NYCU Pattern Recognition, HW1

310551079 梁友誠

Part. 1, Coding:

1. The learning curve of the training.

2. Mean Square Error of prediction and ground truth is: $Mean((y test-prediction)^2) = 0.0766268978962181$

```
# Q2. Mean Square Error of your prediction and ground truth
mse = np.mean((y_pred-y_test)**2)
print(f'MSE: {mse}')
```

MSE: 0.0766268978962181

3. The weights and intercepts of my linear model:

```
print(f'intercepts(w0): {w0}')
print(f'weights(w1): {w1}')

# Visualize prediction with y_test
pred_fig(x_test, y_test, y_pred, "prediction")
```


4. The main difference between Gradient Descent, Mini-Batch Gradient Descent, and Stochastic Gradient Descent is the **frequency of updating parameters**.

In Gradient Descent, all the training data is taken into consideration to take a single step, so that's just one step of gradient descent in one epoch.

In Stochastic Gradient Descent, we **consider just one training data** at a time to update the parameters. So in one iteration, it will update the weights by n times (n refers to the number of training data).

In Mini-Batch Gradient Descent, we use a batch of a fixed number of training data which is less than the actual dataset and call it a minibatch, and then use mini-batch to update weights. So in one iteration, the model will calculate the mean gradient of the mini-batch to update the weights. For example, if we have 100 training data and divide it into 10 batches (10 data for each batch), the model will use these 10 batches to update weights by 10 times in one iteration.

Part. 2, Questions:

Question 1 R { 3 apples } 4 oranges } 3 guavas	(1) The probability of selecting shares $\frac{1}{5} \times \frac{3}{10} + \frac{1}{5} \times \frac{4}{7} + \frac{1}{5} \times \frac{4}{10}$ $= \frac{17}{50} + \frac{1}{5} \times \frac{4}{10} + \frac{1}{5} \times \frac{4}{10}$
B 2 orange 0.4 2 guavas	(1) The probability of selecting apple that came from blue box:
G 4 or arges 0.4 4 guavas	$\frac{1}{5} \times \frac{1}{4}$ $\frac{1}{5} \times \frac{1}{10} \times \frac{1}{5} \times \frac{11}{10}$ $\frac{1}{5} \times \frac{1}{10} \times \frac{1}{5} \times \frac{11}{10}$ $\frac{1}{5} \times \frac{1}{5} \times \frac{11}{5} \times 11$
	= 1 #

Question 1: Let R1 be the distribution are of class C1 => pcmistake) = (p, pcx, cr) dx + fp, pcx, ci) dx In error made in Ri always have pccilx) > pccilx) and we know if $a \leq b$, $a \leq (ab)^{\frac{1}{2}}$ we can get p(C_1|x) { p(a|x) p(a|x)} =) | p(x, w) = | p(c) (x) p(x) dx ... produce rule < \int \{ p(c|x) p(c|x) | \frac{1}{2} p(x) dx = JR1 { p(x, c) p(x, a) } = dx similar situations apply R1, we get pc 41x) > pcc/x) $= \int_{R_{\perp}} p(x, W_1) = \int_{R_{\perp}} p(x) \chi(x) p(x) dx$ = JR= { p(x, C1) p(x, C2)} = dx So, pc mistake) = SRI pcx, C1)dx + Sp. pcx, C1)dx = SRI (pcx, a)pcx, ce) = dx + SRI (pcx.a) pcx, a) = dx = 5 { p(x, c,) p(x, c) } dx

```
Question 3.
(1) We know Ex[x|y] = [pcx/z) +cxxdx
      and Ey (x) = Sp(y) f(y) dj
   So we get Ey[Ex(x/y]]
             = Ey [ pcx/y) fcx)dx]
              = If peg) pexiz) fex) dx dy
              = SS p(x/z) p(z) f(x) dxdy

produce m/e
              = II p(x, 7) fzx) dx dy sum mle
              = | p(x) f(x) 1x
              = E(x) #
e) By VAY(X) = E(X-ECX)) = E(X) - (ECX))
 we can derive
     Ey ( VNY x ( X18) ] = Ey ( Ex ((x - Ex ( X18)) 1 18)
                     = Ey [(Ex (x/)]) ] - (Ey [ Ex (x/)])
    VAYy ( Ex (XI))] = Ex ((Ex (XI)) - Ex (Ex (XI)))))
                   = Ex(Ex(x)13]] - Ex((Ex(x13))))
 we also know that Ey(Ex(XII)] = E(X) from part (1)
 so we can get Ey [ VAY x (x (y)) + Vary (Ex (x/y)]
                  = Ex (Ex(x'18]] - (Ex(Ex(x18]])
                  = E(X) - E(X)
                  = var(x] #
```