Section 1: Brand Analysis

In this lesson, the impact of a brand name on consumer purchasing behavior is discussed.

Exploring the data

The data files for both *October* & and *November* are very large in size so for this exercise, the data for only *October* will be selected and used. Let's review and analyze what data is stored in which format.

The following code reads the *CSV* data file and prints the DataFrame.

Note: The code in this chapter is not runnable due to memory constraints. Please run them locally along with each lesson.

```
import pandas as pd

df = pd.read_csv("2019-Oct.csv") # Reading the data from file

print(df)
```

	event_time	event_type	product_id	category_id	category_code	brand	price	user_id	user_sessio
0	2019-10-01 00:00:00 UTC	view	44600062	2103807459595387724	NaN	shiseido	35.79	541312140	72d76fde 8bb3-4e00 8c23 a032dfed738
1	2019-10-01 00:00:00 UTC	view	3900821	2053013552326770905	appliances.environment.water_heater	aqua	33.20	554748717	9333dfb b87a-470 985 6336556b0fd
2	2019-10-01 00:00:01 UTC	view	17200506	2053013559792632471	furniture.living_room.sofa	NaN	543.10	519107250	566511c e2e3-422 b69 cf8e6e792ca
3	2019-10-01 00:00:01 UTC	view	1307067	2053013558920217191	computers.notebook	lenovo	251.74	550050854	7c90fc7 0e80-459 96f 13c02c18c7
4	2019-10-01 00:00:04 UTC	view	1004237	2053013555631882655	electronics.smartphone	apple	1081.98	535871217	c6bd741 2748-4c5 95b 8cec9ff8b80
42448759	2019-10-31 23:59:58 UTC	view	2300275	2053013560530830019	electronics.camera.video	gopro	527.40	537931532	22c5726 da98-4f2 9a9 18bb5b3851
42448760	2019-10-31 23:59:58 UTC	view	10800172	2053013554994348409	NaN	redmond	61.75	527322328	5054190 46cb-421 a8t 16fc1a060e

According to the output, there are **nine** columns in the **DataFrame**, which are described below:

- event_time: The exact time when the activity occurred by a user
- event_type: The type of activity occurred; there are three types in our case, i.e, *view*, *cart*, and *purchase*
- product_id: The unique ID of a particular product
- category_id: The unique ID of the category to which the product belongs to
- category_code: The unique category code to which the product belongs to
- brand: The brand name of the selected product
- price: The price of the selected product
- user_id: The unique ID of the user
- user_session: The unique ID generated every time a user visits the site. It is different for every visit of a particular user

Brand analysis

A *brand* is a term that differentiates one product from another. In this analysis, we will review whether people like to purchase products with a popular brand or a product without a brand.

For this analysis, only the products actually bought by the users will be considered. In our dataset, the products which have no brand are given a NaN value. This will be done in two steps:

- 1. Separate the original DataFrame into two DataFrames. One with all the products with brands and one with all the products without brands.
- 2. Fetch all those rows from the two DataFrames where the event_type value is purchase.

As a final result, two Dataframes will be obtained containing the brand products with and without, that was purchased.

```
import pandas as pd

df = pd.read_csv("2019-Oct.csv") # Reading the data from file

# Step 1

# Fetch rows with brand
with_brand = df[df['brand'].notna()]

# Fetch rows without brand
without_brand = df[df['brand'].isna()]

# Step 2

# Purchased products with brands
with_brand = with_brand[with_brand['event_type'] == 'purchase']
print(with_brand)

# Purchased products without brands
without_brand = without_brand[without_brand['event_type'] == 'purchase']
print(without_brand)
```

1	2019-10-01 00:00:00+00:00	view	3900821	2053013552326770905	appliances.environment.water_heater	aqua	33.20	554748717	9333dfb b87a-470 985 6336556b0f
3	2019-10-01 00:00:01+00:00	view	1307067	2053013558920217191	computers.notebook	lenovo	251.74	550050854	7c90fc7 0e80-459 96 13c02c18c7
4	2019-10-01 00:00:04+00:00	view	1004237	2053013555631882655	electronics.smartphone	apple	1081.98	535871217	c6bd74 ⁻ 2748-4c5 95b 8cec9ff8b8
5	2019-10-01 00:00:05+00:00	view	1480613	2053013561092866779	computers.desktop	pulser	908.62	512742880	0d0d91d c9c2-4e8 90a 86594dec0d
42448759	2019-10-31 23:59:58+00:00	view	2300275	2053013560530830019	electronics.camera.video	gopro	527.40	537931532	22c5726 da98-4f2 9a9 18bb5b3851
42448760	2019-10-31 23:59:58+00:00	view	10800172	2053013554994348409	NaN	redmond	61.75	527322328	5054190 46cb-42 ⁻ a8 16fc1a060e
42448761	2019-10-31 23:59:58+00:00	view	5701038	2053013553970938175	auto.accessories.player	kenwood	128.70	566280422	05b6c62 992f-4ei 91 961bcb4719
42448762	2019-10-31 23:59:59+00:00	view	21407424	2053013561579406073	electronics.clocks	tissot	689.85	513118352	4c14bf2 2820-450 929 046356a5a2
42448763	2019-10-31 23:59:59+00:00	view	13300120	2053013557166998015	NaN	swisshome	155.73	525266378	6e57d2e 6022-46e 81e fa77f14ce
6331684	rows × 11 columns								

With brand

2	2019-10-01 00:00:01+00:00	view	17200506	2053013559792632471	furniture.living_room.sofa	NaN	543.10	519107250	566511c2-e2e3 422b-b695 cf8e6e792ca
15	2019-10-01 00:00:17+00:00	view	23100006	2053013561638126333	NaN	NaN	357.79	513642368	17566c27-0a8 4506-9f30 c6a2ccbf583
26	2019-10-01 00:00:24+00:00	view	34700031	2061717937420501730	NaN	NaN	151.87	539512263	f27a45f8-fb98 459a-96a6 45271f56a98
31	2019-10-01 00:00:26+00:00	view	13500046	2053013557099889147	furniture.bedroom.bed	NaN	60.75	555446365	7f0062d8-ead0 4e0a-96f6 43a0b79a2fc
32	2019-10-01 00:00:27+00:00	view	31501072	2053013558031024687	NaN	NaN	165.64	550978835	6280d577-25c8 4147-99a7 abc6048498d
42448746	2019-10-31 23:59:54+00:00	view	1002786	2053013555631882655	electronics.smartphone	NaN	391.26	512789086	cc782b99-88ab 4573-8311 c62e1d44775
42448747	2019-10-31 23:59:54+00:00	view	25600078	2053013559675191951	NaN	NaN	81.86	522031876	39d48518-9fca 4df3-9724 950cd6ec44e
42448750	2019-10-31 23:59:55+00:00	view	42200036	2095518917320508073	NaN	NaN	17.50	515474976	222c370b-0fad 4287-982b e340f5eaf3a
42448753	2019-10-31 23:59:57+00:00	view	21408491	2053013561579406073	electronics.clocks	NaN	350.07	553802615	e09684bb-0c95 4f67-98d 59fc593f389
42448754	2019-10-31 23:59:57+00:00	view	44300011	2100825583029060150	apparel.jeans	NaN	50.45	545220871	f278cca0-e0f6 49a3-819a d9619982826

In the output, we can see that the products have been correctly filtered, and two <code>DataFrames</code> have been obtained: one with purchased branded products and the other with purchased non-branded products.

On **line 11**, those rows from df are selected where the brand value is not null or NaN. A new DatFrame is returned which only contains products that belong to a brand.

On **line 14**, the rows from **df** were selected where **brand** value is null or **NaN**. A new **DatFrame** will be returned which will only contain products that don't belong to a brand.

On **line 19**, those entries from the with_brand DataFrame where event_type is equal to purchased are filtered to get information for only those products that were bought.

On **line 23**, the entries from the without_brand DataFrame where event_type is equal to purchased are filtered to get information for only those products that were bought.

At the end of each output, the number of rows for each <code>DataFrame</code> is mentioned. Let's review how much percentage of branded and non-branded products were bought.

```
# Get length of original dataframe with purchased products
org = len(df[df['event_type'] == 'purchase'])

# Divide the length of with_brand dataframe with length org dataframe
brand_p = len(with_brand) / org
print(brand_p * 100)

# Divide the length of without_brand dataframe with length org dataframe
brand_a = len(without_brand) / org
print(brand_a * 100)
```

brand_p = 92.15116396468193 %

brand_a = 7.8488360353180795 %

On **line 5**, the length of products with the brand DataFrame is divided by all of the purchased products to get the percentage of their sales.

On the County of the law of the description of the county of the county

the purchased products to get the percentage of their sales.

According to the above output, approximately **92**% of the purchased products were associated with a brand, and only **8**% of products without a brand were bought.

The hypothesis

A hypothesis can be drawn based on the above results.

- For *marketers*, most of the marketing budget should be allotted to the advertisement of branded products.
- For inventors or entrepreneurs, always introduce the product with a brand name because products without a brand have a very low probability of getting bought.

In the next lesson, we analyze the customer's activity on the website.