КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОЧАЯ ЧАСТЬ НАЗВАНИЯ

На правах рукописи УДК 519.63

Долгов Дмитрий Андреевич

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЕ ВЯЗКОЙ НЕСЖИМАЕМОЙ НЕОДНОРОДНОЙ ЖИДКОСТИ ВНУТРИ КРУПНЫХ КРОВЕНОСНЫХ СОСУДОВ И КЛАПАНОВ

Специальность 5.13.18 — «Математические модели, численные методы и комплексы программ»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: доктор физ.-мат. наук, профессор Захаров Ю.Н.

Оглавление

B	веде	ние	4
1	Опі	исание математических моделей	6
	1.1	Физика и биология процессов в сосудах и клапанах	6
	1.2	Математическая модель	6
	1.3	Метод численного решения поставленной задачи	6
		1.3.1 Метод расщепления по физическим факторам	6
		1.3.2 Метод решения уравнения конвекции	6
		1.3.3 Метод погруженной границы	6
	1.4	Ссылки	6
	1.5	Формулы	6
		1.5.1 Ненумерованные одиночные формулы	7
		1.5.2 Ненумерованные многострочные формулы	7
		1.5.3 Нумерованные формулы	8
2	Mo,	целирование течение крови внутри сосуда, подверженного аневризме .	9
	2.1	Математическая модель	9
	2.2	Методы численного решения	9
	2.3	Результаты	9
		2.3.1 Аневризма + концентрация	9
		2.3.2 Размывание сгустков	9
	2.4	Одиночное изображение	9
	2.5	Длинное название параграфа, в котором мы узнаём как сделать две картинки	
		с общим номером и названием	9
	2.6	Пример вёрстки списков	10
3	Mo,	делирование течения крови внутри искусственного сердечного клапана	11
	3.1	Математическая модель	11
	3.2	Методы численного решения	11
	3.3	Результаты	11
		3.3.1 Аортальный клапан	11
		3.3.2 Аортальный клапан с кольцом жесткости	11

	3.4	Таблица обыкновенная	11
	3.5	Параграф - два	11
	3.6	Параграф с подпараграфами	12
		3.6.1 Подпараграф - один	12
		3.6.2 Подпараграф - два	12
За	клю	чение	13
Cı	іисоі	к литературы	L 4
Cı	іисоі	к рисунков	L7
Cı	іисоі	к таблиц	18
\mathbf{A}	Наз	вание первого приложения	L 9
В	Оче	ень длинное название второго приложения, в котором продемонстри-	
	рова	ана работа с длинными таблицами	20
	B.1	Подраздел приложения	20
	B.2	Ещё один подраздел приложения	22
	B.3	Очередной подраздел приложения	23
	B.4	И ещё один подраздел приложения	23

Введение

Обзор, введение в тему, обозначение места данной работы в мировых исследованиях и т.п.

Целью данной работы является ...

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Исследовать, разработать, вычислить и т.д. и т.п.
- 2. Исследовать, разработать, вычислить и т.д. и т.п.
- 3. Исследовать, разработать, вычислить и т.д. и т.п.
- 4. Исследовать, разработать, вычислить и т.д. и т.п.

Основные положения, выносимые на защиту:

- 1. Первое положение
- 2. Второе положение
- 3. Третье положение
- 4. Четвертое положение

Научная новизна:

- 1. Впервые . . .
- 2. Впервые . . .
- 3. Было выполнено оригинальное исследование . . .

Научная и практическая значимость ...

Степень достоверности полученных результатов обеспечивается ... Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на: перечисление основных конференций, симпозиумов и т.п.

Личный вклад. Автор принимал активное участие ...

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [1–5], X из которых изданы в журналах, рекомендованных ВАК [1–3], XX — в тезисах докладов [4,5].

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Полный объем диссертации составляет XXX страница с XX рисунками и XX таблицами. Список литературы содержит XXX наименований.

Глава 1

Описание математических моделей

- 1.1 Физика и биология процессов в сосудах и клапанах
- 1.2 Математическая модель
- 1.3 Метод численного решения поставленной задачи
- 1.3.1 Метод расщепления по физическим факторам
- 1.3.2 Метод решения уравнения конвекции
- 1.3.3 Метод погруженной границы

Мы можем сделать жирный текст и курсив.

1.4 Ссылки

Сошлёмся на библиографию. Одна ссылка: [1]. Две ссылки: [2, 3]. Много ссылок: [4–20]. И ещё немного ссылок: [21–33].

Сошлёмся на приложения: Приложение А, Приложение В.2.

Сошлёмся на формулу: формула (1.1).

Сошлёмся на изображение: рисунок 2.2.

1.5 Формулы

Благодаря пакету icomma, L^AT_EX одинаково хорошо воспринимает в качестве десятичного разделителя и запятую (3,1415), и точку (3.1415).

1.5.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

 $\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\lambda mu\nu\xi\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

1.5.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

$$f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$$

Можно использовать разные математические алфавиты:

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.5.3 Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.2}$$

В последствии на формулы (1.1) и (1.2) можно ссылаться.

Глава 2

Моделирование течение крови внутри сосуда, подверженного аневризме

- 2.1 Математическая модель
- 2.2 Методы численного решения
- 2.3 Результаты
- 2.3.1 Аневризма + концентрация
- 2.3.2 Размывание сгустков
- 2.4 Одиночное изображение

Рисунок 2.1: ТеХ.

2.5 Длинное название параграфа, в котором мы узнаём как сделать две картинки с общим номером и названием

А это две картинки под общим номером и названием:

Рисунок 2.2: Очень длинная подпись к изображению, на котором представлены две фотографии Дональда Кнута

2.6 Пример вёрстки списков

Нумерованный список:

- 1. Первый пункт.
- 2. Второй пункт.
- 3. Третий пункт.

Маркированный список:

- Первый пункт.
- Второй пункт.
- Третий пункт.

Вложенные списки:

- Имеется маркированный список.
 - 1. В нём лежит нумерованный список,
 - 2. в котором
 - лежит ещё один маркированный список.

Глава 3

Моделирование течения крови внутри искусственного сердечного клапана

- 3.1 Математическая модель
- 3.2 Методы численного решения
- 3.3 Результаты
- 3.3.1 Аортальный клапан
- 3.3.2 Аортальный клапан с кольцом жесткости

3.4 Таблица обыкновенная

Так размещается таблица:

Таблица 3.1: Название таблицы

Месяц	T_{min} , K	T_{max} , K	$(T_{max}-T_{min}), K$
Декабрь	253.575	257.778	4.203
Январь	262.431	263.214	0.783
Февраль	261.184	260.381	-0.803

3.5 Параграф - два

Некоторый текст.

3.6 Параграф с подпараграфами

3.6.1 Подпараграф - один

Некоторый текст.

3.6.2 Подпараграф - два

Некоторый текст.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа . . .
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан . . .

И какая-нибудь заключающая фраза.

Список литературы

- 1. *Сычёв М. С.* История Астраханвского казачьего войска: учебное пособие. Астрахань: Волга, 2009. 231 с.
- 2. Соколов А. Н., Сердобинцев К. С. Гражданское общество: проблемы формирования и развития (философский и юридический аспекты): монография / Под ред. В. М. Бочарова. Астрахань: Калиниградский ЮИ МВД России, 2009. 218 с.
- 3. Γ айдаенко T. A. Маркетинговое управление: принципы управленческих решений и российская практика. 3-е изд, перераб. и доп. изд. М.: Эксмо: МИРБИС, 2008. 508 с.
- 4. *Лермонтов Михаил Юрьевич*. Собрание сочинений: в 4 т. М.: Терра-Кн. клуб, 2009. 4 т.
- 5. Управление бизнесом: сборник статей. Нижний новгород: Изд-во Нижегородского университета, 2009. 243 с.
- 6. *Борозда И. В., Воронин Н. И., В. Бушманов А.* Лечение сочетанных повреждений таза. Владивосток: Дальнаука, 2009. 195 с.
- 7. Маркетинговые исследования в строительстве: учебное пособие для студентов специальности «Менеджемент организаций» / О. В. Михненков, И. З. Коготкова, Е. В. Генкин, Г. Я. Сороко. М.: Государственный университет управления, 2005. 59 с.
- 8. Конституция Российской Федерации: офиц. текст. М.: Маркетинг, 2001. 39 с.
- 9. Семейный кодекс Российской Федерации: [федер. закон: принят Гос. Думой 8 дек. 1995 г.: по состоянию на 3 янв. 2001 г.]. СПб.: Стаун-кантри, 2001. 94 с.
- 10. ГОСТ Р 7.0.53-2007 Система стандартов по информации, библиотечному и издательскому делу. Издания. Международный стандартный книжный номер. Использование и издательское оформление. М.: Стандартинформ, 2007. 5 с.
- 11. *Разумовский В. А., Андреев Д. А.* Управление маркетинговыми исследованиями в регионе. М., 2002. 210 с. Деп. в ИНИОН Рос. акад. наук 15.02.02, № 139876.

- 12. Лагкуева Ирина Владимировна. Особенности регулирования труда творческих работников театров: дис. ... канд. юрид. наук: 12.00.05. M., 2009. 168 с.
- 13. *Покровский Андрей Владимирович*. Устранимые особенности решений эллиптических уравнений: дис. ... д-ра физ.-мат. наук: 01.01.01. М., 2008. 178 с.
- 14. *Сиротко Владимир Викторович*. Медико-социальные аспекты городского травматизма в современных условиях : автореф. дис. ... канд. мед. наук : 14.00.33. М., 2006. 26 с.
- 15. Лукина Валентина Александровна. Творческая история «Записок охотника» И. С. Тургенева: автореф. дис. ... канд. филол. наук : 10.01.01. СПб., 2006. 26 c.
- 16. Загорюєв А. Л. Методология и методы изучения военно-профессиональной направленности подростков: отчёт о НИР. Екатеринбург, 2008. 102 с.
- 17. Художественная энциклопедия зарубежного классического искусства [Электронный ресурс]. М.: Большая Рос. энкцикл., 1996. 1 электрон. опт. диск (CD-ROM).
- 18. *Насырова Г. А.* Модели государственного регулирования страховой деятельности [Электронный ресурс] // *Вестник Финансовой академии.* 2003. № 4. Режим доступа: http://vestnik.fa.ru/4(28)2003/4.html.
- 19. Берестова Т. Ф. Поисковые инструмены библиотеки // Библиография. 2006. № 4. С. 19.
- $20. \ Kpurep \ U. \$ Бумага терпит $// \$ $Hoвая \ rasema. 2009. 1 \$ июля.
- 21. Adams Peter. The title of the work // The name of the journal. 1993. 7. Vol. 4, no. 2. Pp. 201–213. An optional note.
- 22. Babington Peter. The title of the work. 3 edition. The address: The name of the publisher, 1993. 7. Vol. 4 of 10. An optional note.
- 23. Caxton Peter. The title of the work. How it was published, The address of the publisher, 1993. 7. An optional note.
- 24. Draper Peter. The title of the work // The title of the book / Ed. by The editor; The organization. Vol. 4 of 5. The address of the publisher: The publisher, 1993. 7. P. 213. An optional note.
- 25. Eston Peter. The title of the work // Book title. 3 edition. The address of the publisher: The name of the publisher, 1993. 7. Vol. 4 of 5. Pp. 201–213. An optional note.
- 26. Farindon Peter. The title of the work // The title of the book / Ed. by The editor. The address of the publisher: The name of the publisher, 1993. 7. Vol. 4 of 5. Pp. 201–213. An optional note.

- 27. Gainsford Peter. The title of the work. The organization, The address of the publisher, 3 edition, 1993. 7. An optional note.
- 28. Harwood Peter. The title of the work. Master's thesis, The school where the thesis was written, The address of the publisher, 1993. 7. An optional note.
- 29. Isley Peter. The title of the work. How it was published. 1993. 7. An optional note.
- 30. Joslin Peter. The title of the work: Ph.D. thesis / The school where the thesis was written.

 The address of the publisher, 1993. 7. An optional note.
- 31. The title of the work / Ed. by Peter Kidwelly; The organization. Vol. 4 of 5, The address of the publisher, 1993. 7. The name of the publisher. An optional note.
- 32. Lambert Peter. The title of the work: Tech. Rep. 2. The address of the publisher: The institution that published, 1993. 7. An optional note.
- 33. Marcheford Peter. The title of the work. An optional note.

Список рисунков

2.1	TeX	Ĝ
2.2	Очень длинная подпись к изображению, на котором представлены две фото-	
	графии Лональда Кнута	10

Список таблиц

3.1	Название таблицы																												1	1
υ. Ι	тазвание таслицы	•	•	•			•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•		. т

Приложение А

Название первого приложения

Некоторый текст.

Приложение В

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

В.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
			продолжение следует

Параметр	Умолч.	Тип	(продолжение) Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	l . ,	экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mara	0	int	экватора
mars kick	1	int	1: инициализация модели для планеты Марс 0: инициализация без шума $(p_s = const)$
KICK	1	1110	0. инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0		экватора
mars	0	int	1: инициализация модели для планеты Марс
&SURFPAI	1	int	0 : инициализация без шума $(p_s=const)$
kick			

			(продолжение)
Параметр	Умолч.	Тип	Описание
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	_		экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	. ,	экватора
mars kick	0	int	1: инициализация модели для планеты Марс
KICK	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			1: генерация белого шума симметрично относительно
mars	0	int	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
KICK	1	1110	1: генерация белого шума $(p_s - const)$
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс

В.2 Ещё один подраздел приложения

Нужно больше подразделов приложения!

В.3 Очередной подраздел приложения

Нужно больше подразделов приложения!

В.4 И ещё один подраздел приложения

Нужно больше подразделов приложения!