Optimization-Based Data Analysis

Recitation 5

- 1. Consider a function $f(t) = \sum_{k=-k_c}^{k_c} a_k e^{2\pi i k t}$ with $a_k \in \mathbb{C}$.
 - (a) For fixed j, show how to compute a_j by integration
 - (b) Suppose you are given N samples $\vec{x} = [f(0), f(1/N), \dots, f((N-1)/N)]^T$. How would you use these to recover the a_k -values, and how many samples do you need?
 - (c) Suppose you had 2N samples $\vec{y} = [f(0), \dots, f((N-1)/N), \dots, f((2N-1)/N)]^T$. How would you use these to recover the a_j -values, and how many samples do you need?

Solution.

(a) Note that

$$\int_{-1/2}^{1/2} f(t)e^{-2\pi ijt} dt = \int_{-1/2}^{1/2} \sum_{k=-k_c}^{k_c} a_k e^{2\pi ikt} e^{-2\pi ijt} dt = \sum_{k=-k_c}^{k_c} \int_{-1/2}^{1/2} a_k e^{2\pi ikt} e^{-2\pi ijt} dt = a_j,$$

as all of the integrals are zero when $j \neq k$.

- (b) $a_k = \frac{1}{N}\vec{X}[k] \text{ if } N \ge 2k_c + 1.$
- (c) We still require $N \geq 2k_c + 1$. Either only use the first half of the data (the rest is just a copy), or compute

$$a_k = \frac{1}{2N} \vec{Y}[2k].$$

It turns that $\vec{Y}[2j+1] = 0$ for all j since the data repeats.

- 2. True or False: A matrix $M \in \mathbb{C}^{n \times n}$ is circulant (each row is obtained by rotating the first row) if and only if it is diagonalized by $\frac{1}{\sqrt{n}}\vec{h}_k^{[n]}$ for $k = 0, \ldots, n-1$.
 - Solution. A matrix is circulant if and only if it is a matrix of a (circular) convolution operator. As we know, convolution operators correspond to multiplication in frequency space. This is equivalent to the statement that the matrix is diagonalized by the Fourier basis vectors.
- 3. Prove that (circular) convolutions are commutative: $\vec{x}*\vec{y} = \vec{y}*\vec{x}$ for $\vec{x}, \vec{y} \in \mathbb{C}^n$.
 - Solution. Compute DFT. Both sides are just the pointwise multiplication of the DFT coefficients, which is commutative.
- 4. Let $\vec{1} \in \mathbb{C}^n$ denote the vector that is all ones. What is $\vec{x} * \vec{1}$ for $\vec{x} \in \mathbb{C}^n$? Can we deconvolve to get \vec{x} ?

1

Solution. $\vec{x} * \vec{1}$ is the vector with every entry equal to $\vec{1}^T \vec{x}$. We cannot deconvolve, since we have only learned the sum of the entries. Alternatively, note that all but one of the Fourier coefficients of $\vec{1}$ are 0.

5. Let $f: [-1/2, 1/2] \to \mathbb{C}$ be defined by $f(t) = \sum_{k=-\infty}^{\infty} a_k e^{2\pi i k t}$, where $a_k \in \mathbb{C}$. Suppose we obtain N samples $\vec{x} = [f(0), \dots, f((N-1)/N)]^T$. What are the N coefficients we obtain by computing the DFT \vec{X} ?

Solution. First note that

$$\vec{x}[l] = f(l/N)$$

$$= \sum_{k=-\infty}^{\infty} a_k e^{2\pi i k l/N}$$

$$= \sum_{k=0}^{N-1} \sum_{m \in \mathbb{Z}} a_{k+Nm} e^{2\pi i (k+Nm)l/N}$$

$$= \sum_{k=0}^{N-1} \left(\sum_{m \in \mathbb{Z}} a_{k+Nm} \right) e^{2\pi i k l/N}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \vec{X}[k] e^{2\pi i k l/N}.$$

Thus $\vec{X}[k] = N \sum_{m \in \mathbb{Z}} a_{k+Nm}$. This shows we cannot recover each Fourier coefficient, but only the sum of all Fourier coefficients for a given remainder modulo N. Stated briefly, N samples gives us the ability to resolve the Fourier coefficients into sums modulo N.

6. Suppose f(0) = 5, f(1/5) = -2 and f(1/3) = 3. Find a sum of translated Dirichlet kernels that has the same values of f at those 3 points.

Solution. Let n = 7 and use

$$\frac{5}{15}d_7(t) - \frac{2}{15}d_7(t - 1/5) + \frac{3}{15}d_7(t - 1/3).$$

By the time-translation property, this can be represented using band $k_c = 7$ with

$$d_7(t) = \sum_{k=-7}^{7} e^{2\pi i k t}.$$

Recall that $d_n(t) = \frac{\sin((2n+1)\pi t)}{\sin(\pi t)}$ has zeros at j/(2n+1) for $k \neq 0$. The finer the resolution at which interpolation must occur, the larger the necessary bandwidth.

7. Recall that the 2-dimensional DFT $\hat{M} \in \mathbb{C}^{m \times n}$ of a matrix $M \in \mathbb{C}^{m \times n}$ is defined by

$$\hat{M}[k_1, k_2] = \langle M, \vec{h}_{k_1}^{[m]} (\vec{h}_{k_2}^{[n]})^T \rangle.$$

Prove that $\hat{M} = W^{[m]}MW^{[n]}$ where $W^{[m]}$ is the DFT matrix defined by

$$W^{[m]} = \begin{bmatrix} | & | & \cdots & | \\ \vec{h}_0^{[m]} & \vec{h}_1^{[m]} & \cdots & \vec{h}_{m-1}^{[m]} \\ | & | & \cdots & | \end{bmatrix}^*.$$

Solution. Recall that

$$\begin{split} \hat{M}[k_1, k_2] &= \langle M, \vec{h}_{k_1}^{[m]} (\vec{h}_{k_2}^{[n]})^T \rangle \\ &= \operatorname{tr} \left(M (\vec{h}_{k_1}^{[m]} (\vec{h}_{k_2}^{[n]})^T)^* \right) \\ &= \operatorname{tr} \left(M \overline{\vec{h}_{k_2}^{[n]}} (\vec{h}_{k_1}^{[m]})^* \right) \\ &= \operatorname{tr} \left((\vec{h}_{k_1}^{[m]})^* M \overline{\vec{h}_{k_2}^{[n]}} \right) \\ &= W_{k_1,:} M W_{:,k_2}. \end{split}$$

Thus $\hat{M} = WMW$ as required.

- 8. (a) In class we blurred images by convolving with a Gaussian filter. Explain why this has a blurring effect, and what this suggests about its Fourier transform.
 - (b) Consider a 1-dimensional sequence that we want to "blur" or smooth by computing a moving average. We will replace entry $\vec{x}[j]$ with the following average:

$$\widetilde{\vec{x}}[j] := \frac{1}{2w+1} \sum_{k=-w}^{w} \vec{x}[j+k].$$

How do you represent this as a convolution, and what do you expect the Fourier coefficients of the convolution filter to look like?

Solution.

- (a) The Gaussian averages nearby values causing the blur. We expect this to remove high frequency (i.e., quickly varying) components, as it does.
- (b) The convolution filter is 1/(2w+1) in a window of width w centered at 0. That is, the filter \vec{k} is given by $\vec{k}[j] = 1/(2w+1)$ for $|j| \le w$ and 0 otherwise (as usual, we interpret negative indices as wrapping around for a finite vector \vec{k}). The Fourier coefficients \vec{K} should look like a Dirichlet kernel, converging toward a single spike as w grows (i.e., the high frequency components are decaying to zero).