Xét 2 xâu X và Y trong đó các ký tự của mỗi xâu thuộc tập $\Sigma = \{A, G, C, T\}$. Các xâu X và Y sẽ được *cân bằng* bằng cách biến đổi thành các xâu có cùng độ dài: $X^* = x_1x_2...x_n$ và $Y^* = y_1y_2...y_n$ bằng việc chèn vào X hoặc Y một số ký tự '-' sao cho x_i và y_i không cùng là ký tự '-' (i = 1, 2, ..., n). Ví du: 2 xâu X = GATCCGA và Y = GAAAGCAGA có thể cân bằng thành:

$$X^* = G-A--TCCGA$$
 $Y^* = GAAAG-CAGA$
hoặc: $X^* = GA--TCCGA$
 $Y^* = GAAAG-CAGA$

Số đo $GPS(X^*,Y^*)$ của cân bằng được tính như sau: $GPS(X^*,Y^*) = S + Z$ với

• $S = \sigma(x_1, y_1) + ... + \sigma(x_n, y_n)$ trong đó:

$$\sigma(x_i, y_i) = \begin{cases} 2, & \text{n\'eu } x_i = y_i \\ -1, & \text{n\'eu } x_i \neq y_i \end{cases}$$
 $(i = 1, 2, ..., n)$

• Z = -4*m với m là số đoạn thuộc X* và Y* mà mỗi đoạn gồm các ký tự '-' liên tiếp.

Ở hai ví dụ trên, GPS tương ứng sẽ là:

Và
$$2+(-1)+2+(-1)+(-1)+(-1)+2+(-1)+2+2+(-4*3) = -7$$
$$2+2+(-1)+(-1)+(-1)+(-1)+2+(-1)+2+2+(-4*2) = -3$$

Một trong các cân bằng có số đo lớn nhất sẽ là:

$$X^* = G-ATCCGA$$

 $Y^* = GAAAGCAGA$
Với số đo tương ứng $GPS(X^*, Y^*) = 2+(-1)+(-1)+2+(-1)+2+(-1)+2+2+(-4*1)=2$

Yêu cầu: Cho 2 xâu và Y, độ dài mỗi xâu không quá 500. Hãy xác định cách cân bằng để có số đo GPS lớn nhất.

Dữ liệu: Vào từ file văn bản GPS.INP:

- Dòng đầu tiên chứa số nguyên K số lượng tests ($K \le 50$),
- K nhóm 2 dòng tiếp theo: chứa X và Y, mỗi xâu trên một dòng.

Kết quả: Đưa ra file văn bản GPS.OUT trên K dòng, mỗi dòng chứa một số nguyên- là GPS lớn nhất tìm được ứng với mỗi cặp X, Y.

Ví du:

GPS.INP	GPS.OUT
5	-8
AAA	2
GGAAGAG	18
GATCCGA	20
GAAAGCAGA	2
ACGGCTTAGATCCGAGAGTTAGTAGTCCTAAGCTTGCA	
AGCTTAGAAAGCAGACACTTGATCCTGACGGCTTGAA	
TTGAGTAGTGTTTTAGTCCTACACGACACATCAAATTCGGACAAGGCCTAGCT	
TTCAAGTCCTACAATGTGTGTCAAATTCGCTTGGCCGAAAGCC	
TTTGGGAACGTGTGAGACTTCCCCATGCGATGG	
AACACACGGACTTCATGCTGG	