Introduction to Optimization

Improving convergence rates.

Lecture 07: Quadratic functions and finite termination.

Lecture 08: Inertial algorithms. Stochastic gradient.

Systems of linear equations

Let $A \in \mathbb{R}^{N \times N}$ be invertible (to simplify), and let $\beta \in \mathbb{R}^N$. The problem

$$Ax = \beta$$

has a unique solution

Systems of linear equations

Let $A \in \mathbb{R}^{N \times N}$ be invertible (to simplify), and let $\beta \in \mathbb{R}^N$. The problem

$$Ax = \beta$$

has a unique solution, which is the unique minimizer of

$$f(x) = \frac{1}{2} \|Ax - \beta\|^2$$

2/15

Systems of linear equations

Let $A \in \mathbb{R}^{N \times N}$ be invertible (to simplify), and let $\beta \in \mathbb{R}^N$. The problem

$$Ax = \beta$$

has a unique solution, which is the unique minimizer of

$$f(x) = \frac{1}{2} \|\mathcal{A}x - \beta\|^2,$$

and also the unique minimizer of

$$\phi(x) = \frac{1}{2}x \cdot Ax - b \cdot x,$$

where $A = A^T A$ (symmetric and positive definite) and $b = A^T \beta$.

Conjugate gradient methods

Conjugate gradient methods iterate

$$x_{n+1} = x_n + \alpha_n d_n$$

for convenient choices of d_n and α_n in such a way that

$$\{d_0,\ldots,d_{N-1}\}$$

is a basis of \mathbb{R}^N and x_n minimizes ϕ on the affine subspace

$$x_0 + \operatorname{span}\{d_0, \ldots, d_{n-1}\}.$$

As a consequence, the solution is found in at most N steps for every initial point x_0 .

3/15

Juan PEYPOUQUET Optimization 2022-2023

Vectors $\{d_0, \ldots, d_{N-1}\}$ are conjugate with respect to A if

$$d_i \cdot Ad_j = 0$$

for all i, j.

Vectors $\{d_0, \ldots, d_{N-1}\}$ are conjugate with respect to A if

$$d_i \cdot Ad_j = 0$$

for all i, j.

Remark

The expression

$$\langle x, y \rangle_A := x \cdot Ay$$

is an inner product in \mathbb{R}^N .

Vectors $\{d_0, \ldots, d_{N-1}\}$ are conjugate with respect to A if

$$d_i \cdot Ad_j = 0$$

for all i, j.

Remark

The expression

$$\langle x, y \rangle_A := x \cdot Ay$$

is an inner product in \mathbb{R}^N . Being conjugate means being orthogonal with respect to this inner product.

Vectors $\{d_0, \ldots, d_{N-1}\}$ are conjugate with respect to A if

$$d_i \cdot Ad_j = 0$$

for all i, j.

Remark

The expression

$$\langle x, y \rangle_A := x \cdot Ay$$

is an inner product in \mathbb{R}^N . Being conjugate means being orthogonal with respect to this inner product. Conjugate vectors are linearly independent.

An abstract conjugate gradient method

Theorem

Let $\{d_0, \ldots, d_{N-1}\}$ be conjugate, and let $x_{n+1} = x_n + \alpha_n d_n$, where

$$\alpha_n = \operatorname{Argmin}_{\alpha > 0} \phi(x_n + \alpha d_n) = -\frac{d_n \cdot \nabla \phi(x_n)}{\|d_n\|_A^2} = -\frac{d_n \cdot (Ax_n - b)}{\|d_n\|_A^2},$$

for n = 0, ..., N - 1. Then x_N minimizes ϕ , whence $Ax_N = b$.

An abstract conjugate gradient method

Theorem

Let $\{d_0, \ldots, d_{N-1}\}$ be conjugate, and let $x_{n+1} = x_n + \alpha_n d_n$, where

$$\alpha_n = \operatorname{Argmin}_{\alpha > 0} \phi(x_n + \alpha d_n) = -\frac{d_n \cdot \nabla \phi(x_n)}{\|d_n\|_{\Delta}^2} = -\frac{d_n \cdot (Ax_n - b)}{\|d_n\|_{\Delta}^2},$$

for n = 0, ..., N - 1. Then x_N minimizes ϕ , whence $Ax_N = b$.

Moreover,
$$\nabla \phi(x_n) \cdot d_j = 0$$
 for $j = 0, \dots, n-1$, and x_n minimizes ϕ over $x_0 + \operatorname{span}\{d_0, \dots, d_{n-1}\}.$

This is known as expanding subspace minimization.

◆ロト ◆昼 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Implementation of a conjugate gradient method

Given
$$x_0 \in \mathbb{R}^N$$
, set $d_0 = -\nabla \phi(x_0) = b - Ax_0$.

Implementation of a conjugate gradient method

Given
$$x_0 \in \mathbb{R}^N$$
, set $d_0 = -\nabla \phi(x_0) = b - Ax_0$.

At step n, we know x_n , $g_n = \nabla \phi(x_n)$ and d_n .

Implementation of a conjugate gradient method

Given $x_0 \in \mathbb{R}^N$, set $d_0 = -\nabla \phi(x_0) = b - Ax_0$.

At step n, we know x_n , $g_n = \nabla \phi(x_n)$ and d_n .

If $g_n=0$, we stop; otherwise, we compute $\alpha_n=\frac{\|g_n\|^2}{\|d_n\|_A^2}$, and then update

$$\begin{array}{rcl} x_{n+1} & = & x_n + \alpha_n d_n \\ g_{n+1} & = & g_n + \alpha_n A d_n \\ d_{n+1} & = & -g_{n+1} + \beta_n d_n, \quad \text{with} \quad \frac{\|g_{n+1}\|^2}{\|g_n\|^2}. \end{array}$$

Convergence

Theorem

The procedure described above produces a conjugate set $\{d_0, \ldots, d_n\}$, with $n \leq N$, and terminates at x_n , where $Ax_n = b$.

Convergence

Theorem

The procedure described above produces a conjugate set $\{d_0, \ldots, d_n\}$, with $n \leq N$, and terminates at x_n , where $Ax_n = b$.

Remark

If A has exactly k distinct eigenvalues, the algorithm terminates in at most k steps.

Let $f: \mathbb{R}^N \to \mathbb{R}$ be differentiable, but not necessarily quadratic.

Let $f: \mathbb{R}^N \to \mathbb{R}$ be differentiable, but not necessarily quadratic.

Given $x_0 \in \mathbb{R}^N$, set $d_0 = -\nabla f(x_0)$.

Let $f: \mathbb{R}^N \to \mathbb{R}$ be differentiable, but not necessarily quadratic.

Given
$$x_0 \in \mathbb{R}^N$$
, set $d_0 = -\nabla f(x_0)$.

At step n, we know x_n , $g_n = \nabla f(x_n)$ and d_n .

Let $f: \mathbb{R}^N \to \mathbb{R}$ be differentiable, but not necessarily quadratic.

Given
$$x_0 \in \mathbb{R}^N$$
, set $d_0 = -\nabla f(x_0)$.

At step n, we know x_n , $g_n = \nabla f(x_n)$ and d_n .

If $g_n = 0$, we stop; otherwise, we compute (backtracking) α_n satisfying

$$f(x_n + \alpha_n d_n) \leq f(x_n) + c_1 \alpha_n g_n \cdot d_n$$

$$|\nabla f(x_n + \alpha_n d_n) \cdot d_n| \leq -c_2 g_n \cdot d_n,$$

with $0 < c_1 < c_2 < 1/2$ (strong Wolfe conditions).

◆ロト ◆母 ト ◆ 差 ト ◆ 差 ・ り Q (^)

Nonlinear extensions, continued

Then, we update

$$x_{n+1} = x_n + \alpha_n d_n$$

$$d_{n+1} = -g_{n+1} + \beta_n d_n,$$

where several choices for β_n are possible, such as:

- Fletcher-Reeves: $\frac{\|g_{n+1}\|^2}{\|g_n\|^2}$
- Polak-Ribière: $\frac{g_{n+1} \cdot (g_{n+1} g_n)}{\|g_n\|^2}$
- Hestenes-Stiefel: $\frac{g_{n+1} \cdot (g_{n+1} g_n)}{d_n \cdot (g_{n+1} g_n)}$
- Dai-Yuan: $\frac{\|g_{n+1}\|^2}{d_n \cdot (g_{n+1} g_n)}$

Break

Quadratic model of f given by Taylor's expansion at x_n :

$$f(x) \simeq f(x_n) + \nabla f(x_n) \cdot (x - x_n) + \frac{1}{2}(x - x_n) \cdot \nabla^2 f(x_n)(x - x_n).$$

Quadratic model of f given by Taylor's expansion at x_n :

$$f(x) \simeq f(x_n) + \nabla f(x_n) \cdot (x - x_n) + \frac{1}{2}(x - x_n) \cdot \nabla^2 f(x_n)(x - x_n).$$

Set x_{n+1} as the minimizer: $\nabla f(x_n) + \nabla^2 f(x_n)(x_{n+1} - x_n) = 0$

Quadratic model of f given by Taylor's expansion at x_n :

$$f(x) \simeq f(x_n) + \nabla f(x_n) \cdot (x - x_n) + \frac{1}{2}(x - x_n) \cdot \nabla^2 f(x_n)(x - x_n).$$

Set x_{n+1} as the minimizer: $\nabla f(x_n) + \nabla^2 f(x_n)(x_{n+1} - x_n) = 0$, or

$$x_{n+1} = x_n - \left[\nabla^2 f(x_n)\right]^{-1} \nabla f(x_n),$$

Quadratic model of f given by Taylor's expansion at x_n :

$$f(x) \simeq f(x_n) + \nabla f(x_n) \cdot (x - x_n) + \frac{1}{2}(x - x_n) \cdot \nabla^2 f(x_n)(x - x_n).$$

Set x_{n+1} as the minimizer: $\nabla f(x_n) + \nabla^2 f(x_n)(x_{n+1} - x_n) = 0$, or

$$x_{n+1} = x_n - \left[\nabla^2 f(x_n)\right]^{-1} \nabla f(x_n),$$

if $\nabla^2 f(x_n)$ is invertible.

Quadratic model of f given by Taylor's expansion at x_n :

$$f(x) \simeq f(x_n) + \nabla f(x_n) \cdot (x - x_n) + \frac{1}{2}(x - x_n) \cdot \nabla^2 f(x_n)(x - x_n).$$

Set x_{n+1} as the minimizer: $\nabla f(x_n) + \nabla^2 f(x_n)(x_{n+1} - x_n) = 0$, or

$$x_{n+1} = x_n - \left[\nabla^2 f(x_n)\right]^{-1} \nabla f(x_n),$$

if $\nabla^2 f(x_n)$ is invertible.

Example:
$$f(x) = \frac{1}{2} ||Ax - b||^2$$
.

Juan PEYPOUQUET

Optimization

2022-2023

$$x_{n+1} = x_n - \nabla^2 f(x_n)^{-1} \nabla f(x_n)$$

Theorem

Consider $f: \mathbb{R}^N \to \mathbb{R}$ and $\hat{x} \in \mathbb{R}^N$ such that $\nabla f(\hat{x}) = 0$.

Suppose $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le L\|x - y\|$ and $\|\nabla^2 f(x)^{-1}\| \le M$ for all x, y in a neighborhood of \hat{x} .

Then, there is $\delta > 0$ such that if $||x_0 - \hat{x}|| < \delta$, then

$$||x_n - \hat{x}|| \le r^{2^n}$$

for some $r \in (0,1)$ and all $n \geq 0$.

12 / 15

Juan PEYPOUQUET Optimization 2022-2023

Avoid the cost of $\nabla^2 f(x_n)^{-1}$

Define
$$x_{n+1} = x_n - \alpha_n D_n \nabla f(x_n)$$
, where

$$D_n \sim \nabla^2 f(x_n)^{-1}$$

in some sense, and is not as costly to compute.

Avoid the cost of $\nabla^2 f(x_n)^{-1}$

Define $x_{n+1} = x_n - \alpha_n D_n \nabla f(x_n)$, where

$$D_n \sim \nabla^2 f(x_n)^{-1}$$

in some sense, and is not as costly to compute.

One simple heuristic is periodic evaluation: Choose $p \in \mathbb{N}$ and define

$$D_n = \nabla^2 f(x_{kp})^{-1}$$
 for $n = kp, kp + 1, \dots, (k+1)p - 1$.

Avoid the cost of $\nabla^2 f(x_n)^{-1}$

Define $x_{n+1} = x_n - \alpha_n D_n \nabla f(x_n)$, where

$$D_n \sim \nabla^2 f(x_n)^{-1}$$

in some sense, and is not as costly to compute.

One simple heuristic is periodic evaluation: Choose $p \in \mathbb{N}$ and define

$$D_n = \nabla^2 f(x_{kp})^{-1}$$
 for $n = kp, kp + 1, \dots, (k+1)p - 1$.

Another idea is to define D_{n+1} as a function of D_n (not $\nabla^2 f(x_n)$ or $\nabla^2 f(x_{n+1})$) while keeping the essence of Newton's method.

∢ロト ∢団ト ∢きト ∢きト き り९℃

13 / 15

Juan PEYPOUQUET Optimization 2022-2023

The key equality defining Newton's method is the secant condition:

$$\nabla^2 f(x_n)^{-1} \big[\nabla f(x_{n+1}) - \nabla f(x_n) \big] = x_{n+1} - x_n.$$

The key equality defining Newton's method is the secant condition:

$$\nabla^2 f(x_n)^{-1} \big[\nabla f(x_{n+1}) - \nabla f(x_n) \big] = x_{n+1} - x_n.$$

Let us construct D_{n+1} so that it is symmetric (like the Hessian)

The key equality defining Newton's method is the secant condition:

$$\nabla^2 f(x_n)^{-1} \big[\nabla f(x_{n+1}) - \nabla f(x_n) \big] = x_{n+1} - x_n.$$

Let us construct D_{n+1} so that it is symmetric (like the Hessian), no too different from D_n

<ロト < @ ト < き > < き > き り < で

The key equality defining Newton's method is the secant condition:

$$\nabla^2 f(x_n)^{-1} \big[\nabla f(x_{n+1}) - \nabla f(x_n) \big] = x_{n+1} - x_n.$$

Let us construct D_{n+1} so that it is symmetric (like the Hessian), no too different from D_n , and satisfies

$$D_{n+1}g_n=s_n,$$

where $g_n = \nabla f(x_{n+1}) - \nabla f(x_n)$ and $s_n = x_{n+1} - x_n$.

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 釣 9 C C

14 / 15

Juan PEYPOUQUET Optimization 2022-2023

Popular instances

• DFP: Davidon (1959), Fletcher and Powell (1987)

$$D_{n+1} = D_n - \frac{(D_n g_n)(D_n g_n)^T}{g_n \cdot D_n g_n} + \rho_n(s_n s_n^T), \qquad \rho_n = \frac{1}{g_n \cdot s_n}.$$

15 / 15

Juan PEYPOUQUET Optimization 2022-2023

Popular instances

• DFP: Davidon (1959), Fletcher and Powell (1987)

$$D_{n+1} = D_n - \frac{(D_n g_n)(D_n g_n)^T}{g_n \cdot D_n g_n} + \rho_n(s_n s_n^T), \qquad \rho_n = \frac{1}{g_n \cdot s_n}.$$

BFGS: Broyden, Fletcher, Goldfarb and Shanno (1970)

$$D_{n+1} = (I - \rho_n s_n g_n^T) D_n (I - \rho_n s_n g_n^T)^T + \rho_n (s_n s_n^T).$$

Popular instances

• DFP: Davidon (1959), Fletcher and Powell (1987)

$$D_{n+1} = D_n - \frac{(D_n g_n)(D_n g_n)^T}{g_n \cdot D_n g_n} + \rho_n(s_n s_n^T), \qquad \rho_n = \frac{1}{g_n \cdot s_n}.$$

BFGS: Broyden, Fletcher, Goldfarb and Shanno (1970)

$$D_{n+1} = (I - \rho_n s_n g_n^T) D_n (I - \rho_n s_n g_n^T)^T + \rho_n (s_n s_n^T).$$

Theorem

Let $f: \mathbb{R}^N \to \mathbb{R}$ be μ -strongly convex and L-smooth, and let D_0 be positive definite. Then, x_n converges to the minimizer of f. It does so in at most N steps if f is quadratic.