Exercise 4: Non-linear bicycle model (draft)

In this exercise a non-linear bicycle model will be developed using MATLAB/Simulink. The brush model will be used to represent the tyres (you can reuse some of the results of exercise 3).

A Simulink model "vehicle_model_skeleton.mdl" is provided as a starting point. The first task is to enter the right equations in the various Embedded MATLAB function blocks ("Front Wheel", "Rear Wheel" and "Chassis"). Note that "Front Wheel" and "Rear Wheel" are identical.

First make sure that you can execute a simulation with "vehicle_model_skeleton.mdl". To be able to do this, a compiler needs to be installed, as described in the document "VD2012_information_v1.pdf"

A description of the in and outputs of each block:

[Fx,Fy,Mz,kappa,alpha,omega_dot]=brush_tyre(Vx,Vsy,Fz,Md,Mb,omega)

inputs

Vx longitudinal velocity at the wheel centre, in the plane of symmetry of the wheel

Vsy lateral velocity of the wheel, perpendicular to the wheel plane

Fz vertical force

Md drive moment applied to the wheel (see lecture notes, page 181/209)
Mb brake moment applied to the wheel (see lecture notes, page 181/209)

omega angular velocity of the wheel

outputs

Fx longitudinal force Fy lateral force

Mz self aligning moment kappa longitudinal slip alpha side slip angle

omega dot wheel angular acceleration (see lecture notes, page 181/209).

[Vx1,Vsy1,Fz1,Vx2,Vsy2,Fz2,ax,ay,u_dot,v_dot,r_dot] = chassis dynamics(delta,Fx1,Fy1,Mz1,Fx2,Fy2,Mz2,u,v,r)

inputs

delta front wheel steer angle

Fx1 longitudinal force of front tyre (in the wheel frame)
Fy1 lateral force of front tyre (in the wheel frame)

Mz1 self aligning moment of front tyre

Fx2 longitudinal force of rear tyre (in the wheel frame)
Fy2 lateral force of rear tyre (in the wheel frame)

Mz2 self aligning moment of rear tyre

u longitudinal velocity of the centre of gravity (see lecture notes, page 10)

v lateral velocity of the centre of gravity

r yaw velocity

outputs

Vx1 longitudinal velocity of the front wheel (in the wheel plane of symmetry)
Vsy1 lateral velocity of the front wheel (perpendicular to the wheel plane)

Fz1 vertical tyre force front tyre

Vx2 longitudinal velocity of the rear wheel (in the wheel plane of symmetry)
Vsy2 lateral velocity of the rear wheel (perpendicular to the wheel plane)

Fz2 vertical tyre force rear tyre
Ax longitudinal acceleration
Ay lateral acceleration

u_dot time derivative of the longitudinal velocity of the centre of gravity

v_dot time derivative lateral velocity of the centre of gravity

r_dot time derivative of the yaw velocity

Both blocks are still empty and the first task is to enter the right set of equations.

To calculate the side slip angle alpha you may want to use the *atan2* –function instead of the *atan* function. When Vx is zero, atan(-Vsy/Vx) may lead to incorrect results, whereas atan2(-Vsy, Vx) will return pi/2 (90 degrees).

Parameters of the vehicle model:

m	vehicle mass	1500 kg
I_{zz}	vehicle yaw moment of inertia	2700 kgm ²
l^{-}	wheel base	3.0 m
a	distance between front tyre and centre of gravity	1.5 m
h	vehicle centre of gravity height above the road	0.6 m
r_l	loaded tyre radius (assumed to be constant)	0.3 m
I_n	polar moment of inertia of a wheel	2 kgm ²

Tyre model parameter (brush model exercise 3)

r_f	free tyre radius	0.3 m
c_z	tyre vertical stiffness	250000 N/m
c_{p}	tread element stiffness	9•10 ⁶ N/m ²
μ	friction coefficient	1.2

Initial conditions:

и	vehicle longitudinal velocity	20 m/s
v	vehicle lateral velocity	0 m/s
r	vehicle yaw velocity	0 rad/s
Ω	wheel angular velocity	zero longitudinal slip

Simulations to be executed:

- Step steer at t=1 sec. small steering input of 0.02 rad (1.15 deg.) large steering input of 0.1 rad. (5.73 deg.)
- 2) Introduce a braking system which applies 75% of the brake torque to the front wheel and 25% to the rear wheel.
 - start the simulation with the small step steer input of 0.02 rad at t=1 sec. Apply a step in the brake torque of 1500 Nm at t=5 sec.
- 3) Introduce rear wheel drive, by applying a driving torque at the back wheel start the simulation with the small step steer input of 0.02 rad at t=1 sec.
 - -Apply a step in the rear wheel drive torque of 1000 Nm at t=5 sec.
 - -Apply a step in the rear wheel drive torque of 3000 Nm at t=5 sec.
- 4) Introduce front wheel drive, by applying a driving torque at the front wheel start the simulation with the small step steer input of 0.02 rad at t=1 sec.
 - -Apply a step in the front wheel drive torque of 1000 Nm at t=5 sec.
 - -Apply a step in the front wheel drive torque of 3000 Nm at t=5 sec.