import pandas as pd import
seaborn as sns import
matplotlib.pyplot as plt

Step 1: Extract Data

heart_disease_data = pd.read_csv('Heart Disease data.csv')

heart_disease_data

											_	
			age se	х ср	trestbps	chol fbs	restecg	thalach	exang	oldpeak	slope	ca
0	52	1	0	125	212	0	1	168	0	1.0	2	2
1	53	1	0	140	203	1	0	155	1	3.1	0	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0
3	61	1	0	148	203	0	1	161	0	0.0	2	0
4	62	0	0	138	294	1	1	106	0	1.9	1	1
												3
1020	59	1	1	140	221	0	1	164	1	0.0	2	0
1021	60	1	0	125	258	0	0	141	1	2.8	1	
1022	47	1	0	110	275	0	0	118	1	1.0	1	1
1023	50	0	0	110	254	0	0	159	0	0.0	2	1
1024	54 120		1	0	188	0	1	113	0	1.4	1	0
1025	row s >	< 14 c	olumns									1

apping = {0: 'female', 1: 'male'}

_diseas e_data['sex'] = heart_disease_data['sex'].map(sex_mapping)

_diseas e_data a ge sex cp trestbps chol fbs restecg thalach exang oldpeak slope 1.0 male male 3.1 male male 0.0 female 1.9 male 0.0 male male 1.0 0.0 female 1.4 rows × 14 columns

sex_m

heart

heart

```
Start coding or generate with AI.
```

Calculate overall heart disease rate

```
# Calculate overall heart disease rate overall_heart_disease_rate
= heart_disease_data['target'].mean()

overall_heart_disease_rate
    0.5131707317073171
```

2 Group data by gender and calculate heart disease rates for each gender

```
heart_disease_by_gender = heart_disease_data.groupby('sex')['target'].mean()
heart_disease_by_gender

sex     female
0.724359     male
0.420757
Name: target, dtype: float64
```

De ne the bins for age groups

```
bins = [0, 30, 40, 50, 60, 70, 80]
```

heart_disease_data

De ne labels for the age groups

```
labels = ['0-29', '30-39', '40-49', '50-59', '60-69', '70-79']
```

② Create a new column 'age_group' in the DataFrame

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	_
0	52	male	0	125	212	0	1	168	0	1.0	2	
1	53	male	0	140	203	1	0	155	1	3.1	0	
2	70	male	0	145	174	0	1	125	1	2.6	0	
3	61	male	0	148	203	0	1	161	0	0.0	2	
4	62	female	0	138	294	1	1	106	0	1.9	1	
1020	59	male	1	140	221	0	1	164	1	0.0	2	
1021	60	male	0	125	258	0	0	141	1	2.8	1	
1022	47	male	0	110	275	0	0	118	1	1.0	1	
1023	50	female	0	110	254	0	0	159	0	0.0	2	
1024	54 mal	e	0	120	188	0	1	113	0	1.4	1	
1025	row	s × 15 col	umns									

age_group_counts = heart_disease_data['age_group'].value_counts()

age_group_counts

age_group 5059 422

60-69 275
40-49 237
30-39 53
70-79 34
0-29 4

Name: count, dtype: int64

df = pd.DataFrame(heart_disease_data) df

		age		sex cp	trestbps	chol	fbs restecg	thalach	exang	oldpeak	slope
0	52	male	0	125	212	0	1	168	0	1.0	2
1	53	male	0	140	203	1	0	155	1	3.1	0
2	70	male	0	145	174	0	1	125	1	2.6	0
3	61	male	0	148	3 203	0	1	161	0	0.0	2
4	62	female	0	138	3 294	1	1	106	0	1.9	1
1020	59	male	1	140	221	0	1	164	1	0.0	2
1021	60	male	0	125	258	0	0	141	1	2.8	1
1022	47	male	0	110	275	0	0	118	1	1.0	1
1023	50	female	0	110	254	0	0	159	0	0.0	2
1024	54 0		male	120	188	0	1	113	0	1.4	1
1025	row	s × 15 col	umns								

counts = df.isna().sum()

counts

age sex 0 ср trestbps chol fbs restecg thalach 0 exang oldpeak 0 slope 0 ca

```
thal
      target
                   0
      age_group
                   0
      dtype: int64
num_rows = df.shape[0] num_rows
     1025
num_columns = df.shape[1] num_columns
     15
Start coding or \underline{\text{generate}} with AI.
counts = heart_disease_data['target'].value_counts() print("Counts:",
counts)
     Counts: target
     1
          526
     0
          499
     Name: count, dtype: int64
```

plt.figure(figsize=(6, 4)) sns.countplot(x='target',
data=heart_disease_data) plt.title('Distribution of
Heart Disease Cases') plt.xlabel('Heart Disease')
plt.ylabel('Count') plt.show()

numeric_columns = heart_disease_data.select_dtypes(include=['number'])

 $\label{eq:plt.figure(figsize=(10, 8))} sns.heatmap(numeric_columns.corr(), annot=True, cmap='coolwarm', fmt='.2f') plt.title('Correlation Heatmap of Numerical Attributes') plt.show()$

plt.figure(figsize=(10, 6)) sns.histplot(data=heart_disease_data, x='age',
hue='target', kde=True, bins=20) plt.title('Age Distribution by Heart Disease
Status') plt.xlabel('Age') plt.ylabel('Count') plt.show()

1

Pinds the Counts of males and Females

0

100

0

```
heart_disease_data['sex'].value_counts()

sex male
713 female
312
Name: count, dtype: int64

sns.set_style('whitegrid')
sns.countplot(x='sex',data=heart_disease_data,palette='RdBu_r') plt.title('Count of Male and Female')

<ipython-input-77-b9ccb3f0da73>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.
sns.countplot(x='sex',data=heart_disease_data,palette='RdBu_r')
```

target

Text(0.5, 1.0, 'Count of Male and Female')

Gender wise

sns.countplot(data=heart_disease_data,x='sex', hue='target')
plt.xticks([1,0],['Male','Female']) plt.legend(labels=['NoDisease','Disease']) plt.title('Gender Distribution by Disease
') plt.show()

sns.lineplot(x='cp',data=heart_disease_data,y='age', hue='sex')
plt.xlabel('Chest Pain',fontsize=17)
plt.ylabel('Age',fontsize=17) plt.title('Chest pain by
Age',fontsize=17)

Text(0.5, 1.0, 'Chest pain by Age')

sns.countplot(data=heart_disease_data,x='fbs', hue='target')
plt.xlabel('Blood Sugar',fontsize=17)
plt.ylabel('Count',fontsize=17) plt.title('FBS by Targeted
People',fontsize=17)

Text(0.5, 1.0, 'FBS by Targeted People')

sns.histplot(x='trestbps',data=heart_disease_data, color='green')
plt.show plt.xlabel('trestbps',fontsize=17)
plt.ylabel('Count',fontsize=17) plt.title('trestbps',fontsize=17)

Prext(0.5, 1.0, 'trestbps')

sns.histplot(x='chol',data=heart_disease_data,color='red')
plt.xlabel('Cholesterol',fontsize=18)
plt.ylabel('count',fontsize=18)
plt.title('Cholesterol',fontsize=18) plt.show