Lineær algebra noter - Ortogonale og unitære matricer

Lukas Peter Jørgensen, 201206057, DA4

24.juni2014

Indhold

1	\mathbf{Dis}	position
2	Not	ser
	2.1	Ortogonalt sæt
	2.2	Basis
	2.3	Ortonormalt sæt
	2.4	Ortogonalmatrix
	2.5	Theorem 5.5.5
	2.6	Unitære matricer
	2.7	Hermitiske matricer
	2.8	Schurs theorem
	2.9	Spektralsætningen

1 Disposition

1. TBD

2 Noter

2.1 Ortogonalt sæt

Et sæt af vektorer $\{v_1, v_2, \dots, v_n\}$ er ortogonale hvis:

$$\langle v_j, v_i \rangle = 0 \text{ for } i \neq j$$

Dette sæt er en basis hvis det opfylder definitionen for en basis.

2.2 Basis

Sættet $\{v_1,v_2,\ldots,v_n\}$ er en basis for V hvis vektorerne i sættet indbyrdes er lineært uafhængige og spanner V.

2.3 Ortonormalt sæt

Et sæt af vektorer $\{v_1, v_2, \dots, v_n\}$ er ortonormalt hvis:

- Sættet er ortogonalt
- Sættet består af enhedsvektorer (er normeret).

$$\langle v_i, v_j \rangle = \delta_{ij} \begin{cases} 1 & \text{for i=j,} \\ 0 & \text{ellers} \end{cases}$$

2.4 Ortogonalmatrix

Hvis søjlevektorerne i en matrix $Q \in \mathbb{R}^{n,n}$ udgører et ortonormalt sæt i \mathbb{R}^n er Q en ortogonalmatrix.

Der gælder for en ortogonalmatrix at $Q^TQ = I$.

Der gælder desuden at $\langle Qx, Qy \rangle = (Qy)^T(Qx) = y^TQ^TQx = \langle x, y \rangle$, og at $||Qx||^2 = ||x||^2$.

2.5 Theorem 5.5.5

En $n \times n$ matrix Q er en ortogonalmatrix iff $Q^TQ = I$

 $n \times n$ matrix er ortogonal iff søjlevektorerne opfylder:

$$q_i^T q_j = \delta_{ij} = \begin{cases} 1 & \text{for i=j,} \\ 0 & \text{ellers} \end{cases}$$

Således er Q ortogonal iff $Q^TQ = I$.

2.6 Unitære matricer

En matrix $U \in \mathbb{C}^n$ er en unitær matrix hvis dens søjlevektorer udgører et ortonormalt sæt i \mathbb{C}^n .

En matrix er unitær hvis og kun hvis der gælder at $U^H U = I$.

2.7 Hermitiske matricer

 $M=(m_{ij})\in\mathbb{C}^{m,n}$. M er hermitisk såfremt matricen konjungeret og transponeret er lig sig selv. Dette skrives som $M=M^H$. En hermitisk matrix er det samme som en symmetrisk matrix for det reelle rum, blot for komplekse tal.

Desuden gælder der at egenværdierne af en hermitisk matrix alle er reelle.

2.8 Schurs theorem

For enhver $n \times n$ matrix A eksisterer der en unitær $n \times n$ matrix U, således at U^HAU er øvre triangulær.

Vi beviser Schurs vha. induktion i n.

n=1

At det gælder for n = 1 er trivielt da en 1×1 matrix pr. definition allerede er triangulær, og det derfor er let at finde en unitær matrix for dette tilfælde.

Induktion shypotese:

Som induktionshypotese antager vi at påstanden gælder for $k \times k$ matricer.

n = k + 1

Vi definerer A som en $k+1 \times k+1$ matrix, hvor λ_1 er en egenværdi og w_1 den tilhørende egenvektor.

Vha. Gram-Schmidt konstrueres en ortonormal basis for \mathbb{C}^{k+1} bestående af vektorerne $\{w_1, \ldots, w_{k+1}\}.$

Hvis W så er en matrix med dette sæt som søjlevektorer, så er W unitær.

Den første søjle i W^HAW er så:

$$W^H A w_1 = \lambda W^H w_1 = \lambda_1 e_1$$

Derved har matrixen W^HAW formen:

$$W^H A W = \begin{bmatrix} \lambda_1 & x_2 & \cdots & x_{k+1} \\ \hline 0 & & & \\ \vdots & & M & \\ 0 & & & \end{bmatrix}$$

Hvor M er en $k \times k$ matrix. Vha. induktionshypotesen ved vi der findes en unitær $k \times k$ matrix V_1 således at $V_1^H M V_1 = T_1$ er øvre triangulær.

Vi kan så danne V:

$$V = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & V_1 & \\ 0 & & & \end{bmatrix}$$

Som så vil være unitær g:

$$V^{H}W^{H}AWV = \begin{bmatrix} \lambda_{1} & x_{2} & \cdots & x_{k+1} \\ 0 & & & \\ \vdots & & V_{1}^{H}MV_{1} & \\ 0 & & & \end{bmatrix} = \begin{bmatrix} \lambda_{1} & x_{2} & \cdots & x_{k+1} \\ 0 & & & \\ \vdots & & T_{1} & \\ 0 & & & \end{bmatrix} = T$$

Ter så øvre triangulær. Vi lader nu U=WV. Da er U så unitær siden:

$$U^H U = (WV)^H WV = V^H W^H WV = I$$

Og $U^H A U = T$.

Note: Schur decomposition Faktoriseringen $A = UTU^H$ bliver ofte kaldt dekompositionen af A.

2.9 Spektralsætningen

Hvis A er hermitisk så eksisterer der en unitær matrix U der diagonaliserer A.

Vha. Schurs theorem ved vi at der eksisterer en unitær matrix U således at $U^HAU=T$, hvor T er øvre triangulær. Det følger derfor:

$$T^H = (U^H A U)^H = U^H A^H U = U^H A U = T$$

(Husk at $(ABC)^H = C^H B^H A^H$)

Altså er T hermitisk og må derved også være diagonal.

$$T = \begin{bmatrix} t_{11} & \cdots & t_{1n} \\ 0 & \ddots & \vdots \\ 0 & 0 & t_{nn} \end{bmatrix}, T^H = \begin{bmatrix} \bar{t_{11}} & 0 & 0 \\ \vdots & \ddots & 0 \\ \bar{t_{1n}} & \cdots & \bar{t_{nn}} \end{bmatrix}$$