CSC 2421H : Graphs, Matrices, and Optimization Random Walk Lecturer: Sushant Sachdeva Scribe: Junwei Su

HW: The proof of statement is left as exercise for the student

1 Remark from last class

If at step t, your distribution is given by \mathbf{p}_t , then the next distribution \mathbf{p}_{t+1} is given by:

$$\mathbf{p}_{t+1} = \mathbf{A}\mathbf{D}^{-1}\mathbf{p}_t,\tag{1}$$

where:

A: weighted adjacency matrix

D: diagonal weighted degree matrix

The state transition can also be expressed as:

$$\mathbf{p}_{t+1}(x) = \sum_{y:(x,y)\in E} \frac{w(x,y)}{\mathbf{D}(y)} * \mathbf{p}_t(y)$$

2 Stationary State

Definition 2.1. If distribution $\pi \in \mathbb{R}^{\mathbf{v}}$ is said to be stationary distribution for G if $\mathbf{AD}^{-1}\pi = \pi$ **Lemma 2.2.** Any undirected graph has a stationary distribution

Proof. Given any undirected graph G, let

$$\pi = \frac{1}{\mathbf{1}\mathbf{D}^{\top}\mathbf{1}}\mathbf{D}\mathbf{1}$$

. This is the stationary distribution for G since

$$\mathbf{A}\mathbf{D}^{-1}\pi = \frac{1}{\mathbf{1}^{\top}\mathbf{D}\mathbf{1}}\mathbf{A}\mathbf{1} = \frac{1}{\mathbf{1}^{\top}\mathbf{D}\mathbf{1}}\mathbf{D}\mathbf{1} = \pi$$

Claim: If G is connected, π is unique

Remark: Even if G is connected, it is not true that for any $\mathbf{p_0}$, $\mathbf{p}_t \to \pi$

Example:

The stationary state $\pi = (\frac{1}{2}, \frac{1}{2})$ but the random walk will alternate between Vertex 0 and Vertex 1

3 Positive Semi-Definite(PSD)

Definition 3.1. A symmetric matrix M is positive semi-definite(psd) if $\forall x, x^{\top}Mx \geq 0$

Theorem 3.2. the following statements are equivalent:

- (1) \mathbf{M} is psd
- (2) All eigenvalues of M are non-negative
- (3) There exist an matrix \mathbf{A} such that $\mathbf{M} = \mathbf{A}\mathbf{A}^{\top}$

Lemma 3.3. If M is psd, then for all matrices C, $C^{\top}MC$ is psd

Proof. $\forall \mathbf{x}, \mathbf{x}^{\top} \mathbf{C}^{\top} \mathbf{M} \mathbf{C} \mathbf{x} = (\mathbf{C} \mathbf{x})^{\top} \mathbf{M} (\mathbf{C} \mathbf{x}) \geq 0$ since \mathbf{M} is psd

Notation: M is psd \Leftrightarrow M \succeq 0

Lemma 3.4. $L \succeq 0$ where L is the laplacian matrix of some graph

Remark: $\mathbf{L} \succeq 0$ implies $\mathbf{N} \succeq 0$ since $\mathbf{N} = \mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}}$

Lemma 3.5. L $\preccurlyeq 2D \Leftrightarrow N \preccurlyeq 2I \Leftrightarrow \lambda_i(\mathbf{N}), \nu_i \leq 2$

HW: If $\mathbf{A} \succeq \mathbf{B}$, then $\lambda_i(\mathbf{A}) \geq \lambda_i(\mathbf{B})$

4 Lazy random walk

4.1 Lazy random walk matrix

At each step, the lazy random walk will do the following

 $\begin{cases} \text{with probability} \frac{1}{2} & \text{stay at the current vertex} \\ \text{with probability} \frac{1}{2} & \text{take a usual random step} \end{cases}$

Lazy Random Walk Transition Matrix $\mathbf{W} = \frac{1}{2}(\mathbf{I} + \mathbf{A}\mathbf{D}^{-1})$ We know that the normalized Laplacian(\mathbf{N}) can be expressed as:

$$\mathbf{N} = \mathbf{D}^{-\frac{1}{2}} \mathbf{L} \mathbf{D}^{-\frac{1}{2}}$$

$$= \mathbf{D}^{-\frac{1}{2}} (\mathbf{D} - \mathbf{A}) \mathbf{D}^{-\frac{1}{2}}$$

$$= \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$

applied this result to the lazy walk transition matrix

$$\begin{split} \mathbf{W} &= \frac{1}{2}\mathbf{I} + \frac{1}{2}\mathbf{A}\mathbf{D}^{-1} \\ &= \frac{1}{2}\mathbf{I} + \frac{1}{2}\mathbf{D}^{\frac{1}{2}}\mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}\mathbf{D}^{-\frac{1}{2}} \\ &= \frac{1}{2}\mathbf{I} + \frac{1}{2}\mathbf{D}^{\frac{1}{2}}(\mathbf{I} - \mathbf{N})\mathbf{D}^{-\frac{1}{2}} \\ &= \mathbf{I} - \frac{1}{2}\mathbf{D}^{\frac{1}{2}}\mathbf{N}\mathbf{D}^{-\frac{1}{2}} \end{split}$$

Thus, we can express the lazy random walk transition matrix as:

$$\mathbf{W} = \mathbf{I} - \frac{1}{2} \mathbf{D}^{\frac{1}{2}} \mathbf{N} \mathbf{D}^{-\frac{1}{2}} \tag{2}$$

4.2 Eigenpair for lazy random walk matrix

Lemma 4.1. If (ν_i, ψ_i) is an eigenpair for N, i.e $N\psi_i = \nu_i \psi_i \Leftrightarrow (1 - \frac{1}{2}\nu_i, D^{\frac{1}{2}}\psi_i)$ is an eigenpair for W

Proof.

$$\mathbf{W}\mathbf{D}^{\frac{1}{2}}\psi_i = (\mathbf{I} - \frac{1}{2}\mathbf{D}^{\frac{1}{2}}\mathbf{N}\mathbf{D}^{-\frac{1}{2}})\mathbf{D}^{\frac{1}{2}}\psi_i$$
$$= \mathbf{D}^{\frac{1}{2}}\psi_i - \frac{1}{2}\nu_i\mathbf{D}^{\frac{1}{2}}\psi_i$$

Because of lamma 4.1 and lemma 3.5, we can obtain the following corollary

corollary: $0 \le \lambda_i(\mathbf{W}) \le 1$

Warning: W is not symmetric. Thus, its eigenvector need not be orthogonal

5 Convergence of Lazy Random Walk

5.1 Finding an expression for p_t

State transition from \mathbf{p}_t to \mathbf{p}_{t+1} in a lazy random is given by :

$$\mathbf{p}_{t+1} = \mathbf{W}\mathbf{p}_t$$

When t = 0:

$$\mathbf{p}_1 = \mathbf{W} \mathbf{p}_0$$

We know that

$$\mathbf{D}^{-\frac{1}{2}}\mathbf{p}_0 = \sum_{i=1}^n \alpha_i \psi_i \Leftrightarrow \mathbf{p}_0 = \sum_{i=1}^n \alpha_i \mathbf{D}^{\frac{1}{2}} \psi_i$$

Thus, we can express \mathbf{p}_1 as:

$$\mathbf{p}_1 = \mathbf{W} \mathbf{p}_0 = \sum_{i=1}^n \alpha_i (\mathbf{W} \mathbf{D}^{\frac{1}{2}} \psi_i) = \sum_{i=1}^n \alpha_i (1 - \frac{\nu_i}{2}) \mathbf{D}^{\frac{1}{2}} \psi_i$$

Iterating the process above, we obtain:

$$\mathbf{p}_t = \sum_{i=1}^n \alpha_i (1 - \frac{\nu_i}{2})^\top \mathbf{D}^{\frac{1}{2}} \psi_i$$

Claim: If G is connected $\Leftrightarrow \nu_2 > 0$

Remark: the claim above implies the following:

$$\forall i \neq 1, 0 \le 1 - \frac{\nu_i}{2} < 1$$

5.2 Given ϵ , finding step t such that \mathbf{p}_t is ϵ closed to the stationary distribution At arbitrary vertex u, we have the following:

$$\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{P}_{\mathbf{t}} - \mathbf{1}_{\mathbf{u}}^{\top} \pi = \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{P}_{\mathbf{t}} - \frac{\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D} \mathbf{1}}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}}$$

$$= \sum_{i=1}^{n} \alpha_{i} (1 - \frac{\nu_{i}}{2})^{\top} \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{\mathbf{i}} - \frac{\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D} \mathbf{1}}{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}}$$
(3)

We know that:

$$\psi_1 = \frac{(\mathbf{D}^{\frac{1}{2}}\mathbf{1})}{||\mathbf{D}^{\frac{1}{2}}\mathbf{1}||} = \frac{(\mathbf{D}^{\frac{1}{2}}\mathbf{1})}{\sqrt{\mathbf{1}^{\top}\mathbf{D}\mathbf{1}}}$$

multiplied both side with $\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}}$, we get

$$\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{1} = \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \frac{(\mathbf{D}^{\frac{1}{2}} \mathbf{1})}{\|\mathbf{D}^{\frac{1}{2}} \mathbf{1}\|}$$

$$= \frac{(\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D} \mathbf{1})}{\sqrt{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}}}$$
(4)

We can express $\mathbf{D}^{-\frac{1}{2}}\mathbf{p}_0$ as following

$$\mathbf{D}^{-\frac{1}{2}}\mathbf{p}_0 = \sum_{i=1}^{n} \alpha_i \psi_i$$

multiply each side with ψ_1^{T}

$$\psi_1^{\mathsf{T}} \mathbf{D}^{-\frac{1}{2}} \mathbf{p}_0 = \alpha_1$$

This gives us:

$$\alpha_1 = \frac{(\mathbf{1}^{\top} \mathbf{D}^{\frac{1}{2}}) \mathbf{D}^{-\frac{1}{2}} \mathbf{p}_0}{\sqrt{\mathbf{1}^{\top} \mathbf{D} \mathbf{1}}}$$

because \mathbf{p}_0 is a probability vector and sum up to 1, we have,

$$=\frac{1}{\sqrt{\mathbf{1}^{\top}\mathbf{D}\mathbf{1}}}\tag{5}$$

Now, we can further simplify (3) as:

$$\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{p_{t}} - \mathbf{1}_{\mathbf{u}}^{\top}\pi = \alpha_{1}(1 - \frac{\nu_{1}}{2})^{\top}\psi_{1} + \sum_{i=2}^{n}\alpha_{i}(1 - \frac{\nu_{i}}{2})^{\top}\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{D}^{\frac{1}{2}}\psi_{i} - \frac{\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{D}\mathbf{1}}{\mathbf{1}^{\top}\mathbf{D}\mathbf{1}}$$

with equation (4) and (5) we obtained

$$= \sum_{i=2}^{n} \alpha_i (1 - \frac{\nu_i}{2})^{\top} \mathbf{1}_u^{\top} \mathbf{D}^{\frac{1}{2}} \psi_i$$

Combining the result above, we have the following

$$|\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{p}_{t} - \mathbf{1}_{\mathbf{u}}^{\top}\pi| \leq \sum_{i=2}^{n} |\alpha_{i}\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{D}^{\frac{1}{2}}\psi_{i}|(1 - \frac{\nu_{i}}{2})^{\top}$$

because $\nu_2 \leq \nu_3 \leq \dots$, we have

$$\leq (1 - \frac{\nu_2}{2})^{\top} \sum_{i=2}^{n} |\alpha_i \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_i|$$

$$\leq (1 - \frac{\nu_2}{2})^{\top} \sqrt{\sum_{i=2}^{n} \alpha_i^2 \sum_{i=2}^{n} (\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_i)^2}$$

$$(6)$$

Now let's try to simplify the term inside the square root, starting with $\sum_{i=2}^{n} \alpha_i^2$

$$\sum_{i=2}^{n} \alpha_i^2 \le ||\mathbf{D}^{-\frac{1}{2}} \mathbf{p}_0||_2^2$$

Assuming we start at vertex v

$$\leq \mathbf{1}_{\mathbf{v}}^{\top} \mathbf{D}^{-1} \mathbf{1}_{\mathbf{v}}$$
$$= \frac{1}{D(v)}$$

Now let's simplify $\sum_{i=2}^{n} (1_u^{\top} D^{\frac{1}{2}} \psi_i)^2$

We shall start with finding an expression for $\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}}$

Claim:

$$\mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}} = \sum_{i=1}^{n} (\mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{i}) \psi_{j}$$

Proof. Let's express $\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}}$ with eigenvector and eigenvalue

$$\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}} = \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \beta_{\mathbf{i}} \psi_{\mathbf{i}}$$

multiplied both sides with ψ_j , we obtain

$$\psi_{\mathbf{i}}^{\top} \mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}} = \beta_{\mathbf{j}}$$

take the transpose of left hand side

$$(\psi_{\mathbf{j}}^{\top} \mathbf{D}^{\frac{1}{2}} \mathbf{1}_{\mathbf{u}})^{\top} = \mathbf{1}_{\mathbf{u}}^{\top} \mathbf{D}^{\frac{1}{2}} \psi_{j}^{\top}$$

$$\begin{split} ||\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}}||_{2}^{2} &= (\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}})^{\top}(\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}}) \\ &= (\sum_{i=1}^{n} \beta_{i}\psi_{i})^{\top}(\sum_{j=1}^{n} \beta_{j}\psi_{j}) \\ &= \sum_{i=1}^{n} \beta_{i}^{2} \\ &= \sum_{i=1}^{n} (\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{D}^{\frac{1}{2}}\psi_{i})^{2} \end{split}$$

(8)

(7)

With the results above, (6) can be further simplified as following:

$$|\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{p_{t}} - \mathbf{1}_{\mathbf{u}}^{\top}\pi| \leq (1 - \nu_{2})^{\top}\sqrt{||\mathbf{D}^{-\frac{1}{2}}\mathbf{p}_{0}||_{2}^{2}||\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}}||_{2}^{2}}$$
$$= ||\mathbf{D}^{\frac{1}{2}}\mathbf{1}_{\mathbf{u}}|| \cdot ||\mathbf{D}^{-\frac{1}{2}}\mathbf{p}_{0}||(1 - \frac{\nu_{2}}{2})^{\top}$$

with (7) and assuming the walk starts at v, then

$$= \sqrt{\frac{D_u}{D_v}} (1 - \frac{\nu_2}{2})^{\top}$$
Notice that $(\mathbf{1} - \mathbf{x}) \le \mathbf{e}^{-\mathbf{x}}$

$$\le \sqrt{\frac{D_u}{D_v}} e^{-\nu_2 t/2}$$

Theorem 5.1. Given an undirected unweighted graph G and ϵ , it suffices for the lazy random walk to take t steps to get ϵ closed to stationary distribution. In other word, if

$$t \ge \frac{2}{2}log(\frac{n}{\epsilon})$$

then

$$|\mathbf{1}_{\mathbf{u}}^{\top}\mathbf{p}_{t} - \mathbf{1}_{\mathbf{u}}^{\top}\pi| \leq \epsilon$$

Interpretation: On a graph with n vertex, if the lazy random walk want to be $\frac{\epsilon}{2}$ closed to the stationary distribution, then it would satisfy the following relation.

$$T(\frac{\epsilon}{2}) = \frac{2}{\nu_2} log(\frac{2n}{\epsilon})$$
$$= \Theta(\frac{1}{\nu_2}) + T(\epsilon)$$

5.3 Application of the theorem on some examples

 K_n :complete graph with n vertices Lazy random walk mixes in $\Omega(\log n)$ steps

$$L_{K_n} = n\mathbf{I} - \mathbf{1}\mathbf{1}^{\top}$$

$$\lambda_i(L) = \begin{cases} 0 & i = 1\\ n - 1 & O.W \end{cases}$$

$$\nu_2(N_{K_n}) = 1$$

the theorem gives that the lazy random walk would mix in O(logn). In this case, ,the bound given by the theorem is tight

 R_n :n-ring graph

The second eigenvalue of n-ring graph is given by:

$$\nu_2(N_{K_n}) = \theta(\frac{1}{n^2})$$

thus, the theorem gives that the lazy random walk will mixed in $O(n^2 \log n)$ the lazy random walk on the n-ring graph can be defined as following:

$$x_{i+1} = \begin{cases} x_i & \text{with probability } \frac{1}{2} \\ x_i + 1 & \text{with probability } \frac{1}{4} \\ x_i - 1 & \text{with probability } \frac{1}{4} \end{cases}$$
$$E[x_{i+1}|x_i] = x_i$$
$$E[x_{i+1}^2|x_i] = x_i^2 + \frac{1}{2}$$

thus, the Lazy Random Walk is mixed in $\Omega(n^2)$ steps. In this case, the bound given by the theorem is off up to logn