张金源

到生級:160611 翌号:76066001

1.简尝题

(1). 联结词完全集: {7,1,1}

(2). 差A是含式公式,则¬A是含式公式 若A和B是含式公式,则(A→B),(AAB),(AVB)是含式公式 若A是全式公式,以是个体实元,则(WA)是含式公式。

(3).可能性:

根据定理: 若THA则THA 证明: 设A1,___,An是A的从下的一个推演,归纳证明THAi, i=1,__,n。

- + 若Ai是公理、则A.为永喜式,因此TFAi
- · 岩AiET,则是丝TFAi
- *老Ai是由Ai,An根据提MP规则生成,给An=Ai→Ai,根据归纳假设有:

TEAJOTEA;—) Ai, OPP对继值v, 考满足T, 201v(Aj)=v(Aj-)Ai)=1有v(Ai)=1 因此TEAi, 推论: 若HA,则HA。 The Hobbal 160611

宏斜生:

据这理艺TFA,则TFA

证明: 8对任意满定下的赋值v,则vi茜显A.则TUEnA}是不可满足的, 到IU和是不协调的。因此, IU和JHA, 根据演绎定理有: IHAA)A, 有Tr(¬A→A)→A则TrA, 才住论:若FA,则rA。

- (4). 若TLB, 2NTLA→B 57.BA:
- * T+B
- * THB→(A→B) 公理模式A(:A→(B→A)
- *THA-B.

2.论建题

COI. 海锋定理· 差A盖语句,则TU(A) FB当直仅当TFA→B 中的高级的生(港IUEA) +B,比EBAI+A+B),设A,,一和是B的从IUEA)的一个推通、组织 EBAILA - Ailial, -, no

b. 公要性若ThA→B, DITU(A)+B, I+A→B, DITU(A) @HA→B, 因为IU(A)+A, BULL TUGAS+B.

ではなる ト(P→(Q→R))→(Q→(P→R)) 226A: A1=P→(Q→R) A6T P-> (Q-)R) +Q->(P-)R) A32Q > R A,2A2+AB P-) (B-) R), Q+P-) R AGET A4 = Q P->(Q->R),Q,PB+R A5 = R A3=A4-73

(2)-6). Yx (Q(x)-)0≤x)

张到原 出土级:160611

(b). bx(Q(x)→Эy(Q(y)→)Y<X)) 自建数域: 假 整数域: 真

(c). VxVy(QK) \Q(y) → X+Y=Y+X 自然影城:真 整数域:真

(3). 和直式: 老对 语言的解释军工及解释工厂的任何值 V都有VF(A)=1, 相流直式 可满足式: 对 记言言的存在解释工及解释工厂的任何值 V都有VF(A)=1, A为可诺足式。 为假式: 对 记言的解释工及解释工厂的任何值 V都有VF(A)=0, A是就假式。 也愿: 如真可称可满足,但可满足不一定是知真。 公式的可满足,阿龄为可能为可满足。

(4). U6 共221:1人 A并生生(VXA)

FYX(P(K)V¬P(K))

涩明:

AI= 7P(x)-)7P(x) ATA

Az=P(x)V-p(x) QVR=(-Q->R)

A3= Yx (P(x) V¬P(x))在这位AU6热迎推出 Yx (P(x) V¬P(x))。

张金/原 HO6660 (4)

3.判断题

(1).(a).不可波足

TF7Q/Q(=)A

如果丁可满足,强则存在一个指派以,使得

T为真,在此有7Q1Q为真值7Q1Q恒假,参5题目矛盾,则T不可满足。

(b).可滋处 取了的值为批查式,就可以判断命题逻辑是可满足。

(1).不成之 假设企生均为全体的处数 尺似二次是偶数 (26)二次为 奇数 (26)二次为 奇数 (26)二次为 奇数 (26) 26(26)

(3).成色

从意义上进行扩往理,到xyp(x,y)含义为存在一个x,xin一切y均有p(x,y)成立是真则必然可针生得xin一切y,均存在x使得p(x,y)是真,后者kix,取一前者kix 即更可。

(4).不成主

给论坐域为全体包出数

则 R(x) - x为偶数 Q(x) - x为奇数

到Vx(Q(x)VR(x))为真, VxQ(x)为假, VxR(x)为假则 VxQ(x)V VxR(x)为假 这众理系统不成多它。

(1) (1pv19)→(p←279) (-) 2(2pv19) v((1p19) v(p19)) (-) (p19) v(1p19) v(p129)

(2). $\forall \times (A(\times) \rightarrow (\exists_{\overline{z}}B(\overline{z}) \rightarrow \exists_{\overline{y}}C(\times, y)))$ $\angle =)$ $\forall \times (A(\times) \rightarrow \forall_{\overline{z}}\exists_{\overline{y}}(B(\overline{z}) \rightarrow C(\times, y)))$ $\angle =)$ $\forall \times \forall_{\overline{z}}\exists_{\overline{y}}(A(\times) \rightarrow (B(\overline{z}) \rightarrow C(\times, y)))$

5.证明题

(n.(6→P)→(Q¬R) FQハ(P→R) 公Q紹養値为の(假) 財

(0->p) -> (0->R) (2->1->) (0->R) (->) (->) (->) (->) (->) (->) (p->R)

人二〇从上进了看出1日〇、故1日〇为假,则推论不成立。

(2). R->76,P-) Q+R->7P

DR 前點提

②Pmp前提

3 70 0,0%

g poq 新提

B 7P 30

@ R-77 00

(3). $A_1 = \forall x \neg P(x)$ F $A_2 = \neg F(a_1)$ $A_1 \rightarrow A_2$ $A_3 = \neg P(a_2)$ $A_1 \rightarrow A_3$ $A_4 = \neg P(a_{n-1})$ $A_1 \rightarrow A_{n-1}$ $A_{n+1} = \partial_x \neg P(x)$

76066001 3831/g (c).

1 vd) A (bvdL) A (bvd

MARINE PERSONAL CONTRACTORS (CAND)

(NX)) - (BB) - (BA)

(A(-9) AD = (A(-9) A)

相(別)の直直直の(作到)時

(800) C (800)

100 400 121 3

0(×) Ni An Mai Alin Mil

DER TRANSPORTED P

10年 南麓江

9 Pro 通程 ② 7 R = 0,04 ···

0 p-1 ALL