G. H. Raisoni Institute of Engineering & Technology, Pune

(An Autonomous institute affiliated to Savitribai Pune University)

Department: First Year Engineering

Subject: Matrices and Differential Calculus

AY.: 2020-21 (Sem-I)

Class: FY B Tech

CAE-II Question Bank

Unit-II CO-2

1. Determine the eigen values & corresponding eigen vectors of the following matrices a. $\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$ d. $\begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 2 & 0 \end{bmatrix}$

a.
$$\begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{bmatrix}$$

d.
$$\begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 2 & 0 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$

e.
$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

c.
$$\begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$$

2. Verify Cayley Hamilton theorem for matrix A and use it to find A^{-1} where

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$$

3. Verify Cayley Hamilton theorem for matrix A and use it to find A^{-1} where

$$A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

4. Using Sylvester Theorem prove that: $\sin^2 A + \cos^2 A = I$, where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$

5. Show that the matrix A is diagonalizable, where $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$

6. Show that the following Matrix A is diagonalizable, where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$

7. Using Sylvester Theorem, find inverse of matrix A where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$

8. Using Sylvester Theorem prove that: $3 \tan A = (\tan 3)A$, where $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$

- 1. Verify Rolle's Theorem for the following function $f(x) = x^2(1-x^2)$, $x \in [0,1]$
- 2. Verify Lagrange's Mean value theorem for the function

$$f(x) = x(x-1)(x-2), x \in [0,1/2]$$

3. Verify Cauchy's Mean value theorem for the following function

a)
$$f(x) = \sin x$$
 and $g(x) = \cos x$ in $\left[0, \frac{\pi}{2}\right]$

b)
$$f(x) = x^2 + 2$$
 and $g(x) = x^3 - 1$ in [1, 2]

4. If $y = \sin[\log(x^2 + 2x + 1)]$ then prove that:

$$(x+1)^2 y_{n+2} + (2n+1)(x+1)y_{n+1} + (n^2+4)y_n = 0$$

5. Find the nth derivative of each of the following

a.
$$x^2e^x \cos x$$

b.
$$x^2 \tan^{-1} x$$

c.
$$\cos^4 x$$

d.
$$e^{ax} \sin bx \cos cx$$

e.
$$\frac{2x+3}{5x+7}$$

6. If $y = e^{\tan^{-1} x}$ then prove that:

$$(1+x^2)y_{n+1} + (2nx-1)y_n + n(n-1)y_{n-1} = 0$$

_____***********