2- Zeros de Funções Reais

Zeros de Funções Reais

- 1 Introdução
- 2 Método da Bisseção
- 3 Método do Ponto Fixo
- 4 Método de Newton

1 – Introdução

Introdução

- Em muitos problemas de Ciência e Engenharia há a necessidade de se determinar um número r para o qual uma função f(x) seja zero, ou seja, f(r)=0.
- Este número é chamado **zero** ou **raiz da função** f(x) e pode ser real ou complexo. Em nossos estudos r representará uma raiz real.
- \triangleright Graficamente, os zeros reais são representados pelos pontos de intersecção do gráfico de f com o eixo Ox, conforme figura abaixo:

- \triangleright O objetivo desta unidade é o estudo de métodos numéricos para determinar raízes de uma função f(x), ou de modo equivalente, obter as raízes da equação f(x) = 0.
- A ideia central destes métodos é partir de uma aproximação inicial para a raiz e em seguida refinar essa aproximação através de um processo iterativo do tipo:

$$\begin{cases} dado & x_0 \\ x_i = F(x_{i-1}), & i = 1,...,n \end{cases}$$

ightharpoonup F(x) é chamada função de iteração.

Esse processo iterativo pode ser dividido em duas fases:

Fase I - Localização ou isolamento das raízes:

Consiste em obter um intervalo [a, b] que contém uma única raiz.

Fase II - Refinamento:

Consiste em, escolhidas aproximações iniciais no intervalo [a, b], melhorá-las sucessivamente até se obter uma aproximação para a raiz dentro de uma precisão ϵ prefixada.

Fase I: Isolamento das raízes

Nesta fase é feita uma análise gráfica ou teórica da função.

A precisão desta análise é o pré-requisito para o sucesso da fase II.

Análise Gráfica

Esta análise pode ser feita através de um dos seguintes processos:

i) Esboçar o gráfico da função f(x) e localizar intervalos que contém as abscissas dos pontos de interseção da curva com o eixo Ox;

Exemplo: $f(x) = x^3 - 9x + 3$

$$r_1 \in [-4, -3]$$

$$r_2 \in [0,1]$$

$$r_3 \in [2,3]$$

ii) A partir da equação f(x) = 0, obter uma equação equivalente g(x) = h(x), esboçar os gráficos g(x) e h(x) no mesmo eixo cartesiano e localizar os pontos x de interseção das duas curvas, pois $f(r) = 0 \Leftrightarrow g(r) = h(r)$.

Exemplo: $f(x) = e^{-x} - x$

Resolução:

$$f(x) = 0$$

$$e^{-x} - x = 0$$

$$x = e^{-x}$$

$$g(x) = e^{-x}$$

$$h(x) = x$$

$$\therefore r \in [0,1]$$

Análise Teórica

Teorema de Bolzano: Seja $f:[a,b] \to \mathbb{R}$ uma função contínua no intervalo [a,b]. Se f(a) f(b) < 0, então f tem pelo menos um zero no intervalo aberto (a,b).

Observações:

(1) Se f(a) f(b) > 0 então pode existir ou não raízes no intervalo (a, b).

(2) Sob as hipóteses do teorema anterior, se f'(x) existir e preservar o sinal em (a, b), então **existe uma única raiz** neste intervalo.

Exemplos:

(1)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^4 - 9x^3 - 2x^2 + 120x - 130$

Temos que f é contínua em todo seu domínio ($D(f) = \mathbb{R}$). Em particular, é contínua em qualquer intervalo [a, b].

Temos que:

х	-10	-5	-4	-3	0	1	2	3	4	5	7	10
f(x)	17470	970	190	-184	-130	-20	46	50	-2	-80	-74	1870
SINAL	+	+	+	-	-	-	+	+	-	-	-	+

• Pelas mudanças de sinais, segue que f tem raízes nos intervalos:

$$I_1 = (-4, -3), I_2 = (1, 2), I_3 = (3, 4) e I_4 = (7, 10).$$

• Como f é um polinômio de grau 4, sabemos que ele possui 4 raízes. Como os intervalos não tem intersecção entre si, segue que f possui 4 raízes reais distintas, cada uma dentro de um dos intervalos obtidos.

Exemplos:

(2)
$$f:(0,+\infty)\to\mathbb{R},\ f(x)=\ln x+x\sqrt{x}$$

Temos que f é contínua em todo seu domínio, uma vez que é soma de funções contínuas. Logo, ela é contínua em qualquer intervalo [a, b] contido em $(0, +\infty)$.

Temos que:

x	0.1	1	2	3	4
f(x)	-2.27	1.00	3.52	6.29	9.39
SINAL	-	+	+	+	+

• Pela mudança de sinal, segue que f tem pelo menos uma raiz no intervalo (0.1, 1).

Exemplos:

(2)
$$f:(0,+\infty) \to \mathbb{R}, \ f(x) = \ln x + x\sqrt{x}$$

• Calculando a derivada de f, obtemos: $f'(x) = \frac{1}{x} + \frac{3\sqrt{x}}{2}$.

Veja que f'(x) > 0, para todo $x \in (0, +\infty)$. Desse modo, f' preserva o sinal no intervalo (0.1, 1) e, portanto, podemos afirmar que f possui um único zero no intervalo (0.1, 1).

Exercício:

Considere a função $f:[0,+\infty)\to\mathbb{R},\ f(x)=\sqrt{x}-5e^{-x}.$

- (a) Encontre um intervalo de tamanho unitário que tem pelo menos uma raiz de f.
- (b) Pode-se garantir que existe apenas uma raiz de f no intervalo encontrado?

Fase II: Refinamento

- Esta fase consiste em aproximarmos uma raiz r dentro do intervalo [a, b] através de um método iterativo.
- ➤ Um método iterativo é uma sequência de instruções que são executadas passo a passo, algumas das quais são repetidas em ciclos, cada ciclo recebe o nome de iteração.
- Estas iterações utilizam valores obtidos em iterações anteriores para encontrar uma nova aproximação para a raiz.
- Estes métodos fornecem uma aproximação para a raiz exata.

Critérios de parada

Durante a aplicação de uma método para encontrar uma raiz r, necessitamos que uma certa condição seja satisfeita para estabelecer se o valor de x_i está suficientemente próximo de r.

 \triangleright O valor de x_i é raiz aproximada com precisão ε se:

$$i) |x_i - r| < \varepsilon$$
 ou $ii) |f(x_i)| < \varepsilon$

Nem sempre é possível ter as duas exigências satisfeitas simultaneamente, veja os casos abaixo:

Como não conhecemos o valor da raiz *r* para aplicar o teste usamos frequentemente os conceitos de erro absoluto e erro relativo para determinarmos o critério de parada.

a) Erro absoluto:

$$\mid x_i - x_{i-1} \mid < \varepsilon$$

b) Erro relativo:

$$\left| \frac{x_i - x_{i-1}}{x_i} \right| < \varepsilon$$

Observações:

- (1) Uma estratégia utilizada é definir um número máximo de iterações para evitar que o programa itere indefinidamente.
- (2) Outra forma é reduzir o intervalo que contém a raiz a cada iteração. Ao se conseguir um intervalo [a, b] tal que:

$$r \in [a, b]$$
 e $b - a < \varepsilon \Rightarrow \forall x \in [a, b], |x - r| < \varepsilon$.

Portanto, qualquer $x \in [a, b]$ pode ser tomado como aproximação para a raiz r.

2 – Método da Bissecção

Método da Bissecção

- ightharpoonup O método baseia-se na ideia de que se f(x) é contínua em [a,b] e f(a)f(b) < 0, então existe ao menos uma raiz no intervalo [a,b].
 - Caso o intervalo contenha duas ou mais raízes, o método encontrará uma delas.
- A cada passo, o intervalo é dividido ao meio:

$$\rightarrow x_k = \frac{a+b}{2}$$

- O novo intervalo será aquele que contém a raiz:
 - \triangleright [a, x_k], se $f(a)f(x_k) < 0$
 - \triangleright [x_k , b], caso contrário
- A busca continua até o critério de parada ser atendido:

$$b-a<\epsilon$$
.

Algoritmo do Método da Bissecção

Seja f(x) contínua em [a, b] e tal que f(a) f(b) < 0.

- 1) Dados iniciais:
 - a) intervalo inicial [a, b];
 - b) precisão ε
- 2) Se $(b-a) < \varepsilon$, então escolha para $r \ \forall \ x \in [a,b]$. FIM.
- 3) k = 0
- $4) x_k = \frac{a+b}{2}$
- 5) Se $f(a)f(x_k) > 0$, faça $a = x_k$. Vá para o passo 7
- 6) $b = x_k$.
- 7) Se $(a b) < \varepsilon$, escolha para $r \ \forall \ x \in [a, b]$. FIM.
- 8) k = k + 1. Volte ao passo 4.

Exemplo: Sabendo que $f(x) = x^3 + 4x^2 - 10$ tem uma raiz no intervalo [1,2], use o método da Bissecção para determinar uma aproximação para essa raiz com erro inferior a $\varepsilon = 0.005$.

k	a	b	x_k	Sinal $f(a)$	Sinal $f(x_k)$	b-a
0	1.000000	2.000000	1.500000	-	+	1.00
1	1.000000	1.500000	1.250000	-	-	0.50
2	1.250000	1.500000	1.375000	-	+	0.24
3	1.250000	1.375000	1.312500	-	-	0.124
4	1.312500	1.375000	1.343750	-	-	0.062
5	1.343750	1.375000	1.359375	-	-	0.032
6	1.359375	1.375000	1.367188	-	+	0.016
7	1.359375	1.367188	1.363281	-	-	0.008
8	1.363281	1.367188	1.365234	-	+	0.004

Exercícios:

(1) Encontre uma aproximação para o zero da função

$$f(x) = \left(\frac{x}{2}\right)^2 - sen(x)$$

no intervalo [1.5,2], executando 5 passos do método da Bissecção.

(2) Encontre uma aproximação para $\sqrt{2}$ com erro inferior a 10^{-2} pelo método da Bissecção.

Estimativa do número de iterações

A cada iteração k, a raiz de f(x) está em um intervalo $[a_k, b_k]$. Dada uma precisão ε e um intervalo [a, b], vamos determinar quantas iterações k serão efetuadas pelo método da Bissecção até que $b_k - a_k < \varepsilon$, sendo k um número inteiro.

$$\begin{array}{cccc}
a_0 & b_0 \\
& & \Rightarrow & \frac{b_0 - a_0}{2} \\
& & \Rightarrow & \frac{b_1 - a_1}{2} = \frac{b_0 - a_0}{2^2} \\
& & & \Rightarrow & \frac{b_2 - a_2}{2} = \frac{b_0 - a_0}{2^3} \\
& & & & \Rightarrow & \frac{b_0 - a_0}{2^k} \\
\vdots & & & \Rightarrow & \frac{b_0 - a_0}{2^k}
\end{array}$$

Queremos obter o valor de k tal que $b_k - a_k < \varepsilon$, ou seja:

$$\frac{b_0 - a_0}{2^k} < \varepsilon \quad \Rightarrow \quad 2^k > \frac{b_0 - a_0}{\varepsilon} \quad \Rightarrow$$

$$k \log 2 > \log \left(\frac{b_0 - a_0}{\varepsilon} \right)$$

$$k > \frac{\log(b_0 - a_0) - \log \varepsilon}{\log 2}, \ k \in \mathbb{Z}$$

Portanto, se k satisfaz a relação acima, ao final da iteração k teremos o intervalo [a, b] que contém a raiz r tal que

$$\forall x \in [a, b] \Rightarrow |x - r| \le b - a < \varepsilon$$
.

Exemplo: Determine quantas iterações, no mínimo, deve-se efetuar para obter o zero da função $f(x) = x \log x - 1$ que está no intervalo [2, 3] com precisão $\varepsilon = 10^{-2}$.

Solução:

Temos que

$$k > \frac{\log(b_0 - a_0) - \log \varepsilon}{\log 2}.$$

Logo,

$$k > \frac{\log(3 - 2) - \log(10^{-2})}{\log(2)} = \frac{\log(1) + 2\log(10)}{\log(2)} = \frac{2}{0.3010} \approx 6.64 \Rightarrow k = 7$$

Estudo da convergência do método da Bissecção

Teorema 1: Seja f(x) uma função contínua em [a, b], com f(a) f(b) < 0. Então, o método da Bissecção converge para a raiz de f.

Demonstração: O método da bissecção gera três sequências:

 $\{a_k\}$: não-decrescente e limitada superiormente por $b_0 \Longrightarrow \exists t \in IR$ tal que: $\lim_{k \to \infty} a_k = t$

 $\{b_k\}$: não-crescente e limitada inferiormente por $a_0\Longrightarrow\exists s\in IR$ tal que: $\lim_{k\to\infty}b_k=s$

 $\{x_k\}$: por construção temos que $x_k = \frac{a_k + b_k}{2} \implies a_k < x_k < b_k, \forall k$

A amplitude de cada intervalo gerado é a metade da amplitude do anterior, assim temos: h = a

$$b_k - a_k = \frac{b_0 - a_0}{2^k}$$

Aplicando o limite temos:

$$\lim_{k \to \infty} (b_k - a_k) = \lim_{k \to \infty} \frac{b_0 - a_0}{2^k} = 0$$

$$\lim_{k \to \infty} b_k - \lim_{k \to \infty} a_k = 0 \Rightarrow \lim_{k \to \infty} b_k = \lim_{k \to \infty} a_k \quad \text{Então } t = s$$

Seja $\ell = t = s$ o limite das duas sequências, aplicando o limite na sequência x_k temos que:

$$\lim_{k \to \infty} x_k = \lim_{k \to \infty} \frac{a_k + b_k}{2} = \frac{\ell + \ell}{2} = \ell$$

Resta provarmos que ℓ é zero da função, ou seja, $f(\ell) = 0$.

Em cada iteração k temos que $f(a_k)f(b_k) < 0$, então:

$$0 \ge \lim_{k \to \infty} f(a_k) f(b_k) = \lim_{k \to \infty} f(a_k) \lim_{k \to \infty} f(b_k)$$

$$0 \ge f(\lim_{k \to \infty} a_k) f(\lim_{k \to \infty} b_k) = f(t) f(s) = [f(\ell)]^2$$

$$0 \ge [f(\ell)]^2 \ge 0 \Longrightarrow f(\ell) = 0$$

Observações:

- (1) O Método da Bissecção tem algumas desvantagens significativas:
 - Convergência lenta, pois se o intervalo inicial é tal que $b_0 a_0 \gg \varepsilon$ e se ε for muito pequeno, o número de iterações tende a ser muito grande;
 - É possível que uma boa aproximação intermediária seja descartada de modo inadvertido.
- (2) Entretanto, o método sempre converge para uma solução e, por esta razão, é muitas vezes usado para prover uma boa aproximação inicial para um método mais eficiente.

Exercício:

Uma gamela de comprimento L tem seção transversal semicircular com raio r. Quando a gamela está cheia com água até uma distância h do topo, o volume V de água é

$$V = L\left[\frac{\pi r^2}{2} - r^2 arcsen\left(\frac{h}{r}\right) - h\sqrt{(r^2 - h^2)}\right].$$

Suponha que $L=3\,m,\,r=0.3\,m$ e $V=0.25\,m^3$. Use o Método da Bissecção para determinar a profundidade da água na gamela com precisão de $0.05\,m$.

(DICA: Como intervalo inicial de busca, considere os valores mínimo e máximo que *h* pode assumir).

3 – Método do Ponto Fixo

Ponto Fixo

Definição: Seja g uma função definida em [a, b]. Dizemos que $p \in [a, b]$ é um **ponto fixo** de g quando

$$g(p) = p$$
.

Geometricamente, a função g terá um ponto fixo no intervalo [a, b] sempre que o gráfico de g intersectar a reta y = x.

Método do Ponto Fixo (MPF)

Seja f(x) uma função contínua em [a, b], intervalo que contém uma raiz r da equação f(x) = 0.

O Método do Ponto Fixo (MPF) consiste em transformar esta equação em uma equação equivalente $x = \varphi(x)$ e a partir de uma aproximação inicial x_0 gerar uma sequência $\{x_k\}$ de aproximações para r pela relação

$$x_{k+1} = \varphi(x_k),$$

uma vez que a função $\varphi(x)$ é tal que

$$f(r) = 0$$
 se, e somente se, $\varphi(r) = r$.

Desse modo, o problema de encontrar um zero de f(x) é equivalente ao problema de encontrar um ponto fixo de $\varphi(x)$. A função φ é chamada função de iteração.

A função de iteração φ para uma dada equação f(x) = 0 não é única.

Exemplo: Para a equação $x^2 + x - 6 = 0$ temos várias funções de iteração, por exemplo:

(a)
$$\varphi_1(x) = 6 - x^2$$

(b)
$$\varphi_2(x) = \pm \sqrt{6 - x}$$

(c)
$$\varphi_3(x) = \frac{6}{x} - 1$$

$$(\mathbf{d}) \ \varphi_4(x) = \frac{6}{x+1}$$

Pode-se provar que a forma geral de uma função de iteração φ para f(x) = 0 é

$$\varphi(x) = x + A(x)f(x),$$

 $com A(r) \neq 0$, em que r é ponto fixo de φ .

Interpretação Geométrica do MPF

- Graficamente, uma raiz r da equação $x = \varphi(x)$ é a abcissa do ponto de intersecção da reta y = x e da curva $y = \varphi(x)$.
- MPF: Dado chute inicial x_0 , gera-se a sequência $x_{k+1} = \varphi(x_k)$.

Dependendo da função de iteração, o método pode convergir ou divergir.

Estudo da Convergência do MPF

Teorema 2 (Condições de Convergência do MPF):

Seja r uma raiz da equação f(x) = 0, isolada num intervalo I centrado em r. Seja $\varphi(x)$ uma função de iteração para a equação f(x) = 0. Se:

i)
$$\varphi(x)$$
 e $\varphi'(x)$ são contínuas em I

$$|ii\rangle |\varphi'(x)| \le M < 1, \ \forall \ x \in I$$

$$iii) x_0 \in I$$

então a sequência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = \varphi(x_k)$ converge para a raiz r.

Algoritmo do MPF

Considere a equação f(x) = 0 e a equação equivalente $x = \varphi(x)$

- 1) Dados iniciais:
 - a) x_0 : aproximação inicial;
 - b) ε_1 e ε_2 : precisões.
- 2) Se $|f(x_0)| < \varepsilon_1$, faça $r = x_0$. FIM.
- (3) k = 0
- 4) $x_1 = \varphi(x_0)$
- 5) Se $|f(x_1)| < \varepsilon_1$ então faça $r = x_1$. FIM. ou se $|x_1 x_0| < \varepsilon_2$
- **6**) $x_0 = x_1$
- 7) k = k + 1. Volte ao passo 4.

Exemplo: Considere a equação $x^2 + x - 6 = 0$. Sabemos que as raízes dessa equação são 2 e -3. Embora, não seja necessário usar método numérico para encontrar essas raízes, vamos utilizar as duas funções de iteração

$$\varphi_1(x) = 6 - x^2 e \ \varphi_2(x) = \sqrt{6 - x}$$

para verificar se o MPF irá convergir ou não para a raiz r = 2.

• Função de iteração 1: $\varphi_1(x) = 6 - x^2$

Tomando $x_0 = 1.5$, temos que:

$$x_1 = \varphi(x_0) = 6 - 1.5^2 = 3.75$$

 $x_2 = \varphi(x_1) = 6 - (3.75)^2 = -8.0625$
 $x_3 = \varphi(x_2) = 6 - (-8.0625)^2 = -59.003906$
 $x_4 = \varphi(x_3) = -(-59.003906)^2 + 6 = -3475.4609$

Logo, a sequência $\{x_k\}$ não converge para r=2.

• Função de iteração 2: $\varphi_2(x) = \sqrt{6-x}$

Considerando novamente $x_0 = 1.5$, temos que:

$$x_1 = \varphi(x_0) = \sqrt{6 - 1.5} = 2.12132$$

 $x_2 = \varphi(x_1) = 1.96944$
 $x_3 = \varphi(x_2) = 2.00763$
 $x_4 = \varphi(x_3) = 1.99809$
 $x_5 = \varphi(x_4) = 2.00048$

Neste caso, a sequência $\{x_k\}$ está convergindo para r=2.

Observação: No exemplo anterior, vimos que a função de iteração φ_1 gerou uma sequência que não convergiu para a raiz r=2, enquanto a função de iteração φ_2 convergiu.

Vamos verificar as condições do Teorema sobre a convergência do MPF para essas funções.

(i) Temos que:

- $\varphi_1(x) = 6 x^2 e \varphi_1'(x) = -2x são contínuas em <math>\mathbb{R}$
- $|\varphi_1'(x)| < 1 \Leftrightarrow |-2x| < 1 \Leftrightarrow -\frac{1}{2} < x < \frac{1}{2}$
- Como r=2 não pertence ao intervalo $\left]-\frac{1}{2},\frac{1}{2}\right[$, segue que não existe um intervalo I centrado em r=2 tal que $|\varphi_1'(x)| < 1$, para todo $x \in I$.

(ii) Temos que:

- $\varphi_2(x) = \sqrt{6-x}$ é contínua em $D = \{x \in \mathbb{R}: x \le 6\}$
- $\varphi_2'(x) = \frac{-1}{2\sqrt{6-x}}$ é contínua em $D' = \{x \in \mathbb{R}: x < 6\}$
- $|\varphi_2'(x)| < 1 \Leftrightarrow \left|\frac{-1}{2\sqrt{6-x}}\right| < 1 \Leftrightarrow x < 5.75$
- Desse modo, é possível obter um intervalo I centrado em r = 2, com $x_0 = 1.5 \in I$ tal que as condições do teorema sejam satisfeitas (por exemplo, podemos tomar I = [0, 4]).

Exercícios:

- (1) Considere a função $f(x) = x^2 x 1$.
- (a) Verifique que $\varphi(x) = \sqrt{x+1}$ é uma função de iteração para f(x) = 0.
- (b) Mostre que φ satisfaz as condições de convergência necessária para o MPF, para aproximar a raiz positiva de f, com ponto inicial $x_0 = 1$.
- (c) Utilize o MPF para aproximar a raiz positiva de f, utilizando φ como função de iteração, $x_0 = 1$ e como critério de parada $|x_k x_{k-1}| < \varepsilon$, com $\varepsilon = 0.02$.
- (2) Utilize o MPF para obter uma aproximação para a raiz da função $f(x) = x^3 9x + 3$ que pertence ao intervalo (0, 1). Considere como função de iteração $\varphi(x) = \frac{x^3}{9} + \frac{1}{3}$, $x_0 = 0.5$ e como critério de parada $|f(x_k)| < \varepsilon$, com $\varepsilon = 0.0005$.

Ordem de convergência

Definição: Seja $\{x_k\}$ uma sequência que converge para um número r e seja $e_k = x_k - r$ o erro na iteração k.

Se existir um número p > 1 e uma constante C > 0, tais que

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = C \qquad (*)$$

então p é chamada de **ordem de convergência** da sequência $\{x_k\}$ e C é a constante assintótica de erro.

Uma vez obtida a ordem de convergência *p* de um método iterativo, ela nos dá uma informação sobre a rapidez de convergência do processo.

De (*) podemos escrever:

$$|e_{k+1}| \approx C |e_k|^p \text{ para } k \rightarrow \infty$$

Ordem de convergência do MPF

Para o MPF, pode-se mostrar que

$$\lim_{k\to\infty} \frac{e_{k+1}}{e_k} = \varphi'(r) = C \quad \text{e} \quad |C| < 1$$

Logo, p = 1 e assim, a convergência do MPF é **linear.**

Então para grandes valores de k o erro em qualquer iteração é proporcional ao erro na iteração anterior, sendo $\varphi'(r)$ o fator de proporcionalidade.

Observe que a convergência será mais rápida quanto menor for $|\varphi'(r)|$.

4 – Método de Newton (Newton-Raphson)

No estudo do método do ponto fixo, vimos que:

- *i*) uma das condições de convergência é que $| \varphi'(x) | \le M < 1, \forall x \in I$, onde *I* contém a raiz *r*;
- ii) a convergência do método será mais rápida quanto menor for $|\phi'(r)|$.

Com a finalidade de acelerar e garantir a convergência, o **Método de Newton** procura uma função de iteração $\varphi(x)$ tal que $\varphi'(r) = 0$.

Partindo da forma geral para $\varphi(x)$, iremos obter a função A(x) tal que $\varphi'(r) = 0$.

$$\varphi(x) = x + A(x)f(x)$$

$$\Rightarrow \varphi'(x) = 1 + A'(x)f(x) + A(x)f'(x)$$

$$\Rightarrow \varphi'(r) = 1 + A'(r)f(r) + A(r)f'(r)$$

$$\Rightarrow \varphi'(r) = 1 + A(r)f'(r)$$

Assim, $\varphi'(r) = 0 \Leftrightarrow 1 + A(r)f'(r) = 0 \Rightarrow A(r) = \frac{-1}{f'(r)}$ donde tomamos $A(x) = -\frac{1}{f'(x)}$ (desde que $f'(r) \neq 0$).

Então, dada f(x), a função de iteração representada por

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

será tal que $\varphi'(r) = 0$, pois como podemos verificar:

$$\varphi'(x) = 1 - \frac{[f'(x)]^2 - f(x)f''(x)}{[f'(x)]^2} = \frac{f(x)f''(x)}{[f'(x)]^2}$$

$$\varphi'(r) = \frac{f(r)f''(r)}{[f'(r)]^2} = 0$$

Interpretação Geométrica do Método de Newton

O método de Newton é obtido geometricamente da seguinte forma:

dado o ponto $(x_k, f(x_k))$ traçamos a reta $L_k(x)$ tangente à curva neste ponto:

$$L_k(x) = f(x_k) + f'(x_k) (x - x_k).$$

L_k(x) é um modelo linear que aproxima a função f(x) numa vizinhança de x_k.
Encontrando o zero deste modelo, obtemos:

$$L_k(x) = 0 \Leftrightarrow x = x_k - \frac{f(x_k)}{f'(x_k)}$$

Fazemos então $x_{k+1} = x$.

$$\left| x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \right|$$

Interpretação Geométrica do Método de Newton

Algoritmo do Método de Newton

$$Seja f(x) = 0.$$

- 1) Dados iniciais:
 - a) x_0 : aproximação inicial;
 - b) ε_1 e ε_2 : precisões
- 2) Se $|f(x_0)| < \varepsilon_1$, faça $r = x_0$.FIM
- 3) k = 0
- 4) $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$
- 5) Se $|f(x_1)| < \varepsilon_1$ ou se $|x_1 - x_0| < \varepsilon_2$ faça $r = x_1$. FIM
- **6**) $x_0 = x_1$
- 7) k = k + 1 Volte ao passo 4.

Exemplo: Considere novamente a equação $x^2 + x - 6 = 0$, que possui raízes 2 e -3. Vamos utilizar o Método de Newton para obter uma aproximação para a raiz r = 2, considerando $x_0 = 1.5$.

Para o Método de Newton, temos que $\varphi(x) = x - \frac{f(x)}{f'(x)}$, ou seja, $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$

Temos que $f(x) = x^2 + x - 6$ e f'(x) = 2x + 1. Inicialmente, $x_0 = 1.5$. Logo,

•
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1.5 - \frac{f(1.5)}{f'(1.5)} = 2.0625 \Rightarrow x_1 = 2.0625$$

•
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2.0625 - \frac{f(2.0625)}{f'(2.0625)} = 2.00076$$

Exercício: Utilize o Método de Newton para obter uma aproximação para a raiz da função $f(x) = x^3 - 9x + 3$ que pertence ao intervalo (0,1). Considere $x_0 = 0.5$ e como critério de parada $|f(x_k)| < \varepsilon$, com $\varepsilon = 0.0001$.

Estudo da Convergência do Método de Newton

Teorema 3 (Condição de convergência do MN):

Sejam f(x), f'(x), f''(x) contínuas num intervalo I que contém a raiz x = r de f(x) = 0. Suponha que $f'(r) \neq 0$.

Então, existe um intervalo $\bar{I} \subset I$, contendo a raiz r, tal que se $x_0 \in \bar{I}$, a função de iteração

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 convergirá para a raiz.

Demonstração:

Devemos provar que as hipóteses do Teorema 2 são satisfeitas para a função de iteração

$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$

i) Afirmação: $\varphi(x)$ e $\varphi'(x)$ são contínuas em I_1 .

Temos:
$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$
 e $\varphi'(x) = \frac{f(x)f''(x)}{[f'(x)]^2}$

Por hipótese, $f'(r) \neq 0$ e, como f'(x) é contínua em I, é possível obter $I_1 \subset I$ tal que $f'(x) \neq 0$, $\forall x \in I_1$.

Assim, no intervalo $I_1 \subset I$, tem-se que f(x), f'(x) e f''(x) são contínuas e $f'(x) \neq 0$. Então $\varphi(x)$ e $\varphi'(x)$ são contínuas em I_1 .

ii) Afirmação: $|\varphi'(x)| < 1, \forall x \in I_2$

Como $\varphi'(x)$ é contínua em I_1 e $\varphi'(r) = 0$, é possível escolher $I_2 \subset I_1$ tal que $|\varphi'(x)| < 1, \forall x \in I_2$ de forma que r seja seu centro.

Assim, conseguimos obter um intervalo $I_2 \subset I$, centrado em r, tal que $\varphi(x)$ e $\varphi'(x)$ sejam contínuas em I_2 e $|\varphi'(x)| < 1, \forall x \in I_2$. Logo, $\overline{I} = I_2$.

Portanto, se $x_0 \in \overline{I}$, a sequência $\{x_k\}$ gerada pelo processo iterativo

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

converge para a raiz x = r.

Observação: Em geral, afirma-se que o método de Newton converge desde que x_0 seja escolhido "suficientemente próximo" da raiz da função. Isso se deve à demonstração anterior, pois se x_0 está próximo da raiz, então as condições de convergência do MPF são satisfeitas e, consequentemente o método de Newton convergirá.

Ordem de Convergência do Método de Newton

Seja a função de iteração $\varphi(x)$ desenvolvida em série de Taylor, em torno de x = r:

$$\varphi(x) = \varphi(r) + \frac{\varphi'(r)(x-r)}{1!} + \frac{\varphi''(\lambda)(x-r)^2}{2!}, \quad \lambda \in [x,r]$$

$$\max, \begin{cases} \varphi'(r) = 0 \\ \varphi(r) = r \\ x_i = \varphi(x_{i-1}) \end{cases}$$

Generalizando para x_{i-1} , resulta:

$$\varphi(x_{i-1}) = r + \frac{\varphi''(\lambda_{i-1})(x_{i-1} - r)^{2}}{2!}, \quad \lambda_{i-1} \in [x_{i-1}, r]
\text{ou, } x_{i} - r = \frac{\varphi''(\lambda_{i-1})}{2} (x_{i-1} - r)^{2} \implies e_{i} = \frac{|\varphi''(\lambda_{i-1})|}{2} e_{i-1}^{2} \implies \lim_{i \to \infty} \frac{e_{i}}{e_{i-1}^{2}} = \lim_{i \to \infty} \frac{|\varphi''(\lambda_{i-1})|}{2}$$

Se,
$$x_{i-1} \to r \implies \lambda_{i-1} \to r \implies \frac{\left|\varphi''(\lambda_{i-1})\right|}{2} \Rightarrow \frac{\left|\varphi''(r)\right|}{2} = C$$
portanto $\lim_{i \to \infty} \frac{e_i}{e_{i-1}^2} = C$

Assim para i suficientemente grande pode-se escrever:

$$e_i \cong C e_{i-1}^2$$

ou seja, o erro da iteração do Método de Newton é proporcional ao quadrado do erro da iteração anterior. Por isso, diz-se que a **convergência é quadrática**, ou seja, p = 2.

Exemplo: Utilize o Método de Newton para obter uma aproximação para $\sqrt{7}$.

Solução: Obter o valor de $\sqrt{7}$ é equivalente a resolver a equação

$$x^2 = 7 \Rightarrow x^2 - 7 = 0.$$

Temos que: $f(x) = x^2 - 7 e f'(x) = 2x$.

Sabemos que $2 < \sqrt{7} < 3$. Assim, vamos considerar $x_0 = 2$.

Aplicando o processo iterativo do Método de Newton

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},$$

obtemos:

$$x_0 = 2$$

 $x_1 = 2.75$
 $x_2 = 2.647727273$
 $x_3 = 2.645752048$
 $x_4 = 2.645751311$
 $x_5 = 2.645751311$.

Observação: Os dígitos sublinhados correspondem aos dígitos decimais corretos do valor de $\sqrt{7}$.