Important Theorems, Definitions, and Concepts

1 Theorems, Definitions, and Important Concepts

Theorem 1.1 (Fundamental Theorem of Calculus). If f is continuous on [a, b], then f has an antiderivative F on [a, b] and

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Definition 1.1. A function $f: \mathbb{R} \to \mathbb{R}$ is called continuous at a point $a \in \mathbb{R}$ if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|x-a| < \delta$ implies $|f(x)-f(a)| < \epsilon$.

Lemma 1.1. Let f be a differentiable function. If f' is continuous on [a, b], then f is uniformly continuous on [a, b].

Proposition 1.1. If f and g are continuous on [a,b], then the product fg is continuous on [a,b].

Corollary 1.1. If f is continuous on [a, b], then f is bounded on [a, b].

Remark 1.1. Continuity is a local property; a function can be continuous at each point of an interval without being uniformly continuous on the interval.

Example 1.1. Consider the function $f(x) = x^2$. This function is continuous everywhere on \mathbb{R} .