Algebra a diskrétna matematika Príklady na precvičenie č. 9

Príklad 1. Overte, či sú dané relácie na zodpovedajúcich množinách reflexívne, symetrické, antisymetrické a tranzitívne. Určte, ktoré z nich sú čiastočné usporiadania a nakreslite ich Hasseho diagramy.

a)
$$M = \{a, b, c, d\}, \mathcal{R} = \{(a, a), (a, b), (b, b), (b, c), (c, d), (d, d), (b, d)\}$$

b)
$$M = \{0, 1, 2\}, \ \mathcal{R} = \{(x, y) \in M \times M; x \le y\}$$

c)
$$\mathcal{R} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z}; x < 1 - y\}$$

d)
$$\mathcal{R} = \{(x, y) \in \mathbb{N} \times \mathbb{N}; x < 1 + y\}$$

e)
$$M = \{0, 1, 2, 3, 4, 5, 6, 7\}, \quad \mathcal{R} = \{(x, y) \in M \times M; 3 | (y - x)\}$$

f)
$$\mathcal{R} = \{(x, y) \in \mathbb{Z} \times \mathbb{Z}; x|y^2\}$$

g) \mathcal{R} je daná maticou susednosti

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

- g) $\forall x, y \in \mathbb{R} : x\mathcal{R}y \Leftrightarrow x \cdot y \in \mathbb{Q}$
- h) $\forall a, b, c, d \in \mathbb{R} : (a, b)\mathcal{R}(c, d) \Leftrightarrow a + b \leq c$ a zároveň $b \leq d$

Príklad 2: Nech $A = \{1, 3, 5, 6, 10, 12, 15, 18, 20, 21\}$

- a) Znázornite Hasseho diagram čiastočne usporiadanj množiny (A, |).
- b) Nájdite najväčší, najmenší prvok, minimálne a maximálne prvky danej čiastočne usporiadanej množiny.
- c) Určte $\inf\{3, 6, 15\}, \inf\{5, 10, 20\}, \inf\{5, 6, 18\}, \inf\{5, 12, 15, 18\}, \sup\{5, 15, 20\}, \sup\{5, 15\}, \sup\{6, 21\}.$

Príklad 3. Uvažujme množinu $\{1, 2, ..., n\}$ usporiadanú reláciou deliteľnosti. Najviac koľko prvkov môže mať podmnožina $X \subseteq \{1, 2, ..., n\}$, ktorá je reláciou deliteľnosti usporiadaná na X lineárne (tvorí reťazec)?

Príklad 4. Nech $A = \{\{\}, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}\}$, $B = \{2, 3, 12, 15, 18, 180\}$ a nech D_{18} je množina deliteľov čísla 18.

- a) Nakreslite Hasseho diagramy čiastočne usporiadaných množín (A, \subseteq) , $(B, |), (D_{18}, |)$.
- b) Určte, či sa jedná o zväzy.
- c) Ak áno, sú niektoré z nich izomorfné?

Príklad 5: Zistite či zväz $Z_1 = (\{0,1\} \times \{0,1,2,3,4\}, \leq)$, kde $(a,b) \leq (c,d) \Leftrightarrow a \leq c$ a $b \leq d$, je izomorfný so zväzom $Z_2 = (D_{72}, |)$, pričom D_{72} označuje množinu všetkých deliteľov 72.

Príklad 6: Na množine $M = \{2, 4, 8, 16, 64, 64^2\}$ a je relácia \mathcal{R} definovaná nasledovne: $x\mathcal{R}y \Leftrightarrow \exists n \in \mathbb{N} : y = x^n$. Overte, že (M, \mathcal{R}) je čiastočne usporiadaná množina a rozhodnite, či tvorí zväz.

Príklad 7: Zostrojte vžetky zväzy (M, \leq) pre $|M| \leq 5$.

Príklad 8: Zistite, či umocňovanie je binárna operácia na množine $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, resp. \mathbb{R} .

Príklad 9: Uvažujme množinu $\mathbb Z$ spolu s binárnymi operáciami $*,\ominus,\otimes,\circ$ definovanými vzťahmi

- a) $a * b = (a + b)^2$
- b) $a \ominus b = a + b 6$
- c) $a \otimes b = a + b + a^b$
- d) $a \circ b = \frac{a \cdot b}{a + b}$

Pre každú operáciu overte komutativitu a asociativitu.

Príklad 10: Nech $S = \{1, 2, 3\}$ a M je množina všetkých podmnožín množiny S. Na množine M máme danú binárnu operáciu symetrický rozdiel množín \oplus , ktorý je definovaný nasledovne

$$\forall A, B \in M : A \oplus B = (A \cup B) - (A \cap B).$$

Overte, či \oplus je komutatívna a asociatívna.