Cache Memory Mapping Techniques

Continue to read pp. 289-305

Cache Memory Mapping

- Again cache memory is a small and fast memory between CPU and main memory
- A block of words have to be brought in and out of the cache memory continuously
- Performance of the cache memory mapping function is key to the speed
- There are a number of mapping techniques
 - Direct mapping
 - Associative mapping
 - Set associative mapping

Direct Mapping Technique – No. 1

- Simplest way of mapping
- Main memory is divided in blocks
- Block j of the main memory is mapped onto block j modulo 128 of the cache consider a cache of 128 blocks of 16 words each

	Cache
tag	Block 0
tag	Block 1
tag	Block 127

 Consider a memory of 64K words divided into 4096 blocks

Where blocks 0, 128, 256, ... 3968 should be mapped to?

Tag	Block	Word
5	7	4

Main memory address

Where blocks 126, 254, 382, ... 4094 should be mapped to?

Direct Mapping Technique (Continued)

Mapping process

- Use tag to see if a desired word is in cache
- It there is no match, the block containing the required word must first be read from the memory
- For example: MOVE \$A815, DO

- a. Check if cache has tag 10101 for block 1 match -> hit; different -> miss, load the corresponding block
- b. Access word 5 of the block

Direct Mapping Technique (Continued)

- Advantage
 - simplest replacement algorithm
- Disadvantage
 - not flexible
 - there is contention problem even when cache is not full
 - For example, block 0 and block 128 both take only block 0 of cache:
 - -0 modulo 128 = 0
 - -128 modulo 128 = 0
 - If both blocks 0 and 128 of the main memory are used a lot, it will be very slow

Associative Mapping Technique – No. 2

- Any block can go anywhere in cache
- $4095 \text{ blocks} \rightarrow 4095 \text{ tag} = 2^{12} \rightarrow 12 \text{ bit tag}$

Main memory address

Main Memory

tag	Block 0
tag	Block 1
tag	Block 4095

Associative Mapping Technique (continued)

- Advantage
 - Any empty block in cache can be used, flexible
 - Must check all tags to check for a hit, expensive (parallel algorithm has been developed to speed up the process)
- What is the next technique?
 - Something between direct mapping and associative mapping

Set Associative Mapping Technique – No. 3

- Comprise between direct mapping and associative mapping
- Block in main memory maps to a set of blocks in cache – direct mapping
- Can map to any block within the set
- E.g. use 6 bits for tag = 2^6 = 64 tags 6 bits for set = 2^6 = 64 sets

Set Associative Mapping Technique (continued)

Memory Address

		Cache
Set 0	tag	Block 0
	tag	Block 1
Set 1 {	tag	Block 2
	tag	Block 3
Set 63 {	tag	Block 126
	tag	Block 127

Tag	Set	Word	
6	6	4	

- The blocks in cache are divided into 64 sets and there are two blocks in each set
- How the blocks in the main memory be mapped into cache?
- Main memory blocks 0, 64, 128, 4032 maps to set 0 and can occupy either of the two positions

Set Associative Mapping Technique (continued)

- A set could have one block -> direct mapping; 128 blocks -> associative mapping
- k blocks per set is referred to as k-way set-associative mapping

Cache Memory Details

• Block size

- Depends on how memory is addressed (byte, word, or long word) and accessed (word at a time)
- 8-16 quite reasonable
 - 68040 16 bytes per block
 - Pentium IV 64 bytes per block
- Always work with 1 block at a time
- How many blocks in cache?
 - No of words in cache divided by number of words per block e.g. 2 k words, 16-word block: $2^{11}/2^4 = 2^7 = 128$ blocks

Cache Memory Details (continued)

- Replacement Algorithms
 - Replace the one that has gone the longest time without being referenced – Least Recently Used (LRU) – block
- How to know which block of main memory is currently in cache?
 - Look at the tag on data in the block
 - How long is the tag (how many blocks use same block of cache)?
- Study a few examples

Examples

- Small Instruction Cache (read 8.6.3)
 - Cache has 8 blocks, 1 word each
 - Main memory has 256 blocks (words) 8 bit address
 - Execute the following program
- Cache Use direct mapping first Block 0 Block 0 Block 1 Tag 0 Block 1 Loop 5 times Block 7 branch Block 7 Block 8 Tag 1 Block 248 Loop 10 times D2 Tag 31 branch Block 255 Tag Block E03

Main memory address

Direct Mapping Performance

• How many executions? - $(2 \times 10+4) \times 5 = 120$

Cache Block	After C1	After Inner Loop	After E0
0	C0	D0	E0
1	C 1	D1	D1
2			D2

First time

Misses
$$2 \times 5$$
 2×5 $2 + 1 \times 4 = 26$

Hits 18×5 $1 \times 4 = 94$

• Hit rate = hits/total = 94/120 = 78.3%

Associative Mapping Performance

Tag

8 Main memory address

Cache Block	After C1	After Inner Loop	After E0	
0	C0	C0	C0	
1	C 1	C1	C1	
2		D0	D0	
3		D1	D1	
4			D2	
5			E0	
6				
7				
Misses	2	2	2 = 6	
Hits	Hits $next 4 times all hits = 114$			

• Hit rate = hits/total = 114/120 = 95%

Set Associative Performance

2 -way -> 4 sets		Tag Set			
		6 2	Main memory address		
Cache Block	After C1	After Inner Loop	After E0	Second tin After C1	ne After Loop
$\mathbf{c} \cdot \mathbf{c} = 0$	C0	C0	E0	E0	D0
Set $0 \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right.$		D0	D0	C0	C0
0	C1	C1	C 1	C 1	C 1
Set $1 \begin{cases} 0 \\ 1 \end{cases}$		D1	D1	D1	D1
Set $2 \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right.$			D2	D2	D2
Set $3 \left\{ \begin{array}{c} 0 \\ 1 \end{array} \right.$					
Misses	2 + 1x4	2 + 1x4	2 + 1x4	= 18	
Hits	The re	est is all hits = 102			

• Hit rate = hits/total = 102/120 = 85%