

FUNÇÕES

LIMITE E CONTINUIDADE

Antes de definirmos limite, vejamos um exemplo. Considere a função

$$f(x) = \frac{(2x+3)(x-1)}{x-1}$$

Essa função está definida em $\mathbb{R} - \{1\}$. Se $x \neq 1$, a função pode ser escrita como f(x) = 2x + 3 e temos, então seu gráfico:

Estudaremos agora os valores de f(x) quando x estiver próximo a 1 mas não igual a 1. Fazendo a variável x aproximar-se de 1 através de valores menores ou maiores que 1, podemos construir as tabelas a seguir:

\overline{x}	f(x)	\overline{x}	f(x)
0,9	4,8	1,1	5,2
0,99	4,98	1,01	5,02
0,999	4,998	1,001	5,002
0,9999	4,9998	1,0001	5,0002
0,99999	4,99998	1,00001	5,00002

Vemos, em ambas as tabelas que quando x se aproxima cada vez mais de 1, f(x) se aproxima cada vez mais de 5. Ou seja, é possível fazer com que o valor de f(x) se aproxime de 5 tanto quanto desejamos, bastando, para isso, tomar um valor de x suficientemente próximo de 1.

De fato, podemos escrever que

$$4,8 < f(x) < 5,2 \text{ sempre que } 0,9 < x < 1,1$$

$$4,98 < f(x) < 5,02 \text{ sempre que } 0,99 < x < 1,01$$

$$4,998 < f(x) < 5,002 \text{ sempre que } 0,999 < x < 1,001$$

$$4,9998 < f(x) < 5,0002 \text{ sempre que } 0,9999 < x < 1,0001$$

$$4,99998 < f(x) < 5,00002 \text{ sempre que } 0,99999 < x < 1,00001$$

Usualmente, utilizamos as letras gregas ε (épsilon) e δ (delta) para indicar pequenos números reais positivos. Assim

$$5 - \varepsilon < f(x) < 5 + \varepsilon$$
 sempre que $1 - \delta < x < 1 + \delta$,

ou usando notação modular,

$$-\varepsilon < f(x) - 5 < \varepsilon \Rightarrow |f(x) - 5| < \varepsilon \text{ sempre que } -\delta < x - 1 < \delta \Rightarrow |x - 1| < \delta$$

A condição 0 < |x-1| é colocada pois não nos interessa o que ocorre quando x=1.

É importante perceber que o tamanho do δ depende do tamanho de ε . Poderíamos continuar a dar qualquer valor pequeno a ε e encontrar um valor apropriado para δ tal que $|f(x)-5|<\varepsilon$ sempre que $0<|x-1|<\delta$. Dizemos, então, que o limite de f(x) quando x se aproxima de 1 é igual a 5, ou em símbolos,

$$\lim_{x \to 1} f(x) = 5$$

Definição 9: Seja f(x) uma função definida num intervalo aberto contendo a, exceto possivelmente no próprio a, e seja L um número real. Então

$$\lim_{x \to a} f(x) = L$$

se para todo $\varepsilon > 0$, existe um $\delta > 0$ tal que $|f(x) - L| < \varepsilon$ sempre que $0 < |x - a| < \delta$.

A definição anterior afirma que os valores de função f(x) tendem a um limite L quando x tende a um número a, mas não igual a a.

Teorema (da unicidade): Se
$$\lim_{x\to a} f(x) = L_1$$
 e $\lim_{x\to a} f(x) = L_2$ então $L_1 = L_2$.

Teoremas sobre limites de funções

Introduziremos alguns limites que nos auxiliarão no cálculo de limites e que são provados pela definição de limite, embora a prova será omitida.

Teorema 1: Se m e b forem constantes quaisquer, $\lim_{x\to a}(mx+b)=ma+b$

Consequência 1: Se m=0, então $\lim_{x\to a}b=b$

Consequência 2: Se m=1 e b=0, então $\lim_{x\to a} x=a$

Exemplos:

a)
$$\lim_{x\to 2} (3x+5) = 3 \times 2 + 5 = 11$$

b)
$$\lim_{x \to 5} 7 = 7$$

a)
$$\lim_{x \to -6} x = -6$$

Teorema 2: Se
$$\lim_{x\to a} f(x) = L$$
 e $\lim_{x\to a} g(x) = M$, então $\lim_{x\to a} [f(x)\pm g(x)] = L\pm M$

Consequência: Se
$$\lim_{x\to a} f_1(x) = L_1$$
, $\lim_{x\to a} f_2(x) = L_2$, ..., $\lim_{x\to a} f_n(x) = L_n$ então

$$\lim_{x \to a} [f_1(x) \pm f_2(x) \pm \dots \pm f_n(x)] = L_1 \pm L_2 \pm \dots \pm L_n$$

Teorema 3: Se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M$, então $\lim_{x\to a} [f(x)\cdot g(x)] = L\cdot M$

Consequência 1: Se $\lim_{x\to a} f_1(x) = L_1$, $\lim_{x\to a} f_2(x) = L_2$, ..., $\lim_{x\to a} f_n(x) = L_n$ então

$$\lim_{x \to a} [f_1(x) \cdot f_2(x) \cdot \dots \cdot f_n(x)] = L_1 \cdot L_2 \cdot \dots \cdot L_n$$

Consequência 2: Se $\lim_{x\to a} f(x) = L$ e n for um inteiro positivo qualquer, então

$$\lim_{x \to a} [f(x)]^n = L^n$$

Exemplos:

a)
$$\lim_{x \to 3} [x(2x+1)] = \lim_{x \to 3} x \times \lim_{x \to 3} (2x+1) = 3 \times (2 \times 3 + 1) = 21$$

b)
$$\lim_{x \to -2} (5x+7)^4 = \left[\lim_{x \to -2} (5x+7)\right]^4 = \left[5 \times (-2) + 7\right]^4 = (-3)^4 = 81$$

Teorema 4: Se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} g(x) = M \neq 0$, então $\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right) = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)} = \frac{L}{M}$

Exemplo:
$$\lim_{x \to 4} \left(\frac{x}{-7x+1} \right) = \frac{\lim_{x \to 4} (x)}{\lim_{x \to 4} (-7x+1)} = \frac{4}{-27}$$

Teorema 5: Se n for um inteiro positivo e $\lim_{x\to a} f(x) = L$, então $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$ com a restrição de que se n for par, $L \ge 0$.

Exemplo:
$$\lim_{x \to 4} \sqrt[3]{\frac{x}{-7x+1}} = \sqrt[3]{\frac{\lim_{x \to 4} (x)}{\lim_{x \to 4} (-7x+1)}} = \sqrt[3]{\frac{4}{-27}} = \frac{\sqrt[3]{4}}{-3}$$

Outros exemplos: Nos exemplos abaixo, ache cada limite e indique quais teoremas foram usados:

a)
$$\lim_{x \to 2} (x^2 - 7x + 8) = 2^2 - 7 \times 2 + 8 = -2$$

b)
$$\lim_{x \to 8} \left(\frac{x^2 + \sqrt[3]{x}}{4 - \frac{16}{x}} \right) = \left(\frac{8^2 + \sqrt[3]{8}}{4 - \frac{16}{8}} \right) = \frac{66}{2} = 33$$

c)
$$\lim_{x \to \pi} \left(\sqrt[3]{\frac{x - \pi}{x + \pi}} \right) = \sqrt[3]{\frac{\pi - \pi}{\pi + \pi}} = \frac{0}{2\pi} = 0$$

d)
$$\lim_{x \to 7} \left(\frac{x^2 - 49}{x - 7} \right) = \lim_{x \to 7} \left(\frac{(x + 7)(x - 7)}{x - 7} \right) = \lim_{x \to 7} (x + 7) = 7 + 7 = 14$$

Exercícios

1) Nos Exercícios abaixo, encontre os limites, indicando os teoremas usados:

a)
$$\lim_{x \to 3} (x^2 - 3x + 5)$$
 b) $\lim_{x \to -2} (2x^3 - 6x^2 + 3x - 2)$ c) $\lim_{x \to 1} \left(\frac{x+3}{2x^2 - 6x + 5} \right)$

d)
$$\lim_{x \to 1} \left(\frac{x^3 - 1}{x - 1} \right)$$
 e) $\lim_{x \to 3} \left(\frac{\sqrt{x^2 - 4}}{(x - 2)} \right)$ f) $\lim_{x \to 0} (5x\sqrt{4 + 3x^2})$

Limites Laterais

Definição 1: Seja f uma função definida no intervalo (a,c). Então o limite de f(x) quando xtende a a pela direita será L, denotado por

$$\lim_{x \to a^+} f(x) = L \Leftrightarrow \left\{ \begin{array}{l} \forall \varepsilon > 0, \ \exists \delta > 0 \ \text{tal que}, \\ |f(x) - L| < \varepsilon \ \text{sempre que } 0 < x - a < \delta \end{array} \right.$$

Então, $\lim_{x\to x^+} f(x) = L$ significa que podemos fazer |f(x) - L| tão pequeno quanto desejamos, tomando x suficientemente próximo de a porém maior que a.

Definição 2: Seja f uma função definida no intervalo (d, a). Então o limite de f(x) quando x tende a a pela esquerda será L, denotado por

$$\lim_{x \to a^{-}} f(x) = L \Leftrightarrow \left\{ \begin{array}{l} \forall \varepsilon > 0, \ \exists \delta > 0 \ \text{tal que}, \\ |f(x) - L| < \varepsilon \ \text{sempre que} \ - \delta < x - a < 0 \end{array} \right.$$

Então, $\lim_{x \to \infty} f(x) = L$ significa que podemos fazer |f(x) - L| tão pequeno quanto desejamos, tomando x suficientemente próximo de a porém **menor** que a.

Teorema: $\lim_{x\to a} f(x)$ existe e será igual a L se e somente se $\lim_{x\to a^+} f(x)$ e $\lim_{x\to a^-} f(x)$ existirem e ambos forem iguais a L.

Observação: se $\lim_{x\to a^+} f(x)$ e $\lim_{x\to a^-} f(x)$ existirem e forem diferentes, então $\lim_{x\to a} f(x)$ não existirá. Os teoremas de limite dados anteriormente, bem como suas consequências, continuam válidos

quando substituímos $x \to a$ por $x \to a^+$ ou $x \to a^-$.

Exemplos: Em cada exemplo, esboce o gráfico da função, calcule os limites laterais da função quando $x \to a^+$ e quando $x \to a^-$ e determine o limite da função quando $x \to a$ (se existir).

a)
$$f(x) = \begin{cases} x+1 & \text{se } x < 1 \\ -2x+4 & \text{se } x \ge 1 \end{cases}$$
; $a = 1$.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+1) = 1+1 = 2$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (-2x + 4) = -2 + 4 = 2$$

Como
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 2$$
, logo $\lim_{x \to 1} f(x) = 2$

$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} (-x) = -0 = 0$$

$$\lim_{x \to 0^+} |x| = \lim_{x \to 0^+} (x) = 0$$

Como
$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{+}} f(x) = 0$$
, logo $\lim_{x\to 0} f(x) = 0$

c)
$$f(x) = \begin{cases} \frac{|x|}{x} & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$
; $a = 0$.

$$\lim_{x \to 0^{-}} \frac{-x}{x} = \lim_{x \to 0^{-}} (-1) = -1$$

$$\lim_{x \to 0^+} df x x = \lim_{x \to 0^+} (1) = 1$$

Como $\lim_{x\to 0^-} f(x) - \lim_{x\to 0^+} f(x) = 0$, logo $\lim_{x\to 0} f(x)$ não existe.

Exercícios

1. Esboce o gráfico de f(x), calcule $\lim_{x\to a^+} f(x)$, $\lim_{x\to a^-} f(x)$ e $\lim_{x\to a} f(x)$ (se existir) para cada um dos itens a seguir:

a)
$$f(x) = \begin{cases} |x-2|, & \text{se } x \neq 2 \\ 3, & \text{se } x = 2 \end{cases}$$
; $a = 2$.

b)
$$f(x) = \begin{cases} \frac{x^2 - 16}{x - 4}, & \text{se } x \neq 4 \\ 5, & \text{se } x = 4 \end{cases}$$
; $a = 4$.

c)
$$f(x) = \begin{cases} 2x+3, & \text{se } x < 1 \\ 2, & \text{se } x = 1 ; \\ 7-2x, & \text{se } x > 1 \end{cases}$$
 $a = 1.$

d)
$$f(x) = 5 + |6x - 3|;$$
 $a = \frac{1}{2}$

e)
$$f(x) = \begin{cases} x^2, & \text{se } x \le 2 \\ 8 - 2x, & \text{se } x > 2 \end{cases}$$
; $a = 2$.

f)
$$f(x) = \begin{cases} \frac{x+10}{|x+10|}, & \text{se } x \neq -10 \\ 0, & \text{se } x = -10 \end{cases}$$
; $a = -10$.

g)
$$f(x) = \begin{cases} \frac{x^2 - 1}{|x^2 - 1|}, & \text{se } x \neq 1 \text{ e } x \neq -1 \\ 0, & \text{se } x = 1 \text{ ou } x = -1 \end{cases}$$
; $a = 1$.

h)
$$f(x) = \begin{cases} 5+x, & \text{se } x \le 3 \\ 9-x, & \text{se } x > 3 \end{cases}$$
; $a = 3$.

2. Dados:
$$f(x) = \begin{cases} x^2 + 3, & \text{se } x \le 1 \\ x + 1, & \text{se } x > 1 \end{cases}$$
 $g(x) = \begin{cases} x^2, & \text{se } x \le 1 \\ 2, & \text{se } x > 1 \end{cases}$ obtenha $\lim_{x \to 1} f(x), \lim_{x \to 1} g(x) = \lim_{x \to 1} [f(x).g(x)], \text{ caso existam.}$