COMP 7005

Applied Computer Science, Network Security Applications Development Option Jan 2024

This is a pairs assignment. You must have the instructor's permission not to work in a pair.

Objective

- Understand and implement reliability mechanisms over an unreliable protocol (UDP) akin to TCP's.
- To explore the challenges and solutions in ensuring data integrity and delivery in network communication.

Learning Outcomes

- Gain practical experience in socket programming with UDP.
- Understand the principles behind TCP's reliability and how to implement similar mechanisms in UDP.
- Develop skills in creating robust network applications that can handle network unreliability.
- Learn to use command-line arguments for dynamic application configuration.
- Analyze and interpret network behaviour through data visualization.

Details

Components

Client

- Sends data to the server via the proxy.
- Must handle acknowledgments and timeouts.

Server

- Receives data from the client, processes it, and possibly sends a response.
- It must also handle duplicate and out-of-order packets.

Proxy

- Simulates network unreliability.
- Introduces packet loss and delays according to specified probabilities and ranges.

- You must provide options for:
 - % chance to drop packets coming from the client
 - % chance to drop packets coming from the server
 - % chance to drop delay coming from the client
 - % chance to drop delay coming from the server
 - Range (min/max) milliseconds to delay if a packet is delayed coming from the client
 - Range (min/max) milliseconds to delay if a packet is delayed coming from the server

Functionality

- Implement reliability features such as packet acknowledgment, retransmission on timeout, and sequence numbering to handle duplicates and ordering.
- Use command-line arguments to configure all parameters (e.g., IP addresses, ports, packet drop probability, delay range, etc.).
- Bonus: real-time graph.

Visualization

• Generate graphs to visualize packets sent, received, retransmitted packets, etc., for both the client and server.

Documentation

Design Document

• Describe the architecture, components, and algorithms used to ensure UDP reliability.

Testing Document

- Detail the testing methodology, scenarios, and outcomes.
- Include how the proxy's behaviour was varied, how the system was observed, and how it responded to different challenges.

Constraints

- Follow the <u>guidelines</u>.
- Ensure all components are robust against network unreliability scenarios.
- Dynamic configuration through command-line arguments is mandatory; hardcoding of parameters is not allowed.
- Both students must participate equally in all aspects of the project, or you may fail.

Resources

 Provide references to UDP and TCP documentation, socket programming tutorials, and any libraries or tools used for graph generation.

Submission

- Follow the assignment submission requirements.
- Be sure you are aware of the <u>late submission policy</u>.

Note: Please strictly adhere to the submission requirements to ensure you don't lose any marks.

Evaluation

Topic	Value
Implementation Correctness	20%
Handling of Network Reliability	25%
Dynamic Configuration	5%
Visualization & Analysis	10%
Design Document	20%
Testing Document	20%
Total	100

Hints

- Start with basic UDP client-server communication.
- Incrementally add reliability features, testing each thoroughly before moving on.
- Use external libraries or tools for graph generation to save time and focus on the core assignment objectives.
- Consider the design carefully to ensure the system can be easily adjusted and tested under different conditions.
- You can use a spreadsheet to graph the data, it does not have to be done programmatically.