Q:Two APs have the same common difference. The difference between their 100th terms is 100, what is the difference between their 1000th terms?

Solution:

$$x(n) = \{x(0) + nd\}u(n)$$
 (1)

$$x(99) - y(99) = 100 (2)$$

$$\implies (x(0) + 99d) - (y(0) + 99d) = 100 \tag{3}$$

$$\implies x(0) - y(0) = 100 \tag{4}$$

Now to find the difference between the 1000th terms of APs;

$$x(999) - y(999) = (x(0) + 999d) - (y(0) + 999d)$$
(5)

$$= x(0) - y(0) \tag{6}$$

$$= 100 \tag{7}$$

Therefore, the difference between the 1000th terms of two given APs is 100.

We know that,

The Z-transform of a discrete signal x(n) is given by:

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Considering x(n-1) and y(n-1) as n^{th} terms of the APs(Arithmetic Progressions), Z-transform for x(n-1) and y(n-1) can be given by

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(8)

$$= x(0)U(z) + d[-z\frac{d(U(z))}{dz}]$$
 (9)

$$X(z) = x(0)U(z) + d(-z)\frac{d(U(z))}{dz}$$
(10)

$$Y(z) = y(0)U(z) + d(-z)\frac{d(U(z))}{dz}$$
(11)

Variable	Description	Value
x(n)	n^{th} term of X	none
<i>y</i> (<i>n</i>)	<i>n</i> th term of Y	none
d	common difference between the terms of AP	none
X(z)	z-transform of x(n)	none
Y(z)	z-transform of y(n)	none
U(z)	z-transform of u(n)	$\frac{1}{1-z^{-1}}, z > 1$ $x(99) - y(99) = 100$
x(n) - y(n)	difference of n^{th} terms of X and Y	x(99) - y(99) = 100
TABLE 0		

INPUT PARAMETERS

$$X = \{101, 106, 111, \dots, 596\} \tag{12}$$

$$Y = \{1, 6, 11, ..., 496\} \tag{13}$$

Fig. 0.