

Our team

Haritha Retnakaran

Christian Klingler

Martin Lützner

Physicist
Data Scientist
Germany

Biochemist Data Scientist Freiburg

Theoretical Physicist
Data Scientist
Berlin

Medical situation and demand

Medical situation and demand

Wells C. R. et. al. The Lancet; 2020

Medical situation and demand

Wells C. R. et. al. The Lancet; 2020

- Rapidly-deployable ventilator need
- Low cost ventilator need
- "automatic" mode of action needed

funded by **Princeton University**

funded by **Princeton University**

Fully automatic mechanical ventilator

funded by **Princeton University**

DIY for < \$1,300 by single person in 3 days

Fully automatic mechanical ventilator

Customer: **Health Care Services**

01
Data Analysis

Distribution of data

- 74500 sample breaths with 9 different parameter combinations
- More samples for unhealthy lung parameters

Breathing profiles

Very different shapes of breaths

Breathing profiles

Very different shapes of breaths

Breathing profiles

- Very different shapes of breaths
- Larger deviations for unhealthy parameters

Unit of R: cmH₂O/l/s Unit of C: ml/cmH₂O

O2 Models

Baseline model

Polynomial function (degree 2) on input flow, resistance, compliance, output valve

 $MAE = 3.38 \text{ cmH}_{2}O$

More complex models needed!

Model comparison

	ANN	XGB
MAE	0.47	0.25
Improvement (to baseline)	86,1%	92,6%
(to baseline)		

Model comparison

	ANN	XGB	ARIMA	
MAE	0.47	0.25	4.91	
Improvement (to baseline)	86,1%	92,6%	-45,2%	

Model comparison

	ANN	XGB	ARIMA	XGB(ARF)	ANN(ARF)
MAE	0.47	0.25	4.91	0.158	0.15
Improvement (to baseline)	86,1%	92,6%	-45,2%	95,3%	95,6%
					•
				ARF Autoregressive	

Comparing the models

Error analysis

Error analysis

Error analysis

03 Next steps

Outlook

- Investigate large error for relatively unhealthy lung parameters
- Fight overfitting in combined model
- Applying LSTM (time-series model)
- Further optimise current models
- Do more feature engineering (e.g. improve function fit)

Outlook

- Investigate large error for relatively unhealthy lung parameters
- Fight overfitting in combined model
- Applying LSTM (time-series model)
- Further optimise current models
- Do more feature engineering (e.g. improve function fit)

Thank you for your attention!

BACKUP SLIDES

Fitting the input flow

Function of the form

$$f(x, a, b, c, d, e, f, g, h) = a \cdot e^{b \cdot t} \cdot \sin(c \cdot t + d) + e \cdot \sin(f \cdot t + g) + h$$

is fitted to input flow in the inspiratory phase.

Example breaths

ANN Architecture

```
#Build a model
        layers.Dense(300, kernel initializer = 'uniform',
activation='relu'),
        layers.Dense(1)
    1)
   model.compile(loss='mae',
                  metrics='mae',
                  optimizer=tf.keras.optimizers.Adam(0.001))
     return model
```

validation_split=0.2,
 verbose=1, epochs=100,
 batch size = 500,

Error analysis for different models (300 timesteps) Without AR features

Baseline model

ANN

XGBoost

Error analysis for different models (300 timesteps) With AR features

Error analysis for different autoregressional models (300 timesteps)

ARIMA

Autoregressional approach

Idea: calculate AR features on the fly and use them as input features

Deviation

	LR	PF	XGB
Train MAE	1.498	0.464	0.19
Test MAE	1.495	38.51	0.38

Medical situation and demand

Source: Hospitalised patients with COVID-19 with completed hospital treatments admitted to hospital between 26 February and 19 April 2020 based on administrative claims data from the German Local Health Care Funds (Allgemeine Ortskrankenkassen, AOK). Research Institute of the Local Health Care Funds (WIdO).

Rapidly-deployable ventilator needed

Low cost ventilator needed

Additional features (Kaggle)

```
df=df.query('u out==0')
df['u in cumsum'] = (df['u in']).groupby(df['breath id']).cumsum()
df['minus one']=-1.0
df['plus one']=1.0
df['exponent']=(df['minus one']*df['time step'])/(df['R']*df['C'])
df['factor']=np.exp(df['exponent'])
df['vf']=(df['u in cumsum']*df['R'])/df['factor']
df['vt']=0
df.loc[df['time step'] != 0,
'vt']=df['vol']/(df['C']*(df['minus one']*df['factor']+df['plus one']))
df['v']=df['vf']+df['vt']
```

Breathing profiles

- Very different shapes of breaths
- Larger deviations for unhealthy parameters

Respiratory circuit

References

PID: https://ai.googleblog.com/2022/02/machine-learning-for-mechanical.html

