Name: SUN RUI

Student ID: 18083229g

Answer 1:

a)

wheel: want to own a balance wheel

^wheel: do not want to own a balance wheel

selfie: like selfie ^selfie: dislike selfie

	wheel	selfie	^wheel	^selfie	<mark>wheel, selfie</mark>	wheel, ^selfie	^wheel, selfie	^wheel, ^selfie
license	3250	3750	1750	1250	<mark>2500</mark>	<mark>750</mark>	1250	5 00
^license	2750	4000	2250	1000	2250	500	1750	500
sum	6000	7750	4000	2250	<mark>4750</mark>	1250	3000	1000

Support >= 5% means >=500 records, because all counts of itemsets are more than 500, except some unmeaning items which have 0 counts, such as "wheel, ^wheel", we can draw the below strong association according rules above table:

Rule	Confidence
wheel, selfie → license	2500/4750 ≈ 52.6%
^wheel, ^selfie → license	500/1000 = 50%
wheel, ^selfie → license	750/1250 = 60%
^wheel, selfie → license	1250/3000 ≈ 41.7

Note: the confidence of last row is less than 50%, so remove it

b)

Interest(wheel, selfie
$$\rightarrow$$
 license) = conf(wheel, selfie \rightarrow license) * $\frac{1}{P(license)}$ = 0.526 * 2 = 1.052 Interest(^wheel, ^selfie \rightarrow license) = conf(^wheel, ^selfie \rightarrow license) * $\frac{1}{P(license)}$ = 0.5 * 2 = 1 Interest(wheel, ^selfie \rightarrow license) = conf(wheel, ^selfie \rightarrow license) * $\frac{1}{P(license)}$ = 0.6 * 2 = 1.2

c)

In part (a), we can find the confidence of "wheel, ^selfie \rightarrow license" is the biggest one, so "wheel, ^selfie \rightarrow license" is most interesting rule in part (a), which can be described that these participants who want to own balance wheels and dislike selfie perhaps have driver licenses.

d)

In part (b), we can find that "wheel, ^selfie → license" have the most lift ratio, because of this, we can consider this rule is most interesting.

Actually, it is obvious that this conclusion is same to **c**), because the left ratio is proportional to confidence.

Answer 2:

a)

We use some simple marks instead of these stock names and operations:

	Buy	Sell	No operation
HSBC	bHS	sHS	^HS
BoEA	bBo	sBo	^Bo
China_Mobile	bCM	sCM	^CM
China_Petroleum	bCP	sCP	^CP

According to above table, we can improve Transaction Data to this:

	HSBC	BoEA	China_Mobile	China_Petroleum
# 1	bHS	sBo	bCM	^CP
# 2	bHS	sBo	^CM	^CP
# 3	^HS	bBo	bCM	bCP
# 4	bHS	^Bo	bCM	^CP
# 5	bHS	^Bo	sCM	sCP
# 6	^HS	sBo	bCM	bCP
# 7	bHS	sBo	^CM	^CP
# 8	bHS	bBo	^CM	^CP
# 9	^HS	^Bo	bCM	sCP
# 10	bHS	^Bo	bCM	bCP

Frequent itemsets:

min_sup = 20% means >=2 records

1-itemsets:

1 101110010.	_
1-itemset	Count
bHS	7
^HS	3
sBo	4
bBo	2
^Bo	4
bCM	6
sCM	1
^CM	3
bCP	3
sCP	2
√CÞ	5

2-itemset:

2-itemset	Count	2-itemset	Count	2-itemset	Count
bHS, bBo	1	bBo, bCM	1	bCM, bCP	3
bHS, sBo	3	bBo, △CM	1	bCM, sCP	1
bHS, ^Bo	3	sBo, bCM	2	bCM, ^CP	2
∆HS, bBo	1	sBo, ^CM	2	sCM, sCP	1
∆HS, sBo	1	^Bo, bCM	3	^CM, ^CP	3
△HS, △Bo	1	△Bo, sCM	1		
bHS, bCM	3	bBo, bCP	1		
bHS, sCM	1	bBo, △CP	1		
bHS, ^CM	3	sBo, bCP	1		
^HS, bCM	3	sBo, ^CP	3		
bHS, bCP	1	△Bo, bCP	1		
bHS, sCP	1	△Bo, △CP	1		
bHS, ^CP	5	^Bo, sCP	2		
^HS, bCP	2				
△HS, sCP	1				

3-itemset:

Count
1
2
3
2
1
2
3
2
1
2
1

4-itemset:

4-itemset	Count
bHS, sBo, ^CM, ^CP	2

b) according 3-itemset of a), we can conclude: (min_conf=70%)

Rule	Confidence	Rule	Confidence	Rule	Confidence
bHS, sBo → ^CM	2/3 ≈ 0.67	bHS, ^Bo → bCM	2/3 ≈ 0.67	bHS, ^CM → ^CP	3/3 = 1
bHS, △CM → sBo	2/3 ≈ 0.67	bHS, bCM → ^Bo	2/3 ≈ 0.67	bHS, ^CP → ^CM	3/5 = 0.6
sBo, ^CM → bHS	2/2 = 1	△Bo, bCM → bHS	2/3 ≈ 0.67	^CM, ^CP → bHS	3/3 = 1
bHS, sBo → ^CP	3/3 = 1	bHS, bCM → ^CP	2/3 ≈ 0.67	△HS, bCM → bCP	2/3 ≈ 0.67
bHS, △CP → sBo	3/5 = 0.6	bHS, ^CP → bCM	$\frac{2/5}{} = 0.4$	^HS, bCP → bCM	2/2 = 1
sBo, ^CP → bHS	3/3 = 1	bCM, ^CP → bHS	2/2 = 1	bCM, bCP → ^HS	$2/3 \approx 0.67$

Strong rules for conf>70%:

Answer 3:

$$l(c1, c2, c3) = \frac{3}{7} * log_2 \frac{3}{7} + \frac{2}{7} * log_2 \frac{2}{7} + \frac{2}{7} * log_2 \frac{2}{7} \approx 1.557$$

Entropy for 2TDB:

2TDB	c1	c2	c3	I(c1, c2, c3)
Up	1	1	2	1.5
Down	1	0	0	0
Level	1	1	0	0

$$E(2TDB) = \frac{4}{7} * 1.5 + \frac{1}{7} * 0 + \frac{2}{7} * 0 \approx 0.857$$

Information_Gain (2TDB) = 1.557 - 0.857 = 0.7

Entropy for 1TDB:

1TDB	c1	c2	c3	I(c1, c2, c3)
Up	0	2	1	0
Down	2	0	0	0
Level	1	0	1	0

$$E(1TDB) = \frac{3}{7} * 0 + \frac{2}{7} * 0 + \frac{2}{7} * 0 = 0$$

Information_Gain (1TDB) = 1.557 - 0 = 1.557

Entropy for TD:

2TDB	c1	c2	c3	I(c1, c2, c3)
Up	1	1	0	0
Down	0	0	2	0
Level	2	1	0	0

Level/Down

2TDB

Level

Up

$$E(TD) = \frac{2}{7} * 0 + \frac{2}{7} * 0 + \frac{3}{7} * 0 = 0$$

Information_Gain (TD) = 1.557 - 0 = 1.557

So, we choose TD as root node, the decision tree:

Down

Up

12 Sep: $TD(Level) \rightarrow left \rightarrow 1TDB$ $1TDB(Up) \rightarrow right \rightarrow Down$

13 Sep: $\mathbf{TD}(Down) \rightarrow right \rightarrow \mathbf{Level}$

