Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 02.03.2016

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation (Format ENG¹) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Einpoliger Kurzschluss

a. Zeichnen Sie das **relevante Ersatzschaltbild** dieses Fehlerfalls im Komponentensystem (**Spannungen, Ströme, alle Impedanzen**).

b. Bestimmen Sie die wirksame **Gesamtreaktanz** der Ersatzschaltung im Mit-, Gegen- und Nullsystem.

$$\underline{Z}_{\text{ges}} = j23.42 \,\Omega$$

c. Wie groß ist der **einpolige Erdkurzschlussstrom** (c = 1,1)?

$$\underline{I}_{a} = -j2187.44 A$$

$$I''_{k1p} = 2187.44 A$$

d. Wie groß sind die **Phasenspannungen und Phasenströme in komplexer Darstellung** am Kurzschlussort?

$$\underline{I}_{a} = -j2187.44 A \underline{U}_{a} = 0 V$$

$$I_b = 0 A$$

$$U_b = 14402.32 \angle -130.20^{\circ} V$$

$$I_c = 0 A$$

$$U_c = -9296.60 + j11000 V = 14402.32 \angle 130.20^{\circ} V$$

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

e. Welchen Induktivitätswert muss die Petersenspule bei idealer Kompensation aufweisen?

 $L_{Pet} = 22.51 H$

2. Auslegung eines Erdkabels

a. Wie groß ist der **thermische Gesamtwiderstand**? Zeichnen Sie den Ersatzschaltplan für den Wärmestrom.

 $R'_{w} = 1.287 \frac{s^{3} \cdot K}{kg \cdot m}$

$$P_{v}^{'} \qquad R_{w1}^{'} \qquad R_{w2}^{'} \qquad R_{w3}^{'}$$

b. Welche **Dauerstrombelastung** des Innenleiters darf nicht überschritten werden bei einem maximal zulässigen Temperaturunterschied zur Umgebung des Innenleiters von 70°C?

$$I_{therm} = 1.563 \text{ kA}$$

c. Wie groß ist die bezogene **Betriebskapazität** des Kabels ($\varepsilon_{r, VPE} = 2,4$)?

$$C'_B = 177.58 \cdot 10^{-12} \frac{s^4 \cdot A^2}{kq \cdot m^3}$$

d. Berechnen Sie die **thermisch übertragbare Scheinleistung** dieses Dreiphasen-systems.

e. Wie groß sind der **bezogene Ladestrom** und die **bezogene Ladeleistung** dieses Dreiphasensystems?

$$I'_{C} = 7.09 \cdot 10^{-3} \frac{A}{m}$$

 $Q'_{C} = 2.7 \cdot 10^{3} \frac{kg \cdot m}{s^{3}}$

f. Welche **Länge des Kabels** darf nicht überschritten werden damit überhaupt noch eine Übertragung elektrischer Energie möglich ist?

$$\ell_{\rm max} = 220.64 \ km$$

Laut der Berechnung ergibt sich, dass die kapazitiven Ladeströme eines Kabels bei einer Länge von über 220,64 km die Stromtragfähigkeit des Leiters von 1563 A bereits komplett auslasten und daher keine zusätzliche Wirkleistung mehr übertragen werden kann.

3. Regelenergie

a. Bestimmen Sie die Austauschleistung jeder Regelzone vor dem Ereignis ($P_{Ai\ soll}$) und nachdem die primäre Regelleistung eingesetzt hat ($P_{iMessung}$).

$$P_{A1_Soll} = 170 \text{ MW}$$
 $P_{A2_Soll} = -280 \text{ MW}$
 $P_{A3_Soll} = 110 \text{ MW}$
 $P_{Mes1} = 150 \text{ MW}$
 $P_{Mes2} = -250 \text{ MW}$
 $P_{Mes3} = 100 \text{ MW}$

b. Bestimmen Sie **der Regelzonenfehler** G_i für jede RZ. Welcher von drei Sekundärregler wird die Ausgangsleistung der sekundärgeregelten Kraftwerke in seiner Regelzone erhöhen?

$$G_1 = 0 \text{ MW}$$

 $G_2 = 60 \text{ MW}$
 $G_3 = 0 \text{ MW}$

c. Was werden die drei Sekundärregler nach der Berechnung der Regelzonenfehler unternehmen?

Die Sekundärregler der Regelzonen RZ_1 und RZ_3 sehen keinen Regelzonenfehler, werden daher nicht aktiv. Der positive Wert von G_2 (60 MW) zeigt dem Sekundärregler der Regelzone RZ_2 , dass das Leistungsdefizit in seiner Regelzone verursacht wird. Er schreitet dementsprechend ein und erhöht die Ausgangsleistung der sekundärgeregelten Kraftwerke in seiner Regelzone.

Kurz: Die Sekundärregler RZ_1 und RZ_3 werden nichts unternehmen, weil sie keine Fehler finden. Der Sekundärregler RZ_2 wird die Ausgangsleistung der sekundärgeregelten Kraftwerke in seiner Regelzone auf 60 MW erhöhen

d. Berechnen Sie den mittleren **Leistungsbeiwert** \mathcal{C}_p für diese Anlage mit den angegebenen Messergebnissen aus der obigen Tabelle.

$$C_p = 0,444$$

e. Wie groß ist die **elektrische Nennleistung der Windkraftanlage** P_{N_el} unter Annahme des zuvor berechneten Leistungsbeiwerts?

$$P_{N \text{ el}} = 3.624 \text{ MW}$$

f. **Auf welchen Anteil (in %) der Gesamtnennleistung** aus Punkt e) müsste der Windpark gedrosselt werden, sodass die ausgefallene Leistung (60MW) aus dem ersten Teil der Aufgabe gedeckt werden kann?

$$P_{Dross} = 17.23 \%$$

4. Fünf Sicherheitsregeln

Siehe Skriptum

5. Theoriefragen

Richtige Lösungen: 1a, 2a, 3c, 4c, 5c, 6a, 7b, 8a, 9c, 10c, 11b, 12b, 13a, 14b, 15b, 16a, 17c, 18c, 19c, 20a, 21b, 22a, 23b, 24b