Variable Compleja I

Tema 1: Números complejos

- 1 El cuerpo de los números complejos
- 2 Conjugación y módulo
- Argumentos

## El cuerpo de los números complejos

## El cuerpo C

$$\mathbb{R}^2 = \{(x, y) : x, y \in \mathbb{R}\}$$

- Suma:  $(x,y) + (u,v) = (x+u,y+v) \quad \forall x,y,u,v \in \mathbb{R}$
- Producto por escalares:  $\lambda(x,y) = (\lambda x, \lambda y) \quad \forall \lambda, x, y \in \mathbb{R}$
- Producto:  $(x,y)(u,v) = (xu yv, xv + yu) \quad \forall x,y,u,v \in \mathbb{R}$
- $\bullet \ \mathbb{R}^2$  con la operación suma es un grupo abeliano
- El producto es asociativo, conmutativo y distributivo respecto a la suma
- $(x,y)(1,0) = (x,y) \quad \forall (x,y) \in \mathbb{R}^2$

• 
$$(x,y)\left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right) = (1,0) \quad \forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$$

Por tanto, con las dos operaciones tenemos un cuerpo conmutativo:

El cuerpo de los números complejos, que se denota por  $\mathbb C$ 

Como conjuntos: 
$$\mathbb{C} = \mathbb{R}^2$$

## Partes real e imaginaria de un número complejo

## Inclusión de $\mathbb R$ en $\mathbb C$

•  $x \mapsto (x,0)$ , de  $\mathbb{R}$  en  $\mathbb{C}$ , monomorfismo de cuerpos.

Por tanto,  $\mathbb{R} \cong \{(x,0) : x \in \mathbb{R}\} \subset \mathbb{C}$ 

Identificamos  $\mathbb{R} \ni x \equiv (x,0) \in \mathbb{C}$  con lo que  $\mathbb{R} \subset \mathbb{C}$ 

• El producto por escalares en  $\mathbb{R}^2$  es caso particular del producto en  $\mathbb{C}$ :

$$\lambda(x,y) = (\lambda x, \lambda y) = (\lambda,0)(x,y)$$

#### Partes real e imaginaria de un número complejo

Base usual de  $\mathbb{R}^2$ :  $(1,0) \equiv 1$  y  $(0,1) \stackrel{\text{def}}{=} i$ 

$$(x,y) = x(1,0) + y(0,1) = x + yi$$

Cada  $z \in \mathbb{C}$  se escribe de manera única como z = x + iy con  $x, y \in \mathbb{R}$ 

- x es la parte real de z: x = Re z
- y es la parte imaginaria de z: y = Imz

# Operaciones con parte real e imaginaria

$$z, w \in \mathbb{C}$$
,  $z = x + iy$ ,  $w = u + iv$ ,  $x, y, u, v \in \mathbb{R}$ 

#### Suma

$$z + w = (x + iy) + (u + iv) = (x + u) + i(y + v)$$

Re(z+w) = Rez + Rew

 $\operatorname{Im}(z+w) = \operatorname{Im} z + \operatorname{Im} w$ 

#### Producto

Basta tener en cuenta que  $i^2 = (0,1)(0,1) = (-1,0) = -1$ 

$$zw = (x + iy)(u + iv) = xu + xiv + iyu + i^2yv = (xu - yv) + i(xv + yu)$$

Re(zw) = RezRew - ImzImw

Im(zw) = Rez Im w + Im z Re w

## Conjugación

## Complejo conjugado

$$\overline{z} = \operatorname{Re} z - i \operatorname{Im} z \ \forall z \in \mathbb{C}$$

$$\operatorname{Re} z = \operatorname{Re} \overline{z} = \frac{z + \overline{z}}{2}$$
,  $\operatorname{Im} z = -\operatorname{Im} \overline{z} = \frac{z - \overline{z}}{2i}$ 

## Propiedades de la conjugación

- $\bullet \ \overline{z+w} = \overline{z} + \overline{w}$
- $\overline{zw} = \overline{z} \overline{w}$
- $\bullet$   $\overline{\overline{z}} = z$

Automorfismo involutivo del cuerpo  $\mathbb C$ 

# Módulo de un número complejo

## Módulo de un número complejo

$$|z| = (z\overline{z})^{1/2} = ((\operatorname{Re} z)^2 + (\operatorname{Im} z)^2)^{1/2} \quad \forall z \in \mathbb{C}$$

## Propiedades del módulo

- $\bullet |z| \in \mathbb{R}_0^+ \quad \forall z \in \mathbb{C}$
- $|z| = 0 \iff z = 0$
- $|z| |w| \le |z \pm w| \le |z| + |w| \quad \forall z, w \in \mathbb{C}$
- $\max \{|\operatorname{Re} z|, |\operatorname{Im} z|\} \leq |z| \leq |\operatorname{Re} z| + |\operatorname{Im} z| \quad \forall z \in \mathbb{C}$
- $|zw| = |z||w| \quad \forall z, w \in \mathbb{C}$

## Argumentos

## Argumentos de un número complejo no nulo

$$z \in \mathbb{C}^* \stackrel{\mathrm{def}}{=} \mathbb{C} \setminus \{0\}$$

$$\operatorname{Arg} z = \left\{ \theta \in \mathbb{R} : z = |z| \left( \cos \theta + i \sin \theta \right) \right\}$$

Equivalentemente, para  $z \in \mathbb{C}^*$  y  $\theta \in \mathbb{R}$  se tiene:

$$\theta \in \operatorname{Arg} z \iff \begin{cases} \cos \theta = \operatorname{Re} z/|z| \\ \sin \theta = \operatorname{Im} z/|z| \end{cases}$$

#### Relación entre ellos

$$z \in \mathbb{C}^*$$
,  $\theta_1, \theta_2 \in \operatorname{Arg} z \implies \exists k \in \mathbb{Z} : \theta_2 = \theta_1 + 2k\pi$ 

Por tanto:

$$\theta \in \operatorname{Arg} z \implies \operatorname{Arg} z = \{\theta + 2k\pi : k \in \mathbb{Z}\}\$$

## El argumento principal

## Argumento principal

Para cada  $z \in \mathbb{C}^*$ , existe un único argumento de z que pertenece al intervalo semiabierto  $]-\pi,\pi]$ .

Se le llama argumento principal de z y se denota por arg z.

De hecho se tiene:

$$\arg z = \operatorname{sgn}\left(\operatorname{Im} z\right) \operatorname{arc} \cos\left(\frac{\operatorname{Re} z}{|z|}\right) \quad \forall z \in \mathbb{C}^*$$

entendiendo que sgn(0) = 1.

A partir del argumento principal obtenemos los demás:

$$\operatorname{Arg} z = \left\{ \operatorname{arg} z + 2k\pi : k \in \mathbb{Z} \right\}$$

## Argumento de un producto

#### Planteamiento algebraico:

 $2\pi\mathbb{Z}=\{2k\pi:k\in\mathbb{Z}\}$  es un subgrupo aditivo de  $\mathbb{R}$  Considerando el grupo cociente  $\mathbb{R}/2\pi\mathbb{Z}$ , es claro que

$$\operatorname{Arg} z \in \mathbb{R}/2\pi\mathbb{Z} \quad \forall z \in \mathbb{C}^*$$

luego tenemos una aplicación (sobreyectiva)  $\mbox{ Arg}:\mathbb{C}^*\to\mathbb{R}/2\pi\mathbb{Z}$ 

## Propiedad clave del conjunto de todos los argumentos

Para cualesquiera  $z,w\in\mathbb{C}^*$  se tiene:

$$\operatorname{Arg}(zw) = \operatorname{Arg} z + \operatorname{Arg} w = \left\{ \theta + \phi : \theta \in \operatorname{Arg} z , \phi \in \operatorname{Arg} w \right\}$$

Así pues,  $\text{Arg}:\mathbb{C}^*\to\mathbb{R}/2\pi\mathbb{Z}\,$ es un epimorfismo de grupos

Restringido a  $\mathbb{T} \stackrel{\text{def}}{=} \{z \in \mathbb{C} : |z| = 1\}$  es un isomorfismo:  $\mathbb{T} \cong \mathbb{R}/2\pi\mathbb{Z}$ 

## Argumento de un producto (cont.)

#### Consecuencias

- $\operatorname{Arg}(z/w) = \operatorname{Arg} z \operatorname{Arg} w \ \forall z, w \in \mathbb{C}^*$
- $\operatorname{Arg}(1/z) = \operatorname{Arg} \overline{z} = -\operatorname{Arg} z \ \forall z \in \mathbb{C}^*$

## Inconvenientes de elegir un argumento

- Para z = w = -1 se tiene arg  $z + \arg w = 2\pi \neq 0 = \arg(zw)$
- No existe una función  $\varphi: \mathbb{C}^* \to \mathbb{R}$  que verifique  $\varphi(z) \in \operatorname{Arg} z \ \forall z \in \mathbb{C}^*$  y  $\varphi(zw) = \varphi(z) + \varphi(w) \ \forall z, w \in \mathbb{C}^*$

## Argumento de un producto (cont.)

## Interpretación geométrica del producto

• Dado  $u \in \mathbb{T}$ , la aplicación  $z \to uz$  es el giro de ángulo  $\theta = \arg u$ :

$$|uz| = |z|$$
,  $\arg u + \arg z \in \operatorname{Arg}(uz) \quad \forall z \in \mathbb{C}^*$ 

• Dado  $\rho \in \mathbb{R}^+$  la aplicación  $z \to \rho z$  es la homotecia de razón  $\rho$ :

$$|\rho z| = \rho |z|$$
,  $\arg (\rho z) = \arg z \quad \forall z \in \mathbb{C}^*$ 

• Por tanto, dado  $w \in \mathbb{C}^*$ , la aplicación  $z \to wz$  es composición de la homotecia de razón  $\rho = |w|$  con el giro de ángulo  $\theta = \arg w$ .

Variable Compleja I Tema 2: Topología del plano

- Topología del plano
  - $\bullet$ Distancia y topología de  $\mathbb C$
  - Sucesiones de números complejos
  - Acotación, compacidad y divergencia
  - Cálculo de límites

- 2 Funciones complejas de variable compleja
  - $\bullet$  Operaciones con funciones complejas
  - Continuidad en un punto
  - Continuidad global
  - Límite funcional

# Distancia y topología de $\mathbb{C}$

#### Distancia de $\mathbb{C}$

$$d(z,w) = |w-z| \quad \forall z, w \in \mathbb{C}$$
  
 $\mathbb{R} \subset \mathbb{C}$  subespacio métrico

#### Topología de C

- $\bullet$ Topología de  $\mathbb{C}$ : la generada por su distancia. Induce en  $\mathbb{R}$  la usual
- Discos abiertos y cerrados:  $a \in \mathbb{C}, r \in \mathbb{R}^+$ ,

$$D(a,r) = \{ z \in \mathbb{C} : |z-a| < r \} \qquad \overline{D}(a,r) = \{ z \in \mathbb{C} : |z-a| \leqslant r \}$$

- Los abiertos de C son las uniones (arbitrarias) de discos abiertos
- Interior de un conjunto:  $A \subset \mathbb{C}, z \in \mathbb{C}$

$$z \in A^{\circ} \iff \exists r \in \mathbb{R}^+ : D(z,r) \subset A$$

• Otra descripción de los abiertos: Para  $\Omega \subset \mathbb{C}$  se tiene:

$$\Omega$$
 abierto  $\iff \Omega = \Omega^{\circ} \iff \forall z \in \Omega \ \exists r \in \mathbb{R}^{+} : D(z,r) \subset \Omega$ 

# Sucesiones convergentes y conjuntos cerrados

## Sucesiones convergentes

• Si  $z_n \in \mathbb{C} \ \forall n \in \mathbb{N} \ \text{y} \ z \in \mathbb{C}$ , se tiene:

$$\{z_n\} \to z \iff [\forall \varepsilon > 0 \exists m \in \mathbb{N} : n \geqslant m \Rightarrow |z_n - z| < \varepsilon]$$
  
 $\iff \{|z_n - z|\} \to 0$ 

• En particular:  $\{z_n\} \to 0 \iff \{|z_n|\} \to 0$ 

#### Conjuntos cerrados

• Cierre de un conjunto:  $A \subset \mathbb{C}, z \in \mathbb{C}$ 

$$z \in \overline{A} \iff \exists \{z_n\} : z_n \in A \ \forall n \in \mathbb{N} , \ \{z_n\} \to z$$

• Conjuntos cerrados:  $A \subset \mathbb{C}$ 

$$A \text{ cerrado} \iff [z_n \in A \ \forall n \in \mathbb{N}, \{z_n\} \to z \in \mathbb{C} \Rightarrow z \in A]$$

## Complitud

## Sucesiones convergentes y sucesiones de Cauchy

$$\max \left\{ |\operatorname{Re} w - \operatorname{Re} z|, |\operatorname{Im} w - \operatorname{Im} z| \right\} \leq |w - z| \\ |w - z| \leq |\operatorname{Re} w - \operatorname{Re} z| + |\operatorname{Im} w - \operatorname{Im} z| \right\} \quad \forall w, z \in \mathbb{C}$$
$$z_n \in \mathbb{C} \quad \forall n \in \mathbb{N}, z \in \mathbb{C}$$

$$\bullet \ \{z_n\} \to z \iff \begin{cases} \{\operatorname{Re} z_n\} \to \operatorname{Re} z \\ \{\operatorname{Im} z_n\} \to \operatorname{Im} z \end{cases}$$

•  $\{z_n\}$  sucesión de Cauchy  $\iff$   $\{\operatorname{Re} z_n\}$  y  $\{\operatorname{Im} z_n\}$  sucesiones de Cauchy

#### Teorema de complitud

 $\mathbb C$  es un espacio métrico completo

#### Acotación

## Conjuntos acotados y sucesiones acotadas

• Conjuntos acotados:  $A \subset \mathbb{C}$ ,

$$A \ \operatorname{acotado} \iff \exists M \in \mathbb{R} : |z| \leq M \ \forall z \in A$$

• Sucesiones acotadas:  $z_n \in \mathbb{C} \ \forall n \in \mathbb{N}$ ,

$$\{z_n\}$$
 acotada  $\iff$   $\exists M \in \mathbb{R} : |z_n| \leqslant M \ \forall n \in \mathbb{N}$ 

- Toda sucesión convergente está acotada
- Una sucesión de números complejos  $\{z_n\}$  está acotada si, y sólo si, las sucesiones de números reales  $\{\operatorname{Re} z_n\}$  y  $\{\operatorname{Im} z_n\}$  está acotadas.

# Compacidad

## Teorema de Bolzano-Weierstrass

Toda sucesión acotada de números complejos admite una sucesión parcial convergente

## Caracterización de la compacidad

Para un conjunto  $K \subset \mathbb{C}$ , son equivalentes:

- (a) K es compacto
- (b) Toda sucesión de puntos de K admite una sucesión parcial que converge e un punto de K
- (c) K es cerrado y acotado

En particular  $\mathbb C$  es un espacio topológico localmente compacto

## Divergencia

## Sucesiones divergentes

$$z_n \in \mathbb{C} \quad \forall n \in \mathbb{N}$$

$$\{z_n\} \to \infty \quad \stackrel{\text{def}}{\Longleftrightarrow} \quad \{|z_n|\} \to +\infty$$

#### Caracterización

Una sucesión de números complejos es divergente si, y sólo si, no admite ninguna sucesión parcial convergente

## Ejemplo

$$z_n = n \left( \cos \frac{n\pi}{2} + i \operatorname{sen} \frac{n\pi}{2} \right) \quad \forall n \in \mathbb{N}$$

- $\{z_n\} \to \infty$
- Las sucesiones  $\{\operatorname{Re} z_n\}$  y  $\{\operatorname{Im} z_n\}$  no son divergentes

#### Cálculo de límites

### Cálculo de límites

$$z_n, w_n \in \mathbb{C} \quad \forall n \in \mathbb{N}, \ z, w \in \mathbb{C}$$

$$\bullet \ \{z_n\} \to z \implies \ \{|z_n|\} \to |z|$$

• 
$$\{z_n\} \to z$$
,  $\{w_n\} \to w \implies \{z_n + w_n\} \to z + w$ 

$$\bullet \ \{z_n\} \to \infty \ , \ \{w_n\} \ \text{acotada} \ \implies \ \{z_n+w_n\} \to \infty$$

$$\bullet \ \{z_n\} \to 0 \ , \ \{w_n\} \ {\rm acotada} \ \implies \ \{z_nw_n\} \to 0$$

• 
$$\{z_n\} \to z$$
,  $\{w_n\} \to w \implies \{z_n w_n\} \to zw$ 

• 
$$\{z_n\} \to z \neq 0$$
,  $\{w_n\} \to \infty \implies \{z_n w_n\} \to \infty$ 

$$\bullet \ \{z_n\} \to \infty \ , \ \{w_n\} \to \infty \ \Longrightarrow \ \{z_n w_n\} \to \infty$$

• 
$$w_n \neq 0 \quad \forall n \in \mathbb{N} , \{w_n\} \rightarrow w \neq 0 \implies \{1/w_n\} \rightarrow 1/w$$

• Si 
$$w_n \neq 0 \quad \forall n \in \mathbb{N}$$
, entonces:  $\{w_n\} \to 0 \iff \{1/w_n\} \to \infty$ 

## Operaciones con funciones complejas de variable compleja

Si  $\emptyset \neq A \subset \mathbb{C}$ ,  $\mathcal{F}(A)$  es el conjunto de todas las funciones de A en  $\mathbb{C}$ 

#### Estructura algebraica

Para  $f, g \in \mathcal{F}(A)$  y  $\lambda \in \mathbb{C}$ , definimos:

- Suma:  $(f+g)(z) = f(z) + g(z) \quad \forall z \in A$
- Producto:  $(fg)(z) = f(z)g(z) \quad \forall z \in A$ Con estas operaciones,  $\mathcal{F}(A)$  es un anillo conmutativo con unidad
- Si  $g(A) \subset \mathbb{C}^*$  tenemos la función cociente:

$$\left(\frac{f}{g}\right)(z) = \frac{f(z)}{g(z)} \quad \forall z \in A$$

• Producto por escalares:  $(\lambda f)(z) = \lambda f(z) \quad \forall z \in A$ Con la suma y este producto por escalares,  $\mathcal{F}(A)$  es un espacio vectorial complejo

## Otras operaciones con funciones

## Composición

$$f \in \mathcal{F}(A), f(A) \subset B \subset \mathbb{C}, g \in \mathcal{F}(B)$$
:

$$(g \circ f)(z) = g(f(z)) \quad \forall z \in A$$

## Partes real e imaginaria, conjugada y módulo

Para  $f \in \mathcal{F}(A)$  podemos definir:

• 
$$(\operatorname{Re} f)(z) = \operatorname{Re} f(z)$$
,  $(\operatorname{Im} f)(z) = \operatorname{Im} f(z)$   $\forall z \in A$ 

$$\bullet \ \overline{f}(z) = \overline{f(z)} \ \forall z \in A$$

$$\bullet |f|(z) = |f(z)| \quad \forall z \in A$$

• 
$$f = \operatorname{Re} f + i \operatorname{Im} f$$
,  $\overline{f} = \operatorname{Re} f - i \operatorname{Im} f$ 

• Re 
$$f = \frac{f + \overline{f}}{2}$$
, Im  $f = \frac{f - \overline{f}}{2i}$ 

• 
$$|f| = |\overline{f}| = (f\overline{f})^{1/2} = ((\operatorname{Re} f)^2 + (\operatorname{Im} f))^{1/2}$$

# Continuidad en un punto (I)

#### Definición y caracterización

 $\emptyset \neq A \subset \mathbb{C}$ ,  $f \in \mathcal{F}(A)$ ,  $z \in A$ . f es continua en z cuando:

- $\forall \varepsilon > 0 \ \exists \delta > 0 : w \in A, |w z| < \delta \implies |f(w) f(z)| < \varepsilon$
- $z_n \in A \ \forall n \in \mathbb{N}, \{z_n\} \to z \Rightarrow \{f(z_n)\} \to f(z)$

#### Carácter local

$$z \in B \subset A$$
,  $f \in \mathcal{F}(A)$ :

- Si f es continua en z, entonces  $f|_{B}$  es continua en z
- Si  $f|_B$  es continua en z y existe  $\delta>0$  tal que  $D(z,\delta)\cap A\subset B$ , entonces f es continua en z

## Operaciones algebraicas

 $f,g \in \mathcal{F}(A)$  continuas en  $z \in A$ . Entonces:

- f + g es continua en z
- fg es continua en z
- Si  $g(A) \subset \mathbb{C}^*$ , entonces f/g es continua en z

# Continuidad en un punto (II)

## Composición

$$f\in\mathcal{F}(A)$$
 ,  $f(A)\subset B\subset\mathbb{C}$  ,  $g\in\mathcal{F}(B)$  ,  $z\in A$  
$$\left.\begin{array}{c} f \text{ continua en } z\\ g \text{ continua en } f(z) \end{array}\right\} \quad\Longrightarrow\quad g\circ f \text{ continua en } z$$

#### Consecuencias

$$f \in \mathcal{F}(A)$$
,  $z \in A$ 

- f continua en  $z \iff \overline{f}$  continua en z
- $\bullet$  f continua en  $z \iff \operatorname{Re} f$  ,  $\operatorname{Im} f$  continuas en z
- f continua en  $z \implies |f|$  continua en z. El recíproco es falso

# Continuidad global (I)

#### Definición y caracterización

$$\emptyset \neq B \subset A \subset \mathbb{C} \ , \ f \in \mathcal{F}(A)$$

- f continua en  $B \iff f$  continua en  $z, \forall z \in B$
- $\bullet$  f continua  $\iff$  f continua en A
- $C(A) = \{ f \in \mathcal{F}(A) : f \text{ continua} \}$
- $\bullet$  Si  $f\in\mathcal{F}(A)$  y  $\mathcal{T}$  es la topología de  $\mathbb{C},$  entonces:

$$f \in \mathcal{C}(A) \iff \forall V \in \mathcal{T} \ \exists U \in \mathcal{T} : f^{-1}(V) = U \cap A$$

#### Carácter local

Supongamos  $A=\bigcup_{\lambda\in\Lambda}A_\lambda$  donde  $\Lambda$  es un conjunto y  $A_\lambda$  es subconjunto

abierto (relativo) de A, para todo  $\lambda \in \Lambda.$  Entonces, para  $f \in \mathcal{F}(A)$  se tiene:

$$f \in \mathcal{C}(A) \iff f|_{A_{\lambda}} \in \mathcal{C}(A_{\lambda}) \ \forall \lambda \in \Lambda$$

# Continuidad global (II)

## Operaciones con funciones continuas

- C(A) es subanillo y subespacio vectorial de  $\mathcal{F}(A)$ 
  - $f,g \in \mathcal{C}(A)$ ,  $g(A) \subset \mathbb{C}^* \implies f/g \in \mathcal{C}(A)$
  - $\bullet \ f \in \mathcal{C}(A) \ , \ f(A) \subset B \ , \ g \in \mathcal{C}(B) \ \implies \ g \circ f \in \mathcal{C}(A)$
  - Para  $f \in \mathcal{F}(A)$  se tiene:

$$f \in \mathcal{C}(A) \Leftrightarrow \overline{f} \in \mathcal{C}(A) \Leftrightarrow \operatorname{Re} f, \operatorname{Im} f \in \mathcal{C}(A) \Rightarrow |f| \in \mathcal{C}(A)$$

## Propiedades de las funciones continuas

- $\emptyset \neq A \subset \mathbb{C}$ ,  $f \in \mathcal{C}(A)$ 
  - A compacto  $\implies f(A)$  compacto y f uniformemente continua
  - $A \text{ conexo} \implies f(A) \text{ conexo}$

#### Continuidad uniforme

#### Definición

 $f \in \mathcal{F}(A)$  es uniformemente continua cuando:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : z, w \in A, |z - w| < \delta \Rightarrow |f(z) - f(w)| < \varepsilon$$

Esto implica que  $f \in \mathcal{C}(A)$  pero en general el recíproco es falso

## Funciones lipschitzianas

 $f \in \mathcal{F}(A)$  es lipschitziana cuando:

$$\exists M \in \mathbb{R}_0^+ : |f(z) - f(w)| \leqslant M|z - w| \quad \forall z, w \in A$$

La mínima M que verifica lo anterior es la constante de Lipschitz de f:

$$M_0 = \sup \left\{ \frac{|f(z) - f(w)|}{|z - w|} : z, w \in A, z \neq w \right\}$$

Toda función lipschitziana es uniformemente continua. El recíproco es falso

#### Conexión

## Subconjuntos conexos de $\mathbb C$

$$A\subset \mathbb{C}$$
 ,  $\mathcal{T}_A=\mbox{ topología inducida en }A$  por la usual de  $\mathbb{C}$ 

### A conexo

$$U\,,V\in\mathcal{T}_{\!\!A}\,,\ A=U\cup V\,,\ U\cap V=\emptyset\ \Rightarrow\ U=\emptyset\ \text{o bien }V=\emptyset$$

$$U \in \mathcal{T}_A$$
,  $A \setminus U \in \mathcal{T}_A \Rightarrow U = \emptyset$  obien  $U = A$ 

$$f \in \mathcal{C}(A), f(A) \subset \mathbb{Z} \Rightarrow f \text{ constante}$$

#### Límite funcional

## Puntos de acumulación

$$A\subset \mathbb{C}\,\,,\; lpha\in \mathbb{C}$$

$$\alpha \in A' \iff D(\alpha, \varepsilon) \cap (A \setminus \{\alpha\}) \neq \emptyset \quad \forall \varepsilon > 0$$
  
$$\iff \exists \{z_n\} : z_n \in A \setminus \{\alpha\} \quad \forall n \in \mathbb{N}, \ \{z_n\} \to \alpha$$

## Límite de una función en un punto

$$\emptyset \neq A \subset \mathbb{C}$$
,  $f \in \mathcal{F}(A)$ ,  $\alpha \in A'$ ,  $L \in \mathbb{C}$ 

$$\lim_{z \to \alpha} f(z) = L$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : z \in A, \ 0 < |z - \alpha| < \delta \ \Rightarrow \ |f(z) - L| < \varepsilon$$

$$z_n \in A \setminus \{\alpha\} \ \forall n \in \mathbb{N}, \ \{z_n\} \to \alpha \ \Rightarrow \ \{f(z_n)\} \to L$$

# Límite y continuidad

#### Observaciones inmediatas

$$\lim_{z \to \alpha} f(z) = L \iff \lim_{z \to \alpha} |f(z) - L| = 0$$

$$\lim_{z \to \alpha} f(z) = 0 \iff \lim_{z \to \alpha} |f(z)| = 0$$

$$\lim_{z\to\alpha}f(z)=L\qquad\Longleftrightarrow\qquad\lim_{z\to\alpha}\;\mathrm{Re}\,f(z)=\mathrm{Re}L\quad\mathrm{y}\quad\lim_{z\to\alpha}\;\mathrm{Im}\,f(z)=\mathrm{Im}L$$

## Relación entre límite y continuidad

Para  $f \in \mathcal{F}(A)$  y  $\alpha \in A \cup A'$ , se pueden dar tres casos:

- $\alpha \in A \setminus A'$ . Entonces f es continua en el punto  $\alpha$
- $\alpha \in A \cap A'$ . Entonces f es continua en  $\alpha$  si, y sólo si,  $\lim_{z \to \alpha} f(z) = f(\alpha)$
- $\alpha \in A' \setminus A$ . Entonces f tiene límite en  $\alpha$  si, y sólo si, existe una función  $g \in \mathcal{F}(A \cup \{\alpha\})$  que es continua en  $\alpha$  y extiende a f, en cuyo caso se tiene  $g(\alpha) = \lim_{z \to \alpha} f(z)$ .

## Divergencia de funciones. Carácter local

## Divergencia de funciones

$$f \in \mathcal{F}(A)$$
,  $\alpha \in A'$ 

Decimos que f diverge en  $\alpha$  y escribimos  $f(z) \to \infty \ (z \to \alpha)$  cuando:

$$\forall M \in \mathbb{R} \ \exists \delta > 0 : z \in A, \ 0 < |z - \alpha| < \delta \ \Rightarrow \ |f(z)| > M$$

Caracterización mediante sucesiones:

$$f(z) \to \infty \ (z \to \alpha) \iff \left[ z_n \in A \setminus \{\alpha\} \ \forall n \in \mathbb{N}, \ \{z_n\} \to \alpha \ \Rightarrow \ \{f(z_n)\} \to \infty \right]$$

#### Carácter local

$$\begin{split} f \in \mathcal{F}(A) \ , \ \alpha \in A' \ , \ \delta > 0 \ , \ B = A \cap D(\alpha, \delta) \ , \ g = f \big|_{B} \ , \ L \in \mathbb{C} \\ & \lim_{z \to \alpha} f(z) = L \quad \Longleftrightarrow \quad \lim_{z \to \alpha} g(z) = L \\ & f(z) \to \infty \quad (z \to \alpha) \quad \Longleftrightarrow \quad g(z) \to \infty \quad (z \to \alpha) \end{split}$$

#### Cálculo de límites

# Reglas para límites y divergencia de funciones

$$f,g \in \mathcal{F}(A)$$
,  $\alpha \in A'$ ,  $\lambda,\mu \in \mathbb{C}$ 

• 
$$\lim_{z \to \alpha} f(z) = \lambda$$
  $\implies$   $\lim_{z \to \alpha} |f(z)| = |\lambda|$ 

$$\bullet \lim_{z \to \alpha} f(z) = \lambda , \lim_{z \to \alpha} g(z) = \mu \implies \lim_{z \to \alpha} (f + g)(z) = \lambda + \mu$$

$$\bullet \ f(z) \to \infty \ (z \to \alpha) \ , \ g \ {\rm acotada} \ \implies \ \left( f + g \right) (z) \to \infty \ (z \to \alpha)$$

• 
$$\lim_{z \to \alpha} f(z) = 0$$
,  $g$  acotada  $\implies \lim_{z \to \alpha} (fg)(z) = 0$ 

• 
$$\lim_{z \to \alpha} f(z) = \lambda$$
,  $\lim_{z \to \alpha} g(z) = \mu$   $\Longrightarrow$   $\lim_{z \to \alpha} (fg)(z) = \lambda \mu$ 

$$\bullet \ \lim_{z \to \alpha} f(z) = \lambda \in \mathbb{C}^* \ , \ g(z) \to \infty \quad (z \to \alpha) \quad \Longrightarrow \quad (f \, g)(z) \to \infty \quad (z \to \alpha)$$

$$\bullet \ f(z) \to \infty \ (z \to \alpha) \ , \ g(z) \to \infty \ (z \to \alpha) \ \Longrightarrow \ (f \, g)(z) \to \infty \ (z \to \alpha)$$

$$\bullet \ g(A) \subset \mathbb{C}^* \ , \ \lim_{z \to \alpha} g(z) = \mu \in \mathbb{C}^* \ \implies \ \lim_{z \to \alpha} (1/g)(z) = 1/\mu$$

• Si 
$$g(A) \subset \mathbb{C}^*$$
, entonces:  $\lim_{z \to \alpha} g(z) = 0 \iff (1/g)(z) \to \infty \quad (z \to \alpha)$ 

## Límite o divergencia en el infinito

#### Límite o divergencia en el infinito

 $A \subset \mathbb{C}$ , A no acotado,  $f \in \mathcal{F}(A)$ ,  $L \in \mathbb{C}$ 

$$\lim_{z \to \infty} f(z) = L \iff \left[ \forall \varepsilon > 0 \ \exists R > 0 : z \in A, \ |z| > R \Rightarrow |f(z) - L| < \varepsilon \right]$$

$$\iff \left[ z_n \in A \ \forall n \in \mathbb{N}, \ \{z_n\} \to \infty \Rightarrow \{f(z_n)\} \to L \right]$$

$$f(z) \to \infty \ (z \to \infty) \iff \left[ \forall M \in \mathbb{R} \ \exists R > 0 : z \in A, \ |z| > R \Rightarrow |f(z)| > M \right]$$

$$\iff \left[ z_n \in A \ \forall n \in \mathbb{N}, \ \{z_n\} \to \infty \Rightarrow \{f(z_n)\} \to \infty \right]$$

## Reducción a límite o divergencia en un un punto

$$A\subset\mathbb{C}$$
 ,  $A$  no acotado,  $B=\{w\in\mathbb{C}^*:1/w\in A\}$  verifica  $0\in B'$   $f\in\mathcal{F}(A)$  ,  $g\in\mathcal{F}(B)$  ,  $\ g(w)=f(1/w)\ \forall w\in B$  ,  $L\in\mathbb{C}$ 

$$\lim_{z\to\infty} f(z) = L \iff \lim_{w\to 0} g(w) = L \iff \lim_{w\to 0} f(1/w) = L$$

$$f(z) \to \infty \quad (z \to \infty) \quad \Longleftrightarrow \quad g(w) \to \infty \quad (w \to 0) \Longleftrightarrow \quad f(1/w) \to \infty \quad (w \to 0)$$

Tema 3: Funciones holomorfas

Variable Compleja I

- Derivada
- 2 Ecuaciones de C-R
- Reglas de derivación
- 4 Funciones holomorfas
- Primeras propiedades

## Definición de derivada

$$\emptyset \neq A \subset \mathbb{C}$$
,  $f \in \mathcal{F}(A)$ ,  $a \in A \cap A'$ 

Definimos 
$$f_a: A \setminus \{a\} \to \mathbb{C}$$
 por:  $f_a(z) = \frac{f(z) - f(a)}{z - a} \quad \forall z \in A \setminus \{a\}$ 

Decimos que f es derivable en el punto a cuando  $f_a$  tiene límite en a En tal caso, la derivada de f en a viene dada por:

$$f'(a) = \lim_{z \to a} f_a(z) = \lim_{z \to a} \frac{f(z) - f(a)}{z - a}$$

Si  $\emptyset \neq B \subset A \cap A'$ , f es derivable en B cuando lo es en todo punto de B.

Sea ahora  $A_1 = \{z \in A \cap A' : f \text{ es derivable en } z\}.$ 

La función  $z \to f'(z)$  es la función derivada de f:

$$f': A_1 \to \mathbb{C}$$
,  $f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z}$   $\forall z \in A_1$ 

Derivada.

## illieras observaciones

#### Relación con la continuidad

$$f$$
 derivable en  $a \implies f$  continua en  $a$ 

#### Carácter local

$$\begin{array}{ccc} & B \subset A \ , \ b \in B \cap B' \\ f \ \text{derivable en } b & \Longrightarrow & f\big|_B \ \text{derivable en } b \ \text{con} \ \left(f\big|_B\right)'(b) = f'(b) \\ & \int_B b \ \text{derivable en } b \\ \exists \delta > 0 : D(b,\delta) \cap A \subset B \end{array} \Longrightarrow \quad f \ \text{derivable en } b$$

## Funciones de variable real

- Para funciones reales de variable real, la definición de derivada recién introducida coincide con la que ya conocíamos
- Supongamos  $A \subset \mathbb{R}$ ,  $f: A \to \mathbb{C}$  y  $a \in A \cap A'$ . Entonces f es derivable en a si, y sólo si,  $\operatorname{Re} f$  y  $\operatorname{Im} f$  son derivables en a, en cuyo caso:

$$f'(a) = \left(\operatorname{Re} f\right)'(a) + i\left(\operatorname{Im} f\right)'(a)$$

# Ecuaciones de Cauchy-Riemann

#### Teorema

$$\emptyset \neq A \subset \mathbb{C} \ (\equiv \mathbb{R}^2) \ , \ \ f \in \mathcal{F}(A)$$

Sean  $u, v: A \to \mathbb{R}$  las funciones definidas, para todo  $(x, y) \in A$ , por  $u(x, y) = \operatorname{Re} f(x + iy)$  y  $v(x, y) = \operatorname{Im} f(x + iy)$ 

Para  $z_0 = (x_0, y_0) \in A^{\circ}$ , las siguientes afirmaciones son equivalentes:

- (i) f es derivable en el punto  $z_0$
- (ii) u y v son diferenciables en el punto  $(x_0,y_0)$ , verificando que

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) \quad \text{y} \quad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Caso de que se cumplan (i) y (ii), se tiene:

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

#### Observaciones

Ecuaciones de C-R

Las igualdades que aparecen en la afirmación (ii) del teorema anterior se conocen como ecuaciones de Cauchy-Riemann. Cuando A es abierto y f es derivable en A, las funciones u y v son soluciones de un sistema de ecuaciones en derivadas parciales:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
  $y$   $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ 

Usando dichas ecuaciones, la derivada  $f'(z_0)$  puede expresarse de cuatro formas, en términos de las derivadas parciales de u y v. Concretamente:

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

entendiendo que todas las derivadas parciales se evalúan en el punto  $(x_0, y_0)$ .

## Un ejemplo negativo

$$f(z) = \text{Re } z \ \forall z \in \mathbb{C} \ ; \quad u(x,y) = x \quad y \quad v(x,y) = 0 \quad \forall (x,y) \in \mathbb{R}^2$$

$$\frac{\partial u}{\partial x}(x,y) = 1 \neq 0 = \frac{\partial v}{\partial y}(x,y) \quad \forall (x,y) \in \mathbb{R}^2$$

ji f no es derivable en ningún punto del plano!!

# Un ejemplo positivo

La función exponencial:  $f(z) = e^{\text{Re}z} \left( \cos(\text{Im}z) + i \sin(\text{Im}z) \right) \quad \forall z \in \mathbb{C}$ 

$$u(x,y) = e^x \cos y$$
  $y$   $v(x,y) = e^x \sin y$   $\forall (x,y) \in \mathbb{R}^2$ 

u, v son differenciables en  $\mathbb{R}^2$  con  $\frac{\partial u}{\partial x} = u = \frac{\partial v}{\partial v}$  y  $\frac{\partial u}{\partial v} = -v = -\frac{\partial v}{\partial x}$ 

luego f es derivable en  $\mathbb C$  con  $f' = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} = u + iv = f$ 

# Operaciones algebraicas

# Ejemplos obvios

- $\lambda \in \mathbb{C}$ ,  $f(z) = \lambda \quad \forall z \in \mathbb{C} \implies f'(z) = 0 \quad \forall z \in \mathbb{C}$
- $f(z) = z \quad \forall z \in \mathbb{C} \implies f'(z) = 1 \quad \forall z \in \mathbb{C}$

## Sumas, productos y cocientes

 $\emptyset\neq A\subset\mathbb{C}$  ,  $f,g\in\mathcal{F}(A),$  derivables en un punto  $a\in A\cap A'$  ,  $\lambda\in\mathbb{C}.$  Entonces:

- f+g es derivable en a con (f+g)'(a) = f'(a) + g'(a)
- fg es derivable en a con (fg)'(a) = f'(a)g(a) + f(a)g'(a)
- $\lambda f$  es derivable en a con  $(\lambda f)'(a) = \lambda f'(a)$
- Suponiendo que  $g(A) \subset \mathbb{C}^*$ , entonces f/g es derivable en a con

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

## Polinomios

# Potencias de exponente natural

Fijado  $n \in \mathbb{N}$  sea  $f \in \mathcal{F}(\mathbb{C})$  dada por:  $f_n(z) = z^n \quad \forall z \in \mathbb{C}$ .

Entonces  $f_n$  es derivable en  $\mathbb{C}$  con:  $f'_n(z) = nz^{n-1} \ \forall z \in \mathbb{C}$ 

#### Polinomios

 $\emptyset \neq A \subset \mathbb{C}$ . Decimos que  $P \in \mathcal{F}(A)$  es una función polinómica cuando existen  $n \in \mathbb{N} \ \text{v} \ \alpha_0, \alpha_1, \dots, \alpha_n \in \mathbb{C} \ \text{tales que}$ 

$$P(z) = \sum_{k=0}^{n} \alpha_k z^k \quad \forall z \in A$$

Entonces P es derivable en  $A \cap A'$  y su derivada es la función polinómica dada por

$$P'(z) = \sum_{k=1}^{n} k \alpha_k z^{k-1} = \sum_{k=0}^{n-1} (k+1) \alpha_{k+1} z^k \quad \forall z \in A \cap A'$$

## Funciones racionales y regla de la cadena

## Funciones racionales

 $f \in \mathcal{F}(A)$  es una función racional cuando existen funciones polinómicas  $P,Q \in \mathcal{F}(A)$  tales que:

$$Q(z) \neq 0$$
  $y$   $f(z) = \frac{P(z)}{Q(z)}$   $\forall z \in A$ 

Entonces f es derivable en  $A\cap A'$  y su derivada  $f':A\cap A'\to\mathbb{C}$  es otra función racional.

## Regla de la cadena

Sea  $A \subset \mathbb{C}$  y  $f \in \mathcal{F}(A)$  una función derivable en un punto  $a \in A \cap A'$ .

Supongamos que  $f(A) \subset B \subset \mathbb{C}$ , que  $f(a) \in B'$  y que  $g \in \mathcal{F}(B)$  es derivable en el punto f(a).

Entonces  $g \circ f$  es derivable en a con

$$(g \circ f)'(a) = g'(f(a)) f'(a)$$

#### \_\_\_\_

$$\emptyset 
eq \Omega = \Omega^{\circ} \subset \mathbb{C} \;,\;\; f \in \mathcal{F}(\Omega)$$

f es holomorfa en  $\Omega$  cuando es derivable en todo punto de  $\Omega$ El conjunto de todas las funciones holomorfas en  $\Omega$  se denota por  $\mathcal{H}(\Omega)$ 

## Observaciones

 $\bullet$  Las funciones holomorfas son continuas, pero el recíproco es falso:

$$\mathcal{H}(\Omega) \subsetneq \mathcal{C}(\Omega) \subsetneq \mathcal{F}(\Omega)$$

• La holomorfía es una propiedad local: Supongamos que  $\Omega = \bigcup_{\lambda \in \Lambda} U_{\lambda}$  donde  $\Lambda$  es un conjunto no vacío arbitrario y  $U_{\lambda}$  es un abierto no vacío de  $\mathbb C$  para todo  $\lambda \in \Lambda$ . Para cada  $\lambda \in \Lambda$  sea  $f_{\lambda}$  la restricción de f a  $U_{\lambda}$ . Entonces:

$$f \in \mathcal{H}(\Omega) \iff f_{\lambda} \in \mathcal{H}(U_{\lambda}) \ \forall \lambda \in \Lambda$$

# Operaciones con funciones holomorfas

# Operaciones algebraicas y regla de la cadena

$$\emptyset 
eq \Omega = \Omega^\circ \subset \mathbb{C}$$

$$\mathcal{H}(\Omega)$$
 es un subanillo y un subespacio vectorial de  $\mathcal{C}(\Omega)$ 

$$f,g\in\mathcal{H}(\Omega)\ ,\ g(\Omega)\subset\mathbb{C}^*\ \implies\ f/g\in\mathcal{H}(\Omega)$$

 $\mathcal{P}(\Omega)~$  funciones polinómicas en  $\Omega$  ;  $~\mathcal{R}(\Omega)~$  funciones racionales en  $\Omega$ 

$$\mathcal{P}(\Omega) \subset \mathcal{R}(\Omega) \subset \mathcal{H}(\Omega) \subset \mathcal{C}(\Omega) \subset \mathcal{F}(\Omega)$$

La restricción a  $\Omega$  de la exponencial nunca es una función racional, luego

$$\mathcal{R}(\Omega) \subsetneq \mathcal{H}(\Omega)$$

$$f\in\mathcal{H}(\Omega)\ ,\ f(\Omega)\subset U=U^\circ\subset\mathbb{C}\ ,\ g\in\mathcal{H}(U)\ \implies\ g\circ f\in\mathcal{H}(\Omega)$$

#### Funciones enteras

Una funcion entera es una función holomorfa en todo el plano. Por tanto  $\mathcal{H}(\mathbb{C})$  es el conjunto de todas las funciones enteras.

$$\mathcal{R}(\mathbb{C}) \stackrel{!!}{=} \mathcal{P}(\mathbb{C}) \subsetneq \mathcal{H}(\mathbb{C})$$

La exponencial es una función entera no polinómica, luego

## **Ejemplos**

Para funciones complejas no hay un teorema de Rolle o del valor medio:

- Una función de variable real:  $g(y) = \cos y + i \operatorname{sen} y \quad \forall y \in \mathbb{R}$
- $\bullet$  Es derivable en  $\mathbb{R}$
- $g(0) = g(2k\pi) \quad \forall k \in \mathbb{Z}$
- $g'(y) = ig(y) \forall y \in \mathbb{R}$  luego  $|g'(y)| = |g(y)| = 1 \quad \forall y \in \mathbb{R}$

La exponencial:  $f(z) = e^{\text{Re}z} (\cos(\text{Im}z) + i \sin(\text{Im}z)) \quad \forall z \in \mathbb{C}$ 

- $f \in \mathcal{H}(\mathbb{C})$
- $f(0) = f(2k\pi i) \quad \forall k \in \mathbb{Z}$
- $|f'(z)| = |f(z)| = e^{\operatorname{Re} z} > 0 \quad \forall z \in \mathbb{C}$

#### **Dominios**

Un dominio es un subconjunto no vacío, abierto y conexo del plano

#### Funciones con derivada nula

Sea  $\Omega$  un dominio y  $f \in \mathcal{H}(\Omega)$  tal que f'(z) = 0 para todo  $z \in \mathbb{C}$ . Entonces f es constante.

#### Consecuencias

Sea  $\Omega$  un dominio y  $f \in \mathcal{H}(\Omega)$ .

- Si Re f es constante, entonces f es constante
- Si Im f es constante, entonces f es constante
- Si |f| es constante, entonces f es constante

## Caso de un abierto no conexo

## Ejemplo

Supongamos que  $\Omega = U \cup V$  donde U, V son abiertos, no vacíos, disjuntos

$$f(z) = 1 + i \quad \forall z \in U \quad y \quad f(z) = 1 - i \quad \forall z \in V$$

- $f \in \mathcal{H}(\Omega)$
- $f'(z) = 0 \quad \forall z \in \mathbb{C}$
- Re f y |f| son constantes
- Pero f no es constante

## Componentes conexas de un abierto

$$\emptyset 
eq \Omega = \Omega^{\circ} \subset \mathbb{C}$$

- Las componentes conexas de  $\Omega$  son dominios
- ullet El conjunto de las componentes conexas de  $\Omega$  es numerable

## Generalización de los resultados anteriores

#### Caso de un abierto no conexo

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} \ \ \mathrm{y} \ \ f \in \mathcal{H}(\Omega)$$

Si 
$$f'(z) = 0$$
 para todo  $z \in \Omega$ 

o bien cualquiera de las funciones  $\operatorname{Re} f$ ,  $\operatorname{Im} f$  o |f| es constante,

entonces f es constante en cada componente conexa de  $\Omega$ y por tanto  $f(\Omega)$  es numerable

Tema 4: Funciones analíticas

Variable Compleja I

- Series de números complejos
- Sucesiones de funciones
- Series de funciones

Series de números complejos

- Series de potencias
  - Convergencia de una serie de potencias
  - La suma de una serie de potencias
  - Derivadas sucesivas
  - Funciones analíticas

#### Definiciones

Series de números complejos

•000

Serie de números complejos:

$$\sum_{n\geqslant 0} z_n \stackrel{\text{def}}{=} \left\{ \sum_{k=0}^{n-1} z_k \right\} = \{S_n\}$$

donde  $z_n \in \mathbb{C} \ \forall n \in \mathbb{N} \cup \{0\}$ 

Suma de una serie convergente:

$$\sum_{n=0}^{\infty} z_n \stackrel{\text{def}}{=} \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=0}^{n-1} z_k$$

Término general de una serie convergente:

$$\sum_{n \ge 0} z_n \text{ convergente } \Longrightarrow \{z_n\} \to 0$$

Series de números complejos

0000

## Notación formalmente más general

Fijado  $m \in \mathbb{N}$ , definimos:

$$\sum_{n \geqslant m} z_n \stackrel{\text{def}}{=} \sum_{n \geqslant 0} z_{m+n} = \left\{ \sum_{k=m}^{m+n-1} z_k \right\}$$

Suma de esta serie, cuando es convergente:

$$\sum_{n=m}^{\infty} z_n \stackrel{\text{def}}{=} \lim_{n \to \infty} \sum_{k=m}^{m+n-1} z_k$$

La convergencia de la serie  $\sum_{n\geqslant m}z_n$  equivale a la de $\sum_{n\geqslant 0}z_n\,,$  en cuyo caso:

$$\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{m-1} z_n + \sum_{n=m}^{\infty} z_n$$

## Reducción al caso real

Series de números complejos

0000

#### Reducción al caso real

$$\operatorname{Re} S_n = \operatorname{Re} \sum_{k=0}^{n-1} z_k = \sum_{k=0}^{n-1} \operatorname{Re} z_k$$
  $\operatorname{Im} S_n = \operatorname{Im} \sum_{k=0}^{n-1} z_k = \sum_{k=0}^{n-1} \operatorname{Im} z_k$ 

La serie de números complejos  $\sum z_n$  es convergente si, y sólo si, las series de números reales  $\sum_{n\geqslant 0} {\rm Re}\,z_n$  y  $\sum_{n\geqslant 0} {\rm Im}\,z_n$  convergen, en cuyo caso se verifica que:

$$\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{\infty} \operatorname{Re} z_n + i \sum_{n=0}^{\infty} \operatorname{Im} z_n$$

# Convergencia absoluta

## Definición

La serie  $\sum_{n\geqslant 0} z_n$  es absolutamente convergente cuando  $\sum_{n\geqslant 0} |z_n|$  converge

## Relación con la convergencia

Toda serie de números complejos absolutamente convergente es convergente. Además, si la serie  $\sum_{n} z_n$  es absolutamente convergente, entonces:

$$\left|\sum_{n=0}^{\infty} z_n\right| \leqslant \sum_{n=0}^{\infty} |z_n|$$

## Sucesiones de funciones. Convergencia puntual

#### Sucesiones de funciones

Series de números complejos

$$\emptyset \neq A \subset \mathbb{C}$$

Una sucesión de funciones definidas en A es una aplicación  $\varphi: \mathbb{N} \to \mathcal{F}(A)$ . Escribiendo  $f_n = \varphi(n)$  para todo  $n \in \mathbb{N}$ , la sucesión  $\varphi$  se denota por  $\{f_n\}$ . En lo que sigue, fijamos una sucesión  $\{f_n\}$  de funciones definidas en A y un conjunto no vacío  $B \subset A$ .

## Convergencia puntual

 $\{f_n\}$  converge puntualmente en B cuando, para cada  $z \in B$ , la sucesión  $\{f_n(z)\}\$  es convergente. En tal caso podemos definir  $f:B\to\mathbb{C}$  por:

$$f(z) = \lim_{n \to \infty} f_n(z) \quad \forall z \in B$$

Se dice que la función f es el límite puntual de  $\{f_n\}$  en B, o que  $\{f_n\}$ converge puntualmente a f en B. Se tiene entonces:

$$\forall z \in B \ \forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \geqslant m \ \Rightarrow \ |f_n(z) - f(z)| < \varepsilon$$

En principio m depende de  $\varepsilon$  y del punto  $z \in B$  considerado.

# Convergencia uniforme

#### Definición

 $\{f_n\}$  converge uniformemente a f en B cuando

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \geqslant m \Rightarrow |f_n(z) - f(z)| < \varepsilon \ \forall z \in B$$

#### Primer criterio

La sucesión  $\{f_n\}$  converge uniformemente a f en B si, y sólo si, existe  $p \in \mathbb{N}$  tal que, para  $n \ge p$  la función  $f_n - f$  está acotada en B y

$$\lim_{n\to\infty} \sup \{ |f_n(z) - f(z)| : z \in B \} = 0$$

## Segundo criterio

Las siguientes afirmaciones son equivalentes:

- $\{f_n\}$  converge uniformemente a f en B
- $\bullet$  Para toda sucesión  $\{z_n\}$  de puntos de B, se tiene que

$$\{f_n(z_n)-f(z_n)\}\to 0$$

# Ejemplo de convergencia puntual y uniforme

## Ejemplo

$$f_n(z) = z^n \ \forall z \in \mathbb{C} , \ \forall n \in \mathbb{N}$$

Convergencia puntual. Para  $z\in\mathbb{C}$  se tiene:

- $\bullet$   $|z| < 1 <math>\Longrightarrow$   $\{z^n\} \to 0$
- $|z| > 1 \implies \{z^n\} \to \infty$
- Cuando |z| = 1, se tiene:  $\{z^n\}$  converge  $\iff z = 1$

En resumen:  $\{f_n(z)\}\$ converge  $\iff z \in D(0,1) \cup \{1\}$ 

Concretamente,  $\{f_n\}$  converge puntualmente a f en  $D(0,1) \cup \{1\}$ , donde

$$f(z) = 0 \quad \forall z \in D(0,1) \quad \text{y} \quad f(1) = 1$$

Convergencia uniforme. Si  $\emptyset \neq B \subset D(0,1) \cup \{1\}\,,$  entonces:

 $\{f_n\}$  converge uniformemente en  $B\iff\sup\{|z|:z\in B\setminus\{1\}\}<1$ 

# Convergencia uniforme y complitud

## Condición de Cauchy uniforme

 $\emptyset \neq B \subset A \subset \mathbb{C}$ ,  $\{f_n\}$  sucesión de funciones definidas en A

 $\{f_n\}$  es uniformemente de Cauchy en B cuando:

$$\forall \, \epsilon > 0 \ \exists \, m \in \mathbb{N} \ : \ p,q \geqslant m \ \Longrightarrow \ |f_p(z) - f_q(z)| < \epsilon \ \forall \, z \in B$$

#### Tercer criterio

 $\emptyset \neq B \subset A \subset \mathbb{C}$  ,  $\{f_n\}$  sucesión de funciones definidas en A

 $\{f_n\}$  converge uniformemente en B

 $\{f_n\}$  es uniformemente de Cauchy en B

# Convergencia uniforme y continuidad

## Preservación de la continuidad

$$\emptyset \neq A \subset \mathbb{C} , f_n \in \mathcal{F}(A) \ \forall n \in \mathbb{N}$$

Supongamos que  $\{f_n\}$  converge uniformemente en A a una función  $f\in\mathcal{F}(A)$ 

Si, para todo  $n \in \mathbb{N}$ ,  $f_n$  es continua en un punto  $z \in A$ , entonces f es continua en z

Por tanto:  $f_n \in \mathcal{C}(A) \ \forall n \in \mathbb{N} \implies f \in \mathcal{C}(A)$ 

# Series de funciones. Convergencia puntual

#### Series de funciones

 $\emptyset \neq A \subset \mathbb{C}$ . Serie de funciones definidas en A:

$$\sum_{n\geq 0} f_n \stackrel{\text{def}}{=} \left\{ \sum_{k=0}^{n-1} f_k \right\} \quad \text{donde} \quad f_n \in \mathcal{F}(A) \quad \forall n \in \mathbb{N} \cup \{0\}$$

## Convergencia puntual

$$\sum_{n\geqslant 0} f_n \text{ converge puntualmente en } B\subset A \iff \sum_{n\geqslant 0} f_n(z) \text{ converge } \forall z\in B$$

Entonces, la suma de la serie  $f \in \mathcal{F}(B)$  viene dada por:

$$f(z) = \sum_{n=0}^{\infty} f_n(z) \qquad \forall z \in B$$

$$\sum_{n \ge 0} f_n \text{ converge puntualmente en } B \implies \{f_n(z)\} \to 0 \quad \forall z \in B$$

La sucesión  $\{f_n\}$ , término general de la serie, converge puntualmente en B a la función idénticamente nula.

# Convergencia uniforme de series de funciones

$$\emptyset \neq B \subset A \subset \mathbb{C}$$
,  $f_n \in \mathcal{F}(A) \ \forall n \in \mathbb{N} \cup \{0\}$ 

## Series con otra numeración

$$p \in \mathbb{N}$$
 fijo.  $\sum_{n \geqslant p} f_n \stackrel{\text{def}}{=} \sum_{n \geqslant 0} f_{p+n} = \left\{ \sum_{k=p}^{p+n-1} f_k \right\}$ 

Esta serie converge puntualmente en B si, y sólo si, lo hace  $\sum_{n\geqslant 0} f_n$ , en

cuyo caso:  $\sum_{n=0}^{\infty} f_n(z) = \sum_{n=0}^{p-1} f_n(z) + \sum_{n=p}^{\infty} f_n(z) \quad \forall z \in B$ 

# Convergencia uniforme

 $\sum_{n} f_n$  converge uniformemente en B cuando:

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N} : n \geqslant m \ \Rightarrow \ \left| \sum_{k=n}^{\infty} f_k(z) \right| < \varepsilon \ \forall z \in B$$

 $\implies \{f_n\}$  converge uniformemente en B a la función idénticamente nula.

Fijado  $p\in\mathbb{N},$  la convergencia uniforme de  $\sum_{n\geqslant p}f_n$  en B equivale a la de  $\sum_{n\geqslant 0}f_n$ 

0000

# Convergencia absoluta

Series de números complejos

## Convergencia absoluta

$$\emptyset \neq B \subset A \subset \mathbb{C} \ , \ f_n \in \mathcal{F}(A) \ \forall n \in \mathbb{N} \cup \{0\}$$

La serie  $\sum f_n$  converge absolutamente en B cuando, para todo  $z \in B$ , la serie  $\sum_{n\geqslant 0}^{n\geqslant 0} |f_n(z)|$  converge.

Entonces  $\sum f_n$  converge puntualmente en B y se tiene:

$$\left| \sum_{n=0}^{\infty} f_n(z) \right| \leqslant \sum_{n=0}^{\infty} |f_n(z)| \qquad \forall z \in B$$

# Convergencia absoluta y uniforme

## Test de Weierstrass

Sea  $\sum f_n$  una serie de funciones complejas, definidas en un conjunto

 $A \subset \mathbb{C}$ , y sea B un subconjunto no vacío de A.

Supongamos que:

• Para cada  $n \in \mathbb{N} \cup \{0\}$ , existe una constante  $M_n \in \mathbb{R}$  tal que:

$$|f_n(z)| \leqslant M_n \quad \forall z \in B$$

 $\bullet$  La serie de números reales  $\sum_{n>0} M_n$  es convergente

Entonces la serie  $\sum f_n$  converge absoluta y uniformemente en B.

## Series de potencias

Una serie de potencias, centrada en un punto  $a \in \mathbb{C}$ , es una serie de funciones  $\sum_{n \geq 0} f_n$  en la que, para cada  $n \in \mathbb{N} \cup \{0\}$ , la función  $f_n \in \mathcal{F}(\mathbb{C})$ 

viene dada por

$$f_n(z) = \alpha_n (z-a)^n \quad \forall z \in \mathbb{C}$$

donde  $\alpha_n \in \mathbb{C}$  es constante, para todo  $n \in \mathbb{N} \cup \{0\}$ .

Dicha serie se denota simplemente por

$$\sum_{n\geqslant 0}\alpha_n\left(z-a\right)^n$$

Las sumas parciales son funciones polinómicas:

$$S_n(z) = \sum_{k=0}^{n-1} \alpha_k (z-a)^k \quad \forall z \in \mathbb{C} \quad \forall n \in \mathbb{N}$$

Series de números complejos

## Lema de Abel

Sea  $\rho \in \mathbb{R}^+$  tal que la sucesión  $\{|\alpha_n|\rho^n\}$  esté mayorada.

Entonces la serie de potencias  $\sum \alpha_n (z-a)^n$  converge absolutamente en

D(a, p) y uniformemente en cada subconjunto compacto de dicho disco.

## Radio de convergencia

Para definir el radio de convergencia R de la serie  $\;\;\sum \alpha_n (z-a)^n$  , se considera el conjunto

$$\Lambda = \left\{ \, \rho \in \mathbb{R}^+ \ : \ \left\{ |\alpha_n| \rho^n \right\} \ \mathrm{mayorada} \, \right\}$$

y se pueden dar tres casos:

- Si  $\Lambda = \emptyset$ , entonces R = 0
- Si  $\Lambda \neq \emptyset$  y  $\Lambda$  no está mayorado, entonces  $R = \infty$
- Si  $\Lambda \neq \emptyset$  y  $\Lambda$  está mayorado, entonces  $R = \sup \Lambda$

Series de números complejos

#### Convergencia de la serie, conociendo el radio

Sea R el radio de convergencia de la serie de potencias  $\sum_{n \geq 0} \alpha_n (z-a)^n$ 

- Si  $R \in \mathbb{R}^+$ , la serie converge absolutamente en D(a,R), converge uniformemente en cada compacto  $K \subset D(a,R)$  y no converge en ningún punto de  $\mathbb{C}\setminus \overline{D}(a,R)$
- Si  $R = \infty$ , la serie converge absolutamente en  $\mathbb{C}$  y uniformemente en cada compacto  $K \subset \mathbb{C}$ .
- Si R=0, la serie no converge en ningún punto de  $\mathbb{C}\setminus\{a\}$ .

## Preguntas que quedan sin resolver

- Cuando  $R = \infty$ ; Hay convergencia uniforme en  $\mathbb{C}$ ?
- Cuando  $R \in \mathbb{R}^+$  ; Hay convergencia uniforme en D(a,R)?
- Cuando  $R \in \mathbb{R}^+$  ; Qué ocurre en la circunferencia  $\{z \in \mathbb{C} \mid |z-a| = R\}$ ?

## Fórmula de Cauchy-Hadamard

Sea R el radio de convergencia de la serie  $\sum \alpha_n (z-a)^n$ 

- Si la sucesión  $\{\sqrt[n]{|\alpha_n|}\}$  no está mayorada, entonces R=0
- Si  $\{\sqrt[n]{|\alpha_n|}\}\to 0$ , entonces  $R=\infty$
- En otro caso:

$$R = \frac{1}{\limsup \left\{ \sqrt[n]{|\alpha_n|} \right\}}$$

#### Corolario

Series de números complejos

Suponiendo  $\alpha_n \in \mathbb{C}^* \quad \forall n \in \mathbb{N}$ , se tiene:

• 
$$\{\alpha_{n+1}/\alpha_n\} \to \infty \implies R = 0$$

• 
$$\{\alpha_{n+1}/\alpha_n\} \to 0 \implies R = \infty$$

• 
$$\{|\alpha_{n+1}/\alpha_n|\} \rightarrow \lambda \in \mathbb{R}^+ \implies R = 1/\lambda$$

# Algunos ejemplos de series de potencias

## **Ejemplos**

• La serie  $\sum_{n\geq 1} \frac{z^n}{n^n}$  tiene radio de convergencia  $\infty$ .

No converge uniformemente en  $\mathbb C$ 

- $\bullet$  La serie  $\sum_{i} n^n z^n$ tiene radio de convergencia 0
- La serie geométrica,  $\sum z^n$  tiene radio de convergencia 1. Su suma es:

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \qquad \forall z \in D(0,1)$$

No converge uniformemente en D(0,1)

No converge en ningún punto de T

• La serie  $\sum_{n>1} \frac{z^n}{n^2}$  tiene radio de convergencia 1

Converge uniformemente en  $\overline{D}(0,1)$ 

## Dominio de convergencia y suma de la serie

Una serie de potencias es trivial cuando tiene radio de convergencia 0

$$\sum_{n \geq 0} \alpha_n (z-a)^n \;$$
serie de potencias no trivial, con radio de convergencia  $R \neq 0$ 

Su dominio de convergencia,  $\Omega$ , es:

- $\Omega = D(a,R)$  cuando  $R \in \mathbb{R}^+$
- $\bullet$   $\Omega=\mathbb{C}$ cuando  $R=\infty$

La serie converge absolutamente en  $\Omega$  y uniformemente en cada subconjunto compacto de  $\Omega.$ 

La suma de la serie es la función  $f:\Omega \to \mathbb{C}$  dada por

$$f(z) = \sum_{n=0}^{\infty} \alpha_n (z-a)^n \quad \forall z \in \Omega$$

Series de funciones

## Lema: radio de convergencia de la serie derivada

Las series  $\sum_{n\geqslant 0} \alpha_n (z-a)^n$  y  $\sum_{n\geqslant 1} n\alpha_n (z-a)^{n-1} = \sum_{n\geqslant 0} (n+1)\alpha_{n+1} (z-a)^n$ 

tienen el mismo radio de convergencia.

#### Teorema

Sea f la suma de una serie de potencias no trivial, es decir,

$$f(z) = \sum_{n=0}^{\infty} \alpha_n (z-a)^n \quad \forall z \in \Omega$$

donde  $\Omega$  es el dominio de convergencia de la serie.

Entonces  $f \in \mathcal{H}(\Omega)$  con

$$f'(z) = \sum_{n=0}^{\infty} (n+1) \alpha_{n+1} (z-a)^n = \sum_{n=1}^{\infty} n \alpha_n (z-a)^{n-1} \quad \forall z \in \Omega$$

#### Definición de las derivadas sucesivas

#### Derivadas sucesivas de una función

$$\emptyset \neq A \subset \mathbb{C}$$
,  $f \in \mathcal{F}(A)$ . Convenio habitual  $f^{(0)} = f$ 

Etapa base de la inducción (n = 1), función derivada primera:

$$A_1 = \{z \in A \cap A' : f \text{ derivable en } z\}\,, \quad f^{(1)} = f' : A_1 \to \mathbb{C}$$

Para  $n \in \mathbb{N}$  suponemos definida la función derivada n-ésima  $f^{(n)}: A_n \to \mathbb{C}$ .

Si  $z \in A_n \cap A'_n$ , f es n+1 veces derivable en z cuando  $f^{(n)}$  es derivable en z.

Entonces  $f^{(n+1)}(z) = (f^{(n)})'(z)$  es la (n+1)-ésima derivada de f en z.

Definimos ahora  $A_{n+1} = \{z \in A_n \cap A'_n : f \text{ es } n+1 \text{ veces derivable en } z\}$ 

Si  $A_{n+1} \neq \emptyset$ , la función derivada (n+1)-ésima de f es

$$f^{(n+1)} = (f^{(n)})' : A_{n+1} \to \mathbb{C}$$

Suponiendo  $A \subset A'$ , si f es n veces derivable en todo punto de A, para todo  $n \in \mathbb{N}$ , decimos que f es indefinidamente derivable en A y tendremos  $f^{(n)} \in \mathcal{F}(A)$  para todo  $n \in \mathbb{N}$ .

Series de funciones

#### Funciones de variable real

- $A \subset \mathbb{R}$  y  $f(A) \subset \mathbb{R}$ . Hemos repetido la definición de las derivadas sucesivas de una función real de variable real.
- $A \subset \mathbb{R}$  pero f puede tomar valores complejos cualesquiera. Para todo  $n \in \mathbb{N}$ , f es n veces derivable en un punto  $t \in A$  si, y sólo si, lo son las funciones  $\operatorname{Re} f$  y  $\operatorname{Im} f$ , en cuvo caso:

$$f^{(n)}(t) = \left(\operatorname{Re} f\right)^{(n)}(t) + i\left(\operatorname{Im} f\right)^{(n)}(t)$$

Cuando  $A \subset A'$ , f es indefinidamente derivable en A si, y sólo si, lo son Re f y Im f, verificándose la igualdad anterior para todo  $t \in A$  y para todo  $n \in \mathbb{N}$ .

#### Derivadas sucesivas de la suma de una serie de potencias

#### Teorema

Sea  $\sum_{n \geqslant 0} \alpha_n \, (z-a)^n \,$ una serie de potencias no trivial,  $\Omega$  su dominio de

convergencia y 
$$f$$
 su suma:  $f(z) = \sum_{n=0}^{\infty} \alpha_n (z-a)^n \quad \forall z \in \Omega$ 

Entonces f es indefinidamente derivable en  $\Omega$ . De hecho, para todo  $k\in\mathbb{N}\cup\{0\}$ , la serie de potencias

$$\sum_{n \geqslant k} \frac{n!}{(n-k)!} \alpha_n (z-a)^{n-k} = \sum_{n \geqslant 0} \frac{(n+k)!}{n!} \alpha_{n+k} (z-a)^n$$

tiene dominio de convergencia  $\Omega$  y se verifica que:

$$f^{(k)}(z) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} \alpha_n (z-a)^{n-k} = \sum_{n=0}^{\infty} \frac{(n+k)!}{n!} \alpha_{n+k} (z-a)^n \quad \forall z \in \Omega$$

En particular se tiene:  $f^{(k)}(a) = k! \ \alpha_k \ \forall k \in \mathbb{N} \cup \{0\}.$ 

Por tanto, la serie de partida es la serie de Taylor de f:

$$\sum_{n \ge 0} \alpha_n (z - a)^n = \sum_{n \ge 0} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

## Un principio de identidad

## Principio de identidad para series de potencias

Sean  $\sum_{n\geqslant 0} \alpha_n (z-a)^n$  y  $\sum_{n\geqslant 0} \beta_n (z-a)^n$  series de potencias no triviales, con dominios de convergencia  $\Omega_1$  y  $\Omega_2$  respectivamente.

Supongamos que existe  $\rho \in \mathbb{R}^+$ tal que  $\, \mathit{D}(a, \! \rho) \subset \Omega_1 \cap \Omega_2 \,$  y

$$\sum_{n=0}^{\infty} \alpha_n (z-a)^n = \sum_{n=0}^{\infty} \beta_n (z-a)^n \quad \forall z \in D(a, \rho)$$

Entonces, ambas series son idénticas, es decir,

$$\alpha_n = \beta_n \quad \forall n \in \mathbb{N} \cup \{0\}$$

#### Funciones analíticas

Series de números complejos

## Concepto de función analítica

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} \ , \ f \in \mathcal{F}(\Omega)$$

fes analítica en  $\Omega$  cuando, para cada  $a\in\Omega$  se verifica lo siguiente:

Existe  $\rho_a \in \mathbb{R}^+$ , con  $D(a,\rho_a) \subset \Omega$ , y una serie de potencias  $\sum_{n\geqslant 0} \alpha_n^{(a)} (z-a)^n$ , con radio de convergencia mayor o igual que  $\rho_a$ , tales que

$$f(z) = \sum_{n=0}^{\infty} \alpha_n^{(a)} (z-a)^n \quad \forall z \in D(a, \rho_a)$$

#### Holomorfía de las funciones analíticas

Sea f es una función analítica en un abierto  $\Omega$  del plano. Entonces  $f\in\mathcal{H}(\Omega)$  y f' es analítica en  $\Omega$ .

Por tanto, f es indefinidamente derivable en  $\Omega$  y todas sus derivadas son funciones analíticas en  $\Omega$ .

## Definición equivalente de función analítica

#### Otra forma de entender el concepto de función analítica

Si  $\Omega$  es un abierto no vacío del plano, una función  $f \in \mathcal{F}(\Omega)$  es analítica en  $\Omega$  si, y sólo si, es indefinidamente derivable en  $\Omega$  y, para cada  $a \in \Omega$  existe  $\rho_a \in \mathbb{R}^+$  con  $D(a, \rho_a) \subset \Omega$  tal que, la serie de Taylor de f centrada en atiene radio de convergencia mayor o igual que  $\rho_a$  y se verifica que

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n \qquad \forall z \in D(a, \rho_a)$$

Variable Compleja I

Tema 5: Funciones elementales

- La exponencial
- 2 Logaritmos

La exponencial

- El conjunto de los logaritmos
- El problema del logaritmo holomorfo
- Ejemplos de logaritmos holomorfos
- Desarrollos en serie
- Potencias complejas
  - Potencia de base y exponente complejos
  - Funciones exponenciales y funciones potencia
- 4 Funciones trigonométricas
  - El seno y el coseno
  - La tangente y el arco-tangente

•00

## La función exponencial compleia

## Definición de la exponencial

Función exponencial real: 
$$\exp x = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

La serie 
$$\sum_{n\geqslant 0} \frac{z^n}{n!}$$
 tiene radio de convergencia  $\infty$ 

Función exponencial compleja: 
$$\exp z = e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \forall z \in \mathbb{C}$$

#### Primeras propiedades de la exponencial

- La exponencial es una función entera que coincide con su derivada.
- Fórmula de adición:  $e^{z+w} = e^z e^w \quad \forall z, w \in \mathbb{C}$
- E.3  $f \in \mathcal{H}(\mathbb{C})$ , f'(z) = f(z)  $\forall z \in \mathbb{C} \implies \exists \lambda \in \mathbb{C} : f(z) = \lambda e^z \quad \forall z \in \mathbb{C}$
- E.4 Es una función analítica en  $\mathbb{C}$ :  $e^z = \sum_{n=0}^{\infty} \frac{e^a}{n!} (z-a)^n \quad \forall a, z \in \mathbb{C}$

#### Fórmula de Euler y consecuencias

- E.5 Fórmula de Euler:  $e^{it} = \cos t + i \sin t \quad \forall t \in \mathbb{R}$
- E.6 Para todo  $z \in \mathbb{C}$  se tiene:

Re 
$$e^z = e^{\text{Re}z}\cos(\text{Im}z)$$
  
Im  $e^z = e^z\sin(\text{Im}z)$   
 $|e^z| = e^{\text{Re}z}$   
Arg  $(e^z) = \{\text{Im}z + 2k\pi : k \in \mathbb{Z}\}$ 

E.7 La imagen de la exponencial es  $\mathbb{C}^*$ . De hecho, para todo  $w \in \mathbb{C}^*$  se tiene:

$${z \in \mathbb{C} : e^z = w} = {\ln |w| + i\theta : \theta \in \operatorname{Arg} w}$$

En particular, para todo  $R \in \mathbb{R}^+$  se tiene:  $\{e^z : z \in \mathbb{C}, |z| > R\} = \mathbb{C}^*$ 

## Periodicidad de la exponencial

## Funciones periódicas

La exponencial

00

$$\emptyset \neq A \subset \mathbb{C}$$
,  $f \in \mathcal{F}(A)$ ,  $w \in \mathbb{C}$ 

w es un periodo de f cuando:

$${z+w: z \in A} = A$$
  $y$   $f(z+w) = f(z)$   $\forall z \in A$ 

f es una función función periódica cuando tiene un periodo  $w \in \mathbb{C}^*$ 

El conjunto de todos los periodos de f es un subgrupo aditivo de  $\mathbb{C}$ 

Cuando dicho subgrupo está engendrado por un sólo elemento  $w \in \mathbb{C}^*$ , es decir, tiene la forma  $\{kw: k \in \mathbb{Z}\}$ , se dice que f es simplemente periódica y que w es un periodo fundamental de f.

#### Periodicidad de la exponencial

La exponencial es una función simplemente periódica con periodo fundamental  $2\pi i$ .

## Sarremos de un numero compreje

#### Conjunto de los logaritmos y logaritmo principal

El conjunto de los logaritmos de  $z \in \mathbb{C}^*$ :

$$\operatorname{Log} z = \left\{ w \in \mathbb{C} : e^{w} = z \right\} = \left\{ \ln|z| + i\theta : \theta \in \operatorname{Arg} z \right\}$$

Relación entre logaritmos y argumentos:

$$\operatorname{Arg} z = \operatorname{Im} (\operatorname{Log} z)$$
 y  $\operatorname{Log} z = \operatorname{ln} |z| + i \operatorname{Arg} z$ 

El logaritmo principal de  $z \in \mathbb{C}^*$ :

$$\log z = \ln|z| + i \arg z$$

La función  $\log: \mathbb{C}^* \to \mathbb{C}$  también es el logaritmo principal

Extiende al logaritmo real:  $\log x = \ln x \quad \forall x \in \mathbb{R}^+$ 

## Propiedad algebraica de los logaritmos

 $2\pi i\,\mathbb{Z}\,$ es un subgrupo aditivo de  $\mathbb{C}$   $\mbox{Log}\;z\in\mathbb{C}/2\pi i\mathbb{Z}\quad\forall z\in\mathbb{C}^*$ 

## La propiedad clave de los logaritmos

Log :  $\mathbb{C}^* \to \mathbb{C}/2\pi i\mathbb{Z}$  es un isomorfismo de grupos

El logaritmo principal no tiene la propiedad anterior:

$$0 = \log 1 = \log ((-1)(-1)) \neq \log(-1) + \log(-1) = 2\pi i$$

No podemos elegir un logaritmo para tener dicha propiedad:

No existe una función  $g:\mathbb{C}^* \to \mathbb{C}$  verificando:

$$g(z) \in \text{Log } z \ \forall z \in \mathbb{C}^*$$
  $y \ g(zw) = g(z) + g(w) \ \forall z, w \in \mathbb{C}^*$ 

## Planteamiento del problema del logaritmo holomorfo

#### Logaritmos holomorfos en un abierto

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}^{*}.$$
 Un logaritmo en  $\Omega$  es una función  $g:\Omega \to \mathbb{C}$  verificando:

$$g(z) \in \text{Log } z \quad \forall z \in \Omega$$
 es decir,  $e^{g(z)} = z \quad \forall z \in \Omega$   
¿ Existe un logaritmo holomorfo en  $\Omega$ ?

#### Logaritmos y argumentos de una función

$$\emptyset \neq A \subset \mathbb{C}$$
,  $f: A \to \mathbb{C}^*$ 

• Un logaritmo de f es una función  $g:A\to\mathbb{C}$  que verifique:

$$g(z) \in \text{Log } f(z) \quad \forall z \in A, \text{ es decir, } e^{g(z)} = f(z) \quad \forall z \in A$$

 $\bullet$  Un argumento de f es una función  $\phi:A\to\mathbb{R}$  que verifique:

$$\varphi(z) \in \operatorname{Arg} f(z) \quad \forall z \in A$$

g logaritmo de  $f \implies \varphi = \operatorname{Im} g$  argumento de f

 $\varphi$  argumento de  $f \implies g = \ln|f| + i\varphi$  logaritmo de f

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} , f \in \mathcal{H}(\Omega) , f(\Omega) \subset \mathbb{C}^*$$

Problema: ¿Tiene f un logaritmo holomorfo?

La exponencial

## Observaciones sobre el problema del logaritmo holomorfo

#### Lema 1: Derivabilidad de un logaritmo continuo

$$\emptyset \neq A \subset \mathbb{C}$$
,  $f: A \to \mathbb{C}^*$ ,  $g$  un logaritmo de  $f$ 

$$\left. \begin{array}{ccc} f & \text{derivable en} & a \in A \cap A' \\ g & \text{continua en} & a \end{array} \right\} \quad \Longrightarrow \quad g & \text{derivable en} \quad a & \text{con} \quad g'(a) = \frac{f'(a)}{f(a)}$$

## Lema 2: Logaritmos holomorfos y primitivas

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$$
 ,  $f \in \mathcal{H}(\Omega)$  ,  $f(\Omega) \subset \mathbb{C}^*$ 

Si 
$$g \in \mathcal{H}(\Omega)$$
 verifica que  $g'(z) = \frac{f'(z)}{f(z)}$  para todo  $z \in \Omega$ ,

entonces existe  $\lambda \in \mathcal{H}(\Omega)$ , tal que  $\lambda + g$  es un logaritmo de f y

 $\lambda$  es constante en cada componente conexa de  $\Omega$ .

## Consecuencia de los lemas anteriores

#### Primitivas

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$$
 ,  $h \in \mathcal{F}(\Omega)$ 

Una primitiva de h es una función  $g \in \mathcal{H}(\Omega)$  tal que g' = h

#### Consecuencia de los resultados anteriores

Para  $\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$  y  $f \in \mathcal{H}(\Omega)$  con  $f(\Omega) \subset \mathbb{C}^*$ , son equivalentes:

- $\bullet$  f tiene un argumento continuo
- f tiene un logaritmo continuo
- $\bullet \ f$ tiene un logaritmo holomorfo
- f'/f tiene una primitiva

## Ejemplos de logaritmos holomorfos

## Holomorfía del logaritmo principal

$$\log \in \mathcal{H}(\mathbb{C}^* \setminus \mathbb{R}^-)$$
 con  $\log'(z) = \frac{1}{z} \quad \forall z \in \mathbb{C}^* \setminus \mathbb{R}^-$ 

log no tiene límite en ningún punto de  $\mathbb{R}^-$ 

#### Logaritmos análogos al principal

Fijado  $\theta \in \mathbb{R}$ , definimos un logaritmo en  $\mathbb{C}^*$ :

$$f_{\theta}(z) = \log \left( e^{i(\pi - \theta)} z \right) - i(\pi - \theta) \quad \forall z \in \mathbb{C}^*$$

Entonces  $f \in \mathcal{H}(\Omega_{\theta})$  donde  $\Omega_{\theta} = \mathbb{C}^* \setminus \{ \rho e^{i\theta} : \rho \in \mathbb{R}^+ \}$ 

## Otra forma de construir logaritmos holomorfos

## Un ejemplo de función analítica

La exponencial

Fijado  $a \in \mathbb{C}^*$  arbitrario, se tiene:

$$\frac{1}{z} = \sum_{n=0}^{\infty} \frac{(-1)^n}{a^{n+1}} (z - a)^n \qquad \forall z \in D(a, |a|)$$

#### Logaritmo holomorfo en un disco que no contenga al origen

Fijado  $a \in \mathbb{C}^*$ , definiendo:

$$g(z) = \log a + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{na^n} (z-a)^n \qquad \forall z \in D(a,|a|)$$

se tiene que  $g \in \mathcal{H}(D(a,|a|))$  y  $e^{g(z)} = z$  para todo  $z \in D(a,|a|)$ .

Logaritmos

0000000

## Desarrollos en serie del logaritmo principal

Para  $a \in \mathbb{C}^* \setminus \mathbb{R}^-$ , sea  $\rho_a = \begin{cases} |a| & \text{si } \operatorname{Re} a \geqslant 0 \\ |\operatorname{Im} a| & \text{si } \operatorname{Re} a < 0 \end{cases}$ 

Entonces:

$$\log z = \log a + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n a^n} (z - a)^n \qquad \forall z \in D(a, \rho_a)$$

En particular, el logaritmo principal es una función analítica en  $\mathbb{C}^* \setminus \mathbb{R}^-$ .

## Potencia de base y exponente complejos

## Definición de la potencia

Motivación:  $x^y = e^{y \ln x} \quad \forall x \in \mathbb{R}^+, \ \forall y \in \mathbb{R}$ 

Potencia de base  $z \in \mathbb{C}^*$  y exponente  $w \in \mathbb{C}$ :

$$[z^w] = \exp(w \operatorname{Log} z) = \{\exp(w\lambda) : \lambda \in \operatorname{Log} z\}$$

#### Potencia principal

Calculemos  $\exp(w \log z)$  en casos conocidos:

• 
$$z \in \mathbb{C}^*$$
,  $w = p \in \mathbb{Z} \implies \exp(p \log z) = z^p$ 

• 
$$z = x \in \mathbb{R}^+$$
,  $w = y \in \mathbb{R} \implies \exp(y \log x) = x^y$ 

• 
$$z = e$$
,  $w \in \mathbb{C} \implies \exp(w \log e) = e^w$ 

Potencia principal de base  $z \in \mathbb{C}^*$  y exponente  $w \in \mathbb{C}$ :

$$z^{w} = \exp(w \log z)$$
$$[z^{w}] = \{ z^{w} e^{2k\pi i w} : k \in \mathbb{Z} \}$$

#### Exponente no racional

Para 
$$w \in \mathbb{C} \setminus \mathbb{Q}$$
 y  $z \in \mathbb{C}^*$ 

la aplicación  $k \mapsto z^w e^{2k\pi i w}$ , de  $\mathbb{Z}$  en  $[z^w]$ , es biyectiva luego el conjunto  $[z^w]$  es infinito numerable

#### Raíces n-ésimas

Para cada  $n \in \mathbb{N}$ , todo  $z \in \mathbb{C}^*$  tiene n raíces n-ésimas distintas, que son los elementos de la potencia  $\lceil z^{1/n} \rceil$ :

$$[z^{1/n}] = \{ v \in \mathbb{C} : v^n = z \} = \{ z^{1/n} e^{2r\pi i/n} : r \in \mathbb{Z}, \ 0 \leqslant r < n \}$$

Raíz *n*-ésima principal: 
$$z^{1/n} = \exp((1/n)\log z) \quad \forall z \in \mathbb{C}^*$$

En  $\mathbb{R}^+$  es la raíz n-ésima positiva:  $x^{1/n} = \sqrt[n]{x} \quad \forall x \in \mathbb{R}^+$ 

Raíces n-ésimas de la unidad:

$$\begin{bmatrix} 1^{1/n} \end{bmatrix} = \{ 1, u_n, u_n^2, \dots, u_n^{n-1} \} \text{ donde } u_n = e^{2\pi i/n}$$

$$\begin{bmatrix} z^{1/n} \end{bmatrix} = \{ z^{1/n} u_n^r : r \in \mathbb{Z}, \ 0 \le r < n \} \quad \forall z \in \mathbb{C}^*$$

$$\begin{bmatrix} z^{1/n} \end{bmatrix} = \{ \sqrt[n]{|z|} e^{i(\arg z + 2r\pi)/n} : r \in \mathbb{Z}, \ 0 \le r < n \}$$

## Número de elementos de la potencia

#### Exponente racional

Si  $w \in \mathbb{Q}$  y  $n = \min\{m \in \mathbb{N} : mw \in \mathbb{Z}\}$ , entonces  $[z^w]$  tiene exactamente n elementos, para todo  $z \in \mathbb{C}^*$ . Concretamente, si  $p = nw \in \mathbb{Z}$  se tiene:

$$[z^w] = [z^{p/n}] = \{v^p : v \in [z^{1/n}]\}$$

#### Funciones exponenciales

La exponencial

Fijado  $a \in \mathbb{C}^*$ , función exponencial de base a:

$$\exp_a : \mathbb{C} \to \mathbb{C}, \qquad \exp_a(z) = a^z = e^{z \log a} \quad \forall z \in \mathbb{C}$$

Potencias complejas

Es una función entera y verifica:  $a^{z+w} = a^z a^w \quad \forall z, w \in \mathbb{C}$ 

En general,  $[a^{z+w}]$  no coincide con  $[a^z][a^w]$ 

#### Acerca de las funciones potencia

Fijado  $\alpha \in \mathbb{C}$ , para  $z, w \in \mathbb{C}^*$  se tiene:

$$\left[ (zw)^{\alpha} \right] = \left[ z^{\alpha} \right] \left[ w^{\alpha} \right]$$

En general,  $(zw)^{\alpha}$  no coincide con  $z^{\alpha}w^{\alpha}$ 

#### Raíces n-ésimas holomorfas

#### Raíz n-ésima en un conjunto

$$\emptyset \neq A \subset \mathbb{C}$$
,  $n \in \mathbb{N}$ 

Una raíz n-ésima en A es una función  $\varphi: A \to \mathbb{C}$  tal que:

$$\varphi(z)^n = z \quad \forall z \in A$$

Problema: si  $\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}$ ,

 $\hat{L}$  Existe una raíz n-ésima holomorfa en  $\Omega$ ?

## Relación con el problema del logaritmo

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C}^*$$

Si existe un logaritmo holomorfo en  $\Omega$ , entonces, existe una raíz n-ésima holomorfa en  $\Omega$ , para todo  $n \in \mathbb{N}$ 

## Algunas respuestas negativas

La exponencial

## Al problema de la raíz cuadrada

Si 
$$r \in \mathbb{R}^+$$
 y  $S = \{z \in \mathbb{C} : |z| = r\},\$ 

00000

 $_{\rm ii}$  No existe una raíz cuadrada continua en S !!

Si  $0 \in \Omega = \Omega^{\circ} \subset \mathbb{C}$ , no existe una raíz cuadrada continua en  $\Omega$ 

## Al problema del logaritmo o de la primitiva

- ullet No existe una raíz cuadrada holomorfa en  $\mathbb{C}^*$
- No existe un logaritmo holomorfo en C\*
- La función  $z \mapsto 1/z$ , definida en  $\mathbb{C}^*$ , no tiene primitiva

## El seno y el coseno

#### Definiciones

Las funciones coseno y seno se definen, para todo  $z \in \mathbb{C}$  por:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad \text{y} \qquad \text{sen } z = \frac{e^{iz} - e^{-iz}}{2i}$$

#### Primeras propiedades

• Son funciones enteras:

$$\operatorname{sen}' z = \cos z$$
 y  $\cos'(z) = -\operatorname{sen} z$   $\forall z \in \mathbb{C}$ 

• Son sumas de series de potencias convergentes en todo el plano:

$$\cos z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} \quad \text{y} \quad \text{sen } z = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} \quad \forall z \in \mathbb{C}$$

• El coseno es par y el seno es impar:

$$\cos(-z) = \cos z$$
 y  $\sin(-z) = -\sin z$   $\forall z \in \mathbb{C}$ 

La exponencial

## Fórmulas de adición y consecuencias

• Para cualesquiera  $z, w \in \mathbb{C}$  se tiene:

$$cos(z + w) = cos z cos w - sen z sen w$$
 y  
 $sen(z + w) = sen z cos w + cos z sen w$ 

- Consecuencias: para cualesquiera  $z \in \mathbb{C}$  y  $k \in \mathbb{Z}$  se tiene:
  - $\cos(z + (\pi/2)) = -\sin z$  y  $\sin(z + (\pi/2)) = \cos z$
  - $\cos(z + k\pi) = (-1)^k \cos z$  y  $\sin(z + k\pi) = (-1)^k \sin z$
  - $\bullet$  En particular,  $2\pi$  es un periodo del seno y del coseno
  - $e^{-1} \sin^2 z + \cos^2 z = 1$  $\forall z \in \mathbb{C}$

## Funciones hiperbólicas

## Seno y coseno hiperbólicos

Para  $z \in \mathbb{C}$  se define:

$$ch z = \frac{e^z + e^{-z}}{2}$$
  $y$   $sh z = \frac{e^z - e^{-z}}{2}$ 

## Algunas propiedades inmediatas

Para todo  $z \in \mathbb{C}$  se tiene:

• 
$$\operatorname{ch}'(z) = \operatorname{sh} z$$
,  $\operatorname{y} \operatorname{sh}'(z) = \operatorname{ch} z$ 

• 
$$ch^2 z - sh^2 z = 1$$

• 
$$\cos z = \operatorname{ch}(iz)$$
 y  $\operatorname{sen} z = -i \operatorname{sh}(iz)$ 

En particular, para todo  $y \in \mathbb{R}$  será:

• 
$$cos(iy) = ch y$$
  $y$   $sen(iy) = i sh y$ 

## Otras propiedades del seno y el coseno

## Partes real e imaginaria y módulo

Para z = x + iy con  $x, y \in \mathbb{R}$  se tiene:

$$\cos z = \cos x \operatorname{ch} y - i \operatorname{sen} x \operatorname{sh} y$$
  
$$\operatorname{sen} z = \operatorname{sen} x \operatorname{ch} y + i \cos x \operatorname{sh} y$$

de donde:

La exponencial

$$|\cos z|^2 = \cos^2 x + \sinh^2 y$$
$$|\sin z|^2 = \sin^2 x + \sinh^2 y$$

#### Imagen del seno y el coseno

Para  $z, w \in \mathbb{C}$  se tiene

$$\cos z = w \iff z \in -i \operatorname{Log}\left(w \pm (w^2 - 1)^{1/2}\right)$$

Por tanto, la imagen del coseno y del seno es  $\mathbb{C}$ 

En particular:  $\cos z = 0 \iff z = (2k+1)\pi/2 \text{ con } k \in \mathbb{Z}$ 

## La tangente

La exponencial

## Definición

En el dominio  $\Omega = \mathbb{C} \setminus \{ (2k+1)\pi/2 : k \in \mathbb{Z} \}$  se define la función tangente:

$$\operatorname{tg} z = \frac{\operatorname{sen} z}{\cos z} \qquad \forall z \in \Omega$$

## Algunas propiedades

- $\operatorname{tg} \in \mathcal{H}(\Omega)$  con  $\operatorname{tg}'(z) = 1 + \operatorname{tg}^2 z \ \forall z \in \Omega$ .
- $\{z+\pi: z\in\Omega\} = \Omega$  y  $\operatorname{tg}(z+\pi) = \operatorname{tg} z \ \forall z\in\Omega$ luego  $\pi$  es un periodo de la tangente
- $\operatorname{tg} z \neq \pm i \quad \forall z \in \Omega$
- Para  $w \in \mathbb{C} \setminus \{i, -i\}$  y  $z \in \Omega$  se tiene:

$$\operatorname{tg} z = w \quad \Leftrightarrow \quad z \in \frac{1}{2i} \operatorname{Log} \left( \frac{1+iw}{1-iw} \right)$$

• Por tanto, la imagen de la tangente es  $\mathbb{C}\setminus\{i,-i\}$ 

La exponencial

#### El conjunto arco-tangente

Para  $z\in\mathbb{C}\setminus\{i,-i\}$  definimos el conjunto arco-tangente de z por

$$\operatorname{Arctg} z = \frac{1}{2i} \operatorname{Log} \left( \frac{1+iz}{1-iz} \right)$$

#### El arco-tangente principal

La función arco-tangente principal se define en  $\mathbb{C} \setminus \{i, -i\}$  por:

$$\operatorname{arctg} z = \frac{1}{2i} \log \left( \frac{1+iz}{1-iz} \right) \quad \forall z \in \mathbb{C} \setminus \{i, -i\}$$

Extiende a la función arco-tangente real, lo que justifica la notación

## Propiedades del arco-tangente principal

## Algunas propiedades

La exponencial

• La función arco-tangente principal es holomorfa en el dominio:

$$U = \mathbb{C} \setminus \left\{ iy : y \in \mathbb{R} , |y| \geqslant 1 \right\}$$

verificando que:

$$arctg'(z) = \frac{1}{1+z^2} \quad \forall z \in U$$

 $\bullet$  En D(0,1) se expresa como suma de una serie de potencias:

$$\arctan z = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1} \quad \forall z \in D(0,1)$$

# Variable Compleja I Tema 6: Integral curvilínea

Integral curvilínea

Integral de Cauchy

- 2 Curvas en el plano • Nociones básicas

  - Arcos y caminos
- 3 Integral curvilínea
  - Definición
  - Propiedades
- 4 Existencia de primitiva

## Definición de la integral de Cauchy

#### Definición

En lo que sigue fijamos  $a, b \in \mathbb{R}$  con a < b

Integral de una función continua  $f:[a,b] \to \mathbb{C}$ 

$$\int_{a}^{b} f(t) dt \stackrel{\text{def}}{=} \int_{a}^{b} \operatorname{Re} f(t) dt + i \int_{a}^{b} \operatorname{Im} f(t) dt$$

 $C[a,b] = \{$  funciones continuas de [a,b] en  $\mathbb{C} \}$  espacio de Banach (complejo) con la norma:

$$||f||_{\infty} \stackrel{\text{def}}{=} \max \{|f(t)| : t \in [a,b]\}$$
  $\forall f \in C[a,b]$ 

Tenemos un funcional  $\Phi: C[a,b] \to \mathbb{C}$  definido por:

$$\Phi(f) = \int_{a}^{b} f(t) dt \qquad \forall f \in C[a, b]$$

## Propiedades de la integral con respecto al integrando

#### Linealidad

El funcional  $\Phi$  es lineal, es decir, para  $f,g \in C[a,b]$  y  $\lambda,\mu \in \mathbb{C}$  se tiene:

$$\int_{a}^{b} \left( \lambda f(t) + \mu g(t) \right) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

#### Continuidad

El funcional  $\Phi$  es continuo. Más concretamente, para toda  $f\in C[a,b]$  se tiene:

$$\left| \int_{a}^{b} f(t) dt \right| \leqslant \int_{a}^{b} |f(t)| dt \leqslant (b-a) \|f\|_{\infty}$$

# Propiedad de la integral con respecto al intervalo

# Notación para lo que sigue

Intervalo no trivial:  $I \subset \mathbb{R}$ 

 $\mathcal{C}(I)$  espacio vectorial complejo de todas las funciones continuas de I en  $\mathbb{C}$ Para  $f \in \mathcal{C}(I)$  usamos la integral de f con límites arbitrarios  $a,b \in I$ con las definiciones usuales. Concretamente, si a < b definimos:

$$\int_{a}^{a} f(t) dt = 0 \quad \text{y} \quad \int_{b}^{a} f(t) dt = -\int_{a}^{b} f(t) dt$$

#### Aditividad

La integral es aditiva: para cualesquiera  $f \in \mathcal{C}(I)$  y  $a,b,c \in I$  se tiene:

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

# Teorema Fundamental del Cálculo y consecuencias

#### Teorema Fundamental del Cálculo

I intervalo no trivial,  $f\in\mathcal{C}(I)$  y  $a\in I.$  La función  $F:I\to\mathbb{C}$  dada por:

$$F(x) = \int_{a}^{x} f(t) dt \qquad \forall x \in I$$

es derivable en I con F'(x) = f(x) para todo  $x \in I$ .

#### Consecuencias

• Regla de Barrow. Si  $f \in \mathcal{C}(I)$  y  $G: I \to \mathbb{C}$  es una primitiva de f, es decir, G es derivable en I con G'(x) = f(x) para todo  $x \in I$ , entonces:

$$\int_{a}^{b} f(t) dt = G(b) - G(a) \quad \forall a, b \in I$$

• Fórmula de cambio de variable. Sean I, J intervalos no triviales,  $\varphi: J \to I$  una función de clase  $C^1$  y  $f \in \mathcal{C}(I)$ . Si  $\alpha, \beta \in J$ , verifican que  $a = \varphi(\alpha)$  y  $b = \varphi(\beta)$ , entonces:

$$\int_{a}^{b} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(s)) \varphi'(s) ds$$

# Curvas en el plano

#### Primeras nociones sobre curvas

- Curva: función continua  $\varphi : [a,b] \to \mathbb{C}$  donde  $a,b \in \mathbb{R}$ , a < b
- $\varphi^* = \{ \varphi(t) : t \in [a,b] \}$  es la imagen de la curva  $\varphi$
- $\bullet \ \varphi(a)$ es el origen de  $\varphi$ y  $\ \varphi(b)$ es el extremo de  $\varphi$
- La curva  $\varphi$  es cerrada cuando  $\varphi(a) = \varphi(b)$

#### Suma de dos curvas

 $\varphi: [a,b] \to \mathbb{C} \ \text{y} \ \psi: [c,d] \to \mathbb{C} \ \text{curvas tales que} \ \varphi(b) = \psi(c)$ 

La curva suma  $\gamma = \varphi + \psi : [a, b+d-c] \to \mathbb{C}$  viene dada por:

$$\gamma(t) = \begin{cases} \varphi(t) & \text{si } a \leq t \leq b \\ \psi(c+t-b) & \text{si } b \leq t \leq b+d-c \end{cases}$$

$$\gamma^* = \varphi^* \cup \psi^*; \quad \gamma(a) = \varphi(a); \quad \gamma(b+d-c) = \psi(d)$$

# Suma de dos curvas

#### Observaciones sobre la suma de dos curvas

• Sean  $\varphi:[a,b]\to\mathbb{C}$  y  $\psi:[c,d]\to\mathbb{C}$  curvas con  $\varphi(b)=\psi(c)$ , y sea  $\gamma=\varphi+\psi:[a,b+d-c]\to\mathbb{C}$  la curva suma. Entonces:

$$\gamma|_{[a,b]} = \varphi$$
  $y$   $\gamma|_{[b,b+d-c]} = \psi \circ \tau$ 

donde  $\tau(t) = c + t - b \ \forall t \in [b, b + d - c]$  $\tau$  es la traslación que lleva el intervalo [b, b + d - c] al intervalo [c, d]

• Caso b=c. Tenemos  $\varphi:[a,b]\to\mathbb{C}$  y  $\psi:[b,d]\to\mathbb{C}$  con  $\varphi(b)=\psi(b)$ . La curva suma  $\gamma=\varphi+\psi:[a,d]\to\mathbb{C}$  verifica:

$$\gamma|_{[a,b]} = \phi \qquad \quad \mathrm{y} \qquad \quad \gamma|_{[b,d]} = \psi$$

• Recíprocamente:  $\gamma \colon [a,d] \to \mathbb{C}$  curva arbitraria y  $b \in ]a,d[$ . Entonces:

$$\gamma = \gamma \big|_{[a,b]} + \gamma \big|_{[b,d]}$$

• Volviendo al caso general, tenemos:

$$\varphi + \psi = \gamma = \gamma |_{[a,b]} + \gamma |_{[b,b+d-c]} = \varphi + (\psi \circ \tau)$$

#### Asociatividad de la suma de curvas

#### Asociatividad

La suma de curvas tiene la propiedad asociativa, es decir: si  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$  son curvas tales que el extremo de  $\phi_1$  es el origen de  $\phi_2$  y el extremo de  $\phi_2$  es el origen de  $\phi_3$ , entonces:

$$\left(\phi_1+\phi_2\right)+\phi_3=\phi_1+\left(\phi_2+\phi_3\right)$$

Esto permitirá usar cómodamente sumas de n curvas con  $n\in\mathbb{N}$  arbitrario

#### Partición de un intervalo

Partición de un intervalo [a,b]: conjunto finito  $P \subset [a,b]$  tal que  $a,b \in P$ 

Los puntos de una partición se numeran siempre de menor a mayor: si  $P = \{t_0, t_1, \dots, t_n\}$  es una partición de [a, b], se entiende siempre que  $a = t_0 < t_1 < \dots < t_n = b$ . Para recordarlo escribimos:

$$P = \{ a = t_0 < t_1 < \dots < t_n = b \}$$

#### Sumas finitas de curvas

## Observaciones sobre sumas de n curvas con $n \in \mathbb{N}$ , n > 2

Para  $k=1,2,\ldots,n$  sea  $\varphi_k:[a_k,b_k]\to\mathbb{C}$  una curva y supongamos que  $\varphi_k(b_k)=\varphi_{k+1}(a_{k+1})$  para  $k=1,2,\ldots,n-1$ . Tenemos la curva suma:

$$\gamma = \varphi_1 + \varphi_2 + \ldots + \varphi_n = \sum_{k=1}^n \varphi_k$$

- $\gamma: [a,b] \to \mathbb{C}$  donde  $a = a_1$  y  $b = a + \sum_{k=1}^{n} (b_k a_k)$
- Tomando  $t_0 = a$  y  $t_k = a + \sum_{j=1}^{n} (b_j a_j)$  para  $k = 1, 2, \dots, n$ , tenemos una partición  $P = \{a = t_0 < t_1 < \dots < t_n = b\}$  del intervalo [a, b] tal que, para  $k = 1, 2, \dots, n$  se tiene:

$$\gamma\big|_{[t_{k-1},t_k]}=\varphi_k\circ\tau_k$$

donde  $\tau_k$ es la traslación que lleva  $[t_{k-1},t_k]\;$  a  $\;[a_k,b_k]\;$ 

$$\bullet \ \gamma^* = \bigcup_{k=0}^{n} \varphi_k^* \ ; \qquad \gamma(a) = \varphi_1(a_1) \ ; \qquad \gamma(b) = \varphi_n(b_n)$$

# Sumas finitas de curvas. Curva opuesta

#### Descomposición de una curva como suma

Toda partición  $P = \{a = t_0 < t_1 < \dots < t_n = b\}$  de un intervalo [a,b] permite expresar cualquier curva  $\gamma : [a,b] \to \mathbb{C}$  como suma de n curvas:

$$\gamma = \sum_{k=1}^n \gamma \big|_{[t_{k-1},t_k]}$$

#### Curva opuesta

Dada una curva  $\varphi:[a,b]\to\mathbb{C}$ , la curva opuesta de  $\varphi$  es la curva  $-\varphi:[a,b]\to\mathbb{C}$  definida por

$$(-\varphi)(t) = \varphi(a+b-t) \qquad \forall \ t \in [a,b]$$
$$(-\varphi)^* = \varphi^*; \qquad (-\varphi)(a) = \varphi(b); \qquad (-\varphi)(b) = \varphi(a)$$

Ejemplo: las sumas  $\phi + (-\phi)$  y  $(-\phi) + \phi$  tienen sentido y son curvas cerradas, ;; pero son distintas!!

#### Arcos

#### Definición de arco

Llamaremos arco a toda curva de clase C<sup>1</sup>

 $\sigma: [a,b] \to \mathbb{C}$  derivable en [a,b] con  $\sigma' \in C[a,b]$ 

Entonces, la curva opuesta  $(-\sigma):[a,b]\to\mathbb{C}$  también es un arco

#### Ejemplos de arcos

• Para  $z, w \in \mathbb{C}$ , el segmento de origen z y extremo w es el arco  $[z, w] = \sigma : [0, 1] \to \mathbb{C}$  definido por

$$\sigma(t) = (1-t)z + tw \qquad \forall t \in [0,1]$$

$$-[z,w] = [w,z]$$

 $[z,w]^* = [w,z]^* \subset \mathbb{C}$  es el "segmento" de extremos z y w

• Para  $z \in \mathbb{C}$  y  $r \in \mathbb{R}^+$ , la circunferencia de centro z y radio r es el arco  $C(z,r) = \Phi : [-\pi,\pi] \to \mathbb{C}$  definido por

$$\varphi(t) = z + re^{it} \qquad \forall t \in [-\pi, \pi]$$

Su imagen  $C(z,r)^*=\{w\in\mathbb{C}:|w-z|=r\}\subset\mathbb{C}$  es la "circunferencia" de centro z y radio r

Integral de Cauchy

#### Definición de camino

Un camino es una suma de arcos, es decir,

una curva de la forma  $\gamma = \sum_{k=1}^{\infty} \sigma_{k}$ , donde,  $\sigma_{1}, \sigma_{2}, \dots \sigma_{n}$  son arcos

Toda suma de caminos es un camino

#### Caracterización

Para una curva  $\gamma:[a,b]\to\mathbb{C}$ , las siguientes afirmaciones son equivalentes:

- (i) γ es un camino
- (ii) Existe una partición  $P = \{a = t_0 < t_1 < \dots < t_n = b\}$  del intervalo [a, b]tal que, para  $k \in \{1, 2, ..., n\}$ , la restricción de  $\gamma$  al intervalo  $[t_{k-1}, t_k]$  es una función de clase C<sup>1</sup>

# Ejemplo de camino

Dados  $n \in \mathbb{N}$  y  $z_0, z_1, \dots, z_n \in \mathbb{C}$ , llamamos poligonal de vértices

$$[z_0, z_1, \dots, z_n] \stackrel{\text{def}}{=} \sum_{k=1}^n [z_{k-1}, z_k]$$

# Definición de la integral curvilínea

# Integral sobre un arco

Sea  $\sigma:[a,b]\to\mathbb{C}$  un arco y  $f:\sigma^*\to\mathbb{C}$  una función continua.

La integral de f sobre el arco  $\sigma$  viene dada por

$$\int_{\mathbf{\sigma}} f(z) dz \stackrel{\text{def}}{=} \int_{a}^{b} f(\mathbf{\sigma}(t)) \, \mathbf{\sigma}'(t) dt$$

#### Integral sobre un camino

Sea  $\gamma \colon [a,b] \to \mathbb{C}$  un camino y  $f : \gamma^* \to \mathbb{C}$  una función continua. Consideremos una partición  $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$  de [a,b] tal que, para  $k = 1,2,\ldots,n$ , la función  $\gamma_k = \gamma\big|_{[t_{k-1},t_k]}$  sea de clase  $C^1$ .

La integral de f sobre el camino  $\gamma$  viene dada por:

$$\int_{\gamma} f(z) \, dz = \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) \, dz = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} f(\gamma_{k}(t)) \gamma_{k}'(t) \, dt$$

Esta definición es correcta:

la suma del segundo miembro no depende de la partición  ${\cal P}$  que usemos

# Observaciones y notación

#### Expresión más cómoda para la integral sobre un camino

Sea  $\gamma = \sum_{k=1}^{n} \sigma_k$  un camino expresado como suma de arcos.

Para toda función continua  $f: \gamma^* \to \mathbb{C}$  se tiene:

$$\int_{\gamma} f(z) dz = \sum_{k=1}^{n} \int_{\sigma_k} f(z) dz$$

#### Notación para las propiedades de la integral

Dado un camino  $\,\gamma,$  consideramos el espacio de Banach

 $C(\gamma^*)$  de todas las funciones continuas del compacto  $\gamma^*$  en  $\mathbb{C}\,,$  con norma

$$||f||_{\infty} = \max\{|f(z)| : z \in \gamma^*\}$$
  $\forall f \in C(\gamma^*)$ 

# Propiedades de la integral curvilínea (I)

#### Linealidad

Si  $\gamma$  es un camino,  $f,g \in C(\gamma^*)$  y  $\lambda,\mu \in \mathbb{C}$ , se tiene:

$$\int_{\gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$$

# Longitud de un camino

La longitud de un arco  $\sigma:[c,d]\to\mathbb{C}$  se define por:  $l(\sigma)=\int_c^d |\sigma'(t)|dt$ 

Por ejemplo, para  $z,w\in\mathbb{C}\,$  y  $\,r\in\mathbb{R}^{+}\,$  se tiene:

$$l([z, w]) = |w - z|$$
  $y$   $l(C(z,r)) = 2\pi r$ 

La longitud de un camino  $\gamma = \sum_{k=1}^{n} \sigma_k$  (suma de arcos), será:

$$l(\gamma) = \sum_{k=1}^{n} l(\sigma_k)$$

#### Continuidad

Dado un camino  $\gamma$ , se tiene:

$$\left| \int_{\gamma} f(z) \, dz \right| \leqslant |l(\gamma)| \|f\|_{\infty} \qquad \forall f \in C(\gamma^*)$$

luego la integral sobre  $\gamma$  es un funcional lineal continuo en  $C(\gamma^*)$ 

#### Consecuencia de la linealidad y la continuidad

Sea  $\gamma$  un camino y  $f_n \in C(\gamma^*)$  para todo  $n \in \mathbb{N} \cup \{0\}$ .

Si la serie  $\sum_{n\geqslant 0} f_n$  converge uniformemente en  $\gamma^*$ , entonces:

$$\int_{\gamma} \left( \sum_{n=0}^{\infty} f_n(z) \right) dz = \sum_{n=0}^{\infty} \int_{\gamma} f_n(z) dz$$

# Propiedades de la integral curvilínea (III)

# Aditividad

• Si  $\gamma$ ,  $\varphi$  son caminos y el extremo de  $\gamma$  es el origen  $\varphi$ , para toda función  $f \in C((\gamma + \varphi)^*) = C(\gamma^* \cup \varphi^*)$ , se tiene:

$$\int_{\gamma+\varphi} f(z) \, dz = \int_{\gamma} f(z) \, dz + \int_{\varphi} f(z) \, dz$$

• Para todo camino  $\gamma$ y toda función  $f \in C\left(\gamma^*\right) = C\left((-\gamma)^*\right)$  se tiene:

$$\int_{-\gamma} f(z) dz = -\int_{\gamma} f(z) dz$$

# Regla de Barrow para la integral curvilínea

# Regla de Barrow

$$\emptyset \neq \Omega = \Omega^{\circ} \subset \mathbb{C} \ , \ \ f \in \mathcal{C}(\Omega)$$

Supongamos que f tiene primitiva, es decir,

$$\exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \quad \forall z \in \Omega$$

Si un camino  $\gamma:[a,b]\to\mathbb{C}$  verifica que  $\gamma^*\subset\Omega$ , entonces:

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

#### Nota

Si  $\Omega$  es un abierto de  $\mathbb C$  y un camino  $\gamma:[a,b]\to\mathbb C$  verifica que  $\gamma^*\subset\Omega$ , diremos que  $\gamma$  es un camino en  $\Omega$ .

# Existencia de primitiva

# Teorema: Caracterización de la existencia de primitiva

$$\emptyset 
eq \Omega = \Omega^{\circ} \subset \mathbb{C}$$
 ,  $f \in \mathcal{C}(\Omega)$ 

Las siguientes afirmaciones son equivalentes:

- f tiene primitiva:  $\exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \quad \forall z \in \Omega$
- Para todo camino cerrado  $\gamma$  en  $\Omega$  se tiene que  $\int_{\gamma} f(z) dz = 0$ .

## Lema de construcción de primitivas

$$\emptyset 
eq \Omega = \Omega^{\circ} \subset \mathbb{C} \ , \ f \in \mathcal{C}(\Omega)$$

Sea  $F:\Omega\to\mathbb{C}$  una función verificando la siguiente condición: para cada  $a\in\Omega$  existe  $r\in\mathbb{R}^+$  tal que  $D(a,r)\subset\Omega$  y

$$F(z) = F(a) + \int_{[a,z]} f(w) dw \qquad \forall z \in D(a,r)$$

Entonces 
$$F \in \mathcal{H}(\Omega)$$
 y  $F'(z) = f(z) \ \forall z \in \Omega$ .

# Tema 7: Teorema local de Cauchy

Variable Compleja I

Teorema local de Cauchy

2 Teorema de Cauchy para el triángulo

3 Teorema local de Cauchy

4 Fórmula de Cauchy

# Esquema común a todos los teoremas de Cauchy

$$\Omega = \Omega^{\circ} \subset \mathbb{C} \,, \quad f \in \mathcal{H}(\Omega) \,, \quad \gamma \ \text{camino cerrado en } \ \Omega$$

# Hipótesis adicional

 $\downarrow$ 

$$\int_{\gamma} f(z)dz = 0$$

# Descomposición de un segmento

$$z_0, z_2 \in \mathbb{C}, \quad \alpha \in ]0,1[, \quad z_1 = (1-\alpha)z_0 + \alpha z_2$$

- $[z_0, z_1, z_2]^* = [z_0, z_2]^*$
- $\int_{[z_0,z_1]} f(z) dz + \int_{[z_1,z_2]} f(z) dz = \int_{[z_0,z_2]} f(z) dz$   $\forall f \in C([z_0,z_2]^*)$

#### Triángulos

- Triángulo de vértices  $a,b,c \in \mathbb{C}$ :  $\Delta(a,b,c) = \bigcup_{z \in [b,c]^*} [a,z]^*$
- $\bullet \ \Delta(a,b,c) = \{\alpha a + \beta b + \rho c : \alpha,\beta,\rho \in [0,1], \ \alpha + \beta + \rho = 1\}$
- $\bullet$  Mínimo conjunto convexo que contiene a a,b,c. También es compacto
- Diámetro de un conjunto.  $\emptyset \neq A \subset \mathbb{C}$ , A acotado:

$$\operatorname{diam} A = \sup \{ |w - z| : z, w \in A \}$$

• Caso de un triángulo:  $\operatorname{diam} \Delta(a,b,c) = \max \{|b-a|,|c-b|,|a-c|\}$ 

# Teorema de Cauchy para el triángulo

#### Teorema de Cauchy-Goursat

$$\begin{split} \Omega &= \Omega^{\circ} \subset \mathbb{C} \,, \quad f \in \mathcal{H}(\Omega) \\ a,b,c \in \mathbb{C} \,, \quad \Delta(a,b,c) \subset \Omega \\ & \qquad \qquad \downarrow \\ \int_{[a,b,c,a]} f(z) dz = 0 \end{split}$$

#### Observación adicional

El teorema anterior sigue siendo cierto si se supone solamente que  $f:\Omega \to \mathbb{C}$  verifica:

$$\exists z_0 \in \Omega : f \in \mathcal{H}(\Omega \setminus \{z_0\})$$
 y  $f$  es continua en  $z_0$ 

Esta versión del teorema parece más general, ji pero no lo es!! como se verá más adelante

# Teorema local de Cauchy

#### Dominios estrellados

 $\Omega = \Omega^{\circ} \subset \mathbb{C}$ es un dominio estrellado cuando:

$$\exists \alpha \in \Omega : [\alpha, z]^* \subset \Omega \quad \forall z \in \Omega$$

- $\bullet$  Convexo  $\implies$  Estrellado
- $\bullet$   $\mathbb{C}^* \setminus \mathbb{R}^-$  es un dominio estrellado, pero no es convexo

#### Teorema de Cauchy para dominios estrellados

$$\Omega$$
 dominio estrellado,  $f \in \mathcal{H}(\Omega)$ 

Entonces f tiene una primitiva, es decir:

$$\int_{\gamma} f(z)dz = 0 \text{ para todo camino cerrado } \gamma \text{ en } \Omega$$

#### Observación adicional

Nuevamente basta suponer que existe  $z_0 \in \Omega$  tal que  $f \in \mathcal{H}\big(\Omega \setminus \{z_0\}\big)$  y f es continua en  $z_0$ 

#### Lema

Preliminares

Para  $a \in \mathbb{C}$ ,  $r \in \mathbb{R}^+$  y  $z \in D(a,r)$  se tiene:

$$\int_{C(a,r)} \frac{dw}{w - z} = 2\pi i$$

## Fórmula de Cauchy para una circunferencia

Sean 
$$\Omega = \Omega^{\circ} \subset \mathbb{C}$$
 y  $f \in \mathcal{H}(\Omega)$ 

Dados  $a \in \Omega$  y  $r \in \mathbb{R}^+$  tales que  $\overline{D}(a,r) \subset \Omega$ , se tiene:

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw \qquad \forall z \in D(a,r)$$

# Variable Compleja I Tema 8: Equivalencia en

Tema 8: Equivalencia entre analiticidad y holomorfía

 $\bigcirc$  Analiticidad  $\iff$  Holomorfía

2 Fórmula de Cauchy para las derivadas

3 Teorema de extensión de Riemann

Analiticidad  $\iff$  Holomorfía

# Desarrollo en serie de Taylor

Si  $\Omega = \Omega^{\circ} \subset \mathbb{C}$  y  $f \in \mathcal{H}(\Omega)$ , entonces f es analítica en  $\Omega$ , y en particular f es indefinidamente derivable en  $\Omega$ . Además:

• Si  $\Omega = \mathbb{C}$ , para todo  $a \in \Omega$ , la serie de Taylor  $\sum_{n \geqslant 0} \frac{f^{(n)}(a)}{n!} (z-a)^n$  tiene radio de convergencia infinito y

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n \qquad \forall z \in \mathbb{C}$$

• Si  $\Omega \neq \mathbb{C}$ ,  $a \in \Omega$  y  $R_a = d(a, \mathbb{C} \setminus \Omega)$ , la serie de Taylor  $\sum_{n \geqslant 0} \frac{f^n(a)}{n!} (z-a)^n$  tiene radio de convergencia mayor o igual que  $R_a$  y:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n \qquad \forall z \in D(a, R_a)$$

# Comentarios al teorema: caso $\Omega = \mathbb{C}$

# Lo que ya sabíamos

$$\Lambda = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \lim_{n \to \infty} |\alpha(n)|^{1/n} = 0 \right\}$$

Para  $\alpha \in \Lambda$  se tiene:

- La serie  $\sum \alpha(n)z^n$  tiene radio de convergencia infinito (Fórmula de Cauchy-Hadamard)
- $\bullet$  Si  $f_\alpha(z)=\sum \alpha(n)z^n$  para todo  $z\in\mathbb{C},$  entonces  $f_\alpha\in\mathcal{H}(\mathbb{C})$ (Holomorfía de la suma de una serie de potencias)
- $\beta \in \Lambda$ ,  $f_{\beta} = f_{\alpha} \implies \beta = \alpha$ (Principio de identidad para series de potencias)

# Comentarios al teorema: caso $\Omega = \mathbb{C}$

# Lo que ahora sabemos

$$\Lambda = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \lim_{n \to \infty} |\alpha(n)|^{1/n} = 0 \right\}$$

- Toda función entera es analítica en  $\mathbb{C}$ :  $f_{\alpha}$  analítica en  $\mathbb{C}$   $\forall \alpha \in \Lambda$
- Si  $f \in \mathcal{H}(\mathbb{C})$  y  $\alpha(n) = \frac{f^{(n)}(0)}{n!} \quad \forall n \in \mathbb{N} \cup \{0\}, \text{ entonces:}$

$$\alpha \in \Lambda$$
  $y$   $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = f_{\alpha}(z) \ \forall z \in \mathbb{C}$ 

Hemos "parametrizado" el conjunto de todas las funciones enteras:

$$\mathcal{H}(\mathbb{C}) = \{ f_{\alpha} : \alpha \in \Lambda \}$$

• 
$$f \in \mathcal{H}(\mathbb{C}) \implies f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n \quad \forall a, z \in \mathbb{C}$$

El desarrollo en serie de Taylor de una función entera, centrado en cualquier punto del plano, es válido en todo el plano

Comentarios al teorema: caso  $\Omega = D(a,R)$  con  $a \in \mathbb{C}$  y  $R \in \mathbb{R}^+$ 

# Lo que ya sabíamos

$$\Lambda_R = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \limsup_{n \to \infty} |\alpha(n)|^{1/n} \leqslant 1/R \right\}$$

Para  $\alpha \in \Lambda_R$  se tiene:

- La serie  $\sum_{n\geqslant 0} \alpha(n)z^n$  tiene radio de convergencia mayor o igual que R(Fórmula de Cauchy-Hadamard)
- $f_{\alpha}(z) = \sum_{n=0}^{\infty} \alpha(n) (z-a)^n \quad \forall z \in D(a,R) \implies f_{\alpha} \in \mathcal{H}(D(a,R))$ (Holomorfía de la suma de una serie de potencias)
- $\beta \in \Lambda$ ,  $f_{\beta} = f_{\alpha} \implies \beta = \alpha$ (Principio de identidad para series de potencias)

# Comentarios al teorema: caso $\Omega = D(a,R)$ con $a \in \mathbb{C}$ y $R \in \mathbb{R}^+$

# Lo que ahora sabemos

$$\Lambda_R = \left\{ \alpha : \mathbb{N} \cup \{0\} \to \mathbb{C} : \limsup_{n \to \infty} |\alpha(n)|^{1/n} \leqslant 1/R \right\}$$

- Toda  $f \in \mathcal{H}\big(D(a,R)\big)$  es analítica en  $D\big(D(a,R)\big)$ :  $f_{\alpha}$  analítica en D(a,R)  $\forall \alpha \in \Lambda_R$
- Si  $f \in \mathcal{H}(D(a,R))$  y  $\alpha(n) = \frac{f^{(n)}(a)}{n!} \quad \forall n \in \mathbb{N} \cup \{0\}, \text{ entonces:}$

$$\alpha \in \Lambda_R$$
  $y$   $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n = f_{\alpha}(z) \quad \forall z \in D(a,R)$ 

Hemos "parametrizado" el conjunto de todas las funciones holomorfas en cualquier disco abierto:  $\mathcal{H}(D(a,R)) = \{f_{\alpha} : \alpha \in \Lambda_R\}$ 

• Si  $f \in \mathcal{H}(D(a,R))$ ,  $b \in D(a,R)$  y  $R_b = R - |b-a|$  entonces:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!} (z-b)^n \quad \forall z \in D(b, R_b)$$

Analiticidad

Comentarios al teorema: caso general  $\Omega \neq \mathbb{C}$  y  $\Omega$  no es un disco abierto

#### Lo que por ahora sabemos

No tenemos una descripción "global" de cada función holomorfa en  $\Omega$  como suma de una serie de potencias (no es posible tenerla).

Por tanto no tenemos una "parametrización" de  $\mathcal{H}(\Omega)$ , es decir, un método que nos permita construir todas las funciones holomorfas en  $\Omega$ .

El teorema nos da información "local":

- $f \in \mathcal{H}(\Omega) \implies f$  analítica en  $\Omega$
- Si  $f \in \mathcal{H}(\Omega)$ ,  $a \in \Omega$  y  $R_a = d(a, \mathbb{C} \setminus \Omega)$ , entonces la serie Taylor de fcentrada en a tiene radio de convergencia mayor o igual que  $R_a$  y se verifica que:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n \qquad \forall z \in D(a, R_a)$$

El desarrollo en serie de Taylor de f en cada punto  $a \in \Omega$  es válido en el disco de centro a y cuyo radio es el máximo posible

# Fórmula de Cauchy para las derivadas: motivación

# Repaso de dos fórmulas conocidas

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega, \quad r \in \mathbb{R}^+, \quad \overline{D}(a,r) \subset \Omega$$

• Fórmula de Cauchy:

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw \quad \forall z \in D(a,r)$$

 $\bullet$  Para  $k\in\mathbb{N}\cup\{0\},$ ahora sabemos que  $f^{(k)}\in\mathcal{H}(\Omega),$ luego

$$f^{(k)}(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f^{(k)}(w)}{w - z} dw \quad \forall z \in D(a,r)$$

Esto no es nuevo, no es la fórmula que buscamos.

• En la demostración del desarrollo de Taylor vimos que:

$$\frac{f^{(k)}(a)}{k!} = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{(w-a)^{k+1}} dw \quad \forall k \in \mathbb{N} \cup \{0\}$$

Para k=0 obtenemos la fórmula de Cauchy, ji pero sólo para z=a!!

#### Teorema

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega, \quad r \in \mathbb{R}^{+}, \quad \overline{D}(a,r) \subset \Omega$$

Entonces:

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{C(a,r)} \frac{f(w)}{(w-z)^{k+1}} dw \quad \forall z \in D(a,r), \ \forall k \in \mathbb{N} \cup \{0\}$$

#### Funciones derivables en un abierto salvo en un punto

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \ \ z_0 \in \Omega, \ \ f \in \mathcal{H}(\Omega \setminus \{z_0\})$$

Consideremos las siguientes afirmaciones:

(1) 
$$\exists g \in \mathcal{H}(\Omega) : g(z) = f(z) \ \forall z \in \Omega \setminus \{z_0\}$$

(2) 
$$\exists \lim_{z \to z_0} f(z) = w \in \mathbb{C}$$

(3) 
$$\exists \delta, M \in \mathbb{R}^+ : D(z_0, \delta) \subset \Omega \quad \text{y} \quad |f(z)| \leq M \quad \forall z \in D(z_0, \delta) \setminus \{z_0\}$$

(4) 
$$\lim_{z \to z_0} (z - z_0) f(z) = 0$$

Es evidente que 
$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$$

Para funciones reales de variable real, ninguna implicación es reversible

#### Teorema de extensión de Riemann

#### Teorema

Analiticidad

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad z_0 \in \Omega, \quad f \in \mathcal{H}(\Omega \setminus \{z_0\})$$

Las siguientes afirmaciones son equivalentes:

- (1)  $\exists g \in \mathcal{H}(\Omega) : g(z) = f(z) \ \forall z \in \Omega \setminus \{z_0\}$
- (2)  $\exists \lim_{z \to z_0} f(z) = w \in \mathbb{C}$
- (3)  $\exists \delta, M \in \mathbb{R}^+ : D(z_0, \delta) \subset \Omega \quad \text{y} \quad |f(z)| \leq M \quad \forall z \in D(z_0, \delta)$
- (4)  $\lim_{z \to z_0} (z z_0) f(z) = 0$

Basta obviamente probar que  $(4) \Rightarrow (1)$ 

#### Corolario

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad z_0 \in \Omega, \quad f: \Omega \to \mathbb{C}$$

Supongamos que  $f \in \mathcal{H}\big(\Omega \setminus \{z_0\}\big)$  y que f es continua en  $z_0$ 

Entonces 
$$f \in \mathcal{H}(\Omega)$$

# Variable Compleja I

Tema 9: Ceros de las funciones holomorfas

Desigualdades de Cauchy y CONSECUENCIAS

2 Principio de Identidad

# Desigualdades de Cauchy y CONSECUENCIAS

# Desigualdades de Cauchy

$$\Omega = \Omega^{\circ} \subset \mathbb{C} \,, \quad f \in \mathcal{H}(\Omega) \,, \quad a \in \Omega \,, \quad r \in \mathbb{R}^+ \,, \quad \overline{D}(a,r) \subset \Omega$$

$$M(f,a,r) = \max \{ |f(z)| : z \in C(a,r)^* \}$$

Entonces se tiene: 
$$\frac{|f^{(n)}(a)|}{n!} \leqslant \frac{M(f,a,r)}{r^n} \qquad \forall n \in \mathbb{N} \cup \{0\}$$

#### Teorema de Liouville

Toda función entera y acotada es constante

De hecho, si  $f \in \mathcal{H}(\mathbb{C})$  no es constante, entonces:  $\overline{f(\mathbb{C})} = \mathbb{C}$ 

# Teorema Fundamental del Álgebra

El cuerpo de los números complejos es algebraicamente cerrado:

$$P \in \mathcal{P}(\mathbb{C})$$
, P no constante  $\implies \exists z_0 \in \mathbb{C} : P(z_0) = 0$ 

# Motivación: ceros de polinomios

# Ceros de un polinomio y orden de un cero

$$P \in \mathcal{P}(\mathbb{C})$$
,  $P$  no constante:  $Z(P) = \{a \in \mathbb{C} : P(a) = 0\}$ 

- $\bullet \ Z(P)$ es un conjunto no vacío y finito
- Para cada  $a \in Z(P)$  existe un único  $m \in \mathbb{N}$  tal que:

$$P(z) = (z-a)^m \, Q(z) \ \ \, \forall z \in \mathbb{C} \, , \quad \text{donde} \ \, Q \in \mathcal{P}(\mathbb{C}) \quad \text{y} \quad Q(a) \neq 0$$

Decimos que P tiene en a un cero de orden m

• El orden se caracteriza por:  $m = \min\{n \in \mathbb{N} : P^{(n)}(a) \neq 0\}$ , es decir,

$$P(a) = P'(a) = \dots = P^{(m-1)}(a) = 0$$
 y  $P^{(m)}(a) \neq 0$ 

### Ceros de funciones holomorfas

# Ceros de una función holomorfa y orden de un cero

$$\Omega$$
dominio,  $f\in\mathcal{H}(\Omega)$ no idénticamente nula 
$$Z(f)=\{z\in\Omega:\, f(z)=0\}$$

- Orden de un cero: Para cada  $a \in Z(f)$  existe  $n \in \mathbb{N}$  tal que  $f^{(n)}(a) \neq 0$ . El orden del cero de f en a es:  $m = \min\{n \in \mathbb{N} : f^{(n)}(a) \neq 0\}$
- $\bullet$  Caracterización:  $a\in\Omega$ es un cero de orden  $m\in\mathbb{N}$ si, y sólo si,

$$\exists g \in \mathcal{H}(\Omega) : g(a) \neq 0$$
 y  $f(z) = (z-a)^m g(z)$   $\forall z \in \Omega$ 

• Principio de los ceros aislados:

$$\forall a \in Z(f) \ \exists \delta > 0 : D(a,\delta) \subset \Omega \quad \text{y} \quad f(z) \neq 0 \ \forall z \in D(a,\delta) \setminus \{a\}$$

Equivalentemente, Z(f) no tiene puntos de acumulación en  $\Omega$ :

$$Z(f)' \cap \Omega = \emptyset$$

#### Consecuencia

# Algunas cuestiones topológicas

• En cualquier espacio métrico X, la distancia a un conjunto no vacío  $E\subset X$  es una función no expansiva:

$$d(x,E) = \inf\{d(x,y) : y \in E\} \quad \forall x \in X.$$
 Se tiene:  
 $|d(x_1,E) - d(x_2,E)| \le d(x_1,x_2) \quad \forall x_1,x_2 \in X$ 

 $\bullet$  Todo abierto  $\Omega$  de  $\mathbb C$  es unión numerable de compactos:

$$\mathbb{C} = \bigcup_{n=1}^{\infty} \overline{D}(0,n); \quad \Omega \neq \mathbb{C} \implies \Omega = \bigcup_{n=1}^{\infty} \{ z \in \mathbb{C} : |z| \leqslant n, \quad d(z,\mathbb{C} \setminus \Omega) \geqslant 1/n \}$$

- Todo subconjunto infinito de un espacio métrico compacto tiene al menos un punto de acumulación.
- $\emptyset \neq A \subset \Omega = \Omega^{\circ} \subset \mathbb{C}, A' \cap \Omega = \emptyset \implies A$  numerable

#### Corolario

Si  $\Omega$  es un dominio y  $f \in \mathcal{H}(\Omega)$  no es idénticamente nula, entonces  $Z(f) = \{z \in \Omega : f(z) = 0\}$  es numerable

# Principio de identidad

# Teorema

$$\Omega$$
 dominio,  $f,g \in \mathcal{H}(\Omega)$ 

$$A \subset \Omega$$
,  $f(z) = g(z) \ \forall z \in A$ 

$$A' \cap \Omega \neq \emptyset \implies f(z) = g(z) \ \forall z \in \Omega$$

En particular, A no numerable  $\implies f(z) = g(z) \quad \forall z \in \Omega$ 

# Ejemplo

$$f,g \in \mathcal{H}(\mathbb{C}), \quad f(1/n) = g(1/n) \quad \forall n \in \mathbb{N} \implies f(z) = g(z) \quad \forall z \in \mathbb{C}$$

La exponencial compleja es la única extensión entera de la real

# Variable Compleja I Tema 10: Teorema de Morera y sus consecuencias

1 Teorema de Morera

2 Teorema de convergencia de Weierstrass

3 Integrales dependientes de un parámetro

#### Teorema de Morera

# Motivación

Recordemos el teorema de Cauchy para el triángulo:

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{C}(\Omega)$$

$$f \in \mathcal{H}(\Omega) \implies \int_{[a,b,c,a]} f(z)dz = 0$$
 siempre que  $\Delta(a,b,c) \subset \Omega$ 

¿ Es cierto el recíproco ?

# Teorema de Morera

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{C}(\Omega)$$

Supongamos que

$$a,b,c\in\mathbb{C}\,,\;\;\Delta(a,b,c)\subset\Omega\;\;\;\;\Longrightarrow\;\;\;\int_{[a,b,c,a]}f(z)dz=0$$

Entonces 
$$f \in \mathcal{H}(\Omega)$$

# Teorema de convergencia de Weierstrass

#### Motivación

¿Tipo de convergencia adecuado para sucesiones de funciones holomorfas?

• La convergencia puntual es demasiado débil: se puede demostrar que existe una sucesión  $\{P_n\}$  de polinomios tal que:

$${P_n(x)} \to 1 \quad \forall x \in \mathbb{R} \quad \text{y} \quad {P_n(z)} \to 0 \quad \forall z \in \mathbb{C} \setminus \mathbb{R}$$

 La convergencia uniforme en un abierto es demasiado restrictiva: una serie de potencias no suele converger uniformemente en su dominio de convergencia

# Teorema de convergencia de Weierstrass

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f_n \in \mathcal{H}(\Omega) \quad \forall n \in \mathbb{N}, \quad f : \Omega \to \mathbb{C}$$

Si  $\{f_n\} \to f$  uniformemente en cada subconjunto compacto de  $\Omega$  entonces  $f \in \mathcal{H}(\Omega)$ 

Además, para cada  $k \in \mathbb{N}$ , se tiene que  $\{f_n^{(k)}\} \to f^{(k)}$  uniformemente en cada subconjunto compacto de  $\Omega$ 

# Comentarios sobre el teorema de convergencia de Weierstrass

# No hay nada parecido en el caso real

$$f_n(x) = \frac{1}{n} \sqrt{n^2 x^2 + 1} \quad \forall x \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad f(x) = |x| \quad \forall x \in \mathbb{R}$$

- $f_n$  es derivable en  $\mathbb{R}$  para todo  $n \in \mathbb{N}$
- $\{f_n\} \to f$  uniformemente en  $\mathbb{R}$
- $\bullet$  f no es derivable en el origen

# Versión para series

Teorema de Morera

Sea  $\Omega = \Omega^{\circ} \subset \mathbb{C}$  y  $f_n \in \mathcal{H}(\Omega)$  para todo  $n \in \mathbb{N} \cup \{0\}$ . Supongamos que  $\sum f_n$  converge uniformemente en cada subconjunto compacto de  $\Omega$ , y sea  $n \ge 0$ 

$$f$$
 su suma:  $f(z) = \sum_{n=0}^{\infty} f_n(z) \quad \forall z \in \Omega$ . Entonces  $f \in \mathcal{H}(\Omega)$  y, para cada

 $k\in\mathbb{N},$ la serie  $\sum_{i}^{n=0}f_{n}^{(k)}$  converge uniformemente en cada subconjunto

compacto de 
$$\Omega$$
 con:  $f^{(k)}(z) = \sum_{n=0}^{\infty} f_n^{(k)}(z) \quad \forall z \in \Omega, \ \forall k \in \mathbb{N}$ 

# Integrales dependientes de un parámetro: Preliminares

# Integral curvilínea dependiente de un parámetro

$$\int_{\gamma} \Phi(w,z) \, dw$$

- γ es un camino
- $\bullet$   $\Phi$  es una función, con valores complejos, de dos variables:
  - $\bullet$  La variable de integración  $w \in \gamma \ensuremath{\,^*} \subset \mathbb{C}$
  - El parámetro  $z \in A$ , donde  $\emptyset \neq A \subset \mathbb{C}$
- Por tanto  $\Phi: \gamma^* \times A \to \mathbb{C}$  debe verificar: para cada  $z \in A$  la función  $w \mapsto \Phi(w,z)$  es continua en  $\gamma^*$
- Entonces podemos definir una función  $f: A \to \mathbb{C}$  por

$$f(z) = \int_{\mathcal{Y}} \Phi(w, z) \, dw \qquad \forall z \in A$$

y decimos que f es una integral (curvilínea) dependiente de un parámetro

# Integrales dependientes de un parámetro: Resultados previos

# Lema 1: Continuidad

$$\gamma$$
 camino,  $\emptyset \neq A \subset \mathbb{C}$ 

 $\Phi: \gamma^* \times A \to \mathbb{C}$  continua (como función de dos variables)

$$f: A \to \mathbb{C}, \quad f(z) = \int_{\mathcal{Y}} \Phi(w, z) dw \qquad \forall z \in A$$

Entonces f es continua en A

# Lema 2: Un teorema del tipo de Fubini para integrales curvilíneas

 $\gamma$  y  $\varphi$  dos caminos,  $\Phi: \gamma^* \times \varphi^* \to \mathbb{C}$  continua. Entonces:

$$\int_{\varphi} \left( \int_{\gamma} \Phi(w, z) \, dw \right) dz = \int_{\gamma} \left( \int_{\varphi} \Phi(w, z) \, dz \right) dw$$

# Holomorfía de la integral dependiente de un parámetro

#### Teorema

$$\gamma$$
 camino,  $\Omega = \Omega^{\circ} \subset \mathbb{C}$ ,  $\Phi : \gamma^* \times \Omega \to \mathbb{C}$ 

Para cada  $w \in \gamma^*$  sea  $\Phi_w : \Omega \to \mathbb{C}$  la función definida por

$$\Phi_w(z) = \Phi(w, z) \quad \forall z \in \Omega$$

Supongamos que:

- Φ es continua
- $\Phi_w \in \mathcal{H}(\Omega) \quad \forall w \in \gamma^*$

Entonces, definiendo  $f(z) = \int_{\mathcal{C}} \Phi(w,z) dw$  para todo  $z \in \Omega$ , se tiene:

- $f \in \mathcal{H}(\Omega)$
- Para  $z \in \Omega$  y  $k \in \mathbb{N}$ , la función  $w \mapsto \Phi_w^{(k)}(z)$ , de  $\gamma^*$  en  $\mathbb{C}$ , es continua y

$$f^{(k)}(z) = \int_{\gamma} \Phi_w^{(k)}(z) dw = \int_{\gamma} \frac{\partial^k \Phi}{\partial z^k}(z, w) dw$$

Tema 11: Comportamiento local de una función holomorfa



Variable Compleja I

Principio del módulo máximo

2 Teorema de la aplicación abierta

- 3 Comportamiento local
  - Teorema de la función inversa
  - Comportamiento local en un cero de la derivada

#### Motivación

Fórmula de Cauchy:  $\Omega = \Omega^{\circ} \subset \mathbb{C}, f \in \mathcal{H}(\Omega), \overline{D}(a,r) \subset \Omega$ 

$$f(z) = \frac{1}{2\pi i} \int_{C(a,r)} \frac{f(w)}{w - z} dw \qquad \forall z \in D(a,r)$$

Conociendo f en  $C(a,r)^*$  la conocemos en D(a,r)

Usaremos el caso más sencillo: z = a

# Propiedad de la media

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad \overline{D}(a,r) \subset \Omega$$

$$f(a) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(a + re^{it}) dt$$

Por tanto,

$$|f(a)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(a+re^{it})| dt$$

# Principio del módulo máximo

#### Teorema

$$\Omega$$
 dominio  $y f \in \mathcal{H}(\Omega)$ 

Supongamos que |f| tiene un máximo relativo en un punto  $a \in \Omega$ , es decir:

$$\exists \, \delta > 0 \; : \; D(a,\delta) \subset \Omega \quad \text{ y } \quad |f(z)| \, \leqslant \, |f(a)| \ \, \forall z \in D(a,\delta)$$

Entonces f es constante

# Corolario 1

 $\Omega$  dominio acotado,  $f: \overline{\Omega} \to \mathbb{C}$  continua en  $\overline{\Omega}$  y holomorfa en  $\Omega$ , es decir  $f \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega)$ . Entonces:

$$\max \big\{ \, | \, f(z) \, | \, : \, z \in \overline{\Omega} \, \big\} \, = \, \max \big\{ \, | \, f(z) \, | \, : \, z \in \operatorname{Fr} \left( \Omega \right) \, \big\}$$

En particular:

$$f(z) = 0 \quad \forall z \in \operatorname{Fr}(\Omega) \implies f(z) = 0 \quad \forall z \in \overline{\Omega}$$

# Principio del módulo mínimo

# Corolario 2

 $\Omega$  dominio acotado,  $f_n \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega) \ \forall n \in \mathbb{N}$ 

Supongamos que  $\{f_n\}$  converge uniformemente en  $\operatorname{Fr}\left(\Omega\right)$ 

Entonces  $\{f_n\}$  converge uniformemente en  $\overline{\Omega}$ 

a una función  $f \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega)$ 

# Principio del módulo mínimo

$$\Omega$$
 dominio  $y f \in \mathcal{H}(\Omega)$ 

Supongamos que |f| tiene un mínimo relativo en un punto  $a\in\Omega\colon$ 

$$\exists \delta > 0 \ : \ D(a,\delta) \subset \Omega \quad \ \, \mathbf{y} \quad \ \, |f(z)| \, \geqslant \, |f(a)| \ \ \forall z \in D(a,\delta)$$

Entonces, o bien f(a) = 0, o bien f es constante

# Corolario

 $\Omega$  dominio acotado,  $f \in C(\overline{\Omega}) \cap \mathcal{H}(\Omega)$ , no constante

Si |f| es constante en Fr  $(\Omega)$ , entonces existe  $a \in \Omega$  tal que f(a) = 0.

# Teorema de la aplicación abierta

#### Teorema

 $\Omega$  dominio,  $f \in \mathcal{H}(\Omega)$  no constante

Entonces f es una aplicación abierta, es decir:

$$U=U^{\circ}\subset\Omega\quad\Longrightarrow\quad f(U)=f(U)^{\circ}$$

#### Teorema de la función inversa local

#### Lema

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega)$$

La función  $\Phi: \Omega \times \Omega \to \mathbb{C}$  definida por

$$\Phi(w,z) = \begin{cases} \frac{f(w) - f(z)}{w - z} & \text{si } w \neq z \\ f'(w) = f'(z) & \text{si } w = z \end{cases}$$

es continua

# Teorema de la función inversa local

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega \text{ con } f'(a) \neq 0$$

Entonces existe un abierto U, con  $a \in U \subset \Omega$  tal que:

- f es inyectiva en U y  $f'(z) \neq 0$   $\forall z \in U$
- El conjunto V = f(U) es abierto
- Si  $\varphi = f|_U$ , entonces  $\varphi^{-1} \in \mathcal{H}(V)$  con  $(\varphi^{-1})'(f(z)) = \frac{1}{f'(z)} \quad \forall z \in U$

# Logaritmos holomorfos

# Ejemplo

$$m \in \mathbb{N}, \quad m \geqslant 2, \quad f(z) = z^m \quad \forall z \in \mathbb{C} \quad f'(0) = 0$$

Fijado
$$\delta \in \mathbb{R}^+\,,$$
para cada  $w \in D(0,\delta^m) \setminus \{0\}$ 

la ecuación f(z)=w tiene exactamente m soluciones en  $D(0,\delta)$ 

# Logaritmos holomorfos

 $\Omega$ dominio estrellado,  $\ f\in \mathcal{H}(\Omega)$  con  $f(z)\neq 0 \ \forall z\in \Omega.$  Entonces:

• f admite un logaritmo holomorfo en  $\Omega$ , es decir,

$$\exists g \in \mathcal{H}(\Omega) : f(z) = e^{g(z)} \ \forall z \in \Omega$$

• Para cada  $m \in \mathbb{N}$ , f admite una raíz m-ésima holomorfa en  $\Omega$ , es decir,

$$\exists h \in \mathcal{H}(\Omega) : f(z) = (h(z))^m \ \forall z \in \Omega$$

# Comportamiento local en un cero de la derivada

#### Teorema

 $\Omega$  dominio,  $f \in \mathcal{H}(\Omega)$  no constante,  $a \in \Omega$  tal que f'(a) = 0 y b = f(a)Sea  $m \in \mathbb{N}$  el orden del cero de la función  $z \mapsto f(z) - b$  en el punto aEntonces existen un abierto U con  $a \in U \subset \Omega$  y un  $\varepsilon > 0$  tales que:

- $f(U) = D(b, \varepsilon)$
- $z \in U$ ,  $f(z) = b \implies z = a$
- Para cada  $w \in \mathbb{C}$  con  $0 < |w-b| < \varepsilon$  la ecuación f(z) = w tiene exactamente m soluciones distintas en U, es decir, el conjunto  $\{z \in U : f(z) = w\}$  tiene exactamente m elementos.

# Caracterización de la invectividad local

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad f \in \mathcal{H}(\Omega), \quad a \in \Omega$$

f inyectiva en un entorno de  $a \iff f'(a) \neq 0$ 

# Teorema de la función inversa global

#### Teorema

U dominio,  $f \in \mathcal{H}(U)$  inyectiva. Entonces:

- V = f(U) es un dominio
- $f'(z) \neq 0 \quad \forall z \in U$
- $f^{-1} \in \mathcal{H}(V)$  con:  $(f^{-1})'(f(z)) = \frac{1}{f'(z)} \quad \forall z \in U$

# Reglas de derivación de la función inversa

funa función inyectiva definida en  $A\neq \emptyset \quad a\in A\,, \quad b=f(a)$ 

#### Funciones reales de variable real

 $A \subset \mathbb{R}, \ f: A \to \mathbb{R}$  derivable en  $a \in A'$ . Entonces  $b \in f(A)'$  y:

 $f^{-1}$  derivable en  $b\iff f^{-1}$  continua en b y  $f'(a)\neq 0$  en cuyo caso  $\left(f^{-1}\right)'(b)=1/f'(a)$ 

# Funciones de $\mathbb{R}^N$ en $\mathbb{R}^N$

 $A \subset \mathbb{R}^N, \ f: A \to \mathbb{R}^N$  diferenciable en  $a \in A^\circ$ , con  $b \in f(A)^\circ$ . Entonces:

 $f^{-1}$  diferenciable en  $b \iff f^{-1}$  continua en b y  $|Jf(a)| \neq 0$  en cuyo caso  $Df^{-1}(b) = Df(a)^{-1}$ 

# Funciones complejas de variable compleja

 $A \subset \mathbb{C}, \ f: A \to \mathbb{C}$  derivable en  $a \in A'$ . Entonces  $b \in f(A)'$  y:

 $f^{-1}$  derivable en  $b\iff f^{-1}$  continua en b y  $f'(a)\neq 0$  en cuyo caso  $\left(f^{-1}\right)'(b)=1/f'(a)$ 

#### Teoremas locales de la función inversa

# Funciones reales de variable real

$$\Omega = \Omega^{\circ} \subset \mathbb{R}, \ f : \Omega \to \mathbb{R}$$
 derivable en  $\Omega$ , con  $f'$  continua en  $a \in \Omega$ .

$$f'(a) \neq 0 \implies \exists U \text{ con } a \in U = U^{\circ} \subset \Omega \text{ tal que } f \text{ es inyectiva en } U$$

# Funciones de $\mathbb{R}^N$ en $\mathbb{R}^N$

$$\Omega = \Omega^{\circ} \subset \mathbb{R}^N, \ f: \Omega \to \mathbb{R}^N \ \text{diferenciable en } \Omega, \ \text{con } Df \ \text{continua en } a \in \Omega.$$

$$|Jf(a)| \neq 0 \implies \exists U \text{ con } a \in U = U^{\circ} \subset \Omega \text{ tal que } f \text{ es inyectiva en } U$$

# Funciones complejas de variable compleja

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \ f \in \mathcal{H}(\Omega), \ a \in \Omega.$$

$$f'(a) \neq 0 \iff \exists U \text{ con } a \in U = U^{\circ} \subset \Omega \text{ tal que } f \text{ es inyectiva en } U$$

# Teoremas globales de la función inversa

#### Funciones reales de variable real

 $\Omega \subset \mathbb{R}$ ,  $\Omega$  intervalo abierto,  $f: \Omega \to \mathbb{R}$  derivable en  $\Omega$ .

Suponemos que  $f'(x) \neq 0 \ \forall x \in \Omega$ . Entonces:

f es inyectiva,  $f(\Omega)$  es un intervalo abierto y  $f^{-1}$  es derivable en  $f(\Omega)$ 

# Funciones de $\mathbb{R}^N$ en $\mathbb{R}^N$

$$\Omega \subset \mathbb{R}^N$$
,  $\Omega$  dominio,  $f \in C^1(\Omega, \mathbb{R}^N)$ .

Suponemos que  $|Jf(x)| \neq 0 \ \forall x \in \Omega$  y que f es inyectiva. Entonces:

 $f(\Omega)$  es un dominio y  $f^{-1}$  es diferenciable en  $f(\Omega)$ 

# Funciones complejas de variable compleja

$$\Omega \subset \mathbb{C}$$
,  $\Omega$  dominio,  $f \in \mathcal{H}(\Omega)$ .

Suponemos que f es inyectiva. Entonces:

Entonces  $f'(z)\neq 0$  para todo  $z\in \Omega,\ f(\Omega)$ es un dominio y  $f^{-1}\in \mathcal{H}(\Omega)$ 

# Variable Compleja I

Tema 12: El teorema general de Cauchy

1 Índice

2 Cadenas y ciclos

3 Teorema general de Cauchy

# Índice de un punto con respecto a un camino cerrado

# Motivación

$$a \in \mathbb{C}, r \in \mathbb{R}^+, z \in \mathbb{C} \setminus C(a,r)^*$$

$$\frac{1}{2\pi i} \int_{C(a,r)} \frac{dw}{w - z} = \begin{cases} 1 & \text{si } |z - a| < r \\ 0 & \text{si } |z - a| > r \end{cases}$$

# Definición de índice

 $\gamma$  camino cerrado,  $z \in \mathbb{C} \setminus \gamma^*$ 

Índice del punto z con respecto al camino  $\gamma$ :

$$\operatorname{Ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{dw}{w - z}$$

# Ejemplos aclaratorios

# Ejemplos sencillos

• 
$$\gamma = C(a,r) + C(a,r)$$
:

$$\operatorname{Ind}_{\gamma}(z) = \begin{cases} 2 & \text{si } |z - a| < r \\ 0 & \text{si } |z - a| > r \end{cases}$$

• 
$$\gamma = -C(a,r)$$
:

$$\operatorname{Ind}_{\gamma}(z) = \begin{cases} -1 & \text{si } |z - a| < r \\ 0 & \text{si } |z - a| > r \end{cases}$$

•  $\gamma = C(a,r) - C(a,r)$ :

$$\operatorname{Ind}_{\gamma}(z) = 0 \quad \forall z \in \mathbb{C} \setminus \gamma^*$$

# Logaritmo derivable de un arco

#### Lema

$$a, b \in \mathbb{R}, \ a < b, \ \sigma : [a, b] \to \mathbb{C} \text{ un arco}, \ z \in \mathbb{C} \setminus \sigma^*$$

$$\tau: [a,b] \to \mathbb{C}^*, \quad \tau(t) = \sigma(t) - z \quad \forall t \in [a,b]$$

Entonces  $\tau$  admite un logaritmo derivable, es decir,

$$\exists \, \phi : [a,b] \to \mathbb{C} \,, \ \, \text{derivable, tal que} \quad e^{\, \phi(t)} = \tau(t) \quad \forall \, t \in [a,b]$$

Como consecuencia, se tiene:

$$\int_{\sigma} \frac{dw}{w - z} = \varphi(b) - \varphi(a) \in \operatorname{Log}\left(\frac{\sigma(b) - z}{\sigma(a) - z}\right)$$

# Propiedades del índice

# Propiedades del índice

γ camino cerrado

- $\operatorname{Ind}_{\gamma}(z) \in \mathbb{Z} \quad \forall z \in \mathbb{C} \setminus \gamma^*$
- La función  $\operatorname{Ind}_{\gamma}: \mathbb{C} \setminus \gamma^* \to \mathbb{Z}$  es continua. Equivalentemente, es constante en cada componente conexa de  $\mathbb{C} \setminus \gamma^*$
- Si U es la componente conexa no acotada de  $\mathbb{C} \setminus \gamma^*$ , entonces:

$$\operatorname{Ind}_{\gamma}(z) = 0 \quad \forall z \in U$$

#### Definiciones

• Una cadena es una suma formal de caminos:

$$\Gamma = \gamma_1 + \gamma_2 + \ldots + \gamma_n = \sum_{k=1}^n \gamma_k$$

donde  $n \in \mathbb{N}$  y  $\gamma_k$  es un camino, para todo  $k = 1, 2, \dots, n$ .

- Imagen de una cadena:  $\Gamma^* = \bigcup_{k=1}^n \gamma_k^*$
- Suma de cadenas:  $\Sigma = \sum_{k=1}^{m} \sigma_k$  otra cadena.

$$\Gamma + \Sigma = \gamma_1 + \gamma_2 + \ldots + \gamma_n + \sigma_1 + \sigma_2 + \ldots + \sigma_m$$

- Cadena opuesta:  $-\Gamma = (-\gamma_1) + (-\gamma_2) + \dots + (-\gamma_n) = \sum_{k=1}^{n} (-\gamma_k)$
- $(\Gamma + \Sigma)^* = \Gamma^* \cup \Sigma^*$  y  $(-\Gamma)^* = \Gamma^*$ .

# Integral sobre una cadena

#### Definición

$$\Gamma = \sum_{k=1}^{n} \gamma_k$$
 una cadena

 $C(\Gamma^*)$  funciones continuas del compacto  $\Gamma^*$  en  $\mathbb{C}$ Espacio de Banach complejo con:  $\|f\|_{L^{\infty}} = \max \{|f(z)| : z \in \Gamma^*\} \quad \forall f \in C(\Gamma^*)$ 

$$||f||_{\infty} = \max\{|f(z)|: z \in \Gamma^*\} \quad \forall f \in C(\Gamma^*)$$

Integral sobre una cadena:  $\int_{\Gamma} f(z) dz = \sum_{k=1}^{n} \int_{\gamma_{k}} f(z) dz \quad \forall f \in C(\Gamma^{*})$ 

Longitud de una cadena: 
$$l(\Gamma) = \sum_{k=1}^{n} l(\gamma_k)$$
.

# Propiedades de la integral

# Propiedades de la integral sobre una cadena $\Gamma$

• Linealidad:  $\alpha, \beta \in \mathbb{C}$   $f, g \in C(\Gamma^*)$ 

$$\int_{\Gamma} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{\Gamma} f(z) dz + \beta \int_{\Gamma} g(z) dz$$

• Continuidad:  $f \in C(\Gamma^*)$ 

$$\left| \int_{\Gamma} f(z) \, dz \right| \leqslant l(\Gamma) \, ||f||_{\infty}$$

• Aditividad:  $\Sigma$  otra cadena,  $f \in C(\Gamma^* \cup \Sigma^*)$ 

$$\int_{\Gamma+\Sigma} f(z) dz = \int_{\Gamma} f(z) dz + \int_{\Sigma} f(z) dz$$

Cadena opuesta:  $\int_{-\Gamma} f(z) dz = -\int_{\Gamma} f(z) dz \quad \forall f \in C(\Gamma^*)$ 

#### Ciclos e índice

#### Ciclos

Un ciclo es una suma formal de caminos cerrados:  $\Gamma = \sum_{k=1}^{n} \gamma_k$ , donde  $n \in \mathbb{N}$ 

y  $\gamma_k$  es un camino cerrado, para todo k = 1, 2, ..., n.

- Todo lo dicho sobre cadenas se aplica en particular a los ciclos
- La suma de dos ciclos es un ciclo
- La cadena opuesta de un ciclo también es un ciclo

#### Índice con respecto a un ciclo

$$\Gamma = \sum_{k=1}^{n} \gamma_k \text{ ciclo, } z \in \mathbb{C} \setminus \Gamma^*$$

$$\operatorname{Ind}_{\Gamma}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dw}{w - z} = \frac{1}{2\pi i} \int_{\gamma_k} \frac{dw}{w - z} = \sum_{k=1}^{n} \operatorname{Ind}_{\gamma_k}(z)$$

#### Propiedades del índice con respecto a un ciclo

# **Propiedades**

 $\Gamma$  un ciclo

- Ind  $\Gamma(z) \in \mathbb{Z}$   $\forall z \in \mathbb{C} \setminus \Gamma^*$
- La función  $\operatorname{Ind}_{\gamma}: \mathbb{C} \setminus \gamma^* \to \mathbb{Z}$  es constante en cada componente conexa de  $\mathbb{C} \setminus \Gamma^*$
- Si U es la componente conexa no acotada de  $\mathbb{C} \setminus \Gamma^*$ , entonces:

$$\operatorname{Ind}_{\Gamma}(z) = 0 \quad \forall z \in U$$

# Esquema común de los teoremas de Cauchy

$$\Omega = \Omega^{\circ} \subset \mathbb{C} \,, \ \Gamma \text{ ciclo en } \Omega \,, \ f \in \mathcal{H}(\Omega)$$

Hipótesis adicional

$$\Downarrow$$

$$\int_{\Gamma} f(z) \, dz = 0$$

- ullet ¿Cuál es la hipótesis más general posible sobre f?
- $\bullet$  ¿Cuál es la hipótesis más general posible sobre  $\Gamma$ ?
- $\bullet$  ¿Cuál es la hipótesis más general posible sobre  $\Omega$ ?

# Respuesta a la primera pregunta

#### Problema 1

Dado un abierto  $\Omega$  del plano, caracterizar las funciones  $f \in \mathcal{H}(\Omega)$  tales que

$$\int_{\Gamma} f(z) dz = 0 \text{ para todo ciclo } \Gamma \text{ en } \Omega$$

#### Caracterización de la existencia de primitiva

$$\Omega = \Omega^{\circ} \subset \mathbb{C}$$
,  $f \in \mathcal{H}(\Omega)$ . Son equivalentes:

- $\int_{\Gamma} f(z) dz = 0$  para todo ciclo  $\Gamma$  en  $\Omega$
- f tiene una primitiva en  $\Omega$ :  $\exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \ \forall z \in \Omega$

# Respuesta a la segunda pregunta

#### Problema 2

Dado un abierto  $\Omega$  del plano, caracterizar los ciclos  $\Gamma$  en  $\Omega$  tales que

$$\int_{\Gamma} f(z) dz = 0 \quad \forall f \in \mathcal{H}(\Omega)$$

#### Condición obviamente necesaria

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \ \Gamma \text{ ciclo en } \Omega$$

$$\int_{\Gamma} f(z) dz = 0 \quad \forall f \in \mathcal{H}(\Omega) \quad \Longrightarrow \quad \int_{\Gamma} \frac{dz}{z - w} = 0 \quad \forall w \in \mathbb{C} \setminus \Omega$$

Un ciclo  $\Gamma$  en  $\Omega$  es nul-homólogo con respecto a  $\Omega$  cuando

$$\operatorname{Ind}_{\Gamma}(w) = 0 \quad \forall z \in \mathbb{C} \setminus \Omega$$

Esta condición, obviamente necesaria, ¡¡también es suficiente!!

# Respuesta a la tercera pregunta

#### Problema 3

Caracterizar los abiertos  $\Omega$  del plano, tales que

$$\int_{\Gamma} f(z) dz = 0 \quad \forall f \in \mathcal{H}(\Omega), \quad \forall \Gamma \text{ ciclo en } \Omega$$

#### Respuestas

Para un abierto  $\Omega$  del plano, son equivalentes:

- $\int_{\Gamma} f(z) dz = 0$  para toda  $f \in \mathcal{H}(\Omega)$  y para todo ciclo  $\Gamma$  en  $\Omega$
- ullet Toda función holomorfa en  $\Omega$  tiene primitiva
- $\bullet$  Todo ciclo en  $\Omega$  es nul-homólogo con respecto a  $\Omega$

Se dice que un abierto  $\Omega$  del plano es homológicamente conexo cuando todo ciclo en  $\Omega$  es nul-homólogo con respecto a  $\Omega$ .

# Forma general del Teorema de Cauchy y de la fórmula de Cauchy

Sea  $\Omega$  un abierto del plano,  $\Gamma$  un ciclo en  $\Omega$  nul-homólogo con respecto a  $\Omega$  y  $f\in \mathcal{H}(\Omega).$  Entonces:

$$\bullet \ \operatorname{Ind}_{\Gamma}(z) \, f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w-z} \, dw \quad \forall z \in \Omega \, \backslash \, \Gamma^*$$

# Abiertos homológicamente conexos

# Caracterizaciones de los abiertos homológicamente conexos del plano

Para un abierto  $\Omega$  del plano, las siguientes afirmaciones son equivalentes:

•  $\Omega$  es homológicamente conexo, es decir, para todo ciclo  $\Gamma$  en  $\Omega$  se tiene:

$$\operatorname{Ind}_{\Gamma}(w) = 0 \quad \forall w \in \mathbb{C} \setminus \Omega$$

• Para todo ciclo  $\Gamma$  en  $\Omega$  y toda  $f \in \mathcal{H}(\Omega)$  se tiene

$$\int_{\Gamma} f(z) \, dz = 0$$

 $\bullet$ Toda función holomorfa en  $\Omega$ tiene primitiva, es decir:

$$\forall f \in \mathcal{H}(\Omega) \ \exists F \in \mathcal{H}(\Omega) : F'(z) = f(z) \ \forall z \in \Omega$$

 $\bullet$  Toda función holomorfa en  $\Omega,$  que no se anule, tiene un logaritmo holomorfo, es decir:

$$f \in \mathcal{H}(\Omega), \ f(\Omega) \subset \mathbb{C}^* \implies \exists g \in \mathcal{H}(\Omega) : e^{g(z)} = f(z) \ \forall z \in \Omega$$

#### Abiertos sin "agujeros"

Si  $\Omega$  es un abierto del plano tal que ninguna componente conexa de  $\mathbb{C}\setminus\Omega$  está acotada, entonces  $\Omega$  es homológicamente conexo.

Variable Compleja I Tema 13: Singularidades

1 Series de Laurent

Puntos regulares y singularidades

3 Clasificación de las singularidades

# Concepto de serie de Laurent

# Definición y notación

Serie de Laurent centrada en  $a \in \mathbb{C}$ : serie de funciones  $\sum_{n \geqslant 0} f_n$  donde, para

 $n\in\mathbb{N}\cup\{0\}\,,\ f_n:\mathbb{C}\setminus\{a\}\to\mathbb{C}$ viene dada, para todo  $z\in\mathbb{C}\setminus\{a\}\,,$  por:

$$f_0(z) = c_0$$
 y  $f_n(z) = c_n(z-a)^n + \frac{c_{-n}(z-a)^{-n}}{\sqrt{n}} \quad \forall n \in \mathbb{N}$ 

Si la denotamos por  $\{S_n\}$  entonces, para todo  $n\in\mathbb{N}$  y  $z\in\mathbb{C}\setminus\{a\}$  tenemos:

$$S_{n+1}(z) = \sum_{k=-n}^{n} c_k (z-a)^k$$

La serie de Laurent recién definida se denota por:  $\sum_{n\in\mathbb{Z}}c_n(z-a)^n$ 

y cuando converge en un punto  $z \in \mathbb{C} \setminus \{a\}$ , su suma es

$$\sum_{n=-\infty}^{+\infty} c_n (z-a)^n \stackrel{\text{def}}{=} \lim_{n\to\infty} \sum_{k=-n}^n c_k (z-a)^k$$

Anillos

#### Convenios

A partir de ahora:

$$\rho < \infty \quad \forall \rho \in \mathbb{R}_0^+$$

$$\frac{1}{\infty} = 0$$

$$y \qquad \frac{1}{0} = \infty$$

#### Anillos

$$a \in \mathbb{C}$$
,  $0 \leqslant r < R \leqslant \infty$ 

Anillo de centro a con radios r y R:

$$A(a; r,R) = \{ z \in \mathbb{C} : r < |z-a| < R \}$$

- r = 0,  $R \in \mathbb{R}^+$ :  $A(a; 0, R) = D(a, R) \setminus \{a\}$
- $r \in \mathbb{R}^+$ ,  $R = \infty$ :  $A(a; r, \infty) = \mathbb{C} \setminus \overline{D}(a, r)$
- $\bullet$   $A(a; 0, \infty) = \mathbb{C} \setminus \{a\}$

# Anillo de convergencia

#### Radios de convergencia

Una serie de Laurent  $\sum_{n} c_n (z-a)^n$  tiene dos radios de convergencia:

- ullet  $R^+$  = radio de convergencia de la serie de potencias  $\sum_{n\geqslant 0} c_n (z-a)^n$
- $R^-$  = radio de convergencia de la serie de potencias  $\sum_{n\geqslant 1} c_{-n} w^n$

$$R^{+} = \frac{1}{\limsup \left\{ \sqrt[n]{|c_n|} \right\}} \quad \text{y} \quad R^{-} = \frac{1}{\limsup \left\{ \sqrt[n]{|c_{-n}|} \right\}}$$

# Anillo de convergencia

 $\sum_{n\in\mathbb{Z}} c_n (z-a)^n$ es una serie de Laurent no trivial cuando:  $\frac{1}{R^-} < R^+,~$ lo que, en particular, implica $R^->0~$ y $R^+>0$ 

Anillo de convergencia: 
$$A\left(a; \frac{1}{R^-}, R^+\right)$$

#### Construcción de funciones holomorfas en anillos arbitrarios

#### Convergencia de las series de Laurent

 $\sum_{n\in\mathbb{Z}}c_n\,(z-a)^n\,$ serie de Laurent no trivial,  $\Omega$  su anillo de convergencia

- $\bullet$ La serie converge absoluta y uniformemente en cada subconjunto compacto de  $\Omega$
- Por tanto, su suma es una función  $f \in \mathcal{H}(\Omega)$ :

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n \quad \forall z \in \Omega$$

• De hecho, las series  $\sum_{n\geqslant 0} c_n (z-a)^n$  y  $\sum_{n\geqslant 1} \frac{c_{-n}}{(z-a)^n}$  convergen absoluta y uniformemente en cada subconjunto compacto de  $\Omega$ , y se tiene:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n} \qquad \forall z \in \Omega$$

#### Desarrollo en serie de Laurent

#### Teorema

$$\Omega = A(a; r, R)$$
 anillo arbitrario,  $f \in \mathcal{H}(\Omega)$ 

• Existe una única serie de Laurent no trivial  $\sum_{n\in\mathbb{Z}} c_n (z-a)^n$ , cuyo anillo de convergencia contiene a  $\Omega$ , que verifica:

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - a)^n \qquad \forall z \in \Omega$$
 (\*)

• De hecho, para cualquier  $\rho \in \mathbb{R}^+$  con  $r < \rho < R$ , se tiene:

$$c_n = \frac{1}{2\pi i} \int_{C(a,p)} \frac{f(w)}{(w-a)^{n+1}} dw \qquad \forall n \in \mathbb{Z}$$

#### Desarrollo de Laurent

Se dice que (\*) es el desarrollo de Laurent de f en el anillo  $\Omega$  El teorema anterior generaliza al que nos dió el desarrollo de Taylor

# Parte regular y parte singular

#### Notación para todo lo que sigue

$$\Omega = \Omega^{\circ} \subset \mathbb{C}, \quad a \in \Omega, \quad f \in \mathcal{H}(\Omega \setminus \{a\})$$

Pretendemos saber cómo se comporta f en a, una "posible singularidad"

$$R \in \mathbb{R}^+$$
 con  $D(a,R) \subset \Omega$ . Como  $f \in \mathcal{H}(A(a;0,R))$ , tenemos:

$$f(z) = \sum_{n = -\infty}^{+\infty} c_n (z - a)^n \qquad \forall z \in D(a, R) \setminus \{a\}$$

$$R^+ \geqslant R \qquad y \qquad \text{if } R^- = \infty!!$$

# Descomposición relativa a una posible singularidad

f tiene una única descomposición:  $f(z) = g(z) + h(z) \ \forall z \in \Omega \setminus \{a\}$ , donde:

- $g \in \mathcal{H}(\Omega)$ . La llamamos parte regular de f en a
- $h \in \mathcal{H}(\mathbb{C} \setminus \{a\})$  viene dada por:

$$h(z) = \varphi\left(\frac{1}{z-a}\right) \quad \forall z \in \mathbb{C} \setminus \{a\}$$
 con  $\varphi \in \mathcal{H}(\mathbb{C}), \ \varphi(0) = 0$ 

Decimos que h es la parte singular de f en a

# Puntos regulares

# Definición de punto regular y de singularidad

Cuando  $h\equiv 0$ , equivalentemente  $\phi\equiv 0$ , decimos que a es un punto regular de f, o bien, que f tiene un punto regular en a

En otro caso, decimos que a es una singularidad de f, o bien, que f tiene una singularidad en a.

#### Caracterización de los puntos regulares

Las siguientes afirmaciones son equivalentes:

- (1) a es un punto regular de f
- (2)  $c_{-n} = 0$  para todo  $n \in \mathbb{N}$
- (3) Existe  $g \in \mathcal{H}(\Omega)$  tal que f(z) = g(z) para todo  $z \in \Omega \setminus \{a\}$
- (4) f tiene límite en a:  $\lim_{z \to a} f(z) = w \in \mathbb{C}$
- (5) Existen  $M, \delta \in \mathbb{R}^+$  tales que  $D(a, \delta) \subset \Omega$  y  $|f(z)| \leq M$  para todo  $z \in D(a, \delta) \setminus \{a\}$
- (6)  $\lim_{z \to a} (z a) f(z) = 0$

# Ejemplos de singularidades

# Primeros ejemplos

$$k \in \mathbb{N}$$
 fijo.  $f(z) = \frac{1}{z^k} \quad \forall z \in \mathbb{C}^*$ 

- $\bullet$  f tiene una singularidad en el origen
- Desarrollo de Laurent en  $\mathbb{C}^*$ :  $c_n = 0 \quad \forall n \in \mathbb{Z} \setminus \{-k\}, \quad c_{-k} = 1$
- $g(z) = 0 \quad \forall z \in \mathbb{C}$  y  $h(z) = f(z) \quad \forall z \in \mathbb{C}^*$
- $\varphi(w) = w^k \ \forall w \in \mathbb{C}$ , polinomio de grado k

# Ejemplo de otro tipo

$$f(z) = e^{1/z} \quad \forall z \in \mathbb{C}^*$$

- $\bullet$  f tiene una singularidad, pero no diverge, en el origen
- Desarrollo de Laurent en  $\mathbb{C}^*$ :  $e^{1/z} = 1 + \sum_{n=1}^{\infty} \frac{1}{n! \ z^n} \quad \forall z \in \mathbb{C}^*$
- $c_0 = 1$ , mientras que  $c_n = 0$  y  $c_{-n} = \frac{1}{n!}$  para todo  $n \in \mathbb{N}$
- $g(z) = 1 \quad \forall z \in \mathbb{C}$  y  $h(z) = e^{1/z} 1 \quad \forall z \in \mathbb{C}^*$
- $\varphi(w) = e^w 1 \quad \forall w \in \mathbb{C}$ , función entera no polinómica

# Clasificación de las singularidades

#### Polos y singularidades esenciales

• Cuando  $\varphi$  es un polinomio, decimos que a es un polo de f, o que f tiene un polo en a

El orden de dicho polo es, por definición, el grado del polinomio  $\phi$ 

Por ejemplo: para cada  $k \in \mathbb{N}$ , la función

$$f(z) = \frac{1}{z^k} \quad \forall z \in \mathbb{C}^*$$

tiene un polo de orden k en el origen

• Cuando  $\varphi$  es una función entera no polinómica, decimos que a es una singularidad esencial de f, o que f tiene una singularidad esencial en el punto a

Por ejemplo: la función

$$f(z) = e^{1/z} \quad \forall z \in \mathbb{C}^*$$

tiene una singularidad esencial en el origen

Polos

#### Caracterización de los polos, teniendo en cuenta el orden

Dado  $k \in \mathbb{N}$ , las siguientes afirmaciones son equivalentes:

- (1) a es un polo de orden k de f
- (2)  $c_{-k} \neq 0$  y  $c_{-n} = 0$  para n > k
- (3)  $\lim_{z \to a} (z a)^k f(z) = \alpha \in \mathbb{C}^*$
- (4) Existe  $\psi \in \mathcal{H}(\Omega)$ , con  $\psi(a) \neq 0$ , tal que:

$$f(z) = \frac{\Psi(z)}{(z-a)^k}$$
  $\forall z \in \Omega \setminus \{a\}$ 

#### Caracterización de los polos sin tener en cuenta el orden

f tiene un polo en  $a \iff f(z) \to \infty \ (z \to a)$ 

#### Caracterización de las singularidades esenciales

#### Teorema de Casorati

Las siguientes afirmaciones son equivalentes:

- (1) La función f tiene una singularidad esencial en el punto a
- (2) Para cada  $\delta \in \mathbb{R}^+$  con  $D(a,\delta) \subset \Omega$ , el conjunto  $f(D(a,\delta) \setminus \{a\})$  es denso en  $\mathbb{C}$
- (3) Para cada  $w \in \mathbb{C}$ , existe una sucesión  $\{z_n\}$  de puntos de  $\Omega \setminus \{a\}$  tal que  $\{z_n\} \to a$  y  $\{f(z_n)\} \to w$ . También existe una sucesión  $\{u_n\}$  de puntos de  $\Omega \setminus \{a\}$  tal que  $\{u_n\} \to a$  y  $\{f(u_n)\} \to \infty$

#### Corolario

Si  $\psi$  es una función entera no polinómica, entonces:

Para todo  $r \in \mathbb{R}^+$ , el conjunto  $\{ \psi(z) : z \in \mathbb{C}, |z| > r \}$  es denso en  $\mathbb{C}$ 

# Variable Compleja I Tema 14: Residuos

1 Teorema de los residuos

2 Cálculo de residuos

# Residuo de una función en un punto

#### Definición de residuo

$$a \in \mathbb{C} \,, \;\; R \in \mathbb{R}^+ \,, \;\; f \in \mathcal{H} ig( D(a,R) \setminus \{a\} ig)$$

Desarrollo de Laurent: 
$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n \quad \forall z \in D(a,R) \setminus \{a\}$$

Residuo de f en el punto a:

$$\operatorname{Res}\left(f(z),a\right) \stackrel{\text{def}}{=} c_{-1} = \frac{1}{2\pi i} \int_{C(a,\rho)} f(w) dw \quad \forall \rho \in ]0,R[$$

#### Observaciones y ejemplos

- (1) a punto regular de  $f \implies \text{Res}(f(z), a) = 0$
- (2)  $k \in \mathbb{N} \implies \operatorname{Res}\left(\frac{1}{z^k}, a\right) = \begin{cases} 1 & \text{si } k = 1\\ 0 & \text{si } k > 1 \end{cases}$
- (3) El recíproco de (1) es falso
- (4) Res  $(e^{1/z}, a) = 1$

#### Teorema de los residuos

#### Teorema

- ullet  $\Omega = \Omega^{\circ} \subset \mathbb{C}$ 
  - $A \subset \Omega$ ,  $A' \cap \Omega = \emptyset$
- $f \in \mathcal{H}(\Omega \setminus A)$
- $\bullet$   $\Gamma$ ciclo en  $\Omega \setminus A \ (\Gamma^* \subset \Omega \setminus A),$ nul-homólogo con respecto a  $\Omega$

Entonces, el conjunto  $\{a \in A : \operatorname{Ind}_{\Gamma}(a) \neq 0\}$  es finito y

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{a \in A} \operatorname{Ind}_{\Gamma}(a) \operatorname{Res} (f(z), a)$$

#### Cálculo de residuos

#### Residuo en un polo

$$a \in \mathbb{C}, R \in \mathbb{R}^+, f \in \mathcal{H}(D(a,R) \setminus \{a\})$$

• Si f tiene un polo de orden  $k \in \mathbb{N}$  en el punto a, entonces:

Res 
$$(f(z), a) = \frac{1}{(k-1)!} \lim_{z \to a} \frac{d^{k-1}}{dz^{k-1}} ((z-a)^k f(z))$$

•  $\lim_{z \to a} (z - a) f(z) = \alpha \in \mathbb{C} \implies \operatorname{Res} (f(z), a) = \alpha$ 

# Última observación

#### Regla de L'Hôpital para funciones holomorfas

$$a \in \mathbb{C}, \quad r \in \mathbb{R}^+ \quad f, g \in \mathcal{H}(D(a, r)), \quad g \neq 0 \quad f(a) = g(a) = 0$$

(Nótese que: 
$$\exists \delta > 0 : 0 < |z - a| < \delta \implies g(z) \neq 0 \quad \text{y} \quad g'(z) \neq 0$$
)

Se verifica una de las dos afirmaciones siguientes:

$$\lim_{z \to a} \frac{f(z)}{g(z)} = \lim_{z \to a} \frac{f'(z)}{g'(z)} = \alpha \in \mathbb{C}$$
 o bien,

$$\frac{f(z)}{g(z)} \to \infty \quad (z \to a) \quad \text{y} \quad \frac{f'(z)}{g'(z)} \to \infty \quad (z \to a)$$

Se suele decir que ambos límites existen y coinciden, pudiendo valer  $\infty$