

P-ţa Victoriei nr. 2 RO 300006 - Timişoara Tel: +4 0256 403000 Fax: +4 0256 403021 rector@rectorat.upt.ro www.upt.ro

Logică digitală

-Curs 14-SINTEZĂ - 2021-

Reprezentarea numerelor în sistemele de calcul

- Sisteme de numerație poziționale (binar, octal, hexazecimal);
- Reprezentarea numerelor în virgulă fixă (SM, C1, C2);
- Reprezentarea numerelor de virgulă flotantă;
- Coduri binare pentru numere zecimale;

Reprezentarea numerelor în virgulă fixă – **C2**

□ Domeniul valoric pentru numere întregi:

$$-2^{n-1}$$
 și $2^{n-1}-1$

Reprezentarea numerelor în virgulă flotantă (mobilă)

- □ reprezentate folosind notaţia ştiinţifică (care nu este poziţională) → un domeniu valoric foarte mare.
- Pentru a reprezenta un număr in virgulă flotantă folosim trei numere conform relaţiei:

$$N = M * B^E$$

M - mantisa. (M poate fi reprezentată în SM sau C2)

B - baza (de obicei e 2 sau o putere a lui 2)

E - exponent. (E este reprezentat în SM sau cod exces)

Reprezentarea numerelor în virgulă flotantă

- M mantisa. (M poate fi reprezentată în SM sau C2)
- B baza (de obicei e 2 sau o putere a lui 2)
- E exponent. (E este reprezentat în SM sau cod exces)

Reprezentarea numerelor în virgulă flotantă

- □ Pentru a minimiza eroarea→ exponentul aferent lui 0 să fie cel mai mic posibil.
- □ valoarea min. a oricărui exponent să fie 0.
- Toate valorile negative reprezentabile pe N biţi sunt deplasate (devin pozitive) prin adunarea unui bias (unui surplus) = valoarea absolută a celui mai mic număr reprezentabil pe N numărul de biţi exponent.
- □ Pentru exponent reprezentat în:
 - SM pe 8 biţi → valoarea bias-ului este 127
 - C2 pe 8 biţi → valoarea bias-ului este 128

Reprezentarea numerelor în virgulă flotantă

- ☐ Standardul IEEE 754/2008- formate:
 - Half precision
 - Simple precision
 - Double precision
 - Duble-extended

Reprezentarea numerelor în virgulă flotantă: IEEE 754

- □ Caracteristici:
 - E şi M format SM
 - Exponentul este reprezentat în exces de:
 - □ 127 pentru simplă precizie
 - □1023 pentru dublă precizie.
 - Hidden bit.
 - □ Mantisa are un bit de 1 ascuns.
 - □ bitul la dreapta virgulei care trebuie să fie 1 (din condiţia de normalizare).
 - □ (S.1M) (unde S este semnul iar M este mantisa)
 → virgula a fost mutată la dreapta bit-ului de 1
 cel mai semnificativ: S1.M

Reprezentarea numerelor în virgulă flotantă: IEEE 754 valori speciale

Nr.	Exponent	Mantisa (M)	Valoare speciala
	(E)		
1.	0	0	±0
2.	0	≠ 0	Denormalized
			numbers
3.	255	0	$\pm \infty$
4.	255	≠ 0	NaN

- Nr. denormalizate: rezultat care este mai mic decât valoarea minimă reprezentabilă
- Infinit: situaţia în care rezultatul intermediar este infinit sau avem overflow
- □ 0/0 sau radical din nr. negativ

Coduri binare pentru numere zecimale - BCD

- există situaţii cand se doreşte afişarea rezultatelor de către interfeţele externe ale dispozitivului de calcul într-un format uşor de înţeles (decodificat) de către utilizator – şi anume mult întrebuinţatul format zecimal;
- cel mai la îndemână cod zecimal este BCD (binary-code decimal):
 - reprezentarea unei cifre BCD → înlocuirea cu reprezentarea în binar care îi corespunde→ cu un nr. pe 4 biţi

Coduri binare pentru numere zecimale - BCD

conversia unui număr zecimal în BCD prin înlocuirea succesivă a cifrelor zecimale cu tetradele corespunzătoare

 operaţia inversă de transformare a unui număr reprezentat în BCD în omologul zecimal

$$N_2 = 1000 \ 0111 \ 0000 \ 0010_{BCD} = 87 \ 02_{10}$$

Coduri binare pentru numere zecimale – Exces de 3

- Exces de 3 se obţine din codul BCD astfel:
 - la fiecare cifră reprezentată în cod BCD se adună valoarea 3 (0011 în binar).
 - fiecare cifră zecimale se reprezintă cu ajutorul unei combinaţii de 4 biţi (o tetradă de biţi)

Algebra booleană și logica digitală

- □ Forma canonică;
- □ Forma standard;
- Aspecte legate de implementarea funcţiilor booleene cu porţilor logice;
- □ Hărți Karnaugh

NAND

X	Υ	Z
0	0	1
0	1	1
1	0	1
1	1	0

$$Z = X \cdot Y$$

AND

X	Υ	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$Z = X \cdot Y$$

NOR

X	Υ	Z
0	0	1
0	1	0
1	0	0
1	1	0

$$Z = X + Y$$

OR

$$Z = X + Y$$

Porți logice (cont.)

XOR (X⊕Y)

X	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

 $Z = X \overline{Y} + \overline{X} Y$ X or Y but not both
("inequality", "difference")

XNOR

Х	Υ	Z
0	0	1
0	1	0
1	0	0
1	1	1

Z = X Y + X Y X and Y the same ("equality")

Porți logice

- Fiecare poartă logică realizează una sau mai multe funcții logice;
- Colecția de porți logice folosită în realizarea unui circuit se numește bibliotecă de porți, iar porțile din cadrul ei porți standard;
- ☐ Bibliotecile moderne conţin zeci de porţi a.î. să scadă costul cu întreţinerea şi să simplifice realizarea tool-urilor CAD

Minimizarea funcțiilor logice

- □ se înțelege simplificarea/rescrierea ecuațiilor logice booleene în vederea:
 - ■Unui cost mai mic și/sau;
 - Performanță mai ridicată;
- ☐ Cheia simplificării este: $y(x+\overline{x}) = y$

$$y\left(x+\overline{x}\right)=y$$

- distributivitatea x(y+z)=xy+xz _
- Proprietatea complementului x + x = 1

Minimizarea funcțiilor logice

- Găsirea a doi termeni (suma sau produs funcție de reprezentarea dorită SOP/POS) pentru care:
 - funcția ia valoare 1
 - numai o variabilă își modifică valoarea

B are aceși valoare → B este păstrat

A are valori diferite → A este eliminat

$$F = \overline{A} \overline{B} + A\overline{B} = (\overline{A} + A)\overline{B} = \overline{B}$$

Construcție diagrame Karnaugh

construcţia diagramelor Karnaugh pentru o funcţie logică cu 4 variabile de intrare

Pași:

- 1. Introducerea mintermilor în diagramă conform tabelului de adevăr.
- 2. se formează grupe de mintermi bazate pe reguli de adiacenţă:
 - O grupare are forma unor dreptunghiuri/pătrate și conţine 2^n mintermi!
 - Din totalul de m variabile booleene a funcţiei, termenul asociat grupării formate va conţine m-n variabile
- 3. Ecuaţia minimizată va conţine toţi implicanţii primi esenţiali, si uneori si implicanţi primi neesenţiali, astfel încât toate celule marcate cu 1 logic să fie acoperite.

Minimizarea folosind diagrame Karnaugh

- Dacă la o astfel de grupare nu mai pot fi adăugaţi mintermi înseamnă că s-a obţinut un implicant prim.
- □ Dacă un anumit implicant prim conţine cel puţin un minterm care nu poate apare în alt implicanţi primi atunci acesta este un implicant prim esenţial

Name	Graphic Symbol	Functional Expression	Number of transistors	Delay in ns
3-input AND	<u>[</u>	F = xyz	8	2.8
4-input AND	ž —-F	F = xyzw	10	3.2
3-input OR		F = x + y + z	8	2.8
4-input OR	i D-r	F = x + y + z + w	10	3.2
3-input NAND	Ĭ≣	F = (xyz)'	6	1.8
4-input NAND	¥ ↓	F = (xyzw)'	8	2.2
3-input NOR	[]	F = (x + y + z)'	6	1.8
4-input NOR		F = (xyzw)' $F = (x + y + z)'$ $F = (x + y + z + w)'$	8	2.2

Circuite logice combinaționale

- Circuite de procesare
- □ Circuite de conversie
- Circuite de interconectare
- Componente universale

Clasificare componente digitale

- Componente combinaționale
 - Ușor de analizat, partiționat, verificat

Componente secvenţiale

Copyright @ 2004-2005 by Daniel D. Gajski

Sildes by Philip Pham, University of California, Irvine

Circuite reprezentative

- □ Sumator
- Decodificator
- Codificator (ex. Codificator de prioritate)
- Multiplexor

Caracterizarea acestora: definiție, ce se întâmplă dacă aplic o serie de intrări, care ar fi ieșirile, simbol.

Circuite combinaționale

- Cunoașterea porților logice elementare;
- Desenarea unei scheme logice;
- Identificarea ecuației booleene aferente unei scheme logice;
- Determinarea ieşirilor unei scheme logica la care i s-au aplicat o serie de intrări;

Decodificator

- circuite logice combinaţionale ce prezintă un anumit *n* intrări şi până la 2ⁿ ieşiri, care activează ieşirea (UNA SINGURĂ) corespunzătoare valoarii combinaţiei vectorului de intrare
- □ Pot avea intrări de activare, astfel încât ieşirea selectată nu pot fi activată decât dacă intrarile de activare sunt active.
- □ Pt. n intrări şi cu m ieşiri → decodificator nla-m.
- Uzual sunt folosite pt. activarea (EN) componentelor

Multiplexor(Selector)

- Multiplexorul este un circuit logic combinaţional ce conectează ieşirea acestuia la una din cele n intrări.
- Selecţia uneia din cele n intrări se face cu ajutorul a log₂ n intrări de selecţie.
- Poate fi privit ca un comutator digital.
- Este folosit pt.selecția unei singure surse de date din mai multe.

Circuite secvențiale

- ☐ Circuitele secvențiale se clasifică:
 - Asincrone
 - Sincrone
- Componentele secvențiale asincrone își modifică starea și valorile de ieșire funcție de modificările semanlelor de la intrare (oricând!) se modifică acestea.
- ☐ Componentele secvențiale sincrone își modifcă valoarea funcție de valoarea semnalelor de intrare la momente bine definite de timp, dictate de un semnal (de intrare) care se numește tact (*clock*)

Semnalul de tact

- □ Palierul uni semnal reprezintă porțiunea unde acesta rămâne constant o logic (palier negativ) și 1 logic (palier pozitiv).
- Frontul crescător se referă la porțiunea unde senalul își modifică valoarea de la 0 logic la 1 logic (mai exact de la 10% din nivelul corespunzător lui 1 logic la 90% din nivelul corespunzător lui 1 logic
- to perioada semnalului de tact,
- □ tw(H) și tw(L) reprezintă durata unui impuls de 1 respectiv 0 logic

Semnalul de tact

b)Formă idealizată a semnalului

S-R Latch (SAU-NU) - asincron

Gated SR-latch

S	R	C	Q_next	Q_next
0	0	1	Q	\overline{Q}
0	1	1	0	1
1	0	1	1	0
1	1	1	-	-
*	*	0	Q	\overline{Q}

- Când semnalul C este activ valorile de la intrare sunt propagate prin latch
- Semnalele de intrare nu trebuie să se modifice în intervalul t_{setup} și t_{hold} al frontului descrescător

Flip-flop-uri

- Se mai numesc şi latch-uri sensibile pe frontul semnalului de tact;
- Bascularea se face pe frontul semnalului de tact (!nu pe palier – latch-uri)
- Două variante de arhitecturi:
 - Configurația master-slave
 - Edge-triggered FF

Latch sincron vs. FF sincron

Operatia de reset a elementelor secventiale

- ☐ Semnalul de reset (set)
 - Functionalitate aducerea bistabilului intr-o stare "initiala" cunoscuta (de obicei starea 0)
 - Reset este un semnal global este aplicat tuturor elementelor de memorie dintr-un sistem digital
 - Tipuri de reset
 - □Reset sincron
 - □Reset asincron

Tipuri de FF-uri

Copyright © 2004-2005 by Daniel D. Gajski

Flip-flop name	Flip-flop symbol	Characteristic table	Characteristic equation	Excitation table
SR	S Q Clk	S R Q(next) 0 0 0 0 1 0 1 0 1 1 1 NA	Q(next)=S+R'Q SR=0	Q. Q(next) S R 0 0 0 X 0 1 1 0 1 0 0 1 1 1 X 0
JК	J Q Clk	J K O(next) 0 0 0 0 1 0 1 0 1 1 1 Q'	Q(next)=JQ'+K'Q	Q Q(next) J K 0 0 0 X 0 1 1 X 1 0 X 1 1 1 X 0
D	D Q Q	D Q(next) 0 0 1 1	Q(next)=D	Q Q(next) D 0 0 0 0 1 1 1 0 0 1 1 1
Т	T Q — Clk Q'	T Q(next) 0 Q 1 Q'	Q(next)=TQ'+T'Q	Q Q(next) T 0 0 0 0 1 1 1 0 1 1 1 0

Sildes by Philip Pham, University of California, Irvine

Circuite secvențiale reprezentare

Circuitele secvenţiale:

- MEALY sunt caracterizate prin faptul că starea următoare şi ieşirea la un moment dat depind de starea prezentă si de intrarea prezentă;
- MOORE sunt caracterizate prin faptul că ieşirea depinde numai de starea circuitului. Starea următoare depinde de intrarea prezentă;
- Modelele matematice ale circuitelor secvenţiale se numesc in teoria comutaţiilor automate finite.

Registre

- Reprezinta o colectie/grupare de n bistabile
- □ Nr maxim de valori a unui registru pe n biti – 2ⁿ valori binare
- Folosit pentru memorarea unui cuvant de date/unei stari curente a sistemului

Număratoare

- circuite secvenţiale sincrone autonome (mulţimea intrărilor vidă), care baleiază o secvenţă de stări impuse de proiectant.
- ☐ de regulă este inițializat cu starea ,,0", după care la fiecare impuls de numărare, comuta într-o nouă stare.
- caracterul asincron al unui numărător este dat de faptul că impulsul de tact nu comandă simultan toate bistabilele numărătorului.
- Funcție de direcția de parcurgere a secvenței de stări:
 - numărător în sens crescător,
 - numărător în sens descrescător,
 - numărător reversibil (ambele sensuri).

Etape de sinteză circuit secvențial

Circuite secvențiale

- Citirea unei diagrame de stări și realizarea tabelului tranzițiilor;
- Citirea unei diagrame de simulare:
 - Identificarea tipului de RST
 - Extragerea caracteristicilor unui circuit simplu (secventa de stări prin care trece circuitul pe baza intrărilor și stării curente din diagrama de timp)
- ☐ Clasificarea memoriilor, număr biţi de adrese vs. capacitate, DRAM vs. SRAM

Verilog HDL

- □ Diferența dintre reg și wire;
- Aspecte legate de modelarea corecta a unui block combinaţional;
- Aspecte legate de modelarea corecta a unui block secvenţial;
- Diferența dintre cei 2 operatori de atribuire =, =>
- ☐ Identificarea din cod a tipului de RST;

Laborator

- □ 3 note:
 - Nota1_TestComb: Test 1
 - Nota2_TestSecv: Test 2
 - Nota3_Activitate: Nota Activitate (assignmenturi notate, răspunsuri în timpul laboratorului, simulare prezentată în timpul laboratorului)
- VERIFICAŢI pe CV!
- Scrieți la TA până cel târziu 3 iunie pentru orice nelămurile legată de aceste note;
- Nota LAB: media aritmetica a celor 3 note

Examen

- QUIZ
- Open book
- Poate conține întrebări de tip eseu
- □ 2 părți
- □ Nota minimă pt fiecare parte: 4.5
- Date examinare:
 - Data1: 03 iunie, ora 10
 - Data2: 28 iunie, ora 10

Întrebări?

Enough Talking Let's Get To It!!Brace Yourselves!!

