ANGELA F. HARPER

Theoretical Chemistry Group, Fritz-Haber Institute, Max Planck Society, DE harpaf13.github.io | harper@fhi.mpg.de | @ScienceAnge

EDUCATION

PhD in Theoretical Condensed Matter Physics

September 2018 – September 2022

University of Cambridge, Cambridge UK

Gates Cambridge Fellowship

Winton Fellowship for the Physics of Sustainability

Supervisors Prof. Michael Payne and Prof. Andrew J. Morris

MPhil in Physics

September 2017 – September 2018

University of Cambridge, Cambridge UK

Churchill Scholarship

Supervisor Prof. Andrew J. Morris

B.S. with Honors in Physics

August 2013 – June 2018

Wake Forest University, Winston-Salem, NC, USA

4.0 GPA in Physics, Minors in Mathematics and Computer Science

LeRoy Apker Award from the American Physical Society (APS)

Awarded to 2 undergraduates in the USA per year for the best senior thesis in Physics.

Stamps Scholarship for Academic Excellence

RESEARCH EXPERIENCES

Theoretical Chemistry Group

September 2022 – Present

Fritz-Haber Institute of the Max Planck Society, Berlin, DE

Alexander von Humboldt Research Fellow – Faculty Host Prof. Dr. Karsten Reuter

Smith School of Chemical and Biomolecular Engineering

Summer 2016

Cornell University, Ithaca, NY, USA

REU in Computational Chemistry funded by the NSF

PUBLICATIONS

- 12. <u>Angela F. Harper</u>, Simone Köcher, Karsten Reuter, and Christoph Scheurer. Towards *in silico* Spectroscopy: Machine learned electric field gradients using equivariant descriptors. *In Press*, 2023
- 11. <u>Angela F. Harper</u>, Kamil Iwanowski, Mike C. Payne, Michele Simoncelli. Vibrational and thermal properties of amorphous alumina from first principles. *Under Review in Phys. Rev. Mat.* 2023 <u>arxiv.org/abs/2303.08637</u>
- 10. <u>Angela F. Harper</u>, Bartomeu Monserrat, and Andrew J. Morris. Finite temperature effects on the X-ray absorption spectra of crystalline aluminas from first principles. *AIP Advances* 13, 055015, 2023 <u>10.1063/5.0146033</u>
- 9. <u>Angela F. Harper</u>, Steffen P Emge, Peter C M M Magusin, Clare P Grey, and Andrew J Morris. Modelling amorphous materials via a joint solid-state NMR and X-ray absorption spectroscopy and DFT approach: application to alumina. *Chemical Science*, 14:1155–1167, 2022 10.1039/D2SC04035B

- 8. <u>Angela F. Harper</u>, Matthew L Evans, and Andrew J Morris. Computational investigation of copper phosphides as conversion anodes for lithium-ion batteries. *Chemistry of Materials*, 32(15):6629–6639, 2020 <u>10.1021/acs.chemmater.0c02054</u>
- 7. <u>Angela F. Harper</u>, Matthew L. Evans, James P. Darby, Bora Karasulu, Can P. Koçer, Joseph R. Nelson, and Andrew J. Morris. Ab initio structure prediction methods for battery materials. *Johnson Matthey Technology Review*, 2020. <u>10.1595/205651320X15742491027978</u>.
- 6. <u>Angela F. Harper</u>, Peter J Diemer, and Oana D Jurchescu. Contact patterning by laser printing for flexible electronics on paper. *npj Flexible Electronics*, 3(1):1–6, 2019. <u>10.1038/s41528-019-0055-3</u>.
- 5. Benjamin J Foley, Justin Girard, Blaire A Sorenson, Alexander Z Chen, J Scott Niezgoda, Matthew R Alpert, <u>Angela F. Harper</u>, Detlef-M Smilgies, Paulette Clancy, Wissam A Saidi, et al. Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. *Journal of Materials Chemistry A*, 5(1):113–123, 2017 10.1039/C6TA07671H
- 4. Peter J Diemer, <u>Angela F. Harper</u>, Muhammad R Niazi, Anthony J Petty, John E Anthony, Aram Amassian, and Oana D Jurchescu. Laser-printed organic thin-film transistors. *Advanced Materials Technologies*, 2(11):1700167, 2017. <u>10.1002/admt.201700167</u>.
- 3. Janelle B Leuthaeuser, John H Morris, <u>Angela F. Harper</u>, Thomas E Ferrin, Patricia C Babbitt, and Jacquelyn S Fetrow. DASP3: identification of protein sequences belonging to functionally relevant groups. *BMC bioinformatics*, 17(1):458, 2016. 10.1186/s12859-016-1295-z.
- 2. <u>Angela F. Harper</u>, Janelle B Leuthaeuser, Patricia C Babbitt, John H Morris, Thomas Ferrin, Leslie B Poole, and Jacquelyn S Fetrow. An atlas of peroxiredoxins created using an active site profile-based approach to functionally relevant clustering of proteins. *PLoS computational biology*, 13(2):e1005284, 2017 10.1371/journal.pcbi.1005284
- 1. Stacy T Knutson, Brian M Westwood, Janelle B Leuthaeuser, Brandon E Turner, Don Nguyendac, Gabrielle Shea, Kiran Kumar, Julia D Hayden, <u>Angela F. Harper</u>, Shoshana D Brown, et al. An approach to functionally relevant clustering of the protein universe: Active site profile-based clustering of protein structures and sequences. *Protein Science*, 26(4):677–699, 2017. <u>10.1002/pro.3112</u>.

INTERNATIONAL AWARDS

- 2022 <u>Alexander von Humboldt Postdoctoral Fellowship</u>, DE. Value: €60,000
- 2021 Computational Science Centre for Research Communities (CoSeC) Impact Award, UK.
- 2018 Gates Cambridge Scholarship, UK. Value: £70,000
- 2018 Winton Programme for the Physics of Sustainability Scholarship, UK. Value: £70,000
- 2017 National Science Foundation Graduate Research Fellowship (Declined for Gates Cambridge)
- 2017 Rhodes Scholar District 6 Finalist
- 2017 <u>Churchill Scholarship</u> from the Churchill Foundation, USA. Value: £15,000
- 2017 LeRoy Apker Award from the American Physical Society, USA. Value: \$10,000
- **2016** Goldwater Scholarship: Value: \$10,000
- 2013 Stamps Scholarship for Academic Excellence, USA. Value: \$180,000

TEACHING

- 2018-22 **Churchill College Supervisor** leading weekly supervisions for 3rd year physicists
- 2021 Invited Lecturer for the NanoDTC M.Sci. program, Cambridge University UK
- 2018-22 **Senior Lab Instructor** for the Physics 1A undergraduate lab course at Cambridge

2018-19 **Invited Tutor** for the <u>CASTEP Workshop</u> leading online tutorials for new PhDs 2017-19 **Pembroke College Supervisor** leading weekly maths supervisions for small-groups

PROFESSIONAL SERVICE

2023	Consultant for a Battery Materials Design start-up in their seed funding round
2023	Grant Application Reviewer for the Physical Sciences applications of the 2024
	Churchill Scholars, reading between 25-35 applications
2023-	CECAM Workshop Organiser securing funding through Psi-K, DFG, and
	CECAM for a workshop of 75 people on "ML for Experimental Observables"
2022-23	PostDoc Day Berlin Communications Liason for the two day conference with
	over 250 PostDocs across disciplines in Berlin alongside a team of 5 other PostDocs
2019-22	Grant Submission for the HEC Materials Chemistry Consortium, managing the
	submission of grants for compute time worth over 20M CPUh every 6 months
2020-21	Consultant for the Cambridgeshire County Council as part of the Cambridge
	Uni. Science Policy Exchange to design a Cambridgeshire Decarbonisation Fund
2018-21	Chair of the Electronic Structure Discussion Group leading weekly talks from
	speakers both internal and external to Cambridge
2017-21	Secretary of the Churchill College MCR acting as a communication for graduate
	students to administrators, I designed an "Active Bystander" program for all
	incoming students which is still used today
	•

COMPUTATIONAL SKILLS

Languages	Python,	Fortran90,	C++,	Java
-----------	---------	------------	------	------

Packages NumPy, matplotlib, scikit-learn, SciPy, pandas, pymatgen, ase

Expt. NMR, XAS, XRD, Raman

Tools git, VisualStudio, Unix/Linux, vim

DFT CASTEP, VASP, Orca, Quantum Espresso, ONETEP, Fermions++

ML Descriptors TENSOAP, GAP, e3nn

Open Source <u>Jupyter Notebook</u> example of structure prediction for copper phosphides

Contributor to matador the first principles high throughput computational tool

Implemented chemical shifts for XANES in OPTADOS