```
In [10]: | import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    from sklearn.model_selection import train_test_split
```

```
In [20]: #read the dataset
salary_data = pd.read_csv('Salary_dataset.csv')
#print the head and tail to know the data
salary_data.head()
```

Out[20]:

YearsExperience		Salary
0	1.2	39344
1	1.4	46206
2	1.6	37732
3	2.1	43526
4	2.3	39892

```
In [21]: N salary_data.tail()
```

Out[21]:

	YearsExperience	Salary
25	9.1	105583
26	9.6	116970
27	9.7	112636
28	10.4	122392
29	10.6	121873

1 of 4

```
In [23]: ▶ salary_data.describe()
```

Out[23]:

	YearsExperience	Salary
count	30.000000	30.000000
mean	5.413333	76004.000000
std	2.837888	27414.429785
min	1.200000	37732.000000
25%	3.300000	56721.750000
50%	4.800000	65238.000000
75%	7.800000	100545.750000
max	10.600000	122392.000000

```
In [24]: #create independent and dependent variables
indepent_var = salary_data['YearsExperience'].values.reshape(-1,1)
dependent_var = salary_data['Salary']
```

```
In [25]: #create a scatter plot
    plt.scatter(indepent_var,dependent_var)
    plt.xlabel("Years of Experience")
    plt.ylabel("Salary($)")
    plt.title("Salary based on Experience")
```

Out[25]: Text(0.5, 1.0, 'Salary based on Experience')

2 of 4 23-01-2024, 13:23

```
#assign the independent and dependent var with train_test_split
In [169]:
              #dividing the training data and testing data, assi
              train_x,test_x,train_y,test_y = train_test_split(indepent_var,dependent_va
           ▶ lin_reg_model = LinearRegression()
In [170]:
In [171]:
           ▶ lin_reg_model.fit(train_x,train_y)
   Out[171]:
              ▼ LinearRegression
              LinearRegression()
In [172]:
           #with test_x, we give the machine values and let the model predict our values
              predictive_val = lin_reg_model.predict(test_x)
              predictive_val
   Out[172]: array([ 36144.62176044, 34238.05465324, 66649.69547576, 59023.4270469
                      91435.06786946, 80948.94877982, 101921.1869591 , 52350.4421717
              1,
                      42817.60663567])
           #calculate mean square error
In [173]:
              mse = mean_squared_error(predictive_val, test_y)
In [174]:
           ⋈ mse
   Out[174]: 64406629.3852596
```

3 of 4 23-01-2024, 13:23

```
In [175]: #plot the values
   plt.scatter(train_x,train_y,color='blue',label='training set')
   plt.scatter(test_x,test_y,color='red',label='test set')
   plt.plot(test_x,predictive_val,color="green",label="prediction line")
   plt.legend()
   plt.xlabel("Years of Experience")
   plt.ylabel("Salary($)")
   plt.title("Salary based on Experience")
```

Out[175]: Text(0.5, 1.0, 'Salary based on Experience')

4 of 4 23-01-2024, 13:23