فصل هشتم بردار و مختصات

شناخت بردار:

حرکت و نیرو را با پاره خط های جهت دار نشان میدهیم .

. در ریاضی به پاره خط جهت دار **بردار** می گوییم. بردار \overrightarrow{OA} را به صورت \overrightarrow{OA} نشان می دهیم

نام گذاری بردار :

این کار به دو صورت انجام می شود :

 \overrightarrow{AB} : نخست نقطهٔ ابتدا ، سپس نقطهٔ انتها را نوشته و نماد o را روی آن قرار دهید . مانند

A → B

ب - با یک حرف کوچک لاتین که در وسط بردار قرار می گیرد ، انجام می شود . مانند :

اندازه (طول) بردار:

برای رسیدن به اندازهٔ بردار نخست به جهت حرکت بردار توجه نمایید (سمت راست + و سمت چپ -) و سپس تعداد واحد های بین ابتدا و انتهای بردار را بشمارید.

بردار های مساوی :

دو بردار وقتی برابرند که هم راستا ، هم اندازه و هم جهت باشند.

بردار های قرینه :

دو بردار وقتی قرینهٔ یکدیگرند که مساوی باشند اما در خلاف جهت هم حرکت کنند .

مانند :

توجه : جمع دو بردار قرینه ، <u>همیشه صفر</u> می شود .

مختصات :

از دو محور عمود بر هم تشکیل می شود . محور افقی را محور طول ها (x ها) و محور عمودی را محور عرض ها (y ها) می نامند .

محل برخورد دو محور را « مبدأ مختصات » می نامند و با حرف $\,0\,$ نمایش می دهند .

محورهای مختصات صفحه را به ۴ قسمت تقسیم

میکنند.

در شکل مقابل این ۴ ناحیه با عددهای ۱ تا ۴ مشخص شده اند.

مختصات نقطه:

. به طول و عرض هر نقطه که به صورت $\left[egin{array}{c} x \ y \end{array}
ight]$ نمایش داده میشود ، مختصات آن نقطه گفته می شود

این مختصات می تواند + ، − یا حتی ∘ باشد .

مختصات نقاط در ٤ قسمت :

اگر نقطه ای در قسمت ۱ (ربع یا ناحیهٔ اول) قرار گرفته باشد ، دارای طول و عرض مثبت می باشد .

۱ قسمت
$$\longrightarrow \begin{bmatrix} x & + \\ y & + \end{bmatrix}$$

اگر نقطه در قسمت ۲ (ربع یا ناحیهٔ دوم) قرار گرفته باشد ، دارای طول منفی و عرض مثبت می باشد .

Y
$$\longrightarrow \begin{bmatrix} x & - \\ y & + \end{bmatrix}$$

اگر نقطه در قسمت ۳ (ربع یا ناحیهٔ سوم) قرار گرفته باشد ، دارای طول و عرض منفی می باشد .

و اگر نقطه در قسمت ۴ (ربع یا ناحیهٔ چهارم) قرار گرفته باشد ، دارای طول مثبت و عرض منفی می باشد .

$$\stackrel{\bullet}{\longrightarrow} \begin{bmatrix} x & + \\ y & - \end{bmatrix}$$
 قسمت

اگر نقطه ای روی محور طول ها (x ها) قرار گرفته باشد ، طول آن نقطه عدد و عرض آن \circ می شود .

عدد
$$X$$
 عدد

. تمام **بردارهایی** که موازی محور x ها باشند نیز دارای عرض x می باشند x

اگر نقطه ای روی محور عرض ها (y ها) قرار گرفته باشد ، طول آن نقطه \circ و عرض آن عدد می شود .

عدد
$$y$$
 عدد y نقطه روی محور y ها

. تمام **بردارهایی** که موازی محور y ها باشند نیز دارای طول \circ می باشند *

مختصات مبدأ مختصات :

محل برخورد محورهای مختصات را با حرف 0 نمایش

می دهند و مختصات آن برابر است با :

$$0 = \begin{bmatrix} \circ \\ \circ \end{bmatrix}$$

جمع متناظر بردار:

در نوشتن جمع متناظر با یک بردار به مقدار (عدد) ابتدا ، اندازه و انتهای آن نیاز دارید تا با استفاده از دستور زیر بتوانید جمع متناظر بردار را بنویسید .

بردار انتقال :

به برداری گفته می شود که یک نقطه یا یک شکل را به اندازهٔ مختصاتش (از ابتدا به انتها) منتقل نماید .

قرينهٔ بردار:

قرینهٔ ابتدا و انتهای بردارمورد نظر را **نسبت** به مبدأ مختصات یا یکی از محورها (طول یا عرض) یافته و سپس بردار قرینه را رسم می کنیم .

قرينهٔ بردار نسبت به محور طول ها :

فقط عرض بردار قرینه می شود .

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{\text{imprior the proof of delt (all points)}} \begin{bmatrix} x \\ -y \end{bmatrix}$$

قرينهٔ بردار نسبت به محور عرض ها :

فقط طول بردار قرینه می شود .

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{\text{impr} \text{ showed actor}} \begin{bmatrix} -x \\ y \end{bmatrix}$$

قرينهٔ بردار نسبت به مبدأ مختصات :

طول و عرض بردار هر دو قرینه می شود .

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{\text{impr} \text{ ys optimized}} \begin{bmatrix} -x \\ -y \end{bmatrix}$$

یافتن مقدار مجهول درتساوی های برداری :

اگر مقدار مجهول (نا معلوم) در انتهای تساوی برداری بود ، مقدارهای ابتدا و اندازه را با هم جمع کنید . مانند :

$$\begin{bmatrix} \gamma \\ -\gamma \end{bmatrix} + \begin{bmatrix} -\gamma \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$x = Y + (-Y) = -1$$
$$y = (-Y) + 1 = -Y$$

اگر مقدار مجهول (نا معلوم) در ابتدا یا اندازهٔ تساوی برداری قرار گرفته بود ، مقدار انتها را منهای قسمت دیگر کنید .

$$\begin{bmatrix} r \\ -y \end{bmatrix} + \begin{bmatrix} -x \\ -r \end{bmatrix} = \begin{bmatrix} -r \\ r \end{bmatrix}$$
$$-x = (-r) - r \Rightarrow x = r$$
$$-y = r - (-r) \Rightarrow y = -\delta$$

تعیین مختصات بردار به کمک ترسیم:

از ابتدا و انتهای بردار ، دو خط به موازات محور طول و عرض به ترتیب رسم کنید تا در نقطه ای یکدیگر را قطع کنند و تشکیل یک مثلث قائم الزاویه دهند . حالا از ابتدا به سمت انتهای بردار حرکت کنید تا هم جهت و هم مختصات آن را مشخص کنید . مانند :

می بینید از ابتدای بردار ۷ واحد به سمت راست حرکت کرده ایم ، یعنی $\mathbf{V}+\mathbf{e}^{}$ واحد نیز به سمت بالا حرکت کرده ایم . پس مختصات بردارمورد نظر $\begin{bmatrix} + \ + \ + \end{bmatrix}$ خواهد بود .

