

PATH PLANNING

Undergraduate course (Spring 2020)

MOTION PLANNING

What is Motion Planning

A robot arm is to build an assembly from a set of parts. Tasks for the robot:

- Grasping: position gripper on object design a path to this position
- Transferring: determine geometry path for arm avoid obstacles + clearance
- Positioning

Information Required

- Knowledge of spatial arrangement of workspace. E.g., location of obstacles
- Full knowledge -> full motion planning
- Partial knowledge -> combine planning and execution

motion planning = collection of problems

Basic Problem

A simplified version of the problem assumes

- Robot is the only moving object in the workspace
- No dynamics, no temporal issues
- Only non-contact motions

Motion Planning = pure "geometrical" problem

World consists of

- Obstacles
 - Already occupied spaces of the world
 - In other words, robots can't go there

- Free Space
 - Unoccupied space within the world
 - Robots "might" be able to go here
 - To determine where a robot can go, we need to discuss what a Configuration Space is

Notion of Configuration Space

• *Main Idea:* Represent the robot as a point, called a configuration, in a parameter space, the *configuration space* (or C-space).

• Importance: Reduce the problem of planning the motion of a robot in Euclidean Space to planning the motion of a point in C-space.

C-space of Rigid Objects

Workspace W: physical workspace

- represented as N-dimensional Euclidean Space \mathbb{R}^N , where N=2,3
- \bullet $\mathcal{F}_{\mathcal{W}}$: fixed Cartesian coordinate system (frame) of \mathcal{W}
- $\mathcal{O}_{\mathcal{W}}$: fixed origin of $\mathcal{F}_{\mathcal{W}}$

Robot A: moving rigid object/robot

- represented as compact subset of \mathbb{R}^N (at reference position and orientation)
- $\mathcal{F}_{\mathcal{A}}$: frame of \mathcal{A} (aka 'local' frame of \mathcal{A})
 - fixed wrt \mathcal{A} (i.e., each point in \mathcal{A} has fixed coordinates in $\mathcal{F}_{\mathcal{A}}$)
 - moving wrt $\mathcal{F}_{\mathcal{W}}$
- $\mathcal{O}_{\mathcal{A}}$: origin of $\mathcal{F}_{\mathcal{A}}$ (aka the **reference point** of \mathcal{A})

C-space of Rigid Objects

<u>Definitions:</u>

- A configuration \mathbf{q} of \mathcal{A} is a specification of the position and orientation of $\mathcal{F}_{\mathcal{A}}$ wrt $\mathcal{F}_{\mathcal{W}}$
- The configuration space of \mathcal{A} is the space \mathcal{C} of all the possible configurations of \mathcal{A}

Notation:

- $\mathcal{A}(\mathbf{q})$: subset of \mathcal{W} occupied by \mathcal{A} at configuration \mathbf{q}
- $a(\mathbf{q})$: position of point $a \in \mathcal{A}$ in \mathcal{W} when \mathcal{A} at configuration \mathbf{q}

C-space of Rigid Objects

Robot Configurations Can be:

- 1. Free configurations: robot and obstacles do not overlap
- 2. Contact configurations: robot and obstacles touch
- 3. Blocked configurations: robot and obstacles overlap
- Configuration Space partitioned into free (C_free), contact, and blocked sets.

Definition: The obstacle \mathcal{B}_i in \mathcal{W} maps in \mathcal{C} to the region

$$CB_i = \{ \mathbf{q} \in C | A(\mathbf{q}) \cap B_i \neq \emptyset \}$$

 \mathcal{CB}_i is called a C-obstacle. The union of all C-obstacles is called the C-obstacle region.

Example of a World (and Robot)

The Configuration Space

- How to create it
 - First abstract the robot as a point object.
 - Then, enlarge the obstacles to account for the robot's footprint and degrees of freedom
 - In example, the robot was circular, so it enlarge obstacles by the robot's radius.

Components

• A: single rigid object - the robot - moving in Euclidean space W (the workspace).

$$W = R^N, N=2,3$$

• B_i , I=1,...,q. Rigid objects in W. The obstacles

<u>Assume</u>

- Geometry of A and B_i is perfectly known
- Location of B_i is known
- No kinematic constraints on A: a "free flying" object

Path in C-Space

Mathematically definition

A path in C-space is a continuous map:

$$\tau: s \in [0,1] \mapsto \tau(s) \in \mathcal{C}$$

where $\tau(0) = \mathbf{q}_{init}$ is the initial configuration and $\tau(1) = \mathbf{q}_{goal}$ is the goal configuration of the path.

"Continuous map" means that:

$$\forall s_1, s_2 \in [0, 1] : \lim_{s_2 \to s_1} d(\tau(s_1), \tau(s_2)) = 0$$

where $d: \mathcal{C} \times \mathcal{C} \to \mathbf{R}^+ \cup \{0\}$ is the chosen metric over \mathcal{C} .

Motion Planning

- <u>General Goal</u>: compute motion commands to achieve a goal arrangement of physical objects from an initial arrangement
- <u>Basic problem</u>: Collision-free path planning for one rigid or articulated object (the "robot") among static obstacles.

Inputs

- geometric descriptions of the obstacles and the robot
- kinematic and dynamic properties of the robot
- initial and goal positions (configurations) of the robot

Output

• Continuous sequence of collision-free configurations connecting the initial and goal configurations

Motion Planning

- Path planning
 - design of only geometric (**kinematic**) *specifications* of the **positions** and **orientations** of robots
- Trajectory = Path + assignment of time to points along the path
- Trajectory planning
 path planning + design of linear and angular velocities
- Motion Planning (MP), a general term, either:
 - **Path** planning, or
 - **Trajectory** planning
- Path planning < Trajectory planning

Classification of MP algorithms

Completeness

Exact

usually computationally expensive

Heuristic

- aimed at generating a solution in a short time
- may fail to find solution or find poor one at difficult problems
- important in engineering applications
- Probabilistically complete (probabilistic completeness $\rightarrow 1$)

Classification of MP algorithms

Scope

Global

- take into account all environment information
- plan a motion from start to goal configuration

Local

- avoid obstacles in the vicinity of the robot
- use information about nearby obstacles only
- used when start and goal are close together
- used as component in global planner, or
- used as safety feature to avoid unexpected obstacles not present in environment model, but sensed during motion

Point-to-point Path Planning

- Point-to-point path planning:
 - Looks for the best route to move an entity from point A to point B
 - Avoiding known obstacles in its path
 - Not leaving the map boundaries, and not violating the entity's mobility constraints.
- This type of path planning is used:
 - Finding routes for autonomous robots
 - Planning the manipulator's movement of a stationary robot
 - For moving entities to different locations in a map to accomplish certain goals in a gaming application.

Region Filling Path Planning

- Tasks such as vacuuming a room, plowing a field, or mowing a lawn require region filling path planning operations that are defined as follows:
 - The mobile robot must move through an entire area, i.e., the overall travel must cover a whole region.
 - Continuous and sequential operation without any repetition of paths is required of the robot.
 - The robot must avoid all obstacles in a region.
 - An "optimal" path is desired under the available conditions.

Components

- The Problem:
 - Given an initial position and orientation PO_{init}
 - Given a goal position and orientation PO_{goal}
 - Generate: continuous path t from PO_{init} to PO_{goal}
- t is a continuous sequence of Pos'

THE WAVEFRONT PLANNER

The Wavefront Planner

- A common algorithm used to determine the shortest paths between two points
 - In essence, a breadth first search of a graph
- For simplification, we'll present the world as a two-dimensional grid
- Setup:
 - Label free space with 0
 - Label C-Obstacle as 1
 - Label the destination as 2

Representations: A Grid

- Distance is reduced to discrete steps
 - For simplicity, we'll assume distance is uniform
- Direction is now limited from one adjacent cell to another

Representations: Connectivity

- 8-Point Connectivity
- 4-Point Connectivity

The Wavefront in Action (Part 1)

- Starting with the goal, set all adjacent cells with "0" to the current cell + 1
 - 4-Point Connectivity or 8-Point Connectivity?
 - Your Choice. We'll use 8-Point Connectivity in our example

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 2)

- Now repeat with the modified cells
 - This will be repeated until no 0's are adjacent to cells with values ≥ 2
 - 0's will only remain when regions are unreachable

7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
3	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4
1	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	3	2
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

The Wavefront in Action (Part 3)

• Repeat again...

The Wavefront in Action (Part 4)

And again...

The Wavefront in Action (Part 5)

• And again until...

The Wavefront in Action (Done)

- You're done
 - Remember, 0's should only remain if unreachable regions exist

7	18	17	16	15	14	13	12	11	10	9	9	9	9	9	9	9
6	17	17	16	15	14	13	12	11	10	9	8	8	8	8	8	8
5	17	16	16	15	14	13	12	11	10	9	8	7	7	7	7	7
4	17	16	15	15	1	1	1	1	1	1	1	1	6	6	6	6
3	17	16	15	14	1	1	1	1	1	1	1	1	5	5	5	5
2	17	16	15	14	13	12	11	10	9	8	7	6	5	4	4	4
1	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	3
0	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2
	0	1	2	3	4	5	6	7 8	3 9	9 1	0 1	.1	12	13	14	15

The Wavefront, Now What?

- To find the shortest path, according to your metric, simply always move toward a cell with a lower number
 - The numbers generated by the Wavefront planner are roughly proportional to their distance from the goal

Two
possible
shortest
paths
shown

MAP-BASED APPROACHES: VISIBILITY GRAPH

Map-Based Approaches: Roadmap Theory

 Idea: capture the connectivity of C-free with a roadmap (graph or network) of one-dimensional curves

Free configurations: robot and obstacles do not overlap

Roadmap Methods

Path Planning with a Roadmap

input: configurations \mathbf{q}_{init} and \mathbf{q}_{goal} , and \mathcal{B}

output: a path in C_{free} connecting \mathbf{q}_{init} and \mathbf{q}_{goal}

- 1. build a roadmap in C_{free} (preprocessing)
 - roadmap nodes are free configurations (or semi-free)
 - two nodes connected by edge if can (easily) move between them
- 2. connect \mathbf{q}_{init} and \mathbf{q}_{goal} to roadmap nodes v_{init} and v_{goal} (in same connected component)
- 3. find a path in the roadmap between v_{init} and v_{qoal}
 - directly gives a path in \mathcal{C}_{free}

Roadmap Methods

• Properties of a roadmap:

- Accessibility: there exists a collision-free path from the start to the road map
- Departability: there exists a collision-free path from the roadmap to the goal.
- Connectivity: there exists a collisionfree path from the start to the goal (on the roadmap).

Examples of Roadmaps

- Visibility Graph
- Generalized Voronoi Graph (GVG)

Roadmap: Visibility Graph

Visibility Graph of C-Space

A visibility graph of C-space for a given \mathcal{CB} is an undirected graph G where

- nodes in G correspond to vertices of \mathcal{CB}
- \bullet nodes connected by edge in G if
 - they are connected by an edge in \mathcal{CB} , or
 - the straight line segment connecting them lies entirely in \mathcal{C}_{free}
- (could add \mathbf{q}_{init} and \mathbf{q}_{goal} as roadmap nodes)

The Visibility Graph in Action (Part 1)

• First, draw lines of sight from the start and goal to all "visible" vertices and corners of the world.

The Visibility Graph in Action (Part 2)

• Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph in Action (Part 3)

• Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph in Action (Part 4)

• Second, draw lines of sight from every vertex of every obstacle like before. Remember lines along edges are also lines of sight.

The Visibility Graph (Done)

• Repeat until you're done.

Reduced Visibility Graphs

- Idea: we don't really need all the edges in the visibility graph (even if we want shortest paths)
- Definition: Let L be the line passing through an edge (x,y) in the visibility graph G. The segment (x,y) is a tangent segment iff L is tangent to CB at both x and y.

Reduced Visibility Graphs

Visibility Graph

Reduced Visibility Graph

MAP-BASED APPROACHES: THE RETRACTION APPROACH

Retraction Example: Generalized Voronoi Diagrams

 A GVG is formed by paths equidistant from the two closest objects

This generates a very safe roadmap which avoids obstacles as much as possible

Retraction Example: Generalized Voronoi Diagrams

Example: Voronoi Diagram for point sets (original)

- \bullet Voronoi diagram of point set X consists of straight line segments
- constructed by
 - computing lines bisecting each pair of points and their intersections
 - computing intersections of these lines
 - keeping segments with more than one nearest neighbor

Generalized Voronoi Diagrams

When $C = \mathbb{R}^2$ and polygonal CB, $Vor(C_{free})$ consists of a finite collection of straight line segments and parabolic curve segments (called **arcs**)

- straight arcs are defined by two vertices or two edges of \mathcal{CB} , i.e., the set of points equally close to two points (or two line segments) is a line
- parabolic arcs are defined by one vertex and one edge of \mathcal{CB} , i.e., the set of points equally close to a point and a line is a parabola

Generalized Voronoi Diagrams

To use $Vor(\mathcal{C}_{free})$ as our roadmap R, we need to define the retraction

$$\rho: \mathcal{C}_{free} \to Vor(\mathcal{C}_{free})$$

Case 1:
$$\mathbf{q} \in Vor(\mathcal{C}_{free})$$
: $\rho(\mathbf{q}) = \mathbf{q}$

Case 2: $\mathbf{q} \notin Vor(\mathcal{C}_{free})$

- let \mathbf{p} be the closest point of the boundary of \mathcal{C}_{free} to \mathbf{q}
- let L be the ray from \mathbf{p} passing through \mathbf{q} (L follows the steepest ascent of the clearance() function from \mathbf{p})
- define $\rho(\mathbf{q})$ to be the intersection of L with $Vor(\mathcal{C}_{free})$

Generalized Voronoi Diagrams

To find a path:

- 1. compute $Vor(\mathcal{C}_{free})$
- 2. find paths from \mathbf{q}_{init} and \mathbf{q}_{goal} to $\rho(\mathbf{q}_{init})$ and $\rho(\mathbf{q}_{goal})$, respectively
- 3. search $Vor(\mathcal{C}_{free})$ for a set of arcs connecting $\rho(\mathbf{q}_{init})$ and $\rho(\mathbf{q}_{goal})$

MAP-BASED APPROACHES: CELL DECOMPOSITION METHODS

Cell Decomposition Methods

PREPROCESSING:

- represent C_{free} as a collection of *cells* (connected regions of C_{free}) \Longrightarrow planning between configurations in the same cell should be 'easy'
- build *connectivity graph* representing adjacency relations between cells \implies cells adjacent if can move directly between them

QUERY PROCESSING:

- 1. locate cells k_{init} and k_{qoal} containing start and goal configurations
- 2. search the connectivity graph for a 'channel' or sequence of adjacent cells connecting k_{init} and k_{goal}
- 3. find a path that is contained in the channel of cells

Cell Decomposition Methods

Two major variants of methods:

- exact cell decomposition:
 - set of cells exactly covers \mathcal{C}_{free}
 - complicated cells with irregular boundaries (contact constraints)
 - harder to compute
- approximate cell decomposition:
 - set of cells approximately covers C_{free}
 - simpler cells with more regular boundaries
 - easier to compute

Exact Cell Decomposition Method

Idea: decompose C_{free} into a collection K of non-overlapping *cells* such that the union of all the cells *exactly* equals the free C-space, i.e., $C_{free} = \bigcup_{k \in K} k$

Cell Characteristics:

- geometry of cells should be simple so that it is easy to compute a path between any two configurations in a cell
- it should be pretty easy to test the adjacency of two cells, i.e., whether they share a boundary

Exact Cell Decomposition Method

Definitions:

A convex polygonal decomposition \mathcal{K} of \mathcal{C}_{free} is a finite collection of convex polygons, called **cells**, such that the interiors of any two cells do not intersect and the union of all cells is \mathcal{C}_{free} .

Two cells $k, k' \in \mathcal{K}$ are **adjacent** iff $k \cap k'$ is a line segment of non-zero length (i.e., not a single point)

The **connectivity graph** associated with a convex polygonal decomposition \mathcal{K} of \mathcal{C}_{free} is an undirected graph G where

- \bullet nodes in G correspond to cells in K
- \bullet nodes connected by edge in G iff corresponding cells adjacent in K

Path Planning with a Convex Polygonal Decomposition

input: configurations \mathbf{q}_{init} and \mathbf{q}_{goal} , and \mathcal{CB} which is a polygonal region output: a path in \mathcal{C}_{free} connecting \mathbf{q}_{init} and \mathbf{q}_{goal}

- 1. Build \mathcal{K} , the convex polygonal decomposition of \mathcal{CB}
- 2. Construct the connectivity graph G of K
- 3. locate the cells k_{init} and k_{goal} in K containing \mathbf{q}_{init} and \mathbf{q}_{goal}
- 4. find a path in G between the nodes corresponding to k_{init} and k_{goal} corresponds to a sequence of cells forming a **channel** in C_{free}
- 5. find a free path from \mathbf{q}_{init} to \mathbf{q}_{goal} in the channel

Exact Cell Decompositions: Trapezoidal Decomposition

- A way to divide the world into smaller regions
- Assume a polygonal world

Exact Cell Decompositions: Trapezoidal Decomposition

Basic Idea: at every vertex of \mathcal{CB} , extend a vertical line up and down in \mathcal{C}_{free} until it touches a C-obstacle or the boundary of \mathcal{C}_{free}

Applications: Coverage

• By reducing the world to cells, we've essentially abstracted the world to a graph.

• By reducing the world to cells, we've essentially abstracted the world to a graph.

Extensions to the Basic Problem

- movable obstacles
- moving obstacles
- multiple robots
- incomplete knowledge/uncert ainty in geometry, sensing, etc.

(a) B is a moving robot

(b) B is an obstacle moving on a vertical line

(c) B is an object pushed by the robot