Implementarea filtrelor digitale IIR în forma lattice

Laborator 6, PSS

Objectiv

Familiarizarea studenților cu formele de implementare tip lattice pentru filtre IIR

Noțiuni teoretice

Exerciții

1. Fie sistemul IIR cauzal cu poli și zerouri, cu funcția de sistem:

$$H(z) = \frac{1 + 2z^{-1} + 3z^{-2} + 2z^{-3}}{1 + \frac{2}{5}z^{-1} + \frac{7}{20}z^{-2} + \frac{1}{2}z^{-3}}$$

Determinați și desenați structura echivalentă lattice cu poli și zerouri.

2. Se dă sistemul IIR cauzal numai cu poli, cu functia de sistem:

$$H(z) = \frac{1}{1 + \frac{2}{5}z^{-1} + \frac{7}{20}z^{-2} + \frac{1}{2}z^{-3}}$$

Determinați coeficienții structurii lattice și desenați-o.

- 3. În Octave, utilizați funcția ellip() pentru a proiecta unul din filtrele următoare:
 - a. Un filtru trece-jos IIR de ordin 4, cu frecvența de tăiere de 3kHz la o frecvență de eșantionare de 8kHz;
 - b. Un filtru trece-sus IIR de ordin 4, cu frecvența de tăiere de 1kHz la o frecvență de eșantionare de 8kHz;
 - c. Un filtru trece-bandă IIR de ordin 4, cu banda de trecere între 700Hz si 3kHz la o frecvență de eșantionare de 8kHz.

4. Nu se cere; funcția este dată. Creați o funcție Octave tf2latc_iir() pentru a calcula coeficienții formei *lattice* a unui filtru IIR, pornind de la coeficienții funcției de transfer.

Utilizați funcția pentru a converti coeficienții filtrului proiectat mai sus.

5. În Octave, realizați o funcție pentru a filtra un semnal de intrare \mathbf{x} cu un filtru IIR în forma lattice, folosind coeficienții K și V:

```
y = filter_latc_iir(K, V, x)
```

- 6. Utilizați funcția de mai sus pentru a filtra melodia Sample.wav.
 - a) Încărcați fișierul folosind audioread();
 - b) Utilizați tf2lact_iir() pentru a converti filtrul proiectat în forma lattice;
 - c) Filtrați semnalul cu funcția filter_latc_iir() și afișați/redați semnalul obținut.

Întrebări finale

1. TBD