COARSE GEOMETRY AND GROUPOIDS

YUEZHAO LI

ABSTRACT. These are a personal note of a mini-course of Nick Wright on the coarse Baum–Connes conjecture, provided in the autumn school on large-scale geometry in Göttingen, October 9–13, 2023.

1. Introduction

During October 9–13, 2023, I attended an autumn school on large-scale geometry in Göttingen. There were four scheduled mini-courses. The courses of Cornelia Drutu (Oxford) and Alessandro Sisto (Heriot-Watt) were more on the geometry of groups (geometric group theory, property (T) and a-T-menability), which were interesting but yet not quite my field of research. Guoliang Yu (Texas A&M) was a plenary speaker for coarse index theory, but he was unfortunately sick before the autumn school. Instead, Thomas Schick (Göttingen) took over the lectures. Thomas's lectures were interesting, but I had been quite familiar with those materials before.

Nick Wright (Southampton) gave lecture series on the coarse Baum-Connes conjecture, a topic that I also have some knowledge on. Towards the end, he covered some old results of Skandalis, Tu and Yu [6], in which groupoid models of Roe C*-algebras were built. These results are both interesting and useful for me. My previous experience with topological insulators tells that the Roe C*-algebras are quite universal as a dynamical object, and in most cases serve as the universal target for doing index theory. A groupoid model for a Roe C*-algebra makes this more explicit. Moreover, a Roe C*-algebra has many concrete realisations depending on the choice of the ample module, and it is important in physics to keep in mind this choice. Reinterpreting a Roe C*-algebra as a groupoid crossed product sometimes fixes such a choice and might hence become useful for physical applications.

The following will be devoted to a non-faithful recording of Nick Wright's lectures. I will not cover the fundaments that I am already quite familiar with.

2. Coarse spaces

We start with the construction of uniform and non-uniform Roe C*-algebras. Let X be a uniformly locally finite metric space. Uniformly locally finite means that for every R > 0, there exists N such that every R-ball in X has at most N points. An operator $T \in \mathbb{B}(\ell^2 X)$ can be described by an infinite matrix $(T_{x,y})_{x,y \in X}$. The propagation of T is

$$Prop(T) := \sup\{d(x, y) \mid T_{x,y} \neq 0\}.$$

Write $\mathbb{C}_{\mathrm{u}}[X]$ for the *-algebra of operators with *finite* propagation. The *uniform* Roe C*-algebra on X is the closure of $\mathbb{C}_{\mathrm{u}}[X]$ inside $\mathbb{B}(\ell^2 X)$, denoted by $\mathrm{C}^*_{\mathrm{u}}(X)$.

The above construction actually describes a coarse structure from a metric space, specifying the controlled sets (=entourages) as sets of points with finite supremal distance. We may, instead, define in a more general setting.

Definition 2.1. A coarse structure on a set X is $\mathfrak{E} \subseteq \mathcal{P}(X \times X)$ consisting of so-called *controlled sets* or *entourages*, satisfying:

- If $\mathcal{E} \in \mathfrak{E}$, then $\mathcal{E}^{\mathrm{T}} := \{(y, x) \mid (x, y) \in \mathcal{E}\} \in \mathfrak{E}$.
- If $\mathcal{E} \in \mathfrak{E}$ and $\mathcal{F} \in \mathfrak{E}$, then $\mathcal{E} \circ \mathcal{F} := \{(x,y) \mid \exists z, (x,z) \in \mathcal{E}, (z,y) \in \mathcal{F}\} \in \mathfrak{E}$.
- If $\mathcal{E} \in \mathfrak{E}$ and $\mathcal{F} \in \mathfrak{E}$, then $\mathcal{E} \cup \mathcal{F} \in \mathfrak{E}$.
- If $\mathcal{E} \in \mathfrak{E}$ and $\mathcal{F} \subseteq \mathcal{E}$, then $\mathcal{F} \in \mathfrak{E}$.

A coarse structure \mathfrak{E} is unital if $\Delta_X \in \mathfrak{E}$, and is weakly connected if $\{(x,y)\} \in \mathfrak{E}$ for every pair of points $x, y \in X$.

Example 2.2. Let X be a metric space. We may equip it with two coarse structures. The first one, which is the usual one, consists of entourages \mathcal{E} such that

$$\sup\{d(x,y) \mid (x,y) \in \mathcal{E}\} < +\infty.$$

Example 2.3. Another finer coarse structure on a metric space X is specified by the entourages \mathcal{E} satisfying the property: for each pair of points $(x, y) \in \mathcal{E}$:

$$d(x,y) \to 0$$
 at infinity.

Formally, this means that for every $\epsilon > 0$, there exists a bounded set (Definition 2.5) $K \subseteq X$, such that $d(x,y) < \epsilon$ for every $(x,y) \in \mathcal{E} \setminus K \times K$.

Example 2.4. Let X be a topological space, and \bar{X} be a compactification of it. Then a coarse structure on X is given by the entourages $\mathcal{E} \subseteq X \times X$ such that

$$\bar{\mathcal{E}} \setminus X \times X \subseteq \Delta_{\bar{X}}.$$

Example 2.3 is the special case where \bar{X} is the one-point compactification of X equipped with the topology given by its metric.

Definition 2.5. A subset $K \subseteq X$ is bounded if $K \times K \in \mathfrak{E}$. A collection of subsets $\mathcal{C} \subseteq \mathcal{P}(X)$ is uniformly bounded if there exists $\mathcal{E} \in \mathfrak{E}$ such that $K \times K \subseteq \mathcal{E}$ for every $K \in \mathcal{C}$. Namely, there exists a uniform entourage such that every element in \mathcal{C} is a bounded set by this uniform entourage.

If X is a topological space, then we also require that every $K \in \mathcal{C}$ is contained in some open set $U \in \mathcal{C}$. So uniformly bounded covers can be enlarged to open uniformly bounded covers.

Remark 2.6. I asked Nick Wright whether the bounded subsets defined in this way form a bornology (the definition I have in mind is from [1]). The answer I have in mind in no, because in Nick's definition of coarse structures, the diagonal is not assumed to be an entourage (when this happens, Nick Wright calls it a unital coarse structure, because then the uniform Roe C*-algebra is unital). Then the bounded sets of X do not in general cover X, and that is a condition required by Bunke and Engel's definition of a bornology. I wonder whether or not being non-unital in the sense of Nick Wright is interesting enough in some cases.

Definition 2.7. Let (X, \mathfrak{E}_X) and (Y, \mathfrak{E}_Y) be coarse spaces. A set-theoretic map $f: X \to Y$ is called *coarse* if:

- $f \times f$ is controlled, i.e. maps entourages to entourages.
- The preimage of a bounded set under f is also bounded.

Fix a very ample module \mathcal{H}_X for X, which means that it is the infinite direct sum of some ample module. The uniform Roe C*-algebra $C_{\mathrm{u}}^*(X)$ of a coarse space X is the closure of all controlled operators. The Roe C*-algebra $C^*(X)$ is the closure of all locally compact and controlled operators.

Roe C*-algebras are functorial for coarse maps using covering isometries. A covering isometry for a coarse map $f: X \to Y$ is an isometry $V_f: \mathcal{H}_X \to \mathcal{H}_Y$ such that

$$\{(y, f(x)) \mid (y, x) \in \operatorname{Supp} V_f\} \in \mathcal{E}_Y.$$

Ampleness implies the existence of covering isometries. And on the K-theory level

$$\operatorname{Ad}_{V_f} : \operatorname{K}_*(\operatorname{C}^*(X)) \to \operatorname{K}_*(\operatorname{C}^*(Y))$$

is canonically defined.

Exercise 2.8. Find an covering isometry for the coarse equivalence $\mathbb{Z} \hookrightarrow \mathbb{R}$.

3. Assembly maps

In the following we describe the "controlled dual" approach (i.e. Paschke duality) to the coarse Baum–Connes conjecture. Fix an ample module \mathcal{H} for X. An operator $T \in \mathbb{B}(\mathcal{H})$ is pseudolocal if:

- $\phi T T\phi \in \mathbb{K}$ for all $\phi \in C_0(X)$.
- $\phi T \psi \in \mathbb{K}$ for all $\phi, \psi \in C_0(X)$ with $\phi \psi = 0$.

Let $D^*(X)$ be the closure of all controlled, pseudolocal operators. It contains $C^*(X)$ as an ideal. The K-homology of X is defined as

$$K_*(X) := K_{*+1}(D^*(X)/C^*(X)).$$

The assembly map is the boundary map $\partial \colon \mathrm{K}_*(X) \to \mathrm{K}_*(\mathrm{C}^*(X))$ in the K-theory long exact sequence for the inclusion of ideal $\mathrm{C}^*(X) \subseteq \mathrm{D}^*(X)$.

Higson and Roe [4] proved that the assembly map is an isomorphism if X is scalable, which we now define.

Definition 3.1. A metric space X is scalable if there exists a map $f: X \to X$ such that:

- $\bullet \ d(f(x), f(y)) \le \frac{1}{2}d(x, y).$
- f is homotopic to the identity map.
- There exsts a sequence

$$\{f_0 = id, f_1, \ldots\}$$

such that

- For every bounded set $K \subseteq X$: $f_n|_K = f|_K$ for $n \gg 0$.
- f_n is uniformly close to f_{n+1} .

These conditions say that $\{f_n\}$ is a coarse homotopy from id to f.

Remark 3.2. The usual definition of a coarse homotopy uses a map $f: [0,1] \times X \to X$ (see [5]). But there is no difference if we replace it by the countable sequence in coarse geometry.

We have the following coarse homotopy invariance for scalable spaces:

Lemma 3.3. If X is scalable. Then coarse homotopic maps induce the same map in K-homology.

Proof. Let $E^*(X)$ denote the closure of all controlled operators, and the double of $E^*(X)$ over $C^*(X)$ is defined as

$$D := \{ (S + T, S) \mid S \in E^*(X), T \in C^*(X) \}.$$

Then the quotient map $D \to E^*(X)$ splits. So $K_*(D) = K_*(C^*(X)) \oplus K_*(E^*(X)) = K_*(C^*(X))$. Now let $[P] \in K_*(C^*(X))$ and define

$$Q := (f_{0*}P \oplus f_{1*}(P) \oplus \cdots, f_*P \oplus f_*P \oplus \cdots)$$

which lies in D (due to the very ampleness!) since on any bounded set only a finite number of i make $f_{i*}P$ differ from f_*P . Each f_i is uniformly close to f_{i+1} , so Q is equivalent to

$$Q' := (f_{1*}P \oplus f_{2*}(P) \oplus \cdots, f_*P \oplus f_*P \oplus \cdots)$$

which means that $(f_{0*}P, f_*P)$ is trivial in K-theory. So $[f_{0*}P] = [f_*P] = [f_{1*}P]$. \square

Theorem 3.4 (Higson–Roe). If X is scalable, then the assembly map for X is an isomorphism.

Proof. One checks that $f_* = \operatorname{id}$ on $K_*(D^*(X))$ by using $f_* = \operatorname{id}$ in $K_*(D^*(X)/C^*(X))$ and $K_*(C^*(X))$. Note that (pointed out by Thomas Schick) one cannot use the five lemma here: the five lemma only tells that f_* is necessarily an *isomorphism* on $K_*(D^*(X))$, which is not enough.

Now for $[P] \in K_*(D^*(X))$, we have that

$$Q := P \oplus f_*P \oplus f_*f_*P \oplus \dots$$

lies in D because the propagation tends to 0. $f_* = \mathrm{id}$ on $\mathrm{K}_*(\mathrm{D}^*(X))$ implies that Q is equivalent to

$$f_*Q = f_*P \oplus f_*f_*P \oplus f_*f_*f_*P \oplus \dots$$

which further implies that [P] = 0 in $K_*(D^*(X))$. This is fairly standard Eilenberg swindle argument.

4. Coarse Baum-Connes conjecture

It is useful to first look at the Baum–Connes conjecture, which states that the map

$$K_{*,G\text{-}\mathrm{cpt}}^G(\underline{E}G) \to K_*(C_r^*(G))$$

is an isomorphism.

If G is torsion-free, then BG is compact and the left-hand side is equivalent to $K_*(BG) = K_*^G(EG)$, where EG is the universal principal G-space. In the general case, one needs to use $\underline{E}G$ which is the universal proper G-space. This space is the infinite simplex on G and we define

$$\mathrm{K}^G_{*,G\text{-}\mathrm{cpt}}(\underline{E}G) := \varinjlim_{\substack{X \subseteq EG \\ G\text{-}\mathrm{cpt}}} \mathrm{K}^G_*(X).$$

The coarse Baum-Connes conjecture is defined following a similar spirit. Let $\underline{E}X$ be the infinite simplex on a coarse space (X, \mathfrak{E}) . For each $\mathcal{E} \in \mathfrak{E}$, define the Rip complex $P_{\mathcal{E}}(X)$ as the subcomplex of EX, generated by simplices of the form

$$[x_0,\ldots,x_n], \qquad d(x_i,x_j) \le d.$$

Definition 4.1. The coarse K-homology of X is defined to be

$$\mathrm{KX}_*(X) := \lim_{\longrightarrow} \mathrm{K}_*(P_{\mathcal{E}}(X)).$$

Conjecture 4.2 (Coarse Baum–Connes conjecture, CBC). The map $\mathrm{KX}_*(X) \to \mathrm{K}_*(\mathrm{C}^*(X))$ is an isomorphism. The map is defined using the following non-trivial isomorphism

$$K_*(C^*(X)) \simeq \underset{\longrightarrow}{\lim} K_*(C^*(P_{\mathcal{E}}(X))).$$

Yu [7] proved that CBC holds for spaces with finite asymptotic dimension:

Definition 4.3. A coarse space X has asymptotic dimension less or equal than n, if there exists a sequence of uniformly bounded cover $\{\mathfrak{U}_k\}_{k\in\mathbb{N}}$ such that:

- The Lebesgue number of \mathfrak{U}_k tends to 0 as $k \to \infty$.
- The nerve of every \mathfrak{U}_k is less or equal than n.

Assume G is torsion-free and X=EG is a finite G-CW-complex. Then the left-hand side of the Baum–Connes conjecture is just $K^G_*(EG)$. In this setting, we have:

Theorem 4.4. The CBC for X implies the injectivity of the Baum-Connes assembly map.

The proof is based on a "descent principal" and uses equivariant Roe C*-algebras. I do not plan to cover this.

5. Roe C*-algebras and groupoids

The final part will be devoted to understanding the results mainly contained in the work [6] of Skandalis, Tu and Yu. They define the Roe C*-algebra of a coarse space X as a reduced crossed product by a so-called coarse groupoid \mathcal{G}_X .

We first define the (uniform) Roe C*-algebra of a group. Let G be a discrete group with a left-invariant word-length metric ρ . The uniform Roe C*-algebra of G, denoted by $C_{\rm u}^*(G)$ is generated by

$$(\rho(g)\delta_x \mapsto \delta_{xg^{-1}})_{g \in G}$$
 and $\ell^{\infty}X$.

The uniform Roe C*-algebra $C_{\rm u}^*(G)$ can be also defined as $\ell^{\infty}G \rtimes_{\rm r} G$. Similarly, the Roe C*-algebra of G is defined as $\ell^{\infty}(G,\mathbb{K}) \rtimes_{\rm r} G$. The key point is that $d(x,y) \leq R$ iff $x = yg^{-1}$ for some g with $\rho(g) \leq R$.

Example 5.1. If $G = \mathbb{Z}^d$ equipped with the obvious word-length metric. Then we recover the well-known result (at least well-known to me)

$$C_{\mathbf{u}}^*(\mathbb{Z}^d) = \ell^{\infty}(\mathbb{Z}^d) \rtimes_{\mathbf{r}} \mathbb{Z}^d$$
 and $C^*(\mathbb{Z}^d) = \ell^{\infty}(\mathbb{Z}^d, \mathbb{K}) \rtimes_{\mathbf{r}} \mathbb{Z}^d$.

A crossed product is the C*-algebra of an action groupoid. Since $\ell^{\infty}(G)$ can be identified with $C_b(G)$ and therefore with $C(\beta G)$ where βG is the Stone-Čech compactification of G. So

$$C_{\mathfrak{n}}^*(G) = C(\beta G) \rtimes_{\mathfrak{r}} G = C_{\mathfrak{r}}^*(\beta G \rtimes G).$$

The space βX can be identified with the space of ultrafilters on X.

Definition 5.2. An *ultrafilter* on a set X is a collection of subsets $\omega \in \mathcal{P}(X)$ such that:

- If $A, B \in \omega$, then $A \cap B \in \omega$.
- If $A \in \omega$ and $A \subseteq B$, then $B \in \omega$.
- For every $A \subseteq X$, either $A \in \omega$ or $X \setminus A \in \omega$.

If $A \in \omega$, then we say the ultrafilter ω chooses A.

Example 5.3. Let $x \in X$. Then

$$\omega_x := \{ A \subseteq X \mid x \in A \}$$

is an ultrafilter, called the *principal filter* with principal element x.

Proposition 5.4. There is a bijection between points in βX and ultrafilters on X. A point $x \in X \subseteq \beta X$ is identified with the principal ultrafilter ω_x .

More generally, if $A \subseteq X$ is a subset. Then there is a bijection between βA and \bar{A} , which is the set of ultrafilters on X which choose A. \bar{A} is clopen and is the closure of A in βX . These clopen sets form a topology for βX .

Remark 5.5. Ultrafilter chooses between subsets of X. If $A \in \omega$ and $A = \coprod_i A_i$ is a finite disjoint union. Then ω chooses exactly one of A_i : suppose first that ω chooses none of A_i 's, then ω chooses $X \setminus A_i$ and hence ω chooses

$$\bigcap_{i} X \setminus A_{i} = X \setminus \coprod_{i} A_{i} = X \setminus A$$

contradicting to the condition that X chooses exactly one of A and $X \setminus A$.

Now assume ω chooses at least two of A_i 's, say, A_i and A_j . Then ω chooses $\emptyset = A_i \cap A_j$ as well. Then $X = X \setminus \emptyset$ is not chosen by ω . But if $A \in \omega$ and $A \subseteq X$, then $X \in \omega$. This is a contradiction.

Definition 5.6. Let (X, \mathfrak{E}) be a coarse space of bounded geometry. The *coarse groupoid* \mathcal{G}_X is the set of all ultrafilters on $X \times X$ which choose an entourage. Equivalently, we may write

$$\mathcal{G}_X := \bigcup_{\mathcal{E} \in \mathfrak{E}} \bar{\mathcal{E}}.$$

 \mathcal{G}_X contains $X \times X$ (view points in X as principal ultrafilters). The composition on \mathcal{G}_X extends the pair groupoid $X \times X \rightrightarrows X$.

Theorem 5.7. We have

$$C_r^*(\mathcal{G}_X) \simeq \ell^{\infty} X \rtimes_r \mathcal{G}_X \simeq C_u^*(X)$$
 and $\ell^{\infty}(X, \mathbb{K}) \rtimes_r \mathcal{G}_X \simeq C^*(X)$.

An alternative description of \mathcal{G}_X is as follows.

A partial translation on X is an entourage t such that both coordinate projections are injective. Then t gives a partial bijection

$$\operatorname{pr}_1(t) \mapsto \operatorname{pr}_2(t)$$
, or $x \mapsto y$ iff $(x, y) \in t$.

Let \mathcal{E} be an entourage and $\bar{\mathcal{E}}$ be the ultrafilters on $X \times X$ choosing \mathcal{E} . Since X is assumed to have bounded geometry, we have $\mathcal{E} = t_1 \cup \ldots \cup t_n$ is a finite union of partial translations. So every ultrafilter in $\bar{\mathcal{E}}$ chooses between t_1, \ldots, t_n .

Then \mathcal{G}_X is the groupoid of germ of partial translations, i.e.

• \mathcal{G}_X consists of equivalence classes $[\omega, t]$ with

 $\omega \in \beta X$, t a partial translation such that ω chooses $\operatorname{pr}_1(t)$.

The equivalence relation is

$$[\omega, t] \sim [\omega', t']$$
 if $\omega = \omega'$, $\operatorname{pr}_1(t \cap t') \in \omega$.

• The composition is

$$[\omega, t] \cdot [\eta, s] = [\omega, t \circ s].$$

Remark 5.8. Partial translations are partial bijections, and hence give rise to semi-group actions. This makes it possible to describe a Roe C*-algebra as a semigroup crossed product. As Nick Wright indicated, this is an ongoing work of one of his students.

6. Boundary coarse Baum-Connes conjecture

The followings are completely new to me. It might be interesting to see whether they have certain physical applications. Another question I have in mind would be how they are related to (stable) Higson coronas and therefore to the coarse coassembly maps of Emerson and Meyer [2]. The latter have potential applications in index theory.

Definition 6.1. The boundary coarse groupoid is the restriction of \mathcal{G}_X to $\partial \beta X$, say,

$$\partial \mathcal{G}_X = \mathcal{G}_X \setminus X \times X \rightrightarrows \partial \beta X.$$

Let $\partial \ell^{\infty}(X, \mathbb{K}) := \ell^{\infty}(X, \mathbb{K})/C_0(X, \mathbb{K})$. The boundary Roe C*-algebra is

$$C_{\partial}^* X := \partial \ell^{\infty}(X, \mathbb{K}) \rtimes_{\mathrm{r}} \partial \mathcal{G}_X.$$

Example 6.2. If G is a group. Then $\mathcal{G}_X = \beta G \rtimes G$, $X \times X = G \times G = G \rtimes G$ and $\partial \mathcal{G}_X = \partial \beta G \rtimes G$.

The boundary CBC asserts a "boundary assembly map", from a suitable coarse K-homology group to the K-theory of the boundary Roe C*-algebra, is an isomorphism. The coarse K-homology is defined using groupoid-equivariant Kasparov theory. Finn-Sell and Wright [3] proved that the boundary coarse Baum-Connes conjecture holds for sequences of bounded-degree graphs of large girth. Unfortunately, I do not understand most of the terms in this statement.

References

- [1] Ulrich Bunke and Alexander Engel, Homotopy theory with bornological coarse spaces, Lecture Notes in Mathematics, vol. 2269, Springer, Cham, [2020] ©2020. MR 4176662
- [2] Heath Emerson and Ralf Meyer, Dualizing the coarse assembly map, J. Inst. Math. Jussieu 5 (2006), no. 2, 161–186. MR 2225040
- [3] Martin Finn-Sell and Nick Wright, Spaces of graphs, boundary groupoids and the coarse Baum-Connes conjecture, Adv. Math. 259 (2014), 306–338. MR 3197659
- [4] Nigel Higson and John Roe, On the coarse Baum-Connes conjecture, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 1995, pp. 227–254. MR 1388312
- [5] John Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. MR 1399087
- [6] G. Skandalis, J. L. Tu, and G. Yu, The coarse Baum-Connes conjecture and groupoids, Topology 41 (2002), no. 4, 807–834. MR 1905840
- [7] Guoliang Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (1998), no. 2, 325-355. MR 1626745
 Email address: y.li@math.leidenuniv.nl

MATHEMATISCH INSTITUUT, UNIVERSITEIT LEIDEN, NIELS BOHRWEG 1, 2333 CA, LEIDEN