Álgebra Linear I - Lista 9

Matrizes e Transformações lineares

1) Sejam $A \in B$ matrizes quadradas do mesmo tamanho.

• Dê um exemplo onde $(A+B)^2 \neq A^2 + 2AB + B^2$.

• Complete: $(A + B)^2 = A^2 + B^2 + [?]$ (determine [?]).

• Dê um exemplo onde $(A - B)^2 \neq A^2 - 2AB + B^2$.

• Complete: $(A - B)^2 = A^2 + B^2 + [?]$ (determine [?]).

2) Encontre, se possível, matrizes A e B, 3×3 , tais que, para todo vetor coluna 3×1 , se verifique

$$A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x-y \\ 0 \end{pmatrix}, \qquad B\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xy \\ 0 \\ 0 \end{pmatrix}.$$

3) Estude se existem matrizes A, 2×1 , e B, 1×2 , tais que o produto AB seja a identidade.

4) Estude se a seguinte afirmação é verdadeira. A matriz

$$\left(\begin{array}{ccc}
1 & 0 & a \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)$$

tem sempre determinante não nulo (independentemente do valor de a).

5) Seja A uma matriz quadrada. Dizemos que uma matriz (quadrada) B é uma raiz quadrada de A se $B^2 = B$ B = A.

• Encontre duas raízes quadradas de

$$A = \left(\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right).$$

• Encontre quatro raízes quadradas da matriz

$$B = \left(\begin{array}{cc} 4 & 0 \\ 0 & 9 \end{array}\right).$$

- Estude se a seguinte afirmação é verdadeira: toda matriz 2×2 possui no mínimo uma raiz quadrada.
- Estude se a seguinte afirmação é verdadeira. Represente por 0 a matriz com todas as entradas nulas. Se AA = 0 então A = 0.
- 6) Determine as matrizes das seguintes transformações lineares:
- 1. $S: \mathbb{R}^3 \to \mathbb{R}^3$, $S(u) = u \times (1, 1, 1)$, (exercício 3, lista 10);
- 2. $M: \mathbb{R}^3 \to \mathbb{R}^3$, $M(v) = (v \cdot u)u$, onde u = (1, 1, 1), (exercício 4, lista 10);
- 3. $N: \mathbb{R}^3 \to \mathbb{R}, N(v) = (v \cdot u), \text{ onde } u(1, 1, 1),$
- 4. $L: \mathbb{R}^3 \to \mathbb{R}^2$ tal que L(1,1,1) = (6,3), L(2,1,0) = (5,1) e L(2,0,1) = (7,2);
- 5. $K: \mathbb{R}^3 \to \mathbb{R}^3$, $K(v) = (v \times w) \times w$, onde w = (1, 1, 1).
- 7) Considere a base $\beta = \{(1,1,1), (1,1,0), (0,1,1) \text{ e para cada vetor } v \text{ escreva} \}$

$$v = v_1(1, 1, 1) + v_2(1, 1, 0) + v_3(0, 1, 1).$$

Considere $T_{\beta}: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação definida como

$$T_{\beta}(v) = v_1(1, 1, 1) + v_2(1, 1, 0).$$

- $\bullet\,$ Veja que T_β é uma transformação linear.
- Determine a forma geral de $T_{\beta}(x, y, z)$ e a matriz associada a T_{β} .
- $\bullet\,$ Interprete T_{β} como uma projeção.
- Encontre uma base β' tal que a transformação $T_{\beta'}$ (definida como acima) seja uma projeção ortogonal em um plano.

8) Considere os vetores de \mathbb{R}^3 .

$$u_1 = (1, 1, 2), \quad u_2 = (2, 0, 1)$$

e a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T(v) = (v \cdot u_1) u_1 + (v \cdot u_2) u_2$.

- (a) Determine a matriz de T na base canônica.
- (b) Determine o conjunto de vetores v tais que T(v) = v.
- (c) Determine a equação cartesiana da imagem de T.
- (d) Considere o plano

$$\mathbb{V} \colon x + y + 2z = 0.$$

Determine uma base do subespaço $T(\mathbb{V})$, a imagem do plano \mathbb{V} pela transformação linear T.

9)

a) Considere a transformação linear $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$[T] = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 1 & a & c \\ 2 & b & d \end{array}\right).$$

Sabendo que o espaço imagem de T é uma reta determine os valores de a,b,c e d.

b) Considere a transformação linear $L\colon \mathbb{R}^3 \to \mathbb{R}^3$ cuja matriz na base canônica é

$$[L] = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 1 & A & C \\ 2 & B & D \end{array}\right).$$

Determine explicitamente valores A,B,C e D para que a imagem de L seja o plano de equação cartesiana

$$x + y - z = 0$$
.

c) Considere a transformação linear $M \colon \mathbb{R}^3 \to \mathbb{R}^3$ que verifica

$$M(1,1,1) = (0,1,1), \quad M(1,0,1) = (2,1,1), \quad M(0,1,1) = (0,1,1)$$

Determine a matriz de M na base canônica.