ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Introdução a Gramáticas e Hierarquia de Chomski

Slides gentilmente cedidos pela Profa. Ariane Machado Lima

Frase	\rightarrow	sujeito	predicado
sujeito	\longrightarrow	artigo	nome
artigo	\longrightarrow	а	
artigo	\longrightarrow	0	
nome	\longrightarrow	paletó	
nome	\longrightarrow	moça	
nome	\longrightarrow	dia	
predicado	\longrightarrow	verbo	adjetivo
verbo	\longrightarrow	é	
verbo	\longrightarrow	estava	
adjectivo	\longrightarrow	feliz	
adjectivo	\longrightarrow	azul	

conjunto de produções

Gramáticas

símbolos não-terminais

símbolos terminais

- Definição: uma gramática G é uma quádrupla (V, Σ, S, P), onde
 - V é o conjunto de símbolos não-terminais (variáveis)
 - Σ é o conjunto de símbolos terminais
 - S é o símbolo inicial
 - P é o conjunto de produções da forma
 (Σ U V)* V (Σ U V)* → (Σ U V)*

- Uma forma sentencial de uma gramática G é qualquer cadeia obtida pela aplicação recorrente das seguintes regras:
 - S (símbolo inicial de G) é uma forma sentencial
 - Seja αρβ uma forma sentencial de G e ρ → γ uma produção de G. Então αγβ é também uma forma sentencial de G.

 $(\alpha,\beta,\gamma \in (\Sigma \cup V)^* e \rho \in (\Sigma \cup V)^* \lor (\Sigma \cup V)^*)$

- Uma forma sentencial de uma gramática G é qualquer cadeia obtida pela aplicação recorrente das seguintes regras:
 - S (símbolo inicial de G) é uma forma sentencial
 - Seja αρβ uma forma sentencial de G e ρ → γ uma produção de G. Então αγβ é também uma forma sentencial de G.

 $(\alpha,\beta,\gamma \in (\Sigma \cup V)^* e \rho \in (\Sigma \cup V)^* \lor (\Sigma \cup V)^*)$

- Uma forma sentencial de uma gramática G é qualquer cadeia obtida pela aplicação recorrente das seguintes regras:
 - S (símbolo inicial de G) é uma forma sentencial
 - Seja $\alpha \rho \beta$ uma forma sentencial de G e $\rho \to \gamma$ uma produção de G. Então $\alpha \gamma \beta$ é também uma forma sentencial de G .

 $(\alpha,\beta,\gamma \in (\Sigma \cup V)^* e \rho \in (\Sigma \cup V)^* \lor (\Sigma \cup V)^*)$

- Derivação direta:
 - αρβ => αγβ
 - Ex: <sujeito> <sujeito> <verbo> <adjetivo> =>

- Derivação: aplicação de zero ou mais derivações diretas
 - α =>* µ
 - isto é, $\alpha => \beta => \dots => \mu$
- Uma cadeia w (w € Σ*) é uma sentença de G se S =>* w
- Linguagem gerada por G:
 - $L(G) = \{ w \mid S = >^* w \}$

```
• G = (V, \Sigma, S, P), onde
    • V = \{S, A\}
    • \Sigma = \{0,1,2,3\}
    S = S
    • P = {
         S \rightarrow 0S33
         S \rightarrow A
        A \rightarrow 12
        A \rightarrow \epsilon
```

- $G = (V, \Sigma, S, P)$, onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2,3\}$
 - S = S
 - P = {

 $S \rightarrow 0S33$

 $S \rightarrow A$

 $A \rightarrow 12$

 $A \rightarrow \epsilon$

Ex de formas sentenciais:

S, 0S33, 00S3333, 00A3333

- 0S33 => 00S3333
- 0S33 = * 00A3333
- 0S33 = > * 0S33
- Ex de sentenças:

00123333, 12, ε

•

- G = (V, Σ, S, P), onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2,3\}$
 - S = S
 - P = {

 $S \rightarrow 0S33$

 $S \rightarrow A$

 $A \rightarrow 12$

 $A \rightarrow \epsilon$

Ex de formas sentenciais:

S, 0S33, 00S3333, 00A3333

- $0S33 \Rightarrow 00S3333$
- 0S33 = > * 00A3333
- 0S33 = > * 0S33
- Ex de sentenças:

00123333, 12, ε

• L(G) =

- $G = (V, \Sigma, S, P),$ onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2,3\}$
 - S = S
 - P = {

 $S \rightarrow 0S33$

 $S \rightarrow A$

 $A \rightarrow 12$

 $A \rightarrow \epsilon$

Ex de formas sentenciais:

S, 0S33, 00S3333, 00A3333

- $0S33 \Rightarrow 00S3333$
- 0S33 = > * 00A3333
- 0S33 =>* 0S33
- Ex de sentenças:

00123333, 12, ε

• $L(G) = {0^m1^n2^n3^{2m} | m \ge 0 e n}$ =0 ou n=1}

Gramáticas - Simplificação

```
• G = (V, Σ, S, P), onde
```

•
$$V = \{S, A\}$$

•
$$\Sigma = \{0,1,2,3\}$$

$$S = S$$

•
$$P = \{$$
 $S \rightarrow 0S33$
 $S \rightarrow A$
 $A \rightarrow 12$

 $A \rightarrow \epsilon$

```
• G = (V, \Sigma, S, P), onde
```

•
$$V = \{S, A\}$$

•
$$\Sigma = \{0,1,2,3\}$$

$$S = S$$

$$A \rightarrow 12 \mid \epsilon$$

- Gramáticas são dispositivos generativos (geram cadeias)
- Dada uma cadeia w, reconhecer se w E L(G) é um processo chamado análise sintática
- Dependendo do formato das produções, a análise sintática pode ser mais ou menos complexa

Gramáticas lineares

$$\alpha \rightarrow \beta$$

- Gramática linear à esquerda:
 - α E V
 - $\beta \in \Sigma$, $\beta \in V$, $\beta \in V\Sigma$, $\beta = \varepsilon$
- Gramática linear à direita:
 - α E V
 - $\beta \in \Sigma$, $\beta \in V$, $\beta \in \Sigma V$, $\beta = \varepsilon$

Gramáticas lineares

- Gramática linear à direita:
 - α E V
 - β ∈ Σ, β ∈ V, β ∈ ΣV, β = ε
- Gramáticas lineares à direita lembram alguma coisa?
- Ex: $G = (V, \Sigma, S, P)$, onde
 - $V = \{S, A\}$
 - $\Sigma = \{0,1,2\}$
 - S = S
 - $P = \{ S \rightarrow 0S, S \rightarrow A, S \rightarrow \epsilon, A \rightarrow 1A, A \rightarrow 2 \}$

Gramáticas lineares à direita => autômatos finitos

$$\begin{split} G &= (V, \, \Sigma, \, S, \, P), \quad M = (Q, \, \Sigma, \, q_0, \, \delta, F) \\ Q &= V \, U \, \{Z\}, \, Z \, \text{não pertence a } Q \\ q_0 &= S \\ F &= \{Z\} \\ \delta &= ... \, (\text{vou construir}) \, \delta \leftarrow \varnothing \\ \text{para cada produção em } P \\ \text{se } X \rightarrow \text{aY, então } \delta \leftarrow \delta \, U \, \{ \, (X,a) = Y \, \} \\ \text{se } X \rightarrow Y, \quad \text{então } \delta \leftarrow \delta \, U \, \{ \, (X,\epsilon) = Y \, \} \\ \text{se } X \rightarrow \epsilon, \quad \text{então } \delta \leftarrow \delta \, U \, \{ \, (X,\epsilon) = Z \, \} \\ \text{se } X \rightarrow \epsilon, \quad \text{então } \delta \leftarrow \delta \, U \, \{ \, (X,\epsilon) = Z \, \} \end{split}$$

Gramáticas lineares à direita => autômatos finitos

Exemplo: gramática G:

$$S \longrightarrow aA \mid bB \mid \varepsilon$$

 $A \longrightarrow aA \mid bA \mid a$
 $B \longrightarrow aB \mid bB \mid b$

Autômatos finitos => Gramáticas lineares à direita

$$\begin{split} M &= (Q, \, \Sigma, \, q_0, \, \delta, F), \, G = (V, \, \Sigma, \, S, \, P) \\ V &= Q \\ S &= q_0 \\ P &= ... \, (\text{vou construir}) \, P \leftarrow \varnothing \\ \text{para cada transição de } \delta \\ \text{Se } \delta(X, a) &= Y \text{ então } P \leftarrow P \text{ U } \{X \rightarrow aY\} \\ \text{Se } \delta(X, \epsilon) &= Y \text{ então } P \leftarrow P \text{ U } \{X \rightarrow Y\} \\ \text{para cada estado } X \text{ de } F \\ P \leftarrow P \text{ U } \{X \rightarrow \epsilon\} \end{split}$$

Gramáticas lineares à direita => autômatos finitos

Exemplo: autômato M:

- L(M) = ?
- Gramática G equivalente:

$$P \longrightarrow aP \mid bP \mid aQ$$

$$Q \longrightarrow bR$$

$$R \longrightarrow aS$$

$$S \longrightarrow aS \mid bS \mid \varepsilon$$

Gramáticas lineares

• Fatos:

- Gramáticas lineares à direita são equivalentes a autômatos finitos (geram a mesma linguagem)
- Duas gramáticas são equivalentes se elas geram a mesma linguagem
- Gramáticas lineares à direita e lineares à esquerda são equivalentes

Portanto:

- Gramáticas lineares geram linguagens regulares
- Uma gramática é regular se ela for linear à esquerda ou linear à direita

- Gramáticas são dispositivos generativos (geram cadeias)
- Dada uma cadeia w, reconhecer se w E L(G) é um processo chamado análise sintática
- Dependendo do formato das produção, a análise sintática pode ser mais ou menos complexa

Hierarquia de Chomsky

- Hierarquia das linguagens em classes de acordo com a sua complexidade relativa (Noam Chomsky, 1956)
- Cada classe de linguagem pode ser gerada por um tipo de gramática (formato das produções)
- Cada tipo de gramática tem uma complexidade de análise sintática diferente
- Na prática: dada uma linguagem, saber qual o dispositivo mais eficiente para análise sintática

Hierarquia de Chomsky $\alpha \rightarrow \beta$

Hierarquia de Chomsky

Tipo	Classe de linguagens	Modelo de gramática	Modelo de reconhecedor
0	Irrestritas ou Recursivamente enumeráveis	Irrestrita	Máquina de Turing
1	Sensíveis ao contexto	Sensível ao contexto	Máquina de Turing com fita limitada
2	Livres de contexto	Livre de contexto	Autômato a pilha
3	Regulares	Regular (linear à direita ou à esquerda)	Autômato finito