Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №3 дисциплины «Алгоритмизация» Вариант 7

Выполнил: Горбунов Данила Евгеньевич 2 курс, группа ИВТ-б-о-22-1, 09.03.01 «Информатика и вычислительная техника», направленность (профиль) «Программное обеспечение средств вычислительной техники и автоматизированных систем», очная форма обучения (подпись) Руководитель практики: Воронкин Р А., канд. технических наук, доцент кафедры инфокоммуникаций (подпись) Отчет защищен с оценкой _____ Дата защиты_____

Ход работы

1. Написал программу, которая подсчитывает время, затрачиваемое на выполнение алгоритма линейного поиска, предусмотрел варианты среднего (искомый элемент находится где-то в середине массива) и худшего (искомый элемент не найден) случая.

Рисунок 1. Программа

```
#include <iostream>
#include <ctime>
#include <cstdlib>
using namespace std;
int linearSearch(int arr[], int n, int key) {
         for (int i = 0; i < n; i++) {
                   if (arr[i] == key) {
                             return i;
         return -1;
int main() {
         srand(time(0));
         const int sizes[] = { 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 };
         cout << "Arr size\ttime (average)\t time(wost)\n";</pre>
         for (int i = 0; i < sizeof(sizes) / sizeof(sizes[0]); i++) {
                   const int size = sizes[i]; int arr[1001];
                   int result;
                   for (int j = 0; j < size; j++) {
                             arr[j] = rand() % 1000;
                   double sumTime = 0;
                   double sumTime1 = 0;
```

```
int key = 1000;
                   int m;
                   do {
                              m = rand() \% size;
                    \} while (m == 0 || m == size);
                   arr[m] = key;
                   for (int i = 0; i < 50; i++); {
                              clock_t start = clock();
                              for (int j = 0; j < 1000000; j++) {
                                         result = linearSearch(arr, size, key);
                              clock_t end = clock();
                              sumTime += double(end - start) / CLOCKS_PER_SEC;
                              start = clock();
                              for (int j = 0; j < 1000000; j++) {
                                         result = linearSearch(arr, size, -1);
                              end = clock();
                              sumTime1 += double(end - start) / CLOCKS_PER_SEC;
                   cout << size << "\t\t" << sumTime / 50 << "sec\t\t" << sumTime1 / 50 << "sec\n";
        return 0;
 Выбрать Консоль отладки Microsoft Visual Studio
                                                                                                                            0.125 sec
                 0.075 sec
                 0.195 sec
                                            0.221 sec
                 0.082 sec
0.267 sec
                                            0.324 sec
0.406 sec
                 0.202 sec
                                            0.499 sec
                 0.048 sec
                                            0.596 sec
                 0.151 sec
                                            0.704 sec
                 0.604 sec
                                            0.792 sec
                 0.446 sec
                                            0.888 sec
                 0.905 sec
                                            0.984 sec
C:\Users\slime\source\repos\Linesearch\Debug\Linesearch.exe (процесс 25460) завершил работу с кодом 0.
Чтобы автоматически закрывать консоль при остановке отладки, включите параметр "Сервис" ->"Параметры" ->"Отладка" -> "Ав
томатически закрыть консоль при остановке отладки".
Нажмите любую клавишу, чтобы закрыть это окно…
```

Рисунок 2. Результат работы программы

Таблица 1. Время работы алгоритма линейного поиска

Размер	Средний случай	Худший случай		
массива (n)	(сек * 100000)	(сек * 100000)		
100	0,075	0,125		
200	0,195	0,221		
300	0,082	0,324		
400	0,267	0,406		
500	0,202	0,499		

600	0,048	0,596
700	0,151	0,704
800	0,604	0,792
900	0,446	0,888
1000	0,905	0,984

2. Перенес данные в таблицу Excel и произвел необходимые расчеты для метода наименьших квадратов.

	Α	В	С	D	E	F	G	н
1		n	time*10000	time	n*n	time*time	time*n	Υ
2		100	0,075	0,0000075000	10000	0,0000000000562500	0,00075000	0,0000022411
3		200	0,195	0,0000195000	40000	0,0000000003802500	0,00390000	0,0000083742
4		300	0,082	0,0000082000	90000	0,0000000000672400	0,00246000	0,0000145073
5		400	0,276	0,0000276000	160000	0,0000000007617600	0,01104000	0,0000206404
6		500	0,202	0,0000202000	250000	0,0000000004080400	0,01010000	0,0000267735
7		600	0,048	0,0000048000	360000	0,0000000000230400	0,00288000	0,0000329065
8		700	0,151	0,0000151000	490000	0,0000000002280100	0,01057000	0,0000390396
9		800	0,604	0,0000604000	640000	0,0000000036481600	0,04832000	0,0000451727
10		900	0,446	0,0000446000	810000	0,0000000019891600	0,04014000	0,0000513058
11		1000	0,905	0,0000905000	1000000	0,0000000081902500	0,09050000	0,0000574389
12	сумма	5500	2,984	0,0002984000	3850000	0,0000000157521600	0,22066000	
13								
14								
15	yp1	а*сумм(n*n)+b*сумм(n)=сумм(t*n)	385000*a+5500b=0,0022066					
16	yp2	а*сумм(n)+b*N=сумм(t)	5500a+10b=0,000002984					
17								
18								
19								
20		Матричный	способ решения системы:					
21		385000	5500		0,0022066			
22		5500	10		0,0002984			
23								
24		-3,78788E-07	0,000208333	a=	6,13308E-08			
25		0,000208333	-0,014583333	b=	-3,89196E-06			
-00								

Рисунок 3. Расчет линейной зависимости

3. Построил график линейной зависимости времени выполнения линейного поиска от размера массива в среднем случае.

Рисунок 4. График для среднего случая

4. Произвел аналогичные расчеты для получения необходимой функции.

Рисунок 5. Расчет функции линейной зависимости для худшего случая

5. Построил график линейной зависимости времени выполнения линейного поиска от размера массива в худшем случае.

Рисунок 6. График для худшего случая случая

6. Рассчитал коэффициенты парной корреляции для общего (r=0.7522288) и худшего (r=0.9998461) случая.

B27	- I × -/	.fx = KOPPEЛ(B2:B11;D2:I	011)				
52,		JN HOTTE NOETBILIDE	,11,				
_ A	В	С	D	E	F	G	Н
1	n	time*10000	time	n*n	time*time	time*n	Υ
2	100	0,075	0,0000075000	10000	0,0000000000562500	0,00075000	0,000002241
3	200	0,195	0,0000195000	40000	0,0000000003802500	0,00390000	0,0000083742
4	300	0,082	0,0000082000	90000	0,0000000000672400	0,00246000	0,0000145073
5	400	0,276	0,0000276000	160000	0,0000000007617600	0,01104000	0,0000206404
6	500	0,202	0,0000202000	250000	0,0000000004080400	0,01010000	0,000026773
7	600	0,048	0,0000048000	360000	0,0000000000230400	0,00288000	0,000032906
8	700	0,151	0,0000151000	490000	0,0000000002280100	0,01057000	0,0000390396
9	800	0,604	0,0000604000	640000	0,0000000036481600	0,04832000	0,000045172
10	900	0,446	0,0000446000	810000	0,0000000019891600	0,04014000	0,0000513058
11	1000	0,905	0,0000905000	1000000	0,0000000081902500	0,09050000	0,0000574389
12 сумма	5500	2,984	0,0002984000	3850000	0,0000000157521600	0,22066000	
13							
14							
15 yp1	a*cyмм(n*n)+b*cyмм(n)=cyмм(t*n)	385000*a+5500b=0,0022066					
16 yp2	a*cyмм(n)+b*N=cyмм(t)	5500a+10b=0,000002984					
17							
18							
19							
20	Матричный с	способ решения системы:					
21	385000	5500		0,0022066			
22	5500	10		0,0002984			
23							
24	-3,78788E-07	0,000208333	a=	6,13308E-08			
25	0,000208333		b=	-3,89196E-06			
26	,	,		,			
7 КОРРЕЛЯЦ	0,752228872						
28 КОРРЕЛЯЦ	0,752228872	•					
29	1,. 52225572						

Рисунок 7. Расчет коэффициента парной корреляции для общего случая

B17			* X	f _x =((10*0),3833)-(5500*0,0005	539))/(КОРЕНЬ((10*3850000-30250000)*(10*F	12-(D12*D12))))	
4	Α		В	С	D	Е	F	G	Н
1		n		time*10000	time	n*n	t*t	time*n	Υ
2			100	0,125	0,0000125000	10000	0,0000000015625	0,00125	0,000009995397727
3			200	0,221	0,0000221000	40000	0,0000000048841	0,00442	0,000020083087121
4			300	0,324	0,0000324000	90000	0,0000000104976	0,00972	0,000030170776515
5			400	0,406	0,0000406000	160000	0,0000000164836	0,01624	0,000040258465909
6			500	0,499	0,0000499000	250000	0,0000000249001	0,02495	0,000050346155303
7			600	0,596	0,0000596000	360000	0,0000000355216	0,03576	0,000060433844697
8			700	0,704	0,0000704000	490000	0,0000000495616	0,04928	0,000070521534091
9			800	0,792	0,0000792000	640000	0,0000000627264	0,06336	0,000080609223485
10			900	0,888	0,000888000	810000	0,0000000788544	0,07992	0,000090696912879
11			1000	0,984	0,0000984000	1000000	0,0000000968256	0,0984	0,000100784602273
12 cy	мма		5500	5,539	0,0005539000	3850000	0,0000003818175	0,3833	
13									
14									
15									
16									
17 KC	РЕЛЛ		0,999846082						
18									

Рисунок 8. Расчет коэффициента парной корреляции для худшего случая

Вывод: в ходе выполнения лабораторной работы был исследован алгоритм линейного поиска в массиве. Проведенный анализ позволяет утверждать, что время выполнения этого алгоритма в худшем и среднем случаях напрямую коррелирует с размером массива. Это утверждение подтверждено результатами экспериментов и статистическими методами, включая расчет коэффициента парной корреляции. Таким образом, можно сделать вывод о том, что этот алгоритм действительно обладает линейной зависимостью от размера массива, в котором выполняется поиск.