2017-2018 学年第一学期《数值计算方法》期末试卷 (A)

(考试对象: 计算机科学与技术专业 2016 级)

班	级	_姓名	学号	成绩_				
1. 填空	空(每空2分	,共 30 分)						
(1) 已	知真值 $x^* = 0$.	42545…,则近1	以值 $x = 0.42$ 有		字。			
(2) 方	程 $e^x - 2 = 0$ 相	灵的隔离区间为_	(间长度不超过 2);	若用二分			
法求方	程的根,则第	第一次二分后根)	所在区间为	,且二分	次后			
能使根	的误差不超过	$ \stackrel{t}{\cancel{2}} \times 10^{-4} $ o						
(3)	知 $f(x) =$	$6x^4 + 2x^2 + 4,$	则 差 商 f [2	$[2^0,2^1] =$,			
$f[2^0,2]$	¹ ,···,2 ⁴]=	, f[2 ⁰ ,2 ¹	$, \dots, 2^5] = $	o				
(4) 插	值型求积公式	是重要的求积分	分近似值的方法	云, 其中梯形公式和	1辛卜生公			
式分别	具有次	和次代数	精度。					
(5) 在	Matlab 中输)	: >>syms x						
		$Y=x^3+\sin(x)$	<u>(</u> ;					
		Dy=	o					
(6) MATLAB 中可以进行三次样条插值的函数 (写一个):。								
(7) 在	Matlab 中输)	V: U = [1,2,3;4,	5,6;7,8,9]					
		Ans = U(2,:)*3					
分析上	述代码, Ans	的值为	o					
(8) 在	Matlab 循环纠	吉构中跳出当前。	循环,继续下一	次循环的命令为_	o			
(9) 在	Matlab 中输)	\ x=1:-3:-12,则 x	x(5)是	o				
(10)若,	用三次牛顿插	f值多项式 $L_3(x)$	求函数 $f(x) =$	$x^3 + 2x^2 + 1$ 的 函 数	值 f(8.3),			
则误差	$L_3(8.3) - f(8$.3)= 。	1					

2. (8分)用牛顿迭代法求√15的近似值(结果精确到小数点后四位有效数字)。

3. (8分)给定数据表:

<i>x</i>	-3	-1	1	2
f(x)	1	1.5	2	2

- (1) 给出 f(x) 的三次插值多项式;
- (2) 计算f(-2)的近似值,并给出其误差表达式。

4. (10 分)对于方程组 $\begin{cases} 4x_1+2x_2+10x_3=12\\ 10x_1-4x_2-x_3=5 \end{cases}$,通过调整参数,建立收敛的雅克 $2x_1+10x_2-4x_3=8$

比迭代法和高斯—赛德尔迭代法,并解释为什么。

5. $(10 \, \text{分})$ 给定数据 $\frac{x-2-1}{y-0} = \frac{0}{1} = \frac{1}{2} = \frac{0}{1} = \frac{0}{0}$,求一代数多项式曲线,使其最好地拟合这组给定数据。

6. (8分) 已知 $\int_{-2h}^{2h} f(x)dx \approx A_{-1}f(-h) + A_0f(0) + A_1f(h)$, 其中 - h,0,h 为已知节点,试确定求积系数,使其具有尽可能高的代数精度,并给出所求公式的代数精度。

7. (10 分) 用龙贝格算法 R_1 计算积分 $I = \int_0^1 \frac{1}{x+2} dx$ 。

- 8. (8分)设f(x)在[-1,1]上具有二阶连续导数.
 - (1) 写出以 $x_0 = -1, x_1 = 0, x_2 = 1$ 为插值节点 f(x) 的二次插值多项式 $L_2(x)$;
 - (2) 设想要计算积分 $\int_{-1}^{1} f(x)dx$,现以 $L_2(x)$ 代替 f(x) 导出求积公式。

9. (8 分)用改进欧拉公式法解初值问题 $\begin{cases} y'=x^2+y^2 \\ y|_{x=0}=0 \end{cases}$, $(0 \le x \le 0.4)$, 取步长 h=0.2。