

Fourniture de données extraites de la base de données CANDHIS

DÉTAIL DES PARAMÈTRES D'ÉTATS DE MER

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
1	Date heure	AAAA-MM- JJ HH:MN	_	Horodate de l'enregistrement	Heure donnée en temps universel
2	H13D	FF.FF	m	Hauteur significative des vagues définies par passage au niveau moyen par valeurs décroissantes (recommandée par l'AIRH 1986).	Analyse temporelle (ou vague par vague) : Valeur moyenne du tiers supérieur des hauteurs de vagues.
3	H110D	FF.FF	m	Hauteur moyenne du dixième supérieur en hauteur des vagues définies par passage au niveau moyen par valeurs décroissantes .	Analyse temporelle (ou vague par vague)
4	HMAXD	FF.FF	m	Hauteur maximale des vagues définies par passage au niveau moyen par valeurs décroissantes (front montant).	Analyse temporelle (ou vague par vague)

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
5	HSIGMA	FF.FF	m	Hauteur significative des vagues estimée par Hσ.	Analyse temporelle (ou vague par vague) : $H\sigma$ = $4\sigma_{\eta}$ avec σ_{η} écart type de la surface libre $\eta(t)$.
6	HRMSD	FF.FF	m	Hauteur quadratique moyenne des vagues définies par passage au niveau moyen par valeurs décroissantes .	Analyse temporelle (ou vague par vague) : $H_{rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} H_i^2} I$
7	H2%D	FF.FF	m	Hauteur de vague dépassée par 2% de l'ensemble des vagues définies par passage au niveau moyen par valeurs décroissantes .	Analyse temporelle (ou vague par vague)
8	TH13D	FF.F	S	Période significative des vagues définies par passage au niveau moyen par valeurs décroissantes.	Analyse temporelle (ou vague par vague) : Moyenne des périodes du tiers supérieurs des plus grandes vagues.
9	TH110D	FF.F	s	Moyenne des périodes du dixième supérieur en hauteur des vagues définies par passage au niveau moyen par valeurs décroissantes .	Analyse temporelle (ou vague par vague)
10	TAVGD	FF.F	S	Période moyenne des vagues définies par passage au niveau moyen par valeurs décroissantes.	Analyse temporelle (ou vague par vague)
11	THMAXD	FF.F	S	Période de la vague de hauteur maximale, les vagues étant définies par passage au niveau moyen par valeurs décroissantes.	Analyse temporelle (ou vague par vague)

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
12	TMAXD	FF.F	S	Période maximale des vagues définies par passage au niveau moyen par valeurs décroissantes.	Analyse temporelle (ou vague par vague)
13	ETAMAX	FF.FF	m	Élévation maximale de la surface libre par rapport au niveau moyen.	Analyse temporelle (ou vague par vague)
14	ETAMIN	FF.FF	m	Élévation minimale de la surface libre par rapport au niveau moyen.	Analyse temporelle (ou vague par vague)
15	SZ13D	0.FFF	_	Cambrure significative des vagues.	Analyse temporelle (ou vague par vague) :La cambrure d'une vague $SZ = H/L$. La longueur d'onde est calculée à partir de la période T et de la profondeur d'eau d.
16	SZMAXD	0.FFF	_	Cambrure maximale des vagues.	Analyse temporelle (ou vague par vague) :
17	TSZMAXD	0.FF	S	Période de la vague de cambrure maximale.	Analyse temporelle (ou vague par vague):

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
18	NBRE_VAG	FFF	_	Nombre de vagues définies par passage au niveau moyen par valeurs décroissantes .	Analyse temporelle (ou vague par vague) : Critère de qualité de la mesure – taille de l'échantillon analysé.
19	SKEW	0.FFF	_	Skewness : Asymétrie de l'élévation de la surface libre.	Analyse temporelle (ou vague par vague) : Critère de qualité de la mesure. $ \sqrt{\beta_1} = \int_{-\infty}^{+\infty} \eta^3 p(\eta) d\eta / \sigma_\eta^3 = \frac{1}{\sigma_\eta^3} \frac{1}{n-1} \int_{l-1}^{n} (\eta_l - \eta_l)^3 $ avec η : élévation de la surface libre σ_η écart type de la surface libre. Le skewness d'une distribution normale de l'élévation de la surface libre est égal à 0.
20	KURT	0.FFF	_	Kurtosis de l'élévation de la surface libre	Analyse temporelle (ou vague par vague) : $\beta_2 = \int_{-\infty}^{+\infty} \eta^4 p(\eta) d\eta / \sigma_2^4 = \frac{1}{\sigma_2^4} \frac{1}{n-1} \sum_{i=1}^6 (\eta_i - \eta_i)^4$ Critère de qualité de la mesure. Avec η : élévation de la surface libre σ_η écart type de la surface libre. Le kurtosis d'une distribution normale de l'élévation de la surface libre est égal à 3.

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
21	RHH	0.FF	_	Coefficient de corrélation entre les hauteurs de vagues successives définies par passage au niveau moyen par valeurs décroissantes .	Analyse temporelle (ou vague par vague) :
22	НМО	FF.FF	m	Hauteur significative spectrale des vagues.	Analyse spectrale : $H_{m0}=4\sqrt{m_0}=4\sqrt{\int_{f_{min}}^{f_{max}}}E(f)df$ avec f_{min} et f_{max} à définir.
23	TP	FF.F	S	Période de pic barycentrique.	Analyse spectrale : Calculé par la méthode « de Delft ». $T_p^{D80\%} = \int_{f_1}^{f_2} E(f) df / \int_{f_1}^{f_2} E(f) df \text{ où } E(f_1) = E(f_2) = 0.8E_{max}$
24	T02	FF.F	S	Période moyenne.	Analyse spectrale : $T_{m02} = T_{02} = \sqrt{\frac{m_0}{m_2}} = \sqrt{\int_{f_{min}}^{f_{max}}} \sqrt{\int_{f_{min}}^{f_{max}}} \sqrt{\int_{f_{min}}^{f_{max}}}$

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
25	TE	FF.F	S	Période moyenne énergétique.	Analyse spectrale : $T_{m-1,0} = T_{-10} = T_E = \frac{m_{-1}}{m_0} = \frac{\displaystyle\int_{f_{min}}^{f_{max}} \frac{E(f)}{f} \mathrm{d}f}{\displaystyle\int_{f_{min}}^{f_{max}}} = \frac{\displaystyle\int_{f_{min}}^{f_{max}} TE(f) \mathrm{d}f}{\displaystyle\int_{f_{min}}^{f_{max}}}$
26	EPS2	F.FF	-	Indice d'étroitesse spectrale.	Analyse spectrale : $\varepsilon_2 = \sqrt{\frac{m_0 m_2}{m_1^2} - 1}$
27	KAPA	F.FF	_	Largeur spectrale . ĸ	Analyse spectrale : $\kappa = \frac{\left \int_{f_{min}}^{f_{max}} E(f) \exp(i2\pi f T_{02}) df \right }{m_0}$
28	THETAP	FFF.F	degrés	Direction de provenance au pic, mesurée par rapport au nord géographique, positivement dans le sens des aiguilles d'une montre.	Analyse spectrale : $\theta_m(f_p) = \arctan\!\left(\frac{b_1(f_p)}{a_1(f_p)}\right)$ (notation à confirmer)

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
29	THETAM	FFF.F	degrés	Direction de provenance moyennée sur le spectre, mesurée par rapport au nord géographique, positivement dans le sens des aiguilles d'une montre.	Analyse spectrale : $ \overline{\theta}_{m} = \arctan \left(\frac{\int_{\mathbf{f}_{min}}^{\mathbf{f}_{max}} (\theta_{m}(\mathbf{f})) \mathbf{E}(\mathbf{f}) \mathrm{d}\mathbf{f}}{\int_{\mathbf{f}_{min}}^{\mathbf{f}_{max}} \cos(\theta_{m}(\mathbf{f})) \mathbf{E}(\mathbf{f}) \mathrm{d}\mathbf{f}} \right) $ (notation à confirmer)
30	SIGMAP	FF.F	degrés	Largeur directionnelle au pic.	Analyse spectrale : $\sigma(f_p) = \sqrt{2(1-r_l(f_p))} \text{où } r_l(f_p) = \sqrt{a_l^2(f_p) + b_l^2(f_p)}$
31	SIGMAM	FF.F	degrés	Largeur directionnelle moyenne.	Analyse spectrale : $\overline{\sigma} = \int_{f_{min}}^{f_{max}} \!$
32	NBSYS	INTEGER	-	Nombre de systèmes de vagues composant l'état de mer.	Analyse spectrale : Limitée à 4. Déterminé par l'algorithme de Hanson et Phillips inclus dans PADINES. Les systèmes de vagues seront classés de 1 à 4 en fonction des valeurs de tpic décroissantes.
33	HM0_S1	FF.FF	m	Hauteur significative spectrale du système de vagues n°1.	Analyse spectrale (voir 22).
34	TP_S1	FF.F	S	Période de pic barycentrique du système de vagues n°1.	Analyse spectrale (voir 23).

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
35	T02_S1	FF.F	s	Période moyenne du système de vagues n°1.	Analyse spectrale (voir 24).
36	TE_S1	FF.F	S	Période moyenne énergétique du système de vagues n°1.	Analyse spectrale (voir 25).
37	EPS2_S1	F.FF	_	Indice d'étroitesse spectrale du système de vagues n°1.	Analyse spectrale (voir 26).
38	KAPA_S1	F,FF	_	Largeur spectrale κ du système de vagues n°1.	Analyse spectrale (voir 27).
39	THETAP_S1	FFF.F	degrés	Direction de provenance au pic du système de vagues n°1.	Analyse spectrale (voir 28).
40	THETAM_S1	FFF.F	degrés	Direction de provenance moyennée pour le système de vagues n°1.	Analyse spectrale (voir 29).
41	SIGMAP_S1	FF.F	degrés	Largeur directionnelle au pic du système de vagues n°1.	Analyse spectrale (voir 30).
42	SIGMAM_S1	FF.F	degrés	Largeur directionnelle moyenne du système de vagues n°1.	Analyse spectrale (voir 31).
43	HM0_S2	FF.FF	m	Hauteur significative spectrale système de vagues n°2.	Analyse spectrale (voir 22).
44	TP_S2	FF.F	S	Période de pic barycentrique du système de vagues n°2.	Analyse spectrale (voir 23).
45	T02_S2	FF.F	S	Période moyenne du système de vagues n°2.	Analyse spectrale (voir 24).
46	TE_S2	FF.F	S	Période moyenne énergétique du système de vagues n°2.	Analyse spectrale (voir 25).
47	EPS2_S2	F.FF	_	Indice d'étroitesse spectrale du système de vagues n°2.	Analyse spectrale (voir 26).
48	KAPA_S2	F,FF	_	Largeur spectrale κ du système de vagues n°2.	Analyse spectrale (voir 27).
49	THETAP_S2	FFF.F	degrés	Direction de provenance au pic du système de vagues n°2.	Analyse spectrale (voir 28).

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
50	THETAM_S2	FFF.F	degrés	Direction de provenance moyennée pour le système de vagues n°2.	Analyse spectrale (voir 29).
51	SIGMAP_S2	FF.F	degrés	Largeur directionnelle au pic du système de vagues n°2.	Analyse spectrale (voir 30).
52	SIGMAM_S2	FF.F	degrés	Largeur directionnelle moyenne du système de vagues n°2.	Analyse spectrale (voir 31).
53	HM0_S3	FF.FF	m	Hauteur significative spectrale du système de vagues n°3.	Analyse spectrale (voir 22).
54	TP_S3	FF.F	S	Période de pic barycentrique du système de vagues n°3.	Analyse spectrale (voir 23).
55	T02_S3	FF.F	s	Période moyenne du système de vagues n°3.	Analyse spectrale (voir 24).
56	TE_S3	FF.F	S	Période moyenne énergétique du système de vagues n°3.	Analyse spectrale (voir 25).
57	EPS2_S3	F.FF	_	Indice d'étroitesse spectrale du système de vagues n°3.	Analyse spectrale (voir 26).
58	KAPA_S3	F,FF	_	Largeur spectrale κ du système de vagues n°3.	Analyse spectrale (voir 27).
59	THETAP_S3	FFF.F	degrés	Direction de provenance au pic du système de vagues n°3.	Analyse spectrale (voir 28).
60	THETAM_S3	FFF.F	degrés	Direction de provenance moyennée pour le système de vagues n°3.	Analyse spectrale (voir 29).
61	SIGMAP_S3	FF.F	degrés	Largeur directionnelle au pic du système de vagues n°3.	Analyse spectrale (voir 30).
62	SIGMAM_S3	FF.F	degrés	Largeur directionnelle moyenne du système de vagues n°3.	Analyse spectrale (voir 31).
63	HM0_S4	FF.FF	m	Hauteur significative spectrale du système de vagues n°4.	Analyse spectrale (voir 22).

Fourniture de données extraites de la base de données CANDHIS

N° du champ	Symbole informatique	Format	Unité	Définition	Mode de calcul
64	TP_S4	FF.F	S	Période de pic barycentrique du système de vagues n°4.	Analyse spectrale (voir 23).
65	T02_S4	FF.F	s	Période moyenne du système de vagues n°4.	Analyse spectrale (voir 24).
66	TE_S4	FF.F	S	Période moyenne énergétique du système de vagues n°4.	Analyse spectrale (voir 25).
67	EPS2_S4	F.FF	-	Indice d'étroitesse spectrale du système de vagues n°4.	Analyse spectrale (voir 26).
68	KAPA_S4	F,FF	_	Largeur spectrale κ du système de vagues n°4.	Analyse spectrale (voir 27).
69	THETAP_S4	FFF.F	degrés	Direction de provenance au pic du système de vagues n°4.	Analyse spectrale (voir 28).
70	THETAM_S4	FFF.F	degrés	Direction de provenance moyennée pour le système de vagues n°4.	Analyse spectrale (voir 29).
71	SIGMAP_S4	FF.F	degrés	Largeur directionnelle au pic du système de vagues n°4.	Analyse spectrale (voir 30).
72	SIGMAM_S4	FF.F	degrés	Largeur directionnelle moyenne du système de vagues n°4.	Analyse spectrale (voir 31).