MEMS for Medical Applications

Presented to IEEE-EMBS

Alissa M. Fitzgerald, Ph.D. | 17 November 2010

Outline

- About AMFitzgerald
- What are MEMS?
- Research applications
- Diagnostic applications
- Medical devices
- Packaging challenges
- MEMS development timeline and budget

Mission

MEMS Product Development

We turn your ideas into silicon.

Fully integrated services: concept to foundry

- Complete design and project management
- Feasibility and cost analysis
- Design optimization using simulation
- Process development on 100 mm or 150 mm wafers
 - Prototype fabrication with own staff engineers at UC Berkeley's Microlab
- Test system development
- Packaging, system integration
- Technology transfer to foundries for production

Primary value to clients

- Risk reduction during all phases of technology development
 - Idea evaluation without major funding or staffing commitment
 - Fast prototyping cycles enable accelerated development
 - Critical system design and manufacturability issues addressed early
 - Streamlined transition from R&D to foundry production
- On-demand, expert engineering team
 - Use as needed to bridge gaps
 - Real-world MEMS knowledge: all staff have at least three years of hands-on fab experience

Our diverse customer base

MEMS design and process expertise

Technologies we have developed:

- Piezoresistive devices
- Piezoelectric (AlN and ZnO) devices
- Electrostatic structures
- Solar cells
- Passive microfluidics
- Electrophoretic pumps
- Mold masters
- Gratings, phase shift lenses etc.
- PDMS, SU-8 structures
- Mechanical dummies for package reliability testing
- Custom test systems

Over 70 clients served

Application areas:

- Chemical sensing
- Materials characterization
- Medical implant
- Medical diagnostics
- Pressure sensing
- Filtration products
- Laser/ Infrared/ Visible optics
- Chip cooling
- Cell culture
- Radiation sensing
- Microphones
- Gas flow metering
- Multi-chip modules
- Solar

Product development gallery: some examples

Customized micro-cantilevers

Pyramidal crystal planes left by KOH etch

Infrared imaging pixels: MEMS over **CMOS**

Silicon acoustic lenses

Product development gallery: some examples

Fluxion
Biosciences:
Microchannels for
cell patch
clamping

Mold masters for microtexturing polymers

Wave80 Biosciences: Microfluidic chip for rapid HIV analysis

MIT/Bhatia Lab: cell culture platforms

Modeling and design optimization

- ANSYS Multiphysics R12
- Matlab
- Proprietary fracture prediction
- Intelligent use of simulation to minimize risk and reduce fab cycles
 - Management of uncertainty in MEMS material properties
- Design exploration and performance optimization

Package-induced stresses

Magnetic field of inductor coils

Technology strategy

- Device feasibility
- Manufacturing cost models
- Technology readiness
- Patent landscapes
- Development roadmaps
- Due diligence

Customized workshops on MEMS

What are MEMS? MicroElectroMechanical Systems

MEMS are an offspring of the IC Industry

 Uses techniques originally developed to make transistors and integrated circuits

Images from: http://www.intel.com/education/chips/index.htm

Many Shapes and Functionalities are Possible

Cantilevers for atomic force microscopy

E. Chow, Stanford Univ.

Microfluidics on glass

U. of Washington

TI Digital Display Chip

the diameter of a human hair ~ 100 μm

MIT Microengine

the length of an ant ~ 3 mm

An evolving manufacturing technology

Courtesy HTE Lab Santa Clara, CA

Stanford Nanofabrication Facility

MEMS belong where miniaturization is needed

- Applications in many industries:
 - Silicon sensors (traditional): pressure, inertial
 - RF: components, switches, inductors
 - Optical: components, displays, switches
 - Medical devices: needles, cell scaffolds, ultrasound
 - Microfluidics: lab-on-chip, drug delivery
 - Instruments: AFM, data storage
- More applications to be explored

Why MEMS are exciting for medical applications

- Compatible size scales, especially with cells
 - 2-100 micron-sized features are easy to make
- Many materials used in MEMS are biocompatible:
 - Silicon (under study)
 - Silicon dioxide (glass, fused silica, quartz)
 - Precious metals: Gold, titanium
 - Polymers: Polydimethylsiloxane (PDMS), Parylene, etc.

Why MEMS are exciting for medical applications

- Ease of electronics integration enables sophisticated capabilities in small form factor:
 - Signal processing and analysis
 - Wireless capability
 - Battery-less operation (power/read)
 - Telemetry for medical sensor network (with cell phone)

Stacked MEMS and ASIC chips, wirebonded

Integrated Pressure Sensor

Source: IMD

Source: Chipworks/Kionix

Research Applications

Microfluidics

- Laboratory tools: genomics, proteomics, drug discovery
- Microfluidics enable:
 - Reduction of fluid sample size
 - Arrayed test sites up to thousands of tests per chip

Affymetrix

Caliper LifeSciences

Cell Manipulation

- Flow cytometers and cell sorters
- Patch clamps for cell electrophysiology
- Cell scaffolds for artificial organs and tissue engineering
 - Liver, kidney
 - Working on biodegradable scaffolds

Dr. Joseph Vacanti, Harvard Medical School Jeffrey Borenstein, Draper Laboratory

Hepatocyte and Stromal Cell Interactions

Diagnostic Applications

Microscope on a Chip

- Sample contained in a microfluidic chip
- Lensless shadow imaging with pattern recognition algorithm
- Optofluidic microscope for imaging cell samples
- Pinhole apertures combined with CCD array

Source: Aydogan Ozcan, UCLA

Source: Changhuei Yang, California Institute of Technology

MEMS Pressure Sensors

- Used in non-invasive medical equipment since 1980's
 - Respiratory equipment
 - Blood pressure cuffs
- Invasive uses increasing
 - Catheter tip sensors
- Many manufacturers:
 - GE Sensors
 - Measurement Specialties
 - Silicon Microstructures
 - ISSYS
 - RADI

Source: ISSYS

i-STAT/Abbott sensor arrays

- Sample interacts with membranes and films containing reagents.
- Biosensor chip measures reaction output via:
 - lon-selective electrode potentiometry: Na, K, Cl, Ca, pH
 - Current measurements:Glucose, oxygen
 - Conductivity:Hematocrit

Source: i-STAT/Abbott

Cantimer Dehydration Sensor

Fabricated Sensor (Viewed From Above)

Principle of Operation (Side View)

Source: Cantimer, Menlo Park, CA

Microneedles

 Pain-free blood sampling and drug delivery

Source: Debiotech SA

Source: Silex Microsystems

Medical Devices

CardioMEMS: Aneurysm Pressure Sensor

- Aorta stent graft monitoring, FDA-approved
- Pressure on the membrane of a micro-cavity result in changes to the sensor's resonant frequency.
- Powered by RF-energy provided by an external antenna
- Encapsulated in fused silica and silicone, and surrounded by a PTFE-coated nickeltitanium wire.
- www.cardiomems.com

Debiotech: Insulin Micropumps

Volumetric pump for drug delivery (insulin)

 The device is a stack of four layers bonded together:

> Silicon plates with micromachined pump structures (gray)

Glass with through-holes (blue)

- Piezoelectric actuator disc (yellow)
- Two titanium fluid connectors (gray)
- www.debiotech.com

Source: Debiotech SA

Endoscopic Pills

- Given Imaging, Olympus: optical detection only
- SmartPill: pH measurement
- MEMS possible for in-situ measurements, navigation
- www.givenimaging.com
- www.smartpillcorp.com
- www.olympus.co.jp/en/news/ 2005b/nr051013capsle.cfm

Source: Given Imaging

Source: Olympus

Source: SmartPill

Artificial Kidney

- A bioartificial kidney has been developed by clinical collaborators at the University of Michigan, called the extracorporeal Renal Assist Device (RAD).
- The Biomedical
 Microdevices Laboratory at
 UCSF is investigating the
 feasibility of MEMS
 technology to miniaturize
 the RAD to a size
 appropriate for implantation.
- Principal investigator: Dr. Shuvo Roy, UCSF

Source: Shuvo Roy, UCSF

Second Sight: Retinal Prosthesis

 First phase of development of a retinal prosthesis, with FDA approval to conduct two clinical trials

Fig. 1. Visual cortex electrode array courtesy of Dick Normann at the University of Utah.

Source: Second Sight

Neural Prosthesis

- Neural microsystems for neuroscience research
- Systems for control of Parkinson's tremors and epilepsy
- Electronics select probe, detect, signal processing, and wireless telemetry

Fig. 9: Block diagram of a wireless neural interface along with a possible implant configuration in which the signal-processing module is positioned subcutaneously.

Source: K. Wise, "Wireless Integrated Microsystems: Wearable and Implantable Devices for Improved Health Care," Transducers 2009.

Challenges in MEMS for Medical Applications

- Packaging, packaging, packaging
 - MEMS chip often needs ASIC
 - Electrical interconnect
 - Mechanical stress management
 - Small form factor
 - Hermeticity (for both MEMS function and biocompatibility)
- Sterilization
 - Gamma, e-beam (damaging to electronics and some plastics)
 - Ethylene oxide (can be absorbed by plastics)
 - Steam 121-134C (creates problems with material CTE mismatch, glass transition temperature)

New MEMS Device (Fabless) Development:

Cost and Timeline Minimums

Summary

- MEMS is a growing suite of manufacturing tools and techniques
 - Newest frontier: flexible (and biodegradable) materials
- Huge opportunity in medical and biotech applications
 - Compatible materials and sizes
 - Electronics integration
- Challenges remain in packaging
 - Hermeticity
 - Sterilization

