Leader Election in Swarms of Deterministic Robots

Franck Petit

LiP6, UPMC Paris 6

Problem

Question

Given a swarm of *n* robots, what are the minimal geometric conditions to be able to deterministically agree on a single robot?

Problem

Question

Given a swarm of *n* robots, what are the minimal geometric conditions to be able to deterministically agree on a single robot?

SoD and Chirality

[Flocchini et al., 1999]

A solution exists for any n.

SoD and No Chirality

[Flocchini et al., 2001]
A solution exists if *n* is odd

SoD and Chirality [Flocchini et al., 1999] A solution exists for any n.

SoD and No Chirality

A solution exists if *n* is odd

SoD and Chirality [Flocchini et al., 1999] A solution exists for any *n*.

SoD and No Chirality

[Flocchini et al., 2001]

A solution exists if *n* is odd.

SoD and Chirality [Flocchini et al., 1999] A solution exists for any n.

SoD and No Chirality [Flocchini et al., 2001]

A solution exists if *n* is odd.

No SoD

[Prencipe 2002]

Impossible in general.

No SoD

[Prencipe 2002]

Impossible in general.

In such a configuration, it is not possible to break the symmetry.

Leader Election With No Sense of Direction

Question

Assuming no sense of direction (with or without chirality), what are the geometric conditions to be able to deterministically agree on a single robot?

To answer to this question, we need tools from the theory on Combinatoric on Words, specifically Lyndon Words.

Leader Election With No Sense of Direction

Question

Assuming no sense of direction (with or without chirality), what are the geometric conditions to be able to deterministically agree on a single robot?

To answer to this question, we need tools from the theory on Combinatoric on Words, specifically Lyndon Words.

Definition (Word)

Let $A = \{a_0, a_1, \dots, a_n\}$ be an alphabet. A word is a (possibly empty) sequence of letters in A.

$$A = \{a, b, c, d\}$$

$$abcc \quad a \quad \epsilon \quad dddddddd \equiv d^{8}$$

Definition (Word)

Let $A = \{a_0, a_1, \dots, a_n\}$ be an alphabet. A word is a (possibly empty) sequence of letters in A.

$$A = \{a, b, c, d\}$$

 $abcc$ $a \in dddddddd \equiv d^8$

Definition (Concatenation)

Let $u=a_1,\ldots,a_i,\ldots,a_k$ and $v=b_1,\ldots,b_j,\ldots,b_\ell$. The concatenation of u and v, denoted uv, is equal to the word $a_1,\ldots,a_i,\ldots,a_k,b_1,\ldots,b_\ell$.

$$u = UP, v = MC, uv = UPMC$$

Definition (Concatenation)

Let $u=a_1,\ldots,a_i,\ldots,a_k$ and $v=b_1,\ldots,b_j,\ldots,b_\ell$. The concatenation of u and v, denoted uv, is equal to the word $a_1,\ldots,a_i,\ldots,a_k,b_1,\ldots,b_\ell$.

$$u = UP$$
, $v = MC$, $uv = UPMC$

Definition (Lexicographic Order)

Let *A* be an alphabet totally ordered by \prec , *i.e.*, $a_0 \prec a_1 \prec \ldots \prec a_n$.

A word $u = a_0 a_1 \dots a_s$ is said to be *lexicographically smaller* than or equal to a word $v = b_0 b_1 \dots b_t$, denoted by $u \leq v$, iff:

- either u is a prefix of v,
- or, $\exists k : \forall i \in [1, ..., k-1], a_i = b_i \text{ and } a_k \prec b_k.$

 $ab \prec abc$ $abc \prec abc$ $\epsilon \prec abc$ $abc \prec de$

Definition (Lexicographic Order)

Let A be an alphabet totally ordered by \prec , i.e., $a_0 \prec a_1 \prec \ldots \prec$ a_n .

A word $u = a_0 a_1 \dots a_s$ is said to be *lexicographically smaller* than or equal to a word $v = b_0 b_1 \dots b_t$, denoted by $u \prec v$, iff:

- either u is a prefix of v,
- or, $\exists k : \forall i \in [1, ..., k-1], a_i = b_i \text{ and } a_k \prec b_k$.

 $ab \prec abc$

 $abc \prec abc \qquad \epsilon \prec abc$

abc ≺ def

Definition (Primitive Word)

A word u is said to be *primitive* iff $u = v^k \Rightarrow k = 1$. Otherwise, u is said to be *periodic*.

Primitive Words

ab dabcı

dcba

Periodic Words

 d^8

bcbc

Definition (Primitive Word)

A word u is said to be *primitive* iff $u = v^k \Rightarrow k = 1$. Otherwise, u is said to be *periodic*.

Primitive Words

ab dabcbc dcba

Periodic Words

d⁸ bcbc

Definition (Rotation)

A word u is said to be a *rotation* of a word v iff there exists two words x, y such that u = xy and v = yx.

$$u = abcd$$
 and $v = cdab$
 $u = abcd$ and $v = bcda$

Definition (Minimality)

A word u is said to be a *minimal* iff u is lexicographically smaller than any of its rotations.

Definition (Rotation)

A word u is said to be a *rotation* of a word v iff there exists two words x, y such that u = xy and v = yx.

$$u = abcd$$
 and $v = cdab$
 $u = abcd$ and $v = bcda$

Definition (Minimality)

A word u is said to be a *minimal* iff u is lexicographically smaller than any of its rotations.

Definition (Rotation)

A word u is said to be a *rotation* of a word v iff there exists two words x, y such that u = xy and v = yx.

```
u = abcd and v = cdab
u = abcd and v = bcda
```

Definition (Minimality)

A word u is said to be a *minimal* iff u is lexicographically smaller than any of its rotations.

Definition (Lyndon Word)

A word *u* is a *Lyndon word* iff *u* is primitive and minimal.

Lyndon Word

 $abc (abc \leq cab \text{ and } abc \leq bca)$

Not a Lyndon Word

 $bca (bca \succ abc)$

Definition (Lyndon Word)

A word *u* is a *Lyndon word* iff *u* is primitive and minimal.

Lyndon Word

 $abc (abc \leq cab \text{ and } abc \leq bca)$

Not a Lyndon Word

 $bca (bca \succ abc)$

$$W(\rho_1) = (abc, \beta)(d^2, \alpha)^2(d, \alpha)(f, \beta)(ec, \gamma)$$

$$W(\rho_2) = (d^2, \alpha)^2(d, \alpha)(f, \beta)(ec, \gamma)(abc, \beta)$$

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0)$.

Lemma (⇒

If there exists a radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are able to deterministically agree on the same leader.

$$W(\rho_1) = (abc, \beta)(d^2, \alpha)^2(d, \alpha)(f, \beta)(ec, \gamma)$$

$$W(\rho_2) = (d^2, \alpha)^2(d, \alpha)(f, \beta)(ec, \gamma)(abc, \beta)$$

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0)$.

Lemma (⇒)

If there exists a radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are able to deterministically agree on the same leader.

$$W(\rho_1) = (abc, \beta)(d^2, \alpha)^2(d, \alpha)(f, \beta)(ec, \gamma)$$

$$W(\rho_2) = (d^2, \alpha)^2(d, \alpha)(f, \beta)(ec, \gamma)(abc, \beta)$$

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0)$.

Lemma (⇒)

If there exists a radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are able to deterministically agree on the same leader.

Lemma (⇐)

If there exists no radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are not able to deterministically agree on the same leader.

Property

[Lothaire 1983]

If no rotation of a work *u* is a Lyndon word, then *u* is periodic.

Lemma (⇐)

If there exists no radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are not able to deterministically agree on the same leader.

Property

[Lothaire 1983]

If no rotation of a word u is a Lyndon word, then u is periodic.

Lemma (⇐)

If there exists no radius ρ such that $W(\rho)$ is a Lyndon word, then the robots are not able to deterministically agree on the same leader.

Property

[Lothaire 1983]

If no rotation of a work u is a Lyndon word, then u is periodic.

Theorem

Assuming chirality, a swarm of robots is able to deterministically agree on the same leader if and only if there exists a radius ρ such that $W(\rho)$ is a Lyndon word.

For each ρ , there are 2 ways to compute $W(\rho)$

$$W(\rho_1) =$$
 either $(abc, \beta)(d^2, \alpha)^2(d, \alpha)(f, \beta)(ec, \gamma)$ or $(abc, \gamma)(ec, \beta)(f, \alpha)(d, \alpha)(d^2, \alpha)(d^2, \beta)$ depending on either \circ or \circ , respectively.

The word

$$W(\rho_2)^{\circlearrowright} = W(\rho_3)^{\circlearrowleft} = (ab, \alpha)(ab, \beta)(c, \beta)$$
 is a Lyndon word.

Definition (Type of Symmetry)

A radius ρ_i is of Type (of symmetry) $\mathbf{0}$ if there exists no radius ρ_j such that $W(\rho_i)^{\circlearrowleft} = W(\rho_j)^{\circlearrowright}$. Otherwise, ρ_i is said to be of Type $\mathbf{1}$.

A radius of Type *t* is said to be *t*-symmetric.

 ρ_1 is 0-symmetric. ρ_2 and ρ_3 are 1-symmetric.

Definition (Type of Symmetry)

A radius ρ_i is of Type (of symmetry) $\mathbf{0}$ if there exists no radius ρ_j such that $W(\rho_i)^{\circlearrowleft} = W(\rho_j)^{\circlearrowleft}$. Otherwise, ρ_i is said to be of Type $\mathbf{1}$.

A radius of Type *t* is said to be *t*-symmetric.

 ρ_1 is 0-symmetric. ρ_2 and ρ_3 are 1-symmetric.

For each radius ρ_i , every robot computes $W(\rho_i)^{\circlearrowleft}$ and $W(\rho_i)^{\circlearrowleft}$ of the form (*type*, *radiusword*, *angle*).

For each radius ρ_i , every robot computes $W(\rho_i)^{\circlearrowright}$ and $W(\rho_i)^{\circlearrowleft}$ of the form (*type*, *radiusword*, *angle*).

$$W(\rho_1)^{\circlearrowleft} = (0, abc, \beta)(0, d^2, \alpha)^2(0, d, \alpha)(0, f, \beta)(0, ec, \gamma)$$

$$W(\rho_1)^{\circlearrowleft} = (0, abc, \gamma)(0, ec, \beta)(0, f, \alpha)(0, d, \alpha)(0, d^2, \alpha)(0, d^2, \beta)$$

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0,0)$.

Lemma

If there exists a pair of radii $\{\rho_1, \rho_2\}$ so that $W(\rho_i)^{\circlearrowright}$ or $W(\rho_i)^{\circlearrowleft}$ is a Lyndon word ($i \in \{1,2\}$), then the robots are able to deterministically agree on the same leader if and only if ρ_1 and ρ_2 are 0-symmetric.

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0,0)$.

Lemma

If there exists a pair of radii $\{\rho_1, \rho_2\}$ so that $W(\rho_i)^{\circlearrowright}$ or $W(\rho_i)^{\circlearrowleft}$ is a Lyndon word ($i \in \{1, 2\}$), then the robots are able to deterministically agree on the same leader if and only if ρ_1 and ρ_2 are 0-symmetric.

No leader exists.

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0,0)$.

Lemma

If there exists a pair of radii $\{\rho_1, \rho_2\}$ so that $W(\rho_i)^{\circlearrowright}$ or $W(\rho_i)^{\circlearrowleft}$ is a Lyndon word ($i \in \{1, 2\}$), then the robots are able to deterministically agree on the same leader if and only if ρ_1 and ρ_2 are 0-symmetric.

The robot on ρ_1 is the leader.

Lemma

If two distinct radii ρ_1 and ρ_2 exist such that both $W(\rho_1)$ and $W(\rho_2)$ are Lyndon words, then $\forall \rho$, $W(\rho) = (0,0,0)$.

Lemma

If there exists a pair of radii $\{\rho_1, \rho_2\}$ so that $W(\rho_i)^{\circlearrowright}$ or $W(\rho_i)^{\circlearrowleft}$ is a Lyndon word ($i \in \{1, 2\}$), then the robots are able to deterministically agree on the same leader if and only if ρ_1 and ρ_2 are 0-symmetric.

Theorem

Assuming no chirality, a swarm of robots is able to deterministically agree on the same leader if and only if there exists a radius ρ such that $W(\rho)$ is a 0-symmetric Lyndon word.