

Logical Graphs

Control Flow Operations in TensorFlow

Hello: I AM SAM ABRAHAMS

Co-author of TensorFlow for Machine Intelligence

Teach "Deep Learning with TensorFlow" at Metis

Long time TensorFlow contributor

The "TensorFlow on Raspberry Pi" guy (who isn't Pete Warden)

Slides and code:

github.com/samjabrahams/talks/tree/master/tensorflow/control_flow

Control flow: an example

We want to run either B or C, based on A's value

How might we do this?

Naively: use Python if/else and multiple runs,

But this is awkward

We fetch a value only to feed it back in

Python logic isn't represented in the graph

Also: one sess.run should represent an entire run

What we want: native logic gate

Obvious follow up

TensorFlow has several operations for native control flow

Types of control available in TensorFlow

- Dependencies
 - tf.control_dependencies, tf.group, tf.tuple
- Conditional statements
 - tf.cond, tf.case
- Loops
 - tf.while_loop

Why care about native control flow?

- 1. Efficiency
- 2. Flexibility
- 3. Compatibility

Efficiency

- Passing data to/from the Python layer is slow
- Want to run graph end-to-end as much as we can
- Takes advantage of pipelining, such as queues

Flexibility

- Empower static graphs with dynamic components
- Model logic kept in one place -> better decoupling
- Graph can change without affecting training loop

Compatibility

- Debug and inspect with TensorBoard
- Seamlessly deploy with TensorFlow Serving
- Auto-differentiation, queues, pipelining

Note:

I'm bad with colors

Color change in

Color change in

Color change in

CONTROL DEPENDENCIES

Dependencies: quick recap

Here's a graph!

Nodes (operations)

Edges: (tensors)

Dependencies: nodes required to compute another node

The dependencies of the last node

Dependency of an earlier node

Dependencies and execution order

- TF keeps track of every operation's dependencies
- Uses them to schedule computation
 - An op is eligible to run once its dependencies have finished
- Two eligible ops can execute in any order

Back to our graph

These two nodes have no dependencies

This means they can run in any order

Scenario: race-condition

One operation changes a variable

The other reads from that variable

Code might look like this...

```
var = tf.Variable(...)
top = var * 2
bot = var.assign_add(2)
out = top + bot
```

Note: assign_add() returns value of Variable after being adjusted.

Currently: execution order is non-deterministic

Might lead to unexpected behavior!

How do we control this?

Dependency management

- TensorFlow automatically determines dependencies
 - Basically, all of an Op's inputs

- User can define additional dependencies
 - Forces specified operations to complete first

We can control the order depending on needs

If we want the variable to change and then read from it, make the top depend on the bottom

If we want the read the variable before it changes, make the bottom depend on the top

We do this with tf.control_dependencies

```
# Before the changes
var = tf.Variable(...)
top = var * 2
bot = var.assign_add(2)
out = top + bot
```

We do this with tf.control_dependencies

```
# Force bot to wait for top
var = tf.Variable(...)
top = var * 2
with tf.control dependencies([top]):
   bot = var.assign add(2)
out = top + bot
```

tf.control_dependencies(control_inputs)

1. Put list of desired dependencies as control_inputs

2. Ops defined in the with block gain those dependencies

Use cases

- Enforcing execution order
 - As shown previously
- Grouping operations
 - Run many operations with one handle
- Adding assertion statements
 - Build exceptions into your graph

Grouping

Many variables are updated with separate ops

Running each update op separately is a pain

val1, val2, ... = sess.run([update1, update2...])

Fix: use dummy op that depends on all updates

This gives us simpler (and more semantic) code

_ = sess.run(update_all)

Grouping Operations "raw"

```
updates = [update1, update2...]
with tf.control_dependencies(updates):
    update_all = tf.no_op()
```

TensorFlow has a built-in helper to make this cleaner

tf.group

```
updates = [update1, update2...]
update_all = tf.group(*updates)
```

- Uses tf.control_dependencies under the hood
- Has extra built-in functionality
 - Automatically groups operations by device (CPU, GPU1, GPU2, etc)

Assertions

Need to validate tensor going into this op

Pain in the ass version:

```
_, check_me = sess.run([train, check_op])
if not validate(check_me):
    raise ValueError(...)
```

Gets worse the more checks you need to make

Better: validate as the graph runs

tf.assert raises exception if check value is False

Make it a dependency to run before critical op

Simple Assertion

```
check_me = tf.multiply(...)
assert_op = tf.assert(check_me != 0, check_me)
with tf.control_dependencies([assert_op]):
    next_op = tf.divide(10, check_me)
```

Required arguments for tf.assert:

- 1. Boolean check value
- 2. A tensor to print in the error message

Common scenario: check for NaN or Inf

```
check_me = tf.matmul(...)
assert_op = tf.check_numerics(check_me, 'It broke!')
with tf.control_dependencies([assert_op]):
    next_op = ...
```

Many built-in assertion helpers:

- 1. https://www.tensorflow.org/api_guides/python/check_ops
- 2. https://www.tensorflow.org/api_guides/python/control_flow_ops#Debugging_Operations

One last example: synchronization

Want to wait for *both* to finish before moving on

tf.tuple

```
wait_1 = tf.some_op(...)
wait_2 = tf.another_op(...)
sync_1, sync_2 = tf.tuple([wait_1, wait_2])
```

Note: TensorFlow already waits for dependencies tf.tuple is generally reserved for unique requirements

CONDITIONAL LOGIC

Idea: different ops based on intermediate results

Like our example from the intro

TensorFlow offers two Ops for conditionals

- tf.cond
 - Like an if/else statement
- tf.case
 - Like a case statement

Using tf.cond

tf.cond(pred, run_if_true, run_if_false)

tf.cond takes three required arguments

Using tf.cond

```
tf.cond(pred, run_if_true, run_if_false)
```

- The first is a scalar boolean predicate
- Switch telling TensorFlow which branch to run

Using tf.cond

```
tf.cond(pred, run_if_true, run_if_false)
```

- The second is a callable (function, lambda, etc)
- Should take no input, and return zero or more tensors
- Runs if the predicate is true

Using tf.cond

```
tf.cond(pred, run_if_true, run_if_false)
```

- The last is also a callable
- Similar to previous input
- Runs if the predicate is false

Example

```
pred = a < b
def run if true():
    return tf.add(3, 3)
def run if false():
    return tf.square(3)
out = tf.cond(pred, run if true, run if false)
```

Define predicate

```
pred = a < b
def run_if_true():
    return tf.add(3, 3)
def run if false():
    return tf.square(3)
out = tf.cond(pred, run if true, run if false)
```

"True" callable

```
pred = a < b
    return tf.add(3, 3)
def run if false():
    return tf.square(3)
out = tf.cond(pred, run if true, run if false)
```

"False" callable

```
pred = a < b
def run_if_true():
    return tf.add(3, 3)
def run_if_false():
    return tf.square(3)
out = tf.cond(pred, run if true, run if false)
```

Put it all together

```
pred = a < b
def run_if_true():
    return tf.add(3, 3)
def run_if_false():
    return tf.square(3)
out = tf.cond(pred, run_if_true, run_if_false)
```

You might one-liner it for simple uses

```
tf.cond(a < b, lambda: tf.add(3, 3), lambda: tf.sqaure(3))
```

The graph we just defined looks like this

The less-than operation outputs a boolean

tf.cond selects the right output to pass along

tf.cond notes:

- Both callables' return signatures must match
 - Same number of tensors with the same type
- External ops needed for either branch always run
 - Place as many ops inside the callables as possible.

Now need choose from more than two actions

Same graph, case statement syntax

Instead of chaining tf.cond over and over, we can use a single tf.case

Using tf.case

tf.case(pred_fn_pairs, default)

tf.case takes two required arguments

Using tf.case

tf.case(pred_fn_pairs, default)

- The first is a list of tuple pairs (predicate, callable)
- Maps boolean predicates to potential operations to run
- It can also be a dictionary: {pred: callable}

Using tf.case

tf.case(pred_fn_pairs, default)

- The second is a callable, as we've seen before
- Runs if none of the predicates are true

Basic example:

```
a = (prev < 0, lambda: prev + 3)
b = (prev < 10, lambda: prev * 3)
c = (prev < 20, lambda: prev - 3)
pairs = [a, b, c]
default = lambda: prev / 3
out = tf.case(pairs, default)
```

Define tuple pairs of predicates/callables

```
a = (prev < 0, lambda: prev + 3)
b = (prev < 10, lambda: prev * 3)
c = (prev < 20, lambda: prev - 3)
pairs = [a, b, c]
default = lambda: prev / 3
out = tf.case(pairs, default)
```

Define a default callable

```
a = (prev < 0, lambda: prev + 3)
b = (prev < 10, lambda: prev * 3)
c = (prev < 20, lambda: prev - 3)
pairs = [a, b, c]
default = lambda: prev / 3
out = tf.case(pairs, default)
```

Create the op

```
a = (prev < 0, lambda: prev + 3)
b = (prev < 10, lambda: prev * 3)
c = (prev < 20, lambda: prev - 3)
pairs = [a, b, c]
default = lambda: prev / 3
out = tf.case(pairs, default)
```

tf.cond notes:

- All callables' return signatures must match (like tf.cond)
 - Same number of tensors with the same type
- Only one callable will run
 - As if each case has a break statement
- Can also pass in attribute exclusive (defaults to False)
 - Makes op throw exception if more than one predicate is true

General notes on conditional logic:

- Ops on non-selected branches are not run
 - Great if heavy computation only needs to happen sometimes
 - Example: stochastic depth
- TensorFlow differentiates through the selected path
- For TensorBoard: cond and case can get ugly
 - Use tf.name_scope or tf.variable_scope inside callables

WHILE LOOPS

Common uses of loops in TensorFlow

- 1. Feeding intermediate results back into graph
- 2. "Unrolling" a loop of operations

Feeding results back into graph

```
my_op = tf.some_op(prev)
...
res = start_val
for i in range(...):
    feed_dict = {prev: res}
    res = sess.run(my_op, feed_dict)
```

Feeding results back into graph

```
my_op = tf.some_op(prev)
...
res = start_val
for i in range(...):
    feed_dict = {prev: res}
    res = sess.run(my_op, feed_dict)
```

The graph looks like this

This loop occurs in the Python layer

"Unrolling" loops of operations

```
my_op = tf.some_op(prev)
for i in range(...):
    my_op = tf.some_op(my_op)
```

Basically, create a bunch of ops in the graph

The unrolled graph looks like this

Each additional op adds overhead

Ideally: loop in C++ layer with minimal added ops

tf.while_loop is what we're looking for!

tf.while_loop

tf.while_loop(cond, body, loop_vars)

tf.while_loop takes three required arguments

tf.while_loop

tf.while_loop(cond, body, loop_vars)

- Let's start with the last: loop_vars
- List/tuple of tensors used in the first iteration of the while loop
 - The documentation doesn't make this super clear
- These are passed to both the condition and body (up next)

tf.while_loop

tf.while_loop(cond, body, loop_vars)

- Callable. Maps from (*loop_vars) → boolean scalar
- If it returns true, the body executes,
- Otherwise, we exit the loop

tf.while_loop

```
tf.while_loop(cond, body, loop_vars)
```

- Callable. Maps from (*loop_vars) → (*next_loop_vars)
- Main computation takes place here
- Also need to increment counter (if using one) here
- Output from this gets sent to next iteration cond and body

Here is what the basic loop looks like

We pass in our initial loop arguments

Those are now the loop variables

The loop variables get sent to the cond function

If cond is true, we pass the vars to body

body's outputs become the new loop vars

The loop continues while cond evaluates to true

Once cond is false, we return the current loop vars

while_loop compatible with auto-differentiation

Basic while loop example: 100 loops

```
def cond(i, val):
    return i < 100
def body(i, val):
    return i+1, val + 5
loop = tf.while_loop(cond, body, (0, 0))</pre>
```

Define our condition

```
def cond(i, val):
    return i < 100
def body(i, val):
    return i+1, val + 5
loop = tf.while_loop(cond, body, (0, 0))</pre>
```

Define the body

```
def cond(i, val):
    return i < 100
def body(i, val):
    return i+1, val + 5
loop = tf.while_loop(cond, body, (0, 0))</pre>
```

Build the loop!

```
def cond(i, val):
    return i < 100
def body(i, val):
    return i+1, val + 5
loop = tf.while_loop(cond, body, (0, 0))</pre>
```

Notice that cond and body have same inputs

```
def cond(i, val):
    return i < 100
def body(i, val):
    return i+1, val + 5
loop = tf.while_loop(cond, body, (0, 0))</pre>
```

And that the values are modified in the body

```
def cond(i, val):
    return i < 100
def body(i, val):
    return i+1, val + 5
loop = tf.while_loop(cond, body, (0, 0))</pre>
```

Reusing variables is simple

```
def body(i, val):
    w = tf.get_variable('w', ...)
    return i+1, tf.matmul(val, w)
```

Don't have to declare scope.reuse_variables()

```
def body(i, val):
    w = tf.get_variable('w', ...)
    return i+1, tf.matmul(val, w)
```

Reusing variables + feeding data into itself -> RNN!

tf.dynamic_rnn is implemented with a tf.while_loop

Full implementation beyond scope of lecture

-But small RNN example is in notebook

Optional parameters

- shape_invariants(default:None)
 - Allows you to specify which loop_vars can have variable shape
- parallel iterations (default: 10)
 - Number of allowed parallel iterations (if possible)
- swap_memory (default: False)
 - Allows (or disallows) GPU-CPU memory swap (RNN backprop is hungry)
- back_prop (default: True)
 - Allows (or disallows) backpropagation for this loop.

tf.while_loop notes

- Faster than refeeding with loops of sess.run()
 - Roughly 30% improvement
- Much faster than unrolling with many static ops
 - Both in graph creation and in run time
- Like with conditionals, TensorBoard graph can get ugly
 - Use name/variable scope for cond and body

WRAPPING THIS BABY UP

Today we covered TF's main control flow ops

- Dependency management
 - tf.control_dependencies, tf.group, tf.tuple
- Conditional statements
 - tf.cond, tf.case
- Loops
 - tf.while_loop

With native control flow:

Data transfer overhead is minimized

With native control flow:

Graph logic is self-contained

With native control flow:

Enables use of differentiation and queues

THANKS!

GitHub: @samjabrahams

Twitter: @sabraha

Email: sam@samabrahams.com

Presentation template by <u>SlidesCarnival</u>
Copyright 2017 Sam Abrahams. All Rights Reserved.