المادة: الرياضيات الشهادة: الثانوية العامة ـ فرع الاجتماع والاقتصاد

> نموذج رقم -2-المدة: ساعتان

## الهيئة الأكاديميّة المشتركة قسم: الرياضيات



## نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

#### I- (4 points)

L'Organisation des Nations Unies a créé en 2010 une enquête statistique sur la population mondiale. Le tableau suivant montre le résultat obtenu suite à cette étude.

| année                                                 | 1970  | 1980  | 1990  | 2000  | 2010  |
|-------------------------------------------------------|-------|-------|-------|-------|-------|
| Classement de l'année                                 | 1     | 2     | 3     | 4     | 5     |
| x <sub>i</sub>                                        |       |       |       |       |       |
| Population (en million des personnes): y <sub>i</sub> | 3 023 | 4 438 | 5 290 | 6 115 | 6 908 |

- 1) Représenter graphiquement la nuage de dispersion des points  $(x_i; y_i)$ .
- **2**) Le pourcentage d'augmentation de la population mondiale entre les années 2010 et 2013 est de 3,47%. Calculez la population en 2013.
- 3) Pour chaque année, calculer ln y<sub>i</sub> et compléter le tableau suivant :

| an              | 1970 | 1980 | 1990 | 2000 | 2010 |
|-----------------|------|------|------|------|------|
| x <sub>i</sub>  | 1    | 2    | 3    | 4    | 5    |
| $z_i = \ln y_i$ |      |      |      |      |      |

- **4**) Déterminer par la méthode des moindres carrés l'équation de la droite de régression de z en termes de x.
- 5) Déduire de l'ajustement précédent que l'expression de la population y en fonction du rang x, est sous la forme de:  $y = Ee^F$  avec E et F sont deux réels à déterminer.
- **6)** Estimer la population mondiale en 2030.

#### II- (5 points)

### Partie A

On considère la suite  $(u_n)$  définie par  $u_0 = 900$  et  $u_{n+1} = 0.6u_n + 200$  pour tout  $n \in IN$ 

- 1) Monter que la suite (u<sub>n</sub>) n'est ni arithmétique ni géométrique.
- 2) On considère la suite  $(v_n)$  définie, pour tout  $n \in IN$ ,  $v_n = u_n 500$ .
  - a) Montrer que (v<sub>n</sub>) est géométrique dont on déterminera sa raison et son premier terme
  - **b**) Prouver que  $u_n = 400 \times (0.6)^n + 500$ .
  - c) Etudier les variations de la suite (u<sub>n</sub>)
  - **d**) Calculer la limite de la suite  $(u_n)$ .

#### Partie B

Dans un pays donné, deux entreprises A et B partagent le marché des communications.

Les clients choisissent, le 1<sup>er</sup> janvier, soit A soit B, avec un contrat d'un an à la fin duquel ils seront libres de choisir à nouveau A ou B.

La société A dispose de 90% du marché et la société B, qui vient de se lancer de 10% de celui-ci. Nous estimons que, chaque année, 20% des clients de A changent en B, tandis que 20% des clients de B changent en A.

Considérons une population qui est représentée par 1 000 clients en l'an 2000. Ainsi, 900 clients sont inscrits en A et 100 clients sont enregistrés en B.

Nous souhaitons étudier l'évolution de cette population dans les années à venir.

- 1) Vérifier que la société A compte 740 clients en 2001
- 2) Calculer le nombre des clients de B en 2002.
- 3) On note  $a_n$  le nombre des clients de A dans l'année (2000 + n).
- **a**) Etablir que  $a_{n+1} = 0.6a_n + 200$ .
- **b**) En utilisant les résultats obtenus de la **partie A**, que pouvez-vous attendre quant à l'évolution du marché de la communication dans ce pays?

#### III- (4 points)

Les sièges d'un cinéma sont entièrement occupés. Le film proposé est une relecture d'une Comédie de blockbuster. Dans cette salle, les hommes représentent 25% des spectateurs et les femmes

- $\frac{2}{5}$  des spectateurs. Le reste des spectateurs sont des enfants.
- $\frac{1}{5}$  des hommes et 30 % des femmes ont déjà vu ce film.

A la fin du film, un spectateur est interrogé par hasard.

On considère les événements suivants:

H: « Le spectateur interrogé est un Homme».

F: «Le spectateur interrogé est une femme ».

E : «Le spectateur interrogé est un Enfant ».

V : « Le spectateur interrogé a déjà vu le film ».

- 1) a) Exprimer à l'aide d'une phrase l'événement  $V \cap H$ .
  - **b**) Calculer P(V/H) et déduire  $P(V \cap H)$ .
- 2) La probabilité de l'événement V est égale à 0,4.
  - a) Déterminer la probabilité que le spectateur interrogé soit un enfant qui ait vu ce film avant.
  - **b**) Sachant qu'il s'agit d'un enfant, calculer la probabilité que le spectateur interrogé ait vu ce film avant
- 3) Des binômes de spectateurs ont été interrogés au hasard, les uns après les autres, avec remplacement. On note X la variable aléatoire égale aux nombres des spectateurs qui ont vu ce film auparavant.
  - **a**) Prouver que P(X = 1) = 0.48.
  - **b**) Déterminer la loi de probabilité de X.
- 4) 1000 personnes ont vu cette relecture du film. On choisit au hasard et simultanément 3 spectateurs parmi ces 1000.
  - a) Quelle est la probabilité que les trois personnes interrogées soient des femmes.
  - **b**) Sachant que les trois personnes interrogées sont des hommes, calculer la probabilité qu'ils n'aient pas vu ce film auparavant.

## IV- (8 points)

#### Part A

On considère la fonction f définie sur  $[0;+\infty[$  par  $f(x) = x - 1 - \ln(x + 1)$  et soit

(C) sa courbe représentative dans le repère orthonormé  $(0, \vec{i}, \vec{j})$ .

- 1) Calculer f(1), f(7) et  $\lim_{x \to +\infty} f(x)$ .
- 2) Prouver que  $f'(x) = \frac{x}{x+1}$ . Déduire que f est décroissante et dresser le tableau de variation
- 3) Ecrire l'équation de (T) tangente à la courbe (C) au point d'abscisse 1.
- 4) Montrer que l'équation f(x) = 0 admet une solution unique  $\alpha$ . Vérifier que  $2.1 < \alpha < 2.2$ .
- 5) Tracer la tangente (T) et la courbe (C).

## Partie B (Dans le suite $\alpha = 2.15$ )

Une entreprise produit des cahiers.

la fonction du profit P, en millions de L.L, est donnée par P(x) = f(x).

On note par x la quantité produite de cahiers (en miliers).

les courbes  $C_T$  (coût total) et R (revenue) en millions de L.L sont représentées dans cette figure.

 $(x \ge 0)$ 

- 1) Calculer la perte maximale de cette enterprise.
- 2) En utilisant la figure :
  - a) calculer le coût fixe de cette enterprise.
  - **b)** calculer le coût moyen du production d'un cahier lors de la production de 400 cahiers.
- 3) On admet que la fonction R est définie par R(x) = ax.
  - a) utiliser la figure pour montrer que a = 2.
  - b) Déduire que 2000 L.L est le prix d'un cahier.
- 4) Prouver que  $\alpha$  est la solution de l'équation  $R(x) = C_T(x)$ . Déduire le nombre minimum de cahiers à produire pour réaliser un gain.
- 5) Montrer que la fonction  $C_T$  est définie par  $C_T(x) = x+1+\ln(x+1)$ .



المادة: الرياضيات الشهادة: الثانوية العامة ـ فرع الاجتماع والاقتصاد

> نموذج رقم -2-المدّة:

# الهيئة الأكاديمية المشتركة قسم: الرياضيات



أسس التصحيح (تراعي تعليق الدروس والتوصيف المعذل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

| QI | Réponses                                                                                                       |                 |       |       |       |       | Mark  |     |     |
|----|----------------------------------------------------------------------------------------------------------------|-----------------|-------|-------|-------|-------|-------|-----|-----|
| 1  | graphe                                                                                                         |                 |       |       |       |       |       | 1   |     |
| 2  | la population en 2013 est de 7147 millions de personnes alors il y a 7147707600 personnes.                     |                 |       |       |       |       |       | 1.5 |     |
|    |                                                                                                                | année           | 1970  | 1980  | 1990  | 2000  | 2010  |     |     |
| 3  |                                                                                                                | x <sub>i</sub>  | 1     | 2     | 3     | 4     | 5     | -   | 1   |
|    |                                                                                                                | $z_i = \ln y_i$ | 8.014 | 8.397 | 8.573 | 8.718 | 8.840 |     |     |
| 4  | z = 0.1973                                                                                                     | 3x + 7.9165     |       |       |       |       |       |     | 1/2 |
| 5  | $y = e^{0.1973x + 7.9165} = e^{0.1973x} \times e^{7.9165} = 2742.156e^{0.1973x}$ ; E = 2742.156 et F = 0.1973. |                 |       |       |       |       | 1.5   |     |     |
| 6  | x = 7 alors $y = 10911.79944$ millions de personnes alors il y a $10911799440$ personnes.                      |                 |       |       |       |       |       | 1.5 |     |

| QII | Réponses                                                                  | Mark |
|-----|---------------------------------------------------------------------------|------|
|     | $u_1 = 740$ ; $u_2 = 644$                                                 |      |
| A1  | $u_2 - u_1 \neq u_3 - u_2$                                                | 1    |
|     | $\mathbf{u}_2 / \mathbf{u}_1 \neq \mathbf{u}_3 / \mathbf{u}_2$            |      |
| A2a | $q = 0.6$ et le premier terme est $v_0 = 400$                             | 1    |
| A2b | $u_n = 400 \times (0.6)^n + 500.$                                         | 1/2  |
| A2c | (u <sub>n</sub> ) est decroissante.                                       | 1    |
| A2d | La limite = $500 \text{ car } 0 \prec q \prec 1 \text{ et } \lim q^n = 0$ | 1/2  |

| В | 1 | La société A compte 740 clients en 2001.                                                                                                                                               | 1/2 |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| В | 2 | La société B compte 356 clients en 2002.                                                                                                                                               | 1/2 |
| В | 3 | $a_{n+1} = 0.6a_n + 200.$                                                                                                                                                              | 1   |
| В | 4 | Le nombre des clients de A diminue mais reste plus de 500 tandis que le nombre des clients de B augmente mais reste inférieur à 500, A et B n'auront jamais le même nombre de clients. | 1   |

| QIII | Réponses                                                                                                 | Mark       |
|------|----------------------------------------------------------------------------------------------------------|------------|
| 1a   | $V \cap H$ représente que le spectateur interrogé est un homme qui a déjà vu ce film, une fois au moins. | 1/2        |
| 1b   | $P(V/H) = \frac{1}{5}$ ; $P(V \cap H) = \frac{1}{20}$                                                    | 1/2<br>1/2 |
| 2a   | $P(V \cap E) = 0.23$                                                                                     | 1/2        |
| 2b   | $P(V/E) = \frac{23}{35}$                                                                                 | 1/2        |
| 3a   | P(X = 1) = 0.48                                                                                          | 1          |
| 3b   | P(X = 1) = 0.48; $P(X = 0) = 0.36$ et $P(X = 2) = 0.16$                                                  | 1/2<br>1/2 |
| 4a   | P(3F) = 0.063                                                                                            | 1          |
| 4b   | $P(3\overline{V}/H) = 0.51$ .                                                                            | 1.5        |

| QIV | Réponses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mark              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| A1  | $f(1) = -0.69$ ; $f(7) = 3.9$ ; $\lim_{x \to +\infty} f(x) = +\infty$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/4<br>1/4<br>1/2 |
| A2  | $f'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} + \frac{x}{f(x)}$ strictement croissante $f(x) = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{x}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{x}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{x}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{x}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{x}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{x}{x+1} = \frac{x}{x+1} = \frac{x}{x+1} > 0 \text{ donc f est} \qquad \frac{x}{f'(x)} = \frac{x}{x+1} = x$ | 1/2<br>1/2<br>1   |
| A3  | (T): $y = \frac{1}{2}x - \frac{1}{2} - \ln 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                 |

| A4  | dans $[0;+\infty[$ f est définie comme continue et strictement décroissante en passant par - à+ donc l'équation $f(x) = 0$ admet une solution unique. $f(2.1) = -0.03 < 0$ et $f(2.2) = 0.03 > 0$ .             | 1/2<br>1/2 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| A5  | γ (C)  1 (T)  α  3 4 5 6                                                                                                                                                                                        | 2          |
| B1  | P'(x) = 0; perte maximale = 1000000 L.L en utilisant la courbe (C).                                                                                                                                             | 1          |
| B2a | $C_T(0) = 1$ million de L.L ainsi 1000000 L.L                                                                                                                                                                   | 1/2        |
| B2b | $C_T(4) = 6.609$ millions L.L alors 6609000 L.L le coût moyen = 1652,25 L.L                                                                                                                                     | 1/2        |
| ВЗа | R(1) = 2  alors  a = 2                                                                                                                                                                                          | 1/2        |
| B3b | $R(x) = \frac{(.prix) \times x \times 100}{1000000} = 2x$ ; prix= 2000 L.L                                                                                                                                      | 1.5        |
| B4  | $R(x) = C_T(x)$ donne $P(x) = 0$ alors $f(x) = 0$ ainsi $x = \alpha = 2.15$ . alors 2150 cahiers. Par conséquent, 2151 cahiers est le nombre minimal de cahiers à vendre pour que l'entreprise réalise un gain. | 1.5        |
| В5  | $C_T(x) = R(x) - P(x)$ ; $C_T(x) = x+1+\ln(x+1)$ .                                                                                                                                                              | 1/2        |