This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

London WIY 6LN (GB).

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	(51) International Patent Classification 6:		(11) International Publication Number:	WO 99/40201
	C12N 15/52, 9/00, 5/10, C07K 16/40,	A1		
ı	G01N 33/68, A61K 38/43, 48/00	i	(43) International Publication Date:	12 August 1999 (12.08.99)

	(21) International Applicati	ion Number: PCT/GB99/00	353	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
	• •			BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
	(22) International Filing Da	ite: 2 February 1999 (02.02	.99)	GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
	. ,	• ,		KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
ı				MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
ı	(30) Priority Data:			SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO
ı	60/073,839	5 February 1998 (05.02.98)	US	patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
ı	09/070,060	30 April 1998 (30.04.98)	US	patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

(71) Applicant: ZENECA LIMITED [GB/GB]; 15 Stanhope Gate,

(72) Inventors: HUSTAD, Carolyn, Marziasz; 1800 Concord Pike, P.O. Box 15437, Wilmington, DE 19850-5437 (US). GHILDYAL, Namit; 1800 Concord Pike, P.O. Box 15437, Wilmington, DE 19850-5437 (US).

(74) Agent: GILES, Allen, Frank; Zeneca Pharmaceuticals, Intellectual Property Dept., Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG (GB).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(54) Title: PROTEIN

(57) Abstract

A novel human E3 ubiquitin protein ligase is described. A structural region which encodes the polypeptide is disclosed as well as the amino acid residue sequence of the human ubiquitin protein ligase. Methods are provided to identify compounds that modulate the biological activity of the molecule and hence regulate cellular and tissue physiology.

Applicants: Paz Einat et al. Serial No.: 10/618,408 Filed: July 11, 2003

Exhibit 3

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	1
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	٠ ا
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH.	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	- 1
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	- 1
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	l
BR	Brazil	IL.	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	Ī
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	- 1
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	1
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			- 1
СМ	Cameroon		Republic of Korea	PL	Poland			1
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			- 1
DE	Germany	LI	Liechtenstein	SD	Sudan			- 1
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
								- 1
							•	

PCT/GB99/00353 WO 99/40201

PROTEIN

-1-

Applicants herein claim priority from the U.S. Provisional Application, HUMAN E3 UBIQUITIN PROTEIN LIGASE, Serial No.60/073,839, filed February 5, 1998, as well as U.S. Application Serial No.09/070,060, filed April 30, 1998, each of which is incorporated by reference.

FIELD OF THE INVENTION

10

15

30

The present invention relates to nucleic acid and amino acid sequences of a novel human E3 ubiquitin protein ligase and to the use of these sequences to identify compounds that modulate the biological activity of the native biomolecule as well as modulate protein degradation or selective proteolysis and/or otherwise modulate physiological conditions associated with aberrant ubiquitin dependent proteolysis in human physiology. The invention is also related to the diagnosis, study, prevention, and treatment of pathophysiological disorders related to or mediated by the novel human E3 ubiquitin protein ligase.

BACKGROUND OF THE INVENTION

Trends Biol. Sci., 21:96 (1996).

Three major proteolytic pathways (lysosomal, calcium-dependent, and the ATP-dependent pathways) exist in eukaryotic cells. The ATP-dependent pathway has long been known orchestrate specific degradation of native proteins. Recently it has become clear that the ATP-dependent ubiquitin mediated intracellular pathway is responsible for selective 20 degradation of intact biomolecules as an efficiently evolved mechanism to adapt cellular physiology to the needs of the organism. Proteolysis is a powerful means of regulation due to the speed and irreversibility which enables the cell to rapidly eliminate or reduce the functional level of a particular biological molecule. See, e.g., Jentsch, S., et al., Selective 25 Protein Degradation: A Journey's end Within the Proteasome, Cell, 82:129 (1995). The critical role of ubiquitin-dependent proteolysis has steadily become increasingly clear, for example, in the normal degradation of oncoproteins and tumor suppressers in cell cycle control as well as in stress response and the immune system. Hochstrasser, M., Current Biology, 4:1024 (1992); Deshaies, R. J., Trends Cell Biol., 5:428 (1995); Hilt, W., et al.,

25

30

Ubiquitin is a heat-stable 76-amino acid biomolecule considered to be the most highly conserved protein known. Selective protein degradation via the ubiquitin pathway generally involves tagging of the target protein (substrate) by covalent attachment of multiple molecules of ubiquitin, and degradation of the target by the 26 S proteasome complex. Proteins are marked for direction to the proteasome via the covalent addition of branched polyubiquitin chains to the α -amino group of one or more surface lysines. The amide linkage of ubiquitin to a substrate protein is generally carried out by three classes of accessory enzymes in a sequential reaction. Ubiquitin activating enzymes (E1) activate ubiquitin by forming a high energy thiol ester intermediate. Activation of the C-terminal Gly of ubiquitin by E1, is followed by the activity of a ubiquitin conjugating enzyme E2 which serves as a carrier of the activated thiol ester form of ubiquitin during the transfer of ubiquitin directly to the third enzyme, E3 ubiquitin protein ligase. E3 ubiquitin protein ligase is responsible for the final step in the conjugation process which results in the formation of an isopeptide bond between the activated Gly residue of ubiquitin, and an α-NH group of a Lys residue in the substrate or a previously conjugated ubiquitin moiety. See, e.g., Hochstrasser, M., Ubiquitin-Dependent Protein Degradation, Annu. Rev. Genet., 30:405 (1996).

In a reconstituted system, for example, all three categories of affinity purified enzymes (E1, E2, and E3) are required for the breakdown of 125 I-albumin to acid-soluble material in the 20 presence of ubiquitin and ATP. Sears, C., et al., NF-kB p105 Processing Via the Ubiquitin-Proteasome Pathway, J Biol Chem., 273:1409 (1998). The high specificity of the ubiquitin selective-destruction pathway is predicted to allow the development of new classes of highly potent and selective low molecular weight enzyme inhibitors targeting particular members of the ubiquitin pathway that control the intracellular levels of a wide range of important regulatory proteins. Rolfe, M., et al., The Ubiquitin-Mediated Proteolytic Pathway as a Therapeutic Area, J. Mol. Med. 75:5-17 (1997).

Compelling evidence has been presented that implicates ubiquitination in the turnover of the tumor supressor protein, p53, cell cycle regulators cyclin A and cyclin B, the kinase cmos, the cystic fibrosis transmembrane conductance regulator, the DNA repair protein O⁶methylguanine-DNA methyl transferase, the transcriptional co-activator p300, the

-3-

transcription factors c-jun, c-fos, IkB/NFkB, the transcription factors c-myc, DP1, and E2F, the regulatory subunit of cAMP-dependent protein kinase, receptors for peptide growth factors, estradiol receptor, as well as oncoprotein E1A. Moreover, as a corollary, pharmacological intervention which alters the half-lives of these cellular proteins is expected to have significant value in wide therapeutic potential, particularly in the areas of autoimmune disease, inflammation, cancer, as well as other proliferative disorders. Rolfe, M., et al., The Ubiquitin-Mediated Proteolytic Pathway as a Therapeutic Area, J. Mol. Med., 75:5 (1997).

- E3 ubiquitin protein ligase, as the final player in the ubiquitination process, is responsible for target specificity of ubiquitin-dependent proteolysis. A number of E3 ubiquitin-protein ligases have previously been identified. See, e.g., D'Andrea, A.D., et al., Nature Genetics, 18:97 (1998); Gonen, H., et al., Isolation, Characterization, and Purification of a Novel Ubiquitin-Protein Ligase, E3 Targeting of Protein Substrates via Multiple and Distinct Recognition Signals and Conjugating Enzymes, J. Biol. Chem., 271:302 (1996); Scheffner,
- M., et al., The HPV-16 E6 and E6-AP Complex Functions as a Ubiquitin-Protein Ligase in the Ubiquitination of p53, Cell, 75:495 (1993); Huibregtse, J.M., et al., A Family of Proteins Structurally and Functionally Related to the E6-AP Ubiquitin Protein Ligase, PNAS, 92:2563 (1995); Staub, O., et al., WW Domains of Nedd4 Bind to the Proline-Rich PY Motifs in the Epithelial Na+ Channel Deleted in Liddles Syndrome, EMBO, 15:2371
- 20 (1996) [the substrate specificity is determined by the E3 ligase]; Siepmann, T.J., et al., Evidence for Stable, Exchangeable E1/E2/E3 Ubiquitin Conjugation Complexes at Physiological Concentrations, FASEB J., 10:2324 (1996).
 - Other E3 ligases have been extensively evaluated in S. cerevisiae and in cell-free systems using engineered proteins as test substrates. Weissman, A. M., Regulating Protein
- Degradation by Ubiquitination, Review Immunology Today, 18(4):189 (1997); Sudakin, V., et al., Mol. Biol. Cell, 6:185 (1995); Stancovski, I., et al., Mol. Céll. Biol., 15:7106 (1995); King, R.W., et al., Cell, 81:279 (1995); Chen, Z.J., et al., Cell, 84:853 (1996); Orian, A., et al., J. Biol. Chem., 170:21707 (1995); Varshavsky, A., et al., Cell, 69:725 (1992); Hershko, A., et al., Annu. Rev. Biochem., 61:761 (1992); Ciechanover, A., Cell, 7:13 (1994).

WO 99/40201

-4-

Perry et al., recently identified a single gene which encodes a murine E3 ubiquitin protein ligase of the Hect family, disruption of which is demonstrated to cause an inflammatory phenotype of the mouse as well as enhanced epithelial and haematopoietic cell growth. Perry, W. L., et al., Nature Genetics, 18:143 (1998). The murine E3 results reported by 5 Perry et al indicate the specific ubiquitin-dependent proteolysis is an important mediator in the immune response as well as haematopoietic cell growth in vivo. Moreover, it is

recently set forth that modulators of the E3 ubiquitin protein ligase are likely to have significant therapeutic potential, inter alia, as novel anti-inflammatory agents as well as entities to promote wound-healing. D'Andrea, A.D., et al., Nature Genetics, 18:97 (1998); Perry, W. L., et al., Nature Genetics, 18:143 (1998).

However, the previously reported E3 ubiquitin protein ligase is a murine isolate. The availability of an analogous functional human homolog will be ideal for the identification of compounds which modulate the specific biological activity of the E3 protein ligase and, as a corollary, modulate the physiological conditions associated with aberrant ubiquitin dependent proteolysis in human physiology. The availability of an analogous functional human homolog will also be ideal for the diagnosis, study, prevention, and treatment of

SUMMARY OF THE INVENTION

pathophysiological disorders related to the biological molecule.

The present invention is directed to an isolated and purified polynucleotide molecule, which encodes a human E3 ubiquitin protein ligase, or a biologically-effective fragment thereof comprising a nucleic acid sequence encoding the polypeptide having the sequence substantially as depicted in SEQ ID NO:3 or a pharmacologically acive fragment thereof. Isolated and purified polynucleotides of the present invention include but are not limited to SEQ ID NO:1 (human E3 ubiquitin protein ligase cDNA) and SEQ ID NO:2 (human E3 ubiquitin protein ligase structural coding region).

In addition, the current invention is directed to a purified polypeptide comprising the amino acid sequence substantially as depicted in SEQ ID NO:3.

The invention is further directed to a host cell containing an expression vector for expression of a human E3 ubiquitin protein ligase polypeptide, wherein said vector contains a polynucleotide comprising a nucleic acid sequence encoding the polypeptide of a WO 99/40201

-5-

human E3 ubiquitin protein ligase having the sequence substantially as depicted in SEQ ID NO:3 or a pharmacologically active fragment thereof. The invention is also directed to a method for producing a human E3 ubiquitin protein ligase polypeptide having the amino acid sequence substantially as depicted in SEQ ID NO:3 by culturing said host cell under conditions suitable for the expression of said polypeptide, and recovering said polypeptide from the host cell culture.

The instant invention is further directed to a method of identifying compounds that modulate the biological activity of a human E3 ubiquitin protein ligase, comprising:

(a) combining a candidate compound modulator of human E3 ubiquitin protein ligase biological activity with a human E3 ubiquitin protein ligase polypeptide having the sequence substantially as depicted in SEQ ID NO:3, and

10

- (b) measuring an effect of the candidate compound modulator on the biological activity. The instant invention is further directed to a method of identifying compounds that modulate the pharmacological activity of a human E3 ubiquitin protein ligase, comprising:
- (a) combining a candidate compound modulator of human E3 ubiquitin protein ligase pharmacological activity with a host-cell expressing a human E3 ubiquitin protein ligase polypeptide having the sequence substantially as depicted in SEQ ID NO:3, and
 - (b) measuring an effect of the candidate compound modulator on the pharmacological activity.
- The present invention is also directed to active compounds identified by means of the aforementioned methods, wherein said compounds modulate the biological and/or pharmacological activity of a human E3 ubiquitin protein ligase.
 - The invention is further directed to an antisense polynucleotide molecule comprising substantially the complement of SEQ ID NO:1 or a biologically-effective portion thereof,
- or SEQ ID NO:2 or a biologically-effective portion thereof, as well as a method for inhibiting the expression of a human E3 ubiquitin protein ligase comprising administering an effective amount of the antisense molecule.
 - The current invention is also drawn toward an antibody specific for a purified polypeptide comprising the amino acid sequence substantially as depicted in SEQ ID NO:3, as well as a

diagnostic composition for the identification of a polypeptide sequence comprising the amino acid sequence substantially as depicted in SEQ ID NO:3.

BRIEF DESCRIPTION OF THE FIGURES

- Figure 1 displays SEQ ID NO:1 which is a 5372 base cDNA nucleic acid sequence which encodes the novel human E3 ubiquitin protein ligase described herein.
 - Figure 2 displays SEQ ID NO:2 which is a 2559 base translated structural coding region, ATG to TAA (*Ochre*), of the cDNA nucleic acid sequence which encodes the novel human E3 ubiquitin protein ligase (human homolog of the murine *itchy* locus; Perry, W.L., *et al.*, Nature Genetics, 18:143 (1998)).
- Figure 3 displays SEQ ID NO:3 which is a 852 amino acid residue sequence of the human E3 ubiquitin protein ligase homolog described herein.
 - Figure 4 shows SEQ ID NO:4 which is the 854 amino acid residue sequence of the murine E3 ubiquitin protein ligase (mapped to *itchy* locus). Perry, W. L., *et al.*, Nature Genetics, 18:143 (1998); Hustad, C. M., *et al.*, Genetics, 140:255 (1995).
- 15 Figure 5 displays a comparison alignment between the amino acid residue sequence of the novel human E3 ubiquitin protein ligase homolog described herein (SEQ ID NO:3), and the amino acid residue sequences of the murine E3 ubiquitin protein ligase (SEQ ID NO:4).

 Figure 6 displays Northern blot analyses of multiple tissues using a nucleic acid probe specific to the human E3 ubiquitin protein ligase coding region described herein (SEQ ID
- NO:2). Key: tracks 1-14 represent pancreas, kidney, skeletal muscle, liver, lung, placenta, brain, heart, fetal liver, bone marrow, PBL, thymus, lymph node and spleen respectively. Figure 7 displays PCR primers, SEQ ID NO:5 (sense) and SEQ ID NO:6 (antisense), which can be used to amplify the 2559 bp coding region (SEQ ID NO:2) of the novel human E3 ubiquitin protein ligase from human tissue.
- Figure 8 shows a schematic representation of example Scintillation Proximity Assays (SPA), as well as RIA and ELISA Assays.
 - Figure 9 displays SEQ ID NO:7 which is the 156 amino acid precursor peptide to the mature 76 amino acid residue sequence of human ubiquitin. Lund P.K., et al., J. Biol. Chem., 260:7609 (1985).

WO 99/40201

- Figure 10 displays SEQ ID NO:8 which is the mature 76 amino acid residue sequence of native human ubiquitin (positions 1-76 of SEQ ID NO:7). Lund P.K., et al., J. Biol. Chem., 260:7609 (1985).
- Figure 11 displays SEQ ID NO:9 which is the 471 base translated structural coding region,
- ATG to TAA (*Ochre*), of the cDNA nucleic acid sequence which encodes the 156 amino acid precursor peptide (SEQ ID NO:7) to the mature 76 amino acid residue sequence of native human ubiquitin (positions 1-76 of SEQ ID NO:7). Lund P.K., *et al.*, J. Biol. Chem., 260:7609 (1985).
- Figure 12 displays SEQ ID NO:10 which is the 3177 base translated structural coding region, ATG to TGA (*Opal*), of the nucleic acid sequence which encodes the previously described 1058 amino acid residue human E1 ubiquitin activating enzyme (Uba1). Ayusawa, D., et al., Cell Struct. Funct., 17:113 (1992).
 - Figure 13 displays SEQ ID NO:11 which is the 444 base translated structural coding region, ATG to TGA (*Opal*), of the nucleic acid sequence which encodes the previously
- described 147 amino acid residue E2 ubiquitin conjugating enzyme E217k (Ub10a). Wing S.S., et al., Biochem. J., 305:125 (1995). The human version (Ubc2) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991).
 - Figure 14 demonstrates the recombinant human E3 ubiquitin ligase (SEQ ID NO:3) has ubiquitinating activity *in vitro*.
- Figure 15 demonstrates a dominant negative mutant version of SEQ ID NO:3 (C820A) has no enzymatic activity (lane A) (ubiquitination) compared to the wild type control (lane B). Figure 16 demonstrates a marked decline in the intracellular SEQ ID NO:3 levels 2 h after activation of the jurkat T cells by PMA and ionomycin in Western blot analysis. The arrow designates a band pertaining to SEQ ID NO:3.
- Figure 17 demonstrates a dramatic decline in the level of human itchy E3 ligase mRNA within 3 h after stimulation of PBMC's. The top panel represents a Northern blot (arrow designates a band pertaining to SEQ ID NO:1); the bottom panel represents the corresponding ethidium bromide stained gel.

20

WO 99/40201 PCT/GB99/00353

-8-

DETAILED DESCRIPTION OF THE INVENTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All publications and patents referred to herein are incorporated by reference.

- Nucleic acid sequence as used herein refers to an oligonucleotide, nucleotide or polynucleotide sequence, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be double-stranded or single-stranded whether representing the sense or antisense strand. Similarly, amino acid and/or residue sequence as used herein refers to peptide or protein sequences or portions thereof.
- Biological activity as used herein refers to the ability of the novel human E3 ubiquitin protein ligase and variations thereof contemplated herein to bind ubiquitin and/or transfer ubiquitin to a substrate under biological conditions.
 - Pharmacological activity, as used herein in reference to the novel human E3 ubiquitin protein ligase and variations thereof contemplated herein, refers to the ability to modulate protein degradation or selective proteolysis and/or otherwise modulate physiological conditions associated with aberrant ubiquitin dependent proteolysis in human physiology. Dominant negative mutant as used herein refer to a nucleic acid coding region sequence which has been changed with regard to at least one position in the sequence, relative to the corresponding wild type native version, preferrably at a position which changes an amino acid residue position at an active site required for biological and/or pharmacological
 - The term 'modulation' is used herein to refer to the capacity to either enhance or inhibit the biological activity of a E3 ubiquitin protein ligase. The term "modulation" is also used herein to refer to the pharmacological capacity to to either enhance or inhibit the selective elimination of a biological protein molecule *via* ubiquitin dependent proteolysis under biological conditions.

activity in the native peptide to thereby encode a mutant peptide.

Purified as used herein refers to molecules, either nucleic acid or amino acid sequences, that are removed from their natural environment and isolated or separated from at least one other component with which they are naturally associated.

-9-

As used herein, a functional derivative of a biomolecule disclosed herein is an entity that possesses a functional biological activity and/or pharmacological activity as defined herein that is derived from SEQ ID NO:1 or SEQ ID NO:3, for example, truncated versions, versions having deletions, functional fragments, versions having substitutions, versions

- having insertions or extended ends, or biologically effective dominant negative mutants as well as biologically effective antisense molecules.
 - Substantially as depicted as used herein refers to functional derivative proteins, and functional derivative nucleic acid sequences as defined herein that may have changes but perform substantially the same biochemical or pharmacological function in substantially
- the same way; however, 'substantially as depicted' as used herein also refers to biologically effective dominant negative mutants and is intended to encompass biologically effective antisense molecules as defined herein.
- Biologically effective as used herein in reference to antisense nucleic acid molecules as well as dominant negative mutant nucleic acid coding regions and dominant negative mutant peptides refers to the ability of these molecules to modulate the biological activity and/or pharmacological activity of the novel signal transduction protein kinase of the present invention and/or transcription/translation of nucleic acid coding regions of the novel signal transduction protein kinase of the present invention.
- Expression vector as used herein refers to nucleic acid vector constructions which have

 components to direct the expression of heterologous protein coding regions including
 coding regions of the present invention through accurate transcription and translation in
 host cells. Expression vectors usually contain a promoter to direct polymerases to
 transcribe the heterologous coding region, a cloning site at which to introduce the
 heterologous coding region, and usually polyadenylation signals. Expression vectors

 include but are not limited to plasmids, retroviral vectors, viral and synthetic vectors.

 Transformed host cells as used herein refer to cells which have coding regions of the
 present invention stably integrated into their genome, or episomally present as replicating
 or nonreplicating entities in the form of linear nucleic acid or transcript or circular plasmid
 or vector. Transformation or transformed as used herein refers to heterologous gene

expression including but not limited to transient or stable transfection systems.

30

-10-

Direct administration as used herein refers to the direct administration of nucleic acid constructs which encode embodiments (e.g., SEQ ID NO:3, dominant/negative mutant version, antisense molecule, antibody molecule, modulator compound molecule) of the present invention or fragments thereof; and the direct administration of embodiments of the present invention or fragments thereof, and the *in vivo* introduction of molecules of the present invention preferably via an effective eukaryotic expression vector in a suitable pharmaceutical carrier. Polynucleotides and therapeutic molecules of the present invention may also be delivered in the form of nucleic acid transcripts.

Ubiquitin-dependent Proteolysis

Ubiquitination has recently become a focal point in cell biology as it is acknowledged in 10 joining phosphorylation as a major protein modification device in regulation of cell physiology. The importance of ubiquitin-dependent proteolysis for selective elimination of biomolecules is indisputable for the maintenance of cellular integrity and physiology of the organism. The depth of current knowledge about the molecular mechanisms regulating ubiquitin-dependent proteolysis, combined with the understanding of how impairment of 15 such processes, underlies pathological conditions, has opened the way for a mechanismbased approach for the development of new drugs. Rolfe, M., et al., The Ubiquitin-Mediated Proteolytic Pathway as a Therapeutic Area, J. Mol. Med. 75:5-17 (1997). A growing number of cellular regulatory mechanisms are being linked to ubiquitin. For 20 instance, ubiquitination is a widely utilized ligand-mediated means of modulating transmembrane receptor function. Mammalian transmembrane receptors found to undergo ligand-mediated ubiquitination are coupled to, or are themselves, tyrosine kinases. Ubiquitination of the T-cell receptor (TCR) is stimulated by antigen (MHC and peptide), superantigens, lectins that bind the TCR, or by anti-receptor antibodies. Moreover, correlations between dysregulated ubiquitination/proteasomal degradation and cellular 25 transformation are striking. Weissman, A. M., Regulating Protein Degradation by Ubiquitination, Review Immunology Today, 18(4):189 (1997). Ubiquitination is now implicated in regulating numerous cellular processes including: signal transduction, cell-cycle progression, receptor-mediated endocytosis, transcription 30 (including activation-induced transcription in lymphocytes), organelle biogenesis and

PCT/GB99/00353

WO 99/40201

spermatogenesis. Abnormal accumulations of ubiquitinated species are found in intracellular inclusions in neuropathological conditions including Alzheimer's and Pick's diseases. The importance of regulated ubiquitination is demonstrated by the resistance of oncogenic counterparts of normal cellular ubiquitination substrates to this post-translational modification, and by correlations between malignant transformation and loss of function, or dysregulated function, of enzymes involved in ubiquitination. Proteasomes have recently been implicated in programmed cell death in neurons and thymocytes at points proximinal to activation of the interleukin-1β-converting enzyme (ICE) family of proteases. Morover, dysregulated ubiquitination contributes to malignant transformation, for example, oncogenic counterparts of normally ubiquitinated proteins are resistant to ubiquitination. Weissman, A. M., Regulating Protein Degradation by Ubiquitination, Review Immunology Today, 18(4):189 (1997); Papavassiliou, A.G., et al., Science, 258:1941 (1992); Treier, M., et al., Cell, 78:787 (1994); Papa, F.R., et al., Nature, 366:319 (1993); Grimm, L. M., et al., EMBO, 15:3835 (1996); Sadoul, R., et al., EMBO, 15:3845 (1996). E3 Ligase 15

Ubiquitin-dependent proteolysis needs to be very selective in order to effectively regulate intracellular physiology. The component of the ubiquitin conjugation system generally believed to be the most directly involved in substrate recognition is the E3 protein ligase. See, e.g., Hochstrasser, M., Ubiquitin-Dependent Protein Degradation, Annu. Rev. Genet., 30:405 (1996). The first E3 ligase to be identified, E6-AP, is the best previously characterized member of the Hect-domain class. E6-AP was originally identified through its interaction with the E6 oncoprotein of the cancer-associated human papillomavirus types 16 and 18. The E6/E6-AP complex specifically binds to the tumor suppressor protein p53 and induces its ubiquitination and subsequent degradation. The cysteine residue necessary for thioester formation of E6-AP with ubiquitin is conserved among all of the Hect-domain class proteins. Because of this similarity these proteins have been termed Hect proteins, for 'Homologous to E6-AP C Terminus' (HECT).

An essential intermediate step in E6-AP-dependent protein ubiquitination is the formation

of a thioester complex between ubiquitin and E6-AP. Furthermore, the direction of ubiquitin transfer is from E1 to E2 and then from E2 to E6-AP. This suggests that in this

particular system, the E3 catalyzes the final attachment of ubiquitin to a substrate protein, rather than the E2 as shown for few other systems. The cysteine residue of E6-AP involved in thioester formation has been mapped to the carboxyl terminus. The carboxyl-terminal regions of several proteins from different organisms show significant similarity to the carboxyl terminus of E6-AP.

Furthermore, another ubiquitin protein ligase (E3) has been characterized as the neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4). The biological structure is a multimodular protein composed of a C2 domain, 3 (or 4) WW domains, and a C-terminal ubiquitin protein ligase Hect domain. Nedd4 is a protein that interacts with the epithelial Na+ channel (ENaC) which is mediated by an association of the WW domains of Nedd4 with the proline-rich PY motifs (XPPXY, where X = any amino acid) of the ENaC subunits. Deletion or mutations within the PY motifs of the ENaC subunits have been genetically linked to Liddle syndrome, a hereditary form of systemic renal hypertension caused by an abnormal increase in ENaC activity. Recent work has described interaction of Nedd4 and Nedd4-like proteins with other PY motif-containing proteins, also mediated by the WW domains wherein the substrate specificity is determined by the E3 ligase. Staub, O., et al., EMBO, 15:2371 (1996).

Human E3 Ubiquitin Protein Ligase

The human E3 ligase described herein is a member of the Hect-domain containing

20 ubiquitin-protein ligases, named for the highly conserved C-terminal portion of the
molecule. SEQ ID NO:1 is a 5372 base cDNA nucleic acid sequence which encodes the
novel human E3 ubiquitin protein ligase described herein (FIG.1). SEQ ID NO:2 is a 2559
base translated structural coding region of the cDNA nucleic acid sequence which encodes
the novel human E3 ubiquitin protein ligase (human homolog of the murine 'itchy' locus;

Perry, W.L., et al., Nature Genetics, 18:143 (1998)). SEQ ID NO:3 is a 852 amino acid residue sequence of the human E3 ubiquitin protein ligase homolog described herein. SEQ ID NO:4, for comparison, is the 854 amino acid residue sequence of the murine E3 ubiquitin protein ligase mapped to 'itchy' locus as described by Perry, W. L., et al., Nature Genetics, 18:143 (1998); Hustad, C. M., et al., Genetics, 140:255 (1995).

-13-

A comparison alignment between the amino acid residue sequence of the novel human E3 ubiquitin protein ligase homolog described herein (SEQ ID NO:3), and the amino acid residue sequences of the murine E3 ubiquitin protein ligase (SEQ ID NO:4) is shown in FIG.5. The native human protein (SEQ ID NO:3) is 96% homologous to the murine 'itchy' E3 ubiquitin ligase (SEQ ID NO:4), at the amino acid level. The Hect class of E3 ligases contain 3 or 4 protein-protein interaction domains known as WW domains, named for two conserved tryptophan (W) residues. Sequence alignment and structural features of the human E3 ligase protein (SEQ ID NO:3) compared to the mouse 'itchy' protein (SEQ ID NO:4) demonstrates that both proteins share the approximately 350 AA HECT domain at 10 the C terminus; and both molecules have 4 WW protein interaction domains. Particularly pertaining to the human E3 ubiquitin protein ligase → WWI: positions 275-306 of SEQ ID NO:3; WWII: positions 307-340 of SEQ ID NO:3; WWIII: positions 386-420 of SEQ ID NO:3; WWIV: positions 427-460 of SEQ ID NO:3. Furthermore, the conserved cysteine residue where a ubiquitin linkage is expected to occur is also apparent at position 820 of SEQ ID NO:3. This residue position is of particular significance especially for the construction of pharmacologically valuable dominant negative mutants. See, Example VIII. The novel human E3 recombinant enzyme described herein, e.g., SEQ ID NO:3, is expected to have inherently high native catalytic activity. Moreover, any change (e.g., substitution or deletion) to the residue where ubiquitin linkage is expected to occur (SEQ ID NO:3, cysteine position 820) is expected to be significantly compromise the catalytic activity of the native human E3 ubiquitin protein ligase. The 'itchy' mice (murine E3 ligase knockout) display a phenotype that suggests activation of processes typical of chronic inflammatory and/or wound healing events, including lymphoid hyperplasia and hematopoietic cell proliferation further discussed infra. In order to evaluate the role of SEQ ID NO:3 E3 ligase in the activation of human leukocytes, 25 stimulation experiments were performed independently using peripheral blood mononuclear cells, Jurkat cells, and U937 cells. See, Example IX. Following stimulation, cells were collected by low-speed centrifugation and lysed to isolate either protein for Western blot analysis (FIG.16) or RNA for Northern blot analysis (FIG.17). Proteins were transferred to nitrocellulose membranes, immunoblotted using an anti-peptide antibodies 30

described herein and a horseradish peroxidase-conjugated anti-rabbit secondary antibody. A marked decline is demonstrated in the intracellular SEQ ID NO:3 levels 2 h after activation of the jurkat T cells. Activation of T lymphocytes by PMA and ionomycin results in a signal transduction cascade; the findings demonstrated herein indicate that the SEQ ID NO:3 'itchy' E3 ligase is involved in turnover of signal transduction proteins in the lymphocytic cells. See, FIG.16. The results demonstrate that the human itchy E3 ligase mRNA levels dramatically decline within 3 h after stimulation of PBMC's. These results suggest that the 'itchy' E3 ligase gene is involved in turnover of signal transduction molecules in the hematopoietic lineages. See, FIG.17.

10 Chromosomal Location

The E3 ligase gene (SEQ ID NO:1) has been mapped to human chromosome 20q11.23-12 using the Stanford G3 radiation hybrid panel. The most proximal markers are SHGC 53176, SHGC 8755, and SHGC 2765.

Substrate

The novel human E3 ubiquitin protein ligase (e.g., SEQ ID NO:3) ubiquitinates specific intracellular biological molecules in vivo to effect selective destruction and swift regulation of cellular physiology. Biological activity refers to the ability of the novel human E3 ubiquitin protein ligase and variations thereof contemplated herein to bind ubiquitin and/or transfer ubiquitin to a substrate under biological conditions. Substrates include the likes of 20 intracellular messenger biological molecules, receptors, ligands, signal transduction molecules, transcriptional activators, cytokines, kinases, phosphatases and phosphorylases, especially which mediate physiological conditions such as inflammation, autoimmune disease, neurological disease, apoptosis, endothelial cell physiology (e.g., proliferation, differentiation), peripheral vascular disease, angiogenesis, cancer, anemia, hematopoietic disorders, cachexia, leukemia, pulmonary disorders, arthritis, diabetes, and viral infection. 25 Pharmacological activity, as used herein in reference to the novel human E3 ubiquitin protein ligase (e.g., SEQ ID NO:3) and variations thereof contemplated herein, refers to the ability to modulate protein degradation or selective proteolysis and/or otherwise modulate physiological conditions associated with aberrant ubiquitin dependent proteolysis in human

-15-

physiology (e.g., disorders manifested by aberrant forms and/or abnormal levels of the native E3 ubiquitin protein ligase).

Pharmacological Significance

The control of hematopoiesis is a highly regulated process that responds to a number of
physiological stimuli in the human body. Differentiation, proliferation, growth arrest, or
apoptosis of blood cells depends on the presence of appropriate cytokines and their
receptors, as well as the corresponding cellular signal transduction cascades. Hu, Mickey
C.-T., et al., Genes & Development, 10:2251(1996). Generation of mature leukocytes, for
instance, is a highly regulated process which responds to various environmental and
physiological stimuli. Cytokines cause cell proliferation, differentiation or elimination,
each of these processes being dependent on the presence of appropriate cytokine receptors
and the corresponding signal transduction elements. Moreover, the stimulation of
quiescent B- and T-lymphocytes occur via antigen receptors which exhibit remarkable
homology to cytokine receptors. Grunicke, Hans H., Signal Transduction Mechanisms in

Cancer, Springer-Verlag (1995). See also, Suchard, S.J., et al., Mitogen-Activated Protein
Kinase Activation During IgG-Dependent Phagocytosis in Human Neutrophils, J.
Immunol., 158:4961 (1997).

The identification of a single gene underlying an inflammatory syndrome provides significant potential to identify novel targets for anti-inflammatory drugs, *inter alia*.

Modulators of the human E3 ubiquitin protein ligase described herein accordingly have significant potential as novel anti-inflammatory agents as well as agents to promote woundhealing. See, D'Andrea, A.D., et al., Nature Genetics, 18:97 (1998). Moreover, compounds which modulate the biological activity of the human E3 ubiquitin protein ligase in vivo are expected to to influence hematopoiesis. The 'itchy' knockout mice (murine E3 ubiquitin protein ligase (SEQ ID NO:4)) have demonstrated enhanced hematopoiesis, manifested, for example, by accelerated development of the erythroid, myeloid, and lymphoid lineages. The homozygous mouse has been demonstrated to exhibit an apparent pan-hematopoiesis, resulting in the accumulation of inflammatory cells in organs and the skin and a macrophage infiltrate in the lung. The C57BL/6J 'itchy' mice have a phenotype
that suggests activation of processes typical of chronic inflammatory and/or wound healing

events, including lymphoid hyperplasia, hematopoietic cell proliferation and gastorintestinal epithelial hyperplasia. The mice also display chronic inflammation of airways, skin and stomach. The 'itchy' E3 ligase appears to mediate the turnover of signal transduction proteins in the hematopoietic lineages.

transduction proteins in the hematopoietic lineages. The murine E3 ligase (SEQ ID NO:4), involved in ubiquitin-mediated protein degradation, is believed to specifically mediate the turnover of growth factor signal transduction proteins in the hematopoietic lineages. By analogy, the human homolog E3 ubiquitin protein ligase described herein (SEQ ID NO:3) is expected to likewise significantly influence hematopoiesis. Moreover, results indicate that ubiquitin-dependent proteolysis is an 10 important mediator of the immune response in vivo and provides evidence for the 'itchy' E3's role in inflammation and the regulation of epithelial and haematopoietic cell growth. Perry, W. L., et al., Nature Genet., 18:143 (1998); Rolfe, M., et al., The Ubiquitin-Mediated Proteolytic Pathway as a Therapeutic Area, J. Mol. Med. 75:5-17 (1997). Accordingly, specific modulation of the biological and/or pharmacological activity of the 15 human "itchy" E3 ligase, e.g., SEQ ID NO:3, via administration of a compound modulator or heterologous expression or administration of a dominant negative mutant version or antisense molecule derived from SEQ ID NO:1 is expected to significantly influence inflammation as well as hematopoiesis. Modulation of the biological and/or pharmacological activity of the human 'itchy' (e.g., SEQ ID NO:3) is expected to modulate lymphocyte function, for example by inhibiting human 'itchy' activity, resulting in anti-20 tumor activity. Modulation of the human E3 ligase activity is moreover contemplated in applications for supportive hematopoietic therapy; for example, in subjects wherein cancer therapy impairs bone marrow function or in immune suppressed cancer patients. Inhibition of the biological activity of 'itchy' (SEQ ID NO:3) is expected to accelerate 25 development of the erythroid, myeloid, and lymphoid lineages. Blockage or reduction of 'itchy' (e.g., SEQ ID NO:3) activity by a compound or other pharmacologic agent is expected to stimulate hematopoiesis as well as expansion of activated lymphocytes (e.g.,

expand T lymphocytes in cancer patients).

Example human E3 ubiquitin protein ligase substrates include, but are not limited to, GM-CSF and its receptor, G-CSF and its receptor, SCF and its receptor c-kit, IL-3 and IL-3r, IL-5 and IL-5r, and IL-6 and IL-6r.

Hematopoiesis can be severely compromised by cytotoxic chemotherapy and irradiation.

- High-dose conditioning therapies that include total body irradiation, for instance, are notably myelotoxic and require the transplantation of hematopoietic progenitor cells. See, e.g., Thomas, E. D., et al., N. Engl. J. Med., 25:491 (1987); Berenson, R. J. et al., Blood. 77:1717 (1991). Such adoptive cellular immunotherapy is regularly accompanied by growth factor administration, e.g., erythropoietin (Epogen), G-CSF (Neupogen), GM-CSF, and thrombopoietin in respective therapeutic applications. Modulators of the novel human E3 ubiquitin protein ligase as described herein are therefore contemplated as therapeutic agents to compete with the likes of erythropoietin (Epogen), G-CSF (Neupogen), and thrombopoietin in the respective applications. Applications are also contemplated for supportive hematopoietic care, including cancer therapies that impair bone marrow
 - Cachexia is a condition characterized by severe muscle atrophy, weight loss and emaciation. Ubiquitin dependent proteolysis has been linked to the skeletal muscle loss during cachexia as well in in tumors. Medina, R., et al., Biomed. Biochim. Acta. 50:4 (1991); Temparis, S., et al., Cancer Research, 54: 5568 (1994); Tiao, G. et al., J. Clin.

15

function and AIDS/HIV.

- 20 Invest., 94:2255 (1994). Furthermore, ubiquitin dependent proteolysis has recently been implicated in the down regulation of signal transducing receptors. Particularly the involvement of the ubiquitin conjugation system in the ligand induced endocytosis and degradation of the growth hormone receptor may be of particular importance in cachexia conditions. The b2-Adrenergic Agonist, Clenbuterol, for instance, has been demonstrated
- to prevent enhanced muscle protein degradation, and that normalization of protein breakdown is achieved through a decrease of the hyperactivation of the ubiquitin dependent proteolysis system. Costelli, P., et al., J. Clin. Invest 95:2367 (1995).
 - The novel human E3 recombinant enzyme described herein, e.g., SEQ ID NO:3, is expected to have inherently high native catalytic activity. Clearly defined biological activity permits easy adaptation of the ligase to methods for identifying compounds that

-18-

modulate the biological and/or pharmacological activity of the novel human E3 ubiquitin protein ligase and variations thereof contemplated herein, for instance, via automated high throughput biochemical assays, e.g., scintillation proximity assays, further described infra. For instance, a specific low molecular weight inhibitor of ubiquitin transfer onto cyclin B, targeting the E3 involved in this process, would prevent cyclin B destruction and would be expected to be a very strong cytostatic agent. Rolfe, M., et al., The Ubiquitin-Mediated Proteolytic Pathway as a Therapeutic Area, J. Mol. Med. 75:5-17 (1997). Accordingly, specific modulation of the biological and/or pharmacological activity of the novel human E3 ubiquitin protein ligase, e.g., SEQ ID NO:3, via administration of a compound modulator or heterologous expression or administration of a dominant negative mutant version is expected to have a high degree of biological specificity for the treatment of physiological conditions including, but not limited to, inflammation, autoimmune disease, neurological disease, apoptosis, endothelial cell physiology (e.g., proliferation, differentiation), peripheral vascular disease, angiogenesis, cancer, anemia, hematopoietic disorders, cachexia, leukemia, pulmonary disorders, arthritis, diabetes, and viral infection.

Variants

10

15

20

25

30

The present invention also encompasses variants of the human E3 ubiquitin protein ligase SEQ ID NO:3. A variant substantially as depicted in SEQ ID NO:3, for instance, is one having 98% total amino acid sequence similarity to the human E3 ubiquitin protein ligase amino acid sequence (SEQ ID NO:3) or a biologically active fragment thereof. A preferred variant substantially as depicted in SEQ ID NO:3 is one which retains at least one of the amino acid residues which are characteristic of the human homolog E3 ubiquitin protein ligase described herein.

A "variant" of the human E3 ubiquitin protein ligase molecule of the present invention may have an amino acid sequence that is different by one or more amine acid "substitutions". The variant may have "conservative" changes, wherein a substituted amine acid has similar structural or chemical properties, eg, replacement of leucine with isoleucine. More rarely, a variant may have "nonconservative" changes, eg, replacement of a glycine with a tryptophan. Similar minor variations may also include amine acid deletions or insertions, or both. Guidance in determining which and how many amine acid residues may be

-19-

WO 99/40201

PCT/GB99/00353

substituted, inserted or deleted without abolishing biological or immunological activity, for instance, may be found using computer programs well known in the art, for example, DNAStar software.

The present invention relates to nucleic acid (SEQ ID NO:1 and SEQ ID NO:2) and amino acid sequences (SEQ ID NO:3) of the novel human E3 ubiquitin protein ligase and variations thereof and to the use of these sequences to identify compounds that modulate the activity of E3 ubiquitin protein ligase under biological conditions as well as human physiology.

The invention further relates to the use of the nucleic acid sequences described herein in expression systems as assays for agonists or antagonists of the E3 ubiquitin protein ligase. The invention also relates to the diagnosis, study, prevention, and treatment of disease related to the human E3 ubiquitin protein ligase and/or diseases mediated by the biomolecule.

Polynucleotide sequences which encode the human E3 ubiquitin protein ligase(SEQ ID NO:3) or a functionally equivalent derivative thereof may be used in accordance with the present invention which comprise deletions, insertions and/or substitutions of the SEQ ID NO:2 nucleic acid sequence. Biologically active variants of the biomolecule of the present invention may also be comprised of deletions, insertions or substitutions of SEQ ID NO:3 amino acid residues. A purified polynucleotide comprising a nucleic acid sequence encoding the polypeptide having the sequence substantially as depicted in SEQ ID NO:3 or a biologically active fragment thereof is a particularly preferred embodiment of the present invention.

Amino acid substitutions of SEQ ID NO:3 may be made, for instance, on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the pharmacological or biological activity of the E3 ubiquitin protein ligase is retained.

Dominant/negative mutants are also contemplated wherein codons for one or more known functional residues are deleted or changed in the coding region (e.g., SEQ ID NO:2) in order to encode a mutant variation having valuable pharmacological function. For example, characteristic residues for ubiquitin transfer (e.g., the conserved cysteine residue

at SEQ ID NO:3 position 820 where a ubiquitin linkage is expected to occur) may be changed or deleted. See, Example VIII. Methods of treatment of conditions manifested by aberrant forms and/or abnormal levels of the native E3 ubiquitin protein ligase via administration of a polypeptide substantially as depicted in SEQ ID NO:3 or a pharmacologically active fragment thereof, or a nucleic acid substantially as depicted in SEQ ID NO:1, as referred to herein, is defined to encompass dominant/negative mutant

For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine phenylalanine, and tyrosine.

versions of these entities.

Nucleic acid sequences which encode the amino acid sequence of the human ubiquitin ligase described herein are of an exponential sum due to the potential substitution of degenerate codons (different codons which encode the same amino acid). The oligonucleotide sequence selected for heterologous expression is therefore preferably tailored to meet the most common characteristic tRNA codon recognition of the particular host expression system used as well known by those skilled in the art.

Suitable conservative substitutions of amino acids are known to those of skill in this art and may be made without altering the biological activity of the resulting polypeptide, regardless of the chosen method of synthesis. The phrase "conservative substitution" includes the use of a chemically derivatized residue in place of a non-derivatized residue provided that such polypeptide displays the desired binding activity. D-isomers as well as other known derivatives may also be substituted for the naturally occurring amino acids. See, e.g., U.S.

Patent No. 5,652,369, *Amino Acid Derivatives*, issued July 29, 1997. Substitutions are preferably, although not exclusively, made in accordance with those set forth in TABLE 1 as follows:

-21-

TABLE 1

Original residue	Example conservative substitution		
Ala (A)	Gly; Ser; Val; Leu; Ile; Pro		
Arg (R)	Lys; His; Gln; Asn		
Asn (N)	Gln; His; Lys; Arg		
Asp (D)	Glu		
Cys (C)	Ser		
Gln (Q)	Asn		
Glu (É)	Asp		
Gly (G)	Ala; Pro		
His (H)	Asn; Gln; Arg; Lys		
Ile (I)	Leu; Val; Met; Ala; Phe		
Leu (L)	Ile; Val; Met; Ala; Phe		
Lys (K)	Arg; Gln; His; Asn		
Met (M)	Leu; Tyr; Ile; Phe		
Phe (F)	Met; Leu; Tyr; Val; Ile; Ala		
Pro (P)	Ala; Gly		
Ser (S)	Thr		
Thr (T)	Ser		
Trp (W)	Tyr; Phe		
Tyr (Y)	Trp; Phe; Thr; Ser		
Val (V)	Ile; Leu; Met; Phe; Ala		

The nucleotide sequences of the present invention may also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the cloning, processing and/or expression of the gene product. For example, mutations may be introduced using techniques which are well known in the art, eg, site-

WO 99/40201

-22-

PCT/GB99/00353

directed mutagenesis to insert new restriction sites, to alter glycosylation patterns, to change codon preference, etc.

Included within the scope of the present invention are alleles of the human E3 ubiquitin protein ligase molecule of the present invention. As used herein, an "allele" or "allelic sequence" is an alternative form of the E3 ubiquitin protein ligase molecule described herein. Alleles result from nucleic acid mutations and mRNA splice-variants which produce polypeptides whose structure or function may or may not be altered. Any given gene may have none, one or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions or substitutions of amino acids. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

The present invention relates, in part, to the inclusion of the polynucleotide encoding the novel E3 ubiquitin protein ligase molecule in an expression vector which can be used to transform host cells or organisms. Such transgenic hosts are useful for the production of the novel selective degradation molecule and variations thereof described herein.

The nucleic acid sequence also provides for the design of antisense molecules useful in downregulating, diminishing, or eliminating expression of the genomic nucleotide sequence in cells including but not limited to hematopoietic, endothelial, and tumor or cancer cells.

The human E3 ubiquitin protein ligase biomolecule of the present invention can also be used in screening assays to identify blockers, antagonists or inhibitors which bind, emulate substrate, or otherwise inactivate or compete with the biomolecule. The novel E3 ubiquitin protein ligase can also be used in screening assays to identify agonists which activate the E3 ubiquitin ligase or otherwise induce the production of or prolong the lifespan of the

25 biomolecule in vivo or in vitro.

The invention also relates to pharmaceutical compounds and compositions comprising the human E3 ubiquitin protein ligase molecule substantially as depicted in SEQ ID NO:3, or fragments thereof, antisense molecules capable of disrupting expression of the naturally occurring gene, and agonists, antibodies, antagonists or inhibitors of the native

30 biomolecule.

Generally acceptable Vectors

In accordance with the present invention, polynucleotide sequences which encode the human E3 ubiquitin protein ligase polypeptide, fragments of the polypeptide, fusion proteins, or functional equivalents thereof may be used in recombinant DNA molecules that direct the expression of the ubiquitin ligase biomolecule in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence, may be used to clone and express the human biomolecule as well as variations thereof contemplated herein. As will be understood by those of skill in the art, it may be advantageous to produce the human E3 ubiquitin ligase encoding nucleotide sequences which possess non-naturally occurring codons.

Specific initiation signals may also be required for efficient translation of an E3 ubiquitin ligase nucleic acid sequence. These signals include the ATG initiation codon and adjacent sequences. In cases where the human E3 ubiquitin ligase nucleic acid sequence, e.g., SEQ

- ID NO:2, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon must be provided. Furthermore, the initiation codon must be in the correct reading frame to ensure
- transcription of the entire insert. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic.
 - Nucleic acid sequences, e.g., SEQ ID NO:2, may be recombinantly expressed to produce a pharmacologically active E3 ubiquitin ligase biomolecule by molecular cloning into an expression vector containing a suitable promoter and other appropriate transcription
- regulatory elements, and transferred into prokaryotic or eukaryotic host cells to produce the novel polypeptide. Techniques for such manipulations are, for instance, fully described in Sambrook, J., et al., Molecular Cloning Second Edition, Cold Spring Harbor Press (1990), and are well known in the art.
- Expression vectors are described herein as DNA sequences for the transcription of cloned copies of genes and the translation of their mRNAs in an appropriate host cell. Such

PCT/GB99/00353 WO 99/40201

-24-

vectors can be used to express nucleic acid sequences in a variety of hosts such as bacteria, bluegreen algae, plant cells, insect cells, fungal cells, human, and animal cells. Specifically designed vectors allow the shuttling of DNA between hosts such as bacteria-yeast, or bacteria-animal cells, or bacteria-fungal cells, or bacteria-invertebrate cells.

- A variety of mammalian expression vectors may be used to express the recombinant E3 ubiquitin ligase molecule and variations thereof disclosed herein in mammalian cells. Commercially available mammalian expression vectors which are suitable for recombinant expression, include but are not limited to, pcDNA3 (Invitrogen), pMC1neo (Stratagene), pXT1 (Stratagene), pSG5 (Stratagene), EBO-pSV2-neo (ATCC 37593) pBPV-1(8-2)
- (ATCC 37110), pdBPV-MMTneo(342-12) (ATCC 37224), pRSVgpt (ATCC 37199), pRSVneo (ATCC 37198), pSV2-dhfr (ATCC 37146), pUCTag (ATCC 37460), and IZD35 (ATCC 37565), pLXIN and pSIR (CLONTECH), pIRES-EGFP (CLONTECH). INVITROGEN corporation provides a wide variety of commercially available mammalian expression vector/systems which can be effectively used with the present invention.
- INVITROGEN, Carlsbad, CA. See, also, PHARMINGEN products, vectors and systems, San Diego, CA.
 - Baculoviral expression systems may also be used with the present invention to produce high yields of biologically active protein. Vectors such as the CLONETECH, BacPak™ Baculovirus expression system and protocols are preferred which are commercially
- available. CLONTECH, Palo Alto, CA. Miller, L.K., et al., Curr. Op. Genet. Dev. 3:97 (1993); O'Reilly, D.R., et al., Baculovirus Expression Vectors: A Laboratory Manual, 127. Vectors such as the INVITROGEN, MaxBac™ Baculovirus expression system, insect cells, and protocols are also preferred which are commercially available. INVITROGEN, Carlsbad, CA.

Example Host Cells 25

30

Host cells transformed with a nucleotide sequence which encodes a E3 ubiquitin ligase molecule of the present invention may be cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture. Particularly preferred embodiments of the present invention are host cells transformed with a purified polynucleotide comprising a nucleic acid sequence encoding the polypeptide having the

sequence substantially as depicted in SEQ ID NO:3 or a biologically active fragment thereof. Cells of this type or preparations made from them may be used to screen for pharmacologically active modulators of the activity of the human E3 ubiquitin ligase. Modulators thus identified will be used for the treatment of disorders manifested by aberrant forms and/or abnormal levels of the native E3 ubiquitin protein ligase. 5 Eukaryotic recombinant host cells are especially preferred as otherwise descibed herein or are well known to those skilled in the art. Examples include but are not limited to yeast, mammalian cells including but not limited to cell lines of human, bovine, porcine, monkey and rodent origin, and insect cells including but not limited to Drosophila and silkworm 10 derived cell lines. Cell lines derived from mammalian species which may be suitable and which are commercially available, include but are not limited to, L cells L-M(TK-) (ATCC CCL 1.3), L cells L-M (ATCC CCL 1.2), 293 (ATCC CRL 1573), Raji (ATCC CCL 86), CV-1 (ATCC CCL 70), COS-1 (ATCC CRL 1650), COS-7 (ATCC CRL 1651), CHO-K1 (ATCC CCL 61), 3T3 (ATCC CCL 92), NIH/3T3 (ATCC CRL 1658), HeLa (ATCC CCL 2), C127I (ATCC CRL 1616), BS-C-1 (ATCC CCL 26) and MRC-5 (ATCC CCL 171). 15 The expression vector may be introduced into host cells expressing the ubiquitin ligase polypeptide via any one of a number of techniques including but not limited to transformation, transfection, lipofection, protoplast fusion, and electroporation. Commercially available kits applicable for use with the present invention for hererologous 20 expression, including well-characterized vectors, transfection reagents and conditions, and cell culture materials are well-established and readily available. CLONTECH, Palo Alto, CA; INVITROGEN, Carlsbad, CA; PHARMINGEN, San Diego, CA; STRATAGENE, LaJolla, CA. The expression vector-containing cells are clonally propagated and individually analyzed to determine the level of the novel E3 ubiquitin protein ligase production. Identification of host cell clones which express the polypeptide may be 25 performed by several means, including but not limited to immunological reactivity with antibodies described herein, and/or the presence of host cell-associated specific E3 ubiquitin protein ligase activity, and/or the ability to covalently cross-link specific substrate to the E3 ubiquitin protein ligase polypeptide with the bifunctional cross-linking reagent 30 disuccinimidyl suberate or similar cross-linking reagents.

10

The ubiquitin protein ligase biomolecule of the present invention may also be expressed as a recombinant protein with one or more additional polypeptide domains added to facilitate protein purification. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals (Porath, J., Protein Exp. Purif., 3:263 (1992)), protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle WA). The inclusion of a cleavable linker sequences such as Factor XA or enterokinase (Invitrogen, San Diego CA) between the purification domain and the ubiquitin protein ligase coding region is useful to facilitate purification.

Systems such as the CLONTECH, TALON™ nondenaturing protein purification kit for purifying 6xHis-tagged proteins under native conditions and protocols are preferred which are commercially available. CLONTECH, Palo Alto, CA.

In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation. Post-translational processing which cleaves a nascent form of the protein may also be important for correct insertion, folding and/or function. Different host cells such as CHO, HeLa, MDCK, 293, WI38,

NIH-3T3, HEK293 etc., have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the introduced, foreign protein.

For long-term, high-yield production of the recombinant molecule, stable expression is preferred. For example, cell lines which stably express the novel E3 ubiquitin protein ligase polypeptide may be transformed using expression vectors which contain viral origins of replication or endogenous expression elements and a selectable marker gene. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which

successfully express the introduced sequences. Resistant clumps of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell type. The human E3 ubiquitin protein ligase and variations thereof described herein can be produced in the yeast *S. cerevisiae* following the insertion of the optimal cDNA cistron into expression vectors designed to direct the intracellular or extracellular expression of the heterologous protein. In the case of intracellular expression, vectors such as EmBLyex4 or the like are ligated to the beta subunit cistron. *See, e.g.*, Rinas, U., *et al.*, Biotechnology, 8:543 (1990); Horowitz, B., *et al.*, J. Biol. Chem., 265:4189 (1989). For extracellular expression, a ubiquitin protein ligase coding region, e.g., SEQ ID NO:2, is ligated into yeast expression vectors which may employ any of a series of well-characterized secretion signals. Levels of the expressed ubiquitin ligase molecule may be determined, for example, by means of the assays described herein.

A variety of protocols for detecting and measuring the expression of the human E3 ubiquitin protein ligase, using either polyclonal or monoclonal antibodies specific for the protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and fluorescent activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes may be employed. Well known competitive binding techniques may also be employed. See, e.g., Hampton, R., et al. (1990), Serological Methods - a

20 Laboratory Manual, APS Press, St Paul Minn.; Maddox, D.E., et al., J. Exp. Med. 158:1211.

Example Transformations

E coli transformations are generally carried out *via* electroporation. 400 ml cultures of strains DH5a or BL21(DE3) are grown in L-broth to an OD 600 of 0.5 and harvested at 2,000g. The cells are washed twice in ice-cold deionised water, resuspended in 1ml 10% glycerol and stored in aliquots at -70°C. Ligation mixes are desalted using millipore V series membranes (0.0025mm pore). 40ml of cells are incubated with 1ul of ligation mix or plasmid DNA on ice for 10 minutes in 0.2cm electroporation cuvettes, then pulsed using a Gene Pulser apperatus (BioRad) at ^.5kVcm⁻¹, 25mF, 250 ½. Transformants are selected on L-agar supplimented with tertracyline at 10mg/ml or ampicillian at 100mg/ml.

10

Example Expression/purification

The novel human E3 ubiquitin protein ligase, e.g., SEQ ID NO:2, is expressed from a pET vector (e.g., 14b-16b or 28a-c(+) (NOVAGEN)) in BL21 cells, in such a way to produce a recombinant protein containing a 6-histidine tag immediately adjacent to the N-terminal methionine. The 6-His tag is used to aid purification of the recombinant protein as is passed through a nickel chelating column (NOVAGEN).

Over-expression of the Ubiquitin Ligase in cell-lines

Transient and/or stable eucaryotic transfectant cells comprised of the coding region(s) described herein are contemplated for high-level expression of the novel human E3 ubiquitin protein ligase as well as variations thereof.

- Eucaryotic transfectants are preferred embodiments of the present invention for employment in studies for the identification molecules which modulate the human E3 ubiquitin protein ligase described herein *in vivo*. HEK cells, for example, may be employed.
- 15 Transient expression of coding regions for the human E3 ubiquitin protein ligase polypeptide can be achieved by straight transfection into mammalian cells, by standard techniques. Omari, K. et al., J. Physiol., 499:369, (1997); Panyi, G. et al., J. Gen. Physiol., 107(3):409 (1996). High level transient expression may be achieved using standard viral systems, e.g., Baculovirus, Adenovirus, or Vaccinia virus. Functionally expressed
- 20 representatives resulting from these systems are typically 5-500K per cell. Kamb, A., Methods Enzymol. 207:423 (1992); Sun, T. et al., Biochemistry, 33(33):9992 (1994); Spencer, R.H., et al., J. Biol. Chem., 272:2389 (1997).
 - Stable transfection of heterologous cells using sequences which encode the novel E3 ubiquitin protein ligase described herein (SEQ ID NO:3) or pharmacologically active
- variations or fragments thereof can be generated using, for example, NIH-3t3, L929, COS, HEK, or CHO cells. See, e.g., EMBO, 11(6):2033 (1992); Grissmer, et al., Mol. Pharm., 45:1227 (1994).

A preferred vector for use with the present invention is pcDNA/Neo, which is commercially available from INVITROGEN, Carlsbad, CA.

Cells, NIH-3t3, for example, are grown to 50% confluency in 60mm plates (media and conditions are according to requirements of the particular cell line) and transfected with 5 ug of pure DNA comprising a coding region for the human E3 ubiquitin protein ligase, e.g. SEQ ID NO:2, in pCDNA/Neo using the Lipofection reagent, as described by the supplier (LIFE TECHNOLOGIES Gibco BRL, Bethesda, MD). After transfection, the cells are incubated at 37°C, conditions for 3 days in medium with 10% FCS. Cells are trypsinized seeded onto 100mm dishes, and then selected with 300ug/ml of G418 (Neomycin). Only cells that have stable integration of the heterologous coding region will grow in the presence of G418, which is confered by the Neomycin-resistance gene in the plasmid.

10 Isolated clones are processed for 2-3 rounds of purification.

Example generation of Human 'Itchy' constructs

Human kidney cDNA was subjected to PCR using the following primers to isolate the full-length coding region of the human *itchy* E3 ligase (SEQ ID NO:3): upper: 5'-GTCTGACAGTGGATCACAAC-3' (SEQ ID NO:12); lower:

- 5'-CCATTCATGGTGCAAGTTCTC-3' (SEQ ID NO:13). PCR conditions were 94 °C 3 minutes; 31 cycles of 94 °C 1 minute, 58 °C 1 minute, 72 °C 2 minutes 30 seconds; 72 °C 3 minutes. The resulting 2616 bp product was cloned into the pCR2.1 TOPO TA cloning vector (Invitrogen, Carlsbad, CA) according to manufacturer's instructions except transformations were performed in ME DH5α cells. An N-terminal glutathione-S-
- transferase (GST)-itchy fusion construct was made by digesting the wild-type itchy TOPO vector with Eco RV and Spe I and cloning the purified insert into a Sma I-cut pGEX-5x-3 vector (Pharmacia, Piscataway, NJ) by blunt-end ligation (E3/pGEX-5x-3). An N-terminal green fluorescent protein (GFP) fusion construct for expression in mammalian cells was made by digesting the wild-type GST fusion construct with Bam HI and Not I and ligating the purified insert into the same sites in the pEGFP-C1 vector E3/pEGFP-C1 (Clontech,
 - Palo Alto, CA). Expression of gst fusion constructs; see Example VI. Each of the anti-SEQ ID NO:3 peptide antibodies described herein (infra) were demonstrated via wetern blot to react strongly with the SEQ ID NO:3 fusion product.

$\mathbf{E}\mathbf{1}$

All ubiquitin-activating (E1) proteins and genes corresponding thereto are contemplated for use in biological assays as well as drug screen assays described herein. SEQ ID NO:10 (FIG.12), for example, as an embodiment for use in the methods described and contemplated herein, is the 3177 base translated structural coding region of the nucleic acid sequence which encodes the previously described 1058 amino acid residue human E1 ubiquitin activating enzyme (Uba1). Ayusawa, D., et al., Cell Struct. Funct., 17:113 (1992). See, also, Jentsch, S., et al., Genetic Analysis of the Ubiquitin System, Biochim. Biophys. Acta, 1089:127 (1991); McGrath, J.P., et al., UBA1 - An Essential Yeast Gene Encoding Ubiquitin-Activating Enzyme, EMBO 10: 227 (1991); Immunofluorescent Localization of the Ubiquitin-Activating Enzyme, E1, to the Nucleus and Cytoskeleton, Am. J. Physiol, 264:C9; Cook, J.C., et al., Ubiquitin-Activating Enzyme in Cultured Cells, PNAS, 92:3454 (1995); Nagai, Y., et al., Ubiquitin-Activating Enzyme, E1, is Phosphorylated in Mammalian Cells by the Protein Kinase Cdc2, J. Cell Sci., 108:2145 (1995).

E2

Similarly, all ubiquitin-conjugating enzymes (E2) proteins and genes corresponding thereto are contemplated for use in biological assays as well as drug screen assays described herein. SEQ ID NO:11 (FIG.13), for example, as an embodiment for use in the methods described and contemplated herein, is the 444 base translated structural coding region of the nucleic acid sequence which encodes the previously described 147 amino acid residue E2 ubiquitin conjugating enzyme E217k (ub10a). Wing S.S., et al., Biochem. J., 305:125 (1995) [The E2 human version (Ubc2) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991)]. Other embodiments of E2 ubiquitin conjugating enzymes for use in methods of the present invention include, but are not limited to: Ubc2/Rad6 (Koken, M., et al., PNAS, 88:8865 (1991) Human E2), Ubc3/Cdc34 (Plon, et al., PNAS, 90:10484 (1993)), Ubc4/Ubc5B (Jensen, et al., J. Biol. Chem., 270:30408 (1995) & Rolfe, et al., PNAS, 92:3264 (1995)), Ubc5/Ubc5A (Jensen, et al., J. Biol. Chem., 270:30408 (1995) & Schneffer, et al., PNAS, 91:8797 (1994)), Ubc5C (Jensen, et al., J. Biol. Chem., 270:30408 (1995)), Ubc6 (Nuber, et al., J Biol Chem 271:2795 (1996)), Ubc7 (Nuber, et

al., J Biol Chem 271:2795 (1996) & Robinson, et al., Mammal Genome, 6:725 (1995)),

<u>Ubc8</u> (Kaiser, et al., J Biol Chem, 269:8797 (1994)), <u>Ubc9</u> (Kovalenko, et al., PNAS,
93:2958 (1996)), Watanabe, et al., Cytogen Cell Gen., 72:86 (1996), <u>Ubc-epi</u> (Liu, et al.,

cDNA Cloning of a Novel Human Ubiquitin Carrier Protein, J. Biol. Chem., 267:15829
(1992)), and <u>Ubc-bendless</u>: GENBANK Accession Number D83004. See, generally, Rolfe,
et al., The Ubiquitin-Mediated Proteolytic Pathway as a Therapeutic Area, J. Mol. Med.,
75:5 (1997)). See, also, Baboshina, O.V., et al., Novel Multiubiquitin Chain Linkages
Catalysed by the Conjugating Enzymes E2(EPF) and RAD6 are recognized by the 26-S
Proteasome Subunit, J. Biol. Chem., 271:2823 (1996); Dohmen, R.J., et al., The N-End
Rule Is Mediated by the Ubc2(Rad6) Ubiquitin-Conjugating Enzyme, PNAS, 88:7351
(1991); Seufert, W., et al., Ubiquitin-Conjugating Enzymes Ubc4 and Ubc5 Mediate
Selective Degradation of Short-Lived and Abnormal Proteins, EMBO, 9:543 (1990);
Cook, W.J., et al., 3-Dimensional Structure of a Ubiquitin-Conjugating Enzyme (E2), J.
Biol. Chem., 267:15116 (1992); Bartel, B., et al., The Recognition Component of the NEnd Rule Pathway, EMBO, 9:3179 (1990).

Ubiquitin

Ubiquitin is available, labeled and unlabeled, from a variety of well-known commercial suppliers. SEQ ID NO:7 is the 156 amino acid precursor peptide to the mature 76 amino acid residue sequence of human ubiquitin (FIG.9) (Lund P.K., et al., J. Biol. Chem., 260:7609 (1985)). Figure 10 displays SEQ ID NO:8 which is the mature 76 amino acid 20 residue sequence of native human ubiquitin (positions 1-76 of SEQ ID NO:7). SEQ ID NO:9 (FIG.11) is the 471 base translated structural coding region of the cDNA nucleic acid sequence which encodes the 156 amino acid precursor peptide (SEQ ID NO:7) to the mature 76 amino acid residue sequence of native human ubiquitin (positions 1-76 of SEQ ID NO:7) (Lund P.K., et al., J. Biol. Chem., 260:7609 (1985)). The human E3 ubiquitin 25 protein ligase (SEQ ID NO:3) ubiquitinates specific intracellular biological molecules in vivo including the likes of intracellular messenger biological molecules, receptors, ligands, signal transduction molecules, transcriptional activators, cytokines, kinases, and phosphorylases, especially which mediate physiological conditions such as inflammation, 30 autoimmune disease, neurological disease, apoptosis, endothelial cell physiology (e.g.,

proliferation, differentiation), peripheral vascular disease, angiogenesis, cancer, anemia, hematopoietic disorders, cachexia, leukemia, pulmonary disorders, arthritis, diabetes, and viral infection to effect selective destruction and swift regulation of cellular physiology. Any potential substrate may be used in biological assays as well as drug screen assays described herein including, but not limited to, substrates referred to in references cited herein or which are otherwise known or identified in the art of human pathophysiology.

General Biological Assays

10

Methods of identifying compounds that modulate the biological activity of a human E3 ubiquitin protein ligase, are contemplated and provided herein and in the EXAMPLES which comprise combining a candidate compound modulator of human E3 ubiquitin protein ligase biological activity with a human E3 ubiquitin protein ligase polypeptide having the sequence substantially as depicted in SEQ ID NO:3, and measuring an effect of the candidate compound modulator on the biological activity.

General Pharmacological Assays

The human E3 ubiquitin protein ligase described herein may be assayed for its ability to modulate protein degradation or selective proteolysis and/or otherwise modulate conditions associated with aberrant ubiquitin dependent proteolysis in intracellular physiology (disorders manifested by aberrant forms and/or abnormal levels of the native E3 ubiquitin protein ligase). Methods of identifying compounds that modulate the pharmacological activity of a human E3 ubiquitin protein ligase, comprise combining a candidate compound modulator of human E3 ubiquitin protein ligase pharmacological activity with a host-cell expressing a human E3 ubiquitin protein ligase polypeptide having the sequence substantially as depicted in SEQ ID NO:3, and measuring an effect of the candidate compound modulator on the pharmacological activity.

25 Scintillation Proximity Assay

Scintillation Proximity Assay (SPA) technology is developed which allows the rapid and sensitive assay of a wide variety of molecular interactions in a homogeneous system.

AMERSHAM, Bucks, UK. The decay of a radioactive atom releases sub-atomic particle radiation. The distance these particles travel through the medium in which they are released is dependent upon the energy of the particle. In the scintillation proximity assay

5

10

15

25

30

scintillant is incorporated into small fluoromicrospheres. These microspheres or 'beads' are derivatized in such a way as to bind specific molecules. If a radioactive molecule is bound to the bead, the radiation is in close enough proximity to stimulate the scintillant in order to emit light (unbound isotopes are too distant). The technique of SPA simplifies the process of assay design by removing the necessity to separate bound from free ligand, allowing assays to be performed and counted in one tube or in 96-well microplates. Moreover, assay speed is increased, and the need for filters, solvents, vials and scintillation reagents is eliminated. SPA is employed in screening assays as diverse as protein:protein, protein:DNA and cell adhesion molecule interactions. SPA represents a major drug screening technology, which has already been used successfully to identify a large number of candidate therapeutic compounds against a multitude of targets. See, EXAMPLE III. Figure 8 shows a schematic representation of example Scintillation Proximity Assays (SPA), as well as RIA and ELISA Assays.

Human E3 ubiquitin protein ligase may be therefore assayed for inherent pharmacological properties which may be useful to exploit for therapeutic purposes, i.e., administration *via* gene therapy or otherwise, *in vivo*, to control the selective elimination of intracellular biomolecules and hence regulate physiology.

Ubiquination Assays

Ubiquination reactions were performed using a protocol based on that used by
Hatakeyama, et al. J. Biol. Chem., 272:15085 (1997). See, Example VII; FIG.14.

Various Screening Assays

The present invention is also directed to methods for screening for compounds which modulate the biological and/or pharmacological activity of the human E3 ubiquitin protein ligase. Compounds which modulate these activities may be DNA, RNA, peptides, proteins, or non-proteinaceous organic molecules. Compounds may modulate the activity by increasing or attenuating the expression of DNA or RNA which encode the biomolecule, or may antagonize or agonize the activity of the human E3 ubiquitin protein ligase itself. Compounds that modulate the expression of DNA or RNA encoding the subunit or the function of the polypeptide may be detected by a variety of assays. The assay may be a simple "yes/no" assay to determine whether there is a change in expression or function. The

10

20

25

30

assay may be made quantitative by comparing the expression or function of a test sample with the levels of expression or function in a standard sample.

The human E3 ubiquitin protein ligase described herein, its immunogenic fragments or oligopeptides can be used for screening therapeutic compounds in any of a variety of drug screening techniques. The fragment employed in such a test may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The abolition of activity or the formation of binding complexes, between the E3 ubiquitin ligase biomolecule and the agent being tested, may be measured. Accordingly, the present invention provides a method for screening a plurality of compounds for specific binding affinity with the human E3 ubiquitin protein ligase polypeptide or a fragment thereof, comprising providing a plurality of compounds; combining a polypeptide of the present invention or a fragment thereof with each of a plurality of compounds for a time sufficient to allow binding under suitable conditions; and detecting binding of the subunit, or fragment thereof, to each of the plurality of compounds, thereby identifying the compounds which specifically bind the human E3 ubiquitin protein ligase. Compounds that modulate the biological activity of human E3 ubiquitin protein ligase identified in this manner are especially preferred embodiments of the invention. A further embodiment of the present invention is a method of treatment of a patient in need of such treatment for a condition which is mediated by the biological activity of human E3 ubiquitin protein ligase comprising administration of a modulating compound which was identified by means of a method described herein. A further embodiment of the present invention is a method of treatment of a patient in need of such treatment for a condition which is mediated by a pharmacological activity of human E3 ubiquitin protein ligase comprising administration of a modulating compound which was identified by means of a method described herein. In order to purify an E3 protein ligase polypeptide to measure a binding activity, the source may be a whole cell lysate, prepared by one to three freeze-thaw cycles in the presence of standard protease inhibitors. The protein ligase may be partially or completely purified by standard protein purification methods. Human E3 ubiquitin protein ligase polypeptides described herein may be purified by affinity chromatography using antibodies described herein or by ligands specific for an epitope tag engineered into the recombinant molecule

WO 99/40201

-35-

moreover described herein. The preparation may then be assayed for binding activity as described.

Purified polypeptides comprising the amino acid sequence substantially as depicted in SEQ ID NO:3 are especially preferred embodiments of the present invention.

Compounds and Methods

Compounds which are identified generally according to methods described, referenced, and contemplated herein that modulate the biological and/or pharmacological activity of human E3 ubiquitin protein ligase (SEQ ID NO:3) are especially preferred embodiments of the present invention. Therefore, as an inherent corollary, a method of the present invention is treatment of a patient in need of such treatment for a condition which is mediated by the biological and/or pharmacological activity of a human E3 ubiquitin protein ligase, comprising administration of a compound that modulates the biological and/or pharmacological activity of a human E3 ubiquitin protein ligase identified by a method described herein.

A further method of the present invention is treatment of a patient in need of such treatment 15 for a condition which is mediated by the biological and/or pharmacological activity of a human E3 ubiquitin protein ligase, comprising administration of the E3 ubiquitin protein ligase substantially as depicted in SEQ ID NO:3 or a pharmacologically active fragment thereof. Therapeutic methods of the present invention also include treatment of a patient in need of such treatment for a condition which is mediated by the biological and/or pharmacological activity of a human E3 ubiquitin protein ligase, comprising administration of a nucleic acid substantially as depicted in SEQ ID NO:1 or a biologically-effective fragment thereof. Therapeutic methods of the present invention furthermore include treatment of a patient in need of such treatment for a condition which is mediated by the biological activity of a human E3 ubiquitin protein ligase, comprising administration of an 25 antisense molecule comprising the complement of the sequence substantially as depicted in SEQ ID NO:2 or a biologically-effective fragment thereof (further discussed infra).

Yeast 2-Hybrid System

In another embodiment of the invention, a nuleic acid sequence which encodes a human E3 ubiquitin protein ligase molecule substantially as depicted in SEQ ID NO:3 or a 30

biologically and/or pharmacologically active fragment thereof may be ligated to a heterologous sequence to encode a fusion protein, for example, to encode a chimeric human E3 ubiquitin ligase molecule as described herein for expression in hererologous host cells for screening molecules for an ability to modulate human E3 ubiquitin protein ligase biological and/or pharmacological activity, i.e., via binding, association or otherwise. Chimeric constructs may also be used to express a 'bait', according to methods well known using a yeast two-hybrid system, to identify accessory native peptides that may be associated with the human E3 ubiquitin protein ligase described herein. Fields, S., et al., Trends Genet., 10:286 (1994); Allen, J.B., et al., TIBS, 20:511 (1995). A yeast two-hybrid system has been described wherein protein:protein interactions can be detected using a 10 yeast-based genetic assay via reconstitution of transcriptional activators. Fields, S., Song, O., Nature 340:245 (1989). The two-hybrid system used the ability of a pair of interacting proteins to bring a transcription activation domain into close proximity with a DNAbinding site that regulates the expression of an adjacent reporter gene. Commercially 15 available systems such as the CLONTECH, Matchmaker™ systems and protocols may be used with the present invention. CLONTECH, Palo Alto, CA. See also, Mendelsohn, A.R., Brent, R., Curr. Op. Biotech., 5:482 (1994); Phizicky. E.M., Fields, S., Microbiological Rev., 59(1):94 (1995); Yang, M., et al., Nucleic Acids Res., 23(7):1152 (1995); Fields, S., Sternglanz, R., TIG, 10(8):286 (1994); and US Patents 5,283,173, System to Detect Protein-Protein Interactions, and 5,468,614, which are incorporated herein by reference. Modified screening systems, for instance, can be practiced either with a positive readout or with a negative readout such as that in the recently developed versions of "Reverse Y2H" approach. See, e.g., Vidal M, Braun P, Chen E, Boeke JD, Harlow E (1996) Genetic characterization of a mammalian protein-protein interaction domain by using a yeast 25 reverse two-hybrid system, Proc Natl Acad Sci U S A 17;93(19):10321-10326; Vidal M, Brachmann RK, Fattaey A, Harlow E, Boeke JD (1996) Reverse two-hybrid and onehybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A 17;93(19):10315-10320; White MA (1996) The yeast two-hybrid system: forward and reverse, Proc Natl Acad Sci U S A 17;93(19):10001-10003; Leanna

10

20

30

CA, Hannink M (1996), The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions, Nucleic Acids Res 1;24(17):3341-3347.

Antibodies

Example peptides and anti-peptide antibodies were made by under contract by Genosys Inc., Woodlands, Tx. The two peptide sequences used to generate polyclonal antibodies to human itchy E3 ligase (SEQ ID NO:3) were amino acid positions 41-54 and positions 153-167 of SEQ ID NO:3. Peptides were conjugated to KLH (2-3 mg). New Zealand White rabbits were independently immunized each with 200 mg of one conjugated peptide in Complete Freund's adjuvant for the first immunization and with 100 mg of tha same conjugated peptide in Incomplete Freund's Adjuvant for subsequent immunizations. Antipeptide antibodies was affinity-purified by elution through a column containing Affi-gel 10 matrix (BioRad, Hercules, CA) to which each respective free peptide had been conjugated. Monospecific antibodies to the human biomolecule of the present invention (SEQ ID NO:3) are purified from mammalian antisera containing antibodies reactive against the polypeptide or are prepared as monoclonal antibodies reactive with the human E3 ubiquitin protein ligase using the technique of Kohler and Milstein, Nature, 256:495 (1975). Monospecific antibody as used herein is defined as a single antibody species or multiple antibody species with homogenous binding characteristics for the novel human E3 ubiquitin protein ligase. Homogenous binding as used herein refers to the ability of the antibody species to bind to a specific antigen or epitope. Human E3 ubiquitin protein ligase specific antibodies are raised by immunizing animals such as mice, rats, guinea pigs, rabbits, goats, horses and the like, with rabbits being preferred, with an appropriate concentration of the human E3 ubiquitin protein ligase either with or without an immune adjuvant. Preimmune serum is collected prior to the first immunization. Each animal receives

between about 0.1 mg and about 1000 mg of human E3 ubiquitin protein ligase polypeptide associated with an acceptable immune adjuvant. Such acceptable adjuvants include, but are not limited to, Freund's complete, Freund's incomplete, alum-precipitate, water in oil emulsion containing Corynebacterium parvum and tRNA. The initial immunization consists of a human E3 ubiquitin protein ligase polypeptide in, preferably, Freund's complete adjuvant at multiple sites either subcutaneously (SC), intraperitoneally (IP) or

both. Each animal is bled at regular intervals, preferably weekly, to determine antibody titer. The animals may or may not receive booster injections following the initial immunization. Those animals receiving booster injections are generally given an equal amount of the antigen in Freund's incomplete adjuvant by the same route. Booster injections are given at about three week intervals until maximal titers are obtained. At about 7 days after each booster immunization or about weekly after a single immunization, the animals are bled, the serum collected, and aliquots are stored at about - 20° C. Monoclonal antibodies (mAb) reactive with the human E3 ubiquitin protein ligase polypeptide are prepared by immunizing inbred mice, preferably Balb/c, with a human E3 ubiquitin protein ligase polypeptide. The mice are immunized by the IP or SC route with about 0.1 mg to about 10 mg, preferably about 1 mg, of the novel protein ligase polypeptide in about 0.5 ml buffer or saline incorporated in an equal volume of an acceptable adjuvant, as discussed above. Freund's complete adjuvant is preferred. The mice receive an initial immunization on day 0 and are rested for about 3 to about 30 weeks. Immunized mice are given one or more booster immunizations of about 0.1 to about 10 mg of human E3 ubiquitin protein ligase polypeptide in a buffer solution such as phosphate buffered saline by the intravenous (IV) route. Lymphocytes, from antibody positive mice, preferably splenic lymphocytes, are obtained by removing spleens from immunized mice by standard procedures known in the art. Hybridoma cells are produced by mixing the 20 splenic lymphocytes with an appropriate fusion partner, preferably myeloma cells, under conditions which will allow the formation of stable hybridomas. Fusion partners may include, but are not limited to: mouse myelomas P3/NS1/Ag 4-1; MPC-11; S-194 and Sp 2/0, with Sp 2/0 being preferred. The antibody producing cells and myeloma cells are fused in polyethylene glycol, about 1000 molecular weight, at concentrations from about 30% to about 50%. Fused hybridoma cells are selected by growth in hypoxanthine, thymidine and aminopterin supplemented Dulbecco's Modified Eagles Medium (DMEM) by procedures known in the art. Supernatant fluids are collected from growth positive wells on about days 14, 18, and 21 and are screened for antibody production by an immunoassay such as solid phase immunoradioassay (SPIRA) using a human E3 ubiquitin protein ligase polypeptide as the antigen. The culture fluids are also tested in the

Ouchterlony precipitation assay to determine the isotype of the mAb. Hybridoma cells from antibody positive wells are cloned by a technique such as the soft agar technique of MacPherson, Soft Agar Techniques, in Tissue Culture Methods and Applications, Kruse and Paterson, Eds., Academic Press, (1973).

Monoclonal antibodies are produced *in vivo* by injection of pristane primed Balb/c mice, approximately 0.5 ml per mouse, with about 2 x 10⁶ to about 6 x 10⁶ hybridoma cells about 4 days after priming. Ascites fluid is collected at approximately 8-12 days after cell transfer and the monoclonal antibodies are purified by techniques known in the art.

In vitro production of the anti-human E3 ubiquitin protein ligase polypeptide mAb is

carried out by growing the hydridoma in DMEM containing about 2% fetal calf serum to obtain sufficient quantities of the specific mAb. The mAb are purified by techniques well known in the art.

Diagnostic Assays

10

Antibody titers of ascites or hybridoma culture fluids are determined by various serological or immunological assays which include, but are not limited to, precipitation, passive 15 agglutination, enzyme-linked immunosorbent antibody (ELISA) technique and radioimmunoassay (RIA) techniques. Similar diagnostic assays are used to detect the presence of the human E3 ubiquitin protein ligase in body fluids or tissue and cell extracts. Diagnostic assays using the human E3 ubiquitin protein ligase polypeptide specific antibodies are useful for the diagnosis of conditions manifested by aberrant forms and/or 20 abnormal levels and/or tissue distribution of the native E3 ubiquitin protein ligase. Diagnostic assays for the human ubiquitin ligase biomolecule of this invention include methods utilizing the antibody and a label to detect the human E3 ubiquitin protein ligase polypeptide in human body fluids, cells, tissues or sections or extracts of such tissues. The polypeptides and antibodies of the present invention may be used with or without 25 modification. Frequently, the polypeptides and antibodies will be labeled by joining them, either covalently or noncovalently, with a reporter molecule, a myriad of which are wellknown to those skilled in the art.

A variety of protocols for measuring the human E3 ubiquitin protein ligase polypeptide, 30 using either polyclonal or monoclonal antibodies specific for the respective protein are WO 99/40201

20

30

known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and fluorescent activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two noninterfering epitopes on the human E3 ubiquitin protein ligase is preferred, but a competitive binding assay may be employed. These assays are described, among other places, in Maddox, D.E. et al., J. Exp. Med. 158:1211 (1983); Sites, D.P., et al., Basic and Clinical Immunology, Ch.22, 4th Ed., Lange Medical Publications, Los Altos, CA (1982); U.S. Patents No. 3,654,090, No. 3,850,752; and No. 4,016,043.

In order to provide a basis for the diagnosis of disease, normal or standard values for the 10 human E3 ubiquitin protein ligase polypeptide expression must be established. This is accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with antibody to the human ubiquitin ligase biomolecule under conditions suitable for complex formation which are well known in the art. The amount of standard complex formation may be quantified by comparing it with a dilution series of positive controls where a known amount of antibody is combined with known concentrations of purified E3 ubiquitin protein ligase polypeptide. Standard values obtained from normal samples may be compared with values obtained from samples from subjects potentially affected by a disorder or disease related to expression of the human E3 ubiquitin protein ligase. Deviation between standard and subject values establishes the presence of the disease state.

Kits which contain human E3 ubiquitin protein ligase nucleic acid coding region(s). antibodies to a polypeptide, or intact biomolecule may be prepared. Such kits are used to detect sample nucleic acids which hybridize to the human E3 ubiquitin protein ligase nucleic acid coding region(s) contained therein, or to detect the presence of the intact

25 biomolecule or peptide fragments in a sample. Such characterization is useful for a variety of purposes including, but not limited to, diagnosis, forensic analyses and epidemiological studies.

The DNA molecules, RNA molecules, recombinant protein and antibodies of the present invention may be used to screen and measure levels of the human E3 ubiquitin protein ligase DNA, RNA or protein. The recombinant proteins, DNA molecules, RNA molecules

and antibodies lend themselves to the formulation of kits suitable for the detection and typing of the novel human E3 ubiquitin protein ligase biomolecule. Such a kit would comprise a compartmentalized carrier suitable to hold in close confinement at least one container. The carrier would further comprise reagents such as recombinant ubiquitin 5 protein ligase or anti- ubiquitin protein ligase antibodies suitable for detecting the novel human E3 ubiquitin protein ligase biomolecule. The carrier may also contain a means for detection such as labeled antigen or enzyme substrates or the like. Polynucleotide sequences which encode the human E3 ubiquitin protein ligase may be used for the diagnosis of conditions or diseases with which the expression of the human 10 biomolecule is associated. For example, polynucleotide sequences encoding the human E3 ubiquitin protein ligase may be used in hybridization or PCR assays of fluids or tissues from biopsies to detect expression of the biomolecule. The form of such qualitative or quantitative methods may include Southern or Northern analysis, dot blot or other membrane-based technologies; PCR technologies; dip stick, pin, chip and ELISA 15 technologies. All of these techniques are well known in the art and are the basis of many commercially available diagnostic kits. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or in monitoring the treatment of an individual patient. Once disease is established, a therapeutic agent may be administered and a treatment profile generated. Such assays may 20 be repeated on a regular basis to evaluate whether the values in the profile progress toward or return to the normal or standard pattern. Successive treatment profiles may be used to show the efficacy of treatment over a period of several days or several months. Polynucleotide sequences which encode the human E3 ubiquitin protein ligase may also be employed in analyses to map chromosomal locations, e.g., screening for functional 25 association with disease markers. Moreover the sequences described herein are contemplated for use to identify human sequence polymorphisms and possible association with disease as well as analyses to select optimal sequence from among possible polymorphic sequences for the design of compounds to modulate the biological activity and therefore regulate physiological disorders. Furthermore the sequences are

PCT/GB99/00353 WO 99/40201

-42-

contemplated as screening tools for use in the identification of appropriate human subjects and patients for therapeutic clinical trials.

Purification via Affinity Columns

25

It is readily apparent to those skilled in the art that methods for producing antibodies may be utilized to produce antibodies specific for human E3 ubiquitin protein ligase polypeptide fragments, or the full-length nascent human polypeptide. Specifically, it is readily apparent to those skilled in the art that antibodies may be generated which are specific for the fully functional biomolecule or fragments thereof.

Human E3 ubiquitin protein ligase antibody affinity columns are made by adding the antibodies to Affigel-10 (Biorad), a gel support which is activated with N hydroxysuccinimide esters such that the antibodies form covalent linkages with the agarose gel bead support. The antibodies are then coupled to the gel via amide bonds with the spacer arm. The remaining activated esters are then quenched with 1M ethanolamine HCl (pH 8). The column is washed with water followed by 0.23M glycine HCl (pH 2.6) to remove any non-conjugated antibody or extraneous protein. The column is then equilibrated in phosphate buffered saline (pH 7.3) with appropriate detergent and the cell culture supernatants or cell extracts, for example, containing human E3 ubiquitin protein ligase polypeptide made using appropriate membrane solubilizing detergents are slowly passed through the column. The column is then washed with phosphate buffered saline/detergent until the optical density falls to background, then the protein is eluted with 0.23M glycine-HCl (pH 2.6)/detergent. The purified subunit polypeptide is then dialyzed against phosphate buffered saline/detergent.

Recombinant E3 ubiquitin protein ligase molecules can be separated from other cellular proteins by use of an immunoaffinity column made with monoclonal or polyclonal antibodies specific for the full length nascent human protein, e.g., SEQ ID NO:3, or polypeptide fragments of the biomolecule.

Human E3 ubiquitin protein ligase as described herein may be used to affinity purify biological effectors from native biological materials, e.g. disease tissue. Affinity chromatography techniques are well known to those skilled in the art. The novel polypeptide described herein, e.g., SEQ ID NO:3, or an effective fragment thereof, is fixed to a solid matrix, e.g. CNBr activated Sepharose according to the protocol of the supplier (Pharmacia, Piscataway, NJ), and a homogenized/buffered cellular solution containing a potential molecule of interest is passed through the column. After washing, the column retains only the biological effector which is subsequently eluted, e.g., using 0.5M acetic acid or a NaCl gradient.

Example Dominant Negative Mutant

To prove that the active site cysteine in the human itchy gene is essential for ubiquitination, bacterially expressed protein from the dominant negative construct (C820A, described herein) was used in ubiquitination assays. The results (Example VIII; FIG.15) demonstrate that the dominant negative construct (C820A) has no enzymatic activity (ubiquitination) compared to the wild type control. See Example VIII; FIG.15. Ubiquitination substrate (DH5a bacterial Lysates) · 12% SDS-PAGE · Primary Ab (anti-ubiquitin) · Secondary Ab (Anti-rabbit Ig) · Western blot developed using ECL system (Amersham, Bucks, UK).

Antisense Molecules

10

15

25

30

To enable methods of down-regulating expression of the human E3 ubiquitin protein ligase of the present invention in mammalian cells, an example antisense expression construct containing the complement DNA sequence to the sequence substantially as depicted in SEO ID NO:2 can be readily constructed for instance using the pREP10 vector (Invitrogen Corporation). Transcripts are expected to inhibit translation of the wild-type E3 ubiquitin protein ligase mRNA in cells transfected with this type construct. Antisense transcripts are effective for inhibiting translation of the native gene transcript, and capable of inducing the effects (e.g., regulation of physiological disorders) herein described. Translation is most effectively inhibited by blocking the mRNA at a site at or near the initiation codon. Thus, oligonucleotides complementary to the corresponding 5'-terminal region of the human E3 ubiquitin protein ligase mRNA transcript (SEQ ID NO:2) are preferred. Secondary or tertiary structure which might interfere with hybridization is minimal in this region. Moreover, sequences that are too distant in the 3' direction from the initiation site can be less effective in hybridizing the mRNA transcripts because of a "read-through" phenomenon whereby the ribosome appears to unravel the antisense/sense duplex to permit translation of the message. Oligonucleotides which are complementary to and hybridizable with any portion of the human E3 ubiquitin protein ligase mRNA are contemplated for therapeutic use.

U.S. Patent No. 5,639,595, *Identification of Novel Drugs and Reagents*, issued Jun. 17, 1997, wherein methods of identifying oligonucleotide sequences that display *in vivo*5 activity are thoroughly described, is herein incorporated by reference. Expression vectors containing random oligonucleotide sequences derived from previously known polynucleotides, e.g., SEQ ID NO:1, are transformed into cells. The cells are then assayed for a phenotype resulting from the desired activity of the oligonucleotide. Once cells with the desired phenotype have been identified, the sequence of the oligonucleotide having the desired activity can be identified. Identification may be accomplished by recovering the vector or by polymerase chain reaction (PCR) amplification and sequencing the region containing the inserted nucleic acid material.

Nucleotide sequences that are complementary to the novel E3 ubiquitin protein ligase polypeptide encoding polynucleotide sequence can be synthesized for antisense therapy.

These antisense molecules may be DNA, stable derivatives of DNA such as phosphorothioates or methylphosphonates, RNA, stable derivatives of RNA such as 2'-O-alkylRNA, or other oligonucleotide mimetics. U.S. Patent No. 5,652,355, Hybrid Oligonucleotide Phosphorothioates, issued July 29, 1997, and U.S. Patent No. 5,652,356, Inverted Chimeric and Hybrid Oligonucleotides, issued July 29, 1997, which describe the synthesis and effect of physiologically-stable antisense molecules, are incorporated by reference. Human E3 ubiquitin protein ligase antisense molecules may be introduced into cells by microinjection, liposome encapsulation or by expression from vectors harboring the antisense sequence. Antisense therapy may be particularly useful for the treatment of diseases where it is beneficial to modulate the biological activity and/or pharmacological activity of the human E3 ubiquitin protein ligase described herein.

Gene Therapy

30

The human E3 ubiquitin protein ligase polypeptide and variations thereof contemplated herein may administered to a subject *via* gene therapy. A polypeptide of the present invention may be delivered to the cells of target organs, e.g., hematopoietic cells, in this manner. Conversely, human E3 ubiquitin protein ligase polypeptide *antisense* gene therapy

may be used to modulate the expression of the polypeptide in the same cells of target organs and hence regulate biological and/or pharmacological activity. The human E3 ubiquitin protein ligase coding region can be ligated into viral vectors which mediate transfer of the trans-activator polypeptide nucleic acid by infection of recipient host cells. Suitable viral vectors include retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, polio virus and the like. See, e.g., U.S. Patent No. 5,624,820, Episomal Expression Vector for Human Gene Therapy, issued April 29, 1997. Nucleic acid coding regions of the present invention are incorporated into effective eukaryotic expression vectors, which are directly administered or introduced into somatic cells for gene therapy (a nucleic acid fragment comprising a coding region, preferably mRNA transcripts, may also be administered directly or introduced into somatic cells). See, e.g., U.S. Patent No. 5,589,466, issued Dec. 31, 1996. Such nucleic acids and vectors may remain episomal or may be incorporated into the host chromosomal DNA as a provirus or portion thereof that includes the gene fusion and appropriate eukaryotic transcription and translation signals, i.e, an effectively positioned RNA polymerase promoter 5' to the transcriptional start site and ATG translation initiation codon of the gene fusion as well as termination codon(s) and transcript polyadenylation signals effectively positioned 3' to the coding region. Alternatively, the human E3 ubiquitin protein ligase DNA can be transferred into cells for gene therapy by non-viral techniques including receptor-mediated targeted DNA transfer using ligand-DNA conjugates or adenovirusligand-DNA conjugates, lipofection membrane fusion or direct microinjection. These procedures and variations thereof are suitable for ex vivo, as well as in vivo human gene

PCR Diagnostics

therapy according to established methods in this art.

10

15

20

25 The nucleic acid sequence, oligonucleotides, fragments, portions or antisense molecules thereof, may be used in diagnostic assays of body fluids or biopsied tissues to detect the expression level of the human E3 ubiquitin protein ligase. For example, sequences designed from the cDNA sequence SEQ ID NO:1 or sequences comprised in SEQ ID NO:2 can be used to detect the presence of the mRNA transcripts in a patient or to monitor the modulation of transcripts during treatment.

Figure 7 displays PCR primers, for example, SEQ ID NO:5 and SEQ ID NO:6, which are used to amplify the 2559 bp coding region (SEQ ID NO:2) of the novel human E3 ubiquitin protein ligase from human tissue.

One method for amplification of target nucleic acids, or for later analysis by hybridization assays, is known as the polymerase chain reaction ("PCR") or PCR technique. The PCR technique can be applied to detect sequences of the invention in suspected samples using oligonucleotide primers spaced apart from each other and based on the genetic sequence, e.g., SEQ ID NO:1, set forth herein. The primers are complementary to opposite strands of a double stranded DNA molecule and are typically separated by from about 50 to 450 nucleotides or more (usually not more than 2000 nucleotides). This method entails preparing the specific oligonucleotide primers followed by repeated cycles of target DNA denaturation, primer binding, and extension with a DNA polymerase to obtain DNA fragments of the expected length based on the primer spacing. One example embodiment of the present invention is a diagnostic composition for the identification of a polynucleotide sequence comprising the sequence substantially as depicted in SEQ ID NO:2 comprising the PCR primers substantially as depicted in SEQ ID NO:5 and SEQ ID NO:6 (FIG.7). The degree of amplification of a target sequence is controlled by the number of cycles that are performed and is theoretically calculated by the simple formula 2n where n is the number of cycles. See, e.g., Perkin Elmer, PCR Bibliography, Roche Molecular Systems, Branchburg, New Jersey; CLONTECH products, Palo Alto, CA; U.S. Patent No. 5,629,158, Solid Phase Diagnosis of Medical Conditions, issued May 13, 1997. Compositions

Pharmaceutically useful compositions comprising sequences pertaing to the human E3 ubiquitin protein ligase, DNA, RNA, antisense sequences, or variants and analogs which have biological activity or otherwise compounds which modulate cell physiology identified by methods described herein, may be formulated according to known methods such as by the admixture of a pharmaceutically acceptable carrier. Examples of such carriers and methods of formulation may be found in Remington's Pharmaceutical Sciences (Maack Publishing Co, Easton, PA). To form a pharmaceutically acceptable composition suitable

PCT/GB99/00353 WO 99/40201

-47-

for effective administration, such compositions will contain an effective amount of the protein, DNA, RNA, or compound modulator.

Therapeutic or diagnostic compositions of the invention are administered to an individual in amounts sufficient to treat or diagnose human physiological disorders, particularly disorders manifested by aberrant forms and/or abnormal levels of the native E3 ubiquitin protein ligase. The effective amount may vary according to a variety of factors such as the individual's condition, weight, sex and age. Other factors include the mode of administration.

The term "chemical derivative" describes a molecule that contains additional chemical moieties which are not normally a part of the base molecule. Such moieties may improve the solubility, half-life, absorption, etc.of the base molecule. Alternatively the moieties may attenuate undesirable side effects of the base molecule or decrease the toxicity of the base molecule. Examples of such moieties are described in a variety of texts, such as Remington's Pharmaceutical Sciences.

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art. The therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models, usually mice, rabbits, dogs, or pigs. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutically effective dose refers to that amount of protein or its antibodies, antagonists, or inhibitors which ameliorate the symptoms or condition. The exact dosage is chosen by the individual physician in view of the patient to be treated.

20

Compounds identified according to the methods disclosed herein may be used alone at appropriate dosages defined by routine testing in order to obtain optimal modulation of a human E3 ubiquitin protein ligase biological activity and/or pharmacological activity, while minimizing any potential toxicity. Co-administration or sequential administration of other agents may be desirable.

20

25

30

The pharmaceutical compositions may be provided to the individual by a variety of routes such as subcutaneous, topical, oral and intramuscular. Administration of pharmaceutical compositions is accomplished orally or parenterally. Methods of parenteral delivery include topical, intra-arterial (directly to the tissue), intramuscular, subcutaneous, intramedullary, intrathecal, intraventricular, intravenous, intraperitoneal, or intranasal administration. The present invention also has the objective of providing suitable topical, oral, systemic and parenteral pharmaceutical formulations for use in the novel methods of treatment of the present invention. The compositions containing compounds identified according to this invention as the active ingredient for use in the modulation of physiological conditions can be administered in a wide variety of therapeutic dosage forms in conventional vehicles for administration. For example, the compounds can be administered in such oral dosage forms as tablets, capsules (each including timed release and sustained release formulations), pills, powders, granules, elixirs, tinctures, solutions, suspensions, syrups and emulsions, or by injection. Likewise, they may also be administered in intravenous (both bolus and infusion), intraperitoneal, subcutaneous, topical with or without occlusion, or intramuscular form, all using forms well known to those of ordinary skill in the pharmaceutical arts. An effective but non-toxic amount of the compound desired can be employed as a E3 ubiquitin protein ligase or variation contemplated herein or human E3 ubiquitin protein ligase modulating agent. The daily dosage of the products may be varied over a wide range from 0.01 to 1,000 mg per adult human/per day. For oral administration, the compositions are preferably provided in the form of scored or unscored tablets containing 0.01, 0.05, 0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, and 50.0 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. An effective amount of the drug is ordinarily supplied at a dosage level of from about 0.0001 mg/kg to about 100 mg/kg of body weight per day. The range is more particularly from about 0.001 mg/kg to 10 mg/kg of body weight per day. Even more particularly, the range varies from about 0.05 to about 1 mg/kg. Of course the dosage level will vary depending upon the potency of the particular compound. Certain compounds will be more potent than others. In addition, the dosage level will vary depending upon the bioavailability of the compound. The more bioavailable

PCT/GB99/00353 WO 99/40201

-49-

and potent the compound, the less compound will need to be administered through any delivery route, including but not limited to oral delivery. The dosages of the modulators desribed herein are adjusted when combined to achieve desired effects. On the other hand, dosages of these various agents may be independently optimized and combined to achieve a synergistic result wherein the pathology is reduced more than it would be if either agent were used alone. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells and conditions.

10

20

EXAMPLES

EXAMPLE I

A. Ubiquitin thioester conjugation assay for biological activity

Ubiquitin thiol ester formation by the novel human E3 ubiquitin protein ligase (e.g., SEQ ID NO:3) is determined by change in SDS-PAGE mobility of the E3 ligase band (characteristic of thioester formation between ubiquitin and the protein in this gel-shift assay). Reaction mixtures contain 5-10 ng of recombinant E1 (SEQ ID NO:10 (FIG.12) which is the translated structural coding region of human E1 ubiquitin activating enzyme Uba1), 100 ng of recombinant E2 (SEQ ID NO:11 (FIG.13) which is the translated structural coding region of the E2 ubiquitin conjugating enzyme E217k) [The human version (Ubc2) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991)], 200 ng of ³²P-labeled human E3 ligase (SEQ ID NO:3), and 500 ng of GST-ubiquitin in 20 mM Tris-HCl, pH 7.6, 50 mM NaCl, 4 mM ATP, 10 mM MgCl2, and 0.2 mM dithiothreitol for 3 min at 25 °C. Human E3 ubiquitin protein ligase reactions are terminated by incubating the mixtures for 15 min at 30 °C in SDS-sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, and 0.2% bromphenol blue) in the absence of reducing agents and resolved by SDS-PAGE. Radioactively labeled proteins are visualized by autoradiography. Change in the mobility of the E3 ligase band indicates thioester formation in this gel-shift assay. See, alternate techniques, e.g., Huibregtse, J.M., et al., The HPV-16 E6 and E6-AP Complex Functions as a Ubiquitin-Protein Ligase in the Ubiquitination of p53, Cell, 75:495 (1995).

WO 99/40201 PCT/GB99/00353 -50-

EXAMPLE II

Ubiquitination assay for biological activity

Physical interaction between specific E2 enzymes (for example, E217k (SEQ ID NO:11 (structural coding region))) [The human version (Ubc2) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991)] and the novel human E3 ubiquitin protein ligase (e.g., SEQ ID NO:3) characterizes specific functional cooperativity. This assay employs [35S]Methionine-labeled proteins synthesized in rabbit reticulocyte lysate in vitro reactions with a coupled transcription/translation kit (PROMEGA, WI). Kumar, S., et al., J. Biol. Chem., 272:13548 (1997). Messenger RNA is preferred which originates from 10 hematopoietic cells. Five µl aliquots of in vitro translated hematopoietic cell mRNA is incubated with 5-10 ng of recombinant E1 (SEQ ID NO:10 (FIG.12) which is the translated structural coding region of human E1 ubiquitin activating enzyme Uba1), approximately 100ng of E2 (E217k (SEQ ID NO:11 (structural coding region))) [The human version (<u>Ubc2</u>) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991)] (alternately, UBC2, UBC3, UBC4, UBC5, UBC6, UBC7, UBC8, UBC9, UBC_{epi}, UBC_{bendless} (as per 15 citations supra)), 200 ng of the novel human E3 ubiquitin protein ligase (e.g., SEQ ID NO:3), in 20 mM Tris-HCl, pH 7.6, 50 mM NaCl, 4 mM ATP, 10 mM MgCl2, and 0.2 mM dithiothreitol, for 2 hours at 30 °C. One mg of glutathione-s-transferase (GST)ubiquitin fusion protein is then added to 5 ml of translation reaction mixture and incubated 20 for an additional 5 min at room temperature before the reaction is quenched with SDS/PAGE loading buffer. Reactions are terminated after 2 h. at 30°C by the addition of SDS-sample buffer. Samples are subject to boiling water heat for 5 min, resolved by SDS-PAGE, and visualized by autoradiography. Samples which contain the ubiquitin fusion protein demonstrate shift in the mobility of protein samples that are ubiquitinated.

25 EXAMPLE III

Scintillation Proximity Assay (SPA)

Recombinant E1 (using, e.g., SEQ ID NO:10), E2 (using, e.g., SEQ ID NO:11) [The human version (<u>Ubc2</u>) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991)], and the novel human E3 ubiquitin protein ligase (using, e.g., SEQ ID NO:2) are used to develop a "mix and measure" 96-well SPA (AMERSHAM Scintillation Proximity

Assay) by incorporating ¹²⁵I-labeled mono-ubiquitin (AMERSHAM) onto a target protein substrate in the presence of ATP and MgCl₂. Histone 2A, troponin T, albumin, or α-actin, for example, may be used as target proteins. The ubiquitinated protein is detected using protein A-labeled SPA beads (AMERSHAM) and a polyclonal antibody to the target protein substrate in question. Both protein A-linked and avidin-linked SPA beads have been successfully used in assays using histone2A and biotinylated histone2A, separately, as substrates.

Ubiquitin (UBQ) SPA assay protocol

The reaction mixtures contain 50mM Tris-HCl (pH 7.5), 2mM ATP, 5mM MgCl₂, 0.5mM

DTT, (5 ng) recombinant E1 (expressed and isolated from SEQ ID NO:10), (10 ng)

recombinant recombinant E2 (expressed and isolated from SEQ ID NO:11) [The human version (<u>Ubc2</u>) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991)], and (20 ng recombinant the novel human E3 ubiquitin protein ligase (expressed and isolated from SEQ ID NO:2), 1μg ¹²⁵I-Ubiquitin (AMERSHAM, Bucks, UK), and 2μg of

biotinylated Histone (SIGMA, St. Louis, MO) to give a final volume of 100ml. Conjugation assays are performed at room temperature for 2 hours. Following incubation, reactions are terminated by addition of 10mM EDTA and 0.1mg/well avidin-linked SPA beads (AMERSHAM).

Final concentrations

20

	Final Concentration in assay
El	5ng/μl
E2	10ng/μl
E3	20ng/ul
Radiolabelled UBQ	0.02μCi/well
ATP	2mM
MgCl ₂	5mM
DTT	0.5mM
Bt-histone	50ng/μl

Stock reagents

1) E1: @ 9.31 mg/ml

2) E2: @ 6.68mg/ml

3) E3: @ 8.60mg/ml

5 4) ¹²⁵I-Ubiquitin: @ 0.1μCi/μl

5) ATP: Make at 200mM ie. 110.2 mg/ml in Tris buffer

6) MgCl₂: Make at 500mM ie. 101.7 mg/ml in Tris buffer

7) DTT: Make at 1M ie. 154.2 mg/ml in Tris buffer

8)Bt-histone: 2 mg/ml

10 Buffer: 50mM Tris-HCl pH 7.5

Preparation of reagents

Addition 1 (E1/E2/E3)

(In Tris buffer)

15 Dilute E1 1:745

Dilute E2 1:267

Dilute E3 1:96

Addition 2 (Label/ATP/MgCl2/DTT/Bt-histone)

20 Add the following amounts per ml:

(Make up with Tris buffer)

	μΙ
Label	4
ATP	20
MgCl ₂	20
DTT	1
Bt-histone	2

Biotinylation of histone2A

Histone2A is biotinylated using BOEHRINGER MANNHEIM kit (Indianapolis, IN (cat. no 1418165)) according to the manufacturers instructions. Briefly, free amino groups of the target protein (histone2A in this case) are reacted with D-biotinyl-e-aminocaproic acid-N-hydroxysuccinimide ester (biotin-7-NHS) by forming a stable amide bond. Nonreacted biotin-7-NHS is separated on a Sephadex G-25 column. The precise molar concentrations

used are 4mg Histone2A in 1ml of phosphate buffered saline to which added 20mg/ml biotin-7-NHS is added, the incubation ss carried out at room temperature for 2 hours with

gentle shaking.

10

Stop Mix (Bead/EDTA)

(Make up with Tris buffer)

Add the following amounts per ml:

	μl
Streptavidin SPA Bead	600
500mM EDTA	200

15 Method

- Use DYNATECH microlite 1 plates
- Add 10μl 300mM EDTA to blank wells
- Add 40µl of Addition 1
- Add 50µl of Addition 2
- Incubate at room temperature for 2 hours
 - Add 50µl of Stop Mix
 - Leave overnight and count next day

EXAMPLE IV

25 ELISA assay

Target proteins, e.g., histone2A, are fixed to the bottom of a 96-well ELISA plate in the presence of PEI (polyethylimine). The reaction mix: recombinant E1 (expressed and

WO 99/40201

isolated from SEQ ID NO:10), recombinant recombinant E2 (expressed and isolated from SEQ ID NO:11) [The human version (<u>Ubc2</u>) is preferred as described by Koken, M., et al., PNAS, 88:8865 (1991)], and recombinant human E3 ubiquitin protein ligase (expressed and isolated from SEQ ID NO:2), mono-ubiquitin (SIGMA), ATP, and MgCl₂, is added to each well. Ubiquitinated target protein is detected using a horseradish peroxidase-linked polyclonal antibody to polyubiquitin. Horseradish peroxidase is detected using ATBS (2,2'-azino-di-[3-ethyl-benzthiazoline solfonate]) and ECL (enhanced chemiluminescence) detection systems. This assay may be used as a high throughput screen or as a secondary screen.

-54-

- Coat plate with 100 μl of desired target protein substrate (e.g., histone2A) diluted in PBS (usually at approx. 1-10 μg/ml). Allow to stand overnight at room temperature or 2 hours at 37°C (coated plates may be stored for at least 2 weeks at 4°C).
 - 2. Wash plate 3 times with ELISA Wash Buffer (PBS + 0.05% Tween-20).
 - 3. Add 150 µl of PBS containing 1% BSA to each well. Incubate at room temperature for
- 15 2 hours or at 37 degrees for 1 hour.
 - 4. Wash plate 3 times with ELISA Wash Buffer.
 - 5. Add 100 μl of antibody (e.g., Ub N-19, Santa Cruz, Biotechnology, CA) dilutions in PBS containing 1% BSA. Use normal mouse serum as a negative control for ascites and normal rabbit serum as a negative control for rabbit antisera.
- 20 6. Cover plate and incubate overnight at room temperature or a minimum of 2 hours at 37°C.
 - 7. Wash plate 3 times with ELISA Wash Buffer.
 - 8. Add 100 μl of the appropriate second antibody enzyme conjugate (e.g., Goat anti-rabbit IgG-HRP) diluted in PBS containing 1% BSA.
- 9. Cover plate and incubate a minimum of 4 hours at room temperature or 2 hours at 37°C.
 - 10. Wash plate 3 times with ELISA Wash Buffer.

Horseradish Peroxidase (HRP) Substrate (or according to vendor's recommendation) 25 ml 0.1 Citrate-Phosphate buffer, pH5

30 5 g citric acid monohydrate

-55-

7 g Na₂HPO₄ anhydrous

bring volume to 500 ml with dH₂O

Stopping reagent: 6 N H₂SO₄, 50µl/well

Alkaline phosphatase Substrate (or according to vendor's recommendation)

5 1 tube PNPP (100 mg/ml, 0.2 ml)

20 ml diethanolamine-HCl pH 9.8/1 mM MgCl₂

Stopping reagent: 1 M NaOH, 50 µl/well

Add 100 μ l of substrate (orthophenyldiamine + substrate buffer + H_2O_2) (6 μ l hydrogen peroxide; 10 mg OPD (orthophenyldiamine)); stop reaction when absorbancies in the mid-

range of the titration reach about 2.0, or after 1 hour (whichever comes first).

12. Read plate at:

450 nm - HRP unstopped

492 nm - HRP stopped

405 nm - Alkaline phosphatase

15 (Microplate Spectrophotometer System, CA)

See, Takada, K., et al., Eur. J. Biochem., 233:42 (1995); Takada, K., et al., Biochim. Biophys. Acta., 1290:282 (1996).

EXAMPLE V

Northern blots

- Analysis of poly A⁺ RNAs from human tissues is generally carried out using a panel of commercially available pre-blotted RNAs (Clontech Laboratories, Palo Alto, CA).

 Otherwise, Hybond-N⁺, supplied by Amersham International PLC, AMERSHAM, Bucks, UK, supported nylon-66 membrane with a pore size of 0.45 microns, is used for the immobilisation of nucleic acids by either UV cross linking or dry heat. Probes are labelled
- with ³²P by random hexamer priming, and hybridisations are carried out in 0.28M sodium phosphate (pH 7.2), 5xDenharts solution, 10% dextran sulphate, 0.1% SDS at 65°C.

 Membranes are washed to a final stringency of 0.2xSSC,0.1% SDS at 65°C.
- Poly A⁺ mRNA is prepared directly from ~ 1x10⁸ hematopoietic cells using a FastTrack mRNA isolation kit (INVITROGEN, Carlsbad, CA). Total tissue mRNA is prepared via
- 30 polytron homogenisation in 4M guanidine isothiocyanate, 2.5mM citrate, 0.5% Saccosyl,

100mMb-mercaptoethanol, followed by centrifugation through 5.7M CsCl, 25mM sodium acetate at 135,000g. Poly-A⁺ is obtained using FastTrack mRNA isolation kit (INVITROGEN).

SSC

5 0.15M NaCl + 0.015M sodium citrate pH 7.0

Denhart's reagent

Solution containing 0.02% bovine serum albumin, 0.02% Ficol 400,000 (a non-ionic synthetic polymer of sucrose, dialysed and lyophilised and having an approximate molecular weight of 400,000) and 0.02% polyvinyl pyrrolidone.

10 EXAMPLE VI

Expression of gst fusion constructs

All E3 ligase GST constructs as well as the control pGEX-5x-3 GST vector alone were transformed into ME DH5\alpha E. coli cells. Single colonies were grown overnight at 37 °C shaking at 225 rpm in 10 ml of LB containing 100 µg/ml of ampicillin. The next day, this 10-ml culture was diluted 10-fold to 100 ml in LB/amp and allowed to grow for an additional hour. Protein expression was induced by adding isopropyl-β-D-thiogalactoside (IPTG; Life Technologies, Gaithersburg, MD) to a final concentration of 1 mM and cultured an additional 3 hours. Bacteria were harvested by centrifugation at 5000 rpm for 10 minutes. The bacterial pellet was re-suspended in 15 ml of TBS (50 mM Tris 8.0/150 mM NaCl) containing 0.5% Triton-X100 and 1 mM phenylmethylsulfonylfluoride (PMSF). This suspension was sonicated three times for 20 seconds. After sonication, cellular debris was removed by centrifugation at 10,000 rpm for 10 minutes. Subsequently 150 µl of milk-blocked glutathione sepharose 4B (Pharmacia) was added to the supernatant, and the mixture was rocked at 4 °C for 1 hour. The beads were then collected by centrifugation at 500 x g for 5 minutes and washed three times with 10 ml of the same buffer as used for re-suspension above. Protein concentrations were determined by electrophoresis on an 8% Tris glycine gel and staining with Coomassie blue. Fusion proteins were eluted from the beads by adding of 300 µl of elution buffer (10 mM reduced glutathione in 50 mM Tris-HCl pH 8.0), incubating at room temperature for 10 minutes, 30 and centrifuging at 500 x g for 5 minutes. Elution and centrifugation steps were repeated three times, and the resulting supernatants were pooled.

-57-

EXAMPLE VII

Ubiquitination assays

Ubiquination reactions were performed using a protocol based on the published procedure of Hatakeyama, et al, J. Biol. Chem., 272:15085 (1997). Reaction mixtures containing 0.5 μg of purified E3 ligase (SEQ ID NO:3) GST fusion protein, 1 μg of 6-His-tagged E2 enzyme (UBCH2 or UBCH7), 1 µg of 6-His-tagged E1 enzyme, 10 µg of bovine ubiquitin (Sigma, St. Louis, MO), and 1 μl of crude lysate from DH5α E. coli cells in reaction buffer (20 mM Tris-HCl pH 7.5, 50 mM NaCl, 5 mM ATP, 5 mM MgCl2) were incubated at 30C for 2 hours. Reducing sample buffer containing 5% β-mercaptoethanol was added, and samples were resolved by SDS-PAGE, transferred to nitrocellulose membranes, and immunoblotted with a purified anti-ubiquitin antibody (Sigma) followed by a purified horseradish peroxidase-conjugated anti-rabbit antibody (Amersham, Bucks, UK) and development using chemiluminescence (ECL; Amersham). Bacterial proteins from the crude lysate served as ubiquination substrates. The FIG.14 results demonstrate that the recombinant human itch E3 ubiquitin ligase has ubiquitinating activity in in vitro assays. See, FIG.14 → DH5a bacterial lysates · 12% SDS-PAGE · Primary Ab (anti-ubiquitin) · Secondary Ab (Anti-rabbit Ig). The Western blot was developed using the ECL system (Amersham, Bucks, UK).

EXAMPLE VIII

20 Dominant negative mutant construct

A single amino acid change in the human itchy cDNA sequence, cysteine (TGT) to alanine (GCT), at SEQ ID NO:3 position 820 in the active site was made using the wild-type GST-itchy fusion construct in pGEX-5x-3 as template and the STRATAGENE QuikChange site-directed mutagenesis kit according to manufacturer's instructions. La Jolla, CA. The

- 25 primers used for the reaction were: upper:
 - 5'-GGCTACCCAGAAGTCATACCGCTTTTAATCGCCTGGACCTGCCAC-3' (SEQ ID NO:14);
 - lower: 5'-GTGGCAGGTCCAGGCGATTAAAAGCGGTATGACTTCTGGGTAGCC-3' (SEQ ID NO:15). PCR conditions were: 95 °C 30 seconds; 16 cycles of 95 °C 30 seconds,
- 30 55 °C 1 minute, and 68 °C 15 minutes; 68 °C 3 minutes. Sequencing of the construct

determined that the amino acid substitution at position 820 was successfully accomplished. See, FIG.15.

-58-

EXAMPLE IX

Stimulation with PMA and ionomycin

In order to evaluate the role of the SEQ ID NO:3 E3 ligase in the activation of human leukocytes, stimulation experiments were performed independently using peripheral blood mononuclear cells, Jurkat cells, and U937 cells. Peripheral blood monocytes were isolated by layering whole blood diluted 1:1 with PBS onto 1.077 density Ficoll-Hypaque for fractionation and centrifuging at 400x g for 30 minutes. The cells at the interface were isolated, washed two times with PBS, and counted. Approximately 45 x 10⁶ cells were 10 used for each timepoint (unstimulated, 2 hours, 8 hours, 24 hours). Jurkat cells and U937 cells were counted, then washed twice with PBS. Approximately 90 x 10⁶ cells were used for each timepoint. After determining cells counts, the appropriate number of cells was resuspended in OptiMEM media (Gibco) in 6-well tissue culture dishes. Cells were stimulated with 100 ng/ml PMA and I mM ionomycin for the specified times. After 15 stimulation, cells were collected by low-speed centrifugation and lysed to isolate either protein for Western blot analysis (FIG.16) or RNA for northern blotting using the RNeasy kit (Qiagen, Valencia, CA) (FIG.17).

Western blot analysis (FIG.16)

30

Approximately 50 x 10⁶ jurkat T cells were collected by low speed centrifugation for 5 minutes at room temperature. Cells were washed twice with PBS and resuspended in 100 µl of ice-cold lysis buffer (10 mM Tris-HCl pH 7.2, 150 mM NaCl, 1% Triton-X100, 1% sodium deoxycholate, 0.1% SDS, 1 mM PMSF, 1x COMPLETE protease inhibitors (Boerhinger Mannheim) and put on ice for 15 minutes. Cell debris was removed by
 centrifugation at 14,000 rpm at 4 C for 10 minutes. Supernatant was subsequently removed to a fresh tube, and protein concentration was estimated based on the number of cells lysed or was determined using the BioRad Protein Assay kit. Lysate aliquots corresponding to the desired protein concentration were mixed with equal volumes of reducing sample buffer containing 5% β-mercaptoethanol and boiled for 5 minutes. The samples were loaded on

10-12% Tris glycine PAGE gels (Novex, San Diego, CA) at 35 mA for approximately 1

PCT/GB99/00353

hour. Proteins were transferred to nitrocellulose membranes, immunoblotted using an antipeptide antibody described herein and a horseradish peroxidase-conjugated anti-rabbit secondary antibody (Amersham, Bucks, UK), and developed using Amersham ECL detection reagents and exposing to Hyperfilm-ECL (Amersham). To determine if the human itchy E3 ligase levels change after T cell activation, Jurkat T cells were activated by PMA and ionomycin and protein levels analyzed by Western blot analysis. There was a marked decline in the SEQ ID NO:3 levels 2 h after activation of the jurkat T cells. As activation of T lymphocytes by PMA and ionomycin results in a signal transduction cascade, these findings suggest that the SEQ ID NO:3 'itchy' E3 ligase is involved in turnover of signal transduction proteins in the lymphocytic cells. See, FIG.16.

Northern blot analysis (FIG.17)

10

25

30

WO 99/40201

20 mg total RNA samples were electroporesed on 1% denaturing formaldehyde agarose gels in MOPS buffer (Sambrook, *et al.*, Molecular Cloning, A Laboratory Manual, CSH(1989)) and transferred onto hybond N⁺ (Amersham). Probes were labelled with ³²P by random hexamer priming, and hybridisations were carried out in 0.28M sodium phosphate (pH 7.2), 5xDenharts solution, 10% dextran sulphate, 0.1% SDS at 65°C. Membranes were washed to a final stringency of 0.2xSSC,0.1% SDS at 65°C. To control loading variations, blots were stripped after autoradiography by boiling in 0.1%SDS, and then rehybridised using a probe containing 1.2kb of a rat glyceraldehyde-3-phosphate dehydrogenase cDNA (GAPDH). Analysis of poly A⁺ RNA's from human tissues was

dehydrogenase cDNA (GAPDH). Analysis of poly A⁺ RNA's from human tissues was carried out using a panel of commercially available pre-blotted RNAs (Clontech, Palo Alto, CA). The results demonstrate that the human itchy E3 ligase mRNA levels dramatically decline within 3 h after stimulation of PBMC's. These results suggest that the 'itchy' E3 ligase gene is involved in turnover of signal transduction molecules in the hematopoietic lineages. *See*, FIG.17.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed

-60-

should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

WHAT IS CLAIMED IS

- 1. A purified polynucleotide comprising a nucleic acid sequence which encodes the polypeptide having the sequence substantially as depicted in SEQ ID NO:3 or a
- 5 biologically and/or pharmacologically active derivative thereof.
 - 2. The polynucleotide of Claim 1 wherein the polynucleotide sequence comprises the sequence substantially as depicted in SEQ ID NO:2.
 - 3. An expression vector comprising the polynucleotide of Claim 1.
- 4. An antisense molecule comprising the complement of the polynucleotide of Claim 2 or a biologically-effective portion thereof.
 - 5. A host cell transformed or transfected with the expression vector of Claim 3.
 - 6. A purified polypeptide comprising the amino acid sequence substantially as depicted in SEQ ID NO:3.
 - 7. An antibody specific for the polypeptide of Claim 6.
- 8. A method for producing cells which express a polypeptide substantially as depicted in SEQ ID NO:3, said method comprising
 - a) culturing a host cell according to Claim 5 under conditions suitable for the expression of said polypeptide.
- 9. A method for producing a polypeptide having the amino acid sequence substantially as depicted in SEQ ID NO:3, said method comprising the steps of:
 - a) culturing a host cell according to Claim 5 under conditions suitable for the expression of said polypeptide, and
 - b) recovering said polypeptide from the host cell culture.
 - 10. A method of identifying compounds that modulate the biological activity of a E3 ubiquitin protein ligase, comprising:
 - (a) combining a candidate compound modulator of E3 ubiquitin protein ligase biological activity with a E3 ubiquitin protein ligase polypeptide having the sequence substantially as depicted in SEQ ID NO:3, and
 - (b) measuring an effect of the candidate compound modulator on the biological activity.

15

WO 99/40201 PCT/GB99/00353

-62-

- 11. A method of identifying compounds that modulate the biological and/or pharmacological activity of a E3 ubiquitin protein ligase, comprising:
- (a) combining a candidate compound modulator of E3 ubiquitin protein ligase biological and/or pharmacological activity with a host-cell expressing a E3 ubiquitin protein ligase
- polypeptide having the sequence substantially as depicted in SEQ ID NO:3, and measuring an effect of the candidate compound modulator on the biological and/or pharmacological activity.
 - 12. A method of treatment of a patient in need of such treatment for a condition which is mediated by the biological and/or pharmacological activity of a E3 ubiquitin protein ligase, comprising administration of a polypeptide substantially as depicted in SEQ ID NO:3 or a biologically and/or pharmacologically active derivative thereof.
 - 13. A method of treatment of a patient in need of such treatment for a condition which is mediated by the biological and/or pharmacological activity of a E3 ubiquitin protein ligase, comprising administration of a nucleic acid substantially as depicted in SEQ ID NO:1 or a biologically-effective derivative thereof.
 - 14. A method of treatment of a patient in need of such treatment for a condition which is mediated by the biological and/or pharmacological activity of a E3 ubiquitin protein ligase, comprising administration of an antisense molecule according to Claim 4 or a biologically-effective derivative thereof.
- 20 15. A compound that modulates the biological activity of a E3 ubiquitin protein ligase identified by the method of Claim 10.
 - 16. A compound that modulates the pharmacological activity of a E3 ubiquitin protein ligase identified by the method of Claim 10.
- 17. A compound that modulates the pharmacological activity of a E3 ubiquitin protein 25 ligase identified by the method of Claim 11.
 - 18. A pharmaceutical composition comprising a compound that modulates the pharmacological activity of a human E3 ubiquitin protein ligase according to Claim 16.
 - 19. A pharmaceutical composition comprising a compound that modulates the pharmacological activity of a human E3 ubiquitin protein ligase according to Claim 17.
- 30 20. A method of treatment of a patient in need of such treatment for a condition which is

-63-

mediated by the biological activity of a E3 ubiquitin protein ligase comprising administration of a modulating compound according to Claim 16.

- 21. A method of treatment of a patient in need of such treatment for a condition which is mediated by the biological activity of a human E3 ubiquitin protein ligase, comprising administration of a modulating compound according to Claim 17.
- 22. A diagnostic composition for the identification of a polypeptide substantially as depicted in SEQ ID NO:3 comprising the antibody of Claim 7.

10

23. A diagnostic composition for the identification of a polynucleotide sequence substantially as depicted in SEQ ID NO:2 comprised of PCR primers derived from SEQ ID NO:1.

1/16

FIG.1

TCGCCGCCCCCGAGTCCCGGTACCATGCATTTCACGGTGGCCTTGTGGAGACACGCCTTAACCCAAGGAAGT GACTCAAACTGTGAGAACTTCAGGTTTTCCAACCTATTGGTGGTATGTCTGACAGTGGATCACAACTTGGTTCAA TGGGTAGCCTCACCATGAAATCACAGCTTCAGATCACTGTCATCTCAGCAAAACTTAAGGAAAATAAGAAGAATT GGTTTGGACCAAGTCCTTACGTAGAGGTCACAGTAGATGGACAGTCAAAGAAGACAGAAAAAATGCAACAACACAA ACAGTCCCAAGTGGAAGCAACCCCTTACAGTTATCGTTACCCCTGTGAGTAAATTACATTTTCGTGTGTGGAGTC ACCAGACACTGAAATCTGATGTTTTGTTGGGAACTGCTGCATTAGATATTTATGAAACATTAAAGTCAAACAATA TGAAACTTGAAGAAGTAGTTGTGACTTTGCAGCTTGGAGGTGACAAAGAGCCAACAGAGACAATAGGAGACTTGT CAATTTGTCTTGATGGGCTACAGTTAGAGTCTGAAGTTGTTACCAATGGTGAAACTACATGTTCAGAAAGTGCTT CTCAGAATGATGATGGCTCCAGATCCAAGGATGAAACAGAGTGAGCACAAATGGATCAGATGACCCTGAAGATG CAGGAGCTGGTGAAAATAGGAGAGTCAGTGGGAATAATTCTCCATCACTCTCAAATGGTGGTTTTAAACCTTCTA GACCTCCAAGACCTTCACGACCACCACCACCCCACGTAGACCAGCATCTGTCAATGGTTCACCATCTGCCA CTTCTGAAAGTGATGGGTCTAGTACAGGCTCTCTGCCGCCGACAAATACAAATACAAATACATCTGAAGGAGCAA CATCTGGATTAATAATTCCTCTTACTATATCTGGAGGCTCAGGCCCTAGGCCATTAAATCCTGTAACTCAAGCTC CCTTGCCACCTGGTTGGGAGCAGAGTGGACCAGCACGGGCGAGTTTACTATGTAGATCATGTTGAGAAAAGAA GCAGAGTATATTTCGTCAACCACAACACACGAATTACACAATGGGAAGACCCCAGAAGTCAAGGTCAATTAAATG GAACTACCACCTATATAGATCCCCGCACAGGAAAATCTGCCCTAGACAATGGACCTCAGATAGCCTATGTTCGGG ACTTCAAAGCAAAGGTTCAGTATTTCCGGTTCTGGTGTCAGCAACTGGCCATGCCACAGCACATAAAGATTACAG TGACAAGAAAAACATTGTTTGAGGATTCCTTTCAACAGATAATGAGCTTCAGTCCCCAAGATCTGCGAAGACGTT ATGAAGTGTTGAACCCAATGTATTGCCTGTTTGAATATGCAGGGAAGGATAACTACTGCTTGCAGATAAACCCCG CTTCTTACATCAATCCAGATCACCTGAAATATTTTCGTTTTATTGGCAGATTTATTGCCATGGCTCTGTTCCATG GGAAATTCATAGACACGGGTTTTTCTTTACCATTCTATAAGCGTATCTTGAACAAACCAGTTGGACTCAAGGATT TAGAATCTATTGATCCAGAATTTTACAATTCTCTCATCTGGGTTAAGGAAAACAATATTGAGGAATGTGATTTGG AAATGTACTTCTCCGTTGACAAAGAAATTCTAGGTGAAATTAAGAGTCATGATCTGAAACCTAATGGTGGCAATA TTCTTGTAACAGAAGAAAATAAAGAGGAATACATCAGAATGGTAGCTGAGTGGAGGTTGTCTCGAGGTGTTGAAG AACAGACACAAGCTTTCTTTGAAGGCTTTAATGAAATTCTTCCCCAGCAATATTTGCAATACTTTGATGCAAAGG **AATTAGAGGTCCTTTTATGTGGAATGCAAGAGATTGATTTGAATGACTGGCAAAGACATGCCATCTACCGTCATT** TTCTGCAGTTTGTTACTGGAACCTGCCGATTGCCAGTAGGAGGATTTGCTGATCTCATGGGGAGCAATGGACCAC AGAAATTCTGCATTGAAAAAGTTGGGAAAGAAAATTGGCTACCCAGAAGTCATACCTGTTTTAATCGCCTGGACC TGCCACCATACAAGAGCTATGAGCAACTGAAGGAAAAGCTGTTGTTTGCCATAGAAGAAACAGAAGGATTTGGAC AAGAGTAACTTCTGAGAACTTGCACCATGAATGGGCAAGAACTTATTTGCAATGTTTGTCCTTCTCTGCCTGTTG TTATCTCCCAGTGATTTCTACTCAGCGTTTCCAGAAATCAGGTCTGCAAATGACTAGTCAGAACCTTGCTTAACA TGAGATTTTAACACAACAATGAAATTTGCCTTGTCTTATTCCACTAGTTTATTCCTTTAACAACAATATTTTATG TAACTGCAATATACAAGATTTTCCTATTAAGCCTCTTGGTAAGAGGCATTTGTTAAAAGTGCAAGCTTACTCCTG CTTCTGGGGATGTGAGCAAAATTCGGGCTTGTGTTCTCCCTCTCATTTTAGTCTGACTTGACTATTGTTTTTCCT TTCTGGCGCATGAATCCATACATCATTCCTGGAAGTGAGGCAAGACTCTTGCATCTCTACAAAGTAGTTTTGTCA ATTTGAATTCAGGGAAAAGTTGGTCACAGCCTGCAAATGACTTCATTTGGAAGTCTGATTGTTTCAGTTGCCTGA CAAATACTACACTTTACAAACAATGTTAACACTGTGATTCCTTCATTGTTTTAAGAAGTTAACCTAGGGCCGGGC ATGGTGGCTCATACCTGTAATCCTAGCACTCTGGGAGGCCGAGGCAGGAGGATCCCTTTAGCCCAGGAGTTAAAG AAAAACKTAGCCTAGAATTAGAATTAATTTAATTGAATTCATCTAAAGATGTCTCTGGTGATTTTTATATGTTCC GCTATATAATTGATGCTTTATAGTTTTATCATAATCCAACAACTTCAGTTATATTTAATTATTGTTAAGGAGTTT **AAGACTAGAAAGACTAGAGTGCTTTCTAGTCCAAATAGAGGTCAGTGAAACAGCTTTTGACATCAGATTTTCATT** TGAGAGGGAGAGCTGTGGTACTGGCTAAAAAGAAAGGAAGATAACATCCAGTAACCACAGGAATATATTCTCTGT GAATTAAAAGTCTTCAAAGTTATCATTTCTCTGACATATGTTGGAGTAGTCATTTCCATTCTTTACATTGTCATG AACTGGATTGATAACCCTCATCTGCAATATTTTCACCCCTAAAATTTTTAACAGGGTTTCCTTTTTTTCTCACGA TGGCCTAGCTTCGACTGTCAAGGTGGCTGTTATAAATTTGACTTCATTGGCAGTGGATGAAGCCTAAGCCAGCTG AGTCTCTATCATAGCTGAACCCTGAGGACAGCCTCATAGCTCATGTATCAGGGACTTTTGCCACATTTCAGAGGC ATAGCATGAACAAGTAATATTAAGCCAAGAATAAGCAGCAGAACCCTGTTCCATATGGAAAAAAGAAAAACAATT TTTTGTCCCTAATGTTCTTCCTTTTACATCCTGGAACAACAATAAAAACATTTTTTTAAACTTGTCTACTGTAAG ATACTGCCATCATAAAGCAGAGACTTACATGAGTGAAAGGGTTGCCTCATCAAGCAGCTCAGTGTAAATGGGGAG GCTAGGCTCTCCCCAGCCCTATGGTTTTTTTTTTTTCATGTACCCCAGGAAATACTGTGTGTTTCTAAAAGCCCT

2/16

3/16

FIG.2

ATGGGTAGCCTCACCATGAAATCACAGCTTCAGATCACTGTCATCTCAGCAAAACTTAAGGAAAATAAGAAGAAT TGGTTTGGACCAAGTCCTTACGTAGAGGTCACAGTAGATGGACAGTCAAAGAAGACAGAAAAATGCAACAACACA AACAGTCCCAAGTGGAAGCAACCCCTTACAGTTATCGTTACCCCTGTGAGTAAATTACATTTTCGTGTGTGGAGT CACCAGACACTGAAATCTGATGTTTTGTTGGGAACTGCTGCATTAGATATTTATGAAACATTAAAGTCAAACAAT ATGAAACTTGAAGAAGTAGTTGTGACTTTGCAGCTTGGAGGTGACAAAGAGCCAACAGAGACAATAGGAGACTTG TCAATTTGTCTTGATGGGCTACAGTTAGAGTCTGAAGTTGTTACCAATGGTGAAACTACATGTTCAGAAAGTGCT TCTCAGAATGATGATGGCTCCAGATCCAAGGATGAAACAAGAGTGAGCACAAATGGATCAGATGACCCTGAAGAT GCAGGAGCTGGTGAAAATAGGAGAGTCAGTGGGAATAATTCTCCATCACTCTCAAATGGTGGTTTTTAAACCTTCT AGACCTCCAAGACCTTCACGACCACCACCCACCCACGTAGACCAGCATCTGTCAATGGTTCACCATCTGCC ACTTCTGAAAGTGATGGGTCTAGTACAGGCTCTCTGCCGCCGACAAATACAAATACAAATACATCTGAAGGAGCA ACATCTGGATTAATATTCCTCTTACTATATCTGGAGGCTCAGGCCCTAGGCCATTAAATCCTGTAACTCAAGCT CCCTTGCCACCTGGTTGGGAGCAGAGAGTGGACCAGCACGGGCGAGTTTACTATGTAGATCATGTTGAGAAAAGA GGCAGAGTATATTTCGTCAACCACAACACGAATTACACAATGGGAAGACCCCAGAAGTCAAGGTCAATTAAAT AGAACTACCACCTATATAGATCCCCGCACAGGAAAATCTGCCCTAGACAATGGACCTCAGATAGCCTATGTTCGG GTGACAAGAAAACATTGTTTGAGGATTCCTTTCAACAGATAATGAGCTTCAGTCCCCAAGATCTGCGAAGACGT CATGAAGTGTTGAACCCAATGTATTGCCTGTTTGAATATGCAGGGAAGGATAACTACTGCTTGCAGATAAACCCC GCTTCTTACATCAATCCAGATCACCTGAAATATTTTCGTTTTATTGGCAGATTTATTGCCATGGCTCTGTTCCAT GGGAAATTCATAGACACGGGTTTTTCTTTACCATTCTATAAGCGTATCTTGAACAAACCAGTTGGACTCAAGGAT TTAGAATCTATTGATCCAGAATTTTACAATTCTCTCATCTGGGTTAAGGAAAACAATATTGAGGAATGTGATTTG GAAATGTACTTCTCCGTTGACAAAGAAATTCTAGGTGAAATTAAGAGTCATGATCTGAAACCTAATGGTGGCAAT ATTCTTGTAACAGAAGAAATAAAGAGGAATACATCAGAATGGTAGCTGAGTGGAGGTTGTCTCGAGGTGTTGAA GAACAGACACAAGCTTTCTTTGAAGGCTTTAATGAAATTCTTCCCCAGCAATATTTGCAATACTTTGATGCAAAG TATGCAAGGACCAGCAAACAAATCATGTGGTTTTTGGCAGTTTTGTTAAAGAAATTGATAATGAGAAGAGAATGAGA CTTCTGCAGTTTGTTACTGGAACCTGCCGATTGCCAGTAGGAGGATTTGCTGATCTCATGGGGAGCAATGGACCA ${\tt CAGAAATTCTGCATTGAAAAAGTTGGGAAAGAAAATTGGCTACCCAGAAGTCATACCTGTTTTAATCGCCTGGAC}$ CTGCCACCATACAAGAGCTATGAGCAACTGAAGGAAAAGCTGTTGTTTGCCATAGAAGAAACAGAAGGATTTGGA CAAGAGTAA

4/16

FIG.3

MGSLTMKSQLQITVISAKLKENKKNWFGPSPYVEVTVDGQSKKTEKCNNTNSPKWKQPLTVIVTPVSKLHFRVWS
HQTLKSDVLLGTAALDIYETLKSNNMKLEEVVVTLQLGGDKEPTETIGDLSICLDGLQLESEVVTNGETTCSESA
SQNDDGSRSKDETRVSTNGSDDPEDAGAGENRRVSGNNSPSLSNGGFKPSRPPRPSRPPPPTPRRPASVNGSPSA
TSESDGSSTGSLPPTNTNTNTSEGATSGLIIPLTISGGSGPRPLNPVTQAPLPPGWEQRVDQHGRVYYVDHVEKR
TTWDRPEPLPPGWERRVDNMGRIYYVDHFTRTTTWQRPTLESVRNYEQWQLQRSQLQGAMQQFNQRFIYGNQDLF
ATSQSKEFDPLGPLPPGWEKRTDSNGRVYFVNHNTRITQWEDPRSQGQLNEKPLPEGWEMRFTVDGIPYFVDHNR
RTTTYIDPRTGKSALDNGPQIAYVADFKAKVQYFRFWCQQLAMPQHIKITVTRKTLFEDSFQQIMSFSPQDLRRR
LWVIFPGEEGLDYGGVAREWFFLLSHEVLNPMYCLFEYAGKDNYCLQINPASYINPDHLKYFRFIGRFIAMALFH
GKFIDTGFSLPFYKRILNKPVGLKDLESIDPEFYNSLIWVKENNIEECDLEMYFSVDKEILGEIKSHDLKPNGGN
ILVTEENKEEYIRMVAEWRLSRGVEEQTQAFFEGFNEILPQQYLQYFDAKELEVLLCGMQEIDLNDWQRHAIYRH
YARTSKQIMWFWQFVKEIDNEKRMRLLQFVTGTCRLPVGGFADLMGSNGPQKFCIEKVGKENWLPRSHTCFNRLD
LPPYKSYEQLKEKLLFAIEETEGFGQE

5/16

FIG.4

MGSLTMKSQLQITVISAKLKENKKNWFGPSPYVEVTVDGQSKKTEKCNNTNSPKWKQPLTVIVTPTSKLCFRVWS
HQTLKSDVLLGTAGLDIYETLKSNNMKLEEVVMTLQLVGDKEPTETMGDLSVCLDGLQVEAEVVTNGETSCSEST
TQNDDGCRTRDDTRVSTNGSEDPEVAASGENKRANGNNSPSLSNGGFKPSRPPRPSRPPPPTPRRPASVNGSPST
NSDSDGSSTGSLPPTNTNVNTSTSEGATSGLIIPLTISGGSGPRPLNTVSQAPLPPGWEQRVDQHGRVYYVDHVE
KRTTWDRPEPLPPGWERRVDNMGRIYYVDHFTRTTTWQRPTLESVRNYEQWQLQRSQLQGAMQQFNQRFIYGNQD
LFATSQNKEFDPLGPLPPGWEKRTDSNGRVYFVNHNTRITQWEDPRSQGQLNEKPLPEGWEMRFTVDGIPYFVDH
NRRATTYIDPRTGKSALDNGPQIAYVRDFKAKVQYFRFWCQQLAMPQHIKITVTRKTLFEDSFQQIMSFSPQDLR
RRLWVIFPGEEGLDYGGVAREWFFLLSHEVLNPMYCLFEYAGKDNYCLQINPASYINPDHLKYFRIGRFIAMAL
FHGKFIDTGFSLPFYKRILNKPVGLKDLESIDPEFYNSLIWVKENNIEECGLEMYFSVDKEILGEIKSHDLKPNG
GNILVTEENKEEYIRMVAEWRLSRGVEEQTQAFFEGFNEILPQQYLQYFDAKELEVLLCGMQEIDLNDWQRHAIY
RHYTRTSKQIMWFWQFVKEIDNEKRMRLLQFVTGTCRLPVGGFADLMGSNGPQKFCIEKVGKENWLPRSHTCFNR
LDLPPYKSYEQLKEKLLFAIEETEGFGQE

FIG.5

SEQ ID NO:4 SEQ ID NO:3	
SEQ ID NO:4 SEQ ID NO:3	
SEQ ID NO:4	MKLEEVVMTLQLVGDKEPTETMGDLSVCLDGLQVEAEVVTNGETSCSEST
SEQ ID NO:3	MKLEEVVV TLQLGGDKEPTETI GDLSI CLDGLQ LESEVVTNGETTCSESA
SEQ ID NO:4	TQNDDGCRTRDDTRVSTNGSEDPEVAASGENKRANGNNSPSLSNGGFKPS
SEQ ID NO:3	SQNDDGS RSKDE TRVSTNGSDDPEDAGAGENRRVSGNNSPSLSNGGFKPS
SEQ ID NO:4	RPPRPSRPPPPTPRRPASVNGSPSTNSDSDGSSTGSLPPTNTNVNTSTSE
SEQ ID NO:3	RPPRPSRPPPPTPRRPASVNGSPSATSE SDGSSTGSLPPTNTNTNTSE
SEQ ID NO:4	GATSGLIIPLTISGGSGPRPLNTVSQAPLPPGWEQRVDQHGRVYYVDHVE
SEQ ID NO:3	GATSGLIIPLTISGGSGPRPLNPVTQAPLPPGWEQRVDQHGRVYYVDHVE
SEQ ID NO:4	KRTTWDRPEPLPPOWERRYDNMGRIYYYDHFTRTTTWQRPTLESVRNYEQ
SEQ ID NO:3	KRTTWDRPEPLPPGWERRYDNMGRIYYYDHFTRTTTWQRPTDESVRNYEQ
SEQ ID NO:4	WQLQRSQLQGAMQQFNQRFIYGNQDLFATSQNKEFDPLGPLPPGWEKRTD
SEQ ID NO:3	WQLQRSQLQGAMQQFNQRFIYGNQDLFATSQSKEFDPLGPLPPGWEKRTD
SEQ ID NO:4	SNGRVYFVNENTRITOWEDPRSQGQLNEKPLPEGWEMRITVDGIPYFVÐH
SEQ ID NO:3	SNGRVYFVNENTRITOWEDPRSQGQLNEKPLPEGWEMRITVDGIPYFVÐH
SEQ ID NO:4	NRRATTYIDPRTGKSALDNGPQIAYVRDFKAKVQYFRFWCQQLAMPQHIK
SEQ ID NO:3	NRRTTTYIDPRTGKSALDNGPQIAYVRDFKAKVQYFRFWCQQLAMPQHIK
SEQ ID NO:4	ITVTRKTLFEDSFQQIMSFSPQDLRRRLWVIFPGEEGLDYGGVAREWFFL
SEQ ID NO:3	ITVTRKTLFEDSFQQIMSFSPQDLRRRLWVIFPGEEGLDYGGVAREWFFL
SEQ ID NO:4	LSHEVLNPMYCLFEYAGKDNYCLQINPASYINPDHLKYFRFIGRFIAMAL
SEQ ID NO:3	LSHEVLNPMYCLFEYAGKDNYCLQINPASYINPDHLKYFRFIGRFIAMAL
SEQ ID NO:4	FGHKFIDTGFSLPFYKRILNKPVGLKDLESIDPEFYNSLIWVKENNIEEC
SEQ ID NO:3	FHGKFIDTGFSLPFYKRILNKPVGLKDLESIDPEFYNSLIWVKENNIEEC
SEQ ID NO:4	GLEMYFSVDKEILGEIKSHDLKPNGGNILVTEENKEEYIRMVAEWRLSRG
SEQ ID NO:3	DLEMYFSVDKEILGEIKSHDLKPNGGNILVTEENKEEYIRMVAEWRLSRG
SEQ ID NO:4	VEEQTQAFFEGFNEILPQQYLQYFDAKELEVLLCGMQEIDLNDWQRHAIY
SEQ ID NO:3	VEEQTQAFFEGFNEILPQQYLQYFDAKELEVLLCGMQEIDLNDWQRHAIY
SEQ ID NO:4	RH
SEQ ID NO:3	RH
SEQ ID NO:4 SEQ ID NO:3	
SEQ ID NO:4 SEO ID NO:3	

FIG.6

8/16

FIG.7

5'- ATGGGTAGCCTCACCATGAAA -3' (SEQ ID NO:5)

5'- TTACTCTTGTCCAAATCCTTC -3' (SEQ ID NO:6)

9/16

10/16

FIG.9

MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRG GAKKRKKKSYTTPKKNKHKRKKVKLAVLKYYKVDENGKISRLRRECPSDECGAGVFMASHFDRHYCGKCCLTYCF NKPEDK

FIG.10

 $\begin{array}{l} \texttt{MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRG} \\ \texttt{G} \end{array}$

FIG.11

11/16

FIG.12

ATGTCCAGCTCGCCGCTGTCCAAGAACGTCGCGTGTCCGGGCCTGATCCAAAGCCGGGTTCTAACTGCTCCCCT GACGAGGCCTTTACTCCCGGCAGCTGTATGTGTTGGGCCATGAGGCAATGAAGCGGCTCCAGACATCCAGTGTC $\tt CTGGTATCAGGCCTGGGGGCCTGGGCGTGGAGATCGCTAAGAACATCATCCTTGGTGGGGTCAAGGCTGTTACC$ $\verb|CTACATGACCAGGGCACTGCCCAGTGGGCTGATCTTTCCTCCCAGTTCTACCTGCGGGAGGAGGACATCGGTAAA||$ AACCGGGCCGAGGTATCACAGCCCCGCCTCGCTGAGCTCAACAGCTATGTGCCTGTCACTGCCTACACTGGACCC CTCGTTGAGGACTTCCTTAGTGGTTTCCAGGTGGTGGTGCTCACCAACACCCCCTGGAGGACCAGCTGCGAGTG GACTTTGGAGAGGAAATGATCCTCACAGATTCCAATGGGGAGCAGCCACTCAGTGCTATGGTTTCTATGGTTACC AAGGACAACCCCGGTGTGGTTACCTGCCTGGATGAGGCCCGACACGGGTTTGAGAGCGGGGACTTTGTCTCCTTT TCAGAAGTACAGGGCATGGTTGAACTCAACGGAAATCAGCCCATGGAGATCAAAGTCCTGGGTCCTTATACCTTT AGCATCTGTGACACCTCCAACTTCTCCGACTACATCCGTGGAGGCATCGTCAGGTCAAGGTACCTAAGAAG ATTAGCTTTAAATCCTTGGTGGCCTCACTGGCAGAACCTGACTTTGTGGTGACGGACTTCGCCAAGTTTTCTCGC AATGAGGAGGATGCAGCAGAACTGGTAGCCCTTAGCACAGGCTGTGAATGCTCGAGCCCTGCCAGCAGTGCAGCAA AATAACCTGGACGAGGACCTCATCCGGAAGCTGGCATATGTGGCTGCTGGGGATCTGGCACCCATAAACGCCTTC ATTGGGGGCCTGCCCAGGAAGTCATGAAGGCCTGCTCCGGGAAGTTCATGCCCATCATGCAGTGGCTATAC TTTGATGCCCTTGAGTGTCTCCCTCAGGACAAAGAGGTCCTCACAGAGGACAAGTGCCTCCAGCGCCAGAACCGT TATGACGGCCAAGTGGCTGTGTTTGGCTCAGACCTGCAAGAGAGCTGGGCAAGCAGAAGTATTTCCTGGTGGGT GCGGGGGCCATTGGCTGTGAGCTGCTCAAGAACTTTGCCATGATTGGGCTGGGCTGCGGGGAGGGTGGAGAAATC ATCGTTACAGACATGGACACCATTGAGAAGTCAAATCTGAATCGACAGTTTCTTTTCCGGCCCTGGGATGTCACG AAGTTAAAGTCTGACACGCTGCTGCAGCTGTGCGCCCAAATGAATCCACATATCCGGGTGACAAGCCACCAGAAC CGTGTGGGTCCTGACACGGAGCGCATCTATGATGACGATTTTTTCCAAAACCTAGATGGCGTGGCCAATGCCCTG GACAACGTGGATGCCCGCATGTACATGGACCGCCGCTGTGTCTACTACCGGAAGCCACTGCTGGAGTCAGGCACA GAGAAGTCCATCCCCATCTGTACCCTGAAGAACTTCCCTAATGCCATCGAGCACACCCTGCAGTGGGCTCGGGAT GAGTTTGAAGGCCTCTTCAAGCAGCCAGCAGAAAATGTCAACCAGTACCTCACAGACCCCAAGTTTGTGGAGCGA ACACTGCGGCTGGCAGCACTCAGCCCTTGGAGGTGCTGGAGGCTGTGCAGCGCAGCCTGGTGCTGCAGCGACCA CAGACCTGGGCTGACTGCGTGACCTGGCCACCACTGGCACACCCAGTACTCGAACAACATCCGGCAGCTG $\tt CTGCACAACTTCCCTGACCAGCTCACAAGCTCAGGAGCGCCGTTCTGGTCTGGGCCCAAACGCTGTCCACAC$ CCGCTCACCTTTGATGTCAACAATCCCCTGCATCTGGACTATGTGATGGCTGCTGCCAACCTGTTTGCCCAGACC ${\tt TACGGGCTGACAGGCTCTCAGGACCGAGCTGCTGTGGCCACATTCCTGCAGTCTGTGCAGGTCCCCGAATTCACC}$ CCCAAGTCTGGCGTCAAGATCCATGTTTCTGACCAGGAGCTGCAGAGCGCCAATGCCTCTGTTGATGACAGTCGT CTAGAGGAGCTCAAAGCCACTCTGCCCAGCCCAGACAAGCTCCCTGGATTCAAGATGTACCCCATTGACTTTGAG AAGGATGACAGCAACTTTCATATGGATTTCATCGTGGCTGCATCCAACCTCCGGGCAGAAAACTATGACATT CCTTCTGCAGACCGCACAAGAGCAAGCTGATTGCAGGGAAGATCATCCCAGCCATTGCCACGACCACAGCAGCC GTGGTTGGCCTTGTGTGTCTGGAGCTGTACAAGGTTGTGCAGGGGCACCGACAGCTTGACTCCTACAAGAATGGT TTCCTCAACTTGGCCCTGCCTTTCTTTGGTTTCTCTGAACCCCTTGCCGCACCACGTCACCAGTACTATAACCAA GAGTGGACATTGTGGGATCGCTTTGAGGTACAAGGGCTGCAGCCTAATGGTGAGGAGATGACCCTCAAACAGTTC CTCGACTATTTTAAGACAGACCACAAATTAGAGATCACCATGCTGTCCCAGGGCGTGTCCATGCTCTATTCCTTC TTCATGCCAGCTGCCAAGCTCAAGGAACGGTTGGATCAGCCGATGACAGAGTTGTGAGCCGTGTCTCGAAGCGA AAGCTGGGCCGCCACGTGCGGGCGCTGGTGCTTGAGCTGTAACGACGACGACGACGACGATGTCGAGGTT CCCTATGTCCGATACACCATCCGCTGA

12/16

FIG.13

FIG.14

	(UbcH7)	~	<u>kDa</u>	- 250	86 -	- 64	- 50
E1	E2	E3		٠ ,			
	1		e Re				
	+	33					₹1.5 ₹. ******
+		GSTE3				1:	
+	+	O				1.	
+	+	GST	AVA BE		, 4.		S : 1
I	ı	ı	•				

WO 99/40201 PCT/GB99/00353 14/16

FIG.15

FIG.16

FIG.17

1

SEQUENCE LISTING

```
<110> ZENECA Limited
 5
            <120> PROTEIN
            <130> PHM.70312
10
            <150> US No. 60/073,839
            <151> 1998-02-05
            <150> US No.09/070,060
            <151> 1998-04-30
15
            <160> 15
           <170> FastSEQ for Windows Version 3.0
20
           <210> 1
            <211> 5372
           <212> DNA
            <213> Homo sapiens
25
           <400> 1
    tegeegeege eeegagteee ggtaceatge attteaeggt ggeettgtgg agacaaegee
                                                                                   60
    ttaacccaag gaagtgactc aaactgtgag aacttcaggt titccaacct aitggtggta
                                                                                  120
    tgtctgacag tggatcacaa cttggttcaa tgggtagcct caccatgaaa tcacagcttc
                                                                                  180
    agatcactgt catctcagca aaacttaagg aaaataagaa gaattggttt ggaccaagtc
                                                                                  240
30 cttacgtaga ggtcacagta gatggacagt caaagaagac agaaaaatgc aacaacacaa
                                                                                  300
    acagteceaa gtggaageaa eeeettaeag ttategttae eeetgtgagt aaattaeatt
                                                                                  360
    ttcgtgtgtg gagtcaccag acactgaaat ctgatgtttt gttgggaact gctgcattag
                                                                                  420
    atatttatga aacattaaag tcaaacaata tgaaacttga agaagtagtt gtgactttgc
                                                                                  480
    agcttggagg tgacaaagag ccaacagaga caataggaga cttgtcaatt tgtcttgatg
                                                                                 . 540
35 ggctacagtt agagtetgaa gttgttacca atggtgaaac tacatgttca gaaagtgett
                                                                                  600
    ctcagaatga tgatggctcc agatccaagg atgaaacaag agtgagcaca aatggatcag
                                                                                  660
    atgaccetga agatgeagga getggtgaaa ataggagagt cagtgggaat aattetecat
                                                                                  720
    cacteteaaa tggtggtttt aaacetteta gaceteeaag acetteacga ceaceace
                                                                                  780
    ccaccccacg tagaccagca tetgtcaatg gttcaccate tgccacttet gaaagtgatg
                                                                                  840
40 ggtctagtac aggctctctg ccgccgacaa atacaaatac aaatacatct gaaggagcaa
                                                                                  900
    catctggatt aataattcct cttactatat ctggaggctc aggccctagg ccattaaatc
                                                                                  960
   ctgtaactca agctcccttg ccacctggtt gggagcagag agtggaccag cacgggcgag tttactatgt agatcatgtt gagaaaagaa caacatggga tagaccagaa cctctacctc
                                                                                 1020
                                                                                 1080
    ctggctggga acggcgggtt gacaacatgg gacgtattta ttatgttgac catttcacaa
                                                                                 1140
45 gaacaacaac gtggcagagg ccaacactgg aatccgtccg gaactatgaa caatggcagc
                                                                                 1200
    tacagegtag teagetteaa ggageaatge ageagittaa eeagagatte atttatggga
                                                                                 1260
   atcaagattt atttgctaca tcacaaagta aagaatttga tcctcttggt ccattgccac
                                                                                 1320
ctggatggga gaagagaaca gacagcaatg gcagagtata tttcgtcaac cacaacacac gaattacaca atgggaagac cccagaagtc aaggtcaatt aaatgaaaag cccttacctg 50 aaggttggga aatgagattc acagtggatg gaattccata ttttgtggac cacaatagaa
                                                                                 1380
                                                                                 1440
                                                                                 1500
   gaactaccac ctatatagat ccccgcacag gaaaatctgc cctagacaat ggacctcaga
                                                                                 1560
    tagectatgt tegggaette aaagcaaagg tteagtattt eeggttetgg tgteageaac
                                                                                 1620
                                                                                 1680
   tggccatgcc acagcacata aagattacag tgacaagaaa aacattgttt gaggattcct
   ttcaacagat aatgagette agteeccaag atetgegaag aegtttgtgg gtgattttte
                                                                                 1740
55 caggagaaga aggittagat tatggaggig tagcaagaga atggitcitt cittigicac
                                                                                 1800
   atgaagtgtt gaacccaatg tattgcctgt ttgaatatgc agggaaggat aactactgct tgcagataaa ccccgcttct tacatcaatc cagatcacct gaaatatttt cgttttattg
                                                                                 1860
                                                                                 1920
   gcagatttat tgccatggct ctgttccatg ggaaattcat agacacgggt ttttctttac
                                                                                 1980
   cattotataa gogtatottg aacaaaccag ttggactcaa ggatttagaa totattgato
                                                                                 2040
60 cagaatttta caattototo atotgggtta aggaaaacaa tattgaggaa tgtgatttgg
                                                                                 2100
   aaatgtactt ctccgttgac aaagaaattc taggtgaaat taagagtcat gatctgaaac
                                                                                 2160
   ctaatggtgg caatattctt gtaacagaag aaaataaaga ggaatacatc agaatggtag
                                                                                 2220
```

PCT/GB99/00353

2

WO 99/40201

```
ctgagtggag gttgtctcga ggtgttgaag aacagacaca agctttcttt gaaggcttta
                                                                                    2280
    atgaaattot toccoagoaa tatttgcaat actttgatgo aaaggaatta gaggtoottt
                                                                                    2340
    tatgtggaat gcaagagatt gatttgaatg actggcaaag acatgccatc taccgtcatt
                                                                                    2400
    atgcaaggac cagcaaacaa atcatgtggt tttggcagtt tgttaaagaa attgataatg
                                                                                    2460
 5 agaagagaat gagacttotg cagtttgtta otggaacotg cogattgcca gtaggaggat.
                                                                                    2520
    ttgctgatct catggggagc aatggaccac agaaattctg cattgaaaaa gttgggaaag
                                                                                    2580
    aaaattggct acccagaagt catacctgtt ttaatcgcct ggacctgcca ccatacaaga
                                                                                    2640
    gctatgagca actgaaggaa aagctgttgt ttgccataga agaaacagaa ggatttggac
                                                                                    2700
    aagagtaact totgagaact tgcaccatga atgggcaaga acttatttgc aatgtttgtc
                                                                                    2760
10 cttctctgcc tgttgcacat cttgtaaaat tggacaatgg ctctttagag agttatctga
                                                                                    2820
    gtgtaagtaa attaatgttc tcatttagat ttatctccca gtgatttcta ctcagcgttt
                                                                                    2880
    ccagaaatca ggtctgcaaa tgactagtca gaaccttgct taacatgaga ttttaacaca
                                                                                    2940
    acaatgaaat tigccitgtc tiattccact agtttaticc tttaacaaca atattttatg
                                                                                    3000
    tgtatcaaaa gtctcacttg ggagtagtgt ttttttcttt tagacattct gcagacatgc
                                                                                    3060
15 agggaagtcc tttggtaact gcaatataca agattttcct attaagcctc ttggtaagag gcatttgtta aaagtgcaag cttactcctg cttctgggga tgtgagcaaa attcgggctt
                                                                                    3120
                                                                                    3180
    gtgttctccc tctcatttta gtctgacttg actattgttt ttcctttctg gcgcatgaat
                                                                                    3240
    ccatacatca ttcctggaag tgaggcaaga ctcttgcatc tctacaaagt agttttgtca
                                                                                    3300
    atttgaattc agggaaaagt tggtcacagc ctgcaaatga cttcatttgg aagtctgatt
                                                                                    3360
20 gtttcagttg cctgacaaat actacacttt acaaacaatg ttaacactgt gattccttca
                                                                                    3420
    ttgttttaag aagttaacct agggccgggc atggtggctc atacctgtaa tcctagcact
                                                                                    3480
    ctgggaggcc gaggcaggag gatcccttta gcccaggagt taaagaccag cctgggcaac atagggagac cctgtctttt ttttgggcag cgtggtgggg gataaataaa waaaarraaa
                                                                                    3540
                                                                                    3600
    aaaaacktag cctagaatta gaattaattt aattgaattc atctaaagat gtctctggtg
                                                                                    3660
25 atttttatat gttccgctat ataattgatg ctttatagtt ttatcataat ccaacaactt
                                                                                    3720
    cagttatatt taattattgt taaggagttt aagactagaa agactagagt gctttctagt
                                                                                    3780
    ccaaatagag gtcagtgaaa cagcttttga catcagattt tcatttgaga gggagagctg
                                                                                    3840
    tggtactggc taaaaagaaa ggaagataac atccagtaac cacaggaata tattctctgt
                                                                                    3900
gaattaaaag tottcaaagt tatcatttot otgacatatg ttggagtagt catttocatt 30 otttacattg toatgaactg gattgataac ootcatotgo aatattttoa oocctaaaat
                                                                                    3960
                                                                                    4020
    ttttaacagg gtttcctttt tttctcacga ctatttaagt ttagattgct ccattattaa
                                                                                    4080
    ctgattaatg cactttgaag ttctctggaa ttaattattt taacttggcc tagcttcgac
                                                                                    4140
    tgtcaaggtg gctgttataa atttgacttc attggcagtg gatgaagcct aagccagctg agtctctatc atagctgaac cctgaggaca gcctcatagc tcatgtatca gggacttttg
                                                                                    4200
                                                                                    4260
35 ccacatttca gaggcatagc atgaacaagt aatattaagc caagaataag cagcagaacc
                                                                                    4320
    ctgttccata tggaaaaaag aaaaacaatt ttttgtccct aatgttcttc cttttacatc ctggaacaac aataaaaaca ttttttaaa cttgtctact gtaagatact gccatcataa
                                                                                    4380
                                                                                    4440
    agcagagact tacatgagtg aaagggttgc ctcatcaagc agctcagtgt aaatggggag
                                                                                    4500
    gctaggetet ecceageeet atggtttttt tattteatgt acceeaggaa atactgtgtg
                                                                                    4560
40 gtttctaaaa gccctggttg ttaaaagtag ggactctgcc tttttgttgg tagggagaaa aaacgctatt gctttgtctt acagagcgaa tgtctgccaa ctacccgttc attatataag
                                                                                    4620
                                                                                    4680
    totgaacttg gtaatatatg gotaatgaag attaagcoot otataaagac ttootgttga
                                                                                    4740
    ggtgaattet catactgaaa tgtagttace tacaatattt actagagatt tatgaaatta
                                                                                    4800
    aattaagaga taatgtaaga aaatacattt tttttggttc tatataatgc ttcatgattc
                                                                                    4860
45 atttagggac ctagaaatat tgtgtgaaaa tatataaata tcacccaaaa ggctttctgc
                                                                                    4920
                                                                                    4980
    cctatatttt taaaatacag aatagttata tttgaagtag ccctggccct agttctatag
   ggcttggcta tttaatatti ttatggaaga agtgttiagi tctggaaaag gtaaatgcti gtatatatat ttttgcagcc tgggatctcc ctactccatt ttttccttta atttaagtgg
                                                                                    5040
                                                                                   5100
    ccacatgtat atgtcttccc tgctgtgtta ggaaaatggg ggctggatat cccaagaatc
                                                                                    5160
50 agaggttata taaaaatact gcaaatagac cgcagacata aatatctacc aaatgctatc
                                                                                    5220
    ttaaattttg gtccaaactg aacatatgga aatagattta ttgtaagtat ttacttagag
                                                                                   5280
    ctttttctta aatctgaact aacttgcttt tagaagtctt tttctttgta agcattgtaa
                                                                                    5340
    atgctaataa atcctgttaa ttttttttt tt
                                                                                    5372
55
            <210> 2
            <211> 2559
            <212> DNA
            <213> Homo sapiens
60
            <400> 2
     atgggtagcc tcaccatgaa atcacagctt cagatcactg tcatctcagc aaaacttaag
                                                                                       60
```

atgggtagee teaceatgaa ateacagett cagateaetg teateteage aaaaettaag 60 gaaaataaga agaattggtt tggaceaagt eettaegtag aggteaeagt agatggaeag 120

	tca	aagaa	aga	caga	aaaa	tg c	aaca	acac	a aa	cagt	ccca	agt	qqaa	gca	accc	cttaca	180
																ctgaaa	
	-	-				_				-			-		-	aaćaat	
																acagag	
5																gttácc	
																tccaag	
																ggtgaa	
																ccttct	
				_								_				gtcaat	
10																ccgaca	
10																actata	
																cctggt	
																aaaaga	
1.5				_		_									_	aacatg	
15																acactg	
																gcaatg	
																caaagt	
																agcaat	
•																agaagt	
20																gtggat	
																cgcaca	
	ggaa	aaato	ctg	cccta	agaca	aa t	ggac	ctca	g at	agcc	tatg	ttc	ggga	ctt	caaa	gcaaag	
	gtto	cagta	att	tccg	gttci	g g	tgtca	agcaa	a ct	ggcc	atgc	caca	agca	cat	aaaga	attaca	
_	gtga	acaaq	gaa	aaaca	attgi	t t	gagga	attc	c tt	tcaa	caga	taat	tgag	ctt	cagt	ccccaa	1560
25	gate	etge	gaa	gacgi	tttgt	g g	gtgai	tttt	t cc	agga	gaag	aage	gttt	aga	ttate	ggaggt	1620
	gtag	gcaag	gag	aatg	gttcl	t t	cttt	tgtc	a ca	tgaa	gtgt	tgaa	accc	aat	gtat'	tgcctg	1680
	ttt	gaata	atg	caggo	gaag	ga t	aacta	actg	e tt	gcag	ataa	acco	cagai	ttc	ttac	atcaat	1740
	cca	gatca	acc	tgaa	atati	t t	cgtti	ttat	t gg	caga	ttta	ttg	ccat	ggc	tctg	ttccat	1800
	ggg	aatt	ca	tagad	cacgo	gg t	tťtt	cttt	a cc	attc	tata	agc	gtate	ctt	gaac	aaacca	1860
30																tgggtt	
																gaaatt	
																acagaa	
																gttģaa	
																ttgcaa	
35																ttgaat	
-																atgtgg	
																tttgtt	
																ggacca	
																acctgt	
40																	
70		_	_		_				-			aacı	Lydag	gga	aaay	ctgttg	2559
	CCC	gecat	.ag	aagaa	aacag	ja a	ggaci	Legga	a caa	agag	caa						2559
			1105	-													
			210>	-													
15				852													
45				PRT													
		<2	213>	Homo	sar	oien.	s										
				_													
			100>														
	Met	Gly	Ser	Leu	Thr	Met	Lys	Ser	Gln	Leu	Gln	Ile	Thr	Val	Ile	Ser	
50	1				5					10					15		
	Ala	Lys	Leu	Lys	Glu	Asn	Lys	Lys	Asn	Trp	Phe	Gly	Pro	Ser	Pro	Tyr	
				20					25					30			
	Val	Glu	Val	Thr	Val	Asp	Gly	Gln	Ser	Lys	Lys	Thr	Glu	Lys	Cys	Asn	
			35			-	-	40		-	_		45	-	_		
55	Asn	Thr	Asn	Ser	Pro	Lys	Trp	Lys	Gln	Pro	Leu	Thr	Val	Ile	Val	Thr	
		50				-	55	-				60					
	Pro		Ser	Lvs	Leu	His		Ara	Val	Trp	Ser		Gln	Thr	Leu	Lys	
	65					70		- 3			75					80	
		Asp	Val	Leu	Leu		Thr	Ala	Ala	Leu		Ile	Tvr	Glu	Thr		
60					85	1				90			- 1 -		95	-	
	Lys	Ser	Asn	Asn		Lvs	Leu	Glu	Glu		Val	Val	Thr	Leu	Gln	Leu	
	-			100		_,, _			105					110		· · · ·	

Gly Gly Asp Lys Glu Pro Thr Glu Thr Ile Gly Asp Leu Ser Ile Cys Leu Asp Gly Leu Gln Leu Glu Ser Glu Val Val Thr Asn Gly Glu Thr Thr Cys Ser Glu Ser Ala Ser Gln Asn Asp Asp Gly Ser Arg Ser Lys Asp Glu Thr Arg Val Ser Thr Asn Gly Ser Asp Asp Pro Glu Asp Ala Gly Ala Gly Glu Asn Arg Arg Val Ser Gly Asn Asn Ser Pro Ser Leu Ser Asn Gly Gly Phe Lys Pro Ser Arg Pro Pro Arg Pro Ser Arg Pro 195 200 205 Pro Pro Pro Thr Pro Arg Arg Pro Ala Ser Val Asn Gly Ser Pro Ser Ala Thr Ser Glu Ser Asp Gly Ser Ser Thr Gly Ser Leu Pro Pro Thr 225 Asn Thr Asn Thr Ser Glu Gly Ala Thr Ser Gly Leu Ile Ile Pro Leu Thr Ile Ser Gly Gly Ser Gly Pro Arg Pro Leu Asn Pro Val Thr Gln Ala Pro Leu Pro Pro Gly Trp Glu Gln Arg Val Asp Gln His Gly Arg Val Tyr Tyr Val Asp His Val Glu Lys Arg Thr Thr Trp Asp Arg Pro Glu Pro Leu Pro Pro Gly Trp Glu Arg Arg Val Asp Asn Met Gly Arg Ile Tyr Tyr Val Asp His Phe Thr Arg Thr Thr Thr Trp Gln Arg Pro Thr Leu Glu Ser Val Arg Asn Tyr Glu Gln Trp Gln Leu Gln Arg Ser Gln Leu Gln Gly Ala Met Gln Gln Phe Asn Gln Arg Phe Ile Tyr Gly Asn Gln Asp Leu Phe Ala Thr Ser Gln Ser Lys Glu Phe Asp Pro Leu Gly Pro Leu Pro Pro Gly Trp Glu Lys Arg Thr Asp Ser Asn Gly Arg Val Tyr Phe Val Asn His Asn Thr Arg Ile Thr Gln Trp Glu Asp Pro Arg Ser Gln Gly Gln Leu Asn Glu Lys Pro Leu Pro Glu Gly Trp Glu Met Arg Phe Thr Val Asp Gly Ile Pro Tyr Phe Val Asp His Asn Arg Arg Thr Thr Thr Tyr Ile Asp Pro Arg Thr Gly Lys Ser Ala Leu Asp Asn Gly Pro Gln Ile Ala Tyr Val Arg Asp Phe Lys Ala Lys Val Gln Tyr Phe Arg Phe Trp Cys Gln Gln Leu Ala Met Pro Gln His Ile Lys Ile Thr Val Thr Arg Lys Thr Leu Phe Glu Asp Ser Phe Gln Gln Ile Met Ser Phe Ser Pro Gln Asp Leu Arg Arg Leu Trp Val Ile Phe Pro Gly Glu Glu Gly Leu Asp Tyr Gly Gly Val Ala Arg Glu 530 535 540 Trp Phe Phe Leu Leu Ser His Glu Val Leu Asn Pro Met Tyr Cys Leu Phe Glu Tyr Ala Gly Lys Asp Asn Tyr Cys Leu Gln Ile Asn Pro Ala 565 570 575 Ser Tyr Ile Asn Pro Asp His Leu Lys Tyr Phe Arg Phe Ile Gly Arg Phe Ile Ala Met Ala Leu Phe His Gly Lys Phe Ile Asp Thr Gly Phe

```
Ser Leu Pro Phe Tyr Lys Arg Ile Leu Asn Lys Pro Val Gly Leu Lys
                      615
                                               620
    Asp Leu Glu Ser Ile Asp Pro Glu Phe Tyr Asn Ser Leu Ile Trp Val
625 630 635 640
    Lys Glu Asn Asn Ile Glu Glu Cys Asp Leu Glu Met Tyr Phe Ser Val
                   645
                                       650
    Asp Lys Glu Ile Leu Gly Glu Ile Lys Ser His Asp Leu Lys Pro Asn
                660
                                    665
                                                       670
    Gly Gly Asn Ile Leu Val Thr Glu Glu Asn Lys Glu Glu Tyr Ile Arg
10
           675
                               680
                                                   685
    Met Val Ala Glu Trp Arg Leu Ser Arg Gly Val Glu Glu Gln Thr Gln
       690
                           695
                                                700
    Ala Phe Phe Glu Gly Phe Asn Glu Ile Leu Pro Gln Gln Tyr Leu Gln
                        710
                                           715
    Tyr Phe Asp Ala Lys Glu Leu Glu Val Leu Cys Gly Met Gln Glu 725 730 735
    Ile Asp Leu Asn Asp Trp Gln Arg His Ala Ile Tyr Arg His Tyr Ala
740 750
                740
    Arg Thr Ser Lys Gln Ile Met Trp Phe Trp Gln Phe Val Lys Glu Ile
20
                             760
         755
                                                  765
    Asp Asn Glu Lys Arg Met Arg Leu Leu Gln Phe Val Thr Gly Thr Cys
                            775
                                               780
    Arg Leu Pro Val Gly Gly Phe Ala Asp Leu Met Gly Ser Asn Gly Pro
                        790
                                         795
    Gln Lys Phe Cys Ile Glu Lys Val Gly Lys Glu Asn Trp Leu Pro Arg
805 810 815
    Ser His Thr Cys Phe Asn Arg Leu Asp Leu Pro Pro Tyr Lys Ser Tyr 820 825 830
                                 825
    Glu Gln Leu Lys Glu Lys Leu Leu Phe Ala Ile Glu Glu Thr Glu Gly
30
         835
                    840
    Phe Gly Gln Glu
       850
          <210> 4
35
          <211> 854
          <212> PRT
          <213> Mus musculus
          <400> 4
40
    Met Gly Ser Leu Thr Met Lys Ser Gln Leu Gln Ile Thr Val Ile Ser
                                      10
    Ala Lys Leu Lys Glu Asn Lys Lys Asn Trp Phe Gly Pro Ser Pro Tyr
            20
                                   25
                                                       30
    Val Glu Val Thr Val Asp Gly Gln Ser Lys Lys Thr Glu Lys Cys Asn
          35
                               40
                                                  45
    Asn Thr Asn Ser Pro Lys Trp Lys Gln Pro Leu Thr Val Ile Val Thr 50 60
    Pro Thr Ser Lys Leu Cys Phe Arg Val Trp Ser His Gln Thr Leu Lys
                      70
                                          75
50
    Ser Asp Val Leu Gly Thr Ala Gly Leu Asp Ile Tyr Glu Thr Leu
                                       90
                  85
    Lys Ser Asn Asn Met Lys Leu Glu Glu Val Val Met Thr Leu Gln Leu
100 105 110
               100
                                    105
    Val Gly Asp Lys Glu Pro Thr Glu Thr Met Gly Asp Leu Ser Val Cys
                               120
    Leu Asp Gly Leu Gln Val Glu Ala Glu Val Val Thr Asn Gly Glu Thr
       130
                           135
                                               140
    Ser Cys Ser Glu Ser Thr Thr Gln Asn Asp Asp Gly Cys Arg Thr Arg
                    150
                                         155
    Asp Asp Thr Arg Val Ser Thr Asn Gly Ser Glu Asp Pro Glu Val Ala
                   165
                                       170
```

Ala Ser Gly Glu Asn Lys Arg Ala Asn Gly Asn Asn Ser Pro Ser Leu

				180					185					190		
	Ser	Asn	Gly 195	Gly	Phe	Lys	Pro	Ser 200		Pro	Pro	Arg	Pro 205	Ser	Arg	Pro
5	Pro	Pro 210	Pro	Thr	Pro	Arg	Arg 215	Pro	Ala	Ser	Val	Asn 220	Gly	Ser	Pro	Ser
	Thr 225	Asn	Ser	Asp	Ser	Asp 230	Gly	Ser	Ser	Thr	Gly 235	Ser	Leu	Pro	Pro	Thr 240
	Asn	Thr	Asn	Val	Asn 245	Thr	Ser	Thr	Ser	Glu 250		Ala	Thr	Ser	Gly 255	Leu
10	Ile	Ile	Pro	Leu 260	Thr	Ile	Ser	Gly	Gly 265	Ser	Gly	Pro	Arg	Pro 270	Leu	Asn
			275					280					285		Val	
15	Gln	His 290	Gly	Arg	Val	Tyr	Tyr 295	Val	Asp	His	Val	Glu 300	Lys	Arg	Thr	Thr
	Trp 305	Asp	Arg	Pro	Glu	Pro 310	Leu	Pro	Pro	Gly	Trp 315	Glu	Arg	Arg	Val	Asp 320
					325				_	330			_		Thr 335	
20				340					345	_		_		350	Trp	
			355					360					365		Gln	
25		370	_	_			375					380			Lys	
	385				_	390				_	395		Ī	_	Thr	400
20			_	_	405	_				410					Thr 415	
30				420			•		425					430	Leu	
		_	435					440		Ō	_		445	_	Phe	
35		450					455					460			Gly	
	465			_		470					475		-	-	Phe	480
40					485		_		_	490					Met 495	
40				500					505					510	Asp	
			515					520			-		52Š	_	Arg	
45		530				_	535		_		_	540	_	_	Val	
	545					550					555				Met Ile	560
50					565					570					575	
50				580					585					590	Phe Asp	
			595					600					605		Val	
55		610					615	_	_			620	-		Leu	_
	625					630					635				Tyr	640
60					645					650					655 Leu	
				660					665					670	Glu	
	0		3 ± y	~- y	311	116		• • •	1111	Jiu	JIU	47311	ny s	314	JIU	- A -

PCT/GB99/00353 WO 99/40201

```
680
     Ile Arg Met Val Ala Glu Trp Arg Leu Ser Arg Gly Val Glu Gln 690 695 700
     Thr Gln Ala Phe Phe Glu Gly Phe Asn Glu Ile Leu Pro Gln Gln Tyr 705 710 715 720
     Leu Gln Tyr Phe Asp Ala Lys Glu Leu Glu Val Leu Leu Cys Gly Met 725 730 735
     Gln Glu Ile Asp Leu Asn Asp Trp Gln Arg His Ala Ile Tyr Arg His 740 745 750
     Tyr Thr Arg Thr Ser Lys Gln Ile Met Trp Phe Trp Gln Phe Val Lys
755 760 765
            755
                                   760
     Glu Ile Asp Asn Glu Lys Arg Met Arg Leu Leu Gln Phe Val Thr Gly 770 780
     Thr Cys Arg Leu Pro Val Gly Gly Phe Ala Asp Leu Met Gly Ser Asn
                          790
                                                795
    Gly Pro Gln Lys Phe Cys Ile Glu Lys Val Gly Lys Glu Asn Trp Leu
805 815
                     805
                                          810
    Pro Arg Ser His Thr Cys Phe Asn Arg Leu Asp Leu Pro Pro Tyr Lys
820 825 830
    Ser Tyr Glu Gln Leu Lys Glu Lys Leu Leu Phe Ala Ile Glu Glu Thr
                                   840
            835
     Glu Gly Phe Gly Gln Glu
        850
25 .
          <210> 5
          <211> 21
           <212> DNA
           <213> Artificial Sequence
30
           <220>
           <223> PCR Primer
          <400> 5
    atgggtagcc tcaccatgaa a
                                                                                  21
           <210> 6
           <211> 21
          <212> DNA
           <213> Artificial Sequence
           <220>
           <223> PCR Primer
          <400> 6
45 ttactcttgt ccaaatcctt c
                                                                                  21
           <210> 7
           <211> 156
           <212> PRT
50
           <213> Homo sapiens
          <400> 7
    Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu 1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15
                                            10
    Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp
               20
                                       25
    Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
                                 40
    Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu
                             55
                                                  60
```

Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Ala Lys Lys Arg

```
Lys Lys Lys Ser Tyr Thr Thr Pro Lys Lys Asn Lys His Lys Arg Lys
                       85
     Lys Val Lys Leu Ala Val Leu Lys Tyr Tyr Lys Val Asp Glu Asn Gly
                   100
                                          105
                                                                110
     Lys Ile Ser Arg Leu Arg Arg Glu Cys Pro Ser Asp Glu Cys Gly Ala
                                     120
                                                            125
              115
     Gly Val Phe Met Ala Ser His Phe Asp Arg His Tyr Cys Gly Lys Cys
                                                       140
         130
                                135
     Cys Leu Thr Tyr Cys Phe Asn Lys Pro Glu Asp Lys
     145
                            150
            <210> 8
            <211> 76
            <212> PRT
15
            <213> Homo sapiens
            <400> 8
     Met Gln Ile Pherlal Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu
                                              10
     Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp
                  20
                                          25
                                                                30
     Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys
              35
                                     40
     Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu
25
         50
                                                       60
                                55
     Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly
                           . 70·
            <210> 9
30
            <211> 471
            <212> DNA
            <213> Homo sapiens
            <400> 9
    atgcagattt tcgtgaaaac ccttacgggg aagaccatca ccctcgaggt tgaaccctcg
                                                                                      60
     gatacgatag aaaatgtaaa ggccaagatc caggataagg aaggaattcc tcctgatcag
                                                                                      120
     cagagactga tetttgetgg caageagetg gaagatggae gtaetttgte tgaetacaat atteaaaagg agtetaetet teatettgtg ttgagaette gtggtggtge taagaaaagg
                                                                                     180
                                                                                     240
                                                                                     300
     aagaagaagt cttacaccac tcccaagaag aataagcaca agagaaagaa ggttaagctg
    getgteetga aatattataa ggtggatgag aatggeaaaa ttagtegeet tegtegagag tgeeettetg atgaatgtgg tgetggggtg tttatggeaa gteaetttga cagacattat
                                                                                     360
                                                                                     420
     tgtggcaaat gttgtctgac ttactgtttc aacaaaccag aagacaagta a
                                                                                     471
            <210> 10
            <211> 3177
            <212> DNA
            <213> Homo sapiens
            <400> 10
50 atgtccaget egeogetyte caagaaacgt egegtyteeg gycetyatee aaageegygt
                                                                                      60
     totaactgct cccctgccca gtccgtgttg tccgaagtgc cctcggtgcc aaccaacgga
                                                                                     120
                                                                                     180
     atggccaaga acggcagtga agcagacata gacgagggcc tttactcccg gcagctgtat
     gtgttgggcc atgaggcaat gaagcggctc cagacatcca gtgtcctggt atcaggcctg
                                                                                     240
cggggcctgg gcgtggagat cgctaagaac atcatccttg gtggggtcaa ggctgttacc ctacatgacc agggcactgc ccagtgggct gatcttcct cccagttcta cctgcgggag
                                                                                     300
                                                                                     360
     gaggacateg gtaaaaaceg ggeegaggta teacageece geetegetga geteaacage
                                                                                     420
     tatgtgcctg tcactgccta cactggaccc ctcgttgagg acttccttag tggtttccag
                                                                                     480
                                                                                     540
     gtggtggtgc tcaccaacac cccctggag gaccagctgc gagtgggtga gttctgtcac
     aaccgtggca tcaagctggt ggtggcaggc acgcggggcc tgtttgggca gctcttctgt
                                                                                     600
60 gactttggag aggaaatgat cctcacagat tccaatgggg agcagccact cagtgctatg
                                                                                     660
     gtttctatgg ttaccaagga caaccccggt gtggttacct gcctggatga ggcccgacac gggtttgaga gcggggactt tgtctccttt tcagaagtac agggcatggt tgaactcaac
                                                                                     720
                                                                                     780
```

	ggaaatcagc	ccatggagat	caaagtcctg	ggtccttata	cctttagcat	ctgtgacacc	840
	tccaacttct	ccgactacat	ccgtggaggc	atcgtcagtc	aggtcaaagt	acctaagaag	900
•	attagcttta	aatccttggt	ggcctcactg	gcagaacctg	actttgtggt	gacggacttc	960
5	gccaagtttt	ctcgccctgc	ccagctgcac	attggcttcc	aggccctgca	ccagttctgt	1020
5	gctcagcatg	gccggccacc	teggeeeege	aatgaggagg	atgcagcaga	actggtagcc	1080
	ttagcacagg	ctgtgaatgc	tcgagccctg	ccagcagtgc	agcaaaataa	cctggacgag	1140
	gacctcatcc	ggaagctggc	atatgtggct	gctggggatc	tggcacccat	aaacgccttc	1200
	attgggggcc	tggctgccca	ggaagtcatg	aaggcctgct	ccgggaagtt	catgcccatc	1260
10	atgcagtggc	tatactttga	tgcccttgag	tgtctccctc	aggacaaaga	ggtcctcaca	1320
10	gaggacaagt	geeteeageg	ccagaaccgt	tatgacgggc	aagtggctgt	gtttggctca	1380
	gaccugcaag	agaagetggg	caagcagaag	tatttcctgg	tgggtgcggg	ggccattggc	1440
	tgtgagetge	tcaagaactt	tgccatgatt	gggctgggct	gcggggaggg	tggagaaatc	1500
	coctagata	tanagnatt	cattgagaag	tcaaatctga	atcgacagtt	tctttccgg	1560
15	ccccgggatg	gggtgaggt	aaagtetgae	acggergerg	cagctgtgcg	ccaaatgaat	1620
1.5	gatgacgatt	ttttccaaa	ccaccagaac	egrgrgggre	ctgacacgga	gcgcatctat	1680
	cacatataca	tagaccacca	ctatatata	tracecate	ccctggacaa cactgctgga	cgtggatgcc	1740
	ctagacaca	aagacaatat	acacatacta	atonosttos	tgacagagtc	gtcaggcaca	1800
	accadacca	cacctgaga	gtaggtggtg	atcoccitec	tgaagaactt	gtacagttee	1860
20	atchagcaca	ccctgcagta	gretagest	gagtttgaag	gcctcttcaa	gazgazgaz	1920 1980
	gaaaatgtca	accagtacct	cacagaggg	aagtttataa	agcgaacact	geagetagea	2040
	ggcactcagc	ccttggaggt	actagaaaact	atacaacaca	gcctggtgct	geggeeggea	2100
	cagacctaga	ctgactgcgt	gacctgggcc	taccaccact	ggcacaccca	gtagtgatta	2160
	aacatccggc	agctgctgca	caacttccct	cctgaccage	tcacaagctc	addadcdccd	2220
25	ttctaatcta	ggcccaaacg	ctgtccacac	ccactcacct	ttgatgtcaa	caatcccctg	2280
	catctggact	atgtgatggc	toctoccaac	ctatttaccc	agacctacgg	actaacaaac	2340
	tctcaggacc	gagctgctgt	ggccacattc	ctgcagtctg	tgcaggtccc	cgaattcacc	2400
	cccaagtctg	gcgtcaagat	ccatatttct	gaccaggagc	tgcagagcgc	caatgcctct	2460
	gttgatgaca	gtcgtctaga	ggagctcaaa	gccactctgc	ccagcccaga	caageteeet	2520
30	ggattcaaga	tgtaccccat	tgactttgag	aaggatgatg	acagcaactt	tcatatggat	2580
	ttcatcgtgg	ctgcatccaa	cctccgggca	gaaaactatg	acattccttc	tgcagaccgg	2640
	cacaagagca	agctgattgc	agggaagatc	atcccagcca	ttgccacgac	cacagcagcc	2700
	gtggttggcc	ttgtgtgtct	ggagctgtac	aaggttgtgc	aggggcaccg	acagettgae	2760
	tcctacaaga	atggtttcct	caacttggcc	ctgcctttct	ttggtttctc	tgaacccctt	2820
35	gccgcaccac	gtcaccagta	ctataaccaa	gagtggacat	tgtgggatcg	ctttgaggta	2880
	caagggctgc	agcctaatgg	tgaggagatg	accctcaaac	agttcctcga	ctattttaag	2940
	acagagcaca	aattagagat	caccatgctg	tcccagggcg	tgtccatgct	ctattccttc	3000
	ttcatgccag	ctgccaagct	caaggaacgg	ttggatcagc	cgatgacaga	gattgtgagc	3060
40	cgtgtgtcga	agcgaaagct	gggccgccac	gtgcgggcgc	tggtgcttga	gctgtgctgt	3120
40	aacgacgaga	gcggcgagga	tgtcgaggtt	ccctatgtcc	gatacaccat	ccgctga	3177
	<210>	. 11			•		
	<211>						
	<212>						
45		Homo sapie	ne				
	,010	nome supre					
	<400>	· 11					
	atggcgctga	aacggattaa	taaggaactt	agtgatttgg	cccqtqaccc	tccagcacaa	60
	tgttctgcag	gtccagttgg	agatgacatg	tttcattggc	aagccacaat	tatgggacct	120
50	aatgacagcc	catatcaagg	tggtgtattc	tttttgacaa	ttcattttcc	tacagactac	180
	cccttcaaac	cacctaaggt	tgcatttaca	acaagaattt	atcatccaaa	tattaacagt	240
	aatggcagca	tttgtcttga	tattctaaga	tcacagtggt	ctcctqcttt	aactatttct	300
	aaagttcttt	tatccatttg	ttcactgcta	tgtgatccaa	acccagatga	cccctagtg	360
66	ccagagattg	cacggatcta	taaaacagac	agagacaagt	acaacagaat	atctcgggaa	420
55	tggactcaga	agtatgccat	gtga				444
	<210>	. 12					
	<211>						
	<211>						
60		Artificial	Sequence				
	-2207		204401100				
	<220>						

	<223> PCR Primer	
5	<400> 12 gtctgacagt ggatcacaac	20
J	<210> 13 <211> 21	
10	<212> DNA <213> Artificial Sequence	
10	<220> <223> PCR Primer	
	<400> 13	
15	ccattcatgg tgcaagttct c	21
	<210> 14 <211> 45	
	<211> 45 <212> DNA	
20	<213> Artificial Sequence	
	<220>	•
	<223> PCR Primer	
25	<400> 14	
	ggctacccag aagtcatacc gcttttaatc gcctggacct gccac	45
	<210> 15	•
	<211> 45	
30	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> PCR Primer	
35	<400> 15	
	gtggcaggtc caggcgatta aaagcggtat gacttctggg tagcc	45
	2 22 22 22 22 22 22 22 22 22 22 22 22 2	

INTERNATIONAL SEARCH REPORT

ional Application No PCT/GB 99/00353

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/52 C12N9/00 A61K38/43 A61K48/00

C12N5/10

C07K16/40

G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

C. DOCUMENTS	CONSIDERED	TO BE RELEVANT
--------------	------------	----------------

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Χ .	WO 97 37223 A (UNIV NORTH CAROLINA ;CYTOGEN CORP (US)) 9 October 1997 pages 7,10,42-48; 60-65; claims	1-3,5-10
X	WO 97 12962 A (COLD SPRING HARBOR LAB; BEACH DAVID (US); CALIGIURI MAUREEN (US);) 10 April 1997 page 3,8,9,12,22,23-26,35,67; claims	1,3-22
X	HILLIER, L., ET AL.: "the WashU-Merck EST project 1997" EMBL SEQUENCE DATA LIBRARY,29 April 1997, XP002103110 heidelberg, germany accession no. AA400315	4

Y Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	 "T" later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
26 May 1999	10/06/1999
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer
Tel. (+31-70) 340-2040, Tx. 31 851 epo ni, Fax: (+31-70) 340-3016	Holtorf, S

3

Inte Ional Application No PCT/GB 99/00353

Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
- Culogoly	Onation of Geographic Anni Analogue (Anni Anni Anni Anni Anni Anni Anni Ann	Newvant to Gaim No.
A	PERRY, W.L., ET AL.: "the itchy locus encodes anovel ubiquitin protein ligase that is disrupted in al8H mice" NATURE GENETICS, vol. 18, no. 2, February 1998, pages 143-146, XP002103109 cited in the application cited in the application see the whole document	1-23
A	D'ANDREA, A.D. AND SERHAN, C.N.: "relieving the itch" NATURE GENETICS, vol. 18, no. 2, February 1998, pages 97-99, XP002103348 cited in the application see the whole document	1-23
Α	WEISSMAN A M: "Regulating protein degradation by ubiquitination" IMMUNOLOGY TODAY, vol. 18, no. 4, 1 April 1997, page 189-198 XP004058356 cited in the application	1-23
A	ROLFE M ET AL: "The ubiquitin-mediated proteolytic pathway as a therapeutic area" JOURNAL OF MOLECULAR MEDICINE, vol. 75, no. 3, 1 January 1997, pages 5-17, XP002082283	1-23
P,X	WOOD, J.D., ET AL.: "atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins" MOLECULAR AND CELLULAR NEUROSCIENCE, vol. 11, no. 3, June 1998, pages 140-160, XP002103111 see the whole document	1-3,5,6,8,9

INTERNATIONAL SEARCH REPORT

arnational application No.

PCT/GB 99/00353

Box I Observations where certain claim wer found unsearchable (Continuation of item 1	f first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for	the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 12-14 and 20, 21 are directed to a method of treatment of the human/a body, the search has been carried out and based on a effects of the compound/composition.	animal the alleged
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requant extent that no meaningful International Search can be carried out, specifically:	uirements to such
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentence.	nces of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first shee	t)
This International Searching Authority found multiple inventions in this international application, as follows:	
As all required additional search fees were timely paid by the applicant, this International Search Report searchable claims.	rt covers all
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did of any additional fee.	not invite payment
3. As only some of the required additional search fees were timely paid by the applicant, this International covers only those claims for which fees were paid, specifically claims Nos.:	Search Report
4. No required additional search fees were timely paid by the applicant. Consequently, this International S restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	Search Report is
Remark on Protest The additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied by the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional search fees were accompanied to the payment of additional	

information on patent family members

Inter onal Application No PCT/GB 99/00353

Patent document cited in search report				atent family nember(s)	Publication date	
WO 9737223	Α	09-10-1997	AU CA EP	2659797 A 2250866 A 0897541 A	22-10-1997 09-10-1997 24-02-1999	
WO 9712962	Α	10-04-1997	EP	0857205 A	12-08-1998	