Seminar 1. Boosting

Alexander Romanenko

MIPT, SRR

02/09/2015 Moscow

Table of content

- Semester roadmap
 - Course introduction
 - Course programme
 - Evaluation
- Previous semester
 - Reminder
- 3 AdaBoost
 - General idea of composition algorithms
 - AdaBoost
 - Example

Alexey Romanenko

- alexromsput@gmail.com
- Education:

MIPT, Faculty of Management and Applied Mathematics

- Work experience:
 - Forecsys
 - Svyaznoy Logistics
 - SAS Institute

Alexander Romanenko

- angriff07@gmail.com
- Education:
 - MIPT, Faculty of Management and Applied Mathematics
- Work experience:
 Samsung Research Institute Russia

Course programme

- Deep Leaning, Autoencoders, CNN, RNN
- Compositions
- Feature selection
- Unsupervised learning
- Optional (forecasting, reinforcement learning, topic modeling)

Remarks

Environment

- Python (notebook)
- R
- Matlab / Octave
- Weka, RapidMiner, Orange
- Mahout, VowpalWabbit

Seminar materials:

Materials on Google drive

Game rules

Reminder

- Classification
 - Metric methods;
 - Stochastic methods;
 - SVM;
 - Logit-Regressions;
 - Bayes-classificator
- Regression
 - OLS:
 - Ridge-Reegression;
 - LASSO:
 - Elastic-net;

Reminder

- Clustering
 - Graph based algorithms
 - FORFI
 - k-means
 - EM-algorithm
- Time Series forecasted methods
 - Regression (LAWR)
 - LOWESS (Localy Weighted Scatter plot Smoothing) (непараметрическая регрессия)
 - ES (экспоненципальное сглаживание)
 - ARIMA, ARMA
- NN
 - for classification
 - for regression

Composition

$$X^l = (x_i,y_i)_{i=1}^l \in X imes Y$$
 — обучающая выборка, $y_i = y^*(x_i);$ $a(x) = C(b(x))$ — алгоритм, где $b: X \to R$ — базовые алгоритмы, $C: R \to Y$ — решающее правило, R — пространство оценок

Определение

Композиция базовых алгоритмов b_1,\ldots,b_T

$$a(x) = C(F(b_1(x), \dots, b_T(x))),$$

где $F: \mathbb{R}^T \to \mathbb{R}$ — корректирующий оператор

Зачем вводится $R?\;\{F:R^T\to R\}\;???\;\{F:Y^T\to Y\}$

Questions

$$R, C, b$$
?

- Task of classification, Y = -1, +1
- Task of classification, $Y = 1, \dots, M$
- Task of regression, $Y = \mathbb{R}$

Quality functional of base algorithms, \mathcal{L} — loss function

$$Q(b, X^l) = \sum_{i=1}^{l} \mathcal{L}(b(x_i), y_i)$$

Greedy iterative process:

$$b_1 = \arg\min_b Q(b, X^l) \tag{1}$$

$$b_2 = \operatorname*{arg\,min}_{b,F} Q(F(b_1,b),X^l)$$

$$b_t = \arg\min_{b \in F} Q(F(b_1, \dots, b_{t-1}, b), X^l)$$
 (2)

Reduce (2) to (1), but with weights of objects and may be another loss function

$$b_t = \arg\min_b \sum_{i=1}^l w_i \tilde{\mathcal{L}}(b(x_i), y_i).$$

Boosting for binary classification

$$Y=-1,+1,\,b_t:X\to -1,0,+1,\,C(b)=\mathrm{sign}(b)$$
 Weighted voting

$$a(x) = \operatorname{sign}(\sum_{t=1}^{T} \alpha_t b_t(x)), x \in X.$$

Number of error on X^l :

$$Q_T = \sum_{i=1}^{l} \left[y_i \sum_{t=1}^{T} \alpha_t b_t(x_i) < 0 \right]$$

Heuristics:

- Fix $\alpha_1 b_1(x), \ldots, \alpha_{t-1} b_{t-1}(x)$, then find $\alpha_t b_t(x)$
- Plain approximation of $[M \leq 0]$

Loss functions

$$E(M)=e^{-M}$$
 — экспоненциальная (AdaBoost); $L(M)=\log_2(1+e^{-M})$ — логарифмическая (LogitBoost); $Q(M)=(1-M)^2$ — квадратичная (GentleBoost); $G(M)=\exp(-cM(M+s))$ — гауссовская (BrownBoost); $S(M)=2(1+e^M)^{-1}$ — сигмоидная; $V(M)=(1-M)_+$ — кусочно-линейная (из SVM);

Main theorem, Notation, AdaBoost

Loss function approximation:

$$Q \leqslant \tilde{Q_T} = \sum_{i=1}^{l} \exp\left(-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)\right) \exp(-y_i \alpha_t b_t(x_i))$$

Normalizing weights: $\tilde{W}^l = (\tilde{w}_1, \dots, \tilde{w}_l), \ \tilde{w}_i = w_i / \sum_{j=1}^l w_j.$

Weighted number of positive and negative classification:

$$N(b, \tilde{W}^l) = \sum_{i=1}^{l} \tilde{w}_i [b(x_i) = -y_i],$$

$$P(b, \tilde{W}^l) = \sum_{i=1}^l \tilde{w}_i [b(x_i) = y_i]$$

1 - N - P weighted number of rejections

Main theorem. AdaBoost

Theorem (Freund, Schapire, 1995)

- 2 $\forall U^l: \sum_{u \in U^l} u = 1 \ \exists b: N(b; U^l) < \frac{1}{2}.$

If (1) and (2) then $ilde{Q_T}$ reaches minimum when

$$b_T = \arg\min_{b \in B} N(b, \tilde{W}^l),$$

$$\alpha_T = \frac{1}{2} ln \frac{1 - N(b, \tilde{W}^l)}{N(b, \tilde{W}^l)}$$

Loss functions

```
Вход: обучающая выборка X^{\ell}; параметр T;
Выход: базовые алгоритмы и их веса \alpha_t b_t, t = 1, ..., T;
 1: инициализировать веса объектов:
     w_i := 1/\ell, \ i = 1, \ldots, \ell:
 2: для всех t = 1, ..., T
        обучить базовый алгоритм:
        b_t := \arg\min N(b; W^{\ell});
       \alpha_t := \frac{1}{2} \ln \frac{1 - \mathcal{N}(b_t; \mathcal{W}^{\ell})}{\mathcal{N}(b_t; \mathcal{W}^{\ell})};
        обновить веса объектов:
 5:
        w_i := w_i \exp(-\alpha_t y_i b_t(x_i)), \quad i = 1, \dots, \ell;
        нормировать веса объектов:
 6:
        w_0 := \sum_{i=1}^{\ell} w_i;
        w_i := w_i / w_0, i = 1, \dots, \ell:
```


Iter 1:
$$Q=200.61$$
, $Errors=64$

