设计报告

课程名称: EDA 原理及应用

设计内容: 测量与门特性

 学
 院:
 信息科学与技术学院

 专业班级:
 信工 1702 班

 姓
 名:
 黄玥

 学
 号:
 2017040481

2019 年 11 月 8 日

北京化工大学

一. 设计要求

使用 Multisim 的 SPICE 仿真工具提供的瞬态分析和直流扫描分析功能,并正确选择仿真模型,完成对给定器件传输特性的分析,其中包括逻辑输入输出电平分析、传输延迟分析等(只要数据手册上给出的指标都尽量进行仿真)。上传附件中给出了 TI 给出的数据手册。给出与门传输特性的详细分析过程,并与 TI 手册给出的指标进行比较。

二. 设计过程

SN7408 芯片

逻辑输入输出电平分析:

首先画出电路图如下

其中,给 V1、V2 设置如图中 AB 所示的波形

Time Voltage	Browse
Edit file Enter data points in table Time Voltage	
Enter data points in table Time Voltage	^
Enter data points in table Time Voltage	□
Time Voltage	^
	^
0 0	
0.5ms 0	
0.50001ms 5v	
1ms 5v	
1.00001ms 0v	
1.0001113	
1.5ms 0v	
1.5ms 0v 1.50001ms 5v	V

首先,为了得到更加准确的电压值,在进行瞬态分析和直流扫描前, 先进行如下设置:

这样使用的不再是理想值, 而是较为精确和真实。

对ABY进行瞬态分析,得到结果如下图

由于 SN7408 是一个与门传输器件,可以画出 A B 和 Y 的逻辑关系表如下:

А	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

由于输入 A 为 00110,输入 B 为 01010,因此输出 Y 应为 00010。与瞬态分析图比较可知,SN7408器件确实起到了与门的功能。

传输延迟测量 (使用瞬态分析测量)

(为了与器件手册中的延迟所用参数相同,此处将电阻 R1 改为 $400\,\Omega$)

在数字域,将输出电平跳变处放大数倍后,可看出输出电平的跳变相 比较于输入电平的跳变,有了一定的传输延迟。用两个游标分别放在 输入电平跳变处和输出电平跳变处,可以测出传输延迟时间如图,图中为从0到1的跳变

即从 0 到 1 的传输延迟为 28.019ns。

下图则为从1到0的跳变

Δx: 20.689n

即从1到0的传输延迟为20.089ns

与器件手册中进行对比:

单位/ns	t _{PLH}	t _{pHL}
实际值	28.019	20.089
理论值	27	19

在模拟域,可以看到实际的输出电压(即蓝色线条)值并不是5V。

测量逻辑电平 (用直流扫描分析):

首先理解概念:

输入高电平:保证逻辑门的输入为高电平时所允许的最小输入电平, 当输入高于 V_H时,则认为输入电平为高电平。

输入低电平:保证逻辑门的输入为低电平时所允许的最大输入电平, 当输入低于 V₁时,则认为输入电平为低电平。

输出高电平:保证逻辑门的输入为高电平时所允许的最小输出电平,

当输出高于 VoH时,则认为输出电平为高电平。

输出高电平:保证逻辑门的输出为高电平时所允许的最大输出电平, 当输出低于 Vol 时,则认为输出电平为低电平。

阈值电平: 电路刚刚勉强能翻转时的电平。介于输入高电平和输入低电平之间,若要保证稳定的输出,必须要求输入电平>V_H或者输入电平<V_L。

下面开始测量(测量均在 Vcc=5V,R1=400 Ω 时进行)

使 V1 恒为高电平 (5V), 在直流扫描中设置 V2 的值从 0V 到 5V 以 0.01V 的精度变化 (保证测出数值比较精确), 如图:

设置 V1 (只要保证 0 时刻的输入值为高电平即可)

abel	Oltage Display Value	Fault Pins	Variant	User fields		×
О	Use data directly	from file				
	File name:				Browse	
	Edit file					
	Enter data points	in table				
	Litter data points	III tuble				-
						₽
	Time	Voltag	je			^
	0	5v				
	1ms	5v				
	1.0001ms	5v				
						~
						~
R	Repeat data during	simulation				~
	tepeat data during	simulation				~
Replac		simulation		ОК	Cancel	Help

设置 V2

Source 1			
Source:	V2	~	Change filter
Start value:		0	V
Stop value:		5	V
Increment:		0.01	V

在直流扫描分析中显示 V (X),即可得如下波形

将游标放在发生跳变的两处,读取游标示数得:

横向来看,第一个跳变发生在大约 0.794V 处,第二个跳变发生

在大约 1.599 处。

说明在与门的其中一个输入为逻辑高电平时,另一个输入由0到5V逐渐增大的过程中达到0.794V时,输出跳变,可以看到达到了2.8V左右,这就是过渡区域(由于设置的门限电压为2.5V,过渡区域实际上也是逻辑高电平),达到1.599V时,输出再次从过渡区跳变到输出高电平。

由此推断,0.794V 即为 V_{L} (输入低电平),1.599V 即为 V_{H} (输入高电平)。而 0.794V 和 1.599V 中间即为上面概念中提到的阈值电平,即不稳定的过渡状态,处于 V_{H} 和 V_{L} 之间,要使输出稳定,必须要求输入电平> V_{H} 或者输入电平< V_{L} 。

纵向来看,将游标放在低电平和高电平处,测出高低电平的值分别为 3.6428V 和 0.169V。即输出小于 0.169V 时为逻辑低电平,输出大于 3.6428V 时为逻辑高电平。由此推断, 0.169V 即为 Vol(输出低电平), 3.6428V 即为 Vol(输出高电平)。

与器件手册中的进行比较,

单位/V	输入低电平	输入高电平	输出低电平	输出高电平
	VIL	VIH	Vol	Vон
实际值	0.794	1.599	0.169V	3.6428
理论值	0.8	2	0.2	3.4