

بسم الله الرهن الرجيم

Simulation and Modeling-Lecture: 12

Lolmogorov- Smirnov Test

We do Kolmogorov-Smirnov Test or KS-test to test the hypothesis of numbers. Determining the numbers are uniform or not.

Algorithm:

Step-1: Define the hypothesis for uniformity

$$H_0: R_i \sim U[0,1]$$

$$H_1: R_i \approx U[0,1]$$

Hypothesis H_0 indicates that R_i is uniformly distributed between [0,1] and hypothesis H_1 indicates that R_i isn't uniformly distributed between [0,1]

Step-2: Arrange data in increasing order

$$R_i = i^m$$
 smallest integer

$$R_1 \leq \, R_2 \leq \cdots \ldots \ldots \leq \, R_n$$

Step-3: Compute $D^+ \& D^-$ (KS – test Parameter)

$$D^{+} = max\left\{\left(\frac{i}{N}\right) - R_{i}\right\}, 1 \le i \le N; i = 1,2,3 \dots \dots$$

$$D^{-} = max \left\{ R_i - \left(\frac{i-1}{N}\right) \right\}, 1 \le i \le N; i = 1,2,3 \dots \dots$$

Step-4: Compute $D = max(D^+, D^-)$

Step-5: Determine the critical value D_{lpha} , for specified level of significant lpha. (This will be given)

Step-6: If $D > D_{\alpha} => H_0$ is rejected. That means numbers are not uniform

Created by
Shahadat Hossain
Jecturer, Dept of CSE
City University

19roblem:

The sequence of numbers **0.63**, **0.49**, **0.24**, **0.57**, **0.71**, **0.89** has been generated. Use KS-test with $\alpha=0.05$ to determine if the hypothesis that the numbers are uniformly distributed on the interval [0,1] can be rejected. [$D_{0.05}=0.521$]

Solution:

$$H_0: R_i \sim U[0,1]$$

$$H_1: R_i \approx U[0,1]$$

Hypothesis H_0 indicates that R_i is uniformly distributed between [0,1] and hypothesis H_1 indicates that R_i isn't uniformly distributed between [0,1]

Arranging numbers in increasing order,

$$0.24 \le 0.49 \le 0.57 \le 0.63 \le 0.71 \le 0.89$$

Now, compute $D^+ \& D^-$

i	1	2	3	4	5	6
R_i	0.24	0.49	0.57	0.63	0.71	0.89
$^{i}/_{N}$	0.17	0.33	0.50	0.67	0.83	1.00
$\frac{i-1}{N}$	0	0.17	0.33	0.50	0.67	0.83
$i/N-R_i$	-	-	-	0.04	0.12	0.11
$R_i - \frac{i-1}{N}$	0.24	0.32	0.24	0.13	0.04	0.06

$$D^+ = \max(0.04, 0.12, 0.11) = 0.12$$

$$D^- = \max(0.24, 0.32, 0.24, 0.13, 0.04, 0.06) = 0.32$$

$$D = max(D^+, D^-) = max(0.12, 0.32) = 0.32$$

$$D_{\alpha} = D_{0.05} = 0.521$$

$$D=0.32 < D_{0.05}=0.521$$
; H_0 is not rejected / H_0 is accepted

19roblem:

The sequence of numbers **0.32**, **0.51**, **0.10**, **0.87**, **0.61**, **0.29** has been generated. Use KS-test with $\alpha=0.05$ to determine if the hypothesis that the numbers are uniformly distributed on the interval [0,1] can be rejected. [$D_{0.05}=0.521$]

Solution:

$$H_0: R_i \sim U[0,1]$$

$$H_1: R_i \approx U[0,1]$$

Hypothesis H_0 indicates that R_i is uniformly distributed between [0,1] and hypothesis H_1 indicates that R_i isn't uniformly distributed between [0,1]

Arranging numbers in increasing order,

$$0.10 \le 0.29 \le 0.32 \le 0.51 \le 0.611 \le 0.87$$

Now, ley's compute $D^+ \& D^-$

i	1	2	3	4	5	6
R_i	0.10	0.29	0.32	0.51	0.61	0.87
$^{i}/_{N}$	0.17	0.33	0.50	0.67	0.83	1.00
i-1/N	0	0.17	0.33	0.50	0.67	0.83
$i/N-R_i$	0.07	0.04	0.18	0.16	0.22	0.13
$R_i - i - 1/N$	0.10	0.12	-	0.01	-	0.04

$$D^+ = \max(0.07, 0.04, 0.18, 0.16, .0.22, 0.13) = 0.22$$

$$D^- = \max(0.10, 0.12, 0.01, 0.01, 0.06, 0.04) = 0.12$$

$$D = max(D^+, D^-) = max(0.12, 0.22) = 0.22$$

$$D_{\alpha} = D_{0.05} = 0.521$$

$$D=0.22 < \, D_{0.05} = 0.521$$
 ; $\, H_0$ is not rejected $/H_0$ is accepted

Chi-Square Test

If there is two different sample S_1 and S_2 , then we apply Chi-Square test to determine that some points of S_1 is related to S_2 and some point of S_2 related to S_1 . It is a comparison that there is any dependency among samples.

Algorithm:

Step-1: Define the hypothesis for uniformity

$$H_0: R_i \sim U[0,1]$$

$$H_1: R_i \approx U[0,1]$$

Hypothesis H_0 indicates that R_i is uniformly distributed between [0,1] and hypothesis H_1 indicates that R_i isn't uniformly distributed between [0,1]

Step-2: Divide total no of observation, N into mutually exclusive equal numbered classes n,

$$E_i \geq 5$$
; $E_i = Expected$

Step-3: Test statistics,

$$\chi_0^2 = \sum_{i=1}^n \left[\frac{(O_i - E_i)^2}{E_i} \right]$$
; $O_i = Observation from Statistics$

Step-4: Determine critical value for given level of significant with (n-1)

Step-5:

if,
$$\chi_0^2 > \chi_{\alpha, n-1}^2 => H_0$$
 is rejected

else.

no difference between detected sample distribution and uniform distribution

problem:

For the following samples, apply Chi-Square Test,

0.43, 0.09, 0.52, 0.98, 0.78, 0.44, 0.21, 0.12, 0.38, 0.67, 0.97, 0.46, 0.07, 0.18, 0.49, 0.47, 0.69, 0.99, 0.77, 0.76, 0.65, 0.14, 0.25, 0.37, 0.74, 0.03, 0.71, 0.28, 0.39, 0.56, 0.73, 0.99, 0.71, 0.99, 0.64, 0.5, 0.66, 0.01, 0.24, 0.73, 0.15, 0.45, 0.10, 0.18, 0.82, 0.96, 0.43, 0.27, 0.34, 0.65, 0.79, 0.03, 0.49, 0.69, 0.85, 0.6, 0.93, 0.48, 0.42, 0.04, 0.46, 0.04, 0.91, 0.81, 0.62, 0.79, 0.88, 0.46, 0.74, 0.06, 0.11, 0.64, 0.76, 0.22, 0.47, 0.94, 0.37, 0.5, 0.97, 0.26, 0.92, 0.87, 0.88, 0.27, 0.12, 0.10, 0.29, 0.65, 0.13, 0.4, 0.8, 0.82, 0.25, 0.78, 0.99, 0.36, 0.24, 0.18, 0.2, 0.1

$$N = 100, n = 10 \text{ and } \alpha = 0.05, \chi^2_{0.95, 9} = 16.9$$

Solution:

$$H_0: R_i \sim U[0,1]$$

$$H_1:R_i\not\approx \ U[0,1]$$

Hypothesis H_0 indicates that R_i is uniformly distributed between [0,1] and hypothesis H_1 indicates that R_i isn't uniformly distributed between [0,1]

Now let n, such that $E_i \geq 5$

$$= > \frac{N}{n} \ge 5 \quad [E_i = \frac{N}{n}]$$

$$= > \frac{100}{n} \ge 5$$

$$= > \frac{100}{5} \ge n$$

$$\therefore n \le 20$$

Test Statistics

n	Interval	O_i	$E_i = \frac{N}{n}$	$\frac{(O_i - E_i)^2}{E_i}$
1	(0.0 - 0.1)	8		0.4
2	(0.1 - 0.2)	12		0.4
3	(0.2 - 0.3)	12		0.4
4	(0.3 - 0.4)	6		1.6
5	(0.4 - 0.5)	14	10	1.6
6	(0.5 - 0.6)	4		3.6
7	(0.6 - 0.7)	11		0.1
8	(0.7 - 0.8)	13		0.9
9	(0.8 - 0.9)	8		0.4
10	(0.9 - 1.0)	12		0.4
	$\chi_0^2 = \sum_{i=1}^n$	9.8		

 $\alpha = 0.05 \ and \ n = 10 \ So, \ \chi^2_{\alpha,9} = \ 16.9$

9.8 < 16.9

 $\therefore \chi_0^2 < \chi_{\alpha.9}^2$

 So, H_0 is not rejected Or, H_0 is accepted

19roblem:

For the following samples, apply Chi-Square Test

0.77 ,0.76, 0.65, 0.14, 0.25, 0.37, 0.74, 0.03, 0.71, 0.28, 0.39, 0.56, 0.73, 0.99, 0.71, 0.99, 0.64, 0.5, 0.66, 0.01

$$N = 20, n = 4 \ and \ \alpha = 0.95, \ X_{\alpha,3}^2 = 7.82$$

Solution:

$$H_0: R_i \sim U[0,1]$$

$$H_1: R_i \approx U[0,1]$$

Hypothesis H_0 indicates that R_i is uniformly distributed between [0,1] and hypothesis H_1 indicates that R_i isn't uniformly distributed between [0,1]

Now let n, such that $E_i \ge 5$

$$=>\frac{N}{n}\geq 5$$

$$=>\frac{20}{n}\geq 5$$

$$=>\frac{20}{5}\geq n$$

$$\therefore n \leq 4$$

Test Statistics

	Interval	O_i	$E_i = \frac{N}{n}$	$\frac{(O_i - E_i)^2}{E_i}$
1	(0.0 - 0.25)	3		0.8
2	(0.25 - 0.50)	4	5	0.2
3	(0.50 - 0.75)	9		3.2
4	(0.75 - 1.00)	4		0.2
	$\chi_0^2 = \sum_{i=1}^n \left[\frac{C}{C} \right]$	4.4		

$$\alpha=0.05~and~n=4~$$
 So, $~\chi^2_{lpha,3}=~7.82$

$$\therefore \chi_0^2 < \chi_{\alpha,3}^2$$

So, H_0 is Accepted