# Е. Христов К. Влъчкова

# ЗАДАЧИ и ТЕОРЕМИ по КОМПЛЕКСЕН АНАЛИЗ

## Е. Христов К. Влъчкова

## ЗАДАЧИ и ТЕОРЕМИ по КОМПЛЕКСЕН АНАЛИЗ

проф. д. м. н. Евгени Христов Христов гл. ас. д-р Красимира Влъчкова Александрова Софийски Университет "Св. Климент Охридски" Факултет по Математика и Информатика http://www.fmi.uni-sofia.bg/fmi/companal/hristov http://www.fmi.uni-sofia.bg/fmi/companal/krassivl

Задачи и теореми по комплексен анализ за студентите от специалност "Приложна математика" София, май,  $2004~\mathrm{r.}$  Първо издание

Рецензент: проф. д. м. н. Рачо Денчев

#### ПРЕДГОВОР

Този сборник от задачи и теореми по комплексен анализ е предназначен преди всичко за студентите от специалностите "Приложна математика" и "Математика и информатика". Той съдържа задачи от основните раздели на комплексния анализ, които традиционно се изучават в университетския курс. По-голямата част от задачите са представени с решения, а останалите – с необходимите указания и отговори. Всеки раздел започва с достатъчно елементарни задачи, подпомагащи изучаването на базисния материал, като по-трудните задачи са отбелязани със символа . Накратко са изложени и необходимите сведения от теорията на аналитичните функции. Те по никакъв начин не претендират за пълнота и изчерпателност и не могат да заменят изучаването на съответния материал с помощта на учебниците, цитирани в края на книгата. В края на сборника са представени задачи, които илюстрират ефективността на методите на комплексния анализ при решаване на проблеми от хидромеханиката, спектралната теория, квантовата механика и др.

Надяваме се, че така съставеният сборник ще е полезен на студентите за по-лесно усвояване на учебния материал и ще стимулира по-задълбоченото му изучаване.

София, 2004 г.

Авторите

# Съдържание

| 1 | $\mathbf{K}\mathbf{c}$                                                   | омплексни числа                                                                                                                                                                                                                          | 6                                          |
|---|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|   | 1.1                                                                      | Комплексни числа и действия с тях                                                                                                                                                                                                        | 6                                          |
|   | 1.2                                                                      | Редици от комплексни числа                                                                                                                                                                                                               | 19                                         |
|   | 1.3                                                                      |                                                                                                                                                                                                                                          | 23                                         |
|   | 1.4                                                                      | Безкрайната точка. Сфера на Риман                                                                                                                                                                                                        | 28                                         |
| 2 | Фу                                                                       | ункции на комплексна променлива                                                                                                                                                                                                          | 31                                         |
|   | 2.1                                                                      | Граници на функции. Непрекъснати функции                                                                                                                                                                                                 | 31                                         |
|   | 2.2                                                                      | Аналитични функции. Условия на Коши-Риман                                                                                                                                                                                                | 32                                         |
|   | 2.3                                                                      | Хармонични функции                                                                                                                                                                                                                       | 38                                         |
|   | $\frac{2.4}{2.5}$                                                        | Цяла линейна функция $w=az+b$                                                                                                                                                                                                            | 41                                         |
|   |                                                                          | $w=rac{az+b}{cz+d}$                                                                                                                                                                                                                     | 44                                         |
|   | 2.6                                                                      | Елементарни трансцендентни функции                                                                                                                                                                                                       | 51                                         |
|   | 2.7                                                                      | Редове от комплексни числа. Степенни редове                                                                                                                                                                                              | 60                                         |
| 3 | Ин                                                                       | нтегриране                                                                                                                                                                                                                               | 66                                         |
|   | 3.1                                                                      | Линеен интеграл                                                                                                                                                                                                                          | 66                                         |
|   | 3.2                                                                      | Теорема на Коши. Формула на Коши                                                                                                                                                                                                         | 68                                         |
|   | ъ                                                                        | 1                                                                                                                                                                                                                                        |                                            |
| 4 |                                                                          | звитие на функциите в редове<br>Ред на Тейпър                                                                                                                                                                                            | 77                                         |
| 4 | 4.1                                                                      | Ред на Тейлър                                                                                                                                                                                                                            | 77                                         |
| 4 |                                                                          | Ред на Тейлър                                                                                                                                                                                                                            | 77<br>83                                   |
| 4 | $4.1 \\ 4.2$                                                             | Ред на Тейлър                                                                                                                                                                                                                            | 77                                         |
| 5 | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b>                                    | Ред на Тейлър                                                                                                                                                                                                                            | 77<br>83<br>87<br>92<br><b>96</b>          |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b>                                    | Ред на Тейлър Нули и изолирани особени точки Ред на Лоран Резидууми  орема за резидуумите. Приложения Пресмятане на интеграли                                                                                                            | 77 83 87 92 <b>96</b> 96                   |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b><br>5.1<br>5.2                      | Ред на Тейлър          Нули и изолирани особени точки          Ред на Лоран          Резидууми          орема за резидуумите. Приложения         Пресмятане на интеграли          Интеграли от вида $\int_0^{2\pi} R(\cos t, \sin t) dt$ | 77 83 87 92 <b>96</b> 96 100               |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b><br>5.1<br>5.2<br>5.3               | Ред на Тейлър                                                                                                                                                                                                                            | 77 83 87 92 <b>96</b> 96 100               |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b><br>5.1<br>5.2                      | Ред на Тейлър                                                                                                                                                                                                                            | 77 83 87 92 <b>96</b> 96 100               |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b><br>5.1<br>5.2<br>5.3<br>5.4        | Ред на Тейлър                                                                                                                                                                                                                            | 777 83 87 92 96 96 100 102                 |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b><br>5.1<br>5.2<br>5.3               | Ред на Тейлър                                                                                                                                                                                                                            | 777 83 87 92 96 96 100 102                 |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5 | Ред на Тейлър                                                                                                                                                                                                                            | 777 83 87 92 96 96 100 102                 |
|   | 4.1<br>4.2<br>4.3<br>4.4<br><b>Te</b><br>5.1<br>5.2<br>5.3<br>5.4        | Ред на Тейлър                                                                                                                                                                                                                            | 777 83 87 92 96 96 100 102 107 111 115 120 |

## Глава 1

#### Комплексни числа

## 1.1 Комплексни числа и действия с тях

**Дефиниция 1.** Комплексно число z се дефинира като наредена двойка реални числа (a,b).

Две комплексни числа  $z_1=(a,b), z_2=(c,d)$  са равни тогава и само тогава, когато a=c и b=d. Събиране и умножение дефинираме по следния начин:

$$(a,b) + (c,d) = (a+c,b+d),$$
  
 $(a,b)(c,d) = (ac-bd,ad+bc).$ 

Лесно се проверява, че горните действия с комплексни числа имат свойствата асоциативност, комутативност и дистрибутивност.

Множеството от комплексните числа, което означаваме<sup>1</sup> с  $\mathbb{C}$  е поле, защото има нула 0 := (0,0) и единица 1 := (1,0), удовлетворяващи съответно

$$0+z=z$$
,  $1\cdot z=z$  за всяко  $z\in\mathbb{C}$ ,

а също така за всеки елемент  $(a,b) \in \mathbb{C}$  съществуват обратни елементи относно събирането и умножението, съответно

$$(-a,-b), \quad \left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right).$$

Всяко реално число x се отъждествява c комплексното число (x,0), понежсе изображението  $x \to (x,0)$  е взаимно-еднозначно. Комплексното число i:=(0,1) ще наричаме **имагинерна единица**. Изпълнено e, че  $i^2=(0,1)(0,1)=(-1,0)=-1$ , т.е. i е корен на уравеннието  $z^2=-1$ . Всяко комплексно число z=(x,y) можем да запишем във вида

$$z = (x,0)(1,0) + (0,1)(y,0) = x \cdot 1 + i \cdot y = x + iy,$$

наричан алгебричен вид на комплексното число z. Числата x и y се наричат съответно реална и имагинерна част на z и се означават

$$x = \operatorname{Re} z, \quad y = \operatorname{Im} z.$$

Ще отбележим, че комплексните числа в алгебричен вид се умножават и събират като многочлени на i, като  $i^2$  се заменя c-1.

Ако в равнината е зададена ортогонална координатна система Oxy, на всяко комплексно число z=x+iy може да съпоставим точката  $z=(x,y)\in\mathbb{R}^2$ . Така получаваме взаимно - еднозначно съответствие между множеството на комплексните числа и равнината, която се нарича комплексна (гаусова) равнина и също се означава с  $\mathbb{C}$ .

 $<sup>^{1}</sup>$ За множествата на реалните, естествените и целите числа ще използваме съответните стандартни означения  $\mathbb{R}$ .  $\mathbb{N}$  и  $\mathbb{Z}$ .



Фиг. 1.1: Събиране (транслация)

На всяко число  $z \neq 0$  може да се съпостави вектор с начало (0,0) и край (x,y), който ще означаваме също със z. Векторът  $z_1+z_2$ , който се получава по правилото на успоредника (фиг. 1.1), съответства на числото  $z_1+z_2$ . Следователно съответствието между комплексните числа и векторите в равнината се пренася и върху операцията събиране. Геометричната интерпретация на операцията събиране,  $z_1 \rightarrow z_1+z_2$ , е транслация на вектор  $z_2$  (фиг. 1.1).

Комплексното число x-iy се нарича **спрегнато** на комплексното число x+iy и се означава с  $\bar{z}$ . Величината  $|z|:=\sqrt{x^2+y^2}$  се нарича **модул** на комплексното число z=x+iy. Изпълнено e, че

$$z\bar{z} = x^2 + y^2 = |z|^2. (1.1)$$

От геометричната интерпретация на операцията събиране (фиг. 1.1) следва **неравенството на триъгълника** 

$$|z_1 + z_2| \le |z_1| + |z_2|. \tag{1.2}$$

Ще отбележим, че  $|z_1-z_2|$  е разстоянието между  $z_1$  и  $z_2$  и е изпълнено, че

$$|z_1 - z_2| \ge ||z_1| - |z_2||. \tag{1.3}$$

Ориентираният вгъл между положителната посока на реалната ос и вектора z се нарича **аргумент** на комплексното число z = x + iy и се означава c **arg** z (фиг. 1.2). Аргументът се определя c точност до кратно



Фиг. 1.2: Геометрично представяне

на  $2\pi$  и е изпълнено, че

$$\frac{x}{\sqrt{x^2 + y^2}} = \cos \varphi, \quad \frac{y}{\sqrt{x^2 + y^2}} = \sin \varphi, \tag{1.4}$$

където  $\varphi=\arg\,z.$  Главното значение на аргумента се определя от условието

$$-\pi < \arg z \le \pi$$
.

Om~(1.1)~u~(1.4)~nonyчаваме тригонометричния  $eu\partial^2$  на комплексно чис-

$$z = |z|(\cos \varphi + i \sin \varphi).$$

В сила е следната формула на Ойлер<sup>3</sup>

$$e^{i\varphi} = \cos\varphi + i\sin\varphi,\tag{1.5}$$

откъдето следва, че

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}, \quad \sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}.$$
 (1.6)

От (1.5) получаваме следния запис на тригонометричния вид на комплексно число:

$$z = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}$$

 $A \kappa o z = |z|(\cos \varphi + i \sin \varphi), \ w = |w|(\cos \psi + i \sin \psi), \ mo \ за \ произведението$ z w получаваме

$$z w = |z||w|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)), \tag{1.7}$$

откъдето следва, че |zw|=|z||w| и  $\arg(zw)=\arg z+\arg w$ . Следователно геометричната интерпретация на операцията умножение,  $z \rightarrow zw$ , е последователно прилагане на хомотетия с център т.  $\theta$  и коефициент |w|и ротация с център т. 0 на ъгъл  $\psi = \arg w$  (фиг. 1.3).



Фиг. 1.3: Умножение (ротация и хомотетия)

Ще отбележим някои основни свойства на въведените по-горе опера-

иш с комплексни числа. 
$$A\kappa o \ z = x + iy \neq 0, \ mo \ \frac{1}{z} = \frac{x - iy}{x^2 + y^2}.$$
 
$$A\kappa o \ z_1 = x_1 + iy_1, \ z_2 = x_2 + iy_2, \ mo$$
 
$$\frac{z_1}{z_2} \ = \ \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2},$$
 
$$\left|\frac{z_1}{z_2}\right| \ = \ \frac{|z_1|}{|z_2|} \ u \ \overline{z_1z_2} = \overline{z_1} \ \overline{z_2}.$$

Използвайки (1.7), лесно се доказва чрез индукция по п следната

 $<sup>^{2}</sup>$ Тъй като връзката между декартовите координати (x,y) и полярните координати  $(\rho,\varphi)$  е  $x=\rho\cos\varphi$ ,  $y=\rho\sin\varphi$ , където  $\rho=\sqrt{x^2+y^2}=|z|$ , то тригонометричният вид се нарича оше полярна форма.

 $<sup>^3</sup>$ За дефиницията на показателната функция  $e^z,\,z\in\mathbb{C}$  и доказателството на формулата на Ойлер вж. Глава 2, Елементарни трансцендентни функции.

Формула на Моавър. Нека  $z=|z|(\cos\varphi+i\sin\varphi)$ . Тогава за всяко естествено число n е изпълнено, че

$$z^{n} = |z|^{n} (\cos n\varphi + i\sin n\varphi). \tag{1.8}$$

Формулата на Моавър (1.8) може да се обобщи по следния начин:

$$z_{k} = \sqrt[n]{z} = \sqrt[n]{|z|} \left( \cos \frac{\varphi + 2k\pi}{n} + i \sin \frac{\varphi + 2k\pi}{n} \right)$$

$$= \sqrt[n]{|z|} e^{\frac{\varphi + 2k\pi}{n}i}, \quad k = 0, 1, \dots, n - 1.$$

$$(1.9)$$

Доказателство на (1.9). Да разгледаме уравнението

$$\zeta^n = z, \tag{1.10}$$

където при дадено  $z \in \mathbb{C}$  търсим решение  $\zeta$ . Да представим  $\zeta$  и z в тригонометричен вид, съответно  $\zeta = |\zeta|e^{i\arg\zeta}$ ,  $z = |z|e^{i\varphi}$ . Тогава от (1.8) и (1.10) получаваме  $|\zeta|^n e^{i \, n \arg \zeta} = |z|e^{i\, \varphi}$ , откъдето следва, че

$$|\zeta|^n = |z|$$
  $u$   $n \arg \zeta = \varphi + 2k\pi, \ k \in \mathbb{Z}.$ 

Следователно

$$|\zeta| = \sqrt[n]{|z|}, \quad \arg \zeta = \frac{\varphi + 2k\pi}{n}, \quad k \in \mathbb{Z},$$

т. е. решенията  $\zeta$  на уравнението (1.10) се дават с формулата (1.9).

#### Забележка.

- (1) Геометрически значенията на  $\sqrt[n]{z}$  са разположени във върховете на правилен n-ъгълник, вписан в окръжност c център z=0 и радиус  $\sqrt[n]{|z|}$ .
- (2) Уравнението

$$z^n = 1$$

има точно n различни решения  $z_k=e^{\frac{2k\pi i}{n}},\quad k=0,\,1,\dots,n-1,$  наричани  ${\bf n}$ -ти корени на единицата.

Задача 1.1.1 Извършете действията и запишете отговора в алгебричен вид.

(a) 
$$\frac{1}{1-i}$$
 (6)  $\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3$ 

Решение.

(a) 
$$\frac{1}{1-i} = \frac{1+i}{(1-i)(1+i)} = \frac{1+i}{2} = \frac{1}{2} + i\frac{1}{2}$$
(6) 
$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^3 = \left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)^2 i\frac{\sqrt{3}}{2} + 3\left(\frac{1}{2}\right)\left(i\frac{\sqrt{3}}{2}\right)^2 - \left(i\frac{\sqrt{3}}{2}\right)^3$$

Задача 1.1.2 Извършете действията и запишете отговора в алгебричен вид.

(a) 
$$\overline{(1+i)(2+i)}(3+i)$$
 (6)  $\left(\frac{i^5+2}{i^{19}+1}\right)^2$  (B)  $\frac{(1+i)^5}{(1-i)^3}$ 

Otr. (a) 
$$z = 6 - 8i$$
 (6)  $z = -2 + \frac{3}{2}i$ 

Задача 1.1.3 Намерете модулите на числата

(a) 
$$\frac{4-3i}{2-i}$$
 (6)  $\frac{(1-i)^{2004}}{(1+i)^{2004}}$ 

Решение.

(a) 
$$\left| \frac{4-3i}{2-i} \right| = \frac{|4-3i|}{|2-i|} = \frac{\sqrt{16+9}}{\sqrt{4+1}} = \sqrt{5}.$$

(6) 
$$\left| \frac{(1-i)^{2004}}{(1+i)^{2004}} \right| = \left| \frac{1-i}{1+i} \right|^{2004} = |-i|^{2004} = 1$$

Условие (б) може да реши и като забележим, че числото 1-i е спрегнато на 1+i, следователно |1-i|=|1+i|. Тогава

$$\left| \frac{(1-i)^{2004}}{(1+i)^{2004}} \right| = \left( \frac{|1-i|}{|1+i|} \right)^{2004} = 1.$$

**Задача 1.1.4** Представете в тригонометричен вид чрез главната стойност на аргумента следните числа:

(B) 
$$1-i$$
 (r)  $\frac{2}{1-i\sqrt{3}}$ 

**Решение.** Първо намираме модула на числото, а после и главната стойност на аргумента му.

(a) 
$$1 = 1 + i0 = 1(1 + i0) = 1(\cos 0 + i \sin 0) = e^{0 \cdot i}$$

(6) 
$$i = 1(0+i) = 1\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = e^{\frac{\pi}{2}i},$$

**(B)** 
$$1 - i = \sqrt{2} \left( \frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left( \cos \left( -\frac{\pi}{4} \right) + i \sin \left( -\frac{\pi}{4} \right) \right) = \sqrt{2} e^{-\frac{\pi}{4}i},$$

(r) 
$$\frac{2}{1-i\sqrt{3}} = \frac{2(1+i\sqrt{3})}{4} = 1\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = e^{\frac{\pi}{3}i}$$
.

**Задача 1.1.5** Да се намерят модулите и аргументите на следните комплексни числа z:

(a) 
$$-\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}$$
, (6)  $(-4+3i)^3$ , (B)  $\frac{(1+i)^8}{(1-i\sqrt{3})^6}$ 

Ome. (a) 
$$|z| = 1$$
,  $\arg z = \frac{6\pi}{7} + 2k\pi$ ,  $k \in \mathbb{Z}$   
(6)  $|z| = 125$ ,  $\arg z = -3 \arctan \frac{3}{4} + 2k\pi$ ,  $k \in \mathbb{Z}$   
(B)  $|z| = \frac{1}{4}$ ,  $\arg z = 2k\pi$ ,  $k \in \mathbb{Z}$ .

Задача 1.1.6 Представете в тригонометричен вид числото

$$z = 1 - \cos \alpha + i \sin \alpha, \quad 0 \le \alpha < 2\pi.$$

**Решение.** Първо намираме модула на z,

$$|z|^2 = (1 - \cos \alpha)^2 + \sin^2 \alpha = 2(1 - \cos \alpha) = 4\sin^2 \frac{\alpha}{2}$$

Тъй като  $0 \leq \alpha < 2\pi,$  то  $|z| = 2\left|\sin\frac{\alpha}{2}\right| = 2\sin\frac{\alpha}{2},$  . Тогава

$$z = 2\sin^2\frac{\alpha}{2} + 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2} = 2\sin\frac{\alpha}{2}\left(\sin\frac{\alpha}{2} + i\cos\frac{\alpha}{2}\right)$$
$$= 2\sin\frac{\alpha}{2}\left(\cos\left(\frac{\pi}{2} - \frac{\alpha}{2}\right) + i\sin\left(\frac{\pi}{2} - \frac{\alpha}{2}\right)\right).$$

Следователно

$$z = 2\sin\frac{\alpha}{2}e^{i(2k\pi + \frac{\pi}{2} - \frac{\alpha}{2})}, \quad k \in \mathbb{Z}.$$

**Задача 1.1.7**  $^{\spadesuit}$  Като използувате формулата на Моавър (1.8), докажете, че

(a) 
$$\cos 4\varphi = 8\cos^4 \varphi - 8\cos^2 \varphi + 1,$$
$$\cos 6\varphi = 32\cos^6 \varphi - 48\cos^4 \varphi + 18\cos^2 \varphi - 1.$$

(6) Намерете реалните корени на уравнението 
$$16x^6 - 28x^4 + 13x^2 - 1 = 0. \tag{1.11}$$

**Решение.** (a) От формулата на Моавър (1.8) за n=4 последователно получаваме

$$\cos 4\varphi = \operatorname{Re}(\cos 4\varphi + i\sin 4\varphi) = \operatorname{Re}\left((\cos \varphi + i\sin \varphi)^4\right)$$

$$= \operatorname{Re}\left(\cos^4 \varphi + \binom{4}{1}\cos^3 \varphi(i\sin \varphi) + \binom{4}{2}\cos^2 \varphi(i\sin \varphi)^2\right)$$

$$+ \binom{4}{3}\cos \varphi(i\sin \varphi)^3 + \binom{4}{4}(i\sin \varphi)^4$$

$$= \cos^4 \varphi - \binom{4}{2}\cos^2 \varphi\sin^2 \varphi + \binom{4}{4}\sin^4 \varphi$$

$$= \cos^4 \varphi - 6\cos^2 \varphi(1 - \cos^2 \varphi) + (1 - \cos^2 \varphi)^2$$

$$= 8\cos^4 \varphi - 8\cos^2 \varphi + 1.$$

Формулата за  $\cos 6\varphi$  се доказва аналогично.

(б) Нека  $x = \cos \varphi$ . Тогава от (а) следва, че

$$16x^{6} - 28x^{4} + 13x^{2} - 1 = \frac{\cos 6\varphi - \cos 4\varphi}{2} = -\sin 5\varphi \sin \varphi.$$

Ако  $\sin\varphi=0$ , то  $\cos\varphi=\pm 1$ . Следователно  $\pm 1$  са корени на уравнението (1.11). Изпълнено е, че

$$16x^6 - 28x^4 + 13x^2 - 1 = (x^2 - 1)(16x^4 - 12x^2 + 1).$$

Остава да намерим реалните корени на уравнението

$$16x^4 - 12x^2 + 1 = 0. (1.12)$$

Ако положим t=2x, уравнението (1.12) става  $t^4-3t^2+1=0$ . За неговите корени имаме, че  $t_{1,2}^2=\frac{3\pm\sqrt{5}}{2}>0$ , откъдето следва, че уравнението (1.12) има четири реални корена

$$\pm\sqrt{\frac{3\pm\sqrt{5}}{8}}.$$

Задача 1.1.8 Използвайки формулата на Моавър (1.9), пресметнете

(a) 
$$\sqrt{i}$$
 (б)  $\sqrt[8]{-1}$  (в)  $\sqrt[5]{1-i}$  (г)  $\sqrt[4]{\frac{2}{1-i\sqrt{3}}}$ .

Решение.

(a) 
$$z_k = \sqrt{i} = e^{i\frac{\pi/2 + 2k\pi}{2}} = e^{i\frac{(4k+1)\pi}{4}}, \ k = 0, 1$$

(6) 
$$z_k = e^{\frac{\pi + 2k\pi}{8}}, \ k = 0, \dots, 7$$

**(B)** 
$$z_k = \sqrt[5]{1-i} = \sqrt[5]{\sqrt{2}e^{-\frac{i\pi}{4}}} = \sqrt[10]{2}e^{\frac{-\pi+8k\pi}{20}i}, \ k=0,\ldots,4$$

(r) 
$$z_k = \sqrt[4]{\frac{2}{1 - i\sqrt{3}}} = \sqrt[4]{e^{\frac{i\pi}{6}}} = e^{i\frac{\pi/6 + 2k\pi}{4}} = e^{i\frac{(12k+1)\pi}{24}}, \ k = 0, \dots, 3$$

Задача 1.1.9 Решете уравненията

(a) 
$$z^2 = 3 - 4i$$
 (6)  $\bar{z} = z^3$   
(B)  $|z| - z = 1 - 2i$ .

**Решение.** (a)  $z^2=3-4i=5\left(\frac{3}{5}-i\frac{4}{5}\right)$   $\Rightarrow$   $|z|=\sqrt{5}$ . Ако означим arg  $z=\varphi$ , то arg  $z^2=2\varphi$ , следователно  $\cos 2\varphi=\frac{3}{5}$  и  $\sin 2\varphi=-\frac{4}{5}$ . Тогава  $\cos \varphi$  ще намерим чрез формулата  $\cos 2\varphi=2\cos^2\varphi-1$  откъдето получаваме  $\cos \varphi=\pm\frac{2}{\sqrt{5}}$ . Също така от  $\sin 2\varphi=2\sin \varphi\cos \varphi$  намираме  $\sin \varphi=\mp\frac{1}{\sqrt{5}}$ . Така получаваме  $z=\sqrt{5}(\cos \varphi+i\sin \varphi)=\pm(2-i)$ .

(6) 
$$\bar{z}=z^3$$
  $\Rightarrow |z|=|z|^3$   $\Rightarrow$   $|z|=0$  или  $|z|=1$  От  $|z|=0$   $\Rightarrow$   $z=0.$  От  $|z|=1$   $\Rightarrow$   $z=e^{i\varphi},\ \varphi\in\mathbb{R}$   $\Rightarrow$   $e^{-i\varphi}=e^{3i\varphi}$   $\Rightarrow$   $-\varphi=$ 

 $3\varphi+2k\pi,\ k\in\mathbb{Z}$   $\Rightarrow$   $\varphi=-\frac{k\pi}{2}$   $\Rightarrow$   $z=e^{-ik\pi/2},\ k\in\mathbb{Z}.$  Окончателно, решенията на уравнението са  $z=0;\ \pm i;\ \pm 1.$ 

(в) |z|-z=1-2i  $\Rightarrow$   $\mathrm{Im}\,(|z|-z)=-\mathrm{Im}\,z=\mathrm{Im}\,(1-2i)=-2$   $\Rightarrow$   $\mathrm{Im}\,z=2$   $\Rightarrow$  z=a+2i. Замествайки в уравнението, намираме  $\sqrt{a^2+4}-a=1$   $\Rightarrow$   $a=\frac{3}{2}$   $\Rightarrow$   $z=\frac{3}{2}+2i$ .

**Задача 1.1.10** Нека  $\varphi$ ,  $\psi \in \mathbb{R}$  са такива, че  $0 \le \varphi - \psi \le \pi$ . Представете в тригонометричен вид числата  $e^{i\,\varphi} \pm e^{i\,\psi}$ .

Решение. Имаме, че

$$e^{i\varphi} \pm e^{i\psi} = e^{i\frac{\varphi+\psi}{2}} (e^{i\frac{\varphi-\psi}{2}} \pm e^{-i\frac{\varphi-\psi}{2}}).$$

От формулите (1.6) следва, че

$$e^{i\varphi} + e^{i\psi} = 2\cos\frac{\varphi - \psi}{2}e^{i\frac{\varphi + \psi}{2}},$$

$$e^{i\varphi} - e^{i\psi} = 2i\sin\frac{\varphi - \psi}{2}e^{i\frac{\varphi + \psi}{2}} = 2\sin\frac{\varphi - \psi}{2}e^{i\frac{\varphi + \psi + \pi}{2}}.$$

**Задача 1.1.11** Нека  $\alpha \in \mathbb{R}$ . Използвайки формулите (1.6), пресметнете сумите:

(a) 
$$A = \sum_{k=1}^{n} \cos k\alpha$$
 (6)  $B = \sum_{k=1}^{n} \sin k\alpha$ ,

**Решение.** Ще пресметнем числото A + iB. Имаме, че

$$A + iB = \sum_{k=1}^{n} (\cos k\alpha + i \sin k\alpha) = \sum_{k=1}^{n} e^{ik\alpha} = e^{i\alpha} \frac{e^{i\alpha n} - 1}{e^{i\alpha} - 1}$$
$$= \frac{\left(e^{i\frac{n}{2}\alpha} - e^{-i\frac{n}{2}\alpha}\right) e^{i\frac{n+1}{2}\alpha}}{e^{i\frac{\alpha}{2}} - e^{-i\frac{\alpha}{2}}} = \frac{\sin\frac{n\alpha}{2}e^{i\frac{n+1}{2}\alpha}}{\sin\frac{\alpha}{2}}.$$

Отделяйки реалната и имагинерна част, получаваме

$$A = \frac{\sin\frac{n\alpha}{2}\cos\frac{n+1}{2}\alpha}{\sin\frac{\alpha}{2}}, \qquad B = \frac{\sin\frac{n\alpha}{2}\sin\frac{n+1}{2}\alpha}{\sin\frac{\alpha}{2}}.$$

#### Задача 1.1.12 ♠

- (a) Hera  $P_{n-1}(z) = \frac{z^n 1}{z 1}, \ n \ge 2$ . Hamepeme  $P_{n-1}(1)$ .
- (6) Нека  $z_k$ , k = 1, ..., n, са върховете на правилен многоъгълник, вписан в единичната окръжност. Нека  $d_k$  е разстоянието между  $z_k$  и  $z_1$ . Докажете, че  $\prod_{k=2}^n d_k = n$ .
- (B)  $\angle Jokaseme$ , we  $2^{n-1}\sin\frac{\pi}{n}\sin\frac{2\pi}{n}\ldots\sin\frac{(n-1)\pi}{n}=n$ .

#### Решение.

(a) Тъй като  $P_{n-1}(z)=z^{n-1}+z^{n-2}+\ldots+1,$  то  $P_{n-1}(1)=n.$ 

(6) Без ограничение можем да считаме, че  $z_1 = 1$ . Тогава  $z_k$  са n-тите

корени на единицата и 
$$P_{n-1}(z)=\prod_{k=2}^n(z-z_k)$$
. Следователно 
$$P_{n-1}(1)=\prod_{k=2}^n(1-z_k)=n.$$
 Тъй като  $d_k=|1-z_k|,\,k=2,\ldots,\,n,$  то  $\prod_{k=2}^nd_k=n.$ 

(в) Последователно получаваме

$$n = \prod_{k=2}^{n} |1 - z_k| = \prod_{k=1}^{n-1} |1 - e^{i\frac{2k\pi}{n}}|$$

$$= \prod_{k=1}^{n-1} |e^{i\frac{k\pi}{n}}| |e^{-i\frac{k\pi}{n}} - e^{i\frac{k\pi}{n}}| = \prod_{k=1}^{n-1} |-2i\sin\frac{k\pi}{n}|$$

$$= 2^{n-1} \sin\frac{\pi}{n} \sin\frac{2\pi}{n} \dots \sin\frac{(n-1)\pi}{n}.$$

Задача 1.1.13 (закон на успоредника) Нека а и в са произволни комплексни числа. Докажете, че

$$|a+b|^2 + |a-b|^2 = 2|a|^2 + 2|b|^2.$$

Каква е геометричната интерпретация на доказаното тъждество?

#### Решение.

$$|a+b|^2 + |a-b|^2 = (a+b)(\bar{a}+\bar{b}) + (a-b)(\bar{a}-\bar{b}) = 2a\bar{a} + 2b\bar{b} = 2|a|^2 + 2|b|^2.$$

 ${f 3}$ адача  ${f 1.1.14}$  Да се докаже, че за всеки n на брой числа  $z_1,\ldots z_n,$  е в сила неравенството

$$|z_1 + z_2 + \ldots + z_n| \le |z_1| + |z_2| + \ldots + |z_n|.$$

**Решение.** Неравенството се доказва чрез индукция по n. Ще отбележим, че за n=1 получаваме неравенството на триъгълника (1.2), което можем да докажем и аналитично по следния начин:

$$|z_1 + z_2|^2 = (z_1 + z_2)(\bar{z}_1 + \bar{z}_2) = |z_1|^2 + |z_2|^2 + z_1\bar{z}_2 + \bar{z}_1z_2$$

$$= |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\bar{z}_2) \le |z_1|^2 + |z_2|^2 + 2|z_1\bar{z}_2|$$

$$= (|z_1| + |z_2|)^2.$$

Задача 1.1.15 (неравенство на Коши) Да се докаже, че за всеки 2n на брой комплексни числа

$$z_1, z_2, \ldots, z_n;$$
  $\zeta_1, \zeta_2, \ldots, \zeta_n$ 

е изпълнено неравенството

$$\left| \sum_{j=1}^{n} z_j \bar{\zeta}_j \right|^2 \le \sum_{j=1}^{n} |z_j|^2 \sum_{j=1}^{n} |\zeta_j|^2.$$
 (1.13)

**Решение.** Полагаме  $A:=\sum_{j=1}^n|z_j|^2,\quad B:=\sum_{j=1}^n|\zeta_j|^2,\quad C:=\sum_{j=1}^nz_j\bar{\zeta}_j.$  Ще докажем, че  $|C|^2\leq AB.$  Имаме, че

$$0 \leq \sum_{j=1}^{n} |Bz_{j} - C\zeta_{j}|^{2} = \sum_{j=1}^{n} (Bz_{j} - C\zeta_{j})(B\bar{z}_{j} - \bar{C}\bar{\zeta}_{j})$$

$$= B^{2} \sum_{j=1}^{n} |z_{j}|^{2} - B\bar{C} \sum_{j=1}^{n} z_{j}\bar{\zeta}_{j} - BC \sum_{j=1}^{n} \bar{z}_{j}\zeta_{j} + |C|^{2} \sum_{j=1}^{n} |\zeta_{j}|^{2}$$

$$= B^{2}A - 2BC\bar{C} + |C|^{2}B$$

$$= B^{2}A - B|C|^{2} = B(AB - |C|^{2}).$$

$$(1.14)$$

От (1.14) следва, че в (1.13) има равенство тогава и само тогава, когато когато  $Bz_j = C\zeta_j, \ j=1,\dots n$ , т.е. когато  $z_j = \alpha\zeta_j, \ j=1,\dots n, \ \alpha\in\mathbb{C}.$ 

**Задача 1.1.16** (Питагорова теорема) Нека  $z_1, z_2, z_3$  са три различни комплексни числа. Докажете, че равенствата

$$|z_1 - z_3|^2 = |z_1 - z_2|^2 + |z_2 - z_3|^2$$
(1.15)

u

$$z_3 - z_2 = i\beta(z_2 - z_1)$$
  $(\beta \neq 0, \beta \in \mathbb{R})$  (1.16)

са еквивалентни и направете геометрична интерпретация на получения резултат.

**Решение.** Да положим 
$$\mu:=rac{z_3-z_2}{z_2-z_1}.$$
 Тогава  $z_3-z_2=\mu(z_2-z_1)$  и

$$z_3 - z_1 = z_3 - z_2 + z_2 - z_1 = (1 + \mu)(z_2 - z_1).$$

Равенството (1.15) е еквивалентно на

$$|1 + \mu|^2 = 1 + |\mu|^2$$
, r. e.  $(1 + \mu)(1 + \bar{\mu}) = 1 + \mu\bar{\mu}$ ,

откъдето получаваме  $\mu + \bar{\mu} = 2 \operatorname{Re} \mu = 0$ . Последното равенство е еквивалентно на  $\mu = i \beta$ , което е точно неравенството (1.16) ( $\beta \neq 0$  следва от  $z_1 \neq z_2 \neq z_3 \neq z_1$ ).

Задача 1.1.17 Докажете, че уравнението

$$az-\bar{a}\bar{z}+b=0$$
, където  $a\in\mathbb{C}$ ,  $a\neq 0$ ,  $b=ih$ ,  $h\in\mathbb{R}$ ,

е декартово уравнение на права, т. е. уравнение от вида Ax+By+C=0,  $A,\ B,\ C\in\mathbb{R}.$ 

**Решение.** Като заместим в даденото уравнение със z=x+iy, получаваме

$$a(x+iy) - \bar{a}(x-iy) + ih$$
 =  $(a - \bar{a})x + i(a + \bar{a})y + ih$   
=  $2i \operatorname{Im} a x + 2i \operatorname{Re} a y + ih = 0$ .

Като положим  $A:={\rm Re}\,a,\, B:={\rm Im}\,a,\, C:=h,$  получаваме исканото твърдение.

Задача 1.1.18 Докажете, че уравнението

$$z\bar{z}+l\,z+ar{l}ar{z}+m=0,\,$$
 където  $m\in\mathbb{R},\,\,m<|l|^2,$ 

е декартово уравнение на окръжност, т. е. уравнение от вида  $(x-A)^2 + (y-B)^2 = C^2$ ,  $A, B, C \in \mathbb{R}$ .

**Задача 1.1.19** Нека  $\triangle a\,b\,c$  е положително ориентиран.  $^4$  Докажете, че

 $\triangle a\,b\,c\,e\,$  равностранен  $\iff a+b\omega+c\omega^2=0,\,$  където  $\omega=e^{\frac{2}{3}\pi\,i}.$ 

**Решение.** Първо ще покажем, че ако транслираме  $\triangle a\,b\,c$  на вектор  $d \neq 0$ , където  $d \in \mathbb{C}$ , твърдението остава в сила, т. е. ще докажем, че

$$a + d + (b + d)\omega + (c + d)\omega^2 = a + b\omega + c\omega^2.$$

Последното равенство следва от

$$1 + \omega + \omega^2 = \frac{1 - w^3}{1 - w} = 0,$$

защото  $\omega=e^{\frac{2}{3}\pi\,i}.$  Сега да транслираме  $\triangle a\,b\,c$  така, че  $a\equiv 0.$  Остава да докажем, че

$$\triangle 0 \, b \, c$$
 е равностранен  $\iff b + c\omega = 0$ .

 $\Rightarrow$  Нека  $\triangle 0\,b\,c$ е равностранен. Това е изпълнено тогава и само тогава, когато  $c=be^{\frac{i\pi}{3}}.$  Следователно

$$b + c\omega = b + be^{\frac{i\pi}{3}}e^{\frac{2}{3}\pi i} = b - b = 0.$$
 (1.17)

 $\leftarrow$  Следва от (1.17).

**Задача 1.1.20** Нека  $\triangle a \, b \, c \, e$  отрицателно ориентиран. Докажете, че

 $\triangle a\,b\,c\,e\,$  равностранен  $\iff a\omega^2 + b\omega + c = 0$ , където  $\omega = e^{\frac{2}{3}\pi\,i}$ .

**Задача 1.1.21** *Намерете медицентъра на*  $\triangle a \, b \, c$ .

Otr. 
$$\frac{a+b+c}{3}$$

**Задача 1.1.22** Докажете, че лицето S на положително ориентирания  $\triangle a\,b\,c\,e$ 

$$S = \frac{1}{2} \operatorname{Im} (\bar{a} b + \bar{b} c + \bar{c} a).$$

**Решение.** Първо ще покажем, че ако транслираме  $\triangle a\,b\,c$  на вектор  $d \neq 0$ , където  $d \in \mathbb{C}$ , то

$$\operatorname{Im}\left(\bar{a}\,b + \bar{b}\,c + \bar{c}\,a\right) = \operatorname{Im}\left(\overline{a + d}\,(b + d) + \overline{b + d}\,(c + d) + \overline{c + d}\,(a + d)\right),\,$$

 $<sup>^4\</sup>triangle a\,b\,c$  наричаме положително ориентиран, ако ориентираният ъгъл  $\angle b\,a\,c$  е такъв, че  $0<\angle b\,a\,c<\pi$ . Съответно,  $\triangle a\,b\,c$  е отрицателно ориентиран, ако  $0<\angle c\,a\,b<\pi$ .

т. е. S е инвариантно при транслация на  $\triangle a\,b\,c$ . След разкриване на скобите получаваме, че горното равенство е еквивалентно на

$$\operatorname{Im} \left( (\bar{a} + \bar{b} + \bar{c})d + (a + b + c)\bar{d} + 3|d|^2 \right) = 0.$$

Това равенство е вярно, защото първите две събираеми са комплексно спрегнати и освен това  $|d| \in \mathbb{R}$ .

Нека сега транслираме  $\triangle a\,b\,c$  така, че  $a\equiv 0$ . Трябва да покажем, че лицето на  $\triangle 0\,b\,c$  е  $S=\frac{1}{2}\,{\rm Im}\,\bar{b}c$ . Да означим с  $\alpha$  ориентирания ъгъл при върха 0. Тогава  $c=\frac{|c|}{|b|}e^{i\alpha}b\Rightarrow$ 

$$\frac{1}{2}\operatorname{Im}\bar{b}c = \frac{1}{2}\operatorname{Im}\left(\frac{|c|}{|b|}e^{i\alpha}b.\bar{b}\right) = \frac{1}{2}\operatorname{Im}\left(|b||c|e^{i\alpha}\right)$$
$$= \frac{1}{2}|b||c|\sin\alpha = S.$$

Задача 1.1.23 Нека  $\triangle a \, b \, c$  е положително ориентиран и p е негова вътрешна точка. Нека  $a_1, \ b_1, \ c_1$  са медицентрове съответно на  $\triangle b \, c \, p$ ,  $\triangle c \, a \, p$ ,  $\triangle a \, b \, p$ . Докажете, че  $S_{a_1b_1c_1}=\frac{1}{9}S_{abc}$ .

**Решение.** Без ограничение ще предполагаме, че  $p\equiv 0$ . Тогава от зад. 1.1.22 и зад. 1.1.21 следва, че

$$S_{a_{1}b_{1}c_{1}} = \frac{1}{2}\operatorname{Im}\left(\overline{a_{1}}\,b_{1} + \overline{b_{1}}\,c_{1} + \overline{c_{1}}\,a_{1}\right)$$

$$= \frac{1}{2}\operatorname{Im}\left(\frac{\overline{b+c+p}}{3} \cdot \frac{a+c+p}{3} + \frac{\overline{a+c+p}}{3} \cdot \frac{a+b+p}{3} + \frac{\overline{a+b+p}}{3} \cdot \frac{b+c+p}{3}\right)$$

$$= \frac{1}{9} \cdot \frac{1}{2}\operatorname{Im}\left(\frac{\overline{b+c}}{3} \cdot \frac{a+c}{3} + \frac{\overline{a+c}}{3} \cdot \frac{a+b}{3} + \frac{\overline{a+b}}{3} \cdot \frac{b+c}{3}\right)$$

$$= \frac{1}{9} \cdot \frac{1}{2}\operatorname{Im}\left(\bar{a}b + \bar{b}c + \bar{c}a + |a|^{2} + |b|^{2} + |c|^{2} + (\bar{a}b + a\bar{b}) + (\bar{a}c + a\bar{c}) + (\bar{b}c + b\bar{c})\right)$$

$$= \frac{1}{9} \cdot \frac{1}{2}\operatorname{Im}\left(\bar{a}b + \bar{b}c + \bar{c}a\right) = \frac{1}{9}S.$$

**Задача 1.1.24** *Нека*  $a_1a_2\dots a_n$  *е положително ориентиран многоътълник.* Докажете, че

$$S_{a_1 a_2 \dots a_n} = \frac{1}{2} \operatorname{Im} \left( \bar{a}_1 a_2 + \bar{a}_2 a_3 + \dots + \bar{a}_n a_1 \right)$$

.

**Упътване.** Прекарайте диагоналите на многоъгълника през върха  $a_1$  и използвайте зад. 1.1.22.

Задача 1.1.25 Нека  $a_1a_2...a_{2n}$  е положително ориентиран многовгълник. Докажете, че ако транслираме нечетните му върхове на вектор b, то лицето на получения многовгълник е равно на лицето на първоначалния многовгълник.

Упътване. Използвайте зад. 1.1.22.

**Задача 1.1.26** Нека p е произволна права през началото O и нека комплексните числа  $z_1, \ldots, z_n, n \in \mathbb{N}$  лежат в една и съща полуравнина относно p. Докажете, че

$$z_1 + z_2 + \ldots + z_n \neq 0$$
  $u \frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n} \neq 0$ .

Твърдението е вярно и ако всички числа с изключение на едно лежат върху p.

**Решение.** От геометрични съображения е ясно, че ако  $z_1$  и  $z_2$  са от едната страна на p, то сумата  $z_1+z_2$  като диагонал на съответния успоредник е също от тази страна на p. За второто неравенство е достатъчно да забележим, че  $\arg \bar{z} = \arg \frac{1}{z}$ .

Може да дадем и аналитично решение: Завъртаме комплексната равнина така, че правата p да съвпада с имагинерната ос, т. е. умножаваме с  $e^{-i\alpha}$ , където  $\alpha$  е ъгъла, който p сключва с положителната посока на реалната ос. Тогава

$$\operatorname{Re} z_i > 0 \implies \operatorname{Re}(z_1 + z_2 + \ldots + z_n) > 0 \implies z_1 + z_2 + \ldots + z_n \neq 0.$$

Също така

$$\operatorname{Re}\frac{1}{z_j} > 0 \quad \Rightarrow \quad \operatorname{Re}\left(\frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n}\right) > 0 \quad \Rightarrow \quad \frac{1}{z_1} + \frac{1}{z_2} + \ldots + \frac{1}{z_n} \neq 0.$$

Задача 1.1.27 Нека  $z_1, z_2, \ldots, z_n$  са комплексни числа, такива че  $z_1 + z_2 + \ldots + z_n = 0$ . Тогава всяка права g, минаваща през началото O, разделя тези числа, т. е. те лежат и от двете страни на правата (с изключение на частния случай, при който всичките точки са върху правата).

**Решение.** Ако допуснем, че съществува права, такава, че всички точки да лежат от едната ѝ страна, то от задача 1.1.26 следва, че  $z_1+z_2+\ldots+z_n\neq 0$ .

Задача 1.1.28 Нека  $z_1, z_2, \ldots, z_n$  са произволни числа в комплексната равнина и нека  $m_1 > 0$ ,  $m_2 > 0$ , ...,  $m_n > 0$  са такива, че  $m_1 + m_2 + \ldots + m_n = 1$ . Нека  $z = m_1 z_1 + m_2 z_2 + \ldots + m_n z_n$ . Да се докаже, че всяка права през точката z разделя точките  $z_1, z_2, \ldots, z_n$ , с изключение на случая, когато всички те лежат върху тази права. (Точката z се нарича център на тежестта на системата от точки  $z_1, \ldots, z_n$  със съответни маси  $m_1, \ldots, m_n$ .)

Решение. Имаме, че

$$m_1(z_1-z) + m_2(z_2-z) + \dots + m_n(z_n-z) = 0.$$

Според задача 1.1.27, всяка права през точката 0 разделя множеството от точки  $m_j(z_j-z)$ . Тогава тя разделя и множеството от точки  $(z_j-z)$ , понеже

аргументите на  $m_j(z_j-z)$  и  $(z_j-z)$  съвпадат. По-нататък, след транслация с вектор z, получаваме, че всяка права, минаваща през точка z, разделя множеството от точки  $z_j$ .

Задача 1.1.29 (Теорема на Гаус-Люка)  $He \kappa a f(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_n$  е произволен полином с комплексни коефициенти. Нека M е изпъкналата обвивка<sup>5</sup> на нулите на f(z). Докажете, че нулите на f'(z) също принадлежат на M.

**Решение.** Нека  $z_1, z_2, \ldots, z_n$  са нулите на f(z) и нека  $f'(z_0) = 0$ . Ако  $f(z_0) = 0$ , твърдението е очевидно. Нека  $f(z_0) \neq 0$ . Тогава е изпълнено, че

$$0 = \frac{f'(z_0)}{f(z_0)} = \sum_{\nu=1}^{n} \frac{1}{z_0 - z_{\nu}}.$$
(1.18)

Да допуснем, че  $z_0 \not\in M$ . Тогава съществува права през  $z_0$ , която не пресича M и следователно  $z_0-z_\nu$  се намират от едната ѝ страна. От задача 1.1.26 следва, че  $\sum_{\nu=1}^n \frac{1}{z_0-z_\nu} \neq 0$ , което е противоречие с (1.18).

### 1.2 Редици от комплексни числа

**Дефиниция.** Казваме, че редицата  $\{a_n\}_{n=1}^{\infty}$  от комплексни числа е **сходяща** и  $a_n \to a$  при  $n \to \infty$ ,  $a \in \mathbb{C}$ , ако  $|a_n - a| \to 0$  при  $n \to \infty$ . Числото a се нарича **граница** на редицата.

Първо ще разгледаме някои основни задачи от сходимост на редици от комплексни числа.

**Задача 1.2.1** Докажете, че  $a_n \to a$  при  $n \to \infty \iff \operatorname{Re} a_n \to \operatorname{Re} a$ ,  $\operatorname{Im} a_n \to \operatorname{Im} a$  при  $n \to \infty$ .

**Решение.** Нека  $a_n = \alpha_n + i\beta_n$ ,  $a = \alpha + i\beta$ .  $\Rightarrow$  От дефиницията за сходимост следва, че

$$|a_n - a| = \sqrt{(\alpha_n - \alpha)^2 + (\beta_n - \beta)^2} \to 0.$$

Тъй като е изпълнено, че

$$|\alpha_n - \alpha| \le \sqrt{(\alpha_n - \alpha)^2 + (\beta_n - \beta)^2},$$
  
$$|\beta_n - \beta| \le \sqrt{(\alpha_n - \alpha)^2 + (\beta_n - \beta)^2},$$

то  $|\alpha_n - \alpha| \to 0$ ,  $|\beta_n - \beta| \to 0$ , т.е.  $\alpha_n \to \alpha$ ,  $\beta_n \to \beta$ .  $\Leftarrow$  В тази посока твърдението е очевидно.

Задача 1.2.2 Докажете, че ако  $a_n \to a$ , то  $|a_n| \to |a|$ ,  $n \to \infty$ .

**Решение.** Следва от дефиницията за сходимост и неравенството  $|a_n| - |a| \le |a_n - a|$ . В обратната посока твърдението не е вярно (разгледайте редицата общ член  $a_n = (-1)^n$ ).

 $<sup>^5</sup>$ Изпъкнала обвивка на множеството A се нарича най-малкото изпъкнало множество, което съдържа A, т.е. сечението на всички изпъкнали множества, съдържащи A. Ако A се състои от краен брой точки (както в разглежданата задача), то изпъкналата му обвивка е изпъкнал многоъгълник, т.е. сечение на полуравнини.

Задача 1.2.3 Нека  $\{a_n\}_{n=1}^\infty$  е сходяща редица,  $a_n \to a \neq 0$  при  $n \to \infty$ , като

$$a = |a|(\cos \varphi + i \sin \varphi), \quad a_n = |a_n|(\cos \varphi_n + i \sin \varphi_n), \quad 0 \le \varphi, \, \varphi_n < 2\pi.$$

Докажете, че ако  $\varphi \neq 0$ , то

$$|a_n| \to |a|, \qquad \varphi_n \to \varphi.$$
 (1.1)

**Решение.** От задача 1.2.2 следва, че  $|a_n| \to |a|$ . За да докажем второто равенство в (1.1), ще допуснем обратното, т.е.  $\varphi_n \not\to \varphi$ . Тъй като редицата  $\varphi_n$  е ограничена  $(0 \le \varphi_n < 2\pi)$ , то съществува сходяща подредица  $\varphi_{n_k} \to \psi \ne \varphi$   $(0 \le \psi \le 2\pi)$ . След граничен преход получаваме, че  $a_{n_k} = |a_{n_k}|(\cos\varphi_{n_k} + i\sin\varphi_{n_k}) \to |a|(\cos\psi + i\sin\psi)$ . От друга страна,  $a_{n_k} \to a = |a|(\cos\varphi + i\sin\varphi)$ . Следователно  $\varphi - \psi = 2k\pi$ ,  $k \in \mathbb{Z}$ , което е невъзможно.

Задача 1.2.4  $He\kappa a\ \{a_n\}_{n=1}^\infty$  е редица, за която  $|a_n|\to 0$  при  $n\to\infty$ . Тогава и  $a_n\to 0$  при  $n\to\infty$ .

**Решение.** Нека  $a_n = \alpha_n + i\beta_n$ . По условие  $|a_n| = \sqrt{\alpha_n^2 + \beta_n^2} \to 0$  и от неравенствата  $0 \le |\alpha_n| \le \sqrt{\alpha_n^2 + \beta_n^2}$  следва, че  $|\alpha_n| \to 0$ , откъдето  $\alpha_n \to 0$ . Аналогично получаваме, че  $\beta_n \to 0$ . Следователно  $a_n = \alpha_n + i\beta_n \to 0$ .

 $\mathbf{3}$ адача  $\mathbf{1.2.5}$  Намерете границата при  $n \to \infty$  на редицата c общ член

$$a_n = 1 + \frac{1}{2}\cos\varphi + \ldots + \frac{1}{2^n}\cos n\varphi.$$

**Решение.** Нека  $b_n = \frac{1}{2} \sin \varphi + \ldots + \frac{1}{2^n} \sin n\varphi$ .

Тогава 
$$a_n + i b_n = \sum_{k=0}^n \frac{1}{2^k} (\cos k\varphi + i \sin k\varphi) = \sum_{k=0}^n \left(\frac{e^{i\varphi}}{2}\right)^k$$
$$= \frac{1 - \frac{e^{i(n+1)\varphi}}{2^{n+1}}}{1 - \frac{e^{i\varphi}}{2}}.$$

Тъй като  $\left|\frac{e^{i(n+1)\varphi}}{2^{n+1}}\right|=\frac{1}{2^{n+1}}\to 0$  при  $n\to\infty,$  то  $\frac{e^{i(n+1)\varphi}}{2^{n+1}}\to 0.$  Следователно  $a_n+ib_n\to \frac{2}{2-e^{i\varphi}},$  откъдето следва, че

$$a_n \to \operatorname{Re}\left(\frac{2}{2 - e^{i\varphi}}\right) = \frac{2(2 - \cos\varphi)}{5 - 4\cos\varphi}$$

В следващата задача е показан един от начините за дефиниране на функцията  $e^z$ ,  $z\in\mathbb{C}$ , който е обобщение на дефиницията на функцията  $e^x$ ,  $x\in\mathbb{R}$ . Ще напомним, че

$$e^x := \lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n, \ x \in \mathbb{R}.$$

**Задача 1.2.6** ♠ *Нека* z = x + iy. Докажете, че

$$\lim_{n \to \infty} \left( 1 + \frac{z}{n} \right)^n = e^x (\cos y + i \sin y).$$

**Решение.** Нека напомним, че  $|z^n|=|z|^n$ , arg  $z^n=n$  arg z, arg  $z=\arctan \frac{y}{x}$  (при  $-\frac{\pi}{2}<\arg z<\frac{\pi}{2}$ ). Следователно

$$\left|1 + \frac{z}{n}\right|^n = \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2}\right)^{\frac{n}{2}} = e^{\frac{n}{2}\ln\left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2}\right)}, \quad (1.2)$$

$$\arg\left(1 + \frac{z}{n}\right)^n = n \arctan \frac{\frac{y}{n}}{1 + \frac{x}{n}}.$$
 (1.3)

(Тук използваме, че $-\frac{\pi}{2}<\arg(1+\frac{z}{n})<\frac{\pi}{2}$  при достатъчно голямо n поради факта, че  $\lim_{n\to\infty}(1+\frac{z}{n})=1.)$ 

Като извършим граничен преход в (1.2) и (1.3), използвайки правилото на Лопитал, получаваме, че

$$\lim_{n \to \infty} \left| 1 + \frac{z}{n} \right|^n = e^x, \quad \lim_{n \to \infty} \arg\left(1 + \frac{z}{n}\right)^n = y.$$

Задача 1.2.7 ♠ Нека

$$z_n = (1 + \frac{i}{\sqrt{1}})(1 + \frac{i}{\sqrt{2}})\dots(1 + \frac{i}{\sqrt{n}}) = |z_n|e^{i\varphi_n},$$

където  $0 < \varphi_n - \varphi_{n-1} < \frac{\pi}{2}$ .

- (a) Докажете, че отсечката с краища  $z_{n-1}$  и  $z_n$ ,  $n=2,3,\ldots$  има дължина 1.
- (6) Докажете, че  $\frac{|z_n|-|z_{n-1}|}{\varphi_n-\varphi_{n-1}} \to \frac{1}{2} \ npu \ n \to \infty.$

**Решение. (a)** Дължината на отсечката с краища  $z_n$  и  $z_{n-1}$  е  $|z_n-z_{n-1}|$ . Тъй като

$$z_n - z_{n-1} = (1 + \frac{i}{\sqrt{1}})(1 + \frac{i}{\sqrt{2}})\dots(1 + \frac{i}{\sqrt{n-1}})\frac{i}{\sqrt{n}},$$

ТО

$$|z_n - z_{n-1}|^2 = (1 + \frac{1}{1})(1 + \frac{1}{2})\dots(1 + \frac{1}{n-1})\frac{1}{n}$$
  
=  $\frac{2 \cdot 3 \dots n}{1 \cdot 2 \dots n-1} \cdot \frac{1}{n} = 1$ 

**(б)** Имаме, че

$$|z_n|^2 = (1 + \frac{1}{1})(1 + \frac{1}{2})\dots(1 + \frac{1}{n}) = n + 1$$

И

$$\varphi_n - \varphi_{n-1} = \arg \frac{z_n}{z_{n-1}} = \arg(1 + \frac{i}{\sqrt{n}}) = \operatorname{arctg} \frac{1}{\sqrt{n}}.$$

Тогава

$$\frac{|z_n|-|z_{n-1}|}{\varphi_n-\varphi_{n-1}} = \frac{\sqrt{n+1}-\sqrt{n}}{\arctan\frac{1}{\sqrt{n+1}}-\arctan\frac{1}{\sqrt{n}}} \to \frac{1}{2} \text{ при } n \to \infty.$$

**Задача 1.2.8** Да се докаже, че редицата с общ член  $a_n = z^n$  е сходяща за |z| < 1 и за z = 1 и разходяща за  $|z| \ge 1$ ,  $z \ne 1$ .

**Решение.** Ако |z|<1, то  $|a_n|=|z|^n\to 0$ , откъдето  $a_n\to 0$  (зад. 1.2.4). При z=1 имаме  $a_n=1\to 1$ .

В случая |z|>1, да допуснем, че  $a_n\to l$ . Тогава  $|a_n|\to |l|$ , което е невъзможно поради  $|a_n|=|z|^n\to\infty$ .

Остана да разгледаме случая  $|z|=1,\,z\neq 1$ . Ако допуснем, че  $a_n=z^n\to l$ , то за редицата  $b_n=z^{n+1}-z^n$  намираме  $b_n\to l-l=0$ . Следователно  $|b_n|\to 0$ . Но  $|b_n|=|z|^n|z-1|=|z-1|\to |z-1|\neq 0$ .

Следващата задача, известна като **теорема на Якоби**, дава по-прецизна информация за поведението на редицата  $a_n$  в последния случай.

**Задача 1.2.9**  $\clubsuit$  Нека z е комплексно число, за което |z|=1. Изследвайте точките на сеъстяване на редицата c общ член  $a_n=z^n$ .

**Решение.** Нека  $z=e^{2i\pi\alpha},\ 0\leq \alpha<1.$  Има два принципно различни случая:

(а)  $\alpha$  — рационално ( $\alpha=p/q$ , където p и q са взаимно прости). Ще покажем, че в редицата  $a_n=z^n=e^{2i\pi\alpha n}$  има точно q различни числа,  $e^{2i\pi k/q}$  ( $k=0,1,2,\ldots,q-1$ ), и следователно това са всичките точки на сгъстяване. Наистина, всяко естествено число n има вида  $n=\lambda q+\mu$  ( $\lambda,\mu$  — цели,  $0\leq\mu< q$ ) и затова  $a_n=e^{2i\pi(\lambda q+\mu)/q}=e^{2i\pi\mu/q}$ . От друга страна, за всяко  $k=0,1,\ldots,q-1$  числото  $e^{2i\pi k/q}$  е член на редицата  $a_n$ , защото p и q са взаимно прости и следователно  $\lambda p+\mu q=1$  за някакви цели  $\lambda$  и  $\mu$ , поради което

$$e^{2i\pi k/q} = e^{2i\pi k(\lambda p + \mu q)/q} = e^{2i\pi k\lambda p/q} = z^{k\lambda} = a_{k\lambda}$$

Ако  $\lambda < 0$ , тогава вместо двойката  $(\lambda, \mu)$  ще вземем двойката  $(\lambda' = \lambda + sq, \mu' = \mu - sp)$ , където естественото число s е така избрано, че  $\lambda' > 0$ .

(6)  $\alpha$  — ирационално. Ще покажем, че множеството от точките на сгъстяване на редицата  $a_n$  е единичната окръжност  $K = \{z : |z| = 1\}$ . Наистина,  $a_n \in K$  за всяко n, така че  $\{a_n\}_{n=1}^{\infty}$  няма точки на сгъстяване вън от K (доказва се с допускане на противното). Освен това  $a_m \neq a_n$  при  $m \neq n$ , защото иначе бихме получили

$$e^{2i\pi\alpha m}=e^{2i\pi\alpha n}$$
  $\Rightarrow$   $2\pi\alpha m-2\pi\alpha n=2k\pi$   $(k-$ цяло $)$   $\Rightarrow$   $\alpha=\frac{k}{m-n},$ 

т.е.  $\alpha$  е рационално число. Също така, редицата  $a_n$  е ограничена ( $|a_n|=1$ ) и значи има поне една точка на сгъстяване  $z_0$ . Тогава за всяко  $\varepsilon>0$  съществуват  $a_m$  и  $a_n$  (различни!) такива, че

$$|a_m - z_0| < \frac{\varepsilon}{2}, \quad |a_n - z_0| < \frac{\varepsilon}{2} \quad \Rightarrow \quad |a_m - a_n| < \varepsilon.$$

Ако за определеност приемем, че m > n, то

$$|a_{m-n}-1| = |a_{m-n}-1||a_n| = |(a_{m-n}-1)a_n| = |a_m-a_n| < \varepsilon,$$

което означава, че подредицата  $\{a_{(m-n)k}\}_{k=1}^{\infty}$  разделя окръжността K на малки дъги (краищата на всяка дъга са на разстояние по-малко от  $\varepsilon$  един от друг). Тогава, ако  $z_1$  е произволна точка от K, тя ще лежи на една от тези (затворени) дъги и следователно всеки от двата края на дъгата ще бъде в  $\varepsilon$ -околност на  $z_1$ . И тъй като  $\varepsilon>0$  е произволно, то  $z_1$  е точка на сгъстяване за  $\{a_n\}$ .

### 1.3 Топология на комплексната равнина. Криви

Множеството на комплексните числа  $\mathbb C$  освен поле е и топологично пространство. Да въведем в  $\mathbb C$  евклидова метрика като отъждествим  $\mathbb C$  с равнината  $\mathbb R^2$ , снабдена със стандартната евклидова метрика. Тази метрика определя естествена топология в  $\mathbb C$ . По-долу ще дадем някои общи дефиниции и свойства, отнасящи се за топологичните и метрични пространства, във форма, удобна за по-нататъшното ни изложение.

Дефиниция 1. Множеството  $\left\{z\in\mathbb{C}:|z-z_0|< r\right\}$ , където r>0 е произволно реално число, се нарича околност на точката  $z_0$ .

Често ще използваме околността |z| < 1, която ще наричаме отворен единичен кръг.

**Дефиниция 2.** Точката  $z_0$ , принадлежаща на множеството E, се нарича вътрешна за E, ако съществува околност на  $z_0$ , принадлежаща изияло на E.

**Дефиниция 3.** Множеството E се нарича **отворено**, ако всяка негова точка е вътрешна за него.

Ще отбележим, че всяка околност е отворено множество. Отворен интервал върху реалната ос не е отворено множество, понеже не съдържа отворен кръг.

Дефиниция 4. Едно множество се нарича свързано, ако всеки две негови точки могат да се свържат с начупена линия, принадлежаща на множеството. Отворено и свързано множество се нарича област.

Дефиниция 5. Точката  $z_0$  се нарича гранична за множеството E, ако всяка околност на тази точка съдържа едновременно и точки от E, и точки, които не принадлежат на E. Граница (контур) се нарича множеството от всички гранични точки. Множеството E е затворено, ако съдържа всички свои гранични точки или няма гранични точки.

Дефиниция 6. Множеството E е ограничено, ако се съдържа в някоя околност на началото, т. е съществува число R>0, така че |z|< R за всяко  $z\in E$ . Ограничено и затворено множество се нарича компакт.

Дефиниция 7. Ако на всяко значение t от интервала a < t < b е съпоставено комплексно число z(t) = x(t) + iy(t), където  $x(t) = \operatorname{Re} z(t)$ ,  $y(t) = \operatorname{Im} z(t)$ , казваме, че върху интервала (a,b) е дефинирана комплекснозначна функция z(t) на реалната променлива t.

Граница, производна и интеграл се определят както следва:

$$\lim_{t \to t_0} z(t) = \lim_{t \to t_0} x(t) + i \lim_{t \to t_0} y(t),$$

$$z'(t) = x'(t) + iy'(t),$$

$$\int_a^b z(t) dt = \int_a^b x(t) dt + i \int_a^b y(t) dt.$$

**Дефиниция 8.** Нека е зададена комплекснозначна функция z(t), непрекосната ворху интервала [a, b]. Когато точката t описва интервала

 $[a,\,b]$ , точката z(t) описва някакво множество в комплексната равнина. Това множество, заедно с реда, в който се описват точките му, се нарича непрекъсната крива, а уравнението z(t) - параметрично уравнение на кривата.

Две параметрични уравнения

$$z = z(t), \quad a \le t \le b,$$

$$z = z_1(\tau), \quad a_1 \le \tau \le b_1,$$

определят една и съща непрекъсната крива тогава и само тогава, когато съществува непрекъсната и монотонно растяща функция  $\varphi(t),\ a\leq t\leq b,$  такава, че

$$\varphi(a) = a_1, \quad \varphi(b) = b_1, \quad z(t) = z_1(\varphi(t)), \quad a \le t \le b.$$

Ако съществува поне една параметризация z=z(t),  $a \le t \le b$ , така че z(t) приема различни значения при различни значения на t, то кривата се нарича проста (жорданова) крива. Кривата се нарича затворена, ако началото ѝ съвпада с края ѝ. Ако съществува  $z'(t) \ne 0$ ,  $a \le t \le b$  и е непрекъсната, кривата се нарича гладка. Ако съществува разделяне на интервала [a,b] на крайни подинтервали, във всеки от които кривата е гладка, то тя се нарича частично гладка. Крива с крайна дължина се нарича ректифицируема. Всяка частично гладка крива е ректифицируема.

Важно значение има следната

**Теорема на Жордан.** Всяка проста, затворена крива  $\Gamma$  разделя равнината на две различни области  $G_1$  и  $G_2$ , общата граница на които е  $\Gamma$ . При това една от областите е ограничена (тя се нарича вътрешност на  $\Gamma$ ), а другата е неограничена (тя се нарича външност на  $\Gamma$ ).

Дефиниция 9. Едно множество се нарича едносвързано, ако заедно с всяка затворена жорданова крива, принадлежаща на множеството, съдържа и вътрешността на кривата (т.е. едносвързано е множество без "дупки").

Множеството от точките между две концентрични окръжности,

$$\{z \in \mathbb{C} : r_1 < |z| < r_2, \ r_1, \ r_2 > 0\},\$$

е свързано (то е област!), но не е едносвързано. Нарича се пръстен (венец).

Допирателна към крива в комплексната равнина. Нека имаме комплекснозначна, непрекъснато диференцируема функция  $z=\gamma(t)$  на реалната променлива  $t, \alpha \leq t \leq \beta$ , определяща гладка крива  $\gamma$  в комплексната равнина. Ще покажем, че от условието  $\gamma'(t_0) \neq 0$  следва, че в съответната точка  $z_0 = \gamma(t_0)$  съществува допирателна към кривата, дефинирана като гранично положение на секущите, минаващи през точката  $z_0$ , при което ъгълът между допирателната и реалната ос съвпада с агд  $\gamma'(t_0)$ .

Да прекараме през точките  $z_0=\gamma(t_0)$  и  $z_1=\gamma(t_1)$  секущата  $\gamma(t_1)-\gamma(t_0)$ . Ще отбележим, че посоката на секущата съвпада с тази на вектора  $\frac{\gamma(t_1)-\gamma(t_0)}{t_1-t_0}$ , т.е.

$$\arg (\gamma(t_1) - \gamma(t_0)) = \arg \frac{\gamma(t_1) - \gamma(t_0)}{t_1 - t_0}.$$

Следователно секущата има гранично положение при  $t_1 \to t_0 \ (z_1 \to z_0)$ , ако съществува границата на arg  $\frac{z_1-z_0}{t_1-t_0}$  при  $t_1 \to t_0.$  Но по условие имаме

$$\lim_{t_1 \to t_0} \frac{z_1 - z_0}{t_1 - t_0} = \gamma'(t_0) \neq 0.$$

Следователно съществува и границата (вж. например зад. 1.2.3)

$$\lim_{t_1 \to t_0} \arg \frac{z_1 - z_0}{t_1 - t_0} = \arg \gamma'(t_0),$$

което и трябваше да покажем.

Дефиниция 10. Ъгъл между две криви с обща пресечна точка се нарича ориентираният ъгъл между ориентираните допирателни в тази точка.

**Задача 1.3.1** Какво е геометричното място на точки ( $\Gamma MT$ ) z в комплексната равнина, за които:

(a) Re z > 0

- (6) Im z < 1
- (B)  $|\text{Im } z| < 1, \ 0 < \text{Re } z < 1$  (r)  $|z| \le 1$
- (д) |z i| > 1
- (e) 1 < |z 1| < 3
- (д) |z-i| > 1 (e) 1 < |z-1| < 3 (ж)  $0 < \arg z < \frac{\pi}{4}$  (3)  $0 < |\pi \arg z| < \frac{\pi}{4}$

Кои от горните множества са области?

#### Решение.

- (a) Полуравнината отдясно на имагинерната ос.
- (б) Полуравнина с контур права, успоредна на реалната ос и минаваща през т. i.
- (B) Правоъгълник с върхове -i, 1-i, 1+i, i.
- (r) Кръг с радиус единица и център в т. 0.
- (д) Равнината без кръг с радиус единица и център в т. i.
- Пръстенът между окр. с рад. 1 и 3 и общ център в т. 1. (e)
- (ж) Ъгъл с големина  $\pi/4$  и връх в т. 0, разположен над положителната част на реалната ос, която е едно от раменете му.
- Ъгъл с големина  $\pi/2$  и връх в т. 0, чиято (s) ъглополовяща е отрицателната част на реалната ос.

Области са всички множества, с изключение на множеството от  $(\Gamma)$ , което е затворено.

**Задача 1.3.2** Какво е геометричното място на точки  $(\Gamma MT)$  z в комплексната равнина, за които:

(a) Re 
$$\frac{1}{z} > 0$$

**(6)** Re 
$$((1+i)z) > 0$$

(B) 
$$z = z_1 + z_2$$
,  $|z_1| = 2$ ,  $|z_2| = 1$  (r)  $|z^2| \le 2$ ,  $\operatorname{Re}(z^2) \ge 0$ 

(r) 
$$|z^2| \le 2$$
,  $\text{Re}(z^2) \ge 0$ 

Кои от горните множества са области?

Решение.

(a) 
$$\operatorname{Re} \frac{1}{z} > 0 \iff \operatorname{Re} \frac{\bar{z}}{|z|^2} > 0$$
  
  $\operatorname{Re} \bar{z} > 0 \iff \operatorname{Re} z > 0.$ 

Това множество е дясната полуравнина и е област.

(б) Нека z = x + iy. Имаме, че

$$\operatorname{Re}((1+i)z) = \operatorname{Re}((1+i)(x+iy)) = x - y > 0.$$

Това множество е полуравнината с контур ъглополовящата на първи и трети квадрант, съдържаща т. 1. и е област.

(в) От неравенството на триъгълника следва, че

$$1 = |z_2| - |z_1| < |z_1 + z_2| < |z_1| + |z_2| < 3.$$

Това множество е пръстенът между окръжностите с радиуси 1 и 3 и център в т. 0 и е област.

(г) От 
$$z^2=x^2-y^2+2xy\,i$$
 следва, че 
$$\mathrm{Re}\,(z^2)=x^2-y^2,\;|z^2|=\sqrt{(x^2-y^2)^2+4x^2y^2}=x^2+y^2.$$

От условията  $x^2-y^2\geq 0,\, x^2+y^2\geq 2$  получаваме, че множеството се състои от два симетрични сектора от кръга с център т. 0 и радиус 2, намиращи се съответно в лявата и в дясната полуравнини. Множеството не е област, защото е затворено.

Задача 1.3.3 Какво е ГМТ z в комплексната равнина, за които:

(a) 
$$\frac{\pi}{4} < \arg(z+i) < \frac{\pi}{2}$$
 (6)  $|1+z| < |1-z|$ 

(B) 
$$|z-i| + |z+i| < 4$$
 (r)  $|z-i| + |z+i| < R, R > 0$ 

(д) 
$$|z-2|-|z+2|<2$$
 (e)  $\arg \frac{z+1}{z-1}=\frac{\pi}{4}$ 

Кои от горните множества са области?

**Решение.** (a) Ъгъл с големина  $\pi/4$  и връх в точката z=-i, чиито рамене минават през точките z=1 и z=0.

(б) Имаме, че

$$|1+z| < |1-z| \Leftrightarrow (1+x)^2 + y^2 < (1-x)^2 + y^2 \Leftrightarrow x > 0.$$

Областта е дясната полуравнина.

(в) Ако z = x + iy, то неравенството е еквивалентно на

$$\sqrt{x^2 + (y-1)^2} + \sqrt{x^2 + (y+1)^2} < 4$$

$$\iff \left[ x^2 + (y-1)^2 \right] + \left[ x^2 + (y+1)^2 \right] + 2\sqrt{x^2 + (y-1)^2} \sqrt{x^2 + (y+1)^2} < 16$$

$$\iff \sqrt{x^2 + (y-1)^2} \sqrt{x^2 + (y+1)^2} < 7 - x^2 - y^2 \tag{1.1}$$

$$\Rightarrow (x^{2} + (y-1)^{2})(x^{2} + (y+1)^{2}) < (7 - x^{2} - y^{2})^{2}$$

$$\iff (x^{2} + y^{2} + 1 - 2y)(x^{2} + y^{2} + 1 + 2y) < (8 - (x^{2} + y^{2} + 1))^{2}$$

$$\iff -4y^{2} < 64 - 16(x^{2} + y^{2} + 1)$$

$$\iff \frac{x^{2}}{3} + \frac{y^{2}}{4} < 1.$$
(1.3)

В посока от (1.3) към (1.2), имаме допълнително

$$\frac{x^2}{3} < 1, \quad \frac{y^2}{4} < 1 \implies x^2 + y^2 < 7,$$

което води до еквивалентност на (1.1) и (1.2).

Задачата може да се реши и по-кратко (но по-малко строго) така: Границата на търсената област удовлетворява равенството

$$|z - i| + |z + i| = 4,$$

което след решаване води до  $\frac{x^2}{3} + \frac{y^2}{4} = 1$ , където z = x + iy. Сега избираме една вътрешна (или външна) за тази елипса точка (напр. z = (0,0)) и проверяваме дали удовлетворява (a) (да!). Оттук заключаваме, че търсената област е вътрешността на елипсата.

Геометричното решение на задачата е най-кратко: ГМТ на точки, за които сумата от разстоянията до две фиксирани точки (в случая  $\pm i$ ) е константа, е елипса с фокуси във фиксираните точки. Остава да намерим пресечните точки на елипсата с координатните оси (което е лесно), за да напишем уравнението ѝ.

- (r) За R > 2 областта е вътрешността на елипса; за R = 2 множеството е отсечката [-i,i], която не е област; за R < 2 е празното множество.
- (д) Аналогично на решението на (в), получаваме, че областта е частта от равнината, лежаща отляво на десния клон на хиперболата  $x^2 \frac{y^2}{3} = 1$ .
- (e) Търсим ГМТ z, за които  $\arg(z-1) \arg(z+1) = \pi/4$ . Като приложим косинусовата теорема за триъгълника с върхове z-1, z+1 и 0, получаваме

$$|z+1|^2 + |z-1|^2 - 2|z-1||z+1|\frac{\sqrt{2}}{2} = 4.$$

От последното уравнение последователно получаваме

$$(z+1)(\bar{z}+1) + (z-1)(\bar{z}-1) - \sqrt{2}|z-1||z+1| = 4,$$
  

$$2(|z|^2+1) - \sqrt{2}|z-1||z+1| = 4,$$
  

$$2(|z|^2-1) - \sqrt{2}|z-1||z+1| = 0,$$

откъдето следва, че  $|z| \ge 1$  и

$$2(|z|^{2}-1)^{2} = |z|^{4}-z^{2}-\bar{z}^{2}+1,$$
  

$$|z|^{4}-4|z|^{2}+1 = -z^{2}-\bar{z}^{2}$$
(1.4)

Нека  $z=x+i\,y$ . Тогава  $z^2=x^2-y^2+2\,i\,x\,y$  и  $\bar z^2=x^2-y^2-2\,i\,x\,y$ . От (1.4) последователно получаваме

$$(x^{2} + y^{2})^{2} - 4(x^{2} + y^{2}) + 1 = -2(x^{2} - y^{2}),$$

$$(x^{2} + y^{2} - 1)^{2} = 2(x^{2} + y^{2}) - 2(x^{2} - y^{2}) = 4y^{2},$$

$$x^{2} + y^{2} - 1 = \pm 2y,$$

$$x^{2} + (y \mp 1)^{2} = 2.$$

Геометричното решение на задачата е следното: Понеже

$$\arg \frac{z+1}{z-1} = \arg (z+1) - \arg (z-1) = \frac{\pi}{4},$$

то точката z описва ГМТ, от които отсечката [-1,1] се вижда под ъгъл  $\pi/4$ .

Задача 1.3.4 Нека а и в са комплексни числа. Какво описва точката

$$z = ta + (1 - t)b,$$
  $0 \le t \le 1$ ?

**Отг.** Отсечката [a, b].

Задача 1.3.5 Кои са кривите със следните параметрични уравнения:

(a) 
$$z = Re^{it}, \quad 0 \le t \le \pi$$
 (6)  $z = t + it^2, \quad 0 \le t < \infty$ 

(B) 
$$z = 1 + e^{-it}$$
,  $0 \le t \le 2\pi$  (r)  $z = e^{2it} - 1$ ,  $0 \le t \le 2\pi$ 

(д) 
$$z = e^{\pi i t} - 1$$
,  $0 \le t < 1$  (e)  $z = i \cos t$ ,  $0 \le t \le 2\pi$ 

- Отг. : (a) Горната половина на окръжността |z| = R, описана в посока от R до -R.
  - (6) Дясната половина на параболата  $y = x^2$ , описана в посока от 0 до  $\infty$ .
  - (в) Окръжността |z-1|=1, описана един път в отрицателна посока.
  - (г) Окръжността |z+1|=1, описана два пъти в положителна посока.
  - (д) Дъгата от окръжността |z+1|=1, която се намира в горната полуравнина и е описана един път в положителна посока.
  - (e) Отсечката между z=-i и z=i, описана два пътипърво от z=i до z=-i и после обратно.

**Задача 1.3.6** Нека кривата  $\Gamma$  е зададена с параметричното уравнение  $z=z(t),\ 0\leq t\leq 1.$  Опишете кривите, дефинирани с уравнението  $z=z_1(t),\ 0\leq t\leq 1,$  където:

(a) 
$$z_1(t) = z(1-t)$$
 (6)  $z_1(t) = \begin{cases} z(2t), & 0 \le t < \frac{1}{2}, \\ z(2-2t), & \frac{1}{2} \le t \le 1 \end{cases}$ 

Отг.: (a) Кривата  $\Gamma$ , описана в обратна посока.

(б) Кривата Γ, описана два пъти, първият път в положителна посока, втория път – в обратната посока.

## 1.4 Безкрайната точка. Сфера на Риман

Комплексната равнина  $\mathbb{C}$  не е компакт. Тя се компактифицира, като към нея добавим нова точка  $z=\infty$ , наричана безкрайна точка.

Дефиниция 1. Околност на безкрайната точка ce нарича множество от вида  $\left\{z \in \mathbb{C} : |z| > r\right\} \bigcup \{\infty\}$ , където r > 0 е произволно реално число.

Множеството  $\overline{\mathbb{C}}:=\mathbb{C}\bigcup\{\infty\}$  се нарича разширена комплексна равнина. Всички основни топологични понятия, въведени по-горе за  $\mathbb{C}$ , се пренасят и върху разширената комплексна равнина  $\overline{\mathbb{C}}$ .

Нагледно геометрично изображение на  $\overline{\mathbb{C}}$  може да се получи с помощта на стереографската проекция.

Нека в  $\mathbb{R}^3$  построим сфера S с център  $(0,0,\frac{1}{2})$  и радиус  $\frac{1}{2}$ ,

$$S = \left\{ (\xi, \eta, \zeta) \in \mathbb{R}^3 : \xi^2 + \eta^2 + \left(\zeta - \frac{1}{2}\right)^2 = \frac{1}{4} \right\}.$$

Да отъждествим комплексната равнина  $\mathbb C$  равнината  $\zeta=0$  в  $\mathbb R^3$  и да съпоставим на всяка точка z=x+iy точката  $Z=(\xi,\eta,\zeta)$ , която се получава от пресичането на сферата S с лъч, съединяващ z със северния полюс N=(0,0,1) на сферата S. За да изразим координатите на точката Z чрез z, да запишем лъча в параметричен вид

$$\xi = tx$$
,  $\eta = ty$ ,  $\zeta = 1 - t$ ,  $t \ge 0$ .

Значението на параметъра t, което съответства на точката на пресичане на лъча със S, се намира от уравненията

$$t^{2}(x^{2}+y^{2})+(\frac{1}{2}-t)^{2}=\frac{1}{4} \implies t=\frac{1}{1+|z|^{2}}.$$

Следователно координатите на  $Z=(\xi,\eta,\zeta)$  се получават от формулите

$$\xi = \frac{x}{1+|z|^2}, \ \eta = \frac{y}{1+|z|^2}, \ \zeta = \frac{|z|^2}{1+|z|^2}.$$
 (1.1)

Обратното изображение се намира от съотношението  $t=1-\zeta$ , откъдето

$$x = \frac{\xi}{1 - \zeta}, \ y = \frac{\eta}{1 - \zeta}.\tag{1.2}$$

От приведените формули следва, че стереографската проекция  $Z \leftrightarrow z$  осъществява взаимно-еднозначно съответствие между точките на сферата  $S \setminus \{N\}$  без северния полюс N и комплексната равнина  $\mathbb{C}$ . При това околност на безкрайната точка  $\infty \in \overline{\mathbb{C}}$  се изобразява в околност на северния полюс N на сферата S. Тогава, ако продължим стереографската проекция  $S \setminus \{N\} \leftrightarrow \mathbb{C}$  до съответствието  $S \leftrightarrow \overline{\mathbb{C}}$ , съпоставяйки на северния полюс N безкрайната точка  $\infty \in \overline{\mathbb{C}}$ , то полученото изображение е хомеоморфизъм между S и  $\overline{\mathbb{C}}$ . Построеният модел на разширената комплексна равнина  $\overline{\mathbb{C}}$  се нарича сфера на Риман.

Ще разглеждаме правите в  $\mathbb C$  като окръжности с безкрайно голям радиус. Основното свойство на стереографската проекция се дава със следната

**Теорема.** При стереографската проекция всяка окръжност в  $\mathbb{C}$  се изобразява в окръжност от S и обратно (окръжност от S е всяко сечение на S с равнина от  $\mathbb{R}^3$ ).

**Доказателство.** Да припомним, че окръжност в  $\mathbb C$  се задава с уравнението

$$A(x^{2} + y^{2}) + Bx + Cy + D = 0, \quad B^{2} + C^{2} - 4AD > 0,$$
 (1.3)

което при A=0 се свежда до права. Замествайки x и y с формулите (1.2) получаваме

$$B\xi + C\eta + (A-D)\zeta + D = 0, \tag{1.4}$$

 $m.\,e.$  равнина в  $\mathbb{R}^3$ , чието разстояние до точката  $(0,0,\frac{1}{2})$  е по-малко от  $\frac{1}{2}$  поради условието в (1.3). Следователно сечението на сферата S с равнината (1.4) е окръжност, лежаща върху S. При A=0 (случаят на права в  $\mathbb{C}$ ) точката N(0,0,1) лежи на тази окръжност, защото удовлетворява (1.4). Това показва, че проекцията на всяка права от  $\mathbb{C}$  е окръжност, минаваща през N,  $m.\,e.$  правите минават през точката  $\infty$ .

Нека отбележим, че и обратното е вярно: при трансформацията (1.1) образът на всяка окръжност от S е окръжност в  $\mathbb{C}$ .

## Глава 2

## Функции на комплексна променлива

## 2.1 Граници на функции. Непрекъснати функции

**Дефиниция 1.** Казваме, че в областта D в комплексната равнина  $\mathbb{C}$  е зададена комплекснозначна функция, ако на всяка точка  $z \in D$  е съпоставено комплексно число w = f(z).

Множеството от значения на f(z) ще означаваме с G:=f(D). Ще отбележим, че при така въведеното определение на комплексна функция (ако не е специално указано), дефиниционното множество е област, при това f(z) е еднозначна функция, т.е. на всяко  $z \in D$  е съпоставено единствено значение w. При функциите на комплексна променлива естествено възниква и понятието многозначна функция, т.е. когато на едно z съответстват няколко значения на w.

Така например функциите  $w=z^n,\ n\in\mathbb{N},\ w=|z|,\ w=\bar{z},\ w=\mathrm{Re}z,\ w=\mathrm{Im}\ z$  представляват еднозначни функции, дефинирани в комплексната равнина  $\mathbb{C}$ ; функцията  $\sqrt[n]{z}$  е многозначна (n-значна), дефинирана също в цялата комплексна равнина;  $w=\mathrm{Arg}\ z$  е многозначна функция (безкрайнозначна), дефинирана за всички  $z\neq 0$ .

Ако не е специално указано, ние ще разглеждаме еднозначни функции. Нека  $z=x+iy,\ w=u+iv.$  Тогава дефинирането на функцията w=f(z) е еквивалентно на дефинирането на две реалнозначни функции u(x,y) и v(x,y)

$$u(x,y) = \operatorname{Re} f(x+iy), \quad v(x,y) = \operatorname{Im} f(x+iy)$$

на реалните променливи х и у.

Дефиниция 2. Числото A наричаме граница на функцията f(z) в точката  $z_0$  ( $z_0$  е гранична точка на дефиниционната област D), ако за всяко число  $\varepsilon > 0$  съществува число  $\delta = \delta(\varepsilon) > 0$ , такова че за всички  $z \in D$ , удовлетворяващи неравенството  $0 < |z - z_0| < \delta$ , е изпълнено  $|f(z) - A| < \varepsilon$ . Записваме

$$\lim_{z \to z_0} f(z) = A.$$

Нека A=B+iC,  $z_0=x_0+iy_0$ , f(z)=u(x,y)+iv(x,y), тогава последното равенство е еквивалентно на равенствата

$$\lim_{x \to x_0, y \to y_0} u(x, y) = B, \quad \lim_{x \to x_0, y \to y_0} v(x, y) = C.$$

Аналогично, ако  $z_0=\infty$ , числото A наричаме граница на функцията f(z) при  $z\to\infty$  ( $\infty$  е гранична точка на дефиниционната област D), ако за всяко число  $\varepsilon>0$  съществува число  $N=N(\varepsilon)>0$  така, че за всички  $z\in D$ , удовлетворяващи неравенството |z|>N имаме  $|f(z)-A|<\varepsilon$ . Записваме

$$\lim_{z \to \infty} f(z) = A.$$

Накрая, ще казваме, че точката  $\infty$  е граница на функцията f(z) при  $z\to\infty$ , ако за всяко число M>0 съществува число N=N(M)>0 така, че за всички |z|>M имаме |f(z)|>M. Записваме

$$\lim_{z \to \infty} f(z) = \infty.$$

 $\mathcal{A}$ ефиницията на непрекъсната функция въвеждаме по аналогия c реалния анализ.

**Дефиниция 3.** Казваме, че функцията f(z) = u(x,y) + iv(x,y) е непрекосната в точката  $z_0 = x_0 + iy_0 \in D$ , ако

$$\lim_{z \to z_0} f(z) = f(z_0),$$

което е еквивалентно на условията реалните функции u(x,y) и v(x,y) да бъдат непрекъснати в точката  $(x_0,y_0),m.,e.$ 

$$\lim_{x \to x_0, y \to y_0} u(x, y) = u(x_0, v_0), \quad \lim_{x \to x_0, y \to y_0} v(x, y) = v(x_0, y_0).$$

Функцията f(z) е непрекъсната в областта D, ако е непрекъсната във всяка точка  $z \in D$ . Ще отбележим, че от последното равенство следва, че функция на комплексна променлива f(z) е непрекъсната тогава и само тогава, когато реалната и имагинерната и́ части, разглеждани като функции на реалните променливи x и y, са непрекъснати. От тук следва, че редица свойства на непрекъснати функции на две реални променливи непосредствено се пренасят за функции на комплексна променлива. Поточно, сума, разлика, произведение и частно на две непрекъснати функции са непрекъснати (в случая на частно се изключват точките, в които знаменателят се анулира).

Ако функцията w=f(z) е непрекъсната в областта D, а функцията  $\zeta=\varphi(w)$  е непрекъсната в областта G=f(D), тогава сложната функция  $\zeta=\varphi(f(z))=F(z)$  също е непрекъсната в D.

## 2.2 Аналитични функции. Условия на Коши-Риман

Нека функцията f(z) е дефинирана в област  $G \subset \mathbb{C}$  и нека точките z и  $z + \Delta z$  принадлежат на G.

Дефиниция 1. Функцията f(z) се нарича диференцируема в точката z, ако частното  $\frac{f(z+\Delta z)-f(z)}{\Delta z}$  има крайна граница при  $\Delta z$ , клонящо към нула по произволен начин. Тази граница се нарича производна на функцията f(z) в точката z и се означава c

$$\frac{df}{dz}(z) \equiv f'(z) := \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}.$$

Ако z=x+iy и w=f(z)=u(x,y)+iv(x,y), то във всяка точка, в която функцията f(z) е диференцируема, са изпълнени следните условия на Коши-Риман

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Обратно, ако в някоя точка (x,y) функциите u(x,y) и v(x,y) са диференцируеми като функции на реалните променливи x и y и са изпълнени

условията на Коши-Риман, то функцията f = u + iv е диференцируема като функция на комплексната променлива z в точката z = x + iy.

Дефиниция 2. Функцията f(z) се нарича аналитична (холоморфна) в точката  $z \in D$ , ако е диференцируема както в самата точка z, така и в някоя нейна околност. Функцията f(z) се нарича аналитична в областта D, ако е диференцируема във всяка точка от тази област.

За всяка аналитична функция f(z) имаме

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

 $\iota$ 

$$|f'(z)|^2 = u_x^{'2} + u_y^{'2} = u_x^{'2} + v_x^{'2} = u_y^{'2} + v_y^{'2} = v_x^{'2} + v_y^{'2}.$$

Задача 2.2.1 Кои от следните функции са аналитични:

(a) 
$$z$$
 (6)  $z^2$  (B)  $|z|$  (r)  $\bar{z}$ ?

**Решение.** (a) Имаме, че u(x,y) = x, v(x,y) = y, откъдето получаваме

$$u_x' = 1 = v_y',$$

$$u_y' = 0 = -v_x'.$$

Следователно функцията z е аналитична.

(б) Тъй като  $z^2=x^2-y^2+i.2xy,$  то  $u(x,y)=x^2-y^2,$  v(x,y)=2xy. Имаме, че

$$u'_{x} = 2x = v'_{y}$$

$$u_y' = -2y = -v_x'.$$

Следователно функцията z е аналитична.

- (в) Тъй като  $u(x,y)=x^2+y^2,\,v(x,y)=0,$  имаме, че  $u_x'=2x\neq v_y'=0.$  Следователно функцията  $\bar z$  не е аналитична.
- (г) Тъй като  $u(x,y)=x,\ v(x,y)=-y,$  имаме, че  $u'_x=1\neq v'_y=-1.$  Следователно функцията  $\bar{z}$  не е аналитична.

**Задача 2.2.2** Докажете, че функцията  $f(z) = (x^2 + y) + i(y^2 - x)$  не е аналитична в никоя точка.

**Решение.** Тъй като  $u(x,y) = x^2 + y$  и  $v(x,y) = y^2 - x$ , имаме, че

$$u_x' = 2x, \qquad v_y' = 2y,$$

$$u_y' = 1, \qquad v_x' = -1.$$

Уравненията на Коши-Риман са удовлетворени едновременно само върху правата x=y, т.е. в никоя околност на точка в равнината. Следователно функцията  $f(z)=(x^2+y)+i(y^2-x)$  не е аналитична в никоя точка.

**Задача 2.2.3** Нека f(z) е аналитична функция, която не е константа и нека  $g(z) = f(\bar{z})$ . Докажете, че g не е аналитична.

**Упътване.** Ако 
$$f(z) = f(x+iy) = u(x,y) + i v(x,y)$$
, то 
$$f(\bar{z}) = f(x-iy) = u(x,-y) + i v(x,-y).$$

Проверете условията на Коши-Риман за g(z).

**Задача 2.2.4** Нека f(z) е аналитична функция и нека  $g(z) = \overline{f(\bar{z})}$ . Докажете, че g е аналитична.

**Упътване.** Ако 
$$f(z)=f(x+iy)=u(x,y)+i\,v(x,y),$$
 то 
$$g(z)=\overline{f(x-iy)}=u(x,-y)-i\,v(x,-y).$$

Проверете условията на Коши-Риман за g(z).

Тъй като

$$x = \frac{z + \bar{z}}{2}, \qquad y = \frac{z - \bar{z}}{2i},$$

всяка функция f(z) може да се разглежда като функция само на z и  $\bar{z}$ , т. е.

$$f(z) = u(x, y) + i v(x, y) = f(z, \bar{z}).$$

По-долу  $\frac{\partial f}{\partial \bar{z}}$  означава частната производна на  $f(z,\bar{z})$  относно  $\bar{z}$ . Едно важно свойство на аналитичните функции, което ще докажем в следващата задача е, че функцията  $f(z,\bar{z})$  е аналитична тогава и само тогава, когато зависи само от z и не зависи от  $\bar{z}$ , т. е.  $\frac{\partial f}{\partial \bar{z}}=0$ .

**Задача 2.2.5** Да се докаже, че условията на Коши-Риман са еквивалентни на условието

$$\frac{\partial f}{\partial \bar{z}} = 0. {(2.1)}$$

**Решение.** Нека във f(z)=u(x,y)+iv(x,y) направим смяна на променливите

$$\xi = x + iy = z, \quad \eta = x - iy = \bar{z},$$

т. е.

$$x = \frac{1}{2}(\xi + \eta), \quad y = \frac{1}{2i}(\xi - \eta),$$

получавайки функцията  $f(\xi,\eta)=f(x(\xi,\eta),y(\xi,\eta))$ . Диференцирайки относно  $\eta$ , получаваме

$$\begin{split} \frac{\partial f}{\partial \bar{z}} &= \frac{\partial f}{\partial \eta} &= \frac{1}{2} \frac{\partial f}{\partial x} + \frac{i}{2} \frac{\partial f}{\partial y} \\ &= \frac{1}{2} (\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}) + \frac{i}{2} \left( \frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \\ &= \frac{1}{2} \left( \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + \frac{i}{2} \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right). \end{split}$$

Следователно  $\frac{\partial f}{\partial \overline{z}}=0$  тогава и само тогава, когато са изпълнени условията на Коши-Риман.

Задача 2.2.6 Нека f(z) = u(x,y) + i v(x,y) е аналитична функция в областта D и нека u(x,y) = F(v(x,y)), където функцията F(t) е строго монотонна и непрекъснато диференцируема върху цялата реална ос. Да се докаже, че f(z) = Const.

**Решение.** Тъй като  $u'_x = F'v'_x$ ,  $u'_y = F'v'_y$ , имаме, че

$$|f'(z)|^2 = u_x^{'2} + u_y^{'2} = v_x^{'2} + v_y^{'2} = F'^2(v_x^{'2} + v_y^{'2}).$$

Понеже  $F'\neq 0$ , то  $v_x^{'2}+v_y^{'2}=0$ . Следователно  $v_x'=u_y'=0$ . От условията на Коши – Риман следва, че  $v_y'=u_x'=0$  или  $f(z)=\mathrm{Const.}$ 

В следващата задача ще дефинираме функцията  $e^z$ ,  $z \in \mathbb{C}$ . Ще припомним, че в задача 1.2.6 вече дефинирахме тази функция като границата на редицата с общ член  $(1+\frac{z}{n})^n$ . Тук даваме друга еквивалентна дефиниция на  $e^z$  - като решение на диференциално уравнение.

Задача 2.2.7 ♠ Да се докаже, че решението на диференциалното уравнение

$$\frac{df}{dz} = f(z), \ f(0) = 1$$

e функцията  $f(z) = e^z$ .

**Решение.** Нека f(z) = u(x, y) + iv(x, y). Тогава

$$\frac{df}{dz} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = u + iv, \quad f(0) = u(0,0) + iv(0,0) = 1.$$

Следователно  $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=u, \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=v, \quad u(0,0)=1, \, v(0,0)=0$ 

0. Получихме две диференциални уравнения с разделящи се променливи. Решението на уравнението

$$\partial u/\partial x = u$$
,  $u(0,0) = 1$  e  $u(x,y) = e^x \lambda(y)$ ,  $\lambda(0) = 1$ .

Решението на уравнението

$$\partial v/\partial x = v$$
,  $v(0,0) = 0$  e  $v(x,y) = e^x \mu(y)$ ,  $\mu(0) = 0$ .

Тогава

$$\partial v/\partial y = \mu'(y)e^x = \lambda(y)e^x, \quad -\partial u/\partial y = -\lambda'(y)e^x = \mu(y)e^x,$$

откъдето получаваме  $\mu'(y)=\lambda(y),\ \lambda'(y)=-\mu(y).$  Следователно функциите  $\lambda(y),\ \mu(y)$  са решения на уравнението

$$\frac{d^2\varphi}{dy^2} + \varphi = 0,$$

общото решение на което е  $\varphi(y) = C_1 \cos y + C_2 \sin y$ . От началните условия получаваме  $\lambda(y) = \cos y + A_1 \sin y$ ,  $\mu(y) = B_1 \sin y$ . По-нататък, от

$$\lambda'(y) = -\sin y + A_1 \cos y = -\mu(y) = -B_1 \sin y$$

получаваме  $A_1=0,\ B_1=1.$  Следователно  $\lambda(y)=\cos y,\ \mu(y)=\sin y$  или  $u(x,y)=e^x\cos y,\ v(x,y)=e^x\sin y.$  Тогава

$$f(z) = e^x(\cos y + i\sin y) = e^x e^{iy} = e^z.$$

Ако за една аналитична функция f=u+iv е известна реалната (или имагинерната) ѝ част, т. е. функцията u (или v), то f може да бъде определена с точност до константа като се използват условията на Коши-Риман.

**Задача 2.2.8** Намерете аналитична функция f = u + iv, за която

(a) 
$$u(x,y) = 2x(1-y)$$
,

(6) 
$$u(x,y) = \operatorname{sh} x \sin y$$
,

(B) 
$$v(x,y) = \frac{y}{x^2 + y^2}$$
,  $f(2) = 0$ ,  
(r)  $u(x,y) = e^x(x\cos y - y\sin y)$ ,  $f(0) = 0$ ,

(r) 
$$u(x,y) = e^x(x\cos y - y\sin y), \quad f(0) = 0.$$

(д) 
$$v(x,y) = \frac{2\sin 2x}{e^{2y} + e^{-2y} - 2\cos 2x}, \ z \neq 0.$$

Решение. (а) От условията на Коши-Риман получаваме

$$\frac{\partial u}{\partial x} = 2(1 - y) = \frac{\partial v}{\partial y}.$$

Следователно  $v(x,y) = \int 2(1-y) \, dy = 2y - y^2 + \varphi(x)$ . По-нататък имаме, че  $\dfrac{\partial u}{\partial y}=-2x=-\dfrac{\partial v}{\partial x}=-\varphi'(x),$  откъдето следва  $\varphi'(x)=2x$  или  $\varphi(x)=x^2+C,$   $C\in\mathbb{R}.$  Тогава

$$f(z) = 2x(1-y) + i(x^2 - y^2 + 2y) + iC = iz^2 + 2z + iC.$$

(б) От условията на Коши-Риман получаваме  $\frac{\partial u}{\partial x} = \operatorname{ch} x \sin y = \frac{\partial v}{\partial y}$ Следователно  $v(x,y) = -\operatorname{ch} x \cos y + \varphi(x)$ . По-нататък получаваме

$$\frac{\partial u}{\partial y} = \operatorname{sh} x \cos y = -\frac{\partial v}{\partial x} = \operatorname{sh} x \cos y - \varphi'(x).$$

Следователно  $\varphi'(x) = 0$  или  $\varphi(x) = C, C \in \mathbb{R}$ . Получихме, че

$$v(x,y) = -\operatorname{ch} x \cos y + C$$

или

$$f(z) = \operatorname{sh} x \sin y - i \operatorname{ch} x \cos y + i C = -i \operatorname{ch} z + i C$$

(За дефиницията на ch $z,\ z\in\mathbb{C}$ , вж. Глава 2, Елементарни трансцендентни функции).

(в) От условията на Коши-Риман получаваме

$$-\frac{\partial v}{\partial x} = \frac{2xy}{(x^2 + y^2)^2} = \frac{\partial u}{\partial y}, \tag{2.2}$$

$$\frac{\partial v}{\partial y} = \frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{\partial u}{\partial x}.$$
 (2.3)

От (2.2) след интегриране по y получаваме, че

$$u(x,y) = \frac{-x}{x^2 + y^2} + \varphi(x),$$

от което след диференциране по x и като използваме (2.3), следва, че  $\varphi'(x) =$ 0. Следователно

$$f(z) = -\frac{x}{x^2+y^2} + i\frac{y}{x^2+y^2} + C = -\frac{x-iy}{x^2+y^2} + C = -\frac{1}{z} + C, \ C \in \mathbb{R}.$$

Накрая от условието f(2) = 0 получаваме

$$f(z) = \frac{1}{2} - \frac{1}{z}.$$

Отг. (г) 
$$f(z) = ze^z$$
 (д)  $f(z) = \cot z + C$ ,  $C \in \mathbb{R}$ 

**Задача 2.2.9** Нека  $x = r \cos \varphi$ ,  $y = r \sin \varphi$  (полярни координати) и нека

$$f(z) = P(r, \varphi) + iQ(r, \varphi),$$

където  $P(r,\varphi)=u(r\cos\varphi,r\sin\varphi),~~Q(r,\varphi)=v(r\cos\varphi,r\sin\varphi).$  Да се до-каже, че условията на Коши-Риман в полярни координати се записват във вида

 $\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \varphi}, \qquad \frac{\partial Q}{\partial r} = -\frac{1}{r} \frac{\partial P}{\partial \varphi}.$  (2.4)

**Решение.** Диференцирайки по r и  $\varphi$ , получаваме

$$\begin{split} \frac{\partial P}{\partial r} &= \frac{\partial u}{\partial x} \cos \varphi + \frac{\partial u}{\partial y} \sin \varphi, \\ \frac{\partial Q}{\partial \varphi} &= -r \frac{\partial v}{\partial x} \sin \varphi + r \frac{\partial v}{\partial y} \cos \varphi = r \frac{\partial u}{\partial x} \cos \varphi + r \frac{\partial u}{\partial y} \sin \varphi = r \frac{\partial P}{\partial r}, \end{split}$$

като в предпоследното равенство използвахме условията на Коши-Риман. Второто условие в (2.4) се получава по аналогичен начин.

**Задача 2.2.10** Като използвате условията (2.4), намерете аналитична функция f = P + iQ, за която

$$P = r\varphi\cos\varphi + r\ln r\sin\varphi, \quad z = x + iy = re^{i\varphi}.$$

Решение. От първото условие в (2.4) получаваме

$$\frac{\partial P}{\partial r} = \varphi \cos \varphi + \ln r \sin \varphi + \sin \varphi = \frac{1}{r} \frac{\partial Q}{\partial \varphi}.$$

Като интегрираме последното равенство относно  $\varphi$ , получаваме

$$\frac{1}{r}Q = \int (\varphi \cos \varphi + \ln r \sin \varphi + \sin \varphi) \, d\varphi = \varphi \sin \varphi - \ln r \cos \varphi + c(r),$$

т.е.

$$Q = r\varphi \sin \varphi - r \ln r \cos \varphi + C(r), \quad C(r) = rc(r).$$

За да намерим неизвестната функция C(r) използваме второто условие в (2.4), от което следва, че  $C'(r)=0\Rightarrow C=\mathrm{Const.}$ 

Задача 2.2.11  $\ ^{\spadesuit}$  Нека f(z)=P(x,y)+iQ(x,y) е дефинирана в област G, частните 'u производни  $f'_x(z)$  и  $f'_y(z)$  съществуват и са непрекъснати и  $P'^2_y+Q'^2_y\neq 0$ . Докажете, че ако f(z) трансформира кривите, които се пресичат под прав ъгъл, в също такива криви, то или f(z), или  $\bar{f}(z)$  е аналитична в G.

**Решение.** Нека  $z_0 \in G$ . Да разгледаме взаимно перпендикулярните лъчи

$$l_1: z = z_0 + te^{i\varphi}, \quad l_2: z = z_0 + ite^{i\varphi}, \quad \varphi = Const., \ t \ge 0.$$

Техните образи са кривите

$$L_1: w_1(t) = f(z_0 + te^{i\varphi}), \quad L_2: w_2(t) = f(z_0 + ite^{i\varphi}).$$

Векторите

$$w'_{1}(0) = P'_{x}(x_{0}, y_{0}) \cos \varphi + P'_{y}(x_{0}, y_{0}) \sin \varphi$$

$$+i(Q'_{x}(x_{0}, y_{0}) \cos \varphi + Q'_{y}(x_{0}, y_{0}) \sin \varphi),$$

$$w'_{2}(0) = -P'_{x}(x_{0}, y_{0}) \sin \varphi + P'_{y}(x_{0}, y_{0}) \cos \varphi$$

$$+i(-Q'_{x}(x_{0}, y_{0}) \sin \varphi + Q'_{y}(x_{0}, y_{0}) \cos \varphi)$$

лежат върху допирателните към  $L_1$  и  $L_2$  в пресечната точка  $f(z_0)$  и следователно са ортогонални. Като пресметнем тяхното скаларно произведение, получаваме

$$\begin{split} &(P_y'^2 + Q_y'^2 - P_x'^2 - Q_x'^2)\sin\varphi\cos\varphi - (P_x'P_y' + Q_x'Q_y')\sin^2\varphi \\ &+ (P_x'P_y' + Q_x'Q_y')\cos^2\varphi = 0, \end{split}$$

откъдето при  $\varphi = 0$  и  $\varphi = \pi/4$  съответно получаваме

$$P_x'P_y' + Q_x'Q_y' = 0, \quad P_x'^2 + Q_x'^2 = P_y'^2 + Q_y'^2.$$
 (2.5)

Нека  $Q'_x = -\lambda(x,y)P'_y$ . Тогава от първото уравнение в (2.5) следва, че

$$P'_x = \lambda(x, y)Q'_y$$
.

След заместване във второто уравнение в (2.5) получаваме

$$(\lambda^2 - 1)(Q_y'^2 + P_y'^2) = 0.$$

Тъй като  $Q_y'^2+P_y'^2\neq 0$ , то  $\lambda^2=1$ , т. е.  $\lambda=\pm 1$ . Функцията  $\lambda(x,y)$  е непрекъсната (защото  $Q_y'^2+P_y'^2\neq 0$ ), следователно или  $\lambda\equiv 1$  и тогава f(z) е аналитична, или  $\lambda\equiv -1$  и тогава  $\bar{f}(z)$  е аналитична.

## 2.3 Хармонични функции

**Дефиниция.** Реалнозначната функция  $\varphi(x,y)$  се нарича **хармонична** в областта  $G \subset \mathbb{C}$ , ако има непрекъснати частни производни до втори ред включително и удовлетворява уравнението на Лаплас

$$\Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0.$$

Ако функцията f(z)=u+iv е аналитична в областта G, то от уравненията на Коши-Риман следва, че реалната  $\acute{u}$  част u(x,y) и имагинерната  $\acute{u}$  част v(x,y) са хармонични функции в тази област.

Обратно, нека u(x,y) и v(x,y) са две хармонични функции, които удовлетворяват условията на Коши - Риман. Тогава функцията f(z) = u(x,y) + iv(x,y) е аналитична.

Задача 2.3.1 Нека  $u(x,y)=y^3+\alpha x^2y$ . Намерете при кои реални стойности на  $\alpha$  функцията u(x,y) е хармонична и в този случай намерете спрегнатата ѝ функция v(x,y).

 $<sup>^{1}</sup>$ Такава двойка функции се нарича **спрегната двойка хармонични функции**.

**Решение.** Тъй като u(x,y) е хармонична функция, то тя удовлетворява уравнението

$$u_{xx}'' + u_{yy}'' = 2\alpha y + 6y = 0,$$

откъдето следва, че  $\alpha=-3$  и  $u(x,y)=y^3-3x^2y$ . Сега от условията на Коши-Риман получаваме

$$u_x' = -6xy = v_y',$$

$$u_y' = 3y^2 - 3x^2 = -v_x'.$$

От първото уравнение получаваме

$$v(x,y) = -3xy^2 + C(x),$$

а от второто-

$$3u^2 - 3x^2 = 3u^2 - C'(x).$$

Следователно  $C(x) = x^3 + C$ ,  $C \in \mathbb{R}$ . Тогава

$$v(x,y) = x^3 - 3xy^2 + C.$$

Задача 2.3.2 Нека f(z) е аналитична функция. Нека  $g(x,y) = |f(x+iy)|^4$ . Ако вторите производни на  $\operatorname{Re} f$  и  $\operatorname{Im} f$  са непрекъснати, докажете, че

$$g_{xx}'' + g_{yy}'' = 16|f(x+iy)|^2|f'(x+iy)|^2.$$

**Решение.** Нека f=u+iv. Тогава  $g=|u+iv|^4=(u^2+v^2)^2,$  откъдето получаваме

$$g'_x = 2(u^2 + v^2)(2uu'_x + 2vv'_x)$$
  

$$g''_{xx} = 8(uu'_x + vv'_x)^2 + 4(u^2 + v^2)((u'_x)^2 + uu''_{xx} + (v'_x)^2 + vv''_{xx}).$$

Аналогично получаваме

$$g_{yy}^{\prime\prime} = 8(uu_y^{\prime} + vv_y^{\prime})^2 + 4(u^2 + v^2)((u_y^{\prime})^2 + uu_{yy}^{\prime\prime} + (v_y^{\prime})^2 + vv_{yy}^{\prime\prime}).$$

От условията на Коши-Риман и от факта, че функциите u и v са хармонични, получаваме

$$g_{yy}'' = 8(-uv_x' + vu_x')^2 + 4(u^2 + v^2)((v_x')^2 - uu_{xx}'' + (u_x')^2 - vv_{xx}'').$$

Тогава

$$g''_{xx} + g''_{yy} = 8(u^2 + v^2)((u'_x)^2 + (v'_x)^2) + 4(u^2 + v^2)(2(u'_x)^2 + 2(v'_x)^2)$$

$$= 16(u^2 + v^2)((u'_x)^2 + (v'_x)^2)$$

$$= 16|f|^2|f'|^2.$$

Задача 2.3.3 • Намерете всички хармонични функции от вида

(a) 
$$u(x,y) = \varphi(\frac{y}{x})$$
, (6)  $u(x,y) = \varphi(x + \sqrt{x^2 + y^2})$ .

Намерете спрегнатата функция v(x,y) и съответната аналитична функция f(z) = u + iv.

**Решение.** (a) Нека t = y/x. Имаме, че

$$u'_{x} = \varphi'(t)t'_{x}, \ u'_{y} = \varphi'(t)t'_{y},$$
  

$$u''_{xx} = \varphi''(t)(t'_{x})^{2} + \varphi'(t)t''_{xx},$$
  

$$u''_{yy} = \varphi''(t)(t'_{y})^{2} + \varphi'(t)t''_{yy}.$$

Следователно

$$u''_{xx} + u''_{yy} = \varphi''(t)[(t'_x)^2 + (t'_y)^2] + \varphi'(t)[t''_{xx} + t''_{yy}] = 0.$$

Тъй като 
$$(t'_x)^2+(t'_y)^2=rac{y^2+x^2}{x^4}$$
 и  $t''_{xx}+t''_{yy}=rac{2y}{x^3},$  то 
$$\varphi''(t)(1+t^2)+\varphi'(t)2t=0.$$

Полученото диференциално уравнение интегрираме чрез разделяне на променливите

$$\frac{\varphi''(t)}{\varphi'(t)} = -\frac{2t}{1+t^2} \Rightarrow \ln \varphi'(t) = \ln \frac{C_1}{1+t^2}$$
$$\Rightarrow \varphi'(t) = \frac{C_1}{1+t^2} \Rightarrow \varphi(t) = C_1 \operatorname{arctg} t + C_2,$$

където  $C_1$  и  $C_2$  са реални константи. Окончателно получаваме

$$u(x,y) = C_1 \operatorname{arctg} \frac{y}{x} + C_2.$$

Сега ще намерим спрегнатата функция v(x,y). От уравненията на Коши - Риман следва, че

$$u'_x = \frac{-C_1 y}{x^2 + y^2} = v'_y, \qquad u'_y = \frac{C_1 x}{x^2 + y^2} = -v'_x.$$

След интегриране на първото уравнение относно y намираме  $v(x,y)=-\frac{C_1}{2}\ln(x^2+y^2)+C(x)$ . Тогава  $v_x'=\frac{-C_1x}{x^2+y^2}+C'(x)$  и от второто уравнение следва, че C'(x)=0. Получихме, че

$$v(x,y) = -\frac{C_1}{2}\ln(x^2 + y^2) + C_3$$
, където  $C_3 \in \mathbb{R}$ .

Накрая получаваме

$$f(z) = C_1 \arctan \frac{y}{x} + C_2 - C_1 i \ln \sqrt{x^2 + y^2} + C_3 i$$
  
=  $-C_1 i \log z + C_2 + C_3 i$ 

(За дефиницията на функцията  $\log z,\ z\in\mathbb{C},$  вж. Глава 2, Елементарни трансцендентни функции).

(б) Нека  $t = x + \sqrt{x^2 + y^2}$ . Аналогично на случай (а) получаваме

$$u''_{xx} + u''_{yy} = \varphi''(t)[(t'_x)^2 + (t'_y)^2] + \varphi'(t)[t''_{xx} + t''_{yy}] = 0. \tag{2.1}$$

Тъй като  $t_x' = \frac{t}{\sqrt{x^2 + y^2}}$  и  $t_y' = \frac{y}{\sqrt{x^2 + y^2}}$ , то

$$(t'_x)^2 + (t'_y)^2 = \frac{2t}{\sqrt{x^2 + y^2}}, \qquad t''_{xx} + t''_{yy} = \frac{1}{\sqrt{x^2 + y^2}}.$$
 (2.2)

Като заместим формулите от (2.2) в (2.1), получаваме диференциалното уравнение

$$2t\,\varphi'' + \varphi' = 0,$$

което решаваме по следния начин

$$\frac{\varphi''}{\varphi'} = -\frac{1}{2t}$$
  $\Rightarrow$   $\varphi' = Ct^{-\frac{1}{2}}$   $\Rightarrow$   $\varphi = C_1\sqrt{t} + C_2,$ 

където  $C_1 = 2C, C, C_2 \in \mathbb{R}$ . Сега ще намерим спрегнатата функция v(x,y). От условията на Коши-Риман получаваме

$$u'_y = \varphi' t'_y = \frac{C_1 y}{2\sqrt{t}\sqrt{x^2 + y^2}} = -v'_x,$$

откъдето след интегриране получаваме

$$v(x,y) = -\frac{C_1 y}{2} \int \frac{dx}{\sqrt{x^2 + y^2} \sqrt{x + \sqrt{x^2 + y^2}}} = C_1 y \int d\frac{1}{\sqrt{x + \sqrt{x^2 + y^2}}}$$
$$= \frac{C_1 y}{\sqrt{t}} + C_3(y).$$

Последователно получаваме

$$v'_y = C_1 \frac{\sqrt{t} - \frac{y}{2\sqrt{t}}t'_y}{t} + C'_3(y) = u'_x = \frac{C_1}{2\sqrt{t}} \frac{t}{\sqrt{x^2 + y^2}},$$

$$C_1 \frac{\sqrt{t}}{2\sqrt{x^2 + y^2}} - C_1 \frac{2t\sqrt{x^2 + y^2} - y^2}{2t^{3/2}\sqrt{x^2 + y^2}} = C'_3(y),$$

$$C_1 \frac{(t - \sqrt{x^2 + y^2})^2 - x^2}{2t^{3/2}\sqrt{x^2 + y^2}} = C'_3(y) \implies C'_3(y) = 0 \implies v(x, y) = \frac{C_1 y}{\sqrt{t}} + C_3.$$

Тогава

$$f(z) = C_1\sqrt{t} + C_2 + C_1\frac{yi}{\sqrt{t}} + C_3i = C_1\frac{t+yi}{\sqrt{t}} + C_3i + C_2.$$

Остана да изключим t от горната формула.

$$\left(\frac{t+yi}{\sqrt{t}}\right)^2 = \frac{t^2 + 2yti - y^2}{t} = \frac{t^2 - y^2}{t} + 2yi$$
$$= \frac{2x^2 + 2x\sqrt{x^2 + y^2}}{t} + 2yi = 2x + 2yi = 2z.$$

Окончателно получаваме

$$f(z) = C_4\sqrt{z} + C_3i + C_2$$
, където  $C_4 = \sqrt{2}C_1$ .

## 2.4 Цяла линейна функция w=az+b

Дефиниция 1. Цяла линейна функция ce нарича функцията  $w=az+b,\ \kappa \bar{\sigma}\partial emo\ a,\ b\in\mathbb{C},\ a\neq 0.$ 

Цялата линейна функция изобразява комплексната равнина в себе си. Изображението w=az+b може да се разглежда като последователно прилагане на хомотетия с коефициент |a|, ротация на ъгъл  $\arg a$  и транслация, определена от вектора b.

*Щялата линейна трансформация има най-много две неподвижни точ* $\kappa u^2: z_1=\infty \ u \ z_2=b/(1-a).$  Функцията w=f(z) може да се запише във вида  $w-z_2=a(z-z_2).$ 

**Задача 2.4.1** Докажете, че линейното изображение w=az+b е еднозначно определено, ако знаем две различни точки  $z_1$  и  $z_2$  заедно c образите им  $w_1$  и  $w_2$ .

**Решение.** Линейното изображение w=az+b е еднозначно определено, ако коефициентите a и b са еднозначно определени. За да ги намерим, решаваме системата уравнения

$$w_1 = az_1 + b$$
$$w_2 = az_2 + b$$

относно неизвестните a и b. Тъй като  $z_1 \neq z_2$ , системата има единствено решение

$$a = \frac{w_1 - w_2}{z_1 - z_2}, \qquad b = \frac{w_1 z_2 - w_2 z_1}{z_2 - z_1}.$$

Задача 2.4.2 Какъв е геометричният смисъл на следните преобразования?

(a) 
$$w = z + 3i$$
 (6)  $w = z + 5$  (B)  $w = iz$ 

(г) 
$$w = e^{i\frac{\pi}{6}}z$$
 (д)  $w = 3z$  (е)  $w = \frac{1-i}{\sqrt{2}}z$ 

- (а) Транслация с 3 единици нагоре.
  - (б) Транслация с 5 единици надясно.
  - **(в)** Ротация на ъгъл  $\pi/2$ .
  - (г) Ротация на ъгъл  $\pi/6$ .
  - (д) Хомотетия с коефициент 3.
  - (e) Ротация на ъгъл  $-\pi/4$ .

Задача 2.4.3 Намерете неподвижните точки на трансформациите

(a) 
$$w = 3z + 5i$$
, (6)  $w = \frac{i}{2}(z+3)$ 

u вгъла, на който всяка от тях завърта комплексната равнина около съответната точка.

**Решение.** (a) Неподвижната точка е решението на уравнението z=3z+5i, т. е. z=-5i/2. Следователно w може да се запише във вида

$$w + \frac{5}{2}i = 3(z + \frac{5}{2}i).$$

В случая нямаме ротация, понеже  $\arg a = \arg 3 = 0$ .

**Otr.** (6) 
$$w - \frac{3i}{2-i} = \frac{i}{2}(z - \frac{3i}{2-i}), \arg a = \frac{\pi}{2}.$$

<sup>&</sup>lt;sup>2</sup>Точката  $z_0$  е неподвижна (двойна) точка за изображението w = f(z), ако  $z_0 = f(z_0)$ .

**Задача 2.4.4** Намерете цяла линейна трансформация, която преобразува върховете  $z_1$  и  $z_2$  на триъгълника с върхове  $z_1, z_2, z_3$  в средите на срещуположните страни. Определете неподвижната точка, образа на  $z_3$  и ъгъла, на който се завърта комплексната равнина.

**Решение.** Иска се  $z_1 \to (z_2+z_3)/2, \, z_2 \to (z_1+z_3)/2,$  затова решаваме системата

$$(z_2 + z_3)/2 = az_1 + b$$

$$(z_1 + z_3)/2 = az_2 + b$$

и намираме a = -1/2,  $b = (z_1 + z_2 + z_3)/2$ , т.е.

$$w = -\frac{z}{2} + \frac{z_1 + z_2 + z_3}{2}.$$

Ротацията е на ъгъл  $arg(-1/2) = \pi$  и  $w(z_3) = \frac{z_1 + z_2}{2}$ .

Задача 2.4.5 Намерете общият вид на линейните функции, които преобразуват

- (а) горната полуравнина в себе си,
- (б) горната полуравнина в долната полуравнина,
- (в) горната полуравнина в дясната полуравнина.

**Решение.** (a) Ротацията може да бъде само на ъгъл  $2k\pi$ ,  $k\in\mathbb{Z}$ , защото реалната ос трябва да се трансформира в себе си, при това така, че горната полуравнина да не отиде в долната. Това ограничава възможните линейни функции до w=az+b (a>0). Всички те, обаче, предизвикват транслация (определена от вектора b) на горната полуравнина и нейния контур (реалната права). Така че  $\mathrm{Im}\,b=0$  е необходимо и достатъчно условие горната полуравнина да остане в себе си. Крайният резултат е:  $w=az+b, \, a, \, b\in\mathbb{R}, \, a>0$ 

(6) Една от търсените трансформации е  $\tau_0: w=-z$ . Ако  $\tau: w=pz+q$  е произволно решение на нашата задача, то  $\tau_0^{-1}\tau: w=-(pz+q)$  е решение на (а) , т.е. изпълнено е, че  $-p>0, \ -q\in\mathbb{R}$ . С други думи, получаваме  $w=-az+b, \ a>0, \ b\in\mathbb{R}$ . Това е и окончателният отговор, защото тези трансформации наистина изпращат горната полуравнина в долната.

**Отг.** (в) 
$$w = -i(az + b)$$
, където  $a, b \in \mathbb{R}, a > 0$ .

**Задача 2.4.6** Намерете линейна функция w = az + b, изобразяваща ивицата  $a < Re \ z < a + h$ ,  $a, \ h \in \mathbb{R}$ , в ивицата 0 < w < 1.

**Решение.** Тъй като ивица с ширина h се изобразява в ивица с ширина 1, то съответната хомотетия трябва да е с коефициент 1/h. Двете ивици са вертикални, затова ъгълът на ротация е 0 или  $\pi$  (избираме 0). При ротация на ъгъл 0 трябва лявата граница x=a да отиде в лявата граница u=0 на образа (чрез транслация w=z-a). Окончателно намираме w=(z-a)/h и после непосредствено проверяваме, че това изображение извършва исканото действие.

#### Задача 2.4.7 Докажете, че

(a) цялата линейна трансформация запазва простото отношение на всеки три точки. (б) ако трансформацията w = f(z) запазва простото отношение на точките, то тя е цяла линейна.

**Решение. a)** Ако  $w_k = az_k + b \ (k = 1, 2, 3)$  са образите на три произволни точки  $z_1, z_2, z_3$ , то

$$(w_1, w_2, w_3) = \frac{w_3 - w_1}{w_3 - w_2} = \frac{(az_3 + b) - (az_1 + b)}{(az_3 + b) - (az_2 + b)} = \frac{z_3 - z_1}{z_3 - z_2} = (z_1, z_2, z_3).$$

б) В сила е

$$(f(z_1), f(z_2), f(z_3)) = \frac{f(z_3) - f(z_1)}{f(z_3) - f(z_2)} = \frac{z_3 - z_1}{z_3 - z_2} = (z_1, z_2, z_3)$$

за всеки три различни точки  $z_1,z_2,z_3$ . Фиксираме  $z_2$  и  $z_3$  и оставяме  $z_1=z\in\mathbb{C}$  произволно. Решаваме горното равенство относно f(z) и получаваме  $f(z)=f(z_3)-\frac{f(z_3)-f(z_2)}{z_3-z_2}(z_3-z),$  което представлява цяла линейна трисформация относно z.

**Задача 2.4.8** Докажете, че ако една цяла линейна трансформация преобразува дадена окръжност K с център  $z_0$  и радиус R в друга окръжност  $K_1$  с център  $w_0$  и радиус  $R_1$ , то тя преобразува  $z_0$  в  $w_0$ . Намерете общия вид на тази трансформация.

**Решение.** Тъй като всяка цяла линейна трансформация е суперпозиция на ротация, транслация (запазващи разстоянието между точките) и хомотетия (умножаваща разстоянието между точките с едно и също число), то равните разстояния между  $z_0$  и точките от K водят до равни разстояния между образа на  $z_0$  и точките от  $K_1$ . Това означава, че образът на  $k_1$ 0 трябва да съвпада с центъра  $k_1$ 0 на  $k_1$ 1.

Ако  $\tau$  е цяла линейна трансформация, изпращаща K в  $K_1$ , тя задължително изпраща  $z_0$  в  $w_0$  (както току-що видяхме) и коефициентът на съответната ѝ хомотетия е равен на отношението на радиусите  $R_1/R$  (защото радиус на K отива в радиус на  $K_1$ ), т. е. тя има вида

$$w - w_0 = \frac{R_1}{R} e^{i\varphi} (z - z_0), \qquad \varphi \in \mathbb{R}.$$

Лесно се вижда, че тези трансформации наистина изпращат K в  $K_1$  ( $|z-z_0|=R$  води до  $|w-w_0|=R_1$ ) и следователно това са търсените решения.

**Задача 2.4.9** Намерете цяла линейна трансформация, която преобразува кръга  $\left|z+i\right|\leq 1/2$  в кръга  $\left|z-\left(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\right)\right|\leq 1.$ 

**Ott.** 
$$w - \frac{1+i}{\sqrt{2}} = 2(z+i)$$

# 2.5 Понятие за конформност. Дробно-линейна функция $w=rac{az+b}{cz+d}$

Тук накратко ще изложим някои основни правила, по които се получава, "образно казано", графиката на аналитична функция. Съответната теория се нарича на теория на конформните изображения. Нека е зададена функция на комплексна променлива w=f(z), дефинирана в областта D в равнината (z). Множеството от значенията на f(z) ще разглеждаме в равнината (w) и означаваме c G:=f(D).

Ще отбележим, че не е очевиден алгоритъмът, който позволява да намерим образа G на областта D при изображението w=f(z). По-лесно е да се работи с криви: ако z(t) е крива в равнината z, то уравнението на образа ѝ е крива w=f(z(t)). Като правило изследването на изображения, осъществявани посредством дадена функция се извършва по следната схема: избира се (подходящо за дадената функция) семейство от криви, покриващо интересуващата ни област и се намират техните образи.

Основно свойство, което характеризира геометричните свойства на изображенията посредством аналитични функции, е понятието за конформност. Имаме следната

**Дефиниция 1.** Изображението w = f(z) се нарича конформно в точката  $z_0 \in D$ , ако запазва  $\[ \]$  вглите между кривите в точката  $z_0$  по големина и ориентация.

**Локален критерий за конформност.** Всяка аналитична функция осъществява конформно изображение във всички точки, в които производната и́ е различна от нула.

Дефиниция 2. Функцията f(z) се нарича еднолистна в областта D, ако в различни точки приема различни значения, т. е.  $f(z_1) \neq f(z_2)$  при  $z_1 \neq z_2$ .

Ако еднозначната функция  $w=f(z):D\to G$  е еднолистна в D, то съществува обратна функция  $z=\varphi(w):G\to D$ , която също е еднозначна, аналитична и еднолистна.

**Критерий за конформност.** Необходимо и достатъчно условие за конформността на изображението w=f(z) в областта D е f(z) да бъде еднолистна.

**Теорема на Риман.** Съществува аналитична функция w = f(z), изобразяваща взаимно-еднозначно (а следователно и конформно) едносвързана област D върху друга едносвързана област G при условие, че нито една от тях не съвпада с  $\mathbb{C} \setminus \{a\}$  или  $\overline{\mathbb{C}}$ , т. е. границите им съдържат повече от една точка.

Изображението е единствено, ако:

(a) Дадена точка  $z_0$  се изобразява в дадена точка  $w_0$  и линия, минаваща през  $z_0$  се завърта на даден ъгъл  $\alpha$ , т. е.

$$w_0 = f(z_0), \quad \arg f'(z_0) = \alpha.$$

(б) Точка  $z_0$  от областта D и точка  $z_1$  от границата  $\gamma$  се изобразяват съответно в точка  $w_0$  от областта G и точка  $w_1$  от границата  $\Gamma$ , m. e.

$$w_0 = f(z_0), \quad w_1 = f(z_1).$$

(в) Три гранични точки  $z_1$ ,  $z_2$ ,  $z_3$  на областта D се изобразяват в три гранични точки  $w_1$ ,  $w_2$ ,  $w_3$  на областта G, m. e.

$$w_1 = f(z_1), \quad w_2 = f(z_2), \quad w_3 = f(z_3).$$

При това, ако се движим по границата  $\gamma$  от  $z_1$  към  $z_3$  през  $z_2$  и областта D остава отляво (отдясно), то при движение по границата  $\Gamma$  от  $w_1$  към  $w_3$  през  $w_2$  областта D също остава отляво (отдясно).

 $<sup>^3</sup>$ Също така задачата за намиране на аналитична функция, изобразяваща дадена област в друга област, в общия случай може да е доста трудна.

Принцип за съответствие на границите. Нека областта D е ограничена c гладък или частично-гладък контур  $\gamma$ . Нека функцията w=f(z), аналитична в D и върху  $\gamma$ , изобразява  $\gamma$  в контур  $\Gamma$ , ограничаващ област G. При това, когато z обхожда  $\gamma$  така, че областта D остава отляво, то съответната точка w обхожда  $\Gamma$  така, че областта G също остава отляво. Тогава областта D се изобразява посредством w=f(z) в областта G взаимно-еднозначно и конформно.

Най-простото конформно изображение разгледахме в предишния параграф. Това е цялата линейна функция  $f(z)=az+b,\ a\neq 0.^4$  Сега ще разгледаме изображението

$$w = \frac{1}{z}. (2.1)$$

Hека  $z = |z|e^{i\arg z} \implies w = \frac{1}{|z|}e^{-i\arg z} \implies ,$ 

$$\arg w = -\arg z = \arg \bar{z}, \tag{2.2}$$

$$|w| = \frac{1}{|z|} = \frac{1}{|\bar{z}|}.$$
 (2.3)

Om~(2.2) следва, че  $w~u~\bar{z}$  лежат на общ лъч с център началото 0.~Om~(2.3) следва, че произведението от разстоянията на  $w~u~\bar{z}$  до точката 0~e равно на 1.~Cледователно изображението (2.1) геометрически представлява симетрия относно реалната права u~uнверсия  $^5$  относно единичната окръжност.

Нека z = x + iy и  $w = \xi + i\eta$ . За да намерим образа при изображението (2.1) на крива, зададена с уравнение в декартови координати, ще изведем формули, свързващи x и y с  $\xi$  и  $\eta$ . От

$$x + iy = z = \frac{1}{w} = \frac{1}{\xi + i\eta} = \frac{\xi - i\eta}{\xi^2 + \eta^2}$$

следва, че

$$x = \frac{\xi}{\xi^2 + \eta^2}, \qquad y = \frac{-\eta}{\xi^2 + \eta^2}.$$
 (2.4)

Да разгледаме кривата с уравнение

$$\gamma : l(x^2 + y^2) + mx + ny + p = 0.$$

Като използваме формулите (2.4), получаваме, че

$$w(\gamma) : p(\xi^2 + \eta^2) + m\xi - n\eta + l = 0.$$

Следователно при изображението (2.1) окръжност отива в окръжност (ще напомним, че правите ги разглеждаме като окръжности с безкраен радиус или като окръжности, които минават през безкрайната точка). Тъй като  $w(0) = \infty$ , то ако  $\gamma$  минава през началото 0, образът  $w(\gamma)$  е права линия.

Изображението (2.1) е конформно при  $z \neq 0$ , защото  $w'(z) = -1/z^2$ .

Дефиниция 3. Дробно-линейна (мьобиусова) трансформация ce нарича функция от euda

$$w = f(z) = \frac{az+b}{cz+d},$$

 $<sup>^4</sup>$ Изображението е конформно, защото  $f'(z) = a \neq 0$ .

 $<sup>^5</sup>$ Точките z и  $z^*$  са инверсни относно окръжност K с център т. a и радиус R, ако лежат на общ лъч с начало т. a и произведението от разстоянията им до центъра a е равно на  $R^2$ . Точките z и  $z^*$  са симетрични относно K, ако всяка права линия или окръжност, минаваща през z и  $z^*$ , е ортогонална на K. Лесно се доказва (чрез подобни триъгълници и питагоровата теорема), че горните дефиниции за инверсия и симетрия относно окръжност са еквивалентни. В частния случай, когато K е права, получаваме, че инверсията относно права е симетрия относно тази права.

където  $a, b, c, d \in \mathbb{C}$  и  $ad - bc \neq 0$  ( $\Rightarrow$  w не е константа).

От представянето  $w=\dfrac{az+b}{cz+d}=\dfrac{a}{c}+\dfrac{bc-ad}{c^2(z+d/c)}$  се вижда, че w може да се представи като суперпозиция на следните трансформации:

- (1)  $w_1 = z + d/c$  (транслация)
- (2)  $w_2 = \frac{1}{w_2}$  (mpanc $\phi$ . (2.1)) (3)  $w_3 = \frac{bc ad}{c^2}w_2$  (хомотетия и ротация) (4)  $w = a/c + w_3$  (транслация)

Следователно w изобразява окръжност в окръжност (кръгово свойство).

Инвариантност на инверсни (симетрични) точки. Всяко дробнолинейно преобразование запазва инверсните точки. C други думи, ако w =f(z) изобразява окръжността  $\gamma$  в окръжност  $\Gamma$ , то w=f(z) изобразява всяка двойка инверсни спрямо  $\gamma$  точки в двойка точки, инверсни спрямо  $\Gamma$ . В частност, ако едната от двойка инверсни относно  $\gamma$  точки отива в центъра на  $\Gamma$ , то другата отива в безкрайната точка.

**Задача 2.5.1** Да се намери образа на правата  $\operatorname{Re} z = 1$  при трансформацията w = 1/z.

**Решение.** При трансформацията w = 1/z реалната права се изобразява в реалната права. Изображението е конформно, следователно правата  $\operatorname{Re} z = 1$  се изобразява в окръжност, ортогонална на реалната права, т.е. центърът ѝ лежи върху реалната права. Освен това w(1) = 1 и  $w(\infty) = 0$ , откъдето следва, че окръжността минава през т. 1 и т. 0, т. е. това е окръжността с уравнение  $\left|w-\frac{1}{2}\right|=\frac{1}{2}.$ 

Задачата може да решим и като използуваме формулите (2.4). Уравнението на правата  $\mathrm{Re}\,z=1$  в декартови координати е x=1. От (2.4) следва, че  $\frac{\xi}{\xi^2+\eta^2}=1,$  откъдето получаваме  $\xi^2+\eta^2=\xi,$  или  $(\xi-\frac{1}{2})^2+\eta^2=\frac{1}{4}.$ 

**Задача 2.5.2** Да се намери образа на правата  ${\rm Im}\,z=1$  при трансформацията  $w=\frac{z-1}{z+1}.$ 

**Решение.** Тъй като  $w = 1 - \frac{2}{z+1}$ , то w може да се представи като суперпозиция на следните трансформации:

- (1)  $w_1 = z + 1$  (транслация)
- (2)  $w_2 = \frac{1}{w_1}$  (трансф. (2.1)) (3)  $w_3 = -2w_2$  (ротация и хомотетия)
- (4)  $w = 1 + w_3$  (транслация)

При  $w_1$  правата  ${\rm Im}\,z=1$  се изобразява в себе си. При  $w_2$  правата  ${\rm Im}\,z=1$  се изобразява в окръжността  $|w_2-\frac{i}{2}|=\frac{1}{2}$ . При  $w_3$  окръжността  $|w_2-\frac{i}{2}|=\frac{1}{2}$ 

се изобразява в окръжността  $|w_3-i|=1,$  която при w се изобразява в |w-i-1|=1.

**Задача 2.5.3** Да се намери образа на окръжността |z+1|=1 при трансформацията w=1/z.

**OTF.** 
$$\text{Re } w = -\frac{1}{2}$$

**Задача 2.5.4** Да се намери образа на окръжността |z|=2 при трансформацията w=z/(1+z).

**OTT.** 
$$\left| w - \frac{4}{3} \right| = \frac{2}{3}$$

**Задача 2.5.5** Да се намери образа на  $\operatorname{Re} z = 1$  при трансформацията w = z/(1+z).

**Ott.** 
$$\left| w - \frac{3}{4} \right| = \frac{1}{4}$$

**Задача 2.5.6** Да се намери образа на окръжсността |z|=1 при трансформацията  $w=\frac{i+z}{i-z}.$ 

**Otr.** Re w = 0

Задача 2.5.7 Да се намери образа на областта

$$\{z \in \mathbb{C} : 0 < \text{Re } z < 1, \quad \text{Im } z > 0\}$$

npu трансформацията w = 1/z.

**Отг.** Четвърти квадрант без полукръга 
$$\left|w-\frac{1}{2}\right|<\frac{1}{2}$$

Задача 2.5.8 Да се намери образа на реалната ос  ${\rm Im}\,z=0$  при дробнолинейната трансформация  $w=\dfrac{az+b}{cz+d}$  и да се определи радиусът r и центърът m на съответната окръженост.

**Решение.** Тъй като -d/c се изобразява в  $\infty$ , то реалната ос се изобразява в права, когато  ${\rm Im}(-d/c)=0$  (тогава радиусът е безкрайност, а център няма). Затова приемаме, че  ${\rm Im}(-d/c)\neq 0$ . Една от точките на окръжността е w=b/d като образ на точката z=0. За да намерим центъра, използваме факта, че той е инверсен на  $w=\infty$ . Съответните първообрази са z=-d/c и нейната инверсна (симетрична) относно реалната ос,  $z=-\bar{d}/\bar{c}$ . Така че

$$m = \frac{a(-\bar{d}/\bar{c}) + b}{c(-\bar{d}/\bar{c}) + d} = \frac{b\bar{c} - a\bar{d}}{d\bar{c} - c\bar{d}}.$$

За радиуса, като разстояние между центъра и една от точките на окръжността, получаваме

$$r = \left| m - \frac{b}{d} \right| = \left| \frac{b\bar{c} - a\bar{d}}{d\bar{c} - c\bar{d}} - \frac{b}{d} \right| = \left| \frac{(bc - ad)\bar{d}}{(d\bar{c} - c\bar{d})\bar{d}} \right| = \left| \frac{bc - ad}{d\bar{c} - c\bar{d}} \right|.$$

**Задача 2.5.9** Докажете, че уравнението на инверсията относно окръжността |z-a|=R e

$$z^* = \frac{R^2}{\bar{z} - \bar{a}} + a. \tag{2.5}$$

**Решение.** Трябва да покажем, че точката  $z^*$ , определена с (2.5), удовлетворява геометричната дефиниция за инверсия относно окръжност. От (2.5) получаваме  $(z^*-a)(\bar{z}-\bar{a})=R^2$ , откъдето следва, че  $|z^*-a||\bar{z}-\bar{a}|=R^2$  и  $\arg(z^*-a)+\arg(\bar{z}-\bar{a})=\arg R^2=0$ . Тъй като  $\arg(\bar{z}-\bar{a})=-\arg(z-a)$ , то  $\arg(z^*-a)=\arg(z-a)$ . Следователно z и  $z^*$  лежат на общ лъч с начало т. a.

Задача 2.5.10 Да се намери общия вид на дробно-линейните трансформации, които изобразяват горната полуравнина Im z>0 върху единичния кръг |w|<1.

**Решение.** Нека w(z) е дробно–линейна трансформация, която изобразява горната полуравнина  ${\rm Im}\,z>0$  върху единичния кръг |w|<1. Тогава контурът на областта  ${\rm Im}\,z=0$  се изобразява в единичната окръжност |w|=1. При това съществува т.  $z_0$ ,  ${\rm Im}\,z_0>0$ , такава че  $w(z_0)=0$ . Инверсната на  $z_0$  точка относно реалната права,  $z_0^*=\bar{z}_0$ , ще се изобрази в точка, инверсна на т. 0 относно единичната окръжност, т.е. в безкрайната точка. Следователно  $w(\bar{z}_0)=\infty$ . Тогава  $w(z)=K\frac{z-z_0}{z-\bar{z}_0},\ K\in\mathbb{C}$ . Сега ще определим K, като използуваме, че ако z=x е реално число, то |w(z)|=1. Имаме, че  $|K|\frac{|x-z_0|}{|x-\bar{z}_0|}=1$ , откъдето следва, че |K|=1 или  $K=e^{i\alpha}$ . Следователно

$$w(z) = e^{i\alpha} \frac{z - z_0}{z - \bar{z}_0}, \quad \alpha \in \mathbb{R}, \text{ Im } z_0 > 0.$$

Непосредствено се проверява, че трансформации от този вид са решение на задачата.

**Задача 2.5.11** Да се намери общия вид на дробно-линейните трансформации, които изобразяват единичния кръг |z|<1 върху единичния кръг |w|<1.

**Решение.** Нека w(z) е дробно—линейна трансформация, която изобразява единичния кръг |z|<1 върху единичния кръг |w|<1. Тогава контурът на областта |z|=1 се изобразява върху единичната окръжност |w|=1. При това съществува точка  $z_0,\ |z_0|<1$ , такава че  $w(z_0)=0$ . Инверсната на  $z_0$  точка относно единичната окръжност,  $z_0^*=\frac{1}{\bar{z}_0}$ , ще се изобрази в точка, инверсна на т. 0 относно единичната окръжност, т.е. в безкрайната точка. Следователно  $w(\frac{1}{\bar{z}_0})=\infty$ . Тогава  $w(z)=K\frac{z-z_0}{z-\frac{1}{\bar{z}_0}},\ K\in\mathbb{C}$ . Сега ще определим K, като използуваме, че ако |z|=1, то |w(z)|=1. Имаме, че

$$1 = |K| \frac{|z - z_0|}{|z - \frac{1}{\bar{z}_0}|} = |K| \frac{|z - z_0|}{|\frac{1}{z} - \frac{1}{\bar{z}_0}|} = |K| |z_0|,$$

откъдето следва, че  $|K|=\frac{1}{|z_0|}$  или  $K=\frac{1}{|z_0|}e^{i\alpha},\ \alpha\in\mathbb{R}.$  Следователно

$$w(z) = e^{i\alpha} \frac{z - z_0}{\bar{z}_0 z - 1}, \qquad \alpha \in \mathbb{R}, \ |z_0| < 1.$$

Непосредствено се проверява, че това са наистина решения на задачата.

**Задача 2.5.12** Да се намери дробно-линейна трансформация, която преобразува непресичащите се окръжности  $C_1:|z-a_1|=r_1$  и  $C_2:|z-a_2|=r_2$  в концентрични окръжности с център точката 0.

**Решение.** Търсим точки z и  $z^*$ , инверсни едновременно спрямо  $C_1$  и  $C_2$ . За целта решаваме системата уравнения

$$z^* = \frac{r_1^2}{\bar{z} - \bar{a}_1} + a_1$$
$$z^* = \frac{r_2^2}{\bar{z} - \bar{a}_2} + a_2.$$

Тя се свежда до квадратно уравнение относно  $\overline{z}$ . От двете му решения получаваме двойката инверсни точки z и  $z^*$ , след което изобразяваме  $z\to 0$  и  $z^*\to \infty$ .

Задача 2.5.13 Да се намери дробно-линейна трансформация, преобразуваща в концентрични окръжности

(a) 
$$|z| = 1$$
  $u$   $|z - \frac{1}{4}| = \frac{1}{4}$ 

(6) 
$$|z| = 1 \ u \operatorname{Re} z = 2$$

Otr. 
$$z, z^* = 2 \pm \sqrt{3}, \ w_1 = \frac{z - (2 + \sqrt{3})}{z - (2 - \sqrt{3})}, \ w_2 = \frac{z - (2 - \sqrt{3})}{z - (2 + \sqrt{3})}$$

Всяка област, чийто контур се състои от две непресичащи се окръжности, може да се изобрази еднолистно и конформно във венец между две концентрични окръжсности с постоянно отношение  $\mu$  на радиусите на външната и вътрешната окръжсност. Числото  $\mu$  ще наричаме модул на областта.

**Задача 2.5.14** Намерете модула на областта, контурът на която се състои от окръжностите  $|z-i|=\frac{1}{2}$  и  $|z+i|=\frac{1}{2}$ .

**Решение.** Първо намираме точки z и  $z^*$ , инверсни относно двете окръжности едновременно. За целта решаваме системата уравнения

$$z^* = \frac{1}{4(\bar{z} - i)} - i$$
$$z^* = \frac{1}{4(\bar{z} + i)} + i,$$

откъдето намираме  $z, z^* = \pm \frac{\sqrt{3}}{2}i$ . Дробно-линейната трансформация  $w = \frac{1}{2}i$ 

 $\frac{z-\frac{\sqrt{3}}{2}i}{z+\frac{\sqrt{3}}{2}i}$  изобразява областта във венец между две концентрични окръж-

ности, като  $|z-i|=\frac{1}{2}$  се изобразява във вътрешния контур на венеца, а  $|z+i|=\frac{1}{2}$  –във външния. Тогава

$$\mu = \left| \frac{-\frac{i}{2} - \frac{\sqrt{3}}{2}i}{-\frac{i}{2} + \frac{\sqrt{3}}{2}i} \right| : \left| \frac{\frac{i}{2} - \frac{\sqrt{3}}{2}i}{\frac{i}{2} + \frac{\sqrt{3}}{2}i} \right| = \frac{(1 + \sqrt{3})^2}{(1 - \sqrt{3})^2} = 7 + 4\sqrt{3}.$$

**OTT.** 
$$\mu = 7 + 4\sqrt{3}$$

Задача 2.5.15 Намерете модула на областта, контурът на която се съсmou от окръжностите |z|=1 и  $|z-1|=\frac{5}{2}$ .

**Otr.** 
$$z, z^* = 4, \frac{1}{4}; \ \mu = 2$$

**Задача 2.5.16** ♠ Областта с контур  $\operatorname{Re} z = 0$  u |z - h| = 1, h > 1 има модул  $\mu = 2$ . Намерете h.

**Решение.** Тъй като  $\mu = 2$ , то можем да намерим дробно-линейна трансформация, която изобразява областта във венеца 1 < |w| < 2. За целта намираме точки z и  $z^*$ , които са инверсни едновременно относно правата  $\operatorname{Re} z = 0$  и окръжността |z - h| = 1. Те удовлетворяват уравнението

$$\frac{1}{\bar{z} - h} + h = -\bar{z},$$

откъдето получаваме  $z,\,z^*=\pm\sqrt{h^2-1}.$  Тогава една от възможните дробнолинейни трансформации е  $w=K\frac{z-\sqrt{h^2-1}}{z+\sqrt{h^2-1}}.$  Тя изобразява окръжността |z-h|=1 в |w|=1 и правата  $\operatorname{Re} z=0$  в |w|=2. Тогава |w(0)|=2=|K| и  $|w(h+1)|=1=|K|rac{h+1+\sqrt{h^2-1}}{h+1-\sqrt{h^2-1}}.$  Като решим уравнението

$$2\frac{h+1+\sqrt{h^2-1}}{h+1-\sqrt{h^2-1}}=1,$$

получаваме  $h=\frac{5}{4}.$  Тогава  $w=2e^{i\alpha}\frac{4z-3}{4z+3},\ \alpha\in\mathbb{R}.$  Другата възможност е дробно-линейната трансформация

$$w = K \frac{z + \sqrt{h^2 - 1}}{z - \sqrt{h^2 - 1}}$$
. Случаят се разглежда аналогично.

OTF. 
$$h = \frac{5}{4}, \ w_1(z) = 2e^{i\alpha}\frac{4z-3}{4z+3}; \ w_2(z) = e^{i\alpha}\frac{4z+3}{4z-3}, \ \alpha \in \mathbb{R},$$

#### 2.6 Елементарни трансцендентни функции.

Експоненциалната функция  $e^z$ ,  $z=x+iy\in\mathbb{C}$ , дефинирахме в Глава 1, зад. 1.2.6, като границата при  $n \to \infty$  на редицата с общ член  $\left(1 + \frac{z}{n}\right)^n$ . Доказахме, че

$$e^z := \lim_{n \to \infty} \left( 1 + \frac{z}{n} \right)^n = e^x (\cos y + i \sin y).$$

По-нататок в Глава 2, зад. 2.2.7, дадохме друга еквивалентна дефиниция на  $e^z := e^x(\cos y + i\sin y)$  – като решение на диференциалното уравнение

$$\frac{df}{dz} = f(z), \quad f(0) = 1.$$

Сега ще дефинираме същата функция по още един начин.

Дефиниция 1. Експоненциалната функция  $e^z$  е сума на абсолютно сходящия в цялата комплексна равнина степенен ред

$$e^z = 1 + z + \frac{z^2}{2!} + \ldots + \frac{z^n}{n!} + \ldots$$

От дефиниция 1 след почленно диференциране получаваме, че

$$\frac{d}{dz}e^z = e^z \quad \text{за всяко } z \in \mathbb{C}.$$

Също така е очевидно, че  $e^0 = 1$ . Следователно дефиниция 1 е еквивалентна на предишните две дефиниции.

Ще докажем следните основни свойства на функцията  $e^z$ :

- (a)  $e^z \neq 0$  за всяко  $z \in \mathbb{C}$ ,
- (6)  $e^z = 1 \iff z = 2k\pi i, \ k \in \mathbb{Z},$
- (в)  $e^z e^z 2\pi i nepuoduчна, m. e. e^{z+2\pi i} = e^z$  за всяко  $z \in \mathbb{C}$ ,
- (г)  $e^{z_1}.e^{z_2} = e^{z_1+z_2}$  (събирателна теорема).

**Доказателство.** (a) Тъй като  $e^x \neq 0$  за всяко  $x \in \mathbb{R}$  и  $\cos y$  и  $\sin y$ ,  $y \in \mathbb{R}$ , не са едновременно нули, то  $e^z = e^x(\cos y + i \sin y) \neq 0$ , за всяко  $z \in \mathbb{C}$ .

(б) , (в) От 
$$e^z=e^x(\cos y+i\sin y)$$
 следва, че

$$|e^z| = e^x$$
,  $\arg e^z = y + 2k\pi$ ,  $k \in \mathbb{Z}$ .

Следователно  $e^z=1\iff x=0,\ y=2k\pi,\ \text{т.e.}\ z=2k\pi i,\ k\in\mathbb{Z}.$  Също така  $e^{z_1}=e^{z_2}\iff z_1=z_2+2k\pi i,\ k\in\mathbb{Z},$  откъдето получаваме, че

$$e^{z+2\pi i}=e^z$$
 за всяко  $z\in\mathbb{C}$ ,

т. е.  $e^z$  е  $2\pi i$ -периодична функция.

(г) Нека  $z_k = x_k + i y_k$ , k = 1, 2. Тогава е изпълнено, че

$$e^{z_1} \cdot e^{z_2} = e^{x_1} (\cos y_1 + i \sin y_1) e^{x_2} (\cos y_2 + i \sin y_2)$$
  
=  $e^{x_1 + x_2} (\cos(y_1 + y_2) + i \sin(y_1 + y_2)) = e^{z_1 + z_2}$ .

Събирателната теорема може да се докаже и като умножим почленно двата реда

$$e^{z_1} = \sum_{n=0}^{\infty} \frac{z_1^n}{n!}, \quad e^{z_2} = \sum_{n=0}^{\infty} \frac{z_2^n}{n!}$$

по правилото на Коши-Мертенс (вж. Глава 4, Ред на Тейлър).

Сега ще докажем забележителната формула на Ойлер, свързваща експоненциалната с тригонометричните функции.

Формула на Ойлер.

$$e^{iy} = \cos y + i \sin y, \quad y \in \mathbb{R}$$
 (2.1)

**Доказателство.** Нека z = iy. От дефиниция 1 следва, че

$$e^{iy} = 1 + \frac{iy}{1!} + \frac{(iy)^2}{2!} + \frac{(iy)^3}{3!} + \dots$$

Като отделим реалната и имагинерна части, получаваме

$$e^{iy} = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} - \dots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!} + \dots\right)$$
  
=  $\cos y + i\sin y$ ,

тъй като последните два реда представляват тейлъровите развития около нулата съответно на  $\cos y$  и на  $\sin y$ .

От формулата на Ойлер (2.1) следват формулите

$$\sin y = \frac{e^{iy} - e^{-iy}}{2i}, \quad \cos y = \frac{e^{iy} + e^{-iy}}{2}, \ y \in \mathbb{R},$$

от които по естествен начин следва дефиницията на комплексните тригонометрични функции.

Дефиниция 2. За всяко  $z\in\mathbb{C}$  тригонометричните функции  $\sin z,\;\cos z$  се дефинират чрез формулите

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

От дефиниция 2 следва, че  $\sin z$  и  $\cos z$  са аналитични функции и

$$\frac{d}{dz}\sin z = \frac{1}{2i}(ie^{iz} - (-i)e^{-iz}) = \cos z.$$

Аналогично се получава, че  $\frac{d}{dz}\cos z = -\sin z.$  Също така от дефиниция 2 следва формулата

$$e^{iz} = \cos z + i \sin z, \ z \in \mathbb{C},$$

която е обобщение на формулата на Ойлер (2.1).

Дефиниция 3. Функциите  $\operatorname{tg} z$  и  $\operatorname{cotg} z$  се определят с равенствата

$$\operatorname{tg} z = \frac{\sin z}{\cos z}, \quad \operatorname{cotg} z = \frac{\cos z}{\sin z}.$$

Изпълнено е, че

$$\frac{d}{dz} \operatorname{tg} z = \frac{1}{\cos^2 z}, \quad \frac{d}{dz} \operatorname{cotg} z = -\frac{1}{\sin^2 z}.$$

Чрез естественото обобщение на дефинициите в реалния случай се дефинират и комплексните хиперболични функции.

Дефиниция 4. Хиперболичните функции  $\sh z, \, \ch z, \, \th z$  и  $\coth z$  се дефинират с формулите

$$\operatorname{ch} z = \frac{e^z + e^{-z}}{2}, \qquad \operatorname{sh} z = \frac{e^z - e^{-z}}{2}$$

$$\operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z}, \qquad \operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z}.$$

Тригонометричните и хиперболичните функции са свързани със следните съотношения:

$$\sin z = -i \operatorname{sh} iz$$
,  $\cos z = \operatorname{ch} iz$   
 $\operatorname{tg} z = -i \operatorname{th} iz$ ,  $\operatorname{cotg} z = i \operatorname{cth} iz$ .

Дефиниция 5. Логаритмичната функция  $\log z$  е обратна на експоненциалната функция, т. е.  $w=\log z$  е всяко решение на уравнението  $e^w=z.$ 

Тъй като  $e^w \neq 0$ , ще предполагаме, че  $z \neq 0$ . Сега ще намерим  $\log z$  в явен вид. Нека w=u+iv и  $z=|z|e^{i\arg z}, \, -\pi < \arg z < \pi.$  Тогава от

$$e^{u+iv} = e^u e^{iv} = |z|e^{i\arg z}$$

получаваме

$$(1) e^u = |z| \implies u = \ln|z|,$$

(2) 
$$v = \arg z + 2k\pi, \ k \in \mathbb{Z}.$$

Следователно за всяко  $z \in \mathbb{C}, z \neq 0$ ,

$$w = \operatorname{Log} z = \ln|z| + i(\operatorname{arg} z + 2k\pi), \quad k \in \mathbb{Z}, \quad -\pi < \operatorname{arg} z < \pi.$$

Очевидно  $w=\operatorname{Log} z$  е многозначна функция. Ако фиксираме някое k, получаваме еднозначен клон на  $\operatorname{Log} z$ , който означаваме с  $\operatorname{Log}_k z$ . Еднозначният клон  $\operatorname{Log}_0 z$  се нарича **главна стойност** на  $\operatorname{Log} z$ . Изпълнено е, че

$$\frac{d}{dz} \operatorname{Log}_k z = \frac{1}{z}, \ k \in \mathbb{Z}.$$

Ще отбележим още, че равенството

$$Log z_1 z_2 = Log z_1 + Log z_2$$

е вярно в смисъл на равенство между множества (в него участват подмножества на  $\mathbb{C}$ ).

Дефиниция 6. Нека  $z,\,\alpha\in\mathbb{C},\,z\neq0.$  Степенна функция дефинираме с формулата

$$\mathbf{z}^{\alpha} = e^{\alpha \operatorname{Log} z} = e^{\operatorname{Log}_0 z} e^{2k\alpha\pi i}.$$

Възможни са три случая в зависимост от  $\alpha$ :

1. Нека  $\alpha = m \in \mathbb{Z}$ . Тогава  $e^{2km\pi i} = 1$ , следователно  $z^m = e^{m\mathrm{Log}_0\,z}$  е еднозначна функция.

- 2. Нека  $\alpha=\frac{p}{q}$  е несъкратима дроб, q>0. Тогава  $e^{2k\frac{p}{q}\pi i}$  приема точно q различни стойности (това са корените на уравнението  $z^q=1$ ). Следователно  $z^{\frac{p}{q}}=e^{\frac{p}{q}\mathrm{Log}_0}ze^{i\frac{2kp\pi}{q}},\;k=0,1,\ldots,q-1$  е q-значна функция.
- 3. Нека  $\alpha$  не е рационално число. Тогава  $e^{2k\alpha\pi i}$  приема безбройно много различни стойности. Следователно функцията  $z^{\alpha}$  е безбройно многозначна.

Равенството  $z_1^{\alpha}z_2^{\alpha}=(z_1z_2)^{\alpha}$  също е вярно в смисъл на равенство между множества.

Дефиниция 7. Функцията  $w=\arcsin z$  е обратна на функцията  $\sin w$ , т. е.  $w=\arcsin z$  е всяко решение на уравнението  $z=\sin w$ .

От уравнението

$$z = \sin w = \frac{e^{iw} - e^{-iw}}{2i}$$

получаваме

$$e^{2iw} - 2ize^{iw} - 1 = 0.$$

Като решим квадратното уравнение относно  $e^{iw}$ , получаваме

$$e^{iw} = iz + (1 - z^2)^{1/2}, \ z \neq \pm 1,$$
 (2.2)

където функцията  $(1-z^2)^{1/2}, z \neq \pm 1$ , е двузначна. Като логаритмуваме двете страни на (2.2), получаваме

$$\arcsin z = -i \operatorname{Log}(iz + \sqrt{1 - z^2}), \ z \neq \pm 1.$$

За да отделим еднозначен клон на многозначната функция  $\arcsin z$ , първо избираме еднозначен клон на квадратния корен и след това избираме еднозначен клон на логаритъма.

Аналогично се получават формулите за обратните тригонометрични функции  $\arccos z$ ,  $\operatorname{arctg} z$ ,  $\operatorname{arccotg} z$ ,

$$\arccos z = -i \operatorname{Log}(z + \sqrt{z^2 - 1}), \ z \neq \pm 1,$$
 
$$\operatorname{arctg} z = -\frac{i}{2} \operatorname{Log} \frac{1 + iz}{1 - iz} = \frac{i}{2} \operatorname{Log} \frac{i + z}{i - z}, \ z \neq \pm i,$$
 
$$\operatorname{arccotg} z = -\frac{i}{2} \operatorname{Log} \frac{z + i}{z - i}, \ z \neq \pm i.$$

**Задача 2.6.1** Да се намерят реалната и имагинерна части на функцията w=u+iv, където

(a) 
$$w = 2z - 1$$
, (b)  $w = z + z^2$ , (b)  $w = \frac{1}{z}$ , (c)  $w = e^{-z}$ , (d)  $w = e^{z^2}$ .

Решение.

(a) 
$$w = 2z - 1 = 2(x + iy) - 1 = (2x - 1) + 2iy$$
  
 $\Rightarrow u = 2x - 1, v = 2y,$ 

(6) 
$$w = z + z^2 = (x + iy) + (x + iy)^2 = (x + iy) + (x^2 - y^2 + 2ixy)$$
  
 $\Rightarrow u = x^2 - y^2 + x, \ v = (2x + 1)y,$ 

**(B)** 
$$w = \frac{1}{z} = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} \Rightarrow u = \frac{x}{x^2+y^2}, v = \frac{-y}{x^2+y^2},$$

(r) 
$$w = e^{-z} = e^{-(x+iy)} = e^{-x}(\cos y - i\sin y)$$
  
 $\Rightarrow u = e^{-x}\cos y, \ v = -e^{-x}\sin y,$ 

(д) 
$$w = e^{z^2} = e^{(x+iy)^2} = e^{x^2 - y^2 + 2ixy}$$
  
 $\Rightarrow u = e^{x^2 - y^2} \cos 2xy, \ v = e^{x^2 - y^2} \sin 2xy.$ 

**Задача 2.6.2** Пресметнете  $\sin z \ npu \ z = \pi + i \ln(2 + \sqrt{5}).$ 

Решение.

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{i(x+iy)} - e^{-i(x+iy)}}{2i} = \frac{e^{-y+ix} - e^{y-ix}}{2i}$$
$$= \frac{(e^{-y} - e^y)\cos x + i(e^{-y} + e^y)\sin x}{2i}.$$

Тъй като  $z=\pi+i\ln(2+\sqrt{5})=x+iy,$  имаме

$$\sin\left(\pi + i\ln(2 + \sqrt{5})\right) = \frac{e^{-\ln(2 + \sqrt{5})} - e^{\ln(2 + \sqrt{5})}}{2i}\cos\pi$$
$$= \frac{2 + \sqrt{5} - \frac{1}{2 + \sqrt{5}}}{2i} = \frac{2 + \sqrt{5} + 2 - \sqrt{5}}{2i} = -2i.$$

Задача 2.6.3 Да се намерят модултт и главното значение на аргумента на дадените функции в указаните точки.

(a) 
$$w = \cos z$$
,  $z = \frac{\pi}{2} + i \ln 2$ ,  
(6)  $w = \sin z$ ,  $z = 1 + i \frac{\pi}{2}$ ,

(6) 
$$w = \sin z, \qquad z = 1 + i\frac{\pi}{2},$$

(B) 
$$w = ze^z$$
,  $z = \pi i$ ,

(r) 
$$w = \operatorname{th} z$$
,  $z = \pi i$ .

Решение.

(a) 
$$\cos(\frac{\pi}{2} + i \ln 2) = \frac{e^{i(\frac{\pi}{2} + i \ln 2)} + e^{-i(\frac{\pi}{2} + i \ln 2)}}{2}$$
  
 $= \frac{i e^{-\ln 2} - i e^{\ln 2}}{2} = \frac{i}{2} (\frac{1}{2} - 2) = -\frac{3}{4}i$   
 $\Rightarrow |w| = \frac{3}{4}, \arg w = -\frac{\pi}{2}.$ 

(B) 
$$ze^z = \pi i e^{\pi i} = \pi i (-1) = \pi e^{-i\pi/2}$$
  $\Rightarrow |w| = \pi, \text{ arg } w = -\pi/2.$ 

Задача 2.6.4 Да се намерят логаритмите на следните числа

(a) 
$$e$$
, (b)  $i$ , (b)  $-1-i$ , (c)  $3-2i$ .

Решение.

(a) Log 
$$e = \ln |e| + i(\arg e + 2k\pi) = 1 + 2k\pi i, \ k \in \mathbb{Z}.$$

(6) 
$$\operatorname{Log} i$$
  $= \ln|i| + i(\operatorname{arg} i + 2k\pi) = i\left(\frac{\pi}{2} + 2k\pi\right), \ k \in \mathbb{Z}.$ 

(B) 
$$\log(-1-i) = \ln|-1-i| + i(\arg(-1-i) + 2k\pi)$$
  
=  $\ln\sqrt{2} + i(-\frac{3\pi}{4} + 2k\pi), k \in \mathbb{Z}.$ 

(r) 
$$\log (3-2i) = \ln |3-2i| + i [\arg (3-2i) + 2k\pi]$$
  
 $= \ln \sqrt{13} + i (\arctan (-\frac{2}{3}) + 2k\pi)$   
 $= \ln \sqrt{13} + i (-\arctan (\frac{2}{3} + 2k\pi), k \in \mathbb{Z}.$ 

Задача 2.6.5 Да се намерят модулите и аргументите на числата

(a) 
$$z = 10^i$$
, (6)  $z = 3^{2-i}$ .

Решение.

(a) 
$$10^i = e^{i \text{Log } 10} = e^{i(\ln 10 + 2k\pi i)} = e^{-2k\pi + i \ln 10}$$
  
 $\Rightarrow |z| = e^{-2k\pi}, \text{ arg } z = \ln 10 + 2k\pi, \ k \in \mathbb{Z}.$ 

(6) 
$$3^{2-i} = e^{(2-i)\operatorname{Log} 3} = e^{(2-i)(\ln 3 + 2k\pi i)} = e^{2\ln 3 + 2k\pi + i(4k\pi - \ln 3)}$$
  
 $\Rightarrow |z| = 9e^{2k\pi}, \operatorname{arg} z = 2k\pi - \ln 3, \ k \in \mathbb{Z}.$ 

Задача 2.6.6 Намерете

(a) 
$$z = i^i$$
, (b)  $z = i^{\frac{1}{i}}$ , (b)  $z = 1^i$ ,

(a) 
$$z = i^i$$
, (b)  $z = i^{\frac{1}{4}}$ , (c)  $z = \left(\frac{1+i}{\sqrt{2}}\right)^{2i}$ , (d)  $z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{1+i}$ , (e)  $z = (1-i)^{3-3i}$ .

**Решение.** Навсякъде в решението  $k \in \mathbb{Z}$ .

(a) 
$$i^i = e^{i\text{Log }i} = e^{-(\frac{\pi}{2} + 2k\pi)}$$
.

(6) 
$$i^{\frac{1}{i}}$$
  $= i^{-i} = e^{-i\text{Log }i} = e^{\frac{\pi}{2} + 2k\pi}.$ 

(B) 
$$1^i = e^{i\text{Log }1} = e^{-2k\pi}$$
.

(r) 
$$\left(\frac{1+i}{\sqrt{2}}\right)^{2i} = e^{2i\text{Log}\frac{1+i}{\sqrt{2}}} = e^{-2(\frac{\pi}{4}+2k\pi)}.$$

(д) 
$$\left(\frac{\sqrt{3}+i}{2}\right)^{1+i} = e^{(1+i)\operatorname{Log}\frac{\sqrt{3}+i}{2}} = e^{(1+i)i(\frac{\pi}{6}+2k\pi)} = e^{(i-1)(\frac{\pi}{6}+2k\pi)}.$$

(e) 
$$(1-i)^{3-3i} = e^{(3-3i)\text{Log}\,(1-i)} = e^{(3-3i)[\ln\sqrt{2} + i(-\frac{\pi}{4} + 2k\pi)]}$$

$$= e^{3\ln\sqrt{2} + 3(-\frac{\pi}{4} + 2k\pi) - 3i(\ln\sqrt{2} + \frac{\pi}{4} - 2k\pi)}$$

$$= 2\sqrt{2}e^{3(-\frac{\pi}{4} + 2k\pi) - 3i(\ln\sqrt{2} + \frac{\pi}{4} - 2k\pi)}$$

$$= -2(1+i)e^{3(-\frac{\pi}{4} + 2k\pi - i\ln\sqrt{2})}.$$

**Задача 2.6.7** Да се реши уравнението  $\sin z = 3$ .

**Решение.** За да решим уравнението  $\sin z = \frac{e^{iz} - e^{-iz}}{2i} = 3$ , полагаме  $u=e^{iz}$ . Получаваме уравнението  $u^2-6iu-1=0$ , чиито решения са u=0 $i(3\pm2\sqrt{2})$ . Тогава  $e^{iz}=i(3\pm2\sqrt{2}) \implies iz=\text{Log}\left(i(3\pm2\sqrt{2})\right) \implies$ 

$$z = -i\left(\ln(3 \pm 2\sqrt{2}) + i\left(\frac{\pi}{2} + 2k\pi\right)\right) = \frac{\pi}{2} + 2k\pi - i\ln(3 \pm 2\sqrt{2}), \ k \in \mathbb{Z}.$$

Задача 2.6.8 Да се решат уравненията

(a) 
$$e^{-z} + 1 = 0$$
, (6)  $e^{-z} + i = 0$ ,

(B) 
$$4\cos z + 5 = 0$$
, (r)  $e^{2z} + 2e^z - 3 = 0$ .

(д) 
$$\text{Log}(z+i) = 0$$
, (e)  $\text{Log}(i-z) = 1$ .

Решение.

(a) 
$$e^{-z} = -1 \Rightarrow z = -\text{Log}(-1) = -i(\pi + 2k\pi) = -\pi(2k+1)i, \ k \in \mathbb{Z}.$$

(6) 
$$e^{-z} = -i \implies z = -\text{Log}(-i) = -i(-\pi/2 + 2k\pi) = -\frac{\pi(4k-1)}{2}i, \ k \in \mathbb{Z}.$$

- (в) В уравнението  $4\cos z + 5 = 2(e^{iz} + e^{-iz}) + 5 = 0$  полагаме  $u = e^{iz}$ . Получаваме уравнението  $2u^2 + 5u + 2 = 0$ , чиито решения са  $u = \frac{-5 \pm 3}{4} \ \Rightarrow \ z = -i \operatorname{Log} \frac{-5 \pm 3}{4} = -i \left( \ln \left| \frac{-5 \pm 3}{4} \right| + i (\pi + 2k\pi) \right)$  $= (2k+1)\pi i \ln \left| \frac{-5 \pm 3}{4} \right| = (2k+1)\pi \pm i \ln 2, \ k \in \mathbb{Z}.$
- (г) При  $u=e^z$  имаме  $u^2+2u-3=0,$  чинто решения са  $u_1=1,\ u_2=-3\ \Rightarrow$   $z_{2k}=\mathrm{Log}\,1=2k\pi i,\ z_{2k+1}=\mathrm{Log}\,(-3)=(2k+1)\pi i+\ln 3,\ k\in\mathbb{Z}.$
- (д)  $z + i = e^0 = 1 \implies z = 1 i$
- (e)  $i z = e^1 \implies z = i e$ .

**Задача 2.6.9** Да се реши уравнението  $\cos z = 2i$ .

**O**TF. 
$$z = \pm \pi/2 + 2k\pi \mp i \ln(\sqrt{5} + 2), k \in \mathbb{Z}.$$

**Задача 2.6.10** Да се запише в алгебричен вид числото  $w = \arcsin \frac{\pi}{3}i$ .

Решение.

$$w = -i\operatorname{Log}\left(-\pi/3 + \sqrt{1 + \pi^2/9}\right) = -i\left(\ln(-\pi/3 + \sqrt{1 + \pi^2/9}) + 2k\pi i\right)$$
$$= 2k\pi - i\left(\ln(-\pi/3 + \sqrt{1 + \pi^2/9}), \ k \in \mathbb{Z}.$$

**Задача 2.6.11** Да се запише в алгебричен вид числото  $w = \arctan(1+i)$ .

Решение.

$$w = \frac{i}{2} \operatorname{Log} \frac{i+1+i}{i-1-i} = \frac{i}{2} \operatorname{Log} (-1-2i) = \frac{i}{2} (\ln \sqrt{5} + i(\operatorname{arctg} 2 + 2k\pi))$$
$$= -\frac{1}{2} \operatorname{arctg} 2 + 2k\pi + \frac{i}{2} \ln \sqrt{5}, \ k \in \mathbb{Z}.$$

## 2.7 Редове от комплексни числа. Степенни редове

Дефиниция 1. Безкрайният ред  $\sum_{n=1}^{\infty} c_n$ ,  $c_n \in \mathbb{C}$ , се нарича сходящ, ако редицата от парциалните му суми  $S_N = \sum_{n=1}^N c_n$  е сходяща при  $N \to \infty$ . Границата на редицата се нарича сума на реда.

Дефиниция 2. Безкрайниям ред  $\sum_{n=1}^{\infty} c_n$  се нарича абсолютно сходящ, ако е сходящ редът  $\sum_{n=1}^{\infty} |c_n|$ . Ако редът е сходящ, но не е абсолютно сходящ, се нарича условно сходящ.

B сила са следните твърдения, повечето от които са добре известни от реалния анализ:

- Всеки абсолютно сходящ ред е сходящ.
- Ако  $c_n = a_n + ib_n \ (a_n, b_n \in \mathbb{R})$ , то редът  $\sum_{n=1}^{\infty} c_n$  е сходящ (абсолютно сходящ) тогава и само тогава, когато са сходящи (абсолютно сходящи) и двата реда  $\sum_{n=1}^{\infty} a_n \ u \sum_{n=1}^{\infty} b_n$ .
- Редът  $\sum_{n=1}^{\infty} c_n$  е абсолютно сходящ, ако е изпълнено едно от следните условия:
  - (a)  $|c_n| < M \rho^n$  при  $n > n_0; n_0 \in \mathbb{N}, M > 0; 0 < \rho < 1$  (мажо-риране със сходяща геометрична прогресия)
  - (б)  $|c_n| < M n^{-\alpha}$  npu  $n > n_0; n_0 \in \mathbb{N}, M > 0; \alpha > 1$  (мажориране със сходящ ред)
  - (в)  $\lim_{n\to\infty} \frac{|c_{n+1}|}{|c_n|} = \rho < 1$  (критерий на Даламбер)
  - (г)  $\lim_{n\to\infty} n\left(\frac{|c_n|}{|c_{n+1}|}-1\right)=\alpha>1$  (критерий на Раабе-Дюамел)
  - (д)  $\lim_{n\to\infty} \sqrt[n]{|c_n|} = \rho < 1$  (критерий на Коши)

Дефиниция 3. Степенен ред се нарича ред от вида

$$c_0 + c_1 z + c_2 z^2 + \ldots + c_n z^n + \ldots$$
 (2.1)

където коефициентите  $c_0, c_1, \dots$  са постоянни комплексни числа.

Дефиниция 4. Област на сходимост на реда (2.1) се нарича множеството от точки  $z \in \mathbb{C}$ , за които този ред е сходящ.

Очевидно всеки ред от вида (2.1) е сходящ, при z=0. Нека имаме поне една точка  $z_0\neq 0$ , за която редът е сходящ. Тогава имаме следната важна

**Лема на Абел.** Ако редът (2.1) е сходящ при  $z = z_0$ , то той е абсолютно сходящ за всяко z, за което  $|z| < |z_0|$ .

Доказателство. Тъй като редът

$$c_0 + c_1 z_0 + c_2 z_0^2 + \ldots + c_n z_0^n + \ldots$$
 (2.2)

е сходящ, то  $\lim_{n\to\infty}c_nz_0^n=0$ . Следователно съществува константа C, така че за всяко  $n\in\mathbb{N}$  е в сила

$$|c_n z_0^n| < C.$$

От горното неравенство следва, че

$$|c_n z^n| = |c_n z_0^n| \left| \frac{z}{z_0} \right|^n < C \left| \frac{z}{z_0} \right|^n = C q^n,$$

където  $q=\left|\frac{z}{z_0}\right|=\frac{|z|}{|z_0|}<1$ . Доказахме, че редът  $\sum_{n=0}^{\infty}|c_n||z_n|^n$  се мажорира от сходяща геометрична прогресия, откъдето следва абсолютната сходимост на реда (2.2).

**Теорема на Абел.** За всеки степенен ред от вида (2.1) съществува число  $0 \le R \le \infty$ , така че редът е абсолютно сходящ при |z| < R и разходящ при |z| > R.

Дефиниция 5. Числото R се нарича радиус на сходимост. Ако редът е сходящ само за z=0, казваме, че редът е разходящ и считаме, че R=0, а ако е сходящ за всяко  $z\in\mathbb{C}$ , считаме, че  $R=\infty$ .

#### Формула на Коши-Адамар.

$$R = \frac{1}{l}$$
, където<sup>6</sup>  $l = \overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|}$ .

В случая, когато  $c_n \neq 0, n=1,2,\ldots$ , можем да използваме критерия на Даламбер за да намерим R. С получената формула, представена в следващата задача, често радиусът на сходимост се намира по-лесно.

Задача 2.7.1 Да се докаже, че

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|},\tag{2.3}$$

ако границата съществува.

**Решение.** Нека  $A:=\lim_{n\to\infty}\frac{|c_n|}{|c_{n+1}|}$ . Прилагаме критерия на Даламбер за реда от абсолютните стойности  $\sum_{n=0}^{\infty}|c_nz^n|$ . Имаме, че

$$\frac{|c_{n+1}z^{n+1}|}{|c_nz^n|} = |z| \left| \frac{c_{n+1}}{c_n} \right| \to \frac{|z|}{A} \quad \text{при } n \to \infty,$$

откъдето следва, че редът (2.1) е абсолютно сходящ при |z| < A и разходящ при |z| > A, защото общият му член не клони към нула. Следователно R = A.

**Задача 2.7.2** *Намерете радиусите на сходимост на следните степенни редове:* 

(a) 
$$\sum_{n=1}^{\infty} \frac{z^n}{n!}$$
 (6) 
$$\sum_{n=1}^{\infty} n^{\alpha} z^n \ \alpha \in \mathbb{R},$$
 (B) 
$$\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$$
 (C) 
$$\sum_{n=1}^{\infty} (-i)^n n^{2n} z^{3^n}.$$

**Решение.** (a) Намираме R чрез формулата (2.3). Имаме, че  $\frac{|c_n|}{|c_{n+1}|}=n+1\to\infty$ . Следователно  $R=\infty$ .

 $<sup>^6</sup>$ Ще припомним, че ако  $a_n\in\mathbb{R},\ n=0,1\ldots$ , то  $\overline{\lim_{n\to\infty}}a_n$  означава най-дясната (най-горната) точка на сгъстяване на редицата  $\{a_n\}$ ; ако  $\{a_n\}$  е неограничена отгоре, приемаме, че  $\overline{\lim_{n\to\infty}}a_n=\infty$ . Ако l=0 приемаме, че  $R=\infty$ , а ако  $l=\infty-R=0$ .

(б) 
$$\frac{|c_n|}{|c_{n+1}|} = \frac{n^{\alpha}}{(n+1)^{\alpha}} = \left(1 - \frac{1}{n+1}\right)^{\alpha} = e^{\alpha \ln\left(1 - \frac{1}{n+1}\right)} \to e^0 = 1$$
. От (2.3) следва, че  $R = 1$ .

(в) 
$$\frac{|c_n|}{|c_{n+1}|} = (1 + \frac{1}{n})^n \to e$$
. Следователно  $R = e$ .

(г) В този случай формулата (2.3) не може да се приложи, защото не е изпълнено условието  $c_n \neq 0, n=1,2,\dots$  Затова ще използваме формулата на Коши -Адамар. Имаме, че

$$|c_{\nu}| = \begin{cases} 0, & \text{при } \nu \neq 3^{n}, \\ n^{2n}, & \text{при } \nu = 3^{n}. \end{cases}$$

Тогава е изпълнено

$$\overline{\lim_{\nu \to \infty}} \sqrt[\nu]{|c_{\nu}|} = \lim_{n \to \infty} \sqrt[3^n]{n^{2n}} = \lim_{n \to \infty} e^{\frac{2n \ln n}{3^n}} = e^0 = 1.$$

Следователно R=1.

Задача 2.7.3 (Обобщен критерий на Лайбниц<sup>7</sup>) Нека  $c_n \leq c_{n-1}, c_n \to 0$  и  $|z|=1, z \neq 1$ . Докажете, че редът  $\sum_{\nu=1}^{\infty} c_{\nu} z^{\nu}$  е сходящ за всяка точка от единичната окръжсност с евентуално изключение на z=1.

**Решение.** Полагаме  $S_n(z) = \sum_{\nu=1}^n c_{\nu} z^{\nu}$ . Тогава

$$(1-z)(S_{n+p}(z)-S_n(z)) = c_{n+1}z^{n+1} + \sum_{k=2}^{p} (c_{n+k}-c_{n+k-1})z^{n+k} - c_{n+p}z^{n+p+1}$$

и следователно

$$|1-z||S_{n+p}(z)-S_n(z)| \le c_{n+1} + \sum_{k=2}^{p} (c_{n+k-1}-c_{n+k}) + c_{n+p} = 2c_{n+1} \to 0.$$

От критерия на Коши за сходимост на редици заключаваме, че редът е равномерно сходящ за всяка затворена дъга от единичната окръжност, която не съдържа точката z=1.

**Задача 2.7.4** Намерете за кои z е сходящ редът  $\sum_{n=2}^{\infty} \frac{(-1)^n z^{3n+1}}{\ln n}$  .

Решение. Тъй като

$$|c_{\nu}|=\left\{egin{array}{ll} rac{1}{\ln\,n}, & ext{при }
u=3n+1, \ 0, & ext{при }
u
eq3n+1, \end{array}
ight.$$

то  $\overline{\lim_{\nu \to \infty}} \sqrt[\nu]{|c_{\nu}|} = \lim_{n \to \infty} \sqrt[3n+1]{\frac{1}{\ln n}}$ . Нека  $u_n = (\ln n)^{-\frac{1}{3n+1}}$ . Тъй като  $\ln u_n = \frac{\ln \ln n}{3n+1} \to 0$  при  $n \to \infty$ , то  $u_n \to 1$ . От формулата на Коши-Адамар следва, че R=1.

 $<sup>^7</sup>$ Критерий на Лайбниц. Нека  $a_n \ge 0, \ n=1,\dots$  и  $a_n \to 0$  монотонно намалявайки. Тогава редът  $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$  е сходящ.

Радиусът на сходимост може да намерим и с формулата (2.3). Записваме реда във вида

$$z\sum_{n=2}^{\infty} \frac{(-z^3)^n}{\ln n}.$$
 (2.4)

Той е едновременно сходящ с реда

$$\sum_{n=2}^{\infty} \frac{u^n}{\ln n},\tag{2.5}$$

където  $u=-z^3$ . Радиусът на сходимост на реда (2.5) е  $R=\lim_{n\to\infty}\frac{\ln{(n+1)}}{\ln{n}}$ = 1. Тъй като  $\frac{1}{\ln n}$  клони към нула монотонно намалявайки, то от обобщения критерий на Лайбниц (зад. 2.7.3) следва, че (2.5) е сходящ при |u|=1с евентуално изключение на u=1. Следователно (2.4) е сходящ при |z|=1с евентуално изключение на корените на уравнението  $-z^3=1$ , т.е.  $z_0=-1$ ,  $z_1=e^{i\pi/3}$  и  $z_2=e^{-i\pi/3}$ . Ако  $-z^3=1$ , получаваме реда  $\sum_{n=2}^{\infty}\frac{1}{\ln n}$ , който е разходящ (например по Раабе-Дюамел).

Отг. Абс. сходящ при |z| < 1. Усл. сходящ при |z|=1 с изкл. на -1,  $e^{i\pi/3}$ ,  $e^{-i\pi/3}$ . Разходящ при |z| > 1.

Задача 2.7.5 Изследвайте за сходимост следните редове:

(a) 
$$\sum_{n=0}^{\infty} (-iz)^n$$
 (6) 
$$\sum_{n=0}^{\infty} (-i)^n \left(\frac{z-\alpha}{z-\bar{\alpha}}\right)^n, \text{ Im } \alpha > 0,$$
  
(B) 
$$\sum_{n=0}^{\infty} \left(\frac{z^n}{n!} + \frac{n^2}{z^n}\right)$$
 (C) 
$$\sum_{n=1}^{\infty} \frac{z^n}{n^{\ln n}}.$$

B) 
$$\sum_{n=0}^{\infty} \left( \frac{z^n}{n!} + \frac{n^2}{z^n} \right) \qquad \qquad \text{(r)} \qquad \sum_{n=1}^{\infty} \frac{z^n}{n^{\ln n}}$$

**N. В.** Забележете, че редовете (б) и (в) са функционални редове, които не са степенни. Редът (б) става степенен след полагането  $u = \frac{z - \alpha}{z - \bar{\alpha}}$ , като се получава редът (а).

Редът (в) се изследва за сходимост като се раздели на сума от двата реда  $\sum_{n=0}^{\infty} \frac{z^n}{n!}$  и  $\sum_{n=0}^{\infty} \frac{n^2}{z^n}$ . Първият от тях е степенен ред, за който  $R=\infty$ .

Вторият също става степенен ред след полагането  $u = \frac{1}{2}$ , като за него R=1.

**Отг.** (a) Абс. сх. за |z| < 1, разх. за  $|z| \ge 1$ .

(б) Абс. сх. за Im z > 0, разх. за  $\text{Im } z \le 0$ .

(B) A6c. cx. 3a |z| > 1, pasx. 3a  $|z| \le 1$ .

(г) Абс. сх. за  $|z| \ge 1$ , разх. за |z| < 1.

По-долу ще разглеждаме редове от вида  $\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n.$  Те се изследват за сходимост като се разделят на сума от два реда (както в зад. 2.7.5)

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{\infty} c_{-n} \frac{1}{(z - z_0)^n}.$$

Първият от тях е степенен ред, а вторият става степенен след полагането  $u=rac{1}{z-z_0}$ . Ако радиусът на сходимост на първия ред е R (т. е. областта му на сходимост е  $|z-z_0|< R$ ), а на втория ред е r (т. е. областта му на сходимост е  $|u| = \frac{1}{|z-z_0|} < r$ ), то областта на сходимост на сумата от двата реда е сечението на двете области, т. е. венецът  $r < |z - z_0| < R$ 

Задача 2.7.6 Намерете областта на сходимост на следните редове:

(a) 
$$\sum_{n=-\infty}^{\infty} 2^{-|n|} z^n$$
, (6)  $\sum_{n=-\infty}^{\infty} \frac{z^n}{3^n+1}$ 

(6) 
$$\sum_{n=-\infty}^{\infty} \frac{z^n}{3^n+1}$$

(B) 
$$\sum_{n=-\infty}^{\infty} \frac{(z-1)^n}{\operatorname{ch} \alpha n}, \ \alpha > 0.$$
 (r) 
$$\sum_{n=1}^{\infty} \frac{\sin in}{(z+i)^n}.$$

(r) 
$$\sum_{n=1}^{\infty} \frac{\sin in}{(z+i)^n}$$

**Упътване.** (a) Полагаме  $u = \frac{1}{z}$ , след което представяме реда като сума

$$\sum_{n=0}^{\infty} \frac{z^n}{2^n} + \sum_{n=1}^{\infty} \frac{u^n}{2^n}.$$

(6) Ако положим  $u = \frac{1}{2}$ , редът става

$$\sum_{n=0}^{\infty} \frac{z^n}{3^n+1} + \sum_{n=1}^{\infty} \frac{3^n}{3^n+1} u^n.$$

(в) Ако положим  $u = \frac{1}{z-1}$ , редът става

$$\sum_{n=0}^{\infty} \frac{(z-1)^n}{\operatorname{ch} \alpha n} + \sum_{n=1}^{\infty} \frac{u^n}{\operatorname{ch} \alpha n}.$$

Понеже е изпълнено,

$$\frac{\operatorname{ch}\alpha(n+1)}{\operatorname{ch}\alpha n} = \frac{e^{\alpha(n+1)} + e^{-\alpha(n+1)}}{e^{\alpha n} + e^{-\alpha n}} = e^{\alpha} \frac{1 + e^{-2\alpha(n+1)}}{1 + e^{-2\alpha n}} \to e^{\alpha}$$
 при  $n \to \infty$ ,

то радиусите на сходимост и на двата реда са  $R = e^{\alpha}$ .

(r) 
$$R = \lim_{n \to \infty} \frac{|\sin in|}{|\sin i(n+1)|} = \lim_{n \to \infty} \frac{e^n - e^{-n}}{e^{n+1} - e^{-(n+1)}} = \frac{1}{e}.$$

Otr. (a) 
$$\frac{1}{2} < |z| < 2,$$
 (6)  $1 < |z| < 3,$  (b)  $e^{-\alpha} < |z-1| < e^{\alpha}.$  (c)  $e < |z+i|.$ 

Задача 2.7.7 Намерете областта на сходимост на следните редове:

(a) 
$$\sum_{n=1}^{\infty} \frac{1}{(1+i)^n z^n}$$
, (6)  $\sum_{n=1}^{\infty} \frac{1}{4^n (z+1)^n}$ , (B)  $\sum_{n=1}^{\infty} \frac{n2^{-n}}{(z-2-i)^n}$ , (C)  $\sum_{n=1}^{\infty} \frac{(z+1-i)^{-n}}{n+i}$ .

Ott. (a) 
$$\sqrt{2} < |z|$$
, (6)  $\frac{1}{4} < |z+i|$ , (b)  $\frac{1}{2} < |z-2-i|$ , (c)  $1 < |z+1-i|$ .

Задача 2.7.8  $\clubsuit$  Изследвайте за сходимост реда  $\sum_{n=1}^{\infty} \frac{z(z+1)\dots(z+n)}{n!}$ .

**Решение.** (a) Да означим общия член на реда с  $a_n$ . Тогава имаме, че

$$\frac{|a_{n+1}|}{|a_n|} = \left| \frac{z+n+1}{n+1} \right| = \left| \frac{x+iy+n+1}{n+1} \right| = \sqrt{\left(1 + \frac{x}{n+1}\right)^2 + \left(\frac{y}{n+1}\right)^2},$$

откъдето получаваме

$$n\left(\frac{|a_n|}{|a_{n+1}|} - 1\right) = n\left(\frac{1}{\sqrt{\left(1 + \frac{x}{n+1}\right)^2 + \left(\frac{y}{n+1}\right)^2}} - 1\right)$$

$$= \frac{n\left(-\frac{2x}{n+1} - \frac{x^2 + y^2}{(n+1)^2}\right)}{\sqrt{\left(1 + \frac{x}{n+1}\right)^2 + \left(\frac{y}{n+1}\right)^2} \left[1 + \sqrt{\left(1 + \frac{x}{n+1}\right)^2 + \left(\frac{y}{n+1}\right)^2}\right]} \to -x.$$

От критерия на Раабе-Дюамел следва, че при -x>1 редът е сходящ, а при -x<1 е разходящ. Ако x=-1, то  $a_n=0$ . Следователно редът е абс. сходящ при  $\mathrm{Re}\,z\le -1$  и разходящ при  $\mathrm{Re}\,z>-1$ .

## Глава 3

## Интегриране

## 3.1 Линеен интеграл

Нека f(z) = u + iv, z = x + iy, е непрекъсната функция в областта G и нека  $\gamma \subset G$  е частично гладка ориентирана крива. Интеграл от f(z) по кривата  $\gamma$  определяме като криволинеен интеграл от втори род:

$$\int_{\gamma} f(z) dz := \int_{\gamma} u dx - v dy + i \int_{\gamma} v dx + u dy.$$

Нека кривата е зададена с параметричните уравнения  $x=x(t),\ y=y(t),\ t_0\leq t\leq t_1.$  Тогава

$$\int_{\gamma} f(z) dz = \int_{t_0}^{t_1} f(z(t)) z'(t) dt = \int_{t_0}^{t_1} f(x(t) + i y(t)) (x'(t) + i y'(t)) dt.$$

**Теорема на Лайбниц - Нютон.** Нека f(z) притежава примитивна  $z_0$  в областта  $z_0$  и  $z_0$  в произволна крива  $z_0$  начална точка  $z_0$  и крайна точка  $z_0$ . Тогава

$$\int_{z_0}^{z_1} f(z) dz := \int_{\gamma} f(z) dz = \Phi(z_1) - \Phi(z_0).$$

Aко f(z) и  $\varphi(z)$  са аналитични в областта D, съдържаща точките  $z_0$  и  $z_1$  и  $\gamma \subset G$  е произволна крива с начало  $z_0$  и край  $z_1$ , то е в сила следната формула за интегриране по части

$$\int_{z_0}^{z_1} f(z)\varphi'(z) dz = (f(z)\varphi(z))\Big|_{z_0}^{z_1} - \int_{z_0}^{z_1} f'(z)\varphi(z) dz.$$

Hека  $z=\varphi(w)$  изобразява взаимно-еднозначно контура  $\gamma_1$  в равнината (w) върху контура  $\gamma$  в равнината (z). Тогава е в сила следната формула за смяна на променливата

$$\int_{\mathcal{C}} f(z) dz = \int_{\mathcal{C}} f(\varphi(w)) \varphi'(w) dw.$$

 $<sup>^1</sup>$  Това означава, че съществува аналитична функция  $\Phi:G\to\mathbb{C},$  така че  $\Phi'(z)=f(z).$  В частност, ако f(z) е аналитична функция в едносвързана област, то тя притежава примитивна в областта.

Линеен интеграл 67

#### Задача 3.1.1 Пресметнете интеграла

$$I = \int_{\gamma} (z-1) dz$$
, където

(a) 
$$\gamma: z-1=e^{i\varphi}, \ 0 \le \varphi \le \pi,$$

**(б)**  $\gamma$  е отсечката [0, 2].

**Решение.** (a) Имаме, че  $dz=ie^{i\varphi}\,d\varphi$  и следователно

$$I = i \int_0^{\pi} e^{2i\varphi} \, d\varphi = \frac{1}{2} (e^{2i\pi} - 1) = 0.$$

(б) Нека  $\gamma:z=2t,\ 0\leq t\leq 1.$  Следователно dz=2dt, и

$$I = 2 \int_0^1 (2t - 1) dt = 2(t^2 - t) \Big|_0^1 = 0.$$

#### Задача 3.1.2 Пресметнете интеграла

$$I = \int_{\gamma} \operatorname{Re} z \, dz$$
, където

- (a)  $\gamma$  : |z|=1 е описана в положителна посока от т. 1 до т. 1.
- (б)  $\gamma$  е отсечката  $[z_1, z_2]$ .

Решение. (а) Имаме, че

$$z = e^{i\varphi}, \ 0 \le \varphi \le 2\pi, \ dz = ie^{i\varphi} \ d\varphi, \ \operatorname{Re} z = \cos\varphi,$$

следователно

$$I = i \int_0^{2\pi} \cos \varphi \, e^{i\varphi} \, d\varphi = \frac{i}{2} \int_0^{2\pi} (e^{2i\varphi} + 1) \, d\varphi = \pi i.$$

(б) Параметричното уравнение на  $\gamma$  е  $z=z_1+(z_2-z_1)t,\ 0\leq t\leq 1,\ dz=(z_2-z_1)\,dt,$  следователно

$$I = \int_0^1 (\operatorname{Re} z_1 + (\operatorname{Re} z_2 - \operatorname{Re} z_1)t)(z_2 - z_1) dt$$

$$= (z_2 - z_1)(\operatorname{Re} z_1 + \frac{1}{2}(\operatorname{Re} z_2 - \operatorname{Re} z_1))$$

$$= (z_1 - z_2) \frac{\operatorname{Re} z_1 + \operatorname{Re} z_2}{2}.$$

### Задача 3.1.3 Пресметнете интеграла

$$I=\int_{\gamma}rac{z+2}{z}\,dz,$$
 където

(a) 
$$\gamma: z = 2e^{i\varphi}, \quad 0 \le \varphi \le \pi,$$
 (6)  $\gamma: z = 2e^{i\varphi}, \quad -\pi \le \varphi \le \pi.$ 

Решение. (а) Имаме, че

$$I = \int_{\gamma} \left(1 + \frac{2}{z}\right) dz = \int_{0}^{\pi} \left(1 + \frac{2}{2e^{i\varphi}}\right) d(2e^{i\varphi})$$
$$= 2e^{i\varphi} \Big|_{0}^{\pi} + \int_{0}^{\pi} \frac{2ie^{i\varphi}}{e^{i\varphi}} d\varphi = -4 + 2\pi i.$$

**Отг.** (б)  $4\pi i$ 

#### Задача 3.1.4 Пресметнете интеграла

$$I = \int_{\gamma} (y - x - 3x^2 i) \, dz,$$

където  $\gamma$  е отсечката [0, 1+i].

Решение. Имаме, че

$$z = (1+i)t$$
,  $0 \le t \le 1$ ,  $dz = (1+i) dt$ ,  $x = t$ ,  $y = t$ ,

откъдето получаваме

$$I = (1+i) \int_0^1 (t-t-3it^2) dt = -3i(1+i) \frac{t^3}{3} \Big|_0^1 = 1-i.$$

#### Задача 3.1.5 Пресметнете интеграла

$$\int_{\gamma}|z|\,dz,$$
 където

- (a)  $\gamma$  e отсечката [-i, i],
- (6)  $\gamma$  е дясната половина на единичната окръжност, описана в посока, обратна на часовниковата стрелка.

**Решение.** (a) Разглеждаме следното параметрично представяне на  $\gamma$  :  $z=it, \ -1 \le t \le 1.$  Тогава dz=idt и

$$\int_{S} |z| dz = i \int_{-1}^{1} |t| dt = 2i \int_{0}^{1} t dt = i.$$

Отг. (б) 2*i*.

## 3.2 Теорема на Коши. Формула на Коши

**Теорема на Коши (за едносвързана област).** Нека  $G \subset \mathbb{C}$  е едносвързана област  $u \ f : G \to \mathbb{C}$  е аналитична функция. Нека  $\gamma_1 \ u \ \gamma_2$  са ректифицируеми криви от G, които имат едни и същи начални и крайни точки. Тогава

$$\int_{\gamma_1} f(z) \, dz = \int_{\gamma_2} f(z) \, dz. \tag{3.1}$$

B частност, ако  $\gamma \subset G$  е затворена крива, то

$$\int_{\gamma} f(z) dz = 0. \tag{3.2}$$

Доказателство чрез формулата на Грийн. Ще докажем формулата (3.2). Формулата (3.1) е директно следствие от нея.

Нека P(x,y) и Q(x,y) са непрекъснати заедно с частните си производни  $\partial P/\partial y,\,\partial Q/\partial x.$  Тогава е справедлива следната формула на Грийн

$$\int_{\gamma} P \, dx + Q \, dy = \iint_{G} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx dy, \tag{3.3}$$

където G е вътрешността на затворената жорданова ректифицирума крива  $\gamma$ , обхождана в положителна посока. Ще напомним, че при доказателството на тази формула допълнително се предполага, че областта G е такава, че всяка права, успоредна на координатните оси, пресича  $\gamma$  в не повече от две точки, с изключение на двете крайни положения, където е възможно пресичане по праволинейна отсечка.

Нека f(z)=u(x,y)+iv(x,y) е аналитична функция в областта G и следователно функциите u(x,y) и v(x,y) имат (непрекъснати) частни производни. Тогава от (3.3) следва, че

$$\int_{\gamma} f(z) dz = \int_{\gamma} u dx - v dy + i \int_{\gamma} v dx + u dy$$

$$= -\iint_{D} \left( \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) dx dy + i \iint_{D} \left( \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy = 0,$$

като в последното равенство използвахме уравненията на Коши – Риман. Нека подчертаем, че тук допълнително искахме непрекъснатост на частните производни, но теоремата е вярна и без това ограничение (вж. например Аргирова [1]).

Теоремата на Коши може да се обобщи и за някои неедносвързани области.

**Теорема на Коши (за многосвързана област).** Нека функцията f(z) е аналитична в областта G и по контура ѝ, който се състои от краен брой непресичащи се, частично гладки, затворени жорданови криви  $C, \gamma_1, \gamma_2, \ldots \gamma_n$ , като C съдържа останалите във вътрешността си (фиг. 3.1). Тогава

$$\int_C f(z) dz = \int_{\gamma_1} f(z) dz + \ldots + \int_{\gamma_n} f(z) dz,$$

където контурът на областта е положително ориентиран.

**Теорема на Коши (обобщение).** Нека G е вътрешността на затворената жорданова крива  $\gamma$  и f(z) е непрекъсната в  $\overline{G}$  и аналитична в G. Тогава

$$\int_{\gamma} f(z) \, dz = 0.$$

Интегрална формула на Коши. Нека функцията f(z) е аналитична в областта G и нека  $\gamma$  е затворена положително ориентирана жорданова

<sup>&</sup>lt;sup>2</sup>Това означава, че при обхождане на контура областта остава отляво. С други думи, C е ориентирана по посока, обратна на часовниковата стрелка, а  $\gamma_1, \gamma_2, \ldots \gamma_n$  - по посока на часовниковата стрелка.



Фиг. 3.1: Многосвързана област

крива, която заедно с вътрешността си D принадлежи на G. Тогава за всяка точка  $z \in D$  е в сила следната интегрална формула на Коши

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta. \tag{3.4}$$

 $\Pi pu moвa$ 

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \ n = 1, 2, \dots$$
 (3.5)

Следствие. От (3.4) следва, че всяка аналитична функция е безкрайно диференцируема. Ще напомним, че за да дефинираме аналитична функция наложихме изискването за съществуване само на първа производна.

Формулите (3.5) се наричат **интегрални формули за производните** на функцията f(z). Те могат да се разглеждат като получени от формулата на Коши (3.4) чрез диференциране под знака на интеграла, тъй като

$$\frac{d^n}{dz^n} \frac{1}{\zeta - z} = \frac{n!}{(\zeta - z)^{n+1}}, \ n = 1, 2, \dots$$

Доказателство на интегралната формула на Коши. Нека  $\gamma_{\rho}$  е окръжност с център т. z и радиус  $\rho$ , такава че кръгът  $|\zeta-z| \leq \rho$  принадлежи на D. От теоремата на Коши за областта с контур, състоящ се от кривите  $\gamma$  и  $\gamma_{\rho}$ , получаваме

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\gamma_0} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Следователно, за да докажем (3.4) е достатъчно да установим равенството

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{+}} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

То е еквивалентно на

$$\int_{\gamma_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta - 2\pi i f(z) = \int_{\gamma_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \int_{\gamma_{\rho}} \frac{1}{\zeta - z} d\zeta$$
$$= \int_{\gamma_{\rho}} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta = 0,$$

като в първото равенство използвахме зад. 3.2.1.

Тъй като f(z) е непрекъсната в точката z, то за всяко  $\varepsilon>0$  можем да намерим  $\delta(\varepsilon)>0$  и  $\rho<\delta(\varepsilon)$ , така че

$$|f(\zeta) - f(z)| < \varepsilon$$
 sa  $z \in \gamma_{\rho}$ .

Тогава

$$\left| \int_{\gamma_{\varrho}} \frac{f(\zeta) - f(z)}{\zeta - z} \, d\zeta \right| < \int_{\gamma_{\varrho}} \frac{|f(\zeta) - f(z)|}{|\zeta - z|} |d\zeta| < \frac{\varepsilon}{\rho} \cdot 2\pi\rho = 2\pi\varepsilon.$$

Тъй като  $\varepsilon$  беше произволно избрано, то

$$\int_{\gamma_a} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta = 0.$$

**Задача 3.2.1** Нека  $\gamma$  е проста затворена крива, която не минава през точката а и нека  $n \in \mathbb{Z}$ . Докажете, че

$$\int_{\gamma} (z-a)^n dz = \begin{cases} 0, & \text{ako } n \neq -1 \\ 2\pi i, & \text{ako } n = -1 \text{ u m. a e във вътрешността на } \gamma. \end{cases}$$

**Решение.** Нека  $\gamma$  е окръжност  $\gamma_R$  с център в точката a и радиус R, т. е.  $\gamma_R:z=a+Re^{i\varphi},\ 0\leq \varphi\leq 2\pi.$  Тогава

$$(z-a)^n = R^n e^{in\varphi}, dz = iRe^{i\varphi}d\varphi.$$

При  $n \neq -1$  имаме

$$I_n = \int_{\gamma_R} (z - a)^n dz = iR^{n+1} \int_0^{2\pi} e^{i(n+1)\varphi} d\varphi = \frac{1}{n+1} (e^{2\pi i(n+1)} - 1) = 0.$$

Ако n=-1, то

$$I_{-1} = \int_{\gamma_R} \frac{dz}{z - a} = i \int_0^{2\pi} d\varphi = 2\pi i.$$

Нека сега  $\gamma$  е произволна затворена крива, която не съдържа точката a. Тогава подинтегралната функция  $(z-a)^n$  е аналитична както във вътрешността на  $\gamma$ , така и върху  $\gamma$ . От теоремата на Коши за едносвързана област следва, че разглежданият интеграл е равен на нула. Ако точката a е във вътрешността на  $\gamma$ , то можем да намерим достатъчно малко R>0, така че кръгът с център в точката a и радиус R да се съдържа във вътрешността на  $\gamma$ . Тогава подинтегралната функция е аналитична в областта между кривите  $\gamma$  и  $\gamma_R$ . От теоремата на Коши за многосвързана област следва, че

$$\int_{\gamma} (z-a)^n dz = \int_{\gamma_R} (z-a)^n dz.$$

Задача 3.2.2 Пресметнете

$$J = \int_{\gamma} \frac{dz}{z^2 + 4},$$

където  $\gamma$  е проста затворена крива, която не минава през точките  $\pm 2i$ .

Решение. Възможни са следните три случая:

- (а) Нито една от точките  $\pm 2i$  не е във вътрешността на  $\gamma$ . От теоремата на Коши за едносвързана област следва, че J=0.
- (б) Само една от точките  $\pm 2i$  е във вътрешността на  $\gamma$ , например т. 2i. Тогава от формулата на Коши получаваме

$$J = \int_{\gamma} \frac{\frac{1}{z+2i}}{z-2i} dz = 2\pi i \frac{1}{2i+2i} = \frac{\pi}{2}.$$

Ако т. -2i се намира във вътрешността на  $\gamma$ , по аналогичен начин получаваме, че  $J=-\frac{\pi}{2}.$ 

(в) И двете точки  $\pm 2i$  са във вътрешността на  $\gamma$ . Нека  $\gamma_1$  и  $\gamma_2$  са затворени непресичащи се жорданови криви от вътрешността на  $\gamma$ , всяка от които съдържа във вътрешността си съответно т. 2i и т. -2i. От теоремата на Коши за многосвързана област получаваме

$$J = \int_{\gamma} \frac{dz}{z^2 + 4} = \int_{\gamma_1} \frac{dz}{z^2 + 4} + \int_{\gamma_2} \frac{dz}{z^2 + 4} = \frac{\pi}{2} - \frac{\pi}{2} = 0.$$

**Задача 3.2.3** *Като използвате формулите на Коши, пресметнете следните интеграли* 

(a) 
$$\int_{\gamma} \frac{z^2}{z - 2i} dz$$
,  $\gamma : |z| = 3$ ,

(6) 
$$\int_{\gamma} \frac{dz}{z^2 + 9}$$
,  $\gamma : |z + 2i| = 2$ ,

(B) 
$$\int_{\gamma} \frac{\sin \frac{\pi z}{4}}{z^2 - 1} dz$$
,  $\gamma : x^2 + y^2 - 2x = 0$ .

**Решение.** (a) Точката z=2i принадлежи на вътрешността на окръжността  $\gamma$ . От формулата на Коши следва, че

$$\int_{\gamma} \frac{z^2}{z - 2i} \, dz = 2\pi i (2i)^2 = -8\pi i.$$

(б) От двете точки  $\pm 3i$  само z=-3i принадлежи на вътрешността на окръжността  $\gamma$ . Следователно

$$\int_{\gamma} \frac{dz}{z^2 + 9} = \int_{\gamma} \frac{\frac{1}{z - 3i}}{z + 3i} dz = 2\pi i \frac{1}{-6i} = -\frac{\pi}{3}.$$

(в) Кривата  $\gamma$  е окръжността |z-1|=1. От формулата на Коши следва, че

$$\int_{\mathcal{X}} \frac{\sin\frac{\pi z}{4}}{z^2 - 1} dz = \int_{\mathcal{X}} \frac{\sin\frac{\pi z}{4}/(z + 1)}{z - 1} dz = \frac{2\pi i}{2} \sin\frac{\pi}{4} = \frac{\pi i}{\sqrt{2}}.$$

**Задача 3.2.4** Като използвате формулите на Коши, пресметнете интегралите

(a) 
$$\int_{\gamma} \frac{e^{\pi z} dz}{(z^2 + 1)^2}$$
,  $\kappa \sigma \partial emo \ \gamma : 4x^2 + y^2 - 2y = 0$ ,

(6) 
$$\int_{\gamma} \frac{\sin z \, dz}{(z+2)^4}$$
, където  $\gamma$  е затворена крива, съдържаща във вътр. си т.  $z=-2$ .

Решение.

(a) 
$$\int_{\gamma} \frac{e^{\pi z}/(z+i)^2}{(z-i)^2} dz = 2\pi i \left(\frac{e^{\pi z}}{(z+i)^2}\right)'_{z=i} = \frac{\pi(\pi i - 1)}{2}.$$

(6) 
$$\int_{\gamma} \frac{\sin z \, dz}{(z+2)^4} = \frac{2\pi i}{3!} \frac{d^3}{dz^3} (\sin z) \bigg|_{z=-2} = -\frac{\pi i}{3} \cos 2.$$

**Задача 3.2.5** Нека  $\gamma: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a,\, b>0.$  Като пресметнете по два различни начина  $\int_{\gamma} \frac{dz}{z}, \ докажете, \ че$ 

$$I = \int_0^{2\pi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} = \frac{2\pi}{ab}.$$

**Решение.** От формулата на Коши следва, че  $\int_{z}^{\infty} \frac{dz}{z} = 2\pi i$ .

Елипсата  $\gamma$  има параметрично представяне  $z=a^{'}\cos t+ib\sin t, 0\leq t\leq 2\pi$ . Тогава

$$2\pi i = \int_0^{2\pi} \frac{-a\sin t + ib\cos t}{a\cos t + ib\sin t} dt = \int_0^{2\pi} \frac{-(a^2 + b^2)\sin t\cos t + iab}{a^2\cos^2 t + b^2\sin^2 t} dt$$
$$= -(a^2 + b^2) \int_0^{2\pi} \frac{\sin t\cos t}{a^2\cos^2 t + b^2\sin^2 t} dt + iab \int_0^{2\pi} \frac{dt}{a^2\cos^2 t + b^2\sin^2 t}.$$

От друга страна,

$$I_1 = \int_0^{2\pi} \frac{\sin t \cos t}{a^2 \cos^2 t + b^2 \sin^2 t} dt = \int_{-\pi}^{\pi} \frac{\sin t \cos t}{a^2 \cos^2 t + b^2 \sin^2 t} dt = 0,$$

тъй като това е интеграл от нечетна функция в симетричен интервал.  $^3$  Следователно  $I=\frac{2\pi}{ab}$ .

Задача 3.2.6 Пресметнете интеграла

$$\int_{|z|=R} \frac{f(z) dz}{(z-a)(z-b)}, \quad a \neq b, \ |a| < R, \ |b| < R.$$

**Решение.** Нека  $\gamma_1$  и  $\gamma_2$  са непресичащи се окръжности, принадлежащи на вътрешността на |z|=R, с центрове съответно т. a и т. b. От теоремата на Коши за многосвързана област получаваме

$$\int_{|z|=R} \frac{f(z) dz}{(z-a)(z-b)} = \int_{\gamma_1} \frac{\frac{f(z)}{z-b}}{z-a} dz + \int_{\gamma_2} \frac{\frac{f(z)}{z-a}}{z-b} dz$$
$$= 2\pi i \left( \frac{f(a)}{a-b} + \frac{f(b)}{b-a} \right) = 2\pi i \frac{f(b) - f(a)}{b-a}.$$

**Задача 3.2.7 (Теорема на Лиувил)** Ако функцията f(z) е аналитична и ограничена в цялата равнина, то тя е константа.

 $<sup>^{3}</sup>$ Също така следва и от факта, че  $I_{1} = \text{Re}(2\pi i) = 0$ .



Фиг. 3.2: Областта от зад. 3.2.8

**Решение.** Нека a и b са произволни комплексни числа и R>0 е такова, че a и b принадлежат на кръга |z|< R. Нека  $|f(z)|\leq M$  за всяко  $z\in\mathbb{C}$ . Разглеждаме  $I=\int_{|z|=R}\frac{f(z)\,dz}{(z-a)(z-b)}$ . Имаме, че

$$|I| \le \int_{|z|=R} \frac{|f(z)| |dz|}{|z-a| |z-b|} \le \frac{M}{(R-|a|)(R-|b|)} \cdot 2\pi R.$$

Като направим граничен преход при  $R \to \infty$ , получаваме, че  $|I| \to 0$ , следователно  $I \to 0$ .

От друга страна, от задача 3.2.6 следва, че  $I=2\pi i \frac{f(b)-f(a)}{b-a}$ , което не зависи от R. Следователно I=0 и f(a)=f(b). Числата a и b бяха произволно избрани, следователно f(z)= Const.

По-долу, като използваме теоремата на Коши, ще пресметнем два често срещани в приложенията интеграли.

Задача 3.2.8 Пресметнете интегралите на Френел

$$I = \int_0^\infty \sin x^2 \, dx, \quad J = \int_0^\infty \cos x^2 \, dx.$$

**Решение.** Нека  $f(z)=e^{-z^2}$ . Разглеждаме областта, чийто контур се състои от отсечката  $[0,R],\ R>0,$  дъгата  $L_R:z=Re^{i\varphi},\ 0\leq \varphi\leq \pi/4,$  и отсечката  $[0,Re^{i\frac{\pi}{4}}]$  (фиг. 3.2).

Тъй като f(z) е аналитична функция, от теоремата на Коши следва, че

$$0 = \int_0^R e^{-x^2} dx + \int_{L_R} e^{-z^2} dz - \int_{[0, Re^{i\frac{\pi}{4}}]} e^{-z^2} dz = I_1 + I_2 - I_3,$$
 (3.6)

като  $I_3$  е със знак минус, понеже посоката на интегриране върху отсечката  $[0,Re^{i\frac{\pi}{4}}]$  е от  $Re^{i\frac{\pi}{4}}$  към 0. Първо ще пресметнем  $I_3$ . Параметричното представяне на отсечката  $[0,Re^{i\frac{\pi}{4}}]$  е  $z=te^{i\frac{\pi}{4}},~0\leq t\leq R$ . Тогава  $e^{-z^2}=e^{-e^{i\frac{\pi}{2}}t^2}=e^{-it^2}$  и  $dz=e^{i\frac{\pi}{4}}dt$ . Следователно  $I_3=e^{i\frac{\pi}{4}}\int_0^R e^{-it^2}$ . Като заместим в (3.6) и извършим граничен преход при  $R\to\infty$ , получаваме

$$0 = \int_0^\infty e^{-x^2} dx + \lim_{R \to \infty} \int_{L_R} e^{-z^2} dz - \frac{1+i}{\sqrt{2}} \int_0^\infty (\cos t^2 - i \sin t^2) dt.$$
 (3.7)

$$\int_{L_R} e^{-z^2} dz = -\frac{1}{2} \int \frac{de^{-z^2}}{z} = -\frac{e^{-z^2}}{2z} \Big|_{R}^{Re^{i\pi/4}} - \frac{1}{2} \int_{L_R} \frac{e^{-z^2}}{z^2} dz.$$

Имаме, че

$$\left. \frac{e^{-z^2}}{2z} \right|_R^{Re^{i\pi/4}} = \frac{e^{-iR^2}}{2Re^{i\pi/4}} - \frac{e^{-R^2}}{2R} \to 0$$
 при  $R \to \infty$ .

Освен това

$$\left| \int_{L_R} \frac{e^{-z^2}}{z^2} dz \right| \le \frac{\pi R}{4} \max_{L_R} \left| \frac{e^{-z^2}}{z^2} \right| = \frac{\pi R}{4} \cdot \frac{\max_{L_R} |e^{-z^2}|}{R^2}. \tag{3.8}$$

Тъй като  $L_R: z = Re^{i\varphi}, \ 0 \le \varphi \le \pi/4$ , то

$$|e^{-z^2}| = |e^{-R^2 e^{2i\varphi}}| = e^{-R^2\cos 2\varphi} \le e^{-R^2\cos\frac{\pi}{2}} = 1.$$

Тогава от (3.8) следва, че

$$\left| \int_{L_R} rac{e^{-z^2}}{z^2} dz 
ight| \leq rac{\pi R}{4} \cdot rac{1}{R^2} o 0$$
 при  $R o \infty.$ 

От формулата за интеграла на Поасон, която за пълнота ще докажем отделно, е известно, че

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Тогава от (3.7) следва, че

$$0 = \frac{\sqrt{\pi}}{2} - \frac{1}{\sqrt{2}}(I+J) + \frac{i}{\sqrt{2}}(I-J),$$

откъдето след приравняване на реалните и имагинерни части, получаваме

$$I = J = \frac{\sqrt{\pi}}{2\sqrt{2}}.$$

Остана да пресметнем интеграла на Поасон. Ще докажем, че

$$\int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}.$$

Доказателство. Имаме, че

$$\int_{-R}^{R} \int_{-R}^{R} e^{-\xi^2 - \eta^2} d\xi d\eta = \left( \int_{-R}^{R} e^{-\xi^2} d\xi \right)^2 = 4 \left( \int_{0}^{R} e^{-\xi^2} d\xi \right)^2.$$

Нека в квадрата с център в началото на координатната система и страни с дължина 2R, успоредни на координатните оси, впишем кръг k и опишем кръг K. Тогава е изпълнено, че

$$\int \int_{k} e^{-\xi^{2} - \eta^{2}} d\xi d\eta < \int_{-R}^{R} \int_{-R}^{R} e^{-\xi^{2} - \eta^{2}} d\xi d\eta < \int \int_{K} e^{-\xi^{2} - \eta^{2}} d\xi d\eta. \tag{3.9}$$

Сега в първия и третия интеграл на (3.9) ще направим смяна от декартови в полярни координати  $\xi = \rho \cos \varphi$ ,  $\eta = \rho \sin \varphi$ . Тъй като  $\xi^2 + \eta^2 = \rho^2$ ,  $d\xi \, d\eta = \rho d\rho \, d\varphi$ , получаваме, че

$$\int_0^{2\pi} \int_0^R e^{-\rho^2} \rho \, d\rho \, d\varphi < 4 \left( \int_0^R e^{-\xi^2} \, d\xi \right)^2 < \int_0^{2\pi} \int_0^{R\sqrt{2}} e^{-\rho^2} \rho \, d\rho \, d\varphi.$$

Като пресметнем двойните интеграли и след това коренуваме двете неравенства, получаваме

$$\sqrt{\pi(1-e^{-R^2})} < 2\int_0^R e^{-\xi^2}\,d\xi < \sqrt{\pi(1-e^{-2R^2})},$$

откъдето след граничен преход при  $R \to \infty$  следва, че

$$\lim_{R \to \infty} 2 \int_0^R e^{-\xi^2} \, d\xi = \sqrt{\pi} \quad \text{или} \quad \int_0^\infty e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}.$$

## Глава 4

#### Развитие на функциите в редове

#### 4.1 Ред на Тейлър

Теорема за развитие на аналитична функция в ред на Тейлър. Нека f(z) е аналитична функция в областта G. Нека точката  $z_0 \in G$  и R е разстоянието от  $z_0$  до контура на G. Тогава функцията f(z) се развива в кръга  $|z-z_0| < R$  в степенен ред от вида

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

който се нарича **ред на Тейлър** на f(z) около точката  $z_0$ . Коефициентите  $c_n$  са еднозначно определени с формулите

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z) dz}{(z - z_0)^{n+1}} = \frac{f^{(n)}(z_0)}{n!},$$

където  $\Gamma$  е произволна окръжност с център в точката  $z_0$  и радиус  $\rho < R$ , а интегрирането се извършва в положителна посока.

Доказателство. Нека z е произволна фиксирана точка от кръга  $|z-z_0| < R$ . Да разгледаме концентричен кръг с център  $z_0$  и радиус  $\rho < R$ , съдържащ точката z. Нека  $\gamma_\rho$  :  $|\zeta-z_0| = \rho$  е границата на този кръг. Тогава от формулата на Коши (3.4) имаме

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{-}} \frac{f(\zeta) d\zeta}{\zeta - z}.$$
 (4.1)

За да докажем теоремата е достатъчно да развием функцията  $f(\zeta)/(\zeta-z)$  по степените на  $z-z_0$  и след това почленно да интегрираме. Имаме

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0 - (z - z_0)} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$
 (4.2)

Редът в (4.2) е равномерно сходящ относно  $\zeta \in \gamma_{\rho}$ , тъй като

$$\left| \frac{z - z_0}{\zeta - z_0} \right| = \frac{|z - z_0|}{\rho} < 1.$$

Умножавайки почленно (4.2) с  $f(\zeta)$ , получаваме

$$\frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} f(\zeta) \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$
 (4.3)

Като интегрираме почленно (4.3) и отчитайки (4.1), получаваме развитието

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{\rho}} \sum_{n=0}^{\infty} f(\zeta) \frac{(z-z_0)^n}{(\zeta-z_0)^{n+1}} d\zeta = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta) d\zeta}{(\zeta-z_0)^{n+1}} (z-z_0)^n.$$
(4.4)

За да завършим доказателството, остава да покажем, че така получените коефициенти в развитието (4.4) не зависят от  $\rho$ . За това е достатъчно да отбележим, че функцията  $\frac{f(\zeta)}{(\zeta-z_0)^{n+1}}$  е аналитична във всеки пръстен  $\rho_1 \leq |\zeta-z_0| \leq \rho_2, \ 0 < \rho_1 < \rho_2 < R.$  От теоремата на Коши за многосвързана област следва, че

$$\int_{\gamma_{\rho_1}} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}} = \int_{\gamma_{\rho_2}} \frac{f(\zeta) \, d\zeta}{(\zeta - z_0)^{n+1}}.$$

Непосредствено от дефинициите или чрез директно пресмятане на  $f^{(n)}(0)$ , получаваме следните развития в ред на Тейлър за всяко  $z \in \mathbb{C}$ :

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \qquad e^{z} = \sum_{n=0}^{\infty} e^{z_{0}} \frac{(z - z_{0})^{n}}{n!},$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n+1}}{(2n+1)!}, \qquad \cos z = \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!},$$

$$\sinh z = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}, \qquad \cosh z = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}.$$

Също така

$$Log_0(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}, \quad |z| < 1, \tag{4.5}$$

$$(1+z)^{\alpha} = \sum_{n=0}^{\infty} \begin{pmatrix} \alpha \\ n \end{pmatrix} z^n, \quad |z| < 1,$$
 където (4.6)

$$\begin{pmatrix} \alpha \\ n \end{pmatrix} = \begin{cases} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} & n=1,2,\dots\\ 1, & n=0. \end{cases}$$

Нека f и g са аналитични функции, като

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 и  $g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$ 

са развитията им в ред на Тейлър около точката  $z_0$ . Тогава развитието в ред на Тейлър около  $z_0$  на функцията

$$(fg)(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

се получава от почленното умножение на двата реда по **правилото на Коши-Мертенс** 

$$c_n = a_n b_0 + a_{n-1} b_1 + \ldots + a_0 b_n = \sum_{k=0}^n a_{n-k} b_k.$$

Задача 4.1.1 Да се докаже, че

$$\cos\sqrt{z} = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(2n)!}.$$

 ${\bf Pemeнue.}$  От развитието на функцията  $\cos z$ в ред на Тейлър директно получаваме

$$\cos\sqrt{z} = \sum_{n=0}^{\infty} (-1)^n \frac{(\sqrt{z})^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(2n)!}.$$

Задача 4.1.2 Да се докаже, че

$$\frac{1}{4}(e^z + e^{-z} + 2\cos z) = \sum_{n=0}^{\infty} \frac{z^{4n}}{(4n)!}.$$

Решение. Последователно получаваме

$$e^{z} + e^{-z} + 2\cos z = \sum_{n=0}^{\infty} \frac{z^{n}}{n!} + \sum_{n=0}^{\infty} (-1)^{n} \frac{z^{n}}{n!} + 2\sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$$

$$= 2\sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!} + 2\sum_{n=0}^{\infty} (-1)^{n} \frac{z^{2n}}{(2n)!}$$

$$= 4\sum_{n=0}^{\infty} \frac{z^{4n}}{(4n)!}.$$

Задача 4.1.3 Докажете, че

(a) 
$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n, \quad |z| < 1,$$
  
(6)  $\frac{2}{(1+z)^3} = \sum_{n=0}^{\infty} (-1)^n (n+1)(n+2)z^n, \quad |z| < 1,$   
(B)  $\frac{z(z+a)}{(a-z)^3} = \sum_{n=0}^{\infty} \frac{n^2 z^n}{a^{n+1}}, \quad |z| < |a|.$ 

**Упътване.** Използувайте, че  $\frac{1}{1-z}=\sum_{n=0}^{\infty}z^n, \quad |z|<1.$ 

**Задача 4.1.4** Да се развият в ред на Тейлър в околност на точката z=0 следните рационални функции

(a) 
$$\frac{1}{1+z+z^2}$$
 (6)  $\frac{1}{(1-z^4)(1+z+z^2+z^3)}$ .

**Решение.** (a) От формулата за сума на сходяща геометрична прогресия следва, че

$$\frac{1}{1+z+z^2} = \frac{1-z}{1-z^3} = (1-z)\sum_{n=0}^{\infty} z^{3n} = \sum_{n=0}^{\infty} (z^{3n} - z^{3n+1}).$$

(б) Имаме, че

$$\frac{1}{(1-z^4)(1+z+z^2+z^3)} = \frac{1-z}{(1-z^4)^2} = (1-z)\left(\sum_{n=0}^{\infty} z^{4n}\right)^2.$$

От правилото на Коши-Мертенс следва, че

$$\left(\sum_{n=0}^{\infty} z^{4n}\right)^2 = (1 + z^4 + z^8 + \ldots)^2 = 1 + 2z^4 + 3z^8 + 4z^{12} + \ldots$$

Следователно

$$\frac{1-z}{(1-z^4)^2} = (1-z)(1+2z^4+3z^8+4z^{12}+\ldots) = \sum_{n=0}^{\infty} (n+1)(z^{4n}-z^{4n+1}).$$

Задача 4.1.5 Като използувате развитията (4.5) и (4.6), докажете, че

(a) 
$$\frac{1}{\sqrt{1-z^2}} = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n} (n!)^2} z^{2n}, \quad |z| < 1,$$

(6) 
$$\arcsin z = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n} (n!)^2} \frac{z^{2n+1}}{2n+1}, \quad |z| < 1,$$

(B) 
$$\operatorname{Log}_0(z+\sqrt{1+z^2}) = \sum_{n=0}^{\infty} (-1)^n \frac{(2n)!}{2^{2n}(n!)^2} \frac{z^{2n+1}}{2n+1}, \quad |z| < 1.$$

**Решение.** (a) От (4.6) следва, че

$$(1-z^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix} z^{2n}, \quad |z| < 1.$$

Имаме, че

$$\begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix} = \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\dots\left(-\frac{1}{2}-n+1\right)}{n!} = \frac{(-1)^n(2n-1)!!}{2^n n!} = \frac{(-1)^n(2n)!}{2^{2n}(n!)^2}.$$

Следователно

$$\frac{1}{\sqrt{1-z^2}} = \sum_{n=0}^{\infty} \frac{(2n)!}{2^{2n}(n!)^2} z^{2n}, \quad |z| < 1.$$

- (6) Следва от факта, че  $(\arcsin z)' = \frac{1}{\sqrt{1-z^2}}$  и от условие (a) след почленно интегриране.
  - (в) Доказва се аналогично на (б), като се използва факта, че

$$\frac{d}{dz}\text{Log}_0(z+\sqrt{1+z^2}) = \frac{1}{\sqrt{1+z^2}}, \quad |z| < 1.$$

Задача 4.1.6 ♠ Да се докаже формулата

$$\left(\frac{\arctan z}{z}\right)^2 = \sum_{n=0}^{\infty} (-1)^n \left(1 + \frac{1}{3} + \dots + \frac{1}{2n+1}\right) \frac{z^{2n}}{n+1}, \quad |z| < 1.$$

Решение. Тъй като

$$(\operatorname{arctg} z)' = \frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-1)^n z^{2n}, \qquad |z| < 1,$$

чрез почленно интегриране получаваме

$$\frac{\arctan z}{z} = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{2n+1}, \qquad |z| < 1.$$

Следователно

$$\left(\frac{\arctan z}{z}\right)^2 = \left(\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{2n+1}\right)^2 = c_0 + c_1 z + c_2 z^2 + \dots, \tag{4.7}$$

където

$$c_n = \sum_{k=0}^{n} a_k a_{n-k}, \qquad a_{2k+1} = 0, \qquad a_{2k} = \frac{(-1)^k}{2k+1}, \qquad k = 0, 1, \dots$$

Функцията  $\left(\frac{\arctan z}{z}\right)^2$  е четна, следователно  $c_{2n+1}=0,\ n=0,1\dots$  Тъй като  $a_{2k+1}=0,$  от правилото на Коши-Мертенс последователно получаваме

$$c_{2n} = \sum_{k=0}^{2n} a_k a_{2n-k} = \sum_{k=0}^{n} a_{2k} a_{2n-2k} = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)} \frac{(-1)^{n-k}}{(2n-2k+1)}$$

$$= (-1)^n \sum_{k=0}^{n} \frac{1}{(2k+1)} \frac{1}{(2n-2k+1)}$$

$$= \frac{(-1)^n}{2(n+1)} \sum_{k=0}^{n} \left(\frac{1}{2k+1} + \frac{1}{2n-2k+1}\right)$$

$$= \frac{(-1)^n}{n+1} \sum_{k=0}^{n} \frac{1}{2k+1}.$$
(4.8)

Като заместим (4.8) в (4.7), получаваме търсеното развитие в ред.

Задача 4.1.7 ♠ Да се докаже, че

$$\frac{1}{3}(e^z + 2e^{-\frac{z}{2}}\cos\frac{z\sqrt{3}}{2}) = \sum_{n=0}^{\infty} \frac{z^{3n}}{(3n)!}$$

Решение. Имаме, че

$$2e^{-\frac{z}{2}}\cos\frac{z\sqrt{3}}{2} = 2e^{-\frac{z}{2}}\frac{e^{\frac{i\sqrt{3}}{2}z} + e^{-\frac{i\sqrt{3}}{2}z}}{2} = e^{z(-\frac{1}{2} + i\frac{\sqrt{3}}{2})} + e^{-z(\frac{1}{2} + i\frac{\sqrt{3}}{2})}.$$

Да означим

$$\alpha = -\frac{1}{2} + i \frac{\sqrt{3}}{2} = e^{i\frac{2\pi}{3}}, \quad \beta = \frac{1}{2} + i \frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}}.$$

Тогава

$$2e^{-\frac{z}{2}}\cos\frac{z\sqrt{3}}{2} = e^{\alpha z} + e^{-\beta z}.$$

Така получаваме

$$e^{z} + 2e^{-\frac{z}{2}}\cos\frac{z\sqrt{3}}{2} = 3 + (1 + \alpha - \beta)\frac{z}{1!} + (1 + \alpha^{2} + \beta^{2})\frac{z^{2}}{2!} + (1 + \alpha^{3} - \beta^{3})\frac{z^{3}}{3!} + \dots$$

Лесно се вижда, че

$$1 + \alpha - \beta = 0$$
,  $1 + \alpha^2 + \beta^2 = 0$ ,  $1 + \alpha^3 - \beta^3 = 3$ . (4.9)

В общия случай

$$\begin{split} e^z + 2e^{-\frac{z}{2}}\cos\frac{z\sqrt{3}}{2} &= 3 + \sum_{n=0}^{\infty} (1 + \alpha^{1+3n} + (-1)^{1+3n}\beta^{1+3n}) \frac{z^{1+3n}}{(1+3n)!} \\ &\quad + (1 + \alpha^{2+3n} + (-1)^{2+3n}\beta^{2+3n}) \frac{z^{2+3n}}{(2+3n)!} \\ &\quad + (1 + \alpha^{3+3n} + (-1)^{3+3n}\beta^{3+3n}) \frac{z^{3+3n}}{(3+3n)!} \end{split} \ .$$

Имаме, че

$$\alpha^{3n} = e^{i\frac{2\pi 3n}{3}} = e^{2\pi ni} = 1, \quad \beta^{3n} = e^{i\frac{\pi 3n}{3}} = e^{\pi ni} = (-1)^n.$$

Следователно

$$\begin{split} \alpha^{1+3n} &= \alpha, \quad \alpha^{2+3n} = \alpha^2, \quad \alpha^{3+3n} = \alpha^3, \\ (-1)^{1+3n} \beta^{1+3n} &= (-1)^{1+4n} \beta = -\beta, \\ (-1)^{2+3n} \beta^{2+3n} &= (-1)^{2+4n} \beta^2 = \beta^2, \\ (-1)^{3+3n} \beta^{3+3n} &= (-1)^{3+4n} \beta^3 = -\beta^3. \end{split}$$

От (4.9) получаваме

$$1 + \alpha^{1+3n} + (-1)^{1+3n} \beta^{1+3n} = 1 + \alpha - \beta = 0,$$
  

$$1 + \alpha^{2+3n} + (-1)^{2+3n} \beta^{2+3n} = 1 + \alpha^2 + \beta^2 = 0,$$
  

$$1 + \alpha^{3+3n} + (-1)^{3+3n} \beta^{3+3n} = 1 + \alpha^3 - \beta^3 = 3.$$

Тогава

$$e^z + 2e^{-\frac{z}{2}}\cos\frac{z\sqrt{3}}{2} = 3 + \sum_{n=0}^{\infty} 3\frac{z^{3+3n}}{(3+3n)!} = 3\sum_{n=0}^{\infty} \frac{z^{3n}}{(3n)!}.$$

Задача 4.1.8 ♠ Да се докаже, че

$$e^{z\cot g\,\alpha}\cos z = \sum_{n=0}^{\infty} \frac{\cos n\alpha}{\sin^n\alpha} \, \frac{z^n}{n!}, \qquad \text{ksdemo} \qquad 0 < \alpha < \pi.$$

Решение. Имаме

$$e^{z\cot g \alpha} \cos z = \frac{1}{2} e^{z(\cot g \alpha + i)} + \frac{1}{2} e^{z(\cot g \alpha - i)}.$$

Полагаме

$$\beta = \cot \alpha + i \quad \Rightarrow \operatorname{tg}(\operatorname{arg}\beta) = \frac{1}{\cot \alpha} = \operatorname{tg}\alpha, \quad |\beta|^2 = \operatorname{cotg}^2\alpha + 1 = \frac{1}{\sin^2\alpha}$$
$$\Rightarrow \beta = \frac{1}{\sin\alpha}e^{i\alpha}, \quad \overline{\beta} = \cot \alpha - i = \frac{1}{\sin\alpha}e^{-i\alpha}.$$

Следователно

$$\begin{split} \frac{1}{2}e^{z\beta} + \frac{1}{2}e^{z\overline{\beta}} &= \frac{1}{2}\sum_{n=0}^{\infty} \frac{z^n\beta^n}{n!} + \frac{1}{2}\sum_{n=0}^{\infty} \frac{z^n\overline{\beta}^n}{n!} \\ &= \frac{1}{2}\sum_{n=0}^{\infty} \frac{1}{\sin^n\alpha} (e^{in\alpha} + e^{-in\alpha}) \frac{z^n}{n!} = \sum_{n=0}^{\infty} \frac{\cos n\alpha}{\sin^n\alpha} \frac{z^n}{n!}. \end{split}$$

#### 4.2 Нули и изолирани особени точки

Дефиниция 1. Нека функцията f(z) е аналитична в т.  $z_0 \in \mathbb{C}$ . Точката  $z_0$  е нула на f(z) от кратност n, ако

$$f(z_0) = f'(z_0) = \dots = f^{(n-1)}(z_0) = 0, f^{(n)}(z_0) \neq 0.$$

 $A \kappa o \ n = 1, \ m. \ z_0 \ ce \ нарича проста нула.$ 

**Теорема.** Точката  $z_0$  е **нула** на f(z) от кратност n тогава и само тогава, когато

$$f(z) = (z - z_0)^n \varphi(z),$$

където  $\varphi$  е аналитична в т.  $z_0$  и  $\varphi(z_0) \neq 0$ .

Дефиниция 2.  $\Phi$ ункцията f(z) e аналитична в безкрайната точка  $z=\infty,$  ако функцията  $\varphi(w)=f(\frac{1}{w})$  e аналитична в точката w=0.

Например, функцията  $f(z)=\sin\frac{1}{z}$  е аналитична в точката  $z=\infty,$  тъй като функцията  $\varphi(w)=f(\frac{1}{w})=\sin w$  е аналитична в точката w=0.

Дефиниция 3. Точката  $z_0 \in \overline{\mathbb{C}}$  се нарича изолирана особена точка (изолирана особеност) за функцията f(z), ако f(z) е аналитична в околност на m.  $z_0$  с изключение само на точката  $z_0$ .

**Пример.** Функцията  $f(z) = \frac{1}{\sin z}$  има в безкрайност **неизолирана** особена точка, защото полюсите  $z_k = k\pi$  на тази функция клонят към безкрайност при  $k \to \infty$ , следователно във всяка околност на  $z = \infty$  има безбройно много други особени точки.

 $T.\ z_0\in\overline{\mathbb{C}}$  се нарича отстранима особеност, ако съществува крайна граница  $\lim_{z\to z_0}f(z).$ 

 $T. \ z_0 \in \overline{\mathbb{C}} \ ce$  нарича полюс за функцията f(z), ако  $\lim_{z \to z_0} f(z) = \infty$ .

 $T.\ z_0\in\overline{\mathbb{C}}\ ce$  нарича съществена особеност за f(z), ако не съществува границата  $\lim_{z\to z_0}f(z).$ 

**Теорема.**  $T. \ z_0 \in \mathbb{C} \ e$  полюс от кратност  $n, \ n \geq 1$ , за функцията f(z) тогава и само тогава, когато  $z_0$  е нула от кратност n за функцията  $\varphi(z) = 1/f(z)$ . В сила е представянето

$$f(z) = \frac{\varphi(z)}{(z-z_0)^n}, \quad \varphi(z_0) \neq 0.$$

**Задача 4.2.1** Намерете нулите на функцията  $f(z) = e^z - 1$  и определете тяхната кратност.

**Решение.** Нулите на функцията f(z) са корените на уравнението  $e^z=1$ . Тъй като  $1=e^{2k\pi i}, k\in\mathbb{Z}$ , то  $z_k=2k\pi i, k\in\mathbb{Z}$  са нулите на f(z). Те са прости нули, понеже  $f'(z_k)=e^{z_k}=1\neq 0$ .

**Задача 4.2.2** Намерете нулите на функцията  $f(z) = \cos z + 1$  и определете тяхната кратност.

**Решение.** Като положим  $u=e^{iz}$ , уравнението  $\cos z=\frac{e^{iz}+e^{-iz}}{2}=-1$  става  $(u+1)^2=0$  или  $e^{iz}=-1$ . Следователно  $z_k=(2k+1)\pi,\ k\in\mathbb{Z}$ , са нулите на дадената функция. Те са двукратни нули, защото  $f'(z_k)=-\sin z_k=0,$   $f''(z_k)=-\cos z_k=1\neq 0$  (или защото u=-1 е двукратна нула на  $(u+1)^2=0$ ).

**Задача 4.2.3** Намерете нулите на функцията  $f(z) = \sin z + \cos z$  и определете тяхната кратност.

**Решение.** Имаме, че  $\sin z + \cos z = \frac{e^{iz} - e^{-iz}}{2i} + \frac{e^{iz} + e^{-iz}}{2} = 0$ . Като положим  $u = e^{2iz}$ , получаваме уравнението u - 1 + i(u + 1) = 0, чието решение е  $u = \frac{1-i}{1+i} = -i = e^{i(-\pi/2 + 2k\pi)}, \ k \in \mathbb{Z}$ . Следователно нулите на f(z) са  $z_k = -\pi/4 + k\pi, \ k \in \mathbb{Z}$  и те са прости нули.

**Задача 4.2.4** Да се определи кратността на нулата  $z_0 = 0$  за функцията

$$f(z) = \frac{z^8}{z - \sin z}.$$

**Решение.** Като развием функцията  $\sin z$  в ред на Тейлър в околност на т.  $z_0=0,$  получаваме

$$f(z) = \frac{z^8}{z - \sin z} = \frac{z^8}{z - (z - z^3/3! + z^5/5! + \dots)}$$
$$= \frac{z^8}{z^3/3! - z^5/5! + \dots} = z^5 \frac{1}{1/3! - z^2/5! + \dots} = z^5 \varphi(z),$$

където  $\varphi(z)=\frac{1}{1/3!-z^2/5!+\dots}$ . Функцията  $\varphi(z)$  е аналитична в т.  $z_0=0$  и  $\varphi(0)=6\neq 0$ . Следователно точката  $z_0=0$  е 5-кратна нула за дадената функция.

Може да се разсъждава и по следния начин: за функцията  $f(z)=z-\sin z$  е изпълнено, че f(0)=f'(0)=f''(0)=0 и  $f'''(0)=\cos z\big|_{z=0}\neq 0$ . Следователно z=0 е трикратна нула на знаменателя и понеже е и нула от кратност осем за числителя, то z=0 е пет-кратна нула на дадената функция.

**Задача 4.2.5** Да се намерят нулите на функцията  $f(z) = (z^2 + 1)^3 \operatorname{sh} z$  и да се определи тяхната кратност.

**Решение.** От  $(z^2+1)^3 \sh z=0$  получаваме, че или  $z^2+1=0$ , или  $\sh z=0$ . Решавайки тези уравнения, получаваме нулите на f(z):

$$z = -i$$
,  $z = i$ ,  $z_k = k\pi i$ ,  $k \in \mathbb{Z}$ .

Нека z=-i. Тогава f(z) може да се представи във вида

$$f(z) = (z+i)^3 \varphi(z),$$

където функцията  $\varphi(z)=(z-i)^3 \sinh(z)$  е аналитична в т. z=-i, при това  $\varphi(-i)=8i \sinh(-i)=16 \sin 1\neq 0$ . Следователно т. z=-i е нула от кратност три. Аналогично се доказва, че т. z=i също е нула от кратност три. За да определим кратността на нулите  $z_k=k\pi i,\,k\in\mathbb{Z}$ , достатъчно е да отбележим, че производната

$$f'(z) = 6z(z^2 + 1)^2 \operatorname{sh} z + (z^2 + 1)^3 \operatorname{ch} z$$

е различна от нула в точките  $k\pi i,\ k\in\mathbb{Z}.$  Следователно  $z_k,\ k\in\mathbb{Z},$  са прости нули.

**Задача 4.2.6** Намерете нулите на следните функции и определете кратността им.

(a) 
$$f(z) = 1 + \operatorname{ch} z$$
, (6)  $f(z) = \frac{\sin z}{z}$ .

- **Отг.** (a) двукратни нули в т.  $z_k = (2k+1)\pi i, k \in \mathbb{Z},$ 
  - (б) прости нули в т.  $z_k = k\pi, k = \pm 1, \pm 2, \ldots$

**Задача 4.2.7** Да се докаже, че m. а е отстранима особеност за следните функции:

(a) 
$$\frac{z^2-1}{z-1}$$
,  $a=1$ , (6)  $\frac{z}{\lg z}$ ,  $a=0$ ,

**(B)** 
$$\frac{1-\cos z}{z^2}$$
,  $a=0$ , **(r)**  $\cot z - \frac{1}{z}$ ,  $a=0$ .

Решение.

(a) 
$$\lim_{z \to 1} \frac{z^2 - 1}{z - 1} = \lim_{z \to 1} (z + 1) = 2.$$

(6) 
$$\lim_{z \to 0} \frac{z}{\operatorname{tg} z} = \lim_{z \to 0} \left( \frac{z}{\sin z} \cos z \right) = \lim_{z \to 0} \frac{z}{\sin z} \lim_{z \to 0} \cos z = 1.$$

(B) 
$$\lim_{z \to 0} \frac{1 - \cos z}{z^2} = \lim_{z \to 0} \frac{2\sin^2 \frac{z}{2}}{z^2} = \frac{1}{2}$$
.

(r) 
$$\lim_{z \to 0} \left( \cot z - \frac{1}{z} \right) = \lim_{z \to 0} \frac{z \cos z - \sin z}{z \sin z}$$
$$= \lim_{z \to 0} \frac{-z \sin z}{\sin z + z \cos z} = \lim_{z \to 0} \frac{-z}{1 + \frac{z}{\sin z} \cos z} = 0.$$

При решението на условие (г) използвахме следното

Правило на Лопитал. Ако f(z) и g(z) са аналитични в точката  $z_0$  и  $f(z_0)=g(z_0)=0,$   $g'(z_0)\neq 0,$  то  $\lim_{z\to z_0}\frac{f(z)}{g(z)}=\frac{f'(z_0)}{g'(z_0)}.$ 

Задача 4.2.8 Да се докаже, че т. а е полюс за следните функции:

(a) 
$$\frac{1}{z}$$
,  $a = 0$ , (6)  $\frac{1}{(z^2 + 1)^2}$ ,  $a = i$ ,

(B) 
$$\frac{z^2+1}{z+1}$$
,  $a = \infty$ , (r)  $\frac{z}{1-\cos z}$ ,  $a = 0$ ,

(д) 
$$\frac{z}{(e^z - 1)^2}$$
,  $a = 0$ , (e)  $\cot \frac{\pi}{z}$ ,  $a = \infty$ .

**Решение.** (a) Точката a е прост полюс, понеже е проста нула на знаменателя.

(б) Точката a е двукратен полюс, понеже е двукратна нула на знаменателя.

(B) 
$$\lim_{z \to \infty} \frac{z^2 + 1}{z + 1} = \infty$$
.

(r) 
$$\lim_{z \to 0} \frac{z}{1 - \cos z} = \lim_{z \to 0} \frac{1}{\sin z} = \infty.$$

(д) 
$$\lim_{z \to 0} \frac{z}{(e^z - 1)^2} = \lim_{z \to 0} \frac{1}{2e^z(e^z - 1)} = \infty.$$

(e) 
$$\lim_{z \to \infty} \cot g \frac{\pi}{z} = \lim_{z \to \infty} \frac{\cos \frac{\pi}{z}}{\sin \frac{\pi}{z}} = \infty.$$

**Задача 4.2.9** Да се докаже, че z=0 е съществена особеност за функцията

$$f(z) = e^{\frac{1}{z^2}}.$$

**Решение.** Ще разгледаме поведението на функцията върху реалната и имагинерната оси. Върху реалната ос  $z=x,\,f(x)=e^{\frac{1}{x^2}}\to\infty$  при  $x\to0$ . Върху имагинерната ос  $z=iy,\,f(iy)=e^{-\frac{1}{y^2}}\to0$  при  $y\to0$ . Тогава границата на f(z) в т. z=0 не съществува. Следователно z=0 е съществена особеност.

**Задача 4.2.10** Да се определи вида на особената точка z=0 за функцията

$$f(z) = \frac{1}{2 + z^2 - 2\operatorname{ch} z}.$$

**Решение.** Да разгледаме функцията  $\varphi(z)=\frac{1}{f(z)}=2+z^2-2$  ch z. Точката z=0 е полюс на функцията f(z), тъй като  $\varphi(0)=0$ . За да намерим кратността на тази нула, пресмятаме последователно

$$\varphi'(z) = 2z - 2 \operatorname{sh} z, \qquad \varphi'(0) = 0, 
\varphi''(z) = 2 - 2 \operatorname{ch} z, \qquad \varphi''(0) = 0, 
\varphi'''(z) = -2 \operatorname{sh} z, \qquad \varphi'''(0) = 0, 
\varphi^{IV}(z) = -2 \operatorname{ch} z, \qquad \varphi^{IV}(0) = -2 \neq 0.$$

Следователно z=0 е нула от кратност четири за  $\varphi(z)$ , което означава, че z=0 е полюс от кратност четири за f(z).

#### 4.3 Ред на Лоран

**Теорема на Лоран.** Всяка функция f(z), която е аналитична във венец  $0 \le r < |z - z_0| < R \le +\infty$ ,  $z_0 \in \mathbb{C}$ , може да се развие в степенен ред от вида

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n,$$

който се нарича **ред на Лоран** на f(z) във венеца. Коефициентите  $c_n$  се определят еднозначно от формулите

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z) dz}{(z - z_0)^{n+1}}, \quad n \in \mathbb{Z},$$
 (4.1)

където  $\gamma$  е произволна окръжност с център в т.  $z_0$ , съдържаща се във венеца, а интегрирането е в положителна посока.

Нека точката  $z_0 \in \mathbb{C}$  е изолирана особеност за функцията f(z). Тогава е вярно, че:

- **1.** Точката  $z_0$  е отстранима особеност за функцията  $f(z) \iff c_n = 0$  за всяко n < 0.
- **2.** Точката  $z_0$  е **т-кратен полюс** за функцията  $f(z) \iff$  лорановото ѝ развитие в околност на  $z_0$  съдържа краен брой членове с отрицателни степени, като т е най-голямата отрицателна степен в развитието, т. е.  $c_n = 0$  за n < -m,  $c_{-m} \neq 0$ .
- **3.** Точката  $z_0$  е съществена особеност за функцията  $f(z) \iff c_n \neq 0$  за безбройно много n < 0.

**Дефиниция.** Ред на Лоран на функцията f(z) в околност на безкрайната точка ще наричаме развитието на f(z) в ред на Лоран по степените на z, който е сходящ в околност на  $z=\infty$  с евентуално изключение само на тази точка.

Редът на Лоран на f(z) в околността  $\{z:z>R\}$  на безкрайната точка се получава от реда на Лоран за функцията  $\varphi(w)=f(\frac{1}{w})$  във венеца  $\{w:0<|w|<\frac{1}{R}\}$ , в който заместваме w=1/z.

Развитията на елементарните функциите  $e^z$ ,  $\sin z$ ,  $\cos z$ ,  $\sin z$ ,  $\cot z$  в ред на Тейлър около z=0 могат да се разглеждат и като лоранови развития около  $z=\infty$ . За тези функции точката  $z=\infty$  е съществена особеност, защото развитията съдържат безбройно много членове с положителни степени на z.

#### Теорема (за вида на особената точка в безкрайност).

1. Ако точката  $z = \infty$  е отстранима особеност за функцията f(z), то лорановото развитие на f(z) в околност на тази точка не съдържа членове с положителни степени на z;

2. Ако  $z = \infty$  е полюс, то лорановото развитие на f(z) съдържа краен брой членове с положителни степени;

3. Ако  $z=\infty$  е съществена особеност, лорановото развитие на f(z) съдържа безкраен брой членове с положителни степени.

**Задача 4.3.1** Да се развият в ред на Лоран около т. z=0 функциите

(a) 
$$\frac{1}{z^2}e^{-z}$$
, (6)  $\frac{1-e^{2z}}{z^4}$ .

Решение.

(a) 
$$\frac{1}{z^2}e^{-z} = \frac{1}{z^2}(1 - \frac{z}{1!} + \frac{z^2}{2!} - \frac{z^3}{3!} + \dots)$$
  
=  $\frac{1}{z^2} - \frac{1}{1!z} + \frac{1}{2!} - \frac{z}{3!} + \dots$ 

От развитието се вижда, че т. z=0 е двукратен полюс за f(z).

(6) 
$$\frac{1 - e^{2z}}{z^4} = -\frac{1}{z^4} (2z + \frac{(2z)^2}{2!} + \dots)$$
$$= -\frac{2}{z^3} - \frac{2}{z^2} - \dots$$

От развитието се вижда, че т. z = 0 е полюс от кратност три за f(z).

Задача 4.3.2 Намерете лорановото развитие на функцията

$$f(z) = \frac{e^{-z}}{(z-1)^2}$$
 в областта  $|z-1| > 1$ .

Решение.

$$f(z) = \frac{e^{-(z-1)}e^{-1}}{(z-1)^2} = \frac{1}{e(z-1)^2} \left( 1 - \frac{z-1}{1!} + \frac{(z-1)^2}{2!} - \dots \right)$$
$$= \frac{1}{e(z-1)^2} - \frac{1}{1!e(z-1)} + \frac{1}{2!e} - \frac{z-1}{3!e} + \dots$$

Задача 4.3.3 Да се развие в ред на Лоран функцията

$$f(z) = z^2 \cos \frac{1}{z}$$
 в околност на точката  $z = 0$ .

**Otr.** 
$$f(z) = z^2 - \frac{1}{2!} + \frac{1}{4!z^2} - \frac{1}{6!z^4} + \dots$$

Задача 4.3.4 Намерете развитията в ред на Лоран на функцията

$$f(z) = \frac{1}{z-1} - \frac{1}{z-2}$$

в областите

(a) 
$$1 < |z| < 2$$
,

(6) 
$$|z| > 2$$

**(B)** 
$$|z| < 1$$
.

Решение. (а)

$$\frac{1}{z-1} = \frac{1}{z} \cdot \frac{1}{1-\frac{1}{z}} = \frac{1}{z} (1 + \frac{1}{z} + \frac{1}{z^2} + \dots),$$

$$\frac{1}{z-2} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} = -\frac{1}{2} (1 + \frac{z}{2} + \frac{z^2}{2^2} + \dots)$$

Следователно

$$f(z) = \ldots + \frac{1}{z^2} + \frac{1}{z} + \frac{1}{2} + \frac{z}{2^2} + \ldots$$

(б) В тази област развитието на функцията  $\frac{1}{z-1}$  в ред на Лоран е същото, както в (а) , но

$$\frac{1}{z-2} = \frac{1}{z} \cdot \frac{1}{1-\frac{2}{z}} = \frac{1}{z} (1 + \frac{2}{z} + \frac{2^2}{z^2} + \dots),$$

откъдето получаваме развитието

$$f(z) = \frac{1-2}{z^2} + \frac{1-2^2}{z^3} + \dots$$

Ще отбележим, че това е и развитието на f(z) в ред на Лоран в околността  $\{z:|z|>2\}$  на  $\infty$  точка. Тъй като  $z=\infty$  е отстранима особеност за f(z), развитието не съдържа членове с положителни степени на z.

(в) В указаната област имаме развитията

$$\frac{1}{z-1} = -(1+z+z^2+\ldots),$$

$$\frac{1}{z-2} = -\frac{1}{2}\frac{1}{1-\frac{z}{2}} = -\frac{1}{2}\left(1+\frac{z}{2}+\frac{z^2}{2^2}+\ldots\right),$$

откъдето получаваме

$$f(z) = -\frac{1}{2} + \left(\frac{1}{2^2} - 1\right)z + \left(\frac{1}{2^3} - 1\right)z^2 + \dots$$

Ще отбележим, че функцията f(z) е аналитична в разглежданата област и развитието ѝ в ред на Лоран съвпада с развитието ѝ в ред на Тейлър.

Задачата може да се реши и като използваме формулите (4.1).

(a) Първо ще пресметнем коефициентите  $c'_n$  в лорановото развитие на функцията  $\frac{1}{z-1}$ . От теоремата на Коши за многосвързана област следва,

че 
$$c_n'=rac{1}{2\pi i}\int\limits_{\gamma}^{\infty}rac{1}{(z-1)z^{n+1}}dz=I_1+I_2,$$
 където

$$I_1 = \frac{1}{2\pi i} \int_{\gamma_1} \frac{1/z^{n+1}}{z-1} dz, \quad I_2 = \frac{1}{2\pi i} \int_{\gamma_2} \frac{1/(z-1)}{z^{n+1}} dz,$$

а  $\gamma_1$  и  $\gamma_2$  са окръжности с достатъчно малки радиуси и с центрове съответно в точките z=1 и z=0. От формулата на Коши (3.4) получаваме

$$I_1 = \frac{1}{z^{n+1}} \bigg|_{z=1} = 1.$$

По-нататък, от теоремата на Коши следва, че ако  $n+1 \leq 0$ , то  $I_2=0$ . Ако n+1>0, от формулите на Коши (3.5) получаваме

$$I_2 = \frac{1}{n!} \left( \frac{1}{z-1} \right)_{z=0}^{(n)} = \frac{1}{n!} \frac{(-1)^n n!}{(z-1)^{n+1}} \bigg|_{z=0} = -1.$$

Следователно

$$c'_n = \begin{cases} 1, & \text{ako } n \le -1, \\ 0, & \text{ako } n \ge 0. \end{cases}$$

За коефициентите  $c_n''$  в лорановото развитие на функцията  $\frac{1}{z-2}$  по аналогичен начин получаваме

$$c_n'' = \left\{ \begin{array}{cc} 0, & \text{ако } n \leq -1, \\ -\frac{1}{2^{n+1}}, & \text{ако } n \geq 0. \end{array} \right. .$$

Тогава за коефициентите  $c_n$  в лорановото развитие на функцията f(z) получаваме

$$c_n = c'_n - c''_n = \begin{cases} 1, & \text{ако } n \le -1, \\ \frac{1}{2^{n+1}}, & \text{ако } n \ge 0. \end{cases}$$

#### Забележка.

- (1) Както се вижда от зад. 4.3.4, една и съща функция може да има различни лоранови развития в различни области.
- (2) Тъй като лорановото развитие в дадена област е единствено, няма значение как ще го получим. Не е необходимо непременно да използуваме формулите (4.1), което понякога е доста сложно.
- (3) Ако функцията е аналитична в дадена област, то развитието ѝ в ред на Лоран в тази област съвпада с развитието ѝ в ред на Тейлър.

**Задача 4.3.5** Намерете първите четири члена в лорановото развитие около т. z=0 на функцията  $f(z)=\frac{e^z}{z(z^2+1)}.$ 

**Решение.** Първи начин. Тъй като z=0 е прост полюс на функцията, трябва да намерим коефициентите  $c_{-1},\ c_0,\ c_1$  и  $c_2$  в лорановото развитие. Ще използуваме формулите (4.1), където  $\gamma$  е произволна окръжност с център т. 0. От интегралната формула на Коши (3.4) и формулите за производните (3.5) получаваме

$$c_{-1} = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z dz}{z(z^2 + 1)} = \left(\frac{e^z}{z^2 + 1}\right)_{z=0} = 1,$$

$$c_0 = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z dz}{z^2 (z^2 + 1)} = \frac{1}{1!} \left(\frac{e^z}{z^2 + 1}\right)'_{z=0} = 1,$$

$$c_1 = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z dz}{z^3 (z^2 + 1)} = \frac{1}{2!} \left(\frac{e^z}{z^2 + 1}\right)''_{z=0} = -\frac{1}{2},$$

$$c_2 = \frac{1}{2\pi i} \int_{\gamma} \frac{e^z dz}{z^4 (z^2 + 1)} = \frac{1}{3!} \left(\frac{e^z}{z^2 + 1}\right)'''_{z=0} = -\frac{5}{6}.$$

Следователно

$$f(z) = \frac{1}{z} + 1 - \frac{1}{2}z - \frac{5}{6}z^2 + \dots$$

Втори начин.

$$f(z) = \frac{1}{z} e^{z} \frac{1}{1 - (-z^{2})}$$

$$= \frac{1}{z} (1 + z + z^{2}/2 + z^{3}/6 + \dots) (1 - z^{2} + z^{4} - \dots)$$

$$= \frac{1}{z} + 1 + (-1 + 1/2)z + (-1 + 1/6)z^{2} + \dots$$

$$= \frac{1}{z} + 1 - \frac{1}{2}z - \frac{5}{6}z + \dots$$

Задача 4.3.6 Намерете развитията в ред на Лоран на функцията

$$f(z)=rac{2z+1}{z^2+z-2}$$
 в околност на точката  $z=0.$ 

Otr. (a) 
$$|z| < 1$$
,  $-\sum_{n=1}^{\infty} \left( 1 + \frac{(-1)^n}{2^n} \right) z^{n-1}$   
(6)  $1 < |z| < 2$ ,  $\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n} + \sum_{n=1}^{\infty} \frac{1}{z^n}$ ,  
(B)  $|z| > 2$ ,  $\frac{2}{z} - \frac{1}{z^2} + \frac{5}{z^3} - \frac{7}{z^4} + \dots$ 

**Задача 4.3.7** Развийте функцията  $f(z)=\frac{2z-3}{z^2-3z+2}$  в ред на Лоран в околност на особените ѝ точки.

**Otr.** 1. 
$$z_1 = 1$$
,  $f(z) = \frac{1}{z-1} - \sum_{n=0}^{\infty} (z-1)^n$ ,  $0 < |z-1| < 1$   
2.  $z_2 = 2$ ,  $f(z) = \frac{1}{z-2} - \sum_{n=0}^{\infty} (-1)^n (z-1)^n$ ,  $0 < |z-2| < 1$ 

**Задача 4.3.8** ♠ Докажете, че всяка точка от границата на кръга на сходимост на реда

$$f(z) = 1 + z^2 + z^4 + \dots + z^{2^n} + \dots$$

е особена точка.

Решение. От тъждеството

$$f(z) = z^2 + z^4 + \dots + z^{2^n} + \left(1 + (z^{2^n})^2 + (z^{2^n})^4 + \dots\right)$$

Резидууми 92

получаваме рекурентната формула

$$f(z) = z^{2} + z^{4} + \dots + z^{2^{n}} + f(z^{2^{n}}).$$
(4.2)

От (4.2) последователно получаваме, че при  $x \to 1$  и при  $z \to \zeta = \sqrt[2^n]{1}, \ n = 1, 2, \ldots$ , е изпълнено  $\lim_{x \to 1} f(x) = \infty$  и  $\lim_{z \to \zeta} f(\zeta) = \infty$ . Действително, при  $x \to 1$  имаме  $1 + x^2 + x^4 + \ldots + x^{2^n} \to n + 1$ . Следователно съществува  $\delta(n) > 0$ , така че при  $x > 1 - \delta(n)$  (т. е. при x, достатъчно близки до 1), имаме  $1 + x^2 + x^4 + \ldots + x^{2^n} > n$ . Но

$$f(x) = \sum_{k=0}^{\infty} x^{2^{n}} > \sum_{k=0}^{n} x^{2^{n}} > n \Rightarrow \lim_{x \to 1} f(x) = \infty.$$
 (4.3)

Следователно x=1 е особена точка. Сега да разгледаме точките  $\sqrt[2^n]{1}$ , които са разположени върху единичната окръжност във върховете на правилен  $2^n$  - ъгълник. Нека  $\zeta$  е един от тези корени и нека  $z\in O\zeta$ , където  $O\zeta$  е радиусът, който съединява точката O с точката  $\zeta$ . Тогава числото  $z^{2^n}=x$  е реално и  $z^{2^n}\to 1$  при  $z\to \zeta$ . Тогава от (4.3) следва, че  $\lim_{z\to \zeta} f(z^{2^n})=\infty$ , а от (4.2) получаваме  $\lim_{z\to \zeta} f(z)=\infty$ . Следователно всички точки са особени, защото ако имаме регулярна точка, то ще имаме и дъга, върху която f(z) е регулярна.

#### 4.4 Резидууми

Нека т.  $z_0 \in \mathbb{C}$  е изолирана особеност за функцията f(z).

Дефиниция 1. Резидуум на f(z) в точката  $z_0$  се нарича коефициентът  $c_{-1}$  пред  $(z-z_0)^{-1}$  в лорановото развитие на f(z) в ред около  $z_0$ , т. е.

Res 
$$(f; z_0) = c_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(z) dz$$
,

където  $\gamma$  е окръжност с център в т.  $z_0$  и достатъчно малък радиус, която не съдържа във вътрешността си други особени точки. Интегрирането се извършва в положителна посока. Ще използваме и по-краткото означение  $\operatorname{Res}(z_0)$ , ако няма двусмисленост.

Aко  $z_0$  е m-кратен полюс, то  $\mathrm{Res}\,(f;z_0)$  се намира чрез формулата

$$\mathrm{Res}\,(f;z_0) = rac{1}{(m-1)!} \lim_{z o z_0} rac{d^{m-1}}{dz^{m-1}} igg((z-z_0)^m f(z)igg).$$

 $A \kappa o \ z_0 \ e \ npocm \ non w c \ u$ 

$$f(z)=rac{arphi(z)}{\psi(z)},\ \kappa \sigma \partial emo\ arphi(z_0)
eq 0,\ \psi(z_0)=0,\ \psi'(z_0)
eq 0,$$

mo

Res 
$$(f; z_0)$$
 =  $\lim_{z \to z_0} (z - z_0) \frac{\varphi(z)}{\psi(z)}$  =  $\lim_{z \to z_0} \frac{\varphi(z)}{\frac{\psi(z) - \psi(z_0)}{z - z_0}}$  =  $\frac{\varphi(z_0)}{\psi'(z_0)}$ .

Дефиниция 2. Резидуум на f(z) в безкрайната точка наричаме

Res 
$$(f; \infty) := \frac{1}{2\pi i} \int_{\gamma^-} f(z) dz$$
,

където  $\gamma^-$  е достатъчно голяма окръжност с център точката z=0, а интегрирането се извършва в отрицателна посока (т. е. по часовниковата стрелка, така че околността на точката  $z=\infty$  да остава отляво).

Резидууми 93

От тази дефиниция следва, че

$$\operatorname{Res}\left(f;\infty\right) = -c_{-1},$$

където  $c_{-1}$  е коефициента пред  $\frac{1}{z}$  в лорановото развитие около  $z=\infty.$ 

**Забележка.** За разлика от случая на крайна отстранима особеност, резидуумът на аналитична функция в случая, когато  $z=\infty$  е отстранима особеност, може да бъде различен от нула, както се вижда от примера по-долу.

**Пример.** Точката  $z=\infty$  е отстранима особена точка за функцията  $f(z)=\frac{1}{z}$ , защото  $\lim_{z\to\infty}f(z)=0$ . От друга страна, можем да разглеждаме  $\frac{1}{z}$  като лорановото развитие на f(z) в околност на безкрайната точка, следователно  $\mathrm{Res}\,(f;\infty)=-1$ .

**Теорема.** Ако функцията f(z) е аналитична в  $\overline{\mathbb{C}}$  с изключение на краен брой точки  $a_1, a_2, \ldots, a_n, \infty$ , то

$$\operatorname{Res}(f; \infty) + \sum_{k=1}^{n} \operatorname{Res}(f; a_k) = 0.$$

Задача 4.4.1 Да се пресметнат

(a) 
$$\operatorname{Res}(\frac{\sin z}{z^2};0)$$
, (b)  $\operatorname{Res}(e^{\frac{1}{z}};\infty)$ , (g)  $\operatorname{Res}(\frac{e^z}{(z-1)^2};1)$ ,

(r) 
$$\operatorname{Res}(z^2\sin\frac{\pi}{z};\infty)$$
, ( $\pi$ )  $\operatorname{Res}\left(\frac{\cos z}{z-\frac{\pi}{4}};\frac{\pi}{4}\right)$ , (e)  $\operatorname{Res}(e^{\frac{1}{z-1}};1)$ .

Решение.

(a) 
$$\frac{\sin z}{z^2} = \frac{1}{z} - \frac{z}{2!} + \frac{z^3}{5!} - \dots \Rightarrow \operatorname{Res}(0) = 1.$$

(6) 
$$e^{\frac{1}{z}} = 1 + \frac{1}{11z} + \frac{1}{21z^2} + \dots \Rightarrow \operatorname{Res}(\infty) = -1.$$

(в) Точката z = 1 е двукратен полюс. Следователно

Res (1) = 
$$\frac{1}{1!} (e^z)'_{z=1} = e$$
,

(r) 
$$z^{2} \sin \frac{\pi}{z} = z^{2} \left( \frac{\pi}{z} - \frac{\pi^{3}}{3!z^{3}} + \frac{\pi^{5}}{5!z^{5}} - \dots \right)$$
$$= \pi z - \frac{\pi^{3}}{3!z} + \frac{\pi^{5}}{5!z^{3}} - \dots$$

Следователно  $\operatorname{Res}(\infty) = \frac{\pi^3}{3!}$ 

Резидууми 94

(д) Точката 
$$z=\frac{\pi}{4}$$
 е прост полюс. Следователно 
$$\operatorname{Res}\left(\frac{\pi}{4}\right)=\frac{1}{0!}\cos\frac{\pi}{4}=\sqrt{2}/2,$$
 (e) 
$$e^{\frac{1}{z-1}}=1+\frac{1}{1!(z-1)}+\frac{1}{2!(z-1)^2}+\dots \ \Rightarrow \ \operatorname{Res}\left(1\right)=1.$$

**Задача 4.4.2** Да се намерят резидуумите на следните функции във всички крайни точки:

(a) 
$$\frac{1}{z+z^3}$$
, (6)  $\frac{z^2}{1+z^4}$ , (B)  $\frac{z^2}{(1+z)^3}$ , (c)  $\frac{1}{(z^2+1)^3}$ , (d)  $\frac{1}{(z^2+1)(z-1)^2}$ , (e)  $\cot \pi z$ .

Отг. (a) 
$$1$$
, ако  $z=0$ ;  $-\frac{1}{2}$ , ако  $z=\pm i$ ,   
(6)  $\frac{1\pm i}{8\sqrt{2}}$ , ако  $z=e^{\mp\frac{\pi i}{4}}$ ;  $-\frac{1\pm i}{8\sqrt{2}}$ , ако  $z=e^{\pm\frac{3\pi i}{4}}$  (B)  $1$ , ако  $z=-1$ ,   
(г)  $\mp\frac{3i}{16}$ , ако  $z=\pm i$ ,   
(д)  $-\frac{1}{2}$ , ако  $z=1$ ;  $\frac{1}{4}$ , ако  $z=\pm i$ ,   
(е)  $\frac{1}{\pi}$ , ако  $z=k$ ,  $k\in\mathbb{Z}$ .

 ${f 3}$ адача  ${f 4.4.3}$  Намерете резидуумите в безкрайната точка на следните функции

(a) 
$$\frac{z^4+1}{z^6-1}$$
, (6)  $\cos \pi \left(\frac{z+2}{2z}\right)$ , (B)  $\frac{\sin \frac{1}{z}}{z-1}$ , (r)  $\frac{\cos^2 \frac{\pi}{z}}{z+1}$ , (д)  $\frac{(z^{10}+1)\cos \frac{1}{z}}{(z^5+2)(z^6-1)}$ , (e)  $z\cos^2 \frac{\pi}{z}$ .

$$f(z) = f(\frac{1}{w}) = \frac{w^2 + w^6}{1 - w^6} = (w^2 + w^6)(1 + w^6 + w^{12} + \dots)$$
$$= w^2 + w^6 + \dots = \frac{1}{z^2} + \frac{1}{z^6} + \dots$$

Следователно  $\operatorname{Res}(f;\infty) = 0.$ 

(б) Т.  $z=\infty$  е отстранима особеност, тъй като  $\lim_{z\to\infty}f(z)=0$ . Имаме, че

$$f(z) = f(\frac{1}{w}) = \cos(\pi w + \frac{\pi}{2}) = -\sin \pi w$$
$$= -(\pi w - \frac{(\pi w)^3}{3!} + \dots) = -\frac{\pi}{z} + \frac{\pi}{3!z^3} - \dots$$

Следователно  $\operatorname{Res}(f; \infty) = \pi$ .

(в) Т.  $z=\infty$  е отстранима особеност, тъй като  $\lim_{z\to\infty}f(z)=0.$  Имаме,

95

$$\frac{\sin\frac{1}{z}}{z-1} = \frac{w\sin w}{1-w} = w\left(1+w+w^2+\ldots\right)\left(w-\frac{w^3}{3!}+\ldots\right)$$
$$= w(w+w^2+\ldots) = \frac{1}{z^2} + \frac{1}{z^3} + \ldots$$

Следователно  $\operatorname{Res}(f; \infty) = 0.$ 

(г) Т.  $z=\infty$  е отстранима особеност, тъй като  $\lim_{z\to\infty}f(z)=0$ . Имаме, че

$$\frac{\cos^2 \frac{\pi}{z}}{z+1} = \frac{w \cos^2 \pi w}{1+w} = \frac{w(1+\cos 2\pi w)}{2(1+w)}$$
$$= \frac{w}{2} \left(2 + \frac{(2\pi w)^2}{2!} - \dots\right) (1-w+\dots)$$
$$= w + \dots = \frac{1}{z} + \dots$$

Следователно  $\operatorname{Res}(f; \infty) = -1.$ 

(д) Т.  $z=\infty$  е отстранима особеност, тъй като  $\lim_{z\to\infty}f(z)=0$ . Изпълнено е, че

$$f\left(\frac{1}{w}\right) = \frac{w(1+w^{10})\cos w}{(1+2w^5)(1-w^6)}$$

$$= w(1+w^{10})(1-2w^5+\ldots)(1+w^6+\ldots)\left(1+\frac{w^2}{2!}+\ldots\right)$$

$$= w+\ldots = \frac{1}{z}+\ldots$$

Следователно  $\operatorname{Res}(f; \infty) = -1.$ 

(e) Т.  $z=\infty$  е полюс, тъй като  $\lim_{z\to\infty}f(z)=\infty$ . Имаме, че

$$z\cos^{2}\frac{\pi}{z} = \frac{1}{w}\cos^{2}\pi w = \frac{1}{w}\left(1 - \frac{(\pi w)^{2}}{2!} + \frac{(\pi w)^{4}}{4!} - \dots\right)^{2}$$
$$= \frac{1}{w}(1 - (\pi w)^{2} + \dots) = \frac{1}{w} - \pi^{2}w + \dots = z - \frac{\pi^{2}}{z} + \dots$$

Следователно  $\operatorname{Res}(f; \infty) = \pi^2$ .

### Глава 5

#### Теорема за резидуумите. Приложения

#### 5.1 Пресмятане на интеграли

**Теорема за резидуумите.** Нека функцията f(z) е аналитична върху затворената жорданова крива  $\gamma$  и във вътрешността  $\dot{u}$ , с изключение на краен брой особени точки  $a_k$ ,  $k=1,\ldots n$ , лежащи във вътрешността на  $\gamma$ . Тогава

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \text{Res}(f; a_k),$$

като интегрирането се извършва в положителна посока.

Задача 5.1.1 Да се пресметне интеграла

$$\int_{|z|=4} \frac{e^z - 1}{z^2 + z} \, dz.$$

**Решение.** Подинтегралната функция има две особени точки, лежащи във вътрешността на окр. |z|=4. Точката z=0 е отстранима особеност  $\Longrightarrow \operatorname{Res}(0)=0$ . Точката z=-1 е прост полюс и  $\operatorname{Res}(-1)=\frac{e^{-1}-1}{-1}$ . Следователно  $I=2\pi i\frac{e-1}{e}$ .

Задача 5.1.2 Да се пресметне интеграла

$$\int_{|z|=2} \frac{z^3 e^{\frac{1}{z}}}{z+1} \, dz.$$

**Решение.** И двете особени точки на подинтегралната функция се намират във вътрешността на |z|=2. Точката z=-1 е прост полюс и  $\mathrm{Res}\,(-1)=-e^{-1}$ . Точката z=0 е съществена особеност. За да намерим  $\mathrm{Res}\,(0)$ , ще развием функцията в ред на Лоран около z=0. Имаме, че

$$\frac{z^3 e^{\frac{1}{z}}}{z+1} = z^3 \left( 1 + \frac{1}{1!z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \frac{1}{4!z^4} + \dots \right) (1 - z + z^2 - \dots).$$

 ${\rm Res}\,(0)$ е коефициентът пред  $\frac{1}{z^4}$  в почленното умножение на двата реда. Следователно

Res 
$$(0)$$
 =  $\frac{1}{4!} - \frac{1}{5!} + \frac{1}{6!} - \dots = e^{-1} - (1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!}) = e^{-1} - \frac{1}{3}$ .

Тогава

$$\int_{|z|=2} \frac{z^3 e^{\frac{1}{z}}}{z+1} dz = 2\pi i (-e^{-1} + e^{-1} - \frac{1}{3}) = -\frac{2}{3}\pi i.$$

Задача 5.1.3 Да се пресметне интеграла

$$\int_{|z-i|=3/2} \frac{e^{\frac{1}{z^2}}}{z^2+1} \, dz.$$

OTF.  $I = \frac{\pi}{e}$ 

Задача 5.1.4 Пресметнете следните интеграли

(a) 
$$I = \int_{|z|=2} \frac{dz}{1+z^4}$$
,

(6) 
$$I = \int_{|z|=3} \frac{z^{17}}{(z^2+2)^3(z^3+3)^4} dz$$
,

(B) 
$$I = \int_{|z|=1} z^2 \sin \frac{1}{z} dz$$
.

**Решение.** (а) *Първи начин.* Корените на уравнението  $z^4=-1, z_k=e^{i\frac{(2k+1)\pi}{4}}, k=0,1,2,3,$  са прости полюси на функцията  $\frac{1}{z^4+1}.$  Те се намират във вътрешността на окръжността |z|=2. Имаме, че

Res 
$$(z_k)$$
 =  $\frac{1}{4z_k^3}$  =  $\frac{z_k}{4z_k^4}$  =  $-\frac{z_k}{4}$ .

Следователно

$$I = -\frac{\pi i}{2}(z_0 + z_1 + z_2 + z_3) = 0.$$

Bmopuначин. Тъй като  $\sum_{k=1}^4 \mathrm{Res}\,(z_k) = -\mathrm{Res}\,(\infty),$  достатъчно е да прес-

метнем  $\mathrm{Res}\,(\infty)$ . За целта развиваме функцията  $f(z)=\frac{1}{1+z^4}$  в ред на Лоран в околност на безкрайната точка. Имаме, че

$$f(z) = \frac{1}{1+z^4} = \frac{1}{z^4} \frac{1}{1+\frac{1}{z^4}} = \frac{1}{z^4} - \frac{1}{z^8} + \frac{1}{z^{12}} + \dots,$$

откъдето се вижда, че  $\mathrm{Res}\,(f;\infty) = -c_{-1} = 0.$  Следователно I=0.

(6) Подинтегралната функция има пет полюса от кратности съответно три и четири и всичките те се намират във вътрешността на окръжността |z|=3. Затова ще използваме факта, че  $I=-2\pi i \mathrm{Res}\,(\infty)$ . Ще пресметнем  $\mathrm{Res}\,(\infty)$ .

$$f(\frac{1}{w}) = \frac{w}{(1+2w^2)^3(1+3w^3)^4} = w(1-2w^2+\dots)(1-3w^3+\dots)$$
$$= w+\dots = \frac{1}{z}+\dots$$
$$\implies \text{Res}(\infty) = -1 \implies I = 2\pi i.$$

(в) Точката z=0 е съществена особеност. Имаме, че

$$z^{2} \sin \frac{1}{z} = z^{2} \left( \frac{1}{z} - \frac{1}{3!z^{3}} + \dots \right) = z - \frac{1}{3!z} + \dots$$

$$\implies \text{Res}(0) = -\frac{1}{6} \implies I = -\frac{\pi i}{3}.$$

Задача 5.1.5 Пресметнете

$$I = \int_{\gamma} \frac{z^2 dz}{e^{2\pi i z^3} - 1},$$

където  $\gamma: |z| = R, \quad 1 < R < \sqrt[3]{2}.$ 

**Решение.** Първо намираме нулите на знаменателя на подинтегралната функция.

$$e^{2\pi i z^3} = 1 \iff 2\pi i z^3 = 2k\pi i \implies z^3 = k, \ k \in \mathbb{Z}.$$

Във вътрешността на  $\gamma$  лежат само нулите, които се получават при k=0 и  $k=\pm 1.$ 

OT 
$$z^3 = 1 \implies z_{1,2,3} = e^{\frac{2k\pi i}{3}}, \ k = 0, 1, 2.$$
  
OT  $z^3 = -1 \implies z_{4,5,6} = e^{i\frac{\pi + 2k\pi}{3}}, \ k = 0, 1, 2.$ 

Точките  $z_k,\ k=1,\ldots 6$ , са трикратни полюси. При k=0 получаваме  $z_7=0$  - прост полюс. За  $z_k,\ k=1,\ldots 6$  имаме, че

$$\operatorname{Res}\left(z_{k}\right)=rac{z_{k}^{2}}{e^{2\pi iz_{k}^{3}}.2\pi i.3z_{k}^{2}}=rac{1}{6\pi i}\cdotrac{1}{e^{2\pi iz_{k}^{3}}}=rac{1}{6\pi i},$$
 тъй като  $z_{k}^{3}=\pm1.$ 

Остава да пресметнем Res(0).

$$\frac{z^2}{e^{2\pi i z^3} - 1} = \frac{z^2}{2\pi i z^3 + \frac{(2\pi i z^3)^2}{2!} + \dots}$$
$$= \frac{1}{z(2\pi i - 2\pi z^3 + \dots)} = \frac{1}{z}\varphi(z),$$

където функцията  $\varphi(z)$  е холоморфна в околност на т. 0 и  $\varphi(0)=\frac{1}{2\pi i}$ . Следователно  $\mathrm{Res}\,(0)=\frac{1}{2\pi i}$ . Окончателно получаваме

$$I = 2\pi i (\frac{1}{2\pi i} + 6\frac{1}{6\pi i}) = 3.$$

Задача 5.1.6 ♠ Като пресметнете границата

(a) 
$$\lim_{b\to\infty} \int_{\Gamma_b} \frac{zdz}{2-e^{-iz}}$$
, (6)  $\lim_{b\to\infty} \int_{\Gamma_b} \frac{zdz}{4-e^{-iz}}$ ,

където контурът  $\Gamma_b$  е правоъгълникът с върхове  $\pi, \ \pi+ib, \ -\pi+ib \ u \ -\pi,$  намерете стойността на интеграла

(a) 
$$\int_0^{\pi} \frac{t \sin t dt}{5 - 4 \cos t}$$
, (6)  $\int_0^{\pi} \frac{t \sin t dt}{17 - 8 \cos t}$ 

**Решение.** Нека a>1. Особените точки на функцията  $\frac{z}{a-e^{-iz}}$  са точките  $z_k=i\ln a-2k\pi, k\in\mathbb{Z}$ , които са прости полюси. От тях във вътрешността на кривата  $\Gamma_b$  се намира само  $z_0=i\ln a$ . От теоремата за резидуумите имаме, че

$$I = \int_{\Gamma_b} \frac{z dz}{2 - e^{-iz}} = 2\pi i \operatorname{Res}(i \ln a) = 2\pi i \frac{\ln a}{a}.$$
 (5.1)

От друга страна.

$$\lim_{b \to \infty} I = \int_{-\pi}^{\pi} \frac{t dt}{a - e^{-it}} + i \left( \int_{0}^{\infty} \frac{(\pi + it) dt}{a - e^{-i(\pi + it)}} - \int_{0}^{\infty} \frac{(-\pi + it) dt}{a - e^{-i(-\pi + it)}} \right)$$

$$+ \lim_{b \to \infty} \int_{\pi + ib}^{-\pi + ib} \frac{t dt}{a - e^{-it}}$$

$$= \int_{-\pi}^{\pi} \frac{t dt}{a - e^{-it}} + 2\pi i \int_{0}^{\infty} \frac{dt}{a + e^{t}} + \lim_{b \to \infty} \int_{\pi + ib}^{-\pi + ib} \frac{t dt}{a - e^{-it}}. \quad (5.2)$$

Първо ще пресметнем двата интеграла в (5.2). За първия от тях имаме, че

$$\int_{-\pi}^{\pi} \frac{tdt}{a - e^{-it}} = \int_{-\pi}^{\pi} \frac{tdt}{a - \cos t + i \sin t}$$
$$= \int_{-\pi}^{\pi} \frac{t(a - \cos t)}{1 + a^2 - 2a \cos t} dt - i \int_{-\pi}^{\pi} \frac{t \sin t}{1 + a^2 - 2a \cos t} dt.$$

Първият интеграл в последното равенство е равен на нула, защото е интеграл от нечетна функция в симетричен интервал. Следователно

$$\int_{-\pi}^{\pi} \frac{t dt}{a - e^{-it}} = -2i \int_{0}^{\pi} \frac{t \sin t}{1 + a^2 - 2a \cos t} dt.$$

За втория интеграл в (5.2) получаваме, че

$$\int_0^\infty \frac{dt}{a+e^t} = \int_0^\infty \frac{e^{-t}dt}{ae^{-t}+1} = -\frac{1}{a}\ln(ae^{-t}+1)\Big|_0^\infty = \frac{\ln(1+a)}{a}.$$

Сега ще докажем, че границата в (5.2) е нула. Последователно получаваме

$$I = \int_{\pi+ib}^{-\pi+ib} \frac{tdt}{a - e^{-it}} = \int_{\pi}^{-\pi} \frac{t + ib}{a - e^{b - it}} dt$$
$$= \frac{b}{e^b} \int_{\pi}^{-\pi} \frac{\frac{t}{b} + i}{ae^{-b} - e^{-it}} dt.$$

Следователно

$$|I| \leq \frac{b}{e^b} \int_{-\pi}^{\pi} \frac{\left|\frac{t}{b} + i\right|}{|ae^{-b} - e^{-it}|} dt \leq \frac{b}{e^b} \cdot \frac{\sqrt{\frac{\pi^2}{b^2} + 1}}{1 - ae^{-b}} \cdot 2\pi \to 0 \text{ при } b \to \infty,$$

откъдето получаваме, че  $I \to 0$  при  $b \to \infty$ . Тогава от (5.1) и (5.2) следва, че

$$J := \int_0^{\pi} \frac{t \sin t}{1 + a^2 - 2a \cos t} dt = \frac{\pi}{a} \ln \frac{1 + a}{a}.$$

Като заместим с a=2 и a=4 съответно в случаите (a) и (б), получаваме

(a) 
$$J = \frac{\pi}{2} \ln \frac{3}{2}$$
, (6)  $J = \frac{\pi}{4} \ln \frac{5}{4}$ .

100

Задача 5.1.7 Пресметнете

$$\int_{C_n:|z|=n+\frac{1}{z}} \frac{\cot g \pi z}{z} dz.$$

**Решение.** Подинтегралната функция има прости полюси в точките  $z=k,\ k=\pm 1,\dots,\pm n$  и двукратен полюс в точката z=0. От теоремата за резидуумите следва, че

$$\int_{C_n:|z|=n+\frac{1}{2}} \frac{\cot g \pi z}{z} dz = 2\pi i \left( \sum_{k=-n, k\neq 0}^n \operatorname{Res}(k) + \operatorname{Res}(0) \right).$$

Първо ще намерим  $\operatorname{Res}(k)$ .

$$\operatorname{Res}(k) = \frac{\frac{\cos \pi z}{z}}{(\sin \pi z)'} \bigg|_{z=k} = \frac{\frac{\cos \pi z}{z}}{\pi \cos \pi z} \bigg|_{z=k} = \frac{1}{\pi k}.$$

Сега ще намерим Res(0).

Res (0) 
$$= \lim_{z \to 0} \left( z \cot \pi z \right)' = \lim_{z \to 0} \left( \cot \pi z - \frac{\pi z}{\sin^2 \pi z} \right)$$
$$= \lim_{z \to 0} \frac{\frac{1}{2} \sin 2\pi z - \pi z}{\sin^2 \pi z} = 0.$$

Тогава

$$\int_{C_n:|z|=n+\frac{1}{2}} \frac{\cot \pi z}{z} dz = 0.$$

# 5.2 Интеграли от вида $\int_0^{2\pi} R(\cos t, \sin t) \, dt$

В случая R(x,y) е рационална функция на x и y. Интеграли от този вид се решават чрез като положим  $z:=e^{it}$ . Тогава

$$\cos t = \frac{e^{it} + e^{-it}}{2} = \frac{z^2 + 1}{2z}, \quad \sin t = \frac{e^{it} - e^{-it}}{2i} = \frac{z^2 - 1}{2iz}$$

u

$$dz = e^{it}idt \implies dt = \frac{dz}{iz}.$$

Очевидно |z|=1, когато  $0\leq t\leq 2\pi$ . Да означим

$$F(z) := R\left(\frac{z^2+1}{2z}, \frac{z^2-1}{2iz}\right) \frac{1}{iz}.$$

Toraea

$$I = \int_{|z|=1} F(z) dz = 2\pi i \sum_{k=1}^{n} \text{Res}(F; a_k),$$

където  $a_k$ ,  $k=1,\ldots n$  са всичките полюси на F, лежащи във вътрешността на единичната окръжност.

Задача 5.2.1 Да се пресметне интеграла

$$I = \int_0^{2\pi} \frac{dt}{2 + \cos t}.$$

101

**Решение.** Като положим  $z = e^{it}$ , получаваме

$$I = \int_{C:|z|=1} \frac{dz}{iz\left(2 + \frac{z^2 + 1}{2z}\right)} = \frac{2}{i} \int_{C:|z|=1} \frac{dz}{z^2 + 4z + 1}.$$

От двата полюса  $z_{1,2} = -2 \pm \sqrt{3}$  в единичния кръг се намира само  $z_1$ . Следователно

 $I = 2\pi i \frac{2}{i} \operatorname{Res}(z_1) = 4\pi \frac{1}{z_1 - z_2} = \frac{2\pi}{\sqrt{3}}.$ 

Задача 5.2.2 Да се пресметне интеграла

$$I = \int_0^{2\pi} \frac{dt}{(a + b\cos t)^2}, \quad a > b > 0.$$

**Решение.** Като положим  $z = e^{it}$ , получаваме

$$I = \frac{4}{i} \int_{C:|z|=1} \frac{z \, dz}{(bz^2 + 2az + b)^2}.$$

Лесно се проверява, че при условието a>b>0, от двата полюса на подинтегралната функция,

$$z_{1,2} = \frac{-a \pm \sqrt{a^2 - b^2}}{b},$$

в единичния кръг се намира само  $z_1$ . Резидуумът в този полюс пресмятаме по формулата

Res 
$$(z_1) = \left(\frac{z}{b^2(z-z_2)^2}\right)'_{z=z_1} = \frac{a}{4}(a^2-b^2)^{-3/2}.$$

От теоремата за резидуумите получаваме, че

$$I = \frac{4}{i} 2\pi i \text{Res}(z_1) = \frac{2\pi a}{(a^2 - b^2)^{3/2}}$$

Задача 5.2.3 Да се пресметне интеграла

$$\int_0^{\pi} \cot(t - a) dt, \quad \text{Im } a > 0.$$

**Решение.** Полагаме  $e^{2i(t-a)}=z$ . Тогава  $dt=\frac{dz}{2iz}$  и

$$\cot(t-a) = i\frac{e^{i(t-a)} + e^{-i(t-a)}}{e^{i(t-a)} - e^{-i(t-a)}} = \frac{i(z+1)}{z-1}.$$

Нека  $a=\alpha+i\beta,\ \beta>0.$  Тогава  $z=e^{2i(t-\alpha)}e^{2\beta}.$  Когато  $0\leq t\leq\pi,$  имаме, че  $|z|=e^{2\beta}>1.$  Следователно

$$\int_0^{\pi} \cot (t - a) dt = \frac{1}{2} \int_{|z| = e^{2\beta}} \frac{z + 1}{z(z - 1)} dz$$
$$= \pi i (\text{Res}(0) + \text{Res}(1)) = \pi i (-1 + 2) = \pi i.$$

Задача 5.2.4 Да се пресметне интеграла

$$I = \int_0^{2\pi} \frac{\cos^2 3t}{5 - 4\cos 2t} dt.$$

**Решение.** Като изразим подинтегралната функция чрез  $\cos t$  и положим  $z=e^{it},$  след известни преобразувания получаваме

$$I = \int_0^{2\pi} \frac{\cos^2 t (4\cos^2 t - 3)^2}{9 - 8\cos^2 t} dt$$
$$= -\frac{1}{4i} \int_{|z|=1} \frac{(z^2 + 1)^2 (z^4 - z^2 + 1)^2}{z^5 (2z^2 - 1)(z^2 - 2)} dz.$$
(5.1)

От всичките полюси на подинтегралната функция f(z) в (5.1), във вътрешността на |z|=1 се намират точката 0 - петкратен полюс и точките  $\pm \frac{1}{\sqrt{2}}$  - прости полюси. Изпълнено е, че

$$\operatorname{Res}\left(\frac{1}{\sqrt{2}}\right) = \operatorname{Res}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{27}{16}$$

За да пресметнем  ${\rm Res}\,(0),$  ще използуваме лорановото развитие на f(z) около т. z=0. Имаме, че

$$f(z) = \frac{(z^2+1)^2(z^4-z^2+1)^2}{2z^5} \cdot \frac{1}{1-2z^2} \cdot \frac{1}{1-\frac{z^2}{2}}$$

$$= \frac{1}{2z^5} (1+2z^2+z^4)(1-2z^2+3z^4-2z^6+z^8)$$

$$(1+2z^2+4z^4+\ldots)(1+\frac{z^2}{2}+\frac{z^4}{4}+\ldots)$$

$$= \frac{1}{2z^5} (1+2z^6+\ldots)(1+\frac{5}{2}z^2+\frac{21}{4}z^4+\ldots)$$

$$= \frac{1}{2z^5} (1+\frac{5}{2}z^2+\frac{21}{4}z^4+\ldots).$$

Следователно  $\operatorname{Res}(0) = \frac{1}{2} \frac{21}{4} = \frac{21}{8}$ . Окончателно получаваме

$$I = -\frac{1}{4i} 2\pi i (\frac{21}{8} - \frac{27}{8}) = \frac{3\pi}{8}.$$

#### 5.3 Несобствени интеграли от рационални функции

Нека F(z) = P(z)/Q(z) е рационална функция, която няма реални полюси и такава, че

$$\deg Q \ge \deg P + 2,\tag{5.1}$$

където  $c \deg P$  означаваме степента на полинома P. Условието (5.1) е достатъчно условие за абсолютната сходимост на реалния несобствен интеграл  $\int_{-\infty}^{\infty} F(x) dx$ . Ще докажем, че

$$\int_{-\infty}^{\infty} F(x)dx = 2\pi i \sum_{k=1, \text{Im } a_k > 0}^{n} \text{Res}(F; a_k),$$



Фиг. 5.1: Контурът  $\gamma$ 

където  $a_1, \ldots, a_n$  са всички полюси на F, намиращи се в горната полуравнина.

Доказателство. Разглеждаме  $\int_{\gamma} F(z)dz$ , където  $\gamma$  се състои от отсечката [-R,R] от реалната ос и полуокръжността  $L_R: z=Re^{i\varphi},\ 0\leq \varphi\leq \pi,\ R>0$  (фиг. 5.1).

Ако R е достатъчно голямо, всички особени точки на F(z), лежащи в горната полуравнина, се намират във вътрешността на  $\gamma$ . От теоремата за резидуумите следва, че

$$\int_{-R}^{R} F(x)dx + \int_{L_R} F(z)dz = 2\pi i \sum_{k=1, \text{Im } a_k > 0}^{n} \text{Res } (F; a_k).$$

След граничен преход при  $R \to \infty$  получаваме

$$\int_{-\infty}^{\infty} F(x)dx + \lim_{R \to \infty} \int_{L_R} F(z)dz = 2\pi i \sum_{k=1, \text{Im } a_k > 0}^{n} \text{Res}(F; a_k).$$
 (5.2)

Сега ще докажем, че

$$\lim_{R \to \infty} \int_{L_R} F(z) dz = 0.$$

Нека

$$P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0 = z^n \left(1 + \frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right),$$

$$Q(z) = z^m + b_{m-1}z^{m-1} + \dots + b_1z + b_0 = z^m \left(1 + \frac{b_{m-1}}{z} + \dots + \frac{b_0}{z^m}\right),$$

където  $m-n\geq 2$ . Да означим

$$A := \max\{1, |a_{n-1}|, \dots, |a_1|, |a_0|\}, \quad B := \max\{|b_{m-1}|, \dots, |b_1|, |b_0|\}.$$

Hека  $|z| \geq 2nA$ . Тогава е изпълнено, че

$$\left| \frac{a_{n-k}}{z^k} \right| \le \frac{A}{|z|^k} \le \frac{A}{|z|} \le \frac{1}{2n}.$$

Аналогично  $\left| \frac{b_{m-k}}{z^k} \right| \leq \frac{1}{2n} \ \textit{за} \ |z| \geq 2mB.$ 

От неравенството на триъгълника следва, че

$$|P(z)| \le |z|^n \left(1 + \left|\frac{a_{n-1}}{z}\right| + \ldots + \left|\frac{a_0}{z^n}\right|\right) \le |z|^n \left(1 + \frac{1}{2n} + \ldots + \frac{1}{2n}\right) = \frac{3}{2}|z|^n,$$

$$|Q(z)| \ge |z|^m \left(1 - \left(\left|\frac{b_{m-1}}{z}\right| + \ldots + \left|\frac{b_0}{z^m}\right|\right)\right) \ge |z|^n \left(1 - \frac{1}{2m} - \ldots - \frac{1}{2m}\right) = \frac{1}{2}|z|^m.$$

Следователно

$$|F(z)| = \frac{|P(z)|}{|Q(z)|} \le \frac{3}{|z|^{m-n}}$$

за достатъчно големи п. Тогава е изпълнено, че

$$\left| \int_{L_R} F(z)dz \right| \leq \int_{|z|=R} |F(z)||dz| \leq \int_{|z|=R} \frac{3}{|z|^{m-n}}|dz|$$
$$\leq \frac{3}{R^2} 2\pi R \to 0 \text{ npu } R \to \infty.$$

Сега от (5.2) следва, че

$$\int_{-\infty}^{\infty} F(x) = 2\pi i \sum_{k=1, \text{Im } a_k > 0}^{n} \text{Res}(F; a_k).$$

Задача 5.3.1 Да се пресметнат интегралите

(a) 
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+9)}$$
 (6)  $\int_{-\infty}^{\infty} \frac{dx}{x^2-2ix-2}$ 

(B) 
$$\int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + 1} dx$$
 (r)  $\int_{0}^{\infty} \frac{dx}{(x^2 + 1)^3}$ 

(д) 
$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + 4ix - 5)^2}$$

**Решение.** (а) Разглеждаме функцията  $F(z)=\frac{z^2}{(z^2+1)(z^2+9)}$  и контура  $\gamma$  от фиг. 5.1. Функцията има четири прости полюса  $\pm i$  и  $\pm 3i$ , от които само i и 3i се намират в горната полуравнина. Следователно

$$\int_{-\infty}^{\infty} F(x)dx = 2\pi i \left(\operatorname{Res}(i) + \operatorname{Res}(3i)\right)$$
$$= 2\pi i \left(-\frac{1}{16}i + \frac{3}{16}i\right) = 2\pi i \cdot \frac{1}{8i} = \frac{\pi}{4}.$$

**N. В.** За стойността на **реалния** несобствен интеграл получихме **реално** число!

(б) Функцията  $F(z)=\frac{1}{z^2-2iz-2}$  има два прости полюса  $z_{1,2}=i\pm 1,$  които се намират в горната полуравнина. Тъй като

Res 
$$(i \pm 1) = \frac{1}{2z - 2i} \Big|_{z=i+1} = \pm \frac{1}{2},$$

то

$$\int_{-\infty}^{\infty} \frac{1}{x^2 - 2ix - 2} = 2\pi i \left( \text{Res} (i+1) + \text{Res} (i-1) \right) = 0.$$

(в) Функцията  $F(z)=\frac{z^2+1}{z^4+1}$  има четири прости полюса. Това са корените на уравнението  $z^4=-1$ . От тях в горната полуравнина се намират само  $z_1=e^{\frac{i\pi}{4}}$  и  $z_2=e^{\frac{i3\pi}{4}}$ . Имаме, че

$$I = \int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + 1} = 2\pi i \left( \text{Res}(z_1) + \text{Res}(z_2) \right).$$

Тъй като  $\operatorname{Res}\left(z_{1,2}\right)=\dfrac{z_{1,2}^{2}+1}{4z_{1,2}^{3}},$  получаваме, че

$$\operatorname{Res}(z_1) = \frac{e^{\frac{i\pi}{2}} + 1}{4e^{\frac{i3\pi}{4}}} = \frac{i+1}{\frac{4}{\sqrt{2}}(i-1)} = -\frac{\sqrt{2}i}{4},$$

$$\operatorname{Res}(z_2) = \frac{e^{\frac{i3\pi}{2}} + 1}{4e^{\frac{i9\pi}{4}}} = \frac{-i+1}{\frac{4}{\sqrt{2}}(i+1)} = -\frac{\sqrt{2}i}{4}.$$

Следователно  $I = 2\pi i \frac{-2\sqrt{2}i}{4} = \pi\sqrt{2}.$ 

(г) Тъй като подинтегралната функция е четна, то

$$\int_0^\infty \frac{dx}{(x^2+1)^3} = \frac{1}{2} \int_{-\infty}^\infty \frac{dx}{(x^2+1)^3} = \pi i \operatorname{Res}(i)$$
$$= \frac{\pi i}{2!} \left(\frac{1}{(z+i)^3}\right)_{z=i}^{"} = \pi i \frac{6}{(2i)^5} = \frac{3\pi}{16}.$$

(д) Функцията  $\frac{z^2}{(z^2+4iz-5)^2}$  има два двукратни полюса, които са корени на уравнението  $(z^2+4iz-5)^2=0$ . Това са  $z_{1,2}=-2i\pm 1$ , които се намират в долната полуравнина. Следователно  $\int_{-\infty}^{\infty} \frac{x^2\,dx}{(x^2+4ix-5)^2}=0$ .

Задача 5.3.2 Да се пресметне интеграла

$$I = \int_0^\infty \frac{1}{(1+x^2)^n} \, dx, \quad n \in \mathbb{N}.$$

Решение. Последователно получаваме

$$I = \frac{1}{2} \cdot 2\pi i \operatorname{Res}(i) = \frac{\pi i}{(n-1)!} \frac{d^{n-1}}{dz^{n-1}} \frac{1}{(z+i)^n} \Big|_{z=i}$$

$$= \frac{\pi i}{(n-1)!} \frac{(-n)(-n-1)\cdots(-n-(n-2))}{(2i)^{2n-1}}$$

$$= \frac{\pi i}{(n-1)!} \frac{(-1)^{n-1}n(n+1)\cdots(2n-2)}{2^{2n-1}i^{2n-2}i}$$

$$= \pi \frac{(2n-2)!}{((n-1)!)^2 2^{2n-1}} = \frac{(2n-2)!}{((2n-2)!!)^2} \cdot \frac{\pi}{2}.$$

Задача 5.3.3 ♠ Да се пресметне интеграла

$$I = \int_0^\infty \frac{x^{2p} - x^{2q}}{1 - x^{2r}} \, dx,$$

където p,q и r са естествени числа, такива че p < r и q < r.

Решение. Разглеждаме функцията

$$F(z) = \frac{z^{2p} - z^{2q}}{1 - z^{2r}}.$$

Тъй като степентта на знаменателя 2r е с поне две единици по - голяма от степента на числителя, то I е сходящ интеграл. Полюсите на F(z) са точките

$$z_k = e^{\frac{k\pi i}{r}}, \quad k = 1, \dots, r - 1, r + 1, \dots, 2r - 1,$$

(точките +1 и -1 не са полюси на F(z), тъй като числителят и знаменателят имат общ множител  $1-z^2$ ). От всички полюси в горната полуравнина се намират

$$z_k = e^{\frac{k\pi i}{r}}, \quad k = 1, \dots, r - 1.$$

Те са прости полюси, следователно

$$\operatorname{Res}(z_k) = \frac{e^{\frac{k\pi i}{r}2p} - e^{\frac{k\pi i}{r}2q}}{-2re^{\frac{k\pi i}{r}(2r-1)}} = \frac{1}{2r} \left( e^{(2q+1)\frac{k\pi i}{r}} - e^{(2p+1)\frac{k\pi i}{r}} \right).$$

От теоремата за резидуумите следва, че

$$2I = \int_{-\infty}^{\infty} \frac{x^{2p} - x^{2q}}{1 - x^{2r}} dx = \frac{\pi i}{r} \sum_{k=1}^{r-1} \left( e^{(2q+1)\frac{k\pi i}{r}} - e^{(2p+1)\frac{k\pi i}{r}} \right).$$

Като приложим формулата за геометрична прогресия, последователно получаваме

$$2I = \frac{\pi i}{r} \left( \frac{e^{(2q+1)\frac{\pi i}{r}} - e^{(2q+1)\pi i}}{1 - e^{(2q+1)\frac{\pi i}{r}}} - i \frac{e^{(2p+1)\frac{\pi i}{r}} - e^{(2p+1)\pi i}}{1 - e^{(2p+1)\frac{\pi i}{r}}} \right)$$

$$= \frac{\pi}{r} \left( i \frac{e^{(2q+1)\frac{\pi i}{r}} + 1}{1 - e^{(2q+1)\frac{\pi i}{r}}} - i \frac{e^{(2p+1)\frac{\pi i}{r}} + 1}{1 - e^{(2p+1)\frac{\pi i}{r}}} \right)$$

$$= \frac{\pi}{r} \left( -i \frac{e^{(2q+1)\frac{\pi i}{2r}} + e^{-(2q+1)\frac{\pi i}{2r}}}{e^{(2q+1)\frac{\pi i}{2r}} - e^{-(2q+1)\frac{\pi i}{2r}}} + i \frac{e^{(2p+1)\frac{\pi i}{2r}} + e^{-(2p+1)\frac{\pi i}{2r}}}{e^{(2p+1)\frac{\pi i}{2r}} - e^{-(2p+1)\frac{\pi i}{2r}}} \right)$$

$$= \frac{\pi}{r} \left( \cot g \frac{2p+1}{2r} \pi - \cot g \frac{2q+1}{2r} \pi \right).$$

Тъй като подинтегралната функция е четна, получаваме, че

$$I = \frac{\pi}{2r} \left( \cot g \frac{2p+1}{2r} \pi - \cot g \frac{2q+1}{2r} \pi \right).$$

Задача 5.3.4 Да се пресметне интеграла

$$I = \int_0^\infty \frac{1}{1+x^n} \, dx, \ n \in \mathbb{N}.$$

**Решение.** Нека  $f(z) = \frac{1}{1+z^n}$ . Разглеждаме областта, чийто контур  $\gamma$  се състои от отсечката [0,R], R>1, дъгата  $L_R: z=Re^{i\varphi}, 0 \le \varphi \le 2\pi/n$ , и отсечката  $[0,te^{i\frac{2\pi}{n}}], 0 \le t \le R$  (фиг. 5.2).

Полюсите на f(z) са корените на уравнението  $z^n=-1$ , т. е.  $z_k=e^{\frac{i(2k+1)\pi}{n}}$ ,  $k=0,\ldots,n-1$ . От тях в разглежданата област се намира само  $z_0=e^{\frac{i\pi}{n}}$ . От теоремата за резидуумите следва, че

$$\int_0^R \frac{1}{1+x^n} dx + \int_{L_R} f(z) dz - \int_0^R \frac{e^{i\frac{2\pi}{n}}}{1+t^n} dt = 2\pi i \text{Res}\left(e^{\frac{i\pi}{n}}\right),$$



Фиг. 5.2: Контурът  $\gamma$ 

като третият интеграл е със знак минус, понеже сме сменили посоката на интегриране, която е от  $Re^{i\frac{2\pi}{n}}$  към 0. След граничен преход при  $R\to\infty$  получаваме

$$(1 - e^{i\frac{2\pi}{n}})I = 2\pi i \text{Res}\left(e^{\frac{i\pi}{n}}\right) = 2\pi i \frac{1}{nz^{n-1}} \bigg|_{z=e^{\frac{i\pi}{n}}},$$

откъдето следва, че

$$e^{\frac{i\pi}{n}} 2i(-\sin\frac{\pi}{n})I = 2\pi i \frac{1}{-ne^{-\frac{i\pi}{n}}},$$

или

$$I = \frac{\frac{\pi}{n}}{\sin\frac{\pi}{n}}.$$

# 5.4 Интеграли от вида $\int_{-\infty}^{\infty} F(x)e^{i\lambda x}\,dx,$ $\int_{-\infty}^{\infty} F(x)\cos\lambda x\,dx,\,\int_{-\infty}^{\infty} F(x)\sin\lambda x\,dx$

B случая F(z) = P(z)/Q(z) е рационална функция, която няма реални полюси,  $\deg Q \ge \deg P + 1$  и  $\lambda > 0$ .

При пресмятането на тези интеграли ще използваме следната

**Лема на Жордан.** Нека  $\Phi(z)$  е функция, която е аналитична в горната полуравнина  $\{z: {\rm Im}\, z>0\}$ , с изключение на краен брой особени точки, и която клони към нула при  $z\to\infty$ . Тогава е изпълнено, че

$$\lim_{R \to \infty} \int_{L_R} \Phi(z) e^{i\lambda z} \, dz = 0,$$

където  $L_R := \{z : |z| = R, \operatorname{Im} z \geq 0\} \ u \ \lambda > 0.$ 

Доказателство. Да означим

$$J_R = \int_{L_R} \Phi(z) e^{i\lambda z} \, dz,$$

където  $L_R: z=Re^{i\varphi}, \ 0\leq \varphi \leq \pi.$  Тогава

$$|J_R| = \left| \int_0^{\pi} e^{\lambda i R \cos \varphi - \lambda R \sin \varphi} \Phi(Re^{i\varphi}) i Re^{i\varphi} d\varphi \right|$$

$$\leq \int_0^{\pi} e^{-\lambda R \sin \varphi} |\Phi(Re^{i\varphi})| R d\varphi.$$

Интеграли от вида  $\int_{-\infty}^{\infty} F(x)e^{i\lambda x} dx$  108

По условие  $|\Phi(Re^{i\varphi})| = \varepsilon(R) \to 0$  при  $R \to \infty$ . Следователно

$$|J_R| \le \varepsilon(R) \int_0^{\pi} R e^{-\lambda R \sin \varphi} d\varphi.$$

За да оценим интеграла в дясната страна, първо ще отбележим, че графиката на функцията  $e^{-\lambda R\sin\varphi}$  е симетрична относно  $\varphi=\frac{\pi}{2}$ , следователно

$$\int_0^\pi e^{-\lambda R\sin\varphi}\,d\varphi = 2\int_0^{\frac{\pi}{2}} e^{-\lambda R\sin\varphi}\,d\varphi.$$

Ще използваме и неравенството

$$\frac{\sin x}{x} \ge \frac{2}{\pi}, \quad x \in [0, \frac{\pi}{2}],$$

което се доказва като разгледаме функцията  $g(x)=\sin x-\frac{2}{\pi}x$ . Изпълнено е, че  $g(0)=g(\pi/2)=0$  и  $g''(x)\leq 0$ , т. е. функцията g е вдлъбната  $\Rightarrow f(x)\leq 0$ . Тогава за  $J_R$  получаваме

$$|J_R| \leq 2\varepsilon(R) \int_0^{\frac{\pi}{2}} R e^{-\frac{2}{\pi}\lambda R \varphi} d\varphi = \frac{\pi \varepsilon(R)}{\lambda} (1 - e^{-\lambda R})$$
$$< \frac{\pi \varepsilon(R)}{\lambda} \to 0 \text{ npu } R \to \infty.$$

За да пресметнем интеграла  $\int_{-\infty}^{\infty} F(x)e^{i\lambda x}\,dx$  ще приложим теоремата за резидуумите за функцията  $f(z)=F(z)e^{i\lambda z}$  и областта с контур  $\gamma$  от фиг. 5.1. Имаме, че

$$\int_{-R}^{R} f(x)dx + \int_{L_R} f(z)dz = 2\pi i \sum_{k=1, \text{Im } a_k > 0}^{n} \text{Res}(f; a_k).$$

След граничен преход при  $R \to \infty$  получаваме

$$\int_{-\infty}^{\infty} f(x)dx + \lim_{R \to \infty} \int_{L_R} f(z)dz = 2\pi i \sum_{k=1, \text{Im } a_k > 0}^{n} \text{Res}(f; a_k).$$

От лемата на Жордан следва, че  $\lim_{R \to \infty} \int_{L_R} f(z) dz = 0$ . Тогава

$$\int_{-\infty}^{\infty} F(x)e^{i\lambda x}dx = 2\pi i \sum_{k=1, \text{Im } a_k > 0}^{n} \text{Res}\left(F(z)e^{i\lambda z}; a_k\right).$$

Забележка. Интеграли от вида

$$I_1 = \int_{-\infty}^{\infty} F(x) \cos \lambda x \, dx, \ I_2 = \int_{-\infty}^{\infty} F(x) \sin \lambda x \, dx$$

се пресмятат като първо пресметнем интеграла  $I=\int_{-\infty}^{\infty}F(x)e^{i\lambda x}~dx.~Om$  формулата на Ойлер следва, че  $I=I_1+i~I_2.~T$ огава

$$I_1 = \operatorname{Re} I \quad I_2 = \operatorname{Im} I.$$

Задача 5.4.1 Да се пресметнат интегралите

(a) 
$$\int_{-\infty}^{\infty} \frac{(x-1)e^{ix} dx}{x^2 - 2x + 2}$$
, (6)  $\int_{-\infty}^{\infty} \frac{e^{ix} dx}{x^2 - 2ix - 2}$ 

**Решение.** Функцията  $f(z)=\dfrac{(z-1)e^{iz}}{z^2-2z+2}$  има два прости полюса  $1\pm i,$  от които само 1+i се намира в горната полуравнина. Следователно

$$I = \int_{-\infty}^{\infty} \frac{(x-1)e^{ix} dx}{x^2 - 2x + 2} = 2\pi i \operatorname{Res}(1+i).$$

Имаме, че

Res 
$$(1+i) = \frac{(z-1)e^{iz}}{(z^2-2z+2)'}\Big|_{z=1+i} = \frac{e^{i(1+i)}}{2}.$$

Следователно  $I = \pi i e^{-1+i} = \frac{\pi i}{e} (\cos 1 + i \sin 1).$ 

(б) Функцията  $f(z) = \frac{e^{iz}}{z^2-2iz+2}$  има два прости полюса  $i\pm 1$ , намиращи се в горната полуравнина. Следователно

$$I = \int_{-\infty}^{\infty} \frac{e^{ix} dx}{x^2 - 2ix + 2} = 2\pi i \left( \text{Res}(i+1) + \text{Res}(i-1) \right).$$

Имаме, че

$$\operatorname{Res}\left(i\pm1\right) = \frac{e^{i(i\pm1)}}{\pm2}.$$

Тогава

$$I = 2\pi i e^{-1} \frac{e^i - e^{-i}}{2} = 2\pi i e^{-1} i \sin 1 = -\frac{2\pi}{e} \sin 1.$$

Задача 5.4.2 Да се пресметне интеграла

$$\int_{-\infty}^{\infty} \frac{x \cos x \, dx}{x^2 - 2x + 10}.$$

**Решение.** Разглеждаме функцията  $f(z)=\frac{ze^{iz}}{z^2-2z+10}$ . Тя има два прости полюса  $1\pm 3i$ , от които само 1+3i се намира в горната полуравнина. Тогава

$$I = \int_{-\infty}^{\infty} \frac{xe^{ix} dx}{x^2 - 2x + 10} = 2\pi i \operatorname{Res} (1 + 3i),$$

$$\operatorname{Res} (1 + 3i) = \frac{ze^{iz}}{2z - 2} \bigg|_{z = 1 + 3i} = \frac{(1 + 3i)e^{i(1 + 3i)}}{6i} = \frac{(1 + 3i)e^i}{6e^3i}.$$

Да означим

$$I_1 = \int_{-\infty}^{\infty} \frac{x \cos x \, dx}{x^2 - 2x + 10}, \qquad I_2 = \int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 - 2x + 10}.$$

Тогава  $I=I_1+iI_2=\frac{\pi}{3e^3}(1+3i)e^i$  и следователно

$$I_1 = \text{Re}\left(\frac{\pi}{3e^3}(1+3i)e^i\right) = \frac{\pi}{3e^3}(\cos 1 - 3\sin 1).$$

Задача 5.4.3 Да се пресметнат интегралите

(a) 
$$\int_0^\infty \frac{\cos x \, dx}{(x^2+1)(x^2+4)}$$

(6) 
$$\int_0^\infty \frac{x^3 \sin ax}{(1+x^2)^2} dx, \quad a > 0.$$

110

**Решение. (a)** Разглеждаме функцията  $f(z)=\frac{e^{iz}}{(z^2+1)(z^4+1)}.$  Тя има четири прости полюси  $\pm i,\,\pm 2i.$  Следователно

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \left( \operatorname{Res} (i) + \operatorname{Res} (2i) \right).$$

Имаме, че

$$\begin{aligned} & \operatorname{Res}(i) & & = \frac{e^{iz}}{2z(z^2 + 4)} \bigg|_{z=i} = \frac{e^{-1}}{6i}, \\ & \operatorname{Res}(2i) & & = \frac{e^{iz}}{2z(z^2 + 1)} \bigg|_{z=2i} = \frac{e^{-2}}{-12i}. \end{aligned}$$

Тъй като функцията  $\frac{\cos x}{(x^2+1)(x^2+4)}$  е четна, то

$$\int_0^\infty \frac{\cos x \, dx}{(x^2 + 1)(x^2 + 4)} = \frac{1}{2} \operatorname{Re} \left( 2\pi i \left( \frac{e^{-1}}{6i} - \frac{e^{-2}}{12i} \right) \right)$$
$$= \pi \left( \frac{e^{-1}}{6} - \frac{e^{-2}}{12} \right) = \frac{\pi e^{-2}}{12} (2e - 1).$$

(6) Разглеждаме функцията  $f(z) = \frac{z^3 e^{iaz}}{(1+z^2)^2}$ . Тя има два двукратни полюса  $\pm i$ , от които само i се намира в горната полуравнина. Следователно

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \operatorname{Res}(i).$$

Имаме, че

$$\operatorname{Res}(i) = \frac{d}{dz} \frac{z^3 e^{iaz}}{(z+i)^2} \bigg|_{z=i} = \frac{z^2 e^{iaz} ((3+iaz)(z+i)-2z)}{(z+i)^3} \bigg|_{z=i} = \frac{e^{-a}(2-a)}{4}.$$

Тогава

$$\int_{-\infty}^{\infty} f(z)dz = I_1 + iI_2 = \frac{e^{-a}(2-a)\pi i}{2}.$$

Тъй като функцията  $\frac{x^3 \sin ax}{(1+x^2)^2}$  е четна, то

$$\int_0^\infty \frac{x^3 \sin ax}{(1+x^2)^2} dx = \frac{1}{2} I_2 = \frac{1}{2} \operatorname{Im} \left( \frac{e^{-a}(2-a)\pi i}{2} \right) = \frac{e^{-a}(2-a)\pi}{4}.$$



Фиг. 5.3: Контурът  $\gamma$ 

#### 5.5 Главна стойност на несобствени интеграли

**Дефиниция.** Нека функцията F(x) е дефинирана в интервала [a,b] и е прекъсната в точката  $c \in (a,b)$ . Главна стойност на интеграла

v.p. 
$$\int_a^b F(x)dx$$

се нарича границата (ако съществува и е крайна)

$$\lim_{\rho \to 0} \left( \int_a^{c-\rho} F(x) \, dx + \int_{c+\rho}^b F(x) dx \right).$$

Най-напред ще решим една конкретна задача, от която ще стане ясно как се постъпва в общия случай.

Задача 5.5.1 Намерете, ако съществува,

v.p. 
$$\int_{-\infty}^{\infty} \frac{dx}{(x-1)(x^2+4)}.$$

**Решение.** Разглеждаме функцията  $f(z)=\frac{1}{(z-1)(z^2+4)}$  и контура от фиг. 5.3, където  $L_R:=\{z:|z|=R,\ \mathrm{Im}\,z\geq 0\}$  и  $l_\rho:=\{z:|z|=\rho,\ \mathrm{Im}\,z\geq 0\}.$ 

$$\int_{-R}^{1-\rho} f(x)dx + \int_{l_{\rho}} f(z)dz + \int_{1+\rho}^{R} f(x)dx + \int_{L_{R}} f(z)dz = 2\pi i \operatorname{Res}(2i). \quad (5.1)$$

Първо ще пресметнем Res(2i). Имаме, че

Res 
$$(2i) = \frac{1}{2i-1} \cdot \frac{1}{2i+2i} = \frac{1}{4i(2i-1)}$$
.

Като заместим в (5.1) и направим граничен преход при  $R \to \infty$ , получаваме

$$\int_{-\infty}^{1-\rho} f(x)dx + \int_{l_{\rho}} f(z)dz + \int_{1+\rho}^{\infty} f(x)dx = \frac{\pi}{2(2i-1)}.$$

След граничен преход при  $ho 
ightarrow \infty$  получаваме

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx + \lim_{\rho \to \infty} \int_{l_{\rho}} f(z)dz = -\frac{\pi(2i+1)}{10}.$$
 (5.2)

Сега ще намерим  $\lim_{\rho\to\infty}\int_{l_\rho}f(z)dz$ . За целта развиваме функцията f(z) в ред на Лоран около точката z=1. Получаваме, че

$$\frac{1}{(z-1)(z^2+4)} = \operatorname{Res}(1) \cdot \frac{1}{z-1} + c_0 + c_1(z-1) + \dots$$
$$= \frac{1}{5} + \varphi(z),$$

където функцията  $\varphi(z) = c_0 + c_1(z-1) + \dots$  е аналитична в околност на точката z=1 и следователно е ограничена в достатъчно малка околност на z=1, т. е.  $|\varphi(z)| \leq m$ . Тогава е изпълнено, че

$$\left| \int_{l_{
ho}} \varphi(z) dz 
ight| \leq m \pi 
ho 
ightarrow 0 \quad extrm{при} \quad 
ho 
ightarrow 0.$$

От друга страна,  $\frac{1}{5} \int_{l_o} \frac{dz}{z-1} = -\frac{1}{5} \pi i$ . Тогава от (5.2) получаваме

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx - \frac{1}{5}\pi i = -\frac{\pi(2i+1)}{10}$$
,

или

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx = -\frac{\pi}{10}.$$

#### Забележка.

(1) От решението на зад. 5.5.1 е ясно, че ако функцията f(z) има реален прост полюс в точката c и  $l_{\rho}$  е полуокръжността c център т. c (вж. фиг. 5.3 за c=1), дефинирана c

$$l_{\rho}: z = c + \rho e^{i\varphi}, \quad 0 \le \varphi \le \pi.$$

mo

$$\lim_{\rho \to 0} \int_{I_c} f(z) dz = -\pi i \operatorname{Res}(f; c).$$

(2) Ако реалният полюс не е прост, то главната стойност на интеграла не съществува.

**Задача 5.5.2** Пресметнете  $\int_0^\infty \frac{\sin x}{x} dx.$ 

**Решение.** Разглеждаме функцията  $f(z) = \frac{e^{iz}}{z}$ . Тя има единствен прост полюс z=0. Следователно

v. p. 
$$\int_{-\infty}^{\infty} f(x)dx - \pi i \operatorname{Res}(0) = 0.$$

Тъй като Res(0) = 1, получаваме, че

$$\int_0^\infty \frac{\sin x}{x} = \frac{1}{2} \operatorname{Im}(\pi i) = \frac{\pi}{2}.$$

Задача 5.5.3 Да се пресметнат интегралите

(a) v.p. 
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x - \xi)} dx$$
,  $a > 0$ ,  $-\infty < \xi < \infty$ ,

(6) 
$$\int_0^\infty \frac{\sin ax}{x(x^2 + b^2)} dx, \quad a > 0, \ b > 0,$$

**(B)** 
$$\int_0^\infty \frac{\cos ax - \cos bx}{x^2} dx$$
,  $a > 0$ ,  $b > 0$ 

(r) v.p. 
$$\int_{-\infty}^{\infty} \frac{1 - e^{i\alpha x}}{x^2} dx, \quad \alpha \in \mathbb{R}.$$

**Решение. (a)** Разглеждаме функцията  $f(z)=\frac{z}{(z^2+a^2)(z-\xi)}.$  От теоремата за резидуумите получаваме

v.p. 
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)(x - \xi)} dx - \pi i \operatorname{Res}(\xi) = 2\pi i \operatorname{Res}(ai).$$

Тъй като

Res 
$$(\xi) = \frac{1}{\xi^2 + a^2}$$
, Res  $(ai) = \frac{1}{2ai(ai - \xi)}$ ,

то

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx = \frac{\pi i}{\xi^2 + a^2} - \frac{\pi(ai + \xi)}{a(\xi^2 + a^2)} = -\frac{\pi \xi}{a(\xi^2 + a^2)}$$

(б) Разглеждаме функцията  $f(z)=\frac{e^{iaz}}{z(z^2+b^2)}.$  От теоремата за резидуумите получаваме

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx - \pi i \operatorname{Res}(f;0) = 2\pi i \operatorname{Res}(f;ib).$$

Тъй като

Res 
$$(0) = \frac{1}{b^2}$$
, Res  $(bi) = -\frac{e^{-ab}}{2b^2}$ ,

то

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx = \pi i \left(\frac{1}{b^2} - \frac{e^{-ab}}{b^2}\right).$$

Следователно

$$\int_0^\infty \frac{\sin ax}{x(x^2 + b^2)} dx = \frac{1}{2} \frac{\pi}{b^2} (1 - e^{-ab}).$$

(в) Разглеждаме функцията  $f(z)=\frac{e^{iaz}-e^{ibz}}{z^2}.$  Имаме, че

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx - \pi i \operatorname{Res}(f;0) = 0.$$

От развитието

$$f(z) = \frac{1}{z^2} \left( i(a-b)z - \frac{a^2 - b^2}{2!}z^2 - \dots \right)$$

следва, че точката z=0 е прост полюс на f(z) и  $\mathrm{Res}\,(0)=i(a-b).$  Следователно

$$\int_0^\infty \frac{\cos ax - \cos bx}{x^2} dx = \frac{1}{2} \operatorname{Re} \left( i\pi . i(a-b) \right) = \frac{\pi}{2} (b-a).$$



Фиг. 5.4: Контурът  $\gamma$ 

(г) Разглеждаме функцията  $f(z)=rac{1-e^{i \alpha z}}{z^2}.$  Имаме, че

v.p. 
$$\int_{-\infty}^{\infty} f(x)dx - \pi i \operatorname{Res}(f;0) = 0.$$

От развитието

$$\frac{1 - e^{i\alpha z}}{z^2} = -\frac{i\alpha}{z} + \frac{\alpha^2}{2!} + \frac{\alpha^3 i}{3!} z - \dots$$

следва, че точката z=0 е прост полюс на f(z) и  $\mathrm{Res}\,(0)=-i\alpha.$  Следователно

v.p. 
$$\int_{-\infty}^{\infty} \frac{1 - e^{i\alpha x}}{x^2} dx = \pi i (-i\alpha) = \pi \alpha.$$

**Задача 5.5.4** *Намерете*, ако съществува, главната стойност на интеграла

v. p. 
$$\int_0^\infty \frac{(x^2+1)\sin 3x}{x^3-x} dx$$
.

**Решение.** Разглеждаме функцията  $f(z)=\frac{(z^2+1)e^{3iz}}{z^3-z}$  и контурът  $\gamma$  от фиг. 5.4. Функцията има три реални прости полюса, z=0 и  $z=\pm 1$ . Тогава е изпълнено, че

v. p. 
$$\int_{-\infty}^{\infty} f(x)dx - \pi i \left( \text{Res}(-1) + \text{Res}(0) + \text{Res}(1) \right) = 0.$$

Тъй като

Res 
$$(0) = -1$$
, Res  $(\pm 1) = e^{\pm 3i}$ .

TO

v. p. 
$$\int_{-\infty}^{\infty} f(x)dx = \pi i(-1 + e^{3i} + e^{-3i}) = \pi i(-1 + 2\cos 3).$$

Следователно

v. p. 
$$\int_0^\infty \frac{(x^2+1)\sin 3x}{x^3-x} dx = \frac{\pi}{2}(-1+2\cos 3).$$





 $\Phi$ иг. 5.5: Контурът  $\gamma$ 

# 5.6 Интеграли от вида $\int_0^\infty F(x) (\ln x)^n \, dx$

Рационалната функция F(z)=P(z)/Q(z) няма полюси върху реалната полуос  $0\leq x<\infty, \deg Q\geq \deg P+2, n\in\mathbb{N}, n\geq 0.$ 

Първо ще разгледаме случая n=0. Нека  $f(z)=F(z)\log z$ , където  $\log z=\ln|z|+i$  arg z е еднозначния клон на логаритмичната функция, за който  $0<\arg z<2\pi$ . Разглеждаме областта с контур  $\gamma$ , изобразена на фиг. 5.5, като числото R>0 е избрано така, че всичките нули  $z_1,\ldots,z_m$  на знаменателя Q(z) да лежат във вътрешността на  $\gamma$ . От теоремата за резидуумите, приложена за функцията f(z) и контура  $\gamma$ , получаваме

$$\int_{\rho}^{R} \frac{P(x)}{Q(x)} \ln x dx + \int_{L_R} - \int_{\rho}^{R} \frac{P(x)}{Q(x)} (\ln x + 2\pi i) dx + \int_{l_{\rho}} = 2\pi i \sum_{k=1}^{m} \operatorname{Res}\left(f; z_k\right),$$

unu

$$\int_{L_R} + \int_{l_\rho} -2\pi i \int_{\rho}^R \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{k=1}^m \text{Res}(f; z_k).$$
 (5.1)

 $Om\ y$ словието  $\deg Q \geq \deg P + 2\ c$ ледва, че<sup>1</sup>

$$\left| \int_{L_R} f(z) dz \right| \le \frac{\text{Const}}{R^2} \sqrt{\ln^2 R + 4\pi^2} \cdot 2\pi R \to 0 \text{ npu } R \to \infty.$$

От друга страна, функцията F(z) е холоморфна в околност на нулата, следователно е ограничена, т. е.  $|F(z)| \leq M$ . Тогава е изпълнено, че

$$\left| \int_{l_{\rho}} f(z)dz \right| \leq 2\pi\rho \cdot \max_{|z|=\rho} |f(z)| \leq 2\pi\rho \, M \sqrt{\ln^2\rho + 4\pi^2} \to 0 \ npu \ \rho \to 0.$$

Като извършим граничен преход в (5.1) при  $R \to \infty$  и  $\rho \to 0$ , получаваме, че

$$\int_{0}^{\infty} F(x) dx = -\sum_{k=1}^{m} \text{Res}(f, z_{k}).$$
 (5.2)

 $<sup>^{1}{</sup>m B}$ ж. аналогичното доказателство за несобствени интеграли от рационални функции.

Интеграли от вида 
$$\int_0^\infty F(x)(\ln x)^n dx$$
 116

Нека сега n=1. Разглеждаме функцията  $f(z)=F(z)\,({\rm Log}\,z)^2$ . От теоремата за резидуумите следва, че

$$\int_{L_R} + \int_{l_\rho} + \int_{\rho}^R \frac{P(x)}{Q(x)} \left( (\ln x)^2 - (\ln x + 2\pi i)^2 \right) dx = 2\pi i \sum_{k=1}^m \text{Res} \left( f; z_k \right),$$

11.011

$$\int_{L_R} + \int_{l_\rho} -4\pi i \int_{\rho}^R F(x) \ln x dx + 4\pi^2 \int_{\rho}^R F(x) dx = 2\pi i \sum_{k=1}^m \mathrm{Res}\,(f; z_k).$$

След граничен преход при  $R \to \infty, \ \rho \to 0$  получаваме

$$-4\pi i \int_0^\infty F(x) \ln x \, dx + 4\pi^2 \int_0^\infty F(x) \, dx = 2\pi i \sum_{k=1}^m \text{Res}(f, z_k).$$
 (5.3)

За произволно п е в сила следната рекурентна формула

$$\sum_{s=0}^{n} {n+1 \choose s} (2\pi i)^{n-s} I_s = -\sum_{k=1}^{m} \text{Res}\left(F(z) (\text{Log } z)^{n+1}; a_k\right),$$

където

$$I_s := \int_0^\infty F(x) (\ln x)^s \, dx,$$

 $u a_1, \ldots, a_m$  са нулите на знаменателя Q(z).

По подобен начин се пресмятат интеграли от вида

$$\int_0^\infty F(x)x^{-\alpha}\,dx,\quad 0<\alpha<1,$$

където рационалната функция F(z)=P(z)/Q(z) няма полюси върху реалната полуос  $0\leq x<\infty$  и  $\deg Q\geq \deg P+1$ . За целта разглеждаме функцията

$$f(z) = F(z)z^{-\alpha} = F(z)e^{-\alpha\operatorname{Log} \mathbf{z}} = e^{-\alpha(\ln|z| + i\operatorname{arg} \mathbf{z})}$$

u контура  $\gamma$  от фиг. 5.5. От теоремата за резидуумите следва, че

$$\int_{L_R} + \int_{l_\rho} + \int_{\rho}^R F(x) \left( e^{-\alpha \ln x} - e^{-\alpha (\ln x + 2\pi i)} \right) dx = 2\pi i \sum_{k=1}^m \text{Res}(f; z_k),$$

m. e

$$\int_{L_R} + \int_{l_\rho} \quad + (1 - e^{-2\pi i\alpha}) \int_\rho^R F(x) x^{-\alpha} dx = 2\pi i \sum_{k=1}^m \mathrm{Res}\,(f; z_k).$$

След граничен преход при  $R \to \infty, \ \rho \to 0$  получаваме

$$\int_0^\infty R(x)x^{-\alpha} dx = \frac{2\pi i}{1 - e^{-2\pi i\alpha}} \sum_{k=1}^m \text{Res}(f, z_k).$$
 (5.4)

Задача 5.6.1 Да се пресметне интеграла

$$I = \int_0^\infty \frac{x dx}{x^3 + 1}.$$

**Решение.** Разглеждаме функцията  $f(z)=\frac{z}{z^3+1}{\rm Log}\,z$  и областта с контур  $\gamma$  от фиг. 5.5. Функцията f(z) има три прости полюса  $z_k=e^{i\frac{\pi+2k\pi}{3}},$  k=0,1,2, принадлежащи на областта. Имаме, че

Res 
$$(f; z_k) = \frac{z_k \log z_k}{(z^3 + 1)'_{z=z_k}} = \frac{1}{3} \frac{\log z_k}{z_k},$$

откъдето получаваме

Res 
$$(e^{\frac{i\pi}{3}})$$
 =  $\frac{1}{3}e^{-\frac{i\pi}{3}}\frac{\pi i}{3} = \frac{\pi i}{18}(1 - i\sqrt{3})$ ,  
Res  $(-1)$  =  $-\frac{1}{3}\pi i$ ,  
Res  $(e^{\frac{5\pi i}{3}})$  =  $\frac{\pi i}{18}(5 + 5i\sqrt{3})$ .

Сега от (5.2) следва, че

$$I = -\text{Res}(e^{i\pi/3}) - \text{Res}(-1) - \text{Res}(e^{5\pi i/3}) = \frac{2\pi\sqrt{3}}{9}.$$

Задача 5.6.2 Да се пресметне интеграла

$$I = \int_0^\infty \frac{\ln x}{(1+x)^3} dx.$$

**Решение.** Разглеждаме функцията  $f(z) = \frac{(\text{Log }z)^2}{(1+z)^3}$ . Тя има трикратен полюс z=-1, който лежи във вътрешността на кривата  $\gamma$  от фиг. 5.5. От (5.3) следва, че

$$-4\pi i I + 4\pi^2 \int_0^\infty \frac{1}{(1+x)^3} = 2\pi i \text{Res}(-1).$$

Тъй като

Res 
$$(-1)$$
 =  $\frac{1}{2} \frac{d^2}{dz^2} \text{Log}^2 z \Big|_{z=-1} = \frac{1 - \text{Log } z}{z^2} \Big|_{z=-1} = 1 - \pi i$ ,

получаваме, че

$$\int_0^\infty \frac{1}{(1+x)^3} = \frac{2\pi^2}{4\pi^2} = \frac{1}{2}$$

И

$$I = \frac{2\pi i}{-4\pi i} = -\frac{1}{2}.$$

Задача 5.6.3 Да се пресметне интеграла

$$I_1 = \int_0^\infty \frac{\ln x}{x^2 + 2x + 2} dx.$$

**Решение.** Разглеждаме функцията  $f(z)=\frac{(\log z)^2}{z^2+2z+2}.$  Тя има два прости полюса  $-1\pm i$ , които лежат във вътрешността на кривата  $\gamma$  от фиг. 5.5. Да означим

$$I_2 = \int_0^\infty \frac{dx}{x^2 + 2x + 2}.$$

От (5.3) следва, че

$$-4\pi i I_1 + 4\pi^2 I_2 = 2\pi i (\text{Res}(-1+i) + \text{Res}(-1-i)).$$

Имаме, че

$$\operatorname{Res}(-1+i) = \frac{(\operatorname{Log} z)^2}{2(z+1)} \bigg|_{z=-1+i} = \frac{\operatorname{Log}^2(-1+i)}{2i} = \frac{(\ln\sqrt{2}+i\frac{3\pi}{4})^2}{2i},$$

$$\operatorname{Res}(-1-i) = \frac{(\operatorname{Log} z)^2}{2(z+1)} \bigg|_{z=-1-i} = \frac{\operatorname{Log}^2(-1-i)}{-2i} = \frac{(\ln\sqrt{2}+i\frac{5\pi}{4})^2}{-2i}.$$

Тогава

$$-4\pi i I_1 + 4\pi^2 I_2 = \pi \left( (\ln \sqrt{2} + i \frac{3\pi}{4})^2 - \left( \ln \sqrt{2} + i \frac{5\pi}{4} \right)^2 \right)$$
$$= \pi \left( 2i \ln \sqrt{2} \left( \frac{3\pi}{4} - \frac{5\pi}{4} \right) - \frac{9\pi^2}{16} + \frac{25\pi^2}{16} \right)$$
$$= \pi (-\pi i \ln \sqrt{2} + \pi^2) = \pi^3 - \frac{\pi^2}{2} i \ln 2.$$

Следователно

$$I_1 = \frac{-\pi^2 \ln 2}{2(-4\pi)} = \frac{\pi \ln 2}{8},$$
  
$$I_2 = \frac{\pi^3}{4\pi^2} = \frac{\pi}{4}.$$

Задача 5.6.4 Да се пресметне интеграла

$$I = \int_0^\infty \frac{dx}{x^{\alpha}(1+x)}, \quad 0 < \alpha < 1.$$

Решение. Разглеждаме функцията

$$f(z) = \frac{1}{z^{\alpha}(1+z)} = \frac{e^{-\alpha(\ln|z|+i\arg z)}}{1+z}.$$

От (5.4) следва, че

$$I = \frac{2\pi i}{1 - e^{-2\pi i\alpha}} \operatorname{Res}(-1) = \frac{2\pi i \operatorname{Res}(-1)}{e^{-\pi i\alpha} 2i \sin \pi\alpha}.$$

Тъй като  $\mathrm{Res}\left(-1\right)=e^{-\alpha(\ln 1+i\pi)}=e^{-\alpha i\pi},$  получаваме, че

$$I = \frac{\pi}{\sin \pi \alpha}$$

Задача 5.6.5 Да се пресметне интеграла

$$I = \int_0^\infty \frac{dx}{\sqrt{x}(x+1)^2(x^2+x+1)}.$$

**Решение.** Разглеждаме функцията  $f(z)=\frac{1}{\sqrt{z}\,(z+1)^2\,(z^2+z+1)}$ . Тя има двукратен полюс  $z_0=-1$  и два прости полюса  $z_1=e^{\frac{2\pi i}{3}}$  и  $z_2=e^{\frac{4\pi i}{3}}$ , и трите принадлежащи на вътрешността на кривата  $\gamma$  от фиг. 5.5. В нашия случай  $\alpha=1/2$ . От (5.4) следва, че

$$I = \frac{2\pi i}{1 - e^{-\pi i}} \left( \operatorname{Res}(z_0) + \operatorname{Res}(z_1) + \operatorname{Res}(z_2) \right)$$
$$= \pi i \left( \operatorname{Res}(z_0) + \operatorname{Res}(z_1) + \operatorname{Res}(z_2) \right).$$

Първо ще пресметнем  $\operatorname{Res}(z_1)$  и  $\operatorname{Res}(z_2)$ .

Res 
$$(z_{1,2}) = \frac{1}{\sqrt{z}(z+1)^2(2z+1)}\Big|_{z=z_{1,2}}$$
.

Имаме, че

$$2e^{\frac{2\pi i}{3}} + 1 = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + 1 = \sqrt{3}i,$$

$$\left(e^{\frac{2\pi i}{3}} + 1\right)^2 = e^{\frac{2\pi i}{3}}\left(e^{\frac{\pi i}{3}} + e^{-\frac{\pi i}{3}}\right)^2 = e^{\frac{2\pi i}{3}} \cdot 4\cos^2\frac{\pi}{3} = e^{\frac{2\pi i}{3}}.$$

Аналогично получаваме

$$2e^{\frac{4\pi i}{3}} + 1 = -\sqrt{3}i,$$

$$(e^{\frac{4\pi i}{3}} + 1)^2 = e^{\frac{4\pi i}{3}} \cdot 4\cos^2\frac{2\pi}{3} = e^{\frac{4\pi i}{3}}.$$

Тогава

Res 
$$(z_1)$$
 =  $\frac{1}{e^{\frac{\pi i}{3}}e^{\frac{2\pi i}{3}}\sqrt{3}i} = \frac{i}{\sqrt{3}}$ ,  
Res  $(z_2)$  =  $\frac{1}{e^{\frac{2\pi i}{3}}e^{\frac{4\pi i}{3}}(-\sqrt{3}i)} = \frac{i}{\sqrt{3}}$ .

Остана да пресметнем Res(-1).

Res (-1) = 
$$\left(\frac{1}{\sqrt{z}(z^2+z+1)}\right)'_{z=-1}$$
 (5.5)  
=  $\frac{-1}{z(z^2+z+1)^2} \left(\frac{5}{2}z\sqrt{z} + \frac{3}{2}\sqrt{z} + \frac{1}{2\sqrt{z}}\right)\Big|_{z=-1}$ .

Тъй като

$$\sqrt{-1} = e^{\frac{1}{2}\operatorname{Log}(-1)} = e^{\frac{1}{2}i\pi} = i,$$

като заместим в (5.5), получаваме, че  $\operatorname{Res}(-1) = -\frac{3}{2}i$ . Следователно

$$I = \pi i \left( -\frac{3}{2}i + \frac{2i}{\sqrt{3}} \right) = \frac{3\sqrt{3} - 4}{2\sqrt{3}}\pi.$$

Задача 5.6.6 Да се пресметне интеграла

$$I = \int_0^\infty \frac{dx}{\sqrt[3]{x^2}(x^2 + x + 1)}.$$

**Решение.** Разглеждаме функцията  $f(z) = \frac{1}{z^{\frac{2}{3}}(z^2 + z + 1)}$ . Тя има два

прости полюса  $z_1=e^{\frac{2\pi i}{3}}$  и  $z_2=e^{\frac{4\pi i}{3}}$ , намиращи се във вътрешността на кривата  $\gamma$  от фиг. 5.5. В нашия случай  $\alpha=2/3$  и от (5.4) следва, че

$$I = \frac{2\pi i}{e^{-\frac{2\pi i}{3}} 2i \sin \frac{2\pi}{3}} (\text{Res}(z_1) + \text{Res}(z_2)).$$

Сега ще пресметнем  $\operatorname{Res}(z_1)$  и  $\operatorname{Res}(z_2)$ .

$$\operatorname{Res}(z_{1}) = \frac{1}{z^{\frac{2}{3}}(2z+1)} \bigg|_{z=e^{\frac{2\pi i}{3}}} = \frac{e^{-\frac{4\pi i}{9}}}{2e^{\frac{2\pi i}{3}}+1} = \frac{e^{-\frac{4\pi i}{9}}}{i\sqrt{3}},$$

$$\operatorname{Res}(z_{2}) = \frac{1}{z^{\frac{2}{3}}(2z+1)} \bigg|_{z=e^{\frac{4\pi i}{3}}} = \frac{e^{-\frac{8\pi i}{9}}}{2e^{\frac{4\pi i}{3}}+1} = \frac{e^{-\frac{8\pi i}{9}}}{-i\sqrt{3}}.$$

Тогава

$$I = \frac{2\pi i}{e^{-\frac{2\pi i}{3}} 2i\frac{\sqrt{3}}{2}} \frac{e^{-\frac{4\pi i}{9}} - e^{-\frac{8\pi i}{9}}}{i\sqrt{3}}$$
$$= -\frac{2\pi i}{3e^{-\frac{2\pi i}{3}}} e^{-\frac{2\pi i}{3}} \left(e^{\frac{2\pi i}{9}} - e^{-\frac{2\pi i}{9}}\right) = -\frac{2\pi i}{3} 2i\sin\frac{2\pi}{9} = \frac{4\pi}{3}\sin\frac{2\pi}{9}.$$

### 5.7 Сумиране на редове

**Теорема 1.** Нека функцията f(z) е аналитична в цялата равнина с изключение на краен брой полюси  $z_1, \ldots, z_m, z_k \notin \mathbb{Z}, k = 1, \ldots, m$ . Нека

$$\int_{C_n} F(z)dz \to 0 \ npu \ n \to \infty,$$

където  $C_n: |z| = n + \frac{1}{2} u$ 

(a) 
$$F(z) = \pi f(z) \cot \pi z$$
, (6)  $F(z) = \frac{\pi f(z)}{\sin \pi z}$ .

Тогава е изпълнено, че

(a) 
$$\lim_{n \to \infty} \sum_{-n}^{n} f(n) = -\sum_{k=1}^{m} \text{Res}(F; z_k),$$
 (5.1)

(6) 
$$\sum_{n=-\infty}^{\infty} (-1)^n f(n) = -\sum_{k=1}^m \text{Res}(F; z_k).$$
 (5.2)

Доказателство. Избираме n толкова голямо, че  $|z_k| < n, k = 1, ..., m$ . Полюсите на функцията F(z), които се намират във вътрешността на кривата  $C_n$ , са  $z_k$ , k = 1, ..., m и простите полюси s,  $s = \pm 1, ..., \pm n$ , които са нули на  $\sin \pi z$ . Лесно се пресмятат

(a) Res 
$$(F; s) = f(s)$$
, (6) Res  $(F; s) = (-1)^s f(s)$ .

Тогава от теоремата за резидуумите следва, че

(a) 
$$\int_{C_n} F(z)dz = 2\pi i \left( \sum_{s=-n}^n f(s) + \sum_{k=1}^m \operatorname{Res}(F; z_k) \right),$$

(6) 
$$\int_{C_n} F(z)dz = 2\pi i \left( \sum_{s=-n}^n (-1)^s f(s) + \sum_{k=1}^m \text{Res}(F; z_k) \right).$$

Твърдението в теоремата се получава след граничен преход при  $n \to \infty.$   $\blacksquare$ 

Следствие 1. Нека f(z) = P(z)/Q(z) е рационална функция, такава че  $\deg Q \ge \deg P + 1$ . Тогава е изпълнено (5.1).

**Доказателство.** Ще докажем, че функцията f(z) удовлетворява условията на Теорема 1. За целта първо ще докажем, че функцията  $\cot \pi z$  е ограничена в областта

$$G=\mathbb{C}\setminus \bigg\{z: |z|\leq \frac{1}{4},\ k=0,\pm 1,\pm 2,\dots\bigg\}.$$

Тъй като функцията  $\cot g \pi z$  е периодична с период единица, достатъчно е да докажем, че е ограничена например в затворената област

$$\overline{D} = \overline{G} \cap \{z = x + iy : 0 \le \operatorname{Re} z \le 1\}.$$

Нека първо  $z \in \overline{D} \cap \{z : |\text{Im } z| \le 1\}$ . Това е компактно множество, в което функцията  $\cot \pi z$  е непрекъсната, следователно е ограничена.

Нека сега  $z \in \overline{D} \cap \{z : |\text{Im } z| > 1\}$ . Ако Im z > 1, имаме, че

$$\begin{aligned} |\cot \pi z| &= \left| \frac{e^{i\pi z} + e^{-i\pi z}}{e^{i\pi z} - e^{-i\pi z}} \right| \le \frac{e^{-\pi y} + e^{\pi y}}{e^{\pi y} - e^{-\pi y}} \\ &= \frac{1 + e^{-2\pi y}}{1 - e^{-2\pi y}} \le \frac{1 + e^{-2\pi}}{1 - e^{-2\pi}} = \text{Const.} \end{aligned}$$

Случаят Im z < -1 се разглежда аналогично. Дотук доказахме, че

$$|\cot \pi z| \leq M$$
, за всяко  $z \in G$ .

По-нататък, да разгледаме първо случая, когато  $\deg Q \ge \deg P + 2$ . Тъй като  $C_n \subset G$ , имаме, че

$$\left| \int_{C_n} \pi f(z) \cot \pi z \right| \leq \frac{\operatorname{Const.} M.2\pi (n + \frac{1}{2})}{n^2} \to 0 \ npu \ n \to \infty.$$

 $A \kappa o \, \deg Q \geq \deg P + 1$ , представяме f(z) във вида

$$f(z) = \text{Const.} \frac{1}{z} + \frac{P_1(z)}{Q_1(z)},$$

κσ $demo \deg Q_1 \geq \deg P_1 + 2$ . Τσ $\ddot{u}$  καmo

$$\int_{C_{z}} \frac{\cot g \pi z}{z} dz = 0 \quad (3a\partial. \ 5.1.7),$$

mo

$$\left| \int_{C_n} \pi f(z) \cot \pi z \right| = \left| \text{Const.} \int_{C_n} \frac{\cot \pi z}{z} dz + \int_{C_n} \frac{\pi P_1}{Q_1} \cot z dz \right|$$
$$= \left| \int_{C_n} \frac{\pi P_1}{Q_1} \cot z dz \right| \to 0,$$

което следва от предишния случай.

Задача 5.7.1 Да се намери сумата на реда  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ .

**Решение.** Разглеждаме функцията  $F(z) = \frac{\pi \cot g \pi z}{z^2}$ . От Теорема 1, (а) и Следствие 1 получаваме, че

$$2\sum_{n=1}^{\infty} \frac{1}{n^2} = -\text{Res}(F; 0).$$

От представянето

$$F(z) = \frac{1}{z^3} \left( \frac{\pi \cos \pi z}{\pi - \frac{\pi^3 z^2}{3!} + \dots} \right) = \frac{1}{z^3} \frac{\pi \cos \pi z}{\varphi(z)},$$

където  $\varphi(0)=\pi,$  следва, че точката z=0 е трикратен полюс на F(z). Следователно

Res 
$$(F; 0) = \frac{1}{2!} \left( \frac{\pi \cos \pi z}{\varphi(z)} \right)_{z=0}^{"} = -\frac{\pi^2}{3},$$

откъдето получаваме, че

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Задача 5.7.2 Да се намери сумата на реда

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2}, \quad a \in \mathbb{R}, \ a \neq 0.$$

**Решение.** Разглеждаме функцията  $F(z) = \frac{\pi \cot g \pi z}{z^2 + a^2}$ . Имаме, че

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = 2\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} + \frac{1}{a^2} = -\left(\text{Res}(ai) + \text{Res}(-ai)\right).$$

Тъй като

Res 
$$(ai)$$
 = Res  $(-ai)$  =  $\frac{\pi \cot \pi ai}{2ai}$  =  $-\frac{\pi}{2a}$  cth  $\pi a$ ,

получаваме, че

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2} = \frac{1}{2a^2} (\pi a \operatorname{cth} \pi a - 1).$$

**Задача 5.7.3** Нека  $a \notin \mathbb{Z}$ . Като пресметнете сумата на реда

$$\sum_{n=-\infty}^{\infty} \frac{1}{n-a},$$

намерете разлагането на функцията  $\cot \pi z$  в сбор от елементарни дроби.

**Решение.** Разглеждаме функцията  $F(z)=\frac{\pi\cot g\,\pi z}{z-a}$ . Тъй като  $\mathrm{Res}\,(a)=\pi\cot g\,\pi a$ , получаваме, че

$$\pi \cot g \pi a = \frac{1}{a} - \sum_{n=1}^{\infty} \left( \frac{1}{n-a} - \frac{1}{n+a} \right).$$
(5.3)

Като запишем последното равенство във вида

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \left( \frac{1}{z-n} + \frac{1}{n} \right) + \sum_{n=1}^{\infty} \left( \frac{1}{z+n} - \frac{1}{n} \right), \ z \notin \mathbb{Z}$$

получаваме разлагането на функцията  $\pi \cot g \pi z$  в сбор от елементарни дроби. Ще отбележим, че от (5.3) следва още, че

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}, \ z \notin \mathbb{Z}.$$

**Задача 5.7.4** *Нека*  $a \notin \mathbb{Z}$ *. Като пресметнете сумата на реда* 

$$\sum_{n=-\infty}^{\infty} (-1)^n \frac{1}{a-n},$$

намерете разлагането на функцията  $\frac{\pi}{\sin \pi z}$  в сбор от елементарни дроби.

**Решение.** В случая  $f(z)=rac{1}{a-z}$  и  $F(z)=rac{\pi}{(a-z)\sin\pi z}$ . От (5.2) следва,

$$\sum_{n=-\infty}^{\infty} (-1)^n \frac{1}{a-n} = -\operatorname{Res}(F; a) = \frac{\pi}{\sin \pi a}.$$

Следователно разлагането на функцията  $\frac{\pi}{\sin \pi z}$  в сбор от елементарни дроби е

$$\frac{\pi}{\sin \pi z} = \sum_{n = -\infty}^{\infty} (-1)^n \frac{1}{z - n} = \frac{1}{z} + \sum_{n = 1}^{\infty} \frac{(-1)^n}{z^2 - n^2}.$$

Задача 5.7.5 Да се намери сумата на реда

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}.$$

Решение. Разглеждаме функцията

$$F(z) = \frac{\pi}{(2z+1)^3 \sin \pi z} = \frac{\pi}{8(z+\frac{1}{2})^3} \cdot \frac{1}{\sin \pi z}.$$

Имаме, че

Res 
$$\left(-\frac{1}{2}\right) = \frac{\pi}{16} \left(\frac{1}{\sin \pi z}\right)_{z=-\frac{1}{2}}^{"} = -\frac{\pi^3}{16}.$$

Следователно

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32}.$$

Задача 5.7.6 Да се намерят сумите на следните редове

(a) 
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + a^2}$$
,  $a \neq 0$ ,

(6) 
$$\sum_{-\infty}^{\infty} \frac{(-1)^n}{(n+a)^2} \quad a \notin \mathbb{Z},$$

(B) 
$$\sum_{-\infty}^{\infty} \frac{(-1)^n \cos \alpha n}{n^2 + a^2} - \pi < \alpha < \pi,$$

(r) 
$$\sum_{-\infty}^{\infty} (-1)^n \frac{e^{i\alpha n}}{(n-a)^2} - \pi < \alpha < \pi.$$

OTF. (a) 
$$\frac{1}{2} \left( \frac{\pi}{a \sin \pi a} + \frac{1}{a^2} \right)$$
,

(6) 
$$\pi^2 \frac{\cos \pi a}{\sin^2 \pi a}$$
, (B)  $\pi \frac{\operatorname{ch} \alpha a}{a \operatorname{sh} \pi a}$ ,

(r) 
$$\pi \frac{e^{i\alpha a}}{\sin \pi a} (\pi \cot \pi a - i\alpha).$$

### 5.8 Логаритмичен индикатор. Теорема на Руше

Нека функцията  $f: G \to \mathbb{C}$  е холоморфна и  $f(z) \neq 0 \ \forall z \in G$ .

Дефиниция 1. Логаритмична производна на f(z) се нарича функцията

$$\varphi(z) = (\operatorname{Log} f(z))' = \frac{f'(z)}{f(z)},$$

ако съществува еднозначен клон на  $\log f(z)$  в областта.

Особени точки на  $\varphi(z)$  могат да бъдат само нулите или особените точки на f(z).

Ако 
$$z=a$$
 е  $m$ -кратна нула на  $f(z)$ , то  $\operatorname{Res}\left(\frac{f'}{f};a\right)=m$ .  
Ако  $z=a$  е  $p$ -кратен полюс на  $f(z)$ , то  $\operatorname{Res}\left(\frac{f'}{f};a\right)=-p$ .

Дефиниция 2. Величината

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

се нарича **логаритмичен индикатор** на функцията f(z) относно  $\gamma$ , където  $\gamma$  е контура на областта G..

**Теорема за логаритмичния индикатор.** Нека функцията f(z) е аналитична в област G и по границата ѝ  $\gamma$ , c изключение на краен брой полюси, принадлежащи на G. Тогава

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N - P,$$

където N и P означават съответно броят на нулите и полюсите на f, принадлежащи на G.

**Теорема на Руше.** Нека f(z) и  $\varphi(z)$  са аналитични функции в област G и по контура ѝ  $\gamma$ , като  $|f(z)| > |\varphi(z)| \quad \forall z \in \gamma$ . Тогава функциите  $f(z) + \varphi(z)$  и f(z) имат един и същ брой нули в G (отчитайки кратността им).

Задача 5.8.1 Намерете броя на нулите на функцията

$$F(z) = z^8 - 4z^5 + z^2 - 1$$

вътре в кръга |z| < 1.

Решение. Полагаме

$$f(z) = -4z^5$$
,  $\varphi(z) = z^8 + z^2 - 1$ .

Тогава

$$|f(z)|_{|z|=1} = |-4z^5| = 4,$$
  
 $|\varphi(z)|_{|z|=1} = |z^8 + z^2 - 1| \le |z^8| + |z^2| + 1 = 3.$ 

Следователно  $|f(z)|_{|z|=1}>|\varphi(z)|_{|z|=1}$ . Функцията f(z) има 5-кратна нула в z=0. От теоремата на Руше следва, че функцията F(z) има 5 нули вътре в кръга |z|<1.

Задача 5.8.2 Намерете броя на корените на уравнението

$$z^6 - 6z + 10 = 0$$

вътре в кръга |z| < 1.

**Решение.** Полагаме f(z)=10,  $\varphi(z)=z^6-6z.$  При |z|=1 имаме |f(z)|=10,  $|\varphi(z)|\leq 7$  и следователно  $|f(z)|>|\varphi(z)|.$  Тъй като функцията f(z) очевидно няма нули, то и  $F(z)=f(z)+\varphi(z)$  няма нули при |z|<1.

Задача 5.8.3 Намерете броя на корените на уравнението

$$z^4 - 5z + 1 = 0$$

вътре в пръстена 1 < |z| < 2.

**Решение.** При |z|<1 полагаме  $f(z)=-5z,\ \varphi(z)=z^4+1.$  От теоремата на Руше следва, че броят на нулите в указания кръг е  $N_1=1.$  При |z|<2 полагаме  $f(z)=z^4,\ \varphi(z)=1-5z,$  откъдето получаваме както по-горе, че броя на нулите е  $N_2=4.$  Следователно броят на нулите в пръстена 1<|z|<2 е  $N=N_2-N_1=3.$ 

Задача 5.8.4 Намерете броя на корените на уравнението

$$4z^4 - 29z^2 + 25 = 0$$

вътре в пръстена 2 < |z| < 3.

Ott. 
$$f(z)=29z^2,\ \varphi(z)=4z^4+25,\quad |z|<2,\ N_1=2,$$
 
$$f(z)=4z^4,\ \varphi(z)=29z^2+25,\quad |z|<3,\ N_2=4,$$
 
$$N=N_2-N_1=2.$$

## Литература

- [1] Т. АРГИРОВА, Теория на аналитичните функции, СУ "Св. Кл. Охридски", София, 1992.
- [2] Т. АРГИРОВА, Т. ГЕНЧЕВ, Сборник от задачи по теория на аналитичните функции, София, 1992.
- [3] М. А. ЕВГРАФОВ, Ю. В. СИДОРОВ, М. В. ФЕДОРЮК, М. И. ШАБУНИН, К. А. БЕЖАНОВ, Сборник задач по теории аналитических функций, *Наука*, Москва, 1969.
- [4] М. Л. КРАСНОВ, А. И. КИСЕЛЕВ, Г. И. МАКАРЕНКО, ФУНКЦИИ КОМПлексного переменного, операционное вчисление, теория устойчивости, Hayka, Москва, 1981.
- [5] А. И. МАРКУШЕВИЧ, Краткий курс теории аналитических функций,  $Hay\kappa a$ , Москва, 1966.
- [6] Д. Пойя, Г. Сегьо, Задачи и теореми по анализ, том 1,  $\it Hayka~u~uskycmbo$ , София, 1974.
- [7] И. И. ПРИВАЛОВ, Введение в теорию функций комплексного переменного,  $Hay\kappa a$ , Москва , 1984.
- [8] Л. Д. ФАДДЕВ, О. Я. ЯКУБОВСКИЙ, Лекции по квантовой механике (для студентов математиков), Ленинград, 1980.