

DIMES

Risoluzione del problema del Vertex Cover con gli algoritmi QAOA e VQE ed esecuzione dell'algoritmo VQE su macchina quantistica reale.

Anno Accademico 2024-2025

Studente: Francesco Cozza matr. 252420 Docenti:
Prof. Francesco Plastina
Prof. Carlo Mastroianni
Prof. Andrea Vinci

Scopo del Progetto

Lo scopo del progetto è stato quello di fornire un'**implementazione quantistica** alla risoluzione del problema del Vertex Cover.

Risoluzione classica:

Il problema è stato risolto prima con un approccio classico - senza componente quantistica - al fine di fornire i risultati e i costi reali delle soluzioni.

Risoluzione con QAOA:

Il problema è stato risolto con l'algoritmo **QAOA** (Quantum Approximate Optimization Algorithm), analizzando poi le migliori configurazioni in termini di profondità dell'Ansatz e di algoritmi per l'ottimizzazione dei parametri.

Risoluzione con VQE:

Il problema è stato risolto con l'algoritmo VQE (Variational Quantum Eigensolver), analizzando poi le migliori configurazioni in termini di algoritmi per l'ottimizzazione dei parametri. Oltre all'esecuzione sul simulatore, questo approccio è stato testato anche su macchina quantistica reale.

Il Problema del Vertex Cover

Il Vertex Cover è un problema fondamentale della teoria dei grafi.

Definizione e Obiettivo

Dato un grafo, si cerca un sottoinsieme di vertici in modo che ogni arco abbia almeno un estremo in questo sottoinsieme. L'obiettivo è trovare il sottoinsieme più piccolo possibile.

Complessità e Applicazioni

È un problema NP-completo, ovvero la complessità è esponenziale rispetto all'input. Trova applicazioni in ottimizzazione di reti e sicurezza informatica. Un esempio è minimizzare i server per coprire le connessioni di una rete.

FORMULAZIONE HAMILTONIANA DEL VERTEX COVER

Obiettivo della Formulazione

 Rappresentare il problema del Vertex Cover come un problema di minimizzazione dell'energia (Hamiltoniana), risolvibile tramite algoritmi quantistici come QAOA e VQE.

$$\min_{x \in \{0,1\}^n} \quad A \sum_{(i,j) \in E} (1-x_i)(1-x_j) + B \sum_{i \in V} x_i$$

con A>B

Dove:

- $xi \in \{0,1\}$: 1 se il nodo i è nel vertex cover
- A,B: parametri di penalizzazione
- Il primo termine penalizza gli archi non coperti, il secondo minimizza il numero di vertici scelti nel cover

Formulazione ISING

Si ottiene ponendo:

$$x_{\alpha} \equiv \frac{s_{\alpha} + 1}{2}$$

Sostituendo, si ottiene l'Hamiltoniana espressa in termini di operatori di Pauli Z.

RISOLUZIONE CLASSICA

Motivazione

Per disporre di un riferimento
utile nella valutazione delle
soluzioni ottenute dagli algoritmi
quantistici. In particolare, tutte
le analisi verranno effettuate
sullo stesso grafo d'esempio.

Minimo Costo Trovato: 3.0.

Tempo di esecuzione dell'algoritmo: 0.005 sec.

RISOLUZIONE CON QAOA - PRIMA IMPLEMENTAZIONE

Parametri

È stato, in prima battuta,
 implementato l'algoritmo QAOA
 con profondità p=5, utilizzando
 l'AdamOptimizer per la ricerca
 dei parametri ottimali. Inoltre,
 per Hf, si è scelto A=2 e B=1.

Il circuito è composto da una sequenza alternata di operatori:

- l'Hamiltoniana del problema.
- il "mixer".

Ottenere una sovrapposizione di stati che massimizzi la probabilità di osservare una soluzione valida e ottima.

RISOLUZIONE CON QAOA - PRIMA IMPLEMENTAZIONE

Risultati

 Impostando a 500 il numero massimo di iterazioni dell'ottimizzatore classico, è stato eseguito QAOA sfruttando il simulatore offerto da
 Pennylane.

Andamento della funzione obiettivo

Soluzioni (ottime) trovate

RISOLUZIONE CON QAOA - ANALISI PROFONDITA CIRCUITO

Motivzione

 Analizzare l'influenza della profondità del circuito p sulle prestazioni di QAOA permette di comprendere il trade-off tra qualità della soluzione e costo computazionale.

All'aumentare di *p*, l'expected cost tende a **diminuire**; tuttavia, si osserva anche un **aumento significativo** del tempo di esecuzione e dei passi dell'ottimizzatore. Questo perché circuiti più profondi sono **più difficili da simulare** e più **sensibili al rumore** su macchine reali.

RISOLUZIONE CON QAOA - ANALISI OTTIMIZZATORE

Motivzione

L'ottimizzatore classico
 utilizzato per aggiornare i
 parametri del QAOA influisce
 significativamente sulla qualità
 della soluzione finale e sulla
 velocità di convergenza.

Una volta scelto il valore di *p* ottimale, l'ottimizzatore classico gioca un ruolo fondamentale nel determinare l'efficacia dell'algoritmo QAOA, poiché **guida la ricerca dei parametri variabili** (γ,β) che definiscono il comportamento del circuito.

RISOLUZIONE CON VQE- PRIMA IMPLEMENTAZIONE

Parametri

 È stato, in prima battuta, implementato l'algoritmo VQE sfruttando l'Ansatz Two Local e l'ottimizzatore Cobyla. Inoltre, per l'Hamiltoniana del problema, si è scelto A=2 e B=1.

È stato utilizzato un ansatz TwoLocal con gate **ry** e **cx**, con connettività lineare e 2 ripetizioni della struttura (**reps = 2**).

Obiettivo:

Trovare il minimo atteso dell'**Hamiltoniana** utilizzando un circuito parametrizzato e un ottimizzatore classico per aggiornare i parametri.

RISOLUZIONE CON VQE - PRIMA IMPLEMENTAZIONE

Risultati

 Impostando a 5000 il numero massimo di iterazioni dell'ottimizzatore classico, è stato eseguito VQE sfruttando il simulatore offerto da Qiskit.

Soluzioni (ottime) trovate

RISOLUZIONE CON VQE – ANALISI OTTIMIZZATORE

Motivzione

L'ottimizzatore classico
 utilizzato per aggiornare i
 parametri in VQE ha un impatto
 diretto sulla qualità della
 soluzione ottenuta, e sul tempo
 di esecuzione complessivo.

Grafico risultate l'analisi

L'ottimizzatore classico gioca un ruolo fondamentale nel determinare l'efficacia dell'algoritmo VQE, poiché guida la ricerca dei parametri variabili che definiscono il comportamento del circuito.

QAOA VS VQE

Dopo aver analizzato separatamente le performance di VQE e QAOA in diverse configurazioni (ottimizzatori e, per QAOA, profondità del circuito), si procede a un **confronto diretto tra i due algoritmi**.

Per ciascun metodo viene selezionata la **configurazione ottimale**, ovvero quella che ha ottenuto:

- il valore atteso più basso (accuratezza)
- il tempo di esecuzione più contenuto (efficienza)

Dal confronto emerge che QAOA e VQE ottengono valori attesi molto simili, a testimonianza della comparabile qualità delle soluzioni fornite. Tuttavia, VQE si distingue per un tempo di esecuzione leggermente inferiore.

ESECUZIONE DI VQE SU MACCHINA QUANTISTICA REALE

Obiettivo

 Per valutare le prestazioni di VQE in un contesto più realistico, la miglior configurazione trovata in simulazione è eseguita su un vero dispositivo quantistico IBM.

Specifiche di esecuzione

Circuito compilato

RISOLUZIONE CON VQE - PRIMA IMPLEMENTAZIONE

Risultati

 Impostando a 150 il numero massimo di iterazioni dell'ottimizzatore classico, è stato eseguito VQE sfruttando il la macchina quantistica offerta da IBM Cloud.

Andamento della funzione obiettivo

Probabilità di trovare una soluzione **valida**: **0.239**

Soluzione (ottima) trovata

Probabilità: 0.007

Le prestazioni limitate oriscontrate sono principalmente dovute al numero ridotto di iterazioni consentite, legato ai pochi minuti di accesso gratuito offerti dalla piattaforma IBM Quantum.

UNIVERSITÀ DELLA CALABRIA

DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICA

DIMES

Grazie per l'Attenzione

Studente: Francesco Cozza matr. 252420 Docenti:
Prof. Francesco Plastina
Prof. Carlo Mastroianni
Prof. Andrea Vinci