1. In den 30 Museen der Stadt Artima gab es im letzen Monat jeweils *X* Neuerwerbungen pro Museum. Dabei sei folgende Urliste entstanden:

2 8 3

(a) Erstellen Sie eine Tabelle mit der absoluten und relativen Häufigkeit bzw. Summenhäufigkeit der Neuerwerbungen *X* pro Museum.

Lösung:					
Es gilt:					
	x_i	n_i	h_i	H_i	
	1	1	1/30	1/30	
	2	4	2/15	1/6	
	3	7	7/30	2/5	
	4	5	1/6	17/30	
	5	5	1/6	11/15	
	6	3	1/10	5/6	
	7	2	1/15	9/10	
	8	2	1/15	29/30	
	11	1	1/30	1	

(b) Zeichnen Sie im Anschluss

i. das zugehörige Stabdiagramm

ii. die empirische Verteilungsfunktion.

- (c) Berechnen Sie
 - i. das arithmetische Mittel

Lösung:

Es gilt:

$$\bar{x} = \frac{1}{n} \cdot \sum_{i} x_{i} = \frac{1}{30} \cdot 134 = \frac{67}{15} \approx 4.467$$

ii. den Median

Lösung:

Es gilt:

$$\tilde{x}=x_{1/2}=4$$

iii. das 10%-Quantil

Lösung:

Es gilt:

$$x_{1/10} = 2$$

iv. obere Quartil

Lösung:

Es gilt:

$$x_{3/4} = 6$$

(d) Berechnen Sie die empirische Varianz und die empirische Standardabweichung.

Lösung:

Es gilt:

$$s^{2} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$= \frac{1}{n-1} \cdot \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \bar{x}^{2}\right)$$

$$= \frac{1}{29} \cdot \left(\sum_{i=1}^{30} x_{i}^{2} - 30 \cdot \left(\frac{67}{15}\right)^{2}\right)$$

$$= \frac{1}{29} \cdot \left(\sum_{i=1}^{30} x_{i}^{2} - \frac{8978}{15}\right)$$

$$= \frac{1}{29} \cdot \sum_{i=1}^{30} x_{i}^{2} - \frac{8978}{435}$$

$$= \frac{1}{29} \cdot 740 - \frac{8978}{435}$$

$$= \frac{2122}{435} \approx 4.878$$

Und damit auch:

$$s = \sqrt{s^2} = \sqrt{\frac{2122}{435}} \approx 2.209$$