

SOURCES

- Le site du zéro Openclassrooms
- Documentation Oracle
- StackOverflow
- Google

SOMMAIRE

- Présentation du langage (Rapidement, promis)
- La programmation orientée objet
- Gérer un projet de A à Z
 - Modélisation
 - Implémentation (Organisation des fichiers, Codage)
 - Déploiement
- Ouverture, deux ou trois idées à creuser

PRÉSENTATION DU LANGAGE

L'HISTOIRE DE JAVA

- ▶ 1991 : Création
- Green Team
- ▶ 1995 : Lancement Officiel
- 2010 : Oracle achète Sun Microsystem

Aujourd'hui : Java SE 8

LE JAVA EN LUI MÊME

- Langage le plus utilisé au monde (selon tiobe.com, mai 2015)
- Haut niveau
- Compilé puis exécuté
- Portable
- Orienté objet

LA PROGRAMMATION ORIENTÉE OBJET

WHAT?

- Une manière de voir la programmation
- C++, Java, Python, Php, Swift, C#, MATLAB ...

Ensemble d'objet qui interagissent

UNE CLASSE

Un type de variable défini par le développeur

- Possède
 - des attributs (Informations)
 - des méthodes (Actions)

UNE CLASSE - EXEMPLE

- Personne:
 - Nom
 - Age
 - Taille
 - Adresse

- → Parler
- → Manger
- **→**Ecrire
- → Marcher

UN OBJET

Personne Bob :

• Nom: Bob

• Age: 42

• Taille: 1,74

Adresse : Paris

→ Parler

→ Manger

→ Ecrire

→ Marcher

LA CLASS MAIN

LA CLASSE MAIN

Exécutée en première

```
public class Main {
public static void main(String[] args) {
    System.out.println("Hello World!");
}
}
```

Hello World!

Process finished with exit code 0

INITIALISER UNE VARIABLE

1

```
public static void main(String[] args) {
   int age;
   age = 1;
   System.out.println(age);
   }
}
```

Process finished with exit code 0

INITIALISER UNE VARIABLE

int age;

 \rightarrow age = 20;

INITIALISER UNE VARIABLE

```
public static void main(String[] args) {
   int age = 1;

   System.out.println(age);
}
```

1 Process finished with exit code 0

LES OPÉRATIONS SUR LES VARIABLES

```
public static void main(String[] args) {
2 🖷
3
              // 1 + 2 = 3
              int var1 = 1;
6
              int var2 = 2;
8
              int var3 = var1 + var2;
10
              System.out.println(var3);
11
12
```

3
Process finished with exit code 0

LES OPÉRATIONS SUR LES VARIABLES

int var3 = var1 + var2;

LES OPÉRATIONS SUR LES VARIABLES

```
int var3 = var1 + var2;
var3 = var1 - var2;
var3 = var1 * var2;
var3 = var1 / var2;
var3 = var1 % var2;
var3++; var3--;
```


LES DIFFÉRENTS TYPES DE VARIABLE

```
byte byteVar = 1;
                       // -128
                                           127
short shortVar = 1; // -32,768
                                           32767
int intVar2 = 1;
                   // -2^31
                                          2^31 - 1
long longVar = 1;
                    // -2^63
                                           2^63 - 1
float floatVar = 1.0f;
double doubleVar = 1.0;
boolean boolVar = true; // true
                                           false
char charVar = 'a';
```



```
int var1 = 1;
int var2 = 2;

if (var1 == var2) {
    System.out.println("Yep");
} else {
    System.out.println("Hm, nope ... ");
}
```



```
if (var1 == var2) {}
if (var1 != var2) {}
if (var1 < var2) {}</pre>
if (var1 > var2) {}
if (var1 <= var2) {}</pre>
if (var1 >= var2) {}
```



```
if (var1 < var2 && var3 == var4) {}
if (var1 != var2 || var3 >= var4) {}
```



```
if (var1 < var2 && var3 == var4) {}
if (var1 != var2 || var3 >= var4) {}
```



```
if (var1 < var2 && var3 == var4) {}
if (var1 != var2 || var3 >= var4) {}
```


© openclassrooms.con

© openclassrooms.com


```
public static void main(String[] args) {
    int firstNumber = 2;
    int numberAdded = addTwo(firstNumber);
    System.out.println(numberAdded);
public static int addTwo(int number) {
    int numberAdded = number + 2;
    return numberAdded;
```



```
public static void main(String[] args) {
    int firstNumber = 2;
    int numberAdded = addTwo(firstNumber)
   System.out.println(numberAdded);
public static int addTwo(int number) {
    int numberAdded = number + 2;
    return numberAdded;
```



```
public static void main(String[] args) {
LES FONCTIONS
                              int firstNumber = 2;
                              int numberAdded = addTwo(firstNumber);
                              System.out.println(numberAdded);
                                                    INPUTS
                          public static int addTwo(int number) {
                                 numberAdded = number + 2; WORK
                              return numberAdded; OUTPUT
                         INPUTS
                                            WORK
                                                          OUTPUT
                                                                            numberAdded
firstNumber
                       number
                                        number + 2
        2
                                                                                    2
```


LES POLYNÔMES DU SECOND DEGRÉS

- \rightarrow a * x^2 + b * x + c = 0
- Calculer les racines d'un polynôme du second degrés
- ▶ Inputs : A, B et C
- Calculer delta, l'afficher
- ▶ Si Delta > 0
 - ▶ Calculer X1 et X2, les afficher
- ▶ Sinon si Delta == 0
 - ▶ Calculer X1, l'afficher
- Sinon : Répondre qu'il n'y a pas de solution réelle possible

LA GESTION D'UN PROJET

MODÉLISATION

▶ 1 - Qu'est ce que mon programme dois faire ?

2 - Comment le faire ?

MODÉLISATION

▶ 1 - Qu'est ce que mon programme dois faire ?

> 2 - Comment le faire ?

QU'EST CE QUE MON PROGRAMME DOIT FAIRE?

QU'EST CE QUE MON PROGRAMME DOIT FAIRE?

SECRET NUMBER		

SECRET NUMBER			
INTERFACE GRAPHIQUE		LOGIQUE DU JEU	

SECRET NUMBER

INTERFACE GRAPHIQUE

LOGIQUE DU JEU

PLATEAU DE JEU

- Nombre à trouver
- -Se lancer
- →Recevoir un nombre du joueur et lui donner l'info
- →S'arrêter si le joueur gagne

SECRET NUMBER

INTERFACE GRAPHIQUE

LOGIQUE DU JEU

PLATEAU DE JEU

- Nombre à trouver
- →Se lancer
- → Recevoir un nombre du joueur et lui donner l'info
- →S'arrêter si le joueur gagne

JOUEUR

- Nom
- →Récupérer le nombre de l'utilisateur

SECRET NUMBER

INTERFACE GRAPHIQUE

- →Afficher les informations du jeu
- →Permettre à l'utilisateur de choisir un nombre

LOGIQUE DU JEU

PLATEAU DE JEU

- Nombre à trouver
- →Se lancer
- Recevoir un nombre du joueur et lui donner l'info
- →S'arrêter si le joueur gagne

JOUEUR

- Nom
- → Récupérer le nombre de l'utilisateur

PENSER LE PROJET

▶ 1 - Qu'est ce que mon programme dois faire ?

2 - Comment le faire ?

LET'S GO!

ORGANISER SON PROJET

Plusieurs fichier .java

Plusieurs packages

L'IMPLÉMENTATION DES OBJETS

LES ATTRIBUTS ET LE CONSTRUCTEUR

```
public class Person {
    private String name;
    private int age;
    private boolean isAMale;
    public Person() {
    public Person(String name, int age, boolean isAMale) {
        this.name = name;
        this.age = age;
        this.isAMale = isAMale;
```


LES GETTERS & SETTERS

```
public String getName() { return name; }
public void setName(String name) { this.name = name; }
public int getAge() { return age; }
public void setAge(int age) { this age = age; }
public boolean isAMale() { return isAMale; }
public void setAMale(boolean AMale) {
    isAMale = AMale;
}
```


LES MÉTHODES

```
public int getAgeInTenYears() {
    int ageInTenYears = this.age + 10;
    return ageInTenYears;
public String whatGender() {
    if (isAMale) {
        return "Male";
    } else {
        return "Female":
```


UTILISER LES OBJETS

```
Person amalric = new Person("Amalric", 20, true);
int ageInTenYears = amalric.getAgeInTenYears();
String gender = amalric.whatGender();
```


UTILISER LES OBJETS

```
Person amalric = new Person("Amalric", 20, true);
int ageInTenYears = amalric.getAgeInTenYears();
```

```
public int getAgeInTenYears() {
   int ageInTenYears = this.age + 10;
   return ageInTenYears;
}
```


LA CLASS

```
REAME.MD X
C Person.java ×
      ⊝/**
         * (commentaires)
         * @author Amalric Lombard de Buffières <amalric.debuffieres@icloud.com>
         * @version 1.0.0
        public class Person {
            private String name;
            private int age;
10
            private boolean isAMale;
11
12
            public Person() {
13
14
15
            public Person(String name, int age, boolean isAMale) {
                this.name = name;
17
                this.age = age;
18
                this.isAMale = isAMale;
19
20
21
            public String getName() { return name; }
            public void setName(String name) { this.name = name; }
24
27
            public int getAge() { return age; }
            public void setAge(int age) { this.age = age; }
30
33
            public boolean isAMale() { return isAMale; }
36
            public void setAMale(boolean AMale) { isAMale = AMale; }
39
            public int getAgeInTenYears() {
41
42
                int ageInTenYears = this.age + 10;
43
                return ageInTenYears;
44
45
            public String whatGender() {
                if (isAMale) {
47
                    return "Male";
                } else {
                    return "Female";
50
51
52
53
54
```


L'OBJET

```
Person alice = new Person("Alice", 42, false);
Person bob = new Person("Bob", 1337, true);
```


LES TABLEAUX

```
int listSize = 5;
int intTable[] = new int[listSize];
for (int it = 0; it < listSize; it++) {</pre>
    intTable[it] = it;
for (int it = 0; it < listSize; it++) {</pre>
    System.out.print(intTable[it] + " ");
```

0 1 2 3 4

LES LISTES

```
List<Person> personList = new ArrayList<>();
personList.add(new Person());
personList.get(0);
```


LES MAP

```
Map<String, Person> userList = new HashMap<>();
userList.put("Bob", new Person("Bob", 42, true));
userList.put("Alice", new Person("Alice", 76, false));
Person bob = userList.get("Bob");
Person alice = userList.get("Alice");
```


GIT

DES QUESTION?