Rubik's cubes and permutation group theory

Lawrence Chen

October 7, 2022

Honours presentation

Contents

Some basic group theory

What is a group?

Order and generators

Permutations

Group actions

The Rubik's group

Representing the cube and its moves Moves vs states for Rubik's cube The Rubik's group of permutations

Orbits and stabilisers

Orders of moves

Jake's theorems

Analysing the Rubik's group

Bases and stabiliser chains How many valid states are there? Can this restickering be solved?

Solving a Rubik's cube...

Concluding remarks

References

Some basic group theory

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

(i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Example (Cyclic group)

The set $C_n = \{a^0, a^1, a^2, \dots, a^{n-1}\}$ with rules $a^k a^\ell = a^{k+\ell}$, $a^n = a^0$ forms group: identity

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g,h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Example (Cyclic group)

The set $C_n = \{a^0, a^1, a^2, \dots, a^{n-1}\}$ with rules $a^k a^\ell = a^{k+\ell}$, $a^n = a^0$ forms group: identity $1 = a^0$, inverses

Definition (group)

A **group** is a set $G \neq \emptyset$ with operation $G \times G \rightarrow G$, $(g, h) \mapsto gh$,

- (i) (identity) there is $1 \in G$ with 1g = g1 = g for all $g \in G$;
- (ii) (inverses) for all $g \in G$, there is $g^{-1} \in G$ with $g^{-1}g = gg^{-1} = 1$;
- (iii) (associative) (gh)k = g(hk) for all $g, h, k \in G$.

Example (Integers under addition)

The integers $(\mathbb{Z}, +)$ form an **abelian** group: identity 0, inverses -k for $k \in \mathbb{Z}$, associative.

Example (Cyclic group)

The set $C_n = \{a^0, a^1, a^2, \dots, a^{n-1}\}$ with rules $a^k a^\ell = a^{k+\ell}$, $a^n = a^0$ forms group: identity $1 = a^0$, inverses a^{-k} for $a^k \in C_n$, associative.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$:

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$: $C_6 = \langle a \rangle$.

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$: $C_6 = \langle a \rangle$. If $b = a^2$, $c = a^3$ then $C_6 = \langle b, c \rangle$ since

Definition (order)

Order of $g \in G$ is least $k \in \mathbb{Z}_+$ with $g^k = g \cdots g = 1$ (otherwise ∞).

Example (Cyclic group)

Consider group $C_4 = \{1, a, a^2, a^3\}$: order of 1 is 1, order of a is 4, order of a^2 is 2, order of a^3 is 4.

Definition (generator)

Set *X* generates *G* if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ generators; write $G = \langle X \rangle$. (If |X| = 1, *G* is cyclic.)

Example (Cyclic group)

Consider group $C_6 = \{1, a, a^2, a^3, a^4, a^5\}$: $C_6 = \langle a \rangle$. If $b = a^2, c = a^3$ then $C_6 = \langle b, c \rangle$ since $a = cb^{-1}$ so $a^k = cb^{-1} \cdots cb^{-1} = c^k b^{-k}$.

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \to [n]$.

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \to [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

1 2 3 4 5 6

 σ

1 2 3 4 5 6

It means

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
,

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4, \ 4^{\sigma} = 5,$$

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
, $4^{\sigma} = 5$, $5^{\sigma} = 1$,

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$,

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4, \ 4^{\sigma} = 5, \ 5^{\sigma} = 1, \ 2^{\sigma} = 6, \ 6^{\sigma} = 2,$$

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \rightarrow [n]$.

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$ is:

It means

$$1^{\sigma} = 4$$
, $4^{\sigma} = 5$, $5^{\sigma} = 1$, $2^{\sigma} = 6$, $6^{\sigma} = 2$, $3^{\sigma} = 3$.

Inverses: For $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$:

Inverses: For $\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$:

Inverse is $\sigma^{-1} = (1, 5, 4)(2, 6) \in \text{Sym}(6)$.

Product/composition: for $\sigma, \tau \in \text{Sym}(n)$, $\sigma \tau$ means "first σ , then τ ", so $i^{\sigma \tau} = (i^{\sigma})^{\tau}$.

Product/composition: for $\sigma, \tau \in \text{Sym}(n)$, $\sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3)$,

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

$$\sigma\tau=(1,2,3)(1,3)(2,4)=(1,$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

 $\sigma\tau$

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4,$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

 $\sigma\tau$

$$\sigma \tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2)$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

$$\sigma \tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2)$$

Product/composition: for $\sigma, \tau \in \text{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \text{Sym}(4)$,

$$\sigma \tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) \in \text{Sym}(4).$$

$$\sigma^{-1} = (1, 3, 2),$$

$$\sigma^{-1}=(1,3,2),\,\tau^{-1}=(1,3)(2,4),$$

$$\sigma^{-1} = (1, 3, 2), \tau^{-1} = (1, 3)(2, 4), (\sigma \tau)^{-1} = (1, 2, 4).$$

$$\sigma^{-1} = (1,3,2), \, \tau^{-1} = (1,3)(2,4), \, (\sigma\tau)^{-1} = (1,2,4).$$

$$\sigma^{-1}\tau^{-1} = (1, 3, 2)(1, 3)(2, 4) = (2, 3, 4) \neq (\sigma\tau)^{-1},$$

$$\sigma^{-1} = (1,3,2), \, \tau^{-1} = (1,3)(2,4), \, (\sigma\tau)^{-1} = (1,2,4).$$

$$\sigma^{-1}\tau^{-1} = (1,3,2)(1,3)(2,4) = (2,3,4) \neq (\sigma\tau)^{-1},$$

$$\tau^{-1}\sigma^{-1} = (1,3)(2,4)(1,3,2) = (1,2,4) = (\sigma\tau)^{-1}.$$

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)?

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? *Answer:* n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$,

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? *Answer:* n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? *Answer:* n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? *Answer:* n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Fact: order of $\sigma \in \text{Sym}(n)$ is lcm of cycle lengths.

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? *Answer:* n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Fact: order of $\sigma \in \text{Sym}(n)$ is lcm of cycle lengths.

Definition (subgroup)

Subset H of group G is **subgroup** if it is group under same operation; write $H \leq G$. (Need to check: nonempty, closure, inverses.)

Set of permutations under *product* is **symmetric group** Sym(n): identity 1 = (), inverses (since bijection), associative.

What is size of Sym(n)? *Answer:* n!

Example (Order of permutation)

Consider
$$\sigma = (1, 4, 5)(2, 6) \in \text{Sym}(6)$$
. Then $1^{\sigma^3} = 4^{\sigma^2} = 5^{\sigma} = 1$, $4^{\sigma^3} = 4$, $5^{\sigma^3} = 5$, $2^{\sigma^2} = 2$, $6^{\sigma^2} = 6$ so $\sigma^6 = () = 1$; order of σ is 6.

Fact: order of $\sigma \in \text{Sym}(n)$ is lcm of cycle lengths.

Definition (subgroup)

Subset H of group G is **subgroup** if it is group under same operation; write $H \leq G$. (Need to check: nonempty, closure, inverses.)

Definition (permutation group)

A **permutation group** of *degree* n is a subgroup of Sym(n).

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, ..., 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, ..., 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

E.g. 5:00 plus 9 hrs is $(5:00)^9 = [5+9]_{12}:00 = 2:00$.

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, \dots, 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

E.g. 5:00 plus 9 hrs is $(5:00)^9 = [5+9]_{12}:00 = 2:00$.

Example (natural action)

 $G \leq \operatorname{Sym}(n)$ acts on $\Omega = [n]$ by $\alpha^g = \alpha^g$ (image) for $\alpha \in [n], g \in G$.

Definition (group action)

If G is group and $\Omega \neq \emptyset$ is set, a G-action is a map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects group operation.

Example (adding time)

 \mathbb{Z} acts on $\Omega = \{12:00, 1:00, ..., 11:00\}$ by $(\alpha:00)^k = [\alpha + k]_{12}:00$ for $\alpha:00 \in \Omega$ and $k \in \mathbb{Z}$.

E.g. 5:00 plus 9 hrs is $(5:00)^9 = [5+9]_{12}:00 = 2:00$.

Example (natural action)

 $G \leq \operatorname{Sym}(n)$ acts on $\Omega = [n]$ by $\alpha^g = \alpha^g$ (image) for $\alpha \in [n], g \in G$.

Example (right regular action)

Group G acts on $\Omega = G$ (itself) via $\alpha^g = \alpha g$ for $\alpha, g \in G$.

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

 \mathbb{Z} -orbit of 11:00 is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Example (right regular action)

G acts on $\Omega = G$ via $\alpha^g = \alpha g$ for $\alpha, g \in G$. Orbit of $\alpha \in G$ is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Example (right regular action)

G acts on $\Omega = G$ via $\alpha^g = \alpha g$ for $\alpha, g \in G$. Orbit of $\alpha \in G$ is $\Omega = G$ ($\alpha^{\alpha^{-1}\beta} = \beta \in G$); stabiliser of α is

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := {\alpha^g : g \in G}$.

Idea: states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$.

Idea: moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (Adding time)

Z-orbit of 11:00 is $\Omega = \{12:00, \dots, 11:00\}$ (e.g. $(11:00)^{-2} = 9:00$).

 \mathbb{Z} -stabiliser of 11:00 is $12\mathbb{Z} = \{12k : k \in \mathbb{Z}\}$ (add multiples of 12 hrs).

Example (right regular action)

G acts on $\Omega = G$ via $\alpha^g = \alpha g$ for $\alpha, g \in G$. Orbit of $\alpha \in G$ is $\Omega = G$ $(\alpha^{\alpha^{-1}\beta} = \beta \in G)$; stabiliser of α is $\{1\} = 1$ $(\alpha g = \alpha \implies g = 1)$.

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \mathrm{Sym}(4)$ acts on $\Omega = [4]$ naturally. Orbit of 1 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4)$ acts on $\Omega = [4]$ naturally. Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \text{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \operatorname{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note: $|1^G||G_1| = 3 \cdot 1 = 3$

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \operatorname{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note: $|1^G||G_1| = 3 \cdot 1 = 3 = |G|$,

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \operatorname{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note: $|1^G||G_1| = 3 \cdot 1 = 3 = |G|$, $|3^G||G_3| = 1 \cdot 3 = 3 = |G|$.

Definition (orbit, stabiliser)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$ and **stabiliser** of $\alpha \in \Omega$ is $G_\alpha := \{g \in G : \alpha^g = \alpha\}$.

Note: stabiliser G_{α} is subgroup of G. (So G_{α} acts on Ω .)

Example (Natural action)

 $G = \{(), (1, 2, 4), (1, 4, 2)\} \le \operatorname{Sym}(4) \text{ acts on } \Omega = [4] \text{ naturally.}$ Orbit of 1 is $1^G = \{1, 2, 4\}$, stabiliser of 1 is $G_1 = \{()\} = 1$. Orbit of 3 is $3^G = \{3\}$, stabiliser of 3 is $G_3 = G$.

Note:
$$|1^G||G_1| = 3 \cdot 1 = 3 = |G|$$
, $|3^G||G_3| = 1 \cdot 3 = 3 = |G|$.

Theorem (orbit-stabiliser)

If G acts on Ω , then for $\alpha \in G$, $|\alpha^G||G_\alpha| = |G|$.

The Rubik's group

A Rubik's cube has 6 large faces (each with 3×3 smaller faces).

A Rubik's cube has 6 large faces (each with 3×3 smaller faces).

In **solved state**, label smaller faces (except each centre) using [48]:

A Rubik's cube has 6 large faces (each with 3×3 smaller faces).

In **solved state**, label smaller faces (except each centre) using [48]:

6 elementary moves (generators): U, L, F, R, B, D (rot. *clockwise*).

From *solved state*, consider *F* which rotates front face clockwise:

From *solved state*, consider *F* which rotates front face clockwise:

Under $F: 17 \mapsto 19 \mapsto 24 \mapsto 22 \mapsto 17$, $18 \mapsto 21 \mapsto 23 \mapsto 20 \mapsto 18$, $6 \mapsto 25 \mapsto 43 \mapsto 16 \mapsto 6$, $7 \mapsto 28 \mapsto 42 \mapsto 13 \mapsto 7$, $8 \mapsto 30 \mapsto 41 \mapsto 11 \mapsto 8$, else fixed. So

From *solved state*, consider *F* which rotates front face clockwise:

Under $F: 17 \mapsto 19 \mapsto 24 \mapsto 22 \mapsto 17$, $18 \mapsto 21 \mapsto 23 \mapsto 20 \mapsto 18$, $6 \mapsto 25 \mapsto 43 \mapsto 16 \mapsto 6$, $7 \mapsto 28 \mapsto 42 \mapsto 13 \mapsto 7$, $8 \mapsto 30 \mapsto 41 \mapsto 11 \mapsto 8$, else fixed. So

$$F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11) \in Sym(48).$$

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)

(**Valid**) move is sequence of elementary moves and inverses. E.g. $RUR^{-1}U^{-1}$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)

(**Valid**) move is sequence of elementary moves and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$,

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)

(**Valid**) move is sequence of elementary moves and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$.

Empty move is 1 = () (valid: $1 = RR^{-1}$).

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)

(**Valid**) move is sequence of elementary moves and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$.

Empty move is 1 = () (valid: $1 = RR^{-1}$).

Solving is applying valid move to get to solved state 1.

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)

$$19^{RU} =$$

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)

$$19^{RU} = (19^R)^U =$$

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)

$$19^{RU} = (19^R)^U = 3^U =$$

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)

$$19^{RU} = (19^R)^U = 3^U = 8$$
 but $19^{UR} =$

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)

$$19^{RU} = (19^R)^U = 3^U = 8$$
 but $19^{UR} = (19^U)^R =$

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)

$$19^{RU} = (19^R)^U = 3^U = 8$$
 but $19^{UR} = (19^U)^R = 11^R =$

In cubing community: inverse elementary moves written U', L', F', R', B', D' (instead of U^{-1} etc.); powers written U2, R2 etc. (instead of U^2, R^2).

Recall: $\sigma = \tau$ in Sym(n) iff $i^{\sigma} = i^{\tau}$ for all $i \in [n]$.

- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)

$$19^{RU} = (19^R)^U = 3^U = 8$$
 but $19^{UR} = (19^U)^R = 11^R = 11$.

(Valid) state is result of applying valid move to solved state 1 = ().

(Valid) state is result of applying valid move to solved state 1 = ().

This new state is valid, as result of applying F to solved state.

Restickering is valid state iff it can be *solved*. How to check?

Let S be valid **states**; can represent state $x \in S$ as element of Sym(48) giving permutation of labels to solved state 1 = (). (I.e. i^x is label at x-position of i in solved state 1.)

Restickering is valid state iff it can be *solved*. How to check?

Let S be valid **states**; can represent state $x \in S$ as element of Sym(48) giving permutation of labels to solved state 1 = (). (I.e. i^x is label at x-position of i in solved state 1.)

Let \mathcal{G} be valid **moves**; can represent move $\sigma \in \mathcal{G}$ as element of Sym(48) giving corresponding permutation of labels. (I.e. i^{σ} is label at position σ maps i into.)

Restickering is valid state iff it can be *solved*. How to check?

Let S be valid **states**; can represent state $x \in S$ as element of Sym(48) giving permutation of labels to solved state 1 = (). (I.e. i^x is label at x-position of i in solved state 1.)

Let \mathcal{G} be valid **moves**; can represent move $\sigma \in \mathcal{G}$ as element of Sym(48) giving corresponding permutation of labels. (I.e. i^{σ} is label at position σ maps i into.)

 State x ∈ S corresponds to move x ∈ G required to get solved state 1 = () into state x.

Restickering is valid state iff it can be *solved*. How to check?

Let S be valid **states**; can represent state $x \in S$ as element of Sym(48) giving permutation of labels to solved state 1 = (). (I.e. i^x is label at x-position of i in solved state 1.)

Let \mathcal{G} be valid **moves**; can represent move $\sigma \in \mathcal{G}$ as element of Sym(48) giving corresponding permutation of labels. (I.e. i^{σ} is label at position σ maps i into.)

- State x ∈ S corresponds to move x ∈ G required to get solved state 1 = () into state x.
- Move $\sigma \in \mathcal{G}$ corresponds to state $\sigma \in \mathcal{S}$ reached by applying move σ to solved state 1 = ().

Restickering is valid state iff it can be *solved*. How to check?

Let S be valid **states**; can represent state $x \in S$ as element of Sym(48) giving permutation of labels to solved state 1 = (). (I.e. i^x is label at x-position of i in solved state 1.)

Let \mathcal{G} be valid **moves**; can represent move $\sigma \in \mathcal{G}$ as element of Sym(48) giving corresponding permutation of labels. (I.e. i^{σ} is label at position σ maps i into.)

- State x ∈ S corresponds to move x ∈ G required to get solved state 1 = () into state x.
- Move $\sigma \in \mathcal{G}$ corresponds to state $\sigma \in \mathcal{S}$ reached by applying move σ to solved state 1 = ().

So moves \leftrightarrow states for Rubik's cube; as sets, S = G.

The Rubik's group of permutations i

Set of moves \mathcal{G} forms group: composition of valid moves

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move is

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move is $1 = () \in \mathcal{G}$, inverse moves

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move is $1 = () \in \mathcal{G}$, inverse moves exist (undo elementary moves/inverses); associative.

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move is $1 = () \in \mathcal{G}$, inverse moves exist (undo elementary moves/inverses); associative.

Definition (Rubik's group)

 $G \leq \text{Sym}(48)$ is permutation group of degree 48, called the **Rubik's** group; it acts naturally on [48].

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move is $1 = () \in \mathcal{G}$, inverse moves exist (undo elementary moves/inverses); associative.

Definition (Rubik's group)

 $\mathcal{G} \leq \operatorname{Sym}(48)$ is permutation group of degree 48, called the **Rubik's group**; it acts naturally on [48]. *Note:* $G = \langle U, L, F, R, B, D \rangle$.

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move is $1 = () \in \mathcal{G}$, inverse moves exist (undo elementary moves/inverses); associative.

Definition (Rubik's group)

 $\mathcal{G} \leq \operatorname{Sym}(48)$ is permutation group of degree 48, called the **Rubik's group**; it acts naturally on [48]. *Note:* $G = \langle U, L, F, R, B, D \rangle$.

For move $\sigma \in \mathcal{G}$ and state $x \in \mathcal{S}$, applying σ to x gives state $x^{\sigma} = x\sigma \in \mathcal{S}$. This is regular action of \mathcal{G} . (Consider states $x \in \mathcal{G}$.)

Set of moves \mathcal{G} forms group: composition of valid moves is valid move; identity move is $1 = () \in \mathcal{G}$, inverse moves exist (undo elementary moves/inverses); associative.

Definition (Rubik's group)

 $\mathcal{G} \leq \operatorname{Sym}(48)$ is permutation group of degree 48, called the **Rubik's group**; it acts naturally on [48]. *Note:* $G = \langle U, L, F, R, B, D \rangle$.

For move $\sigma \in \mathcal{G}$ and state $x \in \mathcal{S}$, applying σ to x gives state $x^{\sigma} = x\sigma \in \mathcal{S}$. This is regular action of \mathcal{G} . (Consider states $x \in \mathcal{G}$.)

Clearly \mathcal{G} finite (states \leftrightarrow moves; also $|\mathcal{G}| \le 48!$). But what is $|\mathcal{G}|$?

GAP code to define generators and $G = \langle U, L, F, R, B, D \rangle$ (as G):

```
I U := (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)
      (11,35,27,19);
2 L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(
      6.22.46.35):
3 \text{ F} := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(
      8.30.41.11):
4 R := (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(
      8,33,48,24);
5 \text{ B} := (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(
      1.14.48.27):
6 D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
      (16,24,32,40);
7 G := Group( U, L, F, R, B, D );
```

GAP code to define generators and $G = \langle U, L, F, R, B, D \rangle$ (as G):

```
I U := (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)
      (11,35,27,19);
2 L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(
      6.22.46.35):
3 \text{ F} := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(
      8.30.41.11):
4 R := (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(
      8,33,48,24);
5 \text{ B} := (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(
      1.14.48.27):
6 D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
      (16,24,32,40);
7 G := Group( U, L, F, R, B, D );
```

Order cmd: $|\mathcal{G}| = 43\,252\,003\,274\,489\,856\,000 \approx 4.3 \cdot 10^{19}$. How?

Orbits and stabilisers i

```
1 2 3
4 U 5
6 7 8
9 10 11 17 18 19 25 26 27 33 34 35
12 L 13 20 F 21 28 R 29 36 B 37
14 15 16 22 23 24 30 31 32 38 39 40
41 42 43
44 D 45
46 47 48
```

Two \mathcal{G} -orbits: corner pieces $1^{\mathcal{G}}$, edge pieces $2^{\mathcal{G}}$.

Orbits and stabilisers ii

Moves in $\mathcal{H} = \mathcal{G}_{1,3,6,8} = (((\mathcal{G}_1)_3)_6)_8$ fix white corners 1, 3, 6, 8.

Orbits and stabilisers ii

Moves in $\mathcal{H} = \mathcal{G}_{1,3,6,8} = (((\mathcal{G}_1)_3)_6)_8$ fix white corners 1, 3, 6, 8.

```
I gap> G_1368 := Stabilizer( G, [ 1, 3, 6, 8 ], OnTuples );
2 <permutation group of size 317842469683200 with 12 generators>
3 gap> Orbit( G_1368, 17 );
4 [ 17 ]
5 gap> Orbit( G_1368, 24 );
6 [ 24, 30, 43, 32, 38, 46, 48, 40, 14, 41, 16, 22 ]
7 gap> Set( Orbit( G_1368, 2 ) ) = Set( Orbit( G, 2 ) );
8 true
```

Some \mathcal{H} -orbits: $17^{\mathcal{H}} = \{17\}$, bottom corner pieces $24^{\mathcal{H}}$, edge pieces $2^{\mathcal{H}} = 2^{\mathcal{G}}$.

Use GAP to compute products, order (using Order cmd).

```
I gap> R*U*R^(-1)*U^(-1);
2 (1,27,35,33,9,3)(2,21,5)(8,30,25,43,19,24)(26,34,28)
3 gap> Order( last );
4 6
```

How many times must we repeat move $\sigma \in \mathcal{G}$ to have no effect?

Use GAP to compute products, order (using Order cmd).

```
I gap> R*U*R^(-1)*U^(-1);
2 (1,27,35,33,9,3)(2,21,5)(8,30,25,43,19,24)(26,34,28)
3 gap> Order( last );
4 6
```

How many times must we repeat move $\sigma \in \mathcal{G}$ to have no effect? I.e. for state $x \in \mathcal{S}$, smallest $k \in \mathbb{Z}_+$ with $x^{\sigma^k} = x \sigma^k = x \iff \sigma^k = 1$.

Use GAP to compute products, order (using Order cmd).

```
I gap> R*U*R^(-1)*U^(-1);
2 (1,27,35,33,9,3)(2,21,5)(8,30,25,43,19,24)(26,34,28)
3 gap> Order( last );
4 6
```

How many times must we repeat move $\sigma \in \mathcal{G}$ to have no effect? I.e. for state $x \in \mathcal{S}$, smallest $k \in \mathbb{Z}_+$ with $x^{\sigma^k} = x\sigma^k = x \iff \sigma^k = 1$. *Recall:* order of σ is lcm of cycle lengths.

• Any *generator* (U, L, F, R, B, D) has cycles of length 4, 4, 4, 4, 4: order is lcm(4, 4, 4, 4, 4) = 4.

Use GAP to compute products, order (using Order cmd).

```
I gap> R*U*R^(-1)*U^(-1);
2 (1,27,35,33,9,3)(2,21,5)(8,30,25,43,19,24)(26,34,28)
3 gap> Order( last );
4 6
```

How many times must we repeat move $\sigma \in \mathcal{G}$ to have no effect? I.e. for state $x \in \mathcal{S}$, smallest $k \in \mathbb{Z}_+$ with $x^{\sigma^k} = x\sigma^k = x \iff \sigma^k = 1$. *Recall:* order of σ is lcm of cycle lengths.

- Any *generator* (*U*, *L*, *F*, *R*, *B*, *D*) has cycles of length 4, 4, 4, 4, 4: order is lcm(4, 4, 4, 4, 4) = 4.
- Commutator $RUR^{-1}U^{-1}$ = (1, 27, 35, 33, 9, 3)(2, 21, 5)(8, 30, 25, 43, 19, 24)(26, 34, 28): order is lcm(6, 3, 6, 3) = 6.

• Sune $RUR^{-1}URU^2R^{-1}U^2$

$$=(1,9,35)(2,5,7)(3,33,27)(8,25,19)(18,34,26):$$

order is lcm(3, 3, 3, 3, 3) = 3.

• Sune $RUR^{-1}URU^2R^{-1}U^2$

$$=(1,9,35)(2,5,7)(3,33,27)(8,25,19)(18,34,26):$$

order is lcm(3, 3, 3, 3, 3) = 3.

• Lawrence's move RU has cycles of length 15, 7, 3, 7: order is lcm(15, 7, 3, 7) = 105.

• Sune $RUR^{-1}URU^2R^{-1}U^2$

$$=(1,9,35)(2,5,7)(3,33,27)(8,25,19)(18,34,26):$$

order is lcm(3, 3, 3, 3, 3) = 3.

- Lawrence's move RU has cycles of length 15, 7, 3, 7: order is lcm(15, 7, 3, 7) = 105.
- Clayton's move UL' has cycles of length 9, 7, 9, 7: order is lcm(9,7,9,7) = 63.

Watch video demonstration by my friend Wes:D

• Sune $RUR^{-1}URU^2R^{-1}U^2$

$$=(1,9,35)(2,5,7)(3,33,27)(8,25,19)(18,34,26):$$

order is lcm(3, 3, 3, 3, 3) = 3.

- Lawrence's move RU has cycles of length 15, 7, 3, 7: order is lcm(15, 7, 3, 7) = 105.
- Clayton's move UL' has cycles of length 9, 7, 9, 7: order is lcm(9,7,9,7) = 63.

Watch video demonstration by my friend Wes:D

Element of order 5?

• Sune $RUR^{-1}URU^2R^{-1}U^2$

$$=(1,9,35)(2,5,7)(3,33,27)(8,25,19)(18,34,26):$$

order is lcm(3, 3, 3, 3, 3) = 3.

- Lawrence's move RU has cycles of length 15, 7, 3, 7: order is lcm(15, 7, 3, 7) = 105.
- Clayton's move UL' has cycles of length 9, 7, 9, 7: order is lcm(9,7,9,7) = 63.

Watch video demonstration by my friend Wes:D

Element of order 5? Answer: $(RU)^{21}$ since $((RU)^{21})^5 = (RU)^{105} = 1$.

Theorem (Jake Vandenberg's conjecture)

There is no Rubik's cube move that cycles through all states.

Theorem (Jake Vandenberg's conjecture)

There is no Rubik's cube move that cycles through all states.

Recall: states \leftrightarrow moves. Rubik's group \mathcal{G} acts on states by applying move $\sigma \in \mathcal{G}$ to state $x \in \mathcal{G}$ to get state $x^{\sigma} = x \sigma \in \mathcal{G}$.

Theorem (Jake Vandenberg's conjecture)

There is no Rubik's cube move that cycles through all states.

Recall: states \leftrightarrow moves. Rubik's group \mathcal{G} acts on states by applying move $\sigma \in \mathcal{G}$ to state $x \in \mathcal{G}$ to get state $x^{\sigma} = x \sigma \in \mathcal{G}$.

Equivalent question: for starting state, WLOG 1 = (), is there $\sigma \in \mathcal{G}$ with $\{1^{\sigma^k} : k \in \mathbb{Z}\} = \{1\sigma^k : k \in \mathbb{Z}\} = \{\sigma^k : k \in \mathbb{Z}\} = \mathcal{G}$?

Theorem (Jake Vandenberg's conjecture)

There is no Rubik's cube move that cycles through all states.

Recall: states \leftrightarrow moves. Rubik's group \mathcal{G} acts on states by applying move $\sigma \in \mathcal{G}$ to state $x \in \mathcal{G}$ to get state $x^{\sigma} = x \sigma \in \mathcal{G}$.

Equivalent question: for starting state, WLOG 1 = (), is there $\sigma \in \mathcal{G}$ with $\{1^{\sigma^k} : k \in \mathbb{Z}\} = \{1\sigma^k : k \in \mathbb{Z}\} = \{\sigma^k : k \in \mathbb{Z}\} = \mathcal{G}$? In group theory language:

Theorem (Jake Vandenberg's conjecture)

The Rubik's group \mathcal{G} is not cyclic. (I.e. no $\sigma \in \mathcal{G}$ with $\mathcal{G} = \langle \sigma \rangle$.)

Theorem (Jake Vandenberg's conjecture)

There is no Rubik's cube move that cycles through all states.

Recall: states \leftrightarrow moves. Rubik's group \mathcal{G} acts on states by applying move $\sigma \in \mathcal{G}$ to state $x \in \mathcal{G}$ to get state $x^{\sigma} = x \sigma \in \mathcal{G}$.

Equivalent question: for starting state, WLOG 1 = (), is there $\sigma \in \mathcal{G}$ with $\{1^{\sigma^k} : k \in \mathbb{Z}\} = \{1\sigma^k : k \in \mathbb{Z}\} = \{\sigma^k : k \in \mathbb{Z}\} = \mathcal{G}$? In group theory language:

Theorem (Jake Vandenberg's conjecture)

The Rubik's group \mathcal{G} is not cyclic. (I.e. no $\sigma \in \mathcal{G}$ with $\mathcal{G} = \langle \sigma \rangle$.)

Proof.

If G is cyclic, then G is abelian.

Theorem (Jake Vandenberg's conjecture)

There is no Rubik's cube move that cycles through all states.

Recall: states \leftrightarrow moves. Rubik's group \mathcal{G} acts on states by applying move $\sigma \in \mathcal{G}$ to state $x \in \mathcal{G}$ to get state $x^{\sigma} = x \sigma \in \mathcal{G}$.

Equivalent question: for starting state, WLOG 1 = (), is there $\sigma \in \mathcal{G}$ with $\{1^{\sigma^k} : k \in \mathbb{Z}\} = \{1\sigma^k : k \in \mathbb{Z}\} = \{\sigma^k : k \in \mathbb{Z}\} = \mathcal{G}$? In group theory language:

Theorem (Jake Vandenberg's conjecture)

The Rubik's group \mathcal{G} is not cyclic. (I.e. no $\sigma \in \mathcal{G}$ with $\mathcal{G} = \langle \sigma \rangle$.)

Proof.

If \mathcal{G} is cyclic, then \mathcal{G} is abelian. But \mathcal{G} is not abelian: $RU \neq UR$. \square

Theorem (Jake Vandenberg's theorem)

There is no Rubik's cube move that when repeated, if starting from the solved state, never returns to the solved state.

Theorem (Jake Vandenberg's theorem)

There is no Rubik's cube move that when repeated, if starting from the solved state, never returns to the solved state.

k-fold repetition of move $\sigma \in G$, applied to solved state 1 = (), gives $1^{\sigma^k} = 1\sigma^k = \sigma^k$. Returning to solved state: $\sigma^k = 1$ (for $k \in \mathbb{Z}_+$).

Theorem (Jake Vandenberg's theorem)

There is no Rubik's cube move that when repeated, if starting from the solved state, never returns to the solved state.

k-fold repetition of move $\sigma \in G$, applied to solved state 1 = (), gives $1^{\sigma^k} = 1\sigma^k = \sigma^k$. Returning to solved state: $\sigma^k = 1$ (for $k \in \mathbb{Z}_+$).

Equivalent question: does any $\sigma \in G$ have infinite order?

Theorem (Jake Vandenberg's theorem)

There is no Rubik's cube move that when repeated, if starting from the solved state, never returns to the solved state.

k-fold repetition of move $\sigma \in G$, applied to solved state 1 = (), gives $1^{\sigma^k} = 1\sigma^k = \sigma^k$. Returning to solved state: $\sigma^k = 1$ (for $k \in \mathbb{Z}_+$).

Equivalent question: does any $\sigma \in G$ have infinite order?

Proposition (corollary of Lagrange's theorem)

If G is finite group and $g \in G$, then $g^{|G|} = 1$.

Theorem (Jake Vandenberg's theorem)

There is no Rubik's cube move that when repeated, if starting from the solved state, never returns to the solved state.

k-fold repetition of move $\sigma \in G$, applied to solved state 1 = (), gives $1^{\sigma^k} = 1\sigma^k = \sigma^k$. Returning to solved state: $\sigma^k = 1$ (for $k \in \mathbb{Z}_+$).

Equivalent question: does any $\sigma \in G$ have infinite order?

Proposition (corollary of Lagrange's theorem)

If G is finite group and $g \in G$, then $g^{|G|} = 1$.

Corollary (Jake Vandenberg's theorem)

There is no $\sigma \in \mathcal{G}$ with infinite order (since \mathcal{G} is finite).

Analysing the Rubik's group

Bases and stabiliser chains i

TODO

How many valid states are there? i

TODO

Can this restickering be solved? i

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

By symmetry, just check one pair, say red/white (18/7) and red/blue (21/28).

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

Theorem (Wes's conjecture)

"I'm 99% sure you can't swap two [adjacent] edge pieces without affecting another piece?!"

WLOG consider solved state. *Equivalent question:* does only restickering two adjacent edge pieces give solvable state?

These restickerings should be invalid states. In group theory language:

Theorem (Wes's conjecture)

$$(18,21)(7,28) \notin \mathcal{G}$$
, $(18,28)(7,21) \notin \mathcal{G}$, $(18,21,7,28) \notin \mathcal{G}$, and $(18,28,7,21) \notin \mathcal{G}$.

Proof.

By GAP:

```
1 gap> (18,21)(7,28) in G or (18,28)(7,21) in G or
      (18,21,7,28) in G or (18,28,7,21) in G;
2 false
```

(GAP uses bases and stabiliser chains to verify membership!)

Can generalise to any two edge pieces (more cases)!

Solving a Rubik's cube... i

TODO

Concluding remarks

References i

 Analyzing Rubik's cube with GAP: https: //www.gap-system.org/Doc/Examples/rubik.html