The Coronal Heating Problem of the Sun

By: Pranav Jain

Outline

PROPOSED THEORIES

OBSERVATIONS

CONCLUSION

Coronal Heating Problem

Proposed theories

MAGNETIC RECONNECTION

Wave Heating

Alfvén waves travel along magnetic field lines using the magnetic tension as their restoring force

Dissipation:

- Resonant
 Absorption
- Phase Mixing

Magnetic Reconnection

It involves oppositely directed magnetic field lines breaking and reconnecting, releasing stored magnetic energy as heat and kinetic energy.

Dissipation:

Ohmic Heating

Nanoflares

Tiny, frequent bursts of energy
that are caused by small-scale
magnetic reconnection events
throughout the corona

Dissipation:

Ohmic Heating

www.he

Observations

PARKER SOLAR PROBE

SOHO

- Launched: December 2, 1995
- Found isothermal loops and Alfvén waves

• Observed magnetic reconnection and nanoflares

TRACE

• Launched: April 2, 1998

 Detected nanoflares and coronal oscillations

Observed magnetic reconnection events

Parker Solar Probe

• Launched: August 12, 2018

 Observed magnetic switchbacks

• Found evidence of nanoflares and plasma waves

Conclusion

References

- A. Young, C. (n.d.). Solar Structure. The Sun Today with Dr. C. Alex Young. https://www.thesuntoday.org/sun/solar-structure/
- Walsh, R. W., & Ireland, J. (2003). The heating of the solar corona. The Astronomy and Astrophysics Review, 12(1), 1–41. https://doi.org/10.1007/s00159-003-0021-9
- Solar Influences Data Analysis Center. (n.d.). Heat waves on the Sun | SIDC. Www.sidc.be. Retrieved July 31, 2024, from https://www.sidc.be/article/heat-waves-sun
- NASA. (2015, March 10). Reconnection on the Sun NASA. NASA. https://www.nasa.gov/image-article/reconnection-sun/
- Hatfield, M. (2020, December 21). This May Be the First Complete Observation of a Nanoflare NASA. NASA. https://www.nasa.gov/solar-system/this-may-be-the-first-complete-observation-of-a-nanoflare/
- Fleck, B., Brekke, P., Haugan, S., Duarte, L. S., Domingo, V., Gurman, J.B., & Poland, A.I. (2000, May). Four Years of SOHO Discoveries –
 Some Highlights. NASA. https://soho.nascom.nasa.gov/publications/ESA_Bull102.pdf
- Golub, L., Bookbinder, J. A., DeLuca, E. E., M. Karovska, Warren, H. P., Schrijver, C. J., Shine, R. A., Tarbell, T. D., Title, A. M., Wolfson, J., Handy, B. N., & Kankelborg, C. C. (1999). A new view of the solar corona from the transition region and coronal explorer (TRACE). Physics of Plasmas, 6(5), 2205–2216.
 - https://www.researchgate.net/publication/258081847_A_new_view_of_the_solar_corona_from_the_transition_region_and_coronal_explorer_TRACE
- Hatfield, M., & Thomas, V. (2021, March 9). Switchbacks Science: Explaining Parker Solar Probe's Magnetic Puzzle NASA. NASA.
 https://www.nasa.gov/science-research/heliophysics/switchbacks-science-explaining-parker-solar-probes-magnetic-puzzle/
- Cain, F. (2016, September 13). What are the Parts of the Sun? Universe Today. https://www.universetoday.com/40631/parts-of-the-sun/