## SOLUTIONS TO FORM VI EXTENSION TRIAL HSC 2008 TOTAL = 12

No penalty

for omission of c.

(a) 
$$\frac{n!}{(n-1)!} = n$$
  
(b)  $\frac{-2x}{\sqrt{1-x^4}}$ 

$$(a) \frac{n!}{(n-1)!} = n$$

(c)  $\int \frac{1}{40+x^2} dx = \frac{1}{2\sqrt{10}} \tan^{-1} \frac{x}{2\sqrt{10}}$ 

(f)  $\cos 20 = \frac{1-t^2}{1+t^2} / (where t = tan 0)$ 

i) Substitute x=1 into the identity:

i.e. "Co+"C1+"C2+...+"Cn=2

 $\sum_{r=0}^{\infty} {}^{n}C_{r} \cdot (1)^{r} = (1+1)^{n}$ 

(d) lne = = 1 lne

(h)

(e) \( 2xe^{x^2}dx = e^{x^2} + c

(g)  $P = \left(\frac{28-24}{11}, \frac{70+8}{11}\right)$ 

= (4771)

$$\frac{n!}{n!} = n$$

$$\frac{1}{1}$$
  $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$ 

 $\frac{(2)}{(a)} \left( \frac{x}{(x+2)^2} dx = \int \frac{u-2}{u^2} du \right)$ Let x = u - 2 $\frac{dx}{dx} = 1$  $= \int \left(\frac{1}{u} - 2u^{-2}\right) du /$  $\therefore dx = du$  $= \ln u + \frac{2}{u} + c$  $= \ln(x+2) + \frac{2}{x+2} + c$  $(b) \frac{x}{x+2} > 0 \quad (x \neq -2)$ Multiply both sides by (x+2)2:  $\alpha(\alpha+2)>0$ x(x+2)>0 x<-2 or x>0 x<-2 or x>0(c) Let a = tan'2 and B = tan' J2. : tana=2, where O< a< 1/2, and  $\tan \beta = \sqrt{2}$ , where  $0 < \beta < \frac{\pi}{2}$ .  $\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$  $= \frac{2 - \sqrt{2}}{1 + 2\sqrt{2}} \cdot \frac{1 - 2\sqrt{2}}{1 - 2\sqrt{2}}$  $\frac{2-4\sqrt{2}-\sqrt{2}+4}{1-8}$ 6-552 cyclic (i) Exterior angle of and ABNO is equal to the interior opposite (ii) LPMB = & langles at circumference standing on same arc : LPMB = LBNQ = a .. quad CMBN is cyclic (converse of reason in (i)

(3)(a) Let V mm3 be the volume of the ice-cube, and x mm its edge length. We are given  $\frac{dx}{dt} = -2 \, mm/min$ . We want  $\frac{dV}{dt}$  when x = 15.  $\frac{dV}{dt} = \frac{dV}{dx} \cdot \frac{dx}{dt} /$ , where  $V = x^3$ .  $\frac{dV}{dt} = 3x^2 \cdot (-2)$  $=-6x^2$ So when x = 15,  $\frac{dV}{dt} = -6(15)^2$ = -1350.So when the edge is 15mm, the volume is decreasing at 1350 mm3/min. (b) Let the roots be a, - 2 and B. (i) The product of the roots is  $-\frac{d}{a} = -1$ .  $\therefore \alpha \cdot \frac{-2}{\alpha} \cdot \beta = -1$ (ii) The sum of the roots is  $\frac{1}{2}$ .  $\frac{-b}{a} = \frac{17}{6}.$  $\therefore \alpha - \frac{2}{\alpha} + \frac{1}{2} = \frac{17}{6} \checkmark$  $\alpha - \frac{2}{\alpha} = \frac{7}{2}$  $3\alpha^2 - 7\alpha - 6 = 0$  $(3\alpha + 2)(\alpha - 3) = 0$  $\alpha = -\frac{2}{3}$  or 3 So the other two roots are  $-\frac{2}{3}$  and 3. (c)  $\int_{0}^{\frac{\pi}{2}} (\cos x - \cos^{2} x) dx = \int_{0}^{\frac{\pi}{2}} (\cos x - (\frac{1}{2} + \frac{1}{2}\cos 2x)) dx$  $= \left[ \sin x - \frac{1}{2}x - \frac{1}{4}\sin 2x \right]_0^{\frac{\pi}{2}}$ =  $\sin \frac{\pi}{2} - \frac{\pi}{4} - \frac{1}{4} \sin \pi - (0 - 0 - 0)$  $= 1 - \frac{\pi}{4} /$ 

(4)(a) When 
$$n=1$$
,  $hHS = 1 \times 2^2$ 

$$= 4$$

$$RHS = \frac{1}{12} \times 1 \times 2 \times 3 \times 8$$

$$= 4$$

$$50 \text{ the result is true for } n=1.$$
Assume that the result is true for  $n=k$ , where k is a positive integer.
i.e. assume that  $1 \times 2^2 + 2 \times 3^2 + ... + k (k+1)^2 = \frac{1}{12} k (k+1) (k+2) (3k+5).$ 
Prove that the result is true for  $n=k+1$ .
i.e. prove that
$$1 \times 2^2 + 2 \times 3^2 + ... + k (k+1)^2 + (k+1) (k+2)^2 = \frac{1}{12} (k+1) (k+2) (k+3) (3k+8)$$

$$LHS = 1 \times 2^2 + 2 \times 3^2 + ... + K(k+1)^2 + (k+1) (k+2)^2$$

$$= \frac{1}{12} k (k+1) (k+2) (3k+5) + (k+1) (k+2)^2$$
(using the assumption)
$$= \frac{1}{12} (k+1) (k+2) (k (3k+5) + 12 (k+2))$$

$$= \frac{1}{12} (k+1) (k+2) (k (3k+5) + 12 (k+2))$$

$$= \frac{1}{12}(k+1)(k+2)(k(3k+5) + 12(k+2))$$

$$= \frac{1}{12}(k+1)(k+2)(3k^2 + 17k + 24)$$

$$= \frac{1}{12}(k+1)(k+2)(k+3)(3k+8)$$

So the result is true for n=k+1 if it is true for n=k.

But the result is true for n=1. So, by induction, it is true for all positive integer values of n.

(b)(i)
$$(ii)$$

$$y=2x$$

$$(b)(i)$$

$$y=2x$$

$$y=2x$$

$$y=cosx$$

(iii) Let 
$$f(x) = 2x - \cos x$$
, so that  $f'(x) = 2 + \sin x$ .  

$$x_2 = 0.5 - \frac{1 - \cos 0.5}{2 + \sin 0.5}$$

$$= 0.4506 - -$$

= 0.45

(4)(c) RHS of identity = 
$$(1+x)^{100}$$
  
=  $\sum_{r=0}^{100} (100) x^r$ .  
The coefficient of  $x^4$  is  $(100)$ .  
LHS of identity
=  $(\frac{4}{0}) + (\frac{4}{1})x + (\frac{4}{2})x^2 + (\frac{4}{3})x^3 + (\frac{4}{4})x^4$ .  
•  $(\frac{96}{0}) + (\frac{96}{1})x + (\frac{96}{2})x^2 + (\frac{96}{3})x^3 + (\frac{96}{4})x^4 + ... + (\frac{96}{96})x^9$ .  
The coefficient of  $x^4$  is
$$(\frac{4}{0})(\frac{96}{4}) + (\frac{4}{1})(\frac{96}{3}) + (\frac{4}{2})(\frac{96}{2}) + (\frac{4}{3})(\frac{96}{1}) + (\frac{4}{4})(\frac{96}{0})$$
=  $(\frac{96}{4}) + (\frac{4}{1})(\frac{96}{3}) + (\frac{4}{2})(\frac{96}{2}) + (\frac{4}{3})(\frac{96}{1}) + 1$ ,  
since  $(\frac{4}{0}) = (\frac{4}{4}) = (\frac{96}{0}) = 1$ .  
The coefficients of  $x^4$  on both sides of the identity are equal, so
$$(\frac{96}{4}) + (\frac{4}{1})(\frac{96}{3}) + (\frac{4}{2})(\frac{96}{2}) + (\frac{4}{3})(\frac{96}{1}) = (\frac{100}{4}) - 1$$
.

=  ${5n \choose r}$   ${5n-r \choose b}$   ${5n-3r \choose x}$   ${-2r \choose x}$  $= \frac{5n}{c_r} \cdot a^{5n-r} \cdot b^r \cdot x^{15n-5r}$ We require 15n-5r=0, i.e. r=3n. 5nC<sub>3n</sub>. a<sup>2n</sup>. b<sup>3n</sup>. So the constant term is  $(b)(i) \frac{dH}{dt} = -kAe^{-kt}$ = -k(H-S)(ii) When t=0, H=80. : 80 = A + 20 : A = 60 $70 = 60e^{-5k} + 20$   $\frac{5}{6} = e^{-5k}$   $k = -\frac{1}{5} \ln \frac{5}{6}$   $\frac{1}{5} + 1 = \frac{5}{6}$ when t=5, H=70. :  $H = 60e^{\frac{1}{5}t\ln\frac{5}{6}} + 20$   $= 20 + 60e^{\ln(\frac{5}{6})^{\frac{1}{5}}}$ =  $20 + 60e^{4n(\frac{5}{6})^{\frac{1}{5}}}$ =  $20 + 60(\frac{5}{6})^{\frac{1}{5}}$ , as required. hen t = 60, (iii) When t=60,  $H = 20 + 60\left(\frac{5}{6}\right)^{12}$ = 26.729---So after one hour, the temperature of the body is 26.7°C, correct to one decimal place

(5)(a) General term =  ${}^{5n}C_r \cdot (ax^3)^{5n-r} \cdot (bx^{-2})^r$ 

(c) (i) 
$$P(-b) = b^2(b+c) + b^2(c-b) + c^2(-b+b) - 2b^2c$$

$$= b^3 + b^2c + b^2c - b^3 - 2b^2c$$

$$= 0$$

$$\therefore a+b \text{ is a factor of } P(a)$$
(ii)  $P(a)$  is symmetric in a, b and c, so b+c and c+a are also factors of  $P(a)$ .

So  $P(a) = (a+b)(b+c)(c+a)$ .

Other methods, such as long division, are acceptable.

$$0 = -4\left(\frac{1}{2} - \frac{1}{2}\right) + c$$

$$c = 0$$

(6)(a)  $\dot{x} = -4(x + \frac{1}{x^3})$ 

When  $t = \frac{1}{2}$ )

$$= -8 \left( \frac{2}{2} \right)$$

$$= -4x^2 + \frac{4}{x^2}$$

$$= -8\left(\frac{x^2}{2}\right)$$

$$-8\left(\frac{x^2}{2} - 4x^2 + \frac{x^2}{2}\right)$$

$$c = 0$$

$$v^2 = -8\left(\frac{x^2}{2} - \frac{1}{2x^2}\right)$$

 $V^2 = -4 \cdot \frac{1}{4} + \frac{7}{4}$ 

$$\frac{2}{1} - \frac{1}{2x^2}$$

$$\frac{2}{2} - \frac{1}{2x^2}$$

$$\frac{2}{4} + \frac{4}{x^2}$$



$$V = -\sqrt{15}$$
, because the particle is travelling in the negative direction.

(6)(b)(i) 
$$y = \frac{x^2}{4a}$$

i.  $y' = \frac{x}{2a}$ 

When  $x = 2ap$ ,

 $y' = \frac{2ap}{2a}$ 

So the normal at P has gradient  $-\frac{1}{p}$ .

So the normal at P has equation

 $y - ap^2 = -\frac{1}{p}(x - 2ap)$ 
 $py - ap^3 = -x + 2ap$ 
 $x + py = 2ap + ap^3$ 

(ii) When  $x = -ap$  and  $y = 3a + ap^2$ ,

LHS =  $x + py$ 

=  $-ap + p(3a + ap^2)$ 

=  $2ap + ap^3$ 

= RHS

So the normal at P passes through R.

(iii) The normal at Q has equation  $x + qy = 2aq + aq^3$ .

Substitute  $2c = -ap$  and  $y = 3a + ap^2$ :

 $-ap + 3aq + ap^2q = 2aq + aq^3$ 
 $aq^3 - ap^2q - aq + ap = 0$ 
 $aq(q^2 - p^2) - a(q - p) = 0$ 
 $q(q - p)(q + p) - 1(q - p) = 0$ 
 $q + p$  since P and Q are distinct points,

So  $q^2 + pq - 1 = 0$ .

(iv) Consider the equation  $q^2 + pq - 1 = 0$  as a quadratic equation in  $q$ .

..  $\Delta = p^2 + 4 > 0$  for all real values of p. So the equation has two real roots. (6)(b)(v) Consider again the quadratic equation 22+pq-1=0. Let the roots be q, and q2 (q, # q2) The product of the roots is -1. .. 9192 = -1  $\frac{1}{2} - \frac{1}{2^2} = -1$ ( so the normals at the points (2ag, ag, 2) and (2aq2, aq2) pass through R, and these normals (whose gradients are  $\frac{1}{21}$  and  $\frac{1}{22}$ ) are perpendicular. From (ii), we also know that the normal at P passes through R.

(7)(a) Let 0 be the contre of the coin. . OA = OB = OE

$$LAOB = \frac{1}{7} \text{ of a revolution}$$

$$= \frac{2\pi}{7}$$

 $\therefore LAOE = LBOE = \frac{6\pi}{7} \left( \text{angles at a point} \right)$ 

.. 
$$LOAE = LOEA = \frac{\pi}{14}$$
 (angle sum of isosceles triangle)

(i)  $LAEB = \frac{\pi}{7}$  (with some justification)

So area of sector  $AEB = \frac{1}{2}r^2\theta$ 

So area of sector 
$$AEB = \frac{1}{2}r^2\theta$$

$$= \frac{1}{2} \cdot a^2 \cdot \frac{\pi}{7}$$

$$= \frac{1}{14}\pi a^2$$
(ii) In  $\triangle OAE$ ,

$$\frac{h}{\frac{1}{2}a} = \tan \frac{\pi}{14}$$

$$\therefore h = \frac{1}{2}a \tan \frac{\pi}{14}$$

$$So \triangle OAE \text{ has a rea} \frac{1}{4}a^2 \tan \frac{\pi}{14}$$
So area of portion  $AOB = area$  of sector  $AEB$ 

So area of portion 
$$AOB = area of Sector AEB$$

$$-2 \times area of \triangle OAE$$

$$= \frac{1}{14} \pi a^2 - \frac{1}{2} a^2 t an \frac{\pi}{14}.$$
So area of coin is  $7 \times area of AOB$ 

$$= 7 \left( \frac{1}{14} \pi a^2 - \frac{1}{2} a^2 t an \frac{\pi}{14} \right)$$

$$= \frac{1}{2} a^2 \left( \pi - 7 t an \frac{\pi}{14} \right).$$

(17)(b)(i) 
$$\beta$$
 has coordinates ( $d\cos\beta$ ,  $d\sin\beta$ ).

(ii) This point lies on the parabola, so  $d\cos\beta = V \cos\alpha$  ( $\beta$ ) and  $d\sin\beta = V \sin\alpha - \frac{1}{2}gt^2$  ( $\beta$ )

From ( $\beta$ ),  $t = \frac{d\cos\beta}{V\cos\alpha}$ .

Substitute into ( $\beta$ ):

 $d\sin\beta = V \sin\alpha$ .  $\frac{d\cos\beta}{V\cos\alpha} - \frac{g}{2} \cdot \frac{d^2\cos^2\beta}{V^2\cos^2\alpha}$ 

Dividing by  $d$  ( $d\neq 0$ , since  $d=0$  corresponds to the particle being at the origin),  $\sin\beta = \tan\alpha\cos\beta - d$ .  $\frac{g\cos^2\beta}{2V^2\cos^2\alpha}$  ( $\tan\alpha\cos\beta - \sin\beta$ )

Ciii)  $\cot\beta = \frac{g}{2}$  ( $\frac{g}{2}$  is negative  $\frac{g\cos^2\beta}{2V^2\cos^2\alpha}$  ( $\frac{g\cos^2\beta}{2V^2\cos^2\alpha}$  ( $\frac{g\sin\beta}{2V^2\cos\beta}$  +  $\frac{g\cot\beta}{2V\cos\beta}$  )  $\frac{g\cos\beta}{2V\cos\beta}$  ( $\frac{g\cos\beta}{2V\cos\beta}$  -  $\frac{g\cos\beta}{2V\cos\beta}$  -  $\frac{g\cos\beta}{2V\cos\beta}$  -  $\frac{g\cos\beta}{2V\cos\beta}$  ( $\frac{g\cos\beta}{2V\cos\beta}$  -  $\frac{g\cos\beta}{2V\cos\beta}$  ( $\frac{g\cos\beta}{2\cos\beta}$  -  $\frac{g\cos\beta}{2\cos\beta}$  -  $\frac{g\cos\beta}{2\cos\beta}$  ( $\frac{g\cos\beta}{2\cos\beta}$  -  $\frac{g\cos\beta$