## Chương 1

# Giải gần đúng phương trình

#### 1.1 Mở đầu

Sự tăng trưởng của dân số thường có thể được mô hình hóa trong khoảng thời gian ngắn bằng cách giả định rằng dân số tăng liên tục theo thời gian tỷ lệ thuận với con số hiện tại vào thời điểm đó. Giả sử N(t) biểu thị số lượng trong dân số tại thời điểm t và  $\lambda$  biểu thị tỷ lệ sinh không 2 đổi của dân số. Khi đó dân số thỏa mãn phương trình vi phân:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t)$$

Nghiệm của phương trình là  $N(t)=N_0e^{\lambda t}$ , ở đây  $N_0$  là dân số ban đầu. Mô hình hàm mũ này chỉ có giá trị khi dân số bị cô lập, không có người nhập cư. Nếu nhập cư được phép ở tốc độ không đổi v thì phương trình vi phân trở thành:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t) + v$$

Nghiệm của nó là:

$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1)$$

Giả sử ban đầu có  $N(0)=1\,000\,000$  người, và có tới 435 000 người nhập cư vào cộng đồng trong năm đầu tiên, vậy  $N(1)=1\,564\,000$  người có mặt vào cuối năm đầu tiên. Để xác định tỷ lệ sinh của cộng đồng dân số này, chúng ta cần tìm  $\lambda$  trong phương trình:

$$1\,564\,000 = 1\,000\,000e^{\lambda} + \frac{435\,000}{\lambda}(e^{\lambda} - 1)$$

Không thể giải một cách chính xác giá trị  $\lambda$  trong phương trình này, nhưng các phương pháp tính được thảo luận trong chương này có thể được sử dụng để

tính gần đúng nghiệm của các phương trình loại này với độ chính xác cao tùy ý. Giải pháp cho vấn đề cụ thể này được xem xét trong Bài tập 24 của Mục 3.3.

#### 1.2 Phương pháp chia đôi

Giả sử f là hàm số xác định và liên tục trên khoảng [a,b], với f(a) và f(b) trái dấu. Định lý giá trị trung gian ??, hay còn gọi là định lý Bolzano, nói rằng tồn tại một số p trong (a,b) với f(p)=0.

Định lí 1.1. Định lý giá trị trung gian (Intermediate Value Theorem).

Nếu f liên tục trên [a,b] và K nằm giữa f(a) và f(b), tồn tại  $c \in (a,b)$  sao cho f(c) = K.

Cụ thể hơn, do f(a) và f(b) trái dấu, do đó 0 nằm giữa f(a) và f(b), do đó tồn tại nghiệm  $p \in (a,b)$ .

Mặc dù có thể tồn tại nhiều hơn một nghiệm trong khoảng (a,b), nhưng để thuận lợi trong việc nghiên cứu, chúng ta giả thiết chỉ có duy nhất một nghiệm trong khoảng này. Khi đó, ta có thể dùng phương pháp sau:

Phương pháp. Phương pháp chia đôi (Bisection method)

Phương pháp này cho phép tìm nghiệm p của f(p) = 0 trong khoảng [a, b], với f(a) và f(b) trái dấu.

 $D\vec{e}$  bắt đầu, ta đặt  $a_1 = a$  và  $b_1 = b$ , và đặt  $p_1$  là điểm giữa của [a, b]; nghĩa là:

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

- $N\acute{e}u \ f(p_1) = 0 \ thi \ p = p_1.$
- $N\hat{e}u \ f(p_1) \neq 0 \ thì \ f(p_1) \ cùng dấu với \ f(a_1) \ hoặc \ f(b_1)$ .
  - Nếu  $f(p_1)$  cùng dấu với  $f(a_1)$  thì  $p \in [p_1, b_1]$ . Đặt  $a_2 = p_1$ ,  $b_2 = b_1$ .
  - $-N\hat{e}u\ f(p_1)\ cùng\ d\hat{a}u\ với\ f(b_1)\ thì\ p\in [a_1,p_1].\ Dăt\ a_2=a_1,\ b_2=p_1.$

sau đó làm tiếp phương pháp trên với khoảng  $[a_2, b_2]$ .

Các cách dừng khác (còn gọi là  $ti\hat{e}u$  chí dừng) có thể được áp dụng trong phương pháp trên hoặc trong bất kỳ các kỹ thuật lặp lại trong chương này. Ví dụ, chúng ta có thể chọn một dung sai  $\varepsilon > 0$  và tạo dãy  $p_1, ..., p_N$  cho đến khi đáp ứng một trong các điều kiên sau:

$$|p_N - p_{N-1}| < \varepsilon, \tag{1.1}$$

$$\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \, p_N \neq 0 \text{ hoặc}$$
 (1.2)

$$|f(p_N)| < \varepsilon \tag{1.3}$$

Không may, khó khăn có thể phát sinh với bất kỳ tiêu chí dừng nào. Ví dụ, có các chuỗi  $\{p_n\}_{n=1}^{\infty}$  mà hiệu  $p_n-p_{n-1}$  hội tụ về 0 trong khi dãy đó lại phân kỳ. Cũng có thể có  $f(p_n)$  gần bằng 0 trong khi  $p_n$  khác đáng kể so với p. Nếu không có kiến thức bổ sung về f hoặc p, bất đẳng thức 1.2 là tiêu chuẩn dừng tốt nhất để áp dụng vì nó sát nhất với sai số tương đối.

Khi dùng máy tính để tính xấp xỉ, nên thiết lập một giới hạn trên về số lần lặp lại. Điều này giúp tránh vòng lặp vô hạn, một tình huống có thể phát sinh khi chuỗi  $\{p_N\}_{n=0}^{\infty}$  phân kỳ (và cả khi chương trình sai).

Ta có nhận xét:

**Ví dụ 1.1.** Chứng minh rằng  $f(x) = x^3 + 4x^2 - 10 = 0$  có nghiệm trong khoảng [1, 2], và dùng phương pháp chia đôi để xác định nghiệm đúng đến  $10^{-4}$ .

 $Vi\ f(1) = -5\ và\ f(2) = 14,\ f(x) = 0\ chắc\ chắn có nghiệm trong khoảng [1,2].$ 

Ta có bảng sau:

| $\overline{n}$ | $a_n$           | $b_n$           | $p_n$           | $f(p_n)$     |
|----------------|-----------------|-----------------|-----------------|--------------|
| 1              | 1,0             | 2,0             | 1,5             | $2,\!375$    |
| 2              | 1,0             | 1,5             | 1,25            | -1,79687     |
| 3              | 1,25            | 1,5             | 1,375           | $0,\!16211$  |
| 4              | 1,25            | 1,375           | 1,3125          | -0,84839     |
| 5              | 1,3125          | 1,375           | 1,34375         | -0,35098     |
| 6              | $1,\!34375$     | 1,375           | 1,359375        | -0,09641     |
| $\gamma$       | $1,\!359375$    | 1,375           | 1,3671875       | 0,03236      |
| 8              | $1,\!359375$    | $1,\!3671875$   | 1,36328125      | -0,03215     |
| g              | $1,\!36328125$  | $1,\!3671875$   | 1,365234375     | 0,000072     |
| 10             | $1,\!36328125$  | $1,\!365234375$ | 1,364257813     | -0,01605     |
| 11             | $1,\!364257813$ | $1,\!365234375$ | 1,364746094     | -0,00799     |
| 12             | $1,\!364746094$ | $1,\!365234375$ | 1,364990234     | -0,00396     |
| 13             | $1,\!364990234$ | $1,\!365234375$ | $1,\!365112305$ | $-0,\!00194$ |

Sau 13 lần lặp,  $p_{13} = 1{,}365\,112\,305$  xấp xỉ nghiệm p với sai số:

$$|p - p_{13}| < |b_{14} - a_{14}| = |1,365 234 375 - 1,365 112 305| = 0,000 122 070$$

 $Do |a_{14}| < |p|$  (khoảng đang xét dương), ta có:

$$\frac{|p - p_{13}|}{|p|} < \frac{|b_{14} - a_{14}|}{|a_{14}|} \le 9 \times 10^{-5}$$

Cần chú ý rằng,  $p_9$  thực sự gần với p hơn kết quả cuối cùng  $p_{13}$ , tuy nhiên khi thực hiện thuật toán ta không thể biết đều này. Hơn nữa,  $|f(p_9)| < |f(p_{13})|$  cũng không liên quan đến việc  $p_9$  sát với p hơn.

Phương pháp chia đôi có hai điểm yếu lớn:

• Cần số vòng lặp N lớn

• Vô tình bỏ qua các xấp xỉ tốt

Dù vậy, phương pháp này lại có một ưu điểm lớn là đảm bảo dãy  $\{p_N\}_{n=0}^{\infty}$  hội tụ đến một nghiệm. Do ưu điểm này, phương pháp chia đôi thường được dùng để tìm điểm bắt đầu cho các phương pháp khác hiệu quả hơn mà sẽ được giới thiệu sau.

**Định lí 1.2.** Cho hàm  $f \in [a,b]$  và  $f(a)\dot{f}(b) < 0$ . Phương pháp chia đôi tạo ra một chuỗi  $\{p_N\}_{n=0}^{\infty}$  xấp xỉ nghiệm p của f với sai số như sau:

$$|p_n - p| \le \frac{b - a}{2^n}, \ n \ge 1$$

Chứng minh. Với mọi  $n \ge 1$ , ta có:

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a) \text{ và } p \in (a_n, b_n)$$

Do

$$p_n = \frac{1}{2}(a_n + b_n)$$

ta suy ra được

$$\frac{1}{2}(a_n + b_n) - b_n \le p_n - p \le \frac{1}{2}(a_n + b_n) - a_n$$

$$\Leftrightarrow \qquad \frac{1}{2}(a_n - b_n) \le p_n - p \le \frac{1}{2}(b_n - a_n)$$

$$\Leftrightarrow \qquad |p_n - p| \le \frac{1}{2}(b_n - a_n) = \frac{b - a}{2^n}$$

đpcm.

### 1.3 Phương pháp điểm bất động

Điểm bất động (fixed point) của một hàm là số mà tại đó giá trị của hàm số bằng đúng giá trị của đối số.

Định nghĩa 1. Số p được gọi là điểm bất động của hàm số g nếu g(p) = p.

Trong phần này, chúng ta xét việc đưa bài toán tìm nghiệm về bài toán tìm điểm bất đông và tìm sư liên hệ giữa chúng.

Các bài toán tìm nghiệm và các bài toán tìm điểm cố định là các lớp tương đương theo nghĩa sau đây:

• Từ bài toán tìm nghiệm của phương trình f(p) = 0, ta có thể xác định hàm g với điểm bất động tại p theo một số cách, ví dụ,

$$g(x) = x - f(x)$$
, hoặc  $g(x) = x + 3f(x)$ 

.

5

- Ngược lại, nếu hàm g có một điểm bất định tại p, thì hàm f xác định bởi

$$f(x) = x - g(x)$$

có nghiệm tại p.

Mặc dù các bài toán ta muốn giải quyết là dạng tìm nghiệm, nhưng dạng điểm bất động dễ thực hiện hơn và có một số lựa chọn điểm bất động dẫn tới kỹ thuật tìm nghiệm rất hiệu quả. Trước hết ta cần đi đến dạng bài toán mới này một cách thoải mái, và đưa ra quyết định khi nào hàm số có điểm bất động và điểm bất động được xấp xỉ với độ chính xác bao nhiêu.

Các điểm bất động xuất hiện trong nhiều lĩnh vực toán học khác nhau, và là công cụ chính của các nhà kinh tế dùng để chứng minh các kết quả liên quan đến tính cân bằng. Mặc dù ý tưởng đằng sau kỹ thuật là cũ, nhưng thuật ngữ được sử dụng lần đầu bởi nhà toán học Hà Lan L. E. J. Brouwer (1882 - 1962) trong đầu những năm 1900.

**Ví dụ 1.2.** Hãy xác định điểm bất động của hàm  $g(x) = x^2 - 2$ . Điểm bất động p của g có tính chất:

$$p = g(p) \iff p = p^2 - 2$$

Suy ra

$$p^{2} - p - 2 = (p+1)(p-2) = 0$$

Điểm bất động xảy ra đúng khi khi đồ thị của hàm số y = g(x) cắt đồ thị hàm số y = x, vì vậy g có 2 điểm bất động là -1 và 2. Điều này được minh họa bởi hình sau:

Định lý sau cho điều kiện đủ để hàm số có ít nhất một và có duy nhất một điểm bất đông.

#### Định lí 1.3.

- 1. Nếu  $g \in [a, b]$ , và  $g(x) \in [a, b] \forall x \in [a, b]$ , khi đó g có ít nhất một điểm bất động trên [a, b].
- 2. Hơn nữa, nếu g'(x) tồn tại trên (a,b) và tồn tại hằng số dương k < 1 thỏa  $|g'(x)| \le k \forall x \in [a,b]$ , khi đó, tồn tại đúng một điểm bất động trên [a,b].

Trước khi chứng minh định lí trên, ta cần biết định lí giá trị trung bình.

Định lí 1.4. Định lí giá trị trung bình (Mean Value Theorem).

Nếu f liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm  $c \in (a,b)$  sao cho tiếp tuyến tại c song song với cát tuyến qua hai điểm mút (a,f(a)) và (b,f(b)), hay nói cách khác:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Chứng minh Đinh lí ??.

1. Nếu g(a)=a hoặc  $g(b)=b,\,g$  có điểm bất động a hoặc b. Nếu không, g(a)>a và đồng thời g(b)< b; ta sẽ xét trường hợp này.

Hàm h(x) = g(x) - x liên tục trên [a, b] với

$$h(a) - a > 0$$
 và  $h(b) - b > 0$ 

Định lý giá trị trung gian 1.1 khẳng định rằng tồn tại  $p \in (a,b)$  sao cho h(p)=0. Điểm p này là điểm bất động của g vì

$$0 = h(p) = g(p) - p \iff g(p) = p$$

2. Giả sử  $p \neq q$  là hai điểm bất động của g trên [a,b]. Theo định lí giá trị trung bình 1.4,

đpcm.