Machine Learing Final Report Small Data Training for Medical Images

NTU b05901009 易昀競選總部

b05901009 高瑋聰, b05901022 許睿洋, b05901034 劉奎元

Abstract

醫療資料充足及各種電腦視覺技術蓬勃發展的今日,衍生出運用機器學習技術輔助醫療辨識的各式方向。其中在胸腔疾病的判別方面,CheXNet(2017)曾經做出能達成相當成功的結果。然而其訓練運用了大量且充分的醫療資料,在資料匱乏的狀況下可能有所缺失。本實驗以CheXNet為基礎進行變化,運用ImageNet pretrained model以及Auto-Encoder一同訓練的方式,最終達成AUROC=0.79998的實驗成果,大幅縮減少量與巨量資料進行訓練的差距。

1. Introduction & Motivation

本次Project為利用 NIH Chest X-ray dataset進行疾病預測。在資料方面, 有 約10000筆labeled data和約70000筆 unlabeled data。此dataset的input為胸 腔的X光片,期望輸出該X光片中代表 患有14種疾病之中的哪幾種,同時也限 制只能用約整個dataset中1/10之一 (10000筆)labeled data做訓練。當初會 選擇這個題目的原因有三個。第一是因 為想要挑戰當訓練資料很有限時該如何 做出一個好的model. 第二是覺得這個 題目可能可以使用的技巧很多變化也大 希望可以從中找出一個最有用的技 巧。第三是因為比較少有機會接觸到醫 療相關的dataset,想藉著這個機會嘗試 一下醫療相關的data以及應用。

2. Related Works

在過去電腦視覺的領域。已經有許 多研究提出不同的模型, 特別是從2012 年AlexNet在ImageNet Large Scale Visual Recognition Competition (ILSVRC)的良好表現開始, 基於神經網 路的電腦視覺方法越來越受到關注。隨 著GPU運算速度的提升,神經網路的深 度也能隨著增加. 例如VGG19等. 但 隨著深度越來越深。 model的訓練也慢 慢出現許多問題,例如梯度消失 (gradient vanishing)等等, 所幸有了 ResNet的出現、訓練加深後的神經網 路的方法獲得了解答。其後也有許多模 型繼承ResNet的想法,發展出表現更 為提升的模型、例如本次final project使 用的DenseNet等等。

此外,針對NIH Chest X-ray dataset ,也有過去的研究實作過深度學習的方 法,本次final project也將參考其想法, 利用DenseNet來進行本次的supervised learning。

在unsupervised learning的領域,Deep Auto-Encoder是一個典型的方法。透過數量較多的unlabeled data,經過encode-decode的兩個階段,期望model能夠還原回原本的輸入,並在其中維度較低的一層中抽取出壓縮後的特徵。Auto-encoder原來並非容易訓練的模型,可能需要一些pretrain來初始化(例如Restricted Boltzmann Machine,RBM),但由於BatchNormalization的新發現,在此次final project中,我們沒有使用RBM initialization仍能夠將auto-encoder訓練起來。

3. Data Preprocessing

由於原本的圖片大小長寬皆為1024 ,對於我們使用的model來說非常大, 且若要使用ImageNet pretrained model ,輸入必須長寬皆為224。我們最後採 取直接將輸入的圖片隨機擷取一個長寬 皆為224的區塊,並做隨機的水平翻轉 來當作Data augmentation以避免 overfitting。不同的輸入圖片大小將在 Experiment中討論。

4. Model Description

本次使用的model主要分為兩部分,supervised部分採用DenseNet結構,即model由多個dense block組成,一個dense block內有數層CNN,但較接近輸入圖片的CNN層的輸出會再加到下一層的輸入去,由於層與層之間的連結較ResNet緊密,因此稱為DenseNet。同時為了避免channel增加太快,DenseNet內部還有使用1x1 convolution來控制channel的數量,同時也做channel間的混合。使用ImageNet pretrain的model可以使我們的model在較少的時間內達到較高的準確率。

此外根據此次提供的unlabeled data ,我們用來訓練一個Auto-Encoder (架 構參照附錄),訓練(至MSE loss約為 0.16)後將其中的encoder加入到model 中,因此輸入圖片會分別進入 DenseNet與encoder,最後將兩個特徵 合併放入最後的classifier得到結果。

5.Experiment and Discussion

以CheXNet論文的實驗結果為基礎, 我們進行了幾種實驗方式以獲得較好的 結果:不同的pretrained model、不同的 data augmentation、不同的圖片大小、 不同的optimizer與regularization、加入 unsupervised model一同訓練、使用 ensemble。

5.1 Pretrained model

針對少量資料的訓練,我們嘗試過幾種較小的ImageNet pretrained model例如:VGG-16、VGG-19來進行訓練,然而這些小型的模型皆無法成功訓練。因此,我們改採CheXNet論文中使用的DenseNet-121進行訊練,結果可以成功訓練。在進行optimizer與regularization的微調後(參照5.4),可以達成更好的成果。在搭配unsupervised model(參照5.5)的狀況下,使用DenseNet-201則可以獲得最佳的單一模型訓練結果。

表格1. 使用不同Pretrained model (單一model)的AUROC變化。

Pretrained Model	AUROC
VGG-16	0.5
VGG-19	0.5
DenseNet-121	0.667
DenseNet-121(with better optimizer and regularization)	0.740
DenseNet-201(with Auto-Encoder)	0.771

圖2. 使用ImageNet pretrained的DenseNet-201搭配本文中的Optimizer及Regularization及Auto-Encoder一同訓練時,單一一次訓練的學習曲線。

5.2 Data Augmentation

我們嘗試過幾種傳統的data augmentation方式:rotation、shear、colorjitter、RandomResizeCrop、RandomHorizontalFlip。使用不同程度的rotation、shear、colorjitter皆無法造成更佳的表現結果,因此在最後的模型中並未使用。RandomResizeCrop與RandomHorizontalFlip則皆為CheXNet論文中使用的data augmentation方式,前者根據輸入圖片大小的改變(參照5.3)而選擇使用;後者則是與DenseNet-121搭配使用,可以微幅提升訓練效果。

5.3 Input size

我們嘗試過將輸入的圖片大小維持原本大小(1024x1024)、縮小成512x512、256x256或值皆能放入ImageNet pretrained model的224x224,原先預期若一口氣將圖片縮到太小,可能會丟失許多資訊,但若不是224x224的圖片

則須在model前增加幾層convolution以 讓輸入符合大小。就實驗的結果而言, 這四個尺寸的輸入對最後model的表現 影響不大,但是輸入越大張運算的時間 會大幅提升,model收斂的時間也會變 久,因此最後決定採用直接縮小到 224x224的做法。

5.4 Optimizer and Regularization

我們以Adam及其pytorch預設參數為基礎,進行learning rate及 regularization的調整。Learning rate的部分,我們從CheXNet論文提供的 alpha=1e-3調整為alpha=1e-4,以及L2 regularization(lambda=1e-5),可以獲得相當巨大的進步幅度(參照表格1)。由這些參數所進行的實驗結果,可以獲得相當平穩的訓練過程。

5.5 Unsupervised model

在這項實驗中,我們運用MSE loss 訓練至0.16的Auto-Encoder與 supervised model一同進行訓練。在配合Auto-Encoder的情況下,DenseNet -121的訓練能將AUROC提升0.007,與 ensemble方法(參照5.6)一同使用後能夠獲得相當大幅的進步。但使用較大的 DenseNet-201時,Auto-Encoder的提升效果則不顯著。

5.6 Ensemble

我們使用bagging取平均的方式來進行ensemble的實踐。在少量model的狀態下,可以獲得巨大的進步。在堆疊到十筆以上的model後,雖然進步幅度逐漸收斂,仍然能夠在每增加一筆model的狀況下AUROC進步0.001。

在堆疊六筆model後,也曾經嘗試進 行將單一成果最差的model去除以進行 觀察,其結果不如沒去除的狀況;嘗試 手動增加單一成果最佳的model之權重 . 其結果亦是下降。

透過ensemble的方式,我們獲得了 最終最佳的結果。

圖3. Ensemble後的進步曲線

6. Conclusion

本次final project利用醫療相關的資料. 並同時模擬了當擁有的labeled

data量不多的情況。我們同時運用了 supervised learning與unsupervised learning的技術,並運用了transfer learning與fine tuning的技巧來加速訓 練。結合以上的方法與參數調整,使我 們在public與private的kaggle排名皆為 本次的第一名。

7. Future Work

本次提供的data有約10000筆labeled data且開放使用ImageNet pretrained model, 因此在supervised的部份已經 有相當程度的發揮. 但在unsupervised learning這一部份. 礙於輸入的圖片 size太大以至於記憶體不足,使得我們 沒能完成如smoothness assumption中 的graph based approach, 也礙於開發 時間有限與training難度,我們來不及完 成以Generative Adversirial Network (GAN)為基礎的Data Augmentation方 法,例如:Data Augmented GAN來增加 比傳統方法更合適的augmentation. 或 是利用Augmented CycleGAN來訓練一 組GAN、輸入任意的label以產生對應的 圖片。若在此次final project中新增更多 利用unlabeled data的方法. 應可更進 一步提昇準確率。

在未來的應用上,我們可以運用此次訓練model的技巧,套用到其他醫學相關疾病的判斷,或者其他領域,尤其是針對資料不易取得或不易用人工進行label的領域如智慧製造的品質檢測等等。對於本次project的成果,也能更進一步從domain knowledge出發,分析利用深度學習方法與傳統人工方法的異同,藉此輔助與加快肺部相關疾病的診斷速度與準確率。

7. Reference

Dietterich, Thomas G. "Ensemble methods in machine learning." *International workshop on multiple classifier systems*. Springer, Berlin, Heidelberg, 2000.

Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." *Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.* Ieee, 2009.

He, Kaiming, et al. "Deep residual learning for image recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition.* 2016.

Huang, Gao, et al. "Densely connected convolutional networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.

Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by reducing internal covariate shift." *arXiv preprint arXiv:1502.03167* (2015).

Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." *arXiv preprint arXiv:1412.6980* (2014).

Rajpurkar, Pranav, et al. "Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning." arXiv preprint arXiv:1711.05225 (2017).

Conv2d (3,128,kemel_size=(6,6),stride=(1,1))	ConvTranspose2d (128,256,kernel_size=(4,4),stride=(2,2))
BatchNorm2d	BatchNorm2d
LeakyReLU	LeakyReLU
AvgPool2d((2,2))	AverDool 2 d // 2 2 \\
Conv2d (128,128,kernel_size=(4,4),stride=(1,1))	AvgPool2d((2,2))
BatchNorm2d	ConvTranspose2d (256,256,kernel_size=(4,4),stride=(2,2))
LeakyReLU	BatchNorm2d
Conv2d (128,128,kernel_size=(4,4),stride=(1,1))	LeakyReLU
BatchNorm2d	ConvTranspose2d (256,256,kernel_size=(4,4),stride=(2,2))
LeakyReLU	BatchNorm2d
Conv2d (128,256,kernel_size=(4,4),stride=(1,1))	LeakyReLU
BatchNorm2d	ConvTranspose2d
LeakyReLU	(256,100,kernel_size=(4,4),stride=(2,2))
AvgPool2d((2,2))	BatchNorm2d
Conv2d (256,3,kernel_size=(4,4),stride=(2,2))	ConvTranspose2d (100,3,kernel_size=(3,3),stride=(1,1))
Encoder Output(100)	

附錄1. Auto-Encoder架構 (左:Encoder 右:Decoder)