Billiards3D - приложение реализующее игру в бильярд

СПЕЦИФИКАЦИЯ ПРОЕКТА

СОДЕРЖАНИЕ

2
2
2
4
4
4

1. ЦЕЛИ РАЗРАБОТКИ

Приложение представляет игровую программу, реализующую трёхмерный симулятор бильярда на компьютере.

2. ТРЕБОВАНИЯ К РАЗРАБОТКЕ

Приложение представляет собой desktop, WEB или приложение для одной из мобильных платформ. Программа реализуется в виде 3D симулятора одной из разновидностей бильярда в котором реализованы основные правила игры и алгоритмы подсчета баллов [1].

В программном продукте должны быть максимально реалистично отображаться действия происходящие на бильярдном столе: перекатывание шаров с учетом сил трения и углов соударения, возможность настраивания точки удара кия по шару, возможность выбивания шара за пределы бильярдного стола, возможность настройки точек обзора бильярдного стола для оценки направления движение шара, возможность регулировки силы и направления удара кием и т.д.

Для отображения виртуального пространства игры, физического моделирования процессов взаимодействия объектов с учетом характера, силы и импульса взаимодействия рекомендуется использование одного из физических игровых движков Open Dynamics Engine [2], PhysX [3], Bullet Physics Library [4], Newton Game Dynamics [5], Tokamak Game Physics [6], Unity [7].

Архитектура приложения должна предусматривать перспективу совершенствования алгоритма игры и ее графического представления.

3. КРИТЕРИИ И ОПИСАНИЕ АЛГОРИТМА

Для реализации проекта необходимо решить следующие задачи:

- произвести анализ существующих аналогов разрабатываемого программного продукта [8];
- произвести анализ возможных сред разработки программного продукта, выбрать наиболее подходящую среду программирования, выбрать вспомогательные средства разработки и графического представления;
- проанализировать возможности физических движков, которые они предсталяют для моделирования и реализации физических процессов взаимодействия происходящих во время игры. Составить алгоритмы реализации процессов с помощью средств предоставляемых выбраным движком. При необходимости усовершенствовать или дополнить используемые средства собственными моделями. В качестве дополнительных источников литературы при разработке алгоритмов и моделей можно использовать [9-12].
- выполнить программную реализацию разработанных алгоритмов;
- произвести тестирование и отладку программного продукта.

4. ОПИСАНИЕ ИНТЕРФЕЙСА

Создаваемый программный продукт предназначен для широкого круга пользователей, в связи с этим основным требованием пользователю является лишь общее знание правил игры в бильярд, а также владение клавиатурой и мышкой.

Программный продукт должен иметь начальное меню, с помощью которого можно изучить правила игры и пользования программного продукта (назначение клавиш, горячие комбинации клавиш, правила управления и использования мышки и т.д.), запустить игру, сменить имя игрока, просмотреть таблицу лучших результатов, а также выйти из программы.

Внимание! Интерфейс пользователя должен быть простым, наглядным и не перегружен второстепенной информацией. Описание реализации интерфейса необходимо добавить.

5. ОПИСАНИЕ ПРОЦЕССА КОМПИЛЯЦИИ, УСТАНОВКИ, ЗАПУСКА

Внимание! Описание процесса компиляции, установки, запуска необходимо выполнить для конкретной версии программных продуктов, на которых разработана игра с обязательным включением описания инструментария, библиотек и версий используемого программного обеспечения.

6. ЛИТЕРАТУРА

- 1. https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BB%D1%8C%D1%8F%D1%80%D0%B4
- 2. https://ru.wikipedia.org/wiki/Open_Dynamics_Engine
- 3. https://ru.wikipedia.org/wiki/PhysX
- 4. https://ru.wikipedia.org/wiki/Bullet Physics Library
- 5. https://ru.wikipedia.org/wiki/Newton_Game_Dynamics
- 6. https://ru.wikipedia.org/wiki/Tokamak physics engine
- 7. https://ru.wikipedia.org/wiki/Unity_(%D0%B8%D0%B3%D1%80%D0%BE%D0%B2%D0%B2%D0%B8%D0%B6%D0%BE%D0%BA)
- - $\frac{\text{game.net/\%D0\%A1\%D0\%BF\%D0\%BE\%D1\%80\%D1\%82\%D0\%B8\%D0\%B2\%D0\%BD}{\text{\%D1\%8B\%D0\%B5\%20\%D0\%B8\%D0\%B3\%D1\%80\%D1\%8B\%20\%D0\%91\%D0\%B8\%D0\%BB\%D1\%8C\%D1\%8F\%D1\%80\%D0\%B4\%20\%D1\%81\%D1\%82\%D1\%801.html}$
- 9. http://billiards.colostate.edu/physics/index.html
- 10. http://forum.gbasicnews.com/index.php?topic=3408.0;wap2
- 11. http://www.efg2.com/Lab/Library/SimulationAndModeling.htm
- 12. http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/Collision/applet.html