# Deadman Technologies, LLC.

**ADDENDUM TO TEST REPORT 92946-5** 

Transceiver Module Model: AV01RF

**Tested To The Following Standards:** 

FCC Part 15 Subpart C Sections 15.207, 15.249 and RSS 210 Issue 8

Report No.: 92946-5A

Date of issue: August 16, 2013



This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.



## **TABLE OF CONTENTS**

| Administrative Information                     | 3  |
|------------------------------------------------|----|
| Test Report Information                        | 3  |
| Revision History                               | 3  |
| Report Authorization                           | 3  |
| Test Facility Information                      | 4  |
| Software Versions                              | 4  |
| Site Registration & Accreditation Information  | 4  |
| Summary of Results                             | 5  |
| Conditions During Testing                      | 5  |
| Equipment Under Test                           | 6  |
| Peripheral Devices                             | 6  |
| FCC Part 15 Subpart C                          | 7  |
| 15.207 AC Conducted Emissions                  | 7  |
| 15.249(a) RF Power Output                      | 15 |
| -20dBc & 99 % Bandwidth                        | 18 |
| 15.249(d) Field Strength of Spurious Emissions | 21 |
| Supplemental Information                       | 30 |
| Measurement Uncertainty                        | 30 |
| Emissions Test Details                         | 30 |



## **ADMINISTRATIVE INFORMATION**

## **Test Report Information**

REPORT PREPARED FOR: REPORT PREPARED BY:

Deadman Technologies, LLC.

17810 Thunder River Dr.

Reno, NV 89508

CKC Laboratories, Inc.

5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Gino DiSimone Project Number: 92946

Customer Reference Number: 11012012

**DATE OF EQUIPMENT RECEIPT:**November 19, 2012 **DATE(S) OF TESTING:**November 19-20, 2012

### **Revision History**

**Original:** Testing of the Transceiver Module, AV01RF to FCC Part 15 Subpart C Sections 15.207, 15.249 and RSS 210 Issue 8.

**Addendum A:** To correct test conditions in all test sections.

## **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve 7 B

Page 3 of 31 Report No.: 92946-5A



# **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

### **Software Versions**

| CKC Laboratories Proprietary Software | Version |
|---------------------------------------|---------|
| EMITest Emissions                     | 5.00.14 |
| Immunity                              | 5.00.07 |

# **Site Registration & Accreditation Information**

| Location   | CB#    | TAIWAN         | IWAN CANADA FCC |       | JAPAN  |
|------------|--------|----------------|-----------------|-------|--------|
| Mariposa A | US0103 | SL2-IN-E-1147R | 3082A-2         | 90477 | A-0136 |

Page 4 of 31 Report No.: 92946-5A



## **SUMMARY OF RESULTS**

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.249 and RSS 210 Issue 8

| Description                             | Test Procedure/Method                                                |      |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------|------|--|--|--|--|
| Conducted Emissions                     | FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)             | Pass |  |  |  |  |
| RF Power Output                         | FCC Part 15 Subpart C Section 15.249(a) / ANSI C63.4 (2003)          | Pass |  |  |  |  |
| -20dBc & 99 % Occupied<br>Bandwidth     | FCC Part 15 Subpart C Section 15.249 / RSS 210 Issue 8               | Pass |  |  |  |  |
| Field Strength of Spurious<br>Emissions | FCC Part 15 Subpart C Section 15.249(d) / 15.209 / ANSI C63.4 (2003) | Pass |  |  |  |  |
|                                         |                                                                      |      |  |  |  |  |

# **Conditions During Testing**

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

| <b>Summary of Conditions</b> |  |
|------------------------------|--|
| None                         |  |
|                              |  |

Page 5 of 31 Report No.: 92946-5A



# **EQUIPMENT UNDER TEST (EUT)**

### **EQUIPMENT UNDER TEST**

### **Transceiver Module**

Manuf: Deadman Technologies, LLC.

Model: AV01RF Serial: NA

### **PERIPHERAL DEVICES**

The EUT was tested with the following peripheral device(s):

120 Volt Adapter Handheld

Manuf: Motorola Manuf: Deadman Technologies, LLC.

Model: NTN9393A Model: AV01H Serial: None Serial: None

Page 6 of 31 Report No.: 92946-5A



# **FCC PART 15 SUBPART C**

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

### **15.207 AC Conducted Emissions**

### **Test Data Sheets**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: **Deadman Technologies, LLC.**Specification: **15.207 AC Mains - Average** 

Work Order #: 92946 Date: 11/29/2012
Test Type: Conducted Emissions Time: 11:30:09 AM

Equipment: Transceiver Module Sequence#: 13

Manufacturer: Deadman Technologies, LLC. Tested By: Chuck Kendall Model: AV01RF 120V 60Hz

S/N: NA

### Test Equipment:

| ID | Asset #  | Description         | Model          | Calibration Date | Cal Due Date |
|----|----------|---------------------|----------------|------------------|--------------|
|    | AN00069  | Quasi Peak Adapter  | 85650A         | 5/4/2011         | 5/4/2013     |
|    | AN01183  | Spectrum Analyzer   | 85662A         | 5/4/2011         | 5/4/2013     |
|    |          | Display             |                |                  |              |
|    | AN01184  | Spectrum Analyzer   | 8568B          | 5/4/2011         | 5/4/2013     |
| T1 | ANP00082 | Attenuator          | PE7002-10      | 6/7/2011         | 6/7/2013     |
| T2 | AN00374  | 50uH LISN-Black     | 8028-TS-50-BNC | 10/31/2011       | 10/31/2013   |
|    |          | Lead Amplitude (dB) |                |                  |              |
|    | AN00374  | 50uH LISN-White     | 8028-TS-50-BNC | 10/31/2011       | 10/31/2013   |
|    |          | Lead Amplitude (dB) |                |                  |              |
| Т3 | AN02608  | High Pass Filter    | HE9615-150K-   | 3/15/2012        | 3/15/2014    |
|    |          |                     | 50-720B        |                  |              |
| T4 | ANMACOND | Cable               | _              | 8/17/2012        | 8/17/2014    |

### Equipment Under Test (\* = EUT):

| Function            | Manufacturer               | Model # | S/N |
|---------------------|----------------------------|---------|-----|
| Transceiver Module* | Deadman Technologies, LLC. | AV01RF  | NA  |

### Support Devices:

| Function         | Manufacturer               | Model #  | S/N  |
|------------------|----------------------------|----------|------|
| 120 Volt Adapter | Motorola                   | NTN9393A | None |
| Handheld         | Deadman Technologies, LLC. | AV01H    | None |

Page 7 of 31 Report No.: 92946-5A



### Test Conditions / Notes:

EUT is a limited transceiver module placed in a plastic open frame in transmitter mode transmitting on two frequencies: 2405 & 2425 MHz.

For conducted emissions, the 2425 MHz and the 2405 MHz modules were tested and the results were very similar and well below the average limits; so only the 2425 MHz module results are displayed here.

Frequencies of Interest: .150 - 30 MHz

RBW = 9 kHz; VBW = 30 kHz

Position 3 in the horizontal polarity is the worst case. This is the position for the rest of the testing. Module is in the vertical position with its smaller edge with battery on the Styrofoam and the receive antennas in the horizontal polarity.

The EUT is a transceiver module that is powered by 3.3 VDC. The module would normally be supplied with 3.7 Volts and with the buck/boost IC chip is converts this to a constant 3.3 VDC.

This unit has a 120V to 4.2 VDC adapter to power it during testing-by pass added to make it work during charging mode. Conducted emissions were performed on this unit.

**Environmental Conditions:** 

Temperature = 20.1 °C Relative Humidity = 35%

Atmospheric Pressure = 97.6 kPa

Ext Attn: 0 dB

| Measur | ement Data: | Re   | eading lis | ted by ma | argin. |      |       | Test Lead | d: Black |        |       |
|--------|-------------|------|------------|-----------|--------|------|-------|-----------|----------|--------|-------|
| #      | Freq        | Rdng | T1         | T2        | T3     | T4   | Dist  | Corr      | Spec     | Margin | Polar |
|        | MHz         | dΒμV | dB         | dB        | dB     | dB   | Table | dΒμV      | dΒμV     | dB     | Ant   |
| 1      | 150.000k    | 30.4 | +10.0      | +4.9      | +8.5   | +0.1 | +0.0  | 53.9      | 56.0     | -2.1   | Black |
| 2      | 824.114k    | 25.7 | +10.0      | +4.1      | +0.2   | +0.3 | +0.0  | 40.3      | 46.0     | -5.7   | Black |
| 3      | 700.490k    | 25.2 | +10.0      | +4.2      | +0.2   | +0.3 | +0.0  | 39.9      | 46.0     | -6.1   | Black |
| 4      | 511.418k    | 25.0 | +10.0      | +4.3      | +0.2   | +0.2 | +0.0  | 39.7      | 46.0     | -6.3   | Black |
| 5      | 573.230k    | 24.9 | +10.0      | +4.3      | +0.2   | +0.2 | +0.0  | 39.6      | 46.0     | -6.4   | Black |
| 6      | 627.043k    | 25.0 | +10.0      | +4.2      | +0.2   | +0.2 | +0.0  | 39.6      | 46.0     | -6.4   | Black |
| 7      | 466.332k    | 25.3 | +10.0      | +4.4      | +0.2   | +0.2 | +0.0  | 40.1      | 46.6     | -6.5   | Black |
| 8      | 544.142k    | 24.8 | +10.0      | +4.3      | +0.2   | +0.2 | +0.0  | 39.5      | 46.0     | -6.5   | Black |
| 9      | 581.957k    | 24.6 | +10.0      | +4.3      | +0.2   | +0.2 | +0.0  | 39.3      | 46.0     | -6.7   | Black |
| 10     | 966.313k    | 24.7 | +10.0      | +4.0      | +0.2   | +0.3 | +0.0  | 39.2      | 46.0     | -6.8   | Black |
| 11     | 430.699k    | 25.4 | +10.0      | +4.4      | +0.1   | +0.2 | +0.0  | 40.1      | 47.2     | -7.1   | Black |
| 12     | 453.970k    | 24.9 | +10.0      | +4.4      | +0.2   | +0.2 | +0.0  | 39.7      | 46.8     | -7.1   | Black |
| 13     | 840.840k    | 24.2 | +10.0      | +4.1      | +0.2   | +0.3 | +0.0  | 38.8      | 46.0     | -7.2   | Black |

Page 8 of 31 Report No.: 92946-5A



| 14 | 1.098M   | 24.3 | +10.0 | +4.0 | +0.2 | +0.3 | +0.0 | 38.8 | 46.0 | -7.2  | Black |
|----|----------|------|-------|------|------|------|------|------|------|-------|-------|
| 15 | 1.128M   | 24.3 | +10.0 | +4.0 | +0.2 | +0.3 | +0.0 | 38.8 | 46.0 | -7.2  | Black |
| 16 | 450.334k | 24.8 | +10.0 | +4.4 | +0.2 | +0.2 | +0.0 | 39.6 | 46.9 | -7.3  | Black |
| 17 | 400.884k | 24.8 | +10.0 | +4.4 | +0.1 | +0.2 | +0.0 | 39.5 | 47.8 | -8.3  | Black |
| 18 | 319.438k | 24.9 | +10.0 | +4.5 | +0.1 | +0.2 | +0.0 | 39.7 | 49.7 | -10.0 | Black |
| 19 | 4.118M   | 25.2 | +10.0 | +0.1 | +0.1 | +0.6 | +0.0 | 36.0 | 46.0 | -10.0 | Black |
| 20 | 3.497M   | 24.8 | +10.0 | +0.1 | +0.1 | +0.6 | +0.0 | 35.6 | 46.0 | -10.4 | Black |
| 21 | 3.556M   | 24.7 | +10.0 | +0.1 | +0.1 | +0.6 | +0.0 | 35.5 | 46.0 | -10.5 | Black |
| 22 | 3.055M   | 24.5 | +10.0 | +0.1 | +0.1 | +0.5 | +0.0 | 35.2 | 46.0 | -10.8 | Black |
| 23 | 3.216M   | 24.5 | +10.0 | +0.1 | +0.1 | +0.5 | +0.0 | 35.2 | 46.0 | -10.8 | Black |
| 24 | 187.814k | 28.0 | +10.0 | +4.8 | +0.3 | +0.1 | +0.0 | 43.2 | 54.1 | -10.9 | Black |
| 25 | 3.403M   | 24.3 | +10.0 | +0.1 | +0.1 | +0.6 | +0.0 | 35.1 | 46.0 | -10.9 | Black |
| 26 | 254.717k | 25.5 | +10.0 | +4.6 | +0.2 | +0.2 | +0.0 | 40.5 | 51.6 | -11.1 | Black |
| 27 | 24.258M  | 25.0 | +10.1 | +0.1 | +0.2 | +1.4 | +0.0 | 36.8 | 50.0 | -13.2 | Black |
| 28 | 19.598M  | 25.0 | +10.1 | +0.1 | +0.2 | +1.3 | +0.0 | 36.7 | 50.0 | -13.3 | Black |
| 29 | 26.800M  | 24.6 | +10.1 | +0.1 | +0.2 | +1.5 | +0.0 | 36.5 | 50.0 | -13.5 | Black |
| 30 | 29.931M  | 24.5 | +10.1 | +0.1 | +0.2 | +1.6 | +0.0 | 36.5 | 50.0 | -13.5 | Black |



CKC Laboratories, Inc. Date: 11/29/2012 Time: 11:30:09 AM Deadman Technologies, LLC. WO#: 92946 15.207 AC Mains - Average Test Lead: Black 120V 60Hz Sequence#: 13 Ext ATTN: 0 dB





Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: Deadman Technologies, LLC. Specification: 15.207 AC Mains - Average

Work Order #: 92946 Date: 11/29/2012 Test Type: **Conducted Emissions** Time: 11:29:14 Equipment: Handheld Sequence#: 12

Manufacturer: Deadman Technologies, LLC. Tested By: Chuck Kendall Model: AV01H

120V 60Hz

S/N: None

### Test Equipment:

| Test Equip | ,        |                     |                |                  |              |
|------------|----------|---------------------|----------------|------------------|--------------|
| ID         | Asset #  | Description         | Model          | Calibration Date | Cal Due Date |
|            | AN00069  | Quasi Peak Adapter  | 85650A         | 5/4/2011         | 5/4/2013     |
|            | AN01183  | Spectrum Analyzer   | 85662A         | 5/4/2011         | 5/4/2013     |
|            |          | Display             |                |                  |              |
|            | AN01184  | Spectrum Analyzer   | 8568B          | 5/4/2011         | 5/4/2013     |
| T1         | ANP00082 | Attenuator          | PE7002-10      | 6/7/2011         | 6/7/2013     |
|            | AN00374  | 50uH LISN-Black     | 8028-TS-50-BNC | 10/31/2011       | 10/31/2013   |
|            |          | Lead Amplitude (dB) |                |                  |              |
| T2         | AN00374  | 50uH LISN-White     | 8028-TS-50-BNC | 10/31/2011       | 10/31/2013   |
|            |          | Lead Amplitude (dB) |                |                  |              |
| Т3         | AN02608  | High Pass Filter    | HE9615-150K-   | 3/15/2012        | 3/15/2014    |
|            |          |                     | 50-720B        |                  |              |
| T4         | ANMACOND | Cable               |                | 8/17/2012        | 8/17/2014    |

### Equipment Under Test (\* = EUT):

| Function  | Manufacturer               | Model # | S/N  |  |
|-----------|----------------------------|---------|------|--|
| Handheld* | Deadman Technologies, LLC. | AV01H   | None |  |

### Support Devices:

| Function         | Manufacturer | Model #  | S/N  |
|------------------|--------------|----------|------|
| 120 Volt Adapter | Motorola     | NTN9393A | None |

### Test Conditions / Notes:

EUT is a limited transceiver module placed in a plastic open frame in transmitter mode transmitting on two frequencies: 2405 & 2425 MHz. For conducted emissions, the 2425 MHz and the 2405 MHz modules were tested and the results were very similar and well below the average limits; so only the 2425 MHz module results are displayed here.

Frequencies of Interest: .150 - 30 MHz

RBW = 9 kHz; VBW = 30 kHz

Position 3 in the horizontal polarity is the worst case. This is the position for the rest of the testing. Module is in the vertical position with its smaller edge with battery on the Styrofoam and the receive antennas in the horizontal polarity.

The EUT is a transceiver module that is powered by 3.3 VDC. The module would normally be supplied with 3.7 Volts and with the buck/boost IC chip is converts this to a constant 3.3 VDC.

This unit has a 120V to 4.2 VDC adapter to power it during testing-by pass added to make it work during charging mode. Conducted emissions were performed on this unit.

**Environmental Conditions:** 

Temperature =  $20.1 \, ^{\circ}\text{C}$ 

Relative Humidity = 35%

Atmospheric Pressure = 97.6 kPa

Page 11 of 31 Report No.: 92946-5A



Ext Attn: 0 dB

|    | ttn: 0 aB<br>rement Data: | . R  | eading lie | ted by ma | argin |      |       | Test Lead | l· White |        |       |
|----|---------------------------|------|------------|-----------|-------|------|-------|-----------|----------|--------|-------|
| #  | Freq                      | Rdng | T1         | T2        | T3    | T4   | Dist  | Corr      | Spec     | Margin | Polar |
| #  | MHz                       | dΒμV | dB         | dB        | dB    | dB   | Table | dBμV      | dBµV     | dB     | Ant   |
| 1  | 477.240k                  | 25.4 | +10.0      | +4.4      | +0.2  | +0.2 | +0.0  | 40.2      | 46.4     | -6.2   | White |
| 2  | 607.409k                  | 24.9 | +10.0      | +4.3      | +0.2  | +0.2 | +0.0  | 39.6      | 46.0     | -6.4   | White |
| 3  | 208.903k                  | 31.6 | +10.0      | +4.7      | +0.2  | +0.2 | +0.0  | 46.7      | 53.2     | -6.5   | White |
| 4  | 1.017M                    | 24.4 | +10.0      | +4.1      | +0.2  | +0.3 | +0.0  | 39.0      | 46.0     | -7.0   | White |
| 5  | 1.273M                    | 24.3 | +10.0      | +3.8      | +0.2  | +0.3 | +0.0  | 38.6      | 46.0     | -7.4   | White |
| 6  | 1.166M                    | 24.0 | +10.0      | +4.0      | +0.2  | +0.3 | +0.0  | 38.5      | 46.0     | -7.5   | White |
| 7  | 152.000k<br>Ave           | 26.2 | +10.0      | +4.8      | +6.9  | +0.1 | +0.0  | 48.0      | 55.9     | -7.9   | White |
| ^  | 150.000k                  | 38.8 | +10.0      | +4.8      | +8.5  | +0.1 | +0.0  | 62.2      | 56.0     | +6.2   | White |
| 9  | 376.886k                  | 25.2 | +10.0      | +4.5      | +0.1  | +0.2 | +0.0  | 40.0      | 48.3     | -8.3   | White |
| 10 | 405.974k                  | 24.5 | +10.0      | +4.4      | +0.1  | +0.2 | +0.0  | 39.2      | 47.7     | -8.5   | White |
| 11 | 248.172k                  | 27.7 | +10.0      | +4.6      | +0.2  | +0.2 | +0.0  | 42.7      | 51.8     | -9.1   | White |
| 12 | 253.990k                  | 27.2 | +10.0      | +4.6      | +0.2  | +0.2 | +0.0  | 42.2      | 51.6     | -9.4   | White |
| 13 | 245.263k                  | 27.2 | +10.0      | +4.6      | +0.2  | +0.2 | +0.0  | 42.2      | 51.9     | -9.7   | White |
| 14 | 331.073k                  | 24.9 | +10.0      | +4.5      | +0.1  | +0.2 | +0.0  | 39.7      | 49.4     | -9.7   | White |
| 15 | 1.634M                    | 23.5 | +10.0      | +2.2      | +0.1  | +0.4 | +0.0  | 36.2      | 46.0     | -9.8   | White |
| 16 | 238.718k                  | 27.3 | +10.0      | +4.6      | +0.2  | +0.2 | +0.0  | 42.3      | 52.1     | -9.8   | White |
| 17 | 276.533k                  | 25.8 | +10.0      | +4.6      | +0.2  | +0.2 | +0.0  | 40.8      | 50.9     | -10.1  | White |
| 18 | 3.956M                    | 24.4 | +10.0      | +0.1      | +0.1  | +0.6 | +0.0  | 35.2      | 46.0     | -10.8  | White |
| 19 | 1.953M                    | 24.3 | +10.0      | +0.3      | +0.1  | +0.4 | +0.0  | 35.1      | 46.0     | -10.9  | White |
| 20 | 4.564M                    | 24.3 | +10.0      | +0.1      | +0.1  | +0.6 | +0.0  | 35.1      | 46.0     | -10.9  | White |
| 21 | 4.220M                    | 24.3 | +10.0      | +0.1      | +0.1  | +0.6 | +0.0  | 35.1      | 46.0     | -10.9  | White |
| 22 | 4.679M                    | 24.2 | +10.0      | +0.1      | +0.1  | +0.6 | +0.0  | 35.0      | 46.0     | -11.0  | White |
| 23 | 4.373M                    | 23.9 | +10.0      | +0.1      | +0.1  | +0.6 | +0.0  | 34.7      | 46.0     | -11.3  | White |



| 24 | 3.208M    | 23.7 | +10.0 | +0.1 | +0.1 | +0.5 | +0.0 | 34.4 | 46.0 | -11.6 | White   |
|----|-----------|------|-------|------|------|------|------|------|------|-------|---------|
| 25 | 23.648M   | 25.4 | +10.1 | +0.1 | +0.2 | +1.4 | +0.0 | 37.2 | 50.0 | -12.8 | White   |
| 26 | 29.986M   | 24.6 | +10.1 | +0.1 | +0.2 | +1.6 | +0.0 | 36.6 | 50.0 | -13.4 | White   |
| 27 | 10.977M   | 25.4 | +10.1 | +0.1 | +0.1 | +0.9 | +0.0 | 36.6 | 50.0 | -13.4 | White   |
| 28 | 27.883M   | 24.7 | +10.1 | +0.1 | +0.2 | +1.5 | +0.0 | 36.6 | 50.0 | -13.4 | White   |
| 29 | 19.734M   | 24.7 | +10.1 | +0.1 | +0.2 | +1.3 | +0.0 | 36.4 | 50.0 | -13.6 | White   |
| 30 | 26.978M   | 24.4 | +10.1 | +0.1 | +0.2 | +1.5 | +0.0 | 36.3 | 50.0 | -13.7 | White   |
| 31 | 24.190M   | 24.5 | +10.1 | +0.1 | +0.2 | +1.4 | +0.0 | 36.3 | 50.0 | -13.7 | White   |
| 31 | 21.170141 | 24.3 | 110.1 | 10.1 | 10.2 | 11.4 | 10.0 | 30.3 | 50.0 | 13.7  | vi inte |

CKC Laboratories, Inc. Date: 11/29/2012 Time: 11:29:14 Deadman Technologies, LLC. WO#: 92946 15.207 AC Mains - Average Test Lead: White 120V 60Hz Sequence#: 12 Ext ATTN: 0 dB





# Test Setup Photos







## 15.249(a) RF Power Output

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: **Deadman Technologies, LLC.** Specification: **15.249** (a) Carrier Output

 Work Order #:
 92946
 Date: 11/16/2012

 Test Type:
 Maximized Emissions
 Time: 13:50:47

Equipment: Transceiver Module Sequence#: 1

Manufacturer: Deadman Technologies, LLC. Tested By: Chuck & Eddie

Model: AV01RF S/N: NA

### Test Equipment:

| ID | Asset #  | Description       | Model               | Calibration Date | Cal Due Date |
|----|----------|-------------------|---------------------|------------------|--------------|
| T1 | AN00327  | Horn Antenna      | 3115                | 4/13/2012        | 4/13/2014    |
| T2 | AN03012  | Cable             | 32022-2-29094K-36TC | 2/28/2012        | 2/28/2014    |
| T3 | AN03155  | Preamp            | 83017A              | 8/3/2011         | 8/3/2013     |
| T4 | ANP01403 | Cable             | 58758-23            | 6/22/2011        | 6/22/2013    |
| T5 | ANP05904 | Cable             | 32022-2-29094K-     | 6/22/2011        | 6/22/2013    |
|    |          |                   | 144TC               |                  |              |
|    | AN02660  | Spectrum Analyzer | E4446A              | 8/23/2012        | 8/23/2014    |

### Equipment Under Test (\* = EUT):

| Function            | Manufacturer               | Model # | S/N |  |
|---------------------|----------------------------|---------|-----|--|
| Transceiver Module* | Deadman Technologies, LLC. | AV01RF  | NA  |  |

### Support Devices:

| TI               |                            |          |      |  |
|------------------|----------------------------|----------|------|--|
| Function         | Manufacturer               | Model #  | S/N  |  |
| 120 Volt Adapter | Radio Shack                | 273-1776 | None |  |
| Handheld         | Deadman Technologies, LLC. | AV01H    | None |  |

### Test Conditions / Notes:

The EUT is a limited transceiver module placed in transceiver mode.

Module was tested in a plastic open frame which supported the modular transceiver during the radiated emissions testing. The manufacturer declares that the test data is representative of the module without an enclosure. It was just used to support the module and its power supply so that they could be placed in the three orthogonal planes to determine the worst case scenario for emissions. Position 3 in the horizontal polarity is the worst case. This is the position used for the rest of the testing. The module is in the vertical position with its smaller edge with battery on the Styrofoam and the receive antennas in the horizontal polarity.

The EUT is a transceiver module that is powered by 3.3 VDC.

Two modules were tested each with a different constant transmit frequency: one module was fixed at 2405 MHz and the other module was fixed at 2425 MHz. Transmitter characteristics will be done using these two frequencies.

### 15.31(e) Voltage was varied from 85% to 115% and no change in frequency or output power was observed.

From 2400 MHz-24835 MHz: RBW=1MHz; VBW=3MHz

Antenna gain =2.6 dBi integral.

**Atmospheric Conditions:** 

Ambient Temperature = 20.1°C, Humidity = 35%, Ambient Pressure = 97.6 kPa

Page 15 of 31 Report No.: 92946-5A



Ext Attn: 0 dB

| Measu | rement Data: | Read | ding listed | d by order | er taken. Test Distance: 3 Meters |      |       |             |                   |         |       |
|-------|--------------|------|-------------|------------|-----------------------------------|------|-------|-------------|-------------------|---------|-------|
| #     | Freq         | Rdng | T1<br>T5    | T2         | T3                                | T4   | Dist  | Corr        | Spec              | Margin  | Polar |
|       | MHz          | dΒμV | dB          | dB         | dB                                | dB   | Table | $dB\mu V/m$ | $dB\mu V/m$       | dB      | Ant   |
| 1     | 2405.090M    | 84.3 | +28.4       | +0.7       | -30.7                             | +2.6 | +0.0  | 87.8        | 94.0              | -6.2    | Horiz |
|       |              |      | +2.5        |            |                                   |      |       |             | Fundament 2405MHz | tal-    |       |
| 2     | 2405.090M    | 84.2 | +28.4       | +0.7       | -30.7                             | +2.6 | +0.0  | 87.7        | 94.0              | -6.3    | Horiz |
|       |              |      | +2.5        |            |                                   |      |       |             | Average re        | ading   |       |
| 3     | 2404.710M    | 84.1 | +28.4       | +0.7       | -30.7                             | +2.6 | +0.0  | 87.6        | 94.0              | -6.4    | Horiz |
|       |              |      | +2.5        |            |                                   |      |       |             | 85% AC po         | ower to |       |
|       |              |      |             |            |                                   |      |       |             | adapter-10        | 2VAC.   |       |
| 4     | 2404.970M    | 84.1 | +28.4       | +0.7       | -30.7                             | +2.6 | +0.0  | 87.6        | 94.0              | -6.4    | Horiz |
|       |              |      | +2.5        |            |                                   |      |       |             | 115% or 13        | 38VAC   |       |
|       |              |      |             |            |                                   |      |       |             | applied.          |         |       |
| 5     | 2425.020M    | 84.9 | +28.5       | +0.7       | -30.7                             | +2.6 | +0.0  | 88.3        | 94.0              | -5.7    | Horiz |
|       |              |      | +2.3        |            |                                   |      |       |             | fundament         | al-     |       |
|       |              |      |             |            |                                   |      |       |             | 2425MHz           |         |       |
| 6     | 2424.950M    | 84.8 | +28.5       | +0.7       | -30.7                             | +2.6 | +0.0  | 88.2        | 94.0              | -5.8    | Horiz |
|       |              |      | +2.3        |            |                                   |      |       |             | Average de        | etector |       |
|       |              |      |             |            |                                   |      |       |             | on.               |         |       |
| 7     | 2425.020M    | 84.9 | +28.5       | +0.7       | -30.7                             | +2.6 | +0.0  | 88.3        | 94.0              | -5.7    | Horiz |
|       | Ave          |      | +2.3        |            |                                   |      |       |             | 115% or 13        | 38 VAC  |       |
|       |              |      |             |            |                                   |      |       |             | applied           |         |       |
| 8     | 2425.020M    | 84.9 | +28.5       | +0.7       | -30.7                             | +2.6 | +0.0  | 88.3        | 94.0              | -5.7    | Horiz |
|       |              |      | +2.3        |            |                                   |      |       |             | 85% or 102        | 2 VAC   |       |
|       |              |      |             |            |                                   |      |       |             | Applied           |         |       |



# Test Setup Photos



Page 17 of 31 Report No.: 92946-5A



### -20dBc & 99 % Bandwidth

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: **Deadman Technologies, LLC.** 

Specification: 15.249 Occupied & RSS-210 Effective 99% Bandwidth

 Work Order #:
 92946
 Date:
 11/16/2012

 Test Type:
 Effective Bandwidth
 Time:
 08:43:41

Equipment: Transceiver Module Sequence#: 1
Manufacturer: Deadman Technologies, LLC. Tested By: Chuck & Eddie

Model: AV01RF

S/N: NA

### Test Equipment:

| ID | Asset #  | Description       | Model           | Calibration Date | Cal Due Date |
|----|----------|-------------------|-----------------|------------------|--------------|
|    | AN00327  | Horn Antenna      | 3115            | 4/13/2012        | 4/13/2014    |
|    | AN03012  | Cable             | 32022-2-29094K- | 2/28/2012        | 2/28/2014    |
|    |          |                   | 36TC            |                  |              |
|    | AN03155  | Preamp            | 83017A          | 8/3/2011         | 8/3/2013     |
| T1 | ANP01403 | Cable             | 58758-23        | 6/22/2011        | 6/22/2013    |
| T2 | ANP05904 | Cable             | 32022-2-29094K- | 6/22/2011        | 6/22/2013    |
|    |          |                   | 144TC           |                  |              |
| Т3 | AN02660  | Spectrum Analyzer | E4446A          | 8/23/2012        | 8/23/2014    |

### Equipment Under Test (\* = EUT):

| Function            | Manufacturer               | Model # | S/N |  |
|---------------------|----------------------------|---------|-----|--|
| Transceiver Module* | Deadman Technologies, LLC. | AV01RF  | N/A |  |

### Support Devices:

| Transfer of the second |                            |          |      |  |
|------------------------|----------------------------|----------|------|--|
| Function               | Manufacturer               | Model #  | S/N  |  |
| 120 Volt Adapter       | Motorola                   | NTN9393A | None |  |
| Handheld               | Deadman Technologies, LLC. | AV01H    | None |  |

### Test Conditions / Notes:

The EUT is a limited transceiver module placed in transceiver mode.

Module was tested in a plastic open frame which supported the modular transceiver during the radiated emissions testing. The manufacturer declares that the test data is representative of the module without an enclosure. It was just used to support the module and its power supply so that they could be placed in the three orthogonal planes to determine the worst case scenario for emissions. Position 3 in the horizontal polarity is the worst case. This is the position used for the rest of the testing. The module is in the vertical position with its smaller edge with battery on the Styrofoam and the receive antennas in the horizontal polarity.

The EUT is a transceiver module that is powered by 3.3 VDC.

Two modules were tested each with a different constant transmit frequency: one module was fixed at 2405 MHz and the other module was fixed at 2425 MHz. Transmitter characteristics will be done using these two frequencies.

From 2400 MHz-24835 MHz: RBW=30kHz; VBW=300kHz

Antenna gain =2.6 dBi integral.

Atmospheric Conditions:

Ambient Temperature = 20.1°C, Humidity = 35%, Ambient Pressure = 97.6 kPa

Page 18 of 31 Report No.: 92946-5A



### **Test Data**







### **Test Setup Photos**





## 15.249(d) Field Strength of Spurious Emissions

### **Test Data Sheets**

Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: **Deadman Technologies, LLC.**Specification: **15.209 Radiated Emissions** 

Work Order #: 92946 Date: 11/16/2012
Test Type: Maximized Emissions Time: 15:52:45
Equipment: Transceiver Module Sequence#: 2

Manufacturer: Deadman Technologies, LLC. Tested By: Chuck & Eddie

Model: AV01RF S/N: NA

Test Equipment:

| ID | Asset #  | Description       | Model   | Calibration Date | Cal Due Date |
|----|----------|-------------------|---------|------------------|--------------|
|    | AN02660  | Spectrum Analyzer | E4446A  | 8/23/2012        | 8/23/2014    |
| T1 | AN00226  | Loop Antenna      | 6502    | 3/28/2012        | 3/28/2014    |
| T2 | ANP05686 | Cable             | RG214/U | 1/24/2012        | 1/24/2014    |

### **Equipment Under Test (\* = EUT):**

| Function            | Manufacturer               | Model # | S/N |  |
|---------------------|----------------------------|---------|-----|--|
| Transceiver Module* | Deadman Technologies, LLC. | AV01RF  | NA  |  |

### Support Devices:

| Function         | Manufacturer               | Model #  | S/N  |
|------------------|----------------------------|----------|------|
| 120 Volt Adapter | Motorola                   | NTN9393A | None |
| Handheld         | Deadman Technologies, LLC. | AV01H    | None |

### Test Conditions / Notes:

The EUT is a limited transceiver module placed in transceiver mode. Module was tested in a plastic open frame which supported the modular transceiver during the radiated emissions testing. The manufacturer declares that the test data is representative of the module without an enclosure. It was just used to support the module and its power supply so that they could be placed in the three orthogonal planes to determine the worst case scenario for emissions. Position 3 in the horizontal polarity is the worst case. This is the position used for the rest of the testing. The module is in the vertical position with its smaller edge with battery on the Styrofoam and the receive antennas in the horizontal polarity.

The EUT is a transceiver module that is powered by 3.3 VDC.

Two modules were tested each with a different constant transmit frequency: one module was fixed at 2405 MHz and the other module was fixed at 2425 MHz. Transmitter characteristics will be done using these two frequencies.

Antenna gain =2.6 dBi integral.

**Atmospheric Conditions:** 

Ambient Temperature = 20.1°C, Humidity = 35%, Ambient Pressure = 97.6 kPa

Frequencies of Interest: 9kHz to 30 MHz

RBW = 9 kHz; VBW = 30 kHz

Page 21 of 31 Report No.: 92946-5A



Ext Attn: 0 dB

|    | .ttn: 0 dB<br><i>rement Data:</i> | P.   | eading lie | ted by ma | nroin   |    | $T_{\epsilon}$ | est Dietance | e: 3 Meters |        |       |
|----|-----------------------------------|------|------------|-----------|---------|----|----------------|--------------|-------------|--------|-------|
| #  | Freq                              | Rdng | T1         | T2        | u 5111. |    | Dist           | Corr         | Spec Spec   | Margin | Polar |
| "  | MHz                               | dΒμV | dB         | dB        | dB      | dB |                | dBμV/m       |             | dB     | Ant   |
| 1  | 941.350k                          | 50.9 | +10.3      | +0.0      |         |    | -40.0          | 21.2         | 28.1        | -6.9   | Vert  |
| 2  | 1.658M                            | 45.4 | +10.0      | +0.0      |         |    | -40.0          | 15.4         | 23.1        | -7.7   | Vert  |
| 3  | 1.063M                            | 48.9 | +10.2      | +0.0      |         |    | -40.0          | 19.1         | 27.0        | -7.9   | Vert  |
| 4  | 790.050k                          | 50.5 | +10.4      | +0.0      |         |    | -40.0          | 20.9         | 29.6        | -8.7   | Vert  |
| 5  | 12.270M                           | 49.8 | +9.7       | +0.0      |         |    | -40.0          | 19.5         | 29.5        | -10.0  | Vert  |
| 6  | 8.694M                            | 47.7 | +9.9       | +0.0      |         |    | -40.0          | 17.6         | 29.5        | -11.9  | Vert  |
| 7  | 1.207M                            | 42.9 | +10.1      | +0.0      |         |    | -40.0          | 13.0         | 25.9        | -12.9  | Vert  |
| 8  | 578.400k                          | 48.9 | +9.9       | +0.0      |         |    | -40.0          | 18.8         | 32.4        | -13.6  | Vert  |
| 9  | 1.180M                            | 40.9 | +10.1      | +0.0      |         |    | -40.0          | 11.0         | 26.1        | -15.1  | Vert  |
| 10 | 1.477M                            | 38.6 | +10.1      | +0.0      |         |    | -40.0          | 8.7          | 24.2        | -15.5  | Vert  |
| 11 | 1.306M                            | 39.3 | +10.1      | +0.0      |         |    | -40.0          | 9.4          | 25.2        | -15.8  | Vert  |
| 12 | 1.604M                            | 37.6 | +10.0      | +0.0      |         |    | -40.0          | 7.6          | 23.4        | -15.8  | Vert  |
| 13 | 9.991M                            | 43.7 | +9.9       | +0.0      |         |    | -40.0          | 13.6         | 29.5        | -15.9  | Vert  |
| 14 | 899.700k                          | 42.1 | +10.4      | +0.0      |         |    | -40.0          | 12.5         | 28.5        | -16.0  | Vert  |
| 15 | 1.252M                            | 39.3 | +10.1      | +0.0      |         |    | -40.0          | 9.4          | 25.6        | -16.2  | Vert  |
| 16 | 1.126M                            | 39.5 | +10.2      | +0.0      |         |    | -40.0          | 9.7          | 26.5        | -16.8  | Vert  |
| 17 | 839.350k                          | 41.8 | +10.4      | +0.0      |         |    | -40.0          | 12.2         | 29.1        | -16.9  | Vert  |
| 18 | 1.090M                            | 39.2 | +10.2      | +0.0      |         |    | -40.0          | 9.4          | 26.8        | -17.4  | Vert  |
| 19 | 981.300k                          | 39.8 | +10.2      | +0.0      |         |    | -40.0          | 10.0         | 27.7        | -17.7  | Vert  |
| 20 | 15.000M                           | 41.5 | +9.5       | +0.0      |         |    | -40.0          | 11.0         | 29.5        | -18.5  | Vert  |
| 21 | 21.739M                           | 42.2 | +7.9       | +0.1      |         |    | -40.0          | 10.2         | 29.5        | -19.3  | Vert  |
| 22 | 1.333M                            | 35.5 | +10.1      | +0.0      |         |    | -40.0          | 5.6          | 25.0        | -19.4  | Vert  |
| 23 | 20.315M                           | 41.6 | +8.1       | +0.1      |         |    | -40.0          | 9.8          | 29.5        | -19.7  | Vert  |
|    |                                   |      |            |           |         |    |                |              |             |        |       |



| 24 | 3.730M  | 39.9 | +9.8  | +0.0  | -40.0 | 9.7 | 29.5  | -19.8 | Vert  |
|----|---------|------|-------|-------|-------|-----|-------|-------|-------|
|    |         |      |       |       |       |     |       |       |       |
| 25 | 7.595M  | 39.6 | +9.9  | +0.0  | -40.0 | 9.5 | 29.5  | -20.0 | Vert  |
|    |         |      |       |       |       |     |       |       |       |
| 26 | 1.009M  | 37.2 | +10.2 | +0.0  | -40.0 | 7.4 | 27.5  | -20.1 | Vert  |
|    |         |      |       |       |       |     |       |       |       |
| 27 | 1.550M  | 33.6 | +10.0 | +0.0  | -40.0 | 3.6 | 23.7  | -20.1 | Vert  |
|    |         |      |       |       |       |     |       |       |       |
| 28 | 3.838M  | 39.2 | +9.8  | +0.0  | -40.0 | 9.0 | 29.5  | -20.5 | Vert  |
|    |         |      |       |       |       |     |       |       |       |
| 29 | 18.532M | 40.4 | +8.5  | +0.1  | -40.0 | 9.0 | 29.5  | -20.5 | Vert  |
|    |         |      |       |       |       |     |       |       |       |
| 30 | 18.243M | 40.2 | +8.5  | +0.1  | -40.0 | 8.8 | 29.5  | -20.7 | Vert  |
|    |         |      | . 3.0 | . 3.1 |       | 0.0 | => .0 | _0,,  | . 310 |
| 1  |         |      |       |       |       |     |       |       |       |

Date: 11/16/2012 Time: 15:52:45 Deadman Technologies, LLC. WO#: 92946 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 2 Ext ATTN: 0 dB





Test Location: CKC Laboratories, Inc. • 5046 Sierra Pines Drive • Mariposa, CA 95338 • (209) 966-5240

Customer: **Deadman Technologies, LLC.**Specification: **15.209 Radiated Emissions** 

 Work Order #:
 92946
 Date:
 11/19/2012

 Test Type:
 Maximized Emissions
 Time:
 09:15:14

Equipment: Transceiver Module Sequence#: 4

Manufacturer: Deadman Technologies, LLC. Tested By: Chuck & Eddie

Model: AV01RF S/N: NA

### Test Equipment:

| zest zgun |          |                   |                 |                  |              |
|-----------|----------|-------------------|-----------------|------------------|--------------|
| ID        | Asset #  | Description       | Model           | Calibration Date | Cal Due Date |
| T1        | AN00327  | Horn Antenna      | 3115            | 4/13/2012        | 4/13/2014    |
| T2        | AN03012  | Cable             | 32022-2-29094K- | 2/28/2012        | 2/28/2014    |
|           |          |                   | 36TC            |                  |              |
| Т3        | AN03155  | Preamp            | 83017A          | 8/3/2011         | 8/3/2013     |
| T4        | ANP01403 | Cable             | 58758-23        | 6/22/2011        | 6/22/2013    |
| T5        | ANP05904 | Cable             | 32022-2-29094K- | 6/22/2011        | 6/22/2013    |
|           |          |                   | 144TC           |                  |              |
| T6        | AN02660  | Spectrum Analyzer | E4446A          | 8/23/2012        | 8/23/2014    |
| T7        | AN01994  | Biconilog Antenna | CBL6111C        | 5/16/2012        | 5/16/2014    |
| Т8        | AN00062  | Preamp            | 8447D           | 6/6/2012         | 6/6/2014     |
|           | AN01413  | Horn Antenna-ANSI | 84125-80008     | 12/2/2010        | 12/2/2012    |
|           |          | C63.5 Antenna     |                 |                  |              |
|           |          | Factors (dB)      |                 |                  |              |

### **Equipment Under Test (\* = EUT):**

| Function            | Manufacturer               | Model # | S/N |  |
|---------------------|----------------------------|---------|-----|--|
| Transceiver Module* | Deadman Technologies, LLC. | AV01RF  | NA  |  |

### Support Devices:

| Function         | Manufacturer               | Model #  | S/N  |  |
|------------------|----------------------------|----------|------|--|
| 120 Volt Adapter | Motorola                   | NTN9393A | None |  |
| Handheld         | Deadman Technologies, LLC. | AV01H    | None |  |

### Test Conditions / Notes:

The EUT is a limited transceiver module placed in transceiver mode.

Module was tested in a plastic open frame which supported the modular transceiver during the radiated emissions testing. The manufacturer declares that the test data is representative of the module without an enclosure. It was just used to support the module and its power supply so that they could be placed in the three orthogonal planes to determine the worst case scenario for emissions.

Position 3 in the horizontal polarity is the worst case. This is the position used for the rest of the testing. The module is in the vertical position with its smaller edge with battery on the Styrofoam and the receive antennas in the horizontal polarity.

The EUT is a transceiver module that is powered by 3.3 VDC.

Two modules were tested each with a different constant transmit frequency: one module was fixed at 2405 MHz and the other module was fixed at 2425 MHz. Transmitter characteristics will be done using these two frequencies. From 30 MHz to 1000 MHz; RBW = 120kHz; VBW = 300kHz

From 1GHz-24.835 GHz: RBW=1MHz; VBW=3MHz

Antenna gain =2.6 dBi integral.

Atmospheric Conditions: Ambient Temperature = 20.1°C, Humidity = 35%, Ambient Pressure = 97.6 kPa

Page 24 of 31 Report No.: 92946-5A



Ext Attn: 0 dB

|     | Ext Attn: 0 dB  Measurement Data: Reading listed by margin. |             |               |                |               | Test Distance: 3 Meters |       |        |        |                  |        |
|-----|-------------------------------------------------------------|-------------|---------------|----------------|---------------|-------------------------|-------|--------|--------|------------------|--------|
| #   |                                                             | Rdng        | T1            | T2             | T3            | T4                      | Dist  | Corr   |        | Margin           | Polar  |
| "   | Freq                                                        | Kung        | T5            | T6             | T7            | T8                      | Dist  | COIT   | Spec   | margin           | roiar  |
|     | MHz                                                         | dΒμV        | dB            | dB             | dB            | dB                      | Table | dBμV/m | dBuV/m | dB               | Ant    |
| 1   |                                                             | 62.0        | +0.0          | +0.0           | +0.0          | +0.3                    | +0.0  | 38.1   | 40.0   | -1.9             | Vert   |
| 1   | QP                                                          | 02.0        | +0.4          | +0.0           | +5.8          | -30.4                   | +0.0  | 30.1   | 40.0   | -1.9             | VCIT   |
| ^   | _                                                           | 65.9        | +0.0          | +0.0           | +0.0          | +0.3                    | +0.0  | 42.0   | 40.0   | +2.0             | Vert   |
|     | 00.0301                                                     | 03.7        | +0.4          | +0.0           | +5.8          | -30.4                   | 10.0  | 42.0   | 40.0   | 12.0             | VCIt   |
| 3   | 12000.174                                                   | 26.2        | +39.0         | +1.9           | -30.3         | +6.6                    | +0.0  | 48.3   | 54.0   | -5.7             | Horiz  |
|     | M                                                           | 20.2        | +4.9          | +0.0           | +0.0          | +0.0                    | 10.0  | 70.5   | 34.0   | -3.1             | HOHZ   |
|     | Ave                                                         |             | 1 1.2         | 10.0           | 10.0          | 10.0                    |       |        |        |                  |        |
| ^   | 12000.170                                                   | 41.5        | +39.0         | +1.9           | -30.3         | +6.6                    | +0.0  | 63.6   | 54.0   | +9.6             | Horiz  |
|     | M                                                           | 11.5        | +4.9          | +0.0           | +0.0          | +0.0                    | 10.0  | 03.0   | 5 110  | 17.0             | HOHE   |
|     | 1,1                                                         |             | ,             | . 0.0          | . 0.0         | . 0.0                   |       |        |        |                  |        |
| 5   | 12027.002                                                   | 26.2        | +39.0         | +1.9           | -30.3         | +6.6                    | +0.0  | 48.3   | 54.0   | -5.7             | Vert   |
|     | M                                                           |             | +4.9          | +0.0           | +0.0          | +0.0                    |       |        |        |                  |        |
|     | Ave                                                         |             |               |                |               |                         |       |        |        |                  |        |
| ^   | 12027.000                                                   | 38.2        | +39.0         | +1.9           | -30.3         | +6.6                    | +0.0  | 60.3   | 54.0   | +6.3             | Vert   |
|     | M                                                           |             | +4.9          | +0.0           | +0.0          | +0.0                    |       |        |        |                  |        |
|     |                                                             |             |               |                |               |                         |       |        |        |                  |        |
| 7   | 12025.002                                                   | 26.2        | +39.0         | +1.9           | -30.3         | +6.6                    | +0.0  | 48.3   | 54.0   | -5.7             | Horiz  |
|     | M                                                           |             | +4.9          | +0.0           | +0.0          | +0.0                    |       |        |        |                  |        |
|     | Ave                                                         |             |               |                |               |                         |       |        |        |                  |        |
| ^   | 12025.000                                                   | 37.5        | +39.0         | +1.9           | -30.3         | +6.6                    | +0.0  | 59.6   | 54.0   | +5.6             | Horiz  |
|     | M                                                           |             | +4.9          | +0.0           | +0.0          | +0.0                    |       |        |        |                  |        |
|     |                                                             |             |               |                |               |                         |       |        |        |                  |        |
| 9   | 4848.997M                                                   | 37.7        | +31.6         | +1.1           | -30.4         | +4.0                    | +0.0  | 47.5   | 54.0   | -6.5             | Vert   |
|     | Ave                                                         |             | +3.5          | +0.0           | +0.0          | +0.0                    |       |        |        |                  |        |
| ^   | 4849.000M                                                   | 48.4        | +31.6         | +1.1           | -30.4         | +4.0                    | +0.0  | 58.2   | 54.0   | +4.2             | Vert   |
|     |                                                             |             | +3.5          | +0.0           | +0.0          | +0.0                    |       |        |        |                  |        |
| 11  | 4809.450M                                                   | 37.6        | +31.6         | +1.1           | -30.4         | +4.0                    | +0.0  | 47.4   | 54.0   | -6.6             | Vert   |
|     | Ave                                                         |             | +3.5          | +0.0           | +0.0          | +0.0                    |       |        |        |                  |        |
| ^   | 4809.460M                                                   | 56.4        | +31.6         | +1.1           | -30.4         | +4.0                    | +0.0  | 66.2   | 54.0   | +12.2            | Vert   |
| 10  | 105 0003 5                                                  | <b>52.0</b> | +3.5          | +0.0           | +0.0          | +0.0                    | .0.0  | 25.5   | 40.7   | 0.0              | X7 ·   |
| 13  | 125.000M                                                    | 53.0        | +0.0          | +0.0           | +0.0          | +0.5                    | +0.0  | 35.5   | 43.5   | -8.0             | Vert   |
| 1.4 | 0.610.0003.6                                                | 26.2        | +0.6          | +0.0           | +11.5         | -30.1                   |       | 45.5   | E 4 O  | 0.7              | TT'    |
|     | 9619.999M                                                   | 26.2        | +36.7         | +1.5           | -30.4         | +7.5                    | +0.0  | 45.5   | 54.0   | -8.5             | Horiz  |
|     | Ave                                                         | 20.1        | +4.0          | +0.0           | +0.0          | +0.0                    | 100   | 57 A   | 540    | 12.4             | Hor:'- |
|     | 9620.000M                                                   | 38.1        | +36.7         | +1.5           | -30.4         | +7.5                    | +0.0  | 57.4   | 54.0   | +3.4             | Horiz  |
| 1,6 | 9622.010M                                                   | 26.2        | +4.0          | +0.0           | +0.0          | +0.0                    | +0.0  | 45.5   | 54.0   | -8.5             | Vert   |
|     | 9622.010M<br>Ave                                            | ∠0.∠        | +36.7<br>+4.0 | $+1.5 \\ +0.0$ | -30.4<br>+0.0 | +7.5<br>+0.0            | +0.0  | 43.3   | J4.U   | -8.3             | vert   |
|     | 9622.000M                                                   | 38.8        | +36.7         | +1.5           | -30.4         | +7.5                    | +0.0  | 58.1   | 54.0   | +4.1             | Vert   |
|     | 9044.000IVI                                                 | 30.0        | +30.7         | $^{+1.5}$      | -30.4<br>+0.0 | +7.3<br>+0.0            | +0.0  | 30.1   | J4.U   | <del>+4.</del> 1 | v ert  |
| 10  | 571.020M                                                    | 45.7        | +0.0          | +0.0           | +0.0          | +1.0                    | +0.0  | 37.2   | 46.0   | -8.8             | Vert   |
| 10  | 3 / 1.020IVI                                                | +3.1        | +0.0          | +0.0           | +19.5         | -30.1                   | FU.U  | 31.4   | +0.0   | -0.0             | V CI l |
| 10  | 4809.990M                                                   | 32.9        | +31.6         | +1.1           | -30.4         | +4.0                    | +0.0  | 42.7   | 54.0   | -11.3            | Vert   |
|     | Ave                                                         | 34.7        | +31.0         | +0.0           | +0.0          | +0.0                    | 10.0  | 74.1   | 57.0   | 11.3             | V 01 t |
|     | 184.525M                                                    | 51.0        | +0.0          | +0.0           | +0.0          | +0.6                    | +0.0  | 31.8   | 43.5   | -11.7            | Vert   |
|     | 10 T.JZJIVI                                                 | 51.0        | +0.7          | +0.0           | +9.0          | -29.5                   | 10.0  | 21.0   | тэ.Э   | 11./             | v 01 t |
| L   |                                                             |             | 10.7          | 10.0           | 17.0          | 27.5                    |       |        |        |                  |        |

Page 25 of 31 Report No.: 92946-5A



|     | 7215.005M          | 28.3 | +34.4         | +1.3         | -30.4         | +4.9         | +0.0   | 41.9         | 54.0        | -12.1 | Horiz        |
|-----|--------------------|------|---------------|--------------|---------------|--------------|--------|--------------|-------------|-------|--------------|
|     | Ave                | 40.5 | +3.4          | +0.0         | +0.0          | +0.0         | 0.0    | <b>7.4.1</b> | 740         | 0.1   | ** .         |
| ^   | 7215.000M          | 40.5 | +34.4<br>+3.4 | +1.3<br>+0.0 | -30.4<br>+0.0 | +4.9<br>+0.0 | +0.0   | 54.1         | 54.0        | +0.1  | Horiz        |
| 23  | 7217.008M          | 28.3 | +34.4         | +1.3         | -30.4         | +4.9         | +0.0   | 41.9         | 54.0        | -12.1 | Vert         |
|     | Ave                | 20.5 | +3.4          | +0.0         | +0.0          | +0.0         | 10.0   | 11.7         | 51.0        | 12.1  | , 010        |
|     | 7217.000M          | 42.5 | +34.4         | +1.3         | -30.4         | +4.9         | +0.0   | 56.1         | 54.0        | +2.1  | Vert         |
|     | 7217.000IVI        | 72.3 | +3.4          | +0.0         | +0.0          | +0.0         | 10.0   | 30.1         | 34.0        | 12.1  | VCIt         |
| 25  | 62.510M            | 51.2 | +0.0          | +0.0         | +0.0          | +0.3         | +0.0   | 27.4         | 40.0        | -12.6 | Horiz        |
| 23  | 02.31011           | 31.2 | +0.4          | +0.0         | +5.9          | -30.4        | 10.0   | 27.4         | 40.0        | 12.0  | HOHZ         |
| 26  | 125.000M           | 48.1 | +0.0          | +0.0         | +0.0          | +0.5         | +0.0   | 30.6         | 43.5        | -12.9 | Horiz        |
| 20  | 123.000141         | 40.1 | +0.6          | +0.0         | +11.5         | -30.1        | 10.0   | 30.0         | 43.3        | 12.7  | HOHZ         |
| 27  | 220.426M           | 50.3 | +0.0          | +0.0         | +0.0          | +0.6         | +0.0   | 32.8         | 46.0        | -13.2 | Vert         |
|     | QP                 | 50.5 | +0.7          | +0.0         | +10.4         | -29.2        | +0.0   | 32.0         | 40.0        | -13.2 | VCIT         |
| ٨   | 220.420M           | 57.8 | +0.0          | +0.0         | +0.0          | +0.6         | +0.0   | 40.3         | 46.0        | -5.7  | Vert         |
|     | 220.420W           | 37.0 | +0.0          | +0.0         | +10.4         | -29.2        | +0.0   | 40.5         | 40.0        | -3.7  | VEIL         |
| 29  | 483.229M           | 43.5 | +0.7          | +0.0         | +0.0          | +0.9         | +0.0   | 32.6         | 46.0        | -13.4 | Horiz        |
| 29  | 403.229W           | 43.3 | +0.0          | +0.0 +0.0    | +17.2         | -30.0        | +0.0   | 32.0         | 40.0        | -13.4 | HOHZ         |
| 20  | (50 000M           | 20.0 |               |              |               |              | .00    | 32.5         | 46.0        | 12.5  | II           |
| 30  | 659.990M           | 39.8 | +0.0          | +0.0         | +0.0          | +1.1         | +0.0   | 32.3         | 46.0        | -13.5 | Horiz        |
| 21  | 7254 00014         | 26.4 | +1.2          | +0.0         | +20.4         | -30.0        | . 0. 0 | 40.0         | 540         | 140   | Vert         |
|     | 7254.000M          | 26.4 | +34.5         | +1.3         | -30.6         | +4.9         | +0.0   | 40.0         | 54.0        | -14.0 | vert         |
|     | Ave 7254 000M      | 40.7 | +3.5          | +0.0         | +0.0          | +0.0         | .00    | 512          | 540         | .0.2  | <b>X</b> /4  |
| ^   | 7254.000M          | 40.7 | +34.5         | +1.3         | -30.6         | +4.9         | +0.0   | 54.3         | 54.0        | +0.3  | Vert         |
| 22  | 500 000 <b>)</b> ( | 10.5 | +3.5          | +0.0         | +0.0          | +0.0         | . 0. 0 | 20.0         | 16.0        | 1.6.1 | <b>T</b> 7   |
| 33  | 500.000M           | 40.5 | +0.0          | +0.0         | +0.0          | +1.0         | +0.0   | 29.9         | 46.0        | -16.1 | Vert         |
| 2.4 | 250,00014          | 44.0 | +1.0          | +0.0         | +17.4         | -30.0        | . 0. 0 | 20.0         | 46.0        | 16.0  | <b>T</b> 7 4 |
| 34  | 250.000M           | 44.9 | +0.0          | +0.0         | +0.0          | +0.7         | +0.0   | 29.8         | 46.0        | -16.2 | Vert         |
| 25  | 4010 01014         | 27.5 | +0.8          | +0.0         | +12.4         | -29.0        | . 0. 0 | 27.2         | 540         | 167   | TT           |
|     | 4810.010M          | 27.5 | +31.6         | +1.1         | -30.4         | +4.0         | +0.0   | 37.3         | 54.0        | -16.7 | Horiz        |
|     | Ave                | 40.0 | +3.5          | +0.0         | +0.0          | +0.0         | 0.0    | <b>70.</b> 1 | <b>7</b> 40 |       | ** .         |
| ^   | 4810.000M          | 48.3 | +31.6         | +1.1         | -30.4         | +4.0         | +0.0   | 58.1         | 54.0        | +4.1  | Horiz        |
|     | 240.0053.5         |      | +3.5          | +0.0         | +0.0          | +0.0         | 0.0    | 20.7         | 4.6.0       |       | ** .         |
| 37  | 240.005M           | 44.4 | +0.0          | +0.0         | +0.0          | +0.6         | +0.0   | 28.5         | 46.0        | -17.5 | Horiz        |
| •   |                    |      | +0.8          | +0.0         | +11.8         | -29.1        |        |              |             |       |              |
|     | 4850.040M          | 26.2 | +31.6         | +1.1         | -30.3         | +4.0         | +0.0   | 36.2         | 54.0        | -17.8 | Horiz        |
|     | Ave                |      | +3.6          | +0.0         | +0.0          | +0.0         |        |              |             |       |              |
| ^   | 4850.030M          | 48.5 | +31.6         | +1.1         | -30.3         | +4.0         | +0.0   | 58.5         | 54.0        | +4.5  | Horiz        |
|     | 220 1212 5         |      | +3.6          | +0.0         | +0.0          | +0.0         | 0.0    | 20.1         | 450         | 4- ^  | ** .         |
| 40  | 220.421M           | 45.6 | +0.0          | +0.0         | +0.0          | +0.6         | +0.0   | 28.1         | 46.0        | -17.9 | Horiz        |
|     | 402.222.5          | 20.  | +0.7          | +0.0         | +10.4         | -29.2        |        | 27.7         | 1.5 ^       | 40.5  | **           |
| 41  | 483.220M           | 38.6 | +0.0          | +0.0         | +0.0          | +0.9         | +0.0   | 27.7         | 46.0        | -18.3 | Vert         |
|     |                    |      | +1.0          | +0.0         | +17.2         | -30.0        |        |              |             |       |              |
| 42  | 499.986M           | 38.1 | +0.0          | +0.0         | +0.0          | +1.0         | +0.0   | 27.5         | 46.0        | -18.5 | Horiz        |
|     | .=                 |      | +1.0          | +0.0         | +17.4         | -30.0        |        |              |             |       |              |
|     | 4799.866M          | 25.4 | +31.6         | +1.1         | -30.4         | +4.0         | +0.0   | 35.2         | 54.0        | -18.8 | Horiz        |
|     | Ave                |      | +3.5          | +0.0         | +0.0          | +0.0         |        |              |             |       |              |
| ^   | 4799.860M          | 42.1 | +31.6         | +1.1         | -30.4         | +4.0         | +0.0   | 51.9         | 54.0        | -2.1  | Horiz        |
|     |                    |      | +3.5          | +0.0         | +0.0          | +0.0         |        |              |             |       |              |
| 45  | 250.020M           | 41.8 | +0.0          | +0.0         | +0.0          | +0.7         | +0.0   | 26.7         | 46.0        | -19.3 | Horiz        |
|     |                    |      | +0.8          | +0.0         | +12.4         | -29.0        |        |              |             |       |              |
| 46  | 660.020M           | 33.4 | +0.0          | +0.0         | +0.0          | +1.1         | +0.0   | 26.1         | 46.0        | -19.9 | Vert         |
|     |                    |      | +1.2          | +0.0         | +20.4         | -30.0        |        |              |             |       |              |
|     | ·                  |      |               |              |               |              | ·      |              | ·           | ·     |              |

Page 26 of 31 Report No.: 92946-5A



| 47 | 480.020M | 37.0 | +0.0 | +0.0 | +0.0  | +0.9  | +0.0 | 26.0 | 46.0 | -20.0 | Vert  |
|----|----------|------|------|------|-------|-------|------|------|------|-------|-------|
|    |          |      | +1.0 | +0.0 | +17.1 | -30.0 |      |      |      |       |       |
| 48 | 479.999M | 36.2 | +0.0 | +0.0 | +0.0  | +0.9  | +0.0 | 25.2 | 46.0 | -20.8 | Vert  |
|    |          |      | +1.0 | +0.0 | +17.1 | -30.0 |      |      |      |       |       |
| 49 | 480.013M | 34.6 | +0.0 | +0.0 | +0.0  | +0.9  | +0.0 | 23.6 | 46.0 | -22.4 | Horiz |
|    |          |      | +1.0 | +0.0 | +17.1 | -30.0 |      |      |      |       |       |
| 50 | 239.999M | 38.8 | +0.0 | +0.0 | +0.0  | +0.6  | +0.0 | 22.9 | 46.0 | -23.1 | Vert  |
|    |          |      | +0.8 | +0.0 | +11.8 | -29.1 |      |      |      |       |       |
| 51 | 184.425M | 36.4 | +0.0 | +0.0 | +0.0  | +0.6  | +0.0 | 17.2 | 43.5 | -26.3 | Horiz |
|    |          |      | +0.7 | +0.0 | +9.0  | -29.5 |      |      |      |       |       |

Date: 11/19/2012 Time: 09:15:14 Deadman Technologies, LLC. WO#: 92946 15.209 Radiated Emissions Test Distance: 3 Meters Sequence#: 4 Ext ATTN: 0 dB





# Test Setup Photos











# SUPPLEMENTAL INFORMATION

## **Measurement Uncertainty**

| Uncertainty Value | Parameter                 |
|-------------------|---------------------------|
| 4.73 dB           | Radiated Emissions        |
| 3.34 dB           | Mains Conducted Emissions |
| 3.30 dB           | Disturbance Power         |

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

### **Emissions Test Details**

#### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in  $dB\mu V/m$ , the spectrum analyzer reading in  $dB\mu V$  was corrected by using the following formula. This reading was then compared to the applicable specification limit.

Page 30 of 31 Report No.: 92946-5A



|   | SAMPLE CALCULATIONS  |          |  |  |  |  |  |  |  |
|---|----------------------|----------|--|--|--|--|--|--|--|
|   | Meter reading (dBμV) |          |  |  |  |  |  |  |  |
| + | Antenna Factor       | (dB)     |  |  |  |  |  |  |  |
| + | Cable Loss           | (dB)     |  |  |  |  |  |  |  |
| - | Distance Correction  | (dB)     |  |  |  |  |  |  |  |
| - | Preamplifier Gain    | (dB)     |  |  |  |  |  |  |  |
| = | Corrected Reading    | (dBμV/m) |  |  |  |  |  |  |  |

#### TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING           | MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                  |                   |  |  |  |  |  |  |
|---------------------|------------------------------------------------------------|------------------|-------------------|--|--|--|--|--|--|
| TEST                | BEGINNING FREQUENCY                                        | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |  |  |  |  |
| CONDUCTED EMISSIONS | 150 kHz                                                    | 30 MHz           | 9 kHz             |  |  |  |  |  |  |
| RADIATED EMISSIONS  | 9 kHz                                                      | 150 kHz          | 200 Hz            |  |  |  |  |  |  |
| RADIATED EMISSIONS  | 150 kHz                                                    | 30 MHz           | 9 kHz             |  |  |  |  |  |  |
| RADIATED EMISSIONS  | 30 MHz                                                     | 1000 MHz         | 120 kHz           |  |  |  |  |  |  |
| RADIATED EMISSIONS  | 1000 MHz                                                   | >1 GHz           | 1 MHz             |  |  |  |  |  |  |

### SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("A") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

### **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

### **Average**

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 31 of 31 Report No.: 92946-5A