CSE 31 Computer Organization

Lecture 7 – Integer Representations (2)
MIPS Assembly Language

Announcement

- No Lecture next Monday (Holiday)
 - We do have labs next week
 - Extended due date for Monday lab.
- Lab #3 this week
 - Due at 11:59pm on the same day of your next lab
 - You must demo your submission to your TA within 14 days
- HW #1 out this Friday in CatCourses
 - Due Monday (2/25) at 11:59pm
- Reading assignment #1
 - Chapter 1.1 1.3 of zyBook
 - Do all Participation Activities in each section
 - Access through CatCourses
 - Due Wednesday (2/20) at 11:59pm
- Reading assignment #2
 - Chapter 2.1 2.9 of zyBook
 - Due Wednesday (2/27) at 11:59pm

Negative Numbers

So far, unsigned numbers

- Obvious solution: define leftmost bit to be sign!
 - \circ 0 \rightarrow + , 1 \rightarrow -
 - Rest of bits can be numerical value of number
- Representation called sign and magnitude

Shortcomings of Sign Magnitude?

- Arithmetic circuit complicated
 - Special steps depending whether signs are the same or not
- Also, two zeros
 - \circ 0x00000000 = +0_{ten}
 - \circ 0x80000000 = -0_{ten}
 - What would two 0s mean for programming?
- Also, incrementing "binary odometer", sometimes increases values, and sometimes decreases!
- Therefore sign and magnitude abandoned

Another try

- Complement the bits
 - Example: $7_{10} = 00111_2 7_{10} = 11000_2$
 - Called One's Complement
 - Note: positive numbers have leading 0s, negative numbers have leadings 1s.
 - What is -00000?

- How many positive numbers in N bits? 2^{N-1}
- How many negative numbers? 2^{N-1}

Shortcomings of One's complement?

- Arithmetic is less complicate than sign & magnitude.
- Still two zeros
 - \circ 0x00000000 = +0_{ten}
 - $0xFFFFFFFF = -0_{ten}$
- Although used for a while on some computer products, one's complement was eventually abandoned because another solution was better.

Standard Negative # Representation

- Problem is the negative mappings "overlap" with the positive ones (the two 0s). Want to shift the negative mappings left by one.
 - Solution! For negative numbers, complement, then add 1 to the result
- As with sign and magnitude, & one's complement, leading 0s → positive, leading 1s → negative
 - 000000...xxx is ≥ 0, 111111...xxx is < 0
 - except 1...1111 is -1, not -0
- ▶ This representation is *Two's Complement*
- This makes the hardware simple!

In C: short, int, long long, intN_t (C99) are all signed integers.

Two's Complement Formula

Can represent positive <u>and negative</u> numbers in terms of the bit value times a power of 2:

$$d_{31} \times (-(2^{31})) + d_{30} \times 2^{30} + ... + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0$$

Example: 1101_{two}

$$= 1x-(2^3) + 1x2^2 + 0x2^1 + 1x2^0$$
$$= -2^3 + 2^2 + 0 + 2^0$$

$$= -8 + 4 + 0 + 1$$

$$= -8 + 5$$

Example: -3 to +3 to -3:

$$\begin{array}{lll} x: & 1101_{two} \ (-3) \\ x': & 0010_{two} \ (-3) \\ +1: & 0011_{two} \ (3) \\ ()': & 1100_{two} \end{array}$$

2's Complement Number "line": N = 5

Bias Encoding: N = 5 (bias = -15)

Summary

- We represent "things" in computers as particular bit patterns:
 - N bits $\rightarrow 2^N$ things
- Different integer encodings have different benefits; 1s complement and sign/mag have most problems.
- unsigned (C99's uintN t):

2's complement (C99's intN t): universal, learn it!

Overflow: numbers ∞; computers finite → errors!

Floating Point Numbers

- ▶ How best to represent: 2.75₁₀?
 - 2s Complement (but shift binary pt)
 - Bias (but shift binary pt)
 - Combination of 2 encodings
 - Combination of 3 encodings
 - We can't

Shifting *binary point* means "divide" number by some power of 2.

$$11_{10} = 1011.0_2 \rightarrow 10.110_2 = (11/4)_{10} = 2.75_{10}$$

Representation of Fractions

"Binary Point" like decimal point signifies boundary between integer and fractional parts:

Example 6-bit representation:

$$10.1010_2 = 1x2^1 + 1x2^{-1} + 1x2^{-3} = 2.625_{10}$$

If we assume "fixed binary point", range of 6-bit representations with this format:

0 to 3.9375 (almost 4)

Fractional Powers of 2

i	2 ⁻ⁱ	
0.	1.0	1
1.	0.5	1/2
2.	0.25	1/4
3.	0.125	1/8
4.	0.0625	1/16
5.	0.03125	1/32
6.	0.015625	
7.	0.0078125	
8.	0.00390625	
9.	0.001953125	
10.	0.0009765625	
11.	0.00048828125	
12.	0.000244140625	
13.	0.0001220703125	
14.	0.00006103515625	
15.	0.000030517578125	