Spring 2016 Math 511 Assignment 3 Solution

1. Suppose for $m, n \in \mathbb{N}, |a_{m,n}| \leq 1$. Define

$$K(w,z) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{m,n} w^m z^n.$$

Prove that for every $w \in D(0, 1)$, the function $f_w(z) = K(w, z)$ is well-defined, holomorphic on D(0, 1).

(Hint: Prove that for every $w \in D(0, 1)$ and $m \ge 1$, $\sum_{n=1}^{\infty} a_{m,n} w^m z^n$ converges to a function $f_m(z)$ holomorphic on D(0,1). Then show that $\sum_{m=1}^{\infty} f_m(z)$ converges to a function f(z) holomorphic on D(0,1).)

Solution: Let $w \in D(0, 1)$ and $m \ge 1$. Then |w| < 1. For every 0 < r < 1 and $z \in \overline{D(0,r)}$, we have $|a_{m,n}w^mz^n| \le |w|^mr^n \le r^n$. Since $\sum_{n=1}^{\infty} r^n$ converges, $\sum_{n=1}^{\infty} a_{m,n}w^mz^n$ converges uniformly on $\overline{D(0,r)}$. Therefore, $\sum_{n=1}^{\infty} a_{m,n}w^mz^n$ converges to a function $f_m(z)$ holomorphic on D(0,1).

For every 0 < r < 1 and $z \in D(0, r)$, we have

$$|f_m(z)| = |\sum_{n=1}^{\infty} a_{m,n} w^m z^n| \le \sum_{n=1}^{\infty} |a_{m,n} w^m z^n| \le \sum_{n=1}^{\infty} |w|^m r^n = \frac{r|w|^m}{1-r}.$$

Since $\sum_{m=1}^{\infty} \frac{r|w|^m}{1-r} = \frac{r|w|}{(1-r)(1-|w|)}$, the series $\sum_{m=1}^{\infty} f_m(z)$ converges uniformly on $\overline{D(0,r)}$. Hence, $\sum_{m=1}^{\infty} f_m(z)$ converges to a function f(z) holomorphic on D(0,1).

2. Find the power series expansion of the following holomorphic functions about the given point and find the radius of convergence.

(a)
$$f(z) = \frac{1}{z}$$
 at $z_0 = 2 - i$.

Solution:

$$\frac{1}{z} = \frac{1}{(2-i) + (z - (2-i))} = \frac{1}{(2-i)} \frac{1}{\left(1 + \frac{z - (2-i)}{2-i}\right)}$$

$$\frac{1}{z} = \frac{1}{(2-i) + (z - (2-i))} = \frac{1}{(2-i)} \frac{1}{(2-i)} = \frac{1}{(2-i)} \frac{1}{(2-i)} = \frac{1}{(2-i)} \frac{1}{(2-i)} = \frac{1}{(2-i)$$

$$= \frac{1}{(2-i)} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z - (2-i)}{2-i} \right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{(z - (2-i))^n}{(2-i)^{n+1}}$$

with radius of convergence $|2 - i| = \sqrt{5}$.

(b)
$$f(z) = \frac{z - \frac{1}{2}}{1 - \frac{z}{2}}$$
 at $z_0 = 0$.

Solution:

$$\frac{z - \frac{1}{2}}{1 - \frac{z}{2}} = -2 + \frac{3}{2} \left(\frac{1}{1 - \frac{z}{2}} \right) = -2 + \frac{3}{2} \left(\sum_{n=0}^{\infty} \left(\frac{z}{2} \right)^n \right) \text{ for } \left| \frac{z}{2} \right| < 1 \Leftrightarrow |z| < 2$$

3. Suppose that $f: D(0,2) \to \mathbf{C}$ is holomorphic and that $|f(z)| \le 9$ for all $z \in D(0,2)$. Prove that

$$\left| \frac{\partial^3}{\partial z^3} f\left(\frac{i}{2}\right) \right| \le 16$$

Solution: For every $0 < r < \frac{3}{2}$, $\overline{D\left(\frac{i}{2},r\right)} \subset D(0,2)$. Therefore, $|f(z)| \leq 9$ for all $z \in \overline{D\left(\frac{i}{2},r\right)}$. By Theorem 3.4.1, we have

$$\left| \frac{\partial^3}{\partial z^3} f\left(\frac{i}{2}\right) \right| \le \frac{9(3!)}{r^3} \quad \text{for all } r < \frac{3}{2}$$

$$\Rightarrow \quad \left| \frac{\partial^3}{\partial z^3} f\left(\frac{i}{2}\right) \right| \le \frac{9(3!)}{\left(\frac{3}{2}\right)^3} = 16.$$

4. Suppose $a_0 \ge a_1 \ge a_2 \ge \cdots a_n \ge \cdots$ and $\lim_{n\to\infty} a_n = 0$. Show that $\sum_{n=0}^{\infty} a_n z^n$ converges for all z, with |z| = 1 and $z \ne 1$.

Solution: Suppose |z| = 1 and $z \neq 1$. Let $S_n(z) = \sum_{k=0}^n z^k = \frac{1 - z^{n+1}}{1 - z}$. Then $|S_n(z)| = \frac{|1 - z^{n+1}|}{|1 - z|} \leq \frac{2}{|1 - z|}$. Given $\epsilon > 0$, choose N > 1 such that $|a_n| < \frac{|1 - z|\epsilon}{4}$ for all $n \geq N$. Then for all $m > n \geq N$, we have

$$\left| \sum_{k=n}^{m} a_n z^n \right| = \left| \sum_{k=n}^{m} a_n (S_n(z) - S_{n-1}(z)) \right|$$

$$= \left| a_m S_m(z) + \sum_{k=n}^{m-1} (a_n - a_{n+1}) S_n(z) - a_n S_{n-1}(z) \right|$$

$$\leq \left| a_m \right| \left| S_m(z) \right| + \sum_{k=n}^{m-1} \left| a_n - a_{n+1} \right| \left| S_n(z) \right| + \left| a_n \right| \left| S_{n-1}(z) \right|$$

$$\leq \left(a_m + (a_n - a_m) + a_n \right) \left(\frac{2}{|1 - z|} \right) = \frac{4a_n}{|1 - z|} < \epsilon$$

Therefore, $\sum_{n=0}^{\infty} a_n z^n$ converges.

5. Determine the radius of convergence of the series $\sum_{k=0}^{\infty} \frac{k}{k^2 + 4} z^k$ and the points (including those on the boundary of the disk of convergence) at which the series converge.

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \left(\frac{k+1}{k}\right) \left(\frac{k^2+4}{(k+1)^2+4}\right) = \lim_{k \to \infty} \left(1 + \frac{1}{k}\right) \left(\frac{1 + \frac{4}{k^2}}{\left(1 + \frac{1}{k}\right)^2 + \frac{4}{k^2}}\right) = 1$$

Therefore, the radius of convergence is 1. For $k \ge 2$, $\frac{k}{k^2 + 4} \ge \frac{k}{k^2 + k^2} = \frac{1}{2k}$. Since the harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, the power series $\sum_{k=0}^{\infty} \frac{k}{k^2 + 4} z^k$ diverges at z = 1.

Let
$$f(x) = \frac{x}{x^2+4}$$
. Then $f'(x) = \frac{x^2+4-x(2x)}{(x^2+4)^2} = \frac{4-x^2}{(x^2+4)^2} < 0$ for $x>2$. Therefore, $a_2>a_3>\cdots$. Also, $\lim_{k\to\infty}a_k=0$. We can apply the result in 4. So, the set of points on which the series converges is $\overline{D(0,1)}\setminus\{1\}$.

6. Suppose $f \not\equiv 0$ is an entire function such that for some $B, K > 0, |f(z)| \leq B|z|^K$ for all $z \in \mathbb{C}$. Prove that K is an integer and $f(z) = Cz^K$ for some $C \in \mathbb{C}$, with $|C| \leq B$. (Hint: Theorem 3.4.4 can be used but is not enough.)

Solution: Let k be the smallest integer $\geq K$. Then $k-1 < K \leq k$. We have $|f(z)| \leq B|z|^K \leq B|z|^k$ for $|z| \geq 1$. From Theorem 3.4.4, we have f(z) is a non-zero polynomial in z of degree at most k. Let $f(z) = \sum_{n=0}^k a_n z^n$. Then for all $z \neq 0$, we have $|f(z)| \leq B|z|^K \Rightarrow \lim_{z\to 0} |f(z)| = 0 \Rightarrow a_0 = 0$. Suppose we have proven $a_0 = \cdots = a_n = 0$ for some n < k-1. Then we have

$$|a_{n+1}| = \lim_{z \to 0} |\sum_{n=0}^{k} \frac{|f(z)|}{|z^{n+1}|} \le \lim_{z \to 0} B|z|^{K-n-1} = 0 \Rightarrow a_{n+1} = 0$$

Therefore, $a_0 = \cdots = a_{k-1} = 0$ and $f(z) = a_k z^k$ and $a_k \neq 0$. Hence, $|a_k z^k| \leq B|z|^K \Rightarrow |a_k| \leq B|z|^{(K-k)}$ for all $z \in \mathbb{C}$. Since $k \geq K$ and $a_k \neq 0$, we have K = k and $|a_k| \leq B$.

7. Suppose f is a holomorphic function on D(0,1) such that f^2 is a holomorphic **polynomial** on D(0,1). Must f be a holomorphic polynomial on D(0,1)? Explain your answer.

Solution: No. For $z = re^{i\theta}$, r > 0, $-\pi < \theta < \pi$. Define $g(z) = \sqrt{z} = r^{1/2}e^{i\theta/2}$. Then g is well defined and continuous on $U = \mathbb{C} \setminus (-\infty, 0]$. For $z_0 \in U$, we have :

$$g'(z_0) = \lim_{z \to z_0} \frac{g(z) - g(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\sqrt{z} - \sqrt{z_0}}{(\sqrt{z} - \sqrt{z_0})(\sqrt{z} + \sqrt{z_0})} = \frac{1}{2\sqrt{z_0}}$$

Since $g'(z) = \frac{1}{2\sqrt{z}}$ is continuous on U, g is holomorphic on U. Let $f(z) = \sqrt{1+z}$. Since $1+D(0,1) \subset U$, f is holomorphic on D(0,1) and $(f(z))^2 = 1+z$ is a holomorphic polynomial. Note that for all $k \geq 1$,

$$f^{(k)}(z) = \frac{(-1)^{k-1} \prod_{j=1}^{k} (2j-3)}{2^k (1+z)^{\frac{2k-1}{2}}} \neq 0$$

Therefore, f is not a holomorphic polynomial.

8. Suppose $U \subseteq \mathbf{C}$ is open $f: U \to \mathbf{C}$ is a function such that both f^2 and f^3 are holomorphic on U. Prove that f is holomorphic on U. (Warning: Beware of the zeros of f.)

Solution: Let $p \in U$. We are going to show that there exists r > 0 such that f is holomorphic in $D(p,r) \subset U$. Consider the following cases:

If $f(p) \neq 0$, then there exists r > 0 such that $D(p,r) \subset U$ and $f(z) \neq 0$ for all $z \in D(p,r)$. Therefore, $f(z) = \frac{(f(z))^3}{(f(z))^2}$ is holomorphic in D(p,r).

Suppose f(p) = 0. Choose $r_0 > 0$ such that $D(p, r_0) \subset U$.

If for some $0 < r \le r_0$, $f \equiv 0$ on D(p,r), then $f \equiv 0$ on $D(p,r_0)$. Therefore, f is holomorphic in D(p,r).

If $f \not\equiv 0$ on $D(p, r_0)$, then, f^2 , $f^3 \not\equiv 0$ on $D(p, r_0)$. By Theorem 3.6.1, we can choose $0 < r < r_0$ such that $f(z) \not\equiv 0$ for all $z \in D(p, r) \setminus \{0\}$. Let $f^2 = (z - p)^n g(z)$, $f^3(z) = (z - p)^m h(z)$, where n, m > 0 and g(z), h(z) are non-zero and holomorphic in D(p, r). Then

$$((z-p)^n g(z))^3 = f^6(z) = (f^3(z))^2 = ((z-p)^m h(z))^2$$

$$\Rightarrow 3n = 2m \Rightarrow 2(m-n) = n > 0 \Rightarrow m-n > 0$$

Therefore, $f(z) = \frac{f^3(z)}{f^2(z)} = \frac{(z-p)^m h(z)}{(z-p)^n g(z)} = \frac{(z-p)^{m-n} h(z)}{g(z)}$ is holomorphic in D(p,r).

9. Suppose f is bounded and holomorphic on $\mathbb{C}\setminus\{0\}$. Prove that f is constant on $\mathbb{C}\setminus\{0\}$. (Note: f(0) is not defined. Hint: Consider $g(z)=z^2f(z)$.)

Solution: Suppose $|f(z)| \leq M$ for all $z \in \mathbb{C} \setminus \{0\}$. Then $|g(z)| \leq M|z|^2$ for all $z \in \mathbb{C} \setminus \{0\}$ and we can define $g(0) = \lim_{z \to 0} g(z) = 0$. $g'(0) = \lim_{z \to 0} \frac{g(z) - g(0)}{z - 0} = \lim_{z \to 0} z f(z) = 0$. Therefore, g is holomorphic on \mathbb{C} . By the result in 6., we have $g(z) = Cz^2$ for some C. Therefore, f(z) = C for all $z \in \mathbb{C} \setminus \{0\}$

10. In each of the following cases, determine if there exists f holomorphic on D(0,1) satisfying the condition. If so, find f. If not, explain why.

(a)
$$f\left(\frac{1}{2n+1}\right) = \frac{1}{n}$$
.

Solution: Let
$$f(z) = \frac{2z}{1-z}$$
. Then $f\left(\frac{1}{2n+1}\right) = \frac{\frac{2}{2n+1}}{\left(1 - \frac{1}{2n+1}\right)} = \frac{1}{n}$.

(b)
$$f\left(\frac{(-1)^n}{n}\right) = \frac{1}{n}$$
.

Solution: Suppose f is holomorphic on D(0,1) satisfying $f\left(\frac{(-1)^n}{n}\right) = \frac{1}{n}$. Then g(z) = f(z) + z = 0 for all $z = \frac{-1}{2n+1}$, n > 1. Therefore, the zeros of g has an accumulation point 0 in D(0,1). Hence, $g(z) \equiv 0$ on D(0,1). But $g\left(\frac{1}{2}\right) = 1 \neq 0$, a contradiction. Hence, no such f exists.