第七章 参数估计 参考答案

(A) 3	当 μ 为已知时,	$\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{n}$	(B) 当 μ 为已知时, $\sum_{i=1}^n \frac{(X_i-\mu)^2}{n-1}$	
(C)	当μ为未知时,	$\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{n}$	(D) 当 μ 为未知时, $\sum_{i=1}^{n} \frac{(X_i - \mu)^2}{n-1}$	
		·	\sharp 本,样本均值和样本方差分别为 $ar{X}$, S^2 , $ar{V}$	
(A) S	$S \not \in \sigma$ 的无偏信	古计量	(B) $S \in \sigma$ 的极大似然估计量	
(C) S	$S \neq \sigma$ 的相合作	古计量	(D) \bar{X} 与 S^2 不独立	
			本,总体 X 的期望为 μ ,则下列结论正确的	的
是・・		• • • • • • • • • • • • • • • • • • • •	······································)
	X_1 是 μ 的相合 α		(B) X_1 是 μ 的极大似然估计量)
(A) Z		估计量	(•)
(A) A (C) A	X_1 是 μ 的相合 X_1 是 μ 的无偏 X_1 , X_2 , \cdots , X_n)	估计量 估计量 为来自总体 <i>X</i> 的一组样	(B) X_1 是 μ 的极大似然估计量	和
(A) A (C) A 4. 设 (X_1 是 μ 的相合 X_1 是 μ 的无偏 X_1 , X_2 , \cdots , X_n)	估计量 估计量 为来自总体 X 的一组样 $q_2 = ar{X}$,则下列结论错误	(B) X_1 是 μ 的极大似然估计量 (D) X_1 不是 μ 的估计量 本, $E(X) = \mu$, $Var(X) = \sigma^2$, 且 μ , σ^2 是未知	和
(A) A (C) A 4. 设 ((A) A	X_1 是 μ 的相合 X_1 是 μ 的相合 X_1 是 μ 的无偏 X_1, X_2, \cdots, X_n)。 $\mathbb{Z}_1, X_2, \cdots, X_n$)。 $\mathbb{Z}_1, \mathbb{Z}_1, \mathbb{Z}_1$ 的无偏 $\mathbb{Z}_1, \mathbb{Z}_1$	估计量 估计量 为来自总体 X 的一组样 $a_2 = \bar{X}$,则下列结论错误 估计量	(B) X_1 是 μ 的极大似然估计量 (D) X_1 不是 μ 的估计量 本, $E(X) = \mu$, $Var(X) = \sigma^2$, 且 μ , σ^2 是未知的是	和
(A) A (C) A 4. 设((A) A (C) 5	X_1 是 μ 的相合作 X_1 是 μ 的无偏作 X_1 , X_2 , \cdots , X_n) 是 数, $\hat{\mu}_1 = X_1$, $\hat{\mu}_2$ 是 $\hat{\mu}_n$ 的无偏作 $\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2$ 是 总体 $X \sim N(\mu, \epsilon)$	估计量 估计量 为来自总体 X 的一组样 $h_2 = \bar{X}$,则下列结论错误 估计量 μ 的极大似然估计量 σ^2),其中参数 μ 已知,	(B) X_1 是 μ 的极大似然估计量 (D) X_1 不是 μ 的估计量 本, $E(X) = \mu$, $Var(X) = \sigma^2$, 且 μ , σ^2 是未知的是(C)	知 こ)
(A) A (C) A 4. 设((A) A (C) 5	X_1 是 μ 的相合作 X_1 是 μ 的无偏作 X_1 , X_2 , \cdots , X_n) 是 数, $\hat{\mu}_1 = X_1$, $\hat{\mu}_2$ 是 $\hat{\mu}_n$ 的无偏作 $\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2$ 是 总体 $X \sim N(\mu, \epsilon)$	估计量 估计量 为来自总体 X 的一组样 $h_2 = \bar{X}$,则下列结论错误 估计量 μ 的极大似然估计量 σ^2),其中参数 μ 已知,	(B) X_1 是 μ 的极大似然估计量 (D) X_1 不是 μ 的估计量 本, $E(X) = \mu, Var(X) = \sigma^2, $	知 こ)

- 求在形如 $C_1\hat{\theta}_1 + C_2\hat{\theta}_2$ 的估计中达到最小方差的无偏估计. (本题 20 分)
- **解.** 因为 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是 $\theta(\theta \neq 0)$ 的两个无偏估计,故 $E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta$. 要使 $C_1\hat{\theta}_1 + C_2\hat{\theta}_2$ 为 θ 的无偏估计,则

$$E(C_1\hat{\theta}_1 + C_2\hat{\theta}_2) = C_1E(\hat{\theta}_1) + C_2E(\hat{\theta}_2) = C_1\theta + C_2\theta = \theta,$$

即 $C_1 + C_2 = 1$. 又因 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 不相关,则

$$Var(C_1\hat{\theta}_1 + C_2\hat{\theta}_2) = C_1^2 Var(\hat{\theta}_1) + C_2^2 Var(\hat{\theta}_2) = (3C_1^2 + C_2^2)Var(\hat{\theta}_2).$$

求解可得, $C_1 = \frac{1}{4}$, $C_2 = \frac{3}{4}$.

三、设总体 X 的概率密度函数为 $f(x;\theta) = \frac{|x|}{2\theta} \cdot e^{-\frac{|x|}{\theta}} (-\infty < x < +\infty)$, 其中 θ 未知, $\theta > 0$, (X_1, \dots, X_n) 是取自总体 X的一个样本,试求: θ 的矩估计量 $\hat{\theta}_1$ 和极大似然估计量 $\hat{\theta}_2$. (本题 30 分)

解. (1) 矩估计法: E(X) = 0, $E(X^2) = \int_{-\infty}^{+\infty} x^2 \cdot \frac{|x|}{2\theta} \cdot e^{-\frac{|x|}{\theta}} dx = \int_{0}^{+\infty} \frac{x^3}{\theta} \cdot e^{-\frac{x}{theta}} dx = 6\theta^3$, 即 $\theta = \sqrt[3]{\frac{E(X^2)}{6}}$, 故 θ 的矩估计量为

$$\hat{\theta}_1 = \sqrt[3]{\frac{\frac{1}{n} \sum_{i=1}^m X_i^2}{6}}.$$

(2) 极大似然估计法: 似然函数为

$$L(\theta) = f(x_1, x_2, \dots, x_n; \theta) = \frac{|x_1| \cdots |x_n|}{(2\theta)^n} \cdot e^{-\frac{\sum_{i=1}^{n} |x_i|}{\theta}}.$$

取对数为

$$\ln L(\theta) = \sum_{i=1}^{n} \ln|x_i| - n \cdot \ln(2\theta) - \frac{\sum_{i=1}^{n} |x_i|}{\theta}.$$

求导数为

$$\frac{d\ln L(\theta)}{d\theta} = -\frac{n}{\theta} + \frac{\sum_{i=1}^{n} |x_i|}{\theta^2} = 0.$$

解得 θ 的极大似然估计量为 $\hat{\theta}_2 = \frac{\sum\limits_{i=1}^{n} |X_i|}{n}$.

四、设 (X_1,\dots,X_n) 是取自总体X的一个样本,总体X的分布律如下:

其中 θ 未知, $0 < \theta < 1$, 试求:(1) θ 的矩估计量 $\hat{\theta}_1$ 和极大似然估计量 $\hat{\theta}_2$;(2) 讨论 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 的无偏性. (本题 30 分)

解. (1) 因为 E(X) = 0, $E(X^2) = \theta$, 所以 θ 的矩估计量为 $\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i^2$.

由分布律 $p(x;\theta) = \left(\frac{\theta}{2}\right)^{|x|} \cdot (1-\theta)^{1-|x|}$ 可得似然函数为

$$L(\theta) = \prod_{i=1}^{n} p(x_i; \theta) = \left(\frac{\theta}{2}\right)^{\sum_{i=1}^{n} |x_i|} \cdot (1 - \theta)^{n - \sum_{i=1}^{n} |x_i|}.$$

取对数为 $\ln L(\theta) = (\sum_{i=1}^{n} |x_i|) \cdot \ln(\frac{\theta}{2}) + (n - \sum_{i=1}^{n} |x_i|) \cdot \ln(1 - \theta).$

求导数为 $\frac{d \ln L(\theta)}{d \theta} = \frac{\sum_{i=1}^{n} |x_i|}{\theta} - \frac{n - \sum_{i=1}^{n} |x_i|}{1 - \theta} = 0.$

解得 θ 的极大似然估计量为 $\hat{\theta}_2 = \frac{\sum\limits_{i=1}^{n} |X_i|}{n}$.

(2) 经验证可得 $E(\hat{\theta}_1) = E(\hat{\theta}_2) = \theta$, 即两者均为无偏估计.