IC 110: Engineering Mathematics; Practice sheet

- 1. If u = x + y + z, uv = y + z, uvw = z, show that $J(x, y, z) = \frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2v$.
- 2. If $u_1 = \frac{x_2 x_3}{x_1}$, $u_2 = \frac{x_1 x_3}{x_2}$, $u_3 = \frac{x_1 x_2}{x_3}$, show that $\frac{\partial(u_1, u_2, u_3)}{\partial(x, y, z)} = 4$.
- 3. If u = 2xy, $v = x^2 y^2$, $x = r\cos\theta$, $y = r\sin\theta$, find $\frac{\partial(u,v)}{\partial(r,\theta)}$.
- 4. If U = x + y z, V = x y + z, $W = x^2 + y^2 + z^2 2yz$, show that U, V, W are connected by a functional relation, and find the functional relation.
- 5. The root of the equation in λ

$$(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$$

are u, v, w. Show that

$$\frac{\partial(u,v,w)}{\partial(x,y,z)} = -2\frac{(y-z)(z-x)(x-y)}{(v-w)(w-u)(u-v)}.$$

- 6. Find the points (x, y), where the function xy(1 x y) is either maximum or minimum.
- 7. The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.
- 8. Find the maximum value of $x^m y^n z^p$ subject to the condition x + y + z = a.
- 9. Divide 24 into three parts such that the continued product of the first, square of the second, and the cube of the third part may be maximum.
- 10. Investigate the maximum and minimum radii vector of the sector of surface of elasticity

$$(x^2 + y^2 + z^2)^2 = a^2x^2 + b^2y^2 + c^2z^2,$$

made by the plane lx + my + nz = 0.