

าput: D

om input: C

outputs: y1, y2

CD + C'y1

C'y1 + Cy2

'2

he tables below, stable states are coloured red.

: under standard mode of operations, only one bit can change at a time (unspecified entries due to this ar ured yellow.

TATION TABLE:

; (y1, y2)	NS; CD = (00, 01, 10, 11) : (y2y1)	output z
	00 00 00 01	0
	11 11 00 <mark>01</mark>	0
	00 00 10 11	1
	11 11 10 11	1

; (y1, y2)	NS; CD = (00, 01, 10, 11)	Z
	S1 S1 S1 S2	0
	S4 S4 S1 S2	0
	S1 S1 S3 S4	1
	S4 S4 S3 S4	1

IFIED FLOW TABLE:

; (y1, y2)	NS; CD = (00, 01, 10, 11)	Z
	S1 S1 S1 S2	0
	— S4 S1 S2	0
	S1 — S3 S4	1
	S4 S4 S3 S4	1

: Diagram:

; (y1, y2)	NS; CD = (00, 01, 10, 11)	Z
	A B C —	0
	D B — D	0
	ACCC	1
	DCCC	0

 $\mathsf{C}\to\mathsf{D}$

/NTHESIS OF ASC

Il Parity Generator / 1 Bit Counter/ Modulo 2 Counter:

าput: W

output: z

s, on clock signal: A, B, C, D

c # of pulses	Z	
	0	
	1	
	0	
	1	
	О	

: Diagram:

