

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, யூன் -2018 Term Examination, June - 2018

தரம் :- 13 (2018)

இரசாயனவியல் I

இரண்டு மணித்தியாலம்

பகுதி – I

- 01. இலத்திரன்கள் மற்றும் அணுவில் இலத்திரன்களின் ஒழுங்கமைப்பு என்பவற்றுடன் தொடர்பற்ற விஞ்ஞானி.
 - 1) நீல் போர்.
- 2) ஹண்ட் (Hund)
- 3) தொம்சன்

4) பௌலிங்

- 5) டீ புரொக்லி (de Brogle)
- 02. சேர்வை X இன் IUPAC பெயர் யாது?

$$NH_{2} \qquad COO - \bigcirc$$

$$| \qquad \qquad |$$

$$OHC - C - C \equiv C - CH - CH_{2} CH_{3}$$

$$| \qquad \qquad CH_{2} CH_{3} (X)$$

- 1) phenyl 5 amino 2ethyl 5 formyl 3 heptynoate.
- 2) 5 amino 2ethyl 5 formyl 3 heptynoate.
- 3) phenyl 2, 5 diethyl 6 oxo 5 amino 3 heptynoate
- 4) phenyl 5 amino 2, 5 diethyl 6 oxo 3 heptynoate
- 5) phenyl -5 amino 2, 5 diethyl 6 oxo 3 heptynoate
- 03. அணுக்களின் இயல்புகள் தொடர்பான பின்வரும் கூற்றுக்களில் உண்மையானது எது?
 - Mg அணுவின் வலுவளவு இலத்திரனால் உணரப்படும் கருவேற்றம் 12 ஆகும்.
 - 2) Li அணுவின் முதலாம் இலத்திரன் நாட்டச்சக்தி Na அணுவின் அப்பெறுமானத்திலும் கூடிய மறை பெறுமானமாகும்.
 - மின்னெதிர்த் தன்மையானது தனியாக்கப்பட்ட ஓர் அணுவில் இலத்திரன் கவரும் ஆற்றலின் அளவீடாகும்.
 - பௌலிங் அளவுத்திட்டத்தில் S இன் மின்னெதிர்த் தன்மையானது Br இன் மின்னெதிர்த்தன்மையிலும் அதிகமாகும்.
 - 5) ஒரே ஆவர்த்தனத்தில் அணு ஆரை கூடிய மூலகத்தின் முதலாம் அயனாக்கற் சக்தி எப்பொழுதும் அணு ஆரை குறைந்த மூலகத்தை விடக் குறைவானதாகும்.
- 04. A,B,C ஆகியன ஆவர்த்தன அட்டவணையின் நான்காம் ஆவர்த்தனத்திற்குரிய மூன்று இவை மூன்றும் சோடியற்ற இலத்திரனைக் கொண்டுள்ளன. மூலகங்களாகும். ஒவ்வொரு இச்சோடியற்ற இலத்திரன்களின் திசைவிற் சக்திச் சொட்டெண்கள் ஒன்றிலிருந்தொன்று வேறுபட்டன எனின் A, B, C ஆக இருப்பதற்குப் பொருத்தமான மூலகங்கள்.
 - 1) K, Sc, Cr

- 2) Cr, Cu, Ga
- 3) K, Sc, Br

- 4) Cr, Cu, Ge
- 5) Sc, Cr, Cu

05.	கார உலோகங்கள், காரமண் உலோகங்கள் தொடர்பான பிழையான கூற்று எது? 1) காரமண் உலோகங்கள் யாவும் நீருடன் தாக்கமடையும்.
	2) காரமண் உலோக இருகாபனேற்றுக்கள் எதுவும் திண்ம நிலையிற் காணப்படமாட்டாது. 3) கார உலோகங்களில் Li தவிர்ந்த ஏனையவை N_2 வாயுடன் நேரடியாகத் தாக்கமடைய மாட்டா.
	மாட்டா. 4) காரவுலோக ஐதரொட்சைட்டுக்கள் வன்காரங்கள் எனினும் அவற்றில் LiOH மட்டும் வெப்பத்தக்குப் பிரிகையடையக் கூடியது.
	5) காரமண் உலோகங்களின் உருகுநிலைகளை விட அதே ஆவர்த்தனத்திலுள்ள கார உலோகங்களின் உருகு நிலை குறைவானது.
06.	M எனும் மூலகத்தின் ஒட்சைட்டு M_2 O_3 ஆகும். 1.60 g M_2 O_3 ஆனது ஐதான H_2SO_4 இல் கரைக்கப்பட்டு M இன் சல்பேற்று பெறப்பட்டது. சல்பேற்றின் உலர் திணிவு 4.00 g எனின் M இன் சாரணுத்திணிவு. ($S=32,\ O=16$)
	1) 27 2) 56 3) 112 4) 160 5) 168
07.	மென்னமிலம் HA ஐ $(K_a=4\ x\ 10^{-7}\ mold\ m^{-3})$ வன் மூலம் ஒன்றுடன் கலந்து தாங்கற் கரைசலொன்றைத் தயாரிக்க முடியும். $pH=6$ ஆகவுள்ள தாங்கற் கரைசலைத் தயாரிப்பதற்கு மென்னமிலம் HA உம். அதே செறிவுள்ள $NaOH$ உம் முறையே என்ன கனவளவு விகிதத்தில் கலக்கப்பட வேண்டும்.?
	1) 1:1 2) 1:2 3) 7:2 4) 5:2 5) 3:2
08.	பின்வரும் தாக்கங்களில் எவற்றில் Cl_2 வாயு விளைவொன்றாகப் பெறப்படலாம்? a) $OCl_{(aq)}^- + H_{(aq)}^+ + Cl_{(aq)}^-$ b) $H_2 O_{2(aq)} + Cl_{(aq)}^- + H_{(aq)}^+$
	c) $MnO_{2(s)} + H_{(aq)}^{+} + Cl_{(aq)}^{-}$
	d) $Cl_{(aq)}^- +$ செறி . H_2SO_4 ————————————————————————————————————
	1) b, d மட்டும் 2) b, c, d மட்டும் 3) c, d மட்டும்
	4) c மட்டும் 5) a, c மட்டும்
09.	H_2CH_4 வாயுக்களின் கலவையொன்று $300~{ m K}$ வெப்பநிலையிலும் $3~x~10^5~Nm^{-2}$ அமுக்கத்திலும் $0.6~kg~m^{-3}$ அடர்த்தியைக் கொண்டிருந்தது எனின் கலவையிலுள்ள CH_4 இன் மூலப்பின்னம். (வாயுக்கள் இலட்சிய நடத்தையுடையவையெனக் கருதுக)
	1) $\frac{2}{16}$ 2) $\frac{3}{14}$ 3) $\frac{11}{14}$ 4) $\frac{2}{9}$ 5) $\frac{8}{9}$
10.	ஓர் இரசாயனத் தாக்கம் நடைபெறும் போது தொகுதியிலும் சூழலிலும் நடைபெறும் வெப்பவுள்ளுறை மாற்றம், எந்திரப்பி மாற்றம் என்பன பற்றிய பின்வரும் கூற்றுக்களில் சரியானது எது?
	1) அகவெப்பத் தாக்கமொன்றில் தொகுதியிலுள்ள துணிக்கைகளின் எந்திரப்பி குறைவதுடன்
	சூழலிலுள்ள துணிக்கைகளின் எந்திரப்பி அதிகரிக்கும். 2) புறவெப்பத் தாக்கமொன்றில் தொகுதியிலுள்ள துணிக்கைகளின் வெப்பவுள்ளுறை குறைவதுடன் சூழலிலுள்ள துணிக்கைகளின் எந்திரப்பியும் குறைவடைகிறது.
	ெரும்பது குழ்க்குள்ள துணிக்கைகளின் எந்திரப்பி அதிகரிக்கும்.
	எந்திரப்பி அதிகரிக்கும். 4) தொகுதி மூலக்கூறுகளில் ஏற்படும் எந்திரப்பி மாற்றமும் சூழல் மூலக்கூறுகளில் ஏற்படும் எந்நிரப்பி மாற்றமும் சமனாகும்.
	எந்நூப்பி மாறுமும் சமணாகும். 5) மேலுள்ள யாவும் சரியானவை.

- 11. பின்வரும் எதனுடன் H_2O_2 இரசாயன மாற்றமெதனையும் கொடுக்காது?
 - 1) $MnO_{2(s)}$

2) K₂Cr₂O₇ / ஐதான H₂SO₄

3) Cr (OH)₃ / NaOH

4) KI/ ஐதான H₂SO₄

5) Ag₂O

12.

எனும் சேர்வை பற்றிய பின்வரும் கூற்றுக்களில் எது உண்மையானதன்று?

- 1) இது ஐதான HCl இல் கரைகின்றது.
- 2) இது $NaoH_{(aq)}$ உடன் NH_3 வாயுவைத் தரும்.
- 3) இது நீரில் கரையக்கூடியது.
- 4) NaNO $_2$ / ஐதான HCl உடன் இது ஈரசோனியம் உப்பைத் தரும்.
- 5) இச்சேர்வையை வெப்பமாக்கி ஏமைட்டுக் கூட்டத்தைப் பெறலாம்.
- 13. உலோகக் கற்றயன்கள் மாத்திரம் தாழ்த்தப்படுமெனக் கருதி CuSO₄, AgNO₃, Cr₂(SO₄)₃ ஆகிய ஒவ்வொன்றினதும் சமசெறிவுள்ள நீர்க்கரைசல்களினூடாக ஒரேயளவு மின்னோட்டம் ஒரேயளவு நேரத்துக்கு செலுத்தப்படுமாயின் படியும் Cu, Ag, Cr ஆகியவற்றின் உலோக மூல்களுக்கிடையிலான விகிதம் முறையே,
 - 1) 2:3:3
- 2) 3:6:2
- 3) 3:2:6
- 4) 2:1:3
- 5) 32:108:26
- 14. 25° C இல் $0.1 \, moldm^{-3}$ செறிவுள்ள ஒரு மூல மென்னமிலம் HA இற்குள் அளவியிலிருந்து $0.1 \, moldm^{-3}$ NaOH கரைசல் மெதுவாகச் சேர்க்கப்படுகையில் ஏற்படும் pH மாற்றத்தைக் கீழுள்ள வரைபு காட்டுகின்றது.

பின்வரும் கூற்றுக்களில் எது சரியானது?

- 1) 25° C இல் மென்னமிலம் HA இன் அயனாக்க மாறிலி $K_a=1~x~10^{-5}~moldm^{-3}$
- 2) இந்நடுநிலையாக்கலின் சமவலுப் புள்ளி E ஆகும்.
- 3) நிறமாற்ற pH வீச்சு 8 9.6 ஆகவுள்ள காட்டியொன்று மேலுள்ள நியமிப்புக்குப் பயன்படுத்தப்படலாம்.
- 4) சமவலுப்புள்ளியில் பெறப்படும் கரைசல் நடுநிலையானதாகக் காணப்படும்.
- 5) மேலுள்ள 1, 2, 3 ஆகிய கூற்றுக்கள் சரியானவை.

- 15. 0.15 moldm^{-3} செறிவுடைய ஒரு மூல மென்னமிலம் HA இன் நீர்ககரைசலின் 100cm^3 ஆனது 100 cm^3 CCl_4 படையுடன் சேர்த்து நன்கு குலுக்கி சமநிலை அடையவிடப்பட்ட போது நீர்ப்படையின் pH=3 ஆகக் காணப்பட்டதெனின் கருதப்படும் வெப்பநிலையில் நீர், CCl_4 படைகளிற்கிடையிலான HA இன் பங்கீட்டுக் குணகம். (HA இன் $K_4=1 \times 10^{-5} \text{ mol dm}^{-3}$)
 - 1. 2
- 2. 4
- 3. 0.5
- 4. 5

- 5.8
- 16. 3d தொடர் உலோகங்கள் மற்றும் அவற்றின் சேர்வைகள் பற்றிய பின்வரும் கூற்றுக்களில் உண்மையற்றது எது?
 - 1. Cu, Mn என்பன ஒப்பீட்டு ரீதியில் தாழ் உருகு நிலைகள் கொண்டவை.
 - 2. d^7 , d^8 , d^9 , d^{10} ஆகிய இலத்திரன் நிலையமைப்புடைய உலோகங்களின் கற்றயன் NH_3 உடன் இலகுவில் அமைன் சிக்கல்களை உருவாக்கும்.
 - 3. V, Cr, Mn ஆகிய ஒவ்வொன்றும் உருவாக்கக் கூடிய ஒட்சைட்டுக்களில் தாழ் ஒட்சியேற்ற நிலைக்குரியவை மூல இயல்பையும் உயர் ஒட்சியேற்ற நிலைக்குரியவை அமில இயல்பையும் வெளிப்படுத்தும்.
 - 4. இவற்றில் அதி உயர் ஒட்சியேற்ற நிலைக்குரிய ஒட்சி அன்யைன்கள் தாழ்த்தும் கருவிகளாகும்.
 - 5. Sc தொடக்கம் Mn வரையான மூலகங்களின் உயர் ஒட்சியேற்ற நிலை ஈற்றொழுக்கின் S இலத்திரன்களையும் ஈற்றயல் ஓட்டின் d இலத்திரன்களையும் கூட்டிப்பெறப்படும்.
- 17. $2A + B \rightarrow C + 4D$,

இத்தாக்கம் தொடர்பான தரவுகள் சில வருமாறு,

- தாக்கத்தின் வீத விதிக்கோவையில் தாக்கி B யின் செறிவு இடம்பெறவில்லை.
- தாக்கி A இன் செறிவு அரைப்பாங்காவதற்கு எடுக்கும் நேரம் அதன் ஆரம்பச் செறிவை சார்ந்திருக்காது ஒரு மாறிலியாக அமைந்தது.

மேற்படி தரவுகளின் அடிப்படையில் A,B என்பவற்றின் சம மூலர்க்கலவையொன்றுடன் தாக்கம் ஆரம்பிக்கபடின் பின்வருவனவற்றுள் எது A,B இன் செறிவுகளில் ஏற்படும் மாற்றத்தை சிறப்பாக பிரதிநிதித்துவப்படுத்துகின்றது?

- 18. நீரில் சிறிதளவில் கரையத்தக்க $M(OH)_2$ சேர்வையின் 0.04 மூல் ஆனது 0.07moldm^{-3} செறிவுள்ள HCl கரைசலின் $1.00 ext{dm}^3$ உடன் சேர்த்து நன்கு கலக்கப்படுகின்றது. உரிய வெப்பநிலையில் $M(OH)_2$ இன் கரைதிறன் பெருக்கம் (K_{sp}) ஆனது $3.5 ext{x} 10^{-10}$ $ext{mol}^3 ext{dm}^{-9}$ ஆக அதேவேளை MCl_2 ஆனது நீரில் நன்கு கரைகின்றது. கரைசலின் OH^- செறிவு யாது?
 - 1. $1.0 \times 10^{-5} \text{ mol dm}^{-3}$
- 2. $1.0 \times 10^{-4} \text{ mol dm}^{-3}$
- 3. $1.0 \times 10^{-2} \text{ mol dm}^{-3}$

- 4. 8.0 x 10⁻² mol dm⁻³
- 5. 2.0 x 10⁻⁵ mol dm⁻³
- $19. \ NH_2COONH_{4(s)} \ \ \ \ \ \ \ \ \ \ 2NH_{3(g)} + CO_{2(g)}$

 27° C இல் இச் சமநிலைத் தாக்கத்தின் K_{P} = $3.2 \times 10^{10} \, \mathrm{N^2 \, m^{-4}}$ எனத்தரப்படின் மேற்படி சமநிலைத் தொகுதியின் மொத்த அமுக்கமாக அமைவது,

- $1.2 \times 10^3 \, \text{Nm}^{-2}$
- $2.5.4 \times 10^5 \text{ Nm}^{-2}$
- $3.4 \times 10^{3} \text{ Nm}^{-2}$ 4. $3 \times 10^{3} \text{ Nm}^{-2}$ 5. $6 \times 10^{3} \text{ Nm}^{-2}$
- 20. $Pt_{(s)}$ / $Fe_{(aq)}^{3+}$, $Fe_{(aq)}^{2+}$ எனும் தாழ்த்தேற்று மின்வாயையும் $Ag_{(s)}$, $AgCl_{(s)}$ / $Cl_{(aq)}^{-}$ உலோகம் - கரையா உப்பு வகை மின்வாயையும் இணைப்பதன் மூலம் மின்கலம் அமைக்கப்பட்டுள்ளது. இம்மின்வாய்களின் நியம மின்வாய் அழுத்தப் பெறுமானங்கள் கீழே தரப்பட்டுள்ளன.

$$E^{\emptyset}_{AgCl_{(S)},Ag_{(s)}/Cl_{(aq)}} = 0.22 V$$
 , $E^{\emptyset}_{Pt_{(s)}/Fe_{(aq)}^{3+},Fe_{(aq)}^{2+}} = 0.77 V$

இக்கலம் பற்றிய பின்வரும் கூற்றுக்களில் சரியானது எது?

- 1. கலத்தின் மின்னியக்க விசை 0.99V ஆகும்.
- 2. இக்கலத்தில் எதிர் முனைவு $Pt_{(s)}$ / $Fe_{(aq)}^{\ \ 3+}$, $Fe_{(aq)}^{\ \ 2+}$ மின்வாயாகும்.
- 3. $Fe_{(aq)}^{\ 2+}$ இன் செறிவைக் குறைத்தல் $Pt_{(s)}$ / $Fe_{(aq)}^{\ 3+}$, $Fe_{(aq)}^{\ 2+}$ மின்வாயின் அழுத்தத்தை கூடியளவு நேர்க்கணியமாக்குகின்றது.
- 4. மின்வாய்களுக்கிடையிலான தூரத்தைக் குறைக்கும் போது மின்னோட்டத்தில் ஏற்படாது.
- 5. கலம் தொழிற்படும் போது கதோட்டறையை நோக்கி அன்னயன்கள் அசைகின்றன.

21.

மேலுள்ள தாக்கத்தின் விளைவுகளான.

COOH

CH₂NH₂

COOH 3. COOH

COOH

5.

- 22. TK வெப்பநிலையில் ஓரமில மென்மூலமொன்றின் கூட்டப் பிரிகை மாறிலி $2 \times 10^{-6} \text{ moldm}^{-3}$ ஆகும். அம்மூலத்தின் 0.5 moldm^{-3} செறிவுடைய நீர்க்கரைசலொன்றின் pH பெறுமானம் (TK வெப்பநிலையில் நீரின் $K_W=1\times 10^{-16} \text{ mol}^2 \text{ dm}^{-6}$)
 - 1. 2.6
- 2. 3.0
- 3. 11.0
- 4. 11.3
- 5. 13

- 23. NH₃ பற்றிய பின்வரும் கூற்றுக்களில் பொய்யானது எது?
 - 1. NH_3 ஒட்சியேற்றியாகத் தொழிற்படும் சந்தர்ப்பத்தில் H_2 விளைவொன்றாகப் பெறப்படும்.
 - 2. NH_3 ஐ உலர்த்துவதற்கு செறிந்த H_2SO_4 பயன்படுத்த முடியாது.
 - 3. NH_4NO_3 இற்கும் $NaNH_2$ இற்குமிடையிலான தாக்கத்தில் NH_3 தோன்றும்.
 - 4. NH₃ ஐ விட NF₃ இருமுனைவுத் திறன் கூடிய மூலக்கூறாகும்.
 - 5. NH₃ உடன் மிகை Cl₂ தாக்கமடையும் போது NCl₃ உருவாகலாம்.

$$CH_3$$

24. CH_3 $CH_2 - \overset{\circ}{C} - CH - CH_3$ எனும் சேர்வை $NaOH_{(aq)}$ உடன் அடையும் தாக்கம் பற்றிய பின்வரும் $| \quad | \quad |$ Br CH_3

கூற்றுக்களில் உண்மையானது எது?

- 1. நடைபெறும் தாக்கம் ஓர் ஒருபடித்தாக்கமாகும்.
- 2. பிரதான விளைவு ஈர்வெளிமய சமபகுதியத்தன்மை உடையதாகும்.
- 3. மேற்படி தாக்கப்பொறிமுறை கருநாட்டக் கூட்டல் வகைக்குரியது.
- 4. உருவாகும் விளைபொருள் லூக்காசி<mark>ன்</mark> சோதனைப் பொருளுடன் உடனடிக் கலங்கலை ஏற்படுத்தாது.
- 5. பிரதான விளைபொருள் ஒளியியல் தொழிற்பாடுடைய சமபகுதிய அற்ககோல்களாகும்.
- 25. H_2O_2 பற்றிய பின்வரும் கூற்றுக்களில் எது உண்மையற்றது?
 - 1. H_2O_2 இன் கொதிநிலை நீரின் கொதிநிலையிலும் உயர்வு.
 - 2. H_2O_2 இன் விளையுள் இரு முனைவுத் திறன் பூச்சியமன்று.
 - 3. H_2O_2 ஆனது HCl உடன் தாக்கமுற்று Cl_2 வாயுவை வெளியேற்றும்.
 - 4. BaO₂ இற்கு H₂SO₄ சேர்ப்பதன் மூலம் H₂O₂ தயாரிக்கலாம்.
 - 5. Ag_2O உடன் H_2O_2 இன் தாக்கத்தில் O_2 வெளியேறும்.
- 26. ஒரு கலவையானது FeO ஐயும் Fe_3 O_4 ஐயும் கொண்டுள்ளது. இதனை மாறாத் திணிவு வரும் வரை வளியிலே வெப்பமேற்றிய போது 5% திணிவு அதிகரிப்புக் காணப்பட்டதெனில் கலவையின் FeO இன் திணிவு வீதத்தைக் குறிப்பது.
 - 1. 20 %
- 2. 10 %
- 3. 67.5 %
- 4. 25 %
- 5.30 %

$$27. \ A_{(g)} \ \frac{\text{K}_1}{\text{K}_2} \text{$\stackrel{\frown}{$}$} 2 \ B_{(g)} \ \triangle \ H > O$$

மேலே தரப்பட்டது ஒரு மீளக்கூடிய சமநிலைத் தாக்கமாகும். இங்கு $\mathbf{K}_1,\,\mathbf{K}_2$ என்பன முறையே முற்தாக்கத்தினதும் பிற்தாக்கத்தினதும் வீத மாறிலிகளாகும்.

மேலுள்ள சமநிலைத் தொகுதி தொடர்பான பின்வரும் கூற்றுக்களில் எது உண்மையானதாகும்?

- 1. தாக்கம் அகவெப்பத்துக்குரியது என்பதால் வெப்பநிலை அதிகரிப்புடன் முற்தாக்க வீதம் அதிகரிக்க பிற்தாக்க வீதம் குறைவடையும்.
- 2. ஊக்கியைப் புகுத்தும் போது முற்தாக்க, பிற்தாக்க வீத மாறிலிகள் ஒரேயளவினால் அதிகரிக்கும்.
- 3. ஊக்கியைப் புகுத்தும் போது முற்தாக்கத்தினதும் பிற்தாக்கத்தினதும் ஏவற்சக்திகள் ஒரே வீத அளவால் குறைகின்றன.
- 4. குறிப்பிட்ட வெப்பநிலையில் A மூலக்கூறுகளின் சராசரிக் கதியை விட B மூலக்கூறுகளின் சராசரிக் கதி உயர்வாகும்.
- 5. சமநிலையில் தாக்கி மூலக்கூறுகளினதும் விளைவு மூலக்கூறுகளினதும் குறித்த சக்தியைத் தாண்டிய மூலக்கூறுகளின் சதவீதம் ஒன்றுக்கொன்று சமனாகும்.

- 28. A.B திரவங்கள் இலட்சியக்கரைசலை ஆக்கக் கூடியன. குறித்த எனும் இரு ஒரு வெப்பநிலையில் A,Bஉள்ளடக்கிய இரண்டு இலட்சியக்கரைசல்கள் தயாரிக்கப்பட்டு ജ ஆவியுடன் சமநிலையடையவிடப்பட்டன. இவ்விரு கரைசல்களி<u>லு</u>ம் ஆவியமுக்கங்கள் மூலப்பின்னங்கள் முறையே 0.6,0.2 ஆக இருக்கும் போது சமநிலை முறையே $P_1,\ P_2$ ஆக உள்ளன. (இங்கு $P_2>P_1$) குறித்த வெப்பநிலையில் $A,\ B$ இன் தூய நிலை ஆவியமுக்கங்கள் முறையே $P_A{}^0$, $P_B{}^0$ எனின் பின்வருவனவற்றில் சரியான தொடர்பு எது?
 - 1. $2P_1 P_2 = P_A^0$
- $2. P_B^{\ 0} = \frac{1}{2} (3 P_2 P_1) \qquad \qquad 3. P_A^{\ 0} > P_B^{\ 0}$

4. $P_A^{\ 0} = P_B^{\ 0}$

- 5. ஆவி நிலையில் எப்போதும் $Y_{\rm A}\!>\!Y_{\rm B}$
- 29. நிலக்கரி மாதிரியொன்றிலுள்ள கந்தகத்தின் அளவைத் துணிவதற்கு பின்வரும் நடைமுறை $1\mathrm{g}$ திணிவைக் கொண்ட நிலக்கரி மாதிரியானது மிகை O_2 வாயுவில் பயன்படுத்தப்பட்டது. எரிக்கப்பட்டது. உருவாகிய SO_2 வாயு அதனுடன் முற்றாகத் தாக்கும் அளவுடைய குளோரின் நீருக்குள் செலுத்தப்பட்டது. விளைவுக் கரைசல் 0.1 moldm³ NaOH கரைசலுடன் நியமித்த போது முடிவுப் புளள்ளி $40 \mathrm{cm}^3$ ஆகக் காணப்பட்டது. நிலக்கரி மாதிரியில் உள்ள கந்தகத்தின் சதவீதம் (S = 32)
 - 1. 3.2
- 2. 6.4
- 3. 1.6 4. 0.8
- 5. 8
- எம்முலகத்துடன் சேர்வையை உருவாக்கும் 30. நைதரசன் பின்வரும் போகு அதன் உயர் ஒட்சியேற்ற நிலையைக் காட்டும்?
 - 1. F
- 2. O
- 3. Cl
- 4. Mg
- 5. B
- 31 தொடக்கம் 40 வரையுள்ள வினாக்கள் ஒவ்வொன்றிற்கும் (a), (b), (c), (d) எனும் நான்கு தெரிவுகள் தரப்பட்டுள்ளன. அவற்றுள் ஒன்று திருத்தமானது அல்லது ஒன்றுக்கு மேற்பட்டவை திருத்தமானவை. திருத்தமான தெரிவை / தெரிவுகளை தேர்ந்தெடுக்க.

1	2	3	4	5
(a),(b) ஆகியவை மாத்திரம் திருத்தமானவை	(b) (c) ஆகியவை மாத்திரம் திருத்தமானவை	(c) (d) ஆகியவை மாத்திரம் திருத்தமானவை	(d) (a) ஆகியவை மாத்திரம் திருத்தமானவை	வேறு தெரிவுகளின் எண்ணோ சேர்மானவைகளோ திருத்தமானவை

- 31. தாக்க இயக்கவியல் தொடர்பான பின்வரும் கூற்றுக்களில் சரியானது / சரியானவை எது /
 - (a) தாக்கவீதத்தின் அலகை மெதுவான படியே தீர்மானிக்கும்.
 - முலக்கூற்றுத் (b) தாக்கத்தின் பொறுத்து தாக்கவீத மாறிலியின் திறனைப் அலகு தீர்மானிக்கப்படும்.
 - (c) பலபடித்தாக்கமொன்றின் மெதுவான படியின் வீதத்தில் தாக்கத்தின் ஒட்டுமொத்த வீதமானது தங்கியுள்ளது.
 - விதிக்கான கோவையில் (d) ஒரு தாக்கத்தின் வீத யாதாயினுமொரு தாக்கி சம்பந்தப்படவில்லை எனின் அத்தாக்கம் ஒருபடித் தாக்கமாக இருக்க முடியாது.
- 32. மூலக்கூறு 4 pentenal தொடர்பாக பின்வரும் கூற்றுக்களில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) இச்சேர்வை திண்மத்தோற்ற சமபகுதியத் தன்மையைக் காட்டுவதில்லை.
 - (b) HBr உடன் தாக்கம்புரிந்து கிடைக்கும் சேர்வை எதிருருக்களாகக் காணப்படமாட்டாது.
 - (c) $\mathrm{CH_3MgBr}$ உடன் தொழிற்படவிட்டு நீர்ப்பகுப்புச் செய்யும் போது முதல் அற்ககோலொன்று கிடைக்கும்.
 - (d) LiAlH₄ உடன் பரிகரித்<u>து</u> தொடர்<u>ந்து</u> நீர் சேர்க்கையில் அற்ககோலொன்று முதல் கிடைக்கும்.
- 33. டவுண் கலத்தைப் பயன்படுத்தி Na உற்பத்தி தொடர்பான பின்வரும் கூற்றுகளைச் கருதுக. இவற்றில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) இம்முறையில் தாழ் மின்னோட்டம் பயன்படுத்தப்படுகிறது.
 - தைத்தேனியம் (b) இம்முறையில் அனோட்டாகவும் நிக்கல் கதோட்டாகவும் பயன்படுத்தப்படுகின்றன.
 - (c) NaCl திண்மத்துடன் $CaCl_2$ திண்மம் சேர்த்து உருக்கப்படுகின்றது.
 - (d) $\operatorname{Na},\operatorname{Cl}_2$ தொடர்பைத் துண்டிக்க நுண்டுளையுள்ள உருக்கு வலை பயன்படுத்தப்படும்.

- 34. பின்வருவனவற்றுள் எது / எவை தாங்கற்கரைசல்களாகத் தொழிற்படக் கூடும்?
 - (a) $NaHSO_{4(aq)}$ (b) $NaHPO_{3(ag)}$
- (c) NaHCO_{3(aq)}
- (d) $NaHC_2O_{4(aq)}$
- 35. பின்வரும் மின்பகுப்புச் செயன்முறைகளில் கதோட்டில் உலோகங்கள் படிதலும் அனோட்டில் ஒரு வாயுவை விடுவித்தலும் நிகழக்கூடிய செயன்முறை / செயன்முறைகள் எது / எவை?
 - (a) அனோட்டாக Ag ஐப் பயன்படுத்தி ஒரு நீர் AgNO3 கரைசலை மின்பகுத்தல்.
 - (b) சடத்துவ மின்வாய்களைப் பயன்படுத்தி ஐதான Na_2SO_4 கரைசலை மின்பகுத்தல்.
 - (c) சடத்துவ மின்வாய்களைப் பயன்படுத்தி உருகிய NaCl மற்றும் MgCl₂ கலவையை மின்பகுத்தல்.
 - (d) Pt மின்வாய்களைப் பயன்படுத்தி ஒரு நீர் CuSO₄ கரைசலை மின்பகுத்தல்
- 36. சேதனச் சேர்வை X உடன் மேற்கொள்ளப்பட்ட சில பரிசோதனைகளும் அவதானங்களும் கீழே தரப்பட்டுள்ளன.
 - NaHCO3(aq) ஜச் சேர்த்தபோது நிறம், மணம், அற்ற வாயு வெளியேறியது.
 - Br/ H₂O சேர்த்தபோது செங்கபில நிறம் நீங்கியது.
 - C_2H_5OH இல் கரைக்கப்பட்ட 2, 4- DNPH சேர்க்க எதுவித அவதானமும் இல்லை.
 - தொலனின் சோதனைப் பொருள் சேர்க்க வெண்ணிற வீழ்படிவு தோன்றியது.

மேலுள்ள அவதானங்களுடன் பொருந்தக்கூடிய சேர்வை / சேர்வைகள்

- 37. நைத்திரிக்கமிலம் பற்றிய பின்வரும் கூற்று<mark>க்களில்</mark> சரியானது எது / எவை?
 - (a) தூய நைத்திரிக்கமிலம் இளமஞ்சள் திரவமாகும்.
 - (b) நைத்திரிக்கமிலத்தின் N O பிணைப்பு நீளங்கள் யாவும் சமனானவையன்று.
 - (c) செறிந்த H_2SO_4 உடனான அதன் தாக்கத்தில் செறி HNO_3 மூலமாகத் தொழிற்படுகின்றது.
 - (d) நைத்திரிக்கமிலம் தாழ்த்தியாகத் தொழிற்படக் கூடியது.
- 38. கீழே தரப்பட்ட கூற்றுக்களில் எது / எவை உண்மையானது / உண்மையானவை?
 - (a) அறைவெப்பநிலை, அமுக்க நிபந்தனைகளில் H2 வாயுவின் அமுக்கப்படுதன்மைக் காரணி Z இன் பெறுமானம் 1ஜ விட அதிகமாகும்.
 - (b) போயிலின் வெப்பநிலையில் அமுக்கத்தின் மிகக்கூடிய வீச்சுக்கு மெய்வாயுக்கள் இலட்சிய வாயுச் சமன்பாட்டை அனுசரித்து நடக்கும்.
 - (c) வந்தர் வாலின் சமன்பாட்டை இலட்சிய வாயுக்களுக்கு பிரயோகிக்க முடியாது.
 - (d) அமுக்கப்படுத்தன்மைக் காரணி Z>1 ஆகவிருக்கும் போது வாயுவானது இலட்சிய வாயுவைக் காட்டிலும் கூடியளவு எளிதாக அமுக்கப்பட முடியும் எனக் கருதலாம்.
- 39. பல்பகுதியங்கள் பற்றிய கூற்றுக்களில் எது / எவை உண்மையற்றது / உண்மையற்றவை?
 - (a) ரெறிலீன் ஆனது வெப்பமிளக்கும் ஒடுங்கற் பல்பகுதியமாகும்.
 - (b) பேக்லைற், யூரியா போமல்டிகைட், ரெப்லோன் ஆகியவை வெப்பமிறுக்கும் பல்பகுதிய வகைக்குரியவை.
 - (c) பொலித்தீன், PVC, பொலி ஸ்ரைரீன் என்பன வெப்பமிளக்கும் நேர்கோட்டுப் பல்பகுதியங்களாகும்.
 - (d) ரெப்லோன் வெப்பமிளக்கும் பல்பகுதியமெனினும் அலசனைக் கொண்டிருப்பதால் உயர் வெப்பத்தைத் தாங்கக்கூடியதாகும்.
- 40. இலங்கையில் மேற்கொள்ளப்படும் பல்வேறு இரசாயன கைத்தொழில்கள் தொடர்பான கூற்றுக்களில் சரியானது / சரியானவை எது / எவை?
 - (a) வெளிற்றும் தூள் உற்பத்தியில் நீறாத சுண்ணாம்புத் திண்மத்துடன் Cl_2 வாயு தாக்கமடையச் செய்யப்படும்.
 - (b) டவுண்கல முறையில் Na உற்பத்தியில் Na ஆனது Cl_2 வாயுவுடன் தாக்கமடைவதைத் தவிர்ப்பதற்கு அனோட், கதோட் அறைகள் பிரிமென்றகட்டால் பிரிக்கப்பட்டிருக்கும்.
 - (c) யூரியா உற்பத்தியில் NH₃, CO₂ என்பன மூலப்பொருட்களாகப் பயன்படும்.
 - (d) சோல்வே முறையைப் பயன்படுத்தி K_2CO_3 ஐ உற்பத்தி செய்யலாம்.

💠 41 தொடக்கம் 50 வரையுள்ள வினாக்கள் ஒவ்வொன்றிலும் இரண்டு கூற்றுக்கள் தரப்பட்டுள்ளன.

தெரிவுகள்	முதலாம் கூற்று	இரண்டாம் கூற்று
(1)	உண்மை	உண்மையாக இருந்து முதலாம் கூற்றுக்கு திருத்தமான
		விளக்கத்தை தருவது
		உண்மையாத இருந்து முதலாம்
(2)	உண்மை	கூற்றுக்கு திருத்தமான
		விளக்கத்தை தராதது
(3)	உண்மை	பொய்
(4)	பொய்	உண்மை
(5)	பொய்	பொய்

	முதலாம் கூற்று	இரண்டாம் கூற்று
41.	ஆவிப்பறப்புடைய கரைப்பானில் ஆவிப்பறப்பற்ற கரையத்தைக் கரைக்கும் போது கரைப்பானின் ஆவியமுக்கம் குறைவடையும்.	ஆவியமுக்க இறக்கத்தைப் பயன்படுத்தி ஆவிப்பறப்பற்ற கரையத்தின் மூலர்த்திணிவை துணிய முடியாது.
42.	CH ₂ — CH ₂ — CHO ஆனது உலர் ஈதரில் Mg உடன் தாக்கம் புரிவதால் Cl கிரிக்னாட்டின் சோதனைப் பொருளொன்றைத் தயாரித்துக் கொள்ள முடியும்.	சேர்வையில் அமில இயல்புக்குரிய ஐதரசன் இருப்பின் கிரிக்னாட் சோதனைப் பொருளுடன் தாக்கமடையும்.
43.	$A_{2(g)} + 3B_{2(g)} \longrightarrow 2AB_{3(g)}$ எனும் சமநிலைத் தொகுதியினுள் $He(g)$ ஐச் சேர்ப்பதன் மூலம் சமநிலைத் தானம் வலப்புறமாக நகரும்.	சமநிலைத் தொகுதியினுள் $\mathrm{He}_{(\mathrm{g})}$ ஐ இடும் போது மாறாக் கனவளவில் $\mathrm{A}_{2(\mathrm{g})}$, $\mathrm{B}_{2(\mathrm{g})}$ ஆகியவற்றின் பகுதியமுக்கல்கள் கூடும்
44.	${\rm Cu}^{2+}, {\rm Ni}^{2+}$ அயன்கள் கொண்ட ஒரு நீர்க்கரைசல் ${\rm OH}^-/{\rm H}_2{\rm S}$ உடன் பரிகரிக்கப் படின் ${\rm NiS}$ மட்டும் வீழ்படிவாகும்.	$ m OH^-$ / $ m H_2S$ இல் $ m S^{2-}$ அயன் செறிவு உயர்வாகக் காணப்படுவதால் $ m CuS$ வீழ்படிவாக மாட்டாது.
45.	வைனைல் குளோரைட், குளோரோ பென்சீன் என்பன அற்கைல் ஏலைட்டுக்கள் போன்று கருநாட்டப் பிரதியீட்டுத் தாக்கத்துக்கு இலகுவில் உட்படுவதில்லை.	பரிவு காரணமாக இச்சேர்வைகளில் காபனுக்கும் குளோரீனுக்கு மிடையிலான பிணைப்பு பகுதி இரட்டைப் பிணைப்புக் குரிய இயல்பைக் காட்டுகிறது.
46	தனியாக்கப்பட்ட தொகுதியில் சுயமாக நடைபெறும் தாக்கங்கள் எப்பொழுதும் எந்நிரப்பி அதிகரிப்புடன் நிகழும்.	தொகுதியொன்றின் △H,△ S என்பவற்றின் ஓட்டு மொத்த விளைவானது கிபபின் சக்தி மாற்றம் △G இனால் தரப்படும்.
47	ஒரே கதி இடையைக் கொண்டிருக்கும் He மூலக்கூறுகளின் வெப்பநிலையை விட O ₂ மூலக்கூறுகளின் வெப்பநிலை குறைவாக அமைதல் வேண்டும்.	வாயு மூலக்கூறுகளின் கதி இடைப் பரம்பலானது அவற்றின் மூலக்கூற்றுத் திணிவு, வெப்பநிலை என்பவற்றைச் சார்ந்தது.
48	தொடுகை முறை சல்பூரிக் கமில உற்பத்தியில் உயர் விளைவை பெறுவதற்கு உயர் அமுக்கம் பயன் படுத்தப்படுகின்றது.	2SO _{2(g)} + O _{2(g)} ← 2SO _{3(g)} எனும் தாக்கமானது மூல் எண்ணிக்கைக் குறைவுடன் நிகழும் ஒரு அகவெப்பத்தாக்கமாகும்.
49	2- methylbut – 2 – ene ஆனது ஈர்வெளிமய சமபகுதிய தன்மையைக் காட்ட மாட்டாது.	ஒன்று மற்றையதன் ஆடி விம்பமாக அமையாத முப்பரிமாண கட்டமைப்புக்கள் யாவும் ஈர்வெளிமய சமபகுதியங்கள் எனப்படும்.
50	இலட்சியக் கரைசலொன்றின் கொதி நிலையானது அதன் அமைப்புடன் சீரான நேர்கோட்டு மாற்றத்தைக் காட்டும்	இலட்சியக் கரைசலில் தனித்தனி கூறுகளிற் கிடையிலான கவர்ச்சி விசைகள் கரைசலில் வெவ்வேறு இனங்களிடையே காணப்படும் கவர்ச்சி விசைகள் யாவும் ஒன்றுக்கொன்று சமனாகும்.

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, யூன் -2018 **Term Examination, June - 2018**

தரம்	:- I	3 (2018)	இரசாயன	<u>வியல் 11</u>	A	மூனநு ப	மணத்தயா 	லம
			பகுதி II A அன	ு மப்புக் கட்டு	ரை வினா	г		
			எல்லா வினாக்க	களுக்கும் வி	டை தருக	•		
		வருவனவற்றை ங்குபடுத்துக.	அடைப்புக்குள் த	நரப்பட்டுள்ள	இயல்புகள்	ர அதிகரிக் _ர	கும் வரிசைக்	கேற்ப
	(i)	H_2O_2 , HF , N	H ₃ , H ₂ O		(கொதிநின	രെ)		
	(ii)	OH ⁻ , NH ₂ ⁻ ,	СН ₃ О ⁻ , НСО ₃ ⁻		(மூல இய	ரல்பு) 	l	
	(iii)	Na ₂ CO ₃ ,BeC	O ₃ , (NH ₄) ₂ CO ₃ , B	aCO ₃	(வெப்பவுը	றுதி)		•••
	(iv)	NH ₂ ⁻ , NH ₂ ⁺	,NO ₃ - ,NH ₃		(பிணைப்பு	ு க் கோணப	Ď)	
	(v)	CO, CO ₂ , CO ₃	²⁻ , C ₂ O ₄ ²⁻		(C-O ப <u>ി</u>	ணப்பு நீள	ம்)	
(b) (i)	(C_xH_y) என்பல் (PAN) போன்ற வெப்பநிலையி தரப்பட்டுள்ளது	இருந்து வெளி வற்றைக் கொண்டு ற சேர்வைகளாக Iலும் மாற்றப்படுகி ப H O - C - C ₍₁₎ - O - G 	ெள்ளது. இை சூரிய ஒளியி ன்றன. PAN இ	வ ஓசோவ ன் பிரசன்வ இன் மூலக்	் ர், மற்றும் ஏத்தில் 15°	Peroxyacely °C இற்கு மே	nitrate ற்பட்ட
	(i)	இச்சேர்வைக் ₍	கு மிகவும் ஏற்றுக் 	கொள்ளத்தக்	க லூயி க	ட்டமைப்பை	ப வரைக. 	

(iii)		ு எனக் குறிச	க்கப்பட்ட காபன், ஒட்சிசன்,	கைகாசன் அ
(111)			னையைப் பூர்த்தி செய்க.	
	அணு	கலப்பாக்கம்	அணுவைச் சுற்றியுள்ள இலத்திரன் சோடிக் கேத்திர கணிதம்	வடிவம்
	C ₍₁₎			
	O ₍₂₎			
	N ₍₃₎			
சிக்ட	றாப் பிணைப்ப ங்காண்க.	பின் உருவாக்கத்தி) உடன் இணைந்த	நட்டமைப்பில் பின்வரும் அணு ல் பங்குபற்றும் அணு / க O இற்குமிடையே ம் O இன்	
(i)	C ₍₁₎ இ6 O ₍₂₎ இற்கும்	N ₍₃₎ இற்குமிடையே	b N ₍₃₎ இன்	உழ்
(i)	C ₍₁₎ இர் O ₍₂₎ இற்கும் O ₍₂₎ இர C ₍₁₎ இற்கும்	N _ஞ இற்குமிடையே ர் உர் C இற்குமிடையே		உம்
(i) (ii) (iii)	C ₍₁₎ இந்கும் O ₍₂₎ இற்கும் C ₍₁₎ இற்கும் C ₍₁₎ இந்கும் O ₍₂₎ இற்கும்	N ₍₃₎ இற்குமிடையே ர் உப் C இற்குமிடையே ர் உ N ₍₃₎ இற்குமிடையே	ம் N ₍₃₎ இன்	

(ii) கூட்டத்தின் வழி மேலிருந்து கீழாக காரவுவோகங்களில் தாக்குதிறன் அதிகரிக்கும். எனினும் அலசன்களின் தாக்குதிறன் கூட்டத்தின் வழி குறைவடையும். (iii) MgBr ₂ , CaCl ₂ , BaF ₂ , BaCl ₂ ஆகிய சேர்வைகளின் பங்கீட்டு வலு இயல்பின் அதிகரிக்கும் வரிசை. MgBr ₂ < CaCl ₂ < BaF ₂ < BaCl ₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (2) (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்டைக்கத்திற்கு உட்டுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்ற இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்ற இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க. Q = T =	(c)		தரப்பட்ட கூற்றுக்கள் உண்மையானவையா பொய்யானவையா எனக் குறிப்பிட்டு ப தெரிவுக்கான காரணத்தைத் தருக.
(ii) MgBr ₃ , CaCl ₂ , BaF ₂ , BaCl ₂ ஆகிய சேர்வைகளின் பங்கீட்டு வலு இயல்பின் அதிகரிக்கும் வரிசை. MgBr ₂ < CaCl ₂ < BaF ₂ < BaCl ₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஓட்சைட்டாகும். R மூல ஓட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.		_	
(ii) MgBr₂, CaCl₂, BaF₂, BaCl₂ ஆகிய சேர்வைகளின் பங்கீட்டு வலு இயல்பின் அதிகரிக்கும் வழிசை. MgBr₂ < CaCl₂ < BaF₂ < BaCl₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			எனினும் அலசன்களின் தாக்குதிறன் கூட்டத்தின் வழி குறைவடையும்.
(ii) MgBr₂, CaCl₂, BaF₂, BaCl₂ ஆகிய சேர்வைகளின் பங்கீட்டு வலு இயல்பின் அதிகரிக்கும் வழிசை. MgBr₂ < CaCl₂ < BaF₂ < BaCl₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
(ii) MgBr₂, CaCl₂, BaF₂, BaCl₂ ஆகிய சேர்வைகளின் பங்கீட்டு வலு இயல்பின் அதிகரிக்கும் வழிசை. MgBr₂ < CaCl₂ < BaF₂ < BaCl₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
(ii) MgBr₂, CaCl₂, BaF₂, BaCl₂ ஆகிய சேர்வைகளின் பங்கீட்டு வலு இயல்பின் அதிகரிக்கும் வழிசை. MgBr₂ < CaCl₂ < BaF₂ < BaCl₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
(ii) MgBr₂, CaCl₂, BaF₂, BaCl₂ ஆகிய சேர்வைகளின் பங்கீட்டு வலு இயல்பின் அதிகரிக்கும் வழிசை. MgBr₂ < CaCl₂ < BaF₂ < BaCl₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
அதிகரிக்கும் வரிசை. MgBr ₂ < CaCl ₂ < BaF ₂ < BaCl ₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
MgBr ₂ < CaCl ₂ < BaF ₂ < BaCl ₂ ஆகும். (iii) C இன் முதலாம் இலத்திரன் <mark>நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன்</mark> நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஓட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			-
(iii) C இன் முதலாம் இலத்திரன் <mark>நாட்டம் மறை எனினும் N இன் மு</mark> தலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஓட்சைட்டாகும். R மூல ஓட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
(iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலைவைய்கள்கள்கள் இன்று நிருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
(iii) C இன் முதலாம் இலத்திரன் <mark>நாட்டம் மறை</mark> எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
(iii) C இன் முதலாம் இலத்திரன் <mark>நாட்டம் மறை</mark> எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது.			
(iii) C இன் முதலாம் இலத்திரன் <mark>நாட்டம் மறை</mark> எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஓட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
(iii) C இன் முதலாம் இலத்திரன் நாட்டம் மறை எனினும் N இன் முதலாம் இலத்திரன் நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. (iv) Zn இன் உருகுநில்லையில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
நாட்டம் நேரானது. (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.		(iii)	
(iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்குவதில்லை. அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
(iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
(iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
 (iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஓட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க. 			
(iv) Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது. 02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.		(iv)	Zn இன் உருகுநிலையை விட Co இன் உருகுநிலை உயர்வானது.
02. (A) Q, R, T என்பன ஆவர்த்தன அட்டவணையில் அடுத்தடுத்து வரும் மூன்று தாண்டல் அற்ற மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஒட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஓட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஓட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஓட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஓட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
மூலகங்களாகும். R ஆனது ஒன்றிற்கு மேற்பட்ட ஓட்சைட்டுக்களை உருவாக்கும். அவை அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஓட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.	02 (1)	O D	
அமிலம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை. இவ்வொட்சைட்டுக்களில் ஒன்று நீருடன் இருவழிவிகாரத் தாக்கத்திற்கு உட்படுகின்றது. R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.	02. (A)		
R இன் ஐதரைட்டுக்களில் மூல இயல்புடைய ஒன்று இறப்பர் கைத்தொழிலில் பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.		அமி	vம் அல்லது நடுநிலை ஒட்சைட்டாகும். R மூல ஒட்சைட்டை உருவாக்குவதில்லை.
பயன்படுத்தப்படுகின்றது. (i) மேற்குறிப்பிட்ட மூன்று மூலகங்களையும் இனம் காண்க.			
, , , , , , , , , , , , , , , , , , , ,		-	
, , , , , , , , , , , , , , , , , , , ,		<i>(</i> :)	@

	(ii)	மேலுள்ள ஒட்சைட்டுக்களில் நீருடன் இருவழிவிகாரமடையும் தாக்கத்துக்கான சமன் செய்த சமன்பாட்டை தருக.
	(iii)	R இன் அதியுயர் ஒட்சியேற்ற நிலைக்குரிய ஒட்சைட் NaOH _(aq) உடன் அடையும் தாக்கச் சமன்பாட்டை தருக.
	(iv)	மூலகம் R இன் வினாவில் குறிப்பிட்டப்பட்டது தவிர்ந்த இன்னொரு ஐதரைட்டு அமில இயல்பைக் காட்டக்கூடும். அவ்வைதரைட்டின் சூத்திரத்தையும் பெயரையும் தருக.
	(v)	மூலகம் Q ஆனது குறித்த சில தாக்க நிபந்தனைகளின் கீழ் நீறாத சுண்ணாம்புடன் தாக்கமுற்று விளைவுகளாக A உம் B உம் பெறப்படும். A ஆனது திண்மம். B ஆனது வாயு ஆகும். A,B இன் இரசாயன சூத்திரங்களையும் தாக்க நிபந்தனைகளையும் தருக. A =
	(vi)	A \longrightarrow $C_{(g)} + D_{(aq)}$ அமோனியா சேர் $AgNO_{3(aq)}$ \longrightarrow E (வெண்ணிற வீழ்படிவு)
		C, D, E என்பவற்றை இனம் காண்க. C = D = E =
(B)	A, E பரிலே	$H,~KI,~Pb(NO_3)_2,~Na_2S_2O_3,~CuCl_2$ ஆகிய கரைசல்களை இனம் காண்பதற்கு அவை $B,~C,~D,~E$ எனப் பெயரிடப்பட்டு (தரப்பட்ட ஒழுங்கில் அல்ல) மேற்கொள்ளப்பட்ட சாதனைகளும் அவதானங்களும் கீழே தரப்பட்டுள்ளன. சல் A இற்கு ஏனைய கரைசல்களை தனித்தனி சேர்த்தபோது அவதானங்கள் மாறு:

- கரைசல் B ஐச் சேர்க்க வெண்ணிற வீழ்படிவு பெறப்பட்டது. இவ்வீழ்படிவு நேரம் சென்றதும் கறுப்பாக மாறியது.
- கரைசல் C ஐச் சேர்க்க மஞ்சள் நிற வீழ்படிவு பெறப்பட்டு வீழ்படிவைக் கரைசலுடன் சூடாக்க கரைந்து நிறமற்ற கரைசல் பெறப்பட்டது.
- கரைசல் D ஐ துளித்துளியாக சேர்த்த போது ஆரம்பத்தில் வெண்ணிற வீழ்படிவு தோன்றி மிகையான D சேர்க்கும் போது அவ்வீழ்படிவு கரைந்தது.
- கரைசல் E ஐச் சேர்க்கும் போது வெண்வீழ்படிவும் நிறமுடைய கரைசலும் பெறப்பட்டன. பெறப்பட்ட வீழ்படிவு சூடாக்கும் போது கரைந்தது.

	i)	A, B, C, D, E ஐ இனம் கா	ன்க.				
		A =		B =			•••
		C =		D =			
		E =					
	ii)	கரைசல் A இலுள்ள குறிப்பிடுக.	அன்னயனை	இனங்கா	ன் பதற்கு (சோதனை	யொன்றைக்
	iii)	கரைசல் B இற்கு ஐதான தருக.					
	iv)	,	சறி. HCl மிசை	 நயாகச் சே	ர்ப்பின் பெழ	றப்படும்	
		அயனின் சூத்திரத்தைக் குறிப்பிடுக.	குறிப்பிட்டு ,	அதன நிற	ததையும் I	UPAC	பெயரையும
		<u>ي المرات</u>				١	
			//// / ///////////////////////////////				
03. (A)	கெ	°C இல் வாயு P இன் 0.0 ாள்கல மொன்றில் சிறித க்காட்டப்பட்ட சமன்பாட்டிற்	ளவு திண்ம உ	 ஊக்கி மு			
		$P_{(g)} \longrightarrow 2 Q_{(g)}$					
	நே	ரத்துடன் $\mathbf{Q}_{(\mathrm{g})}$ இன் செறிவு	அளவிடப்பட்டு (பெறுபேறுக	ள் அட்டவலை	ணப்படுத் _?	தப்பட்டன.
		நேரம் / S	[Q] / mol dm ⁻³	80			
	-	0.0	0.000				
		50.0	0.008				
		100.0	0.016				
		150.0	0.024				
		200.0	0.032				
	L	250.0	0.04				
	(i)	மேலுள்ள அட்டவணையி பெறுமானங்களைக் கணிக்	٠.	பட்ட நேர	ாங்களிற்குரிய	$[P_{(q)}]$	இற்குரிய
		நேரம் /S		[P] / m	ol dm ⁻³		
		0.0					
		50.0					
		100.0					
		150.0		• • • • • • • • • • • • • • • • • • • •			
		200.0		• • • • • • • • • • • • • • • • • • • •			
		250.0	••••				

(ii)	நேரத்துடன் $\mathrm{P}_{(\mathrm{N})}$ இன் செறிவு மாற்றமடைவதை பின்வரும் வரைபில் காட்டுக.
	$[P_{(N)}] / \text{mol dm}^{-3}$
	I , , , , , , ,
	0.020
	0.016
	0.012
	0.008
	0.004
	50 100 150 200 250 நேரம் (S)
(iii)	தாக்கத்தின் வரிசை, வீத மாறிலி ஆகியவற்றை முறையே n,k எனக்கொண்டு மேற்படி
	தாக்கத்துக்கான வீத விதியை எழுதுக.
(iv)	
	துணிக.
(v)	127°C இல் வீதமாறிலி k ஐக் கணிக்க.
	(61116)
(vi)	$127^{\circ}\mathrm{C}$ இல் $\mathrm{P}_{(\mathrm{g})}$ இன் தொடக்க அளவின் 75% ஆனது $\mathrm{Q}_{(\mathrm{g})}$ ஆகப் பிரிகையடைந்த நிலையில் கொள்கலத்தினுள் உள்ள அமுக்கத்தைக் கணிக்க.
	நிலையேல் கொள்கல்தின் உள்ள அமுக்கத்தை கணிக்க
	· (ஊக்கியின் கனவளவைப் புறக்கணிக்கலாம்).

(B) வெப்பநிலை, அமுக்கம் என்பவற்றுடன் குறித்த பதார்த்தத்தின் வெவ்வேறு பௌதிக நிலைகளிற்கிடையே ஏற்படும் மாற்றங்களைக் குறிக்கும் வரைபுகள் அவத்தை வரைபடங்கள் எனப்படும். நீரின் வரைபடம் கீழே தரப்பட்டுள்ளது.

(i) நீரின் திண்ம, திரவ, ஆவி நிலைகளுக்குரிய பிரதேசங்களை முறையே X,Y,Z என மேலே தரப்பட்ட அவத்தை வரைபடத்தில் குறித்துக் காட்டுக.

(11)	புள்ள	1	எவவாறு	அழைக்கப்படும்	/ அப்புள்ளயன்	முக்கியத்துவம்	61601601 ?
		, ,			<u> </u>		
		.,,,		·····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

(iii) நீரின் அவதி வெப்பநிலை என்ப<mark>தா</mark>ல் யாது கருதுகிறீர்?

(iv) நீரின் மூன்று பௌதிக நிலைகளும் ஒருமித்துச் சமநிலையில் காணப்படுவதற்குரிய

வெப்பநிலை, அமுக்கம் என்பவற்றைக் குறிப்பிடுக. வெப்பநிலை அமுக்கம்

(v) மேலே நீர் குறிப்பிட்ட அமுக்கத்தை விட குறைந்த அமுக்கப் பெறுமதியில் பனிக்கட்டியின் வெப்பநிலை உயர்த்தப்படுமெனின் அதன் பௌதிக நிலையிலேற்படும் மாற்றத்தைக் குறிப்பிடுக.

04. (A) மூலக்கூற்றுச் சூத்திரம் $C_5H_{10}O$ இனை உடையனவும் பிராடியின் சோதனைப்பொருளுடன் செம்மஞ்சள் வீழ்படிவைத் தருவதுமான மூன்று சேர்வைகள் D,E மற்றும் F ஆகும். இவை மூன்றும் Zn/Hg, con. HCl உடன் ஒரே விளைவு G ஐத் தருகின்றன.

தெ	மேற்படி சேர்வைகளில் D மட்டும் ஒளியியல் தொழிற்பாடுடையது. D, E என்பன மட்டும் தொலனின் சோதனைப் பொருளுடன் வெள்ளியாடியைக் கொடுக்கின்றன. (i) D, E, F,G ஆகியவற்றின் கட்டமைப்புக்களை கீழுள்ள பெட்டிகளில் வரைக.					
L	D	E		F		
	G					
	A, B, C ஆகியன D, E, F			-		
	மட்டும் தொலனின் சோதனைப் பொருளுடன் வெள்ளியாடியைக் கொடுத்ததுடன்					
		லயில் அல்டொல் வ அயே NaBH പ க்				
	B,C என்பவற்றைத் தனித்த தொழிற்பாடுடைய விளைபெ			_		
	விளைபொருள் லூக்காசின்					
	கொடுத்தது. A, B, C இன்	கட்டமைப்புக்களை த	ருக.			
	16:7	VVIII)				
			50			
		60180				
	A	В		C		
(ii)	மேற்குறிப்பிட்ட A,D,E ஆக் உண்டு H இன் கட்டமைப்ன		பிறிதொரு சங்கிலிச்	ச சமபகுதியம் H		
		H				
		•				

(B)	பின்வரும்	தாக்கங்களுக்கான	ഖിതെപപ്പുടതെ	எழுதுக.
-----	-----------	-----------------	--------------	---------

(ii)
$$CH_2 - CH_2 OH$$

$$P_2O_5$$

$$CONH_2$$

(iii)
$$CH_3COCH = CH - COOH$$
 (i) $LiACH_4$ (ii) D_2O

(iv)
$$C_6H_5COCH_2CO_2H$$
 NaBH₄

$$(v)$$
 $CH_3-C\equiv C-CH_3$ $H_2/Pd/Baso_4$ குயினலீன்

$$CHO$$
 (C) \bigcirc இற்கும் $\mathrm{C_2H_5ONa}$ இற்குமிடையிலான தாக்கத்தைக் கருதுக.

(i)	மேற்படி	தாக்கப்பொறிமுறை	ഖതെയെങ്	குறிப்படுக.

வடமாகாணக் கல்வித் திணைக்களத்தின் அனுசரணையுடன் தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, யூன் -2018 Term Examination, June - 2018

தரம் :- 13 (2018)

இரசாயனவியல் II B

கட்டுரை வினாக்கள் - B

எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடையளிக்க.

05. a) ஒரு மென்னமிலம் HA இன் $25 \mathrm{cm}^3$ ஆனது $0.1 \mathrm{moldm}^{-3}$ NaOH கரைசலுடன் நியமிக்கப்பட்ட போது ஏற்படும் pH மாற்றத்தை கீழுள்ள வரைபடம் குறிக்கிறது. $(25^{\circ}\mathrm{C}~\mathrm{K_w} = 1 \mathrm{x} 10^{-14}~\mathrm{mol}^2~\mathrm{dm}^{-6})$

- i) மென்னமிலம் HA ன் செறிவு யாது?
- ii) மென்னமிலத்தின் அயனாக்க மாறிலி K_a ஐக் கணிக்க.
- iii) புள்ளி A ற்குரிய pH பெறுமானம் யாது?
- iv) நியமிப்பின் சமவலுப்புள்ளியில் pH ஐக் கணிக்க.
- V) X,Y எனும் இரு காட்டிகளின் நிறமாற்ற pH வீச்சுகள் முறையே 3.1 4.4, 8 9.6 எனின் x,y இல் இந்நியமிப்புக்கு பயன்படுத்தக்கூடிய காட்டி எது? காரணம் யாது?
- b) I. ஒரு கரைசலில் $\mathrm{Ag}^{\scriptscriptstyle +}$, $\mathrm{Ba}^{\scriptscriptstyle 2+}$ அயன்கள் ஒவ்வொன்றும் $0.01\mathrm{moldm}^{\scriptscriptstyle -3}$ செறிவில் காணப்படுகின்றன. இதனுள் திண்ம $\mathrm{K}_2\mathrm{CrO}_4$ சிறிது சிறிதாக சேர்க்கப்படுகிறது. கனவளவு மாற்றம் இல்லை எனக் கருதுக. $[\mathrm{K}_{\mathrm{SP}}\ (\mathrm{Ag}_2\mathrm{CrO}_4) = 1.1\ \mathrm{x}\ 10^{\scriptscriptstyle -12}\ \mathrm{mol}^3\mathrm{dm}^{\scriptscriptstyle -9},$ $\mathrm{K}_{\mathrm{SP}}(\mathrm{BaCrO}_4) = 2.2\ \mathrm{x}\ 10^{\scriptscriptstyle -10}\ \mathrm{mol}^2\ \mathrm{dm}^{\scriptscriptstyle -6}]$
 - i) Ag_2CrO_4 , $BaCrO_4$ என்பன ஒவ்வொன்றும் தனித்தனி வீழ்படிவாகத் தொடங்கும் கணத்தில் $CrO_4{}^{2-}$ அயன் செறிவுகளைக் கணிக்க.

- Ag^+, Ba^{2+} என்பவற்றில் எது முதலாவதாக வீழ்படிவாக ஆரம்பிக்கும்?
- iii) இரண்டாவது அயன் வீழ்படிவாகத் தொடங்கும் கணத்தில் முதலாவது அயனின் வீழ்படிவாகாது கரைசலில் உள்ள செறிவை கணிக்க.
- iv) Ag^+ , Ba^{2+} அயன்கள் கொண்ட கரைசலில் இருந்த அவற்றை வேறுபடுத்தி எடுப்பதற்கு மேலுள்ள முறை செயன்முறை ரீதியில் பயன்படுத்தப்படக் கூடியதா? என உய்த்தறிக.
- II. 0.05 M செறிவுள்ள MBr_2 எனும் ஓர் உலோக புரோமைட்டின் நீர்க்கரைசல் $H_2 S$ இனால் நிரம்பலாக்கப்பட்டுள்ளது. உலோக சல்பைட் MS வீழ்படிவாவதற்கு தேவையான அதிகுறைந்த pH யாது?

c) SO_2 , O_2 ஆகிய வாயுக்கள் 2:1 எனும் மூல் விகிதத்தில் மூடிய குடுவையொன்றினுள் கலக்கப்பட்ட கணத்தில் மொத்த அமுக்கம் $3x10^5$ Pa ஆகக் காணப்பட்டது. இவ்வாயுக்கள் 500C இல் உள்ள ஊக்கி ஒன்றின் முன்னிலையில் தாக்கமுற விடப்பட்டபோது பின்வரும் தாக்கம் நடைபெற்று தொகுதி சமநிலை அடைந்தது.

$$2SO_{2(g)} + O_{2(g)} \Longrightarrow 2SO_3$$

உருவான சமநிலைத் தொகுதியில் $SO_{3(g)}$ இன் பகுதியமுக்கம் $1.8 \times 10^5 \, \mathrm{Pa}$ ஆக இருந்தது.

- i) சமநிலையில் $\mathrm{SO}_2,\,\mathrm{O}_2$ என்பவற்றின் பகுதியமுக்கங்களை கணிக்குக.
- ii) சமநிலையின் போதான தொகுதியின் மொத்த அமுக்கத்தையும் $SO_{2(g)}$ ஆனது $SO_{3(g)}$ ஆக மாற்றமடையும் சதவீதத்தை காண்க.
- $CSO_{2(g)} + O_{2(g)}$ \Longrightarrow $CSO_{3(g)}$ எனும் சமநிலைக்கான சமநிலை மாறிலி $CSO_{3(g)}$ ஐக் கணிக்க.

06. a)

- i) ஆரம்ப தாக்கவீதம், சராசரித் தாக்க வீதம் ஆகிய பதங்களை வரையறுக்குக.
- ii) தாக்கவீதத்தைப் பாதிக்கும் காரணிகள் 4 ஐக் குறிப்பிட்டு அவற்றுள் ஒன்று தாக்கவீதத்தைப் பாதிப்பதை எவ்வாறு பரிசோதனை வாயிலாகக் காட்டலாம் என்பதை விளக்குக.

A(aq) + B(aq) — C(aq) எனும் தாக்கத்தைக் கருதுக. இத்தாக்கத்தின் இயக்கப் பண்பியலை ஆராய்வதற்கு நான்கு பரிசோதனை பேறுகள் அட்டவணையில் தரப்பட்டுள்ளது.

பரிசோதனை	ஆரம்பச் செறிவு		தொடக்க வீதம்
இல	[A _(aq)] / moldm ⁻³	$[B_{(aq)}]$ / moldm ⁻³	moldm ⁻³ S ⁻¹
01	1 x 10 ⁻³	2 x 10 ⁻²	3 x 10 ⁻⁵
02	2 x 10 ⁻³	2 x 10 ⁻²	6 x 10 ⁻⁵
03	2 x 10 ⁻³	4 x 10 ⁻²	6 x 10 ⁻⁵
04	4 x 10 ⁻³	3 x 10 ⁻²	R

- iii) $A_{(aq)} + B_{(aq)} \longrightarrow C_{(aq)}$ எனும் தாக்கத்தைக் கருதுக் இத்தாக்கத்தின் இயக்கப்பண்பியலை ஆராய்வதற்கு நான்கு பரிசோதனை பேறுகள் பின்வரும் அட்டவணையில் தரப்பட்டுள்ளது.
 - I. தாக்கத்தின் மொத்த வரிசை யாது?
 - II. வீத மாறிலி K ஐக் கணிக்க.
 - III. R ஐக் கணிக்க.
 - IV. " $[B_{(aq)}]$ மாறிலியாகப் பேணப்படும் போது மேற்குறித்த தாக்கத்தின் அரைவாழ்வுக் காலமானது $A_{(aq)}$ ன் தொடக்கச் செறிவில் தங்கியிராது", ஒரு வரைபு வகைக் குறிப்பின் துணையுடன் இக்கூற்றை விளக்குக.
- b) i) தாங்கற் கரைசல் என்பதால் யாது கருதுகிறீர்?
 - ii) ஒரு மென்னமிலம் HA ஐயும் அதன் வன்கார உப்பு NaA ஐயும் கொண்ட தாங்கற் கரைசலின் pH ற்கான கோவையொன்றைப் பெறுக. (தரப்பட்ட வெப்பநிலையில் HA ன் அயனாக்க மாறிலி Ka)
 - iii) ஒரு மென்னமிலம் HA இன் குறித்த கனவளவானது குறித்த செறிவுள்ள NaOH கரைசலுடன் நியமிக்கப்படுகிறது. அளவியிலிருந்து $10 \mathrm{cm}^3$, $20 \mathrm{cm}^3$ NaOH கரைசல் சேர்க்கப்பட்ட நிலையில் கரைசலின் pH பெறுமானங்கள் முறையே 5.8, 6.402 ஆகக் காணப்பட்டன. மென்னமிலத்தின் K_a ஐக் காண்க.

c)

- A,B எனும் இரு பூரண கலக்கும் தகவுள்ள திரவக் கூறுகளைக் கொண்ட ஒரு தொகுதிக்குரிய இரவோற்றின் விதியைக் கூறுக.
- ii) திரவங்கள் A,B என்பவை அவற்றின் ஆவிகளுடன் ஏற்படுத்தும் சமநிலையைக் கருதி மேற்படி இரவோற்றின் விதிக்கான கணிதக் கோவை ஒன்றைப் பெறுக. [A,B ன் சமநிலை மூல்ப்பின்னம் X_A , X_B உம் அவற்றின்பகுதி ஆவி அமுக்கங்கள் P_A,P_B உம் குறித்த வெப்பநிலையில் A,B ன் தூய நிலை ஆவியமுக்கங்கள் முறையே $P_A{}^0$, $P_B{}^0$ உம் என்க.]
- iii) A,B எனும் ஆவிப்பறப்புள்ள திரவங்கள் கலக்கப்படும் போது ஓர் இலட்சியக் கரைசலை உண்டாக்குகின்றன. திரவ அவத்தையில் X_A =0.2, X_B =0.8 ஆக உள்ள போது சமநிலையில் உள்ள ஆவியின் அமுக்கம் P ஆகம். X_A = 0.6, X_B =0.4 ஆக மாற்றப்படும் போது திரவ அவத்தையுடன் சமநிலையில் உள்ள ஆவியின் அமுக்கம் Q ஆகும்.

இச்செயன்முறையின் போது தொகுதி ஒரு மாறா வெப்பநிலையில் பேணப்பட்டது. இவ்வெப்பநிலையில் $\frac{P_A{}^0}{P_B{}^0}=6$ எனத் தரப்படின் $\frac{P}{Q}$ எனும் விகிதத்தை காண்க.

07. a) கீழே தரப்பட்ட பட்டியலில் உள்ள இரசாயன பதார்த்தங்களை மட்டும் பயன்படுத்தி பின்வரும் மாற்றீட்டை எவ்வாறு மேற்கொள்வீரெனக் காட்டுக.

$$CH_3 - C - C \equiv C - \bigcirc$$

இரசாயனப் பொருட்களின் பட்டியல்

Br₂/ CCl₄, H₂O, அற்ககோல் KOH, PCC,

 $CH_3MgBr/$ உலர் ஈதர், Al_2O_3

b) பென்சீனிலிருந்து ஆரம்பித்து C_6H_5 - $CH = N - CH_2 - C_6H_5$ எனும் சேர்வையைத் தொகுப்பதற்கான தாக்கத்திட்டமொன்றைத் தருக. உமது தாக்கத்திட்டம் 7 படிகளுக்கு மேற்படாதிருத்தல் வேண்டும்.

c)

- ப்னோல் இலகுவில் கருநாட்டப் பிரதியீட்டுத் தாக்கங்களில் ஈடுபடுவதில்லை. இதற்கான காரணத்தை விளக்குக.
- ii) $CH_3CH_2NH_2$, \bigcirc , CH_3 NH, NH_3 ஆகிய சேர்வைகளை அவற்றின் கார வலிமை $_{CH_3}$ அதிகரிக்கும் வரிசையில் எழுதி உமது விடையைச் சுருக்கமாக விளக்குக.

பகுதி - II C

எவையேனும் இரண்டு வினாக்களுக்கு மட்டும் விடையளிக்க.

08. a) அயன் சேர்வை X_1 குளிர் நீருடன் பரிகரிக்கும் போது அசேதனச் சேர்வை Y ($M_r < 35$) இன் நீர்க்கரைசல் உருவாக்கப்பட்டது. Y ஆனது அறைவெப்பநிலையில் பாகு நிலைத் திரவமாகும்.

பின்வரும் தரவுகள் ஆவர்த்தன அட்டவணையிலுள்ள சில S,P,d தொகுப்பு மூலகங்கள் / அவற்றின் சேர்வைகளை அடிப்படையாகக் கொண்டவை.

$$X_1+X_2$$
 (ஐதான, குளிர்) $\longrightarrow Y_{(aq)}+X_{3(s)}$ (வெள்ளை)

$$Y_{(aq)} + SO_2$$
 \longrightarrow X_2 (இருமூல வன்னமிலம்)

$$M_1 + (குளிர்) H_2O \longrightarrow X_{4(aq)} + X_5$$
 (நிறமற்ற வாயு) \uparrow (தெளிந்த கரைசல்) $AgNO_{3(aq)} + X_{4(aq)} \longrightarrow X_{6(s)} + X_{7(aq)} + H_2O_{(1)}$ (கபிலம்) $X_{6(g)} + Y_{(aq)} \longrightarrow M_2 + X_{8(g)} + H_2O_{(s)}$ (உலோகம்) (நிறமற்றது)

 $Y_{(aq)} \longrightarrow X_{8(g)} + H_2O_{(l)}$

மேலுள்ள தரவுகளை அடிப்படையாகக் கொண்டு,

- ${f i}$) அசேதனச் சேர்வை ${f Y}_1$, உலோகங்கள் ${f M}_1$, ${f M}_2$ மற்றும் ${f X}_1$ தொடக்கம் ${f X}_8$ வரையான பதார்த்தங்களை இனம் காண்க.
- ii) Y இற்கும் Cl_2 இற்குமடையிலான தாக்கச் சமன்பாட்டை தருக.
- iii) Y இன் இரு பயன்பாடுகளைக் குறிப்பிடுக.

M ஆனது முதல் வரிசை d தொகுப்பு மூலகமாகும். இது $M{O_4}^{2-}$, $M_2{O_7}^{2-}$ எனும் இரு ஒட்சி அன்னயன்களை உருவாக்கக்கூடியது $M_{(aq)}^{3^+}$ உடன் தொடர்புடைய சில தாக்கங்கள் மேலே தரப்பட்டுள்ளன.

படிகள் I இலிருந்து VI வரையானவற்றுக்கு பயன்படுத்தப்பட்ட சோதனைப் பொருட்கள் முறையே X,Y,Z P,Q,R ஆகும்.

- i) மூலகம் M ஐ இனம் காண்க.
- ii) X,Y,Z, P, Q, R ஆகியவற்றை இனம் காண்க.
- iii) $[M(H_2O)_6]^{3+}$, $[M(NH_2)_6)^{3+}$ இன் நிறம் யாது?
- iv) படிகள் I இலிருந்து V வரையில் பெறப்பட்ட விளைவுகளின் நிறங்களை குறிப்பிடுக.
- $m v) ~~ [M(H_2O)_6]^{3+}$ இற்கு $m OH^- /~ H_2O_2$ சேர்க்கும் போது ஏற்படும் நிறமாற்றத்தையும் அதற்கான தாக்கத்திற்குரிய ஈடு செய்த சமன்பாட்டையும் தருக.

- c) 8g திண்ம மாதிரியொன்று Fe_3O_4 , Fe_2O_3 என்பவற்றுடன் சடத்துவப் பதார்த்தமொன்றையும் கொண்டுள்ளது. இம் மாதிரி அமில ஊடகத்தில் மிகை KI கரைசலுடன் பரிகரிக்கப்பட்டு முழு இரும்பும் Fe^{2+} ஆக மாற்றப்பட்டது. விளைவுக்கரைசல் $50 \mathrm{cm}^3$ இற்கு ஐதாக்கபட்டு அதிலிருந்து $10 \mathrm{cm}^3$ வேறாக்கப்பட்டது. இக்கரைசலில் விடுவிக்கப்பட்ட அயடீன் நியமிப்பதற்கு $1 \mathrm{\ mold\ m}^{-3}$ $Na_2S_2O_3$ இன் $7.2 \mathrm{\ cm}^3$ தேவைப்பட்டது.
 - மற்றொரு $25 \,\mathrm{cm}^3$ மாதிரியிலிருந்து I_2 வேறாக்கப்பட்ட பின் Fe^{2+} அயன்கள் அமில ஊடகத்தில் $1 \,\mathrm{moldm}^3\,\mathrm{KMnO_4}$ கரைசலுடன் நியமிப்பட்ட போது பயன்பட்ட $\mathrm{KMnO_4}$ இன் கனவளவு $4.2 \,\mathrm{cm}^3$ ஆக காணப்பட்டது. ஆரம்ப கலவையிலுள்ள $\mathrm{Fe_3O_4}$, $\mathrm{Fe_2O_3}$ என்பவற்றின் திணிவுச் சதவீதங்களைக் கணிக்க. ($\mathrm{Fe}{=}56,\,0{=}16$)
- 09. a) I. பின்வரும் பெரும்படித் தயாரிப்புக்களில் குறிப்பிடப்படும் பதார்த்தங்களின் பங்களிப்பை சுருக்கமாக விளக்குக.
 - i) சோல்வே முறையில் $NH_{3(g)}$
 - ii) மென்சவ்வுக்கலமுறை எரிசோடா தயாரிப்பில் நீர்.
 - iii) சவர்க்காரத் தயாரிப்பில் Citric acid.
 - iv) டவுண்கல முறை Na பிரித்தெடுப்பில் உருக்கு வலை.
 - II. ஊதுலை இரும்பு பிரித்தொடுப்பு <mark>தொ</mark>டர்பாக பின்வரும் வினாக்களுக்கு விடை தருக.
 - i) மூலப்பொருட்கள் யாவை?
 - ii) பயன்படுத்தப்படும் மூலப்பொருட்களின் பங்களிப்புக்களைக் கூறுக.
 - iii) இம்முறையில் நடைபெறும் முக்கிய தாக்கங்களுக்கான ஈடு செய்த சமன்பாடுகளையும் அவை நடைபெறும் வெப்பநிலை வீச்சுக்களையும் குறிப்பிடுக.
 - b) பல்பகுதியங்களின் தயாரிப்புடன் சம்பந்தப்பட்ட சில ஒரு பகுதியங்கள் கீழே தரப்பட்டுள்ளன.

$$CF_2 = CF_2$$
, OH
 $CF_2 = CF_2$, $OH_2N - (CH_2)_4 - NH_2$, $CH_2 = CH_2$
 $CH = CH_2$
 $OH_2N - (CH_2)_4 - NH_2$, $CH_2N - CH_2 = C - CH = CH_2$
 $OH_2N - (CH_2)_4 - COOH$, $CH_2 = C - CH = CH_2$
 $OH_2N - (CH_2)_4 - COOH$, $CH_2 = C - CH = CH_2$

மேலுள்ள சேர்வைகளுள் ஒன்றோ அல்லது அதற்கு மேற்பட்டவையோ சேர்ந்து உருவாக்கும் பல்பகுதியங்களை மட்டும் கருத்திற்கொண்டு பின்வரும் வினாக்களுக்கு விடையளிக்க.

- நான்கு வெப்பமிளக்கும் பல்பகுதியங்களினதும் ஒரு வெப்பமிறுக்கும் பல் பகுதியத்தினதும் பெயர்களைத் தருக.
- ii) வெப்பமிளக்கும் பல்பகுதியங்களில் வெப்பவுறுதி கூடிய பல்பகுதியத்தின் கட்டமைப்பை வரைக.
- iii) ரெஜிபோம் தயாரிப்பில் பயன்படும் பல்பகுதியம் எது?
- iv) இலகுவில் தீப்பற்றாத வெப்பமிளக்கும் பல்பகுதியம் எது?

- v) அதிக மீள்தன்மையுள்ள, இயற்கைப் பல்பகுதிய வகைக்குரிய பல்பகுதியத்தின் மீளவரும் அலகை வரைக.
- vi) மேலே பகுதி (v) இஇல் குறிப்பிட்ட பல்பகுதியத்தின் வன்மையை அதிகரிப்பதற்கு சேர்க்கப்படும் பதார்த்தம் யாது? மேற்படி செயன்முறை எவ்வாறு அழைக்கப்படும்?
- c) வளிமண்டலத்தில் கனவளவுப்படி 78% நைதரசன் அடங்கியுள்ளது அது பெரும்பாலும் விழுமிய வாயு போன்ற இயல்புகளைக் காட்டும் எனினும் நைதரசனின் சில சேர்வைகள் சூழலின் மீது பாதகமான விளைவுகளை ஏற்படுத்துவதையும் பரவலாக் காணமுடிகிறது.
 - i) நைதரசன் வாயு ஒரு விழுமிய வாயு போன்ற நடத்தையைக் காட்டுவதற்கான காரணத்தை விளக்குக.
 - ii) சூழல் மாசடைதலில் பங்களிப்புச் செய்கின்ற நைதரசனின் வாயு நிலைச் சேர்வைகள் இரண்டைக் குறிப்பிடுக.
 - iii) மேலே பகுதி II இல் நீங்கள் குறிப்பிட்ட சேர்வைகள் மூலம் சூழலில் ஏற்படத்தக்க பாதகமான விளைவுகள் 4ஐக் குறிப்பிடுக.
 - iv) மேலே பகதி (ii) இல் குறிப்பிட்ட கூறுகள் சூழலில் விடுவிக்கப்படும் மூன்று செயன்முறைகளைக் குறிப்பிடுக.
 - v) மேலே (iv) இல் நீங்கள் குறிப்பிட்ட விளைவுகளுள் இரண்டின் மீது வளிமண்டல நைதரசன் பங்களிப்புச் செய்யும<mark>் விதத்தை</mark> தாக்கங்களை எடுத்துக் காட்டுவதனூடாக விளக்குக.
 - vi) மேலே (ii) இல் நீங்கள் குறிப்பிட்ட மாசாக்கிகள் சூழலில் சேர்வதைக் கட்டுப்படுத்தக் கூடிய 2 வழிகளைக் குறிப்பிடுக.
- 10. a) P, Q, R ஆகியன இணைப்புச் சேர்வைகளாகும். இவற்றிலுள்ள சிக்கற் கூறுகள் நேர் ஏற்றம் அல்லது ஏற்றமற்றவையாக இருப்பதுடன் அவை யாவும் எண்முகி கேத்திர கணித வடிவமுடையன. இவற்றுள் இணைப்பில் இல்லாத அன்னயன்கள் இருப்பின் அவை ஒரே மாதிரியானவை என்பதுடன் அவை எளிய அன்னயனாகும்.
 - P,Q, R முன்றிலும் மைய உலோக அயன் ஒரே ஒட்சியேற்ற நிலையிலுள்ளன.
 - P,Q,R ஆகியவற்றின் இணைப்புக் கோளத்திலுள்ள இனங்களின் (உலோக அயனும் அதனுடன் இணைந்த இணையிகளும்) அணுக்களின் சேர்மானங்கள்.
 - $CoH_9N_3Cl_3$, $CoH_{12}N_4Cl_2$, $CoH_{15}N_5Cl$ ஆகும். எனினும் இவை அதே ஒழுங்கில் அமையவில்லை.
 - ullet Q இன் நீர்கரைசலுக்கு $\mathrm{AgNO}_{3(\mathrm{aq})}$ சேர்த்தபோது வீழ்படிவு எதுவும் பெறப்படவில்லை.
 - 0.1moldm^{-3} செறிவுள்ள P இன் நீர்க்கரைசலின் 100cm^3 இற்கு மிகை $\text{AgNO}_{3(aq)}$ சேர்த்தபோது பெறப்பட்ட வெண்ணிற வீழ்படிவின் உலர் திணிவு 2.870 g காணப்பட்டதுடன் இவ்வீழ்படிவு ஐதான NH^3 கரைசலில் கரைந்தது. வெண்ணிற வீழ்படிவின் சார்மூலக்கூற்றுத் திணிவு 143.5 ஆகும்.
 - i) P, Q, R இலுள்ள இணையிகளை இனங்காண்க.
 - ii) வெண்ணிற வீழ்படிவின் இரசாயனச் சூத்திரத்தை எழுதுக.
 - iii) P, Q, R இன் கட்டமைப்புச் சூத்திரங்களை உய்த்தறிந்து IUPAC பெயர்களை எழுதுக.
 - iv) இச்சேர்வைகளின் இணைப்புக் கோளத்திலுள்ள இணையிகள் யாவற்றையும் ethelenediammine H2N-CH2-CH2NH2) இனால் பிரதியீடு செய்யப்படின் பெறப்படும் சிக்கலயனின் கட்டமைப்பை வரைக.

- b) i) பரடேயின் மின்பகுப்பு விதிகளைத் தருக.
 - ii) $25^{\circ}C$ வெப்பநிலையில் X எனும் சடத்துவ மின்வாயைக் கதோட்டாகவும் தூய Mg1moldm⁻³ Na₂SO₄ நீர்கரைசலின் 500cm³ மின்வாயை அனோட்டாகவும் பயன்படுத்தி மின்பகுக்கப்பட்டது. இங்கு 50mA மின்னோட்டம் பயன்படுத்தப்படுவதாகவும் மின்பகுப்பின் போது மின்வாய்களில் தோற்றுவிக்கப்படும் அதே அயன்கள் கணத்தில் கரைசல் ஏகவினக் முழுவதும் பரவி கரைசலை உருவாக்குமெனவும் கருதி பின்வரும் வினாக்களுக்கு விடையளிக்க.

(இலத்திரன்களின் மூலர் ஏற்றம் - $96500 \mathrm{C} \ \mathrm{mol}^{-1}$)

- i) பயன்படுத்தப்பட்ட மின்பகுப்புக் கலத்தின் பெயரிடப்பட்ட படத்தை வரைக.
- ii) மின்வாய்களில் நடைபெறும் இரசாயனத் தாக்கங்களுக்கு சமப்படுத்திய இரசாயனச் சமன்பாடுகள் தருக.
- iii) கரைசலில் முதன் முதலில் கலங்கல் தன்மையொன்று அவதானிக்கப்படுவதற்கு மின்பகுப்பு நடத்தப்பட வேண்டிய நேரத்தைக் கணிக்க. $(25^{\circ}\text{C வெப்பநிலையில் } \text{Mg}(\text{OH})_2 \text{ இன் } \text{K}_{\text{SP}} = 4 \text{x} 10^{-12} \text{ mol}^3 \text{dm}^{-9})$
- மின்பகுப்புப் பரிசோதனையில் iv) வேறொரு மின்பகுப்பான<u>து</u> அதே மின்னோட்டத்தை 7.72 நிமிடங்கள் மேற்கொள்ளப்பட்டது. பயன்படுத்தி உருவாகும் $Mg(OH)_2$ வீழ்படிவு வடித்து மாறாத்திணிவு வரும் வரை வெப்பமேற்றப்படின் பெறப்படும் மீதியின் திணிவு யாது? (Mg = 24, O = 16)

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

