Algebraic Topology knowledge

Betti number

Betti number: the d_{th} Betti number counts the number of d-dimensional holes, It can be used to distinguish between spaces.

- β_0 Connected components
- β_1 Tunnels
- β_2 Voids

Space	eta_0	eta_1	eta_2
Point	1	0	0
Cube	1	0	1
\mathbf{Sphere}	1	0	1
Torus	1	2	1

Simplicial complex

Abstract simplicial complex: We call a non-empty family of sets K with a collection of non-empty subsets S an abstract simplicial complex if:

$$1\{v\} \in S \text{ for all } v \in K.$$

2 If
$$\sigma \in S$$
 and $\tau \subseteq \sigma$, then $\tau \in K$.

Simplicial complexes can be decomposed into their skeletons, which only contain simplices of a certain dimension.

Simplices

The elements of a simplicial complex K are called simplices. A k-simplex consists of k+1 .

0-simplex: a point

1-simplex: a line

2-simplex: a triangle

3-simplex: a tetrahedron

Group

A group is a set G with a binary operation - that combines two elements to yield another one, such that (G, \cdot) has the following properties:

- 1 The operation is closed, i.e. $a \cdot b \in G$ for $a, b \in G$.
- 2 The operation is associative, i.e. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for $a, b, c \in G$.
- 3 There is an identity element $e \in G$ such that $e \cdot a = a \cdot e$ for $a \in G$.
- 4 Each $a \in G$ has an inverse element $a^{-1} \in G$ such that $a \cdot a^{-1} = e = a^{-1} \cdot a$.

The operation is not required to be commutative. In general, $a \cdot b = b \cdot a$ is not required to hold.

Given a simplicial complex K, the p^{th} **chain group** C_p of K consists of all combinations of p-simplices in the complex. Coefficients are in \mathbb{Z}_2 , hence all elements of C_p are of the form $\sum_j \sigma_j$, for $\sigma_j \in K$. The group operation is addition with \mathbb{Z}_2 coefficients.

 \mathbb{Z}_2 is convenient for implementation reasons because addition can be implemented as symmetric difference. Other choices are possible!

We need chain groups to algebraically express the concept of a boundary. example for chain group

Boundary

Boundary homomorphism: Given a simplicial complex K, the $p^{
m th}$

boundary homomorphism is a function that assigns each simplex $\sigma=\{v_0,\ldots,v_p\}\in \mathrm{K}$ to its boundary:

$$\partial_p \sigma = \sum_i ig\{ v_0, \dots, \hat{v}_i, \dots, v_k ig\}$$

In the equation above, \hat{v}_i indicates that the set does not contain the $i^{ ext{th}}$ vertex. e.g. $\partial_1\left(\{v_0,v_1\}\right)=\{v_1\}+\{v_0\}$

The function $\partial_p:C_p\to C_{p-1}$ is thus a homomorphism between the chain groups.

 ∂_p is a function that takes each p-simplex in K and assigns it to a combination of its (p-1)-dimensional faces, which are the **boundaries** of the p simplex.

also taking the example of triangle

Let $K = \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}\}$. The boundary of the triangle is non-trivial:

$$\partial_2 \{a,b,c\} = \{b,c\} + \{a,c\} + \{a,b\}$$

The boundary of its edges is trivial, though:

$$\partial_1(\{b,c\}+\{a,c\}+\{a,b\})=\{c\}+\{b\}+\{c\}+\{a\}+\{b\}+\{a\}=0$$

Chain complex

Chain complex: For all p, we have $\partial_{p-1} \circ \partial_p = 0$: Boundaries do not have a boundary themselves. This leads to the chain complex:

$$0\stackrel{\partial_{n+1}}{\longrightarrow} C_n\stackrel{\partial_n}{\longrightarrow} C_{n-1}\stackrel{\partial_{n-1}}{\longrightarrow}\dots\stackrel{\partial_2}{\longrightarrow} C_1\stackrel{\partial_1}{\rightarrow} C_0\stackrel{\partial_0}{\rightarrow} 0$$

Kernel

The kernel of a homomorphism $f:A\to B$ is the set of all elements that are mapped to the zero element, i.e. $\ker f:=\{a\in A\mid f(a)=0\}\subseteq A.$ Kernel means the loss of information or the identity of transformation

Image

The image of f is the set of all its outputs, i.e. im $f := \{f(a) \mid a \in A\} \subseteq B$.

Cycle group $Z_p = \ker \partial_p$

A cycle is a closed shape, means that when you apply the boundary operation ∂_p , you get zero.

Boundary group $B_p = \operatorname{im} \partial_{p+1}$

The boundaries of (p+1)-simplices are exactly the p dimensional "faces" that define the perimeter or surface of the (p+1) simplices.

We have $B_p \subseteq Z_p$ in the group-theoretical sense. In other words, every boundary is also a cycle.

The boundary is something comes from high dimension, The boundary of a p-simplex is formed by its (p-1)-dimensional faces

The cycle is something that is created in same dimension. A cycle is a combination of simplices in the same dimension that together form a closed loop or closed shell

Normal subgroup

Let G be a group and N be a subgroup. N is a normal subgroup if $gng^{-1} \in N$ for all $g \in G$ and $n \in N$.

For an Abelian group, every subgroup is normal

Abelian group: group(associativity, identity, inverse, closure) plus commutative.

Lie group: both group and manifold

Quotient group

Let G be a group and N be a normal subgroup of G. Then the quotient group is defined as $G/N:=\{gN\mid g\in G\}$, partitioning G into equivalence classes.

 $2\mathbb{Z}\subseteq\mathbb{Z}$ is the subgroup of \mathbb{Z} defined by being a multiple of 2 . Hence, $\mathbb{Z}/2\mathbb{Z}$ consists of only 0 and 1.

 $0+2\mathbb{Z}$ and $1+2\mathbb{Z}$ are two cosets in \mathbb{Z} .

Why quotient groups?

Quotient groups 'reduce' a group by partitioning it into equivalence classes that are defined by another subgroup.

Homology group

The p^{th} homology group H_p is a quotient group, defined by 'removing' cycles that are boundaries from a higher dimension:

$$H_p=Z_p/B_p=\ker\partial_p/\operatorname{im}\partial_{p+1},$$

With this definition, we may finally calculate the $p^{
m th}$ Betti number:

$$eta_p=\operatorname{rank} H_p$$

Intuition

Calculate all boundaries, remove the boundaries that come from higherdimensional objects, and count what is left.

Example

Notice that K does not contain the 2 -simplex $\{a,b,c\}$, meaning it's the "hollow" triangle with only vertices and edges.

To compute H_0 , we need to calculate $Z_0 = \ker \partial_0$ and $B_0 = \operatorname{im} \partial_1$.

Calculating Z_0

We have $Z_0 = \ker \partial_0 = \operatorname{span}(\{a\}, \{b\}, \{c\})$, because each one of these simplices is mapped to zero. Since we cannot express any one of these simplices as a linear combination of the others, we have $Z_0 = (\mathbb{Z}/2\mathbb{Z})^3$,

Calculating B_0

We have $B_0 = \operatorname{im} \partial_1 = \operatorname{span}(\{a\} + \{b\}, \{b\} + \{c\}, \{a\} + \{c\})$. However, since

 $\{a\} + \{b\} + \{c\} = \{a\} + \{c\}$, there are only two independent elements, i.e. im $\partial_1 = \text{span}(\{a\} + \{b\}, \{b\} + \{c\})$. Hence, $B_0 = (\mathbb{Z}/2\mathbb{Z})^2$.

By definition, $H_0=Z_0/B_0=(\mathbb{Z}/2\mathbb{Z})^3/(\mathbb{Z}/2\mathbb{Z})^2=\mathbb{Z}/2\mathbb{Z}.$ Hence, $\beta_0=\operatorname{rank} H_0=1.$

Intuition

Our calculation tells us that the simplicial complex has a single connected component!

To compute H_1 , we need to calculate $Z_1 = \ker \partial_1$ and $B_1 = \operatorname{im} \partial_2$.

Calculating Z_1

We have $Z_1=\ker\partial_1=\mathrm{span}(\{a,b\}+\{b,c\}+\{a,c\})$. This is the only cycle in K; we can verify this by inspection or pure combinatorics. Hence, $Z_1=\mathbb{Z}/2\mathbb{Z}$.

Calculating B_1

There are no 2-simplices in K, so $B_1 = \operatorname{im} \partial_2 = \{0\}$.

By definition, $H_1=Z_1/B_1=(\mathbb{Z}/2\mathbb{Z})/\{0\}=\mathbb{Z}/2\mathbb{Z}.$ Hence, $\beta_1=\operatorname{rank} H_1=1.$

Intuition

Our calculation tells us that the simplicial complex has a single cycle

Smith normal form

Let M be an $n \times m$ matrix with at least one non-zero entry over some field \mathbb{F} . There are invertible matrices S and T such that the matrix product SMT has the form

$$SMT = egin{pmatrix} b_0 & 0 & 0 & & \dots & 0 \ 0 & b_1 & 0 & & \dots & 0 \ 0 & 0 & \ddots & & & 0 \ dots & & b_k & & dots \ & & & 0 & & \ 0 & & \dots & & 0 \end{pmatrix},$$

where all the entries b_i satisfy $b_i \ge 1$ and divide each other, i.e. $b_i \mid b_{i+1}$. All b_i are unique up to multiplication by a unit.

Homology calculations in practice

- 1 Calculate boundary operator matrices.
- 2 Bring each matrix into Smith normal form (similar to Gaussian elimination).
- 3 Read off description of p^{th} homology group.

Take-away message

- 1 Homology groups characterise topological objects.
- 2 They can be easily expressed as linear operators.
- 3 The calculation of homology groups boils down to linear algebra.