Groenwolds's relaxed conservatism

See algorithm in appended Python code. The objective and the constraint function is given verbatim below. (Notice the naive choice of (a quadratic approximation to) a function linearised in terms of reciprocal intervening variables, dd.... The reader is encouraged to, for example, uncomment the analytic second order information.)

```
import numpy as np
def obj(x):
    a = 1.; b = 32.; c = -1.
    f = a*np.sin(b*x)*np.exp(c*x)
    df = a*c*np.sin(b*x)*np.exp(c*x) + a*b*np.exp(c*x)*np.cos(b*x)
    ddf = 2*a*c*b*np.cos(b*x)*np.exp(c*x)+a*c*c*np.sin(b*x)*np.exp(c*x)-a*b*b*np.exp(c*x)*np.sin(b*x)
    quad. approx. to function linearised in terms of reciprocal intervening variables
   ddf = -2./x*df
    ddf = abs(-2./x*df) # nonconvex variant
    return [f, df, ddf]
def con(x):
    a = 1./4.; b = 32.
    g = a*np.cos(b*x)+0.1
   dg = -a*b*np.sin(b*x)
    ddg = -a*b*b*np.cos(b*x)
   quad. approx. to function linearised in terms of reciprocal intervening variables
   ddg = -2./x*dg
    ddg = abs(-2./x*dg) # nonconvex variant
    return [g, dg, ddg]
```

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}\tilde{F} = 73.650$
 $\alpha_{F} = 1.000$

$$G^{k} = -0.139$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}\tilde{G} = 9.213$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 5.129$ at the solution $x^{k\star} = 0.555$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -1.069786e + 00$$
 $\tilde{\mathbf{G}}^{k\star} = -4.084337e - 07$

while the actual functions are evaluated to be

$$F^{k\star} = -5.126674e - 01$$

$$G^{k\star} = 2.126848e - 01$$

However, the solution (step) is not a feasible descent step, and it is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}\tilde{F} = 73.650$
 $\alpha_{F} = 2.000$

$$G^{k} = -0.139$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}\tilde{G} = 9.213$
 $\alpha_{G} = 2.000$

with Lagrange multiplier $\lambda^{k\star} = 3.401$ at the solution $x^{k\star} = 0.550$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -9.152943e - 01$$

 $\tilde{\mathbf{G}}^{k\star} = -2.756164e - 09$

while the actual functions are evaluated to be

$$F^{k\star} = -5.449839e - 01$$

$$G^{k\star} = 1.818020e - 01$$

However, the solution (step) is not a feasible descent step, and it is deemed *unacceptable*, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}\tilde{F} = 73.650$
 $\alpha_{F} = 4.000$

$$G^{k} = -0.139$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}\tilde{G} = 9.213$
 $\alpha_{G} = 4.000$

with Lagrange multiplier $\lambda^{k\star} = 1.335$ at the solution $x^{k\star} = 0.545$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -7.028706e - 01$$

 $\tilde{\mathbf{G}}^{k\star} = -7.291763e - 08$

while the actual functions are evaluated to be

$$F^{k\star} = -5.736618e - 01$$

$$G^{k\star} = 1.370522e - 01$$

However, the solution (step) is not a feasible descent step, and it is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}\tilde{F} = 73.650$
 $\alpha_{F} = 8.000$

$$G^{k} = -0.139$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}\tilde{G} = 9.213$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 0.000$ at the solution $x^{k\star} = 0.531$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -4.623186e - 01$$

 $\tilde{\mathbf{G}}^{k\star} = -3.145113e - 02$

while the actual functions are evaluated to be

$$F^{k\star} = -5.651764e - 01$$

$$G^{k\star} = 3.120917e - 02$$

However, the solution (step) is not a feasible descent step, and it is deemed unacceptable, because

 \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}\tilde{F} = 73.650$
 $\alpha_{F} = 8.000$

$$G^{k} = -0.139$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}\tilde{G} = 9.213$
 $\alpha_{G} = 16.000$

with Lagrange multiplier $\lambda^{k\star}=0.057$ at the solution $x^{k\star}=0.531$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -4.621898e - 01$$

 $\tilde{\mathbf{G}}^{k\star} = -1.493519e - 09$

while the actual functions are evaluated to be

$$F^{k\star} = -5.619988e - 01$$

$$G^{k\star} = 2.613916e - 02$$

However, the solution (step) is not a feasible descent step, and it is deemed unacceptable, because

 \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.500$$

 $F^{k} = -0.175$
 $d_{x}^{k}F = -18.413$
 $dd_{x}^{k}\tilde{F} = 73.650$
 $\alpha_{F} = 8.000$

$$G^{k} = -0.139$$

 $d_{x}^{k}G = 2.303$
 $dd_{x}^{k}\tilde{G} = 9.213$
 $\alpha_{G} = 32.000$

with Lagrange multiplier $\lambda^{k\star} = 0.462$ at the solution $x^{k\star} = 0.524$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -4.464811e - 01$$

 $\tilde{\mathbf{G}}^{k\star} = 9.505003e - 08$

while the actual functions are evaluated to be

$$F^{k\star} = -5.158540e - 01$$

$$G^{k\star} = -2.278227e - 02$$

The solution leads to a feasible descent step and is therefore deemed *acceptable*, as is. (In this case both approximations are indeed conservative, nevertheless.)

$$x^{k} = 0.524$$

 $F^{k} = -0.516$
 $d_{x}^{k}F = -8.791$
 $dd_{x}^{k}\tilde{F} = 33.559$
 $\alpha_{F} = 1.000$

$$G^{k} = -0.023$$

 $d_{x}^{k}G = 6.969$
 $dd_{x}^{k}\tilde{G} = 26.602$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star}=1.231$ at the solution $x^{k\star}=0.527$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -5.442415e - 01$$

 $\tilde{\mathbf{G}}^{k\star} = 1.200414e - 06$

while the actual functions are evaluated to be

$$F^{k\star} = -5.414921e - 01$$
$$G^{k\star} = 4.830983e - 04$$

However, the solution (step) is not a feasible descent step, and it is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.524$$

 $F^{k} = -0.516$
 $d_{x}^{k}F = -8.791$
 $dd_{x}^{k}\tilde{F} = 33.559$
 $\alpha_{F} = 2.000$

$$G^{k} = -0.023$$

 $d_{x}^{k}G = 6.969$
 $dd_{x}^{k}\tilde{G} = 26.602$
 $\alpha_{G} = 2.000$

with Lagrange multiplier $\lambda^{k\star} = 1.201$ at the solution $x^{k\star} = 0.527$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -5.438946e - 01 \tilde{\mathbf{G}}^{k\star} = 2.464175e - 07$$

while the actual functions are evaluated to be

$$F^{k\star} = -5.413539e - 01$$
$$G^{k\star} = 3.378196e - 04$$

However, the solution (step) is not a feasible descent step, and it is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.524$$

 $F^{k} = -0.516$
 $d_{x}^{k}F = -8.791$
 $dd_{x}^{k}\tilde{F} = 33.559$
 $\alpha_{F} = 4.000$

$$G^{k} = -0.023$$

 $d_{x}^{k}G = 6.969$
 $dd_{x}^{k}\tilde{G} = 26.602$
 $\alpha_{G} = 4.000$

with Lagrange multiplier $\lambda^{k\star} = 1.144$ at the solution $x^{k\star} = 0.527$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -5.432267e - 01$$
 $\tilde{\mathbf{G}}^{k\star} = -3.228880e - 07$

while the actual functions are evaluated to be

$$F^{k\star} = -5.410877e - 01$$

$$G^{k\star} = 5.887112e - 05$$

However, the solution (step) is not a feasible descent step, and it is deemed unacceptable, because

- \rightarrow the value of the objective function approximation is less than the actual function value, at the new design point, $\tilde{F}^{k\star} < F^{k\star}$.
- \rightarrow the value of the constraint function approximation is less than the actual function value, at the new design point, $\tilde{G}^{k\star} < G^{k\star}$.

$$x^{k} = 0.524$$

$$F^{k} = -0.516$$

$$d_{x}^{k}F = -8.791$$

$$dd_{x}^{k}\tilde{F} = 33.559$$

$$\alpha_{F} = 8.000$$

$$G^{k} = -0.023$$

 $d_{x}^{k}G = 6.969$
 $dd_{x}^{k}\tilde{G} = 26.602$
 $\alpha_{G} = 8.000$

with Lagrange multiplier $\lambda^{k\star} = 1.042$ at the solution $x^{k\star} = 0.527$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -5.419799e - 01$$

 $\tilde{\mathbf{G}}^{k\star} = -1.188763e - 07$

while the actual functions are evaluated to be

$$F^{k\star} = -5.405892e - 01$$

$$G^{k\star} = -4.607702e - 04$$

The solution leads to a feasible descent step and is therefore deemed *acceptable*, as is. (Note that the objective and/or constraint function approximation is not conservative, in this case.)

$$x^{k} = 0.527$$

 $F^{k} = -0.541$
 $d_{x}^{k}F = -7.051$
 $dd_{x}^{k}\tilde{F} = 26.756$
 $\alpha_{F} = 1.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 7.326$
 $dd_{x}^{k}\tilde{G} = 27.799$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.962$ at the solution $x^{k\star} = 0.527$

At the solution of the QP the function approximations have the values

$$\tilde{F}^{k\star} = -5.410317e - 01$$

 $\tilde{G}^{k\star} = -8.705594e - 07$

while the actual functions are evaluated to be

$$F^{k\star} = -5.410307e - 01$$

$$G^{k\star} = -7.229650e - 07$$

The solution leads to a feasible descent step and is therefore deemed *acceptable*, as is. (Note that the objective and/or constraint function approximation is not conservative, in this case.)

$$x^{k} = 0.527$$

 $F^{k} = -0.541$
 $d_{x}^{k}F = -7.015$
 $dd_{x}^{k}\tilde{F} = 26.617$
 $\alpha_{F} = 1.000$

$$G^{k} = -0.000$$

 $d_{x}^{k}G = 7.332$
 $dd_{x}^{k}\tilde{G} = 27.821$
 $\alpha_{G} = 1.000$

with Lagrange multiplier $\lambda^{k\star} = 0.957$ at the solution $x^{k\star} = 0.527$

At the solution of the QP the function approximations have the values

$$\tilde{\mathbf{F}}^{k\star} = -5.410317e - 01 \\ \tilde{\mathbf{G}}^{k\star} = 3.024409e - 07$$

while the actual functions are evaluated to be

$$F^{k\star} = -5.410317e - 01$$

$$G^{k\star} = 3.024416e - 07$$

Both the value objective function approximation and the constraint function approximation, at the new design point $x^{k\star}$, is conservative with respect to the actual function values, $\tilde{F}^{k\star} > F^{k\star}$, $\tilde{G}^{k\star} > G^{k\star}$

Terminated on $|x^{k\star} - x^k| < 1.0$ e-06

Python code