Linguagens Formais e Autômatos

Humberto Longo

Instituto de Informática Universidade Federal de Goiás

Bacharelado em Ciência da Computação, 2021/1

1 – 1 de 62)

Linguagens contáveis

Teorema 1.50

▶ Dado o alfabeto Σ, o conjunto Σ* é contavelmente infinito.

Demonstração.

- Existe um número finito de cadeias de cada comprimento.
- Listar cadeias por ordem alfabética e de tamanho: cadeias de tamanho 0, as tamanho 1, as de tamanho 2, etc.
- ightharpoonup Corresponder as cadeias da lista com os elementos de $\mathbb N$.

Exemplo 1.51

► Se $\Sigma = \{a, b, c\}$, uma enumeração é ε , a, b, c, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, . . .

INF/UFG - LFA 2021/1 - H. Longo

Linguagens contáveis (56 - 61 de 62)

Linguagens contáveis

INF/UFG - LFA 2021/1 - H. Longo

Teorema 1.52

Qualquer linguagem é contável.

Demonstração.

Toda linguagem em Σ é um subconjunto de Σ^* .

Linguagens contáveis

Teorema 1.53

A classe de todas as linguagens em um alfabeto Σ não é contavelmente infinita.

Demonstração.

- \blacktriangleright O conjunto $\mathcal B$ de todas as sequências binárias infinitas não é contavelmente infinito.
 - Prova por diagonalização similar à prova do Teorema ??.
- $\mathcal{P}(\Sigma^*)$ é o conjunto de todas as linguagens sobre o alfabeto Σ .
- ▶ Mostrar que existe uma correspondência entre $\mathcal{P}(\Sigma^*)$ e \mathcal{B} .

Linguagens contáveis

Teorema 1.53

A classe de todas as linguagens em um alfabeto Σ não é contavelmente infinita.

Demonstração.

- ▶ Cada $\mathcal{L} \in \mathcal{P}(\Sigma^*)$ corresponde a uma única sequência de \mathcal{B} .
- $\Sigma^* = \{s_1, s_2, s_3, \ldots\}.$
- ▶ Sequência característica $\chi_{\mathcal{L}}$ de \mathcal{L} :

$$\chi \mathcal{L}_i = \left\{ \begin{array}{ll} 1 & \text{se } s_i \in \mathcal{L}, \\ 0 & \text{se } s_i \notin \mathcal{L}. \end{array} \right.$$

П

INF/UFG - LFA 2021/1 - H. Longo

Linguagens contáveis (59 - 61 de 62)

Linguagens contáveis

Teorema 1.53

A classe de todas as linguagens em um alfabeto Σ não é contavelmente infinita.

Demonstração.

Exemplo:

INF/UFG - LFA 2021/1 - H. Longo

Linguagens contáveis (60 - 61 de 62)

Linguagens contáveis

Teorema 1.53

A classe de todas as linguagens em um alfabeto Σ não é contavelmente infinita.

Demonstração.

- Função $f: \mathcal{L} \to \mathcal{B}$ é bijetora.
 - ightharpoonup f(A) é a sequência característica de A.
- ightharpoonup Como $\mathcal B$ não é contavelmente infinito, então $\mathcal P(\Sigma^*)$ também não é contavelmente infinito.

Livros texto

R. P. Grimaldi

Discrete and Combinatorial Mathematics - An Applied Introduction. Addison Wesley, 1994.

How To Prove It - A Structured Approach.

Cambridge University Press, 1996.

J. E. Hopcroft: J. Ullman.

Introdução à Teoria de Autômatos, Linguagens e Computação. Ed. Campus.

T. A. Sudkamp.

Languages and Machines - An Introduction to the Theory of Computer Science.

Addison Wesley Longman, Inc. 1998.

Theory of Finite Automata - With an Introduction to Formal Languages.

Prentice-Hall, 1989.

Introduction to the Theory of Computation.

PWS Publishing Company, 1997

H. R. Lewis; C. H. Papadimitriou Elementos de Teoria da Computação

Bookman, 2000.

Linguagens contáveis (61 - 61 de 62)

П

INF/UFG - LFA 2021/1 - H. Longo

INF/UFG - LFA 2021/1 - H. Longo

Bibliografia (62 - 62 de 62)