Math 22 Workshop III 27 April 2006

- 1. Suppose that V and W are vector spaces and that $T: V \to W$ is a linear transformation. If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ are vectors in V and if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)\}$ is linearly independent, then show that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is linearly independent.
- 2. Suppose that V and W are vector spaces and that $T: V \to W$ is a linear transformation. Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a linearly independent set of vectors in V. Must it be the case that $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)\}$ is linearly independent?
- 3. Suppose that V and W are vector spaces and that $T: V \to W$ is a *one-to-one* linear transformation. Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a linearly independent set of vectors in V. Must it be the case that $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)\}$ is linearly independent?

Let V and W be vector spaces. A linear transformation $T:V\to W$ which is both one-to-one and onto is called an *isomorphism of* V *onto* W. An isomorphism T is invertible, and we proved its inverse, $T^{-1}:W\to V$, is also a linear map. Note that T^{-1} is also one-to-one and onto.

- 4. Suppose that $T: V \to W$ is an isomorphism of V onto W.
 - (a) Show that H is a subspace of V if and only if $T(H) := \{ T(\mathbf{v}) \in W : \mathbf{v} \in H \}$ is a subspace of W.
 - (b) Let H be a subspace of V. Show that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is a basis for H if and only if $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)\}$ is a basis for T(H).