Electrónica de Circuitos

 $3^{\rm o}$ Ingeniería de Telecomunicaciones — UPV/EHU "Under-promise and over-deliver."

Javier de Martín – 2016/17

Repaso BJTs

Parámetros

 $h_{ix}(\Omega)$: Impedancia de entrada

 h_{rx} : Reverse voltage ratio

 h_{fx} Forward current transfer ratio

 $h_{ox}(\Omega^{-1})$: Admitancia de salida

Base Común	Emisor Común	Colector Común
$h_{ib} = \frac{v_{eb}}{i_e}$	$h_{ie} = \frac{v_{be}}{i_b}$	$h_{ic} = \frac{v_{bc}}{i_b}$
$h_{rb} = \frac{v_{eb}}{v_{cb}}$		
$h_{fb} = \frac{i_c}{i_e}$		
$h_{ob} = \frac{i_c}{v_{cb}}$		

Regiones Operativas

- Región Activa: La corriente de colector I_C depende directamente de la corriente de base I_B , de la ganancia de corriente β y de las resistencias conectadas al colector y emisor. En esta región se produce amplificación de la señal.
- Región Inversa:
- Región de Saturación: La corriente $I_C = I_E = I_{max}$. La corriente depende del voltaje de alimentación del circuito y de las resistencias conectadas al colector y emisor. Este modo aparece cuando la corriente de base es lo suficientemente grande como para inducir una corriente de colector β veces más grande.
- Región de Corte: La corriente $I_C = I_E = 0$. El voltaje V_{CE} es el de alimentación del circuito, al no haber corriente circulando no hay caída tensión. Este modo aparece, normalmente, cuando $I_B = 0$.

Configuraciones de Montaje Base Común

- Baja impedancia de entrada.
- Alta impedancia de salida
- Ganancia unidad, o menor, de corriente.
- Ganancia alta de tensión.

Emisor Común

- Impedancia de entrada media.
- Impedancia de salida media.
- Alta ganancia de corriente.
- Alta ganancia de tensión.

Colector Común

- Alta impedancia de entrada.
- Muy baja impedancia de salida.
- Alta ganancia de corriente.
- Unidad, o menor, ganancia de tensión.

Transistor FET

Etapas de Dos Transistores

Configuración en Paralelo

Se comporta como un único transistor, necesita una resistencia R (ballast resistor) para estabilizar el reparto de corriente entre los transistores.

$$I_{CN} = \frac{I_{CP}}{N} \qquad V_{BE_N} + I_{C_N}$$

Configuración Darlington

Gran ganancia de corriente pero baja impedancia de salida. Las fugas del primer transistor son amplificadas por el segundo, sólo es aconsejable en agrupaciones de 2 transistores.

$$\beta_T \approx \beta_1 \cdot \beta_2 \approx \frac{I_C}{I_B}$$

Amplificador Diferencial

Circuito Cascodo

Etapas CMOS

Amplificadores Multietapa

Clasificación

Análisis en Continua

Ganancia en Pequeña Señal

Margen Dinámico a la Entrada

3. Respuesta en Frecuencia (aUn no)

4. Fuentes de Corriente y Cargas Activas

Introducción y Figura de Mérito

Configuraciones de Fuentes de Corriente

Cargas Activas

FC y CA con Amplificadores Diferenciales

Polarización Independiente de V_{CC}

Desplazador de Nivel

5. Etapas de Potencia

Clasificación

Clase A: El transistor conduce durante el ciclo completo.

Clase B: El transistor conduce durante medio ciclo.

Clase AB: El transistor conduce durante algo más de medio ciclo.

Clase C: El transistor conduce durante algo menos de medio ciclo.

Definiciones

Potencia Consumida: Potencia suministrada por la fuente de alimentación de continua.

$$P_{CC} = \frac{1}{T} \int_{0}^{T} V_{CC} \cdot i_{C}(t) dt = V_{CC} \cdot \langle i_{C}(t) \rangle$$

Potencia Entregada a la Carga: Potencia de la señal amplificada en la carga de alterna.

$$P_O = V_{oeff} \cdot I_{oeff} = V_{Leff} \cdot I_{Leff} = P_L$$

Potencia disipada por el transistor: Consumida en el transistor, lo calienta.

$$P_D = P_{CC} - P_O - P_{resto}$$

Rendimiento de la etapa: Potencia entregada a la carga, respecto de la consumida de la fuente de alimentación.

$$\eta(\%) = \frac{P_O}{P_{CC}} \cdot 100\%$$

Amplificadores Clase A
Amplificadores Clase B y Clase AB
Consideraciones Térmicas