ГУАП



ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 3

# ИССЛЕДОВАНИЕ ФАКТОРОВ ПОРАЖЕНИЯ ЧЕЛОВЕКА ЭЛЕКТРИЧЕСКИМ ТОКОМ

по курсу:

БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ гр. №

4326

78.11.23 подпись, дата

Г. С. Томчук инициалы, фамилия

Т. П. Мишура инициалы, фамилия

### протокол

# Лабораторная работа №3

«Исследование факторов поражения человека электрическим током»

|              |               |       | рариант  | 4          |
|--------------|---------------|-------|----------|------------|
| Farmer (/2)6 | C             | 1/1.  |          | n          |
| Dogras a.    | _ Студенты: _ | evolu | rue      | DORNICH (  |
| T- 00        | 10-           | 0     | (A) n) n | A          |
|              | word soluter  | υ.,   | WARMOR D | . Granos D |
| )            | 01            | 7     |          | 1 4        |

(полись преподавателя)

(ДАТА)

1. Определение параметров электрического сопротивления тела человека

| Частота |     | Результаты |       |          |        |  |  |
|---------|-----|------------|-------|----------|--------|--|--|
|         |     | изме       | рений | расчётов |        |  |  |
| f, Fq   | lgf | Uв         | UмB   | I, MA    | Z, KOM |  |  |
| 25      | 1,4 |            | 1,0   | 0,1      | 20     |  |  |
| 35      | 1,5 |            | 1,1   | 0,11     | 18,18  |  |  |
| 45      | 1,6 |            | 1,3   | 0,13     | 15,38  |  |  |
| 60      | 1,8 |            | 1,5   | 0,15     | 13,33  |  |  |
| 100     | 2,0 |            | 2,0   | 0,2      | 10     |  |  |
| 250     | 2,4 | 2          | 4,8   | 0,48     | 4,17   |  |  |
| 500     | 2,7 | Z          | 10,0  | Ī        | 2      |  |  |
| 1000    | 3,0 |            | 20,0  | 2        | 1      |  |  |
| 2500    | 3,4 |            | 50,0  | 5        | 0,4    |  |  |
| 5000    | 3,7 |            | 100,0 | 10       | 0,2    |  |  |
| 10000   | 4,0 |            | 200,0 | 20       | 0,1    |  |  |
| 20000   | 4,3 |            | 350,0 | 35       | 0,06   |  |  |

Определить  $r_B$  при f = 15000  $\Gamma$ ц и  $z_H$  при f = 100  $\Gamma$ ц.

2. Исследование влияние сопротивления тела человека на величину тока при прикосновении его к одной из фаз сети с изолированной нейтралью

| Режим работы | Результаты измерений для фазы А $R_{us.  \phi a s b i} = 0,5  MO$ м |    |    |   |   |   |   |
|--------------|---------------------------------------------------------------------|----|----|---|---|---|---|
| Нормальный   | R <sub>чел</sub> , кОм                                              | 1  | 2  | 3 | 4 | 5 | 6 |
|              | Inen, MA                                                            | 12 | 10 | 8 | 6 | 5 | 2 |

3. Исследование влияния сопротивления изоляции фаз на величину тока при прикосновении человека к одной из фаз сети с изолированной нейтралью

| Режим работы | Результаты измерений для фазы А $R_{\rm ver} = 1 \; \kappa O { m M}$ |     |      |     |     |     |     |
|--------------|----------------------------------------------------------------------|-----|------|-----|-----|-----|-----|
| Нормальный   | R <sub>из. ф.</sub> , МОм                                            | 0,5 | 0,6  | 0,7 | 0,8 | 0,9 | 1   |
|              | Ічел, мА                                                             | 12  | 11,5 | 9   | 5,5 | 3   | 1,5 |

 Исследование влияния сопротивления тела человека на величину тока при прикосновении человека к одной из фаз сети с изолированной нейтралью, работающей в аварийном режиме

| Режим работы | $P$ езультаты измерений для фазы $C$ $R_{3am} = 0, 1 \ O$ м |    |    |    |    |    |    |
|--------------|-------------------------------------------------------------|----|----|----|----|----|----|
| Аварийный    | R <sub>чел</sub> , кОм                                      | 1  | 2  | 3  | 4  | 5  | 6  |
|              | Inex, MA                                                    | 80 | 64 | 50 | 40 | 35 | 30 |

5. Исследование влияния сопротивления тела человека на величину тока при прикосновении человека к одной из фаз сети с глухозаземленной нейтралью

| Режим работы | Результаты измерений для фазы С<br>$R_0 = 0.5 \ Om$ |    |    |    |    |    |    |
|--------------|-----------------------------------------------------|----|----|----|----|----|----|
| Нормальный   | R <sub>чел</sub> , кОм                              | l  | 2  | 3  | 4  | 5  | 6  |
|              | Iven, MA                                            | 71 | 57 | 42 | 30 | 27 | 22 |

6. Исследование влияния сопротивления тела человека на величину тока при прикосновении человека к одной из фаз сети с глухозаземленной нейтралью, работающей

в аварийном режиме

| Режим работы | Pезультаты измерений для фазы $AR_0 = 0.5 \ Om \ Rзам = 0.1 \ Om$ |    |    |    |    |    |    |
|--------------|-------------------------------------------------------------------|----|----|----|----|----|----|
| Аварийный    | R <sub>чел</sub> , кОм                                            | 1  | 2  | 3  | 4  | 5  | 6  |
|              | Inen, MA                                                          | 81 | 65 | 52 | 39 | 35 | 31 |

# 7. Исследование изоляции трехфазной сети переменного тока

| Harrison and harr | Результаты измерения и расчётов |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Наименование фазы | R <sub>из</sub> , МОм           | R <sub>aon</sub> , MO <sub>M</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| A                 | 500                             | 10 St. 20 St. 10 St. 10 St. 20 St. 10 |  |  |
| Б                 | 0,1                             | 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| С                 | 3                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

## 8. Исследование изоляции проводов

| Марка провода | Результаты измерения R <sub>изм</sub> , МОм | R <sub>доп</sub> , МОм |  |
|---------------|---------------------------------------------|------------------------|--|
| БПВЛ          | 0,4                                         | 0,5                    |  |
| БПВЛЭ         | 20                                          | 0,5                    |  |
| БПТ           | 50                                          | 0,5                    |  |
| ЕТПА          | 50                                          | 0,5                    |  |
| ΠP            | 0.1                                         | 0,2                    |  |
| AIIP          | 30                                          | 0,2                    |  |

#### 1 Исходные данные

Вариант: 2.

#### 2 Цель работы

Цель работы заключается в изучении основных схем трёхфазных электрических сетей переменного тока до 1000 В и опасностей, возникающих при прикосновении человека к одной из фаз; в исследовании факторов, определяющих опасность поражения человека электрическим током, методов теоретического и экспериментального исследования сопротивления тела человека, изоляции электрических сетей и проводов; в ознакомлении с защитными функциями заземляющих и зануляющих устройств, обеспечивающих электробезопасность при работе с электроустановками, методами их исследования, нормами, приборами и методикой контроля.

#### 3 Расчетные формулы

$$I = \frac{U_{MB}}{10}$$

где I – сила тока (мA),  $U_{mB}$  – показания на вольтметре.

$$Z = \frac{U_B}{I},$$

где Z – полное сопротивление тела человека (кOм), I – сила тока, UB – выходное напряжение генератора.

$$Z_{H} = r_{B} \text{ (при f>10 кГц)}$$

где  $Z_H$  – полное сопротивление наружного слоя кожи,  $r_B$  – внутреннее сопротивление рук и тела человека.

$$r_H = \frac{Z_0 - r_B}{2}$$

где  $r_H$  — активное сопротивление наружного слоя кожи (кОм),  $Z_o$  — сопротивление тела человека при  $f{\to}0$ ,  $r_B$  — внутреннее сопротивление рук и тела человека.

$$Z_{H} = \frac{Z_{f} - r_{B}}{2}$$

где  $Z_H$  — полное сопротивление наружного слоя кожи (кОм),  $r_B$  — внутреннее сопротивление рук и тела человека,  $Z_f$  — полное сопротивление тела человека при данной частоте.

$$X_C = \frac{1}{\omega^* C} = \frac{1}{2^* \pi^* f^* C}$$

где  $X_c$  – ёмкостное сопротивление человека (кОм),  $\omega$  – круговая частота, С – ёмкость наружного слоя кожи, f – частота.

$$C = \frac{\sqrt{r_H^2 - Z_H^2}}{2 * \pi * Z_H * r_H * f}$$

где C – ёмкость наружного слоя кожи (мк $\Phi$ ),  $r_H$  – активное сопротивление наружного слоя кожи,  $Z_H$  – полное сопротивление наружного слоя кожи, f – частота.

#### 4 Результаты измерений и вычислений

Таблица 1 – Определение параметров электрич. сопротивления тела человека

| Частота |         | Результаты |       |          |        |  |  |
|---------|---------|------------|-------|----------|--------|--|--|
| 9ac     | Haciota |            | ений  | расчётов |        |  |  |
| f, Гц   | lgf     | Uв         | UмB   | I, MA    | Z, кOм |  |  |
| 25      | 1,4     |            | 1,0   | 0,1      | 20     |  |  |
| 35      | 1,5     |            | 1,1   | 0,11     | 18,18  |  |  |
| 45      | 1,6     |            | 1,3   | 0,13     | 15,38  |  |  |
| 60      | 1,8     |            | 1,5   | 0,15     | 13,33  |  |  |
| 100     | 2,0     |            | 2,0   | 0,2      | 10     |  |  |
| 250     | 2,4     | 2          | 4,8   | 0,48     | 4,17   |  |  |
| 500     | 2,7     | 2          | 10,0  | 1        | 2      |  |  |
| 1000    | 3,0     |            | 20,0  | 2        | 1      |  |  |
| 2500    | 3,4     |            | 50,0  | 5        | 0,4    |  |  |
| 5000    | 3,7     |            | 100,0 | 10       | 0,2    |  |  |
| 10000   | 4,0     |            | 200,0 | 20       | 0,1    |  |  |
| 20000   | 4,3     |            | 350,0 | 35       | 0,06   |  |  |

 $r_{B}=0.08$  кОм (при  $f=15000~\Gamma$ ц)

 $Z_0 \approx 22 \ \kappa O M$ 

 $r_{\text{h}} = \frac{1}{2}*(22-0.08) = 10.96 \text{ kOm}$ 

 $Z_{\scriptscriptstyle H}$  = ½\*(10-0,08) = 4,96 кОм (при f = 100  $\Gamma$ ц)

 $C = 0.29 \text{ мк}\Phi$ 

 $X_c = 5.5 \text{ kOm}$ 

## 5 Графики зависимости



Рисунок 1 – График зависимости Z(f), f<100 Гц



Рисунок 2 — График зависимости Z(lg f), f>100 Гц



Рисунок 3 — График зависимости  $I_{\text{чел}}(R_{\text{чел}})$  при прикосновении человека к одной из фаз сети с изолированной нейтралью



Рисунок 4 — График зависимости  $I_{\text{чел}}(R_{\text{из.ф.}})$  при прикосновении человека к одной из фаз сети с изолированной нейтралью (влияние сопротивления изоляции фаз на величину тока)



Рисунок 5 — График зависимости  $I_{\text{чел}}(R_{\text{чел}})$  при прикосновении человека к одной из фаз сети с изолированной нейтралью в аварийном режиме



Рисунок 6 — График зависимости  $I_{\text{чел}}(R_{\text{чел}})$  при прикосновении человека к одной из фаз сети с глухозаземленной изолированной нейтралью



Рисунок 7 — График зависимости  $I_{\text{чел}}(R_{\text{чел}})$  при прикосновении человека к одной из фаз сети с глухозаземленной изолированной нейтралью в аварийном режиме

### 6 Принципиальные схемы подключения приборов



Рисунок 8 - Схема подключения измерительных приборов к модели для исследования электрического сопротивления тела человека



Рисунок 9 - Схема исследуемой трёхфазной сети переменного тока с изолированной нейтралью



Рисунок 10 - Схема трёхфазной сети переменного тока с изолированной и глухозаземлённой нейтралью



Рисунок 11 - Схемы присоединения мегаомметра М1102. а) Измерение сопротивления изоляции фазного провода; б) измерение сопротивления изоляции между фазами

#### 7 Выводы

В ходе работы были изучены основные схемы трёхфазных электрических сетей переменного тока до 1000 В и опасности, возникающие при прикосновении человека к одной из фаз; исследованы факторы, влияющие на вероятность поражения человека электрическим током, методы теоретического и экспериментального исследования сопротивления тела человека; оценено состояние изоляции электрических сетей и проводов; изучены методы измерения сопротивления изоляции, нормы и приборы.

- 1. Из графика зависимости Z(f) видно: чем больше частота, тем больше полное сопротивление тела человека стремится к нулю. В связи с этим увеличивается фактор опасности поражения человека электрическим током.
- 2. Из графиков зависимости (рис. 3–7) можно заметить, что при увеличении сопротивления изоляции опасность поражения током уменьшается. Однако прикосновение к сети в аварийном режиме опаснее, чем прикосновение к сети при нормальном режиме работы, как в случае изолированной нейтрали, так и в случае глухозаземленной нейтрали.
- 3. Также при сравнении графиков зависимости можно заметить, что схема с глухозаземленной нейтралью опасней схемы с изолированной нейтралью, т.к. способная поразить человека током большей силы.
- 4. При исследовании изоляции трехфазной сети и проводов нарушения ТБ не были выявлены.