Machine Learning in Healthcare

#C20 Introduction to Convolutional Neural Network

Technion-IIT, Haifa, Israel

Assist. Prof. Joachim Behar Biomedical Engineering Faculty Technion-IIT

Intuition

Parameters estimation in NN

- Categorical data with a limited number input features.
- Not many parameters to estimate, here: 10 x 2 +2 = 22 weights parameters.

Parameters estimation in NN, images

- Consider an image which is 1000 x 1000 pixels, with three color channels (RGB) and one a NN with 1000 neurons in the hidden layer.
- How many weight parameters do we have to estimate?
- $W^{[1]} \in \mathbb{R}^{1000 \cdot 3M}$ which makes 3 billions parameters to estimate.
- And this is considering only one hidden layer.

Parameters estimation in NN, temporal time series

- Consider an ECG time series sampled at 1kHz and a window size of 30 seconds for classifying the ECG segment as arrhythmia or not.
- How many weight parameters do we have to estimate?
- $W^{[1]} \in \mathbb{R}^{1000 \cdot 30000}$ which makes 30 millions parameters to estimate.
- And this is considering only one hidden layer.

Parameters estimation in NN

- Learning such a high number of parameters is challenging. How can we better deal with this type of data?
- Recall the intuition of Deep learning as a type of representation learning:
 - Learn more and more complex features as we go deeper in the network.
- How, would we get the first level of features without having "3 billions" weights parameters to estimate?
- How could we detect edges in a "cheap" manner?
- Can we instead kind of feed the first hidden layer with edges being detected from filters?

Image from Zeiler and Fergus (2014).

- Horizontal derivatives:
 - Gradient:

$$G_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{bmatrix} * X$$

Sobel:

$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * X$$

Original

Sobel X

Vertical derivatives: Gradient:

$$G_{y} = \begin{bmatrix} +1 & +1 & +1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} * X$$

Sobel:

$$G_y = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} * X$$

Sobel Y

Sobel X+Y

- What about edges that would be at a specific angle (e.g. 40°)?
- What if images have noise embedded?
 - Canny edge detector:

$$B = \frac{1}{159} \begin{bmatrix} 2 & 4 & 5 & 4 & 2 \\ 4 & 9 & 12 & 9 & 4 \\ 5 & 12 & 15 & 12 & 5 \\ 4 & 9 & 12 & 9 & 4 \\ 2 & 4 & 5 & 4 & 2 \end{bmatrix} * X$$

Gaussian smoothing + edge detection.

- So there are different flavors of "edge detection filters". Instead, of using a specific defined filter, could we learn it from data?
- Derivative along x-axis:
 - Defined filter (e.g. gradient):

$$G_{\mathcal{X}} = \begin{bmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{bmatrix} * X,$$

• Learn from data $\{w_{i,j}\}$:

$$G_{x} = \begin{bmatrix} w_{11} & w_{21} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} * X$$

Summary

- Too many parameters to estimate when dealing with images or large time series.
- We seek a way to reduce the number of free parameters.
- We elaborated on the feasibility to detect edges using pre-defined filters (Sobel, Canny etc.). We could feed a NN with these "engineered" first level features.
- We pointed to the fact that these filters are the implementation of different ideas/insights but that there would be value in learning from data what filter coefficients to use rather than using a pre-defined template.
 - If we take back our initial example of an image 1000 x 1000 with RGB channels and one hidden layer of 1000 neurons, we had 3 billions parameters.
 - If we now consider 10 filters of size 3 x 3 we wish to learn then we have 28*10 = 280 parameters.
- This provides the insight behind Convolutional Neural Network.

Cross-correlation versus Convolutions

- Cross-correlation
 - $G = h \otimes F$
 - $G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v] F[i+u,j+v]$
- Convolution
 - $G = h \otimes F$
 - $G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} h[u,v] F[i-u,j-v]$
- Practically, what we do in CNN are cross-correlation operations and not convolutions per se. But for historical reasons Convolutional Neural Network is the terminology we use.

CNN

Convolution

Image

Convolved Feature

Convolution

Padding

- When applying a convolution the image shrinks
 - \blacksquare 5 x 5 \rightarrow 3 x 3
 - Also we intrinsically use less the information at the edges than the information in the center of the image.

Image

Convolved Feature

To address these issues we use padding.

Image: 5 x 5

Image + padding: 7 x 7

Striding

No striding

Input: 7 x 7
Output: 5 x 5

• • •

Striding

Striding with stride (s) of 2

Input: 7 x 7
Output: 3 x 3

• • •

Notations

- We write
 - *f* : filter size.
 - *p*: padding.
 - s: stride.
 - n: size of the image in pixels.
- Sizing: $(n \cdot n) * (f \cdot f) \rightarrow \left(\frac{n+2p-f}{s} + 1\right) \times \left(\frac{n+2p-f}{s} + 1\right)$

...

Generalization

Filter W1 (3x3x3) Output Volume (3x3x2)				
w1[:,:,0]	0[:,:,0]			
-1 0 1	6	9	12	
1 0 1	3	7	11	
-1 1 0	8	11	8	
w1[:,:,1]	0[:	,:,	1]	
-1 0 0	4		-2	
-1 1 0	2	4	-3	
-1 1 0	0	-1	3	
w1[:,:,2]				
1 1 0				
0 0 -1				
-1 -1 1				
Bias b1 (1x1x1)				

b1[:,:,0]

toggle movement

Notations - generalization

• For a layer l and for an image of width n_w and height n_H :

Symbol	
$f^{[l]}$	Filter size.
$p^{[l]}$	Padding.
$s^{[l]}$	Stride.
$n_c^{[l]}$	Number of filters.
$n_{ m w}^{[l]}$	Width at layer \emph{l} .
$n_H^{[l]}$	Height at layer \emph{l} .

Sizing:

Generalization

$$n_{\rm w}^{[0]} = 6$$

 $n_{H}^{[0]} = 6$
 $n_{C}^{[0]} = 3$

*

₄a=ReLU(

$$4 \times 4 \times 5$$
 $n_H^{[1]} = n_w^{[1]} = 4$
 $n_c^{[1]} = 5$

Notations - generalization

- Input: $n_H^{[l-1]} \times n_w^{[l-1]} \times n_c^{[l-1]}$
- Output: $n_H^{[l]} \times n_w^{[l]} \times n_c^{[l]}$
- Number of weights to learn at layer $l: f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$
- Activation at layer $l: n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$

Example

$$37 \times 37 \times 10$$

 $n_H^{[1]} = n_w^{[1]} = 37$
 $n_c^{[1]} = 10$

softmax

Take home

- CNN as a way to take advantage of "convolutions" for elaborating features. Rather than hand-crafting the convolution filters we learn their coefficients.
- Practically we use cross-correlation and not convolutions but for historical questions we call CNN this convolutional neural network.
- Padding.
- Striding.
- Notations.

References

- [1] Andrew Ng, Coursera, Neural Networks and Deep Learning. Coursera.
- [2] LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.