Non-Cartesian sampling

Non-Cartesian sampling

- Use gradients more efficiently to traverse k-space
- Acquire short-T2 (or T2*) components
- Can be designed to be silent
- Robust to motion by averaging in low frequency

Downsides of non-Cartesian sampling

- Reconstruction is more complicated
- Sensitive to gradient errors (delays, eddy currents)
- Sensitive to B0 errors

Good for PhD theses!

Cartesian image reconstruction

$$\hat{x}[n] = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y[k] e^{i2\pi nk/N}$$

Cartesian image reconstruction

FFT computes the inverse DFT in O(NlogN) instead of $O(N^2)$

Non-Cartesian image reconstruction

What is the same:

- Still a linear system, still interested in A-1
- Exact solution given by inverse non-uniform DFT

What is different:

- No FFT for the inverse \rightarrow O(N³) (direct inversion)
- No FFT for Ax or $A^{H}y \rightarrow O(N^2)$ (iterative methods)

What can we do?

Approximate it! → Non-uniform FFT (NNFFT)

- Idea: approximate the nuDFT with FFT followed by interpolation
- By Nyquist theorem, sinc interpolation is exact but takes $O(N^2)$ time
- **NUFFT:** Perform local interpolation with width << N (approximation)

Local interpolation

Over-sampling reduces approximation error

• Interpolation in k-space creates image weighting (convolution property)

• Interpolation in k-space creates image weighting (convolution property)

X

NUFFT Adjoint

$$A^{-1} \neq A^H$$

Iterative reconstruction with NUFFT

Need only A and A^H

$$||Ax - y||_2^2$$

$$x^{k+1} = x^k - \alpha A^H (Ax - y)$$

Gridding and density compensation

Called by the MRI community Gridding Reconstruction

$$A^{-1} \approx A^H D$$

