Pontificia Universidad Católica de Chile Bastián Mora - bmor@uc.cl Matías Fernández - matias.fernandez@uc.cl

MAT1107 - Introducción al Cálculo

Ayudantía 09 - Jueves 19 de mayo del 2022

Problema 1. Si $\{a_n\}$ es una progresión aritmética con diferencia d, verifique que se tiene:

- a) $a_1 + \dots + a_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$, para $n = 1, 2, \dots$
- b) $a_n = \frac{a_{n-1} + a_{n+1}}{2}$, para $n = 2, 3, 4, \dots$ Es decir, cada término es el promedio aritmético de sus dos vecinos.

Solución.

- a) Al estilo de Gauss, si $S = a_1 + a_2 + \dots + a_n = a_n + a_{n-1} + \dots + a_1$, entonces $2S = (a_1 + a_n) + (a_2 + a_{n-1}) + \dots + (a_n + a_1) = (a_0 + a_n)$ (n) lo anterior se debe a que $a_j + a_{n-j} = a_{j+1} + a_{n-j-1}$, ya que $a_{j+1} a_j = a_{n-j} a_{n-j-1} = d$.
- b) Se sigue de que $a_n a_{n-1} = a_{n+1} a_n$.

Problema 2. Dado $r \neq 1$, calcule el valor de $1 + r + \ldots + r^{n-1}$ con $n \geq 1$. ¿Qué ocurre si r = 1?

Solución.

Si $S=1+r+\ldots+r^{n-1}$ entonces multiplicamos en ambos lados por r y nos queda $S\cdot r=r+r^2+\ldots+r^{n-1}+r^n$. De donde se deriva que

$$S \cdot r - S = (r + r^2 + \dots + r^{n-1} + r^n) - (1 + r + \dots + r^{n-1})$$

$$= -1 + (r - r) + (r^2 - r^2) + \dots + (r^{n-1} - r^{n-1}) + r^n$$

$$= r^n - 1$$

entonces $S = \frac{r^n - 1}{r - 1} = \frac{1 - r^n}{1 - r}$.

Problema 3. Sea $\{a_n\}$ una progresión geométrica con razón r. Verifique que:

- a) $a_1 + a_2 + \dots + a_n = a_1 \frac{1-r^n}{1-r}$, para $n = 1, 2, 3, \dots$
- b) Si los términos a_n son positivos, se tiene que $a_n = \sqrt{a_{n-1}a_{n+1}}$, para $n=2,3,4,\ldots$

Solución.

a) Como $\frac{a_n}{a_{n-1}} \cdot \frac{a_{n-1}}{a_{n-2}} \cdot \dots \cdot \frac{a_2}{a_1} = r^{n-1}$ tenemos, después de cancelar, que $a_n = a_1 r^{n-1}$.

b) Por la parte (a) y el problema 3, se tiene

$$S = a_1 + a_2 + \dots + a_n = a_1 + a_1 r + \dots + a_1 r^{n-1}$$
$$= a_1 \left(1 + r + \dots + r^{n-1} \right) = \frac{a_1 \left(1 - r^n \right)}{1 - r}$$

c) Como, $\frac{a_{n+1}}{a_n} = \frac{a_n}{a_{n-1}}$, se sigue que $a_n = \sqrt{a_{n-1}a_{n+1}}$.

Problema 4. Sea $r \in \mathbb{R}$ tal que 0 < r < 1. Sea $s_n = \sum_{i=1}^n r^i$, para cada $n \ge 1$. Demuestre que $s_{n+1} > s_n$ para $n \ge 1$. Demuestre que la sucesión $\{s_n\}_{n \ge 1}$ está acotada superior e inferiormente.

Solución.

Notemos que dado $n \ge 1$, $s_{n+1} - s_n = \sum_{i=1}^{n+1} r^i - \sum_{i=1}^n r^i = r^{n+1} > 0$. Por lo tanto $s_{n+1} > s_n$ para $n \ge 1$.

Por otro lado, tenemos que

$$r = s_1 \le s_n = \sum_{i=1}^n r^i = r \cdot \frac{1 - r^n}{1 - r} = r \left(\frac{1}{1 - r} - \frac{r^n}{1 - r} \right) < \frac{r}{1 - r}.$$

Problema 5. Encuentre el valor de la suma $1 \cdot 2 + 2 \cdot 2^2 + \ldots + n \cdot 2^n$.

Solución.

Denotemos por S_n a la suma $1 \cdot 2 + 2 \cdot 2^2 + \cdots + n \cdot 2^n$, entonces

$$S_n + (n+1)2^{n+1} = 1 \cdot 2 + 2 \cdot 2^2 + \dots + n \cdot 2^n + (n+1)2^{n+1}$$

$$= (0+1)2 + (1+1)2^2 + \dots + (n+1)2^{n+1}$$

$$= 2 \left(1 \cdot 2 + 2 \cdot 2^2 + \dots + (n-1)2^{n-1} + n \cdot 2^n + 1 + 2 + 2^2 + \dots + 2^n \right)$$

$$= 2 \left(S_n + \frac{2^{n+1} - 1}{2 - 1} \right)$$

de donde $S_n = (n+1)2^{n+1} - (2 \cdot 2^{n+1} - 2) = (n-1)2^{n+1} + 2$

Problema 6. Sea $a_n = \frac{2^n}{3}$ para $n \ge 1$ y considere la sucesión dada por

$$P_n = a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n, \quad n \ge 1.$$

Calcule P_{100} .

Solución.

$$P_n = \frac{2}{3} \cdot \frac{2^2}{3} \cdot \frac{2^3}{3} \cdot \dots \cdot \frac{2^n}{3}$$
$$= \frac{1}{3^n} \cdot 2 \cdot 2^2 \cdot 2^3 \cdot \dots \cdot 2^n$$
$$= \frac{1}{3^n} \cdot 2^{1+2+3+\dots+n}$$

Luego,

$$P_n = \frac{1}{3^n} \cdot 2^{\frac{n(n+1)}{2}}.$$

Luego,

$$P_{100} = \frac{1}{3^{100}} 2^{\frac{100 \cdot 101}{2}}.$$