On b-continuity of Kneser Graphs of Type KG(2k+1,k)

Saeed Shaebani

Department of Mathematical Sciences
Institute for Advanced Studies in Basic Sciences (IASBS)
P.O. Box 45195-1159, Zanjan, Iran
s_shaebani@iasbs.ac.ir

Abstract

In this paper, we will introduce an special kind of graph homomorphisms namely semi-locally-surjective graph homomorphisms and show some relations between semi-locally-surjective graph homomorphisms and colorful colorings of graphs and then we prove that for each natural number k, the Kneser graph KG(2k+1,k) is b-continuous. Finally, we introduce some special conditions for graphs to be b-continuous.

Keywords: graph colorings, colorful colorings, Kneser graphs, semi-locally-surjective graph homomorphisms.

Subject classification: 05C

1 Introduction

All graphs considered in this paper are finite and simple (undirected, loopless and without multiple edges). Let G = (V, E) be a graph and $k \in \mathbb{N}$ and let $[k] := \{i | i \in \mathbb{N}, 1 \le i \le k\}$. A k-coloring (proper k-coloring) of G is a function $f: V \to [k]$ such that for each $1 \le i \le k$, $f^{-1}(i)$ is an independent set. We say that G is k-colorable whenever G has a k-coloring f, in this case, we denote $f^{-1}(i)$ by V_i and call each $1 \le i \le k$, a color (of f) and each V_i , a color class (of f). The minimum integer k for which G has a k-coloring, is called the chromatic number of G and is denoted by $\chi(G)$.

Let G be a graph and f be a k-coloring of G and v be a vertex of G. The vertex v is called b-dominating (or colorful or color-dominating) (with respect to f) if each color $1 \le i \le k$ appears on the closed neighborhood of v (f(N[v]) = [k]). The coloring f is said to be a colorful k-coloring of G if each color class V_i ($1 \le i \le k$) contains a b-dominating vertex x_i . Obviously, every $\chi(G)$ -coloring of G is a colorful $\chi(G)$ -coloring of G. We denote g0 the set of all positive integers g1 for which g2 has a colorful g3 and is denoted by g3 (or g4) (or g6). The graph g6 is said to be g5-continuous if each integer g6 between g7 and g8 are element of g8.

There are graphs that are not b-continuous, for example, the 3-dimensional cube Q_3 is not b-continuous, because $2 \in B(G)$ and $4 \in B(G)$ but $3 \notin B(G)$ ([5]). We have to note that the problem of deciding whether graph G is b-continuous is NP-complete ([1]). The colorful coloring of graphs was introduced in 1999 in [5] with the terminology b-coloring.

Let $m,n\in\mathbb{N}$ and $m\leq n$. KG(n,m) is the graph whose vertex set is the set of all subsets of size m of [n] in which two vertices X and Y are adjacent iff $X\cap Y=\emptyset$. Note that KG(5,2) is the famous Petersen graph. It was conjectured by Kneser in 1955 ([7]), and proved by Lovász in 1978 ([8]), that if $n\geq 2m$, then $\chi(KG(n,m))=n-2m+2$. Lovász's proof was the beginning of using algebraic topology in combinatorics. Colorful colorings of Kneser graphs have been investigated in [4] and [6]. Javadi and Omoomi in [6] showed that for $n\geq 17$, KG(n,2) is b-continuous. Only a few classes of graphs are known to be b-continuous (see [1], [3] and [6]). We want to prove that for each natural number k, KG(2k+1,k) is b-continuous. In this regard, first we introduce an special kind of graph homomorphisms which is related to colorful colorings of graphs.

Definition 1. Let G and H be graphs. A function $f:V(G)\to V(H)$ is called a semi-locally-surjective graph homomorphism from G to H if f is a surjective graph homomorphism from G to H and satisfies the following condition :

$$\forall u \in V(H): \exists a \in f^{-1}(u) \ s.t \ \forall v \in N_H(u): \exists b \in f^{-1}(v) \ s.t \ \{a,b\} \in E(G).$$

We know that a graph G is k-colorable iff there exists a graph homomorphism from G to the complete graph K_k and the chromatic number of G is the least natural number k for which there exists a graph homomorphism from G to K_k . Indeed, we can think of graph homomorphisms from graphs to complete graphs instead of graph colorings. The following obvious theorem shows such a similar relation between colorful colorings of graphs and semi-locally-surjective graph homomorphisms. Indeed, we can think of semi-locally-surjective graph homomorphisms from graphs to complete graphs instead of colorful colorings of graphs.

Theorem 1. Let G be a graph and $k \in \mathbb{N}$. Then $k \in B(G)$ iff there exists a semi-locally-surjective graph homomorphism from G to K_k . Also, the chromatic number of G ($\chi(G)$) and the b-chromatic number of G (b(G)) are respectively the least and the greatest natural numbers k for which there exists a semi-locally-surjective graph homomorphism from G to K_k .

We know that the composition of two graph homomorphisms is again a graph homomorphism. A similar theorem holds for composition of semi-locally-surjective graph homomorphisms.

Theorem 2. Let G_1 , G_2 and G_3 be graphs. If g is a semi-locally-surjective graph homomorphism from G_2 to G_1 and f is a semi-locally-surjective graph homomorphism from G_3 to G_2 , then gof is a semi-locally-surjective graph homomorphism from G_3 to G_1 .

The following theorem shows another relation between semi-locally-surjective graph homomorphisms and colorful colorings of graphs.

Theorem 3. Let G_1 and G_2 be graphs. If there exists a semi-locally-surjective graph homomorphism from G_1 to G_2 , then $B(G_2) \subseteq B(G_1)$.

Proof. Let f be a semi-locally-surjective graph homomorphism from G_1 to G_2 , $k \in B(G_2)$, and V_1, \ldots, V_k be color classes of a colorful k-coloring of G_2 and x_1, \ldots, x_k be some b-dominating vertices of G_2 with respect to this k-coloring and $x_i \in V_i$ $(1 \le i \le k)$. Obviously, $f^{-1}(V_1), \ldots, f^{-1}(V_k)$ are nonempty color classes of a k-coloring of G_1 and $f^{-1}(x_1), \ldots, f^{-1}(x_k)$ are some b-dominating vertices of G_1 with respect to this k-coloring and $f^{-1}(x_i) \in f^{-1}(V_i)$ $(1 \le i \le k)$. Therefore, G_1 has a colorful k-coloring and $k \in B(G_1)$. Hence, $B(G_2) \subseteq B(G_1)$.

Now we prove that for each natural number k, KG(2k + 1, k) is bcontinuous.

Theorem 4. For each $k \in \mathbb{N}$, KG(2k+1,k) is b-continuous.

Proof. For each $k \in \mathbb{N}$, $\chi(KG(2k+1,k)) = 3$. Note that $B(KG(3,1)) = B(K_3) = \{3\}$ and therefore, for k = 1 the assertion follows. Blidia, et al. in [2] proved that the b-chromatic number of the Petersen graph is 3 and therefore, $B(KG(5,2)) = B(Petersen\ graph) = \{3\}$. Hence, KG(2k+1,k) is b-continuous for k = 2. For $k \geq 3$, the function $f: V(KG(2k+3,k+1)) \rightarrow V(KG(2k+1,k))$ which assigns to each $A \subseteq [2k+3]$ with $|A \cap \{2k+2,2k+3\}| \leq 1$, $f(A) = A \setminus \{\max A\}$ and to each $A \subseteq [2k+3]$ with $\{2k+2,2k+3\} \subseteq A$, $f(A) = (A \setminus \{2k+2,2k+3\}) \cup \{\max([2k+1] \setminus A)\}$, is a surjective graph homomorphism from KG(2k+3,k+1) to KG(2k+1,k). Now for each $X \in V(KG(2k+1,k))$, $(X \cup \{2k+2\}) \in f^{-1}(X)$ and for each $Y \in N_{KG(2k+1,k)}(X)$, $(Y \cup \{2k+3\}) \in f^{-1}(Y)$ and $\{X \cup \{2k+2\}, Y \cup \{2k+3\}\}\} \in E(KG(2k+3,k+1))$. Hence, f is a semi-locally-surjective graph homomorphism from KG(2k+3,k+1) to KG(2k+1,k). Consequently, Theorem 3 implies that $B(KG(2k+1,k)) \subseteq B(KG(2k+3,k+1))$, besides, $B(KG(7,3)) \subseteq B(KG(9,4)) \subseteq ... \subseteq B(KG(2n+1,n)) \subseteq ...$ (I)

On the other hand, Javadi and Omoomi in [6] showed that for $k \geq 3$, b(KG(2k+1,k)) = k+2 and $k+2 \in B(KG(2k+1,k))$. Therefore, for each $k \geq 3$, $\{i+2 | i \in \mathbb{N}, 3 \leq i \leq k\} \subseteq B(KG(2k+1,k))$. Also, since $\chi(KG(2k+1,k)) = 3$, $3 \in B(KG(2k+1,k))$. So, constructing a colorful

4-coloring of KG(2k+1,k) $(k \ge 3)$ completes the proof. (I) implies that it is enough to construct a colorful 4-coloring of KG(7,3). Set

$$V_{1} := \{ \{1,2,3\}, \{1,4,5\}, \{2,5,6\}, \{1,2,6\}, \{1,2,7\}, \{1,3,6\}, \{1,6,7\}, \{1,4,6\} \}, \\ V_{2} := \{ \{5,x,y\} \mid x,y \in \{1,2,3,4,6,7\}, x \neq y \} \setminus \{ \{1,4,5\}, \{2,5,6\}, \{4,5,7\} \}, \\ V_{3} := \{ \{1,2,4\}, \{1,3,7\}, \{4,5,7\}, \{1,4,7\}, \{2,6,7\} \}, \\ V_{4} := (\{ \{4,x,y\} \mid x,y \in \{1,2,3,6,7\}, x \neq y\} \setminus \{ \{1,2,4\}, \{1,4,6\}, \{1,4,7\} \}) \bigcup \{ \{2,3,6\}, \{2,3,7\}, \{3,6,7\} \}.$$

Now, one can check that V_1 , V_2 , V_3 , V_4 are color classes of a colorful 4-coloring of KG(7,3) that $\{1,2,3\} \in V_1$, $\{5,6,7\} \in V_2$, $\{2,6,7\} \in V_3$ and $\{1,3,4\} \in V_4$ are some b-dominating vertices with respect to this 4-coloring.

The semi-locally-surjective graph homomorphism f in above Theorem can be generalized as follows.

Theorem 5. Let $n, m \in \mathbb{N}$ with n > 2m. Then $B(KG(n, m)) \subseteq B(KG(n + 2, m + 1))$.

Proof. The function $f:V(KG(n+2,m+1)) \to V(KG(n,m))$ which assigns to each $A \subseteq [n+2]$ with $|A \cap \{n+1,n+2\}| \le 1$, $f(A) = A \setminus \{\max A\}$ and to each $A \subseteq [n+2]$ with $\{n+1,n+2\} \subseteq A$, $f(A) = (A \setminus \{n+1,n+2\}) \cup \{\max([n] \setminus A)\}$, is a surjective graph homomorphism from KG(n+2,m+1) to KG(n,m). Now for each $X \in V(KG(n,m))$, $(X \cup \{n+1\}) \in f^{-1}(X)$ and for each $Y \in N_{KG(n,m)}(X)$, $(Y \cup \{n+2\}) \in f^{-1}(Y)$ and $\{X \cup \{n+1\}, Y \cup \{n+2\}\} \in E(KG(n+2,m+1))$. Hence, f is a semi-locally-surjective graph homomorphism from KG(n+2,m+1) to KG(n,m) and therefore, Theorem 3 implies that $B(KG(n,m)) \subseteq B(KG(n+2,m+1))$.

Corollary 1. Let $a, b \in \mathbb{N} \bigcup \{0\}$ and a > 2b. Also, for each $i \in \mathbb{N} \setminus \{1\}$, let $B_i := B(KG(2i+a,i+b))$ and $b_i := b(KG(2i+a,i+b))$. Then $B_2 \subseteq B_3 \subseteq B_4 \subseteq ... \subseteq B_n \subseteq B_{n+1} \subseteq ...$, and $b_2 \le b_3 \le b_4 \le ... \le b_n \le b_{n+1} \le ...$.

Now we introduce some special conditions for graphs to be b-continuous. But first we note that in a graph G with at least one cycle, the girth of G (g(G)), is the minimum of all cycle lengths of G and if G has not any cycles, the girth of G is defined $g(G) = +\infty$.

Blidia, et al. proved the following theorem.

Theorem 6. ([2]) If $d \le 6$, then for every d-regular graph G with girth $g(G) \ge 5$ which is different from the Petersen graph, b(G) = d + 1.

By using this theorem, we prove the following theorem.

Theorem 7. Let $3 \le d \le 6$ and for each $2 \le i \le d$, G_i be an i-regular graph with girth $g(G_i) \ge 5$ which is different from the Petersen graph. Also, suppose that for each $3 \le i \le d$, there exists a semi-locally-surjective graph homomorphism f_i from G_i to G_{i-1} . Then for each $2 \le i \le d$, G_i is b-continuous.

Proof. Theorem 6 implies that for each $2 \le i \le d$, $b(G_i) = i+1$ and therefore, $i+1 \in B(G_i)$. Also, since for each $3 \le i \le d$, there exists a semi-locally-surjective graph homomorphism f_i from G_i to G_{i-1} , theorem 3 implies that $B(G_{i-1}) \subseteq B(G_i)$ and consequently, $B(G_2) \subseteq B(G_3) \subseteq ... \subseteq B(G_d)$. Hence, for each $2 \le i \le d$, $\{j+1|2 \le j \le i\} \subseteq B(G_i)$ and therefore, $\{3,4,...,i+1\} \subseteq B(G_i)$. Now, there are 2 cases:

Case 1) The case that G_i is bipartite. In this case, $\chi(G_i) = 2$ and therefore, $2 \in \mathcal{B}(G_i)$ and $\{2, 3, ..., i+1\} \subseteq \mathcal{B}(G_i)$, so $\mathcal{B}(G_i) = \{2, 3, ..., i+1\}$ and G_i is b-continuous.

Case 2) The case that G_i is not bipartite. In this case, $\chi(G_i) \geq 3$ and since $\{3,...,i+1\} \subseteq B(G_i)$, so $B(G_i) = \{3,...,i+1\}$ and G_i is b-continuous.

Therefore, for each $2 \le i \le d$, G_i is b-continuous.

References

- [1] D. Barth, J. Cohen, and T. Faik, On the *b*-continuity property of graphs, *Discrete Applied Mathematics*, **155** (2007), 1761-1768.
- [2] M. Blidia, F. Maffray, and Z. Zemir, On b-colorings in regular graphs, Discrete Applied Mathematics, 157 (2009), 1787-1793.
- [3] T. Faik, About the *b*-continuity of graphs, *Electronic Notes in Discrete Mathematics*, **17** (2004), 151-156.
- [4] H. Hajiabolhassan, On the *b*-chromatic number of Kneser graphs, *Discrete Applied Mathematics*, **158** (2010), 232-234.
- [5] R. W. Irving and D. F. Manlove, The *b*-chromatic number of a graph, *Discrete Applied Mathematics*, **91** (1999), 127-141.
- [6] R. Javadi and B. Omoomi, On b-coloring of the Kneser graphs, *Discrete Mathematics*, **309** (2009), 4399-4408.
- [7] M. Kneser, Aufgabe 300, Jber. Deutsch. Math.-Verein., 58 (1955), 27.
- [8] L. Lovász, Kneser's conjecture, chromatic number, and homotopy, *Journal of Combinatorial Theory Ser. A*, **25** (1978), 319-324.