題號 3.4-8 (a) (b)

3.4-8.

(a) minimize
$$C=8S+4P$$

subject to $5S+15P \geq 50$
 $20S+5P \geq 40$
 $15S+2P \leq 60$
 $S,P \geq 0$

(b) Optimal Solution: $(S, P) = (x_1^*, x_2^*) = (1.3, 2.9)$ and $C^* = 21.82$

題號 3.4-10(a)

3.4-10.

(a) Let
$$f_1 =$$
 number of full-time consultants working the morning shift (8 a.m.-4 p.m.), $f_2 =$ number of full-time consultants working the afternoon shift (Noon-8 p.m.), $f_3 =$ number of full-time consultants working the evening shift (4 p.m.-midnight), $p_1 =$ number of part-time consultants working the first shift (8 a.m.-noon), $p_2 =$ number of part-time consultants working the second shift (Noon-4 p.m.), $p_3 =$ number of part-time consultants working the third shift (4 p.m.-8 p.m.), $p_4 =$ number of part-time consultants working the fourth shift (8 p.m.-midnight). minimize $C = (40 \times 8)(f_1 + f_2 + f_3) + (30 \times 4)(p_1 + p_2 + p_3 + p_4)$ subject to $f_1 + p_1 \ge 4$ $f_1 + f_2 + p_2 \ge 8$ $f_2 + f_3 + p_3 \ge 10$ $f_3 + p_4 \ge 6$ $f_1 \ge 2p_1$ $f_1 + f_2 \ge 2p_2$ $f_2 + f_3 \ge 2p_3$ $f_3 \ge 2p_4$ $f_1, f_2, f_3, p_1, p_2, p_3, p_4 \ge 0$

題號 3.4-15 (a)

3.4-15.

(a) Let x_{ij} be the number of hours operator i is assigned to work on day j for i = KC, DH, HB, SC, KS, NK and j = M, Tu, W, Th, F.

$$\begin{array}{ll} \text{minimize} & Z = & 25(x_{KC,M} + x_{KC,W} + x_{KC,F}) + 26(x_{DH,Tu} + x_{DH,Th}) + \\ & 24(x_{HB,M} + x_{HB,Tu} + x_{HB,W} + x_{HB,F}) + \\ & 23(x_{SC,M} + x_{SC,Tu} + x_{SC,W} + x_{SC,F}) + \\ & 28(x_{KS,M} + x_{KS,W} + x_{KS,Th}) + 30(x_{NK,Th} + x_{NK,F}) \\ \\ \text{subject to} & x_{KC,M} \leq 6, x_{KC,W} \leq 6, x_{KC,F} \leq 6 \\ & x_{DH,Tu} \leq 6, x_{DH,Th} \leq 6 \\ & x_{HB,M} \leq 4, x_{HB,Tu} \leq 8, x_{HB,W} \leq 4, x_{HB,F} \leq 4 \\ & x_{SC,M} \leq 5, x_{SC,Tu} \leq 5, x_{SC,W} \leq 5, x_{SC,F} \leq 5 \\ & x_{KS,M} \leq 3, x_{KS,W} \leq 3, x_{KS,Th} \leq 8 \\ & x_{NK,Th} \leq 6, x_{NK,F} \leq 2 \\ & x_{KC,M} + x_{KC,W} + x_{KC,F} \geq 8 \\ & x_{DH,Tu} + x_{DH,Th} \geq 8 \\ & x_{DH,Tu} + x_{DH,Th} \geq 8 \\ & x_{SC,M} + x_{SC,Tu} + x_{SC,W} + x_{SC,F} \geq 8 \\ & x_{KS,M} + x_{KS,W} + x_{KS,Th} \geq 7 \\ & x_{KC,M} + x_{HB,M} + x_{SC,M} + x_{KS,M} = 14 \\ & x_{DH,Tu} + x_{HB,Tu} + x_{SC,Tu} = 14 \\ & x_{C,W} + x_{HB,W} + x_{SC,W} + x_{KS,W} = 14 \\ & x_{DH,Tu} + x_{HB,Th} + x_{NK,Th} = 14 \\ & x_{C,F} + x_{HB,F} + x_{SC,F} + x_{NK,F} = 14 \\ & x_{ij} \geq 0 \text{ for all } i, j. \end{array}$$

題號 3.5-2 (a) (b)

3.5-2.

(a) maximize
$$P = 20x_1 + 30x_2$$

subject to $2x_1 + x_2 \le 10$
 $3x_1 + 3x_2 \le 20$
 $2x_1 + 4x_2 \le 20$
 $x_1, x_2 \ge 0$

題號 3.5-4 (a) (b)

3.5-4.

(a) minimize
$$C = 60x_1 + 50x_2$$

subject to $5x_1 + 3x_2 \ge 60$
 $2x_1 + 2x_2 \ge 30$
 $7x_1 + 9x_2 \ge 126$
and $x_1, x_2 \ge 0$

(b) Optimal Solution: $(x_1^*, x_2^*) = (6.75, 8.75)$ and $C^* = 842.50$

