Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2016/2017

Literatúra

6. prednáška

Úplnosť tabiel, korektné pravidlá Výroková rezolvencia

3. apríla 2017

Obsah 6. prednášky

Tablový kalkul
Korektnosť tabiel — opakovanie a dokončenie
Tablový dôkaz splniteľnosti
Hintikkova lema
Úplnosť
Nové korektné pravidlá
Rezolvencia vo výrokovej logike

3.11 Tablový kalkul

3.11.1

Korektnosť tabiel – opakovanie a dokončenie

Spĺňanie formúl typov α a β

Pozorovanie 3.80 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Potom v spĺňa α vtt v spĺňa α_1 a v spĺňa α_2 .

Pozorovanie 3.82 (Stručne vďaka jednotnému zápisu)

Nech v je ľubovoľné ohodnotenie výrokových premenných. Potom v spĺňa β vtt v spĺňa β_1 alebo v spĺňa β_2 .

Tablo pre množinu označených formúl

Definícia 3.83

Analytické tablo pre množinu označených formúl S^+ (skrátene tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a ktorý je skonštruovaný podľa nasledovných rekurzívnych pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A^+ z S^+ je tablom pre S^+ .
- Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktoroukoľvek z operácií:
 - A: Ak sa na vetve π_y (ceste z koreňa do y) vyskytuje nejaká označená formula α , tak ako jediné dieťa y pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - B: Ak sa na vetve π_y vyskytuje nejaká označená formula β , tak ako deti y pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .
 - Ax: Ako jediné dieťa y pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.

Nič iné nie je tablom pre S^+ .

Korektnosť tablového kalkulu

Lema 3.91 (K1)

Nech S^+ je množina označených formúl, nech $\mathcal T$ je tablo pre S^+ a v je ohodnotenie množiny výrokových premenných. Ak v spĺňa S^+ a v spĺňa $\mathcal T$, tak v spĺňa aj každé priame rozšírenie $\mathcal T$.

Lema 3.92 (K2)

Nech S^+ je množina označených formúl, nech $\mathcal T$ je tablo pre S^+ a v je ohodnotenie. Ak v spĺňa S^+ , tak v spĺňa $\mathcal T$.

Veta 3.86 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a $\mathcal T$ je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Korektnosť — dôkaz

Dôkaz vety o korektnosti.

Sporom: Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ . Nech v je ohodnotenie, ktoré spĺňa S^+ . Potom podľa lemy K2 v spĺňa tablo \mathcal{T} , teda v spĺňa niektorú vetvu π v \mathcal{T} . Pretože \mathcal{T} je uzavreté, aj vetva π je uzavretá, teda π obsahuje označené formuly $\mathbf{T}X$ a $\mathbf{F}X$ pre nejakú formulu X. Ale $v \models \mathbf{T}X$ vtt $v \models X$ a $v \models \mathbf{F}X$ vtt $v \not\models X$, čo je spor.

3.11.2

Tablový dôkaz splniteľnosti

Otvorené tablo a splniteľnosť

Čo ak nevieme nájsť uzavreté tablo pre nejakú množinu ozn. formúl?

Definícia 3.93 (Úplná vetva a úplné tablo)

Nech S^+ je množina označených formúl a \mathcal{T} je tablo pre S^+ . Vetva π v table \mathcal{T} je *úplná* vtt má všetky nasledujúce vlastnosti:

- pre každú ozn. formulu α , ktorá sa vyskytuje na π , sa aj obidve α_1 a α_2 vyskytujú na π ,
- pre každú ozn. formulu β , ktorá sa vyskytuje na π , sa aspoň jedna z ozn. formúl β_1 alebo β_2 vyskytuje na π .
- každá $X^+ \in S^+$ sa vyskytuje na π .

Tablo $\mathcal T$ je *úplné* vtt každá vetva je buď úplná alebo uzavretá.

Príklad 3.94

Vybudujme úplné tablo pre $\mathbf{F}X$, kde

$$X = (((p \lor q) \land (r \lor p)) \rightarrow (p \land (q \lor r))).$$

Lema 3.95 (o existencii úplného tabla)

Nech S^+ je konečná množina označených formúl. Potom existuje úplné tablo pre S^+ .

Dôkaz.

Vybudujme tablo \mathcal{T}_0 pre S^+ tak, že do koreňa vložíme niektorú formulu z S^+ a opakovaním operácie Ax postupne doplníme ostatné.

Potom tablo postupne rozširujeme tak, že vyberieme ľubovoľný list y tabla \mathcal{T}_i , ktorého vetva π_y je otvorená a nie je úplná. Potom nastane aspoň jedna z možností:

- Na π_y sa nachádza nejaká formula α , ale nenachádza sa niektorá z formúl α_1 a α_2 .
- Na π_y sa nachádza nejaká formula β, ale nenachádza sa ani jedna z formúl β₁ a β₂.

Ak platí prvá alebo obe možnosti, aplikujeme operáciu A. Ak platí druhá možnosť, aplikujeme operáciu B. Získame tablo \mathcal{T}_{i+1} , s ktorým proces opakujeme. Tento proces po konečnom počte krokov (prečo?) vytvorí nejaké tablo \mathcal{T}_n , v ktorom už neexistuje vetva, ktorá by bola otvorená a nebola úplná. Teda každá vetva v \mathcal{T}_n je buď uzavretá alebo úplná, čiže \mathcal{T}_n je úplné.

3.11.3 Hintikkova lema

Nadol nasýtené množiny a Hintikkova lemma

Definícia 3.96

Množina označených formúl S^+ sa nazýva nadol nasýtená vtt platí:

- (H_0) v S^+ sa nevyskytujú naraz $\mathbf{T} p$ a $\mathbf{F} p$ pre žiadnu výrokovú premennú p;
- (H₁) ak $\alpha \in S^+$, tak $\alpha_1 \in S^+$ a $\alpha_2 \in S^+$;
- (H₂) ak $\beta \in S^+$, tak $\beta_1 \in S^+$ alebo $\beta_2 \in S^+$.

Pozorovanie 3.97

Nech π je úplná otvorená vetva nejakého tabla \mathcal{T} . Potom množina všetkých formúl na π je nadol nasýtená.

Lema 3.98 (Hintikkova)

Každá nadol nasýtená množina S⁺ je splniteľná.

Dôkaz Hintikkovej lemy.

Chceme vytvoriť ohodnotenie v, ktoré splní všetky formuly z S^+ . Definujme v pre každú výrokovú premennú p takto:

- ak $\mathbf{T}p \in S^+$: v(p) = t,
- ak $\mathbf{F}p \in S^+$: v(p) = f,
- ak ani **T**p ani **F**p nie sú v S^+ , tak v(p) = t.

 \emph{v} je korektne definované vďaka $\emph{H}_{0}.$

Indukciou na stupeň formuly dokážeme, že v spĺňa všetky formuly z S^+ :

- v očividne spĺňa všetky označené výrokové premenné z S⁺.
- $X^+ \in S^+$ je buď α alebo β :
 - Ak X^+ je α , potom obidve α_1 , $\alpha_2 \in S^+$ (H₁), sú nižšieho stupňa X^+ , a teda podľa indukčného predpokladu sú splnené pri ν , preto ν spĺňa aj α (podľa pozorovania 3.80).
 - Ak X^+ je β , potom aspoň jedna z β_1 , β_2 je v S^+ (H₂). Nech je to ktorákoľvek, je nižšieho stupňa ako X^+ , teda podľa IP ju v spĺňa, a preto v spĺňa β (podľa pozorovania 3.82).

3.11.4 Úplnosť

Úplnosť

Úplnosť kalkulu neformálne znamená, že je dostatočne silný, aby sa v ňom dali dokázať všetky dôsledky teórií.

Veta 3.99 (o úplnosti)

Nech S^+ je konečná nesplniteľná množina označených formúl. Potom existuje uzavreté tablo pre S^+ .

Dôsledok 3.100

Nech S je konečná teória a X je formula.

 $Ak S \models X$, $tak S \vdash X$.

Dôsledok 3.101

Nech X je formula. $Ak \models X$, $tak \vdash X$.

Úplnosť platí aj pre nekonečné množiny, ale dôkaz je ťažší.

Úplnosť — dôkaz

Dôkaz vety o úplnosti.

Zoberme ľubovoľnú konečnú nesplniteľnú množinu označených formúl S^+ .

Podľa lemy o existencii úplného tabla vieme pre S^+ nájsť úplné tablo \mathcal{T} , teda také, že každá vetva je buď uzavretá alebo úplná.

Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol uzavretá. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z S^+ , bola by aj S^+ splniteľná, čo je spor s nesplniteľnosťou S^+ .

Preto musia byť všetky vetvy tabla $\mathcal T$ uzavreté.

3.11.5

Nové korektné pravidlá

Ingrediencie korektnosti a úplnosti tabiel

Všimnite si:

Na dokázanie korektnosti tablového kalkulu stačilo, aby mali pravidlá vlastnosť:

```
Nech v je ohodnotenie. Ak v spĺňa premisu
(a množinu S^+).
tak spĺňa oba (\alpha) závery/aspoň jeden (\beta) záver.
```

- ▶ Vďaka tejto vlastnosti zo splniteľnej množiny S⁺ skonštruujeme iba splniteľné tablá.
- ► Netreba opačnú implikáciu (ak v spĺňa oba/jeden záver, tak spĺňa premisu).
- Na dôkaz úplnosti stačili pravidlá (Ax), α , β , pretože stačia na vybudovanie úplného tabla.

Nové pravidlo

Čo sa stane, ak pridáme nové pravidlo, napr.

$$\frac{\mathsf{T}(A \vee B) \quad \mathsf{F}A}{\mathsf{T}B} \quad (\vee_1) \quad ?$$

Upravíme definíciu priameho rozšírenia:

Úprava definície 3.83

(...) Nech \mathcal{T} je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktoroukoľvek z operácií:

 \vee_1 : Ak sa na vetve π_y nachádzajú *obe* formuly $\mathbf{T}(A \vee B)$ a $\mathbf{F}A$, tak ako jediné dieťa y pripojíme nový vrchol obsahujúci $\mathbf{T}B$.

Nové pravidlo vs. korektnosť a úplnosť

- Pravidlo (∨₁) je korektné: Nech v je ľubovoľné ohodnotenie. Ak v spĺňa T(A ∨ B) a FA, tak v spĺňa TB. Keďže v spĺňa T(A ∨ B), v spĺňa A alebo v spĺňa B. Pretože ale v spĺňa FA, nespĺňa A. Takže v musí spĺňať B.
- Preto stále dokážeme lemu K1 (3.91):

Nech S^+ je množina označených formúl, nech $\mathcal T$ je tablo pre S^+ a v je ohodnotenie množiny výrokových premenných. Ak v spĺňa S^+ a v spĺňa $\mathcal T$, tak v spĺňa aj každé priame rozšírenie $\mathcal T$.

Z nej dokážeme K2 a vetu o korektnosti

 Pridanie pravidla neohrozuje úplnosť (doterajšími pravidlami stále vybudujeme úplné tablo).

Nové pravidlá vo všeobecnosti

Definícia 3.102 (Tablové pravidlo a jeho korektnosť)

Tablové pravidlo je množina dvojíc zapisovaných:

$$\frac{P_1^+ \cdots P_n^+}{C_1^+ | \dots | C_k^+} \quad (R)$$

tvorených n-ticou (označených) formúl, ktoré nazývame premisy, a k-ticou (označených) formúl, ktoré nazývame $z\'{a}very$, pričom $n \geq 0$ a k > 0.

Tablové pravidlo je *korektné* (tiež *zdravé* z angl. *sound*) vtt pre každé ohodnotenie výrokových premenných v platí, že ak v spĺňa všetky premisy $P_1^+, \ldots, P_n^+,$ tak v spĺňa *niektorý* záver $C_1^+, \ldots, C_k^+.$

Nové pravidlá vo všeobecnosti

Úprava definície 3.83

```
(...)
```

- ..
- Nech $\mathcal T$ je tablo pre S^+ a y je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* $\mathcal T$ ktoroukoľvek z operácií:

:

R: Ak sa na vetve π_y nachádzajú *všetky* premisy $P_1^+, \ldots, P_n^+,$ tak k uzlu y pripojíme k nových vrcholov obsahujúcich postupne závery $C_1^+, \ldots, C_k^+.$

3.12

Rezolvencia vo výrokovej logike

Tranzitivita implikácie

Vrátme sa k neoznačeným formulám. Je nasledujúce pravidlo korektné?

$$\frac{(A \to B) \quad (B \to C)}{(A \to C)}$$

Nahraďme implikácie disjunkciami:

$$\frac{(\neg A \lor B) \qquad (\neg B \lor C)}{(\neg A \lor C)}$$

Rezolvencia

Predchádzajúce pravidlo sa dá zovšeobecniť na ľubovoľné dvojice klauzúl:

Definícia 3.103

Rezolvenčný princíp (rezolvencia, angl. resolution principle) je pravidlo

$$\frac{(k_1 \vee \cdots \vee p \vee \cdots \vee k_m) \quad (\ell_1 \vee \cdots \vee \neg p \vee \cdots \vee \ell_n)}{(k_1 \vee \cdots \vee k_m \vee \ell_1 \vee \cdots \vee \ell_n)}$$

pre ľubovoľnú výrokovú premennú p a ľubovoľné literály $k_1, \ldots, k_m, \ell_1, \ldots, \ell_n$.

Klauzulu $(k_1 \lor \cdots \lor k_m \lor \ell_1 \lor \cdots \lor \ell_n)$ nazývame *rezolventou* klauzúl $(k_1 \lor \cdots \lor p \lor \cdots \lor k_m)$ a $(\ell_1 \lor \cdots \lor \neg p \lor \cdots \lor \ell_n)$.

Špeciálne prípady rezolvencie

Viacero pravidiel sa dá chápať ako špeciálne prípady rezolvencie:

$$\frac{(\neg p \lor q) \quad (\neg q \lor r)}{(\neg p \lor r)} \qquad \frac{(p \to q) \quad (q \to r)}{(p \to r)} \quad \text{(tranzitivita} \to)}{\frac{(\neg p \lor \ell) \quad p}{\ell}} \qquad \frac{(p \to \ell) \quad p}{\ell} \quad \text{(modus ponens)}}{\frac{(p \to q) \quad \neg q}{\neg p}} \qquad \frac{(p \to q) \quad \neg q}{\neg p} \quad \text{(modus tolens)}$$

Rezolventa je logickým dôsledkom množiny obsahujúcej obe premisy.

Pozorovania o rezolvencii

Rezolvencia s jednotkovou klauzulou skráti druhú klauzulu:

$$\frac{(p \vee q \vee \neg r) \quad \neg q}{(p \vee \neg r)}$$

Ak rezolvencia odvodí prázdnu klauzulu

$$\frac{\neg p \quad p}{\Box}$$
,

premisy nie sú súčasne splniteľné

- Nie každý logický dôsledok sa dá odvodiť rezolvenciou: $\{p,q\} \models (p \lor q)$
- Niektoré dvojice klauzúl možno rezolvovať na viacerých literáloch, ale je nekorektné urobiť to naraz:

$$\frac{(\neg p \lor q) (p \lor \neg q)}{(q \lor \neg q)} \frac{(\neg p \lor q) (p \lor \neg q)}{(\neg p \lor p)} \frac{(\neg p \lor q) (p \lor \neg q)}{(\neg p \lor p)}$$

Problematické prípady

 Opakovaným aplikovaním rezolvencie môžeme odvodzovať ďalšie dôsledky

Príklad 3.104

Z množiny
$$S = \{(\neg p \lor r), (\neg q \lor r), (p \lor q)\}$$
 odvodíme $(r \lor r)$:

- (1) $(\neg p \lor r)$ predpoklad z S
- (2) $(\neg q \lor r)$ predpoklad z S
- (3) $(p \lor q)$ predpoklad z S
- (4) $(r \lor q)$ rezolventa (1) a (2)
- (5) $(r \lor r)$ rezolventa (2) a (4)
- Klauzula (r ∨ r) je evidentne ekvivalentná s r;
 r sa ale z množiny S iba rezolvenciou odvodiť nedá
- Preto potrebujeme ešte pravidlo idempotencie:

$$\frac{(k_1 \vee \cdots \vee \ell \vee \cdots \vee \ell \vee \cdots \vee k_n)}{(k_1 \vee \ell \vee \cdots \vee k_n)}$$

Rezolvenčné odvodenie a zamietnutie

Definícia 3.105

Rezolvenčné odvodenie z množiny klauzúl S je každá (aj nekonečná) postupnosť klauzúl $C_1, C_2, \ldots, C_n, \ldots$, ktorej každý člen C_i je:

- prvkom S,
- rezolventou dvoch predchádzajúcich klauzúl C_i a C_k , t.j., i < ia k < i.
- záverom pravidla idempotencie pre nejakú predchádzajúcu klauzulu C_i , i < i.

Zamietnutím (angl. refutation) množiny klauzúl S je konečné rezolvenčné odvodenie, ktorého posledným prvkom je prázdna klauzula □.

Korektnosť a úplnosť rezolvencie

Veta 3.106 (Korektnosť rezolvencie)

Nech S je množina klauzúl.

Ak existuje zamietnutie S, tak S je nesplniteľná.

Veta 3.107 (Úplnosť rezolvencie)

Nech S je množina klauzúl.

Ak S je nesplniteľná, tak existuje zamietnutie S.

Literatúra

- Christos H. Papadimitriou. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.
- Raymond M. Smullyan. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.
- Vítězslav Švejdar. *Logika: neúplnost, složitost, nutnost*. Academia, 2002. Prístupné aj na http://www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf.