Medical Cost Report

Zhenglei Jiang, Qintian Huang, Sijia Li, Zhangde Song

Dataset

Dataset introduction

- age: age of primary beneficiary
- **sex:** insurance contractor gender, female, male
- bmi: Body mass index, providing an understanding of body, weights that are relatively high or low relative to height,
 objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9
- **children:** Number of children covered by health insurance / Number of dependents
- **smoker:** Smoking
- region: the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.
- charges: Individual medical costs billed by health insurance

Goals and Approaches

- Problem we are trying to solve
 - a. Find the best model for predicting medical cost
- Approaches
 - a. Linear regression
 - b. Random forest regressor
 - c. K-means clustering
 - d. Logistic regression

Data Processing

- Encoding
- Deletions
- Train Test split (80 20)

```
# encode sex and smoker
label = preprocessing.LabelEncoder()

df1 = df

df1['sex'] = label.fit_transform(df['sex'])

df1['smoker'] = label.fit_transform(df['smoker'])

df1['region'] = label.fit_transform(df['region'])

df1.head()
```

_	<pre># splitting the datasets to train and test from sklearn.model_selection import train_test_split</pre>						
	<pre>train_x,test_x,train_y,test_y = train_test_split(x,y)</pre>						

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520

Data Visualization

- Distribution of BMI
- Distribution of smoker
- Distribution of region

Data Visualization: categorical

- Age Vs. Charges & BMI Vs. charges separated by: Smoker
- Age Vs. Charges & BMI Vs. charges separated by: Sex
- Age Vs. Charges & BMI Vs. charges separated by: Region

Importance

- Age Vs. Charges & BMI Vs. charges separated by: Smoker
- Features are shuffled n times and the model refitted to estimate the importance of it
- In the below case, age (0.42) and bmi (0.33) are the values strongly related to charges

```
[25] fi_col = []
    fi = []

for i,column in enumerate(df1.drop('charges', axis = 1)):
        print('The feature importance for {} is : {}'.format(column, dt.feature_importances_[i]))

    fi_col.append(column)
    fi.append(dt.feature_importances_[i])
```

The feature importance for age is : 0.42175048342670046
The feature importance for sex is : 0.07534062309601461
The feature importance for bmi is : 0.3333674316537561
The feature importance for children is : 0.06787486959321948
The feature importance for smoker is : 0.019048641638405025
The feature importance for region is : 0.08261795059190426

Linear Regression

	Variables	Equation	Results	R^2 Value
Simple LR	Age	y = ax+b	y = (192.37157976 * x) + 9455.3300572	0.04
Simple LR	ВМІ	y = ax+b	y = (864.12452383 * x) -10471.21685794	0.11
Multiple LR	Age, BMI	y = a1x1 + a2x2 + b	y = 172.5286568 * x1 - 835.17704282 * x2 -16151.04774268	0.15
Multiple LR	Age, BMI, Smoker	y = a1x1 + a2x2 + a3x3+ b	y = 320.0978024 * x1 - -22.52480488x2 + 0 * x3 + -3738.48465202	0.76
Polynomial LR	Age, BMI, Smoker	$y = a1x1^n + a2x2^n + a3x3^n + b$	/	0.98

Actual VS. Predicted, Predicted Error

Random Forest Regression - Hyperparameter Tuning


```
# splitting the datasets to train and test
from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(x,y)
```

```
#RandomForestRegressor, using default parameters
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor
fr * RandomForestRegressor()
frf.fit(train_x, train_y)
print(fr.Score(test_x, test_y))
predictions = rf.predict(test_x)

print(f*Mean absolute error: %.2f* % np.mean(np.absolute(predictions - test_y.values)))
print(f*Mean absolute error: %.2f* % np.mean(np.absolute(predictions - test_y.values)))
print(f*Rescore: %.2f* %.2 geore(test_y.values, predictions))
6.810813770151562

Mean absolute error: 2378.12
Mean abso
```

RFRegressor - Sample of Prediction

```
#smoker prediction sample
for i in range(5):
  print("test set: " + str(i))
  print(test y2.iloc[i])
  print(rf2.predict(test x2)[i])
test set: 0
30184.9367
25583.0082284321
test set: 1
41919.097
43529.80503150785
test set: 2
35069.37452
22785.66123532648
test set: 3
42856.838
43529.80503150785
test set: 4
48824.45
47282.97624064615
```

```
#non-smoker prediction sample
for i in range(5):
  print("test set: " + str(i))
  print(test y3.iloc[i])
  print(rf2.predict(test x3)[i])
test set: 0
8606.2174
23534.4882971737
test set: 1
12485.8009
47184.83184563781
test set: 2
2457.502
17754,44256107169
test set: 3
11737.84884
20065.31115773501
test set: 4
2219.4451
37329.264324999145
```

- Intuitively, the model works better for smoker
- On the other hand, the error for non-smoker is more obvious
- May have over fitting or under fitting problem

Result Visualization, Actual VS. Predicted

RandomForestRegressor - Predict Smoker/Non-Smoker with 5 Fold Cross Validation

```
df2 = df1.loc[df1['smoker'].isin([1])]
features = ["age", "sex", "bmi", "children", "smoker"]
x2 = df2[features]
y2 = df2["charges"]
train x2, test x2, train v2, test v2 = train test split(x2, v2)
df2.head()
rf2 = RandomForestRegressor(n estimators=100, max leaf nodes=10, min samples split=35, max features=2)
rf2.fit(train_x2, train_y2)
result = cross val score(rf2 , x, y, cv = kf)
print(np.mean(result))
predictions = rf2.predict(test x2)
print("Mean absolute error: %.2f" % np.mean(np.absolute(predictions - test y2.values)))
print("Residual sum of squares (MSE): %.2f" % np.mean((predictions - test y2.values) ** 2))
print("R2-score: %.2f" % r2_score(test_y2.values, predictions))
0.8181977541807042
Mean absolute error: 3575.23
Residual sum of squares (MSE): 20536841.45
R2-score: 0.82
```

```
df3 = df1.loc[df1['smoker'].isin([0])]
features = ["age", "sex", "bmi", "children", "smoker"]
x3 = df3[features]
y3 = df3["charges"]
train x3, test x3, train y3, test y3 = train test split(x3, y3)
df3.head()
rf3 = RandomForestRegressor(n estimators=100, max leaf nodes=10, min samples split=35, max features=2)
rf3.fit(train x3, train v3)
result = cross val score(rf3 , x, y, cv = kf)
print(np.mean(result))
predictions = rf3.predict(test x3)
print("Mean absolute error: %.2f" % np.mean(np.absolute(predictions - test y3.values)))
print("Residual sum of squares (MSE): %.2f" % np.mean((predictions - test_y3.values) ** 2))
print("R2-score: %.2f" % r2 score(test y3.values, predictions))
0.8154759496338368
Mean absolute error: 2437.28
Residual sum of squares (MSE): 20028484.13
R2-score: 0.39
```

Though there is large difference in R2-score, 5 cv fold shows an average level of performance

K-Means Clustering - 300_iter

0: [36, 6296] 1: [40, 40761] 2: [45, 18505]

GMM Clustering - 300_iter

Logistic Regression & GMM Model-Predict Smoker/Non-Smoker

[-0.0655244 , 0.0863435 , -0.19792367, -0.08792067, 0.36826806, **0.00040367**]

The Training Accuracy is: 0.954
The Testing Accuracy is: 0.954

The Training Accuracy is: 0.771
The Testing Accuracy is: 0.704

Results

	R^2 Score	Mean Absolute Error	Mean Squared Error	Features
Linear Regression	0.04, 0.11	12626.98, 12021.34	211253607.93, 194873962.16	Age, BMI, Smoker
Polynomial Regression	0.98	412.32	566326.94	Age, BMI, Smoker
Random Forest Regression	0.8166825	3475.61	25532514.61	All features

Conclusion

- Linear Regression Model R^2 = 0.98
 - Efficient but
 - underfitting
- Random Forest Model R^2 = 0.81,
 - lower performance
 - less likely to suffer from fitting issues

Logistic Regression & Clustering

A Significant Positive Correlation between Smoking and High Medical Cost was Observed