UTN - 2° Rec 1° Parcial	Sistemas Operativos	19/12/2023

Nombre y Apellido:...... Curso:

		TEORÍA				PRÁCTICA		NOTA
1	2	3	4	5	1	2	3	

TEORÍA: Responda brevemente las siguientes preguntas. Justifique.

- 1. Responda por V o F justificando en ambos casos.
 - a. La atención de una interrupción implica al menos un cambio de modo independientemente de qué se esté ejecutando.
 - b. Una llamada al sistema (syscall) implica únicamente dos cambios de modo.
- 2. ¿Puede ocurrir que algunos procesos sufran starvation si el sistema operativo utiliza un algoritmo de planificación sin desalojo? Justifique.
- 3. Responda por V o F justificando en ambos casos.
 - a. Un ULT podría encontrarse en estado 'Running' mientras que su Proceso asociado está en estado 'Ready'
 - b. Si una biblioteca de ULTs utiliza un algoritmo sin desalojo y las I/O se realizan invocando directamente a las syscalls, es imposible que ocurra un thread switch sin que un hilo finalice.
- 4. Explique porqué es necesario proteger aquellos recursos compartidos que puedan ser accedidos y modificados por distintos hilos. ¿Cómo podría protegerlos de este problema? De un ejemplo.
- 5. En un sistema que controla un respirador artificial, ¿cuáles podrían ser estrategias válidas y cuáles no para el tratamiento de deadlocks? ¿Influiría en algo si el sistema no pudiera tolerar mucho overhead?

PRÁCTICA: Resuelva los siguientes ejercicios justificando las conclusiones obtenidas.

Ejercicio 1

Un sistema capaz de detectar y recuperarse de Deadlock se encuentra en la siguiente situación:

RE	CURS	OS ASI	GNAD	OS

SOLICITUDES ACTUALES

	R1	R2	R3	R4		R1	R2	R3	R4
P1	2	1	2	1	P1	1	3	3	2
P2	0	2	2	1	P2	0	1	0	1
Р3	0	0	0	0	Р3	0	1	0	3
P4	3	0	2	1	P4	1	3	5	2
P5	1	2	0	2	P5	3	0	3	0

RECURSOS TOTALES

R1	R2	R3	R4
6	6	6	6

Determine si existe un deadlock y qué procesos están involucrados.

¿Cómo lo solucionaría? Sabiendo que en este sistema se decide finalizar el proceso con mayor cantidad de recursos asignados para evitar finalizar varios procesos.

Ejercicio 2

Dado la siguiente traza de ejecución de 4 procesos y su respectivo diagrama GANTT:

Procesos	Arribo	CPU	1/0	CPU
Α	0	2	2	5
В	1	5	1	2
С	3	1	1	4
D	0	3	2	3

Α			E/S	E/S							
В											
С											E/S
D						E/S	E/S				
0	1	2	3	4	5	6	7	8	9	10	11

Responda las siguientes preguntas justificando su respuesta:

¿Qué algoritmo de planificación de corto plazo podría estar utilizando este sistema? Indique al menos 2 instantes en el diagrama que demuestren el comportamiento de dicho algoritmo.

Ejercicio 3

Peter se une a Los Palmeras para preparar la fiesta de Colón. Para ello, programa una serie de scripts que simulan su gran éxito. Los procesos corren infinitamente, y deben repetir la frase "A E E A Yo soy Sabalero. A E E A Sabalero, Sabalero".

A (1 instancia)	E (1 instancia)	Sabale (1 instancia)
while(1) { print("A"); print("A"); }	while(1) { print("E"); }	while(1) { print("Yo soy Sabalero"); print("Sabalero, Sabalero") }

Condiciones de aprobación: 3 preguntas correctamente respondidas y 1.5 ejercicios correctamente resueltos.