Universidade Federal de Roraima

Departamento de Ciência da Computação

Análise de Algoritmos

2ª Lista

Aluno: Rodrigo dos Santos Tavares

Questão 2:

a)
$$T(n) = \begin{cases} c, & n = 1 \\ aT(\frac{n}{b}) + c, & n > 1 \end{cases}$$

$$T(n) = a\left[aT(\frac{n}{b^3}) + c\right] + ac + c = a^2T(\frac{n}{b^2}) + a^1c + a^0c$$

$$= a^2\left[aT(\frac{n}{b^3}) + c\right] + ac + c = a^3T(\frac{n}{b^3}) + a^2c + a^1c + a^0c$$

$$a^kT(\frac{n}{b^k}) + \sum_{i=0}^{k-1} a^ic$$

$$n = b^k, \quad k = \log_b n$$

$$a^kT(1) + \sum_{i=0}^{k-1} a^ic$$

b)
$$T(n) = egin{cases} \Theta(1), & n=1 \ 2T\left(rac{n}{2}
ight) + \Theta(n), & n>1 \end{cases}$$
 Método mestre: $n^{\log_2 2} = n = \Theta(n)$ $T(n) = \Theta(n \log n)$

 $c(\frac{a^{(\log_b n)+1}-1}{a-1})$

Questão 3:

a) Grafos são estruturas usadas para representar relações entre objetos, sendo representados por G(V,E), em que V é o conjunto de vértices, e E é o conjunto de arestas. Por exemplo, o Grafo $G(V,E) \mid V = \{1,2,3,4,5\}, E = \{\{1,2\},\{1,3\},\{2,3\},\{2,5\},\{3,4\},\{4,5\}\},$ pode ser representado da seguinte forma:

b) Grafos conexos são grafos em que existe um caminho entre todos os pares de vértices.

Figura 1: Exemplo de grafo conexo

Figura 2: Exemplo de grafo desconexo

A figura 3 representa um grafo desconexo, pois existe um vértice inalcançável.

Grafos acíclicos são grafos cujos caminhos não repetem vértices.

Grafos direcionados são grafos cujas arestas têm uma direção, ou seja, partem de um vértice em direção a outro.

Exemplo de grafo direcionado

Exemplo de grafo acíclico

c) Em um grafo, dois vértices são adjacentes quando têm uma aresta entre eles. Já a vizinhança de um vértice é o grafo formado pelos seus adjacentes, mantendo-se suas arestas.

- **d)** Um **grafo planar** é um grafo que pode ser desenhado no plano sem que nenhuma de suas arestas se cruzem.
- f) Um grafo completo é um grafo em que todas os vértices são adjacentes uns aos outros.

Clique é um subconjunto de um grafo em que seus vértices e arestas formam um grafo completo.

Um **grafo bipartido** consiste em um grafo em que, dividindo-se o grafo em dois conjuntos U e V de vértices, todas as arestas do grafo conectam vértices do conjunto U com o conjunto V.

g) Um grafo simples é um grafo que não tem laços e nem mais de uma aresta ligando dois vértices.

Chama-se **multigrafo** um grafo que não é simples, ou seja, pode ter laços e mais de uma aresta ligando dois vértices.

Um digrafo é um grafo direcionado.

Questão 4:

Matriz de incidência é uma matriz bidirecional que representa a relação entre vértices e arestas.

Matriz de adjacência é uma matriz que representa relação de adjacência entre vértices.

 $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

Uma **lista de adjacências** consiste em um conjunto de V listas de vértices adjacentes a cada vértice do grafo.

 $\{(1,\{3\}),(2,\{3\}),(3,\{1,2\})\}$

Questão 5:

Uma tabela hash é uma associação entre chaves e valores. As chaves, quando usadas como argumento de uma função hash, retornam um valor da tabela, o que permite que se possa fazer uma "busca" com complexidade O(1).

Uma função hash pode acabar gerando o mesmo resultado para chaves diferentes, causando conflito na tabela. Uma maneira de resolver este conflito seria usando uma lista de valores no lugar de apenas um valor, o que aumentaria a complexidade das operações para O(n).

Como alternativa à lista, pode-se usar também árvores balanceadas para os valores das chaves, garantindo uma menor complexidade $O(\log n)$.

Questão 6:

No **método da enumeração**, se enumera as soluções para um problema. Enquanto na **enumeração explícita** se enumera <u>todas</u> as soluções possíveis, na **implícita** se enumera baseado na solução de subproblemas, diminuindo a quantidade de soluções possíveis.

Programação dinâmica consiste em armazenar soluções para subproblemas em uma tabela, para evitar que se calcule informações desnecessariamente. Isso pode diminuir o número de recursões, melhorando consideravelmente a complexidade de um algoritmo.

Algoritmo guloso é um algoritmo que procura sempre alcançar um resultado esperado a partir de uma heurística, mesmo que esse resultado não seja o melhor. Este tipo de algoritmo analisa apenas o próximo passo e toma uma decisão supondo a que estaria mais próxima do resultado final.

Backtracking é considerar outros caminhos em uma árvore de decisões, ou seja, voltar atrás em passos já tomados para tomar decisões diferentes.

Questão 9:

a) O problema da satisfatibilidade consiste em atribuir valores a uma expressão booleana na forma normal conjuntiva afim de verificar se existe uma solução verdadeira.

$$(\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2)$$
$$x_1 = T, \qquad x_2 = F$$

b) As classes P, NP, NP-Completo e NP-Difícil caracterizam problemas quanto à sua solução em tempo polinomial.

P é solucionável em tempo polinomial.

NP não é solucionável em tempo polinomial.

NP-Difícil são problemas que não são solucionáveis em tempo polinomial.

NP-Completo é a interseção entre NP e NP-Difícil: representa problemas que têm solução, mas não em tempo polinomial.