Devoir maison n°7: Équations différentielles et courbes planes

A rendre vendredi 16 décembre

Exercice I : Propriété des courbes représentatives des fonctions numériques

Partie I : courbure d'une fonction d'une variable réelle à valeurs réelles

On considère une fonction de classe \mathscr{C}^2 d'une variable réelle et à valeurs dans $\mathbb R$:

$$y:I\to\mathbb{R}.$$

On considère la fonction vectorielle :

$$f: \begin{array}{ccc} I & \longmapsto & \mathbb{R}^2 \\ t & \longmapsto & (t, y(t)) \end{array}$$

On notera \mathscr{C} la courbe paramétrée par f.

- 1. Montrer que $\mathscr C$ est une courbe régulière.
- 2. Déterminer le repère de Frenet en tout point M(t) de paramètre $t \in I$.
- 3. Déterminer la courbure de $\mathscr C$ en tout point M(t).
- 4. Donner un paramétrage de la développée de $\mathscr C$ aux points biréguliers.

Partie II : centre de courbure des solutions d'une équation différentielle

Déterminer le centre de courbure C(0) au point O des courbes paramétrées par $f:t\mapsto (t,y(t))$ avec y une solution de l'équation différentielle :

$$(1-t^2)y'' - ty' - 2y = 1$$
 telles que $y(0) = 0$.

On ne demande pas de résoudre l'équation différentielle et on exprimera le centre de courbure en fonction de y'(0).

Exercice II - Extrait de Banque PT - Oral 1

Déterminer un paramétrage de l'enveloppe des droites (AB) où [AB] est un segment de longueur a > 0 avec $A \in (\mathcal{O}_x)$ et $B \in (\mathcal{O}_y)$.

Exercice III - Extrait de Banque PT - Maths B

Le plan \mathbb{R}^2 est muni de sa structure euclidienne usuelle et d'un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j})$. On considère alors la courbe Γ de représentation paramétrique :

$$\begin{cases} x(\theta) &= \theta \cos(\theta) \\ y(\theta) &= \theta \sin(\theta) \end{cases}, \ \theta \in [0; 2\pi].$$

Pour $\theta \in [0; 2\pi]$, on note $M(\theta)$ le point de Γ de paramètre θ .

- 1. (a) Donner la forme trigonométrique (ou exponentielle) de l'affixe complexe $z\left(\theta\right)$ de $M\left(\theta\right)$.
 - (b) Calculer la dérivée sur $[0; 2\pi]$ de la fonction $\theta \mapsto z(\theta)$.
 - (c) En déduire la valeur de $\left\|\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}\theta}(\theta)\right\|$ pour $\theta \in [0; 2\pi]$ et préciser quels sont les points réguliers de Γ .
- 2. On considère la fonction f définie sur $D = [0; 2\pi] \{\frac{\pi}{2}; \frac{3\pi}{2}\}$ par $f(\theta) = \tan(\theta) + \theta$.
 - (a) Dresser le tableau de variations de f.
 - (b) Démontrer que f s'annule exactement 3 fois sur D en θ_0, θ_2 et θ_4 vérifiant $\theta_0 < \theta_2 < \theta_4$.
 - (c) En déduire les points de Γ admettant une tangente horizontale. On admet qu'il existe uniquement 2 points $M\left(\theta_{1}\right)$ et $M\left(\theta_{3}\right)$ admettant une tangente verticale.
- 3. Tracé de Γ .

On donne $\theta_1 \approx 0,86$ et $\cos(\theta_1) \approx 0,65, \theta_2 \approx 2,03$ et $\cos(\theta_2) \approx -0,44,$ $\theta_3 \approx 3,43$ et $\cos(\theta_3) \approx -0,96,$ $\theta_4 \approx 4,91$ et $\cos(\theta_4) \approx 0,20.$

- (a) En utilisant les données ci-dessus, proposer une construction du point $M\left(\theta_{4}\right)$ sachant que l'on dispose uniquement d'une règle graduée, d'un compas et d'une équerre.
- (b) Placer les points $M(\theta)$ pour $\theta = \theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \frac{\pi}{2}$ avec leur tangente ainsi que les points $M(\theta)$ pour $\theta = \pi, \frac{3\pi}{2}$ et 2π . Il est conseillé de prendre une unité de 2 cm.
- (c) Finir le tracé de Γ et placer le point $M\left(\frac{4\pi}{3}\right)$.