Пензенский государственный университет Кафедра «Вычислительная техника»

ОТЧЕТ

по лабораторной работе № 12 по дисциплине: "Арифметические и логические основы вычислительной техники"

на тему: "Минимизация булевых функций методом диаграмм Вейча"

Выполнили: студенты группы ххххххххххххххххх

Принял: xxxxxxxxxxxx

Лабораторное задание

- 1. Произвести минимизацию методом диаграмм Вейча всех четырех функций преобразователя D-кодов из лабораторной работы №10.
- 2. Проверить правильность минимизации моделированием в среде Electronics Workbench v5.12.

Ход работы

D	\mathbf{X}_1	X_2	X ₃	X ₄
0	0	0	0	0
1	0	0	0	1
2	0	1	0	0
3	0	1	0	1
4	0	0	1	0
5	0	0	1	1
6	0	1	1	0
7	0	1	1	1
8	1	1	1	0
9	1	1	1	1

D	\mathbf{Y}_1	\mathbf{Y}_2	Y ₃	Y ₄
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

	Т			
D	$\neg Y_1$	$\neg Y_2$	$\neg Y_3$	$\neg Y_4$
0	1	1	1	1
1	1	1	1	0
2	1	1	0	1
3	1	1	0	0
4	1	0	1	1
5	1	0	1	0
6	1	0	0	1
7	1	0	0	0
8	0	1	1	1
9	0	1	1	0

Данные функции являются неполностью определенными, так как имеют лишь 10 наборов аргументов. Оставшиеся 6 значений определяются таким образом, чтобы форма функции была минимальной.

СДНФ

1. Выполнили минимизацию функции Y₁.

$$Y_1 = (x_1 \land x_2 \land x_3 \land \overline{x}_4) \lor (x_1 \land x_2 \land x_3 \land x_4)$$

$$Y_{1MДH\Phi} = x_1$$

2. Выполнили минимизацию функции Y2.

$$Y_{2MДH\Phi} = \overline{x}_1 \wedge x_3$$

3. Выполнили минимизацию функции Y₃.

$$\mathsf{Y}_3 = (\overline{\mathsf{x}}_1 \wedge \mathsf{x}_2 \wedge \overline{\mathsf{x}}_3 \wedge \overline{\mathsf{x}}_4) \vee (\overline{\mathsf{x}}_1 \wedge \mathsf{x}_2 \wedge \overline{\mathsf{x}}_3 \wedge \mathsf{x}_4) \vee (\overline{\mathsf{x}}_1 \wedge \mathsf{x}_2 \wedge \mathsf{x}_3 \wedge \overline{\mathsf{x}}_4) \vee (\overline{\mathsf{x}}_1 \wedge \mathsf{x}_2 \wedge \mathsf{x}_3 \wedge \mathsf{x}_4)$$

$$Y_{3MДH\Phi} = \overline{X}_1 \wedge X_2$$

4. Выполнили минимизацию функции Y4.

 $Y_{4MДH\Phi} = x_4$

СКНФ

5. Выполнили минимизацию функции Y_1 .

Выполнили минимизацию функции Y2.

6. Выполнили минимизацию функции Үз.

7. Выполнили минимизацию функции Y₄.

Проверка найденной МКНФ:

 $Y_{4MKH\Phi} = x_4$

Выводы: Получили навыки минимизации булевых функций методом диаграмм Вейча.