Data Structure and Algorithm Analysis(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Work Sheet 12

Mengxuan Wu

Question 12.1

1.

No.

Consider $a_1 = [0,3)$, $a_2 = [2,4)$, $a_3 = [3,6)$. To choose the activity of the least duration, we should choose a_2 and stop. But the optimal solution is to choose a_1 and a_3 .

2.

No.

Consider $a_1 = [0, 2)$, $a_2 = [2, 4)$, $a_3 = [4, 6)$, $a_4 = [6, 8)$ (first 4 are optimal solution), $a_5 = [3, 5)$, $a_6 = a_7 = [1, 3)$, $a_8 = a_9 = [5, 7)$. Then a_5 is the greedy choice because it only overlaps twice, but choosing a_5 will lead to a solution of 3 activities, while the optimal solution is 4 activities.

3.

Yes.

Proof.

Let set S_k be the set of activities that finish before a_k starts, and A_k be the optimal solution of S_k . If a_m is the last-to-start activity in A_k , and a_n is the last-to-start activity in A_{k+1} , then if $a_m \neq a_n$, we can replace a_m with a_n and still get a compatible solution with same number of activities. Hence, a_n is in one of maximum-size subset of mutually compatible activities.

4.

No.

Consider $a_1 = [0, 8)$, $a_2 = [1, 2)$, $a_3 = [2, 3)$. Then a_1 is the greedy choice, but the optimal solution is to choose a_2 and a_3 .

Question 12.2

Without loss of generality, we assume that the items in knapsack are sorted by their value per unit weight in decreasing order. Then we can proof that in a fractional knapsack problem, the greedy choice is to choose the item with the largest value per unit weight.

Proof.

Let K_i be the knapsack after the *i*th item is added, and A_i be the optimal solution of K_i . Then if the i+2th item is added to K_i before all fraction of the i+1th item is added, then we can replace the i+2th item with the i+1th item and get a better solution. Hence, the greedy choice is to choose the item with the largest value per unit weight. \square

Question 12.3

(a)

The greedy solution is to find the farthest point that Eddy can reach, and stop for supply there.

(b)

Proof.

Let S_k be the set of supply points that Eddy can reach after station k, and A_k be the optimal solution of starting from station k. If s_m is the farthest supply point Eddy can reach in he starts from station k, then if the first stop in A_k is not s_m , the subproblem (distances after the first stop) will be longer than the subproblem that chooses s_m , and will produce a worse or equal solution. Hence, s_m is in one of A_k .