SATISIFIABILITY AND SAT SOLVERS

Marcelo Finger

Department of Computer Science Instituto de Matemática e Estatística Universidade de São Paulo

2011

- SAT
- Empirical Properties
- **③** The DPLL Algorithm
- IMPROVEMENTS TO DPLL
- Conclusion

NEXT ISSUE

SAT

- O SAT

- - Further Techniques

THE SETTING: THE LANGUAGE

- Atoms: $\mathcal{P} = \{p_1, \dots, p_n\}$
- Literals: p_i and $\neg p_j$
- $\bar{p} = \neg p$, $\overline{\neg p} = p$
- A clause is a set of literals. Ex: $\{p, \bar{q}, r\}$ or $p \vee \neg q \vee r$
- A formula C is a set of clauses

ullet Valuation for atoms $v:\mathcal{P} o \{0,1\}$

- ullet Valuation for atoms $v:\mathcal{P} o \{0,1\}$
- An atom p is satisfied if v(p) = 1

- Valuation for atoms $v: \mathcal{P} \rightarrow \{0,1\}$
- An atom p is **satisfied** if v(p) = 1
- Valuations are extended to all formulas

MARCELO FINGER
SAT & SOLVERS

- Valuation for atoms $v: \mathcal{P} \to \{0,1\}$
- An atom p is satisfied if v(p) = 1
- Valuations are extended to all formulas
- $\mathbf{v}(\bar{\lambda}) = 1 \Leftrightarrow \mathbf{v}(\lambda) = 0$

- Valuation for atoms $v: \mathcal{P} \to \{0,1\}$
- An atom p is satisfied if v(p) = 1
- Valuations are extended to all formulas
- $\mathbf{v}(\bar{\lambda}) = 1 \Leftrightarrow \mathbf{v}(\lambda) = 0$
- A clause c is satisfied (v(c) = 1) if some literal $\lambda \in c$ is satisfied

- Valuation for atoms $v: \mathcal{P} \to \{0,1\}$
- An atom p is satisfied if v(p) = 1
- Valuations are extended to all formulas
- $\mathbf{v}(\bar{\lambda}) = 1 \Leftrightarrow \mathbf{v}(\lambda) = 0$
- A clause c is satisfied (v(c) = 1) if some literal $\lambda \in c$ is satisfied
- A formula C is satisfied (v(C) = 1) if all clauses in C are satisfied

- A formula C is **satisfiable** if exits v, v(C) = 1.
- Otherwise, *C* is **unsatisfiable**

THE PROBLEM

- A formula C is satisfiable if exits v, v(C) = 1.
- Otherwise, *C* is **unsatisfiable**

THE SAT PROBLEM

Given a formula C, decide if C is satisfiable.

WITNESSES: If C is satisfiable, provide a v such that v(C) = 1.

THE PROBLEM

- A formula C is satisfiable if exits v, v(C) = 1.
- Otherwise, *C* is **unsatisfiable**

THE SAT PROBLEM

Given a formula C, decide if C is satisfiable.

WITNESSES: If C is satisfiable, provide a v such that v(C) = 1.

SAT has small witnesses

AN NP ALGORITHM FOR SAT

NP-SAT(C)

INPUT: C, a formula in clausal form

OUTPUT: v, if v(C) = 1; no, otherwise.

- 1: Guess a v
- 2: Show, in polynomial time, that v(C) = 1
- 3: return v
- 4: **if** no such *v* is guessable **then**
- 5: return no
- 6: end if

A NAÏVE SAT SOLVER

NaiveSAT(C)

INPUT: C, a formula in clausal form

OUTPUT: v, if v(C) = 1; no, otherwise.

1: **for** every valuation v over p_1, \ldots, p_n **do**

2: **if** v(C) = 1 **then**

3: **return** *v*

4: end if

5: end for

6: return no

NEXT ISSUE

- O SAT
 - A Brief History of SAT Solvers

- - Further Techniques

Marcelo Finger SAT & SOLVERS

A Brief History of SAT Solvers

 [Davis & Putnam, 1960; Davis, Longemann & Loveland, 1962] The DPLL Algorithm, a complete SAT Solver

Marcelo Finger IME-USP

A Brief History of SAT Solvers

- [Davis & Putnam, 1960; Davis, Longemann & Loveland, 1962] The DPLL Algorithm, a complete SAT Solver
- [Tseitin, 1966] DPLL has exponential lower bound

Marcelo Finger SAT & Solvers

A Brief History of SAT Solvers

- [Davis & Putnam, 1960; Davis, Longemann & Loveland, 1962] The DPLL Algorithm, a complete SAT Solver
- [Tseitin, 1966] DPLL has exponential lower bound
- [Cook 1971] SAT is NP-complete

Incomplete SAT methods

Incomplete methods compute valuation if C is SAT; if C is unSAT, no answer.

• [Selman, Levesque & Mitchell, 1992] GSAT, a local search algorithm for SAT

Marcelo Finger IME-USP

Incomplete SAT methods

Incomplete methods compute valuation if C is SAT; if C is unSAT, no answer.

- [Selman, Levesque & Mitchell, 1992] GSAT, a local search algorithm for SAT
- [Mitchell, Levesque & Selman, 1992] Hard and easy SAT problems

INCOMPLETE SAT METHODS

Incomplete methods compute valuation if C is SAT; if C is unSAT, no answer.

- [Selman, Levesque & Mitchell, 1992] GSAT, a local search algorithm for SAT
- [Mitchell, Levesque & Selman, 1992] Hard and easy SAT problems
- [Kautz & Selman, 1992] SAT planning

INCOMPLETE SAT METHODS

Incomplete methods compute valuation if C is SAT; if C is unSAT, no answer.

- [Selman, Levesque & Mitchell, 1992] GSAT, a local search algorithm for SAT
- [Mitchell, Levesque & Selman, 1992] Hard and easy SAT problems
- [Kautz & Selman, 1992] SAT planning
- [Kautz & Selman, 1993] WalkSAT Algorithm

INCOMPLETE SAT METHODS

Incomplete methods compute valuation if C is SAT; if C is unSAT, no answer.

- [Selman, Levesque & Mitchell, 1992] GSAT, a local search algorithm for SAT
- [Mitchell, Levesque & Selman, 1992] Hard and easy SAT problems
- [Kautz & Selman, 1992] SAT planning
- [Kautz & Selman, 1993] WalkSAT Algorithm
- [Gent & Walsh, 1994] SAT phase transition

Second Generation of DPLL SAT Solvers: Posit [1995], SATO [1997]. Heuristics but no learning.

MARCELO FINGER IME-USP

- Second Generation of DPLL SAT Solvers: Posit [1995], SATO [1997]. Heuristics but no learning.
- SAT competitions since 2002: http://www.satcompetition.org/

- Second Generation of DPLL SAT Solvers: Posit [1995], SATO [1997]. Heuristics but no learning.
- SAT competitions since 2002: http://www.satcompetition.org/
- Aggregation of several techniques to SAT, such as learning, unlearning, backjumping, watched literal, special heuristics.

- Second Generation of DPLL SAT Solvers: Posit [1995], SATO [1997]. Heuristics but no learning.
- SAT competitions since 2002: http://www.satcompetition.org/
- Aggregation of several techniques to SAT, such as learning, unlearning, backjumping, watched literal, special heuristics.
- Very competitive SAT solvers: GRASP [1999], Chaff [2001], BerkMin [2002], zChaff [2004], MiniSAT[2003].

- Second Generation of DPLL SAT Solvers: Posit [1995], SATO [1997]. Heuristics but no learning.
- SAT competitions since 2002: http://www.satcompetition.org/
- Aggregation of several techniques to SAT, such as learning, unlearning, backjumping, watched literal, special heuristics.
- Very competitive SAT solvers: GRASP [1999], Chaff [2001], BerkMin [2002], zChaff [2004], MiniSAT[2003].
- Applications to planning, microprocessor test and verification, software design and verification, Al search, games, etc.

- Second Generation of DPLL SAT Solvers: Posit [1995], SATO [1997]. Heuristics but no learning.
- SAT competitions since 2002: http://www.satcompetition.org/
- Aggregation of several techniques to SAT, such as learning, unlearning, backjumping, watched literal, special heuristics.
- Very competitive SAT solvers: GRASP [1999], Chaff [2001], BerkMin [2002], zChaff [2004], MiniSAT[2003].
- Applications to planning, microprocessor test and verification, software design and verification, Al search, games, etc.
- Some non-DPLL SAT solvers incorporate all those techniques: [Dixon 2004]

NEXT ISSUE

- EMPIRICAL PROPERTIES
- - Further Techniques

THE SAT PHASE TRANSITION

THE PHASE TRANSITION DIAGRAM

- 3-SAT, N is fixed
- Higher N, more abrupt transition
- M/N: low (SAT); high (UNSAT)
- Phase transition point: $M/N \approx 4.3$, 50% SAT [Toby & Walsh 1994]
- Invariant with N
- Invariant with algorithm!

THE PHASE TRANSITION DIAGRAM

- 3-SAT. N is fixed
- Higher N, more abrupt transition
- M/N: low (SAT); high (UNSAT)
- Phase transition point: $M/N \approx 4.3$, 50% SAT [Toby & Walsh 1994]
- Invariant with N
- Invariant with algorithm!
- No theoretical explanation
- There is another phase-transition for SAT based on "Impurity" [Lozinskii 2006]

Deolalikar's P = NP Proof Stratgy

- Prove theoretically the existence of phase transition
 - Uses Statistical Phisics
- Model P using Immerman-Vardi LFP-Logic
 - Show that for every p^k , some problem exists in a phase transition above p^k .

Deolalikar's P = NP Proof Stratgy

- Prove theoretically the existence of phase transition
 - Uses Statistical Phisics
 - Critics found a problem here.
- Model P using Immerman-Vardi LFP-Logic
 - Show that for every p^k , some problem exists in a phase transition above p^k .
 - Critics found a problem here.
 - Uses a 2-variable fragment of LFP.

NEXT ISSUE

- SAT
 - A Brief History of SAT Solvers
- 2 Empirical Properties
- **③** The DPLL Algorithm
 - DPLL and Resolution
- IMPROVEMENTS TO DPLL
 - Watched Literals
 - Further Techniques
- 6 Conclusion

DPLL THROUGH EXAMPLES

$$\begin{array}{l} p \lor q \\ p \lor \neg q \\ \neg p \lor t \lor s \\ \neg p \lor \neg t \lor s \\ \neg p \lor \neg s \\ \neg p \lor s \lor \neg a \end{array}$$

MARCELO FINGER IME-USP

INITIAL SIMPLIFICATIONS

Delete all clauses that contain λ , if $\bar{\lambda}$ does not occur.

MARCELO FINGER IME-USP

CONSTRUCTION OF A PARTIAL VALUATION

Choose a literal: $s. V = \{s\}$

Propagate choice: Delete clauses containing s. Delete \bar{s} from other clauses.

UNIT PROPAGATION

Enlarge the partial valuation with unit clauses.

$$V = \{\mathbf{s}, \bar{p}\}$$

Propagate unit clauses as before.

Another propagation step leads to $V = \{\mathbf{s}, \bar{p}, q, \bar{q}\}$

BACKTRACKING

Unit propagation may lead to contradictory valuation:

$$V = \{\mathbf{s}, \bar{p}, \mathbf{q}, \bar{\mathbf{q}}\}$$

Backtrack to the previous choice, and propagate: $V=\{\overline{s}\}$

NEW CHOICE

When propagation finishes, a new choice is made: p.

$$V = \{\overline{s}, \mathbf{p}\}.$$

This leads to an inconsistent valuation: $V = \{\bar{s}, \mathbf{p}, t, \overline{t}\}$

Backtrack to last choice: $V = \{\bar{s}, \bar{p}\}$

Propagation leads to another contradiction: $V = \{\bar{s}, \bar{p}, q, \bar{q}\}$

THE FORMULA IS UNSAT

There is nowhere to backtrack to now!

The formula is unsatisfiable, with a proof sketched below.

NEXT ISSUE

- SAT
 - A Brief History of SAT Solvers
- 2 Empirical Properties
- **(3)** The DPLL Algorithm
 - DPLL and Resolution
- IMPROVEMENTS TO DPLL
 - Watched Literals
 - Further Techniques
- Conclusion

MARCELO FINGER
SAT & SOLVERS

THE RESOLUTION INFERENCE FOR CLAUSES

USUAL RESOLUTION

$$\frac{C \vee \lambda \quad \bar{\lambda} \vee D}{C \vee D}$$

CLAUSES AS SETS

$$\frac{\Gamma \cup \{\lambda\} \qquad \{\bar{\lambda}\} \cup \Delta}{\Gamma \cup \Delta}$$

Note that, as clauses are sets

$$\frac{\Gamma \cup \{\mu, \lambda\} \quad \{\bar{\lambda}, \mu\} \cup \Delta}{\Gamma \cup \Delta \cup \{\mu\}}$$

RESOLUTION

Marcelo Finger

MARCELO FINGER SAT & SOLVERS • DPLL is **isomorphic** to (a restricted form of) resolution

CONCLUSION

- DPLL is isomorphic to (a restricted form of) resolution
- DPLL inherits all properties of this (restricted form of resolution

Conclusion

- DPLL is isomorphic to (a restricted form of) resolution
- DPLL inherits all properties of this (restricted form of resolution
- In particular, DPLL inherits the exponential lower bounds

ENHANCING DPLL

For the reasons discussed, DPLL needs to be improved to achieve better efficiency. Several techniques have been applied:

- Learning
- Unlearning
- Backjumping
- Watched literals
- Heuristics for choosing literals

ENHANCING DPLL

For the reasons discussed, DPLL needs to be improved to achieve better efficiency. Several techniques have been applied:

- Learning
- Unlearning
- Backjumping
- Watched literals
- Heuristics for choosing literals

NEXT ISSUE

- SAT
 - A Brief History of SAT Solvers
- 2 Empirical Properties
- 3 The DPLL Algorithm
 - DPLL and Resolution
- IMPROVEMENTS TO DPLL
 - Watched Literals
 - Further Techniques
- 6 Conclusion

NEXT ISSUE

- Improvements to DPLL
 - Watched Literals
 - Further Techniques

Marcelo Finger SAT & SOLVERS

Watched Literals

THE COST OF UNIT PROPAGATION

- Empirical measures show that 80% of time DPLL is doing Unit Propagation
- Propagation is the main target for optimization
- CHAFF introduced the technique of Watched Literals
 - Unit Propagation speed up
 - No need to delete literals or clauses
 - No need to watch all literals in a clause
 - Constant time backtracking (very fast)

DPLL AND 3-VALUED LOGIC

- DPLL underlying logic is 3-valued
- Given a partial valuation

$$V = \{\lambda_1, \ldots, \lambda_k\}$$

• Let λ be any literal.

$$V(\lambda) = \left\{ egin{array}{ll} 1(\mathrm{true}) & \mathrm{if} \ \lambda \in V \\ 0(\mathrm{false}) & \mathrm{if} \ ar{\lambda} \in V \\ *(\mathrm{undefined}) & \mathrm{otherwise} \end{array}
ight.$$

THE WATCHED LITERAL DATA STRUCTURE

- Every clause c has two selected literals: $\lambda_{c1}, \lambda_{c2}$
- For each c, λ_{c1} , λ_{c2} are dynamically chosen and varies with time
- $\lambda_{c1}, \lambda_{c2}$ are properly watched under partial valuation V if:
 - they are both undefined; or
 - at least one of them is true

DYNAMICS OF WATCHED LITERALS

- Initially, $V = \emptyset$
- A pair of watched literals is chosen for each clause. It is proper.
- Literal choice and unit propagation expand V
- One or both watched literals may be falsified
- If λ_{c1} , λ_{c2} become improper then
 - The falsified watched literal is changed
- if no proper pair of watched literals can be found, two things may occur to alter V
 - Unit propagation (V is expanded)
 - Backtracking (V is reduced)

WATCHLIT

EXAMPLE

Initially $V = \emptyset$ A pair of literals was elected for each clause All are undefined, all pairs are proper

D IS CHOSEN

$$V = {\bar{\mathbf{p}}}$$

All watched literals become (0, *), improper New literals are chosen to be watched

7 IS CHOSEN

$$V = \{\bar{\mathbf{p}}, \bar{\mathbf{r}}\}$$

WL in clauses 1,3 become improper No other *- or 1-literal to be chosen Unit propagation: q, \bar{s} become true

Unit propagation leads to backtracking

$$V = \{\mathbf{\bar{p}}, \mathbf{\bar{r}}, q, \mathbf{\bar{s}}\}$$

WL in clause 2 becomes improper

No other *- or 1-literal to be chosen

No unit propagation is possible: clause 2 is false

clause	λ_{c1}	λ_{c2}	
$p \lor q \lor r$	r = 0	q=1	
$p \lor \neg q \lor s$	s = 0	$\bar{q}=0$	
$p \lor r \lor \neg s$	$\bar{s}=1$	r = 0	

FAST BACKTRACKING

V is contracted to last choice point

$$V = \{ \bar{\mathbf{p}}/\bar{\mathbf{p}}/\bar{\mathbf{p}}/\bar{\mathbf{p}}/\bar{\mathbf{p}} \} \ \{\bar{\mathbf{p}},r\}$$

$$\begin{array}{c|cccc} \textit{clause} & \lambda_{c1} & \lambda_{c2} \\ \hline p \lor q \lor r & r = 1 & q = * \\ p \lor \neg q \lor s & s = * & \bar{q} = * \\ p \lor r \lor \neg s & \bar{s} = * & r = 1 \\ \end{array}$$

Only affected WLs had to be recomputed No need to reestablish previous context from a stack of contexts Very quick backtracking

NEXT ISSUE

- Improvements to DPLL

 - Further Techniques

Marcelo Finger IME-USP FURTHER TECHNIQUES

IMPROVEMENTS TECHNIQUES FROM CHAFF

- Learning new clauses
- VSDIS Heuristics
- Random restarts
- Backjumping

FURTHER TECHNIQUES

Learning

IME-USP

WHEN DO WE LEARN?

Sages learn from their bad choices

 Every time a contradiction is derived (closed branch) we can lament our choice

Marcelo Finger

- Every time a contradiction is derived (closed branch) we can lament our choice . . .
- ... or *learn* from our mistakes:

- Every time a contradiction is derived (closed branch) we can lament our choice . . .
- ... or *learn* from our mistakes:
 - We learn that a choice of literals lead to contradiction

- Every time a contradiction is derived (closed branch) we can lament our choice . . .
- ... or *learn* from our mistakes:
 - We learn that a choice of literals lead to contradiction
 - We learn that the clauses involved have enough information to avoid the mistake

When do we learn?

- Every time a contradiction is derived (closed branch) we can lament our choice . . .
- ... or learn from our mistakes:
 - We learn that a choice of literals lead to contradiction
 - We learn that the clauses involved have enough information to avoid the mistake
- We can added learned information to the problem

When do we learn?

- Every time a contradiction is derived (closed branch) we can lament our choice . . .
- ... or *learn* from our mistakes:
 - We learn that a choice of literals lead to contradiction
 - We learn that the clauses involved have enough information to avoid the mistake
- We can added learned information to the problem
- Learning means adding new clauses, without adding new variables

LEARNING 1: BAD CHOICES

Suppose we had choices

$$V = \{\bar{\mathbf{p}}, \bar{\mathbf{r}}\}$$

which after propagation led to

$$V = \{\bar{\mathbf{p}}, \bar{\mathbf{r}}, q, \bar{\mathbf{s}}, \mathbf{s}\}$$

That is, in that context we learned that we cannot have both $\bar{\mathbf{p}}$ and $\bar{\mathbf{r}}$.

Learning 1: Bad Choices

Suppose we had choices

$$V = \{\bar{\mathbf{p}}, \bar{\mathbf{r}}\}$$

which after propagation led to

$$V = \{\bar{\mathbf{p}}, \bar{\mathbf{r}}, q, \bar{\mathbf{s}}, \mathbf{s}\}$$

That is, in that context we learned that we cannot have both $\bar{\mathbf{p}}$ and $\bar{\mathbf{r}}$.

Add the new clause:

$$p \vee r$$

$$\bar{\lambda}_1 \vee \ldots \vee \bar{\lambda}_k$$

LEARNING 1: PROPERTIES

• From a closed branch with choices $\lambda_1, \ldots, \lambda_k$, learn

$$\bar{\lambda}_1 \vee \ldots \vee \bar{\lambda}_k$$

 In general, this form of learning does not improve efficiency, for

$$\bar{\lambda}_1 \vee \ldots \vee \bar{\lambda}_k$$

- In general, this form of learning does not improve efficiency, for
 - it will only be used if k-1 literals occur in another branch

$$\bar{\lambda}_1 \vee \ldots \vee \bar{\lambda}_k$$

- In general, this form of learning does not improve efficiency, for
 - ullet it will only be used if k-1 literals occur in another branch
 - not very likely

$$\bar{\lambda}_1 \vee \ldots \vee \bar{\lambda}_k$$

- In general, this form of learning does not improve efficiency, for
 - it will only be used if k-1 literals occur in another branch
 - not very likely
- Useful in the presence of forgetting (random restarts)

$$\bar{\lambda}_1 \vee \ldots \vee \bar{\lambda}_k$$

- In general, this form of learning does not improve efficiency, for
 - it will only be used if k-1 literals occur in another branch
 - not very likely
- Useful in the presence of forgetting (random restarts)
- Other learning techniques may be applied

• Clauses involved in a contradiction present useful information

- Clauses involved in a contradiction present useful information
- In particular, some clauses leading to a contradiction can be resolved

- Clauses involved in a contradiction present useful information
- In particular, some clauses leading to a contradiction can be resolved
- We learn the resolved clause and add it.

- Clauses involved in a contradiction present useful information
- In particular, some clauses leading to a contradiction can be resolved
- We learn the resolved clause and add it
- For that, we have to store extra information in a partial valuation:

- Clauses involved in a contradiction present useful information
- In particular, some clauses leading to a contradiction can be resolved
- We learn the resolved clause and add it
- For that, we have to store extra information in a partial valuation:
 - For each unit clause, its "original" clause

- Clauses involved in a contradiction present useful information
- In particular, some clauses leading to a contradiction can be resolved
- We learn the resolved clause and add it
- For that, we have to store extra information in a partial valuation:
 - For each unit clause, its "original" clause
 - ullet Choice literals are associted to \top

• In the previous example, the choices are represented as:

$$V = \{(\mathbf{\bar{p}}, \top), (\mathbf{\bar{r}}, \top)\}$$

• In the previous example, the choices are represented as:

$$V = \{(\mathbf{\bar{p}}, \top), (\mathbf{\bar{r}}, \top)\}$$

After linear propagation, the contradiction

$$V = \{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (q, p \lor q \lor r), (\bar{\mathbf{s}}, p \lor r \lor \neg s), (s, p \lor \neg q \lor s)\}$$

• In the previous example, the choices are represented as:

$$V = \{(\mathbf{\bar{p}}, \top), (\mathbf{\bar{r}}, \top)\}$$

After linear propagation, the contradiction

$$V = \{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (q, p \lor q \lor r), (\bar{\mathbf{s}}, p \lor r \lor \neg \mathbf{s}), (s, p \lor \neg q \lor s)\}$$

• We learn the resolution of contradição: $p \lor r \lor \neg s$ e $p \lor \neg q \lor s$

• In the previous example, the choices are represented as:

$$V = \{(\mathbf{\bar{p}}, \top), (\mathbf{\bar{r}}, \top)\}$$

After linear propagation, the contradiction

$$V = \{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (q, p \lor q \lor r), (\bar{\mathbf{s}}, p \lor r \lor \neg \mathbf{s}), (s, p \lor \neg q \lor \mathbf{s})\}$$

- We learn the resolution of contradição: $p \lor r \lor \neg s$ e $p \lor \neg q \lor s$
- That is, we add the clause:

$$p \lor r \lor \neg q$$

• In the previous example, the choices are represented as:

$$V = \{(\mathbf{\bar{p}}, \top), (\mathbf{\bar{r}}, \top)\}$$

After linear propagation, the contradiction

$$V = \{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (q, p \lor q \lor r), (\bar{\mathbf{s}}, p \lor r \lor \neg \mathbf{s}), (s, p \lor \neg q \lor \mathbf{s})\}$$

- We learn the resolution of contradição: $p \lor r \lor \neg s$ e $p \lor \neg q \lor s$
- That is, we add the clause:

$$p \lor r \lor \neg q$$

This form of learning has better effects to proof efficiency

• In the previous example, the choices are represented as:

$$V = \{(\mathbf{\bar{p}}, \top), (\mathbf{\bar{r}}, \top)\}$$

After linear propagation, the contradiction

$$V = \{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (q, p \lor q \lor r), (\bar{\mathbf{s}}, p \lor r \lor \neg \mathbf{s}), (s, p \lor \neg q \lor s)\}$$

- We learn the resolution of contradição: $p \lor r \lor \neg s$ e $p \lor \neg q \lor s$
- That is, we add the clause:

$$p \lor r \lor \neg q$$

- This form of learning has better effects to proof efficiency
- Theorem: proofs with DPLL + Learning2 can polynomially simulate full resolution proofs

Heuristics for Choosing Literals

 A DPLL step starts when linear propagation ends without contradiction

- A DPLL step starts when linear propagation ends without contradiction
- A each step, a new literal has to be chosen to start a new cycle propagation/backtrack

- A DPLL step starts when linear propagation ends without contradiction
- A each step, a new literal has to be chosen to start a new cycle propagation/backtrack
- Several heuristics can be used to choose that literal

- A DPLL step starts when linear propagation ends without contradiction
- A each step, a new literal has to be chosen to start a new cycle propagation/backtrack
- Several heuristics can be used to choose that literal
- Heuristics are rules that help the choice of one among several possibilities

- A DPLL step starts when linear propagation ends without contradiction
- A each step, a new literal has to be chosen to start a new cycle propagation/backtrack
- Several heuristics can be used to choose that literal
- Heuristics are rules that help the choice of one among several possibilities
- Some heuristics are clearly more efficient than others

FURTHER TECHNIQUES

HEURISTICS WITHOUT LEARNING

• Do not take in consideration the learning of new clauses

HEURISTICS WITHOUT LEARNING

- Do not take in consideration the learning of new clauses
 - MOM Heuristics Maximum number of literal Ocorrences with Minimum length
 - Easy to implement: select the literal that is present in the largest number of clauses of minimum size. Increases the probability of backtracking

HEURISTICS WITHOUT LEARNING

- Do not take in consideration the learning of new clauses
 - MOM Heuristics Maximum number of literal Ocorrences with Minimum length
 - Easy to implement: select the literal that is present in the largest number of clauses of minimum size. Increases the probability of backtracking
 - SATO Heuristics is a variation of MOM. Let f(p) be 1 plus the number of clauses of smallest size which contain p. Choose p that maximizes $f(p) * f(\neg p)$. Choose p if $f(p) > f(\neg p)$; $\neg p$ otherwise.

Variable State Independent Decaying Sum

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration

Heuristics VSIDS

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration
- One counter for each literal

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration
- One counter for each literal
- Initialize each with n. of occurrences of each literal

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration
- One counter for each literal
- Initialize each with n. of occurrences of each literal.
- Increment counter when a clause containing that literal is added

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration
- One counter for each literal
- Initialize each with n. of occurrences of each literal
- Increment counter when a clause containing that literal is added
- Choose literal with highest count

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration
- One counter for each literal
- Initialize each with n. of occurrences of each literal.
- Increment counter when a clause containing that literal is added
- Choose literal with highest count
- Periodically, counters are divided by a constant

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration
- One counter for each literal
- Initialize each with n. of occurrences of each literal.
- Increment counter when a clause containing that literal is added
- Choose literal with highest count
- Periodically, counters are divided by a constant
- Highest priority to literals in clauses recently learned

- Variable State Independent Decaying Sum
- Takes the learning of clauses in consideration
- One counter for each literal
- Initialize each with n. of occurrences of each literal.
- Increment counter when a clause containing that literal is added
- Choose literal with highest count
- Periodically, counters are divided by a constant
- Highest priority to literals in clauses recently learned
- Low overheads: counters updated only during learning

FURTHER TECHNIQUES

Random Restarts

Suppose a formula is SAT, but bad initial choices

- Suppose a formula is SAT, but bad initial choices
- A valuation will be found only after exhausting the consequences of those bad choices

- Suppose a formula is SAT, but bad initial choices
- A valuation will be found only after exhausting the consequences of those bad choices
- Idea: restart periodically the search for a valuation

- Suppose a formula is SAT, but bad initial choices
- A valuation will be found only after exhausting the consequences of those bad choices
- Idea: restart periodically the search for a valuation
- Problem: if the formula is UNSAT, this may lead to great inefficiency

- Suppose a formula is SAT, but bad initial choices
- A valuation will be found only after exhausting the consequences of those bad choices
- Idea: restart periodically the search for a valuation
- Problem: if the formula is UNSAT, this may lead to great inefficiency
- This problem is avoided if learned formulas are kept

• Consider ϵ , $0 < \epsilon \ll 1$

- Consider ϵ , $0 < \epsilon \ll 1$
- When a branch is closed

- Consider ϵ , $0 < \epsilon \ll 1$
- When a branch is closed
 - With probability (1ϵ) , perform usual backtracking

- Consider ϵ , $0 < \epsilon \ll 1$
- When a branch is closed
 - With probability (1ϵ) , perform usual backtracking
 - With probability ϵ , restart the search process with $V = \emptyset$

- Consider ϵ , $0 < \epsilon \ll 1$
- When a branch is closed
 - With probability (1ϵ) , perform usual backtracking
 - With probability ϵ , restart the search process with $V=\emptyset$
- Empirically checked: this brings efficiency gains

Backjumping

 Suppose we have the partial valuation $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\mathbf{a},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee\neg s),(s,p\vee\neg q\vee s)\}$

IME-USP

- Suppose we have the partial valuation $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\mathbf{a},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee\neg s),(s,p\vee\neg q\vee s)\}$
- The chosen literal a does not occur in clauses associated with subsequent unit propagations

- Suppose we have the partial valuation $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\mathbf{a},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee\neg s),(s,p\vee\neg q\vee s)\}$
- The chosen literal a does not occur in clauses associated with subsequent unit propagations
- That is, the choice of a is useless

- Suppose we have the partial valuation $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\mathbf{a},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee \neg s),(s,p\vee \neg q\vee s)\}$
- The chosen literal a does not occur in clauses associated with subsequent unit propagations
- That is, the choice of a is useless
- Backtracking would lead to useless repetition $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\bar{\mathbf{a}},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee \neg s),(s,p\vee \neg q\vee s)\}$

- Suppose we have the partial valuation $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\mathbf{a},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee \neg s),(s,p\vee \neg q\vee s)\}$
- The chosen literal a does not occur in clauses associated with subsequent unit propagations
- That is, the choice of a is useless
- Backtracking would lead to useless repetition $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\bar{\mathbf{a}},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee \neg s),(s,p\vee \neg q\vee s)\}$
- Backtracking should "jump back" over a and ignore it, instead of going to $\{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (\bar{\mathbf{a}}, \top), \text{ goes to } \{(\bar{\mathbf{p}}, \top), (\mathbf{r}, \top)\}$

- Suppose we have the partial valuation $\{(\bar{\mathbf{p}}_1,\top),(\bar{\mathbf{r}}_2,\top),(\mathbf{a}_3,\top),(q_2,p\vee q\vee r),(\bar{\mathbf{s}}_2,p\vee r\vee \neg s),(s_2,p\vee \neg q\vee s)\}$
- The chosen literal a does not occur in clauses associated with subsequent unit propagations
- That is, the choice of a is useless
- Backtracking would lead to useless repetition $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\bar{\mathbf{a}},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee \neg s),(s,p\vee \neg q\vee s)\}$
- Backtracking should "jump back" over a and ignore it, instead of going to $\{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (\bar{\mathbf{a}}, \top), \text{ goes to } \{(\bar{\mathbf{p}}, \top), (\mathbf{r}, \top)\}$
- This is backjumping

- Suppose we have the partial valuation $\{(\bar{\mathbf{p}}_1,\top),(\bar{\mathbf{r}}_2,\top),(\mathbf{a}_3,\top),(q_2,p\vee q\vee r),(\bar{\mathbf{s}}_2,p\vee r\vee \neg s),(s_2,p\vee \neg q\vee s)\}$
- The chosen literal a does not occur in clauses associated with subsequent unit propagations
- That is, the choice of a is useless
- Backtracking would lead to useless repetition $\{(\bar{\mathbf{p}},\top),(\bar{\mathbf{r}},\top),(\bar{\mathbf{a}},\top),(q,p\vee q\vee r),(\bar{\mathbf{s}},p\vee r\vee \neg s),(s,p\vee \neg q\vee s)\}$
- Backtracking should "jump back" over a and ignore it, instead of going to $\{(\bar{\mathbf{p}}, \top), (\bar{\mathbf{r}}, \top), (\bar{\mathbf{a}}, \top), \text{ goes to } \{(\bar{\mathbf{p}}, \top), (\mathbf{r}, \top)\}$
- This is backjumping
- Backjumping always brings efficiency gains

- - Further Techniques
- Conclusion

Marcelo Finger SAT & SOLVERS

 DPLL is > 40 years old, but still the most used strategy for SAT solvers

- DPLL is > 40 years old, but still the most used strategy for SAT solvers
- Use of smart techniques have improved DPLL's performance: $N = 15 \longrightarrow N = 100\,000$

- DPLL is > 40 years old, but still the most used strategy for SAT solvers
- Use of smart techniques have improved DPLL's performance: $N = 15 \longrightarrow N = 100\,000$
- There are still very hard formulas that make DPLL exponential, e.g. PHP

- DPLL is > 40 years old, but still the most used strategy for SAT solvers
- Use of smart techniques have improved DPLL's performance: $N = 15 \longrightarrow N = 100\,000$
- There are still very hard formulas that make DPLL exponential, e.g. PHP
- Experiments show that these formulas do occur in practice

- DPLL is > 40 years old, but still the most used strategy for SAT solvers
- Use of smart techniques have improved DPLL's performance: $N = 15 \longrightarrow N = 100\,000$
- There are still very hard formulas that make DPLL exponential, e.g. PHP
- Experiments show that these formulas do occur in practice
- The future of SAT solvers may be in non-DPLL, non-clausal methods

- DPLL is > 40 years old, but still the most used strategy for SAT solvers
- Use of smart techniques have improved DPLL's performance: $N = 15 \longrightarrow N = 100\,000$
- There are still very hard formulas that make DPLL exponential, e.g. PHP
- Experiments show that these formulas do occur in practice
- The future of SAT solvers may be in non-DPLL, non-clausal methods
- But the techniques learned from DPLL are incorporated in new techniques

- DPLL is > 40 years old, but still the most used strategy for SAT solvers
- Use of smart techniques have improved DPLL's performance: $N = 15 \longrightarrow N = 100\,000$
- There are still very hard formulas that make DPLL exponential, e.g. PHP
- Experiments show that these formulas do occur in practice
- The future of SAT solvers may be in non-DPLL, non-clausal methods
- But the techniques learned from DPLL are incorporated in new techniques
- SAT can also be enhanced: SAT Modulo Theories

SAT IS NOT A PANACEA

- Reduction to SAT may be ok for some NPc problems, but ...
 - ... some NPc problems with no known polynomial SAT-reduction.
 - E.g. Answer Set Programming
 - ... some NPc problems with no efficient polynomial SAT-reduction.
 - E.g. Probabilistic SAT