Fabio de Oliveira Lima

UM MODELO EFICIENTE PARA O PROJETO COMPLETO DE REDES ÓPTICAS

Vitória – ES

12 de março de 2010

Copyright 2009 Fabio de Oliveira Lima.

Este documento é distribuído nos termos da licença **GNU** General Public License v2.

Fabio de Oliveira Lima

UM MODELO EFICIENTE PARA O PROJETO COMPLETO DE REDES ÓPTICAS

Dissertação a ser apresentada à Coordenação do Mestrado em Engenharia Elétrica da Universidade Federal do Espírito Santo para a obtenção do título de Mestre em Engenharia Elétrica.

5	Orientador: Prof. Dr. Elias Silva de Oliveira
7	Co-orientador: Prof. Dr. Renato Tannure Rotta Almeida

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
CENTRO DE TECNOLOGIA
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

12 Vitória – ES

Dissertação de Mestrado sob o título "UM MODELO EFICIENTE PARA O PROJETO

² COMPLETO DE REDES ÓPTICAS", a ser defendida por Fabio de Oliveira Lima e aprovada em

março de 2010, em Vitória, Espírito Santo, pela banca examinadora constituída pelos doutores:

1

Prof. Dr. Elias Silva de Oliveira Departamento de Sistemas de Informação - UFES Orientador

5

Prof. Dr. Renato Tannure Rotta Almeida Instituto Federal de Educação C&T do Espírito Santo - Ifes Coorientador

6

Prof. Dr. Marcelo Eduardo Vieira Segatto Departamento de Engenharia Elétrica - UFES Examinador Interno

7

Prof. Dr. Nome Sobrenome Departamento de - UF Examinador Externo 1

Agradecimentos

Primeiramente gostaria de agradecer a ...

3

1 "Texto."

2 Autor

Resumo

Este trabalho apresenta um novo modelo de programação linear inteira-mista para o projeto 2 de redes ópticas de comunicação. Trata-se de uma modelagem ampla, que engloba o projeto da 3 topologia lógica da rede, o roteamento das demandas de tráfego, além do roteamento e alocação de comprimento de onda aos caminhos ópticos. A formulação suporta múltiplas ligações entre cada par de nós da rede, seja na topologia física ou virtual. Em sua versão básica, o modelo minimiza os custos de instalação da rede física e o custo de operação da rede projetada. No entanto, sua formulação permite que sejam exploradas diversas métricas, como o congestiona-8 mento da rede, que foi utilizado para comparação com resultados da literatura. Neste trabalho 9 são apresentados resultados de experimentos com o objetivo de validar a eficiência desta formu-10 lação com relação à qualidade das soluções e desempenho computacional de trabalhos anterio-11 res sobre o mesmo assunto. Também é apresentada uma nova forma de se obter lower bounds para o congestionamento, com custo computacional desprezível, cuja eficiência contrasta com as opções encontradas na literatura.

Abstract

This dissertation describes ...

1

Sumário

2	Pu	ublicações			1
3	Lis	ista de Figuras			3
4	Lista de Tabelas			4	
5	1	Intr	odução		5
6		1.1	Rotean	mento de Tráfego por Comprimentos de Onda	6
7			1.1.1	Equipamentos Ópticos	7
8			1.1.2	Redes Ópticas Semitransparentes	9
9		1.2	Etapas	do projeto de uma WRON	12
0			1.2.1	Projeto da Topologia Lógica	12
1			1.2.2	Roteamento e Alocação de Comprimentos de Onda	15
2		1.3	Trabalhos Anteriores		
3		1.4	Projeto Completo de uma WRON Semitransparente		
4			1.4.1	Nova Modelagem para Projeto Completo de uma WRON	20
5			1.4.2	Novo Limite Inferior para o Congestionamento	22
6	2	Traf	fic over	Wavelength Assignment	23
7		2.1	Notação e Dados de Entrada		23
8		2.2	Componentes Topológicos		24
9		2.3	O Mod	delo TWA	26
20	3	Ada	ptações	do Modelo Básico	29

	Sum	ário		viii
1	<u> </u>	3.1	Grau Lógico e Multiplicidade de Ligações Lógicas	29
2	3	3.2	Congestionamento	30
3	3	3.3	Ligações Lógicas em cada Fibra	32
4	(3.4	Número de Saltos Físicos	32
5	(3.5	Comprimentos de Onda	33
6	í	3.6	Conversão de Comprimentos de Onda	34
7	4]	Low	ver Bounds	37
8	4	4.1	MTB - Minimum Traffic Bound	38
9	5]	Ехр	erimentos Computacionais com o TWA	40
0		5.1	O Modelo VTD-RWA	41
1		5.2	Comparação com o modelo VTD-RWA	43
2		5.3	O Modelo KS	48
13	:	5.4	Comparação com o modelo KS	49
4	Con	clus	sões	54
15	Ref	erên	icias Bibliográficas	57
16				59

Publicações

Relação da produção científica do autor desta dissertação.

Artigos completos publicados em periódicos

8

9

10

11

12

13

14

15

16

17

19

20

21

1. LIMA, M. de O.; LIMA, F. de O.; OLIVEIRA, E. S.; SEGATTO, M. E. V. Um Algoritmo Híbrido para o Planejamento de Redes Ópticas. *REIC: Revista Eletrônica de Iniciação Científica*, v. 4, p. 4, 2006.

Trabalhos completos publicados em anais de congressos

- LIMA, F. de O.; LIMA, M. de O.; SEGATTO, M. E. V.; ALMEIDA, R. T. R.;
 OLIVEIRA, E. S.. Um modelo eficiente para o projeto completo de redes ópticas.
 In: Anais do XLI SBPO Simpósio Brasileiro de Pesquisa Operacional, 2009.
 - LIMA, F. de O.; LIMA, M. de O.; OLIVEIRA, E. S.; SEGATTO, M. E. V. Reformulando o Problema de Projeto de Anéis em Redes Ópticas. *In: Proceedings of 4th ITS, International Information and Telecommunication Technologies Symposium*, 2005.
 - 3. SEGATTO, M. E. V.; OLIVEIRA, E. S.; LIMA, M. de O.; LIMA, F. de O.; AL-MEIDA, R. T. R. Hybrid approaches for the design of mesh and hierarchical ring optical networks. *In: Proceedings of SPIE06 Photonics Europe, v. 1.*, 2006.
- 4. CIARELLI, P. M.; LIMA, F. de O.; OLIVEIRA, E. S. The Automation of the Classification of Economic Activities from Free Text Descriptions using an Array Architecture of Probabilistic Neural Network. *In: Anais do VIII SBAI Simpósio Brasileiro de Automação Inteligente*, 2007.
- 5. LUCHI, D.; ALMEIDA, R. T. R.; ROSA, G. G.; SIMOES, S. N.; LIMA, F. de
 O. Projetos de topologias lógicas e roteamento de tráfego em redes ópticas. *In:*Anais da II Jornada de Produção Científica em Educação Profissional e Tecnológica, 2007, São Luís.

Publicações 2

6. FERNANDES, G. C.; ALMEIDA, R. T. R.; ROSA, G. G.; LIMA, F. de O. Análise de Aplicabilidade de uma Formulação de Programação Linear Mista para Otimização da Transparência de Redes Ópticas. *In: Anais da II Jornada de Produção Científica em Educação Profissional e Tecnológica*, 2007, São Luís.

• Resumos publicados em anais de congressos

2

5

10

11

12

13

- 1. LIMA, F. de O.; OLIVEIRA, E. S.; SEGATTO, M. E. V.; ALMEIDA, R. T. R. Um Estudo Empírico da Eficiência de Heurísticas na Otimização do Congestionamento em Redes Ópticas. *In: Anais do XXXIX SBPO Simpósio Brasileiro de Pesquisa Operacional*, 2007.
- 2. CIARELLI, P. M.; LIMA, F. de O.; OLIVEIRA, E. S. Using a Genetic Algorithm for Configuring a Set of Probabilistic Neural NetworksH. *In: Anais do XXXIX SBPO Simpósio Brasileiro de Pesquisa Operacional*, 2007.
- 3. LIMA, F. de O.; LIMA, M. de O.; OLIVEIRA, E. S.; SEGATTO, M. E. V. O Problema de Projeto de Anéis em Redes Ópticas via Algoritmos para TSP. *In: Anais do XXXVIII SBPO Simpósio Brasileiro de Pesquisa Operacional*, 2006.

Lista de Figuras

2	1.1	Exemplo de uma topologia física para uma rede de 6 nos	6
3	1.2	Exemplo de uma toplogia lógica para uma rede de 6 nos	7
4	1.3	Modelo da arquitetura de um OADM	8
5	1.4	Modelo da arquitetura de um OXC	9
6	1.5	Rotas físicas e alocação de comprimentos de onda para as ligações lógicas	11
7	1.6	Demanda de Tráfego d_{16} distribuída na Topologia Lógica	12
8	1.7	Quatro sub-problemas se fundem em VTD e RWA	13
9	1.8	Dois sub-problemas se fundem no TWA	21
10	2.1	Representação gráfica da notação associada aos nós da rede	24
11	2.2	Representação gráfica de um componente topológico	25
12	2.3	Exemplo da interpretação dos componentes topológicos	26
13	3.1	$\operatorname{Em} b)$ vemos duas possíveis de interpretações dos componentes topológicos em	
14		a)	33
15	5.1	Rede de 6 nós (ASSIS; WALDMAN, 2004)	45
16	5.2	Matriz de demandas para a rede de 6 nós	45
17	5.3	Rede de 12 nós (ASSIS; WALDMAN, 2004)	47
18	5.4	Matriz de demandas para a rede de 12 nós	47
19	5.5	Rede de 14 nós NSFNET (KRISHNASWAMY: SIVARAJAN, 2001).	50

Lista de Tabelas

2	5.1	Legendas para as Tabelas 5.2 e 5.3	45
3	5.2	Resultados para a rede de 6 nós. *: Solução Ótima	46
4	5.3	Resultados para a rede de 12 nós. *: Solução Ótima	46
5	5.4	Matriz de demandas <i>P</i> 1 (RAMASWAMI; SIVARAJAN, 1996)	50
6	5.5	Matriz de demandas <i>P</i> 2 (RAMASWAMI; SIVARAJAN, 1996)	51
7	5.6	Matriz de distâncias para a NSFNET, em centenas de milhas	51
8	5.7	Legendas para as Tabelas 5.8 e 5.9	51
9	5.8	Resultados para a matriz <i>P</i> 1. *: Ótimo alcançado	52
10	5.9	Resultados para a matriz P2. *: Ótimo alcancado	52

1 Introdução

10

12

21

22

23

A expansão do uso de redes de fibras ópticas, devido à sua extrema eficiência no transporte de dados em altas taxas de transmissão, motiva o estudo de projetos de operação das mesmas.

Uma rede de comunicação é dita óptica quando o meio físico, usado para a transmissão das informações entre os nós da rede, é composto por cabos de fibra óptica.

Cada par de nós pode ser interconectado por mais de um cabo, possivelmente em trajetos 7 distintos. E cada cabo pode conter várias fibras ópticas, tipicamente em pares. Cada fibra pode ser utilizada em ambas as direções, mas normalmente os equipamentos empregados na implementação das redes suportam tráfego em um sentido apenas (MUKHERJEE, 1997). Deste modo, a unidade elementar da estrutura física é modelada como uma uma fibra óptica orientada em um determinado sentido, denominada de ligação física. O conjunto das ligações físicas da rede é chamado de topologia física. 13

O projeto e planejamento de redes é realizado através de métodos distintos de acordo com o 14 tipo de tráfego considerado, especificamente com relação à natureza; se é estática ou dinâmica. 15 No caso de tráfego estático, nosso foco de estudo, é assumido a priori uma determinada matriz 16 de demanda de tráfego, representando a quantidade média de tráfego que deve ser transferido 17 entre os pares de nós da rede. Considera-se essas demandas como sendo fixas para fins de 18 planejamento, podendo basear-se em levantamentos históricos ou mesmo estudos estimativos 19 (MUKHERJEE et al., 1996). 20

A Figura 1.1 apresenta um exemplo para uma topologia física, onde os nós da rede estão conectados por pares de ligações físicas em sentidos contrários. Todavia, dependendo da matriz de demandas, nem todas as ligações físicas disponíveis precisarão ser usadas.

Neste contexto, o desenvolvimento da tecnologia WDM (Wavelength Division Multiple-24 xing), permitiu que vários canais independentes compartilhem a mesma fibra óptica, proporcio-25 nando um melhor aproveitamento da banda de transmissão disponível nas fibras. Multiplicando 26 a capacidade das ligações físicas das redes, esses canais são transmitidos em diferentes comprimentos de onda (MUKHERJEE, 1997). A quantidade de comprimentos de onda que podem ser 28

Figura 1.1: Exemplo de uma topologia física para uma rede de 6 nós

- multiplexados em uma ligação física depende do tipo de cabo de fibra óptica empregado (XIN;
- 2 ROUSKAS; PERROS, 2003).

1.1 Roteamento de Tráfego por Comprimentos de Onda

- A tecnologia de multiplexação por comprimento de onda, além de possibilitar a transmis-5 são de vários sinais pelo mesmo meio, permite a implementação de redes com roteamento de 6 tráfego por comprimentos de onda (WRON - *Wavelength Routed Optical Networks*) (BANER-7 JEE; MUKHERJEE, 1997). As vantagens desse tipo de rede decorrem de sua infra-estrutura 8 flexível, com elevada capacidade e confiabilidade na transmissão de dados.
- Esta arquitetura se utiliza de dispositivos ópticos que permitem o roteamento transparente 9 de tráfego, onde a informação pode ser roteada pelo meio óptico, sem passar para o domínio 10 eletrônico, nos pontos intermediários entre a origem e o destino de uma demanda de tráfego. Temos assim uma camada acima da configuração física da rede, pois um caminho óptico transparente pode ser definido de várias formas sobre a rede. Esta é uma camada servidora, que 13 proverá acesso à rede às camadas clientes que, por sua vez, enxergarão apenas essas ligações 14 transparentes. Portanto há duas camadas: uma eletrônica, formada por roteadores eletrônicos de 15 pacotes de dados interconectados por canais ópticos transparentes, e uma camada óptica, onde o 16 roteamento do tráfego pela rede física é realizado por dispositivos ópticos WDM (BANERJEE; 17 MUKHERJEE, 1997). 18
- Os canais ópticos transparentes, por onde trafegam as demandas de tráfego, são chamados de ligações lógicas. A topologia lógica da rede é assim formada pelo conjunto das ligações lógicas que, bem como a topologia física, é um grafo direcionado (CORMEN, 2002). Ela abstrai a estrutura física da rede, pois pode ter uma estrutura totalmente diferente, e faz a ligação entre a camada eletrônica e a óptica. Na Figura 1.2 temos o exemplo de uma topologia lógica

- para a rede óptica de 6 nós, ilustrada na Figura 1.1. As ligações lógicas definidas devem ser
- 2 configuradas nos dispositivos ópticos WDM, criando os canais ópticos transparentes.

Figura 1.2: Exemplo de uma toplogia lógica para uma rede de 6 nos.

- O que caracterizou as WRON como uma nova geração de redes ópticas foi a possibilidade de se implementar uma topologia lógica totalmente reconfigurável sobre a estrutura física da
- 5 rede. A topologia lógica é configurada nos dispositivos ópticos de comutação de comprimentos
- 6 de onda, e pode ser modificada em função da sazonalidade das demandas de tráfego, bem como
- 7 da necessidade de restauração em caso de falhas.

1.1.1 Equipamentos Ópticos

O roteamento de tráfego em uma WRON é realizado de duas formas: na camada óptica da rede, que se denomina roteamento transparente, e na camada eletrônica, após sua conversão de sinal óptico para elétrico para processamento em roteadores de pacotes de dados. No roteamento transparente, os comprimentos de onda podem ser redirecionados nos dispositivos de comutação óptica, com a vantagem da ausência do atraso em filas originado pelo congestionamento em roteadores eletrônicos. Este congestionamento está diretamente associado à limitações na qualidade de serviço em redes de comunicações, pois origina atraso e eventuais descartes de pacotes que, sobretudo para as emergentes aplicações em tempo real, devem ser minimizados (BANERJEE; MUKHERJEE, 2000).

Em uma WRON, para permitir conexões transparentes, os nós da rede precisarão ser equipados com dispositivos ópticos WDM capazes de realizar roteamento de tráfego por comprimentos de onda. Dois tipos mais comuns de equipamentos utilizados são o OADM (*Optical*Add-Drop Multiplexer) e o OXC (*Optical Cross-Connect*). O OADM é um equipamento mais
simples e de menor custo em comparação com o OXC (XIN; ROUSKAS; PERROS, 2003). Os
múltiplos comprimentos de onda são combinados em um único sinal óptico por um multiplexador WDM (*Mux*) na saída dos dispositivos ópticos WDM, e da mesma forma são separados na

entrada por um demultiplexador WDM (*Demux*).

Na Figura 1.3 temos um modelo para a arquitetura de um OADM. Nele, uma ligação física de entrada é direcionada à uma ligação física de saída, sem conversão eletrônica, podendo ter um ou mais comprimentos de onda desviados para o roteador eletrônico (*Drop*). Neste ponto há conversão eletrônica. O tráfego que não se destina ao nó atual, mais o tráfego que nele se origina, são convertidos para o meio óptico e reencaminhados para uma ligação física de saída (*Add*) em um dos comprimentos de onda que foram desviados (XIN; ROUSKAS; PERROS, 2003).

Figura 1.3: Modelo da arquitetura de um OADM.

A limitação deste equipamento é que todos os comprimentos de onda, em uma ligação física de entrada que são destinados transparentemente, são direcionados a uma mesmo ligação física de saída. Essa limitação é superada com um OXC, capaz de rotear os comprimentos de onda livremente. Na Figura 1.4 temos um modelo para a arquitetura de um OXC. Neste, para cada comprimento de onda, temos uma matriz de comutação de óptica que recebe determinado comprimento de onda de todas as ligações físicas de entrada. Que por sua vez, podem ser encaminhados para qualquer uma das ligações físicas de saída. Em um OXC as operações de desvio de tráfego para o reteador eletrônico, ou o caminho inverso, (*Drop/Add*) são feitas diretamente nas matrizes de comutação óptica (PALMIERI, 2008).

O dimensionamento dos equipamentos dos nós depende do número de ligações lógicas entrando e saindo, do número de rotas transparentes passando pelo nó, do número de ligações físicas de entrada e saída e do número de comprimentos de onda que podem ser multiplexados em cada ligação física. Cada equipamento é capaz de suportar uma certa quantidade desses recursos, e essa capacidade não aumenta de forma linear. Dobrar a capacidade de um nó para certo recurso pode demandar um investimento várias vezes maior (XIN; ROUSKAS; PERROS, 2003).

Figura 1.4: Modelo da arquitetura de um OXC.

1.1.2 Redes Ópticas Semitransparentes

19

Uma rede que possui rotas transparentes apenas entre nós diretamente conectados por enlaces de fibra óptica, é chamada de rede opaca, onde as ligações lógicas coincidem com as
ligações físicas da rede (MUKHERJEE, 1997). Deste modo, dispositivos ópticos WRON para
roteamento de comprimentos de onda não são utilizados. Todavia, esta configuração pode não
ser a ideal para todos os perfis de demanda de tráfego da rede, pois uma demanda pode ter que
percorrer várias ligações lógicas até seu destino, sofrendo conversão eletrônica em cada uma.
A menos que todos os nós da rede estejam conectados diretamente entre si por ligações físicas
em ambos os sentidos.

Se existe uma ligação transparente entre cada par de nós da rede, a rede é dita transparente.

Neste caso, qualquer demanda de tráfego poderia ser transportada em um único salto pela topologia lógica, sendo processada eletronicamente somente no nó destino (RAMASWAMI; SIVA-RAJAN, 2002). Mas, para configurar uma topologia de rede totalmente transparente, um grande investimento em equipamentos ópticos WDM se faz necessário. Além disso, há restrições severas relacionadas com degradações acumuladas e continuidade de comprimento de onda, entre outras (BALA, 2000). Já é praticamente um consenso que uma rede totalmente transparente de longa distância não seria factível atualmente devido a uma série de dificuldades em compensar degradações na transmissão (RAMAMURTHY; FENG; DATTA, 1999) (MAHER, 2001).

Atualmente, é amplamente aceito que uma rede óptica mais eficiente é uma combinação entre a rede opaca e a transparente. Este modelo de rede híbrida é comumente chamada de rede semitransparente (RAMASWAMI; SIVARAJAN, 2002). Algumas estratégias para o projeto de

24

25

redes semitransparentes de longa distância foram propostas em artigos e livros como (MAHER, 2001) e (RAMASWAMI; SIVARAJAN, 2002). Esta é uma solução intermediária que define ligações lógicas apenas entre pares de nós convenientes, resultando em uma topologia lógica parcialmente transparente. Usando redes ópticas semitransparentes, é possível alcançar uma performance muito próxima aos das redes opacas em termos de bloqueio de novas requisições, porém com grande economia nos custos, e menos complexidade do que uma rede completamente óptica. Em suma, redes semitransparentes oferecem o melhor dos domínios ópticos e eletrônicos sem comprometer as principais características de cada uma dessas tecnologias (BALA, 2000).

A cada ligação lógica deverá ser atribuído um caminho na topologia física; seu o canal 10 óptico transparente, comumente chamado de rota física (ZANG; JUE; MUKHERJEE, 2000). Por sua vez, em cada ligação física deste caminho deverá ser alocado um comprimento de onda para esta ligação lógica. Se os nós da rede possuírem capacidade de conversão entre comprimentos onda, às ligações físicas ao longo da rota física poderão ser atribuídos comprimentos de onde distintos (RAMASWAMI; SASAKI, 1998). Se esta hipótese não é considerada, todas 15 as ligações físicas deverão utilizar o mesmo comprimento de onda ao longo da rota física. Esta limitação é conhecida como restrição de continuidade de comprimento de onda (ZANG; JUE; 17 MUKHERJEE, 2000), e será a hipótese considerada neste trabalho. 18

No item a da Figura 1.5 está um exemplo de rotas físicas e comprimentos de onda atribuídos 19 às ligações lógicas do item b. Esse é o roteamento das ligação lógicas sobre a topologia física, 20 requisitadas pelo projeto da topologia lógica, e a alocação de comprimentos de onda a cada rota 21 (ZANG; JUE; MUKHERJEE, 2000).

Na Figura 1.5, no item c, estão representadas as ligações físicas que foram utilizadas para 23 estabelecer a topologia lógica para a rede óptica de 6 nós, ilustrada na Figura 1.1. Observe que em alguns casos dois comprimento de onda compartilham a mesma ligação física. Isso ocorre graças a tecnologia WDM. Mas, como estamos considerando que cada fibra óptica pode ser utilizada em um sentido apenas, duas ou mais ligações lógicas só podem compartilhar uma mesma ligação física no mesmo sentido e utilizando comprimentos de onda diferentes(ZANG; JUE; MUKHERJEE, 2000).

Em redes semitransparentes, como não há ligações lógicas entre todos os pares de nós da 30 rede, as demandas de tráfego podem precisar compor caminhos sobre a topologia lógica, uti-31 lizando mais de uma ligação lógica. Neste caso, haverá ainda conversão eletrônica nos nós 32 intermediários, e o projeto da topologia lógica é quem deve cuidar de evitar que muito trá-33 fego deve ser destinado para esses casos. Em geral, as demandas de tráfego podem ainda ser

Figura 1.5: Rotas físicas e alocação de comprimentos de onda para as ligações lógicas.

- subdivididas e transportadas paralelamente por mais de uma caminho sobre a topologia lógica (RAMASWAMI; SIVARAJAN, 1996).
- No item a da Figura 1.6 está representada a distribuição da demanda de tráfego d_{16} , com origem no nó 1 e destinada ao nó 6, sobre a topologia lógica apresentada na Figura 1.2. Utilizando dois caminhos sobre a topologia lógica, a demanda de tráfego foi dividida em duas partes, uma contento 2/3 do tráfego original e outra com o 1/3 restante. A primeira parte foi designada à ligação lógica p_5 , atingindo diretamente o destino, e a segunda parte foi roteada pela caminho formado pelas ligações lógicas p_2 e p_4 . Pelo primeiro caminho o tráfego foi entregue transparentemente, e no segundo houve processamento eletrônico no nó intermediário 4.
- No item b da Figura 1.6 estão representadas as rotas físicas e os comprimentos de onda utilizados na distribuição de tráfego da demanda d_{16} , de acordo com o esquema apresentado no item a da Figura 1.5. Note que o tráfego passou também pelos nós 2, 3, e 5, mas de forma transparente, sem conversão eletrônica.

Figura 1.6: Demanda de Tráfego d_{16} distribuída na Topologia Lógica

1.2 Etapas do projeto de uma WRON

O projeto de WRON deve levar em conta seus custos de implementação e operação, que podem ser colocados, resumidamente, em função dos recursos de transmissão requeridos na camada óptica e a capacidade de processamento e armazenamento dos roteadores eletrônicos(BANERJEE; MUKHERJEE, 2000). Para tanto, técnicas de otimização são largamente empregadas e as soluções propostas fazem uso de métodos exatos e heurísticas, separadamente ou em conjunto. Na literatura, o projeto completo de WRON é dividido em quatro sub-problemas, que serão denominados: roteamento de tráfego (TR - *Traffic Routing*), projeto da topologia lógica (LTD - *Logical Topology Design*), roteamento de comprimentos de onda (WR - *Wavelength Routing*) e alocação de comprimentos de onda (WA - *Wavelength Assignment*) (RAMASWAMI; SIVARAJAN, 2002; BALA, 2000, 2000).

Tradicionalmente, os sub-problemas LTD e TR são associados, bem como o WR e o WA, compondo respectivamente os conhecidos problemas de VTD (*Virtual Topology Design*) (RA-MASWAMI; SIVARAJAN, 2002) e RWA (*Routing and Wavelength Assignment*) (ZANG; JUE; MUKHERJEE, 2000). Isto está ilustrado na figura 1.7. Mais recentemente, os sub-problemas de TR e WR vem também sendo associados nos trabalhos que abordam o problema de *grooming* de tráfego (RESENDO; RIBEIRO; CALMON, 2007), mas esta última abordagem está fora do foco de estudo neste trabalho.

1.2.1 Projeto da Topologia Lógica

O projeto da topologia lógica, VTD, que inclui a distribuição do tráfego e escolha da topologia lógica, é modelado na literatura como um problema de programação inteira mista (MILP -*Mixed Integer Linear Problem*) (RAMASWAMI; SIVARAJAN, 1996; BALA, 2000, 2000). No

Figura 1.7: Quatro sub-problemas se fundem em VTD e RWA

- entanto esses modelos se mostraram intratáveis mesmo para instâncias pequenas, com menos de
- 2 20 nós. Assim, heurísticas foram propostas para sua resolução (RAMASWAMI; SIVARAJAN,
- ³ 1996; OLIVEIRA, 2005; LIMA et al., 2005).
- Vale citar a clássica heurística HLDA (RAMASWAMI; SIVARAJAN, 1996), usada em
- 5 muitos trabalhos na literatura, como (ASSIS; WALDMAN, 2004; SKORIN-KAPOV; KOS,
- 6 2005). Ela consiste de um algoritmo que cria ligações lógicas visando transportar as maiores
- demandas de tráfego em um único salto sobre a topologia lógica, evitando que grande parte de
- tráfego precise ser retransmitido por caminhos mais longos. Ela permite inclusive que múltiplas
- 9 ligações lógicas sejam criadas entre um mesmo par de nós.

Essa abordagem visa distribuir o tráfego mais uniformemente sobre a topologia lógica e ao mesmo tempo evita retransmissão excessiva das demandas de tráfego. Ambos são fatores importantes no projeto da topologia lógica. A seguir, serão detalhados esses e outros aspectos dessa fase do projeto de uma WRON.

14 Escolha da Topologia Lógica

Quando se trata os sub-problemas separadamente, o primeiro passo é a escolha da topologia lógica, o LTD, todavia as principais métricas de interesse normalmente se encontram nas
outras etapas. No LTD o objetivo mais comuns é obter uma topologia lógica que facilite a construção de melhores soluções nas etapas subsequentes, normalmente atendendo a uma estrutura
topológica pré-definida (RAMASWAMI; SIVARAJAN, 1996). Quanto à estrutura topológica,
ela pode ter uma forma determinada, como estrela, anel ou árvore (BOAVENTURA, 2001), ou
uma forma mais geral, chamada malha (RAMASWAMI; SIVARAJAN, 1996). Há ainda a possibilidade de se formar uma estrutura hierárquica, com um *backbone* centralizador e *clusters*

14

15

20

21

22

23

periféricos (LIU et al., 2007). Mas o foco neste trabalho será o caso mais geral, que são as topologias em malha.

Um fator importante no dimensionamento da rede é o número de ligações lógicas. Pois cada uma possui em seu início um transmissor óptico que converte o fluxo eletrônico em sinal óptico. Paralelamente, na finalização de uma ligação lógica há um receptor óptico que faz a conversão inversa. Como esses equipamentos existem aos pares, é comum referir-se apenas ao número de transceptores, que significa tanto receptores quanto transmissores (MUKHERJEE, 1997). Além dos transceptores, o número de ligações lógicas influencia fortemente no dimensionamento dos equipamentos ópticos WDM e nos roteadores eletrônicos (XIN; ROUSKAS; PERROS, 2003). De modo que, geralmente, é o número de ligações lógicas que define as instâncias do problema pois, sendo um fator decisivo no dimensionamento, ele é definido *a priori* e as técnicas de otimização são aplicadas à outras métricas (KRISHNASWAMY; SIVARAJAN, 2001; RAMASWAMI; SIVARAJAN, 1996).

O número de ligações lógicas partindo de um nó é chamado de grau lógico de saída, enquanto o número de ligações lógicas chegando em um nó é chamado de grau lógico de entrada (RAMASWAMI; SIVARAJAN, 1996). Quando é exigido que haja simetria entre esses valores, há apenas o que é chamado de grau lógico do nó. Se todos os nós da rede tem de ter o mesmo grau lógico, então este valor é chamado de grau lógico da rede. Este é o valor normalmente usado para se definir o número de ligações numa topologia lógica a ser projetada (RAMASWAMI; SIVARAJAN, 1996).

Uma abordagem complementar é garantir que a topologia lógica ofereça redundância de caminhos, como forma de manter os nós conectados quando um nó ou uma ligação física sofre interrupção nos serviço (LIMA et al., 2005). Todavia maior segurança é obtida garantindo redundância nas rotas físicas, pois é possível que um determinado caminho na topologia lógica e seu respectivo redundante compartilhem uma ligação física ou um nó intermediário em suas rotas físicas.

Distribuição das Demandas de Tráfego

Escolhida uma topologia lógica, a próxima etapa é distribuir sobre seus caminhos o tráfego da matriz de demandas, o sub-problema TR. Isoladamente, este pode ser modelado como
um problema de programação linear (RAMASWAMI; SIVARAJAN, 1996), que pode ser resolvido em tempo polinomial (CORMEN, 2002). Ele pode ser modelado como um problema
distribuição de fluxo em rede clássico ou de forma agregada, onde as demandas de tráfego são
agregadas em relação à origem ou ao destino, reduzindo a ordem de grandeza das variáveis do

24

25

28

modelo linear, tornando-o mais eficiente (RAMASWAMI; SIVARAJAN, 1996).

Na distribuição de tráfego aparecem métricas importantes como o congestionamento. Ele é a quantidade de tráfego designado ao caminho óptico mais carregado da rede. Ao minimizar o congestionamento a tendência é distribuir igualmente o tráfego entre todos os caminhos ópticos. Este critério garante que não haja subutilização ou sobrecarga nas ligações lógicas. A sobrecarga causa aumento do atraso em filas e consequente diminuição da vazão (RAMASWAMI; SIVARAJAN, 2002).

Outra métrica importante é o processamento eletrônico, que está diretamente associado a quantidade de tráfego que é retransmitido por mais de uma ligação lógica, antes de chegar ao seu destino. Esse tráfego tem de ser processado nos roteadores eletrônicos de tráfego nos nós intermediários, o que influencia no dimensionamento dos mesmos, além de atraso em filas (AL-MEIDA et al., 2006). A distribuição do tráfego deve tentar enviar a maior parte do tráfego por caminhos compostos apenas por uma ligação lógica, de modo a evitar excessivo processamento eletrônico.

5 1.2.2 Roteamento e Alocação de Comprimentos de Onda

O sub-problema WR consiste em determinar as rotas físicas para as ligações lógicas, também chamadas neste contexto de requisições de conexão (ZANG; JUE; MUKHERJEE, 2000).

Há três principais métricas de interesse nesta etapa, uma é que as rotas físicas não devem ser
muito longas para evitar perdas de pacote por degradação do sinal (BALA, 2000). Outro fator importante é o número de rotas físicas compartilhando uma mesma ligação física, pois isso
influencia diretamente na quantidade de comprimentos de onda que serão necessários na resolução do sub-problema WA (ZANG; JUE; MUKHERJEE, 2000). Além disso, sua minimização
forçaria uma distribuição mais uniforme das rotas nas ligações físicas.

A terceira métrica de interesse é uma sofisticação da primeira, que considera a quantidade de tráfego alocada à rota física, além da distância percorrida. O objetivo neste caso é minimizar o produto entre o tráfego alocado e a distância percorrida, conhecido como fator BL (*Bandwidth Length*) (AGRAWAL, 1997). Com a distribuição de tráfego já definida, minimizar BL tem efeito apenas sobre a distância, que neste caso é ponderada em função da quantidade de tráfego.

A criação das rotas físicas é o momento mais oportuno para se obter soluções tolerantes à falhas, construindo soluções com redundância de rotas físicas. Pois falhas mais críticas são as que envolvem cabos de fibra ou os equipamentos WDM dos nós (RAMASWAMI; SASAKI, 1998). É neste momento em que se determina as ligações físicas e os nós por onde será roteado o

1.3 Trabalhos Anteriores 16

tráfego. Se para cada rota física existir uma segunda rota, sua cópia de segurança, com o mesmo destino e origem mas sem compartilhar nós intermediários ou ligações físicas ao longo de seus percursos, as falhas mencionadas não irão interromper a comunicação. Mas estas abordagens de proteção estão fora do escopo deste texto.

Por sua vez, o sub-problema WA consiste em atribuir comprimentos de onda às rotas físicas determinadas no sub-problema WR. Duas rotas físicas passando por uma mesma ligação física devem ter comprimentos de onda diferentes. Além disso, estamos assumindo a restrição de continuidade de comprimentos de onda (ZANG; JUE; MUKHERJEE, 2000), ou seja, um mesmo comprimento de onda deve ser usado do início ao fim de uma rota física. O objetivo mais comum nesta etapa é minimizar o número de comprimentos de onda necessários, pois isso influencia no dimensionamento dos equipamentos WDM dos nós e nos cabos de fibra óptica (XIN; ROUSKAS; PERROS, 2003).

O roteamento e alocação de comprimentos de onda, são tratados na literatura tanto separadamente quanto na forma do problema RWA (ZANG; JUE; MUKHERJEE, 2000; JAUMARD;
MEYER; THIONGANE, 2004). Existem diversas modelagens para o RWA; um estudo abrangente delas pode ser visto em (JAUMARD; MEYER; THIONGANE, 2004). Cada uma dessas
modelagens tem objetivos diferentes e sua análise está além do escopo deste texto.

O roteamento pode ser modelado como um problema de programação inteira (Integer Linear Problem - ILP) (ZANG; JUE; MUKHERJEE, 2000). Mas comumente é tratado por algoritmos mais simples, como o do caminho mais curto (CORMEN, 2002), de modo a dedicar
mais esforço computacional à outras fases do projeto (ZANG; JUE; MUKHERJEE, 2000; RAMASWAMI; SIVARAJAN, 1996). O sub-problema WA pode ser visto como uma problema de
coloração de grafos, que é um problema NP-Completo (CORMEN, 2002) e também pode ser
modelado como um ILP (ZANG; JUE; MUKHERJEE, 2000).

5 1.3 Trabalhos Anteriores

O problema de projetar uma rede óptica, a partir de uma topologia física conhecida, pode ser formulado como um MILP, sendo definida uma métrica de interesse a ser otimizada. Esse problema já foi amplamente estudado, tendo sido propostas heurísticas para resolvê-lo, sendo conhecidamente um problema de alto custo computacional (KRISHNASWAMY; SIVARAJAN, 2001; XIN; ROUSKAS; PERROS, 2003). As diferentes abordagens partem de considerações específicas sobre as demandas de tráfego, a métrica a ser otimizada, entre outras. O objetivo normalmente é a minimização de algum recurso da rede, tendo como exemplos: número de

1.3 Trabalhos Anteriores 17

comprimentos de onda utilizados, número de transceptores, congestionamento e processamento eletrônico.

Uma das formulações para o projeto de uma topologia virtual foi apresentado como um problema de otimização em (MUKHERJEE et al., 1996). Os autores formularam o problema de projeto de topologia lógica como um problema de otimização não linear. A função objetivo considerava a minimização do atraso na transmissão e do congestionamento da rede. Os autores subdividem o problema em quatro subproblemas, da forma como foi mostrada na Seção 1.2.

Nos experimentos apresentados, os autores consideram apenas o VTD, subproblemas LTD e TR. A meta-heurística *Simulated annealing* foi utilizada na resolução do subproblema LTD e *flow deviation* para o subproblema TR. Entretanto, a meta-heurística *Simulated Annealing* implementada torna-se muito cara computacionalmente para redes de grande porte.

Em (BANERJEE; MUKHERJEE, 2000) é apresentada uma formação MILP para o projeto 12 completo de uma WRON com conversão de comprimentos de onda. Vale ressaltar que, em 13 redes equipadas com conversores de comprimentos de onda, o problema torna-se menos com-14 plexo pois a restrição de continuidade dos comprimentos de onda não é aplicada (ZANG; JUE; 15 MUKHERJEE, 2000). O objetivo neste trabalho era minimizar a distância média das rotas físi-16 cas. A formulação MILP apresentada, inclui a definição das ligações lógicas, suas rotas físicas, 17 e a distribuição de tráfego sobre as mesmas. Com o objetivo de tornar o problema tratável, a restrição de continuidade de comprimentos de onda foi relaxada, considerando que todos os nó possuem capacidade de conversão de comprimentos de onda. Devido à dificuldade de obter soluções ótimas com o modelo MILP o processo de otimização foi interrompido após algumas iterações. 22

Em (RAMASWAMI; SIVARAJAN, 1996) os autores formularam uma modelagem MILP para o VTD com o objetivo principal de minimizar congestionamento. Não existe restrição quanto ao número de comprimentos de onda utilizados. A desvantagem desta abordagem é que a topologia física torna-se irrelevante para o projeto, pois ela é considerada apenas para limitar o atraso de propagação. A estrutura física influencia muito pouco dessa forma. Além disso, o atraso é calculado supondo que as rotas físicas são estabelecidas pelo algoritmo da menor distância (ZANG; JUE; MUKHERJEE, 2000).

Em (KRISHNASWAMY; SIVARAJAN, 2001) é proposta uma modelagem MILP que minimiza congestionamento em redes sem conversores de comprimentos de onda. Segundo os autores, esta formulação não é computacionalmente tratável, sendo métodos heurísticos propostos. O Modelo MILP é relaxado e executado interativamente por 25 vezes usando um plano de corte. As variáveis que representam a topologia virtual e os percursos físicos são arredondadas, 1.3 Trabalhos Anteriores 18

enquanto uma heurística de alocação de comprimentos de onda é aplicada para atribuir-los individualmente às rotas físicas. Uma das desvantagens desse método é que, supondo que existam W comprimentos de onda disponíveis em cada fibra, o algoritmo de alocação de comprimentos de onda pode não garante sucesso. Em caso de falha, ele será reiniciado incrementando W. Como resultado, o método não retorna necessariamente soluções viáveis em todas as tentativas.

Em (BANERJEE; MUKHERJEE, 1997), os autores formularam o problema de projeto de topologia lógica como um problema linear que considera os nós da rede equipados com conversores de comprimento de onda. A função objetivo da formulação é a minimização do comprimento das rotas físicas, com a possibilidade de redução do número de conversores de comprimentos de onda utilizados e, dessa forma, esta formulação poderia ser aproximada para uma formulação sem conversão. As deficiências desta formulação são: ela produz resultados razoáveis somente se a matriz de tráfego for equilibrada, sendo esta uma consequência da função objetivo não incluir variáveis de tráfego; ele é eficiente somente se a topologia física for densa em termos do número de arestas. Se a topologia física for esparsa então o número de conversores de comprimento de onda utilizados aumentará, pois haveriam poucas rotas alternativas. A restrição de continuidade dos comprimentos de onda não foi utilizada nesta formulação.

14

16

20

25

27

28

31

33

O artigo (TORNATORE; MAIER; PATTAVINA, 2007) apresenta um modelo MILP para o projeto de WRONs, capaz de projetar também a rede física, suportando múltiplos cabos de fibra óptica entre cada par nós. No modelo proposto é usada agregação de variáveis em relação à origem para a criação das rotas físicas, o que permite uma redução relevante no número de variáveis e restrições (JAUMARD; MEYER; THIONGANE, 2004). Com relação a conversão de comprimentos de onda, dois casos extremos são tratados: 1) quando todos os nós possuem capacidade de converter os comprimentos de onda, e 2) quando nenhum nó possui capacidade de conversão de comprimento de onda, sendo exigida a restrição de continuidade de comprimentos de onda. O trabalho propõe a otimização da topologia lógica de uma rede física com múltiplos cabos de fibras entre os pares de nós, com o objetivo de minimização de custo: o número de ligações físicas entre cada par de nós é a variável a ser minimizada, tendo como um dos dados de entrada o número de comprimentos de onda por ligação física.

Algumas heurísticas para o projeto completo de redes ópticas foram apresentadas no artigo (SKORIN-KAPOV; KOS, 2005), aplicando o modelo proposto em (KRISHNASWAMY; SIVA-RAJAN, 2001). Este trabalho envolve o projeto de WRONs sem utilização de conversores de comprimento de onda. Neste trabalho é introduzida uma função objetivo chamada, o numero médio de saltos lógicos (*average virtual hop distance*), onde o número de saltos lógicos é a quantidade de ligações lógicas que por onde uma demanda de tráfego passa antes de chagar

- ao destino. As heurísticas apresentadas são adaptações das apresentadas em (RAMASWAMI; SIVARAJAN, 1996). Os resultados apresentados foram gerados a partir de experimentos com redes de tamanhos variados e para características de tráfego uniforme e não uniforme.
- Uma referência clássica para o RWA é o artigo (ZANG; JUE; MUKHERJEE, 2000). Este estudo detalha o problema de roteamento e alocação de comprimentos de onda (RWA) em redes ópticas WDM, especialmente para redes que operam com a restrição de continuidade de comprimentos de onda, ou seja, não utilizam conversores. É apresentada uma revisão de várias abordagens e métodos apresentadas na literatura, abrangendo modelagens MILP e heurísticas.

Um modelo MILP para o projeto completo foi apresentado em (ASSIS; WALDMAN, 2004), baseado nas formulações clássicas do VTD e do RWA. Este trabalho propõe um algo-10 ritmo heurístico iterativo, que faz uso de programação linear, para resolver os problemas VTD e RWA de forma integrada. A topologia lógica é escolhida com a clássica heurística HLDA 12 (RAMASWAMI; SIVARAJAN, 1996), e esse resultado é fixado no modelo proposto. A se-13 guir o modelo é resolvido para encontrar solução para as demais variáveis. Por se tratar de um modelo MILP de alto custo computacional, a resolução é interrompida depois de um tempo pré determinado. A função objetivo adotada foi o número total de saltos nas rotas físicas, com o objetivo de evitar a formação de ciclos nas rotas físicas. A estratégia foi passar ao modelo limitações para as métricas importantes, de modo que as soluções viáveis encontradas fossem satisfatórias. Essa abordagem foi possível dada a grande abrangência do modelo proposto, onde métricas dos quatro sub-problemas do projeto de uma WRON podem ser controladas. Todavia o alto custo computacional do modelo proposto inviabiliza sua aplicação para redes de grande porte. As redes testadas tinham 6 e 12 nós.

3 1.4 Projeto Completo de uma WRON Semitransparente

O foco deste trabalho é modelar o projeto de uma WRON semitransparente, visando auxiliar nas fases de planejamento e dimensionamento de redes. Neste contexto, comumente tomase por base uma topologia física pré estabelecida. Esta normalmente é definida por fatores históricos, geográficos e econômicos. Um dos objetivos aqui é levar para o projeto da rede física considerações que só surgiriam depois, no tratamento dos sub-problemas VTD e RWA.

Nesse sentido, o projeto completo de uma WRON incluiria o projeto da rede física, além dos sub-problemas VTD e RWA.

No projeto da rede física, será considerado apenas o custo de instalação dos cabos de fibra óptica. Não será considero nenhum contexto geográfico ou histórico em particular, deste modo,

- o custo de instalação será modelado simplesmente em função da distância estre os nós.
- Na literatura, o projeto com essa abrangência foi pouco explorado (XIN; ROUSKAS;
- 3 PERROS, 2003), em parte pela complexidade e elevado custo computacional das modelagens
- 4 que combinam VTD e RWA (KRISHNASWAMY; SIVARAJAN, 2001; ASSIS; WALDMAN,
- 5 2004).
- Na Seção 1.4.1 introduziremos uma nova modelagem eficiente para o projeto completo uma
- WRON que combina o projeto da topologia física com os problemas VTD e RWA.
- Uma preocupação em modelagens abrangentes é o controle de várias métricas ao mesmo tempo. Isso é facilitado quando sabe-se como calcular eficientes limites inferiores para alguma delas. No projeto de uma WRON, uma métrica importante é o congestionamento e o caculo de limites inferiores para ele envolve grande custo computacional (RAMASWAMI; SIVARAJAN, 1996). Por isso, para auxiliar no objetivo principal deste texto, que é o projeto abrangente de uma WRON, introduzimos na Seção 1.4.2 um novo e eficiente limite inferior para o congestionamento.

15 1.4.1 Nova Modelagem para Projeto Completo de uma WRON

A principal contribuição deste trabalho é a proposição de um modelo para o projeto de WRONs, denominado TWA (*Traffic over Wavelength Assignment*). Ele é capaz de tratar desde a escolha da topologia física da rede até a definição da topologia lógica, incluindo a distribuição de tráfego, a definição das rotas físicas e a alocação de comprimentos de onda.

Conforme será mostrado no Capítulo 2, este modelo possui um reduzido número de va-20 riáveis e restrições, se comparado a modelos que resolvem apenas o RWA, como os que são 21 tratados em (JAUMARD; MEYER; THIONGANE, 2004). Na literatura, o projeto completo, 22 incluindo topologias física e lógica, foi modelado em (XIN; ROUSKAS; PERROS, 2003), pos-23 suindo uma complexidade elevada, que torna o uso de heurísticas uma exigência. O problema 24 modelado em (XIN; ROUSKAS; PERROS, 2003) possui premissas diferentes do modelo TWA, pois não trata dos sub-problemas VTD e RWA da mesma maneira, devido à utilização de tecno-26 logias distintas. Com isso uma comparação direta não é possível. Outro modelos encontrados na literatura são menos abrangentes, alguns não tratam do topologia física (KRISHNASWAMY; SIVARAJAN, 2001; ASSIS; WALDMAN, 2004), ou assumem uma topologia lógica e não consideram uma matriz de demandas (TORNATORE; MAIER; PATTAVINA, 2007; PUECH; KURI; GAGNAIRE, 2002). Portanto, como estratégia de teste do modelo TWA, optamos por considerar a topologia física como conhecida.

O TWA guarda semelhanças com alguns modelos conhecidos (RAMASWAMI; SIVARA-JAN, 2002; TORNATORE; MAIER; PATTAVINA, 2007), por utilizar variáveis agregadas para a distribuição do tráfego e criação das rotas físicas. Mas a modelagem que aqui será apresentada introduz outras vantagens que a tornam mais abrangente e ao mesmo tempo mais enxuta, considerando o número de variáveis e restrições.

Uma das vantagens é que o modelo naturalmente admite múltiplas ligações lógicas entre cada par de nós da rede, sem a necessidade de diferenciar cada ligação por uma variável de decisão diferente, como na abordagem utilizada anteriormente em (RAMASWAMI; SIVARAJAN, 2002).

Outra vantagem é que não são utilizadas variáveis diferentes para a topologia física, topologia lógica, rotas físicas e alocação de comprimentos de onda, como é feito em (ASSIS;
WALDMAN, 2004). No TWA há uma variável chamada componente topológica que consegue
acumular todas essas funções. De fato, definida uma rota física com um dado comprimento de
onda, implicitamente estão definidas as ligações físicas utilizadas e a ligação lógica correspondente.

Ao invés de fazer a distribuição do tráfego em função da topologia lógica (RAMASWAMI; SIVARAJAN, 2002), o TWA possui restrições para a distribuição do tráfego escritas diretamente em função das componentes topológicas, dai seu nome (*Traffic over Wavelength Assignment*). Na prática, isso elimina as restrições de distribuição de requisições de tráfego do RWA (ZANG; JUE; MUKHERJEE, 2000). Isto está ilustrado na figura 1.8.

Figura 1.8: Dois sub-problemas se fundem no TWA

Essas características reduzem a complexidade do modelo, deixando de determinar explicitamente informações que não são necessárias nessa fase do projeto. Assim sendo, as variáveis e restrições do TWA consistem em um modelo completo para o projeto de redes ópticas, considerando todos os seus subproblemas de maneira integrada.

No Capítulo 2 apresentamos a modelagem básica para o TWA, onde são colocadas as restrições fundamentais da formulação proposta. No Capítulo 3 ilustramos outros casos de uso da

- modelagem TWA, que estendem as capacidades do modelo básico. No Capítulo 5 são apresentados resultados computacionais, obtidos utilizando o modelo proposto neste trabalho, e comparações dos mesmos com outros resultados encontrados na literatura.
- Por simplicidade, é assumido que todas as ligações lógicas possuem a mesma capacidade de tráfego. Além disso, não serão consideradas aqui a possibilidade de bloqueio de pacotes e nem outros tipos de perdas na transmissão. Portanto, é assumido que todo o tráfego da rede será devidamente enviado e recebido. Assumimos também a restrição de continuidade de comprimentos de onda, ou seja, os nós não são capazes de fazer conversão entre comprimentos de onda.

Não é suposto a existência de nenhum recurso, como quantidade de OXCs, OADMs ou fibras ópticas. Tentamos encontrar soluções que demandem o mínimo possível de recursos da rede. O objetivo dessa abordagem é servir de suporte para o dimensionamento e planejamento da rede; nesta fase é que serão definidos os equipamentos específicos que serão necessários para a implantação do projeto.

5 1.4.2 Novo Limite Inferior para o Congestionamento

Também é apresentada neste trabalho a demonstração formal de um novo limite inferior 16 (lower bound - LB) para o congestionamento, denominado Minimum Traffic Bound (MTB). 17 Nos resultados que serão apresentados na Seção 5.4, o MTB apresentou alta qualidade pois 18 coincidiu com o ótimo ou ficou muito próximo dele. Além disso, seu custo computacional é 19 desprezível, pois ele é calculado diretamente das demandas de tráfego, através de uma fórmula 20 matemática. Isso contrasta com as técnicas para obtenção de LBs para o congestionamento 21 que encontramos na literatura (RAMASWAMI; SIVARAJAN, 2002). Até então, obter LBs 22 de boa qualidade para congestionamento tinha custo computacional bem mais elevado do que 23 encontrar boas soluções viáveis (KRISHNASWAMY; SIVARAJAN, 2001; SKORIN-KAPOV; KOS, 2005). O MTB será apresentado no Capítulo 4.

2 Traffic over Wavelength Assignment

Neste capítulo será apresentada a forma básica do modelo TWA, começando pela notação designada aos nós e as constantes que definem uma instância de problema para o modelo. Em seguida serão definidas as variáveis utilizadas para compor as restrições e a função objetivo do modelo, passando-se então à sua descrição. A função objetivo adotada na formulação básica é a minimização dos custos de instalação e operação da rede, valendo-se da capacidade do modelo escolher também a topologia física da rede. Além disso, o número de comprimentos de onda foi controlado de maneira implícita (ZANG; JUE; MUKHERJEE, 2000); e foi considerada a restrição de conservação dos comprimentos de onda ao longo do caminho óptico (ZANG; JUE; MUKHERJEE, 2000), ou seja, não se admite a conversão de comprimentos de onda na camada óptica da rede.

2.1 Notação e Dados de Entrada

Notatação 1. Os índices $m, n, s, d, i, j \in \{1, ..., N\}$ representam os nós da rede, e os pares ordenados (m, n), (s, d) e (i, j) indicam respectivamente ligações físicas, demandas de tráfego e
ligações lógicas, com $m \neq n$, $s \neq d$ e $i \neq j$. O índice $w \in \{1, ..., W\}$ representa os comprimentos
de onda disponíveis.

A Figura 2.1 ilustra os diferentes escopos dos índices associados aos nós da rede, com relação aos enlaces físicos (m,n), lógicos (i,j) e demandas de tráfego (s,d). Esta notação segue a convenção comumente utilizada em trabalhos anteriores (MUKHERJEE, 1997; RA- MASWAMI; SIVARAJAN, 2002). É importante dizer que, como esta modelagem suporta múltiplas fibras e caminhos ópticos entre cada par de nós, os pares (m,n) e (s,d) representam conjuntos de possíveis ligações físicas e lógicas, respectivamente. Esses conjuntos não serão explicitamente controlados, sendo esse um dos motivos da eficiência do modelo.

Dados 1. Uma instância para o modelo TWA é definida por:

1. N = Número de nós da rede.

25

Figura 2.1: Representação gráfica da notação associada aos nós da rede.

- 2. W = Máximo de comprimentos de onda por fibra.
- 3. K = Multiplicidade física máxima entre os pares de nós.
- 3 4. Cap = Capacidade de tráfego de cada canal lógico.
- 5. $C_{mn} = Custo de uma ligação física orientada (m,n).$
- 5 6. T = Custo por unidade de fluxo.
- 7. $P_{sd} = Demanda de tráfego, com origem s e destino d.$
- 8. $A_s = \sum_d P_{sd} \ e \ Q_{sd} = P_{sd}/A_s$.

2.2 Componentes Topológicos

- A variável central do modelo, a partir da qual todas as demais serão definidas, chamada de componente topológica, é representada graficamente na Figura 2.2 e formalmente definida na Variável 2.2.1. Ela sozinha representa as topologias lógica e física, o trajeto físico das ligações lógicas e o comprimento de onda utilizado.
- Variável 2.2.1. Seja $B_{iw}^{mn}=k\in\{0,..,K\}$, com $i\neq n$, um componente do conjunto das ligações lógicas com origem i e comprimento de onda w, que utilizam k ligações físicas entre os nós m e n.
- Em um componente topológico $B_{iw}^{mn}=k$, o índice i representa o nó de origem das k ligações lógicas que, passando por uma das ligações físicas iniciadas em m e incidentes em n, usa o comprimento de onda w. Conforme a terminologia utilizada neste trabalho daqui por diante, um

14

15

20

Figura 2.2: Representação gráfica de um componente topológico.

componente topológico $B_{iw}^{mn}=k$ é iniciado em m, incidente em n, com origem i, comprimento de onda w e valor k.

Considerando que $B_{iw}^{mn}=k$ para algum $k\in\{0,...,K\}$, existem k ligações lógicas originadas em i no comprimento de onda w, passando por k enlaces físicos distintos entre o par de nós (m,n). Neste caso, cada um desses k enlaces físicos terá que ser uma fibra óptica distinta interligando o mesmo par de nós (m,n), pois haveria interferência se houvessem dois sinais ópticos originados por fluxos de tráfego diferentes se propagando no mesmo sentido, na mesma fibra, com o mesmo comprimento de onda. Note que K limita apenas a multiplicidade dos enlaces físicos, ou seja, o número de fibras ópticas dispostas em paralelo entre dois nós (m,n). Mesmo que K=1, o que torna B_{iw}^{mn} uma variável binária, as diversas ligações lógicas entre um par (i,j) poderão usar múltiplos trajetos físicos, ou ainda, mais de um comprimento de onda em uma mesma fibra. Se $,\forall i$, k=0 para qualquer w, então nenhum enlace físico entre o par de nós (m,n) é utilizado, ou seja $B_{im}^{nw}=0$, $\forall (i,w)$.

Na Figura 2.3, temos um exemplo de interpretação dos componentes topológicos, todos com origem no nó i e com o mesmo comprimento de onda w_1 . No item d) desta figura, o valor 2 do componente que liga os nós (i,m) é interpretado como duas ligações físicas entre esses nós, representadas no item a). No item b), vemos uma ligação lógica dupla entre os nós (i,n), onde uma delas passa de forma transparente pelo nó m, como indicado no item c). Note ainda que, no item d), há dois caminhos lógicos incidentes em m mas apenas um iniciando. Isso indica que uma ligação lógica termina em m, enquanto a outra segue adiante.

A definição dos componentes topológicos não deixa claro aonde terminam as ligações lógicas. Sua finalização será garantida implicitamente pelas restrições do modelo. Isso reflete a agregação do roteamento dos comprimentos de onda, similar a trabalhos encontradas na literatura (JAUMARD; MEYER; THIONGANE, 2004).

A indexação atribuída às variáveis B_{iw}^{mn} especificam apenas o nó i, que é onde se iniciam os enlaces lógicos representados. Isto significa que estas variáveis agregam todas as ligações lógicas originadas em i que utilizam o enlace físico (m,n) e o comprimento de onda w, independente do nó j em que terminam estas ligações lógicas. Esta técnica consiste em uma abordagem bastante conhecida para a representação de variáveis em problemas de distribuição de fluxo em

2.3 O Modelo TWA 26

Figura 2.3: Exemplo da interpretação dos componentes topológicos.

- redes. Em (TORNATORE; MAIER; PATTAVINA, 2007), este conceito de agregação de trá-
- 2 fego é aplicado como meio de simplificação do modelo, reduzindo substancialmente o número
- de variáveis dos problemas resultantes. No TWA, esta agregação cumpre o mesmo papel de
- 4 simplificação, cabendo às restrições do modelo garantir implicitamente a terminação correta
- destas ligações lógicas agregadas nas variáveis B_{iw}^{mn} .

6 2.3 O Modelo TWA

- As Variáveis 2.3.1 e 2.3.2 completam as definições necessárias para apresentarmos a forma
- básica do modelo TWA, expresso nas Restrições de (2.3.1) à (2.3.4).
- **Variável 2.3.1.** Seja $D_{mn} \in \{0,..,K\}$ o número de ligações físicas entre o par de nós (m,n).
- Variável 2.3.2. Seja $q_{sw}^{ij} \in [0,1]$ a fração de fluxo originado em s, passando pelas ligações
- 11 lógicas entre o par (i, j), no comprimento de onda w, com $s \neq j$.

$$\sum_{s} q_{sw}^{ij} \cdot A_s \leqslant Cap \cdot \left(\sum_{m} B_{iw}^{mj} - \sum_{n} B_{iw}^{jn} \right), \quad \forall (i, j, w)$$
 (2.3.1)

$$\sum_{i} B_{iw}^{mn} \leqslant D_{mn}, \quad \forall (m, n, w)$$
 (2.3.2)

2.3 O Modelo TWA 27

$$\sum_{jw} q_{sw}^{sj} = 1, \quad \forall s \quad \text{and} \quad \sum_{iw} q_{sw}^{id} - \sum_{jw} q_{sw}^{dj} = Q_{sd}, \quad \forall (s,d)$$
 (2.3.3)

Minimize:
$$\sum_{mn} C_{mn} \cdot D_{mn} + \sum_{siiw} T \cdot q_{sw}^{ij} \cdot A_s$$
 (2.3.4)

A Restrição (2.3.1) acumula múltiplas funções: garante a continuidade dos percursos lógicos e a conservação dos comprimentos de onda; controla a capacidade de tráfego dos canais lógicos, que também pode ser um *uper bound* para o congestionamento; e anula as frações de fluxo agregado nas ligações lógicas não utilizadas.

Se o número de componentes topológicos incidentes em *m* for maior que o número de iniciados, não originados nele, essa diferença é o número de ligações lógicas que terminam em *m*. É deste modo que a finalização das ligações lógicas pode ser mapeada. Isso assegura a rastreabilidade das ligações lógicas desde sua origem, a partir dos componentes topológicos agregados.

Para resolver o sub-problema de roteamento de tráfego, são definidas as variáveis de fração de fluxo agregado (Variável 2.3.2), utilizadas na Restrição (2.3.1). Como podem haver múltiplas ligações lógicas entre um par (i, j), o tráfego entre um par de nós deverá ser limitado pela capacidade de uma ligação lógica multiplicada pelo número de ligações lógicas em questão. Na Restrição (2.3.1), este número é representado, para as ligações lógicas entre o par (i, j), como a quantidade de componentes topológicos incidentes em j ($\sum_{mw} B_{iw}^{mj}$), diminuído do número de componentes topológicos iniciadas em j ($\sum_{mw} B_{iw}^{in}$).

Apesar da topologia física ser determinada pelos componentes topológicos, para fins de controle do custo de instalação da rede física, é necessário novas incógnitas. Para este fim, é definida a Variável 2.3.1, que registra em D_{mn} a multiplicidade física alcançada pelos componentes topológicos. Se $D_{mn} = 0$, não há ligações físicas entre o par (m,n), mas se $D_{mn} = k$, para algum $k \in \{0,...,K\}$, existem k ligações físicas entre o par (m,n).

17

19

21

Pela forma como D_{mn} é calculada na Restrição (2.3.1), a rigor, seu valor poderia ser maior do que é determinado pelos componentes topológicos. Mas isso não ocorre quando o número de ligações físicas for minimizado na função objetivo.

Se D_{mn} for dado de entrada do problema, a Restrição (2.3.2) limita a multiplicidade física dos componentes topológicos B_{im}^{nw} . Ainda neste caso, se $D_{mn} = 0$ para um certo par (m,n), devem ser retiradas da modelagem as variáveis B_{im}^{nw} correspondentes. Isto deve ser considerado em todo o modelo e daqui por diante toma-se como subentendido.

2.3 O Modelo TWA 28

A conservação de fluxo é assegurada pela Restrição (2.3.3), que também garante o envio e a entrega das demandas de tráfego. As equações da Restrição (2.3.3) são semelhantes, em sua forma, às encontradas na modelagem agregada para o VTD (RAMASWAMI; SIVARAJAN, 2002). Todavia, sua interpretação é sutilmente diferente, pois aqui uma determinada fração de fluxo de tráfego pode ser subdividida e transportada simultaneamente por mais de uma ligação lógica entre o par (i, j). Por exemplo, em comprimentos de onda diferentes em um mesmo enlace físico (m, n) que interliga diretamente (i, j), ou por rotas físicas disjuntas entre os nós (i, j), neste último caso, independente do comprimento de onda.

Uma métrica importante no projeto da redes ópticas é a minimização dos custos de instalação e operação (MUKHERJEE, 1997). O custo de instalação C_{mn} é o custo associado a uma
ligação física orientada entre o par de nós (m,n). O custo de operação T é definido como o
custo por unidade de fluxo $(\sum_{sijw} T \cdot q_{sw}^{ij} \cdot A_s)$. Este último pode ser dividido em duas partes, uma
constante $(Tc = \sum_{sd} T \cdot P_{sd})$, formada pelas demandas de tráfego (que necessariamente deverão
ser roteadas), e outra variável $(Tv = T, i \neq s)$, composta pelo tráfego adicional que é gerado, ou
seja, o tráfego retransmitido.

Por essa razão, minimizar o custo por unidade de fluxo é equivalente a minimizar o tráfego retransmitido na rede, o que por sua vez, equivale a minimizar o processamento eletrônico de tráfego dos nós da rede (ALMEIDA et al., 2006). Soma-se a isso o fato de que é necessária nesta modelagem a Restrição (2.3.1), de limitação da capacidade *Cap* dos canais lógicos. Deste modo, limitando o congestionamento na rede e minimizando o processamento, temos uma abordagem mais eficiente, quanto ao custo computacional, para o projeto da topologia virtual em comparação com a minimização do congestionamento da rede (ALMEIDA et al., 2006; RAMASWAMI; SIVARAJAN, 2002).

Se não for necessário ponderar o custo por unidade de fluxo, basta fazer T=1, e se não for necessário considerar o custo total de instalação ($CI=\sum_{mn}C_{mn}\cdot D_{mn}$), basta fazer $C_{mn}=0$ para todo (m,n). Deste modo seria simplesmente um modelo de minimização do processamento, com limitação do congestionamento (ALMEIDA et al., 2006). A função objetivo, que é a minimização do custo total R=CI+Tc+Tv, é dada explicitamente pela Restrição (2.3.4).

24

25

26

28

Como o número de componentes topológicos é $N^3 \cdot W \cdot K$ e o número de restrições é $\Theta(N^2 \cdot W)$, o número de variáveis do modelo é da ordem de $\Theta(N^3 \cdot W \cdot K)$. Quando a topologia física é um dado de entrada, sendo H o número total de ligações físicas da rede, então o número de componentes topológicos será $N \cdot H \cdot W$. Supondo uma topologia física conexa, temos H > N (CORMEN, 2002). Entretanto, é razoável supor que $H < N^2$. Assim, o número de variáveis do modelo TWA, para topologia fixada, será $O(N^3 \cdot W)$.

3 Adaptações do Modelo Básico

Neste capítulo são apresentados outros casos de uso da modelagem TWA. Dada a abrangência do modelo básico, diversas métricas poderiam ser controladas ou diretamente minimizadas, conforme a aplicação. Apresentamos agora como podem ser incluídos parâmetros de controle

bem conhecidos, alguns deles serão utilizados nos experimentos computacionais das Seções 5.2 e 5.4.

Veremos, por exemplo, como incluir as restrições de controle do grau lógico dos nós e como usar o congestionamento como função objetivo, duas considerações comuns das modelagens de VTD (RAMASWAMI; SIVARAJAN, 2002). Serão mostradas também formas de controlar ou 10 otimizar o número de comprimentos de onda, entre outras métricas normalmente vistas em modelos de RWA (ZANG; JUE; MUKHERJEE, 2000).

3.1 Grau Lógico e Multiplicidade de Ligações Lógicas

No modelo básico do TWA o número de ligações lógicas não é limitado, mas é controlado 14 indiretamente pelos custos de instalação e pelo número de comprimentos de onda por fibra, 15 ou ainda, caso a topologia física seja um dado de entrada, pelo número de ligações físicas 16 existentes.

Caso se queira fazer esse controle diretamente, serão considerados os dados de entrada 18 $GLin_m$ e $GLout_m$, respectivamente, os graus lógicos de entrada e saída do nó m. 19

Para controlar o grau lógico, são necessárias duas restrições que devem ser adicionadas ao 20 modelo básico: a Restrição (3.1.2) que controla o grau lógico de saída; e a Restrição (3.1.1) que controla o grau lógico de entrada.

A Restrição (3.1.3) acrescenta a limitação da multiplicidade das ligações lógicas (Ml) ao 23 modelo TWA, que é indiretamente limitada pelo grau lógico. Para não usar multiplicidade nas ligações lógicas, basta fazer Ml = 1.

3.2 Congestionamento 30

- 1 **Dados 2.** Constantes adicionais:
- 1. Grau Lógico de entrada do nó $m = GLin_m$, $\forall m$.
- 2. Grau Lógico de saída do nó $m = GLout_m$, $\forall m$.
- *3.* Ml = Multiplicidade das Ligações Lógicas.

$$\sum_{wn} B_{mw}^{mn} \le GLin_m, \quad \forall m, i \ne m$$
(3.1.1)

$$\sum_{inw} B_{iw}^{nm} - \sum_{inw} B_{iw}^{mn} \leqslant GLout_m, \quad \forall m, i \neq m$$
(3.1.2)

$$\sum_{nw} B_{iw}^{nm} - \sum_{nw} B_{iw}^{mn} \leqslant Ml, \quad \forall (i,m), i \neq m$$
(3.1.3)

5 3.2 Congestionamento

- 6 Como foi comentado na Seção 2, a multiplicidade das ligações lógicas fica implícita para as
- variáveis de distribuição de tráfego. Deste modo, não é possível minimizar diretamente o tráfego
- 8 em cada canal. Portanto, para minimizar o congestionamento mantendo esta multiplicidade, são
- necessárias novas variáveis para contabilizar o tráfego em cada canal.
- A fração de tráfego $f_{i,r,j}$ (Variável 3.2.1) é semelhante a Variável 2.3.2 (fração de fluxo),
- com a diferença de que a Variável 3.2.1 separa o fluxo por canal, e a anterior considerava todos
- os canais. Por sua vez, a ligação lógica $F_{i,r,j}$ (Variável 3.2.2) mapeia cada canal óptico em uma
- 13 ligação lógica independente.
- Mas para isso, precisamos que sejam definidos os graus lógicos para os nós da rede. E
- também serão necessárias as Restrições (3.1.1) e (3.1.2), para controle de grau lógico.
- Notatação 2. O índice $r \in \{1, \cdots, CapLog_{mn}\}$ enumera os possíveis múltiplos canais lógicos
- entre par (m,n), onde $CapLog_{m,n}$ é o mínimo entre $GLout_m$ e $GLin_n$.
- Variável 3.2.1. Fração de Tráfego $= f_{irj} \in [0,1]$: variável contínua.
- ¹⁹ Variável 3.2.2. Ligação Lógica = $F_{irj} \in \{0,1\}$: variável binária.
- Variável 3.2.3. $F_{max} = Fração de tráfego do canal mais carregado da rede (congestionamento).$

3.2 Congestionamento 31

$$\sum_{nw} B_{iw}^{nm} - \sum_{nw} B_{iw}^{mn} = \sum_{r} F_{irm}, \quad \forall (i, m), \text{ com } i \neq m.$$
 (3.2.1)

$$F_{irj} \geqslant f_{irj}, \quad \forall (i, r, j).$$
 (3.2.2)

$$\sum_{sw} q_{sw}^{ij} \cdot A_s = Cap \cdot \left(\sum_r f_{irj}\right), \quad \forall (i,j). \tag{3.2.3}$$

$$F_{max} \geqslant f_{irj}, \quad \forall (i, r, j).$$
 (3.2.4)

Minimize:
$$F_{max}$$
. (3.2.5)

A Restrição (3.2.1) determina as ligações lógicas F_{irj} em termos dos componentes topológicos. Em seguida, a Restrição (3.2.2) define a fração do tráfego em cada canal, limitado pela existência do canal. Para as variáveis definidas nesta seção, é necessária uma restrição de limitação da capacidade (3.2.3) adicional. Por fim, definimos o congestionamento (F_{max}) na Variável 3.2.3 e a Restrição (3.2.4) determina F_{max} em termos das frações de tráfego em cada canal. Deste modo, a Função Objetivo (3.2.5) agora consiste em minimizar F_{max} . Apesar das novas variáveis introduzidas nesta seção, a ordem de grandeza no número de variáveis continua sendo comandada pelos componentes topológicos.

O caso de uso apresentado nesta seção, mostra que é possível minimizar diretamente o congestionamento nesta modelagem, pois esta é uma bem conhecida métrica para o VTD. Todavia, uma abordagem mais eficiente é a simples limitação do congestionamento, minimizando outra métrica, de modo a deixar o modelo mais tratável (ALMEIDA et al., 2006), como foi usado na forma básica do modelo TWA.

g

10

11

12

13

Uma forma alternativa, e bem mais simples, para se minimizar diretamente o congestionamento é adotando a Restrição (3.1.3), com Ml = 1. Todavia, perdendo assim a capacidade de
se obter soluções com ligações lógicas múltiplas. Deste modo, pode-se minimizar o congestionamento adotando apenas a Restrição (3.2.6), além da Variável (3.2.3) e a Função Objetivo
(3.2.5).

$$F_{max} \geqslant \sum_{sw} q_{sw}^{ij} \cdot A_s, \quad \forall (i,j), Ml = 1$$
 (3.2.6)

3.3 Ligações Lógicas em cada Fibra

Um controle muito usado nas modelagens de RWA (ZANG; JUE; MUKHERJEE, 2000; JAUMARD; MEYER; THIONGANE, 2004), é o número máximo L de ligações lógicas por fibra, Variável (3.3.1). Ela limita a densidade da multiplexação de comprimentos de onda por enlace físico, um importante aspecto de Redes Ópticas WDM. Caso seja fixada, ela pode ser usada para limitar cada ligação física, como é feito pela Restrição (3.3.1), ou minimizado diretamente como função objetivo. Caso a Restrição (3.3.1) seja adotada, ela também limitará a capacidade física dos nós realizarem ligações lógicas.

 $\mathbf{variável~3.3.1.}~L=N$ úmero máximo de ligações lógicas em cada fibra.

$$\sum_{iw} B_{iw}^{mn} \leqslant L, \quad \forall (m,n). \tag{3.3.1}$$

3.4 Número de Saltos Físicos

Uma métrica importante para o projeto de redes ópticas é o número de saltos físicos da topologia (ZANG; JUE; MUKHERJEE, 2000). Este valor é minimizado na Função Objetivo (3.4.1), através da soma de todos os componentes topológicos, pois cada componente topológico representa um salto físico. Uma propriedade importante desta abordagem é que ela evita o aparecimento de ciclos na topologia. O ideal seria minimizar a distância percorrida por cada enlace lógico, o que controlaria a degradação do sinal óptico. Minimizar o número total de saltos pode ser adotado por uma questão de compatibilidade com outros modelos, como os resultados encontrados em (ASSIS; WALDMAN, 2004), que serão usados na comparação dos experimentos computacionais do Capítulo 5.2.

Minimize:
$$\sum_{imnw} B_{iw}^{mn}.$$
 (3.4.1)

As variáveis de fração de fluxo agregado, definidas no modelo básico, são suficientes para modelar a distribuição do tráfego, embora na implementação real de múltiplas rotas físicas entre um mesmo par de nós (i, j), alguns detalhes ainda carecem ser decididos, pois podem haver mais de uma maneira de configura-los. Um exemplo disso é dado na Figura 3.1, onde o conjunto de componentes topológicos dado permite duas possibilidades de configuração dos percursos lógicos. É garantida implicitamente a alocação de recursos suficientes, mas este sub-

- problema fica sem ser resolvido pelo modelo. Por essa razão, não é possível controlar a real
- 2 distância percorrida pelas demandas de tráfego, sendo este um prejuízo da modelagem TWA.
- Essas situações podem ser tratadas considerando outros fatores, como a distância entre os
- 4 nós. Mas são questões de menor complexidade, se a topologia já estiver decidida, e podem ser
- resolvidas na fase de configuração da rede. Isso não influencia na modelagem dos recursos da
- 6 rede e portanto não será tratado aqui.

Figura 3.1: Em *b*) vemos duas possíveis de interpretações dos componentes topológicos em *a*).

3.5 Comprimentos de Onda

- 8 Um objetivo comum nas modelagens do RWA é controlar o número de comprimentos de
- onda utilizados na rede (ZANG; JUE; MUKHERJEE, 2000; JAUMARD; MEYER; THION-
- GANE, 2004). Para determinar se um comprimento de onda foi usada na rede, temos a Restri-

ção (3.5.1), que limita a soma de todos os componentes topológicos no comprimento de onda w, pela existência de Q_w (Variável 3.5.1). O fator $M \cdot (N^2 - N)$ representa o número máximo de componentes topológicos que podem usar o comprimento de onda w ao mesmo tempo. Ela deve ser adicionada àquelas do modelo TWA, mas somente no caso da topologia física ser livre.

Pois o número de caminhos que um comprimento de onda pode ter entre um mesmo par (i,j) é a multiplicidade física da rede, onde $(N^2 - N)$ é o número de pares (i,j) possíveis, e M é a multiplicidade física da rede. Qualquer número maior do que este também manteria a integridade da restrição, todavia, restrições mais precisas podem ajudar os algoritmos de resolução de modelos MILP.

Caso a topologia física seja fixada, há a Restrição (3.5.2) que é mais conveniente, pois deixaria o modelo mais enxuto. Caso a topologia física da rede seja um dos dados de entrada, há uma forma alternativa para se definir Q_w , que reaproveita uma das restrições do modelo TWA. Deixando assim de acrescentar uma nova restrição ao modelo. Com D_{mn} fixo, podemos multiplicá-lo por Q_w na Restrição (2.3.2), sem prejudicar a função original da equação, e obter o mesmo efeito da Restrição (3.5.1). Deste modo, a Restrição (3.5.2) deve substituir a equação (2.3.2) do modelo original. Para minimizar diretamente o número de comprimentos de onda utilizados na rede, basta usar a soma de todas as variáveis Q_w (Variável 3.5.1) como função objetivo.

Variável 3.5.1. Seja $Q_w \in \{0,1\}$, com $w \in \{1,..,W\}$. $Q_w = 1$ se 0 comprimento de onda w é utilizada na rede e $Q_w = 0$, caso contrário.

$$\sum_{imn} B_{iw}^{mn} \leqslant M \cdot (N^2 - N) \cdot Q_w, \quad \forall w.$$
 (3.5.1)

$$\sum_{i} B_{iw}^{mn} \leqslant Q_w \cdot D_{mn}, \quad \forall (m, n, w).$$
(3.5.2)

Minimize:
$$\sum_{w} Q_{w}$$
. (3.5.3)

3.6 Conversão de Comprimentos de Onda

Outro cenário comum nas modelagem para o RWA é a possibilidade de conversão do comprimento de onda ao longo de um caminho óptico. Há duas formas mais comuns de se tratar essa abordagem. Ou um nó possui capacidade total de conversão (ZANG; JUE; MUKHER-

- JEE, 2000; JAUMARD; MEYER; THIONGANE, 2004; TORNATORE; MAIER; PATTA-
- ² VINA, 2007) e todas as ligações lógicas passando por ele podem mudar de comprimento de
- onda nessa passagem, ou há uma quantidade máxima de conversões (RAMASWAMI; SASAKI,
- 4 1998; ASSIS; WALDMAN, 2004). Como o primeiro método é apenas um caso particular do
- 5 segundo, trataremos do caso mais geral.
- Não será fixado quais nós terão a capacidade de conversão, mas sim controlaremos o nú-
- mero de conversões na rede, pela Variável 3.6.1. Caso a topologia física seja variável, é neces-
- 8 sário definir um limite para o número de ligações físicas originadas em cada nó da rede.
- **Dados 3.** $GFout_m = N$ úmero máximo de ligações físicas originadas no nó m.
- Variável 3.6.1. O número de conversões em um nó m, de um comprimento de onda w, realizadas nas ligações lógicas originadas em i, é mapeado pela variável x_{imw} . Onde $x_{imw} \in$ $\{0, \dots, GFout_m\}$, se a topologia física é livre, ou $x_{imw} \in \{0, \dots, \sum_n D_{mn}\}$, caso D_{mn} seja um parâmetro.
- Se a topologia física é fixa, então x_{imw} já está bem definida, caso contrário, será necessária a restrição adicional (3.6.1).

$$x_{imw} \le \sum_{n} D_{mn}, \quad \forall (i, m, w). \tag{3.6.1}$$

Ao se habilitar um nó a realizar conversões de comprimento de onda, torna-se necessário utilizar uma restrição mais geral, que garante a conservação fixada a origem, mas independente do comprimento de onda. A Restrição (3.6.2) cumpre esse papel. Ela sozinha já habilita o nó com capacidade de conversão total, onde todo comprimento de onde que chega pode ser convertido livremente. Já o número de conversões é mapeado pela Restrição (3.6.3), que substitui a Restrição (2.3.1).

$$\sum_{mw} B_{iw}^{nm} \ge \sum_{mw} B_{iw}^{mn}, \quad \forall (i,m), \text{ com } i \ne m.$$
(3.6.2)

$$\sum_{s} q_{sw}^{ij} \cdot A_s \leqslant Cap \cdot \left(\sum_{m} B_{iw}^{mj} - \sum_{n} B_{iw}^{jn} - x_{ijw} \right), \quad \forall (i, j, w)$$
(3.6.3)

Note na definição da Variável 3.6.1, que o comprimento de onda de saída do conversor não é registrada. A Restrição (3.6.3) assegura que haverá componentes topológicos no comprimento de onda w, com origem i, chegando em m em número suficiente para realizar as conversões.

Para cada uma destas, a Restrição (3.6.2) garante que haverá algum componente partindo de m,

- com origem i, mas em um comprimento de onda diferente de w. Aqui também podem ocorrer
- 2 situações como a que foi ilustrada na Figura 3.1, nas quais algo fica indefinido na interpretação
- dos componentes. Mas esses casos também não influenciam na modelagem e por isso também
- 4 não serão aqui considerados.
- Pode ser conveniente limitar o número de conversões em cada nó, ou seja, limitar a soma
- $\sum_{iw} x_{imw}$, ou o número total de conversões. Ou ainda, usar este último como função objetivo, o
- que é feito pela Restrição (3.6.4).

Minimize:
$$\sum_{imw} x_{imw}$$
. (3.6.4)

4 Lower Bounds

2

15

16

17

Nos trabalhos encontrados na literatura, no que diz respeito ao congestionamento, encontrar boas soluções é uma tarefa fácil para heurísticas (KRISHNASWAMY; SIVARAJAN, 2001; SKORIN-KAPOV; KOS, 2005). Todavia, o cálculo de *lower bounds* (LB) que garantam essa qualidade tem elevado custo computacional, sendo esta a parte mais difícil dessa abordagem. Apresentamos aqui uma nova técnica para a obtenção de *lower bounds* para o congestionamento que joga por terra essa dificuldade. Ela é uma formula de cálculo direto, que denominamos *Minimum Traffic Bound* (MTB), fornecendo um LB de alta qualidade para o congestionamento, com custo computacional desprezível.

Para determinar um LB para o congestionamento, precisamos enxergar qual é o mínimo de tráfego que pode ser encontrado em cada ligação lógica da rede. Não há uma resposta direta, mas podemos fazer uma estimativa olhando cada nó independentemente. Na melhor das hipóteses, todo o tráfego que passa pelas ligações lógicas originadas em um nó m é composto exclusivamente pelas demandas de tráfego desse nó. Analogamente, o tráfego nas ligações lógicas incidentes em m seria composto pelas demandas destinadas a ele. Esses são os menores valores possíveis, considerando que todo o tráfego da rede será devidamente enviado e recebido.

Assim, intuitivamente, dividindo todo o tráfego originado (incidente) em *m* pelo máximo de ligações lógicas originadas (incidentes) em *m*, temos o menor tráfego possível nessas ligações lógicas. Extrapolando isso para toda a rede, o maior dentre esses valores seria um bom candidato a *lower bound* para o congestionamento. Pois não é possível que um nó envie menos tráfego do que a soma das demandas originadas nele. Analogamente, não é possível que um nó receba menos tráfego do que o destinado a ele. O MTB é assim definido como o mínimo dos valores calculados nas equações do conjunto de Dados (4), na seção seginte.

4.1 MTB - Minimum Traffic Bound

- Para estabelecer o MTB, consideraremos apenas o número de ligações lógicas iniciando ou
- 3 terminando em cada nó da rede. Nas modelagens para o VTD, essa é toda a informação que
- 4 sobre a topologia da rede. Mas em modelagens mais abrangentes como o TWA, isso pode não
- 5 ser um dado de entrada.
- oxdota Dados 4. Sejam $lpha_i$ o número de ligações lógicas iniciadas em um nó i e eta_i o número de ligações
- 7 lógicas finalizadas em um nó j. Deste modo:

1.
$$\Theta_i = \sum_n D_{in}/\alpha_i$$
 and $\Gamma_j = \sum_m D_{mj}/\beta_j$

2.
$$\Omega_{ij} = \max_{ij}(\Theta_i, \Gamma_j)$$
 and $MTB = \max_{ij}(\Omega_{ij})$

Teorema 1 (Minimum Traffic Bound – MTB). Se o número de ligações lógicas iniciadas e finalizadas em cada nó da rede é um parâmetro de entrada, então o MTB, definido no conjunto de Dados 4, é um lower bound para o congestionamento.

13 Demonstração. Seja λ_{max}^* o valor ótimo do congestionamento. Devemos demostrar que $MTB \le \lambda_{max}^*$, o que equivale a mostrar que $\Omega_{ij} \le \lambda_{max}^*$, $\forall (i,j)$. Para isso é suficiente que sejam verdadeiras as inequações a seguir:

(i)
$$\Theta_i \leqslant \lambda_{max}^*$$
, $\forall i$ and (ii) $\Gamma_i \leqslant \lambda_{max}^*$, $\forall j$

Suponha por absurdo que a inequação (i) é falsa, ou seja, $\exists i$ tal que $\Theta_i > \lambda_{max}^*$. O mínimo tráfego que i pode originar, considerando todas as ligações lógicas iniciadas nele, é composto pelas demandas de tráfego com origem em i, ou seja, $\sum_n D_{in}$. Seja Ψ_i a soma de todo o tráfego nas ligações lógicas iniciadas em i, em uma solução viável qualquer. Deste modo, $\Psi_i \geqslant \sum_n D_{in}$, considerando que algum tráfego possa ser retransmitido através de i. Seja $\overline{\Psi}_i$ o tráfego médio entre as ligações lógicas iniciadas em i. Segue que:

$$\overline{\Psi}_i = rac{\Psi_i}{lpha_i} \geqslant rac{\sum_n D_{in}}{lpha_i} = \Theta_i$$

Ou seja, $\overline{\Psi}_i \geqslant \Theta_i$. Portanto, $\exists j$ tal que $\Phi_{ij} \geqslant \Theta_i$, onde Φ_{ij} é o tráfego na ligação lógica (i,j).
Como $\Theta_i > \lambda_{max}^*$, segue que, $\Phi_{ij} > \lambda_{max}^*$ para qualquer solução viável. O que é absurdo para as soluções ótimas, pois contraria a definição de λ_{max}^* , como o tráfego da ligação lógica mais carregada. Isso prova que a inequação (i) é verdadeira, e de modo análogo pode-se verificar a validade da inequação (ii).

Note que não foi feita restrição quanto à multiplicidade de ligações lógicas. Estamos considerando portanto o caso mais geral do VTD.

Dizemos que o MTB é um LB para para o VTD, pois a única restrição feita é quanto ao conhecimento do número de ligações lógicas iniciando e terminando em cada nó. Em modelagens
mais abrangentes, como o TWA, a introdução de mais restrições e variáveis pode fazer com que
o ótimo do VTD se torne inviável. Ainda assim, o MTB será um LB para o congestionamento,
todavia, outras técnicas de obtenção de LB poderiam ser empregadas para explorar o espaço
do conjunto de soluções que se tornou inviável. Uma alternativa é a conhecida técnica iterativa
apresentada em (RAMASWAMI; SIVARAJAN, 2002).

O MTB foi aqui estabelecido em sua forma mais geral, considerando que cada nó pode possuir quantidades diferentes de ligações lógicas originadas ou incidentes, entretanto, na literatura é comum considerar que os nós da rede possuem grau lógico uniforme (RAMASWAMI; SIVARAJAN, 2002).

Além disso, a definição dada para o MTB no Conjunto de Dados 4 foi colocada de forma mais intuitiva. Mas, pode-se notar que o MTB consiste apenas do máximo do conjunto das somas das demandas originadas ou recebidas em cada nó, divido pelo grau lógico da rede. Portanto convém apresenarmos uma fomulação mais adequada para implementações. Isso é feito no Lema 1.

Lema 1. Supondo que toda a rede possui grau lógico uniforme GL, o MTB pode ser definido da seginte forma:

$$MTB = \frac{1}{GL} \cdot \max_{m} \left(\sum_{n} D_{mn}, \sum_{n} D_{nm} \right)$$

Em última análise, o MTB explora a possibilidade da ligação lógica mais carregada da rede transportar predominantemente tráfego que não foi ou não será retransmitido. Apesar de aparentemente ingênua, essa é uma suposição muito acertada, posto que na maioria dos testes feitos o MTB equivale ao ótimo, como será visto no Capítulo 5.

5 Experimentos Computacionais com o TWA

Para avaliar a pertinência desta nova abordagem, testes computacionais foram realizados. Toda a modelagem do TWA foi descrita em AMPL® (*A Modeling Language for Mathematical Programming* - www.ampl.com), de modo que facilmente possa ser adaptada para várias finalidades. Utilizamos o *solver* SCIP (*Solving Constraint Integer Programs* - scip.zib.de) para resolver o modelo MILP do TWA. Para interpretar o código AMPL, gerando a entrada de dados para o SCIP, foi usado o GLPK (*GNU Linear Programming Kit* - www.gnu.org/software/glpk/). Vale observar que o SCIP e o GLPK são *softwares* livres, de código fonte aberto e de distribui-

Os resultados dos experimentos computacionais realizados com o TWA são comparados, neste capítulo, com os publicados em (ASSIS; WALDMAN, 2004) e (KRISHNASWAMY; SIVARAJAN, 2001), aonde foram propostos modelos para a resolução integrada do VTD e RWA. Todavia, ambos os modelos não incluem a topologia física como uma variável, diferente do TWA. Por esse motivo, para podermos produzir resultados passíveis de comparação, nos testes que veremos mais adiante neste capítulo, além de outras considerações, a topologia física da rede é um dado de entrada.

ção gratuita.

A modelagem encontrada em (ASSIS; WALDMAN, 2004) é baseada nas modelagens clássicas desses problemas (RAMASWAMI; SIVARAJAN, 2002; ZANG; JUE; MUKHERJEE, 2000), o qual denominaremos VTD-RWA. Este trabalho propõe um algoritmo iterativo, que faz uso de programação linear, para resolver os problemas VTD e RWA de forma integrada. A solução do VTD gera requisições para um conjunto de caminhos, representados pela topologia virtual, que devem ser roteados pela topologia física. Os caminhos são alocados de maneira a minimizar critérios de otimização. A estratégia foi testada para redes com características distintas, mas não sendo considerado conversão de comprimentos de onda.

Para os resultados publicados em (KRISHNASWAMY; SIVARAJAN, 2001), é feita uma modelagem MILP que minimiza congestionamento em redes sem conversores de comprimentos

5.1 O Modelo VTD-RWA 41

de onda, o qual denominaremos KS. Segundo os autores, esta formulação não é computacionalmente tratável, sendo métodos heurísticos propostos. O Modelo MILP é relaxado e executado interativamente por 25 vezes usando um plano de corte. As variáveis que representam a topologia virtual e os percursos físicos são arredondadas, enquanto uma heurística de alocação de comprimentos de onda é aplicada para atribuir comprimentos de onda individualmente aos caminhos ópticos. O tráfego é roteado pela topologia virtual utilizando uma formulação linear (LP) consistindo somente das restrições de tráfego do MILP relaxado. Uma das desvantagens desse método é que supondo que existam W comprimentos de onda disponíveis em cada fibra, o MILP relaxado obtém uma solução que satisfaz esta restrição. No entanto, sendo que o algoritmo de alocação de comprimentos de onda, que é aplicado subsequentemente, obtém 10 soluções sub-ótimas, não há garantia de uma alocação de comprimentos de onda com sucesso, 11 respeitando o limite de W comprimentos de onda. Como resultado, o método não retorna ne-12 cessariamente soluções viáveis para todos os casos. 13

5.1 O Modelo VTD-RWA

Reproduzimos nesta seção a formulação matemática encontrada em (ASSIS; WALDMAN, 2004), a qual denominamos VTD-RWA. Este é um modelo de programação linear inteira mista, que combina variáveis reais e variáveis discretas. Ela modela os quatro subproblemas do projeto de uma WRON. Mas topologia física é considerada conhecida, sendo passado como parâmetro para o modelo.

- Supondo grau lógico uniforme para toda a rede (G), o número de variáveis binárias deste modelo é da ordem de $\Theta(N^4 \cdot W \cdot G)$.
- Variável 5.1.1. $b_{ij} \in \mathbb{N}$, a Topologia Virtual, representa o número de ligações lógicas entre o par (i, j).
- Variável 5.1.2. $b_{ijw} \in \mathbb{N}$, representa o número de ligações lógicas entre o par (i, j) utilizando o comprimento de onda w.
- Variável 5.1.3. $\lambda_{ij}^{sd} \in \mathbb{R}^+$, Componente de Tráfego, representa a quantidade de tráfego fluindo de uma fonte s para um destino d, e passando pelas ligações lógicas entre o par (i, j).
- Variável 5.1.4. $\lambda_{ij} = \sum_{sd} \lambda_{ij}^{sd}$, Tráfego total nas ligações lógicas entre o par (i,j).
- **Variável 5.1.5.** $\lambda_{max} \in \mathbb{R}^+$, Congestionamento da rede.
- Variável 5.1.6. $L \in \mathbb{N}$, número de ligações lógicas no enlace físico mais carregado, com $L \leq W$.

5.1 O Modelo VTD-RWA 42

Variável 5.1.7. $p_{mn}^{ij} \in \mathbb{N}$, número de ligações lógicas entre o par (i, j) passando pelo enlace

- 2 físico (m,n).
- **Variável 5.1.8.** $p_{mnw}^{ij} \in \mathbb{N}$, comprimento de onda utilizado nas ligações lógicas entre o par (i,j)
- $_{4}$ $\,\,$ $passando \, pelo \, enlace \, físico \, (m,n).$

Minimize:
$$\lambda_{max}$$
 (5.1.1)

$$\forall (i, s, d), \quad \sum_{j} \lambda_{ij}^{sd} - \sum_{j} \lambda_{ji}^{sd} = \begin{cases} P_{sd}, & s = i \\ -P_{sd}, & d = i \\ 0, & \text{caso contrário} \end{cases}$$
 (5.1.2)

$$\lambda_{ij} = \sum_{sd} \lambda_{ij}^{sd}, \quad \forall (i,j)$$
 (5.1.3)

$$\lambda_{ij} \leqslant \lambda_{max}, \quad \forall (i,j)$$
 (5.1.4)

$$\lambda_{ij}^{sd} \leqslant b_{ij} \cdot P_{sd}, \quad \forall (i, j, s, d)$$
 (5.1.5)

$$\sum_{i} b_{ij} \leqslant GLout_i, \quad \forall i$$
 (5.1.6)

$$\sum_{i} b_{ij} \leqslant GLin_{j}, \quad \forall j$$
 (5.1.7)

$$\sum_{n} p_{mn}^{ij} = \sum_{n} p_{nm}^{ij}, \quad \forall (i, j, m), \text{ com } m \neq i \text{ e } m \neq j.$$

$$(5.1.8)$$

$$\sum_{n} p_{in}^{ij} = b_{ij}, \quad \forall (i,j)$$
(5.1.9)

$$\sum_{m} p_{mj}^{ij} = b_{ij}, \quad \forall (i, j)$$
 (5.1.10)

$$\sum_{ij} p_{mn}^{ij} \leqslant L \cdot D_{mn}, \quad \forall (m,n)$$
 (5.1.11)

$$\sum_{n} p_{mnw}^{ij} = \sum_{n} p_{nmw}^{ij}, \quad \forall (i, j, m, w), \text{ com } m \neq i \text{ e } m \neq j.$$
 (5.1.12)

$$\sum_{n} p_{inw}^{ij} = b_{ijw}, \quad \forall (i, j, w)$$
(5.1.13)

$$\sum_{m} p_{mjw}^{ij} = b_{ijw}, \quad \forall (i, j, w)$$
(5.1.14)

$$\sum_{w} b_{ijw} = b_{ij}, \quad \forall (i,j)$$
 (5.1.15)

$$\sum_{ij} p_{mnw}^{ij} \leqslant D_{mn}, \quad \forall (m, n, w)$$
 (5.1.16)

$$\sum_{w} p_{mnw}^{ij} = p_{nm}^{ij}, \quad \forall (i, j, m, n)$$
 (5.1.17)

5.2 Comparação com o modelo VTD-RWA

Nos resultados que iremos confrontar, são considerados: o grau lógico da rede (*Gl*), o número de ligações lógicas em cada fibra (*L*), o número de comprimentos de onda disponíveis em cada ligação física (*W*) e o número de saltos físicos na topologia (*S*). Esses parâmetros são comumente tratados nas investigações a cerca do RWA (ZANG; JUE; MUKHERJEE, 2000).

Também é controlado o congestionamento, que é uma conhecida métrica para o VTD. Isso é feito através da clássica heurística HLDA (RAMASWAMI; SIVARAJAN, 2002; LIMA et al., 2004), gerando uma solução para o VTD que alimenta as etapas seguintes do procedimento, conforme apresentado em (ASSIS; WALDMAN, 2004). Para cada grau lógico, o HLDA produz de forma determinística uma topologia lógica, baseado na matriz de demandas. A solução para o VTD é completada distribuindo o tráfego sobre esta topologia, através de um modelo de programação linear (RAMASWAMI; SIVARAJAN, 2002).

Para produzir resultados passíveis de comparação, são acrescentadas à modelagem básica do TWA, mostrada na Seção 2, as restrições de controle do grau lógico (Restrição 3.1) e a de limitação do número de ligações lógicas em cada fibra (Restrição 3.3.1). Esta formulação específica é denominada de TWA-a. Para controlar a qualidade das soluções quanto ao congestionamento, foram obtidas topologias virtuais com uma implementação da heurística HLDA. Para

cada uma destas topologias, foi distribuído o tráfego e calculado o congestionamento através do *solver* do *software* GLPK (*GNU Linear Programming Kit* - www.gnu.org/software/glpk/), utilizando uma versão do modelo clássico para o VTD (RAMASWAMI; SIVARAJAN, 2002). O valor de congestionamento obtido, arredondado para cima, foi usado como a capacidade dos canais lógicos, na Restrição (2.3.1). Para cada instância, esse procedimento levou menos de um segundo, portanto não será considerado na contagem de tempo de processamento dos nossos resultados.

A estratégia adotada foi, partindo do menor grau lógico (Gl=1), fixar nos valores mínimos o número de comprimentos de onda e a limitação de ligações das fibras (W=1 e L=1), minimizando o número de saltos (S). Um solver para problemas MILP é instanciado com essa configuração. Enquanto o solver retornar que o problema é insolúvel (MUKHERJEE, 1997), L será incrementado até o seu limite, que é o valor atual de W. Quando L não puder ser aumentado (L=W), então W o será, e assim por diante. Se uma solução viável é encontrada, o solver é interrompido, a solução é registrada e o grau lógico é incrementado, dando continuidade ao processo.

Nas situações em que o problema era insolúvel, o solver determinou isso em menos de um segundo, dificultando a separação dos tempos de leitura e de execução. Portanto estes tempos não foram computados. Essas situações em que o modelo precisou ser calibrado, que chamaremos de *Instância Insolúvel (I)*, fazem parte do método e são registradas conjuntamente com os resultados.

Como, nesta modelagem, W está diretamente relacionado a quantidade de variáveis, é mais conveniente começar com W=1. Disso decorre a escolha de também começarmos com Gl=1 e L=1. A maior prioridade para a incrementação é dada ao Gl, pois variando este temos instâncias diferentes. A menor precedência ficou para W, pois quanto menor ele for menores precisarão ser os custos de instalação da rede. Na posição intermediária fica L, pois, minimizando-o, maximizamos a disponibilidade da rede.

Utilizamos o *solver* SCIP (*Solving Constraint Integer Programs* - scip.zib.de) para encontrar as soluções viáveis. Além de calcular a capacidade dos canais ópticos (*Cap*), como foi
descrito acima, o GLPK também foi usado para interpretar o modelo AMPL, gerando a entrada
de dados para o SCIP. Vale observar que o SCIP e o GLPK são *softwares* livres, de código fonte
aberto e de distribuição gratuita. Os resultados que serão confrontados com os nossos foram
produzidos com o ILOG CPLEX® (www.ilog.com/products/cplex), uma ferramenta comercial.

Foram executados dois testes computacionais, com uma rede de 6 nós e com uma rede de 12

34

- nós (ASSIS; WALDMAN, 2004). Os resultados foram compilados nas Tabelas 5.2 e 5.3, cujas
- 2 legendas estão resumidas na Tabela 5.1. Todos os testes foram executados em um *notebook*
- ³ PC (Linux Ubuntu 8.04, 32bits), equipado com processador Sempron Mobile 3500+ (1.8GHz,
- ⁴ 512*KB*) e 2*GB DDR*2 (533*MHz*).

GL = Grau Lógico L = Limitação de Ligações lógicas das Fibras W = Número de comprimentos de onda disponíveis S = Número de Saltos Físicos t = Tempo em segundos para encontrar a primeira solução viável Cap = Capacidade de Tráfego de Cada Canal Óptico I = Instância Insolúvel

Tabela 5.1: Legendas para as Tabelas 5.2 e 5.3.

Os resultados para a rede de 6 nós foram compilados na Tabela 5.2. Na Figura 5.1 está representada a topologia física da rede de 6 nós, e na Figura 5.2 sua matriz de demandas de tráfego (ASSIS; WALDMAN, 2004). A primeira coluna registra o grau lógico de cada instância (*Gl*), que neste caso foram 5. Da segunda até a quarta coluna (*L*, *W* e *S*) estão os resultados de (ASSIS; WALDMAN, 2004) e da quinta à sétima estão os resultados obtidos com a metodologia descrita acima.. Note que em todas as instâncias foram obtidos resultados melhores.

Figura 5.1: Rede de 6 nós (ASSIS; WALDMAN, 2004).

$\Lambda_{ m sd}$	0	1	2	3	4	5
0	-	0,90	0,62	0,51	0,28	0,52
1	0,5	_	0,39	0,92	0,26	0,15
2	0,4	0,31	_	0,34	0,21	0,14
3	0,2	0,48	0,34	-	0,99	0,36
4	0,1	0,44	0,14	0,84	_	0,99
5	0,4	0,19	0,99	0,75	0,18	-

Figura 5.2: Matriz de demandas para a rede de 6 nós.

	Vī	D-R	WA		TWA-a						
\overline{Gl}	L	W	S	L	W	S	t	Cap	Ι		
1	1	1	09	1	1	06*	00	08	0		
2	2	2	18	1	1	11*	03	03	0		
3	2	2	32	1	1	14*	00	02	0		
4	3	3	41	2	2	25*	10	01	2		
_ 5	4	5	50	3	3	46*	00	01	2		

Tabela 5.2: Resultados para a rede de 6 nós. *: Solução Ótima.

A oitava coluna da Tabela 5.2 traz o tempo, em segundos, que o *solver* levou para encontrar a primeira solução viável (*t*). Um fato importante é que em todas as instâncias desta bateria de testes, este tempo foi suficiente para determinar a otimalidade da solução viável encontrada. Essa possibilidade, além do interesse teórico, corrobora para a eficiência do método aqui aplicado. Em (ASSIS; WALDMAN, 2004) não são encontradas soluções ótimas e não foi informado o tempo gasto nesta etapa.

Ainda na Tabela 5.2, na nona coluna temos a capacidade do canal óptico (*Cap*) e por fim, na última coluna temos o histórico das tentativas de calibração do modelo, do tipo Instância Insolúvel (*I*). Nesta coluna, um *zero* significa que os resultados registrados nesta mesma linha foram conseguidos na primeira execução do *solver*. Analogamente, um número diferente de zero significa a quantidade de vezes em que foram encontradas instâncias insolúveis, antes da execução que proveu o resultado expresso nesta linha.

	V	ГD-I	RWA		TWA-a							
Gl	L	W	S	L	W	S	t	Cap	Ι			
1	1	1	032	1	1	013*	016	35	0			
2	2	2	052	1	1	027	031	10	0			
3	3	3	078	2	2	066	176	04	2			
4	4	4	104	2	2	074	070	03	0			
5	4	4	130	3	3	108	133	02	2			
6	5	5	147	3	3	091	003	02	0			

Tabela 5.3: Resultados para a rede de 12 nós. *: Solução Ótima.

Com o mesmo arranjo de colunas descrito acima, a Tabela 5.3 trás os resultados para a rede de 12 nós. Na Figura 5.1 está representada a topologia física da rede de 6 nós, e na Figura 5.2 sua matriz de demandas de tráfego (ASSIS; WALDMAN, 2004). Desta vez temos 6 instâncias, do grau lógico 1 até o 6. Aqui também foram obtidos melhores resultados para o trio *L*, *W* e *S*. Nesta etapa, os resultados de (ASSIS; WALDMAN, 2004) foram obtidos com 6 horas de execução, enquanto os resultados com o modelo TWA levaram 7.2 minutos para serem

Figura 5.3: Rede de 12 nós (ASSIS; WALDMAN, 2004)

- produzidos.
- Mesmo quando não foi encontrado o valor ótimo para S, através do método utilizado, a otimalidade está garantida para os parâmetros L e W. Em particular, note que apenas a variação de W influenciou nos resultados, pois L sempre teve de ser fixado no seu valor máximo (L = W). Um detalhe importante é que, para a primeira instância da rede de 12 nós (Gl = 1), o solver também foi capaz de provar a otimalidade para a primeira solução viável. Isto demonstra que o modelo TWA mantém desempenho aceitável mesmo com uma rede de maior porte. Com esses resultados mostramos a viabilidade da técnica aqui proposta, técnica esta que é totalmente

	0,92		0,84	0,3	0,49	0,83	0,17	0,28	0,52	0,41	0,32
0,23		0,2	0,52	0,29	0,89	0,56	0,97	0,46	0,64	0,3	0,96
0,6	0,17		0,2	0,19	0,82	0,37	0,27	0,06	0,2	0,87	0,72
0,48	0,4	0,6		0,68	0,64	0,7	0,25	0,98	0,37	0,01	0,41
0,89	0,93	0,27	0,83		0,81	0,54	0,87	0,58	0,78	0,76	0,74
0,76	0,91	0,19	0,01	0,54		0,44	0,73	0,42	0,68	0,97	0,26
0,45	0,41	0,01	0,68	0,15	0,34		0,B	0,51	0,46	0,99	0,43
0,01	0,89	0,74	0,37	0,69	0,28	0,62		0,33	0,56	0,78	0,93
0,82	0,05	0,44	0,83	0,37	0,34	0,79	0,89		0,79	0,43	0,68
0,44	0,35	0,93	0,5	0,86	0,53	0,95	0,19	0,22		0,49	0,21
0,61	0,81	0,46	0,7	0,85	0,72	0,52	0,29	0,57	0,6		0,83
0,79	0,01	0,41	0,42	0,59	0,3	0,88	0,66	0,76	0,05	0,64	

Figura 5.4: Matriz de demandas para a rede de 12 nós.

5.3 O Modelo KS 48

baseada no modelo apresentado neste trabalho.

5.3 O Modelo KS

- Reproduzimos nesta seção a formulação matemática encontrada em (KRISHNASWAMY;
- 4 SIVARAJAN, 2001), a qual denominamos KS. Este é um modelo de programação linear inteira
- 5 mista, que combina variáveis reais e variáveis discretas. Ela modela os quatro subproblemas
- 6 do projeto de uma WRON. Mas topologia física é considerada conhecida, sendo passado como
- parâmetro para o modelo. Adotaremos aqui o índice r tal como foi definido na Notação 2.
- Supondo grau lógico uniforme para toda a rede (G), o número de variáveis binárias deste
- 9 modelo é da ordem de $\Theta(N^4 \cdot W \cdot G)$.
- Variável 5.3.1. Ligação lógica, $b_{ijr} = 1$ se existe a ligação lógica de índice r entre o par (i, j),
- ou $b_{ijr} = 0$ caso contrário.
- Variável 5.3.2. Alocação de comprimento de onda, $C_{ij}^{wr} = 1$ se a ligação lógica de índice r
- entre o par (i, j) usa o comprimento de onda w, ou $C_{ij}^{wr} = 1$ caso contrário.
- Variável 5.3.3. Rota física, $C_{mnij}^{wr}=1$ se a ligação lógica de índice r entre o par (i,j) usa o
- comprimento de onda w, passando pelo enlace físico (m,n), ou $C_{ij}^{wr}=1$ caso contrário.
- Variável 5.3.4. $\lambda_{ijr}^{sd} \in \mathbb{R}^+$, Componente de Tráfego, representa a quantidade de tráfego fluindo
- de uma fonte s para um destino d, e passando pela ligação lógica entre o par (i, j) de índice r.
- Variável 5.3.5. λ_{ijr} , Tráfego total na ligação lógica entre o par (i,j) de índice r.
- 19 **Variável 5.3.6.** $\lambda_{max} \in \mathbb{R}^+$, Congestionamento da rede.

Minimize:
$$\lambda_{max}$$
 (5.3.1)

$$\sum_{jr} b_{ijr} \leqslant GLout_i, \quad \forall i$$
 (5.3.2)

$$\sum_{ir} b_{ijr} \leqslant GLin_j, \quad \forall j$$
 (5.3.3)

$$\sum_{w} C_{ij}^{wr} = b_{ijr}, \quad \forall (i, j, r)$$
(5.3.4)

$$C_{mnij}^{wr} \leqslant C_{ij}^{wr}, \quad \forall (i, j, w, r, m, n)$$

$$(5.3.5)$$

$$\sum_{ijr} C_{mnij}^{wr} \leqslant 1, \quad \forall (w, m, n)$$
 (5.3.6)

$$\forall (i, j, r, n), \quad \sum_{mw} C_{mnij}^{wr} \cdot D_{mn} - \sum_{mw} C_{nmij}^{wr} \cdot D_{nm} = \begin{cases} b_{ijr}, & n = j \\ -b_{ijr}, & n = i \\ 0, & \text{caso contrário} \end{cases}$$
(5.3.7)

$$\lambda_{ijr}^{sd} \leqslant b_{ijr} \cdot P_{sd}, \quad \forall (i, j, r, s, d)$$
 (5.3.8)

$$\lambda_{ijr} = \sum_{sd} \lambda_{ijr}^{sd}, \quad \forall (i, j, r)$$
 (5.3.9)

$$\lambda_{ijr} \leqslant \lambda_{max}, \quad \forall (i, j, r)$$
 (5.3.10)

$$\forall (i, s, d), \quad \sum_{jr} \lambda_{ijr}^{sd} - \sum_{jr} \lambda_{jir}^{sd} = \begin{cases} P_{sd}, & s = i \\ -P_{sd}, & d = i \\ 0, & \text{caso contrário} \end{cases}$$
(5.3.11)

5.4 Comparação com o modelo KS

- Nos resultados que iremos confrontar, é considerado o grau lógico da rede (Gl), não há multiplicidade de ligações lógicas e a função objetivo é o congestionamento. Para produzir resultados passíveis de comparação, são acrescentadas à modelagem básica do TWA, mostrada na Seção 2: as Restrições (3.1) de controle do grau lógico; a Restrição (3.1.3) de controle de multiplicidade de ligações lógicas, com M=1; e a Restrição (3.2.6) que determina o congestionamento como função objetivo. Esta formulação específica é denominada de TWA c_1 .
- Na Figura 5.5 está representada a topologia física da rede NSFNET, na qual são baseados os testes em (KRISHNASWAMY; SIVARAJAN, 2001). Nas Tabelas 5.4 e 5.5, respectivamente, estão as matrizes de demandas *P*1 e *P*2 da NSFNET (RAMASWAMI; SIVARAJAN, 2002).

Figura 5.5: Rede de 14 nós NSFNET (KRISHNASWAMY; SIVARAJAN, 2001).

Ta	abela :	5.4: M	latriz (de den	nanda	s <i>P</i> 1 (1	RAMA	ASWA	MI; S	SIVAR	AJAN	l, 1990	5).
0.000	33.029	32.103	26.008	0.525	0.383	82.633	31.992	37.147	0.568	0.358	0.544	0.651	0.160
0.546	0.000	0.984	0.902	0.866	0.840	0.013	62.464	0.475	0.001	0.342	0.925	0.656	0.501
35.377	0.459	0.000	0.732	0.272	0.413	28.242	0.648	0.909	0.991	56.150	23.617	1.584	0.935
0.739	0.225	0.296	0.000	0.896	0.344	0.012	84.644	0.293	0.208	0.755	0.106	0.902	0.715
0.482	96.806	0.672	51.204	0.000	0.451	0.979	0.814	0.225	0.694	0.504	0.704	0.431	0.333
0.456	0.707	0.626	0.152	0.109	0.000	0.804	0.476	0.429	0.853	0.280	0.322	90.503	0.212
0.042	0.067	0.683	0.862	0.197	0.831	0.000	0.585	67.649	56.138	0.896	0.858	73.721	0.582
0.616	0.640	0.096	97.431	0.308	0.441	0.299	0.000	0.161	0.490	0.321	0.638	82.231	0.376
0.786	0.323	0.676	0.359	0.019	50.127	12.129	0.650	0.000	0.483	45.223	58.164	0.894	0.613
0.037	0.318	0.367	2.981	0.976	0.629	0.525	0.293	0.641	0.000	33.922	0.228	0.995	71.905
12.609	0.479	0.146	0.174	0.181	0.072	23.080	0.671	0.634	0.759	0.000	0.725	0.592	0.445
0.887	0.004	1.614	0.471	0.120	0.263	0.585	0.086	0.157	95.633	42.828	0.000	0.527	0.021
9.019	0.569	0.936	0.975	81.779	0.573	0.738	0.410	0.490	0.948	0.154	0.145	0.000	0.436
20.442	0.515	0.719	0.089	39.269	49.984	0.720	0.863	0.858	0.490	0.106	0.765	0.059	0.000

- Já na Tabela 5.6 estão as distâncias entre os nós da topologia física da NSFNET adotada, em centenas de milhas.
- Nas Tabelas 5.8 e 5.9 são confrontados os resultados obtidos com o TWA c_1 e os encontra-
- dos em (KRISHNASWAMY; SIVARAJAN, 2001), com o modelo KS. Para cada grau lógico,
- 5 são exibidos: na coluna MILP, o valor de congestionamento obtido executando o modelo MILP
- 6 do TWA c_1 com o SCIP; na coluna T, o tempo gasto pelo SCIP para chegar a essa solução; na
- coluna W, o número de comprimentos de onda utilizados pelo TWA c_1 ; e na coluna MTB, o
- 8 Minimum Trafic Bound para cada instância. Também são exibidos, para o modelo KS, na co-
- luna UB, as melhores soluções para o congestionamento encontradas em (KRISHNASWAMY;
- SIVARAJAN, 2001), e nas colunas LB e W, os respectivos lower bounds e número de compri-
- mentos de onda utilizados pelo KS. Quando o valor de congestionamento corresponde ao ótimo
- da instância, ele é marcado com um asterisco.
- Nos resultados para a modelagem KS, para cada instância, o cálculo do LB levou em mé-

Tab	oela 5.	5: Ma	triz d	e dem	andas	P2 (RAM.	ASW	AMI;	SIVA	RAJA	.N, 19	96).
0.000	1.090	2.060	0.140	0.450	0.040	0.430	1.450	0.510	0.100	0.070	0.080	0.000	0.330
11.710	0.000	8.560	0.620	11.120	7.770	3.620	15.790	3.660	16.610	2.030	37.810	4.830	13.190
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.310	3.410	13.64	0.000	1.900	0.600	0.700	2.880	2.000	3.260	3.070	6.690	0.080	4.010
0.280	67.510	19.02	3.430	0.000	4.030	10.77	62.22	24.02	17.92	0.450	79.03	9.970	5.290
0.000	5.810	3.420	5.520	3.400	0.000	2.610	2.680	0.870	3.870	0.040	0.840	0.060	2.480
1.750	22.02	102.31	4.470	22.03	7.900	0.000	114.1	19.82	21.95	0.780	71.40	0.330	32.84
2.390	63.84	210.30	8.520	28.210	2.660	97.08	0.000	43.95	33.00	11.37	48.63	5.530	13.85
6.450	18.93	37.35	6.000	24.99	6.810	25.06	61.02	0.000	39.62	14.52	127.5	23.34	0.760
0.050	35.29	10.26	3.730	22.34	9.480	4.980	57.08	6.840	0.000	6.300	17.64	5.910	0.760
0.100	1.020	3.130	1.690	0.240	0.060	0.810	1.450	0.580	7.120	0.000	0.840	0.060	0.500
1.280	26.15	1.000	5.940	24.86	1.320	5.490	40.57	29.53	22.37	10.50	0.000	1.010	0.540
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.720	20.00	12.62	0.800	25.61	12.07	6.440	29.70	4.670	0.000	2 000	0.000	10.750	0.000

Tabela 5.6: Matriz de distâncias para a NSFNET, em centenas de milhas.

0	7	10	7	10	19	13	16	21	21	19	22	24	22
7	0	4	5	9	16	14	18	22	21	20	24	25	21
10	4	0	6	8	12	13	17	21	19	19	23	24	19
7	5	6	0	4	12	8	12	17	16	13	18	19	16
10	9	8	4	0	8	4	9	13	12	11	15	16	12
19	16	12	12	8	0	8	8	11	7	11	14	14	12
13	14	13	8	4	8	0	5	9	8	7	10	11	8
16	18	17	12	9	8	5	0	5	5	3	6	7	5
21	22	21	17	13	11	9	5	0	5	2	2	2	5
21	21	19	16	12	7	8	5	5	0	6	7	7	6
19	20	19	13	11	11	7	3	2	6	0	4	5	6
22	24	23	18	15	14	10	6	2	7	4	0	2	5
24	25	24	19	16	14	11	7	2	7	5	2	0	1
22	21	19	16	12	12	8	5	5	6	6	5	1	0

- dia 125 minutos utilizando o método iterativo encontrado em (RAMASWAMI; SIVARAJAN,
- 2 2002). O upper bound (UB) foi obtido por meio de uma heurística, levando menos de um mi-
- nuto. Portanto, a otimalidade só pôde ser garantida nesses resultados quando o valor viável
- 4 encontrado era igual ao lower bound obtido. Esses resultados foram produzidos com a IBM's
- 5 Optimization Subroutine Library (OSL) em um computador IBM 43P/RS6000.
- Para ambas as matrizes, foram obtidos melhores resultados com o TWA c_1 , em compara-
- 7 ção com os resultados para o modelo KS, tanto para o valor de congestionamento quanto para

Tabela 5.7: Legendas para as Tabelas 5.8 e 5.9.

		tu e : . : = = genuus puru us rue erus e : e e e : ; .
GL	=	Grau Lógico
W	=	Número de comprimentos de onda disponíveis
MTB	=	Minimum Trafic Bound
MILP	=	Resultados obtidos pelo SCIP
T	=	Tempo em minutos gasto com o SCIP
KS	=	Melhores resultados com o modelo KS
LB	=	Lower Bound para o congestionamento
UB	=	Uper Bound para o congestionamento

Tabela 5.8: Resultados para a matriz *P*1. *: Ótimo alcançado.

<i>P</i> 1		,	$TWAc_1$			KS	3
Gl	W	$T_{(m)}$	MTB	MILP	LB	UB	W
2	2	451	126.87	143.66	126.74	145.74	4
3	3	221	84.58	*84.58	84.58	*84.58	4
4	3	8	63.44	69.17	63.43	70.02	4
5	4	225	50.75	50.82	50.74	50.94	5
6	4	24	42.29	43.54	42.29	44.39	6
7	5	65	36.25	*36.25	36.25	36.43	6
8	6	102	31.72	*31.72	31.72	31.77	7
9	7	131	28.19	*28.19	28.19	28.37	9
10	8	72	25.37	25.53	25.37	25.64	9
11	9	200	23.07	23.31	23.00	23.08	11
12	11	140	21.14	21.35	21.27	21.39	12
13	13	16	19.52	*20.25	20.24	20.25	13

Tabela 5.9: Resultados para a matriz P2. *: Ótimo alcançado.

<i>P</i> 2			$TWAc_1$			KS	
Gl	W	$T_{(m)}$	MTB	MILP	LB	UB	W
2	1	152	284.66	*292.31	284.26	389.93	2
3	2	4.4	189.78	*189.78	189.76	217.80	4
4	2	2	142.33	*142.33	142.33	152.99	3
5	3	4	113.87	*113.87	113.87	*113.87	4
6	3	3.9	94.89	*94.89	94.89	*94.89	5
7	4	4.3	81.33	*81.33	81.33	*81.33	6
8	4	6.8	71.17	*71.17	71.17	*71.17	6
9	5	20.9	63.26	*63.26	62.15	63.26	9
10	6	20.1	56.93	*56.93	56.93	*56.93	10
11	6	23.2	51.75	*51.75	51.75	*51.75	10
12	7	23.1	47.44	*47.44	47.44	*47.44	13
13	7	14.8	43.79	*43.79	43.79	*43.79	13

- o número de comprimentos de onda utilizados. Outro fato importante é qualidade alcançada
- 2 pelo MTB em todas as instâncias, praticamente igual ao lower bound obtido em (KRISH-
- NASWAMY; SIVARAJAN, 2001), mas com demanda de tempo desprezível. Esse é um re-
- sultado expressivo, frente aos 125 minutos, em média, gastos com o método iterativo (RA-
- MASWAMI; SIVARAJAN, 2002). Em 62% das instâncias, o MTB equivale ao ótimo. E mesmo
- quando o ótimo diferiu do MTB, no pior caso, o MTB ficou menos de 5% abaixo do ótimo. Por
- ⁷ fim vale ressaltar que foram obtidas soluções ótimas para 70% das instâncias com o TWAc₁,
- 8 contra 37% dos resultados para o modelo KS.

O tempo demandado pelo SCIP para obter os resultados aqui apresentados são altos, se comparados ao desempenho de heurísticas para o congestionamento no projeto encontradas na literatura (KRISHNASWAMY; SIVARAJAN, 2001; SKORIN-KAPOV; KOS, 2005). Todavia, esses resultados corroboram para eficiência do modelo TWA. Pois, seu reduzido número de variáveis e equações, possibilitou obter tais soluções sem que para isso fosse necessário recorrer à heurísticas.

Conclusões

Uma formulação MILP foi apresentada para o projeto de redes ópticas com roteamento por comprimento de onda, englobando as restrições dos problemas VTD e RWA, possibilitando o confrontamento de métricas de ambas as modelagens. Esta formulação é mais abrangente que as apresentadas na literatura e possui a vantagem de ser mais tratável no que se refere ao número de variáveis e restrições.

Para garantir uma complexidade computacional equivalente a de modelos que englobam apenas os problemas VTD e RWA separadamente, a principal consideração que a formulação faz é a utilização das variáveis topológicas, que sintetizam variáveis distintas das formulações tradicionais, além da forma agregada com que é feita a distribuição do tráfego e o roteamento dos canais ópticos, semelhante a outros modelos da literatura (RAMASWAMI; SIVARAJAN, 2002; TORNATORE; MAIER; PATTAVINA, 2007).

O modelo foi apresentado inicialmente em uma forma básica, contendo as restrições e variáveis consideradas essenciais para a resolução do projeto completo, que engloba a escolha da topologia física, definição da topologia virtual, distribuição de tráfego, definição das rotas físicas e alocação dos comprimentos de onda. Nessa modelagem básica a função objetivo adotada foi a minimização do número de saltos físicos dos caminhos ópticos.

13

14

15

16

17

Para validar experimentalmente a formulação, foram realizados testes comparativos com os resultados apresentados em (ASSIS; WALDMAN, 2004) e (KRISHNASWAMY; SIVARAJAN, 2001), aonde as redes consideradas possuem 6, 12 e 14 nós. Os resultados obtidos foram consideravelmente expressivos, com relação à qualidade das soluções e ao desempenho computacional.

Foi possível provar a otimalidade, da primeira solução viável encontrada, para todas as instâncias da rede de 6 nós e em uma das instâncias da rede de 12 nós. Além disso, em todas as instâncias de ambas as redes foram obtidos melhores resultados para os parâmetros controlados, em relação aos resultados confrontados. Para a rede de 6 nós, em média, obtivemos uma redução de 43% no número de comprimentos de onda necessário e 34% no número de saltos físicos. Mesmo não provando a otimalidade para todas as instâncias da rede de 12 nós, alcançamos em média as mesmas porcentagens de melhoria do resultado conseguidas para a rede de 6

Conclusões 55

nós. Resta destacar que os resultados para a rede de 12 nós foram produzidos em 7.2 minutos, uma demanda de tempo pequena, se comparada às 6 horas do experimento com o qual foram comparados.

Para a rede de 14 nós foram feitos testes com duas matrizes de demandas de tráfegos, que são instâncias clássicas da literatura (RAMASWAMI; SIVARAJAN, 1996). Para ambas matrizes foram obtidos resultados melhores do que os encontrados na literatura para os parâmetros controlados (KRISHNASWAMY; SIVARAJAN, 2001). Além disso, para 70% das instâncias foram obtidas soluções ótimas. O tempo demandado para produzir estes últimos resultados foi alto, em comparação ao desempenho das heurísticas utilizadas na literatura (SKORIN-KAPOV; KOS, 2005), todavia deve-se ressaltar o fato de que não foram utilizadas heurísticas nem ferramentas comerciais.

Os modelos encontrados na literatura, com funcionalidades semelhantes ao TWA, possuem uma maior ordem de grandeza do número de variáveis binárias. Sendo este um importante fator para se avaliar o quão tratável é um modelo. Tanto o modelo encontrado em (ASSIS; WALDMAN, 2004) como o modelo encontrado em (KRISHNASWAMY; SIVARAJAN, 2001) têm número de variáveis binárias da ordem de $\Theta(N^4 \cdot W \cdot G)$, supondo grau lógico uniforme para toda a rede como G. Ainda assim, estes modelos devem receber a topologia física da rede como uma parâmetro.

12

13

14

19

20

21

22

23

Em sua versão mais geral, o TWA é capaz de resolver também a topologia física da rede, com número de variáveis binárias $\Theta(TWA)$ da ordem de $\Theta(N^3 \cdot W \cdot K)$, onde K é a multiplicidade máxima dos enlaces físicos. Todavia, nos resultados que foram alvo de comparação neste trabalho, não há multiplicidade de enlaces físicos. Neste caso, se a topologia física fosse ainda uma das variáveis do modelo, teríamos que $\Theta(TWA) = \Theta(N^3 \cdot W)$.

Se a topologia física for um dado de entrada, então $\Theta(TWA)$ estará entre $o(N^2 \cdot W)$ e $O(N^3 \cdot W)$, dependendo da quantidade de ligações físicas na rede, que é razoável supor se encontrar entre N e N^2 . Mais precisamente, sendo H a quantidade de ligações físicas na rede pré-existente, segue que $\Theta(TWA) = \Theta(N \cdot W \cdot H)$.

O novo *lower bound* para o congestionamento introduzido por este trabalho, o MTB, demostrou ser muito eficiente. Pois, possui demanda de tempo computacional desprezível, frente ao alto custo das técnicas conhecidas até então (RAMASWAMI; SIVARAJAN, 1996). Além disso, na maioria das instâncias em que conseguimos provar a otimalidade (62%), o MTB coincidiu com o ótimo. E mesmo quando o MTB diferiu do ótimo, no pior caso, ele ficou menos de 5% abaixo deste. Apenas este resultado já muda o cenário para o problema VTD, tornando este um problema bem mais tratável. Uma vez que, obter bons resultados a partir de heurísticas não

Conclusões 56

é tarefa difícil no VTD, conforme a literatura (RAMASWAMI; SIVARAJAN, 1996).

rede (RAMASWAMI; SIVARAJAN, 2002).

A abrangência da modelagem e o desempenho computacional obtido viabilizam, em trabalhos futuros, extensões à modelagem básica. Dada a capacidade do modelo de determinar
a topologia física, uma aplicação imediata seria atribuir custos de instalação e operação às variáveis e utilizar o custo total como função objetivo (MUKHERJEE, 1997). Outras funções
objetivo de trivial implementação seriam: o número máximo de ligações lógicas em cada fibra;
o número total de transceptores na rede, ou em cada fibra (ZANG; JUE; MUKHERJEE, 2000);
o processamento eletrônico total da rede (ALMEIDA et al., 2006); e o congestionamento da

Referências Bibliográficas

- ² AGRAWAL, G. P. Fiber-Optic Communication Systems. 2. ed. [S.l.]: John Wiley and Sons,
- з 1997.
- 4 ALMEIDA, R. T. R. et al. Design of Virtual Topologies for Large Optical Networks Through
- 5 an Efficient MILP Formulation. Optical Switching and Networking, v. 3, p. 2-10, 2006.
- 6 ASSIS, K. D. R.; WALDMAN, H. Topologia Virtual e Topologia Física de Redes Ópticas:
- 7 Uma Proposta de Projeto Integrado. Revista da Sociedade Brasileira de Telecomunicações v.
- ₈ 19, 2004.
- 9 BALA, K. Transparent, opaque and hybrid optical networking. [S.l.]: Optical Networks, vol.
- 10 1, p. 10, 2000.
- BANERJEE, D.; MUKHERJEE, B. Wavelength-routed optical networks: Linear formulation,
- resource budgeting tradeoffs, and a reconfiguration study. In: INFOCOM '97: Proceedings
- of the INFOCOM '97. Sixteenth Annual Joint Conference of the IEEE Computer and
- 14 Communications Societies. Driving the Information Revolution. Washington, DC, USA: IEEE
- 15 Computer Society, 1997. p. 269. ISBN 0-8186-7780-5.
- BANERJEE, D.; MUKHERJEE, B. Wavelength-routed optical networks: linear formulation,
- resource budgeting tradeoffs, and a reconfiguration study. IEEE/ACM Trans. Netw., IEEE
- 18 Press, Piscataway, NJ, USA, v. 8, n. 5, p. 598-607, 2000. ISSN 1063-6692.
- BOAVENTURA, P. O. Grafos: Teoria, Modelos, Algoritmos. [S.l.]: Editora Edgard Blcher,
- 20 São Paulo, 2 Ed., 2001.
- ²¹ CORMEN, H. *Algoritimos: teoria e prática*. [S.l.]: Elsevier, 2002.
- JAUMARD, B.; MEYER, C.; THIONGANE, B. Comparison of ILP Formulations for the
- RWA Problem. Les Cahiers du GERAD G-2004-66, 2004.
- ²⁴ KRISHNASWAMY, R.; SIVARAJAN, K. Design of logical topologies: a linear formulation
- 25 for wavelength-routed optical networks with no wavelength changers. Networking, IEEE/ACM
- ²⁶ Transactions on, v. 9, n. 2, p. 186–198, Apr 2001. ISSN 1063-6692.
- LIMA, F. de O. et al. Reformulando o Problema de Projeto de Anéis em Redes Ópticas. In:
- 28 Proceedings of 4th ITS International Information and Telecommunication Technologies
- ²⁹ Symposium. [S.1.: s.n.], 2005.
- LIMA, M. O. et al. Estratégias com Algoritmos Híbridos para Projeto de Redes Ópticas.
- 31 XXXVI Simpósio Brasileiro de Pesquisa Operacional, 2004.
- LIU, Q. et al. Distributed inter-domain lightpath provisioning in the presence of wavelength
- conversion. Computer Communications, 2007.

- MAHER, A. Transmission Efficient Design and Management of Wavelength Routed Optical
- 2 Networks. Kluwer Academic Publishers, 2001.
- MUKHERJEE, B. Optical Communication Networks. [S.l.]: McGraw-Hill, 1997.
- 4 MUKHERJEE, B. et al. Some principles for designing a wide-area wdm optical network.
- ⁵ Networking, IEEE/ACM Transactions on, v. 4, n. 5, p. 684–696, Oct 1996. ISSN 1063-6692.
- 6 OLIVEIRA, E. A combined approach for designing topology and flow congestion minimization
- of optical networks. 5th Conference on Telecommunications, 2005.
- 8 PALMIERI, F. F. Gmpls control plane services in the next-generation optical internet. The
- 9 Internet Protocol Journal, 2008.
- PUECH, N.; KURI, J.; GAGNAIRE, M. Topological Design and Lightpath Routing in WDM
- Mesh Networks: A Combined Approach. Photonic Network Communications, 4:3/4, 443-456,
- 12 *2002*, 2002.
- 13 RAMAMURTHY, B.; FENG, H.; DATTA. Transparent vs. opaque vs. translucent wavelenth
- routed optical networks. Optical Fiber Communication Technical Digest, 1999.
- ¹⁵ RAMASWAMI, R.; SASAKI, G. Multiwavelength Optical Networks with Limited Wavelength
- 16 Conversion. IEEE/ACM Transactions on Networking, Vol. 6, NO. 6, December, 1998.
- 17 RAMASWAMI, R.; SIVARAJAN, K. N. Design of Logical Topologies for WavelengthRouted
- Optical Networks. IEEE J. Sel. Areas Commun. vol. 14 pag. 840 851, 1996.
- 19 RAMASWAMI, R.; SIVARAJAN, K. N. Optical Networks: a practical perspective. 2nd. ed.
- 20 [S.l.]: Morgan Kaufmann Pub. Inc., San Francisco, 2002.
- 21 RESENDO, L. C.; RIBEIRO, M. R. N.; CALMON, L. C. Efficient Grooming-Oriented
- 22 Heuristic Solutions for Multi-Layer Mesh Networks. Journal of Microwaves and
- 23 Optoelectronics, 2007.
- 24 SKORIN-KAPOV, N.; KOS, M. Heuristic algorithms considering various objectives for
- virtual topology design in wdm optical networks. In: International Conference on on
- Telecommunication Systems, Modeling and Analysis, 2005. [S.l.: s.n.], 2005.
- ²⁷ TORNATORE, M.; MAIER, G.; PATTAVINA, A. WDM network design by ILP models based
- on flow aggregation. IEEE/ACM Transactions on Networking, Vol. 15., No. 3, pp. 709-720,
- 29 July, 2007.
- 30 XIN, Y.; ROUSKAS, G. N.; PERROS, H. G. On the physical and logical topology design of
- large-scale optical networks. J. Lightwave Technol., OSA, v. 21, n. 4, p. 904, 2003. Disponível
- em: http://jlt.osa.org/abstract.cfm?URI=JLT-21-4-904.
- 33 ZANG, H.; JUE, J. P.; MUKHERJEE, B. A Review of Routing and Wavelength Assignment
- 34 Approaches for Wavelength Routed Optical WDM Networks. Optical Networks Magazine
- 35 vol.1, 2000.

Feito em

LATEX