- 两个数互质的特殊情况 (测试点 1, 2);
- 两个数相乘会超出 int 表示范围, 但在 long long 表示范围内的特殊情况 (测试点 2) ;
- 两个数相同的特殊情况(测试点3);
- 两个数分别随机的情况 (测试点 4, 5)。

我认为,这样的测试数据覆盖了绝大多数可能的极端情况;如果我的程序能在这些数据下通过,则大概率也能通过更普遍的输入数据。