Experiment # 1- Clock and Periodic Signal Generation

Sana SariNavaei 810199435

```
1.10 ns

2.2 * N * Delay<sub>inv</sub> = 19ns

N = 5

2 * N = 10

Delay<sub>inv</sub> = 1.9ns
```


Fig. 1 ring oscillator

Fig. 2 waveform of the output

Fig. 3 Two-phase clock generator

Fig. 4 output phase 1 and phase 2

Fig. 5 LM555

Fig. 6 waveform of the output

```
1. Clock frequency: 1 / T

T = T_1 + T_2 = 0.693 * (R_1 + 2R_2) * C

= 0.693 * (101000) * 10 * 10^{-9}

= 0.699930 * 10^{-3} s

Clock frequency: 1 / (0.699930 * 10^{-3})

= 1428.714
```

Duty cycle: $(R_1 + R_2) / (R_1 + 2R_2)$

= 51 / 101 = 50.49%

2. Clock frequency: 1 / T

 $T = T_1 + T_2 = 0.693 * (R_1 + 2R_2) * C$

Duty cycle: $(R_1 + R_2) / (R_1 + 2R_2)$

If $R_2 = 1k\Omega$:

 $T = 0.693 * (3000) * 10 * 10^{-9}$

 $= 0.2079 * 10^{-4}$ s

Clock frequency: $1 / (0.2079 * 10^{-4})$

=48100.04

Duty cycle: 2 / 3 = 66.67%

Fig. 7 $R_2 = 1k\Omega$

If $R_2 = 10k\Omega$:

 $T = 0.693 * (21000) * 10 * 10^{-9}$

 $= 0.14553 * 10^{-3}$ s

Clock frequency: $1 / (0.14553 * 10^{-3} s)$

= 6871.435

Duty cycle: 11 / 21 = 52.38%

Fig. 8 $R_2 = 10 k\Omega$

If $R_2 = 200k\Omega$:

 $T = 0.693 * (401000) * 10 * 10^{-9}$

 $= 0.277893 * 10^{-2}$ s

Clock frequency: $1 / (0.277893 * 10^{-2}s)$

= 359.850

Duty cycle: 201 / 401 = 50.12%

Fig. 9 $R_2 = 200k\Omega$

Fig. 10 waveform when $R = 470\Omega$

Fig. 11 waveform when $R = 1000\Omega$

Fig. 12 waveform when $R = 2000\Omega$

```
Fig. 12 wavefold when R=20002

2. When R=470\Omega: T=3.6\mu s F=1/T=1/(3.6\mu s) a=f*R*C=1/(3.6\mu s)*470*10*10^{-9}=1.305 When R=1000\Omega: T=7.2\mu s F=1/T=1/(7.2\mu s) a=f*R*C=1/(7.2\mu s)*1000*10*10^{-9}=1.388 When R=1000\Omega: T=14\mu s T=1/T=1/(14\mu s)
```

 $a = f * R * C = 1 / (14\mu s) * 2000 * 10 * 10^{-9} = 1.428$

2.1 $T = 2 * 5 * Delay_{inv} = 19ns$ Ring oscillator frequency = 1 / T = 1 / (19 * 10⁻⁹) = 5.26 * 10⁷

Fig. 13 waveforms of inputs and outputs

Fig. 14 waveforms of inputs and outputs

Fig. 15 Frequency divider

Fig. 16 Counter waveform

Fig. 17 Counter waveform

 $\begin{aligned} & Delay_{inv} = 1900ps \\ & T = 2*N*Delay_{inv} = 19000ps \end{aligned}$

Frequency of input: = 1 / 19000ps = $0.5263 * 10^8$

 $T_{counter} = 19000 * 103 = 1957000 ps$

Because every 4150ps => output = output + 1

And total time is 19000 * 103ps Frequency of counter: 1 / T = 1 / 1957000ps $= 0.5109 * 10^6$

Compare frequencies:

Frequency of counter * 103 = Frequency of input

Fig. 18 counter with T Flip-Flop

Fig. 19 output waveform T Flip-Flop

Fig. 20 output waveform T Flip-Flop

Fig. 21 state diagram of controller

Fig. 22 schematic symbol for ABRCKT

Fig. 23 BRGCLK block diagram