## Рассмотрим следующие высказывания:

- 1) «Если у вас нет собаки, её не отравит сосед»;
- 2) «Нарушение непрерывности функции  $f_1(x)$  в точке  $x_0$  влечёт нарушение её дифференцируемости в этой точке».

### Структура:

$$(\neg A \Rightarrow \neg B)$$

# §3. Формулы логики высказываний. Основные типы формул

## Конструктивное индуктивное определение

#### Определение

- 1) Любая пропозициональная переменная является формулой.
- 2) Если  $\mathfrak A$  формула, то  $\neg \mathfrak A$  формула.
- 3) Если  $\mathfrak A$  и  $\mathfrak B$  формулы, то  $(\mathfrak A \wedge \mathfrak B)$ ,  $(\mathfrak A \vee \mathfrak B)$ ,  $(\mathfrak A \Rightarrow \mathfrak B)$ ,  $(\mathfrak A \Leftrightarrow \mathfrak B)$  формулы.
- 4) других формул нет.

Обозначать формулы логики высказываний в лекциях при необходимости будем готическими заглавными латинскими буквами:

 $\mathfrak{A},\mathfrak{B},\mathfrak{C},\mathfrak{D},\mathfrak{E},\mathfrak{F},\mathfrak{G},$   $\mathfrak{H},\mathfrak{I},\mathfrak{I},\mathfrak{K},\mathfrak{L},\mathfrak{M},\mathfrak{N},\mathfrak{D},\mathfrak{P},$   $\mathfrak{Q},\mathfrak{R},\mathfrak{S},\mathfrak{T},\mathfrak{U},\mathfrak{V},\mathfrak{W},$  $\mathfrak{X},\mathfrak{N},\mathfrak{Z}.$ 

1) 
$$\mathfrak{A} = \neg (A \vee \neg B)$$
;

2) 
$$\mathfrak{B} = \neg A \vee \neg B$$
;

3) 
$$\mathfrak{C} = (\land ABC \Rightarrow)$$
;

4) 
$$\mathfrak{D} = A$$
:

5) 
$$\mathfrak{E} = (A \Rightarrow B) \wedge C$$
;

6) 
$$\mathfrak{F} = (A \wedge B \Rightarrow C)$$
;

7) 
$$\mathfrak{G} = A \wedge B \vee C \wedge D$$
;

Договорённости

### Введём договорённости

Будем считать, что у конъюнкции наивысший приоритет среди операций над двумя высказываниями.

Для упрощения записей договариваемся опускать:

- внешние скобки:
- скобки, которые можно восстановить по принятому приоритету операций.

## Те же примеры:

### \*С учётом договорённостей:

1) 
$$\mathfrak{A} = \neg (A \vee \neg B)$$

2) 
$$\mathfrak{B} = \neg A \vee \neg B$$
;

3) 
$$\mathfrak{C} = (\land ABC \Rightarrow)$$
;

4) 
$$\mathfrak{D} = A$$
:

5) 
$$\mathfrak{E} = (A \Rightarrow B) \land C$$
;

6) 
$$\mathfrak{F} = (A \wedge B \Rightarrow C)$$
;

7) 
$$\mathfrak{G} = A \wedge B \vee C \wedge D$$
;

#### Формула логики высказываний отражает:

- структуру некоторого высказывания,
   т. е. порядок его «сборки» из других
   при помощи логических связок;
- порядок выполнения логических операций для вычисления его значения.

$$\mathfrak{G}=A\overset{1}{\wedge}B\overset{3}{\vee}C\overset{2}{\wedge}D.$$

#### Теорема о единственности декомпозиции

Для любой формулы  $\mathfrak A$  логики высказываний имеет место ровно один из следующих трёх случаев:

- 1)  $\mathfrak A$  некоторая пропозициональная переменная;
- (2) существует единственная формула  $\mathfrak B$  такая, что  $\mathfrak A=
  eg \mathfrak B$ ;
- 3) существуют единственная логическая операция  $\diamond$  из списка  $\land, \lor, \Rightarrow, \Leftrightarrow$  и единственная пара формул логики высказываний  $\mathfrak B$  и  $\mathfrak C$ , взятых именно в таком порядке, такие что  $\mathfrak A=(\mathfrak B\diamond \mathfrak C)$ .

## Пример декомпозиции формулы

$$\mathfrak{A} = (\underbrace{(A \Rightarrow (\neg B \lor C))}_{\mathfrak{A}_0} \Leftrightarrow \underbrace{(\neg C \lor \neg A)}_{\mathfrak{A}_1})$$

$$\mathfrak{A}_0 = (\underbrace{A}_{\mathfrak{A}_{00}} \Rightarrow \underbrace{(\neg B \lor C)}_{\mathfrak{A}_{01}})$$

• 
$$\mathfrak{A}_{00} = A$$

$$\mathfrak{A}_{01} = (\underbrace{\neg B}_{\mathfrak{A}_{010}} \lor \underbrace{C}_{\mathfrak{A}_{011}})$$

$$\mathfrak{A}_{010} = \neg B$$

• 
$$\mathfrak{A}_{011} = C$$

• 
$$\mathfrak{A}_{0100} = B$$

$$\mathfrak{A}_1 = (\underbrace{\neg C}_{\mathfrak{A}_{10}} \lor \underbrace{\neg A}_{\mathfrak{A}_{11}})$$
 $\mathfrak{A}_{10} = \neg C$ 
 $\mathfrak{A}_{11} = \neg A$ 

• 
$$\mathfrak{A}_{100} = C$$
 •  $\mathfrak{A}_{110} = A$ 

## Дерево декомпозиции



Формула  $\mathfrak A$  называется тавтологией, если на любом наборе значений входящих в неё пропозициональных переменных она принимает значение «Истина».

### Пример:

$$\mathfrak{A} = A \vee \neg A$$

Обозначается:

$$\models \mathfrak{A}$$

Формула  $\mathfrak A$  называется противоречием, если на любом наборе значений входящих в неё пропозициональных переменных она принимает значение «Ложь».

$$\mathfrak{A} = A \wedge \neg A$$

Формула  $\mathfrak A$  называется выполнимой, если существует набор значений входящих в неё пропозициональных переменных, на котором она принимает значение «Истина».

$$\mathfrak{A} = A$$

Формула  $\mathfrak A$  называется опровержимой, если существует набор значений входящих в неё пропозициональных переменных, на котором она принимает значение «Ложь».

$$\mathfrak{A} = A$$

### Определение

Формулы  $\mathfrak A$  и  $\mathfrak B$  называются равносильными, если на любом наборе значений всех входящих в них пропозициональных переменных эти формулы принимают одинаковые значения.

#### Обозначается:

$$\mathfrak{A}\equiv\mathfrak{B}$$

# Пример:

### Пример:

$$A \Rightarrow B \equiv \neg A \lor B$$

### Таблицы истинности:

| Α | В | $A \Rightarrow B$ | $\neg A \lor B$ |
|---|---|-------------------|-----------------|
| Л | Л | И                 | И               |
| Л | И | И                 | И               |
| И | Л | Л                 | Л               |
| И | И | И                 | И               |

### Связь равносильности и эквивалетности

#### Теорема

Формулы логики высказываний  $\mathfrak A$  и  $\mathfrak B$  равносильны тогда и только тогда, когда формула ( $\mathfrak A \Leftrightarrow \mathfrak B$ ) является тавтологией, т. е. для любых ФЛВ  $\mathfrak A$  и  $\mathfrak B$ :

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \vDash (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \vDash (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

#### План доказательства

- Покажем необходимость и достаточность по отдельности,
- каждую методом «прямых следствий» (это тот, который не от противного).

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \models (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

#### Доказательство

- Пусть  $A_1, A_2, \ldots, A_n$ , где  $n \geqslant 1$ , это полный список пропозициональных переменных, входящих в формулы  $\mathfrak A$  и  $\mathfrak B$ .
- Покажем необходимость и достаточность по отдельности.
- Для этого в обоих случаях рассмотрим произвольный набор  $A_1^*, A_2^*, \ldots, A_n^*$  значений переменных  $A_1, A_2, \ldots, A_n$  соответственно.

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \vDash (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

#### Доказательство

Докажем необходимость, т. е. что  $\mathfrak{A}\equiv\mathfrak{B}$  влечёт  $dash (\mathfrak{A}\Leftrightarrow\mathfrak{B}).$ 

- Тот факт, что  $\mathfrak{A}\equiv\mathfrak{B}$ , означает, что на любом наборе значений переменных  $A_1,A_2,\ldots,A_n$  значения формул  $\mathfrak A$  и  $\mathfrak B$  совпадают.
- В частности,  $\mathfrak{A}(A_1^*, A_2^*, \dots, A_n^*) = \mathfrak{B}(A_1^*, A_2^*, \dots, A_n^*).$

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \vDash (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

#### Доказательство

- Так как  $\mathfrak{A}(A_1^*,A_2^*,\ldots,A_n^*)=\mathfrak{B}(A_1^*,A_2^*,\ldots,A_n^*),$  нетрудно проверить по определению операции «эквивалентность», что  $(\mathfrak{A}(A_1^*,A_2^*,\ldots,A_n^*)\Leftrightarrow \mathfrak{B}(A_1^*,A_2^*,\ldots,A_n^*))=\mathsf{V}.$
- Поскольку набор  $A_1^*, A_2^*, \ldots, A_n^*$  является произвольным, заключаем, что формула  $(\mathfrak{A} \Leftrightarrow \mathfrak{B})$  принимает значение «Истина» на любом наборе значений входящих в неё пропозициональных переменных,

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \models (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

### Доказательство

- т. е. является тавтологией.
- Необходимость доказана.

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \vDash (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

#### Доказательство

Докажем достаточность, т. е. что из  $\models (\mathfrak{A} \Leftrightarrow \mathfrak{B})$  следует  $\mathfrak{A} \equiv \mathfrak{B}$ .

- Тот факт, что  $\models (\mathfrak{A} \Leftrightarrow \mathfrak{B})$ , означает, что на любом наборе значений переменных  $A_1, A_2, \ldots, A_n$  формула  $(\mathfrak{A} \Leftrightarrow \mathfrak{B})$  принимает значение «Истина».
- В частности,  $(\mathfrak{A}(A_1^*,A_2^*,\ldots,A_n^*)\Leftrightarrow \mathfrak{B}(A_1^*,A_2^*,\ldots,A_n^*))=\mathsf{V}$ .
- По определению операции «эквивалетность», отсюда следует, что  $\mathfrak{A}(A_1^*,A_2^*,\ldots,A_n^*)=\mathfrak{B}(A_1^*,A_2^*,\ldots,A_n^*).$

$$\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow \vDash (\mathfrak{A} \Leftrightarrow \mathfrak{B}).$$

#### Доказательство

- Поскольку набор  $A_1^*, A_2^*, \dots, A_n^*$ значений переменных  $A_1, A_2, \ldots, A_n$  соответственно является произвольным, заключаем, что формулы  $\mathfrak A$  и  $\mathfrak B$ принимают равные значения на любом наборе значений входящих в них переменных,
- т. е. являются равносильными.
- Достаточность доказана,
- необходимость была доказана ранее,
- доказательство теоремы завершено.

## Оглядываемся на пройденный параграф

- Ввели понятие формулы логики высказываний (по индукции, потому что иначе никак).
- Ввели договорённости для упрощения записей.
- ФЛВ отражает структуру (порядок сборки)
   некоторого высказывания, притом однозначно.
- Эту структуру можно изобразить деревом.

## Оглядываемся на пройденный параграф

- Ещё ФЛВ отражает порядок вычислений для нахождения значения высказывания.
- По тому, какие значения может / не может возвращать ФЛВ, ввели типы:
  - тавтология;
  - противоречие;
  - выполнимая;
  - опровержимая.

## Оглядываемся на пройденный параграф

- Две разные ФЛВ могут всегда
   (на любом наборе значений всех входящих в них пропозициональных переменных)
   возвращать одно и то же, назвали такие равносильными.
- Не путать равносильность с эквивалентностью!
   (Хотя некоторая связь есть.)

# §4. Основные равносильности

## Договорённости

### В этом параграфе:

- опущены внешние скобки в формулах,
- в паре равносильностей опущены скобки на основе другой пары равносильностей (по ассоциативности);
- однако оставлены в формулах скобки, которые можно было бы опустить по договорённости о приоритете операций.

## Договорённости

### В этом и последующем параграфах:

- отрицание  $\neg A$  часто записывается как  $\overline{A}$ ;
- мы позволяем себе использовать логические константы «Л» и «И» в записях, касающихся равносильности формул, несмотря на то, что под введённое нами определение формулы логики высказываний они не попадают.

## Простые свойства операций и логических констант

Закон двойного отрицания:

•  $\overline{\overline{A}} \equiv A$ 

Закон непротиворечивости и закон исключённого третьего:

• 
$$\overline{A} \cdot A \equiv \Lambda$$

• 
$$\overline{A} \lor A \equiv M$$

Свойства логических констант:

- A ∧ Л ≡ Л
- $A \wedge M \equiv A$

- A ∨ Л ≡ A
- A ∨ И ≡ И

## Основные свойства конъюнкции и дизъюнкции, 2 из 4

#### Идемпотентность:

(лат. idem — тот же самый, анг. potent — обладающий силой)

• 
$$A \wedge A \equiv A$$

#### Коммутативность:

(анг.  $\leftarrow \phi p$ .  $\leftarrow$  лат. commuto — меняю; меняюсь; обмениваюсь)

• 
$$A \wedge B \equiv B \wedge A$$

• 
$$A \lor B \equiv B \lor A$$

## Основные свойства конъюнкции и дизъюнкции, 4 из 4

#### Ассоциативность:

$$(ahr. \leftarrow лат. associo - присоединяюсь)$$

• 
$$(A \land B) \land C \equiv A \land (B \land C)$$
 •  $(A \lor B) \lor C \equiv A \lor (B \lor C)$ 

#### Дистрибутивность

конъюнкции относительно дизъюнкции

и дизъюнкции относительно конъюнкции:

$$($$
анг.  $\leftarrow \phi p$ .  $\leftarrow$  лат.  $distribuo$  — раздаю, распределяю $)$ 

- $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$
- $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

# Продвинутые

#### Законы де Моргана:

- $\overline{A_1 \wedge A_2 \wedge \cdots \wedge A_n} \equiv \overline{A_1} \vee \overline{A_2} \vee \cdots \vee \overline{A_n}$
- $\overline{A_1 \vee A_2 \vee \cdots \vee A_n} \equiv \overline{A_1} \wedge \overline{A_2} \wedge \cdots \wedge \overline{A_n}$

#### Законы поглощения:

- $A \wedge (A \vee B) \equiv A$
- $A \lor (A \land B) \equiv A$

#### Элементарное склеивание:

•  $(A \wedge \overline{X}) \vee (A \wedge X) \equiv A$ 

#### Обобщённое склеивание:

•  $(A \wedge X) \vee (B \wedge \overline{X}) \equiv (A \wedge X) \vee (B \wedge \overline{X}) \vee (A \wedge B)$ 

## Сведение других операций

Выражение импликации и эквивалетности через конъюнкцию, дизъюнкцию и отрицание:

- $A \Rightarrow B \equiv \overline{A} \lor B$
- $A \Leftrightarrow B \equiv (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$

Важное для доказательств представление эквивалентности:

• 
$$A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$$

# Секретные неосновные

Не основные, но полезные на практике:

- $\overline{A \Rightarrow B} \equiv A \wedge \overline{B}$
- $A \lor (\overline{A} \land B) \equiv A \lor B$

- Пусть  $\mathfrak A$  и  $\mathfrak B$   $\Phi$ ЛВ, причём  $\mathfrak A$  содержит пропозициональную переменную A.
- Обозначим за  $S^A_{\mathfrak{B}}(\mathfrak{A})$  формулу, которая получается в результате подстановки формулы  $\mathfrak{B}$  всюду вместо переменной A в формулу  $\mathfrak{A}$ .

$$\mathfrak{A} = (A \Rightarrow (B \land C)) \lor (A \land B)$$

$$\mathfrak{B} = B \Leftrightarrow D$$

$$S_{\mathfrak{B}}^{A}(\mathfrak{A}) = ((B \Leftrightarrow D) \Rightarrow (B \land C)) \lor ((B \Leftrightarrow D) \land B)$$

# Теорема

Если  $\mathfrak{A} \equiv \mathfrak{B}$  и обе ФЛВ  $\mathfrak{A}$  и  $\mathfrak{B}$  содержат пропозициональную переменную A, то

$$S_{\mathfrak{D}}^{A}(\mathfrak{A}) \equiv S_{\mathfrak{D}}^{A}(\mathfrak{B})$$

для любой ФЛВ **Ώ**.

# Полезный вывод

#### Следствие из теоремы

Несмотря на то, что  $A, B, C, X, A_1, \ldots, A_n$  — это обозначения пропозициональных переменных, все приведённые равносильности остаются справедливыми и в том случае, если  $A, B, C, X, A_1, \ldots, A_n$  в них являются обозначениями некоторых формул логики высказываний.

# Оглядываемся на пройденный параграф

## Ввели основные равносильности:

- закон двойного отрицания,
- закон непротиворечивости и закон исключённого третьего,
- свойства логических констант,
- свойства конъюнкции и дизъюнкции:
  - идемпотентность,
  - коммутативность,
  - ассоциативность,
  - дистрибутивность относительно друг друга,

# Оглядываемся на пройденный параграф

- законы де Моргана,
- законы поглощения,
- элементарное и обобщённое склеивание,
- выражения импликации и эквивалентности через конъюнкцию, дизъюнкцию и отрицание,

и пару неосновных.

И ещё сформулировали теорему и наблюдение из неё!

- «Если 2+2=5, то  $2+2 \neq 5$ »= И
- Но рассуждение «Если  $\mathfrak A$ , то не  $\mathfrak A$ » выглядит неправильным.
- Правильным выглядит рассуждение «Если 🎗, то 🎗».
- Какие рассуждения мы вообще считаем правильными?

# §5. Логическое следствие. Теорема о логическом следствии

- Рассмотрим некоторые ФЛВ:  $\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m,\mathfrak{B}$ , где  $m\geqslant 1$ .
- Пусть  $A_1, A_2, \ldots, A_n$  полный список пропозициональных переменных, входящих в эти формулы  $(n\geqslant 1)$ .

## Определение

Формула  $\mathfrak B$  называется логическим следствием формул  $\mathfrak A_1,\mathfrak A_2,\dots,\mathfrak A_m$ , если на каждом наборе  $A_1^*,A_2^*,\dots,A_n^*$  значений переменных  $A_1,A_2,\dots,A_n$  соответственно, при котором все формулы  $\mathfrak A_1,\mathfrak A_2,\dots,\mathfrak A_m$  принимают значение «Истина», формула  $\mathfrak B$  также принимает значение «Истина».

Обозначение факта логического следования

$$\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_m \models \mathfrak{B}$$

Обозначение того, что формула является тавтологией

$$\models \mathfrak{C}$$

$$A \Rightarrow B$$
,  $B \Rightarrow C$ ,  $A \Rightarrow C$ 

| Α | В | C | $A \Rightarrow B$ | $B \Rightarrow C$ | $A \Rightarrow C$ |
|---|---|---|-------------------|-------------------|-------------------|
| Л | Л | Л | И                 | И                 | И                 |
| Л | Л | И | И                 | И                 | И                 |
| Л | И | Л | И                 | Л                 | И                 |
| Л | И | И | И                 | И                 | И                 |
| И | Л | Л | Л                 | И                 | Л                 |
| И | Л | И | Л                 | И                 | И                 |
| И | И | Л | И                 | Л                 | Л                 |
| И | И | И | И                 | И                 | И                 |

$$A \Rightarrow B, B \Rightarrow C \models A \Rightarrow C$$

Формула  $\mathfrak B$  является логическим следствием формулы  $\mathfrak A$  тогда и только тогда, когда формула  $\mathfrak A\Rightarrow \mathfrak B$  является тавтологией, т. е.

$$\mathfrak{A} \models \mathfrak{B} \Leftrightarrow \models (\mathfrak{A} \Rightarrow \mathfrak{B}).$$

#### План доказательства

- Необходимость и достаточность покажем по отдельности,
- каждую методом от противного.

$$\mathfrak{A} \models \mathfrak{B} \Leftrightarrow \models (\mathfrak{A} \Rightarrow \mathfrak{B})$$

#### Доказательство

Пусть  $A_1, A_2, \ldots, A_n$ , где  $n \geqslant 1$ , — полный список пропозициональных переменных, входящих в формулы  $\mathfrak A$  и  $\mathfrak B$ . Докажем, что  $\mathfrak A \models \mathfrak B$  влечёт  $\models (\mathfrak A \Rightarrow \mathfrak B)$ ,

- т. е. докажем необходимость.
  - От противного. Пусть  $\mathfrak{A} \models \mathfrak{B}$ , но  $ot \models (\mathfrak{A} \Rightarrow \mathfrak{B})$ .

$$\mathfrak{A} \models \mathfrak{B} \Leftrightarrow \models (\mathfrak{A} \Rightarrow \mathfrak{B})$$

#### Доказательство

- $otag\ (\mathfrak{A}\Rightarrow\mathfrak{B})$  означает, что существует такой набор  $A_1^*,A_2^*,\ldots,A_n^*$  значений переменных  $A_1,A_2,\ldots,A_n$  соответственно, что  $\mathfrak{A}(A_1^*,A_2^*,\ldots,A_n^*)\Rightarrow\mathfrak{B}(A_1^*,A_2^*,\ldots,A_n^*)=\Pi.$
- Последнее равносильно тому, что  $\mathfrak{A}(A_1^*,A_2^*,\dots,A_n^*)=\mathsf{V}$ , а  $\mathfrak{B}(A_1^*,A_2^*,\dots,A_n^*)=\mathsf{\Pi}$ .

$$\mathfrak{A} \models \mathfrak{B} \Leftrightarrow \models (\mathfrak{A} \Rightarrow \mathfrak{B})$$

#### Доказательство

- Итак, существует такой набор  $A_1^*, A_2^*, \ldots, A_n^*$  значений переменных  $A_1, A_2, \ldots, A_n$  соответственно, что  $\mathfrak{A}(A_1^*, A_2^*, \ldots, A_n^*) = \mathsf{II}$ , а  $\mathfrak{B}(A_1^*, A_2^*, \ldots, A_n^*) = \mathsf{II}$ .
- Это противоречит тому, что  $\mathfrak{A} \models \mathfrak{B}$ .
- Следовательно, наше предположение о том, что  $otag (\mathfrak{A}\Rightarrow\mathfrak{B}),$  неверно.
- Необходимость доказана.

$$\mathfrak{A} \vDash \mathfrak{B} \Leftrightarrow \vDash (\mathfrak{A} \Rightarrow \mathfrak{B})$$

## Доказательство

Достаточность покажите сами в качестве упражнения.

Пусть  $m \geqslant 2$ . Формула 🎛 является логическим следствием формул  $\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m$ тогда и только тогда, когда формула  $\mathfrak{A}_m \Rightarrow \mathfrak{B}$  является логическим следствием формул  $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_{m-1}$ ,

т. e.

$$\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_m \models \mathfrak{B} \Leftrightarrow \mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_{m-1} \models (\mathfrak{A}_m \Rightarrow \mathfrak{B}).$$

$$\mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_m \models \mathfrak{B} \Leftrightarrow \mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_{m-1} \models (\mathfrak{A}_m \Rightarrow \mathfrak{B}).$$

## Намёки на доказательство

Аналогично доказательству леммы 1.

#### Теорема о логическом следствии

Пусть 
$$m \geqslant 1$$
.

Формула  $\mathfrak{B}$  является логическим следствием формул  $\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m$  тогда и только тогда, когда является тавтологией формула  $(\mathfrak{A}_1\Rightarrow (\mathfrak{A}_2\Rightarrow (\cdots\Rightarrow (\mathfrak{A}_{m-1}\Rightarrow (\mathfrak{A}_m\Rightarrow \mathfrak{B}))\ldots)))$ , т. е.  $\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m\models \mathfrak{B}$ 

$$\begin{array}{c} \mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m \vDash \mathfrak{B} \\ & \qquad \qquad \updownarrow \\ & \qquad \qquad \models (\mathfrak{A}_1 \Rightarrow (\mathfrak{A}_2 \Rightarrow (\cdots \Rightarrow (\mathfrak{A}_{m-1} \Rightarrow (\mathfrak{A}_m \Rightarrow \mathfrak{B}))\ldots))). \end{array}$$

#### Теорема о логическом следствии

$$\begin{array}{c} \mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m \vDash \mathfrak{B} \\ & \qquad \qquad \updownarrow \\ & \qquad \qquad \vDash (\mathfrak{A}_1 \Rightarrow (\mathfrak{A}_2 \Rightarrow (\cdots \Rightarrow (\mathfrak{A}_{m-1} \Rightarrow (\mathfrak{A}_m \Rightarrow \mathfrak{B}))\ldots))). \end{array}$$

## Намёки на доказательство

#### Лемма 2

$$\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_m \models \mathfrak{B} \Leftrightarrow \mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_{m-1} \models (\mathfrak{A}_m \Rightarrow \mathfrak{B}).$$

#### Лемма 1

$$\mathfrak{A} \models \mathfrak{B} \Leftrightarrow \models (\mathfrak{A} \Rightarrow \mathfrak{B})$$

## Следствие

Следующие утверждения эквивалентны:

- 1)  $\mathfrak{A}_1, \mathfrak{A}_2, \ldots, \mathfrak{A}_m \models \mathfrak{B}$
- 2)  $\models (\mathfrak{A}_1 \wedge \mathfrak{A}_2 \wedge \cdots \wedge \mathfrak{A}_m \Rightarrow \mathfrak{B})$
- 3)  $\mathfrak{A}_1 \wedge \mathfrak{A}_2 \wedge \cdots \wedge \mathfrak{A}_m \models \mathfrak{B}$

#### Намёки на доказательство

Обычно в таких ситуациях предлагают схему

$$1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 1$$
.

Я бы предложил  $1\Leftrightarrow 2$  (через  $\equiv$  )

и  $2 \Leftrightarrow 3$  (сообразите, как).

# Оглядываемся на пройденный параграф

- Ввели понятие логического следования, которое лучше подходит для проверки рассуждений на правильность, чем импликация,
- и установили его связи с импликацией и тавтологиями.

§6. Важнейшие правила следования

# Договорённость

• В этом параграфе следование  $\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m \vDash \mathfrak{B}$  будем записывать в формате

$$\frac{\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m}{\mathfrak{B}}$$

 Приведённый в этом параграфе список правил не является исчерпывающим, самих правил можно куда больше придумать.

# Рассуждение от противного

1) Рассуждение от противного (не путать с методом от противного!):

$$\frac{\mathfrak{A} \Rightarrow \mathfrak{B}, \ \overline{\mathfrak{B}}}{\overline{\mathfrak{A}}}$$

- «Если число 107 делится на 4, то оно делится на 2»
- «Число 107 не делится на 2»
- «Число 107 не делится на 4»

# «Правило вывода»

2) «Правило вывода»:

$$\frac{\mathfrak{A} \Rightarrow \mathfrak{B}, \ \mathfrak{A}}{\mathfrak{B}}$$

- «Если число 123123 делится на 1001, то оно делится на 7»
- «Число 123123 делится на 1001»
- «Число 123123 делится на 7»

# Силлогизм

3) Правило силлогизма:

$$\frac{\mathfrak{A} \Rightarrow \mathfrak{B}, \ \mathfrak{B} \Rightarrow \mathfrak{C}}{\mathfrak{A} \Rightarrow \mathfrak{C}}$$

- «Если первые три цифры числа 123125 повторяют его последние три цифры, то оно делится на 1001»
- «Если число 123125 делится на 1001, то оно делится на 7»
- «Если первые три цифры числа 123125 повторяют его последние три цифры, то оно делится на 7»

# Разбор случаев

4) Правило разбора случаев:

$$\frac{\mathfrak{A}\vee\mathfrak{B},\;\mathfrak{A}\Rightarrow\mathfrak{C},\;\mathfrak{B}\Rightarrow\mathfrak{C}}{\mathfrak{C}}$$

- «Число а равно 2 или 4»
- «Если а равно 2, то число 3а является чётным»
- «Если *а* равно 4, то число 3*а* является чётным»
- «Число За является чётным»

# Контрапозиция

5) Правило контрапозиции:

$$\frac{\mathfrak{A}\Rightarrow\mathfrak{B}}{\overline{\mathfrak{B}}\Rightarrow\overline{\mathfrak{A}}}$$

- «Если числа a и b оба положительны, то  $a \times b > 0$ »
- «Если неверно, что  $a \times b > 0$ , то неверно, что числа a и b оба положительны»

# Удаление конъюнкции

6) Правило удаления конъюнкции:

$$\frac{\mathfrak{A}\wedge\mathfrak{B}}{\mathfrak{A}}$$

- «Число 24 делится на 3 и на 2»
- «Число 24 делится на 2»

# Введение дизъюнкции

7) Правило введения дизъюнкции:

$$\frac{\mathfrak{A}}{\mathfrak{A}\vee\mathfrak{B}}$$

- «Число 24 делится на 3»
- «Число 24 делится на 3 или 5»

# Удаление дизъюнкции

8) Правило удаления дизъюнкции:

$$\frac{\mathfrak{A} \vee \mathfrak{B}, \overline{\mathfrak{B}}}{\mathfrak{A}}$$

- «Число 24 делится на 3 или 5»
- «Число 24 не делится на 5»
- «Число 24 делится на 3»

# Неверные следования, не являются правилами:

Следующие схемы рассуждений ошибочны:

$$\frac{\mathfrak{A} \Rightarrow \mathfrak{B}, \ \mathfrak{B}}{\mathfrak{A}}$$

$$\frac{\mathfrak{A}\Rightarrow \mathfrak{B}, \ \overline{\mathfrak{A}}}{\overline{\mathfrak{B}}}$$

Пусть  $\Gamma$  — произвольный конечный список формул (возможно, пустой),  $\mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_m, \mathfrak{B}$  — формулы  $(m \geqslant 1)$ .

#### Утверждение

Пусть 
$$\Gamma \vDash \mathfrak{A}_1, \ \Gamma \vDash \mathfrak{A}_2, \dots, \Gamma \vDash \mathfrak{A}_m$$
 и  $\mathfrak{A}_1, \mathfrak{A}_2, \dots, \mathfrak{A}_m \vDash \mathfrak{B}$ .
Тогда  $\Gamma \vDash \mathfrak{B}$ .

## Следствие из утверждения

Несмотря на то, что в начале параграфа мы договорились под записью

$$\frac{\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m}{\mathfrak{B}}$$

понимать следование  $\mathfrak{A}_1,\mathfrak{A}_2,\ldots,\mathfrak{A}_m \vDash \mathfrak{B}$ ,

все приведённые правила остаются справедливыми и в том случае, если под этой записью понимать более общее утверждение вида

«Если  $\Gamma \vDash \mathfrak{A}_1$ ,  $\Gamma \vDash \mathfrak{A}_2$ ,..., $\Gamma \vDash \mathfrak{A}_m$ , то  $\Gamma \vDash \mathfrak{B}$  для любого конечного списка формул  $\Gamma$ ».

# Оглядываемся на пройденный параграф

#### Ввели основные правила следования:

- рассуждение от противного (не путать с методом от противного!),
- «правило вывода»,
- правило силлогизма,
- правило разбора случаев,
- правило контрапозиции,

# Оглядываемся на пройденный параграф

- правило удаления конъюнкции,
- правило введения дизъюнкции,
- правило удаления дизъюнкции.

и утверждение, которое позволяет применять эти правила в несколько более общем случае.