M403-Fall 2013 - Exam 1 - Enrique Areyan	(81)
(1).(a) (i) * is associative. (ii) = e=G s.t. + g=G: e*g=g*e=g (iii) + g=G: = g'=G: g*g'=g'*g=e	
(b) there exists 9 = G sit <97 = G; where	ite with 9
generated by 9. (c) $C_G(g) = 1 \times EG \mid 9 \times = \times 9$. All elements of G + hat committee G + hat committ	
(d) (i) $\forall v, w \in V : T(V+w) = (CV) + (CW)$	
(2) (a). Any abelian group will do; for example (2) + then [G:H] is	fivite but (Z)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 pe groups
(3) Fundamental theorem of homomorphism for groups. Let $N = \text{Ker}(f)$. Then and $f:G_1 \to G_1 \ge 0$ a homomorphism Let $N = \text{Ker}(f)$. Then and $f:G_1 \to G_1 \ge 0$ be a homomorphism connutes: Moreover, the following diagram connutes: $G_1 \xrightarrow{f} G_1 \ge 0$, where $\pi:G_1 \to G_1 \setminus N$, given by the cannonical homomorphism $\pi = f$; the homomorphism $g = \pi = f$; the homomorphism	TT (9)=9N is 10, and 10, and we will
Note that if f is onto, then w	dois of
(4) (a) the exponent is the law of the different possible or elements in So. these possible different orders can be compositions of elements of different cycle decompositions of elements of the length of different cycle decompositions of elements	red by ear
$(123)(456)$ $\rightarrow 0 = 4$ $(1234)(5)(6) \rightarrow 0 = 4$	- 1
$(12)(345)(6) \rightarrow 0 = 6$ $(12)(34)(56) \rightarrow 0 = 2$ $(12)(34)(56) \rightarrow 0 = 6$ $(123456) \rightarrow 0 = 6$ $(123456) \rightarrow 0 = 2$ $(123456) \rightarrow 0 = 2$	2
Circolcaria	

1403-Fall 2013- Exam 1- Enrique Arreyan (b) By the formula: IGI= | CX| | CG(X) ; SINCE WE KNOW | GI = 1571 = 7!; it suffices to compute (CX) to get (CG(X)), where X=(135)(246)(7) & S. Since $C_X = 1.6 \times 6^{-1} 1.6 \times 65 + 3^{-1}$; and conjugation does not change cycle structure, we can count the number of permutations with two-three cycles and one-1 cycle TO count 1Cx1. These cire: 7x6x5. 4x3x2. 1 = 7x5x4x2=35x11x2 -/ Therefore: $|C_G(x)| = \frac{1571}{|C_x|} = \frac{7!}{280} = \frac{7!}{7!} = \frac{7!}{280} = \frac{7!}{7!} = \frac{63}{5} = 18$ 10 (5) Suppose there exists a homomorphism f: Dy > C4. By definition, for every 91,92 EDu: f(9,92) = f(9,) f(92). Moveoup, inverses are preserved under homomorphism, as well as the identity. But then: f(R1).f(R3)=e => f(R1)=f(R3)-{ P1. P3 = I => f(P1 23)=f(I) = C 50 now: f(R1).f(R3) = f(R1)f(R3")=f(R1.R3")=f(R1.R1)=f(R2) f(R3) f(R3) = e = f(R3) f(R1) = f(R2) =) f(R2) = e; ou there is no such contradiction. (6) (a) True nonomorphism. (b) true. (7) (7/24, 1) has a generator call it 9 s.t. 29) = £24. Every Powe (C) false. of 9 that is relatively prime with zy and is between 1 and zy is also a generator for the whole group. Possibilities are: 5,7,11,13,17,19 and 23. +hat is: $\langle 9 \rangle = \langle 9^5 \rangle = \langle 9^7 \rangle = \langle 9'' \rangle = \langle 9'' \rangle = \langle 9^{13} \rangle = \langle 9^{17} \rangle = \langle 9^{19} \rangle = \langle 9^{23} \rangle = \langle 12 \rangle$ (8) Let dm(v) < 00, dim(w) < 00. 5. V->W, T. W-> V. (a) Suppose dim(V) >dim(W). W.T.5 To5: V->V is not an isomorphism. By theorem proved in class, since v is finite Limensianal and ToS goes from V to it self, it suffices to show that Tos is not 1-1 to show that it 19403-Fall 2013- Exam 1 - Enrique Areyon Equivalently, it suffices to show that Ker (ToS) + les, and then Tos would not be 1-1; hence not an isomorphism. By hypothesis we have that dim(v)>dim(w). Moreover, by the dimension theorem: dim(V) = dim(Ker(5)) + dim(Im(5)).Since S: Now; dim(v)>dim(w) => dim(ver(s)) 70 => $dim(Im(s)) \times dim(V)$. Suppose for a contradiction that Ker(ToS) = he}. Then dim(V) = dim(Ker (tos)) + dim(Im(tos)) = dim(Im(Tos)) But dim (Im(s)) < dim(V) => dim (Im(ToS)) < dim(V) a contradiction. therefore, Ker(ToS) +1e}, => ToS is not an isomorphism. (b) A & Mmxn(F), B & Mnxn(F). Suppose m7n. We proved in class that for every Linear transformation LA there is a Loratine associated with it. Hence, LA=A:FM-Fn; LB=B:Fn-Fm. Hence, the question of AB =I; reduces to the gression of LA oLB = Id; that i LA has no right inverse (conversely, Lis has no Left inverse). Note that LAOLB: Fn Fn is also a L.T. (we proved that composition of LT is a LT in class). therefore; by part (a); we con conclude that 4 ols is not an isomorphism; honce LA and LB are not muertible, and in the framework of matrices LA=A; LB=B => AB =I.