

基础数理统计 (研究生公共课)

第2章 参数估计 (Parametric Estimation)

主要内容

- 1.点估计的基本概念
- 2. 两种基本的点估计方法
- 3.点估计的优良标准(无偏性及有效估计和C-R下界)
- 4.最佳点估计(充分统计量)
- 5.置信区间估计
- 6.贝叶斯估计

2.4 置信区间估计的基本概念 (Confidential Interval)

譬如,在估计湖中鱼数的问题中,若我们根据一个实际样本得到 鱼数 N 的极大似然估计为 1000 条.

但实际上, N的真值可能大于 1000 条, 也可能小于1000条.

若我们能给出一个区间,在此区间内我们合 **建** 2000年 2000年

也就是说,我们希望确定一个尽可能小的区间,使我们能以比较高的可靠程度相信它包含真参数值.

这里所说的"可靠程度"是用概率来度量的, 湖中鱼数的真值称为置信概率,置信度或置信水平.

习惯上把置信水平记作 $1-\alpha$, 这里 α 是一个很小的正数.

置信水平的大小是根据实际需要选定的。例如,通常可取置信 水平 = 0.95 或 0.9 等等.

根据一个实际样本,由给定的置信水平1- α ,我们求出一个的区间 $(\underline{\theta}, \bar{\theta})$,使 $P(\theta \le \theta \le \bar{\theta}) = 1-\alpha$, $p(\theta \le \theta \le \bar{\theta}) = 1-\alpha$, $p(\theta \le \theta \le \bar{\theta}) = 1-\alpha$, $p(\theta \le \theta \le \bar{\theta}) = 1-\alpha$,

我们选取未知参数的某个估计量 $\hat{\theta}$,根据置信水平1- α ,可以找到一个正数 δ , 使得

$$P(|\hat{\theta}-\theta|\leq\delta)=1-\alpha,$$

只要知道 $\hat{\theta}$ 的概率分布就可以确定 δ . 由不等式 $|\hat{\theta}-\theta| \leq \delta$ 可以解出 θ :

$$\hat{m{ heta}} - m{\delta} \leq m{ heta} \leq \hat{m{ heta}} + m{\delta}$$

这个不等式就是我们所求的置信区间 $(\theta, \bar{\theta})$.

下面我们就来正式给出置信区间的定义,并通过 例子说明求置信区间的方法.

Page

定义: 设 θ 是总体X的待估参数,, X_2 ,…, X_n 是取自总体X的样本, 对给定值 $0 < \alpha < 1$, 若统计量 $\underline{\theta}(X_1, X_2, \dots, X_n)$

和 $\overline{\theta}(X_1, X_2, \dots, X_n)$ 满足 $P(\theta < \theta < \overline{\theta}) = 1 - \alpha$,

则称随机区间($\underline{\theta}$, $\bar{\theta}$)为 θ 的置信水平为 $1-\alpha$ 的双侧置信区间 $\underline{\theta}$ 和 $\bar{\theta}$ 分别称为置信下限和置信上限. 置信度 置信概率

作区间估计,就是要设法找出两个只依赖于样本的界限(构造统计量) θ 和 $\bar{\theta}$ · (θ , $\bar{\theta}$)是随机区间,代入样本值所得的普通区间称为置信区间的实现.

- → 置信水平为 0.95 是指 100 组样本值所得置信区间的实现中,约有95个能覆盖 θ ,而不是说一个实现以 0.95 的概率覆盖了 θ .
- + 要求 θ 以很大的可能被包含在置信区间内, 就是说,概率 $P(\underline{\theta} < \theta < \overline{\theta}) = 1 \alpha$ 要尽可能大. 即要求估计尽量可靠.
- → 估计的精度要尽可能的高即要求区间置信的长度尽可能短, 或能体现该要求的其它准则.

将样本值代入 (θ, θ) 所得的普通区间称为置信区间的实现.

- + 置信水平的概率意义; 并非一个实现以 $1-\alpha$ 的概率覆盖了 θ .
- ♣ 估计要尽量可靠,即 $P(\underline{\theta} < \theta < \overline{\theta}) = 1-\alpha$ 要尽可能大.
- +估计的精度要尽可能的高. 即要求置信区间的长度尽可能短.

可靠度与精度是一对矛盾,一般是在保证可靠度的条件下尽可能提高精度.

置信区间的求法

(一) 单个正态总体

 $\{1. 均值 \mu \}$ $\{(2) \, \text{未知方差} \sigma^2 \}$ $\{(2) \, \text{未知方值} \mu \}$ $\{(2) \, \text{未知均值} \mu \}$

 $\begin{cases} 1. 均值 \mu_{1}-\mu_{2} & \{(1) 已知方差 \sigma_{1}^{2}, \sigma_{2}^{2} \\ (2) 未知方差 \sigma_{1}^{2}, \sigma_{2}^{2}, 但相等! \\ 2. 方差 \sigma_{1}^{2}/\sigma_{2}^{2} & \{(1) 已知均值 \mu_{1}, \mu_{2} \\ (2) 未知均值 \mu_{1}, \mu_{2} \end{cases}$

如何根据实际样本,由给定的置信水平1- α ,求出一个区间(θ , $\bar{\theta}$),使 $P(\underline{\theta} \le \theta \le \theta) = 1 - \alpha$?

我们选取未知参数的某个估计量 $\hat{\theta}$,根据置信水平 $1-\alpha$,可以找到 个正数 δ , 使得 $P(|\hat{\theta}-\theta| \leq \delta) = 1-\alpha$,

$$P(|\theta-\theta|\leq\delta)=1-\alpha,$$

只要知道 θ 的概率分布就可以确定 δ . 分布的分位数

由不等式 $|\hat{\theta}-\theta| \leq \delta$ 可以解出 θ : $\hat{\theta}-\delta \leq \theta \leq \hat{\theta}+\delta$ ③ 这个不等式就是我们所求的置信区间(θ , $\bar{\theta}$).

对于给定的置信水平, 根据估计量U的分布, 确定 使得 U 取值干该区间的概率为置信水平.

(一) 单个正态总体置信区间的求法

设 X_1, \dots, X_n 是总体 $X \sim N(\mu, \sigma^2)$ 的样本, \bar{X}, S^2 分别是其样本均 值和样本方差, 求参数 $\mu \setminus \sigma^2$ 的置信水平为1- α 的置信区间.

1. 均值 μ 的置信区间 ① 确定未知参数的

(1)已知方差 σ^2 时 估计量及其函数的分布

 $: \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 是 μ 的无偏估计量,故可用 \overline{X} 作为 EX 的一个估计量,

由抽样分布定理知

$$\bar{X} \sim N(\mu, \sigma^2/n),$$

分布定理知
$$\bar{X} \sim N(\mu, \sigma^2/n), \qquad \therefore U = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1),$$

对给定的置信度 $1-\alpha$, \blacksquare 有了分布就可求出U 取值于任意区间的概率

按标准正态分布的双侧 α 分位数的定义 $P(|U| \ge u_{\alpha/2}) = \alpha$,

即令 $\Phi(u_{\alpha/2}) = 1 - \frac{\alpha}{2}$, 查正态分布表可得 $u_{\alpha/2}$, ② 由分布求分位数 μ

$$|\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}| < u_{\alpha/2} \iff \overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$$
② 由 $u_{\alpha/2}$
定置信区间

即得置信区间 $(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}),$ 简记为 $\overline{X} \pm \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$

求置信区间首先要明确问题:

置信水平 $1-\alpha$ 是多少? 是求什么参数的置信区间?

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

一般步骤如下:

1. 寻找未知参数 θ 的一个良好的点估计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$:

确定待估参数估计量函数 $U(\theta)$ 的分布:

$$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

2. 对于给定的置信水平 1- α ,由概率 $P(|U| \ge x_{\alpha}) = \alpha$,

查表求出分布的分位数 x_{α} , $\Phi(u_{\alpha/2}) = 1 - \frac{\alpha}{2}$

$$\Phi(u_{\alpha/2}) = 1 - \frac{\alpha}{2}$$

$$P(|U| \ge u_{\alpha/2}) = \alpha$$

3. 由分位数 $|U| \ge x_{\alpha}$ 确定置信区间 $(\underline{\theta}, \overline{\theta})$. $\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$

$$\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$$

 $(\underline{\theta}, \overline{\theta})$ 就是 θ 的 100(1- α)% 的置信区间. $(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2})$

$$(\overline{X}-\frac{\sigma}{\sqrt{n}}u_{\alpha/2}, \overline{X}+\frac{\sigma}{\sqrt{n}}u_{\alpha/2})$$

总体分布的形式是否已知,是怎样的类型,至关重要.

某乡农民在联产承包责任制前人均纯收入 X(单位:万元), 且 $X \sim N$ (300, 25²). 推行联产承包责任制后,在该乡抽得 n=16得 $\bar{x} = 325$ 万元,假设 $\sigma^2 = 25^2$ 没有变化,求 μ 的置信水 平为 0.95 的置信区间.

$$\mathbf{H}$$
 由于 $\alpha = 0.05$, 查正态分布表得

$$u_{0.025} = 1.96$$
,

$$|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}| < u_{\alpha/2} \Leftrightarrow |\frac{325-\mu}{25/\sqrt{16}}| < 1.96 \Leftrightarrow 325-\frac{25}{\sqrt{16}}1.96 < \mu < 325+\frac{25}{\sqrt{16}}1.96$$
 即得置信区间 (312.75, 337.25).

如在上例中取 $\alpha = 0.01 + 0.04$, 由正态分布上侧分位数定义知

$$0.01 + 0.04 = 1 - \Phi(u_{0.01}) + 1 - \Phi(u_{0.04}) = 1 - \Phi(u_{0.01}) + \Phi(-u_{0.04})$$

$$= 1 - P(-u_{0.04} < U < u_{0.01})$$
(支度为 25.5)
$$u_{0.01} = 2.33, u_{0.04} = 1.75 \Rightarrow 325 - \frac{25}{\sqrt{16}} 2.33 < \mu < 325 + \frac{25}{\sqrt{16}} 1.75$$

谁是精度最高的?

♣ 同一置信水平下的置信区间不唯一,

当然区间长度越短的估计,精度就越高. 其长度也不相等.

由于标准正态分布密度函数的图形是单峰且对称的,

在保持面积不变的条件下,以对称区间的长度为最短!!

▲ 同一置信水平下的置信区间不唯一. 其长度也不相等.

$$(\overline{X}-\frac{\sigma}{\sqrt{n}}u_{\alpha/2}, \overline{X}+\frac{\sigma}{\sqrt{n}}u_{\alpha/2})$$

的长度是最短的,故我们总取它作为置信水平为 $1-\alpha$ 的置信区间.

一般地,在概率密度为单峰且对称的情形下,a=b 对应的置信区间的长度为最短.

/与n, α 的关系: 由置信区间公式 $(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2})$ 可知,

置信区间的长度 / 为: $l = \frac{2\sigma}{\sqrt{n}} u_{\alpha/2}$,

 1^0 若给定 n, I 随着 α 的减小而增大;

 $\Phi(u_{\alpha/2})$ 就越大,这时 α 就越小.

则 $u_{\alpha/2}$ 越大,/就越大,

 2^0 若给定 α , I 随着 n 的增大而减小;

且由于 $I = \sqrt{n}$ 成反比,减小的速度并不快,

例如, n 由 100 增至 400 时, /才能减小一半.

$$\Phi(u_{\alpha/2}) = 1 - \frac{\alpha}{2}$$

(2) 方差 σ^2 未知时 —— 实用价值更大!!

由于($\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$), $\overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}$)与 σ 有关,故不能采用已知方差的均值估计方法 —用 $U = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ 分布的分位数求 μ 的置信区间.但其解决的思路一致.

由于 S^2 是 σ^2 的无偏估计量,故可用 S 替代 σ 的估计量:

由抽样分布定理知
$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
,

$$\diamondsuit P\{|T| \le t_{\alpha/2}(n-1)\} = 1-\alpha,$$

查 t 分布表确定上侧 $\alpha/2$ 分位数 $t_{\alpha/2}(n-1)$,

$$\left|\frac{\overline{X}-\mu}{S/\sqrt{n}}\right| \leq t_{\alpha/2}(n-1) \qquad \Leftrightarrow \overline{X}-\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1) \leq \mu \leq \overline{X}+\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)$$

$$(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1))$$
即为 μ 的置信度为 $1-\alpha$ 的区间估计.

[例] 为确定某种溶液中甲醛浓度,测定总体服从正态分布,且其 4 个独立测量值的平均值 x = 8.34%,样本标准差 s = 0.03%,求总体均值 μ 的置信水平为 0.95 的置信区间.

解 由于
$$\alpha/2=0.025$$
,自由度 $n-1=3$, 查 t 分布表得 $t_{0.025}=3.182$,将 $\bar{x}=8.34\%$ 代入 $|\frac{\bar{X}-\mu}{S/\sqrt{n}}| < t_{\alpha/2}$ 得 $|\frac{8.34-\mu}{0.03/\sqrt{4}}| < 3.182$

$$\Leftrightarrow (8.34 - \frac{0.03}{\sqrt{4}} \times 3.182)\% < \mu < (8.34 + \frac{0.03}{\sqrt{4}} \times 3.182)\%$$

即得置信区间
$$\left((8.34 - \frac{0.03}{\sqrt{4}} \times 3.182)\%, (8.34 + \frac{0.03}{\sqrt{4}} \times 3.182)\% \right)$$

即 (8.292%, 8.388%).

2. 方差 σ^2 的 置信区间的求法

(2) μ 未知时 因为 σ^2 的无偏估计为 S^{*2} 由抽样分布定理知

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

 $\chi^2 = \frac{(n-1)S^{*2}}{\sigma^2} \sim \chi^2(n-1),$ 找一个含 σ 与S, 但不含 μ , 且分布已知的统计量

曲
$$P\{\chi_{1-\alpha/2}^2(n-1) \le \chi^2 \le \chi_{\alpha/2}^2(n-1)\} = 1-\alpha$$
 确定 χ^2 分布的上侧 $\alpha/2$ 分位数 $\chi_{\alpha/2}^2(n-1)$,

$$\chi^2_{1-\alpha/2}(n-1) \le \frac{(n-1)S^{*2}}{\sigma^2} \le \chi^2_{\alpha/2}(n-1)$$

$$\Leftrightarrow \frac{(n-1)S^{*2}}{\chi^2_{\alpha/2}(n-1)} \le \sigma^2 \le \frac{(n-1)S^{*2}}{\chi^2_{1-\alpha/2}(n-1)}$$
,

所以
$$\sigma^2$$
的置信水平为 $1-\alpha$ 的区间估计为 $(\frac{(n-1)S^{*2}}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^{*2}}{\chi^2_{1-\alpha/2}(n-1)})$.

并不是最短的置信区间

为了计算简单,在概率密度不对称的情形下,如 χ^2 分布,F分布, 习惯上仍取对称的分位点来计算未知参数的置信区间.

[例] 为确定某种溶液中甲醛浓度, 测定总体服从正态分布, 且其 4 个独立测量值的平均值 \bar{x} = 8. 34%, 样本标准差 s = 0. 03%, 求总体均值 μ 的置信水平为 0. 95 的置信区间.

求总体方差 σ^2 和标准差 σ 的置信水平为 0.95 的置信区间.

解 由于 $\alpha/2=0.025$, 自由度 n-1=3,

将
$$s^2 = 0.0009$$
代入
$$\chi^2_{1-\alpha/2}(n-1) \le \frac{(n-1)S^2}{\sigma^2} \le \chi^2_{\alpha/2}(n-1),$$

$$\frac{3 \times 0.0009}{9.348} \le \sigma^2 \le \frac{3 \times 0.0009}{0.216},$$

故 σ^2 的置信区间为 (0.00029%, 0.0125%), 故 σ 的置信区间为 (0.017%, 0.112%).

一个正态总体未知参数的置信区间(**s**无偏估计)

待估	i参数	枢轴量	枢轴量 的分布	双侧置信区间的上、下限
μ σ	-2已知	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	N(0, 1)	$ar{X} \pm u_{1-rac{oldsymbol{lpha}}{2}} \cdot rac{oldsymbol{\sigma}}{\sqrt{oldsymbol{n}}}$
σ	r²未知	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	t(n-1)	$\bar{X} \pm t_{1-\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}$
σ^2	u已知	$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$	$\chi^2(n)$	$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{1-\frac{\alpha}{2}}^2(n)} \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{\frac{\alpha}{2}}^2(n)}$
μ	u未知	$\frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$	$\chi^2(n-1)$	$\frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2} \left(n-1\right)} \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{\chi_{\frac{\alpha}{2}}^{2} \left(n-1\right)^{16}}$

(二) 两个正态总体 置信区间的求法

设 X_1, \dots, X_m 分别是总体 $X \sim N(\mu_1, \sigma_1^2)$ 的样本, Y_1, \dots, Y_n 分别 是总体 Y~ $N(\mu_2,\sigma_2^2)$ 的样本, \bar{X} , \bar{Y} 分别是总体 X和 Y的样本均值, S_X^2 , S_Y^2 分别是总体 X和 Y的样本方差求参数 $\mu_1^-\mu_2$ 和 σ_1^2/σ_2^2 的 置信水平为 $1-\alpha$ 的置信区间.

1. 均值 μ_1 - μ_2 的置信区间

(1) 已知方差 σ_1^2 , σ_2^2 时 由于 \bar{X} , \bar{Y} 分别是 μ_1 , μ_2 的无偏估计量,

故可用
$$\bar{X} - \bar{Y}$$
 作为 $\mu_1 - \mu_2$ 的一个估计量,

故可用
$$\bar{X}$$
 — \bar{Y} 作为 μ_1 — μ_2 的一个估计量, 由抽样分布定理知 $U = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0, 1)$, 对给定的置信度 $1-\alpha$,
 $\Delta \sigma(\mu_1) = 1-\frac{\alpha}{n}$
查证态分布表可得 μ_1 (2)

$$|U| < u_{\alpha/2} \iff \overline{X} - \overline{Y} - u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} < \mu_1 - \mu_2 < \overline{X} - \overline{Y} + u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$$

即得置信区间
$$(\bar{X} - \bar{Y} - u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}, \bar{X} - \bar{Y} + u_{\alpha/2} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}})$$

Page

设 X_1 , ···, X_m 分别是总体 $X \sim N(\mu_1, \sigma_1^2)$ 的样本, Y_1 , ···, Y_n 分别是总体 $Y \sim N(\mu_2, \sigma_2^2)$ 的样本, X, Y分别是总体 X和 Y的样本均值,

 S_{λ}^{2} , S_{λ}^{2} 分别是总体 X和 Y的样本方差,求参数 μ_{1}^{-} μ_{2} 和 $\sigma_{1}^{2}/\sigma_{2}^{2}$ 的置信水平为 $1^{-}\alpha$ 的置信区间.

1. 均值差 $\mu_1 - \mu_2$ 的置信区间

(2) 未知方差 σ_1^2 , σ_2^2 , 但 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 时 仍用 X^- 下作为 $\mu_1^ \mu_2$ 的一个估计量,

$$\sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}}$$

由抽样分布定理知

$$T = \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t(n+m-2),$$

对给定的置信度 $1-\alpha$,

查 t 分布表可得 $t_{\alpha/2}(n+m-2)$,

即得置信区间
$$(\overline{X}-\overline{Y}-t_{\alpha/2}S_{\omega}\sqrt{\frac{1}{m}+\frac{1}{n}}<\mu_{1}-\mu_{2}<\overline{X}-\overline{Y}+t_{\alpha/2}S_{\omega}\sqrt{\frac{1}{m}+\frac{1}{n}}$$
, 即得置信区间 $(\overline{X}-\overline{Y}-t_{\alpha/2}S_{\omega}\sqrt{\frac{1}{m}+\frac{1}{n}}$, $\overline{X}-\overline{Y}+t_{\alpha/2}S_{\omega}\sqrt{\frac{1}{m}+\frac{1}{n}}$)

例 为比较两个小麦品种的产量,选择18块条件相似的试验田,采用相同的耕作方法做试验,结果播种甲品种的8块试验田的单位面积产量和播种乙品种的10块试验田的单位面积产量(单位: kg)分别为:

甲品种 628 583 510 554 612 523 530 615 乙品种 535 433 398 470 567 480 498 560 503 426 假定每个品种的单位面积产量均服从正态分布, 试求这两个品种平均单位面积产量差的 0.95置信 区间。

解 以 $x_1, \dots x_8$ 记甲品种的单位面积产量,

y1,…y10 记乙品种的单位面积产量,

由样本数据可计算得到

$$\bar{x} = 569.38, s_x^2 = 2110.55, m = 8$$

$$\overline{y} = 487.00, s_y^2 = 3256.22, n = 10$$

下面分两种情况讨论。

(1) 若已知两个品种的单位面积产量的标准差相 同,则可采用二样本t区间。

此处
$$t_{1-\alpha/2}(m+n-2)=t_{0.975}(16)=2.1199$$

$$S_{w} = \sqrt{\frac{(m-1)S_{x}^{2} + (n-1)S_{y}^{2}}{m+n-2}} = \sqrt{\frac{7 \times 2110.55 + 9 \times 3256.22}{16}} = 52.4880$$

$$\sqrt{\frac{1}{m} + \frac{1}{n}} s_w t_{1-\alpha/2} (m + n - 2) = 52.4880 \times \sqrt{\frac{1}{8} + \frac{1}{10}} \times 2.1199 = 52.78$$

故 $\mu_1 - \mu_2$ 的 0.95 置信区间为

$$569.38 - 487 \pm 52.78 = [29.60,135.16]$$

(2) 若两个品种的单位面积产量的标准差不相同,则可采用近似t区间。此处

$$s_0^2 = s_x^2 / m + s_y^2 / n = 2110.55 / 8 + 3256.22 / 10 = 589.44, s_0 = 24.28$$

$$l = \frac{589.44^{2}}{\frac{2110.55^{2}}{8^{2} \times 7} + \frac{3256.22^{2}}{10^{2} \times 11}} = 17.74 \approx 18$$

$$s_0 t_{0.975}(l) = 24.28 \times 2.1009 = 51.01$$

于是 $\mu_1 - \mu_2$ 的0.95近似置信区间为[31.37,133.38]。

(3) σ_1^2, σ_2^2 未知, $n, m > 50, \mu_1 - \mu_2$ 的置信区间

$$\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m} \approx \frac{S_X^2}{n} + \frac{S_Y^2}{m}$$

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}$$

 $\sim N(0,1)$

X,Y 相互独立, 因此 $\mu_1 - \mu_2$ 的置信区间为

$$\left((\bar{X} - \bar{Y}) \pm u_{\frac{\alpha}{2}} \sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}\right)$$

(4) σ_1^2, σ_2^2 未知,但 $n = m, \mu_1 - \mu_2$ 的置信区间

令 $Z_i = X_i - Y_i$, i = 1, 2, ..., n, 可以将它们看成来自正态母体 $Z \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$ 的子样 $\overline{Z} = \overline{X} - \overline{Y}$.

$$S_Z^{*2} = \frac{1}{n-1} \sum_{i=1}^{n} \left[(X_i - Y_i) - (\overline{X} - \overline{Y}) \right]^2$$

仿单个正态母体公式 $\mu_1 - \mu_2$ 的置信区间为

$$\left((\overline{X} - \overline{Y}) \pm t_{\frac{\alpha}{2}}(n-1)\frac{S_Z^*}{\sqrt{n}}\right)$$

(5)方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间 $(\mu_1, \mu_2, \pm \mu_2)$

取枢轴量
$$F = \frac{S_X^{*2}/\sigma_1^2}{S_Y^{*2}/\sigma_2^2} = \frac{S_X^{*2}/S_Y^{*2}}{\sigma_1^2/\sigma_2^2} \sim F(n-1, m-1)$$

因此, 方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间为

$$\left(F_{1-\frac{\alpha}{2}}(m-1,n-1)\frac{S_X^{*2}}{S_Y^{*2}}, F_{\frac{\alpha}{2}}(m-1,n-1)\frac{S_X^{*2}}{S_Y^{*2}}\right)$$

例 某车间有两台自动机床加工一类套筒,假设套筒直径服从正态分布。现在从两个班次的产品中分别检查了5个和6个套筒,得其直径数据如下(单位: cm):

甲班: 5.06 5.08 5.03 5.00 5.07

乙班: 4.98 5.03 4.97 4.99 5.02 4.95

试求两班加工套筒直径的方差比 $\sigma_{\mathbb{H}}^2/\sigma_{\mathbb{Z}}^2$ 的0.95

置信区间。

解 此处, m=5, n=6, 由查表知

$$F_{0.025}(4,5) = \frac{1}{F_{0.975}(5,4)} = 1/9.36 = 0.1068, F_{0.975}(4,5) = 7.39$$

由数据算得 $s_{\mathbb{H}}^2 = 0.00037$, $s_{\mathbb{Z}}^2 = 0.00092$

故置信区间的两端分别为

$$\frac{s_{\mathbb{H}}^{2}}{s_{\mathbb{Z}}^{2}} \frac{1}{F_{0.975}(4,5)} = \frac{0.00037}{0.00092} \times \frac{1}{7.39} = 0.0544 ,$$

$$\frac{s_{\mathbb{H}}^{2}}{s_{\mathbb{Z}}^{2}} \frac{1}{F_{0.025}(4,5)} = \frac{0.00037}{0.00092} \times \frac{1}{0.1068} = 3.7657$$

 $\sigma_{\mathbb{P}}^2/\sigma_{\mathbb{Z}}^2$ 的0.95置信区间为[0.0544, 3.7657]。

例 某厂利用两条自动化流水线罐装番茄酱. 现分别从两条流水线上抽取了容量分别为13与17的两个相互独立的子样

$$X_1, X_2, \dots, X_{13}$$
 Y_1, Y_2, \dots, Y_{17}
 $\bar{x} = 10.6g, \quad \bar{y} = 9.5g$
 $s_X^{*2} = 2.4g^2, \quad s_Y^{*2} = 4.7g^2$

假设两条流水线上罐装的番茄酱的重量 都服从正态分布, 其均值分别为 μ₁与 μ₂

- (1) 若它们的方差相同 $\sigma_1^2 = \sigma_2^2 = \sigma^2$, $\mu_1 \mu_2$ 的置信概率为0.95 的置信区间;
 - (2) 若不知它们的方差是否相同,求它们的方差比的置信概率为 0.95 的置信区间

解 (1) 取枢轴量

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{1}{n} + \frac{1}{m}} \sqrt{\frac{(n-1)S_X^{*2} + (m-1)S_Y^{*2}}{n+m-2}} \sim t(n+m-2)}$$

$$t_{0.025}(28) = 2.0484$$
由公式 $\mu_1 - \mu$ 的 置信区间为
$$\left((\bar{X} - \bar{Y}) \pm t_{\frac{\alpha}{2}} \sqrt{\frac{1}{n} + \frac{1}{m}} \sqrt{\frac{(n-1)S_X^{*2} + (m-1)S_Y^{*2}}{n+m-2}}\right)$$

$$=(-0.3545, 2.5545)$$

(2) 枢轴量为 $F = \frac{S_X^{*2}/S_Y^{*2}}{\sigma_1^2/\sigma_2^2} \sim F(12, 16)$

$$F_{0.975}(16, 12) = \frac{1}{F_{0.025}(12, 16)} = \frac{1}{2.89}$$

$$F_{0.025}(16, 12) = 3.16$$

 $F_{0.025}(16, 12) = 3.16$ 由公式得方差比 $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间为

$$\left(F_{0.975}(16,12)\frac{S_X^{*2}}{S_Y^{*2}}, F_{0.025}(16,12)\frac{S_X^{*2}}{S_Y^{*2}}\right)$$

$$=(0.1767, 1.6136)$$

两个正态总体未知参数的置信区间(一)

待信	古参数	枢轴量	枢轴量 的分布	双侧置信区间的上、下限		
$\mu_1 - \mu_2$		$\frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$	N(0, 1)	$(\bar{X} - \bar{Y}) \pm u_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$		
	$\sigma_1^2 = \sigma_2^2$ 但未知	$\frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_1 - \mu_2\right)}{S_w \sqrt{\frac{1}{m} + \frac{1}{n}}}$	t(m+n-2)	$(\bar{X} - \bar{Y}) \pm t_{1-\frac{\alpha}{2}}(m+n-2)S_{w} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}$		
	$(m-1)S^2 + (n-1)S^2$					

其中 $S_w^2 = \frac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2}$

32

两个正态总体未知参数的置信区间(二)

	待估 参数	枢轴量	枢轴量 的分布	双侧置信区间的上、下限
$rac{{m \sigma}_1^2}{{m \sigma}_2^2}$	$rac{\mu_1,\ \mu_2}{ ext{均未知}}$	$rac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2}$	F(m-1, n-1)	$\frac{1}{F_{1-\frac{\alpha}{2}}(m-1, n-1)} \cdot \frac{S_X^2}{S_Y^2},$ $\frac{1}{F_{\frac{\alpha}{2}}(m-1, n-1)} \cdot \frac{S_X^2}{S_Y^2}$
	μ ₁ 、μ ₂ 均已知	$\frac{n\sum_{i=1}^{m} (X_i - \mu_1)^2 / \sigma_1^2}{m\sum_{j=1}^{n} (Y_j - \mu_2)^2 / \sigma_2^2}$	F(m, n)	$ \frac{1}{\boldsymbol{F}_{1-\frac{\boldsymbol{\alpha}}{2}}(\boldsymbol{m}, \boldsymbol{n})} \cdot \frac{\boldsymbol{n} \sum_{i=1}^{m} (\boldsymbol{X}_{i} - \boldsymbol{\mu}_{1})^{2}}{\boldsymbol{m} \sum_{j=1}^{n} (\boldsymbol{Y}_{j} - \boldsymbol{\mu}_{2})^{2}}, $ $ \frac{1}{\boldsymbol{F}_{\frac{\boldsymbol{\alpha}}{2}}(\boldsymbol{m}, \boldsymbol{n})} \cdot \frac{\boldsymbol{n} \sum_{i=1}^{m} (\boldsymbol{X}_{i} - \boldsymbol{\mu}_{1})^{2}}{\boldsymbol{m} \sum_{j=1}^{n} (\boldsymbol{Y}_{j} - \boldsymbol{\mu}_{2})^{2}} $

——正态总体置信区间的**求法**

主要根据 抽样分布Th

- ① 根据未知参数的无偏估计量, 确定其某个估计量 $\hat{\theta}$:
- ② 由 θ 的概率分布和置信水平 $1-\alpha$, 确定其相应的分位数
- ③ 由不等式 $|\hat{\theta} \theta| \le x_{\alpha}$,解得所求的置信区间 $(\underline{\theta}, \overline{\theta})$.

二)两个总体

未知均値
$$\mu$$
 $\frac{\overline{\sigma_{2}}}{\sigma_{2}^{2}}$ $S^{2} \sim \chi^{2}(n-1)$.

{ ව知方差 σ_{1}^{2} , σ_{2}^{2} $\frac{\overline{X}-\overline{Y}-(\mu_{1}-\mu_{2})}{(\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n})^{\frac{1}{2}}} \sim N(0,1)$;

 $+ \lambda \pi \frac{\overline{\Sigma}}{\overline{\Sigma}} = \frac{\overline{\Sigma}}$

三、单侧置信区间

求单侧置信区间的思路完全同于双侧的情形

上述置信区间中置信限都是双侧的,有些实际问题,人们关心的只是参数在一个方向的界限.

例如对于设备、元件的使用寿命来说,平均寿命过长没什么问题,过短就有问题了.这时,可将置信上限取为+∞,而只着眼于置信下限,这样求得的置信区间叫单侧置信区间.

定义(P. 52)设 θ 是总体 X 的待估参数, X_1 , …, X_n 是取自 X 的样本, 对给定值 $0 < \alpha < 1$, 若统计量 $\underline{\theta}(X_1, \dots, X_n)$ 满足 $\underline{P}(\theta > \theta) = 1 - \alpha$,

则称随机区间 $(\underline{\theta}, +\infty)$ 为 θ 的置信水平为 $1-\alpha$ 的单侧置信区间,称 $\underline{\theta}$ 为单侧置信下限; 若统计量 $\overline{\theta}(X_1, \dots, X_n)$ 满足

$$P(\theta < \overline{\theta}) = 1 - \alpha$$

则称随机区间($-\infty$, $\bar{\theta}$)为 θ 的置信水平为 $1-\alpha$ 的单侧置信区间,称 $\bar{\theta}$ 为单侧置信上限.

例 从一批汽车轮胎中随机地取16只作磨损试验,

记录其磨坏时所行驶路程(单位:公里), 算得样本均值 \bar{x} = 41116,样本标准差 s= 6346.设此样本来自正态总体 $N(\mu,\sigma^2), \mu,\sigma$ 均未知,问该种轮胎平均行驶路程至少是多少(α =0.05)?

 \mathbf{M} 由于 σ^2 未知,由抽样分布定理知随机变量

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

查 t 分布表可得满足条件 $P(T < t_{0.05}(16-1)) = 0.05$ 的上侧分位数

$$t_{0.05}$$
 (15) = 1.7531,
将 \bar{x} = 41116, s = 6346 代入 $\frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{\alpha}$ 得 $\frac{41116 - \mu}{6346/\sqrt{16}} < 1.7531$,

即得置信度为 0. 95 的单侧置信下限
$$\underline{\mu} = 41116 - \frac{6346}{\sqrt{16}} \times 1.7531 = 38334$$
,

故该种轮胎平均行驶路程不少于38334公里, 其置信概率为0.95.

关于置信区间的构造有两点说明:

- 1、满足置信度要求的c与d通常不唯一。若有可能,应选平均长度 $E(\hat{\theta}_U \hat{\theta}_L)$ 达到最短的c与d,这在G的分布为对称分布场合通常容易实现。
- 2、实际中,选平均长度($\hat{\theta}_{v}$ - $\hat{\theta}_{L}$) 尽可能短的 c与 d,这往往很难实现,因此,常这样选择 c与 d,使得两个尾部概率各为 $\alpha/2$,即 $P(G<c)=P(G>d)=\alpha/2$,这样的置信区间称为等尾置信区间。这是在G的分布为偏态分布场合常采用的方法。

【例】设 $X_1, X_2, ..., X_n$ 是来自均匀总体 $U(0, \theta)$ 的一个样本,试对给定的 $\alpha(0<\alpha<1)$ 给出 θ 的1- α 同等置信区间。

解: (1) 取 $x_{(n)}$ 作为枢轴量,其分布函数为 $F(x; \theta) = (x/\theta)^n$, 0 < x < 1;

(2) $x_{(n)}/\theta$ 的分布函数为 $F(y)=y^n$, 0 < y < 1, 故 $P(c \le x_{(n)}/\theta \le d) = d^{n} - c^{n},$

因此我们可以适当地选择c和d满足 d^n - c^n =1- α

平1-α 为最短置信区间。

非正态母体的情形置信区间

一. 非正态母体的情形(大子样)

设母体的期望 $EX = \mu$ 与方差 $DX = \sigma^2$ 均未知,用大子样($n \ge 50$)对 μ 作区间估计.

$$\mathbb{R} \ U = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim N(0, 1)$$

由 $P(|U| < u_{\alpha/2}) = 1 - \alpha$ 得 μ 的置信区间

$$(\overline{X} - u_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + u_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}) \quad \cdots \quad (1)$$

例 从学校新生中随机地选50名,进行田径项目测试,由测试成绩得子样均值 $\bar{x} = 75.8$, $s^2 = 144.72$.

成绩的置信区间, 置信概率为95%.

解 $u_{\frac{\alpha}{2}} = u_{0.05} = 1.96, s = 12.03$. 由(1)式得 $\overline{X} - u_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} = 75.8 - 1.96 \times \frac{12.03}{\sqrt{50}} = 72.465,$

 $\overline{X} + u_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} = 75.8 + 1.96 \times \frac{12.03}{\sqrt{50}} = 79.135,$

(72.465, 79.135)

若母体 $X \sim B(1, p)$, 容量为n 的子样中 恰有m 个1, 试对 p 作区间估计.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{m}{n}$$

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2} = \frac{m}{n} - \left(\frac{m}{n}\right)^{2} = \frac{m}{n} \left(1 - \frac{m}{n}\right)$$

代入(1)式得

$$\left(\frac{m}{n}-u_{\frac{\alpha}{2}}\sqrt{\frac{1}{n}\frac{m}{n}\left(1-\frac{m}{n}\right)}, \frac{m}{n}+u_{\frac{\alpha}{2}}\sqrt{\frac{1}{n}\frac{m}{n}\left(1-\frac{m}{n}\right)}\right)$$

例1 自一大批产品中抽取100个样品,其中有60个一级品,求这批产品的一级品率p的置信度为0.95的置信区间.

解

$$n = 100, m = 60, u_{\frac{\alpha}{2}} = 1.96$$

$$\left(\frac{m}{n}-u_{\frac{\alpha}{2}}\sqrt{\frac{1}{n}\frac{m}{n}\left(1-\frac{m}{n}\right)}, \frac{m}{n}+u_{\frac{\alpha}{2}}\sqrt{\frac{1}{n}\frac{m}{n}\left(1-\frac{m}{n}\right)}\right)$$

$$=(0.504, 0.696)$$

注 另一解法见后面附录

非正态母体均值的区间估计(补充)

若母体 X 的分布未知,但子样容量很大,由中心极限定理,可近似地视 $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$ 若 σ^2 已知,则 μ 的置信度为 $1-\alpha$ 的置信区间可取为 $\bar{X} \pm u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

若 σ^2 未知,则 μ 的置信度为 $1-\alpha$ 的置信区间可取为 $\overline{X}+t$ S

设 X服从参数为p的0-1分布,子样为 X_1, X_2, \cdots, X_n

推导p的置信度为 $1-\alpha$ 的置信区间公式.

$$\underset{i=1}{\mathbb{R}} \sum_{i=1}^{n} X_{i} \sim B(n,p) \longrightarrow \frac{\sqrt{n}(\overline{X}-p)}{\sqrt{p(1-p)}} \sim N(0,1)$$

$$P\left(-u_{\frac{\alpha}{2}} < \frac{\sqrt{n(\overline{X} - p)}}{\sqrt{p(1 - p)}} < u_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\longrightarrow 0 \le \frac{n(\overline{X} - p)^2}{p(1 - p)} < u_{\frac{\alpha}{2}}^2$$

$$\rightarrow (n + u_{\frac{\alpha}{2}}^2) p^2 - (2n\overline{X} + u_{\frac{\alpha}{2}}^2) p + n\overline{X}^2 < 0$$

$$a = (n + u_{\frac{\alpha}{2}}^2), b = -(2n\overline{X} + u_{\frac{\alpha}{2}}^2), c = n\overline{X}^2$$

$$p_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, \quad p_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

附例1 自一大批产品中抽取100个样品,其 中有60个一级品, 求这批产品的一级品率 p 的置信度为0.95的置信区间.

p n = 100, $\bar{x} = 0.6$, $\alpha = 0.05$, $u_{0.025} = 1.96$ $a = 100 + 1.96^2 = 103.84, c = 100 \times 0.6^2 = 36,$ $b = -(2 \times 100 \times 0.6 + 1.96^2) = -123.84$ 代入前页公式得p的置信区间为 $(p_1, p_2) = (0.502, 0.691)$

注 结果与前面例1稍有差别.

第7次作业:

- 孙p.62 习题二
- **43**、46.

谢谢!

