ChIAMM: a Mixture Model for Statistical Analysis of Long-Range Chromatin Interactions from ChIA-PET Experiments

Yibeltal Arega¹, Hao Jiang¹, Shuangqi Wang², Jingwen Zhang², Xiaohui Niu¹, Guoliang Li^{1,2*}

* Correspondence:

Guoliang Li

E-mail: guoliang.li@mail.hzau.edu.cn

Introduction

Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing is a technology to study genome-wide long-range chromatin interactions bound by protein factors. ChIAMM is a statistical technique for processing and analyzing ChIA-PET sequence data using the Mixture model in the Bayesian framework.

The ChIAMM requires the following dependencies:

- $R (\geq 3.4.0)$
- StanHeaders ($\geq 2.18.1$)
- rstan (version $\geq 2.18.2$)
- ggplot2 ($\geq 2.0.0$)
- tidyverse ($\geq 1.2.1$)
- bayesplot ($\geq 1.7.1$)
- bedtools ($\geq 2.25.0$)
- ngs-tools (≥ 1.2)

Data preparation

Before executing the ChIAMM, you need to analyze the raw ChIA-PET data using ChIA-PET Tool V3 without any FDR cutoff value. From the ChIA-PET Tool output files, the file *out.cluster.withpvalue.txt* will be used for downstream analysis in ChIAMM. Specifically, the first 11 columns in the file *out.cluster.withpvalue.txt* will be used: chrom1, start1, end1, chrom2, start2, end2, ipet count, type, distance, tag count within anchor 1 and tag count within anchor 2. We call chrom1, start1, end1 as **Anchor1**, and chrom2, start2, end2 as **Anchor2**.

¹ Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

² National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.

Computing the Systematic Biases

Average tag counts

Call the variables tag count within anchor 1 and tag count within anchor 2 as tagcou1 and tagcou2 respectively, and compute the average of it call the variable name "tagcouAvg".

Self-ligation PETS

Using the *out.spet* file in the ChIA-PET Tool V3 output, we can compute the self-ligation PETs of anchors using the commands as follows:

- awk '{if(\$2<\$5){print \$1"\t"\$2"\t"\$5}else{print \$1"\t"\$5"\t"\$2}}' out.spet > out.spet.bed3
- bedtools coverage -a Anchor1.bed -b out.spet.bed3 > self1.bed
- bedtools coverage -a Anchor2.bed -b out.spet.bed3 > self2.bed
- then compute the average of it and call the variable name "selfAvg"

Mappability

Download the mappability score for human genome version hg19 using http://genome-asia.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability. The file is in bigWig format, and we need to convert it to .bed format using *bigWigToWig* and BEDOPS *wig2bed*. Then, find the overlap region between .bed file and Anchor regions using *Bedtools map*.

- bedtools map -a Anchor1.bed -b mappability.bed -c 5 -o mean > mappability1.bed
- bedtools map -a Anchor2.bed -b mappability.bed -c 5 -o mean > mappability2.bed
- Compute the average of 5th column in mappability1.bed and mappability2.bed, and call the variable name "*mappaAvg*"
- If you don't find the mappability in the above link, you can prepare by yourself using *ngs-tools*.
 - o Example for rice RS1 reference genome we can find like
 - o sh mappability.sh -i mhRS63.fa -1 35 -p mappability > mappability.bed

GC content

The GC content of anchors are computed using *bedtools nuc*

- bedtools nuc -fi hg19.fa -bed Anchor1.bed > gc1.bed
- bedtools nuc -fi hg19.fa -bed Anchor2.bed > gc2.bed
- Compute the average of 5th column in the gc1.bed and gc2.bed and call variable name "gcAv"

Input files

We need to organize the input file for inter- and intra-chromosomal interaction data separately. As an example, the input file of intra-chromosomal interactions should have such kind of variables arrangement.

chrom1	start1	end1	chrom2	start2	end2	ipet
chr1	840068	840732	chr1	855579	856565	2
chr1	913753	914300	chr1	1199808	1200630	2
chr1	919077	919880	chr1	998944	999920	4
chr1	919648	920151	chr1	1219377	1220316	2
chr1	968089	969098	chr1	998105	999837	6
chr1	994350	995077	chr1	1003901	1004606	2
dictores	41	40000000	40 0000 4 200	a olf A -va	~~ A ~~	manna A va
distance	tagcou1	tagcou2	tagcouAvg	selfAvg	gcAv	mappaAvg
15672	3	6	4.5	9.0	0.66	0.69
	U	U	0 0	U	O .	
15672	3	6	4.5	9.0	0.66	0.69
15672 286192	3 46	6 33	4.5 39.5	9.0	0.66 0.60	0.69 0.51
15672 286192 79953	3 46 30	6 33 13	4.5 39.5 21.5	9.0 3.0 35.0	0.66 0.60 0.66	0.69 0.51 0.51

Test data sets

- RNAPII ChIA-PET data from human MCF7:
 - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM832458 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM832459
- RNAPII ChIA-PET data from human K562:
 - https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM832464 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM832465
- CTCF ChIA-PET data from human MCF7:
 - o https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM970215
- CTCF ChIA-PET data from human K562:
 - o https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM970216
- RNAPII ChIA-PET data from rice MH63:
 - o https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767548 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767548 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767548 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767549
- H3K9me2 ChIA-PET data from rice MH63:
 - o https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767546 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767546 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767546 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3767547

Usage

Rscript ChIAMM.R -h

Usage: ChIAMM-jh.R [-[-input|i] <character>] [-[-prefix|p] [<character>]] [-[-inter|e]] [-[-iter|r] [<integer>]] [-[-warmup|w] [<integer>]] [-[-help|h]]

-i| --input input file

-p| --prefix output prefix (default "out")

-e| --inter the input is inter-chromosomal, if not, intra-chromosomal interactions data

-r| --iter iteration number (default 5000) -w| --warmup warmup value (default 750) -h |--help print help

Example

For intra- and inter-chromosomal interactions, we need to run the ChIAMM.R separately.

- For intra-chromosomal interaction data
 - o ChIAMM.R -i intra_input_file.txt
- For inter-chromosomal interaction data
 - o ChIAMM.R -i inter_input_file.txt -e

Result file

We will get the result file names out_significant_interaction.txt.

chrom1	start1	end1	chrom2	start2	end2	ipet	W_{1i}
chr1	919077	919880	chr1	998944	999920	4	0.59
chr1	919648	920151	chr1	1219377	1220316	2	0.51
chr1	968089	969098	chr1	998105	999837	6	0.73
chr1	994350	995077	chr1	1003901	1004606	2	0.53

- **chrom1**: The name of the chromosome on which the cluster anchor 1 exists
- **start1**: The start coordinates of cluster anchor 1
- end1: The end coordinate of cluster anchor 1
- **chrom2**: The name of the chromosome on which the cluster anchor 2 exists
- **start2**: The start coordinates of cluster anchor 2
- end2: The end coordinate of cluster anchor 2
- ipet: Number of PETs between cluster anchor 1 and cluster anchor 2
- \mathbf{W}_{1i} : The probability of pair i being a true pair