Portfolio Theory w/ Settlement Frictions

by Javier Bianchi (FRB-Min) Saki Bigio (UCLA & NBER) on UCLA Workshop – July 2025

Big Picture & Agenda

- Recent macro-finance: convenience yields
 - Treasuries, Repo, FX markets
- Convenience yields: premia unexplained by cash flow (risk)
- Agenda: links convenience yields to
 - Supply of settlement instruments (e.g., reserves, debt)
 - OTC market frictions
- Why Microfoundations?
 - 1. Testable micro predictions: volumes, rates, dispersion
 - 2. Policy-relevance: non-invariant to policy
 - 3. Interaction with risk-aversion

Preview of Mechanism

- Investors with portfolios
- Cash-flows: **settlement shocks** (e.g., deposits, margin calls)
- Cash deficit: borrow in OTC market or face penalty rate
- Kinked convenience-yield function of cash position s:

$$\chi(s) = \begin{cases} \chi^- s & \text{if } s < 0 \\ \chi^+ s & \text{if } s \ge 0 \end{cases}$$

- χ^- and χ^+ depend on:
 - market tightness $\theta = S^-/S^+$ matching technology $G, \bar{\lambda}$

 - bargaining power η

Preview of Mechanism

(a) Convenience yields

(b) Tightness and convenience yields

What we do here

- Afonso-Lagos ECMA '15
 - OTC market for Fed Funds
- Bianchi-Bigio ECMA '22
 - analytic OTC model (Leontief matching)
 - embedded in GE
 - study monetary policy
- Novelty here:
 - arbitrary assets (not only deposits)
 - generalize matching function
 - comparative statics convenience-yields
- Input in Recent work:
 - applications to exchange rates
 - optimal size of central-bank balance sheets

Contributions here

1. Portfolio Theory:

• integrate OTC friction into rich asset choice/asset pricing framework

2. OTC Market:

- formulas for trading rates & volumes for various cases
- focus identification w/ micro data
- 3. **Asset Pricing:** theory of convenience yields
 - details how convenience yields vary with market structure/quantities
- 4. Normative: Identifies inefficient portfolio choices: guide regulation

Environment

Model Environment

- Infinite-horizon, unit mass of investors
- Asset return risk and settlement risk
- Trade in settlement instrument frictional OTC market
- Failure to borrow: penalty rate

Timeline: Two-Stages

1. Portfolio Stage

• Choose holdings in assets $\{a^i\}$, $i \in \mathcal{I}$, and cash m

2. Balancing Stage

- Idiosyncratic cash-flow shocks ω^i
- Settlement in cash m
- OTC trade: Borrow (or lend) from other investors f and or amount w at penalty (lender of last resort)

Asset Structure

- Assets $\{a^i\}_{i\in\mathbb{I}}$ differ in payoffs and liquidity properties
- Special asset *m*: riskless
- Constraint: must end each period $m \ge 0$

Cash-Flow Shocks and Surplus Definition

• At balancing stage, shocks ω^i perturb asset positions:

$$a_{t+1}^i = \tilde{a}_{t+1}^i (1 + \omega_t^i)$$

• Settlement surplus:

$$s = \tilde{m}_{t+1} + \sum_{i} \frac{R'_{t+1}}{R^{m}_{t+1}} \omega^{i}_{t} \tilde{a}^{i}_{t+1}$$

- s < 0: deficit \rightarrow needs funding
- s > 0: surplus \rightarrow can lend or hold
- Examples: deposits, credit lines, margin calls, insurance claims, refinancing options, etc.

OTC trade

- Deficits funded via:
 - OTC market borrowing (probability Ψ_t^-)
 - At penalty (probability $1-\Psi_t^-$)
- Surplus lent in OTC market (probability Ψ_t^+)
- Final cash holdings:

$$m_{t+1} = s + f_{t+1} + w_{t+1} \ge 0$$

Convenience Yields from Settlement Risk

• Total return includes direct asset return + settlement yield:

$$e_{t+1} = \sum_{i} R_{t+1}^{i} \tilde{a}_{t+1}^{i} + R_{t+1}^{m} \tilde{m}_{t+1} + \chi_{t+1}(s)$$

• Kinked convenience-yield function:

$$\chi_t(s) = \begin{cases} \chi_t^- s & \text{if } s < 0\\ \chi_t^+ s & \text{if } s \ge 0 \end{cases}$$

Slopes depend on equilibrium OTC outcomes:

$$\chi_{t}^{-} = (\bar{R}_{t}^{f} - R_{t}^{m})\Psi_{t}^{-} + (R_{t}^{w} - R_{t}^{m})(1 - \Psi_{t}^{-})$$

$$\chi_{t}^{+} = (\bar{R}_{t}^{f} - R_{t}^{m})\Psi_{t}^{+}$$

- \bar{R}_{t}^{f} : average OTC rate, R_{t}^{w} : penalty rate
- Notation: r^x lower case for net rate

OTC Market and Its Equilibrium

- * Sequential Trade
- * Continuous-Time Limit
- * Properties
- * Fully Analytic Cases

OTC Market and Its Equilibrium

- * Sequential Trade
- * Continuous-Time Limit
- * Properties
- * Fully Analytic Cases

OTC Market Equilibrium: Matching Dynamics

- Afonso-Lagos block
- Define initial aggregate surplus and deficit:

$$S_0^+ = S^+, \quad S_0^- = S^-$$

- $n \in \mathcal{N} \equiv \{1, 2, ..., N\}$ rounds
- Round *n*, number of matches:

$$m_n = \lambda_N G(S_n^+, S_n^-)$$

Surplus and deficit evolve as:

$$S_{n+1}^+ = S_n^+ - m_n, \quad S_{n+1}^- = S_n^- - m_n$$

Assumptions on Matching Function

Assume:

- No disposal: G(0,1) = G(1,0) = 0
- Constant returns to scale: Homogeneous degree one
- **Symmetry:** G(a, b) = G(b, a)
- Weak exhaustion: $\lambda_N G(S_n^+, S_n^-) \leq \min\{S_n^+, S_n^-\}$
- Monotonicity: G_a , $G_b \ge 0$
- Weak concavity: G_{aa} , $G_{bb} \leq 0$

Note: different in other models that assume IRS.

Tightness and Matching Probabilities

Define market tightness:

$$\theta_n = \frac{S_n^-}{S_n^+}$$

• Matching probabilities for round *n*:

$$\psi_n^+ = \lambda_N G(1, \theta_{n-1}), \quad \psi_n^- = \lambda_N G(\theta_{n-1}^{-1}, 1)$$

- Convention: $\psi_{N+1}^{\pm} = 0$
- Equilibrium: $\psi_n^+ = \theta_{n-1}\psi_n^-$

Nash Bargaining in OTC Market

- Trick: investor delegates Δ trade sizes to traders
- In round n, traders bargain over $r_n^f = R_n^f 1$:

$$r_n^f(\Delta) = \arg\max_{r_n} \left[\mathcal{S}_n^-(\Delta)\right]^{\eta} \left[\mathcal{S}_n^+(\Delta)\right]^{1-\eta}$$

Surplus from trade (for deficit and surplus traders):

$$\mathcal{S}_n^- = \mathit{V}(\mathcal{E}^j(\Delta) - (\mathit{r}_n^\mathit{f} - \mathit{r}^\mathit{m})\Delta) - \mathit{J}_U^-(\mathit{n};\Delta)$$

$$\mathcal{S}_n^+ = V(\mathcal{E}^j(\Delta) + (r_n^f - r^m)\Delta) - J_U^+(n;\Delta)$$

• $\mathcal{E}^{j}(\Delta)$: "estimate" of investor equity, ex own trade

Limit Result: $\Delta \rightarrow 0$

- Infinitesimal trade: Shi '97 or Atkeson, Eisfeldt, Weill '15
- As trade size $\Delta \to 0$, trader's effect on equity becomes marginal:

$$V(e + \Delta x) \approx V(e) + V'(e) \cdot \Delta x$$

Nash becomes:

$$\lim_{\Delta \downarrow 0} \left\{ \max_{r_n^f} \left[\mathcal{S}_n^-(\Delta) / \Delta \right]^{\eta} \left[\mathcal{S}_n^+(\Delta) / \Delta \right]^{1-\eta} \right\} = V \left(\mathcal{E}^j \right)^{\eta} V \left(\mathcal{E}^k \right)^{1-\eta} \max_{r_n^f} \left[\chi_{n+1}^- - (r_n - r^m) \right]^{\eta} \left[(r_n - r^m) - \chi_{n+1}^+ \right]^{1-\eta}.$$

ullet Result: marginal utility V' factors out: outcome depends only on round n

Result: Infinitesimal Trade Bargaining

Dynamic Bargaining Problem

$$\max_{r_n^f \in \{r^m + \chi_n^+, r^m + \chi_n^-\}} \left(\chi_n^- - (r_n^f - r^m) \right)^{\eta} \left((r_n^f - r^m) - \chi_n^+ \right)^{1-\eta}$$

Solution:

$$r_n^f = r^m + (1 - \eta)\chi_n^- + \eta\chi_n^+$$

Difference Equation: χ_n^+ and χ_n^-

$$\chi_n^+ = (r_{n+1}^f - r^m)\psi_{n+1}^+ + \chi_{n+1}^+ (1 - \psi_{n+1}^+)$$

$$\chi_{n}^{-} = (r_{n+1}^{f} - r^{m})\psi_{n+1}^{-} + \chi_{n+1}^{-}(1 - \psi_{n+1}^{-})$$

given
$$\chi_{N+1}^+, \chi_{N+1}^- = 0, = r^w - r^m$$
, $\{\psi_n^+, \psi_n^-\}$

Consistency

Proposition

Matching probabilities:

$$\Psi^{-} = 1 - \prod_{n=1}^{N} (1 - \psi_{n}^{-}), \quad \Psi^{+} = 1 - \prod_{n=1}^{N} (1 - \psi_{n}^{+})$$

Convenience yield slopes:

$$\chi^{-} = \Psi^{-}(\bar{r}^{f} - r^{m}) + (1 - \Psi^{-})(r^{w} - r^{m}) = \chi_{0}^{-}$$

$$\chi^{+} = \Psi^{+}(\bar{r}^{f} - r^{m}) = \chi_{0}^{+}$$

Rates: \bar{r}^f is average rate across rounds weighted by volume

Algorithm: Convenience Yields

- 1. Forward iteration: compute $\{\psi_n^+, \psi_n^-\}$ using θ_0
- 2. Backward iteration: compute $\{\chi_n^+, \chi_n^-\}$ using terminal values
- 3. Then: $r_n^f = r^m + (1 \eta)\chi_n^- + \eta\chi_n^+$

Arrive at:

• $\chi_t^- = \chi_0^-$, $\chi_t^+ = \chi_0^+$ (slopes of liquidity yield)

OTC Market and Its Equilibrium

- * Sequential Trade
- * Continuous-Time Limit
- * Properties
- * Fully Analytic Cases

Continuous-Time Limit

Limit $N \to \infty$, $\lambda_N \to 0$ with $N\lambda_N \to \bar{\lambda}$

• Trading rounds indexed by $\tau \in [0, 1]$.

ODE for market tightness

$$\dot{\theta}_{\tau} = \bar{\lambda}\theta_{\tau} \left[\gamma(1/\theta_{\tau}) - \gamma(\theta_{\tau}) \right], \quad \gamma(\theta) = G(1,\theta)$$

Matching intensities:

$$\psi_{\tau}^{+} = \bar{\lambda}\gamma(\theta_{\tau}), \quad \psi_{\tau}^{-} = \bar{\lambda}\gamma(1/\theta_{\tau})$$

Convenience Yields - Cont. Time Solution

Proposition

Given path of: $\{\psi^+, \psi^-\}$,

$$\chi_{\tau}^{+} = (r^{w} - r^{m}) \int_{\tau}^{1} (1 - \eta) \psi_{y}^{+} e^{-\int_{y}^{1} ((1 - \eta) \psi_{x}^{+} + \eta \psi_{x}^{-}) dx} dy$$

$$\chi_{\tau}^{-} = (r^{w} - r^{m}) \left[1 - \int_{\tau}^{1} \eta \psi_{y}^{-} e^{-\int_{y}^{1} ((1 - \eta) \psi_{x}^{+} + \eta \psi_{x}^{-}) dx} dy \right]$$

Bargaining Outcome still:

$$r_{\tau}^{f} = r^{m} + (1 - \eta)\chi_{\tau}^{-} + \eta\chi_{\tau}^{+}$$

Example: Leontief Matching $G(a, b) = \min\{a, b\}$

(d) Cost χ^-

(e) Benefit χ^+

(f) Rate r_{τ}^f

Example: Cobb-Douglas $G(a, b) = \sqrt{a \cdot b}$

(d) Cost χ^-

(e) Benefit χ^+

(f) Rate r_{τ}^f

OTC Market and Its Equilibrium

- * Sequential Trade
- * Continuous-Time Limit
- * Properties
- * Fully Analytic Cases

Four Properties

- Balanced market balanced market $(\theta_0 = 1)$, stays balanced.
 - Exogenous trading probs.
- Time Dilation Dynamics from any point in session
 - ullet Reset to full session, scale matching efficiency $ar{\lambda}$ remaining time
- Symmetry Swapping deficit and surplus sides $(\theta \leftrightarrow \theta^{-1}, \eta \leftrightarrow 1 \eta)$
 - mirrors yields around $r^w r^m$
- Bargaining Power Borrower power $(\eta \uparrow)$ lowers rates and yield coefficients
 - full borrower power $\Rightarrow \bar{r}^f = r^m$, viceversa

Efficiency Limits

The OTC market equilibrium satisfies:

- Walrasian Limit $(\bar{\lambda} \to \infty)$
 - $\theta > 1$: $\Psi^+ = 1$, $\Psi^- = 1/\theta$, $\chi^+ = \chi^- = r^w r^m$
 - $\theta < 1$: $\Psi^+ = \theta$, $\Psi^- = 1$, $\chi^+ = \chi^- = 0$
 - $\theta = 1$: $\Psi^+ = \Psi^- = 1$, $\chi^+ = \chi^- = (1 \eta)(r^w r^m)$
- Static Limit ($\bar{\lambda} \to 0$)
 - $\Psi^+ = \Psi^- = 0$, $\chi^+ = 0$, $\chi^- = r^w r^m$
 - $\bar{r}^f = r^m + (1 \eta)(r^w r^m)$
- High efficiency leads to Walrasian outcomes
- Low efficiency: bargaining as in one round

Symmetry and Walrasian Limit

(a) Symmetry Property

(b) Walrasian Limit

Market Tightness

- χ^+,χ^-,\bar{r}^f increasing in tightness θ
- What about extrema?

Proposition (Extrema of Market Tightness)

- $\theta \to 0$: $\chi^+ \to 0$, $\chi^- \to (r^w r^m)e^{-\bar{\lambda}\bar{\gamma}\eta}$
- $\theta \to \infty$: $\chi^- \to r^w r^m$, $\chi^+ \to (r^w r^m)(1 e^{-(1-\eta)\bar{\lambda}\bar{\gamma}})$
- **Key:** boundedness $\bar{\gamma} = \lim_{\theta \to 0} \gamma(\theta^{-1})$
- $\bar{\gamma}$ finite: yields/rates stay positive even as $\theta \to 0$

The CES Matching Class

- CES: $G(a,b) = (a^p + b^p)^{1/p}, p \le 0$
- Within CES: Cobb-Douglas (p = 0) is knife-edge
 - Only matching function θ_{τ} can reach 0 in finite time
 - We care because Cobb-Douglas allows zero convenience yields

The CES Matching Class

(c) χ^+

(d) χ^-

OTC Market and Its Equilibrium

- * Sequential Trade
- * Continuous-Time Limit
- * Properties
- * Fully Analytic Cases

Tightness Formula: Cobb-Douglas vs. Leontief

Market Tightness $ heta(au)$		
Feature	Cobb-Douglas $(p = 0)$	Leontief $(p = -\infty)$
$\theta(au)$	$\left(\frac{(1+\sqrt{\theta_0})e^{-\bar{\lambda}\tau}-(1-\sqrt{\theta_0})}{(1+\sqrt{\theta_0})e^{-\bar{\lambda}\tau}+(1-\sqrt{\theta_0})}\right)^2$	$\begin{cases} 1 + (\theta_0 - 1)e^{\bar{\lambda}\tau}, & \theta_0 > 1\\ \theta_0/(\theta_0 + (1 - \theta_0)e^{\bar{\lambda}\tau}), & \theta_0 < 1 \end{cases}$
Stop T	$\min \left\{ rac{1}{\lambda} \log \left(\left rac{1+\sqrt{ heta_0}}{1-\sqrt{ heta_0}} \right ight), \ 1 ight\}$	∞
Ψ+	$1 - e^{-\bar{\lambda}T} \left(\frac{(1+\sqrt{\theta_0}) + (1-\sqrt{\theta_0})e^{\bar{\lambda}T}}{(1+\sqrt{\theta_0}) + (1-\sqrt{\theta_0})} \right)^2$	$\begin{cases} 1 - e^{-\bar{\lambda}}, & \theta_0 \ge 1\\ \theta_0 (1 - e^{-\bar{\lambda}}), & \theta_0 < 1 \end{cases}$
Ψ-	$1 - e^{-\bar{\lambda}T} \left(\frac{(1 + \sqrt{\theta_0}) - (1 - \sqrt{\theta_0})e^{\bar{\lambda}T}}{(1 + \sqrt{\theta_0}) - (1 - \sqrt{\theta_0})} \right)^2$	$\begin{cases} (1 - e^{-\bar{\lambda}})\theta_0^{-1}, & \theta_0 > 1\\ 1 - e^{-\bar{\lambda}}, & \theta_0 \le 1 \end{cases}$

Closed-Form: Yields and OTC Rate

Set
$$\bar{\theta}=\theta_1$$
 and $\theta=\theta_0$

Yield Coefficients and OTC Rate

For both Cobb-Douglas and Leontief:

$$\chi^{+} = (r^{w} - r^{m}) \left(\frac{\bar{\theta} - \bar{\theta}^{\eta} \theta^{1-\eta}}{\bar{\theta} - 1} \right), \quad \chi^{-} = (r^{w} - r^{m}) \left(\frac{\bar{\theta} - \bar{\theta}^{\eta} \theta^{-\eta}}{\bar{\theta} - 1} \right)$$
$$\bar{r}^{f} = \phi(\theta) r^{m} + (1 - \phi(\theta)) r^{w}, \quad \phi(\theta) = \frac{(\bar{\theta}/\theta)^{\eta} - \theta}{\bar{\theta}/\theta - 1}$$

- ullet $\phi(heta)$ acts as **endogenous bargaining index**
- Valid in closed-form only for p=0 and $p=-\infty$
 - but not for all p

Cobb-Douglas vs. Leontief

ullet T takes care of making $\theta=0$ of T<1

Applications

- * Portfolio Choice/Asset Pricing
- * Identification
- * Efficiency

Applications

- * Portfolio Choice/Asset Pricing
- * Identification
- * Efficiency

Portfolio Problem with Settlement Risk

Investor Preferences and Problem

Investor solves:

$$\max_{\{c, \tilde{a}_{t+1}^{i}, \tilde{m}_{t+1}\}} \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\gamma} - 1}{1 - \gamma}$$

subject to budget and return constraints.

- Cash return R^m and asset returns R^i are exogenous.
- Only OTC rate \bar{R}^f and $\chi(s;\theta)$ endogenous
- Portfolio separation holds

Return on Portfolio and Risk

Portfolio Objective

Investor chooses weights to maximize equity return:

$$\max_{m,a^i} \left(\mathbb{E} \left[R^{\mathbf{e}} \right]^{1-\gamma} \right)^{\frac{1}{1-\gamma}}$$

where:

$$R^{e} = \sum_{i} R^{i} a^{i} + R^{m} m + \chi \left(s(a^{i}, m, \omega); \theta \right)$$

- $\chi(s)$ is kinked: costly to be in deficit, modest benefit in surplus.
- s depends on portfolio weights and liquidity shocks.

Convenience Yields and Portfolio Premia

Decomposition of Excess Returns

At optimality:

$$\begin{split} \mathbb{E}[R^i] - R^m &= \underbrace{-\mathbb{E}[\chi_s(\partial_m s - \partial_{a^i} s)]}_{\text{first-order liquidity yield}} \\ &- \underbrace{\frac{\mathsf{Cov}[R_e^{-\gamma}, R^i + \chi_s(\partial_m s - \partial_{a^i} s)]}{\mathbb{E}[R_e^{-\gamma}]}}_{\text{total risk premium}} \end{split}$$

- χ_s is the marginal convenience yield $(\chi^+ \text{ or } \chi^-)$.
- Lesson: premia reflect both mean liquidity effects and covariance with risk.
 - Risk and liquidity, not decoupled!
 - FX literature: assumes they are

Lessons for Portfolio Theory

Convenience yields:

force toward determinate portfolios even under risk neutrality

Risk premia vs. convenience yield decompositions:

not decoupled

Applications: Pricing anomalies

- short-term rate puzzle (Lenel-Piazzesi-Schneider)
- corporate-rate puzzle (Liao)
- CIP deviations (Krishnarmurthy-Jian-Lustig)
- deposit-rate heterogeneity (Dreschler-Savov-Schnabl)

Applications

- * Portfolio Choice/Asset Pricing
- * Identification
- * Efficiency

What Are We Trying to Identify?

Three Key Parameters

- Market tightness θ : imbalance between buyers and sellers
- Matching efficiency $\bar{\lambda}$: how quickly matches form
- Bargaining power η : who keeps the surplus
- Why identify them?
 - Decompose sources of convenience yields
 - Run policy or institutional counterfactuals
 - Map observed premia to underlying frictions

Non-Monotonicity: Identification Challenge

Non monotonic yields in efficiency

Identification Strategy: Moments and Mapping

Observable Moments

- \bar{r}^f and $\chi^{\pm} \Rightarrow \text{pin down } \theta \text{ (monotonicity)}$
- Portfolios and implied $\theta \Rightarrow$ shock distribution Φ
- ullet Intraday dispersion $Q\Rightarrow$ moment identify $ar{\lambda}$ or ${\sf G}$
- Relative volume $I(\theta) \equiv \frac{\Psi^-}{1-\Psi^-} \Rightarrow$ clean moment for $\bar{\lambda}$
- Use χ^+/χ^- near $\theta=1\Rightarrow$ infer η

Identification Strategy: Moments and Mapping

Observable Moments

- \bar{r}^f and $\chi^{\pm} \Rightarrow \text{pin down } \theta \text{ (monotonicity)}$
- Portfolios and implied $\theta \Rightarrow$ shock distribution Φ
- ullet Intraday dispersion $Q\Rightarrow$ moment identify $ar{\lambda}$ or ${\sf G}$
- Relative volume $I(\theta) \equiv \frac{\Psi^-}{1-\Psi^-} \Rightarrow$ clean moment for $\bar{\lambda}$
- Use χ^+/χ^- near $\theta=1\Rightarrow$ infer η

Payoff

- Estimate of $\frac{R^f R^m}{R^w R^m}$ as function of $\theta(M/D)$ for Euro Area
- Used in Bigio-Linzert-Mendo-Schumacher-Thaler:

Fit to Euro Area

Applications

- * Portfolio Choice/Asset Pricing
- * Identification
- * Efficiency

Efficiency

- Portfolio choice may be constrained inefficient
- Depends on who earns penalties
- Here, assume it's waste

Banking Example: Withdrawal Risk

Portfolio Structure in Bianchi-Bigio '22

- Assets: cash *m*, illiquid bond *b*.
- Liability: deposit d subject to withdrawal shock ω .
- Settlement position:

$$s(b, d, m) = m + \left(\frac{R^d}{R^m}\omega - \rho(1+\omega)\right)d$$

• Budget: b + m = 1 + d.

Liquidity Premium on Bonds

Illiquid Asset vs. Cash

$$R^b-R^m=\chi^++(\chi^--\chi^+)\tilde{\Phi}(\omega^*)$$

where:

$$\tilde{\Phi}(\omega^*) = \Phi(\omega^*) \cdot \frac{\mathbb{E}[R^{\mathrm{e}}(\omega)^{-\gamma} | \omega < \omega^*]}{\mathbb{E}[R^{\mathrm{e}}(\omega)^{-\gamma}]}, \quad \omega^* = \frac{\rho - m/d}{R^d/R^m - \rho}$$

- $\Phi(\omega^*)$: probability of cash deficit.
- $\tilde{\Phi}$: risk-adjusted deficit probability.

Efficiency of Portfolio Management

- Investors: not internalize effect on market tightness θ
- Externality: cash improves reduces external borrowing + but has opportunity cost
- Haider-Ismail and Zuniga
 - flipside, study loan-deposit wedge with rebate

Planner Problem

Planner Optimality Condition

$$R^{b} - R^{m} = \chi^{+} + (\chi^{-} - \chi^{+})\tilde{\Phi}(\omega^{*}) + H$$

- H: pecuniary externality from m's effect on θ and χ .
- Planner internalizes how *m* affects matching and yields.

Direction of the Externality

• Risk-neutrality $(\gamma \to 0)$, planner values cash more iff

$$\frac{\partial \chi^+}{\partial \theta} S^+ > \frac{\partial \chi^-}{\partial \theta} S^-$$

Cases: Leontief vs. Cobb-Douglas

- Cobb-Douglas:
 - near balanced market ($\theta = 1$), no inefficiency.
 - risk-aversion: force toward more liquidity $m \Rightarrow$ precautionary motive
- Leontief:
 - matching probabilities of short-side fixed
 - no inefficiency if planner & market allocation feature aggregate surplus
- Inefficiencies: matching-function specific

Policy Implications

- Inefficiency: liquidity regulation
- Planner: more cash to reduce exposure to costly borrowing (e.g., FX reserve management, Central Bank balance sheet)

Conclusion

Limitations and Extensions

- Results rely on simplifying assumptions
 - large number of traders, no network, no effort
- Portfolio: one layer. Reality: multi-layered.
- Still, useful to know simplest outcomes

Thank You!

Questions, comments?