# 1 Primer corte

# 1.1 Crecimiento de funciones 1

# 1. crecimiento1

MULTI 1.0 point 0.10 penalty Multiple Shuffle

Seleccione las funciones que sean  $O(n^2)$ 

- (a)  $2n^2$  (33.33333%)
- (b) 3n 2 (33.33333%)
- (c) log(n) (33.33333%)
- (d)  $3n^3 n^2 (-25\%)$
- (e)  $2^n n^2 (-25\%)$
- (f) n! (-25%)
- (g)  $2n^n (-25\%)$

### 2. crecimiento2

Multiple Shuffle [ 1.0 point ] (0.10 penalty ] [ Multiple ] Shuffle

Seleccione las funciones que sean  $O(n^3)$ 

- (a)  $2n^2$  (25%)
- (b) 3n-2 (25%)
- (c) log(n) (25%)
- (d)  $3n^3 n^2 (25\%)$
- (e)  $2^n n^2 (-33.33333\%)$
- (f) n! (-33.33333%)
- (g)  $2n^n$  (-33.33333%)

#### 3. crecimiento3

MULTI 1.0 point 0.10 penalty Multiple Shuffle

Seleccione las funciones que sean  $\Omega(n^3)$ 

- (a)  $2n^2 (-33.33333\%)$
- (b) 3n-2 (-33.33333%)
- (c) log(n) (-33.33333%)
- (d)  $3n^3 n^2 (25\%)$
- (e)  $2^n n^2 (25\%)$

- (f) n! (25%)
- (g)  $2n^n$  (25%)

### 4. crecimiento4

MULTI 1.0 point 0.10 penalty Multiple Shuffle

Seleccione las funciones que sean  $\Theta(n^2)$ 

- (a)  $2n^2$  (50%)
- (b) 3n-2(-20%)
- (c) log(n) (-20%)
- (d)  $3n^3 n^2 (-20\%)$
- (e)  $n^2 n (50\%)$
- (f) n! (-20%)
- (g)  $2n^n (-20\%)$

# 5. crecimiento5

MULTI 1.0 point 0.10 penalty Multiple Shuffle

Seleccione las funciones que sean  $\Theta(n^3)$ 

- (a)  $2n^2 (-20\%)$
- (b) 3n-2 (-20%)
- (c) log(n) (-20%)
- (d)  $3n^3 n^2 (50\%)$
- (e)  $2^n n^2$  (-20%) (f)  $n^3 - n^2 + 2$  (50%)
- (g)  $2n^n$  (-20%)

#### 6. crecimiento6

MULTI 1.0 point 0.10 penalty Multiple Shuffle

Seleccione las funciones que sean O(n)

- (a)  $2n^2 (-25\%)$
- (b) 3n-2 (33.33333%)
- (c) log(n) (33.33333%)
- (d)  $3n^3 n^2 (-25\%)$
- (e)  $2^n n^2 (-25\%)$
- (f) log(5) (33.33333%)
- (g)  $2n^n (-25\%)$

#### 1.2 Recurrencias expansion 1

# 1. expansion1

1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n) = 5T(\frac{n}{2}) + n$ , T(1) = 10 ¿Cual es la primera expansión de la RR?

- (a)  $T(n) = n + 5\frac{n}{2} + 5^2T(\frac{n}{2^2})$  (100%) (b)  $T(n) = n + 5n + 5T(\frac{n}{2^2})$
- (c)  $T(n) = 5^2 T(\frac{n}{2^2}) + n$
- (d)  $T(n) = 5^2 T(\frac{n}{2}) + \frac{n}{2}$ (e)  $T(n) = 5^2 T(\frac{n}{2}) + 5\frac{n}{2}$

# 2. expansion2

0.10 penalty Single | Shuffle

Se la R.R  $T(n) = 6T(\frac{n}{3}) + n$ , T(1) = 10 ¿Cual es la primera expansión de la RR?

- (a)  $T(n) = n + 6\frac{n}{3} + 6^2 T(\frac{n}{3^2})$  (100%)
- (b)  $T(n) = n + 6n + 6T(\frac{n}{3^2})$
- (c)  $T(n) = 6^2 T(\frac{n}{3^2}) + n$
- (d)  $T(n) = 6^2 T(\frac{n}{3^2}) + \frac{n}{3}$ (e)  $T(n) = 6^2 T(\frac{n}{3^2}) + 5\frac{n}{3}$

# 3. expansion3

MULTI 1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n) = 5T(\frac{n}{2}) + 1$ , T(1) = 10 ¿Cual es la primera expansión de la RR?

- (a)  $T(n) = 1 + 5 + 5^2 T(\frac{n}{2^2})$  (100%)
- (b)  $T(n) = 1 + 5 + 5T(\frac{n}{2^2})$
- (c)  $T(n) = 5^2 T(\frac{n}{2^2}) + 1$
- (d)  $T(n) = 5^2 T(\frac{n}{2^2}) + 1$ (e)  $T(n) = 5^2 T(\frac{n}{2^2}) + 5$

# 4. expansion4

MULTI 1.0 point 0.10 penalty Single Shuffle Se la R.R  $T(n) = 6T(\frac{n}{3}) + 3$ , T(1) = 10 ¿Cual es la primera expansión de la RR?

(a) 
$$T(n) = 3 + 6 * 3 + 6^2 T(\frac{n}{3^2})$$
 (100%)

(b) 
$$T(n) = 3 + 6 * 3 + 6T(\frac{n}{3^2})$$

(c) 
$$T(n) = 6^2 T(\frac{n}{3^2}) + 3$$

(d) 
$$T(n) = 6^2 T(\frac{n}{3^2}) + 3 * 6$$
  
(e)  $T(n) = 6T(\frac{n}{3^2}) + 3 * 6$ 

(e) 
$$T(n) = 6T(\frac{n}{3^2}) + 3 * 6$$

# 5. expansion5

Se la R.R  $T(n) = 7T(\frac{n}{4}) + n$ , T(1) = 10 ¿Cual es la primera expansión de la RR?

(a) 
$$T(n) = n + 7\frac{n}{4} + 7^2T(\frac{n}{4^2})$$
 (100%)

(b) 
$$T(n) = n + 7n + 7T(\frac{n}{4^2})$$

(c) 
$$T(n) = 7^2 T(\frac{n}{4^2}) + n$$

(d) 
$$T(n) = 7^2 T(\frac{n}{4^2}) + \frac{n}{4}$$

(d) 
$$T(n) = 7^2 T(\frac{n}{4^2}) + \frac{n}{4}$$
  
(e)  $T(n) = 7^2 T(\frac{n}{4^2}) + 7\frac{n}{4}$ 

# 6. expansion6

Se la R.R  $T(n) = 7T(\frac{n}{4}) + 1$ , T(1) = 10 ¿Cual es la primera expansión de la RR?

(a) 
$$T(n) = 1 + 7 + 7^2 T(\frac{n}{4^2})$$
 (100%)

(b) 
$$T(n) = 1 + 7n + 7T(\frac{n}{4^2})$$

(c) 
$$T(n) = 7^2 T(\frac{n}{4^2}) + 1$$

(d) 
$$T(n) = 7^2 T(\frac{n}{4^2}) + \frac{1}{4}$$

(c) 
$$T(n) = 7^2 T(\frac{n}{4^2}) + 1$$
  
(d)  $T(n) = 7^2 T(\frac{n}{4^2}) + \frac{1}{4}$   
(e)  $T(n) = 7^2 T(\frac{n}{4^2}) + 7\frac{1}{4}$ 

# 7. expansion7

Se la R.R  $T(n)=8T(\frac{n}{6})+1, T(1)=10$ ; Cual es la primera expansión de la RR?

(a) 
$$T(n) = 1 + 8 + 8^2 T(\frac{n}{6^2})$$
 (100%)

(b) 
$$T(n) = 1 + 8n + 8T(\frac{n}{6^2})$$

(c) 
$$T(n) = 8^2 T(\frac{n}{6^2}) + 1$$

(d) 
$$T(n) = 8^2 T(\frac{n}{6^2}) + \frac{1}{6}$$

(c) 
$$T(n) = 8^2 T(\frac{n}{6^2}) + 1$$
  
(d)  $T(n) = 8^2 T(\frac{n}{6^2}) + \frac{1}{6}$   
(e)  $T(n) = 8^2 T(\frac{n}{6^2}) + 7\frac{1}{6}$ 

#### Recurrencias terminacion 2 1.3

# 1. terminacion1

1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n) = 5T(\frac{n}{2}) + n$ , T(1) = 10 ¿Cual es el valor k de la ultima expansión?

(a) 
$$k = log_2(n)$$
 (100%)

(b) 
$$k = log_5(n)$$

(c) 
$$k = log_2(\frac{n}{5})$$

(d) 
$$k = log_5(\frac{n}{2})$$

(e) 
$$k = n$$

# 2. terminacion2

0.10 penalty Single Shuffle

Se la R.R  $T(n) = 6T(\frac{n}{3}) + n$ , T(1) = 10 ¿Cual es el valor k de la ultima expansión?

(a) 
$$k = log_3(n)$$
 (100%)

(b) 
$$k = log_6(n)$$

(c) 
$$k = log_3(\frac{n}{6})$$

(d) 
$$k = log_6(\frac{\tilde{n}}{3})$$

(e) 
$$k = n$$

#### 3. terminacion3

1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n) = 5T(\frac{n}{2}) + 1$ , T(1) = 10 ¿Cual es el valor k de la ultima expansión?

(a) 
$$k = log_2(n)$$
 (100%)

(b) 
$$k = log_5(n)$$

(c) 
$$k = log_2(\frac{n}{5})$$

(d) 
$$k = log_5(\frac{\tilde{n}}{2})$$

(e) 
$$k = n$$

# 4. terminacion4

MULTI 1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n)=6T(\frac{n}{3})+3, T(1)=10$  ¿Cual es el valor k de la ultima expansión?

- (a)  $k = log_3(n)$  (100%)
- (b)  $k = log_6(n)$
- (c)  $k = log_3(\frac{n}{6})$
- (d)  $k = log_6(\frac{\tilde{n}}{3})$
- (e) k = n

#### 5. terminacion5

MULTI 1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n) = 7T(\frac{n}{4}) + n$ , T(1) = 10 ¿Cual es el valor k de la ultima expansión?

- (a)  $k = log_4(n)$  (100%)
- (b)  $k = log_7(n)$
- (c)  $k = log_4(\frac{n}{7})$
- (d)  $k = log_7(\frac{n}{4})$
- (e) k=n

## 6. terminacion6

MULTI 1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n) = 7T(\frac{n}{4}) + 1$ , T(1) = 10 ¿Cual es el valor k de la ultima expansión?

- (a)  $k = log_4(n)$  (100%)
- (b)  $k = log_7(n)$
- (c)  $k = log_4(\frac{n}{7})$
- (d)  $k = log_7(\frac{n}{4})$
- (e) k = n

### 7. terminacion7

MULTI 1.0 point 0.10 penalty Single Shuffle

Se la R.R  $T(n) = 8T(\frac{n}{6}) + 1$ , T(1) = 10 ¿Cual es el valor k de la ultima expansión?

- (a)  $k = log_6(n)$  (100%)
- (b)  $k = log_8(n)$
- (c)  $k = log_6(\frac{n}{8})$
- (d)  $k = log_8(\frac{\tilde{n}}{6})$
- (e) k = n

# 1.4 Recurrencias maestro

#### 1. maestro1

MULTI 1.0 point 0.10 penalty Single Shuffle

Recordando los casos del método del maestro: Para la R.R  $T(n) = aT(\frac{n}{b}) + f(n)$ 

- (a) Si  $f(n) = O(n^{\log_b a \epsilon})$  para algún  $\epsilon > 0$  entonces  $T(n) = \Theta(n^{\log_b a})$
- (b) Si  $f(n) = \Theta(n^{\log_b a})$  entonces  $T(n) = \Theta(\log(n) * n^{\log_b a})$
- (c) Si  $f(n) = \Omega(n^{\log_b a + \epsilon})$  para algún  $\epsilon > 0$ y existe un c < 1 tal que  $af(\frac{n}{b}) <= cf(n)$  entonces  $T(n) = \Theta(f(n))$ .

¿Que caso del método de maestro aplica para la recurrencia?:  $T(n) = 9T(\frac{n}{3}) + 3n$ 

- (a) Primer caso (100%)
- (b) Segundo caso
- (c) Tercer caso
- (d) No se puede resolver por método del maestro

#### 2. maestro2

MULTI 1.0 point 0.10 penalty Single Shuffle

Recordando los casos del método del maestro: Para la R.R  $T(n) = aT(\frac{n}{b}) + f(n)$ 

- (a) Si  $f(n) = O(n^{\log_b a \epsilon})$  para algún  $\epsilon > 0$  entonces  $T(n) = \Theta(n^{\log_b a})$
- (b) Si  $f(n) = \Theta(n^{\log_b a})$  entonces  $T(n) = \Theta(\log(n) * n^{\log_b a})$

(c) Si  $f(n) = \Omega(n^{\log_b a + \epsilon})$  para algún  $\epsilon > 0$ y existe un c < 1 tal que  $af(\frac{n}{b}) <= cf(n)$  entonces  $T(n) = \Theta(f(n))$ .

¿Que caso del método de maestro aplica para la recurrencia?:  $T(n)=9T(\frac{n}{3})+5n^2-n$ 

- (a) Primer caso
- (b) Segundo caso (100%)
- (c) Tercer caso
- (d) No se puede resolver por método del maestro

# 3. maestro3

MULTI 1.0 point 0.10 penalty Single Shuffle

Recordando los casos del método del maestro: Para la R.R  $T(n) = aT(\frac{n}{b}) + f(n)$ 

- (a) Si  $f(n) = O(n^{\log_b a \epsilon})$  para algún  $\epsilon > 0$  entonces  $T(n) = \Theta(n^{\log_b a})$
- (b) Si  $f(n) = \Theta(n^{\log_b a})$  entonces  $T(n) = \Theta(\log(n) * n^{\log_b a})$
- (c) Si  $f(n) = \Omega(n^{\log_b a + \epsilon})$  para algún  $\epsilon > 0$ y existe un c < 1 tal que  $af(\frac{n}{b}) <= cf(n)$  entonces  $T(n) = \Theta(f(n))$ .

¿Que caso del método de maestro aplica para la recurrencia?:  $T(n) = 9T(\frac{n}{3}) + 6n^3 - n$ 

- (a) Primer caso
- (b) Segundo caso
- (c) Tercer caso (100%)
- (d) No se puede resolver por método del maestro

#### 4. maestro4

Recordando los casos del método del maestro: Para la R.R  $T(n) = aT(\frac{n}{b}) + f(n)$ 

(a) Si  $f(n) = O(n^{\log_b a - \epsilon})$  para algún  $\epsilon > 0$  entonces  $T(n) = \Theta(n^{\log_b a})$ 

- (b) Si  $f(n) = \Theta(n^{\log_b a})$  entonces  $T(n) = \Theta(\log(n) * n^{\log_b a})$
- (c) Si  $f(n) = \Omega(n^{\log_b a + \epsilon})$  para algún  $\epsilon > 0$ y existe un c < 1 tal que  $af(\frac{n}{b}) <= cf(n)$  entonces  $T(n) = \Theta(f(n))$ .

¿Que caso del método de maestro aplica para la recurrencia?:  $T(n)=16T(\frac{n}{4})+3n$ 

- (a) Primer caso (100%)
- (b) Segundo caso
- (c) Tercer caso
- (d) No se puede resolver por método del maestro

#### 5. maestro5

MULTI 1.0 point 0.10 penalty Single Shuffle

Recordando los casos del método del maestro: Para la R.R  $T(n) = aT(\frac{n}{b}) + f(n)$ 

- (a) Si  $f(n) = O(n^{\log_b a \epsilon})$  para algún  $\epsilon > 0$  entonces  $T(n) = \Theta(n^{\log_b a})$
- (b) Si  $f(n) = \Theta(n^{\log_b a})$  entonces  $T(n) = \Theta(\log(n) * n^{\log_b a})$
- (c) Si  $f(n) = \Omega(n^{\log_b a + \epsilon})$  para algún  $\epsilon > 0$ y existe un c < 1 tal que  $af(\frac{n}{b}) <= cf(n)$  entonces  $T(n) = \Theta(f(n))$ .

¿Que caso del método de maestro aplica para la recurrencia?:  $T(n)=16T(\frac{n}{4})+3n^2+12$ 

- (a) Primer caso
- (b) Segundo caso (100%)
- (c) Tercer caso
- (d) No se puede resolver por método del maestro

### 6. maestro6

MULTI 1.0 point 0.10 penalty Single Shuffle

Recordando los casos del método del maestro: Para la R.R  $T(n) = aT(\frac{n}{b}) + f(n)$ 

- (a) Si  $f(n) = O(n^{\log_b a \epsilon})$  para algún  $\epsilon > 0$  entonces  $T(n) = \Theta(n^{\log_b a})$
- (b) Si  $f(n) = \Theta(n^{\log_b a})$  entonces  $T(n) = \Theta(\log(n) * n^{\log_b a})$
- (c) Si  $f(n) = \Omega(n^{\log_b a + \epsilon})$  para algún  $\epsilon > 0$ y existe un c < 1 tal que  $af(\frac{n}{b}) <= cf(n)$  entonces  $T(n) = \Theta(f(n))$ .

¿Que caso del método de maestro aplica para la recurrencia?:  $T(n)=16T(\frac{n}{4})+5n^4+12n$ 

- (a) Primer caso
- (b) Segundo caso
- (c) Tercer caso (100%)
- (d) No se puede resolver por método del maestro

# 1.5 Complejidad divide y venceras

#### 1. venceras1



Indique la complejidad del siguiente algoritmo:

def algoritmo(n):
 if n==1:
 return 4

else:

b = n
while(b>=0):
b-=1

return 2\*algoritmo(n-1)

- (a) T(n) = 2T(n-1) + n (100%)
- (b)  $T(n) = 3T(\frac{n}{2}) + n$
- (c)  $T(n) = 2T(\frac{\bar{n}}{3}) + n^2$
- (d)  $T(n) = 5T(n-1) + n^2$
- (e)  $T(n) = 5T(\frac{n}{5}) + 1$

#### 2. venceras2

MULTI 1.0 point 0.10 penalty Single Shuffle

Indique la complejidad del siguiente algoritmo:

```
def algoritmo(n):
   if n==1:
      return 4
   else:
      b = n
      while(b>=0):
      b==1
      return 3*algoritmo(n/2)

(a) T(n) = 2T(n-1) + n
(b) T(n) = 3T(\frac{n}{2}) + n (100%)
(c) T(n) = 2T(\frac{n}{3}) + n^2
(d) T(n) = 5T(n-1) + n^2
(e) T(n) = 5T(\frac{n}{5}) + 1
```

#### 3. venceras3

MULTI 1.0 point 0.10 penalty Single Shuffle

Indique la complejidad del siguiente algoritmo:

def algoritmo(n):
 if n==1:
 return 4
 else:
 b = n\*n
 while(b>=0):
 b-=1
 return 2\*algoritmo(n/3)

(a) 
$$T(n) = 2T(n-1) + n$$
  
(b)  $T(n) = 3T(\frac{n}{2}) + n$   
(c)  $T(n) = 2T(\frac{n}{3}) + n^2$  (100%)  
(d)  $T(n) = 5T(n-1) + n^2$   
(e)  $T(n) = 5T(\frac{n}{5}) + 1$   
(f)  $T(n) = 7T(\frac{n}{4}) + 1$ 

#### 4. venceras4

MULTI 1.0 point 0.10 penalty Single Shuffle

Indique la complejidad del siguiente algoritmo:

```
def algoritmo(n):
    if n==1:
        return 4
    else:
        b = n*n
        while(b>=0):
        b==1
        return 5*algoritmo(n=1)

(a) T(n) = 2T(n-1) + n
(b) T(n) = 3T(\frac{n}{2}) + n
(c) T(n) = 2T(\frac{n}{3}) + n^2
(d) T(n) = 5T(n-1) + n^2 (100%)
(e) T(n) = 5T(\frac{n}{5}) + 1
(f) T(n) = 7T(\frac{n}{4}) + 1
```

### 5. venceras5

MULTI 1.0 point 0.10 penalty Single Shuffle

Indique la complejidad del siguiente algoritmo:

def algoritmo(n):
 if n==1:
 return 4
 else:
 b = 2
 return 5\*algoritmo(n/5)

(a) 
$$T(n) = 2T(n-1) + n$$

(b) 
$$T(n) = 3T(\frac{n}{2}) + n$$

(c) 
$$T(n) = 2T(\frac{\tilde{n}}{3}) + n^2$$

(d) 
$$T(n) = 5T(n-1) + n^2$$

(e) 
$$T(n) = 5T(\frac{n}{5}) + 1$$
 (100%)

(f) 
$$T(n) = 7T(\frac{n}{4}) + 1$$

### 6. venceras6

MULTI 1.0 point 0.10 penalty Single Shuffle

Indique la complejidad del siguiente algoritmo:

```
\begin{array}{l} \text{def algoritmo(n):} \\ \text{if n==1:} \\ \text{return 4} \\ \text{else:} \\ \text{b = 2*n} \\ \text{return 7*algoritmo(n/4)} \\ \\ \text{(a) } T(n) = 2T(n-1) + n \\ \text{(b) } T(n) = 3T(\frac{n}{2}) + n \\ \text{(c) } T(n) = 2T(\frac{n}{3}) + n^2 \\ \text{(d) } T(n) = 5T(n-1) + n^2 \\ \text{(e) } T(n) = 5T(\frac{n}{5}) + 1 \\ \text{(f) } T(n) = 7T(\frac{n}{4}) + 1 \ (100\%) \\ \end{array}
```

Total of marks: 32