Sparsification Techniques Preserving Temporal Connectivity

Arnaud Casteigts¹
(Joint work with Joseph G. Peters² and Jason Schoeters¹)

¹LaBRI, U. Bordeaux, ²SFU, Vancouver

Algorithmic Aspects of Temporal Graphs II
(@ICALP'2019)

(arxiv.org/abs/1810.00104)

Temporal graphs

(a.k.a. Time-varying graphs, Evolving graphs, Dynamic graphs)

Paths and connectivity:

- \rightarrow Temporal paths (*journey*): path labeled with non-decreasing times
- → Strict vs. non-strict journeys: allow (or not) consecutive hops in same time step?
- $\rightarrow \textit{Temporal connectivity:} \ \forall u, \forall v, \exists \ \mathsf{journey}(u,v).$

Simple temporal graph:

- Single presence time per edge
- ► Times are locally distinct (strict = non-strict)

Temporal spanners

Original question

[Kempe, Kleinberg, Kumar, STOC'00]

"Given a temporally connected graph, is there always a subset of O(n) edges that preserves temporal connectivity"? Followed by preliminary answers:

If journeys are required to be strict \rightarrow No, e.g.

More generally? → No, e.g.

- $O(n \log n)$ edges, but unsparsifiable.
- \rightarrow *Relaxation:* How about a **sparse** (i.e. $o(n^2)$) subset of edges?

Theorem

- \rightarrow **No!** \exists non-sparsifiable graphs with $\Theta(n^2)$ many edges (can be adapted to both strict and non-strict journeys)
- $\rightarrow \text{More assumptions needed!}$
 - E.g. complete graphs?

[Axiotis, Fotakis, ICALP'16]

Temporal cliques

The model: Simple temporal cliques

Applicability to more general cliques (by reduction):

▶ If the clique admits a <u>simple</u> sub-schedule ✓

If non-strict journeys are allowed 🗸

List of techniques:

- The K_4 technique $\approx 5 \binom{n}{2}/6$ - Pivotability 2n-3 (but not general)
- Delegation and dismountability 2n-3 (but not general)
- Fireworks (transitive delegations) $\approx 3 \binom{n}{2}/4$ - Bidirectional fireworks $\approx \binom{n}{2}/2$ - Bidirectional fireworks + Dismountability + Partial delegation $O(n \log n)$

The K_4 Lemma

Whatever the labeling, one can find an edge e such that $K_4 \setminus \{e\}$ is temporally connected.

Then...

Partition K_n into K_4 's, remove an edge in each $K_4 \to \text{removes } \lfloor n/4 \rfloor = \Theta(n)$ edges

Remark

[C. Peters, Schoeters, ICALP'19]

Can be improved by considering **edge-**disjoint K_4 's

$$\rightarrow \binom{n}{2}/6 = \Theta(n^2)$$
 edges can be removed, resulting in spanner of size $5\binom{n}{2}/6$

(but still far from sparse...)

First attempt: Pivotability

A simple way to build linear spanners!

Motivation: Kosaraju's principle in directed graphs

 $\rightarrow \exists v \; \textit{s.t.} \; v \; \text{can be reached by all others and} \; v \; \text{can reach all others} \Rightarrow \text{strong connectivity}$

Temporal version:

o v reached by all others $\underline{\text{before }t}$ and reaching all others $\underline{\text{after }t}$ (for some t) \Rightarrow temporal connectivity

Unfortunately: ∃ arbitrarily large non pivotable cliques

we need something else...

Delegation and dismountability

Delegation

If $uv = e^{-}(u)$, then v can reach all the vertices through u.

 \rightarrow We say that v can $\ensuremath{\operatorname{delegate}}$ its emissions to u

If $uv = e^+(u)$, then v can be reached by all the vertices through v.

 \rightarrow We say that v can **delegate** its receptions to u

If v shares both the min edge of a neighbor u and the max edge of another neighbors w, then v is **dismountable**.

- \rightarrow a spanner for $K \setminus v + uv + vw$ is a spanner for K (self-reduction)
- → Suggests recursion & a concept of full-dismountability (= recursively dismountable)

Relaxation

k-hop delegation, k-hop dismountability

Unfortunately (again!)

 \exists arbitrary large non (k-hop) dismountable cliques

Transitive delegations ("fireworks")

Principle:

- ▶ Min edges → "directed" forest
- Transitive delegations towards emitters (sinks)
- ► Spanner = min edges + all edges of emitters

Wait a minute... possibly too many emitters!

- → Transformation of the forest:
 - At most n/2 emitters

Theorem: \exists spanners of size $\frac{3}{4} \binom{n}{2} + O(n)$

Note: also works for receptions ("backward fireworks"):

 \rightarrow Spanner = max edges + all edges of collectors

Combining both directions

Principle

- Every vertex can reach at least one emitter u through u's min edge
- Every vertex can reached by a collector v through v's max edge
- Every emitter can reach all collectors through direct edges

+ edges between emitters and collectors

Theorem:

At most n/2 emitters and n/2 collectors $\Rightarrow \exists$ Spanners of size $\binom{n}{2}/2 + O(n)$

$$\exists \ \mathsf{Spanners} \ \mathsf{of} \ \mathsf{size} \ {n \choose 2}/2 + O(n)$$

 \approx half of the edges

Recurse or iterate

(down to $O(n \log n)$)

Recurse or sparsify?

Two options:

- ► Case 1: emitters \cup collectors $\subsetneq V$
- ▶ Case 2: emitters \cup collectors = V

Case 1: One vertex v is neither emitter nor collector.

 $ightarrow \exists \ 2$ -hop dismountable vertex

(select 4 edges selected, then recursion)

Case 2: emitters \cup collectors = V

 \rightarrow All vertices are <u>either</u> emitters or collectors (not both)!

A lot of structure to work with:

- Complete bipartite graph H between emitters and collectors
- Min edges and max edges form two perfect matchings
- lacktriangle W.I.o.g. min edges (max edges) are reciprocal in ${\cal H}$

ightarrow Sparsify ${\cal H}$ while preserving journeys from each emitter to all collectors

Sparsification of the bipartite graph

Technique: Partial delegations among emitters

- Find a 2-hop journey from one emitter to another, arriving through a "locally small" edge
- Pay extra edges to reach the missed collectors

Iterative procedure:

In each step i:

- Half of the emitters delegate to other half
- Some collectors are missed → pay extra edges (penalty)
- Penalty doubles in each iteration, but number of emitters halves

Cost:

O(n) edges over $O(\log n)$ iterations $\to O(n \log n)$ edges.

Conclusion (entire algorithm):

- $ightharpoonup n_1$ recursions due to 2-hop dismountability
- ▶ $n_2 = n n_1$ vertices when meeting Case 2
 - $\rightarrow \exists$ spanner of size $\Theta(n_1) + \Theta(n_2 \log n_2) = O(n \log n)$.

Open questions

Relaxing the complete graph assumption

- Can more general classes of dense graphs be sparsified?
 - \rightarrow Recall that \exists unsparsifiable graphs of density $\Theta(n^2)$
 - \rightarrow Yes if $\Theta(1)$ edges are missing, can we do better?

Better spanners for temporal cliques

ls $O(n \log n)$ optimal for cliques?

Experiments:

n	sparsest spanner (# edges)	
4	4 or 5	exhaustive search
5	6 or 7	exhaustive search
6	8 or 9	exhaustive search
7	10 or 11	millions random instances
	<u></u>	
20	36 or 37	dozens random instances

$$\rightarrow 2n-4 \leq OPT \leq 2n-3$$
?