UC/Curso: Ciber Grupo 5:

- Catarina P
- Inês Neve 52% (B) HomeNET (100%): identificam corretamente e justificam. Estratégia, uso de funções estatísticas, streams e
- Leonardo
- Miguel Go
- Rui Barbo

Trabalho Prátic

1. Home net = 10.10.100.0/24

Após uma análise inicial do tráfego, foi concluído que muito provavelmente a origem deste tráfego é o IP 10.10.100.121. Este é o endpoint com o maior número de pacotes transmitidos/recebidos.

Ao observar outros endpoints na lista, notamos que muitos IPs começam por 10.10.100.x, o que confirma que a rede local desta captura de tráfego é a rede 10.10.100.0/24.

2. Síntese do tráfego (caracterização geral e análise estatística)

Para realizar uma análise abrangente do tráfego, foram utilizadas ferramentas disponíveis no Wireshark, acessíveis através do menu Statistics. Dentro deste menu, encontramos as ferramentas EndPoints, I/O Graph e Capture File Properties para obter dados relevantes.

Utilizando a base de dados fornecida pela MaxMind e a ferramenta EndPoints, é possível identificar os participantes nas comunicações e sua localização aproximada.

Na Figura 1, é apresentado o mapa com as localizações dos IPs envolvidos nesta captura de tráfego.

Figura 1 - Mapa com as localizações dos IPs.

Na figura 2 é possível observar a data da captura inicial - 21/10/2009 e a hora de início – 18:10:20, e também da data da captura final - 01/04/2024 a hora de fim 18:16:18 e o tempo de captura 43 minutos e 18 segundos.

não é coerente

Time

First packet: 2009-10-21 18:10:20 Last packet: 2024-04-01 18:16:18

Elapsed: 00:43:18

Figura 2 - Tempo de captura.

Na figura 3, observa-se as estatísticas relativamente à captura, i.e., o número de pacotes capturados (9064), o número total de bytes (9639607), entre outros.

Statistics

Measurement	Captured	Displayed	Marked
Packets	9064	9064 (100.0%)	_
Time span, s	455846757.978	455846757.978	_
Average pps	0.0	0.0	_
Average packet size, B	1064	1064	_
Bytes	9639607	9639607 (100.0%)	0
Average bytes/s	0	0	_
Average bits/s	0	0	_

Figura 3 - Estatísticas de Captura.

Na figura 4 é observável a divisão do tráfego que existe ao longo do tempo, também ajuda a situar em contexto temporal os vários protocolos.

Neste gráfico foram extraídos os pacotes existente de há aproximadamente 15 anos. Como? 【 Wireshark ⋅ I/O Graphs ⋅ grafico.pcapng Wireshark I/O Graphs: grafico.pcapng 800 600 Packets/1 sec 400 200 500 1000 2000 1500 2500 Time (s) No packets in interval (272s). Graph Name Y Field Enabled Display Filter Color Style Y Axis SMA Period Y Axis Factor All Packets Line Packets None TCP Errors tcp.analysis.flags Packets None ✓ Mouse ○ drags ○ zooms Interval 1 sec ∨ ☐ Time of day ☐ Log scale ☑ Automatic update ☑ Enable legend Reset Save As... Copy Copy from Close Help

Figura 4 – Gráfico de captura de tráfego

Na figura 5, pode-se analisar a hierarquia de protocolos. O protocolo mais utilizado foi o TCP, correspondendo a 94.8% do tráfego, seguido do protocolo UDP, que corresponde a 3.5% do tráfego. O protocolo ARP representa uma percentagem muito pequena do tráfego (1.7%) o que, à partida, indica que não haverá atividade suspeita na utilização deste protocolo. O protocolo ICMP representa uma percentagem nula.

Figura 5 - Hierarquia de protocolos.

A figura 6, mostra os endpoints IPv4 existentes nesta captura. Pode-se observar que a maioria dos pacotes capturados são pertencentes a endereços dentro da home net.

Figura 6 - IPV4 Endpoints.

3. Estratégia de análise

A estratégia de análise segue os seguintes passos:

1. Através do menu Statistic → Protocol Hierarchy, é possível observar quais os protocolos mais utilizados, como já demonstrado na seção anterior.

- 2. Inicialmente analisam-se stream a stream e os seus respetivos pacotes, começando pelas TCP e depois pelas stream UDP.
- 3. Posteriormente, utilizou-se outra estratégia para se verificar as conclusões já tiradas. Através do menu Statistic → Conversations selecionou-se a opção Name Resolution e também o Rel Start para se puder observar o tempo por ordem crescente para facilitar a interpretação.

e como procederam depois

4. Síntese da análise

4.1 TCP e UDP

Nº ordem	Tempo (s)	Src/Dest	Comentário
ou stre-		não indicam portas	
ams			
Stream 0 0-17			TCP: Acesso a página web Google.com através do web browser Mozilla Firefox; Ocorre uma validação de certificado (por parte do web server); Acesso (por parte do web server) a API "gstatic" (pertencente à google), que funciona como uma base de dados de componentes web (imagens, CSS).
			Processo de autenticação no Gmail (usando o protocolo ocsp para verificação do certificado); Acesso por parte do web server a API (gstatic e fonts.gstatic); Acesso a definições da conta google (e definições da conta youtube); Ocorreram algumas situações de erro relacionadas com perda de pacotes, congestionamento da rede e duplicação de pacotes. A sessão envolveu a transferência de 5351 pacotes e 5951 KBytes. UDP: A esta stream está associado o tráfego UDP correspondente à
	Con	<mark>no analisaram em conjunt</mark> í	resolução dos endereços usados, através do protocolo DNS. Respostas negativas ("No such name") a pedidos de resolução de 2 endereços.
Stream 3 18-26	30.01021 a 32.67351	Src:10.10.100.121 Dst: 140.98.193.101 (services10.ieee)	TCP: Acesso a uma conta Google com autenticação, via um serviço na página IEEE; No início da sessão ocorreu uma validação de certificado com o protocolo ocsp; Não houve ocorrências de erros durante a sessão; Foi verificado que 10 segundos após inatividade, existe troca de pacotes TCP do tipo "Keep Alive"; A sessão envolveu a transferência de 944 pacotes e 1027 KBytes UDP: A esta stream está associado o tráfego UDP correspondente à resolução dos endereços usados, através do protocolo DNS.
Stream 4 28-40	50.00319 a 64.16128	Src:10.10.100.121 Dst: 216.58.209.78 (chat.google.com)	Sessão de acesso a serviços da Google; A sessão começa com um acesso a uma conta Google; Houve uma grande troca de pacotes com a página "chat.google.com" o que indica uma troca de mensagens; Existe também acesso a diferentes APIs da Google que vão buscar variados recursos necessários. Não foram verificadas ocorrências de erros nas transmissões. A sessão envolveu a transferência de 2030 pacotes e 2584 KBytes UDP: A esta stream está associado o tráfego UDP correspondente à resolução dos endereços usados, através do protocolo DNS.
Stream 5 41-47 exceto 42, 43	250.8727 a 599.7346	Src:10.10.100.119 Dst: 10.10.100.117 E as portas?FTP	Login em P C na LAN (máquina virtual local); Execução de comandos (SYST, FEAT, EPSV, LIST, TYPE I, RETR); Download de ficheiros (teste.txt, overflowtest.c); Quit do PC; A sessão envolveu a transferência de 105 pacotes e 9157 KBytes há muitos mais detalhes visíveis
Stream 6 56-5	1583.254 a 1636.994	Src:10.10.100.119 Dst: 10.10.100.120	Mensagens de configuração usando protocolo SMB2. Criação, leitura e fecho do ficheiro "teste.txt". A sessão envolveu a transferência de 117 pacotes e 18.7 KBytes

4.2 UDP

Nº ordem ou stre- ams	Tempo (s)	Src/Dest	Comentário
Stream 0 15	24.91494	Src: 10.10.100.121 Dst:162.159.200.1 (time.cloudfare)	Mensagens do protocolo NTP (cliente-servidor).
Stream 1 39	57.9418	Src: 10.10.100.121 Dst: 91.209.16.78 (smtp.in1.aqea.net)	Mensagens do protocolo NTP (cliente-servidor).
Stream 2 60	62.91119	Src: 10.10.100.121 Dst: 194.117.47.44 (ntp04.oal.ul.pt);	Mensagens do protocolo NTP (cliente-servidor).
Stream 3 67	585.966	Src: 10.10.100.121 Dst: 88.157.128.22 (static.cpe.netcabo.pt);	Mensagens do protocolo NTP (cliente-servidor).
Stream 4 75-76	2587.562	Src: 10.10.100.120 Dst: 10.10.100.255	Protocolo NBNS (NetBIOS Name Server) usado por hosts Windows. Este protocolo resolve endereços que se encontram na rede interna. Isto acontece porque o endereço não foi resolvido pelo DNS. O endereço mesmo assim não foi resolvido (10.10.100.117)
Stream 5 79	1618.992	Src: 10.10.100.120 Dst: 185.125.190.58 (prod-ntp- 5.ntp2.ps5.canonical.com)	Mensagens do protocolo NTP (cliente-servidor).
Stream 7 80	1621.128	Src: 10.10.100.117 Dst:10.10.100.1	Resposta negativa para domínio (ubunto.localdomain).
Stream 6 77-78	2592.06	Src: 10.10.100.19 Dst: 10.10.100.1	Resolução de endereço falhada (No such name) para endereços: 117.100.10.10 e 119.100.10.10.

4.3 Tráfego Residual

Após analisar todo o tráfego TCP e UDP utilizamos o filtro "not tcp && not udp "para podermos filtrar os restantes pacotes. Nesta captura de tráfego obtivemos e observamos o protocolo ARP (usado na conversão de endereços de IP em endereços MAC da camada 2).

e que conclusão tiraram

E os streams TCP 48 a 55? Eram s

Figura 7 - Tráfego Residual

5. Conclusões

O tráfego observado parece ser predominantemente relacionado a atividades normais de navegação na web, autenticação em serviços online, troca de mensagens e tráfego DNS.

A análise abrangente do tráfego de rede forneceu uma visão detalhada das comunicações, participantes e padrões de tráfego na rede local 10.10.100.0/24. Estas informações são essenciais para a compreensão da atividade de rede, identificação de potenciais problemas e otimização do desempenho da rede.