Conjugacy in Higman-Thompson groups

David Robertson

15th April, 2015

- ► Group: set with a nice binary operation
 - $ightharpoonup \mathbb{Z}$, \mathbb{R} , \mathbb{C} with addition
 - non zero reals, invertible matrices with multiplication
 - invertible maps $f: X \to X$ with function composition

- Group: set with a nice binary operation
 - $ightharpoonup \mathbb{Z}$, \mathbb{R} , \mathbb{C} with addition
 - non zero reals, invertible matrices with multiplication
 - ▶ invertible maps $f: X \to X$ with function composition
- 'Nice': operation has identity e and inverses x^{-1}

$$ex = xe = x$$
 e.g. 0, 1, $x \mapsto x$

$$xx^{-1} = x^{-1}x = e$$

e.g.
$$-x$$
, $1/x$, $f(x) \mapsto x$

$$x(yz) = (xy)z$$

- Group: set with a nice binary operation
 - $ightharpoonup \mathbb{Z}$, \mathbb{R} , \mathbb{C} with addition
 - non zero reals, invertible matrices with multiplication
 - ▶ invertible maps $f: X \to X$ with function composition
- 'Nice': operation has identity e and inverses x^{-1}
 - ► ex = xe = x► $xx^{-1} = x^{-1}x = e$ ► x(yz) = (xy)ze.g. 0, 1, $x \mapsto x$ e.g. -x, 1/x, $f(x) \mapsto x$
 - (xyz) = (xy)z
- Used (e.g.) to describe/measure symmetry

- Group: set with a nice binary operation
 - ▶ Z, R, C with addition
 - non zero reals, invertible matrices with multiplication
 - invertible maps $f: X \to X$ with function composition
- 'Nice': operation has identity e and inverses x^{-1}

►
$$ex = xe = x$$

► $xx^{-1} = x^{-1}x = e$
e.g. 0, 1, $x \mapsto x$
e.g. $-x$, $1/x$, $f(x) \mapsto x$

- x(yz) = (xy)z
- Used (e.g.) to describe/measure symmetry

- Group: set with a nice binary operation
 - ▶ Z, R, C with addition
 - non zero reals, invertible matrices with multiplication
 - invertible maps $f: X \to X$ with function composition
- 'Nice': operation has identity e and inverses x^{-1}

►
$$ex = xe = x$$

► $xx^{-1} = x^{-1}x = e$
► $x(yz) = (xy)z$
e.g. 0, 1, $x \mapsto x$
e.g. $-x$, $1/x$, $f(x) \mapsto x$

► Used (e.g.) to describe/measure symmetry

The conjugacy problem

Given a group G and elements x, y can you find a conjugator z?

$$z^{-1}xz=y$$

The conjugacy problem

Given a group G and elements x, y can you find a conjugator z?

$$z^{-1}xz=y$$

[G, x, y given in terms of a presentation]

- ► This problem is undecidable (P. Novikov, 1954)
- ► Can't write a single program which correctly answers "Yes" or "No" in finite time for every group *G*.

The conjugacy problem

Given a group G and elements x, y can you find a conjugator z?

$$z^{-1}xz=y$$

[G, x, y given in terms of a presentation]

- ► This problem is undecidable (P. Novikov, 1954)
- ► Can't write a single program which correctly answers "Yes" or "No" in finite time for every group *G*.
- Cryptosystem?
- ► Can do this for specific groups, *i.e.* with *G* fixed.

► Take the interval [0, 1].

- ► Take the interval [0, 1].
- ► Chop it in half.

- ► Take the interval [0, 1].
- Chop it in half.
- ► If you like, chop some of the halves in half.

- ► Take the interval [0, 1].
- Chop it in half.
- ► If you like, chop some of the halves in half.
- Continue until you get bored.

- ► Take the interval [0, 1].
- Chop it in half.
- ► If you like, chop some of the halves in half.
- Continue until you get bored.

Do the same to a second copy of [0, 1]. Same number of chops!

- ► Take the interval [0, 1].
- Chop it in half.
- ► If you like, chop some of the halves in half.
- Continue until you get bored.

- Do the same to a second copy of [0, 1]. Same number of chops!
- Use the intervals as axes and join the dots.

- ► Take the interval [0, 1].
- Chop it in half.
- ► If you like, chop some of the halves in half.
- Continue until you get bored.

- Do the same to a second copy of [0, 1]. Same number of chops!
- Use the intervals as axes and join the dots.

Functions f like this are the elements of Thompson's group F.

Thompson's other groups T and V

F

F: increasing functions

Thompson's other groups T and V

F: increasing functions

T: don't have to start at (0,0)

Thompson's other groups T and V

F: increasing functions

T: don't have to start at (0,0)

V: don't have to be continuous

People find these groups interesting

T and V are finitely presented, infinite simple groups (rare!)

- ► Finitely Presented: described by finitely many equations.
- ▶ Simple: can't 'compress' the group to get a smaller one.

People find these groups interesting

T and V are finitely presented, infinite simple groups (rare!)

- Finitely Presented: described by finitely many equations.
- ► Simple: can't 'compress' the group to get a smaller one.

V contains a copy of every finite group G:

- $ightharpoonup G\hookrightarrow \mathcal{S}_n\hookrightarrow \mathcal{S}_{2^m}$
- ▶ Take two full binary trees of depth m, each with 2^m leaves.
- $\sigma \in \mathcal{S}_{2^m}$ corresponds to a permutation of the leaves.

People find these groups interesting

T and V are finitely presented, infinite simple groups (rare!)

- ► Finitely Presented: described by finitely many equations.
- ► Simple: can't 'compress' the group to get a smaller one.

V contains a copy of every finite group G:

- $\blacktriangleright \ \ G \hookrightarrow \mathcal{S}_n \hookrightarrow \mathcal{S}_{2^m}$
- ▶ Take two full binary trees of depth m, each with 2^m leaves.
- $\sigma \in \mathcal{S}_{2^m}$ corresponds to a permutation of the leaves.

People are also interested in whether F is amenable or not,

whatever that means...

1974 Higman described a conjugacy algorithm in a series of lectures.

▶ Works for $V = G_{2,1}$ and generalisations $G_{n,r}$.

- 1974 Higman described a conjugacy algorithm in a series of lectures.
 - ▶ Works for $V = G_{2,1}$ and generalisations $G_{n,r}$.
 - ▶ Different tools used to address conjugacy since:

```
1997 Guba, Sapir: diagram groups2007 Belk, Matucci: strand diagrams2010 Salazar-Díaz: revealing tree pairs
```

2011 Bleak et al.: train tracks and flow graphs

- 1974 Higman described a conjugacy algorithm in a series of lectures.
 - ▶ Works for $V = G_{2,1}$ and generalisations $G_{n,r}$.
 - ▶ Different tools used to address conjugacy since:

```
1997 Guba, Sapir: diagram groups
2007 Belk, Matucci: strand diagrams
2010 Salazar-Díaz: revealing tree pairs
```

2011 Bleak et al.: train tracks and flow graphs

2014 Barker used Higman's ideas to solve power conjugacy in V.

- 1974 Higman described a conjugacy algorithm in a series of lectures.
 - ▶ Works for $V = G_{2,1}$ and generalisations $G_{n,r}$.
 - ▶ Different tools used to address conjugacy since:

```
1997 Guba, Sapir: diagram groups
```

2007 Belk, Matucci: strand diagrams

2010 Salazar-Díaz: revealing tree pairs

2011 Bleak et al.: train tracks and flow graphs

2014 Barker used Higman's ideas to solve power conjugacy in V. Given x, y can you solve $z^{-1}x^az = y^b$?

- 1974 Higman described a conjugacy algorithm in a series of lectures.
 - ▶ Works for $V = G_{2,1}$ and generalisations $G_{n,r}$.
 - ▶ Different tools used to address conjugacy since:

```
1997 Guba, Sapir: diagram groups
```

2007 Belk, Matucci: strand diagrams

2010 Salazar-Díaz: revealing tree pairs

2011 Bleak et al.: train tracks and flow graphs

- 2014 Barker used Higman's ideas to solve power conjugacy in V. Given x, y can you solve $z^{-1}x^az = y^b$?
- 2015 Barker, Duncan and R. Generalisation to $G_{n,r}$ and corrections. Proof of concept implementation.

How can we store this in memory?

[0,1] [0,1]

How can we store this in memory?

[0, 1]

How can we store this in memory?

[0, 1]

Trees \rightarrow paths and words

- ▶ Trees aren't always easy to work with
- ► Can only tell if you're at the top (root) or bottom (leaf)
- ► Recursively delegate to children

Trees \rightarrow paths and words

- ▶ Trees aren't always easy to work with
- Can only tell if you're at the top (root) or bottom (leaf)
- Recursively delegate to children
- Quickly becomes confusing!

for me, at least...

• Where does f send [34/128, 35/128]?

- ▶ Trees aren't always easy to work with
- ► Can only tell if you're at the top (root) or bottom (leaf)
- Recursively delegate to children
- Quickly becomes confusing!

for me, at least...

• Where does f send [34/128, 35/128]?

Higman described paths in the tree using an algebra. Introduce labels:

Root $\mapsto x$

 $\mathsf{left} \mapsto \alpha_1$

 $\mathsf{right} \mapsto \alpha_2$

Maps specified by lists of domain and range words.

$$\begin{array}{ll}
x\alpha_1^2 & \mapsto x\alpha_1 \\
x\alpha_1\alpha_2 & \mapsto x\alpha_2\alpha_1
\end{array}$$

$$x\alpha_2\alpha_1 \mapsto x\alpha_2^2\alpha_1$$
$$x\alpha_2^2 \mapsto x\alpha_2^3$$

Maps specified by lists of domain and range words.

Easier to compute components, e.g.

$$\dots \mapsto x\alpha_1^3 \mapsto x\alpha_1^2 \mapsto x\alpha_1$$

$$\dots \mapsto [0, 1/8] \mapsto [0, 1/4] \mapsto [0, 1/2]$$

Components (\approx orbits)

- ▶ Pick your favourite word e.g. $w = x\alpha_1^2 \leftrightarrow [0, 1/4]$.
- ► Compute component of w until you can't any more:

...,
$$f^{-2}$$
, $f^{-1}(w)$, w , $f(w)$, $f^{2}(w)$, ...

Components (\approx orbits)

- ▶ Pick your favourite word e.g. $w = x\alpha_1^2 \leftrightarrow [0, 1/4]$.
- ► Compute component of w until you can't any more:

...,
$$f^{-2}$$
, $f^{-1}(w)$, w , $f(w)$, $f^{2}(w)$, ...

Components come in five different shapes:

1. Break down a map $f \in V$ into components.

- 1. Break down a map $f \in V$ into components.
- 2. If $g \in V$ is conjugate to f, the components of g must match the components of f.
 - e.g. periodic \mapsto periodic, with the same period

- 1. Break down a map $f \in V$ into components.
- 2. If $g \in V$ is conjugate to f, the components of g must match the components of f.
 - e.g. periodic \mapsto periodic, with the same period
- 3. Only finitely many matchings—check them all!

- 1. Break down a map $f \in V$ into components.
- 2. If $g \in V$ is conjugate to f, the components of g must match the components of f.
 - e.g. periodic \mapsto periodic, with the same period
- 3. Only finitely many matchings—check them all!
- 4. If one works: we get a conjugator h.

- 1. Break down a map $f \in V$ into components.
- 2. If $g \in V$ is conjugate to f, the components of g must match the components of f.
 - e.g. periodic \mapsto periodic, with the same period
- 3. Only finitely many matchings—check them all!
- 4. If one works: we get a conjugator h.
- 5. If none of them work: no conjugator exists.

Implementation

- ▶ My job: get a computer to do this.
- ▶ Like programming a fancy calculator!
- ▶ Wrote in Python: something I knew and quick to work with.

Implementation

- ▶ My job: get a computer to do this.
- Like programming a fancy calculator!
- ▶ Wrote in Python: something I knew and quick to work with.
- ▶ Summer project that was more like a semester project. . .

Implementation

- ▶ My job: get a computer to do this.
- Like programming a fancy calculator!
- Wrote in Python: something I knew and quick to work with.
- ▶ Summer project that was more like a semester project. . .
- ▶ Other tools exist to do calculations in *V*, but not to solve the conjugacy problem.

Code is on GitHub. Come and find me if you want a demo!

Sphinx: comments in source code

```
def format(word):
    """Turns a sequence of integers representing a *word* into [...]
        >>> format([2, -1, 2, -2, 0])
         'x2 a1 x2 a2 I '
        >>> format([])
        The Spanish Inquisition
    11 11 11
    if len(word) == 0:
        return "<the empty word>"
    return " ".join( char(i) for i in word)
```

Sphinx generates nice HTML documentation and runs tests based on """comments like this""".

Sphinx: doctest

```
H:\thompsons_v\docs>make doctest
[...]
*******************
File "thompson.word.rst", line 10, in default
Failed example:
   format([])
Expected:
   The Spanish Inquisition
Got:
   '<the empty word>'
********************
1 items had failures:
  1 of 100 in default
100 tests in 1 items.
99 passed and 1 failed.
***Test Failed*** 1 failures
```

Other lessons learned

- ► Small test suites—catch bugs before they happen
- ► Generate random examples
- ► Immutable words
- ▶ Document the code

Future Work

Code

- More testing
- Complexity analysis

Theory

► Simultaneous conjugacy Given $x_1, ..., x_n; y_1, ..., y_n$ find a single conjugator z such that

$$z^{-1}x_iz=y_i, \quad \forall i$$

- ► Try to solve different kinds of equations?
- ▶ Transfer to more general Thompson-like groups $V(\Sigma)$?