MATE 5150: Teoría de Espacios Vectoriales

Alejandro M. Ouslan

Contents

1	Los	Cuatro Subespacios Fundamentales Parte I	1
2	\mathbf{Los}	Cuatro Subespacios Fundamentales Parte II	1
	2.1	Espacio Nullo	1
	2.2	Dimension:	1
	2.3		1
		Base y Dimension Nulo Izquierdo	

1 Los Cuatro Subespacios Fundamentales Parte I

2 Los Cuatro Subespacios Fundamentales Parte II

2.1 Espacio Nullo

- 1. $A \in \mathbb{R}_{m \times n}$
- 2. $N(A) = \{z \in \mathbb{R}^n : Az = 0\}$
- 3. Base: gen $\{U_1, U_2, \cdots, U_i\}$

2.2 Dimension:

1. Fila: $E(A_T)$:

2.3

Remark 1. Sea $A \in \mathbb{R}_{m \times n}$ y U una matiz esclanodada y una base para R(A) (es sun sub de R^m) esta formada por las columnas de A corespodientes a las columnas de U que tienen pivote: dim R(A) = r(A)

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & -1 & -2 & 0 \\ -1 & 1 & 2 & 1 \end{bmatrix}$$

$$P_{12}, f_1 + f_3, -f_2 + f_3$$

$$\begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$base\ R(A) = \{ \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

2.4 Base y Dimension Nulo Izquierdo

$$N(A^T) = \{ Z \in \mathbb{R}^m : A^T Z = 0 \}$$

Remark 2. Sea $A \in Rmn$ tal que r9A) = r, P una matriz permutacion, L una matriz inferor con dagonal unitaria., y U una mateiz escalonada tal que PA = LU.

- 1. $dim\ N(A^T) = M r(A)$
- 2. Base $N(A^T)$. esta data por los vectores que U parecen como los ultimos (m-r) filas de las matriz $L^{-1)P}$