Therefore

$$\lim_{s \to \infty} \psi(C(s)'p_r) = \lim_{s \to \infty} (C(s)\psi)(p_r) =$$

$$= \psi_O(p_r) = \psi_O(1) = \lim_{s \to \infty} (C(s)\psi)(1) = \psi(1) ,$$

which proves (b).

Suppose that (b) is satisfied. Since C(s)'p_r ≤ 1 for all $s \in \mathbb{R}_+$ we obtain (c). (Use that for $(x_\alpha) \in M_+$ we have $\lim_\alpha x_\alpha = 0$ in the weak*-topology if and only if $\lim_\alpha x_\alpha = 0$ in the $s^*(M,M_*)$ -topology.)

Suppose that (c) holds. Since each C(s)' is an identity preserving Schwarz map we obtain for all $x \in M$:

$$(C(s)'((1-p_r)x))(C(s)'((1-p_r)x)*) \le$$

$$\le C(s)'((1-p_r)xx*(1-p_r)) \le$$

$$\le ||x||^2 C(s)'(1-p_r),$$

hence

$$s*(M,M_*)-lim_{s\to\infty} C(s)'((1-p_r)x) = 0$$
.

In particular we obtain for all $x \in Fix(T')$ that

$$x = \sigma(M, M_{\star}) - \lim_{s \to \infty} C(s) 'x = \sigma(M, M_{\star}) - \lim_{s \to \infty} C(s) '(p_{r}x)$$
.

Especially for 0 \neq x \in Fix(T) we obtain $p_r x p_r \neq 0$. Since the W*-algebra $p_r M p_r$ is the dual of $p_r M_* p_r$ and since $T^{(r)}$ is strongly ergodic, it follows that the fixed space of T separates the points of Fix(T'). Thus T is strongly ergodic ([Krengel (1985), Chap. 2, Thm. 1.4]).

It follows from the result above that the semigroup in [Evans (1977)] cannot be strongly ergodic on $B(H)_{\star}$ since the associated recurrent projection is zero. But for irreducible semigroups we have the following result.