Assignment2 Report

Part1: Environment Setup

- Problems

• Since my computer is M1 chip, I faced some network problems in part1 when I was setting the network config between client and server. It seems like the IP setting didn't apply to my VMs and two VMs cannot connect with each other. So I went to TA Time and the TAs assisted me to set the IP of both client and server manually.

- Client IP

```
FreeBSD_Client [Running]
                                                                          BETA
For other languages, replace "en" with a language code like de or fr.
Show the version of FreeBSD installed: freebsd-version ; uname -a
Please include that output and any error messages when posting questions.
Introduction to manual pages:
                               man man
FreeBSD directory layout:
                               man hier
To change this login announcement, see motd(5).
root@root:~ # ifconfig
em0: flags=8863<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
        options=481009b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,VLAN_H
WFILTER, NOMAP>
       ether 08:00:27:8a:db:a0
       inet 10.0.2.15 netmask 0xffffff00 broadcast 10.0.2.255
       media: Ethernet autoselect (1000baseT <full-duplex>)
        status: active
        nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
        options=680003<RXCSUM,TXCSUM,LINKSTATE,RXCSUM_IPV6,TXCSUM_IPV6>
        inet6 ::1 prefixlen 128
        inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
        inet 127.0.0.1 netmask 0xff000000
        groups: lo
       nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
oot@root:~ #
```

- Server IP & The result of mounting

```
FreeBSD_Server [Running]
                                                                      BETA
reeBSD directory layout:
                             man hier
To change this login announcement, see motd(5).
root@root:~ # ifconfig
em0: flags=8863<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
       options=481009b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,VLAN_H
WFILTER, NOMAP>
       ether 08:00:27:97:5b:dd
       inet 10.0.2.5 netmask 0xffffff00 broadcast 10.0.2.255
       media: Ethernet autoselect (1000baseT <full-duplex>)
       status: active
       nd6 options=29<PERFORMNUD, IFDISABLED, AUTO_LINKLOCAL>
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384
       options=680003<RXCSUM,TXCSUM,LINKSTATE,RXCSUM_IPV6,TXCSUM_IPV6>
       inet6 ::1 prefixlen 128
       inet6 fe80::1%lo0 prefixlen 64 scopeid 0x2
       inet 127.0.0.1 netmask 0xff000000
       groups: lo
       nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
root@root:~ # ls /mnt/shared_folder
/BOXVFS[1]: sfprov_mount: Enter
/BOXVFS[1]: sfprov_mount: path: [shared_data]
sfprov_mount(shared_data): error=0 rc=0
root@root:~ #
```

Part 2: TCP Data Transmission

- Problems

 Since I didn't use any network monitoring tools before this course, I was unfamiliar with iperf, tcpdump and wireshark in the beginning. After searching some useful websites, I realized the meaning of each command and the parameters.

- Command

```
iperf3 -c 10.0.2.5 -t 30 -i 1 -w 1M -C newreno
```

- -c 10.0.2.5: start an iperf client which is going to send data to 10.0.2.5 (server).
- -t 30: transmits the data for 30 seconds.
- -i 1: enable periodic bandwidth, jitter, and loss reports for each second.

- Server Result

```
FreeBSD_Server [Running]
                                                                               BETA
   51
       14.01-15.01
                          14.6 MBytes
                                          123 Mbits/sec
                     sec
  51
       15.01-16.08
                          13.9 MBytes
                                          108 Mbits/sec
                     sec
  51
       16.08-17.00
                          11.7 MBytes
                                          108 Mbits/sec
                     sec
                          14.5 MBytes
  51
       17.00-18.00
                                          121 Mbits/sec
                     sec
  51
       18.00-19.00
                          14.4 MBytes
                                          121 Mbits/sec
                     sec
  51
       19.00-20.00
                     sec
                          14.6 MBytes
                                          122 Mbits/sec
  51
       20.00-21.00
                          14.5 MBytes
                                         122 Mbits/sec
                     sec
       21.00-22.01
                          14.6 MBytes
                                          122 Mbits/sec
                     sec
  51
       22.01-23.00
                     sec
                          14.4 MBytes
                                         122 Mbits/sec
  51
       23.00-24.00
                                          122 Mbits/sec
                          14.5 MBytes
                     sec
       24.00-25.01
   51
                     sec
                          14.6 MBytes
                                         122 Mbits/sec
oot@root:~ # 24392 packets captured
399395 packets received by filter
373530 packets dropped by kernel
       25.01-26.00
                     sec
                          14.5 MBytes
                                         122 Mbits/sec
   51
       26.00-27.00
                     sec
                          14.0 MBytes
                                          118 Mbits/sec
   51
       27.00-28.01
                          14.6 MBytes
                                          122 Mbits/sec
                     sec
                                          122 Mbits/sec
       28.01-28.45
                          6.38 MBytes
                     sec
  ID] Interval
                          Transfer
                                        Bitrate
        0.00-28.45
                                                                           receiver
  51
                           405 MBytes
                                          120 Mbits/sec
                     sec
Server listening on 5201 (test #2)
```

- Client Result

● ● FreeBSD_Client [Running] BETA						
[5]	12.09-13.09	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	13.09-14.09	sec	13.8 MBytes		0	1.00 MBytes
[5]	14.09-15.09	sec	13.8 MBytes		0	1.00 MBytes
[5]	15.09-16.09	sec	13.8 MBytes		0	1.00 MBytes
[5]	16.09-17.00	sec	12.7 MBytes		0	1.00 MBytes
[5]	17.00-18.04	sec	10.9 MBytes		0	1.00 MBytes
[5]	18.04-19.05	sec	13.8 MBytes		0	1.00 MBytes
[5]	19.05-20.05	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	20.05-21.05	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	21.05-22.05	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	22.05-23.05	sec	13.8 MBytes	116 Mbits/sec	0	1.00 MBytes
[5]	23.05-24.04	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	24.04-25.05	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	25.05-26.05	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	26.05-27.04	sec	13.8 MBytes	116 Mbits/sec	0	1.00 MBytes
[5]	27.04-28.05	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[5]	28.05-29.01	sec	12.9 MBytes	112 Mbits/sec	0	1.00 MBytes
[5]	29.01-30.01	sec	13.8 MBytes	115 Mbits/sec	0	1.00 MBytes
[ID]	Interval		Transfer	Bitrate	Retr	
[5]	0.00-30.01	sec	405 MBytes	113 Mbits/sec	0	sender
[5]	0.00-28.45	sec	405 MBytes	120 Mbits/sec		receiver
iperf Done.						
root@root:~ #						

Part3: TCP Congestion Control

- Red(SS): Slow Start, which grows exponentially in ideal and ends when cwnd reach the ssthresh. (cwnd < ssthresh)
- **Green(CA):** Congestion Avoidance, which grows linearly right after the Slow Start in order to avoid the congestion and ends when any congestion being detected. (cwnd > ssthresh)
- **Orange(FR):** Fast Recovery, entered after receiving what seems to be the missing segment sent during Fast-Retransmit.

Scenario1: (Bandwidth)

- 4 Mbit/s

- 32 Mbit/s

- Since the bandwidth is different between these two cases, the Congestion Avoidance period of 4 Mbit/s is obviously longer than the Congestion Avoidance period of 32 Mbit/s as the figure shown.
- In my opnion, I guess the smaller bandwidth will take longer to detect the congestion.

Scenario2: (Delay)

- 10 ms

- 100 ms

- Due to the difference of delay in these two cases, we know that the period of Congestion Avoidance will take much longer if we increase the delay time.
- Besides, the congestion window size will also be larger if we have larger delay.

- 0.1 %

-1%

- Since the packet loss rate is different between these two cases, the congestion window size and the frequency of transmission may have little differences.
- In my opnion, I guess the case with higher packet loss rate (1%) will re-transmit the data more often, so the frequency is higher than the other one (0.1%).

Scenario4: (Different Algorithm with 100ms Delay)

- newreno

- cubic

- In the same delay time, we can observe that the period of Congestion Avoidance with newreno is obviously larger than the one with cubic.
- Since the congestion window size increasing function is different between these two algorithm, the Congestion Avoidance length may be different.

Scenario5: (Different Algorithm with 1% Packet Loss Rate)

- newreno

- cubic

- In the same Packet Loss Rate, we can observe that the period and the increasing speed of Congestion Avoidance is quite different.
- In my opnion, I think the reason which makes the period different is the difference of congestion window size increasing function between cubic and newreno.