Züchtungslehre - Lösung 6

Peter von Rohr

November 12, 2015

Aufgabe 1 (5)

Für Aufgabe 1 wurde folgendes Pedigree verwendet

Die α_i -Werte für die Tiere im Pedigree sind in folgender Tabelle aufgelistet.

TierId	Wert in Matrix \mathbf{D}^{-1} (α_i)
1	1.00
2	1.00
3	2.00
4	1.33
5	2.00
6	2.00

Das direkte Aufstellen der inversen Verwandtschaftsmatrix \mathbf{A}^{-1} basiert auf folgenden Regeln.

Regeln für A^{-1}

• Initialisierung aller Elemente in \mathbf{A}^{-1} mit dem Wert 0

- Hat Tier i bekannte Eltern m und v dann folgende Veränderungen in \mathbf{A}^{-1} vornehmen
 - $-\alpha_i$ zum Element (i,i) (Zeile von Tier i und Kolonne von Tier i)hinzuzählen
 - $-\frac{\alpha_i}{2}$ von den Elementen (m,i), (i,m), (v,i) und (i,v) abziehen
 - $-\frac{\alpha_i}{4}$ zu den Elementen (m,m), (m,v), (v,m) und (v,v) hinzuzählen
- $\bullet\,$ Nur Elternteil m von Tier i ist bekannt, dann folgende Veränderungen in \mathbf{A}^{-1} vornehmen
 - $-\alpha_i$ zum Element (i,i) hinzuzählen
 - $-\frac{\alpha_i}{2}$ von den Elementen (m,i) und (i,m) abziehen
 - $\frac{\alpha_i}{4}$ zum Element (m,m)hinzuzählen
- Tier i hat keine bekannten Eltern, dann α_i zum Element (i,i) hinzuzählen

Schritte 1 bis 3

Schritte 1 bis 3 zur Berechnung der Anteile von \mathbf{A}^{-1} für Tiere 1 bis 3 wurden in der Aufgabe vorgegeben. Nach diesen drei Schritten sieht die Matrix \mathbf{A}^{-1} wie folgt aus

$$\mathbf{A}^{-1} = \begin{bmatrix} 1.50 & 0.50 & -1.00 & 0.00 & 0.00 & 0.00 \\ 0.50 & 1.50 & -1.00 & 0.00 & 0.00 & 0.00 \\ -1.00 & -1.00 & 2.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \end{bmatrix}$$

Schritt 4

Tier 4 hat nur einen bekannten Elternteil. Aus der Tabelle der α_i Werte kann $\alpha_4=1.33$ bestimmt werden. Somit werden folgende Beträge zu \mathbf{A}^{-1} hinzugefügt.

- $\alpha_4 = 1.33$ zum Element (4,4) hinzuzählen
- $\frac{\alpha_4}{2} = 0.67$ von den Elementen (1,4) und (4,1) abziehen
- $\frac{\alpha_4}{4} = 0.33$ zum Element (1,1) hinzuzählen

Somit sieht die Matrix A^{-1} nach Schritt 4 wie folgt aus.

Schritte 5 und 6

Tiere 5 und 6 haben bekannte Eltern 4 und 2, somit werden folgende Beiträge zu \mathbf{A}^{-1} hinzugefügt.

Für Tier 5

- $\alpha_5 = 2$ zum Element (5,5) hinzuzählen
- $\frac{\alpha_5}{2} = 1$ von den Elementen (4,5), (5,4), (2,5) und (5,2) abziehen
- $\frac{\alpha_5}{4} = 0.5$ zu den Elementen (4,4), (2,2), (4,2) und (2,4) hinzuzählen

Somit sieht die Matrix A^{-1} nach Schritt 5 wie folgt aus.

$$\mathbf{A}^{-1} = \begin{bmatrix} 1.5 + 0.33 & 0.5 & -1 & 0 - 0.67 & 0 & 0 \\ 0.5 & 1.5 + 0.5 & -1 & 0 + 0.5 & 0 - 1 & 0 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 - 0.67 & 0 + 0.5 & 0 & 0 + 1.33 + 0.5 & 0 - 1 & 0 \\ 0 & 0 - 1 & 0 & 0 - 1 & 0 + 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Für Tier 6

- $\alpha_6 = 2$ zum Element (6,6) hinzuzählen
- $\frac{\alpha_6}{2} = 1$ von den Elementen (4,6), (6,4), (2,6) und (6,2) abziehen
- $\frac{\alpha_6}{4} = 0.5$ zu den Elementen (4,4), (2,2), (4,2) und (2,4) hinzuzählen

Somit sieht die Matrix A^{-1} nach Schritt 6 wie folgt aus.

$$\mathbf{A}^{-1} = \begin{bmatrix} 1.5 + 0.33 & 0.5 & -1 & 0 - 0.67 & 0 & 0 \\ 0.5 & 1.5 + 0.5 + 0.5 & -1 & 0 + 0.5 + 0.5 & 0 - 1 & 0 - 1 \\ -1 & -1 & 2 & 0 & 0 & 0 \\ 0 - 0.67 & 0 + 0.5 + 0.5 & 0 & 0 + 1.33 + 0.5 + 0.5 & 0 - 1 & 0 - 1 \\ 0 & 0 - 1 & 0 & 0 - 1 & 0 + 2 & 0 \\ 0 & 0 - 1 & 0 & 0 - 1 & 0 & 0 + 2 \end{bmatrix}$$

Nach Vereinfachung der Summen haben wir folgend Matrix als Resultat

$$\mathbf{A}^{-1} = \begin{bmatrix} 1.83 & 0.50 & -1.00 & -0.67 & 0.00 & 0.00 \\ 0.50 & 2.50 & -1.00 & 1.00 & -1.00 & -1.00 \\ -1.00 & -1.00 & 2.00 & 0.00 & 0.00 & 0.00 \\ -0.67 & 1.00 & 0.00 & 2.33 & -1.00 & -1.00 \\ 0.00 & -1.00 & 0.00 & -1.00 & 2.00 & 0.00 \\ 0.00 & -1.00 & 0.00 & -1.00 & 0.00 & 2.00 \end{bmatrix}$$

Kontrolle

Als Kontrolle rechnen wir die Inverse Verwandtschaftsmatrix mit der Funktion getAInv()

Aufgabe 2 (7)

Für Aufgabe 2 arbeiten wir mit einem im Vergleich zu Aufgabe 1 leicht modifizierten Pedigree.

```
> library(pedigreemm)
> nAnzTiere <- 6
> pedA2 \leftarrow pedigree(sire = c(NA, NA, 1, 1, 4, 5),
                    dam = c(NA, NA, 2, NA, 3, 2), label = 1:nAnzTiere)
> print(pedA2)
  sire dam
1 <NA> <NA>
2 <NA> <NA>
     1
     1 <NA>
5
     4
           3
     5
           2
6
```

In der Aufgabenstellung wurden die α_i Werte für die ersten drei Tiere bereits vorgegeben.

T	ierId	Wert in Matrix \mathbf{D}^{-1} (α_i)
	1	1
	2	1
	3	2
	4	
	5	
	6	

Berechnung der α_i

Die α_i Werte entsprechen den Diagonalelementen der Matrix \mathbf{D}^{-1} aus der LDL-Zerlegung der inversen Verwandtschaftsmatrix \mathbf{A}^{-1} . Da die Matrix \mathbf{D}^{-1} und somit auch die Matrix \mathbf{D} beides Diagonalmatrizen sind, lassen sich die α_i Werte einfach aus den Diagonalelementen d_{ii} der Matrix \mathbf{D} berechnen. Aufgrund der Eigenschaften einer Diagonalmatrix gilt, dass

$$\alpha_i = \frac{1}{d_{ii}} \tag{1}$$

Aus der LDL-Zerlegung und der Cholesky-Zerlegung der Verwandtschaftsmatrix ${\bf A}$ können wir die d_{ii} Werte berechnen

$$\mathbf{A} = \mathbf{L} * \mathbf{D} * \mathbf{L}^T = \mathbf{U} * \mathbf{U}^T \tag{2}$$

Aus den zwei Zerlegungen von A folgt, dass

$$\mathbf{U} = \mathbf{L} * \mathbf{S} \tag{3}$$

wobei **S** eine Diagonalmatrix ist deren Elemente $s_{ii} = \sqrt{d_{ii}}$ entsprechen. Da die Matrix **L** eine untere Dreiecksmatrix mit Diagonalelementen $l_{ii} = 1$ ist, entsprechen die Diagonalelemente u_{ii} der Matrix **U** den Diagonalelementen s_{ii} der Matrix **S**. Es gilt also

$$u_{ii} = s_{ii} = \sqrt{d_{ii}} = \frac{1}{\sqrt{\alpha_i}} \tag{4}$$

Diese Beziehung in Gleichung (4) zeigt, dass wir α_i aus den u_{ii} berechnen können, wobei gilt, dass aufgrund von (4) $\alpha_i = \frac{1}{u_{ii}^2}$ ist. Sobald wir also für jedes Tier i das entsprechende Diagonalelement u_{ii} der Matrix **U** bestimmen können, wissen wir auch das zugehörige α_i .

In der Vorlesung hatten wir gesehen, dass die Diagonale
lemente von ${\bf D}$ berechnet werden als

$$d_{ii} = 1 - 0.25(a_{ss} + a_{dd}) \tag{5}$$

wobei s und d die Eltern von i sind und a_{ss} und a_{dd} die den Eltern entsprechenden Diagonalelemente aus der Verwandtschaftsmatrix sind. Setzen wir Gleichung (5) in Gleichung (4) ein, dann folgt

$$u_{ii} = s_{ii} = \sqrt{d_{ii}} = \sqrt{1 - 0.25(a_{ss} + a_{dd})}$$
 (6)

Aufgrund der Cholesky-Zerlegung von $\mathbf{A} = \mathbf{U} * \mathbf{U}^T$ können die Diagonalelemente a_{ii} von \mathbf{A} berechnet werden als

$$a_{ii} = \sum_{m=1}^{i} u_{im}^2 \tag{7}$$

Setzen wir die Beziehung aus Gleichung (7) in Gleichung (6) dann erhalten wir eine rekursive Formel für u_{ii}

$$u_{ii} = \sqrt{1 - 0.25(a_{ss} + a_{dd})} = \sqrt{1 - 0.25(\sum_{m=1}^{s} u_{sm}^2 + \sum_{m=1}^{d} u_{dm}^2)}$$
(8)

Die Nebendiagonale
lemente u_{ij} , wobei $i \neq j$ der Matrix **U** werden berechnet als

$$u_{ij} = 0.5(u_{sj} + u_{dj}) (9)$$

wobei, s und d die Eltern von Tier i sind

Schritt 4

Tier 4 hat Tier 1 als Vater und keine bekannte Mutter. Mit der rekursiven Formel aus Gleichung 8 berechnen wir u_{44} als

$$u_{44} = \sqrt{1 - 0.25(\sum_{m=1}^{1} u_{sm}^2)} = \sqrt{1 - 0.25 * u_{11}^2} = \sqrt{0.75}$$
 (10)

und

$$\alpha_4 = \frac{1}{u_{44}^2} = \frac{1}{0.75} = \frac{4}{3} \approx 1.33 \tag{11}$$

Schritt 5

Tier 5 hat bekannte Eltern 4 und 3. Die Formel für u55 lautet somit

$$u_{55} = \sqrt{1 - 0.25(\sum_{m=1}^{4} u_{sm}^2 + \sum_{m=1}^{3} u_{dm}^2)}$$

$$= \sqrt{1 - 0.25(u_{41}^2 + u_{42}^2 + u_{43}^2 + u_{44}^2 + u_{31}^2 + u_{32}^2 + u_{33}^2)}$$
(12)

Als Vorbereitung müssen wir zuerst die Off-Diagonale
lemente in Gleichung $\left(13\right)$ berechnen.

$$u_{41} = 0.5 * u_{11} = 0.5$$

$$u_{42} = 0.5 * u_{12} = 0$$

$$u_{43} = 0.5 * u_{13} = 0$$

$$u_{44} = \sqrt{0.75}$$

$$u_{31} = 0.5 * (u_{11} + u_{21}) = 0.5$$

 $u_{32} = 0.5 * (u_{12} + u_{22}) = 0.5$
 $u_{33} = \sqrt{0.5}$

Einsetzen der Werte führt zu

$$u_{55} = \sqrt{1 - 0.25(0.25 + 0.75 + 0.25 + 0.25 + 0.5)} = \sqrt{0.5}$$
 (13)

$$\alpha_5 = \frac{1}{u_{55}^2} = \frac{1}{0.5} = 2 \tag{14}$$

Schritt 6

Tier 6 hat bekannte Eltern 5 und 2. Der Wert u_{66} kann somit berechnet werden als

$$u_{66} = \sqrt{1 - 0.25(\sum_{m=1}^{5} u_{sm}^2 + \sum_{m=1}^{2} u_{dm}^2)}$$

$$= \sqrt{1 - 0.25(u_{51}^2 + u_{52}^2 + u_{53}^2 + u_{54}^2 + u_{55}^2 + u_{21}^2 + u_{22}^2)}$$
(15)

Die in Gleichung (16) verwendeten Offdiagonalelemente entsprechen

$$\begin{array}{lll} u_{51} & = & 0.5*(u_{41}+u_{31}) = 0.5*(u_{41}+0.5*(u_{11}+u_{21})) = 0.5*(0.5+0.5*(1+0)) = 0.5\\ u_{52} & = & 0.5*(u_{42}+u_{32}) = 0.5*(u_{42}+0.5*(u_{12}+u_{22})) = 0.5*(0+0.5*(0+1)) = 0.25\\ u_{53} & = & 0.5*(u_{43}+u_{33}) = 0.5*(0+\sqrt{0.5}) = \sqrt{0.125}\\ u_{54} & = & 0.5*(u_{44}+u_{34}) = 0.5*(\sqrt{0.75}+0) = \sqrt{3/16}\\ u_{55} & = & \sqrt{0.5} \end{array}$$

$$u_{21} = 0$$

$$u_{22} = 1$$

Durch Einsetzen der Offdiagonalelemente erhalten wir

$$u_{66} = \sqrt{1 - 0.25(1/4 + 1/16 + 1/8 + 3/16 + 1/2 + 1)} = \sqrt{15/32}$$

und

$$\alpha_6 = \frac{1}{u_{66}^2} = \frac{32}{15} \approx 2.133 \tag{16}$$

Zusammengefasst in der vorgegebenen Tabelle sehen die α_i Werte wie folgt aus

TierId	Wert in Matrix \mathbf{D}^{-1} (α_i)
1	1
2	1
3	2
4	4/3
5	2
6	32/15

Als Kontrolle können die α_i Werte auch mit der Funktion $\mathtt{Dmat}()$ berechnet werden.

> 1/Dmat(pedA2)

Zusatzaufgabe

Als Zusatzaufgabe sollen wir die inversen Verwandtschaftsmatrix \mathbf{A}^{-1} mit den soeben berechneten α_i Werten aufstellen. Das Vorgehen ist gleich, wie unter Aufgabe 1 gezeigt, nur die α_i Werte sind anders. Im folgenden werden die Beiträge zur Matrix \mathbf{A}^{-1} für jedes Tier aufgeführt

Beitrag aufgrund von Tier 1

Beitrag aufgrund von Tier 2

Beiträge aufgrund von Tier 3

Beiträge aufgrund von Tier 4

$$\mathbf{A}^{-1} = \begin{bmatrix} 0 + 1 + 0.5 + 0.33 & 0 + 0.5 & 0 - 1 & 0 - 0.67 & 0 & 0 \\ 0 + 0.5 & 0 + 1 + 0.5 & 0 - 1 & 0 & 0 & 0 \\ 0 - 1 & 0 - 1 & 0 + 2 & 0 & 0 & 0 \\ 0 - 0.67 & 0 & 0 & 0 + 1.33 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Beiträge aufgrund von Tier 5

$$\mathbf{A}^{-1} = \begin{bmatrix} 0+1+0.5+0.33 & 0+0.5 & 0-1 & 0-0.67 & 0 & 0\\ 0+0.5 & 0+1+0.5 & 0-1 & 0 & 0 & 0\\ 0-1 & 0-1 & 0+2+0.5 & 0+0.5 & 0-1 & 0\\ 0-0.67 & 0 & 0+0.5 & 0+1.33+0.5 & 0-1 & 0\\ 0 & 0 & 0-1 & 0-1 & 0+2 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Beiträge aufgrund von Tier 6

$$\mathbf{A}^{-1} = \begin{bmatrix} 0+1+0.5+0.33 & 0+0.5 & 0-1 & 0-0.67 & 0 & 0\\ 0+0.5 & 0+1+0.5+0.53 & 0-1 & 0 & 0+0.53 & 0-1.07\\ 0-1 & 0-1 & 0+2+0.5 & 0+0.5 & 0-1 & 0\\ 0-0.67 & 0 & 0+0.5 & 0+1.33+0.5 & 0-1 & 0\\ 0 & 0+0.53 & 0-1 & 0-1 & 0+2+0.53 & 0-1.07\\ 0 & 0-1.07 & 0 & 0 & 0-1.07 & 0+2.13 \end{bmatrix}$$

Nach dem Auflösen aller Summen resultiert folgende Matrix

$$\mathbf{A}^{-1} = \begin{bmatrix} 1.83 & 0.50 & -1.00 & -0.67 & 0.00 & 0.00 \\ 0.50 & 2.03 & -1.00 & 0.00 & 0.53 & -1.07 \\ -1.00 & -1.00 & 2.50 & 0.50 & -1.00 & 0.00 \\ -0.67 & 0.00 & 0.50 & 1.83 & -1.00 & 0.00 \\ 0.00 & 0.53 & -1.00 & -1.00 & 2.53 & -1.07 \\ 0.00 & -1.07 & 0.00 & 0.00 & -1.07 & 2.13 \end{bmatrix}$$

Zur Kontrolle vergleichen wir unser Resultat mit dem Resultat der Funktion getAInv()

> (matRoundAInvA2 <- round(as.matrix(getAInv(pedA2)), digits = 2))</pre>

> max(matRoundAInvA2-mParsedEvaledAinvA2)

[1] 0