Expert of Mixtures for Gaussian Processes

November 5, 2020

Ozgur Taylan Turan

Notes

GPy Implimentation

- improved the bi-fidelity to s levels of fidelity
- All the capabilities of GPy are available
- Can be reached from github.com/taylanot/GPy

Outline

- Introduction to MoE
- Sample functions & Real data examples
- Conclusions

Introduction¹

- GPR as a voting operation $\mu(\pmb{x}_*) = \sum\limits_{-\infty}^N \omega_n \pmb{y}_n o \omega_n = \pmb{k}_* \pmb{K}^{-1}$

• Same operation, by including local experts
$$\bar{\mu}(x_*) = \sum\limits_{i=1}^T\sum\limits_{j=1}^S \pi_i \omega_{ij} y_{ij} o \mu(x_*) = \bar{\mu}(x_*) / \sum\limits_{i=1}^T \pi_i$$

•
$$\pi_k = e^{-0.5(x_*-c_k)^T(x_*-c_k)/l_k^2}$$

¹X. Zhao, Y. Fu, and Y. Liu (2011). "Human motion tracking by temporal-spatial local Gaussian process experts". In: IEEE Transactions on Image Processing 20.4, pp. 1141-1151, ISSN: 10577149, DOI: 10.1109/TIP.2010.2076820; D. Nguyen-Tuong, M. Seeger, and J. Peters (2008), "Local Gaussian Process Regression for Real Time Online Model Learning.". In: Nips, pp. 1193-1200

Single Fidelity-A

Problem

- In [0,14], draw samples from two different functions
- In $[0,6] \rightarrow \sin(x)$ (10 sample points)
- In $[7,14] \rightarrow \sin(4x)$ (20 sample points)

Single GP

Single Fidelity-A

Two local GPs

Single GP

Single Fidelity-A

EoM

Single GP

Single Fidelity-B

Problem

 Homogenous Melro uniaxial tension data

2 cluster EoM

Single Fidelity-B

4 cluster EoM

2 cluster EoM

Bi-fidelity-A

Problem

•
$$f_h(x) = (6x - 2)^2 \sin(12x - 4)$$

•
$$f_l(x) = Af_h(x) + B(x - 0.5) - C$$

•
$$A = \begin{cases} 0.5, & \text{if } x \ge 0 \\ -0.5, & \text{otherwise} \end{cases}$$

- B = 10, and C = 5
- Fol

One multiGP

Bi-fidelity-A

EoM

One multiGP

Bi-fidelity-B

Problem

- Homogenous Melro uniaxial tension data to low fidelity
- 1-fiber uniaxial tension data to high fidelity

• Single multiGPR

Bi-fidelity-B

2 EoM multiGPR

• Single multiGPR

Conclusions

- Able to solve the problems regarding utilization of single GP
- Very delicate system to work with (multiple LML with small datasets)
- Clustering can be an issue
- Deviations from the data set is inevitable at some portions of the domain

Future Work

- Jem/Jive implementation is needed for integration with thesis.
- This will show its capabilities in a predictive manner as well.