Statistics & Inferencing - Activity 01
Ali Muhammad Asad
aa07190
Mx(+)
a) Show ugf of Bernoulli (p) is: notate 2 E[etx] = 1-p+etp
$M_{x}(t) z \in [e^{tx}] = p(e^{t(t)}) + (1-p)(e^{t(p)})$
$= \rho e^{t} + (-\rho = 1 - \rho + \rho e^{t})$
$= pe^{t} + 1 - p = 1 - p + pe^{t}$ $= M_{x}(t) z E[e^{tx}] = 1 - p + pe^{t} shown!$
Oz) Dring night of Bernoulli (p), find its mean of variance His Mi(0) M2 2 Min(0) 622 M2- (M1)2
M2 M2(0) M2 2 M2(0) 62 M2- (M1)2
M'x(+) 2 pet M'x(+) = pe 0 - 0 + pet => M'x(0) = p => 4.2p.
$M_{x}^{"}(t)^{2} pe^{t} \Rightarrow M_{x}^{"}(0)^{2} p = \mu_{2}$
$\frac{6^{2}z p - (p)^{2} \ni 6^{2}z p (1-p)}{\text{Mean } 2\mu, zp \text{Var } z 6^{2}z p (1-p)}$
Q3) Ux the fact inquestion of Theorem to derive mean of variance.
for Sinomial Distribution.
-> Binomial Distribution > Sum of Independent Bernoulli
My(t) respect 2 My(n) & Mx2(t) Mx5(t) Mx0(t)
=) My (+) z (1-p+pet)(1-p+pet) (1-p+pet) (1-p+pet)
$M_{\gamma}(t) = (1-p+pe^t)^{\alpha}$
For Y: M2 My(0) M2M M22My(0) 622M2-(M1)2
My(+)z u(1-p+pet) (pet)
$M_{y}^{2}(0) = u(1-p+p)^{n-1}(p) = u(p) = M_{y}^{2}(0) = \mu = \mu_{z}\mu_{1}$ $M_{y}^{2}(+) = u[(u-1)(1-p+pe^{+})^{n-2}(pe^{+})pe^{+}) + (1-p+pe^{+})^{n-1}(pe^{+})$
M'y(0) 2 m [(n-1) (1-p+p)(p)(p) + (1-p+p)"-(p)]
$= \frac{2 \pi \left[\left(n - 1 \right) \left(p^2 \right) + p \right]}{2 \pi \left[\left(n - 1 \right) \left(p^2 \right) + p \right]}$
$M_{V}^{"}(0) = up \left[(u-1)p+1 \right] z \mu_{2}$
$\frac{1}{(2 + 1)^{2}} = \frac{1}{(2 + 1)^{2}}$
$\frac{6^{2}z \mu p \left[(n-1)p+1 \right] - \mu^{2}p^{2}}{= \mu p \left[(n-1)p+1 - \mu p \right] = \mu p \left[\mu p - p+1 - \mu p \right]}$
=> 622 np(1-p)
For Y where Y~ Bin (u,p) Mean z up & Var z up(1-p).
Hence shown!