인공지능 기반 수어 인식 기술

한국전자기술연구원

2021.11.26.

인공지능연구센터 박 한 무

Korea Electronics Technology Institute

목 차

- I. 개요
- II. 수어 인식을 위한 학습 데이터
- Ⅲ.수어 인식 알고리즘
- IV.향후 연구 방향
- V. 결론

CHAPTER

개요

1. 연구 개요

• 한국 수어

- 농인* 들이 의사소통을 하는 과정에서 자연 발생한 언어
 - * 청각장애인을 달리 이르는 말로서 수어를 일상어로 사용하는 사람
- 한국어와는 어휘와 문법 * 체계가 다른 별개의 언어
 - * 한국어 어휘를 형태소 단위 치환하는 방식으로 만들어지지 않음
- 나라별로 다른 수어를 사용함*
 - * 국제 수어가 존재하기는 하지만 국내 농인들에게는 익숙하지 않음

한국 수어, "안녕하세요", 국립국어원

농인의 주 의사소통 방식, 국립국어원

1. 연구 개요

• 농인-청인 간 의사소통의 어려움

- 약 12% 농인만이 청인 수준으로 필담이 가능
- 약 9% 농인만이 TV 자막의 의미를 이해할 수 있음
- 농인의 문맹률은 약 30%로 추정됨

농인의 필담 이해도, 국립국어원

질병관리본부 정례 브리핑, 연합뉴스

• 청각장애인을 위한 양방향 통역 서비스 구조도

1. 연구 개요

• 인공지능 기반 수어 인식 기술

- 인공지능이 농인의 수어를 이해하여 한국어로 번역하는 기술
- 영상을 입력으로 받아 음성 또는 텍스트로 변환
- 인공지능 모델 학습을 위한 학습 데이터의 구축이 필수적임

CHAPTER

수어 인식을 위 한 학습 데이터

1. 학습 데이터 취득

• 학습용 데이터에 반영되어야 하는 수어의 특징

- 하나의 한국어 단어가 수어에서는 여러가지 방식으로 표현될 수 있음
- 동일 수어 형태소임에도 농인마다 표현하는 것이 조금씩 다를 수 있음
 - 수동, 수형, 수위, 수향, 체동, 비수지 신호의 차이
- 지역마다 다른 방식의 표현(방언)이 존재함

수어 영상 데이터, Al Hub

1. 학습 데이터 취득

• 학습용 수어 영상 데이터의 특징

- 학습 데이터 취득 환경의 영향이 있음
 - 조명, 시점, 배경 등
- 언어제공자의 외형에 따라 다른 영상이 됨
 - 옷차림, 액세서리, 생김새 등

수어 영상 데이터, Al Hub

2. 학습 데이터 취득 프로세스

• 학습용 문장 셋 정제

- 언어제공자 섭외
 - 19세 이상 수어가능자
 - 한국 수어를 모어로 의사소통이 가능한 자
 - 언어제공자 정보 기록 (연령, 지역, 교육 기관 등)
- 한국어 문장 번안
 - 다수의 수어 통역 전문가들의 자문을 통한 수지한국어 회피

순번	구분		내용		순번		수어 표현									
55	편의시설	위치	제주 홍보관은 어디입니까?	С	1	제주	홍보	장소	어디							
56	편의시설	위치	국내선 입국장이 어디에 있습니까?	С	1	한국	안	착륙	어디							
57	편의시설	위치	국내선 출국장이 어디에 있습니까?	С	2	한국	안	이륙	어디							
58	편의시설	위치	국제선 출국장이 어디에 있습니까?	С	1	한국	안	다르다	나라	이륙	어디					
59	편의시설	위치	휠체어 대여소가 어디에 있습니까?	С	1	수레	빌리다	어디								
60	진의자를	귀시		С	2	휠체어	빌리다	어디								
61	편의시설	위치	관광안내소는 어디에 있습니까?	С	1	여행	정보	묻다	장소	어디						
62	편의시설	위치	한정식집이 어디에 있습니까?	С	1	한국	먹다	어디								
63	편의시설	위치	일식집이 어디에 있습니까?	С	1	일본	먹다	어디								
64	편의시설	위치	중식집이 어디에 있습니까?	С	1	중국	먹다	어디								
65	편의시설	위치	패스트푸드는 어디에 있습니까?	С	1	햄버거	장소	어디								
66	편의시설	위치	빵집이 어디에 있습니까	С	1	빵	집	어디								

2. 학습 데이터 취득 프로세스

• 학습 데이터 취득 시스템

- 다중 시점 스테레오 카메라 활용
 - ZED 2.0 * 3시점(정면,좌,우)
 - 시점에 따른 영상의 다양성 반영
 - 3차원 키포인트 획득
- 조명, 배경, 취득 위치 등 정규화
- 언어제공자 복장 정규화
- 데이터 획득 SW 개발

표. 수어 인식을 위한 학습 데이 3. 학습 데<mark>텡</mark>터 취득 결과

• 학습 데이터 취득 결과

CHAPTER

수어 인식 알고리즘

- 수어 인식 프레임워크 구조도
 - 클라이언트: 입력 영상 스트리밍 및 UI 제어
 - 서버: 수어 인식 모듈 제어
 - 연산 순서 조정을 통한 Human pose estimation 속도 최적화
 - 수어 인식을 위한 키프레임 선택 시 팔의 특징점만을 추정 (고속)
 - 키프레임 선택 후 손과 팔, 얼굴의 특징점 위치 추정 (저속)

수어 인식 프레임워크 구조도

- 수어 인식 프레임워크 구조도
 - Ordered queue를 활용한 Human pose estimation 고속화
 - 다수의 이종 GPU들에 작업을 효율적으로 할당하기 위한 방식

Ordered queue 기반 Multi-worker manager

• 수어 인식 모델

- Human keypoint 기반 수어 영상 인코딩 기술
 - 사람의 체형이나 얼굴 생김새, 주변 환경 변화에 강건
- Seq2Seq 모델 기반 수어 문장 인식 기술
 - 인코딩된 특징 벡터에 기반하여 한 단어씩 순차적으로 예측
 - Attention 매커니즘을 적용하여 번역 성능 향상

Seq2Seq 기반 수어 문장 인식 모델

• 수어 인식 결과

• 청각장애인을 위한 공항 안내 서비스의 필요성

- 공항은 탑승 시설, 음식점, 편의점, 의무실, 라운지 등 다양한 시설들이 혼재되어 있는 복합 시설
- 원하는 장소로 이동하기 위해 유·무인 안내 서비스 활용이 필수적임
- 청인을 기준으로 안내 서비스가 설계되어 있어 이용이 어려움

김포공항

김포공항 안내도

• 청각장애인을 위한 수어 인식 키오스크 개발

- 영상 기반 마커리스 한국 수어 인식 기술을 적용
- RGB 영상만을 활용하여 설치 장소에 제약이 적음
- 사용자의 신체에 별도의 마커를 부착하지 않아 편의성이 좋음

청각장애인을 위한 공항 내 시설 안내 키오스크

• 청각장애인을 위한 수어 인식 키오스크 구조도

• 청각장애인을 위한 수어 인식 키오스크 구축 결과

• 청각장애인을 위한 공항 안내 서비스 흐름도

• 청각장애인을 위한 공항 안내 서비스 시연 결과

기본 안내 화면

시연 영상, "약국은 어디에 있나요?"

시연 영상, "택시승강장은 어디에 있나요?"

• 청각장애인을 위한 공항 안내 서비스 시연 결과

세계 수어의 날(9/23) 수어 통역 컴패니언 시연

CHAPTER

IV

향후 연구 방향

1. 수어 인식 기술 개선 필요성

• 기존 수어 인식 기술의 한계점

- 데이터셋의 부족
 - 위급 상황 105문장, 공항 안내 서비스용 145문장
 - 자연어 처리에 턱없이 부족함
- 유사 문장 인식 불가
 - 학습된 순서대로 발화한 수어 문장에 대해서만 인식 가능
 - 단어 하나만 교체하는 경우도 인식 불가

수어 문장의 형태소 분석 필요!

2. 수어 인식 기술 개선 방향

- 형태소 분석 기반 수어 인식 기술
 - 수어 인식 프레임워크

2. 수어 인식 기술 개선 방향

- 형태소 분석 기반 수어 인식 기술
 - 형태소 단위 수어 분할 인식 기술

2. 수어 인식 기술 개선 방향

- 형태소 분석 기반 수어 인식 기술
 - 텍스트 기반 수어-한국어 언어 모델 구축

3. 기대효과

- 형태소 단위 수어 인식 기술 개발의 기대효과
 - 상대적으로 수집이 용이한 텍스트 기반 데이터 활용 가능
 - 데이터 구축 비용 및 수집 기간 절약
 - 어순, 어휘가 일부 다른 유사 문장 이해 가능
 - 인식 모델의 범용성 증대
 - 수어 인식 기술을 활용한 서비스 범위 증대
 - 수어-한국어 번역을 위한 언어 모델 구축
 - 수어-한국어, 한국어-수어 번역을 위한 방법론 제시

CHAPTER

결론

V. 결론 맺음말

한국 수어 인식 개선 홍보 영상, 국립국어원

v. ^{결론} 참고 문헌

- [1] 국립국어원, "2017년 한국수어 사용 실태 조사," 2017.
- [2] 연합뉴스, "질병관리본부 정례 브리핑," 2020.03.21.
- [3] 한국공항공사 보도자료, "한국공항공사-전자부품연구원, 수어 통역시스템 공동개발 추진,"2019. 8. 30.
- [4] 국립국어원, "한국 수어 인식 개선 홍보 영상,"2019.