Sem IV (Computers, IT) | Sem VI (Electronics) Author: Bharat Acharya

Mumbai | 2018

MICRO-INSTRUCTION FORMAT

The main part of the micro-instruction is its control field. It determines the control signals to be produced. It can be of two different formats: Horizontal or Vertical.

1) HORIZONTAL MICRO-INSTRUCTION

Here every bit of the micro-instruction corresponds to a control signal.

Whichever bit is "1", that particular control signal will be produced by the micro-instruction.

2) VERTICAL MICRO-INSTRUCTION

Here bits of the micro-instruction have to be decoded.

The decoded output decides the control signal to be produced.

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

	HORIZONTAL MICRO-INSTRUCTION	VERTICAL MICRO-INSTRUCTION
1	Every bit of the micro-instruction corresponds to a control signal.	Bits of the micro-instruction have to be decoded to produce control signals.
2	Does not require a decoder.	Needs a decoder.
3	N bits in the micro-instruction will totally produce N control signals.	N bits in the micro-instruction will totally produce 2 ^N control signals.
4	Multiple control signals can be produced by one micro-instruction.	Only one control signal can be produced by one micro-instruction.
5	As the control signals increase, the micro- instruction grows wider. Hence the Control Memory grows Horizontally.	To produce more control signals, more number of micro-instructions are needed. Hence the Control Memory grows Vertically.
6	Executes faster as no decoding needed.	Executes slower as decoding is needed.
7	Micro-instruction are very wide. Hence Control memory is large.	Micro-instruction are much narrower. Hence Control memory is small.
8	Circuit is simpler as a decoder is not needed.	Circuit is more complex as a decoder is needed.

As seen from the above comparison, both methods have their pros and cons. So a combination of both is used together called Nano-Programming.

Sem IV (Computers, IT) | Sem VI (Electronics)
Author: Bharat Acharya

Mumbai | 2018

NANO-PROGRAMMING (Very Important)

- 1) Horizontal µ-instructions can produce multiple control signals simultaneously, but are very wide.
- 2) This makes the Control Memory very large in size.
- 3) Vertical micro-instructions are narrow, but on decoding can produce only one control signal.
- 4) This makes the Control Memory **small** but the execution is **slow**.
- 5) Hence a **combination of both techniques** is needed called **Nano-Programming**.
- 6) Here we have a two level control memory.
- 7) The instruction is fetched from the **main memory into IR**.
- 8) Using its opcode we load address of its first micro-instruction into μPC ,
- 9) Using this address we **fetch the micro-instruction** from μ -Control Memory (μ CM) into μ IR.
- 10) This is in **vertical form** and has to be decoded.
- 11) The decoded output loads a new address in a Nano program counter (nPC).
- 12) Using this address we **fetch the Nano-instruction** from Nano-Control Memory (**nCM**) into **nIR**.
- 13) This is in horizontal form and can directly generate control signals.
- 14) Such a combination gives advantage of both techniques.
- 15) The size of the Control Memory is **small** as μ -instructions are **Vertical**.
- 16) Multiple control signals can be **produced simultaneously** as Nano-instructions are **Horizontal**.

Videos | Books | Classroom Coaching E: bharatsir@hotmail.com M: 9820408217

	HARDWIRED CONTROL UNIT	MICROPROGRAMMED CONTROL UNIT
1	Control signals are generated using hardware.	Control signals are generated using software (Microprogram).
2	Since hardware is used, the circuit is rigid .	Since software is used, the circuit is flexible.
3	Modification to the Control Unit requires re-design of the entire hardware.	Modification to the Control Unit simply requires re-programming of μ-instructions.
4	Ideally suited for processors with small and simple instruction sets.	Ideally suited for processors with large and complex instruction sets.
5	Debugging a large Hardwired Control Unit is very difficult.	As micro-programs are software, debugging is much easier.
6	Emulation is not possible.	Emulation is possible.
7	Executes faster as control signals are directly generated by hardware.	Executes slower as time is wasted in fetching and decoding µ-instructions.
8	Does not need a Control Memory .	Needs a Control Memory .
9	Cost is lower as Control Memory is not needed.	Cost is higher as Control Memory is needed inside the processor.
10	Preferred in RISC processors .	Preferred in CISC processors .

As seen from the above comparison, both methods have their pros and cons. Hence modern processors use a combination of both.

Simple and regularly used instructions are decoded by a Hardwired Control Unit as they are faster. Complex instructions are decoded by a Microprogrammed Control Unit as they are easier to design...