L2 Mathématiques

Analyse dans \mathbb{R}^n

Université de Brest

Feuille 7 Extrema locaux, extrema liés, fonctions implicites

Exercice 1. On considère les fonctions suivante sur \mathbb{R}^2 :

1.
$$f_1(x,y) = (x-1)^2 + 2y^2$$

5.
$$f_5(x,y) = x^2 - \cos(y)$$

2.
$$f_2(x,y) = 2x^3 - 6xy + 3y^2$$

6.
$$f_6(x,y) = x^3 + y^3 - 3xy$$

3.
$$f_3(x,y) = x^3y + x^3 - x^2y$$

7.
$$f_7(x, y) = e^{x-y}(x^2 - 2y^2)$$

4.
$$f_4(x,y) = (x^2 + y^2)e^{-(x^2+y^2)}$$

7.
$$f_7(x,y) = e^{x-y}(x^2 - 2y^2)$$

- 1. Vérifier que ces fonctions sont \mathscr{C}^2 sur \mathbb{R}^2 . Rechercher les points critiques de ces fonctions. Calculer les valeurs des fonctions en ces points.
- 2. Calculer les Hessiennes des f_i en chacun des points critiques. Sont-elles définies positives? Définies négatives? Préciser le signe des valeurs propres.
- 3. Chercher la nature des points critiques trouvé dans la question 1. (maximum ou minimum local, point de selle).

Exercice 2. Trouver les extremums locaux et globaux sur $\mathbb{R} \times]0 + \infty[$ de

$$f(x,y) = y(x^2 + (\ln y)^2).$$

Exercice 3. Trouver les extremums locaux et globaux sur \mathbb{R}^2 de

$$f(x,y) = x^4 + y^4 - 4xy$$
, $f(x,y) = x^4 + y^4$.

Exercice 4. Déterminer les extremums locaux des fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ suivantes :

1.
$$f(x,y) = x^2 + y^3$$

3.
$$f(x,y) = x^3 + xy^2 - x^2y - y^3$$

2.
$$f(x,y) = x^4 + y^3 - 3y - 2$$

4.
$$f(x,y) = (x-y)^2 + (x+y)^3$$

Exercice 5. Pour chacun des exemples suivants, démontrer que f admet un maximum sur K, et déterminer ce maximum.

1.
$$f(x,y) = xy(1-x-y)$$
 et $K = \{(x,y) \in \mathbb{R}^2_+/x + y \le 1\}$.

2.
$$f(x,y) = x - y + x^3 + y^3$$
 et $K = [0,1]^2$.

Exercice 6. Étudier les extrema de la fonction $f(x,y) = e^{axy}$ avec a > 0 sous la contrainte $x^3 + y^3 + x + y - 4 = 0$.

Exercice 7. Trouver le point de la courbe $y^4 = 4x$ dont la distance au point (1,0) est minimale :

- 1. par la méthode des multiplicateurs de Lagrange;
- 2. en réduisant le problème à l'étude d'une fonction d'une variable.

Exercice 8. Utiliser la méthode des multiplicateurs de Lagrange pour calculer le maximum et le minimum de la fonction $f\mathbb{R}^2 \to \mathbb{R}$ sous les contraintes indiquées :

- 1. f(x,y) = xy sous la contrainte x + y 6 = 0;
- 2. f(x,y) = 3x + y sous la contrainte $x^2 + y^2 = 10$;
- 3. $f(x,y) = y^2 x^2$ sous la contrainte $\frac{1}{4}x^2 + y^2 = 1$.

Exercice 9. Soit $F(x,y) = x^2 + y^2 - 1$. Démontrer que, pour x suffisamment proche de 0, il existe un unique y = y(x) > 0 tel que f(x,y) = 0. Vérifier, sans résolution explicite, que $y'(x) = -\frac{x}{y}$.

Exercice 10. Soit $E = \mathbb{R}^3$ et la surface

$$S = \{(x, y, z) \in \mathbb{R}^3; \ (x - 1)^2 + \frac{y^2}{4} + 9(z + 1)^2 = 4\}.$$

- 1. A l'aide du théorème des fonctions implicites, construire un paramétrage de S au voisinage de son "pôle Nord", puis donner la différentielle de ce paramétrage sur son domaine de définition.
- 2. Paramétrer S sans utiliser le théorème des fonctions implicites.
- 3. Quelle est l'équation du plan tangent à S en son pôle Nord?

Exercice 11. On considère l'équation

$$xe^y + ye^x = 0.$$

- 1. Vérifier qu'elle définit une et une seule fonction $y = \varphi(x)$ au voisinage de (0,0).
- 2. Calculer le développement de Taylor de φ à l'ordre 2 au voisinage de x=0.