Lecture 25

EC103

Discrete (Digital) Points on an Analog Curve

Digital Representation of an Analog curve

* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
- * An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
- * An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
- * The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in digital format must be converted to an analog voltage for playing out on a speaker.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
- * An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
- * The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in digital format must be converted to an analog voltage for playing out on a speaker.
- * A DAC (Digital-to-Analog Converter) is used to convert a digital signal to the analog format.

Interfacing the Analog and Digital Worlds: Example 1: An Electronic

Thermostat

Interfacing the Analog and Digital Worlds: Example 2: A Digital Audio Recorder/Player

* For a 4-bit DAC, with input $S_3 S_2 S_1 S_0$, the output voltage is $V_A = K \left[(S_3 \times 2^3) + (S_2 \times 2^2) + (S_1 \times 2^1) + (S_0 \times 2^0) \right]$. In general, $V_A = K \sum_{0}^{N-1} S_k 2^k$.

* For a 4-bit DAC, with input $S_3S_2S_1S_0$, the output voltage is $V_A = K \left[(S_3 \times 2^3) + (S_2 \times 2^2) + (S_1 \times 2^1) + (S_0 \times 2^0) \right]$. In general, $V_A = K \sum_{0}^{N-1} S_k 2^k$.

- * For a 4-bit DAC, with input $S_3 S_2 S_1 S_0$, the output voltage is $V_A = K \left[(S_3 \times 2^3) + (S_2 \times 2^2) + (S_1 \times 2^1) + (S_0 \times 2^0) \right]$. In general, $V_A = K \sum_{0}^{N-1} S_k 2^k$.
- * K is proportional to the reference voltage V_R . Its value depends on how the DAC is implemented.

* If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground.

* If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.

- * If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.
- * Since the inverting terminal of the Op Amp is at virtual ground, $I_k = \frac{V(A_k) 0}{R_k} = \frac{S_k V_R}{R_k}.$

- * If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.
- * Since the inverting terminal of the Op Amp is at virtual ground, $I_k = \frac{V(A_k) 0}{R_k} = \frac{S_k V_R}{R_k}.$
- * Using $R_k = 2^{N-1} R/2^k$, we get $I = \frac{V_R}{2^{N-1} R} \sum_{0}^{N-1} S_k \times 2^k$ (N = 4 here).

- * If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.
- * Since the inverting terminal of the Op Amp is at virtual ground, $I_k = \frac{V(A_k) 0}{R_k} = \frac{S_k V_R}{R_k}.$
- * Using $R_k = 2^{N-1} R/2^k$, we get $I = \frac{V_R}{2^{N-1}R} \sum_{0}^{N-1} S_k \times 2^k$ (N = 4 here).
- * The output voltage is $V_o = -R_f I = -V_R \frac{R_f}{2^{N-1}R} \sum_{j=0}^{N-1} S_k \times 2^k$.

Lecture 26

EC103

DAC using binary-weighted resistors: Example

* Consider an 8-bit DAC with $V_R = 5\,\mathrm{V}$. What is the smallest value of R which will limit the current drawn from the supply (V_R) to $10\,\mathrm{mA}$?

* Consider an 8-bit DAC with $V_R = 5\,\mathrm{V}$. What is the smallest value of R which will limit the current drawn from the supply (V_R) to $10\,\mathrm{mA}$?

Maximum current is drawn from V_R when the input is 1111 1111.

* Consider an 8-bit DAC with $V_R = 5 \, \text{V}$. What is the smallest value of R which will limit the current drawn from the supply (V_R) to $10 \, \text{mA}$?

Maximum current is drawn from V_R when the input is 1111 1111.

 \rightarrow All nodes A_0 to A_7 get connected to V_R .

* Consider an 8-bit DAC with $V_R = 5 \, \text{V}$. What is the smallest value of R which will limit the current drawn from the supply (V_R) to $10 \, \text{mA}$?

Maximum current is drawn from V_R when the input is 1111 1111.

 \rightarrow All nodes A_0 to A_7 get connected to V_R .

* Consider an 8-bit DAC with $V_R = 5 \, \text{V}$. What is the smallest value of R which will limit the current drawn from the supply (V_R) to $10 \, \text{mA}$?

Maximum current is drawn from V_R when the input is 1111 1111.

 \rightarrow All nodes A_0 to A_7 get connected to V_R .

* If $R_f = R$, what is the resolution (i.e., ΔV_A corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

* If $R_f = R$, what is the resolution (i.e., ΔV_A corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

$$V_A = -V_R \frac{R_f}{2^{N-1}R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right]$$

* If $R_f = R$, what is the resolution (i.e., ΔV_A corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

$$V_A = -V_R \frac{R_f}{2^{N-1}R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right]$$

$$\to \Delta V_A = \frac{V_R}{2^{N-1}} \frac{R_f}{R} = \frac{5 \text{ V}}{2^{N-1}} \times 1 = \frac{5}{128} = 0.0391 \text{ V}.$$

R-2R ladder network

Node A_k is connected to V_R if input bit S_k is 1; else, it is connected to ground.

R-2R ladder network

Node A_k is connected to V_R if input bit S_k is 1; else, it is connected to ground.

The original network is equivalent to

R-2R ladder network: R_{Th} and V_{Th}

- * $R_{Th} = R$.
- * $V_{Th} = V_{Th}^{(S0)} + V_{Th}^{(S1)} + V_{Th}^{(S2)} + V_{Th}^{(S3)}$ = $\frac{V_R}{16} \left[S_0 2^0 + S_1 2^1 + S_2 2^2 + S_3 2^3 \right]$.
- * We can use the R-2R ladder network and an Op Amp to make up a DAC \rightarrow next slide.

DAC with R-2R ladder

*
$$V_o = -\frac{R_f}{R_{Th}} V_{Th} = -\frac{R_f}{R_{Th}} \frac{V_R}{16} \left[S_0 \, 2^0 + S_1 \, 2^1 + S_2 \, 2^2 + S_3 \, 2^3 \right] \, .$$

* For an N-bit DAC,
$$V_o = -\frac{R_f}{R_{Th}} V_{Th} = -\frac{R_f}{R_{Th}} \frac{V_R}{2^N} \sum_{0}^{N-1} S_k 2^k$$
.

- * 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip).
- * Bipolar, CMOS, or BiCMOS technology is used for these DACs.

Lecture 27

EC103

DAC: settling time

* When there is a change in the input binary number, the output V_A takes a finite time to settle to the new value.

DAC: settling time

- * When there is a change in the input binary number, the output V_A takes a finite time to settle to the new value.
- * The finite settling time arises because of stray capacitances and switching delays of the semiconductor devices used within the DAC chip.

DAC: Resolution:

- The resolution of a DAC is the reciprocal of the maximum number of discrete steps in the output.
- Resolution, of course, is dependent on the number of input bits.
- For example, a 4-bit DAC has a resolution of one part in fifteen, i.e., 1/15. That is 100/15% = 6.67%.
- The total number of discrete steps equals to $2^n 1$, where n is the number of bits.
- Resolution can also be expressed as the number of bits that are converted.

DAC: Accuracy

- Accuracy is a comparison of the actual output of a DAC with the expected output.
- It is expressed as a percentage of a full-scale, or maximum, output voltage.
- For example, if a DAC has a full-scale output of 10 V, and the accuracy is ±0.1%, then the maximum error for any output voltage is 10V X
 0.001 = 10 mV.
- Ideally, the accuracy should be no worse than ±0.5 of an LSB.
- For a 8-bit converter, the LSB is 0.39% of the full scale. The accuracy should be approximately ±0.2%.

* If the input V_A is in the range $V_R^k < V_A < V_R^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_A = V_A'$, the output is 100.

- * If the input V_A is in the range $V_R^k < V_A < V_R^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_A = V_A'$, the output is 100.
- * We may think of each voltage interval (corresponding to 000, 001, etc.) as a "bin." In the above example, the input voltage V_A^\prime falls in the 100 bin; therefore, the output of the ADC would be 100.

- * If the input V_A is in the range $V_R^k < V_A < V_R^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_A = V_A'$, the output is 100.
- * We may think of each voltage interval (corresponding to 000, 001, etc.) as a "bin." In the above example, the input voltage V_A' falls in the 100 bin; therefore, the output of the ADC would be 100.
- * Note that, for an N-bit ADC, there would be 2^N bins.

* The basic idea behind an ADC is simple:

- * The basic idea behind an ADC is simple:
 - Generate reference voltages V_R^1 , V_R^2 , etc.

- * The basic idea behind an ADC is simple:
 - Generate reference voltages V_R^1 , V_R^2 , etc.
 - Compare the input V_A with each of V_R^i to figure out which bin it belongs to.

- * The basic idea behind an ADC is simple:
 - Generate reference voltages V_R^1 , V_R^2 , etc.
 - Compare the input V_A with each of V_R^i to figure out which bin it belongs to.
 - If V_A belongs to bin k (i.e., $V_R^k < V_A < V_R^{k+1}$), convert k to the binary format.

- * The basic idea behind an ADC is simple:
 - Generate reference voltages V_R^1 , V_R^2 , etc.
 - Compare the input V_A with each of V_R^i to figure out which bin it belongs to.
 - If V_A belongs to bin k (i.e., $V_R^k < V_A < V_R^{k+1}$), convert k to the binary format.
 - * A "parallel" ADC does exactly that \rightarrow next slide.

3-bit parallel (flash) ADC

3-bit parallel (flash) ADC

- Practical difficulty: As the input changes, the comparator outputs $(C_0, C_1, \text{ etc.})$ may not settle to their new values at the same time.
 - \rightarrow ADC output will depend on when we sample it.

3-bit parallel (flash) ADC

Add D flip-flops. Allow sifficient time (between the change in V_A and the active clock edge) so that the comprator outputs have already settled to their new values before they get latched in.

3-bit parallel (flash) ADC

Parallel (flash) ADC

* In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.

Parallel (flash) ADC

- * In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
- * Conversion time is governed only by the comparator response time \rightarrow fast conversion (hence the name "flash" converter).
- * Flash ADCs to handle 500 million analog samples per second are commercially available.

Parallel (flash) ADC

- * In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
- * Conversion time is governed only by the comparator response time \rightarrow fast conversion (hence the name "flash" converter).
- * Flash ADCs to handle 500 million analog samples per second are commercially available.
- * 2^N comparators are required for N-bit ADC \rightarrow generally limited to 8 bits.

Alternative Structure for a 3-bit Parallel (Flash) ADC

ADC: sampling of input signal

- * An ADC typically operates on a "sampled" input signal $(V_s(t))$ in the figure) which is derived from the continuously varying input signal $(V_s(t))$ in the figure with a "sample-and-hold" (S/H) circuit.
- * The S/H circuit samples the input signal $V_a(t)$ at uniform intervals of duration T_c , the clock period.
- * When the clock goes high, switch S (e.g., a FET or a CMOS pass gate) is closed, and the capacitor C gets charged to the signal voltage at that time. When the clock goes low, switch S is turned off, and C holds the voltage constant, as desired.

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.
 - Set D[I] = 1 (keep other bits unchanged).

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.
 - Set D[I] = 1 (keep other bits unchanged).
 - If $V_o^{DAC} > V_A$ (i.e., C = 0), set D[I] = 0; else, keep D[I] = 1.

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.
 - Set D[I] = 1 (keep other bits unchanged).
 - If $V_o^{DAC} > V_A$ (i.e., C = 0), set D[I] = 0; else, keep D[I] = 1.
 - $I \leftarrow I 1$; go to step 1.

* At the end of four steps, the digital output is given by $D_3D_2D_1D_0$. Example \rightarrow next slide.

* At the end of the 5th step, we know that the input voltage corresponds to 10110.

- * Each step (setting SAR bits, comparison of V_A and V_o^{DAC}) is performed in one clock cycle \rightarrow conversion time is N cycles, irrespective of the input voltage value V_A .
- * S. A. ADCs with built-in or external S/H (sample-and-hold) are available for 8- to 16-bit resolution and conversion times of a few μ sec to tens of μ sec.
- * Useful for medium-speed applications such as speech transmission with PCM.

Counting ADC

- * The "start conversion" signal clears the counter; counting begins, and V_o^{DAC} increases with each clock cycle.
- * When V_o^{DAC} exceeds V_A , C becomes 0, and counting stops.
- * Simple scheme, but (a) conversion time depends on V_A , (b) slow (takes 2^N clock cycles in the worst case) \rightarrow tracking ADC (next slide)

Tracking ADC

- * The counter counts up if $V_o^{DAC} < V_A$; else, it counts down.
- * If V_A changes, the counter does not need to start from $000\cdots 0$, so the conversion time is less than that required by a counting ADC.
- * used in low-cost, low-speed applications, e.g., measuring output from a temperature sensor or a strain gauge