Assignment #8

Daniel S Prusinski

Introduction:

Principal component analysis is a helpful non-parametric method for discovering relationships from many different variables in a data set. Factor analysis is a method for grouping variables together and identifies the latent dimensions in the variables. For this assignment, both techniques will be applied to a dataset to explore and extract information from the original data.

Part 1: An initial Correlation Analysis:

Pearson Correlation Coefficients, N = 1000 Prob > r under H0: Rho=0								
	x1_1	x1_2	x1_3					
z 1	0.79023 <.0001	0.27726 <.0001	0.31560 <.0001					
	x2_1	x2_2	x2_3					
z2	0.31942 <.0001	0.22605 <.0001	0.19271 <.0001					
	x3_1	x3_2	x3_3					
z 3	0.72089 <.0001	0.20415 <.0001	0.52932 <.0001					
	x4_1	x4_2	x4_3					
z 4	0.09325 0.0032	0.46617 <.0001	0.55083 <.0001					
	x5_1	x5_2	x5_3					
z 5	0.77975 <.0001	0.18591 <.0001	0.52800 <.0001					

The Z variables have the strongest correlation with the X variables from the first subset. Three of the five first subset variables have strong correlation coefficients. Preliminarily it looks like there are some strong correlation coefficients, but more analysis would need to be conducted to validate the linearity assumptions. Of all the variables, Z4 has the weakest correlation coefficient with the X variables. Z1, Z3, Z5 all have strong correlation coefficients with the firs variable.

Part 2: Principal Components:

Standardizing the data before performing any type of "components" or "factor" analysis is important as it allows the variables to have an equal influence despite individual units. This does not change the ratios between different pairs of objects; rather it makes the overall interpretation more distinct (web.psych.unimelb.edu).

	Eigenvectors														
	Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	Prin12	Prin13	Prin14	Prin15
x1_1	0.25	-0.10	-0.20	-0.36	0.16	0.44	0.21	0.01	0.25	-0.03	0.04	0.60	0.26	-0.01	0.06
x1_2	0.16	-0.05	-0.24	-0.51	0.09	-0.09	0.15	-0.32	0.31	0.25	0.15	-0.55	-0.12	0.08	0.01
x1_3	0.08	-0.01	-0.13	-0.18	-0.18	-0.58	0.14	0.18	-0.33	0.46	0.30	0.31	0.15	0.01	0.01
x2_1	0.16	0.19	0.26	0.19	-0.42	0.31	0.18	-0.19	-0.02	-0.04	0.66	-0.13	0.19	-0.08	-0.05
x2_2	0.10	0.00	0.28	0.14	-0.12	0.20	0.62	0.19	-0.01	0.44	-0.44	-0.13	-0.05	0.08	0.05
x2_3	-0.12	-0.22	0.12	-0.04	-0.25	-0.14	-0.11	0.60	0.60	-0.07	0.10	-0.13	0.24	0.11	-0.02
x3_1	-0.13	0.21	-0.40	0.35	0.19	0.14	0.11	0.27	0.22	0.20	0.34	0.10	-0.55	0.01	0.05
x3_2	-0.17	0.27	-0.50	0.28	0.15	0.06	0.04	0.02	-0.05	0.10	-0.09	-0.25	0.68	0.02	0.04
x3_3	-0.15	0.18	0.07	0.26	-0.18	-0.30	0.02	-0.56	0.51	0.14	-0.15	0.33	0.04	0.15	0.01
x4_1	-0.54	0.22	0.29	-0.28	0.13	0.11	-0.02	0.00	-0.07	0.09	0.14	0.02	0.04	0.19	0.62
x4_2	-0.04	-0.07	0.42	0.09	0.64	0.02	-0.12	-0.02	0.06	0.33	0.22	0.01	0.17	0.07	-0.43
x4_3	0.48	-0.35	0.07	0.37	0.25	-0.15	-0.06	-0.06	0.05	0.00	0.10	-0.07	0.07	0.02	0.63
x5_1	0.39	0.51	0.08	-0.06	0.12	-0.15	0.06	0.16	-0.02	-0.30	-0.01	0.00	-0.03	0.65	-0.05
x5_2	0.28	0.57	0.17	-0.13	0.06	-0.08	-0.23	0.15	0.18	0.13	-0.14	-0.02	0.01	-0.62	0.13
x5_3	0.18	-0.01	-0.08	0.00	-0.29	0.35	-0.63	0.00	-0.07	0.49	-0.10	0.01	-0.03	0.33	0.02
sum	0.92	1.33	0.22	0.14	0.35	0.14	0.38	0.46	1.62	2.18	1.09	0.12	1.07	0.97	1.07

The principal components that have eigenvectors that explain the greatest variation in the predictor variables are: principal components 1, 2, 9, 10, 11, 13, 14, 15. I highlighted these values above, and I use these values because of the variation they explain. These components account for 85% of the variation throughout all the components. The correlation structure between the components is such that the last six of the seven components have strong correlations, while the first two components have relatively strong correlation as well.

	Eigenvalues of the Correlation Matrix									
	Eigenvalue	Difference	Proportion	Cumulative						
1	1.42537946	0.13663847	0.0950	0.0950						
2	1.28874099	0.05409204	0.0859	0.1809						
3	1.23464895	0.06364847	0.0823	0.2633						
4	1.17100048	0.05040574	0.0781	0.3413						
5	1.12059474	0.02567880	0.0747	0.4160						
6	1.09491595	0.06220971	0.0730	0.4890						
7	1.03270623	0.04957906	0.0688	0.5579						
8	0.98312718	0.00510939	0.0655	0.6234						
9	0.97801778	0.03086678	0.0652	0.6886						

	Eigenvalues of the Correlation Matrix									
	Eigenvalue	Proportion	Cumulative							
10	0.94715100	0.08629638	0.0631	0.7518						
11	0.86085462	0.04956912	0.0574	0.8091						
12	0.81128550	0.01267730	0.0541	0.8632						
13	0.79860821	0.12994927	0.0532	0.9165						
14	0.66865894	0.08434898	0.0446	0.9610						
15	0.58430996		0.0390	1.0000						

Part 3: Factor Analysis:

The method of factor analysis performed in Example 1 is Maximum Likelihood Factor Analysis. The error message generated in the SAS log states that communality is greater than 1, thus this method cannot be used. The SAS user guide stipulates that the ML method cannot be used with a single correlation matrix, which is why another method needs to be used.

Prel	Preliminary Eigenvalues: Total = 3.061678 Average = 0.20411187									
	Eigenvalue	Difference	Proportion	Cumulative						
1	0.97613665	0.21857792	0.3188	0.3188						
2	0.75755873	0.25536063	0.2474	0.5663						
3	0.50219811	0.11031692	0.1640	0.7303						
4	0.39188118	0.09560732	0.1280	0.8583						
5	0.29627386	0.07995004	0.0968	0.9550						
6	0.21632382	0.05336783	0.0707	1.0257						
7	0.16295599	0.05028800	0.0532	1.0789						
8	0.11266800	0.01639943	0.0368	1.1157						
9	0.09626857	0.04203941	0.0314	1.1472						
10	0.05422916	0.06995174	0.0177	1.1649						
11	01572258	0.03991642	-0.0051	1.1597						
12	05563900	0.03190769	-0.0182	1.1416						
13	08754669	0.05246228	-0.0286	1.1130						
14	14000896	0.06588989	-0.0457	1.0673						
15	20589885		-0.0673	1.0000						

Significance Tests Based on 1000 Observations							
Test DF Chi-Square Chi							
H0: No common factors	105	400.9678	<.0001				
HA: At least one common factor							

Chi-Square without Bartlett's Correction	403.32283
Akaike's Information Criterion	193.32283
Schwarz's Bayesian Criterion	-321.99148
Tucker and Lewis's Reliability Coefficient	0.00000

Part 3: Example 2:

The method of factor analysis performed in Example 2 is the Unweighted Least Squares Method with Heywood approach which allows communality to exceed 1 and the iteration process to continue. The error message generated means there are too many factors in the set for the process to work and a unique solution to be calculated. It is my opinion that we have too many factors for this calculation to return without any errors. If we reduce the factors in the problem then perhaps we will not have SAS output that has errors.

Ei	Eigenvalues of the Reduced Correlation Matrix: Total = 5.80062438 Average = 0.38670829									
	Eigenvalue	Difference	Proportion	Cumulative						
1	1.12128560	0.11790914	0.1933	0.1933						
2	1.00337646	0.16916826	0.1730	0.3663						
3	0.83420819	0.06165979	0.1438	0.5101						
4	0.77254841	0.07390229	0.1332	0.6433						
5	0.69864612	0.18714614	0.1204	0.7637						
6	0.51149998	0.14287112	0.0882	0.8519						
7	0.36862886	0.12144146	0.0635	0.9155						
8	0.24718740	0.10372523	0.0426	0.9581						
9	0.14346217	0.04367811	0.0247	0.9828						
10	0.09978406	0.09796679	0.0172	1.0000						
11	0.00181727	0.00141753	0.0003	1.0003						
12	0.00039974	0.00035794	0.0001	1.0004						
13	0.00004180	0.00076161	0.0000	1.0004						

Ei	Eigenvalues of the Reduced Correlation Matrix: Total = 5.80062438 Average = 0.38670829								
	Eigenvalue	Difference	Proportion	Cumulative					
14	00071981	0.00082205	-0.0001	1.0003					
15	00154186		-0.0003	1.0000					

	Standardized Scoring Coefficients									
	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Factor8	Factor9	Factor10
x1_1	0.04729	-0.02285	0.13403	-0.00592	-0.08310	0.61290	0.07241	0.12276	-0.00961	0.04621
x1_2	0.01639	-0.01132	0.02279	-0.00083	-0.02547	0.12943	-0.00658	-0.18049	0.16229	0.03607
x1_3	0.00632	-0.00791	0.00438	0.01158	-0.02086	-0.01463	-0.02375	-0.16504	0.15683	-0.14697
x2_1	0.01449	0.00415	0.01885	0.00554	0.01942	-0.03664	-0.11101	0.25769	0.07587	0.03394
x2_2	0.01335	0.00695	0.01208	0.01471	-0.01147	-0.00273	-0.09001	0.21632	0.10623	-0.17522
x2_3	-0.18283	-0.03243	-0.07328	0.83117	0.18170	0.05674	0.11532	0.01340	0.00962	0.00071
x3_1	-0.00234	-0.01771	-0.02882	-0.03516	0.00878	-0.02976	0.29760	0.09751	0.02624	-0.03900
x3_2	-0.00466	-0.02705	-0.04722	-0.06570	0.01708	-0.04727	0.37177	0.03236	0.02727	-0.01827
x3_3	0.00412	-0.00083	-0.03549	-0.00388	0.02157	-0.08865	0.01917	0.05443	0.16193	0.18672
x4_1	-0.04867	-0.00406	-0.17331	-0.05123	0.15978	0.02355	-0.08885	0.00158	-0.11854	0.05936
x4_2	-0.05423	0.92624	0.01029	-0.02638	0.22472	0.08374	0.08759	-0.02329	0.06587	-0.04041
x4_3	0.09119	0.10247	0.40710	0.16441	-0.43321	-0.19544	0.03550	0.00638	-0.07354	0.08239
x5_1	0.92964	0.04143	-0.19050	0.21910	0.18622	-0.01890	0.03584	-0.04673	-0.12269	-0.02624
x5_2	0.01120	-0.00651	0.00387	-0.00629	0.04700	0.00015	-0.01823	0.01645	0.17261	0.06887
x5_3	0.04284	-0.11648	0.59837	-0.06147	0.59785	-0.06930	0.03067	-0.04320	-0.03060	-0.01896

Part 4: Factor Analysis:

What is wrong with this factor analysis is we only used 5 of the 15 factors. We are not generating a complete picture of all the factors we are supposed to be analyzing. By changing the nfactors to 5, SAS was able to compute without any errors. The VARIMAX rotational method is an orthogonal method that maximizes the sum of variances for the factor matrix, and simplifies the columns of the factor matrix. This method reduces the number of variables and produces uncorrelated variables as well.

	Factor Pattern									
	Factor1	Factor2	Factor3	Factor4	Factor5					
x1_1	-0.03642	0.12602	0.00315	-0.02541	0.30710					
x1_2	-0.04783	0.06825	0.01944	-0.04121	0.34917					
x1_3	-0.05750	0.03644	0.00990	-0.02195	0.03695					
x2_1	-0.03481	0.05830	0.09203	-0.08623	-0.15146					
x2_2	0.02957	0.04987	0.01036	-0.05946	-0.08302					
x2_3	-0.00344	-0.04455	-0.10032	-0.08189	-0.04925					
x3_1	-0.02657	-0.06177	0.04647	0.26562	-0.01603					
x3_2	-0.08712	-0.14773	0.12392	0.59806	0.02647					
x3_3	-0.00118	-0.06692	0.03996	0.03740	-0.14676					
x4_1	0.23260	-0.64413	0.13520	-0.16702	0.03246					
x4_2	0.98892	0.11508	-0.00312	0.09017	0.02879					
x4_3	0.08273	0.46049	-0.15986	0.04359	-0.08355					
x5_1	-0.03098	0.21404	0.44628	-0.03638	-0.01242					
x5_2	0.02968	0.14116	0.53388	-0.07522	-0.01347					
x5_3	-0.04701	0.08236	0.01935	-0.01471	0.00761					

	Variance Explained by Each Factor								
Factor1 Factor2 Factor3 Factor4 F									
	1.0602758	0.7725813	0.5666561	0.4952539	0.2816066				

	Orthogonal Transformation Matrix												
	1	2	3	4	5								
1	0.98566	0.09119	0.03338	-0.13726	-0.01430								
2	0.05442	-0.91773	0.30214	-0.16528	0.19027								
3	-0.03709	0.27023	0.94830	0.15016	-0.06144								
4	0.15472	-0.20977	-0.09099	0.95784	-0.07951								
5	0.01409	0.18008	-0.00613	0.11764	0.97647								

		Rotated F	actor Pat	tern	
	Factor1	Factor2	Factor3	Factor4	Factor5
x1_1	-0.02876	-0.05749	0.04028	-0.00356	0.32620
x1_2	-0.04561	0.00978	0.03907	-0.00019	0.35671
x1_3	-0.05793	-0.02475	0.02025	-0.01332	0.04497
x2_1	-0.05002	-0.04100	0.11250	-0.09146	-0.13511
x2_2	0.02110	-0.04275	0.03180	-0.07747	-0.06791
x2_3	-0.01546	0.02178	-0.10096	-0.09146	-0.04384
x3_1	0.00960	0.00821	0.00044	0.27337	-0.05100
x3_2	-0.00560	0.04043	0.01539	0.63094	-0.05618
x3_3	-0.00256	0.03783	0.01513	0.03578	-0.16145
x4_1	0.16381	0.68977	-0.04364	-0.06132	-0.08922
x4_2	0.99548	-0.03001	0.05643	-0.06547	0.02889
x4_3	0.11810	-0.48245	-0.01316	-0.07954	0.01121
x5_1	-0.04125	-0.07327	0.49024	-0.00042	0.00451
x5_2	0.00531	0.03079	0.55685	-0.02087	-0.01354
x5_3	-0.04474	-0.07019	0.04296	-0.01745	0.02376

Part 5: Correlation Analysis:

From the correlation analysis, it seems PCA produce orthogonal components seeing that the correlation matrix is one for each component and zero for any relationship between the components. I am surprised by this, seeing that I expected VARIMAX to produce a correlation matrix of no collinearity. ULS & VARIMAX does not produce orthogonal components. From reading, it would appear that VARIMAX always produces orthogonal results. ULS can move between orthogonal and collinear outputs. So, these results confuse my reading and SAS code.

Pea	Pearson Correlation Coefficients, N = 1000 Prob > r under H0: Rho=0													
	Prin1	Prin2	Prin3	Prin4	Prin5									
Prin1	1.00000	0.00000 1.0000		0.00000 1.0000										
Prin2	0.00000 1.0000	1.00000		0.00000 1.0000										
Prin3	0.00000 1.0000	0.00000 1.0000	1.00000	0.00000 1.0000										
Prin4		0.00000 1.0000		1.00000	0.00000 1.0000									
Prin5	0.00000 1.0000	0.00000 1.0000	0.00000 1.0000		1.00000									

Pe	Pearson Correlation Coefficients, N = 1000 Prob > r under H0: Rho=0													
	Factor1	Factor2	Factor3	Factor4	Factor5									
Factor1	1.00000	0.06170 0.0511	-0.00014 0.9966											
Factor2	0.06170 0.0511	1.00000	-0.03145 0.3204		-0.01731 0.5846									
Factor3	-0.00014 0.9966	-0.03145 0.3204	1.00000	0.00036 0.9908	0.00679 0.8303									
Factor4	0.07213 0.0225	0.04422 0.1623	0.00036 0.9908	1.00000	0.01275 0.6873									
Factor5	0.04585 0.1474	-0.01731 0.5846		0.01275 0.6873	1.00000									

Pearson Correlation Coefficients, N = 1000 Prob > r under H0: Rho=0													
	Factor1	Factor4	Factor5										
Factor1	1.00000	-0.01296 0.6822		-0.05409 0.0874									
Factor2	-0.01296 0.6822	1.00000	-0.04702 0.1373	0.01039 0.7429	-0.13908 <.0001								
Factor3	0.04533 0.1520	-0.04702 0.1373	1.00000	-0.00127 0.9681									
Factor4	-0.05409 0.0874	0.01039 0.7429	-0.00127 0.9681	1.00000	-0.06599 0.0369								
Factor5	0.03654 0.2484	-0.13908 <.0001		-0.06599 0.0369	1.00000								

Part 6: Regression Models:

Analysis of Variance Model 1												
Source	DF	Sui Squa	m of ares			F Value	Pr > F					
Model	5	982.63	3196	196.5	2639	19490.1	<.0001					
Error	994	10.02	2288	0.0	1008							
Corrected Total	999	992.65	5484									
Root MSE		.10042	R-S	quare	0.98	99						
Dependent Mean		.11645	Adj	R-Sq	0.98	99						
Coeff Var	86	.22825										

Parameter Estimates												
Variable	DF	Parameter Estimate		t Value	Pr > t	Variance Inflation						
Intercept	1	0.11645	0.00318	36.67	<.0001	0						
z 1	1	0.09522	0.00320	29.79	<.0001	1.01194						
z2	1	0.48585	0.00318	152.84	<.0001	1.00109						
z 3	1	-0.19936	0.00319	-62.51	<.0001	1.00769						
z4	1	0.83565	0.00319	261.68	<.0001	1.01031						
z 5	1	0.00050284	0.00319	0.16	0.8746	1.00573						

The above model is the true model, and produces a nearly perfect straight line or correlation coefficient. The p-values for the coefficients look fine except for Z5. The VIFS are low enough to not warrant concern for collinearity. With such a strong R-squared I would want to further investigate. There is a chance that this model is over fit, given that my R-squared is large. In order to validate this model, along with the other models, I would need to conduct a goodness of fit analysis to verify that the assumptions are satisfied.

		An	alys	is o	f Va	riar	nce	Мос	let	2		
Source		DF	Sum of Squares					F Value		Pr > F		
Model			5	308	3.951	49	61	.790	30	89	.83	<.0001
Error			994	683	3.703	336	0	.687	83			
Corrected	oT t	tal	999	992	2.654	184						
Root MSE				0.82	2936	R-S	Squ	uare	0.3	3112		
Depender	nt M	ear	1	0.11	645	Ad	j R	-Sq	0.3	3078		
Coeff Var			71	12.17556								
			Р	araı	nete	r E	stiı	mate	S			
Variable	DF		rame stim		Sta			t Va	lue	Pr >	> t	Varian Inflati
Intercept	1		0.11	645	0.	026	23	4	.44	<.00	001	
Prin1	1		0.18	065	0.	021	98	8	.22	<.00	001	1.000
Prin2	1	-	0.19	736	0.	023	11	-8	.54	<.00	001	1.000
Prin3	1		0.34	014	0.	023	61	14	.40	<.00	001	1.000
Prin4	1		0.07	354	0.	024	25	3	.03	0.00	025	1.000
Prin5	1		0.23	780	0.	024	79	9	.59	<.00	001	1.000

Model 2 is based on PCA, and produces a much weaker R-square and Adjusted R-squared than model 1. The p-values for the coefficients look fine, but some coefficient values are very small. The VIFS are low, which I would expect given that this is the PCA method. With a relatively weak R-squared I would want to further investigate my PCA. In order to further validate this model I would need to conduct a goodness of fit analysis to verify that the assumptions are satisfied.

Model 3 is based on factor analysis, and produces a stronger R-square and Adjusted R-squared than model 2. The p-values for the coefficients look fine except for X2_2. The VIFS are low, which placates my concern of collinearity. The R-squared and preliminary statistical tests warrant further analysis. In order to further validate this model I would need to conduct a goodness of fit analysis to verify that the assumptions are satisfied.

Analysis of Variance Model 3 - Backward

													-	
Source					Sum of quares		,	Mean Square		n e F Value		Pr > F		
Model			8	440).763	370	55	.095	46			<.0001		
Error		ç	991	551	.891	15	0	.556	90					
Corrected	d To	tal 9	999	992	2.654	84								
Root MSE				0.74	626	R-S	Sqι	ıare	0.4	1440				
Depender	nt M	lean		0.11	645	Ad	j R	-Sq	0.4	1395				
Coeff Var			64	0.82	2034									
	Parameter Estimates													
Variable	DF			eter nate	Standard Error		t Value		Pr >	> t	Variano Inflatio			
Intercept	1	0	.14	335	0.0	023	77	6	.03	<.00	001		0	
x2_1	1	0	.17	520	0.0	024	71	7	.09	<.00	001	1.012	61	
x2_2	1	0	.05	191	0.02504		04	2.07 (0.03	384	1.009	79	
x2_3	1	0	.13	048	0.023		30	5.60		.60 <.00		1.001	48	
x3_1	1	-0	.16	006	0.0239		97	7 -6.68		.68 <.000		1.003	09	
x3_3	1	-0	.15	809	0.0	024	40	-6	.48	<.00	001	1.003	05	
x4_1	1	0	0.17533		0.026		71	6	.57	<.00	001	1.1509	93	
x4_2	1	0	.31	867	0.0	024	18	13	.18	<.00	001	1.062	63	
x4_3	1	0	.43	626	0.0	024	81	17	.59	<.00	001	1.150	63	

Conclusion:

After assessing PCA and Factor Analysis to the original model, I do not see a great enough change in our model to warrant using these methods for this situation. From this example, I do not see better results which can happen when using PCA and factor analysis. In my opinion, these methods can be most beneficial in the presence of collinear data. Had the original data suffered from collinearity, these models would have proved to be very valuable. But, because this data did not suffer from collinearity there was not much gain from employing these methods.

SAS Code:

```
**********
Assignment 8 Version1
Daniel Prusinski
11/25/2012
***************
*****Part 1: An Initial Correlation Analysis****;
                '/courses/u northwestern.edu1/i 833463/c 3505/SAS Data/' access=readonly;
libname mydata
title ;
proc contents data=mydata.factor data; run; quit;
proc print data=mydata.factor data (obs=5); run; quit;
data temp;
     set mydata.factor data;
*****I am still working on the macro,
but at least the correlation matrix is done****;
%macro corr matrix (k);
proc corr data=temp plots=matrix;
var x&k. 1 x&k. 2 x&k. 3;
with z&k.;
run:
%mend corr matrix;
%corr matrix(k=1);
%corr matrix(k=2);
%corr matrix(k=3);
%corr matrix(k=4);
%corr matrix(k=5);
****
****Part 2*****
***********
```

```
proc standard data=temp mean=0 std=1 out=temp std;
var z1 z2 z3 z4 z5
     x1 1 x1 2 x1 3
     x2 1 x2 2 x2 3
     x3 1 x3 2 x3 3
     x4 1 x4 2 x4 3
     x5 1 x5 2 x5 3 ;
run;
data zdata;
     set temp std;
     keep y z1 z2 z3 z4 z5;
run;
data xdata;
     set temp std;
     drop y z1 z2 z3 z4 z5;
run;
ods graphics on;
proc princomp data=xdata out=xdata pca outstat=pca stats plots=(scree);
ods graphics off:
ods graphics on; proc princomp data=xdata out=xdata pca outstat=pca stats plots=(scree); run; ods graphics
off;
*****
*****Part 3*****
*******
ods graphics on;
proc factor data=xdata method=ml out=xdata ml outstat=ml stats
mineigen=0 priors=max nfactors=15 score scree ;
run; ods graphics off;
ods graphics on; proc factor data=xdata method=uls heywood out=xdata uls
outstat=uls stats mineigen=0 priors=max nfactors=15 score scree ;
run; ods graphics off;
******
```

```
*****Part 4*****
**********
ods graphics on;
proc factor data=xdata method=uls heywood out=xdata uls outstat=uls stats
mineigen=0 priors=max nfactors=5 score scree ;
run; ods graphics off;
ods graphics on; proc factor data=xdata method=uls heywood rotate=varimax
out=xdata varimax outstat=varimax stats mineigen=0
priors=max nfactors=5 score scree ;
run; ods graphics off;
*****
****Part 5*****
*******
proc corr data=xdata pca;
var prin1 prin2 prin3 prin4 prin5;
run;
proc corr data=xdata uls;
var factor1 factor2 factor3 factor4 factor5;
run:
proc corr data=xdata varimax;
var factor1 factor2 factor3 factor4 factor5;
run;
******
****Part. 6*****
*******
data pca data;
set xdata pca (keep= prin1 prin2 prin3 prin4 prin5);
id nbr = n ;
run:
data varimax data;
set xdata varimax (keep= factor1 factor2 factor3 factor4 factor5);
id nbr = n ;
run;
```

```
data zdata;
set zdata; id nbr = _n_;
proc sort data=pca data;
by id nbr; run;
proc sort data=varimax data;
by id nbr; run;
proc sort data=zdata;
by id nbr; run;
data model data;
retain id nbr;
merge zdata pca_data varimax_data;
by id nbr; run;
* True model;
proc reg data=model data;
model Y = z1 z2 z3 z4 z5 / vif;
run; quit;
* PCA model; proc reg data=model data;
model Y = prin1 prin2 prin3 prin\overline{4} prin5 / vif;
run; quit;
proc reg data=model data;
model Y = factor1 factor2 factor3 factor4 factor5 / vif;
run; quit;
proc reg data=temp;
model Y = x1 1 x1 2 x1 3
x2 1 x2 2 x2 3
x3 1 x3 2 x3 3
x4 1 x4 2 x4 3
x5 1 x5 2 x5 3
/ selection=backward vif;
 run; quit;
```