Lecture 01

Introduction to Machine learning
Kirill Svyatov
Ulyanovsk State Technical University
k.svyatov@ulstu.ru

Agenda

Brief history of technological revolutions

Future technologies

Definitions

Formulation of the problem

Definitions

ML applications

Methods of ML

Industrial revolutions

	«I» IR XVII century	II IR XVIII – XIX	III IR XIX – XX	IV IR XXI
Technologies	woodpeat burnwind energy	 Iron, steel coal burn steam surgery, anesthesia agriculture machines 	 plastic oil, electricity cars, airplains satellites antibiotics, early diagnosis mineral fertilizers 	 3D printing & materials thin films clean energy robots small satellites organic agriculture
		Парсвоз Треантика		Tre No.
	Netherlands	England	¹ / _I SA	

Disruptive technologies

Clayton Cristensen

Industry 4.0

Labor productivity

Assessment of the growth of labor productivity from the development of new technologies in production

Steam engine	Early robotics	IT	Robots, Al, ML		
1850-1910	1993-2007	1995-2005	2015-2065		
	Growth in labor productivity per year				
0,3%	0,4%	0,6%	0,8 - 1,4%		

Modern technologies

Today there is a new platform of technologies of the New Industrial Revolution

The essential 8 technologies

Problems of transformation

Important skills

"In the next five years, I can see AI replacing humans as a..."

Al winter & spring

ML definition

Machine Learning:

- Machine learning is a topic of an artificial intelligence, a mathematical discipline that uses mathematical statistics, numerical optimization methods, probability theory, discrete analysis, to extract knowledge from data.
- Field of study that gives computers the ability to learn without being explicitly programmed. (Arthur Samuel, 1959)

The Fields of Data Science

- Data can be inaccurate, incomplete, heterogeneous, indirect, and at the same time have huge volumes;
- Data analysis algorithms themselves may have the ability to learn from precedents;
- Processes of raw data processing into information require nontrivial automation.

Over the past decades, significant efforts in the field of Data Mining have focused on the creation of specialized algorithms capable of performing the same tasks during linear or even logarithmic time without significant loss of accuracy.

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

(T.Mitchell)

There are two types of learning:

- Precedent training
- Deductive training

The purpose of precedent training is to generalize or gain knowledge about the "law of nature."

SPHINX OF BLACK QUAR IZ JUDGEMY VOW Sphinx of black quartz judge my vow ABCDEFGHabcdefhg 0123456789/102#\$%

is grand i onpais pyrues Mos whaims yroceases gamunaim worme eseriou ocaherinoimu brugues mpigesio inbalinai hum bumb oblimbinaminabeysu youwere Promissib obligani mo zakond ofor mademb

ML task definition

Machine learning:

- What is an object X (what features) and what is an answer Y?
- How to build a model M?
- How can we make an approximation of Y from X with M?

ML task definition

Input data types:

- Image
- Text
- Sound
- GEO data
- Timeseries
- Datasheet

Generalization

Generalization error (also known as the **out-of-sample error**) is a measure of how accurately an algorithm is able to predict outcome values for previously unseen data

In a learning problem, the goal is to develop a function f(x) that predicts output values y based on some input data x. The expected error, $I[f_n]$ of a particular function f_n over all possible values of x and y is:

$$I[f_n] = \int_{X imes Y} V(f_n(x),y)
ho(x,y) dx dy,$$

where V denotes a loss function and $\rho(x,y)$ is the unknown joint probability distribution for x and y.

Without knowing the joint probability distribution, it is impossible to compute I[f]. Instead, we can compute the empirical error on sample data. Given n data points, the empirical error is:

$$I_S[f_n] = rac{1}{n} \sum_{i=1}^n V(f_n(x_i), y_i)$$

Gradient descent

CRISP-DM methodology

Appliances of ML

Automation control	Bioinformatics	Stock technical analysis	Image generation	Speech generation
Text generation	Categorizing documents	Credit scoring	Medical diagnosis	Detection of fraud
Spam detection	Learning ranking in information search	Searching potential customers	Predicting customer care	Decision-making
Predicting time series	Gesture recognition	Image recognition	Speech recognition	Pecognition of handwriting
Recognition of physical activity	Technical diagnostics	Financial supervision	Chemoinformatics	

ML application

. .

0/5000

ML application NeuralTalk

a cake with a slice cut out of it

ML application

ML application

ML application. Generative models

ML application

ML application. Colorization

ML applications. Labeling

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

"man in blue wetsuit is surfing on wave."

"little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

"black cat is sitting on top of suitcase."

ML application

ML application

Artificial Intelligence

855 companies

Recommendation Eng.

ML tasks types

- 1. Supervised learning:
 - Classification
 - Regression
 - Learning to rank
 - forecasting
- 2. Uunsupervised learning:
 - Clustering
 - Association rules learning
 - Outliers detection

- 3. Reinforcement learning
- 4. Meta-learning or learning-to-learn
- 5. Portfolio selection
- 6. Collaborative filtering
- 7. ...

Approaches and methods

- Regression
- Байесовский вывод
- Decision trees
- Neural networks
- K-nearest neighbors
- Principal component analysis
- Support vector machines
- Genetic algorythms

Tools

- 1. Python, R, Matlab, ...
- 2. IPython Notebook, PyCharm
- 3. Tensor Flow, Keras, Theano, Scikit-Learn
- 4. CNTK
- 5. Torch
- 6. Coffe
- 7. Apach Spark
- 8. Azure

Links

- [ML course by Andrew Ng](https://www.coursera.org/learn/machine-learning)
- [ML course by Dmitry Efimov](https://github.com/diefimov/MTH594_MachineLearning)
- [ML course by OpenData Science](https://github.com/Yorko/mlcourse.ai)
- [MIT Deep learning](https://github.com/lexfridman/mit-deep-learning)
- https://github.com/qati/DeepLearningCourse
- https://github.com/roebius/deeplearning_keras2
- https://github.com/enggen/Deep-Learning-Coursera
- https://github.com/fchollet/deep-learning-with-python-notebooks