特許協力条約

PCT

特許性に関する国際予備報告(特許協力条約第二章)

(法第 12 条、法施行規則第 56 条) [PCT36 条及びPCT規則 70]

REC'D	1 4 JUL, 2005
WIPO	PCT

出願人又は代理人 の 告類記号 NTK04-1629W 0	今後の手続きについては、様式PCT/IPEA/416を参照すること。					
国際出願番号 PCT/JP2004/011334	国際出願日 (日. 月. 年) 06. 08. 2004	優先日 (日.月.年) 07.08.2003				
国際特許分類(IPC) Int.Cl. ⁷ C07D215/30, C09K11/06, H05B33/14 // C07C37/64, 39/14						
出願人(氏名又は名称) 新日鐡化学株式会社						

1. この報告書は、PCT35 条に基づきこの国際予備審査機関で作成された国際予備審査報告である。 法施行規則第 57 条(PCT36 条)の規定に従い 送付す る。							
2.この国際予備審査報告は、この表紙を含めて全部で4 ページからなる。							
3. この報告には次の附属物件も添付されている。 a. ▽ 附属掛類は全部で 4 ページである。							
▽ 補正されて、この報告の基礎とされた及び/又はこの国際予備審査機関が認めた訂正を含む明細書、請求の範囲及び/又は図面の用紙(PCT規則 70.16 及び実施細則第 607 号参照)							
□ 第 I 概 4. 及び補充概に示したように、出願時における国際出願の開示の範囲を超えた補正を含むものとこの 国際予備審査機関が認定した差替え用紙							
b. 「 電子媒体は全部で							
4. この国際予備審査報告は、次の内容を含む。							
 ▼ 第 I 棡 国際予備審査報告の基礎 「 第 II 棡 優先権 「 第 II 棡 新規性、進歩性又は産業上の利用可能性についての国際予備審査報告の不作成 「 第 IV 禰 発明の単一性の欠如 「 第 V 禰 P C T 35条(2)に規定する新規性、進歩性又は産業上の利用可能性についての見解、それを裏付けるための文献及び説明 「 第 VI 禰 ある種の引用文献 							
「 第Ⅲ棚 国際出願の不備 「 第Ⅲ棚 国際出願に対する意見							

国際予備審査の請求勘を受理した日 02.06.2005		国際予備審査報告を作成した日 30.06.2005		
	名称及びあて先 日本国特許庁(I PEA/JP)	特許庁審査官(権限のある職員) 根本 佳予子		
	郵便番号100-8915 東京都千代田区後が関三丁目4番3号	電話番号 03-3581-1101 内線 3492		

第I棡	報告の基礎
1. E	D国際予備審査報告は、下記に示す場合を除くほか、国際出願の言語を基礎とした。
, , ,	この報告は、 語による翻訳文を基礎とした。 それは、次の目的で提出された翻訳文の言語である。 - PCT規則12.3及び23.1(b)にいう国際調査 - PCT規則12.4にいう国際公開 - PCT規則55.2又は55.3にいう国際予備審査
2. こ た差替	の報告は下記の出願書類を基礎とした。(法第6条(PCT14条)の規定に基づく命令に応答するために提出され え用紙は、この報告において「出願時」とし、この報告に添付していない。)
Г	出願時の国際出願書類
. Г⊽	数 1-50 ページ 出願時に提出されたもの
	第
j.	請求の範囲 項、出願時に提出されたもの 第 項、出願時に提出されたもの 第 項*、PCT19条の規定に基づき補正されたもの 第 項*、22.06.2005 付けで国際予備審査機関が受理したもの 第 項*、 付けで国際予備審査機関が受理したもの
F	図面 第 1 ページ/図、出願時に提出されたもの 第 ページ/図*、 付けで国際予備審査機関が受理したもの 第 ページ/図*、 付けで国際予備審査機関が受理したもの 配列表又は関連するテーブル 配列表に関する補充欄を参照すること。
з. Г	
	「明細書 第 第 項 「請求の範囲 第 項 「図面 第 ページ/図 配列表(具体的に記載すること) — 配列表に関連するテーブル(具体的に記載すること) —
4.	「 この報告は、補充欄に示したように、この報告に添付されかつ以下に示した補正が出願時における開示の範囲を超えてされたものと認められるので、その補正がされなかったものとして作成した。 (PCT規則 70.2(c))
	「 明細書 第
*	4.に該当する場合、その用紙に"superseded"と記入されることがある。

第V欄 新規性、進歩性又は産業上の利用可能性についての法第 12 条 (PCT35 条(2)) に定める見解、 それを裏付ける文献及び説明					
1.	見解			•	
	新規性(N)	請求の範囲 調求の範囲	1-9	有 無	
	進歩性(IS)	請求の範囲 請求の範囲	1-9		
	産業上の利用可能性(IA)	請求の範囲	1-9		

2. 文献及び説明 (PCT規則 70.7)

(対献)

- 1. JP 05-214332 A (イーストマン コダック カンパニー) 1993.08.24
- 2. JP 05-198378 A (イーストマン コダック カンパニー) 1993.08.06
- 3. JP 06-172751 A (イーストマン コダック カンパニー) 1994.06.21
- 4. JP 2003-142264 A (パイオニア株式会社) 2003.05.16

(説明)

請求の範囲1~9について

請求の範囲1~9に係る発明は、国際調査報告で引用された何れの文献にも開示されておらず、新規性を有するが、国際調査報告で引用された文献1~4より進歩性を有しない。

(補充欄に続く)

補充欄

いずれかの棚の大きさが足りない場合

第 V 棡の続き

文献4には、陽極と陰極の間に、アルミニウム錯体等の有機ホスト材料及びりん光性の有機ゲスト材料からなる発光層を有する有機EL素子、りん光性の有機ゲスト材料としては、2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II)やtris(2-phenylpyridine)iridium等が挙げられること、並びに、有機ホスト材料の((1,1'-biphenyl)-4-olato)bis(2-methyl-8-quinolinolate)aluminumとゲスト材料の2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II)等の赤色りん光材料とを異なる蒸着源から共蒸着した発光層を有する有機EL素子(実験例1~3)が記載されている。

してみると、文献1~3に記載のアルミニウム錯体におけるフェノラート配位子として、フェニル基で置換されたナフトラート等の各種フェノラート配位子を適用することや、デバイス特性や安定性の向上を図るために、再結晶をはじめとする公知の精製法を適用して不純物を除去したり、その含有量の上限を設定したりすることは、当業者であれば容易に想到し得たことである。また、こうして得られたアルミニウム錯体を文献4に記載の有機EL素子における有機ホスト材料として適用することも、当業者が適宜なし得たことである。

さらに、本願明細書の記載を検討しても、請求の範囲1に記載のフェノラート配位子を用いた場合と、o、m又はp-フェニルフェノラート等の文献1~3に具体的に記載される配位子を用いた場合との比較がなされてもおらず、請求の範囲1~9に係る発明が、文献1~4に記載された発明からみて格別の予期し得ない効果を奏するものとすることもできない。

なお、当該技術分野において、ハロゲン原子を有する化合物は、各電極から移動してきた正孔や電子のトラップとして働くことから、当該化合物からなる不純物が有機EL素子の発行輝度の減衰や発光寿命の低下の要因となることは、公知の事項である(必要であれば、WO 2000/41443 A1 の第40頁1~10行参照)。

日本国特許庁 22.6.2005

請求の範囲

[1] (補正後)

一般式(1)で表されるアルミニウムキレート錯体において、不純物として一般式(2)

【化1】

$$R_{4}$$
 R_{5}
 R_{6}
 R_{1}
 R_{6}
 R_{6}
 R_{6}
 R_{6}
 R_{7}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{2}
 R_{1}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{6}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{2}
 R_{3}

【化2】

$$R_3$$
 R_4
 R_5
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_9
 R_9

(式(1)及び(2)において、 Ar_1 は2環のアリーレン基であり、 Ar_2 は1~2環のアリール基であり、 Ar_1 と Ar_2 に含まれる芳香族環の合計数は3~4環であり、これらの芳香族環は縮合していてもよい。 R_1 ~ R_6 は独立に、水素又は炭素数1~8の炭化水素基を示す。また、Xはハロゲンを示す。)で表される化合物の量が350wtppm以下であることを特徴とする有機EL材料用のアルミニウムキレート錯体。

[2] (補正後)

式 (1) 及び (2) の Ar_1 がナフチレン基であり、 Ar_2 がナフチル基又はフェニル基であり

、XがBr、Cl又はIである請求項1記載のアルミニウムキレート錯体。

[3] (補正後)

アルミニウムイソプロポキシドにキノリノール誘導体とHO-Ar₁-Ar₂で表されるフェノール性化合物を順次反応させて請求項2に記載のアルミニウムキレート錯体を製造する方法において、キノリノール誘導体及びフェノール性化合物に含有されるHO-Ar₁-Xで表される化合物の量が350wtppm以下になるように精製した後、反応に供することを特徴とするアルミニウムキレート錯体の製造方法。

[4]

アルミニウムイソプロポキシドにキノリノール誘導体とHO-Ar₁-Ar₂で表されるフェノール性化合物を順次反応させて請求項1に記載のアルミニウムキレート錯体を製造する方法において、キノリノール誘導体及びフェノール性化合物に含有されるHO-Ar₁-Xで表される化合物の量が350wtppm以下になるように精製した後、反応に供することを特徴とするアルミニウムキレート錯体の製造方法。

[5] (補正後)

アルミニウムイソプロポキシドにキノリノール誘導体とHO-Ar₁-Ar₂で表されるフェノール性化合物を順次反応させて請求項1に記載のアルミニウムキレート錯体を製造する方法において、反応で得られた一般式(2)で表される化合物の量が350wtppm以上の粗アルミニウムキレート錯体を有機溶媒による洗浄又は再結晶したのち、昇華精製することによりハロゲン化物の量が350wtppm以下になるまで精製することを特徴とするアルミニウムキレート錯体の製造方法。

[6]

 $HO-Ar_1-Ar_2$ で表されるフェノール性化合物が、 $HO-Ar_1$ -Xで表される化合物と $(Ar_2)_a$ -Y(但し、YはCu、X、Li、B $(OH)_2$ 、MgX、ZnX、SnMe $_3$ を示し、Xはハロゲンを示し、aは $1\sim 1$ 0の整数を示す)で表される化合物とを反応させて得られたものである請求項4又は5に記載のアルミニウムキレート錯体の製造方法。

[7]

反応で得られたHO-Ar₁-Ar₂で表されるフェノール性化合物を再結晶精製し、且つ、これを用いて得られたアルミニウムキレート錯体を昇華精製する請求項6に記載のアルミニウムキレート錯体の製造方法。

[8]

陽極と陰極の間に有機化合物からなる発光層を含む有機EL素子において、前記発光層がホスト材料として請求項1記載のアルミニウムキレート錯体と、ゲスト材料としてルテ

BEST AVAILABLE COPY

ニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金若しくは 金から選ばれるりん光性有機貴金属錯体化合物を含むことを特徴とする有機EL素子。 [9]

一般式 (2) で表される化合物の量が350ppm以下となるように品質管理され、生産、出荷 又は使用段階で、この量を測定管理されていることを特徴とする請求項1に記載の有機E L材料用のアルミニウムキレート錯体。

BEST AVAILABLE COPT