STATISTICAL MACHINE LEARNING (WS2022) EXAM T2 (90MIN / 24P)

Assignment 1. (6p) Let \mathcal{X} be a set of images. Let $s: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a function which measures a dissimilarity between a pair of images and is defined as

$$s(x, x') = (\phi(x) - \phi(x'))^T \mathbf{W}(\phi(x) - \phi(x')),$$

where $\phi: \mathcal{X} \to \mathbb{R}^n$ is a function extracting n features from image $x \in \mathcal{X}$, and $\mathbf{W} \in \mathbb{R}^{n \times n}$ is a square matrix. Consider a classifier $h: \mathcal{X} \times \mathcal{X} \to \{-1, +1\}$ assigning a pair of images $(x, x') \in \mathcal{X} \times \mathcal{X}$ into the positive class if their dissimilarity s(x, x') is not higher than a threshold $b \in \mathbb{R}$ and to the negative class otherwise, i.e.

$$h(x, x'; \boldsymbol{W}, b) = \operatorname{sign}(b - s(x, x')), \qquad (1)$$

where $W \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}$ are parameters of the classifier.

- a) Show that (1) is an instance of a linear classifier.
- b) Let $\mathcal{T}^m = \{(x_A^j, x_b^j, y^j) \in (\mathcal{X} \times \mathcal{X} \times \{+1, -1\}) \mid j = 1, \dots, m\}$ be a set of training examples composed of a pair of images (x_A, x_b) and their label y. Describe a variant of the Perceptron algorithm which finds the parameters $\mathbf{W} \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}$ such that the classifier (1) predicts all examples from \mathcal{T}^m correctly provided such parameters exist.
- c) Let $\mathcal{H} = \{h(x, x'; \mathbf{W}, b) = \text{sign}(b s(x, x')) \mid \mathbf{w} \in \mathbb{R}^{n \times n}, b \in \mathbb{R}\}$ be hypothesis space containing all classifiers (1). What is the Vapnik-Chervonenkis dimension of \mathcal{H} ?
- d) Does the uniform law of large numbers applies for the hypothesis space ${\cal H}$ defined in the assignment c)?

Assignment 2 (5p). Consider the following two probability density distributions.

The first distribution is a Rayleigh distribution with unit mean:

$$f(x) = \frac{\pi x}{2} \exp\left(\frac{-x^2 \pi}{4}\right),\,$$

where $x \in [0, +\infty)$, $\mathbb{E}[x] = 1$, and $\mathbb{E}[x^2] = \frac{4}{\pi}$. The second distribution is a log-normal distribution:

$$g(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(\frac{-(\log(x))^2}{2\sigma^2}\right),$$

where $x \in (0, +\infty)$.

Find its parameter value σ that minimises the Kullback-Leiber divergence $D_{KL}(f \parallel g) = \int_0^{+\infty} f(x) \log \left(\frac{f(x)}{g(x)}\right) \mathrm{d}x$.

- a) First calculate $\log \left(\frac{f(x)}{g(x)} \right)$.
- b) Approximate $\log(x)$ with its first order Taylor approximation: $\log(x) \approx x 1$.
- c) Optimize σ according to $D_{KL}(f \parallel g)$.

SML WS22

2

Assignment 3 (5p). Consider a hidden Markov model for sequences of features $x = (x_1, x_2, \dots, x_n)$ and sequences of hidden states $s = (s_1, s_2, \dots, s_n)$, $s_i \in K$, where K is a finite set. The probability is given by

 $p(x,s) = p(s_1) \prod_{i=2}^{n} p(s_i \mid s_{i-1}) \prod_{i=1}^{n} p(x_i \mid s_i).$

Given a sequence of features $x=(x_1,x_2,\ldots,x_n)$, we want to compute the average number of occurrences of a specific symbol $k_* \in K$ in the sequence $s=(s_1,s_2,\ldots,s_n)$, i.e.

$$\mathbb{E}_{s \sim p(s \mid x)} \sum_{i=1}^{n} [s_i = k_*].$$

Give an algorithm for computing this expectation. What is its run-time complexity?

Assignment 4 (4p). Define a neural module (layer) joining a linear layer and a *softsign* layer. Give the forward, backward and parameter messages. Consider n inputs, K units of the linear layer and K units of the *softsign* layer, each processing the output of the corresponding unit of the preceding linear layer. Each Softsign unit applies the non-linearity:

$$f(x) = \frac{x}{|x| + 1}$$

- The forward message is defined as a function of layer outputs w.r.t. to its inputs.
- The backward message is defined as the set of derivatives of all layer outputs w.r.t. to all layer inputs.
- Finally, the parameter message is defined as the set of derivatives of all layer outputs w.r.t. to all layer parameters.

Assignment 5 (4p). Consider a regression problem with multiple training datasets $\mathcal{T}^m = \{(x_i, y_i) \mid i = 1, \dots, m\}$ of size m generated by using

$$y = f(x) + \epsilon,$$

where the x_i are drawn i.i.d. from some distribution p(x) and ϵ is noise with $\mathbb{E}(\epsilon) = 0$ and $\text{Var}(\epsilon) = \sigma^2$. Derive the bias-variance decomposition for the regression model which averages the targets of \mathcal{T}^m and approximates f(x) by this constant:

$$h_m(x) = \frac{1}{m} \sum_{i=1}^m y_i.$$

Give the squared bias:

$$\mathbb{E}_x \left[\left(g_m(x) - f(x) \right)^2 \right] = \mathbb{E}_x \left[\left(\mathbb{E}_{\mathcal{T}^m} \left(h_m(x) \right) - f(x) \right)^2 \right]$$

and the variance $V_{x,\mathcal{T}^m}(h_m(x))$. Simplify both results if possible.