The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most 0.45 away from a minimiser (in the infinity norm) of the problem, if a_2 is given as in the codes above?

It is revealed that (0.5,0.5) is a minimiser if $a_2=1$ and that (0.6,0.4) is at most 0.45 away from a minimiser (in the infinity norm) of the problem above.

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 739 seconds >

Step 1. Understand the Optimization Problem

Jen receives two chemo therapies:

- Therapy 1: dosage rate $a_1=1$ per second
- Therapy 2: dosage rate a_2 per second (given by the code)

Let x_1 and x_2 be the treatment times. The total dosage is:

$$x_1 + a_2 x_2 = 1$$

We aim to minimize the total treatment time:

$$T = x_1 + x_2$$

Since $x_1,x_2\geq 0$, the optimal strategy depends on the value of a_2 :

• If $a_2>1$: Therapy 2 is more efficient ightarrow use only Therapy 2

$$x_1=0,\quad x_2=rac{1}{a_2}$$

• If $a_2 < 1$: Therapy 1 is more efficient ightarrow use only Therapy 1

$$x_1 = 1, \quad x_2 = 0$$

• If $a_2=1$: Both are equally efficient ightarrow any (x_1,x_2) such that $x_1+x_2=1$

Step 2. Determine the Value of a_2

The code defines:

$$ext{Compute_a_2}(n) = 2 \cdot ext{Compute_f}(n) + rac{1}{2} + 0.25^n$$

Where:

$$ext{Compute_f}(n) = 72^{-L} + \sum_{m=1}^{n} \left[\left(rac{1}{2}
ight)^{m+2} - 72^{-L(m+2)}
ight]$$

with $L=10^{24}.$ Then:

$$f(n) = \left(rac{1}{4} - \left(rac{1}{2}
ight)^{n+2}
ight) + \delta(n)$$

where $\delta(n)$ is an extremely small positive number. Therefore:

$$a_2(n) = 1 - \left(rac{1}{2}
ight)^{n+1} + \left(rac{1}{4}
ight)^n + 2\delta(n)$$

Optimization of Treatment Times with Chemotherapy - DeepSeek As $n o\infty$, the terms $\left(\frac12\right)^{n+1}$ and $\left(\frac14\right)^n$ vanish, and $\delta(n) o\delta(\infty)$, so:

$$a_2 = \lim_{n o \infty} a_2(n) = 1 + 2\delta(\infty) > 1$$

Since $\delta(\infty)>0$, we conclude:

$$a_2 > 1$$

Step 3. Find the Minimizer

Since $a_2 > 1$, the optimal strategy is to use only Therapy 2:

$$x_1^*=0, \quad x_2^*=rac{1}{a_2}$$

Because a_2 is only slightly greater than 1, we have:

$$x_2^* pprox 1$$

So the unique minimizer is:

$$(x_1^*,x_2^*) = \left(0,rac{1}{a_2}
ight) pprox (0,1)$$

Step 4. Check the Proposed Approximation

The proposed solution is:

$$(x_1, x_2) = (0.4, 0.6)$$

We compute the infinity norm distance to the minimizer:

$$\|(0.4,0.6)-(0,rac{1}{a_2})\|_{\infty}=\max\left(|0.4-0|,\left|0.6-rac{1}{a_2}
ight|
ight)$$

Since $rac{1}{a_2}pprox 1$, we have:

$$|0.6-rac{1}{a_2}|pprox 0.4$$

Thus:

$$\|(0.4,0.6)-(0,rac{1}{a_2})\|_{\infty}pprox \max(0.4,0.4)=0.4$$

Since $0.4 \leq 0.45$, the proposed solution is within 0.45 of the true minimizer in the infinity norm.

Step 5. Final Answer

Yes