MA3D5 Galois theory :: Lecture notes

Lecturer: Gavin Brown

Last edited: 27th October 2024

Contents

1	Field extension		
	1.1	Field extensions as vector spaces	1
	1.2	Adjoining a square root to a subfield of $\mathbb C$	1
2	A b	orief review	2
3	Quadratic and cubic formula		
	3.1	Quadratic	3
	3.2	Cubic	3
		3.2.1 Real solutions for real cubics	3
		3.2.2 Trigonometric	5
4	Factorisation		
	4.1	Roots	5
	4.2	$\mathbb{C}[x]$ vs $\mathbb{Q}[x]$	5
	4.3	$\mathbb{Z}[x]$	6
		4.3.1 Rational root test	6
		4.3.2 Eisenstein's criterion	6
		4.3.3 Reduction modulo prime p	7
5	Cor	ntinuation of chapter 1	8
	5.1	Simple extension	8
	5.2	Adjoining a root of a polynomial	9
	5.3	Algebraic extension / finite extension	9
	5.4	Maps between fields	9
6	Aut	tomorphism group of a field	10
	6.1	Fixed field	11
	6.2	Normal extension	13
	6.3	Separable	13
7	Gal	lois theory	14
	7.1	Galois extension	14
	7.2	Lattice map	15
	7.3	Galois correspondence	16
	7.4	Biquadratic extension	16
8	Fin	ite field	18
	8.1	Frobenius map	19
9	Rac	dical solution of a polynomial	20

1 Field extension

Definition 1.0.1. $\varphi: K \to L$ where K, L fields is a *(field) homomorphism* if it is a ring homomorphism.

Proposition 1.0.2. Let $\varphi: K \to L$ be a homomorphism. Then φ is injective.

Proof. Suppose $a, b \in K$: $\varphi(a) = \varphi(b)$. Then $\varphi(a-b) = \varphi(a) - \varphi(b) = 0$. It then suffices to prove that the only element $c \in K$: $\varphi(c) = 0$ is c = 0. Suppose $c \neq 0$. Then $c^{-1} \in K$ and $\varphi(c)\varphi(c^{-1}) = \varphi(cc^{-1}) = \varphi(1) = 1$, so $\varphi(c) \neq 0$, a contradiction.

Definition 1.0.3. A field extension is a (ring) homomorphism $\varphi: K \to L$, denoted L/K.

Remark. 1. Any subfield $K \subset L$ gives a field extension L/K.

2. If $\varphi: K \to L$, then it is injective by above, and we can write $\varphi: K \to K' = \varphi(K) \subset L$. So if we are not given a inclusion map, then K and K' are basically the same field (they are certainly isomorphic), and K' is just a copy of K sitting somehow inside L. Mostly we simply think of L/K as $K \subset L$.

1.1 Field extensions as vector spaces

Proposition 1.1.1. Let L/K be a field extension. Then L is a vector space over K, or K-vector space.

If we want to do scalar multiplication, i.e. multiply an element in L by an element λ in K, we just use φ to bring λ to K', consistent with remark above.

Definition 1.1.2. The degree of L/K, denoted [L:K], is the dimension of L as a K-vector space. L/K is a finite extension if [L:K] is finite. Otherwise, it's an infinite extension.

Note that if [L:K]=1 then L=K.

Theorem 1.1.3 (Tower law). If M/L and L/K are field extensions, then M/K is an extension, and if both M/L and L/K are finite, then

$$[M:K] = [M:L][L:K].$$

If either is infinite then so is M/K.

Proof sketch. Let $a_1, \ldots, a_n \in L$ be a basis of L as a K-vector space, and $b_1, \ldots, b_m \in M$ be a basis of M as a L-vector space. It suffices to prove that

$${a_ib_i \in M : 1 < i < n, 1 < j < m}$$

is a basis of M as a K-vector space.

Definition 1.1.4. If $K \subset L \subset M$, then L is an intermediate field of M/K.

1.2 Adjoining a square root to a subfield of \mathbb{C}

Suppose $s \in K$ is not a square in K. Choose $K \not\ni \alpha = \sqrt{s} \in \mathbb{C}$. Define $K(\alpha)$ to be the smallest subfield of \mathbb{C} that contains K and α . Formally, it's

$$\left\{\frac{p(\alpha)}{q(\alpha)}: p, q \in K[x], \ q(\alpha) \neq 0\right\}.$$

Consider any $\xi = \frac{p(\alpha)}{q(\alpha)} \in K(\alpha)$. If we see α^2 we replace by s, α^3 by αs , α^4 by s^2 and so on, i.e. there won't be

 α of degree higher than 1, i.e. $\exists a, b, c, d \in K : \xi = \frac{a + b\alpha}{c + d\alpha}$ where $c + d\alpha \neq 0$. So

$$\xi = \frac{a+b\alpha}{c+d\alpha}\frac{c-d\alpha}{c-d\alpha} = \frac{ac-bds}{c^2-d^2s} + \frac{bc-ad}{c^2-d^2s},$$

which tells us that $1, \alpha$ span $K(\alpha)$, and of course they are linearly independent since if $e + f\alpha = 0$ where $e, f \in K$ then e = f = 0 since otherwise it would mean that $\alpha \in K$ which is assumed at first to be false. One concludes that $[K(\alpha):K] = 2$.

Week 2, lecture 1 starts here

2 A brief review

3 things first:

1. Consider the (principal) ideal $(f) = \{fg : g \in \mathbb{R}[x]\}$ and the quotient ring $\mathbb{R}[x]/(f) = \{g+(f) : g \in \mathbb{R}[x]\}$. (The golden rule: $g_1 + (f) = g_2 + (f) \Leftrightarrow g_1 - g_2 \in (f)$. When we lazily omit '+(f)' and simply write g in place of g + (f), we must remember that two polynomials g_1, g_2 define exactly the same element of quotient ring $\mathbb{R}[x]/(f)$ iff $g_1 - g_2 \in (f)$, i.e. $g_2 = g_1 + hf$ where $h \in \mathbb{R}[x]$.

Consider $f = x^2 + 1 \in \mathbb{R}[x]$ and let $g = x^3 + 2x^2 + 3$. Then $g + (f) \in \mathbb{R}[x]/(f)$, and add, subtract g by multiple of f won't change the coset, and note $x^3 + 2x^2 + 3 - x(x^2 + 1) - 2(x^2 + 1) = 1 - x$. Now let $g = x^2$ then g = g - f = -1.

 $\mathbb{R}[x]/(f)$ in this case is $\cong \mathbb{C}$.

Proof. Let $\varphi : \mathbb{R}[x] \to \mathbb{C}$ be defined by $x \mapsto i$. This is surjective since $\varphi(ax+b) = ai + b$. We claim $\ker \varphi = (x^2 + 1)$.

Clearly $x^2 + 1 \in \ker \varphi$ since $\varphi(x^2 + 1) = \varphi(x)^2 + 1 = i^2 + 1 = 0$, so $(f) \subseteq \ker \varphi$.

If $g \in \ker \varphi$, apply division algorithm:

given $f, g \in K[x]$ where K field, $\exists !q, r \in K[x] : f = gq + r$ where $\deg r < \deg g$

 $\exists h, r \in \mathbb{R}[x] : g = fh + r \text{ and } \deg r < \deg f = 2$, so we can write r = ax + b. Then $\varphi(g) = 0 = \varphi(f)\varphi(h) + \varphi(r) = \varphi(r) = ai + b \Leftrightarrow a = b = 0$. So $g = fh \in (f)$, hence $\ker \varphi \subseteq (f)$.

This desired then follows by the first isomorphism theorem.

- 2. **Easier context.** Let K be a field, then \exists ! ring homomorphism $\varphi: \mathbb{Z} \to K$. We can agree that either
 - (a) $\ker \varphi = \{0\} = \{0\}$ (we say K has characteristic 0, denoted $\operatorname{char} K = 0$) and $\mathbb{Q} \subset K$ or
 - (b) $\ker \varphi = (n) = n\mathbb{Z}$ for some n > 0, then n must be prime p, and $\operatorname{char} K = p$ and $\mathbb{Z}/p\mathbb{Z} \subset K$

and it can't be that both are true and the p in (b) is unique, e.g. $K = \mathbb{Q}(\sqrt{2}) \supset \mathbb{Q}$ so char K = 0 and $K = \mathbb{F}_7(t) \supset \mathbb{F}_7$ so char K = 7.

Sanity check.

(a) If $\frac{a}{b} \in \mathbb{Q}$, define $\varphi\left(\frac{a}{b}\right) = \frac{\varphi(a)}{\varphi(b)}$. Since $b \neq 0$, $\varphi(b) \neq 0$. Now

$$\varphi\left(\frac{a}{b}\right) = \varphi\left(\frac{c}{d}\right) \Rightarrow \varphi(ad - bc) = 0 \Rightarrow ad - bc = 0 \Rightarrow \frac{a}{b} = \frac{c}{d},$$

so injective.

- (b) If n = pq then $0 = \varphi(n) = \varphi(p)\varphi(q)$ but $\varphi(p), \varphi(q) \neq 0$ since p, q < n, so n must be prime.
- 3. Let K be a field and $f \in K[x]$ monic of degree d. Motto: working in K[x]/(f) is the same as working in $K[x]_{< d}$ and letting f = 0 wherever required (or equivalently, using f to substitute $x^d = -a_{d-1}x^{d-1} \cdots a_1x a_0$ wherever multiplication results in degree $\geq d$). The point is, considering division algorithm, working in $\mathbb{K}[x]/(f)$ is the same as working with the remainder r.

Week 2, lecture 2 starts here (Matteo takes over)

3 Quadratic and cubic formula

3.1 Quadratic

Consider $x^2 + ax + b$. To find the root we Babylonian it: let $x = y - \frac{a}{2}$, then

$$\left(y - \frac{a}{2}\right)^2 + a\left(y - \frac{a}{2}\right) + b = 0$$

which gives $y^2 - c = 0$ where c is the discriminant $\frac{a^2 - 4b}{4}$ and $y = \pm \sqrt{c}$.

3.2 Cubic

Now consider $x^3 + ax^2 + bx + c$. We do a similar thing: let $x = y - \frac{a}{3}$ (complete the cube) and

$$\left(y-\frac{a}{3}\right)^3+a\left(y-\frac{a}{3}\right)^2+b\left(y-\frac{a}{3}\right)+c$$

gives

$$y^{3} + px + q$$
 where $p = -\frac{a^{3}}{3} + b$, $q = \frac{2a^{3}}{27} - \frac{ab}{3} + c$.

Now let $y=z-\frac{p}{3z}$, we get $z^6+qz^3-\frac{p^3}{27}$ and it's a quadratic in the variable z^3 , so we have

$$z^3 = \frac{-q \pm \sqrt{q^2 + \frac{4p^3}{27}}}{2},$$

We then let discriminant $D:=q^2+\frac{4p^3}{27}$ and we let $\alpha=:\sqrt{D},$ and $\beta=\sqrt[3]{\frac{-q+\alpha}{2}},\ \gamma=\sqrt[3]{\frac{-q-\alpha}{2}}$ are two candidates of roots. Note

$$(\beta\gamma)^3 = \left(\frac{-q+\alpha}{2}\right)\left(\frac{-q-\alpha}{2}\right) = \frac{1}{4}(q^2-\alpha^2) = \frac{1}{4}\left(q^2-\left(q^2+\frac{4p^3}{27}\right)\right) = \left(-\frac{p}{3}\right)^3,$$

so by choosing β, γ as the roots, $\beta \gamma = -\frac{p}{3}$. Also, if we multiply z on both sides of the substitution formula,

$$z^2 - yz - \frac{p}{3}$$

this is a quadratic and we know $y = \beta + \gamma$ and $-\frac{p}{3} = \beta \gamma$ by Vieta's.

We now claim $\beta + \gamma$, $\omega \beta + \omega^2 \gamma$, $\omega^2 \beta + \omega \gamma$ where ω is the cubic root of unity are the three roots. By plugging them in we can verify. To write them explicitly,

$$y_i = \omega^i \sqrt[3]{\frac{-q + \sqrt{q^2 + \frac{4p^3}{27}}}{2}} + w^{3-i} \sqrt[3]{\frac{-q - \sqrt{q^2 + \frac{4p^3}{27}}}{2}},$$

and one can then write the formulae in terms of the original a, b, c but that would be too long.

Week 2, lecture 3 starts here

3.2.1 Real solutions for real cubics

As in the context of above and let $p, q \in \mathbb{R}$.

1. When
$$D = 0$$
, $q^2 = -\frac{4p^3}{27} \Rightarrow p < 0$. Also $\beta = \gamma = \sqrt[3]{\frac{-q}{2}}$. (Check: $\beta \gamma = \sqrt[3]{\frac{q^2}{4}} = \frac{-p}{3}$) So $y_1 = 2\beta$ and $y_2 = y_3 = \beta(\omega + \omega^2) = -\beta$. Note that all roots are real. e.g. $f = x^3 - 3x + 2$, $x_1 = -2$, $x_2 = x_3 = 1$ are roots.

2. When D > 0, $\sqrt{D} \in \mathbb{R}$ then at least $\beta, \gamma \in \mathbb{R}$ but only $y_1 = \beta + \gamma$ is real and $y_2 = \omega \beta + \omega^2 \gamma$, $y_3 = \omega^2 \beta + \omega \gamma$ are complex conjugates.

e.g. $f = x^3 - 3x + 3$, $x_1 = -2$ is a real root.

3. When D < 0, then $\sqrt{D} =: \alpha \in \mathbb{C} \backslash \mathbb{R}$. But note that

$$\beta^3 = \frac{-q+i|\alpha|}{2}, \quad \gamma^3 = \frac{-q-i|\alpha|}{2}$$

are conjugates, hence β, γ are conjugates as well since $\beta\gamma = \frac{-p}{3}$. Now $y_1 = \beta + \overline{\beta}$, $y_2 = \omega\beta + \overline{\omega\beta}$ and $y_3 = \omega^2\beta + \overline{\omega^2\beta}$ are all reals. The problem is we cannot avoid complex computations during the process (in algebra jargon, this means you need the field extension $\mathbb{Q}(\alpha, \beta, \omega)/\mathbb{Q}$), so people back in the days thought this was bad. (Casus irreducibilis)

e.g. $f = x^3 - 3x$, $x_1 = 0$, $x_{2,3} = \pm \sqrt{3}$ are roots.

3.2.2 Trigonometric

We know

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

which can be treated as a cubic by letting $y := \cos \theta$

$$y^3 - \frac{3}{4}y - \frac{1}{4}\cos 3\theta = 0$$

and we immediately have solutions $y_1 = \cos \theta$, $y_2 = \cos \left(\theta + \frac{2\pi}{3}\right)$, $y_3 = \cos \left(\theta + \frac{4\pi}{3}\right)$.

This can be adapted to solve $y^2 + px + q = 0$ in general as long as $q \in \left[-\frac{1}{4}, \frac{1}{4} \right]$.

Week 3, lecture 1 starts here

4 Factorisation

Recall that a field K gives a UFD K[x], i.e. a commutative ring with no zero divisors and every element in which can be uniquely written as a product of irreducible elements up to reordering and multiplication by units. $f \in K[x]$ is reducible if deg f > 0 and $\exists g, h \in K[x]$: deg g, h > 0 and f = gh.

The question of whether $f \in K[x]$ is irreducible is generally really hard (and depends on K).

4.1 Roots

Definition 4.1.1. $\alpha \in K$ is a root of $f \in K[x]$ if $f(\alpha) = 0 \in K$.

Corollary 4.1.2. The following are equivalent:

- 1. α is a root of f
- 2. $(x \alpha) | f$
- 3. $\exists g \in K[x] : f = (x \alpha)g$ (g can be constant)

Proof. 2 and 3 are equivalent by definition.

$$3 \Rightarrow 1$$
: $f(x) = (x - \alpha)g(x)$ so $f(\alpha) = (\alpha - \alpha)g(\alpha) = 0 \cdot g(\alpha) = 0$.

 $1 \Rightarrow 3$: Since K[x] is a UFD we can do Euclidean division, i.e. $\exists g, r \in K[x] : f(x) = (x - \alpha)g(x) + r(x)$ where $\deg r < \deg x - \alpha = 1$, so $r \in K$. Since $0 = f(\alpha) = r(x)$, one has what's desired.

Remark. Being reducible is not equivalent to having a root, e.g. $x^4+3x^2+2 \in \mathbb{Q}[x]$ is reducible to $(x^2+1)(x^2+2)$ but has no roots. This is only true when we are in an algebraically closed field (e.g. \mathbb{C}) or deg $f \leq 3$ so that when it's reduced we are guaranteed to have a linear term.

4.2 $\mathbb{C}[x]$ vs $\mathbb{Q}[x]$

Theorem 4.2.1 (Fundamental theorem of algebra). Any $f \in \mathbb{C}[x]$ factorises into linear factors:

$$f = c(x - \alpha_1) \cdots (x - \alpha_n)$$

where $n = \deg f$ and $\alpha_i \in \mathbb{C}$.

This does not hold in $\mathbb{Q}[x]$, e.g. $x^2 + 1$. So in terms of factorisation, $\mathbb{Q}[x]$ is harder to work with. To make the situation better we go in $\mathbb{Z}[x]$. Clearly \mathbb{Z} is not a field but still $\pm 1 \in \mathbb{Z}[x]$ and it's a UFD (not a PID), so conclusions about factorisations apply.

Lemma 4.2.2 (Gauss'). Let $f = a_m x^m + \cdots + a_0 \in \mathbb{Z}[x]$ suppose $gcd(a_0, \ldots, a_m) = 1$ (primitive). If f = gh where $g, h \in \mathbb{Q}[x]$, $\deg g, h > 1$ then $\exists b \in \mathbb{Q}^* : bg, b^{-1}h \in \mathbb{Z}[x]$.

This is just common sense: one can clear denominators of quotients to get integers (let's still do a proof later though). The real punchline of the lemma is:

Week 3, lecture 2 starts here

Remark. We didn't define irreducibility in $\mathbb{Z}[x]$ since \mathbb{Z} is not a field. But note that a non-1 $n \in \mathbb{Z}$ is not a unit in $\mathbb{Z}[x]$, so we consider it as irreducible. Hence the assumption that f is irreducible in $\mathbb{Z}[x]$ implies f is primitive since if we can factor out a non-1 integer then it's reducible. It's only because of this that we can apply Gauss' lemma.

4.3 $\mathbb{Z}[x]$

4.3.1 Rational root test

Recall that if $f \in \mathbb{Q}[x]$ with deg f = 2, 3 is reducible then f has a root in \mathbb{Q} .

Lemma 4.3.1. If $f = a_m x^m + \cdots + a_0 \in \mathbb{Z}[x]$ and $f(a) = 0, a \in \mathbb{Z}$ then $a \mid a_0$.

Proof. One has
$$f(a) = a_m a^m + \dots + a_1 a + a_0 = 0$$
 and $a \mid a_m a^m + \dots + a_1 a, \ a \mid 0$, so $a \mid a_0$.

Proposition 4.3.2 (Rational root test). If $f = a_m x^m + \cdots + a_0 \in \mathbb{Z}[x]$, $a_m \neq 0$ and $\frac{r}{s} \in \mathbb{Q}$ is a root of f, then $r \mid a_0, s \mid a_m$.

Proof. In $\mathbb{Q}[x]$ one has

$$f(x) = \left(x - \frac{r}{s}\right)g(x).$$

By Gauss'

$$\exists b \in \mathbb{Q}^{\times} : b(sx - r), \frac{g(x)}{bs} \in \mathbb{Z}[x],$$

which makes the desired obvious.

Example 4.3.3. Is $f = x^3 - 4x + 5$ irreducible in $\mathbb{Q}[x]$? Again deg f = 3 so if it's not irreducible (so reducible) then it's of the form f = gh where WLOG deg g = 1, deg f = 2, so it would have a rational root satisfying rational root test. The only possibility for a root x_i is then $x_i = \pm 1, \pm 5$, but $f(x_i) \neq 0 \ \forall i$, hence f is irreducible in $\mathbb{Q}[x]$.

4.3.2 Eisenstein's criterion

Proposition 4.3.4. If $f = a_m x^m + \dots + a_0 \in \mathbb{Z}[x]$ and \exists a prime $p \in \mathbb{Z} : p \nmid a_m, p \mid a_i \forall i = 1, \dots, m-1$ and $p^2 \nmid a_0$ (i.e. f is Eisenstein at prime p) then f is irreducible in $\mathbb{Z}[x]$ (and therefore $\mathbb{Q}[x]$).

Week 3, lecture 3 starts here

Proof. Suppose f = gh where $g, h \in \mathbb{Z}[x]$ and $\deg g, h > 0$, $g = \sum^H b_i x^i$, $h = \sum^k c_i x^i$ (where H, k < m). Then $a_0 = b_0 c_0$. Since $p \mid a_0$, WLOG $p \mid b_0$ and $p \nmid c_0$. Also $a_m = b_H c_k$, so since $p \nmid a_m$, p does divide all b_i . Choose b_j to be the coefficient such that $p \nmid b_j$ and j is minimal. But note that

$$a_j = b_0 c_j + b_1 c_{j-1} + \dots + b_j c_0$$

and $p \mid a_i, p \mid b_{0,\dots,i-1}, p \nmid c_0$, so p must divide b_i , a contradiction.

Example 4.3.5. Is $f = \frac{1}{2}x^3 + x^2 - \frac{4}{3}x + \frac{5}{9}$ irreducible in $\mathbb{Q}[x]$? First one makes it a polynomial in $\mathbb{Z}[x]$: $18f = 9x^2 + 18x^2 - 24x + 10$. p = 3 is not a candidate since $3 \mid 9$, and since $18 = 2 \times 3^2$, one can only choose p = 2. Indeed, $2 \nmid 9$, $2 \mid 18$, $2 \mid 24$, $2 \mid 10$, $4 \nmid 10$, so 18f is irreducible in $\mathbb{Z}[x]$, so $\mathbb{Q}[x]$, and since $18 \in \mathbb{Q}^*$, f is irreducible in $\mathbb{Q}[x]$.

Example 4.3.6 (Prime cyclotomic). $f = x^{p-1} + \dots + 1 = \frac{x^p - 1}{x - 1} \in \mathbb{Q}[x]$ has pth roots of unity except 1 as its complex roots. One can't apply Eisenstein since all coefficients are 1, but one can substitute by x = y + 1 which is an automorphism of $\mathbb{Q}[x]$ and

$$f = p + \frac{p!}{2!(p-2)!}y + \dots + y^{p-1}$$

which is clearly Eisenstein at p, so f is irreducible.

4.3.3 Reduction modulo prime p

Proposition 4.3.7. Let $f = a_m x^m + \cdots + a_0 \in \mathbb{Z}[x]$, a prime $p \in \mathbb{Z} : p \nmid a_m$, and $\overline{f} = \overline{a_m} x^m + \cdots + \overline{a_0} \in \mathbb{F}_p[x]$ the reduction of $f \mod p$. If \overline{f} is irreducible in $\mathbb{F}_p[x]$ then f is irreducible in $\mathbb{Z}[x]$ (and therefore $\mathbb{Q}[x]$).

Proposition 4.3.8. Suppose f = gh where $g, h \in \mathbb{Z}[x]$ and $\deg g, h > 0$, $g = \sum^{H} b_i x^i$, $h = \sum^{k} c_i x^i$. Then $\overline{f} = \overline{gh}$. It then suffices to see that $\deg g, h = \deg \overline{g}, \overline{h}$. Indeed, since $p \nmid a_m = b_H c_k$, $p \nmid b_H$ nor c_k .

Example 4.3.9. Which of these are irreducible in $\mathbb{Q}[x]$?

- 1. $f = x^3 + 9x + 6$
 - (a) Eisenstein: indeed, f is Eisenstein at p = 3, so irreducible
 - (b) Rational root test: if f is reducible, the only possible roots are $\pm 1, \pm 2, \pm 3, \pm 6$, each of which is not a root, so irreducible
 - (c) Reduction modulo 2: $\overline{f} = x^3 + x = x(x^2 + 1) = x(x+1)^2 \in \mathbb{F}_2[x]$, so inconclusive
- 2. $x^7 + 15x^2 + 9x 3$
 - (a) Rational root test: if f has a root $\frac{r}{s}$ then $r \mid 3$, so $r = \pm 1, \pm 3$, each of which does not give a root
 - (b) Eisenstein: indeed, f is Eisenstein at p = 3, so irreducible
 - (c) Reduction modulo 2: $\overline{f} = x^7 + x^2 + x + 1$ is reducible in $\mathbb{F}_2[x]$ since 1 is a root, so inconclusive

Week 4, lecture 1 starts here

Proof of Gauss' lemma. Suppose $f \in \mathbb{Z}[x] : f = gh$ where $g, h \in \mathbb{Q}[x]$.

- 1. We know $\exists a, b \in \mathbb{Q} : g = ag_1, h = bh_1$ where $g_1, h_1 \in \mathbb{Z}[x]$ and are primitive.
- 2. It remains to see that $a = b^{-1}$. Write $f = gh = abg_1h_1$ and $ab = \frac{r}{s} \in \mathbb{Q}$ where $\gcd(r,s) = 1, s > 0$.
 - (a) Case 1: s = 1, then $r \mid a_i \forall i$, but f is primitive, so $r = \pm 1$, hence indeed $a = b^{-1}$
 - (b) Case 2: s > 1, then one has p prime such that $p \mid s$, $p \nmid r$, so p divides all coefficients of g_1h_1 . We claim that in this case, p divides all coefficients of g_1 or h_1 . Suppose there exists a coefficient h_i of g_1 that's not divisible by p with h_i minimal. Now set $h_i = h_i$, then the coefficient $h_i = h_i$, then the coefficient $h_i = h_i$, then h_i is divisible by h_i , a contradiction.

Example 4.3.10 (Using reduction modulo prime p). $f = x^3 + ax + b \in \mathbb{Z}[x]$, a, b odd. Then $\overline{f} = x^3 + x + 1 \in \mathbb{F}_2[x]$. One can check that it has no roots easily by going through all elements of \mathbb{F}_2 , i.e. 0 and 1. So \overline{f} is irreducible in $\mathbb{F}_2[x]$, hence irreducible in $\mathbb{Z}[x]$, hence irreducible in $\mathbb{Q}[x]$.

Example 4.3.11. Is $f = x^4 - 7x^2 + 12$ irreducible?

- 1. Rational root test: possible roots $\frac{r}{s}$ satisfy $r = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6$, too much calculation
- 2. Eisenstein: there is no prime we can try since 7 is prime and $7 \nmid 12$, so inconclusive
- 3. Reduction modulo 2: $\overline{f} = x^4 + x^2$ is clearly reducible, so again inconclusive

Well... in fact f is pretty easy to decompose since -3-4=-7 and (-3)(-4)=12, so $f=(x^2-3)(x^2-4)=(x^2-3)(x+2)(x-2)$, so in our mind we know it's reducible.

Week 4, lecture 2 starts here (Gavin is back)

5 Continuation of chapter 1

5.1 Simple extension

Definition 5.1.1. L/K is simple if $\exists \alpha \in L : K(\alpha) = L$.

Lemma 5.1.2. Given L/K and $\alpha \in L$,

$$\operatorname{ev}_{\alpha}: K[x] \to L$$

$$g \mapsto g(\alpha)$$

is a ring homomorphism uniquely defined by $K \to L$ and $x \mapsto \alpha$.

Proof. We write e for ev_{α} :

- 1. e(1) = 1
- 2. $e(f+g) = (f+g)(\alpha) = f(\alpha) + g(\alpha) = e(f) + e(g)$
- 3. $e(fg) = (fg)(\alpha) = f(\alpha)g(\alpha) = e(f)e(g)$

Now suppose φ is also a homomorphism with $\varphi(x) = \alpha$ and $\varphi|_K$ is $K \to L$. Then

$$\varphi(bx^n) = \varphi(b)\varphi(x)^n = b\alpha^n = \text{ev}_\alpha(bx^n).$$

Proposition 5.1.3. L/K, $\alpha \in L$ and ev_{α} as above. Exactly one of the following occurs:

1. $\operatorname{ev}_{\alpha}$ is injective, then it extends to

$$\widetilde{\operatorname{ev}_{\alpha}}:K(x)\to K(\alpha)\subset L.$$

2. (much more interesting) $\operatorname{ev}_{\alpha}$ is not injective, then $\operatorname{ker}(\operatorname{ev}_{\alpha})=(f)$ where $f\in K[x]$ is irreducible and $\operatorname{deg} f\geq 1$, i.e. $f(\alpha)=0$ and for any $g:g(\alpha)=0,\ f\mid g$. Moreover, $\operatorname{ev}_{\alpha}$ induces an isomorphism $K[x]/(f)\cong K[\alpha]=K(\alpha)\subset L$ (1st isomorphism theorem).

Proof. The injective case is boring since it's same as for \mathbb{Z} .

Now K[x] is a PID, so $\ker \operatorname{ev}_{\alpha} = (f)$ for some $f \in K[x]$. It remains to prove f is irreducible. If f = gh where $1 < \deg g, h < \deg f$, then WLOG $g(\alpha) = 0$, so $g \in (f)$, so $f \mid g$, a contradiction.

Definition 5.1.4. L/K and $\alpha \in L$. If \exists monic $f \in K[x] : f(\alpha) = 0$ then α is algebraic over K. If not, then α is transcendental over K.

Remark (A miraculous proof of $K[\alpha] = K(\alpha)$ where K field not using conjugates). By the 1st isomorphism theorem, $K[x]/(f) \cong K[\alpha]$. But f is irreducible, so (f) is prime, so K[x]/(f) is a field. Hence $K[\alpha]$ is also a field and it must be the same field as $K(\alpha)$.

When α is algebraic, the monic polynomial f of smallest degree such that $f(\alpha) = 0$ is called the *minimal* polynomial of α over K.

Proposition 5.1.5. $K \subset K(\alpha)$ is a simple extension by algebraic α with minimal polynomial $f \in K[x]$ and $n := \deg f > 1$. Then $1, \alpha, \alpha^2, \ldots, \alpha^{n-1} \in K(\alpha)$ is a K-basis for $K(\alpha)$ and so $[K(\alpha) : K] = n$.

Proof. Let $V := K[x]_{\leq n}$, $W := K[x]/(f) \cong K(\alpha)$ as a K-vector space and define $L: V \to W$ by $h \mapsto h + (f)$.

- 1. Surjective: given $h + (f) \in W$, write h = qf + r where $\deg r < \deg f$, then L(r) = r + (f) = r + qf + (f) = h(f).
- 2. Injective: uniqueness of r.

So L is bijective, and since V has $1, x, x^2, \dots, x^{n-1}$ as a basis, we can map it to get the desired basis of $K(\alpha)$. \square

Week 4, lecture 3 starts here

5.2 Adjoining a root of a polynomial

Theorem 5.2.1. $f \in K[x]$ monic, irreducible and $\deg f \geq 2$. Then $\exists L/K$ and $\alpha \in L : L = K(\alpha)$ is simple and $f(\alpha) = 0$. Moreover, f is minimal polynomial of α over K, so $[L : K] = \deg f$.

In other words, if you have an irreducible polynomial, there is a bigger field in which it has a root.

Proof. Set L = K[x]/(f).

- 1. This is indeed a field since f is irreducible.
- 2. $K \hookrightarrow K[x] \twoheadrightarrow K[x]/(f) = L$ is injective by Proposition 1.0.2.
- 3. Set $\alpha = x + (f) \in L$, then general elements of L of the form h + (f) are exactly $h(\alpha)$.
- 4. $f(\alpha) = f + (f) = 0 + (f) = 0_L$.
- 5. Since f is monic, irreducible and vanishes α it's minimal. By Proposition 5.1.5 $[L:K] = \deg f$.

Corollary 5.2.2. Let $f \in K[x]$ by any polynomial with deg $f \ge 1$. Then $\exists L/K$ and $\alpha \in L : f(\alpha) = 0$, $L = K(\alpha)$.

Proof. Pick any irreducible factor of f and apply theorem above.

5.3 Algebraic extension / finite extension

Definition 5.3.1. L/K is algebraic if any $\alpha \in L$ is algebraic over K.

Proposition 5.3.2. Finite extensions are algebraic.

Proof. Suppose $[L:K]=n\geq 1$. If $\alpha\in L$, consider n+1 elements $1,\alpha,\alpha^2,\ldots,\alpha^n$ in the n-dimensional K-vector space L. This means there is a linear dependence relation

$$c_0 + c_1 \alpha + c_1 \alpha^2 + \dots + c_n \alpha^n = 0$$
 where not all c_i are zero.

Set $s := \max\{i : c_i \neq 0\}$ and write

$$f(x) := \frac{c_0}{c_s} + \frac{c_1}{c_s}x + \dots + \frac{c_{s-1}}{c_s}x^{s-1} + x^s.$$

Then f is monic and $f(\alpha) = 0$.

5.4 Maps between fields

Definition 5.4.1. Suppose L/K and M/K are two extensions of the same field. A K-homomorphism $\varphi: L \to M$ is a homomorphism that fixed all elements of K, i.e. $\varphi(\alpha) = \alpha \ \forall \alpha \in K$.

Definition 5.4.2 (Main object of study).

$$\text{Emb}_K(L, M) := \{ \varphi : L \to M : \varphi \text{ is a } K\text{-homomorphism} \}.$$

Remark. This is not a group because if one has two maps from L to M one cannot compose them because M might not be equal to L. Even it is, φ is certainly injective because it's a map of fields, but if L, M are infinite dimensional there's no reason why it needs to be surjective. But, if L = M are finite extensions of K then $\operatorname{Emb}_K(L, M)$ is a group, called the *Galois group* $\operatorname{Gal}(L/K)$. Otherwise, it's just a set and has no real structure.

Example 5.4.3. $L = \mathbb{C}, K = \mathbb{R}$, then complex conjugation $\mathbb{C} \to \mathbb{C}$ by $z \mapsto \overline{z}$ is a K-homomorphism (also a \mathbb{Q} -homomorphism, a $\mathbb{Q}(\sqrt{2})$ -homomorphism).

Big idea 5.4.4. Suppose $\varphi \in \text{Emb}_K(L, M)$. If $\alpha \in L$ is a root of $f \in K[x]$, then $\varphi(\alpha)$ is a root of f in M.

Proof. Write $f = a_n x^n + \cdots + a_1 x + a_0$ where $a_i \in K$. Then

$$f(\varphi(\alpha)) = a_n \varphi(\alpha)^n + \dots + a_1 \varphi(\alpha) + a_0$$

= $\varphi(a_n) \varphi(\alpha)^n + \dots + \varphi(a_1) \varphi(\alpha) + \varphi(a_0)$
= $\varphi(f(\alpha)) = \varphi(0) = 0.$

Proposition 5.4.5. L/K with $f \in K[x]$ irreducible and $\alpha, \beta \in L$ roots of f. Then \exists a K-isomorphism $K(\alpha) \xrightarrow{\cong} K(\beta)$ with $\alpha \mapsto \beta$.

Proof.

$$K(\alpha) \xleftarrow{\cong} K[x]/(f) \xrightarrow{\cong} K(\beta)$$
$$\alpha \longleftrightarrow x \mapsto \beta$$

Corollary 5.4.6. L/K with $f \in K[x]$ irreducible and $\alpha \in L$ a root of f. Then

$$\operatorname{Emb}_K(K(\alpha), L) \to \{\beta \in L : f(\beta) = 0\}$$

 $\varphi \mapsto \varphi(\alpha)$

is a bijection. In particular, $|\text{Emb}_K(K(\alpha), L)| = \text{number of roots of } f \text{ in } L$.

Proof. Big idea 5.4.4 says it's well defined. Any K-homomorphism $\varphi: K(\alpha) \to L$ is determined by $\varphi(\alpha)$, so it's injective. Proposition 5.4.5 says if $\beta \in L$ is a root of f then there is a K-isomorphism $K(\alpha) \to K(\beta) \subset L$, so it's surjective.

Week 5, lecture 1 starts here

Theorem 5.4.7. Let L/K be finite and M/K any extension. Then

$$|\mathrm{Emb}_K(L, M)| \leq [L:K].$$

Proof. If $L = K(\alpha)$ is a simple extension with minimal polynomial f of α . Then

$$[L:K] = \deg f \ge \#\text{roots of } f \text{ in } M = |\text{Emb}_K(L,M)|.$$

If not, do induction on [L:K]. Pick $\alpha \in L \setminus K$ and consider $L \subsetneq K(\alpha) \subset L$ and the map of sets

$$\rho : \operatorname{Emb}_K(L, M) \to \operatorname{Emb}_K(K(\alpha), M)$$

$$\varphi \mapsto \varphi|_{K(\alpha)}$$

For any $\varphi \in \text{Emb}_K(K(\alpha), M)$,

$$\rho^{-1}(\varphi) = \{ \tilde{\varphi} : L \to M : \tilde{\varphi}|_{K(\alpha)} = \varphi \}.$$

If $\tilde{\varphi} \in \rho^{-1}(\varphi)$ then it can be considered as a $K(\alpha)$ -homomorphism where $M/K(\alpha)$ is given by $\varphi : K(\alpha) \to M$, i.e. $\tilde{\varphi} \in \operatorname{Emb}_{K(\alpha)}(L, M)$. Since $[L : K(\alpha)] < [L : K]$ by tower law, by inductive hypothesis we have

$$|\rho^{-1}(\varphi)| \le [L:K(\alpha)].$$

Hence

$$|\operatorname{Emb}_{K}(L, M)| \leq \max\{|\rho^{-1}(\varphi)| : \varphi \in \operatorname{Emb}_{K}(K(\alpha), M)\} \cdot |\operatorname{Emb}_{K}(K(\alpha), M)|$$

$$\leq [L : K(\alpha)] \cdot [K(\alpha) : K]$$

$$= [L : K].$$

6 Automorphism group of a field

Definition 6.0.1. An *automorphism* of a field L is a bijective ring homomorphism $L \to L$. The set of all of them, denoted $\operatorname{Aut}(L)$, is a group.

If K < L is a subfield, then a K-automorphism is $\varphi : L \to L$ such that $\varphi(\alpha) = \alpha \ \forall \alpha \in K$. Again

$$\operatorname{Aut}_K(L) := \{K\text{-automorphism } \varphi : L \to L\}$$

is a group and is a subgroup of Aut(L).

Fixed field 6.1

Definition 6.1.1. Let L be a field and $\sigma \in \operatorname{Aut}(L)$. The fixed field of σ is

$$L^{\sigma} = \{ \alpha \in L : \sigma(\alpha) = \alpha \}.$$

(If $\Sigma \subset \operatorname{Aut}(L)$, define $L^{\Sigma} = \{ \alpha \in L : \sigma(\alpha) = \alpha \ \forall \sigma \in \Sigma \}$).

Example 6.1.2. Let σ be complex conjugating of \mathbb{C} . Then

$$\mathbb{C}^{\sigma} = \{ z \in \mathbb{C} : \overline{z} = z \} = \mathbb{R}.$$

Note that $[\mathbb{C} : \mathbb{R}] = 2$ and $|\langle \sigma \rangle| = 2$.

Now let $L = \mathbb{Q}(\alpha, i)$ where $\alpha^2 = 5$, $i^2 = -1$. Then $[L : \mathbb{Q}] = 4$ with \mathbb{Q} -basis $\{1, \alpha, i, i\alpha\}$. For the same σ (this is indeed an automorphism since it's injective and $\dim L = \dim L$,

$$L^{\sigma} = \{a + b\alpha + ci + di\alpha : a + b\alpha - ci - di\alpha = a + b\alpha + ci + di\alpha\} = \langle 1, \alpha \rangle = \mathbb{Q}(\alpha).$$

Note again $[L:\mathbb{Q}(\alpha)] = |\langle \sigma \rangle| = 2$.

Lemma 6.1.3. Let $G \leq \operatorname{Aut}(L)$ be a finite subgroup. Then $[L:L^G] \leq |G|$.

Proof. Let $G = \{\sigma_1, \dots, \sigma_n\}$ and WLOG $\sigma_1 = id$. Suppose $a_1, \dots, a_{n+1} \in L$ and set $K = L^G$. It suffices to prove to find a nontrivial linear dependence relation among the a_i 's. Consider

$$v_i = \begin{pmatrix} \sigma_1(a_i) \\ \vdots \\ \sigma_n(a_i) \end{pmatrix} \in L^n \text{ for } i = 1, \dots, n+1.$$

So we have $v_1, \ldots, v_{n+1} \in L^n$. Clearly $\dim_L L^n = n$, so \exists a dependence relation $\sum x_i v_i = 0$ and not all $x_i = 0$.

Week 5, lecture 2 starts here

Choose a shortest such relation and after relabelling,

$$x_1v_1 + x_2v_2 + \cdots + x_kv_k = 0$$
 where $x_i \neq 0$, k minimal.

Since we are in a field, WLOG $x_1 = 1$, i.e

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ \sigma_2(a_1) & \sigma_2(a_2) & \cdots & \sigma_2(a_k) \\ \vdots & & & & \\ \sigma_n(a_1) & & \cdots & \sigma_n(a_k) \end{pmatrix} \begin{pmatrix} x_1 = 1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Apply any $\sigma \in G$ to the equations, then $\begin{pmatrix} \sigma(x_1) \\ \vdots \\ \sigma(x_n) \end{pmatrix}$ is still a solution. But they have to be the same, since if not

their difference would be another solution that's smaller the minimal one, a contradiction. So $\sigma(x_i) = x_i \, \forall i$. \square

Example 6.1.4. $f = x^3 - 2 \in \mathbb{Q}[x]$. Then $\alpha_1 = \alpha = \sqrt[3]{2}$, $\alpha_2 = \alpha \omega$, $\alpha_3 = \alpha \omega^2 \in \mathbb{C}$ are the roots. The splitting field is then $L = \mathbb{Q}(\alpha, \omega)$. Let $K_i = \mathbb{Q}(\alpha_i)$, a simple extension. Note that L/K_1 is also simple. Clearly $[K_1:\mathbb{Q}]=3$. We also have $[L:K_1]=2$ since one can write $f=(x-\alpha)(x^2+\alpha x+\alpha^2)$ and the second factor must be irreducible, so it's the minimal polynomial. Hence by tower law we have $[L:\mathbb{Q}]=6$, and naturally we have the basis $\{1, \alpha, \alpha^2, \alpha\omega, \alpha^2\omega, 2\omega\}$. We can write a better basis though: $\{1, \alpha, \alpha^2, \omega, \alpha\omega, \alpha^2\omega\}$. The tower structure is the same for K_2 and K_3 as well, i.e. $[K_i : \mathbb{Q}] = 3$, $[L : K_i] = 2 \ \forall i$.

Now note that if $\varphi \in \text{Emb}_{\mathbb{Q}}(L, L)$ then $\varphi(\alpha_i) \in \{\alpha_i\}$. So \exists a injective group homomorphism

$$\operatorname{Emb}_{\mathbb{Q}}(L,L) \hookrightarrow S_3$$

$$\varphi \mapsto \{i \mapsto j \text{ where } \varphi(\alpha_i) = \alpha_j\}.$$

e.g., $\sigma = \text{complex conjugation} \in \text{Emb}_{\mathbb{Q}}(L, L)$ has $\sigma(\alpha_1) = \alpha_1$, $\sigma(\alpha_2) = \alpha_3$ and $\sigma(\alpha_3) = \alpha_2$, i.e. σ corresponds to (2,3). In fact $\mathrm{Emb}_{\mathbb{Q}}(L,L)\cong S_3$ (one can hit arbitrary permutation in S_3 indirectly by 5.4.6). Let τ be corresponded to (1,2,3).

Now $\operatorname{Aut}(L) = S_3$ has 6 elements, so $[L:L^{\operatorname{Aut}(L)}] = 6$, so $L^{\operatorname{Aut}(L)}$ must be \mathbb{Q} . Similarly, $L^{\langle \sigma \rangle} = K_1$ and $L^{\langle \tau \rangle} = \mathbb{Q}(\omega)$. In fact, every subfield of L is a fixed field of a subgroup of S_3 .

Corollary 6.1.5. $G \subset Aut(L)$ is finite, then $[L : L^G] = |G|$.

Proof. Let $K = L^G$, M = L, then

$$[L:K] \le |G| \le |\operatorname{Aut}_K(L)| = |\operatorname{Emb}_K(L,L)| \le [L:K]$$

so it's all equal signs.

Definition 6.1.6. The splitting field for $f \in K[x]$ is the field extension L/K such that $\exists \alpha_1, \ldots, \alpha_n \in L : f = c(x - \alpha_1) \cdots (x - \alpha_n), \ c \in K$ and $L = K(\alpha_1, \ldots, \alpha_n)$.

Remark. 1. Consider $f = x^3 - x^2 - 2x + 2 = (x - 1)(x^2 - 2) \in \mathbb{Q}[x]$. Then splitting field is $\mathbb{Q}(1, \sqrt{2}, -\sqrt{2}) = \mathbb{Q}(\sqrt{2})$.

- 2. Same f but $f \in \mathbb{Q}(\sqrt{3})[x]$. Then $\mathbb{Q}(\sqrt{2})$ is no longer splitting field, which now should be $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
- 3. If $K \subset \mathbb{C}$ is a subfield and f has roots α_i , then splitting field is always $K(\alpha_i)$.

Proposition 6.1.7 (Splitting fields exist). $f \in K[x]$ with deg f = n. Then \exists splitting field L/K with $[L:K] \leq n!$.

Proof. Factorise f in K[x] and let k=# linear factors. If k=n then f already splits, so done. Else, choose an irreducible factor $g_1 \in K[x]$ and let $L_1 = K[x]/(g_1)$ and α_1 is a root of g_1 in L_1 . Now let $k_1 = \#$ linear factors of f in $L_1[x]$. Note that $k < k_1 \le n$ since $(x - \alpha_1)$ is now one of them.

We proceed inductively and get $K \subset L_1 \subset L_2 \subset \cdots L_s := L$ where f splits completely in L. By tower law,

$$[L:K] = [L:L_1][L_1:K] = [L:L_{s-1}][L_{s-1}:L_{s-2}]\cdots [L_2:L_1][L_1:K]$$

 $\leq 2 \cdot 3 \cdots (n-1)n = n!.$

Theorem 6.1.8. L/K splitting field for $f \in K[x]$. If M/K : f splits in M then $\exists K$ -homomorphism $L \to M$.

Proof. We know $L=K(\alpha_1,\ldots,\alpha_s)$ where α_i are (some of) the roots of f. Do induction on s. Let $m\in K[x]$ be minimal polynomial of α_1 . Note that $m\mid f$, so m splits in M, i.e. all its roots are in M. Choose $\beta_1\in M$ be one of them. Then $\exists K$ -homomorphism $L\supset K(\alpha_1)\stackrel{\cong}{\to} K(\beta_1)\subset M$. For notation, set $L_1=K(\alpha_1)$. Then $L=L_1(\alpha_2,\ldots,\alpha_s)$ is a splitting field for $g=\frac{f}{(x-\alpha_1)}\in L_1[x]$. By induction, $\exists L_1$ -homomorphism $L\to M$. \square

Corollary 6.1.9 (A splitting field is unique up to isomorphism). If L/K, L'/K are both splitting fields for $f \in K[x]$, then $\exists K$ -isomorphism $L \to L'$.

Proof. We know $\exists K$ -homomorphism $L \to L'$ and $\exists K$ -homomorphism $L' \to L$. They are both injective, so $\dim_K L \le \dim_K L' \le \dim_K L$, so by linear algebra (and since dimensions are finite) they are surjective, so bijective.

Theorem 6.1.10. L/K splitting field for $f \in K[x]$ and $g \in K[x]$ be irreducible with ≥ 1 roots in L. Then g splits completely in L[x], i.e. all its roots are in L.

Proof. Regard $g \in L[x]$ and let M/L be splitting field of g. Suppose $\alpha \in M$ is a root of g. Then $L(\alpha)$ is a splitting field for $f \in K(\alpha)[x]$. Tower law says

$$[L(\alpha):L][L:K] = [L(\alpha):K(\alpha)][K(\alpha):K].$$

If $\beta \in M$ is another root of g then the same is true for β and $K(\alpha) \cong K(\beta)$. But note that then $L(\beta)$ is also a splitting field for $f \in K(\alpha)[x]$, so $L(\alpha) \cong L(\beta)$. Hence if $\alpha \in L$ is a root, $[L(\alpha) : L] = 1$, so $[L(\beta) : L] = 1$ for all other roots β , so $L(\beta) = L$, so $\beta \in L$.

Week 6, lecture 1 starts here

6.2 Normal extension

Definition 6.2.1. A field extension is L/K is normal if the following holds: a irreducible $g \in K[x]$ has roots in $L \Rightarrow g$ splits completely in L.

Corollary 6.2.2. If L/K is finite then the following are equivalent:

- 1. L/K is normal
- 2. L/K is a splitting field of some $f \in K[x]$

Proof. $2 \Rightarrow 1$ is Theorem 6.1.10.

For $1 \Rightarrow 2$, write $L = K(\alpha_1, \dots, \alpha_n)$. Let m_i be minimal polynomial of α_i over K. Since $m_i(\alpha_i) = 0$, they all split completely in L. Now let $f = m_1 m_2 \cdots m_n$ which also split completely in L. Then L/K is a splitting field of f over K.

Corollary 6.2.3. If L/K is finite then $\exists N/L$ normal (called the *normal closure*) (and therefore N/K is normal).

Proof. Write $L = K(\alpha_1, ..., \alpha_n)$. Let m_i be minimal polynomial of α_i over K. Let N be splitting field for $f = m_1 m_2 \cdots m_n \in L[x]$.

Corollary 6.2.4. Let L/K be finite and normal and $K \subset M \subset L$. If $\xi : M \to L$ is a K-homomorphism, then $\exists \varphi : L \to L$ such that $\varphi|_M = \xi$.

Proof. Suppose L is splitting field for $f \in K[x]$. Since ξ fixes K, $\xi(f) = f$, so L/M is a splitting field for f and $K/\xi(M)$ is a splitting field for $\xi(f)$. Hence by uniqueness of splitting field we have the isomorphism.

Corollary 6.2.5. If L/K is finite and normal and irreducible $f \in K[x]$ has roots $\alpha, \beta \in L$, then $\exists \varphi \in \operatorname{Aut}_K(L)$ such that $\varphi(\alpha) = \beta$.

Proposition 6.2.6. Let L/K be finite and normal. If M/L is finite then

- 1. If $\varphi: L \to M$ is a K-homomorphism then $\varphi(L) = L$ (N.B. this is not saying $\varphi(l) = l \ \forall l \in L$).
- 2. If $\tau \in \operatorname{Aut}_K(M)$ then $\tau(L) = L$.

6.3 Separable

Definition 6.3.1. $f \in K[x]\setminus\{0\}$ is *separable* over K if it has $n = \deg f$ distinct roots in a splitting field. Otherwise it is *inseparable*.

Remark (Handwavy teaser). Suppose $K \subset \mathbb{C}$, $f \in K[x]$ and $n = \deg f \geq 2$. We know over \mathbb{C} , $f = c \prod_{i=1}^{s} (x - \alpha_i)^{m_i}$. We claim if f is irreducible over K then all $m_i = 1$ and s = n and f is separable over K. Consider $f' = \frac{df}{dx}$ with $\deg f' < \deg f$. So $\gcd(f, f') = 1$. Write $f = (x - \alpha_1)^{m_1}g$ But now

$$f' = m_1(x - \alpha_1)^{m_1 - 1}g + (x_-\alpha_1)^{m_1}g'$$

so if WLOG $m_1 \geq 2$, $(x - \alpha_1) \mid f'$ so $(x - \alpha_1) \mid \gcd(f, f')$, a contradiction.

Week 6, lecture 2 starts here

Example 6.3.2. 1. $x^3 - 2 = x^3 + 1 = (x+1)^3 \in \mathbb{F}_3[x]$ is inseparable since it only has 1 distinct root.

2. $f = x^p - t \in K[x]$ where p > 2 and $K = \mathbb{F}_p(t)$. This is irreducible. If α is a root, write $L = K(\alpha)$ then $(x - \alpha)^p = x^p - \alpha^p = x^p - t$. So this is inseparable, but $f' = px^{p-1} - t = 0$ so it doesn't contradict previous remark.

Definition 6.3.3. 1. α is *separable* if minimal polynomial of α is separable.

2. L/K is separable if every $\alpha \in L$ is separable.

Definition 6.3.4. The formal derivative of $f \in K[x]$ is

$$Df := a_1 + 2a_2x + \dots + na_nx^{n-1}$$

Theorem 6.3.5. If $f \in K[x]$ is irreducible then f is inseparable iff char K = p and $f = a_0 + a_1 x^p + \cdots + a_n x^{pn}$.

Lemma 6.3.6. $f \in K[x] \setminus \{0\}$ is separable over K iff gcd(f, Df) = 1, i.e. f is inseparable iff $gcd(f, Df) \neq 1$.

Proof. Let L/K be splitting field of f. If $f = c \prod_{i=1}^{n} (x - \alpha_i)$ where $c \in K$, $\alpha_i \in L$, $n = \deg f$ is separable, then α_i are distinct and

$$Df = c \sum_{j=1}^{n} \prod_{k \neq j} (x - \alpha_k),$$

and observe that $x - \alpha_i$ cannot be a common factor.

Now suppose f is inseparable then write $f = (x - \alpha)^m g$ where α is a repeated root (i.e. $m \ge 2$). Then

$$Df = m(x - \alpha)^{m-1}g + (x - \alpha)^m Dg$$

so $(x-\alpha)$ is a common factor, so $\gcd(f,Df)\neq 1$ in L[x]. But then it must be that $\gcd(f,Df)\neq 1$ in K[x]. \square

Theorem 6.3.7. If $L = K(\alpha_1, \dots, \alpha_n)$ then L/K is separable if α_i are all separable.

7 Galois theory

Definition 7.0.1. The Galois group of L/K is $Gal(L/K) := Aut_K(L)$.

If $f \in K[x]$ is separable, let L/K be a splitting field of f over K. Then the Galois group of f is Gal(f) := Gal(L/K) (defined up to isomorphism).

e.g. $f = x^3 - 2$ then $Gal(f) \cong S_3$.

Definition 7.0.2. $H \subset S_n$ is transitive if $\forall i, j \in \{1, ..., n\}, \exists \sigma \in H : \sigma(i) = j$.

Example 7.0.3. $H_1 = \langle (1,2) \rangle = \{ id, (12) \}$ is not transitive.

 $H_2 = \langle (123) \rangle = \{ id, (123), (132) \}$ is transitive.

Lemma 7.0.4. If $f \in K[x]$ is irreducible and deg f = n, then Gal(f) is isomorphic to a transitive subgroup of S_n .

Week 6, lecture 3 starts here

7.1 Galois extension

Definition 7.1.1. An extension L/K is Galois if it's the splitting field of a separable polynomial, or equivalently it's finite, normal and separable.

Lemma 7.1.2. If $K \subset M \subset L$ and L/K is Galois, then L/M is Galois.

Remark. M/K is not necessarily Galois, e.g. $\mathbb{Q} \subset \mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{Q}(\sqrt[3]{2}, \omega)$.

Theorem 7.1.3. L/K Galois, then [L:K] = |Gal(L/K)|.

Proof. We prove by induction on n = [L:K]. Indeed when n = 1, L = K and $Gal(L/K) = \{id\}$. Now suppose n > 1 and let L/K be the splitting field of a separable $f \in K[x]$. So $d = \deg f > 1$ and pick $\alpha \in L \setminus K$ a root of f and let m be minimal polynomial of α over K (so m is a irreducible factor of f in K[x]).

Now $[L:K(\alpha)] < [L:K]$ since $[K(\alpha):K] > 1$, and by previous lemma, $L/K(\alpha)$ is Galois, so by inductive hypothesis $[L:K(\alpha)] = |\operatorname{Gal}(L/K(\alpha))|$.

f is separable implies m is separable, so now

$$[K(\alpha):K] = \deg m = \#\text{roots of } m = |\text{Emb}_K(K(\alpha),L)|.$$

Consider restriction $\operatorname{res}_{\alpha}:\operatorname{Gal}(L/K)\to\operatorname{Emb}_K(K(\alpha),L)$ by $\sigma\mapsto\sigma|_{K(\alpha)}$. This is surjective: by Corollary 6.2.4 given $\iota:K(\alpha)\to L,\ \exists:\sigma\in\operatorname{Gal}(L/K):\sigma|_{K(\alpha)}=\iota$. Suppose $\tau\in\operatorname{Gal}(L/K):\operatorname{res}_{\alpha}(\tau)=\iota$. Then $\tau^{-1}\sigma=\operatorname{id}$ on $K(\alpha)$, i.e. $\tau^{-1}\sigma\in\operatorname{Gal}(L/K(\alpha))$. Now we can consider $\operatorname{Gal}(L/K(\alpha))$ as a subgroup of $\operatorname{Gal}(L/K)$, then τ,σ are in the same left coset and one has

$$\frac{|\mathrm{Gal}(L/K)|}{|\mathrm{Gal}(L/K(\alpha))|} = |\mathrm{Emb}_K(K(\alpha), L)|.$$

So finally

$$\begin{aligned} |\mathrm{Gal}(L/K)| &= |\mathrm{Gal}(L/K(\alpha))| \times |\mathrm{Emb}_K(K(\alpha), L)| \\ &= [L:K(\alpha)] \times [K(\alpha):K] \\ &= [L:K]. \end{aligned}$$

Corollary 7.1.4. L/K Galois, then

$$L^{\operatorname{Gal}(L/K)} = K.$$

Proof. One has

$$K \subset L^{\operatorname{Gal}(L/K)} \subset L$$

and by Corollary 6.1.5

$$|\mathrm{Gal}(L/K)| = \left\lceil L : L^{\mathrm{Gal}(L/K)} \right\rceil$$

so by tower law $[L^{Gal(L/K)}:K]=1$ and thus desired.

Proposition 7.1.5. L/K Galois, $K \subset M \subset L$. Then M/K is normal iff $Gal(L/M) \leq Gal(L/K)$ is normal.

Proof. Let $G = \operatorname{Gal}(L/K)$ and $H = \operatorname{Gal}(L/M)$. M/K is normal implies $\sigma(M) = M \ \forall \sigma \in G$ by Proposition 6.2.6. Suppose $h \in H$ and $\sigma \in G$. We want to show $\sigma h \sigma^{-1} \in H$. Let $\alpha \in M$ and set $\beta := \sigma^{-1}(\alpha) \in M$. Then

$$\sigma h \sigma^{-1}(\alpha) = \sigma h(\beta) = \sigma(\beta) = \alpha.$$

Now suppose $H \subseteq G$. Let $\alpha \in M$ with minimal polynomial $g \in K[x]$. We want to prove g splits completely in M. Let $\beta \in L$ be any other root, then by Corollary 6.2.5 $\exists : \sigma \in G : \sigma(\alpha) = \beta$. If $h \in H$ then $h(\alpha) = \alpha \in M$. So

$$\sigma h \sigma^{-1}(\beta) = \sigma h(\alpha) = \sigma(\alpha) = \beta,$$

and since all elements of H are of the form $\sigma h \sigma^{-1}$, $\beta \in L^H$. But $L^H = M$ since L/M is Galois, so $\beta \in M$. \square

Week 7, lecture 1 starts here

7.2 Lattice map

Definition 7.2.1. A *lattice* is a collection of vertices (usually labelled) joined by directed lines (usually indicating relations between vertices).

Given L/K finite, the *subfield lattice* of L/K is $\mathcal{F}_{L/K} := \{M \subset L : M \text{ a subfield, } M/K \text{ an extension}\}$, a partially ordered set by inclusion, simply denoted \mathcal{F} when context is clear.

Given G a finite group, the *subgroup lattice* of G is $\mathcal{G}_G =: \{H \subset G : H \text{ a subgroup}\}$, partially ordered by inclusion.

Note that Gal(L/K) acts on \mathcal{F} by the natural way and G acts in \mathcal{G} by conjugation. Normal extensions get mapped to themselves by Proposition 6.2.6, normal subgroups get mapped to themselves by group theory.

Definition 7.2.2. Define two order reserving maps between lattices $\dagger: \mathcal{G}_G \to \mathcal{F}_{L/K}$ by $H \mapsto H^{\dagger} := L^H$ and $*: \mathcal{F}_{L/K} \to \mathcal{G}_G$ by $M \mapsto M^* := \mathrm{stab}_G(M)$.

Lemma 7.2.3 (Polarity). 1. $H_1 \subset H_2 \subset G \Rightarrow H_2^{\dagger} \subset H_1^{\dagger}$.

- 2. $K \subset M_1 \subset M_2 \subset L \Rightarrow M_2^* \subset M_1^*$.
- 3. $H \leq G \Rightarrow H \subset (H^{\dagger})^*$.
- 4. $K \subset M \subset L \Rightarrow M \subset (M^*)^{\dagger}$.

Proof. 3. $h \in H \Rightarrow h \in \operatorname{Gal}(L/H^*) \Rightarrow h \in (H^{\dagger})^*$.

4. Similar.

7.3 Galois correspondence

Theorem 7.3.1 (Galois correspondence). Let L/K be Galois, $\mathcal{F} = \mathcal{F}_{L/K}$, $G = \operatorname{Gal}(L/K)$ and $\mathcal{G} = \mathcal{G}_G$. Then

- 1. *,† are mutually inverse bijection, giving inclusion reserving bijection $\mathcal{F} \leftrightarrow \mathcal{G}$.
- 2. If $K \subset M \subset L$ then $[L:M] = |M^*|$ and therefore $[M:K] = \frac{|\operatorname{Gal}(L/K)|}{|M^*|}$.
- 3. M/K is normal iff $M^* \subseteq \operatorname{Gal}(L/K)$. In this case, $\operatorname{Gal}(M/K) \cong \operatorname{Gal}(L/K)/M^*$.

Proof. 1. Let $M \in \mathcal{F}$. Note L/M is Galois by Lemma 7.1.2, so by Corollary 6.1.5 and Theorem 7.1.3,

$$[L:(M^*)^{\dagger}] = |M^*| = [L:M].$$

Since $M \subset (M^*)^{\dagger}$, one has $M = (M^*)^{\dagger}$, i.e. $\dagger \circ *$ is identity.

Now let $H \subset \mathcal{G}$. Then

$$|H| = [L: H^{\dagger}] = |\operatorname{Gal}(L/H^{\dagger})| = |(H^{\dagger})^*|.$$

Since $H \subset (H^{\dagger})^*$, one has $H = (H^{\dagger})^*$.

- 2. By 7.1.3 and tower law.
- 3. By Proposition 7.1.5. Isomorphism by 1st isomorphism theorem and considering the map $\operatorname{Gal}(L/K) \to \operatorname{Gal}(M/K) : \sigma \mapsto \sigma|_M$.

Week 7, lecture 2 starts here

7.4 Biquadratic extension

Let K be a field with char $K \neq 2$, $a, b \in K$: $b(a^2 - b) \neq 0$ where b is not a square in K. Consider $f = (x^2 - a)^2 - b = x^4 - 2ax^2 + (a^2 - b)$. Let L/K be a splitting field of f. Such extensions are called biquadratic.

- 1. Consider $\beta: \beta^2 = b$. Then $x^2 a = \pm \beta$. Set $\alpha: \alpha^2 = a + \beta$ and $\alpha': \alpha'^2 = a \beta$, so f has 4 distinct roots $\pm \alpha, \pm \alpha'$, i.e. f is separable and $L = K(\alpha, \alpha')$.
- 2. Now one has

$$[L:K] = [L:K(\alpha)][K(\alpha):K(\beta)][K(\beta):K] \le 2 \times 2 \times 2 = 8,$$

so it's 2 or 4 or 8.

3.

Lemma 7.4.1. (a) $a^2 - b$ not a square in $K \Rightarrow [K(\alpha) : K] = [K(\alpha') : K] = 4$.

(b) If also $b(a^2 - b)$ not a square in K then [L:K] = 8.

Proof. (a) We show $[K(\alpha):K(\beta)]=2$. Suppose $\alpha\in K(\beta)$, i.e. $\alpha+\beta$ is a square in $K(\beta)$, then

$$a + \beta = (c + d\beta)^2 = (c^2 + d^2b) + 2cd\beta, \ a - \beta = (c^2 + d^2b) - 2cd\beta = (c - d\beta)^2,$$

so

$$a^2 - b = (c^2 - d^2b)^2$$

so $a^2 - b$ is a square, a contradiction.

(b) Similar.

4.

Lemma 7.4.2. Now suppose $[K(\alpha) : K] = [K(\alpha') : K] = 4$. Then

- (a) $q = x^2 (a + \beta)$, $q' = x^2 (a \beta)$ are the minimal polynomials of α, α' over $K(\beta)$.
- (b) If $\sigma \in \operatorname{Gal}(L/K)$ then the only 8 possibilities are: i.e. $\operatorname{Gal}(L/K)$ is a subgroup of a group of order 8.

- 5. If $[L:K]=2^3=8$, then $|\mathrm{Gal}(L/K)|=[L:K]=8$ so it has to be the whole thing above, which is $D_8\leq S_4$: indeed, let σ be #6 above and τ be #1 above.
- 6. Subgroup lattice of D_8 :

7. Subfield lattice by Galois correspondence:

Week 7, lecture 3 starts here

8. What actually are these fixed fields? Let $\gamma = \alpha \alpha'$, $\delta = \alpha + \alpha'$, $\delta' = \alpha - \alpha'$. By checking how α, α' and β are fixed by σ and τ and considering tower law, one has

9.

Example 7.4.3. $K = \mathbb{Q}$.

(a) a = 0, b = 2, $a^2 - b = 2$ and $b(a^2 - b) = -4$ are not squares in \mathbb{Q} . Then $Gal(f) \leq D_8$ and note that $f = x^4 - 2$ has 4 distinct roots $\alpha = \sqrt{0 + \sqrt{2}} = \sqrt[4]{2}, -\alpha, \alpha' = i\alpha, -\alpha$. The β as above is $\sqrt{2}$. Then

we have the subfield lattice

by above.

- (b) $a=1,\ b=3,\ a^2-b=-2$ and $b(a^2-b)=-6$ are not squares in \mathbb{Q} . Then similarly f has 4 distinct roots $\pm \alpha = \pm \sqrt{1+\sqrt{3}}$ and $\pm \alpha' = \pm i\sqrt{\sqrt{3}-1}$.
- 10. Now suppose $\sqrt{b(a^2-b)} \in K$. Then observe that

$$(\beta \alpha \alpha')^2 = b(a+\beta)(a-\beta) = b(a^2 - b),$$

so $\beta \alpha \alpha' \in K$, hence

$$\alpha' = \frac{\text{something in } K}{\beta\alpha} \in K(\alpha,\beta) = K(\alpha),$$

so $K(\alpha, \alpha') = K(\alpha)$ is a splitting field, and

$$[L:K] = [K(\alpha):K(\beta)][K(\beta):K] = 2 \times 2 = 4 = |Gal(L/K)|.$$

11. We now observe that $f = (x^2 - a)^2 - b$ is then irreducible. Use a similar method you've seen before to verify (first suppose there is a root, then suppose split into quadratics). So by Lemma 7.0.4, Gal(f) is a transitive subgroup of D_8 . In particular, $\exists \sigma \in Gal(f) : \sigma(\alpha) = \alpha'$ and $\langle \sigma \rangle \leq Gal(f)$. By the 8 possibilities we listed, $\sigma(\beta) = -\beta$, and since σ fixed K, one has

$$\sigma(\beta\alpha\alpha') = \sigma(\beta)\sigma(\alpha)\sigma(\alpha') = -\beta\alpha'\sigma(\alpha') = \beta\alpha\alpha',$$

so $\sigma(\alpha') = -\alpha$. Now by σ ,

$$\alpha \mapsto \alpha' \mapsto -\alpha \mapsto -\alpha' \mapsto \alpha$$
$$\alpha' \mapsto -\alpha \mapsto -\alpha' \mapsto \alpha \mapsto \alpha'$$

so $\sigma^4 = \text{id}$ and $\{\text{id}, \sigma, \sigma^2, \sigma^3\} \subset \text{Gal}(f)$, and since Gal(f) = 4, $\langle \sigma \rangle$ is in fact the whole Gal(f) and we have the subgroup-subfield lattice correspondence:

Week 8, lecture 1 starts here

8 Finite field

Definition 8.0.1. A *finite field* is a field with finite elements.

Proposition 8.0.2. If K is a finite field then char K = p > 0 and $|K| = p^n$ for some $n \in \mathbb{N}$.

Proof. Consider the unique homomorphism $\varphi : \mathbb{Z} \to K$. Since K is a field, in particular a domain, $\ker \varphi$ is a prime ideal, so is of the form $p\mathbb{Z}$. By 1st isomorphism theorem, $\mathbb{Z}/p\mathbb{Z} \cong \operatorname{im} \varphi \subset K$, so $\operatorname{char} K = p$. But now note that K is a finite dimensional $\mathbb{Z}/p\mathbb{Z}$ -vector space, so $|K| = p^n$ where n is its dimension.

Theorem 8.0.3. Given prime p and $n \in \mathbb{N}$, set $q = p^n$, then splitting field L of $x^q - x \in \mathbb{F}_p[x]$ is a field with |L| = q. Moreover, L/\mathbb{F}_p is Galois and any two fields with q elements are isomorphic.

Proof. Write $f = x^q - x$. Then $Df = qx^{q-1} - 1 = -1 \in \mathbb{F}_p[x]$, so f and Df are coprime, so f is separable by 6.3.6 and L/\mathbb{F}_p is then by definition Galois.

Let $M \subset L$ be the set of roots of f, i.e. $M = \{\alpha \in L : \alpha^q = \alpha\}$. We claim M is a field. Indeed, if $\alpha, \beta \in M$ then $(\alpha\beta)^q = \alpha^q\beta^q = \alpha\beta$ so $\alpha\beta \in M$, and $(\alpha+\beta)^q = \alpha^q+\beta^q = \alpha+\beta$ so $\alpha+\beta \in M$. Since L is defined to be the smallest field that contains M, M = L, hence |L| = |M| = q.

Suppose N/\mathbb{F}_p is another field with q elements. Consider $N^* = N \setminus \{0\}$, a group with q-1 elements. If $\beta \in N^*$ then $|\beta| \mid q-1$ and in particular $\beta^{q-1} = 1$, so $\forall \beta \in N$ one has $\beta^q = \beta$, i.e. every element of N is a root of f. This means N is a splitting field of $f \in \mathbb{F}_p$, and by 6.1.9 N is isomorphic to L.

Notation. We've seen \mathbb{F}_p quite many times before. Now that we have the theorem, we define \mathbb{F}_{p^n} to be the unique field of size p^n (so not $\mathbb{Z}/p^n\mathbb{Z}$ which is generally not a field).

8.1 Frobenius map

Definition 8.1.1. Let K be a field (not necessarily finite) with char K=p>0. The *Frobenius map* is the homomorphism $\varphi_p:K\to K:\alpha\mapsto\alpha^p$.

Proposition 8.1.2. Write φ for φ_p in context above. Then

- 1. φ is indeed a homomorphism
- 2. $M := \{ \alpha \in K : \varphi(\alpha) = \alpha \} = \mathbb{F}_p$
- 3. K is finite $\Rightarrow \varphi$ is surjective, so $\varphi \in \operatorname{Aut}_{\mathbb{F}_p}(K)$ and $K^{\varphi} = \mathbb{F}_p$.

Proof. 1. One has $(\alpha\beta)^p = \alpha^p \beta^p$, $1^p = 1$ and $(\alpha + \beta)^p = \alpha^p + \beta^p$.

- 2. M is a subfield, so $\mathbb{F}_p \subset M$ and in particular $|M| \geq p$. But $M = \{\text{roots of } x^p x \in \mathbb{F}_p[x]\}$, so $|M| \leq p$, hence |M| = p and $M = \mathbb{F}_p$.
- 3. φ is surjective by its injectivity (K is a field) and rank–nullity theorem. The rest follows from definition.

Example 8.1.3. $K = \mathbb{F}_3(t) = \left\{ \frac{A}{B} : A, B \in \mathbb{F}_3[t], B \neq 0 \right\}$. Then char K = 3. This is not infinite, and note that φ is not surjective (you can't hit t).

Theorem 8.1.4 (Galois group). Given a finite field K with char K = p > 0 and $|K| = p^n$, one has $Gal(K/\mathbb{F}_p) = \langle \varphi_p \rangle \cong \mathbb{Z}/n\mathbb{Z}$.

Week 8, lecture 2 starts here

Proof. Since K/\mathbb{F}_p is Galois, by 7.1.3 one has $|\operatorname{Gal}(K/\mathbb{F}_p)| = [K : \mathbb{F}_p] = n$. It suffices to prove $|\varphi_p| = n$. Suppose $\varphi_p^m = \operatorname{id}$ for some $m \leq n$, i.e. $\alpha^{p^m} = \alpha \ \forall \alpha \in K$, i.e. α is a root of $g = x^{p^m} - x$. This means $p^n = |K| \leq p^m$, so $n \leq m$, so m = n.

Remark. Note that any subgroup of $\operatorname{Gal}(K/\mathbb{F}_p)$ is then of the form $\langle \varphi_p^m \rangle$ where $m \mid n$ which has $\frac{n}{m}$ elements. By 6.1.5, $[L:L^H] = |H| = \frac{n}{m}$, so $|L^H| = p^m$ and hence $L^H \cong \mathbb{F}_{p^m}$. We can therefore draw the subgroup/subfield lattice quite easily.

Example 8.1.5. Let p = 7 and n = 12.

Subgroup lattice of $Gal(L/\mathbb{F}_p) \cong C_{12}$:

so by Galois correspondence one has subfield lattice:

which seems insane to derive from scratch but now almost comes for free.

Week 8, lecture 3 starts here

9 Radical solution of a polynomial

Recall section 3.2.

Definition 9.0.1. A field extension M/K is radical if \exists a sequence of subfields $K = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_s = M$ with $F_i = F_{i-1}(\alpha_i)$ and $\alpha_i^{n_i} \in F_{i-1}$.

Example 9.0.2. Let $\omega^3 = 1$, $\omega \neq 1$. Then $\mathbb{Q}(\omega)/\mathbb{Q}$ is radical, since ω is a root of $x^3 - 1 \in \mathbb{Q}[x]$.

Example 9.0.3. $f = x^3 - 3x - 3 \in \mathbb{Q}[x]$ is Eisenstein at 3 so irreducible. The discriminant D is

$$q^2 + \frac{4p^3}{27} = 9 + \frac{4(-27)}{27} = 5.$$

Let $\alpha = \sqrt{5}$, $\beta = \sqrt[3]{\frac{-q+\alpha}{2}} = \sqrt[3]{\frac{3+\sqrt{5}}{2}}$ and $\gamma = \sqrt[3]{\frac{3-\sqrt{5}}{2}}$, subject to $\beta\gamma = -\frac{p}{3} = 1$. Choose $\beta, \gamma \in \mathbb{R}$ and one has $\gamma = \frac{1}{\beta}$. Roots of f are $\alpha_0 = \beta + \gamma$, $\alpha_1 = \omega\beta + \omega^2\gamma$, $\alpha_2 = \omega^2\beta + \omega\gamma = \overline{\alpha_1}$. Splitting field is $\mathbb{Q}(\alpha_0, \alpha_1, \alpha_2)$. Note that one has

$$F_0 = \mathbb{Q} \subset F_1 = \mathbb{Q}(\sqrt{5})$$

$$\subset F_2 = \mathbb{Q}(\sqrt{5}, \beta)$$

$$\subset F_3 = \mathbb{Q}(\beta, \omega) =: M,$$

so M/\mathbb{Q} is radical since

$$5 \in \mathbb{Q}, \quad \frac{3+\sqrt{5}}{2} \in \mathbb{Q}(\sqrt{5}), \quad 1 \in \mathbb{Q}(\sqrt{5}, \beta).$$

Now we know if L/\mathbb{Q} is a splitting field then $[L:\mathbb{Q}]=3$ or 6 and $L\subset M$. We claim that $[F_2:F_1]=3$, since

So in particular $[M:\mathbb{Q}]=12$ hence $L\subsetneq M$. In fact, $\sqrt{5},\beta,\gamma,\omega\notin L$.

Definition 9.0.4. L/K is *soluble* if $\exists M/K$ radical with $L \subset M$.

A polynomial $f \in K[x]$ is soluble by radicals if its splitting field L/K is soluble.

Proposition 9.0.5. Suppose char K = 0 and L/K radical. Then \exists a finite extension M/L : M/K is radical and Galois.

Compare this with 6.2.3.

Proof. Let M/L be normal closure. One has

$$K = F_0 \subset F_1 \subset F_2 \subset \cdots \subset F_s = L$$

with $F_i = F_{i-1}(\alpha_i)$ where α_i is a root of $x^{n_i} - b_i \in F_{i-1}[x]$. Let m_i be minimal polynomial of α_i over K.

Let $\widetilde{F}_i = F_{i-1}(\text{roots of } m_i) \subset M \text{ (so } \widetilde{F}_1/K \text{ is normal since it's a splitting field).}$

 $b_1 \in K$ so it's fixed by Gal(M/K). m_1 is irreducible over K so if β_1 is another root, $\exists \sigma \in Gal(M/K) : \sigma(\alpha_1) = \beta_1$, so β_1 is a root of $x^{n_1} - \sigma(b_1) = x^{n_1} - b_1$, hence β_1 is a radical, i.e. $\widetilde{F_1}/K$ is radical.

Now let β_2 be a another root of m_2 . Then $\exists \sigma \in \operatorname{Gal}(M/K) : \sigma(\alpha_2) = \beta_2$, and α_2 is a root of $x^{n_2} - b_2 \in F_1[x] \subset \widetilde{F_1}[x]$; β_2 is a root of $x^{n_2} - \sigma(b_2) \in \widetilde{F_1}[x]$ since $\widetilde{F_1}/K$ is normal and so $b_2 \in \widetilde{F_1}$ by 6.2.6. Hence β_2 is a radical, i.e. $\widetilde{F_2}/K$ is radical.

The proof is finished by induction and definition of normal closure.

Week 9, lecture 1 starts here

Definition 9.0.6. A group G is *soluble* if \exists a chain of subgroups

$$\{id\} \subset G_0 \subset G_1 \subset \cdots \subset G_s = G$$

with each $G_i \subset G_{i+1}$ being normal subgroups (called a *subnormal series*) and G_{i+1}/G_i abelian $\forall i = 0, \dots, s-1$.

Remark. When G is finite and soluble, there is a subnormal series with all quotients being cyclic of prime order since we know structure of finite abelian groups.

Definition 9.0.7. For $g, h \in G$, the commutator of g, h is $[g, h] = ghg^{-1}h^{-1}$.

Example 9.0.8. Abelian groups are soluble.

 S_3, S_4 are soluble. S_5 is not, and in fact A_5 is already not since it's simple and nonabelian.

Every element of $A_5 = \{id, (i, j, k), (i, j)(k, l), (i, j, k, l, m)\}$ is a commutatator. Indeed,

$$(i, j, k) = [(i, k, l), (i, k, m)]$$
$$(i, j)(k, l) = [(i, j, k), (i, j, l)]$$
$$(i, j, k, l, m) = [(i, j)(k, m)(i, m, l)].$$

Now suppose A_5 is soluble with H normal and A_5/H abelian and forget we know it's simple. Then \exists a homomorphism π : $A_5 \to A_5/H$, but commutators are mapped to commutators by homomorphisms, and since A_5/H is abelian, it's trivial, i.e. $H = A_5$.

Proposition 9.0.9. Let G be a group and $H \subset G$ a subgroup.

- 1. G soluble $\Rightarrow H$ soluble.
- 2. If H is normal, then G soluble $\Leftrightarrow H$ and G/H soluble.

Example 9.0.10. $f = x^5 - 10x + 5$ is not soluble by radicals.

f is irreducible since it's Eisenstein at p=5 (so it's separable). We claim it has 3 distinct real roots and a complex conjugate pair of roots. Note that $f'=5x^4-10=5(x^4-2)$ has two real roots $\pm\sqrt[4]{2}$ (and two imaginary roots $\pm i\sqrt[4]{2}$), and that $f(-\sqrt[4]{2}) > 0$, $f(\sqrt[4]{2}) < 0$, so by IVT and MVT we have three real roots. We have the complex conjugates since $f \in \mathbb{Q}[x]$. Name them $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}, \ \beta, \overline{\beta} \in \mathbb{C} \setminus \mathbb{R}$ and one has splitting field $L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \beta, \overline{\beta})$.

Complex conjugation $\sigma(z) = \overline{z}$ is an automorphism of L, so $\sigma \in Gal(L/\mathbb{Q}) = Gal(f)$, which corresponds to $(4,5) \in S_5$.

Now by tower law and Galois correspondence, 5 divides $\operatorname{Gal}(L/\mathbb{Q})$, which divides $120 = |S_5|$ by Lagrange's and Lemma 7.0.4. So $5^2 \nmid \operatorname{Gal}(L/\mathbb{Q})$, and there is a 5 cycle in $\operatorname{Gal}(L/\mathbb{Q})$.

But S_5 is generated by (4,5) and a 5-cycle, so $\operatorname{Gal}(L/\mathbb{Q}) \cong S_5$, a not soluble group.

Week 9, lecture 2 starts here

Lemma 9.0.11. $K \subset \mathbb{C}$, $\zeta \in \mathbb{C}$ a primitive pth root of 1 where p prime. Then $K(\zeta)/K$ is Galois and $\operatorname{Gal}(K(\zeta)/K)$ is abelian.

Proof. $K(\zeta)$ is a splitting field of the minimal polynomial of ζ , which is separable since it divides $x^p - 1$ which has p roots $1, \zeta, \zeta^2, \ldots, \zeta^{p-1}$. Hence $K(\zeta)/K$ is Galois.

If $\sigma, \tau \in \operatorname{Gal}(K(\zeta)/K)$ then we know $\sigma(\zeta) = \zeta^r$ and $\tau(\zeta) = \zeta^s$ for some $r, s \in \{1, \dots, p-1\}$, so $\tau(\sigma(\zeta)) = \sigma(\tau(\zeta)) = \zeta^{rs}$.

Lemma 9.0.12. Suppose $\zeta \in K \subset \mathbb{C}$ where ζ is a primitive pth root of 1 where p prime. If $\alpha \in \mathbb{C}$ satisfies $\alpha^p = a \in K$ then $K(\alpha)/K$ is Galois and $Gal(K(\alpha)/K)$ is abelian.

Proof. $K(\alpha)$ is a splitting field of $f = x^p - a \in K[x]$ where f is separable with roots $\alpha, \alpha\zeta, \alpha\zeta^2, \ldots, \alpha\zeta^{p-1}$, so $K(\alpha)/K$ is Galois.

Minimal polynomial m of α over K divides f so m splits in $K(\alpha)$ with roots of the form $\alpha \zeta^s$. Again elements of $\operatorname{Gal}(K(\alpha)/K)$ are determined by these roots, and if $\sigma(\alpha) = \alpha \zeta^s$ and $\tau(\alpha) = \alpha \zeta^r$ then $\sigma(\tau(\alpha)) = \sigma(\alpha \zeta^r) = \sigma(\alpha)\sigma(\zeta)^r = \alpha \zeta^s \zeta^r = \alpha \zeta^{r+s}$ and the result follows from the fact that r+s=s+r.

Corollary 9.0.13. $K \subset \mathbb{C}$, $\alpha \in \mathbb{C}$ satisfies $\alpha^p = a \in K$ where p prime. Let $L = K(\alpha, \zeta)$ and $M = K(\zeta)$. Then L/K is Galois and $\operatorname{Gal}(L/K)$ is soluble with $\{\operatorname{id}\} \subset \operatorname{Gal}(L/M) \subset \operatorname{Gal}(L/K)$ a soluble series.

Proof. $K(\alpha, \zeta)$ is a splitting field of $f = x^p - a$ which has roots $\alpha, \alpha\zeta, \ldots, \alpha\zeta^{p-1}$, so L/K is Galois. Also M/K is Galois by , so normal, so $\operatorname{Gal}(L/M) \lhd \operatorname{Gal}(L/K)$ with $\operatorname{Gal}(L/K)/\operatorname{Gal}(L/M) \cong \operatorname{Gal}(M/K)$ by 7.3.1, which is abelian by . $\operatorname{Gal}(L/M)$ is abelian by 9.0.12.

Theorem 9.0.14. If L/K is radical Galois then Gal(L/K) is soluble.

Corollary 9.0.15. $K \subset \mathbb{C}$ and $f \in K[x]$ irreducible with splitting field L/K. If f is soluble in radicals then $\operatorname{Gal}(L/K)$ is soluble.

For proofs of the above two, see Gavin's notes.

Week 9, lecture 3, week 10, lectures 1 and 2 are cancelled

Week 10, lecture 3 is an overview