TISYE1 – Systems Engineering – (Winter/spring 2014)

Post development stage

Lecture 7

Life-cycle cost profiles

From: Blanchard and Fabrycky, 2011

Production and Operations & Support phase

A perfect balance of –ilities!

Maneuverability versus manufacturability

Production phases

Problems in transition

- Advancing Technology
 - Gain in capability; examples: digital processors; miniturization
 - Preclude premature obsolescence
- Competition
 - Insufficient funds; lack of experienced staff; lack of access to facilities etc.
- Specialization
 - Engineering -> Manufacturing: Typically new

The transition phase for a system can be described as a project by itself.

Product preparation

Typical engineering activities:

- Select manufacturing procedures and equipment.
- Complete a pre-production prototype
- **Demonstrate** effectiveness of final **product design** and performance; **installation** and start-up plans for the manufacturing process; selection of **material**, **components** and subsystem **vendors** and **logistics**; design of a field support system etc.

Associated activities:

- Logistics support plans
- Configuration control plans, and
- Document control plans and procedures

Production operation system

Production organization as a complex system

Production planning

- Key elements of a production plan:
 - o **responsibility** and delivery schedule
 - o manufacturing sites and facilities
 - o **tooling** requirements, including special tools
 - o factory **test equipment**
 - component fabrication
 - o components and parts inspection
 - quality control
 - o production **monitoring** and control assembly
 - o acceptance test
 - o **packaging** and shipping
 - o discrepancy, schedule and cost reports
 - production readiness review

System operations history

Installation and test

- Effort required for system installation is dependent on
 - o **degree of integration** (physical and functional)
 - o number and complexity of **interfaces** between system and operating site
- Concerns of the system engineer:
 - o **Internal System Interfaces**: ensure system integrity
 - System integration site: specially equipped site to support integration (may be separate facility)
 - External System Interfaces: System of system (SoS) challenges
 - Non-disruptive installation: Via simulation or duplicate SoS

In-service support

- Periodic operational readiness testing
- Operational problems
 - Software and hardware faults
- Field service support
- Scheduled Maintenance
- Severe Operational Casualties
 - --> Issue handling
- Logistics Support
 - o stations, spare parts, repair kits, documentation ...

End of Lecture and Course