Early Cardio Vascular Disease Detection using Machine Learning and Explainable Al

Bhargava Dandu

M.Sc in Data Analytics, Department of Computing Science and Mathematics, Dundalk Institute of Technology.

1. Introduction

7. References

- [1] Nurul Absar, Emon Kumar Das, Shamsun Nahar Shoma, Mayeen Uddin Khandaker, Mahadi Hasan Miraz, MRI Faruque, Nissren Tamam, Abdelmoneim Sulieman, and Refat Khan Pathan. The efficacy of machine-learning-supported smart system for heart disease prediction. In *Healthcare*, volume 10, page 1137. MDPI, 2022.
- [2] Dhadkan Shrestha. Advanced machine learning techniques for predicting heart disease: A comparative analysis using the cleveland heart disease dataset. Applied Medical Informatics, 46(3), 2024.
- [3] Rajkamal Rajendran and Anitha Karthi. Heart disease prediction using entropy based feature engineering and ensembling of machine learning classifiers. Expert Systems with Applications, 207:117882, 2022.

6. Conclusions

- 1. DeCAF gives better results for 23 out of 35 receptors.
- 2. For targets with easily separable active and inactive datasets, SEA and DeCAF give similar results.
- 3. In cases in which SEA fails to identify active molecules, our method performs substantially better.