Facility Location

章 宇 ZHANG Yu y.zhang@swufe.edu.cn

Facility Location

- Industrial applications
 - Location of chain stores
 - Location of fire stations
 - Location of chemical plants

-

- Academic researches
 - Operations Research, Combinatorics
 - Logistics, Transportation,
 Communications.....

- Many variants
 - p-median problem
 - p-center problem
 - Fixed-charge facility location
 - Covering location problem
 - Anti-covering problem
 - Facility location under uncertainty

—

p-Median Problem

Parameters

- $-\mathcal{I} = \{1,2,...,n\}$: set of customers
- $-\mathcal{J}=\{1,2,\ldots,m\}$: set of candidate facility sites
- c_{ij} : distance/cost to serve customer $i \in \mathcal{I}$ by facility $j \in \mathcal{J}$
- p: number of facilities to open

p-Median Problem

Decision Variables

- x_j ∈ {0,1}: =1 iff facility $j \in \mathcal{J}$ will be open
 - "iff" = if and only if
- y_{ij} ∈ {0,1}: =1 iff customer $i \in \mathcal{I}$ is assigned to facility $j \in \mathcal{J}$ to be served

Problem

- Determine p facilities to open and assign customers to facilities
- Minimize total service distance/cost

p-Median Problem

Model

min

s.t.

$$\begin{aligned} x_j &\in \{0,1\}, & \forall j \in \mathcal{J}, \\ y_{ij} &\in \{0,1\}, & \forall i \in \mathcal{I}, j \in \mathcal{J}. \end{aligned}$$

- Minimize total distance/cost
- Each customer is served
- Open p facilities
- Can serve if open

Problem

- Similar to p-median problem
- But minimizes the maximum (instead of total) customer-to-facility distance

Application

- Consider fairness
- Usually applied in public facilities
 - Fire stations
 - Ambulance sites

Model

min

s.t.
$$\sum_{j \in \mathcal{J}} y_{ij} = 1, \quad \forall i \in \mathcal{I},$$
$$\sum_{j \in \mathcal{J}} x_j = p,$$
$$y_{ij} \leq x_j, \quad \forall i \in \mathcal{I}, j \in \mathcal{J},$$
$$x_i \in \{0,1\}, \quad \forall j \in \mathcal{J},$$

 $y_{ij} \in \{0,1\}, \quad \forall i \in \mathcal{I}, j \in \mathcal{J}.$

 Minimize the maximum distance

Discussion: How to solve it?

Model linearization

```
min s. t. \sum_{i \in \mathcal{I}} y_{ij} = 1, \qquad \forall i \in \mathcal{I},
```

$$\sum_{j \in \mathcal{J}} x_j = p,$$

$$\sum_{j \in \mathcal{J}} x_j = p,$$

$$y_{ij} \le x_j, \quad \forall i \in \mathcal{I}, j \in \mathcal{J},$$

$$x_j \in \{0,1\}, \quad \forall j \in \mathcal{J},$$

$$y_{ij} \in \{0,1\}, \quad \forall i \in \mathcal{I}, j \in \mathcal{J}.$$

- Example
 - Open 6 warehouses to store relief materials

– Can we improve the model?

Fixed-Charge Facility Location

Parameters

- $-\mathcal{I} = \{1,2,...,n\}$: set of customers
- $-\mathcal{J}=\{1,2,\ldots,m\}$: set of candidate facility sites
- d_i : demand of customer $i \in \mathcal{I}$
- f_i : fixed-charge cost to open facility $j \in \mathcal{J}$
- v_i : service capacity of facility $j \in \mathcal{J}$
- c_{ij} : per-unit cost to serve customer $i \in \mathcal{I}$ from facility $j \in \mathcal{J}$

Fixed-Charge Facility Location

Decision variables

- $-x_j \in \{0,1\}$: =1 iff facility $j \in \mathcal{J}$ will be open
- $y_{ij} \in [0,1]$: fraction of demand from customer $i \in \mathcal{I}$ served by facility $j \in \mathcal{J}$

Problem

- Determine facilities to open and assign demands to facilities
- Minimize the total cost (fixed and variable costs)

Fixed-Charge Facility Location

Model

min

s.t.

- Minimize total cost
- Each customer is served
- Facility capacity constraint

- A grocery store chain now has too many stores in close proximity to each other in certain cities.
- In a city the chain has 10 stores, and it does not want any stores closer than 2 miles to each other.
- Following are the monthly revenues (\$1,000s) from each store and a map showing the general proximity of the stores. Stores within 2 miles of each other are circled. (next page)
- Develop and solve an integer programming model to determine which stores the grocery store chain should keep open while maximizing the revenue of the open stores.

Homework

Store	Monthly Revenue (\$1,000s)
1	\$127
2	83
3	165
4	96
5	112
6	88
7	135
8	141
9	117
10	94

- Submission
 - Model & results (.pdf)
 - Decision variable, objective, and constraints
 - Which stores to keep open
 - The revenue of the open stores
 - Source code (.py)
 - Submit to a link to be given in the QQ group

- Deadline: before next class
 - Tardiness: -5 points per day