ANALISI MODALE

Ricordiamo che per un sistema LTI TC abbiamo trovato che esiste la seguente corrispondenza tra dominio del tempo e Laplace:

$$e^{at} \longleftrightarrow \frac{1}{s-a}$$

$$\updownarrow$$

$$e^{At} \longleftrightarrow (sI-A)^{-1}$$

Questo ci ha portato a trovare l'evoluzione libera:

$$x_{\ell} = e^{At}x_0 = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

- da cui si può capire i modi di evoluzione del sistema
- ullet dove abbiamo notato che $(sI-A)^{-1}=rac{1}{arphi(s)}Adj(sI-A)$
 - Ovvero l'inversa è un rapporto di polinomi tale che grado numeratore minore del grado del denominatore (strettamente propria)

POLINOMIO CARATTERISTICO

Il polinomio caratteristico $\varphi(s)$ può essere riscritto individuando i suoi zeri, che sono gli **autovalori** $\lambda_1, \ldots, \lambda_k$ con molteplicità μ_1, \ldots, μ_2 , e fattorizzando:

$$arphi(s) = \prod_{i=1}^k (s-\lambda_i)^{\mu_i}$$

- Pertanto, gli autovalori del polinomio caratteristico sono i poli della matrice inversa, infatti: $(sI-A)^{-1}=rac{Adj(sI-A)}{\varphi(s)}$
- Quindi gli autovalori determinano l'evoluzione nel tempo dell'esponenziale di matrice e^{At}

Primo esempio: Calcolo esponenziale di matrice $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad e \quad At = ? \qquad m = 2$ $(s \neq A)^{-1} = \frac{1}{\sqrt{(s+1)}} \quad Adj(s \neq A)$ $\varphi(s) = \det(s \neq A) = \det \begin{bmatrix} s - 1 & 0 \\ 0 & s + 1 \end{bmatrix} = (s - 1)(s + 1)$ $Adj(s \neq A) = Adj\left[s - 1 & 0 \\ 0 & s + 1 \end{bmatrix} = \begin{bmatrix} s + 1 & 0 \\ 0 & s + 1 \end{bmatrix}$ $(s \neq A)^{-1} = \begin{bmatrix} 1 \\ s - 1 \\ s - 1 \end{bmatrix} \begin{bmatrix} s + 1 & 0 \\ 0 & s - 1 \end{bmatrix} = \begin{bmatrix} 1 \\ s - 1 \\ 0 \end{bmatrix}$ $(s \neq A)^{-1} = \begin{bmatrix} 1 \\ s - 1 \\ s - 1 \end{bmatrix} \begin{bmatrix} s + 1 & 0 \\ 0 & s - 1 \end{bmatrix} = \begin{bmatrix} 1 \\ s - 1 \\ 0 \end{bmatrix}$ $e^{At} = e^{At} = e^{A$

i modi di evoluzione sono associati agli autovalori

- calcolo $\varphi(s)$
- trovo gli zeri (autovalori)
- calcolo l'inversa $(sI-A)^{-1}$
- antitrasformo per trovare l'esponenziale di matrice e^{At}
- interpreto i modi di evoluzione e li classifico se serve (divervente, convergente etc...)
 - la molteplicità determina il modo di evoluzione

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\varphi(s) = \det(sTA) = \det \begin{bmatrix} s & -1 \\ 0 & s \end{bmatrix} = s^{2}$$

$$\varphi(s) = \det(sTA) = \det \begin{bmatrix} s & -1 \\ 0 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 0 & s \end{bmatrix}$$

$$(sTA)^{-1} = \frac{1}{\varphi(s)} Adj(sTA) = \frac{1}{s^{2}} Adj\left[s & -1 \\ 0 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 0 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$(sTA)^{-1} = \frac{1}{\varphi(s)} Adj(sTA) = \frac{1}{s^{2}} Adj\left[s & -1 \\ 0 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$(sTA)^{-1} = \frac{1}{\varphi(s)} Adj(sTA) = \frac{1}{s^{2}} Adj\left[s & -1 \\ 0 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & -1 \\ 1 & s \end{bmatrix} = \frac{1}{s^{2}} \begin{bmatrix} s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$Adj(sTA)^{-1} = \frac{1}{s^{2}} Adj\left[s & 1 \\ 1 & s \end{bmatrix}$$

$$A = 0 \quad \text{M. } = Z$$

$$A = 0 \quad \text{M. }$$

ESEMPIO 3: STESSO POLINOMIO CARATTERISTICO MA DIVERSA MATRICE

- $\varphi(s)$ viene come nell'esempio precedente
- cambia però l'evoluzione nel tempo (basta calcolare $(sI-A)^{-1}$)
- in origine avevo una molteplicità 2 ma facendo l'inversa la molteplicità si abbassa e diventa 1.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\varphi(s) = \det(s + A) = \det \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} = s^{2}$$

$$\lambda_{1} = 0 \quad |M_{1} = 2\rangle$$

$$(s + A)^{-1} = \frac{1}{\varphi(s)} \quad Adj(s + A) = \frac{1}{s^{2}} \quad Adj\left[s & 0 \\ 0 & s \right] = \frac{1}{s^{2}} \left[s & 0 \\ 0 & s \right]$$

$$= \begin{bmatrix} 1 \\ s \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ s \\ 0$$

Un solo modo di evoluzione in questo caso: il gradino

POLINOMIO MINIMO

- Polinomio che rimane dopo le semplificazioni, per trovarlo si calcola:
 - si calcolano $\mathrm{Adj}(sI-A)$ e $\wp(s)$
 - si calcola $(sI A)^{-1} = \mathrm{Adj}(sI A)/\varphi(s)$ effettuando tutte le semplificazioni
 - ullet si calcola m(s) come **minimo comune multiplo** dei **denominatori** degli elementi di $(sI-A)^{-1}$

ESEMPIO (PRECEDENTE)

m(s) m.c.m. dei olenominetri olegli elenenti di
$$(sTA)^{-1}$$
(olopo le rempli ficazini)

 $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$
 $(g(s) = s^2)$
 $(sTA)^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5}L \\ 0 & \frac{1}{5} \end{bmatrix}$
olenominetri $s, s, s = s$
 $(sTA)^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5}L \\ 0 & \frac{1}{5} \end{bmatrix}$
olenominetri $s, s = s$
 $(sTA)^{-1} = s$

- ci aiuta a capire la molteplicità di ciascun autovalore e pertanto, essendo gli autovalori dei poli del polinomio caratteristico possiamo applicare quanto visto in precedenza per capire i modi di evoluzione
- Nell'esempio: la prima matrice ha due modi di evoluzione: 1 e t
 - La seconda matrice ha un solo modo: 1

In generale quindi, il polinomio minimo è un sottoinsieme del polinomio caratteristico, ovvero:

$$arphi(s) = (s-\lambda_1)^{\mu_1}(s-\lambda_2)^{\mu_2}\dots(s-\lambda_k)^{\mu_k} \quad,\quad m(s) = (s-\lambda_1)^{m_1}(s-\lambda_2)^{m_2}\dots(s-\lambda_k)^{m_k}$$
 $\mathrm{Con}\left[\overline{m_i \leq \mu_i}
ight] \quad,\quad m_1 \geq 1$

 ciascun autovalore non può sparire come polo, ma la sua molteplicità può abbassarsi fino a scomparire (e al massimo se non si semplifica è pari alla molteplicità algebrica μ_i)

DIMOSTRAZIONE DEL PERCHE' CIASCUN AUTOVALORE NON PUO' SPARIRE

- $m_i \leq \mu_i$ vale perché semplificando non posso aumentare la molteplicità!
- Per dimostrare $m_i \ge 1 \Rightarrow$ è sufficiente far vedere che gli autovalori di A **non** possono sparire completamente come poli di $(sI - A)^{-1}$
- Ricordiamo che per ogni **autovalore** λ_i esiste almeno un **autovettore** v_i tale \rightarrow $A v_i = \lambda_i v_i$

$$ullet$$
 Di conseguenza, cambiando segno e aggiungendo ad ambo i membri $s\,v_{ii}$

$$(sI - A)v_i = (s - \lambda_i)v_i$$

$$(sI - A)v_i = (s - \lambda_i)v_i$$

$$\frac{1}{s - \lambda_i}v_i = (sI - A)^{-1}v_i$$

Di conseguenza, $s-\lambda_i$ deve comparire al denominatore di **almeno uno** degli elementi di $(s\,I-A)^{-1}$

Rimane alla fine un λ_i (polo con molteplicità almeno 1)

MODI NATURALI

- La matrice inversa $(sI-A)^{-1}$ ha come poli gli autovalori del sistema $\lambda_1,\dots,\lambda_k \qquad \qquad (\text{SI-A})^{-1} = \frac{1}{\varphi(\varsigma)} \text{ Adj (SI-A)}$ con le molteplicità $m_1,\dots,m_k \qquad \qquad m(\varsigma) = (\lambda-\lambda_1)^{m_k} \dots (\lambda-\lambda_k)^{m_k}$
- Ricordiamo che per per l'evoluzione libera vale Ricordando ora che per la risposta libera vale

$$x_{\ell}(t) = e^{At}x(0) = \mathcal{L}^{-1}\left\{ (sI - A)^{-1} \right\} x(0)$$

Teorema 2.2 e^{At} è una matrice avente come elementi opportune **combinazioni lineari** di

 $\mathsf{per}\ i=1,\ldots,k.$

Tale segnali sono detti modi naturali del sistema.

- Di conseguenza $x_\ell(t)=e^{At}x(0)$ e $y_\ell(t)=C\,e^{At}x(0)$ evolvono secondo una opportuna **combinazione dei modi naturali** del sistema (al variare delle **condizioni iniziali**)
- Analogamente a quanto visto in precedenza solo che adesso teniamo conto del polinomio minimo m(s)
- Gli elementi della matrice esponenziale sono una combinazione lineare dei modi di evoluzione del sistema