Unidad 1 - Conceptos

Conceptos y Definiciones

Computadora

Segun la RAE: Maquina electrónica capaz de realizar un tratamiento automático de la información y de resolver con gran rapidez problemas matemáticos y lógicos mediante programas informáticos. Segun Wikipedia: Una máquina digital que lee y realiza operaciones para convertirlos en datos convenientes y útiles que posteriormente se envían a las unidades de salida.

En esta materia: Una máquina que **recibe y procesa** datos a partir de un conjunto predefinido de ordenes, para convertirlos en información útil que luego puede ser **presentada**, **almacenada o transmitida**.

Niveles de Abstracción

Las computadoras se organizan en niveles de abstracción. Desde el punto de vista de esta materia vamos a

considerar al nivel más alto de abstracción al correspondiente al usuario que ejecuta los programas, mientras que el más bajo corresponde al nivel físico.

Arquitectura de las Computadoras

Estudia las relaciones funcionales en el comportamiento de una computadora desde la perspectiva del software (también llamada lógica).

Niveles de abstracciones y usuarios

Organización de las Computadoras

Lo mismo pero desde la perspectiva del hardware (circuitos electrónicos).

Historia

Ver diapositivas y video

Organización de la Computadora

Componentes

Desde el punto de vista funcional, la computadora posee:

- Unidad Central de Procesamiento: procesa la información, esta compuesta por:
 - Unidad Aritmético Lógica: realiza las operaciones aritmético lógicas.
 - Unidad de Control: controla, interpreta y ejecuta las operaciones realizadas por la CPU.
- Memoria: almacena las instrucciones y los datos utilizados. Consta de celdas numeradas.
- Unidad dentral de proceso

 Unidad de artimética y Unidad de control
 Unidad de entrada

 Unidad de entrada

 Unidad de entrada

 Unidad de entrada

Organización de la Computadora

- **Dispositivos de entrada y Salida**: dispositivos independientes por los cuales la computadora se comunica con "el mundo", los sistemas de almacenamiento y sistemas con los que se comunica con otras computadoras.
- Buses: son lineas que transportan las señales entre los diferentes componentes. Dependiendo de la información que transportan, son:
 - Bus de direcciones: establece la dirección de memoria del dato en tránsito. La cantidad de bits que lo conforman determinan la capacidad de memoria que se puede direccionar.
 - Bus de datos: donde se mueven los datos entre dispositivos, la memoria y la unidad de procesamiento.
 - Bus de control: gobierna la operación de los módulos de una computadora. La señales de
 control transmiten órdenes e información de temporización (o sincronización) entre
 módulos. Si una dirección corresponde a memoria o periféricos, si es una operación de
 escritura o lectura, si hay pedido de interrupción del programa, si se acepta el pedido de
 interrupción, y otras.

Arquitectura

Existen dos modelos de arquitectura de computadoras:

Arquitectura Harvard

La Memoria de Instrucciones y la Memoria de Datos estan separadas y se conectan a la Unidad Central de Procesamiento por buses distintos, lo que permite operaciones de lectura de datos e instrucciones simultaneas y mayor velocidad, además de la posibilidad de diseñar buses especificos para cada necesidad (por ejemplo, 24 bits para el bus de instrucciones y 32 para el bus de datos).

Arquitectura Von Neumann

La Memoria de Instrucciones y la Memoria de Datos están juntas en lo que se denomina **Memoria**Central y comparten el sistema de buses, por lo que solo podemos o bien leer una instrucción o bien leer/escribir en la memoria de datos. La ventaja de esto es que el diseño del hardware es más sencillo y económico.

ARQUITECTURA HARVARD

ARQUITECTURA VON NEUMANN

Harvard vs Von Neumann

Clasificación

Vamos a clasificar las arquitecturas según el flujo de instrucciones y datos disponibles:

- Una Instrucción un Datos (SISD)
- Múltiples Instrucciones un Dato (MISD)
- Una Instrucción Múltiples Datos (SIMD)
- Múltiples Instrucciones Múltiples Datos (MIMD)

 Un Programa - Múltiples Datos (SPMD): múltiples procesadores autónomos trabajando simultaneamente sobre el mismo conjunto de instrucciones. Paralelismo de Instrucciones y Datos

• Múltiples Programas - Múltiples Datos (MPMD): múltiples procesadores trabajando sobre múltiples programas independientes.