2022 年数学建模校赛题目

电力预测与计划安排

随着中国经济进入了又一次加速增长,能源供需矛盾开始重新凸现,似乎已被人们淡忘了的拉闸限电又在许多省市出现。尽管有关各方加快了电力建设的速度,但电力短缺在短期内还是难以彻底解决。由于中国现在的社会经济发展水平和上世纪80、90年代相比已有明显提高,拉闸限电带来的经济损失加大,现代社会生活对电力供应的依赖程度提高,社会各方对拉闸限电已难以接受。在这种情况下,政府和电力企业都在尽其所能,扩大电力建设的规模和速度。电力的这种加速扩张,带动了相关能源、交通和制造业的相应紧张和扩张,实际卷入的投资需求大大高于电力行业本身的投资。电力发展应保持怎样的合理速度,基本上取决于电力需求的增长。因此,对电力需求的预测和分析越来越多地引起了各方的关注。

某地区某日用电情况(单位:千瓦),如图1所示:

表 1 某地区 2022 年 1 月 12 日用电情况

本文附件 1 给出了从 2021 年 1 月 1 日至 2022 年 4 月 30 日该地区每日每小时的详细用电情况。工作日和休息日(法定节假日和周末)该地区用电量有可能存在一些差异。

为了面对未来的用电需求,可以选用多种不同类型的发电机进行供电。发电机功率范围很广,可从8千瓦到4000千瓦。每种发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于某一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每千瓦每小时还存在一个成本,即边际成本。这些数据均列于下表1中。同时只有在每个时段开始才允许启动或关闭发电机。

	型 号	可用数量	最小输出功率(千瓦)	最大输出功 率(千瓦)	固定成本	边际成本 (元/小时)	启动成本
	A1	10	800	1800	2400	3	8000
大型发	A2	6	1000	1600	2000	2.5	4000
电机	A3	8	1400	2000	4000	2	3600
	A4	8	1800	3600	5000	4	3000
中型发	B1	6	400	1000	900	3.5	1800
电机	B2	8	300	800	500	4	1600
巴 加	В3	4	500	900	1300	2.8	1200
小型发	C1	12	50	300	300	1	200
电机	C2	10	80	400	200	2	300
电机	C3	8	30	200	100	3	160

表 1 发电机相关数据

实际情况中,发电部门希望开启发电机后尽量不关闭,因为发电机连续工作可以增加供电系统的可靠性和稳定性,所以要求发电机如果开启后必须连续工作一定的时间,同时发动机定期也需要关闭后进行维护与检修,比如:大型发电机A1 在某月工作时必须至少维护 20 小时,可以连续维护或者分段维护,只要累计达到指定的最低维护时长即可,关闭发动机也需要付出一定的成本。具体数据如表 2 所示。

		-10- 10	C 11/11	II . .	~~~	11.7 (143	/• / • 1			
要求/型号	A1	A2	A3	A4	B1	B2	В3	C1	C2	C3
连续工作最低	10	10	10	10	6	6	6	2	2	2
时长(小时/台)	10	10	10	10	6	6	6	2	2	2
累计维护最低	20	25	22	20	10	1.5	10	10	10	0
时长(小时/台)	20	25	22	28	12	15	18	12	10	8
关闭成本	2000	1000	800	1200	200	400	200	20	20	20
(元/台)	2000	1000	800	1200	300	400	200	20	30	20

表 2 发电机工作时长要求和关闭成本

请你们团队建立合适的数学模型,解决以下问题:

问题 1. 根据附件 1 中的数据,利用统计方法分析该地区用电特征,讨论各时段

之间、工作日与休息日之间该地区用电有无显著性差异,在此基础上,预测未来一个月该地区的电力需求,给出该月 10 号 5:00~6:00, 15:00~16:00 的用电量和 15 号 8:00~9:00, 9:00~10:00, 10:00~11:00 的用电量,并将完整预测结果保存至 Excel 文件(文件名为 probleml. xlsx)。

问题 2. 根据问题 1 的结果和表 1 中的相关数据,不考虑发电机连续工作时长要求和关闭成本,在每个时段应分别使用哪些发电机才能够使该月发电的总成本最小,并将相关结果填入表 3。

表 3 问题 2 相关结果数据

□ #H	型号台数与相应发电总功率								
日期	A2	总功率	B1	总功率	B2	总功率	C1	总功率	
2022/5/1/0:00-1:00									
2022/5/1/1:00-2:00									
2022/5/1/6:00-7:00									
2022/5/1/16:00-17:00									
2022/5/2/0:00-1:00									
2022/5/2/1:00-2:00									
2022/5/2/6:00-7:00									
2022/5/2/16:00-17:00									
2022/5/20/0:00-1:00									
2022/5/20/1:00-2:00									
2022/5/20/6:00-7:00									
2022/5/20/16:00-17:00									
2022/5/21/0:00-1:00									
2022/5/21/1:00-2:00	-								
2022/5/21/6:00-7:00									
2022/5/21/16:00-17:00									

问题 3. 根据问题 1 的结果和表 1,表 2 中的相关数据,在每个时段应分别使用哪些发电机才能够使该月发电的总成本最小,并将相关结果填入表 4。

表 4 问题 3 相关结果数据

日期	型号台数与相应发电总功率								
	A2	总功率	B2	总功率	C1	总功率	C2	总功率	
2022/5/1/0:00-1:00									
2022/5/2/0:00-1:00									
2022/5/3/0:00-1:00									
2022/5/4/0:00-1:00									
2022/5/5/0:00-1:00									
2022/5/6/0:00-1:00									
2022/5/7/0:00-1:00									

2022/5/8/0:00-1:00				
2022/5/9/0:00-1:00				
2022/5/10/0:00-1:00				
2022/5/11/0:00-1:00				
2022/5/15/0:00-1:00				
2022/5/16/0:00-1:00				
2022/5/19/0:00-1:00				
2022/5/20/0:00-1:00				
2022/5/21/0:00-1:00				
2022/5/22/0:00-1:00				
2022/5/30/0:00-1:00				
2022/5/31/0:00-1:00				