Cryptographic Primitives used in PPBA

Andriy Oliynyk a.oliynyk@samsung.com

Samsung Research and Development Institute, Ukraine

Contents

- Mathematical Introduction
- 2 Cryptographic Introduction
- 3 Composable Inner-Product Encryption (CIPE)

Mathematical Introduction

Elliptic curves I

• Equation E of the curve:

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_p$, $4a^3 + 27b^2 \neq 0$.

• Points: all pairs $(\alpha, \beta) \in \mathbb{F}_p^2$ such that

$$\beta^2 = \alpha^3 + a\alpha + b,$$

together with zero point $\mathcal{O} = (0,0)$.

Notation:

$$E, E/\mathbb{F}_p, E(\mathbb{F}_p).$$

Elliptic curves II

For $\mathcal{P}, \mathcal{Q} \in E$ the addition rule is:

- $\mathcal{P} + \mathcal{O} = \mathcal{O} + \mathcal{P} = \mathcal{P}$;
- if $\mathcal{P} = (\alpha, \beta)$, $\mathcal{Q} = (\alpha, -\beta)$, then $\mathcal{P} + \mathcal{Q} = \mathcal{O}$;
- if $\mathcal{P} = (\alpha_1, \beta_1)$, $\mathcal{Q} = (\alpha_2, \beta_2)$, $\alpha_1 \neq \alpha_2$, then $\mathcal{P} + \mathcal{Q} = \mathcal{R} = (\alpha_3, \beta_3)$, where

$$\alpha_3 = \lambda^2 - \alpha_1 - \alpha_2, \quad \beta_3 = \lambda(\alpha_1 - \alpha_3) - \beta_1, \quad \lambda = \frac{\beta_2 - \beta_1}{\alpha_2 - \alpha_1};$$

• if $\mathcal{P}=\mathcal{Q}=(\alpha_1,\beta_1)$ i $\beta_1\neq 0$, then $\mathcal{P}+\mathcal{Q}=\mathcal{R}=(\alpha_3,\beta_3)$, where

$$\alpha_3 = \mu^2 - 2\alpha_1, \quad \beta_3 = \mu(\alpha_1 - \alpha_3) - \beta_1, \quad \mu = \frac{3\alpha_1^2 + a}{2\beta_1}.$$

Elliptic curves III

Group of points

The set E with respect to defined addition of points form an abelian group.

Notation:

$$g^n = \underbrace{g + \ldots + g}_{n \text{ times}}, g \in E, n \in \mathbb{Z}.$$

 E/\mathbb{F}_q always contains an element of prime order $\simeq q$.

Bilinear pairing

Let \mathbb{G}_1 , \mathbb{G}_2 and \mathbb{G}_3 be three cyclic groups of order q for some large prime q. A bilinear pairing is a map $B:\mathbb{G}_1\times\mathbb{G}_2\to\mathbb{G}_3$ satisfying the following properties.

- Bilinear $B(P^a, Q^b) = B(P, Q)^{ab}$ for all $P \in \mathbb{G}_1$, $Q \in \mathbb{G}_2$ and all $a, b \in \mathbb{Z}$.
- Non-degenerate The map does not send all pairs in $\mathbb{G}_1 \times \mathbb{G}_2$ to the identity in \mathbb{G}_3 .
- **Computable** There is an efficient algorithm to compute B(P,Q) for any $P \in \mathbb{G}_1$, $Q \in \mathbb{G}_2$.

Discrete logarithm

For a cyclic group

$$\mathbb{G} = \langle g \rangle$$

the discrete logarithm problem with respect to base g is

For a given $h \in \mathbb{G}$ find $a \in \mathbb{Z}$ such that

$$g^a = h$$
.

Notation: $a = DL_g(h)$.

Residues

Let q be a prime.

The set

$$\mathbb{Z}_q = \{0, 1, \dots, q-1\}$$

is called the set of residues modulo q.

- Addition and multiplication are well-defined on \mathbb{Z}_q (add or multiply as integers and take residues modulo q).
- \mathbb{Z}_q is a cyclic group with respect to addition.
- \mathbb{Z}_q is a field with respect to addition and multiplication.
- The set of vectors of length n over \mathbb{Z}_q is

$$\mathbb{Z}_q^n = \{(x_1,\ldots,x_n): x_1,\ldots,x_n \in \mathbb{Z}_n\}.$$

Notation:

$$\bar{x}=(x_1,\ldots,x_n).$$

Cryptographic Introduction

Syntax of Secret-key Cryptography

Space of keys K, space of plaintexts M, space of ciphertexts C. Three algorithms **Setup**, **Enc**, **Dec**.

- Initialization algorithm **Keygen** outputs public parameters and a secret key $sk \in \mathcal{K}$.
- Encryption algorithm **Enc** takes the key sk and a plaintext $m \in \mathcal{M}$ and outputs a ciphertext $c \in \mathcal{C}$.
- Decryption algorithm **Dec** takes the key sk and a ciphertext $c \in C$ and outputs a plaintext $m \in M$.

Correctness requirement

$$\mathsf{Dec}_{\mathsf{sk}}(\mathsf{Enc}_{\mathsf{sk}}(m)) = m.$$

Kerckhoffs' principle: all algorithms Keygen, Enc, Dec are public and the only secret is the key sk.

Syntax of Public-key Cryptography

Spaces of secret keys \mathcal{SK} and public keys \mathcal{PK} , space of plaintexts \mathcal{M} , space of ciphertexts \mathcal{C} .

Again three (probabilistic) algorithms Keygen, Enc, Dec.

- Initialization algorithm **Keygen** outputs public parameters and a secret key $sk \in \mathcal{SK}$ and a public key $pk \in \mathcal{PK}$.
- Encryption algorithm **Enc** takes the public key pk and a plaintext $m \in \mathcal{M}$ and outputs a ciphertext $c \in \mathcal{C}$.
- Decryption algorithm **Dec** takes the secret key sk and a ciphertext $c \in \mathcal{C}$ and outputs a plaintext $m \in \mathcal{M}$.

Correctness requirement

$$Pr[Dec_{sk}(Enc_{pk}(m)) = m] = 1.$$

• All algorithms Keygen, Enc, Dec and key pk are public and the only secret is the secret key sk.

Syntax of Inner-Product Cryptography

Spaces of master secret keys \mathcal{MSK} , decryption keys \mathcal{DK} and space of plaintexts \mathbb{Z}_q^n .

This time four (probabilistic) algorithms Setup, Keygen, Enc, Dec.

- Initialization algorithm Setup outputs public parameters and a master secret key msk.
- Key generation algorithm **Keygen** takes the master secret key msk and a vector $\bar{y} \in \mathbb{Z}_a^n$ and outputs a decryption key $dk \in \mathcal{DK}$.
- Encryption algorithm **Enc** takes the master secret key msk and a plaintext $\bar{x} \in \mathbb{Z}_a^n$ and outputs a ciphertext $c \in \mathcal{C}$.
- Decryption algorithm Dec takes a decryption key dk and a ciphertext $c \in \mathcal{C}$ and outputs a value $z \in \mathbb{Z}_q$.

Correctness requirement

$$Pr[Dec_{dk}(Enc_{msk}(\bar{x})) = \langle \bar{x}, \bar{y} \rangle] = 1,$$

where

$$\langle \bar{x}, \bar{y} \rangle = x_1 y_1 + \ldots + x_n y_n.$$

Composable Inner-Product Encryption (CIPE)

Composable Inner-Product Encryption (CIPE)

Public Parameters I

• p — prime number, the cardinality of the Galois field \mathbb{F}_p , in current implementation

$$p = 36u^4 + 36u^3 + 24u^2 + 6u + 1,$$

where

$$u = -(2^{62} + 2^{55} + 1),$$

in decimal expansion

p = 16798108731015832284940804142231733909889187121439069848933715426072753864723

Public Parameters II

 \bullet $\mathbb{F}_{p^{12}}$ — the Galois field, constructed as the following tower of extensions

$$\mathbb{F}_{p^2} = \mathbb{F}_p[x]/(x^2+1),$$

$$\mathbb{F}_{p^6} = \mathbb{F}_{p^2}[y]/(y^3-x-1),$$

$$\mathbb{F}_{p^{12}} = \mathbb{F}_{p^6}[z]/(z^2-y);$$

Public Parameters III

ullet CurveFp254BN2 — the elliptic curve over \mathbb{F}_p defined by the equation

$$y^2 = x^3 + 2$$

q — prime number, the order of the cyclic groups to be considered,

$$q = 36u^4 + 36u^3 + 18u^2 + 6u + 1$$
;

ullet \mathbb{G}_1 — the cyclic group of order q of points of the elliptic curve CurveFp254BN2

Public Parameters IV

- g, h generating elements of \mathbb{G}_1 ;
- \mathbb{G}_2 the cyclic group isomorphic to \mathbb{G}_1 via the Frobenius authomorphism;
- \bar{g}, \bar{h} generating elements of \mathbb{G}_2 ;
- ullet $e:\mathbb{G}_1 imes\mathbb{G}_2 o\mathbb{F}_{p^{12}}^*$ the Optimal Ate pairing;
- \mathbb{G}_T the cyclic group isomorphic to \mathbb{G}_1 via Optimal Ate bilinear pairing;
- g_T a generating element of \mathbb{G}_T ;
- \bullet n dimension of a biometric template.

ElGamal Secret-Key Encryption I

- Space of keys: \mathbb{Z}_a
- Space of plaintexts: \mathbb{Z}_q^n
- Spaces of ciphertexts: \mathbb{G}_1^{2n} , \mathbb{G}_2^{2n}
- Key generation (run on Device)

EIG.Keygen

 $\mathsf{sk} \leftarrow \mathbb{Z}_q$

return sk

ElGamal Secret-Key Encryption II

Encryption (run on Scanner during registration)

EIG.Enc(sk,
$$\bar{y} = (y_1, \dots, y_n)$$
)
$$\bar{r} = (r_1, \dots, r_n) \leftarrow \mathbb{Z}_q^n$$

$$h = g^{\text{sk}}$$
For $i = 1$ to n do
$$c_i = g^{y_i} \cdot h^{r_i}, c_{n+i} = g^{r_i}$$

$$\bar{c} = (c_1, \dots, c_{2n})$$
return \bar{c}

ElGamal Secret-Key Encryption III

Encryption (run on Scanner during authentication)

ElGamal Secret-Key Encryption IV

• Decryption (not used):

$$\frac{\mathsf{EIG.Dec}(\mathsf{sk}, \bar{c} = (c_1, \dots, c_{2n}))}{\mathsf{For} \ i = 1 \ \mathsf{to} \ n \ \mathsf{do}}$$

$$x_i = DL_g(c_i \cdot c_{n+i}^{-\mathsf{sk}})$$

$$\bar{x} = (x_1, \dots, x_n)$$

$$\mathsf{return} \ \bar{x}$$

Composable Inner-Product Encryption I

Space of master keys:

$$\mathbb{G}_1^n \times \mathbb{Z}_q^n \times \mathbb{Z}_q^n \times \mathbb{G}_2^{n+2} \times \mathbb{Z}_q^{n+2} \times \mathbb{Z}_q^{n+2};$$

- Spaces of messages: \mathbb{G}_1^{2n} , \mathbb{G}_2^{2n} ;
- Space of decryption keys: $\mathbb{G}_1^{2(n+4)}$;
- Space of ciphertexts $\mathbb{G}_2^{2(n+4)}$.

Composable Inner-Product Encryption II

Master key generation (run on Device)

CIPE.Setup

$$\begin{split} \overline{s} &= (s_1, \dots, s_n) \leftarrow \mathbb{S} \, \mathbb{Z}_q^n \\ \overline{s} &= (t_1, \dots, t_n) \leftarrow \mathbb{S} \, \mathbb{Z}_q^n \\ \overline{u} &= (u_1, \dots, u_{n+2}) \leftarrow \mathbb{S} \, \mathbb{Z}_q^{n+2} \\ \overline{v} &= (v_1, \dots, v_{n+2}) \leftarrow \mathbb{S} \, \mathbb{Z}_q^{n+2} \\ \text{For } i &= 1 \text{ to } n \text{ do} \\ h_i &= g^{s_i} h^{t_i} \\ \text{For } i &= 1 \text{ to } n+2 \text{ do} \\ \overline{h}_i &= \overline{g}^{u_i} \overline{h}^{v_i} \\ \text{msk} &= (\{h_i, s_i, t_i\}_{i=1}^n, \{\overline{h}_i, u_i, v_i\}_{i=1}^{n+2}) \\ \textbf{return msk} \end{split}$$

Composable Inner-Product Encryption III

Decryption key generation (run on Device during registration)

CIPE.Conv.DK(msk,
$$\bar{c} = (c_1, \dots, c_{2n})$$
)
$$(r_0, r_1) \leftarrow_{\$} \mathbb{Z}_q^2$$

$$d_{0,1} = g^{r_0}, d_{0,2} = h^{r_0}$$

$$d_{1,1} = g^{r_1}, d_{1,2} = h^{r_1}$$

$$d_{0,3} = \left(\prod_{j=1}^n c_j^{-s_j}\right) \cdot h_1^{r_0}, d_{0,4} = \left(\prod_{j=1}^n c_j^{-t_j}\right) \cdot h_2^{r_0}$$

$$d_{1,3} = \left(\prod_{j=1}^n c_{n+j}^{-s_j}\right) \cdot h_1^{r_1}, d_{1,4} = \left(\prod_{j=1}^n c_{n+j}^{-t_j}\right) \cdot h_2^{r_1}$$
For $i = 1$ to n do
$$d_{0,i+4} = c_i \cdot h_{i+2}^{r_0}, d_{1,i+4} = c_{n+i} \cdot h_{i+2}^{r_0}$$

$$DK_0 = (d_{0,1}, \dots d_{0,n+4}), DK_1 = (d_{1,1}, \dots d_{1,n+4})$$
return (DK_0, DK_1)

Composable Inner-Product Encryption IV

• Encryption (run on Device during authentication)

CIPE.Conv.Enc(msk,
$$\bar{c} = (c_1, \dots, c_{2n})$$
)
$$(r_0, r_1) \leftarrow_{\mathbb{S}} \mathbb{Z}_q^2$$

$$c_{0,3} = \bar{g}^{r_0}, c_{0,4} = \bar{h}^{r_0}$$

$$c_{1,3} = \bar{g}^{r_1}, c_{1,4} = \bar{h}^{r_1}$$
For $i = 1$ to n do
$$c_{0,i+4} = c_i \cdot \bar{h}_i^{r_0}, c_{1,i+4} = c_{n+i} \cdot \bar{h}_i^{r_1}$$

$$c_{0,1} = \left(\prod_{j=3}^{n+4} c_{0,j}^{-u_j}\right), c_{0,2} = \left(\prod_{j=3}^{n+4} c_{0,j}^{-v_j}\right)$$

$$c_{1,1} = \left(\prod_{j=3}^{n+4} c_{1,j}^{-u_j}\right), c_{1,2} = \left(\prod_{j=3}^{n+4} c_{1,j}^{-v_j}\right)$$

$$CT_0 = (c_{0,1}, \dots c_{0,n+4}), CT_1 = (c_{1,1}, \dots c_{1,n+4})$$
return (CT_0, CT_1)

Composable Inner-Product Encryption V

Decryption (run on Server during authentication*)

CIPE.Dec(sk,
$$(DK_0, DK_1)$$
, (CT_0, CT_1))

For $i = 1$ to $n + 4$ do

 $dk_i = d_{0,i} \cdot d_{1,i}^{-sk}(*run during registration)$
 $ct_i = c_{0,i} \cdot c_{1,i}^{-sk}$
 $d = \left(\prod_{i=1}^{n+2} e(dk_i, ct_i)\right)$
 $g_T = e(g, \bar{g})$
 $a = DL_{g_T}(d)$

return a

Thank you!