

TrueViewTM5725 Registers Definition Rev1.1

August 2005

Revision History

Date	Version	Ву	Comments
07/28/2005	Rev 1.0	5725 team	Initial draft
07/28/2005	Rev 1.1	Zaken Chen	Chang register bit name to match txt file

Register Map

Segment Address	0	1	2	3	4	5
00~0F	Status Register	Input			Memory	ADC
10~1F	(Read Only)	Formatter	De-interlace		Chapter 05	Chapter 11
20~2F	Chapter 00	Chapter 01	Chapter 02	Video	Capture & Playback,	
30~3F		HD-bypass		Processor	Chapter 06	Sync Proc
40~4F	Miscellaneous	Chapter 03		Chapter 08	Read FIFO, Write FIFO	Chapter 12
50~5F	Chapter 04	Onapier 66			Chapter 07	Onapier 12
60~6F		Mode Detect				
70~7F		Chapter 10		PIP Chapter 08	L	
80~8F		Onapier 10				
90~9F	OSD Chapter 09				L	
A0~AF						
B0~BF						
C0~CF						
D0~DF						
E0~EF						

Note:

- 1. Address marked with is not existed in 5725.
- 2. All registers (except chapter 01 status register is read only) have default value "0x00" after power up.
- 3. All registers require segment for access. Segment is defined in address F0. For example:
 - S1_46 means F0 must be set to 1 before accessing 46
 - S1_46=8D equal following operation:

F0 = 01

46 = 8D

Table of Contents

CHAPTER	00.	STATUS	REGISTERS	 		00—	.1
INPUT	MODE	STATUS 00			RO		
INPUT	MODE	STATUS 01		REG S0_01,	RO	00-	-2
INPUT	MODE	STATUS 02		REG S0_02,	RO	00–	-2
INPUT	MODE	STATUS 03		REG S0_03,	RO	00–	-3
INPUT	MODE	STATUS 04		REG S0_04,	RO	00-	-3
INPUT	MODE	STATUS 05			RO		
INPUT	SIZE	STATUS 00		REG S0_06,	RO	00-	-4
INPUT	SIZE	STATUS 01		REG S0_07,	RO	00-	-4
INPUT	SIZE	STATUS 02		REG S0_08,	RO	00–	-5
MISC S	STATU:	S 00		REG S0_09,	RO	00–	-5
MISC S	STATU:	S 01		REG SO_OA,	RO	00–	-5
CHIP I	D 00				RO		
CHIP I	D 01				RO		
CHIP I	D 02				RO		
GPIO	S	TATUS 00			RO		
INTER	RUPT	STATUS 00			RO		
VIDEO	_PROC	STATUS 00		REG S0_10,	RO	00-	-8
VIDEO	_PROC	STATUS 01		REG S0_11,	RO	00-	-8
VIDEO	_PROC	STATUS 02			RO		
MEM_I	FF S	STATUS 00		REG S0_13,	RO	00-	-9
MEM_I	FF S	STATUS 00		REG S0_14,	RO	00-	-9
DEINT		STATUS 00		REG S0_15,	RO	00-	-9
SYNC	PROC	STATUS 00		REG S0_16,	RO	. 00—1	10
SYNC	PROC	STATUS 01			RO		
SYNC	PROC	STATUS 02		REG S0_18,	RO	. 00—1	10
SYNC	PROC	STATUS 03			RO		
SYNC	PROC	STATUS 04		REG SO_1A,	RO	. 00—1	11
SYNC	PROC	STATUS 05		REG SO_1B,	RO	. 00—1	11
SYNC	PROC	STATUS 06		REG SO_1C,	RO	. 00—1	11
SYNC	PROC	STATUS 07			RO		
SYNC	PROC	STATUS 08		REG SO_1E,	RO	. 00—1	12
TEST E	3US	STATUS 00			RO		
TEST F	FIFO	STATUS 00			RO		
TEST F	FIFO	STATUS 01			RO		
CRC R		STATUS 00		REG S0_22,	RO	. 00—1	13
CRC PI	В 5	STATUS 00		REG S0_23,	RO	. 00—	13
CRC R	ESULT	STATUS 00		REG S0_24,	RO	. 00—1	13
CRC R	ESULT	STATUS 01		REG S0_25,	RO	. 00—1	14
CRC R	ESULT	STATUS 02		REG S0_26,	RO	. 00—1	14
CRC R	ESULT	STATUS 03			RO		
CRC R	ESULT	STATUS 04		REG S0_28,	RO	. 00—1	14
CRC R	ESULT	STATUS 05		REG S0_29,	RO	. 00—1	15
CRC R	ESULT	STATUS 06		REG SO_2A,	RO	. 00—1	15
CRC R	ESULT	STATUS 07		REG SO_2B,	RO	. 00—1	15
CRC R	ESULT	STATUS 08		REG SO_2C,	RO	. 00—1	15
CRC R	ESULT	STATUS 09		REG SO_2D,	RO	. 00—1	16
TEST E	BUS	STATUS 01			RO		
TEST E	3US	STATUS 02		REG SO_2F,	RO	. 00—	16

RD-5725-1.1

CHAPTER C	O1. INPUT	FORMATTER REGISTERS			. 01—1
INPUT_FO	ORMATTER 00		REG S1_00,	R/W	01—1
INPUT_F	ORMATTER 01		REG S1_01,	R/W	01—2
INPUT_FO	ORMATTER 02		REG S1_02,	R/W	01—3
INPUT_F	ORMATTER 03		REG S1_03,	R/W	01—4
INPUT_F	ORMATTER 04		REG S1_04,	R/W	01—4
INPUT_F	ORMATTER 05		REG S1_05,	R/W	01—4
INPUT_F	ORMATTER 06		REG S1_06,	R/W	01—4
INPUT_F	ORMATTER 07		REG S1_07,	R/W	01—5
INPUT_F	ORMATTER 08		REG S1_08,	R/W	01—5
INPUT_F	ORMATTER 09			R/W	
INPUT_F	ORMATTER OA			R/W	
INPUT_F	ORMATTER OB			R/W	
INPUT_F	ORMATTER OC			R/W	
INPUT_F	ORMATTER OD			, R/W	
INPUT_F	ORMATTER 0E		REG S1_0E,	R/W	01—7
INPUT_F	ORMATTER OF		REG S1_0F,	R/W	01—7
INPUT_F	ORMATTER 10		REG S1_10,	R/W	01—7
INPUT_F	ORMATTER 11			R/W	
INPUT_F	ORMATTER 12		REG S1_12,	R/W	01—8
INPUT_F	ORMATTER 13		REG S1_13,	R/W	01—8
INPUT_F	ORMATTER 14		REG S1_14,	R/W	01—8
INPUT_F	ORMATTER 15		REG S1_15,	R/W	01—9
INPUT_F	ORMATTER 16			R/W	
INPUT_F	ORMATTER 17		REG S1_17,	R/W	01—9
INPUT_F	ORMATTER 18			R/W	
INPUT_F	ORMATTER 19			R/W	
INPUT_F	ORMATTER 1A			R/W	
INPUT_F	ORMATTER 1B			R/W	
INPUT_F	ORMATTER 1C			R/W	
_	ORMATTER 1D			, R/W	
INPUT_F	ORMATTER 1E			R/W	
INPUT_F	ORMATTER 1F			R/W	
_	ORMATTER 20			R/W	
INPUT_F	ORMATTER 21			R/W	
_	ORMATTER 22			R/W	
_	ORMATTER 23			R/W	
_	ORMATTER 24			R/W	
	ORMATTER 25			R/W	
	ORMATTER 26			R/W	
	ORMATTER 27			R/W	
	ORMATTER 28			R/W	
	ORMATTER 29			R/W	
INPUT_F	ORMATTER 2A		REG S1_2A	R/W	01—15
CHAPTER C	D2. DEINTE	ERLACER REGISTERS			. 02—1
DEINTED	LACED OO		DEC 62 00	D/M	00 1
	LACER 00			R/W	
	LACER 01 LACER 02			R/W	
				R/W	
	LACER 03 LACER 04			R/W	
	LACER 04 LACER 05			R/W	
	LACER 06 LACER 07			R/W	
				R/W	
	LACER 08			R/W	
DEINTER	LACER 09		KEG 52_09,	R/W	02—4

DEINTERLACER OA	REG S2_0A, R/W	02 F
	REG S2_0B, R/W	
DEINTERLACER OB DEINTERLACER OC		
	REG S2_0C, R/W	
DEINTERLACER OD	REG S2_0D, R/W	
DEINTERLACER OE	REG S2_0E, R/W	
DEINTERLACER OF	REG S2_0F, R/W	
DEINTERLACER 10	REG S2_10, R/W	
DEINTERLACER 11	REG S2_11, R/W	
DEINTERLACER 12	REG S2_12, R/W	02—8
DEINTERLACER 13	REG S2_13, R/W	02—9
DEINTERLACER 14	REG S2_14, R/W	02—9
DEINTERLACER 15	REG S2_15, R/W	
DEINTERLACER 16	REG S2_16, R/W	
DEINTERLACER 17	REG S2_17, R/W	
DEINTERLACER 18	REG S2_18, R/W	
DEINTERLACER 19	REG S2_19, R/W	
DEINTERLACER 1A	REG S2_1A, R/W	02 12
DEINTERLACER 1B	REG S2_1B, R/W	02-12
DEINTERLACER 1C		
	REG S2_1C, R/W	
DEINTERLACER 1D	REG S2_1D, R/W	
DEINTERLACER 1E	REG S2_1E, R/W	
DEINTERLACER 1F	REG S2_1F, R/W	
DEINTERLACER 20	REG S2_20, R/W	
DEINTERLACER 21	REG S2_21, R/W	
DEINTERLACER 22	REG S2_22, R/W	
DEINTERLACER 23	REG S2_23, R/W	02—15
DEINTERLACER 24	REG S2_24, R/W	02—15
DEINTERLACER 25	REG S2_25, R/W	02—16
DEINTERLACER 26	REG S2_26, R/W	
DEINTERLACER 27	REG S2_27, R/W	
DEINTERLACER 28	REG S2_28, R/W	
DEINTERLACER 29	REG S2_29, R/W	
DEINTERLACER 2A	REG S2_2A, R/W	
DEINTERLACER 2B	REG S2_2B, R/W	
DEINTERLACER 2C	REG S2_2C, R/W	
DEINTERLACER 2D	REG S2_2D, R/W	
DEINTERLACER 2E	REG S2_2E, R/W	
DEINTERLACER 2F	REG S2_2F, R/W	
DEINTERLACER 30	REG S2_30, R/W	
DEINTERLACER 31	REG S2_31, R/W	
DEINTERLACER 32	REG S2_32, R/W	
DEINTERLACER 33	REG S2_33, R/W	
DEINTERLACER 34	REG S2_34, R/W	
DEINTERLACER 35	REG S2_35, R/W	
DEINTERLACER 36	REG S2_36, R/W	
DEINTERLACER 37	REG S2_37, R/W	02—21
DEINTERLACER 38	REG S2_38, R/W	02—22
DEINTERLACER 39	REG S2_39, R/W	02—22
DEINTERLACER 3A	REG S2_3A, R/W	
DEINTERLACER 3B	REG S2_3B, R/W	
DEINTERLACER 3C	REG S2_3C, R/W	
	12_00;	'
CHARTER O2 HD Byog Brougters		12 1
CHAPTER 03. HD_BYPS REGISTERS		J3— I
HD_BYPS 00	REG S1_30, R/W	03—1
HD_BYPS 01	REG S1_31, R/W	
HD_BYPS 02	REG S1_31, R/W	
HD_BYPS 03	REG S1_32, R/W	
TIV DIES US	REU 31_33, K/W	…∪ა—∠

HD_BYPS 04 HD_BYPS 05 HD_BYPS 06 HD_BYPS 07 HD_BYPS 08 HD_BYPS 09 HD_BYPS 0A HD_BYPS 0B HD_BYPS 0C HD_BYPS 0D HD_BYPS 0E HD_BYPS 0F HD_BYPS 10 HD_BYPS 10 HD_BYPS 12 HD_BYPS 13 HD_BYPS 14 HD_BYPS 15 HD_BYPS 15 HD_BYPS 16	REG S1_34, R/W REG S1_35, R/W REG S1_36, R/W REG S1_37, R/W REG S1_37, R/W REG S1_38, R/W REG S1_39, R/W REG S1_39, R/W REG S1_3A, R/W REG S1_3A, R/W REG S1_3B, R/W REG S1_3B, R/W REG S1_3C, R/W REG S1_4C, R/W	03—2 03—3 03—3 03—3 03—4 03—4 03—4 03—5 03—5 03—5 03—6 03—6
HD_BYPS 17 HD_BYPS 18 HD_BYPS 19 HD_BYPS 1A HD_BYPS 1B HD_BYPS 1C HD_BYPS 1D HD_BYPS 1F HD_BYPS 20 HD_BYPS 21 HD_BYPS 21 HD_BYPS 23 HD_BYPS 23 HD_BYPS 24 HD_BYPS 25	REG S1_47, R/W REG S1_48, R/W REG S1_49, R/W REG S1_4A, R/W REG S1_4B, R/W REG S1_4C, R/W REG S1_4D, R/W REG S1_4E, R/W REG S1_4F, R/W REG S1_50, R/W REG S1_51, R/W REG S1_52, R/W REG S1_53, R/W REG S1_54, R/W REG S1_55, R/W REG S1_55, R/W	03—7 03—7 03—8 03—8 03—8 03—8 03—9 03—9 03—9 03—10 03—10 03—10
PLL648 CONTROL 00 PLL648 CONTROL 01 PLL648 CONTROL 02 PLL648 CONTROL 03 DAC CONTROL 00 DAC CONTROL 01 RESET CONTROL 00 RESET CONTROL 01 PAD CONTROL 01 PAD CONTROL 01 PAD CONTROL 02 DAC_MUX CONTROL 00 TEST BUS CONTROL 00 DIG_OUT CONTROL 00 CLK/SYNC CONTROL 00 GPIO CONTROL 00 GPIO CONTROL 01 GPIO CONTROL 01 GPIO CONTROL 02 INVT_RING CONTROL 00 INTERRUPT CONTROL 00	REG SO_40, R/W REG SO_41, R/W REG SO_42, R/W REG SO_43, R/W REG SO_44, R/W REG SO_45, R/W REG SO_46, R/W REG SO_46, R/W REG SO_47, R/W REG SO_49, R/W REG SO_49, R/W REG SO_48, R/W REG SO_49, R/W REG SO_4B, R/W REG SO_4B, R/W REG SO_4B, R/W REG SO_4B, R/W REG SO_4E, R/W REG SO_50, R/W REG SO_50, R/W REG SO_51, R/W REG SO_52, R/W REG SO_53, R/W REG SO_551, R/W REG SO_551, R/W REG SO_558, R/W REG SO_558, R/W	04—2 04—3 04—3 04—4 04—5 04—6 04—7 04—8 04—9 04—10 04—10 04—10 04—11 04—12 04—13 04—14 04—15 04—15

INTERRUPT CONTROL 01	REG S0_59, R/W	04—16
CHAPTER 05. MEMORY REGISTERS		05—1
MEMORY CONTROLLER 00	REG S4_00, R/W	05—1
MEMORY CONTROLLER 01	REG S4_01, R/W	
MEMORY CONTROLLER 02	REG S4_02, R/W	
MEMORY CONTROLLER 03	REG S4_03, R/W	
MEMORY CONTROLLER 04	REG S4_04, R/W	
MEMORY CONTROLLER 05	REG S4_05, R/W	
MEMORY CONTROLLER 06	REG S4_06, R/W	
MEMORY CONTROLLER 07	REG S4_07, R/W	
MEMORY CONTROLLER 08	REG S4_08, R/W	05—7
MEMORY CONTROLLER 09	REG S4_09, R/W	05—8
MEMORY CONTROLLER 10	REG S4_0A, R/W	05—9
MEMORY CONTROLLER 11	REG S4_0B, R/W	05—10
MEMORY CONTROLLER 12	REG S4_0C, R/W	05—11
MEMORY CONTROLLER 13	REG S4_0D, R/W	05—12
MEMORY CONTROLLER 14	REG S4_0E, R/W	05—13
MEMORY CONTROLLER 15	REG S4_0F, R/W	
MEMORY CONTROLLER 16	REG S4_10, R/W	05—14
MEMORY CONTROLLER 17	REG S4_11, R/W	05—15
MEMORY CONTROLLER 18	REG S4_12, R/W	
MEMORY CONTROLLER 19	REG S4_13, R/W	05—16
MEMORY CONTROLLER 20	REG S4_14, R/W	05—17
MEMORY CONTROLLER 21	REG S4_15, R/W	05—18
MEMORY CONTROLLER 22	REG S4_16, R/W	05—19
MEMORY CONTROLLER 23	REG S4_17, R/W	
MEMORY CONTROLLER 24	REG S4_18, R/W	
MEMORY CONTROLLER 25	REG S4_19, R/W	
MEMORY CONTROLLER 26	REG S4_1A, R/W	
MEMORY CONTROLLER 27	REG S4_1B, R/W	
MEMORY CONTROLLER 28	REG S4_1C, R/W	
MEMORY CONTROLLER 29	REG S4_1D, R/W	05—25
CHAPTER 06. CAPTURE & PLAYBACK REGISTERS		06—1
CAPTURE 00	REG S4_20, R/W	06—1
CAPTURE 01	REG S4_21, R/W	
CAPTURE 02	REG S4_22, R/W	
CAPTURE 03	REG S4_23, R/W	
CAPTURE 04	REG S4_24, R/W	
CAPTURE 05	REG S4_25, R/W	
CAPTURE 06	REG S4_26, R/W	
CAPTURE 07	REG S4_27, R/W	
CAPTURE 08	REG S4_28, R/W	
CAPTURE 09	REG S4_29, R/W	
PLAY BACK 00	REG S4_2B, R/W	
PLAY BACK 01	REG S4_2C, R/W	
PLAY BACK 02	REG S4_2D, R/W	
PLAY BACK 03	REG S4_2E, R/W	
PLAY BACK 04	REG S4_2F, R/W	
CAPTURE AND PLAYBACK SHARED 00	REG S4_30, R/W	
CAPTURE AND PLAYBACK SHARED 01	REG S4_31, R/W	
CAPTURE AND PLAYBACK SHARED 02	REG S4_32, R/W	06—8
CAPTURE AND PLAYBACK SHARED 03	REG S4_33, R/W	
CAPTURE AND PLAYBACK SHARED 04	REG S4_34, R/W	
CAPTURE AND PLAYBACK SHARED 05	REG S4_35, R/W	06—9

CAPTURE AND PLAYBACK SHARED 06	REG S4_36, R/W	06—9
CAPTURE AND PLAYBACK SHARED 07	REG S4_37, R/W	06—10
CAPTURE AND PLAYBACK SHARED 08	REG S4_38, R/W	
CAPTURE AND PLAYBACK SHARED 09	REG S4_39, R/W	06—10
CAPTURE AND PLAYBACK SHARED 10	REG S4_3A, R/W	06—11
CAPTURE AND PLAYBACK SHARED 11	REG S4_3B, R/W	
CAPTURE AND PLAYBACK SHARED 12	REG S4_3C, R/W	06—11
CAPTURE AND PLAYBACK SHARED 13	REG S4_3D, R/W	06—12
CAPTURE AND PLAYBACK SHARED 14	REG S4_3E, R/W	06—12
CAPTURE AND PLAYBACK SHARED 15	REG S4_3F, R/W	06—12
CAPTURE AND PLAYBACK SHARED 16	REG S4_40, R/W	06—13
CHAPTER 07. WRITE & READ FIFO REGIS	STERS	07—1
WRITE FIFO 00	REG S4_41, R/W	07 1
WRITE FIFO 00	REG S4_41, R/W	
WRITE FIFO 01 WRITE FIFO 02	REG S4_42, R/W	
WRITE FIFO 03	REG S4_44, R/W	
WRITE FIFO 04	REG S4_45, R/W	
WRITE FIFO 05	REG S4_46, R/W	
WRITE FIFO 06	REG S4_47, R/W	
WRITE FIFO 07	REG S4_48, R/W	
WRITE FIFO 08	REG S4_49, R/W	
WRITE FIFO 09	REG S4_4A, R/W	
WRITE FIFO 10	REG S4_4B, R/W	
READ FIFO 00	REG S4_4D, R/W	
READ FIFO 01	REG S4_4E, R/W	
READ FIFO 02	REG S4_4F, R/W	
READ FIFO 03	REG S4_50, R/W	
READ FIFO AND WRITE FIFO SHARED 00	REG S4_51, R/W	
READ FIFO AND WRITE FIFO SHARED 01	REG S4_51, R/W	
READ FIFO AND WRITE FIFO SHARED 02	REG S4_53, R/W	
READ FIFO AND WRITE FIFO SHARED 03	REG S4_54, R/W	
READ FIFO AND WRITE FIFO SHARED 04	REG S4_55, R/W	
READ FIFO AND WRITE FIFO SHARED 05	REG S4_56, R/W	
READ FIFO AND WRITE FIFO SHARED 06	REG S4_57, R/W	
READ FIFO AND WRITE FIFO SHARED 07	REG S4_58, R/W	
READ FIFO AND WRITE FIFO SHARED 08	REG S4_59, R/W	
READ FIFO AND WRITE FIFO SHARED 09	REG S4_5A, R/W	
READ FIFO AND WRITE FIFO SHARED 10	REG S4_5B, R/W	
CHAPTER 08. VIDEO PROCESSOR REGISTE	RS	08—1
VDS_PROC 00	REG S3_00, R/W	
VDS_PROC 01	REG S3_01, R/W	
VDS_PROC 02	REG S3_02, R/W	
VDS_PROC 03	REG S3_03, R/W	
VDS_PROC 04	REG S3_04, R/W	
VDS_PROC 05	REG S3_05, R/W	
VDS_PROC 06	REG S3_06, R/W	
VDS_PROC 09	REG S3_07, R/W	
VDS_PROC 08	REG S3_08, R/W	
VDS_PROC 09 VDS_PROC 10	REG S3_09, R/W	
	REG S3_0A, R/W	
VDS_PROC 13	REG S3_0B, R/W	
VDS_PROC 12	REG S3_0C, R/W	
VDS_PROC 14	REG S3_0D, R/W	
VDS_PROC 14	REG S3_0E, R/W	∪ŏ—6

VDS_PROC 15	REG S3_0F, R/W	08—6
VDS_PROC 16	REG S3_10, R/W	
VDS_PROC 17	REG S3_11, R/W	
VDS_PROC 18	REG S3_12, R/W	
VDS_PROC 19	REG S3_13, R/W	
-		
VDS_PROC 20	REG S3_14, R/W	
VDS_PROC 21	REG S3_15, R/W	
VDS_PROC 22	REG S3_16, R/W	
VDS_PROC 23	REG S3_17, R/W	
VDS_PROC 24	REG S3_18, R/W	08—9
VDS_PROC 25	REG S3_19, R/W	08—10
VDS_PROC 26	REG S3_1A, R/W	
VDS_PROC 27	REG S3_1B, R/W	08—11
VDS_PROC 28	REG S3_1C, R/W	
VDS_PROC 29	REG S3_1D, R/W	
VDS_PROC 30	REG S3_1E, R/W	
VDS_PROC 31	REG S3_1F, R/W	
VDS_PROC 32	REG S3_20, R/W	
VDS_PROC 33	REG S3_21, R/W	
VDS_PROC 34	REG S3_22, R/W	
VDS_PROC 35	REG S3_23, R/W	
VDS_PROC 36	REG S3_24, R/W	
VDS_PROC 37	REG S3_25, R/W	
VDS_PROC 38	REG S3_26, R/W	08—15
VDS_PROC 39	REG S3_27, R/W	08—15
VDS_PROC 40	REG S3_28, R/W	08—15
VDS_PROC 41	REG S3_29, R/W	
VDS PROC 42	REG S3_2A, R/W	
VDS_PROC 43	REG S3_2B, R/W	
VDS_PROC 44	REG S3_2C, R/W	
VDS_PROC 45	REG S3_2D, R/W	
VDS_PROC 46	REG S3_2E, R/W	
_	REG S3_2F, R/W	
VDS_PROC 47		
VDS_PROC 48	REG S3_30, R/W	
VDS_PROC 49	REG S3_31, R/W	
VDS_PROC 50	REG S3_32, R/W	
VDS_PROC 51	REG S3_33, R/W	
VDS_PROC 52	REG S3_34, R/W	
VDS_PROC 53	REG S3_35, R/W	08—20
VDS_PROC 54	REG S3_36, R/W	08—20
VDS_PROC 55	REG S3_37, R/W	08—20
VDS_PROC 56	REG S3_38, R/W	
VDS_PROC 57	REG S3_39, R/W	
VDS_PROC 58	REG S3_3A, R/W	
VDS_PROC 59	REG S3_3B, R/W	
VDS_PROC 60	REG S3_3C, R/W	
_		
VDS_PROC 61	REG S3_3D, R/W	
VDS_PROC 62	REG S3_3E, R/W	
VDS_PROC 63	REG S3_3F, R/W	
VDS_PROC 64	REG S3_40, R/W	
VDS_PROC 65	REG S3_41, R/W	08—23
VDS_PROC 66	REG S3_42, R/W	08—24
VDS_PROC 67	REG S3_43, R/W	
VDS_PROC 68	REG S3_44, R/W	
VDS_PROC 69	REG S3_45, R/W	
VDS_PROC 70	REG S3_46, R/W	
VDS_PROC 70	REG S3_47, R/W	
VDS_PROC 72	REG S3_48, R/W	U8—26

VDS_PROC 73	REG S3_49, R/W	08—26
VDS_PROC 74	REG S3_4A, R/W	
VDS_PROC 75	REG S3_4B, R/W	
-		
VDS_PROC 76	REG S3_4C, R/W	
VDS_PROC 77	REG S3_4D, R/W	
VDS_PROC 78	REG S3_4E, R/W	08—28
VDS_PROC 79	REG S3_4F, R/W	08—29
VDS_PROC 80	REG S3_50, R/W	
VDS_PROC 81	REG S3_51, R/W	
VDS_PROC 82	REG S3_52, R/W	
VDS_PROC 83	REG S3_53, R/W	
VDS_PROC 84	REG S3_54, R/W	08—31
VDS_PROC 85	REG S3_55, R/W	08—31
VDS_PROC 86	REG S3_56, R/W	
VDS_PROC 87	REG S3_57, R/W	
VDS_PROC 88	REG S3_58, R/W	
VDS_PROC 89	REG S3_59, R/W	
VDS_PROC 90	REG S3_5A, R/W	
VDS_PROC 91	REG S3_5B, R/W	08—33
VDS_PROC 92	REG S3_5C, R/W	
VDS_PROC 93	REG S3_5D, R/W	
VDS_PROC 94	REG S3_5E, R/W	
VDS_PROC 95	REG S3_5F, R/W	
VDS_PROC 96	REG S3_60, R/W	
VDS_PROC 97	REG S3_61, R/W	
VDS_PROC 98	REG S3_62, R/W	08—36
VDS_PROC 99	REG S3_63, R/W	08—36
VDS_PROC 100	REG S3_64, R/W	08—36
VDS_PROC 101	REG S3_65, R/W	
VDS_PROC 102	REG S3_66, R/W	
VDS_PROC 103	REG S3_67, R/W	
VDS_PROC 104	REG S3_68, R/W	
-		
VDS_PROC 105	REG S3_69, R/W	
VDS_PROC 106	REG S3_6A, R/W	
VDS_PROC 107	REG S3_6B, R/W	
VDS_PROC 108	REG S3_6C, R/W	08—39
VDS_PROC 109	REG S3_6D, R/W	08—39
VDS_PROC 110	REG S3_6E, R/W	
VDS_PROC 111	REG S3_6F, R/W	
VDS_PROC 112	REG S3_70, R/W	
VDS_PROC 113	REG S3_71, R/W	
	REG S3_71, R/W	
VDS_PROC 114		
VDS_PROC 115	REG S3_73, R/W	
VDS_PROC 116	REG S3_74, R/W	
PIP 00	REG S3_80, R/W	08—43
PIP 01	REG S3_81, R/W	08—44
PIP 02	REG S3_82, R/W	08—44
PIP 03	REG S3_83, R/W	
PIP 04	REG S3_84, R/W	
PIP 05		
	REG S3_85, R/W	
PIP 06	REG S3_86, R/W	
PIP 07	REG S3_87, R/W	
PIP 08	REG S3_88, R/W	
PIP 09	REG S3_89, R/W	
PIP 10	REG S3_8A, R/W	08—46
PIP 11	REG S3_8B, R/W	
PIP 12	REG S3_8C, R/W	
PIP 13	REG S3_8D, R/W	
111 10	NEO 00_0D, N/ W	

PIP 14 PIP 15			R/W	
CHAPTER 09.	OSD REGISTERS			09—1
OSD_TOP_00 OSD_TOP_01 OSD_TOP_02 OSD_REG_03 OSD_REG_04 OSD_REG_05 OSD_REG_06 OSD_REG_07 OSD_REG_08		REG S0_91, REG S0_92, REG S0_93, REG S0_94, REG S0_95, REG S0_96, REG S0_97,	R/W	
CHAPTER 10.	MODE_DETECT REGISTERS			10—1
MODE_DET 00 MODE_DET 01 MODE_DET 02 MODE_DET 03 MODE_DET 04 MODE_DET 05 MODE_DET 05 MODE_DET 06 MODE_DET 07 MODE_DET 09 MODE_DET 10 MODE_DET 10 MODE_DET 11 MODE_DET 12 MODE_DET 12 MODE_DET 13 MODE_DET 15 MODE_DET 15 MODE_DET 15 MODE_DET 16 MODE_DET 17 MODE_DET 17 MODE_DET 18 MODE_DET 19 MODE_DET 20 MODE_DET 21 MODE_DET 22 MODE_DET 23 MODE_DET 24 MODE_DET 25 MODE_DET 25 MODE_DET 26 MODE_DET 27 MODE_DET 27 MODE_DET 28 MODE_DET 29 MODE_DET 29 MODE_DET 31 MODE_DET 33 MODE_DET 33 MODE_DET 34 MODE_DET 34		REG S1_61, REG S1_62, REG S1_63, REG S1_64, REG S1_64, REG S1_66, REG S1_66, REG S1_68, REG S1_68, REG S1_66, REG S1_66, REG S1_66, REG S1_66, REG S1_66, REG S1_67, REG S1_67, REG S1_70, REG S1_71, REG S1_71, REG S1_72, REG S1_73, REG S1_74, REG S1_74, REG S1_75, REG S1_76, REG S1_76, REG S1_77, REG S1_78, REG S1_77, REG S1_78,	R/W	10—1 10—2 10—2 10—3 10—3 10—3 10—4 10—4 10—4 10—5 10—5 10—5 10—6 10—6 10—6 10—7 10—7 10—7 10—7 10—8 10—8 10—9 10—9 10—9 10—9 10—9 10—9 10—10 10—10 10—10 10—11 10—11
MODE_DET 35	ADC REGISTERS		R/W	
CHAPTER 11. ADC CLK CONTE	ROL 00	REG S5_00,	R/W	11—1

ADO CONTROL OF		
ADC CONTROL 01	REG S5_03, R/W11—	-2
ADC CONTROL 02	REG S5_04, R/W11—	
ADC CONTROL 03	REG S5_05, R/W11—	
ADC CONTROL 04	REG S5_06, R/W11—	-3
ADC CONTROL 05	REG S5_07, R/W11—	-3
ADC CONTROL 06	REG S5_08, R/W11—	
ADC CONTROL 07	REG S5_09, R/W11—	
ADC CONTROL 08	REG S5_0A, R/W11—	-4
ADC CONTROL 09	REG S5_0B, R/W11—	-4
ADC CONTROL 10	REG S5_0C, R/W11—	
ADC AUTO_OFST 00	REG S5_0E, R/W11—	
ADC AUTO_OFST 01	REG S5_0F, R/W11—	-6
PLLAD CONTROL 00	REG S5_11, R/W11—	-6
PLLAD CONTROL 01	REG S5_12, R/W11—	
PLLAD CONTROL 02	REG S5_13, R/W11—	
PLLAD CONTROL 03	REG S5_14, R/W11—	-7
PLLAD CONTROL 04	REG S5_15, R/W11—	-7
PLLAD CONTROL 05	REG S5_16, R/W11—	
PLLAD CONTROL 06		
	REG S5_17, R/W11—	
PA_ADC CONTROL 00	REG S5_18, R/W11—	
PA_SYNC PROC CONTROL 00	REG S5_19, R/W11—1	0
DEC_REG_00	REG S5_1E, R/W11—1	
DEC_REG_01	REG S5_1F, R/W	
DEC_REG_UT	REG 35_1F, R/W 11—1	•
CHAPTER 12. SYNC PROC REGISTERS		1
		-
SYNC_PROC 00	REG S5_20, R/W12—	.1
SYNC_PROC 01	REG S5_21, R/W12—	
6)/010 PD00 00	DEO CE CO D/M	
SYNC_PROC 02	REG S5_22, R/W12—	
SYNC_PROC 02 SYNC_PROC 03	REG S5_22, R/W	
SYNC_PROC 03	REG S5_23, R/W12—	-2
SYNC_PROC 03 SYNC_PROC 04	REG S5_23, R/W	-2 -2
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12—	-2 -2 -2
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12—	-2 -2 -2 -3
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12—	-2 -2 -3 -3
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12—	-2 -2 -3 -3
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12—	-2 -2 -3 -3
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12—	2 .2 .3 .3 .3 .3
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2E, R/W 12—	2 -2 -3 -3 -3 -4
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_2F, R/W 12—	-2 -2 -3 -3 -3 -4 -4
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2E, R/W 12—	-2 -2 -3 -3 -3 -4 -4
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12—	-2 -2 -3 -3 -3 -4 -4
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_32, R/W 12—	-2 -2 -3 -3 -3 -4 -4 -4
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_33, R/W 12— REG S5_33, R/W 12—	-2 -2 -3 -3 -3 -4 -4 -4 -4 -5
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_34, R/W 12— REG S5_34, R/W 12—	-2 -2 -2 -3 -3 -3 -4 -4 -4 -4 -5 -5
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_35, R/W 12— REG S5_35, R/W 12— REG S5_35, R/W 12—	2 · 2 · 2 · 3 · 3 · 3 · 4 · 4 · 4 · 5 · 5 · 5
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_34, R/W 12— REG S5_34, R/W 12—	2 · 2 · 2 · 3 · 3 · 3 · 4 · 4 · 4 · 5 · 5 · 5
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 16 SYNC_PROC 17	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_36, R/W 12—	2 2 3 3 3 4 4 4 5 5 5 5 5
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_37, R/W 12— REG S5_37, R/W 12— REG S5_37, R/W 12—	2 2 2 3 3 3 3 4 4 4 5 5 5 5 6
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12—	2 2 2 3 3 3 3 4 4 4 5 5 5 6 6
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_39, R/W 12— REG S5_39, R/W 12—	2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12—	2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_39, R/W 12— REG S5_39, R/W 12— REG S5_30, R/W 12—	2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 21	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12—	22233334444555566667
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 22 SYNC_PROC 23	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12—	222333344445555666677
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 23 SYNC_PROC 23	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12—	2223333444455556666778
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 22 SYNC_PROC 23	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_36, R/W 12—	22233334444555566667788
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 21 SYNC_PROC 23 SYNC_PROC 24 SYNC_PROC 25	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12—	22233334444555566667788
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 21 SYNC_PROC 23 SYNC_PROC 24 SYNC_PROC 25 SYNC_PROC 25 SYNC_PROC 26	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_33, R/W 12— REG S5_35, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_37, R/W 12— REG S5_37, R/W 12—	222333344445555666677888
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 10 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 12 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 17 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 21 SYNC_PROC 22 SYNC_PROC 23 SYNC_PROC 24 SYNC_PROC 25 SYNC_PROC 26 SYNC_PROC 26 SYNC_PROC 27	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_31, R/W 12— REG S5_340, R/W 12— REG S5_41, R/W 12— REG S5_42, R/W 12—	22233334444555566667788888
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 12 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 21 SYNC_PROC 22 SYNC_PROC 23 SYNC_PROC 24 SYNC_PROC 25 SYNC_PROC 26 SYNC_PROC 27 SYNC_PROC 27 SYNC_PROC 27	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_31, R/W 12— REG S5_40, R/W 12— REG S5_41, R/W 12— REG S5_42, R/W 12— REG S5_43, R/W 12— REG S5_43, R/W 12—	22233334444555566667788889
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 22 SYNC_PROC 23 SYNC_PROC 24 SYNC_PROC 25 SYNC_PROC 26 SYNC_PROC 27 SYNC_PROC 27 SYNC_PROC 28 SYNC_PROC 29	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_40, R/W 12— REG S5_41, R/W 12— REG S5_42, R/W 12— REG S5_43, R/W 12— REG S5_44, R/W 12— REG S5_44, R/W 12— REG S5_44, R/W 12—	2223333444455555666677888899
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 12 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 21 SYNC_PROC 22 SYNC_PROC 23 SYNC_PROC 24 SYNC_PROC 25 SYNC_PROC 26 SYNC_PROC 27 SYNC_PROC 27 SYNC_PROC 27	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_31, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_31, R/W 12— REG S5_40, R/W 12— REG S5_41, R/W 12— REG S5_42, R/W 12— REG S5_43, R/W 12— REG S5_43, R/W 12—	2223333444455555666677888899
SYNC_PROC 03 SYNC_PROC 04 SYNC_PROC 05 SYNC_PROC 06 SYNC_PROC 07 SYNC_PROC 07 SYNC_PROC 08 SYNC_PROC 09 SYNC_PROC 10 SYNC_PROC 11 SYNC_PROC 12 SYNC_PROC 13 SYNC_PROC 14 SYNC_PROC 15 SYNC_PROC 15 SYNC_PROC 16 SYNC_PROC 17 SYNC_PROC 18 SYNC_PROC 19 SYNC_PROC 20 SYNC_PROC 21 SYNC_PROC 22 SYNC_PROC 23 SYNC_PROC 24 SYNC_PROC 25 SYNC_PROC 26 SYNC_PROC 27 SYNC_PROC 27 SYNC_PROC 28 SYNC_PROC 29	REG S5_23, R/W 12— REG S5_24, R/W 12— REG S5_25, R/W 12— REG S5_26, R/W 12— REG S5_27, R/W 12— REG S5_2A, R/W 12— REG S5_2D, R/W 12— REG S5_2E, R/W 12— REG S5_2F, R/W 12— REG S5_31, R/W 12— REG S5_32, R/W 12— REG S5_33, R/W 12— REG S5_34, R/W 12— REG S5_36, R/W 12— REG S5_37, R/W 12— REG S5_38, R/W 12— REG S5_39, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_38, R/W 12— REG S5_37, R/W 12— REG S5_40, R/W 12— REG S5_41, R/W 12— REG S5_42, R/W 12— REG S5_43, R/W 12— REG S5_44, R/W 12— REG S5_44, R/W 12— REG S5_44, R/W 12—	22233334444555556666778888999

SYNC_PROC 32
SYNC_PROC 34
SYNC_PROC 35
SYNC_PROC 36
SYNC_PROC 37
SYNC_PROC 38
SYNC_PROC 39
SYNC_PROC 40
SYNC_PROC 41
SYNC_PROC 42
SYNC_PROC 43
SYNC_PROC 44
SYNC_PROC 45
SYNC_PROC 46
SYNC_PROC 47
SYNC_PROC 48
SYNC_PROC 49
SYNC_PROC 50
SYNC_PROC 51
SYNC_PROC 52
SYNC_PROC 53
SYNC_PROC 54
SYNC_PROC 55

REG S5_47, R/W	12—10
REG S5_48, R/W	12—10
REG S5_49, R/W	12—10
REG S5_4A, R/W	
REG S5_4B, R/W	
REG S5_4C, R/W	
REG S5_4D, R/W	
REG S5_4E, R/W	
REG S5_4F, R/W	12—12
REG S5_50, R/W	
REG S5_51, R/W	
REG S5_52, R/W	
REG S5_53, R/W	
REG S5_54, R/W	
REG S5_55, R/W	
REG S5_56, R/W	
REG S5_57, R/W	
REG S5_58, R/W	
REG S5_59, R/W	
REG S5_5A, R/W	
REG S5_5B, R/W	
REG S5_5C, R/W	
DEC SE 43 DAM	

Chapter 00. STATUS REGISTERS

INPUT MODE STATUS 00 REG SO_00, RO								
	7	6	5	4	3	2	1	0
Bit				IF_STAT	ΓUS_[7:0]			

Bit	Name	Function
0	IF_STATUS_[0]	Vertical stable indicator
0	IF_STATOS_[0]	When =1, means input vertical timing is stable
1	IF STATUS [1]	Horizontal stable indicator
	IF_STATUS_[1]	When =1, means input horizontal timing is table
2	IE STATUS (2)	H & V stable indicator
	IF_STATUS_[2]	When =1, means input H/V timing are both stable
3	IF_STATUS_[3]	NTSC interlace indicator
3	IF_STATUS_[S]	When =1, means input is NTSC interlace (480i) source
4	IF_STATUS_[4]	NTSC progressive indicator
-	II_STATOS_[4]	When =1, means input is NTSC progressive (480P) source
5	IF STATUS [5]	PAL interlace indicator
3	11_31A103_[3]	When =1, means input is PAL interlace (576i) source
6	IE STATUS (6)	PAL progressive indicator
0	IF_STATUS_[6]	When =1, means input is PAL progressive (576P) source
7	IE STATUS [7]	SD mode indicator
<i>'</i>	IF_STATUS_[7]	When =1, means input is SD mode (480i, 480P, 576i, 576P)

INPU	T MODE ST	TATUS 01					RE	G S0_01, RO
	7	6	5	4	3	2	1	0
Bit				IF_STAT	US_[15:8]			

Bit	Name	Function
0	IF_STATUS_[8]	VGA 60Hz mode
U	11_31A103_[0]	When =1, means input is VGA (640x480) 60Hz mode
1	IF STATUS [9]	VGA 75Hz mode
I.	IF_31A103_[9]	When =1, means input is VGA (640x480) 75Hz mode
2	IF_STATUS_[10]	VGA 85 Hz mode
	IF_31A1U3_[10]	When =1, means input is VGA (640x480) 85Hz mode
3	IF STATUS [11]	VGA mode indicator
3	IF_STATUS_[11]	When =1, means input is VGA (640x480) source, include 60Hz/75Hz/85Hz
4	IE STATUS (42)	SVGA 60Hz mode
4	IF_STATUS_[12]	When =1, means input is SVGA (800x600) 60Hz mode
5	IF_STATUS_[13]	SVGA 75Hz mode
3	IF_STATUS_[13]	When =1, means input is SVGA (800x600) 75Hz mode
6	IF_STATUS_[14]	SVGA 85Hz mode
0	IF_31A103_[14]	When =1, means input is SVGA (800x600) 85Hz mode
7	IE STATUS (45)	SVGA mode indicator
<i>'</i>	IF_STATUS_[15]	When =1, means input is SVGA (800x600) source, include 60Hz/75Hz/85Hz

INPU	T MODE ST	ATUS 02					RE	G S0_02, RO
	7	6	5	4	3	2	1	0
Bit	Bit IF_STATUS_[23:16]							

Bit	Name	Function
0	IF_STATUS_[16]	XGA 60Hz mode
0	IF_31A103_[10]	When =1, means input is XGA (1024x768) 60Hz mode
1	IF_STATUS_[17]	XGA 70Hz mode
	11_31A103_[17]	When =1, means input is XGA (1024x768) 70Hz mode
2	IF STATUS [18]	XGA 75Hz mode
	11_31A103_[10]	When =1, means input is XGA (1024x768) 75Hz mode
3	IF_STATUS_[19]	XGA 85Hz mode
3	11_31A103_[19]	When =1, means input is XGA (1024x768) 85Hz mode
4	IE STATUS (201	XGA mode indicator
4	IF_STATUS_[20]	When =1, means input is XGA (1024x768) source, include 60/70/75/85Hz
5	IF_STATUS_[21]	SXGA 60Hz mode
3	IF_31A103_[21]	When =1, means input is SXGA (1280x1024) 60Hz mode
6	IF STATUS [22]	SXGA 75Hz mode
0	IF_31A1U3_[22]	When =1, means input is SXGA (1280x1024) 75Hz mode
7	IF_STATUS_[23]	SXGA 85Hz mode
'	IF_51A1U5_[23]	When =1, means input is SXGA (1280x1024) 85Hz mode

Registers Definition

INPU	T MODE S	TATUS 03					RE	EG S0_03, RO
	7	6	5	4	3	2	1	0
Bit				IF_STATU	JS_[31:24]			

Bit	Name	Function
0	IF_STATUS_[24]	SXGA mode indicator
U	IF_51A105_[24]	When =1, means input is SXGA (1280x1024) mode, include 60/75/85Hz
1	IF STATUS [25]	Graphic mode indicator
I	IF_51A105_[25]	When =1, means input is graphic mode input, include VGA/SVGA/XGA/SXGA
2	IF_STATUS_[26]	HD720P 50Hz mode
	IF_31A103_[20]	When =1, means input is HD720P (1280x720) 50Hz mode
3	IF STATUS [27]	HD720P 60Hz mode
,	II _51A165_[21]	When =1, means input is HD720P (1280x720) 60Hz mode
4	IF_STATUS_[28]	HD720P mode indicator
4	II_31A103_[20]	When =1, means input is HD720P source, include 50Hz/60Hz
5	IF STATUS [29]	HD2200_1125 interlace
J	11_01A100_[23]	When =1, means input is 2200x1125i mode
6	IF STATUS [30]	HD2376_1250 interlace
0	11_01A100_[00]	When =1, means input is 2376x1250i mode
7	IF STATUS [31]	HD2640_1125 interlace
•	IF_STATUS_[31]	When =1, means input is 2640x1125i mode

INPUT MODE STATUS 04 REG S0_04, RO

7 6 5 4 3 2 1 0

Bit IF_STATUS_[39:32]

Bit	Name	Function
0	IF STATUS [32]	HD1808i indicator When =1, means input is HD1080i source, include 2200x1125i, 2376x1250i,
	5	2640x1125i modes
1	IF_STATUS_[33]	HD2200_1125P
	11_31A103_[33]	When =1, means input is HD 2200x1125P mode
2	IF STATUS [34]	HD2376_1250P
	II_31A103_[34]	When =1, means input is HD 2376x1250P mode
3	IF STATUS [35]	HD2640_1125P
3	IF_31A103_[33]	When =1, means input is HD 2640x1125P mode
4	IF STATUS [36]	HD 1080P indicator
4	IF_51A1U5_[30]	When =1, means input is 1080P source, include 2200x1250P, 2376x1125P
5	IF_STATUS_[37]	HD mode indicator
J	11_31A103_[31]	When =1, means input is HD source, include 720P, 1080i, 1080P
6	IF STATUS [38]	Interlace video indicator
O	IF_31A103_[36]	When =1, means input is interlace video source, include 480i, 576i, 1080i
		Progressive video indicator
7	IF_STATUS_[39]	When =1, means input is progressive video source, include 480P, 576P, 720P, 1080P modes

INPU	INPUT MODE STATUS 05 REG S0_05, RO							
	7	6	5	4	3	2	1	0
Bit	RESERVED			IF_STATUS_[44:40]				

Bit	Name	Function
0	IF STATUS [40]	User define mode
U	II_31A103_[40]	When =1, means input is the mode which match user define resolution
1	IF STATUS [41]	No sync indicator
	IF_51A105_[41]	When =1, means input is not sync timing
2	IF_STATUS_[42]	Horizontal unstable indicator
	IF_31A103_[42]	When =1, means input H sync is not stable
3	IF_STATUS_[43]	Vertical unstable indicator
3	IF_31A103_[43]	When =1, means input V sync is not stable
4	IF STATUS [44]	Mode switch indicator
4	IF_51A1U5_[44]	When =1, means input source switch the mode
7-5	RESERVED	Reserved
7-3	RESERVED	

INPU	T SIZE ST	ATUS 00					RE	G S0_06, RO
	7	6	5	4	3	2	1	0
Bit				IF_HPER	RIOD_[7:0]			

Bit	Name	Function
7-0	IF_HPERIOD_[7:0]	Input source H total measurement result
7-0	IF_HPERIOD_[7:0]	The value = input source H total pixels / 4

Bit	,	0	IF_VPERIOD_[6:0]							
	7	6	5	4	3	2	1	0		
INPUT SIZE STATUS 01								REG S0_07, RO		

Bit	Name	Function
0 IF HPERIOD [8]		Input source H total measurement result
U		The value = input source H total pixels / 4
7-1	IF_VPERIOD_[6:0]	Input source V total measurement result
7-1		The value = input source V total lines

INPU	T SIZE	STATUS 02					REC	G S0_08, RO	
	7	6	5	4	3	2	1	0	
Bit		RESERVE	D			IF_VPERI	OD_[10:7]		
		T.,							
	Bit	Name	F	unction					
	3-0	IF_VPERIOD_[10:7]		nput source V tot he value = input s					
	7-4	RESERVED	R	Reserved					
MISC	STATU	JS 00			·		REC	G S0_09, RO	
	_		_						

Bit	Name	Function
5-0	MISC_STATUS_[5:0]	Reserved
6	MISC_STATUS_[6]	LOCK indicator from PLL648
7	MISC_STATUS_[7]	LOCK indicator from PLLAD

MISC_STATUS_[7:0]

 MISC STATUS 01
 REG SO_OA, RO

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MSIC_STATUS_[15:8]

Bit	Name	Function
0	MISC STATUS [8]	PIP enable signal in Vertical
U	WII3C_31A103_[0]	When =1, means sub picture's vertical period in PIP mode
4	MISC STATUS [8]	PIP enable signal in Horizontal
1	WISC_STATUS_[6]	When =1, means sub picture's horizontal period in PIP mode
2	MISC STATUS [8]	Reserved
	MISC_STATUS_[6]	
3	MISC_STATUS_[8]	Reserved
3	WIISC_STATUS_[6]	
4	MICC CTATUC [0]	Display output Vertical Blank
4	MISC_STATUS_[8]	When =1, means in display vertical blanking
5	MISC STATUS [8]	Display output Horizontal Blank
Э	MISC_STATUS_[6]	When =1, means in display horizontal blanking
6	MISC STATUS [0]	Display output Vertical Sync
0	MISC_STATUS_[8]	When =1, means in display vertical sync (the output sync is high active)
7	MISC STATUS [8]	Display output Horizontal Sync
,	MISC_STATUS_[8]	When =1, means in display horizontal sync (the output sync is high active)

Bit

Registers Definition

CLUD	ID 00						חר	
CHIP	ID 00						RE	G S0_0B, RO
	7	6	5	4	3	2	1	0
Bit				CHIP	_ID_[7:0]			
	Bit	Name	Fu	nction				
	7-0	CHIP_ID_[7:0]	For	undry ID				
ļ		L	l l					
CHIP	ID 01						RE	G S0_0C, RO
	7	6	5	4	3	2	1	0
Bit				CHIP_	_ID_[15:8]			
		T						
	Bit	Name	Fu	nction				
	7-0	CHIP_ID_[15:8]	Pro	duct ID				
!			L					
CHIP	ID 02						RE	G S0_0D, RO
	7	6	5	4	3	2	1	0
Bit				CHIP_	ID_[23:16]			

Function

Chip reversion ID

Bit

7-0

Name

CHIP_ID_[23:16]

GPIO	IO STATUS 00 REG SO						EG SO_OE, RO	
1	7	6	5	4	3	2	1	0
Bit				GPIO_ST	ATUS_[7:0]			

Bit	Name	Function
0	GPIO STATUS [0]	GPIO bit0 status
U	GF10_31A103_[0]	GPIO bit0 (GPIO pin76) status
1	GPIO STATUS [1]	GPIO bit1 status
ı	GF10_31A103_[1]	GPIO bit1 (HALF pin77) status
2	GPIO STATUS [2]	GPIO bit2 status
	GFIO_51A1U5_[2]	GPIO bit2 (SCLSA pin43) status
3	GPIO_STATUS_[3]	GPIO bit3 status
3		GPIO bit3 (MBA pin107) status
4	GPIO STATUS [4]	GPIO bit4 status
4	GPIO_STATUS_[4]	GPIO bit4 (MCS1 pin109) status
5	GPIO STATUS [5]	GPIO bit5 status
5	GPIO_STATUS_[5]	GPIO bit5 (HBOUT pin6) status
6	GPIO STATUS [6]	GPIO bit6 status
0	GF10_31A103_[0]	GPIO bit6 (VBOUT pin7) status
7	GPIO_STATUS_[7]	GPIO bit7 status
1	GPIO_STATUS_[7]	GPIO bit7 (CLKOUT pin4) status

INTERRUPT STA		STATUS 00					RE	G S0_0F, RO
	7	6	5	4	3	2	1	0
Bit								

Bit	Name	Function
0	INT_STATUS_[0]	Interrupt status bit0, SOG unstable
U	IN1_31A103_[0]	When =1, means input SOG source is unstable
1	INT_STATUS_[1]	Interrupt status bit1, SOG switch
	IN1_31A103_[1]	When =1, means input SOG source switch the mode
2	INT_STATUS_[2]	Interrupt status bit2, SOG stable
		When =1, means input SOG source is stable
3	INT_STATUS_[3]	Interrupt status bit3, mode switch
3		When =1, means input source switch the mode
4	INT STATUS [4]	Interrupt status bit4, no sync
-	IN1_31A103_[4]	When =1, means input source is not H-sync input.
5	INT_STATUS_[5]	Interrupt status bit5, H-sync status
	IN1_01A100_[3]	When =1, means input H-sync status is changed between stable and unstable
6	INT_STATUS_[6]	Interrupt status bi6, V-sync status
0	1111_01A100_[0]	When =1, means input V-sync status is changed between stable and unstable
7	INT_STATUS_[7]	Interrupt status bit7, H-sync status
'	INI_31A1U3_[/]	When =1, means input H-sync status is changed between stable and unstable

Registers Definition

VIDE	VIDEO_PROC STATUS 00 REG S0_10, RO								
	7	6	5	4	3	2	1	0	
Bit				VDS_STA	ATUS_[7:0]				
	Bit	Name		Function					
	3-0	VDS_STATUS_[3:0]		Frame number					
	4	VDS_STATUS_[4]		Output Vertical Sync					
	5	5 VDS_STATUS_[5]		Output Horizonta	ll Sync				
	7-6	VDS_STATUS_[7:6]		Reserved					

 VIDEO_PROC STATUS 01
 REG S0_11, RO

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_STATUS_[15:8]

Bit	Name	Function
		Field Index
0	VDS_STATUS_[8]	When =0, in display top field
		When =1, in display bottom field
		Composite Blanking
1	VDS_STATUS_[9]	When =0, in display active period
		When =1, in display blanking period
3-2	VDS STATUS [11:10]	Reserved
3-2	VD3_31A103_[11.10]	
7.4	VDS_STATUS_[15:12]	Vertical counter bit [3:0]
7-4		Vertical counter value, indicate the line number in display

 VIDEO_PROC STATUS 02
 REG S0_12, RO

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_STATUS_[23:16]

Bit	Name	Function			
6-0	VDS_STATUS_[22:16]	Vertical counter bit [10:4] Vertical counter value, indicate the line number in display			
7	VDS_STATUS_[23]	Reserved			

MEM_	_FF	STATUS 00					RE	G S0_13, RO
	7	6	5	4	3	2	1	0
Bit MEM_FF_STATUS_[7:0]								
- [_					
	Bit	Name	F	unction				
	0 MEM EE STATUS (0)		101 W	WFF FIFO full indicator				

Bit	Name	Function
0	MEM_FF_STATUS_[0]	WFF FIFO full indicator
U	MEM_11_STATOS_[0]	When =1, means WFF FIFO is full
4	MEM_FF_STATUS_[1]	WFF FIFO empty indicator
	MEM_II_SIAIOS_[I]	When =1, means WFF FIFO is empty
2	MEM FF_STATUS [2]	RFF FIFO full indicator
	2 MEM_FF_STATUS_[2]	When =1, means RFF FIFO is full
2	3 MEM_FF_STATUS_[3]	RFF FIFO empty indicator
3		When =1, means RFF FIFO is empty
4	MEM EE STATUS (4)	Capture FIFO full indicator
4	MEM_FF_STATUS_[4]	When =1, means capture FIFO is full
5	MEM_FF_STATUS_[5]	Capture FIFO empty indicator
3	MEM_11_01A100_[9]	When =1, means capture FIFO is empty
6	MEM_FF_STATUS_[6]	Playback FIFO full indicator
0	NIENI_FF_9 A U5_[0]	When =1, means playback FIFO is full
7	MEM EE STATUS (7)	Playback FIFO empty indicator
,	MEM_FF_STATUS_[7]	When =1, means playback FIFO is empty

MEM.	_FF STA	TUS 00					RE	G S0_14, RO
	7	6	5	4	3	2	1	0
Bit				MEM_FF_S	TATUS_[15:8]			

	Bit	Name	Function
Ī	Λ	MEM FF STATUS [8]	Memory control initial indicator
	0	WEW_FF_STATUS_[0]	When =1, means external memory chip initial is finished
ſ	7 1	MEM_FF_STATUS_[15:9]	Reserved
	7-1		

DEIN	T STA	TUS 00					RE	G S0_15, RO
	7	6	5	4	3	2	1	0
Bit				DEINT_ST	ATUS_[7:0]			

Bit	Name	Function
6-0	DEINT_STATUS_[6:0]	Reserved
7	DEINT_STATUS_[7]	3:2 pull-down indicator When =1, means de-interlace is in 3:2 pull-down mode

SYNC	C PROC S	STATUS 00					RE	G S0_16, RO
	7	6	5	4	3	2	1	0
Bit			;	SYNC_PROC	_STATUS_[7:0]			

Bit	Name	Function
0	SYNC_PROC_STATUS_[0]	HS polarity When =0, means input H-sync is low active When =1, means input H-sync is high active
1	SYNC_PROC_STATUS_[1]	HS active
2	SYNC_PROC_STATUS_[2]	VS polarity When =0, means input V-sync is low active When =1, means input V-sync is high active
3	SYNC_PROC_STATUS_[3]	VS active
7-4	SYNC_PROC_STATUS_[7:4]	Reserved

SYNO	C PROC	STATUS 01					RE	G S0_17, RO
	7	6	5	4	3	2	1	0
Bit			\$	SYNC_PROC_	STATUS_[15:8]			

Bit	Name	Function
7-0	7-0 SYNC_PROC_STATUS_[15:8]	H total value
7-0	31NC_FROC_31A103_[13.0]	Input source H-total value

SYNO	SYNC PROC STATUS 02 REG S0_18, RO								
	7	6	5	4	3	2	1	0	
Bit			S	SYNC_PROC_S	STATUS_[23:1	6]			

Bit	Name	Function
3-0	SYNC_PROC_STATUS_[19:16]	H total value Input source H-total value
7-4	SYNC_PROC_STATUS_[23:20]	Reserved

	2 5500	OT 4 TUO 00						0.00.10.50
SYNC	J PROC	STATUS 03					RE	G S0_19, RO
	7	6	5	4	3	2	1	0
Bit				SYNC_PROC_	STATUS_[31:24]			
		Γ		T				
	Bit	Name		Function				
	7-0	SYNC_PROC_STATUS_[3	31:24]	Input H-sync lo	ength value ow active pulse leng	th (for H-sync	nolarity dete	ction)
				IIIput II byllo it	w dollvo paloo long	ur (loi i i oyile	polarity doto	Ollotty
SYNO	C PROC	STATUS 04					RE	G S0_1A, RO
	7	6	5	4	3	2	1	0
Bit	,	0			S STATUS_[39:32]	2	ı	0
Dit					01A100_[00.02]			
	Bit	Name		Function				
	3-0	SYNC_PROC_STATUS_[3	5.221	H low pulse le	ength value			
	3-0	STNC_PROC_STATUS_[3	55:32]		ow active pulse leng	th (for H-sync	polarity dete	ction)
	7-4	SYNC_PROC_STATUS_[3	39:36]	Reserved				
SYNO	C PROC	STATUS 05					RE	G S0_1B, RO
	7	6	5	4	3	2	1	0
Bit				SYNC_PROC_	STATUS_[47:40]			
	Bit	Name		Function				
	7-0	SYNC_PROC_STATUS_[4	17:401	V total value				
				Input source V	-total lines value			
SYNO	C PROC	STATUS 06					RF	G S0_1C, RO
01110								
	7	6	5	4	3	2	1	0
Bit				SYNC_PROC_	STATUS_[55:48]			
				1				
	D:4	Nome		Function				
	Bit	Name		Function V total value				
	Bit 2-0	Name SYNC_PROC_STATUS_[5	50:48]	V total value Input source V	-total lines value			
				V total value	-total lines value			

SYNO	C PROC	STATUS 07				RE	G S0_1D, RO
	7	6 5	4	3	2	1	0
Bit			RES	ERVED			
			1				
	Bit	Name	Function				
	7-0	RESERVED	Reserved				
'							
SYNC	C PROC	STATUS 08				RE	G S0_1E, RO
	7	6 5	4	3	2	1	0
Bit		0 0		ERVED	_		
	Bit	Name	Function				
	7-0	RESERVED	Reserved				
			l				
TEST	BUS	STATUS 00				DE	G S0_1F, RO
IESI	БОЗ					KL	.G 30_1F, RO
	7	6 5	4	_	^		
Bit				3	2	1	0
			TEST_B	3 US_[23:16]	2	1	0
	Bit	Name	TEST_B		2	1	0
					2	1	0
	Bit 7-0	Name TEST_BUS_[23:16]	Function		2	1	0
			Function		2	1	0
	7-0	TEST_BUS_[23:16]	Function		2		
TEST			Function		2		0 G S0_20, RO
TEST	7-0	TEST_BUS_[23:16]	Function		2		
TEST Bit	7-0	TEST_BUS_[23:16] STATUS 00	Function Reserved	US_[23:16]		RE	G S0_20, RO
	7-0 7	TEST_BUS_[23:16] STATUS 00 6 5	Function Reserved 4 TEST_FF_S	US_[23:16]		RE	G S0_20, RO
	7-0	TEST_BUS_[23:16] STATUS 00	Function Reserved	US_[23:16]		RE	G S0_20, RO

TEST	FIFO	STATUS 01			RE	G S0_21, RO
	7	6 5	4 3	2	1	0
Bit			TEST_FF_STATUS_[15:8]			
		T	1			
	Bit	Name	Function			
	7-0	TEST_FF_STATUS_[15:8]	Reserved			
CRC	RFF	STATUS 00			RF	G S0_22, RO
ONO						
Dir	7	6 5	4 3	2	11	0
Bit			CRC_REGOUT_RFF_[7:0]			
	Bit	Name	Function			
	7-0	CRC_REGOUT_RFF_[7:0]	Reserved			
	7-0	CKC_KEGOO1_KI1_[7.0]				
CRC	PB :	STATUS 00			RE	G S0_23, RO
	7	6 5	4 3	2	1	0
Bit			CRC_REGOUT_PB_[7:0]			
			1			
	Bit	Name	Function			
	7-0	CRC_REGOUT_PB_[7:0]	Reserved			
CDC						
	DECLII :	T CTATUS OO			DE	C CO 24 DO
CKC	RESUL ⁻	T STATUS 00			RE	G S0_24, RO
	RESUL ⁻	T STATUS 00 5	4 3	2	RE 1	G S0_24, RO 0
Bit			4 3 CRC_STATUS_[7:0]	2		
	7	6 5	CRC_STATUS_[7:0]	2		
				2		

CRC	RESUL	T STATUS 01					F	REG S0_25, RC
	7	6	5	4	3	2	1	0
Bit				CRC_STA	TUS_[15:8]			
	-	T.,		T =				
	Bit	Name		Function Reserved				
	7-0	CRC_STATUS_[15:8]		ivesei veu				
CRC	RESUL [*]	T STATUS 02					F	REG S0_26, RC
	7	6	5	4	3	2	1	0
Bit				CRC_STAT	ΓUS_[23:16]			
		T		T				
	Bit	Name		Function				
				+				
	7-0	CRC_STATUS_[23:16	5]	Reserved				
CRC		CRC_STATUS_[23:16	5]	Reserved			F	REG S0_27, RC
CRC			5	Reserved 4	3	2	Fi 1	REG S0_27, RC
CRC Bit	RESUL [*]	T STATUS 03		4	3 [US_[31:24]	2		
	RESUL [*]	T STATUS 03		4 CRC_STAT		2		
	RESUL [*] 7 Bit	T STATUS 03 6 Name	5	4 CRC_STAT		2		
	RESUL [*]	T STATUS 03	5	4 CRC_STAT		2		
	RESUL [*] 7 Bit	T STATUS 03 6 Name	5	4 CRC_STAT		2		
	RESUL [*] 7 Bit	T STATUS 03 6 Name	5	4 CRC_STAT		2		
Bit	RESUL ⁻⁷ Bit 7-0	T STATUS 03 6 Name	5	4 CRC_STAT		2	1	
Bit	RESUL ⁻⁷ Bit 7-0	T STATUS 03 6 Name CRC_STATUS_[31:24]	5	4 CRC_STAT		2	1	0
Bit	RESULTA TO THE RESULT	T STATUS 03 6 Name CRC_STATUS_[31:24]	5	4 CRC_STAT	ΓUS_[31:24]		1 F	0 REG S0_28, RC
Bit	RESUL 7 Bit 7-0 RESUL 7	T STATUS 03 6 Name CRC_STATUS_[31:24] T STATUS 04 6	5	4 CRC_STAT	TUS_[31:24]		1 F	0 REG S0_28, RC
Bit	RESULTA TO THE RESULT	T STATUS 03 6 Name CRC_STATUS_[31:24]	5	4 CRC_STAT	TUS_[31:24]		1 F	0 REG S0_28, RC

CRC	RESUL	T STATUS 05					F	REG S0_29, RO
	7	6	5	4	3	2	1	0
Bit				CRC_STAT	US_[47:40]			
		Ι						
	Bit	Name		Function				
	7-0	CRC_STATUS_[47:40]		Reserved				
								_
CRC	RFSUI [*]	T STATUS 06					F	REG S0_2A, RO
				4	2	0		
Bit	7	6	5	4 CRC_STAT	3	2	1	0
ы				CRC_STAT	US_[55.46]			
	Bit	Name		Function				
	7-0	CRC_STATUS_[55:48]		Reserved				
CRC	RESUL	T STATUS 07					F	REG SO_2B, RO
	7	6	5	4	3	2	1	0
Bit				CRC_STAT	US_[63:56]			
		I		1				
	Bit	Name		Function				
	7-0	CRC_STATUS_[63:56]		Reserved				
CRC	RESUL:	T STATUS 08						REG S0_2C, RO
Б.,	7	6	5	4 CDC STAT	3	2	1	0
Bit				CRC_STAT	US_[/1:64]			
	Bit	Name		Function				
				Reserved				
	7-0	CRC_STATUS_[71:64]						

CRC	RESUL	Γ STATUS 09					REC	G S0_2D, RO
	7	6	5	4	3	2	1	0
Bit	,	0			ATUS_[79:72]	2		U
ы				CKC_31	A103_[79.72]			
	Bit	Name		Function				
	7-0	CRC_STATUS_[79:7	2]	Reserved				
TEST	BUS	STATUS 01					REG	G S0_2E, RO
	7	6	5	4	3	2	1	0
Bit		-			_BUS_[7:0]			
	Bit	Name		Function				
	7-0	TEST_BUS_[7:0]		Reserved				
!								
TEST	BUS	STATUS 02					RE	G S0_2F, RO
	7	6	5	4	3	2	1	0
Bit	•	<u> </u>			 _BUS_[15:8]			
					- . .			
	Bit	Name		Function				
	7-0	TEST_BUS_[15:8]		Reserved				

Chapter 01. INPUT FORMATTER REGISTERS

INPUT_FORMATTER 00

REG S1_00, R/W

	7	6	5	4	3	2	1	0
Bit	IF_HS_FLIP	IF_PRGRSV_C NTRL	IF_VS_SEL	IF_SEL16BIT	IF_SEL_656	IF_UV_REVER T	IF_MATRIX_BYP S	IF_IN_DRE G_BYPS

Bit	Name	Function				
0	IF_IN_DREG_BYPS	Use the falling or rising edd 0: Clock input data on the 1: Clock input date on the	falling edge of ICLK.	data.		
1	IF_MATRIX_BYPS	Rgb2yuv matrix bypass If source is yuv24bit, bypas 0:source is 24bit RGB. Do 1: data bypass.	ss the rgb2yuv matrix. rgb2yuv.			
2	IF_UV_REVERT	8bit to 16bit convert Y/UV flip control If input is 8bit data, when it convert to 16bit, this bit control Y and UV order: 0: Keep the designed order 1: Flip the Y and UV order				
3	IF_SEL_656	Select CCIR656 data If input data is 8bit CCIR656 mode, choose the 656 data path. 0: input is CCIR 601 mode. Choose the CCIR601mode timing. 1: input is CCIR 656 mode. Choose the CCIR656 mode timing.				
4	IF_SEL16BIT	Select 16bit data If source data is 16bit. Cho Use in conjunction with reg 8bit 656/601 input 16bit 601 input 24bit yuv/rgb 601 input		ne input data format. Sel_24bit 0 0 1		
5	IF_VS_SEL	Vertical sync select Choose the periodical or vi 0: choose the VCR mode t 1: choose the normal mode	iming generation.			
6	IF_PRGRSV_CNTRL	Progressive mode. Choose 0: source is interlaced. 1: source is progressive.	, -			
7	IF_HS_FLIP	Horizontal sync flip control the horizontal sync 0: keep the original horizon 1: flip horizontal sync.	output from CCIR process	3		

Registers Definition

INPUT_FORMATTER 01

REG S1_01, R/W

	7	6	5	4	3	2	1	0
Bit	IF_SEL24BI T	IF_Y_	DELAY	IF_TAP6_BYP S	IF_V_DELAY	IF_U_DELAY	IF_UV_FLIP	IF_VS_FLIP

Bit	Name	Function					
0	IF_VS_FLIP	Vertical sync flip control Control the vertical sync output from CCIR process 0: keep original vertical sync. 1: flip vertical sync.					
1	IF_UV_FLIP	YUV 422to444 UV flip control Control the U and V order in yuv422to444 conversion. 0: keep original U and V order. 1: exchange the U and V order.					
2	IF_U_DELAY	U data select in YUV 422to444 conversion Select original U data or 1-clock delayed U data, so that it can align with V data. 0: select original U data after dmux. 1: select 1-clock delayed U data after dmux.					
3	IF_V_DELAY	V data select in YUV 422to444 conversion Select original V data or 1-clock delayed V data, so that it can align with U data. 0: select original V data after dmux. 1: select 1-clock delayed V data after dmux.					
4	IF_TAP6_BYPS	Tap6 interpolator bypass control in YUV 422to444 conversion Select the data if pass the tap6 interpolator or not. 0: the data will pass the tap6 interpolator. 1: the data will not pass the tap6 interpolator					
6-5	IF_Y_DELAY	Y data pipes control in YUV422to444 conversion Control the Y data pipe delay, so that it can align with U and V. IF_Y_DELAY Y data delay pipes 00 1 01 2 10 3 11 4					
7	IF_SEL24BIT	Select 24bit data If input source is 24bit data, choose the 24bit data path.					

INPUT_FORMATTER 02

REG S1_02, R/W

	7	6	5	4	3	2	1	0
Bit	IF_HS_UV_SI GN2UNSIGN	IF_HS_`	Y_PDELAY	IF_HS_TAP11 _BYPS	IF_HS_PSHIFT _BYPS	IF_HS_INT_LP F_BYPS	IF_HS_SEL_LPF	IF_SEL_WE N

Bit	Name	Function					
0	IF_SEL_WEN	Select the write enable for line double If the input is HD source, this bit will be set to 1. 0: if the source is SD data. 1: if the source is HD data.					
1	IF_HS_SEL_LPF	Low pass filter or interpolator selection The low pass filter and interpolator data path is combined together. 0: select interpolator data path. 1: select low pass filter data path.					
2	IF_HS_INT_LPF_BYPS	Combined INT and LPF data path bypass control If the data can't do horizontal scaling-down, bypass the INT/LPF data path. 0: select the INT/LPF data path. 1: bypass the INT/LPF data path					
3	IF_HS_PSHIFT_BYPS	Phase adjustment bypass control If the data can't do phase adjustment, this bit should be set to 1. 0: select phase adjustment data path. 1: bypass phase adjustment.					
4	IF_HS_TAP11_BYPS	Tap11 LPF bypass control in YUV444to422 conversion Select the data if pass the tap11 LPF or not. 0: the data will pass the tap11 low pass filter. 1: the data will not pass the tap11 low pass filter					
6-5	IF_HS_Y_PDELAY	Y data pipes control in YUV444to422 conversion Control the Y data pipe delay, so that it can align with UV. IF_HS_Y_DELAY Y data delay pipes 00 1 01 2 10 3 11 4					
7	IF_HS_UV_SIGN2UNSIGN	UV data select If UV is signed, select the unsigned UV data 0: select the original UV 1: select the UV after sign processing					

INPU	T_FORI	MATTER 03					REG	S1_03, R/W
	7	6	5	4	3	2	1	0
Bit	IF_HS_RATE_SEG0							
	Bit	Name		Function				
	7-0	IF_HS_RATE_SEG0		Horizontal non-l (total 12 bits) The entire segme hscale = {hscale0 should be 4095x(ent share the low), hscale_low}. A	est 4bit, that is to	say, the whole	scale ration is
INPU	T_FORI	MATTER 04					REG	S1_04, R/W
	7	6	5	4	3	2	1	0
Bit				IF_HS_R	ATE_SEG1			
· [Dir	News		Formation				
	Bit	Name		Function Horizontal non-l	inear scaling-de	own 2nd seame	nt DDA increme	ent [11:4]
	7-0	IF_HS_RATE_SEG1		(total 12 bits)				
INDII	T FORI	MATTER 05					PFG	S1_05, R/W
1141 0	7		5	4	3	2	1	0
Bit	1	6	<u> </u>		ATE_SEG2	2	l	0
l r		1						
	Bit	Name		Function				
	7-0	IF_HS_RATE_SEG2		Horizontal non-l (total 12 bits)	inear scaling-de	own 3rd segmer	nt DDA increme	nt [11:4]
	T 500						550	01.07.534
INPU	I_FORI	MATTER 06					REG	S1_06, R/W
[7	6	5	4	3	2	1	0
Bit				IF_HS_R	RATE_SEG3			
	Bit	Name		Function				
	7-0	IF_HS_RATE_SEG3		Horizontal non-l (total 12 bits)	inear scaling-do	own 4th segmer	nt DDA increme	nt [11:4]

INPU	T_FORI	MATTER 07					REG	S1_07, R/V	
ī	7	6	5	4	3	2	1	0	
Bit				IF_HS_R	ATE_SEG4				
[Bit	Name		Function					
	ы	Name		Horizontal non-li	near scaling-do	wn 5th segme	nt DDA increme	nt [11:4]	
	7-0	IF_HS_RATE_SEG4		(total 12 bits)					
Į									
INPU	T_FORI	MATTER 08					REG	S1_08, R/V	
	7	6	5	4	3	2	1	0	
Bit					ATE_SEG5				
l I		T		1					
	Bit	Name		Function					
	7-0	IF_HS_RATE_SEG5		Horizontal non-linear scaling-down 6th segment DDA increment [11:4] (total 12 bits)					
INPU	T FORI	MATTER 09					REG	S1_09, R/V	
	7	6	5	4	3	2	1	0	
Bit	,	U	<u> </u>		ATE_SEG6	2	<u>'</u>	U	
[
	Bit	Name		Function					
	7-0	IF HE DATE SECS		Horizontal non-li (total 12 bits)	near scaling-do	wn 7th segme	nt DDA increme	nt [11:4]	
	7-0	IF_HS_RATE_SEG6		(1000)					
ı		1		1					
INPU	T_FORI	MATTER OA					REG	S1_0A, R/V	
1	7	6	5	4	3	2	1	0	
Bit				IF_HS_R	ATE_SEG7				
[Bit	Name		Function					
	DIT	Name		runduon					

7-0

IF_HS_RATE_SEG7

(total 12 bits)

Horizontal non-linear scaling-down 8th segment DDA increment [11:4]

Registers Definition

INPUT_FORMATTER 0B REG S1_0B, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 IF_LD_SEL_ PROV
 IF_SEL_HSCA LE
 IF_HS_DEC_FACTOR
 IF_HS_RATE_LOW

Bit	Name	Function
3-0	IF_HS_RATE_LOW	Horizontal non-linear scaling-down DDA increment shared lowest 4 bits [3:0] (total 12 bits)
5-4	IF_HS_DEC_FACTOR	Horizontal non-linear scaling-down factor select If the scaling ratio is less than ½, use it and DDA to generate the we and phase 00: scaling-ratio is more than ½. 01: scaling-ratio is less than ½. 10: scaling-ratio is less than ¼.
6	IF_SEL_HSCALE	Select the data path after horizontal scaling-down If the data have do scaling-down, this bit should be open. 0: select the data and write enable from CCIR to line double. 1: select the scaling-down data and write enable to line double.
7	IF_LD_SEL_PROV	Line double read reset select If source is progressive data, choose the related progressive timing as read reset timing. 0: select read reset timing of interlace data. 1: select read reset timing of progressive data

INPUT_FORMATTER 0C REG S1_0C, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 IF_INI_ST[2:0]
 IF_LD_ST
 IF_LD_RAM _ BYPS

Bit	Name	Function
0	IF_LD_RAM_BYPS	Line double bypass control If the interlace data can't do line double, if the progressive data can't do scaling-down, line double FIFO should be bypass. 0: select interlace line double data from FIFO. 1: bypass line double FIFO.
4-1	IF_LD_ST	Line double write reset generation start position If the internal counter equals the defined value the write reset will be high pulse.
7-5	IF_INI_ST[2:0]	Initial position Start position indicator of vertical blanking. For the internal line_counter, the detail pixel's shift that the line_counter count compare to the horizontal sync.

INPU	T_FORI	MATTER OD				REG	S1_0D, R/W			
	7	6 5	4	3	2	1	0			
Bit			IF_INI_	ST [10:3]						
		T								
	Bit	Name		Function						
	7-0	IF_INI_ST [10:3]	Start position indic	Initial position Start position indicator of vertical blanking. For the internal line_counter, the detail pixel's shift that the line_counter c compare to the horizontal sync.						
INPU	T_FORI	MATTER OE				REG	S1_0E, R/W			
	7	6 5	4	3	2	1	0			
Bit		0 0		 :_RST [7:0]		•				
	Bit	Name	Function	Function						
	7-0	IF_HSYNC_RST [7:0]	Use to generate pr	er per line	g if input is interla	ce data [7:0]				
INPU		MATTER OF					S1_0F, R/W			
D:	7	6 5	4 VED	3	2	1	0			
Bit		RESER	VED		IF_H	SYNC_RST [10):8]			
	Bit	Name	Function							
	2-0	IF_HSYNC_RST [10:8]	Total pixel number		a if innut in interle	aa data [40:0]				
	7.2	DESERVED	Ose to generate pr	ogressive umin	g ii iriput is iriteria	ce data [10.6]				
	7-3	RESERVED								
INPU	T_FORI	MATTER 10				REG	S1_10, R/W			
	7	6 5	4	3	2	1	0			
Bit				ST [7:0]						
		I	1							
	Bit	Name	Function							
	7-0	IF_HB_ST [7:0]	Horizontal blanking							

INPU	T_FORM	MATTER 11				REG S	61_11, R/W			
	7	6 5	4	3	2	1	0			
Bit		RESER	RVED			IF_HB_ST [10:8]				
	Bit	Name	Function	Function						
		IF_HB_ST [10:8]	Horizontal blanki	ng start positio	n (set 0)					
	2-0	IF_HB_31 [10.0]	Horizontal blankin	Horizontal blanking (set 0) start position [10:8].						
	7-3	RESERVED								
INPU	T FORM	MATTER 12				RFG S	S1_12, R/W			
1111 0			4	2	2					
Bit	7	6 5	4 IF HB	3 _SP [7:0]	2	1	0			
Dit										
	Bit	Name	Function							
	7-0	IF_HB_SP [7:0]	Horizontal blankin							
				3 ()						
INPU	T_FORI	MATTER 13				REG S	S1_13, R/W			
	7	6 5	4	3	2	1	0			
Bit		RESEF	RVED			IF_HB_SP [10:8]				
	Bit	Name	Function							
	2-0	IF_HB_SP [10:8]	Horizontal blanki	ng stop positio	n (set 0)					
			Horizontal blankin	g (set 0) stop po	sition [10:8].					
	7-3	RESERVED								
INPU	T_FORI	MATTER 14				REG S	S1_14, R/W			
	7	6 5	4	3	2	1	0			
Bit	,	0 3		ST1 [7:0]		l l	U			
				• •						
	Bit	Name	Function							
	7-0	IF_HB_ST1 [7:0]	Horizontal blankin							
				J (), J.C. 1, PO						

RESERVED

INPUT_FORMATTER 15 REG S1_15, R/										
7 6 5 4 3 2 1										
Bit			RESERVED			IF_HB_ST1 [10:8]				
	Bit	Name	F	unction						
	2-0 IF_HB_ST1 [10:8] Horizontal blanking start position (set 1) Horizontal blanking (set 1) start position [10:8].									

	Bit	Name	Function
Ī	7.0	IE IID CD4 [7:0]	Horizontal blanking stop position (set 1)
	7-0	IF_HB_SP1 [7:0]	Horizontal blanking (set 1) stop position [7:0].

 INPUT_FORMATTER 17
 REG S1_17, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 IF_HB_SP1 [10:8]

Bit	Name	Function		
2-0	IF_HB_SP1 [10:8]	Horizontal blanking stop position (set 1) Horizontal blanking (set 1) stop position [10:8].		
7-3	RESERVED			

	Bit	Name	Function
Ī	7.0	IE UD CT0 [7:0]	Horizontal blanking start position (set 2)
	7-0	IF_HB_ST2 [7:0]	Horizontal blanking (set 2) start position [7:0].

INPU	INPUT_FORMATTER 19 REG S1_19, R/V									
	7	6	5	4	3	2	1	0		
Bit			RESERV	'ED			IF_HB_ST2 [10:	:8]		
· ·		1		ı						
	Bit	Name		Function						
	2-0	IF_HB_ST2 [10:8]		Horizontal blank Horizontal blankin						
	7-3	RESERVED								
ı		•								

	Bit	Name	Function
Ī	7.0	IF UD CD2 [7:0]	Horizontal blanking stop position (set 2)
	7-0	IF_HB_SP2 [7:0]	Horizontal blanking (set 2) stop position [7:0].

INPUT_FORMATTER 1B REG S1_1B, R/W 7 6 5 4 3 2 1 0 Bit RESERVED IF_HB_SP2 [10:8]

Bit	Name	Function
2-0	IF_HB_SP2 [10:8]	Horizontal blanking stop position (set 2) Horizontal blanking (set 2) stop position [10:8].
7-3	RESERVED	

INPUT_FORMATTER 1C REG S1_1C, R/									
	7	6	5	4	3	2	1	0	
Bit				IF_VB_	ST [7:0]				

	Bit	Name	Function
Ī	7.0	IE VD CT [7:0]	Vertical blanking start position
	7-0	IF_VB_ST [7:0]	Vertical blanking start position [7:0].

INPU	T_FORM	MATTER 1D					REG S	1_1D, R/W
	7	6	5	4	3	2	1	0
Bit		R	ESERV	ED			IF_VB_ST [10:8]	
		T						
	Bit	Name		Function	g start position			
	2-0	IF_VB_ST [10:8]			start position [10:	:8].		
	7-3	RESERVED						
INPU	T FORM	MATTER 1E					REG S	1_1E, R/W
			F	4	2	2		
Bit	7	6	5	4 IF VI	3 B_SP [7:0]		1	0
Dit				••	5_0. [1.0]			
	Bit	Name		Function				
	7-0	IF_VB_SP [7:0]		Vertical blanking	g stop position stop position [7:0].		
ļ		 						
INDLI	T EODI	MATTER 1F					DEC S	1_1F, R/W
INPU								
D:4	7	6	5	4	3	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
Bit		K	ESERV	ΕD			IF_VB_SP [10:8]	
	Bit	Name		Function				
	2-0	IF_VB_SP [10:8]		Vertical blanking	g stop position stop position [10:	8].		
	7-3	RESERVED						
INPU	T_FORM	MATTER 20					REG S	1_20, R/W
	7	6	5	4	3	2	1	0
Bit				IF_LIN	IE_ST [7:0]			
	Bit	Name		Function				
	,	1.30						

IF_LINE_ST [7:0]

Line signal start position

Progressive line start position.

INPU	T_FORM	MATTER 21				REG	S1_21, R/V
	7	6 5	5 4	3	2	1	0
Bit		RESERVED			IF_LINE_S	ST [11:8]	
	Bit	Name	Function				
			Line signal start	position			
	3-0	IF_LINE_ST [11:8]	Progressive line st	art position.			
	7-4	RESERVED					
INPU	T_FORI	MATTER 22				REG	S1_22, R/V
	7	6	5 4	3	2	1	0
Bit				_SP [7:0]			
	Bit	Name	Function				
	7-0	IF_LINE_SP [7:0]	Line signal stop	position op position.			
		·					
INPU	IT FORM	MATTER 23				RFG	S1_23, R/W
	7	6	5 4	3	2	1	0
Bit	,	RESERVED	7	3	IF_LINE_S	-	0
	Bit	Name	Function				
	3-0	IF_LINE_SP [11:8]	Progressive line st	position op position.			
	7-4	RESERVED					
		<u>l</u>	I				
INPU	T_FORM	MATTER 24				REG	S1_24, R/W
	7		5 4	3	2	1	0
Bit	,			I_ST [7:0]			
			T _				
	Bit	Name	Function				

IF_HBIN_ST [7:0]

Horizontal blank for scale down start position

Horizontal blank for scale down line reset start position

Registers Definition

INPU	T_FORI	MATTER 25					REG	S1_25, R/W
	7	6	5	4	3	2	1	0
Bit		RESER	VED			IF_HBIN_	ST [11:8]	
	Bit	Name	Fui	nction				
	3-0	IF_HBIN_ST [11:8]			for scale down r scale down lin	start position e reset start pos	sition	
	7-4	RESERVED						
INPU	T_FORI	MATTER 26					REG	S1_26, R/W
	7	6	5	4	3	2	1	0
Bit				IF_HBIN	_SP [7:0]			
	Bit	Name	Fui	nction				
	7-0	Name IF_HBIN_SP [7:0]	Hor	rizontal blank	for scale down r scale down lin	stop position e reset stop pos	iition	
			Hor	rizontal blank			ition	

	7	Ь	5	4	3	2	1	U
Bit		RESE	RVED			IF_HBIN_	_SP [11:8]	
	1							

Bit	Name	Function
3-0 IF_HBIN_SP [11:8]		Horizontal blank for scale down stop position Horizontal blank for scale down line reset stop position
7-4	RESERVED	

Registers Definition

INPUT_FORMATTER 28

REG S1_28, R/W

	7	6	5	4	3	2	1	0
Bit		IF_TES	ST_SEL		IF_TEST_EN	IF_SEL_ADC_ SYNC	IF_LD_WRST_SEL	RESERVED

Bit	Name	Function
0	RESERVED	
1	IF_LD_WRST_SEL	Line double write reset select Select hbin/line write reset 0: select line generated write reset 1: select hbin generated write reset
2	IF_SEL_ADC_SYNC	ADC sync select Select ADC sync to data path
3	IF_TEST_EN	IF test bus control enable Enable test signal.
7-4	IF_TEST_SEL	Test signals select bits. Select which signal to the test bus.

INPUT_FORMATTER 29

REG S1_29, R/W

	7	6	5	4	3	2	1	0
Rit			PESE	RVED				IF_AUTO_OFS
Dit			KLOL	KVLD			PRD	T_EN

Bit	Name	Function
		Auto offset adjustment enable
0	IF_AUTO_OFST_EN	1: enable
		0: disable
		Auto offset adjustment period control
1	IF_AUTO_OFST_PRD	1: by frame
		0: by line
7.0	DECEDVED	
7-2	RESERVED	

Registers Definition

INPUT_FORMATTER 2A							REC	S1_2A, R/W
	7	6	5	4	3	2	1	0
Bit		IF_AUTO_OFS	ST_V_RANGE			IF_AUTO_OF	ST_U_RANGE	

	Bit	Name	Function
-	3-0	IF_AUTO_OFST_U_RANGE	U channel offset detection range
	7-4	IF_AUTO_OFST_V_RANGE	V channel offset detection range

Chapter 02. DEINTERLACER REGISTERS

DEINTERLACER 00 REG S2_00, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 DIAG_BOB_PL DIAG_BOB_ DIAG_BOB_Y DY_RAM_BYPS
 DIAG_BOB_DET_BYPS
 DIAG_BOB_W DIAG_BOB_C DIAG_BOB_M EAVE_BYPS
 DIAG_BOB_W DIAG_BOB_C DIAG_BOB_M DI

Bit	Name	Function				
0	DIAG_BOB_MIN_BYPS	Diagonal Function Bypass Control When set to 1, bypass diagonal min selection for Y. No diagonal detection, just vertically two pixels average.				
1	Diagonal Bob Low pass Filter Coefficient Selection Select coefficients for pixel difference low pass filter DIAG_BOB_COEF_SEL DIAG_BOB_COEF_SEL Internal Selected Coefficient 1 15/16 0 14/16					
2	DIAG_BOB_WEAVE_BYPS	Weave Function Bypass Control When set to 1, weave function will bypass. Just repeat original data.				
3	DIAG_BOB_DET_BYPS[0]	Diagonal Bob Deinterlacer When set to 1, bypass the de	Angle Detect Bypass Control stection of angle arctan (1/4).			
4	DIAG_BOB_DET_BYPS[1]	Diagonal Bob Deinterlacer When set to 1, bypass the de	Angle Detect Bypass Control stection of angle arctan (1/6).			
5	DIAG_BOB_YTAP3_BYPS	Diagonal Bob Deinterlacer Y Tap3 Filter Bypass control When set to 1, bypass the tap3 filter for Y.				
6	DIAG_BOB_MIN_CBYPS	Diagonal Bob Min Control For UV When set to 1, bypass diagonal min select for UV. No diagonal detection, just vertically two pixels average.				
7	DIAG_BOB_PLDY_RAM_B YPS	Bypass Control For Pdelayer FIFO When set to 1, bypass FIFO for pdelayer.				

DEINTERLACER 01 REG S2_01, R/W

7 6 5 4 3 2 1 0

Bit DIAG_BOB_PLDY_SP [7:0]

Bit	Name	Function
7.0	- a	The Distance Control of Pdelayer Reset [7:0]
7-0	DIAG_BOB_PLDY_SP [7:0]	In pdelayer, adjust the delay between read reset and write reset.

Registers Definition

DEINTERLACER 02 REG S2_02, R/W

	7	6	5	4	3	2	1	0
Bit	MADPT_UV_V SCALE_BYPS	MADPT_Y_VS CALE_BYPS	MADPT_SEL_22		RES	SERVED		DIAG_BOB_P LDY_SP [8]

Bit	Name	Function			
0	DIAG_BOB_PLDY_SP [8]	The Distance Control of Pdelayer Reset [8] In pdelayer, adjust the delay between read reset and write reset.			
4-1	RESERVED				
5	MADPT_SEL_22	2:2 pull-down selection When set to 1, enable 2:2 pull-down detection When set to 0, enable 3:2 pull-down detection.			
6	MADPT_Y_VSCALE_BYPS	Bypass Y phase adjustment in vertical scaling down When set to 1, Y phase adjustment in vertical scaling down will be bypass			
7	MADPT_UV_VSCALE_BYPS	Bypass UV phase adjustment in vertical scaling down When set to 1, UV phase adjustment in vertical scaling down will be bypass			

DEINTERLACER 03 REG S2_03, R/W

	7	6	5	4	3	2	1	0
Bit		RESERVED		MADPT_N	IOISE_DET_RST	MADPT_NOIS	E_DET_SHIFT	MADPT_NOIS E_DET_SEL

Bit	Name	Function
		Noise detection selection
0	MADPT_NOISE_DET_SEL	When set to 1, noise detection is in video active period. When set to 0, noise detection is in video blanking period.
		Noise detection shift
		When set to 3, noise detection drop 15bits
2-1	MADPT_NOISE_DET_SHIFT	When set to 2, noise detection drop 16bits
		When set to 1, noise detection drop 17bits
		When set to 0, noise detection drop 18bits
		Noise detection time reset value
		When set to 3, time counter reset at 1023.
4-3	MADPT_NOISE_DET_RST	When set to 2, time counter reset at 511.
		When set to 1, time counter reset at 255.
		When set to 0, time counter reset at 127.
7.5	DECEDIED	
7-5	RESERVED	

7 6 5 4 3 2 1 0	DEIN	DEINTERLACER 04 REG S2_04, R/W									
		7	6	5	4	3	2	1	0		
Bit RESERVED MADPT_NOISE_THRESHOLD_NOUT	Bit	Bit RESERVED MADPT_NOISE_THRESHOLD_NOUT									

Bit	Name	Function
6-0	MADPT_NOISE_THRESHO LD_NOUT	Auto noise detect threshold for NOUT Threshold for NOUT signal.
7	RESERVED	

 DEINTERLACER 05
 REG S2_05, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 MADPT_NOISE_THRESHOLD_VDS

Bit	Name	Function
6-0	MADPT_NOISE_THRESHO LD_VDS	Auto noise detect threshold for nout_vds_proc Threshold for nout_vds_proc signal.
7	RESERVED	

 DEINTERLACER 06
 REG S2_06, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MADPT_GM_NOISE_VALUE

Bit	Name	Function	
3-0	MADPT GM NOISE VALU	Global noise low/global noise auto detect offset low	
	E [3:0]	In global motion noise manual mode, global motion detection noise bit [3:0] In global motion noise auto-detect mode, global motion noise's offset bit [3:0]	
	MADDE OM NOIDE VALU	Global noise high/global noise auto detect offset high	
7-4	MADPT_GM_NOISE_VALU E [7:4]	In global motion noise manual mode, global motion detection noise bit [7:4] In global motion noise auto-detect mode, global motion noise's offset bit [7:4]	

DEIN	DEINTERLACER 07 REG S2_07, R/W									
	7	6	5	4 3 2	. 1	0				
Bit	MADPT_STILL_NOISE_VALUE									
	Bit Name Function									
	Біс			Global still control value						
	7-0	MADPT_STILL_NOISE_\ LUE		In manual mode, still-noise value bit. In auto-detect mode, still-noise's offset bit.						

DEINTERLACER 08 REG S2_08, R/W									
	7	6	5	4	3	2	1	0	
Bit	Bit MADPT_LESS_NOISE_VALUE								

Bit	Name	Function
7.0	MADPT LESS NOISE VA	Less-still noise value
7-0	LUE	User defined less still noise value.

DEIN	DEINTERLACER 09 REG S2_09, R/W								
	7	6	5	4	3	2	1	0	
Bit	MADPT_STILL_NOISE_EST_GAIN					MADPT_NOI	SE_EST_GAIN		

Bit	Name	Function
3-0	MADPT_NOISE_EST_GAIN	Global motion noise gain (in auto-detect mode) Global motion noise gain in noise auto-detect mode
7-4	MADPT_STILL_NOISE_ES T_GAIN	Still-noise gain (in auto-detect mode)

DEINTERLACER 0A REG S2_0A, R/W

	7	6	5	4	3	2	1	0
Bit	MADPT_Y_MI_ DET_BYPS	RESERVED	MADPT_STILL _NOISE_EST_ EN	MADPT_NOIS E_EST_EN		RESE	RVED	

Bit	Name	Function
3-0	RESERVED	
4	MADPT_NOISE_EST_EN	Global noise auto detection enable When set to 1,global noise detection is in auto mode. When set to 0,global noise detection is in manual mode.
5	MADPT_STILL_NOISE_ES T_EN	Still-noise auto detection enable When set to 1, still-noise is in auto detection; When set to 0, still-noise is in manual mode.
6	RESERVED	
7	MADPT_Y_MI_DET_BYPS	Y motion index generation bypass When set to 1, Y motion index generation is in manual mode

DEINTERLACER 0B REG S2_0B, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED			MAD	PT_Y_MI_OF	FSET		

Bit	Name	Function
6-0	MADPT_Y_MI_OFFSET	Y motion index offset In auto mode, Y motion index's offset. In manual mode, Y motion index's user value.
7	RESERVED	

DEIN	TERLA	CER 00	С						REG	S2_0C,	R/W
	7		6	5		4	3	2	1	0	
Bit	R	ESERV	ED	MADPT_MI_ _FRAME2		PT_MI_1 _BYPS		MADPT_	_Y_MI_GAIN		
	Bit	Name	<u> </u>		Function	Function					
	3-0	MADP	T_Y_MI_G	Y motion i	ndex gai	n					
	4	MADP	T_MI_1BI7	_BYPS			pack-bit bypas on index feedb		n will be bypass		
	5	MADP _EN	T_MI_1BI7	_FRAME2			feedback-bit le frame-two fe	eedback-bit.			
	7-6	RESE	RVED								
		l									
DEIN	TERLA	CER OI)						REG	S2_0D,	R/W
	7		6	5		4	3	2	1	0	
Bit	RESER	RVED					PT_MI_THRE				
	Bit	Name	<u> </u>		Function						
	6-0	MADP	T_MI_THR	ESHOLD	Motion index feedback-bit generation's threshold bit						
	7	RESE	RVED								
		l									
DEIN	TERLA	CER OI	=						REG	S2_0E,	R/W
	7		6	5	4	4	3	2	1	0	
Bit	RESER	RVED				MADE	PT_MI_THRE	SHOLD			
	Bit	Name	<u> </u>		Function						
	6-0	MADP	T_MI_THR	ESHOLD	Motion ind	lex fixed	value				
	7	RESE	RESERVED								

Registers Definition

DEINTERLACER OF REG S2_0F, R/W

	7	6	5	4	3	2	1	0
Bit		MADPT_S1	TILL_LOCK		MADPT_ST	TLL_UNLOCK	MADPT_STILL _ID	MADPT_STILL _DET_EN

Bit	Name	Function
0	MADPT_STILL_DET_EN	Still detection enable When set to 1, still detection is in auto mode. When set to 0, still detection is in manual mode.
1	MADPT_STILL_ID	Still indicator defined by user (in manual mode only) Still indicator defined by user, only useful in STILL_DET_EN =0.
3-2	MADPT_STILL_UNLOCK	Still detection's auto unlock value When unlock counter equals unlock value, "still" will go inactive.
7-4	MADPT_STILL_LOCK	Still detection's auto lock value When lock counter equals lock value, "still" will go active.

DEINTERLACER 10 REG S2_10, R/W

	7	6	5	4	3	2	1	0
Bit		MADPT_LESS	STILL_LOCK		MADPT_LES O	S_STILL_UNL CK	MADPT_LESS _STILL_ID	MADPT_LESS _STILL_DET_ EN

Bit	Name	Function
0	MADPT_LESS_STILL_DET _EN	Uses still detection enable When set to 1, less-still detection is in auto mode. When set to 0, less-still detection is in manual mode.
1	MADPT_LESS_STILL_ID	Less still indicator defined by user (in manual mode only) Less-still indicator defined by user, only useful in LESS_STILL_DET_EN =0.
3-2	MADPT_LESS_STILL_UNL OCK	Less still detection's auto unlock value When unlock counter equals unlock value, "less-still" will go inactive.
7-4	MADPT_LESS_STILL_LOC K	Less still detection's auto lock value When lock counter equals lock value, "less-still" will go active.

Registers Definition

DEINTERLACER 11	REG S2_11, R/W
DEINTERLACER IT	REG 32_11, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MADPT_PULLDOWN32_OFFSET
 MADPT_PULL DOWN32_ID
 MADPT_EN_P ULLDOWN32
 RESERVED

Bit	Name	Function
2-0	RESERVED	
3	MADPT_EN_PULLDOWN32	3:2 pull-down detection enable When set to 1, 3:2 pull-down detection is in auto mode. When set to 0, 3:2 pull-down detection is in manual mode.
4	MADPT_PULLDOWN32_ID	3:2 pull-down indicator defined by user (in manual mode) 3:2 pull-down indicator by user, only useful in 32PULLDOWN_EN =0
7-5	MADPT_PULLDOWN32_OF FSET	3:2 pull-down sequence offset 3:2 pull-down sequence offset

DEINTERLACER 12 REG S2_12, R/W

7 6 5 4 3 2 1 0

Bit RESERVED MADPT_PULLDOWN32_LOCK_RST

Bit	Name	Function
6-0	6-0 MADPT_PULLDOWN32_L OCK_RST 3:2 pull-down auto lock value bit When lock counter equals lock value, 3:2 pull-down is in active.	
7	RESERVED	

DEINTERLACER 13 REG S2_13, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MADPT_PU	JLLDOWN22_D	DET_CNTRL	RESERVED	MADPT_PUL LDOWN22_O FFSET	MADPT_PULL DOWN22_ID	MADPT_EN_P ULLDOWN22

Bit	Name	Function
0	22PULLDOWN_EN	2:2 pull-down detection enable When set to 1, 2:2 pull-down detection is in auto mode. When set to 0, 2:2 pull-down detection is in manual mode.
1	22PULLDOWN_ID	2:2 pull-down indicator defined by user (in manual mode) 2:2 pull-down indicator by user, only useful in 22PULLDOWN_EN =0
2	MADPT_PULLDOWN22_O FFSET	2:2 pull-down sequence offset 2:2 pull-down sequence offset
3	RESERVED	
6-4	MADPT_PULLDOWN22_D ET_CNTRL	2:2 pull-down detection control bit 2:2 pull-down accumulation result control
7	RESERVED	

DEINTERLACER 14 REG S2_14, R/W

7 6 5 4 3 2 1 0

Bit MADPT_PULLDOWN22_THRESHOLD [7:0]

Bit	Name	Function
7.0	MADPT_PULLDOWN22_T	2:2 pull-down detection threshold bit [7:0]
7-0	HRESHOLD [7:0]	2:2 pull-down detection threshold bit [7:0]

DEINTERLACER 15 REG S2_15, R/W

7 6 5 4 3 2 1 0

Bit MADPT_PULLDOWN22_THRESHOLD [15:8]

	Bit	Name	Function
ĺ	7.0	MADPT_PULLDOWN22_T	2:2 pull-down detection threshold bit [15:8]
	7-0	HRESHOLD [15:8]	2:2 pull-down detection threshold bit [15:8]

Registers Definition

DEINTERLACER 16 REG S2_16, R/W

	7	6	5	4	3	2	1	0
Bit	MAPDT_VT_SE L_PRGV	MADPT_VT_ FILTER_CNT RL	MADPT_MO_ ADP_UV_EN	MADPT_MO_ ADP_Y_EN	RESE	RVED	_	DOWN22_THR D [17:16]

Bit	Name	Function			
1-0	MADPT_PULLDOWN22_T HRESHOLD [17:16]	2:2 pull-down detection threshold bit [17:16] 2:2 pull-down detection threshold bit [17:16]			
3-2	RESERVED				
4	MADPT_MO_ADP_Y_EN	Enable pull-down in Y motion adaptive When set to 1, enable pull-down for Y data motion adaptive.			
5	MADPT_MO_ADP_UV_EN	Enable pull-down in UV motion adaptive When set to 1, enable pull-down for UV data motion adaptive.			
6	MADPT_VT_FILTER_CNTR	When set to 0, do motion adaptive in interpolated line only. When set to 0, do motion adaptive in every line.			
7	MAPDT_VT_SEL_PRGV	Select original data in progressive mode in VT filter If the input is progressive mode or graphic mode, this bit must be set to 1.			

DEINTERLACER 17 REG S2_17, R/W

7 6 5 4 3 2 1 0

Bit MADPT_UV_DELAY MADPT_Y_DELAY

Bit	Name	Function					
		Y delay pipe control					
		MADPT_Y_DELAY	Y data delay pipes				
		0000	1				
		0001	2				
		0010	3				
		0011	4				
		0100	5				
		0101	6				
	MADDE V DELAY	0110	7				
3-0	MADPT_Y_DELAY	0111	8				
		1000	9				
		1001	10				
		1010	11				
		1011	12				
		1100	13				
		1101	14				
		1110	15				
		1111	16				
		UV delay pipe control					
		MADPT_UV_DELAY	UV data delay pipes				
		0000	1				
		0001	2				
		0010	3				
		0011	4				
		0100	5				
		0101	6				
7-4	MADPT_UV_DELAY	0110	7				
7-4	WADPI_UV_DELAT	0111	8				
		1000	9				
		1001	10				
		1010	11				
		1011	12				
		1100	13				
		1101	14				
		1110	15				
		1111	16				

DEINTERLACER 18 REG S2_18, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MADPT_HTAP_COEFF
 MADPT_HTAP _BYPS
 RESERVED
 MADPT_DIVID _SEL
 MADPT_DIVID _BYPS

Bit	Name	Function
0	MADPT_DIVID_BYPS	Motion index divide bypass When = 1, motion index no divide. When = 0, motion index will by divided by 2 or 4.
1	MADPT_DIVID_SEL	Motion index divide selection When = 1, motion index will be divided by 2 in still. When = 0, motion index will be divided by 4 in still.
2	RESERVED	
3	MADPT_HTAP_BYPS	Motion index horizontal filter bypass When =1, motion index horizontal filter will be bypass
7-4	MADPT_HTAP_COEFF	Motion index horizontal filter coefficient Motion index horizontal filter coefficient.

DEINTERLACER 19 REG S2_19, R/W

Bit	Name	Function
0	MADPT_BIT_STILL_EN	Enable pixel base still When set to 1, pixel base still function will enable.
1	RESERVED	
2	MADPT_VTAP2_BYPS	Motion index vertical filter bypass When = 1, motion index's vertical filter will be bypass.
3	MADPT_VTAP2_ROUND_S EL	Motion index vertical filter round selection When set to 1, the input data will be divided by 2.
7-4	MADPT_VTAP2_COEFF	Motion index vertical filter coefficient

DEINTERLACER 1A REG S2_1A, R/W

7 6 5 4 3 2 1 0

Bit MADPT_PIXEL_STILL_THRESHOLD_1

Bit	Name	Function
7.0	MADPT_PIXEL_STILL_TH	Pixel base still threshold level one
7-0	RESHOLD_1	

RD-5725-1.1 02—12

DEIN	TERLA	CER 1B					REG	S2_1B, R/W		
	7	6	5	4	3	2	1	0		
Bit			MA	DPT_PIXEL_S	TILL_THRESHOL	.D_2				
	Bit	Name		unction						
	7-0	MADPT_PIXEL_STI RESHOLD_2	LL_TH P	ixel base still t	hreshold level tw	10				
DEIN	TERLA	`FD 1C					DF.G	S2_1C, R/W		
DEIIN										
D:4	7	6	5	4	3	2	1	0		
Bit				RES	ERVED					
	Bit	Name	F	unction						
	7-0	RESERVED								
DEIN	TERLA	CER 1D					REG	S2_1D, R/W		
	7	6	5	4	3	2	1	0		
Bit			-	<u>'</u>	ERVED					
	Bit	Name	F	unction						
	7-0	RESERVED								
							5.50			
DEIN	TERLA	CER 1E					REG	S S2_1E, R/W		
	7	6	5	4	3	2	1	0		
Bit				RES	ERVED					
İ										
	Bit	Name	F	unction						
	7-0	RESERVED								

DEIN	DEINTERLACER 1F REG S2_1F, R/W								
	7	6	5	4	3	2	1	0	
Bit				MADPT_HF	REQ_NOISE				
		Τ		Т					
	Bit	Name		Function					
7-0 MADPT_HFREQ_NOISE High-frequency detection noise value									
				The noise value for high-frequency detection.					

DEINTERLACER 20 REG S2_20, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MADPT_HFREQ_LOCK
 RESERVED
 MADPT_HFR EQ_ID
 MADPT_HFR EQ_ID
 Q_DET_EN

Bit	Name	Function
0	MADPT_HFREQ_DET_EN	High-frequency detection enable When set to 1, high-frequency detection is in auto mode. When set to 0, high-frequency detection is in manual mode.
1	MADPT_HFREQ_ID	High-frequency indicator by user (in manual mode) High-frequency indicator by user, only useful in HFREQ_DET_EN =0
3-2	RESERVED	
7-4	MADPT_HFREQ_LOCK	High-frequency auto lock value When high-frequency lock counter equals lock value, high-frequency will be active

DEINTERLACER 21 REG S2_21, R/W

Bit	Name	Function
2-0	MADPT_HFREQ_UNLOCK	High-frequency auto unlock value When high-frequency unlock counter equals unlock value, high-frequency will be inactive
3	RESERVED	
4	MADPT_EN_NOUT_FOR_S TILL	Enable NOUT for still detection
5	MADPT_EN_NOUT_FOR_L ESS_STILL	Enable NOUT for less-still detection
7-6	RESERVED	

RD-5725-1.1 02—14

DEIN	DEINTERLACER 22 REG S2_22, R/W							
	7	6	5	4	3	2	1	0
Bit	RESERVED					MADPT_PD_SF	•	

Bit	Name	Function
4-0	MADPT_PD_SP	Scaling down line buffer WRSTZ position adjustment bits Adjust the position of write reset in vertical IIR filter line buffer, and phase adjustment line buffer.
7-5	RESERVED	

DEINTERLACER 23 REG S2_23, R/W

	7	6	5	4	3	2	1	0
Bit		RESERVED				MADPT_PD_S1	г	

Bit	Name	Function
4-0	MADPT_PD_ST	Scaling down line buffer RRSTZ position adjustment Adjust the position of read reset in vertical IIR filter line buffer, and phase adjustment line buffer.
7-5	RESERVED	

DEINTERLACER 24 REG S2_24, R/W

	7	6	5	4	3	2	1	0
Bit			RESERVED			MADPT_PD_RA M_BYPS	RES	ERVED

Bit	Name	Function
1-0	RESERVED	
2	MADPT_PD_RAM_BYPS	Bypass scaling down's line buffer When set to 1, scaling down's line buffer will be bypass.
7-3	RESERVED	

DEIN	ITERLA(CER 25					REG	S2_25, R/W
	7	6	5	4	3	2	1	0
Bit	Bit RESERVED							
	Bit	Name		Function				
	7-0	RESERVED						
DEIN	ITERLA(CER 26					REG	S2_26, R/W
Bit	7 MADPT_\ ROUND_	6 VIIR_MADPT_VIIR SEL _BYPS	5	4	3 RESEI	2 RVED	1	0
	Bit	Name		Function				
	5-0	RESERVED						
	6	MADPT_VIIR_BY	PS	Bypass V-IIR filte When set to 1, V-II	r in vertical sca	aling down	vill be bypass.	
	7	MADPT_VIIR_RC	UND_SEL	V-IIR filter in verti	ical scaling dov	wn round select		
		<u> </u>		,	·			
DEIN	ITERLA	CER 27					REG	S2_27, R/W
	7	6	5	4	3	2	1	0
Bit	RESERV	/ED		M	ADPT_VIIR_CO	EF		
	Bit	Name		Function				
	6-0	MADPT_VIIR_CC	EF	V-IIR filter coeffic	ient			
	7	RESERVED						
DEIN	ITERLA	CER 28					REG	S2_28, R/W
	7	6	5	4	3	2	1	0
Bit		MADPT_VSC	ALE_RATE_	LOW		RESE	RVED	
	Bit	Name		Function				
		DEGERVER						
	3-0	RESERVED						

DEIN	TERLA	CER 29					REG	S2_29, R/W	
	7	6	5	4	3	2	1	0	
Bit				MADPT_VSCA	LE_RATE_SE	3 0			
	Bit	Name		Function					
		MADPT_VSCALE_	RATE S	Vertical non-linea The actual DDA in				ue	
	7-0	EG0		Assume the scale			· ·		
DEIN	TERLA	CER 2A					REG	S2_2A, R/W	
	7	6	F	1	2	2	1	0	
Bit	7	6	5	4 MADPT_VSCA	3 LE DATE SE	2		0	
ы				WIADF I_V3CA	LE_KATE_SE				
	Bit	Name		Function					
	7-0	MADPT_VSCALE_	RATE_S	Vertical non-linear scale down 2 nd segment DDA increment value					
	7-0	EG1		The actual DDA in	crement is vsca	ale={vscale1, vsca	ıle_low}.		
DEIN	TERLA	TED 2B					DEC	S2_2B, R/W	
DEIN	IEKLA	JER ZB					REG	32_2D, R/W	
	7	6	5	4	3	2	1	0	
Bit				MADPT_VSCA	LE_RATE_SEC	32			
	Dir	Nama		F					
	Bit	Name	DATE C	Function Vertical non-lines	ar scale down	3rd sagment DDA	increment val	110	
	7-0	MADPT_VSCALE_ EG2	KAIE_S	The actual DDA in				ue	
DEIN	TERLA	CER 2C					REG	S2_2C, R/W	
	7	6	5	4	3	2	1	0	
Bit				MADPT_VSCA					
	Bit	Name		Function					
	7-0	MADPT_VSCALE_	RATE_S	Vertical non-line				ue	
		EG3		The actual DDA in	crement is vsca	ale={vscale3, vsca	ile_low}.		

RD-5725-1.1 02—17

-								
DEIN	TERLA	CER 2D	REG S2_2D, R/W					
	7	6 5	4 3 2 1 0					
Bit			MADPT_VSCALE_RATE_SEG4					
	Bit	Name	Function					
	7-0	MADPT_VSCALE_RATE_S EG4	Vertical non-linear scale down 5 th segment DDA increment value The actual DDA increment is vscale={vscale4, vscale_low}.					
DEIN	TERLA	CER 2E	REG S2_2E, R/W					
	7	6 5	4 3 2 1 0					
Bit			MADPT_VSCALE_RATE_SEG5					
		1						
	Bit	Name	Function					
	7-0	MADPT_VSCALE_RATE_S	Vertical non-linear scale down 6 th segment DDA increment value					
		EG5	The actual DDA increment is vscale={vscale5, vscale_low}.					
DEIN	TERLA	CER 2F	REG S2_2F, R/W					
	7	6 5	4 3 2 1 0					
Bit	,	0 5	MADPT_VSCALE_RATE_SEG6					
ы			WADFI_VSCALE_RATE_SEGO					
	Bit	Name	Function					
	7-0	MADPT_VSCALE_RATE_S	Vertical non-linear scale down 7 th segment DDA increment value					
	•	EG6	The actual DDA increment is vscale={vscale6, vscale_low}.					
DEIN	TERLA	CER 30	REG S2_30, R/W					
		-	1					

Bit	Name	Function
7.0	MADPT_VSCALE_RATE_S	Vertical non-linear scale down 8 th segment DDA increment value
7-0	7-0 EG7	The actual DDA increment is vscale={vscale7, vscale_low}.

MADPT_VSCALE_RATE_SEG7

Bit

Registers Definition

DEINTERLACER 31 REG S2_31, R/W

	7	6	5	4	3	2	1	0
Bit		MADPT_1	TEST_SEL		MADPT_TEST _EN	MADPT_SEL_ PHASE_INI	MADPT_VSCAL TOF	

Bit	Name	Function
1-0	MADPT_VSCALE_DEC_FA	Vertical non-linear scaling-down factor select If the scaling ratio is less than ½, use it and DDA to generate the we and phase 00: scaling-ratio is more than ½. 01: scaling-ratio is less than ½. 10: scaling-ratio is less than ¼.
2	MADPT_SEL_PHASE_INI	Vertical scaling down initial phase selection
3	MADPT_TEST_EN	Test bus output enable Internal hardware debugging use only.
7-4	MADPT_TEST_SEL	Test bus select Internal hardware debugging use only.

DEINTERLACER 32 REG S2_32, R/W

	7	6	5	4	3	2	1	0
Bit	MADPT_NRD_S EL	MADP	T_Y_VTAP_C	NTRL		MADPT_Y_H	TAP_CNTRL	

Bit	Name	Function
3-0	MADPT_Y_HTAP_CNTRL	Y horizontal filter control for background reduction Y_HTAP_CNTRL[3:0] could bypass four tap3 FIR filter.
6-4	MADPT_Y_VTAP_CNTRL	Y vertical filter control for background reduction Y_VTAP_CNTRL[0]: when set to 1, bypass vertical filter Y_VTAP_CNTRL[1]: when set to 1, enable FIR filter Y_VTAP_CNTRL[2]: when set to 1, bypass IIR filter
7	MADPT_NRD_SEL	Background reduction selection control Only set it to 1 in huge noise condition

DEINTERLACER 33 REG S2_33, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MADP		NTRL		MADPT_M_H	ITAP_CNTRL	

Bit	Name	Function
3-0	MADPT_M_HTAP_CNTRL Background noise reduction H filter control in huge noise condition M_HTAP_CNTRL[3:0] could bypass four tap3 FIR filter.	
6-4	MADPT_M_VTAP_CNTRL	Background noise reduction V filter control in huge noise condition M_VTAP_CNTRL[0]: when set to 1, bypass vertical filter M_VTAP_CNTRL[1]: when set to 1, enable FIR filter M_VTAP_CNTRL[2]: when set to 1, bypass IIR filter
7	RESERVED	

DEINTERLACER 34 REG S2_34, R/W

	7	6	5	4	3	2	1	0
Bit		MADPT_UV_WC	DUT	MADPT_UV_WOU T_BYPS		MADPT_Y_WO	DUT	MADPT_Y_WOU T_BYPS

Bit	Name	Function
0	MADPT_Y_WOUT_BYPS	Bypass Y WOUT
3-1	MADPT_Y_WOUT	Coefficient for Y noise reduction
4	MADPT_UV_WOUT_BYP S	Bypass UV WOUT
7-5	MADPT_UV_WOUT	Coefficient for UV noise reduction

DEINTERLACER 35 REG S2_35, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MADPT_CMP_ MADPT_CMP MADPT_UVDL MADPT_NRD_ MADPT_DD0 MADPT_NRD_ MADPT_UV_N MADPT_Y_NR V_PD_BYPS
 MADPT_DD0 MADPT_NRD_ MADPT_UVDL MADPT_Y_NR NRD_ MADPT_UVDL MADPT_Y_NR NRD_ MADPT_UVDL MADPT_V_NR NRD_ MADPT_UVDL MADPT_UVDL MADPT_V_NR NRD_ MADPT_UVDL MAD

Bit	Name	Function
•	MADDE V NDD ENABLE	Enable background noise reduction in Y domain
0	MADPT_Y_NRD_ENABLE	When set to 1, enable background noise reduction in Y domain.
	MADPT_UV_NRD_ENABL	Enable background noise reduction in UV domain
1	E	When set to 1, enable background noise reduction in UV domain.
	MADDE NED OUT CEL	NRD output selection
2	MADPT_NRD_OUT_SEL	Only set it to 1 in huge noise condition.
		DD0 select control
3	MADPT_DD0_SEL	Set it to 1 when background noise reduction enable
		Set it to 0 when background noise reduction disable
_	MADPT_NRD_VIIR_PD_BY	Bypass NRD VIIR line buffer
4	PS	
_	MADDE LIVELY DE DVDC	Bypass UV delay line buffer
5	MADPT_UVDLY_PD_BYPS	
		Motion compare enable
6	MADPT_CMP_EN	When set to 1, enable motion compare
		When set to 0, motion compare is in manual mode
7	MADDE CMD LISED ID	Motion compare result defined by user (in manual mode)
7	MADPT_CMP_USER_ID	Motion compare result defined by user when CMP_EN = 0

DEINTERLACER 36 REG S2_36, R/W

7 6 5 4 3 2 1 0

Bit MADPT_CMP_LOW_THRESHOLD

Bit	Name	Function
7-0	MADPT_CMP_LOW_THRE	Motion compare low level threshold
7-0	SHOLD	

DEINTERLACER 37 REG S2_37, R/W

7 6 5 4 3 2 1 0

Bit MADPT_CMP_HIGH_THRESHOLD

Bit	Name	Function
7-0	MADPT_CMP_HIGH_THRE	Motion compare high level threshold
	SHOLD	

DEIN	TERLA	CER 38					REG	S2_38, R/W
	7	6	5	4	3	2	1	0
Bit		MADPT_NRD_VII	R_PD_	ST		MADPT_NRD	_VIIR_PD_SP	
		I		T	l			
	Bit	Name		Function				
	3-0	MADPT_NRD_VIIR_PE) SP	NRD line buffer \	WRSTZ position	n adjustment		
	7-4 MADPT_NRD_VIIR_PD_ST		NRD line buffer I	RRS I Z positio	n adjustment			

DEINTERLACER 39 REG S2_39, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MADPT_UVDLY_PD_SP

	Bit	Name	Function
-	3-0	MADPT_UVDLY_PD_SP	UV delay line buffer WRSTZ position adjustment
-	7-4	MADPT_UVDLY_PD_ST	UV delay line buffer RRSTZ position adjustment

DEINTERLACER 3A REG S2_3A, R/W

	7	6	5	4	3	2	1	0
Bit	MADPT_UV_M I_DET_BYPS	MADPT_M	I_1BIT_DLY	MADPT_EN_S TILL_FOR_PU LLDWN	MADPT_EN_S TILL_FOR_NR D	MADPT_EN_N OUT_FOR_NR D	MADPT_EN_P ULLDWN_FO R_NRD	MADPT_EN_U V_DEINT

Bit	Name	Function				
0	MADPT_EN_UV_DEINT	Enable UV deinterlacer When set to 1, enable UV deinterlacer.				
1	MADPT_EN_PULLDWN_F OR_NRD	Enable pull-down to block STILL for NRD Set it to 1, background noise reduction will in low noise level when in 32/22 pull-down source.				
2	MADPT_EN_NOUT_FOR_ NRD	Enable NOUT for background noise reduction				
3	MADPT_EN_STILL_FOR_N RD	Enable still for background noise reduction				
4	MADPT_EN_STILL_FOR_P ULLDWN	Enable STILL to reset pull-down detection When set to 1, still will be used to reset 3:2/2:2 pull-down detection.				
		Delay pipe control for motion index feedback-bit				
		MADPT_MI_1BIT_DELAY MI feedback-bit delay pipes				
C E	MADDE MI ADIE DI V	00 1				
6-5	MADPT_MI_1BIT_DLY	01 2				
		10 3				
		11 4				
7	MADPT_UV_MI_DET_BYP	UV motion index generation bypass				
′	S	When set to 1, UV motion index generation is in manual mode.				

DEINTERLACER 3B REG S2_3B, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 MADPT_UV_MI_OFFSET

Bit	Name	Function
6-0	MADPT_UV_MI_OFFSET	UV motion index offset In auto mode, UV motion index offset In manual mode, UV motion index user defined value
7	RESERVED	

Registers Definition

DEINTERLACER 3C REG S2_3C, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED		IADPT_MI_DEL	AY		MADPT_U\	/_MI_GAIN	

Bit	Name	Function				
3-0	MADPT_UV_MI_GAIN	UV motion index gain UV motion index gain.				
6-4	MADPT_MI_DELAY	Motion index delay control Control motion index (both Y and UV's) delay pipes, so that the motion index can align with corresponding data. MADPT_MI_DELAY Motion index delay pipes 000 1 pipe 001 2 pipe 010 3 pipes 011 4 pipes 100 5 pipes 101 6 pipes 110 7 pipes 111 8 pipes				
7	RESERVED					

Chapter 03. HD_BYPS REGISTERS

HD_BYPS 00 REG S1_30, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 HD_SEL_BLK _IN
 HD_DYN_BYPS
 HD_MATRIX_B HD_IN_DRE G_BYPS

Bit	Name	Function
0	HD_IN_DREG_BYPS	Use the falling or rising edge of clock to get the input data. 0: Clock input data on the falling edge 1: Clock input date on the rising edge
1	HD_MATRIX_BYPS	YUV2RGB conversion bypass control Available only when input source is YUV source 0: YUV2RGB convert 1: bypass YUV2RGB function
2	HD_DYN_BYPS	Dynamic range bypass control If the input is YUV data, it must do dynamic range. 0: input is YUV data, do dynamic range . 1: input is RGB data, bypass dynamic range
3	HD_SEL_BLK_IN	Blank select Choose the input blank or generated blank use sync. 0: choose the blank that sync generated. 1: choose the input blank, if the input is DVI data.
7-4	RESERVED	

HD_BYPS 01 REG S1_31, R/W

HD_Y_GAIN

	Bit	Name	Function
-	7.0	LID V CAIN	Dynamic range Y gain value
	7-0	HD_Y_GAIN	The gain value of Y dynamic range.

HD_B	YPS 02	2					REG	S1_32, R/V
	7	6	5	4	3	2	1	0
Bit	Bit HD_Y_OFFSET							
	Bit	Name	F	unction				
	7-0	HD_Y_OFFSET		Dynamic range Y offset value The offset value of Y dynamic range.				

HD_BYPS 03 REG S1_33, R								S1_33, R/W
	7	6	5	4	3	2	1	0
Bit	HD_U_GAIN							

	Bit	Name	Function
Ī	7-0	LID II CAIN	Dynamic range U gain value
		HD_U_GAIN	The gain value of U dynamic range.

HD_BYPS 04 REG S1_34, R/W								
	7	6	5	4	3	2	1	0
Bit	HD_U_OFFSET [7:0]							

Bit	Name	Function
7.0	LID II OFFCET 17-01	Dynamic range U offset value
7-0	HD_U_OFFSET [7:0]	The offset value of U dynamic range.

HD_BYPS 05 REG S1_35, R/V								S1_35, R/W
	7	6	5	4	3	2	1	0
Bit				HD_V	_GAIN			

Bi	t Name	Function
7.	O LID V CAIN	Dynamic range V gain value
7-0	0 HD_V_GAIN	The gain value of V dynamic range.

Registers Definition

וט_נ	SYPS 06)					ILC .	S1_36, R/
	7	6	5	4	3	2	1	0
Bit				HD_V_	OFFSET			
	Bit	Name	F	unction				
	7-0	HD_V_OFFSET	D T	ynamic range V he offset value o	/ offset value f V dynamic ranç	je.		
				·				
ID_B	SYPS 07	,					REG	S1_37, R/
HD_B	3YPS 07 7	6	5	4	3	2	REG	S1_37, R/
HD_B			5		3 C_RST [7:0]	2	REG	
						2	REG	

 REG S1_38, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 HD_HSYNC_RST [10:8]

Bit	Name	Function
2-0	HD_HSYNC_RST [10:8]	Horizontal reset value Horizontal counter reset value [10:8].
7-3	RESERVED	

 HD_BYPS 09
 REG S1_39, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 HD_INI_ST [7:0]

Bit	Name	Function	
7.0	UD INI OT 17 01	Horizontal reset pulse start position	
7-0	HD_INI_ST [7:0]	Vertical counter write enable, adjust the distance between hblank and vblank.	

HD_E	SYPS 0A	\					REG	S1_3A, R/W	
	7	6	5	4	3	2	1	0	
Bit						HD	_INI_ST [10:8]		
				_		l			
	Bit	Name		Function					
	2-0	HD_INI_ST [10:8]		Horizontal reset pulse start position Vertical counter write enable, adjust the distance between hblank and vblank.					
	7-3	RESERVED							
	,			,					
HD_E	BYPS 0E	3					REG	S1_3B, R/W	
	7	6	5	4	3	2	1	0	
Bit				HD_HE	3_ST [7:0]				
	Bit	Name		Function					
	7-0	HD_HB_ST [7:0]		Horizontal blank Generate horizon	start position tal blank to sele	ct programmed da	ata.		
HD_E	SYPS OC	<u> </u>					REG	S1_3C, R/W	
	7	6	5	4	3	2	1	0	
Bit		RESE	RVED			HD_HB_S	T [11:8]		
	Bit	Name		Function					
	3-0	HD_HB_ST [11:8]		Horizontal blank Generate horizon	start position tal blank to sele	ct programmed da	ata.		
	7-4	RESERVED				-			
				1					

HD_B	YPS 0D						REG S	S1_3D, R/W
	7	6	5	4	3	2	1	0
Bit HD_HB_SP [7:0]								
ļ								

Bit	Name	Function
7.0	HD_HB_SP [7:0]	Horizontal blank stop position
7-0		Generate horizontal blank to select programmed data.

							550	04.05.5%		
HD_E	SYPS OF						REG	S1_3E, R/W		
	7	6	5	4	3	2	1	0		
Bit		RESERV	ED			HD_HB_SP	[11:8]			
	Bit	Name		Function						
	3-0	HD_HB_SP [11:8]		Horizontal blank Generate horizont	Horizontal blank stop position Generate horizontal blank to select programmed data.					
	7-4	RESERVED								
HD_E	SYPS OF						REG	S1_3F, R/W		
	7	6	5	4	3	2	1	0		
Bit	Bit HD_HS_ST [7:0]									
	Bit	Name		Function						
	7-0	HD_HS_ST [7:0]		Output sync to DA	start position AC start position					
	V/DO 4.0						550	01 10 014		
HD_E	SYPS 10)					REG	S1_40, R/W		
	7	6	5	4	3	2	1	0		
Bit		RESERV	ED			HD_HS_ST	[11:8]			
	Bit	Name		Function						
	3-0	HD_HS_ST [11:8]		Output sync to DA	start position C start position	١				
	7-4	RESERVED								
HD_E	SYPS 11						REG	S1_41, R/W		
	7	6	5	4	3	2	1	0		

	Bit	Name	Function
	7-0	UD UC CD [7:0]	Horizontal sync stop position
		HD_HS_SP [7:0]	Output sync to DAC stop position

HD_HS_SP [7:0]

Bit

HD_B	SYPS 12	2					REG	S1_42, R/W
	7	6	5	4	3	2	1	0
Bit		RESERVI	ĒD .			HD_HS_SI	P [11:8]	
	Bit	Name		Function				
	3-0	HD_HS_SP [11:8]		Output sync to DA				
	7-4	7-4 RESERVED						
)VDC 11						DEC	C1 42 D/M
HD_B	SYPS 13	3					REG	S1_43, R/W
	7	6	5	4	3	2	1	0
Bit HD_VB_ST [7:0]								
	1							
	Bit	Name		Function				
	7-0	Name HD_VB_ST [7:0]		Function Vertical blank sta Generate blank to	art position o select program	data in blank		
				Vertical blank st	art position o select program	data in blank		
HD_B		HD_VB_ST [7:0]		Vertical blank st	art position select program	data in blank	REG	S1_44, R/W
HD_B	7-0	HD_VB_ST [7:0]	5	Vertical blank st	art position select program	data in blank	REG 1	S1_44, R/W
HD_B	7-0 3YPS 14	HD_VB_ST [7:0]		Vertical blank sta Generate blank to	select program (1	
	7-0 3YPS 14	HD_VB_ST [7:0]		Vertical blank sta Generate blank to	select program (2	1	
	7-0 BYPS 14	HD_VB_ST [7:0]		Vertical blank st. Generate blank to	3 art position	2 HD_VB_S	1	
	7-0 BYPS 14	HD_VB_ST [7:0] 6 RESERVE		Vertical blank st. Generate blank to 4 Function Vertical blank st.	3 art position	2 HD_VB_S	1	
	7-0 8YPS 14 7 Bit 3-0	HD_VB_ST [7:0] 6 RESERVE Name HD_VB_ST [11:8]		Vertical blank st. Generate blank to 4 Function Vertical blank st.	3 art position	2 HD_VB_S	1	

	7	6	5	4	3	2	1	0
Bit HD_VB_SP [7:0]								
-								<u> </u>

Bit	Name	Function
7.0	LID VD CD [7:0]	Vertical blank stop position
7-0	HD_VB_SP [7:0]	Generate blank to select program data in blank

HD_B	3YPS 16)					REG	S1_46, R/W	
	7	6	5	4	3	2	1	0	
Bit		RESER	VED			HD_VB_SP	[11:8]		
'		T		T					
	Bit	Name		Function					
	3-0	HD_VB_SP [11:8]		Vertical blank stop position Generate blank to select program data in blank					
	7-4	RESERVED							
		,							
HD_B	SYPS 17	,					REG	S1_47, R/W	
	7	6	5	4	3	2	1	0	
Bit									
· 		T		T					
	Bit	Name		Function					
	7-0	HD_VS_ST [7:0]		Output vertical sy	sync to DAC start position				
'									
HD_B	BYPS 18	}					REG	S1_48, R/W	
	7	6	5	4	3	2	1	0	
Bit		RESER	VED			HD_VS_ST	[11:8]		
		T							
	Bit	Name		Function	4 44				
	3-0	HD_VS_ST [11:8]		Output vertical sy	nc to DAC star	rt position			
	7-4	RESERVED							
'				1					
HD B	SYPS 19)					RFG	S1_49, R/W	
							0	O	

	7	6	5	4	3	2	1	0
Bit				HD_VS	_SP [7:0]			

Bit	Name	Function
7.0	UD VC CD [7:0]	Vertical sync stop position
7-0	HD_VS_SP [7:0]	Output vertical sync to DAC stop position

HD_B	SYPS 1A	1					REG	S1_4A, R/W	
	7	6	5	4	3	2	1	0	
Bit		RESE	RVED		HD_VS_SP [11:8]				
		T		1	•				
	Bit	Name		Function					
	3-0	HD_VS_SP [11:8]		Output vertical sy	pp position nc to DAC stop	position			
	7-4 RESERVED								
HD_B	SYPS 1E	3					REG	S1_4B, R/W	
	7	6	5	4	3	2	1	0	
Bit				HD_EXT_	VB_ST [7:0]				
	Bit	Name		Function					
	7-0	HD_EXT_VB_ST [7:0]	Output vertical bla	al blank start pank to DAC for	position DIV mode start pos	ition		
HD_B	SYPS 10	>					REG	S1_4C, R/W	
	7	6	5	4	3	2	1	0	
Bit		RESE	RVED	HD_EXT_VB_ST [11:8]					
	Bit	Name		Function					
	3-0	HD_EXT_VB_ST [11:8]	DVI mode vertical blank start position Output vertical blank to DAC for DIV mode start position					
	7-4	RESERVED							

HD_B	D_BYPS 1D REG S1_4D, R/W									
	7	6	5	4	3	2	1	0		
Bit		HD_EXT_VB_SP [7:0]								

Bit	Name	Function			
7.0	UD EVE VD CD (7-0)	DVI mode vertical blank stop position			
7-0	HD_EXT_VB_SP [7:0]	Output vertical blank to DAC for DIV mode stop position			

7-0

HD_EXT_HB_ST [7:0]

HD_B	SYPS 1E						REG	S1_4E, R/W	
	7	6	5	4	3	2	1	0	
Bit		RES	ERVED		HD_EXT_VB_SP [11:8]				
'				I					
	Bit	Name		Function					
	3-0	HD_EXT_VB_SP	[11:8]	DVI mode vertical blank stop position Output vertical blank to DAC for DIV mode stop position					
	7-4	RESERVED							
HD_B	SYPS 1F						REG	S1_4F, R/W	
	7	6	5	4	3	2	1	0	
Bit	Bit HD_EXT_HB_ST [7:0]								
	Bit	Name		Function					

HD_E	HD_BYPS 20 REG S1_50, R/W										
	7	6	5	4	3	2	1	0			
Bit	it RESERVED				HD_EXT_HB_ST [11:8]						

DVI mode horizontal blank start position

Output horizontal blank to DAC for DIV mode start position

	Bit	Name	Function
=	3-0	HD_EXT_HB_ST [11:8]	DVI mode horizontal blank start position Output horizontal blank to DAC for DIV mode start position
	7-4	RESERVED	

	D:4	Nome	F.,							
Bit		HD_EXT_HB_SP [7:0]								
	7	6	5	4	3	2	1	0		
HD_B	D_BYPS 21 REG S1_51, R/W									

Bit	Name	Function			
7-0	UD EVT UD CD (7.0)	DVI mode horizontal blank start position			
	HD_EXT_HB_SP [7:0]	Output horizontal blank to DAC for DIV mode stop position			

HD_B	SYPS 22)				REG	S1_52, R/V
	7	6 5	4	3	2	1	0
Bit		RESERVED			HD_EXT_HB_	SP [11:8]	
	D ''	T	T=				
	Bit	Name	Function DVI mode horizo	ntal blank star	t nosition		
	3-0	HD_EXT_HB_SP [11:8]			or DIV mode stop p	osition	
	7-4	RESERVED					
HD_B	SYPS 23	}				REG	S1_53, R/V
	7	6 5	4	3	2	1	0
Bit			HD_BLK	_GY_DATA			
ļ							
	Bit	Name	Function				
	7-0	HD_BLK_GY_DATA	Programmed GY Force the blank of		ntal blank defined programm	ed data	
					- Programme		
HD_B	SYPS 24					REG	S1_54, R/V
	7	6 5	4	3	2	1	0
Bit			HD_BLK	_BU_DATA			
	Bit	Name	Function				
			Programmed BU	data in horizo	ntal blank		
	7-0	HD_BLK_BU_DATA	Force the blank of	f BU data to the	defined programm	ed data	
HD_B	SYPS 25	<u> </u>				REG	S1_55, R/V
	7	6 5	4	3	2	1	0
Bit		-	HD_BLK	_RV_DATA			
	Bit	Name	Function				
	7-0	HD_BLK_RV_DATA	Programmed RV Force the blank of		ntal blank defined programm	ed data	

03—10

Chapter 04. MISCELLANEOUS REGISTERS

PLL648 CONTROL 00 REG SO_40, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	PLL_MS		PLL_ADS	PLL_IS	PLL_DIVBY2Z	PLL_CKIS	

Bit	Name	Function			
0	PLL_CKIS	CKIS, PLL source clock selection When = 0, PLL use OSC clock When = 1, PLL use input clock			
1	PLL_DIVBY2Z	DIVBY2Z, PLL source clock divide bypass When = 0, PLL source clock divide by two When = 1, PLL source clock bypass divide			
2	PLL_IS	IS, ICLK source selection When = 0, ICLK use PLL clock When = 1, ICLK use input clock			
3	PLL_ADS	ADS, input clock selection When = 0, input clock is from PCLKIN(pin40) When = 1, input clock is from ADC			
6-4	PLL_MS	MS[2:0], memory clock control When = 000, memory clock = 108MHz When = 001, memory clock = 81MHz When = 010, memory clock from FBCLK (pin110) When = 011, memory clock = 162MHz When = 100, memory clock = 144MHz When = 101, memory clock = 185MHz When = 110, memory clock = 216MHz When = 111, memory clock = 129.6Mhz			
7	RESERVED	Reserved			

PLL648 CONTROL 01 REG S0_41, R/W

7 6 5 4 3 2 1 0

Bit PLL_4XV PLL_2XV PLL_VS4 PLL_VS2 PLL_VS

Bit	Name	Function	า						
1-0	PLL_VS	VS[1:0]							
1-0	PLL_VS		ock tuning	register					
3-2	PLL_VS2	VS2[1:0]	a ala tanahan						
		VS4[1:0]	ock tuning	register					
5-4	PLL_VS4		ock tuning	register					
6	PLL 2XV	2XV	Ĭ	T					
	122_27(ock tuning	register					
		4XV	ock tuning	register					
					- \		roogitor	cotting	
			V2CLK	k freq (MH	1	DLL OVA	PLL_VS4	setting	DLL VC
		VCLK							
		27	54	108	1	X	00	00	00
		27	54	54	0	1	00	01	00
		27	27	27	0	0	00	01	01
		32.4	64.8	129.6	1	X	01	00	00
		32.4	64.8	64.8	0	1	01	01	00
		32.4	32.4	32.4	0	0	01	01	01
		40.5	81	162	0	X	10	00	00
		40.5	81	81		1	10	01	00
		40.5	40.5 108	40.5	0	0	10	01 01	01
7	PLL_4XV	54 54	54	108 54	0	1	00	01	00 01
		64.8	129.6	129.6	1		01	01	00
		64.8	64.8	64.8	0	1	01	01	00
		81	162	162	1	X	10	01	00
		81	81	81	0	1	10	01	01
		108	108	108	1	X	00	01	01
		129.6	129.6	129.6	1	X	01	01	01
		162	162	162	1	X	10	01	01
		FBCLK	FBCLK	FBCLK	1	X	11	01	01
		PCLKIN	PCLKIN	PCLKIN	0	1	11	01	01
		from	from	from					
		ADC	ADC	ADC	0	0	11	01	01
		Note: FB0	CLK is pin1	10, PCLKI	N is pin40				

PLL648 CONTROL 02 REG S							S0_42, R/W		
	7	6	5	4	3	2	1	0	
Bit	it RESERVED								
'									
	Bit	Name	Fu	Function					
	7-0 RESERVED		Re	Reserved					
		_							

PLL648 CONTROL 03 REG S0_43, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	PLL_VCORST	PLL_LEN	PLL	S	PLI	R

Bit	Name	Function
1-0	PLL_R	R[1:0]
		Skew control for testing
3-2	PLL_S	S[1:0]
		Skew control for testing
4	PLL_LEN	LEN
-		Lock Enable
		VCORST
5	PLL_VCORST	VCO control voltage reset bit
		When =1, reset VCO control voltage
7.0	DEGED./ED	Reserved
7-6	RESERVED	

Registers Definition

DAC CONTROL 00 REG S0_44, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 DAC_RGBS_B
 DAC_RGBS_G
 DAC_RGBS_DAC_RGBS_R
 DAC_RGBS_R
 DAC_RG

Bit	Name	Function
0	DAC_RGBS_PWDNZ	DAC enable When = 0, DAC (R,G,B,S) in power down mode When = 1, DAC (R,G,B,S) is enable
1	DAC_RGBS_RPD	RPD, RDAC power down control When = 0, RDAC work normally When = 1, RDAC is in power down mode
2	DAC_RGBS_R0ENZ	R0ENZ, DAC min output bypass When = 0, RDAC output Min voltage When = 1, RDAC output follow input R data
3	DAC_RGBS_R1EN	R1EN, RDAC max output control When = 0, RDAC output follow input R data When = 1, RDAC output Max voltage
4	DAC_RGBS_GPD	GPD, GDAC power down control When = 0, GDAC work normally When = 1, GDAC is in power down mode
5	DAC_RGBS_G0ENZ	G0ENZ, GDAC min output bypass When = 0, GDAC output Min voltage When = 1, GDAC output follow input G data
6	DAC_RGBS_G1EN	G1EN, GDAC max output control When = 0, GDAC output follow input G data When = 1, GDAC output Max voltage
7	DAC_RGBS_BPD	BPD, BDAC power down control When = 0, BDAC work normally When = 1, BDAC is in power down mode

Registers Definition

DAC	CONT	ROL 01					REG	SO_45, R/W
	7	6	5	4	3	2	1	0
Bit	CKT_I	F_CNTRL	RESERVED	DAC_RGBS_S 1EN	DAC_RGBS_S 0ENZ	DAC_RGBS_S PD	DAC_RGBS_B 1EN	DAC_RGBS_B 0ENZ

Bit	Name	Function
		B0ENZ, BDAC min output bypass
0	DAC_RGBS_B0ENZ	When = 0, BDAC output Min voltage
		When = 1, BDAC output follow input B data
		B1EN, BDAC max output control
1	DAC_RGBS_B1EN	When = 0, BDAC output follow input B data
		When = 1, BDAC output Max voltage
_		SPD, SDAC power down control
2	DAC_RGBS_SPD	When = 0, GDAC work normally
		When = 1, GDAC is in power down mode
_		S0ENZ, SDAC min output bypass
3	DAC_RGBS_S0ENZ	When = 0, SDAC output Min voltage
		When = 1, SDAC output follow input S data
		S1EN, SDAC max output control
4	DAC_RGBS_S1EN	When = 0, SDAC output follow input S data
		When = 1, SDAC output Max voltage
5	RESERVED	Reserved
7-6	CKT FF CNTRL	CKT used to control FIFO
. 0		

Registers Definition

RESET CONTROL 00 REG S0_46, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	SFTRST_VDS _RSTZ	SFTRST_OSD _RSTZ	SFTRST_FIFO _RSTZ	SFTRST_ME M_RSTZ	SFTRST_MEM_ FF_RSTZ	SFTRST_DEIN T_RSTZ	SFTRST_IF_R STZ

Bit	Name	Function
0	SFTRST_IF_RSTZ	Input formatter reset control When = 0, input formatter is in reset status When = 1, input formatter work normally
1	SFTRST_DEINT_RSTZ	Deint_madpt3 reset control When = 0, deint_madpt3 is in reset status When = 1, deint_madpt3 work normally
2	SFTRST_MEM_FF_RSTZ	Mem_ff (wff/rff/playback/capture) reset control When = 0, mem_ff is in reset status When = 1, mem_ff work normally
3	SFTRST_MEM_RSTZ	Mem controller reset control When = 0, mem controller is in reset status When = 1, mem controller work normally
4	SFTRST_FIFO_RSTZ	FIFO reset control When = 0, all FIFO (FF64/FF512) is in reset status When = 1, all FIFO work normally
5	SFTRST_OSD_RSTZ	OSD reset control When = 0, OSD generator is in reset status When = 1, OSD generator work normally
6	SFTRST_VDS_RSTZ	Vds_proc reset control When = 0, vds_proc is in reset status When = 1, vds_proc work normally
7	RESERVED	Reserved

Registers Definition

Bit		RESERVED			SFTRST_HD BYPS_RSTZ	SFTRST_SYNC _RSTZ	SFTRST_MOD E_RSTZ	SFTRST_DEC _RSTZ	
	7	6	5	4	3	2	1	0	
RESE	T CON	TROL 01					REG	SO_47, R/W	_

Bit	Name	Function
		Decimation reset control
0	SFTRST_DEC_RSTZ	When = 0, decimation is in reset status
		When = 1, decimation work normally
		Mode detection reset control
1	SFTRST_MODE_RSTZ	When = 0, mode detection is in reset status
		When = 1, mode detection work normally
		Sync procesor reset control
2	SFTRST_SYNC_RSTZ	When = 0, sync processor is in reset status
		When = 1, sync processor work normally
		HD bypass channel reset control
3	SFTRST_HDBYPS_RSTZ	When = 0, HD bypass is in reset status
		When = 1, HD bypasswork normally
		Interrupt generator reset control
4	SFTRST_INT_RSTZ	When = 0, interrupt generator is in reset status
		When = 1, interrupt generator work normally
		Reserved
7-5	RESERVED	

Registers Definition

PAD CONTROL 00 REG S0_48, R/W

	7	6	5	4	3	2	1	0
Bit	PAD_SYNC2_I N_ENZ	PAD_SYNC1_I N_ENZ	PAD_GIN_EN Z	PAD_GOUT_E N	PAD_RIN_EN Z	PAD_ROUT_E N	PAD_BIN_ENZ	PAD_BOUT_E N

Bit	Name	Function
0	PAD_BOUT_EN	WB_[7:0] output control When = 0, disable VB_[7:0] (test_out_[7:0]) output When = 1, enable VB_[7:0] (test_out_[7:0]) output
1	PAD_BIN_ENZ	VB_[7:0] input control When = 0, enable VB_[7:0] input When = 1, disable VB_[7:0] input
2	PAD_ROUT_EN	VR_[7:0] output control When = 0, disable VR_[7:0] (test_out_[15:8]) output When = 1, enable VR_[7:0] (test_out_[15:8]) output
3	PAD_RIN_ENZ	VR_[7:0] input control When = 0, enable VR_[7:0] input When = 1, disable VR_[7:0] input
4	PAD_GOUT_EN	WG_[7:0] output control When = 0, disable VG_[7:0] (test_out_[23:16]) output When = 1, enable VG_[7:0] (test_out_[23:16]) output
5	PAD_GIN_ENZ	VG_[7:0] input control When = 0, enable VG_[7:0] input When = 1, disable VG_[7:0] input
6	PAD_SYNC1_IN_ENZ	H/V sync1 input control When = 0, enable H/V sync1 input filter When = 1, disable H/V sync1 input filter
7	PAD_SYNC2_IN_ENZ	H/V sync2 input control When = 0, enable H/V sync2 input filter When = 1, disable H/V sync2 input filter

Registers Definition

PAD CONTROL 01 REG S0_49, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	PAD_PLUP_E NZ	PAD_PLDN_E NZ	PAD_TRI_ENZ	PAD_BLK_O UT_ENZ	PAD_SYNC_O UT_ENZ	PAD_CKOUT_ ENZ	PAD_CKIN_E NZ

Bit	Name	Function		
0	PAD_CKIN_ENZ PAD_CKIN_ENZ When = 0, PCLKIN input enable When = 1, PCLKIN input disable			
1	PAD_CKOUT_ENZ	CLKOUT control When = 0, CLKOUT output enable When = 1, CLKOUT output disable		
2	PAD_SYNC_OUT_ENZ HSOUT/VSOUT control When = 0, HSOUT/VSOUT output enable When = 1, HSOUT/VSOUT output disable			
3	PAD_BLK_OUT_ENZ HBOUT/VBOUT control When = 0, HBOUT/VBOUT output enable When = 1, HBOUT/VBOUT output disable			
4	PAD_TRI_ENZ	Tri-state gate control When = 0, enable output pad's tri-state gate When = 1, disable output pad's tri-state gate		
5	PAD_PLDN_ENZ	Pull-down control When = 0, enable pad's pull-down transistor When = 1, disable pad's pull-down transistor		
6	PAD_PLUP_ENZ PAD_PLUP_ENZ When = 0, enable pad's pull-up transistor When = 1, disable pad's pull-up transistor When = 1, disable pad's pull-up transistor			
7	RESERVED	Reserved		

PAD CONTROL 02 REG SO_4A, R/W

	7	6	5	4	3	2	1	0
Bit			RVED		PAD_XTOUT _TTL		PAD_OSC_CNTR	RL.

Bit	Name	Function
2-0	PAD OSC CNTRL	OSC pad C2/C1/C0 control
	PAD_03C_CNTRL	OSC pad C2/C1/C0 control
		OSC pad output control
3	PAD_XTOUT_TTL	When = 0, enable OSC pad output by schmitt
		When = 1, enable OSC pad output by TTL
7-4	RESERVED	Reserved
	RESERVED	

DAC	MIIV C	CONTROL OO					DEC	S0_4B, R/V	
DAC_	IVIUX C	CONTROL 00					REG	30_4D, R/V	
,	7	6	5	4	3	2	1	0	
Bit			RESERV	ED		DAC_RGBS_A DC2DAC	DAC_RGBS_B YPS2DAC	DAC_RGBS_E YPS_IREG	
	Bit	Name		Function					
	0	DAC_RGBS_BY	PS_IREG	DAC input DFF of When = 0, DAC in When = 1, bypass	put DFF is fallir	ng edge D-flipflop)		
	1	DAC_RGBS_BY	PS2DAC	When = 0, disable When = 1, enable	AC control e HD bypass cha HD bypass cha	annel to DAC	ectly		
	2	DAC_RGBS_AD	C2DAC	When = 0, disable When = 1, enable	ADC (with dec		directly		
	7-3	RESERVED		Reserved					
TEST	BUS	CONTROL 00	_					S0_4D, R/V	
Bit	7 R	6 RESERVED	5 TEST_BUS	4 FN	3	2 TEST_BUS_SE	1 I	0	
Dit	-		1201_200	3_EN					
	Bit	Name		Function					
	4-0	TEST_BUS_SEL		Test bus selection					
	5	TEST_BUS_EN		Test bus enable When = 0, disable test bus output When = 1, test bus output to VR_[7:0], VB_[7:0] (test_out_[15:0])					
	7-6	RESERVED		Reserved					
DIG_0	OUT	CONTROL 00					REG	SO_4E, R/V	
	7	6	5	4	3	2	1	0	
Bit			R	ESERVED			DIGOUT_ADC 2PAD	DIGOUT_BYF S2PAD	
	Bit	Name		Function					
	0	DIGOUT_BYPS2	PAD	When = 0, disable When = 1, enable	HD bypass to o	digital output	6_[7:0], VR_[7:0]	, VB_[7:0])	

ADC to digital output control

Reserved

1

7-2

DIGOUT_ADC2PAD

RESERVED

When = 0, disable ADC to digital output
When = 1, enable ADC (with decimation) to digital output (VG, VR, VB)

Registers Definition

CLK/SYNC CONTROL 00 REG S0_4F, R/W

	7	6	5	4	3	2	1	0
Bit	OUT_SYI	NC_SEL	OUT_SYNC_CN TRL	OUT_CLK_EN	OUT_C	CLK_MUX	OUT_CLK_PH ASE_CNTRL	DAC_RGBS_V 4CLK_INVT

Bit	Name	Function
0	DAC_RGBS_V4CLK_INVT	When = 0, V4CLK to DAC directly
		When = 1, V4CLK will invert before go to DAC CLKOUT invert control
1	OUT_CLK_PHASE_CNTRL	When = 0, CLKOUT output no invert When = 1, CLKOUT will invert before output
3-2	OUT_CLK_EN	CLKOUT selection control When = 00, CLKOUT = V4CLK When = 01, CLKOUT = V2CLK When = 10, CLKOUT = VCLK When = 11, CLKOUT = ADC output clock
4	CLKOUT_EN	CLKOUT enable control When = 0, disable CLKOUT to PAD When = 1, enable CLKOUT to PAD
5	OUT_SYNC_CNTRL	H/V sync output enable When = 0, disable H/V sync output to PAD When = 1, enable H/V sync output to PAD
7-6 OUT_SYNC_SEL		H/V sync output selection control When = 00, H/V sync output are from vds_proc When = 01, H/V sync output are from HD bypass When = 10, H/V sync output are from sync processor When = 11, reserved

Registers Definition

BLANK CONTROL 00 REG S0_50, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	IN_BLANK_IR EG_BYPS	IN_BLANK_S EL	RESI	ERVED	OUT_BLANK_ SEL_1	OUT_BLANK_ SEL_0

Bit	Name	Function
0	OUT BLANK SEL O	HBOUT/VBUT selection control
U	OUT_BLANK_SEL_0	When = 0, VBOUT output Vertical Blank When = 1, VBOUT output composite Display Enable
		HBOUT/VBOUT selection control
1	OUT_BLANK_SEL_1	When = 0, HBOUT/VBOUT is from vds_proc
		When = 1, HBOUT/VBOUT is from HD bypass
3-2	RESERVED	Reserved
J-Z	KESEKVED	
		Input blank selection
4	IN_BLANK_SEL	When = 0, disable input composite Display Enable
		When = 1, enable input composite Display Enable
		Input blank IREG bypas
5	IN_BLANK_IREG_BYPS	When = 0, input composite Display Enable latched by falling edge DFF
		When = 1, bypass falling edge DFF
		Reserved
7-6	RESERVED	

Registers Definition

GPIO CONTROL 00 REG S0_52, R/W

	7	6	5	4	3	2	1	0
Bit	GPIO_SEL_7	GPIO_SEL_6	GPIO_SEL_5	GPIO_SEL_4	GPIO_SEL_3	GPIO_SEL_2	GPIO_SEL_1	GPIO_SEL_0

Bit	Name	Function
0	GPIO_SEL_0	GPIO bit0 selection When = 0, GPIO (pin76) is used as INTZ output When = 1, GPIO (pin76) is used as GPIO bit0
1	GPIO_SEL_1	GPIO bit1 selection When = 0, HALF (pin77) is used as half tone input When = 1, HALF (pin77) is used as GPIO bit1
2	GPIO_SEL_2	GPIO bit2 selection When = 0, SCLSA (pin43) is used as two wire serial bus slave address selection When = 1, SCLSA (pin43) is used as GPIO bit2
3	GPIO_SEL_3	GPIO bit3 selection When = 0, MBA (pin107) is used as external memory BA When = 1, MBA (pin107) is used as GPIO bit3
4	GPIO_SEL_4	GPIO bit4 selection When = 0, MCS1 (pin109) is used as external memory CS1 When = 1, MCS1 (pin109) is used as GPIO bit4
5	GPIO_SEL_5	GPIO bit5 selection When = 0, HBOUT (pin6) is used as H-blank output When = 1, HBOUT (pin6) is used as GPIO bit5
6	GPIO_SEL_6	GPIO bit6 selection When = 0, VBOUT (pin7) is used as V-blank output When = 1, VBOUT (pin7) is used as GPIO bit6
7	GPIO_SEL_7	GPIO bit7 selection When = 0, CLKOUT (pin4) is used as clock output When = 1, CLKOUT (pin4) is used as GPIO bit7

Registers Definition

GPIO CONTROL 01 REG S0_53, R/W

	7	6	5	4	3	2	1	0
Bit	GPIO_EN_7	GPIO_EN_6	GPIO_EN_5	GPIO_EN_4	GPIO_EN_3	GPIO_EN_2	GPIO_EN_1	GPIO_EN_0

Bit	Name	Function
0	GPIO_EN_0	GPIO bit0 output enable When = 0, GPIO bit0 output disable When = 1, GPIO bit0 output enable
1	GPIO_EN_1	GPIO bit1 output enable When = 0, GPIO bit1 output disable When = 1, GPIO bit1 output enable
2	GPIO_EN_2	GPIO bit2 output enable When = 0, GPIO bit2 output disable When = 1, GPIO bit2 output enable
3	GPIO_EN_3	GPIO bit3 output enable When = 0, GPIO bit3 output disable When = 1, GPIO bit3 output enable
4	GPIO_EN_4	GPIO bit4 output enable When = 0, GPIO bit4 output disable When = 1, GPIO bit4 output enable
5	GPIO_EN_5	GPIO bit5 output enable When = 0, GPIO bit5 output disable When = 1, GPIO bit5 output enable
6	GPIO_EN_6	GPIO bit6 output enable When = 0, GPIO bit6 output disable When = 1, GPIO bit6 output enable
7	GPIO_EN_7	GPIO bit7 output enable When = 0, GPIO bit7 output disable When = 1, GPIO bit7 output enable

Registers Definition

GPIO	CONTROL 02			REG S0_54, R/W

	7	6	5	4	3	2	1	0
Bit	GPIO_VAL_7	GPIO_VAL_6	GPIO_VAL_5	GPIO_VAL_4	GPIO_VAL_3	GPIO_VAL_2	GPIO_VAL_1	GPIO_VAL_0

Bit	Name	Function
0	GPIO_VAL_0	GPIO bit0 output value
1	GPIO_VAL_1	GPIO bit1 output value
2	GPIO_VAL_2	GPIO bit2 output value
3	GPIO_VAL_3	GPIO bit3 output value
4	GPIO_VAL_4	GPIO bit4 output value
5	GPIO_VAL_5	GPIO bit5 output value
6	GPIO_VAL_6	GPIO bit6 output value
7	GPIO_VAL_7	GPIO bit7 output value

Bit	Name	Function
6-0	RESERVED	Reserved
7	INVT_RING_EN	Enable invert ring When = 0, disable invert ring When = 1, enable invert ring for processing test

INTERRUPT CONTROL 00

REG S0_58, R/W

	7	6	5	4	3	2	1	0
Bit	INT_RST7	INT_RST6	INT_RS5	INT_RST4	INT_RST3	INT_RST2	INT_RST1	INT_RST0

Bit	Name	Function
0	INT RST 0	Interrupt bit0 reset control
U	1141_131_0	When = 1, interrupt bit0 status will be reset to zero
1	INT RST 1	Interrupt bit1 reset control
	1141_131_1	When = 1, interrupt bit1 status will be reset to zero
2	INT RST 2	Interrupt bit2 reset control
	INI_KSI_Z	When = 1, interrupt bit2 status will be reset to zero
2	3 INT_RST_3	Interrupt bit3 reset control
3		When = 1, interrupt bit3 status will be reset to zero
_	INT DOT 4	Interrupt bit4 reset control
4	INT_RST_4	When = 1, interrupt bit4 status will be reset to zero
5	INT RST 5	Interrupt bit5 reset control
3	INI_RSI_5	When = 1, interrupt bit5 status will be reset to zero
6	INT RST 6	Interrupt bit6 reset control
0	0_167_INII	When = 1, interrupt bit6 status will be reset to zero
7	INT RST 7	Interrupt bit7 reset control
<i>'</i>	IN1_K31_/	When = 1, interrupt bit7 status will be reset to zero

INTERRUPT CONTROL 01

REG S0_59, R/W

	7	6	5	4	3	2	1	0
Bit	INT_ENABLE7	INT_ENABLE6	INT_ENABLE5	INT_ENABLE4	INT_ENABLE3	INT_ENABLE2	INT_ENABLE1	INT_ENABLE0

Bit	Name	Function
0	INT ENABLEO	Interrupt bit0 enable
U	INI_ENABLEO	When = 1, enable interrupt bit0 generator
1	INT_ENABLE1	Interrupt bit1 enable
	INI_ENABLE I	When = 1, enable interrupt bit1 generator
2	2 INT ENABLE2	Interrupt bit2 enable
	INI_LNABLE2	When = 1, enable interrupt bit2 generator
3	INT_ENABLE3	Interrupt bit3 enable
3	INI_ENABLE3	When = 1, enable interrupt bit3 generator
4	INT ENABLEA	Interrupt bit4 enable
4	INT_ENABLE4	When = 1, enable interrupt bit4 generator
5	INT ENABLES	Interrupt bit5 enable
5	INT_ENABLE5	When = 1, enable interrupt bit5 generator
6	INT ENABLE6	Interrupt bit6 enable
0	INI_ENABLE0	When = 1, enable interrupt bit6 generator
7	INT ENABLE7	Interrupt bit7 enable
- 1	INI_ENABLE/	When = 1, enable interrupt bit7 generator

Chapter 05. MEMORY REGISTERS

MEM	MEMORY CONTROLLER 00 REG S4_00, R/W							
	7 6 5 4 3 2 1 0							0
Bit	MEM_INI_REG							

Bit	Name	Function						
		SDRAM Idle Period	SDRAM Idle Period Control and IDLE Done Select: (default 0)					
		MEM_INI_REG [1:0]		#of VS (vertical syn)				
1-0	MEM_INI_REG [1:0]	0	0	2				
1-0	INCIN_INI_IXEO [1:0]	0	1	3				
		1	0	1				
		1	1	R_MSOFTH				
		Software Control SE	RAM Idle Period:					
2	MEM_INI_REG [2]			will control the idle period to acco	ess			
		memory.this bit is use	eful only when the re	egister r_mslidl[1:0] sets 2'b11.				
3	MEM INI DEC 121	Reserved						
3	MEM_INI_REG [3]							
		SDRAM Reset Signa	nl:					
4	MEM_INI_REG [4]			pulse, and reset memory controll	er			
		timing, data pipe and state machine;						
		Reserved						
5	MEM_INI_REG [5]							
		Initial Cycle Mode S	elect:					
6	MEM_INI_REG [6]		When this bit is 1, then during initial period, the mode cycle will go before					
•				be before mode cycle.				
		SDRAM Start Initial	Cycle:					
-	MEM INII DEC 171	This register should v	ork with the registe					
7	MEM_INI_REG [7]	When this bit is 1, me						
		When this bit is 0, me	mory controller initia	al cycle disable.				

MEMC	ORY CONTI	ROLLER 01					RE	EG S4_01, R/W
	7	6	5	4	3	2	1	0
Bit				MEM_I	MODE_REG [7:0]			

Bit	Name	Function	
		SDRAM Mode Information Low 8bits:	
		[2:0] Burst length,	
7-0	MEM_MODE_REG [7:0]	[3] Wrap type: 0 = Sequential, 1= interleave;	
		[6:4] Latency mode, 010: select Latency =2;	
		011: select Latency =3.	

Registers Definition

MEM	ORY C	ONTROLLER 02					REG S	4_02, R/W			
		7 6	5	4	3	2	1	0			
Bit			MEM	_MODE_REG [15:8]						
	Bit	Name	Function								
	3-0	MEM_MODE_REG [11:8]	SDRAM Mode Information High 4 bits Reserved for future usage.								
	7-4	MEM MODE REG [15:12]	Reserved								

MEMORY CONTROLLER 03

REG S4_03, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	MEM_INI_REF _CYC	MEM_MODE_ CYC	MEM_MODE_ CS1	MEM_MODE_ CS0	MEM_MODE_ BA1	MEM_MODE_ BA0

Bit	Name	Function
0	MEM_MODE_BA0	Bank0 Select Value In Load Mode Register Cycle : This register 's aim is compatible with more sdram chips
1	MEM_MODE_BA1	Bank1 Select Value In Load Mode Register Cycle : This register 's aim is compatible with more sdram chips
2	MEM_MODE_CS0	Chip0 Select Value in Load Mode Register Cycle : This register 's aim is compatible with more sdram chips
3	MEM_MODE_CS1	Chip1 Select Value in Load Mode Register Cycle : This register 's aim is compatible with more sdram chips
4	MEM_MODE_CYC	Mode Cycle Period Select When this bit is 1, then mode cycle for memory initialization will be 3 clocks, otherwise be 2 clocks;
5	MEM_INI_REF_CYC	Initial Cycle Refresh Period Clock Number Select: This register is control the delays of Command, address and data sent to PAD When it is at 1, select NCASDLY cell, when it is at 0, select DLY8LV cell.
7-6	RESERVED	RESERVED

REG S4_04, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	ME	M_RD_LAT_F	PIP	RESERVED	N	IEM_FK_RD_D	DLY

Bit	Name	Function					
		SDRAM Rising Edge Clock Delay for Latching Read Data: (default set 3' 000); With DLY8LV and NCASDLY					
		l N	IEM_FK_RD_DLY [2	:0]	#of McIk		
		0	0	0	0.00/0.0		
		0	0	1	0.25/2.0		
2-0	MEM_FK_RD_DLY	0	1	0	0.50/4.0		
		0	1	1	0.75/6.0		
		1	0	0	1.00		
		1	0	1	1.50		
		1	1	0	2.00		
		1	1	1	3.00		
3	RESERVED	RESERVED	1	1	1 0.00		
3	RESERVED	SDRAM Latch Signal latency =2 Set 3'b0	al Generate Timing I	3'b011 ;	Read Cycle:		
3	RESERVED	SDRAM Latch Signal latency =2 Set 3'b0	al Generate Timing I	3'b011 ; 0]	Read Cycle:		
3	RESERVED	SDRAM Latch Signal latency =2 Set 3'b0	al Generate Timing I 000 ;latency =3 set EM_RD_LAT_PIP [2:	3'b011 ;	Read Cycle:		
		SDRAM Latch Signal latency =2 Set 3'b0	al Generate Timing I 000 ;latency =3 set EM_RD_LAT_PIP [2:	3'b011 ; 0]	Read Cycle: #of Mclk 3		
3	RESERVED MEM_RD_LAT_PIP	SDRAM Latch Signal latency =2 Set 3'b0 ME	al Generate Timing I 000 ;latency =3 set EM_RD_LAT_PIP [2:	3'b011 ; 0] 0	Read Cycle: #of Mclk 3		
		SDRAM Latch Signal latency =2 Set 3'b0 ME 0 0 0	al Generate Timing I 000 ;latency =3 set EM_RD_LAT_PIP [2:	3'b011 ; 0] 0	Read Cycle: #of Mclk 3 2 1		
		SDRAM Latch Signal latency =2 Set 3'b0 ME 0 0 0	al Generate Timing I 000 ;latency =3 set EM_RD_LAT_PIP [2: 0 0 1	3'b011 ; 0] 0 1 0 1	Read Cycle: #of Mclk 3 2 1 4		
		SDRAM Latch Signal latency =2 Set 3'b0 ME 0 0 0	al Generate Timing I 000 ;latency =3 set EM_RD_LAT_PIP [2: 0 0 1 1 0	3'b011; 0 0 1 0 1	#of McIk		
		SDRAM Latch Signal latency =2 Set 3'b0 ME 0 0 0	al Generate Timing I 000 ;latency =3 set EM_RD_LAT_PIP [2: 0 0 1 1 0	3'b011; 0 0 1 0 1 0 1	#of Mclk		

REG S4_05, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	MEM_PCH	IG_CYCLE	RES	ERVED	MEM_AC	T_CYCLE

Bit	Name	Function						
		Number of Memory Clock F	or SDRAM Active Cy	cle:				
		MEM_ACT_CY	CLE [1:0]	# of Mclk				
1-0	MEM_ACT_CYCLE	0	0	2				
1-0	WIEW_ACT_CTOLL	0	1	3				
		1	0	4				
		1	1	5				
		RESERVED						
3-2	RESERVED	RESERVED						
3-2	RESERVED	Number of Memory Clock F	or SDRAM Precharg	e Cycle:				
3-2	RESERVED			e Cycle: # of McIk				
		Number of Memory Clock F						
3-2 5-4	RESERVED MEM_PCHG_CYCLE	Number of Memory Clock F	YCLE [1:0]	# of McIk				
		Number of Memory Clock F MEM_PCHG_C 0	YCLE [1:0]	# of McIk				
		Number of Memory Clock F MEM_PCHG_C 0	YCLE [1:0] 0 1	# of McIk 2 3				
		Number of Memory Clock F MEM_PCHG_C 0	YCLE [1:0] 0 1	# of McIk 2 3 4				
		Number of Memory Clock F MEM_PCHG_C 0	YCLE [1:0] 0 1	# of McIk 2 3 4				

REG S4_06, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	ı	MEM_REF_CYC	LE	RESERVED		MEM_REF_RAT	E

Bit	Name	Function			
		For VGA Mode of Re	efresh Cycle:		
			#of refresh		
2-0	MEM DEE DATE	0	0	0	3
2-0	MEM_REF_RATE	0	0	1	5
		0	1	X	1
		1	0	X	2
		1	1	X	4
3	RESERVED	RESERVED Number of Memory	Clock For SDRAM	M Refresh Cycle:	
		ME	M_REF_CYCLE [2:0]	# Of Mclk
		0	0	0	6
6-4	MEM_REF_CYCLE	0	0	1	7
		0	1	0	8
		0	1	1	9
		1	X	X	10
7	RESERVED	RESERVED			

REG S4_07, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED		MEM_TRAS_SE	L	RESERVED	N	/IEM_TWR_SEL	

Bit	Name	Function						
			TWR Period Select (Number of Memory Clock Inserted from Last Write Cycle to Precharge)					
		N	MEM_TWR_SEL [2:0]	#OF MCLK				
		0	0	0	0			
2-0	MEM_TWR_SEL	0	0	1	1			
		0	1	0	2			
		0	1	1	3			
		1	0	0	4			
		1	0	1	5			
		RESERVED						
_		KEGEKVED						
3	RESERVED		active cycle to prec	harge cycle)				
3	RESERVED		active cycle to prec	harge cycle)				
3	RESERVED	TRAS Timing (from	active cycle to prec		# OF MCLK			
3	RESERVED	TRAS Timing (from			# OF MCLK			
6-4	RESERVED MEM_TRAS_SEL	TRAS Timing (from	EM_TRAS_SEL [2:0]					
		TRAS Timing (from	EM_TRAS_SEL [2:0]		3			
		TRAS Timing (from	EM_TRAS_SEL [2:0]	0	3 4			
		TRAS Timing (from	EM_TRAS_SEL [2:0]	0	3 4 5			
		TRAS Timing (from	EM_TRAS_SEL [2:0]	0 1 0	3 4 5 6			

REG S4_08, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	MEM_W2R	SEL_CYC	RES	ERVED	MEM_R2W_	_NOP_CYC

Bit	Name	Function				
		Number of Dummy Clock For SDRAM Read to Write Cycle:				
		MEM_R2W_N	IOP_CYC [1:0]	#OF MCLK		
1-0	MEM_R2W_NOP_CYC	0	0	0		
1-0	MEM_RZW_NOI_CIC	0	1	1		
		1	0	2		
		1	1	3		
3-2	RESERVED	RESERVED				
3-2						
	11221112	Memory Write to Read D	oummy Clock Cycle In	sertion:		
		Memory Write to Read D	oummy Clock Cycle In	sertion:		
				sertion:		
- ·			Oummy Clock Cycle In SEL_CYC [1:0] 0			
5-4	MEM_W2R_SEL_CYC	MEM_W2R_S		#OF MCLK		
5-4		MEM_W2R_S		#OF MCLK		
5-4		MEM_W2R_S	SEL_CYC [1:0] 0 1	#OF MCLK 0 1		
5-4		MEM_W2R_S	SEL_CYC [1:0] 0 1	#OF MCLK 0 1 2		
5-4 7-6		MEM_W2R_S	SEL_CYC [1:0] 0 1	#OF MCLK 0 1 2		

REG S4_09, R/W

7 6 5 4 3 2 1 0

Bit MEM_CS1_SEL MEM_CS0_SEL MEM_BK1_SEL MEM_BK0_SEL

Bit	Name	Function					
		Bank Select Address Mux:					
		MEM_BK0_	_SEL [1:0]	# OF ADDRESS BIT			
1-0	MEM_BK0_SEL	0	0	ADR 19			
1-0	WILWI_BRO_SLE	0	1	ADR 20			
		1	0	ADR 21			
		1	1	NOP			
		Bank Select Address Mu	ux:				
		MEM_BK1	_SEL [1:0]	# OF ADDRESS BIT			
3-2	MEM DK4 SEI	0	0	ADR 19			
3-2	MEM_BK1_SEL	0	1	ADR 20			
		1	0	ADR 21			
		1	1	NOP			
		Bank Select Address Mu	ux:				
		MEM_CS0_SEL [1:0]		# OF ADDRESS BIT			
5-4	MEM_CS0_SEL	0	0	ADR 19			
5-4	WILWI_CSU_SLL	0	1	ADR 20			
		1	0	ADR 21			
		1	1	NOP			
		Bank Select Address Mu	ux:				
		MEM_CS1_	_SEL [1:0]	# OF ADDRESS BIT			
7-6	MEM CS1 SEL	0	0	ADR 19			
1-0	III_IVI_001_0LL	0	1	ADR 20			
		1	0	ADR 21			
		1	1	NOP			

Registers Definition

MEMORY CONTROLLER 10

REG S4_0A, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	MEM_RO\	W_ST_SEL	RESE	RVED	MEM_CO	L_ST_SEL

Bit	Name	Function
0	MEM_COL_ST_SEL [0]	Col Address Start with address bit 0 (default value 1). When this bit is 1,column address starts with address bit 0 When this bit is 0,column address will not start with address bit 0
1	MEM_COL_ST_SEL [1]	Col Address Start with address bit 1 (default value 0). When this bit is 1,column address starts with address bit 1 When this bit is 0,column address will not start with address bit 1
3-2	RESERVED	RESERVED
4	MEM_ROW_ST_SEL [0]	Row Address Start with address bit 8 (default value 1). When this bit is 1,row address starts with address bit 8 When this bit is 0,row address will not start with address bit 8.
5	MEM_ROW_ST_SEL [1]	Row Address Start with address bit 9 (default value 0). When this bit is 1,row address starts with address bit 9; When this bit is 0,row address will not start with address bit 9.
7-6	RESERVED	RESERVED

Registers Definition

MEM	MEMORY CONTROLLER 11 REG S4_0B, R/W								
	7	6	5	4	3	2	1	0	
Bit	RESERVED		MEM_ADR_REG						

Bit	Name	Function
0	MEM_ADR_REG [0]	Memory Row Address Precharge enable for Address 8 When this bit is 1,address 8 changed will do precharge; When this bit is 0,address 8 changed will not do precharge.
1	MEM_ADR_REG [1]	Memory Row Address Precharge enable for Address 9 When this bit is 1,address 9 changed will do precharge; When this bit is 0,address 9 changed will not do precharge.
2	MEM_ADR_REG [2]	Memory Row Address Precharge enable for Address 10 When this bit is 1,address 10 changed will do precharge; When this bit is 0,address 10 changed will not do precharge.
3	MEM_ADR_REG [3]	Memory Row Address Precharge enable for Address18 When this bit is 1,address 20 changed will do precharge; When this bit is 0,address 20 changed will not do precharge.
4	MEM_ADR_REG [4]	Memory Row Address Precharge enable for Address 19 When this bit is 1,address 19 changed will do precharge; When this bit is 0,address 19 changed will not do precharge.
5	MEM_ADR_REG [5]	Memory Row Address Precharge enable for Address 20 When this bit is 1,address 20 changed will do precharge; When this bit is 0,address 20 changed will not do precharge.
6	MEM_ADR_REG [6]	Memory Row Address Precharge enable for Address 21 When this bit is 1,address 21 changed will do precharge; When this bit is 0,address 21 changed will not do precharge.
7	RESERVED	RESERVED

Registers Definition

Bit RESERVED					MEM_COL_ADR_VLD				
	7	6	5	4	3	2	1	0	
MEM	MEMORY CONTROLLER 12 REG S4_0C, R/W								

Bit	Name	Function
0	MEM_COL_ADR_VLD [0]	Memory Column Address Enable For Address bit 8 (default value 0) For others SDRM chip that column address more than 8bits When this bit is 1,address 8 will act as column address; When this bit is 0,address 8 will not be column address.
1	MEM_COL_ADR_VLD [1]	Memory Column Address Enable For Address bit 9 (default value 0) For others SDRM chip that column address more than 8bits When this bit is 1,address 9 will act as column address; When this bit is 0,address 9 will not be column address.
2	MEM_COL_ADR_VLD [2]	Memory Column Address Enable For Address bit 10 (default value 0) For others SDRAM chip that column address more than 8bits When this bit is 1,address 10 will act as column address; When this bit is 0,address 10 will not be column address.
3	MEM_COL_ADR_VLD [3]	Memory Column Address Enable For Address bit 11 (default value 0) For others SDRAM chip that column address more than 8bits When this bit is 1,address 11 will act as column address; When this bit is 0,address 11 will not be column address.
7-4	RESERVED	RESERVED

05—11

Registers Definition

MEMORY CONTROLLER 13

REG S4_0D, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MEM_CS1_BA 1_SEL	MEM_CS0_BA0 _SEL	MEM_BA_AD R11_SEL	RESERVED	МЕ	EM_SPECIAL_F	PIN

Bit	Name	Function
0	MEM_SPECIAL_PIN [0]	Special Pin8 For Precharge: default value 0 If Memory module Address 8 is special Pin, In initialization cycle, must set this register to 1, and precharge all banks; otherwise, will set 0.
1	MEM_SPECIAL_PIN [1]	Special Pin9 For Precharge: default value 0 If Memory module Address 9 is special Pin, In initialization cycle, must set this register to 1, and precharge all banks; otherwise, will set 0.
2	MEM_SPECIAL_PIN [2]	Special Pin10 For Precharge: default value 0 If Memory module Address 10 is special Pin, In initialization cycle, must set this register to 1, and precharge all banks; otherwise, will set 0.
3	RESERVED	RESERVED
4	MEM_BA_ADR11_SEL	BANK SELECT PAD SHARE WITH ADDRESS 11: When this register is 1: bank select pad will be memory address 11 bit, support 1M x 16bits x4 banks memory chip; When this register is 0: bank select pad will be bank select pad, support 1M x16bits x 2banks memory chip;
5	MEM_CS0_BA0_SEL	CHIP SELECT 0 PAD SAHRE WITH BANK SELECT 0: When this register is 1: chip select 0pad will be bank select 0 pad, support 1M x 16bits x 4 banks memory chip; When this register is 0: chip select 0 pad will be chip select 0 pad, support 1M x16bits x 2banks memory chip;
6	MEM_CS1_BA1_SEL	CHIP SELECT 1 PAD SAHRE WITH BANK SELECT 1: When this register is 1: chip select 1 pad will be bank select 1 pad, support 1M x 16bits x 4 banks memory chip; When this register is 0: chip select 1 pad will be chip select 1 pad, support 1M x16bits x 2banks memory chip;
7	RESERVED	RESERVED

REG S4_0E, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 MEM_CMD_PIPE

Bit	Name	Function
0	MEM_CMD_PIPE [0]	SDRAM WE Command Pipe Select: When it is at 0,WE signal pass through a pipe, or it will bypass a pipe;
1	MEM_CMD_PIPE [1]	SDRAM CAS Command Pipe Select: When it is at 0,CAS signal pass through a pipe, or it will bypass a pipe;
2	MEM_CMD_PIPE [2]	SDRAM RAS Command Pipe Select: When it is at 0, RAS signal pass through a pipe, or it will bypass a pipe;
7-3	RESERVED	RESERVED

MEMORY CONTROLLER 15

REG S4_0F, R/W

05—13

	7	6	5	4	3	2	1	0
Bit		RESER	KVED			MEM_F	ST_REG	

Bit	Name	FUNCTION
0	MEM_FST_REG [0]	SDRAM Write and Read Signal Fast Mode Signal Don't care, default value 0;In fast mode, When this bit is 1,DQM signal will advance. When this bit is 0,DQM signal will be normal,
1	MEM_FST_REG [1]	SDRAM Precharge Fast Mode Signal Don't care, default value 1; In fast mode, When is this bit 1, precharge will advance. When is this bit 0, precharge will be normal
2	MEM_FST_REG [2]	SDRAM Bank Select Fast Mode Signal Don't care, default value 1 ;In fast mode, When this bit is 1,bank select will advance. When this bit is 0,bank select will be normal
3	MEM_FST_REG [3]	SDRAM Chip Select Fast Mode Signal Don't care; default value 0 In fast mode, When this bit is 1, chip select will advance. When this bit is 0,chip select will be normal
7-4	RESERVED	RESERVED

Registers Definition

MEMORY CONTROLLER 16 REG S4_10, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 MEM_MISC_REG

Bit	Name	FUNCTION
0	MEM_MISC_REG [0]	Control Write Enable (DQM) High Bits Don't care, default value 0, In 5705 chip, this register will not be on effect, it use for future.
1	MEM_MISC_REG [1]	Control Active State before Refresh Cycle Don't care, default value 1, This register will on effect when set "8D/7" is 1. When this bit sets 1 ,will generate a signal to pull down the act cycle done signal after refresh cycle ,make it be one mmclk pulse ;or will make this signal be level .
2	MEM_MISC_REG [2]	SDRAM SAFE REAE/WRITE OPERATION Don't care, default value 0, When this bit sets 1, will make state machine calculate up during read/write operation. When this bit sets 0, will make state machine hold during read/write operation
3	MEM_MISC_REG [3]	Add No Operation For Precharge Cycle Don't care, default value 0; When this bit sets 0, will add NOP for precharge cycle; When this bit sets 1,will no add NOP for precharge cycle.
4	MEM_MISC_REG [4]	Turn Off Qualified Active Cycle Done: default value 0; This register is 1, will shut off active state after refresh cycle. This register is 0, will turn on active state after refresh cycle;
7-5	RESERVED	RESERVED

05—14

Registers Definition

MEMORY CONTROLLER 17

REG S4_11, R/W

	7	6	5	4	3	2	1	0
Bit	MEM_FBK_ PATH_SEL	RESE	RVED	MEM_FBK_INV_P ATH_SEL	RESERVED	MEM_FBK_CS2_S EL	MEM_FBK_SE L_MCLK	MEM_FBK_CLK _SEL

Bit	Name	Function			
0	MEM_FBK_CLK_SEL	Select Clock Feed Back from PAD; This register will be valid when the register BC/[4] = 1'b0; When this bit is 1, select external pad feed back clock; When this bit is 0, select internal PAD feed back clock. If BC/[4] = 1'b1,this bit should be set 0;			
1	MEM_FBK_SEL_MCLK	FEEDBACK CLOCK SELECT SOURCE: When this bit sets 1, feedback clock will select PLL clock; When this bit sets 0, feedback clock will select clock from PAD.			
2	MEM_FBK_CS2_SEL	FEEDBACK CLOCK PAD SHARE WITH CHIP SELECT 2: When this register is 1: Pad will be chip select 2 PAD; When this register is 0: Pad will be feedback clock pad; This register uses only 6M memory, 3 chips.			
3	RESERVED	RESERVED			
4	MEM_FBK_INV_PATH_SEL	FEEDBACK CLOCK DATA PATH SELECT: When this register set 1, it will select falling edge fetch feedback data; When this register set 0, it will select rising edge fetch feedback data.			
6-5	RESERVED	RESERVED			
7	MEM_FBK_PATH_SEL	Select Data Latch Signal through FBK clock: When this bit is 1, it will capture data with feedback clock path, When this bit is 0, It will capture data with memory clock.			

Registers Definition

MEMORY CONTROLLER 18

REG S4_12, R/W

	7	6	5	4	3	2	1	0
Bit			RESERVED			MEM_FBK_CL K_DLYCELL_ SEL	MEM_CLK_DL YCELL_SEL	MEM_INTER_ DLYCELL_SE L

Bit	Name	Function		
0	MEM_INTER_DLYCELL_S EL Select SDRAM Delay Cell: This register is control the delay of data/address/command When it is at 0, select bypass delay cell, when it is at 1, select			
1	MEM_CLK_DLYCELL_SEL	Select SDRAM Delay Cell: This register is only control the delay of clock send to PAD When it is at 0, select bypass delay cell, when it is at 1, select DLY8LV cell.		
2	MEM_FBK_CLK_DLYCELL _SEL	Select SDRAM Delay Cell: This register is only control the delay of feed back clock. When it is at 0, select bypass delay cell, when it is at 1, select DLY8LV cell.		
7-3	RESERVED	RESERVED		

MEMORY CONTROLLER 19

REG S4_13, R/W

	7	6	5	4	3	2	1	0
Bit			RESERVED			MEM_FBK_CL K_INVERT	MEM_RD_DATA_ CLK_INVERT	MEM_PAD_C LK_INVERT

Bit	Name	Function
0	MEM_PAD_CLK_INVERT	Invert Memory Rising Edge Clock to PAD: When this bit is 1, invert memory clock and send to PAD; When this bit is 0, will bypass memory clock and send to PAD.
1	MEM_RD_DATA_CLK_INV ERT	Read memory data with Memory Clock rising or falling edge: When this bit is 1, with Memory clock falling edge; When this bit is 0, with Memory clock rising edge.
2	MEM_FBK_CLK_INVERT	Control feedback clock register When this bit is at 1, will invert feedback clock; When it's at 0, will bypass feedback clock;
7-3	RESERVED	RESERVED

Registers Definition

MEMORY CONTROLLER 20

REG S4_14, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MEM_MBUS32 OR16_SEL
 RESERVED
 MEM_WRITE_C YCL_CTL
 RESERVED
 MEM_NEW_FUNC_CTL

Bit	Name	Function
0	MEM_NEW_FUNC_CTL [0]	When this register sets 1, latch signal will add a pipe; When this register sets 0, no change.
1	MEM_NEW_FUNC_CTL [1]	REFRESH CYCLE SIGNAL IS LOW: When this bit is 1, when refresh more than 2 times, in refresh cycle, make DQM will high; When this bit is 0, only for refresh one time, DQM will high.
2	MEM_NEW_FUNC_CTL [2]	CONTROL TIMING FOR ACTIVE TO PRECHARGE; When this bit sets 1, will added active to precharge timing; When this bit sets 0, will no change.
3	RESERVED	RESERVED
4	MEM_WRITE_CYCL_CTL	Control Read cycle to Write cycle When this bit sets 1, read cycle hold will enter write cycle directly. When this bit sets 0, will not enter write cycle directly. This bit register is for save bandwidth, reduce read to write nop.
6-5	RESERVED	RESERVED
7	MEM_MBUS32OR16_SEL	Memory Bus 32-bit to 16-bit transfer When this bit sets 1, memory bus is 32-bit. When this bit set2 0, memory bus is 16-bit.

Registers Definition

MEMORY CONTROLLER 21

REG S4_15, R/W

	7	6	5	4	3	2	1	0
Bit			RESERVED			MEM_REQ_W FF_CAP	MEM_REQ_PB _RFF_CAP	MEM_REQ_PBH _RFFH

Bit	Name	FUNCTION
0	MEM_REQ_PBH_RFFH	Play back high request priority exchange with read FIFO high request When this bit is 1, read FIFO high request > play back high request; When this bit is 0, play back high request > read FIFO high request;
1	MEM_REQ_PB_RFF_CAP	Capture request exchange with PlayBack low request and Read FIFO low request When this bit is 0: play back low req > read FIFO low req > capture req When this bit is 1: cap req > play back low req > read FIFO low req
2	MEM_REQ_WFF_CAP	Write FIFO request priority exchange with capture request When this bit is 1, capture request >write FIFO request, When this bit is 0, write FIFO request > capture request
7-3	RESERVED	RESERVED

REG S4_16, R/W

7 6 5 4 3 2 1 0

Bit RESERVED MEM_TEST_SEL

I	Bit	Name	FUNCTION
2	2-0	MEM_TEST_SEL	Test Logic Controll Select four groups test signals (internal hardware debug use only)
7	7-3	RESERVED	RESERVED

MEMORY CONTROLLER 23

REG S4_17, R/W

	7	6	5	4	3	2	1	0
Bit	RESERV	ED	MEM_WOEZ_SE L_DLYCELL	MEM_WOEZ_ PIP	RESERVED	N	IEM_WOEZ_DL	Υ

Bit	Name	FUNCTION			
		Data TRI_STATE Ena	•		
			MEM_WOEZ_DLY [2:0]		#OF NS
		0	0	0	0.00/0.0
		0	0	1	0.25/2.0
2-0	0 MEM_WOEZ_DLY	0	1	0	0.50/4.0
2-0		0	1	1	0.75/6.0
		1	0	0	1.00
		1	0	1	1.50
		1	1	0	2.00
		1	1	1	3.00
3	RESERVED	RESERVED			
	RESERVED				
		SDRAM Data TRI_ST			
4	MEM_WOEZ_PIP	When this register is 1			
4	WEW_WOEZ_FIF	When this register is the other registers.	0: the sdram data tri	_state enable wil	I be selected by
		SDRAM DATA TRI_st			
	MEM WOEZ SEL DLYCE	When this register is 0	: will select extension t	from delay cells;	
5	LL	When this register is 1			-1-1
	==	This register will control	ol sdram data tri_state	enable with the re	gister
		r_mwoeslpz .			
7.0	DE0ED//ED	RESERVED			
7-6	RESERVED				

Registers Definition

MEMORY CONTROLLER 24

REG S4_18, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	MEM_WR_	DATA_PIP	RESERVED	MEI	M_DATA_DLY	_REG

Bit	Name	Function					
		Data Delay Control Bits:	with DLY8LV				
		MEM_	DATA_DLY_REG [2	:0]	#OF NS		
		0	0	0	0.00		
		0	0	1	0.25		
2-0	MEM_DATA_DLY_REG	0	1	0	0.50		
2-0	WIEW_DATA_DET_REG	0	1	1	0.75		
		1	0	0	1.00		
		1	0	1	1.50		
		1	1	0	2.00		
		1	1	1	3.00		
		RESERVED					
3	RESERVED						
		Memory Write Data (Rising Edge) Pipe Select: default value 2'b00; (In 5705,only 2'b00)					
5-4	MEM_WR_DATA_PIP	MEM_WR_D	F PIPE				
		0	0		0		
		0	1		1		
7-6	RESERVED	RESERVED					
7-0	REJERVED						

REG S4_19, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MEN	I_CAS_DLY_I	REG	RESERVED	ME	M_RAS_DLY_	REG

Bit	Name	Function			
		RAS Delay Control bi	its: default value 3'b	000;with DLY8LV	
		MEN	M_RAS_DLY_REG [2	2:0]	#OF NS
		0	0	0	0.00
		0	0	1	0.25
2-0	MEM_RAS_DLY_REG	0	1	0	0.50
2-0	WILWI_NAS_DET_NEG	0	1	1	0.75
		1	0	0	1.00
		1	0	1	1.50
		1	1	0	2.00
		1	1	1	3.00
3	RESERVED	RESERVED			
3	RESERVED	CAS Delay Control bi			
3	RESERVED	CAS Delay Control bi	M_CAS_DLY_REG [2	2:0]	#OF NS
3	RESERVED	CAS Delay Control bi	M_CAS_DLY_REG [2		# OF NS 0.00
3		CAS Delay Control bi	M_CAS_DLY_REG [2	2: 0] 0 1	# OF NS 0.00 0.25
	RESERVED MEM_CAS_DLY_REG	CAS Delay Control bi	M_CAS_DLY_REG [2	2:0]	# OF NS 0.00 0.25 0.50
3		CAS Delay Control bi	M_CAS_DLY_REG [2 0 0 1 1	2:0] 0 1 0 0 1	#OF NS 0.00 0.25 0.50 0.75
		CAS Delay Control bi	0 0 0 1 1 0	2: 0] 0 1	#OF NS 0.00 0.25 0.50 0.75 1.00
		CAS Delay Control bi	M_CAS_DLY_REG [2 0 0 1 1	0 1 0 1 0 1 0	#OF NS 0.00 0.25 0.50 0.75 1.00 1.50
		CAS Delay Control bi	0 0 0 1 1 0	2:0] 0 1 0 0 1	#OF NS 0.00 0.25 0.50 0.75 1.00 1.50 2.00
		CAS Delay Control bi	0 0 0 1 1 0	2:0] 0 1 0 1 0 1 0 1 0 1 0 0	#OF NS 0.00 0.25 0.50 0.75 1.00 1.50

REG S4_1A, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MEM	I_DQM_DLY_I	REG	RESERVED	МЕ	EM_WE_DLY_	REG

Bit	Name	Function			
		WE Delay Control bit	s High 2 bits: with [DLY8LV	
		ME	M_WE_DLY_REG [2	2:0]	#OF NS
		0	0	0	0.00
		0	0	1	0.25
2-0	MEM_WE_DLY_REG	0	1	0	0.50
2-0	MEM_WE_BET_KES	0	1	1	0.75
		1	0	0	1.00
		1	0	1	1.50
		1	1	0	2.00
		1	1	1	3.00
3	RESERVED	RESERVED			
		DQM Delay Control b		70.01	
		I MEI	<pre>M_DQM_DLY_REG [</pre>	2.01	
					#OF NS
		0	0	0	0.00
		0		0	0.00 0.25
6-4	MEM_DQM_DLY_REG	0 0 0	0		0.00 0.25 0.50
6-4	MEM_DQM_DLY_REG	0	0 0 1 1	0 1 0 1	0.00 0.25 0.50 0.75
6-4	MEM_DQM_DLY_REG	0 0 0 0	0 0 1 1 0	0 1 0 1 0	0.00 0.25 0.50 0.75 1.00
6-4	MEM_DQM_DLY_REG	0 0 0 0 1	0 0 1 1	0 1 0 1 0 1	0.00 0.25 0.50 0.75 1.00 1.50
6-4	MEM_DQM_DLY_REG	0 0 0 0	0 0 1 1 0	0 1 0 1 0	0.00 0.25 0.50 0.75 1.00 1.50 2.00
6-4	MEM_DQM_DLY_REG	0 0 0 0 1 1	0 0 1 1 0	0 1 0 1 0 1 0	0.00 0.25 0.50 0.75 1.00 1.50

REG S4_1B, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MEN	//_CLK_DLY_F	REG	RESERVED	МЕ	M_ADR_DLY_	REG

Bit	Name	Function			
		Address Delay Cont	rol bits: with DLY8I	LV	
			EM_ADR_DLY_REC		#OF NS
		0	0	0	0.00
		0	0	1	0.25
2-0	MEM_ADR_DLY_REG	0	1	0	0.50
2-0	WEWLADK_DLT_REG	0	1	1	0.75
		1	0	0	1.00
		1	0	1	1.50
		1	1	0	2.00
		1	1	1	3.00
3	RESERVED	Clk of Rising Edge I	Delay Control bits:)	with DLY8LV	
			#OF NS		
		0	M_CLK_DLY_REG [2: 0	0	0.00
		0	0	1	0.20
		0	1	0	0.50
6-4	MEM_CLK_DLY_REG	0	1	1	0.75
		1	0	0	1.00
		1	0	1	1.50
		1	1	0	2.00
		1	1	1	3.00
7	RESERVED	RESERVED			

REG S4_1C, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MEN	/I_CS1_DLY_F	REG	RESERVED	МЕ	M_CS0_DLY_	REG

Bit	Name	Function			
		Chip Select 0 Delay	Control Low 2bits:	with DLY8LV	
			M_CS0_DLY_REG [#OF NS
		0	0	0	0.00
		0	0	1	0.25
2-0	MEM_CS0_DLY_REG	0	1	0	0.50
2-0	WEW_C30_DL1_REG	0	1	1	0.75
		1	0	0	1.00
		1	0	1	1.50
		1	1	0	2.00
		1	1	1	3.00
3	RESERVED				
		Chip Select 1 Delay	Control Low 2bits:	with DLY8LV	
			Control Low 2bits: M_CS1_DLY_REG [#OF NS
					#OF NS 0.00
		ME	M_CS1_DLY_REG [2:0]	
6-4	MEM CS1 DLV PEG	0 ME I	M_CS1_DLY_REG [2:0]	0.00
6-4	MEM_CS1_DLY_REG	0 0	M_CS1_DLY_REG [2:0] 0 1	0.00 0.25
6-4	MEM_CS1_DLY_REG	0 0 0	M_CS1_DLY_REG [2:0] 0 1	0.00 0.25 0.50
6-4	MEM_CS1_DLY_REG	0 0 0	M_CS1_DLY_REG [0 0 1 1	2:0] 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 0.25 0.50 0.75
6-4	MEM_CS1_DLY_REG	0 0 0	M_CS1_DLY_REG [0 0 1 1 1 0	2:0] 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 0.25 0.50 0.75 1.00
6-4	MEM_CS1_DLY_REG	0 0 0	M_CS1_DLY_REG [0 0 1 1 1 0	2:0] 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1	0.00 0.25 0.50 0.75 1.00

REG S4_1D, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	MEN	/I_BA1_DLY_I	REG	RESERVED	МЕ	M_BA0_DLY_	REG

Bit	Name	Function						
		Bank0 Delay Control bits: with DLY8LV						
		MEN	#OF NS					
		0	0	0	0.00			
		0	0	1	0.25			
2-0	MEM_BA0_DLY_REG	0	1	0	0.50			
2-0	WILWI_BAU_BLI_KLG	0	1	1	0.75			
		1	0	0	1.00			
		1	0	1	1.50			
		1	1	0	2.00			
		1	1	1	3.00			
3	RESERVED	Bank1 Delay Contro	l bits: with DLY8LV	1				
		MEN	/I_BA1_DLY_REG [2:0]	#OF NS			
			·	_	#UF NO			
			0	0	0.00			
		0	0	1				
6.1	MEM DA1 DIV DEC				0.00			
6-4	MEM_BA1_DLY_REG	0	0	1	0.00 0.25			
6-4	MEM_BA1_DLY_REG	0	0	1 0	0.00 0.25 0.50			
6-4	MEM_BA1_DLY_REG	0	0 1 1	1 0	0.00 0.25 0.50 0.75			
6-4	MEM_BA1_DLY_REG	0	0 1 1 0	1 0 1 0	0.00 0.25 0.50 0.75 1.00			
6-4	MEM_BA1_DLY_REG	0	0 1 1 0	1 0 1 0	0.00 0.25 0.50 0.75 1.00			

Chapter 06. CAPTURE & PLAYBACK REGISTERS

CAPTURE 00 REG S4_20, R/W

	7	6	5	4	3	2	1	0
Bit	CAP_NR_	STATUS_O	FFSET	RESE	RVED	CA	AP_CNTRL_T	ST

Bit	Name	Function
2-0	CAP CNTRL TST	Capture Test logic control:
2-0	CAP_CNIRL_ISI	Bit [2:0]: select capture internal test bus.
4.0	DECEDIED	RESERVED
4-3	RESERVED	
		Capture Noise Reduction Frame Status Offset
7:5	CAP_NR_STATUS_OFFSET	For NTSC and PAL, Noise Reduction will save 4 or 6 frame data, for Play back read which frame at first, set different value, will read different frame data firstly, default 0.

Registers Definition

CAPTURE 01 REG S4_21, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 CAP_ADR_AD CAP_VRST_F D_2
 CAP_SAFE_GU ARD_EN
 CAP_DOUBL CAP_BUF_ST CAP_FF_HAL CAPTURE_EN E_BUFFER
 CAP_FF_HAL CAPTURE_EN ALIV
 CAP_FF_HAL CAPTURE_EN ALIV

Bit	Name	Function
0	CAPTURE_ENABLE	Enable capture When it's set 1, capture will be turn on. When it's set 0, capture will be turn off.
1	CAP_FF_HALF_REQ	Request generated when capture FIFO half When set to 1, request generated when capture FIFO half. When set to 0, request generated when capture FIFO write pointer is 1.
2	CAP_BUF_STA_INV	Capture double buffer status invert before output When set to 1, double buffer status invert. When set to 0, double buffer status doesn't change.
3	CAP_DOUBLE_BUFFER	Enable double buffer When set to 1, enable double buffer. When set to 0, disable double buffer.
4	RESERVED	RESERVED
5	CAP_SAFE_GUARD_EN	Enable safe guard function When set to 1, turn on safe guard function. When set to 0, turn off safe guard function.
6	CAP_VRST_FFRST_EN	Enable input v-sync reset FIFO When set to 1, enable feed back v-sync reset FIFO. When set to 0, disable feed back v-sync reset FIFO.
7	CAP_ADR_ADD_2	Enable address add by 2 When set to 1,address added by 2 per pixel, When set to 0,added by 1 per pixel.

Registers Definition

CAPTURE 02 REG S4_22, R/W

	7	6	5	4	3	2	1	0
Bit		RESI	ERVED		CAP_REQ_FR EEZ	CAP_LAST_P OP_CTL	CAP_STATUS _SEL	CAP_REQ_OV ER

Bit	Name	Function
		Horizontal request end
0	CAP_REQ_OVER	When this bit set 1, the final capture request of one line is in the horizontal blank rising edge, set 0 capture request will free run
		Capture FIFO half status select
1	CAP_STATUS_SEL	When set to 1, request generated when capture FIFO is half.
		When set to 0, request generated when capture FIFO is delm's value.
		Capture POP data control
2	CAP_LAST_POP_CTL	When set to 1, horizontal or vertical load start address will check if there is pop When set to 0, horizontal or vertical load start address will not check.
		Capture Request Freeze
3	CAP_REQ_FREEZ	When set to 1, capture FIFO will pause the FIFO write and read .
		When set to 0, capture FIFO will operate normally.
7.4	DECEDVED	RESERVED
7-4	RESERVED	

CAPT	TURE 0	3					REG	S4_23, R/W
	7	6	5	4	3	2	1	0
Bit				CAP_I	F_STATUS			
		I						
	Bit	Name		Function				
	7-0	CAP_FF_STATUS		Capture FIFO sta When cap_cntrl_[64.		egister will be v	alid, this value v	vill less than
САРТ	TURE 0	4					REG	S S4_24, R/W
	7	6	5	4	3	2	1	0
Bit				CAP_SAFE_	GAURD_A [7:0]			
ļ								
	Bit	Name		Function				
	7-0	CAP_SAFE_GAURD	_A		ress For Buffer A ess A [7:0], Mappi		dth data bus field	1.
l		L		<u> </u>		3 · · · · · ·		
САРТ	TURE 0	5					REG	S4_25, R/W
	7	6	5	4	3	2	1	0
Bit				CAP_SAFE_	GAURD_A [15:8]			
	Bit	Name		Function				
	7-0	CAP_SAFE_GAURD [15:8])_A	Safe Guard Add Safe guard addre	ress For Buffer A ess A [15:8]; Mapp	A: ping to 32bits w	idth data bus fie	ld.
CAPT	TURE 0	<u> </u>					REG	S4_26, R/W
			E	1	2	2		
Bit	7	6 RESERVED	5	4	CAP SA	2 .fe_gaurd_a	1 (20:16)	0
ווט		NEOLIN VED			<u> </u>	<u></u>	. [20.10]	

FUNCTION

RESERVED

Bit

4-0

7-5

Name

RESERVED

CAP_SAFE_GAURD_A [20:16] Safe Guard Address For Buffer A[20:16]:
Safe guard address A [20:16], Mapping to 32bits width data bus field.

CAPT	CAPTURE 07 REG S4_27, R/W									
	7	6	5	4	3	2	1	0		
Bit				CAP_SAFE_G	GUARD_B [7:0]					

Bit	Name	Function
7.0	CAP_SAFE_GUARD_B	Safe Guard Address For Buffer B:
7-0	[7:0]	Safe guard address B [7:0]; Mapping to 32bits width data bus field.

CAPT	URE 08						RI	EG S4_28, R/\
	7	6	5	4	3	2	1	0
Bit				CAP_SAFE_G	JARD_B [15:8]			

Bit	Name	Function
7.0	CAP_SAFE_GUARD_B	Safe Guard Address For Buffer B:
7-0	[15:8]	Safe guard address B [15:8]; Mapping to 32bits width data bus field.

CAPTURE 09 REG S4_29, R/W

	7	6	5	4	3	2	1	0
Bit		RESERVED			CAP_SA	AFE_GUARD_B	[20:16]	

Bit	Name	FUNCTION	
4-0	CAP_SAFE_GUARD_B [20:16]	Safe Guard Address For Buffer B[20:16]: Safe guard address B [20:16], Mapping to 32bits width data bus field.	
7-5	RESERVED	RESERVED	

PLAY BACK 00 REG S4_2B, R/W

	7	6	5	4	3	2	1	0
Bit	PB_ENABLE	PB_2FRAME_ EXCHG	PB_DB_BUFF ER_EN	PB_DB_FIELD _EN	PB_BYPASS	PB_RI	EQ_SEL	PB_CUT_REF RESH

Bit	Name	Function				
0	PB_CUT_REFRESH	Disable refresh request generation When set to 1, disable refresh request generation. When set to 0, enable refresh request generation.				
		Enable playback reques	t mode			
		PB_REQ_SEL	PBHREQ	PBLREQ		
2-1	PB_REQ_SEL	00	0	Low request		
2-1	I B_I\L\\C\\C\\C\\C\\C\\C\\C\\C\\C\\C\\C\\C\\	01	0	High request		
		10	Low request	0		
		11	High request	Low request		
3	PB_BYPASS	Enable VDS input to select playback output or de-interlace data out When this bit is 1, select de-interlace data out to VDS. When this bit is 0, select playback output to VDS.				
		Enable double field display				
4	PB_DB_FIELD_EN	When set to 1, enable double field display. When set to 0, disable double field display.				
		Enable double buffer				
5	PB_DB_BUFFER_EN	When set to 1, enable dou When set to 0, disable dou				
		Exchange playback two	frames output data			
6	PB_2FRAME_EXCHG	When set to 1, exchange playback current frame with past frame and output. When set to 0, don't exchange.				
_	DD ENABLE	Enable Playback				
7	PB_ENABLE	When it's set 1, play back will be on work, or will not work.				

PLAY BACK 01 REG S4_2C, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED			PB_MAST_	FLAG_REG		

Bit	Name	Function
5-0	PB_MAST_FLAG_REG	Master line flag [5:0] Playback FIFO policy master value: This field will define FIFO high request timing.
7-6	PB_CNTRL_[23:22]	RESERVED .

PLAY BACK 02	REG S4_2D, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED			PB_GENERA	AL_FLAG_REG		

Bit	Name	Function
5-0	PB_GENERAL_FLAG_REG	General line flag [5:0] Playback FIFO policy general value: This field will define FIFO low request timing.
7-6	RESERVED	

PLAY BACK 03 REG S4_2E, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 PB_DOUBLE_R EFRESH_EN
 RESERVED
 PB_UP_DOW_ RBUF_SEL
 RBUF_INV

Bit	Name	Function
0	PB_UP_DOW_RBUF_INV	PB_RBUF_INV When rate convert from up to down, capture FIFO will refer to the play back buffer status, this bit is invert play back buffer status.
1 PB_UP_DOW_RBUF_SEL		PB_RBUF_SEL When rate convert from up to down, capture FIFO will refer to the play back buffer status, this bit will be set to 1. Otherwise, it will be set to 0.
6-2	RESERVED	RESERVED
7	PB_DOUBLE_REFRESH_E N	Refresh Double When set to 1, refresh request will at the rising and falling edge of hbout. When set to 0, refresh will be only at the rising edge of hbout.

PLAY BACK 04 REG S4_2F, R/W

7 6 5 4 3 2 1 0

Bit RESERVED PB_TST_REG

			Function
			PlayBack Test Logic To select playback test bus, total 8 groups can be selected.
			RESERVED

CAPTURE AND PLAYBACK SHARED 00

REG S4_30, R/W

	7	6	5	4	3	2	1	0
Bit		RESE	RVED			PB_CAP_N	IOISE_CMD	

Bit	Name	Function
3-0	PB_CAP_NOISE_CMD	Capture Noise Reduction Command 0: disable noise reduce function 1: turn on PAL mode 2 (50hz to 50hz) and storage in memory 5 frames 2: turn on PAL mode 3 5: turn on NTSC mode 2 and storage memory 3 frames 6: turn on NTSC mode 3 9: turn on PAL mode 2 (50hz to 50hz, 50hz to 60hz, 50hz to 100hz) and storage memory 6 frames. D: turn on NTSC mode 2 (60hz to 60hz, 60hz to 120hz) and storage memory 4 frames Note: in 50 to 100hz and 60 to 120,we must turn on [4] = 1 In playback
7-4	RESERVED	RESERVED

CAPTURE AND PLAYBACK SHARED 01

REG S4_31, R/W

	7	6	5	4	3	2	1	0
Bit			РВ	_CAP_BUF_S1	ΓA_ADDR_A [7:0]		

	Bit	Name	Function
	7.0	PB CAP BUF STA ADDR	Capture and Play Back Buffer A START ADDRESS [7:0]:
7-0	7-0	_A [7:0]	Start Address buffer A [7:0], Mapping to 32bits width data bus field.

CAPTURE AND PLAYBACK SHARED 02

REG S4_32, R/W

	7	6	5	4	3	2	1	0
Bit			РВ	_CAP_BUF_ST	A_ADDR_A [1	5:8]		

Bit	Name	Function
7.0	PB CAP BUF STA ADDR	Capture and Play Back Buffer A START ADDRESS [15:8]:
7-0	_A [15:8]	Start Address buffer A [15:8], Mapping to 32bits width data bus field.

CAPT	ΓURE A	ND PLAYBACK :	SHARED	03			REG	S4_33, R/W		
	7	6	5	4	3	2	1	0		
Bit		RESERVED			PB_CAP_E	BUF_STA_ADD	R_A [20:16]			
	Bit	Name		Function						
	4-0	PB_CAP_BUF_ST _A [20:16]	A_ADDR	Capture and Play Back Buffer A START ADDRESS[20:16]: Start address buffer A [20:16], Mapping to 32bits width data bus field.						
	7-5	RESERVED		RESERVED		· · · ·				
CAP1	TURE A	ND PLAYBACK S	SHARED	04			REG	S4_34, R/W		
	7	6	5	4	3	2	1	0		
Bit				PB_CAP_BUF_S	STA_ADDR_B [7:0]				
	Bit	Name								
7-0 PB_CAP_BUF_STA_ADD R_B [7:0] Buffer B START address [7:0] When in double buffer mode, this is defined as captur start address. Mapping to 32bits width data bus field.							ture and playbad d.	ck buffer B		
CAPT	TURF A	ND PLAYBACK :	SHARED	05			RFC	S4_35, R/W		
	7	6	5	4	3	2	1	0		
Bit		•		PB_CAP_BUF_S			·	ŭ		
	Bit	Name		Function						
	7-0	PB_CAP_BUF_ST R_B [15:8]	A_ADD	Buffer B START a When in double bu start address. Map	ffer mode, this is	defined as cap	ture and playbad	ck buffer B		
			•					<u> </u>		
CAPTURE AND PLAYBACK SHARED 06 REG S4_36, R/W										
CAPT	ΓURE A	ND PLAYBACK S	SHARED	06			REG	S4_36, R/W		
CAPT	ΓURE A	ND PLAYBACK :	SHARED 5	06	3	2	REG	5 S4_36, R/W		
CAPT Bit						2 BUF_STA_ADD	1			
		6	5				1			
	7	6 RESERVED	5 A_ADD	4	PB_CAP_E	BUF_STA_ADD	1 R_B [20:16]	0		

CAPT	URE A	ND PLAYBACK SI	HARED 0	7			RE	EG S4_37, R/V	
	7	6	5	4	3	2	1	0	
Bit PB_CAP_OFFSET [7:0]									
[Bit	Name	F	unction					
	7-0 PB_CAP_OFFSET [7:0]			Capture and Play Back Offset [7:0]: Offset [7:0] will determine next line start address,					
		_	_ M	apping to 64bits	width data bus t	ield.			

CAPTURE AND PLAYBACK SHARED 08

REG S4_38, R/W

Bit	Name	Function
1-0	PB_CAP_OFFSET [9:8]	Capture and Play Back Offset [9:8]: Offset [9:8] will determine next line start address, mapping to 64 bits width data bus field.
7-2	RESERVED	RESERVED

CAPTURE AND PLAYBACK SHARED 09

REG S4_39, R/W

	7	6	5	4	3	2	1	0
Bit				PB_FETCH	I_NUM [7:0]			

Bit	Name	Function
7-0	PB_FETCH_NUM [7:0]	Fetch number: Fetch number [7:0] will determine to fetch the number of pixels from memory, Mapping to 64bits width data bus field.

CAPT	CAPTURE AND PLAYBACK SHARED 10 REG S4_3A, R/W										
	7	7 6 5 4 3 2							0		
Bit RESERVED PB_FETCH_NUM [9:								ETCH_NUM [9:8]			
[
	Bit	Name		unction							
	Capture and Play Back Fetch Number [9:8]: 1-0 PB FFTCH NUM [9:8] Fetch number [9:8] will determine to fetch the number of pixels from memory.										

RESERVED

Mapping to 64bits width data bus field.

CAPTURE AND PLAYBACK SHARED 11

RESERVED

7-2

REG S4_3B, R/W

7 6 5 4 3 2 1 0

Bit PB_CAP_BUF_STA_ADDR_C [7:0]

Bit	Name	Function					
		Capture and playback Buffer C Start Address [7:0]					
7.0	PB_CAP_BUF_STA_ADDR _C [7:0]	Start address buffer C [7:0]					
7-0		When in noise reduction mode, this is defined as capture and playback buffer C start address. Mapping to 32 bits width data bus field.					

CAPTURE AND PLAYBACK SHARED 12

REG S4_3C, R/W

	7	6	5	4	3	2	1	0
Bit			PB _.	_CAP_BUF_ST	TA_ADDR_C [1	5:8]		

Bit	Name	Function
		Capture and Play Back Buffer C Start Address [15:8]
7.0	PB_CAP_BUF_STA_ADDR	Start address buffer C [15:8]
7-0	_C [15:8]	When in noise reduction mode, this is defined as capture and playback buffer C start address. Mapping to 32bits width data bus field.

	7 6 5 4 3 2 1 0	Bit	ı	RESERVED	<u> </u>	4	PR CAP B	∠ UF_STA_ADDI	R C [20:16]	U
--	-----------------	-----	---	----------	----------	---	----------	------------------	-------------	---

Bit	Name	Function
4-0	4-0 PB_CAP_BUF_STA_ADDR_ C [20:16]	Capture and Play Back Buffer C Start Address [20:16] Start address buffer C [20:16] When in noise reduction mode, this is defined as capture and playback buffer C start address. Mapping to 32 bits width data bus field.
7-5	RESERVED	RESERVED

CAPTURE AND PLAYBACK SHARED 14

REG S4_3E, R/W

	7	6	5	4	3	2	1	0
Bit				PB_CAP_BUF	_STA_ADDR_D [7:0)]		

	Bit	Name	Function
ſ		PB CAP BUF STA ADDR	Capture and Play Back Buffer D Start Address [7:0]
	7.0		Start address buffer D [7:0]
	7-0	D [7:0]	When in noise reduction mode, this is defined as capture and playback buffer D start address. Mapping to 32 bits width data bus field.

CAPTURE AND PLAYBACK SHARED 15

REG S4_3F, R/W

	7	6	5	4	3	2	1	0
Bit				PB_CAP_BUF	_STA_ADDR_D [15:	8]		

	Bit Name		Function
ſ		PB_CAP_BUF_STA_ADDR_	Capture and Play Back Buffer D Start Address [15:8]
	7.0		Start address buffer D [15:8]
	7-0	D [15:8]	When in noise reduction mode, this is defined as capture and playback buffer D start address. Mapping to 32 bits width data bus field.

Registers Definition

CAPT	CAPTURE AND PLAYBACK SHARED 16 REG S4_40, R/V							G S4_40, R/W
7 6 5 4 3 2 1						1	0	
Bit RESERVED PB_CAP_BUF_STA_ADDR_D [20:16]								

Bit	Name	Function
4.0	PB_CAP_BUF_STA_ADDR_ D [20:16]	Capture and Play Back Buffer D Start Address [20:16] Start address buffer D [20:16],
4-0		When in noise reduction mode, this is defined as capture and playback buffer D start address. Mapping to 32 bits width data bus field.
7-5	RESERVED	RESERVED

Chapter 07. WRITE & READ FIFO REGISTERS

WRITE FIFO 00 REG S4_41, R/W								
	7	6	5	4	3	2	1	0
Bit WFF_TST_REG								

Bit	Name	Function
7-0	WFF_TST_REG	WRITE FIFO Test logic control:
		BIT[7:0] : SELECT CAPTURE INTERNAL TEST BUS.

WRITE FIFO 01 REG S4_42, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 WFF_FF_STA WFF_REQ_OVWFF_ADR_AD WFF_VRST_F WFF_SAFE_G WFF_FF_STA WFF_FF_HAL TUS_SEL
 WFF_FF_STA WFF_FF_HAL WFF_ENABLE

Bit	Name	Function
0	WFF_ENABLE	Enable write FIFO When it's set 1, write FIFO will be turn on. When it's set 0, write FIFO will be turn off.
1 WFF_FF_HALF_REQ		Request generated when FIFO half When set to 1, request generated when FIFO half. When set to 0, request generate when FIFO write pointer is 1.
2	WFF_FF_STA_INV	Write FIFO status invert When set to 1, write FIFO status invert. When set to 0, write FIFO status don't change.
3	WFF_SAFE_GUARD	Enable write FIFO safe guard When set to 1, enable write FIFO safe guard. When set to 0, disable write FIFO safe guard.
4	WFF_VRST_FF_RST	Enable input V-sync reset FIFO When set to 1, enable feedback v-sync reset FIFO. When set to 0, disable feedback v-sync reset FIFO.
5	WFF_ADR_ADD_2	WRITE FIFO Address count select: When it's set to 1, address added by 2 per pixel. When it's set to 0, address added by 1 per pixel.
6	WFF_REQ_OVER	WRITE FIFO Horizontal Request End When this bit set 1, the final write FIFO request of one line is in the horizontal blank rising edge, set 0 write FIFO request will free run
7	WFF_FF_STATUS_SEL	WRITE FIFO HALF STATUS SELECT When set to 1, request generated when FIFO is half. When set to 0, request generated when c FIFO is delm's value.

WRIT	VRITE FIFO 02 REG S4_43, R/W								
	7	6	5	4	3	2	1		0
Bit				WFF_FI	F_STATUS				
Γ		<u> </u>							
	Bit	Name		ınction					

Bit	Name	Function
		Write FIFO status
7-0	WFF_FF_STATUS	When wff_cntrl_[15] set 1'b1, this register will be valid, this value will less than 64.

 WRITE FIFO 03
 REG S4_44, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 WFF_SAFE_GUARD_A [7:0]

Bit	Name	Function
7.0	WFF_SAFE_GUARD_A	Write FIFO Buffer A Safe Guard Address:
7-0	[7:0]	Safe guard address buffer A [7:0], Mapping to 32bits width data bus field.

 WRITE FIFO 04
 REG S4_45, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 WFF_SAFE_GUARD_A [15:8]

Bit	Name	Function
7.0	WFF_SAFE_GUARD_A	Write FIFO Buffer A Safe Guard Address:
7-0	[15:8]	Safe guard address buffer A [15:8], Mapping to 32bits width data bus field.

 REG S4_46, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 WFF_SAFE_GUARD_A [20:16]

Bit Name		Function
4-0	WFF_SAFE_GUARD_A [20:16]	Write FIFO Buffer A Safe Guard Address [20:16] Safe guard address buffer A [20:16], Mapping to 32bits width data bus field.
7-5	RESERVED	RESERVED

Registers Definition

WRIT	E FIFO	06						R	EG S4	_47, R/W
	7	6	5	4	3	2		1		0
Bit				WFF_SAFE_C	GUARD_B [7:0]					
	Bit	Name	F	unction						
WFF_SAFE_GUARD_B Write FIFO Buffer B Safe Guard Address:										
	[7:0]			Safe guard address buffer B [7:0], Mapping to 32bits width data bus field.						

WRIT	WRITE FIFO 07 REG S4_48, R/W									
	7	6	5	4		3	2	1	0	
Bit				WFF_SAI	E_GUA	RD_B [15:	:8]			
		T								_
	Bit	Name		Function						
	7-0	WFF_SAFE_GUARI [15:8]	D_B	Write FIFO B			d Address: :8], Mapping to 32	bits width data	a bus field.	\exists

 REG S4_49, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 WFF_SAFE_GUARD_B [20:16]

Bit	Name	Function
4-0	WFF_SAFE_GUARD_B [20:16]	Write FIFO Buffer B Safe Guard Address [20:16] Safe guard address buffer B [20:16], Mapping to 32bits width data bus field.
7-5	RESERVED	RESERVED .

WRITE FIFO 09 REG S4_4A, R/W

	7	6	5	4	3	2	1	0
Bit	WFF_LAST_P OP_CTL	RESE	ERVED	WFF_LINE_FL IP		RESERVED		WFF_YUV_DE INTERLACE

Bit	Name	Function
0	WFF YUV DEINTERLACE	WRITE FIFO YUV DE-INTERLACE
U	WIT_TOV_BEINTEREAGE	When set 1, write FIFO will write one field YUV, set 0, will write one frame Y.
3-1	RESERVED	RESERVED
3-1	RESERVED	
		WRITE FIFO LINE INVERT:
4	WFF_LINE_FLIP	When set 1, line id will be inverted;
		When set 0, line id will be normal.
6-5	RESERVED	RESERVED
0-5	RESERVED	
		WRITE FIFO POP data control
7	WFF_LAST_POP_CTL	When set to 1, horizontal or vertical load start address will check if there is pop
_		When set to 0, horizontal or vertical load start address will not check.
	1	

WRITE FIFO 10 REG S4_4B, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED		WFF_VB_DELA	¬ ı	RESERVED	W	/FF_HB_DELA	

Bit	Name	Function
2-0	WFF_HB_DELAY	Write FIFO H-Timing Programmable Delay:
3	RESERVED	RESERVED
6-4	WFF_VB_DELAY	Write FIFO V-Timing Programmable Delay:
7	RESERVED	RESERVED

READ FIFO 00 REG S4_4D, R/W

	7	6	5	4	3	2	1	0
Bit	RFF_ENABLE	RFF_R	EQ_SEL	RFF_ADR_AD D_2		RFF_NE	EW_PAGE	

Bit	Name	Function							
		Read buffer page select f	Read buffer page select from 1 to 16						
		RFF_NEW_PAGE	Read buffer page)					
		0	1						
		1	2						
		2	3						
		3	4						
		4	5						
		5	6						
3-0	RFF NEW PAGE	6	7						
3-0	KIT_NEW_I AGE	7	8						
		8	9						
		9	10						
		A	11						
			B 12						
		С	13						
		D	14						
		E	15						
		<u> </u>	16						
		Enable read FIFO address	s add by 2: Default 0 for	added by 1					
4	RFF_ADR_ADD_2	When set 1, read FIFO add	Iress will count by 2,						
		When set 0, read FIFO add	lress will count by 1.						
		Enable read FIFO request	t mode						
		RFF_REQ_SEL	RFFHREQ	RFFLREQ					
6-5	RFF REQ SEL	00	0	Low request					
0- 3	NFF_REW_SEL	01	0	High request					
		10	Low request	0					
		11	High request	Low request					
		Enable Read FIFO							
7	RFF_ENABLE	When set 1, read FIFO will	be turned on:						
,	IN LENABLE	When set 0, read FIFO will							

READ FIFO 01 REG S4_4E, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED			RFF_MAS	STER_FLAG		

Bit	Name	Function
5-0	RFF_MASTER_FLAG	Master line flag [5:0] Read FIFO policy master value: This field will define FIFO high request timing.
7-6	RESERVED	RESERVED

READ FIFO 02 REG S4_4F, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED			INI I GLINE	ERAL_FLAG		

Bit	Name	Function
5-0	RFF_GENERAL_FLAG	General line flag [5:0] Read FIFO policy master value: This field will define FIFO low request timing.
7-6	RESERVED	RESERVED

READ FIFO 03 REG S4_50, R/W

Bit	Name	Function
3-0	RFF TST REG	General Test Logic [3:0]
3-0	KIT_TOT_KES	Read FIFO test bus select.
4	RESERVED	RESERVED
	REGERVED	
		Line ID Invert
5	RFF_LINE_FLIP	When set 1, line ID will be inverted;
		When set 0, line ID will be normal.
		Read FIFO YUV De-interlace
6	RFF_YUV_DEINTERLACE	When set 1, Read FIFO will read Frame 2 YUV data in line = 1, line =0, read Frame 1 YUV data.
		When set 0, Read FIFO will read Frame 2 Y data in line = 1, line =0, read Frame 1 Y data.
7	DEE L DEO CUIT	READ FIFO LOW REQUEST CUT ENABLE
7	RFF_LREQ_CUT	Cut the read FIFO low request, only output high request to memory

READ FIFO AND WRITE FIFO SHARED 00 REG S4_51, R/M											
	1		0								
Bit	RFF_WFF_STA_ADDR_A [7:0]										
	Bit Name Function										
:	7-0 RFF_WFF_STA_ADDR_A Read FIFO AND Write FIFO START Address buffer A Start address buffer A [7:0], Mapping to 32bits width data bus field.										

READ FIFO AND WRITE FIFO SHARED 01 REG S4									
	7	6	5	4	3	2	1	0	
Bit			R	RFF_WFF_STA	A_ADDR_A [15:8	3]			
	Rit	Name	F	nction					

Bit	Name	Function
7.0	RFF_WFF_STA_ADDR_A	Read FIFO AND Write FIFO START Address Buffer A
7-0	[15:8]	Start address buffer A [15:8], Mapping to 32bits width data bus field.

READ FIFO AND WRITE FIFO SHARED 02 REG S4_53, R/W 7 6 5 4 3 2 1 0 Bit RESERVED RFF_WFF_STA_ADDR_A [20:16]

Bit	Name	Function
4-0	RFF_WFF_STA_ADDR_A [20:16]	Read FIFO and Write FIFO START Address Buffer A [20:16] Start address buffer A [20:16], Mapping to 32bits width data bus field.
7-5	RESERVED	RESERVED

READ	READ FIFO AND WRITE FIFO SHARED 03 REG S4_54, R/W										
	7 6 5 4 3 2 1 0										
Bit RFF_WFF_STA_ADDR_B [7:0]											

Bit	Name	Function
7.0	RFF_WFF_STA_ADDR_B	Read FIFO AND Write FIFO START Address Buffer B
7-0	[7:0]	Start address buffer B [7:0], Mapping to 32bits width data bus field.

READ) FIFO	AND WRITE FIFO SHAR	ED 04			REC	S4_55, R/W	
	7	6 5	4	3	2	1	0	
Bit			RFF_WFF_ST	A_ADDR_B [15:8	3]			
	Bit	Name	Function					
	7-0	RFF_WFF_STA_ADDR_B [15:8]		D Write FIFO STA uffer B [15:8], Mag		s Buffer B ts width data bus f	ield.	
		1,000		1 3/ 1	1 0			
READ) FIFO	AND WRITE FIFO SHAR	ED 05			REC	S4_56, R/W	
	7	6 5	4	3	2	1	0	
Bit		RESERVED		RFF_WFF	-STA_ADD	R_B [20:16]		
	Bit	Name	Function					
	4-0	RFF_WFF_STA_ADDR_B [20:16]	Read FIFO AND Write FIFO START Address [20:16] Start address buffer B [20:16], Mapping to 32 bits width data bus field.					
	7-5	RESERVED	RESERVED					
REAL) FIFO	AND WRITE FIFO SHAR	ED 06			REC	S4_57, R/W	
	7	6 5	4	3	2	1	0	
Bit			RFF_WFF	_OFFSET [7:0]				
	Bit	Name	Function					
	7-0	RFF_WFF_OFFSET [7:0]	Read FIFO and Write FIFO offset: Offset [7:0] will determine next line start address, Mapping to 64bits width data bus field.					
		1						
READ) FIFO	AND WRITE FIFO SHAR	ED 07			REC	S4_58, R/W	
	7	6 5	4	3	2	1	0	
Bit		R	ESERVED			RFF_WFF_OF	FSET [9:8]	
	Bit	Name	Function					

READ FIFO AND WRITE FIFO OFFSET [9:8]

bits width data bus field.

RESERVED

1-0

7-2

RFF_WFF_OFFSET [9:8]

RESERVED

Offset [9:8], will determine next horizontal line start address. Mapping to 64

READ FIFO AND WRITE FIFO SHARED 09

REG S4_5A, R/W

	7	6	5	4	3	2	1	0
Bit			RESER	VED			RFF_FETC	CH_NUM [9:8]

Bit	Name	Function
1-0	RFF_FETCH_NUM [9:8]	READ FIFO AND WRITE FIFO OFFSET [9:8] Offset [9:8], will determine next horizontal line start address. Mapping to 64 bits width data bus field.
7-2	RESERVED	RESERVED

READ FIFO AND WRITE FIFO SHARED 10

REG S4_5B, R/W

	7	6	5	4	3	2	1	0
Bit	MEM_FF_TOP _FF_SEL				RESERVED			

Bit	Name	Function
6-0	RESERVED	RESERVED
7	MEM_FF_TOP_FF_SEL	All FIFO Status Output Enable When set 1, all FIFO status output, can read FIFO status through test bus; When set 0, not FIFO status output.

Chapter 08. VIDEO PROCESSOR REGISTERS

VDS_PROC 00 REG S3_00, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_SRESET	VDS_HALF_ EN	VDS_VSCALE_ BYPS	VDS_HSCALE_ BYPS	VDS_FIELD_ FLIP	VDS_DFIELD_ EN	VDS_FIELDA B_EN	VDS_SYNC_E N

Bit	Name	Function					
		External sync enable, active high					
		This bit enable sync lock mode.					
0	VDS_SYNC_EN	vds_flock_en (1A[4])	vds_sync_en ∩	VDS timing Free run			
		0	1	Sync lock			
		1	X	Frame lock			
		ABAB double field mode	anabla				
_				n ABAB mode, otherwise it			
1	VDS_FIELDAB_EN	works in AABB mode.	TUIIS DIUIS 1, VDS WORKS II	I ADAD IIIOUE, OTHERWISE IT			
		Double field made enable	a active high				
2	VDS_DFIELD_EN	Double field mode enable active high This bit enable field double mode, ex, frame rate from 50Hz to 100Hz, or from					
	VD3_DFIELD_EN	60Hz to 120Hz. When this bit is 1, the output timing is interlaced.					
		Flip field control.					
3	VDS_FIELD_FLIP	This bit is field flip control bit, it only used in interlace mode. When it is 1, it					
		inverts the output field.					
4	VDC UCCALE DVDC	Horizontal scale up bypa					
4	VDS_HSCALE_BYPS	When this bit is 1, data will bypass horizontal scale up process.					
5	VDS VSCALE BYPS	Vertical scale up bypass	control, active high				
3	VD3_V3CALE_B1F3	When this bit is 1, data will bypass vertical scale up process.					
6	VDS HALF EN	Horizontal scale up bypa	ss control, active high				
0	VDO_HALI_LIN						
7	VDC CDECET	Horizontal scale up bypa					
	VDS_SRESET	When this bit is 1, it reset the VDS_PROC internal module ds_video_enhance,					

VDS_	PROC 01						RE	EG S3_01, R/
	7	6	5	4	3	2	1	0
Bit				VDS_HSYN	C_RST [7:0]			

Bit	Name	Function			
		Internal Horizontal period control bit[7:0], Half of total pixels in field double mode.			
7-0	VDS_HSYNC_RST [7:0]	This field contains horizontal total value minus 1.			
		EX: Horizontal pixels is A, then $HSYNC_RST[9:0] = A-1$, in field double mode, $HSYNC_RST[9:0] = (A/2 - 1)$			

VDS_PROC 02 REG S3_02, R/W

	7	6	5	4	3	2	1	0
Bit		VDS_VSYN	C_RST [3:0]			VDS_HSYNC	C_RST [11:8]	

Bit	Name	Function			
3-0	VDS_HSYNC_RST [11:8]	Internal Horizontal period control bit[7:0], Half of total pixels in field double mode. This field contains horizontal total value minus 1.			
		EX: Horizontal pixels is A, then $HSYNC_RST[9:0] = A-1$, in field double mode, $HSYNC_RST[9:0] = (A/2 - 1)$			
7-4	VDS_VSYNC_RST [3:0]	Internal Vertical period control bit[3:0] This field contains vertical total value minus 1.			

VDS_PROC 03 REG S3_03, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	VDS_VSYNC_RST [10:4]						

Bit	Name	Function		
6-0	VDS_VSYNC_RST [10:4]	Internal Vertical period control bit[10:4] This field contains vertical total value minus 1.		
7	RESERVED			

VDS_	PROC C)4					RE	G S3_04, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_HB	_ST [7:0]			
	Bit	Name		Function				
	7-0	VDS_HB_ST [9:8]		Horizontal blanki This field is used to used to get data from	program horize			is blanking is
VDS_PROC 05 REG S3_05, R/W						G S3_05, R/W		
	7	6	5	4	3	2	1	0
Bit		VDS_HB_S	P [3:0]			VDS_HB_S	ST [11:8]	

Bit	Name	Function	
3-0	VDS_HB_ST [3:0]	Horizontal blanking stop position control bit[11:8] This field is used to program horizontal blanking start position, this blanking is used to get data from memory.	
7-4 VDS_HB_SP [3:0]		Horizontal blanking stop position control bit[3:0] This field is used to program horizontal blanking stop position, this blanking is used to get data from memory.	

VDS_	PROC 06						REC	3 S3_06, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_HB_S	SP [11:4]			

Bit	Name	Function
7-0	VDS_HB_SP [11:4]	Horizontal blanking stop position control bit[3:0] This field is used to program horizontal blanking stop position, this blanking is used to get data from memory.

VDS_PROC 07 REG S3_07, R/V				S3_07, R/W				
	7	6	5	4	3	2	1	0
Bit VDS_VB_ST [7:0]								

Bit	Name	Function
7-0	VDS_VB_ST [7:0]	Vertical blanking start position control bit[7:0] This field is used to program vertical blanking start position
		This field is used to program vertical blanking start position.

VDS_PROC 08 REG S3_08, R/W

7 6 5 4 3 2 1 0

Bit VDS_VB_SP [3:0] RESERVED VDS_VB_ST [10:8]

Bit	Name	Function		
2-0	VDS_VB_ST [10:8]	Vertical blanking start position control bit[10:8] This field is used to program vertical blanking start position.		
3	RESERVED			
7-4	VDS_VB_SP [3:0]	Vertical blanking stop position control bit[3:0] This field is used to program vertical blanking stop position.		

VDS_PROC 09 REG S3_09, R/W

7 6 5 4 3 2 1 0

Bit RESERVED VDS_VB_SP [10:4]

Bit	Name	Function		
6-0	VDS_VB_SP [10:4]	Vertical blanking stop position control bit[10:4] This field is used to program vertical blanking stop position.		
7	RESERVED			

VDS_PROC 10 REG S3_0A, R/W

7 6 5 4 3 2 1 0

Bit VDS_HS_ST [7:0]

	Bit	Name	Function
Ī	- 0	VD0 U0 07 77 01	Horizontal sync start position control bit [7:0]
	7-0	VDS_HS_ST [7:0]	This field is used to program horizontal sync start position.

VDS_	VDS_PROC 11 REG S3_0B, R/W							
	7	6	5	4	3	2	1	0
Bit	VDS_HS_SP [3:0]		VDS_HS_ST [11:8]					

Bit	Name	Function
3-0	VDS_HS_ST [11:8]	Horizontal sync start position control bit [7:0] This field is used to program horizontal sync start position.
7-4	VDS_HS_SP [3:0]	Horizontal sync stop position control bit [3:0] This field is used to program horizontal sync stop position.

 VDS_PROC 12
 REG S3_0C, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_HS_SP [11:4]

	Bit	Name	Function
Ī	7.0	VDC 11C CD [44-4]	Horizontal sync stop position control bit [11:4]
	7-0	VDS_HS_SP [11:4]	This field is used to program horizontal sync stop position.

VDS_	PROC 13						REC	S S3_0D, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_VS	_ST [7:0]			

Bit Name Function		Name	Function
Ī	7.0	VDC VC ST [7:0]	Vertical sync start position control bit [7:0]
	7-0	VDS_VS_ST [7:0]	This field is used to program vertical sync start position.

VDS_PROC 14 REG S3_0E, R/W								
	7	6	5	4	3	2	1	0
Bit		VDS_VS	_SP [3:0]		RESERVED	V	DS_VS_ST [10	:8]

Bit	Name Function			
2-0	VDS_VS_ST [10:8]	Vertical sync start position control bit [10:8] This field is used to program vertical sync start position.		
3	RESERVED			
7-4	VDS_VS_SP [3:0]	Vertical sync stop position control bit [3:0] This field is used to program vertical sync stop position.		

VDS_	PROC 15						REC	G S3_0F, R/W	/
	7	6	5	4	3	2	1	0	
Bit	RESERVED			V	S_VS_SP [10:	4]			1

Bit	Name	Function Vertical sync stop position control bit [10:4] This field is used to program vertical sync stop position.		
6-0	VDS_VS_SP [10:4]			
7	RESERVED			

VDS_	VDS_PROC 16 REG S3_10, R/W							
	7	6	5	4	3	2	1	0
Bit				VDS_DIS_H	IB_ST [7:0]			

Bit	Name	Function		
7-0	VDS_DIS_HB_ST [7:0]	Final display horizontal blanking start position control bit [7:0] This field contains final display horizontal blanking start position control, this blanking is used to clean the output data in blanking.		

Registers Definition

VDS_PROC 17 REG S3_11, R/W

7 6 5 4 3 2 1 0

Bit VDS_DIS_HB_SP [3:0] VDS_DIS_HB_ST [11:8]

Bit	Name	Function		
3-0	VDS_DIS_HB_ST [11:8]	Final display horizontal blanking start position control bit [11:8] This field contains final display horizontal blanking start position control, this blanking is used to clean the output data in blanking.		
7-4	VDS_DIS_HB_SP [3:0]	Final display horizontal blanking stop position control bit [3:0] This field contains final display horizontal blanking stop position control, this blanking is used to clean the output data in blanking.		

VDS_PROC 18 REG S3_12, R/W

7 6 5 4 3 2 1 0

Bit VDS_DIS_HB_SP [11:4]

Bit	Name	Function
7-0	VDS_DIS_HB_SP [11:4]	Final display horizontal blanking stop position control bit [11:4] This field contains final display horizontal blanking stop position control, this blanking is used to clean the output data in blanking.

VDS_PROC 19 REG S3_13, R/W

7 6 5 4 3 2 1 0

Bit VDS_DIS_VB_ST [7:0]

Bit	Name	Function
		Final display vertical blanking start position control bit [7:0]
7-0	VDS_DIS_VB_ST [7:0]	This field contains final display vertical blanking start position control, this blanking is used to clean the output data in blanking.

Registers Definition

VDS_PROC 20 REG S3_14, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_DIS_VB_SP [3:0]
 RESERVED
 VDS_DIS_VB_ST [10:8]

Bit	Name	Function				
2-0	VDS_DIS_VB_ST [10:8]	Final display vertical blanking start position control bit [10:8] This field contains final display vertical blanking start position control, this blanking is used to clean the output data in blanking.				
3	RESERVED					
7-4	VDS_DIS_VB_SP [3:0]	Final display vertical blanking stop position control bit [3:0] This field contains final display vertical blanking stop position control, this blanking is used to clean the output data in blanking.				

VDS_PROC 21 REG S3_15, R/W

7 6 5 4 3 2 1 0

Bit RESERVED VDS_DIS_VB_SP [10:4]

	Bit	Name	Function
	6-0	VDS_DIS_VB_SP [10:4]	Final display vertical blanking stop position control bit [10:4] This field contains final display vertical blanking stop position control, this blanking is used to clean the output data in blanking.
Ī	7	RESERVED	

VDS_PROC 22 REG S3_16, R/W

7 6 5 4 3 2 1 0

Bit VDS_HSCALE [7:0]

Bit	Name	Function
	VDS_HSCALE [7:0]	Horizontal scaling coefficient bit [7:0]
		This field indicates the ratio of scaling up.
7-0		HSCALE = 1024 * (resolution of input) / (resolution of output)
		EX: 720 * 480 → 800 * 480, HSCALE = 1024 * 720 / 800

Registers Definition

VDS_PROC 23 REG S3_17, R/W

	7	6	5	4	3	2	1	0
Bit		VDS_VSC	ALE [3:0]		RESE	RVED	VDS_HSCALE [9:8]	

Bit	Name Function			
1-0	VDS_HSCALE [9:8]	Horizontal scaling coefficient bit [9:8] This field indicates the ratio of scaling up. HSCALE = 1024 * (resolution of input) / (resolution of output) EX: 720 * 480 → 800 * 480, HSCALE = 1024 * 720 / 800		
3-2	RESERVED			
7-4	VDS_VSCALE[3:0]	Vertical scaling up coefficient bit [3:0] This field indicates the ratio of vertical scaling up. VSCALE = 1024 * (resolution of input / resolution of output) EX: 720*480 → 720*576, VSCALE = 1024 * 480 /576		

VDS_PROC 24 REG S3_18, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED			VDS_VSC	CALE [9:4]		

Bit	Name	Function
6-0	VDS_VSCALE[9:4]	Vertical scaling up coefficient bit [9:4] This field indicates the ratio of vertical scaling up. VSCALE = 1024 * (resolution of input / resolution of output) EX: 720*480 → 720*576, VSCALE = 1024 * 480 /576
7	RESERVED	

 VDS_PROC 25
 REG S3_19, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_FRAME_RST [7:0]

Bit	Name	Function
7-0	VDS_FRAME_RST [7:0]	Frame reset period control bit [7:0] This field indicates how many frames VSD_PROC locked at each time, it based on the input vertical sync. EX: FRAME_RST=4, this means VDS_PROC will lock every 5 frames, (This frame number is counts at every input vertical sync, the frame number of VDS_PROC output maybe different)

VDS_PROC 26 REG S3_1A, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_FID_RST	VDS_FID_AA_ DLY	VDS_FREERUN _FID	VDS_FLOCK_E N	RESE	RVED	VDS_FRAN	ME_RST [9:8]

Bit	Name	Function
1-0	VDS_FRAME_RST [9:8]	Frame reset period control bit [9:8] This field indicates how many frames VSD_PROC locked at each time, it based on the input vertical sync.
1-0	VD3_FNAME_N31 [3.0]	EX: FRAME_RST=4, this means VDS_PROC will lock every 5 frames, (This frame number is counts at every input vertical sync, the frame number of VDS_PROC output maybe different)
3-2	RESERVED	
		Frame lock enable, active high
4	VDS_FLOCK_EN	This bit enables the frame lock mode, when this bit is 1, VDS_PROC output timing will lock with its input timing (from INPUT_FORMATTER) at every 2 or more frames.
		Enable internal free run field index generation, active high
5	VDS_FREERUN_FID	When this bit is 1, the output field index is internal free run field, otherwise the output field index is based on input field index.
	VD0 515 44 51 V	Enable internal free run AABB field delay 1 frame, active high
6	VDS_FID_AA_DLY	When this bit is 1, the internal free run AABB field will delay 1 frame.
		Enable internal free run field index reset, active high
7	VDS_FID_RST	When this bit is 1, internal free run field index will reset at every frame number is 0.

VDS	PROC 2							RI	EG S3_1E	3 R/M
<u> </u>							_			<i>3,</i> 10, 0,
	7	6	5	4	3	•	2	1	0	
Bit				VDS_FR	_SELECT [7:	0]				
	Bit	Name		Function						
	7-0	VDS_FR_SELECT	[7:0]	Frame size sele FR_SELECT[2r VSYNC_SIZE1;	n+1:2n] is for f	rame n sel	ection. 0 s	select VSYN	IC_RST; 1 s	select
VDS_	PROC 2	28						RI	EG S3_10	C, R/W
	7	6	5	4	3	2	1		0	
Bit				VDS_FR_	SELECT [15	:8]				
	D ''									
	Bit	Name		Function	4 4 11					
	7-0	VDS_FR_SELECT	[15:8]	Frame size sele FR_SELECT[2r VSYNC_SIZE1;	n+1:2n] is for f	rame n sel		elect VSYN	IC_RST; 1 s	select
VDS_	PROC 2	29						RI	EG S3_1E), R/W
	7	6	5	4	3		2	1	0	
Bit				VDS_FR_	SELECT [23:	16]				
	Bit	Name		Function						
	7-0 VDS_FR_SELECT [23:16] FR_SELECT [23:16] FR_SELECT[2n+1:2n] is for frame n selection. 0 select VSYNC_RST; 1 select VSYNC_SIZE1; 2 select VSYNC_SIZE2.							select		

	7	6	5	4	3	2	1	0
Bit				VDS_FR_SEL	LECT [31:24]			

Bit	Name	Function			
7-0	VDS_FR_SELECT [31:24]	Frame size select control bit [31:24] FR_SELECT[2n+1:2n] is for frame n selection. 0 select VSYNC_RST; 1 select VSYNC_SIZE1; 2 select VSYNC_SIZE2.			

VDS_PROC 30

REG S3_1E, R/W

VDS_PROC 31 REG S3_1F, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 VDS_EN_FR_NU M_RST
 VDS_DIF_FR VDS_FRAME_NO [3:0]
 VDS_FRAME_NO [3:0]

Bit	Name	Function				
3-0	VDS_FRAME_NO [3:0]	Programmable This field define	es the repeated at every 3 frame VDS_FRAM 0 0 0 0 1 1 1 1 0 0 0	number contro frame number, E e. ME_NO [3:0] 0 0 1 1 0 0 1 0 0 0 1 0 0	0 1 0 1 0 1 0 1 0 1	repeat num 1 2 3 4 5 6 7 8 9 10
		1 1 1	0 0 1 1	1 1 0 0	0 1 0 1	11 12 13 14
		1	1 1	1 1	0	15 16
4	VDS_DIF_FR_SEL_EN	Enable the different frame size, active high When this bit is 1, VDS_PROC can generate a sequence of different frame size.				
5	VDS_EN_FR_NUM_RST	Enable frame number reset, active high When this bit is 1, frame number will be reset to 1 when frame lock is occur.				
7-6	RESERVED					

VDS_PROC 32 REG S3_20, R/W

7 6 5 4 3 2 1 0

Bit VDS_VSYN_SIZE1 [7:0]

Bit	Name	Function
7-0	VDS_VSYN_SIZE1 [7:0]	Programmable vertical total size 1 control bit [7:0] This field contains the vertical total line number minus 1. It can be the same as vsync_rst and vsync_size2, it also can different with them, and it can be used to define different frame size.

Registers Definition

VDS_PROC 33 REG S3_21, R/W

7 6 5 4 3 2 1 0

Bit RESERVED VDS_VSYN_SIZE1 [10:8]

Bit	Name	Function
2-0	VDS_VSYN_SIZE1 [10:8]	Programmable vertical total size 1 control bit [10:8] This field contains the vertical total line number minus 1. It can be the same as vsync_rst and vsync_size2, it also can different with them, and it can be used to define different frame size.
7-3	RESERVED	

VDS_PROC 34 REG S3_22, R/W

7 6 5 4 3 2 1 0

Bit VDS_VSYN_SIZE2 [7:0]

	Bit	Name	Function
-	7-0	VDS_VSYN_SIZE2 [7:0]	Programmable vertical total size 2 control bit [7:0] This field contains the vertical total line number minus 1. It can be the same as vsync_rst and vsync_size1, it also can different with them, and it can be used to define different frame size.

VDS_PROC 35 REG S3_23, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 VDS_VSYN_SIZE2 [10:8]

Bit	Name	Function
2-0	VDS_VSYN_SIZE2 [10:8]	Programmable vertical total size 2 control bit [10:8] This field contains the vertical total line number minus 1. It can be the same as vsync_rst and vsync_size1, it also can different with them, and it can be used to define different frame size.
7-4	RESERVED	

08—13

VDS_PROC 36 REG S3_24, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_WEI	N_DELAY	VDS_Y	_DELAY	VDS_TAP6_B YPS	VDS_V_DELA Y	VDS_U_DELA Y	VDS_UV_FLIP

Bit	Name	Function			
0	VDS_UV_FLIP	422 to 444 conversion UV flip control This bit is used to flip UV, when this bit is 1, UV position will be flipped.			
1	VDS_U_DELAY	UV 422 to 444 conversion U delay When this bit is 1, U will delay 1 clock, otherwise, no delay for internal pipe.			
2	VDS_V_DELAY	When this bit is 1, V will de		delay for internal pipe.	
3	VDS_TAP6_BYPS	Tap6 filter in 422 to 444 conversion bypass control, active high This bit is the UV interpolation filter enable control; when this bit is 1, UV bypass the filter			
5-4	VDS_Y_DELAY	Y compensation delay co To compensation the pipe of clocks. VDS_Y_DE 0 0 1 1	ELAY [1:0] 0 1 0 1	Y delay 1 2 3 4	
7-6	VDS_WEN_DELAY	Compensation delay control bit [1:0] for horizontal write enable This two-bit register defines the compensation delay of horizontal scale up write enable and phase. VDS_WEN_DELAY [1:0] Delay (VCLK) 0 0 1 0 1 2 1 0 3 1 1 4			

VDS_PROC 37 REG S3_25, R/W

7 6 5 4 3 2 1 0

Bit VDS_D_SP [7:0]

Bit	Name	Function
7-0	VDS_D_SP [7:0]	Line buffer write reset position control bit [7:0] This field contains the write reset position of the line buffer, this position is also the write start position of the buffer.

VDS_PROC 38 REG S3_26, R/W

7 6 5 4 3 2 1 0

Bit VDS_BLEV_AUT VDS_D_RAM_
O_EN BYPS RESERVED VDS_D_SP [9:8]

Bit	Name	Function
1-0	VDS_D_SP [9:8]	Line buffer write reset position control bit [7:0] This field contains the write reset position of the line buffer, this position is also the write start position of the buffer.
5-2	RESERVED	
6	VDS_D_RAM_BYPS	Line buffer one line delay data bypass, active high When this bit is 1, data will bypass the line buffer.
7	VDS_BLEV_AUTO_EN	Y minimum and maximum level auto detection enable, active high This bit is the Y min and max auto detection enable bit for black/white level expansion, when this bit is 1, the min and max value of Y in every frame will be detected, otherwise, the min and max value are defined by register.

VDS_PROC 39 REG S3_27, R/W

7 6 5 4 3 2 1 0

Bit VDS_USER_MAX VDS_USER_MIN

Bit	Name	Function
3-0	VDS_USER_MIN	Programmable minimum value control bit [3:0] This field is the user defined min value for black level expansion, the actual min value in use is 2*blev_det_min+1.
7-4	VDS_USER_MAX	Programmable maximum value control bit [3:0] This field is the user defined max value for black level expansion, the actual min value in use is 16*blev_det_max+15.

VDS_PROC 40 REG S3_28, R/W

7 6 5 4 3 2 1 0

Bit VDS_BLEV_LEVEL

Bit	Name	Function
7-0	VDS_BLEV_LEVEL	Black level expansion level control bit [7:0] This field defines the black level expansion threshold level value, data larger than this level will have no black level expansion process.

VDS_PROC 41	REG S3_29, R/W

7 6 5 4 3 2 1 0

Bit VDS_BLEV_GAIN

Bit	Name	Function
7-0	VDS_BLEV_GAIN	Black level expansion gain control bit [7:0] This field contains the gain control of black level expansion, its range is (0~16)*16.

VDS_PROC 42 REG S3_2A, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	ERVED	VDS_STEP_	DLY_CNTRL		RESERVED		VDS_BLEV_B YPS

Bit	Name	Function					
0	VDS_BLEV_BYPS	Black level expansion bypass control, active high This bit is the bypass control bit of black level expansion, when it is 1, data will bypass black level expansion process.					
3-1	RESERVED						
5-4	VDS_STEP_DLY_CNTRL	UV step response data select cor VDS_STEP_DLY_CNTRL [1:0 0 0 1 1 0 U/V2 is 2 clocks delay of input U/V on.					
7-6	RESERVED						

VDS_PROC 43 REG S3_2B, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_UV_STE P_BYPS	,	/DS_STEP_CLI	P		VDS_ST	EP_GAIN	

Bit	Name	Function
3-0	VDS_STEP_GAIN	UV Step response gain control bit [3:0] This field register can adjust the UV edge improvement, the larger value of this register, the sharper edge will appear, the range of this gain is (0~4)*4.
6-4	VDS_STEP_CLIP	UV step response clip control bit [2:0] This filed contains the clip control value of UV step response
7	VDS_UV_STEP_BYPS	UV step response bypass control, active high When this bit is 1, UV data will don't do step response

ETVia RD-5725-1.1 08—16

/DS_I	PROC -	44		REG S3_2C, R				
	7	6	4 3 2	1 0				
Bit			VDS_SK_U_CENTER					
	Bit	Name	Function					
7-0 VDS_SK_U_CENTER Skin color correction U center position control bit [7:0] This field contains the skin color center position U value, the value								

VDS_	PROC 45						REG	S3_2D, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_SK_V_	CENTER			

Bit	Name	Function
	VDQ QV V QENTED	Skin color correction V center position control bit [7:0]
7-0	VDS_SK_V_CENTER	This field contains the skin color center position U value, the value is 2's.

VDS_	PROC 46							REG S3_2E, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_SK_Y	_LOW_TH			

Bit	Name	Function
7-0	VDS_SK_Y_LOW_TH	Skin color correction Y low threshold control bit [7:0] Y low threshold value for skin color correction, if y less than this threshold, no skin color correction done.

VDS_PROC 47 REG S3_2F, R/W

7 6 5 4 3 2 1 0

Bit	Name	Function
		Skin color correction Y high threshold control bit [7:0]
7-0	VDS_SK_Y_HIGH_TH	Y high threshold value for skin color correction, if y larger than this threshold, no skin color correction done.

VDS_SK_Y_HIGH_TH

Bit

Registers Definition

VDS_	VDS_PROC 48 REG S3_30, R/W											
	7	6	5	4	3	2	1	0				
Bit	VDS SK RANGE											

Bit	Name	Function
7-0	VDS_SK_RANGE	Skin color correction range control bit [7:0] The skin color correction will done just when the value abs(u-u_center)+abs(v-v_enter) less than this programmable range.

VDS_PROC 49 REG S3_31, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	VDS_SK_BYPS	VDS_SK_Y_EN		VDS_S	SK_GAIN	

Bit	Name	Function			
3-0	VDS_SK_GAIN	Skin color correction gain control bit [3:0] This register defines the degree of the skin color correction, the higher the value, the more skin color correction done. Its range is (0~1)*16			
4	VDS_SK_Y_EN	Skin color Y detect enable, active high When this bit is 1, take the Y value as the condition of skin color correction, just when the Y value larger than y_low_th and less the y_high_th, the correction can be done.			
5	VDS_SK_BYPS	Skin color correction bypass control, active high When this bit is 1, the skin color correction will be bypassed.			
7-6	RESERVED				

RD-5725-1.1 08—18

VDS_PROC 50 REG S3_32, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_SVM_SIGM OID_BYPS
 VDS_SVM_VCLK_DELAY
 VDS_SVM_2ND_ BYPS
 VDS_SVM_POL FLIP
 VDS_SVM_BPF_CNTRL

Bit	Name	Function					
		SVM data generation select control [1:0]					
		VDS_SVM_BP	F_CNTRL [1:0]	SVM data			
		0	0	a0-a4			
1-0	VDS SVM BPF CNTRL	0	1	a1-a4			
1-0	VD3_3VW_BFF_CNTKL	1	0	a2-a4			
		1	1	a3-a4			
		A1 is one pipe delay of a0, is one pipe delay of a3, he			2, a4		
2	VDS_SVM_POL_FLIP	SVM polarity flip control bit When this bit is 1, the SVM signal's polarity will be flipped, otherwise, SVM re the original phase.					
3	VDS_SVM_2ND_BYPS	2nd order SVM signal generation bypass, active high When this bit is 1, SVM signal is 1 st order, otherwise, it is 2 nd order der			gnal.		
6-4	VDS_SVM_VCLK_DEL	To match YUV pipe, SVM This field define the SVM of	<u> </u>				
7	VDS_SVM_SIGMOID_B YPS	SVM bypass the sigmoid When this bit is 1, SVM signal sharper.		tion. This function can mak	ке		

VDS_PROC 51 REG S3_33, R/W

7 6 5 4 3 2 1 0

Bit VDS_SVM_GAIN

Bit	Name	Function
7.0	7.0	SVM gain control bit[7:0]
7-0	VDS_SVM_GAIN	This field contains the gain value of SVM data., its range is (0~16)*16

VDS_PROC 52 REG S3_34, R/W

7 6 5 4 3 2 1 0

Bit VDS_SVM_OFFSET

Bit	Name	Function
7.0	\\D0 0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SVM offset control bit [7:0]
7-0	VDS_SVM_OFFSET	This field contains the offset value of SVM data, its range is 0~255.

VDS_	PROC 5	53					RE	G S3_35, R/W
	7	6	5	4	3	2	1	0
Bit	,	U	<u> </u>	VDS_Y_GAIN			<u> </u>	- U
Dit				150_1_07	[1.0]			
	Bit	Name		Function				
				Y dynamic range expan				
	7-0	VDS_Y_GAIN [7:0]		This field contains the range is (0 ~ 2)*128.	' gain valu	e in dynamic	range expans	sion process, its
				- cange is (c = 2) - 2 - 2				
VDS_	PROC 5	54					RE	G S3_36, R/W
	7	6 5		4 3	2)	1	0
Bit				VDS_UCOS_0				
	Bit	Name		Function				
		V-2 11000 01111		U dynamic range expa				
	7-0	VDS_UCOS_GAIN		This field contains the range is (-4 ~ 4)*32.	u gain vait	ie in dynamic	range expans	sion process, its
VDS_	PROC 5	55					RE	G S3_37, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_VCOS_0	AIN			
		I		1				
	Bit	Name		Function				
	7-0	VDS_VCOS_GAIN		V dynamic range expa This field contains the				sion process, its
	. 0	120_1000_0/		range is (-4 ~ 4)*32.			- cango onpani	лен рессес, не
\/DC	DD00 I	- /					DE	C C2 20 DAV
VDS_	PROC 5	06					RE	G S3_38, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_USIN_G	AIN			
	-	T		1				
	Bit	Name		II dynamia ranga aya		unction	.i+ [7·0]	
	7-0	VDS_USIN_GAIN		U dynamic range expa This field contains the U				sion process, its
				range is (-4 ~ 4)*32.				

VDS_	PROC 5	57					REG	S3_39, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_VS	SIN_GAIN			
·		T		I				
	Bit	Name		Function		nain aantual bit	[7.0]	
	7-0	VDS_VSIN_GAIN		V dynamic range This field contains range is (-4 ~ 4)*3	the V sin gain			on process, its
\/D0		-0					DE0	00.04.504
VDS_	PROC 5	08					REG	S3_3A, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_	Y_OFST			
İ		T		Ι				
	Bit	Name		Function Y dynamic range	ovnancion off	sot control hit [7	··n1	
	7-0	VDS_Y_OFST		This field contains range is -128 ~ 12	the Y offset val			process, its
VDS_	PROC 5	59					REG	S3_3B, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_U	J_OFST			
	Bit	Name		Function				
	Dit	ranic		U dynamic range	expansion off	set control bit [7	' :0]	
	7-0	VDS_U_OFST		This field contains range is -128 ~ 12	the U offset va			process, its
VDS_	PROC 6	50					REG	S3_3C, R/W
	7	6	5	4	3	2	1	0
Bit				VDS_\	/_OFST			

Bit	Name	Function
		V dynamic range expansion offset control bit [7:0]
7-0	VDS_V_OFST	This field contains the V offset value in dynamic range expansion process., its range is –128 ~ 127.

STvia

VDS_PROC 61 REG S3_3D, R/W

7 6 5 4 3 2 1 0

Bit VDS_SYNC_LEV [7:0]

Bit	Name	Function	
7-0	VDS_SYNC_LEV [7:0]	Sync level bit [7:0] This field contains the composite sync level value, this value will add on Y, outside the composite sync interval. If the Y out is 1V, sync is 0.3V, then this value is (0.3/1)*1024=307, and the output sync's max voltage is 0.5V.	

VDS_PROC 62 REG S3_3E, R/W

Bit	Name	Function
0	VDS_SYNC_LEV [8]	Sync level bit [8] This field contains the composite sync level value, this value will add on Y, outside the composite sync interval. If the Y out is 1V, sync is 0.3V, then this value is (0.3/1)*1024=307, and the output sync's max voltage is 0.5V.
2-1	RESERVED	
3	VDS_CONVT_BYPS	YUV to RGB color space conversion bypass control, active high When this bit is 1, YUV data will bypass the YUV to RGB conversion, the output will still be YUV data. When this bit is 0, YUV data will do YUV to RGB conversion, the output will be RGB data.
4	VDS_DYN_BYPS	Dynamic range expansion bypass control, active high When this bit is 1, data will bypass the dynamic range expansion process.
6-5	RESERVED	
7	VDS_BLK_BF_EN	Blanking set up enable, active high When this bit is 1, final composite blank (dis_hb dis_vb) will cut the garbage data in blanking interval.

VDS_PROC 63 REG S3_3F, R/W

7 6 5 4 3 2 1 0

Bit VDS_UV_BLK_VAL

Bit	Name	Function
7-0	VDS_UV_BLK_VAL	UV blanking amplitude value control bit[7:0] This filed indicates the amplitude value of UV in blanking interval, the highest bit of this programmable register is sign bit.

RD-5725-1.1 08—22

Registers Definition

VDS_PROC 64 REG S3_40, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	VDS_SVM_V4	CLK_DELAY	RESERVED	VDS_IN_DREG_ BYPS	VDS_2ND_INT_BY PS	VDS_1ST_INT_B YPS

Bit	Name	Function		
0	VDS_1ST_INT_BYPS	The 1 st stage interpolation bypass control, active high When this bit is 1, the 1 st stage interpolation (in YUV domain) will be bypassed, Y use tap19, and UV use tap7.		
1	VDS_2ND_INT_BYPS	The 2 nd stage interpolation bypass control, active high When this bit is 1, the 2 nd stage interpolation (in RGB domain) will be bypassed, all RGB use tap11.		
2	VDS_IN_DREG_BYPS	Input data bypass the negedge trigger control, active high When this bit is 0, input data will triggered by falling edge clock, When this bit is 1, the input data will bypass this falling edge clock delay.		
3	RESERVED			
5-4	VDS_SVM_V4CLK_DELAY	SVM delay be V2CLK con This field define the SVM of VDS_SVM_V 0 1 1		SVM delay 1 2 3 4
7-6	RESERVED			

VDS_PROC 65 REG S3_41, R/W

7 6 5 4 3 2 1 0

Bit VDS_PK_LINE_BUF_SP [7:0]

Bit	Name	Function
7-0	VDS_PK_LINE_BUF_SP [7:0]	Line buffer for 2D peaking write reset position control bit [7:0] This field contains the write reset position of the line buffer, this position is also the write start position of the buffer.

08-23

Registers Definition

VDS_PROC 66 REG S3_42, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	VDS_PK_RAM_B YPS		RESE	RVED		VDS_PK_LINE	_BUF_SP [9:8]

Bit	Name	Function
1-0	VDS_PK_LINE_BUF_SP [9:8]	Line buffer for 2D peaking write reset position control bit [9:8] This field contains the write reset position of the line buffer, this position is also the write start position of the buffer.
5-2	RESERVED	
6	VDS_PK_RAM_BYPS	Line buffer for 2D peaking one line delay data bypass, active high When this bit is 1, data will bypass the line buffer.
7	RESERVED	

VDS_PROC 67 REG S3_43, R/W

	7	6	5	4	3	2	1	0
Bit		RESE	RVED		VDS_PK_VH_ HH_SEL	VDS_PK_VH_ HL_SEL	VDS_PK_VL_ HH_SEL	VDS_PK_VL_ HL_SEL

Bit	Name	Function
0	VDS_PK_VL_HL_SEL	2D peaking vertical low-pass signal select the horizontal split filter control low-pass filter select, 1 for tap3 and 0 for tap5
1	VDS_PK_VL_HH_SEL	2D peaking vertical low-pass signal select the horizontal split filter control for high-pass filter select, 1 for tap3 and 0 for tap5
2	VDS_PK_VH_HL_SEL	2D peaking vertical high-pass signal select the horizontal split filter control high-pass filter select, 1 for tap3 and 0 for tap5.
3	VDS_PK_VH_HH_SEL	2D peaking vertical high-pass signal select the horizontal split filter control low-pass filter select, 1 for tap3 and 0 for tap5
7-4	RESERVED	

 VDS_PROC 68
 REG S3_44, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_PK_LB_CMP
 VDS_PK_LB_CORE

Bit	Name	Function
2-0	VDS_PK_LB_CORE	2D peaking vertical low-pass horizontal band-pass signal coring level Vertical low-pass and horizontal band-pass signal larger than this coring level will remain unchanged, otherwise it will be cut to 0.
7-3	VDS_PK_LB_CMP	2D peaking vertical low-pass horizontal band-pass signal threshold level Vertical low-pass and horizontal band-pass signal larger than this coring level will remain unchanged, otherwise the gain will added on it.

VDS_PROC 69 REG S3_45, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 VDS_PK_LB_GAIN

Bit	Name	Function
5-0	VDS_PK_LB_GAIN	2D peaking vertical low-pass horizontal band-pass signal gain control Vertical low-pass horizontal band-pass signal gain, its range is (0~4)*16.
7-6	RESERVED	

VDS_PROC 70 REG S3_46, R/W

7 6 5 4 3 2 1 0

Bit VDS_PK_LH_CMP VDS_PK_LH_CORE

Bit	Name	Function
2-0	VDS_PK_LH_CORE	2D peaking vertical low-pass horizontal high-pass signal coring level Vertical low-pass and horizontal high-pass signal larger than this coring level will remain unchanged, otherwise it will be cut to 0.
7-3	VDS_PK_LH_CMP	2D peaking vertical low-pass horizontal high-pass signal threshold level Vertical low-pass and horizontal high-pass signal larger than this coring level will remain unchanged, otherwise the gain will added on it.

VDS_	PROC 71						RE	G S3_47, R/W
	7	6	5	4	3	2	1	0
Bit	RESERVED RESERVED				VDS_PK_	LH_GAIN		

Bit	Name	Function
5-0	VDS_PK_LH_GAIN	2D peaking vertical low-pass horizontal high-pass signal gain control Vertical low-pass horizontal high-pass signal gain, its range is (0~4)*16.
7-6	RESERVED	

VDS_PROC 72 REG S3_48, R/W

7 6 5 4 3 2 1 0

Bit VDS_PK_HL_CMP VDS_PK_HL_CORE

Bit	Name	Function			
2-0	VDS_PK_HL_CORE	2D peaking vertical high-pass horizontal low-pass signal coring level Vertical high-pass and horizontal low-pass signal larger than this coring level w remain unchanged, otherwise it will be cut to 0.			
7-3	VDS_PK_HL_CMP	2D peaking vertical high-pass horizontal low-pass signal threshold level Vertical high-pass and horizontal low-pass signal larger than this coring level will remain unchanged, otherwise the gain will added on it.			

VDS_PROC 73 REG S3_49, R/W

7 6 5 4 3 2 1 0

Bit RESERVED VDS_PK_HL_GAIN

Bit	Name	Function
5-0	VDS_PK_HL_GAIN	2D peaking vertical high-pass horizontal low-pass signal gain control Vertical high-pass horizontal low-pass signal gain, its range is (0~4)*16.
7-6	RESERVED	

VDS_PROC 74 REG S3_4A, R/W

7 6 5 4 3 2 1 0

Bit VDS_PK_HB_CMP VDS_PK_HB_CORE

Bit	Name	Function	
2-0	VDS_PK_HB_CORE	2D peaking vertical high-pass horizontal band-pass signal coring level Vertical high-pass and horizontal band-pass signal larger than this coring level will remain unchanged, otherwise it will be cut to 0.	
7-3	VDS_PK_HB_CMP	2D peaking vertical high-pass horizontal band-pass signal threshold level Vertical high-pass and horizontal band-pass signal larger than this coring level will remain unchanged, otherwise the gain will added on it.	

VDS_PROC 75 REG S3_4B, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 VDS_PK_HB_GAIN

Bit	Name	Function			
5-0	VDS_PK_HB_GAIN	2D peaking vertical high-pass horizontal band-pass signal gain control Vertical high-pass horizontal band-pass signal gain, its range is (0~4)*16.			
7-6	RESERVED				

VDS_PROC 76 REG S3_4C, R/W

7 6 5 4 3 2 1 0

Bit VDS_PK_HH_CMP VDS_PK_HH_CORE

Bit	Name	Function			
2-0	VDS_PK_HH_CORE	2D peaking vertical high-pass horizontal high-pass signal coring level Vertical high-pass and horizontal high-pass signal larger than this coring level will remain unchanged, otherwise it will be cut to 0.			
7-3	VDS_PK_HH_CMP	2D peaking vertical high-pass horizontal high-pass signal threshold level Vertical high-pass and horizontal high-pass signal larger than this coring level will remain unchanged, otherwise the gain will added on it.			

VDS_PROC 77 REG S3_4D, R/W

7 6 5 4 3 2 1 0

Bit RESERVED VDS_PK_HH_GAIN

Bit	Name	Function
5-0	VDS_PK_HH_GAIN	2D peaking vertical high-pass horizontal high-pass signal gain control Vertical high-pass horizontal high-pass signal gain, its range is (0~4)*16.
7-6	RESERVED	

VDS_PROC 78 REG S3_4E, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	VDS	S_C_VPK_CO	RE	VDS_C_VPK_ BYPS	RESERVED	VDS_PK_Y_V _BYPS	VDS_PK_Y_H _BYPS

Bit	Name	Function			
0	VDS_PK_Y_H_BYPS	Y horizontal peaking bypass control, active high When this bit is 1, Y horizontal peaking will be bypassed.			
1	VDS_PK_Y_V_BYPS	Y vertical peaking bypass control, active high When this bit is 1, Y vertical peaking will be bypassed.			
2	RESERVED				
3	VDS_C_VPK_BYPS	UV vertical peaking bypass control, active high When this bit is 1, UV vertical peaking will be bypassed.			
6-4	VDS_C_VPK_CORE	UV vertical peaking coring level UV vertical high-pass signal larger than this coring level will remain unchanged, otherwise it will be cut to 0.			
7	RESERVED				

VDS_	PROC 79						RE	EG S3_4F, R/W
	7	6	5	4	3	2	1	0
Bit	RESE	RVED			VDS_C_V	PK_GAIN		

Bit	Name	Function
5-0	VDS_C_VPK_GAIN UV vertical peaking gain control bit [5:0] UV vertical high-pass signal gain control, its range is (0~4)*16.	
7-6	RESERVED	

VDS_PROC 80 REG S3_50, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_DO_16B _EN	VDS_DO_UVS EL_FLIP	VDS_DO_UV_ DEC_BYPS	VDS_TEST_E N		VDS_TES	T_BUS_SEL	

Bit	Name	Function			
3-0	VDS_TEST_BUS_SEL	Test out select control bit [3:0] This register is used to select internal status bus to test bus.			
4	VDS_TEST_EN	Test enable, active high This bit is the test bus out enable bit, when this bit is 1, the test bus can output the internal status, and otherwise, the test bus is 0Xaaaa.			
5	VDS_DO_UV_DEC_BYPS	16-bit digital out UV decimation filter bypass control, active high When this bit is 1, 16-bit 422 YUV digital out UV decimation will be bypassed.			
6	VDS_DO_UVSEL_FLIP	16-bit digital out UV flip control When this bit is 1, 16-bit 422 YUV digital out UV position will be flipped.			
7	VDS_DO_16B_EN	16-bit digital out (422 format yuv) enable When this bit is 1, digital out is 16-bit 422 YUV format; When it is 0, digital out is 24-bit.			

VDS_PROC 81 REG S3_51, R/W

7 6 5 4 3 2 1 0

Bit VDS_GLB_NOISE [7:0]

Bit	Name	Function	
7-0	VDS_GLB_NOISE [7:0]	Global still detection threshold value control bit [7:0] This field contains the global noise threshold value. If the total difference of two frame less than this programmable value, the picture is taken as still, otherwise, the picture is taken as moving picture.	

Registers Definition

VDS_PROC 82 REG S3_52, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_NR_MI_T H_EN	VDS_NR_DIF_ LPF5_BYPS	VDS_NR_C_B YPASS	VDS_NR_Y_B YPASS	RESERVED	VDS	_GLB_NOISE [[10:8]

Bit	Name	Function
2-0	VDS_GLB_NOISE [10:8]	Global still detection threshold value control bit [10:8] This field contains the global noise threshold value. If the total difference of two frame less than this programmable value, the picture is taken as still, otherwise, the picture is taken as moving picture.
3	RESERVED	
4	VDS_NR_Y_BYPASS	Y bypass the noise reduction process control When this bit is 1, Y data will bypass the noise reduction process.
5	VDS_NR_C_BYPASS	UV bypass the noise reduction process control When this bit is 1, UV data will bypass the noise reduction process.
6	VDS_NR_DIF_LPF5_BYPS	Bypass control of the tap5 low-pass filter used for Y difference between two frames. When this bit is 1, Y difference data will bypass the tap5 low-pass filter
7	VDS_NR_MI_TH_EN	Noise reduction threshold control enable This bit will enable the threshold control, active high.

VDS_PROC 83 REG S3_53, R/W

7 6 5 4 3 2 1 0

Bit VDS_NR_MIG_USER_EN VDS_NR_MI_OFFSET

Bit	Name	Function		
6-0	VDS_NR_MI_OFFSET	Motion index offset control bit [6:0] The offset control for motion index generation. When ds_mig_en is 1, ds_mig_offset[3:0] is user-defined motion index.		
7	VDS_NR_MIG_USER_EN Motion index generation user mode enable When this bit is 1, the motion index generation will use nr_mig_ Motion index.			

VDS_PROC 84 REG S3_54, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_NR_STILL_GAIN				MI_GAIN			

Bit	Name	Function
3-0	VDS_NR_MI_GAIN	Motion index generation gain control bit [3:0] Motion index generation gain control, its range is (0~8)*2.
7-4	VDS_NR_STILL_GAIN	Motion index generation gain control bit [3:0] for still picture When picture is still, this field contains the motion index generation gain, its range is (0~8)*2.

VDS_PROC 85 REG S3_55, R/W

7 6 5 4 3 2 1 0

Bit | VDS_NR_GLB_STIL | VDS_NR_EN_GL | RESERVED | VDS_NR_EN_ | H_NOISY | VDS_NR_MI_THRESH

Bit	Name	Function				
3-0	VDS_NR_MI_THRESH	Noise reduction threshold value bit [3:0] Noise-reduction threshold value. When MI is smaller than the threshold value, the noise reduction is enabled. Otherwise it is not.				
4	VDS_NR_EN_H_NOISY	High noisy picture index enable, active high Enable high noisy index from de-interlacer, it means the picture's noise is very large.				
5	RESERVED					
6	VDS_NR_EN_GLB_STILL	Global still index enable, active high This bit enables the global still signal.				
		Menu mode control for global s This bit is the user defined menu global still signal is 1, the following	mode for global still signal, who	·		
7	VDS_NR_GLB_STILL_ME NU	VDS_NR_GLB_STILL_MENU	VDS_NR_EN_GLB_STILL	Sub-block still index		
		0	0	0		
		0	1	glb_still		
		1	Х	1		

VDS_	PROC 86						REC	G S3_56, R/W
	7	6	5	4	3	2	1	0
Bit	VDS_W_LEV_ BYPS			VDS_N	IR_NOISY_OF	FSET		

Bit	Name	Function
6-0	VDS_NR_NOISY_OFFSET	Motion index generation offset control bit [6:0] for high noisy picture When the picture is high noisy picture, this field contains the offset control for motion index generation.
7	VDS_W_LEV_BYPS	White level expansion bypass control, active high When this bit is 1, Y don't do white level expansion.

 VDS_PROC 87
 REG S3_57, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_W_LEV

Bit	Name	Function
7-0	VDS_W_LEV	White level expansion level control bit[7:0] This field defines the white level expansion threshold level value; data less than this level will have no white level expansion process.

 VDS_PROC 88
 REG S3_58, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_WLEV_GAIN

Bit	Name	Function
7-0	VDS_WLEV_GAIN	White level expansion gain control bit[7:0] This field defines the white level expansion threshold level value; data less than this level will have no white level expansion process.

 VDS_PROC 89
 REG S3_59, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_NS_U_CENTER

Bit	Name	Function
7-0	VDS_NS_U_CENTER	Non-linear saturation center position U value control bit [7:0] This field contains the non-linear saturation center position U value, the value is 2's.

Registers Definition

	OC 90						REG	S3_5A, R/W
	7	6	5	4	3	2	1	0
Bit	VDS_NS_V_CENTER							

Bit	Name	Function
7-0	VDS_NS_V_CENTER	Non-linear saturation center position V value control bit [7:0] This field contains the non-linear saturation center position V value, the value is 2's.

VDS_PROC 91 REG S3_5B, R/W

7 6 5 4 3 2 1 0

VDS_NS_SQU
ARE_RAD [0] VDS_NS_U_GAIN

Bit	Name	Function			
6-0	VDS_NS_U_GAIN	Non-linear saturation U gain control bit [6:0] This field contains the U gain control for U component in the area which should do non-linear saturation, its range is (0~1)*128.			
7	VDS_NS_SQUARE_RAD [0]	Non-linear saturation range control bit [0] Non-linear saturation only did When (u-u_center)^2 + (v-v_center)^2 less than this programmable range value.			

VDS_PROC 92 REG S3_5C, R/W

7 6 5 4 3 2 1 0

Bit VDS_NS_SQUARE_RAD [8:1]

Bit	Name	Function
7-0	VDS_NS_SQUARE_RAD [8:1]	Non-linear saturation range control bit [8:1] Non-linear saturation only did When (u-u_center)^2 + (v-v_center)^2 less than this programmable range value.

08—33

VDS_	PROC 93						RE	G S3_5D, R/W
	7	6	5	4	3	2	1	0
Bit	Bit VDS_NS_Y_HIGH_TH [1:0]		VDS_NS_SQUARE_RAD [14:9]					

Bit	Name	Function
5-0	VDS_NS_SQUARE_RAD [14:9]	Non-linear saturation range control bit [14:9] Non-linear saturation only did When (u-u_center)^2 + (v-v_center)^2 less than this programmable range value.
7-6	VDS_NS_Y_HIGH_TH [1:0]	Non-linear saturation Y high threshold control bit [1:0] This filed defines the Y high threshold value for non-linear saturation, when y detect enable (60[3]=1), if y larger than this programmable value, no non-linear did.

VDS_PROC 94 REG S3_5E, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_NS_V	_GAIN [1:0]			VDS_NS_Y_F	HIGH_TH [7:2]		

Bit	Name	Function		
5-0	VDS_NS_Y_HIGH_TH [7:2]	Non-linear saturation Y high threshold control bit [7:2] This filed defines the Y high threshold value for non-linear saturation, when y detect enable (60[3]=1), if y larger than this programmable value, no non-linear did.		
7-6	VDS_NS_V_GAIN [1:0]	Non-linear saturation V gain control bit [1:0] This field contains the V gain control for V component in the area which should do non-linear saturation, its range is (0~1)*128.		

VDS_PROC 95 REG S3_5F, R/W

	7	6	5	4	3	2	1	0
Bit	VDS_NS_Y_LOW_TH [2:0]			VDS_NS_V_GAIN [6:2]				

Bit	Name	Function
4-0	VDS_NS_V_GAIN [6:2]	Non-linear saturation V gain control bit [6:2] This field contains the V gain control for V component in the area which should do non-linear saturation, its range is (0~1)*128.
7-5	VDS_NS_Y_LOW_TH [2:0]	Non-linear saturation Y low threshold control bit [2:0] This filed defines the Y low threshold value for non-linear saturation, when y detect enable (60[3]=1), if y less than this programmable value, no non-linear did.

RD-5725-1.1 08—34

Registers Definition

VDS_PROC 96 REG S3_60, R/W

	7	6	5	4	3	2	1	0
Bit	1	/DS_C1_TAG_L	OW_SLOPE [3	:0]	VDS_NS_Y_A CTIVE_EN	VDS_NS_BYP S	VDS_NS_Y_I	LOW_TH [4:3]

Bit	Name	Function		
1-0	VDS_NS_Y_LOW_TH [4:3]	Non-linear saturation Y low threshold control bit [4:3] This filed defines the Y low threshold value for non-linear saturation, when y detect enable (60[3]=1), if y less than this programmable value, no non-linear did.		
2	VDS_NS_BYPS	Non-linear saturation bypass control, active high When this bit is 1, the process non-linear saturation will be bypassed.		
3	VDS_NS_Y_ACTIVE_EN	Non-linear saturation Y detect enable, active high When this bit is 1, the process non-linear saturation only done when the Y larger than the value ns_y_low_th and less than the value ns_y_high_th.		
7-4	VDS_C1_TAG_LOW_SLOP E [3:0]	Red enhance angle tan value low threshold value control bit [3:0] This filed contains the low threshold value for red enhance angle tan value, when the input UV angle tan value less than this programmable value, no enhancement did.		

VDS_PROC 97 REG S3_61, R/W

	7	6	5	4	3	2	1	0
Bit	/DS_C1_TAG_HIGH_SLOPE [1:0]		VDS_C1_TAG_LOW_SLOPE [9:4]					

Bit	Name	Function
5-0	VDS_C1_TAG_LOW_SLOP E [9:4]	Red enhance angle tan value low threshold value control bit [9:4] This filed contains the low threshold value for red enhance angle tan value, when the input UV angle tan value less than this programmable value, no enhancement did.
7-6	VDS_C1_TAG_HIGH_SLO PE [1:0]	Red enhance angle tan value high threshold value control bit [1:0] This filed contains the high threshold value for red enhance angle tan value, when the input UV angle tan value larger than this programmable value, no enhancement did.

Registers Definition

VDS_	PROC 98						RE	G S3_62, R/W
	7	6	5	4	3	2	1	0
Bit	VDS_C1_TAG_HIGH_SLOPE [9:2]							

Bit	Name	Function
7-0	VDS_C1_TAG_HIGH_SLO PE [9:2]	Red enhance angle tan value high threshold value control bit [9:2] This filed contains the high threshold value for red enhance angle tan value, when the input UV angle tan value larger than this programmable value, no enhancement did.

VDS_PROC 99 REG S3_63, R/W

7 6 5 4 3 2 1 0

Bit VDS_C1_U_LOW [3:0] VDS_C1_GAIN

Bit	Name	Function		
2.0	VDS C4 CAIN	Red enhance gain control bit [3:0]		
3-0	VDS_C1_GAIN	This field contains the gain control for red enhance, its range is (0~1)*16		
		Red enhance U low threshold value control bit [3:0]		
7-4	VDS_C1_U_LOW [3:0]	This field contains the low threshold value for U component, if input U less then this programmable value, no enhancement did.		

VDS_PROC 100 REG S3_64, R/W

7 6 5 4 3 2 1 0

Bit VDS_C1_U_HIGH [3:0] VDS_C1_U_LOW [7:4]

Bit	Name	Function
3-0	VDS_C1_U_LOW [7:4]	Red enhance U low threshold value control bit [7:4] This field contains the low threshold value for U component, if input U less then this programmable value, no enhancement did.
7-4	VDS_C1_U_HIGH [3:0]	Red enhance U high threshold value control bit [3:0] This field contains the high threshold value for U component, if input U larger then this programmable value, no enhancement did.

VDS_PROC 101 REG S3_65, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 VDS_C1_Y_THRESH [2:0]
 VDS_C1_BYP S
 VDS_C1_U_HIGH [7:4]

Bit	Name	Function		
3-0	VDS_C1_U_HIGH [7:4]	Red enhance U high threshold value control bit [7:4] This field contains the high threshold value for U component, if input U larger then this programmable value, no enhancement did.		
4	VDS_C1_BYPS	Red enhance bypass control, active high When this bit is 1, red enhancement will be bypassed.		
7-5	VDS_C1_Y_THRESH [2:0]	Red enhance Y threshold value control bit [2:0] This field contains the Y threshold for red enhancement, when input Y larger than this programmable value, no enhancement did.		

VDS_PROC 102 REG S3_66, R/W

7 6 5 4 3 2 1 0

Bit VDS_C2_TAG_LOW_SLOPE [2:0] VDS_C1_Y_THRESH [7:3]

	Bit	Name	Function		
Ī			red enhance Y threshold value control bit [7:3]		
	4-0	VDS_C1_Y_THRESH [7:3]	This field contains the Y threshold for red enhancement, when input Y larger than this programmable value, no enhancement did.		
			Green enhance angle tan value low threshold value control bit [2:0]		
	7-5	VDS_C2_TAG_LOW_SLOP E [2:0]	This filed contains the low threshold value for green enhance angle tan value, when the input UV angle tan value less than this programmable value, no enhancement did.		

VDS_PROC 103 REG S3_67, R/W

7 6 5 4 3 2 1 0

Bit VDS_C2_TAG_HIGH_S LOPE [0] VDS_C2_TAG_LOW_SLOPE [9:3]

Bit	Name	Function			
6-0	VDS_C2_TAG_LOW_SLOP E [9:3]	Green enhance angle tan value low threshold value control bit [9:3] This filed contains the low threshold value for green enhance angle tan value, when the input UV angle tan value less than this programmable value, no enhancement did.			
7	VDS_C2_TAG_HIGH_SLO PE [0]	Green enhance angle tan value high threshold value control bit [0] This filed contains the high threshold value for green enhance angle tan value when the input UV angle tan value larger than this programmable value, no enhancement did.			

PE [8:1]

VDS_	VDS_PROC 104 REG S3_68, R/W									
7 6 5 4 3 2									1	0
Bit	Bit VDS_C2_TAG_HIGH_SLOPE [8:1]									
	Bit Name Function									
	7-0 VDS_C2_TAG_HIGH_SLO PE 18:11 Green enhance angle tan value high threshold value control bit [8] This filed contains the high threshold value for green enhance angle to when the input LIV angle tan value larger than this programmable value.							an value,		

when the input UV angle tan value larger than this programmable value, no

VDS_PROC 105 REG S3_69, R/W

enhancement did.

VDS_C2_TAG Bit VDS_C2_U_LOW [2:0] VDS_C2_GAIN HIGH SLOPE [9]

Bit	Name	Function
0	VDS_C2_TAG_HIGH_SLO PE [9]	Green enhance angle tan value high threshold value control bit [9] This filed contains the high threshold value for green enhance angle tan value, when the input UV angle tan value larger than this programmable value, no enhancement did.
4-1	VDS_C2_GAIN	Color enhance gain control bit [3:0] This field contains the gain control for green enhance, its range is (0~1)*16
7-5	VDS_C2_U_LOW [2:0]	Green enhance U low threshold value control bit [2:0] This field contains the low threshold value for U component, if input U less then this programmable value, no enhancement did.

VDS_PROC 106 REG S3_6A, R/W

	7	6	5	4	3	2	1	0	
Bit				VDS_C2_U_LOW [7:3]					

Bit	Name	Function
4-0	VDS_C2_U_LOW [7:3]	Green enhance U low threshold value control bit [7:3] This field contains the low threshold value for U component, if input U less then this programmable value, no enhancement did.
7-5	VDS_C2_U_HIGH [2:0]	Green enhance U high threshold value control bit [2:0] This field contains the high threshold value for U component, if input U larger then this programmable value, no enhancement did.

Registers Definition

VDS_PROC 107 REG S3_6B, R/W

7 6 5 4 3 2 1 0

Bit VDS_C2_Y_THRESH [1:0] VDS_C2_BYP S VDS_C2_U_HIGH [7:3]

Bit	Name	Function
4-0	VDS_C2_U_HIGH [7:3]	Green enhance U high threshold value control bit [7:3] This field contains the high threshold value for U component, if input U larger then this programmable value, no enhancement did.
5	VDS_C2_BYPS Green enhance bypass control When this bit is 1, color enhancement will be bypassed.	
7-6	VDS_C2_Y_THRESH [1:0]	Green enhance Y threshold value control bit [1:0] This field contains the Y threshold for green enhancement, when input Y larger than this programmable value, no enhancement did.

VDS_PROC 108 REG S3_6C, R/W

7 6 5 4 3 2 1 0

Bit RESERVED VDS_C2_Y_THRESH [7:2]

Bit	Name	Function
5-0	VDS_C2_Y_THRESH [7:2]	Green enhance Y threshold value control bit [7:2] This field contains the Y threshold for green enhancement, when input Y larger than this programmable value, no enhancement did.
7-6	RESERVED	

VDS_PROC 109 REG S3_6D, R/W

7 6 5 4 3 2 1 0

Bit VDS_EXT_HB_ST [7:0]

Bit	Name	Function
		External used horizontal blanking start position control bit [7:0]
7-0	VDS_EXT_HB_ST [7:0]	This field is used to program horizontal blanking start position, this blanking is
		for external used.

VDS_	PROC 110						RE	G S3_6E, R/W
	7	6	5	4	3	2	1	0
Bit	Bit VDS_EXT_HB_SP [3:0]				VDS_EXT_I	HB_ST [11:8]		

Bit	Name	Function
3-0	VDS_EXT_HB_ST [11:8]	External used horizontal blanking start position control bit [11:8] This field is used to program horizontal blanking start position, this blanking is for external used.
7-4	VDS_EXT_HB_SP [3:0]	External used horizontal blanking stop position control bit [3:0] This field is used to program horizontal blanking stop position, this blanking is for external used.

VDS_PROC 111 REG S3_6F, R/W

7 6 5 4 3 2 1 0

Bit VDS_EXT_HB_SP [11:4]

Bit	Name	Function
7-0	VDS_EXT_HB_SP [11:4]	External used horizontal blanking stop position control bit [11:4] This field is used to program horizontal blanking stop position, this blanking is for external used.

VDS_PROC 112 REG S3_70, R/W

7 6 5 4 3 2 1 0

Bit VDS_EXT_VB_ST [7:0]

Bit	Name	Function
7-0	VDS_EXT_VB_ST [7:0]	External used vertical blanking start position control bit [7:0] This field is used to program vertical blanking start position, this blanking is for external used.

08—40

Registers Definition

VDS_PROC 113 REG S3_71, R/W

	7	6	5	4	3	2	1	0
Bit		VDS_EXT_	VB_SP [3:0]		RESERVED	VDS	_EXT_VB_ST	[10:8]

Bit	Name	Function
2-0	VDS_EXT_VB_ST [10:8]	External used vertical blanking start position control bit [10:8] This field is used to program vertical blanking start position, this blanking is for external used.
3	RESERVED	
7-4	VDS_EXT_VB_SP [3:0]	External used vertical blanking stop position control bit [3:0] This field is used to program vertical blanking stop position, this blanking is for external used.

VDS_PROC 114 REG S3_72, R/W

7 6 5 4 3 2 1 0

VDS_SYNC_I
N_SEL

VDS_EXT_VB_SP [10:4]

Bit	Name	Function		
		External used vertical blanking stop position control bit [10:4]		
6-0	6-0 VDS_EXT_VB_SP [10:4]	This field is used to program vertical blanking stop position, this blanking is for external used.		
		VDS module input sync selection control		
7	VDS SYNC IN SEL	When this bit is 1, the sync to VDS module is from external (out of the CHIP);		
	, , , , , , , , , , , , , , , , , , ,	When this bit is 0, the sync to VDS module is from IF module.		

Registers Definition

VDS_PROC 115 REG S3_73, R/W

7 6 5 4 3 2 1 0

Bit VDS_BLUE_UGAIN VDS_BLUE_B VDS_BLUE_RANGE

Bit	Name	Function				
			Blue extend range control bit [2:0] This field defines the range for blue extend.			
		VDS	BLUE_RANGE [2:0)]	Real range	
		0	0	0	1	
		0	0	1	2	
2-0	VDS_BLUE_RANGE	0	1	0	4	
		0	1	1	8	
		1	0	0	16	
		1	0	1	32	
		1	1	0	64	
		1	1	1	128	
3	VDS_BLUE_BYPS		Blue extend bypass control, active high When this bit is 1, the blue extend process will be bypassed			
7-4	VDS_BLUE_UGAIN	This field defines the U	Blue extend U gain control bit [3:0] This field defines the U gain for U component in the area which should do blue extend, its range is (0~1)*16.			

VDS_PROC 116 REG S3_74, R/W

7 6 5 4 3 2 1 0

Bit VDS_BLUE_Y_LEV VDS_BLUE_VGAIN

Bit	Name	Function
3-0	VDS_BLUE_VGAIN	Blue extend V gain control bit [3:0] This field defines the V gain for V component in the area which should do blue extend, its range is (0~1)*16.
7-4	VDS_BLUE_Y_LEV	Blue extend Y level threshold control bit [3:0] This field defines the Y threshold value of blue extend, the real level in the circuit is 16*blue_y_th + 15, the blue extend process done only when Y value larger than this level (real level).

Registers Definition

PIP 00 REG S3_80, R/W

Bit	Name	Function						
_	PIP UV FLIP	422 to 444 conversion UV flip control This bit is used to flip UV, when this bit is 1, UV position will be flipped.						
0	PIP_OV_FLIP	This bit is used to flip UV, v	vhen this bit is 1, UV positi	on will be flipped.				
	DID II DELAY	UV 422 to 444 conversion	u U delay					
1	PIP_U_DELAY	When this bit is 1, U will de	lay 1 clock, otherwise, no	delay for internal pipe.				
_		UV 422 to 444 conversion						
2	PIP_V_DELAY	When this bit is 1, V will de	lay 1 clock, otherwise, no	delay for internal pipe.				
		Tap3 filter in 422 to 444 c	onversion bypass contro	ol, active high				
3	PIP_TAP3_BYPS	This bit is the UV interpolat	ion filter enable control; wh	nen this bit is 1, UV bypass				
		the filter						
		Y compensation delay control bit [1:0] in 422 to 444 conversion						
		To compensation the pipe of UV, program this field can delay Y from 1 to 4 clocks.						
5-4	PIP Y DELAY	PIP_Y_DE	Y delay					
3-4	PIP_1_DELAT	0	0	1				
		0	1	2				
		1	0	3				
		1	1	4				
		PIP 16-bit sub-picture sel						
6	PIP_SUB_16B_SEL	When this bit is 1, select 16-bit sub-picture;						
		When it is 0, select 24-bit sub-picture.						
-	DID DVN DVDC	Dynamic range expansion	n bypass control, active	high				
7	PIP_DYN_BYPS	When this bit is 1, data will bypass the dynamic range expansion process.						

PIP 01 REG S3_81, R/W

	7	6	5	4	3	2	1	0
Bit	PIP_EN		RESERVED		PIP_DREG_B YPS	RESE	RVED	PIP_CONVT_ BYPS

Bit	Name	Function
0	PIP_CONVT_BYPS	YUV to RGB color space conversion bypass control, active high When this bit is 1, YUV data will bypass the YUV to RGB conversion, the output will still be YUV data.
		When this bit is 0, YUV data will do YUV to RGB conversion, the output will be RGB data.
2-1	RESERVED	
		Input data bypass the negedge trigger control, active high
3	PIP_DREG_BYPS	When this bit is 0, input data will triggered by falling edge clock,
		When this bit is 1, the input data will bypass this falling edge clock delay.
6-4	RESERVED	
7	DID EN	PIP enable, active high
<i>'</i>	PIP_EN	When this bit is 1, PIP insertion is enabled, otherwise, no PIP

PIP 02 REG S3_82, R/W

7 6 5 4 3 2 1 0

Bit PIP_Y_GAIN

Bit	Name	Function
0	PIP_Y_GAIN	Y dynamic range expansion gain control bit [7:0] This field contains the Y gain value in dynamic range expansion process, its range is $(0 \sim 2)*128$.

PIP 03 REG S3_83, R/W

7 6 5 4 3 2 1 0

Bit PIP_U_GAIN

Bit	Name	Function
0	PIP_U_GAIN	U dynamic range expansion gain control bit [7:0] This field contains the U gain value in dynamic range expansion process, its range is $(0 \sim 4)$ *64.

PIP 0	PIP 04 REG S3_84, R/W							
	7	6	5	4	3	2	1	0
Bit								

Bit	Name	Function
0	PIP_V_GAIN	V dynamic range expansion gain control bit [7:0] This field contains the V gain value in dynamic range expansion process, its range is $(0 \sim 4)$ *64.

PIP 0	PIP 05 REG S3_85, R/W								
	7	6	5	4	3	2	1	0	
Bit PIP_Y_OFST									

Bit	Name	Function
0	PIP_Y_OFST	Y dynamic range expansion offset control bit [7:0] This field contains the Y offset value in dynamic range expansion process, its range is -128 ~ 127.

PIP 0	16						REG	SS3_86, R/W
	7	0		4	0	0	4	0
		б	5	4	3	2	1	0
Bit PIP_U_OFST								

Bit	Name	Function
0	PIP_U_OFST	U dynamic range expansion offset control bit [7:0] This field contains the U offset value in dynamic range expansion process, its range is -128 ~ 127.

PIP 07 REG S3_87, R/W

	7	6	5	4	3	2	1	0
Bit				PIP_V	_OFST			

Bit	Name	Function
7-0	PIP_V_OFST	V dynamic range expansion offset control bit [7:0] This field contains the V offset value in dynamic range expansion process, its range is -128 ~ 127.

Tvia

PIP C)8						REG	S S3_88, R/W
	7	6	5	4	3	2	1	0
Bit				PIP_H_	_ST [7:0]			
	Bit	Name	Fu	nction				
	0	PIP_H_ST [7:0]	PII Th	P window horiz is field contains	contal start pos the horizontal st	ition control bit art position of F	[7:0] PIP window.	
PIP C)9						REG	S S3_89, R/W
	7	6	5	4	3	2	1	0
Bit		RESER	/ED	PIP_H_ST [11:8]				
	Bit	Name	Fu	ınction				
	3-0 PIP_H_ST [11:8] PIP window horizontal start position control bit [11:8] This field contains the horizontal start position of PIP window.							
	7-4	RESERVED						
		•	•					
PIP 1	0						REG	S3_8A, R/W

PIP_H_SP [7:0]	

Bit	Name	Function
	PIP_H_SP [7:0]	PIP window horizontal stop position control bit [7:0]
U		This field contains the horizontal stop position of PIP window.

PIP 11 REG S3_8B, R/W

	7	6	5	4	3	2	1	0
Bit		RESE	RVED			PIP_H_S	SP [11:8]	

Bit	Name	Function
3-0	PIP_H_SP [11:8]	PIP window horizontal stop position control bit [11:8] This field contains the horizontal stop position of PIP window.
7-4	RESERVED	

Tvia

Bit

PIP_H_SP [10:8]

PIP 1	2						REG	S3_8C, R/\
	7	6	5	4	3	2	1	0
Bit	PIP_V_ST [7:0]							
Bit Name				Function				
	0	PIP_V_ST [7:0]	-	PIP window ver This field contain	rtical start positions the vertical star	on control bit ['t position of Pl	7:0] P window.	
		1						
IP 1	3						REG	S S3_8D, R/
	7	6	5	4	3	2	1	0
Bit			RESERVI	/ED PIP_H_ST [10:8]				
	Bit	Name		Function				
	2-0	PIP_V_ST [10:8]	-	PIP window ver This field contain	rtical start positions the vertical star	on control bit [t position of PII	10:8] P window.	
	7-3	RESERVED	-					
							556	
IP 1	4						REG	S3_8E, R/
	7	6	5	4	3	2	1	0
Bit		PIP_V_SP [7:0]						
	Bit	Name		Function				
0 PIP_V_SP [7:0]			PIP window vertical stop position control bit [7:0] This field contains the vertical stop position of PIP window.					
				This held contain	is the vertical stop	position of PII	r window.	
IP 1	5						RF <i>C</i>	S3_8F, R/

Bit	Name	Function			
2-0	PIP_V_SP [10:8]	PIP window vertical stop position control bit [10:8] This field contains the vertical stop position of PIP window.			
7-3	RESERVED				

6 5
RESERVED

Bit

Chapter 09. OSD REGISTERS

OSD_TOP_00 REG S0_90, R/W

Bit	Name	Function				
0	OSD_SW_RESET	Software reset for module , active high When this bit is 1, it reset osd_top module				
		Osd horizontal zoo	m select			
		OSD_	HORIZONTAL_ZOO	M [2:0]	SIZE	
		0	0	0	Orignal size	
		0	0	1	2	
3-1	OSD HORIZONTAL ZOOM	0	1	0	3	
		0	1	1	4	
		1	0	0	5	
		1	0	1	6	
		1	1	0	7	
		1	1	1	8	
		Osd vertical zoom	select			
		OSD_VI	ERTICAL_ZOOM [1:	0]	SIZE	
	OSD_VERTICAL_ZOOM	0	(0	1	
5-4		0		1	2	
		1	(0	3	
		1 1		1	4	
6	OSD DISP EN	Osd display enable, active high				
		When this bit is 1, osd can display on screen.				
7	OSD_MENU_EN	Osd menu display When this bit is 1, o			e.	

Registers Definition

OSD_TOP_01 REG S0_91, R/W

7 6 5 4 3 2 1 0

Bit OSD_MENU_MOD_SEL OSD_MENU_ICON_SEL

Bit	Name	Function						
		Osd menu icons select						
		OSI	D_MENU_I	CON_SEL [3:0]	Select icon		
		0	0	0	1	Brightness icon		
		0	0	1	0	Contrast icon		
		0	0	1	1	Hue icon		
	OSD_MENU_ICON_SEL	0	1	0	0	Sound icon		
3-0		1	0	0	0	Up/down moving icon		
		1	0	0	1	Left/right moving icon		
		1	0	1	0	Vertical size icon		
		1	0	1	1	Horizontal size icon		
			oth	ers	Reserved, if SEL[3:0] = 4'h0,			
			Oth	ers	Nothing is selected			
		Osd icons						
		OS	D_MENU_N	MOD_SEL [Select icon			
		0	0	0	1	Brightness icon		
		0	0	1	0	Contrast icon		
		0	0	1	1	Hue icon		
		0	1	0	0	Sound icon		
7-4	OSD_MENU_MOD_SEL	1	0	0	0	Up/down moving icon		
		1	0	0	1	Left/right moving icon		
		1	0	1	0	Vertical size icon		
		1	0	1	1	Horizontal size icon		
		others				Reserved , if MOD[3:0] = 4'h0, Nothing is selected		

OSD_TOP_02 REG S0_92, R/W

Bit	Name	Function			
OSD_MENU_BAR_FON		Menu font or bar foreground color.			
2-0	FORCOR	For bar and menu will not display on screen at the same time, so they are shared.			
	OSD_MENU_BAR_FONT_ BGCOR	Menu font or bar background color.			
5-3		For bar and menu will not display on screen at the same time, so they are shared.			
		Menu or bar border color.			
7-6 OSD_MENU_BAR_BORD _COR [1:0]		It is the low 2 bits of menu or bar border color, for bar and menu will not display on screen at the same time, so they are shared.			

OSD_REG_03 REG S0_93, R/W

7 6 5 4 3 2 1 0

Bit OSD_COMMA ND_FINISH OSD_MENU_SEL_BGCOR OSD_MENU_SEL_FORCOR OSD_MENU_B AR_BORD_CO R [2]

Bit	Name	Function
0	OSD_MENU_BAR_BORD_ COR [2]	Menu or bar border color. It is the bit 2 of menu or bar border color.
3-1	OSD_MENU_SEL_FORCO	Selected icon or bar's icon foreground color.
6-4	OSD_MENU_SEL_BGCOR	Selected icon or bar's icon background color.
7	OSD_COMMAND_FINISH	Command finished status WHEN THIS BIT IS 1, IT MEANS CPU HAS FINISHED COMMAND AND HARDWARE CAN EXECUTE THE COMMAND, ELSE HARDWARE WILL DO LAST OPERATION. IN ORDER TO AVOID TEARING, WHEN YOU WANT TO ACCESS OSD, PULL THIS BIT DOWN FIRST AND PULL UP THIS BIT WHEN YOU FINISH PROGRAMMING OSD RESPONDING REGISTERS.

Bit	,	OSD_TE	ST_SEL		OSD_INT_NG_L AT	OSD_YCBCR_ RGB_FORMA	RESERVED	OSD_MENU_
	7	6	5	4	3	2	1	0
OSD	_REG_04						REG	S S0_94, R/W

Bit	Name	Function		
0	OSD_MENU_DISP_STYLE	Menu display in row or column mode. When 1, osd menu displays in row style, else in column style.		
2	OSD_YCBCR_RGB_FORM ATE	YCbCr or RGB output. Osd display in YCbCr or RGB format, when set to 1, display in YCbCr mode		
3	OSD_INT_NG_LAT	V2clk latch osd data with negative enable. When set to 1, V2CLK clock can latch osd data with negative edge		
7-4	OSD_TEST_SEL	Test logic output select. TEST_SEL[0], test logic output enable, when set to 1, test logic can output. TEST_SEL[3:1] select 8 test logics to test bus.		

OSD_	REG_05						REC	G S0_95, R/W
	7	6	5	4	3	2	1	0
Bit				OSD_MENU_	HORI_START			
								•

	Bit	Name	Function
Ī		Menu or bar horizontal start address	
	7-0	OSD_MENU_HORI_START	The real address is { MENU_BAR_HORZ_START [7:0], 3'h0}.

OSD_	REG_06						REC	SO_96, R/W
	7	6	5	4	3	2	1	0
Bit				OSD_MENU_	VER_START			

Bit	Name	Function
7.0	OCD MENU VED CTART	Menu or bar vertical start address
7-0	OSD_MENU_VER_START	The real address is { MENU_BAR_VIRT_START [7:0], 3'h0}.

OSD_	OSD_REG_07 REG S0_97, R/V										
7 6 5 4 3 2 1											
Bit				OSD_BAF	R_LENGTH						
Bit Name Function											
	7-0	OSD_BAR_LENG	гн	BAR DISPLAY T Bar display on sc			ntal zoom is 0.				

OSD_	OSD_REG_08 REG S0_98, R/W										
	7	6	5	4	3	2	1	0			
Bit			osi	D_BAR_FORE	GROUND_VA	LUE					

	Bit Name		Function		
ſ		OCD DAD FOREGROUND	Bar foreground color value.		
	7-0	OSD_BAR_FOREGROUND_ VALUE	The value of this register indicates the real value of icon, such as brightness's		
			value is 8'hf0, then this register is also programmed to 8'hf0.		

Chapter 10. MODE_DETECT REGISTERS

MODE_DET 00 REG S1_60, R/W

7 6 5 4 3 2 1 0

Bit MD_HPERIOD_UNLOCK_VALUE MD_HPERIOD_LOCK_VALUE

Bit	Name	Function	
4-0	MD_HPERIOD_LOCK_VALU	Mode Detect Horizontal Period Lock Value If the continuous stabled line number is equal to the defined value, the horizontal stable indicator will be high	
7-5	MD_HPERIOD_UNLOCK_VA LUE	Mode Detect Horizontal Period Unlock Value If the continuous unstable line number is equal to the defined value, the horizontal stable indicator will be low	

MODE_DET 01 REG S1_61, R/W

7 6 5 4 3 2 1 0

Bit MD_VPERIOD_UNLOCK_VALUE MD_VPERIOD_LOCK_VALUE

Bit	Name	Function
4-0	MD_VPERIOD_LOCK_VALU E	Mode Detect Vertical Period Lock Value If the continuous stabled frame number is equal to the defined value, the vertical stable indicator will be high
7-5	MD_VPERIOD_UNLOCK_VA	Mode Detect Vertical Period Unlock Value If the continuous unstable frame number is equal to the defined value, the vertical stable indicator will be low

Registers Definition

MODE_DET 02 REG S1_62, R/W

7 6 5 4 3 2 1 0

Bit MD_WEN_CNTRL MD_NTSC_INT_CNTRL

Bit	Name	Function					
5-0	MD_NTSC_INT_CNTRL	NTSC Interlace Mode Detect Value If the vertical period number is equal to the defined value, This mode is NTSC Interlace mode					
7-6	MD_WEN_CNTRL	Horizontal Stable The continuous line Range Table: MD_WEN_0 0 0 1					

MODE_DET 03 REG S1_63, R/W

7 6 5 4 3 2 1 0

Bit MD_VS_FLIP MD_HS_FLIP MD_PAL_INT_CNTRL

Bit	Name	Function
5-0	MD_PAL_INT_CNTRL	PAL Interlace Mode Detect Value If the vertical period number is equal to the defined value, This mode is PAL interlace mode
6	MD_HS_FLIP	Input Horizontal sync polarity Control When set it to 1, the input horizontal sync will be inverted.
7	MD_VS_FLIP	Input Vertical sync polarity Control When set it to 1, the input vertical sync will be inverted.

MOD	E_DET 04						REC	G S1_64, R/W
	7	6	5	4	3	2	1	0
Bit	RESERVED			MD_I	NTSC_PRG_C	CNTRL		

Bit	Name	Function
6-0	MD_NTSC_PRG_CNTRL	NTSC Progressive Mode Detect Value If the vertical period number is equal to the defined value, This mode is NTSC progressive mode or VGA 60HZ mode
7	RESERVED	

MODE_DET 05 REG S1_65, R/W

Bit	Name	Function
6-0 MD_VGA_CNTRL VGA Mode Vertical Detect Value If the vertical period number is equal to the defined value, this mode mode, except VGA 60HZ mode.		If the vertical period number is equal to the defined value, this mode is VGA
7	MD_SEL_VGA60	Select VGA 60HZ mode Program this bit to distinguish between VGA 60Hz mode and NTSC progressive mode; When set to 1, select VGA 60Hz mode When set to 0, select NTSC progressive mode

MODE_DET 06 REG S1_66, R/W

7 6 5 4 3 2 1 0

Bit MD_VGA_75HZ_CNTRL

	Bit	Name	Function
Ī	7-0	MD_VGA_75HZ_CNTRL	VGA 75Hz Horizontal Detect Value If the horizontal period number is equal to the defined value, in VGA mode, this mode Is VGA 75Hz mode.

IOD	E_DET	07						REC	S1_67, R
	7		6	5	4	3	2	1	0
Bit					MD_VGA_8	5HZ_CNTRL			
	Bit	Nar	ne		Function				
					VGA 85Hz Horizo				2 A mada thi
	7-0	MD_	_VGA_85HZ_CN	TRL	mode Is VGA 85F	eriod number is e z mode.	equal to the defil	ned value, in VC	JA mode, this
	7-0	MD ₋	_VGA_85HZ_CN	TRL			equal to the defil	ned value, in VC	JA Mode, this
1OD	7-0 E_DET		_VGA_85HZ_CN	TRL			equal to the defil		S S1_68, R
1OD			_VGA_85HZ_CN	TRL 5			equal to the defile		
	E_DET	08			mode Is VGA 85H	z mode.	2		S S1_68, R
1OD Bit	E_DET	08	6		mode Is VGA 85H	z mode.	2		S S1_68, R
	E_DET	08 VED Nar	6	5	mode Is VGA 85H	z mode. 3 D_V1250_VCNT	2 TRL Detect Value		S S1_68, R

 MODE_DET 09
 REG S1_69, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MD_V1250_HCNTRL
 MD

Bit	Name	Function
7.0 MD 1/4	MD V4050 HCNTDI	Vertical 1250 Line Mode Horizontal Detect Value
7-0 MD_V1250_HCNTRL		Vertical 1250 lines, horizontal 866 pixels mode detect value

 MODE_DET 10
 REG S1_6A, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MD_SVGA_60HZ_CNTRL

Bit	Name	Function		
		SVGA 60HZ Mode Horizontal Detect Value		
7-0	MD_SVGA_60HZ_CNTRL	If the horizontal period number is equal to the defined value, in SVGA mode, it's SVGA 60Hz mode.		

MOD	E_DET 1	11							REG	S1_6B, R/W
	7		6	5		4	3	2	1	0
Bit						MD_SVGA	_75HZ_CNTRL			
	D:4	N			 -					
	Bit	Nam	16			ction				
	7-0	MD_	SVGA_75HZ	CNTRL	If the		le Horizontal De eriod number is e e.		ned value, in SV	/GA mode, it's
MOD	E_DET 1	12							REG	S1_6C, R/W
	7		6	5		4	3	2	1	0
Bit							_85HZ_CNTRL			
		1								
	Bit	Nam	ne			ction				
	7-0	MD_	SVGA_85HZ	CNTRL	If the		le Horizontal De eriod number is e e.		ned value, in SV	/GA mode, it's
MOD	E_DET 1	13							REG	S1_6D, R/W
	7		6	5		4	3	2	1	0
Bit	RESER	/ED					MD_XGA_CNTF	RL		
	Bit	Nan	ne		Fund	ction				
	6-0	6-0 MD_XGA_CNTRL			XGA Mode Vertical Detect Value If the vertical period number is equal to the defined value, it's XGA mode.					
	7 RESERVED									
MOD	E_DET 1	14	_				_	_	REG	S1_6E, R/W
	7		6	5		4	3	2	1	0

Bit	Name	Function
		XGA 60Hz Mode Horizontal Detect Value
7-0	7-0 MD XGA 60HZ CNTRL	If the horizontal period number is equal to the defined value, in XGA modes,
		It's XGA 60Hz mode.

MD_XGA_60HZ_CNTRL

Bit

Registers Definition

MOD	E_DET 15						REC	S1_6F, R/W
	7	6	5	4	3	2	1	0
Bit	RESERVED			MD_	XGA_70HZ_CN	ITRL		

Bit	Name	Function
6-0	MD_XGA_70HZ_CNTRL	XGA 70Hz Mode Horizontal Detect Value If the horizontal period number is equal to the defined value, in XGA modes, It's XGA 70Hz mode.
7	RESERVED	

MODE_DET 16 REG S1_70, R/W

7 6 5 4 3 2 1 0

Bit RESERVED MD_XGA_75HZ_CNTRL

Bit	Name	Function
6-0	MD_XGA_75HZ_CNTRL	If the horizontal period number is equal to the defined value, in XGA modes, It's XGA 75Hz mode.
7	RESERVED	

MODE_DET 17 REG S1_71, R/W

7 6 5 4 3 2 1 0

Bit RESERVED MD_XGA_85HZ_CNTRL

Bit	Name	Function
6-0	MD_XGA_85HZ_CNTRL	XGA 85Hz Mode Horizontal Detect Value If the horizontal period number is equal to the defined value, in XGA modes, It's XGA 85Hz mode.
7	RESERVED	

MODE_DET 18 REG S1_72, R/W								
	7	6	5	4	3	2	1	0
Bit	Bit MD_SXGA_CNTRL							
	Bit	Name	Fun	ection				
	7-0	MD_SXGA_CNTRL			ical Detect Valu d number is equ		d value, It's SX0	GA mode.

 MODE_DET 19
 REG S1_73, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 MD_SXGA_60HZ_CNTRL
 ND_SXGA_60HZ_CNTRL
 <

Bit	Name	Function
6-0	MD_SXGA_60HZ_CNTRL	SXGA 60Hz Mode Horizontal Detect Value If the horizontal period number is equal to the defined value, in SXGA modes, It's SXGA 60Hz mode.
7	RESERVED	

 MODE_DET 20
 REG S1_74, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 MD_SXGA_75HZ_CNTRL
 MD_SXGA_75HZ_CNTRL

	Bit	Name	Function
(6-0	MD_SXGA_75HZ_CNTRL	SXGA 75Hz Mode Horizontal Detect Value If the horizontal period number is equal to the defined value, in SXGA modes, It's SXGA 75Hz mode.
	7	RESERVED	

MOD	MODE_DET 21 REG S1_75, R/W							
	7	6	5	4	3	2	1	0
Bit	RESERVED	MD_SXGA_85HZ_CNTRL						

Bit	Name	Function
6-0	MD_SXGA_85HZ_CNTRL	SXGA 85Hz Mode Horizontal Detect Value If the horizontal period number is equal to the defined value, in SXGA modes, It's SXGA 85Hz mode.
7	RESERVED	

MODE_DET 22 REG S1_76, R/W

7 6 5 4 3 2 1 0

Bit RESERVED MD_HD720P_CNTRL

Bit	Name	Function
6-0	MD_HD720P_CNTRL	HD720P Vertical Detect Value If the vertical period number is equal to the defined value, It's HD720P mode.
7	RESERVED	

MODE_DET 23 REG S1_77, R/W

7 6 5 4 3 2 1 0

Bit MD_HD720P_60HZ_CNTRL

Bit	Name	Function
	MD LIDEAGD COLLE CHED	HD720P 60Hz Mode Horizontal Detect Value
7-0	MD_HD720P_60HZ_CNTR	If the horizontal period number is equal to the defined value, in HD720P mode.
	L	It is HD720P 60Hz mode.

MODE_DET 24 REG S1_78,										
	7		6	5	4 3 2 1 0					
Bit MD_HD720P_50HZ_CNTRL					MD_HD720P_50HZ_CNTRL					
	Bit	Name			Function					
	7-0 MD_HD720P_50HZ_CNTR			_CNTR	HD720P 50Hz Mode Horizontal Detect Value If the horizontal period number is equal to the defined value, in HD720P mode. It is HD720P 50Hz mode.					

MOD	E_DET 25						RE(G S1_79, R/W
	7	6	5	4	3	2	1	0
Bit RESERVED MD_HD1125I_CNTRL								

	Bit	Name	Function
Ī	6-0	MD_HD1125I_CNTRL	1080l Mode 1125 Line Vertical Detect Value If the vertical period number is equal to the defined value, It's 1125l mode.
	7	RESERVED	

MODE_DET 26 REG S1_7A, R/W

7 6 5 4 3 2 1 0

Bit MD_HD2200_1125I_CNTRL

Bit	Name	Function
		1080l Mode 2200x1125l Horizontal Detect Value
7-0	7-0 MD_HD2200_1125I_CNTR	If the horizontal period number is equal to the defined value, in 1080l mode.
	L	It is HD2200x1125I mode.

MODE_DET 27 REG S1_7B, R/W

7 6 5 4 3 2 1 0

Bit MD_HD2640_1125I_CNTRL

Bit	Name	Function
		1080I Mode 2640x1125I Horizontal Detect Value
7-0	MD_HD2640_1125I_CNTR L	If the horizontal period number is equal to the defined value, in 1080I mode.
		It is HD2640x1125I mode.

MOD	E_DET 2	28						REG	S1_7C, R/W
	7		6	5	4	3	2	1	0
Bit					MD_HD	1125P_CNTRL			
	Bit	Nam	ne		Function				
	7-0	MD_	HD1125P_CI	NTRL		25 Line Vertical I		Lyalua Itia HD	1125D mode
					ii the vertical pe	riod number is equ	aar to the defined	value, it is no	1125P mode.
MOD	E_DET 2	29						REG	S1_7D, R/W
	7		6	5	4	3	2	1	0
Bit	RESER	/ED			MD	_HD2200_1125P_	CNTRL		
	Bit	Nam	ne		Function				
	6-0	MD_ L	HD2200_112	5P_CNTR	1080P Mode 2200x1125P Horizontal Detect Value If the horizontal period number is equal to the defined value, in 1080P mode, It is HD2200x1125P mode				80P mode,
	7	RES	ERVED						
MOD	E_DET 3	30						REG	S S1_7E, R/W
	7		6	5	4	3	2	1	0
Bit	RESER	/ED			MD	_HD2640_1125P_	CNTRL		
	Bit	Nam	ne		Function				
	6-0	MD_ L	HD2640_112	5P_CNTR		640x1125P Horizo period number is 25P mode			80P mode,
	7	RES	ERVED						
MOD	E_DET 3	31						REG	S1_7F, R/W
	7		6	5	4	3	2	1	0
Bit					MD_HD	1250P_CNTRL			

Bit	Name	Function
		1080P Mode 2376x1250P Vertical Detect Value
7-0	MD_HD1250P_CNTRL	If the vertical period number is equal to the defined value, It is HD2376x1250P mode

Registers Definition

MODI	E_DET 3	32					REG	S1_80, R/W
	7	6	5	4	3	2	1	0
Bit		MD_USER_DEF_VCNTRL						
	Bit	Name	Fun	nction				
	7-0 MD_USER_DEF_VCNTRL User Defined Mode Vertical Detect Value If the vertical period number is equal to the defined value, It is user-defined mode.					r-defined		

MOD	E_DET 33						REC	G S1_81, R/W
	7	6	5	4	3	2	1	0
Bit				MD_USER_D	EF_HCNTRL			

	Bit	Name	Function
•	7-0	MD_USER_DEF_HCNTRL	User Defined Mode Horizontal Detect Value If the horizontal period number is equal to the defined value, It is user-defined mode.

Registers Definition

MODE_DET 34 REG S1_82, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 MD_H_USER_ MD_DET_BYP MD_TIMER_D ID
 MD_TIMER_D MD_SW_USE MD_SW_DET_ MD_NOSYNC ET_EN_H
 MD_NOSYNC ET_EN_H
 MD_NOSYNC ET_EN_H
 MD_USER_ID
 DET_EN

Bit	Name	Function
		Sync Connection Detect Enable
	MD_NOSYNC_DET_EN	Detect the horizontal sync signal if connect or not.
0		0: user mode
		1: auto detect
		Sync Connection Detect User Defined ID
4	MD NOSYNG USED ID	User defined indicator in user mode.
1	MD_NOSYNC_USER_ID	0: sync connected.
		1: no sync connected.
		Mode Switch Detect Enable
2	MD SW DET EN	Enable bit of auto detect if the mode changed or not.
	MD_SW_DET_EN	0: user mode
		1: auto detect
		Mode Switch Detect User Defined ID
3	MD_SW_USER_ID	User defined indicator in user mode.
3		0->1: mode changed.
		1->0: mode changed.
		Horizontal Unstable Estimation Timer Detect Enable
4	MD_TIMER_DET_EN_H	Enable the timer detect result in horizontal unstable estimation.
-	IND_TIMEK_BET_EN_TI	0: use the hstable indicator in hperiod detect.
		1: use the timer detected unstable indicator.
		Vertical Unstable Estimation Timer Detect Enable
5	MD_TIMER_DET_EN_V	Enable the timer detect result in vertical unstable estimation.
	IND_TIMER_BET_ER_V	0: use the vstable indicator in vperiod detect.
		1: use the timer detected unstable indicator.
		Horizontal Unstable Estimation Bypass Control
6	MD DET BYPS H	Bypass the horizontal unstable estimation
	5_521_511 6_11	0: auto mode
		1: user mode
		Horizontal Unstable Estimation User Defined ID
7	MD H USER ID	User defined indicator in user mode.
•		0: stable
		1: unstable

Registers Definition

MODE_DET 35 REG S1_83, R/W

	7	6	5	4	3	2	1	0
Bit	RESE	RVED	М	D_UNSTABLE	_LOCK_VALU	E	MD_V_USER_ ID	MD_DET_BYP S_V

Bit	Name	Function
		Vertical Unstable Estimation Bypass Control
_		Bypass the vertical unstable estimation auto detect
0	MD_DET_BYPS_V	0: auto mode
		1: user mode
		Vertical Unstable Estimation User Defined ID
	MD_V_USER_ID	User defined indicator in user mode.
1		0: stable
		1: unstable
	MD UNIOTABLE LOOK V	Unstable Estimation Lock Value
5-2	MD_UNSTABLE_LOCK_V ALUE	If the internal counter equals the defined value, the unstable indicator will be high. Horizontal and vertical estimation shared this value.
7-6	RESERVED	
7-6	RESERVED	

Chapter 11. ADC REGISTERS

ADC CLK CONTROL 00

REG S5_00, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 ADC_CLK_IC LK_IC LK2X
 ADC_CLK_PLL LK2X
 ADC_CLK_PLL ADC_CLK_PA
 ADC_CLK_PA

Bit	Name	Function
		Clock selection for PA_ADC
		When = 00, PA_ADC input clock is from PLLAD's CLKO2
1-0	ADC_CLK_PA	When = 01, PA_ADC input clock is from PCLKIN
		When = 10, PA_ADC input clock is from V4CLK
		When = 11, reserved
		Clock selection for PLLAD
2	ADC_CLK_PLLAD	When = 0, PLLAD input clock is from sync processor
		When = 1, PLLAD input clock is from OSC
		ICLK2X control
3	ADC_CLK_ICLK2X	When = 0, ICLK2X = ADC output clock
		When = 1, ICLK2X = ADC output clock / 2
		ICLK1X control
4	ADC_CLK_ICLK1X	When = 0, ICLK1X = ICLK2X
		When = 1, ICLK1X = ICLK2X /2
7.5	DESERVED	Reserved
7-5	RESERVED	

ADC CONTROL 00 REG S5_02, R/W

7 6 5 4 3 2 1 0

Bit ADC_INPUT_SEL ADC_SOGCTRL ADC_SOGEN

Bit	Name	Function		
0	ADC_SOGEN ADC_SOGEN When = 0, ADC disable SOG mode When = 1, ADC enable SOG mode			
5-1	ADC_SOGCTRL	SOG control signal		
7-6	ADC_INPUT_SEL	ADC input selection When = 00, R0/G0/B0/SOG0 as input When = 01, R1/G1/B1/SOG1 as input When = 10, R2/G2/B2 as input When = 11, reserved		

ADC CONTROL 01 REG S5_03, R/W

	7	6	5	4	3	2	1	0	
Bit	RESE	RVED	ADC_F	LTR	ADC_RYSEL _B	ADC_RYSEL_ G	ADC_RYSEL_ R	ADC_POWDZ	

Bit	Name	Function
		ADC power down control
0	ADC_POWDZ	When = 0, ADC in power down mode
		When = 1, ADC work normally
		Clamp to ground or midscale for R ADC
1	ADC_RYSEL_R	When = 0, clamp to GND
		When = 1, clamp to midscale
		Clamp to ground or midscale for G ADC
2	ADC_RYSEL_G	When = 0, clamp to GND
		When = 1, clamp to midscale
		Clamp to ground or midscale for B ADC
3	ADC_RYSEL_B	When = 0, clamp to GND
		When = 1, clamp to midscale
		ADC internal filter control
		When = 00, 150MHz
5-4	ADC_FLTR	When = 01, 110MHz
		When = 10, 70MHz
		When = 11, 40MHz
7-6	RESERVED	Reserved
7-0	ILOLINALD	

ADC CONTROL 02 REG S5_04, R/W

	7	6	5	4	3	2	1	0
Bit		RESERVED			ADC_TR_ISE	L	ADC_T	R_RSEL

Bit	Name	Function
1-0	ADC_TR_RSEL	REF test resistor selection
4-2	ADC_TR_ISEL	REF test currents selection
7-5	RESERVED	

ADC	CONTROL	03					REC	G S5_05, R/W
	7	6	5	4	3	2	1	0
Bit		RESERVED			ADC_T	A_CTRL		ADC_TA_EN

Bit	Name	Function
		ADC test enable
0	ADC_TA_EN	When = 0, ADC work normally
		When = 1, ADC is in test mode
4-1	ADC TA CTRL	ADC test bus control bit
4-1	ADC_IA_CIRL	
7-5	RESERVED	Reserved
7-5	RESERVED	

ADC	CONTROL	04					REC	G S5_06, R/W
	7	6	5	4	3	2	1	0
Bit	RESERVED				ADC_ROFCTR	L		

Bit	Name	Function
6-0	ADC_ROFCTRL	Offset control for R channel of ADC
7	RESERVED	Reserved

ADC	CONTROL)5					REC	S5_07, R/W
	7	6	5	4	3	2	1	0
Bit	RESERVED				ADC_GOFCTRI	L		

Bit	Name	Function
6-0	ADC_GOFCTRL	Offset control for G channel of ADC
7	RESERVED	Reserved

ADC	CONTR	ROL	06							RE	G S5_08	3, R/W
	7		6	5		4	3		2	1	0	
Bit	RESER	VED					ADC_BO	FCTRL				
	Bit	Nar	ne		Functio	n						
	6-0	ADO	C_BOFCTRL		Offset co	ontrol fo	or B chann	el of ADC				
	7	RES	SERVED		Reserve	d						
					l							
ADC	CONTR	ROL	 07							RE	G S5_09	9, R/W
	7		6	5		4	3		2	1	0	
Bit			-	-			RGCTRL					
	Bit	Nar	me .		Functio	'n						
	7-0	-	C_RGCTRL				R channe	of ADC				
	CONT	201	00									D//4
ADC	CONT	ROL	08							RE	G S5_0 <i>A</i>	4, R/VV
D :	7		6	5		4	3		2	1	0	
Bit						ADC_	GGCTRL					
	Bit	Nar	ne		Functio	n						
	7-0	ADO	C_GGCTRL		Gain cor	ntrol for	G channe	of ADC				
!					•							
ADC	CONTR	ROL	09							RE	G S5_0E	3, R/W
	7		6	5		4	3		2	1	0	
Bit						ADC_	BGCTRL					

Bit

7-0

Name

ADC_BGCTRL

Gain control for B channel of ADC

Function

ADC CONTROL 10 REG S5_0C, R/W

	7	6	5	4	3	2	1	0
Bit		RESERVED			ADC_			ADC_CKBS

Bit	Name	Function
0	ADC_CKBS	ADC output clock invert control When = 0, default When = 1, ADC output clock will be invert
4-1	ADC_TEST	For ADC test reserved
7-5	RESERVED	Reserved

ADC AUTO_OFST 00 REG S5_0E, R/W

	7	6	5	4	3	2	1	0
Bit	ADC_AUTO_O FST_TEST	RESERVED	ADC_AUTO_0	OFST_STEP	ADC_AUTO_	OFST_DELAY	ADC_AUTO_O FST_PRD	ADC_AUTO_O FST_EN

Bit	Name	Function
0	ADC_AUTO_OFST_EN	Auto offset adjustment enable When = 0, auto offset adjustment disable When = 1, auto offset adjustment enable
1	ADC_AUTO_OFST_PRD	Offset adjustment by frame When = 0, offset adjustment by frame When = 1, offset adjustment by line
3-2	ADC_AUTO_OFST_DELAY	Horizontal sample delay control When = 00, offset adjustment horizontal sample delay 1 pipe When = 01, offset adjustment horizontal sample delay 2 pipe When = 10, offset adjustment horizontal sample delay 3 pipe When = 11, offset adjustment horizontal sample delay 4 pipe
5-4	ADC_AUTO_OFST_STEP	Offset adjustment step control When = 00, offset adjustment by absolute difference. When = 01, offset adjustment by 1 When = 10, offset adjustment by 2 When = 11, offset adjustment by 3
6	RESERVED	Reserved
7	ADC_AUTO_OFST_TEST	Auto offset adjustment test control

ADC AUTO_OFST 01 REG S5_0F, R/W

7 6 5 4 3 2 1 0

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 ADC_AUTO_OFST_V_RANGE

 ADC_AUTO_OFST_U_RANGE

Bit	Name	Function
3-0	ADC_AUTO_OFST_U_RANGE	U channel offset detection range Define U channel offset detection range 0~15
7-4	ADC_AUTO_OFST_V_RANGE	V channel offset detection range Define V channel offset detection range 0~15

PLLAD CONTROL 00 REG S5_11, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 PLLAD_LAT
 PLLAD_BPS
 PLLAD_FS
 PLLAD_PDZ
 PLLAD_TS
 PLLAD_TEST
 PLLAD_LEN
 PLLAD_VCOR ST

Bit	Name	Function				
0	PLLAD VCORST	VCORST				
•	TEEAD_VOOROT	Initial VCO control voltage				
1	PLLAD LEN	LEN				
'	I ELAD_EEN	Enable signal for clock				
2	PLLAD TEST	TEST				
	TELAD_TEST	Test clock selection				
3	PLLAD_TS	TS				
3	I LEAD_13	Test clock selection and HSL clock selection				
		PDZ				
4	PLLAD_PDZ	When = 0, PLLAD is power down mode				
		When = 1, PLLAD work normally				
		FS, VCO gain selection				
5	PLLAD_FS	When = 0, default				
		When = 1, high gain selected				
		BPS				
6	PLLAD_BPS	When = 0, default				
		When = 1, bypass input clock to CKO1 and CKO2				
		Latch control for PLLAD control				
7	PLLAD_LAT	This bit's rising edge is used to trigger PLLAD control bit: ND, MD, KS, CKOS,				
		ICP				

PLLA	D COV	ITROL 01					REG	S5_12, R/W
	7	6	5	4	3	2	1	0
Bit				PLLAD	_MD [7:0]			
	Bit	Name	Fu	unction				
	7-0 PLLAD_MD [7:0] MD[7:0] PLLAD feedback divis				divider control			
PLLA	D CON	ITROL 02					REG	5 S5_13, R/W
	7	6	5	4	3	2	1	0
Bit		RESERV	ED			PLLAD_N	MD [11:8]	
	Bit	Name	Fu	ınction				
	3-0	PLLAD_MD [11:8]	MI PL	D[11:8] LAD feedback	divider control			
	7-4	RESERVED	Re	eserved				
PLLA	D COV	ITROL 03					REG	S5_14, R/W
	7	6	5	4	3	2	1	0
Bit				PLLAD	O_ND [7:0]			
	Bit	Name	Fu	ınction				
	7-0	PLLAD_ND [7:0]		D[7:0] LAD input divid	der control			
PLLA	D COV	ITROL 04					REG	S5_15, R/W
		1110201						
			5	4	3	2		
Bit	7	6 RESERV	5 ED	4	3	2 PLLAD_I	1	0
Bit		6	ED	4 unction	3		1	
Bit	7	6 RESERV	ED Fu				1	

PLLAD CONTROL 05 REG S5_16, R/W

	7	6	5	4	3	2	1	0
Bit	PLLAD_	_CKOS	PLLAD	D_KS	PLL	AD_S	PLLA	AD_R

Bit	Name	Function							
1-0	PLLAD_R	R Skew control for testing							
3-2	PLLAD_S	Skew control for testing							
5-4	PLLAD_KS	VCO post divider control, it is determined by CKO frequency When = 00, divide by 1 (162MHz~80MHz) When = 01, divide by 2 (80MHz~40MHz) When = 10, divide by 4 (40MHz~20MHz) When = 11, divide by 8 (20MHz~min MHz)							
			output clock sele		1				
		PLLAD_KS	PLLAD_CKOS 00	CKO2 freq / CKO1 freq					
		00	01	1/2					
			10	1/4					
			11	1/8					
			00	2					
		01	01	1					
7-6	PLLAD_CKOS		10	1/2					
			11	1/4					
			00	4					
		10	01	2					
			10	1					
			11	1/2					
			00	8					
		11	01	4					
			10	2					
			11	1					

PLLAD CONTROL 06 REG S5_17, R/W

	7	6	5	4	3	2	1	0
Bit			RESERVED				PLLAD_ICP	

Bit	Name	Function
2-0	PLLAD_ICP	ICP
7-3	RESERVED	Reserved

PA_ADC CONTROL 00 REG S5_18, R/W

	7	6	5	4	3	2	1	0
Bit	PA_ADC_LAT	PA_ADC_LOC KOFF			PA_ADC_S			PA_ADC_BYP SZ

Bit	Name	Function
0	PA_ADC_BYPSZ	BYPSZ, PA for ADC bypass control
		When = 0, PA_ADC is bypass
		When = 1, PA_ADC work normally
5-1	PA_ADC_S	PA_ADC phase control
6	PA_ADC_LOCKOFF	LOCKOFF
		When = 0, default
		When = 1, PA_ADC lock circuit disable
7	PA_ADC_LAT	PA_ADC latch signal
		This bit's rising edge is used to trigger PA_ADC_CNTRL_[5:1]

PA_S	YNC PROC	CONTROL C	00				REC	S5_19, R/W
	7	6	5	4	3	2	1	0
								- 4

	7	6	5	4	3	2	1	0
Bit	PA_SP_LAT	PA_SP_LOCK OFF			PA_SP_S			PA_SP_BYPS Z

Bit	Name	Function		
		BYPSZ, PA for PLLAD bypass control		
0	PA_SP_BYPSZ	When = 0, PA_PLLAD is bypass		
		When = 1, PA_PLLAD work normally		
5-1	PA SP S	PA_PLLAD phase control		
3-1	FA_SF_S			
		LOCKOFF		
6	PA_SP_LOCKOFF	When = 0, default		
		When = 1, PA_PLLAD lock circuit disable		
7	PA SP LAT	PA_PLLAD latch signal		
	FA_SF_LAT	This bit's rising edge is used to trigger PA_PLLAD_CNTRL_[5:1]		

DEC_REG_00 REG S5_1E, R/W

Bit	Name	Function
6-0	RESERVED	
7	DEC_WEN_MODE	Write enable mode enable. When this bit is 1, then decimator will drop data by write enable signal generated by horizontal sync, else write enable is not used.

TRUEVIEW5725

Registers Definition

DEC_REG_01 REG S5_1F, R/W

	7	6	5	4	3	2	1	0
Bit	DEC_IDREG_ EN		DEC_TES	ST_SEL		DEC_MATRIX _BYPS	DEC2_BYPS	DEC1_BYPS

Bit	Name	Function	
0	DEC1_BYPS	The 4x to 2x decimator bypass enable When 1, the 4x to 2x decimator bypass.	
1	The 2x to 1x decimator bypass enable When 1, the 2x to 1x decimator hypass.		
2	DEC_MATRIX_BYPS	Color space convert bypass enable When set to 1, color space convert module bypass.	
6-3	DEC_TEST_SEL	Test logic output select. DEC_TEST_SEL[0], test logic output enable, when set to 1, test logic can output. DEC_TEST_SEL[3:1] select 8 test logics to test bus.	
7	DEC_IDREG_EN	Negative clock edge latch input hsync and vsync enable When set to 1, decimator 4x clock will latch HSYNC and VSYNC with falling edge.	

Chapter 12. SYNC_PROC REGISTERS

SYNC_PROC 00 REG S5_20, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 SP_JITTER_S SP_EXT_SYN SP_SOG_P_INSP_SOG_P_A SP_SOG_SRC YNC
 C_SEL
 V
 TO
 SP_SOG_SRC SEL

Bit	Name	Function
0	SP_SOG_SRC_SEL	sog_src_sel Sog signal source select. 0: from ADC. 1: select hs as sog source.
1	SP_SOG_P_ATO	sog_p_ato sog auto correct polarity
2	SP_SOG_P_INV	Sog invert Invert sog.
3	SP_EXT_SYNC_SEL	Ext 2 set Hs_Hs select
4	SP_JITTER_SYNC	Sync using both rising and falling trigger Use falling and rising edge to sync input Hsync
7-5	RSERVED	

SYNC_PROC 01 REG S5_21, R/W

7 6 5 4 3 2 1 0

Bit SP_SYNC_TGL_THD

Bit	Name	Function
7-0	SP_SYNC_TGL_THD	h active detect control
		Sync toggle times threshold

SYNC	C_PROC	02				REG S	S5_22, R/W	
	7	6	5 4	3	2	1	0	
Bit	SP_L_DLT_REG							
· [D.,	N						
•	Bit	Name	Function h active detect cor	ntrol				
	7-0	SP_L_DLT_REG	Sync pulse width di	fferent threshold	(little than this as	s equal).		
CV/NC	2 DD00	. 02				DEC	CE 22 D/M	
SYNC	C_PROC	. 03				REG	S5_23, R/W	
ſ	7	6 5		3	2	1	0	
Bit			RESE	RVED				
	Bit	Name	Function					
	7-0	RESERVED						
Į								
SYNC	C_PROC	04				REG S	S5_24, R/W	
	7	6 5	5 4	3	2	1	0	
Bit			SP_T_DL1	T_REG [7:0]				
[Τ						
	Bit	Name	Function					
	7-0	SP_T_DLT_REG [7:0]		H active detect control H total width different threshold				
SYNC	C_PROC	05				REG S	S5_25, R/W	
	7	6 5	5 4	3	2	1	0	
Bit		RESERVED			SP_T_DLT_F	REG [11:8]		
آ		Ι						
	D:4							

Function

H active detect control

H total width different threshold

Bit

3-0

7-4

Name

RESERVED

SP_T_DLT_REG [11:8]

SYNC	_PROC	06			REC	G S5_26, R/W	
	7	6 5	4 3	2	1	0	
Bit	Bit SP_SYNC_PD_THD [7:0]						
- -							
	Bit	Name	Function				
-	- a		H active detect control				
	7-0	SP_SYNC_PD_THD [7:0]	H sync pulse width threshold				

 SYNC_PROC 07
 REG S5_27, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 SP_SYNC_PD_THD [11:8]

Bit	Name	Function
3-0	SP_SYNC_PD_THD [11:8]	H active detect control H sync pulse width threshold
7-4	RESERVED	

 SYNC_PROC 08
 REG S5_2A, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 SP_PRD_EQ_THD

Bit	Name	Function
7-0	I ED DDN EN TUN	H active detect control
		How many continue legal line as valid

SYNC_PROC 09 REG S5_2D, R/W

7 6 5 4 3 2 1 0

Bit SP_VSYNC_TGL_THD

Bit	Name	Function
7.0	CD VCVNC TOL TUD	V active detect control
7-0	SP_VSYNC_TGL_THD	V sync toggle times threshold

SYNO	C_PROC	10				RE	EG S5_2E, R/W
	7	6 5	4	3	2	1	0
Bit			SP_SYNC_WI	DTH_DTHD			
			T				
	Bit	Name	Function V active detect con	tral			
	7-0	SP_SYNC_WIDTH_DTHD	V sync pulse width the				
•							
C) (1) (D.	
SYNC	C_PROC	- 11				RE	EG S5_2F, R/W
	7	6 5	4	3	2	1	0
Bit			SP_V_PRD_	_EQ_THD			
	Bit	Name	Function				
	7-0	SP_V_PRD_EQ_THD	V active detect con				
	1-0	OI_V_I NO_EQ_IIID	How many continue	legal v sync as	valid		
SYNO	C_PROC	12				RE	EG S5_31, R/W
SYNO			4	3	2		
SYNO	C_PROC	6 5	4 SP_VT_DI	3 _T_REG	2	RE 1	EG S5_31, R/W
					2		
			SP_VT_DI	T_REG	2		
	7	6 5	SP_VT_DI	_T_REG	2		
	7 Bit	6 5	SP_VT_DI Function v active detect con	_T_REG	2		
Bit	7 Bit 7-0	6 5 Name SP_VT_DLT_REG	SP_VT_DI Function v active detect con	_T_REG	2		
Bit	7 Bit	6 5 Name SP_VT_DLT_REG	SP_VT_DI Function v active detect con	_T_REG	2	1	
Bit	7 Bit 7-0	6 5 Name SP_VT_DLT_REG	Function v active detect con V total different three	_T_REG	2	1	0 EG S5_32, R/W
Bit	7 Bit 7-0	6 5 Name SP_VT_DLT_REG	Function v active detect con V total different three	trol		1 RE	0 EG S5_32, R/W 0 SP_VSIN_INV
Bit SYN0	7 Bit 7-0	6 5 Name SP_VT_DLT_REG	Function v active detect con V total different three	trol		1 RE	0 EG S5_32, R/W
Bit SYN0	7 Bit 7-0	6 5 Name SP_VT_DLT_REG	Function v active detect con V total different thres 4 RESERVED	trol shold		1 RE	0 EG S5_32, R/W 0 SP_VSIN_INV
Bit SYN0	7 Bit 7-0 C_PROC	6 5 Name SP_VT_DLT_REG 13 6 5	Function v active detect con V total different three 4 RESERVED Function V active detect con	trol shold	2	1 RE	0 EG S5_32, R/W 0 SP_VSIN_INV
Bit SYN0	7 Bit 7-0 C_PROC	Name SP_VT_DLT_REG 13 6 5	Function v active detect con V total different thres 4 RESERVED	trol shold	2	1 RE	0 EG S5_32, R/W 0 SP_VSIN_INV

SYNO	C_PROC	14					REC	G S5_33, R/W
	7	6	5	4	3	2	1	0
Bit				SP_H_TI	MER_VAL			
	Bit	Name		Function				
	7-0	SP_H_TIMER_VAL		Timer value conti				
	7-0	OI_II_IIMEN_VAL		H timer value for h	detect			
SYNC	C_PROC	15					REC	G S5_34, R/W
	7	6	5	4	3	2	1	0
Bit				SP_V_TI	MER_VAL			
	Bit	Name		Function				
	7-0	SP_V_TIMER_VAL		Timer value control V timer for V detect				
				V annot for V dotte	•			
SYNC	C_PROC	16					REC	G S5_35, R/W
	7	6	5	4	3	2	1	0
Bit				SP_DLT_	REG [7:0]			
	Bit	Name		Function				
	7-0	SP_DLT_REG [7:0]		Sync separation Sync pulse width	control	ashald		
ļ				Syric puise width	difference time	251101U		
SYNO	C_PROC	17					REC	S5_36, R/W
	7	6	5	4	3	2	1	0
Bit		RESERV	ΕD			SP_DLT_RE	:6 [11:8]	
	Bit	Name		Function				
	3-0	SP_DLT_REG [11:8]		Sync separate of MSB for sync pull	se width differ	ence compare valu	e	
	7-4	RESERVED				<u> </u>		

SYNC	C_PROC	18	REG S5_37, R/W					
	7	6 5	4 3 2 1 0					
Bit			SP_H_PULSE_IGNOR					
	Bit	Name	Function					
	7-0	SP_H_PULSE_IGNOR	Sync separation control H pulse less than this value will be ignore this counter is start when sync large different					
SYNO	C_PROC	19	REG S5_38, R/W					
31110	<u> </u>		NEG 33_30, NW					
	7	6 5	4 3 2 1 0					
Bit			SP_PRE_COAST					
	Bit	Name	Function					
			Sync separation control					
	7-0	SP_PRE_COAST	Set the coast will valid before vertical sync (line number)					
SYNC	C_PROC	20	REG S5_39, R/W					
	7	6 5	4 3 2 1 0					
Bit			SP_POST_COAST					
i		I						
	Bit	Name	Function					
	7-0	SP_POST_COAST	Sync separation control When line cnt reach this value coast goes down					
			Whom and one reach the value coast goes down					
SYNC	C_PROC	21	REG S5_3A, R/W					
D:4	7	6 5	4 3 2 1 0					
Bit			SP_H_TOTAL_EQ_THD					
Ī								
	Bit	Name	Function					

SYNC_PROC 22 REG S5_3B, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	SP_S	SDCS_VSSP_RE	G_H	RESERVED	SP_S	DCS_VSST_R	EG_H

Bit	Name	Function
2-0	SP_SDCS_VSST_REG_H	Sync separation control High bit of SD vs. start position
3	RESERVED	
6-4	SP_SDCS_VSSP_REG_H	Sync separation control High bit of SD vs. stop position
7	RESERVED	

SYNC_PROC 23 REG S5_3E, R/W

	7 6	5	4	3	2	1	0
Bit	RESERVED	SP_DIS_SUB_ COAST	SP_H_PROTE CT	SP_CS_INV_R EG	SP_H_COAST	SP_HD_MODE	SP_CS_P_SW AP

Bit	Name	Function
0	SP_CS_P_SWAP	Sync separation control cs_p_swap cs edge reference select default rising edge
1	SP_HD_MODE	hd_mode 1: HD mode 0: SD mode
2	SP_H_COAST	h_coast 1: with sub coast out
3	SP_CS_INV_REG	cs_inv_reg cs input invert
4	SP_H_PROTECT	H count overflow protect
5	SP_DIS_SUB_COAST	Disable sub coast
7-6	RESERVED	

SYNC	C_PROC	24					REG	S5_3F, R/W	
	7	6	5	4	3	2	1	0	
Bit				SP_SDCS_V					
1									
	Bit	Name		Function					
	7-0	SP_SDCS_VSST_REG	_L	Sync separation of SD vs. start position	n				
·									
SYNC	C_PROC	25					REG	S5_40, R/W	
	7	6	5	4	3	2	1	0	
Bit		0		SP_SDCS_V		2		J	
	Bit	Name		Function					
	7-0	SP_SDCS_VSSP_REG	i_L	Sync separation of SD vs. stop position					
SYNC	C_PROC	26					REG	S5_41, R/W	
	7	6	5	4	3	2	1	0	
Bit				SP_CS_CL	.P_ST [7:0]				
	Bit	Name		Function					
	7-0	SP_CS_CLP_ST [7:0]		Sync separation of SOG clamp start po					
				or or order product pr					
SYNO	C_PROC	27					REG	S5_42, R/W	
	7	6	5	4	3	2	1	0	
Bit		RESERVE	D			SP_CS_CLP	_ST [11:8]		
	Bit	Name		Function					
	טונ	Hallic							
	3-0	SP_CS_CLP_ST [11:8]	l	SOG clamp start po					
	7-4	RESERVED							

SYNC	_PROC	28					REG	S5_43, R/V
	7	6	5	4	3	2	1	0
Bit				SP_CS_CL	P_SP [7:0]			
Ī	Bit	Name		Function				
	7-0	SP_CS_CLP_SP [7	:0]	Sync separation of SOG clamp stop po				
_								
SYNC	_PROC	: 29					REG	S5_44, R/\
	7	6	5	4	3	2	1	0
Bit		RESE	RVED			SP_CS_CLP	P_SP [11:8]	
	Bit	Name		Function				
	3-0	SP_CS_CLP_SP [1	1:8]	Sync separation of SOG clamp stop po	control osition MSB			
	7-4	RESERVED						
L								
SYNC	_PROC	30					REG	S5_45, R/\
	7	6	5	4	3	2	1	0
Bit				SP_CS_H	S_ST [7:0]			
	Bit	Name		Function				

Bit	Name	Function
		Sync separation control
7-0	SP_CS_HS_ST [7:0]	If the horizontal period number is equal to the defined value, in XGA modes,
		It's XGA 75Hz mode.

 SYNC_PROC 31
 REG S5_46, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 SP_CS_HS_ST [11:8]

Bit	Name	Function
3-0	SP_CS_HS_ST [11:8]	Sync separation control SOG HS start position MSB
7-4	RESERVED	

SYNC	C_PROC	32				REG	S5_47, R/W
	7	6 5	4	3	2	1	0
Bit			SP_CS_H	S_SP [7:0]			
	Bit	Name	Function				
			Sync separation	control			
	7-0	SP_CS_HS_SP [7:0]	SOG hs stop posit	on			
SYNC	C_PROC	34				REG	S5_48, R/W
	7	6 5	4	3	2	1	0
Bit		RESERVED	•		SP_CS_HS		
	Bit	Name	Function				
	3-0	SP_CS_HS_SP [11:8]	Sync separation of SOG hs stop positions				
	7-4	RESERVED					
•							
SYNO	C_PROC	: 35				RFG	S5_49, R/W
<u> </u>				0	0		
Bit	7	6 5	4 SD DT U	3 S_ST [7:0]	2	1	0
ы			3F_K1_H	3_31 [7.0 <u>]</u>			
	Bit	Name	Function				
	7-0	SP_RT_HS_ST [7:0]	Retiming control Retiming hs start p	osition			
SYNO	C_PROC	36				REG	S5_4A, R/W
			4	2	0		
Bit	7	6 5 RESERVED	4	3	2 SP_RT_HS	1 S ST [11:8]	0
	Bit	Name	Function				
	3-0	SP_RT_HS_ST [11:8]	Retiming control Retiming hs start p	osition MSB			
	Retirring to start position wob						

7-4

RESERVED

SYNC	C_PROC	37					RFG	S5_4B, R/W	
01110			-		0	0			
D:4	7	6	5	4 CD DT 11	3	2	1	0	
Bit				5P_K1_H	S_SP [7:0]				
	Bit	Name		Function					
ļ	7-0	SP_RT_HS_SP [7:0]		Retiming control Retiming hs stop p	ostion				
SYNC	C_PROC	38					REG	S5_4C, R/W	
	7	6	5	4	3	2	1	0	
Bit	RESERVED					SP_RT_HS	_SP [11:8]		
	Bit	Name		Function					
	3-0	SP_RT_HS_SP [11:	B]	Retiming control Retiming hs stop p					
	7-4	RESERVED							
SYNC	C_PROC	39					REG	S5_4D, R/W	
	7	6	5	4	3	2	1	0	
Bit				SP_H_CS	T_ST [7:0]				
	Bit	Name		Function					
	7-0	SP_H_CST_ST [7:0]		Retiming control H coast start positi	on (total-this va	lue)			
Į				1				<u> </u>	

	7	6	5	4	3	2	1	0
Bit		RESI	ERVED			SP_H_CS1	Γ_ST [11:8]	
•								

Bit	Name	Function
3-0	SP_H_CST_ST [11:8]	Retiming control H coast start position (total-this value)
7-4	RESERVED	

SYNC_PROC 40

REG S5_4E, R/W

SYNC	_PROC	2 41						REC	S5_4F, R/W
	7		6	5	4	3	2	1	0
Bit					SP_H_CS	Γ_SP [7:0]			
	Bit	Name			Function				
	7-0	SP_H_	CST_SP [7:0)]	Retiming control H coast stop position	on			
L									
SYNC	C_PROC	2 42						REG	S5_50, R/W

	7	6	5	4	3	2	1	0
Bit		RESE	RVED			SP_H_CS	T_SP [3:0]	

Bit	Name	Function
3-0	SP_H_CST_SP [11:8]	Retiming control H coast stop position MSB
7-4	RESERVED	

 SYNC_PROC 43
 REG S5_51, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 SP_RT_VS_ST [7:0]

Bit	Name	Function
7.0	SD DT VS ST [7:0]	Retiming control
7-0	SP_RT_VS_ST [7:0]	Retiming vs start position

SYNC_PROC 44 REG S5_52, R/W

7 6 5 4 3 2 1 0

Bit RESERVED SP_RT_VS_ST [11:8]

Bit	Name	Function
3-0	SP_RT_VS_ST [11:8]	Retiming control Retiming vs start position MSB
7-4	RESERVED	

SYNO	SYNC_PROC 45 REG S5_53, R/W									
	7	6	5	4	3	2	1	0		
Bit	it SP_RT_VS_SP [7:0]									
	D:4	Nama		Fetian						
	Bit	Name		Function						
	7-0 SP_RT_VS_SP [7:0] Retiming control Retiming vs stop position									

 SYNC_PROC 46
 REG S5_54, R/W

 7
 6
 5
 4
 3
 2
 1
 0

 Bit
 RESERVED
 SP_RT_VS_SP [11:8]

Bit	Name	Function
2-0	SP_RT_VS_SP [11:8]	Retiming control Retiming vs stop position MSB
7-3	RESERVED	

SYNC_PROC 47 REG S5_55, R/W

	7	6	5	4	3	2	1	0
Bit	SP_HCST_AU TO_EN	SP_VS_POL_ ATO	SP_VS_INV_R EG	SP_HS_POL_ ATO	SP_HS_INV_R EG	SP	_HS_EP_DLY	_SEL

Bit	Name	Function
2-0	SP_HS_EP_DLY_SEL	Retiming control
2-0	SP_H3_EP_DLT_SEL	Hs pulse delay sel for (sync with vs)
_	CD LIC INV DEC	Retiming control
3	SP_HS_INV_REG	hs_inv_reg inver hs to retimming module
4	4 SP_HS_POL_ATO	Retiming control
4		hs auto correct in retiming module.
_	00 V0 INV DEC	Retiming control
5	SP_VS_INV_REG	vs inv_reg invert hs to retiming module
_	CD VC DOL ATO	Retiming control
6	SP_VS_POL_ATO	vs auto correct in retiming module
_	OR HOOT AUTO EN	Retiming control
/	SP_HCST_AUTO_EN	If enable h coast will start at (V total - hcst_st)

TRUEVIEW5725

Registers Definition

SYNC_PROC 48 REG S5_56, R/W

7 6 5 4 3 2 1 0

Bit | SP_CLAMP_I | SP_VS_PROC | SP_HS_PROC | SP_SYNC_BY | SP_CLP_SRC | SP_CLAMP_M | SP_HS2PLL_I | SP_SOG_MO |
NV_REG | INV_REG | INV_REG | DE

Bit	Name	Function
0	SP_SOG_MODE	Out control 1: SOG mode; 0: normal mode
1	SP_HS2PLL_INV_REG	Out control When =1, HS to PLL invert
2	SP_CLAMP_MANUAL	Out control 1: clamp turn on off by control by software (default) 0: for test
3	SP_CLP_SRC_SEL	Out control Clamp source select 1: pixel clock generate 0: 27Mhz clock generate
4	SP_SYNC_BYPS	Out control External sync bypass to decimator
5	SP_HS_PROC_INV_REG	Out control HS to decimator invert
6	SP_VS_PROC_INV_REG	Out control VS to decimator invert
7	SP_CLAMP_INV_REG	Out control Clamp to ADC invert

SYNC_PROC 49 REG S5_57, R/W

	7	6	5	4	3	2	1	0
Bit	SP_HS_REG	SP_HS_LOOP _SEL	RESE	RVED	SP_COAST_V ALUE_REG	SP_NO_COAS T_REG	SP_COAST_I NV_REG	SP_NO_CLAM P_REG

Bit	Name	Function
0	SP_NO_CLAMP_REG	Out control Clamp always be 0
1	SP_COAST_INV_REG	Out control Coast invert
2	SP_NO_COAST_REG	Out control Coast always be REG S5_57[3]
3	SP_COAST_VALUE_REG	Out control Coast use 1x clk generate
5-4	RESERVED	Out control
6	SP_HS_LOOP_SEL	Out control Bypass PLL HS to 57 core
7	SP_HS_REG	Out control When sub_coast enable will select this value

SYNC_PROC 50 REG S5_58, R/W

7 6 5 4 3 2 1 0

Bit SP_HT_DIFF_REG [7:0]

В	Bit	Name	Function
7		SP_HT_DIFF_REG [7:0]	Auto clamp control
/-	'-0		H total difference less this value as valid for auto clamp enable control

SYNC_PROC 51 REG S5_59, R/W

7 6 5 4 3 2 1 0

Bit RESVERD SP_HT_DIFF_REG [11:8]

Bit	Name	Function
3-0	SP_HT_DIFF_REG [11:8]	Auto clamp control H total difference less this value as valid for auto clamp enable control
7-4	RESERVED	

SYNC	SYNC_PROC 52 REG S5_5A, R/W								
	7	6	5	4	3	2	1	0	
Bit	SP_VT_DIFF_REG [7:0]								
	Bit Name Function								
	7-0 SP_VT_DIFF_REG [7:0] Auto clamp control V total difference less this value as valid for auto clamp enable co						ontrol		

SYNO	SYNC_PROC 53 REG S5_5B, R/M							
	7	6	5	4	3	2	1	0
Bit	RESVERD			SP_VT_DIFF_REG [10:8]				

	Bit	Name	Function
Ī	2-0	SP_VT_DIFF_REG [10:8]	Auto clamp control V total difference less this value as valid for auto clamp enable control
	7-4	RESERVED	

SYNC_PROC 54 REG S5_5C, R/W								
	7	6	5	4	3	2	1	0
Bit	Bit SP_STBLE_CNT_REG							

Bit	Name	Function
7.0	SP_STBLE_CNT_REG	Auto clamp control
7-0		Stable indicate frame threshold for auto clamp enable control

TRUEVIEW5725

Registers Definition

SYNC_PROC 55 REG S5_63, R/W

	7	6	5	4	3	2	1	0
Bit	RESERVED	SP_1	SP_TEST_SIGNAL_SEL			SP_TEST_MODU	LE	SP_TEST_EN

Bit	Name	Function
0	SP_TEST_EN	Test control
		Test bus enable
3-1	SP_TEST_MODULE	Test control
		test module select
		# 0 none
		# 1 hs_pol_det module
		# 2 hs_act_det module
		# 3 vs_pol_det module
		# 4 vs_act_det module
		# 5 cs_sep module
		# 6 retiming module
		# 7 out proc module
6-4	SP_TEST_SIGNAL_SEL	Test control
		Test signal select
7	RESERVED	

