University of Balamand Faculty of Arts and Sciences

Instructors: K. Hitti, M. Dib **Date**: Fall 2020 **MATH** 211, 2nd examination **Duration**: 1 hour + [10 minutes for submission]

Question 1. (25pts)

Let W = $\left\{ \begin{bmatrix} a & -a \\ b & c \\ -2b & -c \end{bmatrix} \right\}$; a, b, and c are real numbers $\left\{ \begin{bmatrix} a & -a \\ b & c \\ -2b & -c \end{bmatrix} \right\}$

- a. Show that W is a subspace of M_{3X2} .
- **b.** Find a basis for W (without justifying your claim). Call it $S = \{v_1, v_2, v_3\}$.
- c. Find a basis for M_{3X2} that includes v_1 , v_2 , and v_3 .

Question 2. (25pts)

Let $S = \{v_1, v_2, v_3\}$ and $T = \{w_1=2t^2+t, w_2=t^2+3, w_3=t\}$ be ordered bases for P_2 . If the transition matrix from the T-Basis to the S-Basis is

$$P_S \longleftarrow_T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \text{ determine S.}$$

Question 3. (25pts)

Let
$$A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & -8 \end{bmatrix}$$

- a. Find a basis for the column space of A.
- **b.** Compute rank A and deduce nullity A.
- c. Find a basis for the Null Space of A.

Question 4. (25pts)

Let
$$S = \{u_1 = [1 \ 0 \ 1], u_2 = [1 \ 1 \ 1], u_3 = [1 \ 0 \ 4]\}$$

- a. Show that S is a basis for R_3 .
- b. Find an orthonormal basis of R₃ using Gram-Schmidt Process.

Good Luck & Stay Safe