Vapor Pressure Lowering

Raoult's Law:

Vapor pressure of a solvent in a solution is lower than the vapor pressure of the pure solvent

Psolvent in solution = X solvent Psolvent

Raoult's Law and a Nonvolatile Solute

Glycerin ($C_3H_8O_3$) is a nonvolatile compound. Calculate the vapor pressure of an aqueous solution made by adding 164 g $C_3H_8O_3$ to 338 mL of water at 39.8 °C.

Vapor pressure of pure water = 54.74 torr at 39.8 °C. Density of pure water = 0.992 g/mL at 39.8 °C

$$X_{H_2Q} = \frac{18.62}{18.62 + 1.18} = 0.913$$

$$\frac{338(0.992)}{18.01} = 18.62 \text{ mol}$$

Psolution = 0.913 (54.74) = 49.96 torr

Raoult's Law and a Volatile Solute

Methanol (CH_3OH) and propanol (C_3H_7OH) are both volatile liquids.

Vapor pressure of pure $CH_3OH = 303$ torr at 40 °C Vapor pressure of pure $C_3H_7OH = 44.6$ torr at 40 °C

Calculate the mole fractions of CH_3OH and C_3H_7OH in a solution that has a vapor pressure of 154 torr at 40 °C assuming ideal behavior.

Raoult's Law and a Volatile Solute

Ideal solution:

Intermolecular forces between solute(s) and solvent are no different than those between the pure compounds

Osmotic Pressure

A solution was prepared by dissolving 8.92 g of $FeCl_3$ (s) in enough water to make 500.0 mL of solution. It exhibited an osmotic pressure of 9.15 atm at 25.0 °C. Calculate the molar mass of $FeCl_3$ (s).

$$9.15 = \frac{0}{0.5}(0.08206)(298.15)(4)$$

$$0.0467$$

$$0.0467$$

$$0.0467 = 190.89 |mol$$