Ônibus

 $Nome\ do\ arquivo:$ onibus.cp, onibus.pas, onibus.java, onibus.js, onibus.py2 ou onibus.py3

A Linearlândia é composta de N cidades, numeradas de 1 até N. Para alguns pares de cidades existe uma linha de ônibus que faz o trajeto de ida e volta diretamente entre as duas cidades do par. Os pares de cidades ligados diretamente por uma linha de ônibus são escolhidos de forma que sempre é possível ir de qualquer cidade para qualquer outra cidade por um, e somente um, caminho (um caminho é uma sequência de linhas de ônibus, sem repetição).

Dada a lista de pares de cidades ligados diretamente por linhas de ônibus, uma cidade origem e uma cidade destino, seu programa deve computar quantos ônibus é preciso pegar para ir da origem ao destino. Por exemplo, na figura, para ir da cidade 2 para a cidade 12 é preciso pegar 4 ônibus.

Entrada

A primeira linha da entrada contém três inteiros N, A e B, representando o número de cidades na Linearlândia, a cidade origem e a cidade destino, respectivamente. As N-1 linhas seguintes contém, cada uma, dois inteiros P e Q, indicando que existe uma linha de ônibus ligando diretamente as cidades P e Q.

Saída

Seu programa deve imprimir uma linha contendo um inteiro representando quantos ônibus é preciso pegar para ir de A até B.

Restrições

- $\bullet \ 2 \leq N \leq 10000$
- $1 \le A \le N$, $1 \le B \le N$, $A \ne B$
- $1 \le P \le N, 1 \le Q \le N$

Exemplos

Entrada	Saída
4 2 4	2
1 2	
2 3	
3 4	

Entrada	Saída
16 2 12	4
3 5	
12 3	
5 1	
2 1	
4 1	
6 1	
7 1	
12 8	
12 9	
12 10	
12 11	
3 13	
13 14	
15 13	
15 16	