Exercise Solutions for Math 20

Factoring Polynomials and Simplifying Rational Expressions

Nile Jocson <novoseiversia@gmail.com>

November 8, 2024

Contents

1	Factor the following completely.	3
	1.1 $16x^4 - 1$	3
	1.2 $8j^3 - 125k^6$	3
	1.3 $s^2 + 7s + 10 \dots$	3
	1.4 $4n^2 - 12n + 9$	3
	$1.5 x^3 - x^2 - x + 1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	3
	1.6 $48 - 13q - q^2$	3
2	Reduce the following rational expressions to lowest terms. $2.1 \frac{a^2 - b^2}{a^3 - b^3} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4 4
3	Perform the following operations and simplify.	5
	$3.1 \left(\frac{x}{x^2-1} - \frac{3}{x+1}\right) \div \left[\frac{2x^2-x-3}{x^3-1}\right] \dots \dots$	
	$3.2 \left(\frac{x}{x+y} + \frac{y}{x-y}\right) \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2} \dots \dots \dots \dots$	
	$3.3 \frac{\frac{3}{p+q} + \frac{1}{p-2q}}{1 + \frac{p-q}{p-2q}} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	6

1 Factor the following completely.

1.1 $16x^4 - 1$

$\Rightarrow (4x^2 - 1)(4x^2 + 1)$	Factor using difference of two squares.
$\Rightarrow (2x-1)(2x+1)(4x^2+1)$	Factor using difference of two squares.
	-

1.2 $8j^3 - 125k^6$

$\Rightarrow (2j - 5k^2)(4j^2 + 10jk^2 + 25k^4)$	Factor using difference of two cubes.
	•

1.3 $s^2 + 7s + 10$

$\Rightarrow (s+2)(s+5)$	Factor by grouping.

1.4 $4n^2 - 12n + 9$

$\Rightarrow 4n^2 - 6n - 6n + 9$	Factor by grouping.
$\Rightarrow 2n(2n-3) - 3(2n-3)$	
$\Rightarrow (2n-3)^2$	
	•

1.5 $x^3 - x^2 - x + 1$

$\Rightarrow x^2(x-1) - 1(x-1)$	Factor by grouping.
$\Rightarrow (x^2 - 1)(x - 1)$	
$\Rightarrow (x-1)(x+1)(x-1)$	Factor using difference of two squares.
$\Rightarrow (x-1)^2(x+1)$	
	•

1.6 $48 - 13q - q^2$

$\Rightarrow -q^2 - 13q + 48$	Rewrite in standard form.
$\Rightarrow -(q^2 + 13q - 48)$	
$\Rightarrow -(q-3)(q+16)$	Factor by grouping.
	•

2 Reduce the following rational expressions to lowest terms.

2.1 $\frac{a^2-b^2}{a^3-b^3}$

$$\Rightarrow \frac{(a-b)(a+b)}{a^3-b^3}$$
 Factor using difference of two squares.
$$\Rightarrow \frac{(a-b)(a+b)}{(a-b)(a^2+ab+b^2)}$$
 Factor using difference of two cubes.
$$\Rightarrow \frac{a+b}{a^2+ab+b^2}$$

2.2 $\frac{x^3-x^2y+xy^2-y^3}{x^6+y^6}$

3 Perform the following operations and simplify.

3.1
$$\left(\frac{x}{x^2-1} - \frac{3}{x+1}\right) \div \frac{2x^2-x-3}{x^3-1}$$

$$\Rightarrow \left(\frac{x}{(x-1)(x+1)} - \frac{3}{x+1}\right) \div \frac{2x^2 - x - 3}{x^3 - 1}$$
 Factor using difference of two squares.
$$\Rightarrow \left(\frac{x}{(x-1)(x+1)} - \frac{3(x-1)}{(x-1)(x+1)}\right) \div \frac{2x^2 - x - 3}{x^3 - 1}$$

$$\Rightarrow \frac{x - 3(x-1)}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1}$$

$$\Rightarrow \frac{x - 3x + 3}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1}$$

$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{2x^2 - x - 3}{x^3 - 1}$$
 Factor by grouping.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{2x(x+1) - 3(x+1)}{x^3 - 1}$$
 Factor by grouping.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{x^3 - 1}$$
 Factor using difference of two cubes.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(2x - 3)(x+1)}{(x-1)(x^2 + x + 1)}$$
 Factor using difference of two cubes.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \div \frac{(x-1)(x^2 + x + 1)}{(2x-3)(x+1)}$$
 Factor using difference of two cubes.
$$\Rightarrow \frac{-2x + 3}{(x-1)(x+1)} \cdot \frac{(x-1)(x^2 + x + 1)}{(2x-3)(x+1)}$$

$$\Rightarrow \frac{(-2x + 3)(x^2 + x + 1)}{(2x-3)(x+1)^2}$$

3.2
$$\left(\frac{x}{x+y} + \frac{y}{x-y}\right) \cdot \frac{x^2 - xy}{x^4 - y^4} \div \frac{x}{x^2 + 2xy + y^2}$$

 $\Rightarrow \frac{-(2x-3)(x^2+x+1)}{(2x-3)(x+1)^2}$

 $\Rightarrow -\frac{x^2+x+1}{(x+1)^2}$

$$\Rightarrow \left(\frac{x(x-y)}{(x-y)(x+y)} + \frac{y(x+y)}{(x-y)(x+y)}\right) \cdot \frac{x^2-xy}{x^4-y^4} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x(x-y)+y(x+y)}{(x-y)(x+y)} \cdot \frac{x^2-xy}{x^4-y^4} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2-xy+xy+y+2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{x^4-y^4} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{x^4-y^4} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{(x^2-y^2)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$
Factor using difference of two squares.
$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x^2-xy}{(x-y)(x+y)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x(x-y)}{(x-y)(x+y)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$
Factor using difference of two squares.
$$\Rightarrow \frac{x^2+y^2}{(x-y)(x+y)} \cdot \frac{x(x-y)}{(x-y)(x+y)(x^2+y^2)} \div \frac{x}{x^2+2xy+y^2}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \div \frac{x}{x^2+2xy+y^2}$$
Factor using perfect square trinomial.
$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{x+y^2}{x}$$
Factor using perfect square trinomial.
$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{x+y^2}{x}$$

$$\Rightarrow \frac{x}{(x-y)(x+y)^2} \cdot \frac{(x+y)^2}{x}$$

$$\Rightarrow \frac{1}{x-y}$$

3.3
$$\frac{\frac{3}{p+q} + \frac{1}{p-2q}}{1 + \frac{p-q}{p-2q}}$$

$$\Rightarrow \frac{\frac{3(p-2q)}{(p+q)(p-2q)} + \frac{p+q}{(p+q)(p-2q)}}{1 + \frac{p-q}{p-2q}}
\Rightarrow \frac{\frac{3(p-2q)}{(p+q)(p-2q)}}{1 + \frac{p-q}{p-2q}}
\Rightarrow \frac{\frac{3(p-2q)}{(p+q)(p-2q)}}{\frac{(p+q)(p-2q)}{(p+q)(p-2q)}}
\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{4p-5q}{(p+q)(p-2q)}}
\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{p-2q}{p-2q} + \frac{p-2q}{p-2q}}
\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{p-2q}{p-2q}}
\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{4p-5q}{p-2q}}
\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{4p-5q}{p-2q}}
\Rightarrow \frac{\frac{4p-5q}{(p+q)(p-2q)}}{\frac{4p-5q}{p-2q}}
\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{p-2q}{2p-3q}
\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{p-2q}{2p-3q}
\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{p-2q}{2p-3q}$$

$$\Rightarrow \frac{4p-5q}{(p+q)(p-2q)} \cdot \frac{p-2q}{2p-3q}$$