St.JOSEPH'S COLLEGE OF ENGINEERING, CHENNAI-119 St.JOSEPH'S INSTITUTE OF TECHNOLOGY, CHENNAI-119

I-YEAR B.E / B.TECH (COMMON TO ALL BRANCHES) MA6151/ MATHEMATICS - I

ASSIGNMENT - V

UNIT V - MULTIPLE INTEGRALS

PART - A

1. Evaluate
$$\int_{2}^{a} \int_{2}^{b} \frac{dx dy}{xy}$$
.

2. Evaluate
$$\int_{1}^{2} \int_{0}^{x^{2}} x \, dx \, dy$$
.

3. Change the order of integration in
$$\int_{0}^{a} \int_{x}^{a} f(x,y) dy dx$$
.

3. Change the order of integration in
$$\int_{0}^{a} \int_{x}^{a} f(x,y) dy dx$$
.

4. Shade the region of integration in $\int_{0}^{a} \int_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} dx dy$.

5. Transform the integration
$$\int\limits_0^\infty \int\limits_0^y dx\,dy$$
 into polar co-ordinates.

6. Evaluate
$$\int_{0}^{a} \int_{0}^{b} \int_{0}^{c} dx dy dz.$$

7. Compute the entire area bounded by
$$r^2 = a^2 \cos 2\theta$$
.

7. Compute the entire area bounded by
$$\mathbf{r}^2 = \mathbf{a}^2 \cos 2\theta$$
.
8. Evaluate
$$\int_{0}^{\pi/2} \int_{0}^{\sin \theta} r \, dr \, d\theta$$
.

PART - B

1. a) Evaluate
$$\iint_R \frac{e^{-y}}{y} dx dy$$
, where R is the region bounded by the lines $x = 0$, $x = y$, and $y = \infty$.

b) Find the area of the cardioid
$$r = a(1 + \cos \theta)$$
.

2. a) Change the order of integration in
$$\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$$
 and hence evaluate it.

- b) Transform the integral into polar co-ordinates and hence evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^2+y^2\right)} dx dy.$
- 3. a) Find the volume of the tetrahedron bounded by the planes $\mathbf{x} = \mathbf{0}$, $\mathbf{y} = \mathbf{0}$, $\mathbf{z} = \mathbf{0}$ and \mathbf{x} \mathbf{v} \mathbf{z}

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

- b) Find the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$.
- 4. a) Change the order of integration in $\int_0^a \int_v^a \frac{x}{x^2 + y^2} dx dy$ and hence evaluate it.
 - b) Evaluate $\iiint_{V} \frac{dx \, dy \, dz}{\sqrt{a^2 x^2 y^2 z^2}}$ over the first octant of the sphere $x^2 + y^2 + z^2 = a^2$.