Contents			7 Other 11
1	Some definition	1	7.1 Bignum mul
2	Data structure 2.1 Mo's algorithm 2.2 AVL tree 2.3 Set and map 2.4 BIT 2.5 IT2D	1 1 2 2 3	7.4 Pythagorean triples 12 7.5 Sieve 12 7.6 Catalan 12 7.7 Prime under 100 12 7.8 Pascal triangle 12 7.9 Fibo 12
3	Graph	3	8 Tips 12
	3.1 Dinic	3 3 4	1 Some definition #include <bits stdc++.h=""></bits>
	3.4 Cầu khớp	4	#include <pits stac++.n=""> #define N</pits>
4	3.6 MST	5	
4	String 4.1 Aho Corasick	5 5	#define base 137 // Or 37
	4.2 Manacher 4.3 Suffix Array 4.4 Z function	5 6 6	<pre>#define cross(A,B) (A.x*B.y-A.y*B.x) #define dot(A,B) (A.x*B.x+A.y*B.y) #define ccw(A,B,C) (-(A.x*(C.y-B.y) + B.x*(A.y-C.y) + C.x*(B.y-A.y))) // positive when</pre>
	4.5 KMP	6 7	#define CROSS(a,b,c,d) (a*d - b*c)
5	Math	7	2 Data structure
	5.1 Derivatives and integrals	7 7 7	2.1 Mo's algorithm $O(N*\sqrt{N}+Q*\sqrt{N})$
	5.4 Trigonometric	7	` ,
	5.5 Gaussian elimination	8 8 8	<pre>S = sqrt(N); bool cmp(Query A, Query B) // compare 2 queries {</pre>
	5.8 Chinese Remainer	9 9 9	<pre>if (A.1 / S != B.1 / S) { return A.1 / S < B.1 / S; } return A.r < B.r;</pre>
	5.11 Hungarian	10 11	}
6	Theorem	11	2.2 AVL tree
	6.1 Fermat's little theorem	11 11 11 11 11	<pre>struct Node { Node * pLeft; Node * pRight; int val, height; Node()</pre>

```
val = 0;
    height = 1;
   pLeft = pRight = nullptr;
 Node(int x)
  {
    val = x;
   height = 1;
   pLeft = pRight = nullptr;
  ~Node()
    delete pLeft;
   delete pRight;
 }
};
int GetHeight(Node * root)
 if (root == nullptr) return 0;
 return root -> height;
int CalcHeight(Node * root)
 int LeftHeight = GetHeight(root -> pLeft);
 int RightHeight = GetHeight(root -> pRight)
 return (1 + max(LeftHeight, RightHeight));
int CalcBalance(Node * root)
 int LeftHeight = GetHeight(root -> pLeft);
 int RightHeight = GetHeight(root -> pRight)
  return LeftHeight - RightHeight;
}
void RightRotate(Node* &root)
 Node* tmp1 = root->pLeft;
 Node* tmp2 = tmp1->pRight;
 root->pLeft = tmp2;
 tmp1->pRight = root;
 root->height = CalcHeight(root);
 tmp1->height = CalcHeight(tmp1);
 root = tmp1;
void LeftRotate(Node* &root)
 Node* tmp1 = root->pRight;
 Node* tmp2 = tmp1->pLeft;
 root->pRight = tmp2;
```

```
tmp1->pLeft = root;
  root->height = CalcHeight(root);
  tmp1->height = CalcHeight(tmp1);
  root = tmp1;
void Insert(Node* &root, int x)
  if (root == nullptr)
    root = new Node(x);
    return;
  if (root->val > x) Insert(root->pLeft, x);
  else if (root->val < x) Insert(root->pRight
   , x);
  else return;
  root->height = CalcHeight(root);
  int balanceFactor = CalcBalance(root);
  // Left Left case
  if (balanceFactor > 1 && x < root->pLeft->
   val) RightRotate(root);
  // Left Right case
  if (balanceFactor > 1 && x > root->pLeft->
   val)
    LeftRotate(root->pLeft);
    RightRotate(root);
  }
  // Right Right case
  if (balanceFactor < -1 && x > root->pRight
   ->val) LeftRotate(root);
  // Right Left case
  if (balanceFactor < -1 && x < root->pRight
    RightRotate(root->pRight);
    LeftRotate(root);
}
```

2.3 Set and map

Use set.lower_bound() instead of lower_bound(set.begin() set.end()) for better performance

The same is true for map

2.4 BIT

```
void update(int x, int val)
{
   for (; x <= n; x += x & ~x) BIT[x] = min(
     BIT[x], val);
}
int get(int x)
{</pre>
```

```
int res = 1e9;
for (; x > 0; x -= x & ~x) res = min(res,
   BIT[x]);
return res;
}
```

$2.5 \quad IT2D$

```
int Max[4096][4096];
struct dir {
    int ll, rr, id;
    dir (int L, int R, int X)
        { ll=L, rr=R, id=X; }
    dir left() const
        { return dir(ll, (ll+rr)/2, id*2); }
    dir right() const
        { return dir((ll+rr)/2+1, rr, id*2+1)
    inline bool irrelevant(int L, int R)
   const
        { return 11>R || L>rr || L>R; }
};
void maximize(int &a, int b)
    { a=max(a, b); }
void maximize(const dir &dx, const dir &dy,
   int x, int y, int k, bool only_y) {
   if (dx.irrelevant(x, x) || dy.irrelevant(
   y, y)) return;
    maximize(Max[dx.id][dy.id], k);
    if (!only_y && dx.ll != dx.rr) {
        maximize(dx.left(), dy, x, y, k,
   false):
        maximize(dx.right(), dy, x, y, k,
   false);
   }
   if (dy.11 != dy.rr) {
        maximize(dx, dy.left(), x, y, k, true
        maximize(dx, dy.right(), x, y, k,
   true);
    }
}
int max_range(const dir &dx, const dir &dy,
   int lx, int rx, int ly, int ry) {
    if (dx.irrelevant(lx, rx) || dy.
   irrelevant(ly, ry)) return 0;
    if (lx<=dx.ll && dx.rr<=rx) {</pre>
        if (ly<=dy.ll && dy.rr<=ry) return</pre>
   Max[dx.id][dy.id];
        int Max1 = max_range(dx, dy.left(),
   lx, rx, ly, ry);
        int Max2 = max_range(dx, dy.right(),
   lx, rx, ly, ry);
        return max(Max1, Max2);
    } else {
        int Max1 = max_range(dx.left(), dy,
   lx, rx, ly, ry);
```

```
int Max2 = max_range(dx.right(), dy,
lx, rx, ly, ry);
    return max(Max1, Max2);
}
```

3 Graph

3.1 Dinic

```
bool BFS()
  queue < int > q;
  for (int i=1; i<=n; i++) d[i]=0,Free[i]=</pre>
   true;
  q.push(s);
  d[s]=1;
  while (!q.empty())
      int u=q.front(); q.pop();
      for (int i=0; i<DSK[u].size(); i++)</pre>
           int v=DSK[u][i].fi;
           if (d[v] == 0 && DSK[u][i].se>f[u][v
   ])
               d[v]=d[u]+1;
               q.push(v);
      }
  }
  return d[t]!=0;
int DFS(int x,int delta)
  if (x==t) return delta;
  Free[x]=false;
  for (int i=0; i<DSK[x].size(); i++)</pre>
      int y=DSK[x][i].fi;
      if (d[y] == d[x] + 1 && f[x][y] < DSK[x][i].
   se && Free[y])
      {
           int tmp=DFS(y,min(delta,DSK[x][i].
   se-f[x][y]);
           if (tmp>0)
           {
               f[x][y] += tmp; f[y][x] -= tmp;
   return tmp;
           }
      }
  }
  return 0;
```

3.2 Mincost

```
int calc(int x,int y){ return (x>=0) ? y : 0-
y: }
```

```
bool findpath()
  for (int i=1; i<=n; i++){ trace[i]=0; d[i]=</pre>
   inf; } q.push(n); d[n]=0;
  while (!q.empty())
    int u=q.front(); q.pop(); inq[u]=false;
    for (int i=0; i<DSK[u].size(); i++)</pre>
      int v=DSK[u][i];
      if (c[u][v]>f[u][v] && d[v]>d[u]+calc(f
   [u][v],cost[u][v]))
        trace[v]=u;
        d[v]=d[u]+calc(f[u][v],cost[u][v]);
        if (!inq[v])
           inq[v]=true;
          q.push(v);
        }
      }
   }
 }
  return d[t]!=inf;
void incflow()
  int v=t,delta=inf;
  while (v!=n)
    int u=trace[v];
    if (f[u][v]>=0) delta=min(delta,c[u][v]-f
   [u][v]):
    else delta=min(delta,0-f[u][v]);
  }
  v=t;
  while (v!=n)
    int u=trace[v];
    f[u][v]+=delta; f[v][u]-=delta;
    v=u;
  }
```

3.3 HLD

```
void DFS(int x,int pa)
{
    DD[x]=DD[pa]+1; child[x]=1; int Max=0;
    for (int i=0; i<DSK[x].size(); i++)
    {
       int y=DSK[x][i].fi;
       if (y==pa) continue;
       p[y]=x;
       d[y]=d[x]+DSK[x][i].se;
    DFS(y,x);
    child[x]+=child[y];
    if (child[y]>Max)
```

```
{
    Max=child[y];
    tree[x]=tree[y];
}
if (child[x]==1) tree[x]=++nTree;
}

void init()
{
    nTree=0;
    DFS(1,1);
    DD[0]=long(1e9);
    for (int i=1; i<=n; i++) if (DD[i]<DD[root[tree[i]]]) root[tree[i]]=i;
}

int LCA(int u,int v)
{
    while (tree[u]!=tree[v])
    {
        if (DD[root[tree[u]]]<DD[root[tree[v]]])
        v=p[root[tree[u]]];
        else u=p[root[tree[u]]];
    }
    if (DD[u]<DD[v]) return u; else return v;
}</pre>
```

3.4 Cầu khớp

Nút u là khớp: if (low[v] >= num[u]) arti[u] = arti[u] || p[u] != -1 || child[u] >= 2; Cạnh u, v là cầu khi low[v] >= num[v]

3.5 Monotone chain

```
void convex_hull (vector<pt> & a) {
 if (a.size() == 1) { // Only 1 point
    return;
 }
 // Sort with respect to x and then y
 sort(a.begin(), a.end(), &cmp);
 pt p1 = a[0], p2 = a.back();
 vector<pt> up, down;
 up.push_back (p1);
  down.push_back (p1);
 for (size_t i=1; i<a.size(); ++i) {</pre>
    // Add to the upper chain
    if (i==a.size()-1 || cw (p1, a[i], p2)) {
      while (up.size()>=2 && !cw (up[up.size
   ()-2], up[up.size()-1], a[i]))
        up.pop_back();
      up.push_back (a[i]);
```

```
// Add to the lower chain
if (i==a.size()-1 || ccw (p1, a[i], p2))
{
    while (down.size()>=2 && !ccw (down[
    down.size()-2], down[down.size()-1], a[i
]))
        down.pop_back();
        down.push_back (a[i]);
}

// Merge 2 chains
a.clear();
for (size_t i=0; i < up.size(); ++i)
    a.push_back (up[i]);
for (size_t i=down.size()-2; i>0; --i)
    a.push_back (down[i]);
}
```

3.6 MST

Prim: remember to have visited array

4 String

4.1 Aho Corasick

```
struct Node
  int nxt[26], go[26];
  bool leaf;
  long long val, sumVal;
 int p;
 int pch;
  int link;
};
Node t[N];
int sz;
void New(Node &x, int p, int link, int pch)
 x.p = p;
  x.link = link;
  x.pch = pch;
 x.val = 0;
  x.sumVal = -1;
  memset(x.nxt, -1, sizeof(x.nxt));
  memset(x.go, -1, sizeof(x.go));
}
void AddString(const string &s, int val)
  int v = 0;
  for (char c : s)
    int id = c - 'A';
    if (t[v].nxt[id] == -1)
```

```
New(t[sz], v, -1, id);
      t[v].nxt[id] = sz++;
    v = t[v].nxt[id];
  t[v].leaf = true;
  t[v].val = val;
int Go(int u, int c);
int Link(int u)
 if (t[u].link == -1)
    if (u == 0 || t[u].p == 0)
     t[u].link = 0;
      t[u].link = Go(Link(t[u].p), t[u].pch);
 return t[u].link;
int Go(int u, int c)
 if (t[u].go[c] == -1)
    if (t[u].nxt[c] != -1)
      t[u].go[c] = t[u].nxt[c];
      t[u].go[c] = (u == 0 ? 0 : Go(Link(u),
   c));
  return t[u].go[c];
```

4.2 Manacher

```
void init() {
  cnt = 0;
  t[0] = '~';
  for (int i = 0; i<n; i++) {</pre>
    t[++cnt] = '#';t[++cnt] = s[i];
  t[++cnt] = '#'; t[++cnt] = '-';
void manacher() {
  int n = cnt - 2;
  int r = 1; int C = 1;
  int ans = 0;
  for (int i = 2; i<n; i++) {</pre>
    int i_mirror = C * 2 - i;
    z[i] = (r > i) ? min(z[i_mirror], r - i)
    while (t[i + z[i] + 1] == t[i - z[i] -
   1]) z[i]++;
    if (i + z[i] > r) {
      C = i;
      r = i + z[i];
```

```
}
}
```

4.3 Suffix Array

```
struct SuffixArray {
       string s;
       int n;
       vector<int> SA, RA, tempSA, tempRA, LCP;
       int L[N];
       void reset(string st) {
                s = st;
               RA.clear();
               s.push_back('$');
               n = s.size();
               RA.resize(n + 1, 0);
               SA = RA, tempSA = tempRA = LCP = RA;
       }
       void BuildSA() {
               REP(i, n) SA[i] = i, RA[i] = s[i];
                for (int k = 1; k < n; k <<= 1) {</pre>
                        radix_sort(k);
                        radix_sort(0);
                        tempRA[SA[0]] = 0;
                        for (int i = 1, r = 0; i < n; ++i) {
                                 if (getRA(SA[i - 1]) != getRA(SA[i])
              \parallel \parallel getRA(SA[i-1]+k) \parallel getRA(SA[i]+k) 
             k)) ++r;
                               tempRA[SA[i]] = r;
                        REP(i, n) RA[i] = tempRA[i];
                         if (RA[SA[n-1]] == n-1) break;
       }
       void BuildLCP() {
                // kasai
                REP(i, n) RA[SA[i]] = i;
                int k = 0;
                REP(i, n) {
                        if (RA[i] == n - 1) {
                                k = 0; continue;
                        int j = SA[RA[i] + 1];
                        while (i + k < n \&\& j + k < n \&\& s[i + k])
             k] == s[j + k]) ++k;
                        LCP[RA[i]] = k;
                         if (k) k--;
               }
       }
private:
       inline int getRA(int i) { return (i < n ?</pre>
             RA[i] : 0); }
       void radix_sort(int k) {
                memset(L, 0, sizeof L);
                REP(i, n) L[getRA(i + k)]++;
                int p = 0;
                REP(i, N) {
                       int x = L[i];
```

```
L[i] = p;
    p += x;
}
REP(i, n) {
    int &x = L[getRA(SA[i] + k)];
    tempSA[x++] = SA[i];
}
REP(i, n) SA[i] = tempSA[i];
}
};
```

4.4 Z function

```
vector<int> Zfunc(int n, vector<int> &a) {
  vector<int> z(n);
  z[0] = n;
  int 1 = 0, r = 0;
  FOR(i, 1, n - 1) {
    z[i] = (i <= r ? min(r - i + 1, z[i - 1])
        : 0);
    while (i + z[i] < n && a[z[i]] == a[i + z
      [i]]) ++z[i];
    if (i + z[i] > r) {
        r = i + z[i] - 1;
        l = i;
      }
  }
  return z;
}
```

4.5 KMP

```
// SUBSTR spoj
string s, t; int pos[N];
void build()
  pos[0] = -1;
  int pre = -1, cur = 0;
  while (cur < t.length())</pre>
    while (pre >= 0 && t[cur] != t[pre])
      pre = pos[pre];
    pos[++cur] = ++pre;
int main()
  cin >> s; cin >> t;
  build();
  int cur = 0;
  for (int i = 0; i < (int)s.length(); ++i)</pre>
    while (cur >= 0 && s[i] != t[cur])
      cur = pos[cur];
    ++cur;
    if (cur == (int)t.length())
```

```
{
    cout << i - (int)t.length() + 2 << ' ';
    cur = pos[cur];
}

return 0;
}</pre>
```

4.6 Hash 2D

$$H[i][j] = H[i-1][j] * p + H[i][j-1] * q$$

$$-H[i-1][j-1] * p * q + s[i][j]$$
(1)

$$Hash(a,b)(x,y) = H[x][y] - H[a-1][y] * p^{x-a+1}$$
$$- H[x][b-1] * q^{y-b+1}$$
$$+ H[a-1][b-1] * p^{x-a+1} * q^{y-b+1}$$
(2

5 Math

5.1 Derivatives and integrals

$$\frac{d}{dx}\ln u = \frac{u'}{u} \quad \frac{d}{dx}\frac{1}{u} = -\frac{u'}{u^2}$$

$$\frac{d}{dx}\sqrt{u} = \frac{u'}{2\sqrt{u}}$$

$$\frac{d}{dx}\sin x = \cos x \quad \frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\cos x = -\sin x \quad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \quad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \quad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \quad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

5.2 Sum

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

5.3 Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

5.4 Trigonometric

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$

$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$

$$\sin v + \sin w = 2\sin \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$\cos v + \cos w = 2\cos \frac{v+w}{2}\cos \frac{v-w}{2}$$

$$a\cos x + b\sin x = r\cos(x-\phi)$$

$$a\sin x + b\cos x = r\sin(x+\phi)$$

where
$$r = \sqrt{a^2 + b^2}$$
, $\phi = \operatorname{atan2}(b, a)$.

5.5 Gaussian elimination

```
// Gauss-Jordan elimination.
// Returns: number of solution (0, 1 or INF)
    When the system has at least one
  solution, ans will contains
// one possible solution
// Possible improvement when having precision
    errors:
    - Divide i-th row by a(i, i)
   - Choosing pivoting row with min
   absolute value (sometimes this is better
   that maximum, as implemented here)
// Tested:
// - https://open.kattis.com/problems/
   equationsolver
// - https://open.kattis.com/problems/
   equationsolverplus
int gauss (vector < vector <double> > a,
   vector<double> & ans) {
  int n = (int) a.size();
  int m = (int) a[0].size() - 1;
  vector<int> where (m, -1);
  for (int col=0, row=0; col<m && row<n; ++</pre>
   col) {
   int sel = row;
    for (int i=row; i<n; ++i)</pre>
      if (abs (a[i][col]) > abs (a[sel][col])
        sel = i;
    if (abs (a[sel][col]) < EPS)</pre>
      continue;
    for (int i=col; i<=m; ++i)</pre>
      swap (a[sel][i], a[row][i]);
    where[col] = row;
    for (int i=0; i<n; ++i)</pre>
      if (i != row) {
        double c = a[i][col] / a[row][col];
        for (int j=col; j<=m; ++j)</pre>
          a[i][j] -= a[row][j] * c;
      }
    ++row;
  }
  ans.assign (m, 0);
  for (int i=0; i<m; ++i)</pre>
    if (where[i] != -1)
      ans[i] = a[where[i]][m] / a[where[i]][i
  for (int i=0; i<n; ++i) {</pre>
   double sum = 0;
    for (int j=0; j<m; ++j)</pre>
      sum += ans[j] * a[i][j];
    if (abs (sum - a[i][m]) > EPS)
      return 0;
  }
  // If we need any solution (in case INF
  solutions), we should be
```

```
// ok at this point.
  // If need to solve partially (get which
   values are fixed/INF value):
// for (int i=0; i<m; ++i)
    if (where[i] != -1) {
//
       REP(j,n) if (j != i && fabs(a[where[i
  ]][j]) > EPS) {
11
         where [i] = -1;
11
          break:
11
//
 // Then the variables which has where[i] ==
    -1 --> INF values
 for (int i=0; i<m; ++i)</pre>
   if (where[i] == -1)
     return INF;
  return 1;
```

5.6 Geometry

```
struct line
{
   double a,b,c;
   line() {}
   line(double A,double B,double C):a(A),b(B),
      c(C){}
   line(Point A,Point B)
   {
      a=A.y-B.y; b=B.x-A.x; c=-a*A.x-b*A.y;
   }
};

Point intersect(line AB,line CD)
{
   AB.c=-AB.c; CD.c=-CD.c;
   double D=CROSS(AB.a,AB.b,CD.a,CD.b);
   double Dx=CROSS(AB.c,AB.b,CD.c,CD.b);
   double Dy=CROSS(AB.a,AB.c,CD.a,CD.c);
   if (D==0.0) return Point(1e9,1e9);
   else return Point(Dx/D,Dy/D);
}
```

5.7 Miller Rabin

```
// n < 4,759,123,141
                           3:2,7,61
// n < 1,122,004,669,633
                           4: 2, 13, 23,
  1662803
// n < 3,474,749,660,383
                                 6: pirmes
   <= 13
// n < 2^64
// 2, 325, 9375, 28178, 450775, 9780504,
  1795265022
// Make sure testing integer is in range [2,
  -n2] if
// you want to use magic.
long long power(long long x, long long p,
   long long mod) {
 long long s = 1, m = x;
 while (p) {
```

```
if (p & 1) s = mult(s, m, mod);
    p >>= 1;
    m = mult(m, m, mod);
 return s;
}
bool witness(long long a, long long n, long
   long u, int t) {
  long long x = power(a, u, n);
  for (int i = 0; i < t; i++) {</pre>
    long long nx = mult(x, x, n);
    if (nx == 1 && x != 1 && x != n - 1)
   return 1;
   x = nx;
 }
  return x != 1;
bool miller_rabin(long long n, int s = 100) {
  // iterate s times of witness on n
  // return 1 if prime, 0 otherwise
  if (n < 2) return 0;</pre>
  if (!(n & 1)) return n == 2;
  long long u = n - 1;
  int t = 0;
  // n-1 = u*2^t
  while (!(u & 1)) {
   u >>= 1;
   t++;
  }
  while (s--) {
    long long a = randll() % (n - 1) + 1;
    if (witness(a, n, u, t)) return 0;
  }
  return 1;
```

5.8 Chinese Remainer

```
// Solve linear congruences equation:
// - a[i] * x = b[i] MOD m[i] (mi don't need
   to be co-prime)
// Tested:
// - https://open.kattis.com/problems/
   generalchineseremainder
bool linearCongruences(const vector<11> &a,
   const vector<ll> &b,
   const vector<ll> &m, ll &x, ll &M) {
 ll n = a.size();
 x = 0; M = 1;
 REP(i, n) {
   ll a_{-} = a[i] * M, b_{-} = b[i] - a[i] * x,
   m_{-} = m[i];
   11 y, t, g = extgcd(a_, m_, y, t);
   if (b_ % g) return false;
   b_ /= g; m_ /= g;
   x += M * (y * b_  % m_);
    M *= m_{;}
 }
 x = (x + M) \% M;
 return true;
```

5.9 Extended Euclid

```
// other pairs are of the form:
// x' = x + k(b / gcd)
// y' = y - k(a / gcd)
// where k is an arbitrary integer.
// to minimize, set k to 2 closest integers
    near -x / (b / gcd)
// the algo always produce one of 2 small
    pairs.
int extgcd(int a, int b, int &x, int &y) {
    int g = a; x = 1; y = 0;
    if (b != 0) g = extgcd(b, a % b, y, x), y
        -= (a / b) * x;
    return g;
}
```

5.10 FFT

```
typedef complex<double> ComplexType;
const double PI = acos(-1);
const ComplexType I(0.0, 1.0);
// \text{ceil}(\log 2(n)) + 1
const int MAX2N = (1 << 15);</pre>
ComplexType root_unity[MAX2N + 1];
// DONT FORGET TO CALL INIT!
void init fft() {
  for (int i = 0; i <= MAX2N; ++i)</pre>
    root_unity[i] = exp(2 * PI * i / MAX2N *
   -I);
}
void fft(vector < ComplexType > & a, const vector
   <int>& p) {
  int n = a.size();
  vector < ComplexType > b(n);
  for (int i = 0; i < n; ++i)</pre>
    b[i] = a[p[i]];
  copy(b.begin(), b.end(), a.begin());
  for (int m = 1, t = MAX2N / 2; m < n; m *=</pre>
   2, t /= 2)
    for (int i = 0; i < n; i += m * 2)</pre>
      for (int j = 0; j < m; ++j) {
        int u = i + j, v = i + j + m;
        a[v] *= root_unity[j * t];
        ComplexType tmp = a[u] - a[v];
        a[u] += a[v];
        a[v] = tmp;
      }
vector<long long> polymul(const vector<int>&
   a, const vector<int>& b) {
  int n = max(a.size(), b.size());
  if (__builtin_popcount(n) != 1) n = 1 <<</pre>
   (32 - __builtin_clz(n));
  n *= 2;
  vector < ComplexType > pa(n), pb(n);
```

```
copy(a.begin(), a.end(), pa.begin());
copy(b.begin(), b.end(), pb.begin());
vector<int> p(n);
for (int i = 1; i < n; ++i)</pre>
 if (i & 1) p[i] = p[i - 1] + n / 2;
  else p[i] = p[i / 2] / 2;
fft(pa, p), fft(pb, p);
transform(pa.begin(), pa.end(), pb.begin(),
  pa.begin(), multiplies<ComplexType>());
// inverse FFT
for_each(pa.begin(), pa.end(), [](
 ComplexType &c) { c = conj(c); });
fft(pa, p);
vector<long long> res(n);
transform(pa.begin(), pa.end(), res.begin()
 , [&](auto c) { return lround(c.real() /
 n); });
return res;
```

5.11 Hungarian

```
struct Hungarian {
  long c[N][N], fx[N], fy[N], d[N];
  int mx[N], my[N], trace[N], arg[N];
 queue < int > q;
  int start, finish, n, m;
 const long inf = 1e18;
 void Init(int _n, int _m) {
   n = _n, m = _m;
   FOR(i, 1, n) {
      mx[i] = my[i] = 0;
      FOR(j, 1, n) c[i][j] = inf;
 }
 void addEdge(int u, int v, long cost) { c[u
   ][v] = min(c[u][v], cost); }
  inline long getC(int u, int v) { return c[u
   ][v] - fx[u] - fy[v]; }
 void initBFS() {
    while (!q.empty()) q.pop();
    q.push(start);
    FOR(i, 0, n) trace[i] = 0;
    FOR(v, 1, n) {
      d[v] = getC(start, v), arg[v] = start;
    finish = 0;
 }
 void findAugPath() {
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      FOR(v, 1, n) if (!trace[v]) {
        long w = getC(u, v);
        if (!w) {
```

```
trace[v] = u;
        if (!my[v]) { finish = v; return; }
        q.push(my[v]);
      if (d[v] > w) \{ d[v] = w; arg[v] = u;
  }
   }
  }
}
void subX addY(){
  long delta = inf;
  FOR(v, 1, n) if (trace[v] == 0 \&\& d[v] <
 delta) delta = d[v];
  fx[start] += delta;
  FOR(v, 1, n) if (trace[v]) {
    int u = my[v];
    fy[v] -= delta, fx[u] += delta;
  } else d[v] -= delta;
  FOR(v, 1, n) if (!trace[v] && !d[v]) {
    trace[v] = arg[v];
    if (!my[v]) { finish = v; return; }
    q.push(my[v]);
}
void Enlarge() {
  do {
    int u = trace[finish], nxt = mx[u];
    mx[u] = finish, my[finish] = u, finish
 = nxt:
  } while (finish);
long minCost() {
  FOR(u, 1, n) {
    fx[u] = c[u][1];
    FOR(v, 1, n) fx[u] = min(fx[u], c[u][v])
 ]);
  FOR(v, 1, n) {
    fy[v] = c[1][v] - fx[1];
    FOR(u, 1, n) fy[v] = min(fy[v], c[u][v]
  - fx[u]);
  FOR(u, 1, n) {
    start = u;
    initBFS();
    while (finish == 0) {
      findAugPath();
      if (!finish) subX_addY();
    Enlarge();
  }
  int res = 0;
  FOR(i, 1, n) res += c[i][mx[i]];
  return res;
```

```
}
};
```

5.12 PollardRho

```
// does not work when n is prime
long long modit(long long x, long long mod) {
 if (x \ge mod) x -= mod;
  //if(x<0) x += mod;
 return x;
long long mult(long long x, long long y, long
    long mod) {
  long long s = 0, m = x \% mod;
 while (y) {
    if (y & 1) s = modit(s + m, mod);
    y >>= 1;
    m = modit(m + m, mod);
 }
 return s;
long long f(long long x, long long mod) {
 return modit(mult(x, x, mod) + 1, mod);
long long pollard_rho(long long n) {
 if (!(n & 1)) return 2;
 while (true) {
    long long y = 2, x = random() \% (n - 1) +
    1, res = 1;
    for (int sz = 2; res == 1; sz *= 2) {
      for (int i = 0; i < sz && res <= 1; i</pre>
   ++) {
        x = f(x, n);
        res = \_gcd(abs(x - y), n);
      }
    if (res != 0 && res != n) return res;
 }
```

6 Theorem

6.1 Fermat's little theorem

If p is a prime number, then for any number $a, a^p - a$ is an integer multiple of p

$$a^p \equiv a \pmod{p}$$

If a is not divisible by p

$$a^{p-1} \equiv 1 \pmod{p}$$

6.2 Euler's totient function

The number of coprime $\leq n$

$$\phi(n) = n \prod (1 - \frac{1}{p})$$

With p is the prime divided by n

6.3 Dirichlet

Given n holes and n+1 pigeons to distribute evenly, then at least 1 hole must have 2 pigeons

6.4 Pythagorean triple

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$

where m and n are positive integer with m > n, and with m and n are coprime and not both odd.

6.5 Legendre's formula

Factor n!

$$v_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

With p is prime

7 Other

7.1 Bignum mul

```
string mul(string a, string b)
{
   int m=a.length(),n=b.length(), sum=0;
   string c="";
   for (int i=m+n-1; i>=0; i--)
   {
      for (int j=0; j<m; j++) if (i-j>0 && i-j
      <=n) sum+=(a[j]-'0')*(b[i-j-1]-'0');
      c=(char)(sum%10+'0')+c;
      sum/=10;
   }
   while (c.length()>1 && c[0]=='0') c.erase
      (0,1);
   return c;
}
```

7.2 Random

```
// Random using mt19937
mt19937 rng(chrono::steady_clock::now().
    time_since_epoch().count());
```

```
// For random long long
mt19937_64 rng(chrono::steady_clock::now().
    time_since_epoch().count());

// Random shuffle using mt19937 as the
    generator
shuffle(a.begin(), a.end(), rng);

// Random range
int random(int a, int b)
{
    return uniform_int_distribution<int>(a, b)(
        rng);
}
```

7.3 Builtin bit function

```
__builtin_popcount(x); // number of bit 1 in
    x
__builtin_popcountll(x); // for long long
__builtin_clz(x); // number of leading 0
__builtin_clzll(x); // for long long
__builtin_ctz(x); // number of trailing 0
__builtin_ctzll(x); // for long long

(x & ~x) : the smallest bit 1 in x
floor(log2(x)) : 31 - __builtin_clz(x | 1);
floor(log2(x)) : 63 - __builtin_clzll(x | 1);
```

7.4 Pythagorean triples

c under 100 there are 16 triples: (3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25) (20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53) (11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73) (13, 84, 85) (36, 77, 85) (39, 80, 89) (65, 72, 97)

 $100 \leq c \leq 300: \ (20,\ 99,\ 101) \ (60,\ 91,\ 109) \ (15,\ 112,\ 113) \ (44,\ 117,\ 125) \ (88,\ 105,\ 137) \ (17,\ 144,\ 145) \ (24,\ 143,\ 145) \ (51,\ 140,\ 149) \ (85,\ 132,\ 157) \ (119,\ 120,\ 169) \ (52,\ 165,\ 173) \ (19,\ 180,\ 181) \ (57,\ 176,\ 185) \ (104,\ 153,\ 185) \ (95,\ 168,\ 193) \ (28,\ 195,\ 197) \ (84,\ 187,\ 205) \ (133,\ 156,\ 205) \ (21,\ 220,\ 221) \ (140,\ 171,\ 221) \ (60,\ 221,\ 229) \ (105,\ 208,\ 233) \ (120,\ 209,\ 241) \ (32,\ 255,\ 257) \ (23,\ 264,\ 265) \ (96,\ 247,\ 265) \ (69,\ 260,\ 269) \ (115,\ 252,\ 277) \ (160,\ 231,\ 281) \ (161,\ 240,\ 289) \ (68,\ 285,\ 293)$

7.5 Sieve

for (int j = i; j * i <= lim; ++j) not Prime[j * i] = true

7.6 Catalan

$$\frac{(2n)!}{(n+1)! \, n!} = \prod_{k=2}^{n} \frac{n+k}{k}$$

7.7 Prime under 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

7.8 Pascal triangle

```
C(n,k)=number from line 0, column 0

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
```

7.9 Fibo

 $0\ 1\ 1\ 2\ 3\ 5\ 8\ 13\ 21\ 34\ 55\ 89\ 144\ 233\ 377\ 610\ 987\ 1597$ $2584\ 4181\ 6765$

8 Tips

- Test kĩ trước khi nộp. Code nhìn đúng chưa chắc đúng đâu
- Test conner case
- Có overflow ko?
- Đọc kĩ mô tả test
- Giả sử nó là số nguyên tố đi. Giả sử nó liên quan tới số nguyên tố đi.
- Giả sử nó là số có dạng 2^n đi.
- Giả sử chọn tối đa là 2, 3 số gì là có đáp án đi.
- Có liên quan gì tới Fibonacci hay tam giác pascal?
- Dãy này đơn điệu không em ei? Hay tổng của 2,3 số fibonacci?
- $q \leq 2$
- Sort lại đi, biết đâu thấy điều hay hơn?
- Chia nhỏ ra xem.

- Bỏ hết những thẳng ko cần thiết ra
- Áp đại data struct nào đấy vô
- khóc

- Cầu nguyện
- Random shuffe để AC
- Xoay mảng 45 độ

Keep Smilling Gotta solve them all