CO245 - Probability and Statistics

15th January 2020

Probability is a mathematical formalism used to describe and quantify uncertainty.

Sample Spaces and Events

• sample space $S \text{ or } \Omega$

a set containing the possible outcomes of a random experiment

for example; sample space of two coin tosses

$$S = \{(H, H), (H, T), (T, H), (T, T)\}$$

 $E (E \subseteq S)$ event

any subset of the sample space (collection of some possible events)

for example; event of the first coin being heads in two tosses

$$E = \{(H, H), (H, T)\}\$$

the extremes are \varnothing (the null event) which will never occur, or S (the universal event) which will always occur - there is only uncertainty when the events are strictly between the events, such that $\varnothing \subset E \subset S$

• elementary event

singleton subset containing exactly one element from S

When performing a random experiment, the outcome will be a single element $s^* \in S$. Then an event $E \subseteq S$ has **occurred** iff $s^* \in E$. If it has not occurred, then $s^* \notin E \Leftrightarrow s^* \in \overline{E}$ (can be read as not E).

With a set of events $\{E_1, E_2, \dots\}$, we can have the following set operations;

• $\bigcup_{i} E_{i} = \{s \in S \mid \exists i. [s \in E_{i}]\}$ will only occur if at least one of the events E_{i} occurs ("or")
• $\bigcap_{i} E_{i} = \{s \in S \mid \forall i. [s \in E_{i}]\}$ will only occur if all of the events E_{i} occurs ("and")

• $\forall i, j. \ E_i \cap E_j = \varnothing$ $(i \neq j)$ if they are mutually exclusive (at most one can occur)

σ -algebra

In an uncountably infinite set, the event set you are assigning probabilities to cannot be every subset, as the probabilities cannot be made to sum to 1 under reasonable axioms.

We define the σ -algebra as the subset of events which we can assign probabilities to. We want to define a probability function P that corresponds to the subsets of S that we wish to **measure**. This set of subsets is referred to as \mathfrak{S} (the event space), with the following three properties (corresponding to the axioms of probability);

 $S \in \mathfrak{S}$ nonempty

• closed under complements

$$E \in \mathfrak{S} \Rightarrow \bar{E} \in \mathfrak{S}$$

• closed under countable union (therefore any countable set is fine) $E_1, E_2, \dots \in \mathfrak{S} \Rightarrow \bigcup_i E_i \in \mathfrak{S}$

A probability measure on the pair (S,\mathfrak{S}) is a mapping $P:\mathfrak{S}\to [0,1]$, satisfying the following three axioms:

• $\forall E \in \mathfrak{S}$. [0 < P(E) < 1]

•
$$P(S) = 1$$

 $P\left(\bigcup_{i} E_{i}\right) = \sum_{i} P(E_{i})$ • countably additive, for **disjoint subsets** $E_1, E_2, \dots \in \mathfrak{S}$

From these, we can derive the following;

$$P(\bar{E}) = 1 - P(E)$$

$$\underbrace{P(E) + P(E)}_{\text{disjoint}} = P(\underbrace{E \cup \bar{E}}_{E \cup \bar{E} = S}) = P(S) = 1$$

$$\bullet \ P(\varnothing) = 0$$

special case of the above, when E=S

$$ullet$$
 for any events E and F

$$P(E \cup F) = P(E) + P(F) - P(E \cap F)$$