Contents

1. Basic notions in quantum information theory	2
1.1. Qubits and basic operations	2
1.2. Postulates of quantum mechanics (Heisenberg picture)	4
1.3. Postulates of quantum mechanics (Schrodinger picture)	5
1.4 States entanglement and measurements	5

1. Basic notions in quantum information theory

The field is motivated by the fact that we want to control quantum systems.

- 1. Can we construct and manipulate quantum systems?
- 2. If so, which are the scientific and technological applications?

Entanglement frontier: highly complex quantum systems, which are more complex and richer than classical systems. However, quantum systems have *decoherence*, which classical systems don't. "Quantum advantage" gives speed up over classical systems.

Quantum vs classical information theory:

- True randomness.
- Uncertainty.
- Entanglement.

Note we always work with finite-dimensional Hilbert spaces, so take $\mathbb{H} = \mathbb{C}^N$.

1.1. Qubits and basic operations

Notation 1.1 Vectors are denoted by $|\psi\rangle \in \mathbb{C}^n$, dual vectors by $\langle \psi | \in (\mathbb{C}^n)^*$, and inner products by $\langle \psi | \varphi \rangle \in \mathbb{C}$. $|\psi\rangle\langle\psi| : \mathbb{C}^n \to \mathbb{C}^n$ are rank-one projectors.

Definition 1.2 Another important basis of \mathbb{C}^2 is $\{|+\rangle, |-\rangle\}$, where $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.

Definition 1.3 For an operator $T: \mathbb{H} \to \mathbb{H}$, the **operator norm** of T is

$$||T|| = ||T||_{\mathbb{H} \to \mathbb{H}} := \sup_{x \in H} \frac{||T(x)||_{\mathbb{H}}}{||x||_{\mathbb{H}}}$$

Notation 1.4 Let $B(\mathbb{H})$ denote the space of bounded linear operators, i.e. T such that $||T|| < \infty$.

Notation 1.5 Denote the dual of the operator T by T^* , i.e. the operator that satisfies $\langle y|T(x)\rangle = \langle T^*(y)|x\rangle$ for all $x,y\in\mathbb{H}$.

Definition 1.6 A quantum measurement is a collection of measurement operators $\{M_n\}_n \subseteq B(\mathbb{H})$ which satisfies $\sum_n M_n^* M_n = \mathbb{I}$, the identity operator.

Given $|\varphi\rangle$, the probability that $|n\rangle$ occurs after this operation is $p(n) = \langle \varphi | M_n^* M_n | \varphi \rangle$. After performing this operation, the state of the system is $\frac{1}{\sqrt{p(n)}} M_n | \varphi \rangle$. This is the **Born rule**.

Example 1.7 A measurement in the computational basis is $M_0 = |0\rangle\langle 0|$, $M_1 = |1\rangle\langle 1|$. Note M_0 and M_1 are self-adjoint. Let $|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$. Then $p(i) = \langle \varphi | M_i | \varphi \rangle = |\alpha_i|^2$. The state after measurement is $\frac{\alpha_i}{|\alpha_i|}|i\rangle$, which is equivalent to $|i\rangle$.

Note that $|\psi\rangle$ and $e^{i\theta}|\psi\rangle$ are operationally identical: the phase does not affect the measurement probabilities.

Definition 1.8 A quantum measurement $\{M_n\}_n \subseteq B(\mathbb{H})$ is **projective measurement** if the M_n are orthogonal projections (i.e. they are self-adjoint (Hermitian) and $M_n M_m = \delta_{nm} M_n$).

Definition 1.9 An **observable** is a Hermitian operator, which we can express as its spectral decomposition

$$M = \sum_{n} \lambda_n M_n,$$

where $\{M_n\}_n$ is a projective measurement. The possible outcomes of the measurement correspond to its eigenvalues λ_n of the observable. Note that the expected value of the measurement is

$$\sum_{n} \lambda_{n} p(n) = \sum_{n} \lambda_{n} \langle \varphi | M_{n} | \varphi \rangle = \langle \varphi | M | \varphi \rangle.$$

Definition 1.10 $T: \mathbb{H} \to \mathbb{H}$ is **positive (semi-definite)** (written $T \ge 0$) if $\langle \psi | T | \psi \rangle \ge 0$ for all $|\psi\rangle \in H$.

Definition 1.11 A POVM (positive operator valued measurement) is a collection $\{E_n\}_n$ where each $E_n = M_n^* M_n$ for a general measurement $\{M_n\}_n$ (i.e. each E_n is positive and Hermitian, and $\sum_n E_n = \mathbb{I}$).

Note that the probability of obtaining outcome m on $|\psi\rangle$ is $p(m) = \langle \psi | E_m | \psi \rangle$. We use POVMs when we care only about the probabilities of the different measurement outcomes, and not the post-measurement states.

Conversely, given a POVM $\{E_n\}_n$, we can define a general measurement $\{\sqrt{E_n}\}_n$.

Remark 1.12 Any transformation on a normalised quantum state must map it to a normalised quantum state, and so the operation must be unitary.

Definition 1.13 The Pauli matrice are

$$\begin{split} \sigma_0 &= \mathbb{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \sigma_X = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \\ \sigma_Y &= Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_Z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}. \end{split}$$

The Pauli matrices are unitaries, and we can think of them as quantum logical gates.

Definition 1.14 The trace of $T: \mathbb{H} \to \mathbb{H}$ is

$$\operatorname{tr} T = \operatorname{tr} M = \sum_{i} M_{ii} \in \mathbb{C},$$

where M is a matrix representation of T in any basis (this is well-defined since the trace is cyclic and linear).

Proposition 1.15 For any state $|\varphi\rangle$ and any operator A,

$$\operatorname{tr}(A|\varphi\rangle\langle\varphi|) = \langle\varphi|A|\varphi\rangle.$$

Proof (Hints). Straightforward.

Proof. $\operatorname{tr}(A|\varphi\rangle\langle\varphi|) = \sum_{i} \langle i|A|\varphi\rangle\langle\varphi|i\rangle$ for an orthonormal basis $\{|i\rangle\}$. Any basis where $|\varphi\rangle = |j\rangle$ for some j instantly yields the result. Alternatively, we have

$$\operatorname{tr}(A|\varphi\rangle\langle\varphi|) = \sum_{i} \langle i|A|\varphi\rangle\langle\varphi|i\rangle = \sum_{i} \langle \varphi|i\rangle\langle i|A|\varphi\rangle = \langle \varphi|I|A|\varphi\rangle = \langle \varphi|A|\varphi\rangle.$$

Suppose we don't fully know the state of the system, but know that it is $|\varphi_i\rangle$ with probability p_i . We want to be able to consider the $\sum_i p_i |\varphi_i\rangle$ as a state, but this isn't normalised (except when some $p_i = 1$). To solve this issue, we assume each $|\varphi_i\rangle$ to the rank-one projector $|\varphi_i\rangle\langle\varphi_i|$, and we describe the unknown state by $\rho = \sum_i p_i |\varphi_i\rangle\langle\varphi_i|$. This gives rise to the following definition:

Definition 1.16 A density matrix/operator is a linear operator $\rho \in B(\mathbb{H})$ which is:

- Hermitian,
- Positive semi-definite, and
- Satisfies tr $\rho = 1$.

1.2. Postulates of quantum mechanics (Heisenberg picture)

Postulate 1.17 Given an isolated physical system, there exists a complex (separable) Hilbert space \mathbb{H} associated with it, called **state space**. The physical system is described by a **state vector**, which is a normalised vector in \mathbb{H} .

Postulate 1.18 Given an isolated physical system, its evolution is described by a unitary. If the state of the system at time t_1 is $|\varphi_1\rangle$ and at time t_2 is $|\varphi_2\rangle$, then there exists a unitary U_{t_1,t_2} such that $|\varphi_2\rangle = U_{t_1,t_2}|\varphi_1\rangle$.

This can be generalised with the Schrodinger equation: the time evolution of a closed quantum system is given by $i\hbar \frac{d}{dt}|\varphi(t)\rangle = H|\varphi(t)\rangle$. The Hermitian operator H is called the **Hamiltonian** and is generally time-dependent.

Definition 1.19 Let the spectral decomposition of H be

$$H = \sum_i E_i |E_i\rangle\langle E_i|,$$

where the E_i are the energy eigenvalues and the $|E_i\rangle$ are the energy eigenstates (or stationary states).

The minimum energy is called the **ground state energy** and its associated eigenstate is called the **ground state**. The (spectral) gap of H is the (absolute) difference between the ground state energy and the next largest energy eigenvalue. When the gap is strictly positive, we say the system is **gapped**. The states $|E_i\rangle$ are called **stationary**, since they evolve as $|E_i\rangle \to \exp(-iE_it/\hbar)|E_i\rangle$.

We have $|\varphi(t_2)\rangle = U(t_1, t_2)|\varphi(t_1)\rangle$ where $U(t_1, t_2) = \exp(-iH(t_2 - t_1)/\hbar)$ which is a unitary. In fact, any unitary U can be written in the form $U = \exp(iK)$ for some Hermitian K.

Postulate 1.20 Given a physical system with associated Hilbert space \mathbb{H} , quantum measurements in the system are described by a collection of measurements $\{M_n\}_n \subseteq B(\mathbb{H})$ such that $\sum_n M_n^* M_n = \mathbb{I}$, as in Definition 1.6. The index n refers to the measurement outcomes that may occur in the experiment, and given a state $|\varphi\rangle$ before measurement, the probability that n occurs is

$$p(n) = \langle \varphi | M_n^* M_n | \varphi \rangle.$$

The state of the system after measurement is $\frac{1}{\sqrt{p(n)}}M_n|\varphi\rangle$

Postulate 1.21 Given a composite physical system, its state space \mathbb{H} is also composite and corresponds to the tensor product of the individual state spaces \mathbb{H}_i of each component: $\mathbb{H} = \mathbb{H}_1 \otimes \cdots \otimes \mathbb{H}_N$. If the state in each system i is $|\varphi_i\rangle$, then the state in the composite system is $|\varphi_1\rangle \otimes \cdots \otimes |\varphi_N\rangle$.

Definition 1.22 Given $|\varphi\rangle \in H_1 \otimes \cdots \otimes H_N$, $|\varphi\rangle$ is **entangled** if it cannot be written as a tensor product of the form $|\varphi_1\rangle \otimes \cdots \otimes |\varphi_n\rangle$. Otherwise, it is **separable** or a **product state**.

Example 1.23 The **EPR pair** (**Bell state**) $|\varphi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ is entangled.

1.3. Postulates of quantum mechanics (Schrodinger picture)

Postulate 1.24 Given an isolated physical system, the state of the system is completely described by its density operator, which is Hermitian, positive semi-definite and has trace one.

If we know the system is in state ρ_i with probability p_i , then the state of the system is $\sum_i p_i \rho_i$.

Pure states are of the form $\rho = |\varphi\rangle\langle\varphi|$, **mixed states** are of the form $\rho = \sum_{i} p_{i} |\varphi_{i}\rangle\langle\varphi_{i}|$.

Postulate 1.25 Given an isolated physical system, its evolution is described by a unitary. If the state of the system is ρ_1 at time t_1 and is ρ_2 at time t_2 , then there is a unitary U depending only on t_1, t_2 such that $\rho_2 = U \rho_1 U^*$.

Postulate 1.26 The same as Postulate 1.20, except we specify that after measurement $\{M_n\}_n$, the probability of observing n is $p(n) = \operatorname{tr}(M_n^* M_n \rho)$ and the state after measurement is $\frac{1}{p(n)} M_n \rho M_n^*$.

Postulate 1.27 The same as Postulate 1.21, except that the state of the composite system is $\rho = \rho_1 \otimes \cdots \otimes \rho_n$, where ρ_i is the state of *i*th individual system.

Remark 1.28 The Heisenberg and Schrodinger postulates are mathematically equivalent.

1.4. States, entanglement and measurements

Theorem 1.29 (Schmidt Decomposition) Let $|\psi\rangle$ be a pure state in a bipartite system $\mathbb{H}_{AB} = \mathbb{H}_A \otimes \mathbb{H}_B$, where \mathbb{H}_A has dimension N_A and \mathbb{H}_B has dimension $N_B \geq N_A$. Then

there exist orthonormal states $\{|e_i\rangle:i\in[N_A]\}\subseteq\mathbb{H}_A$ and $\{|f_i\rangle:i\in[N_A]\}\subseteq\mathbb{H}_B$ such that

$$|\psi\rangle = \sum_{i=1}^{N_A} \lambda_i |e_i\rangle \otimes |f_i\rangle,$$

where $\lambda_i \geq 0$ and $\sum_i \lambda_i^2 = 1$.

The λ_i are unique up to re-ordering. The λ_i are called the **Schmidt coefficients** and the number of $\lambda_i > 0$ is the **Schmidt rank** of the state.

Proof. Let $|\psi\rangle = \sum_{k=1}^{N_A} \sum_{\ell=1}^{N_B} \beta_{k\ell} |\varphi_k\rangle \otimes |\varphi_\ell\rangle$ for orthonormal bases $\{|\varphi_k\rangle : k \in [N_A]\} \subseteq \mathbb{H}_A$, $\{|\chi_\ell\rangle : \ell \in [N_B]\} \subseteq \mathbb{H}_B$. Let $(\beta_{k\ell})$ have singular value decomposition

$$U[\Sigma \ 0]V$$
,

where U is an $N_B \times N_B$ unitary, Σ is an $N_A \times N_A$ diagonal matrix with non-negative entries, and V is an $N_A \times N_A$ unitary. So

$$\beta_{k\ell} = \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} U_{ki} \Sigma_{ij} V_{j\ell} = \sum_{i=1}^{N_A} \Sigma_{ii} U_{ki} V_{i\ell}.$$

Hence,

$$|\psi\rangle = \sum_{k,\ell} \sum_{i} \Sigma_{ii} U_{ki} |\varphi_k\rangle \otimes V_{i\ell} |\chi_\ell\rangle = \sum_{i} \Sigma_{ii} \underbrace{\left(\sum_{k} U_{ki} |\varphi_k\rangle\right)}_{|e_i\rangle} \otimes \underbrace{\left(\sum_{\ell} V_{j\ell} |\chi_\ell\rangle\right)}_{|j_B\rangle}.$$

Proposition 1.30 $|\psi\rangle$ is entangled iff its Schmidt rank is > 1. Otherwise, it is separable (i.e. a product state).

Definition 1.31 Let $|\psi\rangle$ be a pure state in a bipartite system $\mathbb{H}_{AB} = \mathbb{H}_A \otimes \mathbb{H}_B$, where \mathbb{H}_A has dimension N_A and \mathbb{H}_B has dimension $N_B \geq N_A$. $|\psi\rangle$ is **maximally entangled** if all its Schmidt coefficients are equal (to $1/\sqrt{N_A}$).

Notation 1.32 Write $S(\mathbb{H}) = \{ \rho \in B(\mathbb{H}) : \rho = \rho^{\dagger}, \rho \geq 0, \text{tr } p = 1 \}$ for the set of density matrices on \mathbb{H} .

Definition 1.33 The **partial trace** over B, tr_B , on the bipartite system $\mathbb{H}_{AB} = \mathbb{H}_A \otimes \mathbb{H}_B$ is the operator defined linearly by

$$\begin{split} \operatorname{tr}_B: S(\mathbb{H}_{AB}) &\to S(\mathbb{H}_A), \\ |a_1\rangle\langle a_2| \otimes |b_1\rangle\langle b_2| &\mapsto \operatorname{tr}(|b_1\rangle\langle b_2|) \cdot |a_1\rangle\langle a_2|. \end{split}$$

Note that if $\rho_{AB} = \rho_A \otimes \rho_B$, then $\operatorname{tr}_B \rho_{AB} = \operatorname{tr}(\rho_B) \cdot \rho_A = \rho_A$.

Definition 1.34 Let ρ_{AB} be a density matrix in $S(\mathbb{H}_{AB})$. $\rho_A = \operatorname{tr}_B(\rho_{AB})$ is called the reduced density matrix or marginal of ρ_{AB} in A

Proposition 1.35 Let $M_A \in B(\mathbb{H}_A).$ We have

$$\operatorname{tr}(M_A \rho_A) = \operatorname{tr}((M_A \otimes \mathbb{I}_B) \rho_{AB}).$$

for all $\rho_{AB} \in S(\mathbb{H}_{AB})$, $\rho_A = \operatorname{tr}_B(\rho_{AB})$. In fact, this can be taken to be an equivalent definition of partial trace.

Remark 1.36 Let $\rho_{AB} = |\psi\rangle\langle\psi| \in S(\mathbb{H}_{AB})$ be a pure state and let r_{ψ} be its Schmidt rank. Then

$$\rho_A = \operatorname{tr}_B(|\psi\rangle\langle\psi|) = \sum_{k=1}^{r_\psi} p_k |u_k\rangle\langle u_k|.$$

So ρ_A is pure iff $r_{\psi}=1$, i.e. iff $|\psi\rangle$ is separable.

Proposition 1.37 Let $\rho_{AB} \in B(\mathbb{H}_{AB})$ and $\rho_A = \operatorname{tr}_B(\rho_{AB})$. Then:

- 1. $\operatorname{tr} \rho_A = \operatorname{tr} \rho_{AB}$.
- 2. If $\rho_{AB} \geq 0$, then $\rho_A \geq 0$.
- 3. If ρ_{AB} is a density matrix then ρ_A is a density matrix.
- 4. We have

$$\langle \varphi_i | \rho_A | \varphi_i \rangle = \sum_k \langle \varphi_i \otimes \psi_k | \rho_{AB} | \varphi_i \otimes \psi_k \rangle,$$

for an orthonormal bases $\{|\varphi_i\rangle\}$ and $\{|\psi_k\rangle\}$.

5. If $\rho_{AB} = \sigma_A \otimes \sigma_B$ and $\operatorname{tr}(\sigma_B) = 1$, then $\sigma_A = \rho_A$.

Proof.

- 1. This follows from linearity of trace and the fact that $tr(\rho \otimes \sigma) = tr(\rho) \cdot tr(\sigma)$.
- 2. By 1, $\langle \psi | \rho_A | \psi \rangle = \operatorname{tr}(\rho_A | \psi \rangle \langle \psi |) = \operatorname{tr}(\rho_{AB}(|\psi \rangle \langle \psi | \otimes \mathbb{I})) \ge 0$.
- 3. From 1 and 2, by definition.

Definition 1.38 Let $\rho_A \in \mathbb{S}(H_A)$ be a (pure or mixed) state. We may introduce an auxiliary space \mathbb{H}_R of dimension $\operatorname{rank}(\rho_A)$ and construct a pure state $|\psi_{AR}\rangle \in \mathbb{H}_A \otimes \mathbb{H}_R$ such that $\rho_A = \operatorname{tr}_R(|\psi_{AR}\rangle\langle\psi_{AR}|)$.

Remark 1.39 Let $\{M_n^A\}_n$ be a POVM in \mathbb{H}_A . Then $\{M_n^A \otimes \mathbb{I}_B\}_n$ is a POVM in \mathbb{H}_{AB} .

Theorem 1.40 (Naimark) For every POVM $\{E_n\}_{n=1}^m \subseteq B(\mathbb{H})$, there is a state $|\psi\rangle \in \mathbb{C}^m$ and a projective measurement $\{P_n\}_{n=1}^m \subseteq B(\mathbb{H} \otimes \mathbb{C}^m)$ such that

$$\operatorname{tr}(\rho E_n) = \operatorname{tr}((\rho \otimes |\psi\rangle \langle \psi|) P_n) \quad \forall n \in [m], \forall \rho \in S(\mathbb{H}).$$