Encyclopaedia of Mathematics and Physics

Robin Adams

Contents

1	Set Theory	5
2	Relations	7
3	Order Theory	9
4	Field Theory 4.1 Ordered Fields	11 13
5	Real Analysis 5.1 Construction of the Real Numbers 5.2 Properties of the Real Numbers 5.2.1 Logarithms 5.2.2 Intervals 5.2.3 The Cantor Set 5.3 The Extended Real Number System	15 15 21 27 28 28 29
6	Complex Analysis 6.1 Algebraic Numbers	31 35
Ι	Linear Algebra	37
7	Vector Spaces 7.1 Convex Sets	39
8	Real Inner Product Spaces 8.1 Balls	41 42
9	Complex Inner Product Spaces 9.1 Hilbert Spaces	43 44
10	Lie Algebras 10.1 Lie Algebar Homomorphisms	45 46

II	Topology	47
11	Metric Spaces	49
	11.1 Balls	49
	11.2 Limit Points	50
	11.3 Closed Sets	50
	11.4 Interior Points	50
	11.5 Open Sets	51
	11.6 Perfect Sets	53
	11.7 Bounded Sets	54
	11.8 Dense Sets	54
	11.9 Closure	54
	11.10Compact Sets	56
	11.11Connected Sets	61
	11.12Separable Spaces	63
	11.13Bases	64
	$11.14 Condensation\ Points\ \dots$	64
12	Convergence	67
	12.1 Cauchy Sequences	70
II	I More Algebra	73
13	Lie Groups	75

Set Theory

Proposition 1.1. Every infinite subset of a countably infinite set is countable.

```
Proof:
\langle 1 \rangle 1. Let: i: A \hookrightarrow \mathbb{N} be an infinite subset of \mathbb{N}.
\langle 1 \rangle 2. Define j : \mathbb{N} \to A by: j(k) is the element such that i(j(k)) is least such
        that i(j(k)) \notin \{i(j(0)), \dots, i(j(k-1))\}.
\langle 1 \rangle 3. j is a bijection.
Proposition 1.2. A countable union of countable sets is countable.
```

Proof:

```
\langle 1 \rangle 1. Let: (A_n) be a sequence of countable sets.
\langle 1 \rangle 2. For n \in \mathbb{N}, PICK an enumeration (e_{nm})_m of A_n.
\langle 1 \rangle 3. Let: (p_k) be the following enumeration of \mathbb{N} \times \mathbb{N}:
```

 $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),\ldots$ $\langle 1 \rangle 4$. $(e_{\pi_1(p_k)\pi_2(p_k)})_k$ is an enumeration of $\bigcup_n A_n$.

Theorem 1.3. $2^{\mathbb{N}}$ is uncountable.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $f : \mathbb{N} \approx 2^{\mathbb{N}}$
- $\langle 1 \rangle 2$. Let: $S = \{ n \in \mathbb{N} : n \notin f(n) \}$
- $\langle 1 \rangle 3$. For all n, we have $n \in S \Leftrightarrow n \notin f(n)$
- $\langle 1 \rangle 4$. For all n we have $S \neq f(n)$.
- $\langle 1 \rangle$ 5. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 1$.

Relations

Definition 2.1 (Antisymmetric). A relation R on a set A is antisymmetric iff, whenever xRy and yRx, then x = y.

Definition 2.2 (Transitive). A relation R on a type A is *transitive* iff, whenever xRy and yRz, then xRz.

Order Theory

Definition 3.1 (Linear Order). A *linear order* on a set A is a binary relation \leq on A that is transitive, antisymmetric and:

$$\forall x, y \in A.x \le y \lor y \le x$$
.

A linearly ordered set is a pair (A, \leq) where A is a set and \leq is a binary relation on A.

We write x < y for $x \le y$ and $x \ne y$.

Definition 3.2 (Upper Bound). Let S be a linearly ordered set, $u \in S$ and $E \subseteq S$. Then u is an *upper bound* in E iff $\forall x \in E.x \leq u$. We say E is *bounded above* iff it has an upper bound.

The *up-set* of E, denoted $E \uparrow$, is the set of upper bounds of E.

Definition 3.3 (Lower Bound). Let S be a linearly ordered set, $l \in S$ and $E \subseteq S$. Then u is an *lower bound* in E iff $\forall x \in E.l \leq x$. We say E is *bounded below* iff it has a lower bound.

The down-set of E, denoted $E \downarrow$, is the set of lower bounds of E.

Definition 3.4 (Supremum). Let S be a linearly ordered set, $u \in S$ and $E \subseteq S$. Then u is the *least upper bound* or *supremum* of E iff u is an upper bound for E and, for any upper bound u' for E, we have $u \le u'$.

Definition 3.5 (Infimum). Let S be a linearly ordered set, $l \in S$ and $E \subseteq S$. Then l is the *greatest lower bound* or *infimum* of E iff l is a lower bound for E and, for any lower bound l' for E, we have $l' \leq l$.

Definition 3.6 (Least Upper Bound Property). A linearly ordered set S has the *least upper bound property* iff every nonempty subset of S that is bounded above has a least upper bound.

Proposition 3.7. Let S be a linearly ordered set and $E \subseteq S$.

1. If $E \downarrow has$ a supremum l, then l is the infimum of E.

2. If $E \uparrow has$ an infimum u, then U is the supremum of E.

PROOF

- $\langle 1 \rangle 1$. If $E \downarrow$ has a supremum l, then l is the infimum of E.
 - $\langle 2 \rangle 1$. l is a lower bound for E.
 - $\langle 3 \rangle 1$. Let: $x \in E$
 - $\langle 3 \rangle 2$. x is an upper bound for $E \downarrow$.

PROOF: For all $y \in E \downarrow$ we have $y \leq x$.

- $\langle 3 \rangle 3. \ l \leq x$
- $\langle 2 \rangle 2$. For any lower bound l' for E, we have $l' \leq l$.

PROOF: Since l is an upper bound for $E \downarrow$.

 $\langle 1 \rangle$ 2. If $E \uparrow$ has an infimum u, then u is the supremum of E. PROOF: Dual.

П

Corollary 3.7.1. A linearly ordered set has the least upper bound property if and only if every nonempty set bounded below has an infimum.

Definition 3.8 (Closed Downwards). Let S be a linearly ordered set and $E \subseteq S$. Then E is closed downwards iff, whenever $x \in E$ and y < x, then $y \in E$.

Definition 3.9 (Closed Upwards). Let S be a linearly ordered set and $E \subseteq S$. Then E is *closed upwards* iff, whenever $x \in E$ and x < y, then $y \in E$.

Definition 3.10 (Greatest). Let S be a linearly ordered set and $u \in S$. Then u is greatest in S iff $\forall x \in S.x \leq u$.

Definition 3.11 (Least). Let S be a linearly ordered set and $l \in S$. Then l is least in S iff $\forall x \in S.l \leq x$.

Proposition 3.12. Let \leq be a linear order on a set S and $E \subseteq S$. Then $\leq \cap E^2$ is a linear order on E.

Proof: Easy. \sqcup

Given a linearly ordered set (S, \leq) and $E \subseteq S$, we write just E for the linearly ordered set $(E, \leq \cap E^2)$.

Definition 3.13 (Lexicographic Order). Let A and B be linearly ordered sets. The *lexicographic order* or *dictionary order* on $A \times B$ is the order defined by

$$(a,b) \le (a',b') \Leftrightarrow a = a' \lor (a < a' \land b \le b')$$
.

Proposition 3.14. The lexicographic order is a linear order.

Field Theory

Definition 4.1 (Field). A *field* F consists of a set F, two operations $+, \cdot : F^2 \to F$ and an element $0 \in F$ such that:

- \bullet + is commutative.
- \bullet + is associative.
- $\bullet \ \forall x \in F.x + 0 = x$
- $\forall x \in F. \exists y \in F. x + y = 0$
- \bullet · is commutative.
- \bullet · is associative.
- There exists $1 \in F$ such that $1 \neq 0$ and $\forall x \in F.x1 = x$ and $\forall x \in F.x \neq 0 \Rightarrow \exists y \in F.xy = 1$
- Distributive Law $\forall x, y, z \in F.x(y+z) = xy + xz$

Proposition 4.2. In any field F, the element 0 is the unique element such that $\forall x \in F.x + 0 = x$.

PROOF: If 0 and 0' both have this property then 0 = 0 + 0' = 0'. \square

Proposition 4.3. In any field F, given $x \in F$, there is a unique $y \in F$ such that x + y = 0.

PROOF: If
$$x + y = x + y' = 0$$
 then
$$y = y + 0$$
$$= y + x + y'$$
$$= 0 + y'$$
$$= y'$$

Definition 4.4. Let F be a field. Let $x \in F$. We denote by -x the unique element of F such that x + (-x) = 0.

Given $x, y \in F$, we write x - y for x + (-y).

Proposition 4.5. In any field F, if x + y = x + z then y = z.

PROOF: If x+y=x+z we have -x+x+y=-x+x+z $\therefore 0+y=0+z$ $\therefore y=z$

Proposition 4.6. In any field F, we have -(-x) = x.

PROOF: Since x + (-x) = 0. \square

Proposition 4.7. In any field F, the element 1 such that $\forall x \in F.x1 = x$ is unique.

PROOF: If 1 and 1' both have this property then $1 = 1 \cdot 1' = 1'$. \square

Proposition 4.8. In any field F, given $x \in F$ with $x \neq 0$, the element y such that xy = 1 is unique.

PROOF: If y and y' both have this property then we have

$$y = y1$$

$$= yxy'$$

$$= 1y'$$

$$= y'$$

Definition 4.9. In any field F, if $x \neq 0$, we write x^{-1} for the unique element such that $xx^{-1} = 1$.

We write x/y for xy^{-1} .

Proposition 4.10. In any field F, if xy = xz and $x \neq 0$ then y = z.

Proof:

$$y = 1y$$

$$= x^{-1}xy$$

$$= x^{-1}xz$$

$$= 1z$$

$$= z$$

Proposition 4.11. In any field F, if $x \neq 0$ then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.

PROOF: Since $xx^{-1} = 1$. \square

Proposition 4.12. In any field F, we have x0 = 0.

13

Proof:

$$x0 + 0 = x0$$

$$= x(0 + 0)$$

$$= x0 + x0$$

$$\therefore 0 = x0$$

Proposition 4.13. In any field F, if xy = 0 then x = 0 or y = 0.

PROOF: If xy = 0 and $x \neq 0$ then we have $y = x^{-1}xy = x^{-1}0 = 0$. \square

Proposition 4.14. In any field F, we have (-x)y = -(xy).

Proof:

$$xy + (-x)y = (x + (-x))y$$

$$= 0y$$

$$= 0 (Proposition 4.12) \square$$

Corollary 4.14.1. In any field F, we have (-x)(-y) = xy.

Proof:

$$(-x)(-y) = -(x(-y))$$

$$= -(-(xy))$$

$$= xy (Proposition 4.6) \Box$$

Proposition 4.15. Let K be a field. Let $a, b \in K$. If $a^2 = b^2$ then a = b or a = -b.

Proof:

$$a^2 - b^2 = 0$$
$$\therefore (a - b)(a + b) = 0$$

Hence either a - b = 0 or a + b = 0, and the conclusion follows. \square

4.1 Ordered Fields

Definition 4.16 (Ordered Field). An ordered field F consists of a field F and a linear order \leq on F such that:

- For all $x, y, z \in F$, if y < z then x + y < x + z
- For all $x, y \in F$, if x > 0 and y > 0 then xy > 0.

We call x positive iff x > 0 and negative iff x < 0.

Example 4.17. \mathbb{Q} is an ordered field.

Proposition 4.18. In any ordered field, if x is positive then -x is negative.

PROOF: If
$$x > 0$$
 then $0 = x + (-x) > 0 = (-x) = -x$. \Box

Proposition 4.19. In any ordered field, if y < z and x is positive then xy < xz.

PROOF: If y < z then we have

$$0 < z - y$$

$$0 < x(z - y)$$

$$= xz - xy$$

$$xy < xz$$

Proposition 4.20. In any ordered field, if y < z and x is negative then xy > xz.

Proof:

- $\langle 1 \rangle 1$. -x is positive.
- $\langle 1 \rangle 2$. (-x)y < (-x)z
- $\langle 1 \rangle 3. -(xy) < -(xz)$
- $\langle 1 \rangle 4$. xz < xy

Proposition 4.21. In any ordered field, if $x \neq 0$ then $x^2 > 0$.

 $\langle 1 \rangle 1$. If x > 0 then $x^2 > 0$.

PROOF: Proposition 4.19.

 $\langle 1 \rangle 2$. If x < 0 then $x^2 > 0$.

Proof: Proposition 4.20.

Corollary 4.21.1. In any ordered field, we have 1 > 0.

Proposition 4.22. In any ordered field, if x is positive then x^{-1} is positive.

PROOF: If $x^{-1} < 0$ then we would have $1 = xx^{-1} < x0 = 0$ contradicting Corollary 4.21.1. \square

Proposition 4.23. In any ordered field, if 0 < x < y then $y^{-1} < x^{-1}$.

- $\langle 1 \rangle 1$. Assume: 0 < x < y
- $\langle 1 \rangle 2$. x^{-1} and y^{-1} are positive.

Proof: Proposition 4.22.

- $\langle 1 \rangle 3. \ xy^{-1} < yy^{-1} = 1$ $\langle 1 \rangle 4. \ y^{-1} = x^{-1}xy^{-1} < x^{-1}1 = x^{-1}$

Lemma 4.24. Let K be an ordered field. Let $b \in K$ with b > 1. Let n be a positive integer. Then

$$b^n - 1 \ge n(b - 1)$$

Proof:

$$b^{n} - 1 = (b-1)(b^{n-1} + b^{n-2} + \dots + 1)$$

$$\geq (b-1)(1+1+\dots+1)$$

$$= n(b-1)$$

Real Analysis

5.1 Construction of the Real Numbers

Definition 5.1 (Cut). A *cut* is a subset α of \mathbb{Q} such that:

- $\emptyset \neq \alpha \neq \mathbb{Q}$
- α is closed downwards.
- α has no greatest element.

In this section, we write R for the set of all cuts.

Proposition 5.2. R is linearly ordered by \subseteq .

```
PROOF: The only difficult part is to prove that, for any cuts \alpha and \beta, either \alpha \subseteq \beta or \beta \subseteq \alpha. 
(1)1. Assume: \alpha \nsubseteq \beta Prove: \beta \subseteq \alpha
```

 $\langle 1 \rangle 2$. PICK $q \in \alpha$ such that $q \notin \beta$ $\langle 1 \rangle 3$. Let: $r \in \beta$

 $\langle 1 \rangle 4. \ q \not< r$

 $\langle 1 \rangle 5. \ r < q$

 $\langle 1 \rangle 6. \ r \in \alpha$

Proposition 5.3. R has the least upper bound property.

Proof:

 $\langle 1 \rangle 1$. Let: $E \subseteq R$ be nonempty and bounded above.

 $\langle 1 \rangle 2$. Let: $s = \bigcup E$

Prove: s is a cut.

 $\langle 1 \rangle 3. \ \emptyset \neq s$

PROOF: Since E is nonempty and every element of E is nonempty.

 $\langle 1 \rangle 4. \ s \neq \mathbb{Q}$

- $\langle 2 \rangle 1$. PICK an upper bound u for E.
- $\langle 2 \rangle 2$. Pick $q \notin u$ Prove: $q \notin s$
- $\langle 2 \rangle 3. \ \forall \alpha \in E.\alpha \subseteq u$
- $\langle 2 \rangle 4. \ s \subseteq u$
- $\langle 2 \rangle 5. \ q \notin s$
- $\langle 1 \rangle 5$. s is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in s$ and r < q.
 - $\langle 2 \rangle 2$. Pick $\alpha \in E$ such that $q \in \alpha$.
 - $\langle 2 \rangle 3. \ r \in \alpha$
 - $\langle 2 \rangle 4. \ r \in s$
- $\langle 1 \rangle 6$. s has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in s$
 - $\langle 2 \rangle 2$. PICK $\alpha \in E$ such that $q \in \alpha$.
 - $\langle 2 \rangle 3$. Pick $r \in \alpha$ such that q < r.
- $\langle 2 \rangle 4. \ r \in s$

Definition 5.4 (Addition). Given cuts α and β , we define

$$\alpha + \beta = \{q + r : q \in \alpha, r \in \beta\} .$$

Proposition 5.5. Given cuts α and β , we have $\alpha + \beta$ is a cut.

Proof:

 $\langle 1 \rangle 1$. $\alpha + \beta$ is nonempty.

PROOF: Since α and β are nonempty.

- $\langle 1 \rangle 2. \ \alpha + \beta \neq \mathbb{Q}$
 - $\langle 2 \rangle 1$. Pick $q \in \mathbb{Q} \alpha$ and $r \in \mathbb{Q} \beta$. Prove: $q + r \notin \alpha + \beta$
 - $\langle 2 \rangle 2$. Assume: for a contradiction $q + r \in \alpha + \beta$.
 - $\langle 2 \rangle 3$. Pick $x \in \alpha$ and $y \in \beta$ such that q + r = x + y
 - $\langle 2 \rangle 4$. x < q
 - $\langle 2 \rangle 5$. y < r
 - $\langle 2 \rangle 6$. x + y < q + r
 - $\langle 2 \rangle$ 7. Q.E.D.

PROOF: This is a contradiction.

- $\langle 1 \rangle 3$. $\alpha + \beta$ is closed downwards.
 - $\langle 2 \rangle 1$. Let: $q \in \alpha$, $r \in \beta$ and x < q + r
 - $\langle 2 \rangle 2$. x q < r
 - $\langle 2 \rangle 3. \ x q \in \beta$
 - $\langle 2 \rangle 4. \ x \in \alpha + \beta$
- $\langle 1 \rangle 4$. $\alpha + \beta$ has no greatest element.
 - $\langle 2 \rangle 1$. Let: $q \in \alpha$ and $r \in \beta$.

PROVE: q + r is not greatest in $\alpha + \beta$.

- $\langle 2 \rangle 2$. Pick $q' \in \alpha$ with q < q' and $r' \in \beta$ with r < r'.
- $\langle 2 \rangle 3. \ q + r < q' + r' \in \alpha + \beta$

Proposition 5.6. Addition is commutative and associative on R.

PROOF: Immediate from definitions and the fact that addition is commutative and associative on \mathbb{Q} . \square

Definition 5.7. For any $q \in \mathbb{Q}$, let $q^* = \{r \in \mathbb{Q} : r < q\}$.

Proposition 5.8. For any $q \in \mathbb{Q}$, we have q^* is a cut.

```
Proof:
```

```
\langle 1 \rangle 1. \ q^* \neq \emptyset
   PROOF: Since q - 1 \in q^*.
\langle 1 \rangle 2. \ q^* \neq \mathbb{Q}
   PROOF: Since q \notin q^*.
\langle 1 \rangle 3. q^* is closed downwards.
   PROOF: Immediate from definition.
```

 $\langle 1 \rangle 4$. q^* has no greatest element.

PROOF: For all $r \in q^*$ we have $r < (q+r)/2 \in q^*$.

Proposition 5.9. For any cut α we have $\alpha + 0^* = \alpha$.

Proof:

$$\begin{array}{l} \langle 1 \rangle 1. \ \alpha + 0^* \subseteq \alpha \\ \langle 2 \rangle 1. \ \text{Let:} \ q \in \alpha \ \text{and} \ r \in 0^* \\ \text{Prove:} \ q + r \in \alpha \\ \langle 2 \rangle 2. \ r < 0 \\ \langle 2 \rangle 3. \ q + r < q \\ \langle 2 \rangle 4. \ q + r \in \alpha \\ \langle 1 \rangle 2. \ \alpha \subseteq \alpha + 0^* \\ \langle 2 \rangle 1. \ \text{Let:} \ q \in \alpha \\ \langle 2 \rangle 2. \ \text{Pick} \ r \in \alpha \ \text{such that} \ q < r \\ \langle 2 \rangle 3. \ q = r + (q - r) \in \alpha + 0^* \end{array}$$

Proposition 5.10. For any cut α , there exists a cut β such that $\alpha + \beta = 0$.

```
\langle 1 \rangle 1. Let: \beta = \{ p \in \mathbb{Q} : \exists r > 0. - p - r \notin \alpha \}
\langle 1 \rangle 2. \beta is a cut.
    \langle 2 \rangle 1. \ \beta \neq \emptyset
         \langle 3 \rangle 1. Pick q \notin \alpha
         \langle 3 \rangle 2. -q - 1 \in \beta
     \langle 2 \rangle 2. \ \beta \neq \mathbb{Q}
         \langle 3 \rangle 1. Pick q \in \alpha
                      Prove: -q \notin \beta
         \langle 3 \rangle 2. Assume: for a contradiction -q \in \beta
```

```
\langle 3 \rangle 3. Pick r > 0 such that q - r \notin \alpha
         \langle 3 \rangle 4. \ q - r < q
         \langle 3 \rangle 5. Q.E.D.
            PROOF: This contradicts the fact that \alpha is closed downwards.
    \langle 2 \rangle 3. \beta is closed downwards.
         \langle 3 \rangle 1. Let: p \in \beta and q < p.
         \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
         \langle 3 \rangle 3. -p-r < -q-r
         \langle 3 \rangle 4. -q - r \notin \alpha
         \langle 3 \rangle 5. \ q \in \beta
    \langle 2 \rangle 4. \beta has no greatest element.
         \langle 3 \rangle 1. Let: p \in \beta
         \langle 3 \rangle 2. Pick r > 0 such that -p - r \notin \alpha
         \langle 3 \rangle 3. \ -(p+r/2) - r/2 \notin \alpha
         \langle 3 \rangle 4. \ p + r/2 \in \beta
\langle 1 \rangle 3. \ \alpha + \beta \subseteq 0^*
    \langle 2 \rangle 1. Let: p \in \alpha and q \in \beta.
    \langle 2 \rangle 2. Pick r > 0 such that -q - r \notin \alpha.
    \langle 2 \rangle 3. p < -q - r
    \langle 2 \rangle 4. p+q < -r
    \langle 2 \rangle 5. p+q < 0
    \langle 2 \rangle 6. \ p+q \in 0^*
\langle 1 \rangle 4. \ 0^* \subseteq \alpha + \beta
    \langle 2 \rangle 1. Let: v \in 0^*
    \langle 2 \rangle 2. Let: w = -v/2
    \langle 2 \rangle 3. \ w > 0
    \langle 2 \rangle 4. PICK an integer n such that nw \in \alpha and (n+1)w \notin \alpha.
    \langle 2 \rangle5. Let: p = -(n+2)w
    \langle 2 \rangle 6. \ p \in \beta
    \langle 2 \rangle 7. \ v = nw + p
    \langle 2 \rangle 8. \ v \in \alpha + \beta
```

Proposition 5.11. Given $\alpha, \beta, \gamma \in R$, if $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

```
PROOF:  \begin{array}{l} \langle 1 \rangle 1. \ \alpha + \beta \subseteq \alpha + \gamma \\ \text{PROOF: Immediate from definitions.} \\ \langle 1 \rangle 2. \ \alpha + \beta \neq \alpha + \gamma \\ \text{PROOF: If } \alpha + \beta = \alpha + \gamma \text{ then } \beta = \gamma \text{ by cancellation.} \\ \end{array}
```

Definition 5.12. Given cuts α and β , define $\alpha\beta$ by:

$$\alpha\beta = \begin{cases} \{p \in \mathbb{Q} : \exists r \in \alpha. \exists s \in \beta (p \le rs \land r > 0 \land s > 0\} & \text{if } \alpha > 0^* \text{ and } \beta > 0^* \\ (-\alpha)(-\beta) & \text{if } \alpha < 0^* \text{ and } \beta < 0^* \\ -((-\alpha)\beta) & \text{if } \alpha < 0^* \text{ and } \beta < 0^* \\ -(\alpha(-\beta)) & \text{if } \alpha > 0^* \text{ and } \beta < 0^* \\ 0^* & \text{if } \alpha > 0^* \text{ and } \beta < 0^* \end{cases}$$

Proposition 5.13. For any cuts α and β , we have $\alpha\beta$ is a cut.

```
Proof:
```

```
\langle 1 \rangle 1. If \alpha > 0^* and \beta > 0^* then \alpha \beta is a cut.
```

- $\langle 2 \rangle 1. \ \alpha \beta \neq \emptyset$
 - $\langle 3 \rangle 1$. Pick $q \in \alpha$ and $r \in \beta$ such that $q, r \notin 0^*$
 - $\langle 3 \rangle 2$. Assume: w.l.o.g. 0 < q and 0 < r.

PROOF: Since α and β have no greatest element.

- $\langle 3 \rangle 3. \ qr \in \alpha \beta$
- $\langle 2 \rangle 2$. $\alpha \beta \neq \mathbb{Q}$
 - $\langle 3 \rangle 1$. PICK $r \notin \alpha$ and $s \notin \beta$ PROVE: $rs \notin \alpha \beta$
 - $\langle 3 \rangle 2$. Assume: for a contradiction $rs \in \alpha \beta$.
 - $\langle 3 \rangle 3$. Pick $r' \in \alpha$ and $s' \in \beta$ such that $rs \leq r's'$ and r' > 0 and s' > 0.
 - $\langle 3 \rangle 4$. r' < r and s' < s
 - $\langle 3 \rangle 5$. r's' < rs
 - $\langle 3 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

- $\langle 2 \rangle 3$. $\alpha \beta$ is closed downwards.
 - $\langle 3 \rangle 1$. Let: $p \in \alpha \beta$ and p' < p
 - $\langle 3 \rangle 2$. Pick $r \in \alpha$ and $s \in \beta$ such that $p \leq rs$, r > 0 and s > 0
 - $\langle 3 \rangle 3. \ p' \leq rs$
 - $\langle 3 \rangle 4. \ p' \in \alpha \beta$

П

- $\langle 2 \rangle 4$. $\alpha \beta$ has no greatest element.
 - $\langle 3 \rangle 1$. Let: $p \in \alpha \beta$
 - $\langle 3 \rangle 2$. Pick $r \in \alpha$ and $s \in \beta$ such that $p \leq rs$, r > 0 and s > 0.
 - $\langle 3 \rangle 3$. Pick $r' \in \alpha$ and $s' \in \beta$ with r < r' and s < s'.
 - $\langle 3 \rangle 4. \ p < r's' \in \alpha \beta$
- $\langle 1 \rangle 2$. For any cuts α and β , we have $\alpha \beta$ is a cut.

PROOF: Since if α is a cut then $-\alpha$ is a cut.

Proposition 5.14. For any cuts α and β we have $\alpha\beta = \beta\alpha$.

PROOF: Easy from the definitions. \square

Proposition 5.15. For any cuts α , β and γ we have

$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$
.

 $\langle 1 \rangle 1$. Case: α , β and γ are all positive.

PROOF: In this case $\alpha(\beta\gamma) = (\alpha\beta)\gamma = \{p \in \mathbb{Q} : \exists r \in \alpha. \exists s \in \beta. \exists t \in \gamma. (p \leq rst \land r > 0 \land s > 0 \land t > 0)\}.$

 $\langle 1 \rangle 2$. Case: One of α , β or γ is 0^* .

PROOF: Then $\alpha(\beta\gamma) = (\alpha\beta)\gamma = 0^*$.

 $\langle 1 \rangle 3.$ Case: α and β are positive, γ is negative. Proof:

$$\alpha(\beta\gamma) = \alpha(-(\beta(-\gamma)))$$

$$= -(\alpha(\beta(-\gamma)))$$

$$= -((\alpha\beta)(-\gamma))$$

$$= (\alpha\beta)\gamma$$
(\langle 1\rangle 1)

 $\langle 1 \rangle 4.$ Case: α is positive, β is negative, γ is positive. Proof:

$$\alpha(\beta\gamma) = \alpha(-((-\beta)\gamma))$$

$$= -(\alpha((-\beta)\gamma))$$

$$= -((\alpha(-\beta))\gamma)$$

$$= (-(\alpha(-\beta)))\gamma$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1\rangle 1)$$

 $\langle 1 \rangle 5.$ Case: α is positive, β and γ are negative. Proof:

$$\alpha(\beta\gamma) = \alpha((-\beta)(-\gamma))$$

$$= (\alpha(-\beta))(-\gamma)$$

$$= (-(\alpha\beta))(-\gamma)$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

 $\langle 1 \rangle$ 6. Case: α is negative, β and γ are positive. Proof: Similar to $\langle 1 \rangle$ 3.

 $\langle 1 \rangle 7.$ Case: α is negative, β is positive, γ is negative. Proof:

$$\alpha(\beta\gamma) = \alpha(-(\beta(-\gamma)))$$

$$= (-\alpha)(\beta(-\gamma))$$

$$= ((-\alpha)\beta)(-\gamma)$$

$$= (-(\alpha\beta))(-\gamma)$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

 $\langle 1 \rangle 8$. Case: α and β are negative, γ is positive. Proof: Similar to $\langle 1 \rangle 5$.

 $\langle 1 \rangle 9$. Case: α , β and γ are all negative.

$$\alpha(\beta\gamma) = \alpha(-(-\beta)(-\gamma))$$

$$= -((-\alpha)((-\beta)(-\gamma)))$$

$$= -(((-\alpha)(-\beta))(-\gamma))$$

$$= -((\alpha\beta)(-\gamma))$$

$$= (\alpha\beta)\gamma$$

$$(\langle 1 \rangle 1)$$

П

Proposition 5.16. For any cut α we have $\alpha 1^* = \alpha$.

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. \  \, \text{Case:} \  \, \alpha \  \, \text{is positive.} \\ \langle 2 \rangle 1. \  \, \alpha 1^* \subseteq \alpha \\ \langle 2 \rangle 2. \  \, \alpha \subseteq \alpha 1^* \\ \langle 1 \rangle 2. \  \, \text{Case:} \  \, \alpha = 0^* \\ \underline{\langle 1 \rangle} 3. \  \, \text{Case:} \  \, \alpha \  \, \text{is negative.} \end{array}
```

Theorem 5.17. There exists an ordered field with the least upper bound property.

Proposition 5.18. There is no rational p such that $p^2 = 2$.

PROOF:

```
PROOF: \langle 1 \rangle 1. Assume: for a contradiction p^2 = 2. \langle 1 \rangle 2. PICK integers m, n not both even such that p = m/n. \langle 1 \rangle 3. m^2 = 2n^2 \langle 1 \rangle 4. m is even. \langle 1 \rangle 5. PICK an integer k such that m = 2k. \langle 1 \rangle 6. 4k^2 = 2n^2 \langle 1 \rangle 7. 2k^2 = n^2 \langle 1 \rangle 8. n is even. \langle 1 \rangle 9. Q.E.D. PROOF: \langle 1 \rangle 2, \langle 1 \rangle 4 and \langle 1 \rangle 8 form a contradiction.
```

Theorem 5.19. Any two complete ordered fields are isomorphic.

Definition 5.20. Let \mathbb{R} be the complete ordered field. We call its elements *real numbers*.

5.2 Properties of the Real Numbers

Theorem 5.21. \mathbb{Q} is a subfield of \mathbb{R} .

Theorem 5.22 (Archimedean Property). Let $x, y \in \mathbb{R}$ with x > 0. There exists a positive integer n such that nx > y.

- $\langle 1 \rangle 1$. Let: $A = \{ nx : n \in \mathbb{Z}^+ \}$
- $\langle 1 \rangle 2$. Assume: for a contradiction there is no positive integer n such that nx > y.
- $\langle 1 \rangle 3$. y is an upper bound for A.
- $\langle 1 \rangle 4$. Let: $\alpha = \sup A$
- $\langle 1 \rangle 5$. αx is not an upper bound for A.
- $\langle 1 \rangle 6$. Pick a positive integer m such that $\alpha x < mx$
- $\langle 1 \rangle 7$. $\alpha < (m+1)x \in A$
- $\langle 1 \rangle 8$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 4$.

П

Theorem 5.23. \mathbb{Q} is dense in \mathbb{R} .

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in \mathbb{R}$ with x < y
- $\langle 1 \rangle 2$. PICK a positive integer n such that

$$n(y-x) > 1 .$$

PROOF: Archimedean property.

 $\langle 1 \rangle 3$. PICK a positive integer m_1 such that $m_1 > nx$

Proof: Archimedean property.

- $\langle 1 \rangle 4$. PICK a positive integer m_2 such that $m_2 > -nx$ PROOF: Archimedean property.
- $\langle 1 \rangle 5$. $-m_2 < nx < m_1$
- $\langle 1 \rangle 6$. Let: m be the integer such that

$$m-1 \le nx < m$$
.

- $\langle 1 \rangle 7$. $nx < m \le 1 + nx < ny$
- $\langle 1 \rangle 8. \ x < m/n < y$

Theorem 5.24. For every real number x > 0 and positive integer n, there exists a unique positive real number y such that $y^n = x$.

Proof:

- $\langle 1 \rangle 1$. There exists a real y > 0 such that $y^n = x$.
 - $\langle 2 \rangle 1$. Let: $E = \{ t \in \mathbb{R}^+ : t^n < x \}$
 - $\langle 2 \rangle 2$. Let: $y = \sup E$
 - $\langle 3 \rangle 1. \ E \neq \emptyset$
 - $\langle 4 \rangle 1$. Let: t = x/(x+1)
 - $\langle 4 \rangle 2. \ 0 < t < 1$
 - $\langle 4 \rangle 3. \ t^n < t < x$
 - $\langle 4 \rangle 4. \ t \in E$
 - $\langle 3 \rangle 2$. x+1 is an upper bound for E.
 - $\langle 4 \rangle 1$. Let: t > x + 1
 - $\langle 4 \rangle 2$. $t^n > t > x$
 - $\langle 4 \rangle 3. \ t \notin E$

$$\langle 2 \rangle 3. \ y^n = x$$

 $\langle 3 \rangle 1. \ y^n \not< x$

 $\langle 4 \rangle 1$. Assume: for a contradiction $y^n < x$.

 $\langle 4 \rangle 2$. Pick h such that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}}$$
.

$$\langle 4 \rangle 3. \ (y+h)^n - y^n < x - y^n$$

Proof:

$$(y+h)^n - y^n = ((y+h) - y) \sum_{i=0}^{n-1} (y+h)^{n-1-i} y^i$$

$$= h \sum_{i=0}^{n-1} (y+h)^{n-1-i} y^i$$

$$\leq hn(y+h)^{n-1}$$

$$\leq hn(y+1)^{n-1}$$

$$< x - y^n$$

$$\langle 4 \rangle 4$$
. $(y+h)^n < x$

$$\langle 4 \rangle 5. \ y + h \in E$$

 $\langle 4 \rangle 6$. Q.E.D.

PROOF: This contradicts the fact that y is an upper bound for E.

$$\langle 3 \rangle 2. \ y^n \not> x$$

 $\langle 4 \rangle 1$. Assume: for a contradiction $y^n > x$

 $\langle 4 \rangle 2$. Let:

$$k = \frac{y^n - x}{ny^{n-1}}$$

 $\langle 4 \rangle 3$. 0 < k < y

 $\langle 4 \rangle 4$. y - k is an upper bound for E.

$$\langle 5 \rangle 1$$
. Let: $t \geq y - k$

$$\langle 5 \rangle 2$$
. $y^n - t^n \le y^n - x$

Proof:

$$\begin{split} y^n - t^n &\leq y^n - (y - k)^n \\ &= (y - (y - k)) \sum_{i=0}^{n-1} y^{n-i} (y - k)^i \\ &= k \sum_{i=0}^{n-1} y^{n-i} (y - k)^i \\ &\leq k n y^{n-1} \\ &= y^n - x \end{split}$$

$$\langle 5 \rangle 3. \ t^n \ge x$$

$$\langle 5 \rangle 4. \ t \notin E$$

 $\langle 4 \rangle 5$. Q.E.D.

PROOF: This contradicts the fact that y is the least upper bound of E. $\langle 1 \rangle 2$. If y and y' are positive reals with $y^n = y'^n$ then y = y'.

Proof: Since the function that sends y to y^n is strictly monotone. \square

Definition 5.25 (*n*th Root). Given any real number x > 0 and positive integer n, the nth root of x, denoted $x^{1/n}$, is the unique positive real such that

$$(x^{1/n})^n = x .$$

We write \sqrt{x} for $x^{1/2}$.

Proposition 5.26. Let a and b be positive real numbers and n a positive integer. Then

$$(ab)^{1/n} = a^{1/n}b^{1/n}$$
.

PROOF: Since $(a^{1/n}b^{1/n})^n = ab$. \square

Lemma 5.27. Let b be a real number with b > 1. Let n be a positive integer. Then

$$b-1 \ge n(b^{1/n}-1)$$
.

Proof: From Lemma 4.24. \Box

Lemma 5.28. Let b and t be real numbers with b > 1 and t > 1. For any positive integer n, if $n > \frac{b-1}{t-1}$ then $b^{1/n} < t$.

Proof:

$$b-1 \ge n(b^{1/n}-1)$$

$$\therefore \frac{b-1}{n} \ge b^{1/n}-1$$

$$\therefore t-1 > b^{1/n}-1$$

$$\therefore t > b^{1/n}$$

Lemma 5.29. Let b be a real number with b > 0. Let m, n, p, q be integers with n > 0 and q > 0. Assume m/n = p/q. Then

$$(b^m)^{1/n} = (b^p)^{1/q}$$
.

Proof:

$$\langle 1 \rangle 1. \ (b^m)^{1/n} = (b^{1/n})^m$$

Proof:

$$((b^{1/n})^m)^n = ((b^{1/n})^n)^m$$

= b^m

$$\langle 1 \rangle 2. \ ((b^m)^{1/n})^q = b^p$$

Proof:

$$((b^m)^{1/n})^q = (b^{1/n})^{mq}$$
$$= (b^{1/n})^{np}$$
$$= b^p$$

Definition 5.30. For a a positive real and q a rational number, we may therefore define a^q by

$$a^{m/n} = (a^m)^{1/n}$$

for m and n integers with n > 0.

Proposition 5.31. Let a be a positive real and r, s rational numbers. Then

$$a^{r+s} = a^r a^s$$
.

Proof:

$$a^{m/n+p/q} = a^{(mq+np)/nq}$$

$$= (a^{mq+np})^{1/nq}$$

$$= (a^{mq})^{1/nq} (a^{np})^{1/nq}$$

$$= a^{m/n} a^{p/q}$$

Proposition 5.32. Let b > 1 be a real number and q a rational number. Then

$$b^q = \sup\{b^t : t \in \mathbb{Q}, t \le q\}$$

PROOF: It is the greatest element of this set. \square

Definition 5.33. Let b > 1 be a real number and x a real number. Then

$$b^x = \sup\{b^t : t \in \mathbb{Q}, t \le x\} .$$

Lemma 5.34. Let b, w and y be real numbers with b > 1. Assume $b^w < y$. Then there exists a positive integer n such that $b^{w+1/n} < y$.

Proof:

- $\langle 1 \rangle 1$. Let: $t = yb^{-w}$
- $\langle 1 \rangle 2$. PICK a positive integer n such that $n > \frac{b-1}{t-1}$.
- $\langle 1 \rangle 3. \ b^{1/n} < t$

PROOF: Lemma 5.28.

PROOF: Lemma
$$\langle 1 \rangle 4$$
. $b^{w+1/n} < y$

Lemma 5.35. Let b, w and y be real numbers with b > 1. Assume $b^w > y$. Then there exists a positive integer n such that $b^{w-1/n} < y$.

Proof:

- $\langle 1 \rangle 1$. Let: $t = b^w/y$
- $\langle 1 \rangle 2$. PICK a positive integer n such that $n > \frac{b-1}{t-1}$
- $\langle 1 \rangle 3. \ b^{1/n} < t$

Proof: Lemma 5.28.

$$\langle 1 \rangle 4. \ y < b^{w-1/n}$$

Proposition 5.36. For b and x real numbers with b > 1 we have

$$b^x = \sup\{b^t : t \in \mathbb{Q}, t < x\} .$$

Proof:

- $\langle 1 \rangle 1$. b^x is an upper bound for $\{b^t : t \in \mathbb{Q}, t < x\}$.
- $\langle 1 \rangle 2$. Let: u be any upper bound for $\{b^t : t \in \mathbb{Q}, t < x\}$. Prove: $b^x \leq u$
- $\langle 1 \rangle 3.$ Let: q be a rational number with $q \leq x.$ Prove: $b^q \leq u$
- $\langle 1 \rangle 4$. Assume: for a contradiction $b^q > u$.
- $\langle 1 \rangle$ 5. PICK a positive integer n such that $b^{q-1/n} > u$.

PROOF: Lemma 5.35.

 $\langle 1 \rangle 6. \ b^{q-1/n} \le u$ PROOF: $\langle 1 \rangle 2$

PROOF: $\langle 1 \rangle 2$ $\langle 1 \rangle 7$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 4$.

Lemma 5.37. Let A be a set of positive real numbers with supremum a > 0 and B a set of positive real numbers with supremum b > 0. Then ab is the supremum of $\{xy : x \in A, y \in B\}$.

Proof:

- $\langle 1 \rangle 1$. For all $x \in A$ and $y \in B$ we have $xy \leq ab$.
- $\langle 1 \rangle 2$. If u is any upper bound for $\{xy : x \in A, y \in B\}$ then $ab \leq u$.
 - $\langle 2 \rangle 1$. Let: u be an upper bound for $\{xy : x \in A, y \in B\}$.
 - $\langle 2 \rangle 2$. For all $x \in A$ we have u/x is an upper bound for B.
 - $\langle 2 \rangle 3$. For all $x \in A$ we have $b \leq u/x$
 - $\langle 2 \rangle 4$. For all $x \in A$ we have $x \leq u/b$
 - $\langle 2 \rangle 5$. $a \leq u/b$
 - $\langle 2 \rangle 6. \ ab \leq u$

Proposition 5.38. *Let* $b, x, y \in \mathbb{R}$ *with* b > 1. *Then*

$$b^{x+y} = b^x b^y .$$

Proof:

- $\langle 1 \rangle 1$. For any rational number q < x + y, there exist rational numbers r < x and s < y such that q = r + s.
 - $\langle 2 \rangle 1. \ q x < y$
 - $\langle 2 \rangle 2$. Pick a rational t such that q x < t < y
 - $\langle 2 \rangle 3$. q = t + (q t) and t < y, q t < x
- $\langle 1 \rangle 2$. $b^x b^y = b^{x+y}$

$$\begin{split} b^x b^y &= \sup\{b^q b^r : q, r \in \mathbb{Q}, q < x, r < y\} \\ &= \sup\{b^{q+r} : q, r \in \mathbb{Q}, q < x, r < y\} \\ &= \sup\{b^q : q \in \mathbb{Q}, q < x + y\} \\ &= b^{x+y} \end{split}$$

5.2.1 Logarithms

Proposition 5.39. Let b and y be real numbers with b > 1 and y > 0. There exists a unique real x such that $b^x = y$.

```
Proof:
```

```
\langle 1 \rangle 1. Let: x = \sup\{w : b^w < y\}
        PROVE: b^x = y
   \langle 2 \rangle 1. \ \{ w : b^w < y \} \neq \emptyset
      Proof: It contains 0.
   \langle 2 \rangle 2. \{w : b^w < y\} is bounded above.
      \langle 3 \rangle 1. Let: n be the least integer such that
         Proof: Archimedean property.
      \langle 3 \rangle 2. Let: w be a real number with b^w < y
              Prove: w < n
      \langle 3 \rangle 3. \ b^w < n(b-1)+1
      \langle 3 \rangle 4. \ b^w < b^n
      \langle 3 \rangle 5. \ w < n
\langle 1 \rangle 2. \ b^x \leq y
   \langle 2 \rangle 1. Assume: for a contradiction b^x > y
   \langle 2 \rangle 2. PICK a positive integer n such that b^{x-1/n} > y
      Proof: Lemma 5.35.
   \langle 2 \rangle 3. Pick w such that x - 1/n < w and b^w < y
      PROOF: Since x - 1/n is not an upper bound for \{w : b^w < y\}.
   \langle 2 \rangle 4. \ b^{x-1/n} < y
   \langle 2 \rangle 5. Q.E.D.
     PROOF: This contradicts \langle 2 \rangle 2.
\langle 1 \rangle 3. \ b^x \geq y
   \langle 2 \rangle 1. Assume: for a contradiction b^x < y.
   \langle 2 \rangle 2. Pick a positive integer n such that b^{x+1/n} < y.
   \langle 2 \rangle 3. \ x + 1/n \le x
   \langle 2 \rangle 4. Q.E.D.
      PROOF: This is a contradiction.
```

Definition 5.40 (Logarithm). Let b and y be real numbers with b > 1 and y > 0. The *logarithm* of y to *base* b, denoted $\log_b y$, is the unique real number

such that

$$b^{\log_b y} = y .$$

5.2.2Intervals

Definition 5.41 (Intervals). Let $a, b \in \mathbb{R}$.

The open interval (a, b) is $\{x \in \mathbb{R} : a < x < b\}$.

The closed interval [a, b] is $\{x \in \mathbb{R} : a \le x \le b\}$.

The half-open intervals [a, b) and (a, b] are defined by

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$$
$$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$$

Proposition 5.42. Let (I_n) be a sequence of closed intervals with $I_0 \supseteq I_1 \supseteq \cdots$. Then $\bigcap_{n=0}^{\infty} I_n$ is nonempty.

Proof:

- $\langle 1 \rangle 1$. Let: $I_n = [a_n, b_n]$
- $\langle 1 \rangle 2$. Let: $x = \sup_n a_n$

PROOF: $\{a_n : n \in \mathbb{N}\}$ is bounded above by b_0 .

 $\langle 1 \rangle 3.$ $x \in \bigcap_{n=0}^{\infty} I_n$ PROOF: For all n we have $a_n \leq x \leq b_n$ since b_n is an upper bound for $\{a_n : n \in \mathbb{N}\}.$ П

Definition 5.43 (k-cell). Let k be a positive integer. A k-cell is a subset of \mathbb{R}^k of the form

$$\{\vec{x} \in \mathbb{R}^k : \forall i = 1, \dots, k.a_i \le x_i \le b_i\}$$

for some real numbers $a_1, \ldots, a_k, b_1, \ldots, b_k$ with $a_i \leq b_i$ for each i.

Proposition 5.44. Let (I_n) be a sequence of k-cells such that $I_0 \supseteq I_1 \supseteq \cdots$. Then $\bigcap_{n=0}^{\infty} I_n \neq \emptyset$.

Proof:

- $\langle 1 \rangle 1$. Let: $I_n = J_{n1} \times \cdots \times J_{nk}$ where each J_{ni} is a closed interval.
- $\langle 1 \rangle 2$. For $i = 1, \ldots, k$, PICK $a_i \in \bigcap_{n=0}^{\infty} J_{ni}$.
- $\langle 1 \rangle 3. \ (a_1, \ldots, a_k) \in \bigcap_{n=0}^{\infty} I_n$

The Cantor Set 5.2.3

Definition 5.45 (Cantor Set). Define a sequence E_n of unions of intervals as follows:

- $E_0 = [0, 1]$
- E_{n+1} is formed from E_n by replacing every interval [a, b] with [a, (2a+b)/3]and [(a+2b)/3, b].

The Cantor set is $\bigcap_{n=0}^{\infty} E_n$.

5.3 The Extended Real Number System

Definition 5.46 (Extended Real Number System). The *extended real number* system is the set $\mathbb{R} \cup \{+\infty, -\infty\}$.

We extend the ordering \leq to the extended reals by defining

$$-\infty < x < +\infty$$

for every $x \in \mathbb{R}$.

We extend +, \cdot and / to partial operations on the extended real by defining:

$$x + (+\infty) = +\infty \qquad (x \in \mathbb{R})$$

$$x + (-\infty) = -\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) + x = +\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) + (+\infty) \text{ is undefined}$$

$$(+\infty) + (-\infty) \text{ is undefined}$$

$$(-\infty) + x = -\infty \qquad (x \in \mathbb{R})$$

$$(-\infty) + (+\infty) \text{ is undefined}$$

$$x \cdot (+\infty) = +\infty \qquad (x \in \mathbb{R})$$

$$x \cdot (-\infty) = -\infty \qquad (x \in \mathbb{R})$$

$$x \cdot (-\infty) = -\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) \cdot x = +\infty \qquad (x \in \mathbb{R})$$

$$(+\infty) \cdot (+\infty) \text{ is undefined}$$

$$(+\infty) \cdot (-\infty) \text{ is undefined}$$

$$(-\infty) \cdot (+\infty) \text{ is undefined}$$

$$(-\infty) \cdot (+\infty) \text{ is undefined}$$

$$x/(+\infty) = 0 \qquad (x \in \mathbb{R})$$

$$(x \in \mathbb{R})$$

 $(-\infty)/x$ is undefined

 $(-\infty)/(+\infty)$ is undefined $(-\infty)/(-\infty)$ is undefined

 $(x \in \mathbb{R})$

Complex Analysis

Definition 6.1 (Complex Numbers). A *complex number* is a pair of real numbers. We write \mathbb{C} for the set of complex numbers.

Define + and \cdot on \mathbb{C} by:

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac-bd,ad+bc)$

Theorem 6.2. The complex numbers form a field.

Theorem 6.3. The function that maps a to (a,0) is an embedding of \mathbb{R} in \mathbb{C} .

Definition 6.4.

$$i = (0, 1)$$

Lemma 6.5.

$$(a,b) = a + ib$$

PROOF: Since (a, 0) + (0, 1)(b, 0) = (a, b).

Lemma 6.6.

$$i^2 = -1$$

PROOF: Immediate from definitions. \square

Corollary 6.6.1. There is no linear order on $\mathbb C$ that makes $\mathbb C$ into an ordered field.

Definition 6.7 (Complex Conjugate). For any complex number z, the complex conjugate \overline{z} is defined by

$$\overline{a+ib} = a-ib \qquad (a,b \in \mathbb{R}) .$$

Definition 6.8 (Real Part). For any complex number z, the *real part* of z, denoted Re(z), is defined by

$$\operatorname{Re}(a+ib) = a \qquad (a, b \in \mathbb{R}) .$$

Definition 6.9 (Imaginary Part). For any complex number z, the *imaginar* part of z, denoted Im(z), is defined by

$$\operatorname{Im}(a+ib) = b \qquad (a, b \in \mathbb{R}) .$$

Theorem 6.10. For all $z, w \in \mathbb{C}$ we have

$$\overline{z+w} = \overline{z} + \overline{w} .$$

Proof:

$$\overline{(a+ib)+(c+id)} = \overline{(a+c)+i(b+d)}$$

$$= (a+c)-i(b+d)$$

$$= (a-ib)+(c-id)$$

$$= \overline{a+ib}+\overline{c+id}$$

Theorem 6.11. For all $z, w \in \mathbb{C}$ we have

$$\overline{zw} = \overline{z} \cdot \overline{w} \ .$$

Proof:

$$\overline{(a+ib)(c+id)} = \overline{(ac-bd) + i(ad+bc)}$$

$$= (ac-bd) - i(ad+bc)$$

$$= (a-ib)(c-id)$$

$$= \overline{a+ib} \cdot \overline{c+id}$$

Theorem 6.12. For all $z \in \mathbb{C}$ we have

$$\operatorname{Re}(z) = \frac{1}{2}(z + \overline{z})$$
.

Proof:

$$(a+ib) + \overline{a+ib} = (a+ib) + (a-ib)$$

$$= 2a$$

$$= 2\operatorname{Re}(a+ib)$$

Theorem 6.13. For all $z \in \mathbb{C}$ we have

$$\operatorname{Im}(z) = \frac{1}{2i}(z - \overline{z}) .$$

Proof:

$$(a+ib) - \overline{a+ib} = (a+ib) - (a-ib)$$

$$= 2ib$$

$$= 2i\operatorname{Im}(a+ib)$$

Theorem 6.14. For all $z \in \mathbb{C}$ we have $z\overline{z}$ is a non-negative real.

$$(a+ib)(\overline{a+ib}) = (a+ib)(a-ib)$$
$$= a^2 + b^2$$

Theorem 6.15. For any $z \in \mathbb{C}$, if $z\overline{z} = 0$ then z = 0.

PROOF: Let z = a + ib. Then $z\overline{z} = a^2 + b^2 = 0$ iff a = b = 0. \square

Definition 6.16 (Absolute Value). For $z \in \mathbb{C}$, the absolute value of z is

$$|z|=(z\overline{z})^{1/2}$$
.

Proposition 6.17. For x a non-negative real we have |x| = x.

PROOF: Since $|x| = \sqrt{x^2} = x$. \square

Proposition 6.18. For x a negative real we have |x| = -x.

Proof: Since $|x| = \sqrt{x^2} = -x$. \square

Theorem 6.19. For any complex number z we have $|z| \ge 0$.

PROOF: Immediate from definition. \Box

Theorem 6.20. For any complex number z, if |z| = 0 then z = 0.

PROOF: From Theorem 6.15. \square

Theorem 6.21. For any complex number z we have

$$|\overline{z}| = |z|$$
.

PROOF: Immediate from definitions. \square

Theorem 6.22. For any complex numbers z and w we have

$$|zw| = |z||w|$$
.

Proof:

$$|zw| = \sqrt{zw\overline{z}w}$$

 $= \sqrt{z\overline{z}}\sqrt{w\overline{w}}$ (Proposition 5.26)
 $= |z||w|$

Theorem 6.23. For any complex number z we have

$$|\operatorname{Re} z| \le |z|$$

PROOF: Let z = a + ib. Then

$$|\operatorname{Re} z| = \sqrt{a^2} \le \sqrt{a^2 + b^2}$$
.

Theorem 6.24. For any complex numbers z and w we have

$$|z+w| \le |z| + |w| .$$

$$|z+w|^2 = (z+w)(\overline{z}+\overline{w})$$

$$= z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w}$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2 \qquad \text{(Theorem 6.12)}$$

$$\leq |z|^2 + 2|z\overline{w}| + |w|^2 \qquad \text{(Theorem 6.23)}$$

$$= |z|^2 + 2|z||w| + |w|^2 \qquad \text{(Theorem 6.22)}$$

$$= (|z| + |w|)^2 \qquad \Box$$

Theorem 6.25 (Schwarz Inequality). Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be complex numbers. Then

$$\left| \sum_{j=1}^{n} a_j \overline{b_j} \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2.$$

Proof:

 $\langle 1 \rangle 1$. Let: $A = \sum_{j=1}^{n} |a_j|^2$ $\langle 1 \rangle 2$. Let: $B = \sum_{j=1}^{n} |b_j|^2$ $\langle 1 \rangle 3$. Let: $C = \sum_{j=1}^{n} a_j \overline{b_j}$ $\langle 1 \rangle 4$. Assume: w.l.o.g. B > 0

PROOF: If B=0 then $b_1=\cdots=b_n=0$ and both sides of the inequality are

$$\langle 1 \rangle$$
5. $\sum_{j=1}^{n} |Ba_j - Cb_j|^2 = B(AB - |C|^2)$

$$\sum_{j=1}^{n} |Ba_{j} - Cb_{j}|^{2} = \sum_{j=1}^{n} (Ba_{j} - Cb_{j})(B\overline{a_{j}} - \overline{Cb_{j}})$$

$$= B^{2} \sum_{j=1}^{n} |a_{j}|^{2} - B\overline{C} \sum_{j=1}^{n} a_{j}\overline{b_{j}} - BC \sum_{j=1}^{n} \overline{a_{j}}b_{j} + |C|^{2} \sum_{j=1}^{n} |b_{j}|^{2}$$

$$= B^{2}A - 2B|C|^{2} + B|C|^{2}$$

$$= B(AB - |C|^{2})$$

$$\langle 1 \rangle 6. \ B(AB - |C|^{2}) \ge 0$$

$$\langle 1 \rangle 7. \ AB \ge |C|^{2}$$

Proposition 6.26. For any non-zero complex number w, there are exactly two complex numbers z such that $z^2 = w$.

Proof:

- $\langle 1 \rangle 1$. There are at most two complex numbers z such that $z^2 = w$. Proof: Proposition 4.15.
- $\langle 1 \rangle 2$. There are at least two complex numbers z such that $z^2 = w$.

 $\langle 2 \rangle 1$. Let: w = u + iv

 $\langle 2 \rangle 2$. Let: $a = \sqrt{\frac{|w| + u}{2}}$

 $\langle 2 \rangle 3$. Let: $b = \sqrt{\frac{|w|-u}{2}}$

$$\begin{array}{lll} \langle 2 \rangle 4. & {\rm Case:} \ v \geq 0 \\ \langle 3 \rangle 1. & {\rm Let:} \ z = a + ib \\ \langle 3 \rangle 2. & z^2 = w \\ & {\rm Proof:} \end{array}$$

$$z^2 = (a + ib)^2 \\ & = a^2 - b^2 + 2iab \\ & = u + i\sqrt{|w|^2 - u^2} \\ & = u + iv \\ & = w \end{array}$$

$$\langle 3 \rangle 3. & (-z)^2 = w \\ \langle 2 \rangle 5. & {\rm Case:} \ v \leq 0 \\ \langle 3 \rangle 1. & {\rm Let:} \ z = a - ib \\ \langle 3 \rangle 2. & z^2 = w \\ & {\rm Proof:} \end{array}$$

$$z^2 = (a - ib)^2 \\ & = a^2 - b^2 - 2iab \\ & = u - i\sqrt{|w|^2 - u^2} \\ & = u - i|v| \\ & = w \end{array}$$

6.1 Algebraic Numbers

Definition 6.27 (Algebraic). A complex number z is algebraic iff there exist integers a_0, a_1, \ldots, a_n not all zero such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0$$
;

otherwise, it is transcendental.

Proposition 6.28. The set of algebraic numbers is countable.

PROOF: There are countably many finite sequences of integers (a_0, a_1, \ldots, a_n) , and for each one, there are only finitely many complex numbers z such that $a_0z^n + a_1z^{n-1} + \cdots + a_n = 0$. \square

Part I Linear Algebra

Vector Spaces

7.1 Convex Sets

Definition 7.1 (Convex). Let $E \subseteq \mathbb{R}^k$. Then E is *convex* iff, for all $\vec{x}, \vec{y} \in E$ and $\lambda \in (0,1)$,

$$\lambda \vec{x} + (1 - \lambda) \vec{y} \in E .$$

Proposition 7.2. Every k-cell is convex.

```
Proof:
```

```
\langle 1 \rangle 1. Let: C = \{ \vec{x} \in \mathbb{R}^k : \forall i.a_i \leq x_i \leq b_i \} be a k-cell.
```

 $\langle 1 \rangle 2$. Let: $\vec{x}, \vec{y} \in C$ and $\lambda \in (0, 1)$.

PROVE: $\lambda \vec{x} + (1 - \lambda) \vec{y} \in C$

 $\langle 1 \rangle 3$. For each i we have $a_i \leq \lambda x_i + (1 - \lambda)y_i \leq b_i$

PROOF: Since $\lambda a_1 + (1 - \lambda)a_i \le \lambda x_i + (1 - \lambda)y_i \le \lambda b_i + (1 - \lambda)b_i$.

Real Inner Product Spaces

Definition 8.1 (Inner Product). Given $\vec{x}, \vec{y} \in \mathbb{R}^k$, define the inner product $\vec{x} \cdot \vec{y}$ by

$$(x_1, \ldots, x_k) \cdot (y_1, \ldots, y_k) = x_1 y_1 + \cdots + x_k y_k$$
.

Definition 8.2 (Norm). Define the *norm* of a vector $\vec{x} \in \mathbb{R}^k$ by

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$$
.

Proposition 8.3.

$$\|\vec{x}\| \ge 0$$

PROOF: Immediate from the definition. \Box

Proposition 8.4. *If* $||\vec{x}|| = 0$ *then* $\vec{x} = \vec{0}$.

PROOF: If $\|\vec{x}\| = 0$ then $x_1^2 + \cdots + x_n^2 = 0$ so $x_1 = \cdots = x_n = 0$. \square

Proposition 8.5. For $\alpha \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^k$,

$$\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\| .$$

Proof: Easy. \square

Proposition 8.6. For $\vec{x}, \vec{y} \in \mathbb{R}^k$, we have

$$||\vec{x} \cdot \vec{y}|| \le ||\vec{x}|| ||\vec{y}||$$
.

PROOF: By the Schwarz inequality. \square

Proposition 8.7. For $\vec{x}, \vec{y} \in \mathbb{R}^k$ we have

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$
.

Proof:

$$\|\vec{x} + \vec{y}\|^{2} = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y})$$

$$= \vec{x} \cdot \vec{x} + 2\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{y}$$

$$\leq \|\vec{x}\|^{2} + 2\|\vec{x}\| \|\vec{y}\| + \|\vec{y}\|^{2} \qquad (Proposition 8.6)$$

$$= (\|\vec{x}\| + \|\vec{y}\|)^{2}$$

Corollary 8.7.1. For $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^k$ we have

$$\|\vec{x} - \vec{z}\| \le \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{z}\|$$
.

8.1 Balls

Definition 8.8 (Closed Ball). Let $\vec{x} \in \mathbb{R}^k$ and r > 0. The *closed ball* with *centre* \vec{x} and *radius* r is

$$\{y \in \mathbb{R}^k : \|y - x\| \le r\} .$$

Proposition 8.9. Every closed ball is convex.

Proof:

 $\langle 1 \rangle 1$. Let: B be the closed ball with center \vec{a} and radius r.

 $\langle 1 \rangle 2$. Let: $\vec{x}, \vec{y} \in B$

 $\langle 1 \rangle 3$. Let: $\lambda \in (0,1)$

 $\langle 1 \rangle 4$. $\lambda \vec{x} + (1 - \lambda) \vec{y} \in B$

Proof:

$$\begin{split} \|\lambda \vec{x} + (1 - \lambda)\vec{y} - \vec{a}\| &= \|\lambda (\vec{x} - \vec{a}) + (1 - \lambda)(\vec{y} - \vec{a})\| \\ &= \lambda \|\vec{x} - \vec{a}\| + (1 - \lambda)\|\vec{y} - \vec{a}\| \\ &\leq \lambda r + (1 - \lambda)r \\ &= r \end{split}$$

Complex Inner Product Spaces

Definition 9.1 (Inner Product). Let V be a complex vector space. An *inner product* on V is a function $\langle \ , \ \rangle : V^2 \to \mathbb{C}$ such that, for all $x,y,z \in V$ and $\alpha \in \mathbb{C}$:

- $\langle y, x \rangle = \overline{\langle x, y \rangle}$
- $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- $\bullet \ \langle \alpha x, y \rangle = \overline{\alpha} \langle x, y \rangle$
- $\langle x, x \rangle \ge 0$
- If $\langle x, x \rangle = 0$ then x = 0.

An inner product space consists of a complex vector space V and an inner product on V.

Definition 9.2 (Norm). Let V be an inner product space and $x \in V$. The norm of x is

$$||x|| = \sqrt{\langle x, x \rangle}$$
.

Proposition 9.3. An inner product space is a metric space under

$$d(x,y) = ||x - y||.$$

Definition 9.4 (Bounded). Let V_1 and V_2 be inner product spaces and $T:V_1 \to V_2$ a linear transformation. Then T is bounded iff $\{\|T(x)\|: \|x\|=1\}$ is bounded above.

Proposition 9.5. Every linear transformation between finite dimensional inner product spaces is bounded.

Definition 9.6 (Outer Product). Let V be an inner product space and $|\psi\rangle$, $|\phi\rangle \in V$. The *outer product* of $|\psi\rangle$ and $|\phi\rangle$ is

$$|\psi\rangle\langle\phi|:V\to V$$
.

Hilbert Spaces 9.1

Definition 9.7 (Hilbert Space). A Hilbert space is a complete inner product space.

Theorem 9.8 (Completeness Relation). Let \mathcal{H} be a Hilbert space. Let $\{|e_n\rangle\}_{n\in\mathbb{N}}$ be a countable orthonormal basis for H. Then

$$\sum_{n=0}^{\infty} |e_n\rangle \langle e_n| = I .$$

Proof:

 $\begin{array}{l} \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(2)} & \text{(2)$

$$\sum_{n=0}^{\infty} \langle e_n | \phi \rangle | e_n \rangle = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \alpha_m \langle e_n | e_m \rangle | e_n \rangle$$
$$= \sum_{n=0}^{\infty} \alpha_n | e_n \rangle$$
$$= | \psi \rangle$$

Definition 9.9 (Separable). A Hilbert space is *separable* iff it has a countable dense orthonormal basis.

Lie Algebras

Definition 10.1 (Lie Algebra). Let K be a field. A Lie algebra \mathcal{L} over K consists of a vector space \mathcal{L} over K and an operation

$$[\ ,\]:\mathcal{L}^2 \to \mathcal{L}\ ,$$

the *Lie bracket* or *commutator*, such that, for all $x, y, z \in \mathcal{L}$ and $\alpha \in K$:

$$[x+y,z] = [x,z] + [y,z]$$

$$[x,y+z] = [x,y] + [x,z]$$

$$[\alpha x,y] = \alpha [x,y]$$

$$[x,x] = 0$$

$$[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0$$
 (Jacobi identity)

Lemma 10.2. If K has characteristic 0 then the condition [x, x] = 0 can be replaced with [x, y] = -[y, x].

Proposition 10.3. The commutator is determind by its values on any basis for \mathcal{L} .

Example 10.4. \mathbb{R}^3 with the cross product is a real Lie algebra.

Example 10.5. For any $n \geq 0$, we have GL(n, K) is a Lie algebra over K under

$$[A, B] = AB - BA .$$

Definition 10.6 (Linear Lie Algebra). A *linear Lie algebra* over K is a Lie algebra over K that is a subalgebra of GL(n, K) for some n.

Example 10.7 (Special Linear Algebra). The special Linear algebra $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : \text{tr} = 0\}$ is a real linear Lie algebra.

Example 10.8 (Orthogonal Lie Algebra). The *orthogonal Lie algebra* $SO(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : A \text{ is skew-symmetric} \}$ is a real linear Lie algebra.

Example 10.9. Let u(n) be the set of all skew-Hermitian $n \times n$ -matrices as a real Lie algebra.

Let $su(n) = u(n) \cap SL(n, \mathbb{R})$.

Proposition 10.10. SU(2) is spanned by the Pauli matrices

$$\sigma_x = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \qquad \sigma_y = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_z = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

which satisfy

$$[\sigma_x, \sigma_y] = \sigma_z$$
$$[\sigma_y, \sigma_z] = \sigma_x$$
$$[\sigma_z, \sigma_x] = \sigma_y$$

10.1 Lie Algebar Homomorphisms

Definition 10.11 (Homomorphism). Let L_1 and L_2 be Lie algebras over the same field. A *Lie algebra homomorphism* $\phi: L_1 \to L_2$ is a linear transformation such that

$$\phi([x,y]) = [\phi(x), \phi(y)]$$

for all $x, y \in L_1$.

Lemma 10.12. Every bijective Lie algebra homomorphism is an isomorphism.

Definition 10.13 (Representation). Let L be a real (complex) Lie algebra. A representation of L is a Lie algebra homomorphism $L \to GL(n, \mathbb{R})$ ($GL(n, \mathbb{C})$) for some n.

Example 10.14. The linear transformation $\mathbb{R}^3 \to su(2)$ defined by

$$i \mapsto \sigma_x, j \mapsto \sigma_y, k \mapsto \sigma_z$$

is a representation of \mathbb{R}^3 .

Part II Topology

Metric Spaces

Definition 11.1 (Metric). A *metric* on a set X is a function $d: X^2 \to \mathbb{R}$ such that, for all $x, y, z \in X$:

- $d(x,y) \geq 0$
- d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- Triangle Inequality $d(x,z) \le d(x,y) + d(y,z)$

A $metric\ space\ X$ consists of a set X and a metric on X.

Example 11.2. \mathbb{R}^k is a metric space under $d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$. The triangle inequality is Corollary 8.7.1.

Example 11.3. For any set X, the discrete metric on X is defined by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Proposition 11.4. Let (X,d) be a metric space and Y a subset of X. Then $d \upharpoonright Y^2$ is a metric on Y.

Proof: Easy.

11.1 Balls

Definition 11.5 (Open Ball). Let $\vec{x} \in \mathbb{R}^k$ and r > 0. The open ball with centre \vec{x} and radius r is

$$\{y \in \mathbb{R}^k : \|y - x\| < r\} .$$

Proposition 11.6. Every open ball in \mathbb{R}^k is convex.

Proof:

```
\langle 1 \rangle 1. Let: B be the open ball with center \vec{a} and radius r.
```

$$\langle 1 \rangle 2$$
. Let: $\vec{x}, \vec{y} \in B$

$$\langle 1 \rangle 3$$
. Let: $\lambda \in (0,1)$

$$\langle 1 \rangle 4$$
. $\lambda \vec{x} + (1 - \lambda) \vec{y} \in B$

Proof:

$$\begin{split} \|\lambda \vec{x} + (1 - \lambda)\vec{y} - \vec{a}\| &= \|\lambda (\vec{x} - \vec{a}) + (1 - \lambda)(\vec{y} - \vec{a})\| \\ &= \lambda \|\vec{x} - \vec{a}\| + (1 - \lambda)\|\vec{y} - \vec{a}\| \\ &< \lambda r + (1 - \lambda)r \\ &= r \end{split}$$

11.2 Limit Points

Definition 11.7 (Limit Point). Let X be a metric space. Let $E \subseteq X$ and $p \in X$. Then p is a *limit point* of E iff every open ball with centre p contains a point of E other than p.

Proposition 11.8. Let X be a metric space. Let $E \subseteq X$. Let p be a limit point of E. Then every neighbourhood of p contains infinitely many points of E.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction N is a neighbourhood of p that contains only finitely many points q_1, \ldots, q_n of $E \{p\}$.
- $\langle 1 \rangle 2$. Let: $r = \min(q_1, \ldots, q_n)$
- $\langle 1 \rangle 3$. Let: B be the open ball with centre p and radius r.
- $\langle 1 \rangle 4$. B is a neighbourhood of p that contains no points of E other than p.

Corollary 11.8.1. A finite set has no limit points.

Definition 11.9 (Isolated Point). Let X be a metric space. Let $E \subseteq X$ and $p \in X$. Then p is an *isolated point* of E iff $p \in E$ and p is not a limit point of E.

11.3 Closed Sets

Definition 11.10 (Closed Set). Let X be a metric space. Let $E \subseteq X$. Then E is *closed* iff every limit point of E is a member of E.

11.4 Interior Points

Definition 11.11 (Interior Point). Let X be a metric space. Let $E \subseteq X$ and $p \in X$. Then p is an *interior point* of E iff there exists an open ball E with centre E such that E is E.

11.5. OPEN SETS

Definition 11.12 (Interior). The *interior* of a set E, denoted E° , is the set of all its interior points.

51

Proposition 11.13. The interior of E is the largest open set that is included in E.

```
Proof:
\langle 1 \rangle 1. Let: I be the interior of E.
\langle 1 \rangle 2. I is open.
    \langle 2 \rangle 1. Let: p \in I
    \langle 2 \rangle 2. PICK an open ball B with centre p such that B \subseteq E.
    \langle 2 \rangle 3. \ B \subset I
       \langle 3 \rangle 1. Let: q \in B
       \langle 3 \rangle 2. There exists an open ball B' with centre q such that B' \subseteq B.
       \langle 3 \rangle 3. There exists an open ball B' with centre q such that B' \subseteq E.
       \langle 3 \rangle 4. \ q \in I
\langle 1 \rangle 3. If J is any open set and J \subseteq E then J \subseteq I.
    \langle 2 \rangle 1. Let: J be an open set.
    \langle 2 \rangle 2. Assume: J \subseteq E
    \langle 2 \rangle 3. For all p \in J, there exists an open ball B with centre p such that B \subseteq J.
    \langle 2 \rangle 4. For all p \in J, there exists an open ball B with centre p such that B \subseteq E.
    \langle 2 \rangle 5. \ p \in I
П
```

11.5 Open Sets

Definition 11.14 (Open Sets). Let X be a metric space. Let $E \subseteq X$. Then E is *open* iff every point in E is an interior point of E.

Proposition 11.15. Every open ball is open.

```
Proof:
\langle 1 \rangle 1. Let: B be an open ball with centre c and radius r.
\langle 1 \rangle 2. Let: x \in B
\langle 1 \rangle 3. Let: \epsilon = r - d(x, c)
\langle 1 \rangle 4. Let: B' be the open ball with centre x and radius \epsilon.
        Prove: B' \subseteq B
\langle 1 \rangle 5. Let: y \in B'
\langle 1 \rangle 6. \ d(y,c) < r
   Proof:
                  d(y,c) \le d(y,x) + d(x,c)
                                                                      (Triangle Inequality)
                             < \epsilon + d(x,c)
                                                                                            (\langle 1 \rangle 5)
                                                                                            (\langle 1 \rangle 3)
                             = r
```

Proposition 11.16. A set is open if and only if its complement is closed.

```
Proof:
\langle 1 \rangle 1. Let: E \subseteq X
\langle 1 \rangle 2. If E is open then X - E is closed.
   \langle 2 \rangle 1. Assume: E is open.
   \langle 2 \rangle 2. Let: p be a limit point of X - E.
           PROVE: p \in X - E
   \langle 2 \rangle 3. Assume: for a contradiction p \in E.
   \langle 2 \rangle 4. PICK an open ball B with centre p such that B \subseteq E.
   \langle 2 \rangle5. B contains a point of X - E.
      Proof: \langle 2 \rangle 2
   \langle 2 \rangle 6. Q.E.D.
      PROOF: This contradicts \langle 2 \rangle 4.
\langle 1 \rangle 3. If X - E is closed then E is open.
   \langle 2 \rangle 1. Assume: X - E is closed.
   \langle 2 \rangle 2. Let: p \in E
   \langle 2 \rangle 3. Assume: for a contradiction no open ball with centre p is a subset of
   \langle 2 \rangle 4. Every open ball with centre p intersects X - E.
   \langle 2 \rangle5. p is a limit point of X - E.
   \langle 2 \rangle 6. \ p \in X - E
      Proof: \langle 2 \rangle 1
   \langle 2 \rangle 7. Q.E.D.
      Proof: This contradicts \langle 2 \rangle 2.
Corollary 11.16.1. A set is closed if and only if its complement is open.
Proposition 11.17. The union of a set of open sets is open.
\langle 1 \rangle 1. Let: \mathcal{U} be a set of open sets.
\langle 1 \rangle 2. Let: p \in \bigcup \mathcal{U}
\langle 1 \rangle 3. PICK U \in \mathcal{U} such that p \in U.
\langle 1 \rangle 4. PICK an open ball B with centre p such that B \subseteq U.
\langle 1 \rangle 5. \ B \subseteq \bigcup \mathcal{U}
Corollary 11.17.1. The intersection of a set of closed sets is closed.
Proposition 11.18. The intersection of two open sets is open.
Proof:
\langle 1 \rangle 1. Let: U and V be open.
\langle 1 \rangle 2. Let: p \in U \cap V
\langle 1 \rangle 3. PICK open balls B_1 and B_2 with centre p such that B_1 \subseteq U and B_2 \subseteq V.
\langle 1 \rangle 4. Assume: w.l.o.g. the radius of B_1 is \leq the radius of B_2.
\langle 1 \rangle 5. \ B_1 \subseteq U \cap V
```

Corollary 11.18.1. The union of two closed sets is closed.

Example 11.19. The intersection of a set of open sets is not necessarily open.

For every positive integer n, we have (-1/n, 1/n) is open in \mathbb{R} , but $\bigcap_{n=1}^{\infty} (-1/n, 1/n) =$ $\{0\}$ is not open.

Theorem 11.20. Let X be a metric space. Let $Y \subseteq X$ and $E \subseteq Y$. Then E is open in Y if and only if there exists an open subset G of X such that $E = G \cap Y$.

Proof:

- $\langle 1 \rangle 1$. If E is open in Y then there exists an open subset G of X such that $E = G \cap Y$.
 - $\langle 2 \rangle 1$. Assume: E is open in Y.
 - $\langle 2 \rangle 2$. For $p \in E$, Pick $r_p > 0$ such that the open ball in Y with centre p and radius r_p is included in E.
 - $\langle 2 \rangle 3$. For $p \in E$,

Let: V_p be the open ball in X with centre p and radius r_p .

- $\langle 2 \rangle 4$. Let: $G = \bigcup_{p \in E} V_p$ $\langle 2 \rangle 5$. G is open in Y.

Proof: Proposition 11.17.

- $\langle 2 \rangle 6$. $E = G \cap Y$
 - $\langle 3 \rangle 1. \ E \subseteq G \cap Y$
 - $\langle 4 \rangle 1$. Let: $p \in E$
 - $\langle 4 \rangle 2. \ p \in V_p$
 - $\langle 4 \rangle 3. \ p \in G$
 - $\langle 3 \rangle 2$. $G \cap Y \subseteq E$
 - $\langle 4 \rangle 1$. Let: $x \in G \cap Y$
 - $\langle 4 \rangle 2$. PICK $p \in E$ such that $x \in V_p$
 - $\langle 4 \rangle 3. \ d(x,p) < r_p$
 - $\langle 4 \rangle 4. \ x \in E$
- $\langle 1 \rangle 2$. For any open subset G of X, we have $G \cap Y$ is open in Y.
 - $\langle 2 \rangle 1$. Let: G be an open subset of X.
 - $\langle 2 \rangle 2$. Let: $p \in G \cap Y$
 - $\langle 2 \rangle 3$. PICK r > 0 such that the open ball in X with centre p and radius r is included in G.
- $\langle 2 \rangle 4$. The open ball in Y with centre p and radius r is included in $G \cap Y$.

Perfect Sets 11.6

Definition 11.21 (Perfect Set). Let X be a metric space. Let $E \subseteq X$. Then E is perfect iff E is closed and every point in E is a limit point of E.

11.7 Bounded Sets

Definition 11.22 (Bounded Set). Let X be a metric space. Let $E \subseteq X$. Then E is bounded iff there exists a real number M and $q \in X$ such that, for all $p \in E$, we have d(p,q) < M.

Definition 11.23 (Diameter). Let X be a metric space and $E \subseteq X$ be bounded. Then the *diameter* of E is $\sup\{d(x,y): x,y\in E\}$.

Proposition 11.24. Let X be a metric space. Let $E \subseteq X$ be bounded. Then \overline{E} is bounded and

$$\dim \overline{E} = \dim E .$$

```
PROOF:
```

- $\langle 1 \rangle 1$. diam E is an upper bound for $\{d(x,y) : x,y \in \overline{E}\}$.
 - $\langle 2 \rangle 1$. Let: $x, y \in \overline{E}$
 - $\langle 2 \rangle 2$. For all $\epsilon > 0$ we have $d(x,y) < \dim E + \epsilon$.
 - $\langle 3 \rangle 1$. Let: $\epsilon > 0$
 - $\langle 3 \rangle 2$. Pick $x', y' \in E$ such that $d(x', x) < \epsilon/2$ and $d(y', y) < \epsilon/2$
 - $\langle 3 \rangle 3$. d(x', y') < diam E
 - $\langle 3 \rangle 4$. $d(x,y) < \operatorname{diam} E + \epsilon$
 - $\langle 2 \rangle 3. \ d(x,y) \leq \operatorname{diam} E$
- $\langle 1 \rangle 2$. diam \overline{E} is an upper bound for $\{d(x,y) : x,y \in E\}$.

PROOF: This follows since $E \subseteq \overline{E}$.

П

11.8 Dense Sets

Definition 11.25 (Dense Set). Let X be a metric space. Let $E \subseteq X$. Then E is *dense* iff every point of X is either a limit point of E or a point of E, or both.

11.9 Closure

Definition 11.26 (Closure). Let X be a metric space. Let $E \subseteq X$. Then the closure of E, denoted \overline{E} , is the union of E and the set of limit points of E.

Proposition 11.27. \overline{E} is the smallest closed set that includes E.

Proof:

- $\langle 1 \rangle 1$. \overline{E} is closed.
 - $\langle 2 \rangle 1$. Let: p be a limit point of \overline{E} .
 - $\langle 2 \rangle 2$. Assume: $p \notin E$

PROVE: p is a limit point of E.

- $\langle 2 \rangle$ 3. Let: B be the open ball with centre p and radius r. Prove: B intersects E.
- $\langle 2 \rangle 4$. Pick a point $q \in B \cap \overline{E}$.
- $\langle 2 \rangle$ 5. Pick an open ball B' with centre q such that $B' \subseteq B$.

11.9. CLOSURE 55

```
\langle 2 \rangle 6. Pick a point r \in E \cap B'
```

 $\langle 2 \rangle 7. \ r \in E \cap B$

 $\langle 1 \rangle 2$. If C is closed and $E \subseteq C$ then $\overline{E} \subseteq C$.

- $\langle 2 \rangle 1$. Assume: C is closed.
- $\langle 2 \rangle 2$. Assume: $E \subseteq C$
- $\langle 2 \rangle 3$. Let: $p \in \overline{E}$
- $\langle 2 \rangle 4$. Assume: for a contradiction $p \notin C$
- $\langle 2 \rangle 5$. p is a limit point of C.
 - $\langle 3 \rangle 1$. Let: B be an open ball with centre p.
 - $\langle 3 \rangle 2$. B intersects E.
 - $\langle 3 \rangle 3$. B intersects C.
 - $\langle 3 \rangle 4$. B intersects C in a point other than p. Proof: $\langle 2 \rangle 3$

 $\langle 2 \rangle 6$. Q.E.D.

Proof: This contradicts $\langle 2 \rangle 1$.

Corollary 11.27.1. E is closed if and only if $E = \overline{E}$.

Theorem 11.28. Let E be a nonempty set of real numbers bounded above. Then $\sup E \in \overline{E}$.

Proof:

 $\langle 1 \rangle 1$. Assume: $\sup E \notin E$

PROVE: $\sup E$ is a limit point of E.

- $\langle 1 \rangle 2$. Let: B be an open ball with centre sup E and radius r.
- $\langle 1 \rangle 3$. There exists $x \in E$ such that $x > \sup E r$.
- $\langle 1 \rangle 4$. E intersects B in a point other than p.

Proposition 11.29.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$

Proof:

- $\langle 1 \rangle 1$. $\overline{A} \cup \overline{B}$ is a closed set that includes $A \cup B$.
- $\langle 1 \rangle 2$. If C is a closed set that includes $A \cup B$ then $\overline{A} \cup \overline{B} \subseteq C$.

Example 11.30. It is not true in general. that $\overline{\bigcup A} = \bigcup_{A \in A} \overline{A}$. In \mathbb{R} , let $\mathcal{A} = \{\{1/n\} : n \in \mathbb{Z}^+\}$. Then

$$\overline{\bigcup \mathcal{A}} = \{1/n : n \in \mathbb{Z}^+\} \cup \{0\}$$
$$\bigcup_{A \in \mathcal{A}} \overline{A} = \{1/n : n \in \mathbb{Z}^+\}$$

Proposition 11.31.

$$X - E^{\circ} = \overline{X - E}$$

Proof:

$$p \in X - E^{\circ} \Leftrightarrow p \notin E^{\circ}$$

 $\Leftrightarrow \forall B$ an open ball with centre $p.B \nsubseteq E$
 $\Leftrightarrow \forall B$ an open ball with centre $p.B$ intersects $X - E$
 $\Leftrightarrow p \in \overline{X - E}$

11.10 Compact Sets

Definition 11.32 (Open Cover). Let X be a metric space. Let $E \subseteq X$. An open cover of E is a set \mathcal{U} of open sets such that $E \subseteq \bigcup \mathcal{U}$.

Definition 11.33 (Compact Set). Let X be a metric space. Let $K \subseteq X$. Then K is *compact* iff every open cover of K includes a finite subcover.

Proposition 11.34. Every finite set is compact.

Proof: Easy. \square

Theorem 11.35. Let X be a metric space. Let $Y \subseteq X$ and $K \subseteq Y$. Then K is compact in Y if and only if K is compact in X.

PROOF:

- $\langle 1 \rangle 1$. If K is compact in Y then K is compact in X.
 - $\langle 2 \rangle 1$. Assume: K is compact in Y.
 - $\langle 2 \rangle 2$. Let: \mathcal{U} be an open cover of K in X.
 - $\langle 2 \rangle 3$. $\{ U \cap Y : U \in \mathcal{U} \}$ is an open cover of K in Y.
 - $\langle 2 \rangle 4$. PICK a finite subcover $\{U_1 \cap Y, \dots, U_n \cap Y\}$
 - $\langle 2 \rangle 5$. $\{U_1, \ldots, U_n\}$ is a finite subset of \mathcal{U} that is an open cover of K is X.
- $\langle 1 \rangle 2$. If K is compact in X then K is compact in Y.
 - $\langle 2 \rangle 1$. Assume: K is compact in X.
 - $\langle 2 \rangle 2$. Let: \mathcal{U} be an open cover of K in Y.
 - $\langle 2 \rangle 3$. $\{ U \text{ open in } X : U \cap Y \in \mathcal{U} \}$ is an open cover of K in X.
 - $\langle 2 \rangle 4$. PICK a finite subcover $\{U_1, \ldots, U_n\}$.
- $\langle 2 \rangle$ 5. $\{U_1 \cap Y, \dots, U_n \cap Y\}$ is a subset of \mathcal{U} that is an open cover of E in Y.

Proposition 11.36. Every compact set is closed.

Proof:

- $\langle 1 \rangle 1$. Let: E be compact.
- $\langle 1 \rangle 2$. Let: $p \in X E$

PROVE: There exists an open ball with centre p that is a subset of X-E.

- $\langle 1 \rangle 3$. For all $q \in E$, there exist disjoint open balls B with centre q and B' with centre p.
- $\langle 1 \rangle 4$. The set of open balls B such that there exists a disjoint open ball B' with centre p is an open cover of E.
- $\langle 1 \rangle$ 5. PICK a finite subcover $\{B_1, \ldots, B_n\}$.

 $\langle 1 \rangle$ 6. For $i = 1, \ldots, n$, PICK an open ball B_i' with centre p such that $B_i \cap B_i' = \emptyset$. $\langle 1 \rangle$ 7. $B_1' \cap \cdots \cap B_n'$ is an open ball with centre p that is a subset of X - E.

Proposition 11.37. Every closed subset of a compact set is compact.

Proof:

- $\langle 1 \rangle 1$. Let: E be compact and $C \subseteq E$ be closed.
- $\langle 1 \rangle 2$. Let: \mathcal{U} be an open cover of C.
- $\langle 1 \rangle 3$. $\mathcal{U} \cup \{X C\}$ is an open cover of E.
- $\langle 1 \rangle 4$. PICK a finite subcover $\{U_1, \ldots, U_n\}$ or $\{U_1, \ldots, U_n, X C\}$.
- $\langle 1 \rangle 5. \{U_1, \dots, U_n\} \text{ covers } C.$

Corollary 11.37.1. The intersection of a compact set and a closed set is compact.

Proposition 11.38. Let K be a nonempty set of compact sets. If every nonempty finite subset of K has nonempty intersection, then $\bigcap K$ is nonempty.

Proof:

- $\langle 1 \rangle 1$. Pick $K \in \mathcal{K}$
- $\langle 1 \rangle 2$. Assume: $\bigcap \mathcal{K} = \emptyset$
- $\langle 1 \rangle 3$. $\{X K' : K' \in \mathcal{K}\}$ is an open cover of K.
- $\langle 1 \rangle 4$. PICK a finite subcover $\{X K_1, \dots, X K_n\}$.
- $\langle 1 \rangle$ 5. There exists $p \in K \cap K_1 \cap \cdots \cap K_n$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: $\langle 1 \rangle 4$ and $\langle 1 \rangle 5$ form a contradiction.

Corollary 11.38.1. Let (K_n) be a sequence of nonempty compact sets such that $K_0 \supseteq K_1 \supseteq \cdots$. Then $\bigcap_{n=0}^{\infty} K_n \neq \emptyset$.

Theorem 11.39. Let X be a metric space and $E \subseteq X$. Then E is compact if and only if every infinite subset of E has a limit point in E.

Proof:

- $\langle 1 \rangle 1$. If E is compact then every infinite subset of E has a limit point in E.
 - $\langle 2 \rangle 1$. Assume: E is compact.
 - $\langle 2 \rangle 2$. Let: $A \subseteq E$ be infinite.
 - $\langle 2 \rangle 3$. Assume: for a contradiction E has no limit point in K.
 - $\langle 2 \rangle 4$. For all $p \in K$, there exists an open ball B with centre p such that B does not intersect E outside p.
 - $\langle 2 \rangle$ 5. The set of open balls that intersect E in at most one point is an open cover for K.
 - $\langle 2 \rangle 6$. PICK a finite subcover B_1, \ldots, B_n .
 - $\langle 2 \rangle 7$. E has at most n points.
 - $\langle 2 \rangle 8$. Q.E.D.

PROOF: This contradicts the fact that E is finite.

```
\langle 1 \rangle 2. If every infinite subset of K has a limit point in K then K is compact.
   \langle 2 \rangle 1. Assume: Every infinite subset of K has a limit point in K.
   \langle 2 \rangle 2. Let: \mathcal{U} be an open cover of K.
   \langle 2 \rangle 3. Assume: w.l.o.g. \mathcal{U} is countable.
      PROOF: We may replace \mathcal{U} with the set of all open balls B with centres in
      \mathbb{Q}^2 and rational radius such that there exists U \in \mathcal{U} such that B \subseteq U.
   \langle 2 \rangle 4. Pick an enumeration \mathcal{U} = \{G_n : n \in \mathbb{N}\}.
   \langle 2 \rangle 5. For n \in \mathbb{N},
   LET: F_n = \bigcup_{i=0}^n G_n. \langle 2 \rangle 6. For all n \in \mathbb{N}, we have K - F_n \neq \emptyset.
       PROOF: Since \{G_0, \ldots, G_n\} does not cover K.
   \langle 2 \rangle 7. \bigcap_{n=0}^{\infty} F_n = \emptyset
      PROOF: Since \{G_n : n \in \mathbb{N}\} covers K.
   \langle 2 \rangle 8. For n \in \mathbb{N}, PICK a_n \in K - F_n
   \langle 2 \rangle 9. Let: E = \{a_n : n \in \mathbb{N}\}
   \langle 2 \rangle 10. E is infinite.
       \langle 3 \rangle 1. Let: n \in \mathbb{N}
                PROVE: there exists m such that a_m \notin \{a_0, a_1, \dots, a_n\}.
       \langle 3 \rangle 2. For i = 0, \ldots, n, PICK k_i such that a_i \in G_{k_i}.
       \langle 3 \rangle 3. Let: m = \max(k_0, \ldots, k_n)
       \langle 3 \rangle 4. Assume: for a contradiction a_m = a_i for some i = 0, \ldots, n
       \langle 3 \rangle 5. \ a_i \in G_{k_i}
       \langle 3 \rangle 6. \ a_i \notin F_m
       \langle 3 \rangle 7. Q.E.D.
          PROOF: This is a contradiction since k_i \leq m.
   \langle 2 \rangle 11. PICK a limit point l for E in K.
       Proof: From \langle 2 \rangle 1.
   \langle 2 \rangle 12. PICK n such that l \in G_n.
   \langle 2 \rangle 13. Pick an open ball B with centre l such that B \subseteq G_n
   \langle 2 \rangle 14. B \cap E is infinite.
       Proof: Proposition 11.8.
   \langle 2 \rangle 15. Pick m \geq n such that a_m \in B.
   \langle 2 \rangle 16. \ a_m \in G_n
   \langle 2 \rangle 17. Q.E.D.
```

Theorem 11.40 (Heine-Borel). Let $E \subseteq \mathbb{R}^k$. Then E is compact if and only if it is closed and bounded.

Proof:

 $\langle 1 \rangle 1$. If E is compact then E is closed.

Proof: Proposition 11.36.

 $\langle 1 \rangle 2$. If E is compact then E is bounded.

PROOF: Otherwise $\{(-N,N)^k : N \in \mathbb{Z}^+\}$ would be an open cover of E with no finite subcover.

 $\langle 1 \rangle 3$. If E is closed and bounded then E is compact.

PROOF: This is a contradiction since $a_m \notin F_m$.

```
\langle 2 \rangle 1. Assume: E is closed and bounded.
```

 $\langle 2 \rangle 2$. Pick \vec{c} and M such that $\forall \vec{x} \in E. ||\vec{x} - \vec{c}|| < M$.

$$\langle 2 \rangle 3. \ E \subseteq \prod_{i=1}^k [c_i - M, c_i + M]$$

 $\langle 2 \rangle 4$. E is compact.

Proof: Proposition 11.37.

Corollary 11.40.1 (Weierstrass's Theorem). Every bounded infinite subset of \mathbb{R}^k has a limit point.

Proof: It is a bounded infinite subset of some k-cell and therefore has a limit point in that k-cell. \square

Example 11.41. It is not true that, in any metric space, a set is compact if and only if it is closed and bounded.

In \mathbb{Q} , the set $\{p \in \mathbb{Q} : 2 < p^2 < 3\}$ is closed and bounded but not compact.

Theorem 11.42. Every nonempty perfect set in \mathbb{R}^k is uncountable.

 $\langle 1 \rangle 1$. Let: P be a nonempty perfect set in \mathbb{R}^k .

 $\langle 1 \rangle 2$. P is infinite.

Proof: Corollary 11.8.1.

 $\langle 1 \rangle 3$. Assume: for a contradiction P is countable.

 $\langle 1 \rangle 4$. PICK an enumeration $P = \{x_n : n \in \mathbb{N}\}.$

 $\langle 1 \rangle$ 5. PICK a sequence (V_n) of open balls such that, for all n, we have $\overline{V_{n+1}} \subseteq V_n$ and $x_n \notin \overline{V_{n+1}}$ and $V_n \cap P \neq \emptyset$

 $\langle 2 \rangle 1$. Assume: as induction hypothesis we have picked V_0, \ldots, V_{n-1} that satisfy these conditions.

 $\langle 2 \rangle 2$. PICK $p \in P \cap V_n$ such that $p \neq x_n$

PROOF: We cannot have $P \cap V_n = \{x_n\}$ because then V_n would be a neighbourhood of x_n that only intersects P at x_n .

 $\langle 2 \rangle 3$. PICK an open ball B with centre p such that $B \subseteq V_n \cap P - \{x_n\}$

 $\langle 2 \rangle 4$. Let: V_{n+1} be the open ball with centre p and half the radius of B.

 $\langle 2 \rangle$ 5. $\overline{V_{n+1}} \subseteq V_n$ PROOF: Since $\overline{V_{n+1}} \subseteq B \subseteq V_n$.

 $\langle 2 \rangle 6. \ x_n \notin \overline{V_{n+1}}$

PROOF: Since $\overline{V_{n+1}} \subseteq B \subseteq P - \{x_n\}$.

 $\langle 2 \rangle 7. \ V_{n+1} \cap P \neq \emptyset$

PROOF: Since $p \in V_{n+1} \cap P$.

 $\langle 1 \rangle 6$. For $n \in \mathbb{N}$,

Let:
$$K_n = \overline{V_n} \cap P$$
.

 $\langle 1 \rangle 7$. For all $n \in \mathbb{N}$, K_n is compact.

PROOF: By the Heine-Borel Theorem.

 $\langle 1 \rangle 8. \bigcap_{n=0}^{\infty} K_n \cap P = \emptyset$ PROOF: Since for each n we have $x_n \notin K_{n+1}$.

 $\langle 1 \rangle 9. \bigcap_{n=0}^{\infty} K_n = \emptyset$ PROOF: Since $\bigcap_{n=0}^{\infty} K_n \subseteq P$.

 $\langle 1 \rangle 10$. Q.E.D.

Proof: This contradicts Proposition 11.38.

Corollary 11.42.1. For any $a, b \in \mathbb{R}$ with a < b, the closed interval [a, b] is uncountable.

Corollary 11.42.2. \mathbb{R} is uncountable.

Corollary 11.42.3. The set of transcendental numbers is uncountable.

Proof: Since the set of algebraic numbers is countable. \Box

Example 11.43. The Cantor set is a perfect set in \mathbb{R} that does not include any open interval.

Proof:

- $\langle 1 \rangle 1$. Let: (E_n) be the sequence of unions of closed intervals from the definition of the Cantor set, and C be the Cantor set.
- $\langle 1 \rangle 2. \ C \neq \emptyset$

PROOF: Since $0 \in C$.

 $\langle 1 \rangle 3$. C is closed.

PROOF: Each E_n is closed and C is their intersection.

- $\langle 1 \rangle 4$. Every point of C is a limit point of C.
 - $\langle 2 \rangle 1$. Let: $p \in C$
 - $\langle 2 \rangle 2$. Let: B be an open ball with centre p and radius r.
 - $\langle 2 \rangle 3$. Pick n such that each of the intervals that make up E_n has length < r/2.
 - $\langle 2 \rangle 4$. Let: I be the interval in E_n that contains p.
 - $\langle 2 \rangle 5$. $I \subseteq B$
 - $\langle 2 \rangle 6$. The endpoint of I that is not p is in $P \cap B$.
- $\langle 1 \rangle 5$. C does not include any open interval.
 - $\langle 2 \rangle 1$. Let: (α, β) be any open interval.
 - $\langle 2 \rangle 2$. PICK m such that $3^{-m} < (\beta \alpha)/6$
 - $\langle 2 \rangle 3$. PICK k such that $\left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) \subseteq (\alpha, \beta)$

 - $\langle 2 \rangle 4. \ \left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) \subseteq P$ $\langle 2 \rangle 5. \ \left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right) \cap E_m = \emptyset$
 - $\langle 2 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

Corollary 11.43.1. The Cantor set is uncountable.

Proposition 11.44. Let X be a metric space. Let (K_n) be a sequence of compact sets in X such that $K_0 \supseteq K_1 \supseteq K_2 \supseteq \cdots$. Assume diam $K_n \to 0$ as $n \to \infty$. Then $\bigcap_{n=0}^{\infty} K_n$ is a singleton.

Proof:

 $\langle 1 \rangle 1. \bigcap_n K_n \neq \emptyset$

11.11 Connected Sets

Definition 11.45 (Separated). Let X be a metric space. Let $A, B \subseteq X$. Then A and B are separated iff $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

Proposition 11.46. Any two disjoint open sets are separated.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: A and B be disjoint open sets.
- $\langle 1 \rangle 2$. Assume: for a contradiction $p \in \overline{A} \cap B$.
- $\langle 1 \rangle 3$. B is a neighbourhood of p.
- $\langle 1 \rangle 4$. B intersects A.

Definition 11.47 (Connected). Let X be a metric space. Let $E \subseteq X$. Then E is *connected* iff E is not the union of two nonempty separated sets.

Theorem 11.48. A subset E of the real line is connected if and only if it is convex.

Proof:

- $\langle 1 \rangle 1$. If E is connected then E is convex.
 - $\langle 2 \rangle 1$. Assume: E is connected.
 - $\langle 2 \rangle 2$. Let: $x, y \in E$
 - $\langle 2 \rangle 3$. Let: $z \in (x, y)$
 - $\langle 2 \rangle 4. \ z \in E$

PROOF: Otherwise $E \cap (-\infty, z)$ and $E \cap (z, +\infty)$ would be a separation of E.

- $\langle 1 \rangle 2$. If E is convex then E is connected.
 - $\langle 2 \rangle 1$. Assume: E is convex.
 - $\langle 2 \rangle 2$. Assume: for a contradiction $E = A \cup B$ where A and B are nonempty and separated.
 - $\langle 2 \rangle 3$. Pick $a \in A$ and $b \in B$.
 - $\langle 2 \rangle 4$. Assume: w.l.o.g. a < b
 - $\langle 2 \rangle 5$. Let: $z = \sup(A \cap [a, b])$
 - $\langle 2 \rangle 6. \ z \in \overline{A}$
 - $\langle 2 \rangle 7. \ z \notin B$

```
\begin{array}{l} \langle 2 \rangle 8. \ z < b \\ \langle 2 \rangle 9. \ \text{Case:} \ z \in A \\ \langle 3 \rangle 1. \ z \notin \overline{B} \\ \langle 3 \rangle 2. \ \text{Pick} \ z_1 \in (z,b) \ \text{such that} \ z_1 \notin B \\ \langle 3 \rangle 3. \ a < z_1 < b \\ \langle 3 \rangle 4. \ z_1 \notin E \\ \text{Proof:} \ \text{We have} \ z_1 \notin A \ \text{from} \ \langle 2 \rangle 5 \ \text{since} \ z_1 \in [a,b] \ \text{and} \ z_1 > z, \ \text{and} \\ z_1 \notin B \ \text{from} \ \langle 3 \rangle 2. \\ \langle 3 \rangle 5. \ \text{Q.E.D.} \\ \text{Proof:} \ \text{This contradicts} \ \langle 2 \rangle 1. \\ \langle 2 \rangle 10. \ \text{Case:} \ z \notin A \\ \text{Proof:} \ \text{Then} \ a < z < b \ \text{and} \ z \notin E \ \text{contradicting} \ \langle 2 \rangle 1. \\ \end{array}
```

Proposition 11.49. Every connected metric space with more than one point is uncountable.

PROOF:

- $\langle 1 \rangle 1$. Let: X be a connected metric space with more than one points.
- $\langle 1 \rangle 2$. Pick distinct points $p, q \in X$.
- $\langle 1 \rangle 3$. Let: $\epsilon = d(p,q)$
- $\langle 1 \rangle 4$. For every $r \in (0, \epsilon)$, there exists a point $x \in X$ such that d(p, x) = r. Proof: Otherwise $\{x \in X : d(p, x) < r\}$ and $\{x \in X : d(p, x) > r\}$ would form a separation of X.

Proposition 11.50. The closure of a connected set is connected.

Proof:

- $\langle 1 \rangle 1$. Let: X be a metric space.
- $\langle 1 \rangle 2$. Let: E be a connected subspace of X.
- $\langle 1 \rangle$ 3. Assume: for a contradiction A and B form a separation of \overline{E} Prove: $A \cap E$ and $B \cap E$ form a separation of E.
- $\langle 1 \rangle 4$. $A \cap E \neq \emptyset$
 - $\langle 2 \rangle 1$. Assume: for a contradiction $A \cap E = \emptyset$
 - $\langle 2 \rangle 2$. $E \subseteq B$
 - $\langle 2 \rangle 3. \ \overline{E} \subseteq \overline{B}$
 - $\langle 2 \rangle 4. \ A \subseteq \overline{B}$
 - $\langle 2 \rangle 5. \ A \cap \overline{B} = A \neq \emptyset$
 - $\langle 2 \rangle 6$. Q.E.D.

PROOF: This contradicts $\langle 1 \rangle 3$.

 $\langle 1 \rangle 5. \ B \cap E \neq \emptyset$

Proof: Similar.

 $\langle 1 \rangle 6. \ \overline{A \cap E} \cap B \cap E = \emptyset$

PROOF: Since $\overline{A \cap E} \cap B \cap E \subseteq \overline{A} \cap B$.

 $\langle 1 \rangle 7$. $A \cap E \cap \overline{B \cap E} = \emptyset$

PROOF: Similar.

П

Example 11.51. The interior of a connected set is not necessarily connected.

Two touching discs in \mathbb{R}^2 form a connected set but the interior is disconnected.

Proposition 11.52. Every convex set in \mathbb{R}^k is connected.

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } E \text{ be a convex set in } \mathbb{R}^k. \\ \langle 1 \rangle 2. \text{ Assume: for a contradiction } A \text{ and } B \text{ form a separation of } E. \\ \langle 1 \rangle 3. \text{ Pick } \vec{a} \in A \text{ and } \vec{b} \in B. \\ \langle 1 \rangle 4. \text{ Define } p: [0,1] \to \mathbb{R}^k \text{ by } p(t) = (1-t)\vec{a}+t\vec{b}. \\ \langle 1 \rangle 5. \ p^{-1}(A) \text{ and } p^{-1}(B) \text{ are separated sets in } \mathbb{R}. \\ \langle 1 \rangle 6. \text{ Pick } x \in [0,1] \text{ such that } x \notin p^{-1}(A) \text{ and } x \notin p^{-1}(B). \\ \text{PROOF: There exists such an } x \text{ since } [0,1] \text{ is connected.} \\ \langle 1 \rangle 7. \ p(x) \in E \\ \text{PROOF: Since } E \text{ is convex.} \\ \langle 1 \rangle 8. \ p(x) \notin A \cup B \\ \langle 1 \rangle 9. \ Q.E.D. \\ \text{PROOF: This contradicts } \langle 1 \rangle 2. \\ \square
```

11.12 Separable Spaces

Definition 11.53 (Separable). A metric space is *separable* iff it has a countable dense subset.

Example 11.54. \mathbb{R}^k is separable since \mathbb{Q}^k is dense.

Proposition 11.55. Every compact metric space is separable.

```
Proof:  \langle 1 \rangle 1. \text{ Let: } X \text{ be a compact metric space.}   \langle 1 \rangle 2. \text{ For } n \in \mathbb{Z}^+, \text{ pick finitely many points } a_{n1}, \ldots, a_{nr_n} \text{ such that } \{B(a_{ni}, 1/n) : 1 \leq i \leq r_n\} \text{ covers } X.  Proof: Since \{B(x, 1/n) : x \in X\} \text{ covers } X.   \langle 1 \rangle 3. \ \{a_{ni} : n \in \mathbb{Z}^+, 1 \leq i \leq r_n\} \text{ is dense.}   \langle 2 \rangle 1. \text{ Let: } U \text{ be an open set and } p \in U.   \langle 2 \rangle 2. \text{ Pick } \epsilon > 0 \text{ such that } B(p, \epsilon) \subseteq U.   \langle 2 \rangle 3. \text{ Pick } n \text{ such that } 1/n < \epsilon.   \langle 2 \rangle 4. \text{ Pick } i \text{ such that } p \in B(a_{ni}, 1/n)   \langle 2 \rangle 5. \ a_{ni} \in U
```

11.13 Bases

Definition 11.56 (Basis). A basis for a metric space X is a set \mathcal{B} of open sets such that, for every open set U and point $p \in U$, there exists $B \in \mathcal{B}$ such that $p \in B \subseteq U$.

Proposition 11.57. Every separable metric space has a countable basis.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: X be a separable metric space.
- $\langle 1 \rangle 2$. PICK a countable dense set D in X.
- $\langle 1 \rangle 3$. Let: $\mathcal{B} = \{ B(p, \epsilon) : p \in D, \epsilon \in \mathbb{Q}^+ \}$ Prove: \mathcal{B} is a basis.
- $\langle 1 \rangle 4$. Let: U be an open set in X and $p \in U$
- $\langle 1 \rangle$ 5. Pick $\epsilon > 0$ such that $B(p, \epsilon) \subseteq U$
- $\langle 1 \rangle 6$. Pick $q \in B(p, \epsilon) \cap D$
- $\langle 1 \rangle 7$. PICK a rational δ such that $d(p,q) < \delta < \epsilon$.
- $\langle 1 \rangle 8. \ B(q, \delta) \in \mathcal{B} \text{ and } B(q, \delta) \subseteq U.$

11.14 Condensation Points

Definition 11.58 (Condensation Point). Let X be a metric space, $p \in X$ and $E \subseteq X$. Then p is a *condensation point* of E iff every neighbourhood of p contains uncountably many points in E.

Proposition 11.59. Let X be a metric space. Let $E \subseteq X$. Let P be the set of condensation points of E. Then P is perfect.

PROOF:

- $\langle 1 \rangle 1$. P is closed.
 - $\langle 2 \rangle 1$. Let: $p \in X P$
 - $\langle 2 \rangle 2$. Pick a neighbourhood U of p that contains only countably many points of E.
 - $\langle 2 \rangle 3$. For every $x \in U$, we have that U is a neighbourhood of x that contains only countably many points of E.
 - $\langle 2 \rangle 4. \ p \in U \subseteq X P$
- $\langle 1 \rangle 2$. Every point in P is a limit point of P.

PROOF: Immediate from definitions.

Proposition 11.60. Let X be a metric space with a countable basis. Let $E \subseteq X$ be uncountable. Let P be the set of condensation points of E. Then E - P is countable.

- $\langle 1 \rangle 1$. PICK a countable basis \mathcal{B} for X.
- $\langle 1 \rangle 2$. Let: $W = \bigcup \{ B \in \mathcal{B} : E \cap B \text{ is countable} \}$

```
\langle 1 \rangle 3. \ P = X - W
   \langle 2 \rangle 1. \ P \subseteq X - W
       \langle 3 \rangle 1. Assume: for a contradiction p \in P \cap W
       \langle 3 \rangle 2. PICK B \in \mathcal{B} such that p \in B and E \cap B is countable.
       \langle 3 \rangle 3. E \cap B is uncountable.
       \langle 3 \rangle 4. Q.E.D.
          PROOF: This is a contradiction.
   \langle 2 \rangle 2. X - W \subseteq P
       \langle 3 \rangle 1. Let: p \in X - W
       \langle 3 \rangle 2. Let: U be a neighbourhood of p.
       \langle 3 \rangle 3. Pick B \in \mathcal{B} such that p \in B \subseteq U.
       \langle 3 \rangle 4. E \cap B is uncountable.
          PROOF: Since p \notin W.
       \langle 3 \rangle 5. E \cap W is uncountable.
\langle 1 \rangle 4. E - P = E \cap W
\langle 1 \rangle5. E - P is countable.
```

Corollary 11.60.1. Every closed subset of a metric space with a countable basis is the union of a perfect set and a countable set.

```
Proof:
```

- $\langle 1 \rangle 1$. Let: X be a metric space with a countable basis.
- $\langle 1 \rangle 2$. Let: E be a closed subset of X.
- $\langle 1 \rangle 3$. Let: P be the set of condensation points of E.
- $\langle 1 \rangle 4$. E P is countable.

Proof: Proposition 11.60.

- $\langle 1 \rangle 5$. $P \cap E$ is perfect.
 - $\langle 2 \rangle 1$. $P \cap E$ is closed.

PROOF: Proposition 11.59.

- $\langle 2 \rangle 2$. Every point in $P \cap E$ is a limit point of $P \cap E$.
 - $\langle 3 \rangle 1$. Let: $l \in P \cap E$
 - $\langle 3 \rangle 2$. Let: U be a neighbourhood of l.
 - $\langle 3 \rangle 3$. Pick $x \in P \cap U$
 - $\langle 3 \rangle 4$. *U* is a neighbourhood of *x*.
 - $\langle 3 \rangle$ 5. U contains uncountably many points of E.
 - $\langle 3 \rangle 6$. U intersects $P \cap E$

PROOF: It cannot be that every point in U and E is not in P since E-P is countable.

Corollary 11.60.2. Let X be a metric space with a countable basis. Then every countable set in X has an isolated point.

Convergence

Definition 12.1 (Converge). Let X be a metric space. Let (p_n) be a sequence in X and $l \in X$. Then we say (p_n) converges to the *limit* l, and write

$$p_n \to l \text{ as } n \to \infty$$
,

iff for every $\epsilon > 0$, there exists an integer N such that, for all $n \geq N$, we have $d(p_n, l) < \epsilon$.

We say (p_n) diverges iff it does not converge to any limit.

Proposition 12.2. A sequence has at most one limit.

Proof:

- $\langle 1 \rangle 1$. Assume: $p_n \to l$ and $p_n \to m$ as $n \to \infty$.
- $\langle 1 \rangle 2$. Assume: for a contradiction $l \neq m$.
- $\langle 1 \rangle 3$. Let: $\epsilon = d(l,m)/2$
- $\langle 1 \rangle 4$. There exists N such that $\forall n \geq N. d(p_n, l) < \epsilon$ and $d(p_n, m) < \epsilon$
- $\langle 1 \rangle 5. \ d(l,m) < 2\epsilon$
- $\langle 1 \rangle 6$. Q.E.D.

PROOF: This is a contradiction.

Proposition 12.3. Every convergent sequence is bounded.

Proof:

- $\langle 1 \rangle 1$. Let: $p_n \to l$ as $n \to \infty$
- $\langle 1 \rangle 2$. PICK N such that $\forall n \geq N.d(p_n, l) < 1$
- $\langle 1 \rangle 3$. Let: $M = \max(d(p_0, l), \dots, d(p_{N-1}, l), 1)$
- $\langle 1 \rangle 4$. For all n, we have $d(p_n, l) \leq M$.

` ר

Proposition 12.4. If l is a limit point of E, then there exists a sequence in E that converges to l.

 $\langle 1 \rangle 1$. For $n \in \mathbb{Z}^+$, PICK a point $a_n \in E$ such that $d(a_n, l) < 1/n$. PROOF: Since B(l, 1/n) intersects E.

$$\langle 1 \rangle 2$$
. $a_n \to l$ as $n \to \infty$.

Corollary 12.4.1. Every sequence in a compact metric space has a convergent subsequence.

PROOF: By Theorem 11.39. \square

Proposition 12.5. Assume $s_n \to s$ and $t_n \to t$ in \mathbb{C} . Then $s_n + t_n \to s + t$.

Proof:

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- (1)2. PICK N such that, for all $n \geq N$, we have $d(s_n, s) < \epsilon/2$ and $d(t_n, t) < \epsilon/2$.
- $\langle 1 \rangle 3$. For all $n \geq N$ we have $d(s_n + t_n, s + t) < \epsilon$.

Lemma 12.6. If $s_n \to s$ as $n \to \infty$ in \mathbb{C} , and $c \in \mathbb{C}$, then $cs_n \to cs$ as $n \to \infty$.

Proof:

- $\langle 1 \rangle 1$. Let: $\epsilon > 0$
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $c \neq 0$
- $\langle 1 \rangle 3$. PICK N such that $\forall n \geq N . |s_n s| < \epsilon / |c|$.
- $\langle 1 \rangle 4. \ \forall n \geq N. |cs_n cs| < \epsilon$

Proposition 12.7. If $s_n \to s$ and $t_n \to t$ in \mathbb{C} then $s_n t_n \to st$.

Proof:

- $\langle 1 \rangle 1$. $(s_n s)(t_n t) \to 0$ as $n \to \infty$
 - $\langle 2 \rangle 1$. Let: $\epsilon > 0$
 - $\langle 2 \rangle 2$. Pick N such that, for all $n \geq N$, we have $|s_n s| < \sqrt{\epsilon}$ and $|t_n t| < \sqrt{\epsilon}$.
 - $\langle 2 \rangle 3$. For all $n \geq N$ we have $|(s_n s)(t_n t)| < \epsilon$
- $\langle 1 \rangle 2$. $s_n t_n st \to 0$ as $n \to \infty$

Proof:

$$s_n t_n - st = (s_n - s)(t_n - t) + s(t_n - t) + t(s_n - s)$$

$$\to 0 \qquad \text{as } n \to \infty$$

Proposition 12.8. If $s_n \to s$ as $n \to \infty$ in \mathbb{C} , and every s_n and s is nonzero, then $1/s_n \to 1/s$ as $n \to \infty$.

- $\langle 1 \rangle 1$. PICK m such that, for all $n \geq m$, we have $|s_n s| < \frac{1}{2}|s|$.
- $\langle 1 \rangle 2$. $\forall n \geq m . |s_n| > \frac{1}{2} |s|$
- $\langle 1 \rangle 3$. Let: $\epsilon > 0$
- $\langle 1 \rangle 4$. PICK N > m such that, for all $n \geq N$, we have

$$|s_n - s| < \frac{1}{2}|s|^2 \epsilon .$$

 $\langle 1 \rangle 5$. For all $n \geq N$, we have

Proof:

$$\left| \frac{1}{s_n} - \frac{1}{s} \right| < \epsilon .$$

$$\left| \frac{1}{s_n} - \frac{1}{s} \right| = \frac{|s_n - s|}{|s_n||s|}$$

$$< \frac{|s|^2 \epsilon}{2|s_n||s|}$$

$$= \frac{|s|\epsilon}{2|s_n|}$$

$$< \epsilon$$

Theorem 12.9. Let $(\vec{x_n})$ be a sequence in \mathbb{R}^k and $\vec{l} \in \mathbb{R}^k$. Then $\vec{x_n} \to \vec{l}$ as $n \to \infty$ iff, for i = 1, ..., k, we have $\pi_i(\vec{x_n}) \to \pi_i(\vec{l})$ as $n \to \infty$.

Proof:

 $\langle 1 \rangle 1$. If $\vec{x_n} \to \vec{l}$ then $\pi_i(\vec{x_n}) \to \pi_i(l)$.

$$\langle 2 \rangle 1$$
. $||\vec{x_n} - \vec{l}|| \to 0$ as $n \to \infty$.

$$\langle 2 \rangle 1. \quad \|\vec{x_n} - \vec{l}\| \to 0 \text{ as } n \to \infty.$$

$$\langle 2 \rangle 2. \quad \sqrt{\sum_{i=1}^k (\pi_i(\vec{x_n}) - \pi_i(l))^2} \to 0 \text{ as } n \to \infty.$$

$$\begin{array}{l} \langle 2 \rangle 3. \ \sum_{i=1}^k (\pi_i(\vec{x_n}) - \pi_i(l))^2 \to 0 \text{ as } n \to \infty. \\ \langle 2 \rangle 4. \ (\pi_i(\vec{x_n}) - \pi_i(l))^2 \to 0 \text{ as } n \to \infty. \end{array}$$

$$\langle 2 \rangle 4$$
. $(\pi_i(\vec{x_n}) - \pi_i(l))^2 \to 0$ as $n \to \infty$

$$\langle 2 \rangle 5$$
. $\pi_i(\vec{x_n}) - \pi_i(l) \to 0$ as $n \to \infty$.

 $\langle 1 \rangle 2$. If $\pi_i(\vec{x_n}) \to \pi_i(\vec{l})$ for every i then $\vec{x_n} \to l$.

$$\langle 2 \rangle 1$$
. Assume: $\pi_i(\vec{x_n}) \to \pi_i(\vec{l})$ for every i .

$$\langle 2 \rangle 2. \ \vec{x_n} \rightarrow \vec{l}$$

Proof:

$$\|\vec{x_n} - \vec{l}\|^2 = \sum_{i=1}^k (\pi_i(\vec{x_n}) - \pi_i(\vec{l}))^2$$

$$\to 0$$

Corollary 12.9.1. If $\vec{x_n} \to \vec{x}$ and $\vec{y_n} \to \vec{y}$ in \mathbb{R}^k , then $\vec{x_n} + \vec{y_n} \to \vec{x} + \vec{y}$.

Corollary 12.9.2. If $\beta_n \to \beta$ in \mathbb{R} and $\vec{x_n} \to \vec{l}$ in \mathbb{R}^k , then $\beta_n \vec{x_n} \to \beta \vec{l}$.

Proposition 12.10. If $\vec{x_n} \to \vec{x}$ and $\vec{y_n} \to \vec{y}$ in \mathbb{R}^k , then $\vec{x_n} \cdot \vec{y_n} \to \vec{x} \cdot \vec{y}$.

$$\vec{x_n} \cdot \vec{y_n} = \sum_{i=1}^k \pi_i(\vec{x_n}) \pi_i(\vec{y_n})$$

$$\to \sum_{i=1}^k \pi_i(\vec{x}) \pi_i(\vec{y})$$

$$= \vec{x} \cdot \vec{y}$$

Proposition 12.11. Let (p_n) be a sequence in the metric space X. The set E^* of all limits of convergent subsequences is a closed set.

Proof:

- $\langle 1 \rangle 1$. Assume: w.l.o.g. $\{p_n : n \in \mathbb{N}\}$ is infinite.
- $\langle 1 \rangle 2$. Let: q be a limit point of E^* . Prove: $q \in E^*$
- $\langle 1 \rangle 3$. PICK an integer n_0 such that $q \neq p_{n_0}$.
- $\langle 1 \rangle 4$. Extend a strictly increasing sequence of integers (n_i) such that, for all i, we have $d(q, p_{n_i}) \leq 2^i d(q, p_{n_0})$.
 - $\langle 2 \rangle 1$. Assume: as induction hypothesis we have picked $n_0 < n_1 < \cdots < n_i$ such that, for $0 \le j \le i$, we have $d(q, p_{n_j}) \le 2^j d(q, p_{n_0})$.
 - $\langle 2 \rangle 2$. Pick $x \in E^*$ such that $d(x,q) < 2^{-(i+2)}\delta$
 - $\langle 2 \rangle 3$. There exists a subsequence of (p_n) that converges to x.
 - $\langle 2 \rangle 4$. There exists $n_{i+1} > n_i$ such that $d(p_{n_{i+1}}, x) < 2^{-(i+2)} \delta$.
- $\langle 2 \rangle 5. \ d(p_{n_{i+1}}, q) < 2^{-(i+1)} \delta$
- $\langle 1 \rangle 5$. $p_{n_i} \to q$ as $i \to \infty$.
- $\langle 1 \rangle 6. \ q \in E^*$

12.1 Cauchy Sequences

Definition 12.12 (Cauchy Sequence). Let (p_n) be a sequence in the metric space X. Then (p_n) is a Cauchy sequence iff, for every $\epsilon > 0$, there exists N such that, for all $m, n \geq N$, we have $d(p_m, p_n) < \epsilon$.

Proposition 12.13. Let (p_n) be a sequence in the metric space X and let $E_N = \{p_n : n \geq N\}$ for all N. Then (p_n) is a Cauchy sequence if and only if $\dim E_N \to 0$ as $N \to \infty$.

PROOF: Immediate from definitions.

Theorem 12.14. Every convergent sequence is Cauchy.

Proof:

- $\langle 1 \rangle 1$. Let: (p_n) be a convergent sequence with limit l.
- $\langle 1 \rangle 2$. Let: $\epsilon > 0$
- $\langle 1 \rangle 3$. PICK N such that, for all $n \geq N$, we have $d(p_n, l) < \epsilon/2$
- $\langle 1 \rangle 4. \ \forall m, n \geq N. d(p_m, p_n) < \epsilon$

12.2 Complete Metric Spaces

Definition 12.15 (Complete Metric Space). A metric space is *complete* iff every Cauchy sequence converges.

Theorem 12.16. Every compact metric space is complete.

Proof:

- $\langle 1 \rangle 1$. Let: X be a compact metric space.
- $\langle 1 \rangle 2$. Let: (p_n) be a Cauchy sequence in X.
- $\langle 1 \rangle 3$. For $N \in \mathbb{N}$,

Let:
$$E_N = \{p_n : n \ge N\}$$

- LET: $E_N = \{p_n : n \ge N\}.$ $\langle 1 \rangle 4.$ diam $E_N \to 0$ as $N \to \infty$. $\langle 1 \rangle 5.$ For all N, every E_N is compact.

Proof: Proposition 11.37.

- $\langle 1 \rangle 6$. For all N we have $\overline{E_N} \supseteq \overline{E_{N+1}}$. $\langle 1 \rangle 7$. Let: l be the unique point in $\bigcap_{N=0}^{\infty} \overline{E_N}$ Prove: $p_n \to l \text{ as } n \to \infty$.

Proof: Proposition 11.44.

- $\langle 1 \rangle 8$. Let: $\epsilon > 0$
- $\langle 1 \rangle 9$. PICK N_0 such that $\forall N \geq N_0$. diam $\overline{E_N} < \epsilon$.
- $\langle 1 \rangle 10. \ \forall q \in E_N.d(l,q) < \epsilon$
- $\langle 1 \rangle 11. \ \forall n \geq N.d(l, p_n) < \epsilon$

Part III More Algebra

Lie Groups

Definition 13.1 (Lie Group). A *Lie group* G is a group G that is also an analytic differentiable manifold such that the group operation and inverse operation are analytic.

A $homomorphism\ of\ Lie\ groups$ is a group homomorphism that is an analytic function.

Lemma 13.2. Every bijective Lie group homomorphism is an isomorphism.

Definition 13.3 (Unitary Group). The *unitary group* U(n) is the Lie group of all $n \times n$ unitary matrices.

Definition 13.4 (Special Unitary Group). The *special unitary group* SU(n) is the Lie group of all $n \times n$ unitary matrices with determinant 1.

Definition 13.5 (Lie Subgroup). Let G be a Lie group. A *Lie subgroup* of G is a subgroup that is also an analytic submanifold of G.

Example 13.6. U(n) and SU(n) are Lie subgroups of $GL(n,\mathbb{C})$.