ДЗ к семинару 23

Задача 1. Разложить на неприводимые множители:

1.
$$x^3 + 2x^2 + 4x + 1$$
 B $\mathbb{F}_5[x]$;

2.
$$x^4 + x^3 + x + 2$$
 в $\mathbb{F}_3[x]$.

Задача 2. Доказать, что:

- 1. $F[x]/(x-\alpha) \cong F$, где F поле и $\alpha \in F$;
- 2. $\mathbb{R}[x]/(x^2+x+1) \cong \mathbb{C}$.

Задача 3. При каких $a \in \mathbb{F}_7$ факторкольцо $\mathbb{F}_7[x]/(x^2+a)$ является полем?

Задача 4. Доказать, что факторкольцо $\mathbb{F}_7[x]/(x^2+2)$ является полем и в этом поле вычислить выражение

$$\frac{x^3 + 4}{5x^2 + 4x + 1}$$

(то есть представить выражение в виде многочлена степени ≤ 1).

Задача 5. Доказать, что факторкольцо $\mathbb{F}_5[x]/(x^2+2x+3)$ является полем и в этом поле вычислить выражение

$$\frac{3x^3 + 3x^2 + 4x + 4}{4x + 3} + (x^3 + 3x^2 + 1)(3x^3 + 3x + 3) - \frac{4x^3 + 3x^2 + 2}{4x^2 + 2x + 4}$$

(то есть представить выражение в виде многочлена степени ≤ 1).

Задача 6. Доказать, что факторкольцо $\mathbb{Q}[x]/(x^3-2)$ является полем и в этом поле вычислить выражение

$$\frac{x^2 - x + 1}{x^2 + x + 1}$$

(то есть представить выражение в виде многочлена степени ≤ 2).