Reminders

$$\chi_i = \frac{\partial x}{\partial u^i}$$
 $g_{ij} = \langle x_i | x_j \rangle$ $g = \det(g_{ij})$

$$N = \frac{\chi_1 \times \chi_2}{|\chi_1 \times \chi_2|} = \frac{\chi_1 \times \chi_2}{\sqrt{g}}$$

$$L_{p}(X_{i}(u_{0})) = -\frac{3n}{3u^{i}}(u_{0})$$

$$M: V \stackrel{\text{\tiny perm}}{=} M \longrightarrow S^2$$
 $n'(p): T_p M \longrightarrow T_{n(p)} S^2 = T_p M$

$$I_{P}(X,Y) = \langle L_{P}(X) | Y \rangle \quad \forall X,Y \in T_{P}M.$$

If
$$X = \sum_{i} x^{i} \chi_{i}(u_{0})$$
, $Y = \sum_{i} Y^{i} \chi_{j}(u_{0})$

$$\prod_{p} (X, Y) = \sum_{i,j} L_{ij}(w) X^{i} Y^{j} \text{ where } L_{ij}(u_{0}) = \prod_{p} (x_{i}(u_{0}), x_{j}(u_{0}))$$

$$= \langle x_{ij}(u_{0}) \mid n(u_{0}) \rangle$$

Since
$$X_{ij} = X_{ji}$$
, $L_{ij}(u_0) = L_{ji}(u_0)$, so $\langle L_p(X) | Y \rangle = \langle X | L_p(Y) \rangle$.

4-4 Normal Curvature, Geodesic Curvature, and Gauss's Formulae.

Ma C² surface in R³. X: u = R - N V = M.

Y: (a,b) --- V a C2 unit-speed curve in VEM.

T is the unit tangent vector field for 8. T: (a, b) - 52.

 $S = n \times T$, $S(0) = n(Y(0)) \times T(0)$.

S is called the intribuic normal of & relative to M.

For each $A \in (a, b)$, S(s) is tengent to M at Y(S), and orthogonew to Y at S. $S(A) \in T_{Y(A)} M$

 $Now T'(\Delta) = Y''(\Delta) = W(\Delta) + X(\Delta)$

where W(s) is normal to M at Y(s) and $X(s) \in T_{y(s)} M$.

 $W(\Delta) = K_n(\Delta) N(Y(\Delta))$.

Kn is called the normal curvature of Y.

 $\langle T | T \rangle = 1$ so $\langle T | T \rangle' = 0$ so $\langle T' | T \rangle = \frac{1}{2} \langle \langle T' | T \rangle + \langle T | T' \rangle \rangle$ = $\frac{1}{2} \langle T | T \rangle' = 0$

 $S_0 \langle W + X | T \rangle = 0$ but $\langle W | T \rangle = 0$ so $\langle X | T \rangle = 0$.

Thus X is perpendicular to both N and T, so $X(A) = K_g(A) S(A)$.

Kg is called me geodesic curvature of & (relative to M).

We started with T'= \"= W+ X.

Thus
$$N = T' = Y'' = K_n N + K_g S$$

So $K = \sqrt{K_n^2 + K_g^2}$

to say that Y is a geodesic on M means that $K_q \equiv 0$.

$$\chi_{ij} = \frac{3n_i 3n_i}{3n_i n_i}$$
 $\sum_{ij} = \langle x_{ij} | n \rangle$

Propn 4.2

(a) (Gauss's Formulae) $\chi_{ij} = L_{ij} \; n \; + \; \sum_{K} T_{ij}^{K} \; \chi_{K}$ where the functions $T_{ij}^{K} = \; \sum_{k} \langle \chi_{ij} | \chi_{j} \rangle \; g^{kK}$ are called the Christoffel Symbols (of the second Kind, also denoted {ii}.

(b) for any
$$C^2$$
 unit speed curve $\Delta \longmapsto Y(\Delta) = X(Y'(\Delta), Y^2(\Delta))$

We have $K_n = \sum_{i,j} L_{i,j} \frac{dY^i}{d\Delta} \frac{dY^j}{d\Delta}$

and $H_g S = \sum_{k} \left[\frac{d^2Y^k}{d\Delta^2} + \sum_{i,j} \Gamma_{i,j}^{k} \frac{dY^i}{d\Delta} \frac{dY^j}{d\Delta} \right] \chi_k$

It follows that all c^2 unit-speed writes in V passing through a point ρ in a given tangential direction $T \in (T_{\rho}M)_{\Lambda}$ S^2 have the same normal curvature at that point, So this

normal curvature does not depend on 8 except through Pand T, so it's a property of the surface M, point P, and direction T. It also follows that a C2 unit-speed curve in M is a geodesic lift its curvature K is as small as possible, consistent with the curve remaining on M.

$$\underset{n}{\text{He}} (x) \quad \chi_{ij} = \alpha_{ij} \quad n + \underset{m}{\text{Z}} \quad b_{ij}^{m} \quad \chi_{m} \quad \langle n, n \rangle = 1, \quad \langle \chi_{m} | n \rangle = 0,$$

$$\text{So } \quad \alpha_{ij} = \langle \chi_{ij} | n \rangle = \text{Li}_{j}.$$

Also
$$\langle \chi_{ij} | \chi_{l} \rangle = \langle \alpha_{ij} + \sum_{m} b_{ij}^{m} \chi_{m} | \chi_{l} \rangle$$

$$= 0 + \sum_{m} b_{ij}^{m} \langle \chi_{m} | \chi_{l} \rangle$$

$$= \sum_{m} b_{ij}^{m} g_{ml}$$

So
$$\langle \chi_{ij} | \chi_{\varrho} \rangle g^{\ell \kappa} = \sum_{m} b_{ij}^{m} g_{m \varrho} g^{\ell \kappa}$$

So
$$\sum_{k} \langle x_{ij} | \chi_{k} \rangle g^{kk} = \sum_{m} b_{ij}^{m} S_{m}^{k} = b_{ij}^{k}$$

Page 4