4 ベクトル空間と部分空間

演習 4.1 $\mathbb R$ 上の実数値連続関数の全体がなす集合を $C(\mathbb R)$ と書く. $f,g\in C(\mathbb R),c\in \mathbb R$ に対して、和 $f+g\in C(\mathbb R)$ とスカラー倍 $cf\in C(\mathbb R)$ を, $x\in \mathbb R$ に対してそれぞれ

$$(f+g)(x) = f(x) + g(x), (cf)(x) = cf(x)$$

を対応させる関数として定義する. この和とスカラー倍に関して $C(\mathbb{R})$ がベクトル空間になることを定義に従って示せ (まず最初に、ゼロ元にあたる $C(\mathbb{R})$ の元を定義し、 $C(\mathbb{R})$ が $(\mathrm{VS1}) \sim (\mathrm{VS8})$ を満たすことを確かめよ).

演習 4.2 次の $C(\mathbb{R})$ の部分集合がそれぞれ部分ベクトル空間になるかどうかを判定 せよ (理由も添えて).

- (1) $\{f \in C(\mathbb{R}) \mid \lim_{x \to 0} f(x) = 1\}.$
- (2) $\{f \in C(\mathbb{R}) \mid \lim_{x \to \infty} f(x) = 0\}.$
- (3) $\{f \in C(\mathbb{R}) \mid \lim_{x \to \infty} f(x) = \infty \text{ \sharp \hbar is } \lim_{x \to \infty} f(x) = -\infty\}.$
- (4) $\{f \in C(\mathbb{R}) \mid f$ は 有界 $\}$. (ここで, $f \in C(\mathbb{R})$ が有界であるとは, ある正の数 M が存在して $\forall x \in \mathbb{R}$ に対して |f(x)| < M となることをいう.)
- (5) $C^1(\mathbb{R})=\{f\in C(\mathbb{R})\mid f$ は \mathbb{R} で連続的微分可能 $\}$. (ここで, $f\in C(\mathbb{R})$ が連続的微分可能であるとは, f が微分可能かつ導関数 f' が連続関数であることをいう.)