Communication Technologies 1 (CT1)

Machine Learning

Introduction

Michel Morold

Lecture in SS 2019 25.04.2019

Contents

- Organization
- Introduction
 - Data Mining and Machine Learning
 - Activity Recognition
- Topics for this lecture
- Demonstration

Organization: About us

- Prof. Klaus David
 - Dr. Immanuel König
 - M.Sc. Michel Morold
 - M.Sc. Christoph Anderson
 - M.Sc. Judith Heinisch
 - M.Sc. Marek Bachmann
 - ComTec colleagues

Homepage: https://www.comtec.eecs.uni-kassel.de

About you

- You
 - Name

- Major
- Previous major
- Programming skills
- **–** ...

Important: Lecture Registration

- A registration for this lecture is mandatory and done via HISPOS:
 - https://portal.unikassel.de/qisserver/rds?state=verpublish&status=init&vmfile=no &publishid=157040&moduleCall=webInfo&publishConfFile=webInfo&publishSubDir=veranstaltung
- Max. number of students for this lecture: 20
- First come, first serve

Organization

Lecture

- Presentation: 5 topics related to machine learning applications and algorithms
- Exercise (group work) / Lab Training (group work)
 - Scientific paper: 5 pages IEEE double column
 - Programming: task related to algorithms or data processing
- Exam (group work)
 - Presentation
 - Topics related to your paper

Organization: Grade

Group work

- Paper (and program, depending on specific task) (IEEE, 5 pages)
- 2-4 Students
- Presentation
- Group grade (individual grades possible)
- **Important:** Create time schedule for your group work and mark individual workload of every group member in your paper (and code, if applicable)

-> submit time plan to your supervisor until 20.06.2019!)

Organization: Grade

Individual Bonus

- Submit lecture summary via e-mail (max. 2 slides) to michel.morold@comtec.eecs.uni-kassel.de until 11:59 p.m. of the day after the lecture (= Friday, 11:59 p.m.)
- Use PowerPoint template in Moodle
- Presentation (3-5 minutes) if selected at the beginning of the next lecture
- Use file name "summary_<your last name>_<title>_<yyyymmdd>.ppt(x)"
- Minimum 4 reasonable summaries = improve grade by +0.3/0.4

Start on 02.05.2019

Grade: Evaluation criteria

Task	Criterion	Achieved	Not achieved
Paper (5 pages	Technically comprehensive, clear structure	+/-	+/-
IEEE double	Complete, content free from errors	+/-	+/-
column, use	Shape and impression	+/-	+/-
template in	Grammar, expression, spelling	+/-	+/-
Moodle)	Cite 3 (IEEE / ACM) publications related to own paper		-0.3/0.4
	Autonomy of the group	+/-	+/-
	PLAGIARISM		failed
Presentation (use	Content, clear structure	+/-	+/-
template in	Rhetoric, language	+/-	+/-
Moodle)	Talk time		
	- 15-20 minutes per group (depending on group size)		
	Answering questions	+/-	+/-
	No presentation given		failed
Summaries	Hand in at least 4 reasonable summaries and present	+0.3/0.4	
(bonus)	summary if selected at the beginning of the next lecture		

Grade: Evaluation criteria

Team Work

Plagiarism = failed

Organization: Time plan

Time	Lecturer	Topic
25.04.2019	MM	Introduction
02.05.2019	JH	Segmentation / Features
09.05.2019	MM	Bayesian Classification
16.05.2019	CA	Decision Trees
23.05.2019	IK	Hidden Markov Models
06.06.2019	MB	Clustering / KNN and presentation of student tasks
06.06.2019 -		Lab/Programming
20.09.2019		
20.06.2019		Deadline submission time/work plan (for
		supervisor)
01.08.2019		Deadline of the draft paper and program
19.09.2019	All	 Presentations (10:00 – t.b.a.)
		 Deadline of presentation submission
23.09.2019		Deadline of the final paper and program

Problems

Registration

- Alexander Bolz: <u>alexander.bolz@comtec.eecs.uni-kassel.de</u>
- Michel Morold: michel.morold@comtec.eecs.uni-kassel.de

Topic / task

Supervisor (e-mail)

Appointment

- Topic/task (mandatory)
- Feedback of the paper task, preparation of the presentation task (mandatory), but maximum 4

Registration

- Exam Registration for Lecture
 - Master Informatik (HIS-POS) (FB16-5354)
 - Communication Technologies 1 (PNr. 108010)
 - ECE (OKA):
 - Communication Technology I (5354.1)
 - Laborpraktikum Optische Nachrichtentechnik I (5322.1)
 - Deadline for lecture registration: TBA
- Moodle
 - Web: https://moodle.uni-kassel.de/moodle/course/view.php?id=2185
 - Password: MM-19-CT1

Data Mining

"...due to the wide availability of huge amounts of data and there is an imminent need for turning such data into useful information and knowledge..." [1]

[1]

Data Mining

- Data Mining
 - To solve problems by analyzing data already present in database [2]
- Data / Database
 - Google
 - Facebook
 - LinkedIn
 - Apple
 - Amazon
 - Weather Service
 - National Institutes of Health / Hospitals

Data Mining

Data Mining

To solve problems by analyzing data already present in database [2]

Data / Database

- Google -> how search engines rank
- Facebook -> who you know
- LinkedIn -> which job you prefer
- Apple -> where you are
- Amazon ->which product you would buy
- Weather Service -> weather forecast
- National Institutes of Health / Hospitals -> disease diagnosis

Machine Learning

- Machine Learning
 - To develop algorithms for making decisions/predictions from data [3]
 - "Learning is any process through which a system acquires synthetic a posteriori knowledge" [4]

Machine learning

Supervised

- Bayesian statistics
- Decision trees
- Artificial neural network
- Support vector machines
- Hidden Markov models
- Etc...

Unsupervised

- Data clustering
- Self-organizing map
- Artificial neural network
- Expectation-maximization algorithm
- Etc...

Reinforcement

- Monte Carlo Method
- Q-learning
- Temporal difference learning
- Learning Automata
- Etc...

Activity Recognition (AR)

...to recognize the actions and intentions of a user based on a group of observations

Vision-based AR

Sensor-based AR

Daily Life Activities

Activity Recognition (AR)

...to recognize the actions and intentions of a user based on a group of observations

Vision-based AR

Sensor-based AR

Daily Life Activities

© ComTec 2019 20

Sensor-based Activity Recognition

Dense Sensing

- Attached to objects to monitor human activities through user-object interactions
- Suitable for activities that involve a number of object within an environment

ComTec

Sensor-based Activity Recognition

Wearable Sensors

- Can be positioned directly or indirectly on the body
- Sensors be embedded into clothes, mobile devices, etc.
- Position, pulse, skin temperatures
- Mainly physical activities like walking, running or standing

[5]

Topics for this lecture

Machine Learning Algorithms for Context Recognition

© ComTec 2019 23

Demonstration

- Android-based Activity Demonstrator
 - Sensors: accelerometer and gyroscope
 - Fixed window size: 1 s
 - Features: mean, variance, minimum, maximum
 - Classification algorithms: J48 (C4.5), Jrip, NaiveBayes

Demonstration: J48 example


```
accelerometer-y_variance <= 0.863208
  accelerometer-z_minimum <= -7.244843: sitting (90.0)
  accelerometer-z minimum > -7.244843
    accelerometer-z minimum <= 1.515518
       accelerometer-x_variance <= 0.349223: standing (267.0)
      accelerometer-x variance > 0.349223
         gyroscope-z_mean <= -0.131582: walking (2.0)
         gyroscope-z_mean > -0.131582: standing (8.0/1.0)
    accelerometer-z_minimum > 1.515518: sitting (64.0)
accelerometer-y_variance > 0.863208
  accelerometer-y variance <= 99.880016
    gyroscope-y_variance <= 0.117366
      accelerometer-z_maximum <= -1.103714: sitting (3.0)
       accelerometer-z maximum > -1.103714
         accelerometer-x_minimum <= -2.573761: walking (5.0/1.0)
         accelerometer-x minimum > -2.573761
           accelerometer-y_variance <= 31.575412: standing (6.0)
           accelerometer-y variance > 31.575412: walking (2.0)
    gyroscope-y variance > 0.117366
       gyroscope-y_minimum <= -4.492218
         accelerometer-y variance <= 43.384506: walking (6.0)
         accelerometer-y_variance > 43.384506: running (3.0)
      gyroscope-y minimum > -4.492218: walking (305.0/5.0)
  accelerometer-y_variance > 99.880016: running (110.0)
```

References

- [1] J. Han and M. Kamber, Data mining: concepts and techniques, 2nd ed. Amsterdam; Boston: San Francisco, CA: Elsevier; Morgan Kaufmann, 2006.
- [2] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.
- [3] R. Bekkerman, M. Bilenko, and J. Langford Scaling up Machine Learning: Parallel and Distributed Approaches, New York, NY, USA, Cambridge University Press, 2011
- [4] P. D. Scott, "Learning: the construction of a posteriori knowledge structures," in Proceedings of the Third AAAI Conference on Artificial Intelligence, 1983, pp. 359–363.
- [5] L. Bao and S. S. Intille, "Activity Recognition from User-Annotated Acceleration Data," in Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz/Vienna, Austria, April 21-23, 2004, pp. 1–17.