BLOCH'S THEOREM

Lemma 0.1. Let f be analytic in $\Delta = \{|z| < 1\}$ with f(0) = 0 and f'(0) = 1. If $|f(z)| \le M$ for all $z \in \Delta$, then $f(\Delta)$ contains the disk $|w| \le (\sqrt{M+1} - \sqrt{M})^2$.

Proof. By Schwartz's lemma, we implicitly have $M \ge 1$. Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Using CIF, we have $|a_n| \le M$ for all n. Therefore,

(0.1)
$$|f(z)| \ge |z| - \sum_{n=2}^{\infty} |a_n||z|^n$$

$$= r - \frac{Mr^2}{1-r}$$

for |z| = r < 1. Obviously, we can maximize the RHS of (0.1) by taking

(0.2)
$$r = \rho = 1 - \sqrt{\frac{M}{M+1}}$$

and correspondingly, $|f(z)| \ge (\sqrt{M+1} - \sqrt{M})^2$ for $|z| = \rho$.

For all $|w| < (\sqrt{M+1} - \sqrt{M})^2$, $|f(z) - (f(z) - w)| = |w| \le |f(z)|$ for all $|z| = \rho$. Therefore, f(z) - w and f(z) have the same number of zeros in $|z| < \rho$. It follows that $f(\Delta)$ contains the disk $|w| \le (\sqrt{M+1} - \sqrt{M})^2$. \square

Obviously, by "scaling", we have the following:

Lemma 0.2. Let f be an analytic function on $D = \{|z - a| < R\}$. If $|f(z) - f(a)| \le M$ for all $z \in D$, then f(D) contains the disk $|w - f(a)| \le (\sqrt{M + |f'(a)R|} - \sqrt{M})^2$.

Lemma 0.3. An analytic function f(z) on Δ is 1-1 if |f'(z) - M| < |M| for all $z \in \Delta$ and a constant $M \in \mathbb{C}$.

Proof. Let z_1 and z_2 be two distinct points in Δ and let γ be the line joining z_1 and z_2 . Then

$$|f(z_1) - f(z_2)| = \left| \int_{\gamma} f'(z) dz \right|$$

$$= \left| \int_{\gamma} M - (M - f'(z)) dz \right|$$

$$\geq \left| \int_{\gamma} M dz \right| - \left| \int_{\gamma} (f'(z) - M) dz \right|$$

$$\geq |M| \int_{\gamma} |dz| - \int_{\gamma} |f'(z) - M| |dz| > 0$$

and hence f(z) is 1-1. Note: the third line is triangle inequality.

Theorem 0.4 (Bloch's Theorem). Let f(z) be an analytic function on Δ satisfying f'(0) = 1. Then there is a positive constant B (called Bloch's constant), independent of f, such that there exists a disk $S \subset \Delta$ where f is 1-1 and whose image f(S) contains a disk of radius B. In particular, B > 1/72.

Proof. Obviously, it is enough to show this for f'(z) bounded on Δ . Let

(0.4)
$$m(r,g) = \max_{|z|=r} |g(z)|.$$

We let $0 \le r_0 < 1$ be the largest number ¹ such that $(1 - r_0)m(r_0, f') = 1$. Such r_0 exists since f'(z) is bounded on Δ and m(r,g) is continuous. Indeed, assume that $r_n \to r$ as $n \to \infty$ and denote $k_n = r_n/r$. We could assume that $m(r_n, g) = |g(z_n)|$ for every nonnegative integer n. Then clearly we have

$$|g(k_n z)| \le g(z_n) \le g(z) = m(r, g)$$

Since g is continuous, $g(k_n z) \to g(z)$, thus $g(z_n)$ also tends to g(z). This implies m(r,g) is continuous.

Then (1-r)m(r,f') < 1 for $r > r_0$ and hence

$$(0.5) |f'(z)| \le \frac{1}{1 - |z|}$$

for $|z| \geq r_0$. And by principle of maximum modulus, we have

$$(0.6) |f'(z)| \le m(r_0, f') = \frac{1}{1 - r_0}$$

for $|z| \leq r_0$. In conclusion,

$$(0.7) |f'(z)| \le \frac{1}{1 - \max(r_0, |z|)}$$

for all $z \in \Delta$.

Let $a \in \Delta$ be a number such that $|a| = r_0$ and $|f'(a)| = 1/(1 - r_0)$. For $0 < \rho < 1 - r_0$ and $|z - a| \le \rho$, we have

$$|f'(z) - f'(a)| \le \frac{1}{1 - r_0} + \frac{1}{1 - r_0 - \rho}$$

and hence

$$(0.9) |f'(z) - f'(a)| \le \frac{|z - a|}{\rho} \left(\frac{1}{1 - r_0} + \frac{1}{1 - r_0 - \rho} \right)$$

by Schwartz's lemma ². Therefore, |f'(z) - f'(a)| < |f'(a)| for z in the disk

(0.10)
$$S = \left\{ |z - a| < \frac{\rho(1 - r_0 - \rho)}{2(1 - r_0) - \rho} \right\}.$$

The radius of S is founded by solving for f'(a) > RHS 0.9.

¹Here Xi Chen defined using max, but I think sup would be more accurate.

²See the end of the note.

By Lemma 0.3, f is 1-1 on S. Obviously, the radius of S is maximized when we set $\rho = (2 - \sqrt{2})(1 - r_0)$ and correspondingly,

(0.11)
$$S = \left\{ |z - a| < (3 - 2\sqrt{2})(1 - r_0) \right\}.$$

Moreover, since

$$(0.12) |f(z) - f(a)| \le \ln\left(\frac{\sqrt{2} + 1}{2}\right)$$

for $z \in S$ by (0.7), we conclude that f(S) contains a disk of radius

(0.13)
$$\left(\sqrt{\ln\left(\frac{\sqrt{2}+1}{2}\right) + (3-2\sqrt{2})} - \sqrt{\ln\left(\frac{\sqrt{2}+1}{2}\right)} \right)^2 > \frac{1}{72}.$$

Remark 0.5. The key to the proof of Bloch's theorem is the existence of $a \in \Delta$ and positive constants C_1 and C_2 such that $|f'(z)| \leq C_2|f'(a)|$ for all $|z-a| \leq C_1/|f'(a)|$.

Supplementary notes: A variant of Schwarz's lemma

Theorem 0.6 (A variant of Schwarz's lemma). Let $f: \{|z| \leq R\} \to \mathbb{C}$ such that $|f(z)| \leq A$ for all z and f(0) = 0. Then

$$f(z) \le \frac{A|z|}{R}$$

Proof. Let define the function $g(y) := \frac{f(Ay)}{R}$. Then clearly $g \colon \Delta \to \Delta$ and satisfying g(0) = 0. By the usual Schwarz's lemma, we must have $|g(y)| \leq |y|$. Change $y \to \frac{z}{R}$, we get the desired inequality.