## 線性聯立方程式與高斯消去法

魏澤人

國立東華大學 應用數學系

# 線性聯立方程式

#### 定義

#### **System of Linear Equation**

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

# 線性聯立方程式

# 範例

$$5x + 7y - 3z = 6$$
$$4x - 8y + 5z = 2$$

$$6x + y = 2$$
$$4x - 3y = 7$$
$$7x - 2y = 1$$

## 正常的聯立方程式

$$5x + 7y - 3z + 6w = 6$$
$$4x - 8y + 5z + 2w = 2$$
$$1x - 2y + 3z + 2w = 5$$
$$3x - 2y + 1z + 2w = 1$$

# 線性聯立方程式

$$5x + 7y - 3z + 6w = 6$$
$$5x + 7y - 3z + 6w = 2$$
$$5x + 7y - 3z + 6w = 5$$
$$5x + 7y - 3z + 6w = 5$$

# 線性聯立方程式

$$5x + 7y - 3z + 6w = 6$$
$$4x - 8y + 5z + 2w = 2$$
$$1x - 2y + 3z + 2w = 5$$
$$3x - 2y + 1z + 2w = 1$$

## 簡化符號/概念

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

$$A\mathbf{x} = \mathbf{b}$$

### 內容

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{pmatrix}$$

## 寫成

$$A\mathbf{x} = \mathbf{b}$$



$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{pmatrix}$$

## 空間

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \quad \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m$$

# 有解

#### 範例

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 3 \\ 1 \end{array}\right)$$

有解

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 2 \\ 1 \end{array}\right)$$

### 定義

有解時,稱此系統 consistent

## 無解

#### 範例

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 3 \\ 1 \end{array}\right)$$

無解

#### 定義

無解時,稱此系統 inconsistent

# 齊次

#### 定義

有解時,稱Ax = 0 此系統為 Homogeneous

# 齊次

#### 定義

有解時,稱Ax = 0 此系統為 Homogeneous

#### 問題

Homogeneous 時一定有解嗎? Homogeneous 時一定 consistent 嗎?

## 等價

#### 定義

若對於所有 x, 有  $Ax = b \iff Cx = d$  此稱此兩方程組 **Equivalent**.

#### 問題

請舉例一些 Equivalent 的方程組

# 無聊的例子

## 範例

$$\left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7 \\ 3 \end{array}\right)$$

$$\begin{pmatrix} 3 & 5 \\ 1 & 2 \\ 1 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 7 \\ 3 \\ 3 \end{pmatrix}$$

## 無聊的例子

### 範例

$$\left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7 \\ 3 \end{array}\right)$$

$$\left(\begin{array}{cc} 1 & 2 \\ 3 & 5 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 3 \\ 7 \end{array}\right)$$

## 無聊的例子

### 範例

$$\left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7 \\ 3 \end{array}\right)$$

$$\left(\begin{array}{cc} 3 & 5 \\ 2 & 4 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7 \\ 6 \end{array}\right)$$

# 比較不無聊的例子

## 範例

$$\left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7 \\ 3 \end{array}\right)$$

$$\left(\begin{array}{cc} 3 & 5\\ 1 & 2\\ 4 & 7 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7\\ 3\\ 10 \end{array}\right)$$

# 比較不無聊的例子

## 範例

$$\left(\begin{array}{cc} 3 & 5 \\ 1 & 2 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7 \\ 3 \end{array}\right)$$

$$\left(\begin{array}{cc} 3 & 5 \\ 4 & 7 \end{array}\right) \mathbf{x} = \left(\begin{array}{c} 7 \\ 10 \end{array}\right)$$

• Type 1:  $T_{i,j}$  交換 i,j 兩列

● Type 2: *D<sub>i</sub>*(*m*) 把第 *i* 列乘上 *m* 倍

• Type 3:  $L_{i,j}(m)$  把第 j列乘上 m 倍之後加進去第 i列

- Type 1: *T<sub>i,j</sub>* 交換 *i,j* 兩列
- Type 2: *D<sub>i</sub>*(*m*) 把第 *i* 列乘上 *m* 倍
- Type 3:  $L_{i,j}(m)$  把第 j列乘上 m 倍之後加進去第 i列

#### 問題

- $T_{i,j}A\mathbf{x} = T_{i,j}\mathbf{b}$  是否和  $A\mathbf{x} = \mathbf{b}$  equivalent
- $D_i(m) A \mathbf{x} = D_i(m) \mathbf{b}$  是否和  $A \mathbf{x} = \mathbf{b}$  equivalent
- $T_{i,j}(m) A \mathbf{x} = T_{i,j}(m) \mathbf{b}$  是否和  $A \mathbf{x} = \mathbf{b}$  equivalent

- Type 1:  $T_{i,j}$  交換 i,j 兩列
- Type 2:  $D_i(m)$  把第 i列乘上 m 倍  $(m \neq 0)$
- Type 3:  $L_{i,j}(m)$  把第 j列乘上 m 倍之後加進去第 i列

#### 問題

- $T_{i,j}A\mathbf{x} = T_{i,j}\mathbf{b}$  是否和  $A\mathbf{x} = \mathbf{b}$  equivalent
- $D_i(m) A \mathbf{x} = D_i(m) \mathbf{b}$  是否和  $A \mathbf{x} = \mathbf{b}$  equivalent
- $T_{i,j}(m) A \mathbf{x} = T_{i,j}(m) \mathbf{b}$  是否和  $A \mathbf{x} = \mathbf{b}$  equivalent

- Type 1:  $T_{i,j}$  交換 i,j 兩列
- Type 2: *D<sub>i</sub>*(*m*) 把第 *i* 列乘上 *m* 倍
- Type 3:  $L_{i,j}(m)$  把第 j列乘上 m 倍之後加進去第 i列 ( $i \neq j$ )

#### 問題

- $T_{i,j}A\mathbf{x} = T_{i,j}\mathbf{b}$  是否和  $A\mathbf{x} = \mathbf{b}$  equivalent
- $D_i(m) A \mathbf{x} = D_i(m) \mathbf{b}$  是否和  $A \mathbf{x} = \mathbf{b}$  equivalent
- $T_{i,j}(m) A \mathbf{x} = T_{i,j}(m) \mathbf{b}$  是否和  $A \mathbf{x} = \mathbf{b}$  equivalent

### 高斯消去法

策略: 利用基本列運算來簡化方程組

$$E_5E_4\cdots E_2E_1A\mathbf{x}=E_5E_4\cdots E_2E_1\mathbf{b}$$

會和

$$A\mathbf{x} = \mathbf{b}$$

有相同解。 其中  $E_k$  是基本列運算。

## 兩個問題

• 目標是什麼?

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ 0 & a_{22} & a_{23} & a_{24} & a_{25} \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{pmatrix} \mathbf{x} = \mathbf{b}$$

- 要如何達成目標?
- 一定能達到目標嗎?

# **Augmented Matrix**

$$(A|\mathbf{b}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

所以 
$$E(A|\mathbf{b}) = (EA|E\mathbf{b})$$

## 實際計算

解

$$\begin{cases} 3x_1 + 2x_2 + 3x_3 - 2x_4 &= 1\\ x_1 + x_2 + x_3 &= 3\\ x_1 + 2x_2 + x_3 - x_4 &= 2 \end{cases}$$

#### 定義

符合下面三個性質的舉證,被稱為 row echelon form

- 全部都是 0 的列在最下面
- 每列第一個非零項, 而在上面列的第一個非零項還要靠右邊。

#### 定義

符合下面三個性質的舉證,被稱為 row echelon form

- 全部都是 0 的列在最下面
- 每列第一個非零項, 而在上面列的第一個非零項還要靠右邊。

#### 問題

這個定義是什麼意思?

#### 定義

符合下面三個性質的舉證,被稱為 Reduced row echelon form

- 全部都是 0 的列在最下面
- 每列的第一個非零的項,是該行唯一的非零項
- 每列的第一個非零項都是1,而且比上面的列的第一個非零項還要靠右邊。

#### 定義

符合下面三個性質的舉證,被稱為 Reduced row echelon form

- 全部都是 0 的列在最下面
- 每列的第一個非零的項,是該行唯一的非零項
- 每列的第一個非零項都是
  - 1,而且比上面的列的第一個非零項還要靠右邊。

#### 問題

Reduced row echelon form 一定是 row echelon form 嗎?

- 舉一個是 row echelon form 但不是 reduced echelon form 的例子。
- 舉一個 reduced echelon form 的例子。