ESTM 2024

Esercitazione 3

Prima parte - Quiz su amplificatori -

Quiz 1 (Esame del 4/2/2022)

Un amplificatore di corrente è ottenuto collegando in cascata un amplificatore di transresistenza con transresistenza $R_{\rm m}$ ed ideale dal punto di vista degli effetti di carico, ed un amplificatore di transconduttanza descritto dai parametri $G_{\rm m}$, $R_{\rm in}$ ed $R_{\rm out}$ (tutti finiti e non nulli). Detta $A_{\rm i}$ amplificazione di corrente complessiva della cascata dei due stadi, chiusa su un corto circuito, si ha:

- (a) $A_{\rm i}=R_{\rm m}G_{\rm m}$
- (b) $A_i = R_{in}G_{m}$
- (c) $A_{\rm i} = R_{\rm out} G_{\rm m}$
- (d) $A_i = R_{\text{out}} \parallel R_{\text{in}} \cdot G_{\text{m}}$

Quiz 2 (Esame del 12/9/2022)

In un amplificatore di transresistenza, per evitare effetti di carico per qualsiasi possibile sorgente o carico deve essere:

- (a) $R_{\rm in} = 0, R_{\rm out} \to \infty$
- (b) $R_{\rm in} \to \infty, R_{\rm out} \to \infty$
- (c) $R_{\rm in} \to \infty$, $R_{\rm out} = 0$
- (d) $R_{\rm in} = 0, R_{\rm out} = 0$

Quiz 3 (Esame del 6/2/2023)

In un amplificatore di corrente, per evitare effetti di carico per qualsiasi possibile sorgente o carico deve essere:

- (a) $R_{\rm in} = 0, R_{\rm out} \to \infty$
- (b) $R_{\rm in} \to \infty, R_{\rm out} \to \infty$
- (c) $R_{\rm in} \to \infty$, $R_{\rm out} = 0$
- (d) $R_{\rm in} = 0, R_{\rm out} = 0$

Quiz 4 (Esame del 20/2/2023)

Un amplificatore di transresistenza è ottenuto collegando in cascata un amplificatore di corrente descritto dai parametri $A_{i,1}$, $R_{in,1}$, $R_{out,1}$, (tutti finiti e non nulli) ed un amplificatore di transresistenza descritto dai parametri $R_{m,2}$, $R_{
m in,2}$, finiti e non nulli e $R_{
m out,2}=0$. La transresisrenza complessiva R_m della cascata dei due stadi è data da

- (a) $A_{i,1}R_{in,1}$
- $\begin{array}{ll} \text{(b)} \ \ A_{\mathrm{i},1}R_{\mathrm{m},2}\frac{R_{\mathrm{in},2}}{R_{\mathrm{in},2}+R_{\mathrm{out},1}} \\ \text{(c)} \ \ A_{\mathrm{i},1}R_{\mathrm{m},2}\frac{R_{\mathrm{out},1}}{R_{\mathrm{in},2}+R_{\mathrm{out},1}} \end{array}$
- (d) $A_{i,1}R_{m,2}$

Quiz 5 (Esame del 23/6/2021)

Un amplificatore di transresistenza è ottenuto collegando in cascata un amplificatore di corrente con amplificazione di corrente $A_{i,1}$ ed ideale dal punto di vista degli effetti di carico, ed un amplificatore di transresistenza con transresistenza $R_{
m m,2}, R_{
m in,2}$ finita e non nulla e $R_{
m out,2}=0$. La transresisrenza complessiva R_m della cascata dei due stadi è data da

- (a) $A_{i,1}R_{in,2}$
- (b) $R_{m,2}$
- (c) $A_{i,1}R_{in,2}\frac{R_{m,2}}{R_{in,2}+R_{m,2}}$
- (d) $A_{i,1}R_{m,2}$

Seconda parte - Esercizi sui Mos -

Esercizio 1)

Con riferimento al circuito in figura

- Verificare il funzionamento del transistore MOS in regione di saturazione
- Determinare $A_v = v_{out}(s)/v_{in}(s)$ in condizioni di piccolo segnale, la resistenza di ingresso e la resistenza di uscita.

Esercizio 2)

Con riferimento al circuito in figura:

- Verificare il funzionamento del transistore MOS in regione di saturazione.
- Determinare $A_v = v_{out}/v_{in}$ in condizioni di piccolo segnale.
- \bullet Determinare R_{in} e R_{out} indicate in figura, in condizioni di piccolo segnale.

