Examen 1

29 de noviembre

Equipo			

Resuelve los siguientes problemas explicando con detalle tus respuestas

Considera los vértices de triángulo ABC y denota por $\mathcal A$ la recta que contiene al lado opuesto al vértice A, similarmente $\mathcal B$ y $\mathcal C$, para

$$A = (5,6), \quad B = (1,4), \quad C = (5,1).$$

- 1. Encuentra la descripción paramétrica de \mathcal{C} .
- 2. Encuentra la ecuación normal de \mathcal{B} .
- 3. Encuentra la ecuación normal del la altura por A (la perpendicular a $\mathcal A$ por A).
- 4. Calcula las distancias b = d(A, C) y $h = d(B, \mathcal{B})$, para determinar el área $\frac{bh}{2}$ y haz un dibujo del triángulo, indicando h y la recta de la pregunta anterior.
- 5. Obtén las coordenadas polares de los puntos con coordenadas cartesianas

$$P = (1,1)$$
 y $Q = (0,-2)$.

6. Dados dos vectores \mathbf{u} y \mathbf{v} en \mathbb{R}^n , el paralelogramo que definen tiene como vértices los puntos $O, \mathbf{u}, \mathbf{v}$ y $\mathbf{u} + \mathbf{v}$. Demuestra que sus diagonales, es decir, los segmentos $\overline{O(\mathbf{u} + \mathbf{v})}$ y $\overline{\mathbf{u}}$ se intersectan en su punto medio.