1 Ammissibilità del Flusso

$$T = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 3 & 5 \\ 4 & 6 \end{pmatrix}$$

$$x_T = \begin{pmatrix} 0 & 3 & 10 & 4 & 6 \end{pmatrix}$$

$$x = \begin{pmatrix} 0 & 5 & 3 & 0 & 0 & 10 & 4 & 0 & 6 & 0 \end{pmatrix}$$

$$\pi_T = \begin{pmatrix} 0 & 8 & 12 & 20 & 21 & 24 \end{pmatrix}$$

$$C_L^{\pi} = \begin{pmatrix} -9 \\ -12 \\ -5 \\ 5 \end{pmatrix}$$

$$C_U^{\pi} = -4$$

 x_T ammissibile degenere FLUSSO NON OTTIMO

 π_T NON ammissibile NON degenere

2 Primo passo del Simplesso

L'arco entrante per L vincente è $(p,q) = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ Verso ANTIORARIO $C^+ = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $C^- = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$ $\theta^+ = 5$ $\theta^- = 3$ $\theta = 3$ L'arco uscente è $(r,s) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ La nuova tripartizione è: $T = \begin{pmatrix} 1 & 3 & 3 & 4 & 2 \\ 2 & 4 & 5 & 6 & 4 \end{pmatrix}$ $L = \begin{pmatrix} 2 & 3 & 5 & 2 \\ 6 & 6 & 6 & 3 \end{pmatrix}$ $U = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ $x_{\text{finale}} = \begin{pmatrix} 0 & 5 & 0 & 3 & 0 & 7 & 4 & 0 & 6 & 0 \end{pmatrix}$

3 Cammini minimi:

4 Flusso Massimo con Ford-Falkerson

4.1

4.2

4.3

$$Q = 1 \quad p = \left(\begin{array}{ccccc} 0 & -1 & -1 & -1 & -1 & -1 \\ Q = 2 & p = \left(\begin{array}{cccccc} 0 & 1 & -1 & -1 & -1 & -1 \end{array} \right) \\ Q = \left(\begin{array}{cccccc} 3 & 4 \end{array} \right) \quad p = \left(\begin{array}{cccccc} 0 & 1 & 2 & 2 & -1 & -1 \end{array} \right) \\ \text{Cammino aumentante} = \left(\begin{array}{ccccc} 1 & 2 & 3 & 6 \end{array} \right) \\ \text{A aumentanti} = \left(\begin{array}{ccccc} 1 & 2 \\ 2 & 3 \\ 3 & 6 \end{array} \right) \quad Residui = \left(\begin{array}{ccccc} 1 \\ 11 \\ 3 \end{array} \right) \quad \delta = 1 \quad v = 17$$

4.4

$$Q = 1$$
 $p = (0 -1 -1 -1 -1 -1)$
 $Q = \emptyset$ $p = (0 -1 -1 -1 -1 -1)$
 $N_s = 1$ $N_t = (2 3 4 5 6)$

 $x = (12 \ 5 \ 1 \ 0 \ 11 \ 0 \ 0 \ 6 \ 0 \ 0)$