

Truss FEM geometric nonlinearities

Kim Lau Nielsen

What does this mean to you?

Department of Civil and Mechanical Engineering Section of Solid Mechanics Technical University of Denmark

(Repetition)

Materials Behavior

Linear materials:

$$\sigma = E \varepsilon$$

$$\frac{\partial \sigma}{\partial \varepsilon} = E = E_t$$

Nonlinear materials:

$$rac{\partial \sigma}{\partial arepsilon} = E_t$$
 Slope of σ – $arepsilon$ curve

$$\partial \sigma = E_t \, \partial \varepsilon$$

Common mistake ("copy/paste from Day 1"):

$$\{R\} = \{R_{int}\} - \{R_{ext}\} = \sum_{e} \{B_0\} \ N^e \ L_0^e - \{P\} = \{0\}.$$
 with $N^e = A^e E \{E\} = A^e E \{B_0\}^T \{d\}$

Incremental Procedures

- Explicit methods (No equilibrium Euler methods)
 - Pure Euler Method
 - Euler Method with one-step correction

- Implicit methods (equilibrium w. Newton-Raphson iterations)
 - Newton-Raphson Method (NR)
 - Modified NR Method

(Repetition)

Pure Euler Method

Recall the cantilever beam

Solution at increment n:

$$\{D\}^n = \{D\}^{n-1} + \{\Delta D\}$$
 Add displacement increments

(Repetition)

Pseudo-code (Pure Euler Method)

$$P^{0} = 0$$

$$\Delta P^{n} = P^{final}/n_{incr}$$

$$D^{0} = 0$$

The most common programming error!

!!Remember to initialize arrays!!

For load-increment $n = 1/2, ..., n_{incr}$

$$P^n = P^{n-1} + \Delta P^n$$

Calculate $K_t(D^{n-1})$

$$\Delta D^n = (K_t(D^{n-1}))^{-1} \Delta P^n \quad (NB! \text{ Remember}$$

$$D^n = D^{n-1} + \Delta D^n$$

boundary conditions)

End load-increments

where *nincr* is the number of load increments.

Linear strain

Cauchy strain (engineering strain)

$$\varepsilon_L = \frac{L_1 - L_0}{L_0}$$

Bar element:

$$L_{1} = \sqrt{(\Delta x + \Delta u)^{2} + (\Delta y + \Delta v)^{2}}$$

$$\approx L_{0} + \frac{\Delta x \Delta u + \Delta y \Delta v}{L_{0}}$$

$$\Rightarrow \varepsilon_{L} = \frac{\Delta x \Delta u + \Delta y \Delta v}{L_{0}^{2}}$$

(Recall from day 1-2)

Small displacement assumption

FEM notation:

$$\varepsilon_L = \frac{1}{L_0^2} \{ -\Delta x - \Delta y \Delta x \Delta y \} \{d\} = \{B_0\}^T \{d\}$$

Different strain measures

Cauchy (engineering strain):

$$\varepsilon = \frac{L_1 - L_0}{L_0}$$

Swaiger:

$$\varepsilon = \frac{L_1 - L_0}{L_1}$$

Green-Lagrange strain:

$$\varepsilon_G = \frac{L_1^2 - L_0^2}{2L_0^2}$$

True strain:

$$d\varepsilon = \frac{dL}{L}$$
 \Rightarrow $\int_0^\varepsilon d\varepsilon = \int_{L_0}^{L_1} \frac{dL}{L}$ \Rightarrow $\varepsilon = \ln(\frac{L_1}{L_0})$

Two formulations

We choose this one

- Total Lagrangian approach
 - All quantities are referred back to the initial material configuration (the reference frame), where also the integration is carried out.
 - "Non-physical" stress and strain measures are employed.
- Updated Lagrangian approach
 - All quantities refers to the current configuration (or deformed shape), where also the integration is carried out.
 - Physical stress and strain measures are employed.

Principle of Virtual Work

$$\int_{V} \{\delta \mathbf{\varepsilon}\}^{T} \{\sigma\} dV = \int_{S} \{\delta \mathbf{u}\}^{T} \{F\} dS$$

Notice; the energy will always be a physical quantity.

Alternative strain measures

Exact Cauchy strain for bar element

$$\varepsilon = \frac{\sqrt{(\Delta x + \Delta u)^2 + (\Delta y + \Delta v)^2} - L_0}{L_0}$$

This is, however, not practical For FEM computations.

• The Green-Lagrange strain

$$\varepsilon_G = \frac{L_1^2 - L_0^2}{2L_0^2}$$

(For small elongation/compression)

Expanding terms:
$$L_1^2 - L_0^2 = (\Delta x + \Delta u)^2 + (\Delta y + \Delta v)^2 - (\Delta y^2 + \Delta x^2)$$

$$\varepsilon_G = \frac{\Delta x \Delta u + \Delta y \Delta v}{L_0^2} + \frac{\Delta u^2 + \Delta v^2}{2L_0^2}$$

$$= \varepsilon_L + \frac{\Delta u^2 + \Delta v^2}{2L_0^2}$$

Green-Lagrange strain

$$\varepsilon_G = \frac{\Delta x \Delta u + \Delta y \Delta v}{L_0^2} + \frac{\Delta u^2 + \Delta v^2}{2L_0^2}$$

FEM notation:

$$\varepsilon_G = \{B_0\}^T \{d\} + \frac{1}{2} \{d\}^T \frac{1}{L_0^2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \{d\}$$
$$= \{B_0\}^T \{d\} + \frac{1}{2} \{B_d\}^T \{d\}$$

where

$$\{B_d\} = \frac{1}{L_0^2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \{d\} = \frac{1}{L_0^2} \{-\Delta u - \Delta v \Delta u \Delta v\}^T$$

Green-Lagrange strain

FEM notation:

$$\varepsilon_G = \{B_0\}^T \{d\} + \frac{1}{2} \{B_d\}^T \{d\}$$

Nonlinear strain displacement vector:

$$\frac{\partial \varepsilon_G}{\partial \{d\}} = \{B_0\}^T + \{d\}^T \frac{1}{L_0^2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

$$= \{B_0\}^T + \{B_d\}^T = \{\bar{B}\}^T$$

DIU

Nonlinear FEM

Internal forces (for bar elements):

$$\delta \varepsilon_G = \{\bar{B}\}^T \{\delta d\}$$

$$\Rightarrow \{R_{\rm int}\} = \sum_{e} \{\bar{B}\} N_G^e L_0^e$$

Recall from linear analysis

$$\{R_{\mathsf{int}}\} = \sum_{e} \{B_0\} N^e L_0^e$$

Bar forces:

$$N_G^e = A^e \sigma_G^e$$
$$\sigma_G^e = E \varepsilon_G = E(\{B_0\}^T + \frac{1}{2} \{B_d\}^T) \{d\}$$

Notice; the stress is not physical, but it is the 2nd Piola-Kirchhoff stress measure "work conjugate" to the Green-Lagrange strain.

The corresponding physical (engineering) quantities are;

$$\sigma^e = \sigma_G^e L_1/L_0$$
 and $N^e = N_G^e L_1/L_0$

Tangent Stiffness Matrix

Definition (just like Day 2):

$$[K_t] = \frac{\partial \{R\}}{\partial \{D\}} = \frac{\partial \{R_{\text{int}}\}}{\partial \{D\}} = \frac{\partial}{\partial \{D\}} \sum_e \{\bar{B}\} N_G^e L_0^e \qquad \text{(Recall that;} \{R\} = \{R_{\text{int}}\} - \{R_{\text{ext}}\})$$

$$= \sum_e \left(\frac{\partial \{\bar{B}\}}{\partial \{d\}} N_G^e L_0^e + \{\bar{B}\} L_0^e \frac{\partial N_G^e}{\partial \{d\}}\right)$$

Computing terms:

$$\frac{\partial \{\bar{B}\}}{\partial \{d\}} = \frac{\partial \{B_d\}}{\partial \{d\}} = \frac{1}{L_0^2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial N_G^e}{\partial \{d\}} = A^e E \frac{\partial \varepsilon_G}{\partial \{d\}} = A^e E \{\bar{B}\}^T$$

Tangent Stiffness Matrix

· Collecting terms:

$$[K_t] = \sum_{e} \left(\frac{\partial \{B_d\}}{\partial \{d\}} N_G^e L_0^e + A^e E L_0^e \{\bar{B}\} \{\bar{B}\}^T \right)$$
 (Recall that; $\{\bar{B}\}^T = \{B_0\}^T + \{B_d\}^T$)
$$= \sum_{e} \left([k_\sigma^e] + [k_0^e] + [k_d^e] \right)$$

Contributions:

$$[k_{\sigma}^e] = \frac{\partial \{B_d\}}{\partial \{d\}} N_G^e L_0^e = \frac{1}{L_0^2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} N_G^e L_0^e \text{ (Stress stiffness)}$$

$$[k_0^e] = A^e E L_0^e \{B_0\} \{B_0\}^T \quad \text{(Initial linear stiffness)}$$

$$[k_d^e] = A^e E L_0^e \{B_0\} \{B_d\}^T + A^e E L_0^e \{B_d\} \{B_0\}^T + A^e E L_0^e \{B_d\} \{B_d\}^T \text{ (Displacement stiffness)}$$

Figure 3.1: The 2-bar VonMises truss.

Exercise 3.1

Implement a (non-modified) NR geometrically non-linear truss analysis algorithm based on an incremental scheme.

Use the program to solve the Von Mises truss problem illustrated in Figure 3.1 (use e.g. P = 0.03 and 20 increments). Compare the result with the analytical solution (Krenk 1993)

$$P = 2EA \left(\frac{a}{L_0}\right)^3 \left[\frac{D}{a} - \frac{3}{2} \left(\frac{D}{a}\right)^2 + \frac{1}{2} \left(\frac{D}{a}\right)^3\right],\tag{3.19}$$

where D is the vertical displacement of the center node and a is the undeformed height and L_0 is the undeformed bar length. Remark that this solution assumes $a \ll L_0$.

Figure 3.2: A modified VonMises truss problem.

Exercise 3.2

Solve the problem shown in Figure 3.2 for varying spring stiffnesses *k* and *plot the solution in a force-displacement diagram*.

Here the analytical solution is

$$P = 2EA \left(\frac{a}{L_0}\right)^3 \left[\frac{D}{a} - \frac{3}{2}\left(\frac{D}{a}\right)^2 + \frac{1}{2}\left(\frac{D}{a}\right)^3\right] + kD. \tag{3.20}$$

NB! Remember to include the spring stiffness in both the stiffness matrix and the residual.

Exercise 3.3

Solve the bigger problem sketched in Figure 3.3. Can you relate the response to the analytical expression for limit loads of slender elastic columns?

$$P_{crit} = \frac{\pi^2 EI}{4 L^2} \tag{3.21}$$

Figure 3.3: A slender truss beam. (NB! Crossing beams are not connected).

Hint: Find the effective product of Young's modulus and the moment of inertia EI by subjecting the beam to a small vertical load at the end point (as seen in Figure 3.4) and use your knowledge of simple beam theory.

Figure 3.4: A slender truss beam in bending.

- On the hand-in exercises ...
 - Ole will introduce the last two sub-exercises next Wednesday
 - Four assignments (one related to each day)
 - Hand-in a report of 4 pages no later than Tuesday (on 27/9) at 10pm
 - Solution to *exercises can be added to the hand-in by adding one extra page.