Result:

```
xilinx@pynq:~/wanhch$ sudo python3 run.py
[sudo] password for xilinx:
[INFO] Collected bit file is ee216.bit
[INFO] Collected hwh file is ee216.hwh
[INFO] Collected elf file is proj2.elf
[INFO] Start to download bitstream ./ee216.bit to PL
[INFO] Finish downloading
[INFO] Start to run your code: ./proj2.elf
              ] Running round 0
[INFO
[INFO
             ] Running round 1
[INFO ] Running round 1

[INFO ] Running round 2

[INFO ] Running round 4

[INFO ] Running round 5

[INFO ] Running round 6

[INFO ] Running round 7
[INFO ] Running round 8
[INFO ] Running round 9
[INFO
                 The time of exp r0.txt is 271.0us, status pass
The time of exp r6.txt is 269.0us, status pass
The time of exp r7.txt is 272.0us, status pass
The time of exp r8.txt is 271.0us, status pass
[INFO
[INFO
[INFO
                  The time of exp r2.txt is 269.0us, status pass
                  The time of exp r1.txt is 270.0us, status pass
[INFO
                 The time of exp r1.txt is 270.0us, status pass
The time of exp r5.txt is 270.0us, status pass
The time of exp r5.txt is 270.0us, status pass
The time of exp r9.txt is 271.0us, status pass
The time of exp r3.txt is 270.0us, status pass
Total time of all exps are: 2702.0us
[INFO
[INFO
[INFO
 INFO
[INFO
                 Average time of all exps are: 270.2
Dump result csv file to ./result/result.csv
[INFO
             ] Finish running your code: ./proj2.elf
] Exit ...
 [INFO
[INFO
```

☐ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty	
ap_clk	10.00	8.750	1.25	

□ Latency (clock cycles)

■ Summary

Latency		Inte	rval	
min	max	min	max	Туре
21757	21757	2073	2073	dataflow

Detail

- **Instance**
- **⊞ Loop**

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	122	-
FIFO	-	-	-	-	-
Instance	88	1109	43672	87697	-
Memory	40	-	0	0	0
Multiplexer	-	-	-	180	-
Register	-	-	20	-	-
Total	128	1109	43692	87999	0
Available	624	1728	460800	230400	96
Utilization (%)	20	64	9	38	0

```
2 INFO: [SIM 4] CSIM will launch GCC as the compiler.
   Compiling ../../../src/fft_test.cpp in debug mode
3
4
   Compiling ../../../src/fft.cpp in debug mode
   Generating csim.exe
6 This is EE216 FFT Project Testbench
7 fft hw 1000 us
   RMSE(R)
                RMSE(I)
10 0.046909254044294 0.013719381764531
17 **************
13 PASS: The output matches the golden output!
14 ***************
15 INFO: [SIM 1] CSim done with 0 errors.
17
```

Code structure:

在 baseline 基础上进行修改, 主要修改是将原先 fft_stage 中的双重循环展开成了一重循环。

Optimization strategies:

首先在 baseline 代码中加入 dataflow, 并将 fft_hw 中的循环进行 unroll 展开, 对 X_R. OUT_R, X_I. OUT_I, Stage_R, Stage_I 进行 partition, 其中 Stage_R, Stage_I 在 dim=1 处进行 partition。然后再对 fft_stage 中循环进行优化,对其中的 dft_loop 加 PIPELINE II=2 的限制。此时发现每个 stage 间的 latency 与 Interval 差别很大,分析原因是因为每个 stage 中,butterfly_loop 与 dft_loop 循环的次数不同造成的。stage1 中,butterfly_loop 循环 1 次,dft_loop 循环 512 次,而在 stage10 中,butterfly_loop 循环 512 次,dft_loop 循环 1 次。当 butterfly_loop 数量增加时,因为执行一次循环需要多个周期,所以 latency 与 Interval 数大大增加。所以考虑将双重循环展开成一重循环,并经过计算给其加最小 II=4,将新函数命名为 fft_stage1。

经过测试, stage1 与 stage2 运用原始 fft_stage, 其他 stage 使用展开后的 fft_stage1, 不同 stage 间的 latency 与 interval 最为平衡,可以得到最佳的优化效果,如下图所示。

■ Latency (clock cycles)

■ Summary

Late	ency	Interval			
min	max	min	max	Туре	
21757	21757	2073	2073	dataflow	

□ Detail

■ Instance

		Late	ency	Interval		
Instance Module		min	max	min	max	Туре
fft_stage82_U0	fft_stage82	1049	1049	1049	1049	none
fft_stage191_U0	fft_stage191	2072	2072	2072	2072	none
fft_stage1_187_U0	fft_stage1_187	2072	2072	2072	2072	none
fft_stage1_188_U0	fft_stage1_188	2072	2072	2072	2072	none
fft_stage1_189_U0	fft_stage1_189	2072	2072	2072	2072	none
fft_stage1_190_U0	fft_stage1_190	2072	2072	2072	2072	none
fft_stage1_185_U0	fft_stage1_185	2072	2072	2072	2072	none
fft_stage1_186_U0	fft_stage1_186	2072	2072	2072	2072	none
fft_stage1_184_U0	fft_stage1_184	2072	2072	2072	2072	none
fft_stage1_183_U0	fft_stage1_183	2072	2072	2072	2072	none
bit_reverse81_U0	bit_reverse81	2050	2050	2050	2050	none