

Teapots Can Fly

3D Graphics for Web Programmers

Presented by

Kelley Nielsen

Salticid Software, Codechix

So,

how does

3D animation

work?

3D Animation is like Claymation

We're building

Our own little world

THREE.PerspectiveCamera

THREE.Mesh

THREE.PointLight

Affine transformations: translate, rotate, scale

What do we need?

three.js

teapot.js

An html5 page

To get it all:

https://github.com/ teapots_can_fly

clone or download zip

The basic setup:

```
<head>
    <title>Teapots can fly!<title>
    <style>canvas { width: 100%;
        Height: 100% }
    </style>
</head>
```


The basic setup:

```
<body>
     <script src="three.min.js">
        </script>
          <script>
                ** Our Stuff Goes Here! **
                </script>
                <body>
```


The last setup step:

```
<script>
 var renderer = new THREE.WebGLRenderer();
 renderer.setSize(window.innerWidth,
                  window.innerHeight);
 document.body.appendChild
                     (renderer.domElement);
</script>
```


And now, the 3D code!

THREE.PerspectiveCamera

The Diorama

var scene = new THREE.Scene();

The Camera

```
var camera = new THREE.PerspectiveCamera( 35,
```

window.innerWidth/window.innerHeight, 0.1, 1000);

camera.position.z = 50;

Right-handed coordinates

Positive X to the right

Positive Z coming out

of the screen

THREE.Mesh

THREE.PointLight

The Teapot

```
var teapot;
var jsonLoader = new THREE.JSONLoader();
jsonLoader.load( "teapot.js", createTeapot);
```


The Teapot's Callback

```
function createTeapot(tGeometry){
  var tMaterial = new
     THREE.MeshPhongMaterial({color: 0x00ffff});
  var tMesh = new THREE.Mesh( tGeometry, tMaterial );
  scene.add(tMesh);
  teapot = tMesh;
}
```


A closer look...

new THREE.Mesh(tGeometry, tMaterial);

A mesh has two parts

A Geometry

Is like

Bones...

...A Material

Is like

Skin.

The Teapot's Callback

```
function createTeapot(tGeometry){
  var tMaterial = new
     THREE.MeshPhongMaterial({color: 0x00ffff});
  var tMesh = new THREE.Mesh( tGeometry, tMaterial );
  scene.add(tMesh);
  teapot = tMesh;
}
```


Let there be light!

```
var light = new THREE.PointLight(0xffffff);
light.position.set(0,150,150);
scene.add(light);
```


Affine transformations: translate, rotate, scale

Making the Teapot Move

```
teapot.position.x += 0.1;
if (teapot.position.x > halfScreenWidth)
    teapot.position.x = -halfScreenWidth;
```


Rendering the Frame

renderer.render(scene, camera);

Setting Up the Next Frame

requestAnimationFrame(render);

The Complete Render Loop

```
var halfScreenWidth = 80;
var render = function () {
 if (teapot) {
    teapot.position.x += 0.1;
    if (teapot.position.x > halfScreenWidth)
      teapot.position.x = -halfScreenWidth;
    renderer.render(scene, camera);
requestAnimationFrame(render);
render();
```


So...what else can we do?

Texture the Teapot

Change the Teapot's Shape

tMesh.scale.y = 1.5;

Change the Teapot's Path

```
teapot.position.x += xIncrement;
```

```
if (Math.abs(teapot.position.x) > halfScreenWidth){
    xIncrement = -xIncrement;
    teapot.rotation.y += 3.14;
```

Color the Background

renderer.setClearColor(0xC2DFFF, 1.0);

...What's Billboarding?

Just what it sounds like

The Cloud Image

A flat mesh is like glass

A texture is like a sticker

Add Some Clouds

Add Some Clouds

Position the Clouds in the Sky

```
cloud2.position.z = -80;
cloud2.position.x = -50;
cloud2.rotation.z = 1.57;
```

Add Mouse Controls

...And one again, the repo:

http://github.com/shegeek/ teapots_can_fly Enjoy! Make cool stuff!

kelleynnn@gmail.com

Resources and links

three.js repo: https://github.com/mrdoob/three.js three.js home page: http://threejs.org/

Stemkoski's examples: http://stemkoski.github.io/Three.js/index.html

WebGL Up and Running (by Tony Parisi): http://shop.oreilly.com/product/0636920024729.do

Learning Three.js blog: http://learningthreejs.com/

Resources and links

three.js boilerplate builder:

http://jeromeetienne.github.io/threejsboilerplatebuilder/

An Introduction to Web GL:

http://dev.opera.com/articles/view/an-introduction-towebgl/

Tutorials on the LearningWebGL blog: http://learningwebgl.com/blog/?page_id=1217

WebGL 1.0 spec: http://www.khronos.org/webgl/

Felix image courtesy of Wikihow wikihow.com/Draw-Felix-the-Cat

Gumby image courtesy of Art Clokey's Gumbyworld gumbyworld.com

Earth image courtesy of NASA visibleearth.nasa.gov

Coordinate axes image courtesy of http://www.cocos2d-x.org/

Teapot wireframe image courtesy of caig.cs.nctu.edu.tw/

Saran Wrap man image courtesy of funnyordie.com

Obama Celebrity image from photobucket user DeSwiss http://s88.photobucket.com/user/DeSwiss/media/obamacelebrity.jpg.html

Cling decal image from Design Diva http://designiva.net/window-stickers-design/

