Alex Havrilla

alumhavr

Hw 1

Presentation Problems: 4

Question 1:

This is really regular value theorem

Let $F: \mathbb{R}^n \to \mathbb{R}$ with $n \geq 2$.

Claim: For any regular α , \mathcal{M}_{α} is a differentiable manifold.

Note x_i denotes the first j components of x.

Proof. Let $x \in \mathbb{R}^n$ with $F(x) = \alpha$. Because $Df(x) \neq 0$ by assumption we know there exist coordinate i with $Df(x)_i \neq 0$. Without loss of generality suppose this is the nth coordinate. The implicit function theorem tells us there exists open $U \subseteq \mathbb{R}^n$ and $g_x : \mathbb{R}^{n-1} \to \mathbb{R}$ s.t. for $y \in U$, $f(y_{n-1}, g_x(y_{n-1})) = \alpha$ with g_x continuous, differentiable and $g_x(x_{n-1}) = x^n$. Define $\phi_x : U \subseteq \mathbb{R}^{n-1} \to \phi_x(U)$ via $\phi_x(y) = (y, g_x(y))$. Via sequential continuity we have this mapping is continuous under the subset topology. Note this is injective, so therefore bijective. Further the inverse $\phi_x^{-1} : \phi_x(U) \to U$ via $\phi_x^{-1}(y) = y_{n-1}$ a projection and hence continuous. This establishes a homeomorphism, and since x arbitrary, shows \mathcal{M} a manifold.

Finally we check that $\phi^{-1} \circ \psi : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ is differentiable for overlapping domains. Compute $\phi^{-1}(\psi(x)) = \phi((x, g(x))) = x$ ie. the identity. Clearly this is differentiable.

Note this directly generalizes via the Implict Function Theorem to the case $F: \mathbb{R}^n \to \mathbb{R}^m$ with m < n and the jacobian is of rank m.

Claim: \mathcal{M}_{α} is orientable.

Proof. As computed above the composition of two overlapping maps is the identity. It has identity matrix as the jacobian and which has positive determinant and therefore orientable.

Question 2:

Claim: O(n) is a differentiable manifold when viewed as a subset of \mathbb{R}^{n^2}

Proof. We prove this using the theorem proved above in the more general case $F: \mathbb{R}^n \to \mathbb{R}^m$. Consider the function $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{\binom{n}{2}}$ defined via $f(M) = M^T M$ (a function into the symmetric matrices). See that $f(M) = I \iff M^T = M^{-1}$ ie. is orthogonal. So it suffices to show I is a regular value of f. To do so we show the jacobian of f has maximal rank when f orthogonal.

Examining the directional derivatives we have Df(M)V =

$$\lim_{t\to 0} \frac{f(M+tV) - f(M)}{t} = \lim_{t\to 0} \frac{M^T M + tV^T V - M^T M}{t} =$$

The dimension of O(n) is then $n^2 - \binom{n}{2} = n(n-1)/2$ since this is the dimension of the inverse projection.

Question 3:

Claim: If $v_{\gamma} \in \mathcal{T}_{p}\mathcal{M}$ is given in the chart (U, ϕ) , as $a^{1} \frac{\partial}{\partial x_{1}}(p) + ... + a^{n} \frac{\partial}{\partial x_{n}}(p)$ and in the chart (V, ψ) as $b^{1} \frac{\partial}{\partial y_{1}}(p) + ... + b^{n} \frac{\partial}{\partial y_{n}}(p)$ satisfies

Proof. Recall $a^i = \frac{\partial (\phi^{-1} \circ \gamma)_i}{\partial t}|_{t=0}$ and $b^i = \frac{\partial (\psi^{-1} \circ \gamma)_i}{\partial t}|_{t=0}$. Then compute

$$\frac{\partial (\phi^{-1} \circ \gamma)}{\partial t}|_{t=0} = \frac{\partial (\phi^{-1} \circ \psi \circ \psi^{-1} \circ \gamma)}{\partial t}|_{t=0} = D\phi^{-1} \circ \psi_{\psi^{-1}(\gamma(0))} \frac{\partial \psi^{-1} \circ \gamma}{\partial t}|_{t=0}$$

Note that by definition the first term $D\phi^{-1}\psi_{\psi^{-1}(\gamma(0))}$. If we look at the ith component of the expression we find this to be a^i . Yet the ith component of $\frac{\partial \psi^{-1} \circ \gamma}{\partial t}|_{t=0}$ is b^i . So the change of basis is given by the matrix $D\phi^{-1}\psi_{\psi^{-1}(\gamma(0))}$.

Question 4:

I could present this one

Claim: Suppose \mathcal{M} is a connected manifold and $f: \mathcal{M} \to \mathbb{R}$ s.t. df = 0 everywhere on \mathcal{M} . Then f is constant function

Proof. If df = 0 we have $\forall p \in \mathcal{M} \ df|_p = 0$ ie. $\forall v_{\gamma} \in \mathcal{T}_p \mathcal{M} \ df|_p[v] = 0$ or $v_{\gamma}[f] = \frac{\partial f \circ \gamma}{\partial t}|_{t=0} = 0$ for arbitrary curve γ .

Now consider arbitrary $p \in \mathcal{M}$. Let $\phi: U \to M$ be a chart with $p \in \phi(U)$. Without loss of generality take U to be convex. Select $q \in \phi(U)$. Consider the line connecting $\phi^{-1}(p)$ to $\phi^{-1}(q)$. Then taking the image of this under ϕ defines a curve γ with $\gamma(0) = p$ and $\gamma(1) = q$ (note that if we have any issues with differentiability we can extend the curve by some small amount ϵ). We know $\frac{\partial f \circ \gamma}{\partial t}|_{t=0} = 0$ but the parameterization of this curve is arbitrary, so we may simply reparameterize s.t. all along the curve we see $\frac{\partial f \circ \gamma}{\partial t} = 0$. This tells us f constant along the curve, and in particular f(p) = f(q). But q was arbitrary so we see for all $x, y \in \phi(U)$, f(x) = f(p) = f(y) so f is constant on $\phi(U)$.

Since this is true for arbitary p we see f is constant in a neighborhood of every point $p \in M$. And then since M is connected, f must be constant on M, since otherwise we could find two open sets U and V disjoint but covering U by taking unions of neighborhoods of points with constant c_1 and unions of neighborhoods of points with constant c_2 .

Question 5:

Try inverse function theorem when looking at inverse

Claim: $f: P^2 \to \mathbb{R}^4$ defined by $f([x], [y], [z]) = (x^2 - y^2, xy, xz, yz)$. Then F is an embedding

Proof. Recall $f: P^2 \to \mathbb{R}^4$ is an embedding if F is a homeomorphism between its domain and image and df_p is injective for all $p \in P^2(F)$ is an immersion).

Take $p \in P^2$ and compute $dF_p(v_\gamma) = v_\gamma[f] = \sum a^i \frac{\partial}{\partial x^i}[f] = \sum a^i df_p[\frac{\partial}{\partial x_i}]$. So to compute the injectivity of df_p it suffices to study the standard tangent basis vectors at p.

Set p = ([x], [y], [z]) and compute $\frac{\partial}{\partial x^i}[f] = \frac{d}{dx^i} f \circ \phi|_{\phi^{-1}(p)} = \frac{d}{dx^i} f(p)$ which is just the x^i partial derivative of f. So we compute the jacobian

$$\begin{bmatrix} 2x & -2y & 0 \\ y & x & 0 \\ z & 0 & x \\ 0 & z & y \end{bmatrix}$$

For $p \in P^2$ we see the column vectors are linearly independent. This shows injectivity and hence an immersion.

Now we show f a homeomorphism. Note if $(x^2 - y^2, xy, xz, yz) = (a^2 - b^2, ab, ac, bc)$ then we know $z^2 = c^2$ everything nonzero. This quickly yields injectivity in the nonzero case. If two components are 0 then injectivity is clear. If only one component is 0 then this is a contradiction. This establishes a bijection.

Continuity is clear from sequential convergence. Continuity of the inverse comes from the inverse value theorem,