3.6.1 Спектральный анализ электрических сигналов

Анна Назарчук Б02-109

1. Аннотация

В работе исследованы спектры периодических сигналов: модулированный по амплитуде, прямоугольные импульсы и цуги. Проверены теоретические зависимости параметров спектра на практике.

2. Введение

Многие практические задачи описания поведения некоторой системы во времени зачастую сводятся к выяснению связи между "сигналом подаваемым на "вход"системы (обозначим его как f(t)), и её реакцией на "выходе"g(t)). Суть спектрального метода состоит в представлении произвольного воздействия в виде суперпозиции откликов на некоторые элементарные слагаемые. Данный метод используются для анализа многих сигналов, поэтому необходимо экспериментально ознакомиться с ним, сгенерировать и получить на осциллографе спектры различных периодических сигналов, проверить экспериментально соотношение неопределенности и отношения амплитуд гармоник при модулированных по амплитуде сигналах.

3. Методика измерений

В работе используются генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье. Для произвольного сигнала справедливо соотношение неопределенностей:

$$\Delta\omega \cdot \Delta t \sim 2\pi \tag{1}$$

Работа разделена на три равноценные части, в каждой из которых генерируется сигнал определенной формы, обрабатывается с помощью цифрового осциллографа, проверяются соотношения неопределенности с помощью курсорных измерений. 1. Первая часть работы заключалась в исследовании спектра периодической последовательности прямоугольных импульсов (пример показан на рисунке 4). Теоретический расчет дает значение коэффи-

Рис. 1: Пример периодической последовательности прямоугольных импульсов

циентов c_n :

$$c_n = \frac{\sin(\pi n \tau/T)}{\pi n} \tag{2}$$

2. Вторая часть работы состояла в исследовании спектра периодической последовательности цугов гармонических колебаний (пример показан на рисунке 2). Теоретический

Рис. 2: Пример периодической последовательности цуг

расчет дает спектр сигнала:

$$F(\omega) = \frac{\tau}{2T} \left[\frac{\sin(\omega - \omega_0)\tau/2}{(\omega - \omega_0)\tau/2} + \frac{\sin(\omega + \omega_0)\tau/2}{(\omega + \omega_0)\tau/2} \right]$$
(3)

3. Последняя часть заключалась в исследовании спектра гармонических сигналов, модулированных по амплитуде (пример показан на рисунке 3). Теоретический вид сигнала:

Рис. 3: Пример модулированного сигнала

$$f(t) = a_0 \cos(\omega_0 t) + \frac{ma_0}{2} \cos(\omega_0 + \Omega)t + \frac{ma_0}{2} \cos(\omega_0 - \Omega)t \tag{4}$$

4. Измерения и обработка данных

Исследования спектра периодической последовательности прямоугольных импульсов

На генераторе создается сигнал с разными параметрами, по которому на экране осциллографа получается спектр (рис. 4)

При $\nu_{\text{повт}} = 700\Gamma$ ц проведены измерения ширины спектра. Результаты представлены в таблице 1 и на рисунке 5.

Рассчитаем коэффициент наклона прямой:

$$k = 0.9997 \pm 0.0039 \tag{5}$$

Полученное значение близко к 1, что подтверждает соотношение неопределенностей.

Для одного из сигналов (a) рассчитаем теоретическую зависимость и изобразим на графике 6. Теоретический и экспериментальный спектр похожи.

c)
$$\nu_{\text{повт}} = 700 \Gamma$$
ц, $\tau = 50$ мкс

b) $\nu_{\text{повт}} = 1400 \Gamma \text{ц}, \tau = 50 \text{мкc}$

d) $\nu_{\text{повт}} = 1000 \Gamma$ ц, $\tau = 70$ мкс

Рис. 4: Спектры прямоугольных импульсов

Таблица 1: Зависимость ширины спектра от длительности спектра

$\Delta \nu$, Hz	τ , MKC
50200	20
25200	40
17200	60
13000	80
10200	100
8600	120
7400	140
6600	160
5800	180
5000	200

4.1. Исследование спектра периодической последовательности цугов гармонических колебаний

На генераторе создается сигнал последовательности синусоидальных цугов с разными параметрами, по которому на экране осциллографа получается спектр. (рис. 7)

При фиксированной длительности импульсов $\tau=50$ мкс измерим расстояния между соседними спектральными компонентами от периода повторения импульсов (табл. 2, рис. 8)

Рис. 5: Зависимость ширины спектра от длительности спектра

Рис. 6: Теоретический спектр прямоугольных импульсов

Точки должны хорошо ложиться на прямую, однако из графика видно, что это не так. Проблема заключается в снятии данных (был выбран неверный канал при курсор-

е) $\nu = 70$ к Γ ц, T = 1мс, N = 5

b) $\nu = 50$ к Γ ц, T = 1мс, N = 3

d) $\nu = 30$ к Γ ц, T = 1мс, N = 5

Рис. 7: Вид спектра при разных параметрах спектра

ных измерениях). Поэтому подтвердить справедливость соотношения неопределенности невозможно.

4.2. Исследование спектра гармонических сигналов, модулированных по амплитуде

На генераторе создается сигнал, модулированных по амплитуде, по которому на экране осциллографа получается спектр (9). Измерим с помощью осциллографа глубину моду-

Таблица 2: Зависимость расстояния между соседними спектральными компонентами от периода повторения импульсов

T, ms	$\delta \nu$, Hz
0.2	6250
1	2778
1.5	4167
2	1042
2.5	1190
3	735
3.5	893
4	1000
4.5	1042
5	1190

Рис. 8: Зависимость расстояния между соседними спектральными компонентами от периода повторения импульсов

ляции:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = \frac{1.54 - 0.04}{1.54 + 0.04} = 0.5,$$
чтосходитсясустановленнымнагенераторе (6)

Изменяя глубину модуляции, измерим $\frac{a_{\text{бок}}}{a_{\text{осн}}}$ (табл. $\frac{3}{2}$ и рис. $\frac{10}{2}$). Определим коэффициент наклона прямой:

$$k = 0.502 \pm 0.002 \tag{7}$$

Результат сходится с предсказанным теоретически (0.5).

Рис. 9: Спектр сигнала, модулированного по амплитуде

Таблица 3: Зависимость $\frac{a_{\text{бок}}}{\mathbf{a}_{\text{осн}}}$ от m

m	а_бок	а_центр
50	186	738
10	38	738
20	74	738
30	110	738
40	150	738
60	222	738
70	258	738
80	298	738
90	334	738
100	370	738

5. Выводы

- 1. При исследовании последовательности прямоугольных импульсов получена зависимость ширины спектра от длительности импульса, что подтверждает соотношение неопределенностей: $\tau \cdot \Delta \nu \sim 1$.
 - 2. Проверены теоретические расчеты спектра при прямоугольных импульсах (теорети-

Рис. 10: Зависимость $\frac{a_{\text{бок}}}{\mathbf{a}_{\text{осн}}}$ от m

ческая и экспериментальная картины схожи).

- 3. При обработке данных от спектра периодической последовательности цугов была обнаружена ошибка при снятии данных, что не позволило проверить соотношение неопределенностей.
- 4. Получен угол наклона графика зависимости $\frac{a_{\text{бок}}}{a_{\text{осн}}}$ от m (0.5), подтверждено теоретическое значение этого угла (0.5).