Towards Precision Medicine with Graph Representation Learning

Michelle M. Li & Marinka Zitnik

Department of Biomedical Informatics Broad Institute of Harvard and MIT Harvard Data Science

zitniklab.hms.harvard.edu/biomedgraphml

1

Tutorial VT4

July 7, 2022 at 9am – 1pm CDT

All tutorial materials are available at zitniklab.hms.harvard.edu/biomedgraphml

Biology is interconnected

Networks are a general language for describing and modeling complex systems

Patient networks

Biomedical knowledge graphs

Hierarchies of cell systems

Gene interaction networks

Disease pathways

Cell-cell similarity networks

Why networks in biology?

Long-standing paradigm: "local hypothesis"

Proteins involved in the same disease have an increased tendency to interact with each other

Corollary of the local hypothesis

Mutations in interacting proteins often lead to similar diseases

Network medicine: a network-based approach to human disease, Nature Reviews Genetics, 2011

Known disease proteins

Predicted disease proteins

Why are biological networks challenging?

- Heterogeneous interactions that span from molecules to whole populations
 - Challenge: Computationally operationalize these data & make them amenable to ML
- Requires data from diverse sources, including experimental readouts, curated annotations, metadata
 - Challenge: Capture all factors necessary to understand a phenomenon (e.g. disease)
- Noisy due to inherent natural variations & limitations of measurement platforms
 - Challenge: Handle missing data, repeated measurements, and contradictory observations

Classic deep learning

- Primarily designed for grids or simple sequences:
 - CNNs for fixed-size images/grids...

RNNs for text and sequences...

Classic deep learning

- Networks are far more complex!
 - Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Graph representation learning realizes key network principles for data-rich biomedicine

This Tutorial

- Methods: Network diffusion, shallow network embeddings, and graph neural networks
- 2. Applications: Fundamental biological discoveries and precision medicine
- 3. Outlook: Future directions and Q&A session
- 4. <u>Hands-on exercises</u>: Demos, implementation details, tools, and tips

Resources

Books & survey papers

- William Hamilton, Graph Representation Learning (morganclaypool.com/doi/abs/10.2200/S01045ED1V01Y202009AIM046)
- Li et al., Graph Representation Learning for Biomedicine (arxiv.org/abs/2104.04883)

Keynotes

 Michael Bronstein, "Geometric Deep Learning: The Erlangen Programme of ML" (ICLR 2021 keynote) (youtube.com/watch?v=w6Pw4MOzMuo)

Software & packages

- PyTorch Geometric
- NetworkX
- Stanford Network Analysis Platform (SNAP)

Resources

Conferences & summer schools

- London Geometry and Machine Learning Summer School (logml.ai)
- Learning on Graphs Conference (logconference.github.io)

Tutorials & code bases

- Pytorch Geometric Colab Notebooks (pytorchgeometric.readthedocs.io/en/latest/notes/colabs.html)
- Zitnik Lab Graph ML Tutorials (github.com/mims-harvard/graphml-tutorials)
- Stanford University's CS224 (web.stanford.edu/class/cs224w)

Datasets

- Precision Medicine Oriented Knowledge Graph (PrimeKG)
 (zitniklab.hms.harvard.edu/projects/PrimeKG)
- Therapeutic Data Commons (TDC) (tdcommons.ai)
- BioSNAP (snap.stanford.edu/biodata/)
- Open Graph Benchmark (OGB) (ogb.stanford.edu)