Thermal Hazard Assessment Memo

TestMol

Molecule Properties

SMILES: O=[N+]([O-])c1cc(/N=N/c2cnn[nH]2)ccc1C1CCCC1

Formula: 13C, 14H, 6N, 2O

mp: 111.0 to 113.0 °C

Results

High Energy Groups: (3) ['N1C=CN=N1 c:1,3 ', 'CN=NC', 'C[N+](=O)[O-]']				
Explosive Groups: (3) ['CN=NC', 'N1C=CN=N1 c:1,3 ', 'C[N+](=O)[O-]']				
Rule of Six = 5	Oxygen Balance = -173.24787369671137			
Q _{DSC} = 570.0 J g ■ ¹	T _{onset} = 172.0	T _{init} = 222.0		
Impact Sensitivity = -0.016068180950741473	Explosive Propagation = -0.15340226058995654	T _{D24} = 109.3999999999998 °C		

O.R.E.O.S. assessment of risk by scale:

<5 g	5 to 100 g	100 to 500 g	>500 g
Medium Hazard	Medium Hazard	High Hazard	High Hazard

Interpretation

These results have been calculated using X^1 and they show Y^2 .

[1]: Org. Proc. Res. Dev., 2011, 2341-2356[2]: Org. Proc. Res. Dev., 2011, 2117-2119