Exam 2 Corrections

Denny Cao

October 24, 2022

Question 1

If $\overline{A} \cap B = B \wedge \overline{B} \cap \overline{A} = A$, what can you say about A and B? Prove your answer. (\overline{S} denotes the complement of S.)

Solution

Proof. Assume $x \in A$. By definition of complement, $x \notin \overline{A}$. Since $x \notin \overline{A}$, $x \notin \overline{A} \cap B$. Since $\overline{A} \cap B = B$, $x \notin B$. x is arbitrary, therefore we can generalize to $A \not\subseteq B$. \square *Proof.* Assume $y \in B$. By definition of complement, $y \notin \overline{B}$. Since $y \notin \overline{B}$, $y \notin \overline{B} \cap A$. Since $\overline{B} \cap A = A$, $y \notin A$. y is arbitrary, therefore we can generalize to $B \not\subseteq A$. \square *Proof.* Since $A \not\subseteq B \land B \not\subseteq A$, $A \cap B = \emptyset$

$$\overline{A} \cap B = B \land \overline{B} \cap A = A \implies A \cap B = \emptyset$$

Suppose that $g: A \to A$ and $f: A \to A$ where $A = \{a, b, c, d\}$, $g = \{(a, a), (b, c), (c, a), (d, c)\}$ and $f = \{(a, d), (b, a), (c, b), (d, a)\}$. Find $g \circ (f \circ g)$, that is, find the composition of g(x) with f(x) composed with g(x).

Solution

$$g(A) = \{(a, a), (b, c), (c, a), (d, c)\}$$

$$f(g(A)) = \{(a, d), (b, b), (c, d), (d, b)\}$$

$$g(f(g(A))) = \{(a, c), (b, c), (c, c), (d, c)\}$$

Verify that $a_n = \pi$ is a possible solution to the recurrence relation $a_n = (2n - 1)a_{n-1} - (2n - 2)a_{n-2}$. What are the conditions for this to happen?

Solution

Evaluate $\sum_{n=1}^{3} \sum_{k=1}^{n} (n^k)$. Show all your steps.

Solution

$$\sum_{n=1}^{3} \sum_{k=1}^{n} (n^k) = \sum_{k=1}^{1} 1^k + \sum_{k=1}^{2} 2^k + \sum_{k=1}^{3} 3^k$$
$$= 1 + 2 + 4 + 3 + 9 + 27$$
$$= 46$$

Find a $f: \mathbb{N} \to \mathbb{Z}$ that is surjection that is not injection. Prove that it satisfies the conditions held.

Solution

$$\mathbb{N} = \mathbb{Z}^+ \cup \{0\}$$

Let $S_1 = \{x \mid 2x, x \in \mathbb{N}\}, S_2 = \{x \mid 2x + 1, x \in \mathbb{N}\}$

$$f(n) = \begin{cases} \frac{n}{2} & n \in S_1 \\ -(\frac{n}{2} - \frac{1}{2}) & n \in S_2 \\ 10 & n = 1 \end{cases}$$

Theorem: f(n) is surjective.

Proof. We can separate the domain, \mathbb{N} into two sets of odd and even naturals, S_1 and S_2 respectively.

Let n = 2y. Since 2y is always an even, it will satisfy the first case, $n \in S_1$.