

Identification and Analysis of Novel Metabolic Biomarkers in COVID-19: A Pathway-Based Approach

Noorul Jaasim N

02/11/2024

PROBLEM STATEMENT

Problem:

- Limited understanding of molecular markers for COVID-19 progression and severity.
- · Need for reliable biomarkers to predict disease outcomes and guide treatment decisions.
- Challenges in early identification of high-risk patients.

Impact on Stakeholders:

- Healthcare Providers
- Patients
- Researchers

Purpose of the Project:

- To identify and characterize novel molecular biomarkers for COVID-19.
- To analyse the clinical significance of differentially expressed genes.
- To understand the biological pathways involved in COVID-19 pathogenesis.

Importance of the Project:

- Aids in early detection and prognosis of COVID-19.
- Potential for improving patient stratification.
- Contributes to understanding disease mechanisms.

Significance of the Problem:

- Current limitations in predicting COVID-19 severity and progression.
- · Need for molecular markers to guide clinical decision-making.
- Gap in understanding metabolic alterations during COVID-19 infection.

Need for Investigation:

- All identified genes show significant differential expression (p < 0.05).
- Multiple metabolic pathways affected (lipid, cholesterol, purine metabolism).
- Potential for therapeutic targeting and patient monitoring.

Context:

- COVID-19 pathogenesis involves multiple metabolic and inflammatory pathways.
- Gene expression changes can indicate disease severity and progression.
- Biomarkers needed for better disease management.

Literature review:

- Although there are studies that talk about COVID-19 severity and mortality, very few discuss the gene expression levels and in turn the biomarkers for the disease.
- This project aims to address this gap by providing potential biomarkers from the chosen dataset.

Project Goals	Expected Outcomes
Identify significantly altered genes in COVID-19 patients.	Panel of potential biomarker candidates.
Analyse biological pathways and functions of identified genes.	Understanding of pathway interactions.
Evaluate potential clinical significance and applications.	Clinical significance assessment.
Establish correlations between gene expression and disease parameters.	Foundation for future validation studies.

Personal Discoveries:

- Learnt how different analytical approaches (statistical, functional, clinical) complement each other in biomarker research.
- Recognised how visualisation tools like Tableau can represent complex data into meaningful insights.

Real-world Impact:

- Potential for developing targeted therapies based on the pathways identified.
- · Identified biomarkers could bring up new and effective diagnostic tests.

DATA COLLECTION

- **Study Design:** The dataset includes gene expression data from 17 COVID-19 patients and 17 healthy controls.
- Differential Gene Expression: A total of 2,080 genes were screened, with 1,905 identified as upregulated and 175 downregulated in COVID-19 patients compared to healthy controls.
- Potential Biomarkers and Therapeutic Targets: The findings from GSE152418 contribute to identifying potential biomarkers for COVID-19, which could aid in diagnosis and treatment strategies.

1. Statistical Analysis:

- Fold change calculation
- P-value determination (< 0.05)
- Significance testing

2. Visualisation Methods:

- Gene expression level plots
- Fold change vs. P-value correlation analysis
- Tableau dashboard creation

3. Functional Categorisation:

- · Pathway analysis
- Biological process classification

RESULTS

1. Gene Expression Analysis:

- DHCR24 showed highest upregulation (FC: 1.93).
- ADO showed significant downregulation (FC: 0.68).
- All genes showed statistical significance (p < 0.05).

2. Functional Categories Identified:

- Metabolic pathways (cholesterol, lipid, purine).
- Signalling pathways (oxygen sensing, sulfation).
- Structural components (glycogen, GAG metabolism).

3. Visualisation Insights:

- Clear correlation between fold change and p-values.
- · Distinct expression patterns across genes.
- Pathway-specific clustering of genes.

Interpretation and Rationale:

- 1. Pathway Analysis:
- Multiple metabolic pathways affected in COVID-19.
- Strong involvement of lipid and cholesterol metabolism.
- Significant role of oxygen sensing and sulfation pathways.

- 2. Clinical Relevance:
- DHCR24: Potential marker for immune response.
- ADO: Indicator for hypoxic conditions.
- AGPAT5/4: Markers for membrane integrity.

Target Identification

Therapeutic Applications

Limitations:

- · Analysis based on gene expression data only.
- Need for protein-level validation.
- Need for experimental validation of predicted interactions.

Impact on Results:

- Findings need validation in larger datasets.
- · Clinical significance requires further testing.
- · Potential confounding factors are not addressed in the study.

Key Discoveries:

- Identified 10 significantly altered genes in COVID-19.
- DHCR24 shows highest upregulation (FC: 1.94).
- Multiple metabolic pathways affected.

Research Recommendations:

- · Validation in larger patient cohorts.
- Proceed with protein-level studies.
- · Clinical trials for therapeutic targeting.

Thank You