HEALTHCARE COST & INSURANCE ANALYSIS

Objective:

The goal of this analysis is to explore and understand key factors influencing healthcare insurance charges using a real-world (messy) dataset. The analysis includes:

- Data cleaning & preprocessing
- Exploratory data analysis (EDA)
- Feature engineering
- Statistical visualizations
- Business insights

Data Cleaning Summary:

Task	Description					
Missing Values	Null values in age, bmi handled using median or domain knowledge					
Data Inconsistency	Normalize Categorical Columns					
Inconsistent Text	Normalized case in columns like smoker, region					
Duplicates	Detected and removed exact duplicate rows					
Data Types	Fixed types charges (float \rightarrow int), and categorical columns					
Binary Encoding	Applied to sex, smoker and children for pre-processing					
One-Hot Encoding	Applied to region for model-readiness					

Exploratory Data Analysis (EDA)

• 1.Summary Statistics

```
#Load dataset
df=pd.read_csv(r"C:/Users/User-PC/Downloads/Healthcare Cost & Insurance Analysis/cleaned_insurance_dataset.csv")
print(df.describe().round())
```

```
        count
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        1338.0
        13270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0
        1270.0<
```

• 2.Categorical Features Count

```
#Value Counts for Categorical Features
smoker_distribution=df['smoker'].value_counts()
print("Smoker Distribution", smoker_distribution)

childrens=df['children'].value_counts()
print("Children Distribution", childrens)

gender=df.groupby('sex')['age'].sum()
print("\nPatient's Gender\n", gender)

age=df['bmi'].sum()
print("\nAverage BMI\n", age)

bmi=df['bmi'].mean()
print("\nAverage BMI\n", bmi)
```

Output:

```
Smoker Distribution smoker
    1064
      274
1
Name: count, dtype: int64
Children Distribution children
     574
    324
1
2
    240
3
    157
4
      25
      18
Name: count, dtype: int64
Patient's Gender
sex
    26151
     26308
Name: age, dtype: int64
Average BMI
41028
Average BMI
 30.663677130044842
```

• 3. Medical Charges based on Age Group

```
#Age group with highest or lowest medical charges
age_group= df.nlargest(10,'charges')[['age','sex','bmi','children','smoker']]
print("\nAge group with highest charges:\n", age_group)
age_group2= df.nsmallest(10,'charges')[['age','sex','bmi','children','smoker']]
print("\nAge group with lowest charges:\n", age_group2)
```

Output:

Age gr	oup w	ith h	ighes	t charges:	
	age	sex	bmi	children	smoker
543	54	0	47	0	1
1300	45	1	30	0	1
1230	52	1	34	3	1
577	31	0	38	1	1
819	33	0	36	0	1
1146	60	1	33	0	1
34	28	1	36	1	1
1241	64	1	37	2	1
1062	59	1	41	1	1
488	44	0	38	0	1
Age gr	oup w	ith l	owest	charges:	
	age	sex	bmi	children	smoker
940	18	1	23	0	0
808	18	1	30	0	0
663	18	1	34	0	0
1244	18	1	33	0	0
22	18	1	34	0	0
194	18	1	34	0	0
866	18	1	37	0	0
781	18	1	41	0	0
442	18	1	43	0	0
1317	18	1	53	0	0

4. Visualization

Boxplot: Charges vs. Smoker

- Smokers have significantly higher median and mean charges.
- Large number of outliers among smokers.
- Clear positive skew in smoker group charges.

Heatmap: Feature Correlation with Charges

Features Correlation with charges

Smoker: 0.79 **Age:** 0.30 **BMI:** 0.20

Children, sex, Region: <0.10(Weak Correlation)

Countplot:BMI Category based on Gender

Over Weight

Male: 175 Female: 185

Obese Male:399 Female:355

Normal Male:110 Female: 98

Patients: Region Based Partition

Region Northwest: 12000

Region Southeast: 14000 Above

Region Southwest: 1200

Barplot: Health Risk based on Age group

HIGH

- Seniors' health are on high risk based on age, smoking and bmi.
- 200+ Young Adults are prone to health risk
- 200+ Adult as well are on high health risk

LOW

Senior age group is less in low health risk.

Less than 200 Adults and Young Adults are less prone to health risk.

5. Feature Engineering

Added Features

Cost Deviation

```
mean_cost=np.mean(df['charges'])
std_cost=np.std(df['charges'])

#Cost Deviation Calculation
df['cost_deviation']= df['charges'] - mean_cost
df['cost_zscore']=df['charges'] - mean_cost/std_cost
print(df[['charges','cost_deviation','cost_zscore']])
```

Cost Score

```
mean_cost=np.mean(df['charges'])
std_cost=np.std(df['charges'])

#Cost Deviation Calculation
df['cost_deviation']= df['charges'] - mean_cost
df['cost_zscore']=df['charges'] - mean_cost/std_cost
print(df[['charges','cost_deviation','cost_zscore']])
```

Regional Disparities

```
#hot encoding for 'region'
df=pd.get_dummies(df, columns=['region'], drop_first=True)
print(df.head(50))
```

Region Southeast, Region Southwest, Region Northwest

Age group

```
#Age_group
def age_group(age):
    if age <18:
        return 'Child'
    elif 18<= age < 30:
        return 'Young Adult'
    elif 35<= age < 50:
        return 'Adult'
    else:
        return 'Senior'

df['age_group']=df['age'].apply(age_group)</pre>
```

• Bmi_category

```
#BMI Group

def bmi_category(bmi):
    if bmi < 18:
        return 'Under Weight'
    elif 18<= bmi <25:
        return 'Normal'
    elif 25<= bmi <30:
        return 'Over Weight'
    else:
        return 'Obese'</pre>
df['bmi_category']=df['bmi'].apply(bmi_category)
```

Health Risk

```
#Health Risk
def health_risk(row):
    if row['smoker'] == 1 or row['age']> 50 or row['bmi'] > 30:
        return 'High'
    else:
        return 'Low'
df['health_risk']= df.apply(health_risk, axis=1)
```

6. Key Business Insights

Insight	Implication
Smokers cost ~3x more	Risk-based pricing essential
High BMI + Smoking = \$\$\$	Offer weight management incentives
Younger non-smokers = low cost	Target these profiles for low-premium plans
Region-based pricing may help	Adjust pricing for high-cost regions like Southeast

7.Exported Files

Clean and Engineered Dataset

cleaned_insurance_dataset	6/4/2025 10:33 PM	Microsoft Excel C	47 KB
🗷 insurance- base file	6/3/2025 9:43 PM	Microsoft Excel C	55 KB
insurance_data_engineered	6/5/2025 7:42 PM	Microsoft Excel C	123 KB