# t- and F-tests

Testing hypotheses

#### Overview

- Distribution Probability
- Standardised normal distribution
- t-test
- F-Test (ANOVA)

# Starting Point

- Central aim of statistical tests:
  - Determining the likelihood of a value in a sample, given that the Null hypothesis is true: P(value|H<sub>0</sub>)
    - H<sub>0</sub>: no statistically significant difference between sample & population (or between samples)
    - H<sub>1</sub>: statistically significant difference between sample & population (or between samples)
  - Significance level: P(value|H<sub>0</sub>) < 0.05</li>

## Types of Error



# Distribution & Probability

If we know s.th. about the distribution of events, we know s.th. about the probability of these events



## Standardised normal distribution

#### **Population**

$$z = \frac{\bar{x} - \mu}{\sigma}$$

#### Sample

$$z_i = \frac{x_i - \overline{x}}{s} \qquad \qquad \overline{x}_z = 0$$
$$s_z = 1$$

- the z-score represents a value on the x-axis for which we know the p-value
- 2-tailed: z = 1.96 is 2SD around mean = 95% → ,significant
- 1-tailed: z = +-1.65 is 95% from ,plus or minus infinity

#### t-tests:

#### Testing Hypotheses About Means

$$t = \frac{\overline{x}_1 - \overline{x}_2}{S_{\overline{x}_1 - \overline{x}_2}} \qquad s_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}$$

$$t = \frac{difference\_between\_sample\_means}{estimated\_standard\_error\_of\_difference\_between\_means}$$

## Degrees of freedom (df)

- Number of scores in a sample that are free to vary
- n=4 scores; mean=10 → df=n-1=4-1=3
  - Mean= 40/4=10
  - E.g.: score1 = 10, score2 = 15, score3 =  $5 \rightarrow$  score4 = 10

#### Kinds of t-tests

#### Formula is slightly different for each:

- Single-sample:
  - tests whether a sample mean is significantly different from a pre-existing value (e.g. norms)
- Paired-samples:
  - tests the relationship between 2 linked samples, e.g. means obtained in 2 conditions by a single group of participants
- Independent-samples:
  - tests the relationship between 2 independent populations
  - formula see previous slide

## Independent sample t-test

#### Number of words recalled

| Group 1       | Group 2 (Imagery) |
|---------------|-------------------|
| 21            | 22                |
| 19            | 25                |
| 18            | 27                |
| 18            | 24                |
| 23            | 26                |
| 17            | 24                |
| 19            | 28                |
| 16            | 26                |
| 21            | 30                |
| 18            | 28                |
| mean = 19     | mean = 26         |
| atal and (40) | otal 00/4/50)     |

$$df = (n_1-1) + (n_2-1) = 18$$

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s_{\overline{x}_1 - \overline{x}_2}} = \frac{19 - 26}{1} = -7$$

$$t_{(0.05,18)} = \pm 2.101$$

$$t > t_{(0.05,18)}$$

→ Reject H<sub>0</sub>

## Bonferroni correction

To control for false positives:

$$p_c = \frac{p}{n}$$

•E.g. four comparisons:

$$p_c = \frac{0.05}{4} = 0.0125$$

T-tests - inferences about 2 sample means

But what if you have more than 2 conditions?

e.g. placebo, drug 20mg, drug 40mg, drug 60mg

Placebo vs. 20mg 20mg vs. 40mg

Placebo vs 40mg 20mg vs. 60mg

Placebo vs 60mg 40mg vs. 60mg

Chance of making a type 1 error increases as you do more t-tests

ANOVA controls this error by testing all means at once - it can compare k number of means. Drawback = loss of specificity

Different types of ANOVA depending upon experimental design (independent, repeated, multi-factorial)

#### **Assumptions**

- observations within each sample were independent
- samples must be normally distributed
- samples must have equal variances

Difference between sample means is easy for 2 samples:

(e.g. 
$$\overline{X}_1 = 20$$
,  $\overline{X}_2 = 30$ , difference =10)

but if  $X_3$ =35 the concept of differences between sample means gets tricky

Solution is to use variance - related to SD

Standard deviation =  $\sqrt{Variance}$ 

| <i>E.g.</i> _ | Set 1 Se     | t 2 |     |
|---------------|--------------|-----|-----|
| 20            | 28           |     |     |
| 30            | 30           |     |     |
| 35            | 31           |     | _ / |
| $s^2 = 58$ .  | $s^2 = 2.33$ |     |     |

These 2 variances provide a relatively accurate representation of the size of the differences

Simple ANOVA example

Total variability

Between treatments variance

\_\_\_\_\_

Measures differences due to:

- Treatment effects
- 2. Chance

Within treatments variance

\_\_\_\_\_

Measures differences due to:

1. Chance

$$F = \frac{MS_{between}}{MS_{within}}$$

When treatment has no effect, differences between groups/treatments are entirely due to chance. Numerator and denominator will be similar. *F*-ratio should have value around 1.00

When the treatment does have an effect then the between-treatment differences (numerator) should be larger than chance (denominator). *F*-ratio should be noticeably larger than 1.00

Simple independent samples ANOVA example

| Placebo | Drug A | Drug B | Drug C |      |
|---------|--------|--------|--------|------|
| Mean    | 1.0    | 1.0    | 4.0    | 6.0  |
| SD      | 1.73   | 1.0    | 1.0    | 1.73 |
| n       | 3      | 3      | 3      | 3    |
|         |        |        |        |      |

$$F(3, 8) = 9.00, p < 0.05$$

There is a difference somewhere - have to use post-hoc tests (essentially t-tests corrected for multiple comparisons) to examine further

Gets more complicated than that though...

Bit of notation first:

An independent variable is called a factor

e.g. if we compare doses of a drug, then dose is our factor

Different values of our independent variable are our levels

e.g. 20mg, 40mg, 60mg are the 3 levels of our factor

Can test more complicated hypotheses - example 2 factor ANOVA (data modelled on Schachter, 1968)

#### Factors:

- 1. Weight normal vs obese participants
- 2. Full stomach vs empty stomach

Participants have to rate 5 types of crackers, dependent variable is how many they eat

This expt is a 2x2 factorial design - 2 factors x 2 levels

Mean number of crackers eaten

|        | Empty | Full |      |                                                                   |
|--------|-------|------|------|-------------------------------------------------------------------|
| Normal | 22    | 15   | = 37 | Result:  No main effect for                                       |
| Obese  | 17    | 18   | = 35 | factor A (normal/obese)  No main effect for factor B (empty/full) |
|        | = 39  | = 33 |      |                                                                   |

Mean number of crackers eaten

|        | Empty | Full |
|--------|-------|------|
| Normal | 22    | 15   |
| Obese  | 17    | 18   |



Application to imaging...





Application to imaging...

Early days => subtraction methodology => T-tests corrected for multiple comparisons





This is still a fairly simple analysis. It shows the main effect of pain (collapsing across the pain source) and the individual conditions.

More complex analyses can look at interactions between factors

