

Description

Switch Application management		
management		
Power management		
0% UIS		
0% ΔVds		

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	TUBE (PCS)	Inner Box (PCS)	Per Carton (PCS)
VSM10N60-TF	VSM10N60	TUBE	TO-220F	50	1,000	8,000

Absolute Maximum Ratings (Tc=25℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		600	V
V _{GSS}	Gate-Source Voltage		±30	V
I _D	Continuous Drain Current	T _C = 25°C	10	Α
		T _C = 100°C	6.5	Α
I _{DM}	Pulsed Drain Current note1		40	Α
E _{AS}	Single Pulsed Avalanche Energy note2		238	mJ
P _D	Power Dissipation	T _C = 25 °C	65	W
Rejc	Thermal Resistance, Junction to Case		1.92	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient		62.5	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250µA	600	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =600V, V _{GS} =0V, T _J =25℃	-	-	1	μΑ		
I _{GSS}	Gate to Body Leakage Current	V_{DS} =0V, V_{GS} = ±30V	-	-	±100	nA		
On Characteristics								
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V		
R _{DS(on)}	Static Drain-Source on-Resistance	V _{GS} =10V, I _D =5A	-	0.77	0.92	Ω		
Dynamic (Dynamic Characteristics							
C _{iss}	Input Capacitance	V _{DS} =25V, V _{GS} =0V,	-	1440	-	pF		
Coss	Output Capacitance		-	133	-	pF		
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	12	-	pF		
Qg	Total Gate Charge	\/ -400\/ -404	-	35	-	nC		
Q _{gs}	Gate-Source Charge	- V _{DD} =480V, I _D =10A, - V _{GS} =10V	-	7	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS-10V	-	18	-	nC		
Switching	Switching Characteristics							
t _{d(on)}	Turn-on Delay Time		-	23	-	ns		
t _r	Turn-on Rise Time	V _{DD} =300V, I _D =10A,	-	15	-	ns		
t _{d(off)}	Turn-off Delay Time	$R_G=25\Omega$	-	90	-	ns		
t _f	Turn-off Fall Time		-	30	-	ns		
Drain-Sou	rce Diode Characteristics and Maxim	um Ratings						
Is	Is Maximum Continuous Drain to Source Diode Forward Current		-	-	10	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	40	Α		
V _{SD}	Drain to Source Diode Forward Voltage V _{GS} =0V, I _{SD} =10A		-	-	1.4	V		
t _{rr}	Reverse Recovery Time	V _{GS} =0V, I _S =10A,	-	310	-	ns		
Q _{rr}	Reverse Recovery Charge	di/dt=100A/µs	-	4.1	-	μC		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

- 2. EAS condition: T_J = 25°C, V_{DD} = 50V, V_G = 10V, L= 10mH, I_{AS} = 6.9A
- 3. Pulse Test: Pulse Width≤300µs, Duty Cycle≤1%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms