AP Calculus Practice Test 2

1.
$$\int x^2 (x^3 + 5)^6 dx =$$

(A)
$$\frac{1}{3}(x^3+5)^6+C$$

(B)
$$\frac{1}{3}x^3\left(\frac{1}{4}x^4 + 5x\right)^6 + C$$

(C)
$$\frac{1}{7}(x^3+5)^7+C$$

(D)
$$\frac{3}{7}x^2(x^3+5)^7+C$$

(E)
$$\frac{1}{21}(x^3+5)^7+C$$

2. Which of the following gives the length of the curve $y = \sqrt{x}$ over the closed interval [1,4]?

(A)
$$\int_{1}^{4} \sqrt{1 + \frac{1}{2\sqrt{x}}} \, dx$$

(B)
$$\int_{1}^{4} \sqrt{1 + \frac{1}{2x}} dx$$

(C)
$$\int_{1}^{4} \sqrt{1 - \frac{1}{4x}} dx$$

(D)
$$\int_{1}^{4} \sqrt{1 + \frac{1}{4x}} \, dx$$

(E)
$$\int_{1}^{4} \sqrt{1 + \frac{1}{4}x^2} dx$$

$$3. \qquad \int \frac{6}{x^2 + 10x + 16} dx =$$

(A)
$$-\ln|(x+8)(x+2)| + C$$

(B)
$$\ln \left| \frac{x+2}{x+8} \right| + C$$

(C)
$$\ln \left| \frac{x+8}{x+2} \right| + C$$

(D)
$$6\ln|(x+8)(x+2)| + C$$

(E)
$$6 \ln \left| \frac{2x+10}{(x+2)(x+8)} \right| + C$$

$$4. \qquad \int \left(2^t + e^{\pi}\right) dt =$$

(A)
$$\frac{2^{t+1}}{t+1} + \frac{e^{\pi+1}}{\pi+1} + C$$

(B)
$$\frac{2^t}{\ln 2} + e^{\pi}t + C$$

(C)
$$\frac{2^t}{\ln 2} + e^{\pi} + C$$

(D)
$$2^t \ln 2 + \frac{e^{\pi+1}}{\pi+1} + C$$

(E)
$$2^t \ln 2 + e^{\pi}t + C$$

- 5. $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ and $\int_{0}^{1} \frac{1}{x^{p}} dx$ both diverge when p = 1

- (A) 2 (B) 1 (C) $\frac{1}{2}$ (D) 0 (E) -1

- 6. If $F(x) = \int_{4}^{x^2} \sqrt{t} \ dt$ for all real numbers x > 0, then F'(x) =

- (A) $-\frac{1}{2x}$ (B) \sqrt{x} (C) x (D) $2x^2$ (E) $\frac{2x^3 16}{3}$

- 7. Let g be the function defined by $g(x) = \int_{-1}^{x} \frac{t^3 t^2 6t}{\sqrt{t^2 + 7}} dt$. On which of the following intervals is g decreasing?
 - (A) $x \le -2$ and $0 \le x \le 3$
 - (B) $x \le -2$ and $x \ge 3$
 - (C) $-2 \le x \le 0$ and $x \ge 3$
 - (D) $-2 \le x \le 3$
 - (E) $x \le -1$

The following questions may require the use of a graphing calculator.

- 8. Let g be a function such that g(-1) = 0 and g(2) = 5. Which of the following conditions guarantees that there is an x, -1 < x < 2, for which g(x) = 3?
 - (A) g is defined for all x in (-1, 2).
 - (B) g is continuous for all x in [-1, 2].
 - (C) g is increasing on [-1, 2].
 - (D) There exists an x in (-1, 2) such that g'(x) = 5.
 - (E) $\int_{-1}^{2} g(x) dx = 3$
- 9. If $f(x) = (x+2)\sin(\sqrt{x+2})$, what is the average value of f on the closed interval [0, 6]?
 - (A) 2.220
- (B) 3.348
- (C) 4.757
- (D) 20.090
- (E) 28.541

x	f(x)	f'(x)	f''(x)	
0	1	-2	5	
1	2	6	-1	

- 10. Let f be a twice-differentiable function with selected values of f and its derivatives shown in the table above. What is the value of $\int_0^1 x f''(x) dx$?
 - (A) 6

- (B) 5 (C) 3 (D) $-\frac{1}{2}$ (E) -1

Free Response Questions

- 1. Let R be the region in the first quadrant enclosed by the graphs of $g(x) = \sqrt{x}$ and $h(x) = \frac{x}{3}$, as shown in the figure above.
 - (a) Find the area of region R.
 - (b) Write, but do not evaluate, an expression involving one or more integrals that gives the volume of the solid generated when R is revolved about the horizontal line y = 4.
 - (c) Find the maximum vertical distance between the graph of g and the graph of h between x = 0 and x = 16. Justify your answer.

t (seconds)	0	3	5	8	12
k(t) (feet per second)	0	5	10	20	24

- 2. Kathleen skates on a straight track. She starts from rest at the starting line at time t = 0. For $0 < t \le 12$ seconds, Kathleen's velocity k, measured in feet per second, is differentiable and increasing. Values of k(t) at various times t are given in the table above.
 - (a) Use the data in the table to estimate Kathleen's acceleration at time t=4 seconds. Show the computations that lead to your answer. Indicate units of measure.
 - (b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate $\int_0^{12} k(t) dt$. Indicate units of measure. Is this approximation an overestimate or an underestimate for the value of $\int_0^{12} k(t) dt$? Explain your reasoning.
 - (c) Nathan skates on the same track, starting 5 feet ahead of Kathleen at time t = 0. Nathan's velocity, in feet per second, is given by $n(t) = \frac{150}{t+3} 50e^{-t}$. Write, but do not evaluate, an expression involving an integral that gives Nathan's distance from the starting line at time t = 12 seconds.
 - (d) Write an expression for Nathan's acceleration in terms of t.