Optimization and Predictive Analysis in Food Production in the Face of Climate Change

Luz Magaly Turpo Mamani

I. INTRODUCTION

Climate change has profoundly transformed agricultural production dynamics around the world, creating unannounced challenges that threaten global food security. Fluctuating rainfall patterns, rising temperatures, and the increasing frequency of extreme weather events are just some of the most significant impacts facing farmers today. These adverse conditions have not only reduced agricultural yields, but have also put at risk the sustainability of a sector vital to human life and the well-being of millions of people [1]. In addition, crop quality is affected, increasing production costs and limiting access to food in already vulnerable regions [2]. In particular, smallholder farmers, who rely on subsistence crops for their livelihood, are in a critical situation, facing even greater risks due to their limited capacity to adapt to these climatic changes [3].

In the face of these challenges, optimizing agricultural processes has become an essential strategy to mitigate the effects of climate change. This optimization not only seeks to improve the efficiency of agricultural practices, but also to ensure that these are sustainable in the long term [4]. In this context, predictive analysis has emerged as a powerful tool. By processing large volumes of data, it is possible to more accurately predict agricultural yields and propose targeted interventions that optimize the use of critical resources, such as water, fertilizers, and energy [5], [6]. For example, the use of IoT (Internet of Things) sensors that collect real-time data on environmental and agricultural variables has allowed farmers to make more informed decisions, thus maximizing productivity and reducing losses [7], [11], [14].

The objective of this work is to develop a comprehensive approach that combines predictive models, based on logistic and linear regression techniques, with a mathematical optimization model specifically designed to maximize agricultural production in various scenarios [8]. Regression models will be used to analyze historical data covering climatic factors, soil characteristics, and agricultural management practices. The mathematical model, on the other hand, will focus on maximizing yields under resource constraints such as water availability, nutrients, and operating costs [9]. This approach will allow identifying key patterns in the data and proposing customized strategies that adapt to the specific conditions of each agricultural context [10],[12].

The proposed approach offers a double advantage. First, predictive models can identify essential relationships between climate variables and agricultural yields, providing crucial

information that can guide decision-making [13]. Second, the optimization model allows designing practical strategies that make the most of available resources, aligning with sustainability and productivity goals [15],[16]. This combined approach not only has the potential to mitigate the negative effects of climate change on agriculture, but can also transform the way crops are planned and managed, promoting a more resilient future for agriculture.

Previous studies have shown that the integration of mathematical models and predictive analytics can significantly improve agricultural yields [14]. Recent research has used various modeling techniques to predict the impact of climate variables on crops and design effective interventions that respond to these challenges [1]. These initiatives have contributed to increasing the resilience of agricultural systems to adverse climate events, which is essential in a world where climate uncertainty is increasingly pronounced [4],[8]. In this context, this work seeks to expand these advances, proposing a comprehensive framework that allows farmers, researchers and decision makers to implement data-driven and results-oriented solutions [3],[7]. In this way, it is expected to contribute significantly to ensuring global food security in a world marked by increasing climatic uncertainties [10],[15],[17].

II. METHODOLOGY

A. Type of Study

A predictive analysis study was conducted to identify climatic and agricultural management factors that influence the success of agricultural production, as well as to optimize available resources to maximize yield. This approach combined statistics, through logistic regression, and the formulation of a mathematical optimization model.

B. Techniques and Tools

The data used in this analysis were carefully extracted from various public databases, including the Food and Agriculture Organization of the United Nations (FAO), as well as from local records that provide valuable and up-to-date information on the agricultural and food situation. These sources are essential for obtaining accurate and reliable data, as they allow for a deeper and more contextualized analysis of trends and patterns in food production and distribution.

- 1) Logistic Regression: Logistic regression was used to predict the probability of success in agricultural production based on climatic variables and management practices. The model was trained using 70% of the data as training set and the remaining 30% for testing. The models were trained with a historical data set using the scikit-learn library in Python. The quality of the model was assessed using metrics such as ROC curve and confusion matrix, which were generated in SPSS to validate the predictive power and reliability of the model.
- 2) Mathematical Optimization Model: A mathematical optimization model was designed whose objective was to maximize agricultural yield considering restrictions:
 - Objective Function: Maximize:

$$Z = \sum_{i=1}^{n} (R_i - C_i)$$

where R_i are the expected returns and C_i the costs associated with the inputs.

• Constraints:

$$\begin{array}{l} \sum_{i=1}^{n}A_{i}\cdot X_{i} \leq A_{\mathrm{total}} \quad \text{(Total water availability)} \\ \sum_{i=1}^{n}F_{i}\cdot X_{i} \leq F_{\mathrm{total}} \quad \text{(Fertilizer availability)} \quad X_{i} \geq 0 \\ \text{(Non-negativity in the planted area)} \end{array}$$

The optimization model was solved using the *Pyomo* library in Python, using the *GLPK* solver. This model allowed evaluating multiple scenarios simulating variations in climatic conditions and resource availability.

C. Literature Search Procedure

The literature search was conducted in academic databases such as *Google Scholar*, *Scopus*s, and *Web of Science*, using keywords related to agricultural production, climate change, logistic regression, and mathematical optimization. Peer-reviewed articles and previous studies relevant to the study design were selected, with the aim of understanding previous approaches in predictive analytics and optimization in agriculture. The literature review allowed identifying methodologies used in previous studies, which contributed to the formulation of the optimization model and the application of logistic regression.

Fig. 1. Structure of a predictive model based on typical stages

Fig. 2. PRISMA flowchart for article systematization

D. Analysis of Studies

The analysis of the reviewed studies focused on evaluating the methodologies applied in the existing literature on agricultural yield prediction and resource optimization in a climate change context. Different logistic regression and mathematical optimization approaches used by other researchers were identified, which were considered to improve the quality of the model proposed in this study. In addition, the results obtained in previous studies were compared with the expected results to validate the model in terms of its effectiveness under similar conditions.

The sheets used in this study contextualized key aspects of the previous studies. The demographic variables sheet detailed the characteristics of the participants, such as age, sex, and socioeconomic background. The techniques and instruments sheet described the methodologies and tools used in the predictive analysis of food production. Finally, the validity and reliability of the instruments sheet evaluated the precision and consistency of the tools used, ensuring the reliability of the results.

No.	Author(s)	Year	Country	Type of Study	Sample Size	Institution of Partici-	Socioeconomic
						pants	Condition
1	Jian Yin, and Danqi Wei	2023	China	Modeling and optimiza- tion study of crop distri- bution using the MaxEnt model.	Not specified	Guizhou University of Finance and Economics and Northeast Agricultural University.	Not detailed
2	Deepak K. Ray, James S. Gerber, Graham K. Mac- Donald, and Paul C. West	2015	United States	Analysis of global data on crop yield variability and its relationship with cli- mate variability.	13,500 political units	Institute on the Environ- ment (IonE), University of Minnesota	Not detailed
3	Harishmaika N, Shilpa N, and S A Ahmed	2023	India	Quantitative study on cli- mate variability.	Not specified	Environ Monit Assess 195	Not detailed
4	Isidro J. Mirón	2023	Spain	Bibliographic review on food safety and security in the face of climate change, focusing on adap- tation and mitigation.	Not specified	District of Public Health, Diagnosis, and Treatment of SESCAM.	Not detailed
5	Hui Chen, Meng-Xuan Lin, Li-Ping Wang, Yin- Xiang Huang, Yao Feng, Li-Qun Fang, Lei Wang, Hong-Bin Song, and Li- Gui Wang	2023	China	Study on human brucel- losis in China, using pre- dictive analysis based on machine learning.	327,456 cases of brucellosis.	Not specified	Not detailed
6	J. S. Kimuyu	2021	Kenya	Original research using ecological niche modeling (ENM).	Not specified	Technical University of Kenya.	Addresses the vulnerabil- ity of communities in malaria-endemic areas.
7	Arlitt Amy Lozano Povis, Carlos E. Álvarez- Montalván, Nabil H. Mogollón.	2021	Peru	Systematic review on the impact of climate change on agriculture in the Andes.	Not specified	Continental University, Huancayo Campus, Peru.	Not detailed
8	Wan Nurnazati Wan Ab. Rahman, Wan Nurfatihah Wan Zulkifli, Nur Nabi- lah Zainuri, Hanis Amira Khairul Anwar.	2024	Malaysia	Research model proposal.	Not specified	Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.	Highlights the importance of addressing food insecu- rity, which affects various socioeconomic classes, es- pecially low-income com- munities.

TABLE I SHEET TO CONTEXTUALIZE THE DEMOGRAPHIC VARIABLES THAT CHARACTERIZE THE STUDIES

No.	Author(s)	Year	Country	Type of Study	Sample Size	Techniques	Instruments
1	Yueyang Symus Say, Mark Wong Kei-Fong, Eddie Ng Yin-Kwee	2022	Singapore	Research study on agri- cultural yield prediction using machine learning models.	Not specified	Generative machine learning models	Machine Vision, Adversarial Autoencoder (AAE)
2	Julius Olatunji Okesola, Olaniyi Ifeoluwa, Sunday Adeola Ajagbe, Olubunmi Okesola, Adeyinka O. Abiodun, Francis Bukie Osang, Olakunle O. Solanke	2024	Nigeria	Research study on crop yield prediction analysis using supervised learning techniques.	Based on historical data.	Random Forest, Stochastic Gradient Descent, Extra Tree Regressor, AdaBoost Regressor, and Linear Regression	Python, Web interface, and Performance metrics
3	Michael J Roberts, Noah O Braun, Thomas R Sin- clair, David B Lobell, Wolfram Schlenker	2017	United States	Comparative research study on process-based crop models and statistical models.	1,121,601 observations	Comparison and combi- nation of process-based crop simulation models and statistical models.	Crop simulation models, Statistical regression mod- els, and Climate and me- teorological data
4	Ying Mei Leong; Ean Heng Lim; Nor Fatiha Binti Subri; Norazira Binti A Jalil	2023	Malaysia	Review on applications of Artificial Intelligence of Things (AloT) in agricul- ture.	Not specified	Literature review on AIoT applications, including real-time data analysis, automation, and resource optimization.	Artificial Intelligence (AI) technologies, Internet of Things (IoT), Decision support systems, and Ad- vanced AI algorithms.
5	T. Sathies Kumar, S. Arunprasad, A. Eniyan, P.Abdul Azeez, S. Bharath	2023	India	Research on the use of Machine Learning (ML) in crop selection and cultivation.	These are the data sets used to train Machine Learning algorithms.	Machine Learning algo- rithms (neural networks, decision trees, ensemble models) for crop selection.	Machine Learning algo- rithms, IoT sensors for real-time data acquisition, Satellite images for agri- cultural landscape analy- sis, Datasets.
6	Citlali Yulyana ROJO ÁVILA, Cipatli Yurydia ROJO ÁVILA, Blanca Paulette ROJO ÁVILA	2024	Mexico	Review/Analysis on the use of artificial intelli- gence in the context of cli- mate change.	Not specified	Data analysis, literature review on artificial intelli- gence and climate change	References to artificial intelligence technologies, climate data analysis, focus on policies and strategies related to the Paris Agreement.
7	Fausto Vizcaíno Naranjo, Fredy Cañizares Galarza, Edmundo Jalón Arias	2023	Ecuador	Study on the integration of IoT and machine learning techniques for crop yield prediction.	Not specified	Integration of IoT sen- sors and machine learn- ing techniques, specifi- cally gradient boosting re- gression models.	IoT sensors for environmental data collection, pest conditions, and specific crop attributes.
8	Keh-Jian Shou, Chung- Che Wu, Jia-Fei Lin	2018	Taiwan	Predictive analysis of landslide susceptibility using typhoon event data.	Use of typhoon event data	Rainfall frequency anal- ysis, logistic regression modeling, satellite image analysis (NDVI), landslide control factors analysis.	General Atmospheric Circulation Models (AGCM), SPOT satellite images, rainfall station data, Geographic Information Systems (GIS).

No.	Author(s)	Year	Country	Type of Study	Sample Size	Instruments	Validity	Reliability
1	Eissa Alreshidi	2019	Saudi Arabia	Research study on SSA	Not specified	IoT/AI technologies in	Validity of IoT/AI tech-	The need for validation
						agriculture	nologies in SSA is re-	of IoT/AI applications is
							viewed	mentioned.
2	Mustapha El-Maayar,	2013	Egypt, Greece, Morocco	Study on the impact of cli-	Not specified	Regression models and	Statistical validity of the	Statistical methods
	Manfred A. Lange			mate change on crop yield		statistical analysis	models used is mentioned	are used to assess the
								reliability of the results.
3	Hamzah Abdul Hamid,	2024	Malaysia	Study on multinomial lo-	100 and 400	Clustering techniques (DI-	Validity of the goodness-	Type I error control and
	Yap Bee Wah, Khatijah- husna Abdul Rani, Xian			gistic regression		ANA and Ward)	of-fit test is analyzed	test power are mentioned.
	Jin Xie							
4	D. Pushpa Gowri, Anitha	2024	India	Review on digital agricul-	Not specified	Digital technologies in	Validated through the	Review of technologies
	Ramachander	202.	THAIL.	ture	rtot specifica	agriculture	evaluation of technologies	and practices suggests
	ramacianaci			tare		ugricuiture	and their impact on	consistency in findings.
							agriculture	g
5	Daniel Sánchez Garcia,	2017	Spain	Study on energy savings	Not specified	Office building in Seville,	The simulation model is	Acceptable error metrics
	Carlos Rubio Bellido,			in buildings	-	DesignBuilder software,	validated with real data.	(MBE and CV(RMSE))
	Madelyn Marrero					thermal comfort surveys.		are used.
	Melendez, Francisco							
	Javier Guevara Garcia,							
	Jacinto Canivell							
6	Pascal Muam Mah, Iwona	2022	Poland	Study on integration of	412 diesel, 636 gasoline, 157 LPG	Vehicle emission data in	Validated through the col-	Emission statistics and
	Skalna, Tomasz Pełech-			sensors and machine		Zabrze-Krakow	lection and comparative	prediction analysis are
	Pilichowski, John Muzam, Eric Munyeshuri, Promise			learning for climate change			analysis of emission data.	used to ensure reliability.
	Offiong Uwakmfon, Poly-			change				
	cap Mudoh							
7	Andrew Lewis, James	2023	Australia	Predictive model for irri-	Not specified	Simulation models, RTO	The predictive model is	Error metrics and cross-
l ′	Montgomery, Max Lewis,	2023	- Australia	gated agriculture	110t specified	(Robust Temporal Opti-	validated with climate and	validation are used to en-
	Marcus Randall, Karin					mization)	agricultural data	sure reliability.
	Schiller					,		
8	Keh-Jian Shou, Chung-	2018	Slovakia, Croatia, Germany, Ukraine	Study on river water tem-	Water temperature data (1990-2020)	SARIMA models, nonlin-	Validated through time se-	Stability and effectiveness
	Che Wu, Jia-Fei Lin		•	peratures of the Danube		ear regression models	ries analysis and climate	of the SARIMA model
							scenario comparison	suggest consistent results
								in simulations.

TABLE III

SHEET TO CONTEXTUALIZE THE VALIDITY AND RELIABILITY OF INSTRUMENTS USED IN THE STUDIES.

REFERENCES

- [1] Y.S. Say, M.W. Kei-Fong, E.N. Yin-Kwee, "Adversarial Autoencoders for Agriculture Yield Forecasting", Carpathian Journal of Food Science and Technology, vol. 14, no. 3, pp. 102-115, 2022. https://doi.org/10.34302/crpjfst/2022.14.3.9.
- [2] J. Yin, D. Wei, "Study on the Crop Suitability and Planting Structure Optimization in Typical Grain Production Areas under the Influence of Human Activities and Climate Change: A Case Study of the Naoli River Basin in Northeast China", Sustainability, vol. 15, no. 22, art. no. 16090, 2023. https://doi.org/10.3390/su152216090.
- [3] A. Lewis, J. Montgomery, M. Lewis, et al., "Business As Usual Versus Climate-responsive, Optimised Crop Plans – A Predictive Model for Irrigated Agriculture in Australia in 2060", Water Resources Management, vol. 37, pp. 2721–2735, 2023. https://doi.org/10.1007/s11269-023-03472-6.
- [4] E. Alreshidi, "Smart Sustainable Agriculture (SSA) Solution underpinned by Internet of Things (IoT) and Artificial Intelligence (AI)", International Journal of Advanced Computer Science and Applications, vol. 10, no. 5, pp. 93-102, 2019. https://doi.org/10.14569/ijacsa.2019.0100513.
- [5] J. Okesola, O. Ifeoluwa, S. Ajagbe, O. Okesola, A. Abiodun, F. Osang, O. Solanke, "Predictive Analytics on Crop Yield Using Supervised Learning Techniques", *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 36, no. 3, pp. 1664-1673, 2024. https://doi.org/10.11591/ijeecs.v36.i3.pp1664-1673.
- [6] M.J. Roberts, N.O. Braun, T.R. Sinclair, D.B. Lobell, W. Schlenker, "Comparing and Combining Process-based Crop Models and Statistical Models with Some Implications for Climate Change", *Envi*ronmental Research Letters, vol. 12, no. 9, art. no. 095010, 2017. https://doi.org/10.1088/1748-9326/aa7f33.
- [7] D. Ray, J. Gerber, G. MacDonald, et al., "Climate Variation Explains a Third of Global Crop Yield Variability", *Nature Communications*, vol. 6, art. no. 5989, 2015. https://doi.org/10.1038/ncomms6989.
- [8] M. El-Maayar, M.A. Lange, "A Methodology to Infer Crop Yield Response to Climate Variability and Change Using Long-Term Observations", Atmosphere, vol. 4, no. 4, pp. 365-382, 2013. https://doi.org/10.3390/atmos4040365.
- [9] W.N.W.A. Rahman, W.N.W. Zulkifli, N.N. Zainuri, H.A.K. Anwar, "Model for Responsive Agriculture Hub via e-Commerce to Sustain Food Security", *International Journal of Advanced Computer Science and Applications*, vol. 15, no. 5, pp. 355-368, 2024. https://doi.org/10.14569/IJACSA.2024.0150535.
- [10] H.A. Hamid, Y.B. Wah, K.A. Rani, X.J. Xie, "The Effect of Divisive Analysis Clustering Technique on Goodness-of-Fit Test for Multinomial Logistic Regression", *Journal of Advanced Research in Applied Sciences and Engineering Technology*, vol. 48, no. 2, pp. 39-48, 2025.https://doi.org/10.37934/araset.48.2.3948.
- [11] F. Vizcaíno, F. Cañizares, E. Jalón, "Internet of Things Based Predictive Crop Yield Analysis: A Distributed Approach", Fusion: Practice and Applications, vol. 1, pp. 106-113, 2023. https://doi.org/10.54216/FPA.130209.
- [12] N. H. Hussain, N. S. N., S. Ahmed, "Detection of spatiotemporal patterns of rainfall trends, using non-parametric statistical techniques, in Karnataka state, India", *Environmental Monitoring and Assessment*, vol. 195, pp. 909, 2023. https://doi.org/10.1007/s10661-023-11466-5.
- [13] Y. M. Leong, E. H. Lim, N. F. B. Subri, N. B. A. Jalil, "Transforming Agriculture: Navigating the Challenges and Embracing the Opportunities of Artificial Intelligence of Things", 2023 IEEE International Conference on Agrosystem Engineering, Technology Applications (AGRETA), Shah Alam, Malaysia, 2023, pp. 142-147. https://doi.org/10.1109/AGRETA57740.2023.10262747.
- [14] Pushpa Gowri, D., Ramachander, A., "Digital Agriculture", in *Digital Agricultural Ecosystem* (eds. K. Singh P. Kolar), 2024. DOI: 10.1002/9781394242962.ch8. https://doi.org/10.1002/9781394242962.ch8.
- [15] T. S. Kumar, S. Arunprasad, A. Eniyan, P. A. Azeez, S. B. Kumar, P. Sushanth, "Crop Selection and Cultivation using Machine Learning", 2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS), Chennai, India, 2023, pp. 1-4. DOI: 10.1109/ICCEBS58601.2023.10448940. https://doi.org/10.1109/ICCEBS58601.2023.10448940.
- [16] C. Y. Rojo Ávila, C. Y. Rojo Ávila, B. P. Rojo Ávila, "Aplicación de la Inteligencia Artificial para hacer frente al cambio climático en el

- mundo", Congreso del Estado de Sinaloa, Instituto de Investigaciones Parlamentarias, Derecho Opinión Ciudadana, 2024.
- [17] Mirón, I. J., "La seguridad e inocuidad alimentarias frente al cambio climático. Adaptación y mitigación", Revista de Salud Ambiental, vol. 23, no. 1, pp. 77-88, 2023.
- [18] P. Pekárová, Z. Bajtek, J. Pekár, R. Výleta, O. Bonacci, P. Miklánek, J. U. Belz, and L. Gorbachova, "Monthly stream temperatures along the Danube River: Statistical analysis and predictive modelling with incremental climate change scenarios," *Journal of Hydrology and Hydromechanics*, vol. 71, no. 4, pp. 382-398, 2023. https://doi.org/10.2478/johh-2023-0028.
- [19] H. Chen, M. X. Lin, L. P. Wang, et al., "Driving role of climatic and socioenvironmental factors on human brucellosis in China: machinelearning-based predictive analyses," *Infect Dis Poverty*, vol. 12, no. 36, 2023. https://doi.org/10.1186/s40249-023-01087-y.
- [20] J. S. Kimuyu, "Comparative spatial-temporal analysis and predictive modeling of climate change-induced malaria vectors' invasion in new hotspots in Kenya," SN Appl. Sci., vol. 3, pp. 741, 2021. https://doi.org/10.1007/s42452-021-04722-1.
- [21] D. Sánchez-García, C. Rubio Bellido, M. Marrero Meléndez, F. J. Guevara García, and J. Canivell, "El control adaptativo en instalaciones existentes y su potencial en el contexto del cambio climático," *Revista Hábitat Sustentable*, vol. 7, no. 2, pp. 6-17, 2017. https://doi.org/10.22320/07190700.2017.07.02.01.
- [22] A. Lozano-Povis, C. E. Alvarez-Montalván, and N. Moggiano-Aburto, "El cambio climático en los Andes y su impacto en la agricultura: una revisión sistemática," *Scientia Agropecuaria*, vol. 12, no. 1, pp. 101-108, 2021. https://dx.doi.org/10.17268/sci.agropecu.2021.012.
- [23] K. J. Shou, C. C. Wu, and J. F. Lin, "Predictive analysis of landslide susceptibility under climate change conditions — A study on the Ai-Liao Watershed in Southern Taiwan," *Journal of GeoEngineering*, vol. 13, no. 1, 2018. http://dx.doi.org/10.6310/jog.201803₁3(1).2.
- [24] P. M. Mah, I. Skalna, T. Pełech-Pilichowski, J. Muzam, E. Munyeshuri, P. O. Uwakmfon, and P. Mudoh, "Integration of sensors and predictive analysis with machine learning as a modern tool for economic activities and a major step to fight against climate change," *J. Green Econ. Low-Carbon Dev.*, vol. 1, no. 1, pp. 16-33, 2022. https://doi.org/10.56578/jgelcd010103.