

CZ3005 Artificial Intelligence

Neural Networks

Asst/P Mahardhika Pratama

Email: mpratama@ntu.edu.sg

Office: N4-02a-08

Outline

- ■Overview and Summary
- Model Representation
- □Neural Network Example
- ■Multi-class Classification Problem

Overview and Summary

- ☐ Suppose we have a complex problem
 - > can use high order logistic regression but only scalable for small input dimension
- ☐ Suppose we have a problem with 100 input variables
 - ➤ If we use second order polynomial, we will end up with 5000 terms
 - We can use a subset of them, but if you do not have enough

- A matrix of pixel intensity values
- Build a car detector
 - ✓ Cars and Non Cars
 - ✓ Plot two pixels
 - ✓ Plot car and non car on the figure
- Need a nonlinear hypothesis
- Feature Space
 - ✓ If we use 50 by 50 pixels images 2500 features
 - ✓ If we use RGB 7500 features
- We need NN for a complex problem

- NNs were developed as a way to simulate networks of neurons
- Three things to notice from the right
 - ✓ Cell Body
 - ✓ Number of Input Wires (Dendrites)
 - ✓ Output Wires (axon)
- Simple Level
 - Neurons gets one or more inputs through dendrites
 - ✓ Does processing
 - ✓ Sends output down to axon
- Neurons communicate through electric spikes
 - Pulse of electricity via axon to another neuron

- In an artificial neural network, a neuron is a logistic unit
 - Feed input via input wires
 - Logistic unit does computation
 - Sends output down output wires
- That logistic computation is just like our previous logistic regression hypothesis calculation
- Often good to include an x₀ input the bias unit
- This is an artificial neuron with a sigmoid (logistic) activation function
 - O vector may also be called the weights of a model

- Here, input is x_1 , x_2 and x_3
 - Input activation on the first layer i.e. (a₁¹, a₂¹ and a₃¹)
 - Three neurons in layer 2
 (a₁², a₂² and a₃²)
 - Final neuron produces the output
 - Which again we *could* call a₁³
- First layer is the input layer
- Final layer is the output layer produces value computed by a hypothesis
- Middle layer(s) are called the hidden layers
 - You don't observe the values processed in the hidden layer
 - Not a great name
 - Can have many hidden layers

- a_i^(j) activation of unit *i* in layer *j*
 - So, a₁² is the activation of the 1st unit in the second layer
 - By activation, we mean the value which is computed and output by that node
- $\Theta^{(j)}$ matrix of parameters controlling the function mapping from layer j to layer j+1
- Looking at the O matrix
 - Column length is the number of units in the following layer
 - Row length is the number of units in the current layer + 1 (because we have to map the bias unit)

$$\begin{split} a_1^{(2)} &= g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \\ a_2^{(2)} &= g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \\ a_3^{(2)} &= g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \\ h_{\Theta}(x) &= a_1^{(3)} &= g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}) \end{split}$$

- Layer 3 is a logistic regression node
 - The hypothesis output = q
- This is just logistic regression
 - the features are just value
- The features a_1^2 , a_2^2 , and a_3^2
 - a neural network can learn
- Flexibility to learn whatever fe calculation
 - So, if we compare this to j calculate your own excitin

- Here, we're letting the hidden layers do that, so we feed the hidden layers our input values,
 - and let them learn whatever gives the best final result to feed into the final output layer

- As well as the networks already seen, other architectures (topology) are possible
- More/less nodes per layer
- More layers
- Once again, layer 2 has three hidden units, layer 3 has 2 hidden units by the time you get to the output layer you get very interesting non-linear hypothesis

Neural Network Example

- Problem : XOR/XNOR
 - x₁, x₂ are binary
- $y = x_1 XOR x_2$
- $x_1 XNOR x_2$
- Where XNOR = NOT (x₁ XOR x₂)

We want to learn a non-linear decision boundary to separate the positive and negative examples

Neural Network Example: AND

Manually Assign the Weight

x_1	x_2	$h_{\Theta}(x)$
0	0	q (-30) 20
0	1	9(-10) 20
1	0	3(-10) %0
1	1	9(10) 21
hoc	×××	3

h@(x)=g(-30+20x,+20x2)

Sigmoid function (reminder)

Neural Network Example: NOT

Negation is achieved by putting a large negative weight in front of the variable you want to negate

Neural Network Example: XNOR

- •How can we implement XNOR function with NN?
 - •XNOR = Not XOR
 - Positive output is produced if and only if
 - •AND (both true)
 - Neither
- •We can combine these into NN and make it work

Multiclass Problem

- One vs All
- Classify pedestrian, car, motorbike and truck
 - Build NN with 4 output units
 - 1 is 0/1 pedestrian
 - 2 is 0/1 car
 - 3 is 0/1 motorcycle
 - 4 is 0/1 truck
 - When an image of pedestrian [1,0,0,0]
- Training set is image of our four classification problems

