基本概念

DAC: 数-模转换器 ADC: 模-数转换器

上升沿/前沿: 低电平转高电平下降沿/后沿: 高电平转低电平

正向脉冲、反向脉冲

上升时间:上升沿中电位从幅度的10% 到幅度的 90% 的时间下降时间:下降沿中电位从幅度的90% 到幅度的 10% 的时间

脉冲宽度:本次脉冲中电位在幅度50%以上的时间

周期数字波形的占空比:一个周期内,所有脉冲的脉冲宽度之和比周期长度

时钟:在数字系统中,所有的波形都与一个基本时序波形同步,称之为时钟(clock)。时钟是周期波,每个脉冲之间的间隔(周期)等于一个位时间。

穿孔封装(双引线封装DIP)、表面贴装技术SMT(小规模集成电路SOIC、收缩小轮廓封装SSOP、塑料芯片载体PLCC、陶瓷芯片LCC、薄型四侧引脚扁平封装LQFP、片状刻度封装CSP、精密间距球形网络阵列FBGA)

小规模集成SSI: 最多 10 个等效门电路中规模集成MSI: 10~100 个等效门电路大规模集成LSI: 100~1000 个等效门电路甚大规模集成VLSI: 1000~10000 个等效门电路超大规模集成ULSI: 10000 个以上等效门电路

进制

BCD 码

BCD 码相加:从低位向高位逐位相加,用二进制加法把当前位两个数字和进位相加,得到 $0\sim19$ 的数字,用一个 4 位二进制数 x 和进位 c 表示,若 x > 9,则 c 必然 c=0,让 x 加 6 并取低 4 位作为该 BCD 位的结果,然后置 c 为 1,若 c = 1 则必然 x < 4,让 x 加 6作为该 BCD 位的结果,最后 c 作为进位参与到下一 BCD 位的计算中。

格雷码

相邻两个格雷码只有一位不同。 格雷码的应用:旋转编码器。

二进制码与格雷码互转的 cpp 程序

```
//递归版
unsigned get_gray(unsigned x, int i){
   assert(x < (lu<<i) && i >= 0);
   if (i == 0) return x;
   else if (x & (lu<<i-1)) return (lu<<i-1)|get_gray((lu<<i)-lu-x, i-1);
   else return get_gray(x, i-1)
}

unsigned cal_gray(unsigned x, int i){
   assert(x < (lu<<i) && i >= 0);
   if (i == 0) return x;
   else if (x & (lu<<i-1)) return (lu<<i)-lu-cal_gray(x^(lu<<i-1), i-1);
   else return cal_gray(x, i-1);
}

//循环版
unsigned get_gray(unsigned x){</pre>
```

```
unsigned y = 0;
for(int i = 32; i > 0; --i) if (x&(1u<<i-1)) y |= 1u<<i-1, x = (1u<<i)-1u-x;
return y;
}

unsigned cal_gray(unsigned x){
  unsigned y = 0;
  for(int i = 1; i <= 32; ++i) if (x&(1u<<i-1)) y = (1u<<i)-1u-y;
  return y;
}</pre>
```

奇偶校验

在编码最左端附加一位奇偶校验位,代表了编码中1的个数的奇偶性。

循环冗余校验码CRC

选取 b 位生成码 q,在数据码 x 右端附加上 b 个 0 得到 y,用模 2 除法计算 y%q 得到余数 r,则最终码为 z=y+r。

生成码 q 在发送端和接收端处都是相同的。

如果接收端接收到的 z 无误,则用模 2 除法计算 z%q 得到的余数一定为 0。

特殊设计的生成码可以保证以下几条性质

- (1) 当 z 在传输的过程中有 1~2 位发生错误时,接收端一定能检测到数据有误,当传输过程中有多位发生错误时,接收端大概率能检测到数据有误。
- (2) 当 z 在传输的过程中有 1 位发生错误时,不同位发生错误对应不同余数。

生成码应满足

(1) 最高位和最低位必须为1

逻辑门

与门、或门、非门、与非门、或非门、异或门、同或门

数字逻辑电路的三个系列是 CMOS(互补金属氧化物半导体)、TTL 双极型和 BIMOS(双CMOS)。第三者是前两者的组合。

传输延时时间: t_{PHL}, t_{PLH}, t_P

直流供电电压: V_{CC}

高低电平下的工作电流: $I_{CCL},\ I_{CCH}$ 功率损耗: $P_D = V_{CC}\left(rac{I_{CCH} + I_{CCL}}{2}
ight)$

速度-功率乘积 $SPP = t_P P_D$

CMOS 门电路的功率损耗非常小,但与工作频率有关。

双极型门电路的功率损耗大,但与工作频率无关。

扇区:一个逻辑门所能驱动的相同系列的等效门输入的数目。一般用单位负载数来衡量。

单位负载数: $\frac{I_{OL}}{I_{IL}}$ 。

元件未使用的输入端应连接到恰当逻辑电平上,比如与门和与非门的未输入端连到 V_{CC} (双极型则通过一个 $1k\Omega$ 的电阻连到 V_{CC}),或门和或非门的未输入端连接到地。

三极管

Proteus 芯片简表

名称	型号	接口	备注
4 位并行 加法器	74LS283	$(A4,B4,S4,C_{in},C_{out})$	
4 位大小 比较器	74LS85	$(A4, B4, >_{in}, >_{out}, =_{in}, =_{out}, <_{in}, <_{out})$	
4 线-16 线译码器	74HC154	$(A4,\overline{D}16,\overline{CS_1}\&\overline{CS_2})$	
BCD-十 进制译码 器	74HC42	$(A4,\overline{D}10)$	
BCD-七 段编码器	74LS47	$(A4, \overline{abcdefg}, \overline{LT}, \overline{RBI}, \overline{BI/RBO})$	6,9 少 一 杠
	74LS247	$(A4, \overline{abcdefg}, \overline{LT}, \overline{RBI}, \overline{BI/RBO})$	6,9 少 一 杠
	74LS48	$(A4,abcdefg,\overline{LT},\overline{RBI},\overline{BI/RBO})$	
	74LS248	$(A4, abcdefg, \overline{LT}, \overline{RBI}, \overline{BI/RBO})$	
十进制- BCD 优 先编码器	74HC147	$(\overline{A}9,\overline{B}4,NC)$	
8 线-3 线 优先编码 器	74LS148	$(\overline{A}8,\overline{B}3,\overline{EI},\overline{EO},\overline{GS})$	
3 线-8 线 译码器	74LS138	$(A,B,C,\overline{D}8,E_1\&\overline{E_2}\&\overline{E_3})$	
四2输 入选择器	74HC157	$(A4, B4, Y4, \overline{EN}, Choose)$	
8 输入选 择器	74LS151	$(D8,S3,\overline{EN},Y,\overline{Y})$	
9 位奇偶 校验器	74LS280I	(D9, EVEN, ODD)	

名称	型号	接口	备注
多路分配 器 (4线- 16线译 码器)	74HC154		
S-R 锁存 器	74LS279A	$(\overline{S}(4+2),\overline{R}4,Q4)$	
D 锁存器	74LS75	$(D4,EN2,Q4,\overline{Q}4)$	
双 D 触 发器	74AHC74	$(D2,Q2,\overline{Q}2,CLK2,\overline{PRE},\overline{CLR}2)$	
双 J-K 触 发器	74HC112	$(J2, K2, Q2, \overline{Q}2, \overline{CLK}2, \overline{PRE}2, \overline{CLR}2)$	
不可重复 单稳态触 发器	74121	$((\overline{A_1}\ \overline{A_2})\&B,Q,\overline{Q},RI,CX,CX/RX)$	
可重复触 发单稳态 器	74LS122	$((\overline{A_1}\ \overline{A_2})\&B_1\&B_2,Q,\overline{Q},\overline{CLR},RI,CX,CX/RX)$	
555 定时 器		(阈值,控制,放电,触发,复位,双输出)	
4 位异步 二进制计 数器	74LS93	$(\overline{CLK}_1,\overline{CLK}_2,RO_1\&RO_2,Q4)$	
4 位同步 二进制计 数器	74HC163	$(D4,Q4,RCO,CLK,\overline{LOAD},\overline{CLR},ENT\&ENP)$	
加减十进制计数器	74HC190	$(D4,D/\overline{U},Q4,\overline{RCO},CLK,\overline{LOAD},\overline{CTEN},MAX/MIN)$	
8 位串入 并出移位 寄存器	74HC164	$(\overline{A_1\&A_2},D8,CLK,\overline{CLR})$	
8 位并行 置位移位 寄存器	74HC165	$(SER, D8, Q, \overline{Q}, CLK \ CLK\ INH, SH/\overline{LD})$	
4 位并行 存取移位 寄存器	74HC195	$(J,\overline{K},D4,Q4,CLK,SH/\overline{LD},\overline{CLR})$	
4 位通用 双向移位 寄存器	74HC194	$(SR~SER, SL~SER, S_0, S_1, CLK, \overline{CLR})$	

74 HC195 是异步置 0、同步载入。 74 HC194 是异步置 0、同步载入。

组合逻辑电路

组合逻辑电路具有 "无记忆" 的特点,归根结底在于其结构上不含记忆元件,即不存在输出到输入的反馈回路。

竞争冒险 (假信号)

卡诺图上,若两个圈相切且没有其它圈将这两个圈在相切处连起来,这样的电路会在某些情况下产生 $A+\overline{A}$ 式的竞争风险。

解决方法一般有

- (1) 加入额外的项使卡诺图上的圈不再相切,如 $B\overline{A}+CA o B\overline{A}+CA+BC$ 。
- (2) 如果对组合逻辑电路工作频率的要求较小,可以在输出处并联一个很小的滤波电容,使得尖峰脉冲的幅度 削减至门电路的阈值以下。
- (3) 引入通选脉冲,使电路在输入信号发生变化时处于禁止状态,这种方法不但要求通选脉冲与输入信号同步,还对通选脉冲的宽度有严格的要求。

译码器实现组合逻辑函数

 $Y=ABC+AB\overline{C}+\overline{A}BC+A\overline{B}C=m_7+m_3+m_6+m_5=\overline{m_3\cdot\overline{m_5}\cdot\overline{m_6}\cdot\overline{m_7}}$ 利用 3-8 译码器(高入低出)和 4 输入与非门很容易可以实现这个组合逻辑函数。相对于使用四个 4 输入与门、三个非门、一个 4 输入或门的做法,这种做法简便了不少。

触发器、定时器

衡量 D 触发器、J-K 触发器等元器件的指标有如下几项

- (i) 传输延迟时间(t_{PLH},t_{PHL} : 包括触发端脉冲信号变化了 50% —— Q 输出响应了 50% 的时间、 \overline{PRE} 预置的延迟时间、 \overline{CLR} 清零的延迟时间
- (ii) 建立时间 (t_s) : D 输入或 J,K 输入变化的 50% —— 端脉冲信号触发 50% 的时间
- (iii) 保持时间 (t_h) : 触发端脉冲信号触发 50% 的时间 —— D 输入或 J,K 输入变化 50% 的时间
- (iv) 最大时钟频率 (f_{max}) : 触发端脉冲信号的最大频率
- (v) 最小脉冲宽度 (t_w) : 包括触发端脉冲信号的最小脉冲宽度、 \overline{PRE} 预置位输入的最小脉冲宽度、 \overline{CLR} 清零输入的最小脉冲宽度。
- (vi) 功耗

不可重复单稳态触发触发器 74121 的输出的脉冲宽度计算方式如下

- (a) VCC 接 RI: $t_w = 30ns$
- (b) VCC 接 RI、 C_{ext} 连接 CX, CX/RX: $t_w = (2k\Omega)C_{ext} \ln 2$
- (c) VCC 隔 R_{ext} 接 CX/RX、 C_{ext} 连接 CX,CX/RX: $t_w=R_{ext}C_{ext}\ln 2$

可重复单稳态触发触发器 74LS122 的输出的脉冲宽度计算方式如下

- (a) VCC 接 RI: $t_w = 45ns$
- (b) VCC 接 RI、 C_{ext} 连接 CX, CX/RX: R = 10, $t_w = 0.32RC(1 + 0.7/R)$
- (c) VCC 隔 R_{ext} 接 CX/RX、 C_{ext} 连接 CX,CX/RX: $t_w=0.32R_{ext}C_{ext}(1+0.7k\Omega/R_{ext})$

555 定时器做单稳态触发器的输出的脉冲宽度计算方式

$$t_w = RC \ln 3$$

555 定时器做非稳态多谐振荡器的输出的频率、占空比计算方式

$$f = rac{1}{(R_1 + 2R_2)C \ln 2} \ \eta = rac{R_1 + R_2}{R_1 + 2R_2} 100\%$$

移位寄存器

应用

约翰计数器

n 级可做到模 2n 计数器

环形计数器

n 级可做到模 n 计数器

时间延迟

键盘译码器