Tema 1: Lógica Proposicional

Lógica Matemática (Licenciatura en Física y Matemáticas)

Prof. David Fernández Bretón

1. Una conectiva Booleana n-aria es una función $B : \{T, F\}^n \longrightarrow \{T, F\}$ (la idea intuitiva es que la función codifica una tabla de verdad). Considere la conectiva Booleana ternaria dada por:

$$B(T,T,T) = F,$$
 $B(F,T,T) = F,$
 $B(T,T,F) = F,$ $B(F,T,F) = T,$
 $B(T,F,T) = F,$ $B(F,F,T) = T,$
 $B(T,F,F) = T,$ $B(F,F,F) = T.$

Escriba una fórmula bien formada, utilizando las conectivas $\{\neg, \land, \lor\}$, que realize esta función Booleana.

- 2. Muestre que el conjunto de conectivas $\{\bot, \Rightarrow\}$ es completo (en donde \bot es la conectiva 0-aria con valor constante F).
- 3. Las siguientes son fórmulas en notación polaca; reescríbalas en la notación "usual".
 - (a) $\neg \neg \Rightarrow \lor \land p_3 p_8 \neg p_{10} \neg \lor p_1 p_5$,
 - (b) $\land \neg \Rightarrow p_3 \lor p_4p_1 \leftrightarrow \lor \neg p_{10} \leftrightarrow p_{15}p_{18}$,
 - (c) $\wedge \Rightarrow p_3 \wedge p_2 p_1 \neg \vee \wedge p_4 p_5 \neg p_{10}$
- 4. Demuestre que toda fórmula bien formada (en el formato definido en clase, es decir, en notación polaca) en la que no aparezca el símbolo ¬ debe de tener longitud impar.
- 5. Sea φ una fórmula bien formada. Sea c la cantidad de veces que aparece el símbolo \Rightarrow en la fórmula φ , y sea s la cantidad de veces que aparecen variables en la fórmula φ (en donde, si alguna variable aparece varias veces, se cuenta cada una de sus apariciones por separado). Demuestre que s = c + 1.
- 6. Sea φ una fórmula bien formada, y suponga que todos los símbolos de variable que aparecen en φ se encuentran entre p_1, \ldots, p_n . Supóngase que m, m' son dos modelos que satisfacen $m(p_i) = m'(p_i)$ para todo $1 \le i \le n$. Demuestre que $\overline{m}(\varphi) = \overline{m'}(\varphi)$.
- 7. Demuestre o refute, para un conjunto de fórmulas Σ y φ , ψ dos fórmulas:
 - (a) Si o bien $\Sigma \vDash \varphi$, o bien $\Sigma \vDash \psi$, entonces $\Sigma \vDash \varphi \land \psi$;
 - (b) si $\Sigma \vDash \varphi \land \psi$, entonces o bien $\Sigma \vDash \varphi$, o bien $\Sigma \vDash \psi$.
- 8. (Sustitución): Suponga que tenemos una lista de fórmulas bien formadas $\varphi_1, \ldots, \varphi_n, \ldots$ Quisiéramos definir formalmente la operación que, dada una fórmula bien formada ψ , reemplaza cada aparición del símbolo de variable p_i con la fórmula φ_i , de modo que se obtiene una nueva fórmula bien formada ψ^* . Por ejemplo, si ψ es $(p_4) \Rightarrow (p_{32})$, entonces ψ^* sería la fórmula bien formada $(\alpha_4) \Rightarrow (\alpha_{32})$.
 - (a) ¿Cómo definiría formalmente la operación $\psi \mapsto \psi^*$ por recursión?
 - (b) Sea m cualquier modelo, y defina m' como el modelo dado por $m'(p_i) = \overline{m}(\psi_i)$. Demuestre que $\overline{m'}(\psi) = \overline{m}(\psi^*)$, para cada fórmula bien formada ψ .
 - (c) Concluya que, si ψ es una tautología, entonces tambié lo es ψ^* .
- 9. Sea Σ un conjunto de fórmulas bien formadas. Definimos la operación $\mathcal{C}(\Sigma)$ mediante

$$\mathcal{C}(\Sigma) = \Sigma \cup \{\varphi \big| \neg \varphi \in \Sigma\} \cup \{\varphi \big| \varphi \land \psi \in \Sigma \text{ or } \psi \land \varphi \in \Sigma \text{ para alguna fórmula bien formada } \psi\}.$$

(a) Considere
$$\Sigma = \{(p_1) \land (\neg(p_2)), \neg((p_3) \land ((p_4) \land (p_5)))\}$$
. Calcule $\mathcal{C}(\Sigma)$ y $\mathcal{C}(\mathcal{C}(\Sigma))$.

Inspirados por el ejercicio previo, definimos recursivamente, para cada conjunto de fórmulas bien formadas Σ , los conjuntos $\mathcal{C}^n(\Sigma)$ como sigue:

- $\mathcal{C}^0(\Sigma) = \Sigma$,
- $C^{n+1}(\Sigma) = C(C^n(\Sigma)).$

Más aún, definimos $C^{\infty}(\Sigma) = \bigcup_{n \in \mathbb{N} \cup \{0\}} C^n(\Sigma)$.

- (b) Si Σ es como en el inciso (a), ¿a qué es igual $\mathcal{C}^{\infty}(\Sigma)$?
- (c) Ahora, sea

$$\Sigma = \left\{ \underbrace{p_n \wedge \dots \wedge p_n}_{n \text{ yeres}} \middle| n \in \mathbb{N} \right\}.$$

¿A qué es igual $C^{\infty}(\Sigma)$?

- (d) ¿Se te puede ocurrir alguna manera intuitiva (verbal, corta) de describir a qué es igual $\mathcal{C}^{\infty}(\Sigma)$?
- 10. Demuestre que existe una demostración que hace válidos cada uno de los argumentos siguientes.
 - (a) $A \Rightarrow (B \land \neg C)$ $(B \lor C) \Rightarrow D$

A

∴ D

(b) $A \Rightarrow B$

$$A \vee (B \vee \neg C)$$

 $\neg B$

$$\therefore \neg C \land \neg B$$

(c) $A \Rightarrow B$

$$B \Rightarrow C$$

$$(A \Rightarrow C) \Rightarrow (B \Rightarrow D)$$

$$(A \Rightarrow D) \Rightarrow E$$

 $\therefore E$

(d) $A \Rightarrow (B \land C)$

$$\neg A \Rightarrow ((D \Rightarrow E) \land (F \Rightarrow H))$$

$$(B \land C) \lor ((\neg A \Rightarrow D) \land (\neg A \Rightarrow F))$$

$$\neg (B \land C) \land \neg (H \land D)$$

 $\therefore E \wedge H$

(e) $(A \Rightarrow B) \land (C \Rightarrow D)$

$$(B \Rightarrow E) \land (D \Rightarrow F)$$

$$(\neg A \Rightarrow E) \land (\neg B \Rightarrow D)$$

 $\neg E$

$$\therefore \neg C \lor \neg B$$

(f) $A \Rightarrow (B \Rightarrow C)$

$$\therefore B \Rightarrow (A \Rightarrow C)$$

(g) $A \Rightarrow (B \wedge C)$

$$\therefore A \Rightarrow B$$

(h) $A \Rightarrow (B \land C)$

$$C \Rightarrow (D \wedge E)$$

$$\therefore A \Rightarrow (B \land D).$$

(i) $A \Rightarrow B$

$$C \Rightarrow B$$

$$(A \lor C) \Rightarrow B$$

- (j) $((A \lor B) \Rightarrow C) \land (\neg D \Rightarrow (B \land \neg C))$
- $\therefore A \Rightarrow D$
- (k) $(A \lor B) \Rightarrow C$ $D \Rightarrow (E \land F)$
- $\therefore (A \Rightarrow C) \land (D \Rightarrow E)$
- (1) $(A \Rightarrow B) \land (C \Rightarrow D)$ $(B \lor D) \Rightarrow ((E \Rightarrow (E \lor F)) \Rightarrow (A \land C))$ $\therefore A \iff C$
- (m) $A \lor (B \Rightarrow C)$ $(B \Rightarrow (B \land C)) \Rightarrow (D \lor E)$ $(D \Rightarrow A) \land (E \Rightarrow F)$ $\therefore A \lor F$
- (n) $(A \Rightarrow (\neg B \land \neg C)) \land (D \Rightarrow \neg (B \lor C))$ $(\neg E \Rightarrow A) \land (\neg F \Rightarrow D)$ $(E \Rightarrow B) \land (F \Rightarrow C)$ $\therefore B \iff C$
- (o) $(A \lor B) \Rightarrow (C \Rightarrow D)$ $(C \Rightarrow (C \land D)) \Rightarrow E$ $E \Rightarrow ((\neg F \lor \neg \neg F) \Rightarrow (A \land F))$ $\therefore A \iff E$
- $(\mathbf{p}) \ \therefore (A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))$
- (q) : $(A \Rightarrow B) \Rightarrow ((A \land C) \Rightarrow (B \land C))$
- (r) \therefore $((A \Rightarrow B) \Rightarrow A) \Rightarrow A$.
- (s) $A \lor (B \land C)$ $A \Rightarrow C$ $\therefore C$
- (t) $(A \lor B) \Rightarrow (C \Rightarrow D)$ $(\neg D \lor E) \Rightarrow (A \land C)$ $\therefore D$
- (u) $(A \lor B) \Rightarrow (C \land D)$ $(C \lor E) \Rightarrow (\neg F \land H)$ $(F \lor G) \Rightarrow (A \land I)$ $\therefore \neg F$
- (v) $\therefore (A \Rightarrow B) \lor (B \Rightarrow C)$
- (w) $:: A \Rightarrow ((A \Rightarrow B) \Rightarrow B),$
- $(\mathbf{x})\ \therefore (A\Rightarrow B)\Rightarrow ((A\Rightarrow (B\Rightarrow C))\Rightarrow (A\Rightarrow C)),$
- (y) : $(A \land B) \Rightarrow B$,
- (z) $:: A \Rightarrow (B \Rightarrow (A \land B)).$