

MEJORA DEL CONTRASTE DE IMÁGENES A COLOR UTILIZANDO UN FRAMEWORK DE OPTIMIZACIÓN MULTIOBJETIVO

Luis Guillermo Moré Rodríguez

Orientador: Prof. Diego Pedro Pinto Roa, Dr.

Tesis presentada a la Facultad Politécnica de la Universidad Nacional de Asunción, como requisito para la obtención del Grado de Máster en Ciencias de la Computación.

ASUNCIÓN - PARAGUAY Noviembre - 2017

MEJORA DEL CONTRASTE DE IMÁGENES A COLOR UTILIZANDO UN FRAMEWORK DE OPTIMIZACIÓN MULTIOBJETIVO

Luis Guillermo Moré Rodríguez

Aprobado en Agosto de 2017 por:

,

Datos internacionales de Catalogación en la Publicación (CIP) DE BIBLIOTECA CENTRAL DE LA UNA

Moré Rodríguez,Luis Guillermo

Mejora del contraste de imágenes a color utilizando un framework de optimización multiobjetivo/Luis Guillermo Moré Rodríguez. – Asunción, 2017. 46 p. : il.

Tesis (Maestría en Ciencias de la Computación) – Facultad Politécnica , 2017.

Bibliografía.

1. Mejora de contraste. 2. Optimización Por Ejambre de Partículas. 3. Imágenes a color. I. Título.

CDD 519.4

Agradecimientos

Agradezco profundamente a Dios y a la Virgen María por todas las gracias que me han brindado, entre ellas mi gran familia, amigos, orientadores, profesores y colaboradores que hicieron posible este trabajo.

Agradezco al NIDTEC por brindarme la oportunidad.

Agradezco al CONACYT por la beca otorgada.

MEJORA DEL CONTRASTE DE IMÁGENES A COLOR UTILIZANDO UN FRAMEWORK DE OPTIMIZACIÓN MULTIOBJETIVO

Autor: Luis Guillermo Moré

Rodríguez

Orientador: Diego Pedro Pinto Roa, Dr.

RESUMEN

 $[{\tt INSERTE~ABSTRACT~AQUI}]$

CONTRAST ENHANCEMENT OF COLOR IMAGES USING A MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

Author: Luis Guillermo Moré Rodríguez

Advisor: Diego Pedro Pinto Roa, Dr.

SUMMARY

 $[{\tt INSERT\ ABSTRACT\ HERE}]$

ÍNDICE GENERAL

LI	STA	DE FIGURAS	X
LI	STA	DE TABLAS	XII
LI	STA	DE SÍMBOLOS	XIII
LI	STA	DE ABREVIATURAS	XV
1.	INT	TRODUCCIÓN	1
	1.1.	Objetivos	2
		1.1.1. Objetivo General	2
		1.1.2. Objetivos específicos	2
	1.2.	Estructura de la tesis	3
2.	MA	RCO TEÓRICO	4
	2.1.	Ecualización del Histograma	4
	2.2.	Espacios de Color Adoptados	4
		2.2.1. Contrast Limited Adaptive Histogram Equalization (CLAHE)	6
		2.2.2. Multi-Objective Particle Swarm Optimization (MOPSO) $$.	6
		2.2.3. Entropía de la imagen	7
		2.2.4. Índice de Similaridad Estructural	7
3.	FOI	RMULACIÓN DEL PROBLEMA PLANTEADO Y PRO-	
	PU	ESTA	9
	3.1.	Formulación del problema planteado	9
	3.2.	Propuesta	10
4.	RES	SULTADOS Y DISCUSIÓN	12
5 .	CO	NCLUSIONES Y TRABAJOS	
	FU'	$\Gamma \mathrm{UROS}$	16

5.1.	Trabajos futuros	17
REFE	RENCIAS BIBLIOGRÁFICAS	18
.1.	Imagen de prueba calhouse_230.jpg	20
.2.	Imagen de prueba calhouse_231.jpg	23
.3.	Imagen de prueba calhouse_233.jpg	27
.4.	Imagen de prueba calhouse_234.jpg	30
.5.	Imagen de prueba calhouse_236.jpg	33
.6.	Imagen de prueba calhouse_237.jpg	37

LISTA DE FIGURAS

1.1.	Imagen en escala de grises e imagen con contraste mejorado para posterior utilización	2
2.1.	Diagrama esquemático del cubo que representa al espacio de colores RGB . Se pueden apreciar algunos colores notables	5
4.1.	Enhanced Image using [MB]. $\mathcal{H}_{\mathcal{Y}} = 0.788927$, $SSIM_R = 0.000204143$,	
	$SSIM_G = 0.0000526475, SSIM_B = 0.0000518143 \dots \dots$	13
4.2.	Imágenes original y resultantes para la imagen de prueba Casa 1 .	13
4.3.	Frente Pareto dibujado utilizando datos de la Tabla 4.2	14
1.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 1	22
2.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 1	23
3.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 2	26
4.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 2	27
5.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 3	29
6.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 3	30

7.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 4	32
8.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 4	33
9.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 4	36
10.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 5	37
11.	${\bf Im\'agenes\ visualmente\ relevantes\ obtenidas\ mediante}\ {\it CMOPSO-}$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 6	45
12.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 6	46

LISTA DE TABLAS

4.1.	Parámetros de entrada para $MOPSO$	12
4.2.	Parámetros de entrada para $MOPSO$	14
4.3.	Parámetros de entrada para $MOPSO$	14
1.	Resultados no dominados para la imagen de prueba calhouse	
	230.jpg	21
2.	Resultados no dominados para la imagen de prueba calhouse	
	231.jpg	25
3.	Resultados no dominados para la imagen de prueba calhouse	
	233.jpg	28
4.	Resultados no dominados para la imagen de prueba calhouse	
	234.jpg	31
5.	Resultados no dominados para la imagen de prueba calhouse	
	236.jpg	35
6.	Resultados no dominados para la imagen de prueba calhouse	
	237.ipg	44

LISTA DE SÍMBOLOS

f	Imagen original	. ??
\mathbb{Z}	Conjunto de números enteros	??
\mathbb{R}	Conjunto de números racionales	??
m	Valor asociado a un píxel dentro de un espacio de color	??
c	Componentes del valor asociado a un píxel	.??
j	Nivel de intensidad	??
f_k	Componentes de f	
L	Máximo nivel de intensidad de una imagen	.??
$h_{f_k}(j)$	Histograma del canal f_k	??
n_{j}	Cantidad de ocurrencia de la intensidad j en $f_k \dots$.??
g	Elemento estructurante	??
(u,v)	Coordenada espacial que representa un pixel de la imagen	.??
(s,t)	Coordenada espacial del elemento estructurante	
$(f \oplus g)$	Dilatación de la imagen original f por un elemento estructura	
(, ,	$g \dots \dots$?? e g
$(f\ominus g)$ $(f\circ g)$?? Apertura de la imagen original f por un elemento estructura	nte
	$g \dots \dots$	
$(f \bullet g)$	Cierre de la imagen original f por un elemento estructurante g	
WTH	Transformada de top-hat por apertura	
BTH	Transformada de top-hat por cierre	
f_E	Imagen con mejora de contraste	
f_1	Componente R de f	
f_2	Componente G de f	
f_3	Componente B de f	
w	Función de pesos	
T	Transformada escalar de una imagen	
n	Número de iteraciones	
i	Índice de iteraciones	??

WTH_i	<i>i</i> -escalas de brillos
BTH_i	<i>i</i> -escalas de oscuridad
WTH_{i-1}^S	(i-1)-diferencias en cascada de las escalas de brillo ??
BTH_{i-1}^S	(i-1)-diferencias en cascada de las escalas de oscuridad ??
WTH_{M}	Valores máximos de todas las escalas de brillos??
BTH_{M}	Valores máximos de todas las escalas de oscuridad ??
WTH_M^S	Valores máximos de todas las escalas de brillos por sustracción??
BTH_M^S	Valores máximos de todas las escalas de oscuridad por sustracción ??
E(f)	Intensidad media de la imagen f ??
P(j)	Probabilidad de ocurrencia del valor j ??
ho	Valor del pixel central dentro de una ventana??
ι	Valor medio de los vecinos de ρ
ω	Contraste local??
D	Dominio de una imagen??
γ	Diferencia entre los canales f_1 y f_2 de una imagen ??
β	Diferencia entre un medio de $(f_1 + f_2)$ y f_3 ??
σ_{γ}	Desviación estándar de γ
σ_{eta}	Desviación estándar de β
μ_{γ}	Media aritmética de γ
μ_{eta}	Media aritmética de β ??

LISTA DE ABREVIATURAS

RGB: Espacio de color RGB.

HSI: Espacio de color HSI.

HSV: Espacio de color HSV.

HE: Histogram Equalization.

 ${\it CLAHE: Contrast-Limited Adaptive \ Histogram \ Equalization.}$

 ${\bf MMCE:}\ Multiscale\ Morphological\ Contrast\ Enhancement.$

C: Contrast.

 ${\it CIR:}\ Contrast\ Improvement\ Ratio.$

CEF: Color Enhancement Factor.

Capítulo 1

INTRODUCCIÓN

En el Procesamiento Digital de Imágenes, la Mejora del Contraste es un proceso que consiste en la transformación de pixeles de una imagen, con la finalidad de realizar cambios de manera tal a resaltar uno o más objetos dentro de la imagen tratada. El objetivo principal del proceso de Mejora del Contraste es la de obtener una nueva imagen cuyo Contraste sea más adecuado para la aplicación específica que se utilizará después [GW02a]

La Mejora del Contraste es un paso de preprocesamiento fundamental para varias aplicaciones. Algunas de las aplicaciones que más se benefician de éste proceso se detallan a continuación:

- Imágenes Médicas (como ejemplos es posible tomar: el Diagnóstico Asistido por Computadora [Doi07], Imágenes de Tomografía Computarizada [EW93], y otros).
- Sensoreamiento Remoto [LKC14],
- Imágenes aéreas,
- Imágenes astronómicas,
- Imágenes biométricas,
- Otras.

Las técnicas basadas en Ecualización del Histograma se mostraron extensivamente válidas para enfocar los problemas de Mejora del Contraste [PAA+87, Zui94, Kim97]. Las Meta-Heurísticas tales como la Optimización Mono-Objetivo, y también la Optimización Multi-Objetivo fueron testeadas satisfactoriamente de manera a resolver problemas de Mejora del Contraste en imágenes en escala de

gris [MB, MBA⁺15, Sai99, HS13]. Sin embargo, la Optimización Multi-Objetivo aplicada a la Mejora del Contraste en imágenes a color supone dificultades adicionales, debido a que es necesario preservar la información de color presente dentro de dichas imágenes.

Figura 1.1: Imagen en escala de grises e imagen con contraste mejorado para posterior utilización.

Ésta propuesta consiste en realizar pruebas de Mejora del Contraste con imágenes a color transformadas desde el espacio de colores RGB al espacio de colores YCbCr de manera a realizar la Mejora de Contraste basada en Optimización Multi-Objetivo. Contrast Limited Adaptive Histogram Equalization (CLAHE) se aplica sobre el canal Y de la imagen de prueba, de manera a modificar el contraste, y la imagen resultante se transforma nuevamente a RGB de forma a evaluar la Mejora del Contraste lograda, además de la similaridad entre canales de color.

1.1. Objetivos

1.1.1. Objetivo General

Desarrollar un algoritmo de mejora de contraste para imágenes a color, utilizando un enfoque de Metaheurística Multi-Objetiva pura.

1.1.2. Objetivos específicos

- Desarrollar un nuevo algoritmo de Mejora del Contraste de imágenes a color basado en Metaheurísticas Multi-Objetivo.
- Demostrar la factibilidad del enfoque de Mejora de Contraste de imágenes a color basado en Metaheurísticas Multi-Objetivo puras.

 Encontrar alternativas de implementación que ayuden a subsanar problemas inherentes a los enfoques basados en Metaheurísticas Multi-Objetivo, cuando la cantidad de objetivos sobrepasa a tres.

1.2. Estructura de la tesis

El trabajo, en las secciones siguientes se organiza de la siguiente manera: en el capítulo 2, los conceptos fundamentales de éste trabajo se presentan; en el capítulo 3.2 se presenta el problema de Mejora de Contraste, y el enfoque de éste trabajo se muestra; en el capítulo 4 se discute en detalle los resultados obtenidos, y finalmente en el capítulo 5 se hacen algunos comentarios finales.

Capítulo 2

MARCO TEÓRICO

Éste capítulo presenta una introducción a los conceptos principales utilizados en éste trabajo. Solamente se busca presentar los conceptos fundamentales, necesarios para comprender los detalles técnicos del mismo.

2.1. Ecualización del Histograma

2.2. Espacios de Color Adoptados

Los Espacios de Color [?] son representaciones de color de las imágenes digitales, que por lo general se aceptan mediante convención o por estándar de hecho. Por lo general, los Espacios de Color consisten en sistemas de coordenadas donde cada punto es un color representable dentro del Espacio.

El primer espacio importante a analizar en este trabajo es RGB (del inglés Red, Green, Blue). En el modelo RGB, cada color aparece como un componente primario del Rojo, Verde y Azul. Éste modelo sencillo se basa en el sistema de coordenadas Cartesianas. En la Figura 2.1 se pueden apreciar algunos colores notables representados en el espacio RGB: por ejemplo, el azul puro se representa como (0,0,1), el verde puro como (0,1,0) y el rojo puro como (1,0,0); mientas que el negro se representa como (0,0,0) y el blanco como (1,1,1). Se puede apreciar la ventaja de usar ese sistema de representación de colores, el cual es sencillo. Se asume un sistema de coordenadas normalizado.

Figura 2.1: Diagrama esquemático del cubo que representa al espacio de colores RGB. Se pueden apreciar algunos colores notables.

En este trabajo, las imágenes originales se representan utilizando el espacio de colores RGB; en éste caso se tiene un arreglo de pixeles de color de tamaño $N\times M\times 3$. Cada pixel de color está representado por un elemento $[z_r \ z_g \ z_b]$ del arreglo previamente mencionado, donde z_r, z_g, z_b son los componentes rojo, verde y azul de un pixel de color en una ubicación específica. Las imágenes originales son luego transformadas al espacio de colores YCbCr [GW02b], el cual es una representación ampliamente utilizada en el video digital. La principal ventaja es que en esta representación Y representa la información de luminancia de la imagen, mientras que el componente Cb representa la diferencia entre el componente azul y un valor de referencia, mientras que el componente Cr es la diferencia entre el componente rojo y un valor de referencia. Otra ventaja importante de ésta representación es que la conversión desde RGB, y nuevamente hacia RGB es directa:

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \begin{bmatrix} 65,481 & 128,553 & 24,966 \\ -37,797 & -74,203 & 112,000 \\ 112,000 & -93,786 & -18,214 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
(2.1)

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} Y + 1,402 \cdot (C_r - 128) \\ Y - 0,34414 \cdot (C_b - 128) - 0,71414 \cdot (C_r - 128) \\ Y + 1,772 \cdot (C_b - 128) \end{bmatrix}$$
(2.2)

2.2.1. Contrast Limited Adaptive Histogram Equalization (CLAHE)

2.2.2. Multi-Objective Particle Swarm Optimization (MOP-SO)

Multi-Objective Particle Swarm Optimization (MOPSO) [NDGN⁺09] es un algoritmo metaheurístico bien conocido. ES una metaheurística bio-inspirada que simula el comportamiento de las bandadas de pájaros. En PSO, cada solución potencial del problema que se trata se denomina particle y la población actual de soluciones se llama swarm. Cada partícula \vec{x} realiza una búsqueda dentro de un espacio de búsqueda Ω , y para cada generación t, cada solución \vec{x} se actualiza de acuerdo a:

$$\vec{x}_i(t) = \vec{x}_i(t-1) + \vec{v}_i(t) \tag{2.3}$$

Aquí, \overrightarrow{v} es un factor conocido como la velocidad, y está dado por:

$$\overrightarrow{v}_i(t) = w \cdot (t-1) + C_1 \cdot r_1 \cdot (\overrightarrow{x}_{p_i} - \overrightarrow{x}_i) + C_2 \cdot r_2 \cdot (\overrightarrow{x}_{q_i} - \overrightarrow{x}_i), \tag{2.4}$$

donde \vec{x}_{p_i} es la mejor solución que \vec{x}_i encontró hasta ahora, \vec{x}_{g_i} es la mejor solución que el enjambre completo encontró durante una iteración, w es un coeficiente conocido como el peso de la inercia, que controla la tasa de velocidad de la búsquda de PSO; r_1 y r_2 son números aleatorios entre [0,1]. Finalmente, C_1 Y C_2 son los coeficientes que controlan la ponderación entre partículas globales y locales durante la búsqueda.

En MOPSO, un coeficiente de constricción χ se adopta de manera a controlar la velocidad de la partícula, como se describe abajo:

$$\chi = \frac{2}{2 - \varphi - \sqrt{\varphi^2 - 4\varphi}} \tag{2.5}$$

donde

$$\varphi = \begin{cases} C_1 + C_2 & \text{if } C_1 + C_2 > 4\\ 0, & \text{if } C_1 + C_2 \le 4 \end{cases}$$
 (2.6)

Además, la velocidad en MOPSO se acota con la siguiente ecuación de cons-

tricción de velocidad:

$$v_{i,j}(t) = \begin{cases} delta_j & \text{if } v_{i,j}(t) > delta_j \\ -delta_j, & \text{if } v_{i,j}(t) \le delta_j \\ v_{i,j}(t), & \text{otherwise} \end{cases}$$
(2.7)

donde

$$delta_j = \frac{upper_limit_j - lower_limit_j}{2}$$
 (2.8)

2.2.3. Entropía de la imagen

La entropía de la imagen [KBD91] es una métrica que mide cuánta información está representada dentro de la imagen. La entropía y el contraste se relacionan de manera muy cercana a la distribución de intensidad de las imágenes, por lo que esta métrica es capaz de verificar las variaciones de contraste como consecuencia de las transformaciones de la imagen.

Primero, es necesario definir el Histograma de intensidades de una imagen H como sigue: Sea $c_1, c_2, ..., c_n$ el conteo de pixeles con intensidades $i_1, i_2, ..., i_n$ respectivamente, y sea también:

$$p_i = \frac{c_i}{N}, \qquad \sum_{i=1}^n c_i = N, \qquad i = 1, 2, ..., n,$$
 (2.9)

donde N es la suma total de pixeles mostrados en una imagen I y n es cada nivel de intensidad representable por el espacio de colores de I. Entonces, H se define como la distribución de probabilidad en el que cada p_i representa la probabilidad de ocurrencia de una intensidad i. Entonces, la Entropía de la Imagen se define de la siguiente manera:

$$\mathcal{H} = -\sum_{i=0}^{n-1} p_i \log_2(p_i) \qquad \mathcal{H} \in \{0, ..., \log_2(n)\}$$
 (2.10)

2.2.4. Índice de Similaridad Estructural

El Índice de Similaridad Estructural (SSIM) [WBSS04] es una métrica bien conocida que mide atributos importantes de la imagen tales como la Luminancia, Contrastey la Estructura. SSIM tiene como objetivo principal medir la distorsión agregada a la imagen como consecuencia del proceso de Mejora del Contraste. SSIM es calculado por regiones, por lo tanto, dadas dos imágenes I_x y T_y que re-

presentan una imagen original y una mejorada, respectivamente, el índice SSIM se define como se muestra abajo:

$$SSIM(I,T) = \frac{(2\mu_{I_x}\mu_{T_y} + E_1)(2\sigma_{I_xT_y} + E_2)}{(\mu_{I_x}^2 + \mu_{T_y}^2 + E_1)(\sigma_{I_x}^2 + \sigma_{T_y}^2 + E_2)} \qquad SSIM \in [0,1] \quad (2.11)$$

donde μ_{I_x} , μ_{T_y} son los promedios de intensidad de I_x y T_y , respectivamente; $\sigma_{I_x}^2$ y $\sigma_{T_y}^2$ son las varianzas de intensidad para I_x y T_y , respectivamente; $\sigma_{I_xT_y}$ es la covarianza entre las intensidades I_x y T_y . $E_1 = (K_1L^2)$, donde L es el rango dinámico de intensidades de los pixeles de la imagen, y $K_1 \ll 1$ es una constante pequeña; $E_2 = (K_2L)^2$, y $K_2 \ll 1$; tanto E_1 como E_2 son constantes utilizadas para estabilizar la división cuando el denominador se acerca a cero.

Capítulo 3

FORMULACIÓN DEL PROBLEMA PLAN-TEADO Y PROPUESTA

En este capítulo se muestra una formulación del problema a resolver, además de la propuesta detallada de la implementación realizada.

3.1. Formulación del problema planteado

Dada una imagen a color I, con $M \times N$ pixeles, y un vector $\overrightarrow{x} = (\mathscr{R}_x, \mathscr{R}_y, \mathscr{C})$, donde \mathscr{R}_x y \mathscr{R}_y son regiones contextuales y \mathscr{C} es el *Clip Limit*, se busca un conjunto de soluciones no dominadas \mathscr{X} , que simultáneamente maximicen las funciones objetivo f_1, f_2, f_3, f_4 :

$$\mathscr{F} = [f_1(I, \vec{x}), f_2(I, \vec{x}), f_3(I, \vec{x}), f_4(I, \vec{x})]; \qquad f_1, f_2, f_3, f_4 \in [0, 1]$$
(3.1)

donde:

- T_y es el mapa de intensidades mejoradas, al aplicar \vec{x} a I_y ; ésto es: $T_y = CLAHE(\vec{x}, I_y)$. T_y e I_y son los canales Y de la representación YCbCr de las imágenes I y T, respectivamente,
- $f_1(I, \vec{x}) = \frac{\mathscr{H}(T)}{\log_2 L}$ es la Entropía Normalizada del mapa de intensidades mejoradas T_y , como se describió arriba,
- $f_2(I, \vec{x}) = SSIM(I_R, T_R)$ es la medición del SSIM entre I_R y T_R . I_R y T_R son los canales R de las representaciones RGB de I y T, respectivamente,
- $f_2(I, \vec{x}) = SSIM(I_G, T_G)$ es la medición del SSIM entre I_G y T_G . I_G y T_G son los canales G de las representaciones RGB de I y T, respectivamente,

• $f_2(I, \vec{x}) = SSIM(I_B, T_B)$ es la medición del SSIM entre I_B y I_B . I_B y I_B son los canales G de las representaciones RGB de I y I, respectivamente,

Acotados por:

- $\mathcal{R}_x \in [2, ..., M]$ dentro de \mathbb{N} ,
- $\mathcal{R}_{y} \in [2, ..., N]$ dentro de \mathbb{N} ,
- $\mathscr{C} \in (0, ..., 1]$ dentro \mathbb{R} .

3.2. Propuesta

Algorithm 1 MOPSO-CLAHE

```
Require: Imagen de entrada I, cantidad de partículas \Omega, iteraciones t_{max}
1: Inicializar \omega, c_1, c_2, t=0, lower_limit<sub>1</sub>, lower_limit<sub>2</sub>, lower_limit<sub>3</sub>, upper_limit<sub>1</sub>, upper_limit<sub>2</sub>,
     upper\_limit_3, \mathscr{X}
2: while t < t_{max} do
3:
          for cada i-ésima partícula do
               Calcular una nueva velocidad \overrightarrow{v_i}^t de la partícula utilizando las ecuaciones (2.4) and (2.7)
4:
5:
               Calculate new particle position \overrightarrow{x_i}^t using expression (2.3)
               T = \text{CLAHE}(\overrightarrow{x_i}^t, I)
6:
7:
               f_i^t = f(I, \overrightarrow{x_i^t}^t)
               if \overrightarrow{x_i} \succ \overrightarrow{x_{p_i}} then
8:
                    replace \overrightarrow{x}_{p_i} by \overrightarrow{x_i}^t
9:
10:
11:
                if \overrightarrow{x_i} \succ \overrightarrow{x_{g_i}} then
12:
                     Update the Pareto set \mathscr{X}
13:
                end if
14:
                t = t + 1
15:
           end for
16: end while
Ensure: \mathscr{X}
```

El Algoritmo 1 muestra cómo PSO-CLAHE Color Multi-Objetivo (CMOPSO-CLAHE) es implementado, de manera a sintonizar los parámetros de CLAHE. Los parámetros recibidos por CLAHE son almacenados por una partícula $\vec{x} = (\mathcal{R}_x, \mathcal{Y}_x, \mathcal{C})$, la imagen original I se transforma a su representación YCrCb, y \vec{x} es aplicado al canal Y de la representación, de manera a obtener un mapa de intensidades Y_T , el cual es utilizado para realizar la transformación inversa hacia RGB, para así obtener la imagen resultante T. Las imágenes resultantes son evaluadas de acuerdo a las métricas \mathcal{H}_Y , $SSIM_R$, $SSIM_G$, $SSIM_B$, que son la entropía de las imágenes resultantes medidas en el canal Y de la representación YCrCb de dichas imágenes, y $SSIM_R$, $SSIM_G$, $SSIM_B$ son las medidas SSIM

de las imagénes original y resultantes utilizando los canales R,G,B de las representaciones RGB de las imágenes. Las soluciones no dominadas se almacenan finalmente en el conjunto Pareto. El proceso de CMOPSO-CLAHE se repite hasta que se alcanza un criterio de parada.

Capítulo 4

RESULTADOS Y DISCUSIÓN

Tabla 4.1: Parámetros de entrada iniciales para CMOPSO-CLAHE.

Parámetro	Valor	Parámetro	Valor
$lower_limit_{\mathscr{R}_x}$	2	$upper_limit_{\mathscr{R}_x}$	M/2
$lower_limit_{\mathscr{R}_y}$	2	$upper_limit_{\mathscr{R}_y}$	N/2
$lower_limit_{\mathscr{C}}$	0	$upper_limit_{\mathscr{C}}$	0.5
Ω	100	t_{max}	100
$c_1 min$	1.5	$c_1 \ max$	2.5
$c_2 min$	1.5	$c_2 max$	2.5
$r_1 min$	0.0	$r_1 max$	1.0
$r_2 min$	0.0	$r_2 max$	1.0

Se realizaron pruebas utilizando 8 imágenes a color a partir del conjunto de datos disponible en http://www.vision.caltech.edu/archive.html. La tabla 4.1 muestra cómo SMPSO fué configurada para realizar las pruebas. Los detalles de implementación de SMPSO está disponible en [DNA10], mientras que los detalles de implementación para CLAHE, \mathscr{H} y SSIM están disponibles en [Bra00]. Para cada imagen de prueba, se realizaron 50 ejecuciones, y en promedio se encontraron 10 soluciones no dominadas. De las figuras (??,??,??) es realmente notable cómo se logra la Mejora del Contraste; también hay una relación de compromiso entre \mathscr{H} y $SSIM_R$, $SSIM_G$, $SSIM_B$. Es también notable a partir de la Figura (??) cómo los valores más altos de \mathscr{H} degradan severamente a la imagen, por lo que es necesario encontrar el balance correcto entre \mathscr{H} and $SSIM_R$, $SSIM_G$, $SSIM_B$. En la Figura (4.1) se muestra la imagen resultante mejorada utilizando la propuesta descrita en [MB]; es interesante remarcar que

la imagen resultante no alcanza una buena Mejora del Contraste; ésto es debido a que el enfoque Mono-Objetivo no utiliza la información del color de manera apropiada, y éste resultado es el mismo para otras imágenes de prueba. En la Tabla 4.2, se muestran los coeficientes de las métricas no dominadas, y en la última línea se muestran los coeficientes de métricas para la imagen (??), mejorada utilizando la propuesta Mono-Objetivo. A pesar de que se puede considerar que las métricas caen dentro del Frente Pareto, la información visual obtenida no es suficiente para afirmar que la propuesta mono-objetivo es factible para imágenes a color. Estos resultados son similares en cada imagen de prueba utilizada.

(a) Imagen Original. $\mathcal{H}_{\mathcal{Y}} =$ $SSIM_R = 1$, $SSIM_G = 1$, $SSIM_B = 1$

(b) Enhanced Image. $\mathcal{H}_{\mathcal{Y}}$ $SSIM_R$ $0,00897331, SSIM_G$ $0,00823064, SSIM_B = 0,00851013$

 $SSIM_B = 0.417654$

(c) Imagen mejorada. $\mathcal{H}_{\mathcal{Y}} = 0.0350595$, (d) Imagen mejorada utilizando [MB]. $SSIM_R = 0.416776, \ SSIM_G = 0.403636, \ \mathscr{H}_{\mathscr{Y}} = 0.788927, \ SSIM_R = 0.000204143,$ $SSIM_G = 0,0000526475, SSIM_B$ 0.0000518143

Figura 4.1: Enhanced Image using [MB]. $\mathcal{H}_{\mathcal{Y}} = 0.788927$, $SSIM_R = 0.000204143$, $SSIM_G = 0.0000526475, SSIM_B = 0.0000518143$

Figura 4.2: Imágenes original y resultantes para la imagen de prueba Casa 1

Tabla 4.2: Coeficientes de las métricas obtenidas utilizando CMOPSO-CLAHE para algunos resultados no dominados de la imagen en la Figura (4.2), además de los coeficientes obtenidos con el enfoque de [MB], el cual se muestra en la última línea.

	$\mathcal{H}_{\mathcal{Y}}$	$SSIM_R$	$SSIM_G$	$SSIM_{B}$
Result 1	0.544854	0.0155038	0.0140995	0.0149364
Result 2	0.658577	0.00551113	0.00494194	0.00529456
Result 3	0.0425715	0.394656	0.380667	0.39842
Result 4	0.0365424	0.401675	0.388628	0.402692
Result 5	0.0350595	0.416776	0.403636	0.417654
Result 6	0.611275	0.00897331	0.00823064	0.00851013
Result 7	0.0342894	0.420948	0.408035	0.421891
Result Mono	0.788927	0.000204143	0.0000526475	0.0000518143

Figura 4.3: Frente Pareto dibujado utilizando datos de la Tabla 4.2

Tabla 4.3: Tabla de correlación entre métricas. Los datos fueron tomados de la Tabla 4.2.

Metrics	$\mathcal{H}_{\mathcal{Y}}$	$SSIM_R$	$SSIM_G$	$SSIM_{B}$
$\mathscr{H}_{\mathscr{Y}}$	1			
$SSIM_R$	-0.9826	1		
$SSIM_G$	-0.9823	0.9999	1	
$SSIM_{B}$	-0.9826	0.9999	0.9999	1

La Figura (4.3) muestra el Frente pareto creado a partir de los datos de la Tabla 4.2, y también la Tabla 4.3 muestra la correlación entre métricas, analizadas a partir de los resultados de la Tabla 4.2. Es notable cómo hay una correlación positiva muy fuerte entre $SSIM_R$, $SSIM_G$ y $SSIM_B$; también existe una correlación negativa entre las métricas previamente mencionadas y $\mathcal{H}_{\mathscr{Y}}$. Éstas correlaciones indican que los canales R, G, B de las imágenes se ven afectadas directamente por el proceso que modifica el canal Y (see Algorithm (1)). Ésto también indica que la Mejora del Contraste de las imágenes a color se puede plantear como un problema de optimización bi-objetivo, utilizando simplemente $\mathcal{H}_{\mathscr{Y}}$ y SSIM aplicados sobre el canal Y.

Capítulo 5

CONCLUSIONES Y TRABAJOS FUTUROS

Se presentó un enfoque de Mejora de Contraste Basada en Optimización Multi-objetivo, el cual toma en cuenta la intensidad y la información de color como métricas Multi-Objetivo. Éste enfoque logra un grupo de imágenes resultantes, con diferentes niveles de compromiso entre contraste y similaridad estructural, de manera a maximizar la información disponible para el análisis posterior.

Se realizó una comparación de la propuesta con una implementación Mono-Objetivo similar del estado del arte, basado solamente en la optimización del canal de intensidades de la imagen, como si se tratara de una imagen en escala de grises. Se puede verificar que el enfoque Mono-Objetivo es insuficiente debido a que no provee información adecuada para obtener variables de decisión útiles para la Mejora del Contraste en Imágenes a Color.

Se demostró de manera satisfactoria la factibilidad del enfoque, con vistas a obtener variables de decisión adecuadas para la Mejora del Contraste de imágenes a color. Futuros experimentos podrían demostrar que las variables de decisión obtenidas son adecuadas para la mejora del contraste en imágenes de cierta categoría, además de encontrar aproximaciones de tiempo de entrenamiento más eficientes.

Los principales aportes encontrados en este trabajo de Maestría pueden resumirse en lo siguiente:

- Se demostró la factibilidad de la aplicación de Metaheurísticas para la obtención de variables de decisión adecuadas para la Mejora del Contraste de Imágenes a Color que permitan contrastar imágenes con distintos niveles de compromiso entre contraste y distorsión por introducción de ruido,
- Se muestra una forma de cambiar el enfoque de la metaheurística de manera

a reducir la cantidad de objetivos utilizados sin comprometer los resultados de los entrenamientos de Mejora del Contraste.

5.1. Trabajos futuros

Los trabajos futuros considerados a partir de los resultados obtenidos se detallan a continuación.

- Utilizar métricas más adecuadas para la Mejora del Contraste, considerando que se tienen en cuenta imágenes a color,
- Considerar experimentos utilizando solamente dos objetivos basados en el canal de luminancia de la imagen a color, considerando algún canal que separe la información de intensidad de la información de color de la imagen,
- Considerar experimentos con Metaheurísticas diferentes y métricas diferentes, de manera a realizar comparaciones con la finalidad de alcanzar una posible generalización del trabajo de Mejora de Contraste basada en Metaheurísticas,
- Considerar restricciones de tiempo, cantidad de resultados no dominados, e inclusive considerar información de soluciones no dominadas entre corridas, de manera a buscar mejorar la eficiencia de tiempo y recursos de los enfoques de Mejora del Contraste basados en Metaheurísticas,
- Realizar experimentos relacionados a implementaciones de Metaheurísticas Robustas para la Mejoras de Contraste para imágenes a color,
- Considerar otras categorías de imágenes para realizar experimentos, además de buscar enfoques adecuados para imágenes de tamaño relativamente grande.

REFERENCIAS BIBLIOGRÁFICAS

- [Bra00] Gary Bradski. The opency library. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 25(11):120–123, 2000.
- [DNA10] Juan J Durillo, Antonio J Nebro, and Enrique Alba. The jmetal framework for multi-objective optimization: Design and architecture. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.
- [Doi07] Kunio Doi. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. *Computerized medical imaging and graphics*, 31(4):198–211, 2007.
- [EW93] Robert R Edelman and Steven Warach. Magnetic resonance imaging. New England Journal of Medicine, 328(10):708–716, 1993. PMID: 8433731.
- [GW02a] Rafael C. Gonzalez and Richard E. Woods. *Digital Image Processing* (2nd Ed). Prentice Hall, 2002.
- [GW02b] Rafael C Gonzalez and Richard E Woods. Processing, 2002.
- [HS13] Pourya Hoseini and Mahrokh G. Shayesteh. Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. *Digital Signal Processing*, 23(3):879 893, 2013.
- [KBD91] A. Khellaf, A. Beghdadi, and H. Dupoisot. Entropic contrast enhancement. IEEE Transactions on Medical Imaging, 10(4):589–592, Dec 1991.
- [Kim97] Yeong-Taeg Kim. Contrast enhancement using brightness preserving bihistogram equalization. *IEEE Transactions on Consumer Electronics*, 43(1):1–8, Feb 1997.
- [LKC14] Thomas Lillesand, Ralph W Kiefer, and Jonathan Chipman. Remote sensing and image interpretation. John Wiley & Sons, 2014.

- [MB] LG Moré and MA Brizuela. Pso applied to parameter tuning of clahe based on entropy and structural similarity index.
- [MBA+15] Luis G More, Marcos A Brizuela, Horacio Legal Ayala, Diego P Pinto-Roa, and Jose Luis Vazquez Noguera. Parameter tuning of clahe based on multi-objective optimization to achieve different contrast levels in medical images. In *Image Processing (ICIP)*, 2015 IEEE International Conference on, pages 4644–4648. IEEE, 2015.
- [NDGN⁺09] Antonio J Nebro, Juan José Durillo, Jose Garcia-Nieto, CA Coello Coello, Francisco Luna, and Enrique Alba. Smpso: A new pso-based metaheuristic for multi-objective optimization. In Computational intelligence in miulti-criteria decision-making, 2009. mcdm'09. ieee symposium on, pages 66–73. IEEE, 2009.
- [PAA+87] Stephen M Pizer, E Philip Amburn, John D Austin, Robert Cromartie, Ari Geselowitz, Trey Greer, Bart ter Haar Romeny, John B Zimmerman, and Karel Zuiderveld. Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3):355– 368, 1987.
- [Sai99] F. Saitoh. Image contrast enhancement using genetic algorithm. In Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings. 1999 IEEE International Conference on, volume 4, pages 899–904 vol.4, 1999.
- [tim] time(1) Linux User's Manual.
- [WBSS04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
- [Zui94] Karel Zuiderveld. Contrast limited adaptive histogram equalization. In Graphics gems IV, pages 474–485. Academic Press Professional, Inc., 1994.

ANEXO A: Resultados extendidos

En este capítulo se muestra el detalle numérico de las métricas componentes de CMOPSO-CLAHE. además de valores resultantes de las variables de decisión y tiempos de ejecución para las imágenes de prueba. para los resultados no dominados. Los tiempos de ejecución detallados corresponden a time() [tim].

.1. Imagen de prueba calhouse_230.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	Е	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\vec{x})$	$f_4(I.\overrightarrow{x})$
0	23	2	0.0	0.0292377	0.425724	0.412724	0.426577
1	20	2	0.0	0.030087	0.42386	0.410826	0.424771
2	17	2	0.0	0.0318866	0.421223	0.40784	0.422096
3	14	3	0.0	0.0322351	0.418567	0.405405	0.419644
4	16	2	0.0	0.0325675	0.418894	0.405988	0.420157
5	11	2	0.0	0.0340767	0.413031	0.399763	0.414117
6	7	2	0.0	0.0365424	0.401675	0.388628	0.402692
7	18	2	0.0	0.038238	0.41038	0.396594	0.414668
8	9	2	0.0	0.0391212	0.410855	0.397602	0.411904
9	13	2	0.0	0.0397372	0.406896	0.392824	0.411252
10	9	3	0.0	0.0419288	0.406245	0.393219	0.407594
11	9	2	0.0	0.0425715	0.394656	0.380667	0.39842
12	7	2	0.0	0.0488863	0.389568	0.375398	0.392996
13	6	2	0.0	0.0519342	0.389407	0.374979	0.392855
14	5	2	0.0	0.0532846	0.383024	0.369461	0.383779
15	5	2	0.0	0.0570464	0.38065	0.366103	0.383668
16	4	2	0.0	0.0581956	0.370847	0.355854	0.372697
17	2	4	0.0	0.0678334	0.332408	0.319416	0.329963
18	2	3	0.0	0.083076	0.330307	0.315432	0.327533
19	2	3	0.0	0.107766	0.300927	0.288565	0.302558
20	2	2	0.0	0.130446	0.288674	0.274897	0.29182
21	37	4	0.421103062234	0.388474	0.0796014	0.0715557	0.0737911
22	44	3	0.177772531513	0.420316	0.0571285	0.0508797	0.0542069
23	2	2	1.0	0.422673	0.0391384	0.0356485	0.0375976
24	2	2	0.966457510597	0.441196	0.0358967	0.0326292	0.0344847
25	2	2	0.909807336447	0.452317	0.0334806	0.0305298	0.0321478
26	2	3	0.871347872644	0.460282	0.0313939	0.0285593	0.0301892
27	2	3	0.838052371298	0.472741	0.0288693	0.0262626	0.0277464
28	2	3	0.78970323092	0.483203	0.0264133	0.0241076	0.0254163
29	2	3	0.763073541042	0.494502	0.0247892	0.0225578	0.0238702
30	2	3	0.734387233109	0.505156	0.0216592	0.0196863	0.0208914
31	2	2	0.689415824019	0.516532	0.0201843	0.0183705	0.0194163
32	2	2	0.674049273864	0.530366	0.0177617	0.0161534	0.0170947
33	2	2	0.620573402397	0.544854	0.0155038	0.0140995	0.0149364
34	2	2	0.594946439658	0.567288	0.0141571	0.0127951	0.0135701
35	2	3	0.525728438652	0.571877	0.0115625	0.0105159	0.011121

36	2	2	0.5	0.588363	0.0108908	0.00987159	0.0104669
37	2	3	0.483071040731	0.59779	0.00906811	0.00822819	0.00867055
38	2	5	0.456916541899	0.611275	0.00897331	0.00823064	0.00851013
39	2	2	0.428434700311	0.614437	0.00742514	0.00670994	0.00714773
40	2	3	0.390144531289	0.628389	0.00650833	0.00588966	0.00621115
41	2	4	0.38446541693	0.631133	0.00581047	0.00528148	0.00556787
42	2	3	0.37527195105	0.64904	0.0048614	0.00438096	0.00457561
43	2	3	0.31193055736	0.65892	0.00444588	0.0039587	0.00415919
44	2	3	0.310920748974	0.667173	0.00401135	0.00358585	0.00381668
45	2	4	0.290295960924	0.681955	0.00282212	0.002562	0.002621
46	2	3	0.244028880272	0.698645	0.00224598	0.00200366	0.00205784
47	2	3	0.198283113397	0.708029	0.00164594	0.0014135	0.00148235
48	2	3	0.150847773862	0.721569	0.00132173	0.00109436	0.00111522
49	2	5	0.161790895768	0.744286	0.00127126	0.00105903	0.00109671
50	2	2	0.153546446329	0.744481	0.00108487	0.000878814	0.000907648
51	3	3	0.145704588048	0.747523	0.00103455	0.000816322	0.000848165
52	2	3	0.146162992336	0.753901	0.000827484	0.000614913	0.000645663
53	2	2	0.112761751028	0.759912	0.000615229	0.00043859	0.000453515
54	2	3	0.00011646417386	0.775049	0.000299272	0.000143607	0.000141378
55	2	2	0.00178837395609	0.786418	0.000323289	0.000143135	0.000182232
56	2	2	0.0281221731315	0.788927	0.000204143	5.26475e-05	5.18143e- 05
Tiempos de ejecución: real:70m10.567s.user:207m55.583s.sys:95m37.939s							

Tabla 1: Resultados no dominados para la imagen de prueba ${\tt calhouse_230.jpg}$

Figura 1: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 1.

Figura 2: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 1.

.2. Imagen de prueba calhouse_231.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	C	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$
0	18	3	0	0.00900173	0.267205	0.261971	0.266923
1	13	2	0	0.00985956	0.259264	0.253973	0.258887
2	10	2	0	0.00997639	0.256986	0.251503	0.256516
3	10	2	0	0.0104213	0.255358	0.250056	0.255104
4	8	2	0	0.0106044	0.253247	0.248009	0.252956
5	8	2	0	0.0108852	0.248894	0.243521	0.248512
6	5	3	0	0.0116286	0.242855	0.23726	0.242463
7	37	2	0	0.0125856	0.204869	0.200071	0.20363
8	18	2	0	0.012713	0.194229	0.189516	0.193111
9	12	2	0	0.0130296	0.188019	0.183258	0.186758
10	10	2	0	0.0133905	0.185665	0.180876	0.184348
11	9	2	0	0.0134821	0.183211	0.178539	0.181995
12	7	2	0	0.014287	0.177174	0.172057	0.1757
13	5	2	0	0.0163016	0.174128	0.168903	0.172582
14	4	2	0	0.0177784	0.168074	0.162957	0.166491
15	3	2	0	0.0226231	0.1636	0.159053	0.162368
16	2	2	0	0.026926	0.160205	0.156303	0.159384
17	2	2	0	0.0431004	0.13865	0.136192	0.138648
18	20	2	1	0.270889	0.0385879	0.0376327	0.0382134
19	18	2	1	0.271006	0.0385725	0.0376188	0.0381991
20	7	2	0.964079732103	0.276454	0.0381787	0.0368181	0.0376312

	i				1	1	
21	2	2	0.989356928034	0.282013	0.038501	0.036779	0.0381451
22	6	2	1	0.282743	0.0378731	0.0366182	0.0374679
23	3	2	0.971840503575	0.284309	0.0371586	0.0357552	0.0367035
24	4	2	0.972742419204	0.288689	0.0362972	0.0349026	0.0357714
25	2	2	0.935457791487	0.289546	0.0364327	0.0347045	0.0360937
26	2	2	0.940446088318	0.293769	0.0358847	0.0344679	0.0355097
27	6	2	0.904740520538	0.295335	0.0347202	0.0334983	0.0342668
28	9	2	1	0.298885	0.0334443	0.0324061	0.0330044
29	14	2	1	0.299743	0.0334014	0.0323744	0.0329796
30	10	2	0.913917022567	0.306106	0.0327387	0.0317938	0.032341
31	12	2	1	0.307615	0.032043	0.0310592	0.0315852
32	2	2	0.868629026061	0.309887	0.0325293	0.0309195	0.0322076
33	7	2	0.922386499146	0.312944	0.0307703	0.0297033	0.0303923
34	2	2	0.873918676927	0.314815	0.0305687	0.0293387	0.0302264
35	12	2	0.828307512256	0.315595	0.029047	0.0281777	0.0286568
36	7	2	0.90021573696	0.319267	0.0277445	0.0268512	0.0273699
37	5	2	0.858598604984	0.325659	0.0279524	0.0268406	0.0275564
38	6	2	0.856682527935	0.328166	0.0265695	0.0256397	0.0261868
39	2	2	0.810611535096	0.333691	0.0265783	0.0254337	0.0262778
40	14	2	0.826919288172	0.338436	0.0232717	0.0226148	0.0229894
41	3	2	0.747934727522	0.354162	0.0228098	0.0218175	0.0225493
42	2	2	0.715468922759	0.359465	0.0228153	0.0216203	0.0225292
43	7	2	0.738152056945	0.362255	0.0220707	0.0212203	0.0216666
44	5	2	0.710949498481	0.3623	0.0212484	0.0204049	0.0209322
45	8	2	0.71860927648	0.365558	0.0191753	0.0185399	0.0188855
46	17	2	0.638555526222	0.367131	0.0189012	0.0183635	0.0186746
47	24	2	0.888901260944	0.372819	0.0186476	0.0180095	0.0183297
48	7	2	0.643958573155	0.37555	0.0169599	0.0164014	0.016725
49	5	2	0.627441542801	0.383322	0.0160663	0.0154653	0.0158211
50	3	2	0.629994003473	0.391768	0.0161627	0.0153941	0.0159548
51	19	2	0.545081379984	0.397269	0.0143794	0.0139211	0.0141685
52	3	2	0.601135625969	0.402347	0.0145436	0.0138748	0.0143605
53	3	2	0.57753934137	0.411112	0.013378	0.0127763	0.0131599
54	2	2	0.541426023964	0.41398	0.0131499	0.0124833	0.0130018
55	3	2	0.544335817577	0.414029	0.0125525	0.0119757	0.0123731
56	6	2	0.548121706633	0.414094	0.0120755	0.0115387	0.0117838
57	2	2	0.515852425305	0.421322	0.011292	0.010746	0.0111554
58	31	2	0.0280991811699	0.423455	0.0107604	0.0102737	0.010496
59	33	2	0.510626077249	0.42346	0.0107601	0.0102734	0.0104956
60	3	2	0.5	0.426877	0.0107589	0.0102665	0.0106218
61	9	2	0.5	0.428904	0.0107733	0.0101945	0.0103729
62	13	2	0.5	0.431454	0.00965356 0.00828631	0.00927182	0.0094467
63	7	2	0.478914771532	0.435993		0.00795353	0.00813127
64 65	5 2	$\begin{vmatrix} 2\\2 \end{vmatrix}$	0.457071559114	0.442431 0.446127	0.00817965 0.00810596	0.00780437 0.00772429	0.0080066 0.00801587
66	3	2	0.429496349756 0.442489234125	0.440127 0.447001	0.00810390	0.00745209	0.00301337
67	9	2	0.442469234123	0.447001 0.45027	0.00668378	0.00745209	0.00769734
68		2	0.450539555555	0.45027 0.456932	0.00627423	0.00605903	0.00619215
69	5 8	2	0.370403221838	0.450952 0.460667	0.00621425	0.00592585	0.00619215
70	8	2	0.360353977865	0.460667 0.462861	0.00579699	0.00592383	0.000572817
71	2	5	0.300333977803	0.402801 0.471886	0.00573099	0.00559339	0.00572517
72	3	2	0.411070223073	0.471886	0.00575421	0.00539559	0.0057057
73	8	2	0.399775248471	0.475316 0.475386	0.00529207	0.00510000	0.00529048
74	3	2	0.339070248196	0.47558	0.00329207	0.00310990	0.00320481
75	4	2	0.351684592681	0.479774	0.00432003	0.004307	0.00443851
76	4	2	0.349489075978	0.482928	0.00436226	0.00415035	0.00415045
77	3	2	0.337330254689	0.482328 0.488762	0.00420701	0.00405115	0.00397122
1	1	1 -	0.00.000204000	0.100102	1 0.00101000	0.00000200	0.00001122

	Tiempos de ejecución: real:70m26.492s. user:209m3.921s. sys:95m37.357s										
102	102 2 2 0.0213381170565 0.573629 0.000103816 7.68E-05 7.86E-05										
101	3	3	0.0412250071562	0.573604	0.000167373	0.000136933	0.000144334				
100	2	2	0.049662954082	0.565069	0.000189286	0.000165373	0.000167802				
99	2	3	0.0764136259071	0.561146	0.000201883	0.000166411	0.000174052				
98	3	4	0.0169016006744	0.55715	0.000453264	0.000428699	0.000432725				
97	2	7	0.0971302704582	0.551463	0.0005087	0.000484928	0.000491999				
96	2	2	0.14568920398	0.549775	0.00055956	0.00050608	0.000516374				
95	2	3	0.165303683073	0.546799	0.000724879	0.000653544	0.000674347				
94	2	2	0.167767741924	0.540966	0.000784735	0.000735661	0.000749385				
93	7	2	0.241533503656	0.536006	0.00110823	0.00103223	0.00105307				
92	2	3	0.178720787449	0.534519	0.00114637	0.00109067	0.00111032				
91	3	2	0.183704209136	0.530389	0.00119938	0.00115064	0.00116924				
90	2	2	0.191537420599	0.52922	0.00135061	0.00127997	0.00130769				
89	3	2	0.213491461803	0.525156	0.00144721	0.00138333	0.00141691				
88	2	4	0.248121384745	0.521675	0.00161956	0.00153988	0.00158018				
87	4	3	0.266234136177	0.520381	0.00166707	0.00158428	0.0016109				
86	4	2	0.209648277039	0.516483	0.00166633	0.0015921	0.00162961				
85	5	2	0.243696919714	0.514978	0.00176819	0.00169965	0.00173187				
84	2	2	0.251424143589	0.513605	0.00194255	0.00184685	0.00190236				
83	4	2	0.263406661906	0.506628	0.00222147	0.00211851	0.00215494				
82	3	2	0.300745369259	0.506126	0.00229212	0.00217746	0.00221458				
81	2	9	0.22375153796	0.499764	0.00285511	0.00284174	0.0028875				
80	2	2	0.309171129718	0.49718	0.00289651	0.00277638	0.00282767				
79	2	9	0.278605575898	0.49243	0.00331112	0.00334138	0.00338704				
78	2	2	0.30899847401	0.491558	0.00390371	0.00373161	0.00387131				

Tabla 2: Resultados no dominados para la imagen de prueba ${\tt calhouse_231.jpg}$

Figura 3: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 2.

Figura 4: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 2.

.3. Imagen de prueba calhouse_233.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	\mathscr{C}	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$
0	4	2	0.0605454359216	1.08964	0.000295689	0.000153393	0.000162248
1	2	3	0.0241100460642	1.05839	0.000302083	0.000187229	0.00018095
2	3	2	0.0755634120675	1.08786	0.000329964	0.000184893	0.000199624
3	2	6	0.0362807189867	1.03646	0.000641662	0.000514385	0.000524924
4	8	3	0.103753483353	1.03239	0.00102858	0.000843436	0.000877847
5	2	3	0.166601922869	0.993392	0.00117745	0.00100106	0.00102251
6	4	3	0.197035454701	0.972543	0.00121931	0.00104515	0.00106603
7	2	3	0.232499530296	0.95589	0.00235641	0.002009	0.00206351
8	2	5	0.266574790017	0.938972	0.00280239	0.00262648	0.0026463
9	2	3	0.278743476534	0.923925	0.00292607	0.00257795	0.00266449
10	3	4	0.278646550346	0.92028	0.00292439	0.00261397	0.00266665
11	12	3	0.30091560684	0.870766	0.00350392	0.00310311	0.00316902
12	2	4	0.253592839376	0.919652	0.00348043	0.00316849	0.00322916
13	2	3	0.391124890124	0.864988	0.00550206	0.00480986	0.00499557
14	2	4	0.35510717405	0.830931	0.00598392	0.00560268	0.0056997
15	16	3	0.227910808421	0.826457	0.00687623	0.00604448	0.00619402
16	8	3	0.450962738883	0.819552	0.00842425	0.0076944	0.00785632
17	5	3	0.5	0.810249	0.00887391	0.00800675	0.00821064
18	2	3	0.534064898653	0.798087	0.0102274	0.00910215	0.00944354
19	5	3	0.571647250785	0.785827	0.011758	0.0105297	0.010857
20	2	4	0.506882563198	0.778071	0.0115198	0.0108465	0.0110746
21	2	3	0.609611782643	0.763786	0.0131498	0.0117422	0.0121901
22	3	4	0.590722339759	0.770255	0.0127545	0.0120351	0.0122763

			ı	1		1	I.			
23	2	4	0.592771396022	0.759783	0.0134854	0.0128619	0.0130943			
24	10	3	0.569430012343	0.753103	0.0148294	0.0134841	0.0137764			
25	2	3	0.654795564549	0.758248	0.0146595	0.013324	0.0137805			
26	23	3	0.49018750213	0.745152	0.0156444	0.0140341	0.0143124			
27	5	3	0.711411054066	0.75186	0.0155433	0.0142944	0.0146168			
28	6	3	0.67594979599	0.742439	0.016272	0.014948	0.0152924			
29	3	3	0.697388429306	0.740592	0.0161852	0.0148598	0.015301			
30	2	4	0.619064681832	0.721047	0.0169986	0.0162408	0.0165372			
31	12	3	0.758015111952	0.715111	0.0179455	0.0167202	0.0170063			
32	2	4	0.664983118922	0.717893	0.018933	0.018076	0.0184091			
33	3	3	0.835945114263	0.715581	0.0212394	0.0197281	0.0202355			
34	18	4	0.235751993872	0.71698	0.0217524	0.0198408	0.0203643			
35	2	4	0.71221653662	0.697186	0.0211379	0.0202178	0.0205842			
36	3	3	0.841409534625	0.694649	0.024789	0.0230342	0.0236651			
37	2	4	0.775805262395	0.690287	0.0242775	0.023289	0.0236959			
38	6	3	0.946937444304	0.688181	0.027246	0.025366	0.0259008			
39	3	3	0.898145960419	0.688406	0.027186	0.0254119	0.0260424			
40	8	3	0.92952634183	0.682212	0.027619	0.026095	0.0265493			
41	2	3	0.92681679413	0.664923	0.0280842	0.0260755	0.0268696			
42	2	4	0.831514829931	0.682197	0.0278131	0.0267008	0.0271825			
43	3	3	1	0.662133	0.0302244	0.0283526	0.0290769			
44	2	3	1	0.638068	0.0319237	0.0297923	0.0307026			
45	44	3	0.340457573545	0.597537	0.0430642	0.0399363	0.0405722			
46	41	4	0.122685175212	0.585286	0.0791404	0.0724312	0.0744605			
47	2	2	0	0.166749	0.35221	0.33188	0.347256			
48	3	2	0	0.162343	0.36439	0.343949	0.35654			
49	4	2	0	0.0834117	0.383713	0.363361	0.373847			
50	5	2	0	0.0629735	0.391495	0.37163	0.381356			
51	11	2	0	0.0619745	0.418598	0.398414	0.406889			
52	26	2	0	0.0599365	0.437032	0.417224	0.424583			
53	6	3	0	0.0475216	0.459573	0.445796	0.456496			
54	9	3	0	0.0462856	0.470122	0.456474	0.466522			
55	11	3	0	0.0443048	0.475939	0.462247	0.471704			
56	2	6	0	0.0455046	0.470176	0.461747	0.47771			
57	2	7	0	0.0444002	0.493213	0.484229	0.499757			
58	2	9	0	0.0408697	0.499463	0.490757	0.507241			
59	2	10	0	0.0359039	0.511722	0.502448	0.518851			
60										
	Ti	empo	s de ejecución: rea	1:67m22.885s	.user:207m13.	352s.sys:94m57	.439s			

Tabla 3: Resultados no dominados para la imagen de prueba ${\tt calhouse_233.jpg}$

Figura 5: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 3.

Figura 6: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 3.

.4. Imagen de prueba calhouse_234.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	С	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$
2979	3	3	0.812519298752	0.511109	0.0287218	0.0274117	0.0284403
2980	4	12	0	0.0276203	0.49051	0.486184	0.493034
3091	4	2	0.853706507459	0.519737	0.027535	0.0255765	0.0267492
3097	11	2	1	0.494054	0.034029	0.032038	0.0331011
3104	20	3	0	0.0284328	0.402012	0.396043	0.401629
3123	3	3	0.739306706876	0.533226	0.024867	0.0237548	0.0245899
3125	2	2	0.731703535828	0.548753	0.0229975	0.0211807	0.0222653
3126	3	2	0.679146848174	0.557746	0.0203147	0.0187927	0.0196922
3127	2	2	0.850344549266	0.515146	0.029663	0.0272264	0.0286435
3128	14	2	0.632770576643	0.58597	0.01286	0.0122675	0.0126854
3129	53	3	0.0906614748552	0.41236	0.10348	0.0946411	0.0973958
3130	8	2	0.368264089891	0.675727	0.00441494	0.00421142	0.00434589
3131	2	2	0.827779089761	0.524632	0.0281598	0.0258405	0.0271833
3132	2	2	0	0.138669	0.231124	0.221532	0.228493
3133	37	4	0.488860216273	0.445821	0.0866204	0.0792098	0.0816776
3134	4	2	0.255668440752	0.730788	0.00268251	0.00253008	0.00260924
3135	6	2	0.912272466777	0.496642	0.0326795	0.0303633	0.0316357
3136	2	2	0.0083970078807	0.835548	0.000142314	0.000115598	0.000110237
3137	3	2	0.461160630083	0.650707	0.00852852	0.00796836	0.00830184
3138	3	2	0.73164070769	0.551425	0.0215359	0.0198995	0.0208231
3139	4	2	0.0653533397144	0.832464	0.000183395	0.000143403	0.000147903
3140	3	2	0.148486630518	0.793742	0.000731432	0.000664557	0.000679274

9141	10	۱ .	0.579209504921	0.69909	0.00000401	0.00000000	0.00054999
3141	18	2	0.572302594831	0.62303	0.00889421	0.00828233	0.00854233
3142	13	3	0	0.0292034	0.390222	0.383769	0.389344
3143	9	2	0.515175605936	0.640419	0.00871692	0.00817691	0.00844283
3144	10	2	0.645449480383	0.580588	0.0168114	0.0159317	0.0165228
3145	24	3	0	0.0277634	0.406696 0.40056		0.40603
3146	6	2	0	0.0493283	0.277246	0.269315	0.27368
3147	2	2	0.761261125963	0.54257	0.0246297	0.0226156	0.0237819
3148	5	2	0	0.0519104	0.273498	0.265907	0.270653
3149	2	2	0.926215684557	0.493326	0.0350073	0.032038	0.0337141
3150	5	3	0.907757451731	0.507807	0.0309136	0.0296258	0.0305795
3151	2	2	0.729074889936	0.553606	0.021385	0.0196689	0.0206698
3152	3	2	0	0.0846047	0.245215	0.237309	0.244065
3153	3	2	0.854113478667	0.512472	0.030045	0.027703	0.0290506
3154	7	3	0	0.0321503	0.363205	0.357271	0.362161
3155	24	2	1	0.448877	0.0337654	0.0325268	0.0334449
3156	4	2	0.780918170773	0.530471	0.0249754	0.0230687	0.0241613
3157	6	2	0.196390542599	0.78611	0.000841764	0.00080091	0.000816869
3158	2	3	0.833866902733	0.511989	0.0302699	0.0285167	0.0297871
3159	6	2	0.747192629244	0.547824	0.0229913	0.0213657	0.0222196
3160	3	2	0.80975515976	0.527355	0.0266691	0.0245697	0.0257519
3161	7	2	0	0.0413656	0.289774	0.282049	0.285934
3162	3	3	0.725942475481	0.553035	0.0211689	0.0201818	0.0209119
3163	2	3	0.0869925259854	0.831217	0.000254231	0.000202246	0.000220666
3164	3	2	0.101165992212	0.829471	0.000258416	0.000220973	0.000231715
3165	6	2	0.846937821181	0.518807	0.027765	0.0259249	0.0270216
3166	3	2	0.305290000047	0.710093	0.00364066	0.0034385	0.00355669
3167	11	2	0	0.0396638	0.306313	0.297956	0.302221
3168	7	2	0.219179192327	0.773407	0.00121588	0.00114323	0.00117378
3169	5	2	0.227660930211	0.738358	0.00171736	0.0016441	0.00168794
3170	26	6	0.511796994819	0.445776	0.0921568	0.0871899	0.0896835
3171	3	2	0.225128485738	0.755389	0.00142469	0.00136878	0.00139945
3172	2	3	0.0112353502775	0.836594	0.000146742	0.000117982	0.000110062
3173	17	2	0.73226869704	0.574325	0.0167192	0.0159348	0.0164249
3174	11	3	0	0.0296307	0.381211	0.374829	0.380207
3175	4	2	0.863033788718	0.502655	0.0311266	0.0287067	0.03005
3176	14	2	0.937018260677	0.502234	0.0314391	0.0298899	0.0308901
3177	3	3	0.578272628825	0.582351	0.0151525	0.0144716	0.0149766
3178	6	2	0.682234104882	0.564373	0.0195332	0.0183163	0.019096
3179	18	2	0.783902002406	0.533793	0.0238637	0.022623	0.0232914
3180	4	3	0.403556720027	0.65922	0.00689137	0.00665012	0.00686885
3181	2	3	0.885217278433	0.492458	0.0341363	0.0321934	0.0336531
3182	11	2	0.317936251338	0.723333	0.00331185	0.00315496	0.00324682
3183	15	2	0.5	0.666303	0.00554846	0.00524035	0.00540413
3184	12	2	0.522610271857	0.601996	0.0103419	0.00983332	0.010186
3185	11	2	0.95	0.513048	0.0288726	0.0272513	0.0282724
3186	3	3	0.656165744218	0.571977	0.0180757	0.0172713	0.0179017
3187	13	2	0.956428228721	0.524695	0.0260812	0.024745	0.0255167
	Tien	ipos d	le ejecución: real:	69m51.735s,	user:207m51.4		3.030s

Tabla 4: Resultados no dominados para la imagen de prueba ${\tt calhouse_234.jpg}$

Figura 7: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 4.

Figura 8: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 4.

.5. Imagen de prueba calhouse_236.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	С	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$
9999	22	7	0.05	0.322022	0.106831	0.102759	0.104597
7728	14	2	0.632770576643	0.58597	0.01286	0.0122675	0.0126854
7730	8	2	0.368264089891	0.675727	0.00441494	0.00421142	0.00434589
7732	2	2	0	0.138669	0.231124	0.221532	0.228493
7736	2	2	0.0083970078807	0.835548	0.000142314	0.000115598	0.000110237
7741	18	2	0.572302594831	0.62303	0.00889421	0.00828233	0.00854233
7746	6	2	0	0.0493283	0.277246	0.269315	0.27368
7748	5	2	0	0.0519104	0.273498	0.265907	0.270653
7752	3	2	0	0.0846047	0.245215	0.237309	0.244065
7755	24	2	1	0.448877	0.0337654	0.0325268	0.0334449
7761	7	2	0	0.0413656	0.289774	0.282049	0.285934
7772	2	3	0.0112353502775	0.836594	0.000146742	0.000117982	0.000110062

7783	15	2	0.5	0.666303	0.00554846	0.00524035	0.00540413
7784	12	2	0.522610271857	0.601996	0.0103419	0.00983332	0.010186
7867	3	2	0.237164606413	0.699975	0.00309802	0.00307773	0.00326212
7881	6	2	0	0.0297699	0.316537	0.313988	0.319524
7882	41	4	0.277948416984	0.297561	0.107656	0.103902	0.105838
7883	28	2	0	0.0209365	0.359519	0.358839	0.365177
7884	7	2	0.5	0.596471	0.0133184	0.013128	0.0137713
7885	2	2	0.0720277391995	0.787766	0.000256124	0.000197123	0.000228562
7886	2	2	0.130899175101	0.758529	0.000769288	0.000722369	0.000767623
7887	60	3	0.874629792235	0.276232	0.127112	0.120837	0.125981
7888	2	2	0.80782701177	0.449825	0.0362412	0.0352132	0.0377132
7889	4	2	0.211300785921	0.71229	0.00263194	0.00250156	0.00264687
7890	14	2	0	0.0210977	0.346013	0.344528	0.350455
7891	11	2	0	0.0218916	0.338454	0.336511	0.342515
7892	18	2	0.0682579288587	0.677333	0.00469509	0.00463112	0.00484218
7893	2	2	0.0997957374995	0.775215	0.000484727	0.000458843	0.000490921
7894	2	2	0.018919608823	0.791656	0.000155317	0.000121572	0.000430321
7895	2	2	0.307331880626	0.791030	0.00467596	0.000121372	0.000128309
7896	2	2	0.220842134654	0.070538	0.00407590	0.00494371	0.00490102
	$\frac{2}{2}$	$\frac{2}{2}$		0.407068			
7897	$\frac{2}{2}$		0.954632188931		0.0475321	0.0460638	0.0492886
7898		2	0	0.0819087	0.255368	0.251915	0.257656
7899	8	2	0	0.0249429	0.328823	0.326689	0.332172
7900	2	2	0.179918780839	0.728299	0.00148275	0.00144158	0.00152957
7901	2	2	0.554203660039	0.566152	0.0173144	0.0169155	0.0180509
7902	12	2	0	0.0213795	0.343065	0.341144	0.347002
7903	3	2	0.5	0.578231	0.0139116	0.0136808	0.0144633
7904	3	2	0.0706628169375	0.780215	0.0003251	0.000293507	0.000313995
7905	28	5	0.667890089724	0.330317	0.0943822	0.0913762	0.0924006
7906	2	2	0.123897192018	0.767094	0.000488963	0.000461673	0.000486079
7907	3	2	0	0.0501919	0.282841	0.280242	0.285594
7908	4	2	0.495201015185	0.596839	0.0131762	0.0129074	0.0136321
7909	17	2	0.438250658463	0.56284	0.0182472	0.017877	0.018825
7910	2	2	0.398504907327	0.648621	0.007755	0.00755259	0.00805606
7911	2	2	0.870658771247	0.431905	0.0403448	0.0392149	0.0419863
7912	4	2	0	0.0386662	0.298298	0.2962	0.301126
7913	5	2	0.595735734587	0.542229	0.0191408	0.0188228	0.0197266
7914	4	2	0.171278248044	0.737098	0.0013308	0.00132604	0.00137942
7915	4	2	0.42224471812	0.615799	0.0091199	0.00902098	0.00947175
7916	3	2	0.285902602352	0.68885	0.00352479	0.00343585	0.00363311
7917	3	2	0.0957357345875	0.777003	0.000383461	0.000322487	0.00035059
7918	5	2	1	0.371791	0.056858	0.05543	0.0578333
7919	3	2	0.726649253882	0.483283	0.0287522	0.027986	0.0294905
7920	4	2	0.709705479592	0.486755	0.0280603	0.0274114	0.0289443
7921	4	2	0.321975140588	0.66859	0.00505159	0.0049349	0.00521387
7922	2605	2395	0.999645533136	0.384975	0.0502797	0.0486287	0.051306
7923	7	2	0.0260008933382	0.753023	0.000811243	0.000784616	0.000827166
7924	2	3	0.341106663425	0.654835	0.00737856	0.00732287	0.00799174
7925	2	2	0.795349484301	0.461123	0.0335764	0.032814	0.0350383
7926	3	2	0.395775059153	0.631119	0.00848167	0.00827093	0.00872122
7927	2	28	0	0.0200801	0.386856	0.396321	0.400445
7928	15	2	0.108210192961	0.684746	0.00401761	0.00395017	0.00417073
7929	10	2	0.5	0.550348	0.0184473	0.018058	0.0188672
7930	3	2	0.20184975504	0.726163	0.00205421	0.00196918	0.00206596
7931	3	2	0.700875698828	0.496626	0.0260506	0.02529	0.0266687
7932	5	2	0.654921632517	0.511524	0.0248132	0.0243987	0.0254811
7933	3	2	0.603968931107	0.531118	0.0207645	0.0202031	0.0212407
7934	4	2	0.527658773624	0.569097	0.0147406	0.0145173	0.0152212
1	1 -	ı -	1		1	1	

			ı	1	1	1	i			
7935	3	2	0.802283400126	0.451618	0.0344522	0.0333763	0.0352578			
7936	11	3	0.423049493386	0.59462	0.0135325	0.0132879	0.0138825			
7937	6	2	0.5	0.598613	0.0118493	0.0117448	0.0121879			
7938	7	2	0.544173201336	0.568738	0.0171921	0.0167467	0.0174151			
7939	4	2	0.699130363418	0.507441	0.0256752	0.0251247	0.0263251			
7940	3	2	0.663208039361	0.516613	0.0230328	0.0225424	0.0237412			
7941	13	2	0.375915832687	0.638225	0.00777391	0.0076255	0.00791422			
7942	3	2	0.180225999988	0.740656	0.0012681	0.00124621	0.00131296			
7943	3	2	0.115205524858	0.748132	0.00104085	0.000998748	0.00106332			
7944	3	2	0.760233293718	0.46783	0.0316	0.0307277	0.0323041			
7945	4	2	0.764185162846	0.462856	0.033901	0.033062	0.0347065			
7946	3	2	0.593915640133	0.547642	0.018305	0.0179109	0.0189608			
7947	2	2	0.27659408419	0.697151	0.00318869	0.00307715	0.00330749			
7948	36	2	0	0.0200915	0.362392	0.36188	0.368223			
7949	4	2	0.298842883963	0.681593	0.00418639	0.00415261	0.00438053			
7950	4	2	0.622805500049	0.524631	0.0212356	0.0208217	0.0219233			
7951	9	2	0.250126106312	0.671622	0.00477057	0.00471242	0.00498622			
7952	5	2	0.796197707224	0.459602	0.0343625	0.0337502	0.0353585			
7953	3	2	0.356778178523	0.656688	0.00595517	0.00589545	0.00621782			
7954	10	2	0	0.023551	0.3383	0.336246	0.342151			
7955	6	2	0.647135272705	0.528742	0.0214838	0.0210648	0.0219197			
7956	3	2	0.881928811193	0.423313	0.0410583	0.0397921	0.0418922			
7957	6	2	0.528049155722	0.564425	0.0178416	0.0174361	0.0182652			
7958	3	2	0.911395087453	0.409682	0.0439377	0.0424819	0.044889			
7959	3	2	0.829886249177	0.434412	0.0382984	0.0371935	0.0391734			
7960	3	2	0.462433913183	0.601152	0.0117493	0.0114363	0.0120534			
7961	9	2	0.449436610061	0.576457	0.014684	0.0144162	0.015154			
7962	2	2	0.286021956548	0.684397	0.00417191	0.00409187	0.00435506			
7963	4	2	0.863334610966	0.420893	0.0414817	0.0404199	0.0424878			
7964	2	2	0.710740645025	0.494555	0.0270831	0.0264682	0.0282887			
7965	6	2	0.710963328611	0.493677	0.0276822	0.0271113	0.0282399			
7966	10	2	0.29077203521	0.660394	0.00547086	0.00543164	0.00569884			
7967	5	2	0	0.0321527	0.30536	0.30339	0.308505			
7968	5	2	0.714624900806	0.494868	0.0275482	0.0270448	0.0282753			
7969	7	2	0.383171489229	0.651144	0.00780234	0.00755867	0.00787006			
7970	3	2	0.940861748837	0.389108	0.0487418	0.0471518	0.0496774			
7971	2	3	0.052959059817	0.789495	0.00022413	0.0001983	0.000207669			
7972	15	2	0.674615082668	0.523629	0.0229587	0.0225117	0.0233318			
7973	12	4	0.123297475378	0.602102	0.0113926	0.0111123	0.0113819			
	Tiempos de ejecución: real:70m14.144s,user:208m40.536s,sys:94m45.105s									

Tabla 5: Resultados no dominados para la imagen de prueba ${\tt calhouse_236.jpg}$

Figura 9: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 4.

Figura 10: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 5.

.6. Imagen de prueba calhouse_237.jpg

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ID	\mathscr{R}_x	\mathscr{R}_{y}	Е	$f_1(I.\vec{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$
2.0 2.0 2.0 0.839606904816 0.515146 0.029663 0.0272264 0.0286435 3.0 12.9218206966 2.0 0.858950496855 0.524695 0.0260812 0.024745 0.0255167 4.0 10.5861270573 2.0 1.0 0.494054 0.034029 0.032038 0.031011 5.0 2.0 2.0 0.738264702174 0.548753 0.0229975 0.0211807 0.0222653 6.0 26.6275579915 5.94117149491 0.665067465025 0.445776 0.0921568 0.0871899 0.0896835 7.0 40.2637323895 4.26908034048 0.515435272603 0.445821 0.0866204 0.0792098 0.0816776 8.0 3.49067737033 2.93289641943 0.802799465668 0.511109 0.0287218 0.0274117 0.0284403 9.0 3.22990336462 2.0 0.131123269978 0.793742 0.000731432 0.00664557 0.006679274 10.0 10.3190985048 2.38672127726 0.707716171361 0.580588 0.0168114 0.01593	0.0	3.05920559855	2.0	0.818377249473	0.527355	0.0266691	0.0245697	0.0257519
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0	59.4737222511	2.89333813993	0.348404050444	0.41236	0.10348	0.0946411	0.0973958
4.0 10.5861270573 2.0 1.0 0.494054 0.034029 0.032038 0.031011 5.0 2.0 2.0 0.738264702174 0.548753 0.0229975 0.0211807 0.0222653 6.0 26.6275579915 5.94117149491 0.665067465025 0.445776 0.0921568 0.0871899 0.0896835 7.0 40.2637323895 4.26908034048 0.515435272603 0.445821 0.0866204 0.0792098 0.0816776 8.0 3.49067737033 2.93289641943 0.802799465668 0.511109 0.0287218 0.0274117 0.0284403 9.0 3.22990336462 2.0 0.131123269978 0.793742 0.000731432 0.00664557 0.006679274 10.0 10.3190985048 2.38672127726 0.707716171361 0.580588 0.018114 0.0159317 0.0155228 11.0 4.1132080645 2.168574578 0.819304542919 0.519737 0.027535 0.0255765 0.0267492 12.0 2.0 0.0 0.138669 0.231124 0.0221532 0.22	2.0	2.0	2.0	0.839606904816	0.515146	0.029663	0.0272264	0.0286435
5.0 2.0 2.0 0.738264702174 0.548753 0.0229975 0.0211807 0.0222653 6.0 26.6275579915 5.94117149491 0.665067465025 0.445776 0.0921568 0.0871899 0.0896835 7.0 40.2637323895 4.26908034048 0.515435272603 0.445821 0.0866204 0.0792098 0.0816776 8.0 3.49067737033 2.93289641943 0.802799465668 0.511109 0.0287218 0.0274117 0.0284403 9.0 3.22990336462 2.0 0.131123269978 0.793742 0.000731432 0.000664557 0.000679274 10.0 10.3190985048 2.38672127726 0.707716171361 0.580588 0.0168114 0.0159317 0.0165228 11.0 4.11320800645 2.168574578 0.819304542919 0.519737 0.027535 0.025765 0.0267492 12.0 2.0 2.0 0.5 0.62303 0.00889421 0.00828233 0.00854233 14.0 13.5120025697 2.0 0.973685974855 0.502234 0.0314391	3.0	12.9218206966	2.0	0.858950496855	0.524695	0.0260812	0.024745	0.0255167
6.0 26.6275579915 5.94117149491 0.665067465025 0.445776 0.0921568 0.0871899 0.0896835 7.0 40.2637323895 4.26908034048 0.515435272603 0.445821 0.0866204 0.0792098 0.0816776 8.0 3.49067737033 2.93289641943 0.802799465668 0.511109 0.0287218 0.0274117 0.0284403 9.0 3.22990336462 2.0 0.131123269978 0.793742 0.000731432 0.000664557 0.000679274 10.0 10.3190985048 2.38672127726 0.707716171361 0.580588 0.0168114 0.0159317 0.0165228 11.0 4.11320800645 2.168574578 0.819304542919 0.519737 0.027535 0.0255765 0.0267492 12.0 2.0 2.0 0.0 0.138669 0.231124 0.221532 0.228493 13.0 18.478878223 2.0 0.5 0.62303 0.00889421 0.00828233 0.00854233 14.0 13.5120025697 2.0 0.973685974855 0.502234 0.0314391	4.0	10.5861270573	2.0	1.0	0.494054	0.034029	0.032038	0.0331011
7.0 40.2637323895 4.26908034048 0.515435272603 0.445821 0.0866204 0.0792098 0.0816776 8.0 3.49067737033 2.93289641943 0.802799465668 0.511109 0.0287218 0.0274117 0.0284403 9.0 3.22990336462 2.0 0.131123269978 0.793742 0.000731432 0.000664557 0.000679274 10.0 10.3190985048 2.38672127726 0.707716171361 0.580588 0.0168114 0.0159317 0.0165228 11.0 4.11320800645 2.168574578 0.819304542919 0.519737 0.027535 0.0255765 0.0267492 12.0 2.0 2.0 0.5 0.62303 0.00889421 0.00828233 0.00854233 13.0 18.478878223 2.0 0.5 0.62303 0.00889421 0.0288899 0.0308901 15.0 8.55347614302 2.3885548305 0.5 0.640419 0.0081692 0.00817691 0.0084283 16.0 16.5523237023 2.08566454858 0.705975808503 0.574325 0.0167192	5.0	2.0	2.0	0.738264702174	0.548753	0.0229975	0.0211807	0.0222653
8.0 3.49067737033 2.93289641943 0.802799465668 0.511109 0.0287218 0.0274117 0.0284403 9.0 3.22990336462 2.0 0.131123269978 0.793742 0.000731432 0.000664557 0.000679274 10.0 10.3190985048 2.38672127726 0.707716171361 0.580588 0.0168114 0.0159317 0.0165228 11.0 4.11320800645 2.168574578 0.819304542919 0.519737 0.027535 0.0255765 0.0267492 12.0 2.0 2.0 0.5 0.62303 0.00889421 0.00828233 0.00854233 13.0 18.478878223 2.0 0.973685974855 0.502234 0.0314391 0.0298899 0.0308901 15.0 8.55347614302 2.3885548305 0.5 0.640419 0.00871692 0.00817691 0.0084283 16.0 16.5523237023 2.08566454858 0.705975808503 0.574325 0.0167192 0.0159348 0.0164249 17.0 7.94181429612 2.0189807636 0.376325532835 0.675727 0.004	6.0	26.6275579915	5.94117149491	0.665067465025	0.445776	0.0921568	0.0871899	0.0896835
9.0 3.22990336462 2.0 0.131123269978 0.793742 0.000731432 0.000664557 0.000679274 10.0 10.3190985048 2.38672127726 0.707716171361 0.580588 0.0168114 0.0159317 0.0165228 11.0 4.11320800645 2.168574578 0.819304542919 0.519737 0.027535 0.0255765 0.0267492 12.0 2.0 0.0 0.138669 0.231124 0.221532 0.228493 13.0 18.478878223 2.0 0.5 0.62303 0.00889421 0.00828233 0.00854233 14.0 13.5120025697 2.0 0.973685974855 0.502234 0.0314391 0.0298899 0.0308901 15.0 8.55347614302 2.3885548305 0.5 0.640419 0.00871692 0.00817691 0.00844283 16.0 16.5523237023 2.08566454858 0.705975808503 0.574325 0.0167192 0.0159348 0.0164249 17.0 7.94181429612 2.01898097636 0.376325532835 0.675727 0.00441494 0.00421142	7.0	40.2637323895	4.26908034048	0.515435272603	0.445821	0.0866204	0.0792098	0.0816776
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0	3.49067737033	2.93289641943	0.802799465668	0.511109	0.0287218	0.0274117	0.0284403
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.0	3.22990336462	2.0	0.131123269978	0.793742	0.000731432	0.000664557	0.000679274
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.0	10.3190985048	2.38672127726	0.707716171361	0.580588	0.0168114	0.0159317	0.0165228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.0	4.11320800645	2.168574578	0.819304542919	0.519737	0.027535	0.0255765	0.0267492
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.0	2.0	2.0	0.0	0.138669	0.231124	0.221532	0.228493
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13.0	18.478878223	2.0	0.5	0.62303	0.00889421	0.00828233	0.00854233
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.0	13.5120025697	2.0	0.973685974855	0.502234	0.0314391	0.0298899	0.0308901
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.0	8.55347614302	2.3885548305	0.5	0.640419	0.00871692	0.00817691	0.00844283
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16.0	16.5523237023	2.08566454858	0.705975808503	0.574325	0.0167192	0.0159348	0.0164249
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.0	7.94181429612	2.01898097636	0.376325532835	0.675727	0.00441494	0.00421142	0.00434589
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.0	10.7801739126	2.03067519693	0.909204773465	0.513048	0.0288726	0.0272513	0.0282724
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19.0	11.7345388592	2.0	0.5	0.601996	0.0103419	0.00983332	0.010186
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20.0	7.46482984756	2.0	0.0	0.0413656	0.289774	0.282049	0.285934
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21.0	4.18534224416	2.15034089143	0.0881709349719	0.832464	0.000183395	0.000143403	0.000147903
24.0 3.76729777581 2.00244613865 0.293584223893 0.730788 0.00268251 0.00253008 0.00260924 25.0 2.0 0.727267809131 0.553606 0.021385 0.0196689 0.0206698	22.0	6.31141664605	2.0	0.67190050469	0.564373	0.0195332	0.0183163	0.019096
25.0 2.0 0.727267809131 0.553606 0.021385 0.0196689 0.0206698	23.0	3.24290009511	2.01332262327	0.419925814383	0.664902	0.00713225	0.00668782	0.00695413
	24.0	3.76729777581	2.00244613865	0.293584223893	0.730788	0.00268251	0.00253008	0.00260924
26.0 5.41254149766 2.11205066277 0.200766112695 0.729259 0.00171726 0.0016441 0.00169704	25.0	2.0	2.0	0.727267809131	0.553606	0.021385	0.0196689	0.0206698
20.0 5.41254146700 2.11295000577 0.200700112065 0.756556 0.00171750 0.0010441 0.00108794	26.0	5.41254148766	2.11295066377	0.200766112685	0.738358	0.00171736	0.0016441	0.00168794

27.0	11.4788104348	2.0	0.35822182698	0.723333	0.00331185	0.00315496	0.00324682
28.0	2.0	2.0	0.0155329642123	0.835548	0.000142314	0.000115598	0.000110237
29.0	3.34190501004	2.0	0.306795075516	0.710093	0.00364066	0.0034385	0.00355669
30.0	2.0	2.68568702251	0.893874350908	0.492458	0.0341363	0.0321934	0.0336531
31.0	2.73364801795	2.03671285068	0.199177359771	0.755389	0.00142469	0.00136878	0.00139945
32.0	5.97689620295	2.47617083604	0.769196682286	0.547824	0.0229913	0.0213657	0.0222196
33.0	2.0	2.0	0.759973896268	0.54257	0.0246297	0.0226156	0.0237819
34.0	2.0	2.0	0.91299851085	0.493326	0.0350073	0.032038	0.0337141
35.0	5.69117526472	2.0	0.185206673924	0.78611	0.000841764	0.00080091	0.000816869
36.0	3.31752390115	2.20034303022	0.0	0.0846047	0.245215	0.237309	0.244065
37.0	14.8146022888	2.41520441876	0.5	0.666303	0.00554846	0.00524035	0.00540413
38.0	5.35242082204	2.01490018104	0.445174122796	0.66294	0.00827245	0.00775234	0.00802141
39.0	6.59894593875	2.0	0.236480112225	0.773407	0.00121588	0.00114323	0.00117378
40.0	10.5583259467	2.0	0.0	0.0396638	0.306313	0.297956	0.302221
41.0	3.79907581012	2.17255146371	0.805472933679	0.530471	0.0249754	0.0230687	0.0241613
42.0	23.7942500622	2.0	0.950997765336	0.448877	0.0337654	0.0325268	0.0334449
43.0	4.9173817596	2.0	0.0	0.0519104	0.273498	0.265907	0.270653
44.0	2.57756770928	2.02337355103	0.720115798569	0.551425	0.0215359	0.0198995	0.0208231
45.0	6.00125918588	2.43787950072	0.0	0.0493283	0.277246	0.269315	0.27368
46.0	3.06766647761	2.6389908854	0.634646330157	0.571977	0.0180757	0.0172713	0.0179017
47.0	14.3940487996	2.49699884946	0.524848751778	0.58597	0.01286	0.0172715	0.0126854
48.0	2.73405360222	2.64939847282	0.685028650384	0.553035	0.0211689	0.0122075	0.0209119
49.0	3.24897100584	2.04333647262	0.463959307137	0.650707	0.0211039	0.0201818	0.00830184
	2.56237381612	2.06557090283	0.679025114903		0.00832832		0.00830184
50.0				0.557746		0.0187927	
51.0	23.4763470009	2.73175016325	0.0	0.0277634	0.406696	0.400567	0.40603
52.0	7.43702560607	3.47215652036	0.0	0.0321503	0.363205	0.357271	0.362161
53.0	18.8206167272	3.21670615569	0.0	0.0294476	0.401875	0.395903	0.401497
54.0	3.46289153025	2.02262134397	0.0883240061534	0.829471	0.000258416	0.000220973	0.000231715
55.0	2.0	3.42904893543	0.105680467779	0.831217	0.000254231	0.000202246	0.000220666
56.0	10.9189634679	2.99856893327	0.0	0.0296307	0.381211	0.374829	0.380207
57.0	6.21540270442	2.18648111809	0.899388322835	0.496642	0.0326795	0.0303633	0.0316357
58.0	3.94192877805	2.0	0.864534440051	0.502655	0.0311266	0.0287067	0.03005
59.0	2.0	2.71254442376	0.050929948535	0.836594	0.000146742	0.000117982	0.000110062
60.0	18.3162941581	2.10331939107	0.804145499558	0.533793	0.0238637	0.022623	0.0232914
61.0	19.6044912928	2.89298431286	0.0	0.0284328	0.402012	0.396043	0.401629
62.0	2.0	2.0	0.0609928161487	0.787766	0.000256124	0.000197123	0.000228562
63.0	3.8777168881	2.23805036326	0.52223536612	0.569097	0.0147406	0.0145173	0.0152212
64.0	9.23675044508	2.35894152163	0.505589934566	0.576457	0.014684	0.0144162	0.015154
65.0	15.0285552403	2.0	0.594417852291	0.523629	0.0229587	0.0225117	0.0233318
66.0	3.29402722753	2.0	0.716236838749	0.483283	0.0287522	0.027986	0.0294905
67.0	2.0	2.0	0.0	0.0819087	0.255368	0.251915	0.257656
68.0	2.50152385245	2.0	0.269677482952	0.68885	0.00352479	0.00343585	0.00363311
69.0	4.38930003576	2.0	0.177913813107	0.737098	0.0013308	0.00132604	0.00137942
70.0	3.21131394196	2.20805639719	0.256319244386	0.699975	0.00309802	0.00307773	0.00326212
71.0	2.0	2.0	0.572082014846	0.566152	0.0173144	0.0169155	0.0180509
72.0	17.0343205121	2.0	0.501908060793	0.56284	0.0182472	0.017877	0.018825
73.0	3.42849387459	2.0	0.470797316063	0.601152	0.0117493	0.0114363	0.0120534
74.0	2.0	2.0	0.28762897403	0.684397	0.00417191	0.00409187	0.00435506
75.0	2.0	2.0	0.319001035677	0.676598	0.00467596	0.00454571	0.00490102
76.0	2.0	2.0	0.0467344262764	0.791656	0.000155317	0.000121572	0.000128309
77.0	2.0	2.0	0.806851045046	0.449825	0.0362412	0.0352132	0.0377132
78.0	2.53619847005	2.12229512798	0.706400893583	0.496626	0.0260506	0.02529	0.0266687
79.0	2.0	2.0	0.22026142931	0.724546	0.00201504	0.00198291	0.00209202
80.0	3.1496248741	2.35780181905	0.134385763543	0.748132	0.00104085	0.000998748	0.00106332
81.0	2.0	2.0	0.264811557652	0.697151	0.00318869	0.00307715	0.00330749
82.0	2.0	2.0	0.789976935473	0.461123	0.0335764	0.032814	0.0350383
83.0	2.0	2.0	0.132666358022	0.758529	0.000769288	0.000722369	0.000767623
1 55.0			5.1525555555	1 000020	3.000.00200	1 3.000.22000	5.000.01029

84.0	3.0805059994	2.2464397548	0.996037935634	0.384975	0.0502797	0.0486287	0.051306
85.0	2.42385569563	2.35114636574	0.192442273151	0.728299	0.00148275	0.00144158	0.00152957
86.0	2.0	2.0	0.721958245867	0.494555	0.0270831	0.0264682	0.0282887
87.0	3.88119197777	2.0	0.5	0.596839	0.0131762	0.0129074	0.0136321
88.0	2.0	2.0	0.871233788733	0.431905	0.0403448	0.0392149	0.0419863
89.0	2.0	2.23999622177	0.384270287837	0.648621	0.007755	0.00755259	0.00805606
90.0	40.6606731155	3.89845113621	0.863744583938	0.297561	0.107656	0.103902	0.105838
91.0	2.52539483027	2.435267208	0.0	0.0501919	0.282841	0.280242	0.285594
92.0	4.27010672218	2.24683966603	0.229943686198	0.71229	0.00263194	0.00250156	0.00264687
93.0	5.61645171759	2.0	0.55477863176	0.564425	0.0178416	0.0174361	0.0182652
94.0	2.77372933045	2.18507455419	0.940781652341	0.389108	0.0487418	0.0471518	0.0496774
95.0	53.0367396805	2.98530919662	0.274034660606	0.276232	0.127112	0.120837	0.125981
96.0	14.6592957957	2.49920299096	0.0848652779147	0.684746	0.00401761	0.00395017	0.00417073
97.0	2.56197289901	2.14221288416	0.903800468918	0.409682	0.0439377	0.0424819	0.044889
98.0	2.27928718968	2.09259246829	0.948583037555	0.407068	0.0475321	0.0460638	0.0492886
99.0	3.40767689992	2.0	0.0936325288752	0.777003	0.000383461	0.000322487	0.00035059
100.0	2.00071972546	2.18715878718	0.0822339049711	0.775215	0.000383401	0.000458843	0.000490921
101.0	3.18849968748	2.11721552178	0.669535264594	0.775213	0.0030328	0.0225424	0.0237412
102.0	2.93693151672	2.11721332178	0.000663482307116	0.780215	0.0003251	0.0223424 0.000293507	0.00313995
103.0	8.65231777983	2.25641057173	0.309579061915	0.730213	0.0003231	0.000293307	0.00498622
	4.17465507278	2.25041057175					
104.0			0.905279192884	0.420893	0.0414817	0.0404199	0.0424878
105.0	3.19164752264	2.15674021667	0.78506628645	0.46783	0.0316	0.0307277	0.0323041
106.0	4.94550285783	2.0	0.579659528424	0.542229	0.0191408	0.0188228	0.0197266
107.0	5.38258312293	2.18174297069	0.696056694267	0.494868	0.0275482	0.0270448	0.0282753
108.0	2.60045407436	2.05878290217	0.833889686802	0.434412	0.0382984	0.0371935	0.0391734
109.0	2.89274081964	2.09244388982	0.5	0.578231	0.0139116	0.0136808	0.0144633
110.0	4.46612236884	2.00400822418	0.41014792752	0.615799	0.0091199	0.00902098	0.00947175
111.0	2.32027716334	2.19828799908	0.116924112842	0.767094	0.000488963	0.000461673	0.000486079
112.0	5.83793108238	2.0	0.715864343637	0.493677	0.0276822	0.0271113	0.0282399
113.0	3.06989158301	2.16188589823	0.883057280032	0.423313	0.0410583	0.0397921	0.0418922
114.0	11.046678087	3.23289644879	0.496094870334	0.59462	0.0135325	0.0132879	0.0138825
115.0	22.2867943733	6.76007972721	0.605211850181	0.322022	0.106831	0.102759	0.104597
116.0	6.0946668293	2.0	0.662951872774	0.528742	0.0214838	0.0210648	0.0219197
117.0	3.08232250949	2.20243292212	0.589903990702	0.547642	0.018305	0.0179109	0.0189608
118.0	14.1272541585	2.0	0.0	0.0210977	0.346013	0.344528	0.350455
119.0	2.0	32.1008881344	0.0	0.0200801	0.386856	0.396321	0.400445
120.0	2.57045354819	2.29835583567	0.360097508676	0.656688	0.00595517	0.00589545	0.00621782
121.0	18.3908408564	2.00907262538	0.220320957492	0.677333	0.00469509	0.00463112	0.00484218
122.0	5.09101232485	2.08208724433	0.789057270207	0.459602	0.0343625	0.0337502	0.0353585
123.0	4.33875233106	2.37394019484	0.626022843896	0.524631	0.0212356	0.0208217	0.0219233
124.0	2.89910129784	2.09857012232	0.620619466995	0.531118	0.0207645	0.0202031	0.0212407
125.0	6.69112541772	2.0	0.0808171853509	0.753023	0.000811243	0.000784616	0.000827166
126.0	4.02357529673	2.28180974255	0.723377786697	0.486755	0.0280603	0.0274114	0.0289443
127.0	4.97130982878	2.0	1.0	0.371791	0.056858	0.05543	0.0578333
128.0	4.53365585341	2.28374929046	0.660447936924	0.511524	0.0248132	0.0243987	0.0254811
129.0	9.84533116319	2.0	0.0	0.023551	0.3383	0.336246	0.342151
130.0	3.97161734121	2.25443091293	0.76048571887	0.462856	0.033901	0.033062	0.0347065
131.0	6.78695520669	2.12521973727	0.351567803707	0.651144	0.00780234	0.00755867	0.00787006
132.0	9.9272458829	2.0	0.272256715287	0.660394	0.00547086	0.00543164	0.00569884
133.0	4.33916600812	2.25997246393	0.661379412447	0.507441	0.0256752	0.0251247	0.0263251
134.0	3.19954671808	2.00008364564	0.208077021581	0.726163	0.00205421	0.00196918	0.00206596
135.0	3.66180288093	2.00785877492	0.281242886046	0.681593	0.00418639	0.00415261	0.00438053
136.0	4.01477248204	2.00	0.0	0.0386662	0.298298	0.2962	0.301126
137.0	5.13577954402	2.0	0.0	0.0321527	0.30536	0.30339	0.308505
138.0	6.18550525031	2.07582545219	0.454041235272	0.0321327	0.30330	0.30339	0.0121879
139.0	11.7907719695	4.45920706214	0.320240239639	0.602102	0.0113433	0.0111448	0.0121879
140.0	2.57117669398	2.0	0.80371799535	0.602102	0.0113920	0.0111123	0.0113819
140.0	2.07117009398	2.0	0.00911199999	0.401018	0.0344322	0.0555705	0.0502078

141.0	3.4459959327	2.26819149355	0.383498913972	0.631119	0.00848167	0.00827093	0.00872122
142.0	5.7743704931	2.02600626626	0.0	0.0297699	0.316537	0.313988	0.319524
143.0	8.11722209141	2.0	0.0	0.0249429	0.328823	0.326689	0.332172
144.0	3.24600231042	2.0266912741	0.181037050653	0.740656	0.0012681	0.00124621	0.00131296
145.0	10.6575098171	2.06493027536	0.0	0.0218916	0.338454	0.336511	0.342515
146.0	2.04879138969	2.92668548199	0.37128123925	0.654835	0.00737856	0.00732287	0.00799174
147.0	39.3147845245	2.0	0.0	0.0200915	0.362392	0.36188	0.368223
148.0	3.98674405538	2.3160088163	0.303661922608	0.66859	0.00505159	0.0049349	0.00521387
149.0	12.1956325322	2.05767989569	0.0	0.0213795	0.343065	0.341144	0.347002
150.0	9.58370911975	2.0	0.5	0.550348	0.0184473	0.018058	0.0188672
151.0	6.95607599159	2.39985184776	0.548214261218	0.568738	0.0171921	0.0167467	0.0174151
152.0	13.1046475652	2.16550356932	0.339020894713	0.638225	0.00777391	0.0076255	0.00791422
153.0	6.92405987133	2.0	0.5	0.596471	0.0133184	0.013128	0.0137713
154.0	2.0	3.47365110684	0.0228472647706	0.789495	0.00022413	0.0001983	0.000207669
155.0	29.1681595253	5.16137124197	0.803710536145	0.330317	0.0943822	0.0913762	0.0924006
156.0	3.91219588449	2.0	0.287960717289	0.730788	0.00268251	0.00253008	0.00260924
157.0	2.0	2.0	0.0453845246446	0.835548	0.000142314	0.000115598	0.000110237
158.0	7.10968787997	2.16243789429	0.0	0.0413656	0.289774	0.282049	0.285934
159.0	2.0	2.0	0.0	0.138669	0.231124	0.221532	0.228493
160.0	60.2601330234	3.14765020916	0.00140994587414	0.41236	0.10348	0.0946411	0.0973958
161.0	6.86383645084	3.22650755844	0.0	0.0321503	0.363205	0.357271	0.362161
162.0	4.92519696161	2.0	0.0	0.0519104	0.273498	0.265907	0.270653
163.0	6.86383645084	2.0	0.206906460129	0.773407	0.00121588	0.00114323	0.00117378
164.0	3.01646754415	2.03540078442	0.322271985499	0.710093	0.00364066	0.0034385	0.00355669
165.0	2.0	2.69749980273	0.029768001776	0.836594	0.000146742	0.000117982	0.000110062
166.0	3.19042336647	2.18844893672	0.0	0.0846047	0.245215	0.237309	0.244065
167.0	14.8781356558	2.0	0.547945552478	0.666303	0.00554846	0.00524035	0.00540413
168.0	3.00091756809	2.0	0.0853731927042	0.829471	0.000258416	0.000220973	0.000231715
169.0	2.07261258297	2.00925484302	0.72869127062	0.553606	0.021385	0.0196689	0.0206698
170.0	3.02449918773	2.0	0.136800145681	0.793742	0.000731432	0.000664557	0.000679274
171.0	3.93036926039	2.10024471763	0.0163575505064	0.832464	0.000183395	0.000143403	0.000147903
172.0	2.93495296342	2.00011405046	0.217635951343	0.755389	0.00142469	0.00136878	0.00139945
173.0	18.445487497	2.00156786658	0.636800145681	0.62303	0.00889421	0.00828233	0.00854233
174.0	2.0	2.0	0.769040550106	0.54257	0.0246297	0.0226156	0.0237819
175.0	7.87557599448	2.01980665798	0.323462111002	0.675727	0.00441494	0.00421142	0.00434589
176.0	2.71384977033	2.03677751715 2.04973266997	0.685598343219	0.557746	0.0203147	0.0187927	0.0196922
177.0	17.1606165667		0.645496357561	0.574325	0.0167192	0.0159348	0.0164249
178.0	6.07070665459	2.0	0.0 0.459463481702	0.0493283	0.277246 0.00852852	0.269315	0.27368
179.0 180.0	3.1517051808 10.6495599986	2.04393353452	0.459405481702	0.650707 0.0396638	0.00852852	0.00796836 0.297956	0.00830184 0.302221
181.0	20.1008460783	3.40092314672	0.0	0.0390038	0.300313	0.297930	0.302221
182.0	35.8664681277	3.60814885455	0.277432850843	0.0284328	0.402012	0.0792098	0.401029
183.0	2.0	2.0	0.747676874116	0.548753	0.0300204	0.0792098	0.0222653
184.0	14.141309048	2.03663320568	1.0	0.502234	0.0314391	0.0298899	0.0308901
185.0	12.4361275039	2.03003320308	0.5	0.601996	0.0314331	0.00983332	0.010186
186.0	10.8935616455	3.11138787505	0.0	0.0296307	0.381211	0.00363332	0.380207
187.0	11.1967964551	2.0	0.377393429315	0.723333	0.00331185	0.00315496	0.00324682
188.0	2.0	2.76240797431	0.893352619616	0.492458	0.0341363	0.0321934	0.0336531
189.0	10.3888630345	2.48373038733	0.644314916717	0.580588	0.0168114	0.0159317	0.0165228
190.0	23.5939286353	2.06576849445	1.0	0.448877	0.0337654	0.0325268	0.0334449
191.0	13.5110705465	2.0	0.537105312897	0.58597	0.01286	0.0122675	0.0126854
192.0	11.161174392	2.0	1.0	0.494054	0.034029	0.032038	0.0331011
193.0	2.01955008243	2.01429153788	0.835398992861	0.515146	0.029663	0.0272264	0.0286435
194.0	4.32373349191	2.0	0.898296732518	0.502655	0.0311266	0.0287067	0.03005
195.0	18.0312224513	2.04695536264	0.793770605476	0.533793	0.0238637	0.022623	0.0232914
196.0	9.27907147183	2.0	0.514620698238	0.640419	0.00871692	0.00817691	0.00844283
197.0	3.23445968917	2.04213840034	0.723171113862	0.551425	0.0215359	0.0198995	0.0208231
1		1		1	1		

1990 3.80194891022 2.0 0.67198020661 0.564373 0.0195832 0.0195875 0.019587		1		1		ı	i	
201.0 2.0 2.0039672910 0.329927387784 0.438235 0.035073 0.132903 0.036031 202.0 12.8873870019 3.4712555457 0.10 0.029034 0.390222 0.383799 0.389344 202.0 0.3953452906 2.0 0.23116107166 0.738585 0.00171736 0.0016474 0.00168794 202.0 0.53144588466 2.0 0.3893417677 0.518807 0.027075 0.029034 0.0290479	198.0	5.70191481922	2.0	0.671980206361	0.564373	0.0195332	0.0183163	0.019096
201.0 23.093440833 2.5782318114 0.0 0.0277634 0.000666 0.400567 0.040603 0.00168794 0.000687189 0	199.0	3.8031006825		0.816463208942	0.519737	0.027535	0.0255765	0.0267492
202.0 12.8873870010 3.48712555157 0.0 0.0299034 0.390222 0.383769 0.021613 0.00168794 0.0	200.0	2.0	2.00309672919		0.493326	0.0350073	0.032038	0.0337141
202.0 4.9084352206 2.0045667601 0.7624366505 0.7530471 0.0249754 0.0250687 0.0210163 205.0 5.8144568466 2.0 0.83094817677 0.518607 0.027775 0.0250249 0.02200672 205.0 5.8144568466 2.0 0.83094817677 0.518607 0.027775 0.0250249 0.0224034 205.0 5.8434585816 2.7533499708 0.7852065672 0.511109 0.0287218 0.0274117 0.025403 205.0 3.8424141492 2.7066882241 0.27703391634 0.57607 0.0306136 0.0296258 0.0305795 210.0 12.8025518818 2.10466122072 0.965321243034 0.554055 0.0260812 0.024145 0.025167 211.0 4.15856964129 3.33319055364 0.419356256648 0.65922 0.00689137 0.00665012 0.0068688 212.0 5.645607559 2.27686535 0.14336625648 0.05222 0.00689137 0.00665012 0.0068685 213.0 2.90425017600 2.00261802044 0.149366256648 0.052235 0.0360812 0.024745 0.025167 214.0 2.0 2.0 2.0 0.0 0.083678 0.0305795 0.0066803 215.0 2.5205852154 2.54066940413 0.57469112061 0.582551 0.0151525 0.0144716 0.0149766 215.0 2.5205852064 2.54066940413 0.57469112061 0.083678 0.000020246 0.000020246 0.0000020246 0.0000000000000000000000000000000000		23.0934440833				0.406696	0.400567	0.40603
201.0 3.9342864255 2.0482807601 0.7824286905 0.580471 0.0217765 0.0225687 0.02270216 200.0 3.84325891831 2.7533497089 0.7852095672 0.511109 0.0257218 0.0274117 0.0284403 207.0 5.9810515342 2.04126007724 0.21770031634 0.578611 0.000841764 0.0008091 0.00081769 208.0 4.858733528 2.599950791 0.7832295672 0.578611 0.000841764 0.0008091 0.00081769 209.0 3.42411147492 2.7026982241 0.7238271912 0.553095 0.021689 0.0201818 0.0206121 210.0 12.8652618418 3.3331995364 0.110336925618 0.524307 0.00086881 0.026612 0.024745 0.0255167 211.0 2.0425617605 2.00261820264 0.31019280366 0.597355 0.0266812 0.0206312 0.00086881 212.0 2.0225617605 2.0226180264 0.31019280366 0.57355 0.0266810 0.0206303 0.021637 213.0 2.0465685214 0.056686845 0.57355 0.0266601 0.0245607 0.0257519 214.0 2.0 2.5724680535 0.112360689345 0.58231 0.00052248 0.000022066 0.00086881 212.0 2.056886264 2.0 0.0 0.0386788 0.037048 0.32553 0.014716 0.0008681 0.0				0.0		0.390222	0.383769	0.389344
205.00	203.0	4.99834352306	2.0	0.231161071546	0.738358	0.00171736	0.0016441	0.00168794
207.0 3.43255891831 2.75324997889 0.78520955672 0.511109 0.00287218 0.0026091 0.0080869 208.0 4.5854733928 2.069510791 0.894571201473 0.507807 0.00901764 0.0080691 0.0080869 209025 0.342111147892 2.7029982241 0.7238271912 0.5553035 0.0211898 0.0290128 0.0305735 0.0305735 0.008551812 0.020551818 0.0290119 0.008551874 0.0085518148 0.0290119 0.008551874 0.0	204.0	3.93542864255	2.00482607601	0.76242369505	0.530471	0.0249754	0.0230687	0.0241613
207.0 5.0810515342 2.04126047724 0.21770381034 0.78611 0.00841764 0.00800991 0.00810869 2080 3.4584733528 2.5099510791 0.894571204573 0.557035 0.0201898 0.0202058 0.0205795 2.020632241 0.7238271912 0.553035 0.021689 0.0201818 0.0200119 2.0255167 0.02055181 2.10496122072 0.965321243034 0.552035 0.026895 0.0206812 0.0247475 0.0255167 0.0255167 0.020560429 3.3319055364 0.19350255648 0.50522 0.00889137 0.00665012 0.0266807 0.0265857 0.026687 0.		5.81434568466	2.0	0.83094817677	0.518807	0.027765	0.0259249	0.0270216
208.0 4.584773528 2.569951071 0.894571204573 0.507807 0.0309136 0.0206228 0.0206775		3.43255891831	2.75334997089	0.78520955672	0.511109	0.0287218	0.0274117	0.0284403
2000 3.42411147492 2.7029682241 0.7238271912 0.553055 0.021689 0.0201818 0.0200119 2100 12.802518818 2.10496122072 0.965321243034 0.524695 0.0260812 0.02675167 2110 4.15856964429 3.33319055364 0.41935695648 0.65922 0.00680137 0.00666612 0.0053675 2120 5.6429507359 2.2756388298 0.999955923922 0.496642 0.0326795 0.0303633 0.0316377 2130 2.9042617605 2.00261820264 0.81019280346 0.527355 0.0266691 0.0245697 0.0257519 2140 2.0 2.55724680535 0.112366689345 0.831217 0.000254231 0.000202266 0.00220666 215.0 2.52005852154 2.5490994013 0.57469112001 0.582351 0.051525 0.044716 0.0149766 217.0 2.0 2.0 0.0 0.0886768 0.307048 0.302543 0.327743 218.0 58.848822215 3.10648952891 0.444966434966 0.478661 0.119889 0.11423 0.119011 219.0 2.59508826964 2.0 0.0 0.0556154 0.308566 0.30849 0.330852 2224.0 3.6622847821 2.21580184686 0.0757012666101 0.951972 0.000126514 8.5902324-05 0.000108922 2228.0 3.48661871661 2.07314587592 0.1533688278 0.941825 0.000189923 0.000162224 0.00118982 2320.0 3.2157449666 2.0 0.0 0.0305114 0.317832 0.32236 0.0018922 2.0 0.0 0.0305114 0.317832 0.32236 0.0018921 0.32367 0.00018922 0.323818 0.32376 0.00018922 0.323818 0.323767 0.00018922 0.323818 0.323767 0.00018922 0.323818 0.323767 0.000637189 0.32366 0.300189 0.32366 0.300189		5.9810515342	2.04126607724	0.217700391634	0.78611	0.000841764	0.00080091	0.000816869
210.0 12.8025518818 2.10496122072 0.965321243034 0.524695 0.0260812 0.024745 0.0255167 211.0 4.15856964429 3.33319055364 0.419356235648 0.65922 0.00689137 0.000665012 0.0066808585 212.0 5.46296207359 2.275605385898 0.909955923922 0.0496612 0.0326795 0.0305633 0.0316357 213.0 2.90425617605 2.00261820264 0.810192803646 0.527355 0.0266691 0.0215697 0.0257519 214.0 2.0 2.55724680535 0.112366689345 0.8331217 0.000254231 0.000202466 215.0 2.58468822215 3.10648952891 0.44496644966 0.478651 0.119589 0.11423 0.00027423 0.00018592 0.0002756154 0.308506 0.30849 0.330852 0.00027423 0.00027424 0.00027424 0.00018952 0.00018592 0.00027424 0.00018952 0.00018592 0.00027424 0.00018952 0.00018592 0.00027424 0.00018952 0.00018592 0.00027424 0.00018952 0.00018592 0.00027424 0.00018952 0.00018592 0.00027424 0.00018952 0.00018592 0.00027424 0.00018592 0.00027424 0.00085067 0.000367189 0.00060674 0.00058023 0.00068585 0.00085805	208.0	4.5854733528	2.5699510791	0.894571204573	0.507807	0.0309136	0.0296258	0.0305795
211.0	209.0	3.42411147492	2.70269682241	0.7238271912			0.0201818	0.0209119
212.0	210.0	12.8025518818	2.10496122072	0.965321243034	0.524695	0.0260812	0.024745	0.0255167
213.0 2.90425617605 2.00261820264 0.810192803646 0.527355 0.0266691 0.00245697 0.0257519 214.0 2.0 2.557248080355 0.112866689345 0.831217 0.000254231 0.000202646 217.0 2.0 2.0 0.0 0.0836768 0.307048 0.302543 0.327743 218.0 59.8648822215 3.10648952891 0.444966434956 0.478651 0.119969 0.11423 0.119011 219.0 2.5958826964 2.0 0.0 0.0556154 0.308506 0.30849 0.330552 224.0 3.66225847821 2.21580184686 0.075701266101 0.951972 0.000126514 8.90623-65 0.00018992 228.0 3.48651871661 2.07314587592 0.10533689278 0.941825 0.00018993 0.000162224 0.000181752 232.0 5.22157449666 2.0 0.0 0.0306114 0.317932 0.322037 0.341985 234.0 2.68501691077 2.02156004558 0.120047605247 0.919156 0.00663614 0.00058067 0.00637189 236.0 13.1810409121 3.23517870856 0.0 0.00068979 0.331318 0.33766 0.35694 239.0 2.0 3.28751087299 0.0461335500575 0.952027 0.000116321 8.69916-05 9.15212-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.000485918 0.00048201 0.000502934 241.0 3.658809558 2.46749747997 0.0 0.0340362 0.315724 0.319053 0.339249 245.0 6.14970752169 2.0 0.0 0.0238304 0.323505 0.3278112 0.34729 247.0 3.6588367145 2.18588621265 0.0323987519322 0.09603 0.000100459 0.0001664 0.000169053 249.0 1.54346519823 2.8594393756 0.0 0.0125618 0.380785 0.327812 0.395036 256.0 3.67565571504 3.95351145599 1.0 0.544655 0.101971 0.0990491 0.110115 256.0 3.67655571504 3.95351145599 1.0 0.544655 0.101971 0.0990491 0.110115 256.0 3.7666567766 0.0 0.0 0.000687091 0.38881 0.390785 0.367875 277.0 1.88997331385 2.55535529363 0.0 0.0125618 0.380795 0.38888 0.40699 0.38668 0.4169 277.0 1.766620737 2.9876714046 0.0 0.015559 0.367961 0.378913 0.399536 256.0 2.0 2.0 0.0 0.00069050 0.00	211.0	4.15856964429	3.33319055364	0.419356255648	0.65922	0.00689137	0.00665012	0.00686885
214.0 2.0 2.55724680535 0.112366689345 0.831217 0.000254231 0.00020266 0.000202666 215.0 2.52005852154 2.5409640413 0.57469112061 0.582361 0.0151525 0.0144716 0.049766 0.0836768 0.307048 0.302543 0.327743 218.0 59.8648822215 3.16648952891 0.444966434956 0.478651 0.119989 0.11423 0.119011 0.259508826964 2.00 0.0 0.0556154 0.308506 0.30849 0.330852 0.22410 3.66225847821 2.21580184686 0.0757012666101 0.951972 0.000126514 8.966236-05 0.000108992 0.2320 0.32577449666 2.0 0.00 0.0356114 0.317932 0.302503 0.000162224 0.000181752 0.32157449666 2.0 0.00 0.0356114 0.317932 0.322037 0.341985 0.34651871661 2.32317870856 0.0 0.0080927 0.331318 0.33766 0.3083769 0.32876187089 0.0080927 0.331318 0.33766 0.308518 0.200900757002 2.0 0.00809297 0.331318 0.33766 0.35694 0.308524 0.20000757002 2.0 0.130742260328 0.927542 0.000485918 0.000482601 0.000502934 0.44466983745 0.444669838 0.0080697 0.000502934 0.444669838 0.0080697 0.000502934 0.444069838 0.444069838 0.0080697 0.00806993 0.008		5.64296207359	2.27505388298	0.909955923922		0.0326795	0.0303633	0.0316357
215.0 2.52005852154 2.54096940413 0.57469112061 0.582351 0.0151525 0.0144716 0.0149766 217.0 2.0 0.0 0.0836768 0.307048 0.302543 0.327743 0.327743 0.327743 0.327743 0.325743 0.325743 0.327743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.325743 0.308506 0.30849 0.330852 0.30849 0.330852 0.30849 0.330852 0.32868187161 0.07314587592 0.105336898278 0.941825 0.000189923 0.322037 0.341985 0.32581440 0.25601691077 0.20156004558 0.120047605247 0.99156 0.00603614 0.00058067 0.000637189 0.3260 13.1810409121 0.3235178056 0.0 0.0131516 0.380016 0.389326 0.41105 0.38001 0.329326 0.41105 0.38001 0.329326 0.41105 0.38001 0.329326 0.41105 0.38001 0.329326 0.32581 0		2.90425617605	2.00261820264	0.810192803646	1	0.0266691	0.0245697	0.0257519
217.0 2.0 2.0 0.0 0.0836768 0.307048 0.302543 0.327743 218.0 59.5645882215 3.10648952891 0.444966434956 0.478651 0.119980 0.11423 0.119011 0.119011 0.55505826964 2.0 0.0 0.0556154 0.308506 0.30850 0.30852 0.308514 0.31782 0.32937 0.31895 0.32852	214.0	2.0	2.55724680535	0.112366689345	0.831217	0.000254231	0.000202246	0.000220666
218.0 59.8648822215 3.10648952891 0.444966434956 0.478651 0.119989 0.11423 0.119011 219.0 2.59508829694 2.0 0.0 0.0556154 0.308506 0.30849 0.330852 228.0 3.48651871661 2.07314587592 0.105336898278 0.941825 0.000189923 0.000162224 0.000181752 232.0 5.32157449666 2.0 0.0 0.0305114 0.317932 0.322037 0.341985 234.0 2.6501691077 2.02156004558 0.120047605247 0.919156 0.006063614 0.00058067 0.00663718 236.0 13.1810409121 3.23517870856 0.0 0.0131516 0.380016 0.392326 0.41105 238.0 9.72023471302 2.0 0.0 0.0208297 0.331318 0.33796 0.35694 239.0 2.0 2.28751087299 0.461235500575 0.592027 0.000116321 8.6916e-05 9.15212e-05 240.0 2.0000757002 2.0 0.130742260328 0.927542 0.000485918 0.000482601 0.00502934 241.0 3.658809558 2.46749747997 0.0 0.0340362 0.315724 0.331903 0.339249 245.0 6.14970752169 2.0 0.0 0.0238304 0.323505 0.327812 0.34729 246.0 1.5436519823 2.85934393756 0.0 0.0125618 0.380786 0.392875 0.411493 245.0 6.14970752169 2.0 0.0 0.0125618 0.380786 0.392875 0.411493 256.0 3.67565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632299 2.0 0.0 0.018476 0.340219 0.340250 0.36937 273.0 18.8997331385 2.58538529363 0.0 0.018476 0.336146 0.39868 0.4169 274.0 0.7766620737 2.58811481362 0.0 0.018476 0.336446 0.39868 0.4169 275.0 1.5.0012576384 2.0 2.0 0.0 0.0120767 0.386381 0.309375 0.36937 275.0 1.5.0012576384 2.0 2.0 0.0 0.0120707 0.388381 0.309575 0.004451 286.0 2.0 2.0 2.0 0.804787777 0.431905 0.0011533 0.0012157 0.00012377 286.0 2.0 2.0 0.8047878777 0.41905 0.00015337 0.0012157 0.00012899 287.0 2.946773584 2.0 0.0 0.0120707 0.388381 0.400829 0.101897 287.0 2.946773584 2.0 0.0 0.0209515 0.	215.0		2.54096940413		0.582351	0.0151525	0.0144716	0.0149766
219.0 2.59508826964 2.0 0.0 0.0556154 0.308506 0.30849 0.330852 224.0 3.66225847821 2.21580184686 0.0757012666101 0.951972 0.000126514 8.906239-05 0.00018992 232.0 3.48651871661 2.07314587592 0.105336898278 0.941825 0.000189923 0.000162224 0.000181752 232.0 5.32157449666 2.0 0.0 0.0305114 0.317932 0.322037 0.341985 0.32600 13.1810409121 3.23517870856 0.0 0.0131516 0.308016 0.392326 0.41105 0.380.0 0.72023471302 2.0 0.0 0.00085075 0.00063318 0.33796 0.35694 0.3000757002 2.0 0.0461235500575 0.952027 0.000116321 8.60916e-05 9.15212e-05 0.20000757002 2.0 0.0461235500575 0.952027 0.000116321 8.60916e-05 9.15212e-05 0.20000757002 2.0 0.0 0.03340362 0.315724 0.319053 0.339249 0.339249 0.328585 2.46749747997 0.0 0.03340362 0.315724 0.319053 0.339249 0.34792 0.34685387145 0.346519823 2.58934393756 0.0 0.0125618 0.308304 0.323505 0.327812 0.34729 0.4001 0.446519823 2.85934393756 0.0 0.0125618 0.308755 0.392875 0.3411493 0.365409 0.37581 0.39536 0.3660 0.36609 0.37581 0.39536 0.36609 0.36609 0.37581 0.39536 0.36609 0.37581 0.39536 0.36609	217.0	2.0	2.0	0.0	0.0836768	0.307048		
224.0 3.66225847821 2.21580184686 0.0757012666101 0.951972 0.000126514 8.90623e-05 0.000108992 228.0 3.48651871661 2.07314587592 0.105336898278 0.941825 0.0001189923 0.001018752 0.00118752 232.0 5.32157449666 2.0 0.0 0.0305114 0.317932 0.322037 0.341985 236.0 13.1810409121 3.23517870856 0.0 0.0208297 0.331318 0.33796 0.35694 238.0 9.72023471302 2.0 0.0 0.0208297 0.331318 0.33796 0.35694 239.0 2.0 3.28751087299 0.0461235500575 0.952027 0.00016321 8.60916e-05 9.15212e-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.000485918 0.000482601 0.000502934 241.0 3.658809558 2.4674974797 0.0 0.0340362 0.315724 0.319053 0.339249 245.0 1.614970752169 2.0 0.0 0.0238036 0.305759 0.0		59.8648822215	3.10648952891	0.444966434956	0.478651	0.119989		
228.0 3.48651871661 2.07314587592 0.105336898278 0.941825 0.000189923 0.000162224 0.000181752 232.0 5.32157449666 2.0 0.0 0.0305114 0.317932 0.322037 0.341985 234.0 2.65001691077 2.02156004558 0.120047605247 0.919156 0.000603614 0.00058067 0.000637189 236.0 13.1810409121 3.23517870856 0.0 0.0208297 0.331318 0.33796 0.35694 239.0 2.0 3.28751087299 0.0461235500575 0.952027 0.00016321 8.60916e-05 9.15212e-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.000485918 8.60916e-05 9.15212e-05 241.0 3.66889558 2.46749747997 0.0 0.0340362 0.315724 0.319053 0.332949 247.0 3.66858677145 2.18538621265 0.0323987519322 0.950603 0.00190459 0.347812 0.347812 0.347812 247.0 3.668586877445 2.1858621265 0.0323987519322 <td></td> <td>2.59508826964</td> <td>2.0</td> <td>0.0</td> <td>0.0556154</td> <td>0.308506</td> <td>0.30849</td> <td>0.330852</td>		2.59508826964	2.0	0.0	0.0556154	0.308506	0.30849	0.330852
232.0 5.32157449666 2.0 0.0 0.0305114 0.317932 0.322037 0.341985 234.0 2.65001691077 2.02156004558 0.120047605247 0.919156 0.00603614 0.00058067 0.00637189 238.0 9.72023471302 2.0 0.0 0.0208297 0.331318 0.33796 0.35694 239.0 2.0 3.28751087299 0.0461235500575 0.952027 0.000116321 8.60916e-05 9.15212e-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.000485918 0.00042601 0.000502934 241.0 3.6583677145 2.18533621265 0.0323387519322 0.950603 0.0019459 0.001664 0.00169933 249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.327812 0.34792 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.0192766 0.340929 0.349355 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.90623e-05</td> <td>0.000108992</td>							8.90623e-05	0.000108992
234.0 2.65001691077 2.02156004558 0.120047605247 0.919156 0.000603614 0.00058067 0.000637189 236.0 13.1810409121 3.23517870856 0.0 0.0131516 0.380016 0.3932326 0.41105 239.0 2.0 3.28751087299 0.0461235500575 0.95027 0.000116321 8.609166-05 9.15212e-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.000485918 0.000482601 0.000502934 241.0 3.658809558 2.46749747997 0.0 0.0340362 0.315724 0.319053 0.339249 247.0 3.46583677145 2.18538621265 0.0323987519322 0.950603 0.00109459 0.001664 0.0001664 0.0001664 0.001664 0.00169953 249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.392875 0.411493 256.0 36.7565571504 3.9535146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2								
236.0 13.1810409121 3.23517870856 0.0 0.0131516 0.380016 0.392326 0.41105 238.0 9.72023471302 2.0 0.0 0.0208297 0.331318 0.33796 0.35694 239.0 2.0 3.28751087299 0.0461235500575 0.952027 0.00016321 8.60916-05 9.15212-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.00016321 8.60916-05 9.15212-05 241.0 3.658809558 2.46749747997 0.0 0.0340362 0.315724 0.319053 0.339249 245.0 6.14970752169 2.0 0.0 0.023804 0.323505 0.327812 0.34729 247.0 3.45653867145 2.18538621265 0.032387519322 0.950603 0.00016945 0.001664 0.000169953 249.0 15.4346519823 2.8594393756 0.0 0.0125618 0.38575 0.332875 0.3411493 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.10171 0.098491	232.0	5.32157449666	2.0	0.0	0.0305114	0.317932	0.322037	0.341985
238.0 9.72023471302 2.0 0.0461235500575 0.952027 0.000116321 8.60916-05 9.15212-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.000048561 0.00002934 241.0 3.658809558 2.46749747997 0.0 0.0340362 0.315724 0.319053 0.339249 245.0 6.14970752169 2.0 0.0 0.0238304 0.323505 0.327812 0.34729 247.0 3.46583677145 2.15838621265 0.0323987519322 0.950603 0.00190459 0.0001664 0.000169953 249.0 15.4346519823 2.8594393756 0.0 0.012568 0.380785 0.332875 0.41143 250.0 3.6.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.0182766 0.340929 0.34925 0.367775 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.35979 0.36937	234.0	2.65001691077	2.02156004558	0.120047605247	0.919156	0.000603614	0.00058067	0.000637189
239.0 2.0 3.28751087299 0.0461235500575 0.952027 0.000116321 8.60916e-05 9.15212e-05 240.0 2.00000757002 2.0 0.130742260328 0.927542 0.0004085918 0.000482601 0.000502934 241.0 3.658809558 2.46749747997 0.0 0.034032 0.315724 0.319053 0.339249 245.0 6.14970752169 2.0 0.0 0.0238304 0.323505 0.327812 0.34729 247.0 3.46583677145 2.18538621265 0.0323987519322 0.950603 0.00190199459 0.001664 0.0016169953 249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.392875 0.411493 256.0 36.7565571504 2.86706706754 0.0 0.0181489 0.366409 0.37581 0.395036 256.0 36.7565571504 2.0 0.0 0.0192766 0.340929 0.34925 0.367757 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 <td>236.0</td> <td>13.1810409121</td> <td>3.23517870856</td> <td>0.0</td> <td>0.0131516</td> <td>0.380016</td> <td>0.392326</td> <td>0.41105</td>	236.0	13.1810409121	3.23517870856	0.0	0.0131516	0.380016	0.392326	0.41105
240.0 2.00000757002 2.0 0.130742260328 0.927542 0.000485918 0.000482601 0.00502934 241.0 3.658809558 2.46749747997 0.0 0.0340362 0.315724 0.319053 0.339249 245.0 6.14970752169 2.0 0.0 0.0238304 0.323505 0.327812 0.34729 247.0 3.46583677145 2.18538621265 0.0323987519322 0.950603 0.000190459 0.0001664 0.00169953 249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.392875 0.411493 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.9980491 0.101015 262.0 17.6117632209 2.0 0.0 0.0192766 0.340929 0.34925 0.367757 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.012115 0.387691 0.378913		9.72023471302			0.0208297	0.331318	0.33796	0.35694
241.0 3.658809558 2.46749747997 0.0 0.0340362 0.315724 0.319053 0.339249 245.0 6.14970752169 2.0 0.0 0.0238304 0.323505 0.327812 0.34729 247.0 3.46583677145 2.18538621265 0.0323987519322 0.956063 0.000190459 0.0001664 0.000169953 249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.392875 0.411493 254.0 7.07601509571 2.86706706754 0.0 0.0181489 0.365409 0.37581 0.395036 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.018476 0.342172 0.350797 0.36937 273.0 18.8997331385 2.5533529363 0.0 0.01215 0.38646 0.39868 0.4169		2.0			0.952027		8.60916e-05	9.15212e-05
245.0 6.14970752169 2.0 0.0 0.0238304 0.323505 0.327812 0.34729 247.0 3.46583677145 2.18538621265 0.0323987519322 0.950603 0.000190459 0.0001664 0.000169953 249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.392875 0.411493 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.018476 0.340229 0.34925 0.367757 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.0155859 0.367961 0.378913 0.397759 273.0 18.8997331385 2.55535529363 0.0 0.0131903 0.375809 0.387382 0.405952 275.0 15.0012576384 2.0 0.0 0.0202694 0.337863 0.345654 0.364441								
247.0 3.46583677145 2.18538621265 0.0323987519322 0.950603 0.000190459 0.0001664 0.000169953 249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.392875 0.411493 256.0 7.07601509571 2.86706706754 0.0 0.0181489 0.365409 0.37581 0.395036 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.018476 0.344929 0.34925 0.367757 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.0155859 0.367961 0.378913 0.397759 273.0 18.8997331385 2.55535529363 0.0 0.012115 0.386146 0.398688 0.4169 275.0 15.0012576384 2.0 0.0 0.0202694 0.337863 0.345654 0.36441<								
249.0 15.4346519823 2.85934393756 0.0 0.0125618 0.380785 0.392875 0.411493 254.0 7.07601509571 2.86706706754 0.0 0.0181489 0.365409 0.37581 0.395036 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.0192766 0.340929 0.34925 0.367757 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.0155859 0.367661 0.378913 0.397759 273.0 18.8997331385 2.55535529363 0.0 0.012115 0.386146 0.398668 0.4169 274.0 10.7766620737 2.58811481362 0.0 0.0131903 0.37863 0.345654 0.364441 280.0 23.3412573476 3.45068257592 0.0 0.0120707 0.388381 0.400829 0.419208								
254.0 7.07601509571 2.86706706754 0.0 0.0181489 0.365409 0.37581 0.395036 256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.0192766 0.340929 0.34925 0.367757 269.0 21.9864100936 2.48648213616 0.0 0.0181876 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.0155859 0.367961 0.378913 0.397759 273.0 18.8997331385 2.55535529363 0.0 0.012115 0.386146 0.398668 0.4169 274.0 10.7766620737 2.58811481362 0.0 0.0131903 0.378603 0.345654 0.364441 280.0 23.3412573476 3.45068257592 0.0 0.0120707 0.388381 0.400829 0.419208 281.0 2.0 29.2537611897 0.0 0.0200801 0.38656 0.396321 0.400445								
256.0 36.7565571504 3.95351146599 1.0 0.544655 0.101971 0.0980491 0.101015 262.0 17.6117632209 2.0 0.0 0.0192766 0.340929 0.34925 0.367757 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.0155859 0.367961 0.378913 0.397759 273.0 18.8997331385 2.55535529363 0.0 0.012115 0.386146 0.398668 0.4169 274.0 10.7766620737 2.58811481362 0.0 0.0131903 0.375809 0.387382 0.405952 275.0 15.0012576384 2.0 0.0 0.0202694 0.337863 0.345654 0.364411 280.0 23.3412573476 3.45068257592 0.0 0.0120707 0.388381 0.400829 0.419208 281.0 2.0 29.2537611897 0.0 0.0200801 0.386556 0.396321 0.404445								
262.0 17.6117632209 2.0 0.0 0.0192766 0.340929 0.34925 0.367757 269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.0155859 0.367961 0.378913 0.397759 273.0 18.8997331385 2.55535529363 0.0 0.012115 0.386146 0.398668 0.4169 274.0 10.7766620737 2.58811481362 0.0 0.0131903 0.375809 0.387382 0.405952 275.0 15.0012576384 2.0 0.0 0.0202694 0.337863 0.345654 0.364441 280.0 23.3412573476 3.45068257592 0.0 0.0120707 0.388381 0.400829 0.419208 281.0 2.0 29.2537611897 0.0 0.0200801 0.388566 0.396321 0.400445 282.0 22.1696868766 6.95311768547 0.318328909142 0.322022 0.106831 0.102759 0.104597								
269.0 21.9684100936 2.48648213616 0.0 0.018476 0.342172 0.350797 0.36937 272.0 7.91366262721 2.98767140446 0.0 0.0155859 0.367961 0.378913 0.397759 273.0 18.8997331385 2.55535529363 0.0 0.012115 0.386146 0.398668 0.4169 274.0 10.7766620737 2.58811481362 0.0 0.0131903 0.375809 0.387382 0.405952 275.0 15.0012576384 2.0 0.0 0.0202694 0.337863 0.345654 0.364441 280.0 23.3412573476 3.45068257592 0.0 0.0120707 0.388381 0.400829 0.419208 281.0 2.0 29.2537611897 0.0 0.0200801 0.386856 0.396321 0.400445 282.0 22.1696868766 6.95311768547 0.318328909142 0.322022 0.106831 0.102759 0.104597 284.0 2.0 2.0 0.0319478654931 0.791656 0.000113926 0.0111123 0.0113819								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
275.0 15.0012576384 2.0 0.0 0.0202694 0.337863 0.345654 0.364441 280.0 23.3412573476 3.45068257592 0.0 0.0120707 0.388381 0.400829 0.419208 281.0 2.0 29.2537611897 0.0 0.0200801 0.386856 0.396321 0.400445 282.0 22.1696868766 6.95311768547 0.318328909142 0.322022 0.106831 0.102759 0.104597 283.0 11.7588192424 4.06004938476 0.383857283857 0.602102 0.0113926 0.0111123 0.0113819 284.0 2.0 2.0 0.0319478654931 0.791656 0.000155317 0.000121572 0.000128309 285.0 28.3238841117 2.0 0.0 0.0209365 0.359519 0.358839 0.365177 286.0 2.0 2.0 0.880475877077 0.431905 0.0403448 0.0392149 0.0419863 287.0 2.98467735884 2.0 0.46973075042 0.601152 0.0117493 0.0114363 0.0120534 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
280.0 23.3412573476 3.45068257592 0.0 0.0120707 0.388381 0.400829 0.419208 281.0 2.0 29.2537611897 0.0 0.0200801 0.386856 0.396321 0.400445 282.0 22.1696868766 6.95311768547 0.318328909142 0.322022 0.106831 0.102759 0.104597 283.0 11.7588192424 4.06004938476 0.383857283857 0.602102 0.0113926 0.0111123 0.0113819 284.0 2.0 2.0 0.0319478654931 0.791656 0.000155317 0.000121572 0.000128309 285.0 28.3238841117 2.0 0.0 0.0209365 0.359519 0.358839 0.365177 286.0 2.0 2.0 0.880475877077 0.431905 0.0403448 0.0392149 0.0419863 287.0 2.98467735884 2.0 0.46973075042 0.601152 0.0117493 0.0114363 0.0120534 288.0 2.0 2.0 0.0 0.0819087 0.255368 0.251915 0.257656 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
293.0 2.64119407356 2.0 1.0 0.384975 0.0502797 0.0486287 0.051306 294.0 2.0 2.0 0.21438478586 0.724546 0.00201504 0.00198291 0.00209202	1							
294.0 2.0 2.0 0.21438478586 0.724546 0.00201504 0.00198291 0.00209202								
295.0 17.0527130483 2.0 0.44003863696 0.677333 0.00469509 0.00463112 0.00484218								
	∠95.0	17.0327136483	2.0	0.44003863696	0.077333	0.00469509	0.00463112	0.00484218

296.0	2.0	2.0	0.815769788685	0.449825	0.0362412	0.0352132	0.0377132
297.0	3.05635839198	2.0	0.00186259685548	0.780215	0.0003251	0.000293507	0.000313995
298.0	5.34672838506	2.0	1.0	0.371791	0.056858	0.05543	0.0578333
299.0	3.42674959155	2.34179763383	0.5	0.578231	0.0139116	0.0136808	0.0144633
300.0	6.97469363828	2.02041799319	0.355159111635	0.651144	0.00780234	0.00755867	0.00787006
301.0	2.0	2.0	0.796726639699	0.461123	0.0335764	0.032814	0.0350383
302.0	9.87760847344	2.00351223834	0.551587997287	0.550348	0.0184473	0.018058	0.0188672
303.0	3.14215228842	2.09534017996	0.39807189464	0.631119	0.00848167	0.00827093	0.00872122
304.0	40.9282284971	3.89654873766	0.511910001518	0.297561	0.107656	0.103902	0.105838
305.0	4.68568036259	2.0	0.811583976836	0.459602	0.0343625	0.0337502	0.0353585
306.0	28.5089478284	4.95091993541	0.472570449467	0.330317	0.0943822	0.0913762	0.0924006
307.0	51.9338366004	3.38024300284	0.467553715357	0.276232	0.127112	0.120837	0.125981
308.0	2.91571180394	2.0	0.295440402212	0.68885	0.00352479	0.00343585	0.00363311
309.0	2.0	2.5284076504	0.00233247253705	0.789495	0.00022413	0.0001983	0.000207669
310.0	13.849631977	2.0	0.0	0.0210977	0.346013	0.344528	0.350455
311.0	7.36572243027	2.33133713962	0.022347027078	0.753023	0.000811243	0.000784616	0.000827166
312.0	2.54264486892	2.23187035974	0.927104611181	0.409682	0.0439377	0.0424819	0.044889
313.0	2.0	2.0	0.322879861517	0.676598	0.00467596	0.00454571	0.00490102
314.0	9.38695881887	2.02548326201	0.5	0.576457	0.014684	0.0144162	0.015154
315.0	8.85336831037	2.0	0.225846688107	0.671622	0.00477057	0.00471242	0.00498622
316.0	6.77924348173	2.03596655749	0.5	0.596471	0.0133184	0.013128	0.0137713
317.0	10.5657715894	3.20721107006	0.498546660001	0.59462	0.0135325	0.0132879	0.0138825
318.0	6.28685976041	2.01052710112	0.647832913503	0.528742	0.0214838	0.0210648	0.0219197
319.0	2.0	2.0	0.283780299797	0.684397	0.00417191	0.00409187	0.00435506
320.0	2.28894123207	2.0	0.950159554231	0.407068	0.0475321	0.0460638	0.0492886
321.0	2.0	2.0138469561	0.574515501436	0.566152	0.0173144	0.0169155	0.0180509
322.0	11.3130071317	2.0	0.0	0.0218916	0.338454	0.336511	0.342515
323.0	5.02070659473	2.0	0.565238723806	0.542229	0.0191408	0.0188228	0.0197266
324.0	2.51394293081	2.0010981024	0.225443613753	0.726163	0.00205421	0.00196918	0.00206596
325.0	7.01754628434	2.4331168379	0.563825381965	0.568738	0.0171921	0.0167467	0.0174151
326.0	4.10898278778	2.0	0.689747601695	0.507441	0.0256752	0.0251247	0.0263251
327.0	3.7145161348	2.09457089838	0.171961414151	0.737098	0.0013308	0.00132604	0.00137942
328.0	15.136276192	2.0	0.021216763623	0.684746	0.00401761	0.00395017	0.00417073
329.0	3.55334595833	2.30312000801	0.28747541953	0.681593	0.00418639	0.00415261	0.00438053
330.0	2.0	2.0	0.728372921272	0.494555	0.0270831	0.0264682	0.0282887
331.0	2.63333144595	2.0	0.651497604432	0.516613	0.0230328	0.0225424	0.0237412
332.0	3.20050272647	2.48503775324	0.634696158772	0.531118	0.0207645	0.0202031	0.0212407
333.0	2.77289604321	2.0	0.778562248594	0.46783	0.0316	0.0307277	0.0323041
334.0	3.68177436532	2.2002570085	0.709744325383	0.486755	0.0280603	0.0274114	0.0289443
335.0	3.83528067928	2.0	0.5	0.596839	0.0131762	0.0129074	0.0136321
336.0	8.04518063121	2.21037668395	0.0	0.0249429	0.328823	0.326689	0.332172
337.0	3.53633170386	2.18668030624	0.0	0.0386662	0.298298	0.2962	0.301126
338.0	2.0	2.0	0.270803360372	0.697151	0.00318869	0.00307715	0.00330749
339.0	4.57568751792	2.0	0.742033669416	0.494868	0.0275482	0.0270448	0.0282753
340.0	3.38804234892	2.02494407227	0.973287369237	0.389108	0.0487418	0.0471518	0.0496774
341.0	3.18897880048	2.02453624939	0.369967092264	0.656688	0.00595517	0.00589545	0.00621782
342.0	2.0	2.03517683157	0.10904947637	0.767094	0.000488963	0.000461673	0.000486079
343.0	3.81380043203	2.0	0.764033263745	0.462856	0.033901	0.033062	0.0347065
344.0 345.0	2.84152736761 2.0	2.27184182482	0.227222706704	0.699975	0.00309802	0.00307773	0.00326212
			0.0561204388478	0.787766	0.000256124	0.000197123	0.000228562
346.0 347.0	6.14260698673	2.05804575351	0.484357127464	0.598613	0.0118493	0.0117448	0.0121879
	4.80462012006	2.0	0.653748848921	0.511524	0.0248132	0.0243987	0.0254811
348.0 349.0	10.3524824338	2.08173317549 2.0	0.0	0.023551	0.3383	0.336246	0.342151
350.0	3.09490078148 3.42274397501	2.0	0.86673031869 0.68370615374	0.423313 0.496626	0.0410583 0.0260506	0.0397921 0.02529	0.0418922 0.0266687
351.0	6.00196093315	2.0	0.711375545939	0.493677	0.0260306	0.02529	0.0200087
352.0	6.20968355369	2.06485703078	0.522945184834	0.493677	0.0270822	0.0271113	0.0282399 0.0182652
1 552.0	0.20000000000	2.00400100010	0.022340104004	0.004420	0.0110410	0.0114301	0.0102002

353.0	3.33354268828	2.49739710414	0.127657729971	0.748132	0.00104085	0.000998748	0.00106332
354.0	4.44451080114	2.25652976618	0.412301053221	0.615799	0.0091199	0.00902098	0.00947175
355.0	2.0	2.0	0.0913383058808	0.775215	0.000484727	0.000458843	0.000490921
356.0	4.78690119462	2.08742071362	0.0	0.0321527	0.30536	0.30339	0.308505
357.0	4.4528374924	2.00440263579	0.857299954436	0.420893	0.0414817	0.0404199	0.0424878
358.0	12.8225330218	2.0224902465	0.422948832258	0.638225	0.00777391	0.0076255	0.00791422
359.0	2.0	2.70670840858	0.347976815513	0.654835	0.00737856	0.00732287	0.00799174
360.0	2.78430052804	2.0	0.0	0.0501919	0.282841	0.280242	0.285594
361.0	3.59413031562	2.08927500131	0.344871035313	0.66859	0.00505159	0.0049349	0.00521387
362.0	2.78091678085	2.00872104554	0.600386095645	0.547642	0.018305	0.0179109	0.0189608
363.0	2.88487168708	2.00920669711	0.173600363608	0.740656	0.0012681	0.00124621	0.00131296
364.0	9.61721557257	2.0	0.349630632926	0.660394	0.00547086	0.00543164	0.00569884
365.0	17.2422114765	2.04228980437	0.508683883291	0.56284	0.0182472	0.017877	0.018825
366.0	2.01108186359	2.02382392287	0.378521247983	0.648621	0.007755	0.00755259	0.00805606
367.0	2.83997791273	2.08676108748	0.79235121994	0.451618	0.0344522	0.0333763	0.0352578
368.0	6.17437472116	2.44696138451	0.0	0.0297699	0.316537	0.313988	0.319524
369.0	15.1362634659	2.07191527175	0.692814703157	0.523629	0.0229587	0.0225117	0.0233318
370.0	2.5323668283	2.01890113244	0.10941034305	0.777003	0.000383461	0.000322487	0.00035059
371.0	2.91004489674	2.0031162784	0.847968806306	0.434412	0.0382984	0.0371935	0.0391734
372.0	2.60548825821	2.17077891643	0.743378271203	0.483283	0.0382384	0.0371333	0.0294905
373.0	4.21547965751	2.12036471655	0.518454700287	0.465265	0.0287322	0.027930	0.0294903
374.0	3.5112700622	2.41939733132	0.206178667791	0.71229	0.0147400	0.0145175	0.00264687
	12.3867960227	2.41939733132			0.00203194		0.347002
375.0			0.0 0.149229698281	0.0213795		0.341144	
378.0	2.0	2.0	0.11.00	0.927542	0.000485918	0.000482601	0.000502934
381.0	2.0	2.0	0.0	0.0836768	0.307048	0.302543	0.327743
384.0	52.7363364228	2.7820312713	0.858657126028	0.478651	0.119989	0.11423	0.119011
387.0	5.05219171284	2.0	0.0	0.0305114	0.317932	0.322037	0.341985
395.0	2.67006489266	2.05137297365	0.0663413081821	0.950603	0.000190459	0.0001664	0.000169953
397.0	6.46449736311	2.06889977816	0.0	0.0238304	0.323505	0.327812	0.34729
403.0	2.57702192136	2.04130980784	0.0875723242189	0.941825	0.000189923	0.000162224	0.000181752
405.0	14.512863025	2.0	0.0	0.0202694	0.337863	0.345654	0.364441
412.0	2.0	3.38945899341	0.0624857502668	0.952027	0.000116321	8.60916e-05	9.15212e-05
414.0	2.72001068177	2.0	0.120477745827	0.919156	0.000603614	0.00058067	0.000637189
415.0	38.7294302762	4.31731515655	0.242496180012	0.544655	0.101971	0.0980491	0.101015
416.0	9.52789865787	2.0	0.0	0.0208297	0.331318	0.33796	0.35694
418.0	3.21456262075	2.0	0.0	0.0556154	0.308506	0.30849	0.330852
421.0	17.8385649877	2.0	0.0	0.0192766	0.340929	0.34925	0.367757
423.0	20.5185868994	2.0	0.0	0.018476	0.342172	0.350797	0.36937
425.0	18.5396495898	3.06429072031	0.0	0.012115	0.386146	0.398668	0.4169
428.0	3.51807059969	2.0	0.0	0.0340362	0.315724	0.319053	0.339249
433.0	19.5573698819	2.6294219431	0.0	0.0117455	0.386202	0.398721	0.416958
435.0	3.66091314017	2.0	0.0255370639769	0.951972	0.000126514	8.90623e-05	0.000108992
436.0	8.05	3.45646943052	0.0	0.0155859	0.367961	0.378913	0.397759
439.0	11.6596471049	3.18320173245	0.0	0.0144663	0.378236	0.389713	0.40831
440.0	15.18360385	3.29191858535	0.0	0.0125618	0.380785	0.392875	0.411493
441.0	6.7519266336	2.0	0.0	0.0413656	0.289774	0.282049	0.285934
442.0	50.4079598552	3.05920322269	0.0226449936264	0.41236	0.10348	0.0946411	0.0973958
443.0	2.0	2.0	0.766253474757	0.54257	0.0246297	0.0226156	0.0237819
444.0	26.1529353171	5.58215766566	0.41528483529	0.445776	0.0921568	0.0871899	0.0896835
445.0	2.0	2.0	0.0	0.138669	0.231124	0.221532	0.228493
446.0	2.0	2.0	0.0150353415826	0.835548	0.000142314	0.000115598	0.000110237
447.0	6.01460204393	2.0	0.0	0.0493283	0.277246	0.269315	0.27368
448.0	5.75789133342	2.01939572108	0.15666206694	0.78611	0.000841764	0.00080091	0.000816869
449.0	4.5416462908	2.0	0.225183930956	0.738358	0.00171736	0.0016441	0.00168794
450.0	7.75550973358	2.34980984636	0.373698540012	0.675727	0.00441494	0.00421142	0.00434589
451.0	2.0	2.0	0.738154881075	0.548753	0.0229975	0.0211807	0.0222653
452.0	38.9095370809	3.52776404149	0.0434914999576	0.445821	0.0866204	0.0792098	0.0816776
1				1	1		1

1 1	l			l	l -		l	
453.0	4.86322981727	2.0	0.0	0.0519104	0.273498	0.265907	0.270653	
454.0	2.91941203726	2.0	0.0	0.0846047	0.245215	0.237309	0.244065	
455.0	17.6337175388	2.0	0.521693114881	0.62303	0.00889421	0.00828233	0.00854233	
456.0	6.81710884288	2.19554094744	0.228240902081	0.773407	0.00121588	0.00114323	0.00117378	
457.0	2.0	2.0	0.855647710447	0.515146	0.029663	0.0272264	0.0286435	
458.0	2.7464706723	2.13306363486	0.709935363957	0.557746	0.0203147	0.0187927	0.0196922	
459.0	4.24070506932	2.27414423313	0.031212752734	0.832464	0.000183395	0.000143403	0.000147903	
460.0	2.0	2.0	0.920158053903	0.493326	0.0350073	0.032038	0.0337141	
461.0	2.0	2.15287632752	0.724298571164	0.553606	0.021385	0.0196689	0.0206698	
462.0	9.42010817584	2.00297309214	0.53066764399	0.640419	0.00871692	0.00817691	0.00844283	
463.0	10.3073780048	2.0	0.630138382028	0.580588	0.0168114	0.0159317	0.0165228	
464.0	4.39887204116	2.0009674581	0.842455789619	0.519737	0.027535	0.0255765	0.0267492	
465.0	14.2531810296	2.0	1.0	0.502234	0.0314391	0.0298899	0.0308901	
466.0	12.4336488977	2.48850002114	0.474837574023	0.601996	0.0103419	0.00983332	0.010186	
467.0	10.66130175	2.31033552848	0.282778687207	0.723333	0.00331185	0.00315496	0.00324682	
468.0	11.4054651247	2.57326360546	0.0	0.0296307	0.381211	0.374829	0.380207	
469.0	2.0	2.64084126167	0.0690153136548	0.836594	0.000146742	0.000117982	0.000110062	
470.0	3.52545676616	2.09615630766	0.864141258038	0.502655	0.0311266	0.0287067	0.03005	
471.0	5.58660762558	2.0	0.893392768416	0.496642	0.0326795	0.0303633	0.0316357	
472.0	3.22535211251	2.0	0.317837664011	0.710093	0.00364066	0.0034385	0.00355669	
473.0	6.49319991719	2.002983088	0.814371802508	0.547824	0.0229913	0.0213657	0.0222196	
474.0	14.7498081706	2.0	0.476202899832	0.666303	0.00554846	0.00524035	0.00540413	
475.0	2.02266909608	2.87131794441	0.87534975894	0.492458	0.0341363	0.0321934	0.0336531	
476.0	7.09329295379	2.98494522709	0.0	0.0321503	0.363205	0.357271	0.362161	
477.0	3.10143814474	2.23564486842	0.670231056091	0.575885	0.0177726	0.0164904	0.0172464	
478.0	2.87427404214	2.24191054492	0.14262204533	0.793742	0.000731432	0.000664557	0.000679274	
479.0	4.1284964057	2.0	0.258818888402	0.730788	0.00268251	0.00253008	0.00260924	
480.0	2.0	2.73785672881	0.0895805321115	0.831217	0.000254231	0.000202246	0.000220666	
481.0	11.1613204673	2.0	0.0	0.0396638	0.306313	0.297956	0.302221	
482.0	3.22537398846	2.00127863659	0.0975603303297	0.829471	0.000258416	0.000220973	0.000231715	
483.0	13.176551493	2.21206892673	0.861768667792	0.524695	0.0260812	0.024745	0.0255167	
484.0	5.76186132062	2.03453283162	0.822021852507	0.518807	0.027765	0.0259249	0.0270216	
485.0	4.39981631145	2.79112514343	0.410813438455	0.65922	0.00689137	0.00665012	0.00686885	
486.0	4.47701727645	2.04689360834	0.801349371915	0.530471	0.0249754	0.0230687	0.0241613	
487.0	2.55466817465	3.2154052493	0.790729403637	0.511109	0.0287218	0.0274117	0.0284403	
488.0	14.3640457993	2.2170513294	0.563558001088	0.58597	0.01286	0.0122675	0.0126854	
489.0	2.50408443925	2.42353700059	0.799919959079	0.527355	0.0266691	0.0245697	0.0257519	
490.0	2.59066987197	2.9743844611	0.742607011743	0.533226	0.024867	0.0237548	0.0245899	
491.0	2.9235970907	2.36933043599	0.746366711674	0.551425	0.0215359	0.0198995	0.0208231	
492.0	23.4610183355	2.00851455066	1.0	0.448877	0.0337654	0.0325268	0.0334449	
493.0	23.0922507639	3.20369607876	0.0	0.0277634	0.406696	0.400567	0.40603	
494.0	3.02754120238	2.08401632781	0.214344812029	0.755389	0.00142469	0.00136878	0.00139945	
495.0	12.7075296877	2.58533043628	0.0	0.0292034	0.390222	0.383769	0.389344	
496.0	10.9692490046	2.47560962258	1.0	0.494054	0.034029	0.032038	0.0331011	
497.0	3.41255830506	2.70665486747	0.706742453077	0.553035	0.0211689	0.0201818	0.0209119	
498.0	4.78432376236	2.9877689019	0.853928350457	0.507807	0.0309136	0.0296258	0.0305795	
499.0	17.7925644041	2.00160425315	0.693674181834	0.533793	0.0238637	0.022623	0.0232914	
500.0	6.29834461406	2.0	0.715172131861	0.564373	0.0195332	0.0183163	0.019096	
	1		Tiempos de ej	ecución:	1			
Tempos de ejection.								

Tabla 6: Resultados no dominados para la imagen de prueba ${\tt calhouse_237.jpg}$

Figura 11: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 6.

Figura 12: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 6.