Speicher

Teil 1: Adressraum

Prof. Dr.-Ing. Andreas Heil

Licensed under a Creative Commons Attribution 4.0 International license. Icons by The Noun Project.

v1.0.0

Lernziele und Kompetenzen

• Grundlagen von Adressräume und Speichervirtualisierung kennen lernen

Damals...

Am Anfang war alles viel einfacher...

- Betriebssystem war (vollständig) im Hauptspeicher präsent
- Ein laufendes Programm (= Prozess) konnte den Rest des Speichers nutzen
- Einfach zu programmieren

Einfache Speicherverteilung

Beispiel:

- Betriebssystem im
 Speicherbereich 0KB bis 64KB
- Das laufende Programm nutzt den gesamten restlichen
 Speicher ab 64KB

Mehrere Prozesse

Bereits gelernt:

- Prozesse können vom Betriebssystem »gescheduled« werden
- Jeder Prozess hat einen eigenen Speicherinhalt
- Im Beispiel vorher muss der Speicherinhalt bei jedem Context Switch weggespeichert und neu geladen werden

Speicher aufteilen?

Lösungsidee:

 Jeder Prozess bekommt einen Teil vom Speicher

Fragen:

- Wie kann ich den Zugriff auf den Speicherbereich schützen?
- Was machen wir mit dem freien Speicher?
- Was wenn nur noch viele kleine Speicherbereiche frei sind?

Die Lösung: Adressräume

- Einfach zu verwendende Abstraktion des Speichers
- Ein Adressraum (engl. address space) beinhaltet alle Bestandteile des laufenden Programms

Aufbau von Addressräumen

- Code
 - Einfach zu laden, da nicht veränderbar
- Stack und Heap
 - Wachsen und schrumpfen
 - Durch entgegengesetzte
 Anordnung (s.r.) ist dies
 gleichzeitig möglich

Speichervirtualisierung

- Prozess »denkt« er wurde bei Adresse 0 KB in den Speicher geladen
- Allerdings liegt der Prozess dabei jedoch wo ganz anders
- Hier sprechen wir von einer sog. virtuellen Adresse (engl. virtual address)

Ziele der Speichervirtualisierung

- Transparenz: Der Prozess weiß nichts von seinem Glück und denkt er greift auf physikalischen Speicher zu
- Effizienz: In Bezug auf Speicher- als auch Zeit (z.B. unterstützt durch Hardware-Features)
- Sicherheit: Prozess müssen voreinander geschützt sein

Referenzen

Bildnachweise