DEVOIR SURVEILLÉ N°7 (LE CORRIGÉ)

Nom: Prénom: Classe:

EXERCICE N°1	Je maitrise m	es cours

(5 points)

Entourer la (ou les) bonne(s) réponse(s).

Entourer la (ou les) boille(s) rep	01130(3).			
$\sqrt{5}+\sqrt{5}$ est égal à	5	$5\sqrt{2}$	$\boxed{2\sqrt{5}}$	$\sqrt{10}$
Si les réels positifs E , m et v vérifient $E = \frac{1}{2}mv^2$ alors	$m = \frac{E}{2 v^2}$	$v = \sqrt{\frac{2E}{m}}$	$v = \sqrt{E - \frac{1}{2}m}$	mv = 2 Ev
On considère les nombres suivants : $A = \sqrt{7 - 2\sqrt{3}}$ et $B = \sqrt{3} + 2$ alors	A > B		A = B	On ne peut pas conclure
L'image de $\frac{4}{3}$ par la fonction racine carrée est :	$\frac{\sqrt{3}}{2}$	$\frac{2}{\sqrt{3}}$	$\frac{3}{4}$	$ \begin{array}{ c c } \hline $
La distance entre les nombres 1 et $\sqrt{2}$ vaut	1+√2	$1-\sqrt{2}$	$\sqrt{2} + 1$	$\sqrt{2}-1$

• Pour la troisième ligne :

Deux nombres positifs sont rangés dans le même ordre que leurs carrés.

Or:
$$(\sqrt{7-2\sqrt{3}})^2 = 7-2\sqrt{3}$$
 et $(\sqrt{3}+2)^2 = 3+4\sqrt{3}+4 = 7+4\sqrt{3}$...

• Pour la quatrième ligne :

Souvenez-vous : on n'aime pas avoir de radical au dénominateur... $\frac{2}{\sqrt{3}} = \frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$...

Toutes les questions sont indépendantes, vos réponses devront être détaillées.

- 1) f est la fonction définie sur \mathbb{R} par $f(x)=2x^2-7$.
- **1.a)** Calculer l'image de $\sqrt{3}$ par f.

$$f(\sqrt{3}) = 2 \times (\sqrt{3})^2 - 7 = 2 \times 3 - 7 = -1$$
 ainsi $f(\sqrt{3}) = -1$

1.b) Calculer $(2\sqrt{2}+3)(2\sqrt{2}-3)$.

$$(2\sqrt{2}+3)(2\sqrt{2}-3) = (2\sqrt{2})^2 - 3^2 = 8-9 = \boxed{-1}$$

- 2) Ecrire les nombres suivants sous la forme $a\sqrt{b}$, avec a et b entiers, positif le plus petit possible.
- **2.a)** $3\sqrt{2} \times 5\sqrt{14}$

$$3\sqrt{2} \times 5\sqrt{14} = 15\sqrt{2 \times 2 \times 7} = 15 \times 2 \times \sqrt{7} = \boxed{30\sqrt{7}}$$

2.b) $\sqrt{294}$

$$\sqrt{294} = \sqrt{49 \times 6} = \boxed{7\sqrt{6}}$$

2.c) $2\sqrt{12}-4\sqrt{75}+2\sqrt{3}$

$$2\sqrt{12}-4\sqrt{75}+2\sqrt{3}$$

- $\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}$
- $\sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3}$
- $= 2 \times 2\sqrt{3} 4 \times 5\sqrt{3} + 2\sqrt{3}$
- $= \boxed{-14\sqrt{3}}$
- 3) On considère les nombres $A=9-6\sqrt{2}$ et $B=\sqrt{6}-\sqrt{3}$
- 3.a) Avec la calculatrice, vérifier que A et B sont positifs.

$$A = 9 - 6\sqrt{2} \approx 0.5 > 0$$

$$B = \sqrt{6} - \sqrt{3} \approx 0.7 > 0$$

3.b) Démontrer que $B = \sqrt{A}$.

Par définition \sqrt{A} est le nombre positif dont le carré vaut A.

Or *B* est positif et
$$B^2 = (\sqrt{6} - \sqrt{3})^2 = 6 - 2\sqrt{18} + 3 = 9 - 2 \times 3\sqrt{2} = 9 - 6\sqrt{2}$$

Donc $B = \sqrt{A}$

4) En utilisant les variations de la fonction racine carrée, comparer $\sqrt{0.15}$ et $\sqrt{\frac{151}{10}}$.

On sait que:

$$0.15 < \frac{151}{10} = 15.1$$

Or : la fonction racine carrée est strictement croissante (donc elle conserve l'ordre)

Donc
$$\sqrt{0,15} < \sqrt{\frac{151}{10}}$$

- 5) Résoudre les équations suivantes où x est un réel positif ou nul.
- **5.a)** $\sqrt{x} = 4$

Cette équation admet une solution : 16

5.b)
$$-2\sqrt{x}-5=1$$
$$-2\sqrt{x}-5=1$$
$$\Leftrightarrow -2\sqrt{x}=6$$
$$\Leftrightarrow \sqrt{x}=-3$$

Cette équation n'admet aucune solution

- 6) Résoudre les inéquations suivantes où x est un réel positif ou nul.
- **6.a**) $\sqrt{x} \ge 5$

Cette équation admet comme ensemble des solutions : $[25; +\infty[$

6.b)
$$3\sqrt{x} - 9 < 0$$

$$3\sqrt{x} - 9 < 0$$

$$\Leftrightarrow 3\sqrt{x} < 9$$

$$\Leftrightarrow \sqrt{x} < 3$$

Cette équation admet comme ensemble des solutions [0; 9]

Un pendule est constitué d'une masse suspendue au bout d'un fil. Lorsque ce pendule oscille, sa période est le temps qui s'écoule entre deux passages dans le même sens, à la verticale. On montre que la période p, en s, est donnée en fonction de la longueur l du fil, en m, par la formule : $p(l) = 2\sqrt{l}$ Le célèbre pendule de Foucault avait une longueur de 67 m.

1) Quelle était sa période ? Arrondir au dixième.

Il s'agit de calculer
$$p(67)$$
.
 $p(67) = 2\sqrt{67} \approx 16,4$
Sa période était d' environ 16,4 s

- 2) On se propose de déterminer la longueur d'un pendule dont la période est de 3s.
- **2.a)** Justifier que le problème revient à résoudre l'équation : $\sqrt{l} = 1.5$

Il s'agit de résoudre
$$p(l) = 3$$

Or :

$$p(l) = 3 \Leftrightarrow 2\sqrt{l} = 3 \Leftrightarrow \sqrt{l} = 1.5$$

2.b) Résoudre graphiquement cette équation et conclure. (choississez le bon graphique)

Graphiquement, cette équation admet pour solution environ 2,3

La valeur exacte est 2,25.

Pour obtenir une période de 3s, il faut une longueur d'environ 2,3 m

Source : wikipédia https://fr.wikipedia.org/wiki/Pendule_de_Foucault

