

时序逻辑电路

组合 数字逻辑电路 逻辑电路 时序 逻辑电路 功能:输出仅由当前的输 入决定

组成:门电路

功能:输出不仅取决于当前的输入还与原来的输出有关

组成:组合电路、存储电路

触发器

第五章 双稳态触发器及应用第六章 555定时器及其应用

- 一、基本RS触发器(5.1)
- 二、边沿触发器(5.2)
- 三、双稳态触发器的应用(5.3)
- 四、单稳和多谐振荡器的概念(6)

第5章作业

- 5.4 D触发器
- 5.6 JK触发器+异步输入端子
- 5.9
- 5.10 含触发器电路的波形分析

一、基本RS触发器

§ 5.1 RS触发器

通常Q和Q两个输出互为反状态,用Q的状态来表达触发器的状态

由与非门交叉反馈构成的基本 RS触发器

基本RS触发器的功能

$$\overline{R}_D = 1$$
, $\overline{S}_D = 1$

当前状态:

$$Q^n = 1$$
 $\overline{Q}^n = 0$

新状态:

$$Q^{n+1}=$$
 1 $\overline{Q}^{n+1}=$ 0

当前状态:

$$Q^n = 0$$
 $\overline{Q}^n = 1$

新状态:

$$Q^{n+1} = \mathbf{0} \quad \overline{Q}^{n+1} = \mathbf{1}$$

不变(保持)

$$\overline{R}_D = 1$$
, $\overline{S}_D = 0$

不管原状态如何,新状态为:

$$Q^{n+1}=1 \quad \overline{Q}^{n+1}=0$$

$$\overline{R}_D = 0$$
, $\overline{S}_D = 1$

不管原状态如何,新状态为:

$$Q^{n+1} = 0 \quad \overline{Q}^{n+1} = 1$$

$$\overline{R}_D = 0$$
, $\overline{S}_D = 0$

禁用

由与非门交叉反馈构成基本RS触发器

功能表

$ar{\mathcal{S}}_{ ext{D}}$	$ar{R}_{ m D}$	Q^{n+1}	功能
1	1	Q^{n}	保持
1	0	0	清零
0	1	1	置1
0	0	1*	禁用

逻辑符号

输入低电平有效!

Q n --- 当前状态

 \overline{S}_{D} -Set Directly

Q n+1 --- 下一状态

 \overline{R}_{D} -Reset Directly

由或非门交叉反馈构成基本RS触发器

功能表

$S_{ m D}$	R_{D}	Q^{n+1}	功能
0	0	Q^{n}	保持
0	1	0	清零
1	0	1	置1
1	1	0*	禁用

逻辑符号

输入高电平有效!

 Q^n --- 当前状态 S_D -Set Directly

Q n+1 --- 下一状态

 $R_{\rm D}$ -Reset Directly

基本RS触发器(锁存器)的特点

1.记忆功能的逻辑部件——结构上是如何做到这样的功能?

输出状态不只与现时的输入有关,还与原来的输出状态有关。 只要令R、S无效,即可保持原状态

2.具有"触发"的功能

在输入信号的作用下,即输入端加入有效电平时能够从一种状态(0或1)转变成另一种状态(1或0)

画出和下面给定输入波形对应的输出波形

(b) Q

门控RS触发器

逻辑符号

当EN 是低电平时,输出保持不变 当EN 是高电平时,输出由输入S 和 R的状态决定

画出和下面给定输入波形对应的输出波形

触发器的结构演变——引出边沿触发器

门控触发器存在的问题:

<u>CP=1的全部时间里,输入信号都会引起触发器输出状态的</u>变化,降低了电路的抗干扰能力。

