* Permutations \longrightarrow related to symmetry.

Sq. D_{g} (dihedral group)

Sq.

(1 2 3) e

(1 3 2) (1 2)

(2 3)

Cyclic group in the

of order 5

(e, x, x², x³, x⁴>

• (135)(143)
$$= (145)$$

$$= (145)$$

$$(135) \frac{1}{4} + 5 = 23$$

$$(135) \frac{1}{4} = \frac{1}{3} =$$

$$*$$
 $(\mathbb{Q}^{\times}, \cdot)$

$$-1$$
, order?
 $\langle -1 \rangle = \{ -1, (-1)^2, (-1)^3, (-1)^4, \dots \}$
 $= \{ 1, -1 \}$

* {f: R-R} is this a group under composition

1.
$$\{bijective, f: \mathbb{R}^{\times} \rightarrow \mathbb{R}^{\times}\}\ \text{ is a gray under }$$
 Composition

1.
$$\int (x) = \sqrt{x}$$

$$(f \circ f)(x) = f(f(x)) = f(Y_1) = Y_{Y_1} = x = id(x)$$

 $f \circ f = id$

2.
$$g(z) = \overline{z}$$
, $(g \circ g)(z) = g(g(z)) = g(\overline{z}) = \overline{\overline{z}} = z$

g has order 2.

· How to distinguish groups that have the same size.

$$7412$$
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742
 742

· Sun Izu's theorem

$$\frac{\mathbb{Z}/6\mathbb{Z}}{2} \xrightarrow{\sim} \frac{\mathbb{Z}/2\mathbb{Z}}{2\mathbb{Z}}$$

$$x \mod 6 \longmapsto (x \mod 2, x \mod 3)$$

$$2 \mod 6 \longmapsto (x \mod 2, x \mod 3) = (0, 2)$$

$$2 \mod 6 \longmapsto (x \mod 2, x \mod 3)$$

$$1 = 3 \longmapsto (x \mod 2, x \mod 3)$$

Sun Jzu's theorem (most jeneral)

$$\frac{\mathbb{Z}/mn}{\mathbb{Z}} \xrightarrow{\sim} \frac{\mathbb{Z}/m\mathbb{Z}}{\times} \frac{\mathbb{Z}/n\mathbb{Z}}{\times}$$

$$\gcd(m_1n)=1$$

$$\frac{\mathbb{Z}/30\mathbb{Z}}{30=2.3.5} \xrightarrow{\sim} \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$$

$$\frac{30=2.3.5}{6.5} \qquad \qquad \downarrow \int$$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$$

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n}$$

$$\frac{\mathbb{Z}_{n}}{n} = \frac{\mathbb{Z}_{n}}{n} \frac{\mathbb{Z}_{n$$

$$n = 280 = 1 \times 40 = 1 \times 5 \times 2^3$$
 35×8

 $\frac{\mathbb{Z}}{280\mathbb{Z}} \cong \frac{\mathbb{Z}}{8\mathbb{Z}} \times \frac{\mathbb{Z}}{41\mathbb{Z}} \times \frac{\mathbb{Z}}{45\mathbb{Z}}$ $\frac{112}{24/8\mathbb{Z}} \times \frac{\mathbb{Z}}{435\mathbb{Z}}$