知能プログラミング演習Ⅰ

第6回: 畳み込みニューラルネットワーク |

梅津 佑太

2 号館 404A: umezu.yuta@nitech.ac.jp

課題のダウンロード

前回作ったディレクトリに移動して今日の課題のダウンロードと解凍

step1: cd ./DLL

step2: wget http://www-als.ics.nitech.ac.jp/~umezu/Lec6.zip

step3: unzip Lec6.zip

√ まだ DLL のフォルダを作ってない人は, step1 の前に mkdir -p DLL でフォルダを作成する

講義ノート更新しました.

今日の講義内容

1. 畳み込みニューラルネットワークの順伝播

画像認識

画像 (物体) 認識における脳活動のモデル

物体の視覚情報 → 特徴抽出&脳内処理 → 物体の認識

3

ネオコグニトロン

5 input	U _G 5 contrast on and off-center	U ₀₁	1		UC4
		edges higher-order features			s

- 人間の脳のモデル
- 初期の畳み込みニューラル ネットワーク

畳み込みニューラルネットワーク

(a) AlexNet

(b) GoogLeNet

- 畳み込みとプーリングの構造を持つネットワーク
- 誤差逆伝播法でパラメータを更新

ネットワークの基本構造

- 畳み込みを何回か繰り返した後、プーリングを行うこともある
- 全結合層は単純な (深層) ニューラルネットワーク
- 実際には、プーリング後に正規化層をはさんだり、パディングやストライドを利用することが多いが、基本は図の通り

畳み込み層のイメージ

パラメータ $V^{(0)} \in \mathbb{R}^{H \times H}$ を用いて、画像 $X \in \mathbb{R}^{W \times W}$ をのフィルタ $Z^{(1)} \in \mathbb{R}^{(W-H+1) \times (W-H+1)}$ に圧縮 1 : 活性化関数を f として、

$$z_{ij}^{(1)} = f\left(\sum_{p=1}^{H} \sum_{q=1}^{H} v_{pq}^{(0)} x_{i+p-1,j+q-1} + v_0^{(0)}\right)$$

 $^{^{1}}$ 数学的な意味での畳み込みとは正確には異なるが、画像処理におけるフィルタリングに対応している

パディング

- 通常の畳み込みでは、画像の端の情報が薄れてしまう
- 画像 X のフチにゼロを加える (ゼロパディング)
- パディング数1で画像を変換すると図のようになる

パディング数を α とすると, 元の画像 $X \in \mathbb{R}^{W \times W}$ は $(W+2\alpha) \times (W+2\alpha)$ の画像になる

ストライド

- 1 画素づつフィルタをずらさず、数画素づつフィルタを移動させる ことがあり、ストライドと呼ばれる
- ストライド 3 で 4×4 のフィルタを畳み込むと図のようになる

ストライド数を β とし $H \times H$ のフィルタで画像 $X \in \mathbb{R}^{W \times W}$ を畳み込むと, 畳み込み後の画像は $(W - H)/\beta \times (W - H)/\beta$ に圧縮される

畳み込み層

• 画像 $Z \in \mathbb{R}^{W \times W \times K}$ に対して, $V \in \mathbb{R}^{H \times H \times K \times m}$ 個の重みパラメータと m 個のバイアスパラメータ $\mathbf{b} \in \mathbb{R}^m$ を用いて畳み込まれる $\checkmark V_j \in \mathbb{R}^{H \times H \times K}, v_j \in \mathbb{R}$ が各チャネルごとのパラメータとなる.

畳み込み層:チャネルごとの出力

パディング数 α でパディング後の入力を $Z \in \mathbb{R}^{W \times W \times K}$, $V \in \mathbb{R}^{H \times H \times K}$, $v_0 \in \mathbb{R}$ をパラメータ, β_c をストライド数とする.

$$u_{ij} = \sum_{k=1}^{K} \sum_{p=1}^{H} \sum_{q=1}^{H} V_{pqk} Z_{\beta_c(i-1)+p,\beta_c(j-1)+q-1,k} + v_0$$

によって得られる $U=(u_{ij})$ に対して、畳み込み層の出力は、活性化関数 f を用いて

$$Z^{(1)}=f(U)=f(u_{ij})$$

で計算する².

 $^{^2}$ 実際には、この計算はチャネル数の数だけ行われる.

プーリング層

畳み込み層で得られた $Z^{(1)}$ をさらに圧縮 3 : フィルタサイズを s, ストライド数を β_p として,

$$z_{ij}^{(2)} = g(z_{eta_p(i-1)+p,eta_p(j-1)+q}^{(1)}; p,q=1,\ldots,s)$$

● 畳み込み層と同様に1ピクセルづつ動かすこともできるが、画像領域が重複しないようにプーリングする事が多い

³画像処理における縮小処理に対応している

いろいろなプーリング

max pooling

$$z_{ij}^{(2)} = \max_{(k,l) \in P_{ij}} z_{kl}^{(1)}$$

average pooling

$$z_{ij}^{(2)} = \frac{1}{s^2} \sum_{(k,l) \in P_{ij}} z_{kl}^{(1)}$$

• L_p -pooling

$$z_{ij}^{(2)} = \left(\frac{1}{s^2} \sum_{(k,l) \in P_{ij}} \left(z_{kl}^{(1)}\right)^p\right)^{1/p}$$

全結合層

プーリング後のデータを $Z^{(2)} \in \mathbb{R}^{s' \times s'}$ として, (深層) ニューラルネットワークを適用: 出力層の数を m とすれば, 活性化関数を h として 4

$$y_{j} = h\left(\sum_{p=1}^{s'} \sum_{q=1}^{s'} v_{pqj}^{(2)} z_{pq}^{(2)} + v_{0}^{(2)}\right) \Leftrightarrow \mathbf{y} = h\left(\sum_{p=1}^{s'} \sum_{q=1}^{s'} \mathbf{v}_{pq}^{(2)} z_{pq}^{(2)} + v_{0}^{(2)} \mathbf{1}_{m}\right)$$

⁴分類の場合は通常 softmax 関数を用いる