The Stacking Scheme

Team Proxima Centuari Danny, James, Kenny, Wenchang

March 6, 2018

Say we obtain the following results, using three different estimators:

Estimator	Performance	Prediction
Method 1	ρ_1	\vec{y}_1
Method 2	$ ho_2$	$ec{y}_2$
Method 3	$ ho_3$	$ec{y}_3$

We define the performance metric¹ in such a way that the smaller the metric ρ_i , the better the performance. Candidates for ρ_i may include

RMSE,
$$1 - R^2$$
, $\frac{\text{RMSE}}{R^2}$, ...

Since a better performance is indicated by a smaller ρ_i , we propose the following stacking scheme, which gives more weights to better performing estimators:

$$\vec{y}_{\text{Stacked}} = \frac{1}{2} \left[\left(1 - \frac{\rho_1}{s} \right) \vec{y}_1 + \left(1 - \frac{\rho_2}{s} \right) \vec{y}_2 + \left(1 - \frac{\rho_3}{s} \right) \vec{y}_3 \right] \tag{1}$$

where

$$s = \rho_1 + \rho_2 + \rho_3$$
.

Check: suppose under the rarest situation² that

$$\vec{y}_1 = \vec{y}_2 = \vec{y}_3 = \vec{y}_{Test}$$

then by (1)

$$\vec{y}_{\text{Stacked}} = \frac{1}{2} \left(3 - \frac{\rho_1 + \rho_2 + \rho_3}{s} \right) \vec{y}_{\text{Test}}$$
$$= \vec{y}_{\text{Test}}$$

which is the desired result.

¹The metric is computed from simulated validation tests.

²It is possible although improbable.