

Analyser l'évolution des prix de l'immobilier avec Python J. PAOLI Juin 2025

Les Plus Beaux Logis de Paris Partie 1

I. Analyse du marché de l'immobilier

Nombre total de transactions analysées : 26 196

Répartition : 24 353 appartements / 1 843 locaux commerciaux et assimilés

QUEL EST LE MEILLEUR PORTEFEUILLE D'ACTIF?

II. Méthodologie suivie

Etablissement du prix au Mètre carré moyen ainsi que de la surface moyenne entre 2017 et 2021

Prix moyen au m² et surface moyenne des appartements par année :

	annee	prix_m2	surface_reelle
0	2017	9492.859195	44.627737
1	2018	10031.403432	44.271671
2	2019	10562.712581	43.361645
3	2020	10674.872650	42.900654
4	2021	10455.600126	43.479864

Le coefficient de corrélation de Spearman est : 0.9148 P-value associée : 1.2000e-280

- Suivi de l'évolution des prix du mètre carré dans tous les arrondissements
- Suivi des ventes avec le 6ème arrondissement en exemple

Vérification de la véracité de notre hypothèse : est-ce que la surface d'un bien à un impact sur sont prix ?

```
from scipy.stats import pearsonr

# Suppression des lignes avec valeurs manquantes
df_corr = df_appart.dropna(subset=['valeur_fonciere', 'surface_reelle'])

# Calcul de la corrélation de Pearson
coef, p = pearsonr(df_corr['surface_reelle'], df_corr['valeur_fonciere'])

print(f"Le coefficient de corrélation est de : {coef:.4f}")
print(f"P-value associée : {p:.4e}")

Le coefficient de corrélation est de : 0.9801
P-value associée : 0.0000e+00

# Le coefficient de corrélation est de 0.9801 avec une p-value de 0.0000e+00.

# La relation entre la valeur foncière et la surface est donc très forte, linéaire et statistiquement significative.
# Cela confirme que plus la surface est grande, plus le bien est cher.
```


Suivi de l'évolution des prix selon le type de local

III. Résultat de l'Analyse

- Les prix ont augmenté partout
- La surface, elle, a « diminué »
- Cela a une incidence sur les ventes
- Les Locaux commerciaux restent ceux avec la plus grosse valeur foncière

IV. L'algorithme de prédiction

A. Entrainement de l'algorithme :

- 1. Nettoyage des données : suppression des colonnes inutiles
- 2. Encodage one-hot : pour arrondissement et type de bien
- 3. Transformation : création de la variable prix_m2
- 4. Séparation chronologique du dataset : Train = 2017-2020 Test = 2021
- 5. Modèle : Régression Linéaire simple
- 6. Test de l'algorithme

```
# On sépare le jeu de données entre echantillons d'apprentissage et de test
# 1. Vérifier que la date est bien en format datetime
df_encoded["date_mutation"] = pd.to_datetime(df_encoded["date_mutation"])
# 2. Split chronologique
train df = df encoded[df encoded["date mutation"].dt.year < 2021]
test_df = df_encoded[df_encoded["date_mutation"].dt.year == 2021]
# 3. Séparation entre variables explicatives et cible
X train = train df.drop(["valeur fonciere", "date mutation"], axis=1)
y_train = train_df["valeur_fonciere"]
X test = test df.drop(["valeur fonciere", "date mutation"], axis=1)
y_test = test_df["valeur_fonciere"]
  from sklearn.linear model import LinearRegression
```

```
# 1. Instanciation du modèle
model = LinearRegression()

# 2. Entraînement
model.fit(X_train, y_train)

# 3. Prédiction sur l'ensemble de test
y_pred = model.predict(X_test)

# 4. Affichage des prédictions comparées aux valeurs réelles
resultats = pd.DataFrame({
    'valeur_fonciere_reelle': y_test.values,
    'valeur_fonciere_predite': y_pred})

resultats.head(20)
```

	valeur_fonciere_reelle	valeur_fonciere_predite
0	3.009804e+05	3.232311e+05
1	1.056941e+06	9.866556e+05
2	2.308898e+05	2.772439e+05
3	3.865867e+05	3.747066e+05
4	3.460434e+05	3.733779e+05
5	3.833480e+06	2.918911e+06
6	1.280223e+06	1.163081e+06
7	9.264516e+05	8.468044e+05
8	2.483348e+05	2.875634e+05
9	6.394606e+05	6.029438e+05
10	2.763924e+05	3.177622e+05
11	6.767915e+05	6.236998e+05
12	5.038063e+05	4.895850e+05
13	3.527256e+05	3.696715e+05
14	5.099047e+05	4.934083e+05
15	3.197691e+05	4.228095e+05
16	5.830258e+05	5.540397e+05
17	3.019500e+05	3.029181e+05
18	6.336784e+05	5.931893e+05
19	8.400401e+05	7.631768e+05

Calcul du % d'erreur absolu de l'algorithme

Calcul de l'erreur moyenne absolue en pourcentage de la valeur réelle
erreur_absolues = abs(y_test - y_pred)
erreur_moyenne_pourcent = (erreur_sabsolues / y_test) * 100
erreur_moyenne_finale = erreur_moyenne_pourcent.mean()

Affichage du résultat
print(f"Notre algorithme fait donc {erreur_moyenne_finale:.2f} % d'erreur en moyenne sur la prédiction de la valeur foncière.")

Notre algorithme fait donc 8.79% d'erreur en moyenne sur la prédiction de la valeur foncière.

Mes conclusions sur ce résultat et comment j'aurais pu aller plus loin :

- 🔽 Le score est inférieur au seuil de 10 %, donc l'objectif est atteint avec un modèle de régression linéaire simple.
- X Ce modèle suppose une relation linéaire entre les variables et la valeur foncière. - ☑ J'aurais pu :
- tester d'autres modèles (régression ridge/lasso, arbres de décision, random forest),et surtout une methode sklearn plus complexe mais plus fiable
- analyser plus finement les erreurs (ex : erreurs très fortes sur les biens très chers ? sur certaines zones géographiques ?)

B. Test en situation réelle :

- 1. Nettoyage des données : suppression des colonnes inutiles (adresse, localisation, etc....)
- 2. Encodage one-hot : pour arrondissement et type de bien

- 3. Transformation : création d'une colonne surface_relle
- 4. Lancement et étude de la valorisation

Maintenant nous allons comparer la valorisation prédite pour les deux segments.

```
#Valorisation du portefeuille sur le segment des particuliers

# On ajoute les prédictions dans le DataFrame d'origine

df_actifs["valeur_fonciere_predite"] = y_pred_portefeuille

#Valorisation du portefeuille sur le segment des particuliers

val_particuliers = df_actifs[df_actifs["type_local"] == "Appartement"]["valeur_fonciere_predite"].sum() / 1_000_000

print('la valorisation du segment particulier est (en millions deuros):')

print(round(val_particuliers, 2))

la valorisation du segment particulier est (en millions deuros):
62.68

#Valorisation du portefeuille sur le segment corporate

val_corporate = df_actifs[df_actifs["type_local"] != "Appartement"]["valeur_fonciere_predite"].sum() / 1_000_000

print('la valorisation du segment corporate est (en millions deuros):')

print(round(val_corporate, 2))

la valorisation du segment corporate est (en millions deuros):
91.28
```

Les Plus Beaux Logis de Paris Partie 2

I. Méthodologie suivie

Classification des données issues du jeu de test :

1. Application d'un K-Means avec 2 clusters

D'abord en créant une colonne prix au m2 ;

Puis en lançant le K-Means

```
# On calcule le prix au mètre carré
df_clustering["prix_m2"] = df_clustering["valeur_fonciere"] / df_clustering["surface_reelle"]
# On supprime les colonnes dont l'information est désormais résumée dans prix_m2
df_clustering = df_clustering.drop(["valeur_fonciere", "surface_reelle"], axis=1)
df_clustering.head()
```

```
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# On sélectionne uniquement la colonne prix_m2 pour le clustering
X = df clustering[["prix m2"]]
# Standardisation
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Application de KMeans avec 2 clusters
kmeans = KMeans(n_clusters=2, random_state=42)
df clustering["cluster"] = kmeans.fit predict(X scaled)
```

	code_postal	nom_commune	prix_m2	cluster
0	75019	Paris 19e Arrondissement	9871.444128	0
1	75019	Paris 19e Arrondissement	10045.572493	0
2	75019	Paris 19e Arrondissement	9194.697790	0
3	75019	Paris 19e Arrondissement	9469.142168	0
4	75019	Paris 19e Arrondissement	7463.610005	1

II. Résultat de la classification

En tout cas, le second algorithme classe automatiquement grâce à la méthode K-Means les Appartements et les Locaux commerciaux ;

Les Locaux commerciaux sont ceux avec un prix au mètre carré supérieur

Mais lui aussi a ses limites:

- Il n'y a que deux clusters ce qui limite l'analyse
- Encore une fois il ne prend en compte que des données simples

MERCI POUR VOTRE ATTENTION!