Yifan Zhang, Jinsong Chen

Introduction

- Special effects including **Method effects** and **testlet effects** are common issues in educational and psychological measurement.
- Existing models have lot limitations for special effects: Bifactor model, MTMM (multiple traits multiple methods) models, testlet models

Objectives

- Accommodating the GPCFA framework to special effects with added benefits:
 - Partially confirmatory knowledge
 - Local dependence
 - Mixed-type formats
 - Missingness
- Link to various Bifactor, MTMM and testlet effect models:
 - Standard Bifactor
 - CTCU (correlated trait correlated uniqueness)
 - CTUM (correlated trait uncorrelated method)
 - CTCM (correlated trait correlated method), CTC(M-1) (correlated trait correlated method model with one method less)
 - The general testlet model
 - 2PNO testlet model
 - Rasch testlet model

• Provide a subroutine to compute the equivalent effect size.

Theoretical Framework

GPCFA for special effects:

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\Lambda}_g \mathbf{F}_{\mathbf{g}} + \boldsymbol{\Lambda}_{\mathbf{s}} \mathbf{F}_{\mathbf{s}} + \mathbf{E}$$

- **Y** is the observed variables
- μ represents the $J \times I$ intercept vector
- matrix $\Lambda_{\mathbf{g}}$ ($\Lambda_{\mathbf{s}}$) represents $J \times K_G$ ($J \times K_S$) general (special) loading matrix
- $\mathbf{F_g}$ ($\mathbf{F_s}$) represents K_G (K_S) factors with the $K_G \times K_G$ ($K_S \times K_S$) factorial covariance matrix $\mathbf{\Phi}$
- **E** represents the $J \times I$ residuals with the $J \times J$ residual covariance matrix **Ψ**

Effect Size:

eigenvalue of special factors
the number of indicators

Yifan Zhang, Jinsong Chen

Simulation Study 1 Continuous variables

Data generation

- No. Replication = 200
- Sample size = 1000
- Interference $\psi_{13} = \psi_{31} = \psi_{23} = \psi_{32} = \psi_{46} = \psi_{64} = \psi_{56} = 0.2$

Simulation conditions

- Effect Size = 0.1 / 0.2
- Factorial correlation = .3 / .6

Results	Results $\phi = 0.3$ $\phi = 0.6$								
Par	True	BIAS	RMSE	SE	SIG%	BIAS	RMSE	SE	SIG%
				D =	0.1				
λ_{gl}	0.5	0.002	0.036	0.086	0.998	-0.013	0.044	0.139	1.000
$\lambda_{\rm g2}$	0.55	0.001	0.032	0.087	1.000	-0.019	0.044	0.140	1.000
λ_{g3}	0.6	-0.002	0.042	0.086	1.000	-0.019	0.055	0.135	1.000
λ _{g4}	0.65	0.005	0.049	0.089	1.000	-0.021	0.060	0.136	1.000
λ_{g5}	0.7	-0.018	0.038	0.082	1.000	-0.054	0.064	0.127	1.000
λ_{g6}	0.75	-0.003	0.025	0.085	1.000	-0.042	0.052	0.131	1.000
λ_{s1}	0.316	-0.022	0.101	0.122	0.650	-0.025	0.102	0.122	0.632
D_1	0.1	0.003	0.012	0.025	1.000	0.003	0.012	0.025	1.000
D_2	0.1	0.013	0.018	0.024	1.000	0.013	0.018	0.024	1.000
D_3	0.1	0.030	0.033	0.027	1.000	0.026	0.030	0.027	1.000
$\lambda_{\rm g/s0}$	0	0.010	0.031	0.097	0.000	0.025	0.042	0.131	0.000
ψ_{13}	0.2	-0.036	0.047	0.078	0.620	-0.037	0.047	0.076	0.625
ψ_{23}	0.2	-0.038	0.048	0.082	0.450	-0.040	0.049	0.081	0.425
₩ ₄₆	0.2	-0.052	0.058	0.101	0.025	-0.035	0.041	0.096	0.190
₩ ₅₆	0.2	-0.139	0.139	0.068	0.000	-0.132	0.133	0.072	0.000
$\phi_{\mathbf{k}\mathbf{k}'}$	0.3/0.6	-0.040	0.054	0.168	0.082	-0.088	0.094	0.196	0.968
				D =	0.2				
λ_{gl}	0.5	-0.009	0.061	0.127	0.938	-0.059	0.102	0.198	0.707
$\lambda_{\rm g2}$	0.55	-0.008	0.060	0.135	0.942	-0.063	0.106	0.211	0.740
λ_{g3}	0.6	-0.037	0.085	0.119	0.938	-0.078	0.133	0.192	0.805
λ _{g4}	0.65	0.015	0.145	0.118	0.947	-0.044	0.191	0.181	0.812
λ_{g5}	0.7	-0.034	0.079	0.119	0.958	-0.109	0.140	0.191	0.825
λ_{g6}	0.75	0.009	0.068	0.121	0.958	-0.068	0.126	0.191	0.838
λ_{s1}	0.447	-0.064	0.186	0.118	0.704	-0.081	0.194	0.126	0.596
D_1	0.2	-0.042	0.053	0.042	1.000	-0.047	0.057	0.043	1.000
D_2	0.2	0.061	0.064	0.033	1.000	0.068	0.071	0.034	1.000
D_3	0.2	-0.011	0.027	0.032	1.000	-0.039	0.046	0.035	1.000
$\lambda_{\rm g/s0}$	0	0.007	0.060	0.131	0.000	0.042	0.089	0.194	0.000
Ψ13	0.2	-0.029	0.046	0.065	0.830	-0.018	0.042	0.071	0.830
ψ_{23}	0.2	-0.030	0.045	0.069	0.760	-0.018	0.042	0.075	0.735
Ψ46	0.2	-0.152	0.153	0.050	0.000	-0.133	0.135	0.065	0.000
Ψ56	0.2	-0.195	0.195	0.014	0.000	-0.191	0.191	0.022	0.000
$\phi_{kk'}$	0.3/0.6	-0.025	0.079	0.210	0.158	-0.166	0.203	0.298	0.348

Note. λ_{g1} - λ_{g6} averaged across all general factors; λ_{s1} averaged across all special factors; $\lambda_{g/s0}$ averaged across all zero loading estimates; D: effect size; For $\phi_{kk'}$, k and k' = 1 to 3 and $k \neq k'$; RMSE: root mean square error; SE: standard error; SIG%: percent of estimates differed from zero significantly ($\alpha = .05$).

Faculty of **Education**The University of Hong Kong

Yifan Zhang, Jinsong Chen

Simulation Study 2 Categorical variables

Data generation

- No. Replication = 200
- Sample size = 1000

Simulation conditions

- Effect Size = 0.1 / 0.2
- Number of categories = 2/4

Results

Par Agi	0.5	BIAS	RMSE	SE	SIG%	BIAS	DMCE	C.F.	
		0.004				פרום	RMSE	SE	SIG%
		0.004		D =	0.1				
	0.55	0.004	0.037	0.064	1.000	0.001	0.030	0.060	1.000
λ_{g2}	0.55	-0.002	0.035	0.063	1.000	-0.005	0.029	0.059	1.000
λ_{g3}	0.6	0.000	0.032	0.064	1.000	0.002	0.026	0.061	1.000
λ_{g4}	0.65	-0.005	0.030	0.064	1.000	-0.004	0.024	0.061	1.000
λ_{g5}	0.7	0.004	0.029	0.064	1.000	0.002	0.023	0.063	1.000
λ_{g6}	0.75	0.001	0.027	0.064	1.000	-0.001	0.021	0.062	1.000
λ_{s1}	0.316	-0.053	0.075	0.167	0.101	-0.038	0.058	0.148	0.243
D_1	0.1	-0.019	0.023	0.030	1.000	-0.015	0.019	0.030	1.000
D_2	0.1	-0.016	0.020	0.034	1.000	-0.015	0.019	0.037	1.000
D_3	0.1	-0.017	0.022	0.042	1.000	-0.015	0.019	0.044	1.000
$\lambda_{\rm g/s0}$	0	0.019	0.037	0.113	0.000	0.018	0.032	0.099	0.000
6/ 50				D =	0.2				
λ_{gl}	0.5	0.003	0.040	0.082	1.000	-0.003	0.034	0.078	1.000
λ_{g2}	0.55	-0.005	0.039	0.080	1.000	-0.012	0.035	0.077	1.000
λ_{g3}	0.6	-0.007	0.037	0.083	1.000	-0.006	0.031	0.080	1.000
λ_{g4}	0.65	-0.014	0.038	0.083	1.000	-0.013	0.031	0.081	1.000
λ_{g5}	0.7	0.021	0.041	0.088	1.000	0.012	0.032	0.086	1.000
λ_{g6}	0.75	0.014	0.037	0.088	1.000	0.004	0.027	0.086	1.000
λ_{s1}	0.447	-0.048	0.079	0.165	0.567	-0.028	0.058	0.145	0.775
D_1	0.2	-0.039	0.045	0.054	1.000	-0.029	0.035	0.054	1.000
D_2	0.2	-0.036	0.043	0.061	1.000	-0.030	0.036	0.065	1.000
D_3	0.2	-0.059	0.066	0.078	1.000	-0.049	0.055	0.079	1.000
$\lambda_{\rm g/s0}$	0	0.010	0.034	0.106	0.001	0.013	0.029	0.094	0.000

Note. λ_{gl} = average of three parts of general factor loadings; λ_{s1} averaged across all special factors; D: effect size; $\lambda_{g/s0}$ averaged across all zero loading estimates; M: number of categories; RMSE: root mean square error; SE: standard error; SIG %: percent of estimates differed from zero significantly ($\alpha = .05$).

Yifan Zhang, Jinsong Chen

Empirical Study 3 Humor Styles Questionnaire

• N=1070

Results

Local Independent							Local Dependent							
Item	F1	F2	F3	F4	R	F1	F2	F3	F4	R	LD	effect		
1	0.668	1.7	13	1'4		0.657	1.77	1.3	1'4	0.146*	Ψ24,4	0.114		
2	0.000	0.636				0.037	0.618			0.140	Ψ29,5	-0.066		
3		0.050	0.536	0.094			0.010	0.550			Ψ30,6	0.071		
4			0.550	$\frac{0.624}{0.626}$				0.550	0.618		Ψ20,8	0.071		
5	0.653			0.020	-0.136*	0.612			0.010		Ψ18,10	0.247		
6	0.215	0.379			0.150	0.187	0.382				Ψ25,13	0.141		
7	-0.169	0.577	0.601			-0.139	0.302	0.550		0.177*	Ψ21,17	0.131		
8	0.102		0.001	0.784		0.137		0.550	0.735	0.177	Ψ29,23	0.098		
9	0.476			0.092		0.447			0.755	0.192	Ψ28,27	-0.076		
10	-0.118*	0.816		0.072		0,	0.735			0.172	120,27	0.070		
11	-0.122	0.010	0.550				0.755	0.542						
12				0.640					0.638					
13	0.620				0.269*	0.613								
14		0.657					0.677							
15			0.680					0.596		0.309				
16			0.104	0.556					0.596	0.285				
17	0.773					0.760				0.166				
18	-0.167	0.827					0.732							
19	0.133	0.125	0.444			0.195		0.464						
20				0.782					0.719					
21	0.696		-0.135			0.702								
22		0.375	0.081				0.419			0.233				
23			0.497		0.149*			0.463		0.252*				
24	<u>-0.168</u>			0.478		<u>-0.111*</u>			0.461	-0.106*				
25	0.703				0.366*	0.646				0.174				
26		0.686					0.692							
27			0.548					0.552						
28		0.178	0.154	0.240		0.108*	<u>0.136</u>	0.163	0.241					
29	0.595		0.149	<u>-0.192</u>		0.532			<u>-0.160</u>	0.232				
30		0.454		<u>-0.123</u>			0.447							
31			0.692		0.110*			0.597		0.342				
32				0.660					0.655					
ES					0.039					0.060				

Note. F1 = affiliative humor; F2 = self-enhancing humor; F3 = aggressive humor; F4 = self-defeating humor; F3 = reverse item; F3 = local dependence (only significant terms were presented); F3 = effect size; underscored in general factors (F3) are cross-loadings; underscored in special factor (F3) are specified items; only significant loadings at general factors and loading absolute value above F3 at special factors are presented.

Yifan Zhang, Jinsong Chen

Res	ults							
	Item	Item code	G1	A1	A2	A3	A4	A5
	1	R040Q02	0.543	0.339				
	2	R040Q03A	0.625	0.406		0.118*		
	3	R040Q03B	0.752	0.448				
	4	R040Q04	0.608	0.324				
	5	R040Q06	0.555	0.287				
	6	R077Q02	0.656		0.141*			
	7	R077Q03	0.710		0.219			
	8	R077Q04	0.560					
	9	R077Q05	0.540		0.393			
	10	R077Q06	0.515		0.265			
	11	R088Q01	0.684			0.128*		
	12	R088Q03	0.681	0.112*		0.131*		
	13	R088Q04T	0.647	0.107*		0.221*		
	14	R088Q05T	0.639			0.288*		
	15	R088Q07	0.648			0.195*		
	16	R110Q01	0.645				0.187*	
	17	R110Q04	0.737				0.276	
	18	R110Q05	0.765				0.263*	
	19	R110Q06	0.568				0.296	
	20	R216Q01	0.647					0.282
	21	R216Q02	0.803					
	22	R216Q03T	0.829					0.106*
	23	R216Q04	0.750					0.319
	24	R216Q06	0.600					0.486
	25	R236Q01	0.691				0.139*	
	26	R236Q02	0.639					0.100*
	ES			0.102	0.058	0.050	0.062	0.076

Note. G1= Reading literacy; A1-5 = 5 different articles; ES: effect size; underscored are specified loadings; only significant loadings at general factors and loading absolute value above 0.1 at special factors are presented.

Yifan Zhang, Jinsong Chen

Summary

- Multiple general factors and special factors with different constraints on factorial correlation and residual
- Loading matrix, local dependence, mixed types of variables, missingness
- Regularization of loading structure
- Partially confirmatory structure

Recommendations for

Practitioners

- effect size < 0.05 can be negligible
- small effect size (~.1) is ok, GPCFA
 will achieve good model estimation
- large effect size (~.2) might lead to overestimating for some parameters

Limitation

- Time-consuming
- Raw data are required

Further Plan

- Compare the performance of GPCFA with other generalized models
- Explore more large-scale empirical evidence