Diplomarbeit

Elektromotoren im Unterricht

Verständnis und arbeiten mit Gleichstrommotoren

erstellt von

Leonhard Erharter (Matteo Juen)

<u>Betreuer:</u> Philipp Wischounig

2020/21

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorliegende Diplomarbeit selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen Quellen entnommen wurden, sind als solche kenntlich gemacht.

Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als Diplomarbeit eingereicht.

Innsbruck, am xx.xx.2021		
Verfasser:		
Leonhard Erharter	-	

Projektteam

Leonhard Erharter

Adresse PLZ Ort

Tel: -

E-Mail: leerharter@tsn.at

Betreuer

Philipp Wischounig

Adresse PLZ Ort

Tel: -

E-Mail: philipp.wischounig@htlinn.ac.at

Danksagung

Ich danke meinem Betreuer, Herrn $Philipp\ Wischounig$ für die, Angesichts der widrigen Umstände, herrausragende Betreuung der Arbeit.

Weiters danke ich Herr
n $Lukas\ Fenz$ für Seine Expertise im Gebiet der Elektronik, sowie den Herre
n $Joshua\ Winkler$ und $Nicolaus\ B.\ Rossi$ für Ihre Hilfsbereitschaft bei der Verschriftlichung der Arbeit.

Zuletzt danke ich meiner Familie für die mentale Unterstützung, sowie der Bereitstellung von für die Durchführung nötigen Werkzeugen.

Gendererklärung

Aus Gründen der besseren Lesbarkeit wird in dieser Diplomarbeit durchweg die Sprachform des generischen Maskulinums angewendet. An dieser Stelle wird darauf hingewiesen, dass die ausschließliche Verwendung der männlichen Sprachform geschlechtsunabhängig verstanden werden soll.

Abstract

Insert English abstract here

...

Zusammenfassung

Zusammenfassung einfügen

Inhaltsverzeichnis

I.	Intro	11
1.	Hintergrund 1.1. Allgemein	
2.	Situation 2.1. Allgemein	13 13 13 13
3.	Verlauf der Arbeit	14
II.	. Theoretische Grundlagen	15
4.	Elektromotoren	16
5.	Gleichstrommaschinen5.1. Permanenterregte Gleichstrommaschine5.2. Fremderregte Gleichstrommaschine5.3. Reihenschluss Gleichstrommaschine5.4. Nebenschluss Gleichstrommaschine	
6.	Drehstrommaschinen6.1. Asynchronmaschine	18 18 18
Ш	I. Arbeitsmittel	19
7.	Arbeitsbereich 7.1. Anforderungen an den Arbeitsbereich 7.2. Design 7.3. Auswahl der Komponenten 7.3.1. Labor Spannungsversorgung 7.3.2. Lötkolben 7.3.3. Beleuchtung 7.4. Endprodukt	22
8.	Werkstätte	24
	8.1 Verwendete Maschinen	2/

Inhaltsverzeichnis

9.	uteile	25
	. Benötigte Bauteile	. 25
	9.1.1. Wägezellen	. 25
	9.1.2. IR-Sensor	. 26
	9.1.3. HX711	. 26
	9.1.4. Arduino Nano	. 26
	9.1.5. Rohrschelle	. 26
	9.1.6. Bremsscheibe	
10.	ftware	27
	1. Verwendete Software	. 27
	10.1.1. Erstellen des Aufbaues	. 27
	10.1.2. Verschriftlichen der Arbeit	. 27
IV.	orzeigemodell	28
	eichstrommaschine	29
	1. Anleitung	
	11.1.1. Nebenschlussschaltung	
	11.1.2. Reihenschlussschaltung	. 29
V.	ersuchsaufbau	30
12.	el des Aufbaues	31
13.	rsionen	32
	13.0.1. Allgemein	. 32
	1. Provisorischer Aufbau	. 32
	2. Laborfertiger Aufbau	. 32
14.	nalisierung	33
	14.0.1. Gegenkupplung	. 33
	14.0.2. Drehzahlmessung	. 33
	1. Rohrschelle	. 33
VI.	aboruebung	34
15.	forderungen	35
16.	borübung	36
17.	usterlösung	45

In halts verzeichn is

VII. Rückblick	51
18. Rückblick auf den Verlauf	52
18.1. Aufgabenteilung	
18.2. Kommunikation	52
VIIIAppendix	53
Zeitaufwand	54
Literaturverzeichnis	55
Abbildungsverzeichnis	56

Teil I.

Intro

1. Hintergrund

1.1. Allgemein

Unterrichtsmittel zum Thema Elektromotoren, wenn auch vorhanden, sind oftmals nicht in erforderlicher Diversität vorhanden. Weiters sind diese, falls vorhanden, teils nicht in nötigem Maße dokumentiert und verstauben aufgrund dessen in ihren Regalen. Besonders das komplexe und umfangreiche Thema der Elektromotoren bereitet Schülern meist Probleme. Hier kann ein konkretes Modell zur Visualisierung der Funktionsweise helfen, um Verständis zu erlangen.

1.2. Ziel der Arbeit

Ziel dieser Arbeit ist es also, die Diversität in welcher diese Modelle zur Verfügung stehen zu erhöhen, sowie bereits vorhandene Modelle ausführlicher zu dokumentieren, um jene für den unterrichtenden Pädagogen attraktiver zu machen. Dies zielt auf die Wirkung ab, den Lernprozess der Schüler effektiver zu gestalten und ein tiefgehenderes Verständnis des Themas zu erreichen.

2. Situation

2.1. Allgemein

Die Situation in welcher diese Arbeit durchgeführt wurde, erforderte ein hohes Maß an Flexibilität. Diverse Umgebungsfaktoren beinflussten die Art der Durchführung, sowie die Struktur und den zeitlichen Verlauf der Arbeit massiv.

2.2. Einfluss von COVID

Als einer der größten Einflüsse, wenn nicht als größter Einfluss, auf den allgemeinen Populus in den Jahren 2020 und 2021 spielte COVID-19, auch als Coronavirus oder SARS-CoV-2 bekannt, eine massive Rolle in der Umgebungssituation dieser Arbeit. Besonders aufgrund der teils sehr physischen Natur der Arbeit, war dies einer der treibenden Faktoren welche die Form und den Verlauf der Arbeit beinflusste.

Unter anderem entstand die Nötigkeit der Schaffung eines persönlichen Arbeitsbereiches, wie unter dem Punkt Arbeitsbereich in Teil 3 detaillierter ausgeführt.

COVID-19 hatte jedoch einen vernachlässigbaren Einfluss auf den zeitlichen Verlauf der Arbeits. Es erhöhte sich beinahe ausschließlich der mit dem Projekt verbundene Arbeitsaufwand.

Dies ist jedoch nur der Fall, da in persönlichem Umfeld beinahe alle, für die Durchführung benötigten Ressourcen vorhanden waren. Näheres zu diesem Punkt unter dem Punkt Werkstätte in Teil 3.

2.3. Projektteam

Der für den zeitlichen Verlauf der Arbeit kritischere Punkt entstand durch das Projektteam. Wie unter dem Punkt *Projektteam* bereits erkenntlich, wurde diese Arbeit in Einzelarbeit durchgeführt, abgeschlossen und verschriftlicht.

Anfänglich war die Durchführung jedoch als Zweiergruppe geplant. Aufgrund gesundheitlicher Probleme des Partners änderte sich dies unerwartet.

Folglich musste um ein sinnvolles Ergebnis zu erreichen die Struktur und Aufgabenteilung der Arbeit verändert werden. Auch der ursprünglich geplante Zeitplan war nicht mehr verwertbar.

Näheres zur möglichen Vermeidung dieser Situation findet sich in Teil 7 Rückblick.

3. Verlauf der Arbeit

Die Arbeit verlief, bis auf den Verlust des Projektpartners, zwischenfallslos. Es konnte im Zuge dieser eine sinnvolle Endlösung produziert werden.

Teil II. Theoretische Grundlagen

4. Elektromotoren

Elektromotoren sind heutzutage in beinahe allen Bereichen des Lebens aufzufinden. Ihre größten Unterschiede zu konventionellen Verbrennungsmotoren sind:

- höherer Wirkungsgrad
- meistens geringere Wartungs- sowie Produktionskosten
- leiser als Verbrennungsmotoren

In den folgenden individuellen Betrachtungen der gängigsten Arten werden diese als "Maschinen" bezeichnet. Der Hintergrund hierfür ist, dass diese entweder mit geringfügigen oder ganz ohne Veränderungen als Generatoren betrieben werden können.

Da die Funktion als Generator im Zuge dieser Arbeit nicht von Bedeutung ist, wird nachfolgend nur die Funktion als Motor eingehend erläutert.

5. Gleichstrommaschinen

- 5.1. Permanenterregte Gleichstrommaschine
- 5.2. Fremderregte Gleichstrommaschine
- 5.3. Reihenschluss Gleichstrommaschine
- 5.4. Nebenschluss Gleichstrommaschine

6. Drehstrommaschinen

- 6.1. Asynchronmaschine
- 6.2. Synchronmaschine

Teil III. Arbeitsmittel

7. Arbeitsbereich

Wie unter Punkt Situation bereits erwähnt wurde für die Durchführung ein Arbeitsbereich geschaffen. Die Entscheidung hierfür basierte auf der Einschätzung, dass die Gestaltung eines lokalen Arbeitsbereiches zeiteffizienter als der Weg in die Lehranstalt sei, da dieser durch Entfall von Präsenzunterricht nicht allfällig war.

Als Standort für diesen Arbeitsbereich boten sich zwei Möglichkeiten besonders an.

- Eine gemeinschaftlich genutzte Werkstätte ca. zwei Kilometer vom Wohnort entfernt
- Eine Erweiterung des Arbeitsbereiches, welcher bereits in das eigene Zimmer integriert war.

Schlussendlich fiel die Entscheidung auf die zweite Option, vor allem aufgrund der Renovierung, welche die erste Möglichkeit, frühestens zwei Wochen nach dem Treffen dieser Entscheidung, zu einer validen Option gemacht hätte.

Die für die Gestaltung anfallenden Kosten konnten gering gehalten werden, sowie dadurch gerechtfertigt, dass dieser Arbeitsbereich auch nach Abschluss der Arbeit noch Nutzung erfahren wird.

Insgesamt beliefen sich die Kosten für die Einrichtung des Bereiches auf etwa 300€.

7.1. Anforderungen an den Arbeitsbereich

Um für die Arbeit nutzbar zu sein, musste der Arbeitsbereich diverse Anforderungen erfüllen, sowie bestimmte Werkzeuge vorhanden sein. Die Anforderungen wurden teils auch von den nötigen Arbeitsmitteln bestimmt.

Arbeitsmittel/Werkzeuge:

- Lötkolben inkl. Zubehör
- Labor-Spannungsversorgung inkl. Bananenstecker
- Messschieber
- Arduino und Kit
- sowie grundlegene Werkzeuge wie Zangen, Schraubenzieher, Schraubstock usw.

Anforderungen:

- Feuerfeste Unterlage
- Beleuchtung des Arbeitsbereiches
- Steckdosen

Design Arbeitsbereich

7.2. Design

Als wichtigste Grundlage für einen funktionellen Arbeitsbereich wurde eine Verbindung zum Stromnetz angesehen. Hierfür wurde der vorhergehende Installationsplan gezeichnet (siehe vorherige Seite).

Die Einrichtung des Stormnetzes war auch eine der herausfordernsten Aufgaben, da ursprünglich nur Zuleitung 1 existierte und aus ästhetischen Grunden von einer Verlegung auf Putz abzusehen war. Die Lösung hierzu war ein Durchbruch aus dem Nebenzimmer, da in diesem eine Steckdose gegenüberliegend von Zuleitung 2 im Installationsplan vorhanden war.

Die weitere Verlegung erfolgte auf Putz, allerdings unterhalb der beiden Tischplatten.

Für den Lötkolben wurde eine schaltbare Steckdose installiert, sowie ein Lichtschalter für die Beleuchtung des Arbeitsplatzes.

7.3. Auswahl der Komponenten

Da beinahe keine Komponenten zugekauft werden mussten, und bei einigen Zukaufteilen keine Auswahl möglich war, musste nur bei drei Komponenten eine Entscheidung getroffen werden. Allgemein spielten bei Wahl der Komponenten Preis und Lieferdatum die größte Rolle. Dies rührt daher, dass beinahe in allen Fällen Modifikationen geplant waren, um eine bessere Integration in den Arbeitsbereich zu erreichen.

7.3.1. Labor Spannungsversorgung

Hier wurde das billigste Modell gewählt, welches alle Vorraussetzungen in ausreichendem Rahmen erfüllte. Es handelt sich um eine Spannungsversorgung mit einem Funktionsbereich bis etwa 300 Watt (30 Volt und 10 Ampere), was für die vorliegenden Experimente als ausreichend erachtet wurde.

[Bild Spannungsversorgung]

7.3.2. Lötkolben

Hier waren eine austauschbare Spitze, sowie einstellbare Temperatur die gewünschten Eigenschaften. Die Entscheidung fiel auf ein Modell mit verstellbarer Temperatur zwischen 180 und 300 °C sowie zugehörigen Ersatzspitzen.

[Bild Lötkolben]

7.3.3. Beleuchtung

Bei Wahl der Beleuchtung spielte vor allem die Beweglichkeit des Leuchtkopfes eine Rolle. Weiters musste diese geignet sein um mit 230 Volt betrieben zu werden, da anstatt eines Steckers eine direkte geschaltene Verbindung zum Stromnetz geplant war.

[Bild Lampe]

7. Arbeitsbereich

7.4. Endprodukt

Das Endprodukt erreicht die Vorraussetzungen in allen gewünschten Punkten. [Bild Endprodukt Arbeitsbereich]

8. Werkstätte

Zur Realisierung aller Versionen des Versuchsaufbaues waren diverse Werkzeuge nötig. Diese nur für die Dauer des Projektes zu beschaffen ist finanziell nicht vertretbar.

Somit ist also die Nutzung einer Werkstätte nötig um die Arbeit durchzuführen.

Dies war kein Problem, da eine Werkstätte mit allen benötigten Werkzeugen und Maschinen am Wohnort vorhanden war.

8.1. Verwendete Maschinen

Zur Anfertigung des Versuchsaufbaues wurden folgende Maschinen benötigt:

- Bohrmaschine
- Schweißgerät
- Winkelschleifer

Dies inkludiert nur die Anfertigung des provisorischen Versuchsaufbaues, da im Zuge dieser Arbeit die laborfertige Verion nie angefertigt wurde.

Um den laborfertigen Versuchsaufbau anzufertigen wären darüber hinaus mindestens folgende Maschinen nötig:

- Drehbank
- Gewindeschneider
- CNC-Fräse

9. Bauteile

Für die Realisierung, sowie Planung beider Versuchsaufbauten wurden diverse Bauteile verwendet.

Auch Bauteile, welche in der finalen Form des Versuchsaufbaues nicht mehr verwendet werden, sind hier inkludiert, da oftmals die bei deren Verwendung gewonnenen Erkenntnisse relevant zur Wahl einer besseren Lösung waren.

9.1. Benötigte Bauteile

Folgend nicht inkludiert sind Bauteile welche nicht als projektspezifisch anzusehen sind, sowie Rohmaterialien.

Alle für den Versuchsaufbau verwendeten Komponenten werden in Teil 6 unter dem Punkt Laboröbung detaillierter beschrieben. Dort ist auch ihr konkreter Verwendungszweck exakter ausgeführt.

- Halbbrücken-Wägezelle 50kg
- Vollbrücken-Wägezelle 5kg
- IR-Sensor
- HX-711
- Arduino Nano
- Rohrschelle
- Bremsscheibe

9.1.1. Wägezellen

Die ursprünglich verwendete 50 Kilogramm Wägezelle wurde im Laufe der Arbeit mit einer Vollbrücken-Wägezelle, welche eine Maximallast von 5 Kilogramm hat ausgetauscht. Dies wurde als sinnvoll erachtet, da diese über einen ausreichenden Bereich funktionsfähig ist, sowie geringere Fehler liefert.

Eine konkrete Auswahl konnte erst nach ermitteln der im Zuge des Versuches maximalen Last getroffen werden. Trotz der schlechteren Erfüllung der Anforderungen wurde eine 5kg anstatt einer 2kg Variante gewählt, da zweitere bei keinem Anbieter auf Lager war.

9. Bauteile

9.1.2. IR-Sensor

Zur Messung der Drehzahl wurde ein IR-Sensor gewählt, welcher über die gesamte Dauer des Projektes unverändert blieb. Für erhöhte Genauigkeit bei den Messungen bot sich eine Ausführung mit höherer Messfrequenz an, da jedoch die anfängliche Variante befriedigende Ergebnisse lieferte wurde von dieser Änderung abgesehen.

Weitere Überlegungen hierzu finden sich unter Drehzahlmessung in Teil 5.

9.1.3. HX711

Der HX711 wurde gewählt, da hier beinahe keine anderen Optionen zur Auswahl standen, sowie dieser das breiteste Angebot von Dokumentation zu dessen Verwendung besaß.

9.1.4. Arduino Nano

Auch hier war die zu treffende Entscheidung sehr einfach. Trotz der Menge an Alternativen beinflusste hier der Faktor, dass die Verwendung des Arduino Nano aufgrund der Verwendung im Unterricht bereits gängig war diese Entscheidung am meisten.

9.1.5. Rohrschelle

Zur Montage des Armes, über welchen das Drehmoment abgelesen wird, wurde eine Rohrschelle gewählt. Dies bot sich aufgrund der geringen Kosten, sowie der simplen Verwendung an.

Auch hier finden sich weitere Überlegungen in Teil 5 unter dem Punkt Rohrschelle.

9.1.6. Bremsscheibe

Zum Bremsen wurde eine Bremsscheibe gewählt. Hier wurde die kleinste Ausführung gewählt, um die Größe des Versuchsaufbaues gering zu halten.

Alternativen finden sich in Teil 5 unter Gegenkupplung.

!!TODO : Bilder einfügen.

10. Software

Auch Software wurde zur Realisierung, sowie Visualisierung des Projektes verwendet. Inkludiert sind sowohl Software zur Erstellung des Versuchsaufbaues, sowie Software zur Verschriftlichung der Arbeit.

10.1. Verwendete Software

10.1.1. Erstellen des Aufbaues

- Arduino IDE
- Creo Parametric

10.1.2. Verschriftlichen der Arbeit

- Visual Studio Code
- Microsoft Word
- \bullet Hedgedoc
- Microsoft Excel

Teil IV. Vorzeigemodell

11. Gleichstrommaschine

Teil der Arbeit war auch die Dokumentation der Verwendung eines Vorzeigemodells, welches zur Verwendung im Unterricht geeignet ist.

Dies beinhaltete ursprünglich sowohl eine Asynchronmaschine, sowie eine Gleichstrommaschine. Durch die im Intro beschriebene Situation unter Punkt Team, fiel jedoch die Dokumentation der Asynchronmaschinen weg.

11.1. Anleitung

Der gegebene Aufbau kann durch spezifische Verkabelung entweder als Nebenschlussmaschine, oder als Reihenschlussmaschine verwendet werden.

Bei Vorhandensein von zwei Spannungsquellen ist auch die Verwendung als fremderregte Gleichstrommaschine möglich, dies wird hier jedoch nicht dokumentiert.

11.1.1. Nebenschlussschaltung

Um den Aufbau als Nebenschlussmaschine zu schalten müssen sowohl die Spulen, als auch die Schleifer parallel geschalten werden wie auf folgendem Bild.

[Bild Nebenschluss]

Um die Funktionsweise einer Nebenschlussmaschine zu beweisen können die beiden Verbindungen zu den Schleifern vertauscht werden, was die Drehrichtung umkehrt.

11.1.2. Reihenschlussschaltung

Um den Aufbau als Hauptschlussmaschine zu schalten müssen beide Schaltkreise in Reihe geschalten werden. Das bedeutet, dass der positive Ausgang der Spannungsversorgung nur direkt mit einem der beiden Schleifer oder den Spulen verbunden werden darf. Für den negativen Ausgang gilt das Gleiche.

[Bild Hauptschluss]

Hier kann bewiesen werden, dass bei Vertauschen der Verbindungen zu den Schleifern die Drehrichtung gleich bleibt.

Teil V. Versuchsaufbau

12. Ziel des Aufbaues

Durch den Versuchsaufbau soll es möglich sein die Motorkennlinie eines Elektromotors nachzuweisen. Hierfür muss

- die Drehzahl gemessen,
- sowie durch Bremsen des Motors das Drehmoment ermittelt werden.

Weiters soll der Aufbau zur Durchführung einer Laborübung wie unter Teil 6 verwendet werden.

13. Versionen

13.0.1. Allgemein

Über die Dauer dieser Arbeit wurden zwei Versuchsaufbauten designed, wobei die Laborform für die Verwendung durch Schüler geeignet ist, jedoch nie angefertigt wurde.

13.1. Provisorischer Aufbau

Der Provisorische Aufbau diente zum Testen der verwendeten Bauteile, sowie dem Erstellen der Musterlösung zugehörig zur Laborübung.

Hier wird der Motor durch eine Zange mit Lederschutz gebremtst. Weiters ist er nur ungenau in zugeschnittenen Rohren gelagert, welche mittels eines angschweißten Bolzens fixiert werden.

Er erfüllt alle Anforderungen an den Versuchsaufbau, ist jedoch nicht benutzerfreundlich und liefert nur ungenaue Messungen.

[Bild provisorischer Aufbau]

13.2. Laborfertiger Aufbau

Der Laborfertige Aufbau wird auf Kugellagern gelagert, sowie mit einer Bremsscheibe gebremst, was ein wiederholtes Durchführen des Versuches ohne Bedenken aufgrund der entstehenden Hitze ermöglicht.

[Bild Laborfertiger Aufbau]

14. Finalisierung

Da der momentane Aufbau noch nicht das erreichbare Optimum verkörpert werden folgend Überlegungen, betrefflich den Problemen mit der aktuellen Version, angestellt.

14.0.1. Gegenkupplung

Alternativ zum händischen Bremsen des Motors bietet sich die Gegenschaltung eines stärkeren Motors mittels einer Kupplung an. Dies würde eine exaktere Regelung des Bremsvorganges ermöglichen. Gegen diese Lösung spricht der damit verbundene Zeitaufwand.

14.0.2. Drehzahlmessung

Auch in der Drehzahlmessung sind leichte Schwankungen zu bemerken.

Dies könnte durch ein System, in welchem zwei oder mehrere IR-Sensoren parallel verwendet werden gelöst werden.

14.1. Rohrschelle

Auch die momentan verwendete Rohrschelle könnte durch eine Version mit einschraubbaren Arm getauscht werden. Dies mit dem Angebot von Armen in verschiedene Längen könnte die Durchführung der Laborübung für Schüler interessanter gestalten.

Teil VI. Laboruebung

15. Anforderungen

Die zum Versuchsaufbau entworfene Laborübung soll folgende Anforderungen erfüllen.

- ullet verständlich verfasst
- Interesse weckend
- Eigeninitiative fördernd

16. Laborübung

Laborübung zu Gleichstrommotoren

Erharter Leonhard

Version 1.4

Letzte Änderung:

13.03.2021

5AHWII - 2020/21

HTBLVA Innsbruck

Inhaltsverzeichnis

1.		Vorwort	3
	a.	Ziel der Übung:	3
	b.	Voraussetzungen:	3
	c.	Ergebnisse:	3
2.	,	Teil 1	. 4
	a.	Aufgabenstellung	. 4
	b.	Theoretische Grundlagen	. 4
		i. MAXON DC Motor (231852)	. 4
		ii. Wägezelle	. 4
		iii. Wägezellenverstärker HX711	5
	c.	Hinweise und Hilfestellung zur Bearbeitung	5
	d.	Laborbericht	. 6
3.		Teil 2	7
	a.	Aufgabenstellung	7
	b.	Theoretische Grundlagen	7
		i. IR-Sensor (TCRT5000)	7
		ii. Motorkennlinie	7
	c.	Hinweise und Hilfestellung zur Bearbeitung	. 8
	А	Laborhericht	8

1. Vorwort

a. Ziel der Übung:

Ziel der Laborübung ist es einen Gleichstrommotor mittels des bereitgestellten Versuchsaufbau:

- Anzusteuern
- Zu Bremsen
- Dessen Drehzahl zu messen
- Dessen Drehmoment zu messen

Sowie aus den Messwerten eine Motorkennlinie zu bilden und diese:

- Zu zeichnen
- Zu interpretieren

b. Voraussetzungen:

Grundlagen zur Durchführung dieser Laborübung sind:

- PC/Laptop mit Internetzugang
- Arduino, sowie Arduino DIE (evtl. 2 Arduinos)
- Tabellenkalkulationsprogramm (Excel)
- Textbearbeitungsprogramm zur Dokumentation

c. Ergebnisse:

Nach Abschluss der Laborübung soll der Schüler:

- Gleichstrommotoren verstehen
- Den Versuchsaufbau nachvollziehen
- Die verwendeten Bauteile verstehen und ansteuern
- Sowie das erlernte auf andere Themen übertragen und anwenden können

2. Teil 1

a. Aufgabenstellung

Der erste Teil der Laborübung beschäftigt sich mit der Drehmomentmessung am Gleichstrommotor.

Diese erfolgt mittels einer Vollbrücken Wäge-Zelle und eines HX-711 Verstärkerbausteins. Die Ausmessung der Daten erfolgt durch einen Arduino.

Benötigte aufgabenspezifische Arbeitsmittel sind:

- Vollbrückenwägezelle (5kg)
- HX711
- Objekt mit bekanntem Gewicht zur Kalibrierung

b. Theoretische Grundlagen

i. MAXON DC Motor (231852)

Der Gleichstrommotor mit der Kennnummer 231852 wird von MAXON produziert und ist von den Abmessungen beinahe baugleich mit der Motorserie 273752. Es handelt sich um einen permanenterregten Motor mit Graphitbürsten.

Genauere Informationen über den exakten Motor sind nicht erhältlich, da es sich hierbei um eine individuelle Anfertigung handelt.

Für die Dauer der durchzuführenden Versuche und Messungen ist dieser mit 20 Volt zu betreiben.

ii. Wägezelle

Hierbei handelt es sich um einen Doppelbiegebalken-Federkörper mit einem maximalen Gewicht von 5kg.

Bei leichter Verformung verändert sich der Widerstand der im Balken verbauten DMS (Dehnungsmessstreifen), und hierdurch entsteht eine Spannungsdifferenz im mV Bereich zwischen den beiden Ausgängen.

iii. Wägezellenverstärker HX711

Der Wägezellenverstärker, in unserem Fall HX711, dient dazu das Ausgangssignal in mV der Wägezelle mit hoher Präzision auf einen für uns brauchbaren Spannungsbereich aufzuspannen.

c. Hinweise und Hilfestellung zur Bearbeitung

Die Verkabelung der Wägezelle erfolgt wie folgt:

Um diese zu kalibrieren ein bekanntes Gewicht auf dem Ende der Wägezelle und dann durch Verwenden der seriellen Schnittstelle den Faktor mit dem set_scale (Faktor) Befehl laufend anzupassen, bis die Ausgabe stimmt.

Die wichtigsten Befehle für die Verwendung der Wägezelle sind:

- set_scale()
- tare()
- get_units()

Deren Funktion sowie weitere Befehle sind im vollen Beispiel der HX711 Bibliothek in der Arduino IDE zu finden.

Nach der Kalibrierung die Bauteil-Nummern zu notieren ist sinnvoll, da somit derselbe Faktor erneut verwendet werden kann.

Einbinden der HX711 Bibliothek erfolgt mit dem Befehl #include <HX711.h>

d. Laborbericht

In der Dokumentation der Laborübung ist zu behandeln:

- Einsatzbereich der verwendeten Gleichstrommotoren sowie Vor- und Nachteile.
- Warum kann mit 20V gearbeitet werden, obwohl die nominale Spannung niedriger ist?
- Schreibt ein Programm mit welchem die Wägezelle kalibriert werden kann.
- Folgend schreibt ein Programm welches die kalibrierte Wägezelle nutzt, um die Kraft auf das Ende der Zelle zu messen.
- Dokumentiert diesen Code.
- Testet die Wägezelle mit euch bekannten Gewichten:
 - Wie akkurat sind die Messungen?
 - o Gibt es Abweichungen?
 - o Wenn Ja. Was könnte der Grund dafür sein?

3. Teil 2

a. Aufgabenstellung

Der zweite Teil der Laborübung beschäftigt sich mit der Drehzahlmessung des Gleichstrommotors.

Dafür wird ein IR-Sensor verwendet.

Im Anschluss soll dies mit der Drehmomentmessung des letzten Teils kombiniert werden, um eine Ausgabe beim Bremsen des Elektromotors zu ermöglichen.

Mit den ermittelten Daten soll schlussendlich die Motorkennlinie gezeichnet werden.

b. Theoretische Grundlagen

i. IR-Sensor (TCRT5000)

Hierbei handelt es sich um einen Infrarotsensor welchem es anhand des reflektierten Lichts möglich ist zu bestimmen wie weit ein Objekt entfernt ist. Dies ist allerdings nicht sehr zuverlässig, da verschiedene Oberflächenfarben als auch Beschaffenheiten diesen Wert stark beeinflussen.

Dieser Baustein besitzt zwei Ausgänge.

Einen binären, bei welchem durch einstellen des auf der Rückseite montierten Potentiometers bestimmt werden kann wann dieser 1

Eine Motorkennlinie beschreibt den Zusammenhang zwischen Drehmoment und Drehzahl des Motors.

c. Hinweise und Hilfestellung zur Bearbeitung

Der Anschluss des IR-Sensors erfolgt wie auf dem Plan zu sehen.

Die Länge des Stabes von der Mitte des Motors bis zur Wägezelle beträgt 10 cm.

Die Messwerte in der Outline können mit einem Tabulator ["\t"] getrennt werden, um das Einfügen in eine Tabelle zu erleichtern.

Der HX711-Verstärkerbaustein hat eine Ausgangsfrequenz von 10Hz, da bei 20v jedoch bis zu 5000 Umdrehungen pro Minute (125 jede Sekunde) erreicht werden, kann die Messung des Drehmoments nicht parallel zur Drehzahlmessung erfolgen.

Wie kann trotz dessen eine Motorkennlinie nachgewiesen werden? Kreative Lösungen möglich. (Datenblatt HX711)

Um 2 serielle Schnittstellen gleichzeitig zu betreiben muss der Installationsordner kopiert und jeweils die arduino.exe Datei ausgeführt werden.

d. Laborbericht

In der Dokumentation der Laborübung ist zu behandeln:

- Schreibt ein Programm mit welchem die Drehzahl des Motors gemessen werden kann.
- Kombiniert jenes mit dem Programm zum Messen des Drehmoments, welches im vorherigen Teil behandelt wurde.
- Führt eine Messung bei Bremsen des Motors durch.
- Stellt mit den gewonnenen Daten die Motorkennlinie dar und interpretiert diese.
- Kam es bei der Durchführung der Messung zu Fehlern? Wenn ja:
 - Welche? Wie könnte man diese vermeiden.

17. Musterlösung

Die Musterlösung wurde mit dem Online Markdown Editor Hedgedoc verfasst, was im Falle von Laborteams eine mühelose Zusammenarbeit ermöglicht.

Da zum Zeitpunkt der Verfassung dieses Dokuments nur ein provisorischer Versuchsaufbau zur Durchführung der Aufgaben bereit stand, war es im Zuge dieser Musterlösung nicht möglich Probleme welche exklusiv bei Verwendung des laborfertigen Versuchsaufbaues entstehen könnten zu simulieren.

Musterlösung Laborübung Gleichstromotor und Motorkennlinie

SchülerInnen der Gruppe: Erharter Leonhard

Verfasser: Erharter Leonhard

Datum der Durchführung: 03.17.2021

- Musterlösung Laborübung Gleichstromotor und Motorkennlinie
 - Teil 1
 - Gleichstrommotoren
 - Betriebsspannung
 - Kalibrierung
 - Messungen
 - Genauigkeit
 - o Teil 2
 - Drehzahlmessung
 - Kombination
 - Messung
 - Auswerten der Messdaten
 - Interpretation

Teil 1

Gleichstrommotoren

Bei dem für die Übung verwendeten Elektromotor handelt es sich um einen permanterregten Gleichstrommotor.

Da dieser mit Graphitbürsten betrieben wird kann er den Kommutator(Stromwender)-Maschinen zugeordnet werden.

Diese Art von Elektromotoren ist haupsächlich bei kleinen Motoren gebräuchlich. Anwendungsfälle wären:

- Spielzeug
- Fahrradantriebe

Ihr größter Vorteil liegt in dem, in Fällen von kleinen Motoren, verbesserten Wirkungsgrad. Auch größere Motoren sind möglich, jedoch sind diese aufgrund der Kosten großer Permanentmagnete sehr selten.

Der Nachteil findet sich in der geringeren möglichen Variation der Drehzahl, da das Magnetfeld nicht geschwächt werden kann.

Betriebsspannung

Trotz einer Nominalspannung von unter 20 Volt kann ihm Rahmen der Übung mit 20 Volt gearbeitet werden, da die Nominalspannung nur für den Dauerbetrieb aussagekräftig ist, und die über die Dauer der Versuche, durch die höhere Spannung, entstehende Hitze den Motor nicht beschädigt.

Kalibrierung

Die Kalibrierung der Wägezelle erfolgt mit folgenden Code.

```
1
   #include <HX711.h>
    #define LOADCELL DOUT PIN 2
   #define LOADCELL SCK PIN 3
4
   HX711 scale;
   float calibration factor = 433; //Working for the 5kg full bridge load cell
   void setup() {
     Serial.begin(9600);
     Serial.println("After readings begin, place known weight on scale");
     Serial.println("Adjust Factor by pressing + or -");
    scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);
     scale.set scale();
     scale.tare(); //Reset the scale to 0
   }
   void loop() {
     scale.set scale(calibration factor); //Adjust to this calibration factor
     Serial.print("Reading: ");
     Serial.print(scale.get_units(), 1); //Read load from HX711
    Serial.print("g");
    Serial.print(" calibration factor: ");
    Serial.print(calibration factor); //print current factor
    Serial.println();
    if(Serial.available()) //checks for input
    char temp = Serial.read();
      if(temp == '+' || temp == 'a')
      calibration factor += 10;
      else if(temp == '-' || temp == 'z')
         calibration factor -= 10;
   }
```

Durch Eingabe von + und - in die serielle Schnittstelle wird der Faktor so lange angepasst bis der HX711 das zum kalibrieren platzierte Gewicht ausgibt.

Messungen

Für die Messungen muss das Programm wie folgt modifiziert werden.

```
#include <HX711.h>
    #define LOADCELL DOUT PIN 2
    #define LOADCELL SCK PIN 3
 4
    HX711 scale;
    float calibration factor = 433; //433 for 5kg full bridge load cell in grams
   void setup() {
      Serial.begin(9600);
     scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);
     scale.set_scale(calibration_factor); //adjust to calibration factor
     scale.tare(); //Reset the scale to 0
    }
    void loop() {
     Serial.print(millis());
20
     Serial.print("\t");
     Serial.print(scale.get units(), 1);
     Serial.print("\n");
24 }
```

Genauigkeit

Nach Testen der Wägezelle mit bekannten Gewichten konnten Schwankungen im Bereich von 1-2g festgestellt werden.

Bei Testen mit höheren Gewichten konnten Abweichungen von bis zu 20g festgestellt werden.

Dies ist für die Messungen jedoch nicht relevant, da dies einem Fehler von weniger als 0.1% entspricht.

Die minimalen Schwankungen sind durch das unglaublich kleine Spannungsniveau der Wägezelle zu erklären.

Somit können Änderungen von wenigen mV, etwa durch Veränderung der Luftfeuchtigkeit bei nicht ganz abgedecktem DMS (Dehnungsmessstreifen) durch die Verstärkung des HX711 zu solchen Schwankungen führen.

Teil 2

Drehzahlmessung

Die Drehzahl kann mit folgendem Programm gemessen werden:

```
#include <Wire.h>
2 #define IR_AOUT_PIN A0
   unsigned long cutime;
4 boolean state;
5 boolean prestate = false;
6 void setup() {
7 Serial.begin(9600);
8 pinMode(IR AOUT PIN, INPUT);
    void loop() {
   int in = analogRead(IR AOUT PIN);
14 if (in < 200) state = false;
   else state = true;
   if(state!=prestate) { //hat sich die Scheibe gedreht?
18
    prestate = state;
19
     Serial.println(millis());
20 }
21 }
```

Der digitale Ausgang wird nicht verwendet, da dieser bei Versuchen als fehlerhaft empfunden wurde. Alternativ wird hier das Übertreten der Schwelle per Software überprüft.

Kombination

Die Kombination beider Programme erfolgte über das parallele Auslesen von zwei Schnittstellen.

Somit können beide der vorhergehenden Programme wiederverwendet werden.

Um das zeitgleiche Öffnen zweier Schnittstellen zu ermöglichen wurde der Installationsordner der Arduino IDE kopiert und in beiden Ordnern die Datei arduino.exe ausgeführt.

Folglich mussten nur die millis() Variablen synchronisiert werden.

Dies erfolgt anhand des Zeitpunktes zu welchem der Motor die niedrigste Drehzahl hat, da hier zeitgleich auch das Lastmoment am höchsten sein muss.

Messung

Die Messung verlief bis auf leichte Schwankungen bei der Drehzahlmessung problemlos.

Diese könnten durch das parallele Verwenden von zwei IR-Sensoren und folglich mitteln der Daten verringert werden.

Auswerten der Messdaten

Nach dem Auswerten der Messdaten konnten folgende Grafiken ermittelt werden.

Das leichte Schwanken der Drehzahl ist durch Ungenauigkeiten bei der Messung dieser zu erklären, jedoch kann auch ein ungleichmäßiger Bremsvorgang Grund hierfür sein.

Ansonsten kann eine klare Abnahme der Drehzahl erkannt werden, welche jedoch nie 0 erreicht.

Dies ist damit zu erklären, dass um die Linie zu glätten immer die Drehzahl über mehrere Messpunkte ermittelt wurde.

Würde nun die das Stehenbleiben auch einberechnet werden, hätte dies aufgrund der Natur des verwendeten Codes eine Verfälschung der Messwerte zur Folge.

Hier ist klar ein Anstieg des Drehmoments mit der Zeit zu erkennen.

Die Schwankungen erhärten den Verdacht auf einen ungleichmäßigen Verlauf des Bremsvorganges.

Interpretation

Durch Betrachten beider vorhergehenden Grafiken kann festgestellt werden, dass mit abnehmender Drehzahl eine Zunahme des Drehmoments geschieht.

Dies entspricht dem Fakt, dass Elektromotoren bei niedriger Drehzahl am leistungsfähigsten sind.

Teil VII.

Rückblick

18. Rückblick auf den Verlauf

Im Rückblick werden Probleme bei der Organisation der Arbeit genauer untersucht.

18.1. Aufgabenteilung

Bei der Aufgabenteilung konnte durch die konkrete Projektsituation bemerkt werden, dass eine noch individuellere Abgrenzung der Aufgaben sinnvoll gewesen wäre.

Dies hätte das Durchführen als Einzelarbeit erleichtert, da so in keinem Falle Abhängigkeit vom Teampartner bestünde.

18.2. Kommunikation

Auch im Part der Kommunikation hätte durch häufigere Diskussionen sowie intensivere Verfolgung des Projektstatus die nahende Situation frühzeitig erkannt und teils vermieden werden können.

Teil VIII.

Appendix

Zeitaufwand

TODO: Zeitaufwand digitalisieren und einfügen

Literaturverzeichnis

- [1] D. Binosi, J. Collins, C. Kaufhold, and L. Theussl. JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes. *Computer Physics Communications*, 180:1709–1715, 2009.
- [2] D. Binosi and L. Theussl. JaxoDraw: A Graphical user interface for drawing Feynman diagrams. *Computer Physics Communications*, 161:76–86, 2004.
- [3] Joshua Ellis. TikZ-Feynman: Feynman diagrams with TikZ. 2016.
- [4] R. P. Feynman. Space-time approach to quantum electrodynamics. *Phys. Rev.*, 76:769–789, Sep 1949.
- [5] Yifan Hu. Efficient, high-quality force-directed graph drawing. *Mathematica Journal*, 10(1):37–71, 2005.
- [6] Thorsten Ohl. Drawing Feynman diagrams with LaTeX and Metafont. Computer Physics Communications, 90:340–354, 1995.
- [7] Eades Peter and Sugiyama Kozo. How to draw a directed graph. *Journal of Information Processing*, 13(4):424–437, 1991.
- [8] Jannis Pohlmann. Configurable graph drawing algorithms for the TikZ graphics description language. PhD thesis, Institute of Theoretical Computer Science, Universität zu Lübeck, Lübeck, Germany, 2011.
- [9] Till Tantau. The TikZ and PGF packages, 2015.
- [10] J.A.M. Vermaseren. Axodraw. Computer Physics Communications, 83(1):45 58, 1994.

Abbildungsverzeichnis