5.100 cumulative_with_level_of_priority

DESCRIPTION LINKS GRAPH

Origin

H. Simonis

Constraint

cumulative_with_level_of_priority(TASKS, PRIORITIES)

Arguments

```
TASKS : collection ( priority-int, origin-dvar, duration-dvar, end-dvar, height-dvar )

PRIORITIES : collection(id-int, capacity-int)
```

Restrictions

```
 \begin{array}{l} \textbf{required}(\texttt{TASKS}, [\texttt{priority}, \texttt{height}]) \\ \textbf{require\_at\_least}(2, \texttt{TASKS}, [\texttt{origin}, \texttt{duration}, \texttt{end}]) \\ \texttt{TASKS.priority} \geq 1 \\ \texttt{TASKS.priority} \leq |\texttt{PRIORITIES}| \\ \texttt{TASKS.duration} \geq 0 \\ \texttt{TASKS.origin} \leq \texttt{TASKS.end} \\ \texttt{TASKS.height} \geq 0 \\ \texttt{required}(\texttt{PRIORITIES}, [\texttt{id}, \texttt{capacity}]) \\ \texttt{PRIORITIES.id} \geq 1 \\ \texttt{PRIORITIES.id} \leq |\texttt{PRIORITIES}| \\ \texttt{increasing\_seq}(\texttt{PRIORITIES}, \texttt{id}) \\ \texttt{increasing\_seq}(\texttt{PRIORITIES}, \texttt{capacity}) \\ \end{array}
```

Purpose

Consider a set \mathcal{T} of tasks described by the TASKS collection where each task has a given priority chosen in the range [1,PRIORITIES]. Let \mathcal{T}_i denote the subset of tasks of \mathcal{T} that all have a priority less than or equal to i. For each set \mathcal{T}_i , the cumulative_with_level_of_priority constraint forces that at each point in time, the cumulated height of the set of tasks that overlap that point, does not exceed a given limit. A task overlaps a point i if and only if (1) its origin is less than or equal to i, and (2) its end is strictly greater than i. Finally, it also imposes for each task of \mathcal{T} the constraint origin + duration = end.

```
Example
```

```
\left(\begin{array}{c} \text{priority}-1 & \text{origin}-1 & \text{duration}-2 & \text{end}-3 & \text{height}-1,\\ \text{priority}-1 & \text{origin}-2 & \text{duration}-3 & \text{end}-5 & \text{height}-1,\\ \text{priority}-1 & \text{origin}-5 & \text{duration}-2 & \text{end}-7 & \text{height}-2,\\ \text{priority}-2 & \text{origin}-3 & \text{duration}-2 & \text{end}-5 & \text{height}-2,\\ \text{priority}-2 & \text{origin}-6 & \text{duration}-3 & \text{end}-9 & \text{height}-1\\ \text{$\langle$id}-1$ capacity}-2, \text{$id}-2$ capacity}-3\right) \right)
```

Figure 5.240 shows the cumulated profile associated with both levels of priority. To each task of the cumulative_with_level_of_priority constraint corresponds a set of rectangles containing the same number (i.e., the position of the task within the TASKS collection): the sum of the lengths of the rectangles corresponds to the duration of the

20040530 959

task, while the height of the rectangles (i.e., all the rectangles associated with a task have the same height) corresponds to the resource consumption of the task. Tasks that have a priority of 1 are coloured in pink, while tasks that have a priority of 2 are coloured in blue. The cumulative_with_level_of_priority constraint holds since:

- At each point in time the cumulated resource consumption profile of the tasks of priority 1 does not exceed the upper capacity 2 enforced by the first item of the PRIORITIES collection.
- At each point in time the cumulated resource consumption profile of the tasks of priority 1 and 2 does not exceed the upper capacity 3 enforced by the second item of the PRIORITIES collection.

Figure 5.240: Resource consumption profiles according to both levels of priority for the tasks of the **Example** slot

Typical

```
\begin{split} |\mathsf{TASKS}| &> 1 \\ \mathbf{range}(\mathsf{TASKS.priority}) &> 1 \\ \mathbf{range}(\mathsf{TASKS.origin}) &> 1 \\ \mathbf{range}(\mathsf{TASKS.duration}) &> 1 \\ \mathbf{range}(\mathsf{TASKS.duration}) &> 1 \\ \mathbf{range}(\mathsf{TASKS.end}) &> 1 \\ \mathbf{range}(\mathsf{TASKS.height}) &> 1 \\ \mathbf{TASKS.duration} &> 0 \\ \mathbf{TASKS.height} &> 0 \\ |\mathsf{PRIORITIES}| &> 1 \\ \mathsf{PRIORITIES.capacity} &< 0 \\ |\mathsf{PRIORITIES.capacity} &< \mathbf{sum}(\mathsf{TASKS.height}) \\ |\mathsf{TASKS}| &> |\mathsf{PRIORITIES}| \end{aligned}
```

Symmetries

- Items of TASKS are permutable.
- TASKS.priority can be increased to any value \leq |PRIORITIES|.
- TASKS.height can be decreased to any value > 0.
- One and the same constant can be added to the origin and end attributes of all items of TASKS.
- PRIORITIES.capacity can be increased.

Arg. properties

Contractible wrt. TASKS.

Usage

The cumulative_with_level_of_priority constraint was suggested by problems from the telecommunication area where one has to ensure different levels of quality of service. For this purpose the capacity of a transmission link is split so that a given percentage is reserved to each level. In addition we have that, if the capacities allocated to levels $1, 2, \ldots, i$ is not completely used, then level i+1 can use the corresponding spare capacity.

Remark

The cumulative_with_level_of_priority constraint can be modelled by a conjunction of cumulative constraints. As shown by the next example, the consistency for all variables of the cumulative constraints does not implies consistency for the corresponding cumulative_with_level_of_priority constraint. The following cumulative_with_level_of_priority constraint

```
\left(\begin{array}{cccc} \left\langle \begin{array}{cccc} \text{priority} - 1 & \text{origin} - o_1 & \text{duration} - 2 & \text{height} - 2, \\ \text{priority} - 1 & \text{origin} - o_2 & \text{duration} - 2 & \text{height} - 1, \\ \text{priority} - 2 & \text{origin} - o_3 & \text{duration} - 1 & \text{height} - 3 \\ \left\langle \begin{array}{cccc} \text{id} - 1 & \text{capacity} - 2, \\ \text{id} - 2 & \text{capacity} - 3 \end{array} \right\rangle \end{array}\right),
```

where the domains of o_1 , o_2 and o_3 are respectively equal to $\{1,2,3\}$, $\{1,2,3\}$ and $\{1,2,3,4\}$ corresponds to the following conjunction of cumulative constraints

```
\begin{array}{c} \operatorname{cumulative} \left( \begin{array}{cccc} \left\langle & \operatorname{origin} - o_1 & \operatorname{duration} - 2 & \operatorname{height} - 2, \\ \operatorname{origin} - o_2 & \operatorname{duration} - 2 & \operatorname{height} - 1 \end{array} \right), 2 \end{array} \right) \\ \\ \operatorname{cumulative} \left( \begin{array}{ccccc} \left\langle & \operatorname{origin} - o_1 & \operatorname{duration} - 2 & \operatorname{height} - 2, \\ \operatorname{origin} - o_2 & \operatorname{duration} - 2 & \operatorname{height} - 1, \\ \operatorname{origin} - o_3 & \operatorname{duration} - 1 & \operatorname{height} - 3 \end{array} \right), 3 \end{array} \right) \\ \end{array}
```

20040530 961

Even if the cumulative constraint could achieve arc-consistency, the previous conjunction of cumulative constraints would not detect the fact that there is no solution.

See also common keyword: cumulative (resource constraint).

used in graph description: sum_ctr.

Keywords characteristic of a constraint: derived collection.

constraint type: scheduling constraint, resource constraint, temporal constraint.

modelling: zero-duration task.

Derived Collection

Arc input(s)

TASKS

Arc generator

 $SELF \mapsto collection(tasks)$

Arc arity

1

Arc constraint(s)

 ${\tt tasks.origin} + {\tt tasks.duration} = {\tt tasks.end}$

Graph property(ies)

NARC= |TASKS|

For all items of PRIORITIES:

Arc input(s)

TIME_POINTS TASKS

Arc generator

PRODUCT → collection(time_points, tasks)

Arc arity

2

Arc constraint(s)

- $\bullet \ {\tt time_points.idp} = {\tt PRIORITIES.id}$
- $\bullet \ {\tt time_points.idp} \ge {\tt tasks.priority}$
- $\bullet \ {\tt time_points.duration} > 0 \\$
- \bullet tasks.origin \leq time_points.point
- time_points.point < tasks.end

Graph class

- ACYCLIC
- BIPARTITE
- NO_LOOP

Sets

Constraint(s) on sets

sum_ctr(variables, <, PRIORITIES.capacity)</pre>

Graph model

Within the context of the second graph constraint, part (A) of Figure 5.241 shows the initial graphs associated with priorities 1 and 2 of the **Example** slot. Part (B) of Figure 5.241 shows the corresponding final graphs associated with priorities 1 and 2. On the one hand, each source vertex of the final graph can be interpreted as a time point p. On the other hand the successors of a source vertex correspond to those tasks that both overlap that time point p and have a priority less than or equal to a given level. The cumulative_with_level_of_priority constraint holds since for each successor set $\mathcal S$ of the final graph the sum of the height of the tasks in $\mathcal S$ is less than or equal to the capacity

20040530 963

associated with a given level of priority.

(A)

(B)

Figure 5.241: Initial and final graph of the $cumulative_with_level_of_priority$ constraint

Signature

Since TASKS is the maximum number of vertices of the final graph of the first graph constraint we can rewrite NARC = |TASKS| to $NARC \ge |TASKS|$. This leads to simplify \overline{NARC} to \overline{NARC} .