

(5)

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES

PATENTAMT

(2)

Patentdienstleistungen

Int. Cl.:

A 01 n, 9/02

A 01 n, 21/00

C 07 c, 133/00

Deutsche Kl.:

45 I, 9/02

45 I, 21/00

12 o, 17/01

(10)

(11)

(21)

(22)

(31)

Offenlegungsschrift 2246 282

Aktenzeichen: P 22 46 282-4

Anmeldetag: 21. September 1972

Offenlegungstag: 29. März 1973

Ausstellungsriorität: —

(32)

Unionspriorität

(33)

Datum:

23. September 1971

3. August 1972

16. August 1972

(34)

Land:

Schweiz

(35)

Aktenzeichen:

13990-71

11518-72

12125-72

(54)

Bezeichnung:

Verwendung von Kobaltsalzen

(61)

Zusatz zu:

—

(62)

Ausscheidung aus:

—

(71)

Anmelder:

CIBA-Geigy AG, Basel (Schweiz)

Vertreter gem. § 16 PatG:

Zumstein sen., F., Dr.; Assmann, E., Dr.; Koenigsberger, R., Dr.;
Holzbauer, R., Dipl.-Phys.; Zumstein jun., F., Dr.; Patentanwälte,
8000 München

(72)

Als Erfinder benannt:

Werndl, Alfred, Dr., Basel (Schweiz)

DT 2246 282

• 3.73 309 819/1207 15/100

2246282

Dr. F. Zumstein sen. - Dr. E. Assemann
Dr. R. Koenigsberger - Dipl. Phys. R. Holzbauer
Dr. F. Zumstein jun.
Patentanwälte
8 München 2, Bräuhausstraße 4/III

Case 5-7747/1-3/

Verwendung von Kobaltsalzen

Die vorliegende Erfindung betrifft synergistische Mischungen von nicht phytotoxischen Kobalt-II-salzen mit 3-Phenyl-carbazinsäureestern und ihre Verwendung zur Schädlingsbekämpfung, insbesondere zur Bekämpfung von Vertretern der Abteilung Thallophyta.

In der U.S.Patentschrift Nr. 2.920.994 werden unter anderen Phenylcarbazinsäureester und ihre Wirkung gegen Rost-Pilze beschrieben.

Wie im Artikel in Nature 179, 217-18, 1955 (vgl. C.A. 51,7517h) beschrieben, werden Khapli-Weizen-setzlinge durch Behandlung mit Kobalt eher anfälliger als ohne Behandlung gegen eine gewisse Sorte von Rost.

Es wurde nun überraschenderweise gefunden, dass im Falle der erfindungsgemässen Mischungen die an sich fungizid ungenügend wirksamen Kobalt-II-Salze die fungizide Wirkung der 3-Phenylcarbazinsäureester in unvorausehbarem

309813/1207

BAD ORIGINAL

2246282

Masse erhöhen.

Die erfundungsgemässen Mischungen bestehen aus nicht phytotoxischen Kobalt-II-salzen mit 3-Phenylcarbazinsäureestern der Formel

worin

R₁ C₁-C₈-Alkyl, Halogen-C₁-C₄-Alkyl, Cyanäthyl, (C₁-C₄-Alkoxy)-äthyl, Hydroxyäthyl, Phenoxyäthyl, Allyloxyäthyl, Aethylthioäthyl, (Diäthylamino)-äthyl, C₃-C₈-Alkenyl, Phenyl, 4-Chlor-2-nitrophenyl, 4-Nitrobenzyl, Benzyl, Phenäthyl oder C₃-C₈-Cycloalkyl, Cyclohexyl-methyl, 2-Methylcyclohexyl, 2,5-Dimethylcyclohexyl, 2-Chlorcyclohexyl, 1-(Cyclohex-3-enyl)-prop-2-inyl oder Bicyclo[2,2,1]-3-hydroxymethyl-hept-5-en-2-yl-methyl,

R₂ Wasserstoff oder Methyl und

R₃ Wasserstoff, Chlor, Brom, Nitro, Methyl, Methoxy oder Amino bedeuten, im Gewichtverhältnis Ester zu Salz von 2:1 bis 1:2, zusammen mit geeigneten Trägern und/oder andern Zuschlagsstoffen.

Als Alkylreste kommen geradkettige und verzweigte Reste wie z.B. der Methyl-, Aethyl-, n-Propyl-, Isopropyl, n-Butyl-, sek-Butyl, n-Pentyl, n-Hexyl, n-Heptyl oder n-Oktylrest und ihre Isomeren in Betracht.

309813/1207

BAD ORIGINAL

2246282

Als Alkoxy-Teil eines Alkoxyäthylrestes kommen der Methoxy-, Aethoxy-, n-Propoxy-, Isopropoxy- oder n-Butoxyrest in Frage.

Unter Halogenalkylreste sind durch Fluor, Chlor oder Brom ein- bis dreifach substituierte Alkylreste zu verstehen. Beispiele solcher Reste sind u.a. der 2-Chloräthyl-, 2-Fluoräthyl-, 4-Chlorbutyl-, 2,2,2-Trichloräthyl-, 2-Bromäthylrest.

Als Alkenylreste kommen geradkettige oder verzweigte Reste in Betracht wie z.B. der Allyl-, Crotyl-, Methallyl-, 1-Methylprop-2-enyl-, Pent-4-enyl-, Hex-5-enyl-, Hept-6-enyl-, oder Okt-7-enylrest und ihre Isomeren.

Als Cycloalkylreste kommen der Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl- oder Cyclooctylrest.

Als nicht phytotoxische Kobalt-II-Salze kommen insbesondere $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$, $\text{Co}(\text{NO}_3)_2$, $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, Co-Hydroxycarbonat, Co-Citrat und $\text{Co}(\text{CH}_3\text{COO})_2 \cdot 4\text{H}_2\text{O}$ in Frage.

Zur Bekämpfung von phytopathogenen Pilzen eignen sich aufgrund ihrer besonders guten Wirkung Mischungen von Kobalt-II-Salzen mit 3-Phenylcarbazinsäureestern der Formel

worin

R_4 C_1-C_6 -Alkyl, C_3-C_4 -Alkenyl, C_5-C_7 -Cycloalkyl oder Benzyl
und

R_5 Wasserstoff oder Methyl und

R_6 Wasserstoff, Chlor, Brom, Nitro oder Methyl bedeuten.

309813 / 1207
BAD ORIGINAL

2246282

Von diesen sind Mischungen von Kobalt-II-Salzen mit Verbindungen der Formel

worin

R₇ Methyl, Aethyl, n-Propyl, Isopropyl, sek-Butyl, Isobutyl, Allyl oder Benzyl und

R₈ Wasserstoff oder Methyl bedeuten, als hervorragend wirksam von besonderer Bedeutung.

Das Gewichtverhältnis Ester zu Salz in der Mischung von 1:1 bis 1:1,5 ist für die Wirkung bevorzugt.

Die Verbindungen der Formel I können in an sich bekannter Weise durch folgende Reaktion, vorzugsweise mit ~~equimolaren~~ Mengen der Edukte hergestellt werden; es kann jedoch auch ein Ueberschuss eines der beteiligten Reaktionspartner angewandt werden.

In der Formel IV hat R die für die Formel I angegebene Bedeutung und Hal steht für Fluor, Chlor, Brom oder Jod, insbesondere für Chlor oder Brom. Als säurebindende Mittel kommen beispielsweise folgende Basen in Betracht: tertiäre Amine, wie Triethylamin, Dimethylanilin, Pyridin, Pyridinbasen; anorganische Basen wie Hydroxide,

309813/1207

BAD ORIGINAL

2246282

Carbonate, von Alkali- und Erdalkalimetallen, vorzugsweise Natrium- und Kaliumkarbonat und Alkoholate von Alkalimetallen, vorzugsweise Natriumalkoholat. Die Reaktion wird bei einer Temperatur von -20° C - 10° C, vorzugsweise bei -10° - 0° C, durchgeführt.

Die Ausgangsstoffe der Formel IV sind teilweise bekannt oder können analog bekannten, in der Literatur beschriebenen Verfahren hergestellt werden.

Einige der erfindungsgemäßen Mischungen zeigen synergistische Wirkung gegen Bakterien. Sie sind aber vor allem gegen pflanzenpathogene Pilze an verschiedenen Kulturpflanzen, wie Getreide, Mais, Reis, Gemüse, Zierpflanzen, Obstarten, Reben, Feldfrüchtenetc.,

Diese erfindungsgemäßen Mischungen zeigen ebenfalls eine fungitoxische Wirkung bei Pilzen, die die Pflanzen vom Boden her angreifen und teilweise Tracheomycose verursachen.

Insbesondere können aber die erfindungsgemäßen Mischungen zur Behandlung von Saatgut, Früchten, Knollen, etc. zum Schutze vor Pilzinfektionen, beispielsweise durch Brandpilze aller Art eingesetzt werden.

Dank ihrer bioziden Eigenschaften eignen sich diese Mischungen zur Desinfektion und zum Schützen verschiedenartiger Materialien vor dem Befall durch Bakterien und Pilze. Hierbei erweist es sich als besonders vorteilhaft, dass die erfindungsgemäßen Mischungen im Gegensatz zu den handelsüblichen Quecksilber-Verbindungen gegenüber Warmblütern, bei den Konzentrationen, wie sie für die Pilzkontrolle erforderlich sind, unbedenklich sind und keine giftigen Nebenerscheinungen aufweisen.

BAD ORIGINAL

309813741207

9/7/07, EAST Version: 2.1.0.14

Die erfindungsgemässen Mischungen können für sich allein oder zusammen mit geeigneten Trägern und/oder Zuschlagstoffen eingesetzt werden. Geeignete Träger und Zuschlagstoffe können fest oder flüssig sein und entsprechen den in der Formulierungstechnik üblichen Stoffen wie z.B. natürlichen oder regenerierten Stoffen, Lösungs-, Dispergier-, Netz-, Haft-, Verdickungs-, Binde- und/oder Düngemitteln.

Zur Applikation können diese Mischungen zu Stäubemitteln, Granulaten, Dispersionen, Sprays, Lösungen oder Aufschlammungen in üblicher Formulierung, die in der Applikationstechnik zum Allgemeinwissen gehört, verarbeitet werden.

Die Herstellung solcher Mittel erfolgt in an sich bekannter Weise durch inniges Vermischen und/oder Vermahlen von Wirkstoffen der Formel I mit den geeigneten Trägerstoffen, gegebenenfalls unter Zusatz von gegenüber den Wirkstoffen inerten Dispergier- oder Lösungsmitteln. Die Wirkstoffe können in den folgenden Aufarbeitungsformen vorliegen und angewendet werden:

BAD ORIGINAL

309813 / 1207

2246282

feste Aufarbeitungsformen: Stäubemittel, Streumittel,
Granulate, Umhüllungsgranulate,
Imprägnierungsgranulate und
Homogengranulate

flüssige Aufarbeitungsformen:

a) in Wasser dispergierbare

Wirkstoffkonzentrate: Spritzpulver (wettable powders),
Pasten, Emulsionen;

b) Lösungen

Zur Herstellung fester Aufarbeitungsformen (Stäubemittel, Streumittel) werden die Wirkstoffe mit festen Trägerstoffen vermischt. Als Trägerstoffe kommen zum Beispiel Kaolin, Talcum, Bolus, Löss, Kreide, Kalkstein, Kalkgries, Attapulgit, Dolomit, Diatomeenerde, gefällte Kieselsäure, Erdalkalisilikate, Natrium- und Kaliumaluminumsilikate (Feldspäte und Glimmer), Calcium- und Magnesiumsulfate, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoff, gemahlene pflanzliche Produkte, wie Getreidemehl, Baumrindenmehl, Holzmehl, Nusschalenmehl, Cellulosepulver, Rückstände von Pflanzenextrakten, Aktivkohle etc., je für sich oder als Mischungen untereinander in Frage.

Granulate lassen sich sehr einfach herstellen, indem man einen Wirkstoff der Formel I in einem organischen Lösungsmittel löst und die so erhaltene Lösung auf ein granulierte Mineral, z.B. Attapulgit, SiO_2 , Granicalcium, Bentonit usw. aufbringt und dann das organische Lösungsmittel wieder verdampft.

Es können auch Polymerengranulate dadurch hergestellt werden, dass die Wirkstoffe der Formel I mit polymerisierbaren

30981371207

BAD ORIGINAL

2246282

Verbindungen vermischt werden (Harnstoff/Formaldehyd; Dicyandiamid/Formaldehyd; Melamin/Formaldehyd oder andere), worauf eine schonende Polymerisation durchgeführt wird, von der die Aktivsubstanzen unberührt bleiben, und wobei noch während der Gelbildung die Granulierung vorgenommen wird. Günstiger ist es, fertige, poröse Polymerengranulate (Harnstoff/Formaldehyd, Polyacrylnitril, Polyester und andere) mit bestimmter Oberfläche und günstigem voraus bestimmbarem Adsorptions/Desorptionsverhältnis mit den Wirkstoffen z.B. in Form ihrer Lösungen (in einem niedrig siedenden Lösungsmittel) zu imprägnieren und das Lösungsmittel zu entfernen. Derartige Polymerengranulate können in Form von Mikrogranulaten mit Schüttgewichten von vorzugsweise 300 g/Liter bis 600 g/Liter auch mit Hilfe von Zerstäubern ausgebracht werden. Das Zerstäuben kann über ausgedehnte Flächen von Nutzpflanzenkulturen mit Hilfe von Flugzeugen durchgeführt werden.

Granulate sind auch durch Kompaktieren des Trägermaterials mit den Wirk- und Zusatzstoffen und anschliessendem Zerkleinern erhältlich.

Diesen Gemischen können ferner den Wirkstoff stabilisierende Zusätze und/oder nichtionische, anionaktive und kationaktive Stoffe zugesetzt werden, die beispielsweise die Haftfestigkeit der Wirkstoffe auf Pflanzen und Pflanzenteilen verbessern (Haft- und Klebemittel) und/oder eine bessere Benetzbarkeit (Netzmittel) sowie Dispergierbarkeit (Dispergatoren) gewährleisten.

Beispielsweise kommen folgende Stoffe in Frage: Olcin/Kalk-Mischung, Cellulosederivate (Methylcellulose, Carboxymethylcellulose), Hydroxyethylenglykoläther von Mono- und Dialkylphenolen mit 5-15 Acetylenoxidresten pro Molekül und 8-9 Kohlenstoffatomen

BAD ORIGINAL 309813/1207

2246282

im Alkylrest, Ligninsulfonsäure, deren Alkali- und Erdalkalisalze, Polyäthylenglykoläther (Carbowachs), Fettalkoholpolyglykoläther mit 5-20 Aethylenoxidresten pro Molekül und 8-18 Kohlenstoffatomen im Fettalkoholteil, Kondensationsprodukte von Aethylenoxid, Propylenoxid, Polyvinylpyrrolidone, Polyvinylalkohole, Kondensationsprodukte von Harnstoff/Formaldehyd sowie Latex-Produkte.

In Wasser dispergierbare Wirkstoffkonzentrate, d.h. Spritzpulver (wettable powders) Pasten und Emulsionskonzentrate stellen Mittel dar, die mit Wasser auf jede gewünschte Konzentration verdünnt werden können. Sie bestehen aus Wirkstoff, Trägerstoff, gegebenenfalls den Wirkstoff stabilisierenden Zusätzen, oberflächenaktiven Substanzen und Antischaummitteln und gegebenenfalls Lösungsmitteln.

Die Spritzpulver (wettable powders) und Pasten werden erhalten, indem man die Wirkstoffe mit Dispergiermitteln und pulverförmigen Trägerstoffen in geeigneten Vorrichtungen bis zur Homogenität vermischt und vermahlt. Als Trägerstoffe kommen beispielsweise die vorstehend für die festen Aufarbeitungsformen erwähnten in Frage. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Trägerstoffe zu verwenden. Als Dispergatoren können beispielsweise verwendet werden: Kondensationsprodukte von sulfoniertem Naphthalin und sulfonierten Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäuren mit Phenol und Formaldehyd sowie Alkali-, Ammonium- und Erdalkalisalze von Ligninsulfonsäure, weiter Alkylarylsulfonate, Alkali- und Erdalkalimetallsalze der Dibutynaphthalinsulfonsäure, Fettalkoholsulfate, wie Salze sulfatierter Hexadecanole, Heptadecanole,

309813 / 1207 BAD ORIGINAL

Octadecanole und Salze von sulfatierten Fettalkoholglykolaethern, das Natriumsalz von Glycylmethyltaurid, ditertiäre Acthyenglykole, Dialkyldilaurylammoniumchlorid und fettsaure Alkali- und Erdalkalisalze.

Als Antischäummittel kommen zum Beispiel Siliconöle in Frage.

Die Wirkstoffe werden mit den oben aufgeführten Zusätzen so vermischt, vermahlen, gesiebt und passiert, dass bei den Spritzpulvern der feste Anteil eine Korngrösse von 0,02 bis 0,04 und bei den Pasten von 0,03 mm nicht überschreitet. Zur Herstellung von Emulsionskonzentratén und Pasten werden Dispergiermittel, wie sie in den vorangehenden Abschnitten aufgeführt wurden, organische Lösungsmittel und Wasser verwendet. Als Lösungsmittel kommen beispielsweise Alkohole, Benzol, Xybole, Toluol, Dimethylsulfoxid und im Bereich von 120 bis 350°C siedende Mineralölfraktionen in Frage. Die Lösungsmittel müssen praktisch geruchlos, nicht phytotoxisch und den Wirkstoffen gegenüber inert sein.

Ferner können die erfindungsgemäßen Mittel in Form von Lösungen angewendet werden. Hierzu wird der Wirkstoff bzw. werden mehrere Wirkstoffe der allgemeinen Formel I in geeigneten organischen Lösungsmitteln, Lösungsmittelgemischen oder Wasser gelöst. Als organische Lösungsmittel können aliphatische und aromatische Kohlenwasserstoffe, deren chlorierte Derivate, Alkylnaphthaline, Mineralöle allein oder als Mischung untereinander verwendet werden.

Der Gehalt an Wirkstoff in den oben beschriebenen Mitteln liegt zwischen 0,1 bis 95%, dabei ist zu erwähnen, dass bei der Applikation aus dem Flugzeug oder mittels anderer geeigneter Applikationsgeräte Konzentrationen bis zu 99,5% oder sogar reiner

309813/1207

BAD ORIGINAL

2246282

Wirkstoff eingesetzt werden können.

Die Wirkstoffe der Formel I können beispielsweise wie folgt formuliert werden:

Stäubemittel: Zur Herstellung eines a) 5%igen und b) 25%igen Stäubemittels werden die folgenden Stoffe verwendet:

a) 5 Teile Wirkstoff

95 Teile Talkum;

b) 2 Teile Wirkstoff

1 Teil hochdisperse Kieselsäure,

97 Teile Talkum

Die Wirkstoffe werden mit den Trägerstoffen vermischt und vermahlen.

Granulat: Zur Herstellung eines 5%igen Granulates werden die folgenden Stoffe verwendet:

5 Teile Wirkstoff

0,25 Teile Epichlorhydrin,

0,25 Teile Cetylpolyglykoläther,

3,50 Teile Polyäthylenglykol

91 Teile Kaolin (Korngrösse 0,3 - 0,8 mm).

Die Aktivsubstanz wird mit Epichlorhydrin vermischt und mit 6 Teilen Aceton gelöst, hierauf wird Polyäthylenglykol und Cetylpolyglykoläther zugesetzt. Die so erhaltene Lösung wird auf Kaolin aufgesprüht und anschliessend das Aceton im Vakuum verdampft..

Spritzpulver: Zur Herstellung eines a) 40%igen, b) und c) 25%igen d) 10%igen Spritzpulvers werden folgende Bestandteile verwendet:

309813 / 1207

BAD ORIGINAL

a) 40 Teile Wirkstoff 2246282
5 Teile Ligninsulfonsäure-Natriumsalz,
1 Teil Dibutynaphthalinsulfonsäure-Natriumsalz,
54 Teile Kieselsäure;

b) 25 Teile Wirkstoff
4,5 Teile Calcium-Ligninsulfonat,
1,9 Teile Champagne-Kreide/Hydroxyäthylcellulose-
Gemisch (1:1),
1,5 Teile Natrium-dibutyl-naphthalinsulfonat,
19,5 Teile Kieselsäure,
19,5 Teile Champagne-Kreide,
28,1 Teile Kaolin;

c) 25 Teile Wirkstoff
2,5 Teile Isooctylphenoxy-polyoxyäthylen-äthanol,
1,7 Teile Champagne-Kreide/Hydroxyäthylcellulose-
Gemisch (1:1),
8,3 Teile Natriumaluminiumsilikat,
16,5 Teile Kieselgur,
46 Teile Kaolin;

d) 10 Teile Wirkstoff
3 Teile Gemisch der Natriumsalze von gesättigten
Fettalkoholsulfaten,
5 Teile Naphthalinsulfonsäure/Formaldehyd-Kondensat,
82 Teile Kaolin.

Die erfindungsgemässen Mischungen werden in geeigneten
Mischern mit den Zuschlagstoffen innig vermischt und auf entspre-
chenden Mühlen und Walzen vermahlen. Man erhält Spritzpulver, die
sich mit Wasser zu Suspensionen jeder gewünschten Konzentration
verdünnen lassen. 309813/1207

BAD ORIGINAL

2246282

Beispiel 1

N-Phenylcarbazinisopropylester

Zu einer Mischung von 21,6 g Phenylhydrazin und 16 g Pyridin in Eis werden unter Rühren 24,4 g Chlorameisensäureisopropylester zugetropft, wobei unter Entstehung eines gelben, sirupösen Übergangszustandes, unter weiterer Eiszugabe und Rühren Erstarrung eintritt.

Nach dem Abnutschen, Nachwaschen mit viel kaltem Wasser und Trocknen erhält man die Verbindung der Formel

mit einem Schmelzpunkt von 85-86°C.

Analog werden auch die folgenden Verbindungen hergestellt:

309813/1207

BAD ORIGINAL

2246282

R ₁	R ₂	R ₃	Physikalische Daten
C ₂ H ₅	H	H	Smp. 80-82°C
-CH ₂ -CH ₂ -CH ₃	H	H	Smp. 75-76°C
-CH ₂ -CH ₂ -CH ₂ -CH ₃	H	H	Smp. 68-69°C
	H	H	Smp. 62-63°C
	H	H	Smp. 76-77°C
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	H	H	Smp. 59-60°C
	H	H	Smp. 38-44°C
	H	H	Smp. 65-69°C
-CH ₂ -CH=CH ₂	H	H	Smp. 58,5-59,6°C
-CH ₃	H	H	Smp. 112-114,5°C
	H	H	Smp. 92-93,5°C
-CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₂ -CH ₃	H	H	Smp. 52-53°C
	H	H	Sdp. 203-204°C/6 Torr
	H	H	Smp. 116-118°C
	H	H	Smp. 133-134°C

309813/1207

BAD ORIGINAL

2246282

R_1	R_2	R_3	Physikalische Daten
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}_2-\text{CH}-\text{CH}_2-\text{CH}_3^+ \end{array}$	H	H	Smp. 61,5-62,7°C
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}_2-\text{CH}-\text{CH}_2-\text{CH}_3^- \end{array}$	H	H	Smp. 61,5-62,7°C
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 49-51°C
$-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3$	H	H	Smp. 45-46,7°C
$-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3$	H	H	Smp. 52-53,5°C
$\begin{array}{c} \\ -\text{CH}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 40-42,5°C Sdp. 145-146°C/0,05 Torr
$-\text{CH}_2-\text{CH}_2-\text{Br}$	H	H	Smp. 98-99°C
$-\text{CH}_2-\text{CH}_2-\text{F}$	H	H	Smp. 69-70°C
$-\text{CH}_2-\text{CH}_2-\text{CN}$	H	H	Smp. 72-75°C
$-\text{CH}_2-\text{CH}_2-\text{OH}$	H	H	Smp. 66-68°C
$-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{Cl}$	H	H	Smp. 58,5-60,5°C
$\begin{array}{c} \text{C}_2\text{H}_5 \\ \\ -\text{CH}_2-\text{CH}_2-\text{N} \\ \\ \text{C}_2\text{H}_5 \end{array}$	H	H	Smp. 111-115°C
$-\text{CH}_2-\text{C}_6\text{H}_4-\text{NO}_2$	H	H	Smp. 101-109°C
$\begin{array}{c} \text{CH}_2-\text{CH}_3 \\ \\ -\text{CH}_2-\text{CH} \\ \\ \text{CH}_3 \end{array}$	H	H	Smp. 140-150°C/0,02 Torr
$-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3$	H	H	Smp. 49-50,5°C

309813 / 1207

BAD ORIGINAL

2248282

R_1	R_2	R_3	Physikalische Daten
$\begin{array}{c} \text{CH}_2-\text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 34,5-37,5°C Sdp. 161-163°C/0,15 Torr
$\begin{array}{c} \text{CH}_2-\text{CH}_2-\text{CH}_3 \\ \\ -\text{CH} \\ \text{CH}_2-\text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 85-86°C
$\begin{array}{c} \text{CH} \\ \\ -\text{CH}-\text{CH}-\text{CH}_3 \\ \quad \\ \text{CH}_3 \quad \text{CH}_3 \end{array}$	H	H	Smp. 76-80,5°C
$\begin{array}{c} \text{CH}_2-\text{CH}_2-\text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 56-58°C
$\begin{array}{c} \text{CH}_2-\text{CH}_3 \\ \\ -\text{CH} \\ \text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 55,5-58°C
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}_2-\text{CH}-\text{CH}_2-\text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 43-44°C
$\begin{array}{c} \text{CH}_2-\text{CH}_3 \\ \\ -\text{CH}_2-\text{CH} \\ \text{CH}_2-\text{CH}_3 \end{array}$	H	H	Smp. 33-36,5°C
	H	H	Smp. 86-88°C
	H	H	Smp. 99-101°C
	H	H	Smp. 75-77°C

309813/1207

BAD ORIGINAL

2246282

- 17 -

R ₁	R ₂	R ₃	Physikalische Daten
	H	H	Sdp. 165-167°C/0,1 Torr
	H	H	Sdp. 135-140°C/0,01 Torr
	H	H	Smp. 74-77,5°C
	H	H	Sdp. 162-165°C/0,3 Torr
	H	H	Sdp. 140-150°C/ 0,05-0,1 Torr
	H	H	Smp. 57-58,5°C
	H	H	Smp. 51-52°C
	H	H	Smp. 63-66,5°C
	H	H	Smp. 97-99°C
	H	H	Smp. 52-53°C

309813 / 1207

BAD ORIGINAL

SAB

2246282 18 -

R_1	R_2	R_3	Physikalische Daten
	H	H	Smp. 103-106°C
	H	H	Smp. 69-70°C
	H	H	Smp. 87-89°C
	H	H	Smp. 40-43,5°C
	H	H	Smp. 120-145°C/0,1 Torr.
	H	H	Smp. 111-116°C
	H	H	Smp. 105-107°C
	H	H	Smp. 62,5-70°C
	H	H	Smp. 111-114,5°C

309813/1207
JAVOCO GAS
BAD ORIGINAL

R_1	R_2	R_3	Physikalische Daten
	H	H	Smp. 99-102°C
	CH_3	H	Sdp. 86-92°C/ 0,06-0,08 Torr
$-CH_2-CH_3$	CH_3	H	Sdp. 62-68°C/0,04 Torr
	H	$2-OCH_3$	Smp. 55-57°C
	H	$2-CH_3$	Smp. 69-71°C
	H	$2-CH_3$	Smp. 95-96°C
$-CH_3$	H	$2-CH_3$	Smp. 59-61°C
	H	$2-CH_3$	Smp. 95-99°C
	H	$2-CH_3$	Smp. 96-98°C
$-CH_2-CH_3$	H	$2-CH_3$	Smp. 71-72,5°C
$-CH_2-CH=CH_2$	H	$2-CH_3$	Smp. 67-71°C
$-CH_2-CH_3$	H	$2-OCH_3$	Smp. 95-97°C
$-CH_2-CH_3$	H	$4-CH_3$	Smp. 82-84°C

30981371207

BAD ORIGINAL

2246282 - 20 -

R_1	R_2	R_3	Physikalische Daten
$\begin{array}{c} \text{CH}_3 \\ \diagup \\ -\text{CH} \\ \diagdown \\ \text{CH}_3 \end{array}$	H	4-CH ₃	Smp. 99-101°C
-CH ₂ -CH=CH ₂	H	4-CH ₃	Smp. 79-82°C
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_3 \end{array}$	H	3-NO ₂	Smp. 86-87,5°C
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_3 \end{array}$	H	3-CH ₃	Smp. 89-90°C
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_3 \end{array}$	H	3-Cl	Smp. 88-90,5°C
$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_3 \end{array}$	H	3-Br	
-CH ₂ -CH ₂ -C ₆ H ₅	H	H	
-CH ₂ -CH ₃	H	3-NH ₂	
-CH ₂ -CH=CH ₂	H	3-CH ₃	Smp. 54-55°C
$\begin{array}{c} \text{CH}_3 \\ \diagup \\ -\text{CH} \\ \diagdown \\ \text{CH}_3 \end{array}$	H	3-CH ₃	Smp. 97-99°C

309813/1207,
BAD ORIGINAL

2246282

Beispiel 2

Synergistische Wirkung von erfindungsgemässen
Mischungen als Saatgutbeizmittel

Es wurden Saatgutfeuchtbeize der folgenden Zusammensetzung formuliert; wobei die Mengenverhältnisse, Gewichtsverhältnisse sind:

A) 30 % Wirkstoff der Formel I

35 % Dimethylsulfoxid

35 % Aethanol

100 %

B) 15 % Wirkstoff der Formel I

15 % $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$

35 % Dimethylsulfoxid

35 % Aethanol

100 %

C) 30 % $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$

35 % Dimethylsulfoxid

35 % Aethanol

100 %

Testmethode:

Natürlich mit Fusarium nivale infizierte Roggenkörner wurden in einer Aufwandmenge von 0,2 ml bzw. 0,2 g Beize pro 100 g Körner gebeizt. Dabei wurden 100 g Saatgut in einer 1-Liter Weithalsflasche vorgelegt und mit 0,2 ml Beize A, B oder C versetzt. Die Flasche wurde anschliessend mit einem Gummistopfen verschlossen und kräftig gerüttelt bis an der Wand keine Beize mehr zu sehen war. Das so gebeizte Saatgut wird während 48 Tagen stehen gelassen.

3098134/1207

BAD ORIGINAL

2246282

In vier Petrischalen mit Nähragar nach Winkelmann aus einem Pepton-Malzextrakt wurden pro Beize je 25 Körner ausgelegt und bei Zimmertemperatur ($20-24^{\circ}\text{C}$) 3 Tage lang inkubiert. Dann erfolgte die 1. Bonitierung. Die zweite erfolgte am fünften Tag. Als "Befall" wurden Körner gewertet, an denen Pilzmycel sichtbar war.

Die unbehandelte Kontrolle hatte dabei einen Befall von etwa 20%.

Resultate:

Wirkstoff	Fusariumbefall der ausgelegten Körner am 4. Tag (Zahl vor dem Diagonalstrich) bzw. 5. Tag (Zahl hinter dem Diagonalstrich) in Relativprozenten, d.h. unbehandelte Kontrolle = 100% Befall			
	Beize	A	B	
N-Phenylcarbazinsäureisopropylester		43/47	6/7	20/48
N-Phenylcarbazinsäure(n)-propylester		42/52	2/7	20/48
N-Phenylcarbazinsäure-(n)-butylester		49/56	10/15	20/48
N-Phenylcarbazinsäure-sek.-butylester		62/67	9/12	20/48
N-Phenylcarbazinsäure-(n)-pentylester		43/51	14/18	20/48
N-Phenylcarbazinsäure-allylester		32/95	10/35	20/48
N-Phenylcarbazinsäure-cyclohexylester		76/83	4/10	20/48
N-Phenylcarbazinsäure-äthylester		35/42	11/17	20/48
II-Phenylcarbazinsäure sek. amylester		33/43	7/13	20/48

309813/1207

BAD ORIGINAL

Wirkstoff	Fusariumbefall der ausgelegten Körner am 4. Tag (Zahl vor dem Diagonalstrich) bzw. 5. Tag (Zahl hinter dem Diagonalstrich) in Relativprozenten, d.h. unbehandelte Kontrolle = 100% Befall		
	Beize	A	B
N-Phenylcarbazinsäure-(n)-octylester		65/81	25/29
N-Phenylcarbazinsäure-isobutylester		48/55	7/11
N-Phenylcarbazinsäure-benzylester		56/67	17/21
N-Phenylcarbazinsäure-n-hexylester		37/47	14/18
N-Phenylcarbazinsäure-isohexylester		43/50	17/23
N-Phenylcarbazinsäure-phenylester		58/63	23/26
N-Phenylcarbazinsäure-gärungs-amylester (-)		40/51	11/15
N-Phenylcarbazinsäure-isoamylester		41/52	18/19
N-Phenylcarbazinsäure-sek-octylester		51/58	14/19

309813 / 1207

BAD ORIGINAL

Patentansprüche

1. Synergistische Mischungen bestehend aus einem nicht phytotoxischen Kobalt-II-salz und einem 3-Phenylcarbaminsäureester der Formel

worin

R_1 $\text{C}_1\text{-}\text{C}_8\text{-Alkyl}$, Halogen- $\text{C}_1\text{-}\text{C}_4\text{-Alkyl}$, Cyanethyl, ($\text{O}_1\text{-}\text{O}_4\text{-Alkoxy}$)-ethyl, Hydroxyethyl, Phenoxyethyl, Allyloxyethyl, Acethylthioethyl, (Diethylamino)-ethyl, $\text{C}_3\text{-}\text{C}_8\text{-Alkenyl}$, Phenyl, 4-Chlor-2-nitrophenyl, 4-Nitrobenzyl, Benzyl, Phenylmethyl oder $\text{C}_3\text{-}\text{C}_8\text{-Cycloalkyl}$, Cyclohexyl-methyl, 2-Methylocyclohexyl, 2,5-Dimethylocyclohexyl, 2-Chlorocyclohexyl, 1-(Cyclohex-3-enyl)-prop-2-inyl oder Bicyclo[2,2,1]-3-hydroxymethyl-hept-5-en-2-yl-methyl,

R_2 Wasserstoff oder Methyl und

R_3 Wasserstoff, Chlor, Brom, Nitro, Methyl, Methoxy oder Amino bedeuten, im Gewichtverhältnis Ester zu Salz von 2:1 bis 1:2, zusammen mit geeigneten Trägern und/oder andern Zusatzstoffen.

2. Mischungen gemäß Patentanspruch 1, worin das Gewichtverhältnis Ester zu Salz 1:1 bis 1:1,5 beträgt.

3. Mischungen gemäß Patentanspruch 1, bestehend aus einem nicht phytotoxischen Kobalt-II-salz und einem 3-Phenylcarbaminsäureester der Formel

309813/1207

BAD OREGON CAS

worin

R_4 C_1-C_6 -Alkyl, C_3-C_4 -Alkenyl, C_5-C_7 -Cycloalkyl oder Benzyl
und

R_5 Wasserstoff oder Methyl und

R_6 Wasserstoff, Chlor, Brom, Nitro oder Methyl bedeuten.

4. Mischungen gemäss Patentanspruch 3 bestehend aus einem nicht phytotoxischen Kobalt-II-salz und einem 3-Phenylcarbazinsäure-ester der Formel

worin

R_7 Methyl, Aethyl, n-Propyl, Isopropyl, sek-.Butyl, Isobutyl,
Allyl oder Benzyl und

R_8 Wasserstoff oder Methyl bedeuten.

5. Mischungen gemäss Patentanspruch 4 bestehend aus einem nicht phytotoxischen Kobalt-II-salz und der Verbindung der Formel

309813/41207

BAD ORIGINAL

6. Mischungen gemäss Patentanspruch 4 bestehend aus einem nicht phytotoxischen Kobalt-II-salz und der Verbindung der Formel

7. Mischungen gemäss Patentanspruch 4 bestehend aus einem nicht phytotoxischen Kobalt-II-salz und der Verbindung der Formel

8. Mischungen gemäss Patentanspruch 4 bestehend aus einem nicht phytotoxischen Kobalt-II-salz und der Verbindung der Formel

9. Mischungen gemäss Patentanspruch 4 bestehend aus einem nicht phytotoxischen Kobalt-II-salz und der Verbindung der Formel

309813/1207

BAD ORIGINAL

10. Mischungen gemäss Patentanspruch 4 bestehend aus einem nicht phytotoxischen Kobalt-II-salz und der Verbindung der Formel

11. Verwendung von Mischungen bestehend aus einem nicht phytotoxischen Kobalt-II-salz und einem Phenylcarbazinsäureester der Formel

worin

R_1 C₁-C₈-Alkyl, Halogen-C₁-C₄-Alkyl, Cyanäthyl, (C₁-C₄-Alkoxy)-äthyl, Hydroxyäthyl, Phenoxyäthyl, Allyloxyäthyl, Aethylthioäthyl, (Diäthylamino)-äthyl, C₃-C₈-Alkenyl, Phenyl, 4-Chlor-2-nitrophenyl, 4-Nitrobenzyl, Benzyl, Phenäthyl oder C₃-C₈-Cycloalkyl, Cyclohexyl-methyl, 2-Methylcyclohexyl, 2,5-Dimethylcyclohexyl, 2-Chloreyclohexyl, 1-(Cyclohex-3-enyl)-prop-2-inyl oder Bicyclo[2.2.1]-3-hydroxymethyl-hept-5-en-2-yl-methyl,

R_2 Wasserstoff oder Methyl und
309813/1207

BAD ORIGINAL

2246282

R₃ Wasserstoff, Chlor, Brom, Nitro, Methyl, Methoxy oder Amino bedeuten, im Gewichtverhältnis Ester zu Salz von 2:1 bis 1:2, zur Bekämpfung von Vertretern der Abteilung Thallophyta.

12. Verwendung gemäss Patentanspruch 11 zur Bekämpfung von phytopathogenen Pilzen.

13. Verwendung gemäss Patentanspruch 11 als Saatgutbeizmittel.

FO 3.35 JA/ps

309813/1207

BAD ORIGINAL

DERWENT-ACC-NO: 1973-19917U

DERWENT-WEEK: 200395

COPYRIGHT 2007 DERWENT INFORMATION LTD

TITLE: Synergistic mixts of cobalt salts
and 3-phenlcarbazinic acid - esters - with fungicidal
activity

PRIORITY-DATA: 1972CH-0012125 (August 16, 1972) , 1971CH-
0013990 (September 23,
1971) , 1972CH-0011518 (August 3, 1972)

PATENT-FAMILY:

PUB-NO	PUB-DATE	
LANGUAGE	PAGES	MAIN-IPC
<u>DE 2246282 A</u>		N/A
000	N/A	

INT-CL (IPC): A01N009/02, A01N021/00 , C07C133/00

ABSTRACTED-PUB-NO: DE 2246282A

BASIC-ABSTRACT:

Synergistic fungicidal mixts. contain non-phytotoxic Co²⁺ salts and cpds. of formula (I): (where R₁ is 1-8C alkyl, 1-4C haloalkyl, RCH₂CH₂ (where R is CN, 3-6C alkoxy, OH, PhO, allyloxy, EtS, Et₂N), 3-8C alkenyl, Ph, 4-chloro-2-nitrophenyl, 4-nitrobenzyl, benzyl, phenethyl, 3-8C cycloalkyl, cyclohexylmethyl, 2-methylcyclohexyl, 2-chlorocyclohexyl, 1-(cyclohex-3-enyl)prop-2-ynyl or bicyclo 2,2,1 -3-hydroxymethylhept-5-en-2-ylmethyl; R₂ is H or Me; R₃ is H, Cl, Br, NO₂, Me, MeO or NH₂) in a wt.

ratio of (I) to Co salt of 2:1 to 1:2, pref. 1:1-1.5, together with a suitable vehicle and/or other additives. The Co salt increases the fungicidal activity of (I) considerably.

----- KWIC -----

Document Identifier - DID (1) :

DE 2246282 A