

3161H-I

Wi-Fi Single-band 1X1 802.11b/g/n loT Module Datasheet

3161H-I Serial

Module Datasheet

Office: 6 Floor, Building U6, Junxiang U8 Park,
Hangcheng Avenue, Bao'an District,
Shenzhen City, CHINA

Factory: No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, CHINA

TEL: +86-755-2955-8186 **Website:** www.fn-link.com

Customer Approval:	 Company
	Title
	Signature
	Date
	Fn-Link

Revision History

Version	Date	Revision Content	Draft	Approved
1.0	2020/02/24	Initial release	Lgp	Szs
2.0	2020/02/27	Update module picture	Lan	Szs
2.0	2020/02/21	Update carrier tape info	Lgp	<u> </u>
		Update RF power spec		
	2020/04/23	Update ordering information		Szs
0.0		Update module picture	Lan	
3.0	2020/04/23	Update layout footprint	Lgp	
		Add RF connector info		
		Add 3161-IL info		
	2020/06/01	Add UART default configure info		
4.0		Add PCB antenna clearance area	Lan	Szs
		requirement	Lgp	
		Update Key Material List		

CONTENTS

1 Overview	1
1.1 Introduction	1
1.2 Features	1
1.3 General Specification	3
1.4 Operating Conditions	3
2 Wi-Fi RF Specification	4
2.1 2.4GHz RF Specification	4
3 Power Consumption	5
4 Pin Assignments	6
4.1 Pin outline	6
4.2 Pin Definition	7
4.3 Pin Function Group Table	8
5 Dimensions	9
5.1 Module Picture	9
5.2 Physical Dimensions	10
5.3 Layout Recommendation	10
5.4 RF connector for external antenna	11
6 Reference Design	11
6.1 Schematic reference design	11
6.2 Antenna clearance area requirements	12
7 Ordering Information	13
8 The Key Material List	13
9 Recommended Reflow Profile	14
10 Package Information	15
10.1 Reel	
10.2 Carrier Tape Detail	
10.3 Packaging Detail	
10.4 Moisture Sensitivity	

1 Overview

1.1 Introduction

*3161H-I is a series of highly integrated IoT modules with low power 802.11b/g/n Wireless LAN (WLAN) communication controller. It combines a high-performance 32-bit MCU, WLAN (802.11 b/g/n) MAC, a 1T1R capable WLAN baseband, RF. It also provides a bunch of configurable GPIOs which are configured as digital peripherals for different applications and control usage.

3161H-I integrates internal memories for complete Wi-Fi protocol functions. The embedded memory configuration also provides simple application developments.
3161H-I is suitable for the field of low-power intelligent products of the Internet of things, such as smart home appliances, smart door locks, button, etc.

*Note: The series including 3161H-I and 3161H-IL, both have on board PCB version and external antenna version.

1.2 Features

Wi-Fi General

- 802.11b/g/n compatible WLAN
- 72.2Mbps transmit and receive PHY rate using 20MHz bandwidth
- Compatible with 802.11n specification
- MAC support IEEE802.11 d/e/h/i/k/v/w
- Support STA and AP, support 6 clients when used as SAP

Wi-Fi Standards Supported

- 802.11b/g/n compatible WLAN
- 802.11e QoS Enhancement (WMM)
- Support WFA WPA/WPA2, WPS2.0

WLAN PHY Features

- 802.11n OFDM
- One Transmit and one Receive path(1T1R)
- Support standard 20MHz bandwidth and 5M/10M narrow band
- DSSS with DBPSK and DQPSK, CCK modulation with long and short preamble

MCU Features

- 32-bit MCU, max 160MHz
- SRAM 352KB
- ROM 288KB
- Flash 2MB

Build-In 32.768KHz RTC (3161H-IL only)

Host Interface

- SDIO 2.0 1x
- SPI 1x
- I2C 1x
- UART 3x
- I2S 1x
- PWM 6x
- ADC 7x
- GPIO 13x

Note: Please refer to chapter 4.3 pin function table for detail host interface configures

The general block diagram of the module is shown as below

Figure 1-1 Block Diagram

1.3 General Specification

Model Name	3161H-I			
Main Chipset	Hisilicon Hi3861V100(3161H-I) /Hi3861LV100(3161H-IL			
Host Interface	SDIO, SPI, I2C, UART, I2S, PWM, ADC, GPIO			
Wi-Fi Standards	802.11b/g/n			
Dimension	L x W x H: 18.00mm*20.00mm*2.45mm			
RoHS	All hardware components are fully compliant with EU			
KUNS	RoHS directive			

1.4 Operating Conditions

Operating Voltage	3.3±10% Vdc
Operating Temperature	-40°C to +85°C
Storage Temperature	-40°C to +125°C

2 Wi-Fi RF Specification

2.1 2.4GHz RF Specification

Feature	Description				
WLAN Standard	IEEE 802.11 b/g/n Wi-Fi compliant				
Frequency Range	2.412~2.472GHz				
	Wi-Fi:				
Number of Channels	USA/Canada:	channel 1~11;			
	Europe/China/	Australia: char	nel 1~13	}	
Spectrum Mask	Min. b/g/n	Typ. b/g/n	Max. b/	g/n	Unit b/g/n
1st side lobes(to fc ± 11MHZ)	-	-43/-30/-40	-		dBr
2st side lobes(to fc ± 22MHZ)	-	-52/-33/-58	-		dBr
Freq. Tolerance	-20/-20/-20	_	20/20/2	0	ppm
Test Items	Typical Value	9		EV	М
	802.11b /11M	bps : 16dBm :	± 1.5 dB	EVI	M ≤ - 10dB
Output Power	802.11g /54M	lbps : 16dBm :	± 1.5 dB	EVI	M ≤ - 25dB
	802.11n /MCS7 : 15dBm ± 1.5 dB EVM ≤ -28		M ≤ - 28dB		
Test Items	Test Value			Standard Value	
	- 1Mbps	PER @ -94	4 dBm	≤-8	3 dBm
SISO Receive Sensitivity	- 2Mbps	PER @ -92	2 dBm	≤-8	0 dBm
(11b,20MHz) @8% PER	- 5.5Mbps PER @ -89 dBm ≤-79 dB		9 dBm		
	- 11Mbps	PER @ -87	7 dBm	≤-7	6 dBm
	- 6Mbps	PER @ -89	9 dBm	≤-8	5 dBm
	- 9Mbps	PER @ -88	3 dBm	≤-8	4 dBm
0100 December 0 iti- it-	- 12Mbps	PER @ -87	7 dBm	≤-8	2 dBm
SISO Receive Sensitivity	- 18Mbps	PER @ -86	3 dBm	≤-8	0 dBm
(11g,20MHz) @10% PER	- 24Mbps	PER @ -84	4 dBm	≤-7	7 dBm
	- 36Mbps	PER @ -80) dBm	≤-7	3 dBm
	- 48Mbps	PER @ -7	7 dBm	≤-6	9 dBm
	- 54Mbps	PER @ -7	5 dBm	≤-6	8 dBm
	- MCS=0	PER @ -89	9 dBm	≤-8	5 dBm
CICO Popolivo Consitivite	- MCS=1	PER @ -86	6 dBm	≤-8	2 dBm
SISO Receive Sensitivity	- MCS=2	PER @ -84	4 dBm	≤-8	0 dBm
(11n,20MHz) @10% PER	- MCS=3	PER @ -82	2 dBm	≤-7	7 dBm
	- MCS=4	PER @ -79	9 dBm	≤-7	3 dBm

3161H-I

			*		
	- MCS=5	PER @ -76 dBm	≤-69 dBm		
	- MCS=6	PER @ -74 dBm	≤-68 dBm		
	- MCS=7	PER @ -72 dBm	≤-67 dBm		
Maximum Input Laval	802.11b: -10 dBm				
Maximum Input Level	802.11g/n: -20 dBm				
Antenna Reference	PCB antenna with 0~2 dBi peak gain;				
Antenna Reference	External				

3 Power Consumption

Test mode	Current Value @3.3Vdc			
	1M@20dBm 365mA			
	11M@18dBm 321mA			
TX	6M@19dBm 336mA			
	54M@16dBm 260mA			
	65M@15dBm 251mA			
RX	47mA @3.3V			
Power Up Idle	23.05mA			
Start STA	48.1mA			
Scan SSID	58.6mA			
Throughput RX	78mA			
Throughput TX	205mA			
Deep Sleep	52uA			
Ultra-Deep Sleep	3.5uA			

4 Pin Assignments

4.1 Pin outline

Figure 4-1 Pin Outline

4.2 Pin Definition

Pin#	Name	Туре	Description	Voltage
1	3V3	Р	P 3.3Vdc Power input	
			Enable chip. 1: Enable Chip,	
2	EN	I	0: Shut Down Chip.	3.3V
			Default pull high	
3	IO1		GPIO Pin. The MUX Function can be	
3	101		referred to Pin Function Table	
4	102		GPIO Pin. The MUX Function can be	
4	102		referred to Pin Function Table	
5	IO3		GPIO Pin. The MUX Function can be	
5	103		referred to Pin Function Table	
6	104		GPIO Pin. The MUX Function can be	
0	104		referred to Pin Function Table	
7	105		GPIO Pin. The MUX Function can be	
,	103		referred to Pin Function Table	
8	IO6		GPIO Pin. The MUX Function can be	
0	0 100		referred to Pin Function Table	
9	GND		Ground connections	
10	107		GPIO Pin. The MUX Function can be	
10	107		referred to Pin Function Table	
11	108		GPIO Pin. The MUX Function can be	
11	100		referred to Pin Function Table	
12	109		GPIO Pin. The MUX Function can be	
12	109		referred to Pin Function Table	
13	GND		Ground connections	
14	IO10		GPIO Pin. The MUX Function can be	
14	1010		referred to Pin Function Table	
15	IO11		GPIO Pin. The MUX Function can be	
15	1011		referred to Pin Function Table	
16	IO12		GPIO Pin. The MUX Function can be	
10	1012		referred to Pin Function Table	
17	IO13		GPIO Pin. The MUX Function can be	
17	1013	referred to Pin Function Table		
18	GND		Ground connections	

P: POWER I:INPUT O: OUTPUT

4.3 Pin Function Group Table

Pin#	Name	Digital	UART0	UART1/2	SPI0	SDIO	ADC	PWM	I2S	I2C
3	IO1	GPIO_07		UART1_CTS	SPI0_RXD		ADC3	PWM0_OUT	I2S0_CLK	
4	102	GPIO_08		UART1_RTS	SPI0_TXD			PWM1_OUT	12S0_WS	
5	IO3	GPIO_10		UART2_CTS	SPI0_CLK	SDIO_D3		PWM1_OUT	12S0_TX	I2C0_SDA
6	104	GPIO_09		UART2_RTS	SPI0_TXD	SDIO_D2	ADC4	PWM0_OUT	I2S0_MCK	I2C0_SCL
7	105	GPIO_03	UART0_LOG_TXD							
8	106	GPIO_04	UART0_LOG_RXD				ADC1			
10	107	GPIO_13	UART0_LOG_TXD	UART2_RTS		SDIO_D0	ADC6	PWM4_OUT	12S0_WS	I2C0_SDA
11	IO8	GPIO_12		UART2_RXD	SPI0_CS1	SDIO_CLK	ADC0	PWM3_OUT	I2S0_CLK	
12	109	GPIO_11		UART2_TXD	SPI0_RXD	SDIO_CMD	ADC5	PWM2_OUT	I2S0_RX	
14	IO10	GPIO_14	UART0_LOG_RXD	UART2_CTS		SDIO_D1		PWM5_OUT		I2C0_SCL
15	IO11	GPIO_06		UART1_TXD	SPI0_CLK			PWM3_OUT	12S0_TX	
16	IO12	GPIO_05		UART1_RXD	SPI0_CS1		ADC2	PWM2_OUT	I2S0_MCK	
17	IO13	GPIO_02						PWM2_OUT		

Note:

- 1, Pin7 is default configured as UART0_LOG_TXD, Pin8 is default configured as UART0_LOG_RXD, UART0 is used for firmware burning and print the booting log.
- 2, Pin11 is default configured as UART2_RXD, Pin12 is default configured as UART2_TXD, UART2 is used for AT communication, default baud rate is 115200.

5 Dimensions

5.1 Module Picture

5.2 Physical Dimensions

(unit: mm)

Figure 5-1 Physical Dimensions

5.3 Layout Recommendation

(unit: mm)

Figure 5-2 Layout recommendation

5.4 RF connector for external antenna

Unite:mm

Figure 5-3 RF connector for external antenna

6 Reference Design

6.1 Schematic reference design

Figure 6-1 Reference Schematic

Note:

Please place C1,C2 close to PIN 1.

It is recommended have power supply current greater than 500mA for the module.

6.2 Antenna clearance area requirements

When using PCB antenna on Wi-Fi module, make sure the distance between PCB on motherboard and other metal devices is at least 16mm. The shaded areas in the figure below need to be marked away from metal devices, sensors, interference sources, and other materials that may interfere with the signal.

Figure 6-2 Antenna clearance reference

7 Ordering Information

Part NO.	Description
	Hi3861V100, 802.11b/g/n, 1T1R,
FG3161HIXX-00	UART/GPIO/I2C/PWM/SPI/SDIO/I2S, PCB ANT, 18*20mm,
	PCB V2.0
	Hi3861V100, 802.11b/g/n, 1T1R,
FG3161HIXX-01	UART/GPIO/I2C/PWM/SPI/SDIO/I2S, IPEX RF CONNECTOR,
	18*20mm, PCB V2.0
	Hi3861LV100, 802.11b/g/n, 1T1R, LOW POWER,
FG3161HILX-00	UART/GPIO/I2C/PWM/SPI/SDIO/I2S, PCB ANT, 18*20mm,
	PCB V2.0
	Hi3861LV100, 802.11b/g/n, 1T1R, LOW POWER,
FG3161HILX-01	UART/GPIO/I2C/PWM/SPI/SDIO/I2S, IPEX RF CONNECTOR,
	18*20mm, PCB V2.0

8 The Key Material List

Item	Part Name	Description	Manufacturer
1	Crystal	3225 40MHz 10ppm	ECEC, TKD, Hosonic, JWT, TXC
*2	Chipset	Hi3861RNIV100 or Hi3861LRNIV100	Hisilicon
3	PCB	FR4, 2 LAYER, GREEN	XY-PCB, GDKX, Sunlord, SLPCB

*Note: For 3161H-I, the chipset is Hi3861RNIV100 For 3161H-IL, the chipset is Hi3861LRNIV100

9 Recommended Reflow Profile

Refer to IPC/JEDEC standard.

Peak Temperature: <250°C

Number of Times: ≤2 times

Figure 9-1 Reference reflow profile

10 Package Information

10.1 Reel

A roll of 800pcs

Figure 10-1 Package reel Reference

10.2 Carrier Tape Detail

Figure 10-2 Carrier tape detail

10.3 Packaging Detail

the take-up package

Using self-adhesive tape

Size of black tape:44mm*20.2m the cover tape :37.5mm*20.2m

Color of plastic disc: blue

A roll of 800pcs

NY bag size:415mm*450mm

size: 350X350X35mm

FD-LÎDK欧智通

The packing case size: 360X210X370mm

10.4 Moisture Sensitivity

The Modules is a Moisture Sensitive Device level 3, in according with standard IPC/JEDEC J-STD-020, take care all the relatives requirements for using this kind of components.

Moreover, the customer has to take care of the following conditions:

- a) Calculated shelf life in sealed bag: 12 months at <40°C and <90% relative humidity (RH)
- b) Environmental condition during the production: 30°C / 60% RH according to IPC/JEDEC J-STD-033A paragraph 5
- c) The maximum time between the opening of the sealed bag and the reflow process must be 168 hours if condition
- d) "IPC/JEDEC J-STD-033A paragraph 5.2" is respected
- e) Baking is required if conditions b) or c) are not respected
- f) Baking is required if the humidity indicator inside the bag indicates 10% RH or more