Analysis I

Thomas Fleming

October 18, 2021

Contents

1 Simple Functions 4
2 Littlewood's 3 Principles 6

Lecture 14: Measurable Functions (2)

Thu 07 Oct 2021 12:58

Recall. A function $f: S \to \mathbb{R}$ was measurable if S is measurable and $f^{-1}((c, \infty])$ is measurable for all $c \in \mathbb{R}$. There was an equivalent definition using the extended borel σ -algebra that we will use occasionally.

Proposition 0.1. Suppose $f: S \to \overline{\mathbb{R}}$ is continuous on the measurable set S, then f is measurable.

Proof. Let H be an extending function, then we must show $H \circ f$ is continuous. We see any subray, $f(X_0) = (c, \infty]$ will have $(H \circ f)(X_0) = (\hat{c}, 1]$. We know the preimage of this to be open in S, hence measurable.

Proposition 0.2. Let $S \subseteq \mathbb{R}$. Suppose $f: S \to \mathbb{R}$ is measurable. and let $g: B \to \mathbb{R}$ with $B \in \overline{\mathscr{B}}$ and $f(S) \subseteq B$. Then, $g \circ f: S \to \mathbb{R}$ is measurable.

Proof. For $c \in \mathbb{R}$, we note that $(g \circ f)^{-1}((c, \infty]) = f^{-1}(g^{-1}((c, \infty]))$. By continuity of g, we know $g^{-1}((c, \infty]) \in \overline{\mathscr{B}}$. And, since f is measurable, we find $f^{-1}(g^{-1}((c, \infty]))$.

Corollary 1. Let $S \subseteq \mathbb{R}$ and $f: S \to \mathbb{R}$ to be a measurable function. Then, for every $\alpha \in \mathbb{R}$ and $0 < \rho < \infty$, we find αf and $|f|^{\rho}$ are measurable.

Proof. We see the functions $g(u)=\alpha u$ on $\overline{\mathbb{R}}$ and $h(u)=|u|^{\rho}$ on $\overline{\mathbb{R}}$ to be the corresponding functions. We see the case h is clearly continuous and well defined. On the other hand g may be poorly defined if $\alpha=0$ and $f(x)=\infty$. Recall, however, we had $0\cdot\pm\infty=0$ so g is just the zero functions and we see continuity holds.

Definition 0.1 (Almost-everywhere). Let S be measurable, then a property is said to hold true **almost everywhere** on S or **for almost all** $x \in S$ if there is a set T with $\mu(T) = 0$ and the property holds on all of $S \setminus T$.

Proposition 0.3. Let $S \subseteq \mathbb{R}$ and suppose $f, g : S \to \overline{\mathbb{R}}$ such that f is measurable and g = f almost everywhere on S, then g is measurable.

Proof. Let $T = \{x \in S : f(x) \neq g(x)\}$. Fix $c \in \mathbb{R}$ and let $F = f^{-1}((c, \infty]) \setminus T$ and $G = f^{-1}((c, \infty]) \cup T$. Clearly, both F and G are measurable. Furthermore, $F \subseteq G$ and $\mu(G \setminus F) = \mu(T) = 0$. Since, $F \subseteq g^{-1}((c, \infty]) \subseteq G$. And, by an earlier characterization we recall that a set X is measurable if and only if there were nested sets around it with a difference of measure G. Hence, G is measurable.

Remark. Suppose $f:S\to \overline{\mathbb{R}}$ is a measurable set and $S\subseteq X\subseteq \mathbb{R}$. If $\mu(X\setminus S)=0$ and $h:X\to \overline{\mathbb{R}}$ is any extension of f, then h is measurable since $h^{-1}\left((c,\infty]\right)=f^{-1}\left((c,\infty]\right)\cup\{x\in X\setminus S:h\left(x\right)\in(c,\infty]\}$. This is the union of a measurable set with a set of measure 0, so we see h is measurable.

Notation. Instead of saying that every extension of a measurable function $f: S \to \overline{\mathbb{R}}$ to a function $h: X \to \overline{\mathbb{R}}$, we often just say f is measurable on X as long as it is defined almost everywhere on X and is measurable on that set.

Proposition 0.4. Suppose $f: I \to \overline{\mathbb{R}}$ is monotone on $I \subseteq \mathbb{R}$. Then, the set of all points in I where f fails to be continuous is countable, hence measure 0. Another characterization is that f is continuous almost everywhere, hence f is measurable.

Proof. It suffices to consider the case f is increasing and I open. Let E be the set of all $x \in I$ where f fails to be continuous. For $x \in E$ let $\alpha_x = \sup(\{f(z) : z < x\}z \in J)$ and $\beta_x = \inf(\{f(z) : z > x\}z \in J)$. Since f is not continuous at x, we find the interval $(\alpha_x, \beta_x) = I_x$ to be nonempty. Also, if $x, y \in E$ are distinct with x < y we find $\beta_x <= \alpha_y$. Hence, we find $I_x \cap I_y = \varnothing$. Since each interval I_x for $x \in E$ contains a rational number, we see E is countable. Hence, $\mu(E) = 0$ and we see $f|_{I \setminus E}$ is continuous on $I \setminus E$ which is measurable, hence the restriction is measurable and as f coincides with its restriction almost everywhere, we see f is measurable.

Definition 0.2 (Finite Functions). • Let $S \subseteq \mathbb{R}$. A function $f: S \to \overline{\mathbb{R}}$ is called **finite on** S if $|f(x)| < \infty$ for all $x \in S$.

- Let $f, g: S \to \overline{\mathbb{R}}$ Then we say f < g if f(x) < g(x) for all $x \in S$. Similarly for all other inequalities.
- f is called **nonnegative** if $f \ge 0$ and **positive** if the inequality is strict.

Proposition 0.5. Let $f,g:S\to\overline{\mathbb{R}}$ be measurable and finite almost everywhere. Then, $f+g,f-g,f\cdot g$ are measurable. If $g(x)\neq 0$ for almost every $x\in S$, then $\frac{f}{g}$ is measurable.

Proof. 1. First, we prove addition. We may assume f,g are finite on S. Then, h=f+g is well defined. Since for $x\in S$, we have $h\left(x\right)>q$ for $c\in R$ if and only if there is a $q\in\mathbb{Q}$ such that $f\left(x\right)>q$ and $g\left(x\right)>c-q$, we have

$$h^{-1}\left((c,\infty]\right) = h^{-1}\left((c,\infty)\right) \text{ by finiteness.}$$

=
$$\bigcup_{q \in \mathbb{Q}} f^{-1}\left((q,\infty)\right) \cup g^{-1}\left(c-q,\infty\right).$$

Hence, h as measurable as these are all measurable sets. If f,g are measurable, then so are f,-g , hence f+(-g)=f-g

- 2. With addition, subtraction is completely trivial,
- 3. Now multiplication, Let h be any measurable finite function on S. Consider $(h)^2$. If $c \ge 0$, we have

$$\left(\left(h\right)^{2}\right)^{-1}\left(\left(c,\infty\right)\right)=h^{-1}\left(\left(-\infty,\sqrt{c}\right)\right)\cup h^{-1}\left(\left(\sqrt{c},\infty\right)\right).$$

If c < o, then

$$((h)^2)^{-1}((c,\infty)) = h^{-1}(\mathbb{R}) = S.$$

As in either case we had the preimage being measurable, we see $(h)^2$ is measurable. Since $f \cdot g = \frac{1}{2} \left(f + g \right)^2 - \frac{1}{2} \left(f \right)^2 - \frac{1}{2} \left(g^2 \right)$ being the sum, constant multiple and square of measurable functions yields $f \cdot g$ to be measurable.

4. Lastly, let $h=\frac{1}{g}$, and note we can assume g is nonzero for all S, hence h is well defined on S and h is finite. If c>0 we see $h^{-1}\left((c,\infty)\right)=g^{-1}\left(\left(0,\frac{1}{c}\right)\right)$. As this interval is open and borel, we see $g^{-1}\left(\left(0,\frac{1}{c}\right)\right)$ is borel, hence $h^{-1}\left((c,\infty)\right)$ is measurable.

Similarly, if c=0, we see $h^{-1}((0,\infty))=g^{-1}((0,\infty))$. Lastly, if c<0 we have $h^{-1}(c,\infty)=g^{-1}(\left(-\infty,\frac{1}{c}\right))\cup g^{-1}((0,\infty))=g^{-1}\left(\left[\frac{1}{c},0\right)^c\right)$ hence measurable. This completes the proof.

Lecture 15: Measurable Functions (3) and Simple Functions

Thu 14 Oct 2021 13:01

CONTENTS

3

Proposition 0.6. Let (f_n) be a sequence of measurable functions $f_n: S \to \overline{\mathbb{R}}$. Then, we define $f, g, F, G: S \to \overline{\mathbb{R}}$ with

- $f(x) = \sup\{f_n(x) : n \in \mathbb{N}\},\$
- $g(x) = \inf\{f_n(x) : n \in \mathbb{N}\},\$
- $F(x) = \lim \sup_{n \to \infty} f_n(x)$,
- $G(x) = \lim \inf_{n \to \infty} f_n(x)$

all being measurable.

Proof. • Note that $f\left(x\right)>c$ if and only if there is an n such that $f_{n}\left(x\right)>c$. Hence, $f^{-1}\left(\left(c,\infty\right]\right)=\bigcup_{n\in\mathbb{N}}f_{n}^{-1}\left(\left(c,\infty\right)\right)$ is measurable.

- It it clear $g(x) = -\sup\{-f_n(x) : n \in \mathbb{N}\}.$
- Next, note that $F(x) = \inf\{\sup\{f_k(x) : k \geq n\} : n \in \mathbb{N}\}$ and $G(x) = \sup\{\inf\{f_k(x) : k \geq n\} : n \in \mathbb{N}\}$, hence they are measurable by the first two theorems.

Remark. It is also true that for a measurable function $f:S\to\overline{\mathbb{R}}$ is measurable implies

$$f^{+}(x) = \sup\{f(x), 0\}$$

 $f^{-}(x) = \sup\{-f(x), 0\}$

are also measurable.

1 Simple Functions

Definition 1.1. Let $S \subseteq \mathbb{R}$. Then,

$$\chi S : \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto \chi_S(x) = \begin{cases} 1, & x \in S \\ 0, & x \notin S \end{cases}$$

is the characteristic function of ${\cal S}$.

A measurable function $s: \mathbb{R} \to \overline{\mathbb{R}}$ is a **simple functions** if $s(\mathbb{R})$ is finite.

Proposition 1.1. If s is a simple function. Then, there exists a finite, disjoint collection of measurable sets $\{S_k : 1 \leq k \leq K\}$ and a finite sequence of distinct real numbers $(a_k)_{1 \leq k \leq K}$ such that $\mathbb{R} = \bigcup_{k=1}^K S_k$ and $s = \sum_{k=1}^K a_k \chi_{S_k}$. Furthermore, this combination is unique up to permutation of the a_k, s_k . This representation is called the **canonical representation**.

Lemma 1.1. Let $f: \mathbb{R} \to \mathbb{R}$ be nonnegative and measurable with $f(\mathbb{R})$ being bounded, then for each $\varepsilon > 0$ there is a nonegative simple function s such that $f \geq s$ and $f(x) - s(x) < \varepsilon$ for all $x \in \mathbb{R}$.

Proof. There is a M>0 such that $f(\mathbb{R})\subseteq [0,M)$. Given ε , let $y_k=k\varepsilon$ for $k\in\mathbb{N}_0$. Since, $y_k-y_{k-1}=\varepsilon$, there is $N\in\mathbb{N}$ such that $[0,M]\subseteq\bigcup_{k\in\mathbb{N}}[y_{k-1},y_k)$. Let $S_k=f^{-1}([y_{k-1},y_k))$ for $1\leq k\leq N$. Define $s=\sum_{k=1}^N y_{k-1}\chi_{S_k}$. Then, $s\geq 0$ and s is simple. Furthermore, for each $x\in\mathbb{R}$, there is a unique k, with $1\leq k\leq N$ such that $f(x)\in[y_{k-1},y_k)$. Consequently, $s(x)=y_{k-1}\leq f(x)< y_k$. Hence, $f(x)-s(x)< y_k-y_{k-1}=\varepsilon$.

Theorem 1.1. $f: \mathbb{R} \to \overline{\mathbb{R}}$ is measurable if and only if there is a sequence of simple functions (s_n) a such that (s_n) converges pointwise to f and $|f| \ge |s_n|$ for all $n \in \mathbb{N}$.

Proof. Suppose the sequence (s_n) . Then, f is measurable as

$$f = \lim_{n \to \infty} s_n = \limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n.$$

Now, assume f is measurable. Then, $f = f^+ - f^-$. Both f^+ and f^- are measurable and nonnegative. Since the difference of two simple functions is simples, it suffices to assume $f \geq 0$, that is $f^- = 0$. Let $B_n = \{x \in \mathbb{R} : f(x) \leq n\}$ and $g_n = f\chi_{B_n}$ for all $n \in \mathbb{N}$. Since $g_n(x) = \inf\{f(x), n\chi_{B_n}\}$. Then, we see g_n is measurable as f and the simple function $n\chi_{B_n}$ are measurable. Furthermore, g_n is bounded. Hence, there is a measurable simple function r_n such that $g_n \geq r_n$ and $g_n(x) - r_n(x) < \frac{1}{n}$ for all x. Finally, define

$$s_n = r_n + n\chi_{B_n^c}$$
.

Then, we find (s_n) is the sequence of functions desired.

Corollary 2. Let (f_n) be a sequence of nonnegative measurable functions $f_n : \mathbb{R} \to \overline{\mathbb{R}}$. Then, $x \mapsto \sum_{i=1}^{\infty} f_k(x)$ is measurable. In particular, if $f, g : \mathbb{R} \to \overline{\mathbb{R}}$ are nonnegative and measurable, then so is f + g.

Proof. For $N \in \mathbb{N}$, let $F_n = \sum_{k=1}^N f_k$. For each k there is sequence of simple functions $(s_{k,n})_n$ such that $(s_{k,n})_n$ converges pointwise to f_k and $f_k \geq s_{k,n} \geq 0$ for all n.

Hence, $\left(\sum_{k=1}^{N} s_{k,n}\right)_n$ is a sequence of nonnegative simple functions such that $F_N \leq \sum_{k=1}^{N} s_{k,n}$ for all n and

$$\lim_{n\to\infty}\sum_{k=1}^{N}s_{k,m}\left(x\right)=F_{N}\left(x\right)$$

for all $x \in \mathbb{R}$.

So, F_N is the limit of a sequence of measurable functions, so it is measurable. Furthermore, we have that for each $x \in \mathbb{R}$, $(F_{N(x)})_N$ is increasing, we find

$$\sum_{k=1}^{\infty} f_k = \limsup_{N \to \infty} F_N = \lim_{N \to \infty} F_N.$$

2 Littlewood's 3 Principles

Remark. 1. Every measurable set is "nearly" the union of a finite collection of intervals.

- 2. Every measurable function is "nearly" continuous.
- 3. Every pointwise convergent sequence of measurable functions is "nearly" uniformly continuous.

We state these princeiples rigorously in the following way:

Theorem 2.1. If S is measurable, with $\mu(S) < \infty$, then for each $\varepsilon > 0$ there is a finite disjoint collection of open intervals $\{I_k : 1 \le k \le n\}$ such that for $U = \bigcup_{k=1}^n I_k$ we find

$$\mu\left(S\triangle U\right)<\varepsilon.$$

Theorem 2.2 (Lucin's Theorem). Let $f: S \to \mathbb{R}$ be measurable with $\mu(S) < \infty$. Then, for each $\varepsilon > 0$ there is a compact $K \subseteq S$ such that $f|_K: K \to \mathbb{R}$ is continuous and $\mu(S \setminus K) < \varepsilon$.

Theorem 2.3 (Lucin's Theorem for functions on \mathbb{R}). Let $f: \mathbb{R} \to \mathbb{R}$ be measurable. Then, for all $\varepsilon > 0$ there is a continuous $g: \mathbb{R} \to \mathbb{R}$ and a closed set $E \subseteq \mathbb{R}$ such that f = g on E and $\mu(E^c) < \varepsilon$. Moreover, $\sup\{|g(x)|: x \in \mathbb{R}\} \le \sup\{|f(x)|: x \in \mathbb{R}\}$.

Theorem 2.4 (Egoroff's Theorem). Let S be measurable with $\mu(S) < \infty$. Suppose (f_n) is a sequence of measurable functions $f_n : S \to \mathbb{R}$ which converges pointwise almost everywhere to $f : S \to \mathbb{R}$. Then, for all $\varepsilon > 0$, there is a measurable $E \subseteq S$ such that $\mu(E) < \varepsilon$ and (f_n) converges uniformly to f on $S \setminus E$.