penalty	function	smooth version	optimizer	reference
ridge	$p(x_j) = \lambda x_j^2$	λx_j^2	bfgs, glmnet, ista	(Hoerl & Kennard, 1970)
lasso	$p(x_j) = \lambda x_j $	$\lambda \sqrt{x_j^2 + \varepsilon}; \varepsilon > 0$	bfgs, glmnet, ista	(Tibshirani, 1996)
${\it adaptive Lasso}$	$p(x_j) = \frac{1}{w_j} \lambda x_j $	$\frac{1}{w_j}\lambda\sqrt{x_j^2+\varepsilon}; \varepsilon>0$	bfgs, glmnet, ista	(Zou, 2006)
elasticNet	$p(x_j) = \alpha \lambda x_j + (1 - \alpha) \lambda x_j^2$	$\alpha \lambda \sqrt{x_j^2 + \varepsilon} + (1 - \alpha)\lambda x_j^2; \varepsilon > 0$	bfgs, glmnet, ista	(Zou & Hastie, 2005)
cappedL1	$p(x_j) = \lambda \min(x_j , \theta); \theta > 0$		$_{ m glmnet,ista}$	(Zhang, 2010)
lsp	$p(x_j) = \lambda \log(1 + x_j /\theta); \theta > 0$		$_{ m glmnet,ista}$	(Candès et al., 2008)
scad	$p(x_j) = \begin{cases} \lambda x_j & \text{if } x_j \le \lambda \\ \frac{-x_j^2 + 2\theta\lambda x_j - \lambda^2}{2(\theta - 1)} & \text{if } \lambda < x_j \le \lambda\theta ; \theta > 2 \\ (\theta + 1)\lambda^2/2 & \text{if } x_j \ge \theta\lambda \end{cases}$		${\it glmnet,} {\it ista}$	(Fan & Li, 2001)
mcp	$p(x_j) = \begin{cases} \lambda x_j - x_j^2/(2\theta) & \text{if } x_j \le \theta \lambda \\ \theta \lambda^2/2 & \text{if } x_j > \lambda \theta \end{cases}; \theta > 0$		glmnet,ista	(Zhang, 2010)