Diffusion Simulation

Mike Dillender

Assumption of Perfect Order

To make this easier, I assume we initially have a perfect hexagonal lattice

This hexagonal lattice can be mapped to a simple 3D array, using a set of simple rules to connect the QDs to their 12 nearest neighbors:

NNs on same y-layer:

			 ,			
у %	2 =	= 0	у %	2	==	1
3	4			3	4	
5	р	6	5	р	6	
7	8			7	8	

NNs on layer underneath:

	у	%	2		0										у	%	2		1			
2		0			Z	%	2	==	1		Z	%	2	==	0			z	%	2		1
							2														2	
0							0	1				L	0							0	1	
													2									
	2 - 0	2 ==	2 == 0 0 -	2 == 0 0 -	2 == 0 0 -	2 == 0 z ·	2 == 0 z % 	2 == 0 z % 2 2 0 0	2 - 0 0 1	2 == 0 z % 2 == 1 2 - 0 0 1	2 == 0	2 == 0	2 == 0	2 == 0 z % 2 == 1 z % 2 2	2 == 0 z % 2 == 1 z % 2 == 2	2 == 0	2 == 0	2 == 0	2 == 0	2 == 0 z % 2 == 1 z % 2 == 0 z % 2	2 == 0	2 == 0

Scale axes:

$$x_h = x$$

 $y_h = y*sqrt(3)/2$
 $z_h = z*sqrt(6)/3$

FRET Rates

 $k_{i \to j} = \frac{1}{\tau} \left(\frac{R_0}{d_{ij}} \right)^6$

Assign random energies and dipole orientations, then use:

$$R_0^6 = C\kappa^2 \frac{1}{\left[\frac{1}{2}(\varepsilon_D + \varepsilon_A - \Delta_{ss})\right]^4} \exp\left[-\frac{\left(\varepsilon_D - \varepsilon_A - \Delta_{ss}\right)^2}{4\sigma_h^2}\right] \qquad \kappa = \hat{\mu}_D \cdot \hat{\mu}_A - 3\left(\hat{\mu}_A \cdot \hat{d}_{DA}\right)\left(\hat{\mu}_D \cdot \hat{d}_{DA}\right) \\ C = \frac{9}{128} \frac{c^4 h^4}{\pi^5 n^4} \eta_{PL} \frac{\sigma_A(\varepsilon_A)}{\sqrt{2}}$$

For each dot in [x][y][z], compute the transfer to the QD in each direction i:

$$rates[x][y][z][i] = \tau k_{i \to j} = (C/d_{ij}^6) \left[\frac{1}{2} (E_D + E_A - \Delta_{ss})\right]^4 exp\{-(E_D - E_A - \Delta_{ss})^2/4\sigma_h^2\}$$

The total rate at which the dot transfers or radiates =

$$\tau k_{tr/rad}[x][y][z] = 1 + \sum_{i=0}^{11} rates[x][y][z][i]$$

Simulation of Spectral Diffusion

Simulate excitation of a QD by calling simulate_exciton(random_position, 0) void **simulate_exciton**(position, time) time_before_transfer = random sample from exponential distribution with $\lambda = k_{tr/rad}$ random_value = (random decimal from 0-1) * ($k_{tr/rad}$) If (random value < 1) (radiative recombination) APD[energy][time+time_before_transfer] ++ (Add a detection at this energy and time) else if (random value < 1 + rates[x][y][z][0]) (FRET in direction 0) position.move in direction(0) **simulate_exciton**(position, time + time_before_transfer) (transfer the exciton to direction) else if (random value < 1 + rates[x][y][z][0] + rates[x][y][z][1])position.move in direction(1) **simulate exciton**(position, time + time before transfer) else if (random value < 1 + rates[x][y][z][0] + rates[x][y][z][1] + rates[x][y][z][2])...