Learning Explainable Templated Graphical Models - Supplementary Material

Varun Embar **1

Sriram Srinivasan *1

Lise Getoor¹

¹Dept. of Computer Science and Engineering, University of California, Santa Cruz, USA

1 STRONG CONVEXITY OF PSL ENERGY FUNCTION

We first reiterate the definition of strong convexity.

Definition 1. Strong Convexity: A function $E: (\mathcal{Y}, \mathcal{X}) \to \mathbb{R}$ is κ -strongly convex in \mathcal{Y} (w.r.t the 1-norm) if \mathcal{Y} is a convex set and, for $\mathbf{X} \in \mathcal{X}$ and any $\mathbf{Y}, \mathbf{Y}' \in \mathcal{Y}$, $\tau \in [0, 1]$,

$$\tau(1-\tau)\frac{\kappa}{2} \|\mathbf{Y} - \mathbf{Y}'\| + E(\tau\mathbf{Y} + (1-\tau)\mathbf{Y}', \mathbf{X})$$

$$\leq \tau E(\mathbf{Y}, \mathbf{X}) + (1-\tau)E(\mathbf{Y}', \mathbf{X})$$

The energy function E is a summation of squared hinges and hence E is convex. Further, the prior template described in our approach acts a regularizer of $\mathbf Y$ and is κ -strongly convex. Hence E is at least κ -strongly convex in $\mathcal Y$.

2 PROOF OF LEMMA 1

Lemma. For a graphical model G with a set of potentials Φ , let Q_i denote the number of potentials that involve $\mathbf{X_i}$, and let $Q_G \triangleq \max_i Q_i$. Let $\|\mathbf{w}\| < R$. Let $\mathbf{X}, \mathbf{X}' \in \mathcal{X}$ differ at a single coordinate i by atmost ϵ . Then, for $\dot{\mathbf{Y}} \triangleq \operatorname{argmin}_{\mathbf{Y}} E(\mathbf{Y}, \mathbf{X})$ and $\dot{\mathbf{Y}}' \triangleq \operatorname{argmin}_{\mathbf{Y}} E(\mathbf{Y}, \mathbf{X}')$,

$$\|E(\dot{\mathbf{Y}}', \mathbf{X}) - E(\dot{\mathbf{Y}}', \mathbf{X}')\| \le \epsilon R \sqrt{Q_G}$$

Proof.

$$\begin{split} & \left\| E(\dot{\mathbf{Y}}', \mathbf{X}) - E(\dot{\mathbf{Y}}', \mathbf{X}') \right\| \\ &= \left\| \mathbf{w}^T \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}) - \mathbf{w}^T \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}') \right\| \\ &\leq \left\| \mathbf{w} \right\| \left\| \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}) - \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}') \right\| \text{[Form Cauchy-Schwarz]} \\ &\leq R \left\| \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}) - \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}') \right\| \end{split}$$

because, by definition, $\|\mathbf{w}\|$ is upper bounded by R. Note that $\Phi(\dot{\mathbf{Y}}', \mathbf{X})$ and $\Phi(\dot{\mathbf{Y}}', \mathbf{X}')$ only differ at any grounding involving \mathbf{X}_i . The number of such groundings is Q_i , which is upper-bounded by Q_G , so at most Q_G potentials will change.

Further, the squared hinge loss potential has the from $max\{\mathbf{C_x}^T\mathbf{X} + \mathbf{C_y}^T\mathbf{Y} - c, 0\}^2$ where $\mathbf{C_x}, \mathbf{C_y}$ co-efficient vectors consisting of 1, -1, 0.

$$\begin{split} &\left\| \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}) - \mathbf{\Phi}(\dot{\mathbf{Y}}', \mathbf{X}') \right\| \\ &= \left(\sum_{\phi \in \mathbf{\Phi}} \mathbb{1} \{ \mathbf{C}_{\mathbf{X}_{\mathbf{i}}} \neq 0 \} ((\phi(\dot{\mathbf{Y}}', \mathbf{X}) - \phi(\dot{\mathbf{Y}}', \mathbf{X}')))^{2} \right)^{1/2} \\ &= \left(\sum_{\phi \in \mathbf{\Phi}} \mathbb{1} \{ \mathbf{C}_{\mathbf{X}_{\mathbf{i}}} \neq 0 \} (max\{ \mathbf{C}_{\mathbf{x}}^{T} \mathbf{X} + \mathbf{C}_{\mathbf{y}}^{T} \dot{\mathbf{Y}}' - c, 0 \} \right) \\ &- max\{ \mathbf{C}_{\mathbf{x}}^{T} \mathbf{X}' + \mathbf{C}_{\mathbf{y}}^{T} \dot{\mathbf{Y}}' - c, 0 \})^{2} \right)^{1/2} \\ &\leq \left(\sum_{\phi \in \mathbf{\Phi}} \mathbb{1} \{ \mathbf{C}_{\mathbf{X}_{\mathbf{i}}} \neq 0 \} (max\{ \mathbf{C}_{\mathbf{x}}^{T} (\mathbf{X} - \mathbf{X}') \right) \\ &+ \mathbf{C}_{\mathbf{y}}^{T} (\dot{\mathbf{Y}}' - \dot{\mathbf{Y}}'), 0 \})^{2} \right)^{1/2} \\ &\leq (Q_{i})^{1/2} \epsilon \leq (Q_{G})^{1/2} \epsilon \end{split}$$

3 PROOF OF LEMMA 2

Lemma. Let $E: (\mathcal{Y}, \mathcal{X}) \to \mathbb{R}$ be κ -strongly convex, and let $\dot{\mathbf{Y}} \triangleq \operatorname{argmin}_{\mathbf{Y}} E(\mathbf{Y}, \mathbf{X})$ and $\dot{\mathbf{Y}}' \triangleq \operatorname{argmin}_{\mathbf{Y}} E(\mathbf{Y}, \mathbf{X}')$, where $\mathbf{X}, \mathbf{X}' \in \mathcal{X}$ differ at a single RV $\mathbf{X}_{\mathbf{i}}$ by atmost ϵ . Then,

$$\left\|\dot{\mathbf{Y}}' - \dot{\mathbf{Y}}\right\|^2 \le \frac{2}{\kappa} (E(\dot{\mathbf{Y}}, \mathbf{X}) - E(\dot{\mathbf{Y}}', \mathbf{X}')) \tag{1}$$

^{*}Equal contribution

Proof. Without loss of generality, assume that $E(\dot{\mathbf{Y}}, \mathbf{X}) \geq E(\dot{\mathbf{Y}}', \mathbf{X}')$.(If $E(\dot{\mathbf{Y}}, \mathbf{X}) \leq E(\dot{\mathbf{Y}}', \mathbf{X}')$ we can state this in terms of $\dot{\mathbf{Y}}'$). Let $\Delta \mathbf{Y} \triangleq \dot{\mathbf{Y}}' - \dot{\mathbf{Y}}$. By Definition 1, for any $\tau \in [0, 1]$,

$$\tau(1-\tau)\frac{\kappa}{2} \|\dot{\mathbf{Y}}' - \dot{\mathbf{Y}}\| + E(\tau\dot{\mathbf{Y}}' + (1-\tau)\dot{\mathbf{Y}}, \mathbf{X})$$

$$\leq \tau E(\dot{\mathbf{Y}}', \mathbf{X}) + (1-\tau)E(\dot{\mathbf{Y}}, \mathbf{X})$$

Since $\dot{\mathbf{Y}}$ is, by definition, the unique minimizer of $E(\mathbf{Y}, \mathbf{X})$, it follows that $E(\dot{\mathbf{Y}} + \tau \Delta \mathbf{Y}, \mathbf{X}) - E(\dot{\mathbf{Y}}, \mathbf{X}) \geq 0$, so the above inequality is preserved when this term is dropped. This, dividing both sides by $\tau \kappa/2$, we have that

$$(1 - \tau) \|\Delta \mathbf{Y}\|^{2} \leq \frac{2}{\kappa} (E(\dot{\mathbf{Y}}', \mathbf{X}) - E(\dot{\mathbf{Y}}, \mathbf{X}))$$
$$\|\Delta \mathbf{Y}\|^{2} \leq \frac{2}{\kappa} (E(\dot{\mathbf{Y}}', \mathbf{X}) - E(\dot{\mathbf{Y}}, \mathbf{X}))$$

where the last inequality follows from the fact that $(1 - \tau)$ is maximized at $\tau = 0$.

Since $E(\dot{\mathbf{Y}}, \mathbf{X}) \geq E(\dot{\mathbf{Y}}', \mathbf{X}')$, the following inequality holds

$$\left\|\dot{\mathbf{Y}}' - \dot{\mathbf{Y}}\right\|^2 \le \frac{2}{\kappa} (E(\dot{\mathbf{Y}}', \mathbf{X}) - E(\dot{\mathbf{Y}}', \mathbf{X}'))$$

4 PROOF OF LEMMA 3

Lemma. Let the explaining function f be defined as $f(\mathbf{X}, \mathbf{Y}, \phi) = \left\| \frac{w \partial \phi(\mathbf{X}, \mathbf{Y})}{\partial \mathbf{Y_i}} \right\|_y$. Let $\mathbf{X}, \mathbf{X}' \in \mathcal{X}$ differ at a single random variable $\mathbf{X_i}$ by at most ϵ . Let $\|\mathbf{Y} - \mathbf{Y}'\| < B$ for any two $\mathbf{Y}, \mathbf{Y}' \in \mathcal{Y}$ and $\|\mathbf{w}\| < R$. Then:

$$|f(\mathbf{X}, \mathbf{Y}, \phi) - f_k(\mathbf{X}', \mathbf{Y}', \phi)| \le 2R(\epsilon + B)$$
 (2)

Proof. The hinge loss function ϕ has the from $max\{\mathbf{C_x}^T\mathbf{X} + \mathbf{C_y}^T\mathbf{Y} - c, 0\}^2$ where $\mathbf{C_x}, \mathbf{C_y}$ coefficient vectors consisting of 1, 0, -1.

The partial derivative w.r.t to Y_i

$$= \left\| \frac{\partial \phi(\mathbf{X}, \mathbf{Y})}{\partial \mathbf{Y_i}} \right|_{y} \right\|$$

$$= 2 * max \{ \mathbf{C_x}^T \mathbf{X} + \mathbf{C_y}^T \mathbf{Y} - c, 0 \}$$

$$* \left\| \frac{\partial max \{ \mathbf{C_x}^T \mathbf{X} + \mathbf{C_y}^T \mathbf{Y} - c, 0 \}}{\partial \mathbf{Y_i}} \right|_{y} \right\|$$

$$= 2 * max \{ \mathbf{C_x}^T \mathbf{X} + \mathbf{C_y}^T \mathbf{Y} - c, 0 \}$$

The last step comes from the fact that $\left\|\frac{\partial max\{\mathbf{C_x}^T\mathbf{X}+\mathbf{C_y}^T\mathbf{Y}-c,0\}}{\partial \mathbf{Y_i}}|_y\right\| \quad \text{can be} \quad \{-1,0,1\}. \quad \text{In all cases,}$

$$2 * max\{\mathbf{C_x}^T \mathbf{X} + \mathbf{C_y}^T \mathbf{Y} - c, 0\}$$

$$* \left\| \frac{\partial max\{\mathbf{C_x}^T \mathbf{X} + \mathbf{C_y}^T \mathbf{Y} - c, 0\}}{\partial \mathbf{Y_i}} |_y \right\|$$

$$= 2 * max\{\mathbf{C_x}^T \mathbf{X} + \mathbf{C_y}^T \mathbf{Y} - c, 0\}$$

Now consider
$$|f(\mathbf{X}, \mathbf{Y}, \phi) - f(\mathbf{X}', \mathbf{Y}', \phi)|$$

$$= w \left\| \frac{\partial \phi(\mathbf{X}, \mathbf{Y})}{\partial \mathbf{Y_i}} \right|_{y} - \frac{\partial \phi_{j}(\mathbf{X}', \mathbf{Y}')}{\partial \mathbf{Y_i}} \right|_{y'} \right\|$$

$$= 2w \| max \{ \mathbf{C_x}^T \mathbf{X} + \mathbf{C_y}^T \mathbf{Y} - c, 0 \}$$

$$- max \{ \mathbf{C_x}^T \mathbf{X}' + \mathbf{C_y}^T \mathbf{Y}' - c, 0 \} \|$$

$$\leq 2w \| max \{ \mathbf{C_x}^T (\mathbf{X} - \mathbf{X}') + \mathbf{C_y}^T (\mathbf{Y} - \mathbf{Y}'), 0 \} \|$$

$$\leq 2w \| max \{ \epsilon + B, 0 \} \|$$

$$\leq 2R(\epsilon + B)$$

5 DATASETS

Enity Resolution Dataset: The Cora Citation entity resolution dataset is based on the citation references between scientific papers. The task is to identify papers that are the same. This is represented by the target predicate $SAME_BIB$. The dataset contains 10 predicates. For each of the nontarget predicates, we included the inverse predicates where the arguments are reversed. For example, for the predicate $SAME_AUTHOR(A, B)$ we include the predicate $_SAME_AUTHOR(B, A)$. In total there are 19 predicates.

The set of predicates are SAME_AUTHOR, SAME_BIB, SAME_VENUE, SAME_TITLE, AUTHOR, VENUE, TITLE, HASWORD_AUTHOR, HASWORD_TITLE, HASWORD_VENUE. Since all predicates are explainable, we do not classify them as explainable and non-explainable predicates. The dataset is split into 5 folds. We use the same splits as ?.

Recommendation Dataset: Both YELP and LASTFM datasets contain 21 predicates or relations. We categorize the predicates as explainable and non-explainable predicates based on how easy it is for an end-user to understand the predicates. There were 15 explainable predicates and 6 non-explainable predicates. The list of predicates are as follows:

Explainable predicates: $USERS_ARE_FRIENDS$, $SIM_CONTENT_ITEMS_JACCARD$, $SIM_PEARSON_ITEMS$, SIM_ADJCOS_ITEMS , $SIM_MF_COSINE_ITEMS$, SIM_ADJCOS_ITEMS , $SIM_MF_EUCLIDEAN_ITEMS$, SIM_COSINE_USERS , $SIM_PEARSON_USERS$, $SIM_MF_COSINE_USERS$, $SIM_MF_COSINE_USERS$, $SIM_MF_EUCLIDEAN_USERS$, $SIM_MF_EUCLIDEAN_USERS$, $SIM_MF_EUCLIDEAN_USERS$, AVG_ITEM_RATING , $RATING_PRIOR$, AVG_USER_RATING

 $\begin{array}{lll} \textbf{Non-explainable} & \textbf{predicates:} & RATING, \\ RATED, & SGD_RATING, & BPMF_RATING, \\ ITEM_PEARSON_RATING, USER, ITEM \end{array}$

The **YELP** dataset is split in five folds. Each fold contains a train and a test split. The train splits contains 79240 observed ratings and 7924 ratings that need to be predicted. The test split contains 99049 observed ratings and 19809 ratings that need to be predicted.

Similarly, the **LASTFM** dataset is split in five folds. Each fold contains a train and a test split. The train splits contains 74267 observed ratings and 18567 ratings that need to be predicted. The test split contains 92834 observed ratings and 18567 ratings that need to be predicted.

6 MODE DECLARATIONS FOR BOOST

Modes are used to restrict/guide the search space and are a powerful tool in getting relational algorithms such as BoostSRL to work. Below we give the mode declarations used by BOOST for the recommendation and entity resolution datasets.

Entity resolution dataset:

```
mode: author(+paper, -auth).
mode: haswordauthor(+auth, -word).
mode: haswordtitle(+title, -word).
mode: haswordvenue(+venue, -word).
mode: title(+paper, -title).
mode: venue(+paper, -venue).
mode: author(-paper, +auth).
mode: haswordauthor(-auth, +word).
mode: haswordtitle(-title, +word).
mode: haswordvenue(-venue, +word).
mode: title(-paper, +title).
mode: venue(-paper, +venue).
mode: samebib(+paper, +paper).
mode: sametitle(+title, +title).
mode: same venue(+venue, +venue).
mode: same author(+auth, +auth).
mode: recursive\_samebib(+paper, paper).
mode: recursive\_sametitle(+title, title).
mode: recursive\_same venue (+venue, venue).
mode: recursive\_same author(+auth, auth).
mode: recursive\_samebib(`paper, +paper).
mode: recursive\_sametitle(title, +title).
mode: recursive\_same venue(venue, +venue).
mode: recursive\_same author(auth, +auth).
mode: samebib(+paper, -paper).
```

```
mode: sametitle(+title, -title).
mode: samevenue(+venue, -venue).
mode: sameauthor(+auth, -auth).
mode: samebib(-paper, +paper).
mode: sametitle(-title, +title).
mode: samevenue(-venue, +venue).
mode: sameauthor(-auth, +auth).
usePrologVariables: true.
okIfUnknown: recursive\_sametitle/2.
okIfUnknown: recursive\_samevenue/2.
okIfUnknown: recursive\_samevenue/2.
okIfUnknown: recursive\_samevenue/2.
```

Recommendation datasets:

```
mode: avg\_item\_rating(+item).
mode: avg\_user\_rating(+user).
mode: bpmf\_rating(+user, +item).
mode: item\_pearson\_rating(+user, +item).
mode: sgd\_rating(+user, +item).
mode: users\_are\_friends(+user, -user).
mode: users\_are\_friends(-user, +user).
mode: sim\ adjcos\ items(+item, -item).
mode: sim\_adjcos\_items(-item, +item).
mode: sim\_content\_items_iaccard(-item, +item).
mode: sim\_content\_items_iaccard(-item, +item).
mode: sim\_cosine\_items(-item, +item).
mode: sim\_cosine\_items(+item, -item).
mode: sim\_cosine\_users(-user, +user).
mode: sim\_cosine\_users(+user, -user).
mode: sim\_mf\_cosine\_items(-item, +item).
mode: sim\_mf\_cosine\_items(+item, -item).
mode: sim\_mf\_cosine\_users(-user, +user).
mode: sim\_mf\_cosine\_users(+user, -user).
mode: sim\_mf\_euclidean\_items(-item, +item).
mode: sim\_mf\_euclidean\_items(+item, -item).
mode: sim\_mf\_euclidean\_users(-user, +user).
mode: sim\_mf\_euclidean\_users(+user, -user).
mode: sim\_pearson\_users(-user, +user).
mode: sim\_pearson\_users(+user, -user).
mode: sim\_pearson\_items(-item, +item).
mode: sim\_pearson\_items(+item, -item).
mode: rating(+user, +item).
```

bridger: friends/2.

 $bridger: sim_adjcos_items/2.$

 $bridger: sim_content_items/2.$

 $bridger: sim_cosine_items/2.$

 $bridger: sim_cosine_users/2.$

 $bridger: sim_mf_cosine_items/2.$

 $bridger: sim_mf_cosine_users/2.$

 $bridger: sim_mf_euclidean_items/2.$

 $bridger: sim_mf_euclidean_users/2.$

 $bridger: sim_pearson_users/2.$

 $bridger: sim_pearson_items/2.$

7 LEARNED MODELS

Below we show the rules learned by our approach (ESMS), Path ranking algorithm (PRA) and Boost(BOOST) for one of the folds on the CORA and the YELP dataset. Note that model weights are relative.

7.1 CORA DATASET

Model learned by ESMS

 $0.07: TARGETS(A0,A2) \land SAMEBIB(A0,A1) \land \\ SAMEBIB(A1,A2) \rightarrow SAMEBIB(A0,A2) \\ 0.018: TARGETS(A0,A2) \land TITLE(A0,A1) \land \\ _TITLE(A1,A2) \rightarrow SAMEBIB(A0,A2) \\ 0.018: TARGETS(A0,A2) \land VENUE(A0,A1) \land \\ _VENUE(A1,A2) \rightarrow SAMEBIB(A0,A2)$

Model learned by BOOST

 $0.35: TARGETS(A0, A1) \land VENUE(A1, A2) \land VENUE(A0, A2) \rightarrow SAMEBIB(A0, A1)$ $0.35: TARGETS(A0, A1) \land TITLE(A0, A2) \land TITLE(A1, A2) \rightarrow SAMEBIB(A0, A1)$ $0.37: TARGETS(A0, A0) \land AUTHOR(A0, A1) \rightarrow SAMEBIB(A0, A0)$

Model learned by PRA

 $0.07:TARGETS(A0, A2) \land SAMEBIB(A0, A1) \land SAMEBIB(A1, A2) \rightarrow SAMEBIB(A0, A2)$

7.2 YELP DATASET

Model learned by ESMS

0.01:1.00*RATING(A0, A1) = 1.00

 $0.07: AVG_ITEM_RATING(A0) \land ITEM(A0) \land$ $RATED(A1, A0) \rightarrow RATING(A1, A0)$

 $0.07: AVG_USER_RATING(A0) \land USER(A0) \land$

 $RATED(A0, A1) \rightarrow RATING(A0, A1)$

 $0.05: RATING(A, B) \land SIM_ADJCOS_ITEMS(B, C) \land RATED(A, B) \land RATED(A, C) \rightarrow RATING(A, C)$

 $0.07:SGD_RATING(A0, A1) \land RATED(A0, A1)$ $\land RATED(A0, A1) \rightarrow RATING(A0, A1)$

 $0.05:SIM_PEARSON_USERS(A0,A1) \land RATING(A1,A2) \land RATED(A1,A2) \land RATED(A0,A2) \rightarrow RATING(A0,A2)$

 $0.05: RATING(A,B) \land SIM_PEARSON_USERS(A,C) \land \\ RATED(A,B) \land RATED(C,B) \rightarrow RATING(C,B)$

0.01:1.00*RATING(A0, A1) = 0.00

 $0.07:SIM_MF_EUCLIDEAN_USERS(A0, A1) \land$ $RATING(A1, A2) \land RATED(A1, A2) \land$ $RATED(A0, A2) \rightarrow RATING(A0, A2)$

Model learned by BOOST

 $0.12:\!SIM_PEARSON_USERS(A,A1) \land RATED(A,A1)$

 $\rightarrow RATING(A, A1)$

 $0.10: AVG_USER_RATING(A) \land RATED(A, A1)$

 $\rightarrow RATING(A, A1)$

 $0.15: RATED(A1,A) \land SIM_PEARSON_ITEMS(A,A1)$

 $\rightarrow RATING(A1, A)$

 $0.07:AVG_USER_RATING(A) \land$

 $SIM_PEARSON_USERS(A,A1) \land RATED(A,A1)$

 $\rightarrow RATING(A, A1)$

 $0.06: AVG_USER_RATING(A)$

 $\land SIM_PEARSON_ITEMS(B,A1) \land RATED(A,B)$

 $\rightarrow RATING(A, B)$

 $0.06:AVG_USER_RATING(B) \land RATED(A,A1) \land$

 $SIM_PEARSON_USERS(A, B) \rightarrow RATING(A, A1)$

 $0.06: AVG_USER_RATING(A) \land$

 $SIM_MF_COSINE_ITEMS(B, A1) \land RATED(A, B)$

 $\rightarrow RATING(A, B)$

 $0.05: RATED(A1,A) \land SIM_PEARSON_ITEMS(A,B) \land \\ AVG_ITEM_RATING(B) \rightarrow RATING(A1,A)$

 $0.09: ITEM_PEARSON_RATING(A,B) \land RATED(A,B)$

 $\rightarrow RATING(A, B)$

 $0.10: RATED(A, B) \land SGD_RATING(A, B)$

 $\rightarrow RATING(A, B)$

Model learned by PRA

The PRA model had over 75 rules. Here, we shows some of

the top weighted rules.

```
0.10:ITEM\_PEARSON\_RATING(R2,R3) \land
     SIM\_COSINE\_USERS(R2, R1) \land
     RATED(R1, R3) \rightarrow RATING(R1, R3)
0.10:BPMF\_RATING(R1,R2) \land
    SIM\_COSINE\_ITEMS(R3, R2) \land
     RATED(R1, R3) \rightarrow RATING(R1, R3)
0.10:SGD\_RATING(R1,R2) \land
    SIM\_COSINE\_ITEMS(R3, R2) \land
     RATED(R1, R3) \rightarrow RATING(R1, R3)
0.10:ITEM\_PEARSON\_RATING(R1,R2) \land
    SIM\_COSINE\_ITEMS(R3, R2) \land RATED(R1, R3)
     \rightarrow RATING(R1, R3)
0.10:SIM\_ADJCOS\_ITEMS(R3,R2) \land
    SGD\_RATING(R1, R2) \land RATED(R1, R3)
     \rightarrow RATING(R1,R3)
0.10:BPMF\_RATING(R1,R2) \land RATED(R1,R3) \land
     SIM\_ADJCOS\_ITEMS(R2, R3)
     \rightarrow RATING(R1, R3)
0.10:SIM\_ADJCOS\_ITEMS(R3,R2) \land
     BPMF\_RATING(R1, R2) \land RATED(R1, R3)
     \rightarrow RATING(R1, R3)
0.10:SIM\_ADJCOS\_ITEMS(R3,R2) \land
     ITEM\_PEARSON\_RATING(R1, R2) \land
     RATED(R1, R3) \rightarrow RATING(R1, R3)
0.10:SGD\_RATING(R1,R2) \land RATED(R1,R3) \land
    SIM\_ADJCOS\_ITEMS(R2, R3)
     \rightarrow RATING(R1, R3)
0.10:ITEM\_PEARSON\_RATING(R1,R2) \land
     RATED(R1, R3) \land SIM\_ADJCOS\_ITEMS(R2, R3)
     \rightarrow RATING(R1,R3)
0.11:SGD\_RATING(R1,R2) \land
    SIM\_COSINE\_ITEMS(R2, R3) \land RATED(R1, R3)
     \rightarrow RATING(R1, R3)
  0.10:SIM\_COSINE\_ITEMS(R2,R3) \land
       BPMF\_RATING(R1, R2) \wedge RATED(R1, R3)
        \rightarrow RATING(R1, R3)
  0.11:SIM\_COSINE\_ITEMS(R2, R3) \land
```

8 TIMING EXPERIMENT

We evaluate the runtimes for the proposed PPLL weight learning approach and the standard Maximum Likelihood Estimate (MLE) approach. Given a set of rules, PPLL compute the weights only once for each rule. The presence of other rules in the model does not affect the weight of a rule.

 $ITEM_PEARSON_RATING(R1, R2) \land RATED(R1, R3) \rightarrow RATING(R1, R3)$

Figure 1: **Runtime for weight learning**: Runtime increases exponentially for MLE but increases linearly for PPLL.

However, since MLE couples all the rules, we need to compute the weights for each subset of the rules and select the best model. Fig. 1 shows the runtimes in seconds for PPLL and MLE as the number of rules in the model increases from 1 to 5. We observe that the runtimes increase exponentially for MLE but increases linearly for PPLL. The decoupling of the rules in weight learning help scale our approach to models with larger sets of rules.