- **3.1** Lad $f(x) = \frac{1}{x} \frac{\cos x}{\sin x}$ for alle $x \in \mathbb{R}$ med $x \neq n\pi, n \in \mathbb{Z}$.
- a) Find grænseværdierne $\lim_{x\to 0+} f(x)$, $\lim_{x\to \pi^-} f(x)$ først med og dernæst uden Maple.

...

b) Vis, at f er strengt voksende i hvert interval $(n\pi, (n+1)\pi)$. Uligheden $|\sin x| < |x|$ for $x \neq 0$ kan benyttes uden bevis (den er vist i TLO side 240).

...

c) Bevis, at ligningen f(x) = 0 ikke har nogen løsninger i $(0, \pi)$, og at den har præcis én løsning i $(\pi, 2\pi)$. Benyt Maple til at finde en approksimering til denne løsning.

...

3.2 En funktion $f: \mathbb{R} \to \mathbb{R}$ defineres ved (1)

$$f(x) = \begin{cases} \frac{1-x^2}{(x-1)(x-3)} & x \in (-\infty; 1) \cup (3; \infty) \\ x & x \in [1; 3] \end{cases}$$
 (1)

a) Lav i Maple et plot af et udsnit af grafen for f, der giver et retvisende og oplysende billede af funktionens overordnede opførsel.

..

b) Er f differentiabel i x = 1? Begrund dit svar uden brug af Maple.

...

- **3.3** (iii) Betragt funktionen $f(x) = x(\ln(x+1) \ln x), x > 0$.
- a) Tegn grafen for $0 < x \le 100$ og gæt på $\lim_{x \to \infty} f(x)$ ud fra denne.

•••

b) Beregn i Maple $f(10^n)$ for n = 1, ..., 10 (brug f. eks. værdien 20 af Digits=antal decimaler). Gæt igen på $\lim_{x\to\infty} f(x)$ ud fra disse tal.

...

c) Bestem $\lim_{x\to\infty} f(x)$ uden brug af Maple. Kommenter resultaterne fra (a) og (b).

...