Alguns Sistemas Lineares Especiais

Prof. Americo Cunha

Universidade do Estado do Rio de Janeiro - UERJ

americo.cunha@uerj.br

www.americocunha.org

Sistemas lineares de grande porte são muito caros!

$$A\mathbf{x} = \mathbf{b}$$

Sistemas lineares de grande porte são muito caros!

$$A\mathbf{x} = \mathbf{b}$$

Mas em alguns sistemas a matriz tem uma estrutura especial, que facilita o cálculo de uma solução!

Sistema $n \times n$ em formato diagonal

$$\begin{bmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & & \\ & & & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- Sistema não singular, i.e., $\det A \neq 0$;
- A matriz $A \in \mathbb{R}^{n \times n}$ é diagonal, i.e., todas as entradas fora da diagonal principal são iguais a zero $(a_{ij} = 0, i \neq j)$.

Sistema $n \times n$ em formato diagonal

$$\begin{cases} a_{11} x_1 & = b_1 \\ a_{22} x_2 & = b_2 \\ & \ddots & \vdots \\ a_{nn} x_n & = b_n \end{cases}$$

- A representação acima corresponde a um sistema desacoplado, pois cada equação é independente das demais (as equações tem apenas uma variável);
- A ordem em que as equações são resolvidas não é relevante!

$$x_i = \frac{b_i}{a_{ii}}, \qquad i = 1, \cdots, n$$

Sistema $n \times n$ em formato triangular inferior

$$\begin{bmatrix} a_{11} & & & & & \\ a_{21} & a_{22} & & & & \\ a_{31} & a_{32} & a_{33} & & & \\ \vdots & \vdots & \vdots & \ddots & & \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

- Sistema não singular, i.e., $\det A \neq 0$;
- A matriz $A \in \mathbb{R}^{n \times n}$ é triangular inferior, i.e., todas as entradas acima da diagonal principal são iguais a zero $(a_{ij} = 0, i < j)$.

Sistema $n \times n$ em formato triangular inferior

$$\begin{cases} a_{11} x_1 & = b_1 \\ a_{21} x_1 + a_{22} x_2 & = b_2 \\ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 & = b_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} x_1 + a_{n2} x_2 + a_{n3} x_3 + \cdots + a_{nn} x_n & = b_n \end{cases}$$

- A representação acima corresponde a um sistema desacoplado de cima para baixo, pois cada equação depende apenas das equações anteriores;
- As equações devem ser resolvidas de cima para baixo, através de um processo de substituição progressiva:

$$x_i = rac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j}{a_{ii}}, \qquad i = 1, \cdots, n$$

Sistema $n \times n$ em formato triangular superior

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{22} & a_{23} & \cdots & a_{2n} \\ & & a_{33} & \cdots & a_{3n} \\ & & & \ddots & \vdots \\ & & & & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix}$$

- Sistema não singular, i.e., $\det A \neq 0$;
- A matriz $A \in \mathbb{R}^{n \times n}$ é triangular superior, i.e., todas as entradas abaixo da diagonal principal são iguais a zero $(a_{ij} = 0, i > j)$.

Sistema $n \times n$ em formato triangular superior

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + \cdots + a_{1n} x_n = b_1 \\ a_{22} x_2 + a_{23} x_3 + \cdots + a_{2n} x_n = b_2 \\ a_{33} x_3 + \cdots + a_{3n} x_n = b_3 \\ \vdots & \vdots \\ a_{nn} x_n = b_n \end{cases}$$

- A representação acima corresponde a um sistema desacoplado de baixo para cima, pois cada equação depende apenas das equações posteriores;
- As equações devem ser resolvidas de baixo para cima, através de um processo de substituição regressiva:

$$x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} x_j}{a_{ii}}, \qquad i = n, \dots, 1$$

Algoritmo para um sistema triangular superior

```
Input: A, b
 1: Compute the length of b
 2: Allocate memory for x
 3: for i=n:1 do
 4: x_i = b_i
    for j=i+1:n do
    x_i = x_i - a_{ij} x_j end for
    x_i = x_i/a_{ii}
 9: end for
10: return
Output: x
```

Esse algoritmo tem uma implementação pedagógica da substituição regressiva,

não é o mais eficiente do ponto de vista computacional.

Exercício computacional:

Adapte esse algoritmo para um sistema triangular inferior. 🔾

Implementação em GNU Octave

```
function x = backwardsub(A,b)
  n = length(b);
  x = zeros(n,1);
  for i = n:-1:1
     x(i) = b(i);
     for j = i+1:n
          x(i) = x(i) - A(i,j)*x(j);
  end
     x(i) = x(i)/A(i,i);
  end
end
```


Implementação em GNU Octave

```
function x = forwardsub(A,b)
  n = length(b);
  x = zeros(n,1);
  for i = 1:n
     x(i) = b(i);
     for j = 1:i-1
         x(i) = x(i) - A(i,j)*x(j);
  end
     x(i) = x(i)/A(i,i);
  end
end
```


Experimento Computacional 1

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ & 1 & \cdots & 1 & 1 \\ & & \ddots & & \vdots \\ & & & 1 & 1 \\ & & & & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} n \\ n-1 \\ \vdots \\ 2 \\ 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & & & & \\ 1 & 1 & & & \\ \vdots & & \ddots & & \\ 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ \vdots \\ n-1 \\ n \end{bmatrix} \Longrightarrow \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}$$

flops (triangular) =
$$1 + 3 + 5 + \cdots + 2n - 1$$

flops (triangular) =
$$\underbrace{1 + 3 + 5 + \cdots + 2n - 1}_{\text{Soma de uma P.A.}}$$

flops (triangular) =
$$\underbrace{1 + 3 + 5 + \cdots + 2n - 1}_{\text{Soma de uma P.A.}}$$

$$= \underbrace{\frac{1}{2} n(2n - 1 + 1)}_{\text{Soma de uma P.A.}}$$

flops (triangular) =
$$\underbrace{1 + 3 + 5 + \cdots + 2n - 1}_{\text{Soma de uma P.A.}}$$

= $\underbrace{\frac{1}{2}n(2n - 1 + 1)}_{\text{=}}$

flops (triangular) =
$$\underbrace{1 + 3 + 5 + \cdots + 2n - 1}_{\text{Soma de uma P.A.}}$$

= $\underbrace{\frac{1}{2}n(2n - 1 + 1)}_{\text{=}}$

Processamento:

Memória:

flops (triangular) =
$$\underbrace{1 + 3 + 5 + \cdots + 2n - 1}_{\text{Soma de uma P.A.}}$$

= $\underbrace{\frac{1}{2}n(2n-1+1)}_{\text{=}}$

Processamento:

Memória:

flops (triangular)
$$\sim n^2$$

$$mem(triangular) = n(n+1)/2 + 2n$$

flops (triangular) =
$$\underbrace{1 + 3 + 5 + \cdots + 2n - 1}_{\text{Soma de uma P.A.}}$$

= $\underbrace{\frac{1}{2}n(2n-1+1)}_{\text{=}}$

Processamento:

Memória:

flops (triangular)
$$\sim n^2$$

$$mem(triangular) = n(n+1)/2 + 2n$$

flops (diagonal)
$$\sim n$$

$$mem(diagonal) = 3 n$$

Tempo de processamento para um sistema triangular

Intel Core i7 em 2011: 12×10^9 FLOPS Intel Core i7 em 2021: 52×10^9 FLOPS

FLOPS = flops por segundo

n	flops	Tempo de CPU	
		2011	2021
10	10 ²	8 ns	2 ns
10^{2}	10^{4}	8 μ s	$2~\mu$ s
10^{3}	10^{6}	83 μ s	$19~\mu$ s
10^{4}	10 ⁸	8 ms	2 ms
10^{5}	10^{10}	0.8 s	0.2 s
10^{6}	10^{12}	83 s	19 s
10^{7}	10^{14}	139 min	53 min
10^{8}	10^{16}	9,65 dias	2,23 dias

Uso de memória para um sistema triangular

1 double = 8 bytes

n	entradas	memória
10	75	0,6 kB
10^{2}	5250	41 kB
10^{3}	502×10^3	4 MB
10 ⁴	$50 imes 10^6$	382 MB
10^{5}	$5 imes 10^9$	37 GB
10^{6}	500×10^9	4 TB
10^{7}	50×10^{12}	364 TB
10 ⁸	$5 imes 10^{15}$	35PB

Uso de memória ppara um sistema triangular

1 double = 8 bytes

n	entradas	memória
10	75	0.6 L.D.
$\frac{10}{10^2}$	75 5250	0,6 kB 41 kB
10^{3}	502×10^3	4 MB
10 ⁴	50×10^{6}	382 MB
10^{5} 10^{6}	5×10^9 500×10^9	37 GB
10 ⁷	500×10^{3} 50×10^{12}	4 TB 364 TB
10 ⁸	5×10^{15}	35 PB

Moral sobre sistemas lineares especiais

- 1. Sistemas lineares de grande porte com uma estrutura especial (triangular ou diagonal) podem ser resolvidos num tempo de processamento aceitável;
- Sistemas lineares de grande porte demandam uma enorme quantidade de memória, mesmo quando tem estrutura triangular. Na prática isso pode ser um fator limitante mais significativo que o tempo de processamento;
- 3. O método numérico a ser utilizado na solução do sistema linear, bem como a estratégia de armazenamento, devem ser escolhidos com sabedoria!

Para pensar em casa ...

Exercício computacional:

Pense num algoritmo eficiente (em termos de processamento e uso de memória) para resolver um sistema diagonal. Implemente esse algoritmo no ambiente GNU Octave.

Exercício computacional:

Você consegue pensar num algoritmo otimizado para fazer a substituição progressiva/regressiva? Implemente esses dois algoritmos otimizados no ambiente GNU Octave.

Dica:

Use o produto matricial para computar a soma.

Como citar esse material?

A. Cunha, *Alguns Sistemas Lineares Especiais*, Universidade do Estado do Rio de Janeiro – UERJ, 2021.

Essas notas de aula podem ser compartilhadas nos termos da licença Creative Commons BY-NC-ND 3.0, com propósitos exclusivamente educacionais.

