Konrad Kleczkowski Damian Nowak Mikołaj Pietrek

Teoria Grafów — rozwiązania

17 czerwca 2018

1. Lista powtórkowa

Proszę sobie wpisać pięć piątek na listę aktywności.

prof. dr hab. Michał Morayne

Zadanie 1.1. Łączymy dwa rozłączne grafy Petersena krawędziami, łącząc każdy wierzchołek jednego grafy z wierzchołkiem drugiego, tak aby do każdego wierzchołka była incydentna tylko jedna krawędź. Czy tak otrzymany graf jest grafem Eulera?

Rozwiązanie (K. Kleczkowski).

Należy zauważyć, że graf Petersena jest grafem 3-regularnym, to znaczy, każdy z wierzchołków jest stopnia 3. Stąd, jeśli łączymy grafy Petersena w taki sposób, że każdy wierzchołek jest połączony z dokładnie jednym wierzchołkiem drugiego grafu, to uzyskany tak graf jest grafem 4-regularnym, czyli, w szczególności na parzystość stopni w tym grafie, jest grafem eulerowskim z twierdzenia Eulera o grafach eulerowskich.

Zadanie 1.2. Czy graf Petersena jest grafem Hamiltona?

Rozwiązanie (K. Kleczkowski).

Graf Petersena nie jest grafem hamiltonowskim.

Załóżmy nie wprost, że graf Petersena G = (V, E) jest grafem hamiltonowskim. Stąd w grafie istnieje cykl C = (V, E').

Ponieważ graf liczy dodatkowe |E| - |E'| = 5 krawędzi i graf jest 3-regularny, to te krawędzie łączą wierzchołki, które leżą naprzeciwko siebie. Te krawędzie nazywać będziemy *cięciwami*. Jeśli każda cięciwa łączy przeciwległy wierzchołek cyklu, to stąd istnieje cykl, który składa się z czterech krawędzi. Niech $e \in E$ będzie cięciwą, która łączy wierzchołki $v_1, v_2 \in V$. Oczywiście cięciwa $e \in E$ łączy te wierzchołki ścieżką o długości 4.

Zauważmy, że żadna z cięciw, która jest incydentna do wierzchołka biegnącego na przeciwko jednego z końców krawędzi $e \in E$ w cyklu C nie może być dodana bez utworzenia cyklu, który składa się co najmniej z czterech wierzchołków, co prowadzi do sprzeczności.

Zadanie 1.3. Podać przykład, że założenie $\deg(v) \ge n/2$ w twierdzeniu Diraca nie może być zastąpione przez $\deg(v) \ge (n-1)/2$.

Rozwiązanie (K. Kleczkowski).

Warunek $(\forall v)(\deg(v) \ge (n-1)/2)$ jest słabszy. Istotnie, dostajemy stąd $\deg(v) + \deg(u) \ge n-1$ dla dowolnych $v, u \in V(G)$, niezależnie od tego czy są połączone krawędzią, czy nie, stąd ze słabszego twierdzenia Orego dostajemy półnamiltonowskość. Przykładem jest graf:

$$G = (\{a, b, c, d, e\}, \{\{a, b\}, \{b, c\}, \{a, c\}, \{c, d\}, \{c, e\}, \{d, e\}\}))$$

Zadanie 1.4. Do drzewa na n wierzchołkach dodajemy krawędź. Ile co najmniej drzew spinających ma taki graf (etykietowany). Ile co najwyżej?

Rozwiązanie (K. Kleczkowski).

Skoro do grafu G=(V,E) będącego drzewem, dla którego |V|=n, dodano krawędź, to istotnie powstał cykl. Niech $\{v_i,v_j\}\in E$ będzie tą dodaną krawędzią. Ponieważ graf zawiera cykl, to również dla pewnego wierzchołka $w\in V$ prowadzą dwie drogi, jedna z nich nie zawiera krawędzi $\{v_i,v_j\}\in E$ druga z nich zawiera tą krawędź. Ponieważ poddrzewo rozpinające podgraf G niezawierający cyklu jest nadal drzewem, to należy rozpatrzyć, na ile sposobów można osiągnąć wierzchołek $w\in V$ z cyklu C.

Wybieramy zatem jedną krawędź z tego cyklu i usuwamy ją. Tym sposobem otrzymujemy drzewo rozpinające graf G, ponieważ nie rozspójniamy grafu G przez usunięcie krawędzi w powstałym cyklu C, oraz oczywiście tak powstały graf jest już drzewem. Jeśli |E(C)|=m, to graf G ma m drzew rozpinających. Wiemy stąd, że $3 \le m \le |E|$.

Zadanie 1.5. Niech G będzie grafem mającym n wierzchołków i regularnym stopnia d. Udowodnić, że $\chi_G \ge n/(n-d)$.

Rozwiązanie (D. Nowak).

Jeśli każdy wierzchołek ma różny kolor od d swoich sąsiadów, to maksymalnie n-d wierzchołków ma ten sam kolor (inaczej będzie połączenie między tym samym kolorem). Stąd $(n-d)\chi_G \geqslant n$ i mamy tezę.

Zadanie 1.6. Przedstawić dowód, że jeśli G jest grafem planarnym, to $|E(G)| \leq 3|V(G)| - 6$ ($|V(G)| \geq 3$).

Zadanie 1.7. Udowodnić, że jeśli G jest grafem planarnym i nie ma trójkątów, to $|E(G)| \leq 2|V(G)| - 4$.

Rozwiązanie (K. Kleczkowski).

Przedstawiona zostanie silniejsza nierówność. Niech G=(V,E) będzie grafem planarnym. Niech $r\geqslant 3$ będzie obwodem grafu G czyli najmniejszą długością cyklu występującego w grafie G. Zakładamy, że graf zawiera co najmniej cykle o długości 3.

Załóżmy, że graf G ma t = |F| ścian — $s_1, s_2, \ldots, s_{t-1}, s_t$. Każda ze ścian jest pewnym cyklem, stąd każda ściana składa się z co najmniej r krawędzi. Ponieważ zliczając wszystkie krawędzie należące do ścian zliczamy je podwójnie, to dostajemy:

$$2|E| = |E_{s_1}| + |E_{s_2}| + \ldots + |E_{s_t}| \geqslant |F| \cdot r$$

Stąd, że graf G jest planarny, zachodzi tw. Eulera o grafach planarnych, to znaczy, |V| - |E| + |F| = 2. Stąd dostajemy, że |F| = 2 + |E| - |V|, czyli $2|E| \ge (2 + |E| - |V|) \cdot r$, a po uporządkowaniu dostajemy $|E| \le \frac{r}{r-2}(|V|-2)$. Kładąc r=3 w Zadaniu 6. i r=4 w Zadaniu 7. mamy tezę.

Zadanie 1.8. Narysować drzewa odpowiadające kodom Prufera:

- a) (1, 1, 1, 1, 1)
- b) (2,1,2,1,5)
- c) (3,4,5,6,7)

Dokładnie opisać wykonywany algorytm.

Rozwiązanie (M. Pietrek).

Tworzymy dwie listy. L1 jest kopią kodu, L2 to lista wierzchołków od 1 do n+2, gdzie n jest długością kodu. W każdym kroku zdejmujemy z L2 najmniejszy element, który nie występuje w L1. Natomiast elementy z L2 zdejmujemy kolejno. Elementy usunięte w ramach danej iteracji to nowa krawędź. Ostatnią krawędź tworzą dwa elementy pozostałe w L2.

```
a) L1 = (1, 1, 1, 1, 1)
                            L2 = (1, 2, 3, 4, 5, 6, 7)
   dodajemy (1,2)
                            L2 = (1, -3, 4, 5, 6, 7)
   L1 = (-, 1, 1, 1, 1)
   dodajemy (1,3)
                           L2 = (1, -, -, 4, 5, 6, 7)
   L1 = (-, -, 1, 1, 1)
   dodajemy (1,4)
                           L2 = (1, -, -, 5, 6, 7)
   L1 = (\_, \_, \_, 1, 1)
   dodajemy (1,5)
                           L2 = (1, -, -, -, 6, 7)
   L1 = (-, -, -, -, 1)
   dodajemy (1,6)
                          L2 = (1, -, -, -, -, 7) \text{ dodajemy } (1, 7)
   L1 = (-, -, -, -, -)
                            L2 = (1, 2, 3, 4, 5, 6, 7)
b) L1 = (2, 1, 2, 1, 5)
   dodajemy (2,3)
   L1 = (-, 1, 2, 1, 5)
                            L2 = (1, 2, -4, 5, 6, 7)
   dodajemy (1,4)
   L1 = (-, -, 2, 1, 5)
                            L2 = (1, 2, -, -, 5, 6, 7)
   dodajemy (2,5)
                           L2 = (1, 2, -, -, -, 6, 7)
   L1 = (-, -, -, 1, 5)
   dodajemy (1,2)
                           L2 = (1, -, -, -, 6, 7)
   L1 = (-, -, -, -, 5)
   dodajemy (5,1)
   L1 = (-, -, -, -, -)
                          L2 = (-, -, -, -, -, 6, 7)
   dodajemy (6,7)
                            L2 = (1, 2, 3, 4, 5, 6, 7)
c) L1 = (3, 4, 5, 6, 7)
   dodajemy (3,1)
                            L2 = (-2, 3, 4, 5, 6, 7)
   L1 = (-4, 5, 6, 7)
```

```
dodajemy (4,2)

L1 = (-, -, 5, 6, 7)

dodajemy (5,3)

L1 = (-, -, -, 6, 7)

dodajemy (6,4)

L1 = (-, -, -, -, 7)

dodajemy (7,5)

L1 = (-, -, -, -, -, 2)

dodajemy (6,7)

L2 = (-, -, -, -, 5, 6, 7)

L2 = (-, -, -, -, 5, 6, 7)
```

Zadanie 1.9. Niech $\Delta(G)$ oznacza maksymalny, za $\delta(G)$ minimalny stopień wierzchołka w grafie G. Pokazać, że

$$\delta(G) \leqslant 2m/n \leqslant \Delta(G)$$

Rozwiązanie (K. Kleczkowski).

Niech G=(V,E) będzie grafem. Z lematu o uściśnięciu dłoni dostajemy $\sum_{v\in V} \deg(v) = 2|E|$. Biorąc $\delta(G) \leq \deg(v)$ dla dowolnego $v\in V$ dostajemy, że $\delta(G)\cdot |V| \leq \sum_{v\in V} \deg(v) = 2|E|$ i stąd mamy ograniczenie dolne. Analogicznie dowodzimy dla ograniczenia górnego.

Zadanie 1.10. Przyjmijmy, że wierzchołkami grafu są permutacje zbioru $\{1, 2, ..., n\}$, zaś dwie permutacje uznajemy za sąsiednie, gdy różnią się tylko dwoma sąsiednimi elementami. Pokazać, że taki graf jest spójny.

Rozwiązanie (K. Kleczkowski).

Niech G=(V,E) będzie zadanym grafem, gdzie $|V|=n!, n\in\mathbb{N}$. Każda permutacja złożona z pewną transpozycją daje inną permutację. Wiemy, że wszystkich transpozycji jest $\binom{n}{2}$. Stąd każdy wierzchołek ma stopień $\binom{n}{2}$. Z tw. Diraca mamy, że graf jest hamiltonowski. Skoro jest hamiltonowski, to jest spójny.

Zadanie 1.11. Niech T=(V,E) będzie drzewem. Niech $v_0\in V$. Załóżmy, że odległość każdego wierzchołka T od $v_0\in V$ jest nie większa niż k. Niech P_1,P_2,\ldots,P_m będą drogami w T zawierającymi co najmniej jedną krawędź. [Udowodnić], jeśli dla każdego $i\leqslant k$ każde dwa wierzchołki drogi P_i mają inną odległość od v_0 , i drogi P_1,P_2,\ldots,P_m są krawędziowo rozłączne i mają długość większą niż k/2, to m nie przekracza liczby liści T.

Rozwiązanie (D. Nowak).

Pierwszą obserwacją jest, że żadna droga nie nie zawiera v_0 bo gdyby zawierała, to założenie o różnych odległościach do v_0 by nie zachodziło. Następnie należy zauważyć, że pomiędzy v_0 a liściem znajduje się maksymalnie jedna cała droga. Jest to związane z faktem: $(\forall v \in V)(d(v,v_0) \leqslant k)$, a dla dwóch dowolnych dróg $(P_i,P_j)(d(P_i)+d(P_j)>k)$, gdzie d jest najpierw dystansem pomiędzy wierzchołkami, a następnie długością drogi. Ostatnią obserwacją jest: jeden początek drogi musi się znajdować w v_0 lub elemencie innej drogi, bo gdyby tak nie było, to ponownie nie działałoby założenie o różnych odległościach od v_0 . Łącząc wszystkie obserwacje wnioskujemy, że każda droga musi kończyć się dokładnie jednym liściem. To sprawia, że liczba liści jest ograniczona przez liczbę dróg.

2. Pewne kolokwium, które ciężko oznaczyć jakimś symbolem

Zadanie 2.1. Niech T_1 i T_2 będą drzewami etykietowanymi o rozłącznych zbiorach wierzchołków, odpowiednio V_1 i V_2 . Niech $|V_1| = m$ i $|V_2| = n$. Prowadzimy dwie wierzchołkowo rozłącznie krawędzie o jednym końcu w wierzchołku V_1 i drugim z V_2 . Ile cykli możemy otrzymać w ten sposób (wybierając wszystkie możliwe takie pary krawędzi)?

Rozwiązanie (S. Wróbel).

Należy najpierw wybrać dwa wierzchołki z jednego drzewa na $\binom{m}{2}$ sposobów, a potem analogicznie z drugiego drzewa na $\binom{n}{2}$. Ponieważ możemy poniższą czwórkę połączyć krzyżując krawędzie, bądź je nie krzyżując, dostajemy dodatkowe dwa sposoby. Stąd wszystkich cykli jest $\binom{m}{2} \cdot \binom{n}{2} \cdot 2$.

Zadanie 2.2. Podaj, uzasadniając odpowiedź, przykład grafu:

- a) który jest eulerowski i nie jest hamiltonowski,
- b) który jest hamiltonowski i nie jest eulerowski,
- c) który nie jest ani hamiltonowski, ani eulerowski,
- d) który jest eulerowski i hamiltonowski.

Rozwiązanie (K. Kleczkowski).

Przykładem grafu hamiltonowskiego, nie będącego grafem eulerowskim, jest K_{2n} , ponieważ $\deg(v) = 2n - 1 \geqslant \frac{n}{2}$

dla każdego $v \in V(K_{2n})$, oraz stopień każdego z wierzchołków jest nieparzysty. Podobnie uzasadniając, grafem hamiltonowskim, jak i eulerowskim, jest K_{2n+1} .

Grafem nie będącym ani hamiltonowskim, ani eulerowskim jest dowolny graf pusty E_n , ponieważ nie mamy możliwości utworzenia cyklu w ogólności.

Grafem eulerowskim i niehamiltonowskim jest graf:

$$G = (\{a,b,c,d,e\},\{\{a,b\},\{b,c\},\{a,c\},\{c,d\},\{c,e\},\{d,e\}\})$$

Graf jest oczywiście eulerowski dlatego, że stopnie wierzchołków są parzyste. Nie jest hamiltonowski. Załóżmy nie wprost, że jest hamiltonowski. Stąd musi zawierać w sobie cykl C=(V,E'), gdzie |E'|=4. Graf istotnie zawiera dwa cykle długości 3 i jeden cykl długości 6 (jako suma dwóch poprzednich cykli), sprzeczność.