LEBANESE UNIVERSAL ACADEMY

Class: LS

Subject: Chemistry Duration: 80min

Exercise 1:(5POINTS)

It is required to study, at 25°C, the kinetics of a complete reaction between

Ester (CH3-COO-C2H5) and a Base (NaOH):

A slow and complete reaction takes place:

$$Ch_3-COO-C_2H_5 + HO^- ----> CH_3COO^- + C_2H_5OH$$

At t=0, a volume V_1 = 250ml of CH_3 -COO- C_2H_5 solution of Molar concentration C_1 = 0.01mol/l

are mixed with a volume V_2 = 250ml of NaOH solution of Molar concentration C_2 = 0.01mol/l.

The table below shows the variation of concentration of C₂H₅OH with time:

Time(min)	2	4	6	10	12	14	16
[C ₂ H ₅ OH] × 10 ⁻³ mol/l	1.3	2.3	3.1	3.7	3.9	4	4.1

- 1.1- Calculate the initial concentration of hydroxide ion [HO⁻] and ester [CH₃-COO-C₂H₅] in the mixture reaction.
- 1.2- Show that the initial mixture of reactants is stoichiometric.
- 2. Determine if the end time of the reaction is equal to t=16min.
- 3. Plot the curve representing the variation of the concentration of C_2H_5OH as a function of time, $[C_2H_5OH] = f(t)$ in the interval of time [0-16min].

Take the scales In abscissa: 1cm for 2 min;

In ordinates 1cm for 1×10⁻³mol/l.

- 4. Determine graphically the half life time of the reaction $t_{1/2}$.
- 5. Deduce graphically how the rate of formation of C_2H_5OH varies as function of time.
- 6. The above reaction is replaced with changing the concentration of one reactant (ester) C'>C, at same temperature of 25°C.

Specify the effect of the change of concentration on:

- 1- The rate of formation of C₂H₅OH.
- 2- The concentration of C_2H_5OH at the end of the reaction.

Exercise 2: (5points)

A solution (S) is prepared by mixing a volume 5mL of a potassium iodide solution ($K^+ + I^-$) of concentration $C_1 = 5 \times 10^{-3}$ mol.L ⁻¹ with a volume 5mL of hydrogen peroxide solution (H_2O_2) of concentration $C_2 = 0.25$ mol.L ⁻¹ previously acidified with an excess amount of sulfuric acid.

A brown color of iodine (I₂) is observed which intensifies with time representing a complete reaction that takes place at a constant temperature **T** according to the following equation:

$$H_2O_{2 (aq)} + 2I_{(aq)}^- + 2H_{(aq)}^+ \rightarrow I_{2 (aq)}^- + 2H_2O_{(1)}^-$$

The aim of this exercise is to study the kinetic of this reaction.

1. Preliminary Study

- 1.1. Calculate the initial concentrations of iodide ions [I]₀ and hydrogen peroxide [H₂O₂]₀ in the reactional mixture.
- **1.2.** Deduce that hydrogen peroxide H_2O_2 is in excess.
- **1.3.** Show that at each instant of time t, the concentration in (mmol.L⁻¹) of iodide ions [I]_t is given by the following relation:

$$[I_1]_{t=2.5-2}[I_2]_{t=2.5-2}$$

2. Kinetic Study

The follow-up of the evolution of the molar concentration of iodine as a function of time, using an appropriate method, permits to construct the table represented by **document-1**.

Γime (min)	1	2	3	4	5	6	7
$[I_2]$ mmol. L^{-1}	0.28	0.51	0.7	0.82	0.93	1	1.05

- **2.1.** Plot the curve representing the variation of the concentration of I_2 as a function of time:
 - $[I_2] = f(t)$ in the interval of time: [0 7 min].

Take the following scales: 1 cm for 1 min in abscissa

1 cm for 0.2 mmol.L⁻¹ in ordinate

- **2.2.** Specify whether each of the following two propositions is true or false.
 - **Proposition 1**: The instant t = 7min represents the end time of reaction.
 - **Proposition 2:** At the same instant t, the rate of disappearance of iodide ions (Γ) is twice the rate of formation of iodine (Γ ₂).
 - **2.3.** Determine, graphically, the half-life time of the reaction t_2 ¹.
 - **2.4.** The above kinetic study is carried out but with only one modification: T' > T. Choose, by justifying, the correct answer:
 - **2.4.1.** The relation between t_{2^1} and half-life at temperature (T') denoted by t'_{2_2} is:

a.
$$t_2^1 = t'_2^1$$

b.
$$t_2^1 < t'_2^1$$

c.
$$t_2^1 > t'_2^1$$

- **2.4.2.** The intensity of the brown color observed at instant t = 4 min:
 - a. decreases
- b. increases
- c. remains the same