INTERPOLAÇÃO POLINOMIAL

MAT 271 – Cálculo Numérico – PER3/UFV/2021 Professor Amarísio Araújo – DMA/UFV

INTERPOLAÇÃO POLINOMIAL APROXIMAÇÕES DE FUNÇÕES

- A Interpolação Polinomial é uma das estratégias de Aproximações de Funções.
- O objetivo é encontrar uma função polinomial p que possa ser usada como uma aproximação de uma dada função real f em algum intervalo $[a,b] \subset \mathbb{R}$.
- A necessidade de se fazer tal aproximação pode ocorrer em situações práticas, como as seguintes:

APROXIMAÇÕES DE FUNÇÕES

- A expressão para f(x) não é conhecida, e só sabemos dos valores de f(x) em um número finito de pontos do intervalo [a,b], isto é, conhecemos $f(x_0), f(x_1), f(x_2), \ldots, f(x_n)$, em n+1 pontos $x_0 < x_1 < x_2 < \cdots < x_n$ do intervalo [a,b] (a função é tabelada). Assim, se quisermos saber quem é $f(\bar{x})$ para algum \bar{x} entre x_0 e x_n , que não seja nenhum dos $x_k, k=0,1,2,\ldots n$, podemos usar a função polinomial p para estima-lo: $f(\bar{x})\cong p(\bar{x})$.
- \square A expressão f(x) da função é conhecida e f é uma função de difícil derivação ou de difícil integração, por exemplo. Usando uma função polinomial p como uma aproximação de f, a derivação e a integração de p(x) seriam uma aproximação da derivação e da integração de f(x)no intervalo $[x_0, x_n]$.

EXEMPLIFICANDO A PRIMEIRA SITUAÇÃO

A tabela abaixo mostra o tamanho da população brasileira (em milhões) entre os anos de 1960 a 2010, a cada 10 anos.

Ano	1960	1970	1980	1990	2000	2010
População	72.7759	96.0604	121.7404	149.6483	174.5049	195.2102

Podemos considerar que a tabela mostra a população brasileira como uma função f de modo que f(x) representa a população brasileira no ano x com $x \in [1960,2010]$.

Assim, para saber a população brasileira no ano de 1985, por exemplo, que está entre 1960 e 2010 e não aparece na tabela, uma estratégia é obter um polinômio p(x) que seja uma aproximação de f(x) no intervalo considerado, e obter uma estimativa para a população brasileira em 1985:

$$f(1985)\cong p(1985)$$

INTERPOLAÇÃO POLINOMIAL

Seja a função f tal que os valores $f(x_0)$, $f(x_1)$, $f(x_2)$,..., $f(x_n)$ em n+1 pontos distintos $x_0, x_1, x_2, ..., x_n$ de um intervalo [a, b] são conhecidos.

Fazer uma interpolação polinomial de f(x) é encontrar um polinômio $p_n(x)$ de grau menor ou igual a n tal que:

$$p_n(x_i) = f(x_i), i = 0,1,...,n.$$

Polinômio interpolador de f(x)

Considerando $x_0 < x_1 < x_2 < \cdots < x_n$, $p_n(x)$ é uma aproximação da função f(x) no intervalo $[x_0, x_n]$.

VAMOS MOSTRAR QUE ESTE POLINÔMIO EXISTE E É ÚNICO

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$p_n(x_i) = f(x_i), i = 0,1,...,n.$$

O objetivo é: encontrar números reais $a_0, a_1, a_2, \dots, a_n$ (coeficientes do polinômio), e mostrar que são únicos.

VAMOS MOSTRAR QUE ESTE POLINÔMIO EXISTE E É ÚNICO

$$p_n(x_i) = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_n x_i^n = f(x_i), i = 0, 1, \dots, n.$$

$$p_n(x_0) = f(x_0) \implies a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f(x_0)$$

$$p_n(x_1) = f(x_1) \implies a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = f(x_1)$$

$$\vdots$$

$$p_n(x_n) = f(x_n) \implies a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n)$$

UM SISTEMA LINEAR

$$\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f(x_0) \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = f(x_1) \\ \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n) \end{cases}$$

Um sistema linear com n+1 incógnitas, $a_0, a_1, a_2, ..., a_n$, e n+1 equações.

$$AX = B$$
, com $X = [a_0, a_1, ..., a_n]^T$, $B = [f(x_0), f(x_1), ..., f(x_n)]^T$ e

$$A = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$

DETERMINANTE DA MATRIZ A DOS COEFICIENTES

$$A = \begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix}$$
 det $(A) = \prod_{i < j} (x_i - x_j)$ (Determinante de Vandermonde)

$$\det(A) = \prod_{i < j} (x_i - x_j)$$

$$\det(A) = (x_1 - x_2)(x_1 - x_3) \dots (x_1 - x_n)(x_2 - x_3)(x_2 - x_4) \dots (x_2 - x_n) \dots (x_{n-1} - x_n)$$

Como os pontos $x_0, x_1, ..., x_n$ são todos distintos, segue que $\det(A) \neq 0$.

Logo, o sistema linear possui solução única e, portanto, os coeficientes $a_0, a_1, ..., a_n$ do polinômio $p_n(x)$ são únicos e obtidos como solução do sistema.

Portanto, acabamos de mostrar que o polinômio interpolador $p_n(x)$ de f(x), com as condições $p_n(x_i) = f(x_i)$, i = 0,1,2,...,n, existe e é único.

EXEMPLO

Consideremos a função f dada pela tabela:

x	-1	0	2
f(x)	4	1	-1

Vamos encontrar o polinômio interpolador de f: $p_2(x) = a_0 + a_1x + a_2x^2$

$$p_2(-1) = f(-1) = 4$$

 $p_2(0) = f(0) = 1$
 $p_2(2) = f(2) = -1$

$$\begin{cases} a_0 - a_1 + a_2 = 4 \\ a_0 = 1 \\ a_0 + 2a_1 + 4a_2 = -1 \end{cases}$$

Solução do sistema:
$$a_0 = 1$$
, $a_1 = -\frac{7}{3}$, $a_2 = \frac{2}{3}$ Portanto: $p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$

Estimando o valor de f no ponto x = 0.8 (não tabelado), por exemplo: $f(0.8) \cong p_2(0.8) = -0.44$

MÉTODOS PARA ENCONTRAR O POLINÔMIO INTERPOALADOR SEM USAR SISTEMAS LINEARES

- O polinômio interpolador existe e é único.
- Podemos obter o polinômio interpolador, resolvendo um sistema linear.
- Há outras estratégias mais interessantes do ponto de vista computacional para encontrar o polinômio interpolador.
- Aprenderemos, aqui, duas dessas estratégias.

INTERPOLAÇÃO POLINOMIAL DE LAGRANGE

- \square Seja a função f tal que os valores $f(x_0), f(x_1), f(x_2), ..., f(x_n)$ em n+1 pontos distintos $x_0 < x_1 < x_2 < \cdots < x_n$ de um intervalo $[x_0, x_n]$ são conhecidos.
- \square Propõe-se um polinômio interpolador de f(x), como um polinômio $p_n(x)$ de grau menor ou igual a n da seguinte forma:

$$p_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x) + \dots + f(x_n)L_n(x).$$

POLINÔMIO DE LAGRANGE

Sendo $L_k(x)$, $k=0,1,2,\ldots,n$, polinômios de grau n, obtidos como veremos a seguir:

OBTENDO OS POLINÔMIOS $L_k(x)$, k=0,1,2,...,n

$$\square p_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x) + \dots + f(x_n)L_n(x)$$

- $\Box p_n(x_i) = f(x_i), i = 0,1,2,...,n.$
- \square Observe que se $L_k(x_i) = \begin{cases} 1, & se \ i = k \\ 0, & se \ i \neq k \end{cases}$, teremos $p_n(x_i) = f(x_i), i = 0,1,2,\ldots,n$.
- \square Logo, os polinômios $L_k(x)$, $k=0,1,2,\ldots,n$, devem ser construídos com a condição apresentada acima.

OBTENDO OS POLINÔMIOS $L_k(x)$, k=0,1,2,...,n

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)...(x - x_n)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)...(x_0 - x_n)}$$

$$L_0(x_0) = 1$$

 $L_0(x_i) = 0, i \neq 0$

$$L_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)...(x - x_n)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)...(x_1 - x_n)}$$

$$L_1(x_1) = 1$$

 $L_1(x_i) = 0, i \neq 1$

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)...(x - x_n)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)...(x_0 - x_n)}$$

$$L_2(x_2) = 1$$

 $L_2(x_i) = 0, i \neq 2$

:

OBTENDO OS POLINÔMIOS $L_k(x)$, k=0,1,2,...,n

$$L_n(x) = \frac{(x - x_0)(x - x_1)(x - x_2)...(x - x_{n-1})}{(x_n - x_0)(x_n - x_1)(x_n - x_2)...(x_n - x_{n-1})}$$

$$L_n(x_n) = 1$$

$$L_n(x_i) = 0, i \neq n$$

UMA FÓRMULA GERAL

$$L_k(x) = \frac{(x - x_0)(x - x_1)(x - x_2) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0)(x_k - x_1)(x_k - x_2) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}$$

PARA EVITAR CONFUSÃO, É MELHOR CONSIDERAR A FÓRMULA ACIMA PARA $k \neq 0$, ESCREVENDO O CASO k = 0 SEPARADO:

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)...(x - x_n)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)...(x_0 - x_n)}$$

CASO MAIS SIMPLES

x	x_0	x_1		
f(x)	$f(x_0)$	$f(x_1)$		

Polinômio de Lagrange: $p_1(x) = f(x_0)L_0(x) + f(x_1)L_1(x)$

$$L_0(x) = \frac{(x - x_1)}{(x_0 - x_1)}$$

$$L_1(x) = \frac{(x - x_0)}{(x_1 - x_0)}$$

$$p_1(x) = f(x_0) \frac{(x - x_1)}{(x_0 - x_1)} + f(x_1) \frac{(x - x_0)}{(x_1 - x_0)}$$

$$p_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{(x_1 - x_0)}(x - x_0)$$

Equação da secante ao gráfico de f em $(x_0, f(x_0))$ e $(x_1, f(x_1))$

EXEMPLO

O mesmo anterior:

x	-1	0	2
f(x)	4	1	-1

Encontramos
$$p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

Usando Lagrange: $p_2(x) = 4L_0(x) + 1L_1(x) - 1L_2(x)$

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0)(x - 2)}{(-1 - 0)(-1 - 2)} = \frac{1}{3}x(x - 2)$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - (-1))(x - 2)}{(0 - (-1))(0 - 2)} = -\frac{1}{2}(x + 1)(x - 2)$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - (-1))(x - 0)}{(2 - (-1))(2 - 0)} = \frac{1}{6}(x + 1)x$$

$$p_2(x) = \frac{4}{3}x(x-2) - \frac{1}{2}(x+1)(x-2) - \frac{1}{6}(x+1)x \qquad p_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$

RESOLVENDO AQUELE PROBLEMA LÁ DO INÍCIO

A tabela abaixo mostra o tamanho da população brasileira (em milhões) entre os anos de 1960 a 2010, a cada 10 anos

Ano	1960	1970	1980	1990	2000	2010
População	72.7759	96.0604	121.7404	149.6483	174.5049	195.2102

O tamanho da população brasileira no ano $x \in f(x)$, com $x \in [1960,2010]$. Vamos encontrar o polinômio interpolador de Lagrange de f(x) no intervalo acima e usá-lo para estimar a população brasileira em 1985.

		x_0	x_1	x_2	x_3	x_4	x_5
\boldsymbol{x}	Ano	1960	1970	1980	1990	2000	2010
f(x)	População	72.7759	96.0604	121.7404	149.6483	174.5049	195.2102
		$f(x_0)$	$f(x_1)$	$f(x_2)$	$f(x_3)$	$f(x_4)$	$f(x_5)$

$$L_0(x) = \frac{(x - 1970)(x - 1980)(x - 1990)(x - 2000)(x - 2010)}{(-10)(-20)(-30)(-40)(-50)}$$

$$L_0(x) = \frac{(x - 1970)(x - 1980)(x - 1990)(x - 200)(x - 2010)}{-12000000}$$

$$L_1(x) = \frac{(x - 1960)(x - 1980)(x - 1990)(x - 2000)(x - 2010)}{(10)(-10)(-20)(-30)(-40)}$$

$$L_1(x) = \frac{(x - 1960)(x - 1980)(x - 1990)(x - 2000)(x - 2010)}{2400000}$$

$$L_2(x) = \frac{(x - 1960)(x - 1970)(x - 1990)(x - 2000)(x - 2010)}{(20)(10)(-10)(-20)(-30)}$$

$$L_2(x) = \frac{(x - 1960)(x - 1970)(x - 1990)(x - 2000)(x - 2010)}{-1200000}$$

		x_0	x_1	x_2	x_3	x_4	x_5
\boldsymbol{x}	Ano	1960	1970	1980	1990	2000	2010
f(x)	População	72.7759	96.0604	121.7404	149.6483	174.5049	195.2102
		$f(x_0)$	$f(x_1)$	$f(x_2)$	$f(x_3)$	$f(x_4)$	$f(x_5)$

$$L_3(x) = \frac{(x - 1960)(x - 1970)(x - 1980)(x - 2000)(x - 2010)}{(30)(20)(10)(-10)(-20)}$$

$$L_3(x) = \frac{(x - 1960)(x - 1970)(x - 1980)(x - 2000)(x - 2010)}{1200000}$$

$$L_4(x) = \frac{(x - 1960)(x - 1970)(x - 1980)(x - 1990)(x - 2010)}{(40)(30)(20)(10)(-10)}$$

$$L_4(x) = \frac{(x - 1960)(x - 1970)(x - 1980)(x - 1990)(x - 2010)}{-2400000}$$

$$L_5(x) = \frac{(x - 1960)(x - 1970)(x - 1980)(x - 1990)(x - 2000)}{(50)(40)(30)(20)(10)}$$

$$L_5(x) = \frac{(x - 1960)(x - 1970)(x - 1980)(x - 1990)(x - 2000)}{12000000}$$

		x_0	x_1	x_2	x_3	x_4	x_5
X	Ano	1960	1970	1980	1990	2000	2010
f(x)	População	72.7759	96.0604	121.7404	149.6483	174.5049	195.2102
		$f(x_0)$	$f(x_1)$	$f(x_2)$	$f(x_3)$	$f(x_4)$	$f(x_5)$

$$p_5(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x) + f(x_3)L_3(x) + f(x_4)L_4(x) + f(x_5)L_5(x)$$

$$p_{5}(1985) =$$

$$= f(x_{0})L_{0}(1985) + f(x_{1})L_{1}(1985) + f(x_{2})L_{2}(1985) + f(x_{3})L_{3}(1985) + f(x_{4})L_{4}(1985) + f(x_{5})L_{5}(1985)$$

$$p_{5}(1985) = 135729020$$

Portanto, a população brasileira em 1985 era de aproximadamente 135.729 milhões de habitantes