CS/DS 541: Class 17

Jacob Whitehill

Expectation

 Recall that the expected value of a function f w.r.t. a probability distribution P(z) is defined as:

$$\mathbb{E}_P[f(\mathbf{z})] = \int_{\mathbf{z}} f(\mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

Expectation

 Note that the probability distribution might be conditioned on a tertiary variable, e.g.:

$$\int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) f(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{Q(\mathbf{z} \mid \mathbf{x})} [f(\mathbf{z})]$$

Sampling from a Gaussian

- Suppose $z \sim P(z) = \mathcal{N}(z; \mu, \sigma^2)$
- To sample z, we can **either**:
 - Sample from P(z) directly (Python: scipy.random.normal(loc=mu, scale=sigma)).
 - Sample from a standard normal, multiply by σ , and add μ

$$z' \sim \mathcal{N}(z'; 0, 1)$$
$$z = \sigma z' + \mu$$

(Python: sigma*scipy.random.normal(0,1) + mu).

Kullback-Leibler Divergence

 The Kullback-Leibler (KL) divergence quantifies the distance of Q from P as the log difference in probabilities at each z weighted by the probability of z according to P.

$$D_{\mathrm{KL}}(P(\mathbf{z}) \parallel Q(\mathbf{z})) = \int_{\mathbf{z}} P(\mathbf{z}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z})} d\mathbf{z}$$

Kullback-Leibler Divergence

We can also write the KL divergence as:

$$D_{\mathrm{KL}}(P(\mathbf{z}) \parallel Q(\mathbf{z})) = \int_{\mathbf{z}} P(\mathbf{z}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z})} d\mathbf{z}$$
$$= -\int_{\mathbf{z}} P(\mathbf{z}) \log \frac{Q(\mathbf{z})}{P(\mathbf{z})} d\mathbf{z}$$

KL-divergence for Gaussian distributions

For the special case of two Gaussian distributions

$$P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}) \text{ and } Q(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mu, \text{diag}[\sigma_1^2, \dots, \sigma_m^2])$$

there is a closed formula for the KL-divergence:

$$D_{\text{KL}}(Q(\mathbf{z}) \parallel P(\mathbf{z})) = -\frac{1}{2} \sum_{j=1}^{m} (1 + \log(\sigma_j^2) - \mu_j^2 - \sigma_j^2)$$

• Importantly, this function is differentiable in μ and σ (this will become useful later).

Jensen's inequality

For convex f, Jensen's inequality implies:

$$tf(x_1) + (1 - t)f(x_2) \ge f(tx_1 + (1 - t)x_2)$$

$$\frac{\sum_{i=1}^n a_i f(x_i)}{\sum_{i=1}^n a_i} \ge f\left(\frac{\sum_{i=1}^n a_i x_i}{\sum_{i=1}^n a_i}\right)$$

$$\sum_{i=1}^n \frac{1}{n} f(x_i) \ge f\left(\sum_i \frac{1}{n} x_i\right)$$

$$\frac{1}{n} \sum_i f(x_i) \ge f\left(\frac{1}{n} \sum_i x_i\right)$$

$$\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$$

$$\int_x f(x) P(x) dx \ge f\left(\int_x x P(x) dx\right)$$

Note: this is not a derivation! It is just a list of generalizations of the inequality.

Jensen's inequality

- Consider $f(x) = \log(x)$.
- f is concave (opposite of convex) because its second derivative is negative everywhere in its domain.
- Therefore, when we apply Jensen's inequality we reverse the sign, i.e.:

$$\int_x f(x)P(x)dx \geq f\left(\int_x xP(x)dx\right) \Longrightarrow \\ \log\int_x xP(x)dx \geq \int_x \log(x)P(x)dx \\ \text{Here, we can "pull" the log into the integral.}$$

Variational Autoencoders (VAE)

- Recall how we constructed a shallow latent variable model (LVM) that was purely linear:
- We assumed that every data point $\mathbf{x} \in \mathbb{R}^m$ is generated from a low-dimensional latent variable (or **code**) $\mathbf{z} \in \mathbb{R}^p$, where p < m.

 In particular, we assumed that each x is approximately linear in h, i.e.:

$$\mathbf{x} pprox \mathbf{W} \mathbf{z} + \mathbf{b}$$

 In particular, we assumed that each x is approximately linear in h, i.e.:

$$\mathbf{x} pprox \mathbf{W} \mathbf{z} + \mathbf{b}$$

We represented this probabilistically as:

- Given a training dataset \mathcal{D} , we can use MLE to maximize the log-likelihood of each training example \mathbf{x} i.e., log $P(\mathbf{x})$ w.r.t. the model parameters θ .
- For this linear 2-layer model, there is a closed-form solution.

- This LVM allows us to generate novel examples:
 - 1. Sample from the prior distribution over z.

$$P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$

- This LVM allows us to generate novel examples:
 - 1. Sample from the prior distribution over **z**.

$$P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$

2. Sample from the conditional distribution of $\mathbf{x} \mid \mathbf{z}$.

$$P_{\theta}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x}; \mathbf{W}\mathbf{z} + \mathbf{b}, \sigma^2 \mathbf{I})$$

- While easy to optimize, this shallow LVM is weak since it is strictly linear.
- The generated data are often not representative of the true distribution P(x), e.g.:

- With DL, we can construct and train deeper and more powerful LVMs that are non-linear.
- The generated data can be much more realistic, e.g.:

18

X

Z

Variational auto-encoder

- The variational auto-encoder (VAE; <u>Kingma & Welling</u> 2014) is a deep probabilistic LVM.
- It is one of the two chief DL techniques to generate data (the other is generative adversarial networks).

- The VAE consists of an encoder Q_{ϕ} and decoder P_{θ} .
 - Q(z | x) outputs a probability distribution over Z given X.
 - P(x | z) outputs a probability distribution over X given Z.

- The VAE consists of an encoder Q_{ϕ} and decoder P_{θ} .
 - Q(z | x) outputs a probability distribution over Z given X.
 - P(x | z) outputs a probability distribution over X given Z.
- We fix the probability distribution of the hidden state to be $P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$; this makes it easy to generate new data.

- Once trained, the VAE can be used for two purposes:
 - **Density estimation**: estimate how likely a given **x** is to occur, e.g., for anomaly detection. Requires only Q.
 - Generation: create novel data. Requires only P.

- Here is how we can generate data:
 - 1. Sample $\mathbf{z} \sim P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$
 - 2.Compute $P_{\theta}(\mathbf{x} \mid \mathbf{z})$
 - 3. Sample $\mathbf{x} \sim P_{\theta}(\mathbf{x} \mid \mathbf{z})$

- The parameters ϕ and θ are trained using maximum-likelihood estimation (MLE).
- We aim to maximize the likelihood of our observed training data, given P's parameters θ , i.e.: $P_{\theta}(\{\mathbf{x}^{(i)}\}_{i=1}^n)$
- Using a variational approximation technique, we will also optimize Q's parameters φ along the way.

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

Law of total probability

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \end{split} \quad \text{Definition of conditional probability} \end{split}$$

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \end{split}$$
 This holds for any non-zero Q.

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \quad \text{Note also that we can interpret this function as the expectation w.r.t. Q(z | x).} \end{split}$$

Note also that we can expectation w.r.t. Q(z | x).

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \\ &\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z} \quad \text{Jensen's inequality} \end{split}$$

$$\begin{split} \log P(\mathbf{x}) &= \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z} \\ &= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} \\ &\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z} \\ &= \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} + \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log P(\mathbf{x} \mid \mathbf{z}) d\mathbf{z} \end{split}$$

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z}$$

$$\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z}$$

$$= \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} + \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log P(\mathbf{x} \mid \mathbf{z}) d\mathbf{z}$$

$$= -D_{KL}(Q(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q}[\log P(\mathbf{x} \mid \mathbf{z})]$$

Definitions of KL-divergence and expectation.

$$\log P(\mathbf{x}) = \log \int_{\mathbf{z}} P(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

$$= \log \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \frac{P(\mathbf{x} \mid \mathbf{z}) P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z}$$

$$\geq \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \left(P(\mathbf{x} \mid \mathbf{z}) \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} \right) d\mathbf{z}$$

$$= \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log \frac{P(\mathbf{z})}{Q(\mathbf{z} \mid \mathbf{x})} d\mathbf{z} + \int_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}) \log P(\mathbf{x} \mid \mathbf{z}) d\mathbf{z}$$

$$= -D_{\mathrm{KL}}(Q(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q}[\log P(\mathbf{x} \mid \mathbf{z})]$$

$$= -D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

- In other words: to maximize $P(\mathbf{x})$, we want to:
 - Minimize KL-divergence of hidden state w.r.t. standard normal distribution.

and

Maximize the reconstruction probability.

$$\mathbf{z} \xrightarrow{\mathbf{Q}_{\phi}} \mathbf{z} \xrightarrow{\mathbf{P}_{\theta}} \mathbf{x}$$

$$= -D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

Maximizing the lower bound

• How do we optimize this w.r.t. θ and ϕ ?

$$-D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

• The first term has closed-form differentiable solutions when $P(\mathbf{z})$ and $Q_{\phi}(\mathbf{z} \mid \mathbf{x})$ are Gaussian (see previous lecture).

Maximizing the lower bound

• How do we optimize this w.r.t. θ and ϕ ?

$$-D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

 The second term is more problematic — we can try to estimate the expectation by sampling:

$$\mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})] \approx \frac{1}{n} \sum_{i=1}^{n} \log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)})$$
where $\mathbf{z}^{(i)} \sim Q_{\phi}(\mathbf{z} \mid \mathbf{x}^{(i)})$

Maximizing the lower bound

• How do we optimize this w.r.t. θ and ϕ ?

$$-D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

 But sampling a value from a probability distribution is a non-differentiable operation — we can no longer use back-propagation:

$$\mathbf{x} o Q_\phi(\mathbf{z} \mid \mathbf{x}) \overset{\mathsf{sampling}}{\leadsto} P_\theta(\mathbf{x} \mid \mathbf{z})$$
 Input Hidden Output

Training details

- To generate examples $\mathbf{x} \in [0,1]^m$ (like in Homework 6), $P_{\theta}(\mathbf{x} \mid \mathbf{z})$ can end with m logistic sigmoid functions.
- It can then be trained with the log-likelihood objective summed over all m outputs.

• How do we force Q_{ϕ} to output a Gaussian distribution?

- How do we force Q_{ϕ} to output a Gaussian distribution?
 - Given \mathbf{x} , Q_{ϕ} needs to output:

- How do we force Q_{ϕ} to output a Gaussian distribution?
 - Given \mathbf{x} , Q_{ϕ} needs to output:
 - Mean µ

- How do we force Q_{ϕ} to output a Gaussian distribution?
 - Given \mathbf{x} , Q_{ϕ} needs to output:
 - Mean µ
 - Covariance matrix Σ

• As a simplification, Q_{ϕ} can output a diagonal covariance matrix parameterized by just a vector [σ_{1}^{2} , ..., σ_{p}^{2}].

- As a simplification, Q_{ϕ} can output a diagonal covariance matrix parameterized by just a vector [σ_{1}^{2} , ..., σ_{p}^{2}].
- All in all, Q_{ϕ} outputs 2p entries, where the first p specify the mean and the second p specify the covariance.

- As a simplification, Q_{ϕ} can output a diagonal covariance matrix parameterized by just a vector [σ_{1}^{2} , ..., σ_{p}^{2}].
- All in all, Q_{ϕ} outputs 2p entries, where the first p specify the mean and the second p specify the covariance.
- We must force positivity of $[\sigma_{1}^{2}, ..., \sigma_{p}^{2}]$, e.g., by exponentiating or squaring the output of Q_{ϕ} .

Maximizing the lower bound

• How do we optimize this w.r.t. θ and ϕ ?

$$-D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z} \mid \mathbf{x}) \parallel P(\mathbf{z})) + \mathbb{E}_{Q_{\phi}}[\log P_{\theta}(\mathbf{x} \mid \mathbf{z})]$$

 But sampling a value from a probability distribution is a non-differentiable operation — we can no longer use back-propagation:

$$\mathbf{x} o Q_\phi(\mathbf{z} \mid \mathbf{x}) \overset{\mathsf{sampling}}{\leadsto} P_\theta(\mathbf{x} \mid \mathbf{z})$$
 Input Hidden Output

Reparameterization trick

- Suppose $\mathbf{z} \sim P(\mathbf{z}) = \mathcal{N}(\mathbf{z}; \mu, \sigma^2 \mathbf{I})$
- To sample **z**, we can **either**:
 - Sample from P(z) directly; or
 - Sample from a standard normal, multiply element-wise by σ, and add μ:

$$\mathbf{z}' \sim \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I})$$

 $\mathbf{z} = \mathbf{z}' \odot \sigma + \mu$

Reparameterization trick

- In the context of the VAE:
 - Instead of sampling $\mathbf{z} \sim Q_{\phi}(\mathbf{z} \mid \mathbf{x})$ within the computational graph, which would break back-propagation...

Reparameterization trick

- In the context of the VAE:
 - ...we instead sample from outside the graph, multiply the result element-wise by vector σ , and add μ .

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$

$$\mathcal{N}(\epsilon;\mathbf{0},\mathbf{I})\leadsto\epsilon$$
 $\mathbf{x} \xrightarrow[Q_{\phi}(\mathbf{z}|\mathbf{x})]{} (\mu,\sigma^2) \xrightarrow{} \epsilon\odot\sigma + \mu \rightarrow P_{\theta}(\mathbf{x}\mid\mathbf{z})$ Input Hidden 51 Output

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^p$

$$\mathcal{N}(\epsilon;\mathbf{0},\mathbf{I})\leadsto\epsilon$$
 $\mathbf{x} \xrightarrow[Q_{\phi}(\mathbf{z}|\mathbf{x})]{} (\mu,\sigma^2) \xrightarrow{} \epsilon\odot\sigma + \mu \rightarrow P_{ heta}(\mathbf{x}\mid\mathbf{z})$ Input Hidden 52 Output

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}}\subset\mathbb{R}^p$
 - Compute: $(\mu^{(i)}, \sigma^{(i)})^2 = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$

$$\mathcal{N}(\epsilon;\mathbf{0},\mathbf{I})\leadsto\epsilon$$
 $\mathbf{x} \xrightarrow[Q_{\phi}(\mathbf{z}|\mathbf{x})]{} (\mu,\sigma^2) \xrightarrow{} \epsilon\odot\sigma + \mu \rightarrow P_{\theta}(\mathbf{x}\mid\mathbf{z})$ Input Hidden 53 Output

Input Hidden

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}}\subset\mathbb{R}^p$
 - Compute: $(\mu^{(i)}, \sigma^{(i)})^2 = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$
 - Compute: $\mathbf{z}^{(i)} = \epsilon^{(i)} \odot \sigma^{(i)} + \mu^{(i)}$

$$\mathbf{x} \underset{Q_{\phi}(\mathbf{z}|\mathbf{x})}{\longrightarrow} (\mu, \sigma^2) \to \epsilon \odot \sigma + \mu \to P_{\theta}(\mathbf{x} \mid \mathbf{z})$$

Input Hidden 54 Output

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^p$
 - Compute: $(\mu^{(i)}, \sigma^{(i)}^2) = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$
 - Compute: $\mathbf{z}^{(i)} = \epsilon^{(i)} \odot \sigma^{(i)} + \mu^{(i)}$
 - Compute likelihood:

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}}\subset\mathbb{R}^p$
 - Compute: $(\mu^{(i)}, \sigma^{(i)})^2 = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$
 - Compute: $\mathbf{z}^{(i)} = \epsilon^{(i)} \odot \sigma^{(i)} + \mu^{(i)}$
 - Compute likelihood:

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \ \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

Note: this is an approximation of the expectation with just 1 sample.₅₆

- Define networks Q_{ϕ} and decoder P_{θ} .
- Initialize parameters ϕ and θ .
- For each mini-batch:
 - Select \tilde{n} examples: $\{\mathbf{x}^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^m$
 - Sample \tilde{n} noise vectors: $\{\epsilon^{(i)}\}_{i=1}^{\tilde{n}} \subset \mathbb{R}^p$
 - Compute: $(\mu^{(i)}, \sigma^{(i)}^2) = Q_{\phi}(\mathbf{z}^{(i)} \mid \mathbf{x}^{(i)}), \ \forall i$
 - Compute: $\mathbf{z}^{(i)} = \epsilon^{(i)} \odot \sigma^{(i)} + \mu^{(i)}$
 - Compute likelihood:

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

• Update ϕ and θ using back-propagation.

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth $\mathbf{\hat{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)})$$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \ \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth $\hat{\mathbf{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)})$
Log-like.$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \ \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth$$

 $\mathbf{\hat{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)})$
Log-like.

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth$$

 $\mathbf{\hat{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)})$
Log-like.

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:

$$\mathbf{x}^{(i)} = [0.1, 0.8, 0.7, 0.23, 0.5, ...] // Ground-truth
 $\mathbf{\hat{x}}^{(i)} = [0.08, 0.83, 0.58, 0.21, 0.42, ...] // P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)})$$$

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \ \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The reconstruction probability is computed w.r.t. each dimension of $\mathbf{x}^{(i)} \in \mathbb{R}^m$ and then summed, e.g.:
 - In practice, you can use a binary cross-entropy loss in either TensorFlow or PyTorch.

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$

- Note that, for the VAE, we want to maximize a likelihood instead of minimizing a loss.
- The likelihood consists of two components:
 - The KL-divergence is differentiable w.r.t. μ and σ , which in turn are differentiable w.r.t. ϕ in Q.

$$\log P_{\theta}(\mathbf{x}^{(i)} \mid \mathbf{z}^{(i)}) - D_{\mathrm{KL}}(Q_{\phi}(\mathbf{z}^{(i)}; \mathbf{x}^{(i)}) \parallel \mathcal{N}(\mathbf{z}; \mathbf{0}, \mathbf{I}))$$