Microeconomía I (EC301)-II semestre de 2014 Clases #5 y #6 - Las preferencias del consumidor

Andrés M. Castaño

Ingeniería Comercial Universidad Católica del Norte Septiembre 1 y 5 de 2014

Introducción teoría del consumidor

- En el capítulo de restricción presupuestaria vimos que los individuos seleccionaban las cestas que estaban a su "alcance".
- Ahora vamos a ver cómo el individuo selecciona las "mejores cestas".
- Un bien consumido en dos lugares o circunstancias distintas equivale a dos o más bienes distintos.
- Un consumidor siempre escoge la cesta más preferida dentro de las cestas que son factibles.

Las preferencias del consumidor: enfoque cardinal vs ordinal

- Las personas escogen los bienes y servicios que valoran más ⇒
 Cómo cuantificamos esa valoración? ⇒ concepto de utilidad
- El problema de cuantificar la utilidad

 Dio paso a un enfoque de preferencias.
- Las preferencias son el fundamento para analizar la elección, la utilidad es una forma de describirlas.
- Utilidad ordinal vs utilidad cardinal.

Importa el orden no la magnitud

Cesta	U_1	U_2	U_3
A	3	17	- 1
В	2	10	- 2
С	1	0,002	-3

Relaciones de preferencia

- Dadas dos cestas de consumo cualesquiera, (x_1, x_2) y (y_1, y_2) , el consumidor puede ordenarlas según su atractivo.
- Preferencia estricta (≻).
- Indiferencia (\sim) .
- Preferencia débil (≥).

Relaciones entre las preferencias

- si $(x_1, x_2) \succeq (y_1, y_2)$ y $(y_1, y_2) \succeq (x_1, x_2)$, se concluye que $(x_1, x_2) \sim (y_1, y_2)$.
- si $(x_1,x_2)\succeq (y_1,y_2)$, pero sabemos que no se da $(x_1,x_2)\sim (y_1,y_2)$, se puede concluir que $(x_1,x_2)\succ (y_1,y_2)$

Relaciones entre las preferencias

- si $(x_1, x_2) \succeq (y_1, y_2)$ y $(y_1, y_2) \succeq (x_1, x_2)$, se concluye que $(x_1, x_2) \sim (y_1, y_2)$.
- si $(x_1,x_2)\succeq (y_1,y_2)$, pero sabemos que no se da $(x_1,x_2)\sim (y_1,y_2)$, se puede concluir que $(x_1,x_2)\succ (y_1,y_2)$

Supuestos sobre las preferencias: los axiomas de la teoría del consumidor

ullet Completas \Longrightarrow es posible comparar dos cestas cualesquiera

$$(x_1, x_2) \succeq (y_1, y_2)$$

$$(y_1,y_2)\succeq(x_1,x_2)$$

- Reflexivas \Longrightarrow Cualquier cesta es al menos tan buena como ella misma $(x_1,x_2)\succeq (x_1,x_2)$
- Transitivas \Longrightarrow si $(x_1,x_2)\succeq (y_1,y_2)$ y $(y_1,y_2)\succeq (z_1,z_2)$, entonces $(x_1,x_2)\succeq (z_1,z_2)$

Supuestos sobre las preferencias: los axiomas de la teoría del consumidor

Completas ⇒ es posible comparar dos cestas cualesquiera

$$(x_1, x_2) \succeq (y_1, y_2)$$

 $(y_1, y_2) \succeq (x_1, x_2)$

- Reflexivas \Longrightarrow Cualquier cesta es al menos tan buena como ella misma $(x_1,x_2)\succeq (x_1,x_2)$
- Transitivas \Longrightarrow si $(x_1,x_2)\succeq (y_1,y_2)$ y $(y_1,y_2)\succeq (z_1,z_2)$, entonces $(x_1,x_2)\succeq (z_1,z_2)$

Supuestos sobre las preferencias: los axiomas de la teoría del consumidor

Completas ⇒ es posible comparar dos cestas cualesquiera

$$(x_1, x_2) \succeq (y_1, y_2)$$

 $(y_1, y_2) \succeq (x_1, x_2)$

- Reflexivas \Longrightarrow Cualquier cesta es al menos tan buena como ella misma $(x_1,x_2)\succeq (x_1,x_2)$
- Transitivas \Longrightarrow si $(x_1,x_2)\succeq (y_1,y_2)$ y $(y_1,y_2)\succeq (z_1,z_2)$, entonces $(x_1,x_2)\succeq (z_1,z_2)$

Propiedades de las curvas de indiferencia

- Las curvas de indiferencia son densas
- Se prefieren las curvas de indiferencia más altas a las más bajas
- Las curvas de indiferencia tienen pendiente negativa (RMS negativa)
- Las curvas de indiferencia no se cortan
- Las curvas de indiferencia son convexas

Se prefieren las curvas de indiferencia más altas a las más bajas

Las curvas de indiferencia tienen pendiente negativa (RMS negativa)

Ejemplos de preferencias: Bienes sustitutos perfectos

Ejemplos de preferencias: Bienes complementarios perfectos

Ejemplos de preferencias: males

Ejemplos de preferencias: neutrales

Ejemplos de preferencias: preferencias saciadas

Ejemplos de preferencias: preferencias discretas

Ejemplos de preferencias: preferencias discretas

Bien 2

Cestas preferidas débilmente a la (1, x₂)

1 2 3 Bien 1

A = "Curvas" de indiferencia

B = Conjunto preferido débilmente

• Preferencias monótonas. Si (x_1,x_2) es una cesta bienes y (y_1,y_2) es una que contiene al menos la misma cantidad de ambos bienes y más de uno de ellos entonces:

$$(y_1, y_2) \succeq (x_1, x_2)$$

 \Longrightarrow pendiente negativa

- Son convexas al origen
- Son densas
- No pueden cortarse (Listo

• Preferencias monótonas. Si (x_1,x_2) es una cesta bienes y (y_1,y_2) es una que contiene al menos la misma cantidad de ambos bienes y más de uno de ellos entonces:

$$(y_1, y_2) \succeq (x_1, x_2)$$

⇒ pendiente negativa

- Son convexas al origen
- Son densas
- No pueden cortarse (Listo)

• Preferencias monótonas. Si (x_1,x_2) es una cesta bienes y (y_1,y_2) es una que contiene al menos la misma cantidad de ambos bienes y más de uno de ellos entonces:

$$(y_1,y_2)\succeq (x_1,x_2)$$

- ⇒ pendiente negativa
- Son convexas al origen
- Son densas
- No pueden cortarse (Listo)

• Preferencias monótonas. Si (x_1, x_2) es una cesta bienes y (y_1, y_2) es una que contiene al menos la misma cantidad de ambos bienes y más de uno de ellos entonces:

$$(y_1,y_2) \succeq (x_1,x_2)$$

⇒ pendiente negativa

- Son convexas al origen
- Son densas
- No pueden cortarse (Listo)

Preferencias monótonas

 x_1

- Si se prefieren las medias a los extremos, es decir si tenemos: (x_1,x_2) y (y_1,y_2) en la misma curva de indiferencia y tomanos una media ponderada $(\frac{1}{2}x_1+\frac{1}{2}y_1,\frac{1}{2}x_2+\frac{1}{2}y_2)$, entonces esta cesta es tan buena (\succeq) o mejor (\succ) .
- De modo general: $(tx_1+(1-t)y_1,tx_2+(1-t)y_2)\succeq (x_1,x_2)$ para cualquier t tal que $(0\leq t\leq 1)$
- Preferencias convexas
- Convexidad estricta ⇒ desigualdad estricta

- Si se prefieren las medias a los extremos, es decir si tenemos: (x_1,x_2) y (y_1,y_2) en la misma curva de indiferencia y tomanos una media ponderada $(\frac{1}{2}x_1+\frac{1}{2}y_1,\frac{1}{2}x_2+\frac{1}{2}y_2)$, entonces esta cesta es tan buena (\succeq) o mejor (\succ) .
- De modo general: $(tx_1+(1-t)y_1,tx_2+(1-t)y_2)\succeq (x_1,x_2)$ para cualquier t tal que $(0\leq t\leq 1)$
- Preferencias convexas
- Convexidad estricta ⇒ desigualdad estricta

- Si se prefieren las medias a los extremos, es decir si tenemos: (x_1,x_2) y (y_1,y_2) en la misma curva de indiferencia y tomanos una media ponderada $(\frac{1}{2}x_1+\frac{1}{2}y_1,\frac{1}{2}x_2+\frac{1}{2}y_2)$, entonces esta cesta es tan buena (\succeq) o mejor (\succ) .
- De modo general: $(tx_1+(1-t)y_1,tx_2+(1-t)y_2)\succeq (x_1,x_2)$ para cualquier t tal que $(0\leq t\leq 1)$

Preferencias convexas

Convexidad estricta ⇒ desigualdad estricta

- Si se prefieren las medias a los extremos, es decir si tenemos: (x_1,x_2) y (y_1,y_2) en la misma curva de indiferencia y tomanos una media ponderada $(\frac{1}{2}x_1+\frac{1}{2}y_1,\frac{1}{2}x_2+\frac{1}{2}y_2)$, entonces esta cesta es tan buena (\succeq) o mejor (\succ) .
- De modo general: $(tx_1+(1-t)y_1,tx_2+(1-t)y_2)\succeq (x_1,x_2)$ para cualquier t tal que $(0\leq t\leq 1)$
- Preferencias convexas
- Convexidad estricta ⇒ desigualdad estricta

Preferencias convexas

Figura 3.10. Varios tipos de preferencia. La parte A representa unas preferencias convexas; la B, unas preferencias no convexas; y la C, unas preferencias "cóncavas".

Ejemplos

Ejemplos

Relación Marginal de Substitución (RMS)

Convexidad ⇒ RMS decreciente

Interpretaciones adicionales de la RMS

- RMS ⇒ disposición a pagar.
- Lo que se tiene que pagar depende del precio del bien, lo que estamos dispuestos a pagar dependerá de las preferencias.

Interpretaciones adicionales de la RMS

- RMS ⇒ disposición a pagar.
- Lo que se tiene que pagar depende del precio del bien, lo que estamos dispuestos a pagar dependerá de las preferencias.

Interpretaciones adicionales de la RMS

Tarea para entregar 09/09/2014 (martes) hasta las 12:00 del mediodía

- Busque la definición de funciones convexas, estrictamente convexas, cóncavas y
 estrictamente cóncavas. y explique con sus propias palabras en que consiste cada una
 de ellas.
- Entregar 3 ejemplos de cada una y explicar por qué son consideradas como tal.
- Definir en que consiste el test de la segunda derivada para determinar si una función es concava, convexa, estrictamente convexas y estrictamente cóncava.
- Utilizar los ejemplos del punto 2 para aplicar el test de la segunda derivada y verificar el tipo de función.
- Buscar ejemplos de funciones convexas y concavas aplicadas a la teoría del consumidor.
 Explicar que elementos conforman la función y cual es su fundamento económico.
- El trabajo debe ser entregado con bolígrafo negro, en hojas cuadriculadas, debidamente corcheteado, y no debe superar las 10 paginas.