Воротницкий Ю.И.

Исследование операций

Сетевые модели

Сетевые модели

Основные элементы сетевых моделей

Сетевые модели. **Основные определения**

- **Сеть** состоит из множества узлов (вершин), связанных дугами или ребрами.
- Сеть описывается парой множеств (N,A), где N множество узлов, а A – множество ребер.

Сетевые модели. **Основные определения**

- Показанная на рисунке сеть описывается следующим образом:
 - N={1,2,3,4,5}
 - A={(1,3), (1,2), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)}

Сетевые модели. **Основные определения**

- С каждым типом сети связан определенный тип потоков.
- В общем случае потоки в сети ограничены **пропускной способностью** ее ребер С_{іі}, которая в общем случае может быть как конечной, так и бесконечной (максимальный ток в цепи электропитания, пропускная способность телекоммуникационных каналов и т.д.).

Сетевые модели. **Основные определения**

- Ребро называется направленным (ориентированным), если в одном направлении возможен только положительный поток, а в противоположном – только нулевой
- В этом случае ребро называют дугой

Сетевые модели. **Основные определения**

- В ориентированной сети все ребра ориентированы:
 - N={1,2,3,4,5}
 - A={(1,3), (2,1), (2,3), (2,4), (2,5), (4,3), (3,5), (4,5)}

Сетевые модели. **Основные определения**

- Путем называется последовательность различных ребер, соединяющих два узла, независимо от направления потока в каждом ребре.
- Путь формирует цикл, если начальный и конечный узлы совпадают.
- Ориентированный цикл цикл, в котором дуги ориентированы в определенном направлении.

Сетевые модели. **Основные определения**

- **Связная сеть** такая сеть, у которой любые два узла связаны по крайней мере одним путем.
- Это связная сеть:
 - N={1,2,3,4,5}
 - A={(1,3), (1,2), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)}

Сетевые модели. **Основные определения**

- **Связная сеть** такая сеть, у которой любые два узла связаны по крайней мере одним путем.
- Это тоже связная сеть:
 - N={1,2,3,4,5}
 - A={(1,2), (2,3), (2,5), (4,5)}

Сетевые модели. **Основные определения**

- **Связная сеть** такая сеть, у которой любые два узла связаны по крайней мере одним путем.
- А эта сеть связной не является:
 - N={1,2,3,4,5}
 - A={(1,2), (3,4), (3,5), (4,5)}

Сетевые модели. **Основные определения**

- **Деревом** называется связная сеть, содержащая подмножество узлов исходной сети и не имеющая циклов.
- Пример дерева:
 - N={1,2,4,5}
 - A={(1,2), (2,5), (4,5)}

Сетевые модели. **Основные определения**

- Остовное дерево дерево, содержащее все узлы сети.
- Пример остовного дерева:
 - N={1,2,3,4,5}
 - A={(1,3), (1,2), (2,4), (2,5)}

Сетевые модели. **Представление сетей**

- Сеть G=(N,A) может быть полностью определена простым перечислением множеств N и A.
 - N={1,2,3,4,5}
 - A={(1,3), (1,2), (2,4), (2,5)}
- Такой способ не позволяет легко анализировать свойства сетей

Сетевые модели. **Представление сетей**

• Матрица смежности.

- Любая сеть G=(N,A) с m узлами (вершинами) может быть представлена матрицей A(G)=[a_{ii}] размера m x m.
- Для этого узлы должны быть перенумерованы (или помечены метками порядкового типа $v_1, v_2, ..., v_m$).
- a_{ij} =1, если v_i смежен с v_j , в противном случае a_{ij} =0.
- Для неориентированной сети G A(G) всегда будет симметричной матрицей (0,1) с нулями на диагонали.
- Для ориентированной матрицы G только один из элементов а_{іі}, а_{іі} может отличаться от нуля.
- При необходимости значения 0 и 1 в матрице можно заменить пропускными способностями или стоимостями путей.

Сетевые модели. **Представление сетей** Матрица смежности

Сетевые модели. **Представление сетей** Матрица смежности

Сетевые модели. **Представление сетей**

• Матрица инцидентности.

- Любая сеть G=(N,A) с m узлами и n ребрами может быть представлена матрицей I(G)=[b_{ii}] размера m x n.
- Для этого узлы должны быть перенумерованы (или помечены метками порядкового типа v₁, v₂, ..., v_m), а ребра также перенумерованы (или помечены метками порядкового типа e₁, e₂, ..., e_n), .
- b_{ij} =1, если v_i инцидентен e_j , в противном случае b_{ij} =0.
- Каждый ј-й столбец матрицы I(G), соответствующий ј-му ребру, всегда содержит ровно две единицы.
- Никакие два столбца не могут быть идентичны.
- Матрица инцидентности полезна для решения сетевых задач, касающихся анализа циклов.

Сетевые модели. **Представление сетей** Матрица инцидентности

Сетевые модели. **Представление сетей**

• Векторы смежности.

- Любая сеть G=(N,A) с m узлами может быть представлена матрицей C(G)=[c_{ii}] размера m x m-1.
- Для этого узлы должны быть перенумерованы (или помечены метками порядкового типа v₁, v₂, ..., v_m).
- Каждая і-я строка матрицы соответствует і-му узлу.
- Значения элементов і-й строки с_{іі} номера узлов, смежных с v_і.
- Каждая і-я строка представляет собой вектор смежности для і-го узла сети.
- Порядок элементов в векторе смежности в общем случае произволен.
- Векторы смежности целесообразно использовать, когда задача решается за небольшое число просмотров каждого ребра в G.

Сетевые модели. **Представление сетей** Вектор смежности

Сетевые модели. **Представление сетей**

• Списки смежности.

- Списки смежности один из наиболее эффективных способов представления сети G=(N,A), где N – m вершин, A – n ребер.
- В этом случае сеть представляется с помощью m списков, каждый из которых может иметь от 0 до m-1 элемента.
- Информационное поле каждого элемента і-го списка содержит номер вершины, смежной с і-й
- Удобно использовать одномерный массив из т элементов, причем каждый элемент массива представляет собой линейный список, представляющий ненулевые компоненты вектора смежности для соответствующей вершины

Сетевые модели. **Представление сетей** Списки смежности

Сетевые модели. **Постановки задач и базовые алгоритмы**

Сетевые модели. Постановки задач и базовые алгоритмы

- Все перечисленные задачи можно сформулировать и решить как задачи линейного программирования.
- Этот подход неэффективен, так как специфическая структура этих задач позволяет построить для них специальные, более эффективные, вычислительные алгоритмы

Построение минимального остовного дерева

- Банк имеет в городе 6 крупных отделений.
- С целью создания корпоративной информационной системы необходимо связать их с помощью опорной оптоволоконной сети минимальной стоимости, полагая, что она определяется общей длиной коммуникаций.
- Расстояния между офисами известны.
- Разумеется, такая постановка задачи в значительной степени идеализирована:
 - не учитываются параметры и стоимость коммуникационного оборудования в узлах сети, а также пропускная способность каналов;
 - не учитывается, что прокладка по существующим телефонным канализациям дешевле, однако при этом могут существенно увеличиваться длины кабелей;
 - не рассматривается необходимость резервирования каналов связи.

Сетевые модели. **Алгоритм построения минимального остовного дерева**

- Заданы N={1,2,...m} множество узлов сети. Заданы длины (стоимости) возможных дуг s_{ij}, которые можно провести между узлами і и j.
- Необходимо соединить все узлы сети с помощью путей (дуг) наименьшей суммарной длины (стоимости).
- Очевидно, что для этого необходимо построить дерево, связвающее все узлы с помощью дуг наименьшей общей длины (стоимости).
- Обозначим С_к множество узлов, соединенных алгоритмом после выполнения k-й итерации, D_к – множество узлов сети, не соединенных с узлами множества С_к после выполнения kй итерации алгоритма.

- 4. Сетевые модели.
- 4.4. Алгоритм построения минимального остовного дерева
 - **Шаг 0.** Положить $C_0 = (пустое множество), <math>D_0 = N$.
 - **Шаг 1.** Выбрать любой узел і из множества D_0 и определить $C_1 = \{i\}$, $D_1 = N \{i\}$. Положить k = 2.
 - **Шаг 2.** Пока множество D_0 не является пустым, выполнить:
 - **Шаг 2.1.** В множестве D_{k-1} выбрать узел j, который соединен самой короткой дугой с каким-либо узлом из C_{k-1} .
 - **War 2.2.** $C_k = C_{k-1} + \{j\}, D_k = D_{k-1} \{j\}.$
 - Шаг 2.3. k=k+1.
 - Шаг 3. Завершить работу.

Сетевые модели. **Алгоритм построения минимального остовного**

Сетевые модели. **Алгоритм построения минимального остовного**

дерева. Задача построения опорной телекоммуникационной сети

Сетевые модели. **Алгоритм построения минимального остовного**

Нахождение кратчайшего и критического путей

- Банк имеет в городе 6 крупных отделений, соединенных оптоволоконными линиями передачи.
- Необходимо организовать видеоконференцсвязь между центральным офисом (узел 1) и отделениями. Для этого необходимо предложить схему статической маршрутизации пакетов, минимизирующую времена задержек от узла 1 до каждого из остальных узлов. Средние времена задержек при передаче от узла к узлу в условиях нормальной загрузки сети известны.
- Разумеется, эта задача тоже идеализирована. В частности:
 - не учитывается влияние изменения самого трафика видеоконференций на средние времена задержек;
 - не учитываются другие параметры, влияющие на качество видеоконференцсвязи (вариации задержек, вероятность потери пакетов).

Нахождение кратчайшего пути. Задача минимизации задержек пакетов в корпоративной сети. Алгоритм Дейкстры.

• Алгоритм Дейкстры.

- При переходе от узла *i* к следующему узлу *j* используется специальная процедура пометки ребер.
- Обозначим через u_i кратчайшее расстояние от исходного узла 1 до узла i, через d_{ij} длину ребра (i,j). Тогда для узла j определим метку $[u_j,i]$ следующим образом: $[u_j,i] = [u_i + d_{ij},i]$.
- Метки могут быть двух типов: временные и постоянные.
- Временная метка может быть заменена на другую временную, если будет найден более короткий путь к данному узлу.
- Статус временной метки заменяется на постоянный, когда станет очевидным, что не существует более короткого пути от исходного узла к данному.

- Алгоритм Дейкстры.
- Шаг 0. Исходному узлу (узел 1) присваивается метка [0,-]. Положить i=1.
- Шаг і.
 - Вычислить временные метки $[u_i + d_{ij}, i]$ для всех узлов j, которые можно достичь из узла i и которые не имеют постоянных меток. Если узел j уже имеет временную метку, полученную от другого узла k и если $u_i + d_{ij} < u_j$, то заменить метку $[u_j, k]$ на $[u_i + d_{ij}, i]$.
 - Если все узлы имеют постоянные метки, процесс вычислений заканчивается. В противном случае выбрать метку $[u_r,s]$ с наименьшим значением расстояния среди всех временных меток (если их несколько выбор произволен). Изменить статус этой метки на постоянную. Положить i=r и повторить шаг i.

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	временная
3	[0+80,1] = [80,1]	временная
4		
5		
6		

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	временная
3	[0+80,1] = [80,1]	постоянная
4		
5		
6		

	Узел	Метка	Статус
	1	[0,-]	постоянная
	2	[0+200,1] = [200,1]	временная
	3	[0+80,1] = [80,1]	постоянная
Ī	4		
	5		
	6	[80+450] = [530,3]	временная

	Узел	Метка	Статус
	1	[0,-]	постоянная
	2	[0+200,1] = [200 ,1]	постоянная
	3	[0+80,1] = [80,1]	постоянная
	4		
ĺ	5		
	6	[80+450] = [<mark>530</mark> ,3]	временная

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360,2]	временная
5	[200+300,2]=[500,2]	временная
6	[80+450] = [530,3]	временная

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360 ,2]	постоянная
5	[200+300,2]=[500,2]	временная
6	[80+450] = [530,3]	временная

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360,2]	постоянная
5	360+90<500 => [500,2] <= [360+90,4] = [450,4]	временная
6	360+120<530 =>[530,3]<=[360+120,4] =[480,4]	временная

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360,2]	постоянная
5	[360+90,4] = [450,4]	временная
6	[360+120,4] =[480,4]	временная

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360,2]	постоянная
5	[360+90,4] = [450 ,4]	постоянная
6	[360+120,4] =[480,4]	временная

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360,2]	постоянная
5	[360+90,4] = [450,4]	постоянная
6	[360+120,4] =[480,4]	постоянная

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360,2]	постоянная
5	[360+90,4] = [450,4]	постоянная
6	[360+120,4] =[480,4]	постоянная

Нахождение кратчайшего пути. Задача минимизации задержек пакетов в корпоративной сети. Алгоритм Дейкстры.

Кратчайший путь между узлом 1 и любым узлом определяется начиная с узла назначения путем прохождения в обратном направлении с помощью информации, представленной в постоянных метках.

Узел	Метка	Статус
1	[0,-]	постоянная
2	[0+200,1] = [200,1]	постоянная
3	[0+80,1] = [80,1]	постоянная
4	[200+160,2] = [360,2]	постоянная
5	[360+90,4] = [450,4]	постоянная
6	[360+120,4] =[480,4]	постоянная

Узел	Метка	Статус	
1	[0,-]	постоянная	
2	[0+200,1] = [200,1]	постоянная	
3	[0+80,1] = [80,1]	постоянная	
4	[200+160,2] = [360,2]	постоянная	
5	[360+90,4] = [450,4]	постоянная	
6	[360+120,4] =[480,4]	постоянная	

Сетевые модели. **Нахождение кратчайшего пути.** Принцип построения алгоритма Флойда.

- Алгоритм Флойда более общий: он приводит к нахождению кратчайших путей между любыми двумя узлами сети.
- Сеть с n узлами представляется в виде квадратной матрицы с n строками и n столбцами. Элемент (i,j) равен расстоянию d_{ij} от узла i до узла j, которое имеет конечное значение, если узлы связаны дугой и равно бесконечности в противном случае.
- Основная идея метода.
 - Пусть есть три узла i,j,k и заданы расстояния между ними.
 - Если d_{ij} + d_{jk} < d_{ik} , то целесообразно заменить путь i -> k путем i -> j -> k.
 - Такая замена (ее еще называют треугольный оператор)
 выполняется систематически в процессе выполнения алгоритма.

Сетевые модели. Нахождение кратчайшего пути. Задача минимизации потерь пакетов в корпоративной сети.

- Банк имеет в городе 6 крупных отделений, соединенных оптоволоконными линиями передачи.
- Необходимо организовать видеоконференцсвязь между центральным офисом (узел 1) и отделениями. Для этого необходимо предложить схему статической маршрутизации пакетов, минимизирующую потери пакетов на маршрутах от узла 1 до каждого из остальных узлов. Усредненные значения вероятностей доставки пакетов UDP от узла к узлу в условиях нормальной загрузки сети известны.
- Разумеется, эта задача тоже идеализирована. В частности:
 - не учитывается влияние изменения самого трафика видеоконференций на вероятности доставки пакетов;
 - не учитываются другие параметры, влияющие на качество видеоконференцсвязи.

Сетевые модели. **Нахождение кратчайшего пути.** Задача минимизации потерь пакетов в корпоративной сети.

- Мы имеем дело с задачей нахождения не кратчайшего, а наиболее длинного пути.
- Проблема: вероятности не складываются, а умножаются.
- Эта проблема преодолевается, если заменить вероятности их логарифмами: $d_{ii} = log \; p_{ii}$.
- Теперь можно воспользоваться алгоритмом Дейкстры или алгоритмом Флойда.

- Компания по прокату автомобилей разрабатывает план обновления парка своих машин на 5 лет (2000-2004 гг.).
- Каждый автомобиль должен прослужить не менее одного и не более трех лет.
- Стоимость замены автомобиля в зависимости от года покупки и срока эксплуатации приведена в таблице.

Год покупки	Стоимость замены в зависимости от срока эксплуатации			
	1 год	2 года	3 года	
2000	4000	5400	9800	
2001	4300	6200	8700	
2002	4800	7100	-	
2003	4900	-	-	

Сетевые модели. Нахождение кратчайшего пути. Задача о замене оборудования (X. Taxa)

Сетевые модели. Нахождение кратчайшего пути. Задача о замене оборудования (X. Taxa)

Сетевые модели. Нахождение кратчайшего пути. Задача о замене оборудования (X. Taxa)

Сетевые модели. Нахождение кратчайшего пути. Задача о замене оборудования (X. Taxa)

Сетевые модели. Нахождение критического пути. Задача сетевого планирования.

- Критический путь самый длинный путь на графе.
- Алгоритм нахождения аналогичен алгоритму Дейкстры.

Сетевые модели. Нахождение критического пути. Задача сетевого планирования.

Понятие о постановке и методах решения задач о максимальном потоке и потоке наименьшей стоимости

Сетевые модели. **Задача о максимальном потоке.** Постановка задачи.

- Рассмотрим сеть трубопроводов для транспортировки сырой нефти от буровых скважин до нефтеперерабатывающих заводов. Каждый сегмент трубопровода имеет свою пропускную способность.
- Сегменты могут быть как однонаправленные, так и двунаправленные.
- Требуется определить максимальный поток между скважинами и заводами.

Сетевые модели. **Задача о максимальном потоке.** Перебор разрезов.

- **Paspes** определяет множество ребер, при удалении которых из сети полностью прекращается поток от источника к стоку.
- Пропускная способность разреза равна сумме пропускных способностей разрезанных ребер
- Теорема Форда-Фалкерсона. Для любой сети с источником S и стоком Т максимальная величина потока из S в T равна минимальной пропускной способности разреза.

Сетевые модели. **Задача о максимальном потоке.** Перебор разрезов.

Разрез	Разрезанные ребра	Пропускная способность
1	(1,2), (1,3), (1,4)	10+30+20 = 60
2	(1,3), (1,4), (2,3), (2,5)	30+10+40+30 = 110
3	(2,5), (3,5), (4,5)	30+20+20 = 70

Сетевые модели. **Задача о максимальном потоке.** Идея алгоритма.

- Идея алгоритма нахождения максимального потока состоит в нахождении сквозных путей с положительными потоками от источника к стоку основана на следствии из теоремы Форда-Фалкерсона: если для системы дуг,задействованных для пропуска потока, нельзя найти ни один новый сквозной путь, увеличивающий поток, то этот поток является максимальным
- Нахождение очередного сквозного пути предполагает задействование части пропусной спосообности ребер. Поэтому следующий сквозной путь ищется на остаточной сети.
- Максимальный поток вычисляется как сумма потоков в сквозных путях.

Сетевые модели. **Задача о максимальном потоке.**Оптимизация производственного плана.

- Четыре фабрики имеют заказ на производство четырех видов игрушек.
- Возможности фабрик по производству игрушек показаны в таблице.

Фабрика	Типы игрушек	Ежедневная производственная мощность (игрушек)
1	1,2,3	250
2	2,3	180
3	1,4	300
4	3,4	100

- Ежедневный спрос на игрушки каждого из четырех типов составляет 200, 150, 350 и 100 штук.
- Необходимо разработать производственный план, максимально удовлетворяющий спрос на игрушки

Задача о максимальном потоке.

Оптимизация производственного плана.

Задача о максимальном потоке.

Оптимизация производственного плана.

 Конечно, задача оптимизации производственного плана может быть сформулирована как классическая задача линейного программирования (причем — целочисленного).
 Если количество выпускаемых i-й фабрикой игрушек l-го о типа — x_i

$$max(x_{11}+x_{12}+x_{13}+x_{22}+x_{23}+x_{31}+x_{34}+x_{43}+x_{44});$$

$$x_{11} + x_{12} + x_{13} \le 250;$$
 $x_{22} + x_{23} \le 180;$ $x_{31} + x_{34} \le 300;$ $x_{43} + x_{44} \le 100;$

$$x_{11} + x_{31} \le 200;$$
 $x_{12} + x_{22} \le 150;$ $x_{13} + x_{23} + x_{43} \le 350;$ $x_{34} + x_{44} \le 100;$

Задача о максимальном потоке.

Оптимизация производственного плана.

$$max (x_{11} + x_{12} + x_{13} + x_{22} + x_{23} + x_{31} + x_{34} + x_{43} + x_{44});$$
 $x_{11} + x_{12} + x_{13} \le 250; \quad x_{22} + x_{23} \le 180;$
 $x_{31} + x_{34} \le 300; \quad x_{43} + x_{44} \le 100;$
 $x_{11} + x_{31} \le 200; \quad x_{12} + x_{22} \le 150;$
 $x_{13} + x_{23} + x_{43} \le 350; \quad x_{34} + x_{44} \le 100;$

ullet количество выпускаемых i-й фабрикой игрушек l-го о типа — x_{il}

$$x_{11}=0;$$
 $x_{12}=0;$ $x_{13}=250;$ $x_{22}=150;$ $x_{23}=30$ $x_{31}=200;$ $x_{34}=100;$ $x_{43}=70;$ $x_{44}=0.$ $F=800$

Задача о максимальном потоке.

Оптимизация производственного плана.

Сетевые модели. **Нахождение потока наименьшей стоимости.**Постановка задачи.

- Задачу нахождения потока наименьшей стоимости в сети с ограниченной пропускной способностью можно рассматривать как обобщение задачи определения максимального потока:
 - Все ребра допускают только одностороннее направление потока, т.е. являются (ориентированными) дугами.
 - Каждой дуге поставлена в соответствие (неотрицательная) стоимость прохождения единицы потока по данной дуге.
 - Дуги могут иметь положительную нижнюю границу пропускной способности.
 - Любой узел сети может выступать в качестве источника и стока.
- В рассматриваемой задаче необходимо найти потоки по дугам, минимизирующие стоимость прохождения потока по сети. При этом должны удовлетворяться ограничения на пропускные способности дуг и на величины предложений и спроса отдельных (или всех) узлов.

Сетевые модели. **Нахождение потока наименьшей стоимости.**Постановка задачи.

- Рассматривается сеть G = (N, A) с ограниченной пропускной способностью, где N множество узлов, A множество дуг. Обозначим:
 - x_{ij} величина потока, протекающего от узла i к узлу j,
 - u_{ij} верхняя пропускная способность дуги (i,j),
 - $_{lij}$ нижняя пропускная способность дуги (i,j),
 - c_{ij} стоимость прохождения потока по дуге (i,j),
 - f_i величина результирующего потока, потребляемого узлом i или производимого узлом i.

Нахождение потока наименьшей стоимости.

Сетевая модель как задача линейного программирования

 Используя данные выше определения, можно записать задачу ЛП для сети с ограниченной пропускной способностью следующим образом:

$$\min \sum_{(i,j) \in N} \sum_{i,j} c_{ij} x_{ij};$$

$$\sum_{k} x_{jk} - \sum_{i} x_{ij} = f_j, \quad j \in N;$$

$$l_{ii} \leq x_{ii} \leq u_{ii}.$$

Условие сбалансированности сети: ∑f_i=0.
 Сбалансированность сети не гарантирует существования допустимого решения: этому может помешать ограниченность пропускных способностей дуг.

Сетевые модели. **Нахождение потока наименьшей стоимости.**Сетевая модель как задача линейного программирования

- Алгоритм решения базируется на симплекс-методе.
- Модификация алгоритма симплекс-метода заключается в особых правилах ввода и исключения переменных (дуг), то есть в особых условиях оптимальности и допустимости, облегчающих процесс вычислений.
- Базисному решению соответствует минимальное остовное дерево, построенное на сети.

Сетевые модели. **Нахождение потока наименьшей стоимости.**Пример (X.Taxa).

• Компания "Зернышко" снабжает зерном из трех зернохранилищ (узлы 1,2,3) три птицеводческие фермы (узлы 4,5,6). Предложение зернохранилищ составляет 100, 200 и 50 тонн зерна в месяц. Компания может транспортировать зерно по железной дороге, за исключением трех маршрутов, где используется автомобильный транспорт.

• Пропускная способность железных дорог не ограничена. Пропускная способность автотранспорта ограничена снизу и сверху.

Нахождение потока наименьшей стоимости.

Сетевая модель как задача линейного программирования

Для этой задачи можно записать задачу ЛП следующим образом:

$$\min 15x_{12} + 20x_{13} + 5x_{14} + 25x_{23} + 30x_{25} + 5x_{34} + 10x_{35} + 10x_{46} + 20x_{56}$$

$$x_{12} + x_{13} + x_{14} = 100$$

$$x_{23} + x_{25} - x_{12} = 200$$

$$x_{34} + x_{35} - x_{13} - x_{23} = 50$$

$$x_{46}$$
- x_{14} - x_{34} =-150

$$x_{56}$$
- x_{25} - x_{35} =-80

$$-x_{46}$$
- x_{56} =-120

Условие сбалансированности сети: $\sum f_i = 0$.

$$x_{12} \ge 0;$$
 $x_{13} \ge 0;$ $x_{14} \le 80;$ $x_{14} \ge 20$
 $x_{23} \ge 0;$ $x_{25} \ge 0;$

$$x_{34} \le 120$$
; $x_{34} \ge 20$; $x_{35} \ge 0$;

$$x_{46} \le 120$$
; $x_{46} \ge 10$

$$x_{56} \ge 0$$
;

Сетевые модели. Нахождение потока наименьшей стоимости. Пример (X.Taxa).

