VR-Labor

Nachtrag zur Apokalypse...

Bis zu heute!

14.05.2015

- 1. Apokalypse implementieren
- 2. Apokalypsenanalyse
- 3. Paper durcharbeiten
- 4. Konditionsberechnung und Beispiele suchen

Ihr stellt vor!

Was neues...

Heightfieldwater

Modellherleitung

Große Fragen

Fragen vor dem Modellentwurf:

- Intention?
- Invarianten?
- Vereinfachungen?
- Aufwand?

Intention!

Wasser simulieren! und zwar einfach

Invarianten!

Das übliche:

- Impuls
- Energie
- Wassermenge

Vereinfachungen!

- Nur Wasserhöhe
- Keine Bodeninteraktion
- Keine Objektinteraktion

Aufwand!

Gering - Echtzeit!

Wellen können sich nach rechts bewegen

Wellen können sich nach links bewegen

Beobachten!

Bewegung nach rechts

$$u(x, t_1) = u(x - c(t_1 - t_0), t_0)$$

Bewgung nach links

$$u(x,t_1) = u(x + c(t_1 - t_0), t_0)$$

c = Ausbreitungsgeschwindigkeit der Wellen

Bewgung aus beiden Richtungen

$$u(x,t_1) = u(x - c(t_1 - t_0), t_0) + u(x + c(t_1 - t_0), t_0)$$

Passt nicht!

(Es muss klar zwischen Rechtswellen und Linkswelle unterschieden werden)

Energie bleibt nicht konstant!

Bewgung aus beiden Richtungen

$$u(x,t_1) = r(x - c(t_1 - t_0), t_0) + l(x + c(t_1 - t_0), t_0)$$

r = Rechtswellen l = Linkswellen

Das geht in 1D!

Schwer erweiterbar auf 2D!

(gäbe unendlich viele Richtungswellen) Erweiterung auf 2D: Yuksel, Cem, Donald H. House, and John Keyser. "Wave particles." ACM Transactions on Graphics (TOG) 26.3 (2007): 99.

Formale - zweite Idee

Betrachte zeitliche Änderung

$$\frac{\partial u}{\partial t} = -cr' + cl' \qquad \qquad \frac{\partial^2 u}{\partial t^2} = c^2 r'' + c^2 l''$$

Räumliche Änderung könnten nun interessant sein!

$$\frac{\partial u}{\partial x} = r' + l' \qquad \qquad \frac{\partial^2 u}{\partial x^2} = r'' + l'' = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

Und jetzt?

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

Super!

räumliche und zeitliche Ableitungen hängen zusammen

Aber was bringt uns das?

Räumliche Ableitungen?

Räumliche Ableitung simpler als zeitliche

- approximierbar durch Diskretisierung
- keine unbekannten Werte!
- "wie schon immer"

Diskretisierte Ableitung

Ableitung = Grenzwert der Sekanten

Grenzwert nicht diskret bestimmbar

=> Sekante muss ausreichen.

Diskretisierte Ableitung

Ableitung = Grenzwert der Sekanten

Grenzwert nicht diskret bestimmbar

=> Sekante muss ausreichen.

Diskretisierte Ableitung

Ableitung = Grenzwert der Sekanten

Grenzwert nicht diskret bestimmbar

=> Sekante muss ausreichen.

Bitte Stempeln!

Reine Notation!

Umliegende Gitterpunkte werden gern über einen Stempel beschrieben. Z.B.

$$\frac{0 \cdot f(x-h) - f(x) + f(x+h)}{h} = \frac{[0 \quad -1 \quad 1]}{h} f(x) \approx f'(x)$$

oder

$$\frac{-f(x-h) + f(x) + 0 \cdot f(x+h)}{h} = \frac{[-1 \quad 1 \quad 0]}{h} f(x) \approx f'(x)$$

Zweite Ableitung

Verwende beide Approximationen der ersten Ableitung

$$\frac{[0 - 1 \ 1]}{h} f(x) \approx f'(x) \approx \frac{[-1 \ 1 \ 0]}{h} f(x)$$

Die Zweite Ableitung wird dann geteilt:

$$f''(x) = (f'(x))'$$

Technische Details

$$(f'(x))' \approx \left(\frac{[0 - 1 \ 1]}{h}f(x)\right)' = \left(\frac{-f(x) + f(x+h)}{h}\right)'$$

$$= \frac{-f'(x) + f'(x+h)}{h}$$

$$\approx \frac{-[-1 \ 1 \ 0]f(x) + [-1 \ 1 \ 0]f(x+h)}{h^2}$$

$$= \frac{f(x-h) - 2 \cdot f(x) + f(x+h)}{h^2}$$

$$= \frac{[1 \ -2 \ 1]}{h^2}f(x) \approx f''(x)$$

Zeitraum-Kopplung

Es gilt die DLG zu lösen!

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Die räumliche Ableitungen sind trivial!

$$c^2\frac{\partial^2 u}{\partial x^2}\approx\frac{c^2}{h^2}\begin{bmatrix}1&-2&1\end{bmatrix}_x u$$
 Also fangen wir damit an!

Mit der Zeit wird alles anders

Die zeitlichen Ableitungen kann man genauso bestimmen!

zu Speichern: $u(x, t - \delta t)$ u(x, t)

Mit der Zeit wird alles anders

Natürlicher ist jedoch die Beschreibung über **Geschwindigkeiten**!

zu Speichern: u(x,t) $\dot{u}(x,t)$

Das ganze System

Man erhält dann:

$$\dot{u}(x,t+\delta t) = \dot{u}(x,t) + \frac{\delta t \cdot c^2}{h^2} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}_x u(x,t)$$
$$u(x,t+\delta t) = u(x,t) + \delta t \cdot \dot{u}(x,t+\delta t)$$

es wird natürlich symplektisch integriert!

Man benötigt:

$$u(x,t_0)$$
 $\dot{u}(x,t_0)$

Ränder!

Ein großes Problem beim Lösen von DGLs

Ränder!

Gesonderte Behandlung notwendig.

Ränder!

Ein großes Problem beim Lösen von DGLs

Ränder!

Tue einfach so als gäb es Wasserhöhe der **gleichen Höhe** in der **Wand** wie am **Rand**

Und 2D?

Einfach den Stempel erweitern.

An der Zeitintegration ändert sich nichts

Und 3D?

Wichtig! Wir haben die Wellengleichung betrachtet.

- Stark vereinfacht
- Erweiterbar auf 3D!
- Aber! Keine Lösung für Fluide

Und 3D?

Für Fluide braucht man dann Navier-Stokes

$$\rho \underbrace{\left(\frac{\partial \overrightarrow{u}}{\partial t} + \overrightarrow{u} \cdot \nabla \overrightarrow{u}\right)}_{\text{Acceleration}} = \underbrace{-\nabla p}_{\text{Pressure}} + \underbrace{\nu \triangle \overrightarrow{u}}_{\text{Viscosity}}$$

$$\underbrace{\nabla \cdot \overrightarrow{u} = 0}_{\text{Continuity Equation}}$$

Stabilität

Für das Vorgestellte Modell gilt:

Wellen können sich pro Zeitschritt höchstens um eine Zelle bewegen

Stabilität

Das heißt wir haben folgendes Constraint:

$$c < \frac{h}{\delta t}$$

(CFL - Bedingung)
Courant-Friedrichs-Lewy condition

Mit dem rechts-links Wellenmodell gabs die Einschränkung so nicht.

Partielle DGL

Bisher hatten wir nur gewöhnliche DGLs (ODEs)

Ableitungen nach einer Variablen (t)

Wellengleichung ist PDE

Die Wellengleichung hat Ableitungen nach Raum und Zeit.

Gelten generell als "schwer". (insbesondere die nichtlinearen)

Lineare PDEs

Ein Großteil aller Modellierungsprobleme ist auf lineare PDEs zurückzuführen.

Es gibt drei Typen: elliptisch parabolisch hyperbolisch

Kegelschnitt PDEs

Das sind die selben Gruppen wie bei Kegelschnitten.

Die allgemeine Kegelschnittgleichung

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

Kegelschnitt PDEs

Das sind die selben Gruppen wie bei Kegelschnitten.

Die allgemeine lineare PDE Gleichung

$$au_{xx}+bu_{xy}+cu_{yy}+du_x+eu_y+f=0$$

Kegelschnitt PDEs

Das sind die selben Gruppen wie bei Kegelschnitten.

Klassifizierung in elliptisch etc. ist gleich!

Lösung linearer PDEs

Das sind die selben Gruppen wie bei Kegelschnitten.

Klassifizierung in elliptisch etc. ist gleich!

Bis zum nächsten Mal

- 1. Ein 1D Heightfieldwater implementieren.
- 2. Die Heat Equation lösen
- 3. Extra: Advektion berechnen
- 4. Extra: Eine Erweiterung Implementieren
- 5. Warum rechnen wir mit Kräften und nicht mit Beschleunigungen?

22.05.2015

Abgaben an vrlab15@welfenlab.de bis zum:

21.05.2015