Introduction to Graphical Models

Prof. Alexander Ihler

Uncertainty in the world

- Uncertainty due to
 - Randomness
 - Overwhelming complexity
 - Lack of knowledge
 - **—** ...
- Example: time to the airport
- Without representing & communicating uncertainty, it's easy to make and compound mistakes
- Probability gives
 - natural way to describe our assumptions
 - rules for how to combine information

- Event "A" in event space "S"
 - Ex: "I have a headache"
 - Ex: "I have the flu"
 - Ex: "I have Ebola"
- Probability Pr[A]
 - Think of e.g. "# of worlds in which A happens"
 - This is a measure, like area
 - Can think of it in those terms

- Event "A" in event space "S"
- Probability Pr[A]
- Axioms of probability
 - $-0 \le Pr[A] \le 1$
 - Pr[S] = 1
 - $Pr[\emptyset] = 0$
 - $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$

- Event "A" in event space "S"
- Probability Pr[A]
- Axioms of probability
 - $-0 \le Pr[A] \le 1$
 - Pr[S] = 1
 - $Pr [\emptyset] = 0$
 - $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$

all of S

A

"A" can't get any smaller than size zero...
No worlds in which "A" is true

- Event "A" in event space "S"
- Probability Pr[A]
- Axioms of probability
 - $-0 \le Pr[A] \le 1$
 - Pr[S] = 1
 - $Pr [\emptyset] = 0$
 - $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$

"A" can't get any larger than all worlds: 100% of worlds have "A" true

- Event "A" in event space "S"
- Probability Pr[A]
- Axioms of probability
 - $-0 \le Pr[A] \le 1$
 - Pr[S] = 1
 - $Pr[\emptyset] = 0$
 - $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$

$$= A + B - A \cap B$$

Discrete random variables

- X takes on finite set of values S={a₁...a_d}
 - Disjoint and Exhaustive
- Probability mass functions (pmfs)
 - Define a measure on subsets of S
- Pr[X=a_i] defined for each value a_i

$$\Pr[X \in A \subseteq S] = \sum_{a_i \in A} \Pr[X = a_i]$$

Constraints:

$$0 \le \Pr[X = a_i] \le 1$$
 $\sum_i \Pr[X = a_i] = 1$

Examples

- Bernoulli RV (coin toss)
 - $-X \in \{0,1\}$ Pr[X=1] = p Pr[X=0] = 1-p
- Binomial (p,n) toss the coin n times
 - $Y = \sum X_i$ is binomial
- Discrete(d) die roll
 - $X \in \{1 ... d\} Pr[X=1 ... X=d] = [p_1... p_d]$
 - Multinomial(d,n): roll the die n times

Joint distributions

- Often, we want to reason about multiple variables
- Example: dentist
 - T: have a toothache
 - D: dental probe catches
 - C: have a cavity
- Joint distribution
 - Assigns each event (T=t, D=d, C=c) a probability
 - Probabilities sum to 1.0
- Law of total probability:

$$p(C = 1) = \sum_{t,d} P(T = t, D = d, C = 1)$$

= 0.008 + 0.072 + 0.012 + 0.108 = 0.20

- Some value of (T,D) must occur; values disjoint
- "Marginal probability" of C; "marginalize" or "sum over" T,D

Т	D	С	P(T,D,C)
0	0	0	0.576
0	0	1	0.008
0	1	0	0.144
0	1	1	0.072
1	0	0	0.064
1	0	1	0.012
1	1	0	0.016
1	1	1	0.108

Conditional probability

• Chain rule:

$$p(X = x, Y = y) = p(X = x)p(Y = y|X = x)$$

- p(X=x,Y=y) : probability that both X=x and Y=y
- p(X=x): probability that X=x (and some Y)
- P(Y=y|X=x): probability that Y=y given X=x already

- If p(X) > 0 :
$$p(Y|X) = \frac{p(X,Y)}{p(X)}$$

More generally:

$$p(X, Y, Z) = p(X) \ p(Y|X) \ p(Z|X, Y)$$

 $p(W, X, Y, Z) = p(X) \ p(Y|X) \ p(Z|X, Y) \ p(W|X, Y, Z)$

The effect of evidence

- Example: dentist
 - T: have a toothache
 - D: dental probe catches
 - C: have a cavity
- Recall p(C=1) = 0.20
- Suppose we observe D=0, T=0?

$$p(C = 1|D = 0, T = 0) = \frac{p(C = 1, D = 0, T = 0)}{p(D = 0, T = 0)}$$
$$= \frac{0.008}{0.576 + 0.008} = 0.012$$

Т	D	C	P(T,D,C)
0	0	0	0.576
0	0	1	0.008
0	1	0	0.144
0	1	1	0.072
1	0	0	0.064
1	0	1	0.012
1	1	0	0.016
1	1	1	0.108

Observe D=1, T=1?

$$= \frac{0.108}{0.016 + 0.108} = 0.871$$

Called *posterior probabilities*

The effect of evidence

- Example: dentist
 - T: have a toothache
 - D: dental probe catches
 - C: have a cavity
- Combining these rules:

$$p(C = 1|T = 1) = \frac{p(C = 1, T = 1)}{p(T = 1)}$$

$$= \frac{0.012 + 0.108}{0.064 + 0.012 + 0.016 + 0.108} = 0.60$$

1	
p(T = 1) =	0.20

Т	D	С	P(T,D,C)
0	0	0	0.576
0	0	1	0.008
0	1	0	0.144
0	1	1	0.072
1	0	0	0.064
1	0	1	0.012
1	1	0	0.016
1	1	1	0.108

Called the *probability of evidence*

Computing posteriors

Sometimes easiest to normalize last

Assign T=1

$$p(C|T=1) = \frac{1}{p(T=1)} p(C,T=1) \propto p(C,T=1) = \sum_{d} p(C,d,T=1)$$

Т	D	С	P(T,D,C)
0	0	0	0.576
0	0	1	0.008
0	1	0	0.144
0	1	1	0.072
1	0	0	0.064
1	0	1	0.012
1	1	0	0.016
1	1	1	0.108

Sum over D

Normalize

Bayes rule

• Lets us calculate posterior given evidence

$$p(Y|X) \ p(X) = p(X,Y) = p(X|Y) \ p(Y)$$

$$\Rightarrow p(Y|X) = \frac{p(X|Y) \ p(Y)}{p(X)}$$

"Bayes rule"

- Example: flu
 - P(F), P(H|F)
 - $P(F=1 \mid H=1) = ?$

F	P(F)
0	0.95
1	0.05

F	Н	P(H F)
0	0	0.80
0	1	0.20
1	0	0.50
1	1	0.50

$$= \frac{0.50 * 0.05}{0.50 * 0.05 + 0.20 * 0.95} = 0.116$$

Independence

- X, Y independent:
 - p(X=x,Y=y) = p(X=x) p(Y=y) for all x,y
 - Shorthand: p(X,Y) = P(X) P(Y)
 - Equivalent: p(X|Y) = p(X) or p(Y|X) = p(Y) (if p(Y), p(X) > 0)
 - Intuition: knowing X has no information about Y (or vice versa)

Independent probability distributions:

A	P(A)
0	0.4
1	0.6

В	P(B)
0	0.7
1	0.3

This reduces representation size!

A	В	C	P(A,B,C)
0	0	0	.4 * .7 * .1
0	0	1	.4 * .7 * .9
0	1	0	.4 * .3 * .1
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Independence

X, Y independent:

- p(X=x,Y=y) = p(X=x) p(Y=y) for all x,y
- Shorthand: p(X,Y) = P(X) P(Y)
- Equivalent: p(X|Y) = p(X) or p(Y|X) = p(Y) (if p(Y), p(X) > 0)
- Intuition: knowing X has no information about Y (or vice versa)

Independent probability distributions:

A	P(A)
0	0.4
1	0.6

В	P(B)
0	0.7
1	0.3

Joint:

This reduces representation size!

Note: it is hard to "read" independence from the joint distribution.

We can "test" for it, however.

A	В	C	P(A,B,C)
0	0	0	0.028
0	0	1	0.252
0	1	0	0.012
0	1	1	0.108
1	0	0	0.042
1	0	1	0.378
1	1	0	0.018
1	1	1	0.162

Conditional Independence

X, Y independent given Z

```
- p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) for all x,y,z
```

- Equivalent:
$$p(X|Y,Z) = p(X|Z)$$
 or $p(Y|X,Z) = p(Y|Z)$ (if all > 0)

Intuition: X has no additional info about Y beyond Z's

Example

```
X = height p(height|reading, age) = p(height|age)
Y = reading ability p(reading|height, age) = p(reading|age)
Z = age
```

Height and reading ability are dependent (not independent), but are conditionally independent given age

Conditional Independence

- X, Y independent given Z
 - p(X=x,Y=y|Z=z) = p(X=x|Z=z) p(Y=y|Z=z) for all x,y,z
 - Equivalent: p(X|Y,Z) = p(X|Z) or p(Y|X,Z) = p(Y|Z)
 - Intuition: X has no additional info about Y beyond Z's
- Example: Dentist

Again, hard to "read" from the joint probabilities; only from the conditional probabilities.

Like independence, reduces representation size!

Joint prob:

Т	D	C	P(T,D,C)
0	0	0	0.576
0	0	1	0.008
0	1	0	0.144
0	1	1	0.072
1	0	0	0.064
1	0	1	0.012
1	1	0	0.016
1	1	1	0.108

Conditional prob:

Т	D	C	P(T D,C)
0	0	0	0.90
0	0	1	0.40
0	1	0	0.90
0	1	1	0.40
1	0	0	0.10
1	0	1	0.60
1	1	0	0.10
1	1	1	0.60
1	1	0	0.10

Entropy and Information

- "Entropy" is a measure of randomness
 - How hard is it to communicate a result to you?
 - Depends on the probability of the outcomes
- Communicating fair coin tosses
 - Output: HHTHTTTHHHHT...
 - Sequence takes n bits each outcome totally unpredictable
- Communicating my daily lottery results
 - Output: 0 0 0 0 0 0 ...
 - Most likely to take one bit I lost every day.
 - Small chance I'll have to send more bits (won & when)
- Won 1: 1(...)0

Lost:

- Won 2: 1(...)1(...)0
- Takes less work to communicate because it's less random
 - Use a few bits for the most likely outcome, more for less likely ones`

Entropy and Information

- Entropy $H(X) \equiv -\mathbb{E}_X [\log p(X)] = -\sum p(x) \log p(x)$
 - Log base two, units of entropy are "bits"
 - Natural log, units are "nats"

Examples:

$$H(x) = .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4 + .25 \log 4 = 10g 4 = 2 \text{ bits}$$

$$H(x) = .75 \log 4/3 + .25 \log 4$$

 $\approx .8133 \text{ bits}$

0.7

0.2

Max entropy for 4 outcomes

(c) Alexander Ihler

Min entropy

KL Divergence

Measures dissimilarity of two distributions

$$D(p \parallel q) = \sum_{x} p(x) \log \left[\frac{p(x)}{q(x)}\right]$$

"Pseudo-distance":

- Nonnegative: $D(p \parallel q) \ge 0$

$$D(p \parallel q) = 0 \Leftrightarrow p(x) = q(x) \text{ a.e.}$$

- But, asymmetric: $D(p \parallel q) \neq D(q \parallel p)$

- Mutual information
 - KL divergence between true distribution and independent model:

$$I(X,Y) = D(p(X,Y) || p(X) p(Y))$$

Mutual information

MI measures co-dependence

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$
$$= \sum_{x,y} p(x,y) \log \left[\frac{p(x,y)}{p(x) p(y)} \right]$$

- How much randomness is in X and Y individually?
- How much randomness is in the vector (X,Y)?
- Also equals the KL-divergence between joint & independent model:

$$I(X,Y) = D(p(X,Y) || p(X) p(Y)) \ge 0$$

- Extreme cases:
 - X,Y independent: MI = 0 (knowing X tells us 0 bits about Y)
 - X=Y: MI = H(X) (knowing X tells us H(X) bits about Y)

Summary

- Discrete random variables
- Probability distributions
 - Law of total probability; marginal probability
 - Chain rule; conditional probability
- Observing evidence
 - Posterior probabilities
 - Bayes rule
- Independence
 - Conditional independence
- Information theory
 - Entropy, mutual information, KL-divergence