# Where to Build Food Banks and Pantries: A Two-Level Machine Learning Approach

Gavin Ruan, West Lafayette Jr./Sr. High School

## 1. Introduction

#### **Motivation and Background:**

- In the United States, over **44 million** people suffer from food insecurity, **13 million** of whom are children.
- Food banks are critical for these people's nutrition and health (49 million turned to food programs in 2022)
- Last year, I created an application using the K-Means clustering algorithm. While this improved food bank locations, it didn't factor in important practical considerations such as roads, and also didn't factor in resources such as food pantries.

#### **Project Goal:**

- Improve the initial machine learning approach for finding optimal locations by considering roads and creating a two-level system that has food banks and pantries

## 2. Methodology

9 12 11 0 8

e 15 18 17 8 0

If new location is better, keep it

### **Optimization:**

- Find the food bank locations with the shortest total **road distance** to all served households

#### **Datasets:**

Datasets consisted of Indiana houses from 2020 GIS data





#### **OSRM:**

- Open source geospatial data
- Requires data to be scaled down in size

#### K-Medoids Method:

- Unsupervised clustering algorithm.
- Heuristic approach to solve facility location problems quickly using a distance matrix

#### **Comparisons:**

Generated 11 food banks and 176 total pantries to compare to an equal number of real

#### **Performance:**

- Jupyter notebook's time function for computational cost
- OSRM road distance converted to miles for distance measurements





**Distance/Dissimilarity Matrix** 

Form new clusters

Example flow chart for 12 houses and 2 food pantries



## Pantry-Household Level

Al Generated Pantries Real Food Pantries



Lafayette

Original distance: 9.34 mi. Al distance: 6.37 mi. Distance saving: 2.97 mi.

Houses: 456

Number of pantries: 15



Indianapolis Original distance: 4.41 mi.

Al distance: 2.25 mi. Distance saving: 2.16 mi. Houses: 1718

Number of pantries: 57

## 3. Results

## **Food Bank-Pantry Level**

★ AI-Generated Food Banks ★ Real Food Banks





Converged Results

#### Large Distance Savings between pantries and households:

- 6293 Houses
- Clusters ranged from 270 to 1700 houses
- 3.52 average miles saved per household
- 22,181.423 total miles saved
- Average saved miles ranged from 2.17 to 8 miles in different cities



| Computation Cost (s) | 1.00E+9 1.00E+6 1.00E+3 1.00E+0 | -<br>-<br>1.00E+ | 1.8 weeks<br>98 sec | 15.3<br>1.00E+5 | hours<br>1.00E+7 |  |
|----------------------|---------------------------------|------------------|---------------------|-----------------|------------------|--|
| Nullibel of Houses   |                                 |                  |                     |                 |                  |  |
| 411.                 |                                 |                  | ·····               |                 | Λ Ι              |  |

| # Houses            | Bruteforce | Al         |
|---------------------|------------|------------|
| 6293 houses         | 1.8 weeks  | 98 seconds |
| ~3.3 million houses | 18.4 years | 15.3 hours |

### **Small Distance Penalty on Bank** <u>Level:</u>

- 176 pantries
- 1.56 miles penalty per pantry
- 273.75 miles penalty



## 4. Conclusion

- Results show that the two-level approach is able to consider real roads and generate a set of food banks and pantries both extremely quickly, and with more optimized locations than current existing locations.
- Current layouts prioritize food pantry proximities with food banks
- Contrary to the status quo, AI has showed that the planning strategy needs to be changed to prioritize households

## 5. Future Work

- Consider capacity of food banks - Try a bottom-up approach with the food bank placements
- Expand dataset size and include different weights for houses (income range, socio-economic data, etc.)

## 6. References

Celik Turkoglu, D., Erol Genevois, M. A comparative survey of service facility location problems. Ann Oper Res 292, 399–468 (2020) https://doi.org/10.1007/s10479-019-03385-x

Héctor J. Carlo, Francisco Aldarondo, Priscilla M. Saavedra & Silmarie N. Torres (2012) Capacitated Continuous Facility Location Problem With Unknown number o Facilities, Engineering Management Journal, 24:3,

Shih, H. (2015) Facility Location Decisions Based on Driving Distances on Spherical Surface. American Journal of Operations Research, 5, 450-492. doi: 10.4236/ajor.2015.55037.

24-31, DOI: 10.1080/10429247.2012.11431944

Varghese, S.; Gladston Raj, S. Clustering Based Model For Facility Location In Logistic Network Using K-Means. Int. J. Sci. Invent. Innov. 2016, 1, 26–32.