

Janika Rhein, Dikshyant Acharya, Tetiana Prykhodko and Ludwig Meder 10.07.2024

Outline - delete later on

- What is the North Atlantic Oscillation (NAO)
 - Definition, both ways to calculate it
 - Importance (impact on society) -> motivation for prediction
 - Available forecasts, maybe machine learning approaches

Data

- time series characteristics: monthly/daily
- o showing them with example weather state

Our approaches

- monthly time series
 - our models
- daily time series
 - our models

Conclusion

- Monthly data not good (no former literature)
- Daily data better -> maybe best with rolling window approach

The North Atlantic Oscillation (NAO)

- Pressure difference between Azores High and Icelandic Low
- 3 Phases:
 - Positive: Strongly developed pressure systems
 - Neutral: One pronounced pressure system
 - Negative: Low pressure difference or turn of signs

NAO - Implications: An Example

NAO- 13.01.24: -3.93

NAO+ 26.01.24: + 3.07

NAO - Implications

- European (North American) Weather
 - temperature and precipitation
 - heat waves/ cold spells
- Deep Convection
 - -> large scale ocean circulation

Rühs et al. (2019)

NAO - Numerical Forecast Example

- GloSea5 (based on HadGEM3)
- atm: 0.85°x0.55° (lon x lat), 85 vertical levels
- ocean: 0.25°, 75 vertical levels
- 24 ensemble member

Scaife et al. (2014)

Data

Monthly Dataset:

- 1825 2023
- SLP' Azores SLP' Iceland

Daily Dataset:

- 01.01.1950 12.05.2024
- based on the first (rotated)
 Principal Component/EOF

SLP': Normalised Pressure Anomaly

Evaluation Metrics

- Mean Squared Error
- Mean Absolute Error
- Median Absolute Error
- Phase Percentage

```
def phase_check(y_test,y_pred):
 Args:
    y_test
    y pred
 Returns: phase agreement of the two time series in percentage
 y test phases = np.zeros(len(y test))
 y_pred_phases = np.zeros(len(y_pred))
 negative_test = np.where(y_test <-1)[0]</pre>
 negative pred = np.where(y pred <-1)[0]</pre>
 positive test = np.where(v test >1)[0]
 positive pred = np.where(y pred >1)[0]
 v test phases[negative test] = -1
 v pred phases [negative pred] = -1
 y test phases [positive test] = 1
 y pred phases positive pred = 1
 counter = np.sum(y_test_phases==y_pred_phases)
 phase percent = 100/len(y test) * counter
  return phase percent
```

Baseline: SARIMA

- monthly dataset
- 80% for training, 20% for testing/predicting
 - -> 478 months forecast
- SARIMA(0,0,1)(2,1,0)[12]

Metrics for Testset:

MSE: 4.01

Phase Percent: 38.08%

Baseline: ARIMA

- daily dataset
 - 1950-2024 -> Training
 - o 2024- 05.2024 -> Validation
- 60 Data to predict 1 data

Metrics for Validation Set: **MAE**: 0.14

ARIMA

- daily dataset
 - 1950-2024 -> Training
 - o 2024- 05.2024 -> Validation
- 100 Data to predict 2 data

Metrics for Validation Set: **MAE**: 0.2

ARIMA

- daily dataset
 - 1950-2024 -> Training
 - o 2024- 05.2024 -> Validation
- 100 Data to predict 4 data

Metrics for Validation Set:

MAE: 0.36

SARIMA

- daily dataset
 - 1950-2024 -> Training
 - o 2024- 05.2024 -> Validation
- 60 Data to predict 1 data

Metrics for Validation Set: **MAE**: 0.19

LSTM

- daily dataset
 - 1950-2024 -> Training
 - 2024- 05.2024 -> Validation
- 50 Data to predict 1 data

LSTM

- daily dataset
 - 1950-2024 -> Training
 - o 2024- 05.2024 -> Validation
- 60 Data to predict 1 data

Metrics for Validation Set: **MAE**: 0.18

GRU

- daily dataset
 - 1950-2024 -> Training
 - 2024- 05.2024 -> Validation
- 60 Data to predict 1 data

GRU

- daily dataset
 - 1950-2024 -> Training
 - o 2024- 05.2024 -> Validation
- 60 Data to predict 1 data

Metrics for Validationset: **MAE**: 0.18

NBeatsNet with monthly / daily data

- 24 data to predict one entry
- epochs: 50
- learning rate: 0.001
- training / val / test = 60 / 20 / 20

Monthly

Metrics for Test Set: Mean squared error: 0.1583 Phase Percent: 99.7802

Daily

Metrics for Test Set: Mean squared error: 0.0135 Phase Percent: 99.9076

NBeatsNet with monthly data

NBeatsNet with daily data (section of 1000 days)

- ensemble empirical mode decomposition
- decomposes TS in intrinsic mode functions (IMFs) and residuals
- increases model performance!

- 24 months to predict 1
- fine tuning did not improve the model...

Metrics for Testset:

MSE: 1.22

Phase Percent: 70.55%

```
XGBRegressor

XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, random_state=None, ...)
```


Extreme Learning Machine (ELM) with daily data

ELM:

- one hidden layer
- weights and biases: randomly assigned
- extreme fast training process due to least-square solutions of output weights
- 20 days to predict one

```
# Initialize and train the ELM model
elm = ELM(X_train_flat.shape[1], y_train_flat.shape[1],batch=400)
elm.add_neurons(128, 'sigm') # , 'tanh'
elm.train(X_train_flat, y_train_flat, 'MSE')#, 'V', Xv=X_val_flat, Tv=y_val_flat)
```

MSE: 0.04, MAE: 0.16, Phase Ratio: 91.6%

Extreme Learning Machine (ELM) with daily data

Model	Туре	Finetuning	Normalization	Preprocessing	External TS	Frequency	Input length	Output length	MSE	Phase
XGBoost	ens_learning	None	True	None	None	Monthly	24	1	3.85	38.35
XGBoost	ens_learning	None	True	EEMD	None	Monthly	24	1	1.22	70.55
ELM	NN	10 neurons	True	None	None	Monthly	12	1	3.28	38.2
ELM	NN	73 neurons	True	None	El Nino Index	Monthly	36	1	3.4	39.1
ELM	NN	64 neurons	True	None	None	Daily	14	1	0.045	91.7
ELM	NN	128 neurons	True	None	None	Daily	14	5	0.275	80.7
ELM	NN	128 neurons	True	None	None	Daily	62	14	0.51	76.4
ELM	NN	128 neurons	True	None	None	Daily	123	31	0.63	75.1
LSTM	RNN	64 neurons	True	None	None	Daily	48	1	0.48	91.3
LSTM	RNN	64 neurons	True	None	None	Daily	48	5	0.27	73.0
NBeats	NN	None	True	True	None	Daily	24	1	0.013	99.90
NBeats	NN	None	True	True	None	Monthly	24	1	0.158	99.78

Outlook

- Verification of results
- Comparing models more systematically (daily/monthly data, EEMD/no EEMD)
- Combining the best models & methods
- Using rolling forecast

References

- Weather maps: https://www.wetter3.de/Archiv/
- NAO index values: https://verstat.no/nao-index-daily-monthly-and-yearly-average/
- Rühs, S., Oliver, E. C., Biastoch, A., Böning, C. W., Dowd, M., Getzlaff, K., ... & Myers, P. G. (2021). Changing spatial patterns of deep convection in the subpolar North Atlantic. *Journal of Geophysical Research: Oceans*, 126(7), e2021JC017245.
- Scaife, A. A.; Arribas, A.; Blockley, E.; Brookshaw, A.; Clark, R. T.; Dunstone, N.; Eade, R.; Fereday, D.; Folland, C. K.; Gordon, M.; Hermanson, L.; Knight, J. R.; Lea, D. J.; MacLachlan, C.; Maidens, A.; Martin, M.; Peterson, A. K.; Smith, D.; Vellinga, M.; Wallace, E.; Waters, J.; Williams, A. (March 2014). "Skilful Long Range Prediction of European and North American Winters". *Geophysical Research Letters*. 41 (7): 2514–2519.
 Bibcode:2014GeoRL..41.2514S. doi:10.1002/2014GL059637. hdl:10871/34601. S2CID 127165980.
- Data: https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml