Discrete Structures and Theory of Logic Lecture-45

Dharmendra Kumar January 16, 2021

Solution of Non-Homogeneous Linear Recurrence Equation

In this case, we find homogeneous and particular solution both. The final solution will be addition of both. Here, $f(n)\neq 0$.

The solution of non-homogeneous equation is

$$a_n = a_n^{(h)} + a_n^{(p)}$$

Method to find Particular Solution

The particular solution of a recurrence relation can be obtained by the method of inspection, since the particular solution depend on the form of f(n).

We guess the solution according to following table:-

S. No.	f(n)	Guessing solution
1	b^n (If b is not a root of charac-	A b ⁿ
	teristic equation)	
2	Polynomial P(n) of degree m	$A_0+A_1n+A_2n^2++$
		$A_m n^m$
3	$c^n P(n)$ (If c is not a root of char-	$c^{n}(A_{0} + A_{1}n + A_{2}n^{2} +$
	acteristic equation and Polyno-	$A_m n^m$
	mial $P(n)$ of degree m)	
4	b^n (If b is a root of characteristic	An^sb^n
	equation of multiplicity s)	
5	$c^n P(n)$ (If b is a root of charac-	$n^t(A_0 + A_1n + A_2n^2 +$
	teristic equation of multiplicity t)	$A_m n^m b^n$

Example: Solve the recurrence relation

$$a_n + 5a_{n-1} + 6a_{n-2} = 3n^2 - 2n + 1$$
(1)

Solution: The homogeneous equation will be

$$a_n + 5a_{n-1} + 6a_{n-2} = 0$$

The characteristic equation will be

$$\alpha^{2} + 5\alpha + 6 = 0$$

$$\Rightarrow (\alpha + 2)(\alpha + 3) = 0$$

$$\Rightarrow \alpha = -2. -3$$

Therefore, the homogeneous solution of recurrence equation will be $a_n^{(h)} = c_1(-2)^n + c_2(-3)^n$

For particular solution:

Here,
$$f(n) = 3n^2 - 2n + 1$$

Clearly, f(n) is the polynomial equation of degree 2. Therefore using above table, we guess the following solution:-

$$a_n = A_0 + A_1 n + A_2 n^2$$
......(2)
Put the value of a_n in equation (1),
 $(A_0 + A_1 n + A_2 n^2) + 5(A_0 + A_1 (n-1) + A_2 (n-1)^2) + 6(A_0 + A_1 ($

4

Comparing the coefficients of power of n on both sides

$$12A_0 - 17A_1 + 29A_2 = 1$$
(3)
 $12A_1 - 34A_2 = -2$ (4)
 $12A_2 = 3$(5)

After solving equations (3), (4) and (5), we get

$$A_0 = 47/288$$
, $A_1 = 13/24$, $A_2 = 1/4$

Therefore, particular solution is

$$a_n^{(p)} = (47/288) + (13/24)n + (1/4)n^2$$

Therefore, the final solution of given recurrence relation will be the following:-

$$a_n = a_n^{(h)} + a_n^{(p)}$$

= $c_1(-2)^n + c_2(-3)^n + (47/288) + (13/24)n + (1/4)n^2$

Exercise:

Solve the following recurrence relations:-

1.
$$a_{n+2} - 5a_{n+1} + 6a_n = n^2$$

2.
$$a_n - 6a_{n-1} + 8a_{n-2} = 3^n$$

3.
$$a_n + 5a_{n-1} + 6a_{n-2} = 42(4)^n$$

4.
$$a_n + a_{n-1} = 3n2^n$$

5.
$$a_n - 2a_{n-1} = 32^n$$

6.
$$a_n - 4a_{n-1} + 4a_{n-2} = (n+1)2^n$$

Example: Solve the recurrence relation

$$a_n - 5a_{n-1} + 6a_{n-2} = 2^n + n$$
(1)

Solution: The homogeneous solution will be

$$a_n^{(h)} = c_1(2)^n + c_2(3)^n$$

For particular solution:

Here,
$$f(n) = 2^n + n$$

Therefore, we guess the solution as following:-

Let
$$a_n = A_0 n 2^n + (A_1 + A_2 n)$$

Put this in equation (1), we get

$$A_0 = -2$$
, $A_1 = 7/4$, $A_2 = 1/2$

Therefore the solution will be

$$a_n = c_1 2^n + c_2 3^n - 2n 2^n + (7/4) + (1/2)n$$

Generating Functions

The generating function of a sequence of numbers $a_0, a_1, a_2, \dots, a_n, \dots$ is defined as

$$G(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

= $\sum_{n=0}^{\infty} a_n x^n$

Example: Find the generating functions for the following sequences

- 1. 1,1,1,1,1,.....
- 2. 1,2,3,4,.....
- 3. 0,1,2,3,4,....
- 4. $1,a,a^2,a^3,...$

Solution:

1. The generating function of this sequence will be the following:-

$$G(x) = 1 + x + x^{2} + x^{3} + x^{4} + \dots$$

$$= \frac{1}{(1-x)}$$

2. The generating function of this sequence will be the following:-

$$G(x) = 1+2x+3x^2+4x^3+...$$

 $xG(x) = x+2x^2+3x^3+...$

Subtracting from above, we get

$$(1-x)G(x) = 1+x+x^2+x^3+x^4+\dots$$

$$(1-x)G(x) = \frac{1}{(1-x)}$$
Therefore $G(x) = \frac{1}{(1-x)}$

Therefore, $G(x) = \frac{1}{(1-x)^2}$

3. The generating function of this sequence will be the following:-

$$G(x) = 0 + x + 2x^{2} + 3x^{3} + 4x^{4} + \dots$$

$$= x(1 + 2x + 3x^{2} + 4x^{3} + \dots)$$
Therefore, $G(x) = \frac{x}{(1-x)^{2}}$

4. The generating function of this sequence will be the following:-

$$G(x) = 1 + ax + a^{2}x^{2} + a^{3}x^{3} + a^{4}x^{4} + \dots$$

$$= 1 + ax + (ax)^{2} + (ax)^{3} + (ax)^{4} + \dots$$

$$= \frac{1}{(1-ax)}$$

Example: Find the generating functions for the following sequences

- 1. 0,0,1,1,1,.....
- 2. 1,1,0,1,1,1,1,.....
- 3. 1,0,-1,0,1,0,-1,0,1,.....
- 4. 3,-3,3,-3,3,-3,....

Example: Find the generating function of a sequence $\langle a_k \rangle$ if $a_k = 2+3k$.

Solution: The generating function of a sequence whose general term is 2, is

$$G1(x) = \frac{2}{(1-x)}$$

The generating function of a sequence whose general term is 3k, is

$$G2(x) = \frac{3x}{(1-x)^2}$$

Hence the required generating function is

$$G(x) = G1(x) + G1(x) = \frac{2}{(1-x)} + \frac{3x}{(1-x)^2}$$