cat 2 data science student prediction model

1	 Which type of machine learning algorithm would be most suitable for this task? Ex 	xplain
У	our reasoning.	

Answer:

A :Random Forest Classifier---is most suitable for this task. Here's why:

- Handles Mixed Data Types: Random Forest can handle both numerical and categorical features without requiring extensive preprocessing.
- **Captures Non-linear Relationships:** It can capture complex interactions between features, which is important for predicting enrollment and graduation success.
- Feature Importance: Provides feature importance scores, helping identify key predictors.
- **Robust to Overfitting**-- Less prone to overfitting compared to single decision trees, making it reliable for smaller datasets.

2. What features from the student data would be most relevant for predicting enrollment and graduation success?

Answer:

The most relevant features include:

- Historical Student Enrollment Data
- Previous enrollment status (Previous qualification, Curricular units 1st sem (approved)`, etc.).
- Academic performance metrics ('Admission grade, Curricular units 1st sem (grade)').
- Student Academic Records:

cat 2 data science student prediction model

- GPA, test scores, attendance rates, study hours, course completion rates.
- Performance indicators like grades and evaluations.
- Student Demographic Data
- Marital status, gender, age at enrollment, international status.
- Financial aid status ('Tuition fees up to date', 'Scholarship holder').
- 3. How can you protect the privacy of student data while still using it to develop predictive models?

Answer:

To protect student privacy:

- 1. **Anonymize Identifiers:** Remove or hash personally identifiable information (PII) like names, IDs, and addresses.
- 2. **Add Noise:** Introduce small random noise to sensitive numerical features (e.g., GPA, test scores) to obscure exact values.
- 3. Aggregate Data: Use aggregated statistics instead of individual-level data where possible.
- 4. **Access Controls**: Implement strict access controls to ensure only authorized personnel can view raw data.
- 5. **De-identification**: Replace sensitive attributes with generic categories (e.g., age ranges instead of exact ages).

4. How can you communicate the results of your model to educational institutions in a way that is actionable and informative?

cat 2 data science student prediction model

Answer:

To communicate results effectively:

- **1. Detailed Reports**: Provide comprehensive reports summarizing model predictions and insights.
- 2. Visualizations: Use charts and graphs (e.g., bar plots, heatmaps) to highlight key findings.
- 3. Actionable Insights: Identify high-risk students and recommend targeted interventions.
- 4. **Interactive Dashboards**: Develop dashboards allowing institutions to explore predictions by program, demographics, or other factors.
- 5. **Recommendations**: Offer specific recommendations based on feature importance (e.g., focus on improving attendance rates).