

GUÍA DOCENTE 2022-2023

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA: Mater		1atem	mática Numérica				
PLAN DE ESTUDIOS:		(Grado en Ingeniería de Organización Industrial				
FACULTAD:	Escuela Politécnica Superior						
CARÁCTER DE LA ASIGNATURA:				Obli	gatoria		
ECTS: 6	6						
CURSO:	Segundo						
SEMESTRE: Primero							
IDIOMA EN QUE SE IMPARTE: Ca			TE:	Castella	no		
PROFESORADO:			Dr. Jorge Crespo Álvarez				
DIRECCIÓN DE CORREO ELECTRÓNICO: jorge.crespo@uneatlantico.es							

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

Se recomienda que para cursar la asignatura de Matemática Numérica el alumno haya cursado previamente las asignaturas de Matemáticas I, Matemáticas II e Informática.

CONTENIDOS:

- Tema 1. Valores aproximados. Error absoluto y error relativo.
- Tema 2. Resolución de sistemas de ecuaciones lineales.
 - 2.1 Transformaciones elementales en matrices
 - 2.2 Sistemas de ecuaciones triangulares. Método de Gauss.
 - 2.3 Factorización LU. Factorización de Choleski. Cálculo de determinantes y matrices inversas.

- 2.4 Sistemas tridiagonales: método de factorización.
- 2.5 Matrices normadas. Condicionamiento.
- 2.6 Métodos iterativos: métodos de Jacobi y de Gauss-Seidel
- Tema 3. Cálculo de valores propios
 - 3.1 Localización: discos de Gersgorin.
 - 3.2 Caso de las matrices tridiagonales simétricas
 - 3.3 Método de la potencia. Desplazamiento del origen.
- Tema 4 Resolución de ecuaciones no lineales
 - 4.1 Método de bisección y regula falsi.
 - 4.2 Métodos iterativos: teorema del punto fijo y aplicaciones.
 - 4.3 Métodos de Newton y de las secantes. Estimación del error.
 - 4.4 Raíces de un polinomio: acotación, separación y aproximación.
 - 4.5 Sistemas de ecuaciones no lineales.
- Tema 5 Interpolación y aproximación
 - 5.1 Evaluación de un polinomio. Polinomio interpolador: expresiones de Taylor, Lagrangre, Hermite.
 - 5.2 Minimización de la estimación del error de interpolación: polinomios de Chebichev.
 - 5.3 Diferencias finitas y divididas: expresión de Newton del polinomio interpolador.
 - 5.4 Diferenciación numérica. Elección del paso óptimo y estimación del error.
 - 5.5 Trazadores cúbicos: métodos locales y método global.
 - 5.6 Método de mínimos cuadrados: posición del problema. Proyección sobre subespacios de dimensión finita: polinomios de regresión y sistemas ortogonales de funciones. Caso lineal: sistemas sobrecondicionados. Caso continuo: polinomios de Légendre. Polinomios trigonométricos. Caso discreto: polinomios trigonométricos. Estimación de los errores.
- Tema 6 Integración numérica
 - 6.1 Fórmulas de los rectángulos, de los trapecios y de Simpson. Estimación del error.
 - 6.2 Fórmulas de Newton-Cotes. Fórmulas de cuadratura de Gauss.
 - 6.3 Exceso de derivabilidad del integrando: regla de Runge.
 - 6.4 Métodos de Montecarlo
- Tema 7 Ecuaciones Diferenciales
 - 7.1 Problema de Cauchy: métodos de Euler, Runge-kutta y Adams.
 - 7.2 Métodos de diferencia en E.D ordinarias lineales de segundo orden

COMPETENCIAS

COMPETENCIAS GENERALES:

Que los estudiantes sean capaces de:

- CG1 Analizar resultados y sintetizar información en un contexto teórico y/o experimental relacionado con la ingeniería de la organización industrial
- CG2 Organizar y planificar de forma adecuada tareas en el ámbito de la ingeniería de la organización industrial
- CG3 Comunicar de manera adecuada y eficaz en lengua nativa, tanto de forma oral como escrita, ideas y resultados relacionados con la ingeniería de la organización industrial a audiencias formadas por público especializado y/o no especializado
- CG4 Analizar y buscar información en diversas fuentes sobre temas de la ingeniería de la organización industrial
- CG5 Resolver problemas relativos a la ingeniería de la organización industrial
- CG8 Ejercer la crítica y la autocrítica con fundamentos sólidos, teniendo en cuenta la diversidad y complejidad de las personas y de los procesos en el ámbito de la ingeniería de la organización industrial
- CG10 Aprender de forma autónoma conceptos relacionados en el ámbito de la ingeniería de la organización industrial
- CG12 Relacionar de forma creativa principios, conceptos y resultados en el ámbito de la ingeniería de la organización industria

COMPETENCIAS ESPECÍFICAS:

Que los estudiantes sean capaces de:

 CE1 Capacidad para la resolución de problemas matemáticos y estadísticos que puedan plantearse en el ámbito de la ingeniería de la organización industrial.
Aptitud para aplicar los conocimientos sobre álgebra lineal, geometría, geometría diferencial, cálculo diferencial e integral, ecuaciones diferenciales y en derivadas parciales, métodos numéricos, algorítmica numérica, estadística y optimización

RESULTADOS DE APRENDIZAJE:

En esta asignatura se espera que los alumnos alcancen los siguientes resultados de aprendizaje:

- Resolver numéricamente por aproximación las raíces de una ecuación lineal y no lineal por diferentes métodos
- Aplicar el método de las diferencias finitas y de mínimos cuadrados para la solución numérica de problemas en la ingeniería
- Aplicar métodos numéricos para encontrar el área de una función.
- Aplicar métodos analíticos y numéricos para la resolución de ecuaciones diferenciales e interpretar los resultados

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- MD1 Método expositivo
- MD2 Estudio y análisis de casos
- MD3 Resolución de ejercicios
- MD4 Aprendizaje basado en problemas
- MD6 Aprendizaje cooperativo/trabajo en grupo
- MD7 Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

Actividades formativas				
	Clases expositivas	12		
Actividades dirigidas	Clases prácticas	18		
	Seminarios y Talleres	7.5		
Actividades supervisadas	Supervisión de actividades	7,5		
Actividades supervisadas	Tutorías (individual / en grupo)	7,5		
	Preparación de clases	15		
Actividades autónomas	Estudio personal y lecturas	45		
Actividades autonomas	Elaboración de trabajos	15		
	Trabajo en campus virtual	15		
Actividades de evaluación	Actividades de evaluación	7,5		

El primer día de clase, el profesor/a proporcionará información más detallada al respecto.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

	Ponderación			
Evaluación	valuación 1 Entrega de Ejercicios			
continua	2 Exámenes Parciales	20%		
Evaluación final	Examen Teórico-Práctico	70%		

La calificación del instrumento de la evaluación final (tanto de la convocatoria ordinaria como de la extraordinaria, según corresponda) **no podrá ser inferior, en ningún caso, a 4,0 puntos** (escala 0 a 10) para aprobar la asignatura y consecuentemente poder realizar el cálculo de porcentajes en la calificación final.

CONVOCATORIA EXTRAORDINARIA:

La convocatoria extraordinaria tendrá lugar durante el mes de julio (consúltese el calendario académico fijado por la universidad). Esta consistirá en la realización de un o dos Exámenes Teórico-Prácticos con un valor de hasta el 70% de la nota final de la asignatura. El resto de la nota se complementará con la calificación obtenida en la evaluación continua de la convocatoria ordinaria.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

Las siguientes referencias son de consulta obligatoria:

Burden, R.L.; Faires J.D.; Burden, A.M. (2017). *Análisis numérico*. Cengage Learning, México.

Steven C. Chapra y Raymond P. Canale. (2007). *Métodos numéricos para ingenieros*, 7ta Edición.

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable para aquellos estudiantes que quieran profundizar en los temas que se abordan en la asignatura.

Kincaid, D.; Cheney, W. (1994). *Análisis numérico*. Addison-Wesley Iberoamericana.

Martín, I.; Pérez, V.M. (1998). Cálculo numérico para computación en Ciencia e Ingeniería. Síntesis,

Simmons, G. F. (1993). Ecuaciones diferenciales. McGraw-Hill,

WEBS DE REFERENCIA:

No aplica

OTRAS FUENTES DE CONSULTA:

No aplica