

Problem Statement

[‡]Based on Lanzenauer et al. (1987).

- Q) In the electrical circuit of Figure 11, It = current (in amperes) flowing through resistor t, Vt = voltage drop (in volts) across resistor t, and Rt = resistance (in ohms) of resistor t. Kirchoff's Voltage and Current Laws imply that V1 = V2 = V3 and I1 + I2 + I3 = I4. The power dissipated by the current flowing through resistor t is It 2Rt. Ohm's Law implies that Vt = ItRt. The two parts of this problem should be solved independently.
- a) Suppose you are told that I1 = 4, I2 = 6, I3 = 8, and I4 = 18 are required. Also, the voltage drop across each resistor must be between 2 and 10 volts. Choose the Rt's to minimize the total dissipated power. Formulate an LP whose solution will solve your problem.
- b)Suppose you are told that V1 = 6, V2 = 6, V3 = 6, and V4 = 4 are required. Also, the current flowing through each resistor must be between 2 and 6 amperes. Choose the Rt's to minimize the total dissipated power. Formulate an LP whose solution will solve your problem.

a) Verbal Formulation

Decision variables:

- Ri: Resistance across resistor i where i=1,2,3,4
- Vi: Voltage drop across resistor i where i=1,2,3,4
- Ii: Current passing through each resistor i where i=1,2,3,4
- Pi: Power dissipated across each resistor i where i=1,2,3,4

Constraints:

- Kirchoff's voltage law
- Kirchoff's current law
- Ohm's Law
- Voltage drop constraint
- Current constraint

Objective function:

Minimize the total power dissipated

Mathematical Model

Decision variables:

- Ri: Resistance across resistor i where i=1,2,3,4
- Vi: Voltage drop across resistor i where i=1,2,3,4
- Ii: Current passing through each resistor i where i=1,2,3,4
- Pi: Power dissipated across each resistor i where i=1,2,3,4

Constraints:

- Kirchoff's voltage law: V1=V2=V3
- Kirchoff's current law: I1+I2+I3=I4
- Ohm's Law: Vi=Ii*Ri for i=1,2,3,4
- Voltage drop constraint: 2<=Vi<=10 for i=1,2,3,4
- Current Constraint: I1=4, I2=6, I3=8, I4=18

Objective function:

Minimize the total power dissipated:

Minimize P1+P2+P3+P4

Where $Pi = Ii^2*Ri$ for i=1,2,3,4

LINDO Code

```
MINIMIZE P1+P2+P3+P4
SUBJECT TO
CUR1) I1 = 4
CUR2) I2 = 6
CUR3) I3 = 8
CUR4) I4 = 18
OHM1) V1-4R1=0
OHM2) V2-6R2=0
OHM3) V3-8R3=0
OHM4) V4-18R4=0
KV1) V1-V2=0
KV2) V2-V3=0
KC1) I1+I2+I3-I4=0
V1A) V1<=10
V1B) V1>=2
V2A) V2<=10
V2B) V2>=2
V3A) V3<=10
V3B) V3>=2
V4A) V4<=10
V4B) V4>=2
POW1) P1-16R1=0
POW2) P2-36R2=0
POW3) P3-64R3=0
POW4) P4-324R4=0
```

LINDO Output

LP OPTIMUM	FOUND AT STEP	6
OBJE	ECTIVE FUNCTION VALU	JE
1)	72.00000	
VARIABLE P1 P2 P3 P4 I1 I2 I3 I4 V1 R1 V2 R2 V3 R3 V4 R4	VALUE 8.000000 12.000000 16.000000 36.000000 4.000000 8.000000 18.000000 2.000000 0.500000 0.333333 2.000000 0.250000 0.111111	REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000
ROW CUR1) CUR2) CUR3) CUR4) OHM1) OHM2) OHM4) KV1) KV2) KV2) V1A) V1B) V2A) V2B) V3A) V3B) V3B) V3B) V4A) POW1) POW2) POW3)	SLACK OR SURPLUS 0.000000 0.000000 0.000000 0.000000 0.000000	DUAL PRICES

b) Verbal Formulation

Decision variables:

- Ci: Inverse of Resistance across resistor i where i=1,2,3,4
- Vi: Voltage drop across resistor i where i=1,2,3,4
- Ii: Current passing through each resistor i where i=1,2,3,4
- Pi: Power dissipated across each resistor i where i=1,2,3,4

Constraints:

- Kirchoff's voltage law
- Kirchoff's current law
- Ohm's Law
- Voltage constraint
- Current constraint

Objective function:

Minimize the total power dissipated

Mathematical Model

Decision variables:

- Ci: Inverse of Resistance (1/Ri) across resistor i where i=1,2,3,4
- Vi: Voltage drop across resistor i where i=1,2,3,4
- Ii: Current passing through each resistor i where i=1,2,3,4
- Pi: Power dissipated across each resistor i where i=1,2,3,4

Constraints:

- Kirchoff's voltage law: V1=V2=V3
- Kirchoff's current law: I1+I2+I3=I4
- Ohm's Law: Ii=Vi*Ci for i=1,2,3,4
- Voltage constraint: V1=6,V2=6,V3=6,V4=4
- Current constraint: 2<=li<=6 for i=1,2,3,4

Objective function:

Minimize the total power dissipated:

Minimize P1+P2+P3+P4

Where $Pi = Vi^2*Ci$ for i=1,2,3,4

LINDO Code

```
MINIMIZE P1+P2+P3+P4
SUBJECT TO
Vol1) V1 = 6
Vol2) V2 = 6
Vol3) V3 = 6
CVol4) V4 = 4
OHM1) I1 - 6C1=0
OHM2) I2 - 6C2=0
OHM3) I3 - 6C3=0
OHM4) I4 - 4C4=0
KC1) I1+I2+I3-I4=0
I1A) I1<=6
I1B) I1>=2
I2A) I2<=6
I2B) I2>=2
I3A) I3<=6
I3B) I3>=2
I4A) I4<=6
I4B) I4>=2
POW1) P1-36C1=0
POW2) P2-36C2=0
POW3) P3-36C3=0
POW4) P4-16C4=0
```

LINDO Output

LP OPTIMUM	FOUND AT STEP	5
OBJI	ECTIVE FUNCTION VAL	UE
1)	60.00000	
VARIABLE P1 P2 P3 P4 V1 V2 V3 V4 I1 C1 I2 C2 I3 C3 I4 C4	VALUE 12.000000 12.000000 12.000000 24.000000 6.000000 6.000000 4.000000 2.000000 0.333333 2.000000 0.3333333 2.000000 0.3333333	REDUCED COST 0.000000 0.000000 0.000000 0.000000 0.000000
ROW VOL1) VOL2) VOL3) CVOL4) OHM1) OHM2) OHM4) KC1) I1A) I1A) I2A) I2B) I3A) I3B) I4A) I4B) POW1) POW2) POW3)	SLACK OR SURPLUS 0.000000 0.000000 0.000000 0.000000 0.000000	DUAL PRICES 0.000000 0.000000 0.000000 6.000000 6.000000 4.000000 4.000000 -10.000000 -10.000000 -10.000000 -1.000000 -1.000000 -1.000000 -1.000000

Report for (a) part:

- According to the optimal solution that has been obtained, minimum Power dissipated is 72 Watts.
- Resistors: R1= 0.5 ohms, R2=0.33ohms, R3= 0.25 ohms, R4=0.111 ohms
- Current: I1=4A, I2=6A, I3=8A, I4=18A
- Voltage drop: V1=V2=V3=V4=2 Volts
- Power dissipated across each resistor:
 P1=8W, P2=12W, P3=16W, P4=36W
- Total Power dissipated= P1+P2+P3+P4= 72W

Report for (b) part:

- According to the optimal solution that has been obtained, minimum Power dissipated is 60 Watts.
- Resistors:

- Current: I1=2A, I2=2A, I3=2A, I4=6A
- Voltage drop: V1=6v ,V2=6v ,V3=6v ,V4=4v
- Power dissipated across each resistor: P1=12W, P2=12W, P3=12W, P4=24W
- Total Power dissipated= P1+P2+P3+P4= 60W

