Exploration via disruptions in prefrontal control dynamics

R. Becket Ebitz^{1,3}, Tim Buschman^{1,2}, Tirin Moore^{3,4}

¹ Princeton Neuroscience Institute and ² Department of Pscyhology, Princeton University,

³ Neurobiology Department and ⁴ Howard Hughes Medical Institute, Stanford University School of Medicine,

1. How is exploration implemented in the brain?

We know a lot about how the brain makes choices that maximize reward. However, in variable or uncertain environments, exploiting known-rewarding options is not a sufficient strategy for intelligent decision-making. Instead, actors must also explore: they must sample uncertain alternatives that have the potential to be better. We know a great deal about how the brain generates exploit choices, but much less about the mechanisms underlying explore choices. Here, we ask how exploration and exploitation might be implemented differently in a part of the brain that is responsible for generating decisions: the frontal eye fields.

2. Task and explore/exploit choice identification.

Explore choices are

non-reward-maximizing...

3. Classic choice-predictive signals in prefrontal cortex are substantially reduced during exploration.

4. Humans and monkeys are more influenced by option salience during exploration.

-0.02 | • low

 $0.05_{\rm f}$ high – lo

-0.05 -20 -15 -10 -5 0

trial before explore

0.05 high - low

-20 -15 -10 -5 0

trial before explore

exploit low high

exploit low high

5. A disruption in prefrontal attractor dynamics predicts these changes in brain and behavior.

Each perturbation makes a different **prediction** for reaction time:

The data is consistent with $|S_1 - S_2|$

This perturbation changes model dynamics

...and makes specific predictions for neural activity.

6. During exploration,

- FEF activity is less predictive of choice.
- Decisions are less determined by top down control.
- A model in which attractor dynamics are disrupted can replicate behavior and predicts counter-intuitive features of neural activity.

Support provided by the National Eye Institute (R01-EY014924), HHMI, and NEI T32 posdoctoral training grant, a NIMH NRSA (F32-MH102049), and a CV Starr Foundation Fellowship to RBE.