

Müller-Syring, G.; Henel, M.; Poltrum, M.; Wehling, A.; Dannenberg, E.; Glandien, J.; Krause, H. (DBI GUT); Zdrallek, M.; Möhrke, F. (Bergische Universität Wuppertal); Ortloff, F. (EBI): Transformationspfade zur Treibhausgasneutralität der Gasnetze und Gasspeicher nach COP21. Bonn: DVGW, November 2018. [Kommerziell verfügbar unter https://www.dvgw.de/themen/forschung-und-innovation/forschungsprojekte/dvgw-forschungsbericht-g-201624/, Stand: 23.06.2020]

Ziel

inklusive Mehrkosten für eine Transformation der Gasnetze und Gasspeicher hin zur Treibhausgasneutralität innerhalb der Technologiepfade Beimischung von erneuerbarem Power-to-Gas-Wasserstoff (EE-PtG-H₂) und erneuerbarem Methan (EE-PtG-CH₄)

Ermittlung kostenoptimaler **Transformationspfade**

Damals: brude force Algorithmus

Abbildung 4.1: Entwicklungsszenarien für die Gasnachfrage in Deutschland nach J. Nitsch (2016): Energiewende nach COP1, Szenario "KLIMA 2050"

Aufgabenstellung

Es ist ein Maßnahmenplan zur kostengünstigen Anpassung eines Assetbestandes vom Startjahr j=2023 bis zu einem Zieljahr j=2045 zu finden.

Dabei soll eine Asset-Attribut H2 jeweils von h2ist zu h2soll(j) erhöht werden zwischen 0 ... 100 .

Gegeben sind Assets i mit

- einem Alter zum Startjahr a_{Start} und einer technischen Lebensdauer a_{end}, nach der das Asset ersetzt wird,
- einem Startwert h2ist(i) und einem Zielwert h2soll(j) für die Gesamtheit aller Assets.

Zwei Maßnahmen stehen je Asset mit zugehörigen "Kostenträgern" zur Verfügung:

- Regulärer Ersatz des Assets nach Ende der technischen Lebensdauer (Ersatzinvestitionen)
- 2. Außerordentlicher (vorzeitiger) Ersatz des Assets zur Einhaltung h2soll(j) (Mehrinvestitionen)

Die jährlichen Gesamtinvestitionen, i.e. die Summe aus Ersatzinvestitionen und Mehrinvestitionen, darf einen bestimmten Wert nicht überschreiten.

Die Mehrkosten sind zu minimieren.

(1) Entscheidungsvariable

- $x_{i,j} \in \{0,1\}$ mit Asset i und $j \in \{Startjahr, ..., Zieljahr\}$
- $x_{i,j} = 1$ -> Asset i wird in Jahr j vorzeitig ausgetauscht

(2) Zielfunktion

- Minimiere Mehrinvestitionen (MI):
 - MI = $\sum_{j=Startjahr}^{Zieljahr} \sum_{h2i < h2soll_j} x_{i,j} \cdot I_i$

(3) Nebenbedingungen

- Nur ein vorzeitiger Assettausch pro Asset
 - $\sum_{j=Startjahr}^{Zieljahr} x_i \leq 1$
- Compliance
 - $h2_{i,j} \in \{0, ..., 100\}$ und $min(h2_{i,j}) \ge h2soll(j)$
- Jährlich zulässige Gesamtinvestitionen (GI)
 - $EI(j) + MI(j) < GI_{j,zul}$
- EI: Ersatzinvestition Jährlich

Start

- Durchlauf Zeitreihe nur Ersatzinvestitionen
 - Compliance-Nebenbedingung muss nicht erfüllt werden
 - $h2_{i,j} \in \{0, ..., 100\}$ und $min(h2_{i,j}) \ge h2soll(j)$
- Ausgehend davon Greedy
 - Alle Jahre, in denen die Gesamtinvestitionen noch nicht ausgeschöpft sind, auffüllen mit
 - Den als nächstes zu tauschenden Assets und
 - Dabei den jeweils größten Investitionsvolumina

Mutation

• Erforderliche Mehrinvestition je Asset in den Jahren früher tätigen, sofern zulässige Gesamtinvestitionen noch nicht erschöpft (Nachbarschaft?)

Tabelle 4.2: Zusammensetzung Mehrkosten zur Treibhausgasneutralität der Gasnetze und Gasspeicher

Außerordentliche Kosten der Wasserstoff-Einspeisung

Wasserstoffbedingte vorzeitige Anpassung Gasnetze und Gasspeicher sowie Wasserstoff-Einspeisung (CAPEX + OPEX)

+ Methanisierungskosten Netz

CAPEX und OPEX (fix, CO₂-Gestehung, Umwandlungsverluste) sowie EE-Methan-Einspeisung (CAPEX + OPEX)

Methanisierungskosten für den Betrieb von Poren-UGS
CAPEX und OPEX (fix, CO₂-Gestehung, Umwandlungsverluste)

Mehrkosten für die Treibhausgasneutralität der Gasnetze und Gasspeicher