MATEMATIKA DISKRIT FUNGSI

Fungsi

Misalkan A dan B himpunan.
 Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B.

Jika f adalah fungsi dari A ke B kita menuliskan

$$f: A \to B$$

yang artinya f **memetakan** A ke B.

- A disebut daerah asal (domain) dari f dan B disebut daerah hasil (codomain) dari f.
- Nama lain untuk fungsi adalah **pemetaan** atau **transformasi**.
- Kita menuliskan f(a) = b jika elemen a di dalam A dihubungkan dengan elemen b di dalam B.

- Jika f(a) = b, maka b dinamakan **bayangan** (image) dari a dan a dinamakan **pra-bayangan** (pre-image) dari b.
- Himpunan yang berisi semua nilai pemetaan f disebut **jelajah** (range) dari f. Perhatikan bahwa jelajah dari f adalah himpunan bagian (mungkin proper subset) dari B.

- Fungsi adalah relasi yang khusus:
 - 1. Tiap elemen di dalam himpunan *A* harus digunakan oleh prosedur atau kaidah yang mendefinisikan *f*.
 - 2. Frasa "dihubungkan dengan tepat satu elemen di dalam B" berarti bahwa jika $(a, b) \in f$ dan $(a, c) \in f$, maka b = c.

- Fungsi dapat dispesifikasikan dalam berbagai bentuk, diantaranya:
 - 1. Himpunan pasangan terurut. Seperti pada relasi.
 - 2. Formula pengisian nilai (assignment). Contoh: f(x) = 2x + 10, $f(x) = x^2$, dan f(x) = 1/x.
 - 3. Kata-kata Contoh: "f adalah fungsi yang memetakan jumlah bit 1 di dalam suatu *string* biner".
 - 4. Kode program (*source code*)
 Contoh: Fungsi menghitung |x|

```
function abs(x:integer):integer;
begin
   if x < 0 then
      abs:=-x
   else
      abs:=x;
end;</pre>
```

Contoh 1. Relasi

$$f = \{(1, u), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B. Di sini f(1) = u, f(2) = v, dan f(3) = w. Daerah asal dari f adalah A dan daerah hasil adalah B. Jelajah dari f adalah $\{u, v, w\}$, yang dalam hal ini sama dengan himpunan B.

Contoh 2. Relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B, meskipun u merupakan bayangan dari dua elemen A. Daerah asal fungsi adalah A, daerah hasilnya adalah B, dan jelajah fungsi adalah $\{u, v\}$.

Contoh 3. Relasi

$$f = \{(1, u), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3, 4\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena tidak semua elemen A dipetakan ke B.

Contoh 4. Relasi

$$f = \{(1, u), (1, v), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena 1 dipetakan ke dua buah elemen B, yaitu u dan v.

Contoh 5. Misalkan $f: \mathbb{Z} \to \mathbb{Z}$ didefinisikan oleh $f(x) = x^2$. Daerah asal dan daerah hasil dari f adalah himpunan bilangan bulat, dan jelajah dari f adalah himpunan bilangan bulat tidak-negatif.

• Fungsi f dikatakan **satu-ke-satu** (one-to-one) atau **injektif** (injective) jika tidak ada dua elemen himpunan A yang memiliki bayangan sama.

Contoh 6. Relasi

$$f = \{(1, w), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w, x\}$ adalah fungsi satu-ke-satu,

Tetapi relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi satu-ke-satu, karena f(1) = f(2) = u.

Contoh 7. Misalkan $f: \mathbb{Z} \to \mathbb{Z}$. Tentukan apakah $f(x) = x^2 + 1$ dan f(x) = x - 1 merupakan fungsi satu-ke-satu?

Penyelesaian:

- (i) $f(x) = x^2 + 1$ bukan fungsi satu-ke-satu, karena untuk dua x yang bernilai mutlak sama tetapi tandanya berbeda nilai fungsinya sama, misalnya f(2) = f(-2) = 5 padahal $-2 \ne 2$.
- (ii) f(x) = x 1 adalah fungsi satu-ke-satu karena untuk $a \neq b$, $a 1 \neq b 1$.

Misalnya untuk x = 2, f(2) = 1 dan untuk x = -2, f(-2) = -3.

- Fungsi f dikatakan dipetakan **pada** (onto) atau **surjektif** (surjective) jika setiap elemen himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A.
- Dengan kata lain seluruh elemen *B* merupakan jelajah dari *f*. Fungsi *f* disebut fungsi pada himpunan *B*.

Contoh 8. Relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi pada karena w tidak termasuk jelajah dari f.

Relasi

$$f = \{(1, w), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ merupakan fungsi pada karena semua anggota B merupakan jelajah dari f.

Contoh 9. Misalkan $f: \mathbb{Z} \to \mathbb{Z}$. Tentukan apakah $f(x) = x^2 + 1$ dan f(x) = x - 1 merupakan fungsi pada?

Penyelesaian:

- (i) $f(x) = x^2 + 1$ bukan fungsi pada, karena tidak semua nilai bilangan bulat merupakan jelajah dari f.
- (ii) f(x) = x 1 adalah fungsi pada karena untuk setiap bilangan bulat y, selalu ada nilai x yang memenuhi, yaitu y = x 1 akan dipenuhi untuk x = y + 1.

• Fungsi f dikatakan **berkoresponden satu-ke-satu** atau **bijeksi** (bijection) jika ia fungsi satu-ke-satu dan juga fungsi pada.

Contoh 10. Relasi

$$f = \{(1, u), (2, w), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi yang berkoresponden satu-ke-satu, karena f adalah fungsi satu-ke-satu maupun fungsi pada.

Contoh 11. Fungsi f(x) = x - 1 merupakan fungsi yang berkoresponden satu-ke-satu, karena f adalah fungsi satu-ke-satu maupun fungsi pada.

Contoh 12.

Fungsi satu-ke-satu, bukan pada

Fungsi pada, bukan satu-ke-satu

Bukan fungsi satu-ke-satu maupun pada

Bukan fungsi

- Jika f adalah fungsi **berkoresponden satu-ke-satu** dari A ke B, maka kita dapat menemukan **balikan** (*invers*) dari f.
- Balikan fungsi dilambangkan dengan f^{-1} . Misalkan a adalah anggota himpunan A dan b adalah anggota himpunan B, maka $f^{-1}(b) = a$ jika f(a) = b.
- Fungsi yang berkoresponden satu-ke-satu sering dinamakan juga fungsi yang *invertible* (dapat dibalikkan), karena kita dapat mendefinisikan fungsi balikannya. Sebuah fungsi dikatakan *not invertible* (tidak dapat dibalikkan) jika ia bukan fungsi yang berkoresponden satu-ke-satu, karena fungsi balikannya tidak ada.

Contoh 13. Relasi

$$f = \{(1, u), (2, w), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi yang berkoresponden satu-ke-satu. Balikan fungsi f adalah

$$f^{-1} = \{(u, 1), (w, 2), (v, 3)\}$$

Jadi, f adalah fungsi invertible.

Contoh 14. Tentukan balikan fungsi f(x) = x - 1.

Penyelesaian:

Fungsi f(x) = x - 1 adalah fungsi yang berkoresponden satu-kesatu, jadi balikan fungsi tersebut ada.

Misalkan f(x) = y, sehingga y = x - 1, maka x = y + 1. Jadi, balikan fungsi balikannya adalah $f^{1}(y) = y + 1$.

Contoh 15. Tentukan balikan fungsi $f(x) = x^2 + 1$.

Penyelesaian:

Dari Contoh 7 (i) kita sudah menyimpulkan bahwa $f(x) = x^2 + 1$ bukan fungsi yang berkoresponden satu-ke-satu, sehingga fungsi balikannya tidak ada. Jadi, $f(x) = x^2 + 1$ adalah funsgi yang *not invertible*.

Komposisi dari dua buah fungsi.

Misalkan g adalah fungsi dari himpunan A ke himpunan B, dan f adalah fungsi dari himpunan B ke himpunan C. Komposisi f dan g, dinotasikan dengan f o g, adalah fungsi dari A ke C yang didefinisikan oleh

$$(f \circ g)(a) = f(g(a))$$

Contoh 16. Diberikan fungsi

$$g = \{(1, u), (2, u), (3, v)\}$$

yang memetakan $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$, dan fungsi

$$f = \{(u, y), (v, x), (w, z)\}$$

yang memetakan $B = \{u, v, w\}$ ke $C = \{x, y, z\}$. Fungsi komposisi dari A ke C adalah

$$f \circ g = \{(1, y), (2, y), (3, x)\}$$

Contoh 17. Diberikan fungsi f(x) = x - 1 dan $g(x) = x^2 + 1$. Tentukan $f \circ g$ dan $g \circ f$.

Penyelesaian:

(i)
$$(f \circ g)(x) = f(g(x)) = f(x^2 + 1) = x^2 + 1 - 1 = x^2$$
.

(ii)
$$(g \circ f)(x) = g(f(x)) = g(x-1) = (x-1)^2 + 1 = x^2 - 2x + 2$$
.

Beberapa Fungsi Khusus

1. Fungsi Floor dan Ceiling

Misalkan x adalah bilangan riil, berarti x berada di antara dua bilangan bulat.

Fungsi *floor* dari x:

 $\lfloor x \rfloor$ menyatakan nilai bilangan bulat terbesar yang lebih kecil atau sama dengan x

Fungsi *ceiling* dari x:

 $\lceil x \rceil$ menyatakan bilangan bulat terkecil yang lebih besar atau sama dengan x

Dengan kata lain, fungsi *floor* membulatkan x ke bawah, $\frac{1}{21}$ sedangkan fungsi *ceiling* membulatkan x ke atas.

Contoh 18. Beberapa contoh nilai fungsi floor dan ceiling:

$$\begin{bmatrix} 3.5 \end{bmatrix} = 3$$
 $\begin{bmatrix} 3.5 \end{bmatrix} = 4$ $\begin{bmatrix} 0.5 \end{bmatrix} = 0$ $\begin{bmatrix} 0.5 \end{bmatrix} = 1$ $\begin{bmatrix} 4.8 \end{bmatrix} = 5$ $\begin{bmatrix} -0.5 \end{bmatrix} = -1$ $\begin{bmatrix} -0.5 \end{bmatrix} = 0$ $\begin{bmatrix} -3.5 \end{bmatrix} = -3$

Contoh 19. Di dalam komputer, data dikodekan dalam untaian *byte*, satu *byte* terdiri atas 8 bit. Jika panjang data 125 bit, maka jumlah *byte* yang diperlukan untuk merepresentasikan data adalah $\lceil 125/8 \rceil = 16$ *byte*. Perhatikanlah bahwa $16 \times 8 = 128$ bit, sehingga untuk *byte* yang terakhir perlu ditambahkan 3 bit ekstra agar satu *byte* tetap 8 bit (bit ekstra yang ditambahkan untuk menggenapi 8 bit disebut *padding bits*).

22

2. Fungsi modulo

Misalkan a adalah sembarang bilangan bulat dan m adalah bilangan bulat positif.

 $a \mod m$ memberikan sisa pembagian bilangan bulat bila a dibagi dengan m

 $a \mod m = r$ sedemikian sehingga a = mq + r, dengan $0 \le r < m$.

Contoh 20. Beberapa contoh fungsi modulo

25 mod
$$7 = 4$$

15 mod $4 = 3$
3612 mod $45 = 12$
0 mod $5 = 0$
 $-25 \mod 7 = 3$ (sebab $-25 = 7 \cdot (-4) + 3$)

3. Fungsi Faktorial

$$n! = \begin{cases} 1 & , n = 0 \\ 1 \times 2 \times \dots \times (n-1) \times n & , n > 0 \end{cases}$$

4. Fungsi Eksponensial

$$a^{n} = \begin{cases} 1 & , n = 0 \\ \underbrace{a \times a \times \cdots \times a}_{n} & , n > 0 \end{cases}$$

Untuk kasus perpangkatan negatif,

$$a^{-n} = \frac{1}{a^{n}}$$

5. Fungsi Logaritmik

Fungsi logaritmik berbentuk

$$y = a \log x \leftrightarrow x = a^y$$

Fungsi Rekursif

• Fungsi f dikatakan fungsi rekursif jika definisi fungsinya mengacu pada dirinya sendiri.

Contoh:
$$n! = 1 \times 2 \times ... \times (n-1) \times n = (n-1)! \times n.$$

$$n! = \begin{cases} 1 & , n = 0 \\ n \times (n-1)! & , n > 0 \end{cases}$$

Fungsi rekursif disusun oleh dua bagian:

(a) Basis

Bagian yang berisi nilai awal yang tidak mengacu pada dirinya sendiri. Bagian ini juga sekaligus menghentikan definisi rekursif.

(b) Rekurens

Bagian ini mendefinisikan argumen fungsi dalam terminologi dirinya sendiri. Setiap kali fungsi mengacu pada dirinya sendiri, argumen dari fungsi harus lebih dekat ke nilai awal (basis).

- Contoh definisi rekursif dari faktorial:
 - (a) basis:

$$n! = 1$$
 , jika $n = 0$

(b) rekurens:

$$n! = n \times (n-1)!$$
 , jika $n > 0$

5! dihitung dengan langkah berikut:

(1)
$$5! = 5 \times 4!$$
 (rekurens)

(2)
$$4! = 4 \times 3!$$

(3)
$$3! = 3 \times 2!$$

$$(4) 2! = 2 \times 1!$$

$$(5) 1! = 1 \times 0!$$

(6)
$$0! = 1$$

$$(6') 0! = 1$$

(5')
$$1! = 1 \times 0! = 1 \times 1 = 1$$

(4')
$$2! = 2 \times 1! = 2 \times 1 = 2$$

$$(3')$$
 $3! = 3 \times 2! = 3 \times 2 = 6$

$$(2')$$
 $4! = 4 \times 3! = 4 \times 6 = 24$

(1')
$$5! = 5 \times 4! = 5 \times 24 = 120$$

Jadi, 5! = 120.

Contoh 21. Di bawah ini adalah contoh-contoh fungsi rekursif lainnya:

1.
$$F(x) = \begin{cases} 0, & x = 0 \\ 2F(x-1) + x^2, & x \neq 0 \end{cases}$$

2. Fungsi Chebysev

$$T(n,x) = \begin{cases} 1 & ,n = 0\\ x & ,n = 1\\ 2xT(n-1,x) - T(n-2,x) & ,n > 1 \end{cases}$$

3. Fungsi fibonacci:

$$f(n) = \begin{cases} 0, n = 0 \\ 1, n = 1 \\ f(n-1) + f(n-2), n > 1 \end{cases}$$

LATIHAN SOAL

- 1. Misalkan f adalah fungsi dari $x = \{0, 1, 2, 3, 4\}$ ke x yang didefinisikan oleh $f(x) = 4x \mod 5$. Tuliskan f sebagai himpunan pasangan terurut. Apakah f fungsi satu-ke-satu (one-to-one) atau dipetakan pada (onto)?
- 2. Misalkan n menyatakan bilangan bulat positif dan fungsi f didefinisikan secara rekursif :

$$n! = \begin{cases} 0, n = 1 \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, n > 1 \end{cases}$$

Tentukan: a). f(25)

b). f(10)