Алгебра I, листочек 9

1. Докажите, что $F \in \mathbb{k}[x]$, $F(\alpha) = 0$, $\alpha \in \mathbb{k}$ влечет $(x - \alpha)|F$ (теорема Безу). Докажите, что многочлен степени n над полем имеет не более n различных корней. Докажите, что группа

$$\mu_n(\mathbb{k}) = \{ \alpha \in \mathbb{k} | \alpha^n = 1 \}$$

содержит не больше, чем п элементов.

Многочлены над полем можно делить с остатком. Поделим F на $(x-\alpha)$, мы получим следующее равенство $F=Q\cdot(x-\alpha)+\beta$. Если подставить в это равенство α , то занулится все, кроме β , тогда $0=\beta$, что в точности означает, что F делится на $(x-\alpha)$.

С другой стороны как мы видели ранее $\mathbb{k}[x]$ целостное кольцо главных идеалов, а значит в нём единственно разложение на неприводимые, которыми в частности являются многочлены степени 1, так как они просты в кольце. Тогда в единственном разложении будет только конечное число множителей степени 1, и так как степень многочлена равна сумме степеней его фактора, то у нас не может быть больше факторов, чем степень многочлена, в частности это касается факторов степени 1, а корней не меньше, чем типов факторов степени 1, так как каждому корню потенциально соответствует 1 или несколько факторов.

В частности в группе $\mu_n(\mathbb{k})$ лежат все корни x^n-1 , а их не больше n.

2. Докажите, что конечная подгруппа мультипликативной группы поля циклична.

Пусть G – конечная подгруппа мультипликативной группы поля порядка n, она абелева. Обозначим за $\psi(d)=\#\{a\in G|a^d=1\}$. Так как $x^d=1$ имеет решений в \Bbbk не больше, чем n, то $\psi(d)\leq d$. Пусть для некого d есть элемент a этого порядка, обозначим за G_d множество элементов G порядка d, тогда очевидно, что $\langle a\rangle\subseteq\{a\in G|a^d=1\}$, но $\#\langle a\rangle=d$, а $\#\{a\in G|a^d=1\}\leq d$, тогда включение превратится в равенство. $\langle a\rangle$ циклическая группа порядка d, содержащая все корни x^d-1 . Тогда все элементы порядка d лежат в $\langle a\rangle$ и количество таких элементов $\phi(d)$. Тогда

$$n=\#G=\sum_{d\mid n}\#G_d\leq \sum_{d\mid n}\phi(d)=n$$

А значит # $G_d = \phi(d)$, в частности это верно для n, а значит мы находим элемент порядка n. Он порождает всю группу G, тогда эта группа циклическая.

3. Докажите, что если $[\mathbb{L} : \mathbb{K}] = 2$, то $\mathbb{L} = \mathbb{K}[\sqrt{a}]$, где $a \in \mathbb{K}$.