一、 线性可分支持向量机:

顾名思义,线性可分就是存在至少一个超平面,可以将样本中的正负例准确隔开,找到这样一个超平面可以用感知机实现,但是一般这样的超平面是不唯一的,线性可分支持向量机就是在这些超平面集合中选择最优的一个。

那么最优超平面的是怎么定义的呢?在感知机相关知识中,我们知道点到超平面的距离为 $\hat{r}=|\omega \cdot x_i+b|$ (https://blog.csdn.net/wzx479/article/details/83143280),因为对所有的实例点来说 ω 都是一样的,所以就省略了,对于所有正确分类的点可以用这种形式取代绝对值号: $\hat{r}=y_i(\omega \cdot x_i+b)$ 。对于一个确定的超平面 π ,定义这个超平面关于所有实例点的函数间隔为 $\hat{r}_\pi=\min \hat{r}$,最优的超平面就是使得 \hat{r}_π 最大的那一个,这个比较容易理解:超平面与最近的点之间的距离越大,分类时的不确定性越小,如下两个超平面,都满足感知机的条件,但是直观上来看,第一个要比第二个好一些(为什么呢?我的看法是第一个超平面划分比较靠近中间,留给两侧的"缓冲区"是差不多的,类似于均值不等式会在相等的时候获得最值,有点中庸的意思)。

所以优化的目标就是 $\max \hat{r}_{\pi}$,为了排除 ω 和 b 成比例变化带来的影响(例如同时变为两倍,这时超平面实际没变,但 r 变为两倍),定义了几何间隔: $r_{\pi}=\frac{\hat{r}}{||\omega||}$,因为我们关注的是 ω ,所以把 \hat{r} 设为 1,这时优化目标就变成 $\max \frac{1}{||\omega||}$,等价于 $\min \frac{1}{2}||\omega||^2$,因为定义了 $\hat{r}_{\pi}=\min \hat{r}=>r_{\pi}=\min r$,也就是说 r_{π} 是所有实例点到超平面的距离最小的,所以约束条件是 $y_{i}(\omega \cdot x_{i}+b)\geq r_{\pi}=1$,综上,可以得到以下原始优化问题 O1:

$$\min \frac{1}{2} ||\omega||^{2}$$

$$s.t. y_{i}(\omega \cdot x_{i} + b) \ge 1$$

利用 Lagrange 对偶性(https://www.cnblogs.com/breezezz/p/11303722.html),可以将

原始问题转化为最大化最小值问题:

$$\max_{\alpha} \min_{\omega,b} L(\omega,b,\alpha)$$

其中, $L(\omega,b,\alpha) = \frac{1}{2}||\omega||^2 - \sum_{i=1}^n \alpha_i y_i(\omega x_i + b) + \sum_{i=1}^n \alpha_i(1)$,有点像高数多元函数

的有约束极值问题, 首先要求 $min L(\omega,b,\alpha)$, 优化变量为 ω 和 b, 令 L 偏导数为 0:

$$\frac{\partial L}{\partial \omega} = \omega - \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\frac{\partial L}{\partial h} = -\sum_{i=1}^{n} \alpha_{i} y_{i}$$

分别令其等于零,可以得到:

$$\omega = \sum_{i=1}^{n} \alpha_i y_i X_i$$
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

这个时候解出的 ω 和 b 一定使 L 在 α 固定的条件下取得极值,至于是极大还是极小,可以通过求二阶偏导数判断,这里偷个懒直接按照书上的,即取的是极小值,将 ω 带入(1)式,并利用 $\sum_{i=1}^{n}\alpha_{i}y_{i}=0$ 条件,整理可得:

$$L(\omega,b,\alpha)\min = -\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}(x_{i}\bullet x_{j}) + \sum_{i=1}^{n}\alpha_{i}$$

接下来的任务就是最大化 $L(\omega,b,\alpha)$ min , 即:

$$\max(-\frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y_{i}y_{j}(x_{i}\bullet x_{j})+\sum_{i=1}^{n}\alpha_{i}),$$

优化变量是 α ,所以与 α 相关的约束条件要考虑在内: $\sum_{i=1}^{n}\alpha_{i}y_{i}=0$, $\alpha_{i}\geq0$ (α_{i} 应该是可以小于等于 0 的,不过这样解出来的是 $-\alpha_{i}$,为了避免正负号转换的麻烦,取 $\alpha_{i}\geq0$),整理一下,最原始的优化问题经过一步步变换,转换为以下问题:

$$\min_{\alpha} \left(\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{n} \alpha_{i}\right)$$

$$s.t. \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \geq 0$$

这样就把原来的三变量优化问题变为单变量优化问题(但是 α 是个向量,所以相当于还是多变量,呵呵),求解出 α 就可以根据 $\omega=\sum_{i=1}^n\alpha_iy_ix_i$ 和 $b=y_i-\omega\bullet x_i$,计算 b 时,只需要带入一对实例点即可,因为对于所有的实例点来说计算出的 b 都是相等的(我猜的)

李航的书里边给了一个例子,可以帮助理解一下上面的过程。正例点 x1(3,3),x2(4,3),

负例点 x3(1,1),求解 ω 和 b,把这些点带到优化目标里:

$$\min_{\alpha} \left(\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{3} \alpha_{i}\right)$$
s.t.....

可以得到:

$$\min_{\alpha} \left[\frac{1}{2} (18\alpha_{1}^{2} + 25\alpha_{2}^{2} - 2\alpha_{3}^{2} + 42\alpha_{1}\alpha_{2} - 12\alpha_{1}\alpha_{3} - 14\alpha_{2}\alpha_{3}) - \alpha_{1} - \alpha_{2} - \alpha_{3} \right]$$

因为这个时候知道具体的表达式而且比较简单,可以直接求偏导数,令其等于 0,而不用数值方法,求解出来 $\alpha_1=\frac{3}{2}$; $\alpha_2=-1$; $\alpha_3=\frac{1}{2}$,但是这个解不满足 $\alpha_i\geq 0$,所以正确的解在边界上,分别令 α_1 , α_2 , $\alpha_3=0$,然后每次求解出其余两个 α ,把这三组解带到 L 里,看看哪一个使得 L 最小,最终解为 $\alpha_1=\frac{1}{4}$; $\alpha_2=0$; $\alpha_3=\frac{1}{4}$ 。在实际的算法中,绝大多数情况肯定是没法用解析的方法求解的。

在线性可分的情况下,求解的结果应该如下图所示,其中绿线表示求出的超平面,红线 和蓝线表示间隔平面。

二、 软间隔最大化

在前一节的所有论述中,一个重要前提是超平面存在,即训练空间是线性可分的,实际 应用中大部分情况肯定不是线性可分的,如果按照线性可分的要求去找超平面,在下图这种 情况显然是没有解的,但是,可以看到,按照绿线的划分方式,训练出来的模型应该也有不错的分类效果。

在原先的约束条件中 $y_i(\omega \cdot x_i + b) \ge 1$,这个1表示的就是下图中紫色笔画的 d,当然从原始距离变为1,是经过了一些规范化的步骤的。

如果我们做出一点让步,允许某几个点(异常点)到超平面的距离小于间隔平面到超平面的距离(甚至可以为负值,负值表示点在超平面的另一侧,例如绿线以上的蓝×),这样就

可以使在不是线性可分的训练空间上也可以解出绿线这种模型,并且预期的分类效果还不错。那么需要修改原先的约束条件,改为: $y_i(\omega \cdot x_i + b) \geq 1 - \zeta_i$,对于位于绿线上的红圈,只需要取 $\zeta_i = 1$ (因为 $y_i(\omega \cdot x_i + b) = 0$ 就表示实例点在超平面上),对于在绿线上侧的蓝×,只需要取 $\zeta_i > 1$,这时 $y_i(\omega \cdot x_i + b) < 0$ 就表示蓝×落到了超平面的另一侧。

由此可以看出,加上 ζ_i 这个变量之后,可以通过调节 ζ_i 使所有的实例点都满足约束条件。这时优化问题变为O2:

$$\min \frac{1}{2} ||\omega||^2 + C \sum_{i=1}^{N} \xi_i$$

$$s.t. y_i(\omega \cdot x_i + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

按照与求解 O1 类似的步骤 (利用 Lagrange 对偶性, 转换为最大化最小值问题之后偏导数, 令梯度等于零,解出 ω 关于 α_i 的表达式),将尚书右约束最优化问题转换为:

$$\min \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{N} \alpha_{i}$$

$$s.t. \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$0 \le \alpha_{i} \le C$$

利用某种方法(后面会提到,不是梯度下降法)进行优化求解之后可以得到

$$\omega = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$b = y_i - \omega \cdot x_i$$

这个解的形式与线性可分数据集的硬间隔最大化得到的解是一样的,不同的是,在软间隔最大化中,带入不同的点求解出的b可能是不同的,这些b都算是解,注意b只能由支持向量 x_i 所对应的实例点 (x_i,y_i) 求得,支持向量 x_i 是指位于间隔边界上的点,即0< α_i <C

关于上图几个点的 ξ 和 α 的取值,李航的书里是这样写的:

1点:
$$0 < \alpha_1 < C$$
 $\xi_1 = 0$

2点:
$$\alpha_2 = C$$
 $0 < \xi_2 < 1$

3点:
$$\alpha_3$$
= C ξ_3 = 1

4, 5点:
$$\alpha_{4,5}$$
= C $\xi_{4,5} > 1$

 ξ 的取值还是比较好理解的,因为 $1-\xi$ 就表示实例点到超平面(绿线)的距离,以 1 点为例,它到超平面的距离为 1,所以 $\xi_I=0$, $I-\xi_I=I$ 。 α 的取值得从 KKT 条件来理解: 见 https://www.cnblogs.com/houzichiguodong/p/9254898.html

 $0 < \alpha_i < C$ 时,由于 $C - \alpha_i - \mu_i = 0$,所以 $\mu_i \neq 0$,因为 $\xi_i \geq 0$, $\mu_i \geq 0$, $\sum_{i=1}^N \mu_i \xi_i = 0$,所以由 $\alpha_i (y_i(\omega \cdot x_i + b) - 1 + \xi_i) = 0$ 得 $y_i(\omega \cdot x_i + b) - 1 = 0$,所以在支持向量上; $\alpha = C$ 、 $\alpha = 0$ 时也可以按照 KTT 条件进行分析。

三、 SMO 算法

前面都是进行最优化问题的化简,最终都转换成关于 α 的优化问题:

$$\min \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{N} \alpha_{i}$$

$$s.t. \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

$$0 \le \alpha_{i} \le C$$

求解这个最优化问题用的是 SMO 算法,我还不理解原理,只知道步骤。每次选择两个 α 进行优化,而固定其他的 α 值。可以分为两步,一是选择两个 α ,二是更新这两个 α

1、选择 α_1 和 α_2

首先说一下我对这一步的感受:太绕了,而且教材上有几个地方可以这样理解,也可以 那样理解,得多看几遍次才行。

可以用两层循环实现,第一层选 α_I ,第二层选 α_2 。按照上面红色文字部分的分析, α_I 要满足以下的关系:

 α_1 =0 时, $y_1g(x_1) \ge 1$; $0 < \alpha_1 < C$ 时, $y_1g(x_1) = 1$; $\alpha_1 = C$ 时, $y_1g(x_1) \le 1$; α_1 就从违反这些关系的 α 中选择,优先选择 $0 < \alpha_1 < C$ 但 $y_1g(x_1) \ne 1$ 的。如果找不到违反这些关系的 α_i ,说明已经达到最优,停止搜索。

选出 α_1 之后,选择 α_2 的原则是使 $|E_1-E_2|$ 最大,其中 $E_i=g(x_i)-y_i$,选出 α_2 之

后,按照一定方法(后面会写)更新 α_2 和 α_1 。如果更新之后,优化目标函数 min L没有产生足够的下降(与预设阈值相比),就放弃当前 α_2 ,并且不再以 $|E_1-E_2|$ 最大为原则来搜索 α_2 ,而是选择在 $(\mathbf{0}, C)$ 内的 α_2 。如果再次更新 α_2 和 α_1 之后还是没有使优化目标函数 min L产生足够的下降,放弃当前 α_2 ,并再退而求其次,从 α 其他值中选择 α_2 (注意,这里并不是说从 $(\mathbf{0}, C)$ 中选一个 α_2 失败之后就可以进入这个 if,而是要把 $(\mathbf{0}, C)$ 内的所有 α_2 都遍历完,如果都失败了,才可以去 $\alpha=\mathbf{0}$ 或 $\alpha=C$ 中选择)。如果再次更新之后,依然没有产生足够的下降,那么放弃当前 α_1 ,重新进入第一层循环以搜索 α_1 。

2、更新 α_1 和 α_2

$$\min \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} (x_{i} \cdot x_{j}) - \sum_{i=1}^{N} \alpha_{i} \Leftrightarrow$$

$$\min \frac{1}{2} \alpha_{1}^{2} (x_{1} \cdot x_{1}) + \frac{1}{2} \alpha_{2}^{2} (x_{2} \cdot x_{2}) + \alpha_{1} \alpha_{2} y_{1} y_{2} (x_{1} \cdot x_{2})$$

$$-(\alpha_{1} + \alpha_{2}) + y_{1} \alpha_{1} \sum_{i=3}^{N} \alpha_{i} y_{i} (x_{i} \cdot x_{1}) + y_{2} \alpha_{2} \sum_{i=3}^{N} \alpha_{i} y_{i} (x_{i} \cdot x_{2})$$

$$s.t. \alpha_{1} y_{1} + \alpha_{2} y_{2} = -\sum_{i=3}^{N} \alpha_{i} y_{i} = constant$$

$$0 < \alpha_{1} < C$$

因此 α_1 、 α_2 满足关系: $\alpha_1 y_1 + \alpha_2 y_2 = constant$,求出 α_2 后根据这个更新 α_1 。那 α_2 是怎么求的呢? 公式见下:

$$\alpha_2^{new,unc} = \alpha_2^{old} + \frac{y_2(E_1 - E_2)}{x_1 \cdot x_1 + x_2 \cdot x_2 - 2x_1 \cdot x_2}$$

为什么上标要加个 unc 呢?因为 α_2 还会受到其他约束,例如 $\alpha_1 y_1 + \alpha_2 y_2 = cons \tan t$, $0 \leq \alpha_2 \leq C$,下面对根据 α_2 受到的约束,对 $\alpha_2^{new,unc}$ 进行一个调整。

上图是假设 y_1 =1, y_2 =-1且0<constant<C时, α_1 、 α_2 的图像,可以看到这时, α_2 的上界是 C+ α_2^{old} - α_1^{old} (这里用到了 α_1^{old} - α_2^{old} =constant)。同理,根据 y_1 、 y_2 、constant 的取值不同,可以得到 α_2 的不同上下界,总结一下可以得到:

$$y_1 = y_2$$
 时, $\alpha_2 \in [\max(0, \alpha_1^{old} + \alpha_2^{old} - C), \min(C, \alpha_1^{old} + \alpha_2^{old})]$ $y_1 \neq y_2$ 时, $\alpha_2 \in [\max(0, \alpha_2^{old} - \alpha_1^{old}), \min(C, C + \alpha_2^{old} - \alpha_1^{old})]$

同一记为: $\alpha_2^{new} \in [L, H]$, 所以:

$$\alpha_{2}^{\textit{new}} = \begin{cases} H, \alpha_{2}^{\textit{new}, \textit{unc}} > H \\ \alpha_{2}^{\textit{new}, \textit{unc}}, L \leq \alpha_{2}^{\textit{new}, \textit{unc}} \leq H \\ L, \alpha_{2}^{\textit{new}, \textit{unc}} < L \end{cases}$$

求出 α_2^{new} 之后, $\alpha_1^{new} = \alpha_1^{old} + y_1 y_2 (\alpha_2^{old} - \alpha_2^{new})$

其实, 到这里就可以写代码了, 但是为了完整, 再加上核函数的概念

四、核函数

这个地方书上有一些数学概念, 我看不太懂, 举个例子说一下我的理解:

假设有一个椭圆 $\frac{x_1^2}{4} + x_2^2 = 1$,椭圆内部都是正例点,椭圆外部都是负例点,如果不进行任何变换,虽然利用软间隔的支持向量机可以构建出模型,但是可想而知,一条直线的分类效果无论如何都好不到哪里去。如果在求解之前先进行一个变换,例如: $z=x^2$,

即 $z_1=x_1^2$, $z_2=x_2^2$, 分类边界就变为**:** $\frac{z_1}{4}+z_2=1$, 这是个线性模型,求解出来的 SVM 模型准确率肯定很高。

核函数的思想就是这样,把非线性的变为线性的,然后构建 SVM 模型,可以达到比较好的预测效果。创建一个核函数要满足许多数学条件,因此一般用现成的,常用的有多项式核、高斯核等(见统计学习方法)。

在以上化简和求解最优化问题时,可以看到 X_i 都是成对出现的,即都是以 X_i $\bullet X_j$ 的形式出现,所以可以预先定义一个 X 矩阵,用于存储 X_i $\bullet X_j$; 对于使用了核函数的 SVM,同样可以定义一个 K 矩阵,用于存储 Z_i $\bullet Z_j$,并且求解步骤与一二三节完全一致,只需要把 X_{ij} 换成 Z_{ij} 即可。

五、 测试

用了两个案例,上边的是线性可分的,下边是用了核函数的,用颜色表示正负例,圆 形代表训练集,三角形代表测试集。没算准确率,不过我感觉效果还是不错的。

