H

Roll No.

TMA-301(A)

B. TECH. (ME) (THIRD SEMESTER) END SEMESTER EXAMINATION, 2018

ENGINEERING MATHEMATICS

Time: Three Hours

Maximum Marks: 100

- Note:(i) This question paper contains five questions with alternative choice.
 - (ii) All questions are compulsory.
 - (iii) Each part carries ten marks. Total marks assigned to each question are twenty.
- 1. Attempt any two questions of choice from (a),
 - (b) and (c). (2×10=20 Marks)
 - (a) Determine the analytic function whose imaginary part is:

$$v = \log\left(\dot{x^2} + y^2\right) + x - 2y.$$

(b) Show that the function defined by:

$$f(z) = \begin{cases} \frac{x^3 y^5 (x + iy)}{x^6 + y^{10}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

satisfy Cauchy-Riemann equation at the origin but is not analytic at that point.

- (c) Show that $u = \frac{1}{2} \log (x^2 + y^2)$ is a harmonic function. Find its harmonic conjugate.
- 2. Attempt any *two* questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Find the value of the integral $\int_0^{1+i} (x^2 iy) dx.$
 - (i) Along the straight line from y = x.
 - (ii) Along the parabola $y = x^2$.
 - (b) Use Cauchy integral formula to evaluate $\int_{C} \frac{z}{z^2 3z + 2} dz$, where C is the circle |z 2| = 1/2.
 - (c) Evaluate $\int_{C} \frac{e^{z}}{(z-1)(z-4)} dz$, where C is circle |z| = 2, by using Cauchy integral formula.
- 3. Attempt any *two* questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Evaluate the value of $\log_e 2$ by finding $\int_0^1 \frac{2x}{1+x^2} dx$, using Simpson's 1/3 rule by dividing the interval into four equal parts.

(b) Construct Newton's forward interpolation polynomial for the following data:

x	y
4	1
6	3
8	8
10	16

and evaluated y for x = 5.

(c) Evaluate
$$\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$$
, by using

Weddle's rule, taking n = 6.

- 4. Attempt any *two* questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Solve $\frac{dy}{dx} = 1 2xy$, by Picard's method, given y = 0 at x = 0.
 - (b) Use Taylor's series method to solve the equation $\frac{dy}{dx} = -xy$, y(0) = 1.
 - (c) Use Runge-Kutta method to approximate y, when x = 0.1 and x = 0.2, given that $\frac{dy}{dx} = x + y, y = 1 \text{ when } x = 0.$

- 5. Attempt any *two* questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Calculate Karl Pearson's coefficient of skewness for the following data:

Marks	No. of Students
0—10	10
10—20	12
20—30	18
30—40	25
40—50	16
50—60	14
60—70	8

(b) Calculate the first four moments of the following distribution about the mean and hence find β_1 and β_2 :

x	f
0	1
1	8
2	28
3	28 56 70 56
4	70
5	56
6	28
7	8
8	1

(c) Probability that a man aged 60 will be live to be 70 is 0.65. What is the probability that out of 10 men, now 60 at least 7 will live to be 70?