PROBLEM 1: BISECTION METHOD

- a) To firs this bug in the code, change the first equals sign in line 26 to an exclamation point to indicate that if the sign of f(x3) and the sign of $f(x_i)$ are NOT the same, then bisection should be performed again on the new range $[x_3,x_7]$ by setting x, equal to x_3 . Biesection cannot be performed if the signs of the y-value of the x-value in the brackets are the same.
- 6) The next six brackets predicted by the algorithm are [-3.5,-3],[-3.25,-3], [-3.25, -3.125], [-3.188, -3.125], [-3.156, -3.125], [-3.156, -3.141].

elt Takes 20 steps to bracket the root within an interval of size 1×10-6. This can be evaluated from the equation $n \approx \log(\frac{2}{\epsilon})$. For this

an be evaluated from the equation $\log(2)$ $\log(2)$ problem, this equation will look like $n \approx \log(1 \times 10^{-16})$ which $\log(2)$

rounds to approximately 20 iterations.

C)i) When starting with bracket [-4,-2], the bisection algorithm will converge on the root $x_1 = -\pi$. The birection algorithm will continue to birect the range [-4,-2] until the root on the x-axis is found $(f(x_3) = 0.0)$.

c)ii) When starting with the bracket [-4,+2], the bisection algorithm does not converge on a root because the y-values of -4 and +2 are both negative.

According to the algorithm, if the signs of the y-values are

which has a negative y-value. The only root between [-4,1] is $x_1=-17$, so the birection algorithm will converge to $x_1=-17$.

C)(v) When starting with bracket $[0, \pm 0.49]$, the bisection algorithm does not converge at a root because there is no root between $[0, \pm 0.49]$, and because f(x) signs are the same.

C)v) When starting with the bracket [+2,+4], the birection algorithm does not converge on a root because the y-value of 2 and 4 are both negative.

PROBLEM 2 : SECANT METHOD y = -(x+1.8)(x+2.1)-0.5-1.5Figure 2: c)i) i) Does not converge on a root y = -(x + 1.8)(x + 2.1)-0.5-1.5Figure 3:

PROBLEM 3: NEWTON'S METHOD

_n	TRUE RELATIVE ERROR	APPROX RELATIVE ERROR
	0.04538862736259986	0.3910209507695690
2	7.706259021683052×10 ⁻⁵	0.0454691939266758
3	3.7643631629943756×(0 ⁻¹³	0.00007701/25905932
4	0.b000000000000000	0 - 000000000000053764
5	0.00000000000000	().0000000000000000
اه	0.000 <i>000000000000000</i>	0.0000000000000000000000000000000000000
	1 0.000 00 000 00000000	14.0000000000000