作业八

1. 对于矩阵 $\mathbf{A} = \begin{pmatrix} 0 & -20 & -14 \\ 3 & 27 & -4 \\ 4 & 11 & -2 \end{pmatrix}$, 使用 Given reduction 方法找到

一个正交矩阵 P, 使得 PA = T, 这里 T 为上三角矩阵,且对角元素都为正数。

2. 对于对于矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 19 & -34 \\ -2 & -5 & 20 \\ 2 & 8 & 37 \end{pmatrix}$, 使用 Householder reduction

实现该矩阵的 QR 分解。

3. 设X和Y分别为 \mathcal{R}^3 的子空间,且

$$\mathcal{B}_{\mathcal{X}} = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\}, \quad \mathcal{B}_{\mathcal{Y}} = \left\{ \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \right\},$$

分别为其一组基。(1) 试说明 \mathcal{X} 和 \mathcal{Y} 为 \mathcal{R}^3 的一对补空间;

- (2) 分别给出沿 \mathcal{Y} 空间到 \mathcal{X} 空间的投影矩阵 \mathbf{P} , 以及沿 \mathcal{X} 空间到 \mathcal{Y} 空间的投影矩阵 \mathbf{Q} , 并验证矩阵 \mathbf{P} 和 \mathbf{Q} 是幂等矩阵。
- 4. 设 $\mathcal{R}^{n\times n}$ 为所有 $n\times n$ 的矩阵构成的向量空间, 试说明 $\mathcal{R}^{n\times n}=\mathcal{S}\oplus\mathcal{K}$ 成立, 这里 \mathcal{S} 和 \mathcal{K} 分别表示所有 $n\times n$ 的对称矩阵和反堆成矩阵构成的集合。