CPE348: Introduction to Computer Networks

Lecture #13: Chapter 4.1

Jianqing Liu Assistant Professor of Electrical and Computer Engineering, University of Alabama in Huntsville

jianqing.liu@uah.edu http://jianqingliu.net

Chapter 4 – Advanced Networking

- How do we build a system that can
 - handle hundreds of thousands of networks,
 - host billions of end nodes?

How to enhance the functionalities of Internet?

Chapter Outline

- Global Internet
- Multicast
- Mobile IP

Chapter Goal

- Understanding the scalability of routing in the Internet
- Discussing IPv6
- Understanding the concept of multicasting
- Discussing Mobile IP

The Global Internet – history

NSFNET T3 Network 1992

National Science Foundation Network (NSFNET) program 1988-1992

The Global Internet

Global Internet has a tree structure and operated by multiple service providers.

Interdomain Routing

 Internet is organized by interconnected autonomous systems.

- Autonomous System (AS)
 - corresponds to an administrative domain
 - examples: University, company, backbone network

Interdomain Routing

What is the difference between a ISP and an AS?

ISP: Cogent, AT&T, etc.

AS: UAH, Intel, etc.

Interdomain Routing

A network with two autonomous systems

Route Propagation

- Idea: a hierarchical way to disseminate routing information to a large internet.
 - Improves scalability WHY NOT if non-hierarchical?
- Divide the routing problem into:
 - Routing within a single AS Intra-domain routing protocol
 - Routing between ASs Inter-domain routing protocol

Intra-domain routing

We've studied it in the previous chapter!

Inter-domain routing

- Inter-domain Routing Protocols
 - Exterior Gateway Protocol (EGP) <u>first attempt</u>
 - Forced a tree-like topology onto the Internet
 - Did not allow for the topology to become general
 - Tree-like structure: a single backbone and ASs are connected only as parents and children and not as peers.
 - Border Gateway Protocol (BGP) replaces EGP
 - Assumes that the Internet is an arbitrarily interconnected set of ASs.

The goal of BGP

- To find one path to the dest. that is loop free
 - Reachability more than Optimality
 - Optimal path is hard to find. WHY?

Design foundations for BGP:

- Define local traffic as traffic that originates at or terminates on nodes within an AS.
- Define transit traffic as traffic that passes through an AS.

Depending on the traffic type:

- Stub AS: only connect to one other AS; only carry local traffic (e.g., small corporation).
- Multihomed AS: connect to more than one other AS; only carry local traffic (e.g., large corporation)
- Transit AS: connect to more than one other AS; carry both transit and local traffic (e.g., backbone providers)

Each AS has:

- One BGP speaker that advertises:
 - local networks
 - other reachable networks (transit AS only)
 - gives path information uses a path vector
- One or more border gateways
 - routers through which packets enter and leave the AS

BGP: Example

- Speaker for AS 2 advertises reachability to
 - Networks 128.96, 192.4.153, 192.4.32, and 192.4.3, directly from AS 2.

BGP: Example

- Speaker for AS 1 advertises reachability to
 - Networks 128.96, 192.4.153, 192.4.32, and 192.4.3 along the path <AS 1, AS 2>.

BGP: router area

ABR's send other areas link-state information on all networks in their area

A domain divided into areas

Integrating Interdomain and Intradomain Routing

All routers run iBGP (interior BGP) to border routers;

Border routers (A, D, E) also run eBGP (Exterior BGP) to other ASs.

Integrating Interdomain and Intradomain Routing

Prefix	BGP Next Hop
18.0/16	Е
12.5.5/24	А
128.34/16	D
128.69./16	А

Router	IGP Path
Α	А
С	С
D	С
Е	С

BGP table for the AS

IGP table for router B

Prefix	IGP Path
18.0/16	С
12.5.5/24	А
128.34/16	С
128.69./16	А

Combined table for router B

BGP routing table, IGP(IBGP) routing table, and combined table at router B

Further Reading

Keycdn: https://tools.keycdn.com/bgp-looking-glass

Ping, DNS lookup, BGP looking glass, etc.

Cogent: http://www.cogentco.com/en/network/looking-glass

Internet service provider

Its served ASs, network map, BGP looking glass, etc.

