Stress and Strain

Jose V Parambil

Stress

- The term Stress is used to expressed the loading in terms of force applied to a certain cross-section area of an object.
- The force of resistance per unit cross-section area offered by a body against deformation.

$$\sigma = \frac{F}{A}$$

• Uniform or non-uniform

Types of Stress

- Tensile stress
 - Material subjected to pulling or stretching.
 - Dimension increases.
- Compressive stress
 - Force acts inwards of the material body.
 - Dimension decreases.
- Shear stress
 - Force acts parallel to surface.
 - Shape of the object changes; deformation.

Normal Stress

Normal Stress

Uniaxial normal stress

Biaxial normal stress

Triaxial normal stress

Strain

• Defined as the ratio of the change in dimensions of a material to the original dimensions, as a result of an applied stress.

$$\varepsilon = \frac{\Delta l}{l}$$

- Increase in dimension is considered a positive deviation; decrease is negative deviation.
 - Tensile \rightarrow positive strain.
 - Compression \rightarrow negative strain.

Types of Strain

- Longitudinal strain
- Lateral or Transverse strain
- Volumetric strain

• Shear strain

 $\rightarrow W \leftarrow$

CB208 – Jan 2024 Stress and Strain

Stress-Strain Relationship

CB208 – Jan 2024 Stress and Strain

Stress-Strain Relationship

- Stages
 - Linear elastic region
 - Hooke's law Young's modulus
 - Strain hardening
 - Plastic deformation (yield strength – initiation)
 - Ultimate strength
 - Necking
 - Heterogeneous
 - Fracture

Type of material

Poisson's Ratio

- Poisson effect materials expand in directions perpendicular to the direction of compression.
- The ratio of the lateral (transverse) contraction to the axial (or longitudinal) elongation is known as Poisson's ratio.

$$v = \frac{\varepsilon_c}{\varepsilon_e} = \frac{lateral\ strain}{longitudinal\ strain}$$

Constant within the elastic limit.

Poisson's Ratio (2)

When stresses are acting on X direction, compressive strain in the Y direction is,

If stresses are acting on both X & Y directions, strain along Y axis is:

Note: Tensile stresses are considered positive and compressive stresses are considered negative.

Poisson's Ratio (3)

Solving for the stress values:

For triaxial stress:

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \nu (\sigma_{y} + \sigma_{z}) \right]$$

Numerical 2.1

Stresses are to be determined at the inside corner of an opening in a cylindrical shell by applying strain gauges at the location. The cylindrical shell is of carbon steel with E = 200 GPa and v = 0.3. The strain readings from the three gauges are:

$$\varepsilon_x = +400 \times 10^{-6}$$
, $\varepsilon_y = +300 \times 10^{-6}$, $\varepsilon_y = +230 \times 10^{-6}$.

- (a) Find the stresses in the three directions at the opening.
- (b) Find the stresses in the two direction of the cylindrical shell if $\sigma_z = 0$.

Mechanical Properties of Materials (1)

- Strength
 - Capacity of material to withstand external forces.
 - Types: tensile, compressive, shear, impact (based on force).
 - Induces internal stress and deformations.
- Stiffness/Rigidity
 - Ability of material to resist deformation.
 - Modulus of rigidity or shear modulus.
- Elasticity
 - Ability of material to regain original shape when external load is removed.

Mechanical Properties of Materials (2)

- Ductility
 - Measure of deformability of the material to sustain plastic deformation under tensile stress, before failure.
 - Percentage elongation or reduction of area.
- Toughness
 - Ability of material to absorb energy in deformation in the plastic range.
- Hardness
 - Surface characteristics; resistance to scratching.
- Creep
 - Tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses.

Stress Concentration

- At specific points, intensity of stress may increases significantly at any location in comparison to its surrounding.
 - Stress raiser, stress riser, notch sensitivity.
 - Brittle materials generally fail at these points.
 - Fatigue cracks propagate from these points.
- Cracks, sharp corners, holes, etc. may act as stress risers.

Thermal Stresses

- Expansion and contraction associated with material
 - Temperature fluctuation.
 - Temperature difference between different parts.
 - Materials with different thermal expansion coefficients.

Unit change in dimension due to thermal expansion (strain) = $\alpha(T_2 - T_1)$

Uniaxial stress, $\sigma = -E\alpha(T_2 - T_1)$

If the component is constrained along 2 axis, the net stress along each axis would be,

$$\sigma_x = \sigma_y = -\frac{E\alpha(T_2 - T_1)}{1 - \nu}$$

If the component constrained along 3 axis, $\sigma_x = \sigma_y = \sigma_z = -\frac{E\alpha(T_2 - T_1)}{1 - 2\nu}$

Note: if component restricted from contraction, tensile stress will be produced.

Criteria of Failure

- Maximum Stress Theory
- Maximum Strain Theory

Maximum Shear Theory

• Theory of Constant Energy Distortion