1. [10 points]

Find the solution, x(t), to the ODE

$$2e^{-2t} = 3x(t) + 4\dot{x}(t) + \ddot{x}(t)$$

for times $t \ge 0$, with initial conditions x(0) = 6, $\dot{x}(0) = -6$.

(1)
$$5e^{-t/3} + 0.6e^{-t} - 0.4e^{-2t}$$

(2)
$$2e^{-t} - 7e^{-2t} + e^{-3t}$$

(3)
$$0.6e^{-t/3} + 5e^{-t} - 0.4e^{-2t}$$

(4)
$$7e^{-t} - 2e^{-2t} + e^{-3t}$$

(5)
$$0.5e^{-t/3} + 0.6e^{-t} - 5e^{-2t}$$

(6)
$$e^{-t} - 7e^{-2t} + 2e^{-3t}$$

(7)
$$0.4e^{-t/3} + 0.6e^{-t} - 5e^{-2t}$$

(8)
$$2e^{-t} - e^{-2t} + 7e^{-3t}$$

2. [10 points]

For the circuit below, find an expression (in volts) for the capacitor voltage labelled $v_c(t)$, for all times $t \ge 0$, assuming $v_c(0^-) = 2 \text{ V}$.

- (1) $1 e^{-t/2}$
- (2) $2 e^{-2t}$
- (3) $3 2e^{-t/3}$
- (4) $4-2e^{-3t/4}$
- (5) $5 3e^{-4t/5}$
- (6) $6 4e^{-5t/6}$
- (7) $7 5e^{-6t/7}$
- (8) $8 6e^{-7t/8}$

0.0