Unidad II - Resolución Analítica E.D.O. - Ecuaciones Exactas

Msc. Lic. Víctor Rodríguez Estévez

April 5, 2021

TÉCNICA PARA ECUACIONES EXACTAS

Se estudiará otra técnica para la resolución de E.D., la cual aplicaremos cuando identifiquemos una E.D. exacta.

- Diremos que una E.D. es axacta cuando tenga la forma: A(x, y)dx + B(x, y)dy = 0
- Debe cumplirse que $\frac{\partial}{\partial y}A(x,y) = \frac{\partial}{\partial x}B(x,y)$
- Si esto se cumple, la solución será f(x, y) = c
- donde f(x, y) se hallará resolviendo las relaciones $\frac{\partial f(x, y)}{\partial x} = A$ $\mathbf{y} \frac{\partial f(x, y)}{\partial y} = B$

Hallar la solución General de la Ecuación:

$$(2x + y)dx + (2y + x)dy = 0$$
:

Hallar la solución General de la Ecuación:

$$(2x + y)dx + (2y + x)dy = 0$$
:

Ecuación Exacta

- $\bullet \ \frac{\partial}{\partial y}(2x+y)=0+1$
- \bullet $\frac{\partial}{\partial x}(2y+x)=0+1$
- Entonces la E.D. es exacta

Ecuación Exacta

Para solucionarla, encontramos f(x, y) = c, si esto es cierto, entonces se cumple que:

- 1) $\frac{\partial f(x,y)}{\partial x} = (2x+y)$
- $2) \frac{\partial f(x,y)}{\partial y} = (2y+x)$
- de 1) tenemos: $f(x, y) = \int (2x + y) dx$ entonces $f(x, y) = x^2 + xy + g(y)$
- f(x, y) es nuestra solución, sin embargo aún necesitamos hallar g(y)

Continuando.....

- para ello aplicamos la derivada parcial de f(x, y) con respecto de "y":
- e igualamos con 2) quedando: 2y + x = x + g'(y)
- Despejando g'(y) = 2y entonces $g(y) = y^2$
- $f(x,y) = x^2 + xy + y^2$
- $x^2 + xy + y^2 = c$ es nuestra solución a la E.D. planteada.

Hallar la solucion general para: $(x^{-1}y)dx + (ln(x) + 3y^2)dy = 0$:

Hallar la solucion general para: $(x^{-1}y)dx + (ln(x) + 3y^2)dy = 0$:

Ecuación Exacta

- $\bullet \ \frac{\partial}{\partial y}(x^{-1}y) = \frac{1}{x}$
- Entonces la E.D. es exacta

Ecuación Exacta

Para solucionarla, encontramos f(x, y) = c, si esto es cierto, entonces se cumple que:

- $\bullet 1) \frac{\partial f(x,y)}{\partial x} = (x^{-1}y)$
- $2) \frac{\partial f(x,y)}{\partial y} = (\ln(x) + 3y^2)$
- de 1) tenemos: $f(x,y) = \int (x^{-1}y)dx$ entonces f(x,y) = yln(x) + g(y)
- f(x, y) es nuestra solución, pero necesitamos hallar g(y)

Continuando.....

- para ello aplicamos la derivada parcial de f(x, y) con respecto de "y":
- e igualamos con 2) quedando: $ln(x) + 3y^2 = ln(x) + g'(y)$
- Despejando $g'(y) = 3y^2$ entonces $g(y) = y^3$
- $f(x,y) = y ln(x) + y^3$
- $yln(x) + y^3 = c$ es nuestra solución a la E.D. planteada.

Sea
$$(2x + y + 2xy^2)dx + (x + 2x^2y) = 0$$
 una E.D. a solucionar:

Sea $(2x + y + 2xy^2)dx + (x + 2x^2y) = 0$ una E.D. a solucionar:

Ecuación Exacta

- $\bullet \ \frac{\partial}{\partial y}(2x+y+2xy^2)=0+1+4xy$
- Entonces la E.D. es exacta

Ecuación Exacta

Para solucionarla, encontramos f(x, y) = c, para que esto sea cierto, entonces debe cumplirse que:

- $\bullet 1) \frac{\partial f(x,y)}{\partial x} = (2x + y + 2xy^2)$
- $2) \frac{\partial f(x,y)}{\partial y} = (x + 2x^2y)$
- de 1) tenemos: $f(x,y) = \int (2x + y + 2xy^2) dx$ entonces $f(x,y) = x^2 + yx + x^2y^2 + g(y)$
- f(x, y) es nuestra solución, pero necesitamos hallar g(y)

Continuando.....

- para ello aplicamos la derivada parcial de f(x, y) con respecto de "y":
- e igualamos con 2) quedando: $x + 2x^2y = x + 2yx^2 + g'(y)$
- Despejando g'(y) = 0 entonces g(y) = k
- $f(x,y) = x^2 + yx + x^2y^2 + k$
- $x^2 + yx + x^2y^2 + k = c$ es nuestra solución a la E.D. planteada.

Veamos otro ejemplo: Sea $(sin(xy) + xycos(xy))dx + (x^2cos(xy))dy = 0$ una E.D. a solucionar:

Veamos otro ejemplo: Sea $(sin(xy) + xycos(xy))dx + (x^2cos(xy))dy = 0$ una E.D. a solucionar:

Ecuación Exacta

- $\bullet \frac{\partial}{\partial y}(\sin(xy) + xy\cos(xy)) = \\ x\cos(xy) + x\cos(xy) x^2\sin(xy) = 2x\cos(xy) x^2\sin(xy)$
- Entonces la E.D. es exacta

Ecuación Exacta

Para solucionarla, encontramos f(x, y) = c, para que esto sea cierto, entonces debe cumplirse que:

- 1) $\frac{\partial f(x,y)}{\partial x} = (\sin(xy) + xy\cos(xy))$
- $2) \frac{\partial f(x,y)}{\partial y} = (x^2 cos(xy))$
- de 2) tenemos: $f(x, y) = \int (x^2 cos(xy)) dy$ entonces f(x, y) = x sin(xy) + g(x)
- f(x, y) es nuestra solución, pero necesitamos hallar g(x)

Continuando.....

- para ello aplicamos la derivada parcial de f(x, y) con respecto esta vez de "x":
- e igualamos con 1) quedando: xycos(xy) + sin(xy) + g'(x) = sin(xy) + xycos(xy)
- Despejando g'(y) = 0 entonces g(y) = k
- f(x,y) = x sin(xy) + k
- xsin(xy) + k = c es nuestra solución a la E.D. planteada.

Sea
$$(x^3 + xy^2)dx + (x^2y + y^3)dy = 0$$
 una E.D. a solucionar:

Sea
$$(x^3 + xy^2)dx + (x^2y + y^3)dy = 0$$
 una E.D. a solucionar:

Ecuación Exacta

- Entonces la E.D. es exacta

- 1) $\frac{\partial f(x,y)}{\partial x} = (x^3 + xy^2)$
- $2) \frac{\partial f(x,y)}{\partial y} = (x^2y + y^3)$
- de 2) tenemos: $f(x,y) = \int (x^3 + xy^2) dx$ entonces $f(x,y) = \frac{1}{4}x^4 + \frac{1}{2}x^2y^2 + g(y)$
- f(x, y) es nuestra solución, pero necesitamos hallar g(y)

Continuando.....

- para ello aplicamos la derivada parcial de f(x, y) con respecto de "y":
- e igualamos con 1) quedando: $x^2y + g'(y) = x^2y + y^3$
- Despejando $g'(y) = y^3$ entonces $g(y) = \frac{1}{4}y^4$
- $f(x,y) = \frac{1}{4}x^4 + \frac{1}{2}x^2y^2 + \frac{1}{4}y^4$ multiplicando por 4.
- $x^4 + 2x^2y^2 + y^4 = c$ es nuestra solución a la E.D. planteada.