№ 1 (1.1) Для любых $a, b, c \in K$ выполнены равенства

 $\forall a, b, c \in K$:

- a) a0 = 0a = 0
- $a0 = a(0+0) = a0 + a0 \Rightarrow a0 = 0$

$$0a = 0$$
 — аналогично.

b) a(-b) = (-a)b = -ab

▶
$$0 = a0 = a(b - b) = ab + a(-b) \Rightarrow -ab = a(-b)$$

c) (a - b)c = ac - bc и a(b - c) = ab - ac

$$(a-b)c + bc = (a-b+b)c = ac \Rightarrow (a-b)c = ac - bc$$

$$a(b-c) + ac = a(b-c+c) = ab \Rightarrow a(b-c) = ab - ac$$

№ 2(1.2)

а) В кольце не может быть двух различных единиц.

$$ightharpoonup 1_1 = 1_1 \cdot 1_2 = 1_2$$
 т. к. 1_1 — единица

b) Пусть кольцо с единицей содержит не меньше двух элементов. Тогда $1 \neq 0$.

$$\blacktriangleright \forall a \in K \ a \underbrace{=}_{\text{CB-BO } 1} a \cdot e \underbrace{=}_{\text{CB-BO } 0} 0$$

с) Может ли элемент ассоциативного кольца иметь более одного обратного элемента?

$$lacktriangle$$
 Пусть $a_1 \neq a_2$ — обратные к a элементы. Тогда $a_1aa_2 = \begin{cases} a_1 \cdot 1 = a_1 \\ 1 \cdot a_2 = a_2 \end{cases}$

Получается, они равны.

№ **3(1.3, 2.4)** Уметь отвечать на вопросы: является ли данное кольцо К коммутативным? ассоциативным?кольцом с единицей? область целостности? поле? евклидово кольцо? Какие в К есть обратимые элементы? неразложимые? простые?

№ 4 (2.1(в)) Обратимый элемент кольца не может быть делителем нуля.

▶ Пусть $a \in K$ обратим, $\exists a^{-1} \in K : aa^{-1} = 1$. Если a — делитель нуля, то $\exists 0 \neq b \in K : ab = 0$. Тогда $a^{-1}ab = \begin{cases} a^{-1} \cdot 0 = 0 \\ 1 \cdot b = b \neq 0 \end{cases}$. Противоречие. \blacktriangleleft

 \mathbb{N} 5(2.1(д)) Если K — кольцо без делителей нуля, то возможно сокращение: если ac=bc и $c\neq 0$, то a=b.

lacktriangledown $ac=bc\Leftrightarrow (a-b)c=0\Rightarrow$ т. к. нет делителей нуля и c
eq 0, д. б. a-b=0, т. е. a=b.

№ 6(2.1(г)) В конечном коммутативном кольце если ненулевой элемент не является делителем нуля, то он обратим.

► Кольцо конечно ⇒ его элементы можно занумеровать: a_1, \ldots, a_n . Элементы $a \cdot a_1, \ldots, a \cdot a_n$ должны быть все разные (иначе $\forall i \neq j, a \neq 0$ $a \cdot a_i = a \cdot a_j$ ⇒ $\underbrace{a}_{\neq 0} \underbrace{(a_i - a_j)}_{\neq 0, \text{ т. к. } i \neq j} = 0$, т. е. a — делитель нуля).

Тогда $\exists i: a\cdot a_i=1$, т. к. $1\in K$ (т. е. $a\cdot a_1,\ldots,a\cdot a_n-n$ разных элементов кольца, а в кольце всего n элементов; значит, какое-то aa_i должно быть 1).

№ 7 Конечная область целостности (состоящая из более чем одного элемента) — поле.

▶ В области целостности нет делителей нуля, а если в конечном коммутативном кольце элемент — не делитель нуля, то он обратим (№6). Т. е. все элементы обратимы.

Имеем ≥ 2 элементов по условию.

№ 8 Множество K^* обратимых элементов коммутативного кольца K является группой по умножению. Она называется **мультипликативной группой**, или **группой обратимых элементов** кольца K.

▶ Пусть K — кольцо, $a, b \in K^*$. Тогда $\exists a^{-1}, b^{-1} \in K^*$. Проверим групповые свойства.

- 1. $a(bc) = (ab)c accoциативность в <math>K^*$ следует из свойств кольца K.
- 2. $\exists 1 \in K^*$ (т. к. $K^* \neq \emptyset$, $\exists a \in K^*$, по свойству обратимости $\exists a^{-1} \in K^* : aa^{-1} = 1$ единица в K будет являться единицей в K^*)
- 3. $(b^{-1}a^{-1})(ab) = (ab)(b^{-1}a^{-1}) = 1 \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \in K^*$ обратимость.

Значит, K^* — группа по умножению.

- № 9(1.5-1.7) Базовые знания про комплексные числа: сложение, умножение, модуль, аргумент, извлечение корней n-ой степени.
 - ▶ Компл'єксное число z это выражение вида z=a+bi, где a и b числа из \mathbb{R} , а i мнимая единица. По определению $i^2=-1$. Число a называют вещественной частью комплексного числа z (пишется $a=\mathrm{Re}\,(z)$), а число b мнимой частью z (пишется $b=\mathrm{Im}\,(z)$). Комплексные числа можно складывать и умножать, «раскрывая скобки и приводя подобные». Множество комплексных чисел обозначают буквой \mathbb{C} .

Каждому комплексному числу z=a+bi сопоставим точку (a,b) и вектор (a,b). Длина этого вектора называется модулем числа z и обозначается |z|. Пусть $z\neq 0$. Угол (в радианах), отсчитанный против часовой стрелки от вектора (1,0) до вектора (a,b), называется аргументом числа z и обозначается ${\rm Arg}\,(z)$. Аргумент определен с точностью до прибавления числа вида $2\pi n$, где $n\in\mathbb{Z}$.

Тригонометрическая форма записи. Для любого ненулевого комплексного числа z имеет место равенство $z = r(\cos \varphi + i \sin \varphi)$, где $r = |z|, \ \varphi = \mathrm{Arg}\,(z)$.

Для комплексного числа $z=r(\cos\varphi+i\sin\varphi)$ и натурального числа $n\in\mathbb{N}$ выполнена формула Муавра $z^n=r^n(\cos n\varphi+i\sin n\varphi).$

Для комплексного числа z=a+bi, где $a,b\in\mathbb{R}$ число $\overline{z}=a-bi$ называется комплексно-сопряжённым к z. Выполнены следующие равенства:

$$|z|^2 = z\overline{z}, \, \overline{z+w} = \overline{z} + \overline{w}, \, \overline{zw} = \overline{zw}.$$

№ 10(2.2)

а) Следующие условия эквивалентны:

- (1) $x \sim y$;
- (2) x | y u y | x;
- (3) множество делителей x и множество делителей y равны.
- $lack \bullet$ (1) \Rightarrow (2) : $\exists r \in K^* : x = ry \Rightarrow y | x$ по определению. Т. к. $r \in K^*, \exists r^{-1} \in K^* : r^{-1}x = y \Rightarrow x | y$ по определению.
 - (2) \Rightarrow (3) : Пусть x|y,x : a. Тогда y=xc,x=ab (по опр.) $\Rightarrow y=xc=abc=a(bc) \Rightarrow y$: a.
 - (3) \Rightarrow (2) : Множества делителей x и y совпадают, $x|x \Rightarrow x$ будет во множестве делителей y, т. е. x|y. Симметрично, y|x.
 - (2) \Rightarrow (1) : $\begin{cases} x|y\Rightarrow y=kx\\ y|x\Rightarrow x=ty \end{cases}$ Тогда $y=kty\Rightarrow kt=1$ Значит, k и t обратимы. Значит, $x=ty,t\in K^*\Rightarrow x\sim y$ по определению.

b) Отношение ~ является отношением эквивалентности.

- ▶ 1. $x \sim x$, т. к. $\exists 1 \in K^* : x = 1x$
 - 2. $x \sim y \Rightarrow \exists r \in K^* : x = ry \Rightarrow y = r^{-1}x \Rightarrow y \sim x$

3.
$$x \sim y, y \sim z \Rightarrow \begin{cases} \exists r_1 \in K^* : x = r_1 y \\ \exists r_2 \in K^* : y = r_2 z \end{cases} \Rightarrow x = \underbrace{r_1 r_2}_{\in K^*, \text{ T. K. } (r_1 r_2)^{-1} = r_2^{-1} r_1^{-1}} z \Rightarrow x \sim z$$

№ 11 (2.5) Если $a, b, k \in \mathbb{Z}$, $u \notin \mathbb{Q}$, то $z = a + bu \in \mathbb{Z}[u]$ делится на k тогда и только тогда, когда a и b делятся на k.

• \Rightarrow : Пусть z = a + bu = ka' + kb'u. Тогда (a - ka') = u(b - kb').

Обе части целые \Rightarrow нули, потому что u не рациональное.

Отсюда
$$\begin{cases} a = ka' \\ b = kb' \end{cases} \Rightarrow \begin{cases} a \vdots k \\ b \vdots k \end{cases}.$$

№ 12(2.9 \Leftarrow) K — евклидово кольцо. Верно ли, что для $a \neq 0, b \in K^*$ выполнено равенство N(ab) = N(a)?

$$\blacktriangleright b \in K^* \Rightarrow N(a) \le N(ab) \le N(abb^{-1}) = N(a)$$

- № 13 (3.2) Для $u = i, \omega$ и простого целого числа $p \le 40$ выясните, существует ли $z \in D$ с N(z) = p. Сформулируйте гипотезу о том, какие простые целые числа являются простыми в D.
 - ▶ Выпишем все варианты a, b с нормой ≤ 40 .

Зам. Можно опустить перебор по ka', kb' при k > 1, потому что тогда обе нормы делятся на k^2 .

Зам. Можно брать только натуральные, т. к. для $\mathbb{Z}[i]$ норма не поменяется вообще, а для $\mathbb{Z}[\omega]$ $N=a^2+ab+b^2=a^2-a(a+b)+(a+b)^2$, т. е. норма элемента $a-b\omega$ равна норме элемента $a+(a+b)\omega$, а такие мы уже перебрали, поскольку a+b — натуральное. Для a<0 симметрично.

a	b	$\mathbb{Z}[i], N = a^2 + b^2$	$\mathbb{Z}[\omega], N = a^2 - ab + b^2$
1	1	2	1
1	2	5	3
1	3	10	7
1	4	17	13
1	5	26	21
1	6	37	31
2	2	-	-
2	3	13	7
2	4	-	-
2	5	29	19
2	6	-	-
2 2 2 2 3 3 3 3 3	7	53	39
3	3	-	-
3	4	25	13
3	5	34	19
3	6	-	-
3	7	58	37
4	4	-	-
4	5	41	21
4	6	-	-
4	7	65	37
5	5	-	-
5	6	61	31
5	7	74	39
6	6	-	-

Пользуемся утверждением с лекции: Пусть р – простое целое, $\forall z \in D : N(z) \neq p \Rightarrow$ р неразложим в D.

Выпишем все простые числа ≤ 40 и вычеркнем те, которые являются нормой. Берём оставшиеся.

Гипотеза: * у $\mathbb{Z}[i]$ 4k + 3 * у $\mathbb{Z}[\omega]$ 3k + 2 или ТООО.

№ 14 (3.9)

- ▶ а) $0 \subset K, K \subset K$ идеалы. Они называются **тривиальными**.
 - {0}:

- 1. Тривиальная группа по сложению:
 - Ассоциативность наследуется
 - -0 нейтральный элемент, т. к. $0+a=a+0=0 \forall a \in \{0\}$
 - $-0^{-1}=0=-0$
- 2. Замкнутость относительно умножения: $\forall a \in K0a = 0 \in \{0\}$
- *K*:
 - 1. Тривиальная группа по сложению:
 - Ассоциативность наследуется
 - 0 нейтральный элемент, т. к. $0+a=a+0=0 \forall a \in K$
 - 2. Замкнутость относительно умножения: $\forall a \in K \forall b \in I = K \ ab \in I = K -$ по свойству кольца
- b) $(a) = \{ax \mid x \in K\}$ главный идеал или идеал, порождённый одним элементом
 - 1. Подгруппа по сложению:
 - $ax_1 + ax_2 = a(x_1 + x_2) \in (a)$ замкнутость относительно сложения
 - Ассоциативность наследуется
 - 0 нейтральный элемент: ax + 0 = 0 + ax = ax
 - $ax + a(-x) = a(x x) = a \cdot 0 = 0$
 - 2. Замкнутость относительно умножения: $\forall b \in K \forall ax \in (a) \ b \cdot ax = bx \cdot a \in (a)$
- $(a_1,\ldots,a_n)=\{a_1x_1+\ldots+a_nx_n\mid x_1,\ldots,x_n\in K\}$ конечно-порождённый идеал, то есть идеал, порождённый конечным количеством элементов.
 - 1. Подгруппа по сложению:
 - $(a_1x_1 + \dots + a_nx_n) + (a_1y_1 + \dots + a_ny_n) = a_1(x_1 + y_1) + \dots + a_n(x_n + y_n) \in I$ замкнутость относительно
 - Ассоциативность наследуется
 - $0 = a_1 \cdot 0 + \dots + a_1 \cdot 0$ нейтральный элемент: ax + 0 = 0 + ax = ax
 - $(a_1x_1 + \dots + a_nx_n) + (a_1(-x_1) + \dots + a_n(-x_n)) = 0$
 - 2. Замкнутость относительно умножения: $\forall y \in K \ y \cdot (a_1x_1 + \dots + a_nx_n) = a_1(x_1y) + \dots + a_n(x_ny) \in I$
- № **15(3.11)** а) Докажите, что $(a) \subset (b)$ тогда и только тогда, когда $b \mid a$.
 - b) Докажите, что $a \sim b$ тогда и только тогда, когда (a) = (b).
 - ightharpoonup a) ightharpoonup $(a) = a = b \Rightarrow ka = (kc)b \Rightarrow (a) = (b)$
 - \Rightarrow : $(a) \subset (b) \Rightarrow a \in (b) \Rightarrow a = cb \Rightarrow b|a$
 - b) $\bullet \Rightarrow : a \sim b \Rightarrow \begin{cases} a|b \\ b|a \end{cases} \Rightarrow (a) \subset (b) \subset (a) \Rightarrow (a) = (b)$
 - \Leftarrow : $(a) = (b) \Rightarrow \begin{cases} a|b \\ b|a \end{cases} \Rightarrow a \sim b$
- ightharpoonup 16(3.12) Пусть $I,J\subset K$ идеалы. Сумма $I+J=\{x+y\mid x\in I,y\in J\}$ и пересечение $I\cap J$ идеалов являются идеалами.
- ▶ а) 1. $(x_1 + y_1) + (x_2 + y_2) = \underbrace{(x_1 + x_2)}_{\in I} + \underbrace{(y_1 + y_2)}_{\in J} \in I + J$ Ассоциативность следует.

 - \bullet 0 нейтральный.
 - $(x+y)+\underbrace{(-x-y)}_{\in I+J}=(x-x)+(y-y)=0$ обратный
 - 2. $\forall a \in K \hookrightarrow a(x+y) = \underbrace{ax}_{\in I} + \underbrace{ay}_{\in I} \in I+J$
 - b) 1. $x, y \in I \cap J \Rightarrow \begin{cases} x, y \in I \\ x, y \in J \end{cases} \Rightarrow \begin{cases} x + y \in I \\ x + y \in J \end{cases} \Rightarrow x + y \in I \cap J$
 - Ассоциативность следует
 - 0 нейтральный
 - $x \in I \cap J \Rightarrow \begin{cases} x \in I \\ x \in J \end{cases} \Rightarrow \begin{cases} x^{-1} \in I \\ x^{-1} \in J \end{cases} \Rightarrow x^{-1} \in I \cap J \text{обратный}$

$$2. \ \forall a \in K \ \forall x \in I \cap J \hookrightarrow \begin{cases} x \in I \\ x \in J \end{cases} \Rightarrow \begin{cases} ax \in I \\ ax \in J \end{cases} \Rightarrow ax \in I \cap J$$

- № 17(3.15) Пусть $K \neq 0$. Докажите, что K является полем тогда и только тогда, когда K не содержит нетривиальных идеалов.
 - ▶ ⇒: Пусть К поле, $I \subset K$ идеал.
 - $-x=0 \Rightarrow (x) = \{0\}$ тривиальный идеал.
 - $-\forall x \in I, x \neq 0, x$ обратим по свойству поля, значит, $I \supset (x) = (1) = K$.
 - \Leftarrow : Пусть K коммутативное кольцо без нетривиальных идеалов. Пусть $x \in K, x \neq 0$, произвольный элемент. Тогда $(x) \neq \{0\}$. Значит, поскольку у нас нет нетривиальных идеалов, (x) = K.

В частности, $1 \in (x) = K \Rightarrow \exists x^{-1}$, т. е. элемент х обратим.

В силу произвольности x, любой ненулевой элемент обратим \Rightarrow K — поле (в K \geq 2 элементов, т. к. $0 \in K$, и мы брали $0 \neq x \in K$).

- **№ 18(4.1)** Верно ли, что при гомоморфизме колец $\varphi: K \to L$ а) образ; b) прообраз идеала является идеалом? а)
 - lacktriangledown Неверно. Контрпример: $\varphi:\mathbb{Z}\to\mathbb{Q}, \varphi(x)=x$ поэлементное вложение.

 $I=\mathbb{Z}$ в \mathbb{Z} — тривиальный идеал. Но $\varphi(I)=\mathbb{Z}$ — не идеал в \mathbb{Q} , ибо, например, $\underbrace{\frac{1}{2}}_{\in\mathbb{Q}}\underbrace{\cdot \underbrace{1}}_{\in\mathbb{Z}}=\frac{1}{2} \not\in I$.

b)

▶ Верно. Пусть J — идеал в L. $\varphi^{-1}(J) = \{a \in K : \varphi(a) \in J\}.$

$$\forall a, b \in \varphi^{-1}(J) : \begin{cases} \varphi(a+b) = \varphi(a) + \varphi(b) \Rightarrow a+b \in \varphi^{-1}(J) \\ \varphi(a^{-1}) = (\varphi(a))^{-1} \in J \end{cases}$$

 $\forall x \in K \forall a \in \varphi^{-1}(J) \ \varphi(ax) = \varphi(a)\varphi(x) \in J.$

Значит, $\varphi^{-1}(J)$ — действительно идеал.

№ 19(4.2)

- а) Всегда ли факторкольцо коммутативного кольца является коммутативным кольцом?
- ◆ Ассоциативность по сложению из ассоциативности коммутативного кольца.
 - $0 \in K$ ноль в $K \Rightarrow 0 + I = I$ ноль в K^* : $(I)(a + I) = (a + I)(I) = aI + I^2 = I$.
 - Обратный по сложению: (a+I)+(-a+I)=(-a+I)+(a+I)=I.
 - Дистрибутивность: (a+I)(b+I+c+I) = (ab+I) + (ac+I).
 - $1 \in K$ единица в $K \Rightarrow 1 + I$ единица в K^* : $(1+I)(a+I) = (a+I)(1+I) = a+I+aI+I^2 = a+I$.
 - Ассоциативность по умножению из ассоциативности коммутативного кольца.
 - (a+I)(b+I) = ab + aI + bI + II = ab + I = ba + I = ba + bI + aI + II = (b+I)(a+I) коммутативность.
- b) Имеется канонический гомоморфизм $\varphi: K \to K/I$, который переводит $a \mapsto a + I$.
- ▶ Проверим свойства гомоморфизма:
 - $\varphi(a) + \varphi(b) = a + I + b + I = (a+b) + I = \varphi(a+b)$
 - $\varphi(a)\varphi(b) = (a+I)(b+I) = ab+aI+bI+II = ab+I = \varphi(ab)$
 - $\varphi(1) = 1 + I = 1_{K/I}$
- № 20(4.5) Пусть K область целостности. Идеал (x) является простым тогда и только тогда, когда x прост.
- lackbox(x) простой \rightleftharpoons если $ab\in(x),$ то $egin{bmatrix} a\in(x) \\ b\in(x) \end{bmatrix}$
 - x— простой \rightleftharpoons если $ab \vdots x,$ то $\begin{bmatrix} a \vdots x \\ b \vdots x \end{bmatrix}$

Ho $ab \in (x) \Leftrightarrow ab : x$ (ибо $(x) = \{ax \mid a \in K\}$ по определению, и $ab \in K$).

- № 21(4.6 (Lecture all.pdf теор. 3.2)) Пусть K область целостности. Нетривиальный идеал I является максимальным тогда и только тогда, когда K/I поле.
 - ▶ Знаем (№17): K/I поле \Leftrightarrow в K/I нет нетривиальных идеалов.

Пусть K/I — поле, пусть $\exists I: I\subset J\subset K$ — нетривиальный идеал. Подействуем на него каноническим гомоморфизмом $\varphi: K \to K/I$.

Лемма. Пусть $f: K \to L$ — гомоморфизм колец, $I \subset K, J \subset L$ — идеалы. Тогда а) f(I) — идеал в f(K), b) $f^{-1}(J)$ — идеал в К.

- \blacktriangleright а) Пусть $x \in f(I), y \in f(K)$. Тогда найдутся такие x' и y', где $x' \in I, x = f(x'), y' \in K, y = f(y')$. Имеем: $xy = f(x')f(y') = f(x'y') \in F(I)$, так как $x'y' \in I$.
 - b) (можно сослаться на №18(б)) Пусть теперь $x \in f^{-1}(J), y \in K$. Тогда $f(xy) = f(x)f(y) \in J$, следовательно, $xy \in f^{-1}(J)$.

Из Леммы следует, что в K/I существует нетривиальный идеал \Leftrightarrow существует идеал в K, содержащий I.

- № 22(4.7) Пусть K область целостности. Нетривиальный идеал I является простым тогда и только тогда, когда K/I область целостности.
 - ▶ ⇒: Пусть I простой, но K/I не область целостности. Тогда $\exists a,b \in K \setminus I: (a+I)(b+I) = ab+I = 0+I = 0$ Но тогда должно быть $ab \in I$, т. е. идеал не простой. Противоречие.
 - \Leftarrow : Пусть I непростой. Тогда $\exists a,b:a,b\in I$, но $ab\notin I$. Рассмотрим $0\neq (a+I)(b+I)=ab+I=I=0$ к/I.
- \mathbb{N} **23(5.1, 5.2)** Пусть K область целостности. Рассмотрим множество пар $\tilde{K} = \{a,b\}$ элементов кольца K, где $b \neq 0$. На этом множестве введем отношение следующим образом: $\{a,b\} \sim \{c,d\}$, если ad = bc.
 - а) Докажите, что $\{a,b\} \sim \{ac,bc\}$. b) Докажите, что это отношение эквивалентности.

Элемент множества классов эквивалентности $F = \operatorname{Quot}(K)$ будем записывать как $\frac{a}{k}$ или ab^{-1} . Введем операции сложения и умножения на F = Quot(K):

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd},$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Докажите, что

- с) сложение и умножение корректно определено; d) F является коммутативным кольцом; e) F является полем; f) существует инъекция $K \to F$.
- ightharpoonup а) $a \cdot bc = b \cdot ac$ из коммутативности.
 - b) $\{a, b\} \sim \{a, b\}$, т. к. ab = ab

•
$$\{a,b\} \sim \{c,d\} \Leftrightarrow ad = bc \Leftrightarrow cb = da \Leftrightarrow \{c,d\} \sim \{a,b\}$$

• $\{a,b\} \sim \{c,d\} \sim \{e,f\} \Rightarrow \begin{cases} ad = bc \\ cf = de \end{cases} \Rightarrow \begin{cases} adf = bcf \\ bcf = bde \end{cases} \Rightarrow adf = bde \Rightarrow af = be \Rightarrow \{a,b\} \sim \{e,f\}$

- с) Корректность определения означает, что операция замкнута, и что результат её всегда определён.
 - Сложение:
 - $-\frac{ad+bc}{bd}\in \mathrm{Quot}(K)$, т. к. $ad+bc\in K$ и $bd\in K$ по свойствам кольца K. У $\frac{ad+bc}{bd}$ $bd\neq 0$, т. к. $b\neq 0$ и $d\neq 0$.
 - Умножение:
 - $-\frac{ac}{bd}\in \mathrm{Quot}(K),$ т. к. $a\in K$ и $bd\in K$ по свойствам кольца K. У $\frac{ac}{bd}$ $bd\neq 0,$ т. к. $b\neq 0$ и $d\neq 0.$
- d) Это кольцо:

 - Оно ассоциативно по умножению: $\frac{a}{b}(\frac{c}{d} \cdot \frac{e}{f}) = \frac{a}{b} + (\frac{cf+de}{df}) = \frac{adf+bcf+bde}{bdf} = \frac{ad+bc}{bd} + \frac{e}{f} = (\frac{a}{b} + \frac{c}{d}) + \frac{e}{f}$ Ноль элемент класса эквивалентности $\{\frac{0}{a} \mid a \neq 0\}$. Возьмём $0_F := \frac{0}{1}$. Тогда $\frac{a}{b} + \frac{0}{1} = \frac{0}{1} + \frac{a}{b} = \frac{0}{1}$ Для $\frac{a}{b}$ обратный по сложению $\frac{-a}{b} : \frac{a}{b} + \frac{-a}{b} = \frac{a-a}{b} = \frac{0}{b}$ $\frac{a}{b}(\frac{c}{d} + \frac{e}{f}) = \frac{a}{b} \cdot \frac{cf+de}{df} = \frac{acf+ade}{bdf} = \frac{acf+aebd}{bdf} = \frac{ac}{bd} + \frac{ae}{bf} = \frac{a}{b} \cdot \frac{c}{d} + \frac{a}{b} \cdot \frac{e}{f}$ Оно ассоциативно по умножению: $\frac{a}{b}(\frac{c}{d} \cdot \frac{e}{f}) = \frac{a}{b}(\frac{ce}{df}) = \frac{ace}{bdf} = (\frac{ac}{bd}) \cdot \frac{e}{f}$

- Единица элемент класса эквивалентности $\{\frac{a}{a}\mid a\neq 0\}$. Возьмём $1_F=\frac{1}{1}.$ Тогда $\frac{a}{b}\frac{1}{1}=\frac{1}{1}\frac{a}{b}=\frac{a}{b}$
- Оно коммутативно: $\frac{a}{b}\frac{c}{d} = \frac{ac}{bd} = \frac{ca}{db} = \frac{c}{d}\frac{a}{b}$
- е) Каждый ненулевой элемент имеет обратный по умножению $(\frac{a}{b})^{-1} = \frac{b}{a}$: $\frac{a}{b}\frac{b}{a} = \frac{ab}{ba} = \frac{ab}{ab} = \frac{1}{1}$.
 - Элементов ≥ 2 , т. к. $0 \neq 1$.
- f) Возьмём $\varphi: K \to F, \varphi(a) = \frac{a}{1}$.

Это гомоморфизм: $\frac{ab}{1} = \varphi(ab) = \varphi(a)\varphi(b) = \frac{a}{1}\frac{b}{1} = \frac{a\cdot 1 + 1\cdot b}{1\cdot 1} = \frac{ab}{1}$.

Это инъекция: $\forall a \neq b \in K \hookrightarrow \varphi(a) = \frac{a}{1} \neq \frac{b}{1} = \varphi(b)$, ибо $\frac{a}{1} - \frac{b}{1} = \frac{a-b}{1} \neq 0_F$.

№ 24(6.1) Признак неприводимости Эйзенштейна

Пусть f(x) — многочлен с целыми коэффициентами и существует такое простое число p, что:

1. старший коэффициент f(x) не делится на p; 2. все остальные коэффициенты f(x) делятся на p; 3. свободный член f(x) не делится на p^2 .

Тогда многочлен f(x) неприводим над полем рациональных чисел.

▶ Пусть, напротив f не неприводим над \mathbb{Q} . Тогда существуют два таких многочлена $g,h \in \mathbb{Q}[x]$, что $f = \tilde{g}\tilde{h}$ и $\deg \tilde{g}, \deg \tilde{h} > 0$. Положим $d_1 = (\text{НОД}$ знаменателей коэффициентов \tilde{g}) и $d_2 = (\text{НОД}$ знаменателей коэффициентов \tilde{h}). Тогда есть разложение $d_1d_2f = gh$, где $g,h \in \mathbb{Z}[x]$ — многочлены, полученные домножением \tilde{g},\tilde{h} на d_1,d_2 соответственно. Так как g и h примитивны, то их произведение примитивно, а значит, $d_1d_2 = 1$ и верно просто f = gh.

Заметим, что $f_0 = g_0 h_0$. Так как f_0 не делится на p^2 , то одно из чисел g_0, h_0 не делится на p. Пусть для определенности h_0 не делится на p, тогда g_0 делится на p. Пусть число k>0 таково, что g_0, \ldots, g_{k-1} делятся на p, а g_k не делится на p. По формуле коэффициентов для произведения многочленов $f_k = g_k h_0 + g_k h_1 + \ldots$ Если $k < \deg f$, то по модулю p имеем $0 = g_k h_0$, где g_k, h_0 не делятся на p. Значит, $k = \deg f > \deg g$. Это означает, что все коэффициенты g делятся на g, то есть g не примтивен. Противоречие.

№ **25(указано 6.2, но на самом деле в нём точно такого пункта нет)** Многочлен $x^n - p$ (p — простое число) неприводим над \mathbb{Q} .

▶ По критерию Эйзенштейна: $1 : /p, -p : p, -p : /p^2$, где р — простое.

№ 26(6.3) Характеристика поля — простое число.

 \blacktriangleright Если k непростое, $k=m\cdot n$, то $m\cdot n=0$, т. е. есть делители нуля — противоречие с тем, что у нас поле.

№ 27(6.4(Lecture_all.pdf №6.2(3)) Если существует нетривиальный гомоморфизм полей $\varphi : F \to K$, то $\operatorname{char}(F) = \operatorname{char}(K)$.

▶ Гомоморфизм нетривиален ⇒ по №29 он является инъекцией, а у инъекции $\ker \varphi = \{0\}$ по лемме из №29. Так как $\varphi(1) = 1$, имеем $\varphi(\underbrace{1+\dots+1}_m) = \underbrace{1+\dots+1}_m$.

Т. к. $\operatorname{Ker} \varphi = \{0\}$, то $\forall 0 \neq a \in F \varphi(a) \neq 0$, и, значит, если $\underbrace{1 + \dots + 1}_{m} = 0$ в F, то по свойству гомоморфизма и в K тоже. Получили $\operatorname{char}(K) \geq \operatorname{char}(F)$.

Т. к. $\operatorname{Ker} \varphi = \{0\}$, то только 0 переходит в 0, т. е. получили $\operatorname{char}(K) \leq \operatorname{char}(F)$.

№ 28(6.5) Любое конечное поле имеет положительную характеристику.

▶ Пусть F конечно, а char F = 0. Тогда $\underbrace{1 + \dots + 1}_{k}$ для любого k будет давать элемент поля, не совпадающий с предыдущими (иначе char была бы конечна).

Получается, что F бесконечно. Противоречие.

 ${\mathbb N}$ **29**(${\mathbb N}$ 6.7) Нетривиальный гомоморфизм полей $\varphi: F \to L$ является инъекцией.

- ▶ Лемма. $\varphi : F \to L$ инъекция $\Leftrightarrow \operatorname{Ker} \varphi = \{0\}.$
- ▶ ⇒: φ инъекция $\rightleftharpoons \forall a, b \in F, a \neq b, \ \varphi(a) \neq \varphi(b)$.

 $\operatorname{Ker} \varphi = \{ a \in F : \varphi(a) = 0_L \}.$

Имеем $\varphi(0)=0$ по свойству гомоморфизма, тогда по инъективности $\forall a\neq 0 \varphi(a)\neq \varphi(0)=0$, т. е. $\ker \varphi=\{0\}$.

• \Leftarrow : Пусть не так. $\operatorname{Ker} \varphi \neq \{0\} \Rightarrow \exists 0 \neq a \in \operatorname{Ker} \varphi$. Тогда $\forall b \in K \hookrightarrow \varphi(b+a) = \varphi(b) + \varphi(a) = \varphi(b)$ — нарушение инъективности.

Лемма. $\operatorname{Ker} \varphi$ — идеал в F

ightharpoonup $\operatorname{Ker} \varphi$ — группа по сложению — тривиально.

 $\forall a,b \in \operatorname{Ker} \varphi \hookrightarrow (ab) \in \operatorname{Ker} \varphi$, т. к. $\operatorname{Ker}(ab) = \operatorname{Ker}(a) \operatorname{Ker}(b) = 0 \cdot 0 = 0$ — замкнутость относительно умножения.

$$\forall a \in F, x \in \operatorname{Ker} \varphi \hookrightarrow \varphi(ax) = \varphi(a)\varphi(x) = \varphi(a) \cdot 0 = 0 \Rightarrow ax \in \operatorname{Ker} \varphi$$

В поле F идеал
$$I = \begin{cases} \{0\} \\ F \end{cases}$$
 , т. е. $\operatorname{Ker} \varphi = \begin{cases} \{0\} \\ F - \operatorname{невозможно} \end{cases}$

(в последнем случае гомоморфизм тривиален, но у нас нетривиальный по условию).

- **№ 30(№6.8)** K образует линейное пространство над F.
 - ▶ Проверка свойств. Свойства линейного пространства следуют из аксиом поля. ТОВО: скопировать из вики свойства.
- № 31(Lecture all.pdf утв. 6.2(2)) Любое поле F нулевой характеристики содержит $\mathbb Q$ в качестве подполя.

$$\tilde{n} := \underbrace{1 + \dots + 1}_{n \text{ mtyk}}$$

Для $m \neq n$ имеем $\tilde{m} \neq \tilde{n}$ (иначе $\tilde{m} - \tilde{n} = 0$, и char $F \neq 0$.

Противоположный к элементу \tilde{m} обозначим $-\tilde{m}$.

Получили $\mathbb{Z} \subset F$. $\mathbb{Q} = \operatorname{Quot} \mathbb{Z} \subset F$, так как если $A \subset B$, то $\operatorname{Quot} A \subset \operatorname{Quot} B$ для всех колец и $\operatorname{Quot} F = F$ для поля. У нас $\mathbb{Z} \subset F \Rightarrow \mathbb{Q} = \operatorname{Quot} \mathbb{Z} \subset \operatorname{Quot} F = F$ (используется №21 из exam_5-6).

- № 32 (Lecture_all.pdf утв. 6.5(2)) Пусть f(x) неприводимый многочлен степени n, и K = F[x]/(f(x)). Тогда многочлен f(x) имеет корень в K.
 - ▶ Обозначим смежный класс многочлена $g(x) \in F$ как $\overline{g}(x) \in K$. Тогда имеем: $\overline{x} \in K$ корень многочлена f(x), т. к. $f(\overline{x}) = \overline{f}(\overline{x}) = 0$. ◀
- № 33 (Lecture_all.pdf утв. 6.5(1)) Пусть f(x) неприводимый многочлен степени n, и K = F[x]/(f(x)). Чему равна степень [K:F] этого расширения?
 - ▶ Обозначим смежный класс многочлена $g(x) \in F$ как $\overline{g}(x) \in K$. Рассмотрим $\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}$. Пусть они ЛЗ, т. е. $\exists \lambda_0, \lambda_1, \dots, \lambda_{n-1} \in F : \lambda_0 \cdot \overline{1} + \lambda_1 \cdot \overline{x} + \dots + \lambda_{n-1} \cdot \overline{x}^{n-1} = 0$. Тогда $g(x) = \lambda_0 + \lambda_1 x + \dots + \lambda_{n-1} x^{n-1} \in (f(x))$, а по неприводимости f(x) имеем g(x) = 0, т. е. $\lambda_0 = \lambda_1 = \dots = \lambda_{n-1} = 0$, и данная ЛК тривиальна. Поэтому $\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}$ ЛНЗ.

 \forall многочлена $h(x) \in F[x]$ $\overline{h}(x)$ — образ при факторизации по идеалу (f(x)) — совпадает с $\overline{r}(x)$, где r(x) — остаток от деления h(x) на f(x). Поэтому $\overline{1}, \overline{x}, \ldots, \overline{x}^{n-1}$ образуют базис K как линейного пространства над F, т. е. [K:F]=n.

- № 34 (7.9,7.10) Умение находить степень расширения и минимальный многочлен для алгебраического над полем элемента.
 - ► Как находить минимальный многочлен m_{α} ? Придумать многочлен, у которого α является корнем, и доказать (например, по критерию Эйзенштейна из №24), что он неприводим. Тогда по СЭУ из опр. 29 минимального многочлена, это действительно минимальный многочлен.
 - $\mathbb{Q}(\sqrt{2}) \supset \mathbb{Q} m = x^2 2 2$
 - $\bullet \ \mathbb{Q}(\sqrt[7]{5}) \supset \mathbb{Q} m = x^7 5 7$
 - $\mathbb{R}(2-3i)\supset\mathbb{R}-2$

 $m = 9x^{2} + 4 = (2 - 3i)(2 + 3i)$ — сложно доказывать неприводимость, критерий Эйзенштейна не помогает.

Попробуем воспользоваться теоремой Виета: $\begin{cases} c = (2-3i)(2+3i) = 4+9=13 \\ b = (2-3i)+(2+3i) = 4 \end{cases} . m = x^2-4x+13.$ Тоже неудача, критерий Эйзенштейна не помогает.

Замена $x\mapsto x+1$: $m=(x+1)^2-4(x+1)+13=x^2-2x+10$. Применяем критерий Эйзенштейна для p=2 и получаем, что m неприводим.

• $\mathbb{C}(2-3i)\supset\mathbb{C}-m=x^7-5-1$

m = x - (2 - 3i)

N(2-3i)=4+9=13 — простое число, значит, 2-3i — простой элемент (по №3.1а(№9 exam_5-6) знаем, что если норма — простое число, то элемент неразложим, а по №2.8(№5 exam_5-6) в факториальном кольце простота эквивалентна неразложимости (по №7 из exam_7-8 евклидово кольцо факториально)).

Применяем критерий Эйзенштейна для p=2-3i и получаем, что m неприводим.

• $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \supset \mathbb{Q} - 4$ $\alpha := \sqrt{2} + \sqrt{3} \Rightarrow \alpha^2 = 5 + 2\sqrt{6} \Rightarrow \alpha^2 - 5 = 2\sqrt{6} \Rightarrow (\alpha^2 - 5)^2 = 24$ $m = \alpha^4 - 10\alpha^2 + 1$

Критерий Эйзенштейна не работает. Замена $x\mapsto x+1$: $m=x^4+4x^3-4x^2-16x-8$ — неприводим по критерию Эйзенштейна при p=4.

• $\mathbb{Q}(1+\sqrt{2})\supset\mathbb{Q}(\sqrt{2}+\sqrt{3})-1$ Лемма. $\mathbb{Q}[\sqrt{2}+\sqrt{3}]\cong\mathbb{Q}[\sqrt{2},\sqrt{3}]$

ightharpoonup \subseteq очевидно.

 \supseteq : Рассмотрим $\frac{1}{\sqrt{2}+\sqrt{3}}=\frac{\sqrt{3}-\sqrt{2}}{3-2}=\sqrt{3}-\sqrt{2}$ — обратный к $\sqrt{2}+\sqrt{3}$ (он есть, т. к. $\mathbb{Q}[\sqrt{2}+\sqrt{3}]\cong\mathbb{Q}\sqrt{2}+\sqrt{3})$ — полю.

 $(\sqrt{2}+\sqrt{3})+(\sqrt{3}-\sqrt{2})=2\sqrt{3}$, т. е. $\sqrt{3}$ лежит в кольце. Тогда $\sqrt{2}=(\sqrt{2}+\sqrt{3})-\sqrt{3}$ тоже лежит в кольце. \blacktriangleleft Тогда $\mathbb{Q}(\sqrt{2}+\sqrt{3})\cong\mathbb{Q}(\sqrt{2})(\sqrt{3})$

 $m = x - (1 + \sqrt{2})$ — степени 1, неразложимый. $1 + \sqrt{2} \in \mathbb{Q}(\sqrt{2})(\sqrt{3})$.

• $\mathbb{Q}(\omega) \supset \mathbb{Q} - 2$

 $m=x^2+x+1$: $m(\omega)=0$ (можно понять по картинке), неприводим по критерию Эйзенштейна после замены $x\mapsto x+1$ для p=3, $\deg m=2$.

По №7.1г(№30г ехам 5-6), степень расширения равна степени минимального многочлена.

• $\mathbb{Q}(\sqrt[3]{2},\omega) \supset \mathbb{Q} - 6$

 $\mathbb{Q}(\sqrt[3]{2},\omega)\cong\mathbb{Q}[\sqrt[3]{2}][\omega]$ по №7.4а, имея в виду, что $F[\alpha_1,\ldots,\alpha_n]\cong F[\alpha_1]\ldots[\alpha_n]$ — очевидно.

 $[\mathbb{Q}[\sqrt[3]{2}]:\mathbb{Q}]=3$, т. к. $m=x^3-2$ — неприводим по критерию Эйзенштейна.

 $\omega \notin \mathbb{Q}[\sqrt[3]{2}]$, т. к. в $\mathbb{Q}[\sqrt[3]{2}]$ нет комплексных чисел. Значит, $m=x^2+x+1$ неприводим над $\mathbb{Q}[\sqrt[3]{2}]$ по критерию Эйзенштейна.

Итого, пользуясь №7.3(№32 exam 5-6), $3 \cdot 2 = 6$

• $\mathbb{Q}(\sqrt[4]{2},i) \supset \mathbb{Q} - 8$

Аналогично, $4 \cdot 2 = 8$.

• $\mathbb{Q}(\sqrt[5]{2},i) \supset \mathbb{Q} - 10$

Аналогично, $5 \cdot 2 = 10$.

TODO: проставить ссылки на утверждения

- № **35(6.10,8.9a,9.5)** Умение описывать расширения степени 2: минимальный многочлен, поле разложения, нормальность, группа Галуа.
 - ▶ На примере $\mathbb{Q}(\sqrt{2}) \supset \mathbb{Q}$. Степень 2. Мин. многочлен $x^2 2$ степени 2. $\mathbb{Q}(\sqrt{2})$ поле разложения многочлена $x^2 2$, т. к. все его корни $\sqrt{2}$, $-\sqrt{2} \in \mathbb{Q}(\sqrt{2})$. Не существует промежуточных, потому что тогда они имеют степень 1 или 2, т. е. совпадают с $\mathbb{Q}(\sqrt{2})$ или с \mathbb{Q} .

Рассмотрим автоморфизмы $\mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$. Их всего 2:

$$a + \sqrt{2}b \mapsto a + \sqrt{2}b$$

$$a + \sqrt{2}b \mapsto a - \sqrt{2}b$$

Других нет, т. к. достаточно рассматривать только перестановки корней минимального многочлена:

$$\sqrt{2}\mapsto\pm\sqrt{2}$$

$$-\sqrt{2} \mapsto \mp \sqrt{2}$$

Другие не рассматриваются, поскольку 1 и ЛНЗ корни многочлена образуют базис в $\mathbb{Q}(\sqrt{2})$ как линейном пространстве над \mathbb{Q} ; 1 при этом должен перейти в 1, т. к. \mathbb{Q} сохраняется.

Таких автоморфизмов $2 \Rightarrow$ степень расширения $2 \Rightarrow$ это расширение Галуа. Группа из двух элементов — \mathbb{Z}_2 — то группа Галуа данного расширения (других (с точностью до изоморфизма) групп из 2-х элементов не бывает). \blacktriangleleft

№ 36(9.1) Для производной выполнены формулы (f+g)' = f' + g' и (fg)' = f'g + fg'.

- ightharpoonup Для $f(x) = a_n x^n + \dots + a_1 x + a_0$ и $b(x) = b_n x^n + \dots + b_1 x + b_0$:
 - $(f+g)' = n(a_n+b_n)x^n + \dots + (a_2+b_2)x + (a_1+b_1) = (na_nx^n + a_2x + a_1) + (nb_nx^n + \dots + b_2x + b_1) = f' + g'$

• Рассмотрим $f(x) - f(y) = \sum_{k=1} na_k(x^k - y^k) = (x - y) \sum_{k=1} na_k(x^{k-1} + x^{k-2}y + \dots + y^{k-1}) = (x - y)\Phi(x,y),$ где $\Phi(x,y) = \sum_{k=1} na_k(x^{k-1} + x^{k-2}y + \dots + y^{k-1}).$ Заметим, что $\Phi(x,x) = f'(x).$ Тогда имеем для $\varphi = fg$: $\varphi(x) - phi(y) = f(x)g(x) - f(y)g(y) = f(x)(g(x) - g(y)) + g(y)(f(x) - f(y)) = (x - y)[f(x)G(x,y) + g(y)\Phi(x,y)].$ Отсюда $\varphi' = f(x)G(x,x) + g(x)\Phi(x,x) = f(x)g'(x) + g(x)f'(x).$

№ 37 (9.2) Многочлен f не имеет кратных корней тогда и только тогда, когда (f, f') = 1.

- ▶ Пусть $f(x) = (x-a)^m f_1(x), f_1(x)$: $f(x-a), m \ge 2$. Тогда $f'(x) = m(x-a)^{m-1} f_1(x) + (x-a)^m f_1'(x)$.
 - Если m > 1, то f'(a) = 0.
 - Если m=1, то $f'(x)=(x-a)f_1'(x)+f_1(x)\Rightarrow f'(a)=f_1(a)\neq 0\Rightarrow f(x)$ имеет кратные корни \Leftrightarrow эти корни являются корнями f'(x).

№ 38(9.6) Докажите, что можно построить

а) все точки с рациональными координатами; b) ξ_n , где n=3,4,6;

Если мы построили точки z, w, то можно ли построить точки c) $\overline{z}, -z$? d) z + w, z - w? e) $z \cdot w$?

► При помощи гугла учимся строить: перпендикулярную прямую (через заданную точку), параллельную прямую (через заданную точку).

Как обосновать то, что мы можем брать раствор циркуля, равный расстоянию между какими-то двумя точками, и переносить его на другое место? Пусть есть отрезок AB, и мы хотим окружность с радиусом AB и центром в т. C.

Строим параллелограмм как на рисунке. CD = AB.

- а) Берём отрезок 01 и произвольную точку A, не лежащую на нём. Проводим 0A. На луче 0A начиная от точки 0 откладываем n равных отрезков произвольной длины. Пусть их концы, лежащие на 0A, есть A_1, \ldots, A_n (считая от точки 0). Проводим $A_n 1 =: A_n B_n$ и параллельно ей $A_{n-1} B_{n-1}, \ldots, A_1 B_1$. По теореме Фалеса $0B_1 = B_1 B_2 = \cdots = B_{n-1} 1$. Сделав так для любого n, получим все точки с рациональными координатами на 01, размножить на ось ОХ тривиально, получить так же поделенную ось ОУ тривиально, а т. к. любая точка однозначно задаётся проекциями и мы умеем строить перпендикуляры, можем строить любую точку с рациональными координатами.
- b) Шестиугольник откладывая на окружности хорды длиной с радиус, треугольник по шестиугольнику, четырёхугольник строя перпендикуляр из центра окружности, в которую он вписан.
- с) Отражение относительно осей.
- d) Тривиально.
- е) В экспоненциальной записи: $z\omega = r_1 e^{i\varphi_1} r_2 e^{i\varphi_2} = (r_1 r_2) e^{i(\varphi_1 + \varphi_2}$. Итого, надо научиться строить сумму углов и отрезок с длиной, равной произведению двух других. Сумма углов: тривиально. Произведение: пользуемся теоремой из геометрии о соотношении высоты прямоугольного треугольника со всякими другими отрезками (та, которая выводится из подобия).

 \bot Взяв $BH=h^2, AH=a^2, CH=b^2,$ получим $BH^2=AH\cdot CH\Rightarrow BH=ab.$

Как строить a^2 и b^2 ? Взяв $BH = a^2$, AH = 1, CH = x, получим $a^2 = 1 \cdot x \Rightarrow x = a^2$.

- № 39 (9.12а) Докажите невозможность удвоения куба, то есть построение куба объёма 2, имея куб объёма 1 с помощью циркуля и линейки.
 - ▶ Задача сводится к построению циркулем и линейкой числа $\sqrt[3]{2}$. Но $\mathbb{Q}(\sqrt[3]{2})$ расширение степени 3 над \mathbb{Q} , поэтому не существует башни промежуточных расширений размерности 2.

ТООО: Больше объяснений!

- № 40 (10.2) Пусть $\varphi : F \to F aвтоморфизм поля <math>F$ (изоморфизм поля на себя). а) Пусть $\mathrm{char} F = 0$. Верно ли, что φ сохраняет \mathbb{Q} ? (то есть при $q \in \mathbb{Q}$ выполнено равенство $\varphi(q) = q$). b) Пусть char F = p. Верно ли, что φ \cos раняет \mathbb{Z}_n ?
 - \blacktriangleright а) Автоморфизм переводит единицу в единицу: $\varphi(1)=1$ по свойствам гомоморфизма. Тогда $\forall p\in\mathbb{Z}\hookrightarrow\varphi(p)=1$ $\varphi(\underbrace{1+\cdots+1}_p=\underbrace{1+\cdots+1}_p=p.$ Получили, что $\mathbb Z$ сохраняется.

Тогда $\varphi(2) = \varphi(1+1) = \varphi(1) + \varphi(1) = 1+1=2$. И так далее. Получили, что $\mathbb Z$ сохраняется.

Если какой-нибудь элемент $\frac{a}{b} \in \mathbb{Q}$ перевёлся не в себя, то $\varphi(\underbrace{\frac{a}{b} + \dots + \frac{a}{b}}) = \underbrace{\varphi(\frac{a}{b}) + \dots + \varphi(\frac{a}{b})}_{b} \neq a$, т. е. в \mathbb{Z}

что-то перешло не в себя. Противоречие.

- b) Да, т. к. если $m \in \mathbb{Z}_p$, то $\varphi(m) = \underbrace{\varphi(1) + \dots + \varphi(1)}_m = m$
- № 41 (10.4 (Lectures all.pdf задача 9.1, утв. 9.1)) Пусть $F \subset K$ расширение полей. Множество автоморфизмов K, оставляющих F на месте, является группой и называется группой автоморфизмов и обозначается $\mathrm{Aut}_F(K) = \mathrm{Aut}([K:F])$. а) $\mathrm{Aut}_F(K)$ — группа. b) Пусть $H \subset \mathrm{Aut}_F(K)$ — подгруппа. Тогда $K^H = \{x \in K \mid \forall h \in H \hookrightarrow h(x) = x\}$ является полем, причём $K \supset K^H \supset F$.
 - \blacktriangleright а) Композиция автоморфизмов, сохраняющих F,- автоморфизм, сохраняющий $F\Rightarrow$ замкнутость.

id — нейтральный элемент.

Ассоциативность следует из свойств композиции.

Обратный существует, т. к. автоморфизм — биекция. Обратный сохраняет F.

- b) Пусть $a,b\in K^H,h\in H.$ Тогда h(a+b)=h(a)+h(b)=a+b, и поэтому $a+b\in K^H.$ Аналогично, $ab\in K^H.$ С другой стороны, $h \in H \subset G$, и поэтому h сохраняет F. Значит, $F \subset K^H$. $K^H \subset K$ по определению.
- № 42 (10.5) Опишите группы автоморфизмов $\mathbb{Q}(\sqrt[3]{2})$.
 - По №40 знаем, что автоморфизм сохраняет \mathbb{Q} . Значит, нужно смотреть только за тем, куда переходит $\sqrt[3]{2}$. Рассмотрим минимальный многочлен для $\sqrt[3]{2}$: $m=x^3-2$. Куда может перейти $\sqrt[3]{2}$? В $\sqrt[3]{2}\omega$, $\sqrt[3]{2}\omega^2$. Значит, он

может перейти только в себя. $\operatorname{Aut}_{\mathbb{Q}}\mathbb{Q}(\sqrt[3]{2}=\{id\},$ т. к. все другие перестановки корней дают комплексные числа.

Знаем, что любой автоморфизм задаётся перестановкой корней минимального многочлена.

Пусть φ — авторморфизм. Тогда $\varphi(m_{\gamma}(\gamma)) = 0 \Rightarrow 0 = a_n \varphi(\gamma)^m + \cdots + a_0 \Rightarrow \varphi(\gamma)$ — корень $m_{\gamma} \Rightarrow$ сопряжён с γ .

Степень расширения равна степени минимального многочлена, т. е. 3.

- № 43 (11.1 (Lectures all.pdf теор. 11.1)) а) Конечное поле характеристики p состоит из p^n элементов. b) Поле F является полем разложения многочлена $x^{p^n} - x$. c) Существует единственное поле из p^n элементов.
 - \blacktriangleright а) Так как K конечное расширение поля \mathbb{Z}_p , то K является n -мерным линейным пространством над \mathbb{Z}_p , и поэтому состоит из p^n элементов.

- b) Пусть $\alpha \in K, \alpha \neq 0$. Тогда $\alpha^{p^n-1} = 1$. Следовательно, α является корнем многочлена f. Степень многочлена f равна p^n , все элементы K являются его корнями. Ясно, что K минимальное поле, в котором f раскладывается на линейные множители. Следовательно, K его поле разложения.
- ${\bf c})$ Поле разложение многочлена f единственно ${\bf c}$ точностью до изоморфизма.

№ 44 (11.2) Найдите все неприводимые многочлены (со стар. коэффициент 1) степени 2, 3 над полем а) \mathbb{F}_2 , b) \mathbb{F}_3 . \blacktriangleright Выписываем все возможные многочлены и вычёркиваем те, которые разложимы.

а) \mathbb{F}_2 : Неразложимые степени 1: х и х+1. Разложимые степени 2 — какая-то комбинация многочленов степени 1. Оставшиеся — неразложимы. Теперь смотрим всё возможные многочлены степени 3, которые можно получить, перемножая многочлены степени 1 и многочлены степени 2.

$$\deg = 2 \colon \underbrace{x^2}_{(x+1)(x+1)}, \underbrace{x^2 + x}_{,x^2 + x}, x^2 + x + 1$$

$$\deg = 3 \colon \underbrace{x^3}_{(x^2+1)(x^2+x+1)}, \underbrace{x^3 + x}_{,x^3 + x}, x^3 + x + 1, \underbrace{x^3 + x^2}_{,x^3 + x^2}, x^3 + x^2 + 1, \underbrace{x^3 + x^2 + x}_{,x^3 + x^2 + x + 1}$$

b) \mathbb{F}_3 : Рассуждения аналогичны.

$$\deg = 2 \colon x^2, x^2 + 1, \underbrace{x^2 + 2}_{(x+2)(x+1)}, x^2 + x, x^2 + x + 1, \underbrace{x^2 + x + 2}_{(x+1)(x+2)}, x^2 + 2x, x^2 + 2x + 1, x^2 + 2x + 2$$

$$\deg = 3 \colon x^3, \underbrace{x^3 + 1}_{(x^2+1)(x^2+x+1)}, x^3 + 2, x^3 + x, x^3 + x + 1, x^3 + x + 2, x^3 + 2x, x^3 + 2x + 1, x^3 + 2x + 2, x^3 + x^2, x^3 + x^2 + 1, x^3 + x^2 + 2x + 2, x^3 + x^2 + 2x + 2, x^3 + x^2 + 2x + 2, x^3 + 2x + 2, x^3 + 2x^2, x^3 + 2x^2, x^3 + 2x^2 + 2, x^3 + 2, x^3$$

№ 45 (**11.3**) Постройте поле из а) 4; b) 8; c) 9 элементов.

▶ Для p^n : $F_{p^n} = F_p[x]/(f(x))$, где f(x) — неприводимый многочлен степени n (пользуемся №33: $[F^{[x]}/(f(x)):F]=n$). Итого, надо просто найти неприводимый многочлен над F_p степени n. Как искать неприводимые многочлены рассказано в №44.

a)
$$4 = 2^2 \mathbb{F}_4 = \frac{F_2[x]}{(x^2 + x + 1)} = \{0; 1; x; 1 + x\}$$

b) $8 = 2^3 \mathbb{F}_8 = \frac{F_2[x]}{(x^3 + x^2 + 1)} = \{0; 1; x; x + 1; x^2; x^2 + 1; x^2 + x; x^2 + x + 1\}$
c) $9 = 3^2 \mathbb{F}_9 = \frac{F_3[x]}{(x^2 + 1)}$

Чтобы выписать элементы кольца явно, берём все возможные многочлены нужной степени над нужным полем и делим с остатком на многочлен, по которому факторизуем (факторизация в данном случае и есть деление с остатком).