

Centro de Investigación en Matemáticas, A.C. Métodos Numéricos

Tarea 06

José Miguel Saavedra Aguilar

Resumen

En esta tarea se explora el método de Jacobi para encontrar los eigenvalores y eigenvectores de una matriz.

1. Introducción

Recordamos la matriz para la aproximación por diferencias finitas de n nodos del problema parabólico, $A \in \mathbb{R}^{n \times n}$ dada por:

$$A = \frac{1}{h^2} \begin{pmatrix} -2 & 1 & 0 & \cdots & 0 & 0\\ 1 & -2 & 1 & \cdots & 0 & 0\\ 0 & 1 & -2 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & -2 & 1\\ 0 & 0 & 0 & \cdots & 1 & -2 \end{pmatrix}$$
 (1)

donde $h = \frac{1}{n+1}$.

2. Metodología

2.1. Método de Jacobi

Sea $A \in \mathbb{R}^{n \times n}$ simétrica. El teorema de Factorización Espectral nos indica que existen $Q, \lambda \in \mathbb{R}^{n \times n}$ con Q ortogonal y Λ diagonal tales que $A = Q\Lambda Q^{\top}$. En el método de Jacobi

se aproxima $Q \approx R_m R_{m-1} \dots R_1$ con R_i matrices de rotación de la forma:

$$R_{i} = \begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \cos(\theta_{m}) & \cdots & \sin(\theta_{m}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -\sin(\theta_{m}) & \cdots & \cos(\theta_{m}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

De forma que si (j,k) es la entrada absolutamente más grande de $L_i = R_i \dots R_1 A R_1^{\top} \dots R_i^{\top}$, la entrada (j,k) de $R_{i+1}L_iR_{i+1}^{\top}$ sea cero. Para este fin notamos[1] que las entradas de RLR^{\top} están dadas por:

$$RLR_{j,j}^{\top} = L_{j,j}\cos^{2}(\theta) + L_{j,k}\sin(2\theta) + L_{k,k}\sin^{2}(\theta)$$

$$RLR_{k,k}^{\top} = L_{j,j}\sin^{2}(\theta) - L_{j,k}\sin(2\theta) + L_{k,k}\cos^{2}/\theta$$

$$RLR_{j,k}^{\top} = L_{j,k}\cos(2\theta) + \frac{1}{2}(L_{k,k} - L_{j,j})\sin(2\theta)$$

$$RLR_{l,j}^{\top} = L_{l,j}\cos(\theta) + L_{l,k}\sin(\theta), l \neq j, k$$

$$RLR_{l,k}^{\top} = -L_{l,j}\sin(\theta) + L_{l,k}\cos(\theta), l \neq j, k$$

$$RLR_{l,h}^{\top} = -L_{l,h}, l, h \neq j, k$$

Entonces, $\theta_i = \frac{1}{2}\arctan\left(\frac{2L_{j,k}}{L_{j,j}-L_{k,k}}\right)$. Cuando L_m es diagonal, $Q = R_m R_{m-1} \dots R_1$ y $\Lambda = L_m$.

3. Resultados

3.1. Pseudocódigo

```
Algoritmo 1: Método de la Potencia

Entrada: A, maxIter, tol
Salida: P, \Lambda

1 L^0 \leftarrow A;
2 B^0 \leftarrow I;
3 j, k \leftarrow \operatorname{argmáx}\left\{\left|L_{l,h}^0\right|: l \neq h\right\};
4 \theta_1 \leftarrow \frac{1}{2}\operatorname{arctan2}\left(\frac{2L_{j,k}^0}{L_{j,j}^0-L_{k,k}^0}\right);
5 i \leftarrow 1;
6 mientras i < maxIter \ \boldsymbol{y} \mid L_{j,k} \mid > tol \ \mathbf{hacer}
7 \mid R^{i+1} \leftarrow \operatorname{Rot}(\theta_i, j, k);
8 \mid L^{i+1} \leftarrow R^{i+1} E^i \mid \mathbf{E}^{i+1} \mid \mathbf
```

3.2. Algoritmos

Para la ejecución de los algoritmos, debemos ejecutar julia desde la carpeta donde se encuentren los archivos metodoJacobi.jl, Solvers.jl y problemaEliptico.jl. Una vez en julia, debemos incluir estos archivos.

Posteriormente, debemos crear una matriz. En nuestro caso, tomamos la matriz del problema elíptico para 100 nodos $A \in \mathbb{R}^{100 \times 100}$. Vamos a obtener los eigenpares con el método de Jacobi.

```
julia> nodos=100
100
julia> A=construyeMatrizEliptica(nodos+2);
julia> @time P,D,k,Aaux=eigenJacobi(A,nodos,1e-5,1000000);
    0.595247 seconds (26 allocations: 318.344 KiB)
```

Finalmente, guardamos la matriz P y los eigenvalores Λ de A.

```
julia> guardarVector(D,100,"lambdaJacobi100.txt")
8
julia> guardarMatriz(P,nodos,100,"PJacobi100.txt")
23
```

3.3. Problemas de la tarea

A forma de prueba, se utilizó el método de Jacobi generalizados para obtener todos los eigenpares de (1) para n=100. Los resultados se encuentran en la tabla 1. Los parámetros utilizados son $tol=10^{-10}$ y maxIter=150000.

n	$\left \lambda_i - \tilde{\lambda}_i ight $	$\left\ v_i - \tilde{v}_i\right\ _2$
1	5.77494×10^{-12}	1.31562×10^{-13}
1000	7.27596×10^{-11}	1.92087×10^{-12}
peor caso	4.29281×10^{-10}	2.11823×10^{-12}
mejor caso	0	6.89577×10^{-15}

Tabla 1: Error de aproximación para los eigenpares de (1) para n = 100

Así mismo, se obtuvieron los eigenpares de (1) para n=1000. Se presentan los errores de aproximación en la tabla 2. Para esta matriz, los parámetros utilizados son $tol=10^{-5}, maxIter=8000000$.

n	$\left \lambda_i- ilde{\lambda}_i ight $	$\left\ v_i - \tilde{v}_i\right\ _2$
1	3.87777×10^{-10}	7.01244×10^{-8}
1000	3.11993×10^{-8}	1.46764×10^{-6}
peor caso	1.93715×10^{-7}	1.46764×10^{-6}
mejor caso	0	1.69453×10^{-9}

Tabla 2: Error de aproximación para los eigenpares de (1) para n = 1000

4. Conclusiones

Notamos que el método de Jacobi para encontrar los eigenpares de la matriz dada en (1) no es tan preciso como otros métodos, como el de la potencia o potencia inversa, además que para el caso n=1000 no es práctico en términos de tiempo, pues el número de rotaciones necesarias crece de forma que toma horas para converger. Sin embargo, para matrices pequeñas funciona bien y las iteraciones necesarias son relativamente pocas. Esto se refleja en las tablas 1 y 1, donde notamos que para n=100, en menos de 150000 iteraciones converge para $tol=10^{-10}$, mientras que para n=1000 en 8000000 de iteraciones no logra converger a $tol<10^{-5}$, tomando además un tiempo impráctico.

Referencias

[1] R. Kress, Numerical Analysis. Springer New York, NY, 12 2012.