

Natural Language Processing IN2361

Prof. Dr. Georg Groh

Chapter 14 Question Answering and Information Retrieval

- content is based on [1]
- certain elements (e.g. equations or tables) were taken over or taken over in a modified form from [1]
- citations of [1] or from [1] are omitted for legibility
- · errors are fully in the responsibility of Georg Groh
- BIG thanks to Dan and James for a great book!

IR-based Factoid Question Answering

 factoid question answering via <u>Information Retrieval</u> (i.e. by finding as answers short text segments on the Web or some other collection of documents)

Question	Answer
Where is the Louvre Museum located?	in Paris, France
What's the abbreviation for limited partnership?	L.P.
What are the names of Odin's ravens?	Huginn and Muninn
What currency is used in China?	the yuan
What kind of nuts are used in marzipan?	almonds
What instrument does Max Roach play?	drums
What's the official language of Algeria?	Arabic
How many pounds are there in a stone?	14

Information Retrieval:

Information Retrieval

Query-document matching: simple approach: tf-idf + cosine:

$$\begin{aligned} \operatorname{tf}_{t,d} &= \log_{10}(\operatorname{count}(t,d) + 1) \\ & \text{Litern} \end{aligned}$$

$$\operatorname{idf}_{t} = \log_{10} \frac{N}{\operatorname{df}_{t}} \xrightarrow{\text{number of docs where } t} \\ \operatorname{tf-idf}(t,d) &= \operatorname{tf}_{t,d} \cdot \operatorname{idf}_{t} \end{aligned}$$

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

$$score(q, d) = cos(q, d) = \frac{q \cdot d}{|q||d|}$$

$$= \sum_{t \in \mathbf{q}} \frac{\operatorname{tf-idf}(t,q)}{\sqrt{\sum_{q_i \in q} \operatorname{tf-idf}^2(q_i,q)}} \cdot \frac{\operatorname{tf-idf}(t,d)}{\sqrt{\sum_{d_i \in d} \operatorname{tf-idf}^2(d_i,d)}}$$

$$\approx \sum_{t \in q} \frac{\text{tf-idf}(t, d)}{|d|}$$

 $d_i \in d$: the tokens d_i in the document d $q_i \in q$: the tokens q_i in the query q

Information Retrieval

Query-document matching: simple approach: tf-idf + cosine:

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

In all Shakespeare plays

Query:	sweet love
Doc 1:	Sweet sweet nurse! Love?
Doc 2:	Sweet sorrow
Doc 3:	How sweet is love?
Doc 4 :	Nurse!

	Document 1				Doc	um	ent 2			
word	count	tf	df	idf	tf-idf	count	tf	df	idf	tf-idf
love	1	0.301	2	0.301	0.091	0	0	2	0.301	0
sweet	2	0.477	3	0.125	0.060	1	0.301	3	0.125	0.038
sorrow	0	0	1	0.602	0	1	0.301	1	0.602	0.181
how	0	0	1	0.602	0	0	0	1	0.602	0
nurse	1	0.301	2	0.301	0.091	0	0	2	0.301	0
is	0	0	1	0.602	0	0	0	1	0.602	0
$ d_1 = 1$	$ d_1 = \sqrt{.091^2 + .060^2 + .091^2} = .141$ $ d_2 = \sqrt{.038^2 + .181^2} = .183$					= .185				

Doc	d	tf-idf(sweet)	tf-idf(love)	score
1	.141	.060	.091	1.07
3	.274	.038	.091	0.471
2	.185	.038	0	0.205
4	.090	0	0	0

Information Retrieval

Query-document matching: variant: BM25

k: adjust balance btw. tf and idf b: control influence of document length normalization

| d_{avg} | : length of average document

Query-document matching: variant: use stop word removal (controversial!)

IR: Inverted Index

 Inverted Index: dictionary+postings: hash-map of terms (keys) and list of references to documents containing term

Doc 1: Sweet sweet nurse! Love?

Doc 2: Sweet sorrow

Doc 3: How sweet is love?

Doc 4: Nurse!

```
how \{1\} \rightarrow 3 [1]

is \{1\} \rightarrow 3 [1]

love \{2\} \rightarrow 1 [1] \rightarrow 3 [1]

nurse \{2\} \rightarrow 1 [1] \rightarrow 4 [1]

sorry \{1\} \rightarrow 2 [1]

sweet \{3\} \rightarrow 1 [2] \rightarrow 2 [1] \rightarrow 3 [1]

document

frequency
```

IR: Performance Measures

Performance measures: IR-system returns ranked list of answer documents
 → Precision and Recall ~ Precision@rank , Recall@rank

	Rank	Judgment	Precision _{Rank}	Recall _{Rank}
ı	1	Relevant	1.0	.11
	2	N	.50	.11
٦	3	R	.66	.22
	4	N	.50	.22
	5	R	.60	.33
	6	R	.66	.44
	7	N	.57	.44
	8	R	.63	.55
	9	N	.55	.55
	10	N	.50	.55
	11	R	.55	.66
	12	N	.50	.66
	13	N	.46	.66
	14	N	.43	.66
	15	R	.47	.77
	16	N	.44	.77
	17	N	.44	.77
	18	R	.44	.88
	19	N	.42	.88
	20	N	.40	.88
	21	N	.38	.88
	22	N	.36	.88
	23	N	.35	.88
	24	N	.33	.88
	25	R	.36	1.0

Precision@2, Recall@2

(assuming the collection has 9 relevant documents).

IR: Performance Measures

 Combine Precision-Recall curve over several queries: average interpolated (from the pre-rec-curves of each query) Precision@rank values for fixed, evenly spaced Recall@rank values:

$$\rightarrow$$
 approximate as $IntPrecision(r) = \max_{i>=r} Precision(i)$

IR: Performance Measures

Performance measures: IR-system returns ranked list of answer documents
 → Precision and Recall ~ Precision@rank , Recall@rank

Rank	Judgment	Precision _{Rank}	Recall _{Rank}
1	R	1.0	.11
2	N	.50	.11
3	R	.66	.22
4	N	.50	.22_
5	R	.60	.33
6	R	.66	.44
7	N	.57	.44
8	R	.63	.55
9	N	.55	.55
10	N	.50	.55
11	R	.55	.66 —
12	N	.50	.66
13	N	.46	.66
14	N	.43	.66
15	R	.47	.77
16	N	.44	.77
17	N	.44	.77
18	R	.44	.88
19	N	.42	.88
20	N	.40	.88
21	N	.38	.88
22	N	.36	.88
23	N	.35	.88
24	N	.33	.88
25	D	26	1.0

25

Mean average precision: in contrast to previous slide: only note precision where recall actually changes (in example: ranks 1,3,5,6,...)

$$AP = \frac{1}{|R_r|} \sum_{d \in R_r} \operatorname{Precision}_r(d)$$

Set of revelant documents above rank r

$$MAP = \frac{1}{|Q|} \sum_{q \in Q} AP(q)$$

IR with Embeddings

- standard IR: query words and document words need to match (vocabulary mismatch problem)
- obvious idea:

$$h_q = \text{BERT}_Q(q) \text{ [CLS]}$$

 $h_d = \text{BERT}_D(d) \text{ [CLS]}$
 $\text{score}(d, q) = h_q \cdot h_d$

Figure 23.8 BERT bi-encoder for computing relevance of a document to a query.

obvious problem (Google scale)

is costly

compared to inverted index: performance

IR-based Factoid Question Answering

Find short text fragments that are answers to question

Question	Answer
Where is the Louvre Museum located?	in Paris, France
What are the names of Odin's ravens?	Huginn and Muninn
What kind of nuts are used in marzipan?	almonds
What instrument did Max Roach play?	drums
What's the official language of Algeria?	Arabic

Figure 23.10 IR-based factoid question answering has two stages: retrieval, which returns relevant documents from the collection, and reading, in which a neural reading comprehension system extracts answer spans.

IR-based Factoid Question Answering: Datasets

SQuAD 2.0 (2018): 150,000 questions from Wikipedia (human built)

Beyoncé Giselle Knowles-Carter (born September 4, 1981) is an American singer, songwriter, record producer and actress. Born and raised in Houston, Texas, she performed in various singing and dancing competitions as a child, and rose to fame in the late 1990s as lead singer of R&B girl-group Destiny's Child. Managed by her father, Mathew Knowles, the group became one of the world's best-selling girl groups of all time. Their hiatus saw the release of Beyoncé's debut album, Dangerously in Love (2003), which established her as a solo artist worldwide, earned five Grammy Awards and featured the Billboard Hot 100 number-one singles "Crazy in Love" and "Baby Boy".

Q: "In what city and state did Beyoncé grow up?"

A: "Houston, Texas"

Q: "What areas did Beyoncé compete in when she was growing up?"

A: "singing and dancing"

Q: "When did Beyoncé release Dangerously in Love?"

A: "2003"

Figure 23.11 A (Wikipedia) passage from the SQuAD 2.0 dataset (Rajpurkar et al., 2018) with 3 sample questions and the labeled answer spans.

- Hotpot QA (2018): crowd worker made: derive questions that require a set of documents to answer
- Trivia QA (2017): 650,000 question-answer-evidence triples (evidence supporting web documents)

IR-based Factoid Question Answering: Datasets

Natural Questions (2019): human annotators get actual Google queries:
 <u>distil long</u> and <u>short answer</u> (incl. "no answer") from Wikipedia page from top 5 IR results

example:

- question: "When are hops added to the brewing process?"
- short answer "the boiling process"
- long answer: the surrounding entire paragraph from the Wikipedia page on Brewing.

TyDi QA (2020): 204,000 q&a pairs from 11 typologically diverse languages

IR-Based QA: Reader (Answer Span Extraction)

Simplifying assumption: $p(a|p,q) = p_{start}(a_s|p,q)p_{end}(a_e|p,q)$

Figure 23.12 An encoder model (using BERT) for span-based question answering from reading-comprehension-based question answering tasks.

BERT embedding of i-th passage token

$$P_{\text{start}_i} = \frac{\exp(S \cdot p_i')}{\sum_j \exp(S \cdot p_j')}$$

$$P_{\text{end}_i} = \frac{\exp(E \cdot p_i')}{\sum_j \exp(E \cdot p_j')}$$

$$L = -\log P_{\text{start}_i}^{\text{(Gold)}} - \log P_{\text{end}_i}^{\text{(Gold)}}$$

The score of a candidate span from position i to j is $S \cdot p'_i + E \cdot p'_j$, and the highest scoring span in which $j \ge i$ is chosen is the model prediction.

Entity Linking

- Entity linking: associating a mention in text with some real-world entity represented by a Wikipedia article ("wikification") or as a concept in an ontology (DBPedia, OWL-based...)
- components / stages: mention detection, mention disambiguation

Wikification example: TAGME (2011):

- o index Wikipedia pages $\{e_i\}$ (page \leftrightarrow entity) in standard IR (e.g. Lucene)
- \circ For each e_i compute in-link count from other $\{e_j\}$ e_j 's that point to e_i
- extract anchor string from each in-link on other page Stanford University
- o anchor dictionary entry for page/entity e_i : title of e_i , all in-link anchor strings
- o add to each anchor string: its overall ocurrence frequency freq(a) (including non-anchor appearances) in all of Wikipedia, and overall occurrence frequency as anchor in links link(a))
- o delete anchor strings with low link probability $\frac{link(a)}{freq(a)}$

Entity Linking: TAGME (contd.)

Mention detection: for each token sequence in the question of up to 6 tokens: query anchor dictionary
 → find mention spans in anchor strings

o if mention span is in anchor string pointing to only one Wikipedia page: done! If not: Mention disambiguation:

for all pages $\mathcal{E}(a)$ pointed to by ambiguous anchor span a

- prior probability that anchor string a points to entity (page) $e \in \mathcal{E}(a)$

$$prior(a \rightarrow e) = p(e|a) = \frac{count(a \rightarrow e)}{link(a)}$$

example question: What Chinese Dynasty came before the Yuan?

problem: p(entity:yuan_currency | Yuan) > p(entity:yuan_dynasty | Yuan)

 — relatedness score: incorporate other candidate anchor spans:
 example: Chinese Dynasty → page:Dynasties_in_Chinese_history

Entity Linking: TAGME (contd.)

for each candidate anchor span a in q, compute relatedness score to all entities $e \in \mathcal{E}(a)$: relatedness score of the link $a \to e$ is the weighted average relatedness between e and all other entities e' (pointed to by all other candidate anchors) in query q.

i.e. for A, B: entities and in(A): set of entities (pages) pointing to page of A:

$$\frac{\operatorname{rel}(A,B)}{\log(|W|) - \log(\min(A)|, |\operatorname{in}(B)|)) - \log(|\operatorname{in}(A) \cap \operatorname{in}(B)|)}{\log(|W|) - \log(\min(|\operatorname{in}(A)|, |\operatorname{in}(B)|))}$$

the vote given by anchor b to the candidate annotation $a \rightarrow X$

$$vote(b,X) = \frac{1}{|\mathcal{E}(b)|} \sum_{Y \in \mathcal{E}(b)} rel(X,Y) p(Y|b)$$

 \rightarrow relatedness score for $a \rightarrow X$

$$relatedness(a \to X) = \sum_{b \in \mathcal{X}_q \setminus a} vote(b, X)$$

$$chinese dinasty contains to the dinasty and not for the contains to the contains the contains$$

o for question q choose answer entity with highest prior probability among entities with highest relatedness scores

Neural Graph-Based Linking

ELQ (2020):

Neural Graph-Based Linking

ELQ (2020): Entity Mention Detection

$$[\mathbf{q}_1 \cdots \mathbf{q}_n] = \mathbf{BERT}([\mathsf{CLS}]q_1 \cdots q_n[\mathsf{SEP}])$$

$$S_{\text{start}}(i) = \mathbf{w}_{\text{start}} \cdot \mathbf{q}_i$$

$$S_{\text{mention}}(t) = \mathbf{w}_{\text{mention}} \cdot \mathbf{q}_t \quad , \quad i < t < j$$

$$S_{\text{end}}(j) = \mathbf{w}_{\text{end}} \cdot \mathbf{q}_j$$

$$p([i,j]) = \sigma \left(s_{\text{start}}(i) + s_{\text{end}}(j) + \sum_{t=i}^{j} s_{\text{mention}}(t) \right)$$

Mention detection loss:

$$\mathcal{L}_{\text{MD}} = -\frac{1}{N} \sum_{1 \leq i \leq j \leq \min(i+L-1,n)} \left(y_{[i,j]} \log p([i,j]) + (1-y_{[i,j]}) \log (1-p([i,j])) \right)$$

$$= 1 \text{ if } [i,j] \text{ is gold mention}$$

Neural Graph-Based Linking

ELQ (2020): Entity Linking

entity encoding:

$$\mathbf{x}_e = \mathrm{BERT}_{[\mathrm{CLS}]}([\mathrm{CLS}]t(e_i)[\mathrm{ENT}]d(e_i)[\mathrm{SEP}])$$

$$\begin{array}{ccc} & \text{title of} & \text{first 128 tokens of} \\ & \text{entity (page)} & \text{entity (page))} \end{array}$$

span [i, j] encoding:

$$\mathbf{y}_{i,j} = \frac{1}{(j-i+1)} \sum_{t-i}^{j} \mathbf{q}_t$$

linking:

$$\mathbf{s}(e,[i,j]) = \mathbf{x}_e^{\cdot} \mathbf{y}_{i,j} \qquad \mathbf{p}(e|[i,j]) = \frac{\exp(s(e,[i,j]))}{\sum_{e' \in \mathcal{E}} \exp(s(e',[i,j]))}$$

Entity linking loss:

$$\mathcal{L}_{ ext{ED}} = -log p(e_g|[i,j])$$
 gold entity

Knowledge-Based QA from RDF Triple Stores

- RDF triple: subject predicate object

 Ada Lovelace birth-year 1815
- possible questions: When was Ada Lovelace born? Who was born in 1815?
- Entity linking: as before (e.g. linking the mention "Ada Lovelace" to the entity Ada Lovelace (as an RDF entity))
- Relation detection + linking and disambiguation:

```
"When was Ada Lovelace born?" \rightarrow birth-year (Ada Lovelace, ?x) "What is the capital of England?" \rightarrow capital-city(?x, England)
```

$$\mathbf{m}_{r} = \mathrm{BERT}_{\mathsf{CLS}}([\mathsf{CLS}]q_{1}\cdots q_{n}[\mathsf{SEP}])$$

$$s(\mathbf{m}_{r}, r_{i}) = \mathbf{m}_{r} \cdot \mathbf{w}_{r_{i}}$$

$$p(r_{i}|q_{1}, \cdots, q_{n}) = \frac{\exp(s(\mathbf{m}_{r}, r_{i}))}{\sum_{k=1}^{N_{R}} \exp(s(\mathbf{m}_{r}, r_{k}))}$$

Trained representation for each relation r_i out of a fixed set of relations (e.g. rdf predicates)

Knowledge-Based QA by Semantic Parsing

Map question to logical form (predicate logic, SQL, SPARQL etc.) (supervised)

Question	Logical form
What states border Texas?	λx .state(x) \wedge borders(x, texas)
What is the largest state?	$\operatorname{argmax}(\lambda x.\operatorname{state}(x), \lambda x.\operatorname{size}(x))$
	SELECT DISTINCT f1.flight_id
	FROM flight f1, airport_service a1,
	city c1, airport_service a2, city c2
	WHERE f1.from_airport=a1.airport_code
I'd like to book a flight from San Diego to	AND a1.city_code=c1.city_code
Toronto	AND c1.city_name= 'san diego'
	AND f1.to_airport=a2.airport_code
	AND a2.city_code=c2.city_code
	AND c2.city_name= 'toronto'
How many people survived the sinking of	<pre>(count (!fb:event.disaster.survivors</pre>
the Titanic?	fb:en.sinking_of_the_titanic))
How many yards longer was Johnson's	ARITHMETIC diff(SELECT num(ARGMAX(
longest touchdown compared to his short-	SELECT)) SELECT num(ARGMIN(FILTER(
est touchdown of the first quarter?	SELECT))))

Knowledge-Based QA with Language Models

"ask the language model (T5, Chat-GPT etc) directly":

Figure 23.16 The T5 system is an encoder-decoder architecture. In pretraining, it learns to fill in masked spans of task (marked by <M>) by generating the missing spans (separated by <M>) in the decoder. It is then fine-tuned on QA datasets, given the question, without adding any additional context or passages. Figure from Roberts et al. (2020).

Bibliography

(1) Dan Jurafsky and James Martin: Speech and Language Processing (3rd ed. draft, version Jan 2023); Online: https://web.stanford.edu/~jurafsky/slp3/ (URL, Oct 2023); this slide-set is especially based on chapter 14

Recommendations for Studying

minimal approach:

work with the slides and understand their contents! Think beyond instead of merely memorizing the contents

standard approach:

minimal approach + read the corresponding pages in Jurafsky [1]

interested students

== standard approach