Calculations of Radon Emanation for the Bulk of LZ and Surface Contaminants

South Dakota School of Mines and Technology
Rose M. Coughlen
7/25/16

Radon Emanation Calculations

- Calculate emanation from bulk contamination from Ra226 inferred from HPGe measurements already taken
 - This yields a lower limit on emanation since it ignores possible surface contamination
- 2. Calculate emanation from surface contamination at 50 nBq/cm² (rough expected sensitivity) for extremes of thin or thick contamination layer

Recoil Ejection vs Diffusion

Recoil Ejection

- After α-decay, the recoiling radon nucleus can be ejected from the material
- Range of ejected radon nucleus is different in each material

Diffusion

- Higher contribution at warmer temperatures
- Diffusion length is different in each material
- Negligible in most metals, but important for plastics

Recoil Ejection Calculation

• Integrating $d\Omega/SA$ gives the percentage of particles being ejected from depth x:

$$\% = \frac{1}{2} - \frac{x}{2R}$$

- $R_{eff} = \frac{R}{4}$ is the range needed to create the same yield of ejected radon if 100% of the Radon escaped
 - The ejected flux of radon is therefore $\Phi_E = R_{eff} \cdot \rho$

Density of radon in the material from Ra226 decay

Diffusion Calculation

 Radon concentration u(x,t) is described by the following equation:

For steady state and short outgassing:

$$\Phi_D = \rho \sqrt{D/\lambda}$$

Summary of Materials:

		Radon Ejection		Warm Diffusion (room temp)			Cold Diffusion (Liquid xenon temp)		
Material	Ra-226 Density (mBq/cm^3)	Recoil Depth (cm)	Recoil Production (mBq/cm^2)	Diffusion Length (cm)	Diffusion Production (mBq/cm^2)	Total (mBq/cm^2)	Diffusion Length (cm)	Diffusion Production (mBq/cm^2)	Total (mBq/cm^2)
PTFE 8764	4.4E-05	1.01E-07	4.46E-11	2.58E-02	1.14E-06	1.14E-06	4.35E-06	1.91E-10	2.36E-10
Titanium	1.68	6.03E-07	1.014E-6	0	0	1.014E-6	0	0	1.014E-6
Steel		3.55E-7		0	0		0	0	
Kapton (Cirlex)	」 / / ├ - /	1.43E-6	3.88E-8	2.92E-4	7.94E-6	7.97E-6	7.22E-10	1.96E-11	3.88E-8
Alumina (Ceramic)	7.23E-2	5.67E-7	4.10E-8						
BaTiO3		5.13E-7							

Current LZ Estimated Backgrounds:

- PTFE 8764 9.00E-7 mBq/cm³
- Titanium- 1.00E-6 mBq/cm³

Alpha Screening – Two Extremes

- 1. All contamination is at the surface of the material
 - The relationship between alpha and radon emanation is 1-to-1
 - $\Phi_{Rn} = \Phi_{\alpha}$
- 2. Contamination is evenly distributed up to the depth that α particles lose 10% of their energy.
 - A higher percentage of alpha particles are escaping compared to radon since they have a longer range.
 - Using titanium as an example: $\Phi_{Rn} = \Phi_{\alpha}(.0085)$
- Our alpha screening has a sensitivity of $\Phi_{\alpha} \approx 50 \frac{nBq}{cm^2}$

Conclusion

• For the best case scenario, we compare this thick contamination limit to the bulk emanation of titanium:

$$\Phi_{Total} = 1.0 \frac{nBq}{cm^2} + 0.4 \frac{nBq}{cm^2} = 1.4 \frac{nBq}{cm^2}$$

 Comparing the thin contamination limit to the bulk emanation gives:

$$\Phi_{Total} = 1.0 \frac{nBq}{cm^2} + 50 \frac{nBq}{cm^2} = 51 \frac{nBq}{cm^2}$$

 This shows that surface screening is not sensitive enough to replace radon emanation assay assuming the contamination layer is thin, but is useful for limiting possible radon emanation assuming a thick contamination layer

Appendix: Detailed Diffusion Calculation

Radon concentration u(x,t) described by following equation:

 For steady state outgassing the concentration doesn't depend on time:

$$0 = D \frac{\delta^2 u(x)}{\delta x^2} - \lambda u(x) + \rho$$

Solving this DE with boundary conditions gives:

$$u(x) = \frac{-\rho}{\lambda} \left[1 - \frac{1 - e^{-H\sqrt{\lambda/D}}}{2\sinh(H\sqrt{\lambda/D})} \right] e^{-x\sqrt{\lambda/D}} + \frac{\rho}{\lambda}$$

Appendix: Detailed Diffusion Calculation

 Flux of radon diffusing from the surface given by boundary derivatives:

$$\Phi_D = D \left[\frac{d u(x)}{dx} \right] = \rho \sqrt{D/\lambda} \left[1 - \frac{1 - e^{-H\sqrt{\lambda/D}}}{\sinh(H\sqrt{\lambda/D})} \right]$$

• Assuming that the Radon outgassing length is much shorter than the thickness of the material ($\sqrt{D/\lambda}$ <<H), the flux simplifies to be:

$$\Phi_D = \rho \sqrt{D/\lambda}$$

• D depends on temperature. We determine Φ_D at lab room temperature (warm) and at liquid xenon temperature (cold) so that we can compare our direct emanation results with how the materials will act in LZ.

Appendix: Alpha Screening – Two Extremes

• To find the relationship between the flux of α particles and radon we first integrate over the depth of the surface contamination to find the density of alpha particles:

$$\Phi_{\alpha} = \int_{0}^{R_{10\%}} \rho_{\alpha} \, \Omega_{\alpha}(x) \, dx$$

$$\Phi_{\alpha} = \rho_{\alpha} \int_{0}^{R_{10\%}} \left[\frac{1}{2} - \frac{x}{2 R_{\alpha}} \right] dx$$

Here I have used the range of α particles in titanium

$$\Phi_{\alpha} = \rho_{\alpha} (6.807 \text{E-5cm})$$

 R_{α} is found from SRIM and $R_{10\%}$ is just 10% of R_{α}

Appendix: Alpha Screening – Two Extremes

• We know that for every α particle produced we get a radon particle too:

$$\rho_{\alpha} = \frac{\Phi_{\alpha}}{(6.807\text{E}-5\text{cm})} = \rho_{Rn}$$

With the radon density we can find the flux of radon:

$$\Phi_{Rn} = \rho_{Rn} R_{eff} - R_{eff} = R_{eff}$$

$$\Phi_{Rn} = \Phi_{\alpha}(.0085)$$