Thung was beobachten Sie beim Hossen der Qubits $\frac{1}{\sqrt{2}}$ 10> + $\frac{1}{\sqrt{2}}$ 11> und $\frac{1}{\sqrt{2}}$ 10> - $\frac{1}{\sqrt{2}}$ 11> $\frac{2}{\sqrt{2}}$

Z X

Nach dem Hessen ergibt sich Mit Wahrscheinlichkeit

$$\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2} \det 2ustaid 10$$

und mit Wahrscheinlichkeit

$$\left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2} \operatorname{der} \operatorname{Zustard} 11$$

Avalog: Mit Wahrscheinlichkeit $|\frac{1}{\sqrt{2}}|^2 = \frac{1}{2}$

der Zustard 1000 mod Mit Wahrscheinlichkeit

$$\left|-\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$

der Eustard 11)

-> Das Ergebnis ist mabhangig vom Vorzeichen der Amplitude.

Choma Zeige: Die Hadamard-Hatrix ist unitär.

Wegen
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \in \mathbb{R}^{2\times 2}$$
, d.b. sy mnedrisch

also $H^{\dagger} = H$. Es genügt zu zeigen, dass H Selbstinuss ist, also $H^2 = I_2$ gitt.

$$H^{2} = \frac{1}{2} \begin{pmatrix} \lambda & \lambda \\ \lambda - \lambda \end{pmatrix} \begin{pmatrix} \lambda & \lambda \\ \lambda - \lambda \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = I_{2}$$

Damit ist H unitar.

Tiburg Konstruieren Sie alle unitären Transformationen A, für die gitt $\frac{A}{100} + \frac{1}{2} \frac{11}{100}$

Wir wissen: Soll auf einem Bubit im Zustard ×10> + B11> ein Rechenschritt ausgeführt werden, so wird dies durch eine unitäre Hatrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

beschrieben. Do Folgezustaud x'10>+ B'11> ergibt sich durch Hultiplikation:

$$\begin{pmatrix} \alpha' \\ \beta' \end{pmatrix} = A \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha x + b \beta \\ cx + d \beta \end{pmatrix}.$$

In unserem tall:

$$\frac{1}{2}\binom{1}{0} + \frac{\sqrt{3}}{2}\binom{0}{1} = \binom{\frac{1}{2}}{\sqrt{\frac{3}{2}}} \stackrel{!}{=} A\binom{1}{0} = \binom{\alpha}{c}$$

Also gitt $a=\frac{1}{2}$, $c=\frac{\sqrt{3}}{2}$ and b, of können "frei" gewählt worden, unter der Bedingung das die Hatrix A unitär ist. D.h.

$$A = \begin{pmatrix} \frac{1}{2} & b \\ \sqrt{3} & d \end{pmatrix}$$
 and A unitar.

A unitar, dh.
$$A^{\dagger}A = I_2$$
, bew.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{13}{2} \\ \overline{b} & \overline{d} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \overline{b} \\ \overline{b} & \overline{d} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \overline{b} \\ \overline{b} & \overline{d} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{4} + \frac{3}{4} & \frac{1}{2}b + \frac{13}{2}d \\ \frac{1}{2}b + \frac{13}{2}d & \overline{b}b + \overline{d}d \end{pmatrix}$$

Es eggeben sich drei Gleichungen:

I.
$$\frac{1}{2}b + \frac{\sqrt{3}}{2}d = 0$$

mit bide C

$$\overline{\mathbb{II}}$$
. $b\overline{b} + d\overline{d} = 1$.

Wir wissen: $Re(z) = \frac{1}{2}(z+\overline{z})$, $1z1 = 5z\overline{z}$ and Umforming liefest

I+II wind zu
$$\frac{1}{2}(b+b) + \frac{\sqrt{3}}{2}(d+d) = 0$$
,
bzw. $Re(b) + \sqrt{3} Re(d) = 0$

III lässt sich schreiben als $1bl^2 + 1dl^2 = 1$. b_1 of liegen also auf dem Einheitskreis und die Realteile unterscheiden sich im Vorzeichen. Wir folgen

$$b = \frac{\sqrt{3}}{2} e^{it}$$
, $0 \le t \le 2\pi$
 $d = -\frac{1}{2} e^{it}$, $0 \le t \le 2\pi$.