Simple Linear Regression (SLR)

Simple linear regression model

1. Notation:

- o m: number of training examples
- \circ x: input variable
- o y: output variable
- o $x^{(i)}$: input of ith training example
- o $y^{(i)}$: output of ith training example
- \circ $(x^{(i)}, y^{(i)})$: ith training example

2. Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

3. <u>Cost (Loss) Functions:</u>

O Squared error (SE) cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

o Sum squared error (SSE) cost function:

$$J(\theta_0, \theta_1) = \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

o Mean squared error (MSE) cost function:

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- o Root mean squared error (RMSE) cost function:
 - For classification problem, RMSE is not a good choice for loss function

$$J(\theta_0, \theta_1) = \sqrt{\frac{\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2}{m}}$$

Simple Linear Regression (SLR)

4. General Gradient Descent Algorithm for Simple Linear Regression:

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) ; (for j = 0, 1)$$

}

5. Gradient Descent Algorithm Using SE Loss Function in SLR:

Repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} [(1) \times (h_{\theta}(x^{(i)}) - y^{(i)})]$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} [(x^i) \times (h_\theta(x^{(i)}) - y^{(i)})]$$

}

6. Note:

- We have a cost function and we want to minimize the cost function to obtain an optimal solution for the hypothesis function \rightarrow Use gradient descent algorithm to continuously finding θ_0 , θ_1 values that are closest to the $min J(\theta_0, \theta_1)$
- o The α value is called: learning rate.
 - It determines the aggressiveness of the learning algorithm
 - If α is too small \rightarrow gradient descent can be slow
 - If α is too big \rightarrow gradient descent can overshoot the minimum. It may fail to converge, or even diverge

Example of the squared-error loss function

Simple Linear Regression (SLR)

Example of different hypothesis base on different set of (θ_0, θ_1)

- For SLR, when we plot the cost function $J(\theta_0, \theta_1)$, the resulting graph is a convex function (has only 1 global minimum). Because of this, another approach from using gradient descent is to set the partial derivative with respect to θ_0 , θ_1 to be 0 in order to find the minimum.
- Another approach to find the hypothesis function would be using Pearson's R correlation coefficient (PCC):

$$\theta_0 = \overline{y} - \theta_1 \overline{x}$$

$$\theta_1 = r \left(\frac{S_y}{S_x} \right)$$

$$r = \frac{\sum_{i=1}^m (z_{x^{(i)}})(z_{y^{(i)}})}{m-1}$$

$$s_x = \sqrt{\frac{\sum_{i=1}^m (x^{(i)} - \overline{x})^2}{m-1}} \qquad s_y = \sqrt{\frac{\sum_{i=1}^m (y^{(i)} - \overline{y})^2}{m-1}}$$

$$z_{x^{(i)}} = \frac{x^{(i)} - \overline{x}}{s_x} \qquad z_{y^{(i)}} = \frac{y^{(i)} - \overline{y}}{s_y}$$

$$\overline{x} = \frac{\sum_{i=1}^m x^{(i)}}{m} \qquad \overline{y} = \frac{\sum_{i=1}^m y^{(i)}}{m}$$

O Before deciding whether we should apply SLR or not, if we compute the Pearson's R correlation coefficient and find that $|r| \ge \frac{2}{\sqrt{m}}$, then we can say that a linear relationship exists