Parte 3 reactivo limitante

- rm.- 44.- El hidrógeno molecular reacciona con el oxígeno molecular para formar agua. Si 4 g de hidrógeno reaccionan con 40 g de oxígeno. ¿cuánta masa de un reactivo sobrará y de qué reactivo? (3o.6.133) 8goxigenorm <
- ru.- Se hacen reaccionar 25 g de nitrato de plata con 10 g de ácido clorhídrico. Calcula la cantidad de reactivo que sobra y el reactivo que es. La reacción que se produce es nitrato de plata más ácido clorhídrico para dar cloruro de plata más ácido nítrico Ag=107,9; N=14; Cl=35,5; O=16; H=1 4,636ghclru <
- rr.-La hidracina $N_2 H_4$, se utiliza como combustible en los cohetes espaciales. La ecuación de la reacción de combustión de la hidracina es: $N_2 H_4$ (I) + O_2 (g) $\rightarrow N_2$ (g) + H_2O (g) ¿Cuántos litros de nitrógeno, medidos en condiciones normales, se formarán a partir de 1 kg de hidracina y 1 kg de oxígeno? N=14; O=16; H=1 699,56lrr <
- rc.-La hidracina $N_2 H_4$, se utiliza como combustible en los cohetes espaciales. La ecuación de la reacción de combustión de la hidracina es: $N_2 H_4$ (I) + O_2 (g) $\rightarrow N_2$ (g) + H_2O (g) ¿Cuántos gramos de reactivo en exceso sobrarán a partir de 1 kg de hidracina y 1 kg de oxígeno? **0grc** <
- .ri.- Se produce una chispa eléctrica en una mezcla de 1kg de H2 y 1 kg de O2 que reaccionan formando agua.¿Cuánta agua se produce? 1125Gri <
- re.-Cuando se calienta dióxido de silicio mezclando con carbono, se forma carburo de silicio (SiC) y monóxido de carbono. La ecuación de la reacción es SiO_2 (s) + C (s) \rightarrow SiC(s) + CO(g). Si mezclamos 150 g de SiO_2 con 105 g de carbono. Cuántos gramos del CO se formarán? Si=28,1; C=12; O=16 **140gre** <
- rl.- Se tratan 6 g de aluminio en polvo con 50,0 ml de disolución 0,6 M de ácido sulfúrico. La reacción es Al + $H_2SO_4 \rightarrow Al_2$ (SO_4) $_3$ + H_2 Calcula el volumen de hidrógeno gaseoso que se obtendrá en la reacción, medido a 0°C y 1atm Al=27; S=32; O=16; H=1 0,671lrl <
- ra.- Se tratan 6 g de aluminio en polvo con 50,0 ml de disolución 0,6 M de ácido sulfúrico. La reacción es Al + $H_2SO_4 \rightarrow Al_2$ (SO_4)₃ + H_2 Calcula la cantidad en gramos de Al₂ (SO_4)₃ que se obtendrá por evaporación de la disolución resultante de la reacción. **3,42gra**