### COMP90051 Statistical Machine Learning

Semester 2, 2016

Lecturer: Trevor Cohn

21. Independence in PGMs; Example PGMs



# Independence

PGMs encode assumption of statistical independence between variables.

Critical to understanding the capabilities of a model, and for efficient inference.

### Recall: Directed PGM

- Nodes
- Edges (acyclic)



- Random variables
- Conditional dependence
  - \* Node table: Pr(child|parents)
  - Child directly depends on parents
- Joint factorisation

$$\Pr(X_1, X_2, ..., X_k) = \prod_{i=1}^k \Pr(X_i | X_j \in parents(X_i))$$

#### Graph encodes:

- independence assumptions
- parameterisation of CPTs

## Independence relations (D-separation)

- Important independence relations between RV's
  - Marginal independence P(X, Y) = P(X) P(Y)

$$P(X, Y) = P(X) P(Y)$$

\* Conditional independence 
$$P(X, Y \mid Z) = P(X \mid Z) P(Y \mid Z)$$

- Notation  $A \perp B \mid C$ :
  - \* RVs in set A are independent of RVs in set B, when given the values of RVs in C.
  - \* Symmetric: can swap roles of A and B
  - \*  $A \perp B$  denotes marginal independence,  $C = \emptyset$
- Independence captured in graph structure
  - \* Caveat: dependence does not follow in general when X and Y are not independent

Consider graph fragment





What [marginal] independence relations hold?

$$Yes - P(X, Y) = P(X) P(X)$$

 What about X ⊥ Z, where Z connected to Y?



Consider graph fragment

Marginal independence denoted  $X \perp Y$ 



What [marginal] independence relations hold?

No - 
$$P(X,Z) = \sum_{Y} P(X)P(Y)P(Z|X,Y)$$

$$Yes - P(X,Y) = \sum_{Z} P(X)P(Y)P(Z|X,Y)$$
$$= P(X)P(Y)$$





Are X and Y marginally dependent? (X  $\perp$  Y?)

$$P(X,Y) = \sum_{Z} P(Z)P(X|Z)P(Y|Z)$$
 ... No

$$P(X,Y) = \sum_{Z} P(X)P(Z|X)P(Y|Z) \dots No$$

- Marginal independence can be read off graph
  - however, must account for edge directions
  - \* relates (loosely) to causality: if edges encode causal links, can X affect (cause) Y?
- General rules, X and Y are linked by:
  - \* no edges, in any direction → independent
  - intervening node with incoming edges from X and Y (aka head-to-head) → independent
  - \* head-to-tail, tail-to-tail → not (necessarily) independent
- ... generalises to longer chains of intermediate nodes (coming)

### Conditional independence

- What if we know the value of some RVs? How does this affect the in/dependence relations?
- Consider whether  $X \perp Y \mid Z$  in the canonical graphs



\* Test by trying to show P(X,Y|Z) = P(X|Z) P(Y|Z).

### Conditional independence

$$P(X, Y|Z) = \frac{P(Z)P(X|Z)P(Y|Z)}{P(Z)}$$
$$= P(X|Z)P(Y|Z)$$





$$P(X,Y|Z) = \frac{P(X)P(Z|X)P(Y|Z)}{P(Z)}$$

$$= \frac{P(X|Z)P(Z)P(Y|Z)}{P(Z)}$$

$$= P(X|Z)P(Y|Z)$$

## Conditional independence

- So far, just graph separation... Not so fast!
  - cannot factorise the last canonical graph
- Known as explaining away: value of Z can give information linking X and Y



- land the same side up. Given Z, then X and Y become completely dependent (deterministic).
- \* A.k.a. Berkson's paradox

## **Explaining away**

 The washing has fallen off the line (W). Was it aliens (A) playing? Or next door's dog (D)?

| Α | Prob  |
|---|-------|
| 0 | 0.999 |
| 1 | 0.001 |

| D | Prob |
|---|------|
| 0 | 0.9  |
| 1 | 0.1  |



$$* P(A=1|W=1) = 0.004$$



| А | D | P(W=1<br> A,D) |
|---|---|----------------|
| 0 | 0 | 0.1            |
| 0 | 1 | 0.3            |
| 1 | 0 | 0.5            |
| 1 | 1 | 0.8            |

# **Explaining away II**

- Explaining away also occurs for observed children of the head-head node
  - \* attempt factorise to test  $A \perp D \mid G$

$$P(A, D|G) = \sum_{W} P(A)P(D)P(W|A, D)P(G|W)$$
$$= P(A)P(D)P(G|A, D)$$





## "D-separation" Summary

- Marginal and cond. independence can be read off graph structure
  - \* marginal independence relates (loosely) to causality: if edges encode causal links, can X affect (cause or be caused by) Y?
  - \* conditional independence less intuitive
- How to apply to larger graphs?
  - \* based on paths separating nodes, i.e., do they contain nodes with head-to-head, head-to-tail or tail-to-tail links?
  - \* can all [undirected!] paths connecting two nodes be blocked by an independence relation?

### D-separation in larger PGM

Consider pair of nodes
 FA ⊥ FG?

#### Paths:



- Paths can be blocked by independence
- More formally see "Bayes Ball" algorithm which formalises notion of d-separation as reachability in the graph, subject to specific traversal rules.

### What's the point of d-separation?

- Designing the graph
  - understand what independence assumptions are being made; not just the obvious ones
  - informs trade-off between expressiveness and complexity
- Inference with the graph
  - computing of conditional / marginal distributions must respect in/dependences between RVs
  - \* affects complexity (space, time) of inference

### Markov Blanket

- For an RV what is the minimal set of other RVs that make it conditionally independent from the rest of the graph?
  - \* what conditioning variables can be safely dropped from  $P(X_j \mid X_1, X_2, ..., X_{j-1}, X_{j+1}, ..., X_n)$ ?
- Solve using d-separation rules from graph
- Important for predictive inference (e.g., in pseudolikelihood, Gibbs sampling, etc)

# **Undirected PGMs**

Undirected variant of PGM, parameterised by arbitrary positive valued functions of the variables, and global normalisation.

A.k.a. Markov Random Field.

### Undirected vs directed

#### **Undirected PGM**

- Graph
  - Edges undirected
- Probability
  - \* Each node a r.v.
  - \* Each clique C has "factor"  $\psi_C(X_j: j \in C) \ge 0$

#### **Directed PGM**

- Graph
  - \* Edged directed
- Probability
  - \* Each node a r.v.
  - \* Each node has conditional  $p(X_i|X_j \in parents(X_i))$
  - \* Joint = product of cond'ls

**Key difference = normalisation** 

### Undirected PGM formulation

- Based on notion of
  - \* Clique: a set of fully connected nodes (e.g., A-D, C-D, C-D-F)
  - \* Maximal clique: largest cliques in graph (not C-D, due to C-D-F)



Joint probability defined as

$$P(a, b, c, d, e, f) = \frac{1}{Z} \psi_1(a, b) \psi_2(b, c) \psi_3(a, d) \psi_4(d, c, f) \psi_5(d, e)$$

 where ψ is a positive function and Z is the normalising 'partition' function

$$Z = \sum_{a,b,c,d,e,f} \psi_1(a,b)\psi_2(b,c)\psi_3(a,d)\psi_4(d,c,f)\psi_5(d,e)$$

## d-separation in U-PGMs

- Good news! Simpler dependence semantics
  - \* conditional independence relations = graph connectivity
  - \* if all paths between nodes in set X and Y pass through an observed nodes Z then  $X \perp Y \mid Z$
- For example B  $\perp$  D | {A, C}
- Markov blanket of node = its immediate neighbours



### Directed to undirected

Directed PGM formulated as

$$P(X_1, X_2, \dots, X_k) = \prod_{i=1}^k Pr(X_i | X_{\pi_i})$$

where  $\pi$  indexes parents.

- Equivalent to U-PGM with
  - \* each conditional probability term is included in one factor function,  $\psi_c$
  - \* clique structure links *groups of variables,* i.e.,  $\{\{X_i\} \cup X_{\pi_i}, \forall i\}$
  - \* normalisation term trivial, Z = 1

FG

1. copy nodes

2. copy edges, undirected

3. 'moralise' parent nodes



CTL

## Why U-PGM?

#### Pros

- \* generalisation of D-PGM
- simpler means of modelling without the need for perfactor normalisation
- general inference algorithms use U-PGM representation (supporting both types of PGM)

#### Cons

- (slightly) weaker independence
- calculating global normalisation term (Z) intractable in general (but tractable for chains/trees, e.g., CRFs)

# **Example PGMs**

The hidden Markov model (HMM); lattice Markov random field (MRF)

### The HMM (and Kalman Filter)

Sequential observed outputs from hidden state



$$A = \{a_{ij}\}$$

$$B = \{b_i(o_k)\}$$

$$\Pi = \{\pi_i\}$$

transition probability matrix;  $\forall i: \sum_j a_{ij} = 1$  output probability matrix;  $\forall i: \sum_k b_i(o_k) = 1$  the initial state distribution;  $\sum_i \pi_i = 1$ 

- The Kalman filter same with continuous Gaussian r.v.'s
- A CRF is the undirected analogue



### **HMM Applications**

 NLP – part of speech tagging: given words in sentence, infer hidden parts of speech

"I love Machine Learning"  $\rightarrow$  noun, verb, noun, noun

Speech recognition: given waveform, determine phonemes

- Biological sequences: classification, search, alignment
- Computer vision: identify who's walking in video, tracking

### **Fundamental HMM Tasks**

| HMM Task                                                                                                             | PGM Task                |
|----------------------------------------------------------------------------------------------------------------------|-------------------------|
| <b>Evaluation.</b> Given an HMM $\mu$ and observation sequence $O$ , determine likelihood $\Pr(O \mu)$               | Probabilistic inference |
| <b>Decoding.</b> Given an HMM $\mu$ and observation sequence $O$ , determine most probable hidden state sequence $Q$ | MAP point estimate      |
| <b>Learning.</b> Given an observation sequence $O$ and set of states, learn parameters $A, B, \Pi$                   | Statistical inference   |

# **Computer Vision**

Hidden square-lattice Markov random fields

### Pixel labelling tasks in Computer Vision





Semantic labelling (Gould et al. 09)





Interactive figure-ground segmentation (Boykov & Jolly 2011)





Denoising (Felzenszwalb & Huttenlocher 04)

### What these tasks have in common

- Hidden state representing semantics of image
  - \* Semantic labelling: Cow vs. tree vs. grass vs. sky vs. house
  - Fore-back segment: Figure vs. ground
  - \* Denoising: Clean pixels
- Pixels of image
  - \* What we observe of hidden state
- Remind you of HMMs?



### A hidden square-lattice MRF

- Hidden states: square-lattice model
  - Boolean for two-class states



Discrete for multi-class



Continuous for denoising



- Pixels: observed outputs
  - \* Continuous e.g. Normal



### Application to sequences: CRFs

- Conditional Random Field: Same model applied to sequences
  - observed outputs are words, speech, amino acids etc
  - \* states are tags: part-of-speech, phone, alignment...
- CRFs are discriminative, model P(Q/O)
  - versus HMM's which are generative, P(Q,O)
  - undirected PGM more general and expressive



### Summary

- Notion of independence, 'd-separation'
  - marginal vs conditional independence
  - explaining away, Markov blanket
  - undirected PGMs & relation to directed PGMs
- Share common training & prediction algorithms (coming up next!)