Assignment 3 for CS203: Probability for Computer Science

Abhyuday Pandey 170039

Problem 1: Subpart 1

Strategy

For given position $i \in [1, N-1]$ we make decision whether to head in a direction till house is reached. Performed *iters* times which is by default set to 10^6 .

Source Code Dependencies

- Standard Library for C (cstdlib)
- GNUplot

Reproducibility

- rand() modulo 2 used to make a decision.
- Set iters equal to 10^6 for n = 20
- The probability distribution must lie in the interval [0,1).

Table 1: Probability distribution of Z

Z	P(Z)	Z	P(Z)
1	0.950120	11	0.450064
2	0.900023	12	0.399925
3	0.850117	13	0.350256
4	0.799820	14	0.300984
5	0.749972	15	0.250554
6	0.699899	16	0.199942
7	0.650132	17	0.150257
8	0.599658	18	0.099600
9	0.550316	19	0.049927
10	0.499695		

Conclusion

The following conclusions were drawn:

- For each i, probability gets decremented by about 5% and the plot obtained is linear.
- In agreement with the fact that p(i) + p(20 i) = 1.

Problem1:Subpart 2

Strategy

For given position $i \in \{1, 10\}$ we make decision whether to head in a direction till house is reached. Performed *iters* times which is by default set to 10^4 . Also, in this case we need to limit number of steps (*steps*) to make the running time of this program finite.

Source Code Dependencies

• Standard Library for C (cstdlib)

Reproducibility

- rand() modulo 2 used to make a decision.
- Set iters equal to 10^4 for $steps \in \{10^8, 10^7...10^1\}$
- The probability distribution must lie in the interval [0,1).

Table 1

steps	P(i=1)	P(i = 10)
10^{8}	1.0000	0.9991
10^{7}	0.9999	0.9977
10^{6}	0.9997	0.9933
10^{5}	0.9982	0.9742
10^{4}	0.9913	0.9196
10^{3}	0.9768	0.7504
10^{2}	0.9205	0.3155
10^{1}	0.7534	0.0008

Conclusion

The following conclusions were drawn:

- Both the probabilities converge to 1 as number of steps increase.
- For $steps = 10^8 P(i = 1) = 1.0000$ and P(i = 10) = 0.9991

Problem 2

Strategy

For given position (x, y) = (1, 0) we make decision whether to head in a direction of all four in 2 dimensions till house is reached. Performed *iters* times which is by default set to 10^4 . Also, in this case we need to limit number of steps (*steps*) to make the running time of this program finite.

Source Code Dependencies

• Standard Library for C (cstdlib)

Reproducibility

- rand() modulo 4 used to make a decision.
- Set iters equal to 10^4 for $steps \in \{10^7, 10^6...10^1\}$
- The probability distribution must lie in the interval [0,1).

Table 1

steps	P((x,y))
10^{7}	0.8366
10^{6}	0.8094
10^{5}	0.7827
10^{4}	0.7396
10^{3}	0.6785
10^{2}	0.5840
10^{1}	0.4263

Conclusion

The following conclusions were drawn:

- The successive probabilities have less difference as *steps* increases.
- For $steps = 10^7 P((x, y)) = 0.8366$

Problem 3

Strategy

For given position (x, y, z) = (1, 0, 0) we make decision whether to head in a direction of all six in 3 dimensions till house is reached. Performed *iters* times which is by default set to 10^4 . Also, in this case we need to limit number of steps (*steps*) to make the running time of this program finite.

Source Code Dependencies

• Standard Library for C (cstdlib)

Reproducibility

- rand() modulo 6 used to make a decision.
- Set iters equal to 10^4 for $steps \in \{10^7, 10^6...10^1\}$
- The probability distribution must lie in the interval [0,1).

Table 1

steps	P((x, y, z))
10^{7}	0.3346
10^{6}	0.3429
10^{5}	0.3363
10^{4}	0.3371
10^{3}	0.3323
10^{2}	0.3165
10^{1}	0.2563

Conclusion

The following conclusions were drawn:

- The successive probabilities have less difference as *steps* increases and converges near a value.
- For $steps = 10^7 P((x, y, z)) = 0.3346$

1 Problem 1: Subpart 1

```
//Abhyuday Pandey Codes September 3rd 2018
//This code is for Random walk for finite distance in 1-D
#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
int main(){
   //clock will give running time
   clock_t start=clock();
   //Set N=20 and iters=10^6, p[N] will store p(i)*iters for each i
   int N=20,iters=1000000;
   int p[N];
   //Initialize all p[i]'s to zero
   for(int i=0;i<N;i++) p[i]=0;</pre>
   //This loop will run exactly iters times
   while(iters--){
       //For each 'i' we compute probability
       for(int i=1;i<N;i++){</pre>
          int steps=i;
          //This loop will terminate when house/bar is reached
          while(1){
             int random=rand()%2;
             if(random) steps++;
             else steps--;
             if(steps==0){p[i]++; break;}
             if(steps==N){break;}
          }
      }
   }
   //----PLOTTING PART-----
   //Graph plotting
   long long int sum=0;
   FILE * gnuplotPipe = popen ("gnuplot -persistent", "w");
   fprintf(gnuplotPipe, "set terminal postscript eps enhanced color font
       'Helvetica, 10'\n");
   fprintf(gnuplotPipe, "set output 'graph31.eps'\n");
   fprintf(gnuplotPipe, "set xlabel 'i'\nset ylabel 'P(i)\nset title 'P(i)'\n");
   fprintf(gnuplotPipe, "plot '-' pointtype 7\n");
   for( int idx = 1 ; idx < N ; idx++ ){</pre>
          fprintf(gnuplotPipe,"%lf %lf\n", (double)(idx),
              (double)(p[idx])/1000000.0);
          printf("For i=\%d, p(i)=\%lf\n",idx, (double)(p[idx])/1000000.0);
   fprintf(gnuplotPipe, "e\n");
   //Graph end
   return 0;
}
```

2 Problem 1: Subpart 2

```
//Abhyuday Pandey Codes September 3rd 2018
//This code is for Random walk in infinite distance in 1-D
#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
//Helper function to perform experiment iters times and given threshold on steps
void call(int iters, int steps, int i){
   int sum=0;
   //This loop runs iters times
   while(iters--){
       int pos=i;
       int s=steps;
       //This loop terminates after origin is reached or threshold steps are
           reached
       while(s--){
          if(rand()%2) pos++;
          else pos--;
          if(pos==0){sum++; break;}
       }
   }
   //print the probability for given i, steps and iters=10,000
   printf("For %d steps P(i=\%d)=\%lf\n", steps,i,(double)(sum)/10000.0);
}
int main(){
   //clock will give running time
   clock_t start=clock();
   //iters is number of times experiment is run (default 10,000)
   int iters=10000;
   //Each step in {10^8,10^7,10^6,10^5...10}
   for(int steps=100000000;steps>=10;steps/=10) call(iters,steps,1);
   for(int steps=100000000;steps>=10;steps/=10) call(iters,steps,10);
   printf("----%f-----\n",(double)(clock()-start)/CLOCKS_PER_SEC);
   return 0;
```

3 Problem 2

```
//Abhyuday Pandey Codes September 3rd 2018
//This code is for Random walk in infinite distance in 2-D
#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
//Helper function to perform experiment iters times and given threshold on steps
void call(int iters, int steps,int x,int y){
   int sum=0;
   //This loop runs iters times
   while(iters--){
       int pos1=x,pos2=y;
       int s=steps;
       //This loop terminates after origin is reached or threshold steps are
           reached
       while(s--){
          int randint=rand()%4;
          if(randint==3) pos1++;
          else if(randint==2) pos1--;
          else if(randint==1) pos2++;
          else pos2--;
          if(pos1==0&&pos2==0){sum++; break;}
       }
   }
   //print the probability for given (x,y), steps and iters=10,000
   printf("P(i)=%lf\n",(double)(sum)/10000.0);
int main(){
   //clock will give running time
   clock_t start=clock();
   //iters is number of times experiment is run (default 10,000)
   int iters=10000;
   //Each step in {10^7,10^6,10^5...10}
   for(int steps=10000000; steps>=10; steps/=10) call(iters, steps,1,0);
   printf("----\n",(double)(clock()-start)/CLOCKS_PER_SEC);
   return 0;
}
```

4 Problem 3

```
//Abhyuday Pandey Codes September 3rd 2018
//This code is for Random walk in infinite distance in 3-D
#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
//Helper function to perform experiment iters times and given threshold on steps
void call(int iters, int steps,int x,int y,int z){
   int sum=0;
   //This loop runs iters times
   while(iters--){
       int pos1=x,pos2=y,pos3=z;
       int s=steps;
       //This loop terminates after origin is reached or threshold steps are
           reached
       while(s--){
          int randint=rand()%6;
          if(randint==5) pos3++;
          else if(randint==4) pos3--;
          else if(randint==3) pos1++;
          else if(randint==2) pos1--;
          else if(randint==1) pos2++;
          else pos2--;
          if(pos1==0&&pos2==0&&pos3==0){sum++; break;}
       }
   }
   //print the probability for given (x,y,z), steps and iters=10000
   printf("Given %d steps, P(i) = %lf \n", steps, (double)(sum)/10000.0);
int main(){
   //clock will give running time
   clock_t start=clock();
   //iters is number of times experiment is run (default 10,000)
   int iters=10000;
   //Each step in {10^7,10^6,10^5...10}
   for(int steps=10000000;steps>=10;steps/=10) call(iters,steps,1,0,0);
   printf("----%f-----\n",(double)(clock()-start)/CLOCKS_PER_SEC);
   return 0;
}
```