Problem Set 1

- 1. Negate the following statement: "For every $\varepsilon > 0$, there exists $\delta > 0$ so that $|f(x) f(y)| < \varepsilon$ whenever $|x y| < \delta$."
- 2. (a) Show that there is no rational number r such that $r^2 = 32$.
 - (b) Show that the set $\{r \in \mathbb{Q} : r^2 < 32\}$ has no least upper bound in \mathbb{Q} .
- 3. Formulate and prove a necessary and sufficient condition on the prime factorization of $n \geq 2$ that ensures that the square root of n is rational. In other words, complete the blank in the following sentence and supply a proof: For $n \in \mathbb{N}$ with $n \geq 2$, \sqrt{n} is irrational if and only if its prime factorization

Note: You may assume the fundamental theorem of arithmetic.

Theorem (Fundamental Theorem of Arithmetic). For any $n \geq 2$ in \mathbb{N} , there are prime numbers p_1, \ldots, p_k and exponents $a_1, \ldots, a_k \in \mathbb{N}$ so that

$$n = p_1^{a_1} \cdots p_k^{a_k} = \prod_{j=1}^k p_j^{a_j}.$$

Moreover, this factorization is unique up to reordering the factors.

- 4. Exercise 1 from the text: If $r \neq 0$ is a rational number and x is irrational, prove that r + x and rx are irrational.
- 5. Let

$$E = \left\{ 11 + (-1)^n \left(3 - \frac{5}{n^3} \right) : n \in \mathbb{N} \right\}.$$

Identify $\inf E$ and $\sup E$ (with proof).

- 6. Many math texts adopt the conventions $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$.
 - (a) Discuss why this is a reasonable convention.
 - (b) Adopting this convention, show that, for $E \subseteq \mathbb{R}$, one has $\inf E \leq \sup E$ if and only if $E \neq \emptyset$.