	§ Background & Motivation
The higher Waldhausen S construction	<u> </u>
	X: enhanced triangulated category / k: field
and the symplectic geometry of surfaces	
	K(A): algebraic K-theory space
and their symmetric products	
<u> </u>	~ Waldhausen: K(A) := 2 S.(A)~
(based on jt. work with Dyckerhoff-Walde	
•	S.(M): Sconstruction of >t
& with Dyckerhoff-Lekili)	
ď	Yuz, O Sn(A): enhanced triang. cat.
Plan for today:	Ü
·	face I deg di: Sn+1(4) = Sn(4): Si
	, —
1 Background & Motivation	adjunctions: ditsit dita
0	
2 The higher Waldhausen Sconstruction	$t: S_n(A) \xrightarrow{\sim} S_n(A)$ autoequivalence
O	·
3 Higher Avslander algebras of type A	Sn (升) ≃ Fun (1+2+···+n, 升)
0 1	
4 Fukaya categories of surfaces and	
0.000	Sn(perfk) = perfAn
their symmetric products	
1 34313	
	An:= k(1 - 2 - ··· - in)

of The higher Waldhavsen S. - construction Nístor, Fiedorowicz-Loday, Getzler-Jones Herselholt-Madsen, Dycherholf, Poguntke A: parayelic category d 7, 1 m S(d) (st): d-dim S.-construction のか := をはしれかの子 Pogenthe K(A)= 2d | S(d) (A)= $\{\sigma: 2L \xrightarrow{\leq} 2L \mid \forall i \ \sigma(i+m+1) = \sigma(i) + m+1 \}$ S(2) (A) ~ {0} $\Lambda(m,n)$ Au+(1)=(+: i+) i+1) = Z 5(2) (A) = {0} Λ(m, n) is a poset w.v.t. 5(2) (A) ~ X σετ ⇔ ∀ieZ: σ(i) ετ(i) donz - aonz ~~ △([m],[n]) ← ∧(m, n) exact complex with 4 terms

I Higher Avslander algebras of type A A: Ao-category / dg category k: comm. ring (117, d7, 1) Prop[DJW] Su (SA) ~ Au-Fun (A(2), A) An: Ligher Aslander alg of type A Su (perfle) ~> perf A (d) Def [Iyama, Oppermann - Thomas] Digression k: tield D:= Hour (-, k) obj: I= {in < ··· < id } ⊆ {1,2,..., n} $A_{n}^{(d)}(I,J) = \begin{cases} k \cdot f^{2I} & I \sim J \\ 0 & \text{otherwise} \end{cases}$ • n>d ⇒ gl.dim A(d) = d · 5 := - B DAM : pert AM ~ purt AM I ~~> J 台 insjn<i2 sjz<····<idsjd . Some duality: DHow (X,Y) = How (Y, \$ X) Composition: fkjofji = fki · t G S (d) (perfix) ~ perf A (d)) Q Sa Example A" = t (1+2+ - 1 + 4) Sd:= S[-d] d-Auslander-Keiten transl. $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{1013} 1014$ $A^{(2)} = 12 \xrightarrow{13} 13 \xrightarrow{14} 012 \xrightarrow{13} 1034$ · U(An) = { Si(A(n) | i & ZLy c perf A(n) $S_{n}^{(d)}(\mathcal{A}) = A_{\infty} - Fun(U(A_{n}^{d}), \mathcal{A})$ $Ensuremath{\text{Ensuremath{}}} A_{\infty} - cat$

