

Dashboard > Courses > School Of Engineering & Applied Sciences > B.Tech. > B.Tech. Cohort 2020-2024 > Semester-II Cohort 2020-24 > EPHY108L-Even2021 > 5 June - 11 June > Mid Semester Examination

Started on	Thursday, 10 June 2021, 1:00 PM
------------	---------------------------------

State Finished

Completed on Thursday, 10 June 2021, 2:00 PM

Time taken 59 mins 18 secs

Grade 10.00 out of 15.00 (67%)

Question 1

Correct

Mark 1.00 out of 1.00 If the motion of a particle is along the radial direction then what will be the velocity of the particle in polar coordinates?

Select one:

lacksquare a. $\dot{r}\hat{r}$

4

- $igcup b.\, \dot{r} \hat{r} + r \dot{ heta} \hat{ heta}$
- c. C
- $igcup d. \, r \dot{ heta} \hat{ heta}$

Your answer is correct.

The correct answer is: $\dot{r}\hat{r}$

If \vec{A} and \vec{B} are two vectors parallel to each other then determine $\vec{A}\cdot\vec{B}$. Question 2 Correct Select one: Mark 1.00 out of igcup a. |AB|1.00 b. |A||B|с. 1 d.0Your answer is correct. The correct answer is: |A||B|Question 3 If potential energy due to a force $(ec{F})$ in a region is given by $V=5x^2$, Correct what is the y-component of the \vec{F} in that region? Mark 1.00 out of 1.00 Select one: a. 10yb. 5

Your answer is correct.

c. 0 🗸

 $\mathsf{d.}\ 10x$

The correct answer is: 0

Question 4 Correct Mark 1.00 out of 1.00	Suppose in a system there are two interacting particles. Each particle exerts a force on the other particle. The sum of these internal forces which the particles exert on one another is Select one: a. Equal to zero b. Dependent on the interaction between the particles c. Equal to the total external force d. Ma, M = total mass of the system, a = acceleration of centre of mass
	Your answer is correct. The correct answer is: Equal to zero
Question 5 Correct Mark 2.00 out of 2.00	If acceleration of a particle is defined as $6\hat{i}+2t^2\hat{j}+4t\hat{k}$. Then determine the magnitude of velocity at $t=3$. Given at $t=0$ the particle was at rest. Answer: 31.1769
	The correct answer is: 31.18
Question 6 Correct Mark 2.00 out of 2.00	A 0.3 kg mass is attached to a spring and oscillates at linear frequency of 4.4 Hz with a Q of 92.1. Determine the proportionality constant b , where b carries the same meaning as discussed in the class. Answer: 0.09

The correct answer is: 0.09

Question 7

Incorrect

Mark 0.00 out of 2.00

A particle of mass 5 kg is undergoing 1D SHM about the equilibrium point x = 0. The force acting on it is F = -49x. Velocity of the particle at the point x = 2 m was measured to be 10 m/s. What is the total energy of the particle when it is at the point x = 2.5 cm?

Answer: 93.1

The correct answer is: 348.00

Question 8

Correct

Mark 2.00 out of 2.00

A particle is moving in XY plane such that it has a constant speed of 5 m/s along radial direction. The angle that its position vector makes with the X axis is changing at a constant rate of 2 rad/s. Suppose at a given instant of time the particle is at a distance of r = 72 m from the origin. What is the magnitude of acceleration (m/s²) in radial direction at that instant?

Answer: 288

The correct answer is: 288.00

Question 9

Incorrect

Mark 0.00 out of 3.00

Consider a force $\vec{F}=y\hat{i}+2x\hat{j}$. Calculate work done by this force in going around a closed path which is a square in the xy plane (shown in the figure). Length of the sides of the square is a = 3.7. The motion is in anti-clockwise direction. Keep answer upto 2 decimal places.

Answer: 41.07

The correct answer is: 13.69