

Thomas Kuhn (1922-1996)

- Fysiker og vitenskapshistoriker
- Hovedverk The Structure of Scientific Revolutions (1962).
- Hevdet at vitenskapsteori har gitt et svært idealisert bilde av vitenskapene

Thomas Kuhn (1922-1976)

Bakgrunn:

- De logiske positivistene og Popper hevdet at vitenskapens vekst er kumulativ: at man kommer opp med stadig bedre verifisert teorier (logisk positivisme), eller med teorier som har motstått stadig flere falsifiseringsforsøk (Popper)
- Kuhn mente at vitenskapene periodevis gjennomgår brå overganger, vitenskapelige revolusjoner.

- Sentralt begrep: paradigme
 - Kuhn: «Med et paradigme forstår jeg allment anerkjente vitenskapelige resultater som i en periode fungerer som modeller for problemer og løsninger innen et felleskap av forskere»
 - Et paradigme definerer hva som regnes som et vitenskapelig problem og hvordan man løser dem – paradigmet fungerer som et forbilde for hva som er god vitenskap.

- Et paradigme består av fire elementer
 - 1) Symbolske generaliseringer: påstander som ser ut som lover, men som i praksis fungerer som definisjoner
 - F eks Newtons lover
 - 2) Metafysiske forestillinger: grunnleggende antagelser om naturen,
 - F eks at verden består av atomer og tomrom
 - 3) Verdier: standarder for godtagbare fremgangsmåter i vitenskapen
 - 4) Mønstereksempler: eksempler som brukes som forbilder; problemer som er blitt løst med stort hell innenfor paradigmet
 - F eks forklaringen av planetenes baner av Newtons gravitasjonslov

- Forskning som foregår innenfor et etablert paradigme: *normalvitenskap*
 - Karakter av «puzzle solving»:
 - Tilnærmingsmåten tas for gitt: det finnes etablerte regler for hvordan problem formuleres, hvilke metoder som brukes, osv.
- Spørsmål om paradigmets validitet holdes på avstand

- Innenfor normalvitenskapen vokser vitenskapelig kunnskap kumulativt
- Det finnes alltid data som synes å være i motsetning til teorien, men teoriene forkastes ikke av denne grunn (i motsetning til Poppers falsifikasjonisme)
- Innenfor normalvitenskapen tester man aldrig paradigmet, men tar det for gitt

- Obs: Kuhn kritiserer ikke vitenskap, men vitenskapsteori
 - Ifølge Kuhn er et paradigme nødvendig for vitenskapelig arbeid: paradigmet definerer hvilke problemer fokuseres på, og hvordan man løser dem.
 - Vitenskapsteoretikere har undervurdert paradigmenes betydning, og vitenskapenes sosiale dimensjon.

- Anomalier: fenomener som ikke lar seg forklare innenfor det eksisterende paradigmet
 - Et mindre antall anomalier kan bortforklares (jf episykler) eller bare bortses
 - Etter hvert blir anomaliene mange og påtrengende nok, og en vitenskapelig krise oppstår.

Vitenskapelige revolusjoner

- I en krise vurderer man paradigmets antagelser på nytt
- Et nytt eksemplarisk forskningsresultat leder til et paradigmeskifte: det nye resultatet blir grunnlaget til et nytt paradigme, og en ny normalvitenskap oppstår.
- Forskere i feltet endrer sitt syn på faget
- Oftest er det unge forskere som skaper nye paradigmer; etablerte forskere forsvarer sin posisjon og den gamle normalvitenskapen.
 - «Paradigms die with their proponents».

Vitenskapenes utvikling

PERIODE	TEORINIVÅ	FORSKERSAMFUNN
Førparadigmatisk situasjon	Usystematisk datainnsamling	Konkurrerende skoler
Et paradigme oppstår	Eksemplarisk forskerprestasjon	Begynnende profesjonalisering
Normalvitenskap	Løsning av "puslespill"	Lærebøker, sosiali- sering av nye forskere
Anomalier	Prediksjoner slår ikke til	Svekket tiltro til paradigmet
Vitenskapelig krise	Paradigmet blir utvannet	Konflikter og motsetninger
Vitenskapelig revolusjon	Kaos	Forskermiljøet går i oppløsning
Nytt paradigme	Eksemplarisk forskerprestasjon	Ny profesjonalisering

Vitenskapelige fremskritt

- Innenfor et paradigme (i en normalvitenskap) kan vi tale om vitenskapelige fremskritt og kumulativ vekst
- Men i det store og det hele kjennetegnes utviklingen av grunnleggende brudd og diskontinuitet fra et paradigme til et annet

Inkommensurabilitet

- Teorier og påstander i to ulike paradigmer kan ikke sammenlignes – de er inkommensurable.
- Ulike paradigmer har
 - ikke felles data
 - ikke samme mening til teoretiske termer
 - ikke samme problemstillinger
 - ikke samme verdier
- Det finnes ingen nøytral målestokk som kan brukes for sammenligningen

Inkommensurabilitet

- Eksempel: Aristotelisk fysikk vs Galileos fysikk:
 - Aristoteles:
 - Metafysisk antagelse: de fire årsakene gjelder overalt i naturen
 - Problemstilling: hvordan kan fenomen F forklares ved de fire årsakene?
 - Galileo:
 - Metafysisk antagelse: naturen er matematisk
 - Problemstilling: hvordan kan vi gi en matematisk beskrivelse av fenomen F?
- Det er umulig å direkte sammenligne teoriene, fordi de hadde ulike *forklaringsmål*

Inkommensurabilitet

- Det er meningsløst å hevde at teorier i ett paradigme er sannere enn teorier i et annet – teorier kan vurderes bare innenfor et paradigme
- Kuhn: forskere i ulike paradigmer «lever i forskjellige verdener»
- Men: Kuhn mente at et nytt paradigme kan være bedre til å løse praktiske problemer
- Fra et *instrumentalist* synspunkt er Einsteins fysikk bedre enn Newtons, eller Aristoteles'

Kuhn: vurdering

- I dag mener de fleste vitenskapsteoretikere at:
 - Kuhn kanskje overdrev paradigmenes betydning og inkommensurabilitet, men:
 - Han var helt rett i at tidligere vitenskapsteori hadde oversett vitenskapens sosiale dimensjon
 - I tillegg: det finnes overganger i vitenskapshistorie (geosentrisme → heliosentrisme; Aristoteles → Newton; Newton → Einstein) som stemmer overens med Kuhns teori.