To find following the machine learning regression method using in r2 values

1.MULTIPLE LINEAR REGRESSION(R² value)=0.93586

2.SUPPORT VECTOR MACHINE:

S.NO	HYPER PARAMETER	LINEAR(R_VALUE)	RBF(NON LINEAR VALUE) (r_value)	POLY (r_value)	SIGMOID (r_value)
1	C10	-0.03964	-0.05680	-0.05366	-0.05471
2	C100	0.106468	-0.05072	-0.01980	-0.03045
3	C1000	0.780283	0.006768	0.266163	0.185068
4	C10000	0.923998	0.371895	0.812962	0.853531
5	C100000	0.930124	0.708560	0.400210	-0.843374
6	C1000000	<mark>0.930128</mark>	0.709936	-0.34944	-245.133

The **SVM Regression** use R² value(linear and hyperparameter(c=1000000))=0.930128

3.DECISION TREE:

SL.NO	CRITERION	SPLITTER	MAX FEATURES	R_VALUE
1	Squared error	Best	Auto	0.93034
2	Squared error	Best	Sqrt	0.78935
3	Squared error	Best	Log2	0.87816
4	Squared error	Random	Auto	0.90772
5	Squared error	Random	sqrt	0.76125
6	Squared error	Random	Log2	-0.60589
7	friedman_mse	Best	Auto	0.915110
8	friedman_mse	Best	Sqrt	0.690565
9	friedman_mse	Best	Log2	0.835716
10	friedman_mse	Random	Auto	0.932376
11	friedman_mse	Random	Sqrt	0.150596
12	friedman_mse	Random	Log2	-1.07950
13	absolute_error	Best	Auto	0.930570
14	absolute_error	Best	Sqrt	0.729335
15	absolute_error	Best	Log2	0.575456
16	absolute_error	Random	Auto	0.900319

17	absolute_error	Random	Sqrt	0.297896
18	absolute_error	Random	Log2	0.512423
19	Poisson	Best	Auto	0.916220
20	Poisson	Best	Sqrt	0.590516
21	Poisson	Best	Log2	0.406059
<mark>22</mark>	Poisson	Random	<u>Auto</u>	<u>0.956182</u>
23	Poisson	Random	Sqrt	0.750900
24	poisson	Random	Log2	0.371903

The **Decision Tree** Regression use R²Value (Poisson,Random,Auto)=0.956182