CS 3313 Foundations of Computing:

Regular Expressions and Regular Languages

http://gw-cs3313-2021.github.io

Next...Formal methods to define languages

- Can we provide formal methods to define a language
 - Instead of defining it as accepted by an automaton?
- Grammars is one option
- For regular languages, we have a simpler formalism:
 Regular Expressions
- Applications of Regular Expressions:
 - Substring search
 - Define keywords in a programming language
 - Unix Commands use an extended RE notation
 - Web search (Amazon's module): integrating want ads
 - Lexical analysis first job of compiler is to break a program into tokens
 - Substrings that together represent a unit

RE's: Introduction

- Regular expressions describe languages by an algebra.
- ◆ They describe exactly the regular languages.
- ◆ If E is a regular expression, then L(E) is the language it defines.
- ◆ We'll describe RE's and their languages recursively.

Recall Definitions and Notations:

- *Alphabet*: set of symbols, i.e. $\Sigma = \{a, b\}$
- String: finite sequence of symbols from Σ
 - Empty string: denoted λ or ϵ
- Operations on strings: Concatenation, Reverse, ...
- <u>Length of a string:</u> number of symbols
- Σ* = set of all strings formed by concatenating zero or more symbols in Σ
- Σ^+ = set of all non-empty strings formed by concatenating symbols in Σ, i.e., Σ^+ = Σ^* { λ }
- A formal language L is any subset of Σ*
- Convention: we use w,x,y to denote strings and a,b,c to denote symbols from the alphabet

Operations on Languages

- ◆ RE's use three operations: union, concatenation, and Kleene star.
- ◆ The union of languages is the usual thing, since languages are sets.
- \blacksquare Example: $\{01,111,10\}\cup\{00,01\} = \{01,111,10,00\}$.

Concatenation

- ◆ The concatenation of languages L and M is denoted LM.
- It contains every string wx such that w is in L and x is in M.
- ◆ Example: {01,111,10}{00, 01} = {0100, 0101, 11100, 11101, 1000, 1001}.

Kleene Star

- ◆ If L is a language, then L*, the *Kleene star* or just "star," is the set of strings formed by concatenating zero or more strings from L, in any order.
- \blacklozenge L* = $\{\epsilon\} \cup$ L \cup LLL \cup LLL \cup ...
- \bullet Example: $\{0,10\}^* = \{\epsilon, 0, 10, 00, 010, 100, 1010, ...\}$

Regular Expressions

- Regular Expressions provide a concise way to describe some languages
- Regular Expressions are defined recursively. For any alphabet:
 - the empty set, the empty string, or any symbol from the alphabet are *primitive regular expressions*
 - the union (+), concatenation (⋅), and star closure (*) of regular expressions is also a regular expression
 - any string resulting from a finite number of these operations on primitive regular expressions is also a regular expression

Languages Associated with Regular Expressions

- A regular expression (RE) r denotes a language L(r)
- Basis: Assuming that r₁ and r₂ are regular expressions:
 - 1. The regular expression \varnothing denotes the empty set
 - 2. The regular expression λ denotes the set $\{\lambda\}$
 - 3. For any a in the alphabet, the regular expression **a** denotes the set { a }
 - Inductive step: if r₁ and r₂ are regular expressions, denoting languages L(r₁) and L(r₂) respectively, then
 - 1. $r_1 + r_2$ is a RE denoting the language $L(r_1) \cup L(r_2)$
 - 2. $r_1 \cdot r_2$ is a RE denoting the language L(r_1). L(r_2)
 - 3. (r_1) is a RE denoting the language $L(r_1)$
 - 4. r_1^* is a RE denoting the language $(L(r_1))^*$

Determining the Language Denoted by a Regular Expression

- By combining regular expressions using the given rules, arbitrarily complex expressions can be constructed
- The concatenation symbol (·) is usually omitted
- In applying operations, we observe the following precedence rules:
 - star closure precedes concatenation
 - concatenation precedes union
- Parentheses are used to override the normal precedence of operators

Examples: RE's

- $L(01) = \{01\}.$
- $L(01+0) = \{01, 0\}.$
- $L(0(1+0)) = \{01, 00\}.$
 - ▶ Note order of precedence of operators.
- $L(0^*) = \{ \epsilon, 0, 00, 000, \dots \}.$

Sample Regular Expressions and Associated Languages

Regular Expression	Language
(ab)*	$\{ (ab)^n, n \ge 0 \}$
a + b	{ a, b }
(a + b)*	{ a, b }* (in other words, any string formed with a and b)
a(bb)*	{ a, abb, abbbb, abbbbbb, }
a*(a + b)	{ a, aa, aaa,, b, ab, aab, }
(aa)*(bb)*b	{ b, aab, aaaab,, bbb, aabbb, }
(0 + 1)*00(0 + 1)*	Binary strings containing at least one pair of consecutive zeros

Two regular expressions are equivalent if they denote the same language. Consider, for example, (a + b)* and (a*b*)*

Practice....Exercises

- 1. Write a regular expression for the language L={w | w contains the substring 101 and w is a string over alphabet {0,1} }
- 2. Write a regular expression for the language L={ w | (a) w contains two consecutive 0's or (b) w=xy and x contains substring 101 and y ends with two 2's. }
- 3. Describe the language denoted by regular expression ((0+10)*(∈+1))

Practice....Exercises

- 1. Write a regular expression for the language L={ w | (a) w contains two consecutive 0's or (b) w=xy and x contains substring 101 and y ends with two 2's.}
- 2. Describe the set of valid email addresses using a regular expression:

```
must contain only characters from alphabet, numbers,@ must start with a letter has exactly one @ no two consecutive appearances of .
```

@ cannot come right after or before . (no @. etc.)

no digits after @

at least one . after @

■ 3. Describe the language denoted by regular expression $((0+10)*(\epsilon+1))$

Algebraic Laws for RE's

- Union and concatenation behave sort of like addition and multiplication.
 - + is commutative and associative; concatenation is associative.
 - Concatenation distributes over +.
 - Exception: Concatenation is not commutative.

Identities and Annihilators

- ∅ is the identity for +.
 - $\blacksquare R + \emptyset = R.$
- ϵ (λ) is the identity for concatenation.
 - $\epsilon R = R\epsilon = R$.
- \emptyset is the annihilator for concatenation.
 - $\emptyset R = R\emptyset = \emptyset$.

Regular Expressions and Regular Languages

- Theorem: For any regular expression r, there is a nondeterministic finite automaton M that accepts the language denoted by r, i.e., L(M) = L(r)
- Since nondeterministic and deterministic
 accepters are equivalent, regular expressions are
 associated precisely with regular languages
- A constructive proof provides a systematic procedure for constructing a nfa that accepts the language denoted by any regular expression

Recall design of NFAs with E-moves

- What does this NFA accept, in terms of languages accepted by M1 and M2?
 - Notation: M1 is M(r1) and M2 is M(r2)?

Recall Design of NFAs with E-moves

What does this NFA accept in terms of languages accepted by L(M1) and L(M2)?

Next: Equivalence of Regular Expressions and Finite Automata

- Constructive proof to show that a language is accepted by a DFA M if and only if it is represented by a Regular expression
- Given a RE r, construct a finite automaton that accepts L(r)
 - Construct = design algorithm that given RE as input will generate a finite automaton M

Given a DFA M, construct a RE to represent L(M)

Equivalence of RE's and Finite Automata

- We need to show that for every RE, there is a finite automaton that accepts the same language.
 - \circ Pick the most powerful automaton type: the ϵ -NFA.
- And we need to show that for every finite automaton, there is a RE defining its language.
 - Pick the most restrictive type: the DFA.

Converting a RE to an ∈-NFA

- ◆ Proof is an induction on the number of operators (+, concatenation, *) in the RE.
- ♦ We always construct an automaton of a special form:

RE to €-NFA: Basis

◆ Symbol **a**:

 \bullet \in (or λ):

♦ Ø:

Inductive Step

RE to ϵ -NFA: Induction 1: + (set Union)

For
$$E_1 + E_2 = E_1 \cup E_2$$

RE to ε-NFA: Induction 2: Concatenation

For E_1E_2

RE to ϵ -NFA: Induction 3: Closure

For E*

Finite Automata to Regular Expressions

- Given a DFA M, construct a RE to represent L(M)
 - Constructive proof that can be implemented as an algorithm
- What we present here is different from the textbook
- key idea: formulate the problem as a graph theoretic problem and develop dynamic programming solution
 - Dynamic programming is a very important and often used technique to solve problems

DFA-to-RE

- ◆ A strange sort of induction.
- ◆ States of the DFA are named 1,2,...,n.
- ◆ Induction is on k, the maximum state number we are allowed to traverse along a path.

Key Ideas for DFA-RE Algorithm

DFA $M = (Q, \Sigma, \delta, q_1, F)$

- $\bullet \ \ Q = \{q_1, \cdots, q_m\}$
- q_1 is the start state of M.
- R(i, j, k) denote the set of all strings in Σ^* that derive M from q_i to q_j without passing through any state numbered k or greater for $1 \le i, j \le m$ and $1 \le k \le m+1$.

Key Ideas for DFA-to-RE Algorithm

- DFA M= (Q, Σ , δ , q₁,F)
- N states: (q₁,q₂,...q_n)
- Start state: q₁
- Consider path from state q_i to q_j that pass through states number at most k -- call these k-paths
 - Denote the set of strings that take DFA from q_i to q_j going through states at most k as R(i,j,k)
 - Derive regular expression for this set of strings
 - When i=1 and q_j is a final state, this represents the set of strings accepted by the DFA

k-Paths

- ◆ A k-path is a path through the graph of the DFA that goes through no state numbered higher than k.
- ◆ Endpoints are not restricted; they can be any state.
- n-paths are unrestricted.
- ◆ RE is the union of RE's for the n-paths from the start state to each final state.

Example: k-Paths

0-paths from 2 to 3: RE for labels = $\mathbf{0}$.

1-paths from 2 to 3: RE for labels = $\mathbf{0}+\mathbf{11}$.

2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1

3-paths from 2 to 3: RE for labels = ??

DFA-to-RE

- ◆ Basis: k = 0; only arcs or a node by itself.
- ◆ Induction: construct RE's for paths allowed to pass through state k from paths allowed only up to k-1.

k-Path Induction

- ◆ Let R_{ij}^k be the regular expression for the set of labels of k-paths from state i to state j.
- ♦ Basis: k=0. R_{ii}^0 = sum of labels of arc from i to j.
 - Ø if no such arc.
 - \blacktriangleright But add ϵ if i=j.

Example: Basis

$$Arr R_{12}^0 = 0.$$

$$ightharpoonup$$
 R₁₁⁰ = \varnothing + ε = ε .

1

Notice algebraic law: \varnothing plus anything = that thing.

Illustration of Induction

k-Path Inductive Case

- ◆ A k-path from i to j either:
 - Never goes through state k, or
 - Goes through k one or more times.

Example: k=1

- $R_{12}^{1} = R_{12}^{0} + R_{11}^{0} (R_{11}^{0})^{*} R_{12}^{0}$ • $0 + \epsilon (\epsilon)^{*} 0 = 0$
- $R_{22}^{1} = R_{22}^{0} + R_{21}^{0} (R_{11}^{0})^{*} R_{12}^{0}$ • $\epsilon + 1(\epsilon)^{*}0 = \epsilon + 10$
- $R_{23}^{1} = R_{23}^{0} + R_{21}^{0} (R_{11}^{0})^{*} R_{13}^{0}$
 - $0 + 1 (\epsilon)^* 1 = (0+11)$

Algorith:

For each 1 <= i,j <= n, compute compute the table for R(i,j) for k=0,1,2...n where R(i,j) contains the regular expression for R_{ii}^k (or to visualize as a table, R(i,j,k))

k=0

	1	2	3
1	е	0	1
2	1	е	0
3	0	1	е

Example: k=2

- $R_{12}^2 = R_{12}^1 + R_{12}^1 (R_{22}^1) R_{22}^1$
 - $0 + 0(\epsilon + 10)^* (\epsilon + 10) = 0 + 0 (10)^*$

Compute table for R(i,j,k) for k=0,1,2...nk=1

	1	2	3
1	е	0	1
2	1	e+10	0+11
3	0	1+00	e+01

Example: k=2

•
$$R_{12}^2 = R_{12}^1 + R_{12}^1 (R_{22}^1) R_{22}^1$$

•
$$0 + 0(\epsilon + 10)^* (\epsilon + 10) = 0 + 0 (10)^*$$

•
$$R_{31}^2 = R_{31}^1 + R_{32}^1 (R_{22}^1) R_{21}^1$$

•
$$R_{32}^2 = R_{32}^1 + R_{32}^1 (R_{22}^1)^* R_{22}^*$$

•
$$R_{23}^3 = R_{23}^2 + R_{23}^2 (R_{33}^2) R_{33}^2$$

■ Compute table for R(i,j,k) for k=0,1,2...n k=2

	1	2	3
1	e+(0(e+10)*1	0+(e+10)(10)*(e+10) = 0+0(10)*= 0 (10)*	1+(0(e+10)*(0+11)
2	1+(e+10)(e+10)*1= 1+(10)*1	(e+10)+ (e+10)(e+10)*(e+10)= (e+10)*= (10)*	(0+11)+ (e+10)(e+10)*(0+11) = (0+11)+(10)*(0+11)
3	0 + (1+00)(e+10)*(1)= 0 + (1+00)(10)*(1)	(1+00)+ ((1+00).(e+10)*(e+10)) = (1+00) (10)*	(e+01) + ((1 +00) (e+10)*(0+11))

Final Step

- The RE with the same language as the DFA is the sum (union) of R_{1i}ⁿ, where:
 - 1. n is the number of states; i.e., paths are unconstrained.
 - 2. $1 (q_1)$ is the start state.
 - 3. j is one of the final states.
 - In terms of an algorithm, R_{ij}^k is R(i,j,k) with 1 <= i,j <= n and 0 <= k <= n.</p>
 - Implies O(n³) algorithm

Summary

- Each of the three types of automata (DFA, NFA, ε-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.
- Question: what kinds of languages & properties are regular languages
 - ◆ what kinds of language properties can be defined using Res
 - ◆ What kinds of "problems" can be solved using DFAs
- ◆ Next: Properties of Regular languages
 - ◆ Closure properties what happens when we perform set operations?
 - ◆ Decision properties can we automate checking some properties?
 - ◆ Non-regular lang how do we prove that a language is not regular

Applications of RE

UNIX Regular Expressions

- UNIX, from the beginning, used regular expressions in many places, including the "grep" command.
 - Grep = "Global (search for a) Regular Expression and Print."
- Most UNIX commands use an extended RE notation that still defines only regular languages.

UNIX RE Notation

- $[a_1a_2...a_n]$ is shorthand for $a_1+a_2+...+a_n$.
- Ranges indicated by first-dash-last and brackets.
 - Order is ASCII.
 - Examples: [a-z] = "any lower-case letter," [a-zA-Z] = "any letter."
- Dot = "any character."

UNIX RE Notation – (2)

- | is used for union instead of +.
- But + has a meaning: "one or more of."
 - E+ = EE*.
 - Example: [a-z]+ = "one or more lower-case letters.
- ? = "zero or one of."
 - E? = E + ϵ .
 - Example: [ab]? = "an optional a or b."

Lexical Analysis

- The first thing a compiler does is break a program into tokens = substrings that together represent a unit.
 - Examples: identifiers, reserved words like "if," meaningful single characters like ";" or "+", multicharacter operators like "<=".

Lexical Analysis – (2)

- Using a tool like Lex or Flex, one can write a regular expression for each different kind of token.
- Example: in UNIX notation, identifiers are something like [A-Za-z][A-Za-z0-9]*.
- Each RE has an associated action.
 - Example: return a code for the token found.