College of Engineering Pune

Linear Algebra and Univariate Calculus(D.S.Y)

Tutorial 4

Linear Mappings, Kernel and image of a linear map, Rank nullity theorem

- 1. Let $T: V \to W$ be a linear transformation. Show that:
 - (a) T(0) = 0.
 - (b) T(-v) = -T(v) for all $v \in V$
- 2. Determine which of the following mappings F are linear. If linear, then find its kernel and image space. Also find Nullity and rank and hence verify Rank-Nullity theorem.
 - (a) $F: \mathbb{R}^3 \to \mathbb{R}^2$ defined by F(x, y, z) = (x, z)
 - (b) $F: \mathbb{R}^4 \to \mathbb{R}^4$ defined by F(x, y, z, w) = (-x, -y, -z, -w)
 - (c) $F: \mathbb{R}^3 \to \mathbb{R}^3$ defined by F(x, y, z) = (x, y, z) + (0, 1, 0)
 - (d) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x,y) = (x-y,2y)
 - (e) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x,y) = (xy, x+y)
 - (f) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x, y) = (y, x)
 - (g) $F: \mathbb{R}^2 \to \mathbb{R}$ defined by F(x, y, z) = xy
 - (h) $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by F(x,y) = (x,y+1)
 - (i) $F: \mathbb{R}^3 \to \mathbb{R}$ defined by F(x, y, z) = 3x 2y + z
 - (j) Let D be a derivative map from set of differentiable functions to set of differentiable functions i.e., $D(f) = \frac{df}{dx}$.
 - (k) Let D^2 be a double derivative map from set of twice differentiable functions to set of twice differentiable functions i.e., $D^2(f) = \frac{d^2 f}{dx^2}$.
 - (l) Let M be the space of all 2 x 2 matrices. Let, $P: M \to M$ be a map such that $P(A) = \frac{A + {}^t A}{2}$. Generalize to $n \times n$ matrices.
 - (m) Let M be the space of all 2×2 matrices. Let, $P: M \to M$ be a map such that $P(A) = \frac{A^{-t}A}{2}$. Generalize to $n \times n$ matrices.
 - (n) Let M be the space of all 2 x 2 matrices. Let, $P: M \to M$ be a map such that P(A) = trace(A). Generalize to $n \times n$ matrices.

- 3. Using Kernel classify whether above functions are one-one or not. Further, using Rank-Nullity theorem conclude whether function is onto or not.
- 4. What is the dimension of the space of solutions of the following systems of linear equations? In each case, find a basis for the space of solutions.

(a)
$$2x + y - z = 0
2x + y + z = 0
2x + y + z = 0$$
(b)
$$2x - 3y + z = 0
x + y - z = 0
3x + 4y = 0
5x + y + z = 0$$
(d)
$$x + y + z = 0
x - y = 0
y + z = 0$$

$$2x - 3y + z = 0
4x + 7y - \pi z = 0
2x - y + z = 0$$

- 5. Let A be a fixed $m \times n$ matrix. Let. $T : \mathbb{R}^n \to \mathbb{R}^m$ be a map defined as: T(X) = AX where X is a $n \times 1$ vector in \mathbb{R}^n . Show that T is a linear transformation.
- 6. In above example, Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix}$. Find Null space of T, Image space of T. Hence conclude Nullity(T) and Rank(T). Further verify Rank-Nullity theorem.
- 7. Take a 3 x 4 matrix of your choice and do the above things. (Don't take a null matrix :) . Also try to take distinct entries!)
- 8. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that T(1,0) = (1,1) and T(0,1) = (2,3). Find T(a,b) for any $(a,b) \in \mathbb{R}^2$. Hence calculate image of (3,7).
- 9. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that T(1,0,0) = (1,1,0), T(0,1,0) = (2,3,0) and T(0,0,1) = (1,0,5). Find T(a,b,c) for any $(a,b,c) \in \mathbb{R}^3$. Hence calculate image of (3,7,1).