Datafile Parsing

- Submit a single file dataparsing.py.
- The file cardata.csv contains some information about persons and their cars.
- 1. Write a function parse_cardata() that reads the file and parses the data into an appropriate datastructure say cardata and returns it. The choice of the datastructure is yours.
- 2. Write a function <code>cars_vs_age(cardata,bucketsize)</code> that returns a histogram (as a dictionary), such that for each car we can know how many owners are there in an age range (defined by bucketsize).
 - For example, if bucketsize=5 ,then "histogram["Creta"]["35-40"] should return how many people own a creta in the age range 35-40.
- 3. Write a function age_vs_cars(histogram) that inverts the histogram created by cars_vs_age(cardata,bucketsize) such that new_histogram["35-40"]["Creta"] gives me how many people own a creta in the age range 35-40.
- 4. Write a function company_vs_cars(cardata) that returns a map such that, company_vs_cars_map["Google"] gives the list of cars owned by people in Google ordered by descending frequency.
- 5. Using these functions, answer the following questions and print the answer
 - A. Which is the most popular car for each age group (bucketsize=5)?
 - B. Which age group is each car most popular with?
 - C. Which cars are most popular in each company?
 - D. Which car is the best car? (A car gets 1 point if it is in the top 2 of a company. The car with the maximum points is considered the best car.)

Hint for Q.4: Sorting the cars for each company can be accomplished in at least 2 ways

- Using tuples and the sorted() function this has not been covered in class but is there in notes for 23_may.
- · Using np.argsort.