Exercise:

Using the 3 generalised preference criteria on the next slide, calculate the aggregated preference index for each pair of alternatives

Aggregated preference index

	C_1	C_2	C_4
	min	max	min
A_1	80	90	54
A_2	65	58	97
A_3	83	60	72

(Criteria are all weighted the same)

$$P(A_1, A_2) =$$

$$P(A_1, A_2) =$$

$$P(A_2, A_1) =$$

$$P(A_2, A_3) =$$

$$P(A_3, A_1) =$$

$$P(A_3, A_1) =$$
 $P(A_3, A_2) =$

Answers

E.g.

65-80 = -15

Preference value for -15 is 0, according to $P_1(a, b)$

	C_1	C_2	C_4
	min	max	min
A_1	8 0	90	54
A_2	65	58	97
A_3	83	60	72

Criteria are all weighted the same

$$P(A_1, A_2) = ((0 + 1 + 0.5) / 3) = 1.5/3 = 0.5$$

$$P(A_1, A_2) =$$

$$P(A_2, A_1) =$$

$$P(A_2, A_3) =$$

$$P(A_3, A_1) =$$

$$P(A_3, A_2) =$$

Answers

	C_1	C_2	C_4
	min	max	min
A_1	80	90	54
A_2	65	58	97
A_3	83	60	72

Criteria are all weighted the same

= 0.189

$$P(A_1, A_2) = ((0 + 1 + 0.5) / 3) = 1.5/3 = 0.5$$
 $P(A_1, A_3) = (0 + 1 + 0.5) / 3 = 1.5/3 = 0.5$
 $P(A_2, A_1) = (1 + 0 + 0) / 3 = 1 / 3 = 0.333$
 $P(A_2, A_3) = (1 + 0 + 0) / 3 = 1/3 = 0.333$
 $P(A_3, A_1) = (0 + 0 + 0) / 3 = 0 = 0$

 $P(A_3, A_2) = (0 + 0.0667 + 0.5) / 3 = 0.5667/3$

Next step:

Calculate the positive outranking flow, negative outranking flow, and net outranking flow for each alternative

$$P(A_1, A_2) = 0.5$$

$$P(A_1, A_3) = 0.5$$

$$P(A_2, A_1) = 0.333$$

$$P(A_2, A_3) = 0.333$$

$$P(A_3, A_1) = 0$$

$$P(A_3, A_2) = 0.189$$

From previous calculations

Positive outranking flow

$$\phi^+(A_1) = 0.5 + 0.5 = 1$$

$$\phi^+(A_2) = 0.333 + 0.333 = 0.667$$

$$\phi^+(A_3) = 0 + 0.189 = 0.189$$

Negative outranking flow

$$\phi^{-}(A_1) = 0.333 + 0 = 0.333$$

$$\phi^{-}(A_2) = 0.5 + 0.189 = 0.689$$

$$\Phi(A_3) = 0.5 + 0.333 = 0.833$$

Positive outranking flow

$$\phi^{+}(A_1) = 0.5 + 0.5 = 1$$

 $\phi^{+}(A_2) = 0.333 + 0.333 = 0.667$
 $\phi^{+}(A_3) = 0 + 0.189 = 0.189$

Negative outranking flow

$$\phi^{-}(A_1) = 0.333 + 0 = 0.333$$

$$\phi^{-}(A_2) = 0.5 + 0.189 = 0.689$$

$$\phi^{-}(A_3) = 0.5 + 0.333 = 0.833$$

From last slide

"Promethee 1" method provides a partial ordering. In this simple case, there are no indifferent or incomparable pairs of alternatives.

A₁ outranks A₂ A₂ outranks A₃

This leads to the ordering A1, A2, A3

Positive outranking flow

$$\phi^+(A_1) = 0.5 + 0.5 = 1$$

$$\phi^+(A_2) = 0.333 + 0.333 = 0.667$$

$$\phi^+(A_3) = 0 + 0.189 = 0.189$$

Negative outranking flow

$$\phi^{-}(A_1) = 0.333 + 0 = 0.333$$

$$\phi^{-}(A_2) = 0.5 + 0.189 = 0.689$$

$$\phi^{-}(A_3) = 0.5 + 0.333 = 0.833$$

From previous calculations

"Promethee 2" method provides a complete ranking, and requires the net outranking flow:

Calculate the net outranking flow " ϕ (a)" for each alternative:

In general: ϕ (a) = ϕ^+ (a) - ϕ^- (a)

$$\phi(A_1) = \phi^+(A_1) - \phi^-(A_1) = 1 - 0.333 = 0.667$$

$$\phi(A_2) = \phi^+(A_2) - \phi^-(A_2) = 0.667 - 0.689 = -0.167$$

$$\phi(A_3) = \phi^+(A_3) - \phi^-(A_3) = 0.189 - 0.833 = -0.644$$

The complete ranking according to promethee 2 is A_1 , A_2 , A_3