Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2022

EN3BS10 Physics for Computing Science

Programme: B.Tech.

Branch/Specialisation: CSBS

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

Q.1	i.	Resonating cavity in a laser	design helps-	1
		(a) Create population invers	-	
		(b) Create a three-level lase	r beam	
		(c) Create an amplified coh	erent lasing beam	
		(d) None of these		
	ii.	A step index fibre has a co	re of refractive index 1.5 and cladding	1
		of refractive index 1.48 the	critical angle of the fibre is-	
		(a) 80.63^0 (b) 14.13^0	(c) 28.26° (d) 67°	
	iii.	What happens if the ordinar	ry unpolarized light is passed through a	1
		uniaxial crystal?		
		(a) Light is split into two ra	ys	
		(b) Light remains unaffecte	d	
		(c) Light is split into more t	han two rays	
		(d) None of these		
	iv.	The tip of a needle does no	t give a sharp image on the screen this	1
		is due to the fact-		
		(a) Interference	(b) Diffraction	
		(c) Polarization	(d) Refraction	
	v.	In hexagonal crystal the ang	gles between the axis are-	1
		(a) $\alpha = \beta = \gamma = 90^{\circ}$	(b) $\alpha \neq \beta \neq \gamma \neq 90^0$	
		(c) $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	(d) $\alpha = \gamma = 90^{\circ} \neq \beta$	
	vi.	The packing fraction has m	aximum value for-	1
		(a) FCC structure	(b) SC structure	
		(c) BCC structure	(d) None of these	
			P.T	.O.

P.T.O.

[2]

	vii.	The potential energy of a particle executing S.H.M. is maximum at- (a) Position of one third of amplitude (b) Equilibrium position (c) Midway (between zero and maximum) (d) Extreme position	1
	viii.	The unit of spring constant in SI system of units is-	1
		(a) Nm^2 (b) Nm^{-1} (c) Nm^{-2} (d) Nm	
	ix.	According to band theory a solid is characterized by-	1
		(a) The conduction and valence bands	
		(b) Only the conduction band	
		(c) Only the valence band	
		(d) None of these	
	х.	Which of the following engines is the most efficient?	1
		(a) Gasoline engine (b) Diesel engine	
		(c) Steam engine (d) Carnot engine	
Q.2	i.	Explain the difference between step index and graded index fibre.	3
Q.2	ii.	With the help off necessary diagram and energy level diagram	7
	111	explain the construction and working of ruby laser.	•
OR	iii.	Explain the term absorption, spontaneous and stimulated emission	7
		of radiation. What are the characteristics of laser beam?	
Q.3	i.	A parallel beam of monochromatic light is normally incident on a	3
		plane transmission grating having 12000 lines per centimetre. The	
		second order spectral line is observed at an angle 45°. Find the	
		wavelength of light used.	_
	ii.	Describe Fresnel's biprism. Derive the expression for the fringe	7
		width. How will you measure the wavelength of monochromatic	
0 D		light using biprism method?	_
OR	iii.	Derive an expression for the intensity distribution due to fraunhofer	7
		diffraction at a single slit and show that intensity of the first	
		subsidiary maxima is about 4.5 % of that of the principal maximum.	
Q.4	i.	What is Planck's quantum hypothesis?	2

[3]

	ii.	An electron has a momentum $5.4 \times 10^{-26} \text{ kg.m/sec}$ with an accuracy of 0.05% . Find the minimum uncertainty in the location of the electron.	3
	iii.	Derive time dependent Schrodinger's wave Equation.	5
OR	iv.	What are the conditions and limitations that the wave function must obey? Compute the energy of the lowest three levels for an electron in a square well of width 3 Å.	5
Q.5		Attempt any two:	
	i.	What are damped vibrations? Establish the differential equation of motion for a damped harmonic oscillator for overdamped condition.	5
	ii.	Show that for a particle executive S.H.M. the average values of kinetic and potential energies are the same and each is equal to half of the total energy.	5
	iii.	What are Maxwell's equations? Write down their differential and integral form with physical significance.	5
Q.6		Attempt any two:	
	i.	Draw neat energy level diagrams of conductors insulators and semiconductors and distinguish between them.	5
	ii.	Write short note on entropy and second law of thermodynamics.	5
	iii.	What is first law of thermodynamics? Explain it with the help of an example.	5

Marking Scheme EN3BS10 Physics for Computing Science

Q.1	i	c) create an amplified coherent lasing beam.	1
	ii	a) 80.63 ⁰	1
	iii	a) light is split into two rays	1
	iv	b) diffraction	1
	V	c) $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$	1
	vi	a) FCC structure	1
	vii	d) extreme position	1
	viii	b) Nm ⁻¹	1
	ix	a) the conduction and valence bands	1
	X	d) Carnot engine.	1
Q.2	i	step index fibre	1.5
		graded index fibre	1.5
	ii	Block diagram	1.5
		Eenergy level diagram	1.5
		Active medium + Active Centre + Correct wavelength Construction	1 1.5
		working	1.5
OR	iii	absorption, spontaneous and stimulated emission of radiation. (1.5 mark	4.5
OK	111	each)	4.5
		characteristics of laser beam	2.5
		characteristics of faser octain	2.0
Q.3	i	Correct Formula: $(e+d) \sin \theta = n\lambda$	1
(Solution of the numerical	1.5
		Ans.= 2946 Å	0.5
	ii	Description of Fresnel's biprism.	1.5
		Derivation of the fringe width.	4
		wavelength determination using biprism method?	1.5
OR	iii	Diagram	1
		Derivation upto the main intensity expression	3
		Derivation upto the condition of principle maxima and minima	1.5
		Remaining part	1.5

Q.4	i	Planck's Quantum hypothesis	1.5
		Planck's radiation formula	0.5
	ii	Correct formula: $\Delta x.\Delta p = h/4\pi$	1
		Solution of the numerical	1.5
		Ans. 1.952 x 10 ⁻⁶ m	0.5
	iii	Derivation upto the differentiation with respect to time and position	3
		Remaining part.	2
OR	iv.	Conditions and limitations of the wave function	2
		Correct formula : $En = n^2h^2 / 8mL^2$	1
		Solution of the numerical	1.5
		Ans. $E1 = 6.6 \times 10^{-19} \text{ J}$	0.5
		$E2 = 26.78 \times 10^{-19} \text{ J}$	
		$E3 = 59.4 \times 10^{-19} \text{ J}$	
		Attempt any two	
Q.5	i.	What are damped vibrations	1
		General differential equation of motion for a damped harmonic oscillator	3
		for overdamped condition.	
			1
	ii.	Expression upto the total energy term	2
		Expression upto the average P.E.	1.5
		Expression upto the average K.E.	1.5
	iii	What are Maxwell's equations	1
		Differential and integral form with physical significance (1 mark each)	4
		Attempt any two	
Q.6	i.	Energy level diagrams	1.5
		Difference between conductors insulators and semiconductors	3.5
	ii.	short note on entropy	2.5
		short note on second law of thermodynamics.	2.5
	iii	What is first law of thermodynamics	3
		Explain it with the help of an example.	2