

Determine uma expressão geral das soluções reais da equação $-2\sin x - \sqrt{2} = 0$

$$-2\sin x - \sqrt{2} = 0$$

$$\Leftrightarrow \sin x = -\frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \sin x = \sin(-\frac{\pi}{4})$$

$$\Leftrightarrow x = -\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \lor x = \pi - \frac{\pi}{4} + 2k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow x = -\frac{\pi}{4} + 2k\pi, k \in \mathbb{Z} \lor x = \frac{5\pi}{4} + 2k\pi, k \in \mathbb{Z}$$

Mostre, no domínio em que a expressão é válida, que:

$$\frac{\sin x \cdot \cos x}{\tan x} = \cos^2 x$$

$$\frac{\sin x \cdot \cos x}{\tan x} = \frac{\sin x \cdot \cos x}{\frac{\sin x}{\cos x}} = \frac{\sin x \cdot \cos^2 x}{\sin x} = \cos^2 x$$

Como queríamos demonstrar.

Exercício 8

Resolva, em \mathbb{R} , a seguinte inequação fracionária: $\frac{-x+1}{x^2+1} \geq 0$. C.A.

$$-x + 1 = 0 \Leftrightarrow x = 1$$
$$x^2 + 1 = 0$$

Imposs'ivel

x	$-\infty$	1	$+\infty$
-x+1	+	0	
$x^2 + 1$	+	+	+
$\frac{-x+1}{x^2+1}$	+	0	_

Crescente

$$C.S =]-\infty, 1]$$

Exercício 9

Seja $(u_n)_n$ uma sucessão definida por: $u_n = 1 + \frac{n+1}{n}$

a)

Verifique se $\frac{11}{5}$ é um dos termos de $(u_n)_n$

$$1+\frac{n+1}{n}=\frac{11}{5}$$

$$n=5\in\mathbb{N}$$

b)

Estude $(u_n)_n$ quanto à monotonia

 $(u_{n+1})-(u_n)<0$ é monótona decrescente $(u_{n+1})-(u_n)>0$ é monótona crescente

$$\begin{split} & \left[\frac{n}{n}\right] \left[\frac{2n+3}{n+1}\right] - \left[\frac{2n+1}{n}\right] \left[\frac{n+1}{n+1}\right] \\ & \frac{2n^2+3n}{(n+1)\left(n\right)} - \frac{2n^2+2n+n+1}{(n+1)\left(n\right)} \\ & \frac{2n^2+3n-2n^2-2n-n-1}{(n+1)\left(n\right)} \\ & \frac{-1}{(n+1)\left(n\right)} < 0, \forall n \in \mathbb{N} \end{split}$$

 u_n é monótona decrescente

c)

Diga, justificando, se $(u_n)_n$ é uma sucessão convergente e se é uma sucessão limitada.

$$\lim_{n} 1 + \frac{n+1}{n} = \lim_{n} 1 + \lim_{n} \frac{\mathscr{K}(1+\frac{1}{n})}{\mathscr{K}(1)} = 1 + \frac{1+\frac{1}{n}}{1} = 2$$

 $(u_n)_n$ é convergente pois tende para um número real. Toda a sucessão convergente é limitada. Como $(u_n)_n$ é decrescente sabemos que:

$$1 + \frac{n+1}{n}$$

$$\frac{n+1}{n} > 0$$

$$2 < u_n \le 3, \forall n \in \mathbb{N}$$

Determine, caso existam, os seguintes limites:

$$\lim_{n} \frac{2n-5}{\sqrt{4n^2+1}} \stackrel{\infty}{=}$$

$$\lim_{n} \frac{\cancel{x} \left(2 + \frac{5}{\cancel{h}}\right)}{\cancel{x} \sqrt{4 + \frac{1}{\cancel{h}^2}}}$$

$$= \frac{2}{\sqrt{4+0}} = 1$$

$$\lim_{n} \left(\frac{n+1}{n-2} \right)^{3n} \stackrel{1^{\infty}}{=}$$

$$= \lim_{n} \left(\frac{1 + \frac{1}{n}}{1 - \frac{2}{n}} \right)^{3n}$$

$$= \left[\lim_{n} \left(1 + \frac{1}{n} \right)^{n} \right]^{3}$$

$$\lim_{n} \left(1 - \frac{2}{n} \right)^{n}$$

$$= \left[\frac{e^{1}}{e^{-2}} \right]^{3}$$

$$= e^{9}$$

Na figura está representada parte de um gráfico de uma função f de domínio $\mathbb{R}\setminus\{0\}$.

Indique:

$$\lim_{x\to 0^-} f(x)$$

$$\lim_{x \to 0^-} f(x) = -2$$

$$\lim_{x \to -2^-} f(x)$$

$$\lim_{x \to -2^-} f(x) = -6$$

c)

$$\lim_{x \to +\infty} f(x)$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

Exercício 12

Considere a função real, de variável real, definida por $f(x) = 10 - 2^{x-1}$.

a)

Determine o domínio e o contradomínio da função f.

$$D_f = \mathbb{R}$$

$$D'_f = 10 - 2^{x-1} < 10 =] - \infty, 10[$$

b)

Caracterize a função inversa da função f .

$$f^{-1} = \log_2(10 - x) + 1$$

 $f^{-1} :]-\infty, 10[\to \mathbb{R}$
 $x \mapsto \log_2(10 - x) + 1$

c)

Resolva em \mathbb{R} a seguinte equação: f(x) = -6.

$$10 - 2^{x-1} = -6$$

$$\Leftrightarrow 2^{x-1} = 2^4$$

$$\Leftrightarrow x = 5$$

Exercício 13

Considere a função f definida por $f(x)=-\frac{x^4}{4}+2x^2$. Determine, na forma reduzida,a equação da reta tangente ao gráfico de f no ponto de abcissa 1.

$$f'(1) = 4x - x^{3} = 3$$
$$f(1) = -\frac{1^{4}}{4} + 2 \cdot 1^{2} = \frac{7}{4}$$
$$y - f(1) = f'(1) \cdot (x - 1)$$

$$\Leftrightarrow y - \frac{7}{4} = 3x - 3$$
$$\Leftrightarrow y = 3x - \frac{5}{4}$$

$$\Leftrightarrow y = 3x - \frac{5}{4}$$