Introduction to Digital Logic

CS 64: Computer Organization and Design Logic Lecture #11

Ziad Matni Dept. of Computer Science, UCSB

Administrative

• Re: Midterm Exam #1

- Re: Midterm Exam #2
 - Next Thursday!
 - Everything from lectures 7 thru 12

Administrative

- Lab# 6 (next week) are exercises that do not require a computer
 - You are *excused* from going to Monday lab next week,
 but T.As will be there to help, if you need it
 - Material we cover today and on Tuesday will be necessary to finish Lab# 6
- Lab# 6 will still be due end of day Friday
- Lab #7 will be different...!

Administrative

- Mid-quarter evaluations for T.As and for Prof.
 - Links on Piazza
 - Optional to do, but very appreciated by us all!
 - Deadline is Monday

Lecture Outline

- Intro to Binary (Digital) Logic Gates
- Truth Table Construction
- Logic Functions and their Simplifications
- The Laws of Binary Logic

Digital i.e. Binary Logic

- Electronic circuits when used in computers are a series of switches
- 2 possible states: either ON (1) and OFF (0)

Perfect for binary logic representation!

Basic Building Blocks of Digital Logic

Same as the bitwise operators:

AND

OR

XOR

NOT

etc...

 We often refer to these as "logic gates" in digital design

Electronic Circuit Logic Equivalents

5/10/18

Graphical Symbols and Truth Tables *NOT*

Α	A or !A
0	1
1	0

Graphical Symbols and Truth Tables *AND* and *NAND*

Practice Drawing the Symbol!

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

A OK Q	AANDQ	A XOR 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A NOR O	A NANDO Q	A NOT OF A ROLL A POOL

Α	В	A . B or !(A.B)
0	0	1
0	1	1
1	0	1
1	1	0

Matni, CS64, Sp18

Graphical Symbols and Truth Tables OR and NOR

Practice Drawing the Symbol!

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

A OR B AND Q	XORU AND
$\frac{A}{B}$ NOR $\frac{Q}{B}$ NAND $\frac{Q}{B}$	A NOT THE NAME OF A DOT

Α	В	A + B or !(A + B)
0	0	1
0	1	0
1	0	0
1	1	0

5/10/18

Matni, CS64, Sp18

Graphical Symbols and Truth Tables XOR

Practice Drawing the Symbol!

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0

Constructing Truth Tables

- T.Ts can be applied to ANY digital circuit
- They show ALL possible inputs with ALL possible outputs
- Number of entries in the T.T.
 - = 2^N, where N is the number of inputs

Example: Constructing the T.T of a 1-bit Adder

- Recall the 1-bit adder:
- 3 inputs: I₁ and I₂ and C₁
 - Input1, Input2, and Carry-In
 - How many entries in the T.T. is that?
- 2 outputs: R and C_O
 - Result, and Carry-Out
 - You can have multiple outputs: each will still depend on some combination of the inputs

EXAMPLE:

Example: Constructing the T.T of a 1-bit Adder

T.T Construction Time!

Example: Constructing the T.T of a 1-bit Adder

	INPUTS			OUT	PUTS
#	l1	12	CI	СО	R
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

Logic Functions

- An output function F can be seen as a combination of 1 or more inputs
- Example:

```
F = A \cdot B + C (all single bits)
```

Equivalent in C/C++:

```
boolean f (boolean a, boolean b, boolean c)
{
   return ( (a & b) | c )
}
```

OR and AND as Sum and Product

- Logic functions are often expressed with basic logic building blocks, like ORs and ANDs and NOTs, etc...
- OR is sometimes referred to as "logical sum" or "logical union"
 - Partly why it's symbolized as "+"
 - BUT IT'S NOT THE SAME AS NUMERICAL ADDITION!!!!!!
- AND as "logical product" or "logical disjunction"
 - Partly why it's symbolized as "."
 - BUT IT'S NOT THE SAME AS NUMERICAL MULTIPLICATION!!!!!!

18

Example

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0

A XOR B takes the value "1"
 (i.e. is TRUE) if and only if

$$-A = 0$$
, $B = 1$ i.e. **!A.B** is TRUE, **or**

$$- A = 1$$
, B = 0 i.e. **A.!B** is TRUE

In other words, A XOR B is TRUE
 iff (if and only if) A!B + !AB is TRUE

$$A + B = !A.B + A.!B$$

Which can also be written as: $\overline{A}.B + A.\overline{B}$

Representing the Circuit Graphically

Q: Does it take any time for a electronic signal to go thru 3 "layers" of logic gates?

A: Ideally, NO, it all happens simultaneously.
In reality, OF COURSE it takes time (it's called latency)

Matni, CS64, Sp18

What is The Logical Function for The Half Adder?

INPUTS		OUT	PUTS	
#	l1	12	СО	R
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	0

Our attempt to describe the outputs as functions of the inputs:

$$CO = I_1 . I_2$$

 $R = I_1 + I_2$

Half Adder

1-bit adder that does not have a Carry-In (Ci) bit.

This logic block has only 2 1-bit inputs and 2 1-bit outputs

What is The Logical Function for A **Full** 1-bit adder?

INPUTS			001	PUTS	
#	l1	12	CI	СО	R
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

Ans.:

CO = !|1.|2.C| + |1.!|2.C| + |1.|2.!C| + |1.|2.C| R = !|1.!|2.C| + !|1.|2.!C| + |1.!|2.!C| + |1.|2.C|

Minimization of Binary Logic

- Why?
 - It's MUCH easier to read and understand...
 - Saves memory (software) and/or physical space (hardware)
 - Runs faster / performs better
 - Why?... remember *latency*?
- For example, when we do the T.T. for (see demo on board):

X = A.B + A.!B + B.!A, we find that it is the same as

$$A + B$$

(saved ourselves a bunch of logic gates!)

Using T.Ts vs. Using Logic Rules

 In an effort to simplify a logic function, we don't always have to use T.Ts – we can use logic rules instead

Example: What are the following logic outcomes?

A.A A

A + A

A.1 A

A+1 1

A.0 0

A + 0 A

Using T.Ts vs. Using Logic Rules

- Binary Logic works in Associative ways
 - (A.B).C is the same as A.(B.C)
 - (A+B)+C is the same as A+(B+C)
- It also works in **Distributive** ways
 - (A + B).C is the same as: A.C + B.C
 - -(A+B).(A+C) is the same as:

$$A.A + A.C + B.A + B.C$$

$$= A + A.C + A.B + B.C$$

$$= A + B.C$$

More Examples of Minimization a.k.a Simplification

$$R = A.B + !A.B$$

= $(A + !A).B$

= B

Let's verify it with a truth-table

Note: often, the AND dot symbol (.) is omitted, but understood to be there (like with multiplication dot symbol)

Let's verify it with a truth-table

More Simplification Exercises

• Simplify:
$$R = !A!BC + !A!B!C + !ABC + !AB!C + A!BC$$

 $= !A(C + !C) + !AB(C + !C) + A!BC$
 $= !A + !AB + A!BC$
 $= !A + A!BC$
Let's verify it with a truth-table

Reformulate using only AND and NOT logic:

Important: Laws of Binary Logic

Circuit Equivalence - each law has 2 forms that are duals of each other.

Name	AND form	OR form	
Identity law	1A = A	0 + A = A	
Null law	0A = 0	1 + A = 1	
Idempotent law	AA = A	A + A = A	
Inverse law	$A\overline{A} = 0$	A + A = 1	
Commutative law	AB = BA	A + B = B + A	
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)	
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC	
Absorption law	A(A + B) = A	A + AB = A	
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$	

Digital Circuit Design Process

CAN THIS PROCESS BE REVERSED?

More Simplification Examples

Simplify the Boolean expression:

(A+B+C)(D+E)' + (A+B+C)(D+E)

Simplify the Boolean expression and write it out on a truth table as proof

• XZ + Z(X' + XY)

Use DeMorgan's Theorm to re-write the expression below using at least one OR operation

NOT(X + YZ)

Scaling Up Simplification

• When we get to *more* than 3 variables, it becomes challenging to use truth tables

 We can instead use Karnaugh Maps to make it immediately apparent as to what can be simplified

Example of a K-Map

BA	0	1
0	0	2
1	1	3

A	В	f(A,B)
0	0	0
0	1	1
1	0	1
1	1	1

More on K-Maps Next Week!

YOUR TO-DOs

Finish Lab #5 by tomorrow!

- Optional: Do the online mid-term evaluations
 - See announcement on Piazza for links

• Next Time: More K-Maps and Combinatorial Logic

