Linear Algebra, Quiz 10, Section L2

Name:	Student ID:
	is in a finite-dimensional vector space V such that $Span(S) = V$, an be reduced to a basis for V by removing appropriate vectors
some vector v in S' is expressible a Plus/Minus Theorem (Theorem 5.4 span V. If S' is linearly independent dependent, then we can remove so	but is not a basis for V, then S' is a linearly dependent set. Thus is a linear combination of the other vectors in S. By the 4.4b), we can remove v from S, and the resulting set will still t, then is a basis for V, and we are done. If s' is linearly ome appropriate vector from S' to produce a set that still spans fors in this way until we finally arrive at a set of vectors in S that V. This subset of S is a basis for V.