Exercises 1

- 1. Define the optimization problem LONGEST-PATH-LENGTH as the relation that associates each instance of an undirected graph and two vertices with the number of edges in a longest simple path between the two vertices. Define the decision problem LONGEST-PATH as the set of strings $\langle G, u, v, k \rangle$ such that G = (V, E) is an undirected graph, $u, v \in V$, k is an integer, and there exists a simple path from u to v in G consisting of at least k edges. Show that the optimization problem LONGEST-PATH-LENGTH can be solved in polynomial time if and only if LONGEST-PATH $\in \mathcal{P}$.
- 2. Show that if an algorithm makes at most a constant number of calls to polynomial-time subroutines and performs an additional amount of work that also takes polynomial time, then it runs in polynomial time. Also show that a polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.
- 3. Define the concatenation of languages L_1 and L_2 as $L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}$ and the complement of a language L as $L^c = \{x \mid x \notin L\}$.
 - Show that the class \mathcal{P} , viewed as a set of languages, is closed under union, intesection, concatenation, and complement. That is, if $L_1, L_2 \in \mathcal{P}$, then $L_1 \cup L_2 \in \mathcal{P}$, $L_1 \cap L_2 \in \mathcal{P}$, $L_1 L_2 \in \mathcal{P}$, and $L_1^c \in \mathcal{P}$.
- 4. Two undirected graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection $f: V_1 \to V_2$ such that, for any two vertices $u, v \in V_1$, $uv \in E_1$ if and only if $f(u)f(v) \in E_2$.

Consider the language

GRAPH-ISOMORPHISM = $\{\langle G_1, G_2 \rangle \mid G_1 \text{ and } G_2 \text{ are isomorphic graphs} \}$.

Prove that GRAPH-ISOMORPHISM $\in \mathcal{NP}$ by describing a polynomial-time algorithm to verify the language.

- 5. Prove that the class \mathcal{NP} of languages is closed under union, intersection, and concatenation.
- 6. Show that any language in \mathcal{NP} can be decided by an algorithm running in time $2^{O(n^k)}$ for some constant k.

Solutions to these exercises are to be handed in at the lecture on January 22, 2019.