Supplementary Figure.

Each panel shows the corresponding simulation, indicated by the numbers, of the first six samples of each table. The plots show the sample depth (y-axis) back in time (x-axis) with the full red lines showing the outcome based on ¹⁰Be data and the full blue lines showing the outcome based on ²⁶Al data. The light blue bars along the base of the plots show the periods of ice coverage in the simulation (the period of glacial erosion and no exposure to cosmic rays). The dashed lines show the positive and negative erosion uncertainty based on the sample measurements plus the production rate uncertainty.

Supplementary Table 1^a

						Sample	
group	•	Latitude		Elevation(thickness	
name	name	(⁰ N)	Longitude (°E)	m a.s.l.)	flag	(cm)	shielding correction
		Fu et al. (2013b)					
Α	TB-08-10	29.12415	100.2216333	3871	std	1	0.993005129
Α	TB-08-18	29.12553333	100.2223667	3892	std	2	0.997288657
В	TB-09-120	29.12906667	100.2181167	3924	std	2	0.994419339
В	TB-09-121	29.12948333	100.2182	3929	std	4	0.994359557
В	TB-09-119	29.12846667	100.21805	3919	std	3	0.998628581
С	TB-08-32	29.11881667	100.2094833	3864	std	2	1
С	TB-08-33	29.11893333	100.2096333	3864	std	2	1
С	TB-08-34	29.11896667	100.20985	3867	std	2	1
D	TB-08-22	29.12288333	100.2114667	3916	std	3	0.997861835
D	TB-08-23	29.12341667	100.21185	3928	std	3	0.997861835
D	TB-08-24	29.1236	100.2119833	3931	std	3	0.997861835
Е	TB-08-21	29.12258333	100.2088167	3904	std	4	0.99813217
E	TB-08-20	29.12295	100.2091333	3904	std	5	0.99813217
E	TB-08-19	29.12353333	100.2095667	3904	std	2	0.99813217
F	TB-08-28	29.17543209	100.1065731	4053	std	1	1
F	TB-08-26	29.1745732	100.1077018	4067	std	3	1
F	TB-08-27	29.1753015	100.1067817	4056	std	2	1
G	TB-08-29	29.17771121	100.0952453	4062	std	3	0.986229889
G	TB-08-30	29.17765313	100.095191	4062	std	2	0.986229889
G	TB-08-31	29.17777274	100.0952278	4064	std	1.5	0.986229889
Н	TB-08-01	29.20671667	100.0905833	4216	std	3	0.998828837
Н	TB-08-02	29.20896667	100.093	4215	std	3	0.998828837
Н	TB-08-03	29.20896667	100.093	4231	std	3	0.998718441
I	TB-09-101	29.39736667	99.99385	4499	std	3	1
I	TB-09-102	29.40253333	99.99216667	4512	std	4	1
I	TB-09-100	29.39033333	99.99083333	4506	std	4.5	1
J	TB-09-13	29.41885	100.01755	4431	std	2	1
J	TB-09-12	29.41848333	100.0178167	4424	std	2	1
J	TB-09-14	29.41876667	100.0223	4446	std	5	1
J	TB-09-15	29.41178333	100.0207667	4424	std	4.5	1
K	TB-09-112	29.42658333	100.0885833	4461	std	3	1
K	TB-09-114	29.42656667	100.0889	4459	std	4	1
L	TB-09-130	29.85378333	99.93718333	4440	std	3	1
L	TB-09-129	29.86075	99.93195	4485	std	3.5	0.998628581
L	TB-09-128	29.86533333	99.92715	4504	std	2	1
М	TB-09-78	29.84656667	99.96536667	4450	std	3	0.999393631
М	TB-09-77	29.8476	99.96508333	4444	std	5	0.999393631
M	TB-09-79	29.8461	99.96566667	4455	std	4	0.99939363
N	TB-09-76	29.85655	99.95316667	4311	std	4	0.997615515
N	TB-09-75	29.85673333	99.95308333	4313	std	3	0.997615515
N	TB-09-74	29.85743333	99.9531	4339	std	4	0.997615515
	.2 00 / 1	Zhang et al. (2014		.000		•	3.307 0 100 10
	s16	29.3739	100.1371	4510	std	4	1
	s17	29.3739	100.1371	4510	std	3	1
	s18	29.3739	100.1371	4510	std	1	1
	s6	29.3739	100.1371	4500	std	4	1
	30	Xu (2004)	100.1071	7000	Jiu	7	•
	X6	29.555833	100.2981	4279	std	3	1
	7.0	20.000000	100.2001	121 J	olu	5	•

Supplementary Table 1 continued

Sample name 10 Be conc. (atoms/g) error (atoms/g) 10 Be standardization Sampling year Exposure uncertainty age (yr) ^b (yr) uncertainty (yr) TB-08-10 2084297 65233 07KNSTD 2008 44027 2828 1393	
TB-08-10 2084297 65233 07KNSTD 2008 44027 2828 1393	
TB-08-18 7827647 164708 07KNSTD 2008 173396 10713 3811	
TB-09-120 8012489 262649 07KNSTD 2009 174986 11752 5994	
TB-09-121 7176619 295393 07KNSTD 2009 156126 11191 6684	
TB-09-119 6479634 133499 07KNSTD 2009 136908 8359 2919	
TB-08-32 5534562 120464 07KNSTD 2008 119550 7319 2681	
TB-08-33 4915283 102300 07KNSTD 2008 107388 6516 2296	
TB-08-34 4360926 126357 07KNSTD 2008 96736 6186 2872	
TB-08-22 6230089 194946 07KNSTD 2008 131509 8634 4253	
TB-08-23 2877747 105209 07KNSTD 2008 61296 4125 2276	
TB-08-24 2700506 84991 07KNSTD 2008 57341 3700 1831	
TB-08-21 6513632 238263 07KNSTD 2008 140648 9658 5330	
TB-08-20 5812484 147660 07KNSTD 2008 125262 7864 3284	
TB-08-19 5571308 97268 07KNSTD 2008 118006 7046 2122	
TB-08-28 6745227 166465 07KNSTD 2008 129345 8089 3298	
TB-08-26 4563242 297350 07KNSTD 2008 91840 8031 6124	
TB-08-27 4523014 191634 07KNSTD 2008 90895 6476 3940	
TB-08-29 5294601 135234 07KNSTD 2008 106045 6631 2782	
TB-08-30 3191645 95884 07KNSTD 2008 63166 4037 1928	
TB-08-31 1334108 37865 07KNSTD 2008 28361 1775 811	
TB-08-01 6247289 274133 07KNSTD 2008 112686 8181 5087	
TB-08-02 4980105 190271 07KNSTD 2008 92542 6364 3619	
TB-08-03 3192983 121110 07KNSTD 2008 57439 3906 2210	
TB-09-101 11011911 246145 07KNSTD 2009 176060 10973 4114	
TB-09-102 4741402 111113 07KNSTD 2009 73912 4521 1764	
TB-09-100 496252 18903 07KNSTD 2009 9373 631 358	
TB-09-13 1047811 34925 07KNSTD 2009 19625 1273 657	
TB-09-12 968473 33026 07KNSTD 2009 18502 1207 634	
TB-09-14 900914 34603 07KNSTD 2009 17525 1185 676	
TB-09-15 901018 35488 07KNSTD 2009 17647 1203 698	
TB-09-112 785493 33737 07KNSTD 2009 15100 1061 651	
TB-09-114 772488 27307 07KNSTD 2009 14992 987 532	
TB-09-130 9213369 197387 07KNSTD 2009 145208 8928 3227	
TB-09-129 6380809 168216 07KNSTD 2009 100151 6289 2707	
TB-09-128 1626225 57542 07KNSTD 2009 26916 1778 959	
TB-09-78 7421466 269125 07KNSTD 2009 115561 7865 4314	
TB-09-77 6964769 245159 07KNSTD 2009 110969 7478 4016	
TB-09-79 6664799 115631 07KNSTD 2009 105595 6282 1881	
TB-09-76 1260059 46121 07KNSTD 2009 23977 1599 883	
TB-09-75 1184282 33861 07KNSTD 2009 22507 1409 647	
TB-09-74 992215 39244 07KNSTD 2009 19565 1336 778	
Zhang et al. (2014)	
s16 1100000 40000 07KNSTD 2012 19983 1458 730	
s17 1000000 40000 07KNSTD 2012 18467 1382 742	
s18 900000 30000 07KNSTD 2012 16549 1182 554	
s6 900000 30000 07KNSTD 2012 16982 1213 568	
Xu (2004)	
X6 1100676 NAN NIST_Certified 2001 22350 1412 NAN	

^a Sample density = 2.7 g/cm³, Erosion rate = 0 mm/ka;

b expage-201806 calculator (expage.github.io/calculator) using the time-varying production model LSD (Lifton et al., 2014)

Supplementary Table 1 continued

References

Fu P, Stroeven AP, Harbor JM, Hättestrand C, Heyman J, Caffee MW, Zhou L. 2013b. Paleoglaciation of Shaluli Shan, southeastern Tibetan Plateau. Quaternary Science Reviews **64**: 121–135. DOI: 10.1016/j.quascirev.2012.12.009

Xu X. 2004. Study on Quaternary Ice Age event of Mountain Shaluli in the Southeast of Qinghai-Xizang Plateau by cosmogenic isotope 10Be, PhD thesis, Nanjing Normal University: Nanjing

Zhang Z, Xu X, Wang J, Zhao Z, Bai S, Chang Z. 2014. Last deglaciation climatic fluctuation record by the palaeo-Daocheng Ice Cap, southeastern Qinghai-Tibetan Plateau. Acta Geologica Sinica - English Edition 88: 1863–1874. DOI: 10.1111/1755-6724.12352

Supplementary Table 2

Scenario-1	MaxT: 1 Ma	$\delta^{18}O = 4.2$	E = 0	_						
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	10E-1Ma(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	26E-1Ma(m)
TB-09-95	21.5	1.6	1.6	1.28	10.1	18.7	1.7	1.6	1.11	8.77
TB-09-97	25.9	1.9	1.9	1.54	12.15	21.6	2	1.9	1.28	10.1
TB-09-105	3.9	0.3	0.3	0.21	1.81	3.3	0.3	0.3	0.18	1.53
TB-09-115	44.3	14.2	6.6	2.59	20.72	37.5	7.5	4.9	2.2	17.54
TB-11-23	21.7	1.4	1.4	1.27	10.16	-	-	-	-	-
TB-11-28	6	0.4	0.4	0.35	2.8	5.2	0.4	0.4	0.3	2.41
s16	35.1	3.5	3.1	1.98	16.34	>45.4	>45.4	>45.4	56.55	465.55
s17	45	8.7	5.5	2.54	20.94	-	-	-	-	-
s18	>193.4	>193.4	>193.4	56.55	465.55	-	-	-	-	-
s6	>60.8	>60.8	>60.8	56.55	465.55	-	-	-	-	-
Scenario-2	MaxT: 1 Ma	$\delta^{18}O = 4.2$	E = 2	_						
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	10E-1Ma(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	26E-1Ma(m)
TB-09-95	19.8	1.5	1.5	1.26	10.34	17	1.6	1.5	1.1	9.05
TB-09-97	24.1	1.8	1.8	1.51	12.34	19.8	1.9	1.8	1.26	10.35
TB-09-105	1.9	0.2	0.2	0.2	1.97	1.3	0.3	0.3	0.16	1.67
TB-09-115	40.3	9.8	5.6	2.44	19.92	34.6	6.3	4.4	2.11	17.22
TB-11-23	19.9	1.3	1.3	1.25	10.37	-	-	-	-	-
TB-11-28	4.2	0.3	0.3	0.33	3.03	3.4	0.3	0.3	0.28	2.64
s16	32.1	3.1	2.8	1.9	16.03	70.7	1000	30.4	4.08	33.97
s17	40.3	6.3	4.6	2.37	19.85	-	-	-	-	-
s18	>60.4	>60.4	>60.4	56.64	466.62	-	-	-	-	-
s6	64	1000	14.3	3.7	30.84	-	-	-	-	-
Scenario-3	MaxT: 1 Ma	δ18Ο = 4.5	E = 0	_						
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	10E-1Ma(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	26E-1Ma(m)
TB-09-95	53.7	3.9	3.8	1.6	13.09	47.6	4.2	3.9	1.42	11.6
TB-09-97	63.6	4.7	4.5	1.9	15.52	54.1	4.8	4.5	1.62	13.19
TB-09-105	12.2	0.8	8.0	0.29	2.9	11	1.1	1	0.26	2.61
TB-09-115	107.7	35.2	15.5	3.11	26.15	92.3	17.9	11.6	2.67	22.42

Supplemen	tary Table 2 co	ntinued								
TB-11-23	55.2	3.6	3.6	1.59	13.4	-	-	-	-	-
TB-11-28	17	1.1	1.1	0.49	4.12	15.2	1.1	1.1	0.44	3.7
s16	90	8.7	7.7	2.42	21.69	>116.1	>116.1	>116.1	26.9	240.9
s17	114.2	22	13.6	3.07	27.5	-	-	-	-	-
s18	>569.9	>569.9	>569.9	26.9	240.9	-	-	-	-	-
s6	>154.9	>154.9	>154.9	26.9	240.9	-	-	-	-	-
Scenario-4	MaxT: 1 Ma	δ18Ο= 4.5	E = 2							
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	10E-1Ma(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	26E-1Ma(m)
TB-09-95	49.1	3.6	3.5	1.61	13.5	43.1	3.9	3.7	1.43	12.03
TB-09-97	58.9	4.4	4.2	1.9	15.87	49.5	4.6	4.3	1.62	13.59
TB-09-105	6.4	0.5	0.5	0.3	3.04	5.2	0.8	0.8	0.28	2.75
TB-09-115	98	23.6	13.2	2.97	25.31	85	15.1	10.5	2.6	22.17
TB-11-23	50.3	3.4	3.3	1.6	13.74	-	-	-	-	-
TB-11-28	12	0.8	0.8	0.49	4.43	10.3	0.8	0.8	0.44	4.01
s16	82.5	7.8	7	2.36	21.38	187.5	1000	84.5	5.19	46.68
s17	102.5	15.7	11.3	2.9	26.2	-	-	-	-	-
s18	>154.0	>154.0	>154.0	27.05	242.42	-	-	-	-	-
s6	164.3	1000	38.5	4.57	41.09	-	-	-	-	-
Scenario-5	MaxT: 1 Ma	δ18Ο = 4.8	E = 0	<u> </u>						
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	10E-1Ma(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	26E-1Ma(m)
TB-09-95	156.5	10.8	10.7	1.77	8.81	141.8	11.4	10.9	1.6	7.99
TB-09-97	180	12.7	12.4	2.03	10.13	157.3	12.9	12.3	1.78	8.85
TB-09-105	66.6	4.4	4.4	0.35	3.35	61.2	5.6	5.4	0.32	3.08
TB-09-115	306.6	111.8	43.3	3.16	16.95	265.3	51.1	31.8	2.73	14.67
TB-11-23	168.7	11	10.9	1.74	9.33	-	-	-	-	-
TB-11-28	66.2	4.3	4.3	0.68	3.66	60.5	4.2	4.2	0.62	3.35
s16	294.6	27.4	24.3	2.45	15.7	>377.6	>377.6	>377.6	8.3	53.3
s17	368.9	72.2	43	3.06	19.66	-	-	-	-	-
s18	>1000	>1000	>1000	8.3	53.3	-	-	-	-	-
s6	>510.1	>510.1	>510.1	8.3	53.3	-	-	-	-	-

Supplementary Table 2 continued

Scenario-6	MaxT: 1 Ma	δ18Ο = 4.8	E = 2							
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	10E-1Ma(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	26E-1Ma(m)
TB-09-95	140.4	9.9	9.8	1.76	9.79	125.9	10.6	10.1	1.6	8.97
TB-09-97	163.7	11.7	11.4	2.03	11.11	141.4	12.1	11.4	1.77	9.85
TB-09-105	35.1	2.6	2.6	0.38	3.66	29.9	4.4	4.1	0.35	3.4
TB-09-115	275.8	68.6	36.1	3.02	17.14	241.8	42	28.5	2.67	15.26
TB-11-23	151.2	9.9	9.9	1.74	10.25	-	-	-	-	-
TB-11-28	45.5	3.1	3.1	0.65	4.41	40	3	3	0.59	4.1
s16	267.3	24.3	21.9	2.4	16.14	670.8	1000	339.4	5.75	37.65
s17	328.1	49.5	35.1	2.91	19.38	-	-	-	-	-
s18	>502.8	>502.8	>502.8	8.48	55.19	-	-	-	-	-
s6	546.2	1000	143.3	4.72	31.01	-	-	-	-	-
Scenario-7	MaxT: 120 ka	δ18Ο = 4.2	E = 0	_						
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)		26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	_
TB-09-95	17.5	1.5	1.4	1.04		14.4	1.7	1.5	0.86	
TB-09-97	22.3	1.8	1.7	1.33		17.6	1.9	1.8	1.05	
TB-09-105	-	-	-	0		-	-	-	0	
TB-09-115	40.2	12.1	6.1	2.36		33.7	6.9	4.6	1.97	
TB-11-23	17.7	1.2	1.2	1.03		-	-	-	-	
TB-11-28	-	-	-	0		-	-	-	0	
s16	31.5	3.2	2.8	1.78		>41.1	>41.1	>41.1	56.55	
s17	40.9	7.7	5	2.31		-	-	-	-	
s18	>98.0	>98.0	>98.0	56.55		-	-	-	-	
s6	>54.5	>54.5	>54.5	56.55		-	-	-	-	
Scenario-8	MaxT: 120 ka	δ18Ο = 4.2	E = 2	_						
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)		26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)	<u> </u>
TB-09-95	16	1.4	1.3	1.03		12.9	1.6	1.5	0.85	
TB-09-97	20.6	1.7	1.6	1.31		16	1.8	1.7	1.03	
TB-09-105	-	-	-	0.09		-	-	-	0.09	
TB-09-115	36.6	8.8	5.2	2.23		31	5.9	4.2	1.9	

Supplement	ary Table 2 con	tinued						
TB-11-23	16	1.1	1.1	1.02	-	-	-	_
TB-11-28	-	-	-	0.08	_	-	-	0.08
s16	28.7	2.8	2.5	1.71	60.6	1000	24.2	3.51
s17	36.7	5.7	4.1	2.16	_	_	-	_
s18	>54.1	>54.1	>54.1	56.64	-	-	-	-
s6	56.6	1000	11.5	3.29	-	-	-	-
Scenario-9	MaxT: 120 ka	D18O = 4.5	E = 0					
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	- 10E-100ka(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)
TB-09-95	48.3	3.7	3.6	1.44	41.8	4	3.8	1.25
TB-09-97	58.6	4.4	4.3	1.75	48.7	4.7	4.4	1.46
TB-09-105	-	-	-	0	_	-	-	0
TB-09-115	100.5	29	14.3	2.91	86	16.3	10.9	2.49
TB-11-23	49.8	3.3	3.3	1.44	_	_	-	_
TB-11-28	0.4	0.6	0.4	0.01	_	_	-	0
s16	84.5	7.9	6.9	2.27	>108.3	>108.3	>108.3	26.9
s17	107.1	19.2	12.2	2.88	-	-	-	-
s18	>302.7	>302.7	>302.7	26.9	-	-	-	-
s6	>141.0	>141.0	>141.0	26.9	-	-	-	-
Scenario-10	MaxT: 120 ka	δ18Ο = 4.5	E = 2					
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	 10E-100ka(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)
TB-09-95	44.2	3.4	3.3	1.46	37.8	3.8	3.6	1.27
TB-09-97	54.3	4.1	4	1.76	44.6	4.4	4.1	1.47
TB-09-105	-	-	-	0.15	-	-	-	0.15
TB-09-115	91.8	20.7	12.3	2.8	79.4	13.9	9.9	2.44
TB-11-23	45.4	3.1	3.1	1.45	-	-	-	-
TB-11-28	-	-	-	0.14	-	-	-	0.14
s16	77.4	7	6.3	2.23	159.9	1000	63.5	4.45
s17	96.4	14.1	10.2	2.74	-	-	-	-
s18	>140.0	>140.0	>140.0	27.05	-	-	-	-

s6

147

1000

29.7

4.1

Supplementary Table 2 continued

Scenario-11	MaxT: 120 ka	δ18Ο = 4.8	E = 0	_				
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)
TB-09-95	133.8	9.8	9.6	1.51	118	10.6	10.1	1.33
TB-09-97	159	11.6	11.3	1.8	134.9	12.2	11.5	1.52
TB-09-105	-	-	-	0	-	-	-	0
TB-09-115	276.6	75.1	37.2	2.85	239.8	42.4	28.7	2.47
TB-11-23	145.9	9.7	9.6	1.5	-	-	-	-
TB-11-28	16.2	2	2	0.17	10.9	2.1	2.1	0.11
s16	271.6	24	21.2	2.25	>342.2	>342.2	>342.2	8.3
s17	337.9	56.6	36.5	2.8	-	-	-	-
s18	>1000	>1000	>1000	8.3	-	-	-	-
s6	>437.7	>437.7	>437.7	8.3	-	-	-	-
Scenario-12	MaxT: 120 ka	δ18Ο = 4.8	E = 2	_				
sample	10E(mm/ka)	10E+(mm/ka)	10E-(mm/ka)	10E-100ka(m)	26E(mm/ka)	26E+(mm/ka)	26E-(mm/ka)	26E-100ka(m)
TB-09-95	121.8	9.1	8.9	1.55	106.3	10	9.4	1.38
TB-09-97	146.2	10.8	10.5	1.83	122.9	11.4	10.7	1.57
TB-09-105	-	-	-	0.19	-	-	-	0.19
TB-09-115	251.2	53.2	31.9	2.77	220	36.1	25.9	2.45
TB-11-23	132.2	8.8	8.8	1.54	-	-	-	-
TB-11-28	4.2	1.7	1.7	0.22	<0.9	<0.9	<0.9	0.18
s16	247.4	21.3	19.2	2.24	493.8	1000	190.8	4.28
310								
s10 s17	302.9	41.4	30.4	2.7	-	-	-	-
	302.9 >430.1	41.4 >430.1	30.4 >430.1	2.7 8.48		-	-	-

Short explanation for the data table columns

The columns starting with 26E are the same for the ²⁶Al data

¹⁰E(mm/ka) - glacial erosion rate based on ¹⁰Be

¹⁰E+(mm/ka) - positive uncertainty for 10Be glacial erosion including prod rate uncertainty

¹⁰E-(mm/ka) - negative uncertainty for 10Be glacial erosion including prod rate uncertainty

¹⁰E-100ka(m) - central point (not including uncertainties) full erosion (glacial and non-glacial) since 100 ka

¹⁰E-1Ma(m) - central point (not including uncertainties) full erosion (glacial and non-glacial) since 1 Ma

Supplementary Table 3

Input for glacialE.m *

Sample	Lat (⁰ N)	Long (°E)	Ele (m a.s.l.)	Elev- flag	Thickn (cm)	Erosion (mm/ka)	¹⁰ Be-conc. (atoms/g)	¹⁰ Be-unc (atoms/g)	¹⁰ Be-std	²⁶ Al-conc. (atoms/g)	²⁶ Al-unc (atoms/g)	²⁶ Al-std	Sampl-yr	Deglac (yr)
	• •		,		, ,	, ,	· 0/	•						
TB-09-95	29.36888	100.2372	4692	std	3	0/2	1484567	56343	07KNSTD	11184183	685313	KNSTD	2009	14000
TB-09-97	29.3708	100.23843	4676	std	4	0/2	1226343	41300	07KNSTD	9560849	564865	KNSTD	2009	14000
TB-09-105	29.40835	100.04247	4486	std	5	0/2	8918399	189870	07KNSTD	60173019	3348440	KNSTD	2009	20000
TB-09-115	29.41868	100.09108	4451	std	3	0/2	854821	50032	07KNSTD	6094306	397647	KNSTD	2009	15000
TB-11-23	29.45046	100.18385	4712	std	3	0/2	1578238	33485	07KNSTD	0	0	0	2011	15000
TB-11-28	29.42608	100.17905	4664	std	3	0/2	6189190	144847	07KNSTD	43428480	1178751	KNSTD	2011	15000
s16	29.3739	100.1371	4510	std	4	0/2	1100000	40000	07KNSTD	6000000	600000	Z92-0222	2012	17000
s17	29.3739	100.1371	4510	std	3	0/2	1000000	40000	07KNSTD	0	0	0	2012	17000
s18	29.3739	100.1371	4510	std	1	0/2	900000	30000	07KNSTD	0	0	0	2012	17000
s6	29.3739	100.1371	4500	std	4	0/2	900000	30000	07KNSTD	0	0	0	2012	17000

^{*} Density = 2.7 g/cm3; Shielding = 1