2021年6月21日

(1)
$$\sum_{n=0}^{\infty} (n+3) (-1)^n$$

(2)
$$\sum_{n=1}^{\infty} 4^n \left(\frac{n}{n+1} \right)^{n^2}$$

$$\sum_{n=0}^{\infty} \frac{2^{n} n!}{n^{n}}; (4) \sum_{n=0}^{\infty} n(1-\cos\frac{\pi}{n})$$

$$\lim_{\lambda \to \infty} \frac{1}{1+\lambda^2} = \frac{1}{1+\lambda^2} = \frac{2 \times (x+3)}{1+\lambda^2+1}$$

二、求幂级数
$$\sum_{n=0}^{\infty} (n^2 - n + 2)x^n$$
 的收的收敛域、和函数。(本题 10 分).

四、求下列微分方程的通解或初值问题的解(每小题 5 分):
. (1)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{-y}(1+x+x^2)$$
; (2) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2xy}{1+x^2}$; (3) $y^* + y = 2+x$;
. (4) $y^* + 2y^! + y = -2\sin x$; (5) $x^2 \frac{\mathrm{d}y}{\mathrm{d}x} = xy - y^2$, $y(1) = 1$, $(x \neq 0)$.
五、计算下列广义积分: (每小题 5 分):

(4)
$$y'' + 2y' + y = -2\sin x$$
; (5) $x^2 \frac{dy}{dx} = xy - y^2$, $y(1) = 1$, $(x \ne 0)$.

(1)
$$\int_{1}^{+\infty} \frac{\ln x}{(x+1)^2} dx \; ; \; (2) \int_{1}^{+\infty} \frac{dx}{\sqrt{x-1}(x+3)}$$

六、(本题 9 分) 将函数 $f(x) = 2|x|-1, (-\pi \le x \le \pi)$ 展开为(周期为 2π)的傅里叶级数。

七、(本題 8 分) 设 $\alpha > 0$, 讨论广义积分 $I(\alpha) = \int_{x^{\alpha}}^{+\infty} \ln(1+x^2) dx$ 的敛散性。

八、(8分) 设
$$\alpha > 0$$
,计算积分 $I(\alpha) = \int_{0}^{\pi/2} \frac{\arctan(\alpha \sin x)}{\sin x} dx$ 。

13 /n= (-1) n 1+3

3, 记为=20.11/2

yn+yn=2 n+1/1 nn=2/1+ 1/1→/e</

而盖点发散

1 多 3 发散

2021年6月21日

一、判定下列级数的敛散性(4×5=20分):

(1)
$$\sum_{n=0}^{\infty} \frac{n+3}{(1+n^2)} (-1)^n$$
; (2) $\sum_{n=1}^{\infty} 4^n (\frac{n}{n+1})^{n^2}$;

(3)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
; (4) $\sum_{n=1}^{\infty} n(1-\cos\frac{\pi}{n})$

(3)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
; (4) $\sum_{n=1}^{\infty} n(1-\cos\frac{\pi}{n})$ **RHS** $=$ **N**+3**n**+1 $=$ **N**

四、求下列微分方程的通解或初值问题的解(每小题 5 分);
(1)
$$\frac{dy}{dx} = e^{-y}(1+x+x^2)$$
; (2) $\frac{dy}{dx} = \frac{2xy}{1+x^2}$; (3) $y^* + y = 2+x$; (4) $y^* + 2y^* + y = -2\sin x$; (5) $x^2 \frac{dy}{dx} = xy - y^2$, $y(1) = 1$, $(x \neq 0)$. 五、计算下列广义积分: (每小题 5 分);

(4)
$$y'' + 2y' + y = -2\sin x$$
; (5) $x^2 \frac{dy}{dx} = xy - y^2$, $y(1) = 1$, $(x \ne 0)$.

(1)
$$\int_{1}^{+\infty} \frac{\ln x}{(x+1)^2} dx$$
; (2)
$$\int_{1}^{+\infty} \frac{dx}{\sqrt{x-1}(x+3)}$$

六、(本題 9 分) 将函数 $f(x) = 2|x|-1, (-\pi \le x \le \pi)$ 展开为(周期为 2π) 的傅里叶级数。

七、(本題 8 分) 设
$$\alpha > 0$$
, 讨论广义积分 $I(\alpha) = \int\limits_0^{+\infty} \frac{\ln(1+x^2)}{x^{\alpha}} dx$ 的敛散性。

八、(8分) 设
$$\alpha > 0$$
,计算积分 $I(\alpha) = \int\limits_0^{\pi/2} \frac{\arctan(\alpha \sin x)}{\sin x} dx$ 。

$$\frac{3}{n^30}\chi^n = 1-\chi$$

$$\Rightarrow \frac{1}{n^{2}} n \chi^{n-1} = \frac{1}{(1-\chi)^{2}} = \frac{1}{n^{2}} (m+1) \chi^{m} \qquad (5) \qquad = \frac{1}{n^{2}} (n+1) (n+1) \chi^{n}$$

=)
$$\sum_{n\geq 1} \gamma_{L}(n-1)\chi^{n-1} = \frac{1}{(1-\chi)^3} = \sum_{m\geq 0} (m+1)(m+1)\chi^m$$
 (5)

- 4 孟 (11+1) が

2021年6月21日

一、判定下列级数的敛散性 $(4 \times 5 = 20 \, \text{分})$:

(1)
$$\sum_{n=0}^{\infty} \frac{n+3}{(1+n^2)} (-1)^n$$
; (2) $\sum_{n=1}^{\infty} 4^n (\frac{n}{n+1})^{n^2}$;

(3)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
; (4) $\sum_{n=1}^{\infty} n(1-\cos\frac{\pi}{n})$

二、求幂级数
$$\sum_{n=1}^{\infty} (n^2 - n + 2)x^n$$
 的收的收敛域、和函数。(本题 10 分).

三、将函数 $f(x) = \frac{1}{(r^2 + x - 2)}$ 展开为x的幂级数,并说明其收敛域。(本题 10 分)

四、求下列微分方程的通解或初值问题的解(每小题5分):

. (1)
$$\frac{dy}{dx} = e^{-y}(1+x+x^2)$$
; (2) $\frac{dy}{dx} = \frac{2xy}{1+x^2}$; (3) $y'' + y = 2+x$; (4) $y'' + 2y' + y = -2\sin x$; (5) $x^2 \frac{dy}{dx} = xy - y^2$, $y(1) = 1$, $(x \neq 0)$. [X] $(x \neq 0)$.

五、计算下列广义积分: (每小题 5 分):
(1)
$$\int_{1}^{+\infty} \frac{\ln x}{(x+1)^{2}} dx; (2) \int_{1}^{+\infty} \frac{dx}{\sqrt{x-1}(x+3)}$$

六、(本题 9 分) 将函数 $f(x) = 2|x|-1, (-\pi \le x \le \pi)$ 展开为(周期为 2π)的傅里叶级数。

七、(本题 8 分)设
$$\alpha > 0$$
,讨论广义积分 $I(\alpha) = \int_0^{+\infty} \frac{\ln(1+x^2)}{x^{\alpha}} dx$ 的敛散性。

八、(8分) 设
$$\alpha > 0$$
,计算积分 $I(\alpha) = \int_0^{\pi/2} \frac{\arctan(\alpha \sin x)}{\sin x} dx$ 。

前, f(x)= (x+以(x-1) = 1/2 - 1/6 - 1/2 = -1 3 xn - /6 3 (-1/2)n = = x" (= - 1/6 (-1/2)")

2021年6月21日

一、判定下列级数的敛散性(4×5=20分):

(1)
$$\sum_{n=0}^{\infty} \frac{n+3}{(1+n^2)} (-1)^n$$
; (2) $\sum_{n=1}^{\infty} 4^n (\frac{n}{n+1})^{n^2}$;

(3)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
; (4) $\sum_{n=1}^{\infty} n(1-\cos\frac{\pi}{n})$

- 二、求幂级数 $\sum_{n=1}^{\infty} (n^2 n + 2)x^n$ 的收的收敛域、和函数。(本题 10 分).
- 三、将函数 $f(x) = \frac{1}{(x^2 + x 2)}$ 展开为x的幂级数,并说明其收敛域。(本题 10 分)

. (1)
$$\frac{dy}{dx} = e^{-y}(1+x+x^2)$$
; (2) $\frac{dy}{dx} = \frac{2xy}{1+x^2}$; (3) $y'' + y = 2+x$;

(4)
$$y'' + 2y' + y = -2\sin x$$
; (5) $x^2 \frac{dy}{dx} = xy - y^2$, $y(1) = 1$, $(x \neq 0)$.

1)
$$\int_{1}^{\infty} \frac{\ln x}{(x+1)^2} dx$$
; (2) $\int_{1}^{\infty} \frac{dx}{\sqrt{x-1}(x+3)}$ = $\int_{1}^{\infty} \frac{1}{x} dx - \int_{1}^{\infty} \frac{1}{x^2} dx = \int_{1}^{\infty} \frac{1}{x^2} dx$

$$\kappa$$
、(本題 9 分) 将函数 $f(x)=2|x|-1,(-\pi \le x \le \pi)$ 展开为(周期为 2π) 的傅里叶级数。

七、(本庭 8 分) 以
$$\alpha > 0$$
,时记) 又称分 $I(\alpha) = \int_0^{\infty} \frac{1}{x^{\alpha}} dx$

八、(8分) 设
$$\alpha > 0$$
,计算积分 $I(\alpha) = \int_0^{\pi/2} \frac{\arctan(\alpha \sin x)}{\sin x} dx$ 。

1+ 1/4 - 2 (2-2)

一、判定下列级数的敛散性(4×5=20分):

(1)
$$\sum_{n=0}^{\infty} \frac{n+3}{(1+n^2)} (-1)^n$$
; (2) $\sum_{n=1}^{\infty} 4^n (\frac{n}{n+1})^{n^2}$;

(3)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
; (4) $\sum_{n=1}^{\infty} n(1-\cos\frac{\pi}{n})$

- 二、求幂级数 $\sum_{n=1}^{\infty} (n^2 n + 2)x^n$ 的收的收敛域、和函数。(本题 10 分).
- 三、将函数 $f(x) = \frac{1}{(x^2 + x 2)}$ 展开为 x 的幂级数,并说明其收敛域。(本题 10 分)

四、求下列微分方程的通解或初值问题的解(每小题5分):

. (1)
$$\frac{dy}{dx} = e^{-y}(1+x+x^2)$$
; (2) $\frac{dy}{dx} = \frac{2xy}{1+x^2}$; (3) $y'' + y = 2+x$;

(4)
$$y'' + 2y' + y = -2\sin x$$
; (5) $x^2 \frac{dy}{dx} = xy - y^2$, $y(1) = 1$, $(x \neq 0)$. 五、计算下列广义积分: (每小题 5 分):

(1)
$$\int_{1}^{+\infty} \frac{\ln x}{(x+1)^2} dx; \quad (2) \quad \int_{1}^{+\infty} \frac{dx}{\sqrt{x-1}(x+3)}$$

六、(本题 9 分) 将函数 $f(x)=2|x|-1,(-\pi \le x \le \pi)$ 展开为(周期为 2π)的傅里叶级数。

七、(本題 8 分)设
$$\alpha > 0$$
,讨论广义积分 $I(\alpha) = \int\limits_0^{+\infty} \frac{\ln(1+x^2)}{x^\alpha} dx$ 的敛散性。

八、(8分) 设 $\alpha > 0$,计算积分 $I(\alpha) = \int_{0}^{\pi/2} \frac{\arctan(\alpha \sin x)}{\sin x} dx$ 。

商 依题差 bn=0

 $Q_0 = \frac{2}{\sqrt{1}} \int_0^{\sqrt{1}} f(x) dx = \frac{2}{\sqrt{1}} \int_0^{\sqrt{1}} (Dx - 1) dx$ $=\frac{1}{2}(x^{2}-x)^{\frac{1}{2}}=2(7-1)$

 $\Omega_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_0^{\pi} (1x-1) \cos nx \, dx$ $=\frac{1}{n}\left(\frac{1}{n}\right)\frac{\sum nx}{n}\frac{1}{n}-\frac{1}{n}\left(\frac{1}{n}\sum nx-2dx\right)$ $= \frac{1}{n \sqrt{1}} \cdot \frac{\cos nx}{n} = \frac{1}{n \sqrt{1}} \left[(-1)^{n} - 1 \right]$ $= \frac{1}{n \sqrt{1}} \cdot \frac{\cos nx}{n} = \frac{1}{n \sqrt{1}} \left[(-1)^{n} - 1 \right]$ $= \frac{1}{n \sqrt{1}} \cdot \frac{\cos nx}{n} = \frac{1}{n \sqrt{1}} \left[(-1)^{n} - 1 \right]$ $= \frac{1}{n \sqrt{1}} \cdot \frac{\cos nx}{n} = \frac{1}{n \sqrt{1}} \left[(-1)^{n} - 1 \right]$

 $(x) \sim S(x) = (1-1) - \frac{1}{11} = \frac{1}{11} =$ - 2 | X | - | X 6 [-1], T]

2021年6月21日

- 一、判定下列级数的敛散性(4×5=20分):
 - (1) $\sum_{n=0}^{\infty} \frac{n+3}{(1+n^2)} (-1)^n$; (2) $\sum_{n=1}^{\infty} 4^n (\frac{n}{n+1})^{n^2}$;
 - (3) $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}$; (4) $\sum_{n=1}^{\infty} n(1-\cos\frac{\pi}{n})$
- 二、求幂级数 $\sum_{n=0}^{\infty} (n^2 n + 2)x^n$ 的收的收敛域、和函数。(本题 10 分).
- 三、将函数 $f(x) = \frac{1}{(x^2 + x 2)}$ 展开为x的幂级数,并说明其收敛域。(本题 10 分)
- 四、求下列微分方程的通解或初值问题的解(每小题 5 分): . (1) $\frac{dy}{dx} = e^{-y}(1+x+x^2)$; (2) $\frac{dy}{dx} = \frac{2xy}{1+x^2}$; (3) $y^* + y = 2+x$;
- (4) $y'' + 2y' + y = -2\sin x$; (5) $x^2 \frac{dy}{dx} = xy y^2$, y(1) = 1, $(x \neq 0)$. 五、计算下列广义积分: (每小题 5 分):
- (1) $\int_{1}^{+\infty} \frac{\ln x}{(x+1)^2} dx$; (2) $\int_{1}^{+\infty} \frac{dx}{\sqrt{x-1}(x+3)}$
- 六、(本题 9 分) 将函数 $f(x)=2|x|-1,(-\pi \le x \le \pi)$ 展开为 (周期为 2π) 的傅里叶级数。

(x) (x

1 for funds up to de la funds y

· 结上 [x fx)从收收 当夏仅当 又6(1.3)

一、判定下列级数的敛散性(4×5=20分):

(1)
$$\sum_{n=0}^{\infty} \frac{n+3}{(1+n^2)} (-1)^n$$
; (2) $\sum_{n=1}^{\infty} 4^n (\frac{n}{n+1})^{n^2}$;

(3)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$
; (4) $\sum_{n=1}^{\infty} n(1-\cos\frac{\pi}{n})$

二、求幂级数 $\sum_{n=1}^{\infty} (n^2 - n + 2)x^n$ 的收的收敛域、和函数。(本题 10 分).

三、将函数 $f(x) = \frac{1}{(x^2 + x - 2)}$ 展开为 x 的幂级数,并说明其收敛域。(本题 10 分)

(4)
$$y'' + 2y' + y = -2\sin x$$
; (5) $x^2 \frac{dy}{dx} = xy - y^2$, $y(1) = 1$, $(x \neq 0)$. 五、计算下列广义积分: (每小题 5 分):

(1)
$$\int_{1}^{+\infty} \frac{\ln x}{(x+1)^2} dx; \quad (2) \int_{1}^{+\infty} \frac{dx}{\sqrt{x-1}(x+3)}$$

六、(本题 9 分) 将函数 $f(x) = 2|x|-1, (-\pi \le x \le \pi)$ 展开为(周期为 2π)的傅里叶级数。

七、(本题 8 分)设 $\alpha > 0$,讨论广义积分 $I(\alpha) = \int\limits_{-x^{\alpha}}^{+\alpha} \frac{\ln(1+x^2)}{x^{\alpha}} dx$ 的敛散性。

八、(8分) 设
$$\alpha > 0$$
,计算积分 $I(\alpha) = \int_0^{\pi/2} \frac{\arctan(\alpha \sin x)}{\sin x} dx$ 。

$$2(\alpha) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$4 = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$5 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$5 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$5 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$5 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x)}{1 + \alpha^{2} f(x)} \frac{dx}{f(x)}$$

$$6 + f(x) = f(x) = f(x)$$

$$6 + f(x) = f(x) = f(x)$$

$$6 + f(x) = f(x) = f(x)$$

$$6 + f(x$$

$$2^{l}(x) = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\cos^{2}x} \cdot \frac{\cos^{2}x}{\cos^{2}x + (l+\alpha^{2})} \frac{1}{\sin^{2}x}$$

$$= \int_{0}^{\infty} dt \frac{1}{1 + (l+\alpha^{2}) t^{2}}$$

$$\frac{1}{2}(0) = 0$$

$$\Rightarrow 2(a) = \sqrt{1 + t^2}$$

$$= \sqrt{1/2} \ln \left(\alpha + 1/4 \alpha^2 \right)$$