

TUTORIAL 6 FUNCTIONS OF COMBINATIONAL LOGIC

PDS0101: INTRODUCTION TO DIGITAL SYSTEMS TRI 2, 2022-2023

QUESTION 1: Perform the following to construct a HALF-ADDER logic circuit

a) Complete the TRUTH TABLE for 1-bit BINARY ADDITION

2= 4 possible input combination

<pre>input -</pre>	——	, < outpu	- output ->			
Augend(A)	Addend (g) Carry Out	Sum			
0	٥	0	0			
0		0				
	0	0				
	J	1	0			

b) Derive the Boolean expressions (SOP) for **SUM** and **CARRY OUT**

Cout = AB Sum =
$$A \oplus B / AB + \overline{A}B$$

QUESTION 1: Perform the following to construct a HALF-ADDER logic circuit

c) Combine the sum and carry out expressions and draw the final logic circuit for a half-adder using only AND, OR and NOT gates AB + AB = Sum

QUESTION 1: Perform the following to construct a HALF-ADDER logic circuit

d) Draw the **block diagram** for the **half-adder**

Determine the output value for C_{out} and Σ (sum) of a FULL ADDER, if the inputs are as shown below

	Α	В	C _{in}	C _{out}	Σ (sum)
(a)	1	0	0	0	
(b)	0	0	1	0	1
(c)	0	1	1	1	0
(d)	1	1	1	1	j

Determine the possible **FULL ADDER INPUTS** that will produce the following outputs

description

output

out

	C _{out}	Σ (sum)	Α	В	C _{in}
(a)	0	1	O		0
]	ð	0	
				0	0
(b)	0	0	0	O	0
(C)	1	1			1
(d)	1	0		1	Ō
			0	1	
				0	(

QUESTION 5 (a)

For the **PARALLEL ADDERS** below, determine the complete **SUM BY ANALYSIS** of the logical operation of the circuit

QUESTION 5 (b)

For the **PARALLEL ADDERS** below, determine the complete **SUM BY ANALYSIS** of the logical operation of the circuit

A: 10 101 B: 00 111

Design of 3-bit parallel adder by using full adders

Draw parallel adder for A16 + 148 using full adder and halfadder (LSB)

 $A_{16} = 1010$ 148 = 1100

When a HIGH output is detected on the output of the following decoder circuits, what is the binary code signal appearing on the INPUTS assuming that A_0 is LSB?

simple decoder/ basic decoder

Active High Output

Active Low Output 6)

input = 110

decoder that accept multiple combo (SOP)

value = 1

Decoder output active low active high output = 0 output = 1 NAND AND

Show the **decoding logic** for the following **codes** if an **active-HIGH** output is required

Show the **decoding logic** for the following **codes** if an **active-HIGH** output is required

c) 101010

Show the **decoding logic** for the following **codes** if an **active-HIGH** output is required

Show the **decoding logic** for the following **codes** if an **active-LOW** output is required

a) 1000

Show the **decoding logic** for the following **codes** if an **active-LOW** output is required

b) 11100

Show the **decoding logic** for the following **codes** if an **active-LOW** output is required

c) 1111110

Show the **decoding logic** for the following **codes** if an **active-LOW** output is required

d) 000101

Design a decoder that detects the presence of the input binary codes of 1010, 1100, 0001 and 1011. The active-HIGH output is required when the correct input is detected.

Design (2)-to-(4)-Line Decoder (with Enable input) and Active LOW output. Provide the circuit and truth table. - Output = 0 Combination EN=0; active B 0, D_0 D_1 ΕN X X 0 0

Design a 2-to-4-Line Decoder (with Enable input) and Active LOW output.

Provide the circuit and truth table.

Design a 3-to-8-Line Decoder (with Enable input) and Active HIGH output.

Provide the circuit and truth table.

EN	A	B	C	Do	Dı	D ₂	D ₃	D4	D۲	Da	D ₇
0	X	×	×	0	0	O	0	0	0	O	0
1	0	0	٥	1	0	0	O	0	0	D	0
)	O	0	1	0	1	ಲ	0	0	0	0	Q
}	0	1	0	O	0		٥	0	ට	0	0
1	0			C	0	0	j	0	0	9	0
١		0	0	0	0	0	6	1	0	D	0
)		0	1	0	Q	٥	0	D	1	0	δ
1			0	0	Ō	0	0	0	0	l	0
l			1	O	J	O	0	0	D	0	1

END DISCUSSIONS ANY QUESTIONS ??

