RMP- Extended Kalman Filter

∷≡ Key words	Data association	EKF	EKF wit	th SLAM	Jacobian
	Mahalanobis distan	ice	incremental/local localization		
	indirect kalman filte	r no	on-linear	sub-optir	mal
:≣ Status	note complete				

Extended Kalman Filter: non-linear models, suboptimal

- ▼ Ideas & Assumptions:
 - non-linear model: motion model or/and measurement model can be non-linear
 - · zero-mean Gaussian noise
 - -> linearization !!
 - -> sub-optimal

▼ Prediction

- 1. prediction \hat{x}_{k+1}^- based on **non-linear motion model,** with $w_k=0$
- 2. project the covariance P_k forward to P_{k+1}^- , here A and W are Jacobians to state and to error vectors
- —> a priori estimate ($\hat{x}_{k+1}^-, P_{k+1}^-$)

▼ Correction

- 1. compute Kalman Gain K_{k+1} , here H and V are Jacobians to state and to sensor errors
- 2. update prediction \hat{x}_{k+1}^- with measurements z_{k+1} to \hat{x}_{k+1}
- 3. update error covariance to P_{k+1}
- —> a posteriori estimate (\hat{x}_{k+1}, P_{k+1})
- ▼ non-linear motion and measurement model:
 - motion model:

$$x_{k+1} = f(x_k, u_k, 0)$$
 with $A = rac{\partial f}{\partial x_k}, W = rac{\partial f}{\partial w_k}$

measurement model:

$$z_{k+1}=h(x_{k+1}^-,0)$$
 with $H=rac{\partial h}{\partial x_{k+1}^-}, V=rac{\partial h}{\partial v_{k+1}}$

Indirect Kalman Filter: estimation of state error

 estimate error between true value and current estimated value —> error propagation

$$egin{bmatrix} ilde{x} \ ilde{y} \ ilde{z} \end{bmatrix}_{k+1} = egin{bmatrix} x_{k+1} - \hat{x}_{k+1} \ y_{k+1} - \hat{y}_{k+1} \ \phi_{k+1} - \hat{\phi}_{k+1} \end{bmatrix}$$

Extended Kalman Filter for SLAM:

- · SLAM: Simultaneous Localizaiton and Mapping
- idea: look at the distribution of errors —> find out discrepancies between landmarks
 - discrepancy due to state error of robot (constant offset)
 - discrepancy due to measurement noise (random)
- state vector: robot position + landmark positions

$$x = [x_R^T, x_{L1}^T, \ldots, x_{Ln}^T]^T$$

state covariance matrix

$$P = egin{bmatrix} P_{R,R} & P_{R,L1} & \dots & P_{R,Ln} \ P_{R,L1} & P_{L1,L1} & \dots & P_{L1,Ln} \ dots & dots & \ddots & dots \ P_{Ln,R} & P_{Ln,l1} & \dots & P_{Ln,Ln} \end{bmatrix}$$

- · motion model:
 - robot position
 - landmark: constant
- · measurement vector:
 - \circ landmark visible and measured: $H_{Li}
 eq 0$
 - $\circ~$ landmark invisible and not measured: $H_{Li}=0$
 - -> data association and matching necessary!!!

$$H = [H_R, 0, \dots, 0, H_{Li}, 0, \dots, 0]^T$$

- ▼ Data association: assign measurements to the predictions
 - Mahalanobis distance: distance with uncertainty considered If D_m < threshold: data association!! —> update H matrix to the corresponding position.

$$D_m(x) = \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

• similarity measurement between x and y

$$D_m(x,y) = \sqrt{(x-y)^T \Sigma^{-1} (x-y)}$$

- associate i-th measurement z_i with j-th estimated state vector $\boldsymbol{x}_{k+1,j}^-$

$$egin{align} \Sigma &= H_i(x_{k+1,j}^-) \cdot P_{k+1}^- \cdot H_i(x_{k+1,j}^-)^T + R_{i,k+1} \ & \ D_m(z_{k+1,i},x_{k+1,j}^-) &= \sqrt{(z_i - h_i(x_{k+1,j}^-))^T \Sigma^{-1} (z_i - h_i(x_{k+1,j}^-))} \ \end{aligned}$$