

Devoir surveillé nº 2

2 mai 2025

Consignes:

• Écrire son nom et son numéro d'étudiant sur la copie.

• Les réponses doivent être rédigées soigneusement et les calculs suffisamment détaillés.

• La calculatrice n'est pas autorisée.

Durée: 1 heure (tiers temps: 1 heure 20 minutes).

Barème: 20 points.

Exercice 1 (4 pts). Questions de cours.

1. Soit *K* une partie d'un espace vectoriel normé *E*. Donner la définition de « *K* est compact ».

2. Soit $A \subset \mathbb{R}$ et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions. Donner la définition de « (f_n) converge uniformément vers f sur A ».

3. Énoncer le théorème du cours sur la dérivabilité de la limite d'une suite de fonctions.

Exercice 2 (11 pts). Pour tout $n \in \mathbb{N}$ et x > 0, on considère la fonction $f_n(x) := \frac{(-1)^n}{nx+1}$.

1. Montrer que la série $\sum_{n\in\mathbb{N}} f_n$ converge simplement sur \mathbb{R}_+^* . On note f sa somme.

2. Montrer que la série ne converge normalement sur aucun intervalle non vide $[a,b] \subset \mathbb{R}_+^*$.

3. Montrer que la série converge uniformément sur $]a, +\infty[$ pour tout a > 0.

4. En déduire que f est continue sur \mathbb{R}_+^* .

5. Montrer que :

$$\forall x > 0, \quad f(x) = \int_0^1 \frac{1}{1+t^x} dt.$$

Indication : on pourra calculer $\int_0^1 t^{nx} dt$.

6. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1}$ et $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

Exercice 3 (5 pts). Soit $(E, \|\cdot\|)$ un espace vectoriel normé de dimension finie. Si A est une partie non vide de E et $x \in E$, on note d(x, A) la distance de x à A:

$$d(x, A) \coloneqq \inf_{y \in A} \|x - y\|.$$

- **1.** Soient $x, x' \in E$. Montrer que $d(x, A) \le ||x x'|| + d(x', A)$, puis que $|d(x, A) d(x', A)| \le ||x x'||$.
- **2.** En déduire que l'application $d_A : E \to \mathbb{R}$ définie par $d_A(x) = d(x, A)$ est continue.
- **3.** On suppose à présent que A est un fermé.
 - **a.** Montrer que pour tout $x \in E$, il existe $a \in A$ tel que d(x, A) = ||x a||. Indication : considérer une suite $(a_n)_{n\in\mathbb{N}}$ de A telle que $||x-a_n|| \to d(x,A)$.
 - **b.** Soit K un compact disjoint de A. Déduire des questions précédentes qu'il existe $\delta > 0$ tel que $\forall x \in K$, $\forall a \in A$, $||x - a|| \ge \delta$.

Indication : on pourra étudier l'application d_A sur K.