Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №3 дисциплины «Алгоритмизация» Вариант 8

Выполнил: Данилецкий Дмитрий Витальевич 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения (подпись) Руководитель практики: Воронкин Р А., канд. технических наук, доцент кафедры инфокоммуникаций (подпись) Отчет защищен с оценкой _____ Дата защиты_____

Ход работы

1. Написал программу, которая подсчитывает время, затрачиваемое на выполнение алгоритма линейного поиска, предусмотрел варианты среднего (искомый элемент находится где-то в середине массива) и худшего (искомый элемент не найден) случая.

```
+ Linesearch
                                                                                                                (Глобальная область)
          □int linearSearch(int arr[], int n, int key) {
                       return i;
                const int sizes[] = { 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 };
                                                            time (worst)\n":
                for (int i = 0; i < sizeof(sizes) / sizeof(sizes[0]); i++) {
                      arr[j] = rand() % 1000;
                    double sumTime = 0;
                    int key = 1000;
                    int m;
                      m = rand() % size;
                    } while (m == 0 || m == size);
                    arr[m] = key;
for (int i = 0; i < 50; i++); {
                      clock_t start = clock();
                       for (int j = 0; j < 1000000; j++) {
    result = linearSearch(arr, size, key);</pre>
                       sumTime += double(end - start) / CLOCKS_PER_SEC;
                        start = clock();
                        for (int j = 0; j < 1000000; j++) {
                        end = clock();
                        sumTime1 += double(end - start) / CLOCKS_PER_SEC;
                return 0;
```

Рисунок 1. Программа

Рисунок 2. Результат работы программы

Таблица 1. Время работы алгоритма линейного поиска

Размер	Средний случай	Худший случай			
массива (n)	(сек * 100000)	(сек * 100000)			
100	0,075	0,125			
200	0,195	0,221			
300	0,082	0,324			
400	0,276	0,406			
500	0,202	0,499			
600	0,048	0,596			
700	0,151	0,704			
800	0,604	0,792			
900	0,446	0,888			
1000	0,905	0,984			

2. Перенес данные в таблицу Excel и произвел необходимые расчеты для метода наименьших квадратов.

4	Α	В	С	D	E	F	G	Н
1		n	time*10000	time	n*n	time*time	time*n	Υ
2		100	0,075	0,0000075000	10000	0,0000000000562500	0,00075000	0,0000022411
3		200	0,195	0,0000195000	40000	0,0000000003802500	0,00390000	0,0000083742
4		300	0,082	0,0000082000	90000	0,0000000000672400	0,00246000	0,0000145073
5		400	0,276	0,0000276000	160000	0,0000000007617600	0,01104000	0,0000206404
6		500	0,202	0,0000202000	250000	0,0000000004080400	0,01010000	0,0000267735
7		600	0,048	0,0000048000	360000	0,0000000000230400	0,00288000	0,0000329065
3		700	0,151	0,0000151000	490000	0,0000000002280100	0,01057000	0,0000390396
9		800	0,604	0,0000604000	640000	0,0000000036481600	0,04832000	0,0000451727
0		900	0,446	0,0000446000	810000	0,0000000019891600	0,04014000	0,0000513058
1		1000	0,905	0,0000905000	1000000	0,0000000081902500	0,09050000	0,0000574389
2	сумма	5500	2,984	0,0002984000	3850000	0,0000000157521600	0,22066000	
3								
14								
15	yp1	a*cyмм(n*n)+b*cyмм(n)=cyмм(t*n)	385000*a+5500b=0,0022066					
6	yp2	a*cyмм(n)+b*N=cyмм(t)	5500a+10b=0,000002984					
7								
8								
9								
0		Матричный с	пособ решения системы:					
1		385000	5500		0,0022066			
2		5500	10		0,0002984			
3								
4		-3,78788E-07	0,000208333	a=	6,13308E-08			
5		0,000208333	-0,014583333	b=	-3,89196E-06			
6								
27	корел	1						
28								
_								

Рисунок 3. Расчет линейной зависимости

3. Построил график линейной зависимости времени выполнения линейного поиска от размера массива в среднем случае.

Рисунок 4. График для среднего случая

4. Произвел аналогичные расчеты для получения необходимой функции.

4	Α	В	С	D	E	F	G	H	1	J	K
1			time*10000	time	n*n			Υ			
2		100	0,125	0,0000125000	10000		0,00125	0,000009995397727			
3		200	0,221	0,0000221000			0,00442	0,000020083087121			
4		300	0,324	0,0000324000	90000		0,00972	0,000030170776515			
5		400	0,406	0,0000406000	160000		0,01624	0,000040258465909			
6		500	0,499	0,0000499000	250000		0,02495	0,000050346155303			
7		600	0,596	0,0000596000	360000		0,03576	0,000060433844697			
8		700	0,704	0,0000704000	490000		0,04928	0,000070521534091			
9		800	0,792	0,0000792000	640000		0,06336	0,000080609223485			
10		900	0,888	0,000888000	810000		0,07992	0,000090696912879			
11		1000	0,984	0,0000984000	1000000		0,0984	0,000100784602273			
	сумма	5500	5,539	0,0005539000	3850000		0,3833				
13											
14											
15											
16		385000*a+5500b=0,0383	3								
17		a*5500+10b=0,00005539)								
18 8	3	-0,000000002979356									
19 l	b	7,17765E-06									
20		7,17765E-05									
21		1									
22											
23											
24											
25											
26			пособ решения с								
27		385000	5500		0,03833						
28		5500	10		0,0005539						
29											
30		-3,78788E-07	0,000208333		1,0088E-07						
31		0,000208333	-0,014583333	б=	-9,2292E-08						
32											
33											
	КОРЕЛЛ	1,00									
35											
36											
37											

Рисунок 5. Расчет функции линейной зависимости для худшего случая

5. Построил график линейной зависимости времени выполнения линейного поиска от размера массива в худшем случае.

Рисунок 6. График для худшего случая случая

6. Рассчитал коэффициенты парной корреляции для общего (r=0.7522288) и худшего (r=0.9998461) случая.

Рисунок 7. Расчет коэффициента парной корреляции для общего случая

Рисунок 8. Расчет коэффициента парной корреляции для худшего случая

Вывод: в ходе выполнения лабораторной работы был исследован алгоритм линейного поиска в массиве. Проведенный анализ позволяет утверждать, что время выполнения этого алгоритма в худшем и среднем случаях напрямую коррелирует с размером массива. Это утверждение подтверждено результатами экспериментов и статистическими методами, включая расчет коэффициента парной корреляции. Таким образом, можно сделать вывод о том, что этот алгоритм действительно обладает линейной зависимостью от размера массива, в котором выполняется поиск.