Exercise 5.1 73 Chapter 4

Chapter 5

Factorization: Writing an algebraic

expression as the product of two or more algebraic expressions is called factorization

Example 1: i). Factorize $15+10x-5x^2$

Solution: Given $15+10x-5x^2$

$$=5\times3+5\times2x-5x^2$$

Taking 5 as a common factors

$$=5(3+2x-x^2)$$

Example 1: Ii). Factorize $12x^2y^2 - 20x^3y$

Solution: Given $12x^2y^2 - 20x^3y$

Taking $4x^2y$ as a common factors

$$=4x^2y(3y-5x)$$

Example 2: Factorize $a^2 - ab - 3a + 3b$

Solution: Given $a^2 - ab - 3a + 3b$

$$= a(a-b)-3(a-b)$$

$$=(a-b)(a-3)$$

Example 3: i). Factorize $x^2 + 8x + 16$

Solution: Given $x^2 + 8x + 16$

$$= (x)^{2} + 2(x)(4) + (4)^{2}$$

$$=(x+4)^2$$

Example 3: ii). Factorize $25y^2 - 30y + 9$

Solution: Given $25y^2 - 30y + 9$

$$= (5y)^2 - 2(5y)(3) + (3)^2$$

$$= \left(5y - 3\right)^2$$

Example 4: a). Factorize $x^2 - 16$

Solution: Given $x^2 - 16$

$$= x^2 - 4^2$$

$$=(x-4)(x+4)$$

Example 4: b). Factorize $9a^2 - 25$

Solution: Given $9a^2 - 25$

$$= \left(3a\right)^2 - \left(5\right)^2$$

$$=(3a-5)(3a+5)$$

Example 4: c). Factorize $6x^4 - 6y^4$

Solution: Given $6x^4 - 6y^4$

$$=6\left[x^4-y^4\right]$$

$$=6\left[\left(x^2\right)^2-\left(y^2\right)^2\right]$$

$$=6(x^2+y^2)[x^2-y^2]$$

$$=6(x^2+y^2)(x+y)(x-y)$$

Example 5: Factorize $a^2 + 4ab + 4b^2 - c^2$ Solution: Given $a^2 + 4ab + 4b^2 - c^2$

$$= (a)^{2} + 2(a)(2b) + (2b)^{2} - c^{2}$$

$$= (a+2b)^{2} - c^{2}$$

$$= (a+2b+c)(a+2b-c)$$

Example 6: Factorize $a^2 + b^2 - 2b - 1$

Solution: Given $a^2 + b^2 - 2b - 1$

$$= a^{2} - [b^{2} - 2b + 1]$$

$$= (a)^{2} - [(b)^{2} - 2(b)(1) + (1)^{2}]$$

$$= \left(a\right)^2 - \left(b - 1\right)^2$$

$$= \left[a + (b-1)\right] \left[a - (b-1)\right]$$

$$= (a+b-1)(a-b+1)$$

Rule 1 Common

Rule 2: Pair Common

Rule 3: $a^2 \pm 2ab + b^2 \rightarrow (a \pm b)^2$

Rule 4: $a^2 - b^2 \rightarrow (a+b)(a-b)$

Rule 5: $(a \pm b)^2 - (c)^2 \rightarrow (a \pm b + c)(a \pm b - c)$

Exercise 5.1

Factorize $9s^3t + 15s^2t^3 - 3s^2t^2$ Q1.

Solution: Given $9s^3t + 15s^2t^3 - 3s^2t^2$

$$=3s^2t\left(3s+5t^2-t\right)$$

Q2. Factorize $10a^2b^3c^4 - 15a^3b^2c^2 + 30a^4b^3c^2$

Sol: Given $10a^2b^3c^4 - 15a^3b^2c^2 + 30a^4b^3c^2$

$$=5a^2b^2c^2(2bc^2-3a+6a^2b)$$

Q3. Factorize ax-a-x+1

Solution: Given
$$ax-a-x+1$$

$$= a(x-1)-1(x-1)$$

$$= a(x-1)-1(x)$$
Mathematics
$$= (a-1)(x-1)$$

Factorize $x^2 - 2y^3 - 2xy^2 + xy$ Q4.

Solution: Given $x^2 - 2y^3 - 2xy^2 + xy$

Rearranging $= x^2 + xy - 2xy^2 - 2y^3$ $= x(x+y)-2y^2(x+y)$

$$= x(x+y) - 2y(x+y)$$

$$= (x+y)(x-2y^2)$$

Factorize $4x^2 + 4 + \frac{1}{2}$ Q5.

Solution: Given $4x^2 + 4 + \frac{1}{x^2}$

$$=(2x)^{2}+2(2x)(\frac{1}{x})+(\frac{1}{x})^{2}$$

$$=\left(2x+\frac{1}{x}\right)^2$$

Q6. Factorize $4(x+y)^2 - 20(x+y)z + 25z^2$

Solution: Given $4(x+y)^2 - 20(x+y)z + 25z^2$

 $= \left\{ 2(x+y) \right\}^2 - 2\left\{ 2(x+y) \right\} (5z) + (5z)^2$

$$= \left\{ 2(x+y) - 5z \right\}^2$$

Q7. Factorize
$$\frac{x^4}{y^4} - \frac{y^4}{x^4}$$
Solution: Given
$$\frac{x^4}{y^4} - \frac{y^4}{x^4}$$

$$= \left(\frac{x^2}{y^2}\right)^2 - \left(\frac{y^2}{x^2}\right)^2$$

$$= \left(\frac{x^2}{y^2} + \frac{y^2}{x^2}\right) \left(\frac{x^2}{y^2} - \frac{y^2}{x^2}\right)$$

$$= \left(\frac{x^2}{y^2} + \frac{y^2}{x^2}\right) \left(\frac{x}{y}\right)^2 - \left(\frac{y}{x}\right)^2$$

$$= \left(\frac{x^2}{y^2} + \frac{y^2}{x^2}\right) \left(\frac{x}{y} + \frac{y}{x}\right) \left(\frac{x}{y} + \frac{y}{x}\right)$$

Q8. Factorize
$$2x^2 - 288$$

Solution: Given $2x^2 - 288$
 $= 2\{x^2 - 144\}$
 $= 2\{(x)^2 - (12)^2\}$
 $= 2(x+12)(x-12)$

Q9. Factorize
$$1 + 2uv - u^2 - v^2$$

Solution: Given $1 + 2uv - u^2 - v^2$
Rearranging $= 1 - u^2 - v^2 + 2uv$
 $= 1 - (u^2 + v^2 - 2uv)$
 $= (1)^2 - (u - v)^2$
 $= \{1 + (u - v)\}\{1 - (u - v)\}$
 $= (1 + u - v)(1 - u + v)$

Q10. Factorize
$$25a^2b^2 - 20abc + 4c^2 - 16d^2$$

Solution: Given $25a^2b^2 - 20abc + 4c^2 - 16d^2$
 $= (5ab)^2 - 2(5ab)(2c) + (2c)^2 - (4d)^2$
 $= (5ab - 2c)^2 - (4d)^2$
 $= (5ab - 2c + 4d)(5ab - 2c - 4d)$

Example 7: Factorize $a^4 + 4b^4$ Sol: Given $a^4 + 4b^4$ $= (a^2)^2 + (2b^2)^2 + 2(a^2)(2b^2) - 2(a^2)(2b^2)$ $=(a^2+2b^2)^2-4a^2b^2$ $=(a^2+2b^2)^2-(2ab)^2$ $=(a^2+2b^2+2ab)(a^2+2b^2-2ab)$

Example 8: Factorize
$$a^4 + a^2b^2 + b^4$$

Sol: Given $a^4 + a^2b^2 + b^4$
 $= a^4 + b^4 + a^2b^2$
 $= (a^2)^2 + (b^2)^2 + 2(a^2)(b^2) - 2(a^2) + (b^2) + a^2b^2$
 $= (a^2 + b^2)^2 - 2a^2b^2 + a^2b^2$
 $= (a^2 + b^2)^2 - a^2b^2$
 $= (a^2 + b^2)^2 - (ab)^2$
 $= (a^2 + b^2 + ab)(a^2 + b^2 - ab)$

Example 9: Factorize
$$x^4 - 7x^2 + 1$$

Sol: Given $x^4 - 7x^2 + 1$
 $= x^4 + 1 - 7x^2$
 $= (x^2)^2 + (1)^2 + 2(x^2)(1) - 2(x^2)(1) - 7x^2$
 $= (x^2 + 1)^2 - 2x^2 - 7x^2$
 $= (x^2 + 1)^2 - 9x^2$
 $= (x^2 + 1)^2 - (3x)^2$
 $= (x^2 + 1 + 3x)(x^2 + 1 - 3x)$
Rule 6
$$x^4 + b^4 \rightarrow (a^2)^2 + (b^2)^2 + 2a^2b^2 - 2a^2b^2$$
 $\Rightarrow (a^2 + b^2)^2 - (c)^2 \qquad \because c = 2a^2b^2$
 $\Rightarrow (a^2 + b^2 + c)(a^2 + b^2 - c)$

Exercise 5.2 01. Factorize $x^4 + 64$ Solution: Given $x^4 + 64$ $=(x^2)^2+(8)^2$ $= (x^2)^2 + (8)^2 + 2(x^2)(8) - 2(x^2)(8)$ Using formula $a^2 + 2ab + b^2 = (a + b)^2$ $=(x^2+8)^2-2(x^2)(8)$ $=(x^2+8)^2-16x^2$ $=(x^2+8)^2-(4x)^2$ Using $a^2 - b^2 = (a - b)(a + b)$ $=(x^2+8+4x)(x^2+8-4x)$ $=(x^2+4x+8)(x^2-4x+8)$ O2. Factorize $4x^4 + 81$ Solution: Given $4x^4 + 81$ $=(2x^2)^2+(9)^2$ $= (2x^2)^2 + (9)^2 + 2(2x^2)(9) - 2(2x^2)(9)$ Using formula $a^2 + 2ab + b^2 = (a + b)^2$ $= (2x^2 + 9)^2 - 2(2x^2)(9)$ $=(2x^2+9)^2-36x^2$ $=(2x^2+9)^2-(6x)^2$ $= (2x^2 + 9 + 6x)(2x^2 + 9 - 6x)$ $= (2x^2 + 6x + 9)(2x^2 - 6x + 9)$ Factorize $a^4 + a^2b^2 + b^4$ Sol: Given $a^4 + a^2b^2 + b^4$ $=a^4+b^4+a^2b^2$ $=(a^2)^2+(b^2)^2+2(a^2)(b^2)-2(a^2)+(b^2)+a^2b^2$

 $=(a^2+b^2)^2-2a^2b^2+a^2b^2$

 $= \left(a^2 + b^2\right)^2 - a^2b^2$

Chapter 4
$$= (a^2 + b^2)^2 - (ab)^2$$

$$= (a^2 + b^2 + ab)(a^2 + b^2 - ab)$$
Q4. Factorize $x^4 + x^2 + 1$
Solution: Given $x^4 + x^2 + 1$

$$= x^4 + 1 + x^2$$

$$= (x^2)^2 + (1)^2 + 2(x^2)(1) - 2(x^2)(1) + x^2$$
Using formula $a^2 + 2ab + b^2 = (a + b)^2$

$$= (x^2 + 1)^2 - 2(x^2)(1) + x^2$$

$$= (x^2 + 1)^2 - 2x^2 + x^2$$

$$= (x^2 + 1)^2 - x^2$$

$$= (x^2 + 1)^2 - x^2$$

$$= (x^2 + 1)^2 - (x)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^2 + 1 + x)(x^2 + 1 - x)$$

$$= (x^2 + x + 1)(x^2 - x + 1)$$
Q5: $x^8 + x^4 + 1$
Sol: Given $x^8 + x^4 + 1$

$$= x^8 + 1 + x^4$$

$$= (x^4)^2 + (1)^2 + 2(x^4)(1) - 2(x^4)(1) + x^4$$
Using formula $a^2 + 2ab + b^2 = (a + b)^2$

$$= (x^4 + 1)^2 - 2(x^4)(1) + x^4$$

$$= (x^4)^2 + (1)^2 + 2(x^4)(1) + x^4$$

$$= (x^4 + 1)^2 - 2x^4 + x^4$$

$$= (x^4 + 1)^2 - 2x^4 + x^4$$

$$= (x^4 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2)^2 + (1)^2 + 2(x^2)(1) - 2(x^2)(1) + x^2$$
Using $a^2 + 2ab + b^2 = (a + b)^2$

$$= (x^4 - x^2 + 1)(x^2)^2 + (1)^2 + 2(x^2)(1) - 2(x^2)(1) + x^2$$
Using $a^2 + 2ab + b^2 = (a + b)^2$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - 2x^2 + x^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - 2x^2 + x^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - 2x^2 + x^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$
Using $a^2 - b^2 = (a - b)(a + b)$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 - (x^2)^2$$

$$= (x^4 - x^2 + 1)(x^2 + 1)^2 -$$

Q6. Factorize $x^4 + \frac{1}{x^4} - 7$
Solution: Given $x^4 + \frac{1}{x^4} - 7$
$= \left(x^2\right)^2 + \left(\frac{1}{x^2}\right)^2 - 7$
$= \left(x^{2}\right)^{2} + \left(\frac{1}{x^{2}}\right)^{2} + 2\left(x^{2}\right)\left(\frac{1}{x^{2}}\right) - 2\left(x^{2}\right)\left(\frac{1}{x^{2}}\right) - 7$
Using formula $a^2 + 2ab + b^2 = (a+b)^2$
$= \left(x^{2} + \frac{1}{x^{2}}\right)^{2} - 2\left(x^{2}\right)\left(\frac{1}{x^{2}}\right) - 7$
$= \left(x^{2} + \frac{1}{y^{2}}\right)^{2} - 2 - 7$
$=\left(x^2 + \frac{1}{x^2}\right)^2 - 9$
$=\left(x^{2}+\frac{1}{x^{2}}\right)^{2}-\left(3\right)^{2}$
$\begin{pmatrix} x^2 \end{pmatrix}$ = $\left(x^2 + \frac{1}{x^2} + 3\right) \left(x^2 + \frac{1}{x^2} - 3\right)$
Q7. Factorize $81x^4 + \frac{1}{81x^4} - 14$
01%
Solution: Given $81x^4 + \frac{1}{81x^4} - 14$
$= \left(9x^2\right)^2 + \left(\frac{1}{9x^2}\right)^2 - 14$
$= \left(9x^2\right)^2 + \left(\frac{1}{9x^2}\right)^2 + 2\left(9x^2\right)\left(\frac{1}{9x^2}\right) - 2\left(9x^2\right)\left(\frac{1}{9x^2}\right) - 14x^2$
Using $a^2 + 2ab + b^2 = (a+b)^2$
$= \left(9x^2 + \frac{1}{9x^2}\right)^2 - 2\left(9x^2\right)\left(\frac{1}{9x^2}\right) - 14$
$= \left(9x^2 + \frac{1}{9x^2}\right)^2 - 2 - 14$ $= \left(9x^2 + \frac{1}{9x^2}\right)^2 - 16$
$= \left(9x^2 + \frac{1}{9x^2}\right)^2 - \left(4\right)^2$
Using $a^2 - b^2 = (a - b)(a + b)$
$= \left(9x^2 + \frac{1}{9x^2} + 4\right) \left(9x^2 + \frac{1}{9x^2} - 4\right)$
Q8. Factorize $4x^4 - 4x^2y^2 + 64y^4$
Solution: Given $4x^4 - 4x^2y^2 + 64y^4$
$= 4x^4 + 64y^4 - 4x^2y^2$ = $4\{x^4 + 16y^4 - x^2y^2\}$
$= 4\{(x^{2})^{2} + (4y^{2})^{2} - x^{2}y^{2}\}$ $= 4\{(x^{2})^{2} + (4y^{2})^{2} - x^{2}y^{2}\}$
$=4\left\{ \left(x^{2}\right)^{2}+\left(4y^{2}\right)^{2}+2\left(x^{2}\right)\left(4y^{2}\right)-2\left(x^{2}\right)\left(4y^{2}\right)-x^{2}y^{2}\right\}$
Using formula $a^2 + 2ab + b^2 = (a+b)^2$
$=4\left\{ \left(x^{2}+4y^{2}\right)^{2}-2\left(x^{2}\right)\left(4y^{2}\right)-x^{2}y^{2}\right\}$
$= 4 \left\{ \left(x^2 + 4y^2 \right)^2 - 8x^2 - x^2 \right\}$
$= 4 \left\{ \left(x^2 + 4y^2 \right)^2 - 9x^2y^2 \right\}$
$= 4 \left\{ \left(x^2 + 4y^2 \right)^2 - \left(3xy \right)^2 \right\}$

Chapter 4	
Using $a^2 - b^2 = (a - b)(a + b)$	
$= 4 \left(x^2 + 4 y^2 + 3 x y \right) \! \left(x^2 + 4 y^2 - 3 x y \right)$	
$= 4(x^2 + 3xy + 4y^2)(x^2 - 3xy + 4y^2)$	
Q9. Factorize $16m^4 + 4m^2n^2 + n^4$	-
Solution: Given $16m^4 + 4m^2n^2 + n^4$	
= 16m4 + n4 + 4m2n2 $= (4m2)2 + (n2)2 + 4m2n2$	
$= (4m^2)^2 + (n^2)^2 + 2(4m^2)(n^2) - 2(4m^2)(n^2) + 4m^2$	2,2
Using formula $a^2 + 2ab + b^2 = (a+b)^2$	11 71
, ,	
$= (4m^2 + n^2)^2 - 2(4m^2)(n^2) + 4m^2n^2$	
$= (4m^2 + n^2)^2 - 8m^2n^2 + 4m^2n^2$	
$= (4m^2 + n^2)^2 - 4m^2n^2$	
$= (4m^2 + n^2)^2 - (2mn)^2$	
Using $a^2 - b^2 = (a - b)(a + b)$	
$= (4m^2 + n^2 + 2mn)(4m^2 + n^2 - 2mn)$	
$= (4m^2 + 2mn + n^2)(4m^2 - 2mn + n^2)$	_
Q10. Factorize $4x^5y + 11x^3y^3 + 9xy^5$	
Solution: Given $4x^5y + 11x^3y^3 + 9xy^5$	
$= xy \left\{ 4x^4 + 11x^2y^2 + 9y^4 \right\}$ $= xy \left\{ 4x^4 + 9y^4 + 11y^2y^2 \right\}$	
$= xy \left\{ 4x^4 + 9y^4 + 11x^2y^2 \right\}$ = $xy \left\{ (2x^2)^2 + (3y^2)^2 + 11x^2y^2 \right\}$	
$= xy \left\{ (2x^2)^2 + (3y^2)^2 + 2(2x^2)(3y^2) - 2(2x^2)(3y^2) + 11x^2y^2 \right\}$	h.
$= xy \left\{ (2x^2 + 3y^2)^2 - 2(2x^2)(3y^2) + 11x^2y^2 \right\}$	Р7 RA
	V
$= xy \left\{ \left(2x^2 + 3y^2\right)^2 - 12x^2y^2 + 11x^2y^2 \right\} $	Ieu
$=xy\left\{ \left(2x^{2}+3y^{2}\right) ^{2}-x^{2}y^{2}\right\}$	
$= xy \left\{ \left(2x^2 + 3y^2\right)^2 - \left(xy\right)^2 \right\}$	
Using $a^2 - b^2 = (a - b)(a + b)$	
$= xy(2x^2 + 3y^2 + xy)(2x^2 + 3y^2 - xy)$	
Ex 10: Factorize $y^2 - 7y + 12$	12
Sol: Given $y^2 - 7y + 12$	1
12 is not a perfect square 5 × 4 ×	2 3
$= y^2 - 4y - 3y + 12$	
=y(y-4)-3(y-4)	
=(y-4)(y-3)	
Ex 11: Factorize $x^2 + 10x + 21$	21
Sol: Given $x^2 + 10x + 21$ 9 \times	1
21 is not a perfect square $\begin{array}{ccc} & & \times \\ & = x^2 + 7x + 3x + 21 \end{array}$	2 3
= x(x+7) + 3(x+7)	
=(x+3)(x+7)	
\ /\ /	

Exercise 5.3 76 Example 12: Find an expression of the perimeter of a rectangle whose area is given by $x^2 + 13x - 90$ Solution: Area = $L \times w$ 90 X Area = $x^2 + 13x - 90$ 14 × 1 .. 90 is not a perfect 15 2 3 16 square $=x^2+18x-5x-90$ =x(x+18)-5(x+18)Area of rectangle =(x+18)(x-5)Here L= x+18 and B= x-5Perimeter of Rectangle = 2L+2B Putting the values Perimeter = 2(x+18)+2(x-5)=2x+36+2x-10=4x+26Example 13: Factorize $2x^2 - 7x - 4$ Sol: Given $2x^2-7x-4=2x^2-8x+x-4$ =2x(x-4)+1(x-4)=(2x+1)(x-4)Rule 7: $a^2 \pm 2ab + b^2$ any term is missing Consider $ax^2 + bx + c$ Multiply with signs Sign of b \times Answer x If sign of ac is -ve If sign of ac is +ve Reduce 1 from b x Increase 1 in b Exercise 5.3 Factorize $x^2 - 7x + 12$ Solution: Given $x^2 - 7x + 12$. 12 is not a perfect square $= x^2 - 4x - 3x + 12$ 12 = x(x-4)-3(x-4)1 =(x-3)(x-4)2 Factorize $x^2 + x - 12$ Solution: Given $x^2 + x - 12$.. 12 is not a perfect square $= x^2 + 4x - 3x - 12$ 12 = x(x+4)-3(x+4)1 × 3 =(x-3)(x+4)Q3. Factorize $20-x-x^2$ Solution: Given $20-x-x^2$ 20 20 is not a perfect square $=20-5x+4x-x^2$ 1 =5(4-x)+x(4-x)3 × = (5+x)(4-x)Factorize $2y^2 - 7y + 3$ Q4. Solution: Given $2y^2 - 7y + 3$

.. 3 is not a perfect square

Exercise 5.3 77

Chapter 4		Exercise 5.3 77		
$=2y^2-6y-1y+3$	+ 6	Q12. Factorize $4x^8y^{10} - 40x^5y^7 + 84x^2y^4$		
=2y(y-3)-1(y-3)	× - × 1	Solution: Given $4x^8y^{10} - 40x^5y^7 + 84x^2y^4$		
=(y-3)(2y-1)	× 1	$=4x^{2}y^{4} \left[x^{6}y^{6} - 10x^{3}y^{3} + 21 \right]$		
Q5. Factorize $4x^2 + 8x + 3$ Solution: Given $4x^2 + 8x + 3$		21 is not a perfect square		
3 is not a perfect square	+ 12	$=4x^2y^4\left[x^6y^6-7x^3y^3-3x^3y^3+21\right]$		
$=4x^2+6x+2x+3$	× +	$=4x^{2}y^{4}\left[x^{3}y^{3}\left(x^{3}y^{3}-7\right)-3\left(x^{3}y^{3}-7\right)\right]$		
=2x(2x+3)+1(2x+3)	× 1 × 2	$=4x^{2}y^{4}(x^{3}y^{3}-7)(x^{3}y^{3}-3)$		
=(2x+3)(2x+1)		Q13. Factorize Find an expression for perimeter		
Q6: Factorize $10y^2 - 3y - 1$	R. Work	of a rectangle with area given by $x^2 + 24x - 81$		
Solution: Given $10y^2 - 3y - 1$	- 10	Solution: Area = L x w - 81		
$= 10y^2 - 5y + 2y - 1$	_ × +	Area = $x^2 + 24x - 81$ 25 \times 1		
• • • • • • • • • • • • • • • • • • • •	4 × 1	$\therefore 81 \text{ is not a perfect square} \qquad 26 \times 2$ $= x^2 + 27x - 3x - 81 \qquad 27 \times 3$		
= 5y(2y-1)+1(2y-1)	5 × 2	= x + 27x - 3x - 61 $= x(x+27) - 3(x+27)$		
= (5y+1)(2y-1)	_			
Q7Factorize $6x^3 - 15x^2 - 9x$	R. Work	Area of rectangle $=(x+27)(x-3)$		
Sol: Given $6x^3 - 15x^2 - 9x$	- 6	Here L= $x+27$ and B= $x-3$		
$= 6x^3 - 15x^2 - 9x$	- × + 6 × 1	Perimeter of Rectangle = 2L+2B Putting the values		
$=3x\left\{2x^2-5x-3\right\}$	0	Perimeter = $2(x+27)+2(x-3)$		
$=3x\left\{2x^2-6x+1x-3\right\}$		=2x+57+2x-6		
$=3\times \left\{2\times \left(\times -3\right)+1\left(\times -3\right)\right\}$		=4x+51		
=3x(2x+1)(x-3)		Ex 14: Factorize $(x^2 + 7x + 10)(x^2 + 7x + 12) + 1$		
Q8: Factorize $2xy^2 + 8xy - 24x$	R. Work	Sol: Given $(x^2 + 7x + 10)(x^2 + 7x + 12) + 1$		
So: Given 2xy² + 8xy - 24x	- 12			
$=2x\left\{ y^{2}+4y-12\right\}$	+ × - 5 × 1	Here two terms are same Let $y = x^2 + 7x$ so, = $(y+10)(y+12)+1$		
$=2x\{y^2+6y-2y-12\}$	6 × 2			
-2x(y(y+6)-2(y+6))	alid M	$= y^{2} + 12y + 10y + 120 + 1$ $= y^{2} + 22y + 121$		
$= 2\times (y(y+0)) \times (y+0)$ $= 2\times (y+0) \times (y+0)$ M=	-Phil Applied	$= y^{2} + 22y + 121$ $= y^{2} + 2.y.11 + 11^{2}$		
	_	$= (y+11)^2$		
Q9: $2+5t-12t^2$	R. Work - 24	$= (y+11)$ Putting back value of $y = x^2 + 7x$		
Sol: Given $2+5t-12t^2$	+ × -	2		
$= 2 + 8t - 3t - 12t^{2}$	6 × 1 7 × 2	$=(x^2+7x+11)^2$		
= 2(1+4t)-3t(1+4t)	8 × 3	Exp15: Factorize $(3x^2 + 11x + 2)(3x^2 + 11x + 3) - 12$		
$\frac{=(2-3t)(1+4t)}{Q10: -16x^3y - 20x^2y^2 - 6xy^3}$	_ D Wank	Sol: Given $(3x^2 + 11x + 2)(3x^2 + 11x + 3) - 12$		
• • • •	R. Work + 24	Here two terms are same Let $y = 3x^2 + 11x$		
Sol: $-16x^3y - 20x^2y^2 - 6xy^3$	+ × +	=(y+2)(y+3)-12		
$= -2xy \left\{ 8x^2 + 10xy + 3y^2 \right\}$	9 × 1 8 × 2	$= y^2 + 3y + 2y + 6 - 12$		
$= -2xy \left\{ 8x^2 + 6xy + 4xy + 3y^2 \right\}$	7 × 3	$= y^2 + 5y - 6$		
$= -2xy \{2x(4x+3y) + y(4x+3y) $ = -2xy(2x+y)(4x+3y)	Y)6 × 4	$= y^2 + 6y - 1y - 6$		
	_	=y(y+6)-1(y+6)		
Q11. Factorize $(x+1)^2 + 3(x+1)^2$	1)+2	= (y-1)(y+6)		
Solution: Given $(x+1)^2 + 3(x+1)$	+2	Putting back value of $y = 3x^2 + 11x$		
2 is not a perfect square	+ 2	$= (3x^2 + 11x - 1)(3x^2 + 11x + 6)$		
$= (x+1)^{2} + 2(x+1) + 1(x+1) + 2 + 2$	× + × 1	$= (3x^2 + 11x - 1)(3x^2 + 9x + 2x + 6)$		
$=(x+1)\{x+1+2\}+1\{x+1+2\}$ $=(3x^2+11x-1)[3x(x+3)+2(x+3)]$				
$= \{(x+1)+1\}\{x+1+2\}$		$= (3x^2 + 11x - 1)(3x + 2)(x + 3)$		
=(x+2)(x+3)		$\frac{(3\lambda+11\lambda-1)(3\lambda+2)(\lambda+3)}{(3\lambda+11\lambda-1)(3\lambda+2)(\lambda+3)}$		

Exercise 5.4 78 Chapter 4

Example 16: (x+1)(x+2)(x+3)(x+4)+1

Sol: Given (x+1)(x+2)(x+3)(x+4)+1

Here 1+4=2+3 , so rearranging

$$=(x+1)(x+4)(x+2)(x+3)+1$$

$$= (x^2 + 4x + 1x + 4)(x^2 + 3x + 2x + 6) + 1$$

$$= (x^2 + 5x + 4)(x^2 + 5x + 6) + 1$$

Here two terms are same Let $y = x^2 + 5x$

$$=(y+4)(y+6)+1$$

$$= y^2 + 6y + 4y + 24 + 1$$

$$= y^2 + 10y + 25$$

$$= y^2 + 2.y.5 + 5^2$$

$$=(y+5)^2$$

Putting back value of $y = x^2 + 5x$

$$=(x^2+5x+5)^2$$

Exp17: Factorize $(x^2 - 5x + 6)(x^2 + 5x + 6) - 2x^2$

Sol: Given
$$(x^2 - 5x + 6)(x^2 + 5x + 6) - 2x^2$$

$$=(x^2-3x-2x+6)(x^2+3x+2x+6)-2x^2$$

$$= (x(x-3)-2(x-3))(x(x+3)+2(x+3))-2x^2$$

$$= (x-2)(x-3)(x+2)(x+3)-2x^2$$

$$=(x-2)(x+2)(x-3)(x+3)-2x^2$$

$$=(x^2-4)(x^2-9)-2x^2$$

$$=x^4-9x^2-4x^2+36-2x^2$$

$$=x^4-15x^2+36$$

$$= x^4 - 12x^2 - 3x^2 + 36$$

$$= x^2 (x^2 - 12) - 3(x^2 - 12)$$

$$=(x^2-12)(x^2-3)$$

Exp 18: Factorize $8a^3 + 36a^2b + 54ab^2 + 27b^3$

Sol: Given $8a^3 + 36a^2b + 54ab^2 + 27b^3$

$$= (2a)^3 + 3(2a)^2(3b) + 3(2a)(3b)^2 + (3b)^3$$

$$= \left(2a + 3b\right)^3$$

Exp 19: Factorize $27x^3 - 27x^2y + 9xy^2 - y^3$

Sol: Given $27x^3 - 27x^2y + 9xy^2 - y^3$

$$= (3x)^3 - 3(3x)^2(y) + 3(3x)(y)^2 - (y)^3$$

$$=(3x-y)^3$$

Rule8: $(ax^2 + bx + c)(ax^2 + bx + d) + e$

Suppose $y = ax^2 + bx$ same terms

Rule 9
$$(x+a)(x+b)(x+c)(x+d)+e$$

Multiply those factors which a+b=c+d

Rule 10: $a^3 \pm 3a^2b + 3ab^2 \pm b^3 \rightarrow (a \pm b)^3$

Exercise 5.4

Q1:Factorize $(4x^2 - 16x + 7)(4x^2 - 16x + 15) + 16$

Sol: Given $(4x^2-16x+7)(4x^2-16x+15)+16$

Here two terms are same Let $y = 4x^2 - 16x$

$$=(y+7)(y+15)+16$$

$$= y^2 + 15y + 7y + 105 + 16$$

$$= y^2 + 22y + 121$$

$$= y^2 + 2.y.11 + 11^2$$

$$=(y+11)^2$$

$$=(4x^2-16x+11)^2$$
 Since $y = 4x^2-16x$

Q2:Factorize
$$(9x^2 + 9x - 4)(9x^2 + 9x - 10) - 72$$

Sol; Given
$$(9x^2+9x-4)(9x^2+9x-10)-72$$

Here two terms are same Let $y = 9x^2 + 9x$

$$= (y-4)(y-10)-72$$

$$= y(y-10)-4(y-10)-72$$

$$= y^2 - 10y - 4y + 40 - 72$$

$$= y^2 - 14y - 32$$

$$= y^2 - 16y + 2y - 32$$

$$= y(y-16)+2(y-16)$$

$$= (y+2)(y-16) \qquad \therefore y = 9x^2 + 9x$$

$$= (9x^2 + 9x + 2)(9x^2 + 9x - 16)$$

Q3:
$$(x+2)(x+4)(x+6)(x+8)-9$$

Sol: Given
$$(x+2)(x+4)(x+6)(x+8)-9$$

Rearranging accordingly 4 + 6 = 2 + 8

$$=(x+4)(x+6)(x+2)(x+8)-9$$

$$= \left\{ x(x+6) + 4(x+6) \right\} \left\{ x(x+8) + 2(x+8) \right\} - 9$$

$$= \left\{ x^2 + 6x + 4x + 24 \right\} \left\{ x^2 + 8x + 2x + 16 \right\} - 9$$

$$= (x^2 + 10x + 24)(x^2 + 10x + 16) - 9$$

Here two terms are same Let $y = x^2 + 10x$

$$= (y+24)(y+16)-9$$

$$= y(y+16)+24(y+16)-9$$

$$= y^2 + 16y + 24y + 384 - 9$$

$$= y^2 + 40y + 375$$

$$= y^2 + 25y + 15y + 375$$

$$= y(y+25)+15(y+25)$$

$$= (y+15)(y+25) \qquad \therefore y = x^2 + 10x$$

$$=(x^2+10x+15)(x^2+10x+25)$$

$$=(x^2+10x+15)(x^2+2.x.5+5^2)$$

$$=(x^2+10x+15)(x+5)^2$$

Q4:
$$x(x+1)(x+2)(x+3)+1$$

Sol: Given
$$x(x+1)(x+2)(x+3)+1$$

Rearranging accordingly 0 + 3 = 1 + 2

$$= x(x+3)(x+1)(x+2)+1$$

$$= \{x(x+3)\}\{x(x+2)+1(x+2)\}+1$$

$$= \left\{ x^2 + 3x \right\} \left\{ x^2 + 2x + 1x + 2 \right\} + 1$$

$$=(x^2+3x)(x^2+3x+2)+1$$

Here two terms are same Let $y = x^2 + 3x$

$$= y(y+2)+1$$
$$= y^2 + 2y + 1$$

$$= y^2 + 2.y \cdot 1$$

= $y^2 + 2.y \cdot 1 + 1^2$

$$= (y+1)^2 \qquad \therefore y = x^2 + 3x$$

$$= \left(x^2 + 3x + 1\right)^2$$

Q5:
$$(x+1)(x+2)(x+3)(x+6)-3x^2$$

Sol: Given
$$(x+1)(x+2)(x+3)(x+6)-3x^2$$

Here $a+b\neq c+d$ but $1\times 6=2\times 3$ so

$$=(x+1)(x+6)(x+2)(x+3)-3x^2$$

$$= (x^2 + 6x + 1x + 6)(x^2 + 3x + 2x + 6) - 3x^2$$

$$= (x^2 + 7x + 6)(x^2 + 5x + 6) - 3x^2$$

$$= (x^2 + 6 + 7x)(x^2 + 6 + 5x) - 3x^2$$

Here two terms are same Let $y = x^2 + 6$

$$=(y+7x)(y+5x)-3x^2$$

$$= y^2 + 5xy + 7xy + 35x^2 - 3x^2$$

$$= y^2 + 12xy + 32x^2$$

$$= y^2 + 8xy + 4xy + 32x^2$$

$$= y(y+8x)+4x(y+8x)$$

$$= (y+4x)(y+8x)$$

Putting back value of $y = x^2 + 6$

$$=(x^2+6+4x)(x^2+6+8x)$$

$$=(x^2+4x+6)(x^2+8x+6)$$

 $Q6: \quad 64x^3 - 144x^2y + 108xy^2 - 27y^3$

Sol: Given $64x^3 - 144x^2y + 108xy^2 - 27y^3$

Using
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$= (4x)^3 - 3(4x)^2(3y) + 3(4x)(3y)^2 - (3y)^3$$

$$= (4x - 3y)^3$$

$$\overline{Q7: \quad \frac{a^3}{8} - \frac{1}{4}a^2b + \frac{1}{6}ab^2 - \frac{b^3}{27}}$$

Sol: Given
$$\frac{a^3}{8} - \frac{1}{4}a^2b + \frac{1}{6}ab^2 - \frac{b^3}{27}$$

Using
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$= \left(\frac{a}{2}\right)^3 - 3\left(\frac{a}{2}\right)^2 \left(\frac{b}{3}\right) + 3\left(\frac{a}{2}\right) \left(\frac{b}{3}\right)^2 - \left(\frac{b}{3}\right)^3$$
$$= \left(\frac{a}{2} - \frac{b}{3}\right)^3$$

Q8:
$$\frac{x^3}{a^3} + \frac{3x}{a} + \frac{3a}{x} + \frac{a^3}{x^3}$$

Sol: Given
$$\frac{x^3}{a^3} + \frac{3x}{a} + \frac{3a}{x} + \frac{a^3}{x^3}$$

Using
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$= \left(\frac{x}{a}\right)^{3} + 3\left(\frac{x}{a}\right)^{2} \left(\frac{a}{x}\right) + 3\left(\frac{x}{a}\right) \left(\frac{a}{x}\right)^{2} + \left(\frac{a}{x}\right)^{3}$$
$$= \left(\frac{x}{a} + \frac{a}{x}\right)^{3}$$

79

Q9: $27a^3 + 189a^2b + 441ab^2 + 343b^3$

Sol: Given $27a^3 + 189a^2b + 441ab^2 + 343b^3$

Using
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$= \left(3a\right)^3 + 3\left(3a\right)^2 \left(7b\right) + 3\left(3a\right) \left(7b\right)^2 + \left(7b\right)^3$$
$$= \left(3a + 7b\right)^3$$

Q10:
$$8x^3 - 4x + \frac{2}{3x} - \frac{1}{27x^3}$$

Sol: Given
$$8x^3 - 4x + \frac{2}{3x} - \frac{1}{27x^3}$$

$$= (2x)^3 - 3(2x)^2 \left(\frac{1}{3x}\right) + 3(2x) \left(\frac{1}{3x}\right)^2 - \left(\frac{1}{3x}\right)^3$$
$$= \left(2x - \frac{1}{3x}\right)^3$$

Example 20: Factorize $2x^3 + 16$

Sol: Given
$$2x^3 + 16$$

$$=2(x^3+8)$$

$$=2(x^3+2^3)$$

Using
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$= 2(x+2)(x^2 - x \cdot 2 + 2^2)$$

$$= 2(x+2)(x^2-2x+4)$$

Example 21: Factorize $a^3 - 64b^3$

Sol: Given
$$a^3 - 64b^3$$

$$=(a)^3-(4b)^3$$

Using
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$=(a-4b)(a^2+a.4b+(4b)^2)$$

$$=(a-4b)(a^2+4ab+16b^2)$$

Rule11: $a^3 \pm b^3 \rightarrow (a \pm b)(a^2 \mp ab + b^2)$

Exercise 5.5

Q1. Factorize $a^3 - 27$

Solution: Given $a^3 - 27$

$$=a^3-3^3$$

Using
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$=(a-3)(a^2+a.3+3^2)$$

$$=(a-3)(a^2+3a+9)$$

Q2. Factorize $a^6 + b^6$

Solution: Given
$$a^6 + b^6$$

$$=(a^2)^3+(b^2)^3$$

Chapter 4

Using
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$= (a^2 + b^2)\{(a^2)^2 - (a^2)(b^2) + (b^2)^2\}$$

$$= (a^2 + b^2)(a^4 - a^2b^2 + b^4)$$
Q3. Factorize $24x^3 + 3$
Solution: Given $24x^3 + 3$

$$= 3(8x^3 + 1)$$

$$= 3\{(2x)^3 + (1)^3\}$$
Using $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

$$= 3(2x+1)\{(2x)^2 - (2x)(1) + (1)^2\}$$

$$= 3(2x+1)\{4x^2 - 2x+1\}$$
Q4. Factorize $1-27r^3$
Solution: Given $1-27r^3$

$$= (1)^3 - (3r)^3$$
Using $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

$$= (1-3r)\{(1)^2 - (1)(3r) + (3r)^2\}$$

$$= (1-3r)(1+3r+9r^2)$$
Q5: $2x^3 - 128$
Solution: Given $2x^3 - 128$

$$= 2\{x^3 - 64\}$$

$$= 2\{x^3 - 64\}$$

$$= 2(x-4)\{x^2 + x \cdot 4 + 4^2\}$$

$$= 2(x-4)(x^2 + 4x + 16)$$
Q6: $4x^5 - 256x^2$
Solution: Given $4x^5 - 256x^2$

$$= 4x^{2} \{x^{3} - 64\}$$

$$= 4x^{2} \{(x)^{3} - (4)^{3}\}$$
Using $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$

$$= 4x^{2} (x - 4) \{(x)^{2} + (x)(4) + (4)^{2}\}$$

$$= 4x^{2} (x - 4)(x^{2} + 4x + 16)$$

$$Q7: 18(x - y)^{3} - 144(a - b)^{3}$$

Solution: Given
$$18(x-y)^3 - 144(a-b)^3$$

= $18[(x-y)^3 - 8(a-b)^3]$
= $18[(x-y)^3 - \{2(a-b)\}^3]$
= $18[(x-y)^3 - \{2a-2b\}^3]$
Using $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

$$=18[(x-y)-(2a-2b)][(x-y)^{2}+(x-y)(2a-2b)-(2a-2b)^{2}]$$

$$=18[x-y-2a+2b][(x-y)^{2}+(x-y)(2a-2b)-(2a-2b)^{2}]$$
Q8. Factorize $x^{9}+1$
Solution: Given $x^{9}+1$

$$=(x^{3})^{3}+(1)^{3}$$
Using $a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$

$$=(x^{3}+1)\{(x^{3})^{2}-(x^{3})(1)+(1)^{2}\}$$

$$=(x^{3}+1)\{(x^{3})^{2}-(x^{3})(1)+(1)^{2}\}$$

$$=(x^{3}+1)(x^{2}-x^{3}+1)$$
Again Using $a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})$

$$=(x+1)(x^{2}-x+1)\{x^{6}-x^{3}+1\}$$
Q9. Factorize $a^{3}-(c+d)^{3}$
Solution: Given $a^{3}-(c+d)^{3}$
Using $a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$

$$=(a+(c+d))\{(a)^{2}-(a)(c+d)+(c+d)^{2}\}$$

$$=(a+c+d)\{a^{2}-ac-ad+(c+d)^{2}\}$$
Using $(a+b)^{2}=(a^{2}+2ab+b^{2})$

$$=(a+c+d)\{a^{2}-ac-ad+c^{2}+2cd+d^{2}\}$$

$$=(a+c+d)\{a^{2}+c^{2}+d^{2}-ac-ad+2cd\}$$
Q10. Factorize $27x^{3}-y^{3}$
Solution: Given $27x^{3}-y^{3}$
Solution: Given $27x^{3}-y^{3}$

$$=(3x)^{3}-(y)^{3}$$
Using $a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$

$$=(3x-y)\{(3x)^{2}+(3x)(y)+(y)^{2}\}$$

$$=(3x-y)(9x^{2}+3xy+y^{2})$$

Remainder Theorem:

When a polynomial P(x) of degree $n \ge 1$ is divided by x-r gives a constant remainder then R = P(r)Dividend = Divisor x Quotient + Remainder Or P(x) = (x-r)Q(x) + RWhere P(x) = Dividend, x-r = Divisor Q(x) = Quotient, R = Remainder

Exp 22: Divide $3x^3 - 7x^2 + 6x - 3$ by x-2 & verify your answer by remainder theorem.
Sol: Divide $P(x) = 3x^3 - 7x^2 + 6x - 3$ by x-2

$$3x^{2} - x + 4$$

$$x - 2) 3x^{3} - 7x^{2} + 6x - 3$$

$$\pm 3x^{3} \mp 6x^{2}$$

$$-x^{2} + 6x$$

$$\pm x^{2} \pm 2x$$

$$4x - 3$$

$$\pm 4x \mp 8$$

$$R = 5$$

Now using remainder theorem

Take divisor $x-2=0 \implies x=2$

Put in dividend

$$P(2) = 3(2)^3 - 7(2)^2 + 6(2) - 3$$

$$P(2)=3(8)-7(4)+12-3$$

$$P(2) = 24 - 28 + 9$$

$$P(2) = 5 = R$$

Which is the same obtained by actual division

Example 23: Without performing division. Find the remainder when $2x^3-3x^2+x-2$ is divided by x-3

Sol: Here Dividend $P(x) = 2x^3 - 3x^2 + x - 2$

And take divisor $x-3=0 \implies x=3$ put

$$P(3) = 2(3)^3 - 3(3)^2 + (3) - 2$$

$$P(3) = 2(27) - 3(9) + 1$$

$$P(3) = 54 - 27 + 1$$

$$P(3) = 28 = R$$

Hence Remainder = 28

Example 24: For what value of k

 $3x^3 + 9x^2 - (3k - 4)x + 2$ will be exactly

divisible by x-1

Solution: Dividend $P(x) = 3x^3 + 9x^2 - (3k - 4)x + 2$

And take divisor $x-1=0 \implies x=1$ Given that exactly divisible means P(1)=R=0

$$P(1) = 3(1)^{3} + 9(1)^{2} - (3k - 4)(1) + 2$$

$$P(1) = 3 + 9 - (3k - 4) + 2 = 0$$

$$12 - 3k + 4 + 2 = 0$$

$$12 + 4 + 2 = 3k$$

$$3k = 18$$

$$k = \frac{18}{3} = 6$$

Example 25: Find the zero of the polynomial

$$P(x) = x^2 - 4x + 3$$

Solution: Given $P(x) = x^2 - 4x + 3$

Let x = 1 then

$$P(1) = (1)^2 - 4(1) + 3$$

$$P(1) = 1 - 4 + 3$$

$$P(1) = 0$$

Hence 1 is a zero of the given polynomial Similarly when x=3, then

$$P(3) = (3)^2 - 4(3) + 3$$

$$P(3) = 9 - 12 + 3$$

$$P(3) = 0$$

Therefore 3 is another zero of given polynomial

Factor Theorem:

Let P(x) be a polynomial or dividend and a linear polynomial or divisor or factor of P(x)

if and only if k is a zero of polynomial P(x)

i.e.
$$P(k) = 0$$

Example 26: using factor theorem, prove that x-3 is a factor of x^3-x^2-5x-3 and find the other factors.

Sol: Given $P(x) = x^3 - x^2 - 5x - 3$ and

Factor $x-3=0 \implies x=3$ putting

$$P(3) = (3)^3 - (3)^2 - 5(3) - 3$$

$$P(3) = 27 - 9 - 15 - 3$$

$$P(3) = 27 - 27 = 0$$

Therefore by factor theorem x-3 is a factor of P(x) to find the remaining factors

$$\begin{array}{c|c} x^2 + 2x + 1 \\ x - 3 \overline{)} & x^3 - x^2 - 5x - 3 \end{array}$$

Applied Math
$$\pm x^3 \mp 3x^2$$

 $+2x^2 - 5x$
 $\pm 2x^2 \mp 6x$
 $x + 2$
 $x + 3$
 $x + 3$

Here $Q(x) = x^2 + 2x + 1$ and R = 0

Since
$$P(x) = (x-k)Q(x) + R$$

 $x^3 - x^2 - 5x - 3 = (x-3)(x^2 + 2x + 1) + 0$
 $= (x-3)(x^2 + 2x + 1)^2$
 $= (x-3)(x+1)^2$

Example 27: Prove that x+2 is a factor of x^3-7x-6 and hence find the other factors.

Sol: here $P(x) = x^3 - 7x - 6$ and factor

$$x+2=0$$
 \Rightarrow $x=-2$ putting

$$P(-2) = (-2)^3 - 7(-2) - 6$$

$$= -8 + 14 - 6$$

= $-14 + 14$
= 0

Therefore x+2 is a factor of given polynomial To find other factors

$$x^{2}-2x-3$$

$$x+2) x^{3} -7x-6$$

$$\pm x^{3} \pm 2x^{2}$$

$$-2x^{2}-7x$$

$$\pm 2x^{2} \mp 4x$$

$$-3x-6$$

$$\pm 3x \mp 6$$

$$R = 0$$

Here
$$Q(x) = x^2 - 2x - 3$$
 and $R = 0$
Since $P(x) = (x - k)Q(x) + R$
 $x^3 - 7x - 6 = (x + 2)(x^2 - 2x - 3) + 0$
 $= (x + 2)(x^2 - 3x + 1x - 3)$
 $= (x + 2)\{x(x - 3) + 1(x - 3)\}$
 $= (x + 2)(x + 1)(x - 3)$

Rule 12: $P(x) = ax^3 + bx^2 + cx + d & x - k$

Put
$$x-k=0$$
 $\Rightarrow x=k$

Then
$$P(k) = a(k)^3 + b(k)^2 + c(k) + d = R$$

Rule 13: Given $P(x) = ax^3 + bx^2 + cx + d$
choose $k = 1, -1, 2, -2, 3, -3$

Put
$$P(k) = a(k)^3 + b(k)^2 + c(k) + d = 0$$

So
$$\frac{Q(x) = Ax^2 + Bx + C}{x - k - ax^3 + bx^2 + cx + d}$$

Then

$$ax^{3} + bx^{2} + cx + d = (x - k)(Ax^{2} + Bx + C)$$

Exercise 5.6

Q1 By using reminder theorem find reminder of following polynomials where i). $x^3 + 6x^2 + 8x - 11$ is divided by x - 1 Sol: Given $P(x) = x^3 + 6x^2 + 8x - 11 \cdots (1)$ and take factor $x - r = x - 1 = 0 \Rightarrow r = 1$ Using reminder theorem i.e., P(r) = R put the value of r in eq (1) $P(r) = (1)^3 + 6(1)^2 + 8(1) - 11$ R = 1 + 6 + 8 - 11

R = 15 - 11

P – **4**

Therefore the reminder = 4

ii).
$$2x^3 + 4x^2 + 7x - 5$$
 is divided by $x + 3$

Sol: Given $P(x) = 2x^3 + 4x^2 + 7x - 5 \cdots (1)$ & take factor x - r = x + 3 = 0 $\Rightarrow r = -3$ Using reminder theorem i.e., P(r) = R put the value of r in eq (1)

$$P(r) = 2(-3)^3 + 4(-3)^2 + 7(-3) - 5$$

 $P(-3) = 2(-27) + 4(9) - 21 - 5$

R = -54 + 36 - 26

R = -54 + 10

R = -44

Therefore the reminder = - 44

iii). $3x^3 + x - 200$ is divided by x - 4Sol: Given $P(x) = 3x^3 + x - 200 \cdots (1)$ and take factor x - r = x - 4 = 0 $\Rightarrow r = 4$ Using reminder theorem i.e., P(r) = R put the value of r in eq (1)

$$P(4) = 3(4)^3 + (4) - 200$$

 $P(r) = 3(64) + 4 - 200$

R = 192 + 4 - 200

R = 196 - 200

R = -4

Therefore the reminder = - 4

Q2. Without preforming division find value of a, when $2x^3 - ax^2 - 2ax + 3x + 2$ is divided by x+1

Sol: Given $P(x) = 2x^3 - ax^2 - 2ax + 3x + 2 &$

the factor $x+1=0 \Rightarrow x=-1$ using factor theorem i.e. $P(r)=0 \Rightarrow R=0$

$$P(-1) = 2(-1)^{3} - \alpha(-1)^{2} - 2\alpha(-1) + 3(-1) + 2 = 0$$

$$\Rightarrow 2(-1) - \alpha(+1) + 2\alpha - 3 + 2 = 0$$

$$\Rightarrow -2 - \alpha + 2\alpha - 1 = 0$$

$$\Rightarrow \alpha - 3 = 0$$

$$\Rightarrow \alpha = 3$$

Q3. Without preforming division find value of b, when $x^3 - 4x^2 + bx - 2$ is divided by x - 1

Sol: Given $P(x) = x^3 - 4x^2 + bx - 2$ & the

factor $x-1=0 \Rightarrow x=1$ using factor theorem i.e., $P(r)=0 \Rightarrow R=0$

$$P(1) = (1)^3 - 4(1)^2 + b(1) - 2 = 0$$

 $\Rightarrow 1 - 4 + b - 2 = 0$

 $\Rightarrow 1-4+b-2=0$ $\Rightarrow b-2-3=0$

 \Rightarrow b-5=0

 \Rightarrow b = 5

Q4. Using factor theorem, factorize following polynomials

i).
$$x^3 - 2x^2 - 5x + 6$$

Sol: Given $P(x) = x^3 - 2x^2 - 5x + 6$

Using factor theorem to find other factors we take P(r) = 0, where

$$r = \pm 1, \pm 2, \pm 3,...$$
 Take $r = 1$
$$P(1) = (1)^3 - 2(1)^2 - 5(1) + 6$$

$$P(r) = 1 - 2 - 5 + 6$$

$$R = 7 - 7$$

R = 0

Since P(1) = 0, therefore by factor

theorem x-1 is a factor of P(x). To find the other factors divide P(x) by x-1 as

$$\begin{array}{c}
x^{2} - x - 6 \\
x - 1 \overline{\smash)x^{3} - 2x^{2} - 5x + 6} \\
\underline{\pm x^{3} \mp x^{2}} \\
- x^{2} - 5x \\
\underline{\mp x^{2} \pm x} \\
- 6x + 6 \\
\underline{- 6x + 6} \\
0
\end{array}$$

Here
$$Q(x) = x^2 - x - 6$$
 and $R = 0$

Since
$$P(x) = (x-r)Q(x)+R$$

Putting the values we get

$$x^{3} - 2x^{2} - 5x + 6 = (x - 1)\{x^{2} - x - 6\}$$

$$= (x - 1)\{x^{2} - 3x + 2x - 6\}$$

$$= (x - 1)\{x(x - 3) + 2(x - 3)\}$$

$$= (x - 1)(x + 2)(x - 3)$$

ii).
$$x^3 + x^2 - 4x - 4$$

Sol: Given
$$P(x) = x^3 + x^2 - 4x - 4$$

Using factor theorem to find other factors we take P(r) = 0, where $r = \pm 1, \pm 2, \pm 3, ...$

$$P\left(1\right)=\left(1\right)^{3}+\left(1\right)^{2}-4\left(1\right)-4$$

$$P(r) = 1 + 1 - 4 - 4$$

R = 2 - 8

 $R = -6 \neq 0$

Now take r = -1

$$P(1) = (-1)^3 + (-1)^2 - 4(-1) - 4$$

$$P(r) = -1 + 1 + 4 - 4$$

R = -5 + 5

R = 0

Since P(-1) = 0, therefore by factor Theorem

$$x-r=x-\left(-1\right)=x+1$$
 is a factor of $P\left(x\right)$.

To find other factors divide P(x) by x-1 as under

Here $Q(x) = x^2 - 4$ and R = 0

Since P(x) = (x-r)Q(x)+R

Putting the values we get

$$x^{3} + x^{2} - 4x - 4 = (x+1)\{x^{2} - 4\}$$

$$= (x+1)\{x^{2} - 2^{2}\}$$

$$= (x+1)(x+2)(x-2)$$

iii).
$$x^3 - 7x + 6$$

Sol: Given
$$P(x) = x^3 - 7x + 6$$

Using factor theorem to find other factors we take P(r) = 0, where

$$r = \pm 1, \pm 2, \pm 3, ...$$
 Take $r = 1$
 $P(1) = (1)^3 - 7(1) + 6$
 $P(r) = 1 - 7 + 6$
 $R = 7 - 7$
 $R = 0$

P(1) = 0, therefore by factor theorem x-1 is a factor of P(x). To find other factors divide P(x) by x-1 as under

$$\begin{array}{c} x^2 + x - 6 \\ x - 1 \end{array}) x^3 + 0.x^2 - 7x + 6$$
Mathem $\pm x^3 \mp x^2$

$$\frac{x^3 \mp x^2}{x^2 - 7x}$$

$$\frac{\pm x^2 \mp x}{-6x + 6}$$

$$\frac{-6x + 6}{0}$$

Here $Q(x) = x^2 + x - 6$ and R = 0

Since P(x) = (x-r)Q(x)+R

Putting the values we get

$$x^{3} - 7x + 6 = (x - 1)\{x^{2} + x - 6\}$$

$$= (x - 1)\{x^{2} + 3x - 2x - 6\}$$

$$= (x - 1)\{x(x + 3) - 2(x + 3)\}$$

$$= (x - 1)(x - 2)(x + 3)$$

iv).
$$x^3 - 9x^2 + 23x - 15$$

Sol: Given
$$P(x) = x^3 - 9x^2 + 23x - 15$$

Using factor theorem to find the other factors we take P(r) = 0, where

$$r = \pm 1, \pm 2, \pm 3, ...$$

Take r = 1

$$P(1) = (1)^3 - 9(1)^2 + 23(1) - 15$$

 $P(r) = 1 - 9 + 23 - 15$

$$R = 1 + 23 - 9 - 15$$

$$R = 24 - 24 = 0$$

P(1) = 0, therefore by factor

theorem x-1 is a factor of P(x). To

find the other factors divide P(x) by

x-1 as under

$$x^{2} - 8x + 15$$

$$x - 1 \qquad x^{3} - 9x^{2} + 23x - 15$$

$$\frac{\pm x^{3} \mp x^{2}}{-8x^{2} + 23x}$$

$$\frac{\pm 8x^{2} \pm 8x}{15x - 15}$$

$$\frac{\pm 15x \mp 15}{0}$$

Here
$$Q(x) = x^2 - x - 6$$
 and $R = 0$

Since
$$P(x) = (x-r)Q(x)+R$$

Putting the values we get

$$x^{3} - 9x^{2} + 23x - 15 = (x - 1)\{x^{2} - 8x + 15\}$$

$$= (x - 1)\{x^{2} - 5x - 3x + 15\}$$

$$= (x - 1)\{x(x - 5) - 3(x - 5)\}$$

$$= (x - 1)(x - 3)(x - 5)$$

$$v$$
). $x^3 - 4x^2 - 3x + 18$

Sol: Given
$$P(x) = x^3 - 4x^2 - 3x + 18$$

Using factor theorem to find other factors

we take P(r) = 0, where $r = \pm 1, \pm 2, \pm 3,...$

Take r = 1

$$P(1) = (1)^3 - 4(1)^2 - 3(1) + 18$$

$$P(r) = 1 - 4 - 3 + 18$$

$$R = 1 + 18 - 4 - 3$$

$$R=19-7=12\neq 0$$

Take r = -1

$$P(1) = (-1)^3 - 4(-1)^2 - 3(-1) + 18$$

$$P(r) = -1 - 4 + 3 + 18$$

$$R = -5 + 21 = 16 \neq 0$$

Take r = 2

$$P(1) = (2)^3 - 4(2)^2 - 3(2) + 18$$

$$P(r) = 8 - 16 - 6 + 18$$

$$R = 8 + 18 - 16 - 6$$

$$R=26-22=4\neq 0$$

Take
$$r = -2$$

$$P(1) = (-2)^3 - 4(-2)^2 - 3(-2) + 18$$

$$P(r) = -8 - 16 + 6 + 18$$

$$R = -24 + 24 = 0$$

Since P(-2) = 0, therefore by factor

theorem x-r=x-(-2)=x+2 is a factor of

P(x). To find the other factors divide P(x)

by x+2 as under

$$\begin{array}{r}
x^{2} - 6x + 9 \\
x + 2 \overline{\smash)x^{3} - 4x^{2} - 3x + 18} \\
\underline{\pm x^{3} \pm 2x^{2}} \\
- 6x^{2} - 3x \\
\underline{\pm 6x^{2} \mp 12x} \\
9x + 18 \\
\underline{\pm 9x \pm 18} \\
0
\end{array}$$

Here
$$Q(x) = x^2 - 6x + 9$$
 and $R = 0$

Since
$$P(x) = (x-r)Q(x)+R$$

Putting the values we get

$$x^{3} - 4x^{2} - 3x + 18 = (x + 2) \{x^{2} - 6x + 9\}$$
$$= (x + 2) \{x^{2} - 2.x.3 + 3^{2}\}$$
$$= (x + 2)(x - 3)^{2}$$

vi).
$$x^3 + 2x^2 - 19x - 20$$

Sol: Given
$$P(x) = x^3 + 2x^2 - 19x - 20$$

Using factor theorem to find other factors we take P(r) = 0, where $r = \pm 1, \pm 2, \pm 3, ...$

Take r = 1

$$P(1) = (1)^3 + 2(1)^2 - 19(1) - 20$$

$$P(r) = 1 + 2 - 19 - 20$$

$$R = 3 - 39$$

$$R=-36\neq 0$$

Take r = -1

$$P(1) = (-1)^3 + 2(-1)^2 - 19(-1) - 20$$

$$P(r) = -1 + 2 + 19 - 20$$

$$R = -21 + 21$$

$$R = 0$$

Since P(-1) = 0, therefore by factor

theorem x+1 is a factor of P(x). To find

other factors divide P(x) by x+1 as

$$\begin{array}{r}
x^{2} + x - 20 \\
x + 1 \quad x^{3} + 2x^{2} - 19x - 20 \\
\underline{\pm x^{3} \pm x^{2}} \\
x^{2} - 19x \\
\underline{\pm x^{2} \pm x} \\
-20x - 20 \\
\underline{\pm 20x \pm 20} \\
0
\end{array}$$

Here
$$Q(x) = x^2 + x - 20$$
 and $R = 0$

Since
$$P(x) = (x-r)Q(x)+R$$

Putting the values we get

$$\begin{aligned} x^3 + 2x^2 - 19x - 20 &= \left(x+1\right) \left\{x^2 + x - 20\right\} \\ &= \left(x+1\right) \left\{x^2 + 5x - 4x - 20\right\} \\ &= \left(x+1\right) \left\{x\left(x+5\right) - 4\left(x+5\right)\right\} \\ &= \left(x+1\right) \left(x-4\right) \left(x+5\right) \end{aligned}$$

vii).
$$x^3 - x^2 - 14x + 24$$

Sol: Given
$$P(x) = x^3 - x^2 - 14x + 24$$

Using factor theorem to find other factors we take P(r) = 0, where

$$r = \pm 1, \pm 2, \pm 3, ...$$

Take r = 1

$$P(1) = (1)^3 - (1)^2 - 14(1) + 24$$

$$P(r) = 1 - 1 - 14 + 24$$

$$R = 10 \neq 0$$

Take r = -1

$$P(1) = (-1)^3 - (-1)^2 - 14(-1) + 24$$

$$P(r) = -1 - 1 + 14 + 24$$

$$R = -2 + 38 = 36 \neq 0$$

Take r = 2

$$P(2) = (2)^3 - (2)^2 - 14(2) + 24$$

$$P(r) = 8 - 4 - 28 + 24$$

$$R = 8 + 24 - 4 - 28$$

$$R = 32 - 32 = 0$$

Since P(2) = 0, therefore by factor theorem

x-r=x-2 is a factor of P(x). To find the

other factors divide P(x) by x-2 as under

$$\begin{array}{r}
x^{2} + x - 12 \\
x - 2 \quad \int x^{3} - x^{2} - 14x + 24 \\
\underline{\pm x^{3} \mp 2x^{2}} \\
x^{2} - 14x \\
\underline{\pm x^{2} \mp 2x} \\
-12x + 24 \\
\underline{\mp 12x \pm 24} \\
0
\end{array}$$

Here $Q(x) = x^2 + x - 12$ and R = 0

Since
$$P(x) = (x-r)Q(x)+R$$

Putting the values we get

$$x^{3} - x^{2} - 14x + 24 = (x - 2)\{x^{2} + x - 12\}$$

$$= (x - 2)\{x^{2} + 4x - 3x - 12\}$$

$$= (x - 2)\{x(x + 4) - 3(x + 4)\}$$

$$= (x - 2)(x - 3)(x + 4)$$

viii).
$$x^3 - 6x^2 + 32$$

Sol: Given
$$P(x) = x^3 - 6x^2 + 32$$

Using factor theorem to find the other factors we take P(r) = 0, where

$$r = \pm 1, \pm 2, \pm 3, ...$$

Take
$$r = 1$$

$$P(1) = (1)^3 - 6(1)^2 + 32$$

$$P(r) = 1 - 6 + 32$$

$$R = -5 + 32 = 27 \neq 0$$

Take r = -1

$$P(1) = (-1)^3 - 6(-1)^2 + 32$$

$$P(r) = -1 - 6 + 32$$

$$R = -7 + 32 = 25 \neq 0$$

Take r = 2

$$P(2) = (2)^3 - 6(2)^2 + 32$$

$$P(r) = 8 - 24 + 32$$

$$R = 8 + 8 = 16 \neq 0$$

Take r = -2

$$P(-2) = (-2)^3 - 6(-2)^2 + 32$$

$$P(r) = -8 - 24 + 32$$

$$R = -32 + 32 = 0$$

Since P(-2) = 0, therefore by factor

theorem x-r=x-(-2)=x+2 is a factor

of P(x). To find the other factors divide

$$P(x)$$
 by $x+2$ as under

$$x+2 \frac{x^{2}-8x+16}{x+2}$$

$$\frac{\pm x^{3}\pm 2x^{2}}{-8x^{2}+0.x}$$

$$\frac{-8x^{2}+0.x}{16x+32}$$

$$\frac{\pm 16x+32}{16x+32}$$

Here
$$Q(x) = x^2 - 8x + 16$$
 and $R = 0$

Since
$$P(x) = (x-r)Q(x)+R$$

Putting the values we get

$$x^{3} - 6x^{2} + 32 = (x+2)\{x^{2} - 8x + 16\}$$
$$= (x+2)\{x^{2} - 2.x.4 + 4^{2}\}$$
$$= (x+2)(x-4)^{2}$$

Review Exercise 5

Q1. Ture and false questions.

Read the following sentences carefully

i).
$$x^2 - 11x + 30 = (x - 6)(x - 5)$$

ii).
$$x^3 + 27 = (x+3)(x^2 - 3x + 9)$$
 T

Т

iii).
$$x^3 - 8 = (x-2)(x^2 + 2x + 4)$$

iv).
$$x^4 - y^4 = (x - y)(x + y)(x + y)^2$$

v).
$$x^6 + y^6 = (x^3 + y^3)(x^3 - y^3)$$

vi).
$$x^5 + y^5 = (x + y)^5$$

Q2. Complete the following sentences

i).
$$9x^2 - 16y^4 = (3x - 4y^2)(3x + 4y^2)$$

ii).
$$x^3 - 27y^3 = (x - 3y)(x^2 + 3xy + 9y^2)$$

iii).
$$x^2 - 5x + 6 = (x-2)(x-3)$$

iv).	$a^2 + b^2 =$	(a-b)	$(a^{2} + 2ab)^{2}$
------	---------------	-------	---------------------

v).
$$8b^3 + c^3 = (2b+c)(4b^2 - 2bc + c^2)$$

Q3. Choose the correct answer

i). Factors of
$$x^2 + 2x - 24$$
 are

a).
$$x+4, x-6$$
 b). $x-4, x+6$

c).
$$x+3, x-8$$
 d). $x+8, x-3$

ii). Factorization of
$$x^2 + 2xy + y^2 - z^2$$
 is

a).
$$(x-y+z)(x-y-z)$$
 b). $(x+y-z)(x-y-z)$

c).
$$(x+y+z)(x+y-z)$$
 d). $(x+y+z)(x-y-z)$

iii). Factorization of
$$a^3 + b^3$$
 is

a).
$$(a-b)(a^2+ab+b^2)$$
 b). $(a+b)(a^2+ab+b^2)$

c).
$$(a+b)(a^2+ab-b^2)$$
 d). $(a+b)(a^2-ab+b^2)$

iv). Factors of
$$8y^3 - z^3$$
 are

a).
$$2y - z$$
, $4y^2 + 2yz + z^2$ b). $2y - z$, $2y - z$, $2y - z$

c).
$$2y - z$$
, $4y^2 - 2yz + z^2$ d). $2y - z$, $4y^2 - 2yz - z^2$

v). In simplified form
$$\frac{1}{a+b} + \frac{b}{a^2-b^2} = \dots$$

a).
$$\frac{b+1}{a^2-b^2}$$
 b). $\frac{a}{a^2-b}$

c).
$$\frac{b}{a^2-b^2}$$
 d). $\frac{b+a}{a^2-b^2}$

vi). Factorization of
$$a^2 - b^2 + 10b - 25$$
 is

a).
$$(a-b+5)(a-b+5)$$

b).
$$(a+b-5)(a-b+5)$$

c).
$$(a+b-5)(a+b-5)$$

d).
$$(a+b-5)(a-b-5)$$

vii). Completely factorize
$$16x^4 - 81$$

a).
$$(2x-3)(2x+3)(4x^2+9)$$

b).
$$(4x^2-9)(4x^2+9)$$

c).
$$(2x-3)(2x+3)(2x-3)$$

d).
$$(4x^2-9)(2x-3)(2x+3)$$

Q4: i). Factorize $3x^3 - 3x^2 - 18x$

Solution: Given
$$3x^3 - 3x^2 - 18x$$

 $3x^3 - 3x^2 - 18x$
 $= 3x(x^2 - x - 6)$
 $= 3x(x^2 - 3x + 2x - 6)$
 $= 3x\{x(x-3) + 2(x-3)\}$

=3x(x+2)(x-3)

Q4: ii). Factorize $64x^3 + 27$

Solution: Given
$$64x^3 + 27$$

$$= (4x)^3 + (3)^3$$

$$= (4x+3)\{(4x)^2 - (4x)(3) + (3)^2\}$$

$$= (4x+3)(16x^2 - 12x + 9)$$

Q4: iii). Factorize $x^6 - y^6$

Solution: Given $x^6 - y^6$

$$= (x^{3})^{2} - (y^{3})^{2}$$

$$= (x^{3} + y^{3})(x^{3} - y^{3})$$

$$= (x + y)(x^{2} - xy + y^{2})(x - y)(x^{2} + xy + y^{2})$$

$$= (x + y)(x - y)(x^{2} - xy + y^{2})(x^{2} + xy + y^{2})$$

Q4: iv). Factorize $343a^3 - 125b^3 + 5b - 7a$

Solution: Given
$$343a^3 - 125b^3 + 5b - 7a$$

$$=343a^3-125b^3-7a+5b$$

$$= (7a)^3 - (5b)^3 - 1(7a - 5b)$$

Using
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$= (7a)^{3} - (5b)^{3} - 1(7a - 5b)$$

$$= (7a - 5b)\{(7a)^{2} + (7a)(5b) + (5b)^{2}\} - 1(7a - 5b)$$

$$= (7a - 5b)\{49a^{2} + 35ab + 25b^{2}\} - 1(7a - 5b)$$

Q5. Factorize
$$(x+1)(x+2)(x+3)(x+4)-120$$

Sol: Given
$$(x+1)(x+2)(x+3)(x+4)-120$$

Here
$$1+4=2+3$$
 , so rearranging

 $=(7a-5b){49a^2+35ab+25b^2-1}$

$$=(x+1)(x+4)(x+2)(x+3)-120$$

$$=(x^2+4x+1x+4)(x^2+3x+2x+6)-120$$

$$=(x^2+5x+4)(x^2+5x+6)-120$$

Here two terms are same Let $y = x^2 + 5x$

$$=(y+4)(y+6)-120$$

$$= y^2 + 6y + 4y + 24 - 120$$

$$= y^2 + 10y - 96$$

$$= y^2 + 16y - 6y - 96$$

$$= y(y+16)-6(y+16)$$

$$=(y-6)(y+16)$$

Putting back value of $y = x^2 + 5x$

$$=(x^2+5x-6)(x^2+5x+16)$$

$$=(x^2+6x-1x-6)(x^2+5x+16)$$

$$= \{x(x+6)-1(x+6)\}(x^2+5x+16)$$

$$=(x-1)(x+6)(x^2+5x+16)$$

Q6: i). Using factor theorem factorize $x^3-17x+26$

Solution: Given
$$P(x) = x^3 - 17x + 26$$

Put
$$x = 2$$
 $P(2) = (2)^3 - 17(2) + 26$
 $P(2) = 8 - 34 + 26$
 $P(2) = 34 - 34$
 $P(2) = 0$

Hence x-2 is a factor so

$$x^{2} + 2x - 13$$

$$x - 2) x^{3} - 17x + 26$$

$$\underline{\pm x^{3} \mp 2x^{2}}$$

$$2x^{2} - 17x$$

$$\pm 2 \underline{x^{2} \mp 4x}$$

$$-13x + 26$$

$$\underline{\mp 13x \pm 26}$$

$$R = 0$$

Here
$$Q(x) = x^2 + 2x - 13$$
 and $R = 0$
Since $P(x) = (x - k)Q(x) + R$
 $x^3 - 17x + 26 = (x - 2)(x^2 + 2x - 13) + 0$
 $= (x + 2)(x^2 + 2x - 13)$

Q6: ii). Using factor theorem factorize $x^3 - 39x^2 - 124x - 84$ Solution: Given $x^3 - 39x^2 - 124x - 84$

Using factor theorem to find the other factors we take P(r) = 0, where $r = \pm 1, \pm 2, \pm 3,...$

Take
$$r = -1$$

 $x^3 - 39x^2 - 124x - 84$
 $P(-1) = (-1)^3 - 39(-1)^2 - 124(-1) - 84$
 $P(r) = -1 - 39 + 124 - 84$
 $R = -40 + 40 = 0$
Since $P(-1) = 0$, therefore by factor theorem $x - r = x - (-1) = x + 1$ is a factor of $P(x)$. To find the other factors divide $P(x)$ by $x + 1$ as

$$x+1 \qquad x^{2}-40x-84$$

$$x+1 \qquad x^{3}-39x^{2}-124x-84$$

$$x+1 \qquad x^{2}-40x^{2}-124x$$

$$x+1 \qquad x^{2}-124x$$

under

Here
$$Q(x) = x^2 - 40x - 84$$
 and $R = 0$
Since $P(x) = (x-r)Q(x) + R$

Putting the values we get

$$\begin{split} x^3 - 39x^2 - 124x - 84 &= \left(x+1\right) \left\{x^2 - 40x - 84\right\} \\ &= \left(x+1\right) \left\{x^2 - 42x + 2x - 84\right\} \\ &= \left(x+1\right) \left\{x\left(x-42\right) + 2\left(x-42\right)\right\} \\ &= \left(x+1\right) \left(x+2\right) \left(x-42\right) \end{split}$$

Q7. Factorize $a^4 + a^2b^2 + b^4$ Sol: Given $a^4 + a^2b^2 + b^4$

$$= a^{4} + b^{4} + a^{2}b^{2}$$

$$= (a^{2})^{2} + (b^{2})^{2} + 2(a^{2})(b^{2}) - 2(a^{2}) + (b^{2}) + a^{2}b^{2}$$

$$= (a^{2} + b^{2})^{2} - 2a^{2}b^{2} + a^{2}b^{2}$$

$$= (a^{2} + b^{2})^{2} - a^{2}b^{2}$$

$$= (a^{2} + b^{2})^{2} - (ab)^{2}$$

$$= (a^{2} + b^{2} + ab)(a^{2} + b^{2} - ab)$$

Q8. By using long division method, find the quotient and the remainder when

 $2x^3+4x^2-6$ is divided by x+3

Solution: Given dividend $2x^3 + 4x^2 - 6$

Divisor x+3

$$\begin{array}{r}
2x^2 - 2x + 6 \\
x + 3 \overline{\smash)2x^3 + 4x^2 - 6} \\
\underline{\pm 2x^3 \pm 6x^2} \\
-2x^2 - 6 \\
\underline{\mp 2x^2 \mp 6x} \\
+ 6x - 6 \\
\underline{\pm 6x \pm 18} \\
R = -24
\end{array}$$

Here Q(x) = $2x^2 - 2x + 6$ and R = -24

Q9: i. Find the remainder when $x^3 + 2x^2 - 3x + 1$ is divided by x - 1 Solution: Given $P(x) = x^3 + 2x^2 - 3x + 1$

And divisor x-1=0 $\Rightarrow x=1$

$$P(1) = (1)^{3} + 2(1)^{2} - 3(1) + 1$$
$$P(1) = 1 + 2 - 3 + 1$$

$$P(1) = 1$$

M-Phil Applied

Hence remainder R = 1

Q9: i. Find the remainder when $x^3 + 2x^2 - 3x + 1$ is divided by x + 2 Solution: Given $P(x) = x^3 + 2x^2 - 3x + 1$ And divisor $x + 2 = 0 \implies x = -2$ $P(-2) = (-2)^3 + 2(-2)^2 - 3(-2) + 1$ P(-2) = -8 + 8 + 6 + 1 P(-2) = 7

Hence remainder R = 7

Hence remainder R = - 5

Q10. By using remainder theorem find remainder when $x^{72} - 7x^{48} + 1$ is divided by x + 1 Solution: Given $P(x) = x^{72} - 7x^{48} + 1$ And divisor $x + 1 = 0 \implies x = -1$ $P(-1) = (-1)^{72} - 7(-1)^{48} + 1$ P(-1) = 1 - 7 + 1 P(-1) = -5