CL 249: Computational Methods Lab Date: 01/10/24 Assignment 8

The Packed Bed Reactor Problem,

Consider a hypothetical situation in a packed bed flow reactor. Gas A flows through the catalyst bed, and on the surface, the following reaction occurs,

$$A \rightarrow B$$

With rate kinetics given as,

$$r' = -k.C_{\Delta}$$

You are tasked to find the equilibrium conversion in this problem.

(Every information required to find the Conversion is provided in steps)

1. The initial temperature T_0 is 298 K. For this particular reactor, the change in temperature is given by the following equation,

$$\frac{dT}{dt} = T^3 - 581T^2 - 8870T - 29800$$

The equilibrium is reached when the temperature reaches a **steady state** value. **Find the final equilibrium temperature** (T).

2. The initial Pressure P_o is 1 atm. The pressure drop in the packed bed reactor follows the **Ergun equation**, which is a function of the density of the gas. For simplicity, the equation is modified to the following equation: $\Delta P = (P_o - P)$

$$\frac{\Delta P}{\Delta L} = A. \rho + B\rho^2 + C\rho^{-2} + D\rho^{-1}$$

Where ρ is density equal to 0.8 kg/m³

And x = [A, B, C, and D] are constants that act as solutions of the following matrix.

Find the final pressure(P) at the reactor outlet. You can consider delta I to be 1 and units of pressure to be in atm.

3. There is one more factor, epsilon, ε , (unitless), which is related to the porosity of the bed. Now, you are given an equation that relates the epsilon with the length.

$$\varepsilon = \int_{0}^{1} a. dl$$

For given various values for I and corresponding 'a' values. Calculate the value of ε

I (m)	0.1	0.2	0.3	0.6	0.9	1
а	4	1	4	0.5	1	3

4. Arrhenius's equation describes the Rate constant, but instead, you are given the rate constants at some of the temperatures:

T (K)	400	450	500	550	600	650
K (1/s)	0.1	3.2	10.4	20.8	25.5	32.3

Find the Rate constant (k) at equilibrium temperature (T).

5. Now, we come to the most important step:

The design equation of PBR is given as

$$\frac{dF_A}{dW} = r'$$

Where W is the weight of the catalyst bed in kg Which, on further simplification, takes the form

$$F_{Ao} \frac{dx}{dW} = \left(\frac{W}{(1+W^2)^2}\right) \left[kC_{Ao} \varepsilon (1-x) \left(\frac{P}{P_o}\right) \left(\frac{T_o}{T}\right)\right]$$

Solve the differential equation and find the following:

(take the initial condition as x(0) = 0 and a step size 0.2)

- a. Plot the solution (Conversion vs Weight of catalyst)
- b. Find the equilibrium conversion
- c. The corresponding maximum efficient catalyst loading in the reactor and
- d. Write the pseudo-code for the 5th part of your submission.
- 6. Bonus: prove that the equilibrium conversion is reached.

— END of	Problem	Statement —

Write your answers here.

Conversion = ____

Weight of the Catalyst bed (kg) =