# Algoritmos e Estruturas de Dados

Marcelo Lobosco DCC/UFJF

# Fluxo Máximo em Redes

Parte 2 - Aula 03



# Agenda

- Grafos
  - □ Fluxo Máximo em Redes
    - Introdução
    - Algoritmo de Fork-Fulkerson
    - DMKM



- Um dos problemas mais importantes de otimização em grafos
  - Devido à freqüência com que surgem aplicações práticas
- Consiste em colocar uma "rede em equilíbrio" quanto à distribuição dos fluxos que podem ser enviados entre dois pontos da rede
  - □Sujeito às limitações impostas, como capacidade de cada aresta

#### v

#### Modelo Matemático

Maximizar f sujeito à

$$\int_{j=1}^{n} x_{ij} - \sum_{j=1}^{n} x_{ji} = \begin{cases} f, \text{ se } i = s \\ 0, \text{ se } i \neq s, i \neq t \\ -f, \text{ se } i = t \end{cases}$$

$$0 \le X_{ij} \le U_{ij}$$

f = fluxo entre os nós s e t

 $x_{ii}$  = quantidade de fluxo enviada no arco (i,j)

 $u_{ii} = capacidade do arco (i,j)$ 

Equação de conservação de Fluxos => A quantidade de fluxo que chega é igual a que sai



#### Fluxo em Redes



### v

# Corte Separador de G

- Dado o grafo direcionado G = G (N,A), com |N| = n, chamamos de corte separador (X,X) de G o conjunto
  - $\Box X \le N : X = N X \text{ tal que } s \in X, t \notin X$
  - $\square(X,X) = \{(i,j) \in A \mid i \in X, j \in \overline{X}\}$
- A capacidade de um corte separador (X,X) de G é definido como

$$U(X,\overline{X}) = \sum_{(i,j)\in(X,\overline{X})} u_{ij}$$

# Exemplo



|       |           | <del></del>             |        |
|-------|-----------|-------------------------|--------|
| X     | X         | (X,X)                   | u(X,X) |
| S     | 2,3,4,5,t | (s,2), (s,3), (s,4)     | 14     |
| s,4,2 | 3,5,t     | (s,3),(2,t),(4,5),(4,t) | 28     |

#### м

- Lema
  - O fluxo máximo de f será menor ou igual a capacidade de qualquer corte separador (X,X) de G, isto é:
- $u(X,\overline{X}) \ge f$ ,  $\forall (X,\overline{X})$  corte separador de G
- Teorema
  - □Seja (X,X) o corte separador de G que possui a menor capacidade dentre todos os cortes separadores de G, então:

$$U(X,\overline{X}) = f$$



#### w



capacidade = 
$$4 + 8 + 2 + 9 = 23$$

#### v



capacidade = 
$$9 + 5 = 14$$

#### w



capacidade = 
$$9 + 2 + 3 = 14$$

#### w



capacidade = 
$$3 + 2 + 1 + 3 = 9$$

- Passo 1: Iniciar com uma distribuição de fluxo nula, isto é, fazer x<sub>ii</sub> = 0 ∀ (i,j) ∈ A => f = 0
- Passo 2: Tentar aumentar o valor de f efetuando a seguinte seqüência de passos:
  - Construir uma rede transformada G' a partir de G da seguinte forma:
    - Todos os nós de G estão em G'
    - Se  $x_{ij} < u_{ij}$  na atual solução em G, então gerar arco (i,j) em G', com a alteração máxima de fluxos permitida  $\Delta_{ij} = u_{ij} x_{ij}$
    - Se  $x_{ij} > 0$  na atual solução de G, gerar arcos (j,i) em G' com a alteração máxima de fluxos permitida  $\Delta_{ij} = x_{ij}$

#### v

- Observe que se  $0 < x_{ij} < u_{ij}$  então geramos dois arcos para i e j, um no sentido i  $\rightarrow$  j e outro no j  $\rightarrow$  i
- Construindo a rede G' com os respectivos  $\Delta_{ij}$ , verificar se existe um caminho P' em G' entre s e t
  - □Se existe esse caminho P', seja P a cadeia em G' associada a P' de G'

### M

- Análise de cada arco P' e de P
  - □Se um arco (i,j) de P' corresponde a um arco (i,j) de P faça  $X_{ii} \leftarrow X_{ij} + \Delta$
  - $\square$ Se corresponde a um arco (j,i) faça  $X_{ji} \leftarrow X_{ji} \Delta$
  - $\Box \Delta = \min \{ \Delta_{ii} / ij \in P' \}$
- Com isso atualizamos a solução em G, e retornamos ao inicio do passo 2, construindo nova G' até que em G' não exista mais caminho entre s e t

#### м

- Algoritmo para um caminho entre s e t ou para detectar a não existência de 1 caminho
- Iniciação
  - $\square$ pred (j)  $\leftarrow \emptyset \forall j \in \mathbb{N}$
  - $\Box$ L = {S}



Iterações

Enquanto  $L \neq \emptyset$  e t não estiver rotulado faça

Selecionar um nó i  $\in$  L

Examinar (i)

Remover nó i de L

Se t estiver rotulado então use os pred(j) para recuperar o caminho P' de s até t

Senão não existe caminho entre s e t em G'

#### w

# Algoritmo de Ford-Fulkerson

#### Examinar (i)

```
Para todo j não rotulado: x_{ii} < u_{ii}, faça
   Pred (i) = +i
   rotular j = \Delta_i, \Delta_i = \min \{ \Delta_i, u_{ii} - x_{ii} \}
   incluir j em L
Para todo j não rotulado: x_{ii} > 0, faça
   Pred (i) = -i
   rotular j = \Delta_i, \Delta_i = \min \{ \Delta_i, X_{ij} \}
   incluir j em L
```



#### м



#### v





$$L = \{s\}$$

















































+s, 1



$$L = \{s, Z\}$$

### M

+s, 1





- Desenvolvido por Malhottra, Kumar e Maheshwari
  - □ Posteriormente melhorada por Dinic
- Considerado um dos algoritmos mais eficientes para resolver o problema de fluxo máximo em redes
- Idéia é iniciar colocando uma certa quantidade de fluxos da origem s até o destino t
  - Arcos não saturados são analisados, alocando-se mais fluxos para estes
    - Até que nenhum fluxo adicional possa ser alocado nos arcos não saturados
  - Procedimento deve ser cuidadoso e sistemático, para não gerar fluxos que não representam o fluxo máximo real



## Rede Particionada (G<sub>2</sub>)

- Trata-se de uma rede acíclica na qual todos os nós de N são particionados em níveis V<sub>1</sub>, V<sub>2</sub>, ...., V<sub>k</sub>
  - □ Por definição, primeiro nível contém só a origem s do grafo
  - $\square$  Nível  $V_2$  consiste de todos os sucessores imediatos dos nós em  $V_1$
  - □ O nível  $V_{l}$ ,  $2 \le l \le k-1$ , consiste de todos os nós sucessores imediatos do nível  $V_{l-1}$  e que não estejam contidos nos níveis inferiores
  - □ Nível V<sub>k</sub> consiste somente do nó destino t
  - Alguns nós do grafo original podem ser excluídos na transformação deste em um grafo particionado



# Rede Particionada (G<sub>2</sub>)

Exemplo: Determine G<sub>2</sub> de G







## Definições

- Definição: O arco (i,j) é dito arco saturado se  $x_{(i,j)} = u_{(i,j)}$
- Definição: Um caminho P de s a t é dito saturado se existe em P pelo menos um arco saturado
- Definição: Um fluxo fs de um grafo G é dito fluxo de saturação se todo caminho de s até t for um caminho saturado. Obviamente todo fluxo máximo deve ser um fluxo saturado, mas a recíproca nem sempre é verdadeira, isto é, nem sempre um fluxo de saturação é máximo



## Definições

- Definição: Definimos como potencial de um nó V o fluxo adicional máximo que pode ser passado por V. Essa quantidade potencial de V (pot(V)) é o mínimo entre dois valores: a) a quantidade de fluxo que ainda pode chegar em V (input(V)) e b) a quantidade de fluxo que ainda pode sair de V (output(V)). Por definição, dizemos que pot(s) = output(s) e que pot(t) = input(t)
- Definição: O nó r de N<sub>2</sub> de G<sub>2</sub> que possui o menor potencial é dito nó de referência



## Etapas do Algoritmos DMKM

#### Etapa 1:

□Objetivo é determinar o fluxo de saturação de uma rede particionada G₂. Em G₂, determinamos o pot(r), onde r é um nó de referência e acrescentamos a quantidade de fluxo pot(r) nos caminhos de s até t via r no grafo original G

### м

## Etapas do Algoritmos DMKM

#### Etapa 2:

- Objetivo é gerar o fluxo máximo f da rede original. Feito por estágios
  - Inicialmente partimos com uma solução inicial s<sub>1</sub> idêntica a de f em G
  - A partir dessa solução inicial geramos a rede particionada G<sub>2</sub><sup>1</sup>. Determinamos o fluxo de saturação fs<sub>1</sub> de G<sub>2</sub><sup>1</sup> e a quantidade pot(r) é acrescida nos caminhos de s a t via r em S<sub>1</sub>, gerando uma solução S<sub>2</sub> em G com fluxo parcial f = fs<sub>1</sub> e G'
  - A partir de G', geramos uma nova rede  $G_2$ , aplicamos a fase 1 em  $G_2^2$ , e assim sucessivamente até que dada uma solução  $S_k$  em G com fluxo  $f = \sum_{j=1}^k f^{s_j}$ , não seja mais possível construir uma  $G_2^{k+1}$ . O fluxo atual f de  $S_k$  seria então o fluxo máximo de s a t em G



Determinar o fluxo máximo da rede abaixo







#### м







Rede particionada r = 1 f = 20

#### w





- Apagar por saturação
  - □Arcos s1 e 3t: ambos valem zero
  - □Nó 1 e arcos 14 e 13: ninguém passa a chegar em 1
  - □Nó 4 e arco 4t: ninguém passa a chegar em 4
  - □Nó 3: ninguém sai de 3
  - □Nó 2: ninguém sai de 2
  - □Nós s e t: ninguém chega ou sai de t

### v

- Em G₂ colocamos um arco (i,j) se:
  - □na rede G existe (i,j) com  $x_{ii} < u_{ii}$  ou
  - $\Box$ se existe arco (j,i) em G com  $x_{ii} > 0$
- No primeiro caso adicionamos fluxo em (i,j), enquanto no segundo reduzimos o fluxo de (j,i), isto é, adicionamos o fluxo de (i,j)





#### м







$$r = 4$$
$$f = 10$$





$$r = 1$$
$$f = 10$$





#### v







#### v







$$r = 3$$
$$f = 20$$





#### м







 $G_2^4$  ????

#### w

- Não existe  $G_2^4$  (não há como chegar a t)
  - □Logo o fluxo máximo é 60





### Próxima Aula...

Algoritmos de ordenação