

Biological Assessment and Stressor Study

North Fork of the Spring River Barton, Dade, and Jasper Counties

2006 - 2007

Prepared for:

Missouri Department of Natural Resources
Division of Environmental Quality
Water Protection Program
Water Pollution Control Branch

Prepared by:

Missouri Department of Natural Resources Field Services Division Environmental Services Program Water Quality Monitoring Section

Table of Contents

			Page
1.0	Intro	duction	1
	1.1	Study Area/Justification	
	1.2	Purpose	
	1.3	Tasks	
	1.4	Null Hypotheses	
2.0		ods.	
2.0	2.1	Study Timing	
	2.2	Station Descriptions	
	2.2	2.2.1 MDNR Sampling Stations	
		2.2.2 MDC Sampling Stations	
	2.3	Aquatic Ecological Classification	
	2.5	2.3.1 Ecological Drainage Units	
		2.3.2 Aquatic Ecological Systems	
	2.4	Biological Assessment	
	2.4	2.4.1 Macroinvertebrate Collection and Analysis	
	2.5	Physicochemical Water Sample Collection and Analysis	
	2.5	2.5.1 Discharge	
	2.6	Benthic Sediment Sampling.	
	2.7	Sinuosity	
	2.8	Channel Measurements	
	2.9	Data Analysis and Quality Control	
3.0		lts	
5.0	3.1	Macroinvertebrate Biological Assessment	
	3.1	3.1.1 Detrended Correspondence Analysis	
		3.1.2 Macroinvertebrate Percent and Community Composition	1 2
		3.1.3 Semi-quantitative Macroinvertebrate Stream Bioassessment Project	
		Procedure (SMSBPP)	
	3.2	Physicochemical Water Sample Collection and Analysis	
	3.2	3.2.1 Summer Datalogger Data	
		3.2.2 Summer Dissolved Oxygen and Water Temperature Field	20
		Measurements	25
		3.2.3 Fall and Spring Physicochemical Water Samples	
		3.2.3.1 Quality Control	
		3.2.3.2 Discharge	
		3.2.3.3 Turbidity	
		3.2.3.4 Nutrients 3.2.3.4.1 Ammonia-N	
		3.2.3.4.2 Nitrate + Nitrite-N	
		3.2.3.4.4 Total Phageharana	
		3.2.3.4.4 Total Phosphorous	
	2.2	3.2.3.4.5 Dissolved Oxygen	
	3.3	Benthic Sediment	41

			Page
		3.3.1 Total Sediment	41
		3.3.2 Silt	
		3.3.3 Sand	
	3.4	Sinuosity	
	3.5	Channel Measurements	
	3.6	MDC RAM Data	
		3.6.1 Fish Community Biological Assessment	46
		3.6.2 Stream Habitat Measurements	51
		3.6.3 Water Quality	55
		3.6.3.1 Turbidity	55
		3.6.3.2 Nitrate + Nitrite	55
		3.6.3.3 Total Phosphorus	55
		3.6.3.4 Dissolved Oxygen	57
4.0	Discu	ssion	
	4.1	Fish and Macroinvertebrate Biological Assessment Comparison	
	4.2	Benthic Sediment Impacts on the MSCI Scores	
	4.3	Low Dissolved Oxygen Impacts on MSCI Scores	
	4.4	Other Water Quality Impacts on MSCI Scores	
	4.5	Macroinvertebrate Community Structure	
	4.6	Land Use and AES Type Effects on Benthic Sediment	
	4.7	Channel Morphology	
5.0		lusions	
6.0		mmendations	
7.0	Litera	ature Cited	67
		TABLES	
Table	1	Percent Land Cover	11
1 0010	-	2 4.4 4.4 2 4.4 4.4 4.4 4.4 4.4 4.4 4.4	
Table	2	Two-Tailed Spearman Rank Correlation Coefficient (p Value) Values Between DCA Axis 1, Biological Metrics, and Macroinvertebrate Gro	oups
		for Fall and Spring Sampling Seasons	19
Table	3	Biological Metric Values and Top Five Dominant Macroinvertebrate	
		Families at the NFSR Stressor Study Sampling Stations, Fall 2006	21
Table	4	Top Five Dominant Macroinvertebrate Taxa at the NFSR Stressor Stu Sampling Stations, Fall 2006	•
Table	5	Biological Metric Values and Top Five Dominant Macroinvertebrate Families at the NFSR Stressor Study Sampling Stations, Spring 2007.	23
		- 1 annues at the INTER Encesor Study Sampling Stations, Spring 2007.	∠೨

Table 6	Top Five Dominant Macroinvertebrate Taxa at the NFSR Stressor Study Sampling Stations, Spring 2007	24
Table 7	Fall 2006 Ozark/Osage EDU Transitional Area Stream Biological Criteria, Biological Support Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of the Spring River (NFSR) Stressor Study	25
Table 8	Fall 2006 Central Plains/Osage/South Grand EDU Biological Criteria, Biological Support Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of the Spring River (NFSR) Stressor Study	26
Table 9	Spring 2007 Ozark/Osage EDU Transitional Area Stream Biological Criter Biological Support Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of the Spring River (NFSR) Stressor Study	ia, 27
Table 10	Spring 2007 Central Plains/Osage/South Grand EDU Biological Criteria, Biological Support Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of the Spring River (NFSR) Stressor Study	28
Table 11	Dissolved Oxygen and Water Temperature Field Measurements Collected During Site Visits Prior to the Fall 2006 Macroinvertebrate Sampling Season, July-September, 2006	36
Table 12	Physicochemical Variables at the NFSR Stressor Study Sampling Stations, Fall 2006	39
Table 13	Physicochemical Variables at the NFSR Stressor Study Sampling Stations, Spring 2007	40
Table 14	Benthic Sediment Estimates (mm³) Using the Benthic Sediment Sampler, North Fork of the Spring River Stressor Study, Summer 2006	44
Table 15	Stream Channel Measurements Calculated for the North Fork of the Spring River Stressor Study, Summer 2006	; 45
Table 16	Counts and Percent Composition of Fish Species Found at the NFSR MDC RAM Sampling Stations	
Table 17	Missouri Fish Biological Criteria Calculated for the Ozark Ecoregion	48

		Page
Table 18	Missouri Fish IBI (MIBI) Values and Scores, Using Biological Criteria Calculated from the Reference Streams in the Ozark Ecoregion	49
Table 19	EMAP Fish IBI Values and Scores	50
Table 20	Stream Habitat Measurements Collected at the MDC RAM Sampling Stations	53
Table 21	Physicochemical Variables Collected at the MDC RAM Sampling Station	ons .56
Table 22	Biotic Index Criteria for EDUs Near the NFSR and Reference Streams (Cedar and Horse creeks) in the Transitional Area of the Ozark/Osage EDU	61
Figure 1	FIGURES Map of North Fork of the Spring River and Sampling Stations	9
Figure 2	Aquatic Ecological Systems (AES) Types for Cedar Creek, Horse Creek Little Drywood Creek, North Fork Spring River, and the Lower Spring River	
Figure 3	Detrended Correspondence Analysis (DCA) for the Fall (Top) and Sprir (Bottom) Sampling Seasons From Samples Collected at North Fork of the Spring River (NFSR) Test Stations and Reference Stations on Cedar (Collected (HC)), and Little Drywood Creeks (LDC). Both Riffle/Pool (RP) Glide/Pool (GP) Sampling Regimes Were Included in the Analysis at Natural Stations That Had Available Coarse (CS) Substrate	ne C), and FSR
Figure 4	Detrended Correspondence Analysis (DCA) for the Fall (Top) and Sprir (Bottom) Sampling Seasons From Samples Collected at North Fork of the Spring River (NFSR) Test Stations and Reference Stations on Cedar (Collected (HC)), and Little Drywood Creeks (LDC). Riffle/Pool (RP) Data NFSR #1 and Glide/Pool (GP) Data at the Other NFSR Test Stations Would used in the Analysis	ne C), at ere
Figure 5	Dissolved Oxygen and Water Temperature Datalogger Data Collected a NFSR #6 From July 31 to August 3, 2006	
Figure 6	Dissolved Oxygen Datalogger Data Collected at NFSR #6 From July 31 August 3, 2006	
Figure 7	Dissolved Oxygen and Water Temperature Datalogger Data Collected a NFSR #1 From August 7-10. 2006.	t 31

		Page
Figure 8	Dissolved Oxygen Datalogger Data Collected at NFSR #1 From August 7-10, 2006	31
Figure 9	Dissolved Oxygen and Water Temperature Datalogger Data Collected at NFSR #3 From August 7-10, 2006	
Figure 10	Dissolved Oxygen Datalogger Data Collected at NFSR #3 From August 7-10, 2006	32
Figure 11	Dissolved Oxygen and Water Temperature Datalogger Data Collected at NFSR #9 From August 28-31, 2006	
Figure 12	Dissolved Oxygen Datalogger Data Collected at NFSR #9 From August 28-31, 2006	33
Figure 13	Dissolved Oxygen and Water Temperature Datalogger Data Collected at Horse Creek #1 From August 28 to September 1, 2006	
Figure 14	Dissolved Oxygen Datalogger Data Collected at Horse Creek #1 From August 28 to September 1, 2006	34
Figure 15	Benthic Sediment Mean and Standard Deviation Values at North Fork of the Spring River Stressor Study Sampling Stations	
Appendix A	ATTACHMENTS Missouri Department of Natural Resources Dissolved Oxygen, Benthic Sediment, and Bioassessment Study Proposal. North Fork of the Spring Barton, Dade, and Jasper Counties, March 2, 2006	River
Appendix B	Detrended Correspondence Analysis (DCA) Comparing the Macroinvert Samples at the NFSR Test Stations to Macroinvertebrate Samples Collector Previously at Sampling Stations Located Within the Biological Criteria I Reaches of Cedar Creek, Horse Creek, and Little Drywood Creek. Both Sampling Regimes (R/P and G/P) Were Included in the Analysis at NFS Stations That All Four Habitats (CS, NF, SG, and RM) Were Collected.	eted Reference
Appendix C	Detrended Correspondence Analysis (DCA) Comparing the Macroinvert Samples at the NFSR Test Stations to Macroinvertebrate Samples Collector Previously at Sampling Stations Located Within the Biological Criteria Reaches of Cedar Creek, Horse Creek, and Little Drywood Creek. The It the NFSR Stations Was Limited to Riffle/Pool Data at NFSR #1 and Gli Data at the Other NFSR Stations.	eted Reference Data at

- Appendix D Dissolved Oxygen and Water Temperature Datalogger Data Collected at NFSR #1, NFSR #3, NFSR #6, NFSR #9, and Horse Creek #1 During the Summer of 2006
- Appendix E Statistical Analyses Comparing Benthic Sediment Between Sampling Stations.

 One-Way ANOVA, Square-root Transformed, and Student-Newman-Keuls

 Multiple Comparison Test Were Used to Test Differences in Total Benthic

 Sediment (Sand + Silt) and Silt. Kruskal-Wallis ANOVA on Ranks and Student-Newman-Keuls Multiple Comparison Test Were Used to Test Differences in

 Sand.
- Appendix F Statistical Analyses Comparing Channel Measurements Collected at the Sampling Stations. Kruskal-Wallis ANOVA on Ranks and Student-Newman-Keuls Multiple Comparison Test Were Used to Test Differences in Channel Width, Wetted Width, Channel Width to Wetted Width Ratio, and Water Depth. One-Way ANOVA, Log₁₀ Transformed, and Student-Newman-Keuls Multiple Comparison Test Were Used to Test Differences in Wetted Width to Water Depth Ratio.
- Appendix G North Fork of the Spring River Bioassessment Study Macroinvertebrate Bench Sheets

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 1 of 70

1.0 Introduction

At the request of the Missouri Department of Natural Resources (MDNR), Water Protection Program (WPP), Water Pollution Control Branch (WPCB), the Environmental Services Program (ESP), Water Quality Monitoring Section (WQMS) conducted a macroinvertebrate bioassessment and stressor study of the North Fork of the Spring River in Barton, Dade, and Jasper Counties. The study was performed on a 51.5 mile segment of the North Fork of the Spring River (NFSR) that flows from just upstream of Golden City to the approximate confluence of Dry Fork Creek located southeast of Jasper. Macroinvertebrates were collected at ten stations during the fall 2006 sampling season and nine stations during the spring 2007 sampling season. Benthic sediment, channel morphology measurements, and discrete water quality samples were collected at all sampling stations during the summer and fall of 2006. Dissolved oxygen/water temperature dataloggers were also deployed during the summer of 2006 at four stations to determine dissolved oxygen levels. Fish community samples and habitat measurements were collected by the Missouri Department of Conservation (MDC), Resource Assessment and Monitoring Program (RAM) at three stations within and one station just downstream of the NFSR segment during the summer of 2006. The MDC data is used with data collected by MDNR to assess the 303(d) listed segment of the NFSR.

1.1 Study Area/Justification

North Fork of the Spring River originates in western Dade County near the town of Golden City and is located within the Ozark/Neosho Ecological Drainage Unit (**EDU**). North Fork of the Spring River is listed in the Missouri Water Quality Standards (MDNR 2005a) as a class "C" stream for 51.5 miles (Waterbody ID #3188) and continues as a class "P" stream for 14.5 miles to its confluence with the Spring River in Jasper County. Designated uses for NFSR are "warm water aquatic life protection, human health/fish consumption and livestock and wildlife watering." The 51.5 mile, class C segment of the NFSR was placed on the 2002 303(d) list for elevated levels of sediment.

North Fork of the Spring River is a tributary of the Spring River system. This system flows through a southwestern Missouri geographical area that is transitional between ecoregions, having terrestrial features of both the Ozark and Central Plains Ecoregions (Chapman et al. 2002). A large portion of North Fork of the Spring River has a transitional nature and is characterized by long pools with short, rock and gravel riffles with surface geology of shale, sandstone, and limestone (Pflieger, 1989). Upstream of the town of Lamar the stream is transitional. Just downstream of the town of Lamar it changes to a glide/pool plains type stream, where it tends to have no riffles, bottom substrate made up of fine particle sizes, and abundant large woody debris. Just upstream of the town of Jasper the stream then changes back to a transitional stream where it has a wider channel, rock outcroppings, defined riffles, and more abundant coarse substrate.

A unique aspect to this study stems from the Ozark/Neosho EDU having no glide-pool reference streams. In fact, there are very few glide/pool streams in the Ozark/Neosho EDU and most are listed as impaired. To assess the NFSR support of aquatic life protection we utilized biological criteria calculated from riffle/pool reference streams in a transitional area of the Ozark/Osage

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 2 of 70

EDU and glide/pool reference streams in the Central Plains/Osage/South Grand EDU. Detrended Correspondence Analysis (**DCA**) was used to analyze the similarity of the macroinvertebrate communities of the NFSR sampling stations; Little Drywood Creek (**LDC**), a reference stream in the CentralPlains/Osage/South Grand EDU; and Horse and Cedar Creeks, two reference streams in a transitional area of the Ozark/Osage EDU. Macroinvertebrate communities from the NFSR test stations more similar to the community from the Ozark/Osage EDU were then compared to riffle/pool biological criteria for that EDU. Macroinvertebrate communities from the NFSR test stations more similar to the community from the Central Plains/Osage/South Grand EDU were compared to glide/pool biological criteria for that EDU.

Previous biological assessment studies determined a probable impairment to the NFSR macroinvertebrate community (MDNR 2004a and MDNR 2004b). The habitat assessments conducted on the lower NFSR in the fall of 2004 showed that benthic sediment could be a stressor in the glide/pool section that starts at Lamar and ends approximately at the Highway 126 Bridge crossing (Figure 1). The percentage of stream bottom covered by fine sediment was greater than 60 percent at three sampling stations. A Total Maximum Daily Load (TMDL) for the NFSR was completed by the United Stated Environmental Protection Agency, Region 7 (U.S. EPA 2006). The TMDL found that turbidity converted to total suspended solids (TSS) from water samples collected on the NFSR was elevated compared to TSS reference condition for the Ozark/Neosho EDU. Reference condition for the TMDL was determined by calculating the 25th percentile of all available data for the Ozark/Neosho EDU. Water quality data from the previous biological assessment studies and a wasteload allocation study on the Lamar WWTF (MDNR 2005b) showed that the NFSR tends to have low dissolved oxygen levels during low flow periods in the summer and early fall. These results indicate that sediment and/or low dissolved oxygen could be the stressors to the macroinvertebrate community.

1.2 Purpose

Determine if the macroinvertebrate community in the NFSR is still impaired. If macroinvertebrate community is impaired, a second objective is to determine what stressors are causing the impairment.

1.3 Tasks

- 1) Collect macroinvertebrate community data in the NFSR and use DCA to determine if the community is more similar to LDC, a reference stream in the Central Plains/Osage/South Grand EDU or to Cedar Creek and Horse Creek, two reference streams in a transitional area of the Ozark/Osage EDU. This will determine what biological criteria to use in determining impairment of the NFSR test stations.
- 2) Conduct a biological assessment of the macroinvertebrate community in the NFSR at ten test stations.
- 3) Measure the levels of the benthic sediment at the NFSR test stations, a biological criteria reference stream in the Central Plains/Osage/South Grand EDU, and two biological criteria reference streams in a transitional area of the Ozark/Osage EDU. This will determine if there

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 3 of 70

is a statistical difference between the sediment levels at the NFSR test stations and the reference streams by using one way Analysis of Variance or Kruskall-Wallis ANOVA and Student-Newman-Keuls multiple comparison test.

- 4) Collect stream width and depth measurements to determine possible habitat alterations caused by past stream channelization.
- 5) Deploy dataloggers during the summer months at some NFSR test stations and Horse Creek, a biological criteria reference stream, to determine if dissolved oxygen is consistently low and try to determine the temporal duration of the low dissolved oxygen levels. Compare the dissolved oxygen data collected by MDNR to data collected by the Environmental Resources Coalition (ERC) at LDC and Cedar Creek.
- 6) Conduct a water quality assessment at the sampling stations to determine potential water quality impacts.

1.4 Null Hypotheses

- 1) Benthic sediment, stream channel measurements, and dissolved oxygen of the NFSR test stations will not differ from the two biological criteria reference streams in a transitional area of the Ozark/Osage EDU and LDC, a biological criteria reference stream in the Central Plains/Osage/South Grand EDU.
- 2) Benthic sediment, stream channel measurements, and dissolved oxygen will not differ between longitudinally separate reaches of the NFSR.
- 3) The macroinvertebrate community in NFSR will not differ from the two biological reference streams in a transitional area of the Ozark/Osage Ecological Drainage Unit and/or LDC, a biological criteria reference stream in the Central Plains/Osage/South Grand EDU.
- 4) The macroinvertebrate community will not differ between longitudinally separate reaches of the NFSR.

2.0 Methods

Carl Wakefield, Mike Irwin, Randy Sarver, Dave Michaelson, and Brandy Bergthold of the Missouri Department of Natural Resources, Field Services Division, Environmental Services Program, Water Quality Monitoring Section conducted this study.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 4 of 70

2.1 Study Timing

Macroinvertebrate and discrete water quality samples were collected for one fall and one spring season. Fall sampling was conducted from September 25 to October 4, 2006 and spring sampling was conducted on March 19-20, 2007 and April 3-5, 2007. Dissolved oxygen/water temperature dataloggers were deployed at NFSR station #6 from July 31 to August 3, 2006; at NFSR stations #1 and #3 from August 7-10, 2006; and at NFSR station #9 and a reference station on Horse Creek from August 28 to September 1, 2006. Benthic sediment and stream channel measurements were collected at the NFSR test stations and biological criteria reference stations on August 28 to September 1, 2006, September 18, 2006, and September 25-26, 2006.

2.2 Station Descriptions

Ten test stations and four biological reference stations were sampled for this study. See Figure 1 for a map of the locations of the test stations. NFSR test station #4 and LDC #2 were sampled only during the fall 2006 sampling season. NFSR #4 was not sampled during the spring 2007 sampling season because of high water levels. LDC #2 was not sampled during the spring 2007 sampling season because of the extreme low water levels during the fall 2006 sampling season. Fish, habitat measurements, and water quality were collected at four stations within or just downstream of the segment on the NFSR during the summer of 2006 (Figure 1).

2.2.1 MDNR Sampling Stations

NFSR #1: Legal description was SE ¼, sec. 29, T. 30 N., R. 31 W. Geographic coordinates were latitude 37.313939 N. and longitude -94.362890 W. Station #1 was located upstream of Redbud Road in Jasper County. The station had better defined riffle/run segments with a much wider channel and shallower water depths than the other stations. There were rock outcroppings that lined part of the banks and coarse substrate was much more common in all habitats than at the other sampling stations.

NFSR #2: Legal description was SW ½, sec. 11, T. 30 N., R. 31 W. Geographic coordinates were latitude 37.356690 N. and longitude -94.315090 W. Station #2 was located upstream of SW 100th Road in Barton County. The station was transitional in nature in that it had some deep pools with a lot of woody debris and shallow run segments that had rock outcroppings along the bank. It was at this point that the stream was changing from a glide/pool stream to a riffle/pool stream.

NFSR #3: Legal description was SW ¼, sec. 26, T. 31 N., R. 31 W. Geographic coordinates were latitude 37.399540 N. and longitude -94.309820 W. Station #3 was located upstream of Highway 126 in Barton County. This was a glide/pool station that had a narrow channel with a high abundance of woody debris. Water depth was high in some of the pool habitat and the stream channel was well shaded for much of the sample reach.

NFSR #4: Legal description was SE ¼, sec. 14, T. 31 N., R. 31 W. Geographic coordinates were latitude 37.427719 N. and longitude -94.300911 W. Station #4 was located downstream of Highway 71 in Barton County. This station was similar in character to station #3, but generally had greater water depths. Water at this station was green from planktonic algae during late July

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 5 of 70

and early August 2006, but was no longer green when sediment and channel measurement were collected on August 31, 2006.

NFSR #5: Legal description was SE ¼, sec. 1, T. 31 N., R. 31 W. Geographic coordinates were latitude 37.456960 N. and longitude -94.281780 W. Station #5 was located upstream of SE 30th Road in Barton County. This station was a glide/pool station that was similar to stations #3 and #4, but had more benthic sediment and less riparian shading. Water at this station was green like station #4 in early August of 2006.

NFSR #6: Legal description was NW ½, sec. 24, T. 32 N., R. 31 W. Geographic coordinates were latitude 37.508148 N. and longitude -94.288228 W. Station #6 was located upstream of NE 5th Road in Barton County. This was a transitional station that had short riffle/run segments with very fine coarse substrate and pool habitat with some woody debris. The station had a narrow channel that pooled up substantially at the end of August 2006 when benthic sediment was collected.

NFSR #7: Legal description was NE ¼, sec. 22, T. 32 N., R. 30 W. Geographic coordinates were latitude 37.508850 N. and longitude -94.205973 W. Station #7 was located downstream of NE 50th Road in Barton County. This station had the characteristics of a riffle/pool stream with well defined riffle/run segments and a high abundance of coarse substrate covering the stream bottom. The riffle/run segments of the stream were dry during the summer and fall of 2006. This station was downstream of a low water bridge crossing that was acting like a dam since it was holding back water upstream of the crossing. The NFSR upstream of the crossing was pooled for many miles.

NFSR #8: Legal description was NE ¼, sec. 31, T. 32 N., R. 29 W. Geographic coordinates were latitude 37.482554 N. and longitude -94.157254 W. Station #8 was located upstream of SE 10th Road in Barton County. This station had two well defined riffle/run segments at the downstream end of the sampling reach that were dry during the summer and fall of 2006. The rest of the station was made up of a very long, deep, and wide pool that made up at least 2/3 of the sampling reach.

NFSR #9: Legal description was NE ¼, sec. 9, T. 31 N., R. 29 W. Geographic coordinates were latitude 37.452007 N. and longitude -94.123589 W. Station #9 was located upstream of SE 30th Road in Barton County. The station was very similar to station #8 except that it only had one well defined riffle/run segment and it had more short pools instead of a long pool like that present at station #8. This station was pooled during the summer and fall of 2006.

NFSR #10: Legal description was SW $\frac{1}{4}$, sec. 36, T. 31 N., R. 29 W. Geographic coordinates were latitude 37.378500 N. and longitude -94.077639 W. Station #10 was located upstream of SE 79^{th} Road in Dade County. The stream at this station was much smaller in size than stations #8 and #9. It had two well defined riffle/run segments that were dried up during the summer and fall of 2006. The pools at this station were fairly deep at some locations, but were not as wide or long as at stations #8 and #9.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 6 of 70

Cedar Creek #1: Legal description was NE ¼, sec. 8, T. 33 N., R. 27 W. Geographic coordinates were latitude 37.910861 N. and longitude -93.622944 W. This station was located downstream of Highway B in Cedar County. Water levels at this station were very low during the summer and fall of 2006. The stream was pooled during this time period and filamentous algae were very abundant in the pools. Cows had access to the creek, which was impacting the condition of the stream banks and possibly causing eutrophication of the water. This station was Ozark-like, having well defined riffle/run segments made up of coarse substrates along with some bedrock.

Horse Creek #1: Legal description was SW ¼, sec. 3, T. 34 N., R. 28 W. Geographic coordinates were latitude 37.72308 N. and longitude -93.99561 W. This station was located downstream of County Road 425 in Cedar County. The water levels at this station were extremely low during the summer and fall of 2006. There were large reaches of stream that were completely dry from August thru early October 2006. This stream station was transitional in nature, having characteristics of both Ozark and plains streams. The riffle/run segments were made up of large substrate with a high abundance of cobble and flat boulder sized rocks. The stream channel was more incised with taller banks than most Ozark streams.

LDC #1: Legal description was SE ¼, sec. 30, T. 35 N., R. 31 W. Geographic coordinates were latitude 37.785800 N. and longitude -94.390080 W. This station was located upstream of County Road 515 E in Vernon County. This glide/pool station was made up entirely of pool habitat except for a small turbulent segment located at the downstream edge of the sampling reach. The turbulent segment was formed from a bedrock outcropping. The station had a smaller channel width and shallower water depths than most of the NFSR test stations. The station had an abundant amount of woody debris and a low flow during the summer and fall of 2006.

LDC #2: Legal description was SE ¼, sec. 36, T. 34 N., R. 32 W. Geographic coordinates were latitude 37.65240 N. and longitude -94.38638 W. This station was located within the Bushwhacker Conservation Area downstream of NW 100th Road in Vernon County. This station was smaller than LDC #1 and was pooled during the summer and fall of 2006. No rootmat (RM) habitat was available to sample during the fall 2006 macroinvertebrate sampling season.

2.2.2 MDC Sampling Stations

NFSR Site Number 207-1327: Legal description was NW ¼, sec. 14, T. 31 N., R. 29 W. Geographic coordinates were latitude 37.4344 N. and longitude -94.0975 W. This station was located at the Highway 160 crossing north of the town of Golden City in Barton County. It was approximately 1.5 to 2 miles upstream of MDNR station NFSR #9.

NFSR Site Number 207-1171: Legal description was SE ½, sec. 30, T. 32 N., R. 29 W. Geographic coordinates were latitude 37.4846 N. and longitude -94.1596 W. This station was located downstream of SE 10th Road in Barton County. The station was located at the same road crossing as MDNR station NFSR #8, but was downstream of the road crossing instead of upstream of the road crossing.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 7 of 70

NFSR Site Number 207-1601: Legal description was NW ¼, sec. 14, T. 30 N., R. 31 W. Geographic coordinates were latitude 37.3543 N. and longitude -94.3127 W. This station was located downstream of SW 100th Road in Jasper County. The station was located at the same road crossing as MDNR station NFSR #2, but was downstream of the road crossing instead of upstream of the road crossing.

NFSR Site Number 207-1828: Legal description was NE ¼, sec. 1, T. 29 N., R. 32 W. Geographic coordinates were latitude 37.2932 N. and longitude -94.3686 W. This station was located downstream of Highway M and the confluence of Dry Fork Creek in Jasper County. The station was about 1.5 to 2 miles downstream of MDNR station NFSR #1.

2.3 Aquatic Ecological Classification

The aquatic ecological classification system developed by the Missouri Resource Assessment Partnership (MoRAP) divides the aquatic resources of Missouri into distinct regions. It has seven levels of hierarchical classification (Sowa et al., 2004), which in descending order are: zone, subzone, region, aquatic subregions, EDU, Aquatic Ecological Systems (AES), and Valley Segment types (VST). The levels of classification are based on biology, zoogeography, taxonomic composition, geology, soils, and groundwater connection. Some classification levels of the hierarchical system use geology and soils and other levels use biology and taxonomic composition of aquatic communities. Ecological Drainage Units and AES are the two hierarchical levels of the classification that are utilized in this study.

Reference is also made in this study to terrestrial based ecoregions (Chapman et al. 2002). Ecoregion boundaries are shown along with Ecological Drainage Unit boundaries in Figure 1. The terrestrial ecoregion boundaries are used as additional information to demonstrate the complex ecological nature of the NFSR system. The NFSR system is also an excellent example of a Missouri aquatic ecological area where a drainage boundary takes hierarchical precedence over terrestrial boundaries. Streams that are in this transitional area and drain to different EDUs have significant migration and evolutionary barriers to the aquatic biological community and cannot be expected to be comparable. The headwaters of the Spring River are separated from the headwaters of the Osage River by hundreds of river miles, yet only a few miles by land in some locations. For this reason it is necessary to use an aquatic based ecological classification system when performing stream biological assessments.

2.3.1 Ecological Drainage Units

The EDU is level five of the classification hierarchy and is based on geographical variation of the taxonomic composition of the level four subregions. An EDU is a region in which aquatic biological communities and habitat conditions can be expected to be similar. A map of the Ozark/Neosho EDU is inset in Figure 1. All of the NFSR sampling stations are within this EDU.

Table 2 compares the land cover percentages from the Ozark/Neosho EDU and the 14-digit Hydrologic Units (HU), which contain the NFSR test stations, the two biocriteria reference streams from a transitional area of the Ozark/Osage EDU, and LDC, a biocriteria reference stream in the Central Plains/Osage/South Grand EDU. Land cover data were derived from Thematic Mapper satellite images collected from 2000 to 2004 and interpreted by MoRAP. Cropland was the dominant percent land use of the NFSR watershed and was higher than the values for the entire Ozark/Neosho EDU and the 14-digit HU containing the biological criteria

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 8 of 70

reference stations. Grassland and forest were generally lower than the values for the entire Ozark/Neosho EDU and the biological criteria reference stations. The only exception was the HU that contained NFSR test stations #8 and #9. This HU had a similar percentage forest cover to the HU that contained the LDC reference stations, but much lower than the HU containing the other biological criteria reference stations and the entire Ozark/Neosho EDU (Table 1).

2.3.2 Aquatic Ecological Systems

The AES is level six of the classification hierarchy and is based on geology, soils, landform, and groundwater influence. AES with similar characteristics are grouped into AES types. Aquatic Ecological Systems types can appear to cross over EDU boundaries in transitional areas that have similar geology and soils. However, the drainage boundaries of the EDU are enforced in the hierarchical classification system.

The South Deepwater Creek AES type contains the watersheds of the NFSR, in the Ozark/Neosho EDU, and biological criteria reference stream LDC, in the Central Plains/Osage/South Grand EDU (Figure 2). The South Deepwater Creek AES type generally has local relief less than 100 feet and has soil surface textures made of primarily silt loams with very slow to moderate infiltration rates (Sowa and Diamond, 2006). Sandstone and shale are the dominant deposits in this AES type and these deposits impede downward water movement. Most of the water making up stream discharge in this AES type comes from surface flow since springs are not very abundant. The streams in this AES type have very low flows for even the larger watersheds because of the low infiltration rates and the lack of springs.

The Clear Creek AES type contains the watershed of Horse Creek, which is in the Ozark/Osage EDU (Figure 2). Local relief ranges from nearly zero to 200 feet, but most areas are between 50 to 100 feet. Bedrock geology is primarily Pennsylvanian limestone and the soil surface textures are made of silty loams and loams with moderate to sometimes very slow infiltration rates. Streams in the Clear Creek AES type have their highest flows in the spring and occasionally go nearly dry during dry periods in the summer and fall. Springs are not common, but groundwater is abundant and often saline.

The Moniteau Creek AES type contains the watersheds of Cedar Creek, in the Ozark/Osage EDU, and lower Spring River, in the Ozark/Neosho EDU (Figure 2). Local relief ranges from nearly zero to 200 feet. Bedrock consists primarily of Mississippian and Pennsylvanian cherty limestone. Karst features including sinkholes are scattered in this AES type. Surface soil textures are primarily loams or silt loams with slow to moderate infiltration rates and groundwater is abundant in the Moniteau Creek AES type.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 9 of 70

Figure 1
Map of North Fork of the Spring River (NFSR) and Sampling Stations

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 10 of 70

Figure 2
Aquatic Ecological Systems (AES) Types for Cedar Creek, Horse Creek, Little Drywood Creek, North Fork Spring River, and the Lower Spring River

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 11 of 70

Table 1 Percent Land Cover

			u Cover			
Land Cover	14-digit Hydrological Unit (HU)	Urban	Crops	Grassland	Forest	Wetland
Ozark/Neosho EDU	Multiple Hydrological Units	4	15	52	25	0
NFSR #1	11070207080003	3	35	50	7	2
NFSR #2-#4	11070207070004	2	53	32	6	3
NFSR #5-#7	11070207060004	7	46	31	5	6
NFSR #8-#9	11070207060003	1	38	42	12	4
NFSR #10	11070207060002	2	60	31	4	1
Cedar Creek #1	10290106090006	0	3	65	28	0
Horse Creek #1	10290106090005	0	4	56	33	4
L. Drywood Creek #1	10290104060002	2	22	54	12	7
L. Drywood Creek #2	10290104060001	1	27	50	13	6

2.4 Biological Assessment

Biological assessment consists of macroinvertebrate collection and physicochemical sampling for two sample periods.

2.4.1 Macroinvertebrate Collection and Analysis

A standardized macroinvertebrate sample collection and analysis procedure was followed as described in the Semi-quantitative Macroinvertebrate Stream Bioassessment Project Procedure

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 12 of 70

(SMSBPP) (2003a). The SMSBPP has separate sampling procedures for riffle/pool (RP) and glide/pool (GP) stream types. The three standard habitats collected at RP stream types are: flowing water over coarse substrate (CS); depositional substrate in non-flowing water (NF); and rootmat (RM). The three standard habitats collected at GP stream types are: NF, large woody debris (SG), and RM. At NFSR sampling stations that were in transitional stream reaches CS, NF, SG, and RM were collected so that both RP and GP metrics could be calculated. Sampling these four habitats is referred to in this document as a transitional stream type.

Macroinvertebrate data were analyzed using three methods. The first analysis used DCA, an ordination method, to determine if the macroinvertebrate community at the NFSR test stations were more similar to data collected at Little Drywood Creek, a glide/pool biological criteria reference stream in the Central Plains/Osage/South Grand EDU or more similar to data collected at Horse and Cedar Creeks, riffle/pool biological criteria reference streams in a transitional area of the Ozark/Osage EDU. This determined what biological criteria to use in assessing the NFSR test stations.

The second analysis of the biological data was an evaluation of macroinvertebrate community composition by percent composition of different macroinvertebrate groups. Comparisons of the NFSR macroinvertebrate community and biological criteria reference stations were made.

The third analysis calculated the Missouri Stream Condition Index (MSCI) for each macroinvertebrate sample using the four primary biological metrics found in the SMSBPP. The four primary metrics in the SMSBPP are: 1) Taxa Richness (TR); 2) Ephemeroptera/Plecoptera/Trichoptera Taxa (EPTT); 3) Biotic Index (BI); and 4) Shannon Diversity Index (SDI). The metric evaluations were done by comparing the NFSR sample stations on a seasonal basis to the biological criteria calculated from Cedar and Horse creeks, a transitional area of the Ozark/Osage EDU and/or the biological criteria for the Great Plains/Osage/South Grand EDU. Detrended Correspondence Analysis determines which biological criteria will be used. Test stations that ordinate closer to Little Drywood Creek data will be assessed using biological criteria for the Great Plains/Osage/South Grand EDU while stations that ordinate closer to the Cedar and Horse creeks data will be assessed using the Ozark/Osage EDU biological criteria calculated from the transitional area.

2.5 Physicochemical Water Sample Collection and Analysis

Physicochemical grab samples collected during the fall 2006 and spring 2007 sampling seasons were analyzed for the following variables: turbidity, ammonia-N, nitrate/nitrite-N, total nitrogen, chloride, and total phosphorus. Temperature, pH, conductivity, dissolved oxygen, and discharge were measured in the field. All grab samples were collected per MDNR-ESP-001:

Required/Recommended Containers, Volumes, Preservatives, Holding Times, and Special

Sampling Considerations (MDNR 2003b), were kept on ice until they were delivered to the ESP laboratory, and were recorded on a chain-of-custody per MDNR-ESP-002 (MDNR 2005c).

Results of water quality analyses were compared to Water Quality Standards (MDNR 2005a). NFSR is classified as a class "C" stream and a general warm-water fishery (**GWWF**) for the

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 13 of 70

study reach. Waters designated as GWWF "allow the maintenance of a wide variety of warmwater biota, including naturally reproducing recreationally important fish species". Criteria for the designated use of "Protection of Aquatic Life" are applicable as well as the rate of exposure, such as chronic or acute. This was important to determine limits for pollutants that could be tolerated by aquatic life over a period of time.

Results are shown from discrete physicochemical collections and analyses during each of the macroinvertebrate sampling periods in 2006 and 2007 (Tables 12 and 13). Data loggers were used to collect dissolved oxygen and water temperature every 15 minutes at four NFSR test stations and at Horse Creek #1. These results are shown in Figures 4 thru 8 and Appendix D.

2.5.1 Discharge

Stream flow was measured using a Marsh-McBirney Flow Meter at each station and discharge was calculated as cubic feet per second (**cfs**). Methodology was in accordance with the standard operating procedure MDNR-ESP-113, <u>Flow Measurement in Open Channels</u> (MDNR 2003c).

2.6 Benthic Sediment Sampling

Benthic sediment was sampled using a draft protocol as described in Attachment A, Appendix A of the NFSR stressor study plan. This method involved using a WQMS designed benthic plunger sampler to collect sediment at 10 evenly spaced transects at each of the ten NFSR test stations and the four biological criteria reference stations. The amount of sediment collected (cm³) was measured using settling tubes. Sediment estimates for silt, sand, and total sediment for each transect were determined. One-way Analysis of Variance (ANOVA), Kruskal-Wallis ANOVA on Ranks, and Student-Newman-Keuls Multiple Comparison tests were used to determine if the amount of sediment was significantly different between the sampling stations.

2.7 Sinuosity

Sinuosity was used as an indicator of historic channelization. Using the National Hydrography Dataset (**NHD**) and Arcmap[®] software, the sampling stations were placed in the approximate middle of a two-mile stream segment and sinuosity was measured by calculating the ratio of the stream length distance divided by the straight-line distance. Values close to 1.0 are very straight stream reaches, which indicate potential channelization.

2.8 Channel Measurements

The lack of instream habitat can be observed in many channelized streams in Missouri. Channelized streams that are wide and shallow tend to have less ability to retain pools and woody debris (Haithcoat et al. 2003). At each sampling station, a series of 10 bank-to-bank transects were established. Each transect was equally spaced within the sampling reach, which is 20x the average width. Measurements taken at each transect included lower bank width, wetted width, and water depth at ½, ½, and ¾ of the distance across the wetted width. To document critical habitat conditions, measurements were collected during the summer low flow period at the same time that the benthic sediment was collected.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 14 of 70

2.9 Data Analysis and Quality Control

Areas of data analyses important to this study include biological community, physicochemical water chemistry, benthic sediment quantities, stream sinuosity measurements, and stream channel measurements.

Detrended Correspondence Analysis was used to ordinate macroinvertebrate samples to determine what biological criteria will be used. Biological impairment will be determined by calculating the MSCI.

One-way Analysis of Variance, Kruskal-Wallis ANOVA on Ranks, and Student-Newman-Keuls Multiple Comparison tests were used to determine if the amount of benthic sediment was significantly different between sampling stations. A one-way Analysis of Variance or Kruskal-Wallis ANOVA on Ranks was performed to find possible differences in channel metrics calculated from the channel measurements between sampling stations.

The physicochemical data were examined by variable to identify stations that had violations of the Missouri Water Quality Standards (MDNR 2005a). Sampling stations that had values that were higher or lower than the water quality standards will be discussed with possible influences being identified.

Quality control was used as stated in the various MDNR Project Procedures and Standard Operating Procedures. Duplicate samples at sample station #4 during the fall 2006 sampling season and station #9 in the spring 2007 sampling season were collected and analyzed for macroinvertebrate and physicochemical parameters. A random number of processed macroinvertebrate collections were rechecked for missed specimens.

3.0 Results

3.1 Macroinvertebrate Biological Assessment

3.1.1 Detrended Correspondence Analysis

Detrended Correspondence Analysis was conducted to determine if the macroinvertebrate community at the NFSR test stations were more similar to the community at LDC, a biological criteria reference stream in the Central Plains/Osage/South Grand EDU or more similar to the community at Horse and Cedar creeks, biological criteria reference streams in a transitional area of the Ozark/Osage EDU (Figure 3 and Appendix B). North Fork of the Spring River #1 was sampled as a transitional stream type, NFSR #2-#5 were sampled as GP stream types, NFSR #6-#10 were sampled as transitional stream types, Cedar and Horse creeks were sampled as RP stream types, and LDC was sampled as a GP stream type. Transitional stream types include both RP and GP stream type community data for ordination.

Axis 1 of the DCA for the fall sampling season accounted for most of the variation, having an eigen value of 0.46 and axis 2 an eigen value of 0.19. Axis 1 of the DCA during the spring

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 15 of 70

sampling season did not account for as much of the variation as the fall sampling season with eigen values of 0.31 for axis 1 and 0.23 for axis 2.

The results of the ordination for both sampling seasons showed that the macroinvertebrate data from the transitional stream types were similar to each other at the NFSR test stations, except test station #1. The ordination for both sampling seasons also showed that the macroinvertebrate communities at NFSR test stations #2-#10 were more similar to most of the samples collected at LDC than samples collected at Cedar and Horse creeks. The ordination results for NFSR test station #1 showed that it had a macroinvertebrate community that was different from the other test stations and it tended to ordinate closer to the RP samples collected at Cedar and Horse creeks. It was determined from these results that NFSR #1 would be assessed as an RP stream type using biological criteria collected at Cedar and Horse creeks and the rest of the test stations would be assessed as GP stream types using biological criteria from the Central Plains/Osage/South Grand EDU.

Next, a simplified second ordination was performed (Figure 4 and Appendix C). This ordination used only RP data for NFSR #1, Cedar Creek, and Horse Creek and GP data at the other NFSR stations and LDC. Spearman rank correlation between DCA axis #1, biological metrics, and dominant macroinvertebrate taxa percentages were conducted to determine what was driving the ordination (Table 2). The eigen values for axis 1 during both sampling seasons were slightly higher than the original ordination that included both sampling regimes for the NFSR samples. The eigen values for the fall sampling season were 0.47 for axis 1 and 0.20 for axis 2. The eigen values for the spring sampling season were 0.34 for axis 1 and 0.19 for axis 2.

With a few exceptions, both DCA analyses showed that most of the NFSR samples ordinated closer to most LDC samples. The first exception was that three LDC samples during the fall sampling season and four during the spring sampling season ordinated closer to most of the Cedar and Horse creek samples than the other LDC and NFSR samples. The second exception was that Cedar and Horse creek samples collected during this study ordinated closer to NFSR stations #2-#10 and most of the LDC samples than Cedar and Horse samples collected in earlier years. This was most likely caused by very low water levels at Cedar and Horse creeks during the summer and fall of 2006. Both streams were pooled for months during this time period and no coarse substrate for macroinvertebrates was collected during the fall 2006 sampling season. The coarse substrate was sampled during the spring 2007 sampling season, but the macroinvertebrate community most likely had not recovered from the drought conditions of the previous year. The third exception, which was more strongly evident in the first ordination, showed that NFSR #5, during the spring 2007 sampling season, had a different macroinvertebrate community compared to the other sampling stations.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 16 of 70

Figure 3

Detrended Correspondence Analysis (DCA) for the Fall (Top) and Spring (Bottom) Sampling Seasons From Samples Collected at North Fork of the Spring River (NFSR) Test Stations and Reference Stations on Cedar (CC), Horse (HC), and Little Drywood Creeks (LDC). Both Riffle/Pool (RP) and Glide/Pool (GP) Sampling Regimes Were Included in the Analysis at NFSR Test Stations That Had Available Coarse (CS) Substrate.

Detrended Correspondence Analysis (DCA) for the Fall (Top) and Spring (Bottom) Sampling Seasons From Samples Collected at North Fork of the Spring River (NFSR) Test Stations and the Analysis. (RP) Data at NFSR #1 and Glide/Pool (GP) Data at the Other NFSR Test Stations Were Used in Reference Stations on Cedar (CC), Horse (HC), and Little Drywood Creeks (LDC). Riffle/Pool Figure 4

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 18 of 70

Spearman rank correlation comparing DCA axis 1 to the four primary biological metrics and macroinvertebrate groups was done to determine differences in macroinvertebrate community structure and function between the NFSR test stations and samples collected at the biological criteria reference stations (Table 2). Horse Creek, Cedar Creek, and the LDC samples that ordinated on the right side of axis 1 had a higher abundance and diversity of intolerant EPT taxa and lower abundance of tolerant Chironomidae and Tubificidae taxa. During the fall sampling season the three LDC samples (950888, 950889, and 0010124) that ordinated near Horse and Cedar Creeks had a higher abundance of EPT taxa (especially Heptageniide taxa and *Stenacron*) and lower abundance of Chironomidae taxa *Dicrotendipes* and *Glyptotendipes*. During the spring sampling season the four LDC samples (950851, 950852, 982810, and 982811) that ordinated closer to Horse Creek and Cedar Creek had higher abundance and diversity of EPT taxa and Simulidae and less abundance of Physidae and Chironomidae taxa *Hydrobaenus* and *Cricotopus/Orthocladius* group. These general differences in macroinvertebrate community structure most likely caused the three LDC samples during the fall sampling season and the four samples during the spring sampling season to ordinate closer to Horse Creek and Cedar Creek.

3.1.2 Macroinvertebrate Percent and Community Composition

Percent EPTT, percent Ephemeroptera, percent Plecoptera, percent Trichoptera, percent composition for the functional feeding groups, percent clingers, and percent composition of the five dominant macroinvertebrate families and taxa at each station are presented in Tables 3 through 6. Values in the tables in bold type represent the five dominant macroinvertebrate families and taxa for each station.

During the fall 2006 sampling season, North Fork of the Spring River test stations #4a, #4b, #5, and #10 had a lower percentage of EPTT, scrapers, and clingers than the other NFSR test stations and all of the biological criteria reference stations, except Cedar Creek #1 (Table 3). *Caenis latipennis* was the only abundant EPTT found in the samples from the NFSR test stations (Table 5). *Stenacron*, a Heptageniide mayfly, was common in the LDC samples, but was found in low abundances in the other samples. Percent shredders were much higher at NFSR test stations #2, #4a, #4b, and #5 and were primarily caused by the high abundance of the tolerant taxa *Glyptotendipes* in the SG habitat.

Chironomidae and Tubificidae were very abundant at all stations during the fall 2006 sampling season. *Glyptotendipes* and *Dicrotendipes* were the most common Chironomidae taxa at most stations. Other Chironomidae taxa like *Goeldochironomus*, *Kiefferulus*, and *Procladius* were common at some stations. The Tubificidae taxa *Quistradrilus multisetosus* was common at the lower NFSR test stations while *Branchiuria sowerbyi* was common at the upper NFSR test stations. *Hyalella azteca* was abundant at Cedar Creek, Horse Creek, and most of the NFSR test stations. Test station #1 was assessed as an RP stream type and had three taxa, Corixidae, *Polypedilum convictum*, and *Stenelmis*, that had higher abundances than the other test stations. *Polypedilum convictum* and *Stenelmis* are primarily collected in CS habitat and are not commonly collected in habitats sampled in GP streams.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 19 of 70

Table 2
Two-Tailed Spearman Rank Correlation Coefficient (p Value) Values Between DCA Axis 1,
Biological Metrics, and Macroinvertebrate Groups for Fall and Spring Sampling Seasons

	DCA Axis 1 (Fall)	DCA Axis 1 (Spring)
Biological Metrics		
Taxa Richness	0.33 (0.09)	0.35 (0.09)
EPT Taxa	0.77 (0.00)	0.82 (0.00)
Biotic Index	-0.78 (0.00)	-0.86 (0.00)
Shannon Diversity Index	0.55 (0.00)	0.75 (0.00)
Percent Macroinvertebrate		
Groups		
Clingers	0.80 (0.00)	0.89 (0.00)
EPT	0.68 (0.00)	0.86 (0.00)
Ephemeroptera	0.62 (0.00)	0.72 (0.00)
Plecoptera	-	0.79 (0.00)
Trichoptera	0.74 (0.00)	0.78 (0.00)
Heptageniidae	0.67 (0.00)	0.76 (0.00)
Stenacron	0.61 (0.00)	0.46 (0.02)
Caenidae	0.12 (0.55)	0.47 (0.02)
Leptophlebiidae	0.47 (0.01)	0.63 (0.00)
Perlidae	-	0.70 (0.00)
Perlodidae	-	0.72 (0.00)
Hydropsychidae	0.71 (0.00)	0.64 (0.00)
Elmidae	0.61 (0.00)	0.58 (0.00)
Chironomidae	-0.30 (0.12)	-0.41 (0.04)
Glyptotendipes	-0.86 (0.00)	-0.27 (0.20)
Dicrotendipes	-0.40 (0.03)	-0.45 (0.03)
Polypedilum Convictum	0.52 (0.00)	0.73 (0.00)
Hydrobaenus	-0.35 (0.07)	-0.42 (0.04)
Cricotpous/Orthocladius Group	0.58 (0.00)	-0.26 (0.21)
Simulidae	0.40 (0.04)	0.42 (0.04)
Tubificidae	-0.64 (0.00)	-0.28 (0.18)
Hyalellidae	0.26 (0.19)	0.55 (0.00)
Physidae	-0.28 (0.15)	-0.68 (0.00)

Values in Bold are Significant at p < 0.05.

During the spring 2007 sampling season percent EPTT were low at most stations. Percent scrapers were higher at the upper NFSR stations (Tables 5 and 6) and were composed predominately of the tolerant taxa *Hydrobaenus* and *Physella*. Percent EPTT were higher at the other NFSR test stations, but were dominated by the taxa *Caenis latipennis*. Little Drywood Creek #1 and all of the NFSR test stations except stations #1 and #7 had low values for percent clingers compared to Cedar and Horse creeks. Elmidae and *Paratendipes* made up most of the

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 20 of 70

clingers at test station #1 while *Simulium* made up most of the clingers at test station #7. *Isoperla* and some Elmidae made up most of the clingers at Cedar Creek while *Perlesta*, *Simulium*, and Elmidae made up most of the clingers at Horse Creek.

Chironomidae were the most abundant family found in all of the NFSR test stations during the spring 2007 sampling season, ranging from 38.4 percent at station #2 to 65.5 percent at station #9a (Table 5). *Cricotopus/Orthocladius* group and *Hydrobaenus* were very abundant at most of the NFSR test stations (Table 6). *Hydrobaenus* tended to be more abundant at the upper test stations while *Cricotopus/Orthocladius* group was abundant at all of the stations, except station #5. The *Eukiefferiella brevicalicar* group was abundant at Cedar Creek, Horse Creek, and the upper NFSR test stations. Tubificidae worms also made up a significant portion of the samples ranging from 3.4 percent at test station #6 to 20.8 percent at test station #10. *Physella* made up a significant portion at half of the NFSR test stations and LDC #1, ranging from 5.1 percent at test station #9a to 15.7 percent at test station #8. Detrended Correspondence Analysis showed that test station #5 had a distinctively different macroinvertebrate community than the other test stations and was dominated by *Dicrotendipes, Glyptotendipes, Procladius*, and Planaridae (Figures 2 and 3; Table 6).

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 21 of 70

Table 3
Biological Metric Values and Top Five Dominant Macroinvertebrate Families at the NFSR Stressor Study Sampling Stations
Fall 2006

Variable-Station	NFSR	Cedar	Horse	LDC	LDC										
	#1	#2	#3	#4a	#4b	#5	#6	#7	#8	#9	#10	Ck. #1	Ck. #1	#1	#2
Biological Metrics															
% EPTT	8.1	15.1	5.6	2.4	2.4	1.5	15.7	18.4	7.1	9.1	0.9	0.8	12.1	12.3	5.8
% Ephemeroptera	7.2	15.1	4.6	2.3	2.3	1.5	15.3	16.3	7.0	9.1	0.9	0.8	12.0	11.9	5.8
% Plecoptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
% Trichoptera	0.9	0	1.0	0.1	0.1	0	0.5	2.1	0.1	0	0	0	0.1	0.4	0
% Scrapers	12.8	1.5	4.6	0.6	0.8	0.9	12.6	8.0	7.1	7.6	6.0	5.1	4.3	13.1	5.6
% Shredders	16.1	28.3	6.8	33.9	32.8	36.3	8.0	20.0	22.0	10.8	9.3	6.5	3.0	23.2	25.9
% Collectors	53.9	60.7	64.2	50.8	54.7	40.0	59.3	55.3	48.4	64.3	66.5	72.0	72.4	35.4	27.6
% Filters	2.0	1.1	0.9	0.2	0.5	1.4	2.1	1.6	2.6	2.4	9.6	1.3	0.3	1.7	0.8
% Predators	15.9	8.4	22.5	14.3	11.4	21.7	18.5	16.0	21.1	16.0	8.5	15.5	20.4	27.7	39.9
% Clingers	15.9	2.3	3.3	0.8	0.3	0.2	9.7	2.6	1.8	3.4	0.7	0.3	7.3	10.1	6.0
% Dominant Families															
Chironomidae	23.3	50.8	30.7	40.5	39.6	49.3	37.3	33.0	59.6	49.6	40.0	34.4	23.3	42.8	62.0
Tubificidae	21.1	13.6	10.2	26.2	30.8	10.1	9.2	16.4	11.5	18.3	34.3	21.4	22.3	15.7	6.6
Elmidae	14.0	0.7	0.1	0.3	0.3	0.1	5.6	1.0	0.8	2.0	0.5	0.3	7.0	0.8	0.7
Hyalellidae	12.0	9.7	28.5	8.8	9.4	18.7	8.3	4.8	0	0.1	0	19.5	15.1	3.7	1.2
Corixidae	7.4	1.2	1.1	0.2	0.5	1.1	0.1	0	0.6	0.5	0.1	0.3	0	2.2	0.2
Caenidae	5.7	12.3	1.1	2.3	2.2	1.3	11.0	14.9	6.2	7.7	0.9	0.3	10.8	0.6	0.7
Scirtidae	1.0	2.1	1.5	7.5	6.1	1.9	1.7	3.4	1.0	0.6	1.2	2.7	0.3	0.6	0.2
Chaoboride	0.1	0.6	12.6	3.3	1.3	6.2	1.5	2.2	2.6	1.5	0.1	2.5	2.5	4.0	13.4
Heptageniidae	0.9	1.0	2.4	0	0	0.1	3.9	1.0	0.6	1.2	0	0	0.1	9.0	4.8
Ceratopogonidae	0.6	0.5	1.4	5.7	2.6	2.2	0.8	3.3	0.5	0.8	3.5	3.2	0.9	1.8	1.0
Arachnoidea	1.2	0.5	2.3	1.3	2.3	1.0	1.2	1.2	3.2	2.0	0.5	0.8	5.0	6.3	6.3
Physidae	1.0	0.1	0.9	0	0.3	0.7	3.5	3.0	2.6	1.2	2.0	3.7	0.7	2.3	0.2
Planorbidae	1.3	0.1	0.9	0.2	0.2	0	2.9	2.1	2.6	2.4	0.8	1.2	2.8	0.7	0.3
Planariidae	0.1	0.5	0.4	0	1.4	1.6	0	0.9	0.9	3.2	0.1	3.5	1.5	1.0	0
Sphaeridae	1.2	0.2	0.1	0.2	0.2	0	2.0	0.9	2.1	1.1	8.0	1.3	0.1	0	0.7

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 22 of 70

Table 4
Top Five Dominant Macroinvertebrate Taxa at the NFSR Stressor Study Sampling Stations, Fall 2006

			iaiii iviac													
Variable-Station	Biotic	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	Cedar	Horse	LDC	LDC
	Index	#1	#2	#3	#4a	#4b	#5	#6	#7	#8	#9	#10	Ck. #1	Ck. #1	#1	#2
% Dominant																
Taxa																
Tubificidae	9.2	13.3	6.1	5.2	3.0	5.6	5.1	4.4	8.9	5.4	8.2	20.4	18.0	18.4	11.4	6.3
Hyalella azteca	7.9	12.0	9.7	28.5	8.8	9.4	18.7	8.3	4.8	0	0.1	0	19.5	15.1	3.7	1.2
P. convictum	5.3	8.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stenelmis	5.4	8.2	0.1	0	0	0	0	0.2	0	0	0.7	0.4	0	0	0	0
Corixidae	6.0	6.7	1.2	1.1	0.2	0.5	1.0	0.1	0	0.6	0.5	0.1	0.3	0	2.2	0.2
Glyptotendipes	8.5	2.6	23.0	3.0	18.9	21.9	33.7	4.9	14.8	21.0	9.0	7.8	3.5	1.8	21.5	24.6
Caenis latipennis	7.6	5.7	12.3	1.1	2.3	2.2	1.3	11.0	14.9	6.2	7.7	0.9	0.3	10.8	0.6	0.7
Tanytarsus	6.7	3.6	10.1	2.5	2.4	2.0	3.9	2.3	2.7	0.6	3.3	0.7	5.2	1.8	1.4	0.2
Dicrotendipes	7.9	1.4	7.2	11.2	4.3	5.1	1.7	8.4	7.3	16.2	18.9	6.6	7.2	0.7	3.7	8.5
Chaoborus	8.5	0.1	0.6	12.6	3.3	1.3	6.2	1.5	2.2	2.6	1.5	0.1	2.5	2.5	4.0	13.5
Tribelos	6.6	0.1	0.7	6.5	0.4	0.1	0.2	1.5	0	1.2	1.4	0	0	0.4	0.8	3.2
Aulodrilus	8.0	1.7	2.2	2.1	10.7	17.5	1.7	0.9	0.7	0.1	0.1	0	0	1.9	0	0
Quistradrilus	10.0	4.2	4.3	1.0	10.2	5.5	1.0	0.2	0.3	0	0	0	0.9	0.9	0	0
Scirtidae	5.0	1.0	2.1	1.5	7.5	6.1	1.9	1.7	3.4	1.0	0.6	1.2	2.7	0.3	0.6	0.2
Procladius	9.3	0.3	1.0	2.1	1.7	1.9	3.9	5.6	0.8	5.1	2.8	0.3	1.3	4.3	9.8	16.3
Kiefferulus	10.0	0.3	1.2	0	2.2	1.6	0.3	6.9	0.8	7.5	6.5	9.1	1.6	8.4	1.4	3.7
Branchiuria	8.4	0	0	0.2	0.5	0.5	0.6	1.8	5.5	4.6	9.2	10.7	1.5	4.3	1.7	0
Goeldochironomus	9.0	0	0.3	0	0.2	0.2	0.2	0.3	0.6	0	0.1	9.6	3.9	0.1	0	0
Sphaeridae	7.3	1.2	0.2	0.2	0.2	0.2	0.1	2.0	1.0	2.1	1.1	8.0	1.3	0.3	1.1	0.7
Stenacron	7.1	0.6	0.9	2.4	0	0	0.1	2.9	0.8	0.6	0.5	0	0	0.1	8.8	4.8
Acarina	5.7	1.2	0.5	2.3	1.3	2.3	1.0	1.2	1.2	3.2	2.0	0.5	0.8	5.0	6.3	6.3
Dubiraphia	6.4	5.8	0.6	0.1	0.3	0.3	0.1	5.4	0.9	0.8	0.7	0.1	0.3	6.4	0.8	0.7
Chironomus	9.8	0.1	0	0	0.8	0.6	0.5	0.1	0.3	0.5	1.7	3.4	8.7	2.1	0.8	1.5

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 23 of 70

Table 5
Biological Metric Values and Top Five Dominant Macroinvertebrate Families at the NFSR Stressor Study Sampling Stations
Spring 2007

Spring 2007													
Variable-Station	NFSR	Cedar	Horse	LDC									
	#1	#2	#3	#5	#6	#7	#8	#9a	#9b	#10	Ck. #1	Ck. #1	#1
Biological Metrics													
% EPTT	4.6	6.3	8.0	4.0	10.8	6.5	1.0	1.6	1.6	0.4	5.7	5.8	3.6
% Ephemeroptera	3.8	6.0	7.6	3.8	10.6	6.2	0.8	1.4	1.1	0.4	0.6	2.2	3.4
% Plecoptera	0.1	0.2	0	0	0.1	0.1	0	0.1	0.2	0	5.1	3.0	0
% Trichoptera	0.7	0.2	0.4	0.2	0.1	0.2	0.1	0.1	0.2	0	0.1	0.6	0.3
% Scrapers	9.9	27.0	6.3	5.0	12.8	21.8	42.9	28.6	37.2	29.0	22.2	14.2	15.9
% Shredders	33.5	10.0	31.6	30.3	34.8	21.4	10.7	27.2	23.2	27.9	21.7	11.1	11.8
% Collectors	42.9	52.6	50.9	45.4	36.0	42.8	36.1	32.1	28.9	33.0	38.4	54.9	60.5
% Filters	1.2	1.4	4.7	1.2	1.4	7.3	2.1	3.4	3.8	2.8	1.5	8.3	1.2
% Predators	13.3	8.2	6.3	19.0	16.1	4.8	7.8	8.6	6.8	7.0	23.3	11.8	9.1
% Clingers	10.3	1.6	4.8	0.3	2.6	7.2	1.9	3.0	3.9	0	6.2	12.7	1.1
% Dominant Families													
Chironomidae	60.4	38.4	40.0	56.5	62.3	52.4	41.9	65.5	60.8	63.8	57.7	55.5	20.0
Tubificidae	14.1	14.0	16.9	12.2	3.4	9.8	21.0	11.3	15.2	20.8	12.6	14.0	11.1
Hyalellidae	5.3	7.2	9.0	3.6	5.1	0.4	0	0	0	0.6	4.7	0.3	1.2
Elmidae	4.8	0.2	0	0	0.7	0.1	0.4	0.5	0.1	0	0.9	1.9	0.2
Caenidae	3.6	5.9	6.8	3.8	10.0	6.2	0.8	1.3	1.1	0.4	0.2	2.2	2.7
Asellidae	0.2	15.6	8.2	4.3	4.4	3.7	4.2	0.8	1.6	0.4	0.5	1.9	35.6
Physidae	0.4	9.2	2.8	1.2	1.4	11.6	15.7	5.1	9.2	0.8	1.7	0.3	11.3
Planariidae	0	0.3	0	8.6	0	0.3	0.1	1.4	0.3	0	0.2	0	0
Ceratopogonidae	1.9	2.6	2.2	3.4	6.5	1.4	2.9	2.6	2.3	4.8	2.9	1.3	2.1
Hydrobiidae	1.5	0	0.1	0.3	0.4	0.5	3.7	0.7	0.5	0.2	0	0.6	1.9
Arachnoidea	1.3	1.0	0.6	0.9	1.0	0.1	1.1	2.7	1.0	0.8	1.6	0.8	0.2
Sphaeridae	0.6	0.3	0.3	1.2	0.8	0.2	0.8	1.1	0.6	2.7	1.0	1.5	0.9
Dytiscidae	0.7	0.4	0.2	0	0	0.2	1.0	1.3	1.3	1.0	5.6	0.5	3.6
Perlodidae	0.1	0	0	0	0	0	0	0.1	0	0	4.7	0.2	0
Simulidae	0.3	1.0	4.4	0.1	0.5	6.9	1.2	2.3	3.0	0	0.5	6.8	0.4
Enchytraeidae	0.4	0	4.0	0.4	0.2	0.2	1.5	0.4	0	2.3	1.3	4.6	1.2
Perlidae	0	0.2	0	0	0.1	0.1	0	0	0.2	0	0	2.7	0

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 24 of 70

Table 6
Top Five Dominant Macroinvertebrate Taxa at the NFSR Stressor Study Sampling Stations, Spring 2007

Top Tive Boi												111g 2007		IDC
Variable-Station	Biotic	NFSR	Cedar	Horse	LDC									
	Index	#1	#2	#3	#5	#6	#7	#8	#9a	#9b	#10	Ck. #1	Ck. #1	#1
% Dominant Taxa														
Cricotopus/Orthocladius Group	6.5	12.8	9.1	30.7	2.9	30.3	19.9	9.7	25.4	22.0	25.7	18.8	9.7	9.1
Polypedilum scaleanum Group	8.7	9.2	0	0	0.4	0	0	0	0	0	0	0	0	0.5
Tanytarsus	6.7	6.8	1.4	1.0	0.3	0.6	0.5	0.8	0.7	0.9	0.1	0.7	1.5	0.7
Tubificidae	9.2	6.7	12.2	10.2	6.0	2.1	8.9	16.1	7.7	13.1	10.7	8.2	11.8	8.0
Polypedilum convictum Group	5.3	6.3	0	0	0	0	0	0	0	0	0	0	0	0
Hydrobaenus	9.6	3.9	16.9	2.5	2.2	9.9	9.0	22.7	21.9	26.4	27.7	19.0	11.4	1.5
Lirceus	7.7	0.2	15.6	8.2	4.3	4.4	3.7	4.2	0.8	1.6	0.3	0.6	1.9	35.6
Physella	9.1	0.4	9.2	2.8	1.2	1.4	11.6	15.7	5.1	9.2	0.8	1.7	0.3	11.3
Hyalella azteca	7.9	5.3	7.2	9.0	3.6	5.1	0.4	0	0	0	0.6	4.7	0.3	1.2
Caenis latipennis	7.6	3.6	5.9	6.8	3.8	10.0	6.2	0.8	1.3	1.2	0.4	0.2	2.2	2.7
Glyptotendipes	8.5	1.3	0.4	0.3	22.9	0.4	1.0	0.2	1.6	0.6	2.1	1.1	0.5	1.8
Procladius	9.3	5.6	0.8	0.8	11.4	5.8	0	0.6	0.1	0	0.5	5.8	4.5	1.8
Planariidae	7.5	0	0.3	0	8.6	0	0.3	0.1	1.4	0.3	0	0.2	0	0
Dicrotendipes	7.9	1.5	1.6	1.3	8.4	4.1	5.8	1.3	5.3	1.5	3.4	0	0.7	1.0
Ceratopogoninae	6.0	1.9	0	2.2	3.3	6.5	1.4	2.9	2.1	2.1	3.8	2.9	1.3	2.1
Eukiefferiella brevicalicar Group	4.0	1.0	1.0	1.5	0.2	1.9	10.4	2.8	8.4	6.8	0	6.5	16.6	1.8
Illyodrilus templetoni	9.4	1.5	0	1.0	3.0	0	0	0.6	0.4	0	4.6	0	0.1	0.7
Neoporus	8.9	0	0	0	0	0	0	1.0	0	0	0.7	5.6	0.5	3.6
Simulium	4.4	0.3	1.0	4.4	0.1	0	6.9	1.2	2.3	3.1	0	0.4	6.8	0.4

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 25 of 70

3.1.3 Semi-quantitative Macroinvertebrate Stream Bioassessment Project Procedure (SMSBPP)

Riffle/pool biological criteria were calculated from Cedar and Horse creeks, two biological criteria reference streams in a transitional area of the Ozark/Osage EDU. These criteria were used to assess NFSR #1 and reference stations on Cedar and Horse creeks (Tables 7 and 9). All other NFSR test stations and reference stations on Little Drywood Creek were assessed using GP biological criteria from the Central Plains/Osage/South Grand EDU (Tables 8 and 10). Values in bold are biological metric values that scored a 1 or 3 based on biological criteria. The low MSCI scores for Cedar and Horse creeks were most likely caused by low water levels and no coarse substrate available to sample.

Table 7
Fall 2006 Ozark/Osage EDU Transitional Area Stream Biological Criteria, Biological Support Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of the Spring River (NFSR) Stressor Study

Stream and Station Number	Sample No.	TR	EPTT	BI	SDI	MSCI	Support
NFSR #1	0602717	81(5)	9(3)	7.48(3)	3.20(5)	16	F
Horse Creek #1	0602728	52(3)	4(1)	8.23(3)	2.89(3)	10	P
Cedar Creek #1	0602729	44(3)	2(1)	8.30(3)	2.83(3)	10	P
Metric Score=5	if	>79	>14	<6.88	>3.13	20-16	Full
Metric Score=3	if	79-40	14-7	6.88-8.44	3.13-1.56	14-10	Partial
Metric Score=1	if	<40	<7	>8.44	<1.56	8-4	Non

Individual Metric Score in parentheses; MSCI Scoring Table (in light gray) developed from BIOREF streams (n=5); TR=taxa richness; EPTT=Ephemeroptera, Plecoptera, Trichoptera Taxa; BI=Biotic Index; SDI=Shannon Diversity Index

North Fork of the Spring River test stations #4a, #4b, #5, and #10 had MSCI scores that scored in the partial sustainability category during the fall sampling season (Table 8). All of the other NFSR test stations had MSCI scores that scored in the full sustainability category. Most of the test stations that scored in the full sustainability category had MSCI scores of 16 while the MSCI scores were 14 for most of the test stations that scored in the partial sustainability category. All of the NFSR test stations had low biological metric scores for EPTT and BI. EPTT was much lower and BI was much higher at the test stations that scored in the partial sustainability range. Rootmat was not available at LDC #2.

All of the biological criteria reference stations, except LDC #1, had low MSCI scores and scored in the partial sustainability category during the fall 2006 sampling season (Tables 7 and 8).

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 26 of 70

Table 8
Fall 2006 Central Plains/Osage/South Grand EDU Biological Criteria, Biological Support
Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of
the Spring River (NFSR) Stressor Study

			(INFSIX) Sitessof Study					
Stream and Station Number	Sample No.	TR	EPTT	BI	SDI	MSCI	Support	
LDC #1	0602715	58(5)	7(5)	8.22(3)	2.97(5)	18	F	
LDC #2	0602716	46(3)	4(3)	8.53(3)	2.53(3)	12	P	
NFSR #2	0602718	68(5)	6(3)	8.19(3)	2.88(5)	16	F	
NFSR #3	0602719	57(5)	8(5)	7.90(3)	2.78(3)	16	F	
NFSR #4a	0602720	53(3)	2(1)	8.29(3)	2.90(5)	12	P	
NFSR #4b	0602722	57(5)	3(3)	8.30(3)	2.78(3)	14	P	
NFSR #5	0602721	61(5)	3(3)	8.56(3)	2.58(3)	14	P	
NFSR #6	0602723	74(5)	6(3)	8.01(3)	3.36(5)	16	F	
NFSR #7	0602724	88(5)	8(5)	8.05(3)	3.26(5)	18	F	
NFSR #8	0602725	67(5)	4(3)	8.49(3)	2.94(5)	16	F	
NFSR #9	0602726	63(5)	4(3)	8.28(3)	3.11(5)	16	F	
NFSR #10	0602727	66(5)	1(1)	8.62(3)	2.85(5)	14	P	
Metric Score=5	if	>55	>6	<7.73	>2.84	20-16	Full	
Metric Score=3	if	55-28	6-3	7.73-8.86	2.84-1.42	14-10	Partial	
Metric Score=1	if	<28	<3	>8.86	<1.42	8-4	Non	

Individual Metric Score in parentheses; MSCI Scoring Table (in light gray) developed from BIOREF streams (n=13); TR=taxa richness; EPTT=Ephemeroptera, Plecoptera, Trichoptera Taxa; BI=Biotic Index; SDI=Shannon Diversity Index

During the spring 2007 sampling season biological criteria reference stations on Cedar and Horse creeks scored in the partial sustainability category and LDC #1 scored in the full sustainability category (Tables 9 and 10). By the spring 2007 sampling season, CS was available on Cedar and

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 27 of 70

Horse creeks since the water levels were up from the low levels during the previous fall sampling season. The low MSCI and biological metric scores compared to previous samples collected on these streams indicated that the macroinvertebrate community had not recovered from the low water levels that occurred during the previous summer and fall.

North Fork of the Spring River test stations #1, #7, #8, #9b, and #10 had MSCI scores that scored in the partial sustainability category during the spring 2007 sampling season. All of the other NFSR test stations had MSCI scores that scored in the full sustainability category. All of the test stations that scored in the full sustainability category had MSCI scores of 16 while the MSCI scores were 12 or 14 for the test stations that scored in the partial sustainability category. All of the NFSR test stations had low biological metric scores for EPTT and BI. EPTT was extremely low at test stations #7 through #10 and was the primary reason why most of these stations had MSCI scores in the partial sustainability category.

Table 9
Spring 2007 Ozark/Osage EDU Transitional Area Stream Biological Criteria, Biological Support Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of the Spring River (NFSR) Stressor Study

Stream and Station Number	Sample No.	TR	EPTT	BI	SDI	MSCI	Support
NFSR #1	0703244	72(3)	9(3)	7.58(3)	3.28(3)	12	P
Horse Creek #1	0703241	85(5)	8(3)	6.72(3)	3.09(3)	14	P
Cedar Creek #1	0703242	59(3)	8(3)	7.52(3)	2.86(3)	12	P
Metric Score=5	if	>77	>17	<6.38	>3.30	20-16	Full
Metric Score=3	if	77-39	17-8	6.38-8.19	3.30-1.65	14-10	Partial
Metric Score=1	if	<39	<8	>8.19	<1.65	8-4	Non

Individual Metric Score in parentheses; MSCI Scoring Table (in light gray) developed from BIOREF streams (n=5); TR=taxa richness; EPTT=Ephemeroptera, Plecoptera, Trichoptera Taxa; BI=Biotic Index; SDI=Shannon Diversity Index

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 28 of 70

Table 10
Spring 2007 Central Plains/Osage/South Grand EDU Biological Criteria, Biological Support Categories, and Macroinvertebrate Stream Condition Index (MSCI) Scores for the North Fork of the Spring River (NFSR) Stressor Study

Stream and Station Number	Sample No.	TR	EPTT	BI	SDI	MSCI	Support
LDC #1	0703250	55(5)	6(3)	7.92(3)	2.60(5)	16	F
NFSR #2	0703253	61(5)	5(3)	8.10(3)	2.80(5)	16	F
NFSR #3	0703252	60(5)	6(3)	7.54(3)	2.67(5)	16	F
NFSR #5	0703245	69(5)	5(3)	8.25(3)	2.94(5)	16	F
NFSR #6	0703246	61(5)	6(3)	7.36(3)	2.72(5)	16	F
NFSR #7	0703251	57(5)	3(1)	7.30(3)	2.76(5)	14	P
NFSR #8	0703249	58(5)	2(1)	8.32(3)	2.70(5)	14	P
NFSR #9a	0703247	55(5)	4(3)	7.57(3)	2.59(5)	16	F
NFSR #9b	0703248	50(3)	3(1)	7.81(3)	2.42(5)	12	P
NFSR #10	0703243	43(3)	1(1)	8.09(3)	2.40(5)	12	P
Metric Score=5	if	>50	>8	<7.16	>2.29	20-16	Full
Metric Score=3	if	50-25	8-4	7.16-8.58	2.29-1.14	14-10	Partial
Metric Score=1	if	<25	<4	>8.58	<1.14	8-4	Non

Individual Metric Score in parentheses; MSCI Scoring Table (in light gray) developed from BIOREF streams (n=9); TR=taxa richness; EPTT=Ephemeroptera, Plecoptera, Trichoptera Taxa; BI=Biotic Index; SDI=Shannon Diversity Index

3.2 Physicochemical Water Sample Collection and Analysis

3.2.1 Summer Datalogger Data

Previous studies on the NFSR have indicated that the stream had low dissolved oxygen levels during low flow periods in the summer and early fall (MDNR 2004; MDNR 2005; MDNR 2006a). Dataloggers were deployed and set to collect dissolved oxygen and water temperature data every 15 minutes at NFSR #1, NFSR #2, NFSR #6, NFSR #9, and Horse Creek #1 during the summer of 2006 (Figures 5-14 and Appendix D).

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 29 of 70

At NFSR #6 a datalogger was deployed from July 31 to August 3, 2006 (Figures 5 and 6). The diurnal dissolved oxygen fluctuations were small with values during the datalogger deployment period ranging from 2.80 mg/L to 5.19 mg/L. The lowest dissolved oxygen values generally occurred in the late morning hours of each day. The percentage of the readings that were below the dissolved oxygen criteria of 5 mg/L was 98.97 percent.

At NFSR #1 a datalogger was deployed from August 7-10, 2006 (Figures 7 and 8). The diurnal dissolved oxygen fluctuations ranged from 1.75 mg/L to 7.03 mg/L. The lowest dissolved oxygen levels were normally in the early morning hours. The percentage of the readings that were below the dissolved oxygen criteria of 5 mg/L was 79.53 percent.

At NFSR #3 a datalogger was deployed from August 7-10, 2006 (Figures 9 and 10). Dissolved oxygen readings and diurnal fluctuations were low with readings ranging from 0.33 mg/L to 3.57 mg/L. The lowest dissolved oxygen readings were normally collected in the early afternoon hours. All of the dissolved oxygen readings were below the dissolved oxygen criteria of 5 mg/L.

At NFSR #9 a datalogger was deployed from August 28-31, 2006 (Figures 11 and 12). The diurnal dissolved oxygen fluctuations were small at NFSR #9, but there was a trend of increasing dissolved oxygen as time went by in the datalogger deployment. Dissolved oxygen readings ranged from 1.01 mg/L to 5.73 mg/L. The percentage of the readings that were below the dissolved oxygen criteria of 5 mg/L was 98.36 percent.

At Horse Creek #1 a datalogger was deployed from August 28 to September 1, 2006 (Figures 13 and 14). The dissolved oxygen readings were normally the lowest in the early morning hours. Horse Creek #1 had very low dissolved oxygen readings ranging from 0.19 mg/L to 2.32 mg/L. The lowest dissolved oxygen values occurred during the morning hours and were usually below 1 mg/L. All of the dissolved oxygen readings were below the dissolved oxygen criteria of 5 mg/L.

Figure 5
Dissolved Oxygen and Water Temperature Datalogger Data Collected at NFSR #6 From July 31 to August 3, 2006

Dissolved Oxygen (mg/L)

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 31 of 70

Figure 7
Dissolved Oxygen and Water Temperature Datalogger Data Collected at NFSR #1
From August 7-10, 2006

Figure 8
Dissolved Oxygen Datalogger Data Collected at NFSR #1 From August 7-10, 2006

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 32 of 70

Figure 9
Dissolved Oxygen and Water Temperature Datalogger Data at NFSR #3 From August 7-10, 2006

Figure 10
Dissolved Oxygen Datalogger Data at NFSR #3 From August 7-10, 2006

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 33 of 70

Figure 11
Dissolved Oxygen and Water Temperature Datalogger Data at NFSR #9 From August 28-31, 2006

Figure 12
Dissolved Oxygen Datalogger Data at NFSR #9 from August 28-31, 2006

Dissolved Oxygen and Water Temperature Datalogger Data at Horse Creek #1 From August 28 to September 1, 2006 Figure 13

Dissolved Oxygen Datalogger Data at Horse Creek #1 from August 28 to September 1, 2006 Figure 14

Dissolved Oxygen (mg/L)

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 35 of 70

3.2.2 Summer Dissolved Oxygen and Water Temperature Field Measurements

Discrete dissolved oxygen and water temperature field measurements were collected during site visits prior to the fall 2006 macroinvertebrate sampling season (Table 11). The field measurements were collected from early July to early September 2006. The majority of the readings (87 percent) were below the 5 mg/L criteria for dissolved oxygen. Most of the readings that were above 5 mg/L for dissolved oxygen were collected in the afternoon at NFSR #4 and NFSR #5 and most likely were caused by the high planktonic algal biomass that was visible at those stations in late July and early August 2006. The most likely source of the planktonic algae was the Lamar Wastewater Treatment Lagoon.

3.2.3 Fall and Spring Physicochemical Water Samples

Water samples and field measurements were collected during the fall 2006 and spring 2007 macroinvertebrate sampling periods. Physicochemical results are arranged to demonstrate trends of certain variables and may help identify the source of stressors at the NFSR test stations and the biological criteria reference stations. Results are shown in Tables 12 and 13 for quality control, discharge, turbidity, ammonia-N, nitrate + nitrite-N, total nitrogen, total phosphorus, and dissolved oxygen.

3.2.3.1 Quality Control

Duplicate samples were collected at NFSR #4 during the fall 2006 sampling season and NFSR #9 during the spring 2007 sampling season. Results from these duplicates were similar and indicated that sampling, transport, processing, and analyses were consistent as well as precise.

3.2.3.2 Discharge

Water levels were very low during the fall 2006 sampling season. Cedar Creek #1, Horse Creek #1, Little Drywood Creek #2, and NFSR test stations upstream of Lamar were without flow during the sampling period. Discharge at the NFSR test stations ranged from 0 cfs at the stations upstream of Lamar to 1.6 cfs at NFSR #4.

Discharge was much higher during the spring 2007 sampling season. A major rain event occurred in the NFSR watershed on March 20, 2007. This delayed sampling at some stations for two weeks. Discharge at the NFSR test stations ranged from 3.88 cfs at NFSR #10 to 57.1 cfs at NFSR #2.

3.2.3.3 Turbidity

During the fall 2006 sampling season turbidity at NFSR test stations #7 through #9 and Cedar Creek #1 was elevated compared to the other sampling stations and the recommended reference condition values for the level III Central Irregular Plains and Ozark Highland Ecoregions (U.S. EPA 2000a; U.S. EPA 2000b). The U.S. EPA calculated the reference condition for turbidity at 15.5 NTU in the Central Irregular Plains Ecoregion and 1.43 NTU for the Ozark Highlands Ecoregion. Cattle had access to the stream and filamentous algae were very abundant at Cedar Creek #1. At the NFSR stations during the fall 2006 sampling season turbidity ranged from 5.8 NTU at NFSR #1 to 49.4 NTU at NFSR #7 (Table 12).

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 36 of 70

Table 11
Dissolved Oxygen and Water Temperature Field Measurements Collected During Site Visits
Prior to the Fall 2006 Macroinvertebrate Sampling Season, July-September 2006

Date	Station	Time	Dissolved	Water	Comments
			Oxygen	Temperature	
07/06/06	Horse Creek #1	1030	4.85	24.6	< 0.5 cfs discharge
07/06/06	NFSR #7	1230	4.65	27.1	Just a trickle of flow through riffles
07/06/06	NFSR #6	1442	5.99	29.0	Station has flow (more than a trickle)
07/31/06	NFSR #6	1100	3.27	27.7	No flow at station
07/31/06	NFSR #6	1115	3.48	27.2	No flow at station
07/31/06	NFSR #4	1215	N/A	N/A	Planktonic algae present
07/31/06	NFSR #10	1315	2.88	27.4	Station pooled
07/31/06	NFSR #10	1330	2.62	27.8	Station pooled
07/31/06	NFSR #8	1430	1.10	27.5	Station pooled
07/31/06	NFSR #8	1445	1.23	26.6	Station pooled
07/31/06	Horse Creek #1	1600	4.04	31.4	Station pooled
07/31/06	Horse Creek #1	1615	4.08	30.5	Station pooled
08/03/06	NFSR #6	1115	3.32	27.2	
08/03/06	NFSR #6	1130	3.30	27.3	
08/03/06	NFSR #10	1245	1.97	26.6	
08/03/06	NFSR #10	1300	1.94	27.0	
08/03/06	NFSR #8	1345	0.80	25.5	
08/03/06	NFSR #8	1400	1.20	25.5	
08/03/06	Horse Creek #1	1530	4.17	29.9	
08/03/06	Horse Creek #1	1545	4.24	29.2	
08/07/06	NFSR #2	1030	4.43	28.3	Station had about 0.25 cfs flow, sunny weather
08/07/06	NFSR #2	1045	4.86	28.6	Station had about 0.25 cfs flow, sunny weather
08/07/06	NFSR #1	1130	4.41	29.6	Station had < 0.10 cfs flow, sunny weather
08/07/06	NFSR #1	1145	3.97	30.2	Station had < 0.10 cfs flow, sunny weather
08/07/06	NFSR #3	1300	2.28	29.4	Very little flow at station, sunny weather
08/07/06	NFSR #3	1315	2.75	28.8	Very little flow at station, sunny weather
08/07/06	NFSR #4	1355	7.88	29.1	Water turbid and green from algae, sunny weather
08/07/06	NFSR #5	1500	9.28	29.4	Water turbid and green from algae, sunny weather
08/07/06	NFSR #5	1515	9.07	29.3	Water turbid and green from algae, sunny weather
08/07/06	NFSR #6	1540	4.95	31.4	Station still had no flow, sunny weather
08/07/06	NFSR #7	1611	6.65	30.0	Station was pooled, sunny weather
08/07/06	NFSR #8	1635	3.22	27.8	No noticeable changes from last visit, sunny weather
08/07/06	NFSR #9	1710	3.70	29.9	Station pooled, sunny weather
08/07/08	NFSR #10	1745	1.40	26.3	Sunny weather
08/10/08	NFSR #10	1005	3.34	27.1	
08/10/08	NFSR #9	1030	2.59	26.5	
08/10/08	NFSR #8	1055	2.22	25.9	Moderate rain during field measurements
08/10/06	NFSR #7	1145	1.38	26.3	Cloudy weather
08/10/06	NFSR #6	1123	3.40	26.3	Cloudy weather
08/10/06	NFSR #5	1515	5.75	27.4	Planktonic algae present, cloudy weather
08/10/06	NFSR #5	1530	6.80	27.5	Planktonic algae present, cloudy weather
08/10/06	NFSR #4	1222	3.67	26.9	Planktonic algae present, cloudy weather
08/10/06	NFSR #3	1430	1.35	27.7	Partly cloudy weather
08/10/06	NFSR #3	1445	1.45	27.7	Partly cloudy weather
08/10/06	NFSR #2	1402	4.66	27.7	Partly cloudy weather

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 37 of 70

Table 11 Continued

Dissolved Oxygen and Water Temperature Field Measurements Collected During Site Visits

Prior Fall 2006 Macroinvertebrate Sampling Season, July-September 2006

Date	Station	Time	Dissolved	Water	Comments
			Oxygen	Temperature	
08/10/06	NFSR #1	1315	3.02	28.2	Flow < 0.10 cfs, partly cloudy weather
08/10/06	NFSR #1	1330	3.33	28.2	Flow <0.10 cfs, partly cloudy weather
08/10/06	NFSR #1	1330	3.33	28.2	Flow <0.10 cfs, partly cloudy weather
08/28/06	Horse Creek #1	1115	0.78	25.8	Trickle of flow caused by recent rains
08/28/06	Horse Creek #1	1130	0.79	26.1	Trickle of flow caused by recent rains
08/28/06	NFSR #9	1245	2.08	26.6	Station pooled, partly cloudy weather
08/28/06	NFSR #9	1300	2.34	27.3	Station pooled, partly cloudy weather
08/29/06	NFSR #4	0800	N/A	N/A	Planktonic algae was no longer present
08/31/06	NFSR #9	1635	3.14	24.3	
08/31/06	NFSR #9	1645	3.47	24.5	
09/01/06	Horse Creek #1	1245	1.47	24.6	Stream still pooled
09/01/06	Horse Creek #1	1300	1.58	24.1	Stream still pooled

Compared to the fall 2006 sampling season, turbidity was higher during the spring 2007 sampling season at the downstream NFSR test stations. This most likely was caused by the major rain event that occurred in mid March. Turbidity values at NFSR ranged from 2.49 NTU at NFSR #10 to 32.3 NTU at NFSR #5 during the spring 2007 sampling season. Cedar Creek #1 had a turbidity value of 1.48 NTU which was much lower than the high turbidity value during the fall 2006 sampling season. Neither cattle nor algae were evident at Cedar Creek #1 during the spring 2007 sampling season.

3.2.3.4 Nutrients

3.2.3.4.1 Ammonia-N

Ammonia-N was 2.91 mg/L at NFSR #3 during the fall 2006 sampling season. This value was higher than the chronic criteria of 2.5 mg/L for ammonia-N in the Water Quality Standards for early life stages present classification (MDNR 2005). Ammonia-N values at the other sample stations were well below the criteria in the Water Quality Standards. Ammonia-N was not elevated at any of the sampling stations during the spring 2007 sampling season.

3.2.3.4.2 Nitrate + Nitrite-N

During the fall 2006 sampling season nitrate + nitrite-N was elevated at many NFSR stations compared to the recommended reference condition values for the level III Central Irregular Plains and Ozark Highlands Ecoregions (U.S. EPA 2000a; U.S. EPA 2000b). Nitrate + nitrite-N ranged from below detection limits at NFSR #1 to 0.65 mg/L at NFSR #3 during the fall 2006 sampling season. The U.S. EPA calculated the reference condition for nitrate + nitrite-N at 0.23 mg/L in the Central Irregular Plains Ecoregion and 0.24 mg/L for the Ozark Highlands Ecoregion.

During the spring 2007 sampling season nitrate + nitrite-N was elevated at all of the NFSR test stations compared to values collected during the fall 2006 sampling season. Nitrate + nitrite-N

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 38 of 70

for the test stations ranged from 0.73 mg/L at NFSR #3 to 2.16 mg/L at NFSR #9a. These values were much higher than the recommended U.S. EPA nitrate + nitrite-N reference condition values and values collected at Missouri biological criteria reference streams.

3.2.3.4.3 Total Nitrogen

During the fall 2006 sampling season total nitrogen was higher than the reference condition values for the level III Central Irregular Plains and Ozark Highlands Ecoregions (U.S. EPA 2000a; U.S. EPA 2000b). Total nitrogen was extremely high and over 5 mg/L at NFSR #3 and Cedar Creek #1. Total nitrogen at the test stations ranged from 0.84 mg/L at NFSR #1 to 5.88 mg/L at NFSR #3. The U.S. EPA calculated the reference condition for total nitrogen at 0.71 mg/L in the Central Irregular Plains Ecoregion and 0.38 mg/L for the Ozark Highlands Ecoregion.

During the spring 2007 sampling season total nitrogen was high at all of the NFSR test stations, ranging from 1.64 mg/L at NFSR #5 to 3.02 mg/L at NFSR #9a. These values were much higher than the recommended U.S. EPA total nitrogen reference condition values and values collected at Missouri biological criteria reference streams.

3.2.3.4.4 Total Phosphorus

During the fall 2006 sampling season total phosphorus was very high at Cedar Creek #1 (2.66 mg/L). The NFSR test stations had slightly elevated levels for total phosphorus compared to the biological reference streams, except Cedar Creek #1, and the recommended U.S. EPA total phosphorus reference condition values for the level III Central Irregular Plains and Ozark Highlands Ecoregions (U.S. EPA 2000a; U.S. EPA 2000b). Total phosphorus at the NFSR test stations ranged from 0.07 mg/L at NFSR #2 and #6 to 0.34 mg/L at NFSR #5. The U.S. EPA calculated the reference condition for total phosphorus at 0.09 mg/L in the Central Irregular Plains Ecoregion and 0.006 mg/L for the Ozark Highlands Ecoregion.

During the spring 2007 sampling season total phosphorus was slightly elevated at most of the NFSR test stations compared to the biological criteria reference streams and the recommended U.S. EPA total phosphorus reference condition values. Total phosphorus at the NFSR test stations ranged from 0.04 mg/L at NFSR #6 to 0.15 mg/L at NFSR#3, #8, and #9b.

3.2.3.4.5 Dissolved Oxygen

During the fall 2006 sampling season discrete dissolved oxygen measurements were below the 5 mg/L water quality standard (MDNR 2005) at four NFSR test stations and LDC #2. Cedar Creek #1 had an extremely high value of 19.9 mg/L which was most likely caused by the large amount of filamentous algae that was present in the stream. Fall 2006 dissolved oxygen at the NFSR test stations ranged from 4.31 mg/L at NFSR #10 to 8.79 mg/L at NFSR #9.

During the spring 2007 sampling season dissolved oxygen was much higher than the 5 mg/L water quality standard at all of the sampling stations. Dissolved oxygen at the NFSR test stations ranged from 6.52 mg/L at NFSR #9 to 8.49 mg/L at NFSR #10.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 39 of 70

Table 12
Physicochemical Variables at the NFSR Stressor Study Sampling Stations, Fall 2006

		5 ~							*****	8	~ *****	5, I uii 20			
	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	NFSR	Cedar	Horse	LDC #1	LDC #2
	#1	#2	#3	#4a	#4b	#5	#6	#7		#9	#10	Creek #1	Creek #1		
Invertebrate	602717	602718	602719	602720	602822	602721	602723	602724	602725	602726	602727	602729	602728	602715	602716
Sample Number	002/1/	002/10	002/19	002720	002822	002721	002723	002724	002723	002720	002727	002729	002728	002/13	002/10
1	602201	602202	602202	602201	602211	602205	602206	602205	602200	602200	602210	602212	602212	602214	602215
Physicochemical	603201	603202	603203	603204	603211	603205	603206	603207	603208	603209	603210	603212	603213	603214	603215
Sample Number															
Sample Date	9/28/06	9/27/06	9/27/06	9/27/06	9/27/06	9/26/06	10/4/06	10/3/06	10/3/06	10/3/06	10/3/06	10/2/06	10/2/06	9/25/06	9/25/06
Sample Time	1030	1715	1500	1145	1150	1700	1010	1650	1445	1230	950	1520	1220	1150	1720
~ ····································		-,				- ,									
Ammonia	0.03*	0.03*	2.91	0.06	0.06	0.51	0.03*	0.03*	0.03*	0.03*	0.03*	0.67	0.03*	0.03*	0.03*
Aiiiiioiiia	0.03	0.03	2.71	0.00	0.00	0.51	0.03	0.03	0.03	0.03	0.03	0.07	0.03	0.03	0.03
C1.1 : 1	14.5	27.1	20	10.0	10.7	12.4	10.7	0.54	0.7	0.04	0.67	25.7	6.42	51.0	6.20
Chloride	14.5	27.1	28	12.8	12.7	13.4	10.7	8.54	8.7	9.04	8.67	35.7	6.43	51.2	6.38
Dissolved	6.05	5.24	4.43	5.58	5.58	3.78	4.34	9.69	6.62	8.79	4.31	19.9	6.14	6.42	3.64
Oxygen															
Discharge	0.51	1.23	1.13	1.6	1.6	1.5	0	0	0	0	0	0	0	0.1	0
(cfs)															
pH (Units)	7.8	7.7	7.8	7.8	7.8	7.8	7.6	8.7	7.8	7.8	7.5	9	7.9	7.8	7.9
pri (Omts)	7.0	7.7	7.0	7.0	7.0	7.0	7.0	0.7	7.0	7.0	7.5		1.5	7.0	1.5
Conductivity	274	366	392	229	229	244	232	162	186	192	261	464	234	456	292
	2/4	300	392	229	229	244	232	102	100	192	201	404	234	430	292
(umhos/cm)															
Temperature	14.5	19	18	17.5	17.5	19	21	22	23.5	22	19.5	25	19	17	17
(C^0)															
Turbidity	5.8	10.3	9.82	8.94	9.68	20.9	13.4	49.4	42.4	39.4	15.7	62.6	5.4	4.84	6.51
(NTU)															
Nitrate + Nitrite	0.01**	0.06	0.65	0.29	0.29	0.51	0.01*	0.44	0.33	0.12	0.01*	0.13	0.04**	0.02**	0.01*
1,11110				- ·	- 					- · · · -					
Total Nitrogen	0.84	1.38	5.88	1.25	1.28	2.12	0.81	1.14	1.03	1.22	0.91	5.67	0.68	0.56	0.79
Total Millogell	0.04	1.50	3.00	1.23	1.20	2.12	0.01	1,14	1.03	1.44	0.71	3.07	0.00	0.30	0.17
T.4.1	0.00	0.07	0.13	0.15	0.14	0.24	0.07	0.17	0.24	0.2	0.11	2.66	0.02**	0.02**	0.05**
Total	0.08	0.07	0.12	0.15	0.14	0.34	0.07	0.17	0.24	0.2	0.11	2.66	0.03**	0.03**	0.05**
Phosphorus															
*D 1 14 4 11 11															

^{*}Below detectable limits

Units mg/L unless otherwise noted. Values in bold are elevated compared to U.S. EPA recommended reference condition values

^{**}Estimated value, detected below Practical Quantitation Limit

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 40 of 70

Table 13
Physicochemical Variables at the NFSR Stressor Study Sampling Stations, Spring 2007

) =				1		·· F C		, ~p <u>8</u>			
	NFSR #1	NFSR #2	NFSR #3	NFSR #5	NFSR #6	NFSR #7	NFSR	NFSR	NFSR	NFSR	Cedar	Horse	LDC #1
							#8	#9a	#9b	#10	Creek #1	Creek #1	
Invertebrate	0703244	0703253	0703252	0703245	0703246	0703251	0703249	0703247	0703248	0703243	0703242	0703241	0703250
Sample Number													
Physicochemical	0704041	0704042	0704043	0704045	0704046	0704047	0704049	0704049	0704051	0704050	0704052	0704053	0704054
2	0/04041	0704042	0704043	0704043	0704046	0/0404/	0704048	0/04049	0/04031	0704030	0704032	0704033	0704034
Sample Number													
Sample Date	3/20/07	4/5/07	4/4/07	3/20/07	3/20/07	4/4/07	4/3/07	4/3/07	4/3/07	3/19/07	3/19/07	3/19/07	4/4/07
Sumple Bute	3,20,0,	175757	17 17 0 7	3/20/07	3/20/07	1, 1, 0,	175707	1,5,0,	1,3,0,	3/13/07	3/13/07	3/15/07	17 17 0 7
Sample Time	950	915	1545	1230	1445	1210	1615	1201	1207	1545	1330	1030	945
•													
A	0.08	0.03*	0.03*	0.14	0.03*	0.03*	0.03*	0.02*	0.03	0.03*	0.03*	0.03*	0.03*
Ammonia	0.08	0.03*	0.03*	0.14	0.03*	0.03*	0.03*	0.03*	0.03	0.03*	0.03*	0.03*	0.03*
Chloride	25.4	18.7	19.6	28.2	23.4	20.9	21.2	21.8	21.8	25.4	15.6	15.2	13
Cilioriuc	23.4	10.7	17.0	20.2	23.4	20.7	21.2	21.0	21.0	23.4	13.0	13.2	13
Dissolved	6.89	8.29	8.25	7.32	7.63	8.4	8.29	6.52	6.52	8.49	10.7	11.6	8.04
Oxygen													
	47.5	57.1	10	15.0	0.42	20.4	22.4	20	20	2.00	7.44	10.1	25.4
Discharge	47.5	57.1	43	15.2	9.43	20.4	22.4	20	20	3.88	7.44	12.1	35.4
(cfs)													
pH (Units)	7.5	7.4	7.6	7.5	7.7	7.6	7.8	7.7	7.7	7.6	7.9	8.4	7.8
pri (Omis)	1.3	7.4	7.0	7.5	7.7	7.0	7.0	1.1	7.7	7.0	1.9	0.4	7.0
Conductivity	334	364	349	334	314	388	345	343	343	302	321	268	306
(umhos/cm)													
/	10.5	10.5	1.7	1.2	1.2	1.5.5	10.5	10	10	1.2	10	1.2	10.5
Temperature	12.5	12.5	17	13	13	15.5	19.5	18	18	13	12	13	13.5
(C^0)													
Turbidity	26.9	15.2	23.3	32.3	8.74	16.3	9.89	8.38	8.38	2.49	1.48	4.9	11.4
2	20.9	13.2	23.3	32.3	0.74	10.5	9.09	0.30	0.30	2.43	1.40	4.7	11.4
(NTU)													
Nitrate + Nitrite	1.32	1.74	1.2	0.73	1.01	1.8	1.97	2.16	2.14	1.7	0.31	0.18	0.41
- 1.1.2													
TD (131')	• • • •	2.50		1.61	1.60	2.66	201	2.02	2.04	0.00	0.50	0.6	1 10
Total Nitrogen	2.08	2.58	2.07	1.64	1.69	2.66	2.84	3.02	3.01	2.23	0.59	0.6	1.12
Total Phosphorus	0.1	0.11	0.15	0.13	0.04**	0.12	0.15	0.14	0.15	0.02**	0.03**	0.02**	0.09
1 otal 1 llospilorus	0.1	0.11	0.13	0.13	0.04	0.12	0.13	0.14	0.13	0.02	0.05	0.02	0.09

^{*}Below detectable limits

Units mg/L unless otherwise noted. Values in bold are elevated compared to U.S. EPA recommended reference condition values

^{**}Estimated value, detected below Practical Quantitation Limit

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 41 of 70

3.3 Benthic Sediment

Benthic sediment values for total sediment, silt, and sand for each sampling station are shown in Figure 15 and Table 14. The statistical analyses conducted to determine significant differences between sampling stations can be found in Appendix E.

3.3.1 Total Sediment

Except for LDC #2, the quantity of total benthic sediment (sand + silt) was significantly higher at NFSR #5 (One-way ANOVA, square root transformed, P < 0.05). No other NFSR test station had significantly more total benthic sediment than the biological criteria reference stations. The NFSR #10 test station had the most benthic sediment after NFSR #5 and had significantly more benthic sediment than NFSR #1, NFSR #7, NFSR #9, and Cedar Creek #1 (One-way ANOVA, square root transformed, P < 0.05). North Fork of the Spring River test stations #1 and #7 had the lowest amounts of benthic sediment. North Fork of the Spring River #1 had significantly lower amounts of benthic sediment than the two LDC sampling stations and all of the other test stations except NFSR #2, NFSR #7, and NFSR #9 (One-way ANOVA, square root transformed, P < 0.05). Test station #7 had significantly lower amounts of benthic sediment than Horse Creek #1, the two LDC sampling stations, and all of the test stations except NFSR #1 and NFSR #9 (One-way ANOVA, square root transformed, P < 0.05). The other test stations had total sediment means ranging from 64,584 mm³ at NFSR #9 to 100,011 mm³ at NFSR #8 and the sediment values at these stations were not significantly different.

3.3.2 Silt

The benthic sediment samples contained much more silt than sand. The average silt percentage in most samples was greater than 70 percent, except Horse Creek #1 with 58.44 percent. The estimated silt volume in the benthic sediment samples showed trends that were similar to the total sediment volume at most sampling stations. North Fork of the Spring River test station #5 had a significantly higher amount of silt in the sediment samples than all of the other sampling stations (One-way ANOVA, square root transformed, P < 0.05). Test station #10 had the second highest amount of silt at the test stations and was significantly higher than Cedar Creek #1, Horse Creek #1, NFSR #1, NFSR #2, NFSR #7, and NFSR #9 (One-way ANOVA, square root transformed, P < 0.05). Test station #7 had the lowest amount of silt in the sediment samples and was significantly lower than the other NFSR test stations except NFSR #1 and NFSR #9 (One-way ANOVA, square root transformed, P < 0.05).

3.3.3 **Sand**

Sand made up less than 20 percent of benthic sediment samples except at NFSR #3, NFSR #4, Horse Creek #1, and LDC #1. Sand was highest by volume at LDC #2 and was significantly higher than the other sampling stations (Kruskal-Wallis One-way ANOVA on Ranks, P < 0.05). Horse Creek #1 had a significantly higher amount of sand than all of the sampling stations except NFSR #3, NFSR #5, and LDC #2. The highest sand volume at test stations was found at NFSR #3 and NFSR #5. Glide/pool test stations #3 and #5 had a significantly higher amount of sand than two of the biological criteria reference stations, the GP station at LDC #1 and the RP station at Cedar Creek #1 (Kruskal-Wallis One-way ANOVA on Ranks, P < 0.05). Test stations at NFSR #4, NFSR #6, and NFSR #10 had significantly higher amounts of sand than Cedar Creek

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 42 of 70

#1 (Kruskal-Wallis One-way ANOVA on Ranks, P < 0.05). Transitional test stations NFSR #1, NFSR #7, and NFSR #9 had the lowest levels of sand and were significantly lower than all of the biological criteria reference stations (Kruskal-Wallis One-way ANOVA on Ranks, P < 0.05). Test station NFSR #2 also had low levels of sand compared to most of the other stations and was significantly lower than all of the biological criteria reference stations except Cedar Creek #1 (Kruskal-Wallis One-way ANOVA on Ranks, P < 0.05).

Figure 15
Benthic Sediment Mean and Standard Deviation Values at North Fork of the Spring River Stressor Study Sampling Stations

LD = Little Drywood Creek

3.4 Sinuosity

Sinuosity at the NFSR test stations had a mean of 1.40 and ranged from 1.08 at NFSR #9 to 2.08 at NFSR #3 (Table 15). Test stations #7 and #9 were the only two stations that had sinuosity values close to 1.0, which indicates a straight stream channel. The two Little Drywood Creek sampling stations had sinuosity values over 2.0, which was much more sinuous than all NFSR test stations, except station #3. Sinuosity at both Cedar and Horse creeks was 1.48.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 43 of 70

3.5 Channel Measurements

Table 16 shows values for the metrics calculated from channel measurements. The statistical analyses conducted to determine significant differences between sampling stations can be found in Appendix F.

Watershed size ranged from 47 square miles at NFSR #10 to 394 square miles at NFSR #1 (Table 14). The upper NFSR stations, which were located in the Ozark Highlands Ecoregion (Figure 1), had similar watershed sizes to the two reference streams in a transitional area of the Ozark/Osage EDU. The two downstream NFSR stations, which were located in the Ozark Highlands Ecoregion, were much larger than the two reference streams in the Ozark/Osage EDU. North Fork of the Spring River stations #3-#6 in the Central Irregular Plains Ecoregion had much larger watersheds than the two Little Drywood Creek stations in the Central Plains/Osage/South Grand EDU.

Except for Cedar Creek #1, NFSR #1 had a much wider channel than the other sampling stations. Channel width and wetted width were significantly wider at NFSR #1 than the other sampling stations (Kruskal-Wallis ANOVA on Ranks, P < 0.05). North Fork of the Spring River stations #2 and #7-#9, which were located in or near the Ozark Highlands Ecoregion, had similar channel widths to Horse Creek #1. Wetted width at the transitional NFSR test stations #2, #8, and #9 were significantly higher than Horse Creek #1, but not Cedar Creek #1 (Kruskal-Wallis ANOVA on Ranks, P < 0.05). Transitional NFSR test station #7 had wetted width that was significantly lower than Cedar Creek #1 but higher than Horse Creek #1 (Kruskal-Wallis ANOVA on Ranks, P < 0.05). North Fork of the Spring River test stations #3-#6, which were GP in nature, had similar channel widths compared to the channel widths of the most downstream LDC station. Glide/pool stations #3-#5 had significantly higher wetted widths than the Little Drywood Creek GP stations (Kruskal-Wallis ANOVA on Ranks, P < 0.05). Test station #6, which had very low water levels, had a much smaller wetted width than most of the other NFSR test stations, but was similar to the LDC stations. Test station #6 had a much higher channel width/wetted width ratio value than the other sampling stations. Glide/pool NFSR stations #3-#5 had the lowest channel width/wetted width ratio values. The other NFSR test stations which were transitional in nature had similar channel width/wetted width values compared to Cedar and Horse creeks. The channel width to wetted width ratio results at NFSR stations #3-#6 indicate that a much higher proportion of the channel width was filled by water at test station #6 than the other NFSR stations and a much higher proportion of the channel width was filled by water at test stations #3-#5.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 44 of 70

Table 14
Benthic Sediment Estimates (mm³) Using the Benthic Sediment Sampler, North Fork of the Spring River Stressor Study
Summer 2006

Measurement	Sand	Silt	Total Sediment
Test Stations			
NFSR #1	2299 ± 4590	36159 ± 23969	38457 ± 23952
NFSR #2	12436 ± 17330	61240 ± 44251	73676 ± 44190
NFSR #3	30202 ± 12389	69391 ± 13475	99593 ± 20738
NFSR #4	21006 ± 10374	64898 ± 18987	85903 ± 24866
NFSR #5	27694 ± 11546	177659 ± 54801	205352 ± 52837
NFSR #6	15676 ± 6404	73990 ± 44019	89665 ± 47020
NFSR #7	5643 ± 4931	23932 ± 10753	29575 ± 11855
NFSR #8	12645 ± 8914	87366 ± 53210	100011 ± 54606
NFSR #9	9928 ± 15728	54656 ± 37860	64584 ± 46930
NFSR #10	15676 ± 12941	113492 ± 48372	129168 ± 57289
Reference/Control			
Stations			
Ozark/Osage EDU			
Cedar Creek #1	10242 ± 7971	59150 ± 47967	69391 ± 54998
Horse Creek #1	34278 ± 20578	46191 ± 19224	80469 ± 34421
Central Plains/Osage/			
South Grand EDU			
Little Drywood Creek #1	22469 ± 10159	111089 ± 55455	133557 ± 53291
Little Drywood Creek #2	49431 ± 27278	116732 ± 46671	166163 ± 66696

Values are listed in the table as the mean \pm SD. Test station values highlighted in bold are significantly higher than at least 1 biological criteria reference station.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 45 of 70

Table 15
Stream Channel Measurements Calculated for the North Fork of the Spring River Stressor Study, Summer 2006

Measurement	Drainage Area	Sinuosity	Channel Width	Wetted Width	Ratio of Channel	Water Depth	Ratio of Wetted	Maximum Depth
	(Miles ²)		(Feet)	(Feet)	Width to	(Feet)	Width to	(Feet)
					Wetted		Water	
T					Width		Depth	
Test Stations								
NFSR #1	394	1.35	88.9 ± 14.9	54.9 ± 19.8	2.1 ± 1.6	1.0 ± 0.5	66.0 ± 37.1	2.2
NFSR #2	358	1.53	72.7 ± 5.2	41.0 ± 11.5	1.9 ± 0.7	1.5 ± 1.1	38.4 ± 18.9	4.5
NFSR #3	295	2.08	51.9 ± 7.3	33.9 ± 5.0	1.6 ± 0.3	2.11 ± 0.7	17.8 ± 7.9	3.7
NFSR #4	230	1.37	46.8 ± 5.1	37.1 ± 3.5	1.3 ± 0.2	2.2 ± 0.8	17.1 ± 3.9	3.7
NFSR #5	181	1.64	47.1 ± 3.0	35.9 ± 4.5	1.3 ± 0.2	2.1 ± 0.7	18.7 ± 5.6	3.3
NFSR #6	167	1.34	51.9 ± 11.9	16.2 ± 5.9	3.6 ± 1.6	1.2 ± 0.8	16.1 ± 8.1	3.8
NFSR #7	115	1.09	63.4 ± 5.8	28.3 ± 13.6	2.8 ± 1.5	1.1 ± 0.6	28.7 ± 10.4	2.6
NFSR #8	102	1.24	72.0 ± 10.6	45.0 ± 21.4	2.2 ± 1.5	1.5 ± 1.0	30.3 ± 7.6	4.4
NFSR #9	83	1.08	65.4 ± 13.0	36.9 ± 20.0	2.5 ± 1.7	1.1 ± 0.6	32.7 ± 10.9	2.5
NFSR #10	47	1.29	52.0 ± 10.6	29.0 ± 12.3	2.1 ± 1.1	1.1 ± 0.6	30.6 ± 18.7	2.6
Reference/Control								
Stations								
Ozark/Osage EDU								
Cedar Creek #1	69	1.48	94.3 ± 36.2	35.1 ±12.1	3.3 ± 2.3	1.0 ± 0.4	38.9 ± 16.9	2.2
Horse Creek #1	191	1.48	64.5 ± 13.0	26.4 ± 12.7	2.9 ± 1.4	1.0 ± 0.5	29.0 ± 15.1	2.1
Central Plains/Osage/								
South Grand EDU								
L. Drywood Creek #1	123	2.15	48.1 ± 13.3	21.5 ± 5.1	2.5 ± 1.4	1.1 ± 0.5	22.7 ± 8.8	2.2
L. Drywood Creek #2	46	2.32	37.1 ± 8.1	16.0 ± 4.9	2.6 ± 1.4	0.9 ± 0.3	19.6 ± 5.8	1.8

Values are listed in the table as the mean \pm SD for the measurements that were collected at multiple transects located within the sampling stations.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 46 of 70

Water depth was much higher at NFSR #3-#5 than the other sampling stations (Kruskal-Wallis ANOVA on Ranks, P < 0.05). Test stations #2 and #8 had part of the sampling reaches made up of deep large pools and these stations had a high standard deviation of water depth. The other test stations had water depths that were similar to the water depths found at the biological criteria reference streams. The maximum depth results show that many of the NFSR test stations had sections of the sampling reach with high water depths. The wetted width to water depth ratio was much higher at NFSR #1 than any of the other sampling stations (One-way ANOVA, Log₁₀ transformed, P < 0.05). The lowest wetted width to water depth ratio values occurred at NFSR glide/pool stations #3-#6 and was similar to the values at the LDC sampling stations (One-way ANOVA, Log₁₀ transformed, P < 0.05). The other stations (#2, #7-#10) which were transitional stations had wetted width to water depth ratio values that were similar to Cedar and Horse creeks (One-way ANOVA, Log₁₀ transformed, P < 0.05).

The results of the channel measurements indicate that NFSR #1 had different channel characteristics than the other NFSR test stations. It had wider channel with lower water depths and standard deviation of the water depth than the other NFSR test stations. Glide/pool NFSR test stations #3-#5 were similar to the LDC stations for many channel metrics, but had higher wetted widths and water depths. The upper NFSR transitional stations were similar to Cedar and Horse creeks for many channel metrics, but had higher maximum depths and slightly higher standard deviation of water depth.

3.6 MDC RAM Data

Fish, stream habitat measurements, and water quality were collected at four stations within or just downstream of the 303(d) listed reach of the NFSR during the summer of 2006 (Figure 1). Two stations were sampled on June 26-27, 2006 and the other two stations were sampled on August 17, 2006. All four stations were located in the transitional part of the NFSR that had characteristics of both the plains and Ozark ecoregions. A fish index of biotic integrity (**IBI**) was used to assess the sampling stations based on the structure and composition of the fish community.

3.6.1 Fish Community Biological Assessment

The fish community in NFSR (Table 16) was transitional in nature with species that are commonly found in plains streams like the red shiner (*Cyprinella lutrentis*) and other species like the golden redhorse (*Moxostoma erythrurum*) that are commonly found in Ozark streams. The NFSR also had fish species like the Arkansas darter (*Etheostoma cragini*) and the channel darter (*Percina copelandi*) that in Missouri are only found in the Ozark/Neosho EDU. Biological criteria using a Missouri fish IBI (**MIBI**) was recently developed for the Ozark ecoregion and was used to assess the sampling stations since part of the NFSR fish community was made up of species that are only commonly found in the Ozarks (Doisy et. al. 2008). The draft fish biological criteria for the Ozark ecoregion are made up of 9 biological metrics as shown in Table 17. The maximum score for the MIBI is 45 with each metric receiving a score of 1, 3, or 5. Impairment of sampling stations is based on a three-level classification of stream condition. The three levels of classification are: no impairment (MIBI scores >36); impaired (MIBI scores 29-36); and highly impaired (MIBI scores <29).

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 47 of 70

Table 16
Counts and Percent Composition of Fish Species Found at the NFSR MDC RAM
Sampling Stations

		Cita Namelan	C:4- N1	C:4- N1
	Site Number	Site Number	Site Number	Site Number
I C	207-1327	207-1171	207-1601	207-1828
Longnose Gar	2 (0.2)	1 (0.1)	1 (0.1)	1 (0.2)
Gizzard Shad	2 (0.2)	- 15 (2.2)	15 (1.4)	47 (7.9)
Central Stoneroller	13 (1.3)	15 (2.2)	83 (7.7)	3 (0.5)
Red Shiner	53 (5.5)	-	40 (3.7)	10 (1.7)
Common Carp	1 (0.1)	-	-	-
Redfin Shiner	56 (5.8)	24 (3.5)	10 (0.9)	26 (4.4)
Golden Shiner	-	-	1 (0.1)	-
Bigeye Shiner	212 (21.9)	19 (2.8)	9 (0.8)	-
Rosyface Shiner	-	-	-	3 (0.5)
Suckermouth Minnow	-	-	21 (2.0)	13 (2.2)
Bluntnose Minnow	77 (7.9)	25 (3.7)	44 (4.1)	109 (18.3)
Bullhead Minnow	2 (0.2)	-	-	-
Northern Hogsucker	-	-	2 (0.2)	4 (0.7)
Smallmouth Buffalo	-	-	1 (0.1)	32 (5.4)
Spotted Sucker	33 (3.4)	37 (5.4)	1 (0.1)	6 (1.0)
Black Redhorse	-	-	8 (0.7)	5 (0.8)
Golden Redhorse	4 (0.4)	4 (0.6)	40 (3.7)	76 (12.8)
Shorthead Redhorse	-	-	9 (0.8)	-
Black Bullhead	-	1 (0.1)	-	-
Yellow Bullhead	-	10 (1.5)	4 (0.4)	1 (0.2)
Channel Catfish	-	-	1 (0.1)	2 (0.3)
Slender Madtom	-	-	5 (0.5)	2 (0.3)
Flathead Catfish	-	1 (0.1)	1 (0.1)	5 (0.8)
Blackstripe Topminnow	23 (2.4)	24 (3.5)	-	-
Western Mosquitofish	6 (0.6)	11 (1.6)	11 (1.0)	-
Brook Silversides	26 (2.7)	83 (12.1)	4 (0.4)	95 (16.0)
Green Sunfish	94 (9.7)	134 (19.6)	28 (2.6)	10 (1.7)
Orangespotted Sunfish	91 (9.4)	26 (3.8)	119 (11.1)	20 (3.4)
Bluegill	118 (12.2)	129 (18.9)	230 (21.5)	8 (1.3)
Longear Sunfish	55 (5.7)	63 (9.2)	235 (21.9)	84 (14.1)
Spotted Bass	-	-	20 (1.9)	1 (0.2)
Largemouth Bass	31 (3.2)	24 (3.5)	16 (1.5)	21 (3.5)
White Crappie	- ()	2 (0.3)	-	-
Greenside Darter	_	-	1 (0.1)	1 (0.2)
Arkansas Darter	11 (1.1)	3 (0.4)	2 (0.2)	-
Fantail Darter	3 (0.3)	1 (0.1)	47 (4.4)	_
Johnny Darter	4 (0.4)	2 (0.3)		_
Orangethroat Darter	43 (4.4)	13 (1.9)	42 (3.9)	5 (0.8)
Clair Soull Cat Dailer	12 (1.1)	10 (1.7)	12 (3.7)	5 (0.0)

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 48 of 70

Table 16 Continued
Counts and Percent Composition of Fish Species Found at the NFSR MDC RAM
Sampling Stations

	Site Number	Site Number	Site Number	Site Number					
	207-1327	207-1171	207-1601	207-1828					
Banded Darter	-	-	1 (0.1)	-					
Logperch	1 (0.1)	9 (1.3)	1 (0.1)	5 (0.8)					
Channel Darter	-	-	15 (1.4)	-					
Slenderhead Darter	-	-	2 (0.2)	-					
Green Sunfish/Bluegill Hybrid	7	19 (2.8)	-	-					
Green Sunfish/Longear Sunfish Hybrid	-	4 (0.6)	2 (0.2)	-					
Species Diversity	25	26	36	27					

Percent composition values are shown in parentheses.

Values in bold are the five most abundant species for each sample.

Table 17 Missouri Fish Biological Criteria Calculated for the Ozark Ecoregion

Metric	Score = 1	Score = 3	Score = 5
# of Native Individuals	<216	216 - 431	>431
# of Native Darter Species	<2	2	>2
# of Native Benthic Species	<3	3 - 5	>5
# of Native Water Column Species	<4	4 - 7	>7
# of Native Minnow Species	<3	3 - 5	>5
# of All Native Lithophilic Species	<7	7 – 13	>13
% of Native Insectivore Cyprinid Individuals	< 0.067	0.067 - 0.134	>0.134
% of Native Sunfish Individuals	< 0.013	0.013 - 0.026	>0.026
% of the Three Dominant Species	>0.815	0.64 - 0.815	< 0.64

The MIBI scores at the four sampling stations ranged from 39 to 45 which indicated that the stations were not impaired based on the fish community (Table 18). The station located upstream of NFSR #9 (207-1327) scored a 45, the station just downstream of NFSR #9 (207-1171) scored a 39, the station just downstream of NFSR #2 (207-1601) scored a 41, and the station just downstream of the confluence of Dry Fork Creek (207-1828) scored a 41. The percent of native insectivore cyprinid individuals was the only metric with poor results at most sampling stations. All of the stations except 207-1327 scored a 1 for this metric. Sampling station 207-1327 scored a 5 for this metric because of the high abundance of the bigeye shiner (*Notropis boops*).

The species diversity at the NFSR fish sampling stations was high compared to the biological criteria reference streams in the Ozark ecoregion (Table 16). Species diversity ranged from 25 to 36 at the NFSR sampling stations compared to the mean value of 22 at the biological criteria reference streams in the Ozark ecoregion (Doisy et al. 2008). Previous studies on the effect of sedimentation of fishes have shown that sedimentation primarily impacts food supply or feeding

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 49 of 70

and reproduction (Berkman and Rabeni 1987). Metrics that were included in the MIBI that might indicate sediment impairment (e.g. number of native darter species, number of native benthic species, and the number of all native lithophilic species) did not indicate sediment impairment at the sampling stations. The values at the NFSR stations (Table 18) were close to the reference mean values at the biological criteria reference streams in the Ozark ecoregion for the number of native darter species (3.6), the number of benthic species (7.3), and higher for the number of all native lithophilic species (16.8) (Doisy et. al. 2008).

Table 18
Missouri Fish IBI (MIBI) Values and Scores, Using Biological Criteria Calculated From the Reference Streams in the Ozark Ecoregion

Sampling Station	207-1327	207-1171	207-1601	207-1828
Sample Date	06/26/06	08/17/06	06/27/06	08/17/06
Metric				
# of Native Individuals	969 (5)	684 (5)	1072 (5)	595 (5)
# of Native Darter Species	5 (5)	5 (5)	8 (5)	3 (5)
# of Native Benthic Species	7 (5)	7 (5)	15 (5)	9 (5)
# of Native Water Column Species	11 (5)	11 (5)	11 (5)	10 (5)
# of Native Minnow Species	6 (5)	4 (3)	7 (5)	6 (5)
# of All Native Lithophilic Species	19 (5)	20 (5)	28 (5)	23 (5)
% of Native Insectivore Cyprinid Individuals	0.28 (5)	0.06(1)	0.02(1)	0.05(1)
% of Native Sunfish Individuals	0.28 (5)	0.36 (5)	0.37 (5)	0.23 (5)
% of the Three Dominant Species	0.44 (5)	0.51 (5)	0.54 (5)	0.48 (5)
Total MIBI Score	45	39	41	41

Metric scores are shown in parentheses.

Prior to the development of the Missouri IBI a U.S. EPA Environmental Monitoring and Assessment Program (EMAP) IBI was used by MDC (Table 19). Metrics included in the old fish IBI that might indicate impairment caused by low dissolved oxygen or sedimentation were proportion of tolerant individuals, proportion of insectivore/invertivore individuals, and proportion of ominivore/herbivore individuals. The scores for the proportion of insectivore/invertivore individuals metric were low for the upstream stations (201-1171 and 207-1327) and the other metrics were low at all of the sampling stations. The scores for the proportion of tolerant individuals metric were extremely low at all of the sampling stations. The number of tolerant species and the proportion of tolerant individuals were high for most sampling stations and indicated that dissolved oxygen, sedimentation, or other water quality parameters might be impacting the fish community. The number of tolerant species was 4 at station 207-1171, 5 at station 207-1327, 5 at station 207-1601, and 4 at station 207-1828. These values were much higher than the mean value of 1.80 at the biological criteria reference streams in the Ozark ecoregion and much closer to the mean value of 3.90 at the biological criteria reference streams in the plains ecoregion (Doisy et. al. 2008). The proportion of tolerant individuals was 0.40 at station 207-1171, 0.28 at station 207-1327, 0.30 at station 207-1601, and 0.13 at station 207-1828. These values were much higher than the mean value of 0.04 at the

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 50 of 70

biological criteria reference streams in the Ozark ecoregion (Doisy et. al. 2008). The proportion of tolerant individuals at the NFSR stations except at 207-1828 were close to the value of 0.32 found at the biological criteria reference streams in the plains ecoregion (Doisy et. al. 2008).

Table 19 EMAP Fish IBI Values and Scores

Sampling Station	207-1327	207-1171	207-1601	207-1828
Sample Date	06/26/06	08/17/06	06/27/06	08/17/06
Metric				
# of Individuals Collected	969 (10)	684 (10)	1072 (10)	595 (10)
# of Native Species	25 (10)	26 (10)	36 (10)	27 (10)
# of Native Minnow Species	6 (8)	4 (5.3)	7 (9.2)	6 (7.9)
# of Native Sunfish Species	4 (10)	4 (10)	4 (9.5)	4 (9.3)
# of Native Benthic Species (including round	7 (8.8)	7 (8.6)	15 (10)	9 (9.2)
bodied suckers)				
# of Native Water Column Species	11 (10)	11 (10)	11 (10)	10 (10)
# of Long-lived Species (expected life span > 4	10 (9.7)	11 (10)	19 (10)	18 (10)
yrs)				
Proportion of Tolerant Individuals	0.28(1)	0.40(1)	0.30(1)	0.13(1)
Proportion of Individuals as Carnivores	0.13 (10)	0.24 (10)	0.06 (8.9)	0.06 (9.1)
Proportion of Individuals as Insectivores and	0.10 (4.1)	0.10(4)	0.18 (7.4)	0.20 (7.9)
Invertivores				
Proportion of Individuals as Omnivores and	0.22 (6.1)	0.26 (5.4)	0.35 (3.8)	0.34 (4.1)
Herbivores				
Total EMAP IBI Score	87.7	84.3	89.8	88.5

Metric scores are shown in parentheses. Maximum score for each metric is 10 and was calibrated by stream size by using log_{10} mean wetted stream width and ecoregion.

The fish samples showed that a large percentage of individuals sampled were species that are commonly found in pools. This included many bass, catfish, round bodied sucker, and sunfish species. Sunfish species were generally the most abundant species found in the samples. Four sunfish species, the bluegill (*Lepomis macrochirus*), green sunfish (*Lepomis cyanellus*), longear sunfish (*Lepomis megalotis*), and orangespotted sunfish (*Lepomis humilis*) were very abundant in most of the samples. Two of the sunfish species, the bluegill and the green sunfish, were classified as tolerant and were very abundant in all of the samples except sample 207-1828 (Table 17). The green sunfish is considered one of the most tolerant fish species in Missouri and can tolerate extremes in turbidity, dissolved oxygen, water temperature, and flow (Pflieger 1997). The orangespotted sunfish was very abundant in two of the samples and is commonly found in streams with high turbidity and sediment (*Pflieger 1997*). Three minnow species that are commonly found in pools, the bigeye shiner (*Notropis boops*), bluntnose minnow (*Pimephales notatus*), and the red shiner (*Cyprinella lutrenis*) were common in some of the NFSR samples. The red shiner is classified as tolerant and is commonly found in streams with high turbidity and siltation. Darter species were generally in low abundance except for the

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 51 of 70

fantail darter (*Etheostoma flabellare*) and the orangethroat darter (*Etheostoma spectabile*). These species can occur in prairie streams and are considered more tolerant of turbidity than most darters (Pflieger 1997). Many larger bodied species like the largemouth bass (*Micropterus* salmoides), flathead catfish (*Pylodictis olivaris*), northern hogsucker (*Hypentelium nigricans*), and redhorse sucker (*Moxostoma* species) that usually occur in runs or pools were found in low to moderate numbers at the NFSR stations.

3.6.2 Stream Habitat Measurements

Stream habitat measurements related to the banks, riparian zone, substrate, residual pool volume, and the stream channel were collected at the MDC RAM sampling stations (Table 20) and were based on EMAP protocols (Kaufman et al. 1999). Three final habitat indices, QCPH, QPH, and QTPH, were calculated from the collected stream measurements and used to evaluate stream habitat at the sampling stations. Mean stream measurements that were available from Doisy et al. (2008) were included in Table 20 and used as a comparison to the values from the NFSR sampling stations. The bank angle and undercut distance of the bank, except the NFSR station located near NFSR #9 (207-1327), were near the mean values of the reference streams (Table 20). Station 207-1327 had a steeper mean bank angle and undercut distance than the other sampling stations. The NFSR sampling stations had higher bankfull height values than the reference streams of both ecoregions. Bankfull height was defined as the channel height at bankfull water levels. Channel incision height was much greater than the reference streams of both ecoregions except at NFSR 207-1327 which had a value similar to the mean value of the reference streams from the Ozark ecoregion. Channel incision height was defined as the depth measured from the water surface to the first valley terrace above bankfull height.

The results of the riparian zone showed that all three levels of the riparian zone (canopy, midlevel, and ground cover) were present. The percent of riparian zone within the sample reach that contained large trees that might provide bank stability, shading, and aquatic habitat ranged from 25 to 40 percent at the NFSR stations. Mean bank canopy density at the NFSR stations was higher, except at the most downstream station (207-1828), than mean values of the reference streams for both the Ozark and plains ecoregions. All of the NFSR stations had higher midchannel canopy density values than the Ozark ecoregion reference streams, except the station near NFSR #9 (207-1327) and the most downstream station, 207-1828, which were slightly lower than the mean value for the plains ecoregion.

Embeddedness was much higher at the NFSR sampling stations than the Ozark reference streams, but was lower than embeddedness in the plains reference streams. Station 207-1327 had a much higher embeddedness value than the other three stations and was the only station that was close to the mean embeddedness value for the plains ecoregion. The NFSR samples had an average substrate size class that was similar to the reference streams in the Ozark ecoregion. The amount of estimated sand and fine material was lower except at the station near NFSR #2 (207-1601) compared to the reference streams in the Ozarks and all of the stations were much lower than the reference streams in the plains. Most of the substrate in the NFSR sampling stations was in the fine and coarse gravel substrate classes. Most of the stations had more fine gravel and less coarse gravel than the Ozark reference streams, and had more than the plains reference

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 52 of 70

streams for both size classes. The NFSR sampling stations had a lower amount of cobble, except for NFSR #1, than the Ozark reference streams and a higher percentage of the stream bottom covered by bedrock than reference streams from both ecoregions.

The residual pool volume and channel measurements showed that the sampling reaches of the NFSR stations were made up primarily of 1 to 2 larger pools with high water depths. Pools made up a much higher percentage of the sample reach at the NFSR stations than the reference streams from both ecoregions, ranging from 75 to 92 percent of the sample reach. Fast water habitat made up a very small percentage of sample reach at most of the NFSR stations. The station located near NFSR #2 (207-1601) was the only station that had more fast water habitat than the plains reference streams and close to the amount of fast water habitat found at the Ozark reference streams. Mean thalweg depth ranged from 1.6 feet to 2.1 feet and the standard deviation of the thalweg depths were high, ranging from 1.0 foot to 1.4 feet. The wetted width to water depth ratio was much lower at the NFSR stations than the reference streams, indicating that a higher proportion of the wetted width had higher water depths.

Fish cover estimates were estimated visually at 11 transects and for the entire sampling reach. Filamentous algae were very abundant at station 207-1327 located near NFSR #9 and station 207-1601 located near NFSR #2. Aquatic macrophytes were very abundant at station 207-1107 located near NFSR #9. Aquatic macrophyte levels at the other stations were much lower and between the mean values for the Ozark and plains reference streams. Large woody debris was greater at stations 207-1171 and 207-1601, but most of the stations had large woody debris abundance that was similar to the levels at the reference streams. The most upstream station, 207-1327, was the only station that had a higher percentage for undercut banks and overhanging vegetation than reference streams from both ecoregions. Boulders were very abundant at all of the NFSR stations except 207-1327 and much greater than the reference streams from both ecoregions.

Large woody debris numbers and volume were measured at each sampling station. Large woody debris was most abundant at station 207-1171 located near NFSR #8 and station 207-1601. The large woody debris numbers and volume at these stations were near or slightly higher than the mean values at the Ozark reference streams and lower than the mean values at the plains reference streams. No woody debris was collected and measured at the most upstream station, 207-1327, and the values at the most downstream station, 207-1828, were much lower than reference values for both ecoregions.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 53 of 70

Table 20 Stream Habitat Measurements Collected at the MDC RAM Sampling Stations

Habitat Measurement	MDC Habitat	Site	Site	Site	Site	Ozark Ecoregion	Plains Ecoregion
	Code	Number	Number	Number	Number	Mean Reference	Mean Reference
		207-1171	207-1327	207-1601	207-1828	Values	Values
Banks							
Mean Bank Angle (degrees)	Xbka	25	44.8	35.7	15.6	30.4	31.5
Mean Undercut Distance (feet)	Xun	0.1	3.73	0	0	0.5	0.03
Mean Bankfull Height (feet)	XBKF_H	3.3	6.6	6.6	6.6	2.8	2.6
Mean Channel Incision Height (feet)	XINC_H	16.4	6.6	26.2	26.2	6.2	10.5
Riparian Zone and Canopy Density							
Riparian & Mid Layer Present (% of Reach)	Xpcm	100	81.8	100	100	-	-
Riparian 3 Layers Present (% of Reach)	Xpcmg	100	81.8	100	100	-	-
Riparian Canopy >0.3 m DBH (% of Reach)	XCL	40	25	33	35	-	-
Mean Bank Canopy Density (%)	XCDENBK	93.6	88.0	96.8	79.1	76.3	84.6
Mean Mid-channel Canopy Density (%)	XCDENMID	78.3	60.2	72.6	54.9	46.0	62.2
Substrate							
Mean Embeddedness (%)	XEMBED	46.3	60.7	45.8	35.6	24.4	67.0
Mean Substrate Size Class (1-6)	SUB_X	3.2	3.2	3.2	3.7	3.3	2.7
Percent Sand & Fines – <2 mm	PCT_SAFN	9.0	10.9	21.8	5.5	13.1	53.6
Percent Fine Gravel – 2-16 mm	PCT_GF	30.9	18.2	20.0	5.5	16.0	4.7
Percent Coarse Gravel – 16-64 mm	PCT_GC	36.36	50.91	27.27	38.2	41.4	17.8
Percent Cobble – 64-250 mm	PCT_CB	3.6	12.7	5.46	32.7	18.7	11.2
Percent Bedrock – >250 mm	PCT_BDRK	10.9	3.6	14.6	9.1	4.8	3.8
Residual Pool Volume							
Residual Pools >50 cm (>1.6 feet) deep (#/reach)	Rpgt50	2	1	1	0	1.9	1.8
Residual Pools >75 cm (>2.4 feet) deep (#/reach)	Rpgt75	0	1	1	0	1.0	0.9
Maximum Residual Depth (feet)	Rpmdep	2.3	3.1	2.5	-	3.1	3.1
Maximum Residual Width of Any Pool in Reach (feet)	Rpmwid	31.6	30.8	29.9	-	52.1	43.3
Residual Pool Volume (ft ³ /328 ft. channel)	Rpv100c	423.0	734.4	193.1	-	-	-
Channel Characteristics							
Sinuosity	Sinu	1.6	1.0	1.1	1.0	1.1	1.2
Mean Thalweg Depth (feet)	Xdepth	1.7	2.0	2.1	1.6	-	-
Standard Deviation of Thalweg Depth (feet)	Sddepth	1.0	1.1	1.4	1.1	-	-
Mean Bankfull Width (feet)	XBKF_H	61.4	190.0	74.82	68.0	85.9	54.1

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 54 of 70

Table 20 Continued Stream Habitat Measurements Collected at the MDC RAM Sampling Stations

Habitat Measurement	MDC Habitat	Site	Site	Site	Site	Ozark Ecoregion	Plains Ecoregion
	Code	Number	Number	Number	Number	Mean Reference	Mean Reference
		207-1171	207-1327	207-1601	207-1828	Values	Values
Mean Wetted Width (feet)	Xwidth	28.0	30.1	45.4	29.9	-	-
Mean Wetted Width/Depth Ratio	Xwd_rat	17.6	19.2	27.2	19.7	51.4	43.0
Percent Fast Water (% Riffle and Faster)	PCT_FAST	0	5	18	0	24.0	9.1
Percent Pool	PCT_POOL	92	79	66	75	30.9	56.3
Percent Dry Channel or Subsurface Flow	PCT_DRS	8	0	0	25	=	-
Fish Cover							
Filamentous Algae (% of Reach)	XFC_ALG	5	23	25	5	2	3
Aquatic Macrophytes (% of Reach)	XFC_AQM	22	9	4	9	11	2
Large Woody Debris (% of Reach)	XFC_LWD	7	0	8	3	7	5
Undercut Banks (% of Reach)	XFC_UCB	2	5	3	4	2	4
Overhanging Vegetation (% of Reach)	XFC_OHV	1	12	1	7	7	3
Boulders (% of Reach)	XFC_RCK	25	3	19	28	7	8
Large Woody Debris (LWD)							
LWD in Bankfull Channel (#/328 ft. of Channel-all sizes)	C1Wm100	9.0	0	9.3	3.7	7.3	10.7
LWD Volume in Bankfull Channel (ft ³ /328 ft. of Channel)	V1Wm100	267.6	0	206.9	44.1	215.4	402.5
Final Habitat Indices							
Channel Physical Habitat Index 1	QCPH1	0.5	0.5	0.5	-	0.7	0.6
Channel Physical Habitat Index 2	QCPH2	0.5	0.5	0.5	-	0.7	0.6
Channel + Riparian Quality Index 1	QPH1	0.6	0.5	0.6	-	0.7	0.6
Channel + Riparian Quality Index 2	QPH2	0.6	0.5	0.5	-	0.7	0.6
Channel + Riparian + Riparian Human Disturbance Index 1	QTPH1	0.6	0.6	0.6	-	0.7	0.6
Channel + Riparian + Riparian Human Disturbance Index 2	QTPH2	0.6	0.6	0.6	-	0.7	0.6

The value of 1 following the final habitat indices is not adjusted to watershed size and the value of 2 adjusts the indices to watershed size.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 55 of 70

Three habitat indices were calculated from the stream measurements so that habitat conditions could be assessed. Two calculations were done for each index, one that was not adjusted for watershed size and one that adjusted the index value based on watershed size. No indices were calculated for station 207-1828 since some of the stream measurements were not collected at this station. The first index was called QCPH and was based on the in channel physical habitat measurements. The second index was called QPH and was based on in channel measurements and riparian zone quality. The last index was called QTPH and was based on in channel habitat, riparian quality, and human disturbance in the riparian zone. Types of human disturbance in or near the riparian zone that were used in the QTPH were the following: dikes, revetments, buildings, roads, railroads, pipes, landfills, trash, parks, lawns, row crops, pasture, and logging and mining activities. The NFSR stations had lower index values than the reference streams for QCPH1 and QCPH2, which indicates that in channel habitat conditions at the NFSR sampling stations were not as good as the reference streams. The QPH index was determined by channel and riparian measurements and showed that all of the NFSR stations had slightly lower index values than the Ozark reference streams. Two of the NFSR stations were slightly lower than the plains reference streams when watershed size was used to adjust the value of the index (QPH2). The last index, QTPH, was based on channel measurements, riparian condition, and human disturbance of the riparian zone. It showed that the NFSR stations had slightly lower index values than Ozark reference streams, but not the reference streams in the plains ecoregion.

3.6.3 Water Quality

Water quality parameters collected during fish sampling are shown in Table 21. Physicochemical results that violated Missouri water quality standards or were elevated compared to U.S. EPA recommended reference condition values are discussed in this section.

3.6.3.1 Turbidity

Turbidity ranged from 16 NTU to 75.2 NTU and was elevated compared to the U.S. EPA recommended reference condition values for the Ozark highland and Central Irregular Plains Ecoregions. The recommended reference condition for turbidity in the Ozark Highlands Ecoregion is 1.43 NTU and 15.5 NTU for the Central Irregular Plains Ecoregion.

3.6.3.2 Nitrate + Nitrite

Nitrate was slightly elevated at the two stations that were sampled on June 26, 2006. Nitrate was 0.66 mg/L at station 207-1327 and 0.93 mg/L at station 207-1601. The recommended reference condition value for the Ozark Highland Ecoregion is 0.24 mg/L and 0.23 mg/L for the Central Irregular Plains Ecoregion.

3.6.3.3 Total Phosphorus

Total phosphorus ranged from 0.24 mg/L to 0.28 mg/L at the sampling stations and was slightly elevated compared to U.S. EPA recommended reference condition values. Recommended reference condition for the Ozark Highlands Ecoregion is 0.006 mg/L and 0.09 mg/L for the Central Irregular Plains Ecoregion.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 56 of 70

Table 21 Physicochemical Variables Collected at the MDC RAM Sampling Stations

Physico	Physicochemical Variables Collected at the MDC RAM Sampling Stations Site Number Site Number Site Number Site Number					
	207-1171	207-1327	207-1601	207-1828		
Sample Date	08/17/2006	06/26/2006	06/26/2006	08/18/2008		
Sample Time	1000	1115	0815	0900		
Dissolved Oxygen	2.32	5.60	3.27	3.61		
Water Temperature (C ⁰)	25.1	22.7	22.5	27.91		
Conductivity (umhos/cm)	231	242	213	305		
рН	7.74	7.58	7.70	7.71		
Discharge (cfs)	No Flow	6.32	9.61	No Flow		
Turbidity (NTU)	75.2	42.3	60.3	16.0		
Non Volatile Suspended Solids	5.6	16.0	24.6	17.5		
Volatile Suspended Solids	2.33	3.71	4.13	4.7		
Dissolved Organic Carbon	7.0	6.0	7.8	7.9		
Calcium	34.8	35.4	24.4	39.9		
Magnesium	3.5	3.3	3.5	4.7		
Potassium	9.9	8.8	9.9	8.7		
Sodium	5.8	6.7	9.8	15.8		
Ammonia	0.07	0.08	0.11	0.04		
Nitrate + Nitrite	0.05	0.66	0.93	0.05		
Total Phosphorus	0.24	0.28	0.27	0.22		
Total Benthic Chlorophyll	0.03	0.02	0.01	0.03		

Units mg/L unless otherwise noted. Values in bold are elevated compared to U.S. EPA recommended reference condition values or violate Missouri Water Quality Standards.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 57 of 70

3.6.3.4 Dissolved Oxygen

Dissolved oxygen at the sampling stations ranged from 2.32 mg/L to 5.60 mg/L. Dissolved oxygen was below the 5 mg/L Missouri water quality standard at all of the sampling stations except station 207-1327.

4.0 Discussion

The discussion describes possible effects of land use, geology, soil type, sedimentation, and physicochemical stressors on the macroinvertebrate and fish community composition.

4.1 Fish and Macroinvertebrate Biological Assessment Comparison

The results of the macroinvertebrate biological assessment indicate that the NFSR was impaired or close to impairment since most of the sampling stations that scored in the fully sustainable range had the minimum MSCI score of 16. Fish on the other hand, had very high MIBI scores, ranging from 39 to 45 and did not show impairment (Table 18).

This fish community was diverse and had a high abundance of species that are commonly found in pools (Table 16). The percent of cyprinid insectivore individuals was the only metric that generally performed poorly. The EMAP IBI also showed that the NFSR sampling stations had a very diverse fish community that contained a high number and/or proportion of benthic species and species that are commonly found in pools (Table 19). The scores for the EMAP IBI ranged from 84.3 to 89.8 out of the possible maximum score of 110. However, three metrics in the EMAP IBI were generally low at most sampling stations and could indicate stress from low dissolved oxygen and sedimentation.

A previous study by Berkman et al. (1986) found that macroinvertebrates were a better indicator of sedimentation than fish. Most macroinvertebrates live on the stream bottom and in streams with high levels of benthic sediment. The abundance of clingers usually is low while the abundance of collector-gatherers, especially burrowers, is high. The NFSR sampling stations that had higher levels of benthic sediment had very low abundances of clingers.

Sedimentation generally affects fish less directly than invertebrates. The primary impact of sedimentation on the fish community is the invertebrate food supply, feeding efficiency, and reproduction. Increased sedimentation may reduce the amount of quality food, increase turbidity which reduces the ability of fish to see prey, and reduce the reproductive success of fish that require clean gravel substrate to spawn (lithophils). A study by Berkman and Rabeni (1987) found that streams with higher benthic sediment in the riffles had fish communities that had a higher abundance of fish species commonly found in run and pool habitats than streams with lower levels of benthic sediment in the riffles. This study found that as sedimentation in riffles increased, the relative abundance of benthic insectivores, benthic herbivores, and fish from the simple lithophilous reproductive guild decreased while general insectivores and fish from the simple miscellaneous reproductive guild increased. Based on the results of this study, metrics not included in the MIBI that might indicate impairment caused by sedimentation are the number and/or percent of benthic insectivores, benthic herbivores, and tolerant species.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 58 of 70

Another possible stressor in the NFSR is low dissolved oxygen. The macroinvertebrate community structure had a high abundance of taxa that are tolerant of low dissolved oxygen levels, providing evidence that dissolved oxygen levels were a possible source of impairment. A high proportion of the fish community in the NFSR was tolerant of low dissolved oxygen levels based on a study done by Smale and Rabeni (1995). Low dissolved oxygen tolerant individuals composed 41.4% at station 207-1327, 60.1% at station 207-1171, 59.7% at station 207-1601, and 24.6% at station 207-1828. Some of the fish species found in the NFSR samples were not assessed for dissolved oxygen tolerance since the Smale and Rabeni study (1995) emphasized fish species found in Missouri headwater streams. Species that were found in the NFSR samples that were classified as tolerant by Smale and Rabeni (1995) are ranked from decreasing to increasing tolerance as follows: johnny darter; golden shiner; largemouth bass; longear sunfish; bluegill; orangespotted sunfish; slender madtom; and yellow bullhead. The four *Lepomis* sunfish species were very abundant in the samples except at the most downstream station 207-1828 and made up most of the high percentage of hypoxia tolerant individuals.

The results of this study indicate that the newly developed MIBI has some metrics that might indicate impairment for sedimentation, but may not have metrics that detect impairment caused by low dissolved oxygen. However, there was no evidence that benthic sediment was elevated at the fish sampling stations based on the stream habitat measurements collected by MDC and the sediment samples collected at the nearby MDNR stations. The MIBI did have some metrics, such as the number of native benthic species and the number of all native lithophilic species, which should be indicative of excessive sedimentation. Metrics that might show impairment caused by low dissolved oxygen, such as the number or percent of low dissolved oxygen tolerant species and the number or percent tolerant species as defined in the MDC RAM SOP (Fischer and Combes 2003), were not included in the MIBI.

4.2 Benthic Sediment Impacts on the MSCI Scores

Benthic sediment is a possible stressor at NFSR #5 and NFSR #10 based on benthic sediment levels and MSCI scores. North Fork of the Spring River #5 had a significantly higher amount of silt than all of the other sampling stations and a significantly higher amount of total benthic sediment (sand + silt) than all of the other sampling stations except LDC #2 (Table 14). Benthic sediment may not be the only stressor since the station only showed impairment during the fall sampling season. The high benthic sediment levels were most likely still present during the spring sampling season since the station was a long pool for the entire sampling reach. This would make it difficult for rapid movement of sediment during high flow events that might have occurred between the summer of 2006 and the spring of 2007. The habitat assessment and field notes for the bioassessment in the fall 2006 sampling season also indicated that benthic sediment deposition was high at NFSR #5. Another indication that benthic sediment may not be the only stressor is evident at NFSR #4, the closest downstream station. NFSR #4 showed impairment for the two duplicate macroinvertebrate samples during the fall 2006 sampling season, even though it had much lower benthic sediment levels.

North Fork of the Spring River #10, a transitional station located just upstream of Golden City, had a significantly higher amount of silt than the closest downstream station, NFSR #9, and the

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 59 of 70

two biological criteria stations in the transitional area of the Ozark/Osage EDU (Cedar and Horse creeks). North Fork of the Spring River #10 MSCI scores indicated impairment for both sampling seasons and the higher amount of silt is a possible stressor. Other test stations showing impairment based on the MSCI scores during the spring 2007 sampling season were NFSR #1, NFSR #7, NFSR #8, and NFSR #9b. There was no strong evidence that benthic sediment was the stressor. North Fork of the Spring River #8 was the only other upstream station besides NFSR #10 that had a fairly high amount of benthic sediment. This station had the third highest mean for silt and total sediment at NFSR test stations, but also had a high standard deviation for both silt and total sediment, indicating high variation between transects. The other stations that showed impairment during the spring 2007 sampling season had a low amount of benthic sediment compared to the other test stations and the biological criteria reference stations. The duplicate sample for NFSR #9b, NFSR #9a, showed no impairment since it had an MSCI score of 16 while NFSR #9b had an MSCI score of 12. The difference in the MSCI scores for the duplicate samples resulted from 5 less taxa in TR and 1 less EPTT for the NFSR #9b sample.

4.3 Low Dissolved Oxygen Impacts on MSCI Scores

Data collected for this study and data collected by MEC Water Resources Inc. for the Ecological and Water Resources Assessment Project (EWRAP) shows dissolved oxygen levels at the NFSR test stations and the biological criteria reference streams in this study were consistently low during the summer and fall of 2006. Dissolved oxygen datalogger data was collected for EWRAP at three stations in Cedar Creek and five stations in LDC. The dissolved oxygen data collected in Cedar Creek, including Cedar Creek station #1 for this study (EWRAP = CC#2), ranged from 52 to 67 percent of the readings below the 5 mg/L criteria. Dissolved oxygen data was collected from July 12, 2006 to August 6, 2006 at Cedar Creek #1. It was below the 5 mg/L criteria 75 percent of the time and the diel fluctuation of the dissolved oxygen readings were very high, ranging from 0 to greater than 20 mg/L on some days. This was most likely caused by the high amount of filamentous algae that was present at the station in the summer and fall of 2006. Dissolved oxygen data were collected at five stations on Little Drywood Creek, including two stations near LDC #2 (EWRAP = LDC-1 and LDC-2) and one station near LDC #1 (EWRAP = LDC-5). The dissolved oxygen readings at the LDC stations that were below the 5 mg/L water quality standards criteria ranged from 76 percent at LDC-2 to 100 percent at LDC-5. Horse Creek #1 had extremely low dissolved oxygen readings ranging from 0.19 to 2.32 mg/L from datalogger data collected for this study.

Datalogger data and discrete dissolved oxygen readings indicated that dissolved oxygen levels were consistently low at all of the test stations during the summer and fall of 2006. Approximately 98% of the combined datalogger readings from NFSR #3, NFSR #6, and NFSR #9 were below the 5 mg/L water quality standards criteria. Test station #1 was slightly better with about 80 percent of the dissolved oxygen readings below the 5 mg/L criteria. Test station #1 had a much wider, less shaded channel and more flow than most other test stations which probably led to higher dissolved oxygen levels during the afternoon hours. Comparatively, the datalogger at NFSR #3 was deployed during the same time period as NFSR #1 and all dissolved oxygen readings were below the 5 mg/L water quality standard. Test station #3 had a well shaded narrow channel with high water depths, low flow, and high abundance of woody debris,

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 60 of 70

which most likely led to the lower dissolved oxygen readings at this station (0.33 mg/L to 3.57 mg/L).

There is evidence that dissolved oxygen and a high abundance of planktonic algae might have been a stressor source at NFSR #4 and NFSR #5. No dataloggers were deployed at these stations, but all dataloggers deployed at other NFSR stations had low dissolved oxygen levels from late August to early September (Figures 4-12). Field notes recorded during site recon and datalogger deployment indicated that planktonic algae were present in the water column at NFSR #4 and #5 from late July to early August (Table 11). The algae were present at stations visited on July 31, August 7, and August 10, 2006. The planktonic algae were not present on the next site visit on August 31, 2006 at NFSR #4. The next date NFSR #5 was visited after August 10, 2006 was September 26, 2006 and planktonic algae were not observed. The planktonic algae most likely decreased or disappeared at both stations sometime in mid or late August. The presence of the planktonic algae affected the water quality by increasing turbidity and most likely caused a greater fluctuation in the diel dissolved oxygen levels. The difference between the lowest and highest dissolved oxygen values in a 24-hour period when the planktonic algae were present was probably much higher because of increased photosynthesis during the daylight hours and increased respiration during the nighttime hours. There was evidence that the algae biomass was influencing the diel dissolved oxygen levels on August 7, 2006 since discrete dissolved oxygen readings collected at NFSR #4 and NFSR #5 were much higher than the readings collected at other test stations and weather conditions were sunny on that date (Table 11). The dissolved oxygen levels at NFSR #4 and NFSR #5 were much lower three days later, on August 10, 2006, and most likely were caused by the cloudy and rainy weather that occurred on that date. The Lamar WWTF lagoon was the most likely source of the planktonic algae.

The low dissolved oxygen levels probably influenced the macroinvertebrate community structure in the NFSR test stations, but may not be the primary or only stressor since the only stations that had MSCI scores in the partial sustainability range were NFSR #4, NFSR #5, and NFSR #10 during the fall 2006 sampling season. The macroinvertebrate community of the NFSR test stations and the three biological criteria streams most likely evolved and adapted to the low dissolved oxygen conditions present in these streams during low flow periods.

4.4 Other Water Quality Impacts on MSCI Scores

Other possible stressor sources were water levels, high turbidity, and high nutrient levels. Test station #10 had very low water levels during the summer and fall of 2006. The station was pooled on the first site visit on July 31, 2006 and was still pooled when macroinvertebrates were sampled on October 3, 2006. This station has a much smaller watershed size than the other test stations, but still had three long, deep pools with water depths that were similar to the other NFSR test stations during the summer and fall of 2006.

A major rain event created very high water levels during the spring 2007 sampling season. Stations NFSR #2, NFSR #3, NFSR #7, NFSR #8, NFSR #9, and LDC #1 were sampled on April 3-5, 2007 while the other NFSR test stations were sampled before the river rise on March 19-20, 2007. The substantial rise in the river could have scoured the stream bottom, possibly

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 61 of 70

impacting the macroinvertebrate community at the stations that were sampled after the rain event. The evidence supporting this as a possible stressor source is limited since NFSR #2, NFSR #3, and LDC #1 MSCI scores did not show impairment and TR was at least 50 in all of the samples collected after the rain event.

The majority of the macroinvertebrate taxa found in samples collected for this study, especially at NFSR and LDC stations, are considered tolerant of organic pollution. All of the macroinvertebrate samples collected during the fall 2006 sampling season had biotic index values near or above 8.0 except NFSR #1 which had a biotic index value of 7.48. All three stations that showed impairment during the fall 2006 sampling season had extremely high biotic index values ranging from 8.29 at NFSR #4a to 8.62 at NFSR #10. The 75th percentile values used to calculate biotic index criteria for biological criteria reference streams in EDUs near the NFSR were much lower than the biotic index values at the NFSR test stations (Table 22). The biotic index values were better at the NFSR test stations during the spring 2007 sampling season with many stations having biotic index values below 8.0. These results indicate that the percentage of the macroinvertebrate samples made up of tolerant taxa were higher at most of the NFSR test stations than the biological criteria streams in the Central Plains/Osage/South Grand, Ozark/Neosho, and Ozark/Osage EDUs. EPTT, generally considered intolerant of organic pollution, ranged from 1 taxa at NFSR #10 to 3 taxa at NFSR #5 and were extremely low at all of the NFSR test stations. These stations showed impairment during the fall 2006 sampling season. Two of the five stations that showed impairment during the spring 2007 sampling season, NFSR #8 and NFSR #10, had biotic index values over 8.0. EPTT ranged from 1 taxa at NFSR #10 to 3 taxa at NFSR #7 and NFSR #9b. These stations showed impairment during the spring 2007 season. These results indicate that there was a higher percentage of macroinvertebrate samples made up of taxa tolerant to organic pollution at most NFSR test stations compared to the biological criteria streams in the Central Plains/Osage/South Grand. Ozark/Neosho, and Ozark/Osage EDUs.

Table 22
Biotic Index Criteria for EDUs Near the NFSR and Reference Streams (Cedar and Horse creeks) in the Transitional Area of the Ozark/Osage EDU

Ecological Drainage Unit	Fall Season	Spring Season
Central Plains/Osage/South Grand	7.73	7.16
Ozark/Osage	6.68	6.20
Ozark/Neosho	5.50	5.28
Cedar/Horse Creeks	6.88	6.38

Nutrients and turbidity could be stressors on the macroinvertebrate community, but there was not a strong relationship between the water quality parameters and MSCI scores. The MSCI scores at NFSR #3 did not show impairment during the fall 2006 sampling season even though ammonia was in violation of the chronic water quality standards and total nitrogen was extremely high. Turbidity was elevated at NFSR #7-NFSR #9, ranging from 39.4 to 49.4 NTU, but none of these stations were impaired based on the MSCI scores. Turbidity was also elevated at the four MDC sampling stations ranging from 16.0 to 75.2 NTU (Table 21). Total nitrogen

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 62 of 70

was slightly elevated at all of the test stations, but there was no evidence it was a stressor since it was not dramatically higher at stations showing impairment during the fall 2006 sampling season. Planktonic algae were very abundant at NFSR #4 and NFSR #5 in early August and elevated levels of nutrients, if present at that time, may have allowed the algae to thrive.

Nitrate + nitrite-N and total nitrogen were elevated at all of the NFSR test stations during the spring 2007 sampling season, but it is unknown what stress the high nitrogen levels had on the macroinvertebrate community. Total nitrogen levels at the NFSR stations showing impairment during the spring 2007 sampling season were over 2 mg/L and much higher than recommended U.S. EPA total nitrogen reference condition values. But other test stations that did not show impairment also had elevated nitrogen levels ranging from 1.64 mg/L at NFSR #5 to 2.58 mg/L at NFSR #2. A possible source of the elevated nitrogen was surface runoff since the test stations were either sampled during or two weeks after a major rain event that caused the river's water levels to rise above its banks. Nutrient levels during both sampling seasons indicated a slightly eutrophic condition in the NFSR during the fall and spring sampling seasons, but its stress on the macroinvertebrate community is unknown since only some of the stations showed impairment.

4.5 Macroinvertebrate Community Structure

The most abundant and commonly found macroinvertebrates were also organic pollution tolerant taxa. There was a difference in macroinvertebrate community structure between samples that showed impairment and samples that did not. During the fall 2006 sampling season, the stations that showed impairment (NFSR #4a, NFSR #4b, NFSR #5, and NFSR #10) had a much lower percentage of the samples made up of EPTT and clingers. These two metrics could be a good indicator of organic pollution, low dissolved oxygen, and high amounts of benthic sediment. Macroinvertebrates that are included in these metrics are normally more intolerant of pollution and need a hard surface for clinging or attachment. Caenis latipennis was the only EPTT that was abundant at the NFSR test stations, but was generally in lower abundance at the impaired stations. Tolerant Tubificidae and Chironomidae taxa were very abundant at the stations showing impairment during the fall 2006 sampling season. Stations NFSR #4 and NFSR #5 had a high abundance of large woody debris, which in turn had a high density of very tolerant Glyptotendipes. Glyptotendipes commonly occur in detritus rich sediments of slow flowing rivers and become abundant in areas of organic pollution (Simpson and Bode 1980; Wiederholm 1983). Tubificidae worms including Tubificidae, *Quistradrilus multisetosus*, and *Aulodrilus* were also abundant at NFSR #4 and NFSR #5. Tubificidae also dominated NFSR #10 during the fall 2006 sampling season, making up 20.4 percent of macroinvertebrates in the sample. The rest of the sample was dominated by Branchiura sowerbyi, Goeldochironomus, Kiefferulus, and Sphaeridae. These taxa are pollution tolerant and made up from 8.0 to 10.7 percent of the sample. These results indicate that low dissolved oxygen, nutrients, and/or benthic sediment could have altered the macroinvertebrate community at the impaired stations since all of these taxa are generally tolerant.

The macroinvertebrate samples that showed impairment during the spring 2007 sampling season had a very low percentage of EPTT and clingers, except NFSR #7. *Caenis latipennis* was the only EPTT that was abundant at the NFSR stations. Chironomidae and Tubificidae taxa made up

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 63 of 70

most of the taxa of the impaired stations. Cricotopus/Orthocladius group and the very tolerant Hydrobaenus were much more abundant than other Chironomidae taxa at most of the impaired stations. These two taxa made up approximately 50 percent of the macroinvertebrates found in the samples at NFSR #9 and NFSR #10. The intolerant Chironomidae taxa Eukiefferiella brevicalicar group was abundant at NFSR #7, NFSR #9, and the reference stream stations at Horse Creek and Cedar Creek. *Physella* was also very abundant at the impaired stations, except at NFSR #10. Station NFSR #5 did not show impairment, but clingers only made up 0.3 percent of the macroinvertebrate sample in the spring 2007 sampling season. The low percentage of clingers, high levels of benthic sediment, and the high biotic index at NFSR #5 are evidence that the macroinvertebrate community is dominated by tolerant taxa. North Fork of the Spring River #5 had a distinct macroinvertebrate community with much higher abundances of *Dicrotendipes*. Glyptotendipes, Procladius, and Planariidae that were much more abundant than at the other test stations. High benthic sediment levels at NFSR #5 and NFSR #10 could be causing the low abundance of EPTT, clingers, and intolerant taxa at these stations. The other upstream stations that showed impairment had very low abundances of intolerant taxa, but only NFSR #8 had fairly high levels of benthic sediment.

4.6 Land Use and AES Type Effects on Benthic Sediment

Row crops in the NFSR watershed made up a higher percentage of the land use than the three watersheds containing the reference streams sampled in this study. Row crops ranged from 35 to 60 percent. The high row crop land use in the NFSR watershed is potentially responsible for the higher amounts of benthic sediment deposits. However, the 14-digit HU containing NFSR #5 had significantly higher benthic sediment than the other sampling stations, except LDC #2, but had a lower percent row crops than the adjacent HU that contained NFSR stations #2-#4 (Table 15). This indicates that land use was not the primary cause of the amount of benthic sediment at NFSR #5 or the land use data was not calculated at a scale suitable to show local impacts at NFSR #5. The two LDC stations were another example of land use data not matching benthic sediment data. Percent row crops at the LDC stations were much lower than all NFSR stations, but benthic sediment was higher at LDC stations than most NFSR stations. North Fork Spring River #10, which had the most benthic sediment at the NFSR stations after NFSR #5, seemed to have a better correlation with the land use data. The percent row crops for the 14-digit HU containing NFSR #10 was 60 percent and was much higher than the other test stations. North Fork Spring River #10 was located in a transitional area of the Ozark Highlands Ecoregion and had significantly higher amounts of benthic silt than Cedar and Horse creeks, the two biological criteria reference streams in the transitional area of the Ozark/Osage EDU.

Aquatic Ecological System types might be as important as or more important to benthic sediment amounts than land use. Little Drywood Creek and NFSR, which are both located in the South Deepwater Creek AES type, generally had more benthic sediment than Cedar and Horse creeks. The AES types that contain the Cedar and Horse creeks watersheds have bedrock deposits made primarily of limestone while sandstone and shale are predominant in the South Deepwater Creek AES type. The surface soil texture for the South Deepwater Creek AES type is made up primarily of silt loam, which is defined as material made of 50 percent or more silt and 12 to 27 percent clay or 50 to 80 percent silt and less than 12 percent clay. The surface soil texture for

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 64 of 70

AES types that contain Cedar and Horse creeks are made up of silt loams or loams. Loams are defined as soil material containing 28 to 50 percent silt, 7 to 27 percent clay, and less than 52 percent sand. The silt loams that predominate in the South Deepwater Creek AES type have more silt and clay content which creates the potential for greater amounts of fine benthic sediment in streams.

The visual estimates of bottom substrate recorded at the four NFSR MDC sampling stations showed fine sediment ranging from 5.5 to 21.8 percent (Table 20). Fine and coarse gravel substrate classes made up the highest percentage of the bottom substrate at most of the sampling stations. Physical habitat measurements were also collected by MDC RAM program at two LDC stations located within the biological criteria reference reach on June 20-21, 2006. The stations were located just downstream of LDC #2 (R0610-06) and a station located at LDC #1 (R0611-06). The percentage of fine sediment covering the stream bottom was 45.5 percent at R0610-06 and 70.9 percent at R0611-06, which was much higher than any of the NFSR sampling stations. The LDC stations also had a much lower percentage of the substrate made of gravel size classes with fine gravel ranging from 0 to 3.6 percent and coarse gravel ranging from 1.8 to 5.5 percent. These results indicate that the four transitional stations on the NFSR had much less fine sediment covering the stream bottom than the LDC stations. This was similar to the results of the MDNR benthic sediment samples.

4.7 Channel Morphology

Channel measurements showed that channels at the NFSR transitional stations were wider than the glide/pool stations. Most of the transitional stations had sampling reaches that were made up of short riffle/runs and very long pools that had deep water depths. The four MDC stations also showed the same trend with pools making up from 75 to 92 percent and mean thalweg depths ranging from 1.6 to 2.1 feet (Table 20). Test station #1 was exceptional in that it had a much wider channel, more defined riffle/run segments, and shallower water depths than the other transitional stations. The glide/pool stations had a u-shaped channel with steep banks that is common in glide/pool streams in western Missouri. The channel at the glide/pool stations was narrower, the wetted width filled a greater proportion of the channel, and water depth was deeper than the transitional stations. Sinuosity was higher at the glide/pool stations than the transitional stations, except NFSR #2. There was no evidence based on the channel and sinuosity measurements that the NFSR channel had been channelized or physically altered in a significant way since most of the stations had large pools with high average depths and sinuosity values were much greater than 1.

5.0 Conclusions

The macroinvertebrate MSCI scores indicated impairment at some MDNR sampling stations while the MIBI scores did not indicate impairment at any of the MDC sampling stations. These results can possibly be explained by the fact that macroinvertebrates are more directly impacted by sediment than fish. Another possible reason for the discrepancy between the two communities is that pool habitat was very abundant and many of the most abundant fish species prefer pool habitat. Finally, the MIBI did not include metrics that have or possibly could be shown to cause impact from sedimentation and low dissolved oxygen levels.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 65 of 70

The first two null hypotheses were rejected. The first null hypothesis stated that benthic sediment, stream channel measurements, and dissolved oxygen of the NFSR test stations will not differ from the two biological criteria reference stations in a transitional area of the Ozark/Osage EDU and/or Little Drywood Creek, a biological criteria reference stream in the Central Plains/Osage/South Grand EDU. The second null hypothesis stated that benthic sediment, stream channel measurements, and dissolved oxygen will not differ between longitudinally separate reaches of the NFSR. Dissolved oxygen was consistently low during the summer and fall of 2006 at the NFSR test stations based on datalogger data and discrete measurements taken with a handheld unit. Dissolved oxygen data collected by MDNR and MEC Water Resources Inc. within the reference reaches at Cedar Creek, Horse Creek, and Little Drywood Creek showed that the biological criteria reference streams also had low dissolved oxygen readings during the summer and fall of 2006. The benthic sediment collected for this study showed that sediment was elevated at NFSR #5 and NFSR #10. Benthic sediment, especially silt, collected at NFSR #5 was significantly higher than the other test stations and the biological criteria reference streams. North Fork Spring River #10, located in the transitional reach, had a significantly higher amount of benthic silt than both biological criteria reference stations in transitional areas and the closest downstream transitional stations (NFSR #8 and NFSR #9). The geologic characteristics of the South Deepwater Creek AES type that NFSR flows through shows that the NFSR is distinctively different than any other stream system in the Ozark/Neosho EDU. The AES type of the NFSR watershed is strong evidence that the levels of sediment (benthic or suspended) should be assessed using data from the same or similar AES type and not from data collected in other AES watersheds in the Ozark/Neosho EDU.

The third and fourth null hypotheses were rejected. The third hypothesis stated that the macroinvertebrate community in the NFSR will not differ from the two biological criteria reference streams in a transitional area of the Ozark/Osage EDU and/or Little Drywood Creek, a biological criteria reference stream in the Central Plains/Osage/South Grand EDU. The fourth null hypothesis stated that the macroinvertebrate community will not differ between longitudinally separate reaches of the NFSR. Four out of 11 samples collected at the NFSR test stations showed impairment based on MSCI scores during the fall 2006 sampling season. Three of four samples showing impairment were at NFSR #4 and NFSR #5, which were the two closest downstream stations to the Lamar WWTF lagoon. The other station that showed impairment during the fall 2006 sampling season was NFSR #10, the most upstream station. The macroinvertebrate community at NFSR #4 and NFSR #5 was possibly impacted by the Lamar WWTF since planktonic algae, commonly discharged from wastewater lagoons, were abundant in the water column during site visits to these stations in late July and early August of 2006. The most likely stressors at NFSR #4 were low dissolved oxygen levels and the planktonic algae. The planktonic algae most likely caused greater extremes of dissolved oxygen over a 24-hour period because of increased photosynthesis and respiration, possibly causing greater stress on the macroinvertebrate community. The most likely stressors at NFSR #5 were benthic sediment, low dissolved oxygen levels, and planktonic algae. The most likely stressors at NFSR #10 were benthic sediment and low dissolved oxygen levels. There was evidence that benthic sediment may have impacted the macroinvertebrate community at NFSR #5 and NFSR #10 since a very

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 66 of 70

small percentage of the macroinvertebrate community was made of intolerant taxa like EPTT and clingers.

All of the biological criteria reference stations except LDC #1 showed impairment during the fall 2006 sampling season. Very low water levels were the most likely stressor of the reference stations. The three reference stations that showed impairment were significantly pooled. Coarse substrate could not be sampled at Horse and Cedar creeks and no rootmat could be sampled at LDC #2 because of low water levels. The spring 2007 data showed that the MSCI metrics improved at Cedar and Horse creeks compared to the fall 2006 data, but MSCI scores still indicated impairment. These results indicate that the macroinvertebrate community had still not recovered from the previous low water levels during the summer and fall of 2006.

Five out of 10 samples collected at the NFSR stations showed impairment based on MSCI scores during the spring 2007 sampling season. The stations that showed impairment during the spring 2007 sampling season were NFSR #1, NFSR #7, NFSR #8, NFSR #9b, and NFSR #10. Stressors were not as prevalent during the spring 2007 sampling season. Dissolved oxygen levels were not low during this sampling period and most stations that showed impairment did not have high levels of benthic sediment. North Fork Spring River #8 and NFSR #10 were the only stations showing impairment that had higher amounts of benthic sediment. North Fork Spring River #1 was the only station that was assessed using the stricter RP transitional area stream criteria. The only known possible stress for this station was the high nitrogen values. which were consistently high at all of the NFSR stations during the spring 2007 sampling season. There were no known stressors at NFSR #7 and NFSR #9b except the scouring of the stream bottom caused by a major rain event and the high nitrogen levels. All of the upstream stations except NFSR #10 were collected two weeks after a rain event that caused the NFSR to flood over its banks. It is not known what affect the flooding event had on the macroinvertebrate community since two downstream stations, NFSR #2 and NFSR #3, were collected during the same time period and the MSCI scores for those stations did not indicate impairment. There was some evidence that benthic sediment might have been a stressor at NFSR #8 and NFSR #10 during the spring 2007 sampling season. The macroinvertebrate community structure indicated possible impairment from sediment since EPTT, percent EPTT, and percent clingers were very low and the biotic index was very high at the two stations.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 67 of 70

6.0 Recommendations

- 1. Conduct a watershed study that determines which major sub-watersheds of the NFSR are contributing the most sediment, oxygen demand, or other water chemistry changes to the NFSR and causing the impairment of the macroinvertebrate community.
- 2. Encourage best management practices that could reduce pollutants in surface runoff for parameters such as sediment, nutrients, and pesticides.

7.0 Literature Cited

- Chapman, S.S., J.M. Omernik, G.E. Griffith, W.A. Schroeder, T.A. Nigh, and T.F. Wilton. 2002. Ecoregions of Iowa and Missouri (color poster with map, descriptive text, summary tables, and photographs). Reston, Virginia, U.S. Geological Survey (map scale 1:1,800,000).
- Berkman, H.E., C.F. Rabeni, and T.P. Boyle. 1986. Biomonitors of Stream Quality in Agricultural Areas: Fish versus Invertebrates. Environmental Management 10:413-419.
- Berkman, H.E. and C.F. Rabeni. 1987. Effect of Siltation on Stream Fish Communities. Environmental Biology of Fishes 18:285-294.
- Haithcoat, T.L., M.A. Urban, C.F. Rabeni, and K.E. Doisy. 2003. Biophysical evaluation of reference streams in Missouri: Final report for the Missouri Department of Natural Resources. University of Missouri-Columbia, Columbia, Missouri 65211. 87 pp.
- Fischer, S. and M. Combes. 2003. Resource Assessment and Monitoring Program: Standard Operating Procedures Fish. Missouri Department of Conservation, Resource Science Division, Columbia, Missouri. 55 pp.
- Kaufmann, P.R., P. Levine, E.G. Robison, C. Seeliger, D.V. Peck. 1999. Quantifying Physical Habitat in Wadeable Streams. United States Environmental Protection Agency, Environmental Monitoring and Assessment Program, Research Triangle Park, NC 27711. EPA-620-R99-003. 102 pp.
- Missouri Department of Natural Resources. 2002. Biological Criteria for Wadeable/Perennial Streams of Missouri. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 32 pp.
- Missouri Department of Natural Resources. 2003a. Semi-quantitative Macroinvertebrate Stream Bioassessment Project Procedure. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 24 pp.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 68 of 70

- Missouri Department of Natural Resources. 2003b. Required/Recommended Containers, Volumes, Preservatives, Holding Times, and Special Sampling Considerations Standard Operating Procedure. MDNR-ESP-001. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 21 pp.
- Missouri Department of Natural Resources. 2003c. Flow Measurements in Open Channels Standard Operating Procedure. MDNR-ESP-113. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 9 pp.
- Missouri Department of Natural Resources. 2003d. Taxonomic Levels for Macroinvertebrate Identification. MDNR-ESP-209. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 32 pp.
- Missouri Department of Natural Resources. 2004a. Upper North Fork of the Spring River Biological Assessment Study. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 34 pp.
- Missouri Department of Natural Resources. 2004b. Lower North Fork of the Spring River Biological Assessment Study. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 32 pp.
- Missouri Department of Natural Resources. 2005a. Rules of the Department of Natural Resources Division-Clean Water Commission, Chapter 7-Water Quality. 10 CSR 20-7.031. Water Quality Standards. pp. 10-136.
- Missouri Department of Natural Resources. 2005b. Lamar Wastewater Treatment Plant, North Fork of the Spring River Stream Survey Sampling Report. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 6 pp.
- Missouri Department of Natural Resources. 2005c. Field Sheet and Chain-of-Custody Record. MDNR-ESP-002. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 8 pp.
- Missouri Department of Natural Resources. 2006. Dissolved Oxygen, Benthic Sediment, and Bioassessment Study Proposal, North Fork of the Spring River. Missouri Department of Natural Resources, Environmental Services Program, P.O. Box 176, Jefferson City, Missouri 65102. 6 pp.
- Pflieger, W.L. 1989. Aquatic Community Classification System for Missouri. Missouri Department of Conservation Aquatic Series No. 19. 76 pp.

Biological Assessment and Stressor Study North Fork of the Spring River 2006-2007 Page 69 of 70

- Pflieger, W.L. 1997. The Fishes of Missouri: Revised Edition. Missouri Department of Conservation, P.O. Box 180, Jefferson City, Missouri 65102. 372 pp.
- Smale, M.A. and C.F. Rabeni. 1995. Hypoxia and Hyperthermia Tolerances of Headwater Stream Fishes. Transactions of the American Fisheries Society 124:698-710.
- Simpson, K.W. and R.W. Bode. 1980. Common Larvae of Chironomidae (Diptera) from New York State Streams and Rivers with Particular Reference to the Fauna of Artificial Substrates. New York State Museum Bulletin. 439:1-105.
- Sowa, S.P., D.D. Diamond, R.A. Abbitt, G.M. Annis, T. Gordon, M.E. Morey, G.R. Sorensen, and D. True. 2004. Final Report of the Aquatic Component of GAP Analysis: A Missouri Prototype. Missouri Resource Assessment Partnership (MoRAP), University of Missouri. 111 pp.
- Sowa, S.P. and D.D. Diamond. 2006. Using GIS and an Aquatic Ecological Classification System to Classify and Map Distinct Riverine Ecosystems Throughout EPA Region 7. Missouri Resource Assessment Partnership (MoRAP), University of Missouri. 242 pp.
- United States Environmental Protection Agency. 2000a. Ambient Water Quality Criteria Recommendations. Information Supporting the Development of State and Tribal Nutrient Criteria for River and Streams in Nutrient Ecoregion IX. United States Environmental Protection Agency, Office of Water, Washington, D.C., EPA-822-B-00-019. 32 pp.
- United States Environmental Protection Agency. 2000b. Ambient Water Quality Criteria Recommendations. Information Supporting the Development of State and Tribal Nutrient Criteria for River and Streams in Nutrient Ecoregion XI. United States Environmental Protection Agency, Office of Water, Washington, D.C., EPA-822-B-00-020. 28 pp.
- United States Environmental Protection Agency. 2006. North Fork Spring River, Jasper County, Missouri, Total Maximum Daily Load. U.S. Environmental Protection Agency, Region 7, Water Wetlands, and Pesticides Division. 13 pp.
- Wiederholm, T. (Editor). 1983. Chironomidae of the Holarctic Region. Keys and Diagnoses. Part I. Larvae. Entomol. Scand. Suppl. 19:1-457.

Biological Assessment and Stressor Study
North Fork of the Spring River
2006-2007
Page 70 of 70

Submitted by:	
-	Carl Wakefield
	Environmental Specialist III
	Environmental Services Program
	Water Quality Monitoring Section
	, , ,
Date:	
Dute.	
Approved by:	
	Alan Reinkemeyer
	Director
	Environmental Services Program

AR:cw

c: John Ford, WPP Phil Schroeder, WPP Cindy Davies, SWRO

Appendix A

Missouri Department of Natural Resources
Dissolved Oxygen, Benthic Sediment, and Bioassessment Study Proposal
North Fork of the Spring River
Barton, Dade, and Jasper Counties
March 2, 2006

Missouri Department of Natural Resources Dissolved Oxygen, Benthic Sediment, and Bioassessment Study Proposal North Fork of the Spring River Dade, Barton, and Jasper Counties March 2, 2006

Background

North Fork of the Spring River originates in western Dade County near the town of Golden City and is located within the Ozark/Elk/Spring Ecological Drainage Unit (EDU). North Fork of the Spring River is listed in the Missouri Water Quality Standards (MDNR 2005) as a class "C" stream for its first 51.5 miles, continuing as a class "P" stream for 14.5 miles to its confluence with the Spring River in Jasper County. Designated uses for North Fork of the Spring River are "warm water aquatic life protection, human health/fish consumption and livestock and wildlife watering." The first 51.5 miles of the North Fork of the Spring River are included on the 2002 303(d) list with the impact designated as non-point agriculture related sediment.

The North Fork of the Spring River is a tributary of the Spring River system in southwestern Missouri that flows through an ecological transitional area that has features of both the Ozark and plains ecoregions. The stream system is characterized by long pools with short, rocky, and gravelly riffles and the geology in the watershed contains beds of shale, sandstone, and limestone (Pflieger, 1989). Stream sections of the North Fork of the Spring River that flow through the Ozark Highlands Ecoregion are transitional in nature while stream sections that flow through the Central Irregular Plains Ecoregion are prairie like in nature (Attachment B).

Streams subjected to increased sediment loading can be vulnerable to water quality and habitat degradations. Fertilizers and pesticides that adhere to soil particles, which are then flushed into waterways during storm events, can reduce water quality. Habitat loss can subsequently result from sediment clogging interstitial spaces in benthic structures that invertebrates use for foraging and protection. In extreme cases, sediment can affect the health of aquatic species by coating and irritating the gills of fish and invertebrates, by covering their nests and smothering eggs, and increasing the turbidity of the water thereby hindering the ability of sight feeders to forage. These potential factors have led to the placement of the North Fork of the Spring River on the 303(d) List of Impaired Waters.

A biological assessment study for the upper section of North Fork of the Spring River was completed in 2004 by the Field Services Division (**FSD**), Environmental Services Program (**ESP**), Water Quality Monitoring Section (**WQMS**) (MDNR 2004). Since there were no biological criteria reference streams in a transitional areas of the Ozark/Elk/Spring EDU, North Fork of the Spring River sampling stations were compared to biological criteria calculated from Horse and Cedar Creeks, two biological criteria reference streams in a transitional area of the Ozark/Osage EDU. The results of the study showed that Stream Condition Index (**SCI**) ratio of fully supporting to partially supporting macroinvertebrate communities for North Fork of the Spring River (9% / 91%) were below the acceptable ratio (80% / 15%) for biological reference streams in the Ozark/Osage EDU. These results indicated that the upper North Fork of the Spring River segment was impaired.

A biological assessment study for the lower section of North Fork of the Spring River was completed in 2005 by the Field Services Division (FSD), Environmental Services Program (ESP), Water Quality

Monitoring Section (**WQMS**) (MDNR 2005). Since some sampling locations were "plains like" in nature and some sampling locations were transitional in nature, leafpacks, a type of artificial substrate was used as a standardized habitat to assess the stream. To determine impairment of the North Fork of the Spring River, leafpacks were deployed at 5 stations on the North Fork of the Spring River and at control stations in the Osage River and the Arkansas River drainages. Control streams were Flat Rock Creek, a tributary of the Neosho River, located in Neosho County, Kansas and Little Drywood Creek, a Plains/Osage EDU biological criteria reference stream located in Vernon County, Missouri. The Kansas Department of Health and Environment recommended Flat Rock Creek as a control stream based on water quality data even though it is on the Kansas 303(d) list for copper. Seven biological metrics were used to determine impairment of the North Fork of the Spring River sampling stations. The results of the study showed that the three most upstream stations (test stations #3-#5) were impaired since four metrics showed differences from controls and station #2 showed slight impairment with two metrics showing differences. Station #1, the most downstream station, showed no impairment since none of the metrics showed differences from controls. The overall results indicated that most of the lower North Fork of the Spring River segment was impaired.

Objectives

In concordance with the MDNR Sediment TMDL Strategy, a stream listed for sediment, which does not meet the fully biological supporting criteria and has acceptable habitat, must be evaluated for water quality stressors. Therefore, we propose to conduct a re-assessment of the macroinvertebrate community of North Fork of the Spring River as well as an evaluation of channel morphology, dissolved oxygen and benthic sediment. Dissolved oxygen is added to sediment as a potential stressor due to low levels documented during the fall 2003 and 2004 sampling periods. Channel morphology measurements have relationships to channel modifications and water depths, which may have associations with sediment and dissolved oxygen.

Null Hypotheses

- 1. The macroinvertebrate assemblages will not differ among reaches of North Fork of the Spring River from upstream to downstream.
- 2. Dissolved oxygen will not differ among reaches of North Fork of the Spring River from upstream to downstream.
- 3. Benthic sediment deposits will not significantly differ among reaches of North Fork of the Spring River from upstream to downstream.
- 4. Channel width, depth and sinuosity measures will not differ among reaches of North Fork of the Spring River from upstream to downstream.
- 5. The macroinvertebrate assemblage of North Fork of the Spring River at transitional sampling stations where all four habitats are available (CS, NF, SG, and RM), will not differ from that found in Cedar and Horse creeks, two biological criteria reference streams in a transitional area of the Ozark/Osage EDU or Little Drywood Creek, a biological criteria stream in the Plains/Osage EDU.
- 6. The macroinvertebrate assemblage of North Fork of the Spring River at sampling stations located in the prairie ecoregion will not differ from that found in Little Drywood Creek, a biological criteria reference stream in the Plains/Osage EDU.
- 7. The dissolved oxygen of North Fork of the Spring River will not differ from that found in Cedar and Horse creeks, two biological criteria reference streams in a transitional area of the Ozark/Osage EDU and Little Drywood Creek, a biological criteria reference stream in the Plains/Osage EDU.
- 8. The benthic sediment deposits of North Fork of the Spring River will not significantly differ from that found in Cedar and Horse creeks, two biological criteria reference streams in a transitional area of the

- Ozark/Osage EDU and Little Drywood Creek, a biological criteria reference stream in the Plains/Osage EDU.
- 9. The channel width, depth and sinuosity of North Fork of the Spring River will not differ from that found in Cedar and Horse creeks, two biological criteria reference streams in a transitional area of the Ozark/Osage EDU and Little Drywood Creek, a biological criteria reference stream in the Plains/Osage EDU.

Study Design

General: The North Fork of the Spring River study area is included entirely within the approximately 51.5 mile 303(d) listed reach of North Fork of the Spring River. The upstream boundary of the North Fork of the Spring River study area is just upstream of Golden City in Dade county and the downstream boundary is the approximate confluence of Dry Fork Creek located southeast of Jasper, in Jasper county. A total of 10 North Fork of the Spring River stations will be surveyed (see Attachment C for map). The general locations are listed in Table 1 beginning with the most downstream site.

Table 1 North Fork of the Spring River Sample Locations

Sample Site	Geographic Location
North Fork Spring River #1	SE 1/4 sec. 29, T. 30 N., R. 31 W.
North Fork Spring River #2	SW ¹ / ₄ sec. 11, T. 30 N., R. 31 W.
North Fork Spring River #3	SW ¹ / ₄ sec. 26, T. 31 N., R. 31 W.
North Fork Spring River #4	SE ¹ / ₄ sec. 1, T. 31 N., R. 31 W.
North Fork Spring River #5	SW ¹ / ₄ sec. 25, T. 32 N., R. 31 W.
North Fork Spring River #6	NW ¹ / ₄ , sec. 24, T. 32 N., R. 31 W.
North Fork Spring River #7	NE ¼, sec. 31, T. 32 N., R. 29 W.
North Fork Spring River #8	NE ¼, sec. 9, T. 31 N., R. 29 W.
North Fork Spring River #9	SE ¼, sec. 23, T. 31 N., R. 29 W.
North Fork Spring River #10	SW ¹ / ₄ , sec. 36, T. 31 N., R. 29 W.

North Fork of the Spring River is in the Ozark/Elk/Spring EDU. Biological, chemical, and habitat comparisons will be made between the ten (10) sampling stations on North Fork of the Spring River, one (1) sampling station on Cedar Creek, one (1) sampling station on Horse Creek, and one (1) sampling station on Little Drywood Creek.

Biological Sampling: Macroinvertebrates will be sampled according to the methods described in the Semi-quantitative Macroinvertebrate Stream Bioassessment Project Procedure (**SMSBPP**) (2003d). All habitats for riffle/run and glide/pool streams (CS, NF, SG, RM) will be collected on North Fork of the Spring River sampling stations located in transitional stream segments and glide/pool habitats (NF, SG, RM) habitats will be collected at sampling stations in plains stream segments. Sampling will be conducted during fall 2006 (September 15 through October 15) and spring 2007 (March15 through April 15). Macroinvertebrate samples will be a composite of six 1-m² kick samples within coarse substrate (transitional stream segments only), six 1-m² kick samples within non-flow habitat (NF), 6 lineal meters of rootmat habitat, and 400 cm² from each of 12 pieces of woody debris in varying stages of decomposition.

Water Quality Sampling: Water chemistry analyses will be restricted to field measurements of dissolved oxygen and water samples for turbidity and total suspended sediment (TSS), which will be returned and analyzed at the ESP laboratory. The samples will be collected per the standard operating procedures: Required/Recommended Containers, Volumes, Preservatives, Holding Times, and Special Considerations, MDNR-FSS-001 (MDNR 2003c) and Field Sheet and Chain-of-Custody Record, MDNR-FSS-002 (MDNR 2005a). Field measurements of dissolved oxygen will be measured per the standard operating procedures: Sample Collection and Field Analysis for Dissolved Oxygen Using a Membrane Electrode Meter, MDNR-WQMS-103 (MDNR 2002) and Continuous or Long Term Monitoring of Water Quality Using a Dissolved Oxygen and Temperature Data Logger, MDNR-WQMS-104 (MDNR 2003a).

Dissolved oxygen will be measured during a 1-month period previous to macroinvertebrate sampling in the fall (August 15 through September 15). Discrete measurements shall be taken at all sampling stations for 3 days per early morning recommendations in the Wasteload Allocation/Special Stream Studies Project Procedure (MDNR 2003e). Dissolved oxygen data loggers will be deployed at two (2) North Fork of the Spring River stations, one (1) Cedar Creek station, one (1) at Horse Creek station, and one (1) Little Drywood Creek station for a minimum of 3 days and a maximum of 7 days.

Turbidity and TSS samples will be collected from each sampling station once during the time period for dissolved oxygen measurements and once during the time period for macroinvertebrate sampling. Stream discharge measurements also will be taken at the time of sample collection using a Marsh-McBirney flow meter per MDNR-FSS-113 (MDNR 2003b).

Draft Benthic Sediment Sampling: Benthic sediment will be measured once during the summer or fall low flow period at all sampling stations. See Attachment A for sampling method.

Channel Morphology Measurements: The ESP has selected stream reach and channel measurements that tend to represent undesirable changes in channel morphology due to channel modifications. Those measurements are Average Channel Width, Average Wetted Channel Width, Ratio of Channel Width to Wetted Width, Average Depth, Ratio of Wetted Width to Depth, Drainage Size, Sinuosity, the Standard Deviation of Depth, and Maximum Depth.

At each sampling station a series of 10 bank to bank transects will be established. Each transect is equally spaced within the sampling reach. Each spacing is equivalent to 20x the average width. Channel measurements are taken at each transect. These measurements included lower bank width, wetted width, and water depth at ½, ½, and ¾ of the distance across the wetted width. In order to document critical habitat conditions, measurements will be collected once during the fall low flow period.

Laboratory Methods: All water quality samples will be analyzed at the MDNR ESP laboratory. The samples of macroinvertebrates will be processed (MDNR 2003d) and identified per the standard operating procedure Taxonomic Levels for Macroinvertebrate Identification, MDNR-FSS-209 (MDNR 2005b).

Data Recording and Analyses: Macroinvertebrate data will be entered in a Microsoft Access database in accordance with Quality Control Procedures for Data Processing, MDNR-WQMS-214 (MDNR 2003f). Data analysis is automated within the Access database. Two separate analyses will be conducted. The first analysis will be using the standard multi-habitat approach where four standard metrics will be calculated for each sample reach according to the SMSBPP: Taxa Richness (TR); Ephemeroptera, Plecoptera, Trichoptera Taxa (EPTT); Biotic Index (BI); and the Shannon Diversity Index (SDI). Additional metrics,

such as Quantitative Similarity Index for Taxa (QSI-T) may be used to discern differences in taxa between control and impacted stations. This method will be used to determine overall habitat quality of the sampling stations. It will also help determine if the macroinvertebrate community on North Fork of the Spring River is more similar to Cedar and Horse creeks, two biological criteria reference streams in a transitional area of the Ozark/Osage EDU or Little Drywood Creek, a biological criteria reference stream in the Plains/Osage EDU.

The second analysis is to assess the sampling stations using NF data only. This analysis is being done since benthic sedimentation occurs primarily in this stream habitat and all sampling locations will have the habitat in common. Some of the standard metrics, like BI and EPT, included in the SMSBPP may be used in the analyses along with other metrics like percent tolerant taxa, percent sediment tolerant taxa, and percent EPT that would indicate the impacts of sedimentation or low dissolved oxygen. Macroinvertebrate metric data will then be correlated with sediment and dissolved oxygen to attempt to determine primary sources of impairment.

Ordination of macroinvertebrate data may be performed and regression analysis used to examine potential associations with water chemistry and habitat data. Benthic sediment, channel morphology and water quality data also will be used to help interpret macroinvertebrate data.

Water quality data will be entered in the Laboratory Information Management System (LIMS) database. Data analysis will be summarized and interpreted using Microsoft Access and Excel software as well as Jandel Scientific software, SigmaStat.

Data Reporting: Results of the study will be summarized and interpreted in report format.

Quality Control: As stated in the various MDNR Project Procedures and Standard Operating Procedures.

Literature Cited

Missouri Department of Natural Resources. 2002. Sample Collection and Field Analysis for Dissolved Oxygen Using a Membrane Electrode Meter. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 13 pp.

Missouri Department of Natural Resources. 2003a. Continuous or Long Term Monitoring of Water Quality Using a Dissolved Oxygen and Temperature Data Logger. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 25 pp.

Missouri Department of Natural Resources. 2003b. Flow Measurements in Open Channels. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 9 pp.

Missouri Department of Natural Resources. 2003c. Required/Recommended Containers, Volumes, Preservatives, Holding Times, and Special Considerations. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 21 pp.

Missouri Department of Natural Resources. 2003d. Semi-Quantitative Macroinvertebrate Stream Bioassessment Project Procedure. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 24 pp.

Missouri Department of Natural Resources. 2003e. Wasteload Allocation/Special Stream Studies Project Procedure. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 9 pp.

Missouri Department of Natural Resources. 2003f. Quality Control Procedures for Data Processing. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 6 pp.

Missouri Department of Natural Resources. 2004. Biological Assessment Study, Upper North Fork of the Spring River, Dade and Barton Counties. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 34 pp.

Missouri Department of Natural Resources. 2005a. Field Sheet and Chain-of-Custody Record. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 8 pp.

Missouri Department of Natural Resources. 2005b. Taxonomic Levels for Macroinvertebrate Identification. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 30pp.

Missouri Department of Natural Resources. 2005c. Biological Assessment Study, Lower North Fork of the Spring River, Barton and Jasper Counties. Field Services Division, Environmental Services Program. Water Quality Monitoring Section, P.O. Box 176, Jefferson City, Missouri, 65102. 32 pp.

Pflieger, W.L. 1989. Aquatic Community Classification System for Missouri. Missouri Department of Conservation Aquatic Series No. 19. 76 pp.

Attachments

Attachment A: Draft Benthic Sediment Sampling Method

Attachment B: Level III Ecoregion Map

Attachment C: North Fork of the Spring River Sampling Stations Map

Attachment A

Draft Benthic Sediment Procedure

Sediment should increase from upstream to downstream due to naturally occurring events such as bank and streambed erosion and runoff from tributaries experiencing bank and streambed erosion. When human disturbance takes place in a watershed (increased impervious area, increased magnitudes during flood events, removal of vegetation from land in the watershed, channel modification, etc.) the amount of sediment available for transport in a stream should increase through increased erosion rates. Given similar watershed characteristics (geology, land cover, etc.) two streams should contain (in their bed-loads) similar quantities and types of sediment (sand and silt).

Potential Study Questions

Are the amounts of sediment (silt + sand), only silt, and only sand, increasing from upstream to downstream in the test stream by an amount similar to the control stream?

Are the amounts of sediment (silt + sand), only silt, and only sand, different between the test stream and control stream? Are they higher or lower?

Procedures

Multiple stations along a longitudinal gradient should be sampled. Stations can also bracket locations that could possibly contribute to increased sediment inputs to a test stream. Upstream and downstream coordinates should be collected using handheld Global Positioning System units.

Benthic Sediment Sampling Device

At each station 10 to 20 random transect composite samples will be collected in the most representative pool in the sample reach. Each sample will be a composite of four grabs taken from a transect. The grabs will be collected using a device created by the Water Quality Monitoring Section (Figure 1). The device is composed of two main parts, the handle and sample cup assembly and the outer casing, which slide vertically and independently of each other. The handle and sample cup assembly is composed of a threaded rod approximately 36 inches long with a wooden handle attached to the top and a PVC sample cup, oriented with the opening upwards, attached to the bottom. The exposed portions of threaded rod, not covered by the handle or the sample cup, are covered with rubber tubing to reduce friction when sliding vertically through the casing and to minimize any water that may splash upward through the casing assembly. The inside dimensions of the sample cup are $3\frac{1}{4}$ inches diameter by $1\frac{1}{2}$ inches tall. This yields a volume of approximately 12.44 in³. The outer casing is composed of a 6 inch long piece of 4 inch inner diameter (ID) PVC attached to a 24 inch long piece of ³/₄ inch ID PVC in which the handle and sample cup assembly can slide vertically. At the top of the 4 inch ID PVC, and on the inside, is a rubber seal to help contain the sample until it can be emptied into the collection container.

Each grab sample is obtained in the following manner. First, the handle/sample cup assembly is slid upwards until the sample cup contacts the rubber seal. Then, the device is lowered into the

Figure 1

water until it contacts the stream bottom taking care to ensure the best seal possible between the PVC casing and the stream bottom. The depth of water must be at least six inches to ensure that the entire section of 4-inch ID PVC is filled with water. The handle and sample cup assembly are then pushed downward until the sample cup contacts the stream bottom, and then pulled upward until the sample cup contacts the rubber seal again in one motion. This is done five times, taking approximately 1 second each, resulting in the mixing of sediment on the stream bottom with the water trapped in the 4 inch ID PVC casing sample chamber.

After the fifth time water and sediment are trapped in the sample cup by exerting upward pressure on the handle. The device is removed from the water making sure the device is kept vertical with the handle at the top and the sample cup at the bottom to maintain a sealed sample. The sample cup is then gently lowered to its lowest extent and removed by holding the sample cup stationary and turning the handle counter-clockwise. This results in the sample cup being unscrewed from the threaded rod. This is best accomplished by two people to minimize spillage from the sample cup. The contents of the sample cup are then poured into a collection container, which, for the purposes of this study, will be a one-quart glass or plastic container. Any remaining sediment should be gently washed from the sample cup into the collection container with deionized water.

Sample Collection

As mentioned above, ten to twenty composite samples will be collected at each sample station. A composite sample will consist of four grab samples collected at each transect. The sampling will conducted at the most representative pool within the sample reach where the water depth ranges from 6 inches to 3 feet and with a stream velocity no greater than 0.5 cfs. The first step in determining the random transects at each sample station is to determine the part of the pool that will be sampled. This will be 50 feet in both directions from the middle of the pool. A 100-foot tape will be strung along one of the stream banks with each foot marker representing a possible random transect location. A random numbers table will be used to determine the ten to twenty random transects that will be sampled. At each transect a tape measure will be stretched over the width of the stream, including eddies or pools connected to the stream on the backside of point bars. Four grab samples are to be collected at each transect resulting in a composite sample. The outer points of the tape measure where the water reaches six inches deep will be noted (Figure 2). These are the two outer grab sample points. If the water is too shallow to establish the outer points or the distance between the two points will not allow the collection of four grab samples the transect shall be moved upstream until a suitable transect can be established.

Figure 2

A suitable transect must be at least 6-inches deep and wide enough over that depth to collect four grab samples (16 inches wide). If the water is deep enough, the remaining distance between the two outer points will be divided into thirds (Figure 2). The distance to each third will be noted along with the two points where the water reaches six inches deep. These are the two inner grab sample points. If either of the "inner" points lies on an isolated obstruction (boulder, log, etc.) that is submerged or partially submerged, leaving less than six inches of water, (Figure 3) the transect will be moved upstream to a point where the obstruction does not interfere with the survey. If either of the "inner" points lies on a point bar above the water level (Figure 4, Point A), or on the slope of a point bar in water less than six inches deep (Figure 4, Point B), the following will occur:

1. Find a location, moving towards the nearest "outer" point where the water is at least six inches deep (Figure 4, Point C).

- 2. Measure the distance between this new point and the nearest "outer" point.
- 3. Move one-third this distance toward the "outer" point (Figure 4, Point D).
- 4. This will be the new "inner" point.

At this time there should be four grab sample points established. Using the sampler, gather sediment sample from each point and composite them in a sample container. When all twenty transects have been completed there will be 20 samples per site, which have been collected from 120 individual benthic locations.

Additional information recorded at each transect includes: width between outer sampling points; and, general observation of bank conditions (i.e. denuded, vegetated, slumping, etc). Discharge will be surveyed at each sampling site.

Figure 3

Figure 4

Settling Tube Sample Analysis

Modifying the Bouyocos Soil Texture Method for Sediment Analysis

The determination of soil texture is called: 1) particle size analysis or 2) mechanical analysis. Determining the texture in the laboratory uses a basic principle of sedimentation called "Stokes Law". Stokes Law states that the speed or velocity with which particles settle out of a liquid medium is dependent on a constant factor (K) and the radius of the particles. Or, the bigger the particle, the faster it will fall out of suspension. K is composed of the factors:

```
g = acceleration of gravity

d1 = density of particle

d2 = density of liquid

\mu = viscosity of liquid

v = velocity

v = Kr<sup>2</sup>, and K = 2g(d1-d2) \div \mu
```

An approximation of the formula is $v (cm/sec) = 8711d^2 (cm)$

The same method that is used for soil analysis can be used on sediment found in streams and rivers. Major sediment fractions of concern are sands and silts. Both can cause the loss of interstitial spaces in gravel and cobble bottom streams or change the benthic deposits composition of streams with naturally finer materials making up the streambed. The Bouyocos method is useful in separating coarse through fine sand from very fine sands through silt. The Wentworth soil particle scale is useful in defining the diameters of these particles. The upper limit for sand is a diameter of 0.2 cm and the lower limit for fine sand is 0.0125 cm. The upper limit for very fine sand is <0.0125 cm.

The standard Bouyocos method uses a Hydrometer jar (ASTM D-422). The jar is a glass cylinder with dimensions of 6.4 cm outside diameter by 45.7 cm vertical distance to a calibrated white line which is the beginning point of measurement. The basic principal applied is the settling velocity of particular diameter particles. The initial reading is taken with a hydrometer at 40 seconds with a secondary reading at 2 hours. The 40 second reading is the time which most particles of fine sand (>0.0125 cm) have reached the bottom. The 2-hour reading the time at which most silt particles (0.0124 - 0.0004 cm) have reached the bottom. Any material in suspension after two hours is considered the clay fraction.

The modified method uses a different tube length and direct sediment measurement instead of hydrometer readings. The sedimentation tubes are 6 cm outside diameter by 60 cm long clear PVC plastic tubes with PVC plugs in one end. The calibration mark is at 55.5 cm. If the 45.7 cm hydrometer jar's first reading is made at 40 seconds then the 55.5 cm settling tubes can be algebraically solved for the adjusted first reading. The adjusted time for a longer settling distance at the first reading is approximately 48 seconds.

Sediment Analyses Method

The samples will be refrigerated and allowed to settle at least two hours or until a sample can be analyzed. There is no holding time for these samples, although they should be refrigerated. Prior to analysis each sample will be allowed to sit at least two hours to warm up to room temperature. Each sample will be analyzed in the lab using Settling Tube analysis as follows.

Assuming the sample has been allowed to settle at least two hours, any free water in the container can be poured off gently not allowing any settled sediment to be released from the container. The remaining sediment and water are transferred to a 24-inch long piece of 2-inch ID clear PVC through a 2-millimeter filter to exclude particles greater than 2 millimeter. The PVC is capped at the bottom to contain the sample in the pipe. The PVC should then be filled with water to exactly 2 inches from the top, which allows a small amount of air space. The PVC is then temporarily capped with a rubber stopper and inverted five times, allowing the bubble to move entirely from one end to the other, mixing the sediment and water completely.

After the fifth time the tube is set into the analysis rack and a stopwatch is started immediately. After 45 seconds the depth of sediment in the tube is measured from the bottom of the tube to the top of the settled sediment. This is done with a flat metal ruler graduated in millimeters. Forty-five seconds is the amount of time for most sand particles to settle out and shall be referred to as the "45 second reading." The depth is recorded on the standard data sheet (see attachment A).

The sediment is then allowed to settle for two hours. At that time two sets of measurements are taken. The first measurement is the total amount of settled sediment and is measured like the "45 second reading." The second measurement is an approximation of the interface between the coarse sand and finer particles. This interface is approximately equal to the depth of sediment recorded after 45 seconds, and should be readily apparent. If it is not apparent, the analyst should measure the approximate interface between sand and finer particles, if that interface exists. If the sample is composed entirely of sand (no apparent interface) the entire depth is measured. If the sample is composed entirely of finer particles (the 45 second reading reveals no settled sediment) the interface reading is zero. The tube must then be turned 180 degrees and both readings taken again as above. This will result in two sets of readings: two readings of total sediment and two readings of the sand/finer particle interface. Each set of readings is averaged to result in a final reading (see Attachment A). The sand/finer particle interface reading is subtracted from the total sediment reading to result in the amount of finer particles (fine sand and silt). Five samples can be analyzed at the same time using the sediment tube rack (Figure 3).

Figure 5

Data Analysis and Final Reporting

Data will be analyzed for differences between test stream and control stream for changes in amounts of sediment from upstream to downstream and differences in amounts of sediment between streams. These differences will include only sand, only silt and silt and sand combined. For the first objective the changes in amounts of sediment from upstream to downstream, between each station, will be calculated. These differences will be compared to the control stream using box plots and Analysis of Variance to detect significant differences. For the second objective, raw measurements of amounts of sediment for each station will be compared to the stations at the control stream for significant differences using box plots and Analysis of Variance.

Attachment B

Level III Ecoregion Map Showing Sampling Stations for the Upper North Fork of the Spring River Bioassessment Study Using Biological Criteria Protocols and the Lower North Fork of the Spring River Study Using Leafpacks

Map of the Proposed Stati	Attachmer ions for the North F	nt C ork of the Spring F	River Stressor Study	ý			
		- 0	·				

Appendix B

Detrended Correspondence Analysis (DCA) Comparing the Macroinvertebrate Samples at the NFSR Test Stations to Macroinvertebrate Samples Collected Previously at Sampling Stations Located Within the Biological Criteria Reference Reaches of Cedar Creek, Horse Creek, and Little Drywood Creek. Both Sampling Regimes (R/P and G/P) Were Included in the Analysis at NFSR Stations That All Four Habitats (CS, NF, SG, and RM) Were Collected.

Fall 2006 (All Available Habitats)
Number of non-zero data items: 2201

No downweighting Axes are rescaled Number of segments: 30 Threshold: 0.00

Total variance ("inertia") in the species data: 2.4932

----- Axis 1 -----

0.1317335814 = residual at iteration 00.0056071635 = residual at iteration 10.0000592805 = residual at iteration 20.0000006842 = residual at iteration 30.0000001661 = residual at iteration 40.1412458718 = residual at iteration 50.0064791013 = residual at iteration 60.0000913515 = residual at iteration 70.0000014881 = residual at iteration 80.000001374 = residual at iteration 0.1582570970 = residual at iteration 100.0009212453 = residual at iteration 110.0000113718 = residual at iteration 120.0000002260 = residual at iteration 13 0.0670801923 = residual at iteration 14 0.0168095194 = residual at iteration 150.0001970210 = residual at iteration 160.0000032708 = residual at iteration 170.000001110 = residual at iteration 180.0775565132 = residual at iteration 19

```
0.0142319938 = residual at iteration 20
0.0001858305 = residual at iteration 21
0.0000029883 = residual at iteration 22
0.0000001091 = residual at iteration 23
0.0501183905 = residual at iteration 24
0.0192011911 = residual at iteration 25
0.0002347092 = residual at iteration 26
0.0000034272 = residual at iteration 27
0.0000001110 = residual at iteration 28
0.0730281919 = residual at iteration 29
0.0154840872 = residual at iteration 30
0.0001574985 = residual at iteration 31
0.0000023527 = residual at iteration 32
0.0000001269 = residual at iteration 33
0.1294083744 = residual at iteration 34
0.0050995639 = residual at iteration 35
0.0000631557 = residual at iteration 36
0.0000008514 = residual at iteration 37
0.0000000727 = residual at iteration 38
0.4610155821 = eigen value
Length of gradient:
                      2.456
Length of segments: 0.29 0.28 0.27 0.25 0.22 0.19 0.17 0.15 0.15 0.14
Length of segments: 0.12 0.12 0.11
Length of gradient:
                      2.777
Length of gradient:
                      2.822
Length of segments: 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.19 0.19
Length of segments: 0.18 0.18 0.18 0.18 0.18
Length of gradient:
                      2.818
                   ----- Axis 2 -----
0.0479164049 = residual at iteration 0
0.0290855486 = residual at iteration 1
0.0032055830 = residual at iteration 2
0.0003707186 = residual at iteration 3
0.0000418475 = residual at iteration
```

```
0.0000052485 = residual at iteration
0.0000006248 = residual at iteration
0.000001879 = residual at iteration
0.0567194633 = residual at iteration
0.0059293695 = residual at iteration
0.0005238388 = residual at iteration 10
0.0000402118 = residual at iteration 11
0.0000043162 = residual at iteration
0.0000003807 = residual at iteration 13
0.0000001418 = residual at iteration 14
0.0551047251 = residual at iteration 15
0.0125648631 = residual at iteration
0.0011541806 = residual at iteration
0.0001379357 = residual at iteration
0.0000161858 = residual at iteration 19
0.0000020338 = residual at iteration
0.0000002628 = residual at iteration 21
0.0343474932 = residual at iteration
0.0147247100 = residual at iteration
0.0010050191 = residual at iteration
0.0001187461 = residual at iteration
0.0000088671 = residual at iteration
0.0000011417 = residual at iteration
0.0000001453 = residual at iteration
0.0374105461 = residual at iteration
0.0231388044 = residual at iteration
0.0019790300 = residual at iteration
0.0002540952 = residual at iteration
0.0000286447 = residual at iteration
0.0000038940 = residual at iteration
0.0000004540 = residual at iteration
0.0000002592 = residual at iteration
0.0000002499 = residual at iteration
0.0498280376 = residual at iteration
0.0040659481 = residual at iteration 39
0.0002132187 = residual at iteration
0.0000087175 = residual at iteration
0.0000008202 = residual at iteration 42
0.0000001924 = residual at iteration
0.0453810468 = residual at iteration 44
0.0040647965 = residual at iteration 45
```

```
0.0004287091 = residual at iteration 46
0.0000270694 = residual at iteration 47
0.0000033277 = residual at iteration 48
0.0000002787 = residual at iteration 49
0.0276603326 = residual at iteration 50
0.0043790503 = residual at iteration 60
0.0000078966 = residual at iteration 70
0.0552215539 = residual at iteration 80
0.0000399619 = residual at iteration 90
0.0328519568 = residual at iteration 100
0.0004415835 = residual at iteration 110
0.0000001347 = residual at iteration 120
0.0042935708 = residual at iteration 130
0.0000486368 = residual at iteration 140
0.0000003289 = residual at iteration 150
0.0339661501 = residual at iteration 160
0.0000449044 = residual at iteration 170
0.0295525528 = residual at iteration 180
0.0014971028 = residual at iteration 190
0.0000086308 = residual at iteration 200
0.0339725800 = residual at iteration 210
0.0052592391 = residual at iteration 220
0.0000024248 = residual at iteration 230
0.0000008794 = residual at iteration 240
0.0045266431 = residual at iteration 250
0.0000297590 = residual at iteration 260
0.0321599580 = residual at iteration 270
0.0001216003 = residual at iteration 280
0.0000003350 = residual at iteration 290
0.0031599023 = residual at iteration 300
0.0000043698 = residual at iteration 310
0.0298461411 = residual at iteration 320
0.0000196374 = residual at iteration 330
0.0000003647 = residual at iteration 340
0.0028482242 = residual at iteration 350
0.0000039860 = residual at iteration 360
0.0263696089 = residual at iteration 370
0.0000232735 = residual at iteration 380
0.0000009257 = residual at iteration 390
0.0013733614 = residual at iteration 400
0.0000015722 = residual at iteration 410
```

```
0.0000001391 = residual at iteration 420
0.0001462475 = residual at iteration 430
0.0000002786 = residual at iteration 440
0.0219888128 = residual at iteration 450
0.0000038609 = residual at iteration 460
0.0360298306 = residual at iteration 470
0.0017441950 = residual at iteration 480
0.0011358712 = residual at iteration 490
0.0000054351 = residual at iteration 500
0.000003418 = residual at iteration 510
0.0019637651 = residual at iteration 520
0.0000085876 = residual at iteration 530
0.0000002480 = residual at iteration 540
0.0137247192 = residual at iteration 550
0.0000003620 = residual at iteration 560
0.0257015284 = residual at iteration 570
0.0000244465 = residual at iteration 580
0.0266697444 = residual at iteration 590
0.0002037403 = residual at iteration 600
0.0000006067 = residual at iteration 610
0.0519573390 = residual at iteration 620
0.0000061911 = residual at iteration 630
0.0000001330 = residual at iteration 640
0.0010920146 = residual at iteration 650
0.0000006526 = residual at iteration 660
0.0281537510 = residual at iteration 670
0.0000995034 = residual at iteration 680
0.0000004565 = residual at iteration 690
0.0236719064 = residual at iteration 700
0.0001467171 = residual at iteration 710
0.0000002624 = residual at iteration 720
0.0058674277 = residual at iteration 730
0.0000000900 = residual at iteration 736
0.1901101768 = eigen value
```

Length of gradient: 2.199

Length of segments: 0.14 0.16 0.19 0.22 0.23 0.23 0.23 0.22 0.21 0.19

Length of segments: 0.17
Length of gradient: 2.206

Length of gradient: 2.093

Length of segments: 0.17 0.18 0.19 0.20 0.21 0.20 0.20 0.19 0.19 0.18

Length of segments: 0.18
Length of gradient: 2.058

----- Axis 3 -----

0.0310038384 = residual at iteration0.0173553042 = residual at iteration 0.0016156781 = residual at iteration 0.0009997393 = residual at iteration 0.0001474884 = residual at iteration0.0000939782 = residual at iteration 0.0000143278 = residual at iteration 0.0000102287 = residual at iteration 0.0000016801 = residual at iteration0.0000012742 = residual at iteration0.0000001931 = residual at iteration 10 0.0000003428 = residual at iteration 110.000001111 = residual at iteration 120.0232288614 = residual at iteration 130.0013387522 = residual at iteration 14 0.0035687031 = residual at iteration 15 0.0001409633 = residual at iteration 16 0.0000757733 = residual at iteration 170.0000311961 = residual at iteration 18 0.0000190051 = residual at iteration 19 0.0000080280 = residual at iteration 20 0.0000049353 = residual at iteration 21 0.0000020968 = residual at iteration 22 0.0000013025 = residual at iteration 230.0000005570 = residual at iteration 24 0.0000003746 = residual at iteration 250.0000001893 = residual at iteration 26 0.0217562038 = residual at iteration 27 0.0019477027 = residual at iteration 280.0052403896 = residual at iteration 290.0001959897 = residual at iteration 300.0001458934 = residual at iteration 31

0.0000183180 = residual at iteration 32 0.0000142958 = residual at iteration 33 0.0000020140 = residual at iteration 34 0.0000016813 = residual at iteration 35 0.000001949 = residual at iteration 36 0.0000175658 = residual at iteration 37 0.0000038365 = residual at iteration 38 0.0000001150 = residual at iteration 39 0.0000001578 = residual at iteration 40 0.0000000791 = residual at iteration 41 0.1021367759 = eigen value

Length of gradient: 1.615

Length of segments: 0.11 0.11 0.13 0.17 0.19 0.20 0.20 0.19 0.17 0.15

Length of gradient: 1.680

Length of gradient: 1.623

Length of segments: 0.14 0.15 0.17 0.18 0.18 0.18 0.17 0.16 0.15 0.14

Length of gradient: 1.603

Fall 2006 (All Available Habitats)

SPECIES SCORES

N	NAME	AX1	AX2	AX3		RANKED 3	1		RANKED	2
]	EIG=0.463	1	Ι	EIG=0.1	90
1	t8	179	83	226	40	t1268	403	53	t2328	432
2	t128	110	173	373	93	t5063	403	200	t8608	420
3	t130	60	185	215	48	t2010	403	4	t134	403
4	t134	-26	403	-188	159	t8410	391	43	t1498	370
5	t138	77	183	102	134	t7560	384	198	t8528	360
6	t151	-65	277	251	95	t5130	377	100	t5508	360
7	t153	-76	-175	94	90	t5030	373	160	t8411	343
8	t155	-46	75	166	195	t8490	372	199	t8560	343
9	t161	200	-31	-11	151	t8356	370	107	t6030	326
10	t162	135	182	-29	204	t8730	370	125	t6743	320

11	t171	-11	-130	9		49	t2020	366	157	t8404	316
12	t189	-13	29	304	į	138	t8060	365	18	t380	312
13	t198	151	240	10	i		t1390	365		t6180	304 I
14	t258	30	118	138	i	36	t1180	353	89	t4370	296
	t278	-52	261	651	i		t8300	349		t6210	286
	t288	202	-2	119	i	29	t1040	348		t4200	285
	t308	43	117	148	İ	_	t2690	335		t8451	285
18	t380	-36	312	-142	i	34		335		t8467	285
-	t511	163	1	7	i		t4050	335		t8469	285
	t550	-142	256	343	i		t1260	335		t2800	281
	t651	60		-115	i		t5400	335		t6560	281
	t750	-4	102	107	i		t9538	330		t151	277
	t757	242	169	256	ı İ		t1550	328		t2840	274 I
	t762	225	-18	64	i		t1050	316		t8999	272
	t773	175	242	155	' 		t1263	315		t2460	272
	t781	39	243	8	l I		t8461	311		t8468	268
27	t1028	7		-136	l I		t5070	303		t9290	267
28	t1030	243	-12	120	l I		t8443	301		t8415	262
-	t1040	348	84	83	l I		t8354	300		t278	261
30		214	-28	- 7	ı I		t5660	300		t2681	257
	t1050	316	31	129	l I		t6020	299		t550	256
	t1070	54	- 9	72	l I		t8990	294		t6130	256
	t1115	289	139	26	ı İ		t8466	293		t651	250
34		335	72	103	ı İ		t3510	291		t9908	250
-	t1138	233	-2	192	' 		t5058	291		t6904	248
	t1180	353	49	101	ı İ		t5160	291		t7768	248
37	t1240	252	162	-32	ı İ		t9220	291		t5940	248
-	t1260	335	72	103	, 		t1115	289		t8984	248
	t1263	315	138	161	i		t8385	288		t6740	248
	t1268	403	106	90	' 		t8491	288		t2650	248
41	t1390	365	85	107	i		t8457	283		t1028	245
	t1444	121	151	216	i		t8416	282		t781	243
43	t1498	88		-121	i		t8462	280		t773	242
44	t1500	252	162	412	i		t9430	270		t198	240
45	t1550	328	164	44	ı İ		t2491	270		t9118	240
-	t1650	174	203	396	ı İ		t8453	265		t6741	238
	t1653	66	-68	1	i		t7610	264		t7510	237
48	t2010	403	106	90	i		t2120	263		t8750	236
49	t2020	366	66	124	l I		t9450	262		t8209	231
50	t2120	263	160	8	l I		t4030	258		t8352	231
	t2120	220	130	211	 		t2660	258		t6480	231
∪ ±	22100	220	100		ı	0.0	22 3 0 0	200		55100	201

	t2190	-70	143	249			t6743	257		t9428	229
	t2328	109		-168			t8070	255		t8798	228
	t2351	62	201	311			t1240	252		t9340	228
	t2353	245		-160			t1500	252		t8472	226
	t2361	47	167	-21			t5360	251		t9390	225
	t2408	56	-74	388			t6890	249		t8464	223
	t2430	-24	187	352	1	129	t6851	248	174	t8450	221
59	t2460	128	272	86		148	t8340	248	178	t8457	221
60	t2491	270	179	335		155	t8386	247	101	t5660	220
61	t2628	-39	-56	179	1	191	t8472	247	106	t6020	220
62	t2650	189	248	660	1	55	t2353	245	120	t6680	219
63	t2660	258	84	186	1	180	t8460	243	196	t8491	217
64	t2681	-42	257	402	1	28	t1030	243	182	t8462	214
65	t2690	335	72	103	1	23	t757	242	94	t5070	213
66	t2730	-55	-9	204	i	127	t6801	241	227	t9430	213
67	t2750	105	183	212	i		t8488	240	71	t2920	212
68	t2800	-212	281	-29	i		t8493	239		t4204	208
69	t2840	32	274	-61	i	35	t1138	233	46	t1650	203
	t2901	-82	162	223	i	156	t8402	225		t9950	203
	t2920	86	212	190	i		t762	225 I		t2353	201 i
	t2925	-58	-52	194	i		t4200	224		t2351	201
	t3510	291	7	165	i		t8451	224		t9380	201
	t4030	258	142	118	i		t8469	224		t8446	200
	t4050	335	72	103	i		t5940	223		t8630	199
	t4110	164	-21	97	i		t5960	223		t8413	196
	t4140	209	-49	80	i		t2160	220		t8436	196
	t4170	-68	64	295	i		t6741	219		t6851	194
	t4200	224	285	-172	i		t8437	214		t8140	194
	t4201	-21	61	184	i		t1046	214		t8130	192
	t4202	-45	-52	235	i		t6810	212		t9310	187
	t4203	-51	157	-62	i		t4140	209 i		t8482	187
	t4204	- 59	208	386	i		t8987	209		t5868	187
	t4210	-174	125	195	i		t8010	207		t2430	187
	t4230	10	122	235	i		t8482	203		t130	185
	t4248	59	18	-84	i		t288	202		t2750	183
	t4266	87	-60	-28	i		t8382	202		t138	183
	t4290	139	178	22			t6721	202		t8435	182
	t4370	11	296	-112			t6726	202		t162	182
	t5030	373	89	99			t161	200		t8340	181
	t5058	291	7	165			t8465	193		t8990	179
	t5061	63	54	166	 		t6010	192		t2491	179
22		0.0	5 1	100	1	100	20010	172	0.0	C2 171	1/2

	t5063	403	106	90	131	t6904	189	88	t4290	178
	t5070	303	213	-7		t7768	189		t8354	176
95	t5130	377	91	98	208	t8984	189		t128	173
96	t5160	291	7	165	231	t9950	189	23	t757	169
	t5360	251	-10	128		t6740	189		t2361	167
98	t5400	335	72	103	62	t2650	189	45	t1550	164
99	t5440	32	-10	226	201	t8610	186	127	t6801	163
100	t5508	-122	360	-254	1	t8	179	70	t2901	162
101	t5660	300	220	-9	25	t773	175	37	t1240	162
102	t5868	-24	187	352	46	t1650	174	44	t1500	162
103	t5940	223	248	-41	214	t8994	174	109	t6118	162
104	t5960	223	125	212	115	t6400	166	179	t8459	161
105	t6010	192	55	95	171	t8441	166	50	t2120	160
106	t6020	299	220	-14	76	t4110	164	82	t4203	157
107	t6030	-166	326	10	19	t511	163	172	t8443	153
108	t6090	-7	-120	11	202	t8630	155	42	t1444	151
109	t6118	-45	162	-155	13	t198	151	223	t9370	145
110	t6130	-142	256	343	114	t6312	149	52	t2190	143
111	t6180	141	304	-87	177	t8454	147	74	t4030	142
112	t6210	63	286	5	224	t9380	143	216	t9025	142
113	t6310	7	-92	206	141	t8130	142	33	t1115	139
114	t6312	149	-36	-23	111	t6180	141	39	t1263	138
115	t6400	166	-11	83	88	t4290	139	152	t8358	137
116	t6480	122	231	132	165	t8435	135	177	t8454	137
117	t6560	-212	281	-29	10	t162	135	185	t8466	137
118	t6580	35	-11	166	212	t8991	132	214	t8994	132
119	t6650	99	-54	-81	59	t2460	128	51	t2160	130
120	t6680	-24	219	166	149	t8352	122	201	t8610	129
121	t6721	202	-2	119	116	t6480	122	84	t4210	125
122	t6726	202	-2	119	42	t1444	121	104	t5960	125
123	t6740	189	248	660	183	t8464	120	171	t8441	124
124	t6741	219	238	184	174	t8450	117	85	t4230	122
125	t6743	257	320	-64	2	t128	110	156	t8402	119
126	t6768	47	-10	28	53	t2328	109	14	t258	118
127	t6801	241	163	318	67	t2750	105	128	t6810	117
128	t6810	212	117	12	216	t9025	103	17	t308	117
129	t6851	248	194	442	119	t6650	99	146	t8239	114
130	t6890	249	3	150	205	t8750	92	168	t8438	113
131	t6904	189	248	660	43	t1498	88	210	t8989	111
132	t7510	66	237	-24	87	t4266	87		t8993	109 j
	t7544	-61	-49	177		t2920	86		t5063	106
							•			

13/	t7560	384	88	99	1 5	t138	77	1 10	t1268	106 I	
	t7610	264	42	55		t7510	66	•	t2010	106	
	t7768	189	248	660	-	t1653	66		t750	100	
	t8010	207	79	-56	'	t5061	63	•	t8410	100	
	t8060	365	72	117	•	t6210	63	•	t8490	99	
	t8070	255	-28	-38	•	t2351	62	•	t5130	91	
	t8120	-27	85	-46	•	t651	60	•	t8416	91	
	t8130	142	192	285	•	t130	60		t5030	89	
	t8140	11	194	218	•	t4248	59	•	t7560	88	
	t8170	-44	-1	154	•	t2408	56		t8356	87	
	t8209	-127	231	227		t1070	54	•	t8120	85	
	t8219	-12 <i>1</i>	- 99	23	-	t2361	47		t1390	85	
	t8239	17	114	132		t8471	47		t1040	84	
	t8300	349	54	100		t6768	47		t2660	84	
	t8340	248	181	150		t308	43		t8	83	
	t8352	122	231	132	•	t8467	40		t8640	81	
	t8354	300	176	- 52		t781	39	•	t8730	81	
	t8356	370	87	89	-	t8438	35	•	t8474	81	
	t8358	370	137	22	•	t6580	35		t8010	79	
	t8382	202	-2	119		t2840	32		t155	75 I	
	t8385	288	-2 50	2		t5440	32	•	t2690	73 72	
	t8386	247	25	71	•	t258	30	•	t8060	72	
	t8402	247	119	242	•	t9340	30		t1260	72	
	t8404	-31	316	-56	•	t8439	30	•	t1123	72	
		-31 7	- 92				27	•		72	
	t8406 t8410			206 92	•	t9908 t8239	17		t5400 t4050	72 72	
	t8410	391	100 343	237		t8140	11	•	t8437	72 67	
		-194			'		11			67 I	
	t8413 t8415	-55 -133	196	-29		t4370	10	•	t2020	65 I	
			262 91	-144	•	t4230	7	•	t8488		
	t8416	282		-18	•	t6310	· ·		t4170	64	
	t8430	- 75	59	293		t8406	7	•	t4201	61	
	t8435	135	182	161	•	t1028	7	•	t8430	59	
	t8436	-36	196	272		t8470	6	•	t6010	55	
	t8437	214	67	92	-	t8358	4	•	t8300	54	
	t8438	35	113	172	•	t9288	2		t5061	54	
	t8439	30	-84	- 97	•	t750	-4	•	t8385	50	
-	t8440	-42	- 3	4		t6090	- 7		t1180	49	
	t8441	166	124	283	'	t171	-11	•	t8453	49	
	t8443	301	153	-4	•	t8459	-13	•	t8493	43	
	t8446	-74	200	207	•	t189	-13		t7610	42	
174	t8450	117	221	-47	217	t9118	-14	229	t9538	40	

	t8451	224		- 172			t9370	-19		t1050	31	
	t8453	265	49	135			t4201	-21		t189	29	
	t8454	147	137	128			t5868	-24		t8461	27	
	t8457	283	221	6			t9310	-24		t8386	25	
	t8459	-13	161	-7			t2430	-24		t8987	23	
	t8460	243	-12	120			t6680	-24		t4248	18	
181	t8461	311	27	130		4	t134	-26	73	t3510	7	
182	t8462	280	214	-39		140	t8120	-27	91	t5058	7	
183	t8464	120	223	11		145	t8219	-29	96	t5160	7	
184	t8465	193	-40	117		157	t8404	-31	218	t9220	7	
185	t8466	293	137	19	-	18	t380	-36	207	t8978	5	
186	t8467	40	285	-19	-	166	t8436	-36	190	t8471	4	
187	t8468	-141	268	159		207	t8978	-37	130	t6890	3	
188	t8469	224	285	-172	1	61	t2628	-39	19	t511	1	
189	t8470	6	-6	46		64	t2681	-42	143	t8170	-1	
190	t8471	47	4	253		170	t8440	-42	35	t1138	-2	
191	t8472	247	226	-31		143	t8170	-44	153	t8382	-2	
192	t8474	-45	81	310	-	192	t8474	-45	16	t288	-2	
193	t8482	203	187	-22	-	81	t4202	-45	121	t6721	-2	
194	t8488	240	65	118		109	t6118	-45	122	t6726	-2	
195	t8490	372	99	85		203	t8640	-45	170	t8440	-3	
196	t8491	288	217	- 75		8	t155	-46	189	t8470	-6	
197	t8493	239	43	155		82	t4203	-51	228	t9450	-6	
198	t8528	-122	360	-254	1	15	t278	-52	66	t2730	-9	
199	t8560	-194	343	237		66	t2730	- 55	32	t1070	-9	
200	t8608	-80	420	-253		161	t8413	- 55	99	t5440	-10	
201	t8610	186	129	158		72	t2925	-58	97	t5360	-10	
202	t8630	155	199	182	1	83	t4204	- 59	126	t6768	-10	
203	t8640	-45	81	310		225	t9390	- 59	115	t6400	-11	
204	t8730	370	81	109	1	133	t7544	-61	118	t6580	-11	
205	t8750	92	236	81		6	t151	-65	28	t1030	-12	
206	t8798	-88	228	201		226	t9428	-65	180	t8460	-12	
207	t8978	-37	5	236		210	t8989	-66	24	t762	-18	
208	t8984	189	248	660		78	t4170	-68	219	t9288	-20 I	
209	t8987	209	23	41		52	t2190	-70 I	76	t4110	-21	
210	t8989	-66	111	253		173	t8446	-74	139	t8070	-28	
	t8990	294	179	0	1		t8430	- 75		t1046	-28	
212	t8991	132	-44	-36	1	7	t153	-76	9	t161	-31	
	t8993	-143	109	-34	1		t8608	-80	114	t6312	-36	
	t8994	174	132	-18	1		t2901	-82	184	t8465	-40 I	
215	t8999	-113	272	165	1	206	t8798	-88	212	t8991	-44	

216	t9025	103	142	-12	215	t8999	-113	77	t4140	-49	
217	t9118	-14	240	-61	100	t5508	-122	133	t7544	-49	
218	t9220	291	7	165	198	t8528	-122	81	t4202	- 52	
219	t9288	2	-20	148	144	t8209	-127	72	t2925	-52	
220	t9290	-159	267	254	162	t8415	-133	119	t6650	-54	
221	t9310	-24	187	352	187	t8468	-141	61	t2628	-56	
222	t9340	30	228	25	110	t6130	-142	87	t4266	-60	
223	t9370	-19	145	226	20	t550	-142	47	t1653	-68	
224	t9380	143	201	175	213	t8993	-143	57	t2408	-74	
225	t9390	-59	225	-16	220	t9290	-159	169	t8439	-84	
226	t9428	-65	229	232	107	t6030	-166	158	t8406	-92	
227	t9430	270	213	-61	84	t4210	-174	113	t6310	-92	
228	t9450	262	-6	139	160	t8411	-194	145	t8219	-99	
229	t9538	330	40	105	199	t8560	-194	108	t6090	-120	
230	t9908	27	250	152	117	t6560	-212	11	t171	-130	
231	t9950	189	203	533	68	t2800	-212	7	t153	-175	

Fall 2006 (All Available Habitats)

N	NAME	AX1	AX2	AX3	1	RANKED 1		RANKED 2	
						EIG=0.461		EIG=0.190	
1	HC1 00	153	148	158	1	12 HC1 95	281	15 LD4 03	205
2	CC1 01	202	87	112	1	13 HC2 95	240	9 NF $1\overline{0}$ RP	192
3	CC1 03	171	90	119	1	31 LD1 95	218	30 NF10 GP	181
4	NF1 RP	140	63	80	1	32 LD2 95	215	32 LD2 95	154
5	NF6 RP	90	131	90	1	2 CC1 01	202	33 LD2 ⁻ 98	154
6	NF7 RP	75	128	144	1	3 CC1 03	171	14 LD1 00	154
7	NF8 RP	32	147	146	1	14 LD1 00	162	31 LD1 ⁻ 95	153
8	NF9 RP	55	152	160	1	1 HC1 00	153	8 NF9 RP	152
9	NF10 RP	14	192	148	1	4 NF1 RP	140	17 LD3 03	149
10	$HC1 \overline{0}6$	90	118	107	1	33 LD2 98	100	1 HC1 00	148
11	CC1 06	84	115	95	1	5 NF6 RP	90	7 NF8 RP	147
12	HC1 95	281	93	90	1	10 HC1 06	90	29 NF9 GP	136
13	HC2 95	240	98	89	1	20 NF1 GP	85	16 LD2 03	135
14	LD1 00	162	154	51	1	11 CC1 06	84	5 NF6 RP	131
15	LD4 03	42	205	0	1	22 NF3 GP	77	26 NF6 GP	130

16	LD2 03	58	135	25	26	NF6 GP	77	6 NF7 RP	128
17	LD3 03	35	149	16	6	NF7 RP	75	10 HC1 06	118
18	LD1 06	51	112	44	21	NF2 GP	71	28 NF8 GP	117
19	LD2 06	21	84	64	16	LD2 03	58	11 CC1 06	115
20	NF1 GP	85	53	44	34	LD3 98	58	18 LD1 06	112
21	NF2_GP	71	52	92	27	NF7_GP	58	27 NF7_GP	110
22	NF3_GP	77	45	74	8	NF9_RP	55	34 LD3_98	101
23	NF4a_GP	27	0	71	18	LD1_06	51	13 HC2_95	98
24	NF5_GP	40	38	62	29	NF9_GP	50	12 HC1_95	93
25	NF4b_GP	23	0	72	15	LD4_03	42	3 CC1_03	90
26	NF6_GP	77	130	97	24	NF5_GP	40	2 CC1_01	87
27	NF7_GP	58	110	121	17	LD3_03	35	19 LD2_06	84
28	NF8_GP	20	117	120	7	NF8_RP	32	4 NF1_RP	63
29	NF9_GP	50	136	151	23	NF4a_GP	27	20 NF1_GP	53
30	NF10_GP	0	181	143	25	NF4b_GP	23	21 NF2_GP	52
31	LD1_95	218	153	43	19	LD2_06	21	22 NF3_GP	45
32	LD2_95	215	154	44	28	NF8_GP	20	24 NF5_GP	38
33	LD2_98	100	154	82	9	NF10_RP	14	23 NF4a_GP	0
34	LD3_98	58	101	105	30	NF10_GP	0	25 NF4b_GP	0

************************** Calculations finished ********************

Spring 2007 (Riffle Pool and Glide/Pool) Number of non-zero data items: 1993

No downweighting Axes are rescaled Number of segments: 30 Threshold: 0.00

Total variance ("inertia") in the species data: 2.4477

----- Axis 1 -----

0.1219951063 = residual at iteration 00.0160559695 = residual at iteration 10.0017819856 = residual at iteration 20.0001219823 = residual at iteration 3 0.0000146682 = residual at iteration 40.0000010631 = residual at iteration 50.0000004220 = residual at iteration 60.0000007050 = residual at iteration 70.0000002500 = residual at iteration 80.1008074507 = residual at iteration 0.0043596849 = residual at iteration 100.0002987277 = residual at iteration 110.0000130956 = residual at iteration 12 0.0000014595 = residual at iteration 13 0.0000003040 = residual at iteration 140.0781665221 = residual at iteration 150.0144913690 = residual at iteration 160.0010961315 = residual at iteration 17 0.0000688515 = residual at iteration 180.0000065032 = residual at iteration 19

```
0.0000005094 = residual at iteration
0.0492467657 = residual at iteration
0.0477069803 = residual at iteration
0.0036376151 = residual at iteration 23
0.0003588983 = residual at iteration
0.0000255750 = residual at iteration
0.0000025600 = residual at iteration 26
0.0000002888 = residual at iteration
0.0839764550 = residual at iteration
0.0222761612 = residual at iteration
0.0022742911 = residual at iteration
0.0002202008 = residual at iteration
0.0000224503 = residual at iteration
0.0000022376 = residual at iteration
0.0000003631 = residual at iteration
0.0788499266 = residual at iteration
0.0241943542 = residual at iteration 36
0.0025473412 = residual at iteration
0.0002382193 = residual at iteration
0.0000272519 = residual at iteration 39
0.0000027669 = residual at iteration
0.0000003896 = residual at iteration
0.0473325849 = residual at iteration
0.0428249426 = residual at iteration
0.0046310760 = residual at iteration
0.0003429274 = residual at iteration
0.0000296919 = residual at iteration 46
0.0000022023 = residual at iteration
0.0000002802 = residual at iteration
0.0000003211 = residual at iteration
0.0077365898 = residual at iteration
0.0000005632 = residual at iteration
0.0691039413 = residual at iteration
0.0000013576 = residual at iteration 80
0.0053932844 = residual at iteration 90
0.0000082306 = residual at iteration 100
0.0000008106 = residual at iteration 110
0.0127133681 = residual at iteration 120
0.0000600054 = residual at iteration 130
0.0000001892 = residual at iteration 140
0.0001935742 = residual at iteration 150
```

```
0.0000019339 = residual at iteration 160
0.0842100978 = residual at iteration 170
0.0004378055 = residual at iteration 180
0.0000043306 = residual at iteration 190
0.0259298086 = residual at iteration 200
0.0000437568 = residual at iteration 210
0.0472389348 = residual at iteration 220
0.0003994661 = residual at iteration 230
0.0000005349 = residual at iteration 240
0.0006247499 = residual at iteration 250
0.0000009807 = residual at iteration 260
0.0000002924 = residual at iteration 270
0.0019411740 = residual at iteration 280
0.0000006267 = residual at iteration 290
0.0032571552 = residual at iteration 300
0.0000789507 = residual at iteration 310
0.0593428090 = residual at iteration 320
0.1016400382 = residual at iteration 330
0.0000185546 = residual at iteration 340
0.0000008118 = residual at iteration 350
0.0300562512 = residual at iteration 360
0.0002257302 = residual at iteration 370
0.0000002972 = residual at iteration 380
0.0521644317 = residual at iteration 390
0.0040026950 = residual at iteration 400
0.0000022673 = residual at iteration 410
0.0380193405 = residual at iteration 420
0.0001653230 = residual at iteration 430
0.0000001992 = residual at iteration 440
0.0000006602 = residual at iteration 450
0.0045634112 = residual at iteration 460
0.0000063875 = residual at iteration 470
0.0394510962 = residual at iteration 480
0.0000346114 = residual at iteration 490
0.0554664433 = residual at iteration 500
0.0000981684 = residual at iteration 510
0.0607648343 = residual at iteration 520
0.0004634017 = residual at iteration 530
0.0000007808 = residual at iteration 540
0.0173554476 = residual at iteration 550
0.0000012005 = residual at iteration 560
```

```
0.0001417256 = residual at iteration 570
0.000001864 = residual at iteration 580
0.0099261235 = residual at iteration 590
0.0000054557 = residual at iteration 600
0.0040105167 = residual at iteration 610
0.0000015639 = residual at iteration 620
0.0854327902 = residual at iteration 630
0.0000275393 = residual at iteration 640
0.0000002313 = residual at iteration 650
0.0014560650 = residual at iteration 660
0.0000023975 = residual at iteration 670
0.0833516121 = residual at iteration 680
0.0000641111 = residual at iteration 690
0.0000002966 = residual at iteration 700
0.0155149726 = residual at iteration 710
0.0000215217 = residual at iteration 720
0.0520180315 = residual at iteration 730
0.0002819820 = residual at iteration 740
0.0000002902 = residual at iteration 750
0.0000000859 = residual at iteration 751
0.3051255643 = eigen value
Length of gradient:
                      1.902
Length of segments: 0.28 0.27 0.25 0.22 0.19 0.16 0.14 0.13 0.13 0.12
Length of gradient:
                       2.114
Length of gradient:
                       2.232
Length of segments: 0.20 0.20 0.20 0.20 0.19 0.19 0.18 0.17 0.17
Length of segments: 0.17 0.17
Length of gradient:
                       2.229
                   ----- Axis 2 -----
0.0776567906 = residual at iteration 0
0.0133906985 = residual at iteration 1
0.0008342409 = residual at iteration 2
```

0.0000414710 = residual at iteration 3 0.0000036918 = residual at iteration 4

0.0000002850 = residual at iteration 50.0003614715 = residual at iteration 60.0000342130 = residual at iteration 70.0000018571 = residual at iteration 80.0000001870 = residual at iteration 90.0000000395 = residual at iteration 10 0.2277974188 = eigen valueLength of gradient: 2.232 Length of segments: 0.21 0.22 0.23 0.23 0.23 0.22 0.20 0.17 0.15 0.13 Length of segments: 0.12 0.12 Length of gradient: 2.410 Length of gradient: 2.419 Length of segments: 0.17 0.18 0.20 0.21 0.21 0.21 0.20 0.20 0.19 0.18 Length of segments: 0.17 0.16 0.16 Length of gradient: 2.397 ----- Axis 3 -----0.0393378474 = residual at iteration 00.0038072814 = residual at iteration 10.0008924358 = residual at iteration 2 0.0001981135 = residual at iteration 30.0000519489 = residual at iteration 40.0000122038 = residual at iteration 50.0000032179 = residual at iteration 60.0000007637 = residual at iteration 70.0000002123 = residual at iteration 80.0000000753 = residual at iteration 90.1125715673 = eigen value

Length of gradient: 1.573

Length of segments: 0.15 0.15 0.17 0.17 0.17 0.17 0.17 0.16 0.14 0.13

Length of gradient: 1.581

Length of gradient: 1.563

Length of segments: 0.14 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15

Length of gradient: 1.556

Spring 2007 (Riffle Pool and Glide/Pool)

SPECIES SCORES

N	NAME	AX1	AX2	AX3		.	RANKED 1			-	RANKED 2		
1	. 0	0.7	270	г 4			EIG=0.305	404			EIG=0.228		l
	t8	27	372	54		_	t1050	404			t130	431	
	t108	343	185	-247		_	t3440	404		1		372	
	t128	163	-91	230		_	t8419	404			t8471	367	
	t130	-27	431	255		127		404			t8987	362	
	t134	291	39	-59			t1012	398			t2901	335	
	t138	45	76	-16		17		377			t1498	331	
7	t151	-122	91	21		82	t4030	377		190	t8440	329	
8	t153	-23	285	297		45	t1390	377		95	t5510	311	
9	t155	-42	257	185		193	t8444	377		69	t2925	304	
10	t161	201	-12	210		54	t2010	377		242	t9290	296	
11	t162	183	24	75		141	t8057	372		16	t258	290	
12	t164	-142	43	213		243	t9310	372		163	t8358	289	
13	t171	176	275	231		94	t5380	367		132	t7544	286	
14	t189	70	42	173		80	t3681	362		8	t153	285	
15	t198	99	48	10		36	t1040	360		205	t8465	281	
16	t258	85	290	48		78	t3641	360		194	t8446	275	
17	t278	377	68	268		76	t3508	358		13	t171	275	
	t308	80	184	-12	İ	142	t8060	356	Ì	200	t8459	272	ĺ
19	t380	34	168	47	i	73	t3200	351	İ	251	t9450	270	i
20	t410	124	60	173	İ	2	t108	343	Ì	143	t8080	266	ĺ
21	t511	223	171	155	i		t1180	343	İ	57	t2190	266	i
22	t520	-273	103	-113	i	23	t540	343	İ		t8008	258	
	t540	343	185	-247	i		t7540	340	i		t155	257	
	t550	180	109	- 5	i		t8450	335	i		t8466	254	
	t580	290	80	45	i		t7560	334	i		t6400	254	
	t651	87	218	185	i	162	t8356	334	İ		t781	250	
	t750	325	74	247	i i	146		333	İ		t5960	249	
	t757	249	49	-18	i		t8457	332	İ		t8989	249	
20	3.0,	2 1 7	10	- 5	1		00107	002	1			217	- 1

00	100 50	0.5			000	100 .0100	
29 t773	123 79	87		t8982	328	172 t8402	244
30 t781	59 250	116	•	l t8490	326	189 t8438	244
31 t1010	-115 -222	55		2 t8461	325	84 t4203	239
32 t1011	-14 -245	154		7 t750	325	66 t2730	236
33 t1012	398 59	172	93	3 t5360	323	79 t3680	236
34 t1020	233 -73	-18	108	3 t6020	319	83 t4202	236
35 t1030	305 138	- 75	166	t8385	312	166 t8385	225
36 t1040	360 37	163	250	t9430	309	115 t6312	224
37 t1050	404 57	147	224	l t8734	308	85 t4230	221
38 t1070	-240 81	119	1 35	t1030	305	215 t8493	221
39 t1094	17 53	557	1 203	8 t8462	305 j	26 t651	218
40 t1115	186 -122	298		t8482	303 j	161 t8354	216
41 t1138		-207		t5130	297	202 t8461	215
42 t1180		-247		t1263	294	124 t6810	215
43 t1240	287 -7	179		t8401	292	246 t9370	212
44 t1263	294 29	52		t5030	292	86 t4248	209
45 t1390	377 68	268		2 t2491	292	136 t7790	207
46 t1440	221 -144	111		t134	291	97 t5628	203
47 t1444	202 135	21		t580	290	247 t9380	201
	-81 - 229	93		3 t1240	287		199
48 t1445 49 t1498	-81 -229 -72 331	93 296	•	5 t8410	287	239 t9118 187 t8436	199
			•				
50 t1530	234 -53	346		7 t6010	281	248 t9390	197
51 t1550	255 -72	69		t3690	274	130 t7510	195
52 t1600	209 -105	-26		t5240	263	154 t8239	192
53 t1653	151 177	166		t7768	260	179 t8413	191
54 t2010	377 68	268		t8986	260	111 t6090	191
55 t2120	237 175	140		3 t5630	257	153 t8219	189
56 t2160	117 106	- 78	•	8 t8488	256	2 t108	185
57 t2190	35 266	156		t9950	256	42 t1180	185
58 t2351	253 -35	130	•	t1550	255	23 t540	185
59 t2361	212 103	126		t8340	253	135 t7768	184
60 t2430	175 125	121	192	2 t8443	253	18 t308	184
61 t2460	83 22	158	58	3 t2351	253	138 t8010	181
62 t2491	292 35	137	174	t8405	251	196 t8453	177
63 t2628	176 -149	160	88	8 t4290	250	53 t1653	177
64 t2660	222 31	77		8 t757	249	55 t2120	175
65 t2681	144 63	-74		t8984	249	21 t511	171 i
66 t2730	0 236	632	•	t8993	249	128 t6904	170
67 t2840	- 18 59	66		t8630	246	195 t8450	169
68 t2901	153 335	110		7 t3590	244	152 t8208	168
69 t2925	-103 304	200		t8472	244	19 t380	168
0, 02,720	100 004	200	1 210	,	211	10 0000	± 0 0

_	t3020	159	10	221		-	t7610	243	249 t9428	157
	t3071	3	-32	250			t8466	241	156 t8299	155
	t3140		-105	-26			t8208	240	253 t9908	154
	t3200	351	28	144			t9450	240	147 t8120	153
	t3300		-105	-26	I		t8382	239	226 t8978	152
	t3440	404	57	147			t2120	237	93 t5360	148
76	t3508	358	7	239		50	t1530	234	35 t1030	138
	t3590	244	3	-28			t1020	233	47 t1444	135
78	t3641	360	10	150		99	t5660	233	159 t8340	131
79	t3680	0	236	632		139	t8040	232	238 t9025	131
80	t3681	362	91	138		96	t5530	232	244 t9340	131
81	t3690	274	18	266		217	t8530	232	94 t5380	130
82	t4030	377	68	268	1	126	t6890	232	229 t8982	130
83	t4202	0	236	632	1	215	t8493	229	60 t2430	125
84	t4203	48	239	111	ĺ	234	t8990	228	237 t8999	120
85	t4230	-68	221	26	i	221	t8708	227	122 t6768	113
86	t4248	-67	209	12	i	124	t6810	224	245 t9358	113
	t4270	209	-105	-26	i		t8352	223	155 t8298	112
	t4290	250	-20	449	i		t511	223	131 t7540	111
	t5030	292	35	137	i		t5940	223	24 t550	109
	t5090		-184	54	i		t6740	223	56 t2160	106
	t5130	297	16	-25	i		t2660	222	22 t520	103
	t5240	263	-27	114	i		t1440	221	198 t8456	103
	t5360	323		-193	i		t6768	218	216 t8520	103
	t5380	367	130	-42	i		t5510	217	59 t2361	103
	t5510	217	311	149	<u> </u>		t8465	217	176 t8410	102
	t5530	232	47	312	<u> </u>		t6650	214	169 t8390	100
	t5628	-89	203	76			t5730	214	220 t8630	99
	t5630	257	- 15	242			t5906	214	227 t8979	93
	t5660	233	-68	69			t2361	212	210 t8472	92
	t5730		-141	205	l I		t3140	209	80 t3681	91
	t5748	-148	3	247	l I		t3300	209	7 t151	91
	t5870	-104		-221	l I		t4270	209	141 t8057	83
	t5900	3	-32	250	l I		t1600	209	243 t9310	83
	t5900		-32 -141	205	l I		t9220	209		83 82
				205 - 9				·	164 t8382	•
	t5940	223	-86	_			t5960	208	38 t1070	81
	t5960	208	249	0	l		t8610	208	177 t8411	81
	t6010	281	10	226	Į		t8390	206	109 t6030	81
	t6020	319	36	207	Į.		t7510	202	25 t580	80
	t6030	-240	81	119	Į.		t1444	202	29 t773	79
T T O	t6060	106	44	167		T88	t8437	202	134 t7610	78

111	+ 6000	100	1 0 1	202		1.0	L1 C1	201		±120	7.6	
	t6090	120	191	303			t161	201	•	t138	76	
	t6118	-78	-52	29			t8467	196	•	t750	74	
	t6120	-216	32	306			t8470	195		t8130	71	
	t6210	190	57	-3			t8354	190		t8437	71	
	t6312	-106	224	363			t6210	190	•	t278	68	
	t6400	171	254	177			t1115	186	•	t4030	68	
	t6650		-141	205			t162	183		t1390	68	
	t6680		-222	55			t8300	182		t8441	68	
119	t6740	223	-101	224		24	t550	180	193	t8444	68	
120	t6741	-121	16	-198			t171	176	54	t2010	68	
121	t6743	3	-32	250		63	t2628	176	65	t2681	63	
122	t6768	218	113	358		60	t2430	175	20	t410	60	
123	t6801	-26	-2	59		247	t9380	174	33	t1012	59	
124	t6810	224	215	134		168	t8387	173	67	t2840	59	
125	t6851	3	-32	250		116	t6400	171	37	t1050	57	ĺ
	t6890	232	43	-198	i		t128	163	•	t3440	57	İ
	t6894	404	57	147	·		t3020	159	•	t8419	57	İ
	t6904	96	170	26			t2901	153		t6210	57	i
	t7499		-245	154			t8730	153	•	t6894	57	İ
	t7510	202	195	270			t1653	151		t8060	55	i I
	t7540	340	111	208			t8010	150		t8454	55	l I
-	t7544	-25	286	138			t8404	146		t8487	55	l I
	t7560	334	50	204			t2681	144	•	t1094	53	l I
	t7610	243		-258			t8108	144	•	t8170	51	
							t9428					
	t7768 t7790	260	184 207	300		-	t8080	142 141		t7560 t8356	50 50	
		-40 170		110								
-	t8008	-179	258	116			t8453	141		t757	49	
	t8010	150	181	38			t410	124		t8993	49	
	t8040		-148	-69			t8987	124		t198	48	
	t8050		-222	55			t773	123	•	t8406	48	
	t8057	372	83	178			t6090	120	•	t5530	47	
	t8060	356	55	157			t2160	117		t6060	44	
	t8080	141	266	207			t8412	112	•	t164	43	
144	t8090	0	-55	317		90	t5090	111	126	t6890	43	
145	t8108	144	-68	374		110	t6060	106	14	t189	42	
146	t8110	333	17	480	1	163	t8358	102	211	t8482	42	
147	t8120	-293	153	269		204	t8464	100	213	t8488	40	
148	t8130	-60	71	-174	Ì	15	t198	99	5	t134	39	
149	t8170	64	51	167	ĺ	190	t8440	98	186	t8435	39	
	t8178	-121	16	-198	İ		t8406	97		t1040	37	
	t8180	3	-32	250	i		t6904	96		t6020	36	l
		_										

	t8208	240	168	134			t9025	87		t5030	35	
	t8219	-198	189	184			t651	87		t2491	35	
	t8239	25	192	143			t8441	86		t6120	32	
155	t8298	79	112	22		16	t258	85	64	t2660	31	
156	t8299	-112	155	458		61	t2460	83	44	t1263	29	
157	t8300	182	-35	-30		18	t308	80	73	t3200	28	
158	t8315	-106	-224	64		155	t8298	79	234	t8990	25	
159	t8340	253	131	173		242	t9290	75	11	t162	24	
160	t8352	223	-145	67		14	t189	70	178	t8412	23	I
161	t8354	190	216	138		185	t8430	69	180	t8415	23	1
162	t8356	334	50	299	į	222	t8728	69	61	t2460	22	İ
163	t8358	102	289	216	į	236	t8994	67	167	t8386	19	I
	t8382	239		-196	i		t8386	66		t3690	18	I
	t8383		-198	121	i		t8170	64		t8110	17	I
	t8385	312	225	-70	i		t8435	63		t8178	16	I
	t8386	66	19	147	i		t781	59		t6741	16	I
	t8387	173	-113	250	i		t8438	54		t8994	16	
	t8390	206	100	-87	i		t1138	48		t9538	16	
	t8392	0	16	98	i		t4203	48		t8392	16	I
	t8401	292	16	231	i		t9908	46		t8401	16	I
	t8402	- 55	244	-67	i		t138	45		t8460	16	I
	t8404		-151	138	i		t9288	44		t5130	16	I
	t8405	251	-6	53	i		t8436	40		t9950	15	I
	t8406	97	48	275	i		t2190	35		t5870	12	I
	t8410	283	102	153	i		t380	34		t3020	10	I
	t8411	-240	81	119	i		t8	27		t3641	10	
	t8412	112	23	192	i		t8239	25		t6010	10	I
	t8413	-2	191	357	i		t8416	22		t3508	7	I
	t8415	-26	23	111	i		t8989	17		t8728	7	I
	t8416	22	-22	332	i		t1094	17		t8430	7	I
	t8419	404	57	147	i		t8981	10	•	t8457	6	I
	t8421		-194	174	i		t8180	3		t3590	3	
	t8427		-233	112	i		t6743	3		t5748	3	I
	t8430	69	7	113	i		t8560	3	•	t9430	-2	I
	t8435	63	39	-8	i		t3071	3		t6801	-2	i I
	t8436	40	197	227	i		t5900	3		t8708	-5	
	t8437	202	71	- 55	i		t6851	3		t8405	-6	I
	t8438	54	244	76	i		t2730	0		t1240	-7	I
	t8440	98	329	157	' 		t8090	0		t161	-12	I
	t8441	86	68	64			t8392	0		t8467	-12	
	t8443		-100	45			t3680	0		t5630	-15	'
	30110	200	_ 0 0	10	'	, ,	2000	O	, 50			1

	t8444	377	68	268			t4202	0	•	t1138	-16
194	t8446	-47	275	286		179	t8413	-2	224	t8734	-16
195	t8450	335	169	13		248	t9390	-10	214	t8490	-16
196	t8453	141	177	-111		129	t7499	-14	203	t8462	-18
197	t8454	-168	55	-34		32	t1011	-14	219	t8610	-18
198	t8456	-273	103	-113	1	225	t8798	-14	88	t4290	-20
199	t8457	332	6	497	1	226	t8978	-16	181	t8416	-22
200	t8459	-47	272	2	İ	67	t2840	-18	230	t8984	-26
201	t8460	-121	16	-198	i	209	t8471	-18	92	t5240	-27
	t8461	325	215	-62	i		t9370	-20		t6743	-32
203	t8462	305	-18	206	i		t153	-23	•	t8560	-32 i
	t8464	100	-45	326	i		t7544	-25	•	t3071	-32
	t8465	217	281	153	i		t9118	-26	•	t5900	-32
	t8466	241	254	43	i		t6801	-26		t8180	-32
	t8467	196		-129	i		t8415	-26		t6851	-32
	t8470	195	-42	5	i		t130	-27	•	t2351	-35
	t8471	-18	367	380	i		t8999	-29	•	t8300	-35
	t8472	244		-256	i		t8421	-37		t8470	-42
	t8482	303	42	55	i		t7790	-40	•	t8464	-45
	t8487	-88		-153	i		t155	-42		t6118	-52
	t8488	256	40	76	i		t8446	-47	•	t1530	-53
	t8490	326	-16	235	i		t8459	-47	•	t8090	-55 I
	t8493	229	221	93	i		t8402	- 55		t9288	-62
	t8520	-273		-113	i		t9358	- 55	•	t8986	-63
	t8530	232	-148	-69	i		t8130	-60		t5660	-68
	t8560	3	-32	250	i		t8427	-64		t8108	-68
	t8610	208	-18	255	i		t4248	-67	•	t1550	-72 I
	t8630	246	99	170	i		t4230	-68		t1020	-73 I
	t8708	227	- 5	151	i		t1498	- 72	•	t5940	-86
	t8728	69	7	113	i		t6118	-78		t128	-91
	t8730		-171	131	i		t8383	-79		t8443	-100
	t8734	308	-16	146	i		t1445	-81	•	t6740	-101
	t8798		-245	154	i		t8487	-88		t1600	-105
	t8978	-16	152	-43	, 		t5628	-89		t3140	-105
	t8979	-166	93	-44	ı I		t2925	-103		t3300	-105
	t8981		- 165	318	 		t5870	-104		t4270	-105
	t8982	328	130	329	 		t8315	-106	•	t9220	-105
	t8984	249	- 26	337	l I		t6313	-106	•	t8387	-113
	t8986	260	-63	337	l		t8299	-112		t1115	-113 -122
	t8987	124	362	33 74	l		t8050	-112 -115		t5906	-141
	t8989	17	249	451	l		t1010	-115 -115		t5730	-141
233	C0303	Ι/	243	401	1	JΙ	CIUIU	-113	1 100	CJ / J U	_ 141

234	t8990	228	25	74	118	t6680	-115	117	t6650	-141	
235	t8993	249	49	-18	150	t8178	-121	46	t1440	-144	
236	t8994	67	16	-13	252	t9538	-121	160	t8352	-145	
237	t8999	-29	120	-37	120	t6741	-121	217	t8530	-148	
238	t9025	87	131	170	201	t8460	-121	139	t8040	-148	
239	t9118	-26	199	-29	7	t151	-122	63	t2628	-149	
240	t9220	209	-105	-26	244	t9340	-128	173	t8404	-151	
241	t9288	44	-62	394	12	t164	-142	228	t8981	-165	
242	t9290	75	296	62	101	t5748	-148	223	t8730	-171	
243	t9310	372	83	178	227	t8979	-166	90	t5090	-184	
244	t9340	-128	131	-57	197	t8454	-168	183	t8421	-194	
245	t9358	-55	113	-128	137	t8008	-179	165	t8383	-198	
246	t9370	-20	212	-45	153	t8219	-198	118	t6680	-222	
247	t9380	174	201	184	113	t6120	-216	31	t1010	-222	
248	t9390	-10	197	-26	177	t8411	-240	140	t8050	-222	
249	t9428	142	157	-24	109	t6030	-240	158	t8315	-224	
250	t9430	309	-2	446	38	t1070	-240	48	t1445	-229	
251	t9450	240	270	94	216	t8520	-273	184	t8427	-233	
252	t9538	-121	16	-198	198	t8456	-273	129	t7499	-245	
253	t9908	46	154	113	22	t520	-273	32	t1011	-245	
254	t9950	256	15	59	147	t8120	-293	225	t8798	-245	

Spring 2007 (Riffle Pool and Glide/Pool)

N	NAME	AX1	AX2	AX3	R.	ANKED 1		RANKED 2		
					EI	G=0.305		EIG=0.228		
1	HC1 00	160	77	85	13 H	C1 95 222	2	0 NF5 GP	239	
2	CC1_01	113	67	77	14 H	C2_95 212	1	9 NF1_GP	176	
3	CC1 04	198	107	0	3 C	C1 04 198		7 NF1 RP	167	
4	HC1 07	70	64	100	29 L	D1 95 198	2	5 LD1 07	141	
5	CC1_07	57	100	155	30 L	D2_95 187	2	1 NF6_GP	110	
6	NF10_RP	33	55	106	1 H	C1_00 160	2	8 NF2_GP	109	
7	NF1_RP	143	167	87	31 L	D2_98 144		3 CC1_04	107	
8	NF6 RP	88	96	85	7 N	F1 RP 143		5 CC1 07	100	
9	NF9a_RP	33	63	69	32 L	D3_98 133		8 NF6_RP	96	
10	NF9b RP	55	63	23	2 C	C1 01 113	2	4 NF8 GP	91	

11	NF8 RP	37	88	19	1	9 NF1 GP	112	30 LD2 95	89
12	NF7 RP	70	69	6		8 NF6 RP	88	11 NF8 RP	88
13	HC1 95	222	62	108	2	7 NF3 GP	88	27 NF3 GP	86
14	HC2 95	212	73	89	2	1 NF6 GP	85	26 NF7 GP	80
15	LD1 00	74	50	144	2	0 NF5 GP	74	18 NF10 GP	78
16	LD2 01	69	9	132	1	5 LD1 00	74	$1 \text{ HC1 } \overline{00}$	77
17	LD1_01	52	0	112		4 HC1_07	70	22 NF9a_GP	74
18	NF10_GP	20	78	114	1	2 NF7_RP	70	14 HC2_95	73
19	NF1_GP	112	176	128	1	6 LD2_01	69	12 NF7_RP	69
20	NF5_GP	74	239	117		5 CC1_07	57	23 NF9b_GP	68
21	NF6_GP	85	110	109	1	0 NF9b_RP	55	2 CC1_01	67
22	NF9a_GP	26	74	88	2	8 NF2_GP	53	29 LD1_95	65
23	NF9b_GP	33	68	57	'	7 LD1_01	52	4 HC1_07	64
24	NF8_GP	0	91	52	·	6 NF7_GP	41	9 NF9a_RP	63
25	LD1_07	37	141	62	2	5 LD1_07	37	10 NF9b_RP	63
	NF7_GP	41	80	48	1	1 NF8_RP	37	13 HC1_95	62
	NF3_GP	88	86	93		9 NF9a_RP	33	6 NF10_RP	55
28	NF2_GP	53	109	63	2	3 NF9b_GP	33	15 LD1_00	50
29	LD1_95	198	65	126		6 NF10_RP	33	31 LD2_98	32
30	LD2_95	187	89	149		2 NF9a_GP	26	32 LD3_98	29
31		144	32	62	·	8 NF10_GP	20	16 LD2_01	9
32	LD3_98	133	29	106	2	4 NF8_GP	0	17 LD1_01	0

************************* Calculations finished ********************

Appendix C

Detrended Correspondence Analysis (DCA) Comparing the Macroinvertebrate Samples at the NFSR Test Stations to Macroinvertebrate Samples Collected Previously at Sampling Stations Located Within the Biological Criteria Reference Reaches of Cedar Creek, Horse Creek, and Little Drywood Creek. The Data at the NFSR Stations Was Limited to Riffle/Pool Data at NFSR #1 and Glide/Pool Data at the Other NFSR Stations.

19 Feb 2008, 15:09

Fall 2006 (Riffle Pool at NFSR #1, Glide/Pool at other NFSR Stations)

Number of non-zero data items: 1805

No downweighting Axes are rescaled

Number of segments: 30

Threshold: 0.00

Total variance ("inertia") in the species data: 2.4505

----- Axis 1 -----

0.1405817419 = residual at iteration 0

0.0067928359 = residual at iteration 1

0.0000825539 = residual at iteration 2

0.0000011094 = residual at iteration 3

0.000000776 = residual at iteration 4

0.4651609361 = eigen value

Length of gradient: 2.497

Length of segments: 0.28 0.27 0.25 0.24 0.22 0.20 0.18 0.17 0.16 0.15

Length of segments: 0.14 0.13 0.12

Length of gradient: 2.693

Length of gradient: 2.684

Length of segments: 0.20 0.20 0.19 0.19 0.19 0.19 0.19 0.20 0.19 0.19

Length of segments: 0.19 0.19 0.19 0.18

Length of gradient: 2.675

----- Axis 2 -----

```
0.0494089164 = residual at iteration
0.0274297465 = residual at iteration
0.0036148836 = residual at iteration
0.0003256735 = residual at iteration
0.0000433734 = residual at iteration
0.0000039899 = residual at iteration
0.0000005452 = residual at iteration
0.000001973 = residual at iteration
0.0587216206 = residual at iteration
0.0030730232 = residual at iteration
0.0003108132 = residual at iteration
0.0000206210 = residual at iteration
0.0000024918 = residual at iteration 12
0.0000002003 = residual at iteration 13
0.0000002028 = residual at iteration 14
0.0496821739 = residual at iteration 15
0.0174235143 = residual at iteration 16
0.0014191251 = residual at iteration 17
0.0001802565 = residual at iteration
0.0000164085 = residual at iteration
0.0000021614 = residual at iteration
0.0000002214 = residual at iteration
0.0342122614 = residual at iteration
0.0379280709 = residual at iteration
0.0038363794 = residual at iteration 24
0.0004552122 = residual at iteration
0.0000405775 = residual at iteration
0.0000051330 = residual at iteration
0.0000005046 = residual at iteration
0.0000004038 = residual at iteration
0.0000001411 = residual at iteration
0.0676115453 = residual at iteration
0.0076827402 = residual at iteration 32
0.0007274991 = residual at iteration
0.0000853089 = residual at iteration
0.0000106374 = residual at iteration 35
0.0000013638 = residual at iteration
0.0000001951 = residual at iteration 37
0.0000001093 = residual at iteration 38
```

```
0.0436502136 = residual at iteration 39
0.0006611393 = residual at iteration 40
0.0000286053 = residual at iteration 41
0.0000031208 = residual at iteration 42
0.0000002673 = residual at iteration 43
0.0400963351 = residual at iteration 44
0.0272223372 = residual at iteration 45
0.0025952584 = residual at iteration 46
0.0003042419 = residual at iteration 47
0.0000275201 = residual at iteration 48
0.0000032631 = residual at iteration 49
0.0000002944 = residual at iteration 50
0.0028093150 = residual at iteration 60
0.0000874962 = residual at iteration 70
0.0000008516 = residual at iteration 80
0.0000083980 = residual at iteration 90
0.0000003779 = residual at iteration 100
0.0014637875 = residual at iteration 110
0.0000265969 = residual at iteration 120
0.0534274355 = residual at iteration 130
0.0000063972 = residual at iteration 140
0.0246373862 = residual at iteration 150
0.0060916040 = residual at iteration 160
0.0000464905 = residual at iteration 170
0.0000007045 = residual at iteration 180
0.0011650383 = residual at iteration 190
0.000001827 = residual at iteration 200
0.0094924485 = residual at iteration 210
0.0000025772 = residual at iteration 220
0.0028366041 = residual at iteration 230
0.0000251338 = residual at iteration 240
0.0000000864 = residual at iteration 243
0.2029508203 = eigen value
```

Length of gradient: 2.104

Length of segments: 0.14 0.16 0.19 0.22 0.23 0.22 0.22 0.21 0.19 0.17

Length of segments: 0.15
Length of gradient: 2.120

Length of gradient: 2.082

Length of segments: 0.17 0.18 0.19 0.21 0.21 0.20 0.20 0.20 0.19 0.18

Length of segments: 0.17
Length of gradient: 2.073

----- Axis 3 -----

0.0366956145 = residual at iteration 0 0.0057897535 = residual at iteration 1 0.0007512598 = residual at iteration 2 0.0000697104 = residual at iteration 3 0.0000125697 = residual at iteration 4 0.0000012551 = residual at iteration 5 0.0000002394 = residual at iteration 6 0.0000000476 = residual at iteration 7 0.1050830632 = eigen value

Length of gradient: 1.451

Length of segments: 0.16 0.17 0.18 0.18 0.19 0.19 0.16 0.10 0.07 0.06

Length of gradient: 1.807

Length of gradient: 1.785

Length of segments: 0.16 0.16 0.18 0.19 0.19 0.20 0.20 0.19 0.17 0.15

Length of gradient: 1.758

Fall 2006 (Riffle Pool at NFSR #1, Glide/Pool at other NFSR Stations)

SPECIES SCORES

N	NAME	AX1	AX2	AX3		RANKED 1	.	RANKED 2		
						EIG=0.465	5	EIG=0.203		
1	t8	170	52	-24	40	t1268	390	68 t2800	528	
2	t128	119	181	240	93	t5063	390	160 t8411	528	
3	t130	68	148	-78	4.8	t2010	390	198 t8560	528	
4	t134	-47	320	-151	159	t8410	379	117 t6560	528	

E ±120	7.4	100	_	1	1 2 4	±75C0	272	107	+ (020	42E I
5 t138 6 t151	74 -57	196 292	-6 28	l		t7560 t5130	372 365		t6030	435 389
				l					t8468	'
7 t153	-107		7	l		t5030	361		t8999	334
8 t155	- 54	72	49	l		t8490	359		t8608	330
9 t161	219		-148	l l		t8730	357		t9290	323
10 t162	105	156	-48	l		t8356	356		t134	320
11 t171		-125	-44			t2020	352		t2328	313
12 t189	-32	-13	227			t8060	351		t8528	306
13 t198	132	219	61			t1390	351		t5508	306
14 t258	25	148	-36			t1180	338		t8209	292
15 t278	-54	264	197			t1040	335		t151	292
16 t288	177		-219			t8300	334		t8404	289
17 t308	34	98	-1			t2690	323		t1498	288
18 t380	-57	272	-156			t1123	323	124	t6741	279
19 t511	137	-7	0			t8070	323		t6180	278
20 t550	-149	263	194		75	t4050	323	64	t2681	276
21 t651	24	217	-8		38	t1260	323	18	t380	272
22 t750	-44	-18	164		98	t5400	323	229	t9908	269
23 t757	235	149	272		228	t9538	315	125	t6743	269
24 t762	213	26	-191		45	t1550	311	225	t9428	264
25 t773	164	222	207	ĺ	39	t1263	301	15	t278	264
26 t781	20	214	167	ĺ	31	t1050	300	20	t550	263
27 t1028	-16	224	-160	i		t8461	295	110	t6130	263
28 t1030	222	37	-183	i	94	t5070	285	69	t2840	259
29 t1040	335	103	29	i	171	t8443	283	205	t8798	258
30 t1046	235	8	- 95	i		t5660	282		t9390	256 j
31 t1050	300	58	-20	i		t8354	281		t2460	254
32 t1070	36	0	0	i		t6020	280		t9118	252
33 t1115	271	124	230	i		t3510	275		t4370	250
34 t1123	323	104	59	i		t5058	275		t8467	246
35 t1138	211	50	-57	i		t8466	275		t6210	246
36 t1180	338	82	-39	i		t5160	275		t8413	239
37 t1240	232	138	177	i		t8990	275		t8630	235
38 t1260	323	104	59	i		t9220	275		t8415	232
39 t1263	301	140	180			t1115	271		t8446	232
40 t1268	390	104	59	i I		t8491	271		t6904	231
41 t1390	351	90	55	l I		t8385	271		t7768	231
42 t1444	114	118	228	1 1		t8457	264		t8984	231
43 t1498	56	288	204	1		t8416	261		t6740	231
43 t1496 44 t1500	232	200 165	344	 		t8462	259		t2650	231
45 t1550	311	143	96	 		t8453	252		t9370	229
40 61000	211	147	20	1	1/3	C0477	232	444	C9310	22 <i>3</i>

46	t1650	146	183	398		60	t2491	251	27	t1028	224	
47	t1653	42	-72	-47		63	t2660	251	25	t773	222	
48	t2010	390	104	59		226	t9430	250	142	t8140	221	
49	t2020	352	74	55		74	t4030	248	13	t198	219	
50	t2120	246	129	148		50	t2120	246	21	t651	217	
51	t2160	227	111	127		227	t9450	242	221	t9340	217	
52	t2190	-73	198	171		124	t6741	241	79	t4200	216	
53	t2328	74	313	233		135	t7610	240	174	t8451	216	
54	t2351	95	181	205		148	t8340	239	187	t8469	216	
55	t2353	220	205	-276		125	t6743	237	84	t4210	214	
56	t2361	32	147	-72		127	t6801	236	26	t781	214	
57	t2408	26	-64	338	i	23	t757	235	132	t7510	212	
58	t2430	-45	136	242	i	30	t1046	235	103	t5940	211	
59	t2460	133	254	57	i	104	t5960	233	164	t8430	208	
60	t2491	251	155	305	i	37	t1240	232	55	t2353	205	
	t2628	-55	-64	128	į		t1500	232		t8130	202	
62	t2650	168	231	503	į	130	t6890	231	52	t2190	198	
63	t2660	251	110	265	į	193	t8488	229	165	t8435	196	
	t2681	-14	276	-13	į		t5360	229		t138	196	
	t2690	323	104	59	i		t6851	228		t9950	196	
	t2730	-68	-24	151	i		t8402	227 j		t8750	193	
	t2750	114	119	209	i		t2160	227		t9380	193	
	t2800	-177	528	4	į		t8386	225	173	t8450	192	
	t2840	20		-100	į		t8472	224		t8464	192	
	t2901	-78	139	-16	i	179	t8460	222	190	t8472	191	
	t2920	63	170	209	i		t1030	222		t6851	185	
	t2925	-96	-97	159	i		t8493	221		t8462	185	
	t3510	275	20	47	i		t6810	220 j		t8352	184	
	t4030	248	89	183	i		t2353	220		t4204	184	
75	t4050	323	104	59	i		t161	219		t8457	184	
	t4110	160	-24	26	i		t762	213		t6480	184	
	t4140	201	-40	-4	į		t1138	211 i		t1650	183	
	t4170	-64	34	122	į		t4140	201 i		t8436	182	
	t4200	197	216	271	i	79	t4200	197 I		t6680	182	
	t4201	-43	7	218	i	174	t8451	197 i		t128	181	
	t4202	-76	-93	146	i		t8469	197		t5660	181	
	t4203	-72		-228	i		t5940	196		t2351	181	
	t4204	-52	184	43	i		t8987	196		t6020	179	
	t4210	-167	214	14	İ		t8437	190		t8491	177	
	t4230	-7	35	187	İ		t8482	181		t5070	175	
	t4248	47		-223	İ		t288	177		t2920	170	
0 0		- /	_ 0 0		'	_ 0					_, _	

	t4266	103		-123			t8382	177		t8354	169	
	t4290	108	147	-28			t8991	177		t9430	166	
	t4370	-15	250	-80			t6312	177		t1500	165	
90	t5030	361	102	58		121	t6721	177	127	t6801	163	
91	t5058	275	20	47		122	t6726	177	148	t8340	160	
92	t5061	36	-3	119	1	137	t8010	174	10	t162	156	
93	t5063	390	104	59	ĺ	201	t8630	174	60	t2491	155	
94	t5070	285	175	57	ĺ	200	t8610	171	23	t757	149	
95	t5130	365	98	45	į	1	t8	170	168	t8438	148	
	t5160	275	20	47	i		t6010	169		t8990	148	
	t5360	229	3	-98	i		t6904	168		t130	148	
	t5400	323	104	59	i		t7768	168		t258	148	
	t5440	22	-29	115	i		t8984	168		t2361	147	
	t5508	-130		-229	i		t6740	168		t4290	147	
	t5660	282	181	66			t2650	168		t1550	143	
	t5868	-45	136	242			t9950	166		t1263	140	
	t5940	196	211	261			t8465	165		t2901	139	
	t5960	233	85	191	1		t773	164		t1240	138	
	t6010	169	25	- 67			t8441	161		t8441	138	
	t6020	280	179	43			t4110	160		t8482	137	
	t6030	-141		-192			t8994	156		t6810	136	
	t6090		-118	-60			t6400	151		t8474	136	
	t6118	-66	107	175			t6180	148		t9310	136	
	t6130	-149	263	194			t8130	147		t5868	136	
	t6180	148	278	252			t9380	147		t8640	136	
	t6210	42	246	-64			t1650	146	•	t2430	136	
	t6310	-18	-71	204			t8454	138		t8443	135	
	t6312	177		-219			t511	137		t9025	133	
	t6400	151	-3	-166			t2460	133		t8994	133	
	t6480	87	184	160			t198	132	50	t2120	129	
117	t6560	-177	528	4		2	t128	119	33	t1115	124	
118	t6580	24	-15	-27		165	t8435	117	163	t8416	121	
119	t6650	57	-68	226		67	t2750	114	82	t4203	121	
120	t6680	-40	182	-24	1	42	t1444	114	67	t2750	119	
121	t6721	177	0	-219	ĺ	88	t4290	108	176	t8454	119	
122	t6726	177	0	-219	į	10	t162	105	1 42	t1444	118	
	t6740	168	231	503	i		t4266	103		t8402	116	
	t6741	241	279	-48	i		t2351	95	•	t8466	113	
	t6743	237	269	5	İ		t8450	94		t2160	111	
	t6768	21	-21	158	i		t8352	87		t2660	110	
	t6801	236	163	177			t6480	87		t8239	108	
12/	20001	250	100	± , ,	1	110	20100	0 /	1 110	50255	100	

400		0.00	100	4.0		400		0.7			4.0.0	
	t6810	220	136	12			t8464	87		t6118	107	
	t6851	228	185	367		_	t9025	84		t4248	106	
	t6890	231		-130			t138	74		t2690	104	
	t6904	168	231	503			t2328	74	•	t1123	104	
	t7510	47	212	74			t8750	72	•	t8070	104	
133	t7544	-90	-59	204		3	t130	68	75	t4050	104	
134	t7560	372	96	31		71	t2920	63	38	t1260	104	
135	t7610	240	18	83		119	t6650	57	159	t8410	104	
136	t7768	168	231	503		43	t1498	56	40	t1268	104	
137	t8010	174	60	112		132	t7510	47	93	t5063	104	
138	t8060	351	83	56	į	229	t9908	47	48	t2010	104	Ì
139	t8070	323	104	59	į	86	t4248	47	I 98	t5400	104	i
	t8120	-50	89	242	i		t8471	43	•	t1040	103	i
	t8130	147	202	181	i		t1653	42	•	t5030	102	i
	t8140	28	221	60	i		t6210	42		t8490	101	i
	t8170	-64	-23	217	i		t1070	36	•	t308	98	i
	t8209	-98	292	113			t5061	36	•	t5130	98	i
	t8219		-100	86			t308	34		t8385	97	i
	t8239	10	108	5	 		t2361	32	•	t7560	96	1
	t8300	334	71	-45	 		t8140	28		t8730	92	1
	t8340	239	160	177	 		t2408	26		t8356	91	1
	t8352	239 87	184	160			t258	25		t1390	90	1
	t8354	281		-132			t6580	23	•	t8120	89	
	t8356	356	91	58			t651	24		t4030	89	!
	t8358	- 15	85	158	!		t5440	22	•	t8358	85	
	t8382	177		-219	!		t9340	21		t5960	85	
-	t8385	270	-	-116			t6768	21		t8060	83	
	t8386	225	65	-95			t2840	20	•	t8610	83	
	t8402	227	116	57			t781	20		t8993	82	
	t8404	-63	289	11			t8438	19	•	t1180	82	
	t8406	-18	-71	204			t8239	10		t9538	82	
	t8410	379	104	59			t8467	9	•	t2020	74	
160	t8411	-177	528	4		85	t4230	-7	178	t8459	73	
161	t8413	-51	239	-58		64	t2681	-14	8	t155	72	
162	t8415	-143	232	180		152	t8358	-15	147	t8300	71	
163	t8416	261	121	-62		89	t4370	-15	155	t8386	65	
164	t8430	-87	208	186		27	t1028	-16	175	t8453	61	
165	t8435	117	196	7	į	113	t6310	-18	193	t8488	61	
166	t8436	-27	182	105	İ	158	t8406	-18	137	t8010	60	l
	t8437	190	59	123	i		t8470	-20	•	t8437	59	İ
	t8438	19	148	84	i		t8436	-27		t1050	58	ĺ
	-		- 3		'			- ·				'

169	t8440	-63	5	116	1	222	t9370	-27	1	t8	52	
	t8441	161	138	259			t9288	-28		t1138	50	
	t8443	283	135	215			t189	-32		t8461	44	
	t8446	- 70	232	187			t9118	-39		t8460	37	
	t8450	94	192	221			t6680	-40		t1030	37	
	t8451	197	216	271			t6090	-41		t6890	36	
	t8453	252	61	7			t4201	-43		t4230	35	
	t8454	138	119	-16			t750	-44		t4170	34	
	t8457	264	184	85			t9310	-45		t8493	34	
	t8459	-45	73	80			t5868	-45		t8987	32	
	t8460	222		-183			t8474	-45		t9450	31	
	t8461	295	44	-36	İ		t8459	-45		t762	26	
	t8462	259	185	143	i		t8640	-45		t6010	25	
	t8464	87	192	203	į		t2430	-45 j		t8989	24	
	t8465	165	-38	99	i		t171	-46		t5160	20	
	t8466	275	113	171	İ		t134	-47		t5058	20	
185	t8467	9	246	241		140	t8120	-50	73	t3510	20	
186	t8468	-118	389	-8		224	t9390	-51	217	t9220	20	
187	t8469	197	216	271		161	t8413	-51	135	t7610	18	
188	t8470	-20	-3	176		83	t4204	-52	9	t161	11	
189	t8471	43	-22	10		15	t278	-54	30	t1046	8	
190	t8472	224	191	280			t155	-54	80	t4201	7	
191	t8474	-45	136	242			t2628	- 55	169	t8440	5	
	t8482	181	137	227			t380	- 57		t5360	3	
	t8488	229	61	127			t151	- 57		t1070	0	
	t8490	359	101	76			t8798	-61		t6312	0	
	t8491	271	177	229			t8440	-63		t288	0	
	t8493	221	34	132			t9428	-63		t8382	0	
		-130	306	-229			t8404	-63		t6726	0	
		-177	528	4			t8170	-64		t8991	0	
	t8608	-91	330				t4170	-64		t6721	0	
	t8610	171	83	218			t8978	-64		t5061	-3	
	t8630	174	235	-92			t6118	-66		t8470	-3	
	t8640	-45	136	242			t2730	-68		t6400	-3	
	t8730	357	92	57			t8989	-69		t511	-7	
	t8750	72	193	162			t8446	-70		t189	-13	
	t8798	-61	258	-24			t8219	-71		t6580	-15	
	t8978	-64	-37	172			t4203	- 72		t9288	-17	
	t8984	168	231	503			t2190	-73		t750	-18	
	t8987	196	32	-1			t4202	-76		t6768	-21	
209	t8989	-69	24	101		70	t2901	-78	189	t8471	-22	

t8990	275	148	176	1	164	t8430	-87		143	t8170	-23	
t8991	177	0	-219		133	t7544	-90		76	t4110	-24	
t8993	-156	82	312		199	t8608	-91		66	t2730	-24	
t8994	156	133	-23		72	t2925	-96		99	t5440	-29	
t8999	-98	334	196		144	t8209	-98		206	t8978	-37	
t9025	84	133	66		214	t8999	-98		183	t8465	-38	
t9118	-39	252	-36		7	t153	-107		77	t4140	-40	
t9220	275	20	47		186	t8468	-118		87	t4266	-42	
t9288	-28	-17	131		100	t5508	-130		133	t7544	-59	
t9290	-153	323	96		197	t8528	-130		61	t2628	-64	
t9310	-45	136	242		107	t6030	-141		57	t2408	-64	
t9340	21	217	8		162	t8415	-143		119	t6650	-68	
t9370	-27	229	144		20	t550	-149		158	t8406	-71	
t9380	147	193	208		110	t6130	-149		113	t6310	-71	
t9390	-51	256	-103		219	t9290	-153		47	t1653	-72	
t9428	-63	264	46		212	t8993	-156		81	t4202	-93	
t9430	250	166	225		84	t4210	-167		72	t2925	-97	
t9450	242	31	-112		160	t8411	-177		145	t8219	-100	
t9538	315	82	-39		117	t6560	-177		108	t6090	-118	
t9908	47	269	-9		68	t2800	-177		11	t171	-125	
t9950	166	196	426		198	t8560	-177		7	t153	-171	
	t8990 t8991 t8993 t8994 t8999 t9025 t9118 t9220 t9288 t9290 t9310 t9340 t9370 t9380 t9428 t9430 t9450 t9538 t9908	t8991 177 t8993 -156 t8994 156 t8999 -98 t9025 84 t9118 -39 t9220 275 t9288 -28 t9290 -153 t9310 -45 t9340 21 t9370 -27 t9380 147 t9390 -51 t9428 -63 t9430 250 t9450 242 t9538 315 t9908 47	t8991 177 0 t8993 -156 82 t8994 156 133 t8999 -98 334 t9025 84 133 t9118 -39 252 t9220 275 20 t9288 -28 -17 t9290 -153 323 t9310 -45 136 t9340 21 217 t9370 -27 229 t9380 147 193 t9390 -51 256 t9428 -63 264 t9430 250 166 t9450 242 31 t9538 315 82 t9908 47 269	t8991 177 0 -219 t8993 -156 82 312 t8994 156 133 -23 t8999 -98 334 196 t9025 84 133 66 t9118 -39 252 -36 t9220 275 20 47 t9288 -28 -17 131 t9290 -153 323 96 t9310 -45 136 242 t9340 21 217 8 t9370 -27 229 144 t9380 147 193 208 t9390 -51 256 -103 t9428 -63 264 46 t9430 250 166 225 t9450 242 31 -112 t9538 315 82 -39 t9908 47 269 -9	t8991 177 0 -219 t8993 -156 82 312 t8994 156 133 -23 t8999 -98 334 196 t9025 84 133 66 t9118 -39 252 -36 t9220 275 20 47 t9288 -28 -17 131 t9290 -153 323 96 t9310 -45 136 242 t9340 21 217 8 t9370 -27 229 144 t9380 147 193 208 t9390 -51 256 -103 t9428 -63 264 46 t9430 250 166 225 t9450 242 31 -112 t9538 315 82 -39 <t< td=""><td>t8991 177 0 -219 133 t8993 -156 82 312 199 t8994 156 133 -23 72 t8999 -98 334 196 144 t9025 84 133 66 214 t9118 -39 252 -36 7 t9220 275 20 47 186 t9288 -28 -17 131 100 t9290 -153 323 96 197 t9310 -45 136 242 107 t9340 21 217 8 162 t9370 -27 229 144 20 t9380 147 193 208 110 t9390 -51 256 -103 219 t9428 -63 264 46 212 t9430 250 166 225 84 t9450 242 31 -112 160 t9538 315 <</td><td>t8991 177 0 -219 133 t7544 t8993 -156 82 312 199 t8608 t8994 156 133 -23 72 t2925 t8999 -98 334 196 144 t8209 t9025 84 133 66 214 t8999 t9118 -39 252 -36 7 t153 t9220 275 20 47 186 t8468 t9288 -28 -17 131 100 t5508 t9290 -153 323 96 197 t8528 t9310 -45 136 242 107 t6030 t9340 21 217 8 162 t8415 t9370 -27 229 144 20 t550 t9380 147 193 208 110 t6130 t9390 -51 256 -103 219 t9290 t9428 -63 264 46 212 t8993 t9430 250 166 225 84 t4210 t9450 242 31 -112 160 t8411 t9538 315 82 -39 117 t6560 t9908 47 269 -9 68 t2800</td><td>t8991 177 0 -219 133 t7544 -90 t8993 -156 82 312 199 t8608 -91 t8994 156 133 -23 72 t2925 -96 t8999 -98 334 196 144 t8209 -98 t9025 84 133 66 214 t8999 -98 t9118 -39 252 -36 7 t153 -107 t9220 275 20 47 186 t8468 -118 t9288 -28 -17 131 100 t5508 -130 t9290 -153 323 96 197 t8528 -130 t9310 -45 136 242 107 t6030 -141 t9340 21 217 8 162 t8415 -143 t9370 -27 229 144 20 t550 -149 t9380 147 193 208 110 t6130 -149 t9390 -51 256 -103 219 t9290 -153 t9428 -63 264 46 212 t8993 -156 t9430 250 166 225 84 t4210 -167 t9450 242 31 -112 160 t8411 -177 t9538 315 82 -39 117 t6560</td><td>t8991 177 0 -219 133 t7544 -90 t8993 -156 82 312 199 t8608 -91 t8994 156 133 -23 72 t2925 -96 t8999 -98 334 196 144 t8209 -98 t9025 84 133 66 214 t8999 -98 t9118 -39 252 -36 7 t153 -107 t9220 275 20 47 186 t8468 -118 t9288 -28 -17 131 100 t5508 -130 t9290 -153 323 96 197 t8528 -130 t9310 -45 136 242 107 t6030 -141 t9340 21 217 8 162 t8415 -143 t9370 -27 229 144 20 t550 -149 t9380 147 193 208 110 t6130 -149 t9428 -63 264 46 212 t8993 -156 t9430 250 166 225 84 t4210 -167 t9450 242 31 -112 160 t8411 -177 t9538 315 82 -39 117 t6560 -177 t9908 47 269 -9</td><td>t8991 177 0 -219 133 t7544 -90 76 t8993 -156 82 312 199 t8608 -91 66 t8994 156 133 -23 72 t2925 -96 99 t8999 -98 334 196 144 t8209 -98 206 t9025 84 133 66 214 t8999 -98 183 t9118 -39 252 -36 7 t153 -107 77 t9220 275 20 47 186 t8468 -118 87 t9288 -28 -17 131 100 t5508 -130 133 t9290 -153 323 96 197 t8528 -130 61 t9310 -45 136 242 107 t6030 -141 57 t9340 21 217 8 162 t8415 -143 119 t9370 -27 229 144 20 t550 -149 158 t9380 147 193 208 110 t6130 -149 13 t9428 -63 264 46 212 t8993 -156 81 t9430 250 166 225 84 t4210 -167 72 t9450 242 31 -112 160 t8411 -177 145 t9908 47 269 -9 68 t2800 -177 11</td><td>t8991 177 0 -219 133 t7544 -90 76 t4110 t8993 -156 82 312 199 t8608 -91 66 t2730 t8994 156 133 -23 72 t2925 -96 99 t5440 t8999 -98 334 196 144 t8209 -98 206 t8978 t9025 84 133 66 214 t8999 -98 183 t8465 t9118 -39 252 -36 7 t153 -107 77 t4140 t9220 275 20 47 186 t8468 -118 87 t4266 t9288 -28 -17 131 100 t5508 -130 133 t7544 t9290 -153 323 96 197 t8528 -130 61 t2628 t9310 -45 136 242 107 t6030 -141 57 t2408 t9340 21 217 8 162 t8415 -143 119 t6650 t9370 -27 229 144 20 t550 -149 158 t8406 t9380 147 193 208 110 t6130 -149 113 t6310 t9390 -51 256 -103 219 t9290 -153 47 t1653 t9428 -63 264 46 212 t8993 -156 81 t4202 t9430 250 166 225 84 t4210 -167 72 t2925 t9450 242 31 -112 160 t8411 -177 145 t8219 t9538 315 82 -39 117</td><td>t8991 177 0 -219 133 t7544 -90 76 t4110 -24 t8993 -156 82 312 199 t8608 -91 66 t2730 -24 t8994 156 133 -23 72 t2925 -96 99 t5440 -29 t8999 -98 334 196 144 t8209 -98 206 t8978 -37 t9025 84 133 66 214 t8999 -98 183 t8465 -38 t9118 -39 252 -36 7 t153 -107 77 t4140 -40 t9220 275 20 47 186 t8468 -118 87 t4266 -42 t9288 -28 -17 131 100 t5508 -130 133 t7544 -59 t9290 -153 323 96 197 t8528 -130 61 t2628 -64 t9310 -45 136 242 107 t6030 -141 57 t2408 -64 t9340 21 217 8 162 t8415 -143 119 t6650 -68 t9370 -27 229 144 20 t550 -149 158 t8406 -71 t9380 147 193 208 110 t6130 -149 113 t6310 -71 t9390 -51 256 -103 219 t9290 -153 47 t1653 -72 t9428 -63 264 46 212 t8993 -156 81 t4202 -93 t9430 250 166 225 84 t4210 -167 72 t2925 -97 t9450 242 31 -112 160 t8411 -177 145 t8219 -100 <td< td=""></td<></td></t<>	t8991 177 0 -219 133 t8993 -156 82 312 199 t8994 156 133 -23 72 t8999 -98 334 196 144 t9025 84 133 66 214 t9118 -39 252 -36 7 t9220 275 20 47 186 t9288 -28 -17 131 100 t9290 -153 323 96 197 t9310 -45 136 242 107 t9340 21 217 8 162 t9370 -27 229 144 20 t9380 147 193 208 110 t9390 -51 256 -103 219 t9428 -63 264 46 212 t9430 250 166 225 84 t9450 242 31 -112 160 t9538 315 <	t8991 177 0 -219 133 t7544 t8993 -156 82 312 199 t8608 t8994 156 133 -23 72 t2925 t8999 -98 334 196 144 t8209 t9025 84 133 66 214 t8999 t9118 -39 252 -36 7 t153 t9220 275 20 47 186 t8468 t9288 -28 -17 131 100 t5508 t9290 -153 323 96 197 t8528 t9310 -45 136 242 107 t6030 t9340 21 217 8 162 t8415 t9370 -27 229 144 20 t550 t9380 147 193 208 110 t6130 t9390 -51 256 -103 219 t9290 t9428 -63 264 46 212 t8993 t9430 250 166 225 84 t4210 t9450 242 31 -112 160 t8411 t9538 315 82 -39 117 t6560 t9908 47 269 -9 68 t2800	t8991 177 0 -219 133 t7544 -90 t8993 -156 82 312 199 t8608 -91 t8994 156 133 -23 72 t2925 -96 t8999 -98 334 196 144 t8209 -98 t9025 84 133 66 214 t8999 -98 t9118 -39 252 -36 7 t153 -107 t9220 275 20 47 186 t8468 -118 t9288 -28 -17 131 100 t5508 -130 t9290 -153 323 96 197 t8528 -130 t9310 -45 136 242 107 t6030 -141 t9340 21 217 8 162 t8415 -143 t9370 -27 229 144 20 t550 -149 t9380 147 193 208 110 t6130 -149 t9390 -51 256 -103 219 t9290 -153 t9428 -63 264 46 212 t8993 -156 t9430 250 166 225 84 t4210 -167 t9450 242 31 -112 160 t8411 -177 t9538 315 82 -39 117 t6560	t8991 177 0 -219 133 t7544 -90 t8993 -156 82 312 199 t8608 -91 t8994 156 133 -23 72 t2925 -96 t8999 -98 334 196 144 t8209 -98 t9025 84 133 66 214 t8999 -98 t9118 -39 252 -36 7 t153 -107 t9220 275 20 47 186 t8468 -118 t9288 -28 -17 131 100 t5508 -130 t9290 -153 323 96 197 t8528 -130 t9310 -45 136 242 107 t6030 -141 t9340 21 217 8 162 t8415 -143 t9370 -27 229 144 20 t550 -149 t9380 147 193 208 110 t6130 -149 t9428 -63 264 46 212 t8993 -156 t9430 250 166 225 84 t4210 -167 t9450 242 31 -112 160 t8411 -177 t9538 315 82 -39 117 t6560 -177 t9908 47 269 -9	t8991 177 0 -219 133 t7544 -90 76 t8993 -156 82 312 199 t8608 -91 66 t8994 156 133 -23 72 t2925 -96 99 t8999 -98 334 196 144 t8209 -98 206 t9025 84 133 66 214 t8999 -98 183 t9118 -39 252 -36 7 t153 -107 77 t9220 275 20 47 186 t8468 -118 87 t9288 -28 -17 131 100 t5508 -130 133 t9290 -153 323 96 197 t8528 -130 61 t9310 -45 136 242 107 t6030 -141 57 t9340 21 217 8 162 t8415 -143 119 t9370 -27 229 144 20 t550 -149 158 t9380 147 193 208 110 t6130 -149 13 t9428 -63 264 46 212 t8993 -156 81 t9430 250 166 225 84 t4210 -167 72 t9450 242 31 -112 160 t8411 -177 145 t9908 47 269 -9 68 t2800 -177 11	t8991 177 0 -219 133 t7544 -90 76 t4110 t8993 -156 82 312 199 t8608 -91 66 t2730 t8994 156 133 -23 72 t2925 -96 99 t5440 t8999 -98 334 196 144 t8209 -98 206 t8978 t9025 84 133 66 214 t8999 -98 183 t8465 t9118 -39 252 -36 7 t153 -107 77 t4140 t9220 275 20 47 186 t8468 -118 87 t4266 t9288 -28 -17 131 100 t5508 -130 133 t7544 t9290 -153 323 96 197 t8528 -130 61 t2628 t9310 -45 136 242 107 t6030 -141 57 t2408 t9340 21 217 8 162 t8415 -143 119 t6650 t9370 -27 229 144 20 t550 -149 158 t8406 t9380 147 193 208 110 t6130 -149 113 t6310 t9390 -51 256 -103 219 t9290 -153 47 t1653 t9428 -63 264 46 212 t8993 -156 81 t4202 t9430 250 166 225 84 t4210 -167 72 t2925 t9450 242 31 -112 160 t8411 -177 145 t8219 t9538 315 82 -39 117	t8991 177 0 -219 133 t7544 -90 76 t4110 -24 t8993 -156 82 312 199 t8608 -91 66 t2730 -24 t8994 156 133 -23 72 t2925 -96 99 t5440 -29 t8999 -98 334 196 144 t8209 -98 206 t8978 -37 t9025 84 133 66 214 t8999 -98 183 t8465 -38 t9118 -39 252 -36 7 t153 -107 77 t4140 -40 t9220 275 20 47 186 t8468 -118 87 t4266 -42 t9288 -28 -17 131 100 t5508 -130 133 t7544 -59 t9290 -153 323 96 197 t8528 -130 61 t2628 -64 t9310 -45 136 242 107 t6030 -141 57 t2408 -64 t9340 21 217 8 162 t8415 -143 119 t6650 -68 t9370 -27 229 144 20 t550 -149 158 t8406 -71 t9380 147 193 208 110 t6130 -149 113 t6310 -71 t9390 -51 256 -103 219 t9290 -153 47 t1653 -72 t9428 -63 264 46 212 t8993 -156 81 t4202 -93 t9430 250 166 225 84 t4210 -167 72 t2925 -97 t9450 242 31 -112 160 t8411 -177 145 t8219 -100 <td< td=""></td<>

Fall 2006 (Riffle Pool at NFSR #1, Glide/Pool at other NFSR Stations)

N	NAME	AX1	AX2	AX3	1	RANKED 1	- 1	RANKED 2	
					E	IG=0.465		EIG=0.203	
1	HC1 00	138	129	175	7	HC1 95 2	67	24 NF10 GP	207
2	CC1 01	188	84	58	8	HC2 95 22	27	10 LD4 $\overline{0}$ 3	182
3	CC1 03	157	96	21	25	LD1 95 20	02	27 LD2 98	147
4	NF1 RP	127	73	0	26	LD2 95 1	98	23 NF9 GP	142
5	HC1 06	80	113	81	2	CC1 01 18	88	12 LD3 03	141
6	CC1_06	72	120	32	3	CC1_03 1	57	26 LD2_95	137
7	HC1_95	267	92	66	9	LD1_00 1	44	25 LD1_95	135
8	HC2 95	227	95	80	1	HC1 00 1:	38	11 LD2 03	133
9	LD1 00	144	129	155	4	NF1 RP 1	27	9 LD1 00	129
10	LD4 03	25	182	71	27	LD2 98	86	1 HC1 00	129

11	LD2 03	43	133	3	5 HC1 06	80	20 NF6 GP	124
12	LD3 03	19	141	35	6 CC1 06	72	6 CC1 06	120
13	LD1 06	36	106	84	20 NF6 GP	66	22 NF8 GP	119
14	LD2 06	4	77	125	16 NF3 GP	57	5 HC1 06	113
15	NF2 GP	54	52	94	15 NF2 GP	54	21 NF7 GP	106
16	NF3 GP	57	40	77	21 NF7 GP	46	13 LD1 06	106
17	NF4a GP	4	0	72	28 LD3 98	44	28 LD3 98	100
18	NF5_GP	22	34	79	11 LD2_03	43	3 CC1_03	96
19	NF4b_GP	2	1	65	23 NF9_GP	41	8 HC2_95	95
20	NF6 GP	66	124	93	13 LD1 06	36	7 HC1 95	92
21	NF7_GP	46	106	101	10 LD4_03	25	2 CC1_01	84
22	NF8_GP	9	119	103	18 NF5_GP	22	14 LD2_06	77
23	NF9_GP	41	142	93	12 LD3_03	19	4 NF1_RP	73
24	NF10_GP	0	207	45	22 NF8_GP	9	15 NF2_GP	52
25	LD1_95	202	135	101	14 LD2_06	4	16 NF3_GP	40
26	LD2_95	198	137	95	17 NF4a_GP	4	18 NF5_GP	34
27	LD2_98	86	147	69	19 NF4b_GP	2	19 NF4b_GP	1
28	LD3 98	44	100	120	24 NF10 GP	0	17 NF4a GP	0

Spring 2007(Riffle/Pool at NFSR #1 and Glide/Pool at other NFSR Stations)
Number of non-zero data items: 1583

No downweighting Axes are rescaled Number of segments: 30 Threshold: 0.00

Total variance ("inertia") in the species data: 2.4720

----- Axis 1 -----

0.1281589121 = residual at iteration 0 0.0216064379 = residual at iteration 1 0.0015270280 = residual at iteration 2 0.0000868732 = residual at iteration 3 0.0000078389 = residual at iteration 4 0.0000004904 = residual at iteration 5 0.0000000751 = residual at iteration 6 0.3392611444 = eigen value

Length of gradient: 1.992

Length of segments: 0.27 0.27 0.25 0.23 0.20 0.18 0.16 0.15 0.14 0.14

Length of gradient: 2.127

Length of gradient: 2.187

Length of segments: 0.21 0.21 0.21 0.21 0.21 0.21 0.19 0.18 0.18

Length of segments: 0.18
Length of gradient: 2.185

```
----- Axis 2 -----
0.0622753687 = residual at iteration 0
0.0077132210 = residual at iteration 1
0.0092607271 = residual at iteration 2
0.0003674131 = residual at iteration 3
0.0001050809 = residual at iteration 4
0.0000114216 = residual at iteration 5
0.0000033674 = residual at iteration 6
0.0000003846 = residual at iteration 7
0.000001872 = residual at iteration 8
0.0000000428 = residual at iteration 9
0.1946571171 = eigen value
Length of gradient:
                      1.983
Length of segments: 0.15 0.19 0.23 0.26 0.26 0.24 0.21 0.17 0.14 0.13
Length of gradient:
                      1.999
Length of gradient:
                     1.936
Length of segments: 0.16 0.18 0.20 0.21 0.22 0.23 0.22 0.19 0.17 0.16
Length of gradient:
                   1.882
                  ----- Axis 3 -----
0.0395618193 = residual at iteration 0
0.0054956744 = residual at iteration 1
0.0027968273 = residual at iteration 2
0.0001141592 = residual at iteration 3
0.0000379630 = residual at iteration 4
0.0000056655 = residual at iteration 5
0.0000022047 = residual at iteration 6
0.0000003419 = residual at iteration 7
0.0000001650 = residual at iteration 8
0.0000000224 = residual at iteration 9
```

0.1046127528 = eigen value

Length of gradient: 1.526

Length of segments: 0.16 0.18 0.19 0.19 0.19 0.17 0.14 0.11 0.09 0.09

Length of gradient: 1.639

Length of gradient: 1.619

Length of segments: 0.14 0.16 0.17 0.18 0.18 0.18 0.17 0.16 0.15 0.14

Length of gradient: 1.597

Spring 2007(Riffle/Pool at NFSR #1 and Glide/Pool at other NFSR Stations)

SPECIES SCORES

N	NAME	AX1	AX2	AX3		RANKED 3	1		RANKED	2		
					Ι	EIG=0.339	9	Ι	EIG=0.1	95		
1	t8	-112	-24	173	2	t108	387	37	t1050		459	
2	t108	387	-269	41	42	t1180	387	75	t3440		459	
3	t128	115	158	227	23	t540	387	182	t8419		459	
4	t130	-199	-31	175	25	t580	378	127	t6894		459	
5	t134	307	-169	198	94	t5380	375	33	t1012		437	
6	t138	92	89	140	37	t1050	369	141	t8057		402	
7	t151	-78	85	106	75	t3440	369	243	t9310		402	
8	t153	-76	-29	171	182	t8419	369	76	t3508		386	
9	t155	- 55	0	26	127	t6894	369	78	t3641		376	
10	t161	164	193	169	33	t1012	366	36	t1040		361	
11	t162	183	181	76	93	t5360	359	17	t278		351	
12	t164	-101	85	-3	17	t278	356	82	t4030		351	
13	t171	151	-53	-12	82	t4030	356	45	t1390		351	
14	t189	96	22	110	45	t1390	356	193	t8444		351	
15	t198	145	-15	183	193	t8444	356	54	t2010		351	
16	t258	20	-35	93	54	t2010	356	131	t7540		344	
17	t278	356	351	199	166	t8385	345	176	t8410		344	
18	t308	113	-25	105	80	t3681	341	27	t750		339	
19	t380	-24	177	-15	162	t8356	341	214	t8490		334	
20	t410	286	-180	29	142	t8060	337	171	t8401		326	
21	t511	210	-16	-40	202	t8461	337	229	t8982		322	
22	t520	-237	76	207	78	t3641	334	108	t6020		321	
23	t540	387	-269	41	36	t1040	333	80	t3681		320	

24 t550	154 19 -61	73 t3200	331	73 t3200	315
25 t580	378 198 41	126 t6890	330	139 t8040	305
26 t651	- 22 222 15	141 t8057	328	217 t8530	305
27 t750	295 339 203	243 t9310	328	142 t8060	304
28 t757	264 -151 200	195 t8450	323	192 t8443	292
29 t773	100 126 122	76 t3508	322	64 t2660	291
30 t781	-42 28 -118	133 t7560	321	146 t8110	282
31 t1010	-94 253 -303	35 t1030	320	221 t8708	279
32 t1011	- 37 238 - 315	211 t8482	311	107 t6010	276
33 t1012	366 437 104	5 t134	307	98 t5630	271
34 t1020	227 -27 118	229 t8982	301	203 t8462	267
35 t1030	320 -145 -55	91 t5130	298 j	224 t8734	266
36 t1040	333 361 147	199 t8457	298	161 t8354	264
37 t1050	369 459 41	27 t750	295	92 t5240	263
38 t1070	-165 38 190	1 134 t7610	294	199 t8457	263
39 t1094	-22 -9 307	44 t1263	293	208 t8470	261
40 t1115	104 192 253	210 t8472	293	81 t3690	260
41 t1138	44 128 -235	210 t0472	293	160 t8352	256
42 t1180	387 -269 41	146 t8110	291	140 t8050	253
43 t1240	270 200 245	224 t8734	291	58 t2351	253
43 t1240 44 t1263	293 188 -8	250 t9430	291 291	118 t6680	253 253
		· ·	'		·
45 t1390	356 351 199	131 t7540	287	31 t1010	253
46 t1440	176 245 182	176 t8410	287	158 t8315	252
47 t1444	195 64 42	20 t410	286	152 t8208	251
48 t1445	- 75 248 - 307	89 t5030	286	48 t1445	248
49 t1498	- 167 10 34	62 t2491	286	184 t8427	246
50 t1530	204 197 264	171 t8401	279	46 t1440	245
51 t1550	235 138 158	203 t8462	275	135 t7768	244
52 t1600	203 -9 -43	174 t8405	274	129 t7499	238
53 t1653	121 5 -89	43 t1240	270	32 t1011	238
54 t2010	356 351 199	164 t8382	269	133 t7560	238
55 t2120	227 206 177	108 t6020	268	225 t8798	238
56 t2160	142 24 141	28 t757	264	173 t8404	237
57 t2190	-8 -21 -47	235 t8993	264	88 t4290	237
58 t2351	231 253 - 72	77 t3590	262	165 t8383	234
59 t2361	192 197 191	92 t5240	251	157 t8300	232
60 t2430	176 -14 -193	213 t8488	249	195 t8450	228
61 t2460	137 171 180	254 t9950	249	219 t8610	227
62 t2491	286 -53 -236	81 t3690	248	183 t8421	223
63 t2628	116 209 -19	107 t6010	248	26 t651	222
64 t2660	213 291 157	231 t8986	248	168 t8387	220
01 02000	210 201 107	1 231 00900	210	100 00007	220

65	t2681	174	81	174	159	t8340	246	96	t5530	220	
66	t2730	-22	-50	149	196	t8453	246		t5628	218	
67	t2840	-23	104	-41	251	t9450	239		t6740	217	
	t2901	43	-40	77		t8630	238		t8986	216	
69	t2925	-175	9	251	188	t8437	237		t8984	214	
70	t3020	214	-78	-14	206	t8466	237		t8730	213	
71	t3071	55	-33	253	95	t5510	236	112	t6118	212	
72	t3140	203	-9	-43	51	t1550	235	228	t8981	209	
73	t3200	331	315	-20	215	t8493	231	63	t2628	209	
74	t3300	203	-9	-43	58	t2351	231	137	t8008	207	
75	t3440	369	459	41	34	t1020	227	174	t8405	207	
76	t3508	322	386	195	55	t2120	227	234	t8990	207	
77	t3590	262	-68	3	169	t8390	225	90	t5090	206	
	t3641	334	376	69	124	t6810	223	110	t6060	206	
79	t3680	-22	-50	149	128	t6904	222	55	t2120	206	
80	t3681	341	320	-33	135	t7768	221	100	t5730	204	
81	t3690	248	260	26	99	t5660	220	104	t5906	204	
82	t4030	356	351	199	230	t8984	220	117	t6650	204	
83	t4202	-22	-50	149	221	t8708	219	122	t6768	204	
84	t4203	-53	13	183	192	t8443	217	211	t8482	201	
85	t4230	-97	123	39	105	t5940	216	43	t1240	200	
86	t4248	-79	44	46	70	t3020	214	130	t7510	199	
87	t4270	203	-9	-43	64	t2660	213	169	t8390	198	
88	t4290	209	237	400	98	t5630	213	25	t580	198	
89	t5030	286	-53	-236	21	t511	210	50	t1530	197	
90	t5090	93	206	-204	88	t4290	209	59	t2361	197	
91	t5130	298	-42	201	234	t8990	208	138	t8010	193	
92	t5240	251	263	56	139	t8040	207	10	t161	193	
93	t5360	359	-232	15	106	t5960	207	40	t1115	192	
94	t5380	375	95	118	217	t8530	207	44	t1263	188	
95	t5510	236	-96	-52	152	t8208	205	11	t162	181	
96	t5530	189	220	205	50	t1530	204	132	t7544	180	
97	t5628	-149	218	-167	72	t3140	203	178	t8412	178	
98	t5630	213	271	347	74	t3300	203	19	t380	177	
99	t5660	220	26	-205		t4270	203	159	t8340	173	
100	t5730	148	204	101	207	t8467	203		t2460	171	
	t5748	-93	89	319		t1600	203		t6810	163	
	t5870	-91	104	142		t6210	203		t8386		
	t5900	55	-33	253		t9220			t128		
	t5906	148	204	101		t8465	201		t8464		
	t5940	216	-18	-70		t1444	195		t8170	148	
										·	

	t5960	207	-50	-12			t2361	192	144	t8090	140	
107	t6010	248	276	285			t8300	190	150	t8178	139	
108	t6020	268	321	455		96	t5530	189	201	t8460	139	
109	t6030	-165	38	190		122	t6768	186	120	t6741	139	
110	t6060	-23	206	-34		119	t6740	184	252	t9538	139	
111	t6090	91	-37	133		247	t9380	184	51	t1550	138	
112	t6118	-80	212	-123		11	t162	183	241	t9288	138	
113	t6120	-147	58	217		160	t8352	182	205	t8465	130	İ
114	t6210	203	-51	164		249	t9428	178	41	t1138	128	İ
115	t6312	-103	1	48		46	t1440	176	185	t8430	128	İ
	t6400	156	-56	186	i		t2430	176		t8728	128	i
	t6650	148	204	101			t2681	174	•	t773	126	i
	t6680	-94		-303			t7510	171	•	t8488	124	i
	t6740	184	217	110			t8610	170	•	t4230	123	i
	t6741	-84	139	-11			t161	164	•	t8108	117	i
	t6743	55	-33	253			t8470	162		t8416	114	i
	t6768	186	204	243			t6400	156	•	t2840	104	i
	t6801	78	8	85			t550	154		t5870	104	i
	t6810	223	163	4			t171	151	•	t8415	102	1
	t6851	55	-33	253			t5906	148		t9340	101	1
_	t6890	330		31			t5730	148	•	t9390	97	1
	t6894	369		41			t6650	148	-	t5380	95	1
	t6904	222		-44			t198	145		t5748	89	1
	t7499	-37					t2160	143	•	t138	89	1
		_					t8994		•			1
	t7510	171	199	171				142	•	t151	85	
	t7540	287	344	514			t2460	137	•	t164	85	
-	t7544	-148		-104			t8010	136		t8438	83	
	t7560	321	238	-47			t1653	121	•	t2681	81	
	t7610	_	-174	16			t8387	119		t8456	76	
	t7768	221	244	299			t8730	117	•	t520	76	
	t7790	-66		126			t2628	116		t8520	76	
	t8008	-219		-115			t128	115	•	t8999	74	
	t8010	136		98			t308	113		t9430	74	
	t8040	207	305	225			t9908	105		t7790	69	
	t8050	-94					t1115	104		t1444	64	
	t8057	328	402	330			t773	100	190	t8440	58	
	t8060	337	304	-24			t8354	96	-	t6120	58	
143	t8080	55	-33	253		14	t189	96	245	t9358	56	
	t8090	-28	140	333	1		t5090	93		t8978	56	
145	t8108	82	117	323			t138	92	186	t8435	52	
146	t8110	291	282	369		111	t6090	91	197	t8454	51	

147	t8120	-189	34	11			t8412	86	148	t8130	50	
148	t8130	-85	50	196		238	t9025	84	153	t8219	49	
149	t8170	23	148	135		173	t8404	83	86	t4248	44	
150	t8178	-84	139	-11			t8108	82	38	t1070	38	
151	t8180	55	-33	253		175	t8406	79	177	t8411	38	
152	t8208	205	251	195	1	123	t6801	78	109	t6030	38	
153	t8219	-144	49	158	1	167	t8386	69	155	t8298	35	
154	t8239	16	-3	85	1	170	t8392	65	147	t8120	34	
155	t8298	22	35	-172	1	191	t8441	63	227	t8979	33	
156	t8299	-22	-50	149		125	t6851	55	238	t9025	31	
157	t8300	190	232	193		71	t3071	55	30	t781	28	
158	t8315	-90	252	-304	1	151	t8180	55	99	t5660	26	
159	t8340	246	173	185	1	103	t5900	55	56	t2160	24	
160	t8352	182	256	191	1	218	t8560	55	239	t9118	22	
161	t8354	96	264	-66	i	143	t8080	55	14	t189	22	ĺ
162	t8356	341	-104	185	i	121	t6743	55	191	t8441	20	İ
163	t8358	6	-27	134	i		t1138	44		t550	19	İ
164	t8382	269	-147	12	i		t8430	44	84	t4203	13	İ
165	t8383	-61	234	-221	i		t8728	44		t1498	10	İ
166	t8385	345	-126	231	i	68	t2901	43	69	t2925	9	ĺ
167	t8386	69	161	-16	i	204	t8464	42	172	t8402	8	İ
168	t8387	119	220	219	i	186	t8435	39	123	t6801	8	İ
	t8390	225	198	-6	i		t8436	25		t1653	5	İ
	t8392	65	-20	185	i		t8170	23		t6312	1	İ
171	t8401	279	326	92	į		t8298	22		t155	0	İ
172	t8402	-97	8	174	i		t258	20	200	t8459	-2	İ
173	t8404	83	237	-135	i	154	t8239	16	154	t8239	-3	İ
174	t8405	274	207	-114	i		t8415	11		t8406	- 5	İ
175	t8406	79	- 5	272	i	163	t8358	6	236	t8994	-8	İ
176	t8410	287	344	514	i		t9370	0		t3140	-9	İ
177	t8411	-165	38	190	į		t9288	-4		t3300	-9	İ
178	t8412	86	178	188	i		t2190	-8	39	t1094	-9	İ
	t8413	-9	-29	214	i		t8413	-9		t9220	-9	İ
	t8415	11	102	94	i		t8416	-15	•	t1600	-9	i I
	t8416	-15	114	352	i		t8989	-15		t4270	-9	i
	t8419	369	459	41	i		t2730	-22	•	t2430	-14	İ
	t8421	-37		-153	i		t4202	-22		t198	-15	i
	t8427	-66		-309	i		t8299	-22		t511	-16	i
	t8430	44		-235	i		t3680	-22		t9290	-16	i I
	t8435	39	52	186			t1094	-22		t9370	-17	i
	t8436	25	-30	127	i		t651	-22		t5940	-18	i
	22200				'	_ 0			, 200			•

	t8437	237	-63	120			t2840	-23		t9908	-18	
189	t8438	-25	83	186	1		t6060	-23		t8392	-20	
	t8440	-74	58	190	1		t380	-24		t2190	-21	
191	t8441	63	20	-25	1	189	t8438	-25	194	t8446	-23	
192	t8443	217	292	274	1	144	t8090	-28	212	t8487	-23	
193	t8444	356	351	199	1	242	t9290	-28	1	t8	-24	
194	t8446	-93	-23	188	1	228	t8981	-29	18	t308	- 25	
195	t8450	323	228	213	1	232	t8987	-34	163	t8358	-27	
196	t8453	246	-94	-13	1	129	t7499	-37	34	t1020	-27	
197	t8454	-130	51	181	1	32	t1011	- 37	8	t153	-29	
198	t8456	-237	76	207	İ	225	t8798	-37	179	t8413	-29	
199	t8457	298	263	289	i	183	t8421	-37	187	t8436	-30	
200	t8459	-115	-2	75	i	237	t8999	- 39		t130	-31	
	t8460	-84	139	-11	i		t8487	-39 j		t6743	-33	
	t8461	337	-85	-6	i		t9390	-41		t5900	-33	
	t8462	275	267	282	i		t781	-42		t8180	-33 j	
	t8464	42	154	272	i		t4203	-53 j		t3071	-33 j	
	t8465	201	130	71	i		t155	-55 j		t8560	-33 j	
	t8466	237	-48	-22	i		t9118	-58 j		t8080	-33 j	
	t8467	203	-53	170	i		t8978	-58 J		t6851	-33	
	t8470	162	261	197	i		t8383	-61 i		t258	-35 j	
	t8471	-140	-38	168	i		t7790	-66 j		t8493	-36 j	
	t8472	293		168	i		t8427	-66 j		t8987	-36 j	
211	t8482	311	201	210	i		t8440	-74	111	t6090	-37	
	t8487	-39	-23	203	i		t1445	-75 j		t8471	-38	
	t8488	249	124	207	i		t153	-76 j		t2901	-40	
214	t8490	293	334	269	i		t151	- 78		t5130	-42	
	t8493	231	-36	137	i		t9358	-79 j		t8989	-45 j	
	t8520	-237	76	207	i	86	t4248	-79 j	254	t9950	-45	
	t8530	207	305	225	i		t6118	-80		t8466	-48	
218	t8560	55	-33	253	i	150	t8178	-84	247	t9380	-49	
219	t8610	170	227	214	i	201	t8460	-84	83	t4202	-50 j	
220	t8630	238	-70	-66	i	120	t6741	-84	79	t3680	-50 j	
221	t8708	219	279	202	i	252	t9538	-84	66	t2730	-50	
	t8728	44	128	-235	i		t8130	-85 j		t8299	-50 j	
223	t8730	117	213	-292	i	158	t8315	-90 j	106	t5960	-50 j	
	t8734	291	266	-34	İ		t5870	-91 i		t6210	-51 j	
	t8798	-37		-315	İ		t5748	-93 j		t5030	-53 j	
	t8978	-58	56	99	İ		t8446	-93		t8467	-53 j	
	t8979	-103	33	231	i		t1010	-94		t2491	-53	
	t8981	-29	209	223	i		t6680	-94		t171	-53	
					•			•			·	

229	t8982	301	322	174		140	t8050	-94	116	t6400	-56	
230	t8984	220	214	279		85	t4230	-97	188	t8437	-63	
231	t8986	248	216	-19		172	t8402	-97	128	t6904	-67	
232	t8987	-34	-36	69		12	t164	-101	77	t3590	-68	
233	t8989	-15	-45	179		115	t6312	-103	220	t8630	-70 I	
234	t8990	208	207	192		227	t8979	-103	70	t3020	-78 I	
235	t8993	264	-151	200		1	t8	-112	251	t9450	-79 I	
236	t8994	142	-8	150		200	t8459	-115	202	t8461	-85	
237	t8999	-39	74	93		244	t9340	-117	249	t9428	-86	
238	t9025	84	31	188		197	t8454	-130	196	t8453	-94	
239	t9118	-58	22	162		209	t8471	-140	95	t5510	-96	
240	t9220	203	- 9	-43		153	t8219	-144	162	t8356	-104	
241	t9288	-4	138	344		113	t6120	-147	166	t8385	-126	
242	t9290	-28	-16	5		132	t7544	-148	35	t1030	-145	
243	t9310	328	402	330		97	t5628	-149	164	t8382	-147	
244	t9340	-117	101	141		109	t6030	-165	28	t757	-151	
245	t9358	-79	56	183		177	t8411	-165	235	t8993	-151	
246	t9370	0	-17	73		38	t1070	-165	5	t134	-169	
247	t9380	184	-49	14		49	t1498	-167	126	t6890	-171	
248	t9390	-41	97	-48		69	t2925	-175	134	t7610	-174	
249	t9428	178	-86	192		147	t8120	-189	20	t410	-180	
250	t9430	291	74	-17		4	t130	-199	210	t8472	-180	
251	t9450	239	-79	-77		137	t8008	-219	93	t5360	-232	
252	t9538	-84	139	-11		198	t8456	-237	2	t108	-269	
253	t9908	105	-18	130		216	t8520	-237	42	t1180	-269	
254	t9950	249	-45	-141		22	t520	-237	23	t540	-269	

Spring 2007(Riffle/Pool at NFSR #1 and Glide/Pool at other NFSR Stations)

N	NAME	AX1	AX2	AX3		RANKED 1		RANKED 2	
						EIG=0.339	1	EIG=0.195	
1	HC1 00	170	64	53		3 CC1 04	218	7 HC1 95	188
2	CC1 01	128	77	62		7 HC1 95	216	24 LD2 98	160
3	CC1 04	218	0	51	- 1	8 HC2 95	211	23 LD2 95	155
4	HC1 07	86	65	121	- 1	22 LD1 95	190	8 HC2 95	154
5	CC1 07	62	71	81		1 HC1 00	170	25 LD3 98	154

6	NF1 RP	143	28	53	23	LD2 95	167	11	LD1 01	153
7	HC1 95	216	188	68	6	NF1 RP	143	10	LD2 01	150
8	HC2 95	211	154	72	24	LD2 98	137	22	LD1 95	145
9	LD1 00	68	113	136	2	CC1 01	128	18	LD1 07	119
10	LD2 01	69	150	0	25	LD3 98	107	9	LD1 00	113
11	LD1 01	56	153	14	20	NF3 GP	87	16	NF9b GP	112
12	NF10 GP	34	92	77	4	HC1 07	86	20	NF3 GP	103
13	NF5_GP	0	45	124	14	NF6_GP	76	21	NF2_GP	100
14	NF6_GP	76	95	49	10	LD2_01	69	14	NF6_GP	95
15	NF9a GP	38	92	94	9	LD1 00	68	19	NF7 GP	94
16	NF9b GP	50	112	80	5	CC1 07	62	12	NF10 GP	92
17	NF8_GP	14	88	103	11	LD1_01	56	15	NF9a_GP	92
18	LD1_07	12	119	46	21	NF2_GP	50	17	NF8_GP	88
19	NF7_GP	48	94	103	16	NF9b_GP	50	2	CC1_01	77
20	NF3_GP	87	103	47	19	NF7_GP	48	5	CC1_07	71
21	NF2_GP	50	100	75	15	NF9a_GP	38	4	HC1_07	65
22	LD1_95	190	145	133	12	NF10_GP	34	1	HC1_00	64
23	LD2_95	167	155	159	17	NF8_GP	14	13	NF5_GP	45
24	LD2_98	137	160	113	18	LD1_07	12	6	NF1_RP	28
25	LD3 98	107	154	86	13	NF5 GP	0	3	CC1 04	0

Appendix D

Dissolved Oxygen and Water Temperature Datalogger Data Colleced at NFSR #1, NFSR #3, NFSR #6, NFSR #9, and Horse Creek #1 During the Summer of 2006

Start time [Day] : 8/07/2006 09:00 Down load time [Day] : 8/10/2006 19:48

Sample interval [Minute(s)] : 00:15
Battery status at down load : OK
Samples collected : 332

Notes:

Logger #107 PP# 100465

Sampling Station: NFSR #1

Date/Time	Water Temperature	Dissolved Oxygen
8/7/2006 11:30	28.8	5.03
8/7/2006 11:45	28.96	4.27
8/7/2006 12:00	29.88	4.85
8/7/2006 12:15	29.73	4.45
8/7/2006 12:30	30.09	4.5
8/7/2006 12:45	30.38	4.6
8/7/2006 13:00	30.53	4.69
8/7/2006 13:15	30.94	4.99
8/7/2006 13:30	31.1	4.88
8/7/2006 13:45	31.39	5.1
8/7/2006 14:00	31.53	5.41
8/7/2006 14:15	31.81	5.61
8/7/2006 14:30	31.9	5.82
8/7/2006 14:45	32	5.88
8/7/2006 15:00	32.07	5.82
8/7/2006 15:15	32.15	6.32
8/7/2006 15:30	32.25	6.08
8/7/2006 15:45	32.28	6.25
8/7/2006 16:00	32.25	6.09
8/7/2006 16:15	32.24	5.93
8/7/2006 16:30	32.17	6.06
8/7/2006 16:45	32.25	5.86
8/7/2006 17:00	32.19	5.79
8/7/2006 17:15	32.2	5.54
8/7/2006 17:30	32.07	5.67
8/7/2006 17:45	32.01	5.43
8/7/2006 18:00	31.94	5.66
8/7/2006 18:15	31.86	5.59
8/7/2006 18:30	31.77	5.72
8/7/2006 18:45	31.65	5.47
8/7/2006 19:00	31.53	5.66
8/7/2006 19:15	31.41	5.69
8/7/2006 19:30	31.26	5.42

8/7/2006 19:45	31.22	5.07
8/7/2006 20:00	31.09	4.95
8/7/2006 20:15	30.96	5.14
8/7/2006 20:30	30.84	5.12
8/7/2006 20:45	30.71	5.06
8/7/2006 21:00	30.59	4.98
8/7/2006 21:15	30.48	4.84
8/7/2006 21:30	30.32	4.51
8/7/2006 21:45	30.19	4.42
8/7/2006 22:00	30.08	4.19
8/7/2006 22:15	30	4.41
8/7/2006 22:30	29.9	4.12
8/7/2006 22:45	29.78	4.14
8/7/2006 23:00	29.74	4.11
8/7/2006 23:15	29.65	4.06
8/7/2006 23:30	29.55	4.01
8/7/2006 23:45	29.47	3.97
8/8/2006 0:00	29.38	3.88
8/8/2006 0:15	29.29	3.48
8/8/2006 0:30	29.19	3.78
8/8/2006 0:45	29.1	3.72
8/8/2006 1:00	29.04	3.64
8/8/2006 1:15	28.92	3.58
8/8/2006 1:30	28.93	3.59
8/8/2006 1:45	28.82	3.49
8/8/2006 2:00	28.74	3.4
8/8/2006 2:15	28.65	3.24
8/8/2006 2:30	28.58	3.3
8/8/2006 2:45	28.48	3.24
8/8/2006 3:00	28.37	3.21
8/8/2006 3:15	28.34	3.07
8/8/2006 3:30	28.28	3.03
8/8/2006 3:45	28.15	3.03
8/8/2006 4:00	28.06	3.02
8/8/2006 4:15	27.98	3.01
8/8/2006 4:30	27.94	2.96
8/8/2006 4:45	27.8	2.97
8/8/2006 5:00	27.75	2.84
8/8/2006 5:15	27.62	2.84
8/8/2006 5:30	27.58	2.77
8/8/2006 5:45	27.44	2.66
8/8/2006 6:00	27.4	2.55
8/8/2006 6:15	27.35	2.61
8/8/2006 6:30	27.27	2.67
8/8/2006 6:45	27.13	2.49
8/8/2006 7:00	27.11	2.57
8/8/2006 7:15	27.05	2.44
8/8/2006 7:30	26.99	2.52
8/8/2006 7:45	26.98	2.51
8/8/2006 8:00	26.94	2.57

8/8/2006 8:15	26.95	2.55
8/8/2006 8:30	26.87	2.53
8/8/2006 8:45	26.89	2.52
8/8/2006 9:00	26.94	2.54
8/8/2006 9:15	27.02	2.65
8/8/2006 9:30	27.12	2.74
8/8/2006 9:45	27.2	2.94
8/8/2006 10:00	27.39	3.04
8/8/2006 10:15	27.56	3.46
8/8/2006 10:30	27.74	3.8
8/8/2006 10:45	27.91	3.89
8/8/2006 11:00	28.16	4.21
8/8/2006 11:15	28.31	4.36
8/8/2006 11:30	28.54	4.54
8/8/2006 11:45	28.77	4.85
8/8/2006 12:00	28.89	4.69
8/8/2006 12:15	29.12	4.56
8/8/2006 12:30	29.32	4.98
8/8/2006 12:45	29.56	5.23
8/8/2006 13:00	29.81	5.41
8/8/2006 13:15	30.04	5.78
8/8/2006 13:30	30.22	6.13
8/8/2006 13:45	30.38	6.32
8/8/2006 14:00	30.66	6.49
8/8/2006 14:15	30.81	6.48
8/8/2006 14:30	31	6.13
8/8/2006 14:45	31.21	5.98
8/8/2006 15:00	31.29	6.52
8/8/2006 15:15	31.36	7.03
8/8/2006 15:30	31.55	6.69
8/8/2006 15:45	31.44	6.55
8/8/2006 16:00	31.47	6.72
8/8/2006 16:15	31.55	6.71
8/8/2006 16:30	31.67	6.51
8/8/2006 16:45	31.65	6.43
8/8/2006 17:00	31.51	4.48
8/8/2006 17:15	31.38	5.92
8/8/2006 17:30	31.45	5.87
8/8/2006 17:45	31.46	5.25
8/8/2006 18:00	31.39	5.64
8/8/2006 18:15	31.32	5.46
8/8/2006 18:30	31.26	5.53
8/8/2006 18:45	31.2	4.05
8/8/2006 19:00	31.1	4.32
8/8/2006 19:15	31	4.25
8/8/2006 19:30	30.88	4.89
8/8/2006 19:45	30.76	5.11
8/8/2006 20:00	30.74	4.93
8/8/2006 20:15	30.67	4.85
8/8/2006 20:30	30.58	4.84

0/0/0000 00:45	22.55	4 70
8/8/2006 20:45	30.55	4.76
8/8/2006 21:00	30.41	4.75
8/8/2006 21:15	30.33	4.42
8/8/2006 21:30	30.23	4.42
8/8/2006 21:45	30.15	4.29
8/8/2006 22:00	30.07	4.07
8/8/2006 22:15	29.98	4.08
8/8/2006 22:30	29.86	3.97
8/8/2006 22:45	29.78	4.02
8/8/2006 23:00	29.68	4.01
8/8/2006 23:15	29.61	3.89
8/8/2006 23:30	29.55	3.82
8/8/2006 23:45	29.47	3.61
8/9/2006 0:00	29.35	3.67
8/9/2006 0:15	29.23	3.49
8/9/2006 0:30	29.18	3.47
8/9/2006 0:45	29.11	3.29
8/9/2006 1:00	29.01	3.32
8/9/2006 1:15	28.94	3.06
8/9/2006 1:30	28.88	3.04
8/9/2006 1:45	28.77	3.05
8/9/2006 2:00	28.74	2.96
8/9/2006 2:15	28.69	2.81
8/9/2006 2:30	28.58	2.85
8/9/2006 2:45	28.52	2.81
8/9/2006 3:00	28.44	2.84
8/9/2006 3:15	28.4	2.77
8/9/2006 3:30	28.34	2.6
8/9/2006 3:45	28.26	2.6
8/9/2006 4:00	28.2	2.65
8/9/2006 4:15	28.13	2.55
8/9/2006 4:30	28.1	2.5
8/9/2006 4:45	28.05	2.25
8/9/2006 5:00	27.98	2.34
8/9/2006 5:15	27.94	2.29
8/9/2006 5:30	27.89	2.28
8/9/2006 5:45	27.84	2.2
8/9/2006 6:00	27.81	2.17
8/9/2006 6:15	27.72	2.09
8/9/2006 6:30	27.67	2.05
8/9/2006 6:45	27.6	2
8/9/2006 7:00	27.54	1.98
8/9/2006 7:15	27.51	1.93
8/9/2006 7:30	27.5	1.91
8/9/2006 7:45	27.47	1.91
8/9/2006 8:00	27.45	1.91
8/9/2006 8:15	27.44	1.86
8/9/2006 8:30	27.45	1.86
8/9/2006 8:45	27.44	1.84
8/9/2006 9:00	27.41	1.92

8/9/2006 9:15	27.41	1.94
8/9/2006 9:30	27.43	2.1
8/9/2006 9:45	27.48	2.19
8/9/2006 10:00	27.61	2.29
8/9/2006 10:15	27.8	2.49
8/9/2006 10:30	28.02	2.94
8/9/2006 10:45	28.15	3.18
8/9/2006 11:00	28.15	3.07
8/9/2006 11:15	28.32	3.24
8/9/2006 11:30	28.42	3.15
8/9/2006 11:45	28.62	3.39
8/9/2006 12:00	28.78	3.4
8/9/2006 12:15	28.83	3.64
8/9/2006 12:30	28.88	3.57
8/9/2006 12:45	29.06	3.68
8/9/2006 13:00	29.02	3.77
8/9/2006 13:15	29.15	3.87
8/9/2006 13:30	29.46	3.98
8/9/2006 13:45	29.52	4.18
8/9/2006 14:00	29.93	4.27
8/9/2006 14:15	30.07	4.6
8/9/2006 14:30	30.33	4.8
8/9/2006 14:45	30.5	5.04
8/9/2006 15:00	30.62	5.16
8/9/2006 15:15	30.7	5.06
8/9/2006 15:30	30.71	5.24
8/9/2006 15:45	30.81	5.16
8/9/2006 16:00	30.87	4.86
8/9/2006 16:15	30.83	5.17
8/9/2006 16:30	30.98	5.33
8/9/2006 16:45	30.89	5.21
8/9/2006 17:00	30.8	4.95
8/9/2006 17:15	30.95	4.84
8/9/2006 17:30	30.9	4.74
8/9/2006 17:45	30.95	4.81
8/9/2006 18:00	30.96	4.65
8/9/2006 18:15	30.96	4.56
8/9/2006 18:30	30.86	4.48
8/9/2006 18:45	30.74	4.67
8/9/2006 19:00	30.64	4.67
8/9/2006 19:15	30.52	4.5
8/9/2006 19:30	30.41	3.69
8/9/2006 19:45	30.3	3.21
8/9/2006 20:00	30.19	3.16
8/9/2006 20:15	30.11	3.22
8/9/2006 20:30	30.03	3.27
8/9/2006 20:45	29.94	3.46
8/9/2006 21:00	29.83	3.71
8/9/2006 21:15	29.8	3.73
8/9/2006 21:30	29.72	3.73

8/9/2006 21:45	29.63	3.65
8/9/2006 22:00	29.56	3.7
8/9/2006 22:15	29.51	3.74
8/9/2006 22:30	29.45	3.53
8/9/2006 22:45	29.42	3.34
8/9/2006 23:00	29.33	3.41
8/9/2006 23:15	29.29	3.39
8/9/2006 23:30	29.27	3.28
8/9/2006 23:45	29.22	3.06
8/10/2006 0:00	29.19	2.89
8/10/2006 0:15	29.12	2.9
8/10/2006 0:30	29.08	2.93
8/10/2006 0:45	29.05	2.77
8/10/2006 1:00	28.98	2.47
8/10/2006 1:15	28.93	2.62
8/10/2006 1:30	28.9	2.57
8/10/2006 1:45	28.85	2.55
8/10/2006 2:00	28.82	2.54
8/10/2006 2:15	28.77	2.23
8/10/2006 2:30	28.74	2.32
8/10/2006 2:45	28.71	2.27
8/10/2006 3:00	28.64	2.28
8/10/2006 3:15	28.59	2.2
8/10/2006 3:30	28.53	2.23
8/10/2006 3:45	28.48	2.18
8/10/2006 4:00	28.44	2.14
8/10/2006 4:15	28.4	2.12
8/10/2006 4:30	28.36	2.03
8/10/2006 4:45	28.3	1.98
8/10/2006 5:00	28.25	1.9
8/10/2006 5:15	28.23	1.93
8/10/2006 5:30	28.18	1.9
8/10/2006 5:45	28.11	1.85
8/10/2006 6:00	28.04	1.77
8/10/2006 6:15	28.01	1.75
8/10/2006 6:30	27.92	1.75
8/10/2006 6:45	27.61	2.44
8/10/2006 7:00	27.57	2.89
8/10/2006 7:15	27.57	2.64
8/10/2006 7:30	27.59	2.39
8/10/2006 7:45	27.53	2.25
8/10/2006 8:00	27.52	2.18
8/10/2006 8:15	27.49	2.08
8/10/2006 8:30	27.45	2
8/10/2006 8:45	27.34	1.95
8/10/2006 9:00	27.32	1.91
8/10/2006 9:15	27.31	1.94
8/10/2006 9:30	27.26	1.92
8/10/2006 9:45	27.28	2.02
8/10/2006 10:00	27.27	2
5. 10.2000 10.00	<u>.</u> .	_

8/10/2006 10:15	27.23	1.96
8/10/2006 10:30	27.22	1.95
8/10/2006 10:45	27.25	2.07
8/10/2006 11:00	27.26	2.13
8/10/2006 11:15	27.27	2.23
8/10/2006 11:30	27.32	2.36
8/10/2006 11:45	27.39	2.64
8/10/2006 12:00	27.45	2.84
8/10/2006 12:15	27.54	3.13
8/10/2006 12:30	27.72	3.23
8/10/2006 12:45	28.03	3.13
8/10/2006 13:00	28.02	3
8/10/2006 13:15	28.16	3.22
8/10/2006 13:30	28.11	3.27

Start time [Day] : 8/07/2006 09:00 Down load time [Day] : 8/10/2006 19:45

Sample interval [Minute(s)] : 00:15
Battery status at down load : OK
Samples collected : 332

Notes:

Unit # 109 PP# 10046

Sampling Station: NFSR #3

		Dissolved	
Date/Time	Water Temperature	Oxygen	
8/7/2006 13:00	28.5		2.02
8/7/2006 13:15	28.41		1.54
8/7/2006 13:30	28.44		1.51
8/7/2006 13:45	28.47		1.45
8/7/2006 14:00	28.51		1.33
8/7/2006 14:15	28.53		1.15
8/7/2006 14:30	28.59		1.17
8/7/2006 14:45	28.64		1.19
8/7/2006 15:00	28.68		1.2
8/7/2006 15:15	28.76		1.14
8/7/2006 15:30	28.78		1.14
8/7/2006 15:45	28.85		1.2
8/7/2006 16:00	28.87		1.26
8/7/2006 16:15	28.93		1.11
8/7/2006 16:30	29.02		1.39
8/7/2006 16:45	28.97		1.28
8/7/2006 17:00	29.04		1.02
8/7/2006 17:15	29.06		1.19
8/7/2006 17:30	29.4		1.25
8/7/2006 17:45	29.48		1.39
8/7/2006 18:00	29.52		1.36
8/7/2006 18:15	29.53		1.5
8/7/2006 18:30	29.7		1.68
8/7/2006 18:45	29.63		1.41
8/7/2006 19:00	29.79		1.77
8/7/2006 19:15	29.79		1.42
8/7/2006 19:30	29.76		1.53
8/7/2006 19:45	29.72		1.28
8/7/2006 20:00	29.75		1.24
8/7/2006 20:15	29.76		1.53
8/7/2006 20:30	29.84		1.97
8/7/2006 20:45	29.81		1.74
8/7/2006 21:00	29.87		2.05

8/7/2006 21:15	29.9	3.57
8/7/2006 21:30	29.85	3.44
8/7/2006 21:45	29.75	3.39
8/7/2006 22:00	29.65	3.48
8/7/2006 22:15	29.54	3.21
8/7/2006 22:30	29.44	3.36
8/7/2006 22:45	29.35	3.26
8/7/2006 23:00	29.26	3.08
8/7/2006 23:15	29.18	3.23
8/7/2006 23:30	29.12	3.02
8/7/2006 23:45	29.06	2.66
8/8/2006 0:00	28.98	2.85
8/8/2006 0:15	28.94	2.63
8/8/2006 0:30	28.88	2.67
8/8/2006 0:45	28.82	2.86
8/8/2006 1:00	28.76	2.53
8/8/2006 1:15	28.7	2.37
8/8/2006 1:30	28.65	2.52
8/8/2006 1:45	28.57	2.36
8/8/2006 2:00	28.52	2.32
8/8/2006 2:15	28.47	2.19
8/8/2006 2:30	28.42	2.46
8/8/2006 2:45	28.37	2.26
8/8/2006 3:00	28.32	2.03
8/8/2006 3:15	28.26	2.43
8/8/2006 3:30	28.19	2.11
8/8/2006 3:45	28.11	2.34
8/8/2006 4:00	28.05	2.24
8/8/2006 4:15	27.98	2.4
8/8/2006 4:30	27.91	1.99
8/8/2006 4:45	27.85	1.98
8/8/2006 5:00	27.81	2.03
8/8/2006 5:15	27.75	1.91
8/8/2006 5:30	27.69	2.03
8/8/2006 5:45	27.62	1.94
8/8/2006 6:00	27.57	1.96
8/8/2006 6:15	27.52	1.89
8/8/2006 6:30	27.45	1.92
8/8/2006 6:45	27.41	2.09
8/8/2006 7:00	27.35	2.33
8/8/2006 7:15	27.31	1.82
8/8/2006 7:30	27.25	2.13
8/8/2006 7:45	27.23	1.75
8/8/2006 8:00	27.19	1.72
8/8/2006 8:15	27.17	1.62
8/8/2006 8:30	27.16	1.64
8/8/2006 8:45	27.17	1.64
8/8/2006 9:00	27.17	1.35
8/8/2006 9:15	27.18	1.42
8/8/2006 9:30	27.16	1.27

8/8/2006 9:45	27.18	1.21
8/8/2006 10:00	27.18	1.16
8/8/2006 10:15	27.19	1.1
8/8/2006 10:30	27.21	1.16
8/8/2006 10:45	27.26	1.43
8/8/2006 11:00	27.26	1.01
8/8/2006 11:15	27.28	1.1
8/8/2006 11:30	27.29	0.96
8/8/2006 11:45	27.3	0.89
8/8/2006 12:00	27.32	0.94
8/8/2006 12:15	27.34	1.06
8/8/2006 12:30	27.39	0.89
8/8/2006 12:45	27.41	0.73
8/8/2006 13:00	27.44	0.91
8/8/2006 13:15	27.48	0.68
8/8/2006 13:30	27.53	0.9
8/8/2006 13:45	27.58	0.68
8/8/2006 14:00	27.63	0.65
8/8/2006 14:15	27.67	1.05
8/8/2006 14:30	27.77	1.02
8/8/2006 14:45	27.86	1.07
8/8/2006 15:00	27.96	1
8/8/2006 15:15	28.06	1.24
8/8/2006 15:30	28.12	1
8/8/2006 15:45	28.13	1.17
8/8/2006 16:00	28.24	1.23
8/8/2006 16:15	28.27	1.35
8/8/2006 16:30	28.3	1.13
8/8/2006 16:45	28.36	0.87
8/8/2006 17:00	28.39	1.01
8/8/2006 17:15	28.46	1.1
8/8/2006 17:30	28.47	0.89
8/8/2006 17:45	28.53	0.96
8/8/2006 18:00	28.65	1.18
8/8/2006 18:15	28.68	0.92
8/8/2006 18:30	28.8	1.1
8/8/2006 18:45	28.83	0.92
8/8/2006 19:00	28.87	0.92
8/8/2006 19:15	28.9	0.9
8/8/2006 19:30	28.94	0.78
8/8/2006 19:45	28.99	0.62
8/8/2006 20:00	28.97	1.06
8/8/2006 20:15	29	0.84
8/8/2006 20:30	28.99	0.66
8/8/2006 20:45	29.08	1.22
8/8/2006 21:00	29.03	0.89
8/8/2006 21:15	29.09	0.82
8/8/2006 21:30	29.25	2.11
8/8/2006 21:45	29.16	2.06
8/8/2006 22:00	29.14	2.81

8/8/2006 22:15	29.08	2.64
8/8/2006 22:30	29	2.62
8/8/2006 22:45	28.93	2.65
8/8/2006 23:00	28.85	2.59
8/8/2006 23:15	28.78	2.58
8/8/2006 23:30	28.72	2.51
8/8/2006 23:45	28.64	2.48
8/9/2006 0:00	28.58	2.16
8/9/2006 0:15	28.48	2.1
8/9/2006 0:30	28.45	2.03
8/9/2006 0:45	28.38	2.1
8/9/2006 1:00	28.33	2.43
8/9/2006 1:15	28.27	1.91
8/9/2006 1:30	28.22	1.9
8/9/2006 1:45	28.16	2.23
8/9/2006 2:00	28.11	1.98
8/9/2006 2:15	28.05	1.86
8/9/2006 2:30	28.01	2.15
8/9/2006 2:45	27.96	1.77
8/9/2006 3:00	27.92	2
8/9/2006 3:15	27.87	1.92
8/9/2006 3:30	27.83	1.7
8/9/2006 3:45	27.8	1.74
8/9/2006 4:00	27.78	1.7
8/9/2006 4:15	27.74	1.76
8/9/2006 4:30	27.69	1.74
8/9/2006 4:45	27.67	1.75
8/9/2006 5:00	27.63	1.67
8/9/2006 5:15	27.58	1.68
8/9/2006 5:30	27.56	1.55
8/9/2006 5:45	27.53	1.64
8/9/2006 6:00	27.48	1.58
8/9/2006 6:15	27.45	1.61
8/9/2006 6:30	27.43 27.41	1.39
8/9/2006 6:45	27.38	1.39
8/9/2006 7:00	27.35	1.41
8/9/2006 7:15	27.32	1.41
8/9/2006 7:13	27.3	1.51
8/9/2006 7:45	27.27	1.51
8/9/2006 8:00	27.27	1.4
8/9/2006 8:15	27.26	1.20
8/9/2006 8:30	27.29	1.19
8/9/2006 8:45	27.29	1.19
8/9/2006 9:00	27.29	1.33
8/9/2006 9:15	27.3	0.07
8/9/2006 9:30	27.3	0.97
8/9/2006 9:45	27.33	1.01
8/9/2006 10:00	27.32	0.98
8/9/2006 10:15	27.36	1.71
8/9/2006 10:30	27.41	1.26

8/9/2006 10:45	27.4	1.22
8/9/2006 11:00	27.42	1.01
8/9/2006 11:15	27.45	0.98
8/9/2006 11:30	27.47	0.77
8/9/2006 11:45	27.49	0.98
8/9/2006 12:00	27.49	0.84
8/9/2006 12:15	27.5	0.8
8/9/2006 12:30	27.52	0.77
8/9/2006 12:45	27.54	0.64
8/9/2006 13:00	27.55	0.61
8/9/2006 13:15	27.57	0.67
8/9/2006 13:30	27.6	0.84
8/9/2006 13:45	27.68	0.72
8/9/2006 14:00	27.77	0.87
8/9/2006 14:15	27.9	0.91
8/9/2006 14:30	28.06	0.77
8/9/2006 14:45	28.13	0.96
8/9/2006 15:00	28.24	1.27
8/9/2006 15:15	28.32	0.91
8/9/2006 15:30	28.4	1.11
8/9/2006 15:45	28.46	1.04
8/9/2006 16:00	28.51	0.98
8/9/2006 16:15	28.5	1.1
8/9/2006 16:30	28.56	1.23
8/9/2006 16:45	28.61	0.94
8/9/2006 17:00	28.63	1
8/9/2006 17:15	28.61	1.02
8/9/2006 17:30	28.68	0.92
8/9/2006 17:45	28.68	0.9
8/9/2006 18:00	28.76	0.72
8/9/2006 18:15	28.77	0.86
8/9/2006 18:30	28.85	0.82
8/9/2006 18:45	28.91	0.68
8/9/2006 19:00	28.96	0.64
8/9/2006 19:15	28.98	0.94
8/9/2006 19:30	29.19	1.34
8/9/2006 19:45	29.17	1.45
8/9/2006 20:00	29.23	1.96
8/9/2006 20:15	29.24	1.74
8/9/2006 20:30	29.32	2.26
8/9/2006 20:45	29.27	2.7
8/9/2006 21:00	29.2	2.68
8/9/2006 21:15	29.12	2.64
8/9/2006 21:30	29.04	2.52
8/9/2006 21:45	28.96	2.5
8/9/2006 22:00	28.89	2.49
8/9/2006 22:15	28.83	2.28
8/9/2006 22:30	28.76	2.3
8/9/2006 22:45	28.71	2.16
8/9/2006 23:00	28.67	2.1

8/9/2006 23:15	28.63	2.09
8/9/2006 23:30	28.59	1.95
8/9/2006 23:45	28.53	1.86
8/10/2006 0:00	28.49	1.98
8/10/2006 0:15	28.44	1.97
8/10/2006 0:30	28.39	1.99
8/10/2006 0:45	28.34	1.84
8/10/2006 1:00	28.31	1.95
8/10/2006 1:15	28.26	1.77
8/10/2006 1:30	28.23	1.84
8/10/2006 1:45	28.2	1.76
8/10/2006 2:00	28.17	1.84
8/10/2006 2:15	28.14	1.76
8/10/2006 2:30	28.1	1.86
8/10/2006 2:45	28.05	1.83
8/10/2006 3:00	28.01	1.65
8/10/2006 3:15	27.95	1.6
8/10/2006 3:30	27.92	1.59
8/10/2006 3:45	27.88	1.43
8/10/2006 4:00	27.84	1.45
8/10/2006 4:15	27.8	1.38
8/10/2006 4:30	27.79	1.49
8/10/2006 4:45	27.77	1.34
8/10/2006 5:00	27.75	1.33
8/10/2006 5:15	27.73	1.33
8/10/2006 5:30	27.71	1.25
8/10/2006 5:45	27.68	1.16
8/10/2006 6:00	27.66	1.2
8/10/2006 6:15	27.62	1.15
8/10/2006 6:30	27.6	1.2
8/10/2006 6:45	27.57	1.19
8/10/2006 7:00	27.54	1.24
8/10/2006 7:15	27.5	0.93
8/10/2006 7:30	27.47	0.94
8/10/2006 7:45	27.41	1.27
8/10/2006 8:00	27.37	1.08
8/10/2006 8:15	27.34	0.83
8/10/2006 8:30	27.29	0.99
8/10/2006 8:45	27.27	1.16
8/10/2006 9:00	27.24	1.11
8/10/2006 9:15	27.22	1.05
8/10/2006 9:30	27.21	0.97
8/10/2006 9:45	27.21	0.92
8/10/2006 10:00	27.21	0.84
8/10/2006 10:15	27.2	0.95
8/10/2006 10:10	27.19	0.6
8/10/2006 10:45	27.18	0.77
8/10/2006 11:00	27.18	0.52
8/10/2006 11:15	27.18	0.6
8/10/2006 11:30	27.17	0.68
5. 10/£000 11.00	-1.11	0.00

8/10/2006 11:45	27.19	0.58	
8/10/2006 12:00	27.2	0.48	
8/10/2006 12:15	27.23	0.49	
8/10/2006 12:30	27.23	0.56	
8/10/2006 12:45	27.24	0.55	
8/10/2006 13:00	27.26	0.4	
8/10/2006 13:15	27.28	0.43	
8/10/2006 13:30	27.3	0.33	
8/10/2006 13:45	27.33	0.39	
8/10/2006 14:00	27.37	0.38	
8/10/2006 14:15	27.43	0.49	
8/10/2006 14:30	27.43	0.81	
8/10/2006 14:45	27.77	1.41	

Start time [Day] : 7/31/2006 08:00 Down load time [Day] : 8/04/2006 07:27

Sample interval [Minute(s)] : 00:15
Battery status at down load : OK
Samples collected : 382

Notes:

Logger #107 PP# 100465

Sampling Station: NFSR #6

Water Temperature	Dissolved Oxygen
26.6	3.6
26.9	3.81
26.96	3.54
27.07	3.84
27.36	4
27.63	3.88
27.85	4.16
28.14	4.24
28.54	4.4
28.42	4.09
29.21	4.21
29.44	4.31
29.77	4.17
30.22	4.55
30.01	4.22
29.83	3.8
30.61	4.06
30.77	4.09
30.59	3.96
30.21	3.96
30.59	3.97
30.62	3.84
30.01	3.32
30.23	3.63
30.29	3.6
30.25	3.65
30.22	3.95
30.16	4.25
30.03	4.62
29.95	4.1
29.88	4.48
29.64	3.91
29.58	3.36
	26.9 26.96 27.07 27.36 27.63 27.85 28.14 28.54 28.42 29.21 29.44 29.77 30.22 30.01 29.83 30.61 30.77 30.59 30.21 30.59 30.62 30.01 30.23 30.29 30.25 30.22 30.16 30.03 29.95 29.88 29.64

7/31/2006 19:15	29.55	3.67
7/31/2006 19:30	29.44	4.24
7/31/2006 19:45	29.06	3.46
7/31/2006 20:00	29.12	3.81
7/31/2006 20:15	29.09	4.29
7/31/2006 20:30	29.04	4.28
7/31/2006 20:45	28.97	4.16
7/31/2006 21:00	28.91	4.27
7/31/2006 21:15	28.84	4.31
7/31/2006 21:30	28.75	4.24
7/31/2006 21:45	28.66	4.01
7/31/2006 22:00	28.55	4.24
7/31/2006 22:15	28.48	4.25
7/31/2006 22:30	28.42	4.16
7/31/2006 22:45	28.35	4.26
7/31/2006 23:00	28.31	4.23
7/31/2006 23:15	28.26	4.09
7/31/2006 23:30	28.2	4.13
7/31/2006 23:45	28.14	4.09
8/1/2006 0:00	28.08	4.12
8/1/2006 0:05	27.98	3.6
8/1/2006 0:30	27.98 27.93	4.16
8/1/2006 0:45	27.93 27.87	4.24
8/1/2006 1:00	27.81	4.03
8/1/2006 1:15	27.75	4.24
8/1/2006 1:30	27.69	4.12
8/1/2006 1:45	27.61	4.04
8/1/2006 2:00	27.53	4.18
8/1/2006 2:15	27.44	3.49
8/1/2006 2:30	27.34	3.75
8/1/2006 2:45	27.25	3.8
8/1/2006 3:00	27.16	4.05
8/1/2006 3:15	27.15	3.75
8/1/2006 3:30	27.11	3.82
8/1/2006 3:45	27.06	3.69
8/1/2006 4:00	27	3.63
8/1/2006 4:15	26.95	3.54
8/1/2006 4:30	26.87	3.58
8/1/2006 4:45	26.82	3.64
8/1/2006 5:00	26.78	3.68
8/1/2006 5:15	26.74	3.51
8/1/2006 5:30	26.68	3.58
8/1/2006 5:45	26.65	3.5
8/1/2006 6:00	26.63	3.43
8/1/2006 6:15	26.6	3.56
8/1/2006 6:30	26.58	3.51
8/1/2006 6:45	26.56	3.56
8/1/2006 7:00	26.53	3.36
8/1/2006 7:15	26.51	3.55
8/1/2006 7:30	26.48	3.38

8/1/2006 7:45	26.47	3.44
8/1/2006 8:00	26.45	3.47
8/1/2006 8:15	26.45	3.25
8/1/2006 8:30	26.45	3.23
8/1/2006 8:45	26.47	3.22
8/1/2006 9:00	26.48	3.2
8/1/2006 9:15	26.5	3.16
8/1/2006 9:30	26.51	3.11
8/1/2006 9:45	26.54	3.1
8/1/2006 10:00	26.57	3.1
8/1/2006 10:15	26.58	3.13
8/1/2006 10:30	26.61	3.13
8/1/2006 10:45	26.68	3.09
8/1/2006 11:00	26.79	3.1
8/1/2006 11:15	26.99	3.16
8/1/2006 11:13	27.1	3.18
	27.21	3.18
8/1/2006 11:45		
8/1/2006 12:00	27.35	3.49
8/1/2006 12:15	27.52	3.8
8/1/2006 12:30	27.78	4.07
8/1/2006 12:45	28.23	4.19
8/1/2006 13:00	28.59	4.2
8/1/2006 13:15	29.04	4.17
8/1/2006 13:30	29.44	4.26
8/1/2006 13:45	29.68	4.37
8/1/2006 14:00	29.5	4.2
8/1/2006 14:15	30.13	4.55
8/1/2006 14:30	30.41	4.63
8/1/2006 14:45	30.74	4.64
8/1/2006 15:00	30.73	4.5
8/1/2006 15:15	30.57	4.24
8/1/2006 15:30	30.72	4
8/1/2006 15:45	30.64	3.77
8/1/2006 16:00	30.71	3.98
8/1/2006 16:15	30.74	3.96
8/1/2006 16:30	30.43	3.81
8/1/2006 16:45	30.67	4.19
8/1/2006 17:00	30.54	4.14
8/1/2006 17:15	30.42	4.28
8/1/2006 17:30	30.27	3.89
8/1/2006 17:45	30.24	4.28
8/1/2006 18:00	30.17	4.23
8/1/2006 18:15	30.09	4.29
8/1/2006 18:30	30	4.34
8/1/2006 18:45	29.9	4.3
8/1/2006 19:00	29.78	4.11
8/1/2006 19:00	29.69	4.11
8/1/2006 19:13	29.59	4.18
8/1/2006 19:45	29.46	4.13
8/1/2006 20:00	29.38	4.21

8/1/2006 20:15	29.27	4.18
8/1/2006 20:30	29.19	4.21
8/1/2006 20:45	29.11	4.28
8/1/2006 21:00	29.03	4.24
8/1/2006 21:15	28.94	4.1
8/1/2006 21:30	28.87	4.21
8/1/2006 21:45	28.79	4.31
8/1/2006 22:00	28.72	4.2
8/1/2006 22:15	28.65	4.23
8/1/2006 22:30	28.55	4.21
8/1/2006 22:45	28.48	4.21
8/1/2006 23:00	28.42	3.86
8/1/2006 23:15	28.32	3.79
8/1/2006 23:30	28.26	3.8
8/1/2006 23:45	28.14	3.92
8/2/2006 0:00	28.07	4.07
8/2/2006 0:15	28.01	4.05
8/2/2006 0:30	27.92	4.29
8/2/2006 0:45	27.89	4.09
8/2/2006 1:00	27.8	4.4
8/2/2006 1:15	27.73	4.28
8/2/2006 1:30	27.65	4.21
8/2/2006 1:45	27.59	4.39
8/2/2006 2:00	27.53	4.19
8/2/2006 2:15	27.46	4.33
8/2/2006 2:30	27.4	4.19
8/2/2006 2:45	27.35	4.28
8/2/2006 3:00	27.31	3.99
8/2/2006 3:15	27.26	3.83
8/2/2006 3:30	27.21	3.88
8/2/2006 3:45	27.17	3.82
8/2/2006 4:00	27.1	3.98
8/2/2006 4:15	27.06	3.72
8/2/2006 4:30	27.01	3.82
8/2/2006 4:45	26.97	3.65
8/2/2006 5:00	26.93	3.82
8/2/2006 5:15	26.89	3.71
8/2/2006 5:30	26.85	3.6
8/2/2006 5:45	26.82	3.59
8/2/2006 6:00	26.79	3.63
8/2/2006 6:15	26.75	3.53
8/2/2006 6:30	26.7	3.57
8/2/2006 6:45	26.68	3.45
8/2/2006 7:00	26.63	3.5
8/2/2006 7:15	26.61	3.61
8/2/2006 7:30	26.6	3.37
8/2/2006 7:45	26.57	3.35
8/2/2006 8:00	26.57	3.25
8/2/2006 8:15	26.53	3.27
8/2/2006 8:30	26.52	3.24

8/2/2006 8:45	26.51	3.32
8/2/2006 9:00	26.51	3.09
8/2/2006 9:15	26.5	3.17
8/2/2006 9:30	26.5	3
8/2/2006 9:45	26.5	3.23
8/2/2006 10:00	26.52	3.05
8/2/2006 10:15	26.54	3.06
8/2/2006 10:30	26.6	3
8/2/2006 10:45	26.64	2.8
8/2/2006 11:00	26.69	2.97
8/2/2006 11:15	26.81	3.05
8/2/2006 11:30	26.99	3.08
8/2/2006 11:45	27.11	3.2
8/2/2006 12:00	27.22	3.4
8/2/2006 12:15	27.42	3.99
8/2/2006 12:30	27.9	4.28
8/2/2006 12:45	28.12	4.45
8/2/2006 13:00	28.36	4.54
8/2/2006 13:15	28.71	4.83
8/2/2006 13:30	29	4.63
8/2/2006 13:45	29.28	4.68
8/2/2006 14:00	29.55	4.71
8/2/2006 14:15	29.82	4.93
8/2/2006 14:30	30.03	4.83
8/2/2006 14:45	30.22	5.12
8/2/2006 15:00	30.48	5.05
8/2/2006 15:15	30.25	4.71
8/2/2006 15:30	30.62	5.19
8/2/2006 15:45	30.46	4.62
8/2/2006 16:00	30.45	4.47
8/2/2006 16:15	30.42	4.51
8/2/2006 16:30	30.35	4.34
8/2/2006 16:45	30.34	4.26
8/2/2006 17:00	30.37	4.31
8/2/2006 17:15	30.27	4.12
8/2/2006 17:30	30.26	3.92
8/2/2006 17:45	30.21	3.94
8/2/2006 18:00	30.2	3.93
8/2/2006 18:15	30.16	4.22
8/2/2006 18:30	30.14	4.11
8/2/2006 18:45	30.1	4.09
8/2/2006 19:00	30.06	4.43
8/2/2006 19:15	29.93	4.11
8/2/2006 19:30	29.91	4.22
8/2/2006 19:45	29.88	4.31
8/2/2006 20:00	29.76	4.15
8/2/2006 20:15	29.72	4.05
8/2/2006 20:30	29.69	4.16
8/2/2006 20:45	29.62	4.1
8/2/2006 21:00	29.54	4.31

8/2/2006 21:15	29.47	3.99
8/2/2006 21:30	29.36	4.04
8/2/2006 21:45	29.26	4.03
8/2/2006 22:00	29.16	3.89
8/2/2006 22:15	29.04	3.82
8/2/2006 22:30	28.95	3.6
8/2/2006 22:45	28.84	3.9
8/2/2006 23:00	28.75	3.77
8/2/2006 23:15	28.68	3.79
8/2/2006 23:30	28.61	3.82
8/2/2006 23:45	28.54	3.89
8/3/2006 0:00	28.47	3.93
8/3/2006 0:05	28.34	3.8
8/3/2006 0:19	28.31	3.85
8/3/2006 0:45	28.23	3.79
8/3/2006 1:00	28.16	3.8
8/3/2006 1:15	28.07	3.72
8/3/2006 1:30	27.98	3.68
8/3/2006 1:45	27.91	3.6
8/3/2006 2:00	27.84	3.56
8/3/2006 2:15	27.76	3.57
8/3/2006 2:30	27.7	3.6
8/3/2006 2:45	27.63	3.65
8/3/2006 3:00	27.56	3.77
8/3/2006 3:15	27.49	3.76
8/3/2006 3:30	27.43	3.7
8/3/2006 3:45	27.35	3.84
8/3/2006 4:00	27.3	3.81
8/3/2006 4:15	27.25	3.85
8/3/2006 4:30	27.19	3.86
8/3/2006 4:45	27.13	3.89
8/3/2006 5:00	27.08	4.02
8/3/2006 5:15	27	3.82
8/3/2006 5:30	26.95	3.86
8/3/2006 5:45	26.9	3.87
8/3/2006 6:00	26.84	3.91
8/3/2006 6:15	26.81	3.73
8/3/2006 6:30	26.76	3.65
8/3/2006 6:45	26.68	3.64
8/3/2006 7:00	26.65	3.65
8/3/2006 7:15	26.6	3.62
8/3/2006 7:10	26.59	3.59
8/3/2006 7:45	26.56	3.74
8/3/2006 8:00	26.55	3.56
8/3/2006 8:15	26.55	3.54
8/3/2006 8:30	26.53	3.43
8/3/2006 8:45	26.51	3.45
8/3/2006 9:00	26.5	3.62
8/3/2006 9:15	26.52	3.57
8/3/2006 9:30	26.53	3.41

8/3/2006 9:45	26.57	3.36	
8/3/2006 10:00	26.6	3.46	
8/3/2006 10:15	26.62	3.36	
8/3/2006 10:30	26.67	3.39	
8/3/2006 10:45	26.69	3.28	
8/3/2006 11:00	26.76	3.29	
8/3/2006 11:15	26.89	3.6	
8/3/2006 11:30	27.05	3.43	

Eureka Midge Data Report

: 8/28/2006 12:45 Start time [Day] Down load time [Day] : 8/31/2006 16:45

Sample interval [Minute(s)]: 00:15 Battery status at down load : OK Samples collected : 304

Notes:

Logger: Eureka Midge

Sampling Station: NFSR #9

				Water		
Date		Time		Temperature	Dissolve	d Oxygen
	8/28/2006		12:45:00	25.	9	2.51
	8/28/2006		13:00:00	25.		2.22
	8/28/2006		13:15:00	25.		2.15
	8/28/2006		13:30:00	25.		2.18
	8/28/2006		13:45:00	25.		2.13
	8/28/2006		14:00:00	26.		2.13
	8/28/2006		14:15:00	26.		2.48
	8/28/2006		14:30:00	26.		2.39
	8/28/2006		14:45:00	26.		2.48
	8/28/2006		15:00:00	26.		2.28
	8/28/2006		15:15:00	26.		2.09
	8/28/2006		15:30:00	26.		2.11
	8/28/2006		15:45:00	26.		2.13
	8/28/2006		16:00:00	26.		2.16
	8/28/2006		16:15:00	26.		2.15
	8/28/2006		16:30:00	26.		2.1
	8/28/2006		16:45:00	26.		2.04
	8/28/2006		17:00:00	26.		1.99
	8/28/2006		17:15:00	26.		1.9
	8/28/2006		17:30:00	26.		1.85
	8/28/2006		17:45:00	26.		1.8
	8/28/2006		18:00:00	26.		1.77
	8/28/2006		18:15:00	26.	4	1.76
	8/28/2006		18:30:00	26.		1.73
	8/28/2006		18:45:00	26.		1.68
	8/28/2006		19:00:00	26.		1.63
	8/28/2006		19:15:00	26.		1.56
	8/28/2006		19:30:00	26.	4	1.58
	8/28/2006		19:45:00	26.		1.53
	8/28/2006		20:00:00	26.		1.59
	8/28/2006		20:15:00	26.		1.45
	8/28/2006		20:30:00	26.	3	1.47
	8/28/2006		20:45:00	26.	3	1.42
	8/28/2006		21:00:00	26.	2	1.39

8/28/2006	21:15:00	26.2	1.41
8/28/2006	21:30:00	26.1	1.41
8/28/2006	21:45:00	26.1	1.45
8/28/2006	22:00:00	26	1.38
8/28/2006	22:15:00	26	1.41
8/28/2006	22:30:00	25.9	1.4
8/28/2006	22:45:00	25.9	1.35
8/28/2006	23:00:00	25.9	1.11
8/28/2006	23:15:00	25.8	1.23
8/28/2006	23:30:00	25.7	1.37
8/28/2006	23:45:00	25.7	1.35
8/29/2006	0:00:00	25.6	1.35
8/29/2006	0:15:00	25.6	1.29
8/29/2006	0:30:00	25.5	1.31
8/29/2006	0:45:00	25.4	1.29
8/29/2006	1:00:00	25.3	1.26
8/29/2006	1:15:00	25.3	1.27
8/29/2006	1:30:00	25.2	1.25
8/29/2006	1:45:00	25.2	1.23
8/29/2006	2:00:00	25.1	1.19
8/29/2006	2:15:00	25.1	1.21
8/29/2006	2:30:00	25	1.2
8/29/2006	2:45:00	24.9	1.19
8/29/2006	3:00:00	24.8	1.18
8/29/2006	3:15:00	24.8	1.19
8/29/2006	3:30:00	24.7	1.16
8/29/2006	3:45:00	24.7	1.13
8/29/2006	4:00:00	24.6	1.15
8/29/2006	4:15:00	24.6	1.13
8/29/2006	4:30:00	24.5	1.1
8/29/2006	4:45:00	24.4	1.12
8/29/2006	5:00:00	24.4	1.1
8/29/2006	5:15:00	24.3	1.11
8/29/2006	5:30:00	24.2	1.13
8/29/2006	5:45:00	24.1	1.13
8/29/2006	6:00:00	24.1	1.11
8/29/2006	6:15:00	24.1	1.11
8/29/2006	6:30:00	24	1.11
8/29/2006	6:45:00	23.9	1.12
8/29/2006	7:00:00	23.9	1.12
8/29/2006	7:15:00	23.8	1.12
8/29/2006	7:30:00	23.8	1.1
8/29/2006	7:45:00	23.7	1.06
8/29/2006	8:00:00	23.7	1.07
8/29/2006	8:15:00	23.6	1.09
8/29/2006	8:30:00	23.5	1.1
8/29/2006	8:45:00	23.5	1.13
8/29/2006	9:00:00	23.5	1.15
8/29/2006	9:15:00	23.4	1.13
8/29/2006	9:30:00	23.4	1.1

8/29/2006	9:45:00	23.3	1.07
8/29/2006	10:00:00	23.3	1.09
8/29/2006	10:15:00	23.2	1.09
8/29/2006	10:30:00	23.3	1.11
8/29/2006	10:45:00	23.3	1.2
8/29/2006	11:00:00	23.3	1.2
8/29/2006	11:15:00	23.3	1.23
8/29/2006	11:30:00	23.3	1.22
8/29/2006	11:45:00	23.3	1.24
8/29/2006	12:00:00	23.3	1.27
8/29/2006	12:15:00	23.3	1.33
8/29/2006	12:30:00	23.3	1.31
8/29/2006	12:45:00	23.3	1.33
8/29/2006	13:00:00	23.2	1.34
8/29/2006	13:15:00	23.2	1.38
8/29/2006	13:30:00	23.2	1.4
8/29/2006	13:45:00	23.2	1.43
8/29/2006	14:00:00	23.2	1.53
8/29/2006	14:15:00	23.3	1.56
8/29/2006	14:30:00	23.3	1.62
8/29/2006	14:45:00	23.3	1.68
8/29/2006	15:00:00	23.3	1.72
8/29/2006	15:15:00	23.3	1.74
8/29/2006	15:30:00	23.4	1.7
8/29/2006	15:45:00	23.4	1.69
8/29/2006	16:00:00	23.3	1.74
8/29/2006	16:15:00	23.3	1.75
8/29/2006	16:30:00	23.3	1.78
8/29/2006	16:45:00	23.3	1.8
8/29/2006	17:00:00	23.3	1.8
8/29/2006	17:15:00	23.3	1.85
8/29/2006	17:30:00	23.3	1.86
8/29/2006	17:45:00	23.3	1.87
8/29/2006	18:00:00	23.3	1.85
8/29/2006	18:15:00	23.3	1.84
8/29/2006	18:30:00	23.3	1.87
8/29/2006	18:45:00	23.3	1.87
8/29/2006	19:00:00	23.3	1.85
8/29/2006	19:15:00	23.2	1.82
8/29/2006	19:30:00	23.2	1.81
8/29/2006	19:45:00	23.1	1.81
8/29/2006	20:00:00	23.1	1.72
8/29/2006	20:15:00	23	1.64
8/29/2006	20:30:00	23	1.65
8/29/2006	20:45:00	22.9	1.65
8/29/2006	21:00:00	22.9	1.56
8/29/2006	21:15:00	22.9	1.51
8/29/2006	21:30:00	22.8	1.47
8/29/2006	21:45:00	22.8	1.4
8/29/2006	22:00:00	22.7	1.49

8/29/2006	22:15:00	22.7	1.41
8/29/2006	22:30:00	22.7	1.33
8/29/2006	22:45:00	22.7	1.3
8/29/2006	23:00:00	22.6	1.28
8/29/2006	23:15:00	22.6	1.25
8/29/2006	23:30:00	22.5	1.23
8/29/2006	23:45:00	22.5	1.24
8/30/2006	0:00:00	22.4	1.28
8/30/2006	0:15:00	22.4	1.29
8/30/2006	0:30:00	22.4	1.36
8/30/2006	0:45:00	22.3	1.39
8/30/2006	1:00:00	22.3	1.4
8/30/2006	1:15:00	22.3	1.28
8/30/2006	1:30:00	22.2	1.33
8/30/2006	1:45:00	22.2	1.3
8/30/2006	2:00:00	22.1	1.23
8/30/2006	2:15:00	22.1	1.08
8/30/2006	2:30:00	22.1	1.06
8/30/2006	2:45:00	22	1.26
8/30/2006	3:00:00	22	1.3
8/30/2006	3:15:00	21.9	1.29
8/30/2006	3:30:00	21.9	1.29
8/30/2006	3:45:00	21.8	1.29
8/30/2006	4:00:00	21.8	1.3
8/30/2006	4:15:00	21.8	1.2
8/30/2006	4:30:00	21.8	1.11
8/30/2006	4:45:00	21.8	1.03
8/30/2006	5:00:00	21.8	1.02
8/30/2006	5:15:00	21.7	1.04
8/30/2006	5:30:00	21.6	1.09
8/30/2006	5:45:00	21.6	1.14
8/30/2006	6:00:00	21.5	1.07
8/30/2006	6:15:00	21.5	1.06
8/30/2006	6:30:00	21.4	1.05
8/30/2006	6:45:00	21.4	1.05
8/30/2006	7:00:00	21.4	1.1
8/30/2006	7:15:00	21.3	1.06
8/30/2006	7:30:00	21.3	1.05
8/30/2006	7:45:00	21.2	1.01
8/30/2006	8:00:00	21.3	1.02
8/30/2006	8:15:00	21.2	1.04
8/30/2006	8:30:00	21.2	1.02
8/30/2006	8:45:00	21.2	1.08
8/30/2006	9:00:00	21.2	1.12
8/30/2006	9:15:00	21.2	1.18
8/30/2006	9:30:00	21.2	1.22
8/30/2006	9:45:00	21.2	1.31
8/30/2006	10:00:00	21.3	1.3
8/30/2006	10:15:00	21.4	1.29
8/30/2006	10:30:00	21.4	1.34

8/30/2006	10:45:00	21.4	1.38
8/30/2006	11:00:00	21.5	1.46
8/30/2006	11:15:00	21.6	1.36
8/30/2006	11:30:00	21.6	1.4
8/30/2006	11:45:00	21.8	1.49
8/30/2006	12:00:00	21.9	1.56
8/30/2006	12:15:00	22.1	1.63
8/30/2006	12:30:00	22.2	1.79
8/30/2006	12:45:00	22.2	2.06
8/30/2006	13:00:00	22.4	2.14
8/30/2006	13:15:00	22.4	2.13
8/30/2006	13:30:00	22.6	2.11
8/30/2006	13:45:00	22.7	2.07
8/30/2006	14:00:00	22.9	2.29
8/30/2006	14:15:00	22.7	2.35
8/30/2006	14:30:00	23	2.43
8/30/2006	14:45:00	23	2.48
8/30/2006	15:00:00	23	2.46
8/30/2006	15:15:00	23.1	2.46
8/30/2006	15:30:00	23	2.59
8/30/2006	15:45:00	23.1	2.88
8/30/2006	16:00:00	23.1	3
8/30/2006	16:15:00	23.1	3
8/30/2006	16:30:00	23.2	2.96
8/30/2006	16:45:00	23.1	3.04
8/30/2006	17:00:00	23.3	3.07
8/30/2006	17:15:00	23.2	3.05
8/30/2006	17:30:00	23.3	3.06
8/30/2006	17:45:00	23.2	2.96
8/30/2006	18:00:00	23.3	2.82
8/30/2006	18:15:00	23.3	2.81
8/30/2006	18:30:00	23.3	2.83
8/30/2006	18:45:00	23.3	2.86
8/30/2006	19:00:00	23.4	2.92
8/30/2006	19:15:00	23.4	3.12
8/30/2006	19:30:00	23.4	3.43
8/30/2006	19:45:00	23.4	3.3
8/30/2006	20:00:00	23.3	3.29
8/30/2006	20:15:00	23.3	3.37
8/30/2006	20:30:00	23.2	3.33
8/30/2006	20:45:00	23.2	3.42
8/30/2006	21:00:00	23.1	3.24
8/30/2006	21:15:00	23	3.22
8/30/2006	21:30:00	23	3.12
8/30/2006	21:45:00	22.9	3.2
8/30/2006	22:00:00	22.9	3.16
8/30/2006	22:15:00	22.8	3.2
8/30/2006	22:30:00	22.7	3.22
8/30/2006	22:45:00	22.7	3.25
8/30/2006	23:00:00	22.6	3.31
		•	-

8/30/2006	23:15:00	22.6	3.13
8/30/2006	23:30:00	22.6	2.98
8/30/2006	23:45:00	22.5	2.86
8/31/2006	0:00:00	22.5	2.76
8/31/2006	0:15:00	22.4	2.69
8/31/2006	0:30:00	22.4	2.65
8/31/2006	0:45:00	22.3	2.74
8/31/2006	1:00:00	22.2	2.81
8/31/2006	1:15:00	22.2	2.76
8/31/2006	1:30:00	22.1	2.81
8/31/2006	1:45:00	22.1	2.78
8/31/2006	2:00:00	22.1	2.71
8/31/2006	2:15:00	22	2.79
8/31/2006	2:30:00	22	2.8
8/31/2006	2:45:00	21.9	2.81
8/31/2006	3:00:00	21.9	2.82
8/31/2006	3:15:00	21.8	2.77
8/31/2006	3:30:00	21.8	2.75
8/31/2006	3:45:00	21.7	2.8
8/31/2006	4:00:00	21.7	2.76
8/31/2006	4:15:00	21.6	2.82
8/31/2006	4:30:00	21.5	2.81
8/31/2006	4:45:00	21.5	2.78
8/31/2006	5:00:00	21.4	2.75
8/31/2006	5:15:00	21.4	2.76
8/31/2006	5:30:00	21.3	2.77
8/31/2006	5:45:00	21.3	2.76
8/31/2006	6:00:00	21.2	2.72
8/31/2006	6:15:00	21.2	2.75
		21.1	2.75
8/31/2006	6:30:00		
8/31/2006	6:45:00	21	2.79
8/31/2006	7:00:00	21	2.81
8/31/2006	7:15:00	21	2.78
8/31/2006	7:45:00	20.8	2.82
8/31/2006	8:00:00	20.8	2.51
8/31/2006	8:15:00	20.8	3.47
8/31/2006	8:30:00	20.8	3.38
8/31/2006	8:45:00	20.8	3.42
8/31/2006	9:00:00	20.7	3.45
8/31/2006	9:15:00	20.8	3.52
8/31/2006	9:30:00	20.8	3.35
8/31/2006	9:45:00	20.9	3.33
8/31/2006	10:00:00	20.9	3.38
8/31/2006	10:15:00	20.9	3.4
8/31/2006	10:30:00	20.9	3.38
8/31/2006	10:45:00	21	3.47
8/31/2006	11:00:00	21.1	3.48
8/31/2006	11:15:00	21.2	3.85
8/31/2006	11:30:00	21.3	3.89
8/31/2006	11:45:00	21.3	3.79

8/31/2006	12:00:00	21.5	3.86
8/31/2006	12:15:00	21.7	2.76
8/31/2006	12:30:00	21.7	2.59
8/31/2006	12:45:00	22	3.88
8/31/2006	13:00:00	22	4.11
8/31/2006	13:15:00	22.1	4.17
8/31/2006	13:30:00	22.2	3.97
8/31/2006	13:45:00	22.2	3.83
8/31/2006	14:00:00	22.4	4.2
8/31/2006	14:15:00	22.4	4.37
8/31/2006	14:30:00	22.4	4.54
8/31/2006	14:45:00	22.6	4.66
8/31/2006	15:00:00	22.6	4.93
8/31/2006	15:15:00	22.6	4.99
8/31/2006	15:30:00	22.7	5.42
8/31/2006	15:45:00	22.8	5.43
8/31/2006	16:00:00	22.9	5.61
8/31/2006	16:15:00	22.9	5.36
8/31/2006	16:30:00	23	5.73
8/31/2006	16:45:00	23.9	4.74

Start time [Day] : 8/28/2006 11:15 Down load time [Day] : 9/01/2006 13:00

Sample interval [Minute(s)] : 00:15
Battery status at down load : OK
Samples collected : 392

Notes:

Prop. #100466 Logger #108

Sampling Station: Horse Creek #1

Date/Time	Water Temperature	Dissolved Oxygen
8/28/2006 11:15	25.71	0.9
8/28/2006 11:30	25.88	0.89
8/28/2006 11:45	25.98	0.81
8/28/2006 12:00	26.15	0.87
8/28/2006 12:15	26.38	0.79
8/28/2006 12:30	26.44	0.8
8/28/2006 12:45	26.55	0.89
8/28/2006 13:00	26.6	0.92
8/28/2006 13:15	26.63	0.77
8/28/2006 13:30	26.8	0.88
8/28/2006 13:45	26.95	0.78
8/28/2006 14:00	27.11	0.86
8/28/2006 14:15	27.21	0.98
8/28/2006 14:30	27.36	0.95
8/28/2006 14:45	27.43	0.91
8/28/2006 15:00	27.58	1.01
8/28/2006 15:15	27.61	1.28
8/28/2006 15:30	27.65	1.45
8/28/2006 15:45	27.84	1.61
8/28/2006 16:00	27.86	1.43
8/28/2006 16:15	27.91	1.62
8/28/2006 16:30	27.91	1.58
8/28/2006 16:45	27.92	1.74
8/28/2006 17:00	27.88	1.61
8/28/2006 17:15	27.86	1.49
8/28/2006 17:30	27.8	1.45
8/28/2006 17:45	27.75	1.74
8/28/2006 18:00	27.72	2.03
8/28/2006 18:15	27.67	2.14
8/28/2006 18:30	27.62	1.98
8/28/2006 18:45	27.55	1.72
8/28/2006 19:00	27.47	1.79
8/28/2006 19:15	27.38	1.63

8/28/2006 19:30	27.3	1.71
8/28/2006 19:45	27.2	1.7
8/28/2006 20:00	27.12	1.57
8/28/2006 20:15	27.03	1.51
8/28/2006 20:30	26.9	1.59
8/28/2006 20:45	26.86	1.55
8/28/2006 21:00	26.79	1.39
8/28/2006 21:15	26.71	1.31
8/28/2006 21:30	26.64	1.45
8/28/2006 21:45	26.57	1.3
8/28/2006 22:00	26.46	1.22
8/28/2006 22:15	26.4	1.25
8/28/2006 22:30	26.31	1.11
8/28/2006 22:45	26.22	1
8/28/2006 23:00	26.12	0.9
8/28/2006 23:15	26.04	0.91
8/28/2006 23:30	25.97	0.73
8/28/2006 23:45	25.86	0.86
8/29/2006 0:00	25.79	0.81
8/29/2006 0:15	25.67	0.68
8/29/2006 0:30	25.59	0.77
8/29/2006 0:45	25.51	0.68
8/29/2006 1:00	25.4	0.75
8/29/2006 1:15	25.29	0.71
8/29/2006 1:30	25.25	0.51
8/29/2006 1:45	25.15	0.59
8/29/2006 2:00	25.11	0.48
8/29/2006 2:15	25.04	0.45
8/29/2006 2:30	24.96	0.49
8/29/2006 2:45	24.84	0.44
8/29/2006 3:00	24.77	0.53
8/29/2006 3:15	24.7	0.44
8/29/2006 3:30	24.62	0.43
8/29/2006 3:45	24.59	0.43
8/29/2006 4:00	24.52	0.42
8/29/2006 4:15	24.44	0.45
8/29/2006 4:30	24.35	0.47
8/29/2006 4:45	24.27	0.45
8/29/2006 5:00	24.21	0.47
8/29/2006 5:15	24.14	0.46
8/29/2006 5:30	24.08	0.45
8/29/2006 5:45	24.01	0.44
8/29/2006 6:00	23.93	0.46
8/29/2006 6:15	23.89	0.36
8/29/2006 6:30	23.83	0.42
8/29/2006 6:45	23.77	0.44
8/29/2006 7:00	23.72	0.37
8/29/2006 7:15	23.66	0.38
8/29/2006 7:30	23.61	0.37
8/29/2006 7:45	23.57	0.33

8/29/2006 8:00	23.52	0.28
8/29/2006 8:15	23.46	0.26
8/29/2006 8:30	23.42	0.25
8/29/2006 8:45	23.38	0.26
8/29/2006 9:00	23.35	0.27
8/29/2006 9:15	23.3	0.27
8/29/2006 9:30	23.27	0.26
8/29/2006 9:45	23.23	0.26
8/29/2006 10:00	23.2	0.29
8/29/2006 10:15	23.17	0.32
8/29/2006 10:30	23.15	0.3
8/29/2006 10:45	23.15	0.32
8/29/2006 11:00	23.16	0.33
8/29/2006 11:15	23.16	0.32
8/29/2006 11:30	23.19	0.28
8/29/2006 11:45	23.17	0.36
8/29/2006 12:00	23.16	0.43
8/29/2006 12:15	23.16	0.41
8/29/2006 12:30	23.15	0.45
8/29/2006 12:45	23.13	0.48
8/29/2006 13:00	23.16	0.54
8/29/2006 13:15	23.17	0.48
8/29/2006 13:30	23.2	0.49
8/29/2006 13:45	23.2	0.49
8/29/2006 14:00	23.23	0.51
8/29/2006 14:15	23.23	0.62
8/29/2006 14:30	23.25	0.65
8/29/2006 14:45	23.28	0.6
8/29/2006 15:00	23.3	0.59
8/29/2006 15:15	23.3	0.62
8/29/2006 15:30	23.29	0.62
8/29/2006 15:45	23.28	0.58
8/29/2006 16:00	23.29	0.58
8/29/2006 16:15	23.32	0.73
8/29/2006 16:30	23.31	0.77
8/29/2006 16:45	23.32	0.74
8/29/2006 17:00	23.31	0.77
8/29/2006 17:15	23.31	0.76
8/29/2006 17:30	23.33	0.78
8/29/2006 17:45	23.32	0.79
8/29/2006 18:00	23.33	0.79
8/29/2006 18:15	23.34	0.73
8/29/2006 18:30	23.33	0.77
8/29/2006 18:45	23.31	0.83
8/29/2006 19:00	23.31	0.79
8/29/2006 19:15	23.29	0.77
8/29/2006 19:30	23.26	0.85
8/29/2006 19:45	23.22	0.9
8/29/2006 20:00	23.18	0.9
8/29/2006 20:15	23.12	0.76

8/29/2006 20:30	23.07	0.85
8/29/2006 20:45	23.04	0.74
8/29/2006 21:00	23	0.87
8/29/2006 21:15	22.96	0.81
8/29/2006 21:30	22.93	0.83
8/29/2006 21:45	22.91	0.79
8/29/2006 22:00	22.86	0.71
8/29/2006 22:15	22.83	0.72
8/29/2006 22:30	22.78	0.76
8/29/2006 22:45	22.76	0.87
8/29/2006 23:00	22.68	0.93
8/29/2006 23:15	22.64	0.83
8/29/2006 23:30	22.58	0.82
8/29/2006 23:45	22.54	0.75
8/30/2006 0:00	22.48	0.78
8/30/2006 0:15	22.43	0.82
8/30/2006 0:30	22.4 22.34	0.74
8/30/2006 0:45 8/30/2006 1:00		0.85
	22.3	0.72 0.77
8/30/2006 1:15 8/30/2006 1:30	22.26 22.21	0.77
8/30/2006 1:45	22.16	0.86
8/30/2006 2:00	22.10	0.70
8/30/2006 2:15	22.11	0.73
8/30/2006 2:30	22.07	0.73
8/30/2006 2:45	21.93	0.77
8/30/2006 3:00	21.89	0.84
8/30/2006 3:15	21.85	0.04
8/30/2006 3:30	21.79	0.77
8/30/2006 3:45	21.75	0.73
8/30/2006 4:00	21.7	0.74
8/30/2006 4:15	21.65	0.75
8/30/2006 4:30	21.6	0.7
8/30/2006 4:45	21.57	0.72
8/30/2006 5:00	21.53	0.7
8/30/2006 5:15	21.48	0.66
8/30/2006 5:30	21.42	0.64
8/30/2006 5:45	21.38	0.67
8/30/2006 6:00	21.3	0.7
8/30/2006 6:15	21.25	0.66
8/30/2006 6:30	21.2	0.68
8/30/2006 6:45	21.15	0.68
8/30/2006 7:00	21.1	0.71
8/30/2006 7:15	21.05	0.68
8/30/2006 7:30	21	0.73
8/30/2006 7:45	20.96	0.77
8/30/2006 8:00	20.91	0.74
8/30/2006 8:15	20.89	0.74
8/30/2006 8:30	20.88	0.7
8/30/2006 8:45	20.9	0.61

8/30/2006 9:00	20.93	0.64
8/30/2006 9:15	21.01	0.7
8/30/2006 9:30	21.04	0.7
8/30/2006 9:45	21.12	0.77
8/30/2006 10:00	21.16	0.76
8/30/2006 10:15	21.3	0.82
8/30/2006 10:30	21.42	0.79
8/30/2006 10:45	21.57	0.73
8/30/2006 11:00	21.68	0.6
8/30/2006 11:15	21.81	0.72
8/30/2006 11:30	21.96	0.81
8/30/2006 11:45	22.11	1.21
8/30/2006 12:00	22.25	0.89
8/30/2006 12:15	22.43	0.92
8/30/2006 12:30	22.55	0.89
8/30/2006 12:45	22.65	0.81
8/30/2006 13:00	22.79	1
8/30/2006 13:15	22.95	0.94
8/30/2006 13:30	23.03	0.84
8/30/2006 13:45	23.18	8.0
8/30/2006 14:00	23.3	0.81
8/30/2006 14:15	23.46	1.02
8/30/2006 14:30	23.59	1.09
8/30/2006 14:45	23.68	1.27
8/30/2006 15:00	23.8	1.39
8/30/2006 15:15	23.89	1.2
8/30/2006 15:30	23.95	1.28
8/30/2006 15:45	24.01	1.37
8/30/2006 16:00	24.06	1.33
8/30/2006 16:15	24.11	1.39
8/30/2006 16:30	24.11	1.52
8/30/2006 16:45	24.14	1.53
8/30/2006 17:00	24.16	1.46
8/30/2006 17:15	24.2	1.61
8/30/2006 17:30	24.2	1.51
8/30/2006 17:45	24.21	1.49
8/30/2006 18:00	24.2	1.51
8/30/2006 18:15	24.18	1.48
8/30/2006 18:30	24.19	1.44
8/30/2006 18:45	24.16	1.38
8/30/2006 19:00	24.13	1.31
8/30/2006 19:15	24.11	1.44
8/30/2006 19:30	24.08	1.53
8/30/2006 19:45	24.04	1.71
8/30/2006 20:00	23.95	2.32
8/30/2006 20:15	23.85	2.14
8/30/2006 20:30	23.76	2.15
8/30/2006 20:45	23.67	1.79
8/30/2006 21:00	23.57	1.77
8/30/2006 21:15	23.49	1.69
	· -	

8/3	0/2006 21:30	23.44	1.55
8/3	0/2006 21:45	23.36	1.51
8/3	0/2006 22:00	23.3	1.42
8/3	0/2006 22:15	23.23	1.37
8/3	0/2006 22:30	23.15	1.33
8/3	0/2006 22:45	23.08	1.31
8/3	0/2006 23:00	23.01	1.29
8/3	0/2006 23:15	22.95	1.16
8/3	0/2006 23:30	22.9	1.26
8/3	0/2006 23:45	22.85	1.26
8/	31/2006 0:00	22.76	1.25
8/	31/2006 0:15	22.71	1.13
8/	31/2006 0:30	22.59	1.17
8/	31/2006 0:45	22.56	1.11
8/3	31/2006 1:00	22.47	1.06
8/3	31/2006 1:15	22.41	1.1
8/3	31/2006 1:30	22.32	1.07
8/	31/2006 1:45	22.24	1.08
8/	31/2006 2:00	22.2	1.05
8/	31/2006 2:15	22.13	1.03
8/	31/2006 2:30	22.07	1.06
8/	31/2006 2:45	22	1.04
8/	31/2006 3:00	21.92	1.05
8/	31/2006 3:15	21.84	1
8/	31/2006 3:30	21.8	0.98
8/	31/2006 3:45	21.72	1.06
8/	31/2006 4:00	21.66	1
8/	31/2006 4:15	21.6	1
8/	31/2006 4:30	21.52	0.91
8/	31/2006 4:45	21.47	0.92
8/3	31/2006 5:00	21.4	0.89
8/3	31/2006 5:15	21.36	0.87
8/3	31/2006 5:30	21.3	0.78
8/3	31/2006 5:45	21.23	8.0
8/3	31/2006 6:00	21.13	0.89
8/3	31/2006 6:15	21.1	0.77
8/3	31/2006 6:30	21.04	0.88
	31/2006 6:45	20.99	0.81
8/3	31/2006 7:00	20.92	0.82
8/3	31/2006 7:15	20.86	0.86
	31/2006 7:30	20.83	0.74
8/:	31/2006 7:45	20.75	0.78
8/:	31/2006 8:00	20.77	0.79
8/:	31/2006 8:15	20.78	0.77
	31/2006 8:30	20.73	0.73
	31/2006 8:45	20.72	0.71
8/3	31/2006 9:00	20.73	0.68
8/3	31/2006 9:15	20.74	0.6
8/3	31/2006 9:30	20.82	0.52
8/3	31/2006 9:45	20.89	0.53

8/31/2006 10:00	20.96	0.47
8/31/2006 10:15	21.05	0.59
8/31/2006 10:30	21.18	0.57
8/31/2006 10:45	21.28	0.59
8/31/2006 11:00	21.41	0.48
8/31/2006 11:15	21.54	0.54
8/31/2006 11:30	21.71	0.6
8/31/2006 11:45	21.83	1.22
8/31/2006 12:00	21.97	1
8/31/2006 12:15	22.04	0.7
8/31/2006 12:30	22.12	0.87
8/31/2006 12:45	22.19	0.82
8/31/2006 13:00	22.31	0.02
8/31/2006 13:15	22.42	0.89
8/31/2006 13:13	22.59	0.09
8/31/2006 13:45	22.72	0.73
8/31/2006 14:00	22.87	0.76
8/31/2006 14:15	22.94	0.81
8/31/2006 14:30	23.1 23.27	0.89
8/31/2006 14:45		0.99
8/31/2006 15:00	23.3	0.76
8/31/2006 15:15	23.33	0.68
8/31/2006 15:30	23.41	0.67
8/31/2006 15:45	23.47	0.64
8/31/2006 16:00	23.49	0.87
8/31/2006 16:15	23.62	1.02
8/31/2006 16:30	23.65	0.97
8/31/2006 16:45	23.72	0.9
8/31/2006 17:00	23.74	0.98
8/31/2006 17:15	23.67	1.06
8/31/2006 17:30	23.72	1.08
8/31/2006 17:45	23.74	1.2
8/31/2006 18:00	23.75	1.12
8/31/2006 18:15	23.77	1.26
8/31/2006 18:30	23.75	0.92
8/31/2006 18:45	23.73	1.24
8/31/2006 19:00	23.74	1.26
8/31/2006 19:15	23.72	1.02
8/31/2006 19:30	23.71	1.07
8/31/2006 19:45	23.63	1.22
8/31/2006 20:00	23.62	1.49
8/31/2006 20:15	23.53	1.78
8/31/2006 20:30	23.44	1.99
8/31/2006 20:45	23.36	1.82
8/31/2006 21:00	23.26	1.79
8/31/2006 21:15	23.18	1.73
8/31/2006 21:30	23.09	1.55
8/31/2006 21:45	23.03	1.51
8/31/2006 22:00	22.97	1.27
8/31/2006 22:15	22.91	1.29

8/31/2006 22:30	22.84	1.22
8/31/2006 22:45	22.77	1.2
8/31/2006 23:00	22.72	1.16
8/31/2006 23:15	22.67	1.03
8/31/2006 23:30	22.6	1.14
8/31/2006 23:45	22.55	0.89
9/1/2006 0:00	22.46	0.85
9/1/2006 0:15	22.43	0.93
9/1/2006 0:30	22.39	0.92
9/1/2006 0:45	22.34	0.86
9/1/2006 1:00	22.26	0.84
9/1/2006 1:15	22.19	0.76
9/1/2006 1:30	22.12	0.79
9/1/2006 1:45	22.03	0.76
9/1/2006 2:00	22	0.77
9/1/2006 2:15	21.95	0.68
9/1/2006 2:13	21.87	0.76
9/1/2006 2:45	21.81	0.70
9/1/2006 2:45	21.77	0.71
9/1/2006 3:06	21.7	0.73
9/1/2006 3:13	21.65	0.73
9/1/2006 3:45	21.56	0.65
9/1/2006 4:00	21.53	0.58
9/1/2006 4:15	21.47	0.63
9/1/2006 4:30	21.38	0.62
9/1/2006 4:45	21.33	0.56
9/1/2006 5:00	21.26	0.62
9/1/2006 5:15	21.18	0.58
9/1/2006 5:30	21.15	0.52
9/1/2006 5:45	21.1	0.61
9/1/2006 6:00	21.04	0.54
9/1/2006 6:15	21.03	0.51
9/1/2006 6:30	20.95	0.47
9/1/2006 6:45	20.91	0.5
9/1/2006 7:00	20.86	0.5
9/1/2006 7:15	20.83	0.52
9/1/2006 7:30	20.78	0.52
9/1/2006 7:45	20.73	0.53
9/1/2006 8:00	20.72	0.52
9/1/2006 8:15	20.68	0.53
9/1/2006 8:30	20.68	0.44
9/1/2006 8:45	20.71	0.41
9/1/2006 9:00	20.73	0.44
9/1/2006 9:15	20.75	0.37
9/1/2006 9:30	20.8	0.43
9/1/2006 9:45	20.83	0.38
9/1/2006 10:00	20.93	0.31
9/1/2006 10:15	20.99	0.25
9/1/2006 10:30	21.08	0.29
9/1/2006 10:45	21.23	0.26

9/1/2006 11:00	21.34	0.29	
9/1/2006 11:15	21.44	0.34	
9/1/2006 11:30	21.55	0.29	
9/1/2006 11:45	21.66	0.4	
9/1/2006 12:00	21.8	0.39	
9/1/2006 12:15	21.97	0.19	
9/1/2006 12:30	22.14	0.22	
9/1/2006 12:45	22.27	0.21	
9/1/2006 13:00	22.72	1.29	

Appendix E

Statistical Analyses Comparing Benthic Sediment Between Sampling Stations. One-Way ANOVA, Square-root Transformed, and Student-Newman-Keuls Multiple Comparison Test Were Used to Test Differences in Total Benthic Sediment (Sand + Silt) and Silt. Kruskal-Wallis ANOVA on Ranks and Student-Newman-Keuls Multiple Comparison Test Were Used to Test Differences in Sand.

Tuesday, February 19, 2008, 1:57:31 PM

Data source: Benthic Sediment

Dependent Variable: sqrt (total benthic sediment)

Normality Test: Passed (P = 0.430)

Equal Variance Test: Passed (P = 0.076)

Group Name	N	Missing	Mean	Std Dev	SEM
NFSR #1	10	0	187.871	59.278	18.745
NFSR #2	10	0	261.728	75.827	23.978
NFSR #3	10	0	313.875	34.574	10.933
NFSR #4	10	0	290.631	39.953	12.634
NFSR #5	10	0	449.519	60.416	19.105
NFSR #6	10	0	290.088	78.275	24.753
NFSR #7	10	0	162.549	59.186	18.716
NFSR #8	10	0	306.336	82.797	26.183
NFSR #9	10	0	239.528	89.507	28.305
NFSR #10	10	0	350.927	81.774	25.859
Horse Ck #1	10	0	277.300	63.012	19.926
Cedar Ck #1	10	0	239.337	115.994	36.680
LDC #1	10	0	358.181	76.478	24.184
LDC #2	10	0	400.688	78.968	24.972

Source of Variation	DF	SS	MS	F	P
Between Groups	13	793092.447	61007.111	11.179	< 0.001
Residual	126	687590.664	5457.069		
Total	139	1480683.111			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

parisons		

Comparison	Diff of Means	р	q	P	P<0.050
NFSR #5 vs. NFSR #7	286.970	14	12.284	< 0.001	Yes
NFSR #5 vs. NFSR #1	261.648	13	11.201	< 0.001	Yes
NFSR #5 vs. Cedar Ck #1	210.182	12	8.997	< 0.001	Yes
NFSR #5 vs. NFSR #9	209.991	11	8.989	< 0.001	Yes
NFSR #5 vs. NFSR #2	187.791	10	8.039	< 0.001	Yes
NFSR #5 vs. Horse Ck #1	172.219	9	7.372	< 0.001	Yes
NFSR #5 vs. NFSR #6	159.431	8	6.825	< 0.001	Yes
NFSR #5 vs. NFSR #4	158.888	7	6.802	< 0.001	Yes
NFSR #5 vs. NFSR #8	143.183	6	6.129	< 0.001	Yes
NFSR #5 vs. NFSR #3	135.644	5	5.807	< 0.001	Yes
NFSR #5 vs. NFSR #10	98.592	4	4.220	0.015	Yes
NFSR #5 vs. LDC #1	91.338	3	3.910	0.016	Yes
NFSR #5 vs. LDC #2	48.831	2	2.090	0.139	No
LDC #2 vs. NFSR #7	238.139	13	10.194	< 0.001	Yes

LDC #2 vs. NFSR #1	212.817	12	9.110	< 0.001	Yes
LDC #2 vs. Cedar Ck #1	161.351	11	6.907	< 0.001	Yes
LDC #2 vs. NFSR #9	161.160	10	6.899	< 0.001	Yes
LDC #2 vs. NFSR #2	138.960	9	5.949	< 0.001	Yes
LDC #2 vs. Horse Ck #1	123.387	8	5.282	0.005	Yes
LDC #2 vs. NFSR #6	110.600	7	4.734	0.014	Yes
LDC #2 vs. NFSR #4	110.056	6	4.711	0.011	Yes
LDC #2 vs. NFSR #8	94.352	5	4.039	0.035	Yes
LDC #2 vs. NFSR #3	86.813	4	3.716	0.043	Yes
LDC #2 vs. NFSR #10	49.760	3	2.130	0.288	No
LDC #2 vs. LDC #1	42.507	2	1.820	0.198	Do Not Test
LDC #1 vs. NFSR #7	195.632	12	8.375	< 0.001	Yes
LDC #1 vs. NFSR #1	170.310	11	7.291	< 0.001	Yes
LDC #1 vs. Cedar Ck #1	118.844	10	5.087	0.012	Yes
LDC #1 vs. NFSR #9	118.653	9	5.079	0.010	Yes
LDC #1 vs. NFSR #2	96.453	8	4.129	0.069	No
LDC #1 vs. Horse Ck #1	80.881	7	3.462	0.179	Do Not Test
LDC #1 vs. NFSR #6	68.093	6	2.915	0.308	Do Not Test
LDC #1 vs. NFSR #4	67.549	5	2.892	0.245	Do Not Test
LDC #1 vs. NFSR #8	51.845	4	2.219	0.396	Do Not Test
LDC #1 vs. NFSR #3	44.306	3	1.897	0.372	Do Not Test
LDC #1 vs. NFSR #10	7.254	2	0.311	0.826	Do Not Test
NFSR #10 vs. NFSR #7	188.378	11	8.064	< 0.001	Yes
NFSR #10 vs. NFSR #1	163.057	10	6.980	< 0.001	Yes
NFSR #10 vs. Cedar Ck #1	111.590	9	4.777	0.021	Yes
NFSR #10 vs. NFSR #9	111.399	8	4.769	0.017	Yes
NFSR #10 vs. NFSR #2	89.200	7	3.818	0.098	Do Not Test
NFSR #10 vs. Horse Ck #1	73.627	6	3.152	0.224	Do Not Test
NFSR #10 vs. NFSR #6	60.839	5	2.604	0.350	Do Not Test
NFSR #10 vs. NFSR #4	60.296	4	2.581	0.261	Do Not Test
NFSR #10 vs. NFSR #8	44.592	3	1.909	0.368	Do Not Test
NFSR #10 vs. NFSR #3	37.052	2	1.586	0.262	Do Not Test
NFSR #3 vs. NFSR #7	151.326	10	6.478	< 0.001	Yes
NFSR #3 vs. NFSR #1	126.004	9	5.394	0.004	Yes
NFSR #3 vs. Cedar Ck #1	74.538	8	3.191	0.318	No
NFSR #3 vs. NFSR #9	74.347	7	3.183	0.269	Do Not Test
NFSR #3 vs. NFSR #2	52.147	6	2.232	0.613	Do Not Test
NFSR #3 vs. Horse Ck #1	36.575	5	1.566	0.803	Do Not Test Do Not Test
NFSR #3 vs. NFSR #6	23.787		1.018	0.889	Do Not Test
NFSR #3 vs. NFSR #4	23.244	4	0.995	0.761	Do Not Test
NFSR #3 vs. NFSR #8	7.539	2	0.323	0.701	Do Not Test Do Not Test
NFSR #8 vs. NFSR #7	143.787	9	6.155	< 0.001	Yes
NFSR #8 vs. NFSR #1	118.465	8	5.071	0.001	Yes
NFSR #8 vs. Cedar Ck #1	66.999	7	2.868	0.397	Do Not Test
NFSR #8 vs. NFSR #9	66.808				
		6	2.860	0.330	Do Not Test
NFSR #8 vs. NFSR #2	44.608	5	1.910	0.660	Do Not Test
NFSR #8 vs. Horse Ck #1	29.035	4	1.243	0.816	Do Not Test
NFSR #8 vs. NFSR #6	16.248	3	0.696	0.875	Do Not Test
NFSR #8 vs. NFSR #4	15.704	2	0.672	0.635	Do Not Test
NFSR #4 vs. NFSR #7	128.082	8	5.483	0.003	Yes
NFSR #4 vs. NFSR #1	102.761	7	4.399	0.031	Yes
NFSR #4 vs. Cedar Ck #1	51.294	6	2.196	0.630	Do Not Test
NFSR #4 vs. NFSR #9	51.103	5	2.188	0.532	Do Not Test
NFSR #4 vs. NFSR #2	28.904	4	1.237	0.818	Do Not Test
NFSR #4 vs. Horse Ck #1	13.331	3	0.571	0.914	Do Not Test
NFSR #4 vs. NFSR #6	0.543	2	0.0233	0.987	Do Not Test

NFSR #6 vs. NFSR #7	127.539	7	5.460	0.002	Yes
NFSR #6 vs. NFSR #1	102.217	6	4.376	0.024	Yes
NFSR #6 vs. Cedar Ck #1	50.751	5	2.173	0.539	Do Not Test
NFSR #6 vs. NFSR #9	50.560	4	2.164	0.419	Do Not Test
NFSR #6 vs. NFSR #2	28.360	3	1.214	0.667	Do Not Test
NFSR #6 vs. Horse Ck #1	12.788	2	0.547	0.699	Do Not Test
Horse Ck #1 vs. NFSR #7	114.751	6	4.912	0.007	Yes
Horse Ck #1 vs. NFSR #1	89.430	5	3.828	0.053	No
Horse Ck #1 vs. Cedar Ck #1	37.963	4	1.625	0.659	Do Not Test
Horse Ck #1 vs. NFSR #9	37.772	3	1.617	0.487	Do Not Test
Horse Ck #1 vs. NFSR #2	15.573	2	0.667	0.637	Do Not Test
NFSR #2 vs. NFSR #7	99.179	5	4.246	0.023	Yes
NFSR #2 vs. NFSR #1	73.857	4	3.162	0.114	Do Not Test
NFSR #2 vs. Cedar Ck #1	22.391	3	0.958	0.776	Do Not Test
NFSR #2 vs. NFSR #9	22.200	2	0.950	0.502	Do Not Test
NFSR #9 vs. NFSR #7	76.979	4	3.295	0.091	No
NFSR #9 vs. NFSR #1	51.658	3	2.211	0.262	Do Not Test
NFSR #9 vs. Cedar Ck #1	0.191	2	0.00818	0.995	Do Not Test
Cedar Ck #1 vs. NFSR #7	76.788	3	3.287	0.053	Do Not Test
Cedar Ck #1 vs. NFSR #1	51.466	2	2.203	0.119	Do Not Test
NFSR #1 vs. NFSR #7	25.321	2	1.084	0.443	Do Not Test

Data source: Benthic Sediment

Dependent Variable: sqrt(silt)

Normality Test: Passed (P = 0.250)

Equal Variance Test: Passed (P = 0.134)

Group Name	N	Missing	Mean	Std Dev	SEM
NFSR #1	10	0	181.637	59.318	18.758
NFSR #2	10	0	235.770	79.249	25.061
NFSR #3	10	0	262.206	26.651	8.428
NFSR #4	10	0	252.381	36.534	11.553
NFSR #5	10	0	416.600	67.517	21.351
NFSR #6	10	0	261.696	78.208	24.732
NFSR #7	10	0	145.485	55.435	17.530
NFSR #8	10	0	284.431	84.755	26.802
NFSR #9	10	0	222.306	76.277	24.121
NFSR #10	10	0	329.573	73.589	23.271
Horse Ck #1	10	0	210.194	47.256	14.944
Cedar Ck #1	10	0	219.793	109.752	34.707
LDC #1	10	0	323.182	85.908	27.166
LDC #2	10	0	335.899	65.862	20.827

Source of Variation	DF	SS	MS	F	P
Between Groups	13	650181.004	50013.923	10.002	< 0.001
Residual	126	630049.878	5000.396		
Total	139	1280230.883			

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):

Comparisons for factor: Station

Comparisons for factor. Station					
Comparison	Diff of Means	p	q	P	P<0.050
NFSR #5 vs. NFSR #7	271.115	14	12.124	< 0.001	Yes
NFSR #5 vs. NFSR #1	234.963	13	10.507	< 0.001	Yes
NFSR #5 vs. Horse Ck #1	206.407	12	9.230	< 0.001	Yes
NFSR #5 vs. Cedar Ck #1	196.808	11	8.801	< 0.001	Yes
NFSR #5 vs. NFSR #9	194.295	10	8.689	< 0.001	Yes
NFSR #5 vs. NFSR #2	180.830	9	8.087	< 0.001	Yes
NFSR #5 vs. NFSR #4	164.219	8	7.344	< 0.001	Yes
NFSR #5 vs. NFSR #6	154.905	7	6.927	< 0.001	Yes
NFSR #5 vs. NFSR #3	154.394	6	6.904	< 0.001	Yes
NFSR #5 vs. NFSR #8	132.169	5	5.911	< 0.001	Yes
NFSR #5 vs. LDC #1	93.418	4	4.178	0.017	Yes
NFSR #5 vs. NFSR #10	87.027	3	3.892	0.016	Yes
NFSR #5 vs. LDC #2	80.701	2	3.609	0.011	Yes
LDC #2 vs. NFSR #7	190.414	13	8.515	< 0.001	Yes

LDC #2 vs. NFSR #1	154.262	12	6.899	< 0.001	Yes
LDC #2 vs. Horse Ck #1	125.705	11	5.621	0.003	Yes
LDC #2 vs. Cedar Ck #1	116.106	10	5.192	0.009	Yes
LDC #2 vs. NFSR #9	113.593	9	5.080	0.010	Yes
LDC #2 vs. NFSR #2	100.129	8	4.478	0.033	Yes
LDC #2 vs. NFSR #4	83.518	7	3.735	0.114	No
LDC #2 vs. NFSR #6	74.203	6	3.318	0.176	Do Not Test
LDC #2 vs. NFSR #3	73.693	5	3.296	0.135	Do Not Test
LDC #2 vs. NFSR #8	51.468	4	2.302	0.363	Do Not Test
LDC #2 vs. LDC #1	12.717	3	0.569	0.915	Do Not Test
LDC #2 vs. NFSR #10	6.326	2	0.283	0.841	Do Not Test
NFSR #10 vs. NFSR #7	184.088	12	8.232	< 0.001	Yes
NFSR #10 vs. NFSR #1	147.936	11	6.616	< 0.001	Yes
NFSR #10 vs. Horse Ck #1	119.380	10	5.339	0.006	Yes
NFSR #10 vs. Cedar Ck #1	109.781	9	4.909	0.015	Yes
NFSR #10 vs. NFSR #9	107.268	8	4.797	0.016	Yes
NFSR #10 vs. NFSR #2	93.803	7	4.195	0.047	Yes
NFSR #10 vs. NFSR #4	77.192	6	3.452	0.142	Do Not Test
NFSR #10 vs. NFSR #6	67.878	5	3.035	0.201	Do Not Test
NFSR #10 vs. NFSR #3	67.367	4	3.013	0.144	Do Not Test
NFSR #10 vs. NFSR #8	45.142	3	2.019	0.327	Do Not Test
NFSR #10 vs. LDC #1	6.391	2	0.286	0.840	Do Not Test
LDC #1 vs. NFSR #7	177.697	11	7.947	< 0.001	Yes
LDC #1 vs. NFSR #1	141.545	10	6.330	< 0.001	Yes
LDC #1 vs. 101 SR #1 LDC #1 vs. Horse Ck #1	112.988	9	5.053	0.011	Yes
LDC #1 vs. Holse Ck #1 LDC #1 vs. Cedar Ck #1	103.389	8	4.624	0.011	Yes
LDC #1 vs. Cedal Ck #1 LDC #1 vs. NFSR #9	100.877	7	4.511	0.024	Yes
LDC #1 vs. NFSR #2	87.412	6	3.909	0.024	No
LDC #1 vs. NFSR #4	70.801	5 4	3.166	0.165	Do Not Test
LDC #1 vs. NFSR #6	61.486		2.750	0.210	Do Not Test
LDC #1 vs. NFSR #3	60.976	3	2.727	0.131	Do Not Test
LDC #1 vs. NFSR #8	38.751	2	1.733	0.220	Do Not Test
NFSR #8 vs. NFSR #7	138.946	10	6.214	< 0.001	Yes
NFSR #8 vs. NFSR #1	102.794	9	4.597	0.032	Yes
NFSR #8 vs. Horse Ck #1	74.237	8	3.320	0.268	No
NFSR #8 vs. Cedar Ck #1	64.638	7	2.891	0.387	Do Not Test
NFSR #8 vs. NFSR #9	62.126	6	2.778	0.363	Do Not Test
NFSR #8 vs. NFSR #2	48.661	5	2.176	0.537	Do Not Test
NFSR #8 vs. NFSR #4	32.050	4	1.433	0.742	Do Not Test
NFSR #8 vs. NFSR #6	22.735	3	1.017	0.752	Do Not Test
NFSR #8 vs. NFSR #3	22.225	2	0.994	0.482	Do Not Test
NFSR #3 vs. NFSR #7	116.721	9	5.220	0.007	Yes
NFSR #3 vs. NFSR #1	80.569	8	3.603	0.176	No
NFSR #3 vs. Horse Ck #1	52.012	7	2.326	0.653	Do Not Test
NFSR #3 vs. Cedar Ck #1	42.413	6	1.897	0.762	Do Not Test
NFSR #3 vs. NFSR #9	39.901	5	1.784	0.715	Do Not Test
NFSR #3 vs. NFSR #2	26.436	4	1.182	0.837	Do Not Test
NFSR #3 vs. NFSR #4	9.825	3	0.439	0.948	Do Not Test
NFSR #3 vs. NFSR #6	0.510	2	0.0228	0.987	Do Not Test
NFSR #6 vs. NFSR #7	116.211	8	5.197	0.006	Yes
NFSR #6 vs. NFSR #1	80.059	7	3.580	0.148	Do Not Test
NFSR #6 vs. Horse Ck #1	51.502	6	2.303	0.579	Do Not Test
NFSR #6 vs. Cedar Ck #1	41.903	5	1.874	0.676	Do Not Test
NFSR #6 vs. NFSR #9	39.390	4	1.762	0.598	Do Not Test
NFSR #6 vs. NFSR #2	25.926	3	1.159	0.691	Do Not Test
NFSR #6 vs. NFSR #4	9.314	2	0.417	0.768	Do Not Test

NFSR #4 vs. NFSR #7	106.896	7	4.780	0.013	Yes
NFSR #4 vs. NFSR #1	70.744	6	3.164	0.221	Do Not Test
NFSR #4 vs. Horse Ck #1	42.188	5	1.887	0.670	Do Not Test
NFSR #4 vs. Cedar Ck #1	32.589	4	1.457	0.732	Do Not Test
NFSR #4 vs. NFSR #9	30.076	3	1.345	0.608	Do Not Test
NFSR #4 vs. NFSR #2	16.611	2	0.743	0.599	Do Not Test
NFSR #2 vs. NFSR #7	90.285	6	4.038	0.049	Yes
NFSR #2 vs. NFSR #1	54.133	5	2.421	0.427	Do Not Test
NFSR #2 vs. Horse Ck #1	25.576	4	1.144	0.850	Do Not Test
NFSR #2 vs. Cedar Ck #1	15.977	3	0.714	0.869	Do Not Test
NFSR #2 vs. NFSR #9	13.465	2	0.602	0.670	Do Not Test
NFSR #9 vs. NFSR #7	76.820	5	3.435	0.108	No
NFSR #9 vs. NFSR #1	40.669	4	1.819	0.572	Do Not Test
NFSR #9 vs. Horse Ck #1	12.112	3	0.542	0.922	Do Not Test
NFSR #9 vs. Cedar Ck #1	2.513	2	0.112	0.937	Do Not Test
Cedar Ck #1 vs. NFSR #7	74.308	4	3.323	0.087	Do Not Test
Cedar Ck #1 vs. NFSR #1	38.156	3	1.706	0.449	Do Not Test
Cedar Ck #1 vs. Horse Ck #1	9.599	2	0.429	0.761	Do Not Test
Horse Ck #1 vs. NFSR #7	64.708	3	2.894	0.101	Do Not Test
Horse Ck #1 vs. NFSR #1	28.557	2	1.277	0.367	Do Not Test
NFSR #1 vs. NFSR #7	36.152	2	1.617	0.253	Do Not Test

Tuesday, February 19, 2008, 2:21:05 PM

Data source: Benthic Sediment

Dependent Variable: Sand

Normality Test: Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks

Tuesday, February 19, 2008, 2:21:05 PM

Data source: Data 1 in Benthic Sediment

Group	N	Missing	Median	25%	75%
NFSR #1	10	0	0.000	0.000	3135.150
NFSR #2	10	0	7837.875	0.000	14630.700
NFSR #3	10	0	31874.025	20901.000	36576.750
NFSR #4	10	0	20901.000	14630.700	22991.100
NFSR #5	10	0	25081.200	21946.050	29261.400
NFSR #6	10	0	16198.275	13585.650	19855.950
NFSR #7	10	0	6270.300	0.000	10450.500
NFSR #8	10	0	13063.125	6270.300	15675.750
NFSR #9	10	0	4180.200	0.000	6270.300
NFSR #10	10	0	13063.125	4180.200	26126.250
Horse Ck #1	10	0	30828.975	17765.850	37621.800
Cedar Ck #1	10	0	6270.300	5225.250	17765.850
LDC #1	10	0	19855.950	15675.750	29261.400
LDC #2	10	0	41279.475	35531.700	65838.150

H = 72.697 with 13 degrees of freedom. (P = <0.001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Comparison	Diff of Ranks	q	P<0.05
LDC #2 vs NFSR #1	990.500	7.723	Yes
LDC #2 vs NFSR #7	868.000	7.286	Yes
LDC #2 vs NFSR #9	774.000	7.036	Yes
LDC #2 vs NFSR #2	700.500	6.944	Yes
LDC #2 vs Cedar Ck #1	681.000	7.423	Yes
LDC #2 vs NFSR #8	626.000	7.577	Yes
LDC #2 vs NFSR #10	546.500	7.437	Yes
LDC #2 vs NFSR #6	487.000	7.567	Yes
LDC #2 vs NFSR #4	354.500	6.419	Yes
LDC #2 vs LDC #1	315.500	6.844	Yes
LDC #2 vs NFSR #5	176.500	4.774	Yes
LDC #2 vs Horse Ck #1	154.500	5.550	Yes
LDC #2 vs NFSR #3	150.500	8.045	Yes

NFSR #3 vs NFSR #1	840.000	7.051	Yes
NFSR #3 vs NFSR #7	717.500	6.523	Yes
NFSR #3 vs NFSR #9	623.500	6.181	Yes
NFSR #3 vs NFSR #2	550.000	5.995	Yes
NFSR #3 vs Cedar Ck #1	530.500	6.421	Yes
NFSR #3 vs NFSR #8	475.500	6.471	Yes
NFSR #3 vs NFSR #10	396.000	6.153	Yes
NFSR #3 vs NFSR #6	336.500	6.093	Yes
NFSR #3 vs NFSR #4	204.000	4.425	Yes
NFSR #3 vs LDC #1	165.000	4.463	Yes
NFSR #3 vs NFSR #5	26.000	0.934	No
NFSR #3 vs Horse Ck #1	4.000	0.214	Do Not Test
Horse Ck #1 vs NFSR #1	836.000	7.600	Yes
Horse Ck #1 vs NFSR #7	713.500	7.073	Yes
Horse Ck #1 vs NFSR #9	619.500	6.753	Yes
Horse Ck #1 vs NFSR #2	546.000	6.609	Yes
Horse Ck #1 vs Cedar Ck #1	526.500	7.165	Yes
Horse Ck #1 vs NFSR #8	471.500	7.326	Yes
Horse Ck #1 vs NFSR #10	392.000	7.098	Yes
Horse Ck #1 vs NFSR #6	332.500	7.213	Yes
Horse Ck #1 vs NFSR #4	200.000	5.410	Yes
Horse Ck #1 vs LDC #1	161.000	5.783	Yes
Horse Ck #1 vs NFSR #5	22.000	1.176	Do Not Test
NFSR #5 vs NFSR #1	814.000	8.070	Yes
NFSR #5 vs NFSR #7	691.500	7.537	Yes
NFSR #5 vs NFSR #9	597.500	7.232	Yes
NFSR #5 vs NFSR #2	524.000	7.131	Yes
NFSR #5 vs Cedar Ck #1	504.500	7.839	Yes
NFSR #5 vs NFSR #8	449.500	8.139	Yes
NFSR #5 vs NFSR #10	370.000	8.026	Yes
NFSR #5 vs NFSR #6	310.500	8.399	Yes
NFSR #5 vs NFSR #4	178.000	6.394	Yes
NFSR #5 vs LDC #1	139.000	7.430	Yes
LDC #1 vs NFSR #1	675.000	7.358	Yes
LDC #1 vs NFSR #7	552.500	6.688	Yes
LDC #1 vs NFSR #9	458.500	6.239	Yes
LDC #1 vs NFSR #2	385.000	5.982	Yes
LDC #1 vs Cedar Ck #1	365.500	6.618	Yes
LDC #1 vs NFSR #8	310.500	6.736	Yes
LDC #1 vs NFSR #10	231.000	6.249	Yes
LDC #1 vs NFSR #6	171.500	6.160	Yes
LDC #1 vs NFSR #4	39.000	2.085	No
NFSR #4 vs NFSR #1	636.000	7.698	Yes
NFSR #4 vs NFSR #7	513.500	6.988	Yes
NFSR #4 vs NFSR #9	419.500	6.518	Yes
NFSR #4 vs NFSR #2	346.000	6.265	Yes
NFSR #4 vs Cedar Ck #1	326.500	7.083	Yes
NFSR #4 vs NFSR #8	271.500	7.344	Yes
NFSR #4 vs NFSR #10	192.000	6.897	Yes
NFSR #4 vs NFSR #6	132.500	7.082	Yes
NFSR #6 vs NFSR #1	503.500	6.852	Yes
NFSR #6 vs NFSR #7	381.000	5.920	Yes
NFSR #6 vs NFSR #9	287.000	5.197	Yes
NFSR #6 vs NFSR #2	213.500	4.631	Yes
NFSR #6 vs Cedar Ck #1	194.000	5.248	Yes
NFSR #6 vs NFSR #8	139.000	4.993	Yes

NFSR #6 vs NFSR #10	59.500	3.180	Yes
NFSR #10 vs NFSR #1	444.000	6.899	Yes
NFSR #10 vs NFSR #7	321.500	5.821	Yes
NFSR #10 vs NFSR #9	227.500	4.935	Yes
NFSR #10 vs NFSR #2	154.000	4.166	Yes
NFSR #10 vs Cedar Ck #1	134.500	4.831	Yes
NFSR #10 vs NFSR #8	79.500	4.249	Yes
NFSR #8 vs NFSR #1	364.500	6.600	Yes
NFSR #8 vs NFSR #7	242.000	5.250	Yes
NFSR #8 vs NFSR #9	148.000	4.003	Yes
NFSR #8 vs NFSR #2	74.500	2.676	No
NFSR #8 vs Cedar Ck #1	55.000	2.940	Do Not Test
Cedar Ck #1 vs NFSR #1	309.500	6.714	Yes
Cedar Ck #1 vs NFSR #7	187.000	5.058	Yes
Cedar Ck #1 vs NFSR #9	93.000	3.341	Yes
Cedar Ck #1 vs NFSR #2	19.500	1.042	Do Not Test
NFSR #2 vs NFSR #1	290.000	7.845	Yes
NFSR #2 vs NFSR #7	167.500	6.017	Yes
NFSR #2 vs NFSR #9	73.500	3.929	Yes
NFSR #9 vs NFSR #1	216.500	7.777	Yes
NFSR #9 vs NFSR #7	94.000	5.025	Yes
NFSR #7 vs NFSR #1	122.500	6.548	Yes

Appendix F

Statistical Analyses Comparing Channel Measurements Collected at the Sampling Stations. Kruskal-Wallis ANOVA on Ranks and Student-Newman-Keuls Multiple Comparison Test Were Used to Test Differences in Channel Width, Wetted Width, Channel Width to Wetted Width Ratio, and Water Depth. One-Way ANOVA, Log₁₀ Transformed, and Student-Newman-Keuls Multiple Comparison Test Were Used to Test Differences in Wetted Width to Water Depth Ratio.

Tuesday, February 19, 2008, 2:29:47 PM

Data source: Channel Measurements

Dependent Variable: Channel Width

Normality Test: Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks

Tuesday, February 19, 2008, 2:29:47 PM

Data source: Data 1 in Channel Measurements

Group	N	Missing	Median	25%	75%
NFSR #1	10	0	83.000	80.000	91.000
NFSR #2	10	0	72.500	67.800	76.000
NFSR #3	10	0	53.500	45.000	55.000
NFSR #4	10	0	46.000	42.000	51.000
NFSR #5	10	0	47.250	45.000	49.000
NFSR #6	10	0	51.000	41.000	64.000
NFSR #7	10	0	62.000	60.000	69.000
NFSR #8	10	0	71.000	69.000	77.000
NFSR #9	10	0	66.000	64.000	69.000
NFSR #10	10	0	53.500	47.000	62.000
Horse Creek #1	10	0	61.000	54.000	71.000
Cedar Creek #1	10	0	93.250	58.400	123.000
LDC #1	10	0	43.000	40.000	53.000
LDC #2	10	0	33.100	33.000	38.000

H = 96.501 with 13 degrees of freedom. (P = <0.001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Comparison	Diff of Ranks	q	P<0.05
NFSR #1 vs LDC #2	1130.000	8.810	Yes
NFSR #1 vs NFSR #4	922.000	7.740	Yes
NFSR #1 vs NFSR #5	918.500	8.350	Yes
NFSR #1 vs LDC #1	894.000	8.863	Yes
NFSR #1 vs NFSR #6	779.000	8.491	Yes
NFSR #1 vs NFSR #3	763.500	9.242	Yes
NFSR #1 vs NFSR #10	752.500	10.240	Yes
NFSR #1 vs Horse Creek #1	433.000	6.728	Yes
NFSR #1 vs NFSR #7	419.000	7.587	Yes
NFSR #1 vs NFSR #9	381.000	8.265	Yes
NFSR #1 vs NFSR #8	235.500	6.370	Yes
NFSR #1 vs NFSR #2	189.500	6.807	Yes
NFSR #1 vs Cedar Creek #1	183.500	9.808	Yes

Cedar Creek #1 vs LDC #2	946.500	7.945	Yes
Cedar Creek #1 vs NFSR #4	738.500	6.714	Yes
Cedar Creek #1 vs NFSR #5	735.000	7.287	Yes
Cedar Creek #1 vs LDC #1	710.500	7.745	Yes
Cedar Creek #1 vs NFSR #6	595.500	7.208	Yes
Cedar Creek #1 vs NFSR #3	580.000	7.893	Yes
Cedar Creek #1 vs NFSR #10	569.000	8.841	Yes
Cedar Creek # vs Horse Creek #	249.500	4.518	Yes
Cedar Creek #1 vs NFSR #7	235.500	5.109	Yes
Cedar Creek #1 vs NFSR #9	197.500	5.342	Yes
Cedar Creek #1 vs NFSR #8	52.000	1.868	No
Cedar Creek #1 vs NFSR #2	6.000	0.321	Do Not Test
NFSR #2 vs LDC #2	940.500	8.550	Yes
NFSR #2 vs NFSR #4	732.500	7.262	Yes
NFSR #2 vs NFSR #5	729.000	7.946	Yes
NFSR #2 vs LDC #1	704.500	8.528	Yes
NFSR #2 vs NFSR #6	589.500	8.022	Yes
NFSR #2 vs NFSR #3	574.000	8.919	Yes
NFSR #2 vs NFSR #10	563.000	10.194	Yes
NFSR #2 vs Horse Creek #1			
NFSR #2 vs Holse Cleek #1 NFSR #2 vs NFSR #7	243.500	5.282	Yes
	229.500	6.208	Yes
NFSR #2 vs NFSR #9	191.500	6.879	Yes
NFSR #2 vs NFSR #8	46.000	2.459	Do Not Test
NFSR #8 vs LDC #2	894.500	8.868	Yes
NFSR #8 vs NFSR #4	686.500	7.483	Yes
NFSR #8 vs NFSR #5	683.000	8.267	Yes
NFSR #8 vs LDC #1	658.500	8.961	Yes
NFSR #8 vs NFSR #6	543.500	8.445	Yes
NFSR #8 vs NFSR #3	528.000	9.561	Yes
NFSR #8 vs NFSR #10	517.000	11.215	Yes
NFSR #8 vs Horse Creek #1	197.500	5.342	Yes
NFSR #8 vs NFSR #7	183.500	6.592	Yes
NFSR #8 vs NFSR #9	145.500	7.777	Yes
NFSR #9 vs LDC #2	749.000	8.164	Yes
NFSR #9 vs NFSR #4	541.000	6.549	Yes
NFSR #9 vs NFSR #5	537.500	7.314	Yes
NFSR #9 vs LDC #1	513.000	7.971	Yes
NFSR #9 vs NFSR #6	398.000	7.207	Yes
NFSR #9 vs NFSR #3	382.500	8.298	Yes
NFSR #9 vs NFSR #10	371.500	10.049	Yes
NFSR #9 vs Horse Creek #1	52.000	1.868	No
NFSR #9 vs NFSR #7	38.000	2.031	Do Not Test
NFSR #7 vs LDC #2	711.000	8.606	Yes
NFSR #7 vs NFSR #4	503.000	6.845	Yes
NFSR #7 vs NFSR #5	499.500	7.762	Yes
NFSR #7 vs LDC #1	475.000	8.601	Yes
NFSR #7 vs NFSR #6	360.000	7.809	Yes
NFSR #7 vs NFSR #3	344.500	9.319	Yes
NFSR #7 vs NFSR #10	333.500	11.980	Yes
NFSR #7 vs Horse Creek #1	14.000	0.748	Do Not Test
Horse Creek #1 vs LDC #2	697.000	9.485	Yes
Horse Creek #1 vs NFSR #4	489.000	7.598	Yes
Horse Creek #1 vs NFSR #5	485.500	8.791	Yes
Horse Creek #1 vs NFSK #3	461.000	10.000	Yes
Horse Creek #1 vs NFSR #6	346.000	9.359	Yes
Horse Creek #1 vs NFSR #0	330.500		
HOISE CIECK #1 VS INF SK #3	330.300	11.872	Yes

Horse Creek #1 vs NFSR #10	319.500	17.078	Yes
NFSR #10 vs LDC #2	377.500	5.866	Yes
NFSR #10 vs NFSR #4	169.500	3.069	No
NFSR #10 vs NFSR #5	166.000	3.601	Do Not Test
NFSR #10 vs LDC #1	141.500	3.828	Do Not Test
NFSR #10 vs NFSR #6	26.500	0.952	Do Not Test
NFSR #10 vs NFSR #3	11.000	0.588	Do Not Test
NFSR #3 vs LDC #2	366.500	6.636	Yes
NFSR #3 vs NFSR #4	158.500	3.438	Do Not Test
NFSR #3 vs NFSR #5	155.000	4.193	Do Not Test
NFSR #3 vs LDC #1	130.500	4.688	Do Not Test
NFSR #3 vs NFSR #6	15.500	0.829	Do Not Test
NFSR #6 vs LDC #2	351.000	7.614	Yes
NFSR #6 vs NFSR #4	143.000	3.868	Do Not Test
NFSR #6 vs NFSR #5	139.500	5.011	Do Not Test
NFSR #6 vs LDC #1	115.000	6.147	Do Not Test
LDC #1 vs LDC #2	236.000	6.384	Yes
LDC #1 vs NFSR #4	28.000	1.006	Do Not Test
LDC #1 vs NFSR #5	24.500	1.310	Do Not Test
NFSR #5 vs LDC #2	211.500	7.597	Yes
NFSR #5 vs NFSR #4	3.500	0.187	Do Not Test
NFSR #4 vs LDC #2	208.000	11.118	Yes

Tuesday, February 19, 2008, 2:34:20 PM

Data source: Channel Measurements

Dependent Variable: Wetted Width

Normality Test: Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks

Tuesday, February 19, 2008, 2:34:20 PM

Data source: Data 1 in Channel Measurements

Group	N	Missing	Median	25%	75%
NFSR #1	10	0	61.500	44.500	68.500
NFSR #2	10	0	42.000	29.000	50.000
NFSR #3	10	0	33.000	31.000	35.200
NFSR #4	10	0	38.000	34.000	39.500
NFSR #5	10	0	36.900	34.000	38.900
NFSR #6	10	0	16.000	10.500	20.000
NFSR #7	10	0	24.000	19.500	40.000
NFSR #8	10	0	51.500	26.000	62.000
NFSR #9	10	0	33.500	19.500	55.000
NFSR #10	10	0	27.750	18.000	41.000
Horse Creek #1	10	0	23.400	20.500	27.000
Cedar Creek #1	10	0	35.250	27.000	42.000
LDC #1	10	0	23.250	17.800	26.000
LDC #2	10	0	16.000	11.900	20.300

H = 61.521 with 13 degrees of freedom. (P = <0.001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Comparison	Diff of Ranks	q	P<0.05
NFSR #1 vs LDC #2	911.000	7.103	Yes
NFSR #1 vs NFSR #6	897.500	7.534	Yes
NFSR #1 vs LDC #1	730.000	6.636	Yes
NFSR #1 vs Horse Creek #1	604.500	5.993	Yes
NFSR #1 vs NFSR #7	525.500	5.728	Yes
NFSR #1 vs NFSR #10	480.500	5.816	Yes
NFSR #1 vs NFSR #9	360.500	4.906	Yes
NFSR #1 vs NFSR #3	311.500	4.840	Yes
NFSR #1 vs Cedar Creek #1	310.000	5.613	Yes
NFSR #1 vs NFSR #5	254.500	5.521	Yes
NFSR #1 vs NFSR #4	221.000	5.978	Yes
NFSR #1 vs NFSR #8	180.500	6.484	Yes
NFSR #1 vs NFSR #2	156.000	8.339	Yes

NFSR #2 vs LDC #2	755.000	6.338	Yes
NFSR #2 vs NFSR #6	741.500	6.741	Yes
NFSR #2 vs LDC #1	574.000	5.690	Yes
NFSR #2 vs Horse Creek #1	448.500	4.889	Yes
NFSR #2 vs NFSR #7	369.500	4.473	Yes
NFSR #2 vs NFSR #10	324.500	4.416	Yes
NFSR #2 vs NFSR #9	204.500	3.178	No
NFSR #2 vs NFSR #3	155.500	2.816	Do Not Test
NFSR #2 vs Cedar Creek #1	154.000	3.341	Do Not Test
NFSR #2 vs NFSR #5	98.500	2.664	Do Not Test
NFSR #2 vs NFSR #4	65.000	2.335	Do Not Test
NFSR #2 vs NFSR #8	24.500	1.310	Do Not Test
NFSR #8 vs LDC #2	730.500	6.641	Yes
NFSR #8 vs NFSR #6	717.000	7.108	Yes
NFSR #8 vs LDC #1	549.500	5.990	Yes
NFSR #8 vs Horse Creek #1	424.000	5.132	Yes
NFSR #8 vs NFSR #7	345.000	4.695	Yes Yes
NFSR #8 vs NFSR #10 NFSR #8 vs NFSR #9	300.000	4.662 3.259	
NFSR #8 vs NFSR #9	180.000 131.000	2.842	Do Not Test
NFSR #8 vs NFSR #3 NFSR #8 vs Cedar Creek #1	129.500	3.503	Do Not Test Do Not Test
NFSR #8 vs NFSR #5	74.000	2.658	Do Not Test Do Not Test
NFSR #8 vs NFSR #4	40.500	2.038	Do Not Test Do Not Test
NFSR #4 vs LDC #2	690.000	6.840	Yes
NFSR #4 vs NFSR #6	676.500	7.374	Yes
NFSR #4 vs LDC #1	509.000	6.161	Yes
NFSR #4 vs Horse Creek #1	383.500	5.219	Yes
NFSR #4 vs NFSR #7	304.500	4.732	Yes
NFSR #4 vs NFSR #10	259.500	4.699	Yes
NFSR #4 vs NFSR #9	139.500	3.026	Do Not Test
NFSR #4 vs NFSR #3	90.500	2.448	Do Not Test
NFSR #4 vs Cedar Creek #1	89.000	3.197	Do Not Test
NFSR #4 vs NFSR #5	33.500	1.791	Do Not Test
NFSR #5 vs LDC #2	656.500	7.156	Yes
NFSR #5 vs NFSR #6	643.000	7.783	Yes
NFSR #5 vs LDC #1	475.500	6.471	Yes
NFSR #5 vs Horse Creek #1	350.000	5.439	Yes
NFSR #5 vs NFSR #7	271.000	4.907	Yes
NFSR #5 vs NFSR #10	226.000	4.903	Yes
NFSR #5 vs NFSR #9	106.000	2.867	Do Not Test
NFSR #5 vs NFSR #3	57.000	2.048	Do Not Test
NFSR #5 vs Cedar Creek #1	55.500	2.967	Do Not Test
Cedar Creek #1 vs LDC #2	601.000	7.275	Yes
Cedar Creek #1 vs NFSR #6	587.500	7.995	Yes
Cedar Creek #1 vs LDC #1	420.000	6.526	Yes
Cedar Creek # vs Horse Creek #	294.500	5.333	Yes
Cedar Creek #1 vs NFSR #7	215.500	4.675	Yes
Cedar Creek #1 vs NFSR #10	170.500	4.612	Yes
Cedar Creek #1 vs NFSR #9	50.500	1.814	Do Not Test
Cedar Creek #1 vs NFSR #3	1.500	0.0802	Do Not Test
NFSR #3 vs LDC #2	599.500	8.158	Yes
NFSR #3 vs NFSR #6	586.000	9.106	Yes
NFSR #3 vs LDC #1	418.500	7.578	Yes
NFSR #3 vs Horse Creek #1	293.000	6.356	Yes
NFSR #3 vs NFSR #7	214.000	5.789	Yes
NFSR #3 vs NFSR #10	169.000	6.071	Yes

NFSR #3 vs NFSR #9	49.000	2.619	Do Not Test
NFSR #9 vs LDC #2	550.500	8.554	Yes
NFSR #9 vs NFSR #6	537.000	9.724	Yes
NFSR #9 vs LDC #1	369.500	8.016	Yes
NFSR #9 vs Horse Creek #1	244.000	6.600	Yes
NFSR #9 vs NFSR #7	165.000	5.927	Yes
NFSR #9 vs NFSR #10	120.000	6.414	Yes
NFSR #10 vs LDC #2	430.500	7.795	Yes
NFSR #10 vs NFSR #6	417.000	9.046	Yes
NFSR #10 vs LDC #1	249.500	6.749	Yes
NFSR #10 vs Horse Creek #1	124.000	4.454	Yes
NFSR #10 vs NFSR #7	45.000	2.405	No
NFSR #7 vs LDC #2	385.500	8.363	Yes
NFSR #7 vs NFSR #6	372.000	10.063	Yes
NFSR #7 vs LDC #1	204.500	7.346	Yes
NFSR #7 vs Horse Creek #1	79.000	4.223	Yes
Horse Creek #1 vs LDC #2	306.500	8.291	Yes
Horse Creek #1 vs NFSR #6	293.000	10.525	Yes
Horse Creek #1 vs LDC #1	125.500	6.708	Yes
LDC #1 vs LDC #2	181.000	6.502	Yes
LDC #1 vs NFSR #6	167.500	8.953	Yes
NFSR #6 vs LDC #2	13.500	0.722	No

Tuesday, February 19, 2008, 2:38:18 PM

Data source: Channel Measurements

Dependent Variable: Channel Width to Wetted Width Ratio

Normality Test: Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks

Tuesday, February 19, 2008, 2:38:18 PM

Data source: Data 1 in Channel Measurements

Group	N	Missing	Median	25%	75%
NFSR #1	10	0	1.334	1.186	1.820
NFSR #2	10	0	1.615	1.402	2.552
NFSR #3	10	0	1.575	1.286	1.667
NFSR #4	10	0	1.227	1.165	1.394
NFSR #5	10	0	1.255	1.162	1.453
NFSR #6	10	0	3.237	2.412	4.800
NFSR #7	10	0	2.475	1.525	3.268
NFSR #8	10	0	1.325	1.131	3.115
NFSR #9	10	0	1.809	1.160	3.744
NFSR #10	10	0	1.914	1.378	2.423
Horse Creek #1	10	0	2.445	2.077	2.940
Cedar Creek #1	10	0	2.683	1.452	4.214
LDC #1	10	0	2.060	1.615	2.933
LDC #2	10	0	2.015	1.790	2.696

H = 46.128 with 13 degrees of freedom. (P = <0.001)

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

To isolate the group or groups that differ from the others use a multiple comparison procedure.

Comparison	Diff of Ranks	q	P<0.05
NFSR #6 vs NFSR #4	829.000	6.464	Yes
NFSR #6 vs NFSR #5	763.500	6.409	Yes
NFSR #6 vs NFSR #3	582.000	5.291	Yes
NFSR #6 vs NFSR #1	563.500	5.586	Yes
NFSR #6 vs NFSR #8	535.000	5.832	Yes
NFSR #6 vs NFSR #9	435.500	5.272	Yes
NFSR #6 vs NFSR #2	410.500	5.586	Yes
NFSR #6 vs NFSR #10	386.500	6.006	Yes
NFSR #6 vs LDC #1	247.500	4.482	Yes
NFSR #6 vs LDC #2	212.500	4.610	Yes
NFSR #6 vs Cedar Creek #1	208.500	5.640	Yes
NFSR #6 vs NFSR #7	181.500	6.520	Yes
NFSR #6 vs Horse Creek #1	153.500	8.205	Yes

Horse Creek #1 vs NFSR #4	675.500	5.670	Yes
Horse Creek #1 vs NFSR #5	610.000	5.545	Yes
Horse Creek #1 vs NFSR #3	428.500	4.248	No
Horse Creek #1 vs NFSR #1	410.000	4.469	Do Not Test
Horse Creek #1 vs NFSR #8	381.500	4.618	Do Not Test
Horse Creek #1 vs NFSR #9	282.000	3.838	Do Not Test
Horse Creek #1 vs NFSR #2	257.000	3.993	Do Not Test
Horse Creek #1 vs NFSR #10	233.000	4.219	Do Not Test
Horse Creek #1 vs LDC #1	94.000	2.039	Do Not Test
Horse Creek #1 vs LDC #2	59.000	1.596	Do Not Test
Horse Creek # vs Cedar Creek #	55.000	1.976	Do Not Test
Horse Creek #1 vs NFSR #7	28.000	1.497	Do Not Test
NFSR #7 vs NFSR #4	647.500	5.886	Yes
NFSR #7 vs NFSR #5	582.000	5.770	Yes
NFSR #7 vs NFSR #3	400.500	4.365	Do Not Test
NFSR #7 vs NFSR #1	382.000	4.624	Do Not Test
NFSR #7 vs NFSR #8	353.500	4.811	Do Not Test
NFSR #7 vs NFSR #9	254.000	3.947	Do Not Test
NFSR #7 vs NFSR #2	229.000	4.147	Do Not Test
NFSR #7 vs NFSR #10	205.000	4.447	Do Not Test
NFSR #7 vs LDC #1	66.000	1.785	Do Not Test
NFSR #7 vs LDC #2	31.000	1.114	Do Not Test
NFSR #7 vs Cedar Creek #1	27.000	1.443	Do Not Test
Cedar Creek #1 vs NFSR #4	620.500	6.151	Yes
Cedar Creek #1 vs NFSR #5	555.000	6.050	Yes Do Not Test
Cedar Creek #1 vs NFSR #3	373.500 355.000	4.521	
Cedar Creek #1 vs NFSR #1		4.831	Do Not Test
Cedar Creek #1 vs NFSR #8	326.500	5.073 4.110	Do Not Test
Cedar Creek #1 vs NFSR #9 Cedar Creek #1 vs NFSR #2	227.000 202.000	4.110	Do Not Test Do Not Test
Cedar Creek #1 vs NFSR #2 Cedar Creek #1 vs NFSR #10	178.000	4.815	Do Not Test
Cedar Creek #1 vs NFSK #10 Cedar Creek #1 vs LDC #1	39.000	1.401	Do Not Test
Cedar Creek #1 vs LDC #1 Cedar Creek #1 vs LDC #2	4.000	0.214	Do Not Test
LDC #2 vs NFSR #4	616.500	6.720	Yes
LDC #2 vs NFSR #4 LDC #2 vs NFSR #5	551.000	6.670	Yes
LDC #2 vs NFSR #3 LDC #2 vs NFSR #3	369.500	5.028	Do Not Test
LDC #2 vs NFSR #3	351.000	5.454	Do Not Test
LDC #2 vs NFSR #8	322.500	5.840	Do Not Test
LDC #2 vs NFSR #8 LDC #2 vs NFSR #9	223.000	4.838	D 31 . T
LDC #2 vs NFSR #2	198.000	5.356	Do Not Test Do Not Test
LDC #2 vs NFSR #10	174.000	6.250	Do Not Test
LDC #2 vs INFSR #10 LDC #2 vs LDC #1	35.000	1.871	Do Not Test
LDC #1 vs NFSR #4	581.500	7.039	Yes
LDC #1 vs NFSR #5	516.000	7.022	Yes
LDC #1 vs NFSR #3	334.500	5.198	Do Not Test
LDC #1 vs NFSR #1	316.000	5.722	Do Not Test
LDC #1 vs NFSR #8	287.500	6.237	Do Not Test
LDC #1 vs NFSR #9	188.000	5.085	Do Not Test
LDC #1 vs NFSR #2	163.000	5.855	Do Not Test
LDC #1 vs NFSR #10	139.000	7.430	Do Not Test
NFSR #10 vs NFSR #4	442.500	6.022	Yes
NFSR #10 vs NFSR #5	377.000	5.858	Yes
NFSR #10 vs NFSR #3	195.500	3.540	Do Not Test
NFSR #10 vs NFSR #1	177.000	3.840	Do Not Test
NFSR #10 vs NFSR #8	148.500	4.017	Do Not Test
NFSR #10 vs NFSR #9	49.000	1.760	Do Not Test
Situato (Situate II)	17.000	1.700	2011001000

NFSR #10 vs NFSR #2	24.000	1.283	Do Not Test
NFSR #2 vs NFSR #4	418.500	6.503	Yes
NFSR #2 vs NFSR #5	353.000	6.392	Yes
NFSR #2 vs NFSR #3	171.500	3.720	Do Not Test
NFSR #2 vs NFSR #1	153.000	4.139	Do Not Test
NFSR #2 vs NFSR #8	124.500	4.472	Do Not Test
NFSR #2 vs NFSR #9	25.000	1.336	Do Not Test
NFSR #9 vs NFSR #4	393.500	7.125	Yes
NFSR #9 vs NFSR #5	328.000	7.115	Yes
NFSR #9 vs NFSR #3	146.500	3.963	Do Not Test
NFSR #9 vs NFSR #1	128.000	4.598	Do Not Test
NFSR #9 vs NFSR #8	99.500	5.318	Do Not Test
NFSR #8 vs NFSR #4	294.000	6.378	Yes
NFSR #8 vs NFSR #5	228.500	6.181	Yes
NFSR #8 vs NFSR #3	47.000	1.688	Do Not Test
NFSR #8 vs NFSR #1	28.500	1.523	Do Not Test
NFSR #1 vs NFSR #4	265.500	7.182	Yes
NFSR #1 vs NFSR #5	200.000	7.184	Yes
NFSR #1 vs NFSR #3	18.500	0.989	Do Not Test
NFSR #3 vs NFSR #4	247.000	8.873	Yes
NFSR #3 vs NFSR #5	181.500	9.702	Yes
NFSR #5 vs NFSR #4	65.500	3.501	Yes

Tuesday, February 19, 2008, 2:44:34 PM

Data source: Channel Measurements

Dependent Variable: Water Depth

Normality Test: Failed (P < 0.050)

Test execution ended by user request, ANOVA on Ranks begun

Kruskal-Wallis One Way Analysis of Variance on Ranks

Tuesday, February 19, 2008, 2:44:34 PM

Data source: Data 2 in Channel Measurements

Group	N	Missing	Median	25%	75%
NFSR #1	30	0	0.800	0.600	1.500
NFSR #2	30	0	1.125	0.550	2.450
NFSR #3	30	0	2.350	1.700	2.500
NFSR #4	30	0	2.300	1.550	2.800
NFSR #5	30	0	2.050	1.800	2.500
NFSR #6	30	0	0.900	0.650	1.500
NFSR #7	30	0	0.850	0.650	1.500
NFSR #8	30	0	1.325	0.700	2.200
NFSR #9	30	0	0.950	0.650	1.500
NFSR #10	30	0	1.025	0.500	1.500
Horse Creek #1	30	0	0.875	0.650	1.300

H = 118.244 with 13 degrees of freedom. (P = <0.001)

0

0

0

30

30

30

Cedar Creek #1

LDC #1

LDC #2

The differences in the median values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001)

0.600

0.600

0.600

1.450

1.350

0.950

To isolate the group or groups that differ from the others use a multiple comparison procedure.

0.950

1.100

0.785

Comparison	Diff of Ranks	q	P<0.05
NFSR #4 vs LDC #2	5991.000	9.011	Yes
NFSR #4 vs NFSR #1	5250.500	8.504	Yes
NFSR #4 vs Horse Creek #1	5149.000	9.033	Yes
NFSR #4 vs Cedar Creek #1	5100.500	9.760	Yes
NFSR #4 vs NFSR #7	5041.000	10.610	Yes
NFSR #4 vs NFSR #10	4731.000	11.062	Yes
NFSR #4 vs LDC #1	4727.000	12.431	Yes
NFSR #4 vs NFSR #9	4600.500	13.822	Yes
NFSR #4 vs NFSR #6	4559.000	15.974	Yes
NFSR #4 vs NFSR #2	3740.500	15.719	Yes
NFSR #4 vs NFSR #8	3253.000	17.074	Yes
NFSR #4 vs NFSR #5	534.500	3.735	Yes
NFSR #4 vs NFSR #3	347.500	3.633	Yes

NFSR #3 vs LDC #2	5643.500	9.140	Yes
NFSR #3 vs NFSR #1	4903.000	8.602	Yes
NFSR #3 vs Horse Creek #1	4801.500	9.188	Yes
NFSR #3 vs Cedar Creek #1	4753.000	10.004	Yes
NFSR #3 vs NFSR #7	4693.500	10.974	Yes
NFSR #3 vs NFSR #10	4383.500	11.528	Yes
NFSR #3 vs LDC #1	4379.500	13.158	Yes
NFSR #3 vs NFSR #9	4253.000	14.902	Yes
NFSR #3 vs NFSR #6	4211.500	17.698	Yes
NFSR #3 vs NFSR #2	3393.000	17.809	Yes
NFSR #3 vs NFSR #8	2905.500	20.305	Yes
NFSR #3 vs NFSR #5	187.000	1.955	No
NFSR #5 vs LDC #2	5456.500	9.573	Yes
NFSR #5 vs NFSR #1	4716.000	9.025	Yes
NFSR #5 vs Horse Creek #1	4614.500	9.712	Yes
NFSR #5 vs Cedar Creek #1	4566.000	10.676	Yes
NFSR #5 vs NFSR #7	4506.500	11.851	Yes
NFSR #5 vs NFSR #10	4196.500	12.609	Yes
NFSR #5 vs LDC #1	4192.500	14.690	Yes
NFSR #5 vs NFSR #9			
	4066.000	17.087	Yes
NFSR #5 vs NFSR #6	4024.500	21.123	Yes
NFSR #5 vs NFSR #2	3206.000	22.405	Yes
NFSR #5 vs NFSR #8	2718.500	28.420	Yes
NFSR #8 vs LDC #2	2738.000	5.240	Yes
NFSR #8 vs NFSR #1	1997.500	4.204	No
NFSR #8 vs Horse Creek #1	1896.000	4.433	Do Not Test
NFSR #8 vs Cedar Creek #1	1847.500	4.858	Do Not Test
NFSR #8 vs NFSR #7	1788.000	5.372	Do Not Test
NFSR #8 vs NFSR #10	1478.000	5.179	Do Not Test
NFSR #8 vs LDC #1	1474.000	6.194	Do Not Test
NFSR #8 vs NFSR #9	1347.500	7.073	Do Not Test
NFSR #8 vs NFSR #6	1306.000	9.127	Do Not Test
NFSR #8 vs NFSR #2	487.500	5.096	Do Not Test
NFSR #2 vs LDC #2	2250.500	4.737	Yes
NFSR #2 vs NFSR #1	1510.000	3.531	Do Not Test
NFSR #2 vs Horse Creek #1	1408.500	3.704	Do Not Test
NFSR #2 vs Cedar Creek #1	1360.000	4.086	Do Not Test
NFSR #2 vs NFSR #7	1300.500	4.557	Do Not Test
NFSR #2 vs NFSR #10	990.500	4.162	Do Not Test
NFSR #2 vs LDC #1	986.500	5.178	Do Not Test
NFSR #2 vs NFSR #9	860.000	6.010	Do Not Test
NFSR #2 vs NFSR #6	818.500	8.557	Do Not Test
NFSR #6 vs LDC #2	1432.000	3.348	No
NFSR #6 vs NFSR #1	691.500	1.818	Do Not Test
NFSR #6 vs Horse Creek #1	590.000	1.773	Do Not Test
NFSR #6 vs Cedar Creek #1	541.500	1.897	Do Not Test
NFSR #6 vs NFSR #7	482.000	2.026	Do Not Test
NFSR #6 vs NFSR #10	172.000	0.903	Do Not Test
NFSR #6 vs LDC #1	168.000	1.174	Do Not Test
NFSR #6 vs NFSR #9	41.500		Do Not Test
		0.434	
NFSR #9 vs LDC #2	1390.500	3.657	Do Not Test
NFSR #9 vs NFSR #1	650.000	1.953	Do Not Test
NFSR #9 vs Horse Creek #1	548.500	1.922	Do Not Test
NFSR #9 vs Cedar Creek #1	500.000	2.101	Do Not Test
NFSR #9 vs NFSR #7	440.500	2.312	Do Not Test
NFSR #9 vs NFSR #10	130.500	0.912	Do Not Test

NFSR #9 vs LDC #1	126.500	1.322	Do Not Test
LDC #1 vs LDC #2	1264.000	3.798	Do Not Test
LDC #1 vs NFSR #1	523.500	1.834	Do Not Test
LDC #1 vs Horse Creek #1	422.000	1.773	Do Not Test
LDC #1 vs Cedar Creek #1	373.500	1.960	Do Not Test
LDC #1 vs NFSR #7	314.000	2.194	Do Not Test
LDC #1 vs NFSR #10	4.000	0.0418	Do Not Test
NFSR #10 vs LDC #2	1260.000	4.415	Do Not Test
NFSR #10 vs NFSR #1	519.500	2.183	Do Not Test
NFSR #10 vs Horse Creek #1	418.000	2.194	Do Not Test
NFSR #10 vs Cedar Creek #1	369.500	2.582	Do Not Test
NFSR #10 vs NFSR #7	310.000	3.241	Do Not Test
NFSR #7 vs LDC #2	950.000	3.992	Do Not Test
NFSR #7 vs NFSR #1	209.500	1.100	Do Not Test
NFSR #7 vs Horse Creek #1	108.000	0.755	Do Not Test
NFSR #7 vs Cedar Creek #1	59.500	0.622	Do Not Test
Cedar Creek #1 vs LDC #2	890.500	4.674	Do Not Test
Cedar Creek #1 vs NFSR #1	150.000	1.048	Do Not Test
Cedar Creek # vs Horse Creek #	48.500	0.507	Do Not Test
Horse Creek #1 vs LDC #2	842.000	5.884	Do Not Test
Horse Creek #1 vs NFSR #1	101.500	1.061	Do Not Test
NFSR #1 vs LDC #2	740.500	7.741	Do Not Test

Data source: Channel Measurements

Dependent Variable: log10 (Wetted Width to Water Depth Ratio)

Normality Test: Passed (P = 0.140)

Equal Variance Test: Passed (P = 0.112)

Group Name	N	Missing	Mean	Std Dev	SEM	
NFSR #1	10	0	1.740	0.299	0.0945	i
NFSR #2	10	0	1.529	0.241	0.0762	ļ
NFSR #3	10	0	1.224	0.152	0.0479)
NFSR #4	10	0	1.224	0.102	0.0323	i
NFSR #5	10	0	1.259	0.109	0.0344	ļ
NFSR #6	10	0	1.165	0.190	0.0601	
NFSR #7	10	0	1.423	0.198	0.0627	,
NFSR #8	10	0	1.468	0.119	0.0376)
NFSR #9	10	0	1.492	0.149	0.0471	
NFSR #10	10	0	1.416	0.265	0.0837	•
Horse Creek #1	10	0	1.408	0.237	0.0750)
Cedar Creek #1	10	0	1.546	0.213	0.0675	i
LDC #1	10	0	1.330	0.154	0.0488	;
LDC #2	10	0	1.276	0.120	0.0381	
Source of Variat	ion	DF	SS	MS	F	P
Between Groups		13	3.245	0.250	6.793	< 0.001
Residual		126	4.630	0.0367		
Total		139	7.875			

Total 139 7.875

The differences in the mean values among the treatment groups are greater than would be expected by chance; there is a statistically significant difference (P = <0.001).

Power of performed test with alpha = 0.050: 1.000

Comparisons for factor: Station					
Comparison	Diff of Means	p	q	P	P<0.050
NFSR #1 vs. NFSR #6	0.575	14	9.480	< 0.001	Yes
NFSR #1 vs. NFSR #4	0.517	13	8.521	< 0.001	Yes
NFSR #1 vs. NFSR #3	0.516	12	8.520	< 0.001	Yes
NFSR #1 vs. NFSR #5	0.481	11	7.938	< 0.001	Yes
NFSR #1 vs. LDC #2	0.464	10	7.648	< 0.001	Yes
NFSR #1 vs. LDC #1	0.410	9	6.767	< 0.001	Yes
NFSR #1 vs. Horse Creek #1	0.332	8	5.481	0.003	Yes
NFSR #1 vs. NFSR #10	0.325	7	5.353	0.003	Yes
NFSR #1 vs. NFSR #7	0.317	6	5.237	0.003	Yes
NFSR #1 vs. NFSR #8	0.272	5	4.488	0.013	Yes
NFSR #1 vs. NFSR #9	0.248	4	4.085	0.020	Yes
NFSR #1 vs. NFSR #2	0.211	3	3.475	0.037	Yes
NFSR #1 vs. Cedar Creek #1	0.194	2	3.194	0.024	Yes
Cedar Creek #1 vs. NFSR #6	0.381	13	6.286	< 0.001	Yes

Cedar Creek #1 vs. NFSR #4	0.323	12	5.327	0.009	Yes
Cedar Creek #1 vs. NFSR #3	0.323	11	5.326	0.008	Yes
Cedar Creek #1 vs. NFSR #5	0.288	10	4.744	0.027	Yes
Cedar Creek #1 vs. LDC #2	0.270	9	4.454	0.043	Yes
Cedar Creek #1 vs. LDC #1	0.217	8	3.573	0.184	No
Cedar Creek vs. Horse Creek	0.139	7	2.288	0.671	Do Not Test
Cedar Creek #1 vs. NFSR #10	0.131	6	2.159	0.647	Do Not Test
Cedar Creek #1 vs. NFSR #7	0.124	5	2.044	0.598	Do Not Test
Cedar Creek #1 vs. NFSR #8	0.0785	4	1.294	0.797	Do Not Test
Cedar Creek #1 vs. NFSR #9	0.0540	3	0.891	0.797	Do Not Test
Cedar Creek #1 vs. NFSR #2	0.0171	2	0.281	0.842	Do Not Test
NFSR #2 vs. NFSR #6	0.364	12	6.005	0.001	Yes
NFSR #2 vs. NFSR #4	0.306	11	5.046	0.016	Yes
NFSR #2 vs. NFSR #3	0.306	10	5.044	0.013	Yes
NFSR #2 vs. NFSR #5	0.271	9	4.463	0.042	Yes
NFSR #2 vs. LDC #2	0.253	8	4.173	0.063	No
NFSR #2 vs. LDC #1	0.200	7	3.292	0.231	Do Not Test
NFSR #2 vs. Horse Creek #1	0.122	6	2.006	0.716	Do Not Test
NFSR #2 vs. NFSR #10	0.114	5	1.878	0.674	Do Not Test
NFSR #2 vs. NFSR #7	0.107	4	1.762	0.597	Do Not Test
NFSR #2 vs. NFSR #8	0.0614	3	1.013	0.754	Do Not Test
NFSR #2 vs. NFSR #9	0.0370	2	0.610	0.666	Do Not Test
NFSR #9 vs. NFSR #6	0.327	11	5.395	0.006	Yes
NFSR #9 vs. NFSR #4	0.269	10	4.436	0.054	No
NFSR #9 vs. NFSR #3	0.269	9	4.435	0.045	Do Not Test
NFSR #9 vs. NFSR #5	0.234	8	3.853	0.115	Do Not Test
NFSR #9 vs. LDC #2	0.216	7	3.563	0.152	Do Not Test
NFSR #9 vs. LDC #1	0.163	6	2.682	0.404	Do Not Test
NFSR #9 vs. Horse Creek #1	0.0847	5	1.397	0.861	Do Not Test
NFSR #9 vs. NFSR #10	0.0769	4	1.269	0.806	Do Not Test
NFSR #9 vs. NFSR #7	0.0699	3	1.153	0.694	Do Not Test
NFSR #9 vs. NFSR #8	0.0244	2	0.403	0.776	Do Not Test
NFSR #8 vs. NFSR #6	0.303	10	4.992	0.015	Yes
NFSR #8 vs. NFSR #4	0.244	9	4.033	0.101	Do Not Test
NFSR #8 vs. NFSR #3	0.244	8	4.032	0.083	Do Not Test
NFSR #8 vs. NFSR #5	0.209	7	3.450	0.182	Do Not Test
NFSR #8 vs. LDC #2	0.192	6	3.160	0.222	Do Not Test
NFSR #8 vs. LDC #1	0.138	5	2.279	0.490	Do Not Test
NFSR #8 vs. Horse Creek #1	0.0602	4	0.993	0.896	Do Not Test
NFSR #8 vs. NFSR #10	0.0524	3	0.865	0.814	Do Not Test
NFSR #8 vs. NFSR #7	0.0454	2	0.749	0.596	Do Not Test
NFSR #7 vs. NFSR #6		9		0.390	
	0.257		4.242		No Do Not Toot
NFSR #7 vs. NFSR #4	0.199	8	3.283	0.282	Do Not Test
NFSR #7 vs. NFSR #3	0.199	7	3.282	0.234	Do Not Test
NFSR #7 vs. NFSR #5	0.164	6	2.701	0.396	Do Not Test
NFSR #7 vs. LDC #2	0.146	5	2.411	0.431	Do Not Test
NFSR #7 vs. LDC #1	0.0927	4	1.530	0.701	Do Not Test
NFSR #7 vs. Horse Creek #1	0.0148	3	0.244	0.984	Do Not Test
NFSR #7 vs. NFSR #10	0.00703	2	0.116	0.935	Do Not Test
NFSR #10 vs. NFSR #6	0.250	8	4.126	0.069	Do Not Test
NFSR #10 vs. NFSR #4	0.192	7	3.167	0.274	Do Not Test
NFSR #10 vs. NFSR #3	0.192	6	3.166	0.220	Do Not Test
NFSR #10 vs. NFSR #5	0.157	5	2.585	0.357	Do Not Test
NFSR #10 vs. LDC #2	0.139	4	2.295	0.366	Do Not Test
NFSR #10 vs. LDC #1	0.0857	3	1.414	0.577	Do Not Test
NFSR #10 vs. Horse Creek #1	0.00777	2	0.128	0.928	Do Not Test
THE DICH TO VS. HOUSE CICCK #1	0.00777	2	0.120	0.720	Do not rest

Horse Creek #1 vs. NFSR #6	0.242	7	3.998	0.070	Do Not Test
Horse Creek #1 vs. NFSR #4	0.184	6	3.039	0.262	Do Not Test
Horse Creek #1 vs. NFSR #3	0.184	5	3.038	0.200	Do Not Test
Horse Creek #1 vs. NFSR #5	0.149	4	2.457	0.304	Do Not Test
Horse Creek #1 vs. LDC #2	0.131	3	2.167	0.276	Do Not Test
Horse Creek #1 vs. LDC #1	0.0779	2	1.286	0.363	Do Not Test
LDC #1 vs. NFSR #6	0.164	6	2.713	0.391	Do Not Test
LDC #1 vs. NFSR #4	0.106	5	1.754	0.728	Do Not Test
LDC #1 vs. NFSR #3	0.106	4	1.753	0.602	Do Not Test
LDC #1 vs. NFSR #5	0.0710	3	1.171	0.686	Do Not Test
LDC #1 vs. LDC #2	0.0534	2	0.881	0.533	Do Not Test
LDC #2 vs. NFSR #6	0.111	5	1.832	0.694	Do Not Test
LDC #2 vs. NFSR #4	0.0529	4	0.873	0.927	Do Not Test
LDC #2 vs. NFSR #3	0.0528	3	0.872	0.811	Do Not Test
LDC #2 vs. NFSR #5	0.0176	2	0.290	0.837	Do Not Test
NFSR #5 vs. NFSR #6	0.0934	4	1.541	0.696	Do Not Test
NFSR #5 vs. NFSR #4	0.0353	3	0.583	0.911	Do Not Test
NFSR #5 vs. NFSR #3	0.0352	2	0.581	0.681	Do Not Test
NFSR #3 vs. NFSR #6	0.0582	3	0.960	0.776	Do Not Test
NFSR #3 vs. NFSR #4	0.0000696	2	0.00115	0.999	Do Not Test
NFSR #4 vs. NFSR #6	0.0581	2	0.959	0.498	Do Not Test

Appendix G North Fork of the Spring River Bioassessment Study Macroinvertebrate Bench Sheets

Aquid Invertebrate Database Bench Sheet Report

Little Drywood Ck [0602715], Station #1, Sample Date: 9/25/2006 2:00:00 PM

NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

NF - Nonnow, KM - Rootmat, S	G Woody	Debitis, 77	1 i csciic
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	7	53	1
AMPHIPODA			
Hyalella azteca		35	1
ARHYNCHOBDELLIDA			
Erpobdellidae	1		-99
COLEOPTERA			
Dubiraphia	2	5	1
Dytiscidae		1	
Scirtidae		6	
Tropisternus		-99	
DECAPODA			
Palaemonetes kadiakensis	1	2	1
DIPTERA			
Ablabesmyia			1
Aedes		1	
Anopheles	1		1
Ceratopogoninae	14		2
Chaoborus	36	1	2
Chironomus	7		2
Cladotanytarsus			2
Clinotanypus	1		1
Cryptochironomus			1
Dicrotendipes	6	4	26
Forcipomyiinae	1		
Glyptotendipes	12	25	171
Kiefferulus	5	7	2
Microtendipes		2	
Parachironomus	1	7	
Paratanytarsus		3	
Polypedilum illinoense grp		1	2
Polypedilum scalaenum grp		1	
Procladius	86	2	7
Stenochironomus	2		
Tanypus	6		
Tanytarsus	7	4	3
Thienemannimyia grp.			1
Tipula		1	
Tribelos	1		7
EPHEMEROPTERA			
Caenis latipennis	2	4	

Aquid Invertebrate Database Bench Sheet Report Little Drywood Ck [0602715], Station #1, Sample Date: 9/25/2006 2:00:00 PM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

Callibaetis 2 1 Leptophlebiidae 1 15 Procloeon 1 1 1 Stenacron 12 54 20 Stenonema femoratum 1 1 HEMIPTERA Corixidae 18 3 Ranatra kirkaldyi -99 ISOPODA Lirceus 26 1 LIMNOPHILA Ancylidae 1 2 2 Fossaria 1 2 2 Menetus 7 7 Physella 1 20 1 MESOGASTROPODA Hydrobiidae 4 4 4 4 MESOGASTROPODA Hydrobiidae 1 4	ORDER: TAXA	NF	RM	SG
Procloeon 1 1 1 Stenacron 12 54 20 Stenonema femoratum 1 1 HEMIPTERA Corixidae 18 3 Ranatra kirkaldyi -99 ISOPODA Isopon Index Lirceus 26 1 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 3 3 1 3 3 1 3 4 3 3 3 1 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4	Callibaetis	2	1	
Stenacron 12 54 20 Stenonema femoratum 1 HEMIPTERA Corixidae 18 3 Ranatra kirkaldyi -99 ISOPODA Lirceus 26 1 LIMNOPHILA Ancylidae 1 2 2 Fossaria 1 -0 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4<	Leptophlebiidae	1	15	
Stenonema femoratum 1 HEMIPTERA 3 Corixidae 18 3 Ranatra kirkaldyi -99 1 ISOPODA Lirceus 26 1 Limnophilla 4 2 2 Ancylidae 1 2 2 2 Fossaria 1 2 2 2 Physella 1 20 1 1 4 1 2 1 2 1 4 2 1 4 2 1 4 4 2 1 4 <td>Procloeon</td> <td>1</td> <td>1</td> <td>1</td>	Procloeon	1	1	1
HEMIPTERA Corixidae 18	Stenacron	12	54	20
Corixidae 18 3 Ranatra kirkaldyi -99 1 ISOPODA 1 26 1 Lirceus 26 1 1 Limnophilla 1 2 2 2 Fossaria 1 2 2 2 1 2 2 2 1 2 2 2 1 2 3 3 3 3 3 3 3 3 3 3 4 3 3 4 3 3 4	Stenonema femoratum			1
Ranatra kirkaldyi -99	HEMIPTERA			
ISOPODA	Corixidae	18		3
Lirceus 26 1 LIMNOPHILA Ancylidae 1 2 2 Fossaria 1	Ranatra kirkaldyi	-99		
LIMNOPHILA Ancylidae 1 2 2 Fossaria 1 Menetus 7 .	ISOPODA			
Ancylidae 1 2 2 Fossaria 1	Lirceus		26	1
Fossaria 1 Menetus 7 Physella 1 20 1 MEGALOPTERA 3 4 8 MESOGASTROPODA 4 4 9 MESOGASTROPODA 4 4 9 Hydrobiidae 1 4 9 ODONATA 7 1 1 1 1 Argia 7 1	LIMNOPHILA			
Menetus 7 Physella 1 20 1 MEGALOPTERA 3 4 MESOGASTROPODA 4 MESOGASTROPODA 4 4 MESOGASTROPODA 4 4 MESOGASTROPODA 4 4 MESOGASTROPODA 4 4 MESOGASTROPODA 4 4 MESOGASTROPODA 4 4 MESOGASTROPODA 4 4 MESOGASTROPODA 4 MESOGASTROPODA 4 4 MESOGASTROPODA 7 4 MESOGASTROPODA 4 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 7 4 MESOGASTROPODA 99 8 4 MESOGASTROPODA 4 MESOGASTROPODA 4 MESOGASTROPODA 4 MESOGASTROPODA 4	Ancylidae	1	2	2
Physella 1 20 1 MEGALOPTERA 3 4 4 MESOGASTROPODA 4 <	Fossaria	1		
MEGALOPTERA Sialis MESOGASTROPODA Hydrobiidae ODONATA Argia Ibellulidae Nasiaeschna pentacantha RHYNCHOBDELLIDA Glossiphoniidae TRICHOPTERA Triaenodes TRICLADIDA Planariidae TUBIFICIDA Branchiura sowerbyi Ilyodrilus templetoni Tubificidae 93 15 2 VENEROIDEA	Menetus		7	
Sialis MESOGASTROPODA Hydrobiidae ODONATA Argia Libellulidae Nasiaeschna pentacantha RHYNCHOBDELLIDA Glossiphoniidae TRICHOPTERA Triaenodes TRICLADIDA Planariidae TUBIFICIDA Branchiura sowerbyi Ilyodrilus templetoni Tubificidae YENEROIDEA	Physella	1	20	1
MESOGASTROPODA Hydrobiidae 1 4 ODONATA Argia 7 Libellulidae 1 Nasiaeschna pentacantha -99 RHYNCHOBDELLIDA Glossiphoniidae -99 TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	MEGALOPTERA			
Hydrobiidae 1 4 ODONATA Argia 7 Libellulidae 1 -99 RHYNCHOBDELLIDA Glossiphoniidae -99 TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	Sialis	4		
ODONATA Argia 7 Libellulidae 1 Nasiaeschna pentacantha -99 RHYNCHOBDELLIDA Glossiphoniidae -99 TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	MESOGASTROPODA			
Argia 7 Libellulidae 1 Nasiaeschna pentacantha -99 RHYNCHOBDELLIDA Glossiphoniidae -99 TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	Hydrobiidae	1	4	
Libellulidae Nasiaeschna pentacantha -99 RHYNCHOBDELLIDA Glossiphoniidae -99 TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	ODONATA			
Nasiaeschna pentacantha RHYNCHOBDELLIDA Glossiphoniidae TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 13 1lyodrilus templetoni 26 Tubificidae 93 15 2	Argia		7	
RHYNCHOBDELLIDA Glossiphoniidae -99 TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	Libellulidae	1		
Glossiphoniidae -99 TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	Nasiaeschna pentacantha		-99	
TRICHOPTERA Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	RHYNCHOBDELLIDA			
Triaenodes 4 TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	Glossiphoniidae			-99
TRICLADIDA Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	TRICHOPTERA			
Planariidae 2 TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	Triaenodes		4	
TUBIFICIDA Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	TRICLADIDA			
Branchiura sowerbyi 13 3 Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	Planariidae		2	
Ilyodrilus templetoni 26 Tubificidae 93 15 2 VENEROIDEA	TUBIFICIDA			
Tubificidae 93 15 2 VENEROIDEA		13	3	
Tubificidae 93 15 2 VENEROIDEA		26		
		93	15	2
Sphaeriidae -99 10	VENEROIDEA	'	'	
	Sphaeriidae	-99	10	

Aquid Invertebrate Database Bench Sheet Report Little Drywood Ck [0602716], Station #2, Sample Date: 9/25/2006 4:00:00 PM NF = Nonflow; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	SG
"HYDRACARINA"		
Acarina	12	26
AMPHIPODA		
Hyalella azteca		7
ARHYNCHOBDELLIDA		
Erpobdellidae	-99	1
COLEOPTERA		
Dubiraphia	1	3
Helichus lithophilus		1
Scirtidae		1
DECAPODA		
Palaemonetes kadiakensis	1	
DIPTERA		
Ablabesmyia		1
Ceratopogoninae	6	
Chaoborus	80	1
Chironomus	8	1
Chrysops	1	
Cryptochironomus	1	
Dicrotendipes	1	50
Diptera		1
Glyptotendipes	11	137
Hydrobaenus	1	
Kiefferulus	4	18
Microtendipes		1
Nanocladius		1
Natarsia		1
Parachironomus	3	
Paratanytarsus		1
Polypedilum fallax grp		1
Polypedilum illinoense grp		5
Procladius	98	
Stenochironomus		1
Stictochironomus	3	
Tanypus	4	
Tanytarsus	1	
Thienemannimyia grp.		1
Tribelos		19
EPHEMEROPTERA		
Caenis latipennis	2	2

Aquid Invertebrate Database Bench Sheet Report Little Drywood Ck [0602716], Station #2, Sample Date: 9/25/2006 4:00:00 PM NF = Nonflow; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	SG
Leptophlebiidae	1	
Procloeon	1	
Stenacron	8	21
HEMIPTERA		
Corixidae	1	
ISOPODA		
Lirceus		1
LIMNOPHILA		
Helisoma		2
Physella		1
MEGALOPTERA		
Chauliodes rastricornis		1
Sialis	-99	2
TUBIFICIDA		
Ilyodrilus templetoni	1	
Limnodrilus hoffmeisteri	1	
Tubificidae	25	13
VENEROIDEA		
Sphaeriidae		4

Aquid Invertebrate Database Bench Sheet Report

North Fk Spring R [0602717], Station #1, Sample Date: 9/28/2006 8:30:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

CS - Coarse, Nr - Nonnow, Kivi	– Kootinat,	dootmat; SG = Woody Debris; -99 =			
ORDER: TAXA	CS	NF	RM	SG	
"HYDRACARINA"					
Acarina		11	6	17	
AMPHIPODA					
Hyalella azteca	12		153	15	
ARHYNCHOBDELLIDA					
Erpobdellidae	-99	-99			
BRANCHIOBDELLIDA					
Branchiobdellida			1		
COLEOPTERA					
Berosus	26	1	2	1	
Dineutus	2				
Dubiraphia	3	3	74	9	
Ectopria nervosa	2				
Hydrochus				1	
Neoporus	2		1	1	
Peltodytes			1		
Psephenus herricki	2				
Scirtidae	2		12	6	
Stenelmis	112		1		
Tropisternus	-99				
DECAPODA					
Orconectes neglectus	-99		-99		
Orconectes virilis			1		
DIPTERA					
Ablabesmyia	3		2	3	
Ceratopogoninae	3	4	1	1	
Chaoborus		1			
Chironomus		1	1		
Clinotanypus	1	2	2		
Coelotanypus		4			
Cricotopus bicinctus	5				
Cricotopus/Orthocladius	4				
Cryptochironomus	6				
Cryptotendipes		1			
Culex			1		
Dicrotendipes	14	5		32	
Forcipomyiinae				22	
Glyptotendipes	18	2	16	101	
Kiefferulus	2	1	1	3	
Labrundinia		3	5		

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602717], Station #1, Sample Date: 9/28/2006 8:30:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Limnophila				1
Parakiefferiella				1
Paratanytarsus	1			1
Polypedilum convictum	120		1	
Polypedilum illinoense grp	25		13	25
Polypedilum scalaenum grp	3			
Procladius		4		
Simulium	1			
Stelechomyia				1
Stenochironomus				1
Tabanus	-99			
Tanytarsus	48		2	5
Thienemannimyia grp.	4			
Tribelos		1		22
EPHEMEROPTERA		·		
Apobaetis		1		
Caenis latipennis	72	1	5	2
Callibaetis		4	4	6
Hexagenia limbata		-99		
Stenacron	7		1	17
Stenonema femoratum	4			
HEMIPTERA				
Belostoma	-99			
Corixidae	3	88	1	9
Palmacorixa		2	_	1
Rheumatobates			1	1
Trepobates	1			1
Trichocorixa	7		1	
LIMNOPHILA				
Ancylidae	2	-99	1	8
Helisoma	1	-99	1	
Lymnaeidae	_		1	5
Menetus	1	1	13	6
Physella	7		7	
Planorbella	1		-	1
LUMBRICINA	_			_
Lumbricina	5			
MESOGASTROPODA				
Hydrobiidae	1	4	2	4
ODONATA	1	1	_	
Argia			7	1
			,	

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602717], Station #1, Sample Date: 9/28/2006 8:30:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Enallagma		1	18	
Gomphus			-99	
Ischnura			1	
Libellula	1	1	1	
Macromia		-99		
Somatochlora		1		2
PHARYNGOBDELLIDA				
Hirudinidae	1			
RHYNCHOBDELLIDA				
Glossiphoniidae	7		2	-99
TRICHOPTERA				
Cheumatopsyche	9			
Hydroptila	2			
Oecetis			1	
Orthotrichia				1
TRICLADIDA				
Planariidae			2	1
TUBIFICIDA				
Aulodrilus	4	20		
Ilyodrilus templetoni	2	19		
Limnodrilus cervix		2		
Limnodrilus hoffmeisteri		2		
Quistradrilus multisetosus	13	42	3	3
Tubificidae	71	112		4
VENEROIDEA				
Sphaeriidae	11	2	4	

Aquid Invertebrate Database Bench Sheet Report
North Fk Spring R [0602718], Station #2, Sample Date: 9/27/2006 3:45:00 PM
NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

NF = NonHow; RM = Rootmat; S	sG = woody r	Jedris; -99	- Fresenc
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	1	4	
AMPHIPODA			
Hyalella azteca		47	48
COLEOPTERA			
Berosus	3		
Dubiraphia	1	4	1
Hydroporus		1	
Scirtidae		19	1
Stenelmis		1	
Uvarus		1	
DIPTERA			
Ablabesmyia	1	2	4
Anopheles		1	
Ceratopogoninae	3		
Chaoborus	6		
Cladopelma	2		
Cladotanytarsus	6		
Cryptochironomus	1		1
Culex		3	
Dasyheleinae			1
Dicrotendipes	14	15	41
Endochironomus		1	1
Ephydridae		1	
Forcipomyiinae			1
Glyptotendipes	10	69	145
Goeldichironomus		1	2
Kiefferulus	2	7	3
Labrundinia	1	2	
Nanocladius		1	
Parachironomus		5	
Paraphaenocladius		1	
Paratanytarsus		4	1
Polypedilum illinoense grp	2	24	2
Polypedilum scalaenum grp	2		
Procladius	9		1
Pseudosmittia	1	3	
Tanypus	2		
Tanytarsus	74	10	14
Tribelos			7

North Fk Spring R [0602718], Station #2, Sample Date: 9/27/2006 3:45:00 PM

111 Honnow, Kivi Rootmat, Sc	J Woody	Debits, -	1 I CSCIIC
ORDER: TAXA	\mathbf{NF}	\mathbf{RM}	\mathbf{SG}
Zavreliella	1		
EPHEMEROPTERA		·	
Caenis latipennis	77	17	26
Callibaetis	4	11	
Heptageniidae	1		
Hexagenia	1		
Procloeon			1
Stenacron		4	5
HEMIPTERA			
Belostoma		1	
Corixidae	9	3	
Neoplea		2	
Ranatra buenoi		-99	
Ranatra kirkaldyi		1	
Trepobates		1	
LIMNOPHILA			
Ferrissia	1		
Lymnaeidae			1
Menetus		1	
Physella	1		
NEUROPTERA			
Climacia		1	
ODONATA			
Argia			1
Enallagma		2	
Ischnura		1	
Libellulidae		2	1
Somatochlora		-99	1
RHYNCHOBDELLIDA			
Glossiphoniidae	9		
TRICLADIDA			
Planariidae	1	2	2
TUBIFICIDA			
Aulodrilus	21		
Enchytraeidae		1	
Ilyodrilus templetoni	10	1	
Quistradrilus multisetosus	38	3	1
Tubificidae	54	3	2
VENEROIDEA			
Corbicula	5		
Coloivalu	5		

North Fk Spring R [0602718], Station #2, Sample Date: 9/27/2006 3:45:00 PM

ORDER: TAXA	NF	RM	SG
Sphaeriidae		1	1

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602719], Station #3, Sample Date: 9/27/2006 1:15:00 PM

NF =	Nonflow;	RM =	Rootmat;	SG =	Woody	Debris;	-99 = Presence
------	----------	------	----------	------	-------	---------	----------------

101 10111000, ICM RODUITAL, SC	, woody i	Debitis, 77	1105011
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	9	12	
AMPHIPODA			
Hyalella azteca	12	151	103
ARHYNCHOBDELLIDA	·		
Erpobdellidae	6	6	
COLEOPTERA			
Berosus			1
Dubiraphia		1	
Peltodytes			1
Scirtidae		14	
DIPTERA			
Ablabesmyia	5	1	2
Chaoborus	114	2	1
Cladopelma	2		
Clinotanypus		1	1
Cryptochironomus	3		1
Dicrotendipes	22	27	55
Diptera		1	
Forcipomyiinae	13		
Glyptotendipes		3	25
Labrundinia		1	3
Paratanytarsus		1	
Polypedilum illinoense grp	1	13	6
Procladius	17	2	1
Stenochironomus	1		
Tanypus	6	1	
Tanytarsus	4	14	5
Thienemannimyia grp.			1
Tribelos	3	5	53
EPHEMEROPTERA	·		
Caenis latipennis	6	4	
Callibaetis		5	1
Hexagenia limbata	2	1	
Procloeon	1		1
Stenacron	8	1	13
HEMIPTERA			
Corixidae	8	1	1
Ranatra fusca		1	
ISOPODA			

ISOPODA

North Fk Spring R [0602719], Station #3, Sample Date: 9/27/2006 1:15:00 PM

ORDER: TAXA	NF	RM	SG
Lirceus		6	
LIMNOPHILA			
Ancylidae			3
Lymnaeidae		1	
Menetus		4	2
Physella		7	1
Planorbella		2	
MEGALOPTERA			
Chauliodes rastricornis		1	
NEUROPTERA			
Climacia		1	
ODONATA			
Argia		1	5
Libellula		1	
Libellulidae	1		
Macromia	-99		
Nasiaeschna pentacantha		-99	
TRICHOPTERA			
Cyrnellus fraternus	1		4
Hydroptila		1	
Oecetis		2	1
TRICLADIDA			
Planariidae		4	
TUBIFICIDA			
Aulodrilus	8	10	2
Branchiura sowerbyi	2		
Ilyodrilus templetoni	15		
Limnodrilus hoffmeisteri	1		
Quistradrilus multisetosus	9		
Tubificidae	36	10	2
VENEROIDEA			
Corbicula			-99
Sphaeriidae		-99	1

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602720], Station #4a, Sample Date: 9/27/2006 8:30:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

Mr - Monnow, KWI - Rootinat, SG	- woody	Deni 18, -33	— 1 1 esciic
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	4	10	
AMPHIPODA			
Hyalella azteca		35	56
COLEOPTERA			
Dubiraphia		1	2
Paracymus			1
Peltodytes		1	1
Scirtidae	1	64	13
Tropisternus		1	
DIPTERA			
Ceratopogoninae	30	2	1
Chaoborus	34		
Chironomus	6		2
Cladopelma	1		
Cryptochironomus		1	
Dicrotendipes	4	20	21
Einfeldia	2		
Forcipomyiinae		3	23
Glyptotendipes	11	17	169
Goeldichironomus		2	
Kiefferulus	10	4	9
Labrundinia		2	
Parachironomus		7	
Polypedilum halterale grp	3		
Polypedilum illinoense grp	2	68	5
Procladius	15	1	2
Tanypus	5		1
Tanytarsus	18	1	6
Tribelos			4
Zavreliella	2		
EPHEMEROPTERA			
Caenis latipennis	15	4	5
HEMIPTERA			
Corixidae	1	1	
Neoplea		1	1
Nepa		1	
ISOPODA			
Lirceus		2	
LIMNOPHILA			

LIMNOPHILA

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602720], Station #4a, Sample Date: 9/27/2006 8:30:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
Ancylidae	1		1
Fossaria			1
Menetus			2
MEGALOPTERA			
Chauliodes rastricornis		3	
ODONATA			
Argia			4
Enallagma		1	
Ischnura		2	1
Libellula		-99	
Libellulidae	4		2
Nasiaeschna pentacantha		2	
Pachydiplax longipennis			1
Plathemis		-99	
Somatochlora	3	1	1
TRICHOPTERA			
Orthotrichia	1		
TUBIFICIDA			
Aulodrilus	111		
Branchiura sowerbyi	5		
Ilyodrilus templetoni	17		
Limnodrilus hoffmeisteri	2		
Quistradrilus multisetosus	104		2
Tubificidae	23	4	4
VENEROIDEA			
Sphaeriidae	1		1

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602721], Station #5, Sample Date: 9/26/2006 1:00:00 PM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	7	5	
AMPHIPODA			
Hyalella azteca	3	151	62
COLEOPTERA			
Dubiraphia		1	
Hydrochus		1	
Scirtidae		20	2
DECAPODA			
Orconectes			-99
DIPTERA			
Anopheles		2	
Ceratopogoninae	17	2	1
Chaoborus	72		
Chironomus	4	2	
Chrysops		2	
Cladopelma	1		
Cladotanytarsus	1		
Clinotanypus	1		1
Culex		12	1
Dicrotendipes	2	5	13
Diptera			1
Einfeldia	4		
Forcipomyiinae			5
Glyptotendipes	26	96	267
Goeldichironomus		2	
Kiefferulus	1	2	
Labrundinia		2	
Nanocladius		1	
Parachironomus	1	12	1
Polypedilum halterale grp	1		
Polypedilum illinoense grp		5	1
Procladius	41	4	
Tanypus	22	1	
Tanytarsus	38	6	1
Tribelos			2
Zavreliella	2		
EPHEMEROPTERA			
Caenis latipennis	10	3	2
Leptophlebiidae		1	

North Fk Spring R [0602721], Station #5, Sample Date: 9/26/2006 1:00:00 PM

ORDER: TAXA	NF	RM	SG
Stenacron			1
HEMIPTERA			
Belostoma		-99	-99
Corixidae	7	4	1
Microvelia		1	
Palmacorixa		1	
Ranatra nigra		1	
Trepobates		1	
ISOPODA			
Lirceus		2	
LIMNOPHILA			
Ancylidae	1		
Physella		8	
MEGALOPTERA			
Sialis	2		
ODONATA			
Argia		2	1
Enallagma		18	1
Libellula		-99	
Libellulidae	1	1	1
Nasiaeschna pentacantha		-99	
Pachydiplax longipennis		2	1
Plathemis		3	
Somatochlora	4	1	
TRICLADIDA			
Planariidae		17	1
TUBIFICIDA			
Aulodrilus	20		
Branchiura sowerbyi	6	1	
Ilyodrilus templetoni	18		
Limnodrilus hoffmeisteri	2		
Quistradrilus multisetosus	11		
Tubificidae	47	12	
VENEROIDEA			
Sphaeriidae			-99

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602722], Station #4b, Sample Date: 9/27/2006 8:30:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

TIT - Nonnow, KM - Rootinat, 50	- woody	Deni 18, -33	- 1 1 eseme
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	3	20	1
AMPHIPODA			
Hyalella azteca		78	22
COLEOPTERA			
Dineutus		1	1
Dubiraphia		3	
Hydrochus		3	
Peltodytes			1
Scirtidae		54	11
DIPTERA			
Anopheles		2	
Ceratopogoninae	17	1	1
Chaoborus	12		2
Chironomus	6		
Cryptochironomus	2		
Culex		1	
Dicrotendipes	5	15	34
Endochironomus		1	
Forcipomyiinae		3	6
Glyptotendipes	6	35	192
Goeldichironomus		2	
Kiefferulus	2	9	6
Labrundinia		1	
Nanocladius		1	
Parachironomus		6	
Polypedilum halterale grp	2		
Polypedilum illinoense grp		31	15
Procladius	18	1	1
Tanypus	5	2	
Tanytarsus	15	6	
Tribelos		1	
Zavreliella	2		
EPHEMEROPTERA			
Caenis latipennis	15	7	1
Callibaetis		2	
HEMIPTERA			
Belostoma		1	
Corixidae	1	4	
Neoplea		2	

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602722], Station #4b, Sample Date: 9/27/2006 8:30:00 AM

ORDER: TAXA	NF	RM	SG
Ranatra fusca		-99	
Rheumatobates		2	
ISOPODA			
Lirceus		1	
LIMNOPHILA			
Lymnaeidae		2	2
Menetus		1	1
Physella		3	
MEGALOPTERA			
Sialis	-99		
ODONATA			
Argia		1	
Enallagma		1	1
Gomphidae			1
Libellulidae	4		1
Nasiaeschna pentacantha		-99	
Plathemis		-99	
Somatochlora	-99	-99	
RHYNCHOBDELLIDA			
Glossiphoniidae	1		
TRICHOPTERA			
Oecetis	1		
TRICLADIDA			
Planariidae		14	1
TUBIFICIDA			
Aulodrilus	184	2	1
Branchiura sowerbyi	4		1
Ilyodrilus templetoni	17		
Quistradrilus multisetosus	58		1
Tubificidae	49	8	3
VENEROIDEA			
Sphaeriidae		2	

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602723], Station #6, Sample Date: 10/4/2006 8:30:00 AM

NF = Nonflow; RM = Rootmat; SG = Woo	ody Debris; -99 = Presence
--------------------------------------	----------------------------

Mr - Mulliow, KM - Routillat, 5G	- woody i	Jeni 18, -37	- 1 1 cscnc
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	4	2	7
AMPHIPODA			
Hyalella azteca	1	86	
ARHYNCHOBDELLIDA			
Erpobdellidae	1		
COLEOPTERA			
Berosus	1		
Dubiraphia	24	32	1
Helichus lithophilus			1
Scirtidae		18	
Stenelmis		2	
DECAPODA			
Orconectes	-99		
Orconectes luteus		-99	
Procambarus acutus		-99	
DIPTERA			
Ablabesmyia	4	11	9
Ceratopogoninae	8		
Chaoborus	15	1	
Chironomus	1		
Chrysops	2		
Cladopelma	2		
Cladotanytarsus	2		2
Clinotanypus	2		
Corynoneura			1
Cricotopus/Orthocladius			1
Cryptochironomus	1		
Dicrotendipes	13	10	65
Glyptotendipes	1	4	46
Goeldichironomus		1	2
Kiefferulus	5	3	64
Labrundinia	1	4	
Parachironomus		12	
Parakiefferiella		2	
Polypedilum halterale grp	3		
Polypedilum illinoense grp		9	1
Procladius	57	2	
Pseudosmittia			4
Stenochironomus			1

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602723], Station #6, Sample Date: 10/4/2006 8:30:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence ORDER: TAXA NF RM SG

ORDER: TAXA	NF	RM	SG
Tanypus	3		
Tanytarsus	13	3	8
Thienemannimyia grp.			1
Tribelos		1	15
undescribed Empididae		1	
Zavreliella	1		
EPHEMEROPTERA			
Caenis latipennis	27	76	12
Callibaetis	1		
Leptophlebiidae		2	1
Stenacron	5	5	20
Stenonema femoratum		2	9
HEMIPTERA			
Corixidae	1		
Neoplea		1	
ISOPODA			
Lirceus	1	36	2
LIMNOPHILA			
Ancylidae	4		2
Lymnaeidae		1	
Menetus	1	26	3
Physella	7	22	8
LUMBRICINA			
Lumbricina			2
MEGALOPTERA			
Chauliodes rastricornis		-99	
Sialis	5		
MESOGASTROPODA			
Hydrobiidae	2	12	
ODONATA			
Argia		3	1
Enallagma		22	
Gomphus	-99		
Libellula	-99		
Nasiaeschna pentacantha		-99	
Plathemis	1		
Somatochlora	1		
Tetragoneuria		1	
RHYNCHOBDELLIDA			
Glossiphoniidae		1	1
<u>*</u>			

North Fk Spring R [0602723], Station #6, Sample Date: 10/4/2006 8:30:00 AM

ORDER: TAXA	NF	RM	SG
TRICHOPTERA			
Oecetis	1	4	
TUBIFICIDA			
Aulodrilus	9		
Branchiura sowerbyi	18	1	
Ilyodrilus templetoni	20	1	
Quistradrilus multisetosus		2	
Tubificidae	31	8	7
VENEROIDEA			
Corbicula		1	
Sphaeriidae	17	2	2

North Fk Spring R [0602724], Station #7, Sample Date: 10/3/2006 3:30:00 PM

ORDER: TAXA	NF	RM	SG
"HYDRACARINA"	111	141/1	
Acarina	4	6	1
AMPHIPODA	•		
Hyalella azteca		41	2
ARHYNCHOBDELLIDA			
Erpobdellidae			1
BRANCHIOBDELLIDA			
Branchiobdellida		1	
COLEOPTERA			
Ancyronyx variegatus		-99	1
Berosus			1
Dubiraphia	1	5	2
Hydrochus	_	-99	
Scirtidae		25	6
Tropisternus		-99	
DECAPODA			
Orconectes virilis		1	
DIPTERA			
Ablabesmyia		1	5
Anopheles		3	
Asheum beckae		-	1
Ceratopogoninae	14	2	2
Chaoborus	19	1	
Chironomus	2	1	
Chlorotabanus			1
Cladopelma	1		
Cladotanytarsus	2		
Cryptochironomus			1
Cryptotendipes	2		
Culex		-99	
Dicrotendipes	4	9	53
Diptera		1	1
Einfeldia	4		
Endochironomus	1		1
Forcipomyiinae		2	10
Glyptotendipes		7	126
Goeldichironomus		1	4
Kiefferulus	1	1	5
Nanocladius		3	
Parachironomus		4	

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602724], Station #7, Sample Date: 10/3/2006 3:30:00 PM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG	
Parakiefferiella	1	1		
Polypedilum halterale grp	2			
Polypedilum illinoense grp	1	1	7	
Procladius	6	1		
Pseudosmittia			1	
Stenochironomus			2	
Stictochironomus	1			
Tanypus	2			
Tanytarsus	6	11	7	
Zavreliella	7			
EPHEMEROPTERA				
Caenis latipennis	17	100	17	
Callibaetis		3	1	
Stenacron	1	3	3 2	
Stenonema femoratum			2	
HEMIPTERA				
Microvelia		1		
Neoplea		13		
Ranatra fusca		1		
Ranatra kirkaldyi		-99		
Ranatra nigra		-99		
Rheumatobates		1		
ISOPODA				
Lirceus		10	1	
LIMNOPHILA				
Ancylidae	1	-99	3	
Helisoma			1	
Menetus		7	11	
Physella		12	15	
Pseudosuccinea		-99		
LUMBRICINA				
Lumbricina		-99		
LUMBRICULIDA				
Lumbriculidae		1		
MEGALOPTERA				
Chauliodes rastricornis			-99	
MESOGASTROPODA				
Hydrobiidae			8	
ODONATA				
Argia		1	5	
		-		

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602724], Station #7, Sample Date: 10/3/2006 3:30:00 PM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
Basiaeschna janata		1	
Dromogomphus		-99	
Enallagma		19	
Ischnura		5	
Libellula		-99	
Libellulidae		1	
Nasiaeschna pentacantha		-99	
Perithemis		-99	
Plathemis		-99	
Tetragoneuria		-99	
RHYNCHOBDELLIDA			
Glossiphoniidae		1	
TRICHOPTERA			
Cyrnellus fraternus		1	
Leptoceridae		1	
Oecetis		15	
Orthotrichia		2	
TRICLADIDA			
Planariidae		6	2
TUBIFICIDA			
Aulodrilus	4	1	1
Branchiura sowerbyi	50		
Enchytraeidae	1		
Ilyodrilus templetoni	7	1	
Limnodrilus hoffmeisteri		1	
Quistradrilus multisetosus	3		
Tubificidae	57	15	8
VENEROIDEA			
Sphaeriidae	1	-99	7

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602725], Station #8, Sample Date: 10/3/2006 1:00:00 PM

NF =	Nonflow;	RM =	Rootmat; S	SG = V	Woody 1	Debris;	-99 =	Presence
------	----------	------	------------	--------	---------	---------	-------	----------

ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	2	21	7
AMPHIPODA			
Crangonyx		-99	
ARHYNCHOBDELLIDA			
Erpobdellidae	-99	-99	1
BRANCHIOBDELLIDA			
Branchiobdellida		1	
COLEOPTERA			
Acilius		-99	
Dubiraphia	2	4	1
Hydroporus			-99
Scirtidae		9	
DECAPODA			
Orconectes virilis	1	-99	
DIPTERA			
Ablabesmyia		4	
Anopheles		1	
Ceratopogoninae	4		
Chaoborus	24		
Chironomus	3	2	
Chrysops		1	
Cladopelma	11		
Cryptochironomus	1		
Culex			2
Dicrotendipes	5	54	92
Einfeldia	2		
Forcipomyiinae			1
Glyptotendipes	2	23	171
Kiefferulus	6	40	24
Labrundinia		1	
Microtendipes	1		
Nanocladius		2	
Parachironomus		12	1
Paratanytarsus		3	
Paratendipes		1	
Procladius	42	1	5
Tanypus	30		
Tanytarsus	1	3	2
Tribelos		1	10

North Fk Spring R [0602725], Station #8, Sample Date: 10/3/2006 1:00:00 PM

ORDER: TAXA	NF	RM	SG
EPHEMEROPTERA			
Caenis latipennis	7	47	4
Leptophlebiidae		1	
Stenacron	1	1	4
HEMIPTERA			
Belostoma		-99	
Corixidae	5	1	
Ranatra buenoi		-99	
ISOPODA			
Lirceus		2	
LIMNOPHILA			
Ancylidae	2	3	1
Fossaria		4	
Helisoma		1	
Menetus		18	5
Physella		22	2
LUMBRICINA			
Lumbricina	2		
MEGALOPTERA			
Sialis	1	-99	
MESOGASTROPODA			
Hydrobiidae	2		
ODONATA			
Argia		1	
Basiaeschna janata		-99	
Enallagma		12	
Epicordulia		1	
Gomphus		-99	
Ischnura		1	
Libellula		-99	
Libellulidae		2	
Nasiaeschna pentacantha		-99	
Pachydiplax longipennis		1	
Somatochlora	3		
RHYNCHOBDELLIDA			
Glossiphoniidae		2	-99
TRICHOPTERA			
Oecetis			1
TRICLADIDA			
Planariidae		7	1

North Fk Spring R [0602725], Station #8, Sample Date: 10/3/2006 1:00:00 PM

ORDER: TAXA	NF	RM	SG
TUBIFICIDA			
Aulodrilus	1		
Branchiura sowerbyi	35	7	1
Ilyodrilus templetoni	12		1
Tubificidae	24	7	19
VENEROIDEA			
Sphaeriidae	9	9	2

North Fk Spring R [0602726], Station #9, Sample Date: 10/3/2006 11:00:00 AM

ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	1	11	5
AMPHIPODA			
Hyalella azteca			1
ARHYNCHOBDELLIDA			
Erpobdellidae	1	-99	
BRANCHIOBDELLIDA			
Branchiobdellida		3	
COLEOPTERA			
Ancyronyx variegatus	1	1	3
Dineutus		-99	
Dubiraphia	4		2
Hydroporus		4	-99
Scirtidae		5	
Stenelmis	4	2	
Tropisternus		1	
DECAPODA			
Orconectes virilis		-99	
DIPTERA			
Ablabesmyia	6	4	4
Anopheles	1	3	4
Ceratopogoninae	7		
Chaoborus	13		
Chironomus	9	2	3
Cladopelma	3		
Cryptochironomus			2
Culex	1	1	1
Dicrotendipes	8	34	118
Endochironomus		1	
Glyptotendipes	4	18	54
Goeldichironomus		1	
Kiefferulus	7	15	33
Nanocladius		1	1
Parachironomus	1	5	1
Phaenopsectra			1
Polypedilum illinoense grp	2	2	4
Procladius	23	1	
Stenochironomus			1
Tanypus	10		
Tanytarsus	1	20	7

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0602726], Station #9, Sample Date: 10/3/2006 11:00:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
Thienemannimyia grp.			1
Tribelos		2	10
EPHEMEROPTERA			
Caenis latipennis	14	30	21
Callibaetis		1	1
Stenacron			4
Stenonema femoratum		-99	6
HEMIPTERA			
Belostoma		-99	
Corixidae	4		
Ranatra buenoi		-99	
ISOPODA			
Lirceus		4	
LIMNOPHILA			
Ancylidae	8		5
Helisoma	-99		4
Lymnaeidae	2		
Menetus		14	2
Physella	2	2	6
MEGALOPTERA			
Chauliodes rastricornis			-99
Sialis		1	
ODONATA			
Enallagma	1	17	
Epicordulia		2	
Gomphus		-99	
Nasiaeschna pentacantha		-99	
Pachydiplax longipennis		1	1
Somatochlora		1	
RHYNCHOBDELLIDA			
Piscicolidae		1	
TRICLADIDA			
Planariidae	1	25	1
TUBIFICIDA			
Aulodrilus	1		
Branchiura sowerbyi	78		
Ilyodrilus templetoni	7		
Tubificidae	47	22	
VENEROIDEA			
Sphaeriidae	5	1	3

North Fk Spring R [0602727], Station #10, Sample Date: 10/3/2006 8:30:00 AM

ORDER: TAXA	NF	RM	SG
"HYDRACARINA"	111	IXIVI	50
Acarina		5	
ARHYNCHOBDELLIDA			
Erpobdellidae	-99	-99	
COLEOPTERA			
Desmopachria		1	
Dubiraphia	1	1	
Gyrinus	*	2	
Helichus basalis	1		
Helichus lithophilus	-	1	
Hydrobius		-	1
Hydrochus		1	
Scirtidae		6	5
Stenelmis	2	2	
DIPTERA	_		
Ablabesmyia		2	
Anopheles		4	
Ceratopogoninae	32	-	
Chaoborus	1		
Chironomus	2	15	15
Cladopelma		1	
Culex	1	11	
Dasyheleinae	1		
Dicrotendipes		21	42
Diptera		4	2
Endochironomus			2
Ephydridae	1		
Glyptotendipes	1	17	56
Goeldichironomus	1	35	56
Kiefferulus	1	32	54
Mesosmittia	2	1	
Nanocladius		1	
Nemotelus	-99		
Parachironomus		7	1
Phaenopsectra		2	
Polypedilum illinoense grp		1	
Procladius	2		1
Pseudosmittia		1	2
Tabanus		1	
Tanypus	1		

North Fk Spring R [0602727], Station #10, Sample Date: 10/3/2006 8:30:00 AM

ORDER: TAXA	NF	RM	SG
Tanytarsus		6	1
EPHEMEROPTERA			
Caenis latipennis		7	2
HEMIPTERA			
Belostoma		-99	
Corixidae	1		
Nepa		-99	
ISOPODA			
Lirceus		6	
LIMNOPHILA			
Ancylidae	5	9	
Fossaria		4	
Helisoma		1	
Menetus	1	4	
Physella	3	9	7
Planorbella		2	
LUMBRICULIDA			
Lumbriculidae	1		
MEGALOPTERA			
Sialis	1		
MESOGASTROPODA			
Hydrobiidae		2	2
ODONATA			
Enallagma		4	
Epicordulia		-99	
Erythemis			1
Ischnura		3	1
Libellula		2	
Libellulidae	1		
Nasiaeschna pentacantha		1	
Pachydiplax longipennis		-99	
Somatochlora	-99	1	
RHYNCHOBDELLIDA			
Glossiphoniidae	-99	-99	1
TRICLADIDA			
Planariidae		1	
TUBIFICIDA			
Branchiura sowerbyi	100	2	
Ilyodrilus templetoni	21	9	
Tubificidae	157	37	1

North Fk Spring R [0602727], Station #10, Sample Date: 10/3/2006 8:30:00 AM

ORDER: TAXA	NF	RM	SG
VENEROIDEA			
Sphaeriidae	26	46	4

Aquid Invertebrate Database Bench Sheet Report Horse Ck [0602728], Station #1, Sample Date: 10/2/2006 10:45:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	5	29	18
AMPHIPODA			
Hyalella azteca		102	9
ARHYNCHOBDELLIDA			
Erpobdellidae	-99		
COLEOPTERA			
Ancyronyx variegatus		3	2
Dubiraphia	22	21	7
Hydroporus		1	1
Macronychus glabratus		1	
Scirtidae		2	
DECAPODA			
Orconectes luteus	1		1
Orconectes virilis		-99	
DIPTERA			
Ablabesmyia	2		2
Ceratopogoninae	6		1
Chaoborus	17		
Chironomus	13	1	
Clinotanypus		2	
Cricotopus/Orthocladius			1
Cryptochironomus	1		1
Dicrotendipes	1	4	40
Forcipomyiinae			4
Glyptotendipes	1	11	23
Goeldichironomus		1	
Kiefferulus	7	50	6
Labrundinia		1	
Parachironomus		2	1
Paratanytarsus		1	1
Polypedilum illinoense grp	1	5	1
Procladius	28	1	8
Pseudochironomus			4
Stenochironomus			1
Tanypus	7		
Tanytarsus	11	1	7
Thienemannimyia grp.			5
Tribelos	3		14
Xenochironomus			3

Aquid Invertebrate Database Bench Sheet Report Horse Ck [0602728], Station #1, Sample Date: 10/2/2006 10:45:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
Zavreliella	1	1	
EPHEMEROPTERA			
Baetidae			1
Caenis latipennis	53	20	48
Callibaetis			1
Leptophlebiidae	1	6	2
Stenacron	1		5
Stenonema femoratum			5
LIMNOPHILA			
Ancylidae		4	10
Helisoma			2
Menetus		19	4
Physella		5	6
Planorbella			3
MEGALOPTERA			
Sialis		-99	
ODONATA			
Argia		1	
Enallagma		26	
Hagenius brevistylus		-99	
Ischnura		2	
Pachydiplax longipennis	1	-99	
Tetragoneuria		1	
RHYNCHOBDELLIDA			
Glossiphoniidae		1	
TRICHOPTERA			
Oecetis	1		
TRICLADIDA			
Planariidae		10	1
TUBIFICIDA			
Aulodrilus	13		7
Branchiura sowerbyi	3	1	
Ilyodrilus templetoni	6		1
Limnodrilus hoffmeisteri	2		
Quistradrilus multisetosus	4	2	
Tubificidae	123	1	28
VENEROIDEA			
Sphaeriidae	1	-99	

Aquid Invertebrate Database Bench Sheet Report Cedar Ck [0602729], Station #1, Sample Date: 10/2/2006 2:00:00 PM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

NF = Nonflow; RM = Rootmat; SG	= wooay	Debris; -99	= Presenc
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	3	3	
AMPHIPODA			
Hyalella azteca	6	140	1
ARHYNCHOBDELLIDA			
Erpobdellidae	4		1
COLEOPTERA			
Berosus	1		
Dineutus		-99	
Dubiraphia		2	
Hydrochus		3	
Hydroporus	5	9	2
Peltodytes	1		
Scirtidae	1	19	
Tropisternus		-99	
DIPTERA			
Ceratopogoninae	24		1
Chaoborus	18	1	2
Chironomus	55	10	17
Dicrotendipes	9	45	32
Ephydridae		1	
Glyptotendipes		26	133
Goeldichironomus	13	16	71
Kiefferulus		12	12
Labrundinia	5		
Larsia	1		
Parachironomus	1	6	
Procladius	7	3	3
Psychoda			2
Tanytarsus	34	1	12
Thienemannimyia grp.	11	3	
EPHEMEROPTERA			
Caenis latipennis	2		
Callibaetis	3	1	2
HEMIPTERA			
Corixidae	2		5
Ranatra buenoi		-99	
LIMNOPHILA			
Ancylidae	1		1
Menetus	1	7	

Aquid Invertebrate Database Bench Sheet Report Cedar Ck [0602729], Station #1, Sample Date: 10/2/2006 2:00:00 PM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
Physella	7	21	3
Planorbella	1		
LUMBRICINA			
Lumbricina	1	-99	
ODONATA			
Epicordulia		-99	
Pachydiplax longipennis		-99	
Perithemis			1
Somatochlora	-99	-99	
RHYNCHOBDELLIDA			
Glossiphoniidae	2	5	
TRICLADIDA			
Planariidae	6	20	
TUBIFICIDA			
Branchiura sowerbyi	10	1	1
Limnodrilus hoffmeisteri	6	1	
Quistradrilus multisetosus	4	3	
Tubificidae	102	33	15
VENEROIDEA			
Sphaeriidae	6	4	9

North Fk Spring R [0703243], Station #10, Sample Date: 3/19/2007 4:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

CS = Coarse; NF = Nonflow; RM ORDER: TAXA	CS	NF	RM	-99 = Fres
"HYDRACARINA"	<u> </u>	111	IXIVI	50
Acarina		2	4	2
AMPHIPODA			•	
Hyalella azteca			5	1
Stygobromus	1		3	
ARHYNCHOBDELLIDA	1			
Erpobdellidae		-99		
COLEOPTERA		-77		
Agabus			3	
Neoporus			7	
Stenelmis	23		/	
DIPTERA	23			
Ablabesmyia	1		1	
Aedes			1	1
Ceratopogoninae		38		1
1 6	-99	36		
Chrysops	-99	1		
Chambia	1	1		
Cnephia	1	4	1.00	0.1
Cricotopus/Orthocladius	276	4	169	81
Dicrotendipes	1	1	2	31
Diplocladius	1	2	1	
Diptera	10	2	1	
Eukiefferiella brevicalcar grp	42		6	22
Forcipomyiinae				9
Glyptotendipes	2			21
Hydrobaenus	220	57	66	151
Kiefferulus				1
Nanocladius			1	
Orthocladius (Euorthocladius)	8			3
Parachironomus			1	
Paraphaenocladius				2
Paratendipes	1			
Polypedilum illinoense grp			1	
Procladius		4		1
Pseudosmittia		1		2
Simulium	1			
Tanytarsus		1		
EPHEMEROPTERA				
Caenis latipennis	1	2	2	
HEMIDTED A				

HEMIPTERA

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703243], Station #10, Sample Date: 3/19/2007 4:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Corixidae		2		1
ISOPODA				
Caecidotea (Blind &	4		1	
Unpigmented)				
Lirceus	1		3	
LIMNOPHILA				
Ancylidae		1		
Fossaria	1			2
Helisoma	1			
Menetus	1			
Physella	1		6	2
LUMBRICULIDA				
Lumbriculidae	1			
MESOGASTROPODA				
Hydrobiidae	2		2	
ODONATA				
Ischnura		1	2	
PLECOPTERA				
Allocapnia	7			
Perlesta	3			
TRICHOPTERA				
Rhyacophila	-99			
TUBIFICIDA				
Aulodrilus		4		
Branchiura sowerbyi	1	25		2
Enchytraeidae	14	12	5	6
Ilyodrilus templetoni		44		1
Limnodrilus cervix	1	4		
Limnodrilus claparedianus		5		
Limnodrilus hoffmeisteri	3	15	1	
Tubificidae	75	99	1	5
VENEROIDEA				
Sphaeriidae	13	19	5	3

North Fk Spring R [0703244], Station #1, Sample Date: 3/20/2007 10:00:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
"HYDRACARINA"				
Acarina	1	4	10	2
AMPHIPODA				
Hyalella azteca	8		55	12
ARHYNCHOBDELLIDA				
Erpobdellidae	2	-99		
COLEOPTERA				
Berosus	6			2
Dubiraphia	3	5	26	1
Hydroporus		2	6	1
Peltodytes			1	
Scirtidae				1
Stenelmis sexlineata	23			
DECAPODA				
Orconectes virilis			-99	
DIPTERA				
Ablabesmyia		8	1	1
Ceratopogoninae	7	9	7	3
Chrysops	-99			
Cladopelma		4		
Clinotanypus			4	
Corynoneura			2	2
Cricotopus/Orthocladius	95	25	34	46
Cryptochironomus	1	1		
Dicrotendipes	7	6	5	35
Diptera			1	3
Eukiefferiella brevicalcar grp	12			
Glyptotendipes	8	2	5	80
Hydrobaenus	15	10	22	38
Kiefferulus				1
Limonia				2
Microtendipes	2			
Parakiefferiella			1	1
Paraphaenocladius		5	3	2
Paratanytarsus			1	1
Paratendipes	57	1		
Polypedilum convictum	73		2	
Polypedilum illinoense grp	9	7	29	17
Polypedilum scalaenum grp	107	3		
Procladius		58	9	3

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703244], Station #1, Sample Date: 3/20/2007 10:00:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Pseudosmittia			1	1
Simulium	3			
Smittia				1
Stenochironomus	2			1
Stictochironomus	1			
Tanypus		2		
Tanytarsus	52	22	7	14
Thienemanniella	1			
Thienemannimyia grp.	2		1	1
Tribelos				1
EPHEMEROPTERA				
Acerpenna	1			
Caenis latipennis	27	11	5	7
Hexagenia limbata	-99	1		
Stenacron			1	1
Stenonema femoratum	-99			
HEMIPTERA				
Corixidae		2	1	1
ISOPODA				
Lirceus			2	
LIMNOPHILA				
Fossaria		3	6	
Helisoma	3		-99	
Laevapex	4	1		
Menetus	4		1	
Physella	3		2	
Planorbella	1			
LUMBRICULIDA				
Lumbriculidae	1			
MESOGASTROPODA				
Hydrobiidae	6	2	10	7
ODONATA	- 1		-	
Argia			2	
Enallagma			5	1
Ischnura			-99	
Pachydiplax longipennis			-99	
PLECOPTERA				
Hydroperla crosbyi	-99			
RHYNCHOBDELLIDA				
Glossiphoniidae	-99	-99	-99	
Stossipholinauc	77	77	77	

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703244], Station #1, Sample Date: 3/20/2007 10:00:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
TRICHOPTERA				
Agrypnia		-99		
Oecetis	2	1	5	
Rhyacophila	-99			
TUBIFICIDA				
Aulodrilus	1	1	1	
Enchytraeidae	1	4		8
Ilyodrilus templetoni	4	12	2	1
Limnodrilus cervix		1	3	
Limnodrilus hoffmeisteri	1	2	13	
Quistradrilus multisetosus	4	41	3	1
Tubificidae	35	12	33	
VENEROIDEA				
Corbicula	2			
Sphaeriidae	2	3	2	1

North Fk Spring R [0703245], Station #5, Sample Date: 3/20/2007 1:00:00 PM

101 Honnow, Kivi Rootmat, Sc	•	Debiis, 77	Tresent
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	1	7	1
AMPHIPODA			
Hyalella azteca	2	28	7
ARHYNCHOBDELLIDA			
Erpobdellidae	1	-99	1
COLEOPTERA			
Berosus			1
DECAPODA			
Orconectes virilis		-99	
Procambarus acutus	-99		
DIPTERA			
Ablabesmyia	1		
Ceratopogoninae	25	9	
Chaoborus	2		
Chironomus	1		
Chrysops		1	
Cladopelma	1		
Clinotanypus	5	1	2
Cricotopus/Orthocladius	11	10	9
Dicrotendipes	19	20	48
Diptera	1		1
Einfeldia	4		
Eukiefferiella			2
Forcipomyiinae			1
Glyptotendipes	33	15	190
Hydrobaenus	15	6	2
Kiefferulus	1	1	3
Nanocladius	4	9	1
Paraphaenocladius		2	1
Polypedilum halterale grp	11	2	1
Polypedilum illinoense grp	5	17	4
Polypedilum scalaenum grp	1	2	1
Procladius	98	11	10
Pseudosmittia		1	
Simulium	1		
Tanypus	2		
Tanytarsus	1	2	
Thienemannimyia grp.		2	
Tipula		-99	

North Fk Spring R [0703245], Station #5, Sample Date: 3/20/2007 1:00:00 PM

NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
EPHEMEROPTERA			
Caenis latipennis	14	21	5
Leptophlebiidae		-99	
HEMIPTERA			
Corixidae	1		
Ranatra nigra		-99	
ISOPODA			
Lirceus		44	-99
LEPIDOPTERA			
Noctuidae	2		
LIMNOPHILA			
Ancylidae	1		1
Fossaria		8	1
Helisoma	-99	-99	
Menetus		1	
Physella	2	9	1
LUMBRICINA			
Lumbricina	3		
MEGALOPTERA			
Chauliodes rastricornis		-99	
Sialis	-99		
MESOGASTROPODA			
Hydrobiidae		1	2
ODONATA			
Argia	1		
Enallagma		2	
Ischnura		4	
Nasiaeschna pentacantha		-99	
Pachydiplax longipennis		-99	
Plathemis	-99	1	
RHYNCHOBDELLIDA			
Glossiphoniidae	-99	3	
TRICHOPTERA			
Limnephilidae		-99	
Oecetis	1		
Ptilostomis			1
TRICLADIDA			
Planariidae	4	84	2
TUBIFICIDA			
Aulodrilus	8		3

North Fk Spring R [0703245], Station #5, Sample Date: 3/20/2007 1:00:00 PM

NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
Branchiura sowerbyi	6		-99
Enchytraeidae	2	1	1
Ilyodrilus templetoni	29	1	1
Limnodrilus cervix	3		
Limnodrilus hoffmeisteri	3	8	
Quistradrilus multisetosus	3		
Tubificidae	49	13	
VENEROIDEA			
Sphaeriidae	9	2	1

North Fk Spring R [0703246], Station #6, Sample Date: 3/20/2007 3:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

CS = Coarse; NF = Nonflow; RM		SG - WUC	Juy Debiis,	- <i>77</i> – 1168
ORDER: TAXA	CS	NF	RM	SG
"HYDRACARINA"				
Acarina		5	4	
AMPHIPODA				
Hyalella azteca	1	1	47	
ARHYNCHOBDELLIDA				
Erpobdellidae	-99	-99		
COLEOPTERA				
Dubiraphia		5	2	
Scirtidae			4	
Stenelmis	19			
DECAPODA				
Orconectes virilis			-99	
Procambarus acutus		-99	1	
DIPTERA				
Ablabesmyia		1	5	4
Ceratopogoninae	6	57	4	1
Chaoborus		1		1
Cladopelma		9		
Cladotanytarsus	1	1		
Cricotopus/Orthocladius	235	12	111	164
Cryptochironomus	4	1		
Cryptotendipes		5		
Dicrotendipes	7	11	7	21
Diptera		2		1
Eukiefferiella	41	2	1	15
Glyptotendipes	2	1	1	2
Hydrobaenus	58	43	20	31
Nanocladius		1	2	
Ormosia	1			
Orthocladius (Euorthocladius)	1			
Parakiefferiella	2		7	
Paraphaenocladius		2	1	
Paratanytarsus				2
Paratendipes	26	4		
Polypedilum convictum	1			
Polypedilum halterale grp		8		1
Polypedilum illinoense grp	1		17	8
Polypedilum scalaenum grp	3			
Procladius		45	2	8
Rheocricotopus	1			

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703246], Station #6, Sample Date: 3/20/2007 3:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Simuliidae	18		1	4
Smittia		1	1	2
Tanytarsus	11	2	1	3
Tipula		-99		
Tribelos		1	1	1
Zavreliella		1		
EPHEMEROPTERA				
Caenis latipennis	17	41	40	14
Leptophlebia			1	
Stenacron			-99	1
Stenonema femoratum	1		3	-99
HEMIPTERA				
Corixidae		1		
ISOPODA				
Lirceus	1	4	36	2
LIMNOPHILA				
Ancylidae	1			
Fossaria	1	1		1
Helisoma				1
Menetus		1		
Physella			9	4
Planorbella	1			
LUMBRICULIDA				
Lumbriculidae	23	3	1	3
MEGALOPTERA				
Sialis		-99	-99	
MESOGASTROPODA				
Hydrobiidae			2	2
ODONATA				
Dromogomphus		-99	-99	
Enallagma			1	
Ischnura			-99	
Libellula		-99	-99	
Nasiaeschna pentacantha			1	
PLECOPTERA				
Perlesta	3			
RHYNCHOBDELLIDA				
Glossiphoniidae		-99		
TRICHOPTERA				
Oecetis		1		

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703246], Station #6, Sample Date: 3/20/2007 3:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Rhyacophila	2		-99	
TUBIFICIDA				
Branchiura sowerbyi	5	7	2	
Enchytraeidae	3	1		1
Limnodrilus claparedianus	2			
Limnodrilus hoffmeisteri	17	2		
Quistradrilus multisetosus			1	
Tubificidae	93	12	3	5
VENEROIDEA				
Sphaeriidae	10	5	2	1

North Fk Spring R [0703247], Station #9a, Sample Date: 4/3/2007 3:00:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
"HYDRACARINA"				
Acarina	1	22	3	1
ARHYNCHOBDELLIDA				
Erpobdellidae	1	-99	-99	
COLEOPTERA				
Ancyronyx variegatus			1	
Dubiraphia		2	1	
Gyrinus			3	
Hydroporus		6	6	
Stenelmis sexlineata	44	1		
DECAPODA				
Orconectes virilis			-99	
DIPTERA				
Ceratopogoninae		17		3
Chironomus		2	1	1
Cricotopus/Orthocladius	82	5	86	153
Cryptochironomus	2			
Dicrotendipes	1	3	12	36
Diplocladius			1	
Diptera		5	1	
Dolichopodidae			1	
Eukiefferiella brevicalcar grp	74	2	18	61
Forcipomyiinae		1		4
Glyptotendipes			10	5
Hydrobaenus	212	121	47	42
Labrundinia			2	
Mesosmittia			1	
Micropsectra			2	
Nanocladius			2	
Parachironomus			3	
Parakiefferiella	1		1	
Parametriocnemus	3			
Paratendipes	15			
Polypedilum halterale grp		2		
Polypedilum scalaenum grp	4			
Procladius		1		
Simulium	63	3	14	5
Smittia		1		
Tanytarsus	2	1	4	2
Thienemanniella	1		1	

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703247], Station #9a, Sample Date: 4/3/2007 3:00:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
EPHEMEROPTERA				
Caenis latipennis	4	8	3	1
Callibaetis		1		
ISOPODA				
Lirceus			8	
LIMNOPHILA				
Helisoma			1	
Menetus		1	5	
Physella	2	11	37	1
LUMBRICULIDA				
Lumbriculidae	1		1	
MESOGASTROPODA				
Hydrobiidae	1		2	5
ODONATA				
Enallagma			6	1
Epicordulia			-99	
Gomphus			-99	
Libellula			1	
Macromia		1		
Plathemis			-99	
PLECOPTERA				
Isoperla			1	
RHYNCHOBDELLIDA				
Glossiphoniidae		-99	-99	
TRICHOPTERA				
Uenoidae			-99	
TRICLADIDA				
Planariidae			13	
TUBIFICIDA				
Branchiura sowerbyi	2	23		
Enchytraeidae	4	1	2	1
Ilyodrilus templetoni		4		
Limnodrilus hoffmeisteri	21	5	2	
Tubificidae	108	70	4	
VENEROIDEA				
Sphaeriidae	9	5	6	

North Fk Spring R [0703248], Station #9b, Sample Date: 4/3/2007 3:00:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
"HYDRACARINA"				
Acarina		8	1	1
ARHYNCHOBDELLIDA				
Erpobdellidae	1		-99	
COLEOPTERA				
Helichus basalis			1	
Hydroporus		3	9	
Peltodytes				1
Stenelmis	65		1	
DIPTERA				
Ablabesmyia		3	1	
Ceratopogoninae	1	17	2	1
Cricotopus/Orthocladius	53	9	63	137
Cryptochironomus	1	1		
Dicrotendipes	3	2	1	11
Diptera	1	1	2	
Eukiefferiella	63	1	14	49
Forcipomyiinae				2
Glyptotendipes	1	1	2	3
Hydrobaenus	136	131	58	61
Labrundinia		1		
Nanocladius			3	
Parachironomus			1	
Parametriocnemus	1			
Paratendipes	20	2		
Polypedilum		2		
Polypedilum halterale grp		2	1	
Psychodidae		1		
Simulium	58		26	3
Stictochironomus		1		
Tanytarsus	1		5	4
Thienemanniella				2
Thienemannimyia grp.	2	2	1	
Tribelos				1
EPHEMEROPTERA				
Caenis latipennis	6	7	2	2
HEMIPTERA				
Corixidae		4		
ISOPODA				
Lirceus	2		15	

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703248], Station #9b, Sample Date: 4/3/2007 3:00:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
LIMNOPHILA				
Ancylidae	1	2		
Fossaria	1			2
Helisoma	1		4	-99
Physella		17	58	12
MESOGASTROPODA				
Hydrobiidae	6	2	3	
NEUROPTERA				
Climacia				1
ODONATA				
Argia			1	
Enallagma			2	
Epicordulia			-99	
Gomphus		1		
PLECOPTERA				
Perlesta	9		2	
TRICHOPTERA				
Ceraclea			2	
TRICLADIDA				
Planariidae			3	
TUBIFICIDA				
Branchiura sowerbyi	4	15		1
Limnodrilus hoffmeisteri	28	4		
Tubificidae	152	106	17	1
UNIONIDA				
Unionidae			-99	
VENEROIDEA				
Sphaeriidae	6	5	1	

North Fk Spring R [0703249], Station #8, Sample Date: 4/3/2007 5:45:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

CS = Coarse; NF = Nonflow; RN	1 = Rootmat	; 5G – W00	dy Debris;	-99 – Fres
ORDER: TAXA	CS	NF	RM	SG
"HYDRACARINA"				
Acarina		7		3
AMPHIPODA				
Gammarus			1	
ARHYNCHOBDELLIDA				
Erpobdellidae	-99	3		
COLEOPTERA				
Dubiraphia		1	1	
Neoporus		2	6	1
Stenelmis	22		2	
DECAPODA				
Orconectes virilis			-99	
DIPTERA				
Ceratopogoninae	9	18	2	7
Chaoborus		1		
Chironomus				1
Chrysops	-99			
Cladopelma		4		
Cricotopus/Orthocladius	13	1	30	60
Cryptochironomus	2	1		
Cryptotendipes				1
Dicrotendipes	1	3	2	7
Diplocladius	1			
Diptera		4		1
Dixella			1	
Eukiefferiella brevicalcar grp	68		12	14
Glyptotendipes				2
Hydrobaenus	75	9	50	155
Kiefferulus		1		
Microchironomus		1		
Micropsectra			3	
Nanocladius			7	
Parakiefferiella			3	
Paratanytarsus			1	1
Paratendipes	108	1		
Polypedilum halterale grp	1	4		2
Polypedilum scalaenum grp	4			
Procladius		4		2
Simulium	27		11	
Stictochironomus				1

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703249], Station #8, Sample Date: 4/3/2007 5:45:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Tanypus		2		
Tanytarsus	2	2	2	4
Thienemanniella	1		1	
Tipula	-99		-99	1
Tribelos		1		
EPHEMEROPTERA				
Caenis latipennis	1	1	5	2
HEMIPTERA				
Corixidae		2		7
ISOPODA				
Lirceus			28	12
LIMNOPHILA			<u> </u>	
Ancylidae	1	1		
Fossaria			1	1
Helisoma		1	-99	1
Physella	4	11	101	36
Planorbella	1			
LUMBRICULIDA				
Lumbriculidae	5	1		
MESOGASTROPODA				
Hydrobiidae		3	4	28
ODONATA				
Enallagma			5	
Libellula		-99		
Macromia			1	
Nasiaeschna pentacantha			1	
PLECOPTERA				
Perlesta	8			
TRICHOPTERA				
Oecetis			1	
TRICLADIDA				
Planariidae			1	
TUBIFICIDA				
Aulodrilus	1	1		1
Branchiura sowerbyi	2	23		
Enchytraeidae	17	7	4	3
Ilyodrilus templetoni		6		
Limnodrilus hoffmeisteri	16	14	1	
Tubificidae	234	145	3	4
VENEDOIDE				

VENEROIDEA

North Fk Spring R [0703249], Station #8, Sample Date: 4/3/2007 5:45:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Sphaeriidae	13	5	-99	3

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703251], Station #7, Sample Date: 4/4/2007 1:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
"HYDRACARINA"				
Acarina			1	
AMPHIPODA				
Hyalella azteca			4	
ARHYNCHOBDELLIDA				
Erpobdellidae	4		1	
COLEOPTERA				
Hydroporus			2	
Scirtidae			1	
Stenelmis	93			
DIPTERA				
Ablabesmyia		1		
Anopheles			1	
Ceratopogoninae	2	7	5	2
Chironomus		15	1	
Cladotanytarsus		1		
Clinotanypus			1	
Cricotopus bicinctus		1	1	
Cricotopus/Orthocladius	52	28	16	152
Cryptochironomus		2		
Dicrotendipes		10	30	17
Diplocladius	1			
Diptera		21		4
Eukiefferiella brevicalcar grp	88	8	1	94
Glyptotendipes	3	6	4	
Hydrobaenus	41	43	25	21
Limnophyes				1
Micropsectra	1	1	3	
Nanocladius		1	10	
Ormosia				2
Parachironomus		1	1	
Parakiefferiella			1	
Parametriocnemus	2			
Paratendipes	2	2		
Polypedilum illinoense grp			2	
Pseudochironomus			2	
Simulium	188	1		67
Stictochironomus	2	8		
Tanytarsus	_	1	2	2
Thienemanniella	1	-		

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703251], Station #7, Sample Date: 4/4/2007 1:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Zavreliella		1		
EPHEMEROPTERA				
Caenis latipennis	7	22	38	1
Heptageniidae	1			
HEMIPTERA				
Ranatra nigra			-99	
ISOPODA				
Lirceus	1	6	30	
LIMNOPHILA				
Ancylidae		2		
Fossaria		1	-99	
Helisoma	-99		-99	
Physella		7	101	6
Planorbella			1	
Planorbidae			1	
LUMBRICULIDA				
Lumbriculidae	2	5		
MESOGASTROPODA				
Hydrobiidae	24	1	2	2
NEUROPTERA				
Climacia	1			
ODONATA				
Argia			1	
Enallagma			16	
Epicordulia		-99	1	
Nasiaeschna pentacantha			-99	
PLECOPTERA				
Perlesta	19			
RHYNCHOBDELLIDA				
Glossiphoniidae			-99	
TRICHOPTERA				
Ceraclea			1	
Oecetis			-99	1
TRICLADIDA				
Planariidae		1	2	
TUBIFICIDA				
Branchiura sowerbyi	2	4		
Enchytraeidae		2		
Limnodrilus hoffmeisteri	10	4		
Quistradrilus multisetosus		1		

North Fk Spring R [0703251], Station #7, Sample Date: 4/4/2007 1:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	CS	NF	RM	SG
Tubificidae	177	86	1	1
VENEROIDEA				
Sphaeriidae	3	1	1	-99

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703252], Station #3, Sample Date: 4/4/2007 3:15:00 PM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ODDED TAXA	•	55.5	~~
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"		1	
Acarina	4	2	
AMPHIPODA			
Hyalella azteca	2	84	
COLEOPTERA			
Hydroporus	1	1	
DECAPODA			
Orconectes virilis		-99	
Procambarus acutus	-99		
DIPTERA			
Ceratopogoninae	12	9	
Chaoborus	2		
Chironomus	4	2	
Chrysops		1	
Cladopelma	2		
Clinotanypus	1		
Cricotopus bicinctus			2
Cricotopus/Orthocladius	2	90	202
Dicrotendipes	5	5	2
Diptera	10		
Empididae	2		
Endochironomus	1	1	
Eukiefferiella brevicalcar grp			14
Glyptotendipes	1	2	
Hydrobaenus	3	5	16
Labrundinia		1	
Ormosia	1		
Pilaria		-99	
Polypedilum illinoense grp		1	
Procladius	7	1	
Simulium	1	17	24
Tanytarsus	7	2	1
Thienemanniella			1
Thienemannimyia grp.		1	
Tribelos			2
EPHEMEROPTERA			
Caenis latipennis	14	49	2
Heptageniidae	1		
Hexagenia limbata	5	-99	
Stenacron	1	1	

North Fk Spring R [0703252], Station #3, Sample Date: 4/4/2007 3:15:00 PM

NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
HEMIPTERA			
Corixidae	2		1
ISOPODA			
Lirceus	6	66	7
LIMNOPHILA			
Helisoma			-99
Lymnaeidae	1		
Menetus	1		
Physella	10	2	15
Planorbella			2
LUMBRICULIDA			
Lumbriculidae	2		
MESOGASTROPODA			
Hydrobiidae			1
ODONATA			
Argia			-99
Basiaeschna janata		-99	
Ischnura		4	
Libellula			-99
Nasiaeschna pentacantha		1	
TRICHOPTERA			
Ironoquia		1	
Oecetis	1	2	
TUBIFICIDA			
Aulodrilus	2		
Branchiura sowerbyi	1		
Enchytraeidae	30	7	1
Ilyodrilus templetoni	7	3	
Limnodrilus cervix	4		
Limnodrilus claparedianus	1		
Limnodrilus hoffmeisteri	29	5	
Quistradrilus multisetosus	12		
Tubificidae	94	4	
VENEROIDEA			
Sphaeriidae	3		

Aquid Invertebrate Database Bench Sheet Report North Fk Spring R [0703253], Station #2, Sample Date: 4/5/2007 10:30:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

Mr - Mulliow, KWI - Routillat, SG	- woody	Deni 18, -22	- 1 1 esciic
ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina	10	1	1
AMPHIPODA			
Hyalella azteca		81	4
ARHYNCHOBDELLIDA			
Erpobdellidae	-99		
COLEOPTERA		<u> </u>	
Berosus		1	
Dubiraphia	1		
Dytiscidae	1		
Hydroporus	2	2	
Peltodytes	1	1	1
Stenelmis	1		
DECAPODA		<u> </u>	
Orconectes virilis	-99	-99	
DIPTERA			
Ablabesmyia	1	6	
Anopheles		1	
Ceratopogonidae	22	1	2
Chironomus	20		3
Cricotopus/Orthocladius	12	15	80
Cryptochironomus	1		
Cryptotendipes	4		
Dicrotendipes	3	4	12
Diptera	6		2
Eukiefferiella	1		11
Forcipomyiinae			5
Glyptotendipes		2	3
Hydrobaenus	52	6	141
Micropsectra			1
Nanocladius	8	4	1
Parachironomus		1	
Paratanytarsus		1	
Polypedilum halterale grp	6		
Procladius	9		
Simulium	3	9	
Tabanus		1	
Tanytarsus	6	4	6
Thienemanniella	7	4	2
Thienemannimyia grp.	6	1	1

North Fk Spring R [0703253], Station #2, Sample Date: 4/5/2007 10:30:00 AM

NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence
ORDER: TAXA NF RM SG

ORDER: TAXA	NF	RM	SG
Tribelos		1	1
Zavreliella	4		
EPHEMEROPTERA			
Caenis latipennis	33	32	4
Stenacron		1	
HEMIPTERA			
Corixidae	4	1	7
Neoplea		4	
Trichocorixa		-99	
ISOPODA			
Lirceus	17	121	45
LEPIDOPTERA			
Cossidae	-99		
LIMNOPHILA			
Fossaria	1		
Menetus		2	
Physella	14	66	28
Planorbella			3
Planorbidae	1		1
ODONATA			
Enallagma	1	3	
Ischnura		1	
Nasiaeschna pentacantha		-99	
Pachydiplax longipennis		-99	
PLECOPTERA			
Perlesta			2
TRICHOPTERA			
Cheumatopsyche		-99	
Oecetis	1	1	
TRICLADIDA			
Planariidae		3	
TUBIFICIDA			
Limnodrilus claparedianus	1		
Limnodrilus hoffmeisteri	1	5	
Quistradrilus multisetosus	12	3	
Tubificidae	94	31	18
VENEROIDEA			
Sphaeriidae	3		
-			

Aquid Invertebrate Database Bench Sheet Report Little Drywood Ck [0703250], Station #1, Sample Date: 4/4/2007 11:00:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
"HYDRACARINA"			
Acarina		1	1
AMPHIPODA			
Crangonyx		23	
Hyalella azteca	1	13	
ARHYNCHOBDELLIDA			
Erpobdellidae	-99		
COLEOPTERA			
Dubiraphia	1	1	
Haliplus		1	
Neoporus	22	19	
DECAPODA			
Orconectes		1	
Palaemonetes kadiakensis	6	9	
DIPTERA			
Ablabesmyia		1	
Ceratopogoninae	19	3	2
Chrysops	1		
Clinotanypus	1		
Cricotopus/Orthocladius	11	9	83
Dicrotendipes	1		10
Diptera	7	8	1
Eukiefferiella			20
Glyptotendipes			20
Hydrobaenus	2	1	14
Kiefferulus			2
Larsia		6	
Parakiefferiella		2	
Paratendipes			1
Polypedilum scalaenum grp			6
Procladius	8	12	
Pseudosmittia		1	
Simulium			4
Tanytarsus	2	5	1
Thienemanniella			2
Thienemannimyia grp.			1
Tipulidae	2		
Tribelos			4
EPHEMEROPTERA			
Acentrella			3

Aquid Invertebrate Database Bench Sheet Report Little Drywood Ck [0703250], Station #1, Sample Date: 4/4/2007 11:00:00 AM NF = Nonflow; RM = Rootmat; SG = Woody Debris; -99 = Presence

ORDER: TAXA	NF	RM	SG
Caenis latipennis	20	10	1
Leptophlebiidae		1	
Stenacron			3
HEMIPTERA			
Corixidae	2		
Neoplea		1	
ISOPODA			
Lirceus	160	198	45
LIMNOPHILA			
Fossaria		4	3
Physella	9	82	37
Planorbella			3
MESOGASTROPODA			
Hydrobiidae	1	17	4
ODONATA			
Ischnura		1	
Macromia		1	
TRICHOPTERA			
Ironoquia	1	1	
Oecetis			1
TUBIFICIDA			
Aulodrilus	1		
Branchiura sowerbyi	2	2	1
Enchytraeidae	6	8	
Ilyodrilus templetoni	6	2	
Limnodrilus claparedianus	1		
Limnodrilus hoffmeisteri	9	12	
Tubificidae	73	14	3
VENEROIDEA			
Sphaeriidae	9		1

Aquid Invertebrate Database Bench Sheet Report Horse Ck [0703241], Station #1, Sample Date: 3/19/2007 10:30:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; -99 = Presence

CS - Coarse, MF - Monitow, KM	- Koomat,	-99 – 1168	CIICE
ORDER: TAXA	CS	NF	RM
"HYDRACARINA"			
Acarina		3	8
AMPHIPODA			
Hyalella azteca		1	3
ARHYNCHOBDELLIDA			
Erpobdellidae	-99	1	
BRANCHIOBDELLIDA			
Branchiobdellida	5		
COLEOPTERA			
Berosus			7
Dineutus			-99
Dubiraphia	3	5	2
Helichus lithophilus	3		-99
Macronychus glabratus	4		
Neoporus		6	1
Stenelmis	13		
DECAPODA			
Orconectes luteus	-99		
Orconectes virilis	-99		
Palaemonetes kadiakensis			-99
DIPTERA			
Ablabesmyia		1	
Ceratopogoninae		11	7
Chaoborus		4	
Chironomus		1	
Chrysops		1	1
Cladopelma		10	2
Cricotopus/Orthocladius	55	4	80
Cryptochironomus		1	
Cryptotendipes			1
Dicrotendipes	2	6	2
Diptera		2	
Dolichopodidae		2	
Eukiefferiella brevicalcar grp	212	2	24
Glyptotendipes	1	5	1
Hexatoma	1		
Hydrobaenus	54	61	49
Kiefferulus	1	4	1
Labrundinia	1		
Limonia			-99

Aquid Invertebrate Database Bench Sheet Report Horse Ck [0703241], Station #1, Sample Date: 3/19/2007 10:30:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; -99 = Presence

Mesocricotopus 2 1 1 Natarsia 1 1 Nemotelus 1 1 Ormosia 1 1 Orthocladius (Euorthocladius) 7 2 Parakiefferiella 2 3 Paraphaenocladius 25 33 14 Paratanytarsus 3 3 Paratendipes 1 1 1 Pericoma 1 1 7 Polypedilum illinoense grp 1 7 3 Pricoladius 52 13 1 Pericoma 1 7 3 3 Pseudosmittia 7 3 3 3 Pseudosmittia 7 3 3 3 13 1 2 13 1 2 13 1 2 13 1 2 13 1 2 2 1 2 1 2 1 2 1 2 1 <td< th=""><th>ORDER: TAXA</th><th>CS</th><th>NF</th><th>RM</th></td<>	ORDER: TAXA	CS	NF	RM
Nemotelus 1 Ormosia 1 Orthocladius (Euorthocladius) 7 2 Parakiefferiella 2 3 Paraphaenocladius 25 33 14 Paratanytarsus 3 3 Paratendipes 1 1 1 Pericoma 1 1 7 Pericoma 1 1 7 Pericoma 1 1 7 Polypedilum illinoense grp 1 7 7 Procladius 52 13 13 Pseudosmittia 7 3 3 Simulium 97 1 1 2 Smittia 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2	Mesocricotopus	2	1	1
Orthocladius (Euorthocladius) 7 2 Parakiefferiella 2 3 Paraphaenocladius 25 33 14 Paratanytarsus 3 3 Paratendipes 1 1 1 Pericoma 1 1 7 7 3 Pericoma 1 1 7 7 3 1 7 7 3 1 7 7 3 1 7 7 3 3 1 3 1 7 7 3 3 3 1 1 7 7 3 3 3 1 1 2 13 3 3 1 1 2 13 3 3 1 2 13 3 3 1 2 13 3 3 4 4 2 3 4 4 2 3 4 4 2 3 4 4 1 1	Natarsia			1
Orthocladius (Euorthocladius) 7 2 Parakiefferiella 2 3 Paraphaenocladius 25 33 14 Paratanytarsus 3 3 Paratanytarsus 1 1 Pericoma 1 1 Polypedilum illinoense grp 1 7 Procladius 52 13 Pseudosmittia 7 3 Simulium 97 1 Smittia 1 2 Stictochironomus 2 2 Tabanus -99 -99 Tanypus 2 - Tanypus 2 - Tanytarsus 4 9 8 Tipula -99 -99 Tribelos 2 - Tvetenia bavarica grp 8 - EPHEMEROPTERA Caenis latipennis 19 9 4 Leptophlebia -99 -99 ISOPODA 4 - <tr< td=""><td>Nemotelus</td><td></td><td></td><td>1</td></tr<>	Nemotelus			1
Parakiefferiella 2 3 Paraphaenocladius 25 33 14 Paratanytarsus 3 3 Paratendipes 1 1 1 Pericoma 1 7 1 7 7 1 7 3 1 7 3 3 1 7 3 3 3 1 2 13 1 2 1 3 3 3 1 2 1 3 3 3 1 2 1 3 3 3 4 1 2 2 1 3 4 4 9 8 3 4 9 8 8 1 1 2 2 1 1 1 2 3 4 4 9 8 8 1 2 1 1 2 3 4 4 1 1 1 2 1 1 2 1 1	Ormosia		1	
Parakiefferiella 2 3 Paraphaenocladius 25 33 14 Paratanytarsus 3 3 Paratendipes 1 1 1 Pericoma 1 7 1 7 7 1 7 3 1 7 3 3 1 7 3 3 3 1 2 13 1 2 1 3 3 3 1 2 1 3 3 3 1 2 1 3 3 3 4 1 2 2 1 3 4 4 9 8 3 4 9 8 8 1 1 2 2 1 1 1 2 3 4 4 9 8 8 1 2 1 1 2 3 4 4 1 1 1 2 1 1 2 1 1	Orthocladius (Euorthocladius)	7		2
Paratanytarsus 3 Paratendipes 1 1 Pericoma 1 7 Polypedilum illinoense grp 1 7 Procladius 52 13 Pseudosmittia 7 3 Simulium 97 1 Smittia 1 2 Smittia 1 2 Stictochironomus 2 1 Tanypus 2 2 Tanypus 2 2 Tanytarsus 4 9 8 Tipula -99 1 1 Tvetenia bavarica grp 8 8 8 EPHEMEROPTERA 2 2 1 Caenis latipennis 19 9 4 4 Leptophlebia -99 16 1 1 6 LEPIDOPTERA Noctuidae 4 4 1 1 6 LEPIDOPTERA Noctuidae 3 4 4 1	Parakiefferiella	2		3
Paratendipes 1 1 Pericoma 1 7 Polypedilum illinoense grp 1 7 Procladius 52 13 Pseudosmittia 7 3 Simulium 97 1 Smittia 1 2 Smittia 1 2 Stictochironomus 2 1 Tanypus 2 1 Tanypus 2 2 Tanytarsus 4 9 8 Tipula -99 1 Tribelos 2 2 Tvetenia bavarica grp 8 8 EPHEMEROPTERA 2 4 Caenis latipennis 19 9 4 Leptophlebia -99 16 ISOPODA 1 16 LEPIDOPTERA Noctuidae 4 LIMNOPHILA 4 4 Ancylidae 3 4 Helisoma -99 Menetu	Paraphaenocladius	25	33	14
Pericoma 1 Polypedilum illinoense grp 1 7 Procladius 52 13 Pseudosmittia 7 3 Simulium 97 1 Smittia 1 2 Smittia 1 2 Stictochironomus 2 1 Tabanus -99 2 Tanypus 2 2 Tanytarsus 4 9 8 Tipula -99 1 1 Tipula -99 2 1 1 2 Tvetenia bavarica grp 8 8 8 8 8 8 1 2 1 4 1 1 9 4 4 1 2 1 1 4 1 1 9 4 4 1 1 1 4 1 1 1 4 1 1 1 4 1 1 1 4 1	Paratanytarsus			3
Polypedilum illinoense grp 1 7 Procladius 52 13 Pseudosmittia 7 3 Simulium 97 1 Smittia 1 2 Stictochironomus 2 2 Tabanus -99 -99 Tanypus 2 2 Tanytarsus 4 9 8 Tipula -99 -99 Tribelos 2 -99 Tribelos 2 -99 Tvetenia bavarica grp 8 -99 EPHEMEROPTERA -99 -99 ISOPODA -99 -99 ISOPODA -99 -99 ISOPODA -99 -99 ISOPODA -99 -99 LEPIDOPTERA -99 -99 Noctuidae 4 -9 Helisoma -99 -99 Menetus 1 -99 Menetus 1 4 U	Paratendipes	1	1	
Procladius 52 13 Pseudosmittia 7 3 Simulium 97 1 Smittia 1 2 Stictochironomus 2 1 Tabanus -99 -99 Tanypus 2	Pericoma		1	
Pseudosmittia 7 3 Simulium 97 1 Smittia 1 2 Stictochironomus 2 1 Tabanus -99 2 Tanypus 2 2 Tanytarsus 4 9 8 Tipula -99 3 4 Tribelos 2 2 2 Tvetenia bavarica grp 8 8 8 EPHEMEROPTERA 2 2 4 Caenis latipennis 19 9 4 4 Leptophlebia -99 1 16 1	Polypedilum illinoense grp		1	7
Simulium 97 1 Smittia 1 2 Stictochironomus 2 1 Tabanus -99 2 Tanytus 2 2 Tanytarsus 4 9 8 Tipula -99 3 4 9 8 EPHEMEROPTERA 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 2 3 4 4 2 3 4 4 4 3 4	Procladius		52	13
Smittia 1 2 Stictochironomus 2 1 Tabanus -99 2 Tanypus 2 2 Tipula -99 3 Tribelos 2 2 Tvetenia bavarica grp 8 8 EPHEMEROPTERA 2 2 Caenis latipennis 19 9 4 Leptophlebia -99 10 10 ISOPODA 11 16 16 LEPIDOPTERA Noctuidae 4 4 LIMNOPHILA 4 4 1 1 Ancylidae 3 4 4 1 1 Helisoma -99 9 9 9 1	Pseudosmittia		7	3
Stictochironomus 2 Tabanus -99 Tanypus 2 Tanytarsus 4 9 8 Tipula -99 1 -99 -99 Tribelos 2 2 -99 <	Simulium	97		1
Tabanus -99 Tanypus 2 Tanytarsus 4 9 8 Tipula -99 1 1 1 8 1 <t< td=""><td>Smittia</td><td></td><td>1</td><td>2</td></t<>	Smittia		1	2
Tanypus 2 Tanytarsus 4 9 8 Tipula -99 -99 -99 Tribelos 2 -99 -99 -99 EPHEMEROPTERA Caenis latipennis 19 9 4 -99 -99 -99 ISOPODA -99 ISOPODA -99 ISOPODA -99	Stictochironomus		2	
Tanytarsus 4 9 8 Tipula -99 -99 Tribelos 2 -99 Tvetenia bavarica grp 8	Tabanus	-99		
Tipula -99 Tribelos 2 Tvetenia bavarica grp 8 EPHEMEROPTERA -99 Caenis latipennis 19 9 4 Leptophlebia -99 -99 ISOPODA -99 -99 Lirceus 11 16 LEPIDOPTERA -9 -9 Noctuidae 4 -99 Menylidae 3 4 Helisoma -99 -99 Menetus 1 4 Physella 1 4 LUMBRICULIDA -99 -99 MESOGASTROPODA -99 -99 Mescogastropoda -99 -99 Mescogastropoda -99 -99 Mescogastropoda -99 -99 Mescogastropoda -99 -99 Mescogastropoda -99 -99 Mescogastropoda -99 -99 Mescogastropoda -99 -99 Mescogastropoda	Tanypus		2	
Tribelos 2 Tvetenia bavarica grp 8 EPHEMEROPTERA 19 9 4 Caenis latipennis 19 9 4 Leptophlebia -99 ISOPODA 11 16 LEPIDOPTERA Noctuidae 4 4 LIMNOPHILA Ancylidae 3 4 Helisoma -99 Menetus 1 9 Menetus 1 4 1 1 4 LUMBRICULIDA 1 4 1 1 1 MESOGASTROPODA Hydrobiidae 1 1 7 0 1 7 0 1 1 7 0 1 1 1 7 0 1	Tanytarsus	4	9	8
Tvetenia bavarica grp 8 EPHEMEROPTERA 19 9 4 Caenis latipennis 19 9 4 Leptophlebia -99 ISOPODA 11 16 LEPIDOPTERA Noctuidae 4 4 LIMNOPHILA Ancylidae 3 4 Helisoma -99 Menetus 1 9 Menetus 1 4 1 1 4 LUMBRICULIDA 1 4 1 1 1 MESOGASTROPODA Hydrobiidae 1 1 7 0 1 1 7 0 1 1 7 0 0 1 1 1 7 0 0 1	Tipula	-99		
EPHEMEROPTERA Caenis latipennis 19 9 4 Leptophlebia -99 ISOPODA Lirceus 11 16 LEPIDOPTERA Noctuidae 4 LIMNOPHILA Ancylidae 3 4 Helisoma -99 Menetus 1 Physella 1 4 LUMBRICULIDA Lumbriculidae 14 1 1 MESOGASTROPODA Hydrobiidae 1 1 1 7 ODONATA Argia 1	Tribelos		2	
Caenis latipennis 19 9 4 Leptophlebia -99 ISOPODA -99 Lirceus 11 16 LEPIDOPTERA -90 Noctuidae 4 LIMNOPHILA -4 Ancylidae 3 4 Helisoma -99 Menetus 1 -99 Menetus 1 4 LUMBRICULIDA 1 1 Lumbriculidae 14 1 1 MESOGASTROPODA	Tvetenia bavarica grp	8		
Leptophlebia -99 ISOPODA 11 16 LEPIDOPTERA 4 4 Noctuidae 4 4 LIMNOPHILA 3 4 Ancylidae 3 4 Helisoma -99 Menetus 1 4 Physella 1 4 LUMBRICULIDA 1 1 1 MESOGASTROPODA 4 1 1 7 ODONATA 1 1 7 ODONATA 1 1 1 1 Argia 1 1 1 1	EPHEMEROPTERA			
ISOPODA 11 16 LEPIDOPTERA 4 Noctuidae 4 LIMNOPHILA 3 4 Ancylidae 3 4 Helisoma -99 Menetus 1 -99 Menetus 1 4 LUMBRICULIDA 1 1 1 Lumbriculidae 14 1 1 MESOGASTROPODA 1 1 7 ODONATA 1 1 7 ODONATA 1 1 1 Argia 1 1 1	Caenis latipennis	19	9	4
Lirceus 11 16 LEPIDOPTERA 4 Noctuidae 4 LIMNOPHILA 3 4 Ancylidae 3 4 Helisoma -99 Menetus 1 -99 Menetus 1 4 LUMBRICULIDA 1 4 Lumbriculidae 14 1 1 MESOGASTROPODA	Leptophlebia			-99
LEPIDOPTERA 4 Noctuidae 4 LIMNOPHILA 3 4 Ancylidae 3 4 Helisoma -99 Menetus 1 4 Physella 1 4 LUMBRICULIDA 1 1 1 Lumbriculidae 14 1 1 MESOGASTROPODA 1 1 7 ODONATA 1 1 7 ODONATA 1 1 1 Argia 1 1 1	ISOPODA			
Noctuidae 4 LIMNOPHILA 3 4 Ancylidae 3 4 Helisoma -99 Menetus 1 -99 Menetus 1 4 LUMBRICULIDA 1 1 1 Lumbriculidae 14 1 1 MESOGASTROPODA 1 1 7 ODONATA 1 1 7 ODONATA 1 1 1 Argia 1 1 1	Lirceus	11		16
LIMNOPHILA Ancylidae 3 4 Helisoma -99 Menetus 1 Physella 1 4 LUMBRICULIDA 1 1 1 Lumbriculidae 14 1 1 MESOGASTROPODA 1 1 7 ODONATA 1 1 7 Argia 1 1 1	LEPIDOPTERA			
Ancylidae 3 4 Helisoma -99 Menetus 1 Physella 1 4 LUMBRICULIDA 1 1 1 Lumbriculidae 14 1 1 MESOGASTROPODA 1 1 7 ODONATA 1 1 7 ODONATA 1 1 1 Argia 1 1 1	Noctuidae			4
Ancylidae 3 4 Helisoma -99 Menetus 1 Physella 1 4 LUMBRICULIDA 1 1 1 Lumbriculidae 14 1 1 MESOGASTROPODA 1 1 7 ODONATA 1 1 7 ODONATA 1 1 1 Argia 1 1 1	LIMNOPHILA			
Menetus 1 Physella 1 4 LUMBRICULIDA Lumbriculidae 14 1 1 MESOGASTROPODA Hydrobiidae 1 1 7 ODONATA Argia 1 1		3	4	
Physella14LUMBRICULIDA Lumbriculidae1411MESOGASTROPODA Hydrobiidae117ODONATA Argia117	Helisoma			-99
LUMBRICULIDALumbriculidae1411MESOGASTROPODA117Hydrobiidae117ODONATA111Argia11	Menetus	1		
Lumbriculidae1411MESOGASTROPODA Hydrobiidae117ODONATA Argia111	Physella	1		4
MESOGASTROPODA Hydrobiidae 1 1 7 ODONATA Argia 1	LUMBRICULIDA			
Hydrobiidae 1 1 7 ODONATA Argia 1	Lumbriculidae	14	1	1
ODONATA Argia 1	MESOGASTROPODA			
ODONATA Argia 1	Hydrobiidae	1	1	7
	ODONATA			
Basiaeschna janata -99	Argia			1
	Basiaeschna janata			-99

Aquid Invertebrate Database Bench Sheet Report Horse Ck [0703241], Station #1, Sample Date: 3/19/2007 10:30:00 AM CS = Coarse; NF = Nonflow; RM = Rootmat; -99 = Presence

ORDER: TAXA	CS	NF	RM
	CS		IXIVI
Enallagma		1	
Libellulidae			1
PLECOPTERA			
Isoperla	3		
Paracapnia angulata	1		
Perlesta	37		2
TRICHOPTERA			
Ironoquia			1
Nectopsyche		1	
Rhyacophila	5		1
TUBIFICIDA			
Aulodrilus		2	
Branchiura sowerbyi	1	2	
Enchytraeidae	34	26	6
Ilyodrilus templetoni		2	
Limnodrilus cervix		5	
Limnodrilus claparedianus		2	
Limnodrilus hoffmeisteri	1	11	4
Quistradrilus multisetosus	1		1
Tubificidae	43	116	11
VENEROIDEA			
Sphaeriidae	21	1	

Aquid Invertebrate Database Bench Sheet Report Cedar Ck [0703242], Station #1, Sample Date: 3/19/2007 2:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; -99 = Presence

ORDER: TAXA	CS	NF	RM
"HYDRACARINA"	CS	111	IXIVI
Acarina		1	18
AMPHIPODA		1	10
Hyalella azteca			57
ARHYNCHOBDELLIDA			31
Erpobdellidae	-99	1	
COLEOPTERA	-99	1	
Dineutus			1
Neoporus		8	60
Peltodytes		0	6
Scirtidae			18
Stenelmis	11		10
	11		
DIPTERA Coratopogoninae	3	32	1
Ceratopogoninae Chironomus	1	2	1
	1		
Chapelma	1	11	
Cnephia Crisotomys/Orthogladius		2	26
Cricotopus/Orthocladius	202	2	26
Cryptochironomus Diamesa	1	1	
Einfeldia	1	4	
	70	4	1
Eukiefferiella brevicalcar grp	79		
Glyptotendipes	105	22	10
Hydrobaenus Kiefferulus	195	22	15
	11	4	
Orthocladius (Euorthocladius)	11	1	
Paraphaenocladius Palymadilym illinganga gra		1	1
Polypedilum illinoense grp Procladius	1	69	1
Pseudosmittia Pseudosmittia	6	2	1
	5		
Simulium Smittia	3	1	
		1	1
Tabanus		22	1
Tanypus	1	23 5	3
Tanytarsus	1	3	3
EPHEMEROPTERA	1 2	I	
Acentrella Capria latinoppia	2		2
Caenis latipennis		1	3
Fallceon	1	1	
Leptophlebiidae	1		

Aquid Invertebrate Database Bench Sheet Report Cedar Ck [0703242], Station #1, Sample Date: 3/19/2007 2:30:00 PM CS = Coarse; NF = Nonflow; RM = Rootmat; -99 = Presence

ORDER: TAXA	CS	NF	RM
HEMIPTERA			
Ranatra fusca			2
Ranatra nigra			1
ISOPODA			
Lirceus	-99		6
LIMNOPHILA			
Ancylidae	1		1
Helisoma			1
Menetus		1	2
Physella	1	1	19
LUMBRICINA			
Lumbricina	-99		
LUMBRICULIDA			
Lumbriculidae		1	
MEGALOPTERA			
Sialis		1	
ODONATA			
Epicordulia		-99	
Nasiaeschna pentacantha			1
Somatochlora		-99	
PLECOPTERA			
Allocapnia	4		
Hydroperla	1		
Isoperla	57		
TRICHOPTERA			
Hydroptila	1		
TRICLADIDA			
Planariidae			2
TUBIFICIDA			
Aulodrilus		13	
Branchiura sowerbyi		3	
Enchytraeidae	11	2	3
Limnodrilus hoffmeisteri		2	$\frac{3}{3}$
Quistradrilus multisetosus		28	5
Tubificidae	19	60	21
VENEROIDEA			
Sphaeriidae		8	4