Mid-Term Exams

1st Civil Eng. **Fayoum University Differential Equations Faculty of Engineering** Mid -Term exam Apr., 29, 2018

Examiner: Assoc. Prof. Karem Mahmoud Time: 40 Min.

Choose the correct answer as this Figure

1.	Find the degree and order of D.E:	$sinx + y^2$	+y'=3

(A) 4, 3 3, 2

2, 1

1, 1

Find the independent variable in the code $>> y=dsolve('Dy=y^3*exp(-2*x))$

(B)

Solve the D.E: $y' = \sin^2(x-y+1), y(0) = -1$,

(A) $x-1-\tan^{-1}(x)$ (B) $x-\tan^{-1}(x+c)$ (C)

 $x - \tan^{-1}(x)$

(D) x - tan(x)

 $(2xy + tanx) y' = -(y^2 + y/cos^2x) is D.E$:

linear

Bernoulli

exact

separable

 $\mathbf{x}\mathbf{v}' + \mathbf{v} = \mathbf{v}^2\mathbf{x}^2$

A) $1/(-x^2-cx)$

 \bigcirc 1/($x^2 + cx$)

 $1/(x^2 - cx)$

 $(1+c)/x^2$

6. Find the resistance force in the mechanical system: $mg - kv^2 = m dv/dt$

The problem: y''' + 2xy'' + y' - y = x, y(0) = 1, y'(0) = -1, y'(0) = 0. is

non-linear

particular

Find the linearly dependent functions

 e^{-x} , e^{x} (A)

(B) x, e^x

sinx, $\sin(2x)$

9. Solve the D.E: 4y'' - 12y' + 5y = 0, y(0) = 0, y'(0) = 1.

(A) $e^{x/2}(c-2ce^{2x})$ (B) $e^{x/2}(1-e^{2x})$ (C) $e^{x/2}(1-e^{2x})$

x, 2x

10. Find output of the code \Rightarrow dsolve('D2y+y=2*t','y($\overline{0}$)=0','Dy($\overline{0}$)=1','t')

 $\sin(t)+2*t$

 $2*\sin(t)+t$ (B)

 $-\sin(t)+2*t$

 $\widehat{(D)} \sin(x) + 2^*x$

11. If the characteristic equation has repeated root (m=1, r=3), then the bases are

(A) e^x, e^x, e^x

(B) xe^{x} , $x^{2}e^{x}$, $x^{3}e^{x}$ (C) e^{x} , xe^{x} , $x^{2}e^{x}$

12. Consider the D.E. $y'''' - 4y''' + 4y'' = 0$. Find root of its characteristic equation				
(A) 0, 0, 4, 4	B 0, 0, -2, -2	$\bigcirc{0,0,2,2}$	\bigcirc 0, 2	
13. the D.E $y'' + a$ method if	y' + by = cannot be s	solved using undeter	mined coefficients	
A 1	$ (1+e^{2x})/e^x $	$ e^x/(1+e^{2x}) $	D sinx+cosx	
14. Find y _p in the	D.E. $y''' + 2y'' = 2$			
A 2	\bigcirc 2x ²	\mathbf{C} \mathbf{x}^2	$\bigcirc 0,0,\text{-}2$	
15. Find a solution o	$\frac{\mathbf{B}}{\mathbf{bf} \mathbf{y'''} - \mathbf{y''} + \mathbf{y'} - \mathbf{y} = 0}$			
\bigcirc	\bigcirc e^{2jx}	\bigcirc e^{jx}	\bigcirc $e^{jx/2}$	
16. Find (w ₁ - c ₁) o	or (w ₂ - c ₂) in the sol	ution of $y'' + y = \sin \theta$	² x by variation of	
parameters meth	nod.			
$ (\cos^3 x)/3 $		$(\sin^3 x)/3$	$\frac{D}{\cos^3 x}$ $\frac{1}{3} - \cos x$	
17. Find number of	dependent variables in			
A 0	B 1	<u> </u>	D 3	
18. Find z in the sys	stem: $\mathbf{y}' = \mathbf{z}, \ \mathbf{z}' = \mathbf{y} +$	Х.		
		$\bigcirc \alpha e^{x} + \beta e^{-x} - 1$		
19. The D.E. governs	s the shown circuit is	••		
E(t)	₹ R			
A Non-linear	B homogeneous	C Linear	D separable	
20 Find the D.E. cor	young the deflection of a	hown boom	W_0 $\longrightarrow x$ L $\longrightarrow \mu \pi$	
	verns the deflection of solution $\frac{d^2y}{dt}$		$\bigcap d^4v$	
$EI\frac{dy}{dx^4} + w(x) = 0$	$\mathbf{B} \mathbf{EI} \frac{\mathbf{d}^2 \mathbf{y}}{\mathbf{dx}^2} + \mathbf{w}(\mathbf{x}) = 0$	$\mathbf{EI}\frac{\mathbf{d}}{\mathbf{dx}^4} + \mathbf{w}_0 = 0$	$ \underbrace{D}_{\mathbf{dx}^4}^{\mathbf{d}^4\mathbf{y}} + \mathbf{w}(\mathbf{x}) = 0 $	

Fayoum University 1st Civil Eng. **Differential Equations** Makeup -Term exam **Faculty of Engineering** May, 13, 2018 Examiner: Assoc. Prof. Karem Mahmoud Time: 35 Min. Choose the correct answer as this Figure Find the degree and order of D.E: $\sin x + y^3 + (y')^2 = 0$. 3, 1 2, 1 2, 1 3, 2 21. Find the independent variable in the code $>> y=dsolve('Dy=y^3*exp(-2*y), 'x')$ 22. Solve the D.E: $y' = \sin^2(x-y+1), y(0) = -1$ (C) $x - tan^{-1}(x+c)$ (D) x - tan(x)(A) $x-1-\tan^{-1}(x)$ (B) $x-\tan^{-1}(x)$ 23. $(2x + \tan x) v' = -(v^2 + v/\cos y)$ is D.E: linear Bernoulli exact separa ble 24. Solve the D.E: $xy' + y = y^2x^2$ $1/(-x^2-cx)$ $1/(x^2 + cx)$ $(1+c)/x^2$ $1/(x^2$ cx) 25. **Find** the resistance force in the mechanical system: $mg + kv^2 - \lambda v = m dv/dt$ $kv^2 - \lambda v$ \bigcirc -mg -kv² 26. The problem: y''' + 2xy'' + y' - y = x, y(0) = 1, y'(0) = -1, y'(1) = 0. is non-linear **IVP BVP** particu lar 27. Find the linearly dependent functions \bigcirc exp(x), exp(2+x) \bigcirc e^{-x} , e^{x} sinx. $\mathbf{x}, \mathbf{e}^{\mathbf{x}}$ $\sin(2x)$ 28. Solve the D.E: 4y'' - 12y' + 5y = 0, y(0) = 0, y'(0) = 1. $e^{x/2}(c-2ce^{2x})$ (B) $e^{x/2}(1-e^{2x})$ 29. Find output of the code \Rightarrow dsolve('D2y+y=2*t','y(0)=0','Dy(0)=1','t') $\sin(t)+2*t$ $2*\sin(t)+t$ $-\sin(t)+2*t$ $\sin(x)$ + (B) 2*x

30. If the characteristic equation has repeated root (m=1, r=3), then the bases are

	$ B e^x, 2e^x, 3e^x $	$\bigcirc x e^x, x^2 e^x, x^3 e$	$ \begin{array}{c c} x & \bigcirc & e^{-x}, x e^{-x}, \\ x^2 e^{-x} \end{array} $
31. Consider the D	E. $y'''' - 6y''' + 9y'' =$	= 0. Find root of	its characteristic
equation (A) 0, 0, 3, 3	(B) 0, 0, 6, 6	\bigcirc 0, 0, -3, -3	① 3,3
32. The D.E $y'' + ay$	y' + by = F cannot be s		nined coefficients
method if F=		-	
Sinhx*cosx	B 1	$ (1+e^{2x})/e^x $	D sinx+co sx
33. Find $\mathbf{y}_{\mathbf{p}}$ in the	D.E. $y''' - y'' = 2$		
2	2	\bigcirc 2x ²	$\bigcirc 0,0,2$
34. Find a solution o	$\mathbf{f} \mathbf{y''} - \mathbf{y''} + \mathbf{y'} - \mathbf{y} = 0$)	
\bigcirc	\bigcirc e^{2jx}	\bigcirc e^{jx}	\bigcirc $e^{jx/2}$
35. Find (w ₁ - c ₁) o	r (w ₂ - c ₂) in the solu	$\mathbf{v}'' + \mathbf{y} = \sin^2 \mathbf{v}'' + \mathbf{y} = \sin^2 \mathbf{v}$	x by variation of
parameters meth	od.		
$ (\cos^3 x)/3 $			$(\cos^3 x)/3 - \cos x$
36. Find number	of independent vari	ables in the syste	$\mathbf{y}' = \mathbf{y} + \mathbf{z},$
$\mathbf{z}' = \mathbf{y} + \mathbf{z} + \mathbf{x}.$			
A 2	B 1	© 0	D 3
37. Find Z in the sy	$\mathbf{z_{stem:}} \ \mathbf{y'} = \mathbf{z}, \ \mathbf{z'} = \mathbf{y} - \mathbf{z'}$	+ x .	
$(A) \alpha e^{x} + \beta e^{-x} + 1$	\bigcirc $\alpha e^{x} + \beta e^{-x} - 1$	$(C)\alpha e^x + \beta e^{-x} - x$	$(D)\alpha e^{x} + \beta e^{-x} + x$
38. The D.E. governs	s the shown circuit is		
	E(t)	2000 \ E R	
A exact	Non- homogeneous	O Non-linear	© separa ble
39. Find the D.E. gov	verns the deflection of s	shown beam.	
p p	$\mathbf{EI} \frac{\mathbf{d}^4 \mathbf{y}}{\mathbf{dx}^4} + \mathbf{p} = 0$	A	
$A = \frac{d^2y}{2} + p(x) = 0$			

Fayoum University Faculty of Engineerin Examiner: Assoc. Pro	ng Mid -Term exa	Differential Eq m March, 31, 201 Time: 45 Min.			
Choose the corre	ect answer as this F	<u>ligure .</u>			
1. Find the degr	ree and order of D.E: sin	$\mathbf{x} + \mathbf{y}^2 + \mathbf{y}''' = 3.$			
A 3, 1	B 1,1	© 2,1	1,3		
2. The D.E: y (A) third-order	$y'' + y'''' = 3x \text{ is } \dots$ (B) Linear	()Non-linear	(D) homogenous		
3. Solve the D.E	y' + 1 = 1/(x + y).				
	$\bigcirc \pm \sqrt{2x+c} - x$	\bigcirc $\sqrt{x-c}$	$\bigcirc \pm \sqrt{2c-2x}$		
4. The D.E: (2	$xy + tanx) y' = -(y^2 + y)$	$(\cos^2 x)$ is			
A exact	B Bernoulli	C linear	(D) separable		
5. The D.E : xy	$y' + y = y^2 x^2$ is	_			
A linear	Bernoulli	© exact	D separable		
6. Solve the D.E	y' = y/x + x/y, $y(1) = 0$	0.			
	$\mathbf{n} \mathbf{x}^2 \mathbf{B} \mathbf{y} = \mathbf{c} \mathbf{x} \ln \mathbf{x}^2$				
7. The problem	y''' + 2xy'' + y' - y =	$= \mathbf{x}, \mathbf{y}(0) = 1, \mathbf{y}'(0) = -1$,y''(1)=0. is		
(A) non-linear	(B) IVP	(C) particular	BVP		
8. Find the lines	arly dependent bases.	-			
\bigcirc	\bigcirc X, e^x	\bigcirc sinx, sin(2x)			
9. Solve the D.E: $y'' + y = 0$, $y(0) = 1, y'(0) = 0$.					
A e ^x	B sinx	cosx	\bigcirc xe^{-x}		
10. The D.E $y''' + 2xy'' + y' - y = x$ hascoefficients.					
(A) constant	B variable	(C) homogenuos	(D) degree		
11. If the characteristic equation has repeated root $(m=1, r=3)$, then the bases are:					
	e^x B e^x, e^x, e^x	$(C)x e^{x}, x^{2} e^{x},$ $x^{3} e^{x}$			
12. Consider the	e D.E. $y^{(4)} - 4y^{(3)} + 13y$		Find roots of its		

characteristic equation.

(A) 3j, 2	B 3j, -3j, 2, 2		3j, -3j, 2	$-\!$	2j, -2j, 3, -3
13. The D.E $y'' + a$	y' + by = F cannot be	solved	using undeter	mined	coefficients
method if F=					
A 1	B ln2x/lnx	<u>(</u>	$1/(1+e^{2x})$	D	sinx+cosx
14. Find F(x) in th	ne D.E. $y''' + 2y'' + x^2$	=1.			
A 1	B y"'	(C)	X^2	(<u>)</u>	$1-x^2$
15. Find a solution (of $\mathbf{y}''' - \mathbf{y}'' + \mathbf{y}' - \mathbf{y} = 0$).			
\bigcirc	\bigcirc e^{2jx}	<u>(</u>)	e^{jx}	D	e^{2x}
16. Find (w ₁ - c ₁)	or (w ₂ - c ₂) in the so	lution o	of $y'' + y = \sin \theta$	² x by	variation of
parameters met					
$ \left(\cos^3 x \right) / 3 $			$(\sin^3 x)/3$	Cos	$3x/3 - \cos x$
17. Find the depend	ent variable in the D.E	$\frac{dz}{dx} =$	z + 2x.		
A y	B x	<u>()</u>	Z	D	x , z
18. Find y _p in the s	system:, $y'' = y + x$.	_			
<u>A</u> −x	B x	(C)	-2x	D	- x/2
19. The characteristic equation $m^5 - 2m^4 + m^3 = 0$ hasroots.					
A 5	B 4	(C)	3	D	2
20. Find the non-ho	mogenous D.E.				
$\mathbf{d}^2\mathbf{v}$	\bigcirc $\mathbf{d}^4\mathbf{v} + \mathbf{d}^2\mathbf{v}$	\bigcirc d	1^4 v	ന	$\mathbf{l}^4\mathbf{v}$

Fayoum University	1st Civil Eng.	Differential Eq	•
Faculty of Engineering	Make-up exam	• / /	
Examiner: Assoc. Prof. 1	Karem Mahmoud	Time: 40 Min.	
<u>Choose the correct a</u>	answer as this Fig	gure 🛡	
1. Find the degree a	and order of D.E: sinx-	$+\mathbf{v}^2+\mathbf{v'}=3$	
A 4, 3	B 3, 2	1,1	D 2, 1
2. Find roots $\mathbf{v}^{(4)} - 4\mathbf{v}^{(3)} + 13\mathbf{v}^{(2)}$	of its chara $-36y^{(1)} + 36y = 0$.	acteristic equation	n. In D.E.
$\left(A\right) ^{3j,2}$	•	(C)3j, -3j, 2, 2	(D) 2j, -2j, 3, -3
3. Solve the D.E: y	$y' = \sin^2(x-y+1), y(0) =$		
4. $(2xy + tanx) y'$	$= -(y^2 + y/\cos^2 x)$ is	D.E:	
Alinear	B Bernoulli	© separable	exact
$5. \mathbf{xy'} + \mathbf{y} = \mathbf{y^2}\mathbf{x^2}$	A 11/2		A 1// 2
		$\bigcirc \qquad (1+c)/x^2$	
6. Solve the D.E: y	y'+1=1/(x+y).		
	\bigcirc $\sqrt{x-c}$	$\bigcirc \pm \sqrt{2c-2x}$	$\bigcirc_{\pm\sqrt{2x+c}-x}$
7. The problem: \mathbf{y}'	$\mathbf{y}'' + 2\mathbf{x}\mathbf{y}'' + \mathbf{y}' - \mathbf{y} = \mathbf{x}$	$\mathbf{v} \cdot \mathbf{v}(0) = 1 \cdot \mathbf{v}'(0) = -1$	v''(0) = 0. is
(A) non-linear	B BVP	IVP	particular
8. Find the linearly	dependent functions	_	_
	\bigcirc X, e^x	(x, 2x	$ \begin{array}{c} $
9. Solve the D.E: 4y	y'' - 12y' + 5y = 0, y(0)	(0) = 0, y'(0) = 1.	
		$\bigcirc c e^{x/2} (1 - e^{2x})$	$\bigcirc_{c e^{x/2}(1+e^{2x})}$
10. Find $\mathbf{y}_{\mathbf{p}}$ in the sy	ystem:, y'' = y + x.		
<u>A</u> −x	B 2*sin(t)+t	\bigcirc -sin(t)+2*t	
· ·	stic equation has repeat	\sim	
	$ (B) x e^x, x^2 e^x, x^3 e^x $	$(C) e^{x}, e^{x}, e^{x}$	$(D)e^{-x}, xe^{-x},$
			$x^2 e^{-x}$

12. Consider the D.E.	y	T y T y = 0	· rmu r	Jot of its char	acteristic equation
\bigcirc 0, 0, 2, 2	(B)	0, 0, -2, -2	\bigcirc 0,	0, 4, 4	\bigcirc 0, 2
$13. \ y'' + ay' + by =$					nethod if F=
	_		_	Sinx*cosx	D Sinx/cosx
14. Find $\mathbf{y}_{\mathbf{p}}$ in the	D.E.	$y^{\prime\prime\prime}+2y^{\prime\prime}=2$			
A 2		$2x^2$	<u>(</u>	x^2	$\bigcirc 0,0,-2$
15. Find a solution 0	of y"'-	$-\mathbf{y}''+\mathbf{y}'-\mathbf{y}=0$			
\bigcirc	B	e^{2jx}	<u>(</u>	e^{jx}	\bigcirc $e^{jx/2}$
16. Find (w ₁ - c ₁) o		- c ₂) in the sol	ution of	$y'' + y = \sin^2 \theta$	x by variation of
parameters meth		(3)		(. 3)	
$ (\cos^3 x)/3 $	(B)	$-(\cos^3 x)/3$		(sin ³ x)/3	$\frac{D}{\cos^3 x}$ $3 - \cos x$
17. Find number of	depend	lent variables in t	the syste	$\mathbf{y}' = \mathbf{y} +$,
<u>(A)</u> 0	B	1	<u></u>	2	D 3
18. Find z in the sys	stem:]	$\mathbf{y}' = \mathbf{z}, \ \mathbf{z}' = \mathbf{y} +$	X .		
	B	$\alpha e^x + \beta e^{-x} + 1$	(C) αe	$^{x}+\beta e^{-x}-1$	
19. The characteristic equation $m^5 - 2m^4 + m^3 = 0$ hasroots.					
<u>A</u> 5	B	3	(C)	Linear	D no
20. Find the non-hor			_		_
$\frac{d^2y}{dx^2} + \sin x = 0$	B	$EI\frac{d^2y}{dx^2} + w(x) = 0$	© EI	$\left[\frac{d^4y}{dx^4} + w_0 = 0\right]$	$ \underbrace{D}_{\mathbf{dx}^4}^{\mathbf{d}^4} + \mathbf{w}(\mathbf{x}) = 0 $

Final-Term Exams

Fayoum University Final Term Exam. Differential Equations 1st Year Civil Eng. Dept. Faculty of Engineering June, 2, 2018 Max. Points: 60 Time: 3 Hrs.

Examiner: Assoc. Prof. Karem Mahmoud Ewis

مسموح ب ٨ صفحات قوانين - يجيب الطالب في نفس أوراق الأسئلة و في ظهورها الفارغة

درجات السؤال الأول موزعة بانتظام على جزئياته و تظليل الاختيار يكون كما هو موضح في رأس السؤال

Exam instructions

- 1- Only one sheet answer is allowed for every student.
- 2- It is not allowed to borrow the tools (pen, pencils, drawing tools, calculator ...etc.).
- 3- It is not allowed to use the cell phone or any of its application during the time of exam.

Question No 1: Choose the correct answer as this Figure

(40 M

1. Find a _o in the Fo	ourier series	of the per	iodic func	tion f(x) = 7	τ^2-x^2	where, $-\pi < \mathbf{x} < \pi$
(A) 6.58	B	13.16	©	0	D	4.39
2. Find $F_s(n)$ of $f($	$(\mathbf{x}) = \boldsymbol{\pi}$, who	ere, $\mathbf{p} = \pi$	and n=	:6 .		
	B	0	©	1.05	D	$2\pi/(2m-1)$
3. Solve the D.E: y	$y' = \sin^2(x - y)$	(y+1), y(0)	=1.			
) B x-	tan ⁻¹ (x) -	+1C	$x - \tan^{-1}(x)$	x +(b)	x-tan(x)+1
4. Find inverse La	place transfo	orm of s/[((s-2)(s-1)	l)]		
	B	$e^t - e^{2t}$	<u>C</u>	\mathbf{e}^{2t} +	- e'D	$2e^{2t}-e^t$
5. Solve the D.E: X	$\mathbf{x}\mathbf{y}' + \mathbf{y} = \mathbf{y}^2\mathbf{y}$	x ²				
		$1/(x^2+c)$	x) (C)	(1+c))/ x (D)	$1/(x^2 - cx)$
6. Find Laplace tra	ansform of u	1 ₁ (t) sin(t -	1), where	e, s=2.		
	B	0.027	©	0.135	5 D	0.068
7. The problem: y	+2xy'' + 2xy'' +	$\mathbf{y}' - \mathbf{y} =$	$\mathbf{x}, \mathbf{y}(0) =$	1, y'(0) = -	1,y''(1)=	0. is
A non-linear	B	IVP	<u>(C)</u>	BVP	D	particular
8. Find Laplace tra	ansform of t	100				
(A) $101 \% s^{101}$	B	$100!/s^{10}$	0 ()	$100!/s^{10}$	1 (D)	100/s ¹⁰¹
9. Solve the D.E: $4y'' - 12y' + 5y = 0$, $y(0) = 0, y'(0) = 1$.						
	B	$e^{x/2}(1 -$	e^{2x}	$ce^{x/2}(1$	+	$ce^{x/2}(1-e^{2x})$
10. Find output of t	he code >>	dsolve('D)2y+y=2*1	t','y(0)=0','D	y(0)=1','t	')
				M 1 1 1 T		

	B	$-\sin(t)+2*t$	$2*\sin(t)+t$	$\sin(x)+2*x$	
		ation has repeated r	root $(m=1, r=3)$, then the	ne bases are	
	$^{\circ}$ B	$e^x, 2e^x, 3e^x$	$xe^{x},x^{2}e^{x}$ $x^{3}e^{x}$	e^{-x} , xe^{-x} ,	
			$x^3 e^x$	$x^2 e^{-x}$	
12. Consider the D.	E. y""-	-6y''' + 9y'' = 0. Fi	ind root of its characte	ristic equation	
(A) 0, 0, 3, 3	B	0, 0, 6, 6	0, 0, -3, -3	3,3	
13. The D.E $y'' + a$	y' + by =	F cannot be solve	ed using undetermined	d coefficients method if	
F=	_	_			
A sinhx*cosx	$^{\circ}$	1 ($(1+e^{2x}De$	x sinx+cosx	
14. Find y _p in the	e D.E. y	y'''-y''=2			
\bigcirc - \mathbf{x}^2	B	\mathbf{x}^2	$2x^2$ D	0, 0, 2	
15. Find a solution	of y"'-	$\mathbf{y''} + \mathbf{y'} - \mathbf{y} = 0$			
	B	e^{2jx}	e^{jx} \bigcirc	$e^{jx/2}$	
16. Find $(\mathbf{w}_1 - \mathbf{c}_1)$	or (w ₂ -	c ₂) in the solution	of $y'' + y = \sin^2 x$ by v	ariation of parameters	
method.	_		/ \ _		
$(\cos^3 x)/3$	B	$-(\cos^3 x)/3$	$(\sin^3 x)$	$\left(\frac{\cos^3 x}{3}\right) - \cos x$	
17 Find number of	indenen	dent variables in th	ne system: $\mathbf{y}' = \mathbf{y} + \mathbf{z}$,	$\mathbf{z}' = \mathbf{v} + \mathbf{z} + \mathbf{x}$	
\bigcirc 2	macpen	1		3	
		, ,		-	
18. Find Z in the s	ystem: \	$\mathbf{y}' = \mathbf{z}, \ \mathbf{z}' = \mathbf{y} + \mathbf{x}$	•		
	B	$\alpha e^{x} + \beta e^{-x}$	$\alpha e^{x} + \beta e^{-x}$	$\alpha e^{x} + \beta e^{-x} + x$	
19. The series: $\sum_{k=1}^{\infty} \frac{x^k}{k^* 2^{2k}}$ convergences around origin in the interval					
(A) [-4, 4]	B	(-4, 4)		[-2, 2]	
20. Find the D.E. go	overns th	e deflection of show	vn beam.		
p p	2017	a a			
$ \bigoplus_{\mathbf{E}\mathbf{I}} \frac{\mathbf{d}^2 \mathbf{y}}{\mathbf{dx}^2} + \mathbf{p}(\mathbf{x}) = 0 $	B	$EI\frac{d^4y}{dx^4} + p = 0$	$EI\frac{d^4y}{dx^4} + W(x) =$	$\frac{d^4y}{dx^4} + w(x) = 0$	

Exams .

Question No 2 (10 Marks)

Find a power series solution of the D.E. y'' + (5/2)y' + y = 2x up to x^4 .

Solution

Consider the solution: $y(x) = \sum_{k=0}^{\infty} c_k x^k$, then,

$$y'(x) = \sum_{k=1}^{\infty} k c_k x^{k+1}$$
 and $y''(x) = \sum_{k=2}^{\infty} k(k-1) c_k x^{k+2}$.

We can substitute from table (1) the present D.E. thus, we find that

$$y'' + 2.5y' + y = 2x \rightarrow$$

$$\sum_{k=2}^{\infty} k(k-1) c_k x^{k-2} + \sum_{k=1}^{\infty} 2.5k c_k x^{k-1} + \sum_{k=0}^{\infty} c_k x^k = 2x$$

$$\sum_{i=2}^{\infty} i(i-1) c_i x^{i-2} + \sum_{i=1}^{\infty} 2.5 \mathbf{j} c_i \mathbf{x}^{i-1} + \sum_{k=0}^{\infty} c_k x^k \pm 2x$$

To find coefficients of x^k in R.H.S, we may use the following substitution.

$$i-2 = k \quad j-1 = k$$

$$\sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2} x^{k} + \sum_{k=0}^{\infty} 2.5(k+1)c_{k+1} x^{k} + \sum_{k=0}^{\infty} c_{k} x^{k} = 2x$$

$$\sum_{k=0}^{\infty} \left\{ (k+2)(k+1)c_{k+2} + 2.5(k+1)c_{k+1} + c_k \right\} x^k = 2x$$

This equation shows that coefficients of x^k in L.H.S equal to zero except coefficients of x equal to 2. Thus a recurrence relation between coefficients are written as

$$c_{k+2} = \begin{cases} -\frac{2.5(k+1)c_{k+1} + c_k}{(k+2)(k+1)}, k \neq 1 \\ \frac{2 - 2.5(k+1)c_{k+1} - c_k}{(k+2)(k+1)}, k = 1 \end{cases}$$

We can obtain the following coefficients by successive substitutions in the above recurrence relation.

Table coefficients in example

k	0	1	2
$\mathbf{c}_{\mathbf{k}+2} =$	$\mathbf{c}_2 =$	$\mathbf{c}_3 =$	$\mathbf{c}_4 =$
Expression	c_0 $5c_1$	$5c_0 \downarrow 7c_1 \downarrow 1$	$7c_0$ $85c_1$ 1
	2 4	12 8 3	32 192 24

The solution may be obtained by substituting in the power series expansion of $\sum_{k=0}^{\infty} c_k x^k$ as $y(x) = (\mathbf{c_0} + \mathbf{c_1} \mathbf{x} + \mathbf{c_2} \mathbf{x}^2 + \mathbf{c_3} \mathbf{x}^3 + \mathbf{c_4} \mathbf{x}^4 + \mathbf{c_5} \mathbf{x}^5 + \mathbf{c_6} \mathbf{x}^6 + \dots$

$$y(x) = c_0 \left(1 - \frac{x^2}{2} + \frac{5x^3}{12} - \frac{7x^4}{32} + \dots\right) + c_1 \left(x - \frac{5x^2}{4} + \frac{7x^3}{8} - \frac{85x^4}{192} + \dots\right) + \frac{x^3}{3} - \frac{5x^4}{24} + \dots$$

$$=c_0\left(1-0.5x^2+0.117x^3-0.219x^4+....\right)+c_1\left(x-1.25x^2+0.875x^3-0.443x^4+....\right)\\+0.333x^3-0.208x^4+....$$

Question No 3 (10 Marks)

a) Use the Fourier transform to solve the following problem.

$$y'' - y = f(x)$$
, where, $f(x) = \begin{cases} 1 & 0 < x < 0.5 \\ 0 & 0.5 \le x < 1 \end{cases}$, $y'(0) = -1$, $y'(1) = 0$

b) Use the Laplace transform to solve the following problem.

$$\ddot{y} + 5\dot{y} + 4y = 0$$
, $y(0) = 1$, $\dot{y}(0) = 1$.

Solution

a) Taking the Fourier cosine transform of the given D.E, we find that

$$\begin{split} &F_c\bigg(\frac{d^2y}{dx^2}-y\bigg)=F_c\big(f(x)\big)\\ &-\bigg(\frac{n\,\pi}{p}\bigg)^2Y_c\,(n)+\big(-1\,\big)^n\,y'(p)-y'(0)-Y_c\,(n)=F_c\big(f(x)\big)\\ &\Big(\!(n\,\pi\,)^2-1\!\Big)Y_c\,(n)+1=\int_0^{0.5}cos\big(2n\,\pi\,x\big)\,dx+0=\frac{1}{n\pi}sin\big(n\pi\,\,x\big)_0^{0.5}=\frac{1}{n\pi}\,sin\bigg(\frac{n\,\,\pi}{2}\bigg)\\ &\Big(\!n^2\,\pi^2-1\!\Big)Y_c\,(n)+1=\begin{cases} 0.5,\quad (n=0)\\ 1\quad (n=1,5,9,...)\\ -1\quad (n=3,7,11,...)\\ 0\quad (n=2,4,6,...) \end{cases}, \end{split}$$

$$Y_{c}\left(n\right) = \begin{cases} \frac{-0.5}{\left(n^{2}\,\pi^{2}-1\right)}, & (n=0) \\ 0 & (n=1,5,9,...) \\ \frac{-2}{\left(n^{2}\,\pi^{2}-1\right)} & (n=3,7,11,...) \\ \frac{-1}{\left(n^{2}\,\pi^{2}-1\right)} & (n=2,4,6,...) \end{cases}$$

Taking the inverse Fourier cosine transform of last result, we find that

$$y(x) = \frac{F_c(0)}{p} + \frac{2}{p} \sum_{n=1}^{\infty} F_c(n) cos \frac{n\pi x}{p} \longrightarrow$$

$$y(x) = \frac{-0.5}{(n^2 \pi^2 - 1)} + 2\sum_{n=1}^{\infty} F_c(n)\cos(n\pi x)$$

b)
$$\ddot{y} + 5\dot{y} + 4y = 0$$
, $y(0) = 1$, $\dot{y}(0) = 1$.

$$\ddot{y} - \dot{y} - 4y = 0$$
, $y(0) = 2$, $\dot{y}(0) = 3$

Taking Laplace transform (L.T) of the D.E,

$$\mathcal{L}(\ddot{y} + 5\dot{y} + 4y) = 0 \rightarrow s^2Y(s) - sy(0) - \dot{y}(0) + 5sY(s) - 5y(0) + 4Y(s) = 0$$

$$(s^2 + 5s + 4)Y(s) = 2s + 13 \rightarrow Y(s) = \frac{2s + 13}{s^2 + 5s + 4}$$
 (quadratic expression)

$$Y(s) = \frac{2s+13}{(s+5/2)^2 - 25/4 + 4} = 2\frac{s+2.5+4}{(s+5/2)^2 - (3/2)^2} = 2\frac{s+5/2}{(s+5/2)^2 - (3/2)^2} + \frac{16}{3}\frac{3/2}{(s+5/2)^2 - (3/2)^2}$$

Taking inverse Laplace transform (I.L.T), we find the final solution as

$$y(t) = 2e^{-5t/2} \left[\cosh(3t/2) + (8/3) \sinh(3t/2) \right]$$

Another inverse (using partial fraction)

$$\frac{2s+13}{s^2+5s+4} = \frac{2s+13}{(s+1)(s+4)} = \frac{A}{(s+1)} + \frac{B}{(s+4)} = \frac{11}{3(s+1)} - \frac{5}{3(s+4)}$$

$$y(t) = 11e^{-t}/3 - 5e^{-4t}/3$$

امتحان التخلف

Fayoum University Final Term Exam. Differential Equations 1 Faculty of Engineering May, 7, 2019 Max. Points: 60

1st Year Civil Eng. Dept. Time: 3 Hrs.

Examiner: Assoc. Prof. Karem Mahmoud Ewis

مسموح ب ٨ صفحات قوانين - يجيب الطالب في نفس أوراق الأسئلة و في ظهورها الفارغة درجات السؤال الأول موزعة بانتظام على جزئياته و تظليل الاختيار يكون كما هو موضح في رأس السؤال

Exam instructions

- 4- Only one sheet answer is allowed for every student.
- 5- It is not allowed to borrow the tools (pen, pencils, drawing tools, calculator ...etc.).
- 6- It is not allowed to use the cell phone or any of its application during the time of exam.

Question No 1: Choose the correct answer as this Figure '

					ì	,
1. Find a in the	Fourie	er series of th	e period	lic function	$f(\mathbf{x}) = \mathbf{x}^3$	sinx, where,
$ \begin{array}{c} -\pi < \mathbf{x} < \pi. \\ 6.58 \end{array} $	B	0	©	0	D	4.39
2. Find $F_s(n)$ of $f(n)$	$(\mathbf{x}) = \pi$, where, $\mathbf{p} = \pi$	and n	=2.		
	B	π	©	1.05	D	$2\pi/(2m-1)$
3. Solve the D.E:	$\mathbf{y'} = \mathbf{y}^3 \mathbf{e}$	-2x				
$ A) 1/\sqrt{e^{-2x}-2c} $	B	$\pm 1/\sqrt{e^{-2x}-2c}$	C ±	$1/\sqrt{e^{2x}-2c}$	\bigcirc \pm	$\sqrt{e^{-2x}-2c}$
4. Find inverse La	place tr	ransform of s/[($\overline{s-2})(s-$	1)]		
	lacksquare	$e^{t}-e^{2t}$	©	$e^{2t} + e^t$		$2e^{2t}-e^t$
5. Solve the D.E:	x 2y y'-	$\mathbf{y}^2\mathbf{x} = \mathbf{x}^3$				
$ \pm x\sqrt{\frac{1-cx^{-4}}{2}} $	_		© ±	$\sqrt{\frac{1-cx^{-4}}{2}}$	D	$\pm x\sqrt{\frac{1+cx^{-4}}{2}}$
6. Find Laplace tr	ansforn	n of $u_1(t)\sin(t-$	1), wher	e, s=2.		
	B	0.027	©	0.135	D	0.068
7. The problem: $y''' + 5xy' - y = x, y(0) = 1, y'(0) = 5, y''(1) = 0.$ is						
A non-linear	\bigcirc	IVP		BVP	D	particular
8. Find Laplace tr	\sim				_	
(A) $11!/s^{11}$	(B)	$10!/s^{10}$	() 1	$0!/s^{11}$	(D)	$10/s^{11}$
9. Solve the D.E:	y"-8y	y'+16y=0.				
$(\mathbf{c}_1 + \mathbf{c}_2 \times \mathbf{x}) \mathbf{e}^{-2}$	x B	$(c_1 + c_2 \times)e^{-4}$	x (C) ($(\mathbf{c}_1 + \mathbf{c}_2 \times \mathbf{c}_2) \mathbf{e}^2$	x 🕦 (c	$(c, +c, x)e^{4x}$

	he code >> dsolve('D		- · · · · · · · · · · · · · · · · · · ·		
	B t	$\bigcirc 2*\sin(t)+t$			
11. If the characteristic equation has repeated root $(m=1, r=2)$, then the bases are					
	\bigcirc \mathbf{B} $\mathbf{e}^{\mathbf{x}}$, $2\mathbf{e}^{\mathbf{x}}$,				
12. Consider the D.l	E. $y'''' - 12y''' + 36y''$	= 0. Find root of its	characteristic equation		
$\bigcirc 0,0,6,6$	B 0, 0, 3, 3	© 0, 0, -3, -3	\bigcirc 3, 3		
13. The D.E $y'' + a$ method if $F = \dots$	$\mathbf{ay}' + \mathbf{by} = \mathbf{F}$ cannot be	pe solved using und	etermined coefficients		
$ \begin{array}{c} \text{Method if } Y = \dots \\ \text{A} e^{x}/(1+e^{2x}) \end{array} $	 B x	\bigcirc e^{2x}	Sinx+cosx		
14. Find $\mathbf{y}_{\mathbf{p}}$ in the	$\mathbf{p} \cdot \mathbf{D} \cdot \mathbf{E} \cdot \mathbf{y}''' + \mathbf{y}'' = 10$.				
\bigcirc 5 x^2	\bigcirc $-5x^2$	$\bigcirc 10x^2$	$\bigcirc \hspace{-0.5cm} \boxed{ 0,0,1}$		
15. Find a solution (of $y''' + y' = 0$.				
A e ^x	\bigcirc e^{2jx}	\bigcirc e^{jx}	\bigcirc $e^{jx/2}$		
16. Find (w ₁ - c ₁) or method.	(w ₂ - c ₂) in the solution	of $y'' + y = \sin^2 x$ by y	variation of parameters		
$ (\cos^3 x)/3 $			$\bigcirc \left(\frac{\cos^3 x}{3}\right) - \cos x$		
17 Find number of	dependent variables in				
(A) 1	B) 2	$\begin{array}{ccc} C & 0 \\ \end{array}$	$ \begin{array}{ccc} \hline D \end{array} $		
18. $\mathbf{F}_{s}\left(\frac{\mathbf{d}\mathbf{y}}{\mathbf{d}\mathbf{x}}\right) = \dots$					
l D	$\frac{B}{p} - \frac{n\pi}{p} Y_{c}(n)$	$\bigcirc -\frac{n\pi}{p}Y_{s}(n)$	$ \underbrace{\mathcal{D}}_{\mathbf{p}}^{\mathbf{n}\mathbf{\pi}}\mathbf{Y}_{s}\left(\mathbf{n}\right) $		
19. The series: $\sum_{k=1}^{\infty} \frac{x^k}{k*3^{2k}}$ convergences around origin in the interval					
(A) [-9, 9]	B (-9, 9)	\bigcirc (-3, 3)	D [-3, 3]		
20. $\mathbf{L}(\dot{\mathbf{y}}(\mathbf{t})) = \dots$					
(A) sY(s)	\bigcirc $\mathbf{sY(s)} - \mathbf{y(0)}$	\bigcirc $\mathbf{Y}(\mathbf{s})$	(D) sY(s)-y'(0)		

Exams .

Question No 2 (20 Marks)

Find a power series solution of the D.E. y'' + x y' + y = 1 up to x^5 .

Solution

Consider the solution: $y(x) = \sum_{k=0}^{\infty} c_k x^k$, then,

$$y'(x) = \sum_{k=1}^{\infty} k c_k x^{k-1}$$
 and $y''(x) = \sum_{k=2}^{\infty} k(k-1) c_k x^{k-2}$.

We can substitute from in D.E. thus, we find that

$$y'' + x y' + y = 1 \rightarrow$$

$$\sum_{k=2}^{\infty} k(k-1) c_k x^{k-2} + \sum_{k=1}^{\infty} k c_k x^k + \sum_{k=0}^{\infty} c_k x^k = 2x$$

To find coefficients of x^k in R.H.S, we may use the following replacement.

$$\sum_{k=0}^{\infty} (k+2)(k+1)c_{k+2} x^{k} + \sum_{k=0}^{\infty} \mathbf{kc_{k}} \mathbf{x^{k}} + \sum_{k=0}^{\infty} c_{k} x^{k} = 2x$$

This equation shows that coefficients of x^k in L.H.S equal to zero except coefficients of x^0 equal to 2. Thus a recurrence relation between coefficients are written as

$$\mathbf{c}_{k+2} = \begin{cases} \frac{1 - (k+1)\mathbf{c}_k}{(k+2)(k+1)}, & k = 0\\ \frac{-\mathbf{c}_k}{(k+2)}, & k \neq 0 \end{cases}$$

We can obtain the following coefficients by successive substitutions in the above recurrence relation.

Table coefficients in example

r									
k	0	1	2	3					
$\mathbf{c}_{\mathbf{k}+2}$	$\mathbf{c}_2 =$	$\mathbf{c}_3 =$	$\mathbf{c}_4 =$	$\mathbf{c}_5 =$					
Expression	$\frac{1}{2} - \frac{\mathbf{c_0}}{2}$	$\frac{-c_1}{3}$	$\frac{c_0}{8} - \frac{1}{8}$	$\frac{c_1}{15}$					

The solution may be obtained by substituting in the power series expansion of $\sum_{k=0}^{\infty} c_k x^k$ as $y(x) = (\mathbf{c_0} + \mathbf{c_1} \mathbf{x} + \mathbf{c_2} \mathbf{x}^2 + \mathbf{c_3} \mathbf{x}^3 + \mathbf{c_4} \mathbf{x}^4 + \mathbf{c_5} \mathbf{x}^5 + \dots$

$$y = c_0 \left(1 - \frac{x^2}{2} + \frac{x^4}{8} + \dots\right) + c_1 \left(x - \frac{x^3}{3} - \frac{x^5}{15} + \dots\right) + \frac{x^2}{2} - \frac{x^4}{8} + \dots$$

$$= c_0 \left(1 - 0.5x^2 + 0.125x^4 + \dots\right) + c_1 \left(x - 0.333x^3 - 0.0667x^5 + \dots\right) + 0.5x^2 - 0.125x^4 + \dots$$

Question No 3 (20 Marks)

a) Use the finite Fourier transforms to solve the following problem.

$$\frac{d^2y}{dx^2} + y = x$$
, with the boundary conditions: $y(0) = 1$ and $y(1) = 0$

b) Use the Laplace transform to solve the following problem.

$$\ddot{\mathbf{y}} - \dot{\mathbf{y}} - 4\mathbf{y} = \mathbf{0} \; , \; y(0) = 2 \; , \; \dot{y}(0) = 3 \; .$$

Solution

a) Taking the Fourier sine transform of the given D.E, we find that

$$F_{s}\left(\frac{d^{2}y}{dx^{2}} + y\right) = F_{s}(x)$$

$$-(n\pi)^{2}Y_{s}(n) + n\pi(y(0) + (-1)^{n+1}y(1)) + Y_{s}(n) = \int_{0}^{1} \underbrace{x\sin(n\pi x)}_{\text{by parts}} dx$$

$$(1 - (n\pi)^{2})Y_{s}(n) + n\pi = \frac{(-1)^{n+1}}{n\pi} \to Y_{s}(n) = \frac{(-1)^{n}}{n\pi(1 - (n\pi)^{2})}$$

Taking the inverse Fourier sine transform of last result, we find that

$$y_s(x) = \frac{2}{p} \sum_{n=1}^{\infty} F_s(n) \sin \frac{n\pi x}{p} = y_s(x) = 2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n\pi (1 - (n\pi)^2)} \sin n\pi x$$

$$y(x) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n(1-(n\pi)^2)} \sin n\pi x$$

b)
$$\ddot{y} - \dot{y} - 4y = 0$$
, $y(0) = 2$, $\dot{y}(0) = 3$

Taking Laplace transform (L.T) of the D.E,

$$\mathcal{L}(\ddot{y} - \dot{y} - 4y) = 0 \rightarrow s^2 Y(s) - s y(0) - \dot{y}(0) - sY(s) + y(0) - 4Y(s) = 0$$

$$(s^2 - s - 4)Y(s) = 2s + 1 \rightarrow Y(s) = \frac{2s + 1}{s^2 - s - 4}$$
 (quadratic expression)

$$Y(s) = \frac{2s+1}{(s-1/2)^2 - 1/4 - 4} = 2\frac{s-1/2 + 1/2}{(s-1/2)^2 - 17/4} = 2\frac{s-1/2}{(s-1/2)^2 - 17/4} + \frac{1}{(s-1/2)^2 - 17/4}$$

Taking inverse Laplace transform (I.L.T), we find the final solution as

$$y(t) = 2e^{t/2} \left(\cosh(\sqrt{17}t/2) + (2/\sqrt{17}) \sinh(\sqrt{17}t/2) \right)$$

Examiner: Ass. Prof Dr. Karem Mahmoud Ewis

Exam instruction

- 7- Only one sheet answer is allowed for every student.
- 8- It is not allowed to borrow the tools (pen, pencils, drawing tools, calculator ...etc.).
- 9- It is not allowed to use the cell phone or any of its application during the time of exam.

Question No 1 (24 Marks) Choose the correct answer as this Figure

		41 11 0) Choose the		ce and were		5118410		
1. I	Find the degree a	nd ord	ler of D.E: sinx-	$+\mathbf{y}^2+\mathbf{y}$	v' = 3				
A	4, 3	B	1,1	(C)	2, 1	D	3, 2		
2. 1	Find the independ	dent va	ariable in the cod	le >> y	v=dsolve('Dy=y	^3*ex	p(-2*y))		
A	y	B	t	© '	X	D	D D		
3. Solve the D.E: $y' = \sin^2(x-y+1)$, $y(0) = -1$									
A	$x-1-\tan^{-1}(x)$	B	$x - \tan^{-1}(x)$	<u>(C)</u>	$x - \tan^{-1}(x$	(D)	x – tan(x)		
4.	(2xy + tanx) y' =	$=-(\mathbf{y}^2)$	$(x^2 + y/\cos^2 x)$ is	D.E :					
A	exact	B	Bernoulli	(C)	separable	D	linear		
5.	$\mathbf{xy'} + \mathbf{y} = \mathbf{y}^2 \mathbf{x}^2$								
A	$1/(x^2 - cx)$	B	$1/(x^2 + cx)$	(C)	$(1+c)/x^2$	D	$1/(-x^2-cx)$		
6.									
A	kv ²	B	mg		$-mg-kv^2$		- kv ²		
7. The problem: $y''' + 2xy'' + y' - y = x$, $y(0) = 1$, $y'(0) = -1$, $y''(0) = 0$. is									
A	non-linear	B	BVP	(C)	particular		IVP		
8. Find the linearly dependent functions									
A	e^{-x} , e^{x}		x, e ^x	(C)	$\sin x, \sin(2x)$	\bigcirc	x, 2x		
9. Solve the D.E: $4y'' - 12y' + 5y = 0$, $y(0) = 0, y'(0) = 1$.									
A	$e^{x/2}(c-2ce^{2x})$	B	$e^{x/2}(1-e^{2x})$	(C)	$ce^{x/2}(1-e^{2x})$	0	$ce^{x/2}(1+e^2$		
10. Find output of the code \Rightarrow dsolve('D2y+y=2*t','y(0)=0','Dy(0)=1','t')									
A	$-\sin(t)+2*t$	\bigcirc	$\sin(t)+2*t$	Ċ	2*sin(t)+t	D	sin(x)+2*x		
11. If the characteristic equation has repeated root $(m=1, r=3)$, then the bases are									
A	xe ^x ,	B	e^x , $2e^x$, 3		xe^x , e^x	D	$\mathbf{e}^{-\mathbf{x}}$,		
	$x^2 e^x, x^3 e^x$		e ^x		$x^2 e^x$,		xe^{-x}, x^2e^{-x}		
12.	12. Consider the D.E. $y'''' - 4y''' + 4y'' = 0$. Find root of its characteristic equation								

A

2

0, 0, -2, (E

0, 0, 4, 4

(C)

0, 0, 2, 2 \bigcirc

0, 2

Question No 2 (10 Marks)

- a) Find a power series solution of the D.E. y'' + 5y' + y = 2x up to x^4 .
- b) Find the interval of convergence of the series: $\sum_{k=1}^{\infty} \ \frac{x^{^{2k+1}}}{k^{^2} \, 2^{^{2k}}}$.

Question No 3 (10 Marks)

- a) Find the Fourier series of the periodic function $f(x)=\pi^2-x^2$ on the interval: $-\pi < x < \pi$.
- b) Use the Fourier transform to solve the following problem.

$$y'' - y = f(x)$$
, where, $f(x) = \begin{cases} 1 & 0 < x < 0.5 \\ 0 & 0.5 \le x < 1 \end{cases}$,

$$y'(0) = -1$$
, $y'(1) = 0$.

Question No 4 (10 Marks)

a) Find Laplace transform (L.T) of the following functions:

$$f(t) = e^{6t} + \sin(5t) + e^{at}\cosh(bt)$$
 and $\frac{d^3y}{dt^3}$.

b) Find inverse Laplace transform (I.L.T) of the following functions:

$$H(s) = \frac{3}{s} - \frac{5}{s^2 + 4} - \frac{30}{s^7}$$
 and $F(s) = \left(\frac{1}{s}\right) \left(\frac{1}{s^2 - 16}\right)$

Question No 5 (6 Marks)

Use the Laplace transform to solve the following problem.

$$\ddot{y} + 5\dot{y} + 4y = 0$$
, $y(0) = 1$, $\dot{y}(0) = 1$.

References

1. Advanced Engineering Mathematics, C. Ray Wylie, Louis C. Barrett, fifth edition, McGraw-Hill Inc., 1982.

- 2. Advanced Engineering Mathematics, Erwin Kreyszig, seventh edition, John Wiley, Sons, Inc., 1993.
- 3. Differential Equations, Third Edition, Shepley L. Ross, John Wiley, Sons, Inc., 1984.
- 4. Differential Equations, Systems Approach, Jack Goldberg, Merle C. Potter, Prentice-Hall Inc., 1998.
- 5. A first Course in Differential Equations with Modeling Applications, Dennis G. Zill, Thomson Learning Inc., 2005.
- 6. Advanced Engineering Mathematics, Alan Jefferey, Harcourt/Academic Press., 2002.
- 7. Boundary Value Problems & Integral Transforms, M. M. Abbassi, Dar El-Maaref, Egypt, 1982.
- 8. Google Advanced Search.