# **Problem 1: Decision Trees**

## Determine Overall Entropy:

$$E = H(S) = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$$

Overall:

• 
$$\#S = 20 + 170 + 139 + 45 + 130 + 30 + 11 + 255 = 800$$

• 
$$P(\text{yes}) = p_+ = \frac{20 + 170 + 139 + 45}{800} = \frac{374}{800} = .4675$$

• 
$$P(\text{no}) = p_{-} = 1 - .4675 = .5325$$

• 
$$E(\text{overall}) = -.4675 \log_2(.4675) - .5325 \log_2(.5325) = .9970$$

# Find the best Gain:

Size:

$$\circ$$
 #S = 20 + 170 + 130 + 30 = 350

$$p_{+} = \frac{20 + 170}{350} = \frac{190}{350} = .5429$$

$$p_{-} = 1 - .5429 = .4571$$

o 
$$E(big) = -.5429 \log_2(.5429) - .4571 \log_2(.4571) = .9947$$

### Small

$$\circ$$
 #S = 139 + 45 + 11 + 255 = 450

$$p_+ = \frac{139 + 45}{450} = \frac{184}{450} = .4089$$

$$p_{-} = 1 - .4089 = .5911$$

o 
$$E(\text{small}) = -.4089 \log_2(.4089) - .5911 \log_2(.5911) = .9759$$

• 
$$Gain(size) = .9970 - \left(\frac{350}{800}\right).9947 - \left(\frac{450}{800}\right).9759 = .0129$$

Orbit:

$$\circ \quad \#S = 20 + 139 + 130 + 11 = 300$$

$$p_{+} = \frac{20+139}{300} = \frac{159}{300} = .5300$$

$$p_{-} = 1 - .5300 = .4700$$

o 
$$E(\text{near}) = -.5300 \log_2(.5300) - .4700 \log_2(.4700) = .9974$$

$$\circ$$
 #S = 170 + 45 + 30 + 255 = 500

$$p_{-} = 1 - .5700 = .5700$$

o 
$$E(far) = -.4300 \log_2(.4300) - .5700 \log_2(.5700) = .9858$$

• 
$$Gain(orbit) = .9970 - \left(\frac{300}{800}\right).9974 - \left(\frac{500}{800}\right).9858 = .0069$$

| Size  | Orbit | Habitable | Count |
|-------|-------|-----------|-------|
| big   | near  | yes       | 20    |
| big   | far   | yes       | 170   |
| small | near  | yes       | 139   |
| small | far   | yes       | 45    |
| big   | near  | no        | 130   |
| big   | far   | no        | 30    |
| small | near  | no        | 11    |
| small | far   | no        | 255   |

### Start the Decision Tree:

There are only two attributes, *size* and *orbit*. The tree will start with *size* because it shows the most gain in the calculations.

### Calculate Orbit Probabilities

Calculating the probability of Y given both attributes for all combinations will give the final Yes/No leaves.

$$P(Y|\text{big } \land \text{ near}) = \frac{20}{150} = .1333$$

$$P(\bar{Y}|\text{big } \land \text{ near}) = 1 - .1333 = .8667$$

$$P(Y|\text{big } \land \text{ far}) = \frac{170}{200} = .8500$$

$$P(\bar{Y}|\text{big } \land \text{ far}) = 1 - .8500 = .1500$$

$$P(Y|\text{small } \land \text{ near}) = \frac{139}{150} = .9267$$

$$P(\bar{Y}|\text{small } \land \text{ near}) = 1 - .9267 = .0733$$

$$P(Y|\text{small } \land \text{ far}) = \frac{45}{300} = .1500$$

$$P(\bar{Y}|\text{small } \land \text{ far}) = 1 - .1500 = .8500$$

