Unsupervised Machine Learning for Customer Market Segmentation

PROJECT 2 -

YORK UNIVERSITY SCHOOL OF CONTINUING STUDIES

Suha Islaih Osear Okinga S

PROJECT - OVERVIEW & OBJECTIVES

Goals

The objective of this study is to develop a customer segmentation using unsupervised machine learning approach aiming to perform an effective marketing strategies that reflect customer behavior.

Main Research Question

- Define/ Conduct the data segmentation analysis & visualize the factors that lead to a better understanding of our dataset.
- Define / What model can we use to perform and to give us a better customer segmentation.
- What's the metrics can be used to evaluate the performance of a clustering model.

METHODOLOGY FRAMEWORK

The approach methodology framework that we will use in this project is call CRISP-DM, which is an industry standard process for data mining.

This framework is use & will guide to perform different tasks in the projects

DATA UNDERSTANDING - PREPROCESSING & PREPARATION

Action:

- Understnading of the
 - Data shape, Size, Info and Types
 - Duplicates values
 - Statistcial Dataset
- Drop Variable of no impact in the analysis
- Handle the Missing Values

EXPLORATORY DATA ANALYSIS (EDA)

Data Visualisation of different plot:

- Pairplot
- Visualize and Analyze Variables
- Histograms Plot Dataset
- Correlation Analysis

EXPLORATORY DATA ANALYSIS (EDA)

DATASET - HISTOGRAMS PLOT

CORRELATION

ANALYSIS

OUTLIER ANALYSIS

Identification & Visualize & Removal of the Outlier's Distribution

The approach for outlier analysis involves first to identify and visualize the outlier's distribution, as illustrated in the plots below; then remove it accordingly.

MODELLING

Feature Scaling

The Approach for Scaling the Numerical Features - Standardize the Data

```
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)
```

Type of Model - Selection

- K-Means model
- Gaussian Mixture Models (GMM)
- Hierarchical Clustering

MODELLING K-MEANS APPROACH

Determine the Optimal Number of Clusters (k) - Elbow Method

This the approach used to identify the optimal number of clusters for the K-means clustering algorithm

Apply of PCA

To reduces high-dimension data to smaller dimensions

Model Training / Run K-Means Clustering

Analyze the Clusterseans Clustering

MODELLING K-MEANS

Defining Elbow Method

K-Means Visualisation

MODELLING - GMM VISUALISATION

GMM Algorithm Visualisation

MODELLING - HIERARCHICAL CLUSTERING (AGGLOMERATIVE) VISUALISATION

Hierarchical Clustering (Agglomerative) Algorithm Visualisation

ANALYZE / MODEL EVALUATE

Evaluation of – KMeans

Evaluation of - GMM

Evaluation of – Hierarchical Clustering (Agglomerative)

Model	Davies-Bouldin Index	Silhouette Score	Calinski-Harabasz Index
K-Means	1.647466291015152	0.18579999848578388	1829.3927271369603
GMM	3.026489194621547	0.09004318004525669	799.2185891108142
Hierarchical / Agg	1.9182891848022057	0.14479620924142522	1422.977130591173

Thank you!