Data Analysis and Visualization

Introduction to Data Analysis

Data Analysis and Visualization

Introduction to Data Analysis

Ayomitan AdesuaData Scientist

Learning Objectives

What is Data Analysis?

Definition

The process of collecting, organizing, analyzing, and interpreting data to make informed decisions.

What is Data Analysis?

Definition

The process of collecting, organizing, analyzing, and interpreting data to make informed decisions.

Scope

Widely used in industries like healthcare, finance, marketing, and technology.

What is Data Analysis?

Definition

The process of collecting, organizing, analyzing, and interpreting data to make informed decisions.

Scope

Widely used in industries like healthcare, finance, marketing, and technology.

Why is it important?

Helps in decision-making

Identifies patterns and trends.

Improves operational efficiency.

Descriptive Analysis

Summarizes past data (e.g., monthly sales report).

Descriptive Analysis

Summarizes past data (e.g., monthly sales report).

Diagnostic Analysis

Explains reasons for trends or patterns (e.g., why sales dropped).

Descriptive Analysis

Summarizes past data (e.g., monthly sales report).

Diagnostic Analysis

Explains reasons for trends or patterns (e.g., why sales dropped).

Predictive Analysis

Uses data to forecast future outcomes (e.g., predicting next month's sales).

Descriptive Analysis

Summarizes past data (e.g., monthly sales report).

Predictive Analysis

Uses data to forecast future outcomes (e.g., predicting next month's sales).

Diagnostic Analysis

Explains reasons for trends or patterns (e.g., why sales dropped).

Prescriptive Analysis

Recommends actions based on insights (e.g., marketing strategies).

Components

of a Datum

The raw material of data analysis is data.

Component	Description	Example	
Unit of Analysis	Unit of Analysis The entity being studied		
Variable	Characteristics being measured	Age, Price	
Value	Data points collected for each entity	25 years, \$15	

Types of Data

Quantitative Data: Numeric data (e.g., income, age).

Qualitative Data: Descriptive data (e.g., gender, feedback).

Types of Data

Aspect	Quantitative Data	Qualitative Data	
Definition	Numeric data that can be measured or counted.	Descriptive data that captures qualities, characteristics, or categories.	
Examples	Income, age, height, test scores.	Gender, customer feedback, color of products.	
Nature	Objective and measurable.	Subjective and descriptive.	
Representation	Numbers (e.g., 25, \$50,000).	Words, labels, or categories (e.g., "Excellent," "Male").	
Analysis Methods	Statistical techniques (e.g., averages, trends).	Thematic analysis, content analysis.	
Outcome	Answers "How much?" or "How many?"	Answers "What type?" or "Why?"	

Scales of Measurement

Scales of Measurement

Scale	Description	Examples	Key Features
Nominal	Categories without a natural order.	Gender (Male, Female), City Names (Lagos, Abuja).	No ranking or ordering.
Ordinal	Ordered categories with a meaningful sequence.	Satisfaction (High, Medium, Low), Education Level (Primary, Secondary, Tertiary).	Ordered but differences aren't measurable.
Interval	Numerical data without a true zero point.	Temperature in Celsius, Time of Day.	Differences are measurable; no absolute zero.
Ratio	Numerical data with a true zero point.	Weight (50 kg), Income (\$5,000).	True zero allows ratios (e.g., \$10 is twice \$5).

Process of

Data Analysis

Define the problem or objective

Data Collection

Data Cleaning

Analyze

Interpret results

Share insights

Data Analysis and Visualization

Applications of Data Analysis

Overview of Tools

Python

Tableau

Creating interactive dashboards and visualizations.

Excel

Data cleaning, visualization, and basic analysis.

SQL

Managing and querying large datasets.

Recap and Q&A

Key Points Covered

- What is data analysis?
- Types and scales of data.
- Real-life applications and tools.
- Activity and case study wrap-up.

