Unidade Lógica Aritmética (Arithmetic Logic Units)

A maioria dos computadores contem um único circuito para a realização das operações AND, OR e soma de duas palavras de máquina. Tipicamente, tal circuito de palavras de n-bit é construído por n circuitos idênticos para as posições de bits individuais. A figura 3-19 é um exemplo simples de tal circuito, chamado de Unidade Lógica Aritmética ou ULA (ALU - Arithmetic Logic Unit). Ela pode calcular qualquer uma das quatro funções listadas a seguir: A AND B, A OR B, \overline{B} , ou A + B, dependendo se as linhas de entrada de função $\overline{F0}$ e $\overline{F1}$ contiverem os valores 00, 01, 10, ou 11 (binário). Note-se que aqui \overline{A} + \overline{B} significa a soma aritmética de \overline{A} e \overline{B} , não o booleano OU.

O canto inferior esquerdo da nossa ALU contém um decodificador de 2-bits para gerar sinais de ativação para as quatro operações, com base nos sinais de controle **FO** e **F1**. Dependendo dos valores de **FO** e **F1** exatamente uma das quatro linhas de ativação é selecionada. A definição dessa linha permite que a saída para a função selecionada seja passada para a porta OR final.

O canto superior do lado esquerdo tem a lógica para calcular $\bf A$ AND $\bf B$, $\bf A$ OR $\bf B$, $\bf e$ $\overline{\bf B}$, mas apenas um destes resultados é passado para a porta final OU, dependendo das linhas habilitadas que saem do decodificador. Em razão de apenas uma das saídas do decodificador ser 1, apenas uma das quatro portas AND habilitará a porta OR final; as outras três terão saída 0, independente de $\bf A$ e $\bf B$.

Além de ser capaz de usar **A** e **B** como entradas para operações lógicas ou aritméticas, é também possível forçar cada uma delas a 0, negando ENA ou ENB, respectivamente. Também é possível obter \overline{A} , definindo INVA. Veremos usos para INVA, ENA e ENB no Cap. 4. Sob condições normais, ENA e ENB são ambos 1 para habilitar ambas as entradas (**A**, **B**) e INVA é 0. Neste caso, os valores de **A** e **B** são apenas alimentados para dentro da unidade lógica não sendo modificados.

O canto inferior do lado direito da ALU contém um somador completo para calcular a soma de **A** e **B**, incluindo a manipulação dos vai-1 (Carry-Out), pois é provável que vários destes circuitos, eventualmente, serão ligados em conjunto para executar operações de palavra inteira. Circuitos como a da FIG. 3-19 estão realmente disponíveis e são conhecidos como *bits slices*. Eles permitem que o projetista de computadores construa uma ALU de qualquer largura desejada. A figura 3-20 mostra um ALU de 8-bit construída por oito 1-bit-slices de ALU. O sinal INC é útil apenas para operações de adição. Quando presente, ele incrementa (isto é, adiciona 1 a)o resultado, tornando-se possível calcular somas como **A** + **1** e **A** + **B** + **1**.

Figure 3-19. A 1-bit ALU.

FO	F1	ENA	ENB	INVA	Carry in	Função
0	1	1	0	0	0	А
0	1	0	1	0	0	В
0	1	1	0	1	0	A (inverso)
1	0	1	1	0	0	B (inverso)
1	1	1	1	0	0	A+B
1	1	1	1	0	1	A+B+1
1	1	1	0	0	1	A+1
1	1	0	1	0	1	B+1
0	0	1	1	0	0	A AND B
0	1	1	1	0	0	A OR B
0	1	0	0	0	0	0
0	1	0	0	1	0	1

Combinações de sinais da ALU e função executada

Figure 3-20. Eight 1-bit ALU slices connected to make an 8-bit ALU. The enables and invert signals are not shown for simplicity.

Structured Computer Organization, Fifth Edition, Andrew S. Tanenbaum