Study Notes of OR and Modeling

Jiuzhang

Update on January 17, 2024

Contents

I	Linear programming Introduction for Linear Programming		3
1			
	1.1	What is Linear Programming?	4
	1.2	How to build a LP model?	4

Preface

Notes mainly refer to following materials:

- * theory
 - linear programming
 - * lecture notes from washington
 - * lecture notes by ted
 - integer programming
 - * lecture notes by karthik
- * modeling
 - Model Building in Mathematical Programming by willian
 - Application of LPs
 - Application of IPs
 - lecture notes from utc
 - handbook of discrete optimization modeling

Part I Linear programming

Chapter 1

Introduction for Linear Programming

1.1 What is Linear Programming?

A mathematical optimization problem is one in which some function is either maximized or minimized relative to a given set of alternatives. The function to be minimized or maximized is called the *objective function* and the set of alternatives is called the *feasible region* (or constraint region). In this course, the feasible region is always taken to be a subset of \mathbb{R}^n (real n-dimensional space) and the objective function is a function from \mathbb{R}^n to \mathbb{R} .

We further restict the class of optimization problems that we consider to linear programming problems (or LPs). An LP is an optimization problem over \mathbb{R}^n wherein the objective function is a linear function, that is, the objective has the form

$$c_1x_1 + c_2x_2 + \dots + c_nx_n$$

for some $c_i \in \mathbb{R}$ (i = 1, ..., n), and the feasible region is the set of solutions to a finite number of linear inequality and equality constraints, of the form

$$a_{i1}x_i + a_{i2}x_2 + ... + a_{in}x_n \le b_i$$
 $i = 1, ..., s$

and

$$a_{i1}x_i + a_{i2}x_2 + ... + a_{in}x_n = b_i$$
 $i = s + 1, ..., m$.

Linear programming is an extremely powerful tool for addressing a wide range of applied optimization problems. A short list of application areas is resource allocation, production scheduling, warehousing layout, transportation scheduling, facility location, flight crew scheduling, parameter estimation,...

1.2 How to build a LP model?