

Scientific Applications of the metatensor Ecosystem

Flash talks by multiple speakers

ShiftML 2.5: Fast shielding predictions for organic solids

Matthias Kellner

NMR crystallography

Experimental Solid state NMR

ShiftML2.5:

Fast ShiftML prediction-model

Structure generation

Compare ab initio shielding calculations (GIPAW) with Experimentally measured ones and choose candidate that agrees most.

Advantages over XRD crystallography?

- Works with powdered samples
- And amorphous drug formulations

[1] Baias et al. doi: 10.1039/c3cp41095a

EPFL

How does metatensor help?

- 1) ML-Models for tensorial properties (metatrain)
- 2) Deploy models (metatomic)

```
from ase.build import bulk
from shiftml.ase import ShiftML

frame = bulk("C", "diamond", a=3.566)
model = ShiftML("ShiftML3")

Ypred = model.get_cs_tensor(frame)
```

Deploy model and make it installable on various operating systems and architectures!

PyPI release soon:

Machine Learning the Electronic Density of States

Wei Bin How

EPFL

Density of States

- Bulk analogue to energy levels in discrete molecules
- Useful for predicting and explaining the optoelectronic properties of materials
 - Bandgaps Optical absorption and conductivity
 - Electronic heat capacity

WEI BIN HOW

Density of States

Crucial for highly diverse datasets

Density of States of Al₄₅Cr₇ True Target 1.0 Loss Window **Energy Cutoff** Multi target regression problem predictions = average by num atoms(337 338 predictions, systems, per structure targets 339 targets = average by num atoms(targets, systems, per_structure_targets) 340 train loss batch = loss fn(predictions, targets) 341 train loss batch.backward() 342 torch.nn.utils.clip_grad_norm_(343 344 model.parameters(), self.hypers["grad clip norm"] 345 optimizer.step() 346 Customizable evaluation window 0.0 Overcomes finite eigenvalue issue 20 -1010 -20Energy [eV]

Density of States

The λ-MCoV model (Maximally Coupled Vector)

Michelangelo Domina

Together with:

Paolo Pegolo

Our targets: irreducible tensors

A rank 2 (Cartesian) example

Physically relevant rank 2 tensors:

- Moment of inertia
- Stress tensor
- 。 Polarizability tensor
- Susceptibility tensor
- Conductivity tensors
- Hessian Matrix
- o ...

The Architecture

harmonics

ar(iV > physics > arXiv:2505.05404

Physics > Chemical Physic

bmitted on 8 May 2025]

Representing spherical tensors with scalar-based machine-learning models

chelangelo Domina, Filippo Bigi, Paolo Pegolo, Michele Ceriotti

If curious, read the pre-print!

Core of the architecture

λ-MCoV

All the scalar functions are modeled by a Behler-Parrinello NN, with SOAP powerspectrum as features

All the features are spherical expansion-based with almost no coupling (only maximal) involved

Seamless inclusion of non-linearity

MICHELANGELO DOMINA

Use the model with metatrain


```
training set:
30
        systems:
31
          read from: ../data/qm7 subset converged.xyz
32
        targets:
          mtt::dipole:
33
34
            read from: ../data/mu gm7 subset.mts
35
            per_atom: false
36
            type:
37
              spherical:
38
                irreps:
                - {o3 lambda: 1, o3 sigma: 1}
```

Simultaneous irreducible targets (presented in TensorMaps):

- Dipole
- Polarizability
- Hyper-polarizability

options.yaml

```
mtt::polarizability
41
            read_from: ../data/alpha_qm7_subset.mts
42
            per atom: false
43
            type:
44
              spherical:
45
                irreps:
46
                - {o3 lambda: 0, o3 sigma: 1}
47
                - {o3_lambda: 2, o3_sigma: 1}
         mtt::hyperpolarizability:
49
            read_from: ../data/beta_qm7_subset.mts
50
            per_atom: false
51
            type:
52
              spherical:
53
                irreps:
54
                - {o3_lambda: 1, o3_sigma: 1}
                - {o3_lambda: 3, o3_sigma: 1}
```

EPFL

Train and evaluate

As easy as running

% mtt eval model.pt eval.yaml -b 128 -e extensions -o outputs.mts

Evaluated on data calculated from the **QM7** dataset

- 。 J. Am. Chem. Soc. 131, 9732 (2009)
- 。 Phys. Rev. Lett. 108, 059301 (2012)

Learning electronic structure targets with metatensor

Joseph W. Abbott

Surrogate models for electronic structure

first principles quantum models

i.e. Kohn-Sham DFT

 $HC = SC\epsilon$

$$\psi(\mathbf{r}) = \sum_{i} c_{i} \phi_{i}(\mathbf{r})$$

KS-orbitals

Potential energy surface, V

Dipole moment

Electronic structure methods:

- Calculate electronic structure to understand structure-property relationships
- **Problem: system-size scaling, expensive for large** systems

Surrogate models for electronic structure

Electronic density, ρ

Data-driven surrogate models:

- **Trained on electronic structure data**
- **Predicts** targets at a fraction of the cost

1. Descriptor-based equivariant NNs

Permutation + translation invariance, rotation equivariance, i.e. -SOAP

Divya

Jigyasa

1. Descriptor-based equivariant NNs

Permutation + translation invariance, rotation equivariance, i.e. -SOAP

- 1. featomic. **SphericalExpansion** {ByPair}
- 2. featomic.clebsch_gordan.EquivariantPowerSpectrum{ByPair}
 - 3. metatensor.torch.learn.nn.**EquivariantLinear**

METATENSOR ECOSYSTEM WORKSHOP

2. Transformer-based GNNs

- à Rotation equivariance learned via data augmentation
 - à Different heads for multi-target prediction

Paolo

Coming soon: PET for electronic structure targets on a basis!

EPFL

Cool resources to check out...

Coming (*very*) soon tutorials for building

equivariant descriptors!

Build your own equivariant models

metatensor-learn how-to guides

featomic how-to guides

 → See also: Guillaume's tutorial session on metatensor + metatomic

See the building blocks in action

- → Equivariant model for the polarizability
- → Periodic Hamiltonian learning
- → Hamiltonian learning with indirect targets

Hanna

Jigyasa

Paolo

Uncertainty Quantification with Prediction Rigidities in metatrain

Sanggyu "Raymond" Chong

ML Models are Intrinsically Statistical

Can we quantify the trustworthiness or robustness of model predictions?

Prediction Rigidities (PR)

Quantifies the robustness of model predictions at different "levels"

$$\mathcal{L}\left(\mathbf{w}, \lambda, \epsilon_{\star}\right) \approx \mathcal{L}(\mathbf{w}_{o}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}_{o})^{\top} \mathbf{H}_{o}(\mathbf{w} - \mathbf{w}_{o}) + \lambda(\epsilon_{\star} - \tilde{y}(\mathbf{x}_{\star}, \mathbf{w}))$$

$$\mathbf{H}_{o} = \frac{\partial^{2} \mathcal{L}}{\partial \mathbf{w} \partial \mathbf{w}^{\top}}|_{\mathbf{w}_{o}} \approx \sum_{i} \frac{\partial \tilde{y}_{i}}{\partial \mathbf{w}} \frac{\partial^{2} \ell_{i}}{\partial \tilde{y}_{i}^{2}} \frac{\partial \tilde{y}_{i}}{\partial \mathbf{w}^{\top}}$$
second-order expansion
$$\mathbf{Lagrange}$$

$$\mathbf{multiplier}$$

$$\mathcal{L}_c(\epsilon_{\star}) \approx \mathcal{L}(\mathbf{w}_o) + \frac{1}{2} \frac{\left[\epsilon_{\star} - \tilde{y}(\mathbf{x}_{\star}, \mathbf{w}_o)\right]^2}{\frac{\partial \tilde{y}_{\star}}{\partial \mathbf{w}} \Big|_{\mathbf{w}_o}^{\top} \mathbf{H}_o^{-1} \frac{\partial \tilde{y}_{\star}}{\partial \mathbf{w}} \Big|_{\mathbf{w}_o}}$$

 ϵ_{\star} can target:

- global, local, componentwise predictions
- cheap & effective UQ!

$$R_{\star} \equiv \frac{\partial^{2} \mathcal{L}_{c}(\epsilon_{\star})}{\partial \epsilon_{\star}^{2}} \Big|_{\epsilon_{\star} = \tilde{y}(\mathbf{x}_{\star}, \mathbf{w}_{o})} = \left(\frac{\partial \tilde{y}_{\star}}{\partial \mathbf{w}} \Big|_{\mathbf{w}_{o}}^{\top} \mathbf{H}_{o}^{-1} \frac{\partial \tilde{y}_{\star}}{\partial \mathbf{w}} \Big|_{\mathbf{w}_{o}}\right)^{-1} = \frac{1}{\mathbf{f}_{\star}^{\top} (\mathbf{F}^{\top} \mathbf{F})'^{-1} \mathbf{f}_{\star}}$$

NN model: last-layer features

SANGGYU CHONG

LLPR UQ in metatrain

Simple wrapper provided:

```
from metatrain.utils import LLPRUncertaintyModel
llpr_model = LLPRUncertaintyModel(model)
```

Compute covariance → compute inv_covariance → calibrate

```
llpr_model.compute_covariance(train_loader)
llpr_model.compute_inv_covariance()
llpr_model.calibrate(calib_loader)
llpr_model.generate_ensemble(orig_weights, n_members)
```

Users interact with:

```
outputs['mtt::aux::{target}_uncertainty']
outputs['mtt::aux::{target}_ensemble']
```

You will interact with some of this in **tutorial B**!

Hall of LLPR UQ

LLPR

ensemble

EPFL

Workshop on Uncertainty Quantification in Atomistic Modeling

"From uncertainty-aware DFT to ML"

November 25-28, 2025

CECAM Headquarters, Lausanne, CH

