		Not	e
		I	II
Name Vorname	1		
M + il l	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$		
${\bf Unterschrift\ der\ Kandidatin/des\ Kandidaten}$			
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur	_		
Mathematik 4 für Physiker	7		
(Analysis 3)	8		
(Allarysis 9)			
Prof. Dr. S. Warzel			
15 Februar 2016, 11,00, 12,20 Uhr	\sum		
15. Februar 2016, 11:00 – 12:30 Uhr			1
Hörsaal: Platz:	I	Erstkorrel	ktur
Hinweise:			
Überprüfen Sie die Vollständigkeit der Angabe: 8 Aufgaben	$ \Pi $	Zweitkorr	ektur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ${f ein}$ selbsterstelltes DIN A4 Blatt			
Erreichbare Gesamtpunktzahl: 56 Punkte			
Bei Multiple-Choice-Aufgaben sind ${f genau}$ die zutreffenden Aussagen anzukreuzen.			
Tur von der Aufsicht auszufüllen:			
örsaal verlassen von bis			
orzeitig abgegeben um			

Besondere Bemerkungen:

1. Mehrdimensionales Integral Bestimmen Sie $\int_{0 < y < x} e^{-x} d(x, y)$.	[4 Punkte]

3. Fluss eines Vektorfeldes durch eine Fläche

[12 Punkte]

Sei $\Phi: V \to M \subset \mathbb{R}^3$ eine Karte der Mannigfaltigkeit $M = \Phi(V)$, wobei $V = \{(u,v) \in \mathbb{R}^2 | u^2 + v^2 < 1\}$ und $\Phi(u,v) = \begin{pmatrix} u \\ v \\ \frac{u^2 + v^2}{2} \end{pmatrix}$.

- (a) Wie lautet die Gramsche Determinante $g^{\Phi}(u,v)$ von Φ bei $(u,v) \in V$?
- (b) Berechnen Sie die den Flächeninhalt von M.
- (c) Bestimmen Sie den Fluss des Vektorfelds $v: \mathbb{R}^3 \to \mathbb{R}^3$, v(x,y,z) = (1,0,0) durch die Oberfläche M. Die Orientierung der Fläche ist durch n(0,0,0) = (0,0,-1) festgelegt. Begründen Sie Ihre Antwort.

Berechnen Sie für $f(z)=\overline{z}$ und $\gamma:[0,1]\to\mathbb{C},$ $\gamma(t)=t^2+\mathrm{i} t$ das Kurvenintegral $\int_{\gamma}f(z)\mathrm{d} z.$	

5. Holomorphe Funktionen	[7	${f Punkte}]$
Sei $U \subset \mathbb{C}$ offen und $f: U \to \mathbb{C}$ holomorph. Weiter sei $g(x,y) := \operatorname{Re} f(x+\mathrm{i} y)$ und $h(x$ für $x,y \in \mathbb{R}$ und $x+\mathrm{i} y \in U$. Geben Sie jeweils an, ob die folgenden Eigenschaften für jedes solche f gelten:	$(y,y) := \operatorname{Im}$	$f(x+\mathrm{i}y)$
(a) $\int\limits_{\gamma} f(z) \mathrm{d}z = 0$ für jede C^1 -Kurve $\gamma:[0,1] \to U$.	□ Ja	□ Nein
(b) $\int\limits_{\gamma} f(z) \mathrm{d}z = 0$ für jede geschlossene C^1 -Kurve $\gamma:[0,1] \to U$.	□ Ja	□ Nein
(c) $\int\limits_{\gamma} f(z) \mathrm{d}z = 0$ für jede geschlossene in U nullhomotope C^1 -Kurve $\gamma:[0,1] \to U$	<i>J</i> .□ Ja	□ Nein
(d) $\frac{\partial}{\partial x}g(x,y) = \frac{\partial}{\partial y}h(x,y)$.	□ Ja	\square Nein
(e) $\frac{\partial}{\partial y}g(x,y) = \frac{\partial}{\partial x}h(x,y)$.	□ Ja	\square Nein
(f) Für jedes $z_0 \in U$ gibt es ein $\varepsilon > 0$, so dass f sich als komplexe Poten Konvergenzradius ε darstellen lässt.	zreihe un Ja	$z_0 \text{ mit} \ \square \text{ Nein}$
(g) f besitzt eine Stammfunktion auf U .	\Box Ja	□ Nein

6. Residuensatz [8 Punkte]

Sei
$$f(z) = \frac{1}{z^3(z-2)}$$
.

- (a) Bestimmen und klassifizieren Sie alle isolierten Singularitäten von f.
- (b) Berechnen Sie alle Residuen von f.
- (c) Bestimmen Sie $\int\limits_{|z|=1} f(z) \mathrm{d}z.$ Begründen Sie das Ergebnis.

7. Differentialgleichung

[9 Punkte]

Sei $\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ zweimal stetig differenzierbar und eine Lösung der Differentialgleichung

$$\mathrm{i}\frac{\partial}{\partial t}\psi(x,t) = -\frac{\partial^2}{\partial x^2}\psi(x,t)$$

mit der Anfangsbedingung $\psi(x,0) = \exp\left(-\frac{x^2}{2}\right)$.

- (a) Berechnen Sie $\widehat{\psi}(k,t) := \frac{1}{\sqrt{2\pi}} \int e^{-\mathrm{i}kx} \psi(x,t) \mathrm{d}x$.
- (b) Bestimmen Sie die L^2 -Norm von $f(x):=\psi(x,t)$ für beliebiges $t\in\mathbb{R}.$

 $\text{Hinweis: F\"{u}r } a>0 \text{ ist } \tfrac{1}{\sqrt{2\pi}} \int \mathrm{e}^{-\mathrm{i}kx} \mathrm{e}^{-\tfrac{x^2}{2a}} \mathrm{d}x = \sqrt{a} \mathrm{e}^{-\tfrac{ak^2}{2}}.$

8.	Distributionen	[5 Punkte]
٠.	—	

Zeigen Sie, dass die Ableitung der als Distribution aufgefassten Funktion s
gn : $\mathbb{R} \to \mathbb{R},$

$$sgn(x) = \begin{cases} 1, & \text{für } x > 0, \\ 0, & \text{für } x = 0, \\ -1, & \text{für } x < 0, \end{cases}$$

gleich 2δ ist, wobei δ , wie üblich, die Delta-Distribution im Ursprung bezeichnet.