EEP1 ELogBook – Week 3

24/8/2023 - 29/8/2023

AXXXXXXX - Brians Tjipto Meidianto

Studio

Activity 1

Activity 2

• DC Operating Point Simulation

1.

2.	V(V1)	10.00 V
	V(V2)	5.389 V
	V(V3)	778.9 mV
	V(V4)	778.9 mV

3. Positive Direction (Clockwise), 46.11mA

DC Sweep Simulation

1.

2.

3. The I-V Graph of R1 is a linear line, while the I-V Graph of the Diode is an exponential line.

Lab

Activity 1:

1. Resistors

a. Colour

- i. Brown Black Brown Gold
- ii. Brown Black Red Gold
- iii. Orange Orange Brown Gold
- iv. Brown Green Red Gold
- v. Red Red Orange Gold
- vi. Red Red Brown Gold
- vii. Red Red Red Gold
- viii. Green Blue Red Gold
- ix. Brown Black Orange Gold
- x. Green Blue Brown Gold

b. Value

- i. 100 Ω ±5%
- ii. $1000 \Omega \pm 5\%$
- iii. $330 \Omega \pm 5\%$
- iv. $1500 \Omega \pm 5\%$
- v. 22 kΩ ±5%
- vi. 220 Ω ±5%
- vii. $2200 \Omega \pm 5\%$
- viii. $5600 \Omega \pm 5\%$
- ix. $10 \text{ k}\Omega \pm 5\%$
- x. 560 Ω ±5%

c. Tolerance

Original	Lower	Upper
Value	Bound	Bound
100 Ω	95 Ω	105 Ω
1,000 Ω	950 Ω	1,050 Ω
330 Ω	314 Ω	347 Ω
1,500 Ω	1,425 Ω	1,575 Ω
22,000 Ω	20,900 Ω	23,100 Ω
220 Ω	209 Ω	231 Ω
2,200 Ω	2,090 Ω	2,310 Ω
5,600 Ω	5,320 Ω	5,880 Ω
10,000 Ω	9,500 Ω	10,500 Ω
560 Ω	532 Ω	588 Ω

d. $979\Omega / 0.979k\Omega$

Activity 2:

- 1. 10mA
 2. 10.10V
 3. $R=\frac{V}{I}=\frac{10.10}{0.01}=1010~\Omega$, The Ohm's Law is verified as it is still in the accepted range.

Activity 3:

- 1. Red
- 2. Data Entry Table

R2	I	VR1	VLED
100	35	3.552	2.626
220	22	2.401	2.421
330	18	1.803	2.361
560	12	1.173	2.184
820	9	0.858	2.108
1000	7.5	0.721	2.076
2200	3.5	0.345	1.978
5600	1.5	0.136	1.896
10000	1	0.074	1.857
22000	0.5	0.031	1.811

3. I-V Plot for the 100Ω Resistor

4. I-V Plot for the LED

5. Combined Subgroup I-V Plot for 100Ω Resistor

6. Combined Subgroup I-V Plot for LED

Extra Activity:

1. Circuit 1

a. VR1: 2.516V

b. VR2: 2.524Vss

c. VR3: 5.043V

d. IR1:
$$\frac{2.516}{100} = 25.16mA$$

e. IR2: $\frac{2.524}{100} = 25.24mA$
f. IR3: $\frac{5.043}{150} = 33.62mA$

e. IR2:
$$\frac{2.524}{100} = 25.24 mA$$

f. IR3:
$$\frac{5.043}{150} = 33.62 mA$$

2. Circuit 2

a. VR1: 2.868V

b. VR2: 2.191V

c. VR3: 2.172V

d. IR1:
$$\frac{2.868}{100} = 28.68 mA$$

d. IR1:
$$\frac{2.868}{100} = 28.68mA$$

e. IR2: $\frac{2.191}{150} = 14.61mA$
f. IR3: $\frac{2.172}{150} = 14.48mA$

f. IR3:
$$\frac{2.172}{150} = 14.48 mA$$

Activity 4:

#	Multimeter 1 (V)	Multimeter 2 (V)
1	3.50	4.00
2	4.20	4.08
3	4.10	3.82
4	4.40	4.10
5	3.80	4.00
Mean	4.00	4.00
Standard Deviation	0.35	0.11

$$\sqrt{\frac{\left(3.50-4.00\right)^{2}+\left(4.20-4.00\right)^{2}+\left(4.10-4.00\right)^{2}+\left(4.40-4.00\right)^{2}+\left(3.80-4.00\right)^{2}}{4}}$$

=0.35

$$\sqrt{\frac{\left(4.00-4.00\right)^{2}+\left(4.08-4.00\right)^{2}+\left(3.82-4.00\right)^{2}+\left(4.10-4.00\right)^{2}+\left(4.00-4.00\right)^{2}}{4}}$$

=0.11

- Based on the calculated standard deviations, we can conclude that Multimeter 2 (with an SD of 0.11) is more precise than Multimeter 1 (with an SD of 0.35). A smaller standard deviation indicates less variability or spread in the measurements, which in turn reflects higher precision. Therefore, Multimeter 2 provides more consistent measurements compared to Multimeter 1.
- 2. The resolution represents the smallest difference between two values that the instrument can distinguish.
 - For Multimeter 1, the smallest increment between measurements is 0.1 V (from 3.5 V to 4.4 V). Therefore, the resolution is 0.1 V.
 - For Multimeter 2, the smallest increment between measurements is 0.02 V (from 3.82 V to 4.10 V). Therefore, the resolution is 0.02 V.

In summary, the resolution of Multimeter 1 is 0.1 V, and the resolution of Multimeter 2 is 0.02 V. This means that Multimeter 2 can measure smaller differences in voltage compared to Multimeter 1, making it more sensitive in detecting subtle changes in the measured values.