MATH 502, CLASS 1

HAITAO FAN

Abstract. Part A: Today's topic:

- For $\mathbf{A}\mathbf{x} = \mathbf{0}$, only two possibilities: one solution $\mathbf{x} = 0$, or infinitely many solutions.
- Null space of A is defined and found.
- The relation of solutions of $A\mathbf{x} = \mathbf{0}$ and that of $A\mathbf{x} = \mathbf{b}$ is shown.
- Rank(A), and independent rows of A can be determined via echelon form.
- Solve many $A\mathbf{x} = \mathbf{x}$ for many different **b**'s together. Matrix equation AX = B.
- Inverse matrix A^{-1} of A. What is it for?
- More matrix algebra.
- Matrix algebra applied to data science.

Part B. Ordinary differential equations.

- Solving inhomogeneous first order linear ODEs.
- Relation between solutions of inhomogeneous linear ODEs and that of homogeneous linear ODEs.
- Applications (or modeling and solving) first order linear ODEs.

KEYWORDS:

Hwk: fill in this section

1. Part A: $A\mathbf{x} = \mathbf{b}$, $A\mathbf{x} = \mathbf{0}$, Matrix Equations

Recall:

Theorem 1.1. The system of linear equations $A\mathbf{x} = \mathbf{0}$

Date: January 23, 2022.

Why and when does Ax = 0 have infinite many solutions?

Ans: When there are more unknowns than ${\bf independent}$ equations.

Insight:

This lead to the following concepts

Rank of A is...

Independent rows of A.

MATH 502, 1 3

1.1. Null space of A.

Definition 1.1. The null space of a matrix A is...

Example 1.1. Find the null space of \dots

The relation of solutions of $A\mathbf{x} = \mathbf{0}$ and that of $A\mathbf{x} = \mathbf{b}$ Denote solutions of $A\mathbf{x} = \mathbf{0}$ by... and that of

Theorem 1.2. All solutions of

 \square

1.2. Solve many Ax = b simultaneously, and Matrix equation AX = B.

Example 1.2. (From multiple $A\mathbf{x} = \mathbf{b}'s$ to a matrix eq AX = B)

1.3. Inverse matrix A^{-1} of A.

Definition 1.2. A is a square matrix. Its....

Remark 1.1. $A\mathbf{x} = \mathbf{b}$'s solution is....

Remark 1.2. Finding A^{-1} of A is

Example 1.3. Find A^{-1} for

Theorem 1.3.

$$(AB)^{-1} = \dots$$

Proof. ..

Theorem 1.4. (...) There is at most one A^{-1} for a A.

Proof. ..

2. More matrix algebra

2.1. Elements of a matrix. Expressing matrices as $A = (a_{ij}), B = (b_{ij}).$

 a_{ij} denotes.....

Then i, j - th element of A + B is ...

The i, j-th element of AB is ...

Transpose of A is....

The ij-th element of A^T .

2.2. **Partition a matrix.** Partition a matrix by horizontal and vertical lines into blocks.

and you can....

 $Example\ 2.1.$

 $Example\ 2.2.$

2.3. Matrix algebra applied to data science. Data matrix: the columns in the matrix often represent measurements on the same feature.

 $Example\ 2.3.$

8 HAITAO FAN

3. Part B2: Ordinary Differential Equations

3.1. Solving first order linear ODEs. ..

The ODE:

Special case: Homogeneous

Solutions of homogeneous linear ODEs, leading to the idea of integral factor

Solving inhomogeneous linear ODEs.

MATH 502, 1

9

$Example \ 3.1.$

Applications of first order linear ODEs. $\,$

Example 3.2. (Falling through air)

10 HAITAO FAN

Example 3.3. (Heat transfer)

MATH 502, 1 11

 $\label{eq:example 3.4.} \textit{(modeling via Flow rate eq. accretion-dilution problems)}$

12 HAITAO FAN

 $\it Example$ 3.5. (modeling via Flow rate eq. From finance)

MATH 502, 1 13

Example 3.6. (modeling via Flow rate eq. Planet climate, energy budget eq.)

Department of Mathematics, Georgetown University, Washington, DC 20057, USA

 $Email\ address: \verb|fanh@georgetown.edu|$