

Line-Following Robot with PID Control

Name: Ahmed Khaled Abdelmaksod Ebrahim

Course Name: Digital Twin & Its Applications

Supervisors: Dr. Mohamed Abdelsalam & Eng. Mohamed El-Leithy

Overview:

A differential-drive robot spawns near a predefined line/path on a 2D plane. The controller steers the robot onto the path and tracks it to the end with minimal lateral error. The system consists of three lightweight clients connected over the VSI fabric.

Architecture:

PID Controller (Client 1)

- \circ **Inputs:** robot state (x,y,θ) from the Simulator via IVSI.
- \circ **Outputs:** control commands v, ω (linear and angular velocity).
- Function: Implements a control law to minimize path-tracking error.
 - Computes cross-track and heading error relative to a reference path.
 - Produces corrective velocity commands.
- **Purpose:** Makes the robot follow the path correctly instead of drifting.

Simulator (Client 2)

- \circ Inputs: control commands v, ω from the PID Controller via IVSI.
- o **Outputs:** robot state (x,y,θ)
- o **Function:** Models the robot's kinematics and environment.
 - Uses differential drive equations.
 - Updates the robot's position and heading over time.
- o **Purpose:** Acts as a "virtual plant" so we don't need physical hardware.

Visualizer (Client 3)

- o **Inputs:** robot state (x,y,θ) from IVSI.
- o Outputs: trajectory plots and real-time animation.
- o **Function:** Graphically shows how well the robot follows the desired path.
- o **Purpose:** Helps debug the controller and simulator by providing visual feedback.

• Innexis Virtual System Interconnect (IVSI)

- Acts as a bus/gateway between clients.
- Ensures decoupling: each client only needs to talk to IVSI, not directly to each other.
- Uses **Python2Ethernet Gateway** for exchanging state/control messages over sockets.

Modeling Equations:

• Robot Kinematics (Differential Drive):

$$egin{aligned} x_{k+1} &= x_k + v_k \cdot \cos(heta_k) \cdot \Delta t \ y_{k+1} &= y_k + v_k \cdot \sin(heta_k) \cdot \Delta t \ heta_{k+1} &= heta_k + \omega_k \cdot \Delta t \end{aligned}$$

• Sensor Noise Model:

$$egin{aligned} ilde{x} &= x + arepsilon_x, & arepsilon_x \sim \mathcal{N}(0, \sigma_x^2) \ ilde{y} &= y + arepsilon_y, & arepsilon_y \sim \mathcal{N}(0, \sigma_y^2) \ ilde{ heta} &= heta + arepsilon_ heta, & arepsilon_ heta \sim \mathcal{N}(0, \sigma_ heta^2) \end{aligned}$$

• Noise Standard Deviations:

$$\sigma_x = \sigma_y = \sigma_{
m pos}, \quad \sigma_{ heta} = rac{\sigma_{
m pos}}{10}$$

PID Control Law:

$$u_k = K_p \cdot e_k + K_i \cdot \sum_{j=0}^k e_j \cdot \Delta t + K_d \cdot rac{e_k - e_{k-1}}{\Delta t}$$

Error Definition:

$$e_k = y_k - y_{\rm ref}$$

• Straight Line Reference Path:

$$y_{\mathrm{ref}}(x) = 2.0 \quad \forall x$$

• Performance Metrics:

$$egin{aligned} ext{OS} &= \max_{t \in [0,T]} |y(t) - y_{ ext{ref}}| \ &T_s = \min \left\{ t : |y(au) - y_{ ext{ref}}| \le 0.05 \cdot ext{SSE}, \; orall au \ge t
ight\} \ & ext{SSE} = \lim_{t o \infty} |y(t) - y_{ ext{ref}}| pprox rac{1}{N} \sum_{i=k-N+1}^k |y_i - y_{ ext{ref}}| \end{aligned}$$

Experiments:

- Experiment one, Trail one:
 - \circ Values used for the PID controller \rightarrow Kp = 1.5 , Ki = 0.0, Kd = 0.4
 - \circ ref_path \rightarrow y = 2
 - No noise
 - Video Link for the experiment → ⊕ Siemens_DT Google Drive (E1-T1)
 - o Results:
 - Maximum Overshoot: 200.00 cm
 - Settling Time (5%): 6.01s
 - Steady-State Error: 0.0001 cm
 - o Plot:

• Experiment one, Trail Two:

- o Values used for the PID controller → kp = 0.8, ki = 0.0, kd = 0.2
- o ref_path \rightarrow y = 2
- No noise
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E1-T2)
- Results:
 - Maximum Overshoot: 199.99 cm
 - Settling Time (5%): 6.21s
 - Steady-State Error: 0.0110 cm
- o Plot:

• Experiment one, Trail Three:

- o Values used for the PID controller → kp = 2.5, ki = 0.1, kd = 0.6
- o ref_path \rightarrow y = 2
- No noise
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E1-T3)
- Results:
 - Maximum Overshoot: 199.78 cm
 - Settling Time (5%): 7.01s
 - Steady-State Error: 0.2239 cm
- o Plot:

• Experiment one, Trail Four:

- o Values used for the PID controller → kp = 1.2, ki = 0.0, kd = 0.8
- o ref_path \rightarrow y = 2
- No noise
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E1-T4)
- Results:
 - Maximum Overshoot: 200.00 cm
 - Settling Time (5%): 5.31s
 - Steady-State Error: 0.0001 cm
- o Plot:

• Experiment Two, Trail one:

- o Values used for the PID controller → Kp=-1.2, Ki=0.0, Kd=0.8
- o ref_path → curved → $y = 2\sin(0.15x)$
- Noisy sensor used with standard deviation = 0.01 (very low noise)
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E2-T1)
- Results:
 - Maximum Overshoot: 0.2959 m
 - Settling Time (5%): 26.10 s
 - Steady-State Error: -0.0022 m

• Experiment Two, Trail Two:

- o Values used for the PID controller → Kp=-2.5, Ki=0.1, Kd=0.6
- o ref_path \rightarrow curved \rightarrow y = 1.5sin(0.05x)
- Noisy sensor used with standard deviation = 0.5 (NOISY)
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E2-T2)
- o Results:
 - Maximum Overshoot: 2.0876 m
 - Steady-State Error: 0.4073 m
 - System did not settle within the tolerance.

• Experiment Two, Trail Three:

- o Values used for the PID controller → Kp=-2.5, Ki=0.1, Kd=0.6
- o ref_path → curved → $y = 2\sin(0.15x)$
- Noisy sensor used with standard deviation = 0.01 (very low noise)
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E2-T3)
- o Results:
 - Maximum Overshoot: 0.4308 m
 - System did not settle within the tolerance.
 - Steady-State Error: 0.3547 m

(x, y) = (410., 0.474)

0

• Experiment three, Trail one:

- \circ Values used for the PID controller \rightarrow Kp = 1.5 , Ki = 0.0, Kd = 0.4
- o ref_path \rightarrow y = 2
- Noisy sensor used with standard deviation = 0.02
- Video Link for the experiment → ⊕ Siemens_DT Google Drive
- o Results:
 - Maximum Overshoot: 197.45 cm
 - Settling Time (5%): 5.91s
 - Steady-State Error: 2.5506 cm
- o Plot:

• Experiment three, Trail Two:

- \circ Values used for the PID controller \rightarrow Kp = 1.5, Ki = 0.0, Kd = 0.4
- o ref_path \rightarrow y = 2
- Noisy sensor used with standard deviation = 0.08 (More noise than trial one)
- Video Link for the experiment → ⊕ Siemens_DT Google Drive
- Results:
 - Maximum Overshoot: 191.08 cm
 - Settling Time (5%): 47.11s
 - Steady-State Error: 8.9246 cm
- o Plot:

• Experiment Four, Trail One: (PD Controller)

- o Values used for the PID controller → Kp=-2.5, Ki=0.0, Kd=0.6
- o ref_path \rightarrow y = 1.5sin(0.2x)
- Noisy sensor used with standard deviation = 0.2
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E4-PD)
- o Results:
 - Maximum Overshoot: 0.7304 m
 - System did not settle within the tolerance.
 - Steady-State Error: 0.0174 m
- o Plot:

• Experiment Four, Trail Two: (PID Controller)

- Values used for the PID controller → Kp=-2.5, Ki=0.1, Kd=0.6
- o ref_path \rightarrow y = 1.5sin(0.2x)
- Noisy sensor used with standard deviation = 0.2
- Video Link for the experiment → ⊕ Siemens_DT Google Drive (E4-PID)
- o Results:
 - Maximum Overshoot: 0.8990 m
 - System did not settle within the tolerance.
 - Steady-State Error: 0.3575 m
- o Plot:

