1

Análise quantitativa de PPC's

Plácido Andrade e Íkaro R. P. Costa

Resumo As diretrizes curriculares nacionais estabelecem os conteúdos dos cursos ofertados pelas IEF's. Resta a cada instituição elaborar os projetos pedagógicos dos seus cursos respeitando tais diretrizes. A liberdade fica restrita ao uso de três elementos estruturantes: carga horária das disciplinas; sua alocação semestral; pré-requisitos. Aqui construímos dois índices numéricos que serão calculados por um aplicativo utilizando tais elementos para descrever a complexidade do *PPC* (Projeto Pedagógico do Curso). No endereço www. ufca.edu.br/???? existe o aplicativo no qual os cálculos podem ser efetuados.

1.1 Introdução

Este trabalho não estabelece notas para cursos, ele visa comparar projetos pedagógicos de instituições de Ensino Superior através de um índice que expressa a complexidade dos PPC's sem levar em conta os conteúdos estabelecidos nas Diretrizes Curriculares. Por exemplo, dois bacharelados em Matemática. Um deles terá mais complexidade se seu índices é maior do que o do outro curso. Não faz sentido utilizar o índice para comparar cursos de categorias diferentes, como Matemática e Filosofia.

Assumiremos que um aluno é um profissional que trabalha 8h por dia ao longo de 5 dias da semana, com 4h despendida em aulas teóricas/práticas e 4h com estudo individual. Sendo assim, o aluno padrão tem uma carga horária semestral de $T_0 = 320 h$ em aulas

teóricas/práticas para um semestre de 100 dias letivos — turno padrão — e igual carga para estudos individuais. Considerando esta idealização, o índice construído terá como referência um projeto modelo descrito pelas seguintes propriedades.

- 1. As aulas presenciais/práticas são ministradas num único turno com uma carga horária semestral de $T_0 = 320h$.
- 2. Cada hora de aula presencial/prática corresponde a uma hora de estudo individual.

Para definir um *índice de complexidade* de um *PPC* iremos considerar três aspectos.

- 1. A carga horária semestral que o aluno deve dedicar ao curso que é a soma das horas de sala de aula/prática mais as horas do estudo individual, $T_0 = 320h$.
- 2. O número de pré-requisitos presentes na matriz curricular.
- 3. Como os pré-requisitos estão distribuídos na matriz curricular.

1.2 Turnos efetivos: \mathcal{T}_{ppc}

Várias grandezas estão presentes em todos os PPC's. São elas que organizam a proposta da Instituição para o curso. Listemos aquelas que serão utilizadas na contrução do índice.

- 1. n: número de semestre proposto para a integralização;
- 2. M_{pcc} : carga horária de integralização do PPC.
- 3. M_{ac} : carga horária de integralização das atividades complementares.
- 4. M_{est} : carga horária de Estágio Supervisionado.
- 5. m_i : carga horária da disciplina d_i .
- 6. s_i : semestre letivo.
- 7. M_i : soma das cargas horárias das disciplinas alocadas no semestre s_i .

Como não existe uma regra para integralização das atividades complementares nos PPC's, assume-se que sua carga horária está distribuída equitativamente ao longo dos semestres. Da mesma forma, quando o curso exige Estágio Supervisionado, em geral, ele não ocorre no semestre sugerido no PPC. Feito esta observação, definimos.

Definição 1.1. A quantidade de turno efetivo de sala de aula/laboratório do semestre s_i de um PPC com uma proposta de n semestre de integralização é

$$\tau_i = \frac{M_i + \frac{M_{ac} + M_{est}}{n}}{T_0}.$$

Assumindo que o aluno dedica 4h de estudo individual/em grupo a quantidade de turnos efetivos exigidos pelo PPC num semestre s_i é $1 + \tau_i$.

Definição 1.2. A quantidade de turnos efetivos do PPC com n semestre letivos de integralização é

$$\mathcal{T}_{ppc} = \sum_{i=1}^{n} (1 + \tau_i).$$

1.3 Quantidade de pré-requisitos: \mathcal{R}_{ppc}

Para cada disciplina d consideramos um conjunto constituído por um elemento $\{(m,s)\}$, onde m é a carga horária de d e s o semestre no qual a disciplina está alocada. Seja \mathcal{G} a união disjunta desses conjuntos unitários. Um caminho é uma sequência $\alpha = \{(m_i, s_i)\}_{i=1}^k$ em \mathcal{G} , denotada por

$$\alpha: (m_1, s_1) \to (m_2, s_2) \to \cdots \to (m_k, s_k),$$

satisfazendo as seguintes condições:

- 1. a disciplina correspondente a (m_1, s_1) não tem pré-requisitos;
- 2. a disciplina correspondente a (m_k, s_k) não é pré-requisito de outra disciplina;
- 3. a disciplina correspondente a (m_i, s_i) é pré-requisito da disciplina correspondente a (m_{i+1}, s_{i+1}) , para $1 \le i \le k-1$;

4. não existe disciplina tendo a disciplina correspondente a (m_i, s_i) como pré-requisito e que seja pré-requisito da disciplina correspondente a (m_{i+1}, s_{i+1}) , para 1 < i < k.

Utilizaremos as seguintes terminologias e notações.

- a) Diremos que (m_i, s_i) são os vértices do caminho.
- b) O comprimento do caminho, denotado por $|\alpha|$, será seu número de vértices.
- c) Uma subsequência $a:(m_i,s_i)\to (m_{i+1},s_{i+1})$ será nomeada aresta do caminho.
- d) O conjunto de todos os caminhos do PPC será denotado por Γ .

Definição 1.3. O número de pré-requisitos presentes no caminho α , denotado por \mathcal{R}_{α} , é

$$\mathcal{R}_{\alpha} = ||\alpha|| - 1.$$

Definição 1.4. O número de pré-requisitos presentes no PPC é

$$\mathcal{R}_{ppc} = \sum_{\alpha \in \Gamma} \mathcal{R}_{\alpha}.$$

1.4 Pesos dos pré-requisitos: \mathcal{P}_{ppc}

Para mensurar quantitativamente a complexidade do curso, não faz sentido considerar que uma disciplina seja mais "difícil" que outra. Tal avaliação é subjetiva. Da mesma forma é subjetivo assumir que uma disciplina com carga horária maior que outra é mais "complexa". Por isso, consideramos que cada disciplina terá complexidade padrão 1.

Iniciaremos a construção do peso dos pré-requisitos das disciplina do caminho

$$\alpha:(m_1,s_1)\to (m_2,s_2)\to \cdots \to (m_k,s_k).$$

1º) Assumiremos que quanto mais avançado for o semestre no qual a disciplina está alocada maior peso ela terá na integralização, ou seja, a possibilidade de extrapolar o tempo previsto pelo *PPC* é maior quando por algum motivo (reprovação, falta de vaga na turma, trancamento no semestre, choque de horário, etc), menos tempo existe para recuperar o

atraso. Discricionariamente, estabelecemos que a última disciplina de α terá peso proporcional a s_k no índice.

 2^{o}) Distinguiremos duas situações para estabelecer o peso da penúltima disciplina de α .

Se $s_{k-1} = s_k - 1$ (o pré-requisito está no semestre imediatamente anterior a m_k) o peso de m_{k-1} no índice deve ter o mesmo peso estabelecido para m_k , pois qualquer incidente que atrase a matrícula em m_{k-1} implica no atraso na matrícula em m_k . Portanto, devemos estabelecer um peso no índice para esta duas disciplinas como proporcionais a s_k .

Se $s_{k-1} = s_k - 2$, o peso no índice de m_{k-1} deve ser diferente. Como existe um semestre entre as duas, existe a possibilidade do estudante fazer a matrícula na disciplina m_{k-1} no semestre subsequente e se recuperar do atraso na integralização. No que segue, iremos considerar estas possibilidades para estabelecer um índice.

Seja $S_{\alpha} = \{s_1, s_2, \dots, s_k\}$ o conjunto constituído pelos semestres do caminho α . Definimos a seguinte relação de equivalência em S_{α} :

$$s_i \equiv s_j$$
 se, e somente se, $s_i - s_j = i - j$.

Seja $Q_{\alpha} = \{Q_{i_1}, Q_{i_2}, \dots, Q_{i_p}\}$ o conjunto constituído pelas classes de equivalências de \mathcal{S}_{α} , indexados da seguinte forma:

- 1. $i_1 < i_2 < \dots < i_p;$
- 2. $s_{i_j} = \max Q_{i_j}$ para todo j, com $1 \leq j \leq p$.

O símbolo #A denota a cardinalidade do conjunto A e $\ln x$ é logaritmo na base 10.

Definição 1.5. Sejam $\alpha:(m_1,s_i)\to (m_2,s_2)\to \cdots \to (m_k,s_k)$. O peso dos pré-requisitos das disciplinas do caminho α é

$$\mathcal{P}_{\alpha} = \sum_{i=1}^{p} (\#Q_{i_j} \log s_{i_j}).$$

Exemplo 1.1. Vamos supor que um PPC estebeleça uma integralização em 10 semestres e que o conjunto de vértices de um caminho α seja em número de 6 com a distribuição pelos semestres indicada na segunda linha da tabela.

sem.	1	2	3	4	5	6	7	8	9	10
		s_1			s_2	s_3	s_4		s_5	s_6

Nesse exemplo, o conjunto das classes de equivalência Q_{α} é constituído por

$$Q_1 = \{2\}, \qquad Q_4 = \{5, 6, 7\} \qquad e \qquad Q_6 = \{9, 10\},$$

pois $i_1=1$ e $i_2=4$ e $i_3=10$. Calculemos o peso dos pré-requisitos de α :

$$\mathcal{P}_{\alpha} = \sum_{j=1}^{3} (\#Q_{i_{j}} \log s_{i_{j}})$$

$$= \log 2 + 3 \log 7 + 2 \log 10$$

$$\approx 4,836.$$

Agora, suponha que um PPC estabeleça n semestres para integralização. Um caminho trivial $\alpha:(m_i,s_i)$, ou seja, um caminho com um vértice, tem peso dos pré-requisitos $\log s_i$. Se ela está alocada no primeiro semestre o peso é nulo. Se o caminho α tem n vértices, o peso dos pré-requisitos das disciplinas do caminho $n \cdot \log n$, pois só existe uma classe de equivalência, $Q_n = \{1, 2, 3, \ldots, n\}$. Este é o valor máximo que \mathcal{P}_{α} pode assumir. \diamondsuit

Recordando, seja Γ o conjunto dos caminhos do PPC.

Definição 1.6. O peso dos pré-requisitos de um PPC é

$$\mathcal{P}_{ppc} = \sum_{\alpha \in \Gamma} \mathcal{P}_{\alpha}.$$

1.5 Índice de complexidade: Δ_{ppc}

Definição 1.7. O índice de complexidade de um PPC, denotado por Δ_{ppc} , é asoma dos turnos efetivos, quantidade de pré-requisitos e peso dos pré-requisitos, ou seja,

$$\Delta_{ppc} = \mathcal{T}_{ppc} + \mathcal{R}_{ppc} + \mathcal{P}_{ppc}.$$

Ao reduzir a carga horária de uma disciplina de um PPC produzimos um outro PPC'. Se essa foi a única alteração, ou seja, se foi mantido o semestre da disciplina modificada e os pré-requisitos envolvidos, a única parcela de Δ_{ppc} a se alterar é a quantidade de turnos efetivos e $\mathcal{T}_{ppc'} < \mathcal{T}_{ppc}$. Isto implica que a complexidade diminui, $\Delta_{ppc'} < \Delta_{ppc}$. Quando eliminamos um pré-requisitos a diminuição do índice de complexidade não é óbvia, pois o novo PPC' pode ter mais caminhos de que o projeto original.

Proposição 1.1. Se PPC' é um projeto pedagógico obtido de um outro projeto pedagógico PPC por quebra de um pré-requisito, então $\Delta_{ppc'} < \Delta_{ppc}$.

Prova Suponha que seja quebrado o pré-requisito na aresta $a:(m_i,s_i) \to (m_{i+1}s_{i+1})$.

Considere um caminho que contenha a aresta a,

$$\alpha: (m_1, s_1) \to (m_2, s_2) \to \cdots \to (m_k, s_k).$$

A quantidade de turnos efetivos do novo PPC' obtido pela quebra deste pré-requisito é a mesma do PPC original. Logo, $\mathcal{T}_{ppc'} = \mathcal{T}_{ppc}$. Sendo assim, para a estudar como a complexidade foi afeta iremos nos restringir ao estudo das parcelas $\mathcal{R}_{\alpha} + \mathcal{P}_{\alpha}$.

Por definição, temos

$$\mathcal{R}_{\alpha} + \mathcal{P}_{\alpha} = (||\alpha|| - 1) + \sum_{j=1}^{p} (\#Q_{i_j} \log s_{i_j}),$$

Para calcular os novos índices, precisamos examinar quatro situações.

 $1^{o} Caso O poço (m_{i+1}, s_{i+1})$ é complexo e $s_{i+1} - s_{i} > 1$.

A quebra produz um único caminho α' , qual seja,

$$\alpha': (m_1, s_1) \to (m_2, s_2) \to \cdots \to (m_i, s_i).$$

Claro, temos a desigualdade $\mathcal{R}_{\alpha'} = (||\alpha'|| - 1) < (||\alpha|| - 1) = \mathcal{R}_{\alpha}$. Mostraremos que a parcela do peso de pré-requisitos também diminui.

Se $s_i \in Q_{k_{j_0}}$, então $s_{i+1} \in Q_{k_{j_0+1}}$, $s_i = s_{k_{j_0}}$ e

$$Q_{\alpha} = \{\underbrace{Q_{k_1}, Q_{k_2} \dots, Q_{k_{j_0}}}_{Q_{\alpha'}}, Q_{k_{j_0+1}}, \dots, Q_{k_p}\}.$$

Como $0 \le \log s_{k_r}$ e $k_{j_0} < k_p$, seguem as relações:

$$\mathcal{P}_{\alpha'} = \sum_{r=1}^{j_0} (\#Q_{k_r} \log s_{k_r}) < \sum_{r=1}^{k_p} (\#Q_{k_r} \log s_{k_r}) = \mathcal{P}_{\alpha}.$$

Disso segue que $\Delta_{\alpha'} < \Delta_{\alpha}$.

 $2^{\circ} Caso ext{ O poço } (m_{i+1}, s_{i+1}) ext{ \'e simples e } s_{i+1} - s_i > 1.$

$$(m_i, s_i)$$
 \rightarrow $(m_{i+1}s_{i+1})$

A quebra de pré-requisito produz dois caminhos, α' e α'' no novo PPC'. O primeiro caminho tem vértice final (m_i, s_i) e o segundo tem vértice inicial (m_{i+1}, s_{i+1}) . As relações entre as arestas dos caminhos são

$$\mathcal{R}_{\alpha'} + \mathcal{R}_{\alpha''} = (||\alpha'|| - 1) + (||\alpha''|| - 1) < (||\alpha|| - 1) = \mathcal{R}_{\alpha}.$$

Se $s_i \in Q_{k_{j_0}}$, então $s_{i+1} \in Q_{k_{j_0+1}}$, $s_i = s_{k_{j_0}}$ e

$$Q_{\alpha'} = \{\underbrace{Q_{k_1}, Q_{k_2}, \dots, Q_{k_{j_0}}}_{Q_{\alpha'}}, \underbrace{Q_{k_{j_0+1}}, Q_{k_{j_0+2}}, \dots, Q_{k_p}}_{Q_{\alpha''}}\}.$$

Portanto,

$$\begin{cases}
\mathcal{P}_{\alpha'} = \sum_{r=1}^{j_0} (\#Q_{k_r} \log s_{k_r}) \\
\mathcal{P}_{\alpha''} = \sum_{r=j_0+1}^{p} (\#Q_{k_r} \log s_{k_r})
\end{cases}.$$

Sendo assim, $\mathcal{P}_{\alpha'} + \mathcal{P}_{\alpha''} = \mathcal{P}_{\alpha}$. Como $\mathcal{R}_{\alpha'} + \mathcal{R}_{\alpha''} < \mathcal{R}_{\alpha}$ segue a designaldade $\Delta_{\alpha'} + \Delta_{\alpha''} < \Delta_{\alpha}$.

Examinemos os casos nos quais a quebra de pré-requisitos ocorre entre disciplina de uma mesma classe de equivalência de S_{α} .

 $3^{\circ} Caso ext{ O poço } (m_{i+1}, s_{i+1}) ext{ \'e complexo e } s_{i+1} - s_i = 1.$

A quebra produz um único caminho, α' com $||\alpha'|| < ||\alpha||$. Portanto, $\mathcal{R}_{\alpha'} < \mathcal{R}_{\alpha}$.

Comparemos as classes de equivalências dos semestres dos dois caminho. Se $s_i \in Q_{k_{j_0}}$, podemos escrever $Q_{k_{j_0}}$ como a união disjunta de dois conjuntos,

$$Q_{k_{j_0}} = \{\underbrace{\dots, s_i}_{Q'_{k_{j_0}}}, \underbrace{s_{i+1}, \dots s_{k_{j_0}}}_{Q''_{k_{j_0}}}\}$$

A relação entre as classes de equivalências fica da seguinte forma:

$$Q_{\alpha} = \{ \underbrace{Q_{k_1}, \dots Q'_{k_{j_0}}}_{Q_{\alpha'}} \cup Q''_{k_{j_0}}, \dots Q_{k_p} \}.$$

Agora podemos comparar os índices. Como $s_i < s_{k_{j_0}}$ seguem as relações

$$\mathcal{P}_{\alpha'} = \left(\sum_{r=1}^{j_0-1} (\#Q_{k_r} \log s_{k_r})\right) + \left(\#Q'_{k_{j_0}} \log s_i\right)$$

$$< \sum_{r=1}^{j_0} \#Q_{k_r} \log s_{k_r}$$

$$< \sum_{r=1}^{k_p} \#Q_{k_r} \log s_{k_r}$$

$$= \mathcal{P}_{\alpha}.$$

Portanto, $\Delta_{\alpha'} < \Delta_{\alpha}$.

 $4^{\circ} Caso ext{ O poço } (m_{i+1}, s_{i+1}) ext{ é simples e } s_{i+1} - s_i = 1.$

Eliminar um tal pré-requisito produz dois caminhos, α' e α'' no PPC' e $\mathcal{R}_{\alpha'} + \mathcal{R}_{\alpha''} < \mathcal{R}_{\alpha}$. Examinemos as classes de equivalências dos semestres dos dois caminho. Se $s_i \in Q_{k_{j_0}}$, podemos escrever $Q_{k_{j_0}}$ como a união disjunta de dois conjuntos,

$$Q_{k_{j_0}} = \{\underbrace{\dots, s_i}_{Q'_{k_{j_0}}}, \underbrace{s_{i+1}, \dots s_{k_{j_0}}}_{Q''_{k_{j_0}}}\}$$

A relação entre as classes de equivalências fica da seguinte forma:

$$Q_{\alpha} = \{\underbrace{Q_{k_1}, \dots Q'_{k_{j_0}}}_{Q_{\alpha'}} \cup \underbrace{Q''_{k_{j_0}}, \dots Q_{k_p}}_{Q_{\alpha''}}\}.$$

Essas observações permitem estabelecer a relação entre os índices dos caminhos.

$$\mathcal{P}_{\alpha'} + \mathcal{P}_{\alpha''} = \left(\sum_{r=1}^{j_0-1} \# Q_{k_r} \log s_{k_r}\right) + \# Q'_{k_{j_0}} \log s_i + \\ \# Q''_{k_{j_0}} \log s_{k_{j_0}} + \left(\sum_{r=j_0+1}^{k_p} \# Q_{k_r} \log s_{k_r}\right) \\ < \sum_{r=1,r\neq j_0}^{p} \# Q_{k_r} \log s_{k_r} + \left(\# Q'_{k_{j_0}} \log s_i + \# Q''_{k_{j_0}} s_{k_{j_0}}\right) \\ < \sum_{r=1,r\neq j_0}^{p} \# Q_{k_r} \log s_{k_r} + \left(\# Q'_{k_{j_0}} + \# Q''_{k_{j_0}}\right) \log s_{k_{j_0}} \\ = \mathcal{P}_{\alpha}.$$

Isso mostra que $\Delta_{\alpha'} + \Delta_{\alpha''} < \Delta_{\alpha}$.

Para concluir a demonstração da proposição, observemos que o conjunto Γ dos caminhos do PPC se decompõe em dois conjuntos disjuntos, $\Gamma = \Gamma_1 \cup \Gamma_2$, onde

 $\left\{ \begin{array}{ll} \Gamma_1 & \text{\'e constitu\'ido pelos caminhos que n\~ao cont\'em a aresta } a \\ \\ \Gamma_2 & \text{\'e constitu\'ido pelos caminhos que cont\'em a aresta } a \end{array} \right.$

Sendo assim, o índice de dificuldade do PPC pode ser escrito como

$$\Delta_{ppc} = \sum_{\alpha \in \Gamma_1} \Delta_{\alpha} + \sum_{\alpha \in \Gamma_2} \Delta_{\alpha}.$$

Ao quebrarmos um caminho na aresta $a:(m_i,s_i)\to (m_{i+1},s_{i+1})$ somente os caminhos que estão em Γ_2 são modificado. Pelo visto, a modificação produz um ou dois caminhos, mas seja qual for o caso, a soma dos índices é menor que o índice original. Logo $\Delta_{ppc'}<\Delta_{ppc}$.

1.6 Índice de retenção

O Administrador é o responsável pela programação semestral das disciplinas ofertadas bem como a disposição da disciplina na grade de horário semanal. O índice de complexidade não considera questões sobre reprovação, oferta e tempo de conclusão. Para fazer a modelagem de um índice que quantifique a retenção assumiremos duas hipóteses sobre a Administração do Curso.

- 1. As disciplinas são ofertadas anualmente com semestralidades indicadas no PPC.
- 2. O aluno terá sucesso ao cursar pela segunda vez uma disciplina.

Um sub-caminho com início numa disciplina d, é uma sequência $\beta = \{(m_i, s_i)\}_{i=1}^k$,

$$\beta: (m_1, s_1) \to (m_2, s_2) \to \cdots \to (m_k, s_k),$$

satisfazendo as seguintes condições:

1. m_1 e s_1 são a caga horária e o semestre de alocação da disciplina d;

- 2. (m_k, s_k) não é pré-requisito de nenhuma outro vértice;
- 3. não existe vértice que tenha (m_i, s_i) como pré-requisito e seja pré-requisito de (m_{i+1}, s_{i+1}) , para 1 < i < k.

Como antes, o comprimento do sub-caminho será denotado por $||\beta||$, enquanto $||\beta|| - 1$ será o número de suas arestas. Seja d uma disciplina na qual o aluno, por algum motivo, não fez sua matrícula ou foi reprovado. Considere um sub-caminho com início em d,

$$\beta: (m_1, s_1) \to \cdots \to (m_i, s_i) \to \cdots \to (m_k, s_k).$$

Uma ausência de matrícula em d desloca as disciplinas da cadeia de pré-requisito para dois semestres posteriores, pois estamos assumindo que as disciplinas são ofertadas anualmente, portanto, o aluno fará a matrícula em d dois semestre depois. Logo, surge um sub-caminho com início em d deslocado de 2 semestres:

$$\beta_{ret}: (m_1, s_1 + 2) \rightarrow (m_2, s_2 + 2) \rightarrow \cdots \rightarrow (m_{k+2}, s_{k+2}).$$

Seja $\Gamma(d)$ o conjunto constituído por todos os sub-caminhos com início em d. Como antes, definimos uma relação de equivalência nos conjuntos dos semestres de β e β_{ret} ,

$$S_{\beta} = \{s_1, s_2, \dots, s_k\}$$
 e $S_{\beta_{ret}} = \{s_1 + 2, s_2 + 2, \dots, s_k + 2\},\$

ver página 5. Sejam Q_{β} e $Q_{\beta_{ret}}$ os conjunto das classes de equivalência de \mathcal{S}_{β} e $\mathcal{S}_{\beta_{ret}}$, respectivamente. Observamos que $Q_{\beta_{ret}}$ é obtido de Q_{β} somando 2 a cada elemento de uma classe do segundo.

Definição 1.8. O índice de retenção de uma disciplina d em relação a um sub-caminho $\beta \in \Gamma(d)$ é

$$\gamma_{\beta} = \sum_{j=1}^{p} (\#Q_{k_j} \log(s_{k_j} + 2)).$$

Definição 1.9. O índice de retenção de uma disciplina d é

$$\gamma_d = \sum_{\beta} \gamma_{\beta},$$

onde o somatório percorre todos os sub-caminhos de $\Gamma(d)$.

Definição 1.10. O índice de retenção de um PPC é

$$\gamma_{ppc} = \sum_{d} \gamma_d,$$

onde o somatório percorre todas as disciplinas do PPC.

Proposição 1.2. Se PPC' é um projeto pedagógico obtido de um outro projeto pedagógico PPC por quebra de um pré-requisisto, então $\gamma_{ppc'} < \gamma_{ppc}$.

Prova Suponha que seja quebrado o pré-requisito $a:(m_{i_0},s_{i_0})\to(m_{i_0+1},s_{i_0+1}).$

Fixemos uma disciplina d. Se β é um sub-caminho com início d do PPC que não contém (m_{i_0}, s_{i_0}) ou (m_{i_0+1}, s_{i_0+1}) , então β pode ser considerado um sub-caminho de PPC'. Portanto, a colaboração de β para γ_d no PPC e para γ_d no PPC' é a mesma.

Examinemos o caso no qual o sub-caminho em $\Gamma(d)$ contém a aresta,

$$\beta: (m_1, s_1) \to \cdots \to (m_{i_0}, s_{i_0}) \to (m_{i_0+1}, s_{i_0+1}) \to \cdots \to (m_k, s_k).$$

Sendo assim,

$$\beta_{ret}: (m_1, s_1 + 2) \to \cdots \to (m_{i_0}, s_{i_0} + 2) \to (m_{i_0+1}, s_{i_0+1} + 2) \to \cdots \to (m_k, s_k + 2).$$

Ao eliminarmos a aresta, obtemos um sub-caminho em PPC' por truncamento, qual seja,

$$\beta': (m_1, s_1) \to (m_2, s_2) \to \cdots \to (m_{i_0}, s_{i_0}).$$

Nesse caso,

$$\beta'_{ret}: (m_1, s_1 + 2) \to (m_2, s_2 + 2) \to \cdots \to (m_{i_0}, s_{i_0} + 2).$$

A demonstração da desigualdade $\gamma_{\beta'} < \gamma_{\beta}$ é análoga à aquela feita para \mathcal{P}_{α} na seção anterior. Os casos 1^o , 3^o não são alterados seguem as mesmas argumentações. Os casos 2^o e 4^o possuem uma pequena modificação. Como $(m_{i_0+1}, s_{i_0+1} + 2) \to \cdots \to (m_k, s_k + 2)$ não pertence a $\Gamma(d)$, não existe o correspondente à parcela $\mathcal{P}_{\alpha''}$, de onde segue que $\gamma_{\beta'} < \gamma_{\beta}$.

Como os dois índices de retenção em relação à disciplina d é uma soma percorrendo todos sub-caminhos temos $\gamma_{\beta} \geqslant \gamma_{\beta'}$ (a igualdade é necessária pois pode ocorrer que os sub-caminhos com início em d não contenham a aresta a). Por outro lado, como estamos assumindo que existe uma aresta, algum sub-caminho contém esta aresta. Logo, vale $\gamma_{ppc'} < \gamma_{pcc}$.

1.7 Considerações finais

A comparação entre dois cursos de IES's distintas podem levantar vários questionamentos do Administrador Acadêmico quanto à disparidade de índices entre eles, caso seja detetado.

Porque dois cursos que, a priori, devem organizar os mesmos conteúdos estabelecido pelas Diretrizes Curriculares Nacionais foram estruturados de modo a produzirem índices tão díspares? Muitas explicações são possíveis e acarretam outros questionamentos.

- 1. Quanto de atendimento aos pleitos de professores especialistas envolvidos com o curso foram atendidos sem correspondência de conteúdo com as Diretrizes Curriculares?
- 2. Foi exagerada a interferência de linhas de pesquisa da pós-graduação (caso exista na Insituição) no curso de graduação?
- 3. A disparidade decorre da ampliação do volume de conteúdo para equalizar a carga horária de excesso de professores contratados para o curso?

1.8 Observações

Os cursos com disciplinas que definem ênfases ou trilhas podem ser avaliados acrescentando normalmente as disciplinas com seus pré-requisitos, semestres e carga horária como indicadas no PPC.

As disciplinas anualizada podem ter suas cargas horárias computadas em cada semestre e consideradas alocadas no segundo semestre.

Co-requisitos devem ser examinados caso a caso pois existem muitas possibilidades sobre como eles são colocados como pré-requisitos.