Tutorial 4

Problem 1

Define two functions $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x+y \\ 0 \end{bmatrix}, \quad S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ xy \end{bmatrix}.$$

Determine whether T, S, and the composite $S \circ T$ are linear transformations.

Problem 2

The space $C^{\infty}(\mathbb{R})$ is the vector space of real functions which are infinitely differentiable. Let $T: C^{\infty}(\mathbb{R}) \to P_3$ be the map which takes $f \in C^{\infty}(\mathbb{R})$ to its third order Taylor polynomial, specifically defined by

$$T(f)(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3.$$

Here, f', f'', and f''' denote the first, second, and third derivatives of f, respectively. Prove that T is a linear transformation.

Problem 3

Let C([0,3]) be the vector space of real functions on the interval [0,3]. Let P_3 denote the set of real polynomials of degree 3 or less.

Define the map $T: C([0,3]) \to P_3$ by

$$T(f)(x) = f(0) + f(1) \cdot x + f(2) \cdot x^{2} + f(3) \cdot x^{3}.$$

Determine if T is a linear transformation. If it is, determine its nullspace.

Problem 4

For an integer n > 0, let P_n be the vector space of polynomials of degree at most n. The set $B = \{1, x, x^2, \dots, x^n\}$ is a basis of P_n .

Let $T: P_n \to P_{n+1}$ be the map defined by, for $f \in P_n$,

$$T(f)(x) = x \cdot f(x).$$

Prove that T is a linear transformation, and find its range and nullspace.