A Collection of PGF/TikZ Examples for Deep Learning

Ling KangJie

January 25, 2019 (v0.1.0)

Abstract

This document is a collection of common examples for scientific papers particularly for Deep Learning topics by using PGF/TikZ package. Reference: https://github.com/PetarV-/TikZ.

Contents

T		p rearring	4
			2
	1.2		4
	1.3		5
	1.4	I control of the cont	7
	1.5	A Trous Convolutions	
	1.6	Bidirectional Long Short Term Memory	
	1.7	BWT 1	
	1.8	$ Convolutional \ Autoencoder \ \dots \ $	6
	1.9	$ Convolutional\ Cross-connection\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	7
	1.10	Coordinate Systems	3
	1.11	CRT Rendering	4
	1.12	Cyclegan	5
	1.13	Deep Belif Network	7
	1.14	Deep Graph Infomax	8
	1.15	de-bruijn-graph	0
	1.16	DNA	1
	1.17	Dropout	2
	1.18	Emulator Modules	4
	1.19	Fetch Decode Execute cycle	5
	1.20	Frequence Modulation	6
	1.21	Fully Connected Cross Connection	7
	1.22	GameBoy Joypad Register	9
		Gameboy Palette Translation	
	1.24	Gameboy Tiling System	2
		Gat Layer	
	1.26	Generative Adversarial Network	7
	1.27	Gene Expression	8
		Git Dataflow	
		Git WorkFlow	
	1.30	Gamhmm	2
	1.31	Graph Convolution	3
	1.32	Hamitonian Graph	4
	1.33	Hierachical Graph Classifier	5
		Hmm Transition Smoothing	
	1.35	Insruction Execution	9
		IQ Sampling	
		Lego Deep Learning	
		Long Short Term Memory	
		Maximum Flow Problem	
		MCL	
		Massaga Passing Naural Natwork	

1.42	Multilayer Network	68
1.43	Multilayer Perceptron	70
1.44	Multiplex Chain Gmhmm	72
1.45	Multiplex Chain Gmhmm Beta	75
1.46	Multiplex Epidemic Awareness Network	79
1.47	Multiplex Network Underlying Graph	82
1.48	Muxstep Pipeline	84
1.49	Progressive Alignment	88
1.50	Progressive Neural Network	89
1.51	Reinforcement Learning Greedy Policy	93
1.52	Relational Network	94
1.53	RN Object Extraction	95
1.54	Sampling	97
1.55	Self-attention	96
1.56	Semi-supervised Embedding	.01
1.57	Semi-supervised Learning	.02
1.58	Shortest Path Problem	.03
1.59	Sparse DGI	.04
1.60	Supervised Learning Setup	.09
1.61	Variational Denoising Autoencoder	.10
1.62	Web Graph	.12
1.63	X-CNN	.13
1.64	X-LSTM	19

1 Deep Learning

1.1 2D Convolution Operation


```
\draw[very thick, red] (mtr-1-4.north west) rectangle (mtr-3-6.south east);
    \node [below= of mtr-5-4.south] (lm) { \{bf I$\} };
    \node[right = 0.2em of mtr] (str) {$*$};
   \matrix (K) [right=0.2em of str,matrix of nodes,row sep=-\pgflinewidth, nodes={draw, fill=blue!30}]
       1 & 0 & 1 \\
        0 & 1 & 0 \\
        1 & 0 & 1 \\
    \node [below = of K-3-2.south] (lk) {bf K};
    \node [right = 0.2em of K] (eq) {$=$};
    \matrix (ret) [right=0.2em of eq,matrix of nodes,row sep=-\pgflinewidth, nodes={draw}]
       1 & 4 & 3 & |[fill=green!30]| 4 & 1\\
        1 & 2 & 4 & 3 & 3\\
       1 & 2 & 3 & 4 & 1\\
       1 & 3 & 3 & 1 & 1\\
        3 & 3 & 1 & 1 & 0\\
   }:
    \node [below = of ret-4-3.south] (lim) \{\{bf I\} * \{bf K\}\}\};
    \draw[very thick, green] (ret-1-4.north west) rectangle (ret-1-4.south east);
   \draw[densely dotted, blue, thick] (mtr-1-4.north west) -- (K-1-1.north west);
    \draw[densely dotted, blue, thick] (mtr-3-4.south west) -- (K-3-1.south west);
    \draw[densely dotted, blue, thick] (mtr-1-6.north east) -- (K-1-3.north east);
    \draw[densely dotted, blue, thick] (mtr-3-6.south east) -- (K-3-3.south east);
    \draw[densely dotted, green, thick] (ret-1-4.north west) -- (K-1-1.north west);
    \draw[densely dotted, green, thick] (ret-1-4.south west) -- (K-3-1.south west);
    \draw[densely dotted, green, thick] (ret-1-4.north east) -- (K-1-3.north east);
    \draw[densely dotted, green, thick] (ret-1-4.south east) -- (K-3-3.south east);
    \matrix (K) [right=0.2em of str,matrix of nodes,row sep=-\pgflinewidth, nodes={draw, fill=blue!10}]
        1 & 0 & 1 \\
       0 & 1 & 0 \\
        1 & 0 & 1 \\
   \draw[very thick, blue] (K-1-1.north west) rectangle (K-3-3.south east);
    \node[anchor=south\ east,\ inner\ sep=0.01em,\ blue]\ at\ (mtr-1-4.south\ east)\ (xx)\ {\scalebox{5.5}{$ times}}
       1$}};
    \node[anchor=south\ east,\ inner\ sep=0.01em,\ blue]\ at\ (mtr-1-5.south\ east)\ (xx)\ {\scalebox{5.5}{$\star times}}
       0$}}:
    \node[anchor=south\ east,\ inner\ sep=0.01em,\ blue]\ at\ (mtr-1-6.south\ east)\ (xx)\ {\scalebox{.5}{$\times times}}
        1$}}:
    \node[anchor=south\ east,\ inner\ sep=0.01em,\ blue]\ at\ (mtr-2-4.south\ east)\ (xx)\ {\scalebox{5}}{\star ines}
        0$}}:
    \node[anchor=south east, inner sep=0.01em, blue] at (mtr-2-5.south east) (xx) {\scalebox{.5}{$\times imes}}
       1$}};
    \node[anchor=south east, inner sep=0.01em, blue] at (mtr-2-6.south east) (xx) {\scalebox{.5}{$\times}}
       0$}};
    \node[anchor=south\ east,\ inner\ sep=0.01em,\ blue]\ at\ (mtr-3-4.south\ east)\ (xx)\ {\scalebox{5.5}{\$}times}
        1$}}:
    \n inner sep=0.01em, blue at (mtr-3-5.south east) (xx) {\scalebox{.5}{\star ines
        0$}};
    \node[anchor=south\ east,\ inner\ sep=0.01em,\ blue]\ at\ (mtr-3-6.south\ east)\ (xx)\ {\scalebox{5}}{\star ines}
        1$}}:
\end{tikzpicture}
```

1.2 A3C execution


```
\begin{tikzpicture}
                                        \node[rounded rectangle, draw, thick, align=center] (A1) {Agent 1\\$(\theta_1', \psi_1')$};
                                        \node[rounded rectangle, draw, thick, right= of A1, align=center] (A2) {Agent 2\\$(\theta_2', \psi
                                        \node[rounded rectangle, draw, thick, right= of A2, align=center] (A3) {Agent 3\\$(\theta_3', \psi
                                       \node[right=0.4em of A3, align=center] (mid) {\dots};
                                        \node[rounded rectangle, draw, thick, right= of A3, align=center] (AN) {Agent $n$\\$(\theta_n', \
                                                           psi_n')$};
                                       \node[rounded rectangle, draw, thick, yshift=8em, xshift=11.9em, align=center] (G) {Global state
                                                            \\$(\theta, \psi)$};
                                       \label{local_to_the_cond} $$ \operatorname{conde}[\operatorname{conde}] (E1) \ {\rm Env. 1} \ (\operatorname{Local}_{T}, \ \operatorname{Local}_{T}, \ \operatorname{Local}_{T}) $$
                                                            mathcal{R})$};
                                        \label{local_conde} $$ \operatorname{conded} \ \operatorname{rectangle}, \ \operatorname{draw}, \ \operatorname{thick}, \ \operatorname{below= of A2}, \ \operatorname{align=center} $$ (E2) \ \operatorname{Env}. \ 2\ \operatorname{local}(T), \ \operatorname{local
                                                           mathcal{R})$};
                                        \node[rounded rectangle, draw, thick, below= of A3, align=center] (E3) {Env. 3} (\mathcal{T}, \node[rounded rectangle, draw, thick, below= of A3, align=center] (E3) {Env. 3}
                                                           mathcal{R})$};
                                        mathcal{R})$};
                                       \draw[-stealth, very thick] (G) -- node[above=0.5em] {copy} (A1);
                                       \foreach \x in \{2,3,N\}
                                                                                 \verb|\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, amplitude=0.3mm, length=2mm, le
                                                                                                    post length=1.5mm}, decorate, very thick] ([xshift=-0.5em]A\x.south) -- node[left] {$a_t}
                                                                                                     \{ ([xshift=-0.5em]E\x.north); 
                                       \foreach \x in \{2,3,N\}
                                                                                 \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                                                                                                    post length = 1.5mm\}, decorate, very thick] ([xshift = 0.5em] E \setminus x.north) -- node[right] {$r_t$ is a constant of the consta
                                                                                                     , s_{t+1} ([xshift=0.5em]A\x.south);
                                        \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
                                                           length=1.5mm}, decorate,very thick] (E1.north) -- node[right] {$s_0$} (A1.south);
                                        \node[rectangle split,
                                                                               minimum height=0.7cm,
                                                                                rectangle split horizontal,
                                                                                rectangle split parts=8,
                                                                                draw,
```

```
anchor=center,
    left=2em of G,
    rectangle split part fill={white,white,white,white,white,white,gray}]
    (q1) {};

\node[above=0.1em of q1] (N) {Queue};

\draw[-stealth, very thick] (A1) -- node[left] {$(\Delta\theta, \Delta\psi)$} (q1);
\draw[-stealth, very thick] (q1) -- node[above, xshift=-1em] {$+$} ([xshift=2.3em,yshift=-0.5em]G.
    west);

\end{tikzpicture}
```

1.3 A3C Neural Network


```
\begin{tikzpicture}
\path[rounded corners, fill=blue, fill opacity=0.2] (-0.4, 3.5) -- (-0.4, -3.5) -- (4, -3.5) -- (4, -0.2) -- (5, -0.2) -- (5, 3.5) -- (-0.4, 3.5) -- (-0.4, 0);
\path[rounded corners, fill=red, fill opacity=0.2] (-0.4, -3.5) -- (-0.4, 3.5) -- (4, 3.5) -- (4, -0.2) -- (5, -0.2) -- (5, -3.5) -- (-0.4, -3.5) -- (-0.4, 0);
\path[rounded corners, fill=white] (-0.4, 0) -- (-0.4, -3.5) -- (4, -3.5) -- (4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5) -- (-0.4, 3.5)
```

```
\path[rounded corners, fill=olivegreen, fill opacity=0.2] (-0.4, 0) -- (-0.4, -3.5) -- (4, -3.5) --
                  (4, 3.5) -- (-0.4, 3.5) -- (-0.4, 0);
            \path [draw, dashed, very thick, rectangle, rounded corners] (-0.4, 0) -- (-0.4, -3.5) -- (5, -3.5)
                   -- (5, 3.5) -- (-0.4, 3.5) -- (-0.4, 0);
            \node[circle, thick, fill=white, draw] (x1) {};
            \noinde[circle, thick, draw, fill=white, below=1em of x1] (x2) {};
            \noinde[circle, thick, fill=white, draw, below=1em of x2] (x3) {};
            \label{lower} $$ \node[circle, thick, fill=white, draw, below=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x1] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x1] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x5) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, draw, above=1em of x4] (x6) {}; \\ \node[circle, thick, fill=white, fill=white
            \node[circle, thick, fill=white, draw, above=1em of x7] (x8) {};
            \label{local_condition} $$ \c [circle, thick, fill=white, draw, above=1em of x8] (x9) {};
            \node[circle, thick, right=4em of x1, fill=white, draw] (xhh1) {};
            \node[circle, thick, draw, fill=white, below=1em of xhh1] (xhh2) {};
            \node[circle, thick, fill=white, draw, above=1em of xhh5] (xhh6) {};
\node[circle, thick, fill=white, draw, above=1em of xhh6] (xhh7) {};
            \node[circle, thick, right=8em of x1, fill=white, draw] (xh1) {};
            \node[circle, thick, draw, fill=white, below=1em of xh1] (xh2) {};
            \node[circle, thick, fill=white, draw, below=1em of xh2] (xh3) {};
\node[circle, thick, fill=white, draw, below=1em of xh3] (xh4) {};
            \node[circle, thick, fill=white, draw, above=1em of xh1] (xh5) {};
            \node[circle, thick, fill=white, draw, above=1em of xh5] (xh6) {};
            \node[circle, very thick, fill=blue!30, draw, right=12em of x1, yshift=5em] (hm1) {};
\node[circle, very thick, draw, fill=blue!30, below=0.5em of hm1] (hm2) {};
            \node[circle, very thick, draw, fill=blue!30, below=0.5em of hm2] (hm3) {};
            \node[circle, very thick, draw, fill=blue!30, above=0.5em of hm1] (hm4) {};
            \label{local_state} $$ \  (mu3) { \phi_{hm3}, blue} (mu3) { \phi_{hm2}, \alpha_5) }; $$
            \node[right=1.5em of hs1, red] (s1) {$V_{psi}(s)$};
            \foreach \x in \{1, \ldots, 9\}
                        \foreach \y in \{1, \ldots, 7\}
                                     \draw[-stealth, thick] (x\x) -- (xhh\y);
            \foreach \x in \{1, \ldots, 7\}
                        \foreach \y in \{1, \ldots, 7\}
                                     \draw[-stealth, thick] (xhh\x) -- (xh\y);
            \foreach \x in \{1, \ldots, 7\}
                        \foreach \y in \{1, \ldots, 5\}
                                     \draw[-stealth, thick, blue] (xh\x) -- (hm\y);
            \foreach \x in \{1, \ldots, 7\}
                        \draw[-stealth, thick, red] (xh\x) -- (hs1);
            \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
                  length=1.5mm}, decorate, thick, red] (hs1) -- (s1);
            \foreach \x in \{1, \ldots, 5\}
                        \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm\}, decorate, thick, blue ] (hm\x) -- (mu\x);
            \node[left=0.75em of x1] (11) {$s$};
\end{tikzpicture}
```

1.4 Amplitude Modulation


```
\begin{tikzpicture}[samples=1000, domain=0:10*pi]
        \begin{axis}[
                width=11cm, height=3.5cm,
                xtick=\empty,
                ytick=\empty,
                xlabel={\large $t$},
                ylabel = {\langle x(t) \rangle},
                xmin=0, xmax=11*pi,
                ymin = -0.5, ymax = 7.5,
                axis lines = middle,
                very thick,
                trig format = rad
        ]
                \addplot [no markers, smooth, thick] \{2.5 + 2*\sin(0.5*x)\};
        \end{axis}
        \begin{axis}[
                at={(0, -2.25cm)},
                width=11cm, height=3.5cm,
                xtick=\empty,
                ytick=\empty,
                xlabel={\large $t$},
                ylabel={\textcolor{blue}{carrier wave}},
                xmin=0, xmax=11*pi,
                ymin=-3, ymax=5,
                axis lines = middle,
                very thick,
                trig format = rad
        ]
                \addplot [no markers, smooth, blue, very thick] \{2*\sin(6*x)\};
        \end{axis}
```

```
\begin{axis}[
           at={(0, -5cm)},
            width=11cm, height=4cm,
            xtick=\empty,
            ytick=\empty,
            xlabel={\large $t$},
            ylabel={\textcolor{red}{AM wave}},
            xmin=0, xmax=11*pi,
            ymin=-10, ymax=17,
            axis lines = middle,
            very thick,
            trig format = rad
      ]
            \ensuremath{\mbox{end}} \{axis\}
\end{tikzpicture}
```



```
\begin{tikzpicture}
      \node[circle, fill, inner sep=0.2em] (s1) {};
      \node[circle, below=1em of s2, fill, inner sep=0.2em] (s3) {};
\node[circle, below=1em of s3, fill, inner sep=0.2em] (s4) {};
      \node[circle, below=1em of s4, fill, inner sep=0.2em] (s5) {};
      \node[circle, below=1em of s5, fill, inner sep=0.2em] (s6) {};
      \node[circle, below=1em of s6, fill, inner sep=0.2em] (s7) {};
      \node[circle, below=1em of s8, fill, inner sep=0.2em] (s9) {};
      \node[circle, below=1em of s9, fill, inner sep=0.2em] (s10) {};
      \node[circle, below=1em of s10, fill, inner sep=0.2em] (s11) {};
      \node[circle, below=1em of s11, fill, inner sep=0.2em] (s12) {};
      \label{local-condition} $$ \ \end{substrate} $$ \
      \node[circle,below=1em of s14, fill, inner sep=0.2em] (s15) {};
      \node[circle, below=1em of s15, fill, inner sep=0.2em] (s16) {};
      \foreach \x in \{1, \ldots, 16\}
             \node[circle, right=2em of s\x, fill, inner sep=0.2em] (h\x) \{\};
      \foreach \x in \{1, \ldots, 16\}
             \foreach \x in \{1, \ldots, 16\}
             \node[circle, right=2em of hh\x, fill, inner sep=0.2em] (hhh\x) {};
      \foreach \x in \{1, \ldots, 16\}
             \node[circle, right=2em of hhh\x, fill, inner sep=0.2em] (hhh\x) {};
      \foreach \x in \{1, \ldots, 16\}
             \foreach \x in \{1, \ldots, 16\}
             \foreach \x in \{1, \ldots, 16\}
             \displaystyle \frac{(i\x) --node[above] {\{I_{\{x\}\}\}\} (s\x);}}{}
      \foreach \x in \{1, \ldots, 16\}
            \draw[-stealth, thick] (hhhh\x) --node[above] {<math>0_{x}} (o\x);
      \foreach \x in \{1, \ldots, 16\}
             \draw[-stealth, thick, gray] (s\x) -- (h\x);
      \foreach \x in \{1, \ldots, 16\}
             \draw[-stealth, thick, gray] (h\x) -- (hh\x);
      \foreach \x in \{1, \ldots, 16\}
             \draw[-stealth, thick, gray] (hh\x) -- (hhh\x);
      \foreach \x in \{1, \ldots, 16\}
             \draw[-stealth, thick, gray] (hhh\x) -- (hhhh\x);
      \draw[-stealth, thick, gray] (s1) -- (h2);
      \draw[-stealth, thick, gray] (s2) -- (h1);
      \draw[-stealth, thick, gray] (s2) -- (h3);
      \draw[-stealth, thick, gray] (s3) -- (h2);
      \draw[-stealth, thick, gray] (s3) -- (h4);
      \draw[-stealth, thick, gray] (s4) -- (h3);
      \draw[-stealth, thick, gray] (s4) -- (h5);
      \del{draw} [-stealth, thick, gray] (s5) -- (h4);
      \draw[-stealth, thick, gray] (s5) -- (h6);
      \draw[-stealth, thick, gray] (s6) -- (h5);
      \draw[-stealth, thick, gray] (s6) -- (h7);
      \draw[-stealth, thick, gray] (s7) -- (h6);
      \draw[-stealth, thick, gray] (s7) -- (h8);
\draw[-stealth, thick, gray] (s8) -- (h7);
      \draw[-stealth, thick, gray] (s8) -- (h9);
      \draw[-stealth, thick, gray] (s9) -- (h8);
      \draw[-stealth, thick, gray] (s9) -- (h10);
      \draw[-stealth, thick, gray] (s10) -- (h9); \draw[-stealth, thick, gray] (s10) -- (h11);
      \draw[-stealth, thick, gray] (s11) -- (h10);
      \draw[-stealth, thick, gray] (s11) -- (h12);
      \draw[-stealth, thick, gray] (s12) -- (h11);
      \draw[-stealth, thick, gray] (s12) -- (h13);
\draw[-stealth, thick, gray] (s13) -- (h12);
      \draw[-stealth, thick, gray] (s13) -- (h14);
      \draw[-stealth, thick, gray] (s14) -- (h13);
      \draw[-stealth, thick, gray] (s14) -- (h15);
      \draw[-stealth, thick, gray] (s15) -- (h14);
      \draw[-stealth, thick, gray] (s15) -- (h16);
```

```
\draw[-stealth, thick, gray] (s16) -- (h15);
\draw[-stealth, thick, gray] (h1) -- (hh3);
\draw[-stealth, thick, gray] (h2) -- (hh4);
\draw[-stealth, thick, gray] (h3) -- (hh1);
\draw[-stealth, thick, gray] (h3) -- (hh5);
\draw[-stealth, thick, gray] (h4) -- (hh2);
\draw[-stealth, thick, gray] (h4) -- (hh6);
\draw[-stealth, thick, gray] (h5) -- (hh3);
\draw[-stealth, thick, gray] (h5) -- (hh7);
\draw[-stealth, thick, gray] (h6) -- (hh4);
\draw[-stealth, thick, gray] (h6) -- (hh8);
\draw[-stealth, thick, gray] (h7) -- (hh5);
\draw[-stealth, thick, gray] (h7) -- (hh9);
\draw[-stealth, thick, gray] (h8) -- (hh6);
\draw[-stealth, thick, gray] (h8) -- (hh10);
\draw[-stealth, thick, gray] (h9) -- (hh7);
\draw[-stealth, thick, gray] (h9) -- (hh11);
\draw[-stealth, thick, gray] (h10) -- (hh8);
\draw[-stealth, thick, gray] (h10) -- (hh12);
\draw[-stealth, thick, gray] (h11) -- (hh9);
\draw[-stealth, thick, gray] (h11) -- (hh13);
\draw[-stealth, thick, gray] (h12) -- (hh10);
\draw[-stealth, thick, gray] (h12) -- (hh14);
\draw[-stealth, thick, gray] (h13) -- (hh11);
\draw[-stealth, thick, gray] (h13) -- (hh15);
\draw[-stealth, thick, gray] (h14) -- (hh12);
\draw[-stealth, thick, gray] (h14) -- (hh16);
\draw[-stealth, thick, gray] (h15) -- (hh13);
\draw[-stealth, thick, gray] (h16) -- (hh14);
\draw[-stealth, thick, gray] (hh1) -- (hhh5);
\draw[-stealth, thick, gray] (hh2) -- (hhh6);
\draw[-stealth, thick, gray] (hh3) -- (hhh7);
\draw[-stealth, thick, gray] (hh4) -- (hhh8);
\draw[-stealth, thick, gray] (hh5) -- (hhh1);
\draw[-stealth, thick, gray] (hh5) -- (hhh9);
\draw[-stealth, thick, gray] (hh6) -- (hhh2);
\draw[-stealth, thick, gray] (hh6) -- (hhh10);
\draw[-stealth, thick, gray] (hh7) -- (hhh3);
\draw[-stealth, thick, gray] (hh7) -- (hhh11);
\draw[-stealth, thick, gray] (hh8) -- (hhh4);
\del{draw} [-stealth, thick, gray] (hh8) -- (hhh12);
\draw[-stealth, thick, gray] (hh9) -- (hhh5);
\draw[-stealth, thick, gray] (hh9) -- (hhh13);
\draw[-stealth, thick, gray] (hh10) -- (hhh6);
\draw[-stealth, thick, gray] (hh10) -- (hhh14);
\draw[-stealth, thick, gray] (hh11) -- (hhh7);
\draw[-stealth, thick, gray]
                              (hh11) -- (hhh15);
\draw[-stealth, thick, gray] (hh12) -- (hhh8);
\draw[-stealth, thick, gray] (hh12) -- (hhh16);
\draw[-stealth, thick, gray] (hh13) -- (hhh9);
\draw[-stealth, thick, gray] (hh14) -- (hhh10);
\draw[-stealth, thick, gray] (hh15) -- (hhh11);
\draw[-stealth, thick, gray] (hh16) -- (hhh12);
\draw[-stealth, thick, gray] (hhh1) -- (hhhh9);
\draw[-stealth, thick, gray] (hhh2) -- (hhhh10);
\draw[-stealth, thick, gray] (hhh3) -- (hhhh11);
\draw[-stealth, thick, gray] (hhh4) -- (hhhh12);
\draw[-stealth, thick, gray] (hhh5) -- (hhhh13);
\draw[-stealth, thick, gray] (hhh6) -- (hhhh14);
\draw[-stealth, thick, gray] (hhh7) -- (hhhh15);
\draw[-stealth, thick, gray] (hhh8) -- (hhhh16);
\draw[-stealth, thick, gray] (hhh9) -- (hhhh1);
\draw[-stealth, thick, gray] (hhh10) -- (hhhh2);
\draw[-stealth, thick, gray] (hhh11) -- (hhhh3);
\draw[-stealth, thick, gray] (hhh12) -- (hhhh4);
\draw[-stealth, thick, gray] (hhh13) -- (hhhh5);
\draw[-stealth, thick, gray] (hhh14) -- (hhhh6);
\draw[-stealth, thick, gray] (hhh15) -- (hhhh7);
\draw[-stealth, thick, gray] (hhh16) -- (hhhh8);
\draw[-stealth, ultra thick, red] (hhh16) -- (hhhh16);
\draw[-stealth, ultra thick, red] (hhh8) -- (hhhh16);
```

```
\draw[-stealth, ultra thick, red] (hh16) -- (hhh16);
    \draw[-stealth, ultra thick, red] (hh12) -- (hhh16);
    \draw[-stealth, ultra thick, red] (hh4) -- (hhh8);
    \draw[-stealth, ultra thick, red] (hh8) -- (hhh8);
    \draw[-stealth, ultra thick, red] (hh12) -- (hhh8);
    \draw[-stealth, ultra thick, red] (h16) -- (hh16);
    \draw[-stealth, ultra thick, red] (h14) -- (hh16);
    \draw[-stealth, ultra thick, red] (h14) -- (hh12);
    \draw[-stealth, ultra thick, red] \draw[-stealth, ultra thick, red]
                                       (h12) -- (hh12);
                                       (h10) -- (hh12);
    \draw[-stealth, ultra thick, red] (h10) -- (hh8);
    \draw[-stealth, ultra thick, red]
                                       (h8) -- (hh8);
    \draw[-stealth, ultra thick, red]
                                       (h6) -- (hh8);
    \draw[-stealth, ultra thick, red]
\draw[-stealth, ultra thick, red]
                                        (h6) -- (hh4);
                                       (h4) -- (hh4);
    \draw[-stealth, ultra thick, red] (h2) -- (hh4);
   \draw[-stealth, ultra thick, red] (s16) -- (h16);
    \draw[-stealth, ultra thick, red] (s15) -- (h16);
    \draw[-stealth, ultra thick, red] (s15) -- (h14);
    \draw[-stealth, ultra thick, red] (s14) -- (h14);
   \draw[-stealth, ultra thick, red] (s13) -- (h14);
    \draw[-stealth, ultra thick, red]
                                       (s13) -- (h12);
    \draw[-stealth, ultra thick, red]
                                       (s12) -- (h12);
    \draw[-stealth, ultra thick, red] (s11) -- (h12);
    \draw[-stealth, ultra thick, red] (s11) -- (h10);
    \draw[-stealth, ultra thick, red] (s10) -- (h10);
    \draw[-stealth, ultra thick, red] (s9) -- (h10);
    \draw[-stealth, ultra thick, red]
                                       (s9) -- (h8);
    \draw[-stealth, ultra thick, red] (s8) -- (h8);
    \draw[-stealth, ultra thick, red] (s7) -- (h8);
    \del{draw} [-stealth, ultra thick, red] (s7) -- (h6);
    \draw[-stealth, ultra thick, red]
                                       (s6) -- (h6);
                                       (s5) -- (h6);
    \draw[-stealth, ultra thick, red]
    \draw[-stealth, ultra thick, red] (s5) -- (h4);
    \draw[-stealth, ultra thick, red] (s4) -- (h4);
    \draw[-stealth, ultra thick, red] (s3) -- (h4);
    \draw[-stealth, ultra thick, red] (s3) -- (h2);
    \draw[-stealth, ultra thick, red] (s2) -- (h2);
    \draw[-stealth, ultra thick, red] (s1) -- (h2);
\end{tikzpicture}
```

1.6 Bidirectional Long Short Term Memory


```
\begin{tikzpicture}
                \node[rectangle] (Y0) at (0, 0) {$\dots$};
                \node[rectangle, draw, right=2em of Y0, minimum height=1cm, minimum width=1cm] (RNN) {LSTM$_\
                        rightarrow$};
                \node[rectangle, right=of RNN, draw, minimum height=1cm, minimum width=1cm] (RNN2) {LSTM$_\
                        rightarrow$};
               \node[rectangle, right=of RNN2, draw, minimum height=1cm, minimum width=1cm] (RNN3) {LSTM$_\
                \node[rectangle, right= of RNN3, draw, minimum height=1cm, minimum width=1cm] (RNN4) {LSTM$_\
                        rightarrow$1:
                \node[rectangle, above=of RNN4, draw, minimum height=1cm, minimum width=1cm] (R25) {LSTM$_\
                        leftarrow$}:
                \node[rectangle, left=of R25, minimum height=1cm, minimum width=1cm, draw] (R24) {LSTM$_\leftarrow
                \node[rectangle, left=of R24, draw, minimum height=1cm, minimum width=1cm] (R23) {LSTM$_\leftarrow
                \node[rectangle, left=of R23, draw, minimum height=1cm, minimum width=1cm] (R22) {LSTM$_\leftarrow
                \node[rectangle, left=2em of R22] (R21) {$\dots$};
                \node[right=2em of R25] (Y20) {$\dots$};
                \label{lower} $$ \node[below=of RNN] (X1) {$\vec{x}_2$};
                \node[below=of RNN2] (X2) {$\vec{x}_3$};
                \node[below=of RNN3] (X3) {<math>\vec{x}_4$};
                \node[below=of RNN4] (X4) \{ \vec \{x\}_5 \} \};
                \node[above=of R25] (Y5) {<math>\vec{h}_5$};
                \label{local_section} $\ \end{above=of R24} \ (Y4) \ \{\vec\{h\}_4\$\};
                \node[above=of R23] (Y3) {<math>\vec{h}_3$};
                \node[above=of R22] (Y2) {$\vec{h}_2$};
                \draw[-stealth, thick] (X1) -- (RNN);
                \draw[-stealth, thick] (X2) -- (RNN2);
                \draw[-stealth, thick] (X3) -- (RNN3);
                \draw[-stealth, thick] (X4) -- (RNN4);
                \label{lem:continuous} $$ \draw[-stealth, thick, densely dotted] (Y0) -- (RNN); $$ \draw[-stealth, thick] (RNN) -- node[above, pos=0.35] $$ \end{substitute} (RNN2); $$ (RNN2); $$ \draw[-stealth, thick] (RNN2)
                \draw[-stealth, thick] (RNN2) -- node[above, pos=0.35] {\stack(h)_3^\rightarrow\$} (RNN3);
                \draw[-stealth, thick] (RNN3) -- node[above, pos=0.35] {\vec{h}_4^\rightarrow}} (RNN4);
                \draw[-stealth, densely dotted, thick] (RNN4) -- (RNN5);
                \node[below=4em of Y0] (d) {\dots};
```

```
\node[below=4em of RNN5] (d) {\dots};
       \path[-stealth, ultra thick, white] (X1) edge[bend left=45] (R22);
       \path[-stealth, thick] (X1) edge[bend left=45] (R22);
       \path[-stealth, ultra thick, white] (X2) edge[bend left=45] (R23);
       \path[-stealth, thick] (X2) edge[bend left=45] (R23);
       \path[-stealth, ultra thick, white] (X3) edge[bend left=45] (R24);
       \path[-stealth, thick] (X3) edge[bend left=45] (R24);
       \path[-stealth, ultra thick, white] (X4) edge[bend left=45] (R25);
       \path[-stealth, thick] (X4) edge[bend left=45] (R25);
       \draw[-stealth, densely dotted, thick] (Y20) -- (R25);
       \draw[-stealth, thick] (R22) -- (Y2);
       \draw[-stealth, thick] (R23) -- (Y3);
       \draw[-stealth, thick] (R24) -- (Y4);
\draw[-stealth, thick] (R25) -- (Y5);
       \draw[stealth-, densely dotted, thick] (R21) -- (R22);
       \label{locality} $$ \operatorname{locality} (R22) -- \operatorname{node[above, pos=0.65] {} \operatorname{svec}(h)_3^{leftarrow}} (R23); $$
       \draw[-stealth, densely dotted, thick] (Y20) -- (R25);
       \path[-stealth, ultra thick, white] (RNN) edge[bend right=45] (Y2);
       \path[-stealth, thick] (RNN) edge[bend right=45] (Y2);
       \path[-stealth, ultra thick, white] (RNN2) edge[bend right=45] (Y3);
       \path[-stealth, thick] (RNN2) edge[bend right=45] (Y3);
       \path[-stealth, ultra thick, white] (RNN3) edge[bend right=45] (Y4);
       \path[-stealth, thick] (RNN3) edge[bend right=45] (Y4);
       \path[-stealth, ultra thick, white] (RNN4) edge[bend right=45] (Y5);
       \path[-stealth, thick] (RNN4) edge[bend right=45] (Y5);
\end{tikzpicture}
```

1.7 BWT

1.8 Convolutional Autoencoder


```
\definecolor{echoreg}{HTML}{2cb1e1}
\definecolor{olivegreen}{rgb}{0,0.6,0}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
\newtoggle{redraw}
\newtoggle{redraw2}
\tikzset{%
pics/cube/.style args={#1/#2/#3/#4}{code={%
        \begin{scope}[line width=#4mm]
        \begin{scope}
        \clip (-#1,-#2,0) -- (#1,-#2,0) -- (#1,#2,0) -- (-#1,#2,0) -- cycle;
        \filldraw (-#1,-#2,0) -- (#1,-#2,0) -- (#1,#2,0) -- (-#1,#2,0) -- cycle;
        \end{scope}
\iftoggle{redraw}{%
}{%
        \begin{scope}
        \clip (-#1,-#2,0) -- (-#1-#3,-#2,-#3) -- (-#1-#3,#2,-#3) -- (-#1,#2,0) -- cycle;
        \filldraw (-#1,-#2,0) -- (-#1-#3,-#2,-#3) -- (-#1-#3,#2,-#3) -- (-#1,#2,0) -- cycle;
        \end{scope}
\iftoggle{redraw2}{%
}{
        \clip (-#1,#2,0) -- (-#1-#3,#2,-#3) -- (#1-#3,#2,-#3) -- (#1,#2,0) -- cycle;
        \filldraw (-#1,#2,0) -- (-#1-#3,#2,-#3) -- (#1-#3,#2,-#3) -- (#1,#2,0) -- cycle;
        \end{scope}
}
        \node[inner sep=0] (-A) at (-#1-#3*0.5, 0, -#3*0.5) {};
        \node[inner sep=0] (-B) at (#1-#3*0.5, 0, -#3*0.5) {};
        \coordinate (-V) at (#1, #2);
        \coordinate (-W) at (#1, -#2);
        \end{scope}
}}}
\begin{tikzpicture}
        \node (1) [draw, dashed, minimum height=15em, minimum width=62em, xshift=24em, fill=olivegreen,
            fill opacity=0.2, very thick, rectangle, rounded corners] {};
                \node (la1) [below=0em of 1] {\{\text{emph}\{\text{encoder}\}\}};
        \node (2) [draw, dashed, minimum height=14em, fill = red, fill opacity=0.2,minimum width=35em,
            xshift=63.5em, very thick, rectangle, rounded corners] {};
                \node (la1) [below=0em of 2] {{\emph{decoder}}};
        \node[] (i2) {};
        \pic[fill=green!50] (I2) {cube={1.8/1.8/0.4/1}};
        \togglefalse{redraw}
        \togglefalse{redraw2}
        \node[right=16em of i2] (y) {};
        \protect\ (Y) {cube={1.8/1.8/1/1}};
        \node[right=12em of y] (y1) {};
        \protect{\protection} $$ \protect{\protection} (Y1) $$ \{cube=\{0.9/0.9/1/1\}\}; $$
        \node[right=12em of y1] (y2) {};
        \protect\ (Y2) {cube={0.9/0.9/2/1}};
        \node[right=10em of y2] (y3) {};
```

```
\protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
                              \node[right=9em of y3] (z1) {};
                             \protect\ [right=9em of y3, fill=mymauve!50]\ (Z1) \{cube=\{0.9/0.9/1/1\}\};
                              \node[right=12em of z1] (z2) {};
                              \protect\ [right=12em\ of\ z1,\ fill=mymauve!50]\ (Z2)\ \{cube=\{1.8/1.8/0.4/1\}\};
                             \draw [-stealth, ultra thick] (I2-B) -- node[above] {Conv.} node[below] {ReLU} (Y-A);
                             \draw [-stealth, ultra thick] (Y-B) -- node[above] {Pool} (Y1-A);
                             \draw [-stealth, ultra thick] (Y1-B) -- node[above=0.3em, inner sep=0.1em] {Conv.} node[below] {
                                             ReLU} (Y2-A);
                             \draw [-stealth, ultra thick] (Y2-B) -- node[above] {Pool} (Y3-A);
                             \draw [-stealth, ultra thick] (Y3-B) -- node[above] {Deconv.} node[below] {ReLU} (Z1-A);
                             \draw [-stealth, ultra thick] (Z1-B) -- node[above] {Deconv.} node[below] {logistic} (Z2-A);
                             \color{black}
                              \toggletrue{redraw}
                              \toggletrue{redraw2}
                              \node[right=16em of i2] (y) {};
                               \protect\ [right=12em\ of\ y,\ fill=red!50]\ (Y1)\ \{cube=\{0.9/0.9/1/1\}\};
                             pic[right=12em of y1, fill=echoreg!50] (Y2) {cube=<math>\{0.9/0.9/2/1\}\};
                             \protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
                             \togglefalse{redraw2}
                              \protect\ (Y3) {cube={0.45/0.45/2/1}};
                             \toggletrue{redraw2}
                               \node[] (i2) {\LARGE ${\bf X}$};
                               \label{local_conditions} $$ \node[right=9.25em of y2] (y3) {\LARGE ${\bf z}$};
                             \node[right=11em of z1] (z2) {\LARGE ${\bf X}'$};
\end{tikzpicture}
```

1.9 Convolutional Cross-connection

\usetikzlibrary{arrows, decorations.pathmorphing, backgrounds, positioning, fit, petri, decorations.pathreplacing, shadows, calc}

```
\definecolor{echoreg}{HTML}{2cb1e1}
\definecolor{sublimedg}{HTML}{171813}
\definecolor{lgry}{HTML}{aaaaaa}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
\tikzset{%
 cascaded/.style = {%
   general shadow = {%
     shadow scale = 1,
     shadow xshift = -2ex,
     shadow yshift = 2ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
      shadow xshift = -1.5ex,
     shadow yshift = 1.5ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
      shadow xshift = -1ex,
     shadow yshift = 1ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
     shadow xshift = -.5ex,
     shadow yshift = .5ex,
     draw=black,
     thick,
     fill = white},
    fill = white,
   draw,
    thick}}
\tikzset{%
 cascadedd/.style = {%
   general shadow = {%
     shadow scale = 1,
     shadow xshift = -4.5ex,
     shadow yshift = 4.5ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
     shadow xshift = -4ex,
     shadow yshift = 4ex,
      draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
      shadow xshift = -3.5ex,
     shadow yshift = 3.5ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
      shadow scale = 1,
      shadow xshift = -3ex,
      shadow yshift = 3ex,
      draw=black,
     thick,
     fill = white},
    general shadow = {%
      shadow scale = 1,
      shadow xshift = -2.5ex,
     shadow yshift = 2.5ex,
      draw=black,
     thick,
```

```
fill = white},
    general shadow = {%
     shadow scale = 1,
      shadow xshift = -2ex,
     shadow yshift = 2ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
     shadow xshift = -1.5ex,
     shadow yshift = 1.5ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
     shadow xshift = -1ex,
     shadow yshift = 1ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
      shadow xshift = -.5ex,
     shadow yshift = .5ex,
     draw=black,
     thick,
     fill = white},
   fill = white,
   draw,
    thick}}
\tikzset{%
  cascadeddd/.style = {%
       general shadow = { %
      shadow scale = 1,
     shadow xshift = -9ex,
      shadow yshift = 9ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
shadow xshift = -8.5ex,
     shadow yshift = 8.5ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
     shadow xshift = -8ex,
     shadow yshift = 8ex,
      draw=black,
     thick,
     fill = white},
    general shadow = {%
     shadow scale = 1,
      shadow xshift = -7.5ex,
     shadow yshift = 7.5ex,
     draw=black,
     thick,
     fill = white},
    general shadow = {%
      shadow scale = 1,
      shadow xshift = -7ex,
      shadow yshift = 7ex,
      draw=black,
     thick,
     fill = white},
    general shadow = {%
      shadow scale = 1,
      shadow xshift = -6.5ex,
     shadow yshift = 6.5ex,
      draw=black,
     thick,
```

```
fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -6ex,
 shadow yshift = 6ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -5.5ex,
 shadow yshift = 5.5ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -5ex,
 shadow yshift = 5ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -4.5ex,
 shadow yshift = 4.5ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -4ex,
 shadow yshift = 4ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -3.5ex,
 shadow yshift = 3.5ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -3ex,
 shadow yshift = 3ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -2.5ex,
 shadow yshift = 2.5ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -2ex,
 shadow yshift = 2ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
 shadow scale = 1,
 shadow xshift = -1.5ex,
 shadow yshift = 1.5ex,
 draw=black,
 thick,
 fill = white},
general shadow = {%
  shadow scale = 1,
 shadow xshift = -1ex,
 shadow yshift = 1ex,
 draw=black,
```

```
fill = white},
    general shadow = {%
     shadow scale = 1,
     shadow xshift = -.5ex,
     shadow yshift = .5ex,
     draw=black,
     thick,
     fill = white},
    fill = white,
   draw.
   thick}}
\begin{tikzpicture}
       \node [cascaded,
       fill = echoreg!50,
   minimum width = 10em,
   minimum height = 10em] (Conv1C) {Convolution};
       \node [cascaded,
       fill = echoreg!50,
   minimum width = 10em,
   minimum height = 10em,
       below= of Conv1C] (Conv1M) {Convolution};
       \node [cascaded,
       fill = red!50,
   minimum width = 5em,
   minimum height = 5em, right = of Conv1C] (Pool1C) {Max-Pool};
       \node [cascaded.
       fill = red!50,
   minimum width = 5em
   minimum height = 5em, right = of Conv1M] (Pool1M) {Max-Pool};
   \node [cascadedd,
       fill = echoreg!50,
   minimum width = 5em,
   minimum height = 5em, below right= of Pool1C] (Conv2CM) {Conv.};
       \node [cascadedd,
       fill = echoreg!50,
   minimum width = 5em,
   minimum height = 5em,right= of Conv2CM] (Conv2MC) {Conv.};
   \node [cascadedd,
       fill = echoreg!50,
   minimum width = 5em,
   minimum height = 5em, right= 19em of Pool1C] (Conv3C) {Conv.};
       \node [cascadedd,
       fill = echoreg!50,
   minimum width = 5em,
   minimum height = 5em, right = 19em of Pool1M] (Conv3M) {Conv.};
   \node [cascadeddd,
       fill = mymauve!40,
   minimum width = 5em,
   minimum height = 5em, right= 5em of Conv3C] (Conv4C) {Merge};
       \node [cascadeddd,
       fill = mymauve!40,
   minimum width = 5em,
   minimum height = 5em, right = 5em of Conv3M] (Conv4M) {Merge};
    \node [cascadeddd,
       fill = echoreg!40,
   minimum width = 5em,
   minimum height = 5em, right=5em of Conv4C] (DeconvC) {Conv.};
        \node [cascadeddd,
       fill = echoreg!40,
   minimum width = 5em,
   minimum height = 5em, right =5em of Conv4M] (DeconvM) {Conv.};
   \node[rectangle, dashed, draw=lgry, fill=white, fill opacity=0.5, very thick, minimum width=3em,
       minimum height=3em] (R1C) at (-3.75, -1) {\textcolor{black}{\dots}};
```

```
\node[rectangle, dashed, draw=lgry, fill=white, fill opacity=0.5, very thick, minimum width=3em,
    minimum height=3em] (R1M) at (-3.75, -3.5) {\textcolor{black}{\dots}};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=2em,
    minimum height=2em] (R2C) at (1, 1) {};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=2em,
    minimum height=2em] (R2M) at (1,-5.5) {};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=1.5em,
     minimum height=1.5em] (R3C) at (4, -0.5) {};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=1.5em,
     minimum height=1.5em] (R3M) at (4,-4.05) {};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=1.5em,
     minimum height=1.5em] (R4C) at (16, .5) {};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=1.5em,
     minimum height=1.5em] (R4M) at (16,-5.05) {};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=1.5em,
     minimum height=1.5em] (R5C) at (19.7, -.5) {};
\node[rectangle, dashed, draw=sublimedg, fill=white, fill opacity=0.5, very thick, minimum width=1.5em,
     minimum height=1.5em] (R5M) at (19.7, -4.05) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C1C) at (-1.25, -1) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C1M) at (-1.25, -3.5) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C2C) at (3, 0.5) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C3MC) at (5.85, -3.25) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C3CM) at (8.75, -2.25) {};
\noinde[circle, inner sep = 0.1em, fill=sublimedg] (C4C) at (11.5, -0.5) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C4M) at (11.5, -4) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C5C) at (18.625, 0.5) {};
\node[circle, inner sep = 0.1em, fill=sublimedg] (C5M) at (18.625, -5) {};
\draw[very thick, sublimedg, dashed] (R1C.north east) -- (C1C); \draw[very thick, sublimedg, dashed] (R1C.south east) -- (C1C);
\draw[very thick, sublimedg, dashed] (R1M.north east) -- (C1M);
\draw[very thick, sublimedg, dashed] (R1M.south east) -- (C1M);
\draw[very thick, sublimedg, dashed] (R2C.north east) -- (C2C);
\draw[very thick, sublimedg, dashed] (R2C.south east) -- (C2C);
\draw[very thick, sublimedg, dashed] (R2M.north east) -- (C2M);
\draw[very thick, sublimedg, dashed] (R2M.south east) -- (C2M);
\draw[very thick, sublimedg, dashed] (R3C.north east) -- (C3CM);
\draw[very thick, sublimedg, dashed] (R3C.south east) -- (C3CM);
\draw[very thick, sublimedg, dashed] (R3M.north east) -- (C3MC);
\draw[very thick, sublimedg, dashed] (R3M.south east) -- (C3MC);
\draw[very thick, sublimedg, dashed] (R3C.north east) -- (C4C);
\draw[very thick, sublimedg, dashed] (R3C.south east) -- (C4C);
\draw[very thick, sublimedg, dashed] (R3M.north east) -- (C4M);
\draw[very thick, sublimedg, dashed] (R3M.south east) -- (C4M);
\draw[very thick, sublimedg, dashed] (R4C.north east) -- (C5C);
\draw[very thick, sublimedg, dashed] (R4C.south east) -- (C5C);
\draw[very thick, sublimedg, dashed] (R4M.north east) -- (C5M);
\draw[very thick, sublimedg, dashed] (R4M.south east) -- (C5M);
\draw[very thick, sublimedg, dashed] (R5C.north east) -- (22, -0.35);
\draw[very thick, sublimedg, dashed] (R5C.south east) -- (22, -0.65);
\label{lem:condition} $$ \operatorname{very\ thick},\ \operatorname{sublimedg},\ \operatorname{dashed} \ (R5M.north\ east) -- (22,\ -3.85);
\draw[very thick, sublimedg, dashed] (R5M.south east) -- (22, -4.15);
\node[] (da) at (21.5, -0.5) {\textcolor{lgry}\bf\dots};
\node[] (db) at (21.5, -4) {\textcolor{lgry}\bf\dots};
```

```
\path[very thick, -stealth] (Conv2CM) edge[bend left=60] (Conv4C);
\draw[very thick, -stealth] (Conv3C) -- (Conv4C);
\path[very thick, -stealth] (Conv2MC) edge[bend left] (Conv4M);
\draw[very thick, -stealth] (Conv3M) -- (Conv4M);
\end{tikzpicture}
```

1.10 Coordinate Systems


```
\draw[ultra thick,olivegreen,rotate=60] (0,0) -- node [left] {$r$} (2.5,0) coordinate (B);
\draw[xshift=-1cm] (B) node[circle,fill,inner sep=1pt,label=above:$P$](e){};
\end{tikzpicture}
```

1.11 CRT Rendering


```
\begin{tikzpicture}[node distance=4cm, auto]
        \node (00) {};
        \node [right of=00] (11) {Line 1};
        \node [right of=11] (01) {};
        \draw[-stealth, very thick] (00) -- (11) -- (01);
        \node [below =1cm of 00] (10) \{\};
        \node [right of=10] (12) {Line 2};
\node [right of=12] (11) {};
        \draw[-stealth, very thick] (10) -- (12) -- (11);
        \node [below =1cm of 10] (20) {};
        \node [right of=20] (13) {Line 3};
        \node [right of=13] (21) {};
        \draw[-stealth, very thick] (20) -- (13) -- (21);
        \node [below =1cm of 20] (30) \{\};
        \node [right of=30] (14) \{\};
        \node [right of=14] (31) {};
        \node [below =1cm of 30] (1430) {};
        \node [right of=1430] (1143) {Line 143};
        \node [right of=1143] (1431) {};
```

```
\draw[-stealth, very thick] (1430) -- (1143) -- (1431);
       \node [below =1cm of 1430] (1440) {};
       \node [right of=1440] (1144) {Line 144};
       \node [right of=1144] (1441) {};
       \draw[-stealth, very thick] (1440) -- (1144) -- (1441);
       \draw [thick, blue] (01) [bend left] to (h1);
       \draw [-stealth, thick, blue] (h1) [bend right] to (10);
       \node [below=0.1cm of 12] (h2) {\textcolor{blue}{HBlank}};
       \draw [thick, blue] (11) [bend left] to (h2);
       \draw [-stealth, thick, blue] (h2) [bend right] to (20);
       \node [below=0.1cm of 13] (h3) {\textcolor{blue}{HBlank}};
       \draw [thick, blue] (21) [bend left] to (h3);
       \draw [-stealth, thick, blue, dashed] (h3) [bend right] to (30);
       \draw [thick, blue, dashed] (31) [bend left] to (h4);
       \draw [-stealth, thick, blue] (h4) [bend right] to (1430);
       \node [below=0.1cm of 1143] (h5) {\textcolor{blue}{HBlank}};
       \draw [thick, blue] (1431) [bend left] to (h5);
       \draw [-stealth, thick, blue] (h5) [bend right] to (1440);
       \path (1441) -- node[pos=0.47] (v) {\textcolor{red}{\bf VBlank}} (00);
       \draw [ultra thick, red] (1441) [bend right] to (v);
       \draw [-stealth, red, ultra thick] (v) [bend left] to (00);
\end{tikzpicture}
```

1.12 Cyclegan


```
\node[right=7em of D] (out) {real?};
                                    \label{lem:continuous} $$\operatorname{draw}[-stealth,\ thick] (D) -- node[above] {$D_B(\vee ec\{b\})$} node[below,align=center] {discriminator} $$\operatorname{discriminator} $$\operatorname{discriminator} $$\operatorname{discriminator} $$$ $$\operatorname{discriminator} $$\operatorname{discrimi
                                                     \\ (type B)} (out);
                                    \label{local_problem} $$ \ode[yshift=5em, circle, fill, inner sep=0.15em] at (x) (pt1) {};
                                    \node[above=of x, yshift=6.4em, circle, fill, inner sep=0.15em] (pt2) {};
                                    \noinde[left=2.5em of pt2, circle, draw, thick] (xt) {<math>\vec{b}_{real}};
                                    \node[left=5em of xt] (it) {};
                                    \draw[-stealth, thick] (it) -- node[above] {real data} node[below] {(type B)} (xt);
                                    \draw[dashed, thick] (pt1) edge[bend left] (pt2);
                                    \node[circle, draw, thick, fill=white, inner sep=0.15em] at ([xshift=-0.83em, yshift=4em]pt1.north)
                                                           (pt3) {};
                                  \draw[-stealth, thick] (x) -- (pt1);
\draw[-stealth, thick] (xt) -- (pt2);
\draw[-stealth, thick] (pt3) -- (D);
                                    \draw[dashed, thick, stealth-stealth] (z.south) -- ([yshift=-1.5em]z.south) -- ([yshift=-1.6em]xx.
                                                     south) -- (xx.south);
\end{tikzpicture}
```

1.13 Deep Belif Network


```
\begin{tikzpicture}
        \node (1) [draw, minimum width=15em, minimum height=2em, very thick, rounded rectangle] {};
        \node (l1) [left=0em of 1] {\text{vec}}x;
        \node (2) [above=3.9em of 1, draw, fill=lightgray, minimum width=9em, very thick, minimum height=2em
            , rounded rectangle] {};
        \node (12) [left=0em of 2] {\vec{h}_1$};
        \node (3) [above=3.9em of 2, draw, fill=lightgray, minimum width=9em, very thick, minimum height=2em
            , rounded rectangle] {};
        \node (13) [left=0em of 3] \{ \vec\{h\}_2 \} ;
        \node[circle, draw, thick] (A1) {};
        \node[circle, draw, thick, right=0.5em of A1] (A2) {};
        \node[circle, draw, thick, right=0.5em of A2] (A3) {};
\node[circle, draw, thick, right=0.5em of A3] (A4) {};
\node[circle, draw, thick, right=0.5em of A4] (A5) {};
        \node[circle, draw, thick, left=0.5em of A1] (A6) {};
        \node[circle, draw, thick, left=0.5em of A6] (A7) {};
        \label{local_condition} $$ \c [circle, draw, fill=white, thick, above=5em of A1] (B1) {};
        \node[circle, draw, fill=white, thick, right=0.5em of B2] (B3) {};
```

```
\node[circle, draw, fill=white, thick, left=0.5em of B1] (B4) {};
         \node[circle, draw, fill=white, thick, left=0.5em of B4] (B5) {};
         \node[circle, draw, fill=white, thick, right=0.5em of B1] (B2) {};
\node[circle, draw, fill=white, thick, right=0.5em of B2] (B3) {};
         \node[circle, draw, fill=white, thick, left=0.5em of B1] (B4) {};
         \node[circle, draw, fill=white, thick, left=0.5em of B4] (B5) {};
         \node[circle, draw, fill=white, thick, above=5em of A1] (B1) {};
         \node[circle, draw, fill=white, thick, right=0.5em of B1] (B2) {};
         \label{local_circle} $$ \ \ draw, fill=white, thick, right=0.5em of B2] (B3) {};
         \node[circle, draw, fill=white, thick, left=0.5em of B1] (B4) {};
\node[circle, draw, fill=white, thick, left=0.5em of B4] (B5) {};
         \node[circle, draw, fill=white, thick, above=5em of B1] (C1) {};
         \node[circle, draw, fill=white, thick, right=0.5em of C1] (C2) {};
         \label{local_conditions} $$ \node[circle, draw, fill=white, thick, right=0.5em of C2] (C3) {};
         \node[circle, draw, fill=white, thick, left=0.5em of C1] (C4) {};
\node[circle, draw, fill=white, thick, left=0.5em of C4] (C5) {};
         \foreach \x in \{1, \ldots, 9\}
                   \foreach \y in \{1, \ldots, 5\}
                            \draw[-stealth, thick] (A\x) -- (B\y);
         \foreach \x in \{1, \ldots, 5\}
                   \foreach \y in \{1, \ldots, 5\}
                            \draw[stealth-stealth, thick] (B\x) -- (C\y);
         \draw[-stealth, thick] (A5) -- node[right] {\${\bf W}_1\$} (B3);
         \label{lem:condition} $$ \displaystyle \frac{1}{2} \left( B3 \right) -- node[right] {$\{\bf W\}_2$} (C3); 
\end{tikzpicture}
```

1.14 Deep Graph Infomax


```
\begin{tikzpicture}
  \node[circle, thick, draw] (0) {$\vec{x}_i$};
  \node[circle, thick, draw, above right=0.1em and 3em of 0] (1) {};
  \node[circle, thick, draw, above right=0.8em and 0.5em of 0] (2) {};
  \node[circle, thick, draw, left=of 0] (3) {};
  \node[circle, thick, draw, below left=0.8em and 1.5em of 0] (4) {};

  \draw[-, thick] (0) -- (1);
  \draw[-, thick] (0) -- (2);
  \draw[-, thick] (0) -- (3);
  \draw[-, thick] (4) -- (3);

  \node[circle, thick, draw, below=3em of 0] (01) {$\vec{\widetilde{x}}_{j}};
  \node[circle, thick, draw, above right=0.1em and 2em of 01] (02) {};
  \node[circle, thick, draw, below left=0.2em and 3em of 01] (03) {};
  \node[circle, thick, draw, below right=0.8em and 0.5em of 01] (04) {};
  \node[circle, thick, draw, below right=0.8em and 0.5em of 01] (05) {};
}
```

```
\node[rectangle, draw, dashed, minimum width=11em, minimum height=5.5em] (RR) {};
                    \node[rectangle, draw, dashed, minimum width=11em, minimum height=5.5em, below=0.05em of RR] (RR2)
                             {};
                    \node[above=0em of RR] (11) \{(\{bf X\}, \{bf A\})\}\};
                    \label{localized-problem} $$ \od_{RR2} (12) {$({\bf \hat X}), {\bf \hat X}, {\bf \hat A}}; $$
                   \draw[-, thick] (01) -- (02);
                   \draw[-, thick] (01) -- (03);
                   \draw[-, thick] (01) -- (04);
                    \draw[-, thick] (01) -- (05);
                   \draw[-, thick] (04) -- (05);
                   \node[rectangle, draw, dashed, minimum width=11em, minimum height=5.5em, right=12.5em of 0] (AA)
                             {}:
                   \node[circle, thick, draw, right=17em of 0] (0) {<math>\vec{h}_i$};
                   \node[circle, thick, draw, above right=0.1em and 3em of 0] (1) {};
                   \node[circle, thick, draw, left=of 0] (3) {};
\node[circle, thick, draw, below left=0.8em and 1.5em of 0] (4) {};
                   \draw[-, thick] (0) -- (1);
                   \draw[-, thick] (0) -- (2);
                   \draw[-, thick] (0) -- (3);
\draw[-, thick] (4) -- (3);
                   \label{local_condition} $$ \operatorname{circle}, \operatorname{thick}, \operatorname{draw}, \operatorname{below=2.7em} \ of \ 0] \ (01) \ {\vec} \simeq {\mathbb h}_{j}^{j}; $$
                   \label{local-condition} $$ \ \end{circle} \ thick, draw, above right=0.1em and 2emof 01] (02) {}; \\ \ \end{circle} \ thick, draw, below left=0.2em and 3em of 01] (03) {}; \\ \ \end{circle} 
                   \node[circle, thick, draw, below right=0.8em and 0.3em of 01] (04) {};
                    \node[circle, thick, draw, below right=0.8em and 3.1em of 01] (05) {};
                   \node[rectangle, draw, minimum width=11em, minimum height=5.5em, dashed, below=0.05em of AA] (AA2)
                    \node[above=0em of AA] (11) {$({\bf H}, {\bf A})$};
                   \label{locality} $$ \ode[below=0em of AA2] (12) {$({\bf \hat H}}, {\bf \hat AA2}, (12) {}, {\ode[below=0em of AA2] (12) {}, {\ode[below=0em of AA2], (
                   \draw[-, thick] (01) -- (02);
                   \draw[-, thick] (01) -- (03);
                    \draw[-, thick] (01) -- (04);
                   \draw[-, thick] (01) -- (05);
                   \draw[-, thick] (04) -- (05);
                   \draw[-stealth, very thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3 mm, post length=1.5mm}, decorate,] (RR) -- node[above] {$\mathcal{E}}$ (AA);
                   \draw[very thick] (RR.west) edge[bend right=75, decoration={snake, pre length=0.01mm, segment
                             length=2mm, amplitude=0.3mm, post length=1.5mm, decorate,-stealth] node[left] (CC) {$\mathcal{}}
                             C}$} (RR2.west);
                   \draw[-stealth, very thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                             mm, post length=1.5mm}, decorate,] (RR2) -- node[above] {$\mathcal{E}$} (AA2);
                   \node[right=36em of CC, rectangle, draw, thick] (Re) {$\vec{s}}};
                   \draw[-stealth, very thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                            mm, post length=1.5mm}, decorate,] (AA) -- node[above] {$\mathcal{R}$} (Re);
                   \node[above=1.5em of Re] (D1) {$\mathbb{D}};
                   \node[below=1.5em of Re] (D2) {$\mathbb{D}};
                   \draw[-stealth, thick] (Re) -- (D1);
                   \draw[-stealth, thick] (Re) -- (D2);
                   \draw[-stealth, thick] (0) -- (D1);
\draw[-stealth, thick] (01.-11) -- (D2);
                   \node[right=of D1] (P) {$+$};
                   \node[right=of D2] (M) {$-$};
                   \verb|\draw[-stealth|, very thick|, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, segment length=2mm, segmen
                            mm, post length=1.5mm}, decorate,] (D1) -- (P);
                   \draw[-stealth, very thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                             mm, post length=1.5mm}, decorate,] (D2) -- (M);
\end{tikzpicture}
```

1.15 de-bruijn-graph


```
\begin{tikzpicture}[scale=0.8,every node/.style={scale=0.7},font=\tt]
        \SetUpEdge[lw
                                = 1.5pt,
                                              = black,
                                   labelcolor = white]
        \GraphInit[vstyle=Normal]
        \SetGraphUnit{2.5}
        \tikzset{VertexStyle/.append style={fill}}
        \Vertex{AT}
        \EA(AT){TG}
        \EA(TG){GG}
        \SO(GG){GC}
        \SO(GC){CG}
        \WE(CG){GT}
        \WE(GT){CA}
        \NO(CA){AA}
        \tikzset{EdgeStyle/.style={-stealth}}
        \Edge[label=ATG](AT)(TG)
\Edge[label=TGG](TG)(GG)
```

```
\Edge[label=GGC](GG)(GC)
         \Edge[label=GCG](GC)(CG)
         \Edge[label=CGT](CG)(GT)
         \Edge[label=GTG](GT)(TG)
         \Edge[label=TGC](TG)(GC)
         \Edge[label=GCA, style={pos=.3}](GC)(CA)
         \Edge[label=CAA](CA)(AA)
         \Edge[label=AAT](AA)(AT)
         \draw[thick, red, dashed] (AT) ++(160:13pt)coordinate(AT1)
                                                                                 arc (-200:-340:13pt)
                                                                                                              coordinate(AT2):
         \draw[thick, red, dashed] (TG) ++(160:13pt)coordinate(TG1)
                                                                                 arc (-200:-340:13pt)
                                                                                                              coordinate (TG2):
         \det[thick, red, dashed] (GG) ++(160:13pt)coordinate(GG1) arc (-200:-400:13pt)
                                                                                                              coordinate(GG2);
         \det[\text{thick, red, dashed}] (GC) ++(40:13pt)coordinate(GC1) arc (-320:-400:13pt)
                                                                                                             coordinate(GC2);
         \det[thick, red, dashed] (CG) ++(40:13pt)coordinate(CG1) arc (-320:-520:13pt)
                                                                                                             coordinate(CG2):
         \draw[thick, red, dashed] (GT) ++(-20:13pt)coordinate(GT1) arc (-380:-580:13pt)
                                                                                                              coordinate(GT2);
         \det[\text{thick}, \text{red}, \text{dashed}] (TG) ++(-140:13pt)coordinate(TG11) arc (-500:-440:13pt)
                                                                                                                 coordinate(TG
              12);
         \draw[thick, red, dashed] (GC) ++(-550:13pt)coordinate(GC11) arc (-550:-540:13pt)
                                                                                                                 coordinate (GC
              12):
         \draw[thick, red, dashed] (CA) ++(-660:13pt)coordinate(CA1) arc (-660:-590:13pt)
                                                                                                                coordinate (CA2)
         \det[\text{thick, red, dashed}] (AA) ++(-490:13pt)coordinate(AA1) arc (-490:-590:13pt)
                                                                                                                coordinate (AA2)
         \draw[thick, red, dashed] (AT) ++(-490:13pt)coordinate(AT11) arc (-490:-590:13pt)
                                                                                                                 coordinate(AT
              12);
         \draw[thick, red, dashed, rounded corners=3mm] (AT2) --(TG1);
         \draw[thick, red, dashed, rounded corners=3mm] (TG2) --(GG1);
         \label{lem:condense} $$ \operatorname{draw}[\operatorname{thick}, \operatorname{red}, \operatorname{dashed}, \operatorname{rounded} \operatorname{corners=3mm}] (GG2) --(GC1); \\ \operatorname{draw}[\operatorname{thick}, \operatorname{red}, \operatorname{dashed}, \operatorname{rounded} \operatorname{corners=3mm}] (GC2) --(CG1); \\
         \draw[thick, red, dashed, rounded corners=3mm] (CG2) --(GT1);
         \draw[thick, red, dashed, rounded corners=3mm] (GT2) --(TG11);
         \draw[thick, red, dashed, rounded corners=3mm] (TG12) --(GC11);
         \draw[thick, red, dashed, rounded corners=3mm] (GC12) --(CA1); \draw[thick, red, dashed, rounded corners=3mm] (CA2) --(AA1);
         \draw[thick, red, dashed, rounded corners=3mm] (AA2) --(AT11);
\end{tikzpicture}
```

1.16 DNA


```
\newcommand{\bond}[3]{
\draw[very thick, #1] (#3, 0) -- (#3, 0.35);
\draw[very thick, densely dotted] (#3, 0.35) -- (#3, 0.65);
\draw[very thick, #2] (#3, 0.65) -- (#3, 1);
\begin{tikzpicture}
        \bond{red}{blue}{0.1}
        \bond{red}{blue}{0.25}
        \bond{red}{blue}{0.4}
        \bond{blue}{red}{1.1}
        \bond{blue}{red}{1.25}
        \bond{blue}{red}{1.4}
        \bond{red}{blue}{2.1}
        \bond{red}{blue}{2.25}
        \bond{red}{blue}{2.4}
        \bond{blue}{red}{3.1}
        \bond{blue}{red}{3.25}
        \bond{blue}{red}{3.4}
        \bond{red}{blue}{4.1}
        \bond{red}{blue}{4.25}
        \bond{red}{blue}{4.4}
        \bond{blue}{red}{5.1}
        \bond{blue}{red}{5.25}
        \bond{blue}{red}{5.4}
        \bond{red}{blue}{6.1}
        \bond{red}{blue}{6.25}
```

```
\bond{red}{blue}{6.4}
\bond{blue}{red}{7.1}
\bond{blue}{red}{7.25}
\bond{blue}{red}{7.4}
\bond{blue}{red}{7.4}
\bond{red}{blue}{8.1}
\bond{red}{blue}{8.25}
\bond{red}{blue}{8.25}
\bond{red}{blue}{8.25}
\bond{red}{blue}{8.3}
\bond{red}{blue}{8.4}
\braid[rotate=90, style strands={1}{red, very thick}, style strands={2}{blue, very thick}] (tst) at
(0, 0) s_1 s_1 s_1 s_1 s_1 s_1 s_1;
\end{tikzpicture}
```

1.17 Dropout


```
\begin{tikzpicture}
         \node[circle, draw, thick] (i1) {};
         \node[circle, draw, thick, above=2em of i1] (i2) {};
         \node[circle, draw, thick, above=2em of i2] (i3) {};
\node[circle, draw, thick, below=2em of i1] (i4) {};
         \node[circle, draw, thick, below=2em of i4] (i5) {};
         \node[circle, draw, thick, right=4em of i1] (h1) {};
\node[circle, draw, thick, right=4em of i2] (h2) {};
         \node[circle, draw, thick, right=4em of i3] (h3) {};
         \node[circle, draw, thick, right=4em of i4] (h4) {};
         \node[circle, draw, thick, right=4em of i5] (h5) {};
         \node[circle, draw, thick, right=4em of h1] (hh1) {};
         \node[circle, draw, thick, right=4em of h2] (hh2) {};
         \node[circle, draw, thick, right=4em of h3] (hh3) {};
         \label{local_circle} $$ \ \operatorname{circle}, \ \operatorname{draw}, \ \operatorname{thick}, \ \operatorname{right=4em} \ \operatorname{of} \ h4] $$ (hh4) $$ $$ $$ $$ $$ $$ $$
         \node[circle, draw, thick, right=4em of h5] (hh5) {};
         \node[circle, draw, thick, right=4em of hh2] (o1) {};
         \node[circle, draw, thick, right=4em of hh4] (o2) {};
         \draw[-stealth, thick] (i1) -- (h1);
         \draw[-stealth, thick] (i1) -- (h2);
         \draw[-stealth, thick] (i1) -- (h3);
         \del{draw}[-stealth, thick] (i1) -- (h4);
         \draw[-stealth, thick] (i1) -- (h5); \draw[-stealth, thick] (i2) -- (h1);
         \draw[-stealth, thick] (i2) -- (h2);
         \draw[-stealth, thick] (i2) -- (h3);
         \draw[-stealth, thick] (i2) -- (h4);
         \draw[-stealth, thick] (i2) -- (h5);
         \draw[-stealth, thick] (i3) -- (h1);
         \draw[-stealth, thick] (i3) -- (h2);
         \draw[-stealth, thick] (i3) -- (h3);
         \draw[-stealth, thick] (i3) -- (h4);
         \draw[-stealth, thick] (i3) -- (h5);
\draw[-stealth, thick] (i4) -- (h1);
         \draw[-stealth, thick] (i4) -- (h2);
         \draw[-stealth, thick] (i4) -- (h3);
         \draw[-stealth, thick] (i4) -- (h4);
```

```
\draw[-stealth, thick] (i4) -- (h5);
\draw[-stealth, thick] (i5) -- (h1);
\draw[-stealth, thick] (i5) -- (h2);
\draw[-stealth, thick] (i5) -- (h3);
\draw[-stealth, thick] (i5) -- (h4);
\draw[-stealth, thick] (i5) -- (h5);
\draw[-stealth, thick] (h1) -- (hh1);
\del{draw}[-stealth, thick] (h1) -- (hh2);
\draw[-stealth, thick] (h1) -- (hh3);
\draw[-stealth, thick] (h1) -- (hh4);
\draw[-stealth, thick] (h1) -- (hh5);
\draw[-stealth, thick] (h2) -- (hh1);
\draw[-stealth, thick] (h2) -- (hh2);
\draw[-stealth, thick] (h2) -- (hh3);
\draw[-stealth, thick] (h2) -- (hh4);
\draw[-stealth, thick] (h2) -- (hh5);
\draw[-stealth, thick] (h3) -- (hh1);
\draw[-stealth, thick] (h3) -- (hh2);
\draw[-stealth, thick] (h3) -- (hh3);
\draw[-stealth, thick] (h3) -- (hh4);
\draw[-stealth, thick] (h3) -- (hh5);
\draw[-stealth, thick] (h4) -- (hh1);
\draw[-stealth, thick] (h4) -- (hh2);
\draw[-stealth, thick] (h4) -- (hh3);
\draw[-stealth, thick] (h4) -- (hh4);
\draw[-stealth, thick] (h4) -- (hh5);
\draw[-stealth, thick] (h5) -- (hh1);
\draw[-stealth, thick] (h5) -- (hh2);
\draw[-stealth, thick] (h5) -- (hh3);
\draw[-stealth, thick] (h5) -- (hh4);
\draw[-stealth, thick] (h5) -- (hh5);
\draw[-stealth, thick] (hh1) -- (o1);
\draw[-stealth, thick] (hh1) -- (o2);
\draw[-stealth, thick] (hh2) -- (o1);
\draw[-stealth, thick] (hh2) -- (o2);
\draw[-stealth, thick] (hh3) -- (o1);
\draw[-stealth, thick] (hh3) -- (o2);
\draw[-stealth, thick] (hh4) -- (o1);
\draw[-stealth, thick] (hh4) -- (o2);
\draw[-stealth, thick] (hh5) -- (o1);
\draw[-stealth, thick] (hh5) -- (o2);
\draw[-stealth, double, dashed, thick] (5.5,0) -- node[above] {dropout} (8.6, 0);
%%% BOUNDARY %%%
\node[circle, draw, thick, red, fill=red!10, right=15em of hh1] (i1) {};
\node[circle, draw, thick, red, fill=red!10, above=2em of i1] (i2) {};
\node[circle, draw, thick, above=2em of i2] (i3) {};
\node[circle, draw, thick, below=2em of i1] (i4)
\node[circle, draw, thick, below=2em of i4] (i5) {};
\node[red] (icr) at (i1) {$\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\times}}
   }}}}}
\node[red] (icr) at (i2) {$\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger}}
   }}}}};;;
\node[circle, draw, thick, red, fill=red!10, right=4em of i1] (h1) {};
\node[circle, draw, thick, right=4em of i2] (h2) {};
\node[circle, draw, thick, red, fill=red!10, right=4em of i3] (h3) {};
\node[circle, draw, thick, red, fill=red!10, right=4em of i4] (h4) {};
\node[circle, draw, thick, right=4em of i5] (h5) {};
\node[red] (icr) at (h1) {\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger}}
   }}}}};;;;
\node[red] (icr) at (h3) {$\mathlarger{\mathlarger{\mathlarger{\mathlarger{\times}
    }}}}};
\node[red] (icr) at (h4) {\$\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\times}}
    }}}}};
\node[circle, draw, thick, right=4em of h1] (hh1) {};
\node[circle, draw, thick, red, fill=red!10, right=4em of h2] (hh2) {};
```

```
\node[circle, draw, thick, right=4em of h3] (hh3) {};
        \node[circle, draw, thick, red, fill=red!10, right=4em of h4] (hh4) {};
        \node[circle, draw, thick, right=4em of h5] (hh5) {};
        \node[red] (icr) at (hh2) {\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger}}
            }}}}};
        }}}}};;;;;
        \node[circle, draw, thick, right=4em of hh2] (o1) {};
        \node[circle, draw, thick, right=4em of hh4] (o2) {};
        \draw[-stealth, thick] (i3) -- (h2);
        \draw[-stealth, thick] (i3) -- (h5);
        \draw[-stealth, thick] (i4) -- (h2);
\draw[-stealth, thick] (i4) -- (h5);
        \del{draw} [-stealth, thick] (i5) -- (h2);
        \draw[-stealth, thick] (i5) -- (h5);
        \draw[-stealth, thick] (h2) -- (hh1);
        \draw[-stealth, thick] (h2) -- (hh3);
        \draw[-stealth, thick] (h2) -- (hh5);
        \draw[-stealth, thick] (h5) -- (hh1);
        \draw[-stealth, thick] (h5) -- (hh3);
\draw[-stealth, thick] (h5) -- (hh5);
        \draw[-stealth, thick] (hh1) -- (o1);
        \draw[-stealth, thick] (hh1) -- (o2);
        \draw[-stealth, thick] (hh3) -- (o1);
\draw[-stealth, thick] (hh3) -- (o2);
        \draw[-stealth, thick] (hh5) -- (o1);
        \draw[-stealth, thick] (hh5) -- (o2);
\end{tikzpicture}
```

1.18 Emulator Modules


```
\tikzstyle{block} = [rectangle, draw, fill=blue!20,
    text width=5em, text centered, rounded corners, minimum height=4em]
\tikzstyle{block2} = [rectangle, draw, fill=blue!20,
    text width=4em, text centered, rounded corners, minimum height=1em]
\tikzstyle{cloud} = [draw, ellipse,fill=red!20, node distance=3cm,
    minimum height=2em]
\tikzstyle{line} = [draw, -latex']
\definecolor{mygreen}{rgb}{0,0.6,0}
\definecolor{echodrk}{HTML}{0099cc}
\definecolor{drkorange}{HTML}{FF7c00}
\begin{tikzpicture} [node distance=3cm, auto]
```

```
\node [block, color=red, fill=white] (cpu) {CPU};
        \node [cloud, color=red, fill=white, below of=cpu] (intr) {Interrupts};
        \node [block, color=drkorange, fill=white, right of=cpu] (mmu) {Memory controller};
        \node [block, color=echodrk, fill=white, right of=mmu] (memo) {Memory \begin{tikzpicture}\node [
            block2, color=echodrk, fill=white] (rom) {ROM}; \node [block2, node distance=1.3em, below of=rom
             , color=echodrk, fill=white] (ram) {RAM};\end{tikzpicture}};
        \node [block, color=black, fill=white, right of=memo] (cartr) {Cartridge reader};
        \node [block, color=mygreen, fill=white, below of=memo] (gpu) {GPU};
        \node [cloud, color=mygreen, fill=white, right of=gpu] (sprites) {Sprites};
        \node [block, color=blue, fill=white, left of=gpu] (io) {Input};
        \path [line,transform canvas={yshift=0.1em}] (cpu) -- (mmu);
        \path [line, transform canvas={yshift=-0.1em}] (mmu) -- (cpu);
        \label{line,transform canvas={yshift=0.1em}] (mmu) -- (memo);}
        \path [line,transform canvas={yshift=-0.1em}] (memo) -- (mmu);
        \path [line] (io) -- (mmu);
        \path [line] (mmu) -- (gpu);
        \path [line] (memo) -- (gpu);
        \path [line, dashed] (intr) -- (cpu);
\path [line, dashed] (io) -- (intr);
\path [line, dashed] (gpu) edge [bend left] (intr);
        \path [line] (cartr) -- (memo);
        \path [line, dashed] (memo) -- (sprites);
        \path [line, dashed] (sprites) -- (gpu);
\end{tikzpicture}
```

1.19 Fetch Decode Execute cycle


```
\tikzstyle{block} = [rectangle, draw, fill=blue!20,
    text width=5em, text centered, rounded corners, minimum height=4em]
\tikzstyle{line} = [draw, -latex']
\definecolor{mygreen}{rgb}{0,0.6,0}
\definecolor{echodrk}{HTML}{0099cc}
\begin{tikzpicture}[node distance=4cm, auto]
       \node [block, color=red, fill=white, text width=6.5em] (if) {{\huge \bf IF}\\{\scriptsize}
            Instruction fetch}};
        \node [block, color=mygreen, fill=white, text width=6.5em, right of=if] (dc) {{\huge \bf DC}\\{\
            scriptsize Decode}};
       \node [block, color=echodrk, fill=white, text width=6.5em, right of=dc] (ex) {{\huge \bf EX}\\{\
            scriptsize Execute}};
       \node [block, color=black, fill=white, text width=6.5em, below = 0.5cm of dc] (intr) {{\huge \bf
           IRQ}\\{\scriptsize Handle interrupts}};
       \path [line] (if) -- (dc);
       \path [line] (dc) -- (ex);
       \path [line] (ex) edge [bend left] (intr);
       \path [line] (intr) edge [bend left] (if);
\end{tikzpicture}
```

1.20 Frequence Modulation


```
\definecolor{olivegreen}{rgb}{0,0.6,0}
\begin{tikzpicture}[samples=1000, domain=0:10]
        \begin{axis}[
                width=11cm, height=3.5cm,
                xtick=\empty,
                 ytick=\empty,
                xlabel={\large $t$},
                ylabel = {\langle large $x(t)$ \rangle},
                xmin=0, xmax=11,
                ymin=-3, ymax=5,
                axis lines = middle,
                very thick,
                 trig format = rad
        ]
                \addplot [no markers, smooth, thick] \{2*sin(2*pi*0.25*x)\};
        \end{axis}
        \begin{axis}[
                at = {(0, -2.25cm)},
                width=11cm, height=3.5cm,
                xtick=\empty,
                ytick=\empty,
                xlabel={\langle large $t$ },
                ylabel={\textcolor{blue}{carrier wave}},
                 xmin=0, xmax=11,
                ymin=-3, ymax=5,
                 axis lines = middle,
                very thick,
                trig format = rad
        ]
                \addplot [no markers, smooth, blue, very thick] {2*sin(6*pi*x)};
        \end{axis}
```

```
\begin{axis}[
                at = {(0, -4.5cm)},
                width=11cm, height=3.5cm,
                xtick=\empty,
                ytick=\empty,
                xlabel={\large $t$},
                ylabel={\textcolor{olivegreen}{FM wave}},
                xmin=0, xmax=11,
                ymin=-3, ymax=5,
                axis lines = middle,
                very thick,
                trig format = rad
       ]
                \addplot expression [no markers, smooth, olivegreen, very thick] {2*sin(2*pi*3*x - 8*cos(2*
                    pi*0.25*x))};
        \end{axis}
\end{tikzpicture}
```

1.21 Fully Connected Cross Connection


```
\definecolor{mynavy}{HTML}{000080}
\definecolor{darkred}{HTML}{8B0000}
\newcommand{\myGlobalTransformation}[2]
    }
\tikzstyle myBG=[line width=3pt,opacity=1.0]
\begin{tikzpicture}
       \begin{scope}
               \myGlobalTransformation{0}{0};
               \del{draw} [black!50,fill=red!5] (-1, 0) rectangle (9,8);
       \end{scope}
       \begin{scope}
               \myGlobalTransformation {0}{4.25};
               \draw [black!50,fill=blue!5] (-1, 0) rectangle (9,8);
       \end{scope}
       \begin{scope}
               \myGlobalTransformation{0}{0}
               \node (N1) at (1,1) [circle, white, fill=darkred] {};
               \node (N2) at (1,3) [circle, white, fill=darkred] {};
               \node (N3) at (1,5) [circle,white,fill=darkred] \{\};
```

```
\node (N4) at (1,7) [circle, white, fill=darkred] {};
        \node (N5) at (4,1) [circle, white, fill=darkred] {};
        \node (N6) at (4,3) [circle, white, fill=darkred] {};
        \node (N7) at (4,5) [circle, white, fill=darkred] {};
        \node (N8) at (4,7) [circle, white, fill=darkred] {};
        \node (N9) at (7,1) [circle, white, fill=darkred] {};
        \node (N10) at (7,3) [circle, white, fill=darkred] {};
        \node (N11) at (7,5) [circle, white, fill=darkred] {};
        \node (N12) at (7,7) [circle, white, fill=darkred] {};
        \node (N13) at (8.5,1) {};
        \node (N14) at (8.5,3) {};
        \node (N15) at (8.5,5) {};
        \node (N16) at (8.5,7) {};
        \node (N0) at (-0.5,1) {};
        \node (N00) at (-0.5,3) {};
        \node (N000) at (-0.5,5) {};
        \node (N0000) at (-0.5,7) {};
        \foreach \x in \{1, \ldots, 4\}
                 \foreach \y in \{5, \ldots, 8\}
                 \draw[-stealth, darkred, very thick] (N\x) -- (N\y);
        \foreach \x in \{5, \ldots, 8\}
                 \foreach \y in \{9, \ldots, 12\}
                 \draw[-stealth, darkred, very thick] (N\x) -- (N\y);
\draw[-stealth, darkred, very thick] (N10) -- (N14);
\draw[-stealth, darkred, very thick] (N11) -- (N15);
\del{draw} [-stealth, darkred, very thick] (N12) -- (N16);
\del{draw} [-stealth, darkred, very thick] (NO) -- (N1);
\draw[-stealth, darkred, very thick] (N00) -- (N2); \draw[-stealth, darkred, very thick] (N000) -- (N3);
\draw[-stealth, darkred, very thick] (N0000) -- (N4);
\begin{scope}
\pgftransformreset
        \myGlobalTransformation {0}{4.25};
\node (T9) at (7,1) {};
\node (T10) at (7,3) {};
\node (T11) at (7,5) {};
\node (T12) at (7,7) {};
\foreach \x in \{5, \ldots, 8\}
                 \foreach \y in \{9, \ldots, 12\}
                 \draw[-stealth,very thick, decoration={snake, pre length=0.01mm, segment length=2mm
                     , amplitude=0.3mm, post length=1.5mm\}, decorate,] (N\times) -- (T\setminusy);
\end{scope}
\end{scope}
\begin{scope}
        \mbox{\sc myGlobalTransformation} \{0\} \{4.25\}
        \node (N1) at (1,1) [circle, white, fill=mynavy] {};
        \node (N2) at (1,3) [circle, white, fill=mynavy] {};
        \node (N3) at (1,5) [circle, white, fill=mynavy] {};
        \node (N4) at (1,7) [circle, white, fill=mynavy] {};
        \node (N5) at (4,1) [circle, white, fill=mynavy] {};
        \node (N6) at (4,3) [circle, white, fill=mynavy] {};
        \node (N7) at (4,5) [circle, white, fill=mynavy] {};
        \node (N8) at (4,7) [circle, white, fill=mynavy] {};
        \node (N13) at (8.5,1) {};
        \node (N14) at (8.5,3) {};
        \node (N15) at (8.5,5) {};
        \node (N16) at (8.5,7) {};
        \node (N0) at (-0.5,1) {};
        \node (N00) at (-0.5,3) {};
        \node (N000) at (-0.5,5) {};
        \node (N0000) at (-0.5,7) {};
        \begin{scope}
\pgftransformreset
        \myGlobalTransformation{0}{0};
\node (T9) at (7,1) {};
\node (T10) at (7,3) {};
```

```
\node (T11) at (7,5) {};
        \node (T12) at (7,7) {};
        \foreach \x in \{5, \ldots, 8\}
                         \foreach \y in \{9, \ldots, 12\}
                         \draw[-stealth,very thick, decoration={snake, pre length=0.01mm, segment length=2mm
                             , amplitude=0.3mm, post length=1.5mm}, decorate,] (N\x) -- (T\y);
        \end{scope}
                \node (N9) at (7,1) [circle, white, fill=mynavy] {};
                \node (N10) at (7,3) [circle, white, fill=mynavy] {};
                \node (N11) at (7,5) [circle, white, fill=mynavy] {};
                \node (N12) at (7,7) [circle, white, fill=mynavy] {};
        \del{local} $$ \operatorname{local} (N0) -- (N1);
        \draw[-stealth, mynavy, very thick] (N00) -- (N2); \draw[-stealth, mynavy, very thick] (N000) -- (N3);
        \draw[-stealth, mynavy, very thick] (N0000) -- (N4);
                \foreach \x in \{1, \ldots, 4\}
                         \foreach \y in \{5, \ldots, 8\}
                         \foreach \x in \{5, \ldots, 8\}
                         \foreach \y in \{9, \ldots, 12\}
                         \draw[-stealth, mynavy, very thick] (N\x) -- (N\y);
        \draw[-stealth, mynavy, very thick] (N9) -- (N13);
        \draw[-stealth, mynavy, very thick] (N10) -- (N14);
        \draw[-stealth, mynavy, very thick] (N11) -- (N15);
        \draw[-stealth, mynavy, very thick] (N12) -- (N16);
        \end{scope}
        \node at (11, 0.3) {\emph{\textbf{stream 1}}};
        \node at (1, 6) {\emph{\textbf{stream 2}}};
        \node at (10.8, 3.5) {\emph{\textbf{$\times}-connections}}};
\end{tikzpicture}
```

1.22 GameBoy Joypad Register


```
\tikzset{
    tablet/.style={
        matrix of nodes,
```

```
row sep = - \ pgflinewidth,
                column sep = - \pgflinewidth,
                nodes={rectangle,draw=black,text width=1.25ex,align=center},
                text height=1.25ex,
                text depth=0ex,
                nodes in empty cells
       texto/.style={font=\footnotesize\sffamily},
        title/.style={font=\small\sffamily}
\begin{tikzpicture}[node distance=3cm, auto]
        \node [rectangle, draw, minimum width=5em, minimum height=7em] (joyp) {\tt JOYP};
       \matrix[tablet, draw=none, nodes={draw=none, inner sep = 0.16em}, inner sep=0.1em, left = -0.35cm
            of joyp] (pt)
        {
                \node (17) {\scriptsize\tt 7}; \\ \node(16) {\scriptsize\tt 6}; \\ \node(15) {\scriptsize\tt
                    5; \\ \node(14){\scriptsize\tt 4}; \\ \node(13){\scriptsize\tt 3}; \\ \node(12){\
                    scriptsize\tt 2}; \\ \node(11){\scriptsize\tt 1}; \\ \node(10){\scriptsize\tt 0};\\
       \node [circle, inner sep=0, minimum size=0.25em, fill=black, left = 1.2cm of 10] (a) {};
       \node [circle, inner sep=0, minimum size=0.25em, fill=black, left = 1.2cm of 11] (b) {};
       \node [circle, inner sep=0, minimum size=0.25em, fill=black, left = 1.2cm of 12] (select) {};
\node [circle, inner sep=0, minimum size=0.25em, fill=black, left = 1.2cm of 13] (start) {};
       \node [circle, inner sep=0, minimum size=0.25em, fill=black, left = 1cm of a] (right) {};
       \label{lem:conde} $$ [circle, inner sep=0, minimum size=0.25em, fill=black, left = 1cm of b] (left) {}; $$
       \node [left = 0.5cm of right] (ra) {};
       \node [left = 0.5cm of left] (lb) {};
        \node [left = 0.5 cm of up] (usel) {};
        \node [left = 0.5cm of down] (dst) {};
       \node [below = 0.15cm of a] (aa) {};
       \node [below = 0.15cm of right] (rr) {};
       \draw (ra) -- (right) -- (a) -- (10);
       \draw (lb) -- (left) -- (b) -- (11);
       \draw (usel) -- (up) -- (select) -- (12);
       \draw (dst) -- (down) -- (start) -- (13);
       \draw (aa) -- (a) -- node[right] {\tiny\bf A} (b) -- node[right] {\tiny\bf B} (select) -- node[
           right] {\tiny\bf SELECT} (start) |- node[pos=0.2, right] {\tiny\bf START} (14);
        \draw (rr) -- (right) -- node[right] {\tiny $\bm{\rightarrow}$} (left) -- node[right]{\tiny $\bm{\}
           \label{leftarrow} $$ (up) -- node[right]{\times \hm{\uparrow}} (down) |- node[pos=0.1, right]{\times \hm{\uparrow}} $$
            bm{\downarrow}$} (15);
\end{tikzpicture}
```

1.23 Gameboy Palette Translation


```
\tikzset{
        tablet/.style={
               matrix of nodes,
               row sep=-\pgflinewidth,
                column sep=-\pgflinewidth,
               nodes={rectangle,draw=black,text width=1.25ex,align=center},
               text height=1.25ex,
               nodes in empty cells
       texto/.style={font=\footnotesize\sffamily},
       title/.style={font=\small\sffamily}
\definecolor{dgry}{HTML}{555555}
\definecolor{lgry}{HTML}{aaaaaa}
\begin{tikzpicture}
       \matrix[tablet] (mp)
                {\tt 0} & {\tt 1} & {\tt 0} \ {\tt 0}\\
                \node (00) {\tt 1}; & \node(01) {\tt 0}; & \node(02) {\tt 0}; & \node(03) {\tt 0}; & \node(04)
                   {\t 1}; & \node(05){\tt 1}; & \node(07){\tt 1};\\
       };
       \matrix[tablet, below = of mp] (pt)
               \label{local-cond} $$ \ode (10) {\tt 2}; & \node (11) {\tt 1}; & \node (12) {\tt 0}; & \node (13) {\tt 0}; & \node (14) $$
                   {\t} {\t} 3}; & \node(15) {\t} 1}; & \node(16) {\t} 3}; & \node(17) {\t} 2}; 
       };
       \matrix[tablet, draw=black, inner sep=0ex, nodes={draw=white,inner sep=0.8ex}, below = of pt] (clr)
                |[fill=dgry]| & |[fill=lgry]| & |[fill=white]| & |[fill=white]| & |[fill=black]| & |[fill=
                   lgry]| & |[fill=black]| & |[fill=dgry]|/\
       };
       \node [align=center, right = 0.05cm of mp] (c1) {Byte 1 \\ Byte 2};
```

```
\node [align=center, right = 0.05cm of pt] (c2) {Colour indices};
\node [align=center, right = 0.05cm of clr] (c3) {Tile row};

\draw [-stealth, thick] (00) -- (10) ;
\draw [-stealth, thick] (01) -- (11) ;
\draw [-stealth, thick] (02) -- (12) ;
\draw [-stealth, thick] (03) -- (13) ;
\draw [-stealth, thick] (04) -- (14) ;
\draw [-stealth, thick] (05) -- (15) ;
\draw [-stealth, thick] (06) -- (16) ;
\draw [-stealth, thick] (07) -- (17) ;

\draw [-stealth, double, thick] (13.south east) -- node[right] {\emph{palette}} (clr);
\end{tikzpicture}
```

1.24 Gameboy Tiling System


```
table/.style={
                matrix of nodes,
                row sep=-\pgflinewidth,
                column sep=-\pgflinewidth,
                nodes={rectangle,draw=black,text width=0.05ex,align=center},
                nodes in empty cells
        texto/.style={font=\footnotesize\sffamily},
        title/.style={font=\small\sffamily}
}
\tikzset{
        tablet/.style={
                matrix of nodes,
                row sep = - \pgflinewidth,
                column sep = - \pgflinewidth,
                nodes={rectangle,draw=black,text width=2.25ex,align=center},
                text height=1.625ex,
                text depth=0ex,
                nodes in empty cells
```

```
texto/.style={font=\footnotesize\sffamily},
                      title/.style={font=\small\sffamily}
\tikzset{
                      tablett/.style={
                                            matrix of nodes,
                                            row sep = - \ pgflinewidth,
                                            column sep = - \pgflinewidth,
                                            nodes={rectangle, text width=0.05ex,align=center},
                                            nodes in empty cells
                     },
                      texto/.style={font=\footnotesize\sffamily},
                      title/.style={font=\small\sffamily}
}
\begin{tikzpicture}[node distance=0.5cm, auto]
                      \matrix[table] (t1)
                                            & & & & & & \\
                                           * * * * * * \\
                                            * * * * * * \\
                                            & & & |[fill=gray]| & |[fill=gray]| & |[fill=gray]| \ \ \
                                            & & & |[fill=gray]| & |[fill=gray]| & |[fill=gray]| \ \
                                            & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                            & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                            & & & |[fill=gray]| & |[fill=gray]| & & & \\
                      }:
                      \node[above = 0.01cm of t1] (c1) {Tile 1};
                      \matrix[table, right =of t1] (t2)
                      {
                                            & & & & & & \\
                                            & & & & & & \\
                                            & & & & & & \\
                                            |[fill=gray]| & |[fill=gray]| 
                                                      ] | & |[fill=gray] | & |[fill=gray] | \\
                                             | [fill=gray]| \ \& \ | [fil
                                                     ]| & |[fill=gray]| & |[fill=gray]| \\
                                            * * * * * * \\
                                            * * * * * * \\
                                            & & & & & & & \\
                      \node[above = 0.01cm of t2] (c2) {Tile 2};
                      \matrix[table, right = of t2] (t3)
                      {
                                            & & & & & & \\
                                            & & & & & & \\
                                            & & & & & & \\
                                            |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & | \[fill=gray]| & \|
                                            |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & & \\
                                            & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                            & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                            & & & |[fill=gray]| & |[fill=gray]| & & & \\
                      \node[above = 0.01cm of t3] (c3) {Tile 3};
                      \matrix[tablet, below = 1cm of t1] (mp)
                                            \node (1) {\tt 1}; & \node (2) {\tt 2}; & \node (22) {\tt 2}; & \node (3) {\tt 3}; & \dots
                                            \vdots & \vdots & \vdots & $\ddots$ \\
                      \node[below = 0.01cm of mp] (c4) {Background map};
                      \draw [-stealth, thick] (1.north) -- (t1.south);
                      \draw [-stealth, thick] (2.north) -- (t2.south);
                      \draw [-stealth, thick] (22.north) -- (t2.south);
                      \draw [-stealth, thick] (3.north) -- (t3.south);
                      \matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, below right =
                                 1.1cm and -1.5cm of t2] (bg1)
                                            * * * * * * \\
```

```
& & & & & & & \\
                                    & & & & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & |[fill=gray]| \
                                    & & & |[fill=gray]| & |[fill=gray]| & |[fill=gray]| \ \
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
};
\matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, right = 0cm of
                      bg1] (bg2)
                                    & & & & & & \\
                                   & & & & & & & \\
                                    & & & & & & \\
                                    |[fill=gray]| & |[fill=gray]| 
                                                      ] | & |[fill=gray] | & |[fill=gray] | \\
                                    |[fill=gray]| \ \& \ |[fi
                                                   ]| & |[fill=gray]| & |[fill=gray]| \\
                                    & & & & & & \\
                                    & & & & & & \\
                                    & & & & & & \\
};
\matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, right = 0cm of
                      bg2] (bg3)
                                    & & & & & & \\
                                    & & & & & & \\
                                    & & & & & & \\
                                    |[fill=gray]| & |[fill=gray]| 
                                                      ]| & |[fill=gray]| & |[fill=gray]| \\
                                    |[fill=gray]| \ \& \ |[fill=gray]| \ & \ |[fi
                                                      ] | & |[fill=gray] | & |[fill=gray] | \\
                                    & & & & & & \\
                                    & & & & & & \\
                                    * * * * * * \\
};
\matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, right = 0cm of
                      bg3] (bg4)
                                    & & & & & & & \\
                                    & & & & & & \\
                                    & & & & & & \\
                                    |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & \[
                                    |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
}:
\node[below right = 0.01cm and 0.03cm of bg1] (c5) {Background};
\draw [-stealth, white, ultra thick] (t1.south) -- (bg1.north) ;
\draw [-stealth, white, ultra thick] (t2.south) -- (bg2.north);
\draw [-stealth, white, ultra thick] (t2.south) -- (bg3.north);
\draw [-stealth, thick] (t1.south) -- (bg1.north);
\draw [-stealth, thick] (t2.south) -- (bg2.north);
\draw [-stealth, thick] (t2.south) -- (bg3.north);
\draw [-stealth, thick] (t3.south) -- (bg4.north);
\mbox{\mbox{$\tt matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, below right=0.2, inner sep=0.4ex}, \mbox{\mbox{$\tt matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, below right=0.2ex}, \mbox{\mbox{$\tt matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}]}, \mbox{\mbox{$\tt matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}]}, \mbox{\mbox{$\tt matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}]}. \label{fig:matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}]} \label{fig:matrix[tablett, rectangle, draw, scale=0.2ex]} \label{fig:matrix[tablett, rectangle, draw, 
                  1.1cm and -1.5cm of t2] (bg1)
{
                                    & & & & & & & \\
                                    * * * * * * \\
                                    & & & & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & |[fill=gray]| \ \
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                    & & & |[fill=gray]| & |[fill=gray]| & & & \\
};
\matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, right = 0cm of
                      bg1] (bg2)
```

```
& & & & & & & \\
                                                                                                             & & & & & & \\
                                                                                                             * * * * * * \\
                                                                                                              |[fill=gray]| & |[fill=gray]| 
                                                                                                                                        ]| & |[fill=gray]| & |[fill=gray]| \\
                                                                                                               |[fill=gray]| \& |[fill=gray]| \& |[fill=gray]| \& |[fill=gray]| \& |[fill=gray]| \& |[fill=gray]| & |[fill=gray]
                                                                                                                                       ] | & |[fill=gray] | & |[fill=gray] | \\
                                                                                                             & & & & & & \\
                                                                                                             & & & & & & \\
                                                                                                             & & & & & & & \\
                                                      };
                                                      \matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, right = 0cm of
                                                                                        bg2] (bg3)
                                                                                                             & & & & & & \\
                                                                                                             & & & & & & \\
                                                                                                             & & & & & & & \\
                                                                                                              |[fill=gray]| & |[fill=gray]| 
                                                                                                                                       ] | & |[fill=gray] | & |[fill=gray] | \\
                                                                                                               |[fill=gray]| & |[fill=gray]| 
                                                                                                                                     ]| & |[fill=gray]| & |[fill=gray]| \\
                                                                                                             & & & & & & \\
                                                                                                             & & & & & & \\
                                                                                                             & & & & & & \\
                                                      };
                                                      \matrix[tablett, rectangle, draw, scale=0.2, inner sep=0ex, nodes={inner sep=0.4ex}, right = 0cm of
                                                                                        bg3] (bg4)
                                                                                                             & & & & & & \\
                                                                                                            * * * * * * \\
                                                                                                             & & & & & & \\
                                                                                                             |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & & \\
                                                                                                             |[fill=gray]| & |[fill=gray]| & |[fill=gray]| & \[fill=gray]| & & \\
                                                                                                             & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                                                                                             & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                                                                                             & & & |[fill=gray]| & |[fill=gray]| & & & \\
                                                      };
\end{tikzpicture}
```

1.25 Gat Layer


```
\definecolor{mygreen}{rgb}{0,0.6,0}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
\begin{tikzpicture}
                          \node[circle, draw, thick] (h1) {$\vec{h}_1$};
                          \label{lem:local_node} $$ \ \operatorname{circle}, \ \operatorname{draw}, \ \operatorname{thick}, \ \operatorname{left=5em} \ \operatorname{of} \ h1] $$ (h5) $$ \ \cline{h}_3$$;
                          \label{local-cond} $$ \ \ draw, thick, below=5em of h1] (h7) {$\vec{h}_5$}; $$ \ \ draw, thick, below right=of h1] (h8) {$\vec{h}_6$}; $$
                         \verb|\draw[-stealth, mymauve, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude}| \\
                                      =0.3mm, post length=1.5mm, decorate] (h8.120) -- node[sloped, above, black] {\star \c}
                                       }_{16}$} (h1.-30);
                         \draw[-stealth, blue, thick] (h8.135) -- (h1.-45);
                          \verb|\draw[-stealth, mygreen, thick, decoration={zigzag, pre length=0.01mm, segment length=2mm, length=
                                       amplitude=0.3mm, post length=1.5mm}, decorate] (h8.150) -- (h1.-60);
                         \label{lem:condition} $$ \operatorname{length} = 0.01mm, segment length = 2mm, amplitude = 0.3mm, post length = 1.5mm, decorate (h1.30) to [looseness = 7] node [sloped, above, black] {$\vec} $$
                                       {\alpha}_{11}$}(h1.105);
                          \draw[-stealth, blue, thick] (h1.45) to[looseness=9] (h1.90);
                          \draw[-stealth, mygreen, thick, decoration={zigzag, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] (h1.60) to[looseness=20] (h1.75);
                         \draw[-stealth, mymauve, thick,decoration={snake, pre length=0.01mm, segment length=2mm, amplitude
                                       =0.3mm, post length=1.5mm}, decorate] (h4.285) -- node[sloped, below, black] {$\vec{\alpha}}
                                       }_{12}$}(h1.150);
                          \draw[-stealth, blue, thick] (h4.300) -- (h1.135);
                          \verb|\draw| [-stealth, mygreen, thick, decoration={zigzag, pre length=0.01mm, segment length=2mm, lengt
                                       amplitude=0.3mm, post length=1.5mm}, decorate] (h4.315) -- (h1.120);
                          \draw[-stealth, mymauve, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude
                                      =0.3mm, post length=1.5mm}, decorate] (h5.-15) -- node[sloped, below, black] {$\vec{\alpha}}
                                       }_{13}$}(h1.195);
                          \del{draw} [-stealth, blue, thick] (h5.0) -- (h1.180);
                          \draw[-stealth, mygreen, thick, decoration={zigzag, pre length=0.01mm, segment length=2mm,
```

```
amplitude=0.3mm, post length=1.5mm}, decorate] (h5.15) -- (h1.165);
                                                             \draw[-stealth, mymauve, thick,decoration={snake, pre length=0.01mm, segment length=2mm,
                                                                            amplitude=0.3mm, post length=1.5mm}, decorate] (h6.15) -- node[sloped, below, black]
                                                                            {\square\alpha}_{14}\$\(h1.240\);
                             \draw[-stealth, blue, thick] (h6.30) -- (h1.225);
                             \verb|\draw[-stealth, mygreen, thick, decoration={zigzag, pre length=0.01mm, segment length=2mm, length=
                                             amplitude=0.3mm, post length=1.5mm}, decorate] (h6.45) -- (h1.210);
                              \verb|\draw[-stealth, mymauve, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude}| \\
                                             =0.3mm, post length=1.5mm, decorate] (h7.75) -- node[sloped, below, black] \{\vec \{\alpha\}\}
                                             _{15}}(h1.-75);
                             \draw[-stealth, blue, thick] (h7.90) -- (h1.-90);
                             \draw[-stealth, mygreen, thick, decoration={zigzag, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] (h7.105) -- (h1.-105);
                             \node[circle, draw, thick, right=10em of h1, opacity=0.8] (hp) {\text{wec}}_1';
                             \coordinate[right=5em of h1] (A);
                             \verb|\draw[-stealth, mymauve, opacity=0.5, ultra thick, decoration=\{snake, pre length=0.01mm, segment and the content of the co
                                           length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] (h1.20) -- (A) -- (hp);
                             \draw[-stealth, mygreen, opacity=0.5, ultra thick, decoration={zigzag, pre length=0.01mm, segment
                                             length=2mm, \ amplitude=0.3mm, \ post \ length=1.5mm\}, \ decorate] \ (h1.-20) \ -- \ (A) \ -- \ (hp);
                              \draw[-stealth, blue, opacity=0.5, ultra thick] (h1.0) -- (A) -- node[black, above, opacity=1.0] {
                                             concat/avg} (hp);
\end{tikzpicture}
```

1.26 Generative Adversarial Network


```
\begin{tikzpicture}
       \node[circle, draw, thick] (z) \{ \vec \{z\} \} \};
       \node[circle, draw, thick, right=5em of z] (x) {$\vec{x}_{fake}$};
       \label{lem:condition} $$ \operatorname{draw}[-stealth, thick] (z) -- node[above] {$G(\vee ec\{z\})$} node[below] {generator} (x);
       \node[left=of z] (i) {};
       \draw[-stealth, thick] (i) -- node[above] {\p_\theta(\vec{z})\$} (z);
       \node[above=of x, circle, draw, thick] (xt) {$\vec{x}_{real}$};
       \node[left=5em of xt] (it) {};
       \node[circle, draw, thick, right=5em of x, yshift=2.5em] (D) \{\vec\{x\}\}\};
       \node[right=7em of D] (out) {real?};
       \draw[-stealth, thick] (D) -- node[above] {$D(\vec{x})$} node[below] {discriminator} (out);
       \node[right=2.5em of xt, circle, fill, inner sep=0.15em] (pt2) {};
       \draw[dashed, thick] (pt1) edge[bend left] (pt2);
       \node[circle, draw, thick, fill=white, inner sep=0.15em] at ([xshift=-0.9em, yshift=4em]pt1.north)
           (pt3) {};
       \draw[-stealth, thick] (x) -- (pt1);
       \draw[-stealth, thick] (xt) -- (pt2);
```

```
\draw[-stealth, thick] (pt3) -- (D);
\end{tikzpicture}
```

1.27 Gene Expression


```
\definecolor{mygreen}{HTML}{006400}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
\definecolor{mygold}{HTML}{B8860B}
\definecolor{mynavy}{HTML}{000080}
\begin{tikzpicture}
        \node at (0,0) {\tt GTGCATCTGACTCCTGAGGAGTAG};
        \node (dnk2) at (0,-0.5) {\tt CACGTAGACTGAGGACTCCTCATC};
       \node at (-2.7, 0) {\tt \dots};
       \node at (2.7, 0) \{ \text{dots} \};
       \node at (-2.7, -0.5) {\tt \dots}; \node at (2.7, -0.5) {\tt \dots};
        \draw[red, opacity=0.4, very thick] (-3, 0) -- (3, 0);
       \draw[blue, opacity=0.4, very thick] (-3, -0.5) -- (3, -0.5);
       \node at (4, -0.25) {DNA};
       \node (rnk) at (0,-2.5) {\tt \textcolor{blue}{GUG}\\textcolor{mygreen}{CAU}\\textcolor{orange}{CUG}\\
           textcolor{mymauve}{ACU}\textcolor{mygold}{CCU}\textcolor{mynavy}{GAGGAG}\tikz[baseline]{\node[
           rectangle, fill=red,inner sep=0.3mm,anchor=base] (X) {\textcolor{white}{UAG}};}};
       \draw[gray, opacity=0.4, very thick] (-3, -2.5) -- (3, -2.5);
       \frac{1.7}{1.00} [thick, decoration={ brace, mirror, raise=0.5cm}, decorate] (-2.22, -2.2) -- (-1.7, -2.2);
        \det [thick, decoration={ brace, mirror, raise=0.5cm}, decorate] (-1.65, -2.2) -- (-1.15, -2.2);
       \draw [thick, decoration={ brace, mirror, raise=0.5cm}, decorate] (0, -2.2) -- (0.5, -2.2);
        \det [thick, decoration={ brace, mirror, raise=0.5cm}, decorate] (0.55, -2.2) -- (1.05, -2.2);
        \det [ \text{thick, decoration={ brace, mirror, raise=0.5cm}, decorate} ] (1.1, -2.2) -- (1.6, -2.2);
        \draw [thick, decoration={ brace, mirror, raise=0.5cm}, decorate] (1.65, -2.2) -- (2.2, -2.2);
       \node at (4, -2.5) {mRNA};
```

```
\draw[-stealth, thick] (dnk2) -- node[right] {\emph{transcription}} (rnk);
       \draw[-stealth, thick] (-1.96, -2.9) -- (-1.96, -4.3);
       \node at (-1.96, -4.5) {\tt \textcolor{blue}V};
       \draw[-stealth, thick] (-1.4, -2.9) -- (-1.4, -4.3);
       \node at (-1.4, -4.5) {\tt \textcolor{mygreen}H};
        \draw[-stealth, thick] (-0.85, -2.9) -- (-0.85, -4.3);
       \node at (-0.85, -4.5) {\tt \textcolor{orange}L};
       \draw[-stealth, thick] (-0.3, -2.9) -- (-0.3, -4.3);
       \node at (-0.3, -4.5) {\tt \textcolor{mymauve}T};
       \draw[-stealth, thick] (0.25, -2.9) -- (0.25, -4.3);
       \node at (0.25, -4.5) {\tt \textcolor{mygold}P};
       \draw[-stealth, thick] (0.8, -2.9) -- (0.8, -4.3);
        \node at (0.8, -4.5) {\tt \textcolor{mynavy}E};
       \draw[-stealth, thick] (1.35, -2.9) -- (1.35, -4.3);
       \node at (1.35, -4.5) {\tt \textcolor{mynavy}E};
        \draw[-stealth, thick] (1.925, -2.9) -- node[right] {\emph{translation}} (1.925, -4.3);
        \node at (1.925, -4.5) {\tikz[baseline]{\node[rectangle, fill=red,inner sep=0.3mm,anchor=base] (X)
            {\textcolor{white}{\tt STOP}};}};
        \draw[gray, opacity=0.4, very thick] (-3, -4.5) -- (3, -4.5);
       \node at (4, -4.5) {protein};
\end{tikzpicture}
```

1.28 Git Dataflow

\definecolor{bluport}{HTML}{21ADFD} \definecolor{orgport}{HTML}{E37322}

```
\definecolor{pplport}{HTML}{4F21E9}
\definecolor{redport}{HTML}{701315}
\begin{tikzpicture}
       \fill[pplport!15] (0, 0) ellipse (0.25 and 3);
       \fill[redport!15] (2.75, -3) rectangle (3.25, 3);
       fill[bluport!15] (6, 0) ellipse (0.25 and 3);
       \fill[orgport!15] (9, 0) ellipse (0.25 and 3);
       \draw[thick, pplport] (0, 0) ellipse (0.25 and 3);
       \draw[ultra thick, pplport, decorate, decoration={snake, segment length=1mm, amplitude=0.3mm}] (0,
           0) ellipse (0.23 and 3.05);
       \node[text\ height=1em,\ text\ depth=1em,\ pplport] (1) at (0, -3.5) {\ensuremath{\mbox{emph}}\{stash\};
       \draw[ultra thick, redport] (2.75, -3) rectangle (3.25, 3);
       \node[text height=1em, text depth=1em, redport] (2) at (3, -3.5) {\emph{working directory}};
       \draw[thick, orgport] (9, 0) ellipse (0.25 and 3);
       \draw[ultra thick, orgport, decorate, decoration={snake, segment length=1mm, amplitude=0.3mm}] (9,
           0) ellipse (0.23 and 3.05);
       \node[text height=1em, text depth=1em, orgport] (4) at (9, -3.5) {\emph{repository}};
       \draw[-stealth, very thick] (6, 2) -- node[above] {\tt\footnotesize git commit} (9, 2);
        \draw[-stealth, very thick] (9, 1) -- node[above] {\tt\footnotesize git checkout} (6, 1);
       \draw[-stealth, very thick] (9, 0) -- node[above] {\tt\footnotesize git reset} (6, 0);
       \draw[very thick] (6, -2) -- node[above] {\tt\scriptsize git diff -{\bar{1}}-staged} (9, -2);
       \label{lem:condition} $$ \operatorname{Very\ thick} \ (3, -2.5) -- \ \operatorname{node[above,\ pos=0.75]} \ \{\tt\scriptsize\ git\ diff\ HEAD} \ (9, -2.5); 
       \draw[-stealth, very thick] (9, -0.5) -- node[above, pos=0.25] {\tt\footnotesize git rebase} (3,
           -0.5);
       \draw[-stealth, very thick] (9, -1) -- node[above, pos=0.25] {\tt\footnotesize git merge} (3, -1);
       % draw the blue portal here for the portal effect
       \draw[thick, bluport] (6, 0) ellipse (0.25 and 3);
        \det \operatorname{ultra} \ thick, bluport, decorate, decoration=\{\operatorname{snake}, \operatorname{segment} \ length=1\operatorname{mm}, \operatorname{amplitude}=0.3\operatorname{mm}\}\} (6,
           0) ellipse (0.23 and 3.05);
       \node[text height=1em, text depth=1em, bluport] (3) at (6, -3.5) {\emph{index}};
       % Redraw some lines for piercing effect through blu port
       \draw[-stealth, very thick] (6, -0.5) -- (3, -0.5);
       \draw[-stealth, very thick] (6, -1) -- (3, -1);
       \draw[very thick] (3, -2.5) -- (6, -2.5);
       \draw[-stealth, very thick] (6, 1) -- node[above] {\tt\footnotesize git checkout} (3, 1);
       \draw[-stealth, very thick] (0, 0.5) -- node[above] {\tt\footnotesize git stash pop} (3, 0.5);
       \draw[very thick] (3, -1.5) -- node[above] {\tt\footnotesize git diff} (6, -1.5);
\end{tikzpicture}
```

1.29 Git WorkFlow


```
\definecolor{bluport}{HTML}{21ADFD}
\definecolor{orgport}{HTML}{E37322}
\definecolor{pplport}{HTML}{4F21E9}
\definecolor{redport}{HTML}{701315}
\begin{tikzpicture}
          \draw[thick, bluport] (0, 0) ellipse (2 and 1);
          \draw[ultra thick, bluport, decorate, decoration={snake, segment length=1mm, amplitude=0.3mm}] (0,
               0) ellipse (2 and 1);
          \node[text height=1em, text depth=1em] (1) at (0, 1.5) {\tt git init};
\node[text height=1em, text depth=1em, align=center, bluport] (1) at (0, -0.25) {\tt ./git \\
               repository};
          \draw[thick, orgport] (6, 0) ellipse (2 and 1);
          \draw[ultra thick, orgport, decorate, decoration={snake, segment length=1mm, amplitude=0.3mm}] (6,
               0) ellipse (2 and 1);
          \node[text height=1em, text depth=1em] (1) at (6, 1.5) {\tt git clone};
          \node[text height=1em, text depth=1em, align=center, orgport] (1) at (6, -0.25) {\tt ./git \\
               repository};
          \draw[ultra thick, redport] (-1.75, -2) rectangle (1.75, -3.5);
          \node[text height=1em, text depth=1em, align=center, redport] (1) at (0, -3.25) {working directory
               \det[u] thick, pplport] (4.25, -2) rectangle (7.75, -3.5);
          \node[text height=1em, text depth=1em, align=center, pplport] (1) at (6, -3.25) {working directory
               \\ \& index of user 2};
          \draw[very thick, stealth-stealth] (1.5, 0) -- node[above] {\tt git pull} node[below] {\tt git push
               } (4.5, 0);
          \displaystyle \operatorname{draw}[\operatorname{very} \ \operatorname{thick}, \ -\operatorname{stealth}] \ (-0.2, \ -0.5) \ -- \ \operatorname{node}[\operatorname{left}] \ \{\tt \ \operatorname{git} \ \operatorname{pull}\} \ (-0.2, \ -2.4);
          \displaystyle \operatorname{draw}[\operatorname{very} \operatorname{thick}, \operatorname{-stealth}] (0.2, -2.4) -- \operatorname{node}[\operatorname{right}] \{\operatorname{tt} \operatorname{git} \operatorname{commit}\} (0.2, -0.5);
          \label{lem:condition} $$ \operatorname{draw}[\operatorname{very\ thick}, -\operatorname{stealth}] (5.8, -0.5) -- \operatorname{node}[\operatorname{left}] {\tt tt\ git\ pull} (5.8, -2.4); $$
          \label{lem:commit} $$ \draw[very thick, -stealth] (6.2, -2.4) -- node[right] {\tt git commit} (6.2, -0.5);
\end{tikzpicture}
```

1.30 Gamhmm

\begin{tikzpicture}[-stealth,very thick,node distance = 4cm,auto]
\node[state] (x) {\\$x\\$};

```
\node[state] (y) [above right of=x] {$y$};
                  \node[state] (z) [below right of=y] {$z$};
                  \node[rectangle, minimum size=2em,draw] (a) [above left =of y] {\$a\$};
                  \node[rectangle,minimum size=2em, draw] (b) [above = of y] {$b$};
\node[rectangle, minimum size=2em,draw] (c) [above right = of y] {$c$};
                  \draw[] (x) to node[above left] {$1$} (y);
                  \draw[loop above] (y) to node \{\$0.5\$\} (y);
                  \draw[bend left=20] (y) to node \{$0.5$\} (z);
                  \draw[bend left=20] (z) to node[below left] {$0.7$} (y);
                  \draw[] (z) to node {$0.3$} (x);
                  \draw[dashed] (x) to node[left] {$0.9$} (a);
                  \draw[dashed] (x) to node[left] {$0.1$} (b);
                  \draw[bend right=30, dashed] (y) to node[right] {$0.6$} (b);
                  \draw[dashed] (y) to node[below right] {$0.4$} (c);
                  \draw[dashed] (z) to node[right] {$1$} (c);
                  \node[rectangle, draw, scale=0.2, minimum size=20em, above = 2cm of a] (ga){\begin{tikzpicture}
                                                      \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                                         \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                                      \end{axis}
                                    \end{tikzpicture}};
                  \node[rectangle, draw, scale=0.2, minimum size=20em,above = 2cm of b] (gb){\begin{tikzpicture}
                                                      \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                                          \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                                      \end{axis}
                                    \end{tikzpicture}};
                  \node[rectangle, draw, scale=0.2, minimum size=20em,above = 2cm of c] (gc){\begin{tikzpicture}
                                                      \label{lem:begin} $$ \axis = 1.1] $$ \begin{array}{l} axis = 1.4 \\ a
                                                                          \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                                       \end{axis}
                                    \end{tikzpicture}};
                  \label{left} $$ \draw[dotted, bend left] (a) to node[left] {$\mu_a$} (ga);
                  \draw[dotted, bend right] (a) to node[right] {\$\sigma_a\$} (ga);
                  \label{left} $$ \operatorname{dotted}, \ \operatorname{bend} \ \operatorname{left} \ (b) \ \operatorname{to} \ \operatorname{node}[\operatorname{left}] \ \{\ \underline{\ \ \ } \ (gb);
                  \draw[dotted, bend right] (b) to node[right] {\$\sigma_b\$} (gb);
                  \label{left} $$ \det[dotted, bend left] (c) to node[left] {$\mu_c$} (gc);
                  \draw[dotted, bend right] (c) to node[right] {\$\sigma_c\$} (gc);
\end{tikzpicture}
```

1.31 Graph Convolution


```
\definecolor{mygreen}{rgb}{0,0.6,0}

\pgfdeclarelayer{background}
\pgfsetlayers{background, main}

\tikzstyle{vertex}=[circle,fill=black!25,minimum size=20pt,inner sep=0pt]
\tikzstyle{selected vertex} = [vertex, fill=red!24]
```

```
\tikzstyle{select vertex} = [vertex, fill=blue!24]
\tikzstyle{selectx vertex} = [vertex, fill=green!24]
\tikzstyle{edge} = [draw,thick,-]
\tikzstyle{selected edge} = [draw,line width=5pt,-,red!50]
\begin{tikzpicture}[scale=1.8, auto,swap]
   \foreach \pos/\name in \{(0,2)/a\}, \{(2,1)/b\}, \{(4,1)/c\},
                           \{(0,0)/d\}, \{(3,0)/e\}, \{(2,-1)/f\}, \{(4,-1)/g\}\}
        \node[vertex] (\name) at \pos {};
   \foreach \source/ \dest /\weight in \{b/a/7, c/b/8, d/a/5, d/b/9,
                                         e/b/7, e/c/5, e/d/15,
                                        f/d/6,f/e/8,
                                         g/e/9,g/f/11}
       \path[edge] (\source) -- (\dest);
   \foreach \vertex / \fr in \{b/4\}
       \path node[selected vertex] at (\vertex) {$\vec{h}_b$};
    \foreach \vertex / \fr in \{a/4, c/4, d/4, e/5\}
       \begin{pgfonlayer}{background}
       foreach \source / \dest in {b/c,d/b,a/b,b/e}
            \path[selected edge] (\source.center) -- (\dest.center);
    \end{pgfonlayer}
   \foreach \pos/\name in \{(6,2)/a1\}, \{(8,1)/b1\}, \{(10,1)/c1\},
                           \{(6,0)/d1\}, \{(9,0)/e1\}, \{(8,-1)/f1\}, \{(10,-1)/g1\}\}
       \node[vertex] (\name) at \pos {};
   foreach \source/ \dest/\weight in {b1/a1/7, c1/b1/8,d1/a1/5,d1/b1/9,}
                                        e1/b1/7, e1/c1/5, e1/d1/15,
                                        f1/d1/6,f1/e1/8,
                                        g1/e1/9,g1/f1/11}
       \path[edge] (\source) -- (\dest);
    \foreach \vertex / \fr in \{b1/4\}
       \path node[selectx vertex] at (\vertex) {$\vec{h}'_b$};
    \draw[-stealth, densely dotted, ultra thick, mygreen] (b) edge[bend left=20] (b1);
\end{tikzpicture}
```

1.32 Hamitonian Graph


```
\EA(ATG){TGG}
        \EA(TGG){GGC}
        \SO(GGC){GCG}
        \WE(GCG){CGT}
        \WE(CGT){GTG}
        \WE(GTG){TGC}
        \WE(TGC){GCA}
        \NO(GCA){CAA}
        \EA(CAA){AAT}
        \tikzset{EdgeStyle/.style={-stealth, color=black}}
        \Edge(ATG)(TGC)
        \Edge(GTG)(TGG)
        \Edge(GGC)(GCA)
        \tikzset{EdgeStyle/.style={-stealth, color=black, bend right}}
        \Edge(TGC)(GCG)
        \tikzset{EdgeStyle/.style={-stealth}}
        \Edge(ATG)(TGG)
        \Edge(TGG)(GGC)
        \Edge(GGC)(GCG)
        \Edge(GCG)(CGT)
        \Edge(CGT)(GTG)
        \Edge(GTG)(TGC)
        \Edge(TGC)(GCA)
        \Edge(GCA)(CAA)
        \Edge(CAA)(AAT)
        \Edge(AAT)(ATG)
\end{tikzpicture}
```

1.33 Hierachical Graph Classifier


```
\definecolor{mygreen}{rgb}{0,0.6,0}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
\definecolor{camdrk}{RGB}{0,62,114}
\begin{tikzpicture}
                       \node[circle, draw, thick] (h1) {};
                        \node[circle, draw, thick, right=of h1] (h2) {};
                       \node[circle, draw, thick, below=of h1] (h3) {};
                       \node[circle, draw, thick, right=of h3] (h4) {};
\node[circle, draw, thick, below=of h3] (h5) {};
                       \node[circle, draw, thick, right=of h5] (h6) {};
                       \draw[-, thick] (h1) -- (h4);
                        \draw[-, thick] (h2) -- (h3);
                        \draw[-, thick] (h2) -- (h4);
                       \draw[-, thick] (h3) -- (h4);
                       \draw[-, thick] (h3) -- (h6);
                       \draw[-, thick] (h4) -- (h5);
                       \draw[-, thick] (h5) -- (h6);
                       \path [draw=black, smooth, fill=camdrk, fill opacity=0.3, very thick]
                     ([xshift=-0.5em,yshift=0.5em]h1.north west) -- ([xshift=0.5em,yshift=0.5em]h2.north east) -- ([
                                 x shift = 0.5em, y shift = -0.5em] h 6. south east) -- ([x shift = -0.5em, y shift = -0.5em] h 5. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5em, y shift = -0.5em] h 6. south west) -- ([x shift = -0.5
                                 cycle;
                       \node[circle, draw, thick, red, fill=red!10, right=10em of h1] (g1) {};
                       \node[circle, draw, thick, red, fill=red!10, right=of g1] (g2) {};
                        \node[circle, draw, thick, below=of g1] (g3) {};
```

```
\node[circle, draw, thick, right=of g3] (g4) {};
             \node[circle, draw, thick, red, fill=red!10, below=of g3] (g5) {};
            \node[circle, draw, thick, right=of g5] (g6) {};
            \draw[-, thick, dashed, lightgray] (g1) -- (g4);
            \draw[-, thick, dashed, lightgray] (g2) -- (g3);
            \del{draw}[-, thick, dashed, lightgray] (g2) -- (g4);
            \draw[-, thick] (g3) -- (g4);
            \draw[-, thick] (g3) -- (g6);
            \draw[-, thick, dashed, lightgray] (g4) -- (g5); \draw[-, thick, dashed, lightgray] (g5) -- (g6);
            \node[red] (icr) at (g1) {\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger}}
                  }}}}};
             \node[red] (icr) at (g2) {$\mathlarger{\mathlarger{\mathlarger{\mathlarger{\times}
                  }}}}};
            \node[red] (icr) at (g5) {\$\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\times}}
                  }}}}};;;;
            \path [draw=black, smooth, fill=mymauve, fill opacity=0.3, very thick]
           ([xshift=-0.5em,yshift=0.5em]g3.north west) -- ([xshift=0.5em,yshift=0.5em]g4.north east) -- ([
                 xshift=0.5em,yshift=-0.5em]g6.south east) -- ([xshift=-0.5em,yshift=-0.5em]g6.south west) -- ([
                 xshift=-0.5em,yshift=-0.5em]g3.south west) -- cycle;
            \node[circle, thick, right=10em of g1] (i1) {};
            \node[circle, thick, right=of i1] (i2) {};
            \node[circle, draw, thick, below=of i1] (i3) {};
            \node[circle, draw, red, thick, fill=red!10, right=of i3] (i4) {};
            \node[circle, thick, below=of i3] (i5) {};
             \node[circle, draw, thick, right=of i5] (i6) {};
            \draw[-, thick, dashed, lightgray] (i3) -- (i4);
            \draw[-, thick] (i3) -- (i6);
            }}}}}
            \draw[-stealth, ultra thick,decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                   mm, post length=1.5mm}, decorate] ([xshift=0.5em]h4.east) -- node[below, black] {pool} node[
                   above] {GCN} ([xshift=-0.5em]g3.west);
            \draw[-stealth, ultra thick,decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                   mm, post length=1.5mm}, decorate] ([xshift=0.5em]g4.east) -- node[above] {GCN} node[below] {
                   pool}([xshift=-0.5em]i3.west);
            \path [draw=black, smooth, fill=mygreen, fill opacity=0.3, very thick]
           ([xshift=-0.5em,yshift=0.5em]i3.north west) -- ([xshift=0.5em,yshift=0.5em]i3.north east) --([xshift
                 =0.5em,yshift=0.5em]i6.north east) --([xshift=0.5em,yshift=-0.5em]i6.south east) -- ([xshift
                 =-0.5em, yshift=-0.5em]i6.south west) -- ([xshift=-0.5em, yshift=-0.5em]i3.south west) -- cycle;
      \label{local_sigma} $$ \node[circle, draw, thick, right=10em of i3] (S) {$\boldsymbol\\Sigma$};
      \path[-stealth, mymauve, ultra thick] ([xshift=0.5em, yshift=0.5em]g4.north east) edge[bend left,
            \texttt{decoration=\{zigzag, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post length=1.5mm\}, amplitude=0.3mm, post length=1.5mm], amplitude=0.3mm], amplitude=0.3mm], amplitude=0.3mm], amplitude=0.3mm], amplitude=0.3mm], amplitude=0.3mm], amplitude=0.3mm], amplitude=0.3mm], amplitude=0.3mm], amplitud
            decorate] node[sloped,above] {mean $\|$ max} (S);
      \path[-stealth, mygreen, ultra thick] ([xshift=0.4em]i6.east) edge[bend right,decoration={zigzag, pre
            length=0.01mm, segment length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] node[sloped,below
            ] {mean $\|$ max} (S);
      \node[right=5em of S] (P) {\emph{predict}};
             \draw[-stealth, ultra thick,decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                   mm, post length=1.5mm}, decorate] (S.east) --node[above] {MLP} (P.west);
\end{tikzpicture}
```

1.34 Hmm Transition Smoothing

edge[gray, thin, stealth-] (s3_1)
 edge[gray, thin, stealth-] (s4_1);
\node[circle, draw, thick] (s4_2) at (3.5,-1) {\$s_4\$}
 edge[gray, thin, stealth-] (s1_1)
 edge[gray, thin, stealth-] (s2_1)
 edge[gray, thin, stealth-] (s3_1)
 edge[gray, thin, stealth-] (s4_1);

\node [] (asdf2) at (8.5,-2.5) {\\$(\y_{\text{t+1}}, id_{\text{t+1}})\\$};

\node [draw, thick] (asdf3) at (12,-2.5) {\$(y_{t+2}, id_{t+2})\$};

scriptsize\$\alpha_{t}(s_2)\$};

% 3rd column

```
\node[align=center, circle, draw, ultra thick, minimum size=4.25em] (s3_3) at (8.5,1) {<math>s_3\{\
                        scriptsize$\beta_{t+1}(s_3)$}}
                                 edge[gray, thin, stealth-] (s1_2)
                                 edge[gray, thin, stealth-] (s3_2)
                                 edge[gray, thin, stealth-] (s4_2);
                \draw[-stealth, very thick, dashed, bend left=90] (asdf2.west) to node[pos=0.33, align=center, fill
                        =white] \{ \{ bf 0'}_{3,id_{t+1}} \le \mathbb{N}(y_{t+1}; \mu_{id_{t+1}}, sigma_{id_{t+1}}) \}  (s
                        3_3.west);
                \node [draw, thick] (asdf2) at (8.5, -2.5) {\$(y_{t+1}, id_{t+1})$};
                \node at (8.5,6.5) {$t+1$};
                \node[circle, draw, thick] (s1_3) at (8.5,5) {$s_1$}
                                 edge[gray, thin, stealth-] (s1_2)
                                 edge[gray, thin, stealth-] (s2_2)
                                 edge[gray, thin, stealth-] (s3_2)
                                 edge[gray, thin, stealth-] (s4_2);
                \node[circle, draw, thick] (s2_3) at (8.5,3) {<math>s_2}
                                 edge[gray, thin, stealth-] (s1_2)
                                 edge[gray, thin, stealth-] (s2_2)
                                 edge[gray, thin, stealth-] (s3_2)
                                 edge[gray, thin, stealth-] (s4_2);
                \node[circle, draw, thick] (s4_3) at (8.5,-1) {<math>s_4}
                                 edge[gray, thin, stealth-] (s1_2)
                                 edge[gray, thin, stealth-] (s2_2)
                                 edge[gray, thin, stealth-] (s3_2)
                                 edge[gray, thin, stealth-] (s4_2);
                % 4th column
                \node at (12,6.5) {$t+2$};
                edge[gray, thin, stealth-] (s1_3)
                                 edge[gray, thin, stealth-] (s2_3)
                                 edge[gray, thin, stealth-] (s4_3);
                edge[gray, thin, stealth-] (s1_3)
                                 edge[gray, thin, stealth-] (s2_3)
                                 edge[gray, thin, stealth-] (s4_3);
                \label{localign} $$ \operatorname{localign} = \operatorname{center}, \ \operatorname{circle}, \ \operatorname{draw}, \ \operatorname{thick} ] (s3_4) \ \operatorname{at} (12,1) \ \{s_3\} \setminus \{s_{i+2}, s_{i+2}, s_{i+3}, s_{i+4}, s_{
                                 edge[gray, thin, stealth-] (s1_3)
                                 edge[gray, thin, stealth-] (s2_3)
edge[gray, thin, stealth-] (s4_3);
                \label{lem:conter} $$ \ [align=center, circle, draw, thick] (s4_4) at (12,-1) {$s_4$} (s_4)$$ at (12,-1) $$ (s_4)$$ 
                                 edge[gray, thin, stealth-] (s1_3)
                                 edge[gray, thin, stealth-] (s2_3)
                                 edge[gray, thin, stealth-] (s4_3);
                \node [draw, thick] (asdf) at (3.5,-2.5) {$(y_{t}, id_{t})$};
\end{tikzpicture}
```

1.35 Insruction Execution


```
\tikzstyle{block} = [rectangle, draw, fill=blue!20,
   text width=5em, text centered, rounded corners, minimum height=4em]
\definecolor{mygreen}{rgb}{0,0.6,0}
\definecolor{echodrk}{HTML}{0099cc}
\begin{tikzpicture}[node distance=3cm, auto]
        \draw[opacity=0] (-6, -3.5) rectangle (4, 3.3);
        \begin{scope}[shift={(-4,-2)},transform canvas={scale=0.7}]
                \node [block, color=black, very thick, fill=lightgray!70, minimum height=15em, text width
                    =20em] (cpu) {};
                \node [above left] (lab) at (cpu.south east) {\LARGE \bf CPU};
                \node [below right=2.5em, block, color=black, very thick, fill=lightgray!30, minimum height
                    =2em, inner sep=0em, text width=2em] (PC) at (cpu.north west) {\tt 13};
                \node[below=0.1em of PC] (1PC) {\tt PC};
                \node [right=1em of PC, block, color=black, very thick, fill=lightgray!30, minimum height=2
                    em, inner sep=0em, text width=2em] (SP) {\tt 25};
                \node[below=0.1em of SP] (1SP) {\tt SP};
                \node [right=1em of SP, block, color=black, very thick, fill=lightgray!30, minimum height=2
                    em, inner sep=0em, text width=2em] (A) {\tt 1};
                \node[below=0.1em of A] (1A) {\tt A};
                \node [right=1em of A, block, color=black, very thick, fill=lightgray!30, minimum height=2
                    em, inner sep=0em, text width=2em] (B) {\tt 7};
                \node[below=0.1em of B] (lB) {\tt B};
                \node [right=1em of B, block, color=black, very thick, fill=lightgray!30, minimum height=2
                    em, inner sep=0em, text width=2em] (C) {\tt 3};
                \node[below=0.1em of C] (lC) {\tt C};
                \node [right=0.6em of C] (etc) {\Huge \dots};
                \node [below=1.5em of PC, block, color=black, very thick, fill=lightgray!30, minimum height
=2em, inner sep=0em, text width=2em] (ZF) {\tt F};
                \node[below=0.1em of ZF] (1ZF) {\tt ZF};
                \node [right=1em of ZF, block, color=black, very thick, fill=lightgray!30, minimum height=2
                    em, inner sep=0em, text width=2em] (OF) \{\tT\};
                \node[below=0.1em of OF] (10F) {\tt OF};
                \node [right=1em of OF, block, color=black, very thick, fill=lightgray!30, minimum height=2
                    em, inner sep=0em, text width=2em] (HCF) {\tt F};
```

```
\node[below=0.1em of HCF] (lHCF) {\tt HCF};
               \node [right=1em of HCF, block, color=black, very thick, fill=lightgray!30, minimum height
                   =2em, inner sep=0em, text width=2em] (CF) {\tt F};
               \node[below=0.1em of CF] (1CF) {\tt CF};
               \node [right=1em of CF, block, color=black, very thick, fill=lightgray!30, minimum height=2
                   em, inner sep=0em, text width=5em] (tkz) \{\tt 15739\};
               \node[below=0.1em of tkz] (ltkz) {\tt ticks};
               \coordinate (PC) at (-0.5, 2);
               \coordinate (A) at (1.1, 2);
               \coordinate (ZF) at (-0.5, 0.6);
               \coordinate (OF) at (0.3, 0.6);
               \coordinate (HCF) at (1.1, 0.6);
               \coordinate (CF) at (1.9, 0.6);
               \coordinate (tkz) at (3.4, 1.0);
       \end{scope}
       \begin{scope}[font=\ttfamily, array/.style={matrix of nodes, nodes={draw, minimum size=7mm, fill=
           green!30},column sep=-\pgflinewidth, row sep=0.5mm, nodes in empty cells, row 2/.style={nodes={
           \matrix[array,ampersand replacement=\&] (array) {
       6 \& 12 \& 1 \& 214 \& 5 \& 0 \& 255 \& 4
       {\tiny \dots} \& 9 \& 10 \& 11 \& 12 \& 13 \& 14 \& {\tiny \dots}\\};
               \begin{scope}[on background layer]
                        \fill[green!10] (array-2-1.north west) rectangle (array-2-8.south east);
               \end{scope}
               \draw[<->, opacity=0.0]([yshift=0mm]array-1-1.north west) -- node[above,color=black,
                   opacity=1.0] {Memory} ([yshift=0mm]array-1-8.north east);
               \node[draw, fill=red, opacity=0.5, minimum size=6mm] at (array-1-5) (box) {};
               \draw (array-2-8.east)--++(0:3mm) node [right]{Address};
               \draw[-stealth, ultra thick, red] (PC) -- (array-2-5);
               \node[] (subi) at (6, -2) {\tt Sub(A, \textcolor{red}{5})};
               \draw[-stealth, ultra thick, mygreen] (box) -- (subi);
               \path[-stealth, ultra thick, echodrk] (subi.west) edge[bend right=20] (A);
               \path[-stealth, ultra thick, echodrk] (subi.west) edge[bend right=20] (PC);
               \draw[-stealth, ultra thick, echodrk] (subi) -- (tkz);
\path[-stealth, ultra thick, echodrk] (subi) edge[bend left=65] (ZF);
               \path[-stealth, ultra thick, echodrk] (subi) edge[bend left=65] (OF);
               \path[-stealth, ultra thick, echodrk] (subi) edge[bend left=65] (HCF);
               \path[-stealth, ultra thick, echodrk] (subi) edge[bend left=65] (CF);
       \end{scope}
\end{tikzpicture}
```

1.36 IQ Sampling


```
\node[rectangle, align=center] (fm) at (-2, 0) {\begin{tikzpicture}[samples=1000, domain=0:5]
                                                      \begin{axis}[
                                                                         hide axis,
                                                                         width=4cm, height=2cm,
                                                                         xtick=\empty,
                                                                         ytick=\empty,
                                                                         xlabel=\empty,
                                                                         ylabel=\empty,
                                                                         xmin=0, xmax=5,
                                                                         ymin=-2.1, ymax=2.1,
                                                                         trig format = rad
                                                      ]
                                                                         \addplot expression [no markers, smooth, thick, black] {2*sin(2*pi*3*x - 8*
                                                                                  cos(2*pi*0.25*x))};
                                                       \end{axis}
                 \end{tikzpicture}\\ $FM(t)$};
                 \node[rectangle, align=center] (cos) at (1, -3) {\tikz \draw[x=1.5ex, y=1ex, thick] (0, 0) sin
                           (0.5,\ 0.5) cos (1,\ 0) sin (1.5,\ -0.5) cos (2,\ 0) sin (2.5,\ 0.5) cos (3,\ 0) sin (3.5,\ -0.5) cos
                           (4, 0) \sin (4.5, 0.5) \cos (5, 0) \sin (5.5, -0.5) \cos (6, 0); \ \cos(2\pi f t) ;
                 \noinde[circle, draw, cross, thick] (mul1) at (1, -0.7) {};
                 \node[circle, draw, cross, thick] (mul2) at (2, 1.3) {};
                  \node[rectangle, draw, thick] (rot) at (2, 0.3) {$-90^\circ$};
                  \node[rectangle] (it) at (3, -1) {$I(t)$};
                 \node[rectangle] (qt) at (3, 1.6) {$Q(t)$};
                 \node[rectangle, draw, thick, align=center] (lp1) at (4.75, -0.7) {\tikz \draw[x=3.5ex, y=1ex,
                           thick] (0, 0) sin (0.5, 0.5) cos (1, 0) sin (1.5, -0.5) cos (2, 0) (0.6, -0.5) -- (1.4, 0.5);
                            \text{tikz } \text{draw}[x=3.5ex, y=1ex, thick] (0, 0) sin (0.5, 0.5) cos (1, 0) sin (1.5, -0.5) cos (2, 0)
                 \node[rectangle, draw, thick, align=center] (1p2) at (4.75, 1.3) {\tikz \draw[x=3.5ex, y=1ex, thick
                          ] (0, 0) \sin (0.5, 0.5) \cos (1, 0) \sin (1.5, -0.5) \cos (2, 0) (0.6, -0.5) -- (1.4, 0.5); \\
                           tikz \draw[x=3.5ex, y=1ex, thick] (0, 0) sin (0.5, 0.5) cos (1, 0) sin (1.5, -0.5) cos (2, 0)
                 \noinde[rectangle, draw, thick] (samp1) at (7.25, -0.7) {sample};
                 \node[rectangle, draw, thick] (samp2) at (7.25, 1.3) {sample};
                 \node[rectangle] (in) at (8.5, -1) {I_n};
                 \node[rectangle] (qn) at (8.5, 1.6) {Q_n};
                 \draw[thick, -stealth] (-0.65, 0.3) -- (0, 0.3) |- (mul1);
                 \draw[thick, -stealth] (0, 0.3) |- (mul2);
                 \draw[thick, -stealth] (cos) -- (mul1);
                 \draw[thick, -stealth] (1, -1.85) -| (rot);
                 \draw[thick, -stealth] (rot) -- (mul2);
\draw[thick] (mul1) -- (1.9, -0.7);
                 \draw[thick] (1.89, -0.7) sin (2, -0.6) cos (2.11, -0.7);
                 \draw[thick, -stealth] (2.1, -0.7) -- (lp1);
                 \draw[thick, -stealth] (mul2) -- (lp2);
                 \draw[thick, -stealth] (lp1) -- (samp1);
\draw[thick, -stealth] (lp2) -- (samp2);
                 \draw[thick] (samp1) -| (9, 0.3);
                 \draw[thick] (samp2) -| (9, 0.3);
                 \displaystyle \frac{1}{n} - \frac{1}{n} = \frac{
\end{tikzpicture}
```

1.37 Lego Deep Learning

\tikzstyle{stateTransition}=[-stealth, thick]

```
\begin{tikzpicture}
       \node[rectangle, draw, right=1.5em of X, text depth=0em, minimum width=1.5cm, minimum height=2.5cm]
           (W1) {${\bf W_1}\times$};
       \node[rectangle, draw, right=1.5em of W1, text depth=0em, minimum width=0.5cm,minimum height=2.5cm]
            (B1) {$+ \vee c{b}_1$};
       \node[rectangle, draw, right=1.5em of B1, text depth=0em, minimum width=1.5cm,minimum height=2.5cm]
            (RL) {
               \begin{tikzpicture}
                       \draw[thick] (0,0) -- (0.5, 0);
                       \draw[thick] (0.49, -0.004) -- (0.99, 0.496);
               \end{tikzpicture}
       };
       \node[rectangle, draw, right=1.5em of RL, text depth=0em, minimum width=1.5cm, minimum height=2.5cm]
            (W) {${\bf W_2}\times$};
       \node[rectangle, draw, right=1.5em of W, text depth=0em, minimum width=0.5cm,minimum height=1.5cm]
           (B) \{ + \text{vec} \{b\}_2 \} \};
       \node[right=1.5em of B, inner sep=0em] (out) {
       \begin{tikzpicture}
               \node[rectangle, draw, rotate=90, minimum height=0.5cm, minimum width=1.5cm] (out) {softmax
                   };
       \end{tikzpicture}
       \node[right=1.5em of out] (outt) {};
       \foreach \x in \{1, \ldots, 3\}
               \draw[stateTransition] ([yshift=\x em]X.east) -- ([yshift=\x em]W1.west);
    \foreach \x in \{1, \ldots, 3\}
               \draw[stateTransition] ([yshift=-\x em]X.east) -- ([yshift=-\x em]W1.west);
       \draw[-stealth, thick] (X) -- (W1);
       \foreach \x in \{1, ..., 3\}
               \draw[stateTransition] ([yshift=\x em]W1.east) -- ([yshift=\x em]B1.west);
    \foreach \x in \{1, \ldots, 3\}
               \label{lem:condition} $$ \operatorname{Index}(yshift=-x em]W1.east) -- ([yshift=-x em]B1.west); $$
       \draw[-stealth, thick] (W1) -- (B1);
       \foreach \x in \{1, ..., 3\}
               \draw[stateTransition] ([yshift=\x em]B1.east) -- ([yshift=\x em]RL.west);
    \foreach \x in \{1, \ldots, 3\}
               \draw[-stealth, thick] (B1) -- (RL);
       \foreach \x in \{1, \ldots, 3\}
               \draw[stateTransition] ([yshift=\x em]RL.east) -- ([yshift=\x em]W.west);
    \foreach \x in \{1, \ldots, 3\}
               \draw[stateTransition] ([yshift=-\x em]RL.east) -- ([yshift=-\x em]W.west);
       \draw[-stealth, thick] (RL) -- (W);
       \foreach \x in \{-1.5, -0.5, 0.5, 1.5\}
               \draw[stateTransition] ([yshift=\x em]W.east) -- ([yshift=\x em]B.west);
       foreach \x in {-1.5, -0.5, 0.5, 1.5}
               \draw[stateTransition] ([yshift=\x em]B.east) -- ([yshift=\x em]out.west);
       foreach \x in {-1.5, -0.5, 0.5, 1.5}
               \draw[stateTransition] ([yshift=\x em]out.east) -- ([yshift=\x em]outt.west);
\end{tikzpicture}
```

1.38 Long Short Term Memory


```
\begin{tikzpicture}
        \node[rectangle, draw, minimum width=2.2cm, minimum height=1cm] (FT) {\emph{new fts.}};
        \node[rectangle, above =0em of FT, draw, minimum width=2.2cm] (IG) {\emph{input gate}};
        \node[rectangle, above=0em of IG, draw, minimum width=2.2cm] (FG) {\emph{forget gate}};
        \node[rectangle, below=0em of FT, draw, minimum width=2.2cm] (OG) {\emph{output gate}};
        \node[left=of IG] (X) {$\vec{x}_t$};
        \label{left=of FT} $$ \operatorname{FT} (Y) { \varepsilon_{y}_{t-1}}; $$
        \draw[-stealth, thick] (X.east) -- ([yshift=0.5em]FT.west);
        \draw[-stealth, thick] (X.east) -- ([yshift=0.25em]IG.west);
        \draw[-stealth, thick] (X.east) -- ([yshift=0.25em]FG.west);
        \draw[-stealth, thick] (X.east) -- ([yshift=0.25em]OG.west);
        \draw[-stealth, thick] (Y.east) -- ([yshift=-0.5em]FT.west);
        \draw[-stealth, thick] (Y.east) -- ([yshift=-0.25em]IG.west);
        \draw[-stealth, thick] (Y.east) -- ([yshift=-0.25em]FG.west);
        \draw[-stealth, thick] (Y.east) -- ([yshift=-0.25em]OG.west);
        \node[circle, draw, right=of FT] (t1) {$\times$};
        \node[circle, draw, right=of t1] (pl) {$+$};
        \node[rectangle, draw, right=of pl] (th) {$\sigma$};
        \node[circle, draw, right=of th] (t2) {$\times$};
        \node[right=of t2] (Y1) {\streety}_t\streety;
        \node[circle, draw, above=of pl] (t3) {$\times$};
       \node[rectangle, thick, draw, above=of t3, minimum width=1.5cm, minimum height=1.5cm] (M) {$M$};
        \draw[-stealth, thick] (FT) -- (t1);
        \draw[-stealth, thick] (t1) -- (pl);
        \draw[-stealth, thick] (pl) -- (th);
        \draw[-stealth, thick] (th) -- (t2);
        \draw[-stealth, thick] (t2) -- (Y1);
        \draw[-stealth, thick] (t3) -- (p1);
        \path[-stealth, thick] (IG.east) edge[bend left] (t1);
        \draw[thick] (OG.east) -- ([xshift=10em]OG.east);
        \label{lem:condition} $$ \left[-\text{stealth, thick}\right] (OG.east) -- ([xshift=10em]OG.east) edge[bend right=15] (t2); $$
        \path[-stealth, thick] (FG.east) edge[bend left=10] (t3);
        \path[-stealth, thick] (pl.east) edge[bend right=60] node[right] {$\vec{c}_t$} (M.east);
        \det[-\text{stealth}, \text{very thick}, \text{dashed}, \text{gray}] (-1.5, -1.5) \text{ rectangle } (8.4, 4.8);
        \node[] (tttxt) at (-0.8, 4.5) {\large \bf LSTM};
```

1.39 Maximum Flow Problem


```
\begin{tikzpicture}[scale=0.8, every node/.style={scale=0.7}, font=\tt]
        \SetUpEdge[lw
                              = 0.75pt,
                        color
                                   = red,
                        labelcolor = white]
        \GraphInit[vstyle=Normal]
        \SetGraphUnit{2}
        \tikzset{VertexStyle/.append style={fill=red!50}}
        \Vertex{s}
        \tikzset{VertexStyle/.append
                                      style={fill=white}}
        \NOEA(s){2}
        \EA(2){4}
        \tikzset{VertexStyle/.append
                                      style={fill=blue!50}}
        SOEA(4){t}
        \tikzset{VertexStyle/.append style={fill=white}}
        \EA(s){3}
        \EA(3)\{5\}
        \SetUpEdge[labeltext=blue]
        \tikzset{EdgeStyle/.style={-stealth, color=blue}}
        \Edge[label=10/10](s)(2)
        \SetUpEdge[labeltext=blue!90]
        \tikzset{EdgeStyle/.style={-stealth, color=blue!90}}
        \Edge[label=9/10](s)(3)
        \SetUpEdge[labeltext=gray]
        \tikzset{EdgeStyle/.style={-stealth, color=gray}}
        \Edge[label=0/2](2)(3)
        \SetUpEdge[labeltext=blue]
        \tikzset{EdgeStyle/.style={-stealth, color=blue}}
        Edge[label=4/4](2)(4)
        \SetUpEdge[labeltext=blue!75]
        \tikzset{EdgeStyle/.style={-stealth, color=blue!75}}
        Edge[label=6/8](2)(5)
        \SetUpEdge[labeltext=blue]
        \tikzset{EdgeStyle/.style={-stealth, color=blue}}
        Edge[label=9/9](3)(5)
        \SetUpEdge[labeltext=blue]
        \tikzset{EdgeStyle/.style={-stealth, color=blue}}
        \Edge[label=10/10](4)(t)
        \SetUpEdge[labeltext=blue]
        \tikzset{EdgeStyle/.style={-stealth, color=blue}}
        \Edge[label=6/6](5)(4)
        \SetUpEdge[labeltext=blue!90]
        \tikzset{EdgeStyle/.style={-stealth, color=blue!90}}
       Edge[label=9/10](5)(t)
\end{tikzpicture}
```

1.40 MCL


```
\definecolor{mygreen}{HTML}{006400}
\begin{tikzpicture}[node distance=2.8em]
                         \node[circle, thick, fill=red, draw] (0) {};
                         \node[circle, thick, below left=of 0, fill=red, draw] (1) {};
                         \node[circle, thick, below right=of 1, fill=red, draw] (3) {};
                         \node[circle, thick, below left=of 3, fill=red, draw] (4) {};
                         \node[circle, thick, below right=of 3, fill=red, draw] (5) {};
                         \node[circle, thick, below right=of 4, fill=red, draw] (6) {};
                         \node[circle, thick, right=of 5, fill=mygreen, draw] (7) {};
                         \node[circle, thick, above right=of 7, fill=mygreen, draw] (8) {};
\node[circle, thick, below right=of 8, fill=mygreen, draw] (9) {};
                         \node[circle, thick, below right=of 7, fill=mygreen, draw] (10) {};
                         \node[circle, thick, below left=of 10, fill=mygreen, draw] (11) {};
                         \node[circle, thick, above right=of 9, fill=blue, draw] (13) {};
                         \node[circle, thick, above right=of 13, fill=blue, draw] (16) {};
                         \node[circle, thick, above left=of 16, fill=blue, draw] (14) {};
                         \node[circle, thick, above right=of 14, fill=blue, draw] (15) {};
                         \node[circle, thick, above right=of 16, fill=blue, draw] (17) {};
\node[circle, thick, below right=of 16, fill=blue, draw] (18) {};
\path[-stealth, very thick] (0) edge [->, >=stealth, opacity=0.02, loop above] (0);
\draw[very thick, opacity=0.30, -stealth] (0) -- (1);
\draw[very thick, opacity=0.07, -stealth] (0) -- (2); \draw[very thick, opacity=0.53, -stealth] (0) -- (3);
\draw[very thick, opacity=0.02, -stealth] (0) -- (4);
\draw[very thick, opacity=0.05, -stealth] (0) -- (5);
\path[-stealth, very thick] (1) edge [->, >=stealth, opacity=0.56, loop left] (1);
\draw[very thick, opacity=0.25, -stealth] (1) -- (2);
\draw[very thick, opacity=0.11, -stealth] (1) -- (3);
\draw[very thick, opacity=0.02, -stealth] (1) -- (4);
\draw[very thick, opacity=0.05, -stealth] (1) -- (5);
\draw[very thick, opacity=0.54, -stealth] (2) -- (1);
```

```
\path[-stealth, very thick] (2) edge [->, >=stealth, opacity=0.31, loop right] (2);
\draw[very thick, opacity=0.04, -stealth] (2) -- (3);
\draw[very thick, opacity=0.03, -stealth] (2) -- (4);
\draw[very thick, opacity=0.07, -stealth] (2) -- (5);
\draw[very thick, opacity=0.35, -stealth] (3) -- (1);
\draw[very thick, opacity=0.09, -stealth] (3) -- (2);
\path[-stealth, very thick] (3) edge [->, >=stealth, opacity=0.44, loop right] (3);
\draw[very thick, opacity=0.03, -stealth] (3) -- (4);
\draw[very thick, opacity=0.08, -stealth] (3) -- (5);
\draw[very thick, opacity=0.22, -stealth] (4) -- (1);
\draw[very thick, opacity=0.07, -stealth] (4) -- (2);
\draw[very thick, opacity=0.05, -stealth] (4) -- (3);
\path[-stealth, very thick] (4) edge [->, >=stealth, opacity=0.19, loop left] (4); \draw[very thick, opacity=0.46, -stealth] (4) -- (5);
\del{draw} [very thick, opacity=0.38, -stealth] (5) -- (1);
\draw[very thick, opacity=0.09, -stealth] (5) -- (2); \draw[very thick, opacity=0.12, -stealth] (5) -- (3); \draw[very thick, opacity=0.10, -stealth] (5) -- (4);
\path[-stealth, very thick] (5) edge [->, >=stealth, opacity=0.31, loop below] (5);
\draw[very thick, opacity=0.31, -stealth] (6) -- (1); \draw[very thick, opacity=0.08, -stealth] (6) -- (2); \draw[very thick, opacity=0.46, -stealth] (6) -- (3);
\draw[very thick, opacity=0.04, -stealth] (6) -- (4);
\draw[very thick, opacity=0.10, -stealth] (6) -- (5);
\path[-stealth, very thick] (7) edge [->, >=stealth, opacity=0.32, loop above] (7);
\draw[very thick, opacity=0.10, -stealth] (7) -- (8);
\del{draw} [very thick, opacity=0.12, -stealth] (7) -- (9);
\draw[very thick, opacity=0.36, -stealth] (7) -- (10); \draw[very thick, opacity=0.07, -stealth] (7) -- (11); \draw[very thick, opacity=0.03, -stealth] (7) -- (12);
\draw[very thick, opacity=0.28, -stealth] (8) -- (7);
\path[-stealth, very thick] (8) edge [->, >=stealth, opacity=0.11, loop above] (8);
\draw[very thick, opacity=0.13, -stealth] (8) -- (9); \draw[very thick, opacity=0.37, -stealth] (8) -- (10);
\draw[very thick, opacity=0.07, -stealth] (8) -- (11);
\draw[very thick, opacity=0.03, -stealth] (8) -- (12);
\draw[very thick, opacity=0.03, -stealth] (9) -- (7); \draw[very thick, opacity=0.01, -stealth] (9) -- (8);
\path[-stealth, very thick] (9) edge [->, >=stealth, opacity=0.48, loop above] (9);
\draw[very thick, opacity=0.27, -stealth] (9) -- (10);
\draw[very thick, opacity=0.21, -stealth] (9) -- (11);
\draw[very thick, opacity=0.10, -stealth] (10) -- (7);
\draw[very thick, opacity=0.04, -stealth] (10) -- (8);
\draw[very thick, opacity=0.31, -stealth] (10) -- (9);
\path[-stealth, very thick] (10) edge [->, >=stealth, opacity=0.39, loop right] (10); \draw[very thick, opacity=0.15, -stealth] (10) -- (11);
\draw[very thick, opacity=0.04, -stealth] (11) -- (7);
\draw[very thick, opacity=0.01, -stealth] (11) -- (8);
\draw[very thick, opacity=0.45, -stealth] (11) -- (9); \draw[very thick, opacity=0.29, -stealth] (11) -- (10);
\path[-stealth, very thick] (11) edge [->, >=stealth, opacity=0.20, loop left] (11);
\del{draw} [very thick, opacity=0.36, -stealth] (12) -- (7);
\draw[very thick, opacity=0.13, -stealth] (12) -- (8); \draw[very thick, opacity=0.08, -stealth] (12) -- (9);
\draw[very thick, opacity=0.34, -stealth] (12) -- (10);
\draw[very thick, opacity=0.05, -stealth] (12) -- (11);
\path[-stealth, very thick] (12) edge [->, >=stealth, opacity=0.04, loop right] (12);
\path[-stealth, very thick] (13) edge [->, >=stealth, opacity=0.12, loop below] (13);
\draw[very thick, opacity=0.03, -stealth] (13) -- (14);
\draw[very thick, opacity=0.52, -stealth] (13) -- (16);
\draw[very thick, opacity=0.32, -stealth] (13) -- (17);
\draw[very thick, opacity=0.01, -stealth] (14) -- (13);
\path[-stealth, very thick] (14) edge [->, >=stealth, opacity=0.19, loop left] (14);
\del{draw} [very thick, opacity=0.65, -stealth] (14) -- (16);
```

```
\draw[very thick, opacity=0.11, -stealth] (14) -- (17);
\draw[very thick, opacity=0.02, -stealth] (14) -- (18);
\draw[very thick, opacity=0.04, -stealth] (15) -- (13);
\draw[very thick, opacity=0.13, -stealth] (15) -- (14);
\path[-stealth, very thick] (15) edge [->, >=stealth, opacity=0.01, loop right] (15);
\draw[very thick, opacity=0.62, -stealth] (15) -- (16); \draw[very thick, opacity=0.18, -stealth] (15) -- (17);
\draw[very thick, opacity=0.01, -stealth] (15) -- (18);
\draw[very thick, opacity=0.03, -stealth] (16) -- (13);
\draw[very thick, opacity=0.09, -stealth] (16) -- (14);
\path[-stealth, very thick] (16) edge [->, >=stealth, opacity=0.69, loop below] (16); \draw[very thick, opacity=0.18, -stealth] (16) -- (17);
\draw[very thick, opacity=0.07, -stealth] (17) -- (13);
\draw[very thick, opacity=0.05, -stealth] (17) -- (14);
\draw[very thick, opacity=0.61, -stealth] (17) -- (16);
\path[-stealth, very thick] (17) edge [->, >=stealth, opacity=0.26, loop right] (17);
\draw[very thick, opacity=0.01, -stealth] (18) -- (13);
\draw[very thick, opacity=0.25, -stealth] (18) -- (14);
\draw[very thick, opacity=0.01, -stealth] (18) -- (15);
\draw[very thick, opacity=0.61, -stealth] (18) -- (16);
\draw[very thick, opacity=0.09, -stealth] (18) -- (17);
\path[-stealth, very thick] (18) edge [->, >=stealth, opacity=0.03, loop below] (18);
\end{tikzpicture}
```

1.41 Message Passing Neural Network


```
\definecolor{echodrk}{HTML}{0099cc}
\definecolor{olivegreen}{rgb}{0,0.6,0}
\definecolor{camdrk}{RGB}{0,62,114}
\begin{tikzpicture}
```

```
\node[circle, gray, draw, very thick] (1) {$\vec{h}^\ell_1$};
               \node[circle, echodrk, draw, below right=2em and 3em of 1, very thick] (2) {\vec{h}^\ell_2\};
               \node[circle, draw, echodrk, above right=3em and 4em of 1, very thick] (3) {\stackstart vec{h}^\ell_3$};
               \node[circle, echodrk, draw, above right=3.5em and 4em of 4, very thick] (5) {\frac{h}^{\circ}}_{0};
               \node[circle, echodrk, draw, below right=3em and 3em of 4, very thick] (6) {$\vec{h}^\ell_6$};
               \draw[gray, very thick] (1) -- (2);
               \draw[gray, very thick] (2) -- (3);
               \draw[red, ultra thick, -stealth] (2) -- node[below, xshift=0.9em] (11) {\vec{h}_{2\rightarrow}}
                       4}^\ell$} (4);
               \draw[red, ultra thick, -stealth] (3) -- node[above,xshift=1em, inner sep=0em] (11) {\$\vec{h}_{3}\}
                      rightarrow 4}^\ell$} (4);
               \draw[red,ultra thick, -stealth] (5) -- node[right, yshift=-0.5em] (lr) {\vec{h}_{5}\rightarrow}
                       4}^\ell$} (4);
               ell$} (4);
               \label{local_conditions} $$ \end{are} in $$ \end{are} (31) $$ \end{are} in $
               \node[right=1em of 31, echodrk] (41) {<math>\vec{h}^\ell_4};
               \node[rectangle, draw, camdrk, very thick, above right=3em and -0.5em of 31] (F) {\sqrt{sf_e^\ell$};
               \label{local_state} $$ \ode [above=3em of F, red] (34) {$\vec{h}^\ell_{3}rightarrow 4}$$;
               \draw[very thick, camdrk, -stealth] (31) -- (F);
               \draw[very thick, camdrk, -stealth] (41) -- (F);
               \draw[very thick, camdrk, -stealth] (F) -- (34);
               \draw[very thick, -stealth, dashed, echodrk] (3) edge[bend left=30] (31);
               \draw[very thick, -stealth, dashed, echodrk] (4) edge[bend right=65] (41);
               \draw[very thick, -stealth, dashed, red] (34) edge[bend right=40] (11);
               \node[right= of 4, camdrk, rectangle, draw, very thick] (G) {\sqrt{sf_v^\ell$};
               \label{eq:condition} $$ \operatorname{[right=4 \ em \ of \ G, \ olivegreen]} (111) $$ \operatorname{[vec\{h]^{\ell+1}_4$}$; }
               \draw[-stealth, camdrk, very thick] (4) -- (G);
               \draw[-stealth, camdrk, very thick] (G) -- (111);
               \draw[very thick, -stealth, dashed, olivegreen] (111) edge[bend left=25] (4);
\end{tikzpicture}
```

1.42 Multilayer Network


```
\definecolor{echoreg}{HTML}{2cb1e1}
```

```
\definecolor{echodrk}{HTML}{0099cc}
\tikzstyle{mybox} = [text=black, very thick,
   rectangle, rounded corners, inner sep=10pt, inner ysep=20pt]
\tikzstyle{fancytitle} =[text=black]
\newcommand{\yslant}{0.5}
\newcommand{\xslant}{-0.6}
\newcommand\overmat[3]{%
 \begin{matrix} \#2\end{matrix} ^{(\text{#1})} $$
\newcommand\undermat[3]{%
  \begin{matrix}#2\end{matrix}}}_{\text{#1}}}$\#2\
\newcommand\partialphantom{\vphantom{\frac{\partial e_{P,M}}}{\partial w_{1,1}}}}
\begin{tikzpicture}[scale=0.58, every node/.style={minimum size=1cm}, on grid]
        \node [mybox, scale=1.0] at (10.5, 2) (box){%
                \begin{minipage}{0.6\textwidth}
                       \[ \{\mathbb{M} = \{\mathbb{M} = \{\mathbb{M} = \mathbb{M} \} = \mathbb{M} \} \]
                       \begin{matrix}
                                \left[\overmat{\textcolor{red}Layer 1}{
                               \begin{matrix}
                                       1 & 0 & 0\\
                                       1 & 0 & 1\\
                                       1 & 0 & 0\\
                               \end{matrix}}{red}\right] & \left[\overmat{1 $\rightarrow$ 2}{
                               \begin{matrix}
                                       1 & 0 & 0\\
                                       0 & 1 & 0\\
                                       0 & 0 & 0\\
                               \end{matrix}}{gray}\right]\\
                               \left[\undermat{2 $\rightarrow$ 1}{
                               \begin{matrix}
                                       0 & 0 & 0 \\
                                       1 & 0 & 0\\
                                       0 & 0 & 0\\
                               \end{matrix}}{gray}\right] & \left[\undermat{\textcolor{echodrk}Layer 2}{
                               \begin{matrix}
                                       0 & 1 & 1\\
                                       1 & 0 & 0\\
                                       1 & 0 & 0\\
                        \end{matrix}}{echodrk}\right]\\
                        \end{matrix}\right]}\]
       \end{minipage}
       };
       \node[fancytitle, scale=0.8] at (box.north) {\bf Tensor form:};
       % Layer 2
       \begin{scope}[
                every node/.append style={yslant=\yslant,xslant=\xslant},
               yslant=\yslant,xslant=\xslant
       ]
               \draw[black, dashed, thin] (0,0) rectangle (7,7);
               \draw[fill=echoreg]
                        (5,2) node(111){} circle (.1)
                        (2,2) circle (.1)
                        (3.5,5) circle (.1);
               \draw[-latex, thin, color=echodrk]
                        (3.55,4.85) to (4.85,2.05);
               \draw[-latex, thin, color=echodrk]
                        (4.95, 2.15) to (3.65, 4.95);
               \draw[-latex, thin, color=echodrk]
                        (2.15, 1.92) to (4.85, 1.92);
               \draw[-latex, thin, color=echodrk]
                        (4.85,2.05) to (2.15,2.05);
                \fill[black]
                        (0.5,6.5) node[right, scale=.7] {Layer 2}
                        (5.1,1.9) node[right,scale=.7]{\bf A}
                        (1.9,1.9) node[left,scale=.7]{\bf B}
```

```
(3.5,5.1) node[above,scale=.7]{\bf C};
       \end{scope}
       % Interlayer crossconnections
      \draw[thick, -latex, decoration={snake, segment length=2mm, amplitude=0.2mm}, decorate] (3.8, 4) to
           (3.8, -0.32);
       \det \{t, -t\}
           (.8, -1.8);
      % Layer 1
      \begin{scope}[
             yshift=0,
              every node/.append style={yslant=\yslant,xslant=\xslant},
             yslant = \yslant , xslant = \xslant
      ]
             fill[white, fill opacity=.75] (0,0) rectangle (7,7);
             \draw[black, dashed, thin] (0,0) rectangle (7,7);
             \draw [fill=red]
                    (5,2) node(111){} circle (.1)
                     (2,2) circle (.1)
                     (3.5,5) circle (.1);
             \draw[-latex, thin, color=red]
                     (3.6,4.9) to (4.9,2.1);
             \draw[-latex, thin, color=red]
                     (2.15,2) to (4.85,2);
             \draw[-latex, thin, color=red]
                     (2.1,2.1) to (3.4,4.9);
              \draw[-latex, thin, color=red]
                     (5.1,2.15) to [bend left=90] (6.3, 2) to [bend left=70] (5.1, 1.85);
             \fill[black]
                     (0.5,6.5) node[right, scale=.7] {Layer 1}
                     (5.1,1.9) node[right,scale=.7]{\bf A}
                     (1.9,1.9) node[left,scale=.7]{\bf B}
                     (3.5,5.1) node[above,scale=.7]{\bf C};
       \end{scope}
\end{tikzpicture}
```

1.43 Multilayer Perceptron


```
\tikzstyle{inputNode}=[draw,circle,minimum size=10pt,inner sep=0pt]
\tikzstyle{stateTransition}=[-stealth, thick]

\begin{tikzpicture}
    \node[draw,circle,minimum size=25pt,inner sep=0pt] (x) at (0,0) {$\sigma$ $\sigma$};

    \node[inputNode] (x0) at (-2, 1.5) {$\tiny +1$};
    \node[inputNode] (x1) at (-2, 0.75) {$\tiny x_1$};
```

```
\node[inputNode] (x2) at (-2, 0) \{ \times x_2 \};
        \node[inputNode] (x3) at (-2, -0.75) \{\text{tiny } x_3\};
        \node[inputNode] (xn) at (-2, -1.75) \{\tiny x_n\};
        \label{localization} $$ \operatorname{draw}[\operatorname{stateTransition}] (x0) \ \operatorname{to}[\operatorname{out=0,in=120}] \ \operatorname{node} \ [\operatorname{midway, sloped, above}] \ \{ w_0 \} \ (x); 
        \draw[stateTransition] (x1) to[out=0,in=150] node [midway, sloped, above] {$w_1$} (x);
        \draw[stateTransition] (x3) to[out=0,in=210] node [midway, sloped, above] {$w_3$} (x);
        \draw[stateTransition] (xn) to[out=0,in=240] node [midway, sloped, above] {$w_n$} (x);
        _ix_i}\right)$};
        \draw[dashed] (0,-0.43) -- (0,0.43);
        \node (dots) at (-2, -1.15) {\frac{1}{vdots}};
        \node[inputNode, thick] (i1) at (6, 0.75) {};
        \node[inputNode, thick] (i2) at (6, 0) {};
\node[inputNode, thick] (i3) at (6, -0.75) {};
        \node[inputNode, thick] (h1) at (8, 1.5) {};
        \node[inputNode, thick] (h2) at (8, 0.75) {};
        \node[inputNode, thick] (h3) at (8, 0) {};
\node[inputNode, thick] (h4) at (8, -0.75) {};
        \node[inputNode, thick] (h5) at (8, -1.5) {};
        \node[inputNode, thick] (o1) at (10, 0.75) {};
        \node[inputNode, thick] (o2) at (10, -0.75) {};
        \draw[stateTransition] (5, 0.75) -- node[above] {$I_1$} (i1);
        \label{lem:condense} $$ \operatorname{Index}[stateTransition] (5, 0) -- node[above] {$I_2$} (i2);
        \draw[stateTransition] (5, -0.75) -- node[above] {$I_3$} (i3);
        \draw[stateTransition] (i1) -- (h1);
        \draw[stateTransition] (i1) -- (h2);
        \draw[stateTransition] (i1) -- (h3);
        \draw[stateTransition] (i1) -- (h4);
        \draw[stateTransition] (i1) -- (h5);
        \draw[stateTransition] (i2) -- (h1);
        \draw[stateTransition] (i2) -- (h2);
        \draw[stateTransition] (i2) -- (h3);
        \draw[stateTransition] (i2) -- (h4);
        \draw[stateTransition] (i2) -- (h5);
        \draw[stateTransition] (i3) -- (h1);
        \draw[stateTransition] (i3) -- (h2);
        \draw[stateTransition] (i3) -- (h3);
        \draw[stateTransition] (i3) -- (h4);
        \draw[stateTransition] (i3) -- (h5);
        \draw[stateTransition] (h1) -- (o1);
        \draw[stateTransition] (h1) -- (o2);
        \draw[stateTransition] (h2) -- (o1);
        \draw[stateTransition] (h2) -- (o2);
        \draw[stateTransition] (h3) -- (o1);
        \draw[stateTransition] (h3) -- (o2);
        \draw[stateTransition] (h4) -- (o1);
        \draw[stateTransition] (h4) -- (o2);
        \draw[stateTransition] (h5) -- (o1);
        \draw[stateTransition] (h5) -- (o2);
        \node[above=of i1, align=center] (11) {Input \\ layer};
        \node[right=2.3em of 11, align=center] (12) {Hidden \\ layer};
        \node[right=2.3em of 12, align=center] (13) {Output \\ layer};
        \draw[stateTransition] (o1) -- node[above] {$0_1$} (11, 0.75);
        \draw[stateTransition] (o2) -- node[above] {$0_2$} (11, -0.75);
        \path[dashed, double, ultra thick, gray] (x.north) edge[bend left=0] (h5.north);
        \path[dashed, double, ultra thick, gray] (x.south) edge[bend right=0] (h5.south);
\end{tikzpicture}
```

1.44 Multiplex Chain Gmhmm

\definecolor{echodrk}{HTML}{0099cc}

\begin{tikzpicture} [scale=1.3, every node/.style={transform shape}, start chain=1 going right, start chain =2 going right]

```
\node[state, fill=red!20, on chain=1, very thick, text depth=0pt] (1) {$s_0$};
\node[state, fill=red!20, on chain=1, very thick, text depth=0pt] (3) {<math>s_2};
\node[on chain=1] (md) {\dots};
\node[state, fill=red!20, on chain=1, very thick, text depth=0pt] (n) {<math>s_n};
\draw[>=stealth, color=red, text=black, very thick, auto=right,loop above/.style={out=75,in=105,
         loop}, every loop]
                  (1) edge node[above] {\footnotesize$\boldsymbol \omega_{11}}$} (2)
                  (2) edge node[above] {\footnotesize$\boldsymbol \omega_{11}$} (3)
                  (3) edge node[above] {\footnotesize$\boldsymbol \omega_{11}$} (md)
                  (md) edge node[above] {\footnotesize$\boldsymbol \omega_{11}$} (n);
\label{lem:conde} $$ \c [rectangle, thick, fill=red!20, draw] at (-2, 1.7) (y1) {$id_0$}; $$
\label{local_condition} $$ \ \end{\colored} $$ \end{\colored} $$ \ \end{\colored} $$\ \end{\colored
\node at (4, 1.7) (ymd) {\dots};
\node[rectangle, thick, fill=red!20, draw] at (6, 1.7) (yn) {$id_n$};
\draw[-stealth, color=red, text=black, very thick, dashed]
                  (1) edge node[right] {${\bf 0'}_{0,id_0}^1$} (y1)
                  (2) edge node[right] {${\bf 0'}_{1,id_1}^1$} (y2)
                  (3) edge node[right] {\bf 0'}_{2,id_2}^1\$} (y3)
                  (n) edge node[right] {${\bf 0'}_{n,id_n}^1$} (yn);
\node[rectangle, fill=red!20, draw, scale=0.2, minimum size=20em,above = 2cm of y1] at (-1, 2) (
                  \begin{tikzpicture}
                                    \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                      \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                    \end{axis}
                  \end{tikzpicture}
}:
\node[rectangle, fill=red!20, draw, scale=0.2, minimum size=20em,above = 2cm of y2] at (1, 2) (
         gauss2) {
                  \begin{tikzpicture}
                                    \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                      \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                    \end{axis}
                  \end{tikzpicture}
};
\node[rectangle, fill=red!20, draw, scale=0.2, minimum size=20em, above = 2cm of y3] at (3, 2) (
         gauss3) {
                  \begin{tikzpicture}
                                    \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                     \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                  \end{tikzpicture}
};
\node at (5, 4.7) (gaussmd) \{\dots\};
\node[rectangle, fill=red!20, draw, scale=0.2, minimum size=20em,above = 2cm of yn] at (7, 2) (
                  \begin{tikzpicture}
                                    \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                      \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                    \end{axis}
                  \end{tikzpicture}
}:
\draw[-stealth, color=red, text=black, very thick, dotted]
                  (y1) edge node[left] {\frac{d_0}^1}\ node[right] {\frac{d_0}^1}\ (gauss1)
                  (y2) edge node[left] {\sum_{i=1}^1} node[right] {\sum_{i=1}^1} (gauss2)
                  (y3) edge node[left] {\sum_{i=1}^{1}} node[right] {\sum_{i=1}^{1}} (gauss3)
                  (yn) edge node[left] {\mu_{id_n}^1} node[right] {\mu_{id_n}^1} (gaussn);
%%%%%% BOUNDARY %%%%%%%
%%%%%% BOUNDARY %%%%%%%
\label{local-cond} $$ \ \end{subseteq} $$ \ 
\node[on chain=2] (2md) {\dots};
\node[state, fill=echodrk!20, on chain=2, very thick, text depth=0pt] (2n) {$s_n$};
```

```
\draw[>=stealth, color=blue, text=black, very thick, auto=right,loop above/.style={out=75,in=105,
          loop}, every loop]
                     (21) edge node[below] {\footnotesize$\boldsymbol \omega_{22}$} (22)
                     (22) edge node[below] {\cotnotesize}\boldsymbol \omega_{22} (23)
                      (23) edge node[below] {\colored{ hototesize $\boldsymbol \omega_{22}$} } (2md)
                     (2md) edge node[below] {\footnotesize$\boldsymbol \omega_{22}$} (2n);
\label{local_condition} $$ \ \operatorname{local_{-0}} \
\label{localization} $$ \ \end{are} $$ \ \end{are} in $$ \ \end{are} $$ \ \end{are} $$ id_1$; $$ \ \end{are} $$ id_2$; $$ \ \end{are} $$ \end{are} $$ \ \end{are} $$ \en
\node at (4, -3.7) (2ymd) \{\dots\};
\node[rectangle, thick, fill=echodrk!20, draw] at (6, -3.7) (2yn) {$id_n$};
\draw[-stealth, color=blue, text=black, very thick, dashed]
                      (21) edge node[right] {${\bf 0'}_{0,id_0}^2$} (2y1)
                     (22) edge node[right] {${\bf 0'}_{1,id_1}^2$} (2y2)
                      (23) edge node[right] {${\bf 0'}_{2,id_2}^2$} (2y3)
                     (2n) edge node[right] {${\bf 0'}_{n,id_n}^2$} (2yn);
\node[rectangle, fill=echodrk!20, draw, scale=0.2, minimum size=20em,above = 2cm of 2y1] at (-1,
           -9.5) (2gauss1) {
                     \begin{tikzpicture}
                                          \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                                \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                          \end{axis}
                     \end{tikzpicture}
};
\node[rectangle, fill=echodrk!20, draw, scale=0.2, minimum size=20em,above = 2cm of 2y2] at (1,
           -9.5) (2gauss2) {
                     \begin{tikzpicture}
                                          \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                                \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                          \end{axis}
                     \end{tikzpicture}
};
\node[rectangle, fill=echodrk!20, draw, scale=0.2, minimum size=20em,above = 2cm of 2y3] at (3,
           -9.5) (2gauss3) {
                     \begin{tikzpicture}
                                          \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                                \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                          \end{axis}
                     \end{tikzpicture}
};
\node at (5, -6.8) (2gaussmd) \{\dots\};
\node[rectangle, fill=echodrk!20, draw, scale=0.2, minimum size=20em,above = 2cm of 2yn] at (7,
          -9.5) (2gaussn) {
                     \begin{tikzpicture}
                                          \begin{axis}[axis lines=none, ticks=none,xmax=3, xmin=-3,ymax=1.1]
                                                                \addplot[ultra thick,black, no markers,samples=200] {exp(-x^2)};
                                          \end{axis}
                     \end{tikzpicture}
};
\draw[-stealth, color=blue, text=black, very thick, dotted]
                     (2y1) edge node[left] {\frac{d_0}^2} node[right] {\frac{d_0}^2} (2gauss1)
                     (2y2) edge node[left] {\star \underline{1}^2} node[right] {\star \underline{1}^2} (2gauss2)
                      (2y3) edge node[left] {\frac{id_2}^2} node[right] {\frac{id_2}^2} (2gauss3)
                     (2yn) edge node[left] {\mu_{id_n}^2} node[right] {\omega_{igma_{id_n}^2}} (2gaussn);
%%%% COMBO %%%%%
\draw[-stealth, very thick, auto=right,decoration={snake, segment length=2mm, amplitude=0.5mm,post
          length=1.5mm}]
                     (1) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (22)
                      (2) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (23)
                      (3) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (2md)
                     (md) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (2n);
\draw[-stealth, very thick, auto=right,decoration={snake, segment length=2mm, amplitude=0.5mm,post
          length=1.5mm}]
                     (21) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (2)
                      (22) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (3)
                      (23) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (md)
```

```
(2md) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (n);

%%%% START STATES %%%%%
\node[text depth=0pt] at (-2, -1) (S) {start};

\draw[-stealth, very thick, auto=right, decoration={snake, segment length=2mm, amplitude=0.5mm, post length=1.5mm}]

(S) edge[decorate] node[above] {\footnotesize$\pi_1$} (1)

(S) edge[decorate] node[below] {\footnotesize$\pi_2$} (21);

\end{tikzpicture}
```

1.45 Multiplex Chain Gmhmm Beta


```
\definecolor{echodrk}{HTML}{0099cc}
\pgfmathdeclarefunction{gauss}{2}{%
   \proonup \{1/(\#2*sqrt(2*pi))*exp(-((x-\#1)^2)/(2*\#2^2))\}\%
\begin{tikzpicture} [scale=1.3, every node/.style={transform shape}, start chain=1 going right, start chain
      =2 going right]
             \label{localization} $$ \ \end{subseteq} $$ \ \ \end{subseteq} $$ \ \end{subsete} $$ \ \ \end{subseteq} $$ \ \ \end{subseteq} $$ \ \end{subsete} $$ \ \end{subset} $$$ \ \end{subset} $$ \ \end{subset} $$$ \ \end{subset} $$\ \end{subset} $$$ \ \end{subset} $$\ \end{subs
             \node[state, fill=red!20, on chain=1, very thick, text depth=0pt] (2) {<math>s_1};
             \node[state, fill=red!20, on chain=1, very thick, text depth=0pt] (3) {\$s_2\$};
             \node[on chain=1] (md) {\dots};
             \draw[>=stealth, color=red, text=black, very thick, auto=right,loop above/.style={out=75,in=105,
                    loop}, every loop]
                           (1) edge node[above] {\footnotesize$\boldsymbol \omega_{11}}$} (2)
                           (2) edge node[above] {\footnotesize$\boldsymbol \omega_{11}}$} (3)
                           (3) edge node[above] {\footnotesize$\boldsymbol \omega_{11}$} (md)
                           (md) edge node[above] {\footnotesize$\boldsymbol \omega_{11}$} (n);
             \noinde[rectangle, thick, fill=red!20, draw] at (-2, 1.7) (y1) <math>{ \dot y1} = 0
             \noinde[rectangle, thick, fill=red!20, draw] at (0, 1.7) (y2) {<math>id_1};
             \label{local_condition} $$ \end{area} in $$ \end{area} in $$ \end{area} at (2, 1.7) (y3) {$id_2$};
             \node at (4, 1.7) (ymd) \{\dots\};
             \node[rectangle, thick, fill=red!20, draw] at (6, 1.7) (yn) <math>{sid_n};
             \draw[-stealth, color=red, text=black, very thick, dashed]
                           (1) edge node[right] \{ \{ 0'\}_{0,id_0}^1 \}  (y1)
                           (2) edge node[right] {${\bf 0'}_{1,id_1}^1$} (y2)
                           (3) edge node[right] \{ \{ bf 0' \}_{2,id_2}^1 \}  (y3)
                           (n) edge node[right] {${\bf 0'}_{n,id_n}^1$} (yn);
             \node[rectangle] at (-1, 4) (gauss1) {
                           \begin{tikzpicture}
                                        \begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                                               every axis plot post/.append style={mark=none,domain=-2:2,samples=50,smooth},
                                                      axis x line=bottom,
                                                      axis y line=left,
                                                      yticklabels={,,},
                                                      xticklabels={,,},
                                                      xtick=\empty, ytick=\empty,
                                                      enlargelimits=false, clip=false]
                                                                    \addplot[fill=red!10] {gauss(0,0.5)} \closedcycle;
                                                                    \draw[red!80,-stealth] (axis cs:0.5,0) -- (axis cs:0.5,0.47);
                                        \end{axis}
                           \end{tikzpicture}
             }:
             \node[rectangle] at (1, 4) (gauss2) {
                           \begin{tikzpicture}
                                        \begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                                               every axis plot post/.append style={mark=none,domain=-5:5,samples=50,smooth},
                                                      axis x line=bottom.
                                                      axis y line=left,
                                                      yticklabels={,,},
                                                      xticklabels={,,},
                                                      xtick=\empty, ytick=\empty,
                                                       enlargelimits=false, clip=false]
                                                                    \verb| \addplot[fill=red!10] { gauss(-1,0.8) } \verb| \closedcycle; | \\
                                                                    \draw[red!80,-stealth] (axis cs:-2.3,0) -- (axis cs:-2.3,0.121);
                                        \end{axis}
                          \end{tikzpicture}
             };
             \node[rectangle] at (3, 4) (gauss3) {
                           \begin{tikzpicture}
                                         \begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                                               every axis plot post/.append style={mark=none,domain=-4:4,samples=50,smooth},
                                                      axis x line=bottom,
                                                      axis y line=left,
                                                      yticklabels={,,},
                                                      xticklabels={,,},
                                                      xtick=\empty, ytick=\empty,
```

```
enlargelimits=false, clip=false]
                                                                    \addplot[fill=red!10] {gauss(2,0.5)} \closedcycle;
                                                                    \draw[red!80,-stealth] (axis cs:2.3,0) -- (axis cs:2.3,0.64);
                                  \end{axis}
                 \end{tikzpicture}
};
\node at (5, 4) (gaussmd) {\dots};
\node[rectangle] at (7, 4) (gaussn) {
                 \begin{tikzpicture}
                                  \begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                                           every axis plot post/.append style={mark=none,domain=-1.5:1.5,samples=50,smooth
                                                   axis x line=bottom,
                                                   axis y line=left,
                                                   yticklabels={,,},
                                                   xticklabels={,,},
                                                   xtick=\empty, ytick=\empty,
                                                   enlargelimits=false, clip=false]
                                                                    \verb|\addplot[fill=red!10]| \{gauss(0.1,0.5)\} \ \verb|\closedcycle|;
                                                                    \draw[red!80,-stealth] (axis cs:0.1,0) -- (axis cs:0.1,0.795);
                                  \end{axis}
                 \end{tikzpicture}
};
\draw[-stealth, color=red, text=black, very thick, dotted]
                  (y1) \ \ edge \ \ node[left] \ \{ \sum_{i=1}^{n} \{id_0\}^1 \} \ \ \ node[right] \ \{ \sum_{i=1}^{n} \{id_0\}^1 \} \ \ (gauss1) 
                 (y2) edge node[left] {$\mu_{id_1}^1$} node[right] {$\sigma_{id_1}^1$} (gauss2) (y3) edge node[left] {$\mu_{id_2}^1$} node[right] {$\sigma_{id_2}^1$} (gauss3) (yn) edge node[left] {$\mu_{id_n}^1$} node[right] {$\sigma_{id_n}^1$} (gaussn);
%%%%%% BOUNDARY %%%%%%%
%%%%%% BOUNDARY %%%%%%%
\node[state, fill=echodrk!20, on chain=2, very thick, text depth=0pt] (21) at (0, -2) <math>\{s_0\};
\node[state, fill=echodrk!20, on chain=2, very thick, text depth=0pt] (23) {\$s_2$};
\node[on chain=2] (2md) {\dots};
\ne {\tt node[state, fill=echodrk!20, on chain=2, very thick, text depth=0pt] (2n) {<math>\tt s_ns};
\draw[>=stealth, color=blue, text=black, very thick, auto=right,loop above/.style={out=75,in=105,
        loop}, every loop]
                 (21) edge node[below] {\footnotesize$\boldsymbol \omega_{22}$} (22)
                 (22) edge node[below] {\footnotesize $\boldsymbol \omega_{22}$} (23)
                 (23) edge node[below] {\footnotesize$\boldsymbol \omega_{22}$} (2md)
                 (2md) edge node[below] {\footnotesize$\boldsymbol \omega_{22}$} (2n);
\label{local_condition} $$ \ \end{minipage} $$ \operatorname{local_condition} = \operatorname{
\node[rectangle, thick, fill=echodrk!20, draw] at (2, -3.7) (2y3) {$id_2$};
\node at (4, -3.7) (2ymd) \{\dots\};
\node[rectangle, thick, fill=echodrk!20, draw] at (6, -3.7) (2yn) {\shape id_n\shape};
\verb|\draw[-stealth, color=blue, text=black, very thick, dashed]|
                 (21) edge node[right] {${\bf 0'}_{0,id_0}^2$} (2y1)
                 (22) edge node[right] {${\bf 0'}_{1,id_1}^2$} (2y2)
                 (23) edge node[right] {\footnote{0}}_{2,id_2}^2\} (2y3)
                 (2n) edge node[right] {${\bf 0'}_{n,id_n}^2$} (2yn);
\node[rectangle] at (-1, -6) (2gauss1) {
                 \begin{tikzpicture}
                                  \begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                                           every axis plot post/.append style={mark=none,domain=-4:4,samples=50,smooth},
                                                   axis x line=bottom,
                                                   axis y line=left,
                                                   yticklabels={,,},
                                                   xticklabels={,,},
                                                   xtick=\empty, ytick=\empty,
                                                    enlargelimits=false, clip=false]
                                                                    \addplot[fill=echodrk!10] {gauss(2,0.5)} \closedcycle;
                                                                    \draw[blue!80,-stealth] (axis cs:2.3,0) -- (axis cs:2.3,0.64);
                                  \end{axis}
                 \end{tikzpicture}
};
\node[rectangle] at (1, -6) (2gauss2) {
                 \begin{tikzpicture}
```

```
\begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                    \verb| every axis plot post/.append style={mark=none,domain=-1.5:1.5,samples=50,smooth|} \\
                        axis x line=bottom,
                        axis y line=left,
                        yticklabels={,,},
                        xticklabels={,,},
                        xtick=\empty, ytick=\empty,
                        enlargelimits=false, clip=false]
                                \addplot[fill=echodrk!10] {gauss(0.1,0.5)} \closedcycle;
                                \draw[blue!80,-stealth] (axis cs:0.1,0) -- (axis cs:0.1,0.795);
                \end{axis}
        \end{tikzpicture}
}:
\node[rectangle] at (3, -6) (2gauss3) {
        \begin{tikzpicture}
                \begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                    every axis plot post/.append style={mark=none,domain=-2:2,samples=50,smooth},
                        axis x line=bottom,
                        axis y line=left,
                        yticklabels={,,},
                        xticklabels={,,},
                        xtick=\empty, ytick=\empty,
                        enlargelimits=false, clip=false]
                                \addplot[fill=echodrk!10] {gauss(0,0.5)} \closedcycle;
                                \draw[blue!80,-stealth] (axis cs:0.5,0) -- (axis cs:0.5,0.47);
                \end{axis}
        \end{tikzpicture}
};
\node at (5, -6) (2gaussmd) {\dots};
\node[rectangle] at (7, -6) (2gaussn) {
        \begin{tikzpicture}
                \begin{axis}[scale=0.25, axis on top, x tick label style={major tick length=0pt},
                    every axis plot post/.append style={mark=none,domain=-5:5,samples=50,smooth},
                        axis x line=bottom,
                        axis y line=left,
                        yticklabels={,,},
                        xticklabels={,,},
                        xtick=\empty, ytick=\empty,
                        enlargelimits=false, clip=false]
                                \addplot[fill=echodrk!10] {gauss(-1,0.8)} \closedcycle;
                                \draw[blue!80,-stealth] (axis cs:-2.3,0) -- (axis cs:-2.3,0.121);
                \end{axis}
        \end{tikzpicture}
};
\draw[-stealth, color=blue, text=black, very thick, dotted]
        (2y1) edge node[left] {\frac{d_0}^2} node[right] {\frac{d_0}^2} (2gauss1)
        (2y2) edge node[left] {\frac{id_1}^2} node[right] {\frac{id_1}^2} (2gauss2)
        (2y3) edge node[left] { \sum_{i=1}^{2}^2 node[right] {\sum_{i=1}^2 (2gauss3)
        (2yn) edge node[left] {\mu_{id_n}^2} node[right] {\omega_{igma_{id_n}^2}} (2gaussn);
%%%% COMBO %%%%%
\draw[-stealth, very thick, auto=right, decoration={snake, segment length=2mm, amplitude=0.5mm,post
    length=1.5mm}]
        (1) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (22)
        (2) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (23)
        (3) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (2md)
        (md) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{12}$} (2n);
\draw[-stealth, very thick, auto=right,decoration={snake, segment length=2mm, amplitude=0.5mm,post
    length=1.5mm}]
        (21) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (2)
        (22) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (3)
        (23) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (md)
        (2md) edge[decorate] node[left, near start] {\footnotesize$\boldsymbol \omega_{21}$} (n);
%%%% START STATES %%%%%
\node[text depth=0pt] at (-2, -1) (S) {start};
\draw[-stealth, very thick, auto=right, decoration={snake, segment length=2mm, amplitude=0.5mm,post
    length=1.5mm}]
        (S) edge[decorate] node[above] {\footnotesize$\pi_1$} (1)
```

```
(S) edge[decorate] node[below] {\footnotesize$\pi_2$} (21);
\end{tikzpicture}
```

1.46 Multiplex Epidemic Awareness Network


```
\definecolor{mynavy}{HTML}{000080}
\definecolor{darkred}{HTML}{8B0000}
\definecolor{mygreen}{HTML}{006400}
\definecolor{mygold}{HTML}{B8860B}
\verb|\newcommand{myGlobalTransformation}[2]|
{
               \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
\tikzstyle myBG=[line width=3pt,opacity=1.0]
\begin{tikzpicture}
                             \begin{scope}
                                                            \myGlobalTransformation{0}{0};
                                                            \draw [black!50,fill=red!5] rectangle (8,8);
                              \end{scope}
                             \begin{scope}
                                                            \verb|\myGlobalTransformation{0}{4.25}|;
                                                            \draw [black!50,fill=blue!5] rectangle (8,8);
                              \end{scope}
                             \begin{scope}
                                                            \myGlobalTransformation{0}{0};
                                                            \node (thisNode) at (1,3) {};
                                                                                           \pgftransformreset
                                                                                          \verb|\draw[white,myBG,decoration={snake, pre length=0.01mm, segment length=2mm, length=2mm, length=2mm]|}
                                                                                                         amplitude=0.3mm, post length=1.5mm\}, decorate] (thisNode) -- ++(0,4.25);
```

```
\draw[black,very thick, decoration={snake, pre length=0.01mm, segment length=2mm,
                                                          amplitude=0.3mm, post length=1.5mm}, decorate,] (thisNode) -- ++(0,4.25);
                             \node (thisNode) at (3,5) {};
                             {
                                                 \pgftransformreset
                                                 \verb|\draw|[white,myBG,decoration={snake, pre length=0.01mm, segment length=2mm,}|
                                                          amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
                                                \verb|\draw| [black, very thick, decoration={snake, pre length=0.01mm, segment length=2mm, l
                                                          amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
                             \node (thisNode) at (5,7) {};
                                                \pgftransformreset
                                                \draw[white,myBG,decoration={snake, pre length=0.01mm, segment length=2mm,
                                                          amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
                                                 \draw[black,very thick,decoration={snake, pre length=0.01mm, segment length=2mm,
                                                          amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
         \node (thisNode) at (7,7) {};
                            {
                                                \pgftransformreset
                                                \draw[white,myBG,decoration={snake, pre length=0.01mm, segment length=2mm,
                                                          amplitude = 0.3 \, mm \, , \, \, post \, \, length = 1.5 \, mm \} \, , \, \, decorate ] \quad (this Node) \, \, -- \, \, ++ (0 \, , 4.25) \, ; \\
                                                 \draw[black,very thick,decoration={snake, pre length=0.01mm, segment length=2mm,
                                                          amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
\end{scope}
         \begin{scope}
                             \myGlobalTransformation{0}{0}
                             \node (N1) at (1,3) [circle, white, fill=mynavy] {$S$};
                             \node (N2) at (3,5) [circle, white, fill=darkred] {$I$};
                             \node (N3) at (5,1) [circle, white, fill=mygreen] {$V$};
                             \node (N4) at (5,7) [circle, white, fill=mynavy] {$S$};
                             \node (N5) at (7,3) [circle, white, fill=darkred] {$I$};
                             \node (N6) at (7,7) [circle, white, fill=mynavy] {$S$};
                             \draw[-, darkred!10, very thick] (N3) -- (N6);
                             \draw[-, darkred!15, very thick] (N2) -- (N4);
                             \del{draw}[-, darkred!20, very thick] (N2) -- (N6);
                             \del{draw}[-, darkred!30, very thick] (N1) -- (N5);
                             \del{local_norm} \del{local_norm} $$ \dim [-, \del{local_norm} \del{local_norm} \del{local_norm} $$ \del{lo
                             \del{draw}[-, darkred!66, very thick] (N4) -- (N5);
                             \draw[-, darkred!70, very thick] (N1) -- (N3);
                             \draw[-, darkred!70, very thick] (N5) -- (N6);
                             \del{draw}[-, darkred!75, very thick] (N3) -- (N4);
                             \del{draw}[-, darkred!90, very thick] (N1) -- (N2);
                             \draw[-, darkred!90, very thick] (N4) -- (N6);
                             \draw[-, darkred, very thick] (N2) -- (N3);
                             \draw[-, darkred, very thick] (N3) -- (N5);
         \end{scope}
         \begin{scope}
                             \mbox{\em MyGlobalTransformation} \{0\}\{4.25\}
                             \node (N1) at (1,3) [circle, white, fill=magenta] {$U$};
                             \node (N2) at (3,5) [circle, white, fill=mygold] {$A$};
                             \node (N3) at (5,1) [circle, white, fill=mygold] {$A$};
                             \node (N4) at (5,7) [circle, white, fill=magenta] {$U$};
                             \node (N5) at (7,3) [circle, white, fill=magenta] {$U$};
                             \node (N6) at (7,7) [circle, white, fill=mygold] {$A$};
                            \label{eq:continuous} $$ \draw[-, mynavy, very thick] (N1) -- (N2); \\ \draw[-, mynavy, very thick] (N1) -- (N3); \\
                             \draw[-, cyan, very thick] (N1) -- (N5);
                             \del{draw}[-, blue, very thick] (N2) -- (N3);
                             \del{localization} \del{localization} $$ \dim [-, mynavy, very thick] (N2) -- (N4);
                             \draw[-, mynavy, very thick] (N2) -- (N5);
                             \draw[-, blue, very thick] (N2) -- (N6);
                             \draw[-, mynavy, very thick] (N3) -- (N4);
                             \draw[-, mynavy, very thick] (N3) -- (N5);
                             \draw[-, blue, very thick] (N3) -- (N6);
                             \draw[-, cyan, very thick] (N4) -- (N5);
```

```
\draw[-, mynavy, very thick] (N4) -- (N6);
                                    \draw[-, mynavy, very thick] (N5) -- (N6);
                  \end{scope}
                  \begin{scope}
                                    \myGlobalTransformation{0}{0};
                                    \node (thisNode) at (5,1) {};
                                                        \pgftransformreset
                                                       \draw[white,myBG,decoration={snake, pre length=0.01mm, segment length=2mm,
                                                                amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
                                                       \draw[black,very thick,decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
                                     \node (thisNode) at (7,3) {};
                                                       \pgftransformreset
                                                       \verb|\draw[white,myBG,decoration={snake, pre length=0.01mm, segment length=2mm, length=2mm, length=2mm]|}
                                                                amplitude=0.3mm, post length=1.5mm, decorate] (thisNode) -- ++(0,4.25);
                                                       \draw[black,very thick,decoration={snake, pre length=0.01mm, segment length=2mm,
                                                                amplitude=0.3mm, post length=1.5mm}, decorate] (thisNode) -- ++(0,4.25);
                 \end{scope}
                 \begin{scope}
                                     \myGlobalTransformation {0}{0}
                                    \node (N3) at (5,1) [circle, white, fill=mygreen] {$V$};
                                    \node (N5) at (7,3) [circle, white, fill=darkred] {$I$};
                 \end{scope}
                                     \mbox{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{}\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{}\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\
                                     \node (N3) at (5,1) [circle, white, fill=mygold] {$A$};
                                     \node (N5) at (7,3) [circle, white, fill=magenta] {$U$};
                 \end{scope}
                  \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
                           length=1.5mm}, decorate,ultra thick] (0, 0.2) -- node [above=1em,rotate=90] {self-awareness}
                 \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
                           length=1.5mm}, decorate,ultra thick] (11.3, 8.1) -- node [above=1em,rotate=-90] {immunisation}
                           (11.3, 4.2);
                  \node at (10, 0.3) {\emph{\textbf{epidemics layer}}};
                 \node at (1.2, 8) {\emph{\textbf{awareness layer}}};
\end{tikzpicture}
```

1.47 Multiplex Network Underlying Graph


```
\definecolor{mygreen}{rgb}{0,0.6,0}
\definecolor{echodrk}{HTML}{0099cc}
\begin{tikzpicture}
        \node[circle, draw, very thick, fill=echodrk] (11) {};
        \node[below = 0.5em of 11] (11c) {$({\bf 0}, G_3)$};
        \node[circle, draw, very thick, fill=echodrk, right=3em of 11] (22) {};
       \label{local-condition} $$ \ode[below = 0.5em of 22] (22c) {$(\{\bf 1\}, G_3)$}; $$ \ode[circle, draw, very thick, fill=echodrk, right=3em of 22] (33) {}; $$
        \node[below = 0.5em of 33] (33c) {$({\bf 2}, G_3)$};
        \node[circle, draw, very thick, fill=echodrk, right=3em of 33] (44) {};
        \node[below = 0.5em of 44] (44c) {$({\bf 3}, G_3)$};
        \node[circle, draw, very thick, fill=mygreen, above = 4.5em of 11] (111) {};
        \node at ([shift=\{(0.53,-0.3)\}]111.-45) \{\{(bf 0), G_2\}\};
        \node[circle, draw, very thick, fill=mygreen, right=3em of 111] (222) {};
        \node at ([shift={(0.53,-0.3)}]222.-45) {$({\bf 1}, G_2)$};
        \node[circle, draw, very thick, fill=mygreen, right=3em of 333] (444) {};
        \node at ([shift=\{(0.53,-0.3)\}]444.-45) \{\{(bf 3\}, G_2)\};
        \node[circle, draw, very thick, fill=red, above = 4.5em of 111] (1) {};
```

```
\node[above = 0.5em of 1] (1c) \{(\{bf 0\}, G_1)\};
       \node[circle, draw, very thick, fill=red, right=3em of 1] (2) {};
       \node[above = 0.5em of 2] (2c) {\{(\{bf 1\}, G_1)\}\}};
       \node[circle, draw, very thick, fill=red, right=3em of 2] (3) {};
       \node[above = 0.5em of 3] (3c) {$({\bf 2}, G_1)$};
       \node[circle, draw, very thick, fill=red, right=3em of 3] (4) {};
       \node[above = 0.5em of 4] (3c) {$({\bf 3}, G_1)$};
       \draw[ultra thick, -, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
           post length=0.2mm}, decorate] (11) to (111);
       \draw[ultra thick, -, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
           post length=0.2mm}, decorate] (22) to (222);
       post length=0.2mm}, decorate] (33) to (333);
       \draw[ultra thick, -, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
           post length=0.2mm}, decorate] (44) to (444);
       \draw[ultra thick, -, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
           post length=0.2mm}, decorate] (1) to (111);
       \draw[ultra thick, -, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
          post length=0.2mm}, decorate] (2) to (222);
       \draw[ultra thick, -, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
           post length=0.2mm}, decorate] (3) to (333);
       \draw[ultra thick, -, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
           post length=0.2mm}, decorate] (4) to (444);
       \draw[ultra thick, -, bend right=12, decoration={snake, pre length=0.01mm, segment length=2mm,
           amplitude=0.3mm, post length=0.2mm}, decorate] (1) to (11);
       \draw[ultra thick, -, bend right=12, decoration={snake, pre length=0.01mm, segment length=2mm,
           amplitude=0.3mm, post length=0.2mm}, decorate] (2) to (22);
       \draw[ultra thick, -, bend right=12, decoration={snake, pre length=0.01mm, segment length=2mm,
           amplitude=0.3mm, post length=0.2mm}, decorate] (3) to (33);
       \draw[ultra thick, -, bend right=12, decoration={snake, pre length=0.01mm, segment length=2mm,
           amplitude=0.3mm, post length=0.2mm}, decorate] (4) to (44);
       \draw[-, ultra thick, color=echodrk] (11) to (22);
       \draw[-, ultra thick, bend right=17, color=echodrk] (11) to (33);
       \draw[-, ultra thick, color=echodrk] (33) to (44);
       \draw[-, ultra thick, color=mygreen] (111) to (222);
       \draw[-, ultra thick, color=mygreen] (222) to (333);
       \draw[-, ultra thick, bend left=17, color=red] (1) to (3);
       \draw[-, ultra thick, bend left=17, color=red] (1) to (4);
       \draw[-, ultra thick, bend right=17, color=red] (2) to (4);
       \draw[-, ultra thick, color=red] (2) to (3);
       \draw[-, ultra thick, color=red] (3) to (4);
\end{tikzpicture}
```

1.48 Muxstep Pipeline


```
\definecolor{echodrk}{HTML}{0099cc}
\newcommand{\argmax}{\operatornamewithlimits{argmax}}
\begin{tikzpicture}[node distance=2.5cm]
      \del{draw} [-, dashdotted, darkgray, very thick] (-2, -6.4) to (12, -6.4);
     \node[rectangle] at (-1.2, -6.1) {\emph{\textbf{Training}}};
\node[rectangle] at (-0.8, -6.7) {\emph{\textbf{Classification}}};
     \node[left = 0em of S, text depth=0em] (Slab) {Training set, };
     _2}, \dots)} \in C_1$};
     _2}, \dots)} \in C_2$};
     \draw[-stealth, very thick, bend left=20] (S) to (out1);
     \draw[-stealth, very thick, bend right=20] (S) to (out2);
     \node[rectangle, thick, draw, fill=red!50] (L1P) at (0, 0) {Train layer 1};
      \node[rectangle, thick, draw, fill=echodrk!50] (L2P) at (2.5, 0) {Train layer 2};
      \node[rectangle] (L3P) at (4.15, 0) {\dots};
```

```
\node[rectangle, thick, draw, fill=lightgray] (NP) at (1.7, -1.7) {Train interlayer edges};
\node [draw,thick,minimum width=6cm,minimum height=2.8cm] (W1) at (1.65,-0.85) {};
\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \end{array} \end{array} \end{array} 
        \node[rectangle, thick, draw, fill=red!50] (L1N) at (0, 0) {Train layer 1};
        \node[rectangle, thick, draw, fill=echodrk!50] (L2N) at (2.5, 0) {Train layer 2};
        \node[rectangle] (L3N) at (4.15, 0) \{ dots \};
        \node[rectangle, thick, draw, fill=lightgray] (NN) at (1.7, -1.7) {Train interlayer edges};
        \node [draw,thick,minimum width=6cm,minimum height=2.8cm] (W2) at (1.65,-0.85) {};
\end{scope}
\draw[-stealth, very thick, red] (out1.200) to node[above left=-0.3em] {\textcolor{black}{Baum-
    Welch}} (L1P);
\verb|\draw[-stealth|, very thick|, echodrk|] (out 1.220) to (L2P);
\draw[-stealth, very thick, lightgray] (out1.310) to (L3P);
\draw[-stealth, very thick, red, bend right=15] (L1P) to (CP);
\draw[-stealth, very thick, echodrk, bend right=15] (L2P) to (CP);
\draw[-stealth, very thick, lightgray, bend left=15] (L3P) to (CP);
\draw[-stealth, very thick] (CP) to node[right] {NSGA-II} (NP);
\draw[-stealth, dashed, red, very thick, bend right=50] (L1P) to (-0.8, -3.5);
\draw[-stealth, dashed, echodrk, very thick, bend left=50] (L2P) to (4.2, -5.4);
\draw[-stealth, dashed, very thick, bend left=50] (NP) to (4.2, -4.45);
\draw[-stealth, double, dashed, very thick] (NP) to (1.7, -2.7);
\draw[-stealth, very thick, red] (out 2.200) to node [above left = -0.3em] {\textcolor{black}{Baum-
    Welch}} (L1N);
\draw[-stealth, very thick, echodrk] (out2.220) to (L2N);
\draw[-stealth, very thick, lightgray] (out 2.310) to (L3N);
\draw[-stealth, very thick, red, bend right=15] (L1N) to (CN);
\label{lem:condition} $$ \draw[-stealth, very thick, echodrk, bend right=15] (L2N) to (CN);
\draw[-stealth, very thick, lightgray, bend left=15] (L3N) to (CN);
\draw[-stealth, very thick] (CN) to node[right] {NSGA-II} (NN);
\draw[-stealth, dashed, red, very thick, bend right=50] (L1N) to (5.7, -3.5);
\draw[-stealth, dashed, echodrk, very thick, bend left=50] (L2N) to (10.7, -5.4);
\draw[-stealth, dashed, very thick, bend left=50] (NN) to (10.7, -4.45);
\draw[-stealth, double, dashed, very thick] (NN) to (8.2, -2.7);
\noinde[circle, draw, very thick, fill=echodrk] (111) at (-0.5, -5.5) {};
\node[circle, draw, very thick, fill=echodrk, right=3em of 111] (222) {};
\node[circle, draw, very thick, fill=echodrk, right=3em of 222] (333) {};
\node[circle, draw, very thick, fill=echodrk, right=3em of 333] (444) {};
\node[circle, draw, very thick, fill=red, above = 4.5em of 111] (1) {};
\node[circle, draw, very thick, fill=red, right=3em of 2] (3) {};
\node[circle, draw, very thick, fill=red, right=3em of 3] (4) {};
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
    mm, post length=1.5mm\}, decorate, bend left=15] (1) to (111);
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
    mm, post length=1.5mm}, decorate, bend left=15] (111) to (1);
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
    mm, post length=1.5mm\}, decorate, bend left=15] (2) to (222);
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
    mm, post length=1.5mm}, decorate, bend left=15] (222) to (2);
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
    mm, post length=1.5mm\}, decorate, bend left=15] (3) to (333);
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
    mm, post length=1.5mm\}, decorate, bend left=15] (333) to (3);
```

```
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
      mm, post length=1.5mm}, decorate, bend left=15] (4) to (444);
\draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
      mm, post length=1.5mm}, decorate, bend left=15] (444) to (4);
\draw[-stealth, thick, bend left=17, color=echodrk] (111.30) to (333.130); % Consumption
\draw[-stealth, thick, bend left=30, color=echodrk] (111.50) to (444.90); % Consumption
\draw[-stealth, thick, bend left=17, color=echodrk] (222.30) to (444.130); % Consumption
\draw[stealth-, thick, bend right=17, color=echodrk] (111.310) to (333.210); % Consumption
\draw[stealth-, thick, bend right=30, color=echodrk] (111.270) to (444.230); % Consumption
\draw[stealth-, thick, bend right=17, color=echodrk] (222.310) to (444.210); % Consumption
\verb|\draw[stealth-, thick, color=echodrk]| (111.345) to (222.195); \textit{\% Consumption}|
\draw[-stealth, thick, color=echodrk] (111.15) to (222.165); % Consumption \draw[stealth-, thick, color=echodrk] (222.345) to (333.195); % Consumption
\draw[-stealth, thick, color=echodrk] (222.15) to (333.165); % Consumption
\draw[stealth-, thick, color=echodrk] (333.345) to (444.195); % Consumption
\draw[-stealth, thick, color=echodrk] (333.15) to (444.165); % Consumption
\draw[-stealth, thick, bend left=17, color=red] (1.30) to (3.130); % Consumption
\draw[-stealth, thick, bend left=30, color=red] (1.50) to (4.90); % Consumption
\draw[-stealth, thick, bend left=17, color=red] (2.30) to (4.130); % Consumption
\draw[stealth-, thick, bend right=17, color=red] (1.310) to (3.210); % Consumption
\draw[stealth-, thick, bend right=30, color=red] (1.270) to (4.230); % Consumption
\draw[stealth-, thick, bend right=17, color=red] (2.310) to (4.210); % Consumption
\label{lem:color} $$ \operatorname{draw}[\operatorname{stealth-,\ thick,\ color=red}]$ (1.345) to (2.195); % Consumption $$ \operatorname{draw}[\operatorname{-stealth,\ thick,\ color=red}]$ (1.15) to (2.165); % Consumption $$
\draw[stealth-, thick, color=red] (2.345) to (3.195); % Consumption
\draw[-stealth, thick, color=red] (2.15) to (3.165); % Consumption
\draw[stealth-, thick, color=red] (3.345) to (4.195); % Consumption \draw[-stealth, thick, color=red] (3.15) to (4.165); % Consumption
\begin{array}{l} \begin{array}{l} \textbf{begin} \{ scope \} [ shift = \{ (6.5,0) \} ] \end{array} \end{array}
              \node[circle, draw, very thick, fill=echodrk, right=3em of N111] (N222) {};
              \node[circle, draw, very thick, fill=echodrk, right=3em of N222] (N333) {};
\node[circle, draw, very thick, fill=echodrk, right=3em of N333] (N444) {};
              \node[circle, draw, very thick, fill=red, above = 4.5em of N111] (N1) {};
              \node[circle, draw, very thick, fill=red, right=3em of N2] (N3) {};
\node[circle, draw, very thick, fill=red, right=3em of N3] (N4) {};
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude=0.3mm, post length=1.5mm, decorate, bend left=15] (N1) to (N111);
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude=0.3mm, post length=1.5mm}, decorate, bend left=15] (N111) to (N1);
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude = 0.3 mm, post length = 1.5 mm\}, decorate, bend left = 15] \ (N2) \ to \ (N222);
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude=0.3mm, post length=1.5mm, decorate, bend left=15] (N222) to (N2);
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude=0.3mm, post length=1.5mm, decorate, bend left=15] (N3) to (N333);
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude=0.3mm, post length=1.5mm}, decorate, bend left=15] (N333) to (N3);
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude=0.3mm, post length=1.5mm}, decorate, bend left=15] (N4) to (N444);
              \draw[very thick, -stealth, decoration={snake, pre length=0.01mm, segment length=2mm,
                     amplitude=0.3mm, post length=1.5mm, decorate, bend left=15] (N444) to (N4);
              \draw[stealth-, thick, bend right=17, color=echodrk] (N111.310) to (N333.210);
              \label{lem:condition} $$ \displaystyle \frac{111.270}{to (N444.230)}; $$ \displaystyle \frac{111.270}{to (N444.230)}; $$ \displaystyle \frac{111.270}{to (N444.210)}; $$ \displaystyle \frac
              \draw[stealth-, thick, color=echodrk] (N111.345) to (N222.195);
              \draw[-stealth, thick, color=echodrk] (N111.15) to (N222.165);
```

```
\draw[stealth-, thick, color=echodrk] (N222.345) to (N333.195);
                 \draw[-stealth, thick, color=echodrk] (N222.15) to (N333.165);
                 \draw[stealth-, thick, color=echodrk] (N333.345) to (N444.195);
                 \draw[-stealth, thick, color=echodrk] (N333.15) to (N444.165);
                 \draw[-stealth, thick, bend left=17, color=red] (N1.30) to (N3.130);
                 \del{localization} $$ \draw[-stealth, thick, bend left=30, color=red] (N1.50) to (N4.90);
                 \draw[-stealth, thick, bend left=17, color=red] (N2.30) to (N4.130);
                 \draw[stealth-, thick, bend right=17, color=red] (N1.310) to (N3.210);
                 \draw[stealth-, thick, bend right=30, color=red] (N1.270) to (N4.230);
                 \draw[stealth-, thick, bend right=17, color=red] (N2.310) to (N4.210);
                 \label{lem:color} $$ \operatorname{Int}_{-}, $ \operatorname{thick}_{-}, $ \operatorname{color}_{-}(N1.345) $ to $ (N2.195); $
                 \label{lem:color} $$ \displaystyle - thick, color=red \ (N1.15) to (N2.165); $$ \displaystyle - thick, color=red \ (N2.345) to (N3.195); $$
                 \del{localization} $$ \draw[-stealth, thick, color=red] (N2.15) to (N3.165);
                 \label{lem:color=red} $$ \operatorname{In} (N3.345) $ to (N4.195); $$
                 \label{lem:color} $$ \draw[-stealth, thick, color=red] (N3.15) to (N4.165);
        \end{scope}
        \node[circle, inner sep=0.2em] (Y) at (5, -8.7) \{vec{y}\};
        \node[left = 0em of Y] (Ylab) {New (unseen) sequence, };
        \node[circle] (imag1) at (1.9, -6.45) {};
        \node[circle] (imag2) at (8.1, -6.45) {};
        \draw[-stealth, very thick] (Y.160) to node[below left=-0.5em] {forward alg.} (imag1.270);
        \draw[-stealth, very thick] (Y.20) to node[below right=-0.5em] {forward alg.} (imag2.270);
        \label{lem:condition} $$ \displaystyle \frac{1}{2} \left( \frac{y}{130} \right) $ to node[above right=-0.5em] {$\mathbb{P}(\left( \frac{y}{100} \right) $} to node[above right=-0.5em] $$
             (imag1.330);
        imag2.210);
        \label{local_condition} $$ \c = \arg\max_{C_i} \mathcal{P}(\left( \operatorname{vec}(y) \right) C_i) $$
             $};
        \draw[-stealth, double, dashed, very thick] (Y) to (ret);
\end{tikzpicture}
```

1.49 Progressive Alignment

1.50 Progressive Neural Network

Output (Task 1)

Output (Task 2)

Input

```
\begin{tikzpicture}
         \node[circle, draw, thick, fill=green!60] (i1) {};
         \node[circle, draw, thick, fill=green!60, right=2em of i1] (i2) {};
         \node[circle, draw, thick, fill=green!60, right=2em of i2] (i3) {};
        \node[circle, draw, thick, fill=green!60, left=2em of i1] (i4) {};
\node[circle, draw, thick, fill=green!60, left=2em of i4] (i5) {};
        \node[below=1em of i1] (lab1) {\emph{Input}};
         \node[circle, draw, thick, fill=red!60,above=4em of i4] (h1) {};
         \node[circle, draw, thick, fill=red!60,left=2em of h1] (h2) {};
         \node[circle, draw, thick, fill=red!60, left=2em of h2] (h3) {};
        \node[circle, draw, thick, fill=red!60, left=2em of h3] (h4) {};
         \node[circle, draw, thick, fill=red!60, left=2em of h4] (h5) {};
         \node[circle, draw, thick, fill=red!60,above=4em of h1] (hh1) {};
        \node[circle, draw, thick, fill=red!60,above=4em of h2] (hh2) {};
         \node[circle, draw, thick, fill=red!60,above=4em of h3]
                                                                       (hh3) {};
        \node[circle, draw, thick, fill=red!60,above=4em of h4]
\node[circle, draw, thick, fill=red!60,above=4em of h5]
                                                                        (hh4) {};
         \node[circle, draw, thick, fill=red!60,above=4em of hh2] (o1) {};
        \node[circle, draw, thick, fill=red!60,above=4em of hh4] (o2) {};
         \draw[-stealth, thin, dashed] (i1) -- (h1);
        \draw[-stealth, thin, dashed] (i1) -- (h2);
         \draw[-stealth, thin, dashed] (i1) -- (h3);
         \draw[-stealth, thin, dashed] (i1) -- (h4);
        \draw[-stealth, thin, dashed] (i1) -- (h5);
\draw[-stealth, thin, dashed] (i2) -- (h1);
         \draw[-stealth, thin, dashed] (i2) -- (h2);
        \draw[-stealth, thin, dashed] (i2) -- (h3);
         \draw[-stealth, thin, dashed] (i2) -- (h4);
         \draw[-stealth, thin, dashed] (i2) -- (h5);
```

```
\draw[-stealth, thin, dashed] (i3) -- (h1);
\draw[-stealth, thin, dashed] (i3) -- (h2);
\draw[-stealth, thin, dashed] (i3) -- (h3);
\draw[-stealth, thin, dashed] (i3) -- (h4);
\draw[-stealth, thin, dashed] (i3) -- (h5);
\draw[-stealth, thin, dashed] (i4) -- (h1);
\draw[-stealth, thin, dashed] (i4) -- (h2);
\draw[-stealth, thin, dashed] (i4) -- (h3);
\draw[-stealth, thin, dashed] (i4) -- (h4);
\draw[-stealth, thin, dashed]
                             (i4) -- (h5);
\draw[-stealth, thin, dashed] (i5) -- (h1);
\draw[-stealth, thin, dashed] (i5) -- (h2);
\draw[-stealth, thin, dashed] (i5) -- (h3);
\draw[-stealth, thin, dashed] (i5) -- (h4);
\draw[-stealth, thin, dashed] (i5) -- (h5);
\draw[-stealth, thin, dashed] (h1) -- (hh1);
\draw[-stealth, thin, dashed] (h1) -- (hh2);
\draw[-stealth, thin, dashed] (h1) -- (hh3);
\draw[-stealth, thin, dashed]
                             (h1) -- (hh4);
\draw[-stealth, thin, dashed] (h1) -- (hh5);
\draw[-stealth, thin, dashed] (h2) -- (hh1);
\draw[-stealth, thin, dashed] (h2) -- (hh2);
\draw[-stealth, thin, dashed] (h2) -- (hh3);
\draw[-stealth, thin, dashed] (h2) -- (hh4);
\draw[-stealth, thin, dashed] (h2) -- (hh5);
\draw[-stealth, thin, dashed] (h3) -- (hh1);
\draw[-stealth, thin, dashed] (h3) -- (hh2);
\draw[-stealth, thin, dashed] (h3) -- (hh3);
\draw[-stealth, thin, dashed] (h3) -- (hh4);
\draw[-stealth, thin, dashed] (h3) -- (hh5);
\draw[-stealth, thin, dashed] (h4) -- (hh1);
\del{draw} [-stealth, thin, dashed] (h4) -- (hh2);
\draw[-stealth, thin, dashed] (h4) -- (hh3);
\draw[-stealth, thin, dashed] (h4) -- (hh4);
\draw[-stealth, thin, dashed] (h4) -- (hh5);
\draw[-stealth, thin, dashed] (h5) -- (hh1);
\draw[-stealth, thin, dashed] (h5) -- (hh2);
                             (h5) -- (hh3);
\draw[-stealth, thin, dashed]
\draw[-stealth, thin, dashed] (h5) -- (hh4);
\draw[-stealth, thin, dashed] (h5) -- (hh5);
\draw[-stealth, thin, dashed] (hh1) -- (o1);
\draw[-stealth, thin, dashed] (hh1) -- (o2);
\draw[-stealth, thin, dashed] (hh2) -- (o1);
\draw[-stealth, thin, dashed] (hh2) -- (o2);
\draw[-stealth, thin, dashed] (hh3) -- (o1);
\draw[-stealth, thin, dashed]
                              (hh3) -- (o2);
\draw[-stealth, thin, dashed]
                             (hh4) -- (o1);
\draw[-stealth, thin, dashed] (hh4) -- (o2);
\del{draw}[-stealth, thin, dashed] (hh5) -- (o1);
\draw[-stealth, thin, dashed] (hh5) -- (o2);
\node[above=6em of hh3] (lab1) {\emph{Output (Task 1)}};
\node[circle, draw, thick, fill=blue!30, right=2em of ih1] (ih2) {};
\node[circle, draw, thick, fill=blue!30,right=2em of ih2] (ih3) {};
\node[circle, draw, thick, fill=blue!30,right=2em of ih3] (ih4) {};
\node[circle, draw, thick, fill=blue!30,right=2em of ih4] (ih5) {};
\node[circle, draw, thick, fill=blue!30,above=4em of ih1] (ihh1) {};
\node[circle, draw, thick, fill=blue!30,above=4em of ih2] (ihh2) {};
\node[circle, draw, thick, fill=blue!30,above=4em of ih3] (ihh3) {};
\node[circle, draw, thick, fill=blue!30,above=4em of ih4] (ihh4) {};
\node[circle, draw, thick, fill=blue!30,above=4em of ih5] (ihh5) {};
\node[circle, draw, thick, fill=blue!30,above=4em of ihh2] (io1) {};
\node[circle, draw, thick, fill=blue!30,above=4em of ihh4] (io2) {};
\node[above=6em of ihh3] (lab1) {\emph{Output (Task 2)}};
\draw[-stealth, thick] (i1) -- (ih1);
\draw[-stealth, thick] (i1) -- (ih2);
```

```
\draw[-stealth, thick] (i1) -- (ih3);
\draw[-stealth, thick] (i1) -- (ih4);
\draw[-stealth, thick] (i1) -- (ih5);
\draw[-stealth, thick] (i2) -- (ih1);
\draw[-stealth, thick] (i2) -- (ih2);
\draw[-stealth, thick] (i2) -- (ih3);
\draw[-stealth, thick] (i2) -- (ih4);
\draw[-stealth, thick] (i2) -- (ih5);
\draw[-stealth, thick] (i3) -- (ih1);
\draw[-stealth, thick] (i3) -- (ih2);
\draw[-stealth, thick] (i3) -- (ih3);
\draw[-stealth, thick] (i3) -- (ih4);
\draw[-stealth, thick] (i3) -- (ih5);
\draw[-stealth, thick] (i4) -- (ih1);
\draw[-stealth, thick] (i4) -- (ih2);
\draw[-stealth, thick] (i4) -- (ih3);
\draw[-stealth, thick] (i4) -- (ih4);
\draw[-stealth, thick] (i4) -- (ih5);
\draw[-stealth, thick] (i5) -- (ih1);
\draw[-stealth, thick] (i5) -- (ih2);
\draw[-stealth, thick] (i5) -- (ih3);
\draw[-stealth, thick] (i5) -- (ih4);
\draw[-stealth, thick] (i5) -- (ih5);
\draw[-stealth, thick] (ih1) -- (ihh1);
\draw[-stealth, thick] (ih1) -- (ihh2);
\draw[-stealth, thick] (ih1) -- (ihh3);
\draw[-stealth, thick] (ih1) -- (ihh4);
\draw[-stealth, thick] (ih1) -- (ihh5);
\draw[-stealth, thick] (ih2) -- (ihh1);
\draw[-stealth, thick] (ih2) -- (ihh2);
\draw[-stealth, thick] (ih2) -- (ihh3);
\draw[-stealth, thick] (ih2) -- (ihh4);
\draw[-stealth, thick] (ih2) -- (ihh5);
\draw[-stealth, thick] (ih3) -- (ihh1);
\draw[-stealth, thick] (ih3) -- (ihh2);
\draw[-stealth, thick] (ih3) -- (ihh3);
\draw[-stealth, thick] (ih3) -- (ihh4);
\draw[-stealth, thick] (ih3) -- (ihh5);
\draw[-stealth, thick] (ih4) -- (ihh1);
\draw[-stealth, thick] (ih4) -- (ihh2);
\draw[-stealth, thick] (ih4) -- (ihh3);
\draw[-stealth, thick] (ih4) -- (ihh4);
\draw[-stealth, thick] (ih4) -- (ihh5);
\draw[-stealth, thick] (ih5) -- (ihh1);
\draw[-stealth, thick] (ih5) -- (ihh2);
\draw[-stealth, thick] (ih5) -- (ihh3);
\draw[-stealth, thick] (ih5) -- (ihh4);
\draw[-stealth, thick] (ih5) -- (ihh5);
\draw[-stealth, thick] (ihh1) -- (io1);
\draw[-stealth, thick] (ihh1) -- (io2);
\draw[-stealth, thick] (ihh2) -- (io1);
\draw[-stealth, thick] (ihh2) -- (io2);
\draw[-stealth, thick] (ihh3) -- (io1);
\draw[-stealth, thick] (ihh3) -- (io2);
\draw[-stealth, thick] (ihh4) -- (io1);
\draw[-stealth, thick] (ihh4) -- (io2);
\draw[-stealth, thick] (ihh5) -- (io1);
\draw[-stealth, thick] (ihh5) -- (io2);
\draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
    post length=1.5mm}, decorate,] (h1) -- (ihh1);
\draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
    post length=1.5mm}, decorate,] (h1) -- (ihh2);
\draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
    post length=1.5mm}, decorate,] (h1) -- (ihh3);
\del{def:continuous} $$ \operatorname{decoration} = \{\operatorname{snake}, \operatorname{pre length} = 0.01 \operatorname{mm}, \operatorname{segment length} = 2 \operatorname{mm}, \operatorname{amplitude} = 0.3 \operatorname{mm}, 
    post length=1.5mm}, decorate,] (h1) -- (ihh4);
\draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
    post length=1.5mm}, decorate,] (h1) -- (ihh5);
\del{def:continuous} $$ \operatorname{decoration} = \{\operatorname{snake}, \operatorname{pre length} = 0.01 \operatorname{mm}, \operatorname{segment length} = 2 \operatorname{mm}, \operatorname{amplitude} = 0.3 \operatorname{mm}, 
    post length=1.5mm}, decorate,] (h2) -- (ihh1);
\draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
    post length=1.5mm}, decorate,] (h2) -- (ihh2);
```

```
\draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (h2) -- (ihh3);
                    \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (h2) -- (ihh4);
                    \del{def:continuous} $$ \operatorname{decoration} = \{ \operatorname{snake}, \operatorname{pre length} = 0.01 \operatorname{mm}, \operatorname{segment length} = 2 \operatorname{mm}, \operatorname{amplitude} = 0.3 \operatorname{mm}, 
                              post length=1.5mm}, decorate,] (h2) -- (ihh5);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (h3) -- (ihh1);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (h3) -- (ihh2);
                    \del{def:continuous} $$ \operatorname{decoration} = \{\operatorname{snake}, \operatorname{pre length} = 0.01 \operatorname{mm}, \operatorname{segment length} = 2 \operatorname{mm}, \operatorname{amplitude} = 0.3 \operatorname{mm}, 
                             post length=1.5mm}, decorate,] (h3) -- (ihh3);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm\}, decorate,] (h3) -- (ihh4);
                    \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (h3) -- (ihh5);
                    \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (h4) -- (ihh1);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (h4) --
                                                                                                                               (ihh2);
                    \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (h4) -- (ihh3);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm\}, decorate,] (h4) -- (ihh4);
                    \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (h4) -- (ihh5);
                    \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (h5) -- (ihh1);
                   \label{lem:condition} $$\operatorname{decoration}=\{snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, segment length=2mm, segment length
                             post length=1.5mm}, decorate,] (h5) -- (ihh2);
                   \verb|\draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, amplitude=0.3mm, length=2mm, length=
                             post length=1.5mm}, decorate,] (h5) -- (ihh3);
                    \del{def:continuous} $$ \operatorname{decoration} = \{ \operatorname{snake}, \operatorname{pre length} = 0.01 \operatorname{mm}, \operatorname{segment length} = 2 \operatorname{mm}, \operatorname{amplitude} = 0.3 \operatorname{mm}, 
                             post length=1.5mm}, decorate,] (h5) -- (ihh4);
                    post length=1.5mm}, decorate,] (h5) -- (ihh5);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (hh1) -- (io1);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (hh1) -- (io2);
                    post length=1.5mm}, decorate,] (hh2) -- (io1);
                    \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (hh2) -- (io2);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (hh3) -- (io1);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (hh3) -- (io2);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                             post length=1.5mm}, decorate,] (hh4) -- (io1);
                   \draw[-stealth, thick, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                              post length=1.5mm}, decorate,] (hh4) -- (io2);
                    \del{def:continuous} $$ \operatorname{decoration} = \{ \operatorname{snake}, \operatorname{pre length} = 0.01 \operatorname{mm}, \operatorname{segment length} = 2 \operatorname{mm}, \operatorname{amplitude} = 0.3 \operatorname{mm}, 
                             post length=1.5mm}, decorate,] (hh5) -- (io1);
                    \del{def:continuous} \del{de
                             post length=1.5mm}, decorate,] (hh5) -- (io2);
\end{tikzpicture}
```

1.51 Reinforcement Learning Greedy Policy


```
\definecolor{olivegreen}{rgb}{0,0.6,0}
\begin{tikzpicture}
                     \node[rectangle, minimum width=5em, minimum height=5em, fill=lightgray!20] (X) {};
                     \node[rectangle, fill=blue!30, minimum width=2em, minimum height=2em, xshift=-1.5em, yshift=-1.5em]
                                  at (X) (AA) {};
                     \node[rectangle, minimum width=2em, minimum height=2em, xshift=1.5em, yshift=1.5em, olivegreen] at
                                (X) (LA) {$\boldsymbol\pounds\boldsymbol\pounds$};
                     \node[rectangle, very thick, draw, minimum width=5em, minimum height=5em] at (X) (K) {};
                     \node[rectangle, right=5em of X, minimum width=5em, minimum height=5em, fill=lightgray!20] (Y) {};
                     \node[rectangle, fill=blue!30, minimum width=2em, minimum height=2em, xshift=-1.5em, yshift=1.5em]
                                at (Y) (BB) {};
                     \node[rectangle, minimum width=2em, minimum height=2em, xshift=1.5em, yshift=1.5em, olivegreen] at
                                (Y) (LB) {$\boldsymbol\pounds\boldsymbol\pounds$};
                     \node[rectangle, very thick, draw, minimum width=5em, minimum height=5em] at (Y) (W) {};
                     \node[rectangle, right=5em of Y, minimum width=5em, minimum height=5em, fill=lightgray!20] (Z) {};
                     \node[rectangle, fill=blue!30, minimum width=2em, minimum height=2em, xshift=1.5em, yshift=1.5em]
                               at (Z) (CC) {};
                     \node[rectangle, minimum width=2em, minimum height=2em, xshift=1.5em, yshift=1.5em, olivegreen] at
                                (Z) (LC) {$\boldsymbol\pounds\boldsymbol\pounds$};
                     \node[rectangle, very thick, draw, minimum width=5em, minimum height=5em] at (Z) (AS) {};
                     \node[below=0.5em of X] (11) {$s_0$};
                     \node[below=0.5em of Y] (12) {$s_1$};
                     \node[below=0.5em of Z] (13) {$s_2$};
                     \label{local_self_problem} $$ \ode[above=4em of X] (P1) {$[0.12, {\bf 0.64}, 0.07, 0.17]$};
                     \label{local_equation} $$ \end{above=4em of Y} (P2) {$[0.03, 0.24, {\bf 0.47}, 0.26]$};
                     \node[above=4em of Z] (P3) {\{[bf 0.82\}, 0.04, 0.08, 0.06]\}};
                     \label{lem:condition} $$ \displaystyle -mode[left] {\scriptstyle s\mapsto heta(s_0)} (P1); \\ \displaystyle -mode[left] {\scriptstyle s\mapsto heta(s_0)} (P2); \\ \displaystyle -mode[left] {\scriptstyle s\mapsto heta(s_1)} (P2); \\ \\ \displaystyle -mode[left] (P2); \\ \displaystyle -mode[left] (P3); \\ \displaystyle -mode[left] (P4); \\ \displaystyle -mode[
                     \draw[-stealth, ultra thick] (Z) -- node[left] {\pi_\theta(s_2)\} (P3);
                     \node[above=2em of P1] (A1) {up};
                     \node[above=2em of P2] (A2) {right};
```

```
\node[above=2em of P3] (A3) {pick up};
           \draw[-stealth, very thick,decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                mm, post length=1.5mm}, decorate] ([xshift=-1em]P1.north) -- (A1);
           \del{def:constraints} $$\operatorname{desoration}=\{\operatorname{snake}, \operatorname{pre length}=0.01\operatorname{mm}, \operatorname{segment length}=2\operatorname{mm}, \operatorname{amplitude}=0.3
                mm, post length=1.5mm}, decorate] ([xshift=1em]P2.north) -- (A2);
           \draw[-stealth, very thick,decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3
                mm, post length=1.5mm}, decorate] ([xshift=-3em]P3.north) -- (A3);
           \node[above=2em of A1] (R1) {$r_0 = 0$};
           \node[above=2em of A2] (R2) {$r_1 = 0$};
           \node[above=2em of A3] (R3) {$r_2 = 2$};
           \label{lem:continuous} $$ \draw[-stealth, very thick] (A2) -- node[left] {$\mathbb{R}(s_1, \tilde{R}(s_1, \tilde{R})) } (R2); \\ \draw[-stealth, very thick] (A3) -- node[left] {$\mathbb{R}(s_2, \tilde{R}) } (R3); \\
           \nde[xshift=-2.5em, yshift=-0.5em] at (Z.west) {\nde[xshift=-2.5em, yshift=-0.5em] }
           \draw [-stealth, very thick] plot [smooth, tension=1] coordinates { (A1.east) ([xshift=3.75em,
                yshift=-2em]A1.east) ([xshift=-2.5em,yshift=2em]Y.west) (Y.west)};
           \draw [-stealth, very thick] plot [smooth, tension=1] coordinates { (A2.east) ([xshift=3.25em,
                yshift=-2em]A2.east) ([xshift=-2.5em,yshift=2em]Z.west) (Z.west)};
\end{tikzpicture}
```

1.52 Relational Network


```
\definecolor{olivegreen}{rgb}{0.0.6.0}
\definecolor{mymauve}{rgb}{0.58.0.0.82}
\definecolor{camdrk}{RGB}{0.62.114}

\begin{tikzpicture}
    \node[rectangle, draw, thick, olivegreen, minimum width=5em, minimum height=5em] (R) at (0, 0) {};
    \node[rectangle, inner sep=0.1em, olivegreen, dashed, draw, thick] (C) at (-0.1, 0.1) {$\clubsuit$};
    \node[rectangle, thick, inner sep=0.1em, olivegreen, dashed, draw, above right=0.1em and 0.3em of C]
    (D) {$\diamondsuit$};
    \node[rectangle, thick, inner sep=0.1em, olivegreen, dashed, draw, below right=0.8em and -0.5em of D
    ] (H) {$\heartsuit$};
    \node[rectangle, thick, inner sep=0.1em, olivegreen, dashed, draw, below left=0.6em and 0.4em of C]
    (S) {$\spadesuit$};
    \node[olivegreen, below=0em of R] (11) {\emph{input}};

\node[camdrk, rectangle, draw, above right=-2.5em and 5em of R, minimum width=7em, thick] (0c) {$\lambda vec{0}_\clubsuit$};
```

```
\n inde [camdrk, rectangle, draw, above=0em of Oc, minimum width=7em, thick] (Od) \{\vec\{o\}_
            diamondsuit$};
        \node[camdrk, rectangle, draw, below=0em of Oc, minimum width=7em, thick]
                                                                                        (Oh) \{ vec\{o\} \setminus
            heartsuit$};
        \node[camdrk, rectangle, draw, below=0em of Oh, minimum width=7em, thick] (Os) {\$\vec{0}_\}
            spadesuit$};
        \node[camdrk, left=0em of Oc] (lc) {$\clubsuit$};
        \node[camdrk, left=0em of Od] (ld) {$\diamondsuit$};
\node[camdrk, left=0em of Oh] (lh) {$\heartsuit$};
        \node[camdrk, left=0em of Os] (ls) {$\spadesuit$};
        \node[camdrk, below=0em of Os] (lr) {\emph{objects}};
        \draw[olivegreen,-stealth, thick, dashed] (C) -- (lc); \draw[olivegreen,-stealth, thick, dashed] (D) -- (ld);
        \draw[olivegreen,-stealth, thick, dashed] (H) -- (lh);
        \draw[olivegreen, -stealth, thick, dashed] (S) -- (ls);
        \node[draw, camdrk, thick, right=18em of R] (A) {\texttt{"two"}};
        \node[camdrk, below=0em of A] {\emph{output}};
        \draw[camdrk, densely dashed, very thick] (Od.north east) -- (A.north west);
        \draw[camdrk, densely dashed, very thick] (Os.south east) -- (A.south west);
        \fill [opacity=0.2, camdrk] (Od.north east) -- (A.north west) -- (A.south west) -- (Os.south east)
            -- cycle;
        % let's get funky
        \node[right=14.75em of R, inner sep=0em] (dum1) {};
        \node[right=1.5em of Oc, inner sep=0em] (dum2) {};
        \node[right=1.5em of Oh, inner sep=0em] (dum3) {};
        \draw[camdrk, densely dotted, very thick] (Od.east) edge[bend left=60] (Oc.east);
        \draw[camdrk, densely dotted, very thick] plot [smooth, tension=1.5] coordinates { (Od.east) (dum2)
             (Oh.east)}:
        \draw[camdrk, densely dotted, very thick] plot [smooth, tension=1.5] coordinates { (Od.east) (dum1)
             (Os.east)};
        \draw[camdrk, densely dotted, very thick] (Oc.east) edge[bend left=60] (Oh.east);
        \draw[camdrk, densely dotted, very thick] plot [smooth, tension=1.5] coordinates { (Oc.east) (dum3)
             (Os.east)};
        \draw[camdrk, densely dotted, very thick] (Oh.east) edge[bend left=60] (Os.east);
        \node[mymauve,rectangle, thick, align=center, draw, below left=3em and -4em of Os, text width=13.5
            em] (Q) {\texttt{"How many outlined objects are above the spade?"}};
        \node[mymauve,below=0em of Q] (q1) {\emph{query}};
        \path[mymauve,-stealth, dashed, thick] (Q.east) edge[bend right] (6.2, -0.7);
        \node[camdrk] at (6.7, 0) (RN){\textbf{\emph{RN}}};
\end{tikzpicture}
```

1.53 RN Object Extraction


```
\definecolor{echoreg}{HTML}{2cb1e1}
\definecolor{olivegreen}{rgb}{0,0.6,0}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
```

```
\newtoggle{redraw}
\newtoggle{redraw2}
\tikzset{%
pics/cube/.style args={#1/#2/#3/#4}{code={%
                       \begin{scope}[line width=#4mm]
                       \begin{scope}
                       \clip (-#1, -#2, 0) -- (#1, -#2, 0) -- (#1, #2, 0) -- (-#1, #2, 0) -- cycle;
                       \filldraw (-#1,-#2,0) -- (#1,-#2,0) -- (#1,#2,0) -- (-#1,#2,0) -- cycle;
                       \end{scope}
\iftoggle{redraw}{%
}{%
                       \begin{scope}
                       \clip (-#1,-#2,0) -- (-#1-#3,-#2,-#3) -- (-#1-#3,#2,-#3) -- (-#1,#2,0) -- cycle;
                       \filldraw (-#1,-#2,0) -- (-#1-#3,-#2,-#3) -- (-#1-#3,#2,-#3) -- (-#1,#2,0) -- cycle;
                      \end{scope}
\iftoggle{redraw2}{%
}{
                       \begin{scope}
                       \clip (-#1,#2,0) -- (-#1-#3,#2,-#3) -- (#1-#3,#2,-#3) -- (#1,#2,0) -- cycle;
                      \filldraw (-#1, #2,0) -- (-#1-#3, #2,-#3) -- (#1-#3, #2,-#3) -- (#1, #2,0) -- cycle;
                      \end{scope}
}
                      \node[inner sep=0] (-A) at (-#1-#3*0.5, 0, -#3*0.5) \{\};
                      \node[inner sep=0] (-B) at (#1-#3*0.5, 0, -#3*0.5) {};
                      \coordinate (-V) at (#1, #2);
                       \coordinate (-W) at (#1, -#2);
                       \end{scope}
}}}
\begin{tikzpicture}
                      \node[] (i2) {};
                       \pic[fill=green!50] (I2) {cube={1.8/1.8/0.4/1}};
                       \togglefalse{redraw}
                      \togglefalse{redraw2}
                      \node[right=16em of i2] (y) {};
                      \left[ \text{right=16em of i2, fill=echoreg!50} \right]  (Y) \left\{ \text{cube=} \left\{ 1.8/1.8/1/1 \right\} \right\} ;
                       \node[right=12em of y] (y1) {};
                      \protect\ [right=12em\ of\ y,\ fill=red!50]\ (Y1)\ \{cube=\{0.9/0.9/1/1\}\};
                       %transparent node to ease the arrow drawing
                       \label{lem:pic_right} $$ \left[ right = 12em \ of \ y1, \ draw = echoreg!0, \ fill = echoreg!0] \ (Y2) \ \left\{ cube = \left\{ 0.9/0.9/2/1 \right\} \right\}; $$
                       \node[right=12em of y1] (y3) {};
                      \protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
                      \label{lem:pic_below} $$ \left[ below \ right=1.1em \ and \ 10em \ of \ y1, \ fill=mymauve!30 \right] $$ (Y6) $$ \left\{ cube=\left\{ 0.45/0.45/2/1 \right\} \right\}; $$
                       \pic[above right=1.1em and 13em of y1, fill=mymauve!30] (Y4) {cube={0.45/0.45/2/1}};
                       \pic[above right=1.1em and 10em of y1, fill=mymauve!30] (Y3) {cube={0.45/0.45/2/1}};
                      \draw [-stealth, ultra thick] (I2-B) -- node[above] {Conv.} (Y-A);
                      \draw [-stealth, ultra thick] (Y-B) -- node[above] {Pool} (Y1-A);
                      \draw [-stealth, ultra thick] (Y1-B) -- node[above=0.3em, inner sep=0.1em, xshift=-1em] {Conv.} (Y
                                 2-A):
                      \color{black}
                       \toggletrue{redraw}
                      \toggletrue{redraw2}
                      \left[ \text{right=16em of i2, fill=echoreg!50} \right]  (Y) \left\{ \text{cube=} \left\{ 1.8/1.8/1/1 \right\} \right\} ;
                      \protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
                       \node[] (i2) {\LARGE ${\bf input}$};
                       \node[below right=0em and 9em of y1] (z2) {\LARGE $\vec{0}_3$};
```

```
\node[above right=0.1em and 12em of y1] (z2) {\LARGE $\vec{0}_2$};
\node[below right=0em and 12em of y1] (z2) {\LARGE $\vec{0}_4$};
\end{tikzpicture}
```

1.54 Sampling


```
\begin{tikzpicture}
                                             \begin{axis}[
                                                                                          width=12.5cm, height=8cm,
                                                                                          xtick=\empty,
                                                                                          ytick=\empty,
                                                                                          xlabel={\large $t$},
                                                                                          ylabel={\langle x(t), 
                                                                                          xmin=0, xmax=16,
                                                                                          ymin=-1.1, ymax=1.5,
xtick={1.365, 2.73, 4.095, 5.46},
xticklabels={$\frac{1}{f_s}$, $\frac{2}{f_s}$, $\frac{3}{f_s}$, $\dots$},
                                                                                          axis lines = middle,
                                                                                          very thick,
                                                                                          domain = 0:15
                                            ]
                                                                                          \addplot[no markers, samples = 100, smooth ,thick] {<math>sin(2*180*x/13)};
                                                                                          \label{localization} $$ \addplot+[ycomb, mark=*, mark color=blue, samples= 12, black, thick] $$ \{\sin(2*180*x/13)\}; $$ (2*180*x/13)$. $$
                                            \end{axis}
\end{tikzpicture}
```



```
\begin{tikzpicture}
             \node (X1) {$\vec{e}_{1}$};
              \node[rectangle, right= 0.5em of X1] (x_dots_1) {$\dots$};
             \label{local_condition} $$ \end{area} in $$ \end{area} 
             \node[rectangle, right= 1em of Xj] (x_dots_2) {$\dots$};
             \label{lem:conde} $$ \operatorname{right=1em} \ of \ x_dots_2] \ (Xn) \ {\vec{e}_{n}}; $$
             \node[rectangle, draw, ultra thick, above=of X1] (attn1) {\large $a_\phi$};
             \node[rectangle, draw, ultra thick, above=of Xj] (attnj) {\large $a_\phi$};
             \node[rectangle, draw, ultra thick, above=of Xn] (attnn) {\large $a_\phi$};
              \draw[-stealth, thick] (X1) -- (attn1);
              \draw[-stealth, thick] (Xj) -- (attn1);
             \draw[-stealth, thick] (Xj) -- (attnj);
             \draw[-stealth, thick] ([xshift=3em]Xj) -- (attnj);
              \draw[-stealth, thick] (Xj) -- (attnn);
             \draw[-stealth, thick] (Xn) -- (attnn);
             \node[above= of attnj, opacity=1] (alphajj) {$\alpha_{j,j}}$};
\node[above= of attnn, opacity=0.6] (alphanj) {$\alpha_{n,j}}$};
             \node[circle, draw, above=of alpha1j] (times1) {$\times$};
              \node[circle, draw, above=of alphajj] (timesj) {$\times$};
              \node[circle, draw, above=of alphanj] (timesn) {$\times$};
             \node[rectangle, draw, above=of timesj] (sum) {$\Sigma$};
             \node[above=1em of sum] (x_tprim) {<math>\vec{e}_j'};
             \draw[-stealth, line width=1.5mm, white] (attn1) -- (alpha1j);
              \draw[-stealth, thick, opacity=0.2] (attn1) -- (alpha1j);
              \draw[-stealth, line width=1.5mm, white] (attnj) -- (alphajj);
              \draw[-stealth, thick, opacity=1] (attnj) -- (alphajj);
              \draw[-stealth, line width=1.5mm, white] (attnn) -- (alphanj);
             \draw[-stealth, thick, opacity=0.6] (attnn) -- (alphanj);
             \draw[-stealth, white, line width=1.5mm] (X1) edge[bend right=30] (times1);
             \draw[-stealth, thick] (X1) edge[bend right=30] node[rectangle, draw, fill=white, midway] {\frac{\psi}{}}
                     $} (times1);
              \draw[-stealth, white, line width=1.5mm] (Xj) edge[bend right=30] (timesj);
              \draw[-stealth, thick] (Xj) edge[bend right=30] node[rectangle, draw, fill=white, midway] {\frac{\psi}{}}
                    $} (timesj);
             \draw[-stealth, thick] (Xn) edge[bend right=30] node[rectangle, draw, fill=white, midway] {\frac{\psi}{}}
                    $} (timesn);
             \draw[-, line width=1.5mm, white] (times1) -- (sum);
             \draw[-stealth, thick] (times1) -- (sum);
              \draw[-, line width=1.5mm, white] (timesj) -- (sum);
              \draw[-stealth, thick] (timesj) -- (sum);
              \draw[-stealth, thick] (timesn) -- (sum);
             \draw[-stealth, thick] (times1) -- (sum);
              \label{lem:condition} $$ \operatorname{draw}[-stealth, line width=1.5mm, white] (alpha1j) -- (times1);
             \draw[-stealth, thick, opacity=0.2] (alpha1j) -- (times1);
             \del{draw}[-stealth, line width=1.5mm, white] (alphajj) -- (timesj);
             \draw[-stealth, thick, opacity=1] (alphajj) -- (timesj);
              \draw[-stealth, line width=1.5mm, white] (alphanj) -- (timesn);
              \draw[-stealth, thick, opacity=0.6] (alphanj) -- (timesn);
             \draw[-stealth, thick] (sum) -- (x_tprim);
\end{tikzpicture}
```

1.56 Semi-supervised Embedding


```
\begin{tikzpicture}
        \node[very thick, densely dashed, draw=black,rectangle, minimum height=3.5em, minimum width=1.5em,
            xshift=15em, yshift=-1em, fill=lightgray] (rekt1) {};
       \node[very thick, densely dashed, draw=black,rectangle, minimum height=3.5em, minimum width=1.5em,
            xshift=15em, yshift=-6.1em, fill=lightgray] (rekt2) {};
       \draw[ultra thick] (rekt1) -- (rekt2);
       \node[] (c) at ($(rekt1)!0.5!(rekt2)$) {};
       \node[circle, draw, thick] (f11) {};
       \node[circle, draw, thick, below=0em of f11] (f12) {};
        \node[circle, draw, thick, below=0em of f12] (f13) {};
        \noinde[circle, draw, thick, below=2em of f13] (f21) {};
        \node[circle, draw, thick, below=0em of f21] (f22) {};
       \node[circle, draw, thick, below=0em of f22] (f23) {};
        \node[rectangle, draw, thick] (Q) at ($(il1)!0.5!(il2)$) {?};
        \draw[ultra thick] (il1) -- (Q);
        \draw[ultra thick] (il2) -- (Q);
       \draw[dashed, ultra thick] (Q) -- (c);
        \label{local_circle} $$ \ \ draw, thick, right=4em of f11] (h11) {};
        \node[circle, draw, thick, right=4em of f12] (h12) {};
        \node[circle, draw, thick, right=4em of f13] (h13) {};
        \node[circle, draw, thick, right=4em of f21] (h21) {};
        \label{local_node} $$ \ \ \ draw, thick, right=4em of f22] (h22) {};
        \node[circle, draw, thick, right=4em of f23] (h23) {};
       \node[circle, draw, thick, right=4em of h11] (k11) {};
        \node[circle, draw, thick, right=4em of h12] (k12) {};
        \node[circle, draw, thick, right=4em of h13] (k13) {};
        \node[circle, draw, thick, right=4em of h21] (k21) {};
\node[circle, draw, thick, right=4em of h22] (k22) {};
        \node[circle, draw, thick, right=4em of h23] (k23) {};
       \node[circle, draw, thick, right=4em of k11] (111) {};
        \node[circle, draw, thick, right=4em of k12]
        \node[circle, draw, thick, right=4em of k13] (113) {};
        \node[circle, draw, thick, right=4em of k21] (121) {};
        \node[circle, draw, thick, right=4em of k22] (122) {};
        \node[circle, draw, thick, right=4em of k23] (123) {};
        \node[circle, draw, thick, right=4em of l12] (o1) {};
        \node[circle, draw, thick, right=4em of 122] (o2) {};
        \label{local_node} $$ \node[right=1em of o1] (111) {$y_i$};
        \node[right=1em of o2] (112) {\$y_j\$};
       \foreach \1 in \{1,2\}
```

1.57 Semi-supervised Learning


```
\begin{tikzpicture}
                    \draw[ultra thick, lightgray, dashed] (5.5, 2) -- (5.5, -2);
                    \node[circle,inner sep=0.3em,fill=red,very thick] (X) at (4.5, 0.5) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (4.7, 0.1) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5.2, 0.1) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5.1, -0.3) {};
                    \label{localization} $$ \clin = \cli
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5.8, -0.9) {}; \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5.9, -1.3) {};
                    \noinde[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (6.4, -1.2) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (6.9, -1.1) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (7.4, -1.3) {}; \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (7.45, -1.7) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (7.8, -1.5) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (8.2, -1.4) {};
                    \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (8.6, -1.3) {};
```

```
\node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (6.1, 0.8) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5.7, 0.9) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5.8, 1.3) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5.4, 1.15) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (5, 1.2) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (4.8, 1.5) {};
                                \label{localization} $$ \ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $$ \end{area} $
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (4.2, 1.2) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (3.4, 1.3) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (3.4, 0.8) {};
                                \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (3.1, 1.1) {};
                               \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (2.75, 0.7) {};
                                \label{local-cond} $$ \ \end{c} $$ \ \end{c} inner $$ $ sep=0.3em, fill=gray, very thick $$ (Y) at (2.35, 0.45) $$ {}; $$ \ \end{c} $$ \ \end{c} $$ \ \end{c} $$ \ \end{c} $$ $$ (Y) at (1.9, -0.04) $$ {}; $$ \ \end{c} $$ \end{c} $$ \end{c} $$ \ \end{c
                               \node[circle,inner sep=0.3em,fill=gray,very thick] (Y) at (1.85, -0.5) {};
                               (3,0) sin (4.5,1) cos (6,0) sin (7.5,-1) cos (9,0);
\end{tikzpicture}
```

1.58 Shortest Path Problem


```
\tikzset{VertexStyle/.append style={fill=blue!50}}
        SOEA(d){t}
        \tikzset{VertexStyle/.append style={fill=white}}
        \EA(s){b}
        \EA(b){e}
        \SOEA(s){c}
        \EA(c){f}
        \tikzset{EdgeStyle/.style={-stealth, color=black}}
        \Edge[label=6](s)(a)
        \Edge[label=2](s)(b)
        \SetUpEdge[labeltext=red]
        \tikzset{EdgeStyle/.style={-stealth, color=red}}
       \Edge[label=2](s)(c)
        \SetUpEdge[labeltext=black]
        \tikzset{EdgeStyle/.style={-stealth, color=black}}
        \Edge[label=5](a)(d)
        \Edge[label=4](a)(e)
        \tikzset{EdgeStyle/.style={-stealth, color=black, bend left=15}}
        \Edge[label=4](b)(e)
        \Edge[label=-2](e)(b)
        \SetUpEdge[labeltext=red]
        \tikzset{EdgeStyle/.style={-stealth, color=red}}
       \Edge[label=1](c)(f)
        \SetUpEdge[labeltext=black]
        \tikzset{EdgeStyle/.style={-stealth, color=black}}
        \Edge[label=1](d)(t)
        \SetUpEdge[labeltext=red]
        \tikzset{EdgeStyle/.style={-stealth, color=red}}
        \Edge[label=3](e)(t)
        \Edge[label=2](f)(e)
        \SetUpEdge[labeltext=black]
        \tikzset{EdgeStyle/.style={-stealth, color=black}}
        \Edge[label=5](f)(t)
\end{tikzpicture}
```

1.59 Sparse DGI


```
\node[circle, draw=lightgray, thick] (003) at ([shift=({220:3 em})]h1) {};
\node[circle, draw=lightgray, thick] (004) at ([shift=({265:3 em})]h1) {};
\node[circle, draw=mymauve, pattern=north east lines, pattern color=mymauve, thick] (005) at ([
           shift=({350:3 em})]h1) {};
\node[circle, draw=mymauve, pattern=north east lines, pattern color=mymauve, thick] (010) at ([
           shift=({85:6 em})]h1) {};
\node[circle, draw=mymauve, pattern=north east lines, pattern color=mymauve, thick] (011) at ([
          shift=({125:6 em})]h1) {};
\node[circle, draw=mymauve, pattern=north east lines, pattern color=mymauve, thick] (012) at ([
          shift=({150:6 em})]h1) {};
\node[circle, draw=mymauve, pattern=north east lines, pattern color=mymauve, thick] (013) at ([
          shift=({170:6 em})]h1) {};
\node[circle, lightgray,draw, thick] (015) at ([shift=({210:6 em})]h1) {};
\node[circle, draw=mymauve, pattern=north east lines, pattern color=mymauve, thick] (016) at ([
          shift=({315:6 em})]h1) {};
\label{lightgray,draw, thick} $$ (017) at ([shift=({340:6 em})]h1) {}; $$
\node[circle, draw=mymauve, pattern=north east lines, pattern color=mymauve, thick] (018) at ([
          shift=({365:6 em})]h1) {};
\draw[-, thick, lightgray] (h1) -- (000);
\draw[stealth-, thick, mymauve] (h1) -- (001); \draw[stealth-, thick, mymauve] (h1) -- (002);
\draw[-, thick, lightgray] (h1) -- (003);
\del{draw}[-, thick, lightgray] (h1) -- (004);
\draw[stealth-, thick, mymauve] (h1) -- (005);
\draw[stealth-, thick, mymauve] (001) -- (010);
\draw[stealth-, thick, mymauve] (001) -- (011);
\draw[stealth-, thick, mymauve] (002) -- (012);
\draw[stealth-, thick, mymauve] (002) -- (013);
\draw[-, thick, lightgray] (002) -- (014);
\draw[-, thick, lightgray] (002) -- (015);
\draw[stealth-, thick, mymauve] (005) -- (016);
\draw[-, thick, lightgray] (005) -- (017);
\draw[stealth-, thick, mymauve] (005) -- (018); \draw[-, thick, lightgray] (005) -- (019);
\displaystyle \frac{-, densely dashed, lightgray, thick}{(000) -- ($(h1) + ({40:5 em})$);}
\label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (000) -- ($(h1) + ({50:5 em})$);
\draw[-, densely dashed, lightgray, thick] (000) -- ($(h1) + ({60:5 em})$); \draw[-, densely dashed, lightgray, thick] (003) -- ($(h1) + ({220:5 em})$);
\displaystyle \frac{1}{230:5} = \frac{1}{230:5} 
\label{lightgray} $$ \operatorname{densely dashed, lightgray, thick} (004) -- ($(h1) + ({240:5 em})$);
\label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (004) -- ($(h1) + ({250:5 em})$); $$ \\ draw[-, densely dashed, lightgray, thick] (004) -- ($(h1) + ({260:5 em})$); $$
\label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (004) -- ($(h1) + ({270:5 em})$);
\draw[-, densely dashed, lightgray, thick] (004) -- ($(h1) + ({280:5 em})$);
\draw[-, densely dashed, lightgray, thick] (010) -- ($(h1) + ({70:8 em})$);
\draw[-, densely dashed, lightgray, thick] (010) -- ($(h1) + ({75:8 em})$);
\draw[-, densely dashed, lightgray, thick] (010) -- ($(h1) + ({80:8 em})$);
\del{draw} [-, densely dashed, lightgray, thick] (010) -- ($(h1) + ({85:8 em})$);
\draw[-, densely dashed, lightgray, thick] (010) -- ($(h1) + ({90:8 em})$);
\draw[-, densely dashed, lightgray, thick] (010) -- ($(h1) + ({95:8 em})$);
\displaystyle \frac{1}{10:8} em}
\label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (011) -- ($(h1) + ({120:8 em})$); $$ \\ \draw[-, densely dashed, lightgray, thick] (011) -- ($(h1) + ({130:8 em})$); $$
\del{draw}[-, densely dashed, lightgray, thick] (012) -- ($(h1) + ({150:8 em})$);
\draw[-, densely dashed, lightgray, thick] (012) -- ($(h1) + ({160:8 em})$);
\displaystyle \frac{1}{6} \cdot \frac{
\draw[-, densely dashed, lightgray, thick] (013) -- ($(h1) + ({170:8 em})$);
\draw[-, densely dashed, lightgray, thick] (013) -- ($(h1) + ({175:8 em})$);
\draw[-, densely dashed, lightgray, thick] (013) -- ($(h1) + ({180:8 em})$);
\draw[-, densely dashed, lightgray, thick] (014) -- ($(h1) + ({190:8 em})$);
\del{draw}[-, densely dashed, lightgray, thick] (015) -- ($(h1) + ({200:8 em})$);
\displaystyle \frac{-}{n} \left( 15 - \frac{1}{n} \right) - \frac{1}{n} \left( 15 - \frac{1}{n} \right) + \left( \frac{205:8 \text{ em}}{n} \right)
```

```
\del{def:decomposition} $$ \dim [-, densely dashed, lightgray, thick] (015) -- ($(h1) + ({210:8 em})$);
\del{draw} [-, densely dashed, lightgray, thick] (015) -- ($(h1) + ({215:8 em})$);
\del{draw} [-, densely dashed, lightgray, thick] (015) -- ($(h1) + ({220:8 em})$);
\label{lightgray} $$ \operatorname{densely dashed}, \ \operatorname{lightgray}, \ \operatorname{thick} \ (015) \ -- \ (\$(h1) + (\{225:8 \ em\})\$); $$
\draw[-, densely dashed, lightgray, thick] (015) -- ($(h1) + ({230:8 em})$);
\label{lightgray} $$ \dim[-, densely dashed, lightgray, thick] (016) -- ($(h1) + ({300:8 em})$);
\draw[-, densely dashed, lightgray, thick] (016) -- ($(h1) + ({305:8 em})$);
\label{lightgray} $$ \operatorname{densely dashed}, \ \operatorname{lightgray}, \ \operatorname{thick} \ (016) \ -- \ (\$(h1) + (\{310:8 \ em\})\$); $$
\label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (016) -- ($(h1) + ({315:8 em})$); $$ \\ \draw[-, densely dashed, lightgray, thick] (016) -- ($(h1) + ({320:8 em})$); $$
\draw[-, densely dashed, lightgray, thick] (016) -- ($(h1) + ({325:8 em}))$);
\draw[-, densely dashed, lightgray, thick] (016) -- ($(h1) + ({330:8 em})$);
\label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (016) -- ($(h1) + ({335:8 em}))$);
\draw[-, densely dashed, lightgray, thick] (017) -- ($(h1) + ({340:8 em})$);
\draw[-, densely dashed, lightgray, thick] (017) -- ($(h1) + ({350:8 em})$);
\draw[-, densely dashed, lightgray, thick] (018) -- ($(h1) + ({355:8 em})$);
\label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (018) -- ($(h1) + ({365:8 em})$); $$ \\ \draw[-, densely dashed, lightgray, thick] (018) -- ($(h1) + ({375:8 em})$); $$
\draw[-, densely dashed, lightgray, thick] (019) -- ($(h1) + ({380:8 em})$);
\draw[-, densely dashed, lightgray, thick] (019) -- ($(h1) + ({385:8 em})$);
\node[circle, draw, densely dotted, mymauve, thick, inner sep=1em] at (h1) {};
\node[circle, draw, densely dotted, mymauve, thick, inner sep=3em] at (h1) {};
\node[circle, draw, densely dotted, mymauve, thick, inner sep=5em] at (h1) {};
\node[circle, fill=mygreen, draw=mygreen, inner sep=0.1em, thick, right=15em of h1] (h2) {\
    textcolor{white}{$\vec{h}_2$}};
\label{local_condition} $$ \clim{100} at ([shift=(\{10:3\ em\})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (102) at ([
    shift=({135:3 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (103) at ([
    shift=({225:3 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (104) at ([
    shift=({315:3 em})]h2) {};
\node[circle, lightgray, draw, thick] (110) at ([shift=({105:6 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (111) at ([
    shift=({135:6 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (112) at ([
    shift=({160:6 em})]h2) {};
\node[circle,lightgray, draw, thick] (113) at ([shift=({180:6 em})]h2) {};
\node[circle, lightgray, draw, thick] (114) at ([shift=({200:6 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (115) at ([
    shift=({220:6 em})]h2) {};
\node[circle, lightgray, draw, thick] (116) at ([shift=({240:6 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (117) at ([
    shift=({255:6 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (1110) at ([
    shift=({325:6 em})]h2) {};
\node[circle,lightgray, draw, thick] (1111) at ([shift=({340:6 em})]h2) {};
\node[circle, draw=mygreen, pattern=north east lines, pattern color=mygreen, thick] (1112) at ([
    shift=({355:6 em})]h2) {};
\draw[-, thick, lightgray] (h2) -- (100);
\draw[-, thick, lightgray] (h2) -- (101);
\draw[stealth-, thick, mygreen] (h2) -- (102);
\draw[stealth-, thick, mygreen] (h2) -- (103);
\draw[stealth-, thick, mygreen] (h2) -- (104);
\draw[-, thick, lightgray] (102) -- (110);
\draw[stealth-, thick, mygreen] (102) -- (111);
\draw[stealth-, thick, mygreen] (102) -- (112);
\draw[-, thick, lightgray] (102) -- (113);
\draw[-, thick, lightgray] (103) -- (114);
\draw[stealth-, thick, mygreen] (103) -- (115);
\draw[-, thick, lightgray] (103) -- (116);
\draw[stealth-, thick, mygreen] (103) -- (117);
\draw[-, thick, lightgray] (104) -- (118);
\draw[-, thick, lightgray] (104) -- (119);
\draw[stealth-, thick, mygreen] (104) -- (1110);
```

```
\draw[-, thick, lightgray] (104) -- (1111);
\draw[stealth-, thick, mygreen] (104) -- (1112);
\draw[-, densely dashed, lightgray, thick] (100) -- ($(h2) + ({10:5 em})$);
\draw[-, densely dashed, lightgray, thick] (101) -- ($(h2) + ({25:5 em})$);
\draw[-, densely dashed, lightgray, thick] (101) -- ($(h2) + ({30:5 em})$);
\\draw[-, densely dashed, lightgray, thick] (101) -- ($(h2) + ({35:5 em})$); \\draw[-, densely dashed, lightgray, thick] (101) -- ($(h2) + ({40:5 em})$); \\draw[-, densely dashed, lightgray, thick] (101) -- ($(h2) + ({45:5 em})$);
\draw[-, densely dashed, lightgray, thick] (101) -- ($(h2) + ({50:5 em})$);
\draw[-, densely dashed, lightgray, thick] (101) -- ($(h2) + ({55:5 em})$);
\draw[-, densely dashed, lightgray, thick] (110) -- ($(h2) + ({95:8 em})$);
\draw[-, densely dashed, lightgray, thick] (110) -- ($(h2) + ({105:8 em})$);
\draw[-, densely dashed, lightgray, thick] (110) -- ($(h2) + ({115:8 em})$);
\draw[-, densely dashed, lightgray, thick] (112) -- ($(h2) + ({140:8 em})$);
\draw[-, densely dashed, lightgray, thick] (112) -- ($(h2) + ({150:8 em})$);
\label{eq:continuous} $$ \displaystyle -\ (\ (\ 12) -- (\ (\ 12) + (\ 160:8 \ em))\ ); $$
\label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (112) -- ($(h2) + ({170:8 em})$); $$ \\ \draw[-, densely dashed, lightgray, thick] (112) -- ($(h2) + ({180:8 em})$); $$
\draw[-, densely dashed, lightgray, thick] (113) -- ($(h2) + ({185:8 em})$);
\draw[-, densely dashed, lightgray, thick] (113) -- ($(h2) + ({190:8 em})$);
\draw[-, densely dashed, lightgray, thick] (113) -- ($(h2) + ({195:8 em})$);
\frac{-}{4} densely dashed, lightgray, thick (114) -- (\frac{(h2) + (\{200:8 \text{ em}\})}{3};
\displaystyle \frac{1}{5} \cdot \frac{1}{5} = \frac{
\draw[-, densely dashed, lightgray, thick] (115) -- ($(h2) + ({210:8 em})$); \draw[-, densely dashed, lightgray, thick] (115) -- ($(h2) + ({215:8 em})$); \draw[-, densely dashed, lightgray, thick] (115) -- ($(h2) + ({220:8 em})$);
\label{lightgray} $$ \dim[-, densely dashed, lightgray, thick] (115) -- ($(h2) + ({225:8 em})$);
\label{lightgray} $$ \dim[-, densely dashed, lightgray, thick] (115) -- ($(h2) + ({230:8 em})$);
\draw[-, densely dashed, lightgray, thick] (116) -- ($(h2) + ({240:8 em})$); \draw[-, densely dashed, lightgray, thick] (116) -- ($(h2) + ({245:8 em})$);
\draw[-, densely dashed, lightgray, thick] (117) -- ($(h2) + ({250:8 em})$);
\label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (117) -- ($(h2) + ({255:8 em})$);
\label{lightgray} $$ \dim[-, densely dashed, lightgray, thick] (117) -- ($(h2) + ({260:8 em})$);
\label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (117) -- ($(h2) + ({265:8 em})$); $$ \\ \draw[-, densely dashed, lightgray, thick] (117) -- ($(h2) + ({270:8 em})$); $$
\label{eq:continuous} $$ \draw[-, densely dashed, lightgray, thick] (118) -- ($(h2) + ({285:8 em})$);
\draw[-, densely dashed, lightgray, thick] (118) -- ($(h2) + ({290:8 em})$);
\draw[-, densely dashed, lightgray, thick] (118) -- ($(h2) + ({295:8 em})$);
\label{lightgray} $$ \dim[-, densely dashed, lightgray, thick] (119) -- ($(h2) + ({300:8 em})$);
\draw[-, densely dashed, lightgray, thick] (119) -- ($(h2) + ({305:8 em})$);
\draw[-, densely dashed, lightgray, thick] (1110) -- ($(h2) + ({315:8 em})$);
\draw[-, densely dashed, lightgray, thick] (1110) -- ($(h2) + ({325:8 em})$);
\label{lightgray} $$ \dim[-, densely dashed, lightgray, thick] (1111) -- ($(h2) + ({332:8 em})$); $$ \dim[-, densely dashed, lightgray, thick] (1111) -- ($(h2) + ({335:8 em})$); $$
\draw[-, densely dashed, lightgray, thick] (1111) -- ($(h2) + ({337:8 em})$);
\label{eq:continuous} $$ \left(-, densely dashed, lightgray, thick\right] (1111) -- ($(h2) + ({340:8 em})$); $$
\draw[-, densely dashed, lightgray, thick] (1111) -- ($(h2) + ({342:8 em})$); \draw[-, densely dashed, lightgray, thick] (1111) -- ($(h2) + ({345:8 em})$); \draw[-, densely dashed, lightgray, thick] (1111) -- ($(h2) + ({347:8 em})$);
\draw[-, densely dashed, lightgray, thick] (1112) -- ($(h2) + ({350:8 em})$);
\draw[-, densely dashed, lightgray, thick] (1112) -- ($(h2) + ({355:8 em})$); \draw[-, densely dashed, lightgray, thick] (1112) -- ($(h2) + ({360:8 em})$);
\node[circle, draw, densely dotted, mygreen, thick, inner sep=1em] at (h2) {};
\node[circle, draw, densely dotted, mygreen, thick, inner sep=3em] at (h2) {};
\node[circle, draw, densely dotted, mygreen, thick, inner sep=5em] at (h2) {};
\node[circle, fill=echodrk, draw=echodrk, inner sep=0.1em, thick, right=15em of h2] (h3) {\
         textcolor{white}{$\vec{h}_3$}};
```

```
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (200) at ([
      shift=({50:3 em})]h3) {};
\node[circle, draw=lightgray, thick] (201) at ([shift=({100:3 em})]h3) {};
\label{local_condition} $$ \c [circle, draw=lightgray, thick] (202) at ([shift=(\{140:3\ em\})]h3) $$ $$ $$ $$ $$
\label{localization} $$ \c [circle, draw=lightgray, thick] (203) at ([shift=(\{220:3\ em\})]h3) $$ $$ $$ $$ $$
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (204) at ([
       shift=({270:3 em})]h3) {};
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (205) at ([
      shift=({330:3 em})]h3) {};
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (210) at ([
      shift=({40:6 em})]h3) {};
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (211) at ([
      shift=({55:6 em})]h3) {};
\label{localization} $$ \c [circle, draw=lightgray, thick] (212) at ([shift=({75:6 em})]h3) {}; $$
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (213) at ([
      shift=({255:6 em})]h3) {};
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (214) at ([
      shift=({265:6 em})]h3) {};
\label{localization} $$ \c [circle, draw=lightgray, thick] (215) at ([shift=(\{280:6\ em\})]h3) $$ \{\}$;
\label{localization} $$ \ \cline{2.00.6 em} 
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (217) at ([
      shift=({305:6 em})]h3) {};
\node[circle, draw=lightgray, thick] (218) at ([shift=({320:6 em})]h3) {};
\node[circle, draw=echodrk, pattern=north east lines, pattern color=echodrk, thick] (2110) at ([
      shift=({355:6 em})]h3) {};
\draw[stealth-, thick, echodrk] (h3) -- (200);
\draw[-, thick, lightgray] (h3) -- (201);
\draw[-, thick, lightgray] (h3) -- (202);
\draw[-, thick, lightgray] (h3) -- (203);
\draw[stealth-, thick, echodrk] (h3) -- (204);
\draw[stealth-, thick, echodrk] (h3) -- (205);
\draw[stealth-, thick, echodrk] (200) -- (210);
\draw[stealth-, thick, echodrk] (200) -- (211);
\draw[-, thick, lightgray] (200) -- (212);
\draw[stealth-, thick, echodrk] (204) -- (213);
\draw[stealth-, thick, echodrk] (204) -- (214);
\draw[-, thick, lightgray] (204) -- (215);
\draw[-, thick, lightgray] (204) -- (216);
\draw[stealth-, thick, echodrk] (205) -- (217);
\draw[-, thick, lightgray] (205) -- (218);
\draw[-, thick, lightgray] (205) -- (219);
\draw[stealth-, thick, echodrk] (205) -- (2110);
\draw[-, densely dashed, lightgray, thick] (202) -- ($(h3) + ({105:5 em})$);
\draw[-, densely dashed, lightgray, thick] (202) -- ($(h3) + ({125:5 em})$);
\draw[-, densely dashed, lightgray, thick] (202) -- ($(h3) + ({145:5 em})$);
\label{lightgray} $$ \dim[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({190:5 em})$);
\draw[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({195:5 em})$);
\draw[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({200:5 em})$);
\draw[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({205:5 em})$);
\label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({210:5 em})$);
\draw[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({215:5 em})$); \draw[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({220:5 em})$);
\draw[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({225:5 em})$);
\draw[-, densely dashed, lightgray, thick] (203) -- ($(h3) + ({230:5 em})$);
\label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (210) -- ($(h3) + ({30:8 em})$);
\draw[-, densely dashed, lightgray, thick] (210) -- ($(h3) + ({50:8 em})$);
\del{draw} [-, densely dashed, lightgray, thick] (211) -- ($(h3) + ({55:8 em})$);
\draw[-, densely dashed, lightgray, thick] (211) -- ($(h3) + ({60:8 em})$);
\del{draw} [-, densely dashed, lightgray, thick] (211) -- ($(h3) + ({65:8 em})$);
\label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (211) -- ($(h3) + ({70:8 em})$); $$ \draw[-, densely dashed, lightgray, thick] (212) -- ($(h3) + ({80:8 em})$); $$
\draw[-, densely dashed, lightgray, thick] (212) -- ($(h3) + ({90:8 em})$);
\label{lightgray} $$ \operatorname{densely\ dashed},\ \operatorname{lightgray},\ \operatorname{thick} \ (213)\ --\ (\$(h3)\ +\ (\{235:8\ em\})\$);
\label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (213) -- ($(h3) + ({240:8 em})$); $$ \dim [-, densely dashed, lightgray, thick] (213) -- ($(h3) + ({245:8 em})$);
\del{draw} [-, densely dashed, lightgray, thick] (213) -- ($(h3) + ({250:8 em})$);
\draw[-, densely dashed, lightgray, thick] (213) -- ($(h3) + ({255:8 em})$);
```

```
\del{def:decomposition} $$ \dim [-, densely dashed, lightgray, thick] (213) -- ($(h3) + ({260:8 em})$);
         \del{def:decomposition} \del{decomposition} $$ \dim_{-}, \decomposition \decomposition (214) -- ($(h3) + ({265:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (214) -- ($(h3) + ({270:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (215) -- ($(h3) + ({280:8 em})$);
\draw[-, densely dashed, lightgray, thick] (215) -- ($(h3) + ({285:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (216) -- ($(h3) + ({290:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (216) -- ($(h3) + ({295:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (216) -- ($(h3) + ({300:8 em})$); \draw[-, densely dashed, lightgray, thick] (217) -- ($(h3) + ({305:8 em})$); \draw[-, densely dashed, lightgray, thick] (217) -- ($(h3) + ({310:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (218) -- ($(h3) + ({315:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (218) -- ($(h3) + ({325:8 em})$);
         \label{lightgray} $$ \dim [-, densely dashed, lightgray, thick] (219) -- ($(h3) + ({330:8 em}))$);
         \label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({335:8 em})$); $$ \draw[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({340:8 em})$); $$
         \draw[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({345:8 em})$);
         \del{draw}[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({350:8 em})$);
         \del{draw} [-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({355:8 em})$);
         \label{lightgray} $$ \draw[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({360:8 em})$); $$ \\ \draw[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({365:8 em})$); $$
         \del{draw} [-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({370:8 em})$);
         \displaystyle \frac{-}{2110} - (\$(h3) + ({375:8 em})\$);
         \draw[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({380:8 em})$);
         \draw[-, densely dashed, lightgray, thick] (2110) -- ($(h3) + ({385:8 em})$);
         \node[circle, draw, densely dotted, echodrk, thick, inner sep=1em] at (h3) {};
         \node[circle, draw, densely dotted, echodrk, thick, inner sep=3em] at (h3) {};
         \node[circle, draw, densely dotted, echodrk, thick, inner sep=5em] at (h3) {};
         \node[rectangle, below=10em of h2, fill=lightgray, draw=black, very thick] (s) {\Large $\vec{s}$};
         \draw[-stealth, mymauve, ultra thick] (h1) edge[bend right=40, decoration={snake, pre length=0.01
              mm, segment length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] (s);
         \draw[-stealth, mygreen, ultra thick] (h2) edge[bend left=18, decoration={snake, pre length=0.01mm
              , segment length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] (s.north);
         \draw[-stealth, echodrk, ultra thick] (h3) edge[bend left=22, decoration={snake, pre length=0.01mm
              , segment length=2mm, amplitude=0.3mm, post length=1.5mm}, decorate] (s.east);
\end{tikzpicture}
```

1.60 Supervised Learning Setup

1.61 Variational Denoising Autoencoder


```
\definecolor{olivegreen}{rgb}{0,0.6,0}
\begin{tikzpicture}
       \node (1) [draw, dashed, minimum height=15em, minimum width=15em, xshift=6.5em, fill=olivegreen,
           fill opacity=0.2, very thick, rectangle, rounded corners] {};
       \node (la1) [below=0em of 1] {\emph{encoder}};
       \node (2) [draw, dashed, minimum height=14em, fill = red, fill opacity=0.2,minimum width=14em,
           {\tt xshift=19em,\ very\ thick,\ rectangle,\ rounded\ corners]\ \{\};\\
       \node (la1) [below=0em of 2] {\emph{decoder}};
       \node (3) [draw, dashed, minimum height=16em, fill = blue, fill opacity=0.2, minimum width=5em,
           xshift=-1.5em, very thick, rectangle, rounded corners] {};
               \node (la3) [below=0em of 3] {\emph{corrupt}};
       \node[circle, thick, fill=red!50, draw] (x1) {};
       \noinde[circle, thick, draw, fill=red!50, below=1em of x1] (x2) {};
       \node[circle, thick, fill=red!50, draw, below=1em of x2] (x3) {};
       \noinde[circle, thick, fill=red!50, draw, below=1em of x3] (x4) {};
       \node[circle, thick, fill=red!50, draw, above=1em of x1] (x5) {};
       \node[circle, thick, fill=red!50, draw, above=1em of x5] (x6) \{\};
       \node[circle, thick, fill=red!50, draw, above=1em of x6] (x7) {};
       \foreach \x in \{1, \ldots, 7\}
               \node at (x\x) (1x\x) {$\sim$};
       \node[circle, thick, fill=white, left=2em of x1, draw] (i1) {};
       \node[circle, thick, draw, fill=white, below=1em of i1] (i2) {};
       \node[circle, thick, fill=white, draw, below=1em of i2] (i3) {};
       \node[circle, thick, fill=white, draw, below=1em of i3] (i4) {};
\node[circle, thick, fill=white, draw, above=1em of i1] (i5) {};
       \node[circle, thick, fill=white, draw, above=1em of i5] (i6) {};
       \node[circle, thick, fill=white, draw, above=1em of i6] (i7) {};
       \foreach \x in \{1, \ldots, 7\}
               \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                   post length=1.5mm\}, decorate, thick] (i\x) -- (x\x);
       \node[circle, thick, draw, fill=white, below=1em of xh1] (xh2) {};
       \node[circle, thick, fill=white, draw, below=1em of xh2] (xh3) {};
       \node[circle, thick, fill=white, draw, above=1em of xh4] (xh5) {};
       \node[circle, thick, fill=white, draw, right=8em of x1, yshift=5em] (hm1) {};
```

```
\node[circle, thick, draw, fill=white, below=0.5em of hm1] (hm2) {};
\node[circle, thick, draw, fill=white, below=0.5em of hm2] (hm3) {};
\node[circle, thick, draw, fill=white, above=0.5em of hm1] (hm4) {};
\node[circle, thick, fill=white, draw, right=8em of x1, yshift=-3em] (hs1) {};
\node[circle, thick, draw, fill=white, below=0.5em of hs1] (hs2) {};
\node[circle, thick, draw, fill=white, below=0.5em of hs2] (hs3) {};
\node[circle, thick, draw, fill=white, above=0.5em of hs1] (hs4) {};
\node[] at (hm1) (mu1) {}
\node[] at (hm2) (mu2) {mu$};
\node[] at (hm3) (mu3) {$\mu$};
\node[] at (hm4) (mu4) {$\mu$};
\node[] at (hs1) (s1) {\sigma\};
\node[] at (hs2) (s2) {$\sigma$};
\node[] at (hs3) (s3) {\frac{sigma}};
\node[] at (hs4) (s4) {$\sigma$};
\node[circle, thick, fill=lightgray, draw, right=12em of x1, yshift=1em] (h1) {};
\label{lem:local_condition} $$ \c circle, thick, draw, fill=lightgray, below=1em of h2] (h3) {};
\node[circle, thick, draw, fill=lightgray, above=1em of h1] (h4) {};
\label{local_node} $$ \color= (circle, thick, right=16em of x1, fill=white, draw] (oh1) {};
\node[circle, thick, draw, fill=white, below=1em of oh1] (oh2) {};
\node[circle, thick, fill=white, draw, below=1em of oh2] (oh3) {};
\node[circle, thick, fill=white, draw, above=1em of oh4] (oh5) {};
\node[circle, thick, draw, fill=white, right=20em of x1] (o1) {};
\node[circle, thick, draw, fill=white, below=1em of o1] (o2) {};
\label{local_node} $$ \c circle, thick, draw, fill=white, below=1em of o2] (o3) {};
\node[circle, thick, draw, fill=white, below=1em of o3] (o4) {};
\node[circle, thick, draw, fill=white, above=1em of o1] (o5) {};
\node[circle, thick, draw, fill=white, above=1em of o5] (o6) {};
\node[circle, thick, draw, fill=white, right=24em of x1] (oo1) {};
\node[circle, thick, draw, fill=white, below=1em of oo1] (oo2) {};
\node[circle, thick, draw, fill=white, below=1em of oo2] (oo3) {};
\node[circle, thick, draw, fill=white, below=1em of oo3] (oo4) {};
\label{local_conditions} $$ \c circle, thick, draw, fill=white, above=1em of oo5] (oo6) {};
\node[circle, thick, draw, fill=white, above=1em of oo6] (oo7) {};
\node[] at (o1) (muu1) {\state mu\state};
\node[] at (o2) (muu2) {$\mu$};
\node[] at (o3) (muu3) {$\mu$};
\node[] at (o4) (muu4) {$\mu$};
\\node[] at (o5) (muu5) {<math>mu$};
\node[] at (o6) (muu6) {$\mu$};
\node[] at (o7) (muu7) {\state mu\state};
\foreach \x in \{1, \ldots, 7\}
             \foreach \y in \{1, \ldots, 5\}
                            \draw[-stealth, thick] (x\x) -- (xh\y);
\foreach \x in \{1, \ldots, 5\}
              \foreach \y in \{1, \ldots, 4\}
                            \draw[-stealth, thick] (xh\x) -- (hm\y);
\foreach \x in \{1, \ldots, 5\}
              \foreach \y in \{1, \ldots, 4\}
                            \draw[-stealth, thick] (xh\x) -- (hs\y);
\foreach \x in \{1, ..., 4\}
              \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
                    post length=1.5mm\}, decorate, thick] (hs\x) -- (h\x);
\foreach \x in \{1, \ldots, 4\}
              \del{def:continuous} \del{de
                    post length=1.5mm\}, decorate, thick] (hm\xspacex) -- (h\xspacex);
\foreach \x in \{1, \ldots, 5\}
              \foreach \y in \{1, \ldots, 4\}
                           \draw[-stealth, thick] (h\y) -- (oh\x);
\foreach \x in \{1, \ldots, 5\}
              \foreach \y in \{1, \ldots, 7\}
                            \draw[-stealth, thick] (oh\x) -- (o\y);
\foreach \x in \{1, \ldots, 7\}
              \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm,
```

```
post length=1.5mm}, decorate, thick] (o\x) -- (oo\x);
  \node[left=0.5em of i1] (l1) {$\vec{x}$};
  \node[above=0em of h4] (l2) {$\vec{z}$};
  \node[right=0.5em of oo1] (l3) {$\vec{x}'$};
  \end{tikzpicture}
```

1.62 Web Graph


```
\begin{tikzpicture}
             \node[circle, thick, draw] (0) {$d_0$};
             \node[circle, thick, draw, below = 4.5em of 0] (1) {$d_1$};
             \node[circle, thick, draw, right = 4.5em of 0] (2) \{d_2\};
             \node[circle, thick, draw, right = 4.5em of 2] (3) {<math>d_3};
            \label{eq:continuous} $$ \operatorname{circle}, \operatorname{thick}, \operatorname{draw}, \operatorname{right} = 4.5 \, \mathrm{em} \ \mathrm{of} \ 3] \ (6) \ \{\$d_6\$\}; \\ \operatorname{circle}, \operatorname{thick}, \operatorname{draw}, \operatorname{above} = 4.5 \, \mathrm{em} \ \mathrm{of} \ 6] \ (5) \ \{\$d_5\$\}; \\ \operatorname{node}[\operatorname{circle}, \operatorname{thick}, \operatorname{draw}, \operatorname{below} = 4.5 \, \mathrm{em} \ \mathrm{of} \ 6] \ (4) \ \{\$d_4\$\}; \\ \\
             \path[-stealth, very thick] (0) edge [bend right=45] (2);
             \path[-stealth, very thick] (2) edge [bend right=45] (0);
            \path[-stealth, very thick] (1) edge [bend right] (2);
\path[-stealth, very thick] (1) edge [->, >=stealth, loop left] (1);
             \path[-stealth, very thick] (2) edge [->, >=stealth, loop above] (2);
             \path[-stealth, very thick] (3) edge [->, >=stealth, loop above] (3);
             \draw[-stealth, very thick] (2) -- (3);
             \path[-stealth, very thick] (3) edge [bend right] (4);
\draw[-stealth, very thick] (5) -- (6);
             \draw[-stealth, very thick] (6) -- (3);
             \path[-stealth, very thick] (6) edge [bend right=45] (4);
             \path[-stealth, very thick] (4) edge [bend right=45] (6);
             \path[-stealth, very thick] (5) edge [->, >=stealth, loop right] (5);
\path[-stealth, very thick] (6) edge [->, >=stealth, loop right] (6);
\end{tikzpicture}
```

1.63 X-CNN


```
\definecolor{echoreg}{HTML}{2cb1e1}
\definecolor{mymauve}{rgb}{0.58,0,0.82}
\newtoggle{redraw}
\newtoggle{redraw2}
\tikzset{%
pics/cube/.style args={#1/#2/#3/#4}{code={%
        \begin{scope}[line width=#4mm]
        \begin{scope}
        \clip (-#1,-#2,0) -- (#1,-#2,0) -- (#1,#2,0) -- (-#1,#2,0) -- cycle;
        \filldraw (-#1,-#2,0) -- (#1,-#2,0) -- (#1,#2,0) -- (-#1,#2,0) -- cycle;
        \end{scope}
\iftoggle{redraw}{%
}{%
        \begin{scope}
        \clip (-#1,-#2,0) -- (-#1-#3,-#2,-#3) -- (-#1-#3,#2,-#3) -- (-#1,#2,0) -- cycle;
        \filldraw (-#1,-#2,0) -- (-#1-#3,-#2,-#3) -- (-#1-#3,#2,-#3) -- (-#1,#2,0) -- cycle;
        \end{scope}
\iftoggle{redraw2}{%
}{
        \begin{scope}
        \clip (-#1,#2,0) -- (-#1-#3,#2,-#3) -- (#1-#3,#2,-#3) -- (#1,#2,0) -- cycle;
        \filldraw (-#1,#2,0) -- (-#1-#3,#2,-#3) -- (#1-#3,#2,-#3) -- (#1,#2,0) -- cycle;
        \end{scope}
}
        \node[inner sep=0] (-A) at (-#1-#3*0.5, 0, -#3*0.5) {};
        \node[inner sep=0] (-B) at (#1-#3*0.5, 0, -#3*0.5) {};
        \coordinate (-V) at (#1, #2);
        \coordinate (-W) at (#1, -#2);
        \end{scope}
}}}
\begin{tikzpicture}
        \node[rectangle, align=center, draw, very thick, minimum height=10em, minimum width=10em, fill=red
            !10] (i1) {Input\\ (channel 1)};
        \node[rectangle, align=center, draw, very thick, minimum height=10em, minimum width=10em, fill=
            green!10, below=of i1] (i2) {Input\\ (channel 2)};
        \node[rectangle, draw, align=center, very thick, minimum height=10em, minimum width=10em, below=of
            i2, fill=blue!10] (i3) {Input\\ (channel 3)};
        \togglefalse{redraw}
        \togglefalse{redraw2}
        \node[right=12em of i1] (x) {};
        \node[right=12em of i2] (y) {};
        \node[right=12em of i3] (z) {};
        \protect\ \pic[right=12em of i1, fill=echoreg!10] (X) {cube={1.8/1.8/1/1}};
```

```
\left[ \text{right=12em of i2, fill=echoreg!10} \right]  (Y) \left\{ \text{cube=} \left\{ 1.8/1.8/1/1 \right\} \right\} ;
\protect\ [right=12em\ of\ i3,\ fill=echoreg!10]\ (Z)\ \{cube=\{1.8/1.8/1/1\}\};
\node[right=12em of x] (x1) {};
\node[right=12em of y] (y1) {};
\node[right=12em of z] (z1) {};
\left[ \text{right=12em of x, fill=red!10} \right] (X1) \left\{ \text{cube} = \{0.9/0.9/1/1\} \right\};
\pic[right=12em of y, fill=red!10] (Y1) {cube={0.9/0.9/1/1}};
\pic[right=12em of z, fill=red!10] (Z1) {cube={0.9/0.9/1/1}};
\node[right=12em of x1] (x2) {};
\node[right=12em of y1] (y2) {};
\node[right=12em of z1] (z2) {};
\label{lem:condition} $$  \pic[right=12em of x1, fill=echoreg!10] (X2) {cube=$\{0.9/0.9/2/1\}$}; \\  \pic[right=12em of y1, fill=echoreg!10] (Y2) {cube=$\{0.9/0.9/2/1\}$}; \\  \pic[right=12em of y1, fill=echoreg!10] (Y2) {cube=$\{0.9/0.9/2/1\}$}; \\ \proof{tight=12em of y1, fill=echoreg!10]} (Y2) {cube=$\{0.9/0.9/2/1\}$}; \\ \proof{tight=12em of y1, fi
\protect{\protection} \protection [right=12em of z1, fill=echoreg!10] (Z2) {cube={0.9/0.9/2/1}};
\node[right=10em of x2] (x3) {};
\node[right=10em of y2] (y3) {};
\node[right=10em of z2] (z3) {};
\protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
\protect{\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pr
\protect\ [right=10em\ of\ z2,\ fill=red!10]\ (Z3)\ \{cube=\{0.45/0.45/2/1\}\};
\node[right=10em of y3] (y4) {};
\protect\ [right=10em\ of\ y3,\ fill=mymauve!10]\ (Y4)\ \{cube=\{0.45/0.45/6/1\}\};
\draw [-stealth, ultra thick] (i1) -- node[above] {Conv.} (X-A); \draw [-stealth, ultra thick] (i2) -- node[above] {Conv.} (Y-A);
\draw [-stealth, ultra thick] (i3) -- node[above] {Conv.} (Z-A);
\label{lem:condition} $$ \draw [-stealth, ultra thick] (X-B) -- node[above] {Pool} (X1-A);
\draw [-stealth, ultra thick] (Y-B) -- node[above] {Pool} (Y1-A); \draw [-stealth, ultra thick] (Z-B) -- node[above] {Pool} (Z1-A);
\draw [-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
          length=1.5mm}, decorate,ultra thick] (X1-B) -- node[right=2em] {$\times$conn.} (Y2-A);
\draw [-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
           length=1.5mm}, decorate,ultra thick] (X1-B) -- node[above] {} (Z2-A);
\draw [-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
           length=1.5mm}, decorate,ultra thick] (Y1-B) -- node[above] {} (X2-A);
\draw [-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
            length=1.5mm}, decorate,ultra thick] (Y1-B) -- node[above] {} (Z2-A);
\draw [-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
           length=1.5mm}, decorate,ultra thick] (Z1-B) -- node[above] {} (X2-A);
\draw [-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
           length=1.5mm}, decorate,ultra thick] (Z1-B) -- node[right=2em] {$\times$conn.} (Y2-A);
                       \draw [-stealth, ultra thick] (X1-B) -- node[above] {Conv.} (X2-A);
\draw [-stealth, ultra thick] (Y1-B) -- node[above=0.3em, fill=white, inner sep=0.1em] {Conv.} (Y2-
\draw [-stealth, ultra thick] (Z1-B) -- node[above] {Conv.} (Z2-A);
\draw [-stealth, ultra thick] (X2-B) -- node[above] {Pool} (X3-A);
\draw [-stealth, ultra thick] (Y2-B) -- node[above] {Pool} (Y3-A);
\draw [-stealth, ultra thick] (Z2-B) -- node[above] {Pool} (Z3-A);
                       \draw [-stealth, ultra thick] (X3-B) -- (Y4-A);
\draw [-stealth, ultra thick] (Y3-B) -- (Y4-A);
\draw [-stealth, ultra thick] (Z3-B) -- (Y4-A);
\draw [decorate, decoration={brace, amplitude=15pt}, ultra thick, rotate around={238:(20.85,-3.275)}]
               (20.85,-6.2) -- node[above right=1.5em, xshift=-1.5em, yshift=1em, rotate=-30] {Merge}
            (20.85,-1.85);
\node[circle, draw=black, fill=gray, right=5em of y4] (neur0) {};
\node[circle, draw=black, fill=gray, above=1em of neur0] (neur1) {};
\node[circle, draw=black, fill=gray, above=1em of neur1] (neur2) {};
\node[circle, draw=black, fill=gray, above=1em of neur2] (neur3) {};
\node[circle, draw=black, fill=gray, above=1em of neur3] (neur4) {};
\node[circle, draw=black, fill=gray, above=1em of neur4] (neur5) {};
\node[circle, draw=black, fill=gray, above=1em of neur5] (neur6) {};
```

```
\node[circle, draw=black, fill=gray, above=1em of neur6] (neur7) {};
\node[circle, draw=black, fill=gray, above=1em of neur7] (neur8) {};
\node[circle, draw=black, fill=gray, above=1em of neur8] (neur9) {};
\node[circle, draw=black, fill=gray, below=1em of neur0] (neur01) {};
\node[circle, draw=black, fill=gray, below=1em of neur01] (neur02) {};
\node[circle, draw=black, fill=gray, below=1em of neur02] (neur03) {};
\node[circle, draw=black, fill=gray, below=1em of neur04] (neur05) {};
\node[circle, draw=black, fill=gray, below=1em of neur05] (neur06) {};
\node[circle, draw=black, fill=gray, below=1em of neur06] (neur07) {};
\node[circle, draw=black, fill=gray, below=1em of neur07] (neur08) {};
\node[circle, draw=black, fill=gray, below=1em of neur08] (neur09) {};
\draw [dashed, ultra thick] (Y4-V) -- (neur9.west);
\draw [dashed, ultra thick] (Y4-W) -- (neur09.west);
\node[circle, draw=black, fill=orange, right=10em of neur0] (neur00) {};
\node[circle, draw=black, fill=orange, above=1em of neur00] (neur11) {};
\label{localization} $$ \ \end{area} $$ \ \end{area} $$ \end{area} $
\node[circle, draw=black, fill=orange, below=1em of neur00] (neur001) {};
\node[circle, draw=black, fill=orange, below=1em of neur001] (neur002) {};
\draw [-stealth, ultra thick] (neur9) -- node[above right] {FC} (neur12);
\draw [-stealth, ultra thick] (neur9) -- (neur11);
\draw [-stealth, ultra thick] (neur9) -- (neur00);
\draw [-stealth, ultra thick] (neur9) -- (neur001);
\draw [-stealth, ultra thick] (neur9) -- (neur002);
             \draw [-stealth, ultra thick] (neur09) -- (neur11);
\draw [-stealth, ultra thick] (neur09) -- (neur00);
\draw [-stealth, ultra thick] (neur09) -- (neur001);
\draw [-stealth, ultra thick] (neur09) -- (neur12);
\draw [-stealth, ultra thick] (neur8) -- (neur12);
\draw [-stealth, ultra thick] (neur8) -- (neur11);
\draw [-stealth, ultra thick] (neur8) -- (neur00);
\draw [-stealth, ultra thick] (neur8) -- (neur001);
\draw [-stealth, ultra thick] (neur8) -- (neur002);
\draw [-stealth, ultra thick] (neur7) -- (neur12);
\draw [-stealth, ultra thick] (neur7) -- (neur11);
\draw [-stealth, ultra thick] (neur7) -- (neur00);
\draw [-stealth, ultra thick] (neur7) -- (neur001);
\draw [-stealth, ultra thick] (neur7) -- (neur002);
\draw [-stealth, ultra thick] (neur6) -- (neur12);
\draw [-stealth, ultra thick] (neur6) -- (neur11);
\draw [-stealth, ultra thick] (neur6) -- (neur00);
\draw [-stealth, ultra thick] (neur6) -- (neur001);
\draw [-stealth, ultra thick] (neur6) -- (neur002);
\draw [-stealth, ultra thick] (neur5) -- (neur12);
\draw [-stealth, ultra thick] (neur5) -- (neur11);
\draw [-stealth, ultra thick] (neur5) -- (neur00);
\draw [-stealth, ultra thick] (neur5) -- (neur001);
\draw [-stealth, ultra thick] (neur5) -- (neur002);
\draw [-stealth, ultra thick] (neur4) -- (neur12);
\draw [-stealth, ultra thick] (neur4) -- (neur11);
\draw [-stealth, ultra thick] (neur4) -- (neur00);
\draw [-stealth, ultra thick] (neur4) -- (neur001);
\draw [-stealth, ultra thick] (neur4) -- (neur002);
\draw [-stealth, ultra thick] (neur3) -- (neur12);
\draw [-stealth, ultra thick] (neur3) -- (neur11);
\draw [-stealth, ultra thick] (neur3) -- (neur00);
\draw [-stealth, ultra thick] (neur3) -- (neur001);
\draw [-stealth, ultra thick] (neur3) -- (neur002);
\draw [-stealth, ultra thick] (neur2) -- (neur12);
\draw [-stealth, ultra thick] (neur2) -- (neur11);
\draw [-stealth, ultra thick] (neur2) -- (neur00);
```

```
\draw [-stealth, ultra thick] (neur2) -- (neur001);
\draw [-stealth, ultra thick] (neur2) -- (neur002);
\draw [-stealth, ultra thick] (neur1) -- (neur12);
\draw [-stealth, ultra thick] (neur1) -- (neur11);
\draw [-stealth, ultra thick] (neur1) -- (neur00);
\draw [-stealth, ultra thick] (neur1) -- (neur001);
\draw [-stealth, ultra thick] (neur1) -- (neur002);
\draw [-stealth, ultra thick] (neur0) -- (neur12);
\draw [-stealth, ultra thick] (neur0) -- (neur11);
\draw [-stealth, ultra thick] (neur0) -- (neur00);
\draw [-stealth, ultra thick] (neur0) -- (neur001);
\draw [-stealth, ultra thick] (neur0) -- (neur002);
        \draw [-stealth, ultra thick] (neur08) -- (neur12);
\draw [-stealth, ultra thick] (neur08) -- (neur11);
\draw [-stealth, ultra thick] (neur08) -- (neur00);
\draw [-stealth, ultra thick] (neur08) -- (neur001);
\draw [-stealth, ultra thick] (neur08) -- (neur002);
\draw [-stealth, ultra thick] (neur07) -- (neur12);
\draw [-stealth, ultra thick] (neur07) -- (neur11);
\draw [-stealth, ultra thick] (neur07) -- (neur00);
\draw [-stealth, ultra thick] (neur07) -- (neur001);
\draw [-stealth, ultra thick] (neur07) -- (neur002);
\draw [-stealth, ultra thick] (neur06) -- (neur12);
\draw [-stealth, ultra thick] (neur06) -- (neur11);
\draw [-stealth, ultra thick] (neur06) -- (neur00);
\draw [-stealth, ultra thick] (neur06) -- (neur001);
\draw [-stealth, ultra thick] (neur06) -- (neur002);
\draw [-stealth, ultra thick] (neur05) -- (neur12);
\draw [-stealth, ultra thick] (neur05) -- (neur11);
\draw [-stealth, ultra thick] (neur05) -- (neur00);
\draw [-stealth, ultra thick] (neur05) -- (neur001);
\draw [-stealth, ultra thick] (neur05) -- (neur002);
\draw [-stealth, ultra thick] (neur04) -- (neur12);
\draw [-stealth, ultra thick] (neur04) -- (neur11);
\draw [-stealth, ultra thick] (neur04) -- (neur00);
\draw [-stealth, ultra thick] (neur04) -- (neur001);
\draw [-stealth, ultra thick] (neur04) -- (neur002);
\draw [-stealth, ultra thick] (neur03) -- (neur12);
\draw [-stealth, ultra thick] (neur03) -- (neur11);
\draw [-stealth, ultra thick] (neur03) -- (neur00);
\draw [-stealth, ultra thick] (neur03) -- (neur001);
\draw [-stealth, ultra thick] (neur03) -- (neur002);
\draw [-stealth, ultra thick] (neur02) -- (neur12);
\draw [-stealth, ultra thick] (neur02) -- (neur11);
\draw [-stealth, ultra thick] (neur02) -- (neur00);
\draw [-stealth, ultra thick] (neur02) -- (neur001);
\draw [-stealth, ultra thick] (neur02) -- (neur002);
\draw [-stealth, ultra thick] (neur01) -- (neur12);
\draw [-stealth, ultra thick] (neur01) -- (neur11);
\draw [-stealth, ultra thick] (neur01) -- (neur00);
\draw [-stealth, ultra thick] (neur01) -- (neur001);
\draw [-stealth, ultra thick] (neur01) -- (neur002);
\node[right=5em of neur12] (out1) {};
\node[right=5em of neur11] (out2) {};
\node[right=5em of neur00] (out3) {};
\node[right=5em of neur001] (out4) {};
\node[right=5em of neur002] (out5) {};
\draw[-stealth, ultra thick] (neur12) -- node[above] {Softmax} (out1);
\draw[-stealth, ultra thick] (neur11) -- (out2);
\draw[-stealth, ultra thick] (neur00) -- (out3);
\draw[-stealth, ultra thick] (neur001) -- (out4);
\draw[-stealth, ultra thick] (neur002) -- (out5);
\toggletrue{redraw}
```

```
\toggletrue{redraw2}
        \node[right=12em of i1] (x) {};
        \node[right=12em of i2] (y) {};
        \node[right=12em of i3] (z) {};
        \pic[right=12em of i1, fill=echoreg!10] (X) {cube={1.8/1.8/1/1}};
        \pic[right=12em of i2, fill=echoreg!10] (Y) {cube={1.8/1.8/1/1}};
        \pic[right=12em of i3, fill=echoreg!10] (Z) {cube={1.8/1.8/1/1}};
        \protect\ [right=12em\ of\ x,\ fill=red!10]\ (X1)\ \{cube=\{0.9/0.9/1/1\}\};
        \protect\ [right=12em\ of\ y,\ fill=red!10]\ (Y1)\ \{cube=\{0.9/0.9/1/1\}\};
        \protect\ [right=12em\ of\ z,\ fill=red!10]\ (Z1)\ \{cube=\{0.9/0.9/1/1\}\};
        \protect\operatorname{pic}[right=12em \ of \ z1, \ fill=echoreg!10] \ (Z2) \ \{cube=\{0.9/0.9/2/1\}\};
        \togglefalse{redraw2}
        \protect\ [right=10em\ of\ x2,\ fill=red!10]\ (X3)\ \{cube=\{0.45/0.45/2/1\}\};
        \protect\ [right=10em\ of\ y2,\ fill=red!10]\ (Y3)\ \{cube=\{0.45/0.45/2/1\}\};
        \protect\ [right=10em\ of\ z2,\ fill=red!10]\ (Z3)\ \{cube=\{0.45/0.45/2/1\}\};
        \toggletrue{redraw2}
        \protect\ [right=10em\ of\ y3,\ fill=mymauve!10]\ (Y4)\ \{cube=\{0.45/0.45/6/1\}\};
\end{tikzpicture}
```



```
\begin{tikzpicture}
        \n ode [rectangle, rounded corners=10, minimum width=20em, minimum height=12em, draw, very thick] (
            lstm) at (0, 0) {};
        \node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick] (lst
            2) at (-1.5, -5.5) {};
        \node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick,left=1
            em of 1st2] (1st1) {};
        \node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick, right
            =1em of lst2] (lst3) {};
        \node[right=0.5em of lst3] (dots) {};
        \node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick, right
            =3em of 1st3] (1st4) {};
        \node[rectangle, minimum width=27em, minimum height=5.1em, ultra thick, draw] at (-0.1, -5.5) (chn
        \begin{scope}[transparency group, opacity=0.5]
        \draw[-stealth, line width=4mm] ([xshift=+1em]chn1.west) -- ([xshift=-1em]chn1.east);
        \end{scope}
        \node[below=2em of lst1] (x1) \{x_1\};
        \node[below=2em of lst2] (x2) {$x_2$};
        \node[below=2em of lst3] (x3) {$x_3$};
        \node[below=3.4em of dots] (xd) {\dots};
        \node[below=2em of lst4] (x4) {$x_n$};
        \node[above=2em of lst1] (y1) {<math>y_1};
        \node[above=2em of lst2] (y2) {$y_2$};
        \node[above=2em of 1st3] (y3) {$y_3$};
        \node[above=3.4em of dots] (yd) {\dots};
        \node[above=2em of lst4] (y4) {$y_n$};
        \draw[-stealth, line width=1mm, white] (x1) -- (lst1);
        \draw[-stealth, line width=1mm, white] (x2) -- (1st2);
        \draw[-stealth, line width=1mm, white] (x3) -- (1st3); \draw[-stealth, line width=1mm, white] (x4) -- (1st4);
        \draw[-stealth, very thick] (x1) -- (lst1);
        \draw[-stealth, very thick] (x2) -- (1st2);
        \draw[-stealth, very thick] (x3) -- (1st3);
        \draw[-stealth, very thick] (x4) -- (1st4);
        \draw[-stealth, line width=1mm, white] (lst1) -- (y1);
        \draw[-stealth, line width=1mm, white] (1st2) -- (y2);
        \draw[-stealth, line width=1mm, white] (1st3) -- (y3);
        \draw[-stealth, line width=1mm, white] (lst4) -- (y4);
        \draw[-stealth, very thick] (lst1) -- (y1);
        \draw[-stealth, very thick] (1st2) -- (y2);
        \draw[-stealth, very thick] (1st3) -- (y3);
        \draw[-stealth, very thick] (lst4) -- (y4);
        \draw[-stealth, very thick] ([yshift=-0.5em]lst1.east) -- ([yshift=-0.5em]lst2.west);
        \draw[-stealth, very thick] ([yshift=+0.5em]lst1.east) -- ([yshift=+0.5em]lst2.west);
        \draw[-stealth, very thick] ([yshift=-0.5em]lst2.east) -- ([yshift=-0.5em]lst3.west);
        \label{lem:condition} $$ \operatorname{lem}(-\text{stealth}, \text{very thick}) ([yshift=+0.5em] 1st 2.east) -- ([yshift=+0.5em] 1st 3.west); $$
        \draw[-stealth, dashed, very thick] ([yshift=-0.5em]lst3.east) -- ([yshift=-0.5em]lst4.west);
        \draw[-stealth, dashed, very thick] ([yshift=+0.5em]lst3.east) -- ([yshift=+0.5em]lst4.west);
        \node[rectangle, minimum width=3em, minimum height=7em, ultra thick, draw] at (-3, -9.5) (chn2) {};
        \draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn2.north) -- ([yshift=+1em]chn2.south);
        \node[rectangle, minimum width=3em, minimum height=7em, ultra thick, below=5.5em of chn2, draw] (
            chn22) {};
        \draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn22.north) -- ([yshift=+1em]chn22.south);
        \node[rectangle, minimum width=3em, minimum height=7em, ultra thick, right=3em of chn2, draw] (chn
        \draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn3.north) -- ([yshift=+1em]chn3.south);
        \node[rectangle, minimum width=3em, minimum height=7em, ultra thick, right=-0.2em of chn3, draw] (
            chn31) {};
        \draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn31.north) -- ([yshift=+1em]chn31.south);
```

```
\node[rectangle, minimum width=3em, minimum height=7em, ultra thick, right=3em of chn22, draw] (chn
\draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn23.north) -- ([yshift=+1em]chn23.south);
\node[rectangle, minimum width=3em, minimum height=7em, ultra thick, right=-0.2em of chn23, draw] (
    chn 231) {};
\draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn231.north) -- ([yshift=+1em]chn231.south
   ):
\node[rectangle, minimum width=3em, minimum height=7em, ultra thick, right=3em of chn31, draw] (chn
\draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn4.north) -- ([yshift=+1em]chn4.south);
\node[rectangle, minimum width=3em, minimum height=7em, ultra thick, right=3em of chn231, draw] (
    chn24) {}:
\draw[-stealth, line width=3mm, black!50] ([yshift=-1em]chn24.north) -- ([yshift=+1em]chn24.south);
\draw[-stealth, very thick] ([xshift=-3em,yshift=-2em]chn2.west) -- ([yshift=-2em]chn2.west);
\draw[-stealth, very thick] ([xshift=-3em,yshift=2em]chn2.west) -- ([yshift=2em]chn2.west);
\draw[-stealth, very thick] ([xshift=-3em]chn2.west) -- (chn2.west);
\draw[-stealth, very thick] ([yshift=-2em]chn2.east) -- ([yshift=-2em]chn3.west);
\draw[-stealth, very thick] ([yshift=2em]chn2.east) -- ([yshift=2em]chn3.west);
\draw[-stealth, very thick] (chn2.east) -- (chn3.west);
\draw[-stealth, very thick] ([yshift=-2em]chn31.east) -- ([yshift=-2em]chn4.west);
\draw[-stealth, very thick] ([yshift=2em]chn31.east) -- ([yshift=2em]chn4.west);
\draw[-stealth, very thick] (chn31.east) -- (chn4.west);
\draw[-stealth, very thick] ([yshift=-2em]chn4.east) -- ([yshift=-2em,xshift=3em]chn4.east) node[
    right] {\dots};
\draw[-stealth, very thick] ([xshift=-3em,yshift=-2em]chn22.west) -- ([yshift=-2em]chn22.west);
\draw[-stealth, very thick] ([xshift=-3em,yshift=2em]chn22.west) -- ([yshift=2em]chn22.west);
\draw[-stealth, very thick] ([xshift=-3em]chn22.west) -- (chn22.west);
\draw[-stealth, very thick] ([yshift=-2em]chn22.east) -- ([yshift=-2em]chn23.west);
\draw[-stealth, very thick] ([yshift=2em]chn22.east) -- ([yshift=2em]chn23.west);
\draw[-stealth, very thick] (chn22.east) -- (chn23.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
   length=1.5mm}, decorate, very thick] ([yshift=-2em]chn2.east) -- ([yshift=-2em]chn231.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
   length=1.5mm}, decorate, very thick] ([yshift=2em]chn2.east) -- ([yshift=2em]chn231.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
    length=1.5mm}, decorate, very thick] (chn2.east) -- (chn231.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
   length=1.5mm}, decorate, very thick] ([yshift=-2em]chn22.east) -- ([yshift=-2em]chn31.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
    length=1.5mm}, decorate, very thick] ([yshift=2em]chn22.east) -- ([yshift=2em]chn31.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=0.3mm, post
   length=1.5mm}, decorate, very thick] (chn22.east) -- (chn31.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=1mm, post
    length=1.5mm}, decorate, very thick] ([yshift=-2em]chn31.east) -- ([yshift=-2em]chn4.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=1mm, post
    length=1.5mm}, decorate, very thick] ([yshift=2em]chn31.east) -- ([yshift=2em]chn4.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=1mm, post
    length=1.5mm}, decorate, very thick] (chn31.east) -- (chn4.west);
        \draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=1mm,
            post length=1.5mm}, decorate, very thick] ([yshift=-2em]chn231.east) -- ([yshift=-2em]
            chn24.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=1mm, post
    length=1.5mm}, decorate, very thick] ([yshift=2em]chn231.east) -- ([yshift=2em]chn24.west);
\draw[-stealth, decoration={snake, pre length=0.01mm, segment length=2mm, amplitude=1mm, post
    length=1.5mm}, decorate, very thick] (chn231.east) -- (chn24.west);
\draw[-stealth, very thick] ([yshift=-2em]chn231.east) -- ([yshift=-2em]chn24.west);
```

```
\draw[-stealth, very thick] ([yshift=2em]chn231.east) -- ([yshift=2em]chn24.west);
\draw[-stealth, very thick] (chn231.east) -- (chn24.west);
\draw[-stealth, very thick] ([yshift=-2em]chn24.east) -- ([yshift=-2em,xshift=3em]chn24.east) node[
    right] {\dots};
\draw[densely dotted, very thick] (chn1.north west) -- (chn2.north east);
\verb|\draw[densely dotted, very thick]| (chn1.north east) -- (chn2.south east);
\draw[densely dotted, very thick] (chn1.south west) -- (chn2.north west);
\draw[densely dotted, very thick] (chn1.south east) -- (chn2.south west);
\node[rectangle, minimum width=27em, minimum height=5.1em, ultra thick, draw, fill=white] at (-0.1,
     -5.5) (chn1) {};
\draw[densely dotted, very thick] ([xshift=0.4em,yshift=-0.4em]lstm.north west) -- ([xshift=0.4em,
   yshift=-0.4em]lst2.north west);
\draw[densely dotted, very thick] ([xshift=-0.4em,yshift=-0.4em]lstm.north east) -- ([xshift=-0.4em
    ,yshift=-0.4em]lst2.north east);
\draw[densely dotted, very thick] ([xshift=-0.4em,yshift=0.4em]lstm.south east) -- ([xshift=-0.4em,
   yshift=0.4em]lst2.south east);
\draw[densely dotted, very thick] ([xshift=0.4em,yshift=0.4em]lstm.south west) -- ([xshift=0.4em,
   yshift=0.4em]lst2.south west);
\node[rectangle, rounded corners=10, minimum width=20em, minimum height=12em, draw, very thick,
    fill=white] (1stm) at (0, 0) {};
samples=1000, domain=-2.6:2.6,
                       hide axis,
                        xtick=\empty,
                        ytick=\empty,
                       xlabel=\empty,
                        ylabel=\empty,
                        xmin = -2.1, xmax = 2.1,
                        ymin = -0.1, ymax = 1.1,
                        x=0.5em, y=0.5em,
                        trig format = rad
                ٦
                        \addplot expression [no markers, smooth, thick, black] {max(0, min(1, x*0.6)
                            + 0.5))};
                \end{axis}\end{tikzpicture}};
\node[rectangle, draw, right=1em of s1] (s2) {\begin{tikzpicture} \begin{axis}[
                samples=1000, domain=-2.6:2.6,
                       hide axis,
                        xtick=\empty,
                        ytick=\empty,
                       xlabel=\empty,
                       ylabel=\empty,
                        xmin = -2.1, xmax = 2.1,
                        ymin = -0.1, ymax = 1.1,
                       x=0.5em, y=0.5em,
                        trig format = rad
               ]
                        \addplot expression [no markers, smooth, thick, black] \{\max(0, \min(1, x*0.6)\}
                            + 0.5))};
                \end{axis}\end{tikzpicture}};
\node[rectangle, draw, right=1em of s2] (t1) {\begin{tikzpicture} \begin{axis}[
                samples=1000, domain=-2.6:2.6,
                        hide axis,
                        xtick=\empty,
                        ytick=\empty,
                        xlabel=\empty,
                        ylabel=\empty,
                        xmin=-2.1, xmax=2.1,
                        ymin = -1.1, ymax = 1.1,
                        x=0.5em, y=0.5em,
                        trig format = rad
                        \addplot expression [no markers, smooth, thick, black] {tanh(\x)};
                \end{axis}\end{tikzpicture}};
\node[rectangle, draw, right=1em of t1] (s3) {\begin{tikzpicture} \begin{axis}[
                samples=1000, domain=-2.6:2.6,
```

```
hide axis,
                                          xtick=\empty,
                                          ytick=\empty,
                                          xlabel=\empty,
                                          ylabel=\empty,
                                          xmin=-2.1, xmax=2.1,
                                          ymin=-0.1, ymax=1.1,
                                          x=0.5em, y=0.5em,
                                          trig format = rad
                            ]
                                           \addplot expression [no markers, smooth, thick, black] {max(0, min(1, x*0.6
                                                   + 0.5))};
                            \end{axis}\end{tikzpicture}};
\node[circle, draw, above=6em of s1, inner sep=0em] (m2) {$\otimes$};
\node[circle, draw, right=6.55em of m2, inner sep=0em] (p1) {$\oplus$};
\node[circle, draw, right=4.5em of m1, inner sep=0em] (m3) {$\otimes$};
\node[rounded rectangle, draw, above=1em of m3, inner sep=0.2em] (tt) {\begin{tikzpicture} \begin{
       axis}[
                            samples=1000, domain=-2.6:2.6,
                                          hide axis.
                                          xtick=\empty,
                                          ytick=\empty,
                                          xlabel=\empty,
                                           ylabel=\empty,
                                          xmin=-2.1, xmax=2.1,
                                          ymin=-1.1, ymax=1.1,
                                          x=0.5em, y=0.5em,
                                          trig format = rad
                            ]
                                          \addplot expression [no markers, smooth, thick, black] {tanh(\x)};
                            \end{axis}\end{tikzpicture}};
\node[circle, draw, below=1em of s1, inner sep=0em] (conc) {$||$};
\node[below=5em of s1] (xt) {$x_t$};
\node[left=3em of conc] (ht1) {<math>y_{t-1}};
\node[left=3em of m2] (ct1) {$c_{t-1}}};
\node[right=18em of m2] (ct) {$c_t$};
\node[right=18em of conc] (ht) {$y_t$};
\node[] (yt) at (3, 3) {$y_t$};
\draw[-stealth, line width=1mm, white] (xt) -- (conc);
\draw[-stealth, very thick] (xt) -- (conc);
\draw[-stealth, line width=1mm, white] (ht1) -- (conc);
\draw[-stealth, very thick] (ht1) -- (conc);
\draw[-stealth, very thick] (conc) -- (s1);
\path[-stealth, very thick] (conc) edge[bend right] (s2.south);
\path[-stealth, very thick] (conc) edge[bend right] (t1.south);
\path[-stealth, very thick] (conc) edge[bend right] (s3.south);
\draw[-stealth, very thick] (s1) -- node[left] {\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}
\label{lem:condition} $$ \draw[-stealth, very thick] (s2) edge[bend left] node[above] { $j_t$} (m1.west); $$
\draw[-stealth, very thick] (t1) -- node[right] {\$i_t$} (m1);
\draw[-stealth, very thick] (m1) -- (p1);
\draw[-stealth, line width=1mm, white] (ct1) -- (m2);
\draw[-stealth, very thick] (ct1) -- (m2);
\draw[-stealth, very thick] (m2) -- (p1);
\draw[-stealth, very thick] (s3) edge[bend left] node[left] {\$o_t$} (m3.west);
\draw[-stealth, line width=1mm, white] (p1) -- (ct);
\draw[-stealth, very thick] (p1) -- (ct);
\draw[-stealth, very thick] (tt) -- (m3);
\draw[-stealth, line width=1mm, white] (m3) edge[bend right] (ht.west);
\draw[-stealth, very thick] (m3) edge[bend right] (ht.west);
\draw[-stealth ,very thick] (p1) edge[bend right] (tt.west);
\draw[-stealth, line width=1mm,white] (m3) edge[bend right] (yt.south);
\draw[-stealth, very thick] (m3) edge[bend right] (yt.south);
\node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick] (lst
       2) at (-1.5, -5.5) {};
\node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick,left=1
       em of 1st2] (1st1) {};
```

```
\node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick, right
                                        =1em of lst2] (lst3) {};
                          \node[right=0.5em of lst3] (dots) {};
                          \node[rectangle, rounded corners=10, minimum width=5em, minimum height=3em, draw, very thick, right
                                        =3em of 1st3] (1st4) {};
                          \begin{scope}[transparency group, opacity=0.5]
                           \draw[-stealth, line width=4mm] ([xshift=+1em]chn1.west) -- ([xshift=-1em]chn1.east);
                           \end{scope}
                          \node[below=2em of lst1] (x1) {$x_1$};
                          \label{lower} $$ \node[below=2em of lst2] (x2) {$x_2$};
                           \node[below=2em of lst3] (x3) {$x_3$};
                           \node[below=3.4em of dots] (xd) {\dots};
                          \node[below=2em of lst4] (x4) {$x_n$};
                          \node[above=2em of lst1] (y1) {$y_1$};
                          \node[above=2em of lst3] (y3) {$y_3$};
                           \node[above=3.4em of dots] (yd) {\dots};
                          \node[above=2em of lst4] (y4) {$y_n$};
                          \del{draw} [-stealth, line width=1mm, white] (x1) -- (lst1);
                           \draw[-stealth, line width=1mm, white] (x2) -- (1st2);
                          \draw[-stealth, line width=1mm, white] (x3) -- (1st3);
                          \draw[-stealth, line width=1mm, white] (x4) -- (lst4);
                          \draw[-stealth, very thick] (x1) -- (lst1);
                          \draw[-stealth, very thick] (x2) -- (1st2);
\draw[-stealth, very thick] (x3) -- (1st3);
                          \draw[-stealth, very thick] (x4) -- (lst4);
                          \draw[-stealth, line width=1mm, white] (lst1) -- (y1);
                          \label{lem:continuous} $$ \displaystyle -\sin (-stealth, line width=1mm, white] (lst2) -- (y2); \\ \displaystyle -\cos (y3); 
                          \draw[-stealth, line width=1mm, white] (lst4) -- (y4);
                          \draw[-stealth, very thick] (lst1) -- (y1);
                          \del{draw} [-stealth, very thick] (lst2) -- (y2);
                          \draw[-stealth, very thick] (1st3) -- (y3);
\draw[-stealth, very thick] (1st4) -- (y4);
                          \draw[-stealth, very thick] ([yshift=-0.5em]lst1.east) -- ([yshift=-0.5em]lst2.west);
                          \label{lem:condition} $$ \operatorname{draw}[-stealth, very thick] ([yshift=+0.5em]lst1.east) -- ([yshift=+0.5em]lst2.west); $$
                          \draw[-stealth, very thick] ([yshift=-0.5em]lst2.east) -- ([yshift=-0.5em]lst3.west); \draw[-stealth, very thick] ([yshift=+0.5em]lst2.east) -- ([yshift=+0.5em]lst3.west);
                           \draw[-stealth, dashed, very thick] ([yshift=-0.5em]lst3.east) -- ([yshift=-0.5em]lst4.west);
                          \draw[-stealth, dashed, very thick] ([yshift=+0.5em]lst3.east) -- ([yshift=+0.5em]lst4.west);
\end{tikzpicture}
```