Devoir à la maison 8 **Suites sommables**

À rendre pour le jeudi 9 janvier 2020

La difficulté de ce DM est progressive. L'objectif du présent DM est pour vous :

> Je suis autonome, et je fais le DM entièrement seul, par moi-même. Peu importe si je ne trouve pas.

> > Ce qui compte, c'est : je le fais seul.

En effet, le jour J, vous serez seul face à la pale/au sujet de concours. Vous devez donc vous habituer à cette situation.

Bon DM!

Bonnes vacances et bonnes fêtes de fin d'année!

Suites sommables

Notation

Dans tout ce problème, on note E l'ensemble des suites réelles indexées par \mathbb{N}^* . Autrement dit, on pose $E := \mathbb{R}^{\mathbb{N}^*}$.

Définition

Soit $(u_n)_{n\in\mathbb{N}^*}\in E$.

On dit que $(u_n)_n$ est sommable ssi la suite $\left(\sum_{k=1}^n |u_k|\right)_{n\in\mathbb{N}^*}$ est convergente.

0. Pour commencer

- **0.** Avant de chercher, et en survolant le problème, pour chacune des questions de ce DM, dites si à votre avis la question est $a\ priori$:
 - facile;
 - moyenne;
 - dure;
 - très dure.

On pourra présenter les réponses dans un tableau.

I. Exemples élémentaires

1. Soit $a \in \mathbb{R}$ tel que $a \neq 1$.

Soit $(u_n)_n$ la suite définie par

$$u_n = a^n$$
, pour $n \in \mathbb{N}^*$.

(a) Soit $n \in \mathbb{N}$.

Donner une expression simplifiée de $\sum_{k=1}^{n} |u_k|$.

- (b) On suppose |a| < 1. Montrer que $(u_n)_n$ est sommable.
- (c) On suppose que a > 1. Montrer que $(u_n)_n$ n'est pas sommable.
- (d) On suppose que a < -1. La suite $(u_n)_n$ est-elle sommable?
- **2.** La suite $(n)_{n \in \mathbb{N}^*}$ est-elle sommable?

II. Premières propriétés

3. Soit $(u_n)_n \in E$ une suite qu'on suppose non sommable. Montrer que

$$\sum_{k=1}^{n} |u_k| \longrightarrow +\infty.$$

- 4. Une suite sommable tend vers 0.
 - (a) Soit $(S_n)_{n\geqslant 1}\in\mathbb{R}^{\mathbb{N}^*}$ une suite convergente. Montrer que $S_{n+1}-S_n\longrightarrow 0$.
 - (b) Soit $(u_n)_n$ une suite sommable. Montrer que $u_n \longrightarrow 0$.
- **5.** Soient $(u_n)_n$ et $(w_n)_n$ deux suites sommables.
 - (a) Montrer que $(u_n + w_n)_n$ est sommable.
 - (b) Montrer que la suite produit $(u_n \times v_n)_n$ est sommable.

III. La suite harmonique n'est pas sommable

Dans toute cette partie, on étudie $(H_n)_n$ la suite harmonique définie par

$$H_n := \sum_{k=1}^n \frac{1}{k}$$

pour $n \in \mathbb{N}^*$.

6. (a) Montrer que

$$\forall n \in \mathbb{N}^*, \ H_{2n} - H_n \geqslant \frac{1}{2}.$$

(b) En déduire que

$$\forall p \in \mathbb{N}, \ H_{2^{p+1}} - H_{2^p} \geqslant \frac{1}{2}.$$

- (c) Soit $N \in \mathbb{N}$. Donner une expression simplifiée de $\sum_{p=0}^N H_{2^{p+1}} H_{2^p}$.
- (d) Montrer que

$$\forall n \in \mathbb{N}, \ H_n \geqslant 1 + \frac{\left\lfloor \log_2(n) \right\rfloor}{2}.$$

- (e) Montrer que la suite $\left(\frac{1}{n}\right)_n$ n'est pas sommable.
- 7. Soit $f:[1,+\infty[\longrightarrow \mathbb{R}]$ une fonction continue et décroissante.
 - (a) Soit $k \in \mathbb{N}^*$.
 - (i) Montrer que

$$\forall t \in [k, k+1], \ f(t) \leqslant f(k).$$

(ii) En déduire que

$$\int_{k}^{k+1} f(t) \, \mathrm{d}t \leqslant f(k).$$

(b) Soient $n, m \in \mathbb{N}^*$ tels que $m \geqslant n$.

Montrer que

$$\int_{n}^{m} f(t) dt + f(m) \leqslant \sum_{k=n}^{m} f(k) \leqslant f(n) + \int_{n}^{m} f(t) dt$$

8. (a) Soit $n \in \mathbb{N}$. Montrer que

$$\ln(n) + \frac{1}{n} \leqslant H_n \leqslant 1 + \ln(n).$$

- (b) En déduire d'une nouvelle façon que la suite $\left(\frac{1}{n}\right)_{n\geq 1}$ n'est pas sommable.
- (c) Donner un équivalent simple de $(H_n)_n$.

IV. Suites de Riemann

9. Critères de sommabilité par comparaison.

Soient $(u_n)_{n\in\mathbb{N}^*}\in E$ et $(A_n)_{n\in\mathbb{N}^*}\in E$. On suppose que $(A_n)_n$ est sommable.

(a) Montrer que

$$u_n = O(A_n) \implies (u_n)_n$$
 sommable

- (b) En déduire que :
 - (i) $u_n \leqslant A_n$ APCR $\Longrightarrow (u_n)_n$ sommable
 - (ii) $u_n \sim A_n \implies (u_n)_n$ sommable
 - (iii) $u_n = o(A_n) \implies (u_n)_n$ sommable

10. Sommabilité des suites de Riemann.

Soit $a \in \mathbb{R}$. Montrer que

$$\left(\frac{1}{n^a}\right)_{n\in\mathbb{N}^*}$$
 sommable $\iff a>1$

V. Règle de d'Alembert

- **11.** Soit $(u_n)_{n\geqslant 1}\in (\mathbb{R}_+^*)^{\mathbb{N}^*}$ et soit $\ell\in\mathbb{R}_+$
 - (a) Montrer que

$$\left(\frac{u_{n+1}}{u_n} \longrightarrow \ell \text{ et } \ell < 1\right) \implies (u_n)_n \text{ sommable.}$$

(b) Montrer que

$$\left(\frac{u_{n+1}}{u_n} \longrightarrow \ell \text{ et } \ell > 1\right) \implies (u_n)_n \text{ non sommable.}$$

12. Soit $x \in \mathbb{R}$. Montrer que $\left(\frac{x^n}{n!}\right)_{n \ge 1}$ est sommable.

VI. Suites décroissantes sommables

13. Soit $(u_n)_{n\geqslant 1}$ une suite décroissante et sommable.

Pour
$$n \in \mathbb{N}^*$$
, on note $T_n := \sum_{k=\lfloor n/2 \rfloor+1}^n u_k$.

- (a) Montrer que $T_n \longrightarrow 0$.
- (b) Montrer que

$$\forall n \in \mathbb{N}^*, \ nu_n \leqslant 2T_n.$$

(c) En déduire que $u_n = o\left(\frac{1}{n}\right)$ quand $n \to \infty$.

VII. Règle de Raabe-Duhamel

Dans cette partie, on s'intéresse à une suite $(u_n)_{n\geqslant 1}\in E$ à termes strictement positifs.

14. Soit $(v_n)_n \in E$ une autre suite à termes strictement positifs.

On suppose que

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n} \quad \text{APCR.}$$

Montrer que $u_n = O(v_n)$.

À partir de maintenant, dans cette partie, on suppose qu'il existe un réel λ tel que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\lambda}{n} + o\left(\frac{1}{n}\right)$$

et on fixe un tel λ .

- **15.** On suppose $\lambda < 0$.
 - (a) Montrer que $(u_n)_n$ est croissante à partir d'un certain rang.
 - (b) En déduire que $(u_n)_n$ n'est pas sommable.
- **16.** Désormais, on suppose que $\lambda \geqslant 0$.

Soit $\beta \in \mathbb{R}$.

On considère la suite $(v_n)_n$ définie par

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{1}{n^{\beta}}.$$

(a) Déterminer $\mu \in \mathbb{R}$ tel que

$$\frac{u_{n+1}}{u_n} - \frac{v_{n+1}}{v_n} = \frac{\mu}{n} + \mathrm{o}\bigg(\frac{1}{n}\bigg).$$

- (b) On suppose que $\lambda > 1$.
 - (i) Montrer que pour tout $\beta \in]1, \lambda[$ on a $u_n = O(v_n)$.
 - (ii) En déduire si la suite $(u_n)_n$ est sommable.
- (c) On suppose $\lambda \in]0,1[$. La suite $(u_n)_n$ est-elle sommable?