Topics of the week

- 1. Scalar product, length, cosine formula;
- 2. Cauchy-Schwarz inequality, triangle inequality, perpendicular vectors;
- 3. Define linear independence of vectors in three different ways;
- 4. Work with the span of vectors.

Real vector space is a set V with $+: V \times V \to V$ and $\cdot: \mathbb{R} \times V \to V$, such that

- 1. V is a commutative group over +;
- 2. Compatibility of scalar multiplication: $\alpha(\beta \vec{x}) = (\alpha \beta) \vec{x}$;
- 3. Scalar identity: $1\vec{x} = \vec{x}$;
- 4. Distributivities: $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$ and $(\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x}$.

Consequence: $0\vec{x} = \vec{0}$.

Inner product is a map $\cdot: V \times V \to \mathbb{R}$, such that

- 1. Symmetry: $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$;
- 2. Linearity: $(a\vec{x} + b\vec{y}) \cdot \vec{z} = a(\vec{x} \cdot \vec{z}) + b(\vec{y} \cdot \vec{z})$;
- 3. Positive-definite: $\vec{x} \cdot \vec{x} \ge 0$ and $\vec{x} \cdot \vec{x} = 0 \iff \vec{x} = 0$.

The standard scalar (dot) product of (a_1, \ldots, a_n) and (b_1, \ldots, b_n) is $a_1b_1 + \cdots + a_nb_n$.

Norm is a map $\|\cdot\|: V \to \mathbb{R}$, such that

- 1. Positive-definite: $\|\vec{x}\| \ge 0$ and $\|\vec{x}\| = 0 \iff \vec{x} = \vec{0}$;
- 2. Absolute homogeneity: $\|\lambda \vec{x}\| = |\lambda| \cdot \|\vec{x}\|$;
- 3. Triangle inequality: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$.

Distance between two vectors: $\|\vec{x} - \vec{y}\|$. In inner product spaces, $\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$.

Cauchy-Schwarz inequality For any $\vec{x}, \vec{y} \in V$, we have

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| \cdot ||\vec{y}||$$

Proof: Analyze $f(t) = \|\vec{x} - t\vec{y}\|^2$.

What does it mean geometrically?

Angle between vectors Due to Cauchy-Schwarz inequality, we can define θ from

$$\vec{x} \cdot \vec{y} = ||x|| ||y|| \cos \theta$$

Triangle inequality For any $\vec{x}, \vec{y} \in V$, we have

$$||x + y|| \le ||x|| + ||y||$$

In-class exercises

- 1. Let $\vec{0} \in \mathbb{R}^m$ denote the vector whose entries are all zero. We say that a set L is a line in \mathbb{R}^m if and only if there exists $\vec{w} \in \mathbb{R}^m$ with $\vec{w} \neq 0$ such that $L = \{\lambda \vec{w} : \lambda \in \mathbb{R}\}$. Let now L be a line in \mathbb{R}^m and let \vec{u} be an arbitrary nonzero element of L. Prove $L = \{\lambda \vec{u} : \lambda \in \mathbb{R}\}$.
- 2. For two lines L_1 and L_2 in \mathbb{R}^m , prove that we have $L_1 \cap L_2 = \{\vec{0}\}$ or $L_1 \cap L_2 = L_1 = L_2$.
- 3. There are three points $A, B, C \in \mathbb{R}^n$. You need to go from A to B without getting closer to C than r. What is the length of the shortest path that satisfies this?
- 4. Show that the following operations do not change the span:
 - (a) Multiplying any vector with a non-zero scalar;
 - (b) Adding one vector to another;
- 5. We have a set of vectors $\vec{v}_1, \ldots, \vec{v}_n$. How to find $\lambda_1, \ldots, \lambda_n$ such that

$$\lambda_1 \vec{v}_1 + \dots + \lambda_n \vec{v}_n = \vec{v}$$

for a given \vec{v} ? Assume that $\vec{v}_i \cdot \vec{v}_j = 0$ when $i \neq j$. What if it does not hold?

6. Given a set $\vec{v}_1, \ldots, \vec{v}_n$, find $\vec{u}_1, \ldots, \vec{u}_n$ that is orthogonal and has the same span.

Only first two exercises were actually covered.