2.7 Binární sčítačka

2.7.1 Úkol měření:

- 1. Navrhněte a realizujte 3-bitovou sčítačku. Pro řešení využijte dílčích kroků:
 - pomocí pravdivostní tabulky navrhněte a realizujte polosčítačku
 - pomocí pravdivostní tabulky navrhněte a realizujte úplnou sčítačku
 - propojte polosčítačku a úplnou sčítačku navzájem
- 2. Ověřte funkčnost sčítačky: např. $3_{10}+3_{10}=6_{10}$ (011₂+011₂=110₂)
- 3. Vypracujte protokol o měření

2.7.2 Použité přístroje:

Zdroj vstupních hodnot: Log selektor RC

Zobrazovač hodnot: Log probe RC

Hradla: 2x 7400 (4x NAND)

7486 (4x XOR)

2x 7432 (4x OR)

2x 7408 (4x AND)

2.7.3 Teorie:

Binární sčítačka

Sčítání binárních čísel se řídí rovnicí: $S_i = A_i + B_i + C_i$ kde $A_i B_i$ jsou sčítanci, C_i představuje přenos z nižšího řádu a S_i je výsledek. Z toho plyne, že sčítačka má tři stupy $A_i B_i C_i$ a dva výstupy $S_i C_{i+1}$. Blokové schéma pro sčítání dvou tříbitových čísel je patrné z Obr. 1.

Obr. 1. Blokové schéma 3-bitové sčítačky

Všimněte si, že člen pro sčítání v 0-tém řádu má pouze vstupy dva A_0 , B_0 a to proto, že v tzv. nultém řádu se nepřičítá přenos z nižšího řádu. Tento člen $\Sigma/2$ se nazývá polosčítačka. Pro sčítání ve vyšších řádech už se využívá úplné sčítačky Σ . K přenosu do vyššího řádu tedy C_i = 1 nastane při překročení maximální cifry při součtu. Tedy když $A_i + B_i = 1 + 1$.

Příklad sečtení dvou tříbitových čísel $A=(A_2,A_1,A_0)=(0,1,1)$ a $B=(B_2,B_1,B_0)=(1,0,1)$ vidíme níže.

Obr. 2. Součet dvou tříbitových čísel

Postup vytvoření polosčítačky

Pravdivostní tabulka pro polosčítačku má dvě vstupní hodnoty A_0,B_0 a dvě výstupní. S_0 je výsledek sčítaní a C_1 je přenos do vyššího řádu.

Tab. 1. Pravdivostní tabulka polosčítačky

A_0	B_{0}	S_0	C_1
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Nejprve pro výstupní funkce S_0 a C_1 vytvoříme dvě logické rovnice. Tyto logické rovnice vytvoříme pomocí pravdivostní tabulky a to buď přímo z tabulky pomocí logických funkcí a nebo pomocí Karnaughových map. Jelikož je tabulka poměrně jednoduchá, můžeme vytvořit rovnice přímo výpisem pro řádky, v nichž jsou jednotlivé výstupní funkce rovny 1. Rovnice sestavíme tak, že v rámci řádku opíšeme vstupní proměnné a provádíme mezi nimi

logický součin. Pokud je hodnota proměnné v tabulce rovna 0, proměnnou opatříme negací. Mezi řádky pak provádíme logický součet. Rovnice odvozené z tabulky 1. vidíme níže:

$$S_0 = \overline{A_0} * B_0 + A_0 * \overline{B_0}$$

$$C_1 = A_0 * B_0$$

Po sestavení logických rovnic z nich vytvoříme schéma zapojení polosčítačky, které bude mít rovněž dva vstupy A_0,B_0 a dva výstupy S_0,C_1 (viz Obr.3).

Obr. 3. Schéma zapojení polosčítačky

2.7.4 Domácí příprava:

- a) Z pravdivostní tabulky pro polosčítačku sestavte logickou funkci pro S_0 a C_1 . Navrhněte schéma zapojení pomocí logických členů NAND (viz. postup v příkladu). K úpravě funkce využijte De Morganových zákonů.
- b) Z pravdivostní tabulky pro úplnou sčítačku sestavte K-mapu. Z K-mapy sestavte funkce pro S₁ a C₂. Funkci C₂ realizujte pomocí logických členů NAND a funkci S₁ realizujte dle možností (nejlépe použitím logického členu XOR). K úpravě funkce využijte

De Morganových zákonů.

2.7.5 Zadání:

1) Polosčítačka

- a) Poznamenejte si používané součástky a přístroje.
- b) Na základě schématu polosčítačky zapojeného pomocí logických členů NAND (viz. domácí příprava) zapojte obvod a ověřte jeho funkčnost.

POSTUP:

- jako zdroj logických hodnot A_0 , B_0 použijte výstupy Log selektoru A_0 , A_1 . Výstupy S_0 , C_1 připojte na vstupy zobrazovače (Log probe A_0 , A_1), viz. Obr.3.
- pro použité součástky použijte napájení 5V ze základní desky sestavy RC2000 (module board)
- volbu vstupních hodnot A₀, B₀ provádějte pomocí tlačítek Log selektoru na základě pravdivostní tabulky a výstupy zobrazené na zobrazovači "Log probe" porovnávejte s výstupy v pravdivostní tabulce.
- c) Po ověření správné funkčnosti zavolejte vyučujícího ke kontrole.

Tab. 2. Pravdivostní tabulka polosčítačky

A_0	B_0	S_0	C_{I}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

2) Úplná sčítačka

- a) Poznamenejte si používané součástky a přístroje.
- b) Opět použijte schéma z domácí přípravy a ověřte jeho funkčnost, případně jej opravte. Postup je stejný jako u polosčítačky. Pro připojení vstupní hodnoty C_1 využijte opět Log selektoru, napojením na výstup A_2 .

Tab. 3. Pravdivostní tabulka pro úplnou sčítačku

A_{I}	B_1	C_{I}	S_I	C_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

3) 3-bitová sčítačka

Navrhněte schéma zapojení pro 3-bitovou sčítačku, zapojte jej a ověřte si jeho funkčnost.

Jedná se vlastně o kombinaci polosčítačky a dvou úplných sčítaček viz. obecné schéma 3-bitové sčítačky Obr.1. Sčítačka bude mít 6 vstupních hodnot A_0 - A_2 , B_0 - B_2 , 4 výstupní hodnoty $S_0 - S_2$ a C_3 . Přenosy do vyšších řádů C_1 , C_2 boudou vždy připojeny k další sčítačce. Přenos C_3 zůstane pouze jako výstup. C_1 bude tedy připojeno k první úplné sčítačce a C_2 k druhé úplné sčítačce.

K realizaci použijte libovolné logické členy.