Quiz 1

September 12, 2013

Name:	NetID:
1 1 and 6	

Question 1. (1 point) Suppose we are trying to learn the concept of "good weather". We formulate a binary classification problem where instances are weather reports and a positive label corresponds to a "good" weather report. Each instance has 3 attributes:

- Temperature (°F): $\{<20, [20-39], [40-59], [60-79], 80 < \}$
- Precipitation: {None, Rain, Snow}
- Windy: {Yes, No}

What is the size of the instance space? What is the size of the hypothesis space, if it consists of all possible functions h: (Temperature, Precipitation, Windy) $\rightarrow \{+1, -1\}$?

(a)
$$2^{5*3*2}$$
, $5*3*2$

(b)
$$5*3*2$$
, 2^{5*3*2}

(b)
$$5*3*2$$
, 2^{5*3*2} (c) 2^{5+3+2} , $5+3+2$ (d) $5+3+2$, 2^{5+3+2}

(d)
$$5+3+2$$
, 2^{5+3+2}

Question 2. (1 point) Consider a set of training examples S, a hypothesis space H, and a version space $VS_{H,S}$. Which of the following is always true?

(a)
$$|H| = |VS_{H,S}|$$

(b)
$$|H| \neq |VS_{H,S}|$$

(c)
$$|H| \leq |VS_{H,S}|$$

(b)
$$|H| \neq |VS_{H,S}|$$
 (c) $|H| \leq |VS_{H,S}|$ (d) $|H| \geq |VS_{H,S}|$

Question 3. (1 point) Suppose we have a binary classification problem where instances have two integer-valued attributes. We want to apply unweighted kNN (with Euclidean distance as the similarity metric) to classify new points. Given the following training data and k=3, what would be the output labels for test points (0, 0) and (10, 10)?

$$\begin{array}{c|ccc}
x_1 & x_2 & \text{Label} \\
1 & 6 & -1 \\
2 & 9 & -1 \\
7 & 4 & +1
\end{array}$$

(a)
$$+1$$
, $+1$

(c)
$$+1$$
, -1

(d)
$$-1$$
, $+1$

Question 4. (1 point) Decision tree learning methods are generally well-suited to classification problems with which of the following properties?

- (a) Training data may contain errors (noise)
- (b) Instances are represented as sets of attribute-value pairs
- (c) Target function has discrete output values
- (d) All of the above