Learner Personas for Domain-Specific Data Science Educational Materials

NYR Conference 2021

Daniel Chen, MPH

Anne Brown, PhD

2021-09-09

Committee Chair: Anne Brown, PhD

- Assistant Professor
- Biochemistry and Data Science
- Molecular Modeling & Drug Design Applied Data Science & Education
 - Bevan Brown Lab + DataBridge

Rest of the Committee

Dave Higdon

Alex Hanlon

Nikki Lewis

Statistics Department Head

Statistics CBHDS iTHRIV BERD

Honors College Computational Research Grant

Hello!

- PhD Candidate: Virginia Tech (Winter
- Data Science education & pedagogy
- o Medical, Biomedical, Health Sciences
- Inten at RStudio, 2019
- o gradethiso Code grader for learnr documents
 - The Carpentries
- o Instructor, 2014
 - Trainer, 2020
- Community Maintainer Lead, 2020
- Workshop Instructor
- R + Python!

Educational Materials

livelessons®

Pandas Data Analysis with Python Fundamentals

video

livelessons®

Pandas Data Cleaning and Modeling with Python

video

ds4biomed.tech

Current Data Science Education

Dedicated Course Titles in 2014 and 2015

Exploratory Analysis	N A	NA	NA	Topics in Modem Statistics: Statistical Graphics	N A	AA	A	Exploratory Data Analysis	Exploratory Data Analysis	Data Visualization I
Reproducible Science	NA	NA	NA	NA	A A	N A	N A	Managing Statistical Research	Reproducible	Data Science Workflows
Data Cleaning	NA	NA	NA	NA	A	AN	AN	NA	Getting and Cleaning Data	Data Wrangling
Data Products	N A	Statistical Practice	NA	NA	A	AN	NA	NA	Developing Data Products	Capstone Project
Programming	Programming Methodology	Statistical	Statistical	Statistical Computing and Intro to Data Science	Statistical	Statistical	Computational Statistics	Statistical	R Programming	Programming for Data Science
Modeling	Regression Models and Analysis of Variance	Applied Linear Models	Applied Statistical Modeling and Inference	Regression and Multi-Level Models	Linear and Generalized Linear Models	Applied Regression and Design	Regression Analysis	Applied Linear Models	Linear Models	Regression I
Inference	Introduction to Statistical Inference	Advanced Methods for Data Analysis	Applied Statistical Modeling and Inference	Multivariate Statistical Inference	Statistical	Statistical Analysis	Math Statistics I	Introduction to Statistical Theory	Statistical Inference	Statistical Inference and Computation I
Program	MS Statistics	MS Statistical Practice	MS Applied Statistics	MA Statistics	AM Statistics	MS Statistics	MS Statistics	MS Applied Statistics	Data Science Specialization	Master of Data Science
Institution	Stanford	СМО	NYU	Columbia	Harvard	Illinois	Georgia Tech	Indiana	Johns Hopkins	UBC

- Data Science education is a commodity
- Content is not an issue
- Domain experts can help learners improve data literacy

Kross, S., Peng, R. D., Caffo, B. S., Gooding, I., and Leek, J. T. (2020). The Democratization of Data Science Education. The American Statistician, 74(1), 1–7. https://doi.org/10.1080/00031305.2019.1668849

Why Domain Specificity?

- Democratization of data science education enables more domain specific learning materials
- You learn better when things are more relevant
- Internal factors for motivation
- Create feedback loops for learning
- Self-directed learners

- Koch, C., and Wilson, G. (2016). Software carpentry: Instructor Training. https://doi.org/10.5281/zenodo.57571
- Kross, S., Peng, R. D., Caffo, B. S., Gooding, I., and Leek, J. T. (2020). The Democratization of Data Science Education. The American Statistician, 74(1), 1-7. https://doi.org/10.1080/00031305.2019.1668849
- Wilson, G. (2019). Teaching tech together: How to make your lessons work and build a teaching community around them. CRC Press.

Identifying Our Learners

What Do Our Learners Know?

Concept Maps

Can also use "task deconstruction"

Dreyfus model of skill acquisition

Novice, Competent, Proficient, Expert, Master

- Dreyfus, S. E., and Dreyfus, H. L. (1980). A five-stage model of the mental activities involved in directed skill acquisition. California Univ Berkeley Operations Research Center.
 - Koch, C., and Wilson, G. (2016). Software carpentry: Instructor Training. https://doi.org/10.5281/zenodo.57577
- Wilson, G. (2019). Teaching tech together: How to make your lessons work and build a teaching community around them. CRC Press.

Identify Learners: Learner Self-Assessment Survey

- VT IRB-20-537
- Surveys: https://github.com/chendaniely/dissertation-irb/tree/master/irb-20-537data_science_workshops
- Currently working on survey validation
- Combination of:
- The Carpentries surveys: https://carpentries.org/assessment/
- "How Learning Works: Seven Research-Based Principles for Smart Teaching" by Susan A. Ambrose, Michael W. Bridges, Michele DiPietro, Marsha C. Lovett, Marie K. Norman 0
- "Teaching Tech Together" by Greg Wilson
- 1. Demographics (6)
- 2. Programs Used in the Past (1)
- 3. Programming Experience (6)
- 4. Data Cleaning and Processing Experience (4)
- 5. Project and Data Management (2)
- 6. Statistics (4)
- 7. Workshop Framing and Motivation (3)
 - . Summary Likert (7)

Cluster Results on 16 Questions

The Personas

Clare Clinician, Samir Student, Patricia Programmer, Alex Academic https://ds4biomed.tech/who-is-this-book-for.html#the-personas

Clare Clinician

Figure 0.3: Drawn by Julia Chen

Background

Clare has spent the last 6 years working in the Cardiothroasic ICU in a large medical hospital system. They read lots of gushing articles about data science, and was excited by the prospect of learning how to do it, but nothing makes sense when trying to learn it on their own. Clare has always been a good student and always excelled at things they tried to learn; they are hard on themselves when struggling to learn a new skill and would rather place blame on the long hours at work than having their peers know they could use assistance.

Relevant prior knowledge or experience

Clare keeps up with medical research, but has little to no experience in doing medical research. They use for chart reviews. Wants to be able to collect and manage data as well as learn about the process behind Excel for non-data related tasks (e.g., making lists), or manually inputting patient data into spreadsheets data analysis to perform their own analysis and study one day

Perception of needs

community of other people in the medical field who are interested in learning how to do data work so they showing exactly how to drive the tools, and that use datasets they can relate to. Clare wishes they had a also need short overviews to orient them and introductory tutorials that include videos or animated GIFs Clare wants self-paced tutorials with practice exercises, plus forums where they can ask for help. They can learn and ask questions.

Special considerations

Clare is a single parent who juggle their time at work and at home who are strapped for time to learn a new skill

Plan the Learning Materials

Planning the Learning Materials

Learning objectives:

- 1. Name the features of a tidy/clean dataset
- 2. Transform data for analysis
- 3. Identify when spreadsheets are useful
- 4. Assess when a task should not be done in a spreadsheet software
- 5. Break down data processing into smaller individual (and more manageable) steps
- 6. Construct a plot and table for exploratory data analysis
- 7. Build a data processing pipeline that can be used in multiple programs
- 8. Calculate, interpret, and communicate an appropriate statistical analysis of the data

Tidy Data

Data is messy in different ways

The standard structure of tidy data means that "tidy datasets are all alike..."

Allison Horst's Illustrations: https://github.com/allisonhorst/stats-illustrations

country	year	year $m014 m1524$	m1524	m2534	m3544	m4554	m5564	m65	mn	f014
AD	2000	0	0	1	0	0	0	0		
AE	2000	2	4	4	9	2	12	10		3
AF	2000		228	183	149	129	94	80	Ĵ	93
AG	2000		0	0	0	0	0	Т		_
AL	2000	2	19	21	14	24	19	16		3
AM	2000		152	130	131	63	26	21		1
AN	2000		0	Н	2	0	0	0		0
AO	2000		666	1003	912	482	312	194		247
AR	2000	26	278	594	402	419	368	330		121
AS	2000					П	Н	Î		Î

and missing values (—). This is due to the data collection process and the distinction is important for for females, f1524, f2534 and so on. These are not shown to conserve space. Note the mixture of 0s Table 9: Original TB dataset. Corresponding to each 'm' column for males, there is also an 'f' column this dataset.

country	year	column	cases	country	year	sex	age	cases
AD	2000	m014	0	AD	2000	m	0-14	0
AD	2000	m1524	0	AD	2000	H	15-24	0
AD	2000	m2534	1	AD	2000	ш	25-34	H
AD	2000	m3544	0	AD	2000	п	35-44	0
AD	2000	m4554	0	AD	2000	m	45-54	0
AD	2000	m5564	0	AD	2000	m	55-64	0
AD	2000	m65	0	AD	2000	m	+99	0
AE	2000	m014	2	AE	2000	m	0-14	2
AE	2000	m1524	4	AE	2000	ш	15-24	4
AE	2000	m2534	4	AE	2000	m	25-34	4
AE	2000	m3544	9	AE	2000	m	35-44	9
AE	2000	m4554	2	AE	2000	ш	45-54	5
AE	2000	m5564	12	AE	2000	m	55-64	12
AE	2000	m65	10	AE	2000	m	+99	10
AE	2000	f014	3	AE	2000	J	0-14	3
	(a) Molte	lten data	ii		(b)	(b) Tidy data	ata	

Table 10: Tidying the TB dataset requires first melting, and then splitting the column into two variables: sex and age.

A different view of data

wide

Example Data Science Problem

after Allogenetic Hematopoietic Stem Cell Transplant (HSCT) in an Excel sheet (first 10 rows shown post_Q5.1: Cytomegalovirus (CMV) is a common virus that normally does not cause any problems in the body. However, it can be of concern for those who are pregnant or immunocompromised. Suppose you have the following Cytomegalovirus dataset of CMV reactivation among patients below):

<u>а</u>	υ	۵	ш	
age	ID age prior.radiation aKIRs	aKIRs	donor_negative	donor_positive
61	0	-	1 recipient positive	
62	1	5	5 recipient_negative	
63	0	3		recipient_positive
33	1	2	2 recipient_positive	
54	0	9		recipient_positive
55	0	2		recipient_positive
67	0	-		recipient_positive
51	0	2		recipient positive
4	1	2		recipient_positive
59	0	4	4 recipient_negative	

It is believed that the donor activating KIR genotype is a contributing factor for CMV reactivation after myeloablastive allogenetic HSCT. What variables are associated with CMV reactivation?

Load the excel sheet

```
dat <- read_excel("./data/cmv.xlsx")</pre>
                                                                         # use a library function
                                                                                                                 # variable assignment
# function arguments
                                                                                               # know about paths
                library(tidyverse)
Library(readxl)
# load library
```

G

Filter the data for individuals over the age of 65

```
# pipes, data filtering, boolean conditions
dat %>%
                                               filter(age > 65)
```


Save filtered dataset as an Excel file to send to a colleague

```
# saving intermediates for data pipelines
                                                                                                                                                           write_xlsx("./data/cmv_65.xlsx")
                                                                                    # using functions/methods
                                             filter(age > 65)
                        subset <- dat %>%
                                                                                                             library(writexl)
                                                                                                                                    subset %>%
```


• Tidy the dataset so we have a donor CMV status and a patient CMV status in separate columns

Dirty

W.	donor_positive			recipient_positive		recipient_positive	recipient_positive	recipient_positive	recipient_positive	recipient_positive	
ш	donor_negative	1 recipient positive	5 recipient_negative	E.	2 recipient_positive	re	re	re	re	re	4 recipient_negative
۵	aKIRs	-	5	ന	2	9	2	1	2	2	4
υ	ID age prior.radiation aKIRs	0	1	0	1	0	0	0	0	1	0
8	age	61	62	63	33	54	25	67	51	4	59
⋖	Ω	Н	7	m	4	5	9	7	00	6	11 10
	-	N	m	4	S	9	7	00	6	10	-

Tid⁄

	۷	8	U	۵	ш	ш.
Sec.	0	age	prior.radiation	aKIRs	ID age prior.radiation aKIRs donor_status	recipient_status
	1	61	0	7	donor_negative	1 donor_negative_recipient_positive
	2	62	П	5	donor_negative	5 donor_negative recipient_negative
	က	63	0	cc	donor_positive	3 donor_positive recipient_positive
	4	33	-	2	donor_negative	2 donor_negative recipient_positive
	5	54	0	9	donor_positive	6 donor_positive recipient_positive
200	9	55	0	2	donor_positive	2 donor_positive recipient_positive
	7	67	0		donor_positive	1 donor_positive recipient_positive
~	00	51	0	2	donor_positive	2 donor_positive recipient_positive
0	6	44	1	2	donor_positive	2 donor_positive recipient_positive
	10	59	0	4	donor negative	4 donor negative recipient negative

```
pivot_longer(starts_with("donor"), names_to = "donor_status", values_to = "recipien
drop_na()
                              # tidy data and recognize a melt/pivot_longer operation
# lists/vectors/selecting
                                                                    # keyword arguments
                                                                                                        tidy_dat <- dat %>%
```

Q5

Plot a histogram of the age distribution of our data

```
# plotting syntax
# layering
ggplot(tidy_dat, aes(x = age)) +
    geom_histogram()
library(ggplot2)
```


• Fit a model (e.g., logistic regression) to see which variables are associated with patient CMV reactivation.

```
model <- glm(cmv ~ age + prior_radiation + aKIRs + donor_status,</pre>
                                                                                                                                                                                                                                                                                                                 # Logistic regression is interpreted via odds ratios
                                                         data = tidy_dat, family = "binomial")
                                                                                                                                                                                                                                                                                                                                                                           mutate(or = exp(estimate))
                                                                                                                                                                                                  # dataframe of coefficients
                                                                                                              # look at model results
# formula syntax
                                                                                                                                                                                                                                                                                                                                           tidy(model) %>%
                                                                                                                                              summary(model)
                                                                                                                                                                                                                                library(broom)
                                                                                                                                                                                                                                                            tidy(model)
```

Data Science is Different From Computer Science

Canterbury QuestionBank

what the binary search algorithm expects. How many of the items in this array will be found if they Suppose you try to perform a binary search on a 5-element array sorted in the reverse order of are searched for?

- B. O
- D. 2

Explanation: C: Only the middle element will be found. The remaining elements will not be contained in the subranges that we narrow our search to. Software engineering, with some ventures into software architecture and computing education: https://neverworkintheory.org/

Adapt From Computer Science Education

"DataFrame" objects are not standard computer science data structures

Existing Data Science Book TOC: R + JS + Stats

R for Data Science

- 1. Welcome Introduction
- 2. Explore Introduction
- 3. Data visualisation
- 5. Data transformation 4. Workflow: basics
- 6. Workflow: scripts
- 7. Exploratory Data Analysis
 - 8. Workflow: projects
- 9. Wrangle Introduction
 - 10. Tibbles
- 11. Data import
- 12. Tidy data

Ch 21. iteration

Data Science for JavaScript

- 1. Introduction
- 2. Basic Features
- 3. Callbacks
- 4. Objects and Classes
- 5. HTML and CSS
- 6. Manipulating Pages
- 7. Dynamic Pages
- 8. Visualizing Data
- 9. Promises
- 10. Interactive Sites
- 1. Managing Data
- 12. Creating a Server
 - 13. Testing
- 14. Using Data-Forge
- 15. Capstone Project

OpenIntro Statistics

- 1. Introduction to Data
- 2. Summarizing data
- 3. Probability
- 4. Distributions of random variables
- 5. Foundations of inference
- 6. Inference for categorical data
- 7. Inference for numerical data
- 8. Introduction to linear regression
- 9. Multiple and logistic regression

Existing Data Science Book TOC: Python

Python for Data Analysis

- 1. Preliminaries
- 2. Introductory Examples
- 3. IPython: An Interactive Computing and Development Environment
- 4. NumPy Basics: Arrays and Vectorized Computation
- 5. Getting Started with pandas
- 6. Data Loading, Storage, and File Formats
- 7. Data Wrangling: Clean, Transform,
- Merge, Reshape
- 8. Plotting and Visualization
- 9. Data Aggregation and Group Operations
- 10. Time Series
- 11. Financial and Economic Data Applications
- 12. Advanced NumPy

Appendix: Python Language Essentials

Learning the Pandas Library

- 1. Introduction
- 2. Installation
- 3. Data Structures
- 4. Series
- 5. Series CRUD
- 6. Series Indexing
- 7. Series Methods
- 8. Series Plotting

9. Another Series Example

- 10. DataFrames
- 11. Data Frame Example
- 12. Data Frame Methods
- 13. Data Frame Statistics
- 14. Grouping, Pivoting, and Reshaping
- 15. Dealing With Missing Data
 - 16. Joining Data Frames
- 17. Avalanche Analysis and Plotting
- 8. Summary

Existing Data Science Book TOC: My Own Work

Pandas for Everyone

ds4biomed

Conference Workshop

1. Introduction

2. Tidy Data

3. Functions

- 1. Pandas DataFrame Basics
- 2. Pandas Data Structures
- 3. Introduction to Plotting
- 4. Data Assembly
 - 5. Missing Data 6. Tidy Data
- 7. Data Types
- 8. Strings and Text Data
- 9. Apply
- Groupby Operations: Split-
- 11. The datetime Data Type Apply-Combine
- 12. Linear Models
- 13. Generalized Linear Models
- 14. Model Diagnostics
- 15. Regularization
- 16. Clustering
- 17. Life Outside of Pandas
- 18. Toward a Self-Directed

- 1. Introduction
 - 2. Spreadsheets
 - 3. R + RStudio
- 4. Load Data

4. Plotting/Modeling

- 5. Descriptive Calculations
 - 6. Clean Data (Tidy)
- 7. Visualization (Intro)
 - 8. Analysis (Intro)
- 9. Additional Resources

35

Create Your Own Learner Personas

If you do end up teaching a domain specific group (e.g., biomedical sciences)

- 1. Identify who your learners are
- 2. Figure out what they need and want to know
- 3. Plan a guided learning tract
- Use the surveys I've compiled.

https://github.com/chendaniely/dissertation-irb/tree/master/irb-20-537-data_science_workshops

What's Next?

- Survey Validation (Factor Analysis)
- Learner pre/post workshop "confidence"
- Long-term survey for confidence + retention (summative assessment)
- Different types of formative assessment questions

Additional Resources

- Data Organization in Spreadsheets, Karl W. Broman & Kara H. Woo
- https://www.tandfonline.com/doi/full/10.1080/00031305.2017.1375989
- Examples of other learner personas
- Rstudio Learner Personas: https://rstudio-education.github.io/learner-personas/
- The Carpentries Learner Profiles: https://software-carpentry.org/audience, 0
- Creating your own personas
- o Zagallo, Patricia, Jill McCourt, Robert Idsardi, Michelle K Smith, Mark Urban-Lurain, Tessa C Tool for Learner-Centered Professional Development." CBE—Life Sciences Education 18 Andrews, Kevin Haudek, et al. 2019. "Through the Eyes of Faculty: Using Personas as a (4): ar62.
- Bloom's Taxonomy
- Bloom's Taxonomy Verb Chart: https://tips.uark.edu/blooms-taxonomy-verb-chart/
- Teach like a Champion
- Version 2.0's 62 Techniques: https://teachlikeachampion.com/wp-content/uploads/Teach-Like-a-Champion-2.0-Placemat-with-the-Nanango-Nine.pdf

Thanks!

Slides: https://speakerdeck.com/chendaniely/learner-personas-for-domain-specific-data-science-educational-materials-f74fb027-fafb-4da6-ac24-f303c38ad876

Repo: https://github.com/chendaniely/

Prelims: https://chendaniely.github.io/dissertation-prelim