Mathématiques Cours de Sup

Table des matières

1	Rév	isions et compléments sur les complexes	7					
	1.1	Définitions	7					
	1.2	Forme trigonométrique et exponentielle						
	1.3	Equations du second degré à coefficients complexes	9					
	1.4	Racines carrées d'un nombre complexe	9					
	1.5	Equations du second degré à coefficients complexes	9					
	1.6	Racines $n^{\text{ème}}$	10					
2	Rév	isions et compléments sur l'intégration	11					
	2.1	Primitive d'une fonction continue	11					
		2.1.1 Définition	11					
		2.1.2 Propriétés	12					
		2.1.3 Intégrale d'une fonction continue	12					
		2.1.4 Interprétation géométrique	14					
	2.2	.2 Méthodes de calcul de primitives ou d'intégrales						
		2.2.1 Intégration par parties	14					
		2.2.2 Intégration par changement de variable	15					
3	Fon	ctions d'une variable réelle	17					
	3.1	Définitions	17					
		3.1.1 Produit cartésien	17					
		3.1.2 Graphe	17					
		3.1.3 Fonction	18					
	3.2	Notions de limites	18					
		3.2.1 Voisinage d'un réel	19					
		3.2.2 Fonction définie au voisinage d'un réel ou de l'infini	19					
		3.2.3 Limite finie d'une fonction en un point	20					
		3.2.4 Autres types de limite	21					
	3.3	Continuité	22					
		3.3.1 Théorème des valeurs intermédiaires	22					

		3.3.2	Image d'un segment par une fonction continue	23
	3.4	Dérival	bilité	23
		3.4.1	Définitions	23
		3.4.2	Opérations sur les dérivées	24
		3.4.3	Dérivabilité et continuité	25
		3.4.4	Extremum local	25
	3.5	Théorè	emes classiques	26
		3.5.1	Théorème de Rolle	26
		3.5.2	Théorème des accroissements finis	26
	3.6	Compa	raison locale de fonctions	27
		3.6.1	Définitions des notations de Landau	27
		3.6.2	Propriétés	28
	3.7	Dévelo	ppements limités	29
		3.7.1	Théorème de Taylor-Young $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	29
		3.7.2	Définition d'un développement limité	29
		3.7.3	Opérations sur les développements limités	30
		3.7.4	Applications des développements limités	32
4	Equ	ations	différentielles	33
	4.1	Equation	ons différentielles linéaires du premier ordre	33
		4.1.1	Généralités	33
		4.1.2	Résolution de (E_0)	34
		4.1.3	Résolution de (E)	34
	4.2	Equation	ons différentielles linéaires du second ordre à coefficients constants	36
		4.2.1	Généralités	36
		4.2.2	Résolution de (E_0)	37
		4.2.3	Cas où le second membre est de type polynôme ou exponentielle-polynôme	38
5	Log	ique		41
	5.1	Sur les	propriétés	41
		5.1.1	Notions de base	41
		5.1.2	Les connecteurs logiques	41
		5.1.3	Implication, réciproque, équivalence	42
		5.1.4	Les quantificateurs	44
	5.2	Raison	nements mathématiques	45
		5.2.1		45
		5.2.2	Raisonnements par contraposée	46
		5.2.3	Raisonnements par l'absurde	46

		5.2.4	Raisonnements par récurrence	47					
6	Ari	thmétic	que dans $\mathbb Z$	49					
	6.1	Divisib	silité dans $\mathbb Z$	49					
		6.1.1	Diviseurs, multiples	49					
		6.1.2	Division euclidienne dans $\mathbb Z$	50					
	6.2	PGCD	(et PPCM)	51					
		6.2.1	Définitions	51					
		6.2.2	Propriétés	52					
		6.2.3	Algorithme d'Euclide	53					
		6.2.4	Nombres premiers entre eux	55					
		6.2.5	Conséquences	57					
	6.3	6.3 Nombres premiers dans \mathbb{N}							
		6.3.1	Définition et propriétés	58					
		6.3.2	L'ensemble ${\mathcal P}$	58					
		6.3.3	Décomposition en produit de facteurs premiers	59					
	6.4	L'ense	mble $\mathbb{Z}/n\mathbb{Z}$	59					
		6.4.1	Congruence dans $\mathbb Z$	59					
		6.4.2	L'ensemble $\mathbb{Z}/n\mathbb{Z}$	60					
		6.4.3	Structure de corps de $\mathbb{Z}/n\mathbb{Z}$ quand n est premier	63					
		6.4.4	Petit théorème de Fermat	63					
7	Pol	ynômes	5	65					
	7.1	7.1 Ensemble des polynômes à une indéterminée et à coefficients dans \mathbb{K}							
		7.1.1	Généralités	65					
		7.1.2	Somme de deux polynômes	66					
		7.1.3	Multiplication externe	67					
		7.1.4	Multiplication interne	67					
		7.1.5	Ecriture définitive d'un polynôme	68					
		7.1.6	Autres opérations sur les polynômes	69					
		7.1.7	Fonction polynômiale	70					
	7.2	7.2 Arithmétique dans $\mathbb{K}[X]$							
		7.2.1	Divisibilité dans $\mathbb{K}[X]$	70					
		7.2.2	Division euclidienne dans $\mathbb{K}[X]$	71					
		7.2.3	Polynômes premiers entre eux	72					
	7.3	Racine	s d'un polynôme	74					
		7.3.1	Définition et propriétés	74					
		$7\ 3\ 2$	Formule de Taylor	74					

		7.3.3	Ordre de multiplicité d'une racine	75							
		7.3.4	Polynômes irréductibles dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$ (admis)	75							
8	Suit	uites numériques 7'									
	8.1	Défini	tions et exemples	77							
		8.1.1	Généralités	77							
		8.1.2	Définitions liées à l'ordre	77							
	8.2	Conve	ergence et divergence	79							
		8.2.1	Définitions	79							
		8.2.2	Exemples	80							
		8.2.3	Propriétés des suites convergentes ou divergentes	81							
		8.2.4	Théorème de Cesàro	82							
	8.3	Limite	e et relation d'ordre	83							
		8.3.1	Passage à la limite dans les inégalités	83							
		8.3.2	Théorème des gendarmes	84							
	8.4	Opéra	tions sur les limites de suites	85							
		8.4.1	Pour les suites convergentes	85							
		8.4.2	Pour les suites divergentes	85							
	8.5	5 Monotonie									
		8.5.1	Propriétés des suites monotones	87							
		8.5.2	Les suites adjacentes	88							
	8.6	Suites	extraites	89							
		8.6.1	Définition et exemples	89							
		8.6.2	Propriétés	90							
		8.6.3	Le théorème de Bolzano-Weierstrass	91							
	8.7	Suites	récurrentes du type $u_{n+1} = f(u_n) \dots \dots \dots \dots \dots \dots$	92							
		8.7.1	Etude générale	92							
		8.7.2	Exemples	92							
	8.8	Comp	araison de suites	94							
		8.8.1	Relations de prépondérance	94							
		8.8.2	Relation d'équivalence	96							
		8.8.3	Développements limités et développements asymptotiques	98							
9	Esp	aces v	ectoriels	100							
	9.1										
		9.1.1	Structure d'espace vectoriel	100							
		9.1.2	Sous-espaces vectoriels								
		913	Somme de sous-espaces vectoriels	104							

		9.1.4	Sous-espace vectoriel engendré par une partie	108			
			9.1.4.1 Propriétés	109			
	9.2	Famill	es libres, familles génératrices, bases d'un espace vectoriel	109			
		9.2.1	Familles libres	109			
		9.2.2	Familles génératrices	111			
		9.2.3	Les bases	112			
	9.3	Applie	cations linéaires	113			
		9.3.1	Définitions et exemples	113			
		9.3.2	Propriétés	115			
		9.3.3	Noyau et image d'une application linéaire	115			
		9.3.4	Projecteurs et symétries	117			
	9.4	Espace	es vectoriels de dimension finie	117			
		9.4.1	Définition et exemples	117			
		9.4.2	Dimension d'un espace vectoriel de dimension finie	118			
		9.4.3	CNS pour qu'une famille de vecteurs de E soit une base de E	119			
		9.4.4	Le théorème de la base incomplète et ses conséquences	120			
		9.4.5	Le théorème du rang et ses conséquences	121			
10	Mat	rices		123			
	10.1	Généra	alités	123			
		10.1.1	Définitions	123			
		10.1.2	Matrices particulières	124			
		10.1.3	Opérations sur les matrices	125			
		10.1.4	Inverse d'une matrice carrée	128			
	10.2	0.2 Matrice d'une application linéaire					
		10.2.1	Définitions et exemples	129			
		10.2.2	Interprétation matricielle de $v = f(u)$	131			
			Matrice de $g \circ f$				
		10.2.4	Matrice de la réciproque d'une application linéaire quand elle est bijective	132			
11	Frac	ctions	rationnelles	134			
	11.1	Généra	alités	134			
			Définitions et règles de calculs				
			Représentant irréductible d'une fraction rationnelle				
			Degré d'une fraction rationnelle				
			Racines et pôles d'une fraction rationnelle				
			Un outil: la division suivant les puissances croissantes				
	11.2		entière d'une fraction rationnelle				

	11.2.1	Définitio	n	 		 138
	11.2.2	Méthode	de recherche de la partie entière	 	 	 138
11.3	Décom	position of	en éléments simples d'une fractions rationnelle	 	 	 139
	11.3.1	Théorèm	ne général	 	 	 139
	11.3.2	Méthode	s pour trouver les coefficients	 	 	 141
		11.3.2.1	Cas des pôles simples \dots	 	 	 141
		11.3.2.2	Cas des pôles multiples	 	 	 142
		11.3.2.3	Cas des éléments de seconde espèce	 	 	 146

Chapitre 1

Révisions et compléments sur les complexes

1.1 Définitions

Définition 1

On appelle nombre complexe tout nombre de la forme a+ib où $(a,b) \in \mathbb{R}^2$ et $i^2=-1$. L'ensemble des nombres complexes est noté \mathbb{C} .

Si $z = a + ib \in \mathbb{C}$, a est appelé partie réelle de z (notée Re(z)) et b partie imaginaire de z (notée Im(z)).

Remarques

1. Les règles sur les opérations sont identiques à celle de \mathbb{R} avec la condition supplémentaire $i^2 = -1$.

Par exemple si $z_1 = 1 + 2i$ et $z_2 = 4 - 3i$ alors $z_1 + z_2 = 5 - i$ et $z_1 z_2 = 10 + 5i$.

2. $z_1 = z_2 \iff \operatorname{Re}(z_1) = \operatorname{Re}(z_2)$ et $\operatorname{Re}(z_1) = \operatorname{Re}(z_2)$.

En particulier $a + ib = 0 \iff a = 0$ et b = 0.

Définition 2

Soit $z = a + ib \in \mathbb{C}$. On appelle conjugué de z le nombre complexe noté \overline{z} défini par $\overline{z} = a - ib$.

Proposition 1

Soit $(z, z') \in \mathbb{C}^2$. Alors

1.
$$Re(z) = \frac{z + \overline{z}}{2}$$
 et $Im(z) = \frac{z + \overline{z}}{2i}$

2.
$$z \in \mathbb{R} \iff z = \overline{z} \text{ et } z \in i\mathbb{R} \iff \overline{z} = -z$$

Séries numériques Info-Sup

3.
$$\overline{z+z'} = \overline{z} + \overline{z'}$$

4.
$$\overline{zz'} = \overline{z}\overline{z'}$$

5. Si
$$z \neq 0$$
, le conjugué de $\frac{z'}{z}$ est $\frac{\overline{z'}}{\overline{z}}$

1.2 Forme trigonométrique et exponentielle

Soit $(O, \overrightarrow{u}, \overrightarrow{v})$ orthonormée.

A tout complexe z = a + ib, on associe le point M de coordonnées (a,b) dans $(O, \overrightarrow{u}, \overrightarrow{v})$.

FAIRE DESSIN

OM s'appelle le module de z et est noté |z|.

Une mesure de l'angle $\theta = (\overrightarrow{u}, \overrightarrow{OM})$ s'appelle un argument de z noté $\operatorname{Arg}(z)$. Il est défini à 2π près.

On écrit alors $Arg(z) \equiv \theta [2\pi]$.

Proposition 2

Soit $(z, z') \in \mathbb{C}^2$. Alors

$$1. |z|^2 = z\overline{z}$$

2.
$$|z| = 0 \iff z = 0$$

3.
$$|Re(z)| \leq |z|$$
 et $|Im(z)| \leq |z|$

4.
$$|zz'| = |z||z'|$$

5.
$$si \ z' \neq 0, \ \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

Notation (on pourra éventuellement expliquer voire démontrer cette égalité)

Soit $\theta \in \mathbb{R}$. On note $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.

On a en particulier $(e^{i\theta})^n = e^{in\theta}$ de sorte que $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$.

De même
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Proposition 3

Tout nombre complexe z peut s'écrire

$$z = |z| (\cos(\theta) + i\sin(\theta))$$

Séries numériques Info-Sup

Remarque

Si
$$z' \neq 0$$
, $\operatorname{Arg}\left(\frac{z}{z'}\right) = \operatorname{Arg}(z) - \operatorname{Arg}(z')$.

FAIRE DES EXEMPLES DE TRANSFORMATION DE LA FORME ALGEBRIQUE A LA FORME TRIGONOMETRIQUE par exemple avec $z=-1-i,\,z=-1+i\sqrt{3},\,z=\frac{\sqrt{3}+i}{1+i}$

1.3 Equations du second degré à coefficients complexes

1.4 Racines carrées d'un nombre complexe

On cherche une racine carrée de $u+iv\in\mathbb{C}.$ On cherche donc z=a+ib tel que $z^2=u+iv$ soit $\begin{cases} a^2-b^2=u\\ a^2+b^2=\sqrt{u^2+v^2}\\ 2ab=v \end{cases}$

La troisième équation permet de savoir si a et b sont de même signe ou de signe contraire et les deux premières équations permettent de déterminer a et b.

1.5 Equations du second degré à coefficients complexes

Soit $az^2 + bz + c = 0$ où $(a, b, c) \in \mathbb{C}^3$ avec $a \neq 0$.

Soit $\Delta = b^2 - 4ac$ et δ une racine complexe de Δ . Alors les racines de l'équation sont $\frac{-b \pm \delta}{2a}$

Exemple

Résolvons dans \mathbb{C} l'équation $z^2 + z + 1 - i = 0$.

 $\Delta=1-4(1-i)=-3+4i.$ Déterminons une racine de $\Delta.$ On cherche z=a+ib tel que $z^2=-3+4i.$

Ainsi
$$\begin{cases} a^2 - b^2 = -3 \\ a^2 + b^2 = \sqrt{(-3)^2 + 4^2} \text{ soit } \begin{cases} a^2 - b^2 = -3 \\ a^2 + b^2 = 5 \end{cases} \\ ab > 0 \end{cases}$$

Donc z = 1 + 2i est une racine carrée de -3 + 4i.

Ainsi
$$z = \frac{1}{2}(-1 + 1 + 2i)$$
 ou $z = \frac{1}{2}(-1 - 1 - 2i)$ soit $z = i$ ou $z = -1 - i$.

Séries numériques Info-Sup

1.6 Racines $n^{\text{ème}}$

On cherche les n racines $n^{\text{\`e}me}$ de $re^{i\phi}$.

On cherche donc $z=\rho e^{i\theta}$ tel que $z^n=re^{i\phi}$ soit $\rho^n=r$ et $n\theta\equiv\phi[2\pi].$

Ainsi les n racines $n^{\text{ème}}$ de $re^{i\phi}$ sont les $\sqrt[n]{r}e^{i(\phi/n+2k\pi/n)}$ pour $k \in \{0,1,2,\cdots,n-1\}$.

FAIRE UN EXEMPLE sur les racines $n^{\text{ème}}$ de i.

Chapitre 2

Révisions et compléments sur l'intégration

2.1 Primitive d'une fonction continue

Dans toute la suite, I désigne un intervalle de \mathbb{R} et toutes les fonctions sont à valeurs réelles.

2.1.1 Définition

Définition 3

Soit f une fonction continue sur I. On appelle primitive de f sur I toute fonction F de I vers \mathbb{R} , dérivable sur I telle que F' = f. On écrit alors pour tout $t \in I$,

$$F(t) = \int f(t) dt$$

Observation

Ne pas confondre la notion de primitive et la notion d'intégrale (vue plus loin). Remarquons qu'il n'y a pas de borne dans la notation de la définition ci-dessus.

Exemple

Soit
$$f: \left\{ \begin{array}{l} \mathbb{R}_*^+ \to \mathbb{R} \\ t \longmapsto \frac{1}{t} \end{array} \right.$$

Alors $F: t \mapsto \ln(t)$ est une primitive de f sur \mathbb{R}^+_* car F' = f c'est-à-dire pour tout $t \in \mathbb{R}^+_*$, F'(t) = f(t). On peut aussi écrire que pour tout $t \in \mathbb{R}^+_*$,

$$\ln(t) = \int \frac{1}{t} \, \mathrm{d}t$$

2.1.2 Propriétés

Proposition 4

Soient f une fonction continue sur I et F une primitive de f sur I. Alors toute primitive de f sur I est de la forme $F + \lambda$ où $\lambda \in \mathbb{R}$.

Exemple

En reprenant l'exemple précédent, une primitive de f sur \mathbb{R}^+_* est $t \mapsto \ln(t)$ et les primitives de f sur \mathbb{R}^+_* sont les fonctions $t \mapsto \ln(t) + \lambda$ où $\lambda \in \mathbb{R}$.

Primitives classiques

Rappelons les primitives (à une constante près) de fonctions élémentaires :

1. Pour tout
$$\alpha \in \mathbb{R} - \{-1\}$$
, $\int t^{\alpha} dt = \frac{1}{\alpha + 1} t^{\alpha + 1}$

$$\operatorname{et} \int t^{-1} \, \mathrm{d}t = \ln(t)$$

$$2. \int e^t \, \mathrm{d}t = e^t$$

3.
$$\int \sin(t) \, \mathrm{d}t = -\cos(t)$$

4.
$$\int \cos(t) \, \mathrm{d}t = \sin(t)$$

5.
$$\int \frac{1}{1+t^2} dt = \arctan(t) \quad \text{où } t \mapsto \arctan(t) \text{ est la fonction réciproque de la fonction}$$
$$t \mapsto \tan(t)$$

N.B.: cette dernière assertion est à démontrer. Il faut donc rappeler les notions d'injectivité, de surjectivité, de fonction réciproque et démontrer la formule de la dérivée d'une fonction réciproque en prenant précisément comme exemple la fonction arctan.

2.1.3 Intégrale d'une fonction continue

Définition 4

Soient f une fonction continue sur I et F une primitive de f sur I. On appelle intégrale de f entre a et b le nombre réel noté $\int_a^b f(t) dt$ défini par

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Observations

- 1. On note parfois F(b) F(a) sous la forme $[F(t)]_a^b$.
- 2. Rappelons également que la variable d'intégration est « muette » c'est-à-dire que

$$\int_a^b f(t) dt = \int_a^b f(x) dx = \int_a^b f(u) du$$

Exemple

Calculons $\int_0^1 t^2 dt$. Une primitive de $t \mapsto t^2$ est $t \mapsto \frac{t^3}{3}$. Ainsi

$$\int_0^1 t^2 dt = \left[\frac{t^3}{3}\right]_0^1$$
$$= \frac{1}{3}$$

Propriétés 1

Soient f et g continues sur [a,b] avec a < b et $\lambda \in \mathbb{R}$. Alors

1.
$$\int_a^b (f + \lambda g)(t) dt = \int_a^b f(t) dt + \lambda \int_a^b g(t) dt$$
 (linéarité de l'intégrale).

2. Pour tout
$$c \in [a, b]$$
, $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$ (relation de Chasles).

3.
$$f \geqslant 0 \Rightarrow \int_a^b f(t) dt \geqslant 0$$
 (positivité de l'intégrale)

4.
$$f \leqslant g \Rightarrow \int_{a}^{b} f(t) dt \leqslant \int_{a}^{b} g(t) dt$$

5.
$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt$$

6. Soit $a \in \mathbb{R}$.

Si f est paire,
$$\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$$

Si f est impaire,
$$\int_{-a}^{a} f(t) dt = 0$$

N.B. : ces deux dernières assertions sont également à démontrer via l'intégration par changement de variable.

2.1.4 Interprétation géométrique

Définition 5

Dans le plan $(0, \vec{i}, \vec{j})$, on appelle unité d'aire, l'aire du rectangle défini par \vec{i} et \vec{j} .

Proposition 5

Soit f continue et positive sur [a,b] avec $a \neq b$. Alors $\int_a^b f(t) dt$ est l'aire, en unité d'aire, de la partie du plan délimité par l'axe 0x, le graphe de f et les droites d'équations x=a et x=b.

2.2 Méthodes de calcul de primitives ou d'intégrales

2.2.1 Intégration par parties

Proposition 6 (Intégration par parties)

Soient f et g deux fonctions de classes C^1 sur [a,b] (c'est-à-dire f et g dérivables sur I et leur dérivée est continue sur [a,b]). Alors

$$\int_{a}^{b} f(t)g'(t) dt = \left[f(t)g(t) \right]_{a}^{b} - \int_{a}^{b} f'(t)g(t) dt$$

Observation

L'hypothèse « de classe C^1 » n'est faite que pour dire que f' et g' sont continues sur [a,b] de sorte qu'il est possible de considérer l'intégrale de a à b de f'g et de fg'.

Exemple

Déterminons
$$I = \int_0^1 te^t dt$$
. Posons $f(t) = t \Rightarrow f'(t) = 1$ et $g'(t) = e^t \Rightarrow g(t) = e^t$. On a donc

$$I = \int_{0}^{1} f(t)g'(t) dt$$

$$= [f(t)g(t)]_{0}^{1} - \int_{0}^{1} f'(t)g(t) dt$$

$$= [te^{t}]_{0}^{1} - \int_{0}^{1} e^{t} dt$$

$$= e - [e^{t}]_{0}^{1}$$

$$= e - (e - 1)$$

$$= 1$$

2.2.2 Intégration par changement de variable

La proposition suivante n'est pas à retenir « par cœur » mais à savoir utiliser.

Proposition 7

Soient I et J deux intervalles de \mathbb{R} , $(\alpha, \beta) \in J^2$, f continue sur I et φ de classe C^1 de J vers I. Alors

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$$

Remarque

Lorsque vous devrez effectuer une intégration par changement de variable, le changement de variable vous sera toujours précisé. Trois étapes sont nécessaires pour effectuer un changement de variable :

- Déterminer le nouveau « dt » si t est la nouvelle variable.
- Changer les bornes d'intégration.
- Expliciter la fonction de l'ancienne variable par une fonction de la nouvelle variable.

Exemple

Calculons $I = \int_{a}^{3} \frac{1}{x(\ln(x))^3} dx$ en effectuant le changement de variable $t = \ln(x)$.

On a donc $x=e^t$. La dérivée de x par rapport à t est e^t ce qu'on écrit sous la forme « physicienne »

$$\frac{\mathrm{d}x}{\mathrm{d}t} = e^t. \text{ D'où } \mathrm{d}x = e^t \, \mathrm{d}t.$$

Changeons à présent les bornes : lorsque x vaut e, alors $t = \ln(x)$ vaut $\ln(e)$ c'est-à-dire 1. Lorsque x vaut 3, $t = \ln(x)$ vaut $\ln(3)$.

Enfin
$$\frac{1}{x(\ln(x))^3} = \frac{1}{e^t t^3}$$

Ainsi $I = \int_1^{\ln 3} \frac{1}{e^t t^3} e^t dt$
 $= \int_1^{\ln 3} \frac{1}{t^3} dt$
 $= \left[-\frac{1}{2t^2} \right]_1^{\ln 3}$
 $= -\frac{1}{2(\ln 3)^2} + \frac{1}{2}$

Chapitre 3

Fonctions d'une variable réelle

3.1 Définitions

Jusqu'à aujourd'hui, vous avez beaucoup travaillé avec les fonctions de $\mathbb R$ dans $\mathbb R$. Mais connaissezvous la définition d'une fonction?

3.1.1 Produit cartésien

Définition 6

Soient E et F deux ensembles. On appelle produit cartésien de E par F noté $E \times F$ l'ensemble des couples (x,y) avec $x \in E$ et $y \in F$ c'est-à-dire

$$E \times F = \{(x, y); x \in E, y \in F\}$$

Exemple

 $u \in \mathbb{N}^2 \times \mathbb{R}$ signifie que u = ((n, p), x) avec $(n, p) \in \mathbb{N}^2$ et $x \in \mathbb{R}$ c'est-à-dire $n \in \mathbb{N}, p \in \mathbb{N}$ et $x \in \mathbb{R}$.

3.1.2 Graphe

Définition 7

Soient E et F deux ensembles. On appelle graphe de E vers F toute partie de $E \times F$.

Exemple

Si $E = F = \mathbb{R}$, un graphe de E vers F est une partie quelconque du plan par exemple un cercle, un triangle ou encore une droite.

3.1.3 Fonction

Dans tout le cours sur les fonctions, nous ne ferons aucune distinction entre les mots «fonctions» et «applications».

Définition 8

On appelle fonction (définie) de E vers F, tout triplet $f = (E, F, \Gamma)$ où Γ est un graphe de E vers F tel que pour tout $x \in E$, il existe un unique $y \in F$ avec $(x, y) \in \Gamma$.

Remarques

- 1. Si f est une fonction de E vers F, E s'appelle ensemble de départ (ou ensemble de définition ou encore source) de f, F s'appelle ensemble d'arrivée (ou but) de f.
 - Une fonction f de E vers F sera notée de façon habituelle sous la forme $f \in F^E$ ou $f: E \to F$

ou encore
$$f: \left\{ egin{array}{ll} E o F \\ & & \text{et le graphe Γ de f sera alors l'ensemble des $(x,f(x))$ pour x} \\ & & & \\ x \mapsto f(x) \end{array} \right.$$

parcourant E c'est-à-dire que le graphe de f modélise ce que vous appeliez «courbe représentative» de f

- 2. Si f est une fonction (définie) de E vers F, le domaine de définition de f, \mathcal{D}_f , est égal à E. C'est la raison pour laquelle E s'appelle également ensemble de définition de f.
- 3. En particulier f fonction de \mathbb{R} dans \mathbb{R} signifie que toute droite verticale (c'est-à-dire parallèle à l'axe des ordonnées) coupe le graphe de f en exactement un point.
- 4. Si f est une fonction (définie) de E vers F, le domaine de définition de f, \mathcal{D}_f , est égal à E. C'est la raison pour laquelle E s'appelle également ensemble de définition de f.
- 5. En particulier f fonction de \mathbb{R} dans \mathbb{R} signifie que toute droite verticale (c'est-à-dire parallèle à l'axe des ordonnées) coupe le graphe de f en exactement un point.

Dorénavant, toute fonction $f = (E, F, \Gamma)$ sera notée $f \in F^E$ ou $f : E \to F$. Les deux notations seront employées pour vous y habituer.

3.2 Notions de limites

Dans tout ce chapitre, toutes les fonctions seront définies sur une partie I de \mathbb{R} c'est-à-dire $f:I\subset\mathbb{R}\to\mathbb{R}$. Dire que f est définie en $a\in\mathbb{R}$ signifie que $a\in I$.

Fonctions de $\mathbb R$ dans $\mathbb R$ Info-Sup

3.2.1 Voisinage d'un réel

Définition 9

Soit $a \in \mathbb{R}$. On appelle voisinage de a tout intervalle de la forme |a-h,a+h| où h>0.

Remarque

Ainsi, un voisinage de $a \in \mathbb{R}$ est simplement un intervalle ouvert centré en a.

3.2.2 Fonction définie au voisinage d'un réel ou de l'infini

Définition 10

On dit que f est définie au voisinage de $a \in \mathbb{R}$ si pour tout h > 0,]a - h, a + h[rencontre I c'est-à-dire si

$$\forall h > 0, \]a - h, a + h[\cap I \neq \emptyset]$$

On dit que f est définie au voisinage de $+\infty$ (resp. $-\infty$) si pour tout $A \in \mathbb{R}$, $]A, +\infty[$ rencontre I (resp. $]-\infty, A[$ rencontre I) c'est-à-dire si

$$\forall A \in \mathbb{R}, \ |A, +\infty[\cap I \neq \emptyset]$$

$$(resp. \ \forall A \in \mathbb{R}, \] - \infty, A[\cap I \neq \emptyset)$$

Exemples

1. $f: \left\{ \begin{array}{l} \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \sqrt{x} \end{array} \right.$ est définie au voisinage de 0. En effet tout intervalle ouvert (même très

petit) centré en 0 rencontre \mathbb{R}^+ plus précisément pour tout h > 0, on a

$$]-h,h[\cap \mathbb{R}^+ = [0,h[$$

donc

$$]-h,h[\cap \mathbb{R}^+\neq \emptyset$$

2.
$$g: \begin{cases} [1, +\infty[\to \mathbb{R} \\ x \mapsto \sqrt{x-1} \end{cases}$$
 n'est pas définie au voisinage de 0 car par exemple

$$\left] -\frac{1}{2}, \frac{1}{2} \right[\cap [1, +\infty[=\emptyset]]$$

3. $h: \begin{cases} \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \sqrt{x} \end{cases}$ est définie au voisinage de $+\infty$ car tout intervalle $]A, +\infty[$ rencontre \mathbb{R}^+ .

En effet pour tout $A \in \mathbb{R}$,

$$]A, +\infty[\cap \mathbb{R}^+ = \begin{cases}]A, +\infty[\text{ si } A \geqslant 0 \\ \mathbb{R}^+ \text{ si } A < 0 \end{cases}$$

donc on a pour tout $A \in \mathbb{R}$

$$A, +\infty \cap \mathbb{R}^+ \neq \emptyset$$

3.2.3 Limite finie d'une fonction en un point

Définition 11

f admet une limite $l \in \mathbb{R}$ en $a \in \mathbb{R}$ si f est définie au voisinage de a et

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - a| < \eta \Rightarrow |f(x) - l| < \varepsilon$$

Remarques

- 1. Dire que f admet une limite l en $a \in \mathbb{R}$ signifie simplement que l'écart entre f(x) et l est aussi petit que l'on veut pourvu que x soit suffisamment proche de a.
- 2. Si f admet une limite $l \in \mathbb{R}$ en $a \in \mathbb{R}$, alors l est unique et on note

$$l = \lim_{x \to a} f(x)$$

Exemple

Soit f: $\begin{cases} \mathbb{R}\to\mathbb{R} \\ x\mapsto x^2 \end{cases}$. Montrons que $\lim_{x\to 0}x^2=0$. Ce résultat est naturel mais il s'agit ici de le

démontrer en utilisant les quantificateurs.

Soit $\varepsilon>0$. On cherche $\eta>0$ tel que pour tout $x\in\mathbb{R},\,|x-0|<\eta\Rightarrow|x^2-0|<\varepsilon$ c'est-à-dire

$$|x| < \eta \Rightarrow x^2 < \varepsilon$$

Il suffit de choisir $\eta = \sqrt{\varepsilon}$. En effet

$$|x| < \sqrt{\varepsilon} \Rightarrow x^2 < \varepsilon$$

Remarques

- 1. Si f est définie en $a \in \mathbb{R}$ (et non définie seulement au voisinage de a) et f admet une limite $l \in \mathbb{R}$ en a alors l = f(a).
- 2. Par contre, la définition de la limite a tout à fait un sens même si f n'est pas définie en a mais seulement définie au voisinage de a comme l'illustre l'exemple suivant.

Soit
$$f: \left\{ \begin{array}{l} \mathbb{R} - \{1\} \to \mathbb{R} \\ x \mapsto \frac{x^3 - 1}{x - 1} \end{array} \right.$$

Alors f est définie au voisinage de 1 (mais pas définie en 1). La limite de f en 1 est néanmoins calculable. On a

$$\lim_{x \to 1} f(x) = 3$$

En effet

$$f(x) = \frac{x^3 - 1}{x - 1} = \frac{(x - 1)(x^2 + x + 1)}{x - 1} = x^2 + x + 1$$

Ainsi

$$\lim_{x \to 1} f(x) = 1 + 1 + 1 = 3$$

3.2.4 Autres types de limite

Définition 12

1. On dit que f admet la limite $l \in \mathbb{R}$ en $+\infty$ (et on note $\lim_{x \to +\infty} f(x) = l$) si f est définie au voisinage $de +\infty$ et

$$\forall \varepsilon > 0, \exists A \in \mathbb{R}, \forall x \in I, x > A \Rightarrow |f(x) - l| < \varepsilon$$

2. On dit que f tend $vers + \infty$ en $a \in \mathbb{R}$ (et on note $f(x) \xrightarrow[x \to a]{} + \infty$) si f est définie au voisinage de a et

$$\forall A \in \mathbb{R}, \exists \eta > 0, \forall x \in I, |x - a| < \eta \Rightarrow f(x) > A$$

3. On dit que f tend $vers + \infty$ en $+\infty$ (et on note $f(x) \xrightarrow[x \to +\infty]{} +\infty$) si f est définie au voisinage $de + \infty$ et

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \in I, x > B \Rightarrow f(x) > A$$

Exemple

Montrons que $x^3 - 1 \xrightarrow[x \to +\infty]{} +\infty$.

Soit $A \in \mathbb{R}$. On cherche $B \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}$, $x > B \Rightarrow x^3 - 1 > A$. Comme $x^3 - 1 > A \Leftrightarrow x > \sqrt[3]{A+1}$, il suffit de choisir $B = \sqrt[3]{A+1}$. On aura ainsi pour tout $x \in \mathbb{R}$,

$$x > B = \sqrt[3]{A+1} \Rightarrow x^3 - 1 > A$$

3.3 Continuité

Jusqu'à aujourd'hui votre définition de la continuité d'une fonction f était peut-être du style : «f est continue si son graphe peut être tracé sans lever le crayon». Un des buts de ce paragraphe est de définir la continuité d'une fonction f sur un intervalle à l'aide de quantificateurs.

Définition 13

On dit que f est continue en $a \in I$ si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

On dit que f est continue sur I si f est continue en tout point de I.

Remarque

On constate que f continue sur I signifie simplement que pour tout $a \in I$, $\lim_{x \to a} f(x) = f(a)$.

3.3.1 Théorème des valeurs intermédiaires

Un des théorèmes clés sur la continuité est le théorème des valeurs intermédiaires.

Théorème 1 (des valeurs intermédiaires)

Soient f continue sur un intervalle I de \mathbb{R} et $(a,b) \in I^2$. Si f(a)f(b) < 0 alors il existe (au moins un) $c \in]a,b[$ tel que f(c) = 0.

Remarque

L'hypothèse f(a)f(b) < 0 signifie simplement que f(a) et f(b) sont de signes contraires.

Exemple

Montrons que l'équation $x^2\cos(x) + x\sin(x) + 1 = 0$ admet au moins une solution $x \in \mathbb{R}$. Soit $f: x \mapsto x^2\cos(x) + x\sin(x) + 1$. Alors f est continue sur \mathbb{R} , f(0) = 1 > 0 et $f(\pi) = 1 - \pi^2 < 0$. D'après le théorème des valeurs intermédiaires, il existe au moins un $x \in]0, \pi[$ tel que f(x) = 0 c'est-à-dire tel que $x^2\cos(x) + x\sin(x) + 1 = 0$. Fonctions de $\mathbb R$ dans $\mathbb R$ Info-Sup

3.3.2 Image d'un segment par une fonction continue

Soient $f:I\subset\mathbb{R}\to\mathbb{R}$ et $A\subset I$. On rappelle que l'image de f par A notée f(A) est définie par

$$f(A) = \{f(x); x \in A\}$$

Ainsi $y \in f(A) \Leftrightarrow \text{il existe } x \in A \text{ tel que } y = f(x).$

Exemple: prenons $f: x \mapsto x^2$. Alors f([-1,2]) = [0,4]

Théorème 2

L'image d'un segment [a,b] par une fonction continue est un segment.

Remarque

L'hypothèse «segment» est fondamentale comme l'illustre le contre-exemple suivant :

$$f: \left\{ \begin{array}{l} [0,1] \to \mathbb{R} \\ x \mapsto \frac{1}{x} \end{array} \right. \text{ Alors } f(]0,1]) = [1,+\infty[\text{. Mais }]0,1] \text{ n'est pas un segment !}$$

Corollaire 1

Soit f une fonction continue sur un segment [a, b]. Alors

$$f([a,b]) = [m,M]$$

où m (resp. M) est le minimum (resp. maximum) de f sur [a,b].

Remarque

En particulier, on a pour tout $x \in [a, b]$, $m \le f(x) \le M$. On dit que f est bornée et atteint ses bornes.

3.4 Dérivabilité

Toutes les fonctions de ce chapitre sont de la forme $f:I\to\mathbb{R}$ où I est un intervalle de \mathbb{R} contenant au moins deux points.

3.4.1 Définitions

Définition 14

On dit que f est dérivable en a si le taux d'accroissement $\tau_a: x \mapsto \frac{f(x) - f(a)}{x - a}$ possède une

limite finie en a. Si c'est le cas, on note cette limite f'(a) (appelé nombre dérivé de f en a)

c'est-à-dire

$$f'(a) = \lim_{x \to a} \tau_a(x)$$

Fonctions de $\mathbb R$ dans $\mathbb R$ Info-Sup

Si f est dérivable en tout point de I, on dit que f est dérivable sur I et la fonction $x \mapsto f'(x)$ est appelé dérivée de f.

Remarques

1. En posant h = x - a, f dérivable en a équivaut à $h \mapsto \frac{f(a+h) - f(a)}{h}$ possède une limite finie en 0. Si c'est le cas

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- 2. f dérivable en a ssi le graphe de f admet une tangente non verticale en A(a, f(a)). Dans ce cas, f'(a) représente le coefficient directeur de la tangente du graphe de f en a.
- 3. Si $\tau_a(x) \xrightarrow[x \to a]{} +\infty$ ou $\tau_a(x) \xrightarrow[x \to a]{} -\infty$, alors le graphe de f admet une tangente verticale en A(a, f(a)).

3.4.2 Opérations sur les dérivées

On rappelle les résultats suivants étudiés dans le secondaire :

Proposition 8

1. Soient f, g deux fonctions dérivables sur I et $\lambda \in \mathbb{R}$. Alors

a.
$$(f+g)' = f' + g'$$

b.
$$(\lambda f)' = \lambda f'$$

$$c. (fg)' = f'g + fg'$$

d. Si g ne s'annule pas sur
$$I$$
, $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$

2. Soient $f:I\to J\subset\mathbb{R}$ et $g:J\to\mathbb{R}$ dérivables respectivement sur I et J. Alors

$$(g \circ f)' = (g' \circ f).f'$$

Remarque

Le 2. de la proposition ci-dessus signifie que pour tout $x \in I$,

$$(g \circ f)'(x) = (g' \circ f)(x) \times f'(x)$$

soit encore

$$(g \circ f)'(x) = g'(f(x)) \times f'(x)$$

Exemple

Soit $f: x \mapsto \sin(\ln(x^2+1))$. Alors pour tout $x \in \mathbb{R}$

$$f'(x) = \cos(\ln(x^2 + 1)) \times \frac{1}{x^2 + 1} \times 2x$$

3.4.3 Dérivabilité et continuité

Y a-t-il un lien entre dérivabilité et continuité? Cette section répond à la question.

Proposition 9

Soit f dérivable en a. Alors f est continue en a.

Remarque

La réciproque est fausse comme l'illustre le contre-exemple suivant. Considérons la fonction $f: x \mapsto \sqrt{x}$. Alors f est continue sur \mathbb{R}^+ donc en particulier en 0 mais n'est pas dérivable en 0. En effet

$$\frac{f(x) - f(0)}{x - 0} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}} \xrightarrow[x \to 0]{} + \infty$$

3.4.4 Extremum local

Définition 15

On dit que f admet un maximum (resp. minimum) local en a si $f(x) \leq f(a)$ (resp. $f(x) \geq f(a)$) pourvu que x soit suffisamment proche de a c'est-à-dire si

$$\exists \eta > 0, \forall x \in I, |x - a| < \eta \Rightarrow f(x) \leq f(a) \quad (resp. f(x) \geq f(a))$$

On dit que f admet un extremum local en a si f admet un mimimum local ou un maximum local en a.

Proposition 10

On suppose que a n'est pas une borne de l'intervalle I, que f est dérivable en a et que f présente un extremum local en a. Alors f'(a) = 0.

Remarques

Cette proposition est à manipuler avec le plus grand soin comme l'illustrent les remarques suivantes :

1. Si a est une borne de l'intervalle I alors la proposition est fausse comme l'illustre le contreexemple suivant :

Soit
$$f: \left\{ egin{array}{ll} [0,1] \to \mathbb{R} \\ x \mapsto x \end{array}
ight.$$
 . Alors f est dérivable sur $[0,1],$ en particulier en 0 et 1, f admet

un minimum local en 0 et un maximum local en 1 et pourtant $(f)'(0) \neq 0$ et $(f)'(1) \neq 0$ car pour tout $x \in [0,1], f'(x) = 1$.

- 2. Une fonction peut avoir un extremum en a sans être dérivable en a. Par exemple, la fonction $x \mapsto \sqrt{x}$ admet un minimum en 0 mais n'est pas dérivable en 0 (cf remarque de la section précédente).
- 3. La réciproque de la proposition est fausse comme l'illustre le contre-exemple suivant :

Soit
$$f: \begin{cases} [-2,2] \to \mathbb{R} \\ x \mapsto x^3 \end{cases}$$
. Alors f n'admet pas d'extremum et pourtant $f'(0) = 0$ car pour tout $x \in [-2,2], \ f'(x) = 3x^2.$

3.5 Théorèmes classiques

3.5.1 Théorème de Rolle

Théorème 3 (Rolle)

Soient a, b deux réels distincts, f continue sur [a,b], dérivable sur [a,b] telle que f(a)=f(b). Alors il existe (au moins un) $c \in]a,b[$ tel que f'(c)=0.

Exemple

Soit $f: I \to \mathbb{R}$ deux fois dérivable (c'est-à-dire f' et f'' existent) admettant trois zéros x_0, x_1 et x_2 (c'est-à-dire $f(x_0) = f(x_1) = f(x_2) = 0$). Alors f'' admet au moins un zéro. En effet, il suffit d'appliquer trois fois le théorème de Rolle de la manière suivante :

f est continue, dérivable sur I et $f(x_0) = f(x_1)$ (= 0) donc en utilisant le théorème de Rolle, il existe $y_1 \in]x_0, x_1[$ tel que $f'(y_1) = 0$. De même $f(x_1) = f(x_2)$ donc il existe à nouveau $y_2 \in]x_1, x_2[$ tel que $f'(y_2) = 0$. A présent nous avons une fonction f' continue et dérivable sur I tel que $f'(y_1) = f'(y_2)$ (= 0). En appliquant une dernière fois le théorème de Rolle, on en conclut qu'il existe $z \in]y_1, y_2[$ tel que (f')'(z) = 0 c'est-à-dire tel que f''(z) = 0.

3.5.2 Théorème des accroissements finis

Que se passe-t-il lorque l'on supprime f(a) = f(b) dans les hypothèses du théorème de Rolle? Le théorème qui suit donne la réponse.

Théorème 4 (accroissements finis)

Soient a, b deux réels distincts, f continue sur [a,b] et dérivable sur [a,b]. Alors il existe (au moins un) $c \in]a,b[$ tel que f(b)-f(a)=(b-a)f'(c).

Remarque

Le théorème précédent s'utilise souvent avec a = 0 et b = x comme l'illustre l'exemple qui suit.

Exemple

On souhaite montrer que pour tout $x \in \mathbb{R}_{*}^{+}$, $\frac{x}{x+1} < \ln(1+x) < x$.

Posons $f: x \mapsto \ln(1+x)$. Soit x > 0. Alors f est continue et dérivable sur [0,x].

Donc en appliquant le théorème des accroissements finis sur [0, x], il existe $c \in]0, x[$ tel que

$$f(x) - f(0) = (x - 0)f'(c)$$

Or f(0) = 0 et pour tout $x \in \mathbb{R}_*^+$, $f'(x) = \frac{1}{1+x}$. Ainsi il existe $c \in]0, x[$ tel que

$$\ln(1+x) = x \cdot \frac{1}{1+c} = \frac{x}{1+c}$$

Or

$$\begin{array}{rcl} 0 < c < x & \Rightarrow & 1 < 1 + c < 1 + x \\ \\ \Rightarrow & \frac{1}{1+x} < \frac{1}{1+c} < 1 \\ \\ \Rightarrow & \frac{x}{1+x} < \frac{x}{1+c} < x \end{array}$$

Ainsi pour tout x > 0,

$$\frac{x}{x+1} < \ln(1+x) < x$$

3.6 Comparaison locale de fonctions

Trois notions existent pour comparer localement une fonction c'est-à-dire pour comparer deux fonctions au voisinage d'un point : la domination, la négligeabilité et l'équivalence.

3.6.1 Définitions des notations de Landau

Soit a un réel ou $+\infty$ ou $-\infty$ (ce qu'on note parfois $-\infty \leqslant a \leqslant +\infty$).

Définition 16 (Notations de Landau)

Fonctions de $\mathbb R$ dans $\mathbb R$ Info-Sup

1. On dit que f est dominée par g au voisinage de a (et on écrit : au voisinage de a, f = O(g)) si au voisinage de a, f = g.h avec h bornée au voisinage de a.

- 2. On dit que f est négligeable devant g au voisinage de a (et on écrit : au voisinage de a, f = o(g)) si au voisinage de a, $f = g.\varepsilon$ avec $\varepsilon(t)$ tend vers 0 quand $t \to a$.
- 3. On dit que f est équivalente à g au voisinage de a (et on écrit $f \sim g$) si au voisinage de a, f = g.k avec k(t) tend vers 1 quand $t \to a$.

Remarque

f = O(g) se lit f est un grand «O» de g.

f = o(g) se lit f est un petit «o» de g.

 $f \sim g$ se lit f est équivalente à g en a.

Exemples

- 1. Au voisinage de $+\infty$, $\sin(t) = O(1)$ car la fonction $t \mapsto \frac{\sin(t)}{1} = \sin(t)$ est bornée (par 1) au voisinage de $+\infty$.
- 2. Au voisinage de 0, $t^2 = o(t)$ car $\frac{t^2}{t} = t \xrightarrow[t \to 0]{} 0$
- 3. $t+1 \underset{+\infty}{\sim} t$ car $\frac{t+1}{t} \xrightarrow[t \to +\infty]{} 1$. En effet $\frac{t+1}{t} = 1 + \frac{1}{t} \xrightarrow[t \to +\infty]{} 1$.

3.6.2 Propriétés

Nous énonçons seulement les propriétés de la négligeabilité et de l'équivalence car le concept de domination ne va pas servir explicitement dans ce chapitre.

Propriétés 2

On se place au voisinage de a où $-\infty \leqslant a \leqslant +\infty$.

1.
$$\begin{cases} f = o(h) \\ g = o(h) \end{cases} \Longrightarrow f + g = o(h)$$

$$\left. \begin{array}{c} f = o(g) \\ 2. \\ h = o(l) \end{array} \right\} \Longrightarrow fh = o(gl)$$

$$\left.\begin{array}{c}
f \sim g \\
a \\
h \sim l \\
a
\end{array}\right\} \Longrightarrow fh \sim gl$$

Fonctions de $\mathbb R$ dans $\mathbb R$ Info-Sup

3.7 Développements limités

Le concept de développements limités est essentiel et très utile pour déterminer des limites difficiles de fonctions. Il découle du théorème suivant.

3.7.1 Théorème de Taylor-Young

Théorème 5 (Taylor-Young à l'ordre n)

Soient $n \in \mathbb{N}$ et f de classe C^n sur I (c'est-à-dire f est n-fois dérivable sur I et chacune des dérivées est continue). Alors au voisinage de $a \in I$, on a

$$f(x) = f(a) + (x - a)f'(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a) + o((x - a)^n)$$

Remarques

- 1. On rappelle que pour tout entier $n, n! = 1 \times 2 \times ... \times n$ avec la convention 0! = 1. Par exemple $5! = 1 \times 2 \times 3 \times 4 \times 5 = 120$.
- 2. Le symbole $f^{(n)}$ signifie dérivée $n^{\text{ième}}$ de f avec la convention $f^{(0)} = f$. Par exemple $f^{(2)} = f''$.
- 3. Sous les hypothèses de ce théorème, f peut donc s'écrire localement (c'est-à-dire au voisinage de a) comme un polynôme.
- 4. Le « $o((x-a)^n)$ » signifie que la suite du développement est négligeable devant $(x-a)^n$.
- 5. Le théorème s'utilise le plus souvent pour a = 0.

3.7.2 Définition d'un développement limité

Définition 17

Soit $n \in \mathbb{N}$. On dit que f admet un développement limité à l'ordre n au voisinage de 0 (ou en 0) s'il existe des réels $a_0, ..., a_n$ tels qu'au voisinage de 0

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n)$$

Remarque

Les coefficients $a_0, ..., a_n$ s'obtiennent en appliquant le théorème de Taylor-Young à f. Prenons par exemple la fonction $f: x \mapsto e^x$ et déterminons le développement limité de f en 0 à l'ordre 2.

On a d'après le théorème de Taylor-Young, au voisinage de 0,

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + o(x^2)$$

Or f(0) = 1, 2! = 2 et pour tout $x \in \mathbb{R}$, $f'(x) = f''(x) = e^x$ donc f'(0) = f''(0) = 1. Ainsi au voisinage de 0, on a

$$e^x = 1 + x + \frac{x^2}{2} + o(x^2)$$

Exemples classiques de développements limités

Les exemples qui suivent sont à connaître ou bien à savoir retrouver à l'aide du théorème de Taylor-Young.

1.
$$\sin(x) = x - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

2.
$$\cos(x) = 1 - \frac{x^2}{2!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$

3.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n)$$

5. Avec
$$\alpha \in \mathbb{R}$$
, $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)x^2}{2!} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-(n-1))x^n}{n!} + o(x^n)$

3.7.3 Opérations sur les développements limités

Comment sommer, multiplier ou composer deux développements limités au voisinage de 0? Cette section donne les réponses.

Proposition 11

Supposons qu'au voisinage de 0, on connaisse les développements limités de f et g à l'ordre n c'est-à-dire f et g sont au voisinage de 0 de la forme $f(x) = P(x) + o(x^n)$ et $g(x) = Q(x) + o(x^n)$ où P et Q sont deux polynômes de degré inférieur ou égal à n. Alors au voisinage de 0:

1.
$$(f+g)(x) = P(x) + Q(x) + o(x^n)$$

- 2. $(fg)(x) = R(x) + o(x^n)$ où R(x) est le polynôme obtenu en ne gardant dans P(x)Q(x) que les termes de degré inférieur ou égal à n.
- 3. Si f(0) = 0, $(g \circ f)(x) = T(x) + o(x^n)$ où T(x) est le polynôme obtenu en ne gardant dans $(Q \circ P)(x)$ que les termes de degré inférieur ou égal à n.

Exemples

1. Déterminons le développement limité à l'ordre 3 de $x\mapsto \sin(x)+\cos(x)$ au voisinage de 0. On a

$$\sin(x) = x - \frac{x^3}{3!} + o(x^3)$$

et

$$\cos(x) = 1 - \frac{x^2}{2!} + o(x^3)$$

Donc

$$\sin(x) + \cos(x) = x - \frac{x^3}{3!} + 1 - \frac{x^2}{2!} + o(x^3)$$
$$= 1 + x - \frac{x^2}{2} - \frac{x^3}{6} + o(x^3)$$

2. Déterminons le développement limité à l'ordre 3 de $x \mapsto e^x \sin(x)$ au voisinage de 0. On a

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$$

et

$$\sin(x) = x - \frac{x^3}{3!} + o(x^3) = x - \frac{x^3}{6} + o(x^3)$$

Il faut à présent calculer le produit

$$\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6}\right) \left(x - \frac{x^3}{6}\right)$$

en ne conservant que les termes de degré inférieur ou égal à 3 (car les autres termes seront négligeables devant x^3 c'est-à-dire qu'il vont «rentrer» dans le $o(x^3)$). On a ainsi

$$e^{x}\sin(x) = x - \frac{x^{3}}{6} + x^{2} + \frac{x^{3}}{2} + o(x^{3})$$
$$= x + x^{2} + \frac{x^{3}}{3} + o(x^{3})$$

3. Déterminons le développement limité de $x \mapsto e^{\sin(x)}$ à l'ordre 3 au voisinage de 0. On a

$$e^{\sin(x)} = e^{x - \frac{x^3}{3!} + o(x^3)} = e^{x - \frac{x^3}{6} + o(x^3)}$$

(On remarquera que $x - \frac{x^3}{6}$ s'annule bien en 0).

On peut donc appliquer le développement limité de e^u en 0 à l'ordre 3 qui est

$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \frac{u^{3}}{3!} + o(u^{3}) = 1 + u + \frac{u^{2}}{2} + \frac{u^{3}}{6} + o(u^{3})$$

Or ici $u = x - \frac{x^3}{6} + o(x^3)$ donc

$$u^{2} = \left(x - \frac{x^{3}}{6} + o(x^{3})\right)^{2} = x^{2} + o(x^{3})$$

car tous les autres termes sont bien négligeables devant x^3 ,

$$u^{3} = \left(x - \frac{x^{3}}{6} + o(x^{3})\right)^{3} = x^{3} + o(x^{3})$$

pour la même raison. Ainsi

$$e^{\sin(x)} = 1 + x - \frac{x^3}{6} + \frac{1}{2}x^2 + \frac{1}{6}x^3 + o(x^3)$$
$$= 1 + x + \frac{x^2}{2} + o(x^3)$$

3.7.4 Applications des développements limités

Les développements limités permettent de déterminer des limites délicates et de trouver des équivalents.

Exemples

1. Déterminons la limite suivante :

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$$

Attention, la limite n'est pas 1 comme on pourrait l'imaginer car tout objet de la forme $\ll 1^{\infty}$ est indéterminé (car $\ll 1^{\infty} = e^{\infty \ln(1)} = e^{\infty \times 0}$) et la limite $\ll \infty \times 0$) est indéterminée).

On a

$$\left(1 + \frac{1}{x}\right)^x = e^{x \ln\left(1 + \frac{1}{x}\right)}$$

Lorsque $x \longrightarrow +\infty$, $\frac{1}{x} \longrightarrow 0$, donc

$$\left(1 + \frac{1}{x}\right)^x = e^{x\left(\frac{1}{x} + o\left(\frac{1}{x}\right)\right)} = e^{1 + o(1)}$$

donc

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$

2. Montrons qu'au voisinage de 0, $\ln(\cos(x)) \sim -\frac{x^2}{2}$.

On a

$$\ln(\cos(x)) = \ln\left(1 - \frac{x^2}{2} + o(x^2)\right) = -\frac{x^2}{2} + o(x^2)$$

car au voisinage de 0, $\ln(1-x) = -x + o(x)$ Ainsi au voisinage de 0,

$$\ln(\cos(x)) \sim -\frac{x^2}{2}$$

car

$$\frac{\ln(\cos(x))}{-\frac{x^2}{2}} = \frac{-\frac{x^2}{2} + o(x^2)}{-\frac{x^2}{2}} = 1 + o(1) \xrightarrow[x \to 0]{} 1$$

Chapitre 4

Equations différentielles

Dans tout le chapitre, I désigne un intervalle de \mathbb{R} .

4.1 Equations différentielles linéaires du premier ordre

4.1.1 Généralités

Définition 18

1. On appelle équation différentielle linéaire du premier ordre toute équation du type

$$a(t)y'(t) + b(t)y(t) = c(t)$$

où a, b et c sont trois fonctions continues sur I.

2. Soit (E): a(t)y'(t) + b(t)y(t) = c(t).

On appelle solution de (E) sur I toute fonction f dérivable sur I telle que

$$\forall t \in I, \quad a(t)f'(t) + b(t)f(t) = c(t)$$

Définition 19

Soit
$$(E)$$
: $a(t)y' + b(t)y = c(t)$.

On appelle équation homogène associée à (E) l'équation

$$(E_0)$$
: $a(t)y' + b(t)y = 0$

Notations

On note S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) . On suppose que $S \neq \emptyset$.

Théorème 6

Soit $y_p \in \mathcal{S}$ une solution particulière de (E). Alors,

$$\mathcal{S} = \{ y_p + y_0; y_0 \in \mathcal{S}_0 \}$$

La solution générale de (E) est donc la somme d'UNE solution particulière de (E) et de LA solution générale de (E_0) .

En conclusion, pour résoudre (E) il y a trois étapes :

- Etape 1 : on résoud (E_0) et on trouve S_0 .
- Etape 2 : on cherche une solution particulière de (E).
- Etape 3 : on conclut en donnant S.

4.1.2 Résolution de (E_0)

Soit (E_0) : a(t)y' + b(t)y = 0

avec a et b continues sur I.

On suppose que $\forall t \in I, a(t) \neq 0$.

Théorème 7

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ke^{-\int \frac{b(t)}{a(t)} dt} \end{array} \right\}$$

Exemple

Résoudre (E_0) $(1+x^2)y'+4xy=0$ dans $I=\mathbb{R}$.

On a

$$\int \frac{b(x)}{a(x)} dx = 2 \int \frac{2x}{1+x^2} dx = 2\ln(1+x^2) = \ln\left((1+x^2)^2\right)$$

Par le théorème précédent, on obtient donc

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & & ; \ k \in \mathbb{R} \\ x & \longmapsto & \frac{k}{(1+x^2)^2} & & \end{array} \right\}$$

4.1.3 Résolution de (E)

Soient (E) ay' + by = c avec a, b et c trois functions continues sur I.

On a vu que la solution générale de (E) est la somme de la solution générale de (E_0) et d'une solution particulière de (E).

On a alors les deux possibilités suivantes :

1. Une solution particulière de (E) est évidente.

Exemple

Résoudre (E) $xy' + y = 3x^2$ dans $I =]0, +\infty[$.

• Etape 1 : on résoud (E_0) xy' + y = 0 sur I.

On trouve

$$S_0 = \left\{ \begin{array}{ccc}]0, +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{k}{x} \end{array} \right. ; \ k \in \mathbb{R} \left. \right\}$$

- Etape 2 : on voit facilement que $y_p(x) = x^2$ est une solution particulière de (E).
- Etape 3 : conclusion

$$S = \left\{ \begin{array}{ccc}]0, +\infty[& \longrightarrow & \mathbb{R} & & ; \ k \in \mathbb{R} \\ x & \longmapsto & \frac{k}{x} + x^2 & & \end{array} \right\}$$

2. Il n'y a pas de solution particulière évidente de (E).

On utilise alors la méthode de la variation de la constante.

On note $y_0 = e^{-\int \frac{b(t)}{a(t)} dt}$ une solution non nulle de (E_0) et on cherche une solution y_p de (E) sous la forme

$$y_p(t) = k(t)y_0(t)$$

où $k: I \to \mathbb{R}$ est une fonction inconnue dérivable sur I.

On a alors

$$y_p \in \mathcal{S} \iff ay'_p + by_p = c \iff ak'y_0 + aky'_0 + bky_0 = c \iff ak'y_0 = c$$

 $\operatorname{car} ay_0' + by_0 = 0.$

On en déduit que $k' = \frac{c}{ay_0}$.

On choisit alors k par primitivation et on en déduit alors y_p .

Exemple

Résoudre (E) $y' + 2ty = e^{t-t^2}$ dans $I = \mathbb{R}$.

• Etape 1 : on résoud (E_0) y' + 2ty = 0.

On trouve

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & & ; k \in \mathbb{R} \\ t & \longmapsto & ke^{-t^2} & & \end{array} \right\}$$

• Etape 2 : on cherche une solution particulière y_p de (E) de la forme

$$y_p(t) = k(t)e^{-t^2}$$

avec $k : \mathbb{R} \to \mathbb{R}$ dérivable.

On a

$$y_p \in \mathcal{S} \iff y_p' + 2ty_p = e^{t-t^2} \iff k'(t)e^{-t^2} - 2tk(t)e^{-t^2} + 2tk(t)e^{-t^2} = e^{t-t^2}$$

On obtient que $k'(t) = e^t$.

Prenons alors

$$k(t) = e^t$$

Finalement,

$$y_p(t) = e^t e^{-t^2} = e^{t-t^2}$$

• Etape 3: conclusion

$$\mathcal{S} = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ k \in \mathbb{R} \\ t & \longmapsto & ke^{-t^2} + e^{t - t^2} \end{array} \right\}$$

Remarque

(E) a une infinité de solutions.

Si on impose des conditions initiales alors on aura une solution unique.

4.2 Equations différentielles linéaires du second ordre à coefficients constants

4.2.1 Généralités

Définition 20

1. On appelle équation différentielle linéaire du second ordre à coefficients constants toute équation du type

$$ay''(t) + by'(t) + cy(t) = d(t)$$

 $où(a,b,c) \in \mathbb{R}^* \times \mathbb{R}^2$ et d'une fonction continue sur I.

2. Soit (E): ay''(t) + by'(t) + cy(t) = d(t).

On appelle solution de (E) sur I toute fonction f deux fois dérivable sur I telle que

$$\forall t \in I, \quad af''(t) + bf'(t) + cf(t) = d(t)$$

Définition 21

Soit
$$(E)$$
: $ay'' + by' + cy = d$.

On appelle équation homogène associée à (E) l'équation

$$(E_0)$$
: $ay'' + by' + cy = 0$

Notations

On note S l'ensemble des solutions de (E) et S_0 l'ensemble des solutions de (E_0) . On suppose que $S \neq \emptyset$.

Théorème 8

Soit $y_p \in \mathcal{S}$ une solution particulière de (E). Alors,

$$S = \{ y_p + y_0; y_0 \in S_0 \}$$

La solution générale de (E) est donc la somme d'UNE solution particulière de (E) et de LA solution générale de (E_0) .

La technique de résolution de (E) est donc la même que celle utilisée dans la résolution des équations différentielles du premier ordre!

4.2.2 Résolution de (E_0)

Soit (E_0) ay'' + by' + c = 0 avec $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$.

Le but est de chercher les solutions de (E_0) à valeurs réelles.

Par analogie avec ce que l'on a trouvé pour les équations du premier ordre, on cherche les solutions de (E_0) sous la forme

$$y_0 = e^{rt}$$

On a

$$y_0 \in \mathcal{S}_0 \iff ay_0'' + by_0' + cy_0 = 0$$

 $\iff (ar^2 + br + c)e^{rt} = 0$
 $\iff ar^2 + br + c = 0$

Définition 22

On appelle équation caractéristique de (E_0) l'équation

$$(C) \quad ar^2 + br + c = 0$$

d'inconnue $r \in \mathbb{R}$ ou \mathbb{C} .

Théorème 9

Alors,

Soit $\Delta = b^2 - 4ac$ le discriminant de (C).

• 1er cas : $\Delta > 0$.

Notons r_1 et r_2 les deux solutions réelles et distinctes de (C).

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & k_1 e^{r_1 t} + k_2 e^{r_2 t} \end{array} \right\}$$

• $2\grave{e}me\ cas:\Delta=0.$

Notons r_1 la racine double réelle de (C).

Alors,

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^{r_1 t} \end{array} \right\}$$

• $3\grave{e}me\ cas:\Delta<0.$

Notons $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ ($(\alpha, \beta) \in \mathbb{R}^2$) les deux racines complexes conjuguées de (C). Alors,

$$S_0 = \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & e^{\alpha t} \left(k_1 \cos(\beta t) + k_2 \sin(\beta t) \right) \end{array} \right\}$$

Exemples

1. Résoudre (E_0) y'' + y' - 6y = 0 dans \mathbb{R} .

L'équation caractéristique (C) $r^2+r-6=0$ admet deux solutions réelles distinctes : 2 et -3.

Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & k_1 e^{2t} + k_2 e^{-3t} \end{array} \right\}$$

2. Résoudre (E_0) y'' - 2y + y = 0 dans \mathbb{R} .

L'équation caractéristique (C) $r^2 - 2r + 1 = 0$ admet une racine double : 1.

Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^t \end{array} \right\}$$

3. Résoudre (E_0) y'' + y' + y = 0 dans \mathbb{R} .

L'équation caractéristique (C) $r^2+r+1=0$ admet deux solutions complexes : $\frac{-1}{2}+i\frac{\sqrt{3}}{2}$ et $\frac{-1}{2}-i\frac{\sqrt{3}}{2}$.

Donc,

$$S_0 = \left\{ \begin{array}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & e^{-\frac{1}{2}t} \left(k_1 \cos(\frac{\sqrt{3}}{2}t) + k_2 \sin(\frac{\sqrt{3}}{2}t) \right) \end{array} \right\} ; \quad (k_1, k_2) \in \mathbb{R}^2$$

4.2.3 Cas où le second membre est de type polynôme ou exponentiellepolynôme

Soit

$$(E) \quad ay'' + by' + cy = d$$

avec $(a, b, c) \in \mathbb{R}^* \times \mathbb{R}^2$ et $d: I \to \mathbb{R}$ continue.

Proposition 12

Soit (E) ay'' + by' + cy = P où P est une fonction polynôme de degré n.

On cherche alors une solution particulière de (E) sous la forme d'une fonction polynôme de degré

-n si
$$c \neq 0$$
.
-n + 1 si $c = 0$ et $b \neq 0$.

$$-n + 2$$
 si $c = b = 0$.

Exemple

Résoudre (E) $y'' - 4y' + 4y = x^2 + 1$ dans $I = \mathbb{R}$.

• Etape 1 : résolution de (E_0) y'' - 4y' + 4y = 0.

L'équation caractéristique (C) $r^2 - 4r + 4 = 0$ admet une racine double réelle : 2.

Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; & (k_1, k_2) \in \mathbb{R}^2 \\ x & \longmapsto & (k_1 x + k_2) e^{2x} \end{array} \right\}$$

• Etape 2 : on cherche une solution particulière y_p de (E) de la forme

$$yp(x) = \alpha x^2 + \beta x + \gamma$$

On a

$$y_p \in \mathcal{S} \iff 4\alpha x^2 + (4\beta - 8\alpha)x + 2\alpha - 4\beta + 4\gamma = x^2 + 1$$

On trouve donc $\alpha = \frac{1}{4}$, $\beta = \frac{1}{2}$ et $\gamma = \frac{5}{8}$.

D'où.

$$y_p(x) = \frac{1}{4}x^2 + \frac{1}{2}x + \frac{5}{8}$$

• Etape 3: conclusion

$$S = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ x & \longmapsto & (k_1 x + k_2) e^{2x} + \frac{1}{4} x^2 + \frac{1}{2} x + \frac{5}{8} \end{array} \right\}$$

Proposition 13

On cherche une solution particulière y_p de (E) de la forme $y_p(t) = e^{mt}Q(t)$ où Q est une fonction polynôme de degré

-n si m n'est pas racine de (C).

-n+1 si m est racine simple de (C).

-n+2 si m est racine double de (C).

Exemple

Résoudre (E) $y'' - 2y' + y = e^t$ dans $I = \mathbb{R}$.

• Etape 1 : l'équation caractéristique $\ (C)$ $r^2-2r+1=0$ admet 1 comme racine double. Donc,

$$S_0 = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^t \end{array} \right\}$$

 \bullet Etape 2 : on cherche une solution particulière y_p de (E) de la forme

$$y_p(t) = (\alpha t^2 + \beta t + \gamma) e^t$$

Après calculs, on trouve que $\alpha = \frac{1}{2}, \, \beta$ et γ quelconques.

Prenons $\beta = \gamma = 0$.

On en déduit que

$$y_p(t) = \frac{1}{2}t^2e^t$$

• Etape 3 : conclusion

$$S = \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} & ; \ (k_1, k_2) \in \mathbb{R}^2 \\ t & \longmapsto & (k_1 t + k_2) e^t + \frac{1}{2} t^2 e^t \end{array} \right\}$$

Chapitre 5

Logique

5.1 Sur les propriétés

5.1.1 Notions de base

Définition 23

Une propriété (ou assertion) est un assemblage de mots dont la construction obéit à une certaine syntaxe et dont on sait dire si, dans des conditions données, il est vrai ou faux.

Exemples

- 1. «3 est un nombre premier» est une assertion vraie.
- 2. $(100+2)^2 = 100^2 + 2^2$ est fausse.
- 3. $\langle x \langle 3 \rangle$ est vraie si x = 1 mais est fausse si x = 10.
- 4. $\ll 1 = 1 + ($ » n'est pas une assertion.

5.1.2 Les connecteurs logiques

Soient P et Q deux propriétés.

Définition 24

La négation de P, notée Non(P) ou $\neg P$. C'est la propriété qui est vraie lorsque P est fausse, et fausse lorsque P est vraie.

Exemple

Soit la propriété P: «la racine carrée d'un entier naturel est un entier naturel».

P est fausse.

Sa négation Non(P) est donc vraie et sa négation est

Non(P): «il existe un entier naturel dont la racine carrée ne soit pas un entier naturel».

Définition 25

La conjonction P et Q, notée $P \wedge Q$. C'est la propriété qui est vraie lorsque les deux propriétés P et Q sont simultanément vraies.

Exemple

Soient $P : \langle x < 4 \rangle$ et $Q : \langle x \geq -1 \rangle$.

Alors, $P \wedge Q : \langle x \in [-1, 4] \rangle$

Définition 26

La disjonction P ou Q, notée $P \lor Q$. C'est la propriété qui est vraie lorsqu'au moins une de deux propriétés P ou Q est vraie.

Exemple

Soient $P : \langle x < 0 \rangle$ et $Q : \langle x \geqslant 1 \rangle$.

Alors, $P \vee Q : \langle x \in]-\infty, 0[\cup [1, +\infty[)$

On peut synthétiser toutes ces notions sous la forme d'une table de vérité :

Р	Q	$P \wedge Q$	$P \vee Q$	$\neg P$	$\neg Q$	$\neg (P \land Q)$	$\neg(P\vee Q)$	$\neg(P) \land \neg(Q)$	$\neg P \vee \neg Q$
V	V	V	V	F	F	F	F	F	F
V	F	F	V	F	V	V	F	F	V
F	V	F	V	V	F	V	F	F	V
F	F	F	F	V	V	V	V	V	V

Proposition 14

- 1. $Non(P \wedge Q) = Non(P) \vee Non(Q)$. Dire que P et Q sont fausses, c'est dire qu'au moins une des deux propriétés est fausse.
- 2. $Non(P \lor Q) = Non(P) \land Non(Q)$. Nier le fait qu'au moins une des deux propriétés est vraie, c'est dire qu'elles sont toutes les deux fausses.

5.1.3 Implication, réciproque, équivalence

Soient P et Q deux propriétés.

Définition 27

L'implication $P \Longrightarrow Q$ signifie $Non(P) \vee Q$.

On peut exprimer $P \Longrightarrow Q$ de l'une des façons suivantes :

-Pour que P, il faut que Q.

-Pour que Q, il suffit que P.

-Si P est vraie alors Q est vraie. On dit que P est une condition suffisante pour Q ou que Q est une condition nécessaire pour P.

La table de vérité est la suivante :

Р	Q	$P \Longrightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

On en déduit donc que $P \Longrightarrow Q$ est vraie dès que P est fausse. En fait, $P \Longrightarrow Q$ est fausse si P est vraie et Q est fausse. Elle est vraie dans tous les autres cas.

Exemples

Soit $x \in \mathbb{R}$.

Les implications suivantes sont vraies :

1.
$$\sqrt{x^2 + 1} = 0 \implies x^2 + 1 = 0$$
.

2.
$$x = \frac{\pi}{2} [2\pi] \implies x = \frac{\pi}{2} [\pi].$$

Définition 28

La réciproque $P \Longleftarrow Q$ est l'implication lue à l'envers.

Définition 29

L'équivalence $P \iff Q \text{ signifie } (P \implies Q) \land (Q \implies P).$

 $P \iff Q \text{ se lit}:$

-Pour que P, il faut et il suffit que Q.

-P si et seulement si Q.

On dit que P est une condition nécessaire et suffisante pour Q.

Exemple

Soit $x \in \mathbb{R}$.

On a

$$\sqrt{x^2 + 1} = 0 \iff x^2 + 1 = 0$$

On a la nouvelle table de vérité suivante :

P	Q	$P \Longrightarrow Q$	$Non(P \Longrightarrow Q)$	Non(Q)	$P \wedge non(Q)$
V	V	V	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F

Proposition 15

- 1. $Non(P \Longrightarrow Q) = P \land Non(Q)$.
- 2. $Non(P \iff Q) = (P \land Non(Q)) \lor (Q \land Non(P)).$

Exemples

- 1. La négation de «s'il fait beau, je vais à la plage» est «il fait beau et je ne vais pas à la plage».
- 2. La négation de $\langle x < 0 \Longrightarrow x \leq 0 \rangle$ est $\langle x < 0 \text{ et } x > 0 \rangle$.

Définition 30

la contraposée $de\ P \Longrightarrow Q\ est\ Non(Q) \Longrightarrow Non(P)$.

Exemple

La contraposée de «s'il fait beau, je vais à la plage» est «si je ne vais pas à la plage alors il ne fait pas beau».

Proposition 16

 $Si P \Longrightarrow Q$ est vraie alors sa contraposée est vraie et réciproquement.

Pour montrer que $P \Longrightarrow Q$ est vraie, on peut donc montrer que sa contraposée est vraie.

5.1.4 Les quantificateurs

Soit P(x) une propriété dépendant d'un objet x appartenant à un certain ensemble E. Il existe deux quantificateurs.

Définition 31

Le quantificateur universel : \forall se lit «pour tout» ou «quel que soit».

Définition 32

Le quantificateur existentiel : \exists se lit «il existe (au moins)».

 \exists ! se lit «il existe un unique».

Exemples

- 1. $\forall x \in \mathbb{R}, x^2 + 1 > 0$ est vraie.
- 2. $\exists x \in \mathbb{R}, x^2 + 1 = 0$ est fausse.
- 3. $\exists x \in \mathbb{C}, x^2 + 1 = 0$ est vraie.

Exercice

Attention à l'ordre des quantificateurs dans une même propriété.

Un \forall suivi d'un \exists ne signifie pas la même chose qu'un \exists suivi d'un \forall .

Prenons l'exemple suivant : soient f_1 et f_2 deux fonctions de $\mathbb{R} \to \mathbb{R}$.

Illustrer par un dessin les propriétés suivantes :

- 1. $\forall i \in \{1,2\}, \exists a \in \mathbb{R} \text{ tel que } f_i(a) = 1.$
- 2. $\exists a \in \mathbb{R}, \forall i \in \{1, 2\}, f_i(a) = 1.$
- 3. $\forall i \in \{1, 2\}, \forall a \in \mathbb{R}, f_i(a) = 1.$
- 4. $\forall a \in \mathbb{R}, \forall i \in \{1, 2\}, f_i(a) = 1.$

Proposition 17

Soit E un ensemble.

- 1. $Non(\forall x \in E, P(x)) \iff \exists x \in E, Non(P(x)).$
- 2. $Non(\exists x \in E, P(x)) \iff \forall x \in E, Non(P(x)).$

Exemple

$$Non (\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y>0) \iff \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y \leq 0$$

5.2 Raisonnements mathématiques

5.2.1 Raisonnements directs

On veut par exemple montrer que $P \Longrightarrow Q$.

Notre hypothèse est donc P. On veut démontrer alors que Q est vraie.

Exemple

Soit $x \in \mathbb{R}$.

Montrons que

$$x > 0 \Longrightarrow \frac{x}{3} \leqslant \frac{x}{\cos x + 2} \leqslant x$$

Supposons x > 0.

Alors,

$$1 \leqslant \cos x + 2 \leqslant 3$$

D'où,

$$\frac{1}{3} \leqslant \frac{1}{\cos x + 2} \leqslant 1$$

Par conséquent, comme x > 0, on obtient

$$\frac{x}{3} \leqslant \frac{x}{\cos x + 2} \leqslant x$$

Remarque

Une telle inégalité peut servir par exemple à appliquer le théorème des gendarmes quand x tend vers $+\infty$.

On en déduit donc que

$$\lim_{x \to +\infty} \frac{x}{\cos x + 2} = +\infty$$

5.2.2 Raisonnements par contraposée

Pour montrer que $P \Longrightarrow Q$, on peut montrer sa contraposée : $Non(Q) \Longrightarrow Non(P)$.

Exemple

Soit $n \in \mathbb{N}$.

Montrons que

$$n^2$$
 pair \implies n pair

Pour cela, on montre que n impair $\Longrightarrow n^2$ impair.

Supposons donc que n est impair.

Alors.

$$\exists k \in \mathbb{N} \text{ tel que } n = 2k+1$$

D'où,

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Posons $k' = 2k^2 + 2k$.

On a bien $k' \in \mathbb{N}$ et $n^2 = 2k' + 1$.

Donc, n^2 est impair.

Ainsi la contraposée est vraie. Donc, la proposition est vraie.

5.2.3 Raisonnements par l'absurde

Cela consiste à supposer notre conclusion fausse. On veut alors aboutir à une contradiction.

Exemple

Montrons que $\sqrt{2}$ est irrationnel.

Supposons que $\sqrt{2}$ n'est pas irrationnel.

Alors, $\exists (p,q) \in \mathbb{N} \times \mathbb{N}^*$ premiers entre eux tels que

$$\sqrt{2} = \frac{p}{q}$$

On a alors que

$$p^2 = 2q^2$$

On en déduit donc que p^2 est pair.

Par l'exemple précédent, on a alors que p est pair.

D'où,

$$\exists k \in \mathbb{N} \text{ tel que } p = 2k$$

Ainsi, $2q^2 = 4k^2$ et donc que $q^2 = 2k^2$.

Donc, q^2 est pair et par conséquent, q est pair.

Finalement, on a obtenu : p et q pairs. Cela contredit le fait que p et q sont premiers entre eux. En conclusion, $\sqrt{2}$ n'est pas rationnel.

5.2.4 Raisonnements par récurrence

Le principe est le suivant :

soit P(n) une propriété dépendant de l'entier naturel n.

Soit $n_0 \in \mathbb{N}$ fixé.

On veut montrer que

$$\forall n \geq n_0, P(n)$$
 est vraie

Le raisonnement se fait alors en 3 étapes :

• Etape 1 : initialisation.

On montre que $P(n_0)$ est vraie.

• Etape 2 : hérédité.

On suppose P(n) vraie pour $n \ge n_0$. On montre alors que P(n+1) est vraie.

• Etape 3: conclusion

Exemple

Soit $q \in \mathbb{R} - \{1\}$.

Montrons que

$$\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Soit
$$P(n)$$
 la propriété :
$$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}.$$

• Etape 1 :

On a
$$\sum_{k=0}^{0} q^k = q^0 = 1$$
.

D'autre part, si n = 0, $\frac{1 - q^{n+1}}{1 - q} = 1$.

Donc, P(0) est vraie.

• Etape 2 :

Supposons P(n) vraie et montrons que P(n+1) est vraie.

On a

$$\sum_{k=0}^{n+1} q^k = \sum_{k=0}^n q^k + q^{n+1}$$

$$= \frac{1 - q^{n+1}}{1 - q} + q^{n+1} \operatorname{car} P(n) \text{ est vraie}$$

$$= \frac{1 - q^{n+1} + q^{n+1}(1 - q)}{1 - q}$$

$$= \frac{1 - q^{n+2}}{1 - q}$$

• Etape 3 :

Conclusion : on en déduit donc que

$$\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$$

Chapitre 6

Arithmétique dans z

6.1 Divisibilité dans Z

6.1.1 Diviseurs, multiples

Définition 33

Soit $(a,b) \in \mathbb{Z}^2$.

On dit que a divise b, et on note a | b, si et seulement si

$$\exists \ k \in \mathbb{Z} \ \ tel \ que \ \ b = ak$$

On dit que a est un diviseur de b, ou que b est un multiple de a (i.e. $b \in a\mathbb{Z}$).

Remarques

- 1. $\forall a \in \mathbb{Z}, a \mid 0$.
- 2. Soit $b \in \mathbb{Z}$. $0 \mid b \iff b = 0$.
- 3. Soit $(a,b) \in \mathbb{Z}^2$. $a \mid b \implies |b| \geqslant |a|$.

Exemples

- 1. $\forall b \in \mathbb{Z}$, $1 \mid b$ et $-1 \mid b$.
- 2. Soit $a \in \mathbb{Z}$. $a \mid 8 \iff a \in \{-8, -4, -2, -1, 1, 2, 4, 8\}$.

Proposition 18

Soit $(a, b, c) \in \mathbb{Z}^3$.

Alors,

- 1. a | a (réflexivité).
- 2. $a \mid b \text{ et } b \mid a \iff |a| = |b|$.
- 3. $a \mid b \text{ et } b \mid c \Longrightarrow a \mid c \text{ (transitivit\'e)}.$

Remarque

Dans \mathbb{Z} , $a \mid b$ et $b \mid a$ n'implique donc pas que a = b.

Prenons par exemple a = 2 et b = -2.

On a $2 \mid -2 \text{ car } -2 = (-1) \times 2 \text{ et } -2 \mid 2 \text{ car } 2 = (-1) \times (-2) \text{ et pourtant } 2 \neq -2!$

Proposition 19

Soit $(a, b, c, d) \in \mathbb{Z}^4$.

Alors,

- 1. $a \mid b \implies a \mid bc$.
- 2. $a \mid b \ et \ a \mid c \iff \forall \ (u, v) \in \mathbb{Z}^2 \ a \mid bu + cv$.
- 3. $a \mid b \ et \ c \mid d \Longrightarrow ac \mid bd$.
- 4. Si $a \mid b \text{ alors}, \forall n \in \mathbb{N}, a^n \mid b^n$.

Remarque

Soit $(a, b, c) \in \mathbb{Z}^3$.

Si $a \mid c$ et $b \mid c$ alors on n'a pas forcément $ab \mid c$.

En effet, pour $a=2,\ b=4$ et c=28 par exemple, on a bien $2\mid 28,\ 4\mid 28$ mais $4\times 2=8$ ne divise pas 28!

Exemple

Soit $d \in \mathbb{N}$ un diviseur commun de deux entiers consécutifs n et n+1.

Montrons que d = 1.

On a

$$d \mid n$$
 et $d \mid n+1$

Par le 2 de la proposition précédente, on en déduit que $d \mid (-1).n + 1.(n+1)$ i.e. $d \mid 1$.

Donc, d = 1 (on retrouvera cet exemple dans la suite du chapitre).

6.1.2 Division euclidienne dans \mathbb{Z}

Théorème 10

1. Soit $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$.

Alors,

$$\exists ! (q,r) \in \mathbb{Z}^2 \quad tel \ que \quad a = bq + r \quad et \quad 0 \leqslant r < b$$

2. Soit $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$.

Alors,

$$\exists ! (q,r) \in \mathbb{Z}^2 \ tel \ que \ a = bq + r \ et \ 0 \leqslant r < |b|$$

C'est faire la division euclidienne de a par b.

q s'appelle quotient de la division euclidienne de a par b et r s'appelle reste.

Exemples

1. Prenons a = 24 et b = 5.

Comme $24 = 4 \times 5 + 4$ et que 4 < 5, on en déduit que q = 4 et r = 4.

Cependant, il faut bien faire attention car on a aussi $24 = 5 \times 5 + (-1)$. Ce n'est pas ce que l'on appelle division euclidienne de a par b car -1 n'est pas positif.

- 2. Pour a = 8 et b = -3, on a q = -2 et r = 2.
- 3. Pour a = 5 et b = 24, on a q = 0 et r = 5.

Remarque

Soit $(a, b) \in \mathbb{Z} \times \mathbb{Z}^*$.

 $a \mid b$ si et seulement si le reste de la division euclidienne de b par a est nul.

6.2 PGCD (et PPCM)

6.2.1 Définitions

• PGCD

Soit $(a,b) \in (\mathbb{Z}^*)^2$.

Considérons l'ensemble \mathcal{D} des diviseurs communs de a et de b.

On a clairement $\mathcal{D} \subset \mathbb{Z}$.

De plus, $\mathcal{D} \neq \emptyset$ car $1 \in \mathcal{D}$.

Enfin, \mathcal{D} est majoré par Min(|a|,|b|).

On en déduit donc que \mathcal{D} admet un unique plus grand élément (supérieur ou égal à 1).

D'où la définition suivante :

Définition 34

Soit $(a,b) \in (\mathbb{Z}^*)^2$.

On appelle pgcd de a et de b le plus grand des diviseurs communs de a et de b (supérieur ou égal à 1). On le note $a \wedge b$.

On a donc

$$\delta = a \wedge b \iff \left\{ \begin{array}{l} \delta \mid a \\ \delta \mid b \\ \forall \ d \in \mathbb{Z}^*, \ d \mid a \ et \ d \mid b \implies d \mid \delta \end{array} \right.$$

Exemples

1. Il est facile de voir que $4 \wedge 6 = 2$, $16 \wedge 28 = 4$, $3 \wedge 5 = 1$.

2. On a, $\forall n \in \mathbb{N}^*$, $n \wedge (n+1) = 1$.

En effet, on a vu que si $d \mid n$ et $d \mid n + 1$ alors $d \mid 1$.

En particulier pour $d = n \wedge (n+1)$, on obtient que $n \wedge (n+1) = 1$.

3. Montrons que, $\forall n \in \mathbb{N}^*, (n+n^2) \land (2n+1) = 1.$

Soit d un diviseur commun de $n + n^2$ et de 2n + 1.

Alors, en utilisant le 2 de la proposition 1.2 (pour u = 2n + 1 et v = -4), on a

$$d \mid (2n+1)(2n+1) - 4(n+n^2)$$

Donc, $d \mid 1$.

En particulier, pour $d = (n + n^2) \wedge (2n + 1)$, on obtient $(n + n^2) \wedge (2n + 1) = 1$.

• PPCM

Soit $(a, b) \in (\mathbb{Z}^*)^2$.

Considérons l'ensemble \mathcal{M} des multiples communs de a et de b strictement positifs.

On a clairement $\mathcal{M} \subset \mathbb{N}$.

De plus, $\mathcal{M} \neq \emptyset$ car $|ab| \in \mathcal{M}$.

On en déduit donc que \mathcal{M} possède un unique plus petit élément.

D'où la définition suivante :

Définition 35

Soit $(a,b) \in (\mathbb{Z}^*)^2$.

On appelle ppcm de a et de b le plus petit des multiples strictement positifs communs de a et de b. On le note $a \lor b$.

On a donc

$$n = a \lor b \iff \begin{cases} a \mid n \\ b \mid n \\ \forall m \in \mathbb{Z}^*, a \mid m \text{ et } b \mid m \implies n \mid m \end{cases}$$

Exemples

 $4 \lor 6 = 12, 16 \lor 28 = 112, 3 \lor 5 = 15.$

6.2.2 Propriétés

Proposition 20

Soit $(a,b) \in \mathbb{N} \times \mathbb{N}^*$.

On effectue la division euclidienne de a par b: a = bq + r avec $0 \le r < b$.

Alors,

•
$$Si \ r = 0, \ a \wedge b = b.$$

•
$$Si \ r \neq 0$$
, $a \wedge b = b \wedge r$.

Corollaire 2 (Coefficients de Bézout)

Soit $(a,b) \in (\mathbb{Z}^*)^2$.

Alors,

$$\exists (u,v) \in \mathbb{Z}^2 \quad tel \ que \quad au + bv = a \wedge b$$

Le couple (u, v) est appelé coefficients de Bézout du couple (a, b).

Remarque

Nous verrons plus loin comment on trouve un tel couple (u, v).

Proposition 21

Soit $(a, b, c) \in (\mathbb{Z}^*)^3$.

Alors,

$$ac \wedge bc = |c|(a \wedge b)$$

$$ac \lor bc = |c|(a \lor b)$$

Proposition 22 (Associativité)

Soit $(a, b, c) \in (\mathbb{Z}^*)^3$.

Alors,

$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$

$$(a \lor b) \lor c = a \lor (b \lor c)$$

Exemples

- 1. On vérifie facilement que la proposition précédente est vraie pour $a=3,\,b=4$ et c=6 par exemple.
- 2. Trouvons $45 \wedge 54$.

On a
$$45 = 9 \times 5$$
 et $54 = 9 \times 6$.

D'où.

$$45 \wedge 54 = 9 \times (5 \wedge 6) = 9 \times 1 = 9$$

6.2.3 Algorithme d'Euclide

C'est une méthode pour déterminer le pgcd de deux entiers relatifs non nuls.

Soit
$$(a, b) \in (\mathbb{Z}^*)^2$$
 tel que $|a| > |b|$.

Par division euclidienne de a par b, $\exists (q_1, r_1) \in \mathbb{Z}^2$ tel que

$$a = bq_1 + r_1$$

$$0 \leqslant r_1 < |b|$$

Par la proposition 2.1,

- Si $r_1 = 0$ alors $a \wedge b = |b|$.
- Si $r_1 > 0$ alors $a \wedge b = b \wedge r_1$.

Dans ce cas là, par division euclidienne de b par $r_1,\,\exists~(q_2,r_2)\in\mathbb{Z}^2$ tel que

$$b = r_1q_2 + r_2$$

$$0 \leqslant r_2 < r_1$$

En appliquant une nouvelle fois la proposition 2.1, on a

- Si $r_2 = 0$ alors $a \wedge b = b \wedge r_1 = r_1$.
- Si $r_1 > 0$ alors $a \wedge b = b \wedge r_1 = r_1 \wedge r_2$. On réitère alors le procédé.

Comme $|b| > r_1 > r_2 \dots$, on construit ainsi une suite $(r_k)_{k \in \mathbb{N}^*}$ d'entiers naturels strictement décroissante et ces entiers sont tous compris entre 0 et |b|. Cette suite converge donc vers 0 et le procédé s'arrète au bout d'un nombre fini d'étapes.

Il existe donc $N \in \mathbb{N}^*$, $(q_1, r_1), \ldots, (q_N, r_N)$ dans $\mathbb{Z} \times \mathbb{N}$ et $q_{N+1} \in \mathbb{Z}$ tels que

$$\begin{cases} a = bq_1 + r_1 \\ 0 < r_1 < |b| \end{cases}, \begin{cases} b = bq_2 + r_2 \\ 0 < r_2 < r_1 \end{cases}, \dots, \begin{cases} r_{N-2} = r_{N_1}q_N + r_N \\ 0 < r_N < r_{N-1} \end{cases}, r_{N-1} = r_Nq_{N+1} + 0.$$

On a alors

$$a \wedge b = b \wedge r_1 = r_1 \wedge r_2 = \ldots = r_{N-1} \wedge r_N = r_N$$

En conclusion, $a \wedge b$ est le dernier reste obtenu non nul.

Exemples

1. Calculons $3420 \wedge 222$.

Les divisions euclidiennes successives donnent

$$3420 = 222 \times 15 + 90$$

$$222 = 90 \times 2 + 42$$

$$90 = 42 \times 2 + 6$$

$$42 = 6 \times 7 + 0$$

On a donc $3420 \land 222 = 6$.

2. Calculons $3140 \wedge 241$.

Les divisions euclidiennes successives donnent

$$3140 = 241 \times 13 + 7$$

$$241 = 7 \times 34 + 3$$

$$7 = 3 \times 2 + 1$$

$$3 = 1 \times 3 + 0$$

On a donc $3140 \land 241 = 1$.

Remarque

D'après la proposition 2.1, $\exists (u,v) \in (\mathbb{Z}^*)^2$ tel que $au + bv = a \wedge b$. L'algorithme d'Euclide permet de trouver un tel couple (u,v). En effet,

1. En remontant l'algorithme pour trouver $3420 \wedge 222$, on a

$$6 = 90 - 42 \times 2$$

$$= 90 - (222 - 90 \times 2) \times 2 = 90 \times 5 - 222 \times 2$$

$$= (3420 - 222 \times 15) \times 5 - 222 \times 2$$

$$= 3420 \times 5 + 222 \times (-77)$$

Donc le couple (u, v) = (5, -77) convient.

2. De même, en remontant l'algorithme pour trouver $3140 \wedge 241$, on a

$$3140 \times 69 + 241 \times (-899) = 1$$

Le couple (u, v) = (69, -899) convient.

6.2.4 Nombres premiers entre eux

Définition 36

Soit
$$(a,b) \in (\mathbb{Z}^*)^2$$
.

On dit que a et b sont premiers entre eux si et seulement si

$$a \wedge b = 1$$

c-à-d que les seuls diviseurs communs de a et de b sont 1 et -1.

Exemple

- 1. 3140 et 241 sont premiers entre eux.
- 2. $\forall n \in \mathbb{N}^*, n \text{ et } n+1 \text{ sont premiers entre eux.}$

Définition 37

Soit $n \in \mathbb{N}^*$.

Soit $(x_1,\ldots,x_n)\in(\mathbb{Z}^*)^n$.

On dit que x_1, \ldots, x_n sont deux à deux premiers entre eux si et seulement si

$$\forall (i,j) \in [1,n]^2, (i \neq j \Longrightarrow x_i \land x_j = 1)$$

Théorème 11 (Bézout)

Soit $(a,b) \in (\mathbb{Z}^*)^2$.

Alors,

$$a \wedge b = 1 \Longleftrightarrow \exists (u, v) \in \mathbb{Z}^2 \ au + bv = 1$$

Remarque

On a déjà vu comment trouver un tel couple (u, v).

Théorème 12 (Gauss)

Soit $(a, b, c) \in (\mathbb{Z}^*)^3$.

Alors,

$$a \mid bc$$
 et $a \land b = 1 \implies a \mid c$

Application

Résolution de l'équation (E) 9x + 15y = 18 d'inconnues $(x, y) \in \mathbb{Z}^2$.

1. Tout d'abord, on a $9 \wedge 15 = 3$.

En remontant l'algorithme d'Euclide, $3 = -15 + 2 \times 9$.

D'où,
$$18 = -6 \times 15 + 12 \times 9$$
.

Par conséquent,

$$(x_0, y_0) = (12, -6)$$

est une solution particulière de (E).

2. Soit $(x, y) \in \mathbb{Z}^2$ une solution de (E). Alors,

$$9x + 15y = 18 = 9x_0 + 15y_0 \iff 3x + 5y = 3x_0 + 5y_0$$

$$\iff 3(x - x_0) = 5(y_0 - y)$$

On en déduit donc par exemple que $3 \mid 5(y_0 - y)$.

Or, $5 \wedge 3 = 1$. En utilisant le théorème de Gauss, on obtient donc que $3 \mid y_0 - y$.

D'où, $\exists k \in \mathbb{Z}, y_0 - y = 3k$ i.e.

$$y = y_0 - 3k = -6 - 3k$$

De $3(x-x_0)=5(y_0-y)$, on obtient alors que $x-x_0=5k$ i.e.

$$x = x_0 + 5k = 12 + 5k$$

Finalement, si (x, y) est solution de (E) alors $\exists k \in \mathbb{Z}$ tel que (x, y) = (12 + 5k, -6 - 3k), c'est-à-dire, en notant \mathcal{S} l'ensemble des solutions de (E),

$$S \subset \{ (12+5k, -6-3k), k \in \mathbb{Z} \}$$

3. Réciproquement, si $(x,y) \in \{ (12+5k, -6-3k), k \in \mathbb{Z} \}$ alors, $\exists k \in \mathbb{Z}$ tel que x = 12+5k et y = -6-3k.

D'où.

$$9x + 15y = 9 \times 12 + 45k + 15 \times (-6) - 45k$$
$$= 9x_0 + 15y_0$$
$$= 18$$

Donc, $(x, y) \in \mathcal{S}$ et $\{ (12 + 5k, -6 - 3k), k \in \mathbb{Z} \} \subset \mathcal{S}$.

4. Conclusion:

$$S = \{ (12 + 5k, -6 - 3k), k \in \mathbb{Z} \}$$

6.2.5 Conséquences

Proposition 23

1. Soit $(a, b, c) \in (\mathbb{Z}^*)^3$.

Alors,

$$a \wedge b = 1$$
 et $a \wedge c = 1 \iff a \wedge bc = 1$

2. Soit $n \in \mathbb{N}^*$.

Soit
$$(a, b_1, ..., b_n) \in (\mathbb{Z}^*)^{n+1}$$
.

$$Si \ \forall \ i \in [1, n], \ a \land b_i = 1 \ alors$$

$$a \wedge \prod_{i=1}^{n} b_i = 1$$

3. Soient $(a, b) \in (\mathbb{Z}^*)^2$ et $(p, q) \in (\mathbb{N}^*)^2$.

Si
$$a \wedge b = 1$$
 alors $a^p \wedge b^q = 1$.

Proposition 24

Soit $n \in \mathbb{N}^*$.

Soit $(a, b_1, \ldots, b_n) \in (\mathbb{Z}^*)^{n+1}$.

 $Si \ \forall \ i \in [1, n], \ b_i \mid a \ et \ si \ \forall \ (i, j) \in [1, n]^2 \ tel \ que \ i \neq j, \ b_i \land b_j = 1 \ alors$

$$\prod_{i=1}^{n} b_i \mid a$$

6.3 Nombres premiers dans \mathbb{N}

6.3.1 Définition et propriétés

Définition 38

Soit $p \in \mathbb{N} - \{0, 1\}$.

On dit que p est un nombre premier si et seulement si ses seuls diviseurs sont 1 et p.

Exemple

2, 3, 5, 7, 11, 13, 17, 19, 23... sont des nombres premiers.

Notation

On note ${\mathcal P}$ l'ensemble des nombres premiers.

Proposition 25

Soient $p \in \mathcal{P}$ et $n \in \mathbb{Z}^*$.

Alors,

$$p \mid n$$
 ou $p \wedge n = 1$

Proposition 26

Soient $p \in \mathcal{P}$ et $(x_1, \dots, x_n) \in (\mathbb{Z}^*)^n$ (avec $n \in \mathbb{N}^*$).

Alors,

$$p \mid \prod_{i=1}^{n} x_i \iff \exists i_0 \in [[1, n]] \quad p \mid x_{i_0}$$

6.3.2 L'ensemble \mathcal{P}

Proposition 27

Tout entier naturel supérieur ou égal à 2 est divisible par un nombre premier.

Théorème 13

L'ensemble \mathcal{P} est infini.

6.3.3 Décomposition en produit de facteurs premiers

Théorème 14

Tout entier naturel supérieur ou égal à 2 est décomposable en produit de facteurs premiers et cette décomposition est unique à l'ordre des facteurs près i.e.

$$\forall n \in \mathbb{N} - \{0,1\}, \exists r \in \mathbb{N}^*, \exists (p_1,\ldots,p_r) \in \mathcal{P}^r \text{ et } \exists (\alpha_1,\ldots,\alpha_r) \in \mathbb{N}^r \text{ tels que}$$

$$n = p_1^{\alpha_1} \dots p_r^{\alpha_r} = \prod_{i=1}^r p_i^{\alpha_i}$$

Exemples

- 1. $7007 = 7^2 \times 11 \times 13$.
- 2. $9100 = 2^2 \times 5^2 \times 7 \times 13$.

Théorème 15

Soit
$$(a,b) \in (\mathbb{N} - \{0,1\})^2$$
 tel que $a = \prod_{i=1}^r p_i^{\alpha_i}$ et $b = \prod_{i=1}^r p_i^{\beta_i}$.

Alors,

$$a \wedge b = \prod_{i=1}^{r} p_i^{Min(\alpha_i, \beta_i)}$$
 et $a \vee b = \prod_{i=1}^{r} p_i^{Max(\alpha_i, \beta_i)}$

Exemple

On a en fait $7007 = 2^0 \times 5^0 \times 7^2 \times 11^1 \times 13^1$ et $9100 = 2^2 \times 5^2 \times 7^1 \times 11^0 \times 13^1$.

Donc,

$$7007 \wedge 9100 = 2^{0} \times 5^{0} \times 7^{1} \times 11^{0} \times 13^{1} = 91$$

$$7007 \vee 9100 = 2^{2} \times 5^{2} \times 7^{2} \times 11^{1} \times 13^{1} = 700700$$

6.4 L'ensemble $\mathbb{Z}/n\mathbb{Z}$

6.4.1 Congruence dans \mathbb{Z}

Définition 39

Soient $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{Z}^2$.

On dit que a est congru à b modulo n, et on note $a \equiv b[n]$ si et seulement si $n \mid b-a$.

Exemples

$$4 \equiv 12 \, [2] \, \text{car} \, 12 - 4 = 8 = 4 \times 2 \, \text{et} \, 7 \equiv 4 \, [3] \, \text{car} \, 4 - 7 = -3 = (-1) \times 3.$$

Proposition 28

Soient $n \in \mathbb{N}^*$ et $(a, b, c) \in \mathbb{Z}^3$.

Alors,

- 1. $a \equiv a[n]$ (réflexivité).
- 2. $a \equiv b[n] \iff b \equiv a[n]$ (symétrie).
- 3. $a \equiv b[n]$ et $b \equiv c[n] \implies a \equiv c[n]$ (transitivité).

On dit que $\equiv [n]$ est une relation d'équivalence.

Proposition 29

Soient $n \in \mathbb{N}^*$ et $(a, b, c, d) \in \mathbb{Z}^4$.

Si $a \equiv b[n]$ et $c \equiv d[n]$ alors,

$$a+c \equiv (b+d)[n]$$

 $ac \equiv bd[n]$

Corollaire 3

Soit $(a,b) \in \mathbb{Z}^2$.

Si $a \equiv b [n]$ alors, $\forall m \in \mathbb{N}, a^m \equiv b^m [n]$.

Exemple

Montrons que $\forall n \in \mathbb{N}, 5 \mid 2^{2n+1} + 3^{2n+1}$.

On a

$$2^{2n+1} + 3^{2n+1} = 4^n \times 2 + 9^n \times 3$$

Or $4^n \times 2 \equiv 4^n \times 2$ [5].

De plus, $9 \equiv 4 \, [5]$ d'où $9^n \equiv 4^n \, [5]$ et donc $9^n \times 3 \equiv 4^n \times 3 \, [5]$ (car $3 \equiv 3 \, [5]$).

Par conséquent,

$$4^n \times 2 + 9^n \times 3 \equiv 4^n (2+3) [5] \equiv 0 [5]$$

Donc

$$5 \mid 4^n \times 2 + 9^n \times 3$$

6.4.2 L'ensemble $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$.

Définition 40

Soit $x \in \mathbb{Z}$.

On définit l'ensemble

$$\overline{x} = \{ y \in \mathbb{Z}, x \equiv y [n] \}$$

appelé classe de x modulo n.

Exemple

Pour n=2,

$$\overline{1} = \{ y \in \mathbb{Z}, 1 \equiv y [2] \}$$
$$= \{ y \in \mathbb{Z}, \exists k \in \mathbb{Z}, y - 1 = 2k \}$$

Donc $\overline{1} = \{\text{nombres impairs}\}.$

Remarque

Soit $(a,b) \in \mathbb{Z}^2$.

Alors,

$$\overline{a} = \overline{b} \iff a \equiv b[n]$$

Définition 41

On définit l'ensemble

$$\mathbb{Z}/n\mathbb{Z} = \{ \overline{x}, x \in \mathbb{Z} \}$$

Proposition 30

Soit

$$f: \llbracket 0, n-1 \rrbracket \quad \to \quad \mathbb{Z}/n\mathbb{Z}$$

$$p \quad \mapsto \quad \overline{p}$$

Alors f est bijective.

Corollaire 4

$$\mathbb{Z}/n\mathbb{Z} = \{ \overline{0}, \overline{1}, \dots, \overline{n-1} \}$$

Proposition 31

Sur $\mathbb{Z}/n\mathbb{Z}$, on définit les lois

$$+ par \ \forall \ (a,b) \in \mathbb{Z}^2, \ \overline{a} + \overline{b} = \overline{a+b}$$

 $\cdot par \ \forall \ (a,b) \in \mathbb{Z}^2, \ \overline{a} \cdot \overline{b} = \overline{ab}.$

Alors, $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un anneau commutatif.

Exemples

• n = 2

On a

$$\mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}$$

Représentons les tables d'addition et de multiplication dans $\mathbb{Z}/2\mathbb{Z}$.

+	$\overline{0}$	1
0	$\overline{0}$	1
1	1	1

	0	1
0	0	0
1	0	1

On remarque que $\overline{1}$ est inversible pour \cdot d'inverse lui-même.

• n = 3

On a

$$\mathbb{Z}/3\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}\}$$

Les tables d'addition et de multiplication dans $\mathbb{Z}/3\mathbb{Z}$ sont les suivantes :

+	$\overline{0}$	1	$\overline{2}$
$\overline{0}$	0	1	$\overline{2}$
1	1	$\overline{2}$	$\overline{0}$
$\overline{2}$	$\overline{2}$	0	1

	$\overline{0}$	1	$\overline{2}$
0	0	0	0
1	0	1	$\overline{2}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	1

Ici, $\overline{1}$ et $\overline{2}$ sont inversibles pour \cdot .

• n = 4

On a

$$\mathbb{Z}/4\mathbb{Z} = \{\overline{0}, \overline{1}, \ \overline{2}, \ \overline{3}\}$$

Représentons les tables d'addition et de multiplication dans $\mathbb{Z}/4\mathbb{Z}$.

+	0	1	$\overline{2}$	3
0	0	1	$\overline{2}$	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

	$\overline{0}$	1	$\overline{2}$	3
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	$\overline{0}$	1	$\overline{2}$	3
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
3	$\overline{0}$	3	$\overline{2}$	1

Ici, $\overline{1}$ et $\overline{3}$ sont inversibles pour \cdot .

6.4.3 Structure de corps de $\mathbb{Z}/n\mathbb{Z}$ quand n est premier

Proposition 32

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{Z}$ tel que $\overline{a} \neq \overline{0}$.

Alors,

 \overline{a} est inversible dans $(\mathbb{Z}/n\mathbb{Z},\cdot)$ \iff $a \land n=1$

Théorème 16

Si $n \in \mathcal{P}$ alors $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ est un corps commutatif.

6.4.4 Petit théorème de Fermat

Théorème 17 (Petit théorème de Fermat)

Soit $p \in \mathcal{P}$.

Alors, pour tout $n \in \mathbb{Z}$, $n^p \equiv n$ [p].

Exemple

Montrons que $\forall n \in \mathbb{Z}, 42 \mid n^7 - n$.

$$42 = 2 \times 3 \times 7$$

Or, 2, 3 et 7 sont deux à deux premiers entre eux. Donc par proposition 2.5, il suffit de montrer que $2 \mid n^7 - n$, $3 \mid n^7 - n$ et $7 \mid n^7 - n$.

Par le petit théorème de Fermat, on a $n^2 \equiv n$ [2]. D'où, $(n^2)^3 \equiv n^3$ [2].

Or
$$n^7 = (n^2)^3 n$$
.

Par conséquent,

$$n^7 \equiv n^3 . n [2] \equiv n^4 [2] \equiv n^2 [2] \equiv n [2]$$

On en déduit donc que

$$n^7 - n \equiv 0 \, [2]$$

De même, par Fermat, $n^3 \equiv n$ [3].

D'où,

$$n^7 = (n^3)^2 n \equiv n^3 [3] \equiv n [3]$$

et donc

$$n^7 - n \equiv 0 [3]$$

Enfin, par Fermat, on a directement que

$$n^7 \equiv n [7]$$

D'où,

$$n^7 - n \equiv 0 [7]$$

En conclusion, on a obtenu que $2\mid n^7-n, \ 3\mid n^7-n$ et $7\mid n^7-n$. Par conséquent, $2.3.7\mid n^7-n$. C'est-à-dire

$$42 \mid n^7 - n$$

Chapitre 7

Polynômes

Dans tout le chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

7.1 Ensemble des polynômes à une indéterminée et à coefficients dans \mathbb{K}

7.1.1 Généralités

Définition 42

On appelle polynôme à une indéterminée et à coefficients dans \mathbb{K} toute suite $(a_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}}$ nulle à partir d'un certain rang.

C'est-à-dire : $P = (a_n)_{n \in \mathbb{N}}$ est un polynôme à coefficients dans \mathbb{K} si et seulement si

$$\forall n \in \mathbb{N}, \ a_n \in \mathbb{K} \ \ et \ \exists \ N \in \mathbb{N}, \ \ \forall \ n \in \mathbb{N}, \ \ (n > N \Rightarrow a_n = 0)$$

On note $P = (a_0, a_1, \dots, a_N, 0, \dots, 0, \dots).$

Les nombres a_0, \ldots, a_N sont appelés coefficients de P.

Notations

- 1. L'ensemble des polynômes à une indéterminée et à coefficients dans \mathbb{K} est noté $\mathbb{K}[X]$.
- 2. Le polynôme défini par la suite nulle est appelé polynôme nul. On le note 0.

Définition 43

1. On appelle polynôme constant dans $\mathbb{K}[X]$ tout polynôme $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ tel que

$$\forall n \in \mathbb{N}^*, a_n = 0$$

i.e.
$$P = (a_0, 0, \dots, 0, \dots)$$
.

2. On appelle monôme dans $\mathbb{K}[X]$ tout polynôme $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ tel que

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, (n \neq n_0 \Rightarrow a_n = 0)$$

i.e.
$$P = (0, \dots, 0, a_{n_0}, 0, \dots, 0, \dots).$$

Définition 44

On dit que deux polynômes $P=(a_n)_{n\in\mathbb{N}}\in\mathbb{K}[X]$ et $Q=(b_n)_{n\in\mathbb{N}}\in\mathbb{K}[X]$ sont égaux si et seulement si \forall $n\in\mathbb{N}$, $a_n=b_n$.

Définition 45 (Degré d'un polynôme)

Soit $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$.

1. Si $P \neq 0$, on appelle degré de P le plus grand entier naturel N tel que $a_N \neq 0$. On note N = d(P).

On a donc

$$N = d(P) \Longleftrightarrow \begin{cases} a_N \neq 0 \\ \forall n \in \mathbb{N}, (n > N \Rightarrow a_n = 0) \end{cases}$$

2. Si P = 0, on note $d(0) = -\infty$.

7.1.2 Somme de deux polynômes

Soient $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ et $Q = (b_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ avec $N_1 = d(P)$ et $N_2 = d(Q)$.

Considérons la suite $(a_n + b_n)_{n \in \mathbb{N}}$.

On a

- $\forall n \in \mathbb{N}, a_n + b_n \in \mathbb{K}.$
- Pour tout $n > Max(N_1, N_2), a_n + b_n = 0.$

On en déduit donc que $(a_n + b_n) \in \mathbb{K}[X]$.

D'où la définition suivante :

Définition 46

Soient $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ et $Q = (b_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$.

On définit $P + Q \in \mathbb{K}[X]$ par

$$P + Q = (a_n + b_n)_{n \in \mathbb{N}}$$

Proposition 33

Soit $(P,Q) \in \mathbb{K}[X]^2$.

Alors,

- 1. $d(P+Q) \leq Max(d(P), d(Q))$.
- 2. Si $d(P) \neq d(Q)$ alors d(P+Q) = Max(d(P), d(Q)).

Proposition 34

 $(\mathbb{K}[X], +)$ est un groupe abélien.

7.1.3 Multiplication externe

Soient $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ avec N = d(P) et $\lambda \in \mathbb{K}$.

Considérons la suite $(\lambda a_n)_{n \in \mathbb{N}}$.

On a

•
$$\forall n \in \mathbb{N}, \lambda a_n \in \mathbb{K}.$$

•
$$\forall n \in \mathbb{N}, (n > N \Longrightarrow \lambda a_n = 0).$$

On en déduit donc que $(\lambda a_n)_{n\in\mathbb{N}} \in \mathbb{K}[X]$.

D'où la définition suivante :

Définition 47

Soient $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}$.

On définit $\lambda P \in \mathbb{K}[X]$ par

$$\lambda P = (\lambda a_n)_{n \in \mathbb{N}}$$

Proposition 35

Soient $P \in \mathbb{K}[X]$ et $\lambda \in \mathbb{K}^*$.

Alors,

$$d(\lambda P) = d(P)$$

7.1.4 Multiplication interne

Soient $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ et $Q = (b_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ avec $N_1 = d(P)$ et $N_2 = d(Q)$.

Considérons la suite $(c_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = \sum_{i+j=n} a_i b_j$$

On a

- $\forall n \in \mathbb{N}, c_n \in \mathbb{K}.$
- Pour tout $n > N_1 + N_2$,

$$c_n = \sum_{k=0}^{N_1} a_k b_{n-k} + \sum_{k=N_1+1}^n a_k b_{n-k}$$

$$= \sum_{k=0}^{N_1} a_k b_{n-k} \quad \text{car} \quad \forall k > N_1, \quad a_k = 0$$

$$= 0 \quad \text{car} \quad n - k > N_2 \implies b_{n-k} = 0$$

On en déduit donc que $(c_n)_{n\in\mathbb{N}}\in\mathbb{K}[X]$.

D'où la définition suivante :

Définition 48

Soient $P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$ et $Q = (b_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$. On définit $PQ \in \mathbb{K}[X]$ par $PQ = (c_n)$ avec

$$\forall n \in \mathbb{N}, \quad c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{i+j=n} a_i b_j$$

Proposition 36

Soit $(P,Q) \in \mathbb{K}[X]^2$.

Alors,

$$d(PQ) = d(P) + d(Q)$$

Proposition 37

Soit $(P, Q, R) \in \mathbb{K}[X]^3$.

Alors,

- 1. PQ = QP (Commutativité).
- 2. (PQ)R = P(QR) (Associativité).
- 3. P(Q+R) = PQ + PR (distributivité).

Proposition 38

- 1. $(\mathbb{K}[X], +, .)$ est un anneau commutatif.
- 2. $\forall (P,Q) \in \mathbb{K}[X]^2$, $(PQ = 0 \iff P = 0 \text{ ou } Q = 0)$.

 On dit que l'anneau $(\mathbb{K}[X], +, .)$ est intègre.

7.1.5 Ecriture définitive d'un polynôme

Définition 49

On appelle X le polynôme de $\mathbb{K}[X]$ défini par la suite $(a_n)_{n\in\mathbb{N}}$ avec

$$a_1 = 1$$
 et $\forall n \in \mathbb{N} \setminus \{1\}, \quad a_n = 0$

X s'appelle l'indéterminée.

Proposition 39

$$\forall n \in \mathbb{N}, \quad X^n = (b_p)_{p \in \mathbb{N}} \quad avec \quad b_{n+1} = 1 \quad et \quad \forall p \in \mathbb{N} \setminus \{n+1\}, \quad b_p = 0$$

Conclusion

Soit
$$P = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}[X]$$
 avec $N = d(P)$.

On a

$$P = (a_0, a_1, \dots, a_N, 0, \dots, 0, \dots)$$

$$= a_0(1, 0, \dots, 0, \dots) + a_1(0, 1, 0, \dots, 0, \dots) + \dots + a_N(0, \dots, 0, 1, 0, \dots, 0)$$

$$= a_0 X^0 + a_1 X^1 + \dots + a_N X^N$$

D'où

$$P = \sum_{k=0}^{N} a_k X^k$$

7.1.6 Autres opérations sur les polynômes

Définition 50

Soient
$$P = \sum_{k=0}^{N} a_k X^k \in \mathbb{K}[X]$$
 et $Q \in \mathbb{K}[X]$.

On définit $P \circ Q \in \mathbb{K}[X]$ par

$$P \circ Q = P(Q) = \sum_{k=0}^{N} a_k Q^k$$

Exemple

Si
$$P = X^3 + 3X - 4$$
 et $Q = X + 1$ alors,

$$P(X+1) = (X+1)^3 + 3(X+1) - 4$$

Définition 51

Soit
$$P = \sum_{k=0}^{N} a_k X^k \in \mathbb{K}[X].$$

On appelle polynôme dérivé de P le polynôme

$$P' = \sum_{k=1}^{N} k a_k X^{k-1}$$

De même, on peut définir le polynôme dérivé de P' par

$$P'' = \sum_{k=2}^{N} k(k-1)a_k X^{k-2}$$

On note $P^{(0)} = P$, $P^{(1)} = P'$, $P^{(2)} = P'' = (P')'$ et pour tout $\alpha \in \mathbb{N}^*$, $P^{(\alpha)} = (P^{(\alpha-1)})'$.

Proposition 40

1.
$$\forall P \in \mathbb{K}[X] \setminus \mathbb{K}, d(P') = d(P) - 1.$$

2.
$$\forall (P,Q) \in \mathbb{K}[X]^2$$
 et $\forall \lambda \in K$, $(P+\lambda Q)' = P' + \lambda Q'$ et $(PQ)' = P'Q + PQ'$.

7.1.7 Fonction polynômiale

Définition 52

Soit
$$P = \sum_{k=0}^{N} a_k X^k \in \mathbb{K}[X].$$

On définit la fonction

$$\widetilde{P}: \mathbb{K} \longrightarrow \mathbb{K}$$

$$x \longmapsto \sum_{k=0}^{N} a_k x^k$$

 \widetilde{P} s'appelle fonction polynômiale associée à P.

Proposition 41

$$\forall (P,Q) \in \mathbb{K}[X]^2 \ et \ \forall \ \lambda \in K,$$

$$\widetilde{P+\lambda Q}=\widetilde{P}+\lambda\widetilde{Q}\quad et\quad \widetilde{PQ}=\widetilde{P}\widetilde{Q}$$

7.2 Arithmétique dans $\mathbb{K}[X]$

7.2.1 Divisibilité dans $\mathbb{K}[X]$

Définition 53

Soit $(A, B) \in \mathbb{K}[X]^2$.

On dit que A divise B, et on note $A \mid B$, si et seulement si

$$\exists~Q\in\mathbb{K}[X],~B=AQ$$

Exemples

$$X+1 \mid X^2-1 \text{ dans } \mathbb{R}[X] \text{ et } X+i \mid X^2+1 \text{ dans } \mathbb{C}[X].$$

Remarques

- 1. $\forall A \in \mathbb{K}[X], A \mid 0$.
- 2. Soit $B \in \mathbb{K}[X]$, $0 \mid B \iff B = 0$.
- 3. Soit $(A, B) \in \mathbb{K}[X]^2$. Si $A \mid B$ alors $d(A) \leq d(B)$.

Proposition 42

Soit
$$(A, B, C) \in (\mathbb{K}[X]^*)^3$$
.

Alors,

1. $A \mid A$ (réflexivité).

- 2. $A \mid B \text{ et } B \mid A \iff \exists \lambda \in \mathbb{K}^*, B = \lambda A.$
- 3. $A \mid B \text{ et } B \mid C \Longrightarrow A \mid C \text{ (transitivit\'e)}$

Remarque

Dans $\mathbb{K}[X]$, $P \mid Q$ et $Q \mid P$ n'implique pas que P = Q.

Par exemple, dans $\mathbb{R}[X]$, $2X^2 \mid 5X^2$ et $5X^2 \mid 2X^2$ et pourtant $2X^2 \neq 5X^2$!

Proposition 43

Soit $(A, B, C, D) \in (\mathbb{K}[X]^*)^4$.

Alors,

- 1. $A \mid B \Longrightarrow A \mid BC$.
- 2. $A \mid B \text{ et } A \mid C \iff \forall (U, V) \in \mathbb{K}[X]^2, A \mid BU + CV.$
- 3. $A \mid B \text{ et } C \mid D \Longrightarrow AC \mid BD$.
- 4. Si $A \mid B$ alors $\forall n \in \mathbb{N}^*, A^n \mid B^n$.

7.2.2 Division euclidienne dans $\mathbb{K}[X]$

Théorème 18

 $\forall \ (A,B) \in \mathbb{K}[X] \times \mathbb{K}[X]^*, \ \exists \,! \, (Q,R) \in \mathbb{K}[X]^2 \ tel \ que$

$$A = BQ + R$$
 et $d(R) < d(B)$

C'est faire la division euclidienne de A par B.

Q s'appelle quotient de la division euclidienne de A par B. R est le reste de cette division.

Méthode pratique pour trouver Q et R

Soit $(A, B) \in \mathbb{K}[X] \times \mathbb{K}[X]^*$.

- 1er cas : A = 0 ou d(A) < d(B). Alors A = 0B + A. Donc Q = 0 et R = A.
- 2ème cas : $d(A) \ge d(B)$.

On range les deux polynômes A et B par ordre de puissances décroissantes.

Exemples

1. Pour $A = X^3 + 2X + 1$ et B = X + 1, on trouve que

$$Q = X^2 - X + 3$$
 et $R = -2$

2. Pour $A = X^4 + 2X^3 - X + 6$ et $B = X^3 - 6X^2 + X + 4$, on a

$$Q = X + 8$$
 et $R = 47X^2 - 13X - 26$

Remarque

On a donc $A \mid B$ si et seulement si le reste de la division euclidienne de B par A est nul.

7.2.3 Polynômes premiers entre eux

Définition 54

Soit $(A, B) \in (\mathbb{K}[X]^*)^2$.

On montre qu'il existe un unique polynôme de $\mathbb{K}[X]$, noté Δ , unitaire (c-à-d le coefficient de plus haut degré est 1), diviseur commun de A et de B et de plus haut degré parmi tous les diviseurs communs de A et de B.

On l'appelle pgcd de A et de B. On note $\Delta = A \wedge B$.

D'où,

$$\Delta = A \wedge B \Longleftrightarrow \left\{ \begin{array}{l} \Delta \mid A \ \ et \ \ \Delta \mid B \\ \forall \ P \in \mathbb{K}[X], \ P \mid A \ \ et \ \ P \mid B \implies P \mid \Delta \\ \Delta \quad unitaire \end{array} \right.$$

Exemple

$$(2X^2 - 2) \wedge (4X^4 - 8X^2 + 4) = X^2 - 1 \operatorname{car} 4X^4 - 8X^2 + 4 = (2X^2 - 2)^2.$$

Comment trouver $A \wedge B$?

On peut utiliser l'algorithme d'Euclide :

 $A \wedge B$ est le dernier reste non nul normalisé dans la suite des divisions euclidiennes successives.

Exemple

Par Euclide, trouvons $(X^5 + X + 1) \wedge (X^4 - 2X^3 - X + 2)$ dans $\mathbb{R}[X]$.

On fait d'abord la division euclidienne de $X^5 + X + 1$ par $X^4 - 2X^3 - X + 2$.

On trouve

$$Q_1 = X + 2$$
 et $R_1 = 4X^3 + X^2 + X - 3$

On fait alors la division euclidienne de $X^4 - 2X^3 - X + 2$ par R_1 .

On trouve

$$Q_2 = \frac{1}{4}X - \frac{9}{16}$$
 et $R_2 = \frac{5}{16}X^2 + \frac{5}{16}X + \frac{5}{16}$

Ensuite, on fait la division euclidienne de $4X^3 + X^2 + X - 3$ par R_2 .

On trouve

$$Q_3 = \frac{64}{5}X - \frac{48}{5}$$
 et $R_3 = 0$

On en déduit donc que $(X^5 + X + 1) \wedge (X^4 - 2X^3 - X + 2)$ est R_2 rendu unitaire donc

$$(X^5 + X + 1) \wedge (X^4 - 2X^3 - X + 2) = X^2 + X + 1$$

Définition 55

Soit $(A, B) \in (\mathbb{K}[X]^*)^2$.

On dit que A et B sont premiers entre eux si et seulement si

$$A \wedge B = 1$$

c'est-à-dire que les seuls diviseurs communs de A et de B sont les polynômes constants non nuls.

Exemple

Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq b$.

Alors, X - a et X - b sont premiers entre eux dans $\mathbb{R}[X]$.

Théorème 19 (Bézout)

Soit $(A, B) \in (\mathbb{K}[X]^*)^2$.

On a

$$A \wedge B = 1 \iff \exists (U, V) \in (\mathbb{K}[X])^2, AU + BV = 1$$

Corollaire 5

Soit $n \in \mathbb{N}^*$.

Soit $(A, P_1, \dots, P_n) \in (\mathbb{K}[X]^*)^{n+1}$ tel que $\forall i \in [1, n], A \land P_i = 1$. Alors.

$$A \wedge P_1 \dots P_n = 1$$

Corollaire 6 (Gauss)

Soit $(A, B, C) \in (\mathbb{K}[X]^*)^3$.

Alors,

$$A \mid BC \quad et \quad A \land B = 1 \implies A \mid C$$

Proposition 44

Soit $n \in \mathbb{N}^*$.

Soit $(A, P_1, \dots, P_n) \in (\mathbb{K}[X]^*)^{n+1}$ tel que

$$\forall (i,j) \in [1,n]^2, i \neq j, P_i \land P_j = 1 \text{ et } \forall i \in [1,n] P_i \mid A$$

Alors,

$$\prod_{i=1}^{n} P_i \mid A$$

7.3 Racines d'un polynôme

7.3.1 Définition et propriétés

Définition 56

Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

On dit que a est une racine (ou un zéro) de P si et seulement si $\widetilde{P}(a) = 0$.

Exemple

2 est racine de $X^2 - X - 2$ dans $\mathbb{R}[X]$ car $2^2 - 2 - 2 = 0$.

Proposition 45

Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

Alors,

$$a$$
 racine de $P \iff X - a \mid P$

Proposition 46

Soient $P \in \mathbb{K}[X]$, $n \in \mathbb{N}^*$ et $(a_1, \ldots, a_n) \in \mathbb{K}^n$ deux à deux distincts.

 $Si \ a_1, \ldots, a_n \ sont \ racines \ de \ P \ alors$

$$\prod_{i=1}^{n} (X - a_i) \mid P$$

Corollaire 7

1. Soient $P \in \mathbb{K}[X]$ et $n \in \mathbb{N}^*$.

 $Si\ d(P) < n\ et\ si\ P\ admet\ au\ moins\ n\ racines\ distinctes\ alors\ P = 0\ (un\ polynôme\ de\ degré\ n\ admet\ donc\ au\ plus\ n\ racines\ distinctes).$

2. Si $P \in \mathbb{K}[X]$ s'annule une infinité de fois alors P = 0.

7.3.2 Formule de Taylor

Théorème 20

Considérons

$$\mathbb{K}_N[X] = \{ P \in \mathbb{K}[X], d(P) \leq N \}$$

Soient $P \in \mathbb{K}_N[X]$ et $a \in \mathbb{K}$.

Alors,

$$P = \sum_{k=0}^{N} \frac{\widetilde{P^{(k)}(a)}}{k!} (X - a)^{k}$$

7.3.3 Ordre de multiplicité d'une racine

Définition 57

Soient $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $\alpha \in \mathbb{N}^*$.

1. On dit que a est une racine d'ordre au moins α de P si et seulement si

$$(X-a)^{\alpha} \mid P$$

$$c$$
-à- $d \exists Q \in \mathbb{K}[X], P = (X - a)^{\alpha}Q.$

2. On dit que a est une racine d'ordre exactement α de P si et seulement si

$$(X-a)^{\alpha} \mid P \quad et \quad (X-a)^{\alpha+1} \nmid P$$

$$c$$
-à- $d \exists Q \in \mathbb{K}[X], \ P = (X - a)^{\alpha}Q \ et \ \widetilde{Q}(a) \neq 0.$

Théorème 21

Soient $P \in \mathbb{K}[X]$, $a \in \mathbb{K}$ et $\alpha \in \mathbb{N}^*$.

Alors,

a racine d'ordre exactement
$$\alpha$$
 de $P \iff \widetilde{P}(a) = \widetilde{P}'(a) = \ldots = \widetilde{P^{(\alpha-1)}}(a) = 0$ et $\widetilde{P^{(\alpha)}}(a) \neq 0$

7.3.4 Polynômes irréductibles dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$ (admis)

Théorème 22

Soit $P \in \mathbb{C}[X]$ non constant.

Alors, P admet au moins une racine dans \mathbb{C} .

Définition 58

Soit $P \in \mathbb{K}[X]$.

On dit que P est irréductible dans $\mathbb{K}[X]$ si et seulement si $d(P) \geqslant 1$ et les seuls diviseurs de P sont les polynômes constants de $\mathbb{K}[X]^*$ et les polynômes de la forme λP avec $\lambda \in \mathbb{K}^*$.

Théorème 23

Tout polynôme de $\mathbb{K}[X]$ de degré supérieur ou égal à 1 admet une décomposition unique en produit de polynômes irréductibles dans $\mathbb{K}[X]$.

Définition 59

Soit $P \in \mathbb{K}[X]$.

On dit que P est scindé sur \mathbb{K} si et seulement si $\exists \lambda \in \mathbb{K}^*$, $n \in \mathbb{N}^*$ et $x_1, \ldots, x_n \in \mathbb{K}$ tels que

$$P = \lambda \prod_{i=1}^{n} (X - x_i)$$

Théorème 24

- 1. Tout polynôme de $\mathbb{C}[X]$ non constant est scindé sur \mathbb{C} .
- 2. Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

3. Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 à discriminant strictement négatif.

Chapitre 8

Suites numériques

8.1 Définitions et exemples

8.1.1 Généralités

Définition 60

Une suite numérique est une application de \mathbb{N} vers \mathbb{R} (ou de $\mathbb{N} \cap [n_0, +\infty[$ vers \mathbb{R} avec $n_0 \in \mathbb{N}$ fixé).

On note $u: \mathbb{N} \longrightarrow \mathbb{R}$

$$n \mapsto u(n) = u_n$$

 u_n s'appelle teme général de la suite $(u_n)_{n\in\mathbb{N}}$.

Notation

L'ensemble des suites réelles est noté $\mathbb{R}^{\mathbb{N}}$.

Définition 61

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite

- constante si et seulement si

$$\forall n \in \mathbb{N}, \quad u_n = u_{n+1}$$

- stationnaire si et seulement si elle est constante à partir d'un certain rang, i.e.

$$\exists N \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad (n \geqslant N \implies u_n = u_{n+1})$$

8.1.2 Définitions liées à l'ordre

Définition 62

Une suite $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ est

- majorée si et seulement si

$$\exists M \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \leqslant M$$

- minorée si et seulement si

$$\exists m \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \geqslant m$$

- bornée si et seulement si elle est minorée et majorée

Remarque

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.

On a

$$(u_n)$$
 bornée \iff $\exists M \in \mathbb{R}^+, \forall n \in \mathbb{N}, |u_n| \leqslant M$

Exemples

Les suites (u_n) et (v_n) définies par

$$u_n = \cos(n)$$

$$v_n = (-1)^n$$

sont bornées.

Définition 63

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.

- On dit que (u_n) est croissante si et seulement si

$$\forall n \in \mathbb{N}, \quad u_{n+1} \geqslant u_n$$

- On dit que (u_n) est strictement croissante si et seulement si

$$\forall n \in \mathbb{N}, \quad u_{n+1} > u_n$$

- On dit que (u_n) est décroissante si et seulement si

$$\forall n \in \mathbb{N}, \quad u_{n+1} \leqslant u_n$$

- On dit que (u_n) est strictement décroissante si et seulement si

$$\forall n \in \mathbb{N}, \quad u_{n+1} < u_n$$

- On dit que (u_n) est monotone si et seulement si elle est croissante ou décroissante

Remarque

Pour étudier la monotonie d'une suite (u_n) , il suffit de trouver le signe de

$$u_{n+1} - u_n$$

Si $u_n \neq 0$ pour tout n, on peut aussi comparer

$$\frac{u_{n+1}}{u_n}$$

par rapport à 1.

Exemples

1. Soit $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad u_n = \frac{1}{n+1}$$

Alors, pour tout entier n,

$$u_{n+1} - u_n = -\frac{1}{(n+1)(n+2)} < 0$$

Donc, (u_n) est strictement décroissante.

2. Soit $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{n!}{2^n}$$

On a, pour tout entier n strictement positif,

$$\frac{u_{n+1}}{u_n} = \frac{n+1}{2} \geqslant 1$$

Donc, (u_n) est croissante.

8.2 Convergence et divergence

8.2.1 Définitions

Définition 64

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.

1. Soit $l \in \mathbb{R}$.

On dit que (u_n) converge vers l si et seulement si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geqslant N \implies |u_n - l| < \varepsilon)$$

2. On dit que (u_n) converge si et seulement si

$$\exists l \in \mathbb{R}, \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geqslant N \implies |u_n - l| < \varepsilon)$$

3. On dit que (u_n) diverge si et seulement si elle ne converge pas i.e.

$$\forall l \in \mathbb{R}, \exists \varepsilon > 0, \forall N \in \mathbb{N}, \exists n \in \mathbb{N}, (n \geqslant N \ et \ |u_n - l| \geqslant \varepsilon)$$

Proposition 47

Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $l\in\mathbb{R}$.

 $Si(u_n)$ converge vers l alors l est unique.

On note alors

$$l = \lim_{n \to +\infty} u_n$$

Définition 65

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$.

- On dit que (u_n) tend vers $+\infty$ si et seulement si

$$\forall A > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant N \implies u_n > A)$$

On note alors

$$\lim_{n \to +\infty} u_n = +\infty$$

- On dit que (u_n) tend vers $-\infty$ si et seulement si

$$\forall B < 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, \quad (n \geqslant N \implies u_n < B)$$

On note alors

$$\lim_{n \to +\infty} u_n = -\infty$$

Remarques

- 1. Les suites divergentes sont donc celles qui tendent vers $+\infty$, celles qui tendent vers $-\infty$ et celles qui n'ont pas de limite.
- 2. Soient $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $l\in\mathbb{R}$.

On a

$$\lim_{n \to +\infty} u_n = 0 \quad \Longleftrightarrow \quad \lim_{n \to +\infty} |u_n| = 0$$

et

$$\lim_{n \to +\infty} u_n = l \quad \Longleftrightarrow \quad \lim_{n \to +\infty} |u_n| = |l|$$

8.2.2 Exemples

Exemple 1

Soit $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout entier n strictement positif par

$$u_n = \frac{1}{n}$$

Soit $\varepsilon > 0$ fixé.

On remarque que

$$\frac{1}{n} > \varepsilon \quad \Longleftrightarrow \quad n > \frac{1}{\varepsilon}$$

Soit $N_{\varepsilon} = E[\frac{1}{\varepsilon}] + 1$.

Soit $n \geqslant N_{\varepsilon}$.

Alors,

$$\frac{1}{\varepsilon} < N_{\varepsilon} \leqslant n$$

D'où,

$$\frac{1}{n} < \varepsilon$$

Par conséquent, (u_n) converge vers 0.

Exemple 2

Soit $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier n par

$$u_n = n^2$$

Soit A > 0 fixé.

On remarque que

$$n^2 > A \iff n > \sqrt{A}$$

Soit $N_A = E[\sqrt{A}] + 1$.

Soit $n \geqslant N_A$.

Alors,

$$n > \sqrt{A}$$

D'où,

$$n^2 > A$$

Par conséquent, (u_n) diverge vers $+\infty$.

8.2.3 Propriétés des suites convergentes ou divergentes

Proposition 48

Toute suite convergente est bornée.

Remarque

La réciproque est fausse! Par exemple, la suite (u_n) définie par $u_n = (-1)^n$ pour tout entier n est une suite bornée divergente.

Proposition 49

- 1. Toute suite tendant vers $+\infty$ est minorée, non majorée.
- 2. Toute suite tendant vers $-\infty$ est majorée, non minorée.

Remarque

La réciproque est fausse. Par exemple, la suite (u_n) définie pour tout entier n par $u_n = (-1)^n n$ est non majorée mais diverge vers $+\infty$.

8.2.4 Théorème de Cesàro

Définition 66

Soit $(u_n)_{n\in\mathbb{N}^*}$.

On appelle moyenne de Cesàro de (u_n) la suite (v_n) définie par

$$\forall n \in \mathbb{N}^*, \quad v_n = \frac{u_1 + \ldots + u_n}{n}$$

Théorème 25 (Théorème de Cesàro)

Soient $(u_n)_{n\in\mathbb{N}^*}$ et $l\in\mathbb{R}$.

 $Si(u_n)_{n\in\mathbb{N}^*}$ converge vers l alors sa moyenne de Cesàro (v_n) converge aussi vers l i.e.

$$\lim_{n \to +\infty} u_n = l \quad \Longrightarrow \quad \lim_{n \to +\infty} \frac{u_1 + \dots + u_n}{n} = l$$

Remarques

1. La réciproque est fausse. En effet, prenons l'exemple de la suite (u_n) définie, pour tout entier n, par

$$u_n = (-1)^n$$

Alors, (u_n) diverge et pourtant sa moyenne de Cesàro (v_n) converge vers 0.

2. Le théorème est aussi vrai pour $(u_n)_{n\in\mathbb{N}}$ et $v_n = \frac{u_0 + \ldots + u_{n-1}}{n}$.

Exemple

Soient $(u_n)_{n\in\mathbb{N}}$ et $a\in\mathbb{R}$ tels que

$$\lim_{n \to +\infty} u_{n+1} - u_n = a$$

Alors,

$$\lim_{n \to +\infty} \frac{u_n}{n} = a$$

En effet, considérons la suite $(w_n)_{n\in\mathbb{N}^*}$ définie par

$$w_n = u_n - u_{n-1}$$

On remarque que

$$\frac{w_1 + \ldots + w_n}{n} = \frac{u_n}{n} - \frac{u_0}{n}$$

D'où,

$$\frac{u_n}{n} = \frac{w_1 + \ldots + w_n}{n} + \frac{u_0}{n}$$

Par conséquent, comme $\lim_{n\to+\infty}\frac{u_0}{n}=0$ et $\lim_{n\to+\infty}\frac{w_1+\ldots+w_n}{n}=a$ par Cesàro, on obtient le résultat.

8.3 Limite et relation d'ordre

8.3.1 Passage à la limite dans les inégalités

Proposition 50

Soient $(u_n)_{n\in\mathbb{N}}$ et $l\in\mathbb{R}$ tels que (u_n) converge vers l.

1. Soit $a \in \mathbb{R}$ tel que a < l.

Alors,

$$\exists N_1 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad (n \geqslant N_1 \implies a < u_n)$$

2. Soit $b \in \mathbb{R}$ tel que l < b.

Alors,

$$\exists N_2 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad (n \geqslant N_2 \implies u_n < b)$$

Proposition 51

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(l,l')\in\mathbb{R}^2$ tels que (u_n) converge vers l et (v_n) converge vers l'. Soit $a\in\mathbb{R}$.

- 1. Si $\exists N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $(n \geqslant N \implies u_n > a)$ alors $l \geqslant a$.
- 2. Si $\exists N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $(n \geqslant N \implies a > u_n)$ alors $a \geqslant l$.
- 3. Si $\exists N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $(n \geqslant N \implies u_n > v_n)$ alors $l \geqslant l'$.

Exemple

Considérons $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ définies par

$$u_n = \frac{1}{n}$$
 et $v_n = -\frac{1}{n}$

On a, pour tout entier n > 0, $v_n < u_n$.

En revanche,

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 0$$

8.3.2 Théorème des gendarmes

Théorème 26

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ telles que

$$\exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geqslant N \implies u_n \leqslant v_n \leqslant w_n)$$

Soit $l \in \mathbb{R}$.

- 1. $Si(u_n)$ et (w_n) convergent vers l alors (v_n) converge vers l.
- 2. Si (v_n) diverge vers $-\infty$ alors (u_n) diverge vers $-\infty$.
- 3. Si (u_n) diverge vers $+\infty$ alors (v_n) diverge vers $+\infty$.

Corollaire 8

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que

$$\exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ (n \geqslant N \implies |u_n| \leqslant v_n)$$

 $Si(v_n)$ converge vers 0 alors (u_n) converge vers 0.

Exemple

Considérons la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout entier n strictement positif par

$$v_n = \sum_{k=1}^n \frac{1}{n^2 + 2k^2}$$

Alors, pour tout $k \in [1, n]$, on a

$$2 \leqslant 2k^{2} \leqslant 2n^{2} \implies 2 + n^{2} \leqslant n^{2} + 2k^{2} \leqslant 3n^{2}$$

$$\implies \frac{1}{3n^{2}} \leqslant \frac{1}{n^{2} + 2k^{2}} \leqslant \frac{1}{2 + n^{2}}$$

$$\implies \sum_{k=1}^{n} \frac{1}{3n^{2}} \leqslant \sum_{k=1}^{n} \frac{1}{n^{2} + 2k^{2}} \leqslant \sum_{k=1}^{n} \frac{1}{2 + n^{2}}$$

$$\implies \frac{n}{3n^{2}} \leqslant u_{n} \leqslant \frac{n}{2 + n^{2}}$$

Comme $\lim_{n\to+\infty}\frac{n}{3n^2}=\lim_{n\to+\infty}\frac{1}{3n}=0$ et $\lim_{n\to+\infty}\frac{n}{2+n^2}=0$, on en déduit donc que

$$\lim_{n \to +\infty} u_n = 0$$

La suite (u_n) converge donc vers 0.

8.4 Opérations sur les limites de suites

8.4.1 Pour les suites convergentes

Proposition 52

Soient $((u_n), (v_n)) \in (\mathbb{R}^{\mathbb{N}})^2$, $(l, l') \in \mathbb{R}^2$ et $\lambda \in \mathbb{R}$.

1. $Si \lim_{n \to +\infty} u_n = l \ et \lim_{n \to +\infty} v_n = l' \ alors,$

$$\lim_{n \to +\infty} \lambda \, u_n + v_n = \lambda \, l + l'$$

2. Si $\lim_{n \to +\infty} u_n = l$ et (v_n) bornée alors,

$$\lim_{n \to +\infty} u_n v_n = 0$$

3. Si $\lim_{n \to +\infty} u_n = l$ et $\lim_{n \to +\infty} v_n = l'$ alors,

$$\lim_{n \to +\infty} u_n v_n = ll'$$

4. Si $\lim_{n \to +\infty} u_n = l \neq 0$ alors la suite $\left(\frac{1}{u_n}\right)$ est bien définie à partir d'un certain rang et

$$\lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{l}$$

5. Si $\lim_{n \to +\infty} u_n = l$ et $\lim_{n \to +\infty} v_n = l' \neq 0$ alors la suite $\left(\frac{u_n}{v_n}\right)$ est bien définie à partir d'un certain rang et

$$\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{l}{l'}$$

Exemple

Considérons la suite $\left(\frac{\sin(n^8)}{\sqrt{n}}\right)$.

Comme $(sin(n^8))$ est bornée par 1 et que $(\frac{1}{\sqrt{n}})$ converge vers 0, on en déduit que la suite $(\frac{\sin(n^8)}{\sqrt{n}})$ converge vers 0.

8.4.2 Pour les suites divergentes

Proposition 53

Soient $((u_n), (v_n)) \in (\mathbb{R}^{\mathbb{N}})^2$ et $l' \in \mathbb{R}$.

1. $Si \lim_{n \to +\infty} u_n = +\infty$ et (v_n) est minorée (à partir d'un certain rang) alors,

$$\lim_{n \to +\infty} u_n + v_n = +\infty \quad et \quad \lim_{n \to +\infty} u_n v_n = +\infty$$

En particulier,

(a)
$$Si \lim_{n \to +\infty} u_n = +\infty \ et \lim_{n \to +\infty} v_n = +\infty \ alors,$$

$$\lim_{n \to +\infty} u_n + v_n = +\infty$$

(b)
$$Si \lim_{n \to +\infty} u_n = +\infty$$
 et $\lim_{n \to +\infty} v_n = l'$ alors,

$$\lim_{n \to +\infty} u_n + v_n = +\infty$$

(c)
$$Si \lim_{n \to +\infty} u_n = +\infty \ et \lim_{n \to +\infty} v_n = +\infty \ alors,$$

$$\lim_{n \to +\infty} u_n v_n = +\infty$$

(d)
$$Si \lim_{n \to +\infty} u_n = +\infty \ et \lim_{n \to +\infty} v_n = l' \ alors,$$

$$\lim_{n \to +\infty} u_n v_n = +\infty$$

2.
$$Si \lim_{n \to +\infty} u_n = +\infty \ alors,$$

$$\lim_{n \to +\infty} \frac{1}{u_n} = 0$$

3.
$$Si \lim_{n \to +\infty} u_n = 0^+ \ alors,$$

$$\lim_{n \to +\infty} \frac{1}{u_n} = +\infty$$

Remarque

Il y a 4 formes indéterminées : $+\infty - \infty$, $0 \times \infty$, $\frac{\infty}{\infty}$, $\frac{0}{0}$ et 1^{∞} .

Exemples

1. $\lim_{n \to +\infty} \frac{2n^3 - 4n + 7}{1 - n^3}$ est indéterminée.

Pour lever l'indétermination, on met les termes de plus haut degré en facteur au numérateur et au dénominateur.

Ainsi

$$\frac{2n^3 - 4n + 7}{1 - n^3} = \frac{n^3(2 - \frac{4}{n^2} + \frac{7}{n^3})}{n^3(\frac{1}{n^3} - 1)} = \frac{2 - \frac{4}{n^2} + \frac{7}{n^3}}{\frac{1}{n^3} - 1}$$

Par conséquent,

$$\lim_{n \to +\infty} \frac{2n^3 - 4n + 7}{1 - n^3} = \frac{2}{-1} = -2$$

2. $\lim_{n\to+\infty} \frac{7^n+6^n}{7^{n+1}+6^{n+1}}$ est indéterminée.

Pour lever l'indétermination, c'est la même idée que précédemment.

On a

$$\frac{7^n + 6^n}{7^{n+1} + 6^{n+1}} = \frac{7^n (1 + (\frac{6}{7})^n)}{7^{n+1} (1 + (\frac{6}{7})^{n+1})} = \frac{1 + (\frac{6}{7})^n}{7(1 + (\frac{6}{7})^{n+1})}$$

Or,
$$\frac{6}{7}<1$$
 d'où
$$\lim_{n\to+\infty}\left(\frac{6}{7}\right)^n=\lim_{n\to+\infty}\left(\frac{6}{7}\right)^{n+1}=0$$
 Ainsi,
$$\lim_{n\to+\infty}\frac{7^n+6^n}{7^{n+1}+6^{n+1}}=\frac{1}{7}$$

8.5 Monotonie

8.5.1 Propriétés des suites monotones

Proposition 54

- 1. Toute suite réelle croissante et majorée converge.
- 2. Toute suite réelle décroissante et minorée converge.
- 3. Toute suite croissante non majorée diverge vers $+\infty$.
- 4. Toute suite décroissante non minorée diverge vers $-\infty$.

Remarque

Si (u_n) est une suite croissante qui converge vers $l \in \mathbb{R}$ alors

$$l = Sup\{ u_n; n \in \mathbb{N} \}$$

Donc,

$$\forall n \in \mathbb{N}, \quad u_n \leqslant l$$

Exemple

Considérons la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier n par

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$

Montrons que cette suite converge.

Comme $u_{n+1} - u_n = \frac{1}{(n+1)!} \ge 0$, on en déduit que (u_n) est croissante.

De plus,

$$\forall n \geqslant 1, \quad \frac{1}{n!} \leqslant \frac{1}{2 \times \dots \times 2} = \frac{1}{2^{n-1}}$$

Par conséquent,

$$u_n \leqslant 1 + \sum_{k=1}^{n} \frac{1}{2^{k-1}} \leqslant 3$$

En conclusion, (u_n) est croissante et majorée par 3 donc elle converge.

8.5.2 Les suites adjacentes

Définition 67

Soit
$$((u_n),(v_n)) \in (\mathbb{R}^{\mathbb{N}})^2$$
.

On dit que (u_n) et (v_n) sont deux suites adjacentes si et seulement si

$$-(u_n)$$
 est croissante,

$$-(v_n)$$
 est décroissante,

$$-et \lim_{n \to +\infty} u_n - v_n = 0.$$

Exemple

Montrons que les suites (u_n) et (v_n) définie pour tout entier $n \ge 3$ par

$$u_n = \sum_{k=3}^{n} \frac{1}{k^2 + 1}$$

$$v_n = u_n + \frac{1}{n} - \frac{1}{2n^2}$$

sont adjacentes.

On a

•
$$u_{n+1} - u_n = \frac{1}{(n+1)^2 + 1} \ge 0.$$

Donc, (u_n) est croissante.

•
$$v_{n+1} - v_n = \frac{-(n-1)^2 + 3}{2n^2(n^2 + 2n + 2)(n+1)^2} \le 0.$$

Donc, (v_n) est décroissante.

$$\bullet u_n - v_n = \frac{1}{2n^2} - \frac{1}{n}.$$

Donc,
$$\lim_{n \to +\infty} u_n - v_n = 0$$
.

On peut donc conclure que ces suites sont adjacentes.

Théorème 27

Si deux suites réelles (u_n) et (v_n) sont adjacentes alors elles convergent vers la même limite l et

$$\forall n \in \mathbb{N}, \quad u_n \leqslant u_{n+1} \leqslant l \leqslant v_{n+1} \leqslant v_n$$

Exemple

Les deux suites (u_n) et (v_n) précédentes convergent donc vers la même limite l.

8.6 Suites extraites

8.6.1 Définition et exemples

Définition 68

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$.

Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante.

La suite définie par

est appelée suite extraite (ou sous-suite) de (u_n) .

On la note $(u_{(\varphi(n)})_{n\in\mathbb{N}}$.

Exemples

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$.

1. Soit
$$\varphi : \mathbb{N} \longrightarrow \mathbb{N}$$
.
$$n \longmapsto n+1$$

Cette application est strictement croissante de $\mathbb N$ vers $\mathbb N$.

Donc $(u_{\varphi(n)}) = (u_{n+1})$ est une suite extraite de (u_n)

Par exemple, considérons la suite (u_n) définie pour tout entier naturel n par

$$u_n = n^2 - 1$$

Alors, la suite extraite (u_{n+1}) de (u_n) est définie pour tout entier naturel n par

$$u_{n+1} = n^2 + 2n$$

2. Soient
$$\varphi_1: \mathbb{N} \longrightarrow \mathbb{N}$$
 et $\varphi_2: \mathbb{N} \longrightarrow \mathbb{N}$.
$$n \longmapsto 2n \qquad n \longmapsto 2n+1$$

 φ_1 et φ_2 sont deux applications strictement croissantes de \mathbb{N} vers \mathbb{N} .

Donc
$$(u_{\varphi_1(n)}) = (u_{2n})$$
 et $(u_{\varphi_2(n)}) = (u_{2n+1})$ sont deux sous-suite de (u_n) .

Proposition 55

Soit $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ une application strictement croissante. Alors,

$$\forall n \in \mathbb{N}, \quad \varphi(n) \geqslant n$$

8.6.2 Propriétés

Proposition 56

Soient $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $l \in \mathbb{R}$.

 $Si(u_n)$ converge vers l alors toute suite extraite de (u_n) converge aussi vers l.

Remarque

La contraposée de cette proposition est importante.

Ainsi, si $\exists \varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $(u_{\varphi(n)})$ diverge, alors (u_n) diverge.

Exemples

1. Une méthode pour montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier n par

$$u_n = (-1)^n$$

diverge est la suivante :

Raisonnons par l'absurde et supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$.

Alors, toute suite extraite de $(u_n)_{n\in\mathbb{N}}$ converge aussi vers l.

En particulier, les deux sous-suites (u_{2n}) et (u_{2n+1}) convergent donc vers l.

Or, $u_{2n} = 1$ et $u_{2n+1} = -1$. Donc, (u_{2n}) converge vers 1 et (u_{2n+1}) converge vers -1.

On a abouti à une contradiction.

2. Montrons que la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout entier n par

$$u_n = \cos\left(\frac{n\pi}{4}\right)$$

diverge.

 (u_{4n}) est une suite extraite de (u_n) . Cette suite extraite est définie pour tout entier n par

$$u_{4n} = \cos(n\pi) = (-1)^n$$

On en déduit donc que la suite extraite (u_{4n}) diverge.

Donc, (u_n) diverge.

Proposition 57

Soient $(u_n) \in \mathbb{R}^{\mathbb{N}}$ et $l \in \mathbb{R}$.

On a

 (u_n) converge vers $l \iff (u_{2n})$ et (u_{2n+1}) convergent vers l

Exemple

Considérons la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = \sum_{k=1}^{n} \frac{(-1)^k}{k^2}$$

Montrons que (u_n) converge.

Introsuisons pour cela les deux suites extraites $(v_n) = (u_{2n})$ et $(w_n) = (u_{2n+1})$ de (u_n) .

On a

•
$$v_{n+1} - v_n = u_{2n+2} - u_{2n} = \frac{-4n - 3}{(2n+2)^2(2n+1)^2}$$
.

On en déduit que

$$v_{n+1} - v_n \leqslant 0$$

et donc $(v_n) = (u_{2n})$ est décroissante.

•
$$w_{n+1} - w_n = u_{2n+3} - u_{2n+1} = \frac{4n+5}{(2n+3)^2(2n+2)^2}$$
.

On en déduit que

$$w_{n+1} - w_n \geqslant 0$$

et donc $(w_n) = (u_{2n+1})$ est croissante.

• On remarque aussi que

$$w_n - v_n = u_{2n+1} - u_{2n} = -\frac{1}{(2n+1)^2}$$

D'où,

$$\lim_{n \to +\infty} w_n - v_n = 0$$

• Conclusion : les suites (u_{2n}) et (u_{2n+1}) sont deux suites adjacentes. Elles convergent donc vers la même limite l.

D'après la proposition précédente, on en déduit donc que (u_n) converge (vers l).

8.6.3 Le théorème de Bolzano-Weierstrass

Théorème 28 (Bolzano-Weierstrass)

De toute suite réelle bornée on peut extraite une suite convergente.

Exemple

Soit $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_n = \cos(n)$$

 (u_n) est une suite divergente mais bornée. Par conséquent, il y a au moins une sous-suite de (u_n) qui converge...

8.7 Suites récurrentes du type $u_{n+1} = f(u_n)$

8.7.1 Etude générale

Soit I un intervalle fermé de \mathbb{R} .

Soit $f: I \longrightarrow I$ une fonction continue.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+1}=f(u_n)$ avec $u_0\in I$.

Proposition 58

Supposons que la suite (u_n) converge vers $l \in \mathbb{R}$.

Alors,

$$l = f(l)$$

On dit que l est un point fixe de f.

Cas où la fonction f est croissante sur I

Comme

$$\forall n \in \mathbb{N}, \quad u_{n+1} - u_n = f(u_n) - f(u_{n-1})$$

on voit que $u_{n+1} - u_n$ est du même signe que $u_1 - u_0$.

• Si $u_0 \leqslant u_1$ alors $u_n \leqslant u_{n+1}$.

La suite (u_n) est donc croissante.

• Si $u_0 \geqslant u_1$ alors $u_n \geqslant u_{n+1}$.

La suite (u_n) est donc décroissante.

Finalement, dans les deux cas, la suite (u_n) est monotone.

Il reste à voir ensuite si elle est majorée, minorée etc...

Cas où la fonction f est décroissante sur I

Si f est décroissante sur I alors $f \circ f$ est croissante sur I.

Etant donné que $u_{2n+2} = f \circ f(u_{2n})$ et $u_{2n+3} = f \circ f(u_{2n+1})$, on en déduit que les suites extraites (u_{2n+2}) et (u_{2n+3}) sont monotones, ce qui revient à dire que les deux suites extraites (u_{2n}) et (u_{2n+1}) sont monotones.

On constate aussi qu'elles sont de sens de monotonie opposé.

8.7.2 Exemples

Exemple 1

Soit $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_{n+1} = \frac{1}{6} \left(u_n^2 + 8 \right)$$

avec $u_0 \in \mathbb{R}^+$ fixé.

- Par récurrence, on montre que $\forall n \in \mathbb{N}^*, u_n \geq 0$.
- Soit la fonction f définie par $f(x) = \frac{1}{6}(x^2 + 8)$ sur $[0, +\infty[$.
- Les points fixes de f sont 2 et 4.

Par conséquent, si la suite (u_n) converge, elle converge soit vers 2 soit vers 4.

– En faisant le tableau de variations de f, on constate que f est croissante de $[0, +\infty[$ vers $[\frac{4}{3}, +\infty[$ et

$$f([0,2[)] = [\frac{4}{3},2[$$

$$f(2) = 2$$

$$f([2,4[)] = ([2,4[)]$$

$$f(4) = 4$$

$$f([4,+\infty[)] = [4,+\infty[]$$

• De l'étude de f, on obtient que (u_n) est monotone et que $u_{n+1} - u_n$ a le même signe que $u_1 - u_0$.

Or,

$$u_1 - u_0 = \frac{1}{6}(u_0 - 2)(u_0 - 4)$$

On en déduit donc les faits suivants :

- Cas où $u_0 \in [0, 2[$.

Alors, $u_1 \ge u_0$. Donc la suite (u_n) est croissante.

De plus, par récurrence et en utilisant les variations de f, on montre que pour tout entier n, $u_n \in [0, 2[$.

Ainsi, (u_n) est majorée par 2.

Conclusion : (u_n) converge vers 2.

- Cas où $u_0 \in [2, 4[$.

Alors, $u_1 \leq u_0$. Donc la suite (u_n) est décroissante.

De plus, par récurrence et en utilisant les variations de f, on montre que pour tout entier n, $u_n \in [2, 4[$.

Ainsi, (u_n) est minorée par 2.

Conclusion : (u_n) converge vers 2.

- Cas où $u_0 = 4$.

Alors (u_n) est constant égale à 4. Donc (u_n) converge vers 4.

- Cas où $u_0 \in]4, +\infty[$.

Dans ce cas là, (u_n) est croissante.

De plus, si (u_n) converge vers l alors on a

$$l \geqslant u_0 > 4$$

ce qui est impossible.

Donc (u_n) diverge vers $+\infty$.

Exemple 2

Etudions la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_{n+1} = \frac{1}{2 + u_n}$$

avec $u_0 = 1$.

• Par récurrence, on montre facilement que $\forall n \in \mathbb{N}, u_n > 0$.

• Soit
$$f: [0, +\infty[\longrightarrow [0, +\infty[$$
 avec $f(x) = \frac{1}{2+x}$. Alors

111015

f est décroissante.

- Les points fixes de f sont $-1 - \sqrt{2} < 0$ et $-1 + \sqrt{2} > 0$. Comme (u_n) est positive, sa limite éventuelle est positive.

Donc, si (u_n) converge, elle converge vers $\alpha = -1 + \sqrt{2}$.

• Montrons que (u_n) converge vers α .

On a

$$|u_{n+1} - \alpha| = |f(u_n) - f(\alpha)|$$

$$= \left| \frac{1}{2 + u_n} - \frac{1}{2 + \alpha} \right|$$

$$= \frac{|u_n - \alpha|}{(2 + u_n)(2 + \alpha)}$$

$$\leqslant \frac{1}{4} |u_n - \alpha|$$

Par récurrence, on obtient, pour tout entier n que

$$|u_n - \alpha| \leqslant \left(\frac{1}{4}\right)^n |u_0 - \alpha|$$

Comme $\lim_{n\to+\infty} \left(\frac{1}{4}\right)^n = 0$, on en déduit, par le théorème des Gendarmes, que

$$\lim_{n \to +\infty} |u_n - \alpha| = 0$$

En conclusion, la suite (u_n) converge ves α .

8.8 Comparaison de suites

8.8.1 Relations de prépondérance

Définition 69

Soit
$$((u_n),(v_n)) \in (\mathbb{R}^{\mathbb{N}})^2$$
.

1. On dit que (u_n) est négligeable devant (v_n) si et seulement si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant N \implies |u_n| \leqslant \varepsilon |v_n|)$$

On note $u_n = o(v_n)$.

2. On dit que (u_n) est dominée par (v_n) si et seulement si

$$\exists M > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, (n \geqslant N \implies |u_n| \leqslant M|v_n|)$$

On note $u_n = O(v_n)$.

Remarques

- 1. $u_n = o(1) \iff \lim_{n \to +\infty} u_n = 0.$
- 2. $u_n = O(1) \iff (u_n)$ bornée.

Proposition 59

$$u_n = o(v_n) \implies u_n = O(v_n).$$

Théorème 29

1.

$$u_n = o(v_n) \iff \exists (\varepsilon_n) \in \mathbb{R}^{\mathbb{N}} \text{ qui converge vers } 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} \text{ } (n \geqslant N \implies u_n = \varepsilon_n v_n)$$

2.

$$u_n = O(v_n) \iff \exists (\varepsilon_n) \in \mathbb{R}^{\mathbb{N}} \ born\acute{e}e, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} \ (n \geqslant N \implies u_n = \varepsilon_n v_n)$$

Interprétation

Si $v_n \neq 0$ à partir d'un certain rang, alors

$$u_n = o(v_n) \iff \lim_{n \to +\infty} \frac{u_n}{v_n} = 0$$

 et

$$u_n = O(v_n) \iff \left(\frac{u_n}{v_n}\right)$$
 bornée

Exemples

1. On a
$$\frac{1}{n^2}=o(\frac{1}{n}),\quad \ln n=o(n^\alpha)\quad \text{avec}\quad \alpha>0,\quad n^a=o(a^n)\quad \text{avec}\quad a>0$$

2. Considérons

$$u_n = \frac{2n^2 + 1}{n\sqrt{n+1}}$$

Alors

$$u_n = \frac{n^2 \left(2 + \frac{1}{n^2}\right)}{n\sqrt{n+1}} = \frac{n}{\sqrt{n+1}} \left(2 + \frac{1}{n^2}\right) \leqslant \frac{3n}{\sqrt{n+1}} \leqslant 3\sqrt{n}$$

Par conséquent,

$$u_n = O(\sqrt{n})$$

Or $u_n \neq o(\sqrt{n})$ car

$$\frac{u_n}{\sqrt{n}} = \frac{2n^2 + 1}{n\sqrt{n^2 + n}} = \frac{n^2(2 + \frac{1}{n^2})}{n^2\sqrt{1 + \frac{1}{n}}} = \frac{2 + \frac{1}{n^2}}{\sqrt{1 + \frac{1}{n}}}$$

Ainsi,

$$\lim_{n \to +\infty} \frac{u_n}{\sqrt{n}} = 2 \neq 0$$

Proposition 60

Soient (u_n) , (v_n) , (w_n) et (t_n) dans $\mathbb{R}^{\mathbb{N}}$.

Alors,

1.

$$u_n = o(v_n)$$
 et $v_n = o(w_n) \implies u_n = o(w_n)$

2.

$$u_n = o(w_n)$$
 et $v_n = o(w_n) \implies u_n + v_n = o(w_n)$

3.

$$\forall \alpha \in \mathbb{R}^*, \quad u_n = o(v_n) \implies \alpha u_n = o(v_n)$$

4.

$$u_n = o(w_n)$$
 et $v_n = o(t_n)$ \Longrightarrow $u_n v_n = o(w_n t_n)$

8.8.2 Relation d'équivalence

Définition 70

Soit $((u_n),(v_n)) \in (\mathbb{R}^{\mathbb{N}})^2$.

On dit que (u_n) est équivalent à (v_n) si et seulement si

$$u_n - v_n = o(v_n)$$

On note $u_n \sim v_n$.

Remarque

Soit $a \in \mathbb{R}^*$.

$$u_n \sim a \iff \lim_{n \to +\infty} u_n = a$$

Théorème 30

 $u_n \sim v_n \iff \exists (\varepsilon_n) \in \mathbb{R}^{\mathbb{N}} \text{ qui converge vers } 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N} \text{ } (n \geqslant N \implies u_n = (1 + \varepsilon_n)v_n)$

Interprétation

Si $v_n \neq 0$ à partir d'un certain rang, alors

$$u_n \sim v_n \quad \Longleftrightarrow \quad \lim_{n \to +\infty} \frac{u_n}{v_n} = 1$$

Exemples

1. $3n^2 + 2n - 8 \sim 3n^2$ car

$$u_n = 3n^2 \left(1 + \frac{2}{3n} - \frac{8}{3n^2} \right)$$

ainsi

$$\lim_{n \to +\infty} \frac{u_n}{3n^2} = 1$$

2. Equivalents classiques:

$$\ln\left(1 + \frac{1}{n}\right) \sim \frac{1}{n}$$

$$e^{\frac{1}{n}} - 1 \sim \frac{1}{n}$$

$$\sin\left(\frac{1}{n}\right) \sim \frac{1}{n}$$

$$\cos\left(\frac{1}{n}\right) - 1 \sim -\frac{1}{2n^2}$$

Proposition 61

Soient (u_n) , (v_n) , (w_n) et (t_n) dans $\mathbb{R}^{\mathbb{N}}$.

Alors,

1.

$$u_n \sim v_n$$
 et $v_n \sim w_n \implies u_n \sim w_n$

2.

$$u_n \sim v_n \implies \forall \alpha \in \mathbb{R}^+, \ u_n^\alpha \sim v_n^\alpha$$

3.

$$u_n \sim v_n) \implies \frac{1}{u_n} \sim \frac{1}{v_n}$$

4.

$$u_n \sim w_n$$
 et $v_n \sim t_n \implies u_n v_n \sim w_n t_n$

5.

$$u_n \sim v_n$$
 et $\lim_{n \to +\infty} u_n = l \cup \{\pm \infty\}$ \Longrightarrow $\lim_{n \to +\infty} v_n = l \cup \{\pm \infty\}$

8.8.3 Développements limités et développements asymptotiques

Développements limités

Pour les suites, la variable n tend toujours vers $+\infty$.

Pour pouvoir exploiter les développements limités, il faut donc faire apparaître, si besoin, des quantités qui tendent vers 0 quand n tend vers $+\infty$ du genre $\frac{1}{n}$ par exemple.

Exemples

1. Trouvons le développement limité à l'ordre 4 en $+\infty$ de

$$u_n = \ln\left(1 + \cos\left(\frac{1}{n}\right)\right)$$

La quantité $\frac{1}{n}$ tend vers 0 quand n tend vers $+\infty$. D'où,

$$u_n = \ln\left(1 + 1 - \frac{1}{2n^2} + \frac{1}{4!n^4} + o\left(\frac{1}{n^4}\right)\right)$$

$$= \ln\left(2\left(1 - \frac{1}{4n^2} + \frac{1}{48n^4} + o\left(\frac{1}{n^4}\right)\right)\right)$$

$$= \ln 2 + \ln\left(1 - \frac{1}{4n^2} + \frac{1}{48n^4} + o\left(\frac{1}{n^4}\right)\right)$$

$$= \ln 2 + \left(-\frac{1}{4n^2} + \frac{1}{48n^4}\right) - \frac{1}{2}\left(-\frac{1}{4n^2}\right) + o\left(\frac{1}{n^4}\right)$$

$$= \ln 2 - \frac{1}{4n^2} - \frac{1}{96n^4} + o\left(\frac{1}{n^4}\right)$$

2. Calculons

$$\lim_{n \to +\infty} \left(\frac{n}{n+1} \right)^n$$

On a

$$\left(\frac{n}{n+1}\right)^n = e^{n\ln\left(\frac{n}{n+1}\right)}$$

$$= e^{-n\ln\left(\frac{n+1}{n}\right)}$$

$$= e^{-n\ln\left(1+\frac{1}{n}\right)}$$

$$= e^{-n\left(-\frac{1}{n}+o\left(\frac{1}{n}\right)\right)}$$

$$= e^{-1+o(1)}$$

Par conséquent,

$$\lim_{n \to +\infty} \left(\frac{n}{n+1} \right)^n = e^{-1}$$

Développements asymptotiques

Exemple 1

Considérons

$$u_n = \sqrt{n + \sqrt{n}} - \sqrt{n}$$

On a

$$u_n = \sqrt{n\left(1 + \frac{1}{\sqrt{n}}\right)} - \sqrt{n}$$

$$= \sqrt{n}\left(\sqrt{1 + \frac{1}{\sqrt{n}}} - 1\right)$$

$$= \sqrt{n}\left(\frac{1}{2\sqrt{n}} - \frac{1}{8n} + \frac{1}{16n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)\right)$$

$$= \frac{1}{2} - \frac{1}{8\sqrt{n}} + \frac{1}{16n} + o\left(\frac{1}{n}\right)$$

Pour distinguer ce type de développement d'un développement limité qui est lui polynomial, on dit que c'est un **développement asymptotique** de u_n en $+\infty$ à la précision $o\left(\frac{1}{n}\right)$.

Exemple 2

Considérons

$$u_n = \ln\left(n\ln n + 1\right)$$

On a

$$u_n = \ln(n \ln n) + \ln\left(1 + \frac{1}{n \ln n}\right)$$

$$= \ln n + \ln \ln n + \frac{1}{n \ln n} - \frac{1}{2n^2(\ln n)^2} + o\left(\frac{1}{n^2(\ln n)^2}\right)$$

ce qui constitue un développement asymptotique au voisinage de $+\infty$ à la précision $o\left(\frac{1}{n^2(\ln n)^2}\right)$.

Chapitre 9

Espaces vectoriels

Dans tout le chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

9.1 Généralités

9.1.1 Structure d'espace vectoriel

Soit E un ensemble muni d'une loi interne

$$+: E \times E \longrightarrow E$$
 $(u, v) \longmapsto u + v$

et d'une loi externe

$$\begin{array}{cccc} \cdot : \mathbb{K} \times E & \longrightarrow & E \\ & (\alpha, u) & \longmapsto & \alpha \cdot u \end{array}$$

Définition 71

On dit ue $(E, +, \cdot)$ est un espace vectoriel sur \mathbb{K} , ou un \mathbb{K} -espace vectoriel, si et seulement si

- 1. (E, +) est un groupe abélien.
- 2. $\forall (u, v) \in E^2 \ et \ \forall (\alpha, \beta) \in \mathbb{K}^2$
 - (a) $(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot v$
 - (b) $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$
 - (c) $(\alpha\beta) \cdot u = \alpha \cdot (\beta \cdot u)$
 - (d) $1_{\mathbb{K}} \cdot u = u$

Remarque

Au lieu de dire que E est un \mathbb{K} -espace vectoriel, on abrège souvent par : E est un \mathbb{K} -ev.

Définition 72

Soit $(E, +, \cdot)$ un \mathbb{K} -ev.

On appelle vecteurs les éléments de E et scalaires les éléments de K.

De plus, le vecteur 0_E est appelé vecteur nul.

Exemple 1

 \mathbb{C} et \mathbb{R} sont des \mathbb{R} -ev.

Exemple 2

Pour

$$E = \mathbb{R}^2$$

On définit sur E les lois

$$- + par : \forall u = (x_1, y_1) \in E \text{ et } v = (x_2, y_2) \in E, u + v = (x_1 + x_2, y_1 + y_2) \in E$$

- · par :
$$\forall u = (x_1, y_1) \in E \text{ et } \alpha \in \mathbb{R}, \ \alpha \cdot u = (\alpha x_1, \alpha y_1) \in E.$$

Alors, $(E, +, \cdot)$ est un \mathbb{R} -ev.

Plus généralement, pour tout entier naturel n supérieur à 1, \mathbb{R}^n est un \mathbb{R} -ev.

Exemple 3

Soit I un intervalle de \mathbb{R} .

Soit

$$\mathbb{R}^I = \{ \ f: I \to \mathbb{R} \ \}$$

On définit sur \mathbb{R}^I les lois

– + par :
$$\forall (f,g) \in (\mathbb{R}^I)^2$$
 et $\forall x \in I, (f+g)(x) = f(x) + g(x)$

$$-\cdot \operatorname{par}: \forall \ f \in \mathbb{R}^I, \ \forall \ \alpha \in \mathbb{R} \ \operatorname{et} \ \forall \ x \in I, \ (\alpha \cdot f)(x) = \alpha f(x).$$

Alors, $(\mathbb{R}^I, +, \cdot)$ est un \mathbb{R} -ev.

Exemple 4

Soit $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites numériques.

On définit sur $\mathbb{R}^{\mathbb{N}}$ les lois

$$- + \text{par} : \forall ((u_n), (v_n)) \in (\mathbb{R}^{\mathbb{N}})^2, (u_n) + (v_n) = (u_n + v_n)$$

$$-\cdot \operatorname{par}: \forall (u_n) \in \mathbb{R}^{\mathbb{N}}, \forall \alpha \in \mathbb{R}, \alpha \cdot (u_n) = (\alpha u_n).$$

Alors, $(\mathbb{R}^{\mathbb{N}}, +, \cdot)$ est un \mathbb{R} -ev.

Exemple 5

Du cours sur les polynômes, on en déduit que $(\mathbb{R}[X], +, \cdot)$ est un \mathbb{R} -ev.

Soit E un \mathbb{K} -ev.

Propriété 1

Soient $u \in E$ et $\alpha \in \mathbb{K}$.

Alors.

1.
$$\alpha \cdot 0_E = 0_E$$
.

$$2. \ 0_{\mathbb{K}} \cdot u = 0_E.$$

3.
$$\alpha \cdot u = 0_E \iff \alpha = 0_K \text{ ou } u = 0_E$$
.

Propriété 2

Soient $(\alpha, \beta) \in \mathbb{K}^2$ et $(u, v) \in E^2$.

Alors,

1.
$$(\alpha - \beta) \cdot u = \alpha \cdot u - \beta \cdot u$$

2.
$$\alpha \cdot (u - v) = \alpha \cdot u - \alpha \cdot v$$

3.
$$-(\alpha \cdot u) = \alpha \cdot (-u) = (-\alpha) \cdot u$$

9.1.2 Sous-espaces vectoriels

Définition 73

Soit $(E, +, \cdot)$ un \mathbb{K} -ev.

Soit $F \subset E$.

On dit que F est un sous-espace vectoriel de E (on dit aussi sous-ev ou sev) si et seulement si $(F, +, \cdot)$ est un \mathbb{K} -ev.

Exemples

- 1. \mathbb{R} est un sous-espace vectoriel de \mathbb{C} .
- 2. $\mathbb{R}_n[X]$ est un sous-espace vectoriel de $\mathbb{R}[X]$.

Théorème 31

Soit $(E, +, \cdot)$ un \mathbb{K} -ev.

Alors,

$$F \quad est \ un \ sev \ de \ E \Longleftrightarrow \begin{cases} F \subset E \\ F \neq \emptyset \ (0_E \in F) \\ \forall \ (\alpha, \beta) \in \mathbb{K}^2, \forall \ (u, v) \in F^2 \quad \alpha \cdot u + \beta \cdot v \in F \end{cases}$$

Remarque

Par soucis de clarté, le symbole \cdot de la loi de composition externe est désormais omis.

Exemples

1. Soit $F = \{(x, y, z) \in \mathbb{R}^3, x + 3y - z = 0\}.$

Montrons que F est un sev de \mathbb{R}^3 .

Par définition, $F \subset \mathbb{R}^3$.

De plus, $F \neq \emptyset$ car $(0,0,0) \in F$ vu que $0+3\times 0-0=0$!

De plus, soient $u = (x_1, y_1, z_1) \in F$ et $v = (x_2, y_2, z_2) \in F$.

On a donc

$$x_1 + 3y_1 - z_1 = 0$$

$$x_2 + 3y_2 - z_2 = 0$$

Soit $(\alpha, \beta) \in \mathbb{R}^2$.

Montrons que $\alpha u + \beta v \in F$.

On a évidemment $\alpha u + \beta v \in \mathbb{R}^3$.

De plus, $\alpha u + \beta v = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2)$ vérifie

$$(\alpha x_1 + \beta x_2) + 3(\alpha y_1 + \beta y_2) - (\alpha z_1 + \beta z_2) = (\alpha x_1 + 3\alpha y_1 - \alpha z_1) + (\beta x_2 + 3\beta y_2 - \beta z_2)$$

$$= \alpha (x_1 + 3y_1 - z_1) + \beta (x_2 + 3y_2 - z_2)$$

$$= \alpha \times 0 + \beta \times 0 \quad \text{car} \quad (u, v) \in F^2$$

$$= 0$$

On a donc $\alpha u + \beta v \in F$ et on peut conclure que F est un sev de \mathbb{R}^3 .

2. De même, on peut montrer que $C^0(\mathbb{R}, \mathbb{R})$ est un sev de $\mathbb{R}^{\mathbb{R}}$.

Contre-exemples

1. $G = \{(x, y, z) \in \mathbb{R}^3, x + 3y - z = 1\}$ n'est pas un sev de \mathbb{R}^3 car $(0, 0, 0) \notin G$.

2. $H=\{\,(x,y,z)\in\mathbb{R}^3,\,xyz=0\,\}$ n'est pas un sev de $\mathbb{R}^3.$

En effet, supposons que H est un sev de \mathbb{R}^3 .

Alors,

$$\forall (u, v) \in H, \quad u + v \in H$$

Prenons par exemple $u = (1, 1, 0) \in H$ et $v = (0, 1, 3) \in H$.

On a u + v = (1, 2, 3) et $1 \times 2 \times 3 \neq 0$! Donc, $u + v \notin H$ ce qui est absurde.

Proposition 62

Soient E un \mathbb{K} -ev et F et G deux sev de E.

Alors, $F \cap G$ est un sev de E.

Plus généralement, l'intersection finie de sev de E est un sev de E.

Contre-exemple

La réunion de sev de E n'est pas un sev de E!!

En effet, considérons par exemple $E = \mathbb{R}^2$ et les deux sev de E suivants :

$$F = \{ (x, y) \in \mathbb{R}^2, x + 2y = 0 \}$$

et

$$G = \{ (x, y) \in \mathbb{R}^2, x = 0 \}$$

Raisonnons par l'absurde et supposons que $F \cup G$ est un sev de E.

Alors,

$$\forall (x,y) \in F \cup G^2, \quad x+y \in F \cup G$$

Prenons par exemple x=(-2,1) et y=(0,3). On a $x\in F\subset F\cup G$ et $y\in G\subset F\cup G$.

Donc,

$$(x,y) \in F \cup G^2$$

Cependant, x + y = (-2, 4). D'où, $x + y \notin F$ et $x + y \notin G$.

Par conséquent, $x + y \notin F \cup G$ ce qui est une contradiction.

9.1.3 Somme de sous-espaces vectoriels

Soit E un \mathbb{K} -espace vectoriel.

Soient F et G deux sev de E.

Définition 74

On définit l'ensemble F + G par

$$F + G = \{ u \in E; \exists (u_1, u_2) \in F \times G, u = u_1 + u_2 \}$$

Proposition 63

F+G est un sev de E.

Exemple

Soient
$$E = \mathbb{R}^2$$
, $F = \{(x, y) \in \mathbb{R}^2, y = 0\}$ et $G = \{(x, y) \in \mathbb{R}^2, y = x\}$.

F et G sont deux sev de E.

De plus, soit $u = (x, y) \in E$.

Alors,

$$u = (x - y, 0) + (y, y)$$

Comme $(x - y, 0) \in F$ et $(y, y) \in G$, on a bien $u \in F + G$.

Donc $E \subset F + G$.

L'inclusion inverse étant immédiate, on a donc E = F + G.

Définition 75

On dit que F et G sont en somme directe si et seulemnt si $F \cap G = \{0_E\}$.

On note alors $F \oplus G$ au lieu de F + G.

Exemples

- 1. F et G définis précédemment sont en somme directe.
- 2. Soient $E = \mathbb{R}^3$, $F = \{(x, y, z) \in \mathbb{R}^3, z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3, y = 0\}$.

F et G sont bien deux sev de E mais ils ne sont pas en somme directe car $(1,0,0) \in F \cap G$.

Théorème 32

F et G sont en somme directe si et seulement si

$$\forall u \in F + G, \exists! (u_1, u_2) \in F \times G, u = u_1 + u_2$$

Définition 76

On dit que F et G sont supplémentaires dans E si et seulement si

$$E = F + G$$
 et $F \cap G = \{0_E\}$

On note alors $E = F \oplus G$.

Théorème 33

$$E = F \oplus G \iff \forall u \in E, \exists ! (u_1, u_2) \in F \times G, u = u_1 + u_2$$

Exemples

1. Soit $E = \mathcal{C}^0(\mathbb{R}, \mathbb{R})$.

Soient

$$F = \{ f \in E, \int_0^1 f(t) dt = 0 \}$$

et

$$G = \{ f \in E, \exists a \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = a \}$$

Il est facile de montrer que F et G sont deux sev de E.

Montrons qu'ils sont supplémentaires dans E.

Montrons tout d'abord que $F \cap G = \{0_E\}$.

Soit $f \in F \cap G$.

Alors, comme $f \in G$, il existe $a \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}$,

$$f(x) = ax$$

Or, on a aussi $f \in F$. Comme, dans ce cas,

$$\int_0^1 f(t) \, dt = \int_0^1 a \, t \, dt = \frac{a}{2}$$

on en déduit donc que a=0.

Par conséquent, pour tout $x \in \mathbb{R}$, f(x) = 0.

Donc, $f = 0_E$ (0_E étant la fonction nulle).

On a donc montrer que $F \cap G \subset \{0_E\}$.

Comme l'inclusion inverse est immédiate, on a bien

$$F \cap G = \{0_E\}$$

Il reste à montrer que

$$E = F + G$$

L'inclusion $F + G \subset E$ est immédiate.

Montrons donc que $E \subset F + G$.

Pour cela, faisons un raisonnement par analyse et synthèse.

• Analyse

Supposons que $E \subset F + G$.

Soit $f \in E$.

Alors, $\exists (f_1, f_2) \in F \times G$ tel que

$$f = f_1 + f_2$$

i.e.

$$\forall x \in \mathbb{R} \quad f(x) = f_1(x) + f_2(x)$$

Comme $f_2 \in G$, il existe $a \in \mathbb{R}$ tel que, pour tout réel x, $f_2(x) = ax$.

Donc,

$$f(x) = f_1(x) + ax$$

Calculons
$$\int_0^1 f(t)dt$$
.

On a

$$\int_0^1 f(t)dt = \int_0^1 f_1(t)dt + \int_0^1 atdt$$
$$= 0 + \frac{a}{2} \operatorname{car} f_1 \in F$$

Par conséquent,

$$a = 2\int_0^1 f(t)dt$$

D'où,

$$f_2(x) = 2\left(\int_0^1 f(t)dt\right)x$$

et

$$f_1(x) = f(x) - f_2(x) = f(x) - 2\left(\int_0^1 f(t)dt\right)x$$

• Synthèse

Soient $f \in E$ et $x \in \mathbb{R}$.

On a

$$f(x) = f(x) - 2\left(\int_0^1 f(t)dt\right)x + 2\left(\int_0^1 f(t)dt\right)x$$

Posons alors

$$f_1(x) = f(x) - 2\left(\int_0^1 f(t)dt\right)x$$

et

$$f_2(x) = 2\left(\int_0^1 f(t)dt\right)x$$

Ainsi, on a, pour tout $x \in \mathbb{R}$, $f(x) = f_1(x) + f_2(x)$.

Il reste à prouver que $f_1 \in F$ et $f_2 \in G$.

On a évidemment $f_2 \in G$.

De plus,

$$\int_{0}^{1} f_{1}(t)dt = \int_{0}^{1} \left(f(t) - 2 \left(\int_{0}^{1} f(t)dt \right) t \right) dt$$

$$= \int_{0}^{1} f(t)dt - 2 \left(\int_{0}^{1} f(t)dt \right) \int_{0}^{1} t dt$$

$$= \int_{0}^{1} f(t)dt - 2 \left(\int_{0}^{1} f(t)dt \right) \frac{1}{2}$$

$$= \int_{0}^{1} f(t)dt - \int_{0}^{1} f(t)dt$$

$$= 0$$

Donc, $f_1 \in F$.

En conclusion, $f = f_1 + f_2$ avec $(f_1, f_2) \in F \times G$. Donc, $f \in F + G$.

On a bien montré que $E \subset F + G$.

2. On peut montrer aussi que dans $E = \mathbb{R}^3$, F et G sont supplémentaires avec

$$F = \{ u = (x, y, z) \in E, x = y = z \}$$

et

$$G = \{ (x, y, z) \in E, x + y + z = 0 \}$$

9.1.4 Sous-espace vectoriel engendré par une partie

Définition 77

Soient E un \mathbb{K} -ev et $A \subset E$.

On appelle sev engendré par A l'intersection de tous les sev de E qui contiennent A. On le note Vect(A).

Proposition 64

Vect(A) est le plus petit sev de E qui contient A.

Exemples

1. Soit E un \mathbb{K} -ev.

Alors,

$$Vect(\emptyset) = \{0_E\}$$

2. Pour le \mathbb{R} -ev $E = \mathbb{C}$,

$$Vect(\{1\}) = \mathbb{R}$$

Proposition 65

Soient E un \mathbb{K} -ev, $n \in \mathbb{N}^*$ et $(u_1, \dots, u_n) \in E^n$ une famille finie de vecteurs de E. Alors,

$$Vect(\{u_1, \dots, u_n\}) = \left\{ u \in E, \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, u = \sum_{i=1}^n \lambda_i u_i \right\}$$

Exemples

1. Soient $E = \mathbb{R}^2$ et u = (1, 2).

Alors, $Vect(u) = \{ \alpha u, \alpha \in \mathbb{R} \}$ donc Vect(u) est l'ensemble des vecteurs colinéaires à u.

2. Considérons $E = \mathbb{R}^n$.

Pour tout $u = (x_1, \ldots, x_n) \in \mathbb{R}^n$, on a

$$u = x_1(1, 0, \dots, 0) + \dots + x_n(0, \dots, 0, 1) := x_1e_1 + \dots + x_ne_n$$

Donc, $u \in Vect(\{e_1, \dots, e_n\})$ et par conséquent $E \subset Vect(\{e_1, \dots, e_n\})$.

Or, $Vect(\{e_1,\ldots,e_n\})$ est un sev de E.

On conclut que

$$E = Vect(\{e_1, \ldots, e_n\})$$

3. De même, on montre que

$$\mathbb{R}_n[X] = Vect(\{1, X, \dots, X^n\})$$

9.1.4.1 Propriétés

Proposition 66

Soient E un \mathbb{K} -ev, A et B deux sous-ensembles de E.

Alors,

- 1. $A \subset B \implies Vect(A) \subset Vect(B)$.
- 2. A sev de $E \iff Vect(A) = A$.
- 3. $Vect(A \cup B) = Vect(A) + Vect(B)$.

9.2 Familles libres, familles génératrices, bases d'un espace vectoriel

Soit E un \mathbb{K} -ev.

Définition 78

Soit $n \in \mathbb{N}^*$.

Soit $(u_1, \ldots, u_n) \in E^n$.

On appelle combinaison linéaire de (u_1, \ldots, u_n) tout vecteur $u \in E$ tel que

$$\exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \quad u = \sum_{i=1}^n \lambda_i u_i$$

Exemple

Considérons $E = \mathbb{R}^2$, $u_1 = (1, -1)$ et $u_2 = (3, 4)$.

Alors, u = (8,6) est combinaison linéaire de (u_1, u_2) car $u = 2u_1 + 2u_2$.

9.2.1 Familles libres

Définition 79

Soit $n \in \mathbb{N}^*$.

Soit $(u_1,\ldots,u_n)\in E^n$.

1. On dit que la famille (u_1, \ldots, u_n) est une famille libre de E si et seulement si

$$\forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \quad \left(\sum_{i=1}^n \lambda_i u_i = 0_E \implies \lambda_1 = \dots = \lambda_n = 0\right)$$

2. On dit que la famille (u_1, \ldots, u_n) est une famille liée de E si et seulement si elle n'est pas libre c-à-d

$$\exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \setminus \{(0, \dots, 0)\}, \sum_{i=1}^n \lambda_i u_i = 0_E$$

Exemples

1. Soit E un \mathbb{K} -ev.

$$\{u\}$$
 libre $\iff u \neq 0_E$

et

$$\{u,u\}$$
 est liée

2. Prenons $E = \mathbb{C}$.

(1,i) est libre dans E car pour tout $(a,b) \in \mathbb{R}^2$, $a+ib=0 \Longrightarrow a=b=0$.

3. Soit $E = \mathbb{R}^3$.

Soient
$$u_1 = (1, 0, -1), u_2 = (1, 1, 1)$$
 et $u_3 = (0, 1, -1)$.

Montrons que $\{u_1, u_2, u_3\}$ est une famille libre.

Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tel que

$$\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0_{\mathbb{R}^3}$$

Alors,

$$\begin{cases} \lambda_1 + \lambda_2 &= 0\\ \lambda_2 + \lambda_3 &= 0\\ -\lambda_1 + \lambda_2 - \lambda_3 &= 0 \end{cases}$$

On a facilement que la solution de ce système est $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

4. $E = \mathbb{R}^n$.

Soit, pour tout $i \in [1, n]$, $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (le 1 étant à la i-ème place).

On montre facilement que la famille (e_1, \ldots, e_n) est libre dans E.

5. $E = \mathbb{R}_n[X]$.

On montre que la famille $(1, X, \dots, X^n)$ est libre dans E.

6. $E = \mathbb{R}^2$.

Soient
$$u_1 = (1,1)$$
, $u_2 = (2,1)$ et $u_3 = (-1,0)$.

Alors, la famille (u_1, u_2, u_3) est liée car $u_1 - u_2 - u_3 = (0, 0, 0)$.

Proposition 67

- 1. Toute sous-famille d'une famille libre est libre.
- 2. Toute sur-famille d'une famille liée est liée.

Proposition 68

Soient $(u_1, \ldots, u_n) \in E^n$ une famille libre et $u \in E$. Alors,

 (u_1,\ldots,u_n,u) liée \iff u est combinaison linéaire des u_i

Définition 80

Soit $(u_i)_{i\in I}$ une famille éventuellement infinie de E. Alors,

- 1. $(u_i)_{i\in I}$ est libre si et seulement si toute sous-famille finie de $(u_i)_{i\in I}$ est libre.
- 2. $(u_i)_{i\in I}$ est liée si et seulement si il existe une sous-famille finie des $(u_i)_{i\in I}$ qui soit liée.

Exemple

Soit

$$f_{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$$

$$x \mapsto e^{\alpha x}$$

Alors, la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est libre dans $\mathbb{R}^{\mathbb{R}}$.

En effet, raisonnons par l'absurde et supposons qu'il existe une sous-famille finie de (f_{α}) liée.

Alors, $\exists (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n \text{ et } \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \setminus \{(0, \dots, 0)\} \text{ tels que}$

$$\sum_{i=1}^{n} \lambda_i f_{\alpha_i} = 0$$

Quitte à retirer des termes, on peut supposer que $\forall i \in [1, n], \lambda_i \neq 0$.

Quitte à réordonner les termes, on peut supposer $\alpha_1 > \alpha_2 > \ldots > \alpha_n$.

On a

$$\lim_{x \to +\infty} e^{-\alpha_1 x} \sum_{i=1}^n \lambda_i e^{\alpha_i x} = \lim_{x \to +\infty} \sum_{i=1}^n \lambda_i e^{(\alpha_i - \alpha_1)x}$$
$$= \lambda_1$$

Or,
$$\sum_{i=1}^{n} \lambda_i f_{\alpha_i} = 0$$
. Donc, $\lambda_1 = 0$ ce qui est absurde.

9.2.2 Familles génératrices

Définition 81

Soit $(u_1, \ldots, u_n) \in E^n$.

On dit que la famille (u_1, \ldots, u_n) est génératrice de E si et seulement si

$$E = Vect(u_1, \ldots, u_n)$$

C'est-à-dire

$$\forall u \in E, \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, u = \sum_{i=1}^n \lambda_i u_i$$

Exemples

1. $E = \mathbb{C}$.

(1,i) est génératrice de E.

 $2. E = \mathbb{R}^n.$

 (e_1, \ldots, e_n) est génératrice de E avec pour tout $i \in [1, n]$, $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ (le 1 étant à la i-ème place).

3. Dans \mathbb{R}^2 , deux vecteurs non colinéaires sont générateurs.

Dans \mathbb{R}^3 , trois vecteurs non coplanaires sont générateurs.

4. $E = \mathbb{R}^3$.

Soit le sev $F = \{ u = (x, y, z) \in \mathbb{R}^3, 2x + y - z = 0 \}$ de E. Alors,

$$F = \{ (x, y, 2x + y), (x, y) \in \mathbb{R}^2 \}$$
$$= \{ x(1, 0, 2) + y(0, 1, 1), (x, y) \in \mathbb{R}^2 \}$$

Donc,

$$F = Vect((1, 0, 2), (0, 1, 1))$$

Proposition 69

Toute sur-famille finie d'une famille génératrice de E est génératrice de E.

9.2.3 Les bases

Définition 82

Soit $n \in \mathbb{N}^*$.

Soit $(e_1, \ldots, e_n) \in E^n$ une famille de vecteurs de E.

On dit que (e_1, \ldots, e_n) est une base de E si et seulement si (e_1, \ldots, e_n) est une famille libre et génératrice de E.

Exemples

- 1. $E = \mathbb{C}$ (en tant que \mathbb{R} -ev). (1, i) est une base de \mathbb{C} .
- 2. $E = \mathbb{R}^n$.

 (e_1,\ldots,e_n) est une base de E avec pour tout $i\in [1,n]$, $e_i=(0,\ldots,0,1,0,\ldots,0)$ (le 1 étant à la i-ème place).

On l'appelle base canonique de \mathbb{R}^n .

- 3. $E = \mathbb{R}_n[X]$.
 - $(1, X, \dots, X^n)$ est une base de E appelée aussi base canonique de $\mathbb{R}_n[X]$

Remarque

Dans un ev, on a plusieurs bases possibles.

Par exemple, si $E = \mathbb{R}^2$, (e_1, e_2) avec $e_1 = (1, 0)$ et $e_2 = (0, 1)$ est la base canonique.

Cependant, considérons $u_1 = (1,1)$ et $u_2 = (2,3)$.

Il est facile de voir que (u_1, u_2) est une famille libre de \mathbb{R}^2 .

De plus, elle est génératrice de \mathbb{R}^2 car $\forall u = (x, y) \in \mathbb{R}^2$,

$$u = (-x + 2y)u_1 + (x - y)u_2$$

Donc, (u_1, u_2) est aussi une base de \mathbb{R}^2 .

Théorème 34

Soit $(e_1, \ldots, e_n) \in E^n$ une famille de vecteurs de E.

On a l'équivalence suivante :

$$(e_1,\ldots,e_n)$$
 est une base de $E \iff \left(\forall u \in E, \exists ! (\lambda_1,\ldots,\lambda_n) \in \mathbb{K}^n, u = \sum_{i=1}^n \lambda_i u_i\right)$

 $(\lambda_1,\ldots,\lambda_n)$ sont les coordonnées de u dans la base (e_1,\ldots,e_n) .

9.3 Applications linéaires

9.3.1 Définitions et exemples

Soient E et F deux \mathbb{K} -ev.

Définition 83

Soit $f: E \longrightarrow F$ une application.

On dit que f est linéaire si et seulement si

$$\forall (u, v) \in E^2, \ \forall \lambda \in \mathbb{K}, \ f(\lambda u + v) = \lambda f(u) + f(v)$$

Notation

L'ensemble des applications linéaires de E vers F est noté $\mathcal{L}(E,F)$.

Définition 84

Soit $f \in \mathcal{L}(E, F)$.

- 1. Si f est bijective, on dit que f est un isomorphisme.
- 2. $Cas\ E = F$.

f s'appelle alors endomorphisme de E.

 $\mathcal{L}(E,E)$ se note simplement $\mathcal{L}(E)$.

3. Si $f \in \mathcal{L}(E)$ et si f est bijectif, on dit que f est un automorphisme.

Propriété 3

Si
$$f \in \mathcal{L}(E, F)$$
 alors $f(0_E) = 0_F$.

Exemples

1. Soit $E = \mathbb{R}^2$. Considérons l'application

$$f: E \longrightarrow E$$

 $(x,y) \longmapsto (ax+by,cx+dy) \text{ avec } (a,b,c,d) \in \mathbb{R}^4 \text{ fixés}$

Montrons que $f \in \mathcal{L}(E)$.

Soient
$$u = (x, y) \in E$$
, $v = (x', y') \in E$ et $\lambda \in \mathbb{R}$.

Alors,
$$\lambda u + v = (\lambda x + x', \lambda y + y')$$
.

D'où

$$f(\lambda u + v) = (a(\lambda x + x') + b(\lambda y + y'), c(\lambda x + x') + d(\lambda y + y'))$$

$$= (\lambda (ax + by) + (ax' + by'), \lambda (cx + dx') + (cy + dy'))$$

$$= \lambda (ax + by, cx + dy) + (ax' + by', cx' + dy')$$

$$= \lambda f(u) + f(v)$$

Donc, f est bien linéaire.

2. L'application suivante est linéaire :

$$\phi: \mathcal{C}^1(\mathbb{R}) \longrightarrow \mathcal{C}^0(\mathbb{R})$$
$$f \longmapsto f'$$

3. De même, on montre que

$$\psi: \mathcal{C}^0([a,b], \mathbb{R}) \longrightarrow \mathbb{R}$$

$$f \longmapsto \int_a^b f(t) dt$$

est linéaire.

4. Enfin,

$$Id_E: E \longrightarrow E$$
$$u \longmapsto u$$

est linéaire.

On l'appelle application identité de E.

9.3.2 Propriétés

Soient E, F et G trois \mathbb{K} -ev.

Proposition 70

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(E, F)$. Alors, $\forall (\alpha, \beta) \in \mathbb{K}^2$, $\alpha f + \beta g \in \mathcal{L}(E, F)$.

Proposition 71

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

Alors, $g \circ f \in \mathcal{L}(E, G)$.

De plus, si f est bijective, alors, $f^{-1} \in \mathcal{L}(F, E)$.

Proposition 72

 $\mathcal{L}(E,F)$ est un \mathbb{K} -ev.

9.3.3 Noyau et image d'une application linéaire

Définition 85

Soient E et F deux ensembles et $f: E \longrightarrow F$ une application.

1. Soit $A \subset E$.

On appelle f(A) le sous-ensemble de F défini par

$$f(A) = \{ v \in F, \exists u \in A, v = f(u) \}$$

2. Soit $B \subset F$.

On appelle $f^{-1}(B)$ le sous-ensemble de E défini par

$$f^{-1}(B) = \{ u \in E, \ f(u) \in B \}$$

Proposition 73

Soient E et F deux \mathbb{K} -ev et $f \in \mathcal{L}(E, F)$.

- 1. Soit A un sev de E.
 - Alors, f(A) est un sev de F.
- 2. Soit B un sev de F.

Alors, $f^{-1}(B)$ est un sev de E.

Définition 86

Soient E et F deux \mathbb{K} -ev et $f \in \mathcal{L}(E, F)$.

1. On appelle noyau de f le sous-ensemble de E, noté Ker(f), défini par

$$Ker(f) = \{ u \in E, \ f(u) = 0_F \} = f^{-1}(\{0_F\})$$

2. On appelle image de f le sous-ensemble de F, noté Im(f), défini par

$$Im(f) = \{ v \in F, \exists u \in E, v = f(u) \} = f(E)$$

Proposition 74

- 1. Ker(f) est un sev de E.
- 2. Im(f) est un sev de F.

Exemple

Soit

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x+y,x+y)$

On a

$$Ker(f) = \{ u = (x, y) \in \mathbb{R}^2, f(u) = (0, 0) \}$$

$$= \{ u = (x, y) \in \mathbb{R}^2, (x + y, x + y) = (0, 0) \}$$

$$= \{ u = (x, y) \in \mathbb{R}^2, x + y = 0 \}$$

$$= \{ (x, -x), x \in \mathbb{R} \}$$

$$= \{ x(1, -1), x \in \mathbb{R} \}$$

D'où

$$Ker(f) = Vect((1, -1))$$

De plus, soit $v = (X, Y) \in Im(f)$. Alors, $\exists u = (x, y) \in \mathbb{R}^2$ tel que

$$\begin{cases} x + y = X \\ x + y = Y \end{cases}$$

D'où, X = Y et v = (X, X) = X(1, 1).

Par conséquent,

$$Im(f) = Vect(1,1)$$

Proposition 75

Soient E et F deux \mathbb{K} -ev et $f \in \mathcal{L}(E, F)$. Alors,

- 1. f injective $\iff Ker(f) = \{0_E\}.$
- 2. f surjective \iff Im(f) = F.

9.3.4 Projecteurs et symétries

Soit E un \mathbb{K} -ev.

Soient F et G deux sev de E supplémentaires i.e. $E=F\oplus G$.

Alors, $\forall u \in E$, $\exists ! (u_1, u_2) \in F \times G$ tel que $u = u_1 + u_2$.

Soit l'application

$$p: E \longrightarrow E$$
$$u \longmapsto u_1$$

Proposition 76

- 1. $p \in \mathcal{L}(E)$.
- 2. $p \circ p = p$.
- 3. Ker(p) = G et Im(p) = F.

Définition 87

On appelle projecteur tout endomorphisme p de E vérifiant $p \circ p = p$. p est en fait la projection sur F parallèlement à G.

On a donc

$$E = Ker(p) \oplus Im(p)$$

Soit l'application

$$s: E \longrightarrow E$$

$$u \longmapsto (2p - Id_E)(u)$$

Proposition 77

- 1. $s \in \mathcal{L}(E)$.
- 2. $\forall u \in E, s(u) = u_1 u_2$.
- 3. $s \circ s = Id_E$.

Définition 88

s est la symétrie sur F parallèlement à G.

9.4 Espaces vectoriels de dimension finie

Soit E un \mathbb{K} -ev.

9.4.1 Définition et exemples

Définition 89

On dit que E est de dimension finie si et seulement si il admet une famille génératrice finie.

Exemples

- 1. $\mathbb{C} = Vect(1, i)$ donc \mathbb{C} est un \mathbb{R} -ev de dimension finie.
- 2. $\mathbb{R}^n = Vect(e_1, \dots, e_n)$ donc \mathbb{R}^n est un \mathbb{R} -ev de dimension finie.
- 3. $\mathbb{R}_n[X] = Vect(1, X, \dots, X^n)$ donc $\mathbb{R}_n[X]$ est un \mathbb{R} -ev de dimension finie.
- 4. $\mathbb{R}[X]$ n'est pas un \mathbb{R} -ev de dimension finie car s'il admettait une famille génératrice finie (P_1, \ldots, P_n) alors $\forall P \in \mathbb{R}[X], \exists (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$ tel que

$$P = \lambda_1 P_1 + \ldots + \lambda_n P_n$$

et par conséquent, on aurait $d(P) \leq Max(d(P_1), \dots, d(P_n))$ ce qui est absurde.

5. $\mathbb{R}^{\mathbb{R}}$ n'est pas un \mathbb{R} -ev de dimension finie.

9.4.2 Dimension d'un espace vectoriel de dimension finie

Proposition 78

Soit E un \mathbb{K} -ev de dimension finie.

Alors, E admet au moins une base.

Proposition 79

Soit E un \mathbb{K} -ev de dimension finie.

Alors, toutes les bases de E ont le même cardinal.

Définition 90

Soit E un \mathbb{K} -ev de dimension finie.

- $Si\ E = \{0_E\}$, on dit que la dimension de E, notée dim(E), est nulle i.e. dim(E) = 0.
- Si $E \neq \{0_E\}$, soit (e_1, \ldots, e_n) une base de E. On dit alors que E est de dimension n et on note dim(E) = n.

Exemples

- 1. $dim(\mathbb{R}^n) = n$.
- 2. $dim(\mathbb{C}) = 2$ si \mathbb{C} est vu comme un \mathbb{R} -ev.
- 3. $dim(\mathbb{R}_n[X]) = n+1$.

Conséquences

Proposition 80

Soit E un \mathbb{K} -ev de dimension finie avec dim(E) = n. Alors,

1. Toute famille libre de E a au plus n vecteurs.

- 2. Toute famille génératrice de E a au moins n vecteurs.
- 3. Toute famille de E ayant au moins n+1 vecteurs est liée.

9.4.3 CNS pour qu'une famille de vecteurs de E soit une base de E

Soit E un \mathbb{K} -ev de dimension finie avec dim(E) = n.

Proposition 81

Soit \mathcal{B} une famille de vecteurs de E.

Alors,

- 1. \mathcal{B} est une base de $E \iff \mathcal{B}$ est une famille libre de E et $Card(\mathcal{B}) = n$.
- 2. \mathcal{B} est une base de $E \iff \mathcal{B}$ est une famille génératrice de E et $Card(\mathcal{B}) = n$.

Exemples

1. Dans $E = \mathbb{R}^3$, montrons que $u_1 = (1, -1, 0)$, $u_2 = (-1, 0, 1)$ et $u_3 = (0, -1, 2)$ forment une base de E.

Pour cela, montrons d'abord que cette famille est libre.

Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tel que

$$\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = (0, 0, 0)$$

On doit résoudre le système suivant :

$$\begin{cases} \lambda_1 - \lambda_2 & = 0 \\ -\lambda_1 + - \lambda_3 & = 0 \\ \lambda_2 + 2\lambda_3 & = 0 \end{cases}$$

Ce qui nous donne $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0)$.

Donc, (u_1, u_2, u_3) est une famille libre de **trois** vecteurs dans \mathbb{R}^3 qui est de dimension 3. On en déduit donc que c'est une base de \mathbb{R}^3 .

2. Dans $E = \mathbb{R}_2[X]$, $P_0 = 1$, $P_1 = X + 1$ et $P_2 = (X - 1)^2$ forment une base de E. En effet, soit $(\lambda_0, \lambda_1, \lambda_2) \in \mathbb{R}^3$ tel que

$$\lambda_0 P_0 + \lambda_1 P_1 + \lambda_2 P_2 = 0$$

i.e.

$$\lambda_0 + \lambda_1 + \lambda_2 + (\lambda_1 - 2\lambda_2)X + \lambda_2 X^2 = 0$$

On doit résoudre le système suivant :

$$\begin{cases} \lambda_0 + \lambda_1 + \lambda_2 = 0 \\ \lambda_1 - 2\lambda_2 = 0 \\ \lambda_2 = 0 \end{cases}$$

Ce qui nous donne $(\lambda_0, \lambda_1, \lambda_2) = (0, 0, 0)$.

On en déduit donc que (P_0, P_1, P_2) est une famille libre de 3 vecteurs dans $\mathbb{R}_2[X]$ qui est de dimension 3.

Donc, c'est une base de $\mathbb{R}_2[X]$.

9.4.4 Le théorème de la base incomplète et ses conséquences

Théorème 35

Toute famille libre d'un \mathbb{K} -ev E de dimension finie peut être complétée en une base de E.

Conséquences : dimension des sous-espaces vectoriels

Proposition 82

Soient E un \mathbb{K} -ev de dimension finie et F un sev de E.

Alors, F est un K-ev de dimension finie et

$$dim(F) \leqslant dim(E)$$

De plus,

$$E = F \iff dim(E) = dim(F)$$

Proposition 83

Soit $(n,p) \in \mathbb{N}^2$.

Soient E un \mathbb{K} -ev de dimension finie n et F un sev de E tel que dim(F) = p. Alors,

- 1. F admet au moins un supplémentaire dans E.
- 2. Tout supplémentaire de F dans E est de dimension n-p.

Corollaire 9

Soit E un \mathbb{K} -ev de dimension finie.

Soient F et G deux sev de E en somme directe.

Alors,

$$dim(F \oplus G) = dim(F) + dim(G)$$

Corollaire 10

Soit E un \mathbb{K} -ev de dimension finie.

Soient F et G deux sev de E.

1. Si
$$F \subset G$$
 et $dim(F) = dim(G)$ alors $F = G$.

2.
$$dim(F+G) = dim(F) + dim(G) - dim(F \cap G)$$
.

9.4.5 Le théorème du rang et ses conséquences

Proposition 84

Soient E un \mathbb{K} -ev de dimension finie, $\mathcal{B} = (e_1, \dots, e_n)$ une base de E et F un \mathbb{K} -ev (pas nécessairement de dimension finie).

Soit $f \in \mathcal{L}(E, F)$.

Alors,

$$Im(f) = Vect(f(e_1), \dots, f(e_n))$$

et donc Im(f) est un sev de F de dimension finie.

On en déduit le théorème suivant :

Théorème 36 (Théorème du rang)

Soient E un \mathbb{K} -ev de dimension finie et F un \mathbb{K} -ev.

Soit $f \in \mathcal{L}(E, F)$.

Alors,

$$dim(E) = dim(Ker(f)) + dim(Im(f))$$

dim(Im(f)) s'appelle rang de f, noté Rg(f).

Corollaire 11

Soient E et F deux \mathbb{K} -ev de dimension finie tels que dim(E) = dim(F).

Soit $f \in \mathcal{L}(E, F)$.

Alors,

$$f$$
 injective \iff f surjective \iff f bijective

Exemple

Soit l'endomorphisme de \mathbb{R}^3 défini par

$$f: \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (x+y+z,-5y+2z,5y+z) \end{array}$$

On a

$$ker(f) = \{ (x, y, z) \in \mathbb{R}^3, \ f(x, y, z) = (0, 0, 0) \}$$
$$= \{ (x, y, z) \in \mathbb{R}^3, \ x + y + z = 0, -5y + 2z = 0, 5y - z = 0 \}$$
$$= \{ (x, y, z) \in \mathbb{R}^3, \ x = y = z = 0 \}$$

On en déduit donc que $Ker(f) = 0_{\mathbb{R}^3}$ et donc que f est injective et dim(Ker(f)) = 0.

Par le théorème du rang, on obtient alors que

$$dim(Im(f)) = 3$$

Or Im(f) est un sev de \mathbb{R}^3 .

Donc, $Im(f) = \mathbb{R}^3$.

f est donc surjective.

En conclusion, f est bijective.

Chapitre 10

Matrices

Dans tout la chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $(n, p) \in (\mathbb{N}^*)^2$.

10.1 Généralités

10.1.1 Définitions

Définition 91

On appelle matice à n lignes, p colonnes et à coefficients dans \mathbb{K} toute application de

$$[1, n] \times [1, p]$$
 dans \mathbb{K}

Une telle application

$$A: [1, n] \times [1, p] \rightarrow \mathbb{K}$$

 $(i, j) \mapsto a_{ij}$

est notée sous la forme du tableau suivant

$$A = (a_{ij})_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \dots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}.$$

 $\forall (i,j) \in [1,n] \times [1,p], \ a_{ij} \ (ou \ a_{i,j}) \ est \ le \ terme \ (ou \ coefficient) \ situ\'e \ sur \ la \ i-\`eme \ ligne, j-i\`eme \ colonne.$

Notations

L'ensemble des matrices à n lignes, p colonnes et à coefficients dans \mathbb{K} est noté $\mathcal{M}_{n,p}(\mathbb{K})$. $\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$ est appelé ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{K} .

Exemple

$$A = \begin{pmatrix} 5 & 3 \\ 0 & 7 \\ 4 & -8 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{R})$$

10.1.2 Matrices particulières

Soit $A = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$.

1. Matrice nulle:

$$\forall (i,j) \in [1,n] \times [1,p], \quad a_{ij} = 0$$

On note $A = 0_{np}$.

2. Matrice ligne:

$$n=1$$
 et $A \in \mathcal{M}_{1,p}(\mathbb{K})$

Exemple

$$A = (1 \ 2 \ 3) \in \mathcal{M}_{1,3}(\mathbb{R})$$

3. Matrice colonne:

$$p = 1$$
 et $A \in \mathcal{M}_{n,1}(\mathbb{K})$

Exemple

$$A = \begin{pmatrix} 2 \\ -5 \\ -8i \\ 0 \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{C})$$

4. Matrice transposée:

Définition 92

On appelle matrice transposée de A la matrice, notée ${}^tA = (b_{ij}) \in \mathcal{M}_{p,n}(\mathbb{K})$, définie par

$$\forall (i,j) \in [1,p] \times [1,n] \quad b_{ij} = a_{ji}$$

Exemple

Si
$$A = \begin{pmatrix} 2 & 1 \\ -5 & 0 \\ -12 & 4 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{R}) \text{ alors } {}^t A = \begin{pmatrix} 2 & -5 & -12 \\ 1 & 0 & 4 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R}).$$

5. Cas des matrices carrées :

$$n = p$$

Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$.

- Si $\forall i \neq j$, $a_{ij} = 0$, on dit que A est une matrice diagonale. Si, de plus, $\forall i \in [1, n]$, $a_{ii} = 1$, A s'appelle **matrice identité** de $\mathcal{M}_n(\mathbb{K})$. On la note I_n .
- A est dite triangulaire supérieure si et seulement si \forall $(i, j) \in (\llbracket 1, n \rrbracket)^2$,

$$(i > j \Rightarrow a_{ij} = 0)$$

– A est dite triangulaire inférieure si et seulement si $\forall (i,j) \in (\llbracket 1,n \rrbracket)^2$,

$$(i < j \Rightarrow a_{ij} = 0)$$

-A est dite symétrique si et seulement si ${}^{t}A = A$.

Exemple

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 0 & -5 \\ 1 & -5 & \pi \end{array}\right)$$

– A est dite antisymétrique si et seulement si ${}^{t}A = -A = (-a_{ij})$.

Exemple

$$A = \left(\begin{array}{rrr} 0 & 1 & -1 \\ -1 & 0 & -5 \\ 1 & 5 & 0 \end{array}\right)$$

10.1.3 Opérations sur les matrices

Définition 93

1. On appelle addition dans $\mathcal{M}_{n,p}(\mathbb{K})$ la loi interne + définie par $\forall A = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$ et $\forall B = (b_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$

$$A + B = (a_{ij} + b_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$$

2. On appelle multiplication par un scalaire la loi externe

$$\mathbb{K} \times \mathcal{M}_{n,p}(\mathbb{K}) \to \mathcal{M}_{n,p}(\mathbb{K})$$
$$(\lambda, A = (a_{ij})) \mapsto \lambda A = (\lambda a_{ij})$$

Exemple

Dans
$$\mathcal{M}_{3,2}(\mathbb{R})$$
, si $A = \begin{pmatrix} 1 & -8 \\ 0 & 1 \\ 2 & -4 \end{pmatrix}$ et $B = \begin{pmatrix} 9 & 4 \\ 2 & 44 \\ 5 & -4 \end{pmatrix}$ alors,

$$A + 3B = \begin{pmatrix} 28 & 4 \\ 6 & 133 \\ 17 & -16 \end{pmatrix}.$$

Proposition 85

Muni de ces deux lois, $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -ev.

Définition 94

Pour $(n,p) \in (\mathbb{N}^*)^2$ et $(i,j) \in [\![1,n]\!] \times [\![1,p]\!]$, on note E_{ij} la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ dont le (i,j)-ème terme vaut 1 et tous les autres sont nuls.

Les matrices E_{ij} sont appelées matrices élémentaires.

Proposition 86

- 1. $(E_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$ forment une base de $\mathcal{M}_{n,p}(\mathbb{K})$ appelée base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$.
- 2. $dim(\mathcal{M}_{n,p}(\mathbb{K})) = np$.

Définition 95

Soit $(n, p, q) \in (\mathbb{N}^*)^3$

Soient
$$A = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$$
 et $B = (b_{ij}) \in \mathcal{M}_{p,q}(\mathbb{K})$.

On appelle produit de A par B la matrice $C = (c_{ij}) \in \mathcal{M}_{n,q}(\mathbb{K})$ définie par

$$\forall i \in [1, n], \quad \forall j \in [1, q], \quad c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}.$$

Exemple

Soient
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 3 & -4 & 10 \end{pmatrix} \in \mathcal{M}_{2,3}(\mathbb{R}) \text{ et } B = \begin{pmatrix} 0 & -2 & 2 & 4 \\ 3 & -1 & 0 & 3 \\ 1 & 2 & 4 & -8 \end{pmatrix} \in \mathcal{M}_{3,4}(\mathbb{R}).$$

Alors,

$$AB = \begin{pmatrix} -2 & -6 & -6 & 20 \\ -2 & 18 & 46 & -80 \end{pmatrix} \in \mathcal{M}_{2,4}(\mathbb{R}).$$

Remarques

On ne peut faire AB que si le nombre de colonnes de A est égal au nombre de lignes de B. Si l'on peut faire le produit AB, cela n'implique pas que l'on puisse faire le produit BA. Pour les matrices rectangulaires $(n \neq p)$, les produits AB et BA ne sont possibles que si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,n}(\mathbb{K})$. Dans ce cas, on n'a pas spécialement que AB = BA. Le produit matriciel ne commute pas.

Pour les matrices carrées, c'est la même chose : $AB \neq BA$ en général.

Propriété 4

AB = 0 n'implique pas que A = 0 ou B = 0.

Exemple

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

On a AB = 0 et pourtant $A \neq 0$ et $B \neq 0!!!!!$

Propriété 5

Soit $(n, p, q, r) \in (\mathbb{N}^*)^4$.

1.
$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \ \forall B \in \mathcal{M}_{p,q}(\mathbb{K}) \ et \ \forall C \in \mathcal{M}_{q,r}(\mathbb{K}),$$

$$A(BC) = (AB)C$$

Le produit matriciel est associatif.

2.
$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}) \ et \ \forall (B,C) \in (\mathcal{M}_{p,q}(\mathbb{K}))^2$$
,

$$A(B+C) = AB + AC.$$

Le produit matriciel est distributif à gauche par rapport à l'addition.

3.
$$\forall (A,B) \in (\mathcal{M}_{n,p}(\mathbb{K}))^2 \ et \ \forall C \in \mathcal{M}_{p,q}(\mathbb{K}),$$

$$(A+B)C = AC + BC$$
.

Le produit matriciel est distributif à droite par rapport à l'addition.

4.
$$\forall A \in \mathcal{M}_{n,p}(\mathbb{K}), \forall B \in \mathcal{M}_{p,q}(\mathbb{K}) \ et \ \forall \lambda \in \mathbb{K},$$

$$(\lambda A)B = \lambda (AB) = A(\lambda B)$$

Cas des matrices carrées

Propriété 6

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \quad AI_n = I_n A = A$$

Propriété 7

Soit $(A, B) \in (\mathcal{M}_n(\mathbb{K}))^2$ tel que AB = BA.

Soit $m \in \mathbb{N}$.

Alors,

$$(A+B)^m = \sum_{k=1}^m C_m^k A^k B^{m-k}$$

avec la convention $A^0 = I_n$.

Propriété 8

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{K}))^2, \quad {}^t(AB) = {}^tB^tA.$$

10.1.4 Inverse d'une matrice carrée

Définition 96

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

On dit que A est inversible si et seulement si

$$\exists B \in \mathcal{M}_n(\mathbb{K}) \quad telle \ que \quad AB = BA = I_n$$

Si A est inversible, son inverse est unique et on le note A^{-1} .

Donc, si A est inversible,

$$AA^{-1} = A^{-1}A = I_n$$
.

L'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ est noté $GL_n(\mathbb{K})$.

Calcul pratique de A^{-1}

On part du fait suivant : soit $(U, V) \in (\mathcal{M}_{n,1}(\mathbb{K}))^2$.

Alors,

$$AU = V \iff U = A^{-1}V$$

Il faut donc réussir à exprimer U en fonction de V par résolution d'un système linéaire. Pour cela, on utilise la méthode du pivot de Gauss.

Proposition 87

1. $\forall (A, B) \in GL_n(\mathbb{K})^2$, AB est inversible et

$$(AB)^{-1} = B^{-1}A^{-1}$$

2. $\forall A \in GL_n(\mathbb{K}), {}^tA \text{ est inversible et}$

$$({}^{t}A)^{-1} = {}^{t}(A^{-1})$$

10.2Matrice d'une application linéaire

10.2.1 Définitions et exemples

Contexte

Soient E et F deux \mathbb{K} -ev de dimension finie tels que dim(E) = p et dim(F) = n.

Soient $\mathcal{B} = (e_1, \dots, e_p)$ une base de E et $\mathcal{B}' = (\varepsilon_1, \dots, \varepsilon_n)$ une base de F.

Soit $u \in E$.

Alors,

$$\exists ! (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p$$
 tel que $u = \sum_{j=1}^p \lambda_j e_j$

Définition 97

La matrice colonne $\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \in \mathcal{M}_{p,1}(\mathbb{K})$ s'appelle matrice colonne des coordonnées de u dans la

base B. On note

$$Mat_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_p \end{pmatrix}$$

Exemple

Dans \mathbb{R}^2 , soit u = (2, 1).

Soient \mathcal{B}_1 la base canonique de \mathbb{R}^2 et $\mathcal{B}_2 = ((1,1),(1,0))$ une autre base de \mathbb{R}^2 .

Alors,
$$Mat_{\mathcal{B}_1}(u) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 et $Mat_{\mathcal{B}_2}(u) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Soit $f \in \mathcal{L}(E, F)$.

On a alors

$$f(u) = \sum_{j=1}^{p} \lambda_j f(e_j)$$

f est donc entièrement déterminée par la donnée des vecteurs $f(e_j) \in F$ pour tout $j \in [1, p]$. D'où,

$$\exists ! (a_{1j}, \dots, a_{nj}) \in \mathbb{K}^n$$
 tel que $f(e_j) = \sum_{i=1}^n a_{ij} \varepsilon_i$

Définition 98

On appelle matrice de f relativement aux bases \mathcal{B} et \mathcal{B}' , notée $Mat_{\mathcal{B},\mathcal{B}'}(f)$, la matrice dont la j-ème colonne est formée des coordonnées de $f(e_i)$ dans la base \mathcal{B}' pour tout $j \in [1, p]$.

C'est donc une matrice à n lignes et p colonnes

$$A = \begin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1p} \\ a_{21} & \dots & a_{2j} & \dots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{np} \end{pmatrix}$$

telle que

$$\forall j \in [1, p], \quad f(e_j) = \sum_{i=1}^n a_{ij} \varepsilon_i$$

Remarque

Au lieu de noter $Mat_{\mathcal{B},\mathcal{B}}(f)$, on note seulement $Mat_{\mathcal{B}}(f)$.

Exemples

1. Soit l'application linéaire f définie par $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ $(x,y) \longmapsto (x+y,2x+4y,-3y)$

Soient \mathcal{B} la base canonique de \mathbb{R}^2 et \mathcal{B}' la base canonique de \mathbb{R}^3 .

Alors,

$$Mat_{\mathcal{B},\mathcal{B}'}(f) = \begin{pmatrix} 1 & 1 \\ 2 & 4 \\ 0 & -3 \end{pmatrix}$$

2. Soit l'application linéaire g définie par $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. $(x,y) \longmapsto (x+7y,-x+y)$

Soit \mathcal{B} la base canonique de \mathbb{R}^2 .

Alors,

$$Mat_{\mathcal{B}}(g) = \begin{pmatrix} 1 & 7 \\ -1 & 1 \end{pmatrix}$$

Soit $\mathcal{B}_1 = (u_1, u_2)$ avec $u_1 = (1, 1)$ et $u_2 = (1, 2)$.

On vérifie facilement que \mathcal{B}_1 est une autre base de \mathbb{R}^2 .

Alors,

$$Mat_{\mathcal{B}_1}(g) = \begin{pmatrix} 16 & 15 \\ -8 & -7 \end{pmatrix}$$

3. Soit l'application linéaire h définie par $h: \mathbb{R}_4[X] \longrightarrow \mathbb{R}_5[X]$. $P \longmapsto XP - P'$

Soient \mathcal{B} la base canonique de $\mathbb{R}_4[X]$ et \mathcal{B}' la base canonique de $\mathbb{R}_5[X]$. Alors,

$$Mat_{\mathcal{B},\mathcal{B}'}(h) = \left(egin{array}{cccccc} 0 & -1 & 0 & 0 & 0 \ 1 & 0 & -2 & 0 & 0 \ 0 & 1 & 0 & -3 & 0 \ 0 & 0 & 1 & 0 & -4 \ 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{array}
ight)$$

4. Soient E un \mathbb{K} -ev de dimesion finie n et \mathcal{B} une base de E. Alors,

$$Mat_{\mathcal{B}}(Id_{E}) = I_{n}$$

10.2.2 Interprétation matricielle de v = f(u)

Proposition 88

Soient E et F deux \mathbb{K} -ev de dimension finie avec \mathcal{B} une base de E et \mathcal{B}' une base de F. Soient $u \in E$ et $f \in \mathcal{L}(E, F)$.

Alors,

$$Mat_{\mathcal{B}'}(f(u)) = Mat_{\mathcal{B},\mathcal{B}'}(f) \times Mat_{\mathcal{B}}(u)$$

10.2.3 Matrice de $g \circ f$

Exemple

Considérons les applications linéaires $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ et $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ $(x,y) \longmapsto (x+y,x-y) \qquad (x,y) \longmapsto (x+2y,x,-x+y)$

Notons \mathcal{B} la base canonique de \mathbb{R}^2 et \mathcal{B}' la base canonique de \mathbb{R}^3 .

On a

$$A = Mat_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

et

$$B = Mat_{\mathcal{B},\mathcal{B}'}(g) = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}$$

 $g\circ f\in\mathcal{L}(\mathbb{R}^2,\mathbb{R}^3)$ est définie par $g\circ f:\ \mathbb{R}^2\longrightarrow\ \mathbb{R}^3$. $(x,y)\longmapsto\ (3x-y,x+y,-2y)$

D'où,

$$C = Mat_{\mathcal{B},\mathcal{B}'}(g \circ f) = \begin{pmatrix} 3 & -1 \\ 1 & 1 \\ 0 & -2 \end{pmatrix}$$

On remarque que

$$C = BA$$

Proposition 89

Soient E, F et G trois \mathbb{K} -ev de dimension finie avec \mathcal{B} une base de E, \mathcal{B}' une base de F et \mathcal{B}'' une base de G.

Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

Alors, $g \circ f \in \mathcal{L}(E,G)$ et

$$Mat_{\mathcal{B},\mathcal{B}''}(g \circ f) = Mat_{\mathcal{B}'',\mathcal{B}}(g) \times Mat_{\mathcal{B},\mathcal{B}'}(f)$$

10.2.4 Matrice de la réciproque d'une application linéaire quand elle est bijective

Exemple

Considérons l'application linéaire suivante $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. $(x,y) \longmapsto (2x+y,x-4y)$

Soit \mathcal{B} la base canonique de \mathbb{R}^2 .

On a

$$A = Mat_{\mathcal{B}}(f) = \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix}$$

De plus, il est facile de voir que $Ker(f) = \{0_{\mathbb{R}^2}\}$. On en déduit que f est injective. Donc, f est bijective.

Par calculs, on trouve alors que $f^{-1}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$. $(x,y) \longmapsto \left(\frac{2}{5}x + \frac{1}{10}y, \frac{1}{5}x - \frac{1}{5}y\right)$

Par conséquent,

$$B = Mat_{\mathcal{B}}(f^{-1}) = \begin{pmatrix} \frac{2}{5} & \frac{1}{10} \\ \frac{1}{5} & -\frac{1}{5} \end{pmatrix}$$

On remarque alors que

$$B = A^{-1}$$

Proposition 90

Soient E et F deux \mathbb{K} -ev de même dimension.

Soient \mathcal{B} une base de E et \mathcal{B}' une base de F.

Soit $f \in \mathcal{L}(E, F)$.

Alors,

$$f$$
 bijective \iff $Mat_{\mathcal{B},\mathcal{B}'}(f)$ inversible

Dans ce cas, on a

$$\left(Mat_{\mathcal{B},\mathcal{B}'}(f)\right)^{-1} = Mat_{\mathcal{B}',\mathcal{B}}(f^{-1})$$

Chapitre 11

Fractions rationnelles

Dans tout le chapitre, $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

11.1 Généralités

11.1.1 Définitions et règles de calculs

Définition 99

On appelle fraction rationnelle à coefficient dans $\mathbb K$ tout élément F s'écrivant sous la forme

$$F = \frac{P}{Q}$$
 avec $(P,Q) \in \mathbb{K}[X]^2$ et $Q \neq 0$

Un tel couple (P,Q) s'appelle représentant de la fraction rationnellle F.

Exemple

$$F = \frac{\sqrt{3}X - i}{X^5 + 4}$$
 est une fraction rationnelle à coefficients dans \mathbb{C} .

Règles de calculs

Soient $(P_1, P_2, Q_1, Q_2) \in \mathbb{K}[X]^4$ avec $Q_1 \neq 0$ et $Q_2 \neq 0$.

• Addition :

$$\frac{P_1}{Q_1} + \frac{P_2}{Q_2} = \frac{P_1 Q_2 + P_2 Q_1}{Q_1 Q_2}$$

• Multiplication externe :

$$\forall \lambda \in \mathbb{K}, \ \lambda \cdot \frac{P_1}{Q_1} = \frac{\lambda P_1}{Q_1}$$

• Multiplication interne :

$$\frac{P_1}{Q_1} \times \frac{P_2}{Q_2} = \frac{P_1 P_2}{Q_1 Q_2}$$

• Egalité :

1.

$$\frac{P_1}{Q_1} = \frac{P_2}{Q_2} \iff P_1 Q_2 = P_2 Q_1$$

2.

$$\forall\,R\in\mathbb{K}[X]\quad\text{tel que}\quad R\neq0,\quad\text{on a}\quad\frac{P_1}{Q_1}\times\frac{R}{R}=\frac{P_1}{Q_1}$$

Notation

L'ensemble des fractions rationnelles à coefficients dans \mathbb{K} est noté $\mathbb{K}(X)$.

11.1.2 Représentant irréductible d'une fraction rationnelle

Exemple

Soit

$$F = \frac{X - 1}{X^2 - 1} \in \mathbb{R}[X]$$

 $(X-1,X^2-1)$ et (1,X+1) sont deux représentants de F mais (1,X+1) est un représentant irréductible de F.

Définition 100

On appelle représentant irréductible de $F \in \mathbb{K}(X)$ tout représentant (P,Q) de F tel que

$$P \wedge Q = 1$$

Remarque

Il faut bien faire attention au fait que la fraction rationnelle doit être irréductible.

Par exemple, la fraction

$$F = \frac{X^2 + (i-1)X - i}{X^4 - 1} \in \mathbb{C}(X)$$

n'est pas irréductible car

$$F = \frac{(X+i)(X-1)}{(X-i)(X+i)(X-1)(X+1)} = \frac{1}{(X+1)(X-i)}$$

11.1.3 Degré d'une fraction rationnelle

Définition 101

1. Soit $(P,Q) \in (\mathbb{K}[X]^*)^2$ tel que $F = \frac{P}{Q}$.

On définit le degré de F par

$$d(F) = d(P) - d(Q) \in \mathbb{Z}$$

2. Si F = 0, alors $d(F) = -\infty$.

Exemples

1. $d\left(\frac{2X}{X+5}\right) = 1 - 1 = 0$

2. $d\left(\frac{2X}{X^4 + 5}\right) = 1 - 4 = -3$

3. $d\left(\frac{X^3 - 2X + 8}{1 - 2X}\right) = 3 - 1$

Proposition 91

Soit $(F,G) \in \mathbb{K}(X)^2$.

Alors,

1. $d(F+G) \leq Max(d(F), d(G))$.

2. d(FG) = d(F) + d(G).

11.1.4 Racines et pôles d'une fraction rationnelle

Définition 102

Soit $F \in \mathbb{K}(X)$.

Soit (P,Q) un représentant irréductible de F.

- 1. On appelle racine (ou zéro) de F toute racine de P.
- 2. On appelle pôle de F toute racine de Q.
- 3. Soit $a \in \mathbb{K}$.

Si a est une racine (resp. pôle) de $F \neq 0$, l'ordre de multiplicité de a est l'ordre de multiplicité de a en tant que racine de P (resp. de Q).

Remarque

Encore une fois, il faut faire attention au fait que (P,Q) doit être un représentant irréductible de F.

Par exemple, 1 n'est ni racine, ni pôle de

$$F = \frac{X^3 - 1}{X^2 - 1}$$

Définition 103

Soit $F = \frac{P}{Q} \in \mathbb{K}(X)$ irréductible.

Soit \mathcal{P} l'ensemble des pôles de F.

Pour tout $\alpha \in \mathbb{K} \setminus \mathcal{P}$, on peut alors définir $\widetilde{F}(\alpha)$ par

$$\widetilde{F}(\alpha) = \frac{\widetilde{P}(\alpha)}{\widetilde{Q}(\alpha)}$$

La fonction $x \mapsto \frac{\widetilde{P}(x)}{\widetilde{Q}(x)}$, définie sur $\mathbb{K} \setminus \mathcal{P}$ s'appelle fonction rationnelle associée à la fraction rationnelle F.

11.1.5 Un outil : la division suivant les puissances croissantes

Théorème 37

Soit $n \in \mathbb{N}$.

Soit $(A, B) \in \mathbb{K}[X]^2$ avec $\widetilde{B}(0) \neq 0$.

Alors,

$$\exists ! (Q,R) \in \mathbb{K}[X]^2 \text{ tel que } A = BQ + X^{n+1}R \text{ avec } Q = 0 \text{ ou } d(Q) \leqslant n$$

Q s'appelle quotient de la division de A par B suivant les puissances croissantes jusqu'à l'ordre n. R s'appelle reste de la division de A par B suivant les puissances croissantes jusqu'à l'ordre n.

Exemples

1. La division de $A=2+3X-X^2+X^4$ par $B=1+X+X^2$ suivant les puissances croissantes jusqu'à l'ordre 3 donne

$$A = (2 + X - 4X^2 + 3X^3)B + X^4(2 - 3X)$$

2. La division de $A=1+4X^3$ par B=-2+X suivant les puissances croissantes jusqu'à l'ordre 2 donne

$$A = \left(-\frac{1}{2} - \frac{1}{4}X - \frac{1}{8}X^2\right)B + X^3\left(\frac{33}{8}\right)$$

Une application de cette division peut être la suivante :

donner une primitive de

$$f(x) = \frac{4x^3 + 1}{x^4 - 2x^3}$$

En exploitant cette division, on peut alors écrire que $f(x) = -\frac{1}{2x^3} - \frac{1}{4x^2} - \frac{1}{8x} + \frac{33}{8(x-2)}$. D'où, une primitive de f est

$$F(x) = \frac{1}{4x^2} + \frac{1}{4x} - \frac{1}{8}\ln|x| + \frac{33}{8}\ln|x - 2| + K$$

11.2 Partie entière d'une fraction rationnelle

11.2.1 Définition

Soit
$$F = \frac{P}{Q} \in \mathbb{K}(X)$$
.

On fait la division euclidienne de P par Q.

Alors, il existe un unique couple (E,R) dans $\mathbb{K}[X]^2$ tel que P = EQ + R avec d(R) < d(Q).

Par conséquent,

$$F = E + \frac{R}{Q}$$

E s'appelle partie entière de F.

En conclusion, toute fraction rationnelle F s'écrit de manière unique comme la somme d'un polynôme (appelé partie entière de F) et d'une fraction rationnelle de degré strictement négatif.

11.2.2 Méthode de recherche de la partie entière

Soit
$$F = \frac{P}{Q} \in \mathbb{K}(X)$$
 avec $P \neq 0$ et $Q \neq 0$.

- Si d(F) > 0, on fait la division euclidienne de P par Q et E est le quotient obtenu.
- Si d(F) = 0, on peut faire la division euclidienne de P par Q. On se rend alors compte que

si
$$F = \frac{a_n X_n + \ldots + a_0}{b_n X^n + \ldots + b_0}$$
 alors $E = \frac{a_n}{b_n}$

• Si d(F) < 0 alors E = 0.

Exemples

1. $F = \frac{X+4}{X-5} = \frac{X-5+9}{X-5} = 1 + \frac{9}{X-5}$

2.
$$F = \frac{X^4 + 1}{X^3 - X^2} = X + 1 + \frac{X^2 + 1}{X^3 - X^2}$$

11.3 Décomposition en éléments simples d'une fractions rationnelle

11.3.1 Théorème général

Théorème 38

Soit $F \in \mathbb{K}(X)$ telle que

$$F = \frac{A}{Q_1^{\alpha_1} \dots Q_n^{\alpha_n}}$$

avec

$$-n \in \mathbb{N}^*$$
,

 $-Q_1, \ldots, Q_n \in \mathbb{K}[X]^n$ irréductibles et deux à deux premiers entre eux,

$$-A \in \mathbb{K}[X]$$

$$-(\alpha_1,\ldots,\alpha_n)\in(\mathbb{N}^*)^n$$
.

Alors, $\exists ! (E, C_{\alpha_1,1}, \dots, C_{\alpha_1,\alpha_1}, C_{\alpha_2,1}, \dots, C_{\alpha_2,\alpha_2}, \dots, C_{\alpha_n,1}, \dots, C_{\alpha_n,\alpha_n}) \ dans \ \mathbb{K}[X] \ tel \ que$

$$F = E + \sum_{i=1}^{n} \sum_{j=1}^{\alpha_i} \frac{C_{\alpha_i,j}}{Q_i^j}$$

avec $\forall i \in [1, n]$ et $\forall j \in [1, \alpha_i], d(C_{\alpha_i, j}) < d(Q_i).$

C'est faire la décomposition en éléments simples de la fraction rationnelle F dans $\mathbb{K}(X)$.

Cas de $\mathbb{C}(X)$

Les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1.

Par le théorème de D'Alembert-Gauss, toute fraction rationnelle de $\mathbb{C}(X)$ s'écrit

$$F = \frac{A}{\prod_{i=1}^{n} (X - a_i)^{\alpha_i}}$$

avec pour tout $i \in [1, n]$, $a_i \in \mathbb{C}$ et $\alpha_i \in \mathbb{N}$.

Par le théorème précédent, on en déduit donc la décomposition en éléments simples de toute fraction rationnelle $F \in \mathbb{C}(X)$:

$$F = E + \sum_{i=1}^{n} \sum_{j=1}^{\alpha_i} \frac{b_{i,j}}{(X - a_i)^j}$$

avec $\forall i \in [|1, n|]$ et $\forall j \in [|1, \alpha_i|], b_{i,j} \in \mathbb{C}$ uniques.

Exemples

1. La décomposition en éléments simples de $F = \frac{X}{X^4 - 1}$ dans $\mathbb{C}(X)$ est

$$F = \frac{a}{X - 1} + \frac{b}{X + 1} + \frac{c}{X - i} + \frac{d}{X + i}$$

avec $(a, b, c, d) \in \mathbb{C}^4$ uniques (à déterminer).

2. La décomposition en éléments simples de $F = \frac{X+1}{(X-i)^3(X+i)(X-4)^2}$ dans $\mathbb{C}(X)$ est

$$F = \frac{a}{X-i} + \frac{b}{(X-i)^2} + \frac{c}{(X-i)^3} + \frac{d}{X+i} + \frac{e}{X-4} + \frac{f}{(X-4)^2}$$

avec $(a, b, c, d, e, f) \in \mathbb{C}^6$ uniques (à déterminer).

Cas de $\mathbb{R}(X)$

Les polynômes irréductibles de $\mathbb{R}[X]$ sont les polynômes de degré 1 et les polynômes de degré 2 à discriminant strictement négatif.

Toute fraction rationnelle de $\mathbb{R}(X)$ s'écrit

$$F = \frac{A}{\prod_{i=1}^{n} (X - a_i)^{\alpha_i} \prod_{k=1}^{m} (X^2 + q_k X + r_k)^{\beta_k}}$$

avec pour tout $i \in [1, n]$, $a_i \in \mathbb{R}$ et $\alpha_i \in \mathbb{N}$ et pour tout $k \in [1, m]$, $(q_k, r_k) \in \mathbb{R}^2$ tel que $q_k^2 - 4r_k < 0$.

Par le théorème précédent, on en déduit donc la décomposition en éléments simples de toute fraction rationnelle $F \in \mathbb{R}(X)$:

$$F = E + \sum_{i=1}^{n} \sum_{i=1}^{\alpha_i} \frac{c_{i,j}}{(X - a_i)^j} + \sum_{k=1}^{m} \sum_{l=1}^{\beta_k} \frac{d_{k,l}X + e_{k,l}}{(X^2 + q_kX + r_k)^l}$$

avec $\forall i \in [1, n]$ et $\forall j \in [1, \alpha_i], c_{i,j} \in \mathbb{R}$ uniques et $\forall k \in [1, m]$ et $\forall l \in [1, \beta_k], (d_{k,l}, e_{k,l}) \in \mathbb{R}^2$ uniques.

Exemples

1. La décomposition en éléments simples de $F = \frac{X}{X^4 - 1}$ dans $\mathbb{R}(X)$ est

$$F = \frac{a}{X-1} + \frac{b}{X+1} + \frac{cX+d}{X^2+1}$$

avec $(a, b, c, d) \in \mathbb{R}^4$ uniques (à déterminer).

2. La décomposition en éléments simples de $F = \frac{X-6}{(X-1)X^2(X^2+1)(X^2+4)^3}$ dans $\mathbb{R}(X)$ est

$$F = \frac{a}{X-1} + \frac{b}{X} + \frac{c}{X^2} + \frac{dX+e}{X^2+1} + \frac{fX+g}{X^2+4} + \frac{hX+j}{(X^2+4)^2} + \frac{kX+l}{(X^2+4)^3}$$

avec $(a,b,c,d,e,f,g,h,j,k,l) \in \mathbb{R}^{11}$ uniques (à déterminer).

11.3.2 Méthodes pour trouver les coefficients

11.3.2.1 Cas des pôles simples

Exemple 1

Soit
$$F = \frac{X}{X^2 - 1} \in \mathbb{R}(X)$$

On a

$$F = \frac{X}{(X-1)(X+1)}$$

La partie entière de F est nulle car d(F) < 0.

La décomposition de F dans $\mathbb{R}(X)$ est donc

$$F = \frac{a}{X - 1} + \frac{b}{X + 1}$$

avec $(a, b) \in \mathbb{R}^2$.

Pour trouver a, il suffit de calculer

$$(\widetilde{X-1})F(1)$$

En effet,

$$(X-1)F = \frac{X}{X+1} = a + \frac{b(X-1)}{X+1}$$

Par conséquent,

$$(\widetilde{X-1})F(1) = \frac{1}{1+1} = a+0$$

D'où, $a = \frac{1}{2}$.

De même, pour trouver b, il suffit de calculer

$$(\widetilde{X+1})F(-1)$$

On a alors

$$(\widetilde{X+1})F(-1) = \frac{-1}{-1-1} = 0+b$$

D'où, $b = \frac{1}{2}$.

En conclusion,

$$F = \frac{1}{2(X-1)} + \frac{1}{2(X+1)}$$

Exemple 2

Soit
$$F = \frac{3X^2}{X^2 - 4} \in \mathbb{R}(X)$$
.

d(F)=0 donc la partie entière de F est $\frac{3}{1}=3$ et par conséquent

$$F = 3 + \frac{3}{X^2 - 1}$$

La décomposition de $F_1 = \frac{3}{X^2 - 1}$ dans $\mathbb{R}(X)$ est donc

$$F_1 \frac{3}{X^2 - 1} = \frac{3}{(X - 1)(X + 1)} = \frac{a}{X - 1} + \frac{b}{X + 1}$$

On a

$$(\widetilde{X-1})F_1(1) = \frac{3}{1+1} = a+0$$

D'où, $a = \frac{3}{2}$.

De plus,

$$(\widetilde{X+1})F_1(-1) = \frac{3}{-1-1} = 0+b$$

D'où, $b = -\frac{3}{2}$.

Finalement,

$$F_1 = \frac{3}{2(X-1)} - \frac{3}{2(X+1)}$$

En conclusion,

$$F = 3 + \frac{3}{2(X-1)} - \frac{3}{2(X+1)}$$

11.3.2.2 Cas des pôles multiples

Exemple 1 [utilisation de la parité]

Soit
$$F = \frac{4}{(X^2 - 1)^2}$$
.

d(F) = -4 donc la partie entière de F est nulle.

La décomposition de F est

$$F(X) = \frac{a}{X-1} + \frac{b}{(X-1)^2} + \frac{c}{X+1} + \frac{d}{(X+1)^2}$$

Or, F(-X) = F(X) et

$$F(-X) = \frac{-a}{X+1} + \frac{b}{(X+1)^2} + \frac{-c}{X-1} + \frac{d}{(X-1)^2}$$

Par unicité de la décomposition en éléments simples, on en déduit que

$$a = -c$$

$$b = d$$

D'où,

$$F(X) = \frac{a}{X-1} + \frac{b}{(X-1)^2} + \frac{-a}{X+1} + \frac{b}{(X+1)^2}$$

On a alors

$$(X-1)^{2}F = \frac{4}{(X+1)^{2}} = a(X-1) + b - \frac{a(X-1)^{2}}{X+1} + \frac{b(X-1)^{2}}{(X+1)^{2}}$$

Par conséquent,

$$(X-1)^2 F(1) = \frac{4}{4} = b$$

Il reste à trouver a.

Pour cela, on peut prendre une valeur particulière pour X.

Par exemple, prenons X=0. On a

$$\widetilde{F}(0) = \frac{4}{1} = -a + b - a + b = -2a + 2b$$

D'où, a = -1. Finalement,

$$F = \frac{-1}{X-1} + \frac{1}{(X-1)^2} + \frac{1}{X+1} + \frac{1}{(X+1)^2}$$

Exemple 2

Soit
$$F = \frac{X}{(X-1)^3(X+1)}$$
.

d(F) = -3 donc la partie entière de F est nulle.

La décomposition de F est

$$F = \frac{a}{X-1} + \frac{b}{(X-1)^2} + \frac{c}{(X-1)^3} + \frac{d}{X+1}$$

Les constantes simples à calculer sont c et d.

On a

$$(X-1)^3 F(1) = \frac{1}{2} = c$$

et

$$(\widetilde{X+1})F(-1) = \frac{-1}{-8} = d$$

De plus, calculons $\lim_{X\to +\infty} XF(X)$.

On a

$$XF(X) = \frac{X^2}{(X-1)^3(X+1)} = \frac{aX}{X-1} + \frac{bX}{(X-1)^2} + \frac{cX}{(X-1)^3} + \frac{dX}{X+1}$$

On trouve

$$\lim_{X \to +\infty} XF(X) = 0 = a + 0 + 0 + d$$

Par conséquent, $a = -d = -\frac{1}{8}$. Enfin, il reste à trouver b.

Prenons pour cela X = 0. On trouve alors

$$0 = -a + b - c + d$$

D'où, $b = a + c - d = \frac{1}{4}$.

Finalement.

$$F = \frac{-1}{8(X-1)} + \frac{1}{4(X-1)^2} + \frac{1}{2(X-1)^3} + \frac{1}{8(X+1)}$$

Exemple 3 [Cas du pôle 0]

Soit
$$F = \frac{X^4 + 1}{X^2(X - 1)}$$
.

d(F) = 1. Par division euclidienne, on a

$$F = X + 1 + \frac{X^2 + 1}{X^2(X - 1)}$$

Posons
$$F_1 = \frac{X^2 + 1}{X^2(X - 1)}$$
.

La décomposition de F_1 est

$$F_1 = \frac{a}{X} + \frac{b}{X^2} + \frac{c}{X - 1}$$

• Méthode 1 :

Les constantes b et c sont simples à calculer.

En effet,

$$\widetilde{X^2F_1}(0) = \frac{1}{-1} = b$$

et

$$(X-1)F_1(1) = \frac{2}{1} = c$$

De plus,

$$\lim_{X \to +\infty} XF_1(X) = 1 = a + c$$

D'où, a = -1.

Finalement,

$$F_1 = \frac{-1}{X} + \frac{-1}{X^2} + \frac{2}{X - 1}$$

Conclusion:

$$F = X + 1 + \frac{-1}{X} + \frac{-1}{X^2} + \frac{2}{X - 1}$$

• Méthode 2 :

Quand 0 est pôle, on peut aussi utiliser la division suivant les puissances croissantes.

En effet, la division suivant les puissances croissantes à l'ordre 1 de $X^2 + 1$ par X - 1 donne

$$X^{2} + 1 = (X - 1)(-X - 1) + 2X^{2}$$

D'où

$$F_1 = \frac{(X-1)(-X-1) + 2X^2}{X^2(X-1)}$$
$$= \frac{-X-1}{X^2} + \frac{2}{X-1}$$
$$= \frac{-1}{X} + \frac{-1}{X^2} + \frac{2}{X-1}$$

Remarques

1. L'exemple 2 peut aussi se faire en utilisant la division suivant les puissances croissantes en se ramenant au pôle 0 via le changement de variable

$$Y = X - 1 \iff X = Y + 1$$

En effet, on a alors

$$F(Y) = \frac{Y+1}{Y^3(Y+2)}$$

En effectuant la division suivant les puissances croissantes à l'ordre 2 de Y + 1 par Y + 2, on trouve

$$Y + 1 = (Y + 2)\left(\frac{1}{2} + \frac{1}{4} - \frac{1}{8}Y^2\right) + \frac{1}{8}Y^3$$

D'où

$$F = \frac{1}{2Y^3} + \frac{1}{4Y^2} - \frac{1}{8Y} + \frac{1}{8(Y+2)}$$
$$= \frac{1}{2(X-1)^3} + \frac{1}{4(X-1)^2} - \frac{1}{8(X-1)} + \frac{1}{8(X+1)}$$

2. Les arguments de limites ne peuvent être utiliser qu'à partir de fractions de degré strictement négatif.

Exemple 4

Soit
$$F = \frac{X^4 + 1}{(X+1)^2(X^2+1)} \in \mathbb{C}(X)$$
.

d(F) = 1. Par division euclidienne, on a

$$F = 1 - 2\frac{X^3 + X^2 + X}{(X+1)^2(X^2+1)} = 1 - 2\frac{X^3 + X^2 + X}{(X+1)^2(X+i)(X-i)}$$

Posons
$$F_1 = \frac{X^3 + X^2 + X}{(X+1)^2(X+i)(X-i)}$$
.

La décomposition de F_1 est

$$F_1 = \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{X+i} + \frac{d}{X-i}$$

On a

$$(\widetilde{X+1})F_1(-1) = -\frac{1}{2} = b$$

 $(\widetilde{X+i})F_1(-i) = \frac{1}{4} = c$

et

$$(\widetilde{X-i})F_1(i) = \frac{1}{4} = d$$

De plus,

$$\lim_{X \to +\infty} XF_1(X) = 1 = a + c + d$$

D'où, $a = \frac{1}{2}$.

Finalement.

$$F_1 = \frac{1}{2(X+1)} + \frac{-1}{2(X+1)^2} + \frac{1}{4(X+i)} + \frac{1}{4(X-i)}$$

et, par conséquent,

$$F = 1 - 2\left(\frac{1}{2(X+1)} + \frac{-1}{2(X+1)^2} + \frac{1}{4(X+i)} + \frac{1}{4(X-i)}\right)$$
$$= 1 - \frac{1}{X+1} + \frac{-1}{(X+1)^2} + \frac{1}{2(X+i)} + \frac{1}{2(X-i)}$$

11.3.2.3 Cas des éléments de seconde espèce

Exemple

Soit
$$F = \frac{X^3}{(X-1)(X^2+1)} \in \mathbb{R}(X)$$
.

d(F) = 0. Par division euclidienne, on a

$$F = 1 + \frac{X^2 - X + 1}{(X - 1)(X^2 + 1)}$$

Posons
$$F_1 = \frac{X^2 - X + 1}{(X - 1)(X^2 + 1)}$$
.

La décomposition de F_1 est

$$F_1 = \frac{a}{X - 1} + \frac{bX + c}{X^2 + 1}$$

On a

$$(\widetilde{X-1})F_1(1) = \frac{1}{2} = a$$

De plus,

$$(\widetilde{X^2 + 1})F(i) = \frac{-i}{i - 1} = bi + c$$

i.e.

$$bi+c=-\frac{1}{2}+\frac{1}{2}i$$

On en déduit que $b = \frac{1}{2}$ et $c = -\frac{1}{2}$

Finalement.

$$F_1 = \frac{1}{2(X-1)} + \frac{X-1}{2(X^2+1)}$$

et donc,

$$F = 1 + \frac{1}{2(X-1)} + \frac{X-1}{2(X^2+1)}$$