Class: IBM Quantum Learning

Absolute Values Complexe conjugate

Complex Analysis Short recap Quantum mecanics

Let $a \in \mathbb{R}$, $b \in \mathbb{R}$ and $z \in \mathbb{C}$.

Pauli Matrices

Real part Real part

 $(a - ib)^* = a + ib$ $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$ $\cos z = \frac{e^{iz} + e^{-iz}}{2}$ Trig. Formulas Trig. Formulas

Properties 1 (Complexe conjugate)

• $(Z^*)^* = Z • (Z + W)^* = Z^* + W^*$

• $(Z-W)^* = Z^* - W^* • (ZW)^* = Z^*W^*$

• $Z^*Z = |Z|^2$ • $(Z^n)^* = (Z^*)^n$, for $n \in \mathbb{Z}$

• $ln(Z^*) = (ln(Z))^*$ if Z is not 0 or a negative real number.

Properties 2 (Complexe Absolute Values)

• $|z_1z_2| = |z_1||z_2|$ • The absolute value define the metric of the space \mathbb{C} (\mathbb{C} is complete). • $|z_1+z_2|^2 = |z_1|^2 + |z_2|^2 + \Re e(z_1 z_2^*)$

• $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - \Re(z_1 z_2^*)$ • $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$

Linear Algebra

Linear Operator

A linear operator between the vector spaces V and W is define to be any function $A:V\to W$ which is linear in its input.

Properties 3 Let \hat{A} be a linear operator on $V \to W$ and A be the matrix representation of \hat{A} . • $\hat{A}(\sum_i a_i | v_i \rangle) = \sum_i a_i \hat{A} | v_i \rangle$

• $\hat{A} |v_i\rangle = \sum_i A_{ij} |w_i\rangle$

Inner product

A Inner Product $\langle ., . \rangle$ is a function that output a complex number and satisfies the following conditions: Let $\vec{v} \in \mathbb{C}^n$, $\vec{w} \in \mathbb{C}^n$.

1. $\langle \vec{v}, \sum_i a_i \vec{w_i} \rangle = \sum_i a_i \langle \vec{v}, \vec{w_i} \rangle$

2. $\langle \vec{v}, \vec{w} \rangle = (\langle \vec{w}, \vec{v} \rangle)^*$

3. if x = 0 and only if $\langle \vec{w}, \vec{w} \rangle > 0$

In quantum mecanics the inner product is generaly noted $\langle .|. \rangle$.

Properties 4 • $\langle A, A \rangle = ||A||^2 • if$ $\langle A, B \rangle = 0$ then A and B are orthogonal.

Mathematical Concepts

Dirac Notation(or Bra-Ket Notation)

Terminology: ket of A is $|A\rangle$ and bra of A is $\langle A|$. Example, let $\Sigma = \{A, B, C\}$ then $|A\rangle = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, |B\rangle = \begin{bmatrix} 0\\1\\0 \end{bmatrix} \text{ and } \langle A| = (1,0,0),$ $\langle B| = (0,1,0)$ Note that $|\Psi\rangle$ then $\langle \Psi| =$

bra-kets: we denote $\langle a|b\rangle$ the matrice product of

Cartesian product

Let
$$y = \{0, 1\}$$
 and $x = \{a, b\}$. Then,
 $x \times y = \{(0, a), (0, b), (1, a), (1, b)\}$ and
 $y \times x = \{(a, 0), (a, 1), (b, 0), (b, 1)\}.$

Tensor Product of vectors

$$\begin{bmatrix} a_0 \\ \vdots \\ a_n \end{bmatrix} \otimes \begin{bmatrix} b_0 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} a_0 b_0 \\ \vdots \\ a_n b_n \end{bmatrix}$$

Tensor Product Properties

1.
$$(|\phi_1\rangle + |\phi_2\rangle) \otimes |\psi\rangle = |\phi_1\rangle \otimes |\psi\rangle + |\phi_2\rangle \otimes |\psi\rangle$$

2. $(a | \phi \rangle) \otimes | \psi \rangle = a(| \phi \rangle \otimes | \psi \rangle)$

3.
$$|a\rangle \otimes |b\rangle = |b\rangle \otimes |a\rangle$$

Quantum Information Systems State Vector

Quantum State of a sytem is represented by a complex column vector. Let the quan-

tum state vector v be equal to $\begin{bmatrix} \vdots \\ a_n \end{bmatrix}$, where

 $\sum_{i=0}^{n} |a_i|^2 = 1 \text{ The euclidean norm of}$ the $||v|| = \sqrt{\sum_{i=0}^{n} |a_i|^2}$

Common Quantum States

$$\begin{array}{ll} \text{Plus State} & |+\rangle = \frac{1}{\sqrt{2}} \, |0\rangle + \frac{1}{\sqrt{2}} \, |1\rangle \\ \text{Minus State} & |-\rangle = \frac{1}{\sqrt{2}} \, |0\rangle - \frac{1}{\sqrt{2}} \, |1\rangle \\ \text{Other State} & \frac{1+2i}{3} \, |0\rangle - \frac{2}{3} \, |1\rangle \end{array}$$

Standart Basis Measurement

Let a quantum system be in the state $|\psi\rangle$, then the probability for the measure

outcome to be a is Pr(outcome = a) = $|\langle a|\psi\rangle|^2$ If U is an unary matrice then the following Propertie hold, $||U\psi|| = ||\psi||$

Unary Operations

Unary Matrice

A squared matrix U having complex number entries is unitary if it satisfies the equations, $UU^{\dagger} = U^{\dagger}U = \mathbb{I}$ where \mathbb{I} is the identity matrix.

Some unitary operations on qubits

Pauli operations:

Fault operations.
$$\mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Hadamard operation: $H = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$ Phase operations: $P_{\theta} = \begin{pmatrix} 1 & 0\\ 0 & e^{i\theta} \end{pmatrix}$

Quantum cirtcuit