# Multivariate Time Series Prediction for Outage Prediction & Diagnosis

Milan Jain, Burcu O. Mutlu, Caleb Stam, Jan Strube<sup>†</sup> Pacific Northwest National Laboratory, Richland, WA <sup>†</sup>also at University of Oregon, Eugene, OR, USA

Brian A. Schupbach, Jason St. John, William A. Pellico Fermi National Accelerator Laboratory, Batavia, IL

#### Problem Statement

#### > Fermilab Accelerator Complex

- United States' flagship facility for High Energy Physics (HEP).
- For the linear accelerator (Linac) alone, the control system monitors and issues commands to 4000+ control system parameters at frequencies ranging from 15 Hz to once every few minutes.

#### Current Operations:

- Mostly Reactive: 15000+ daily alarms, along with additional status indicators.
- On beam interruption, operators investigate through data the source of unplanned beam outage from the FNAL Main Control Room.

#### Challenges

- False alarms waste operators' time.
- No predictive power to take preventive actions.
- Number of devices and amount of data to monitor exceed human capacity to process.
- Inconsistent and incorrect labeling complicates bookkeeping.



Figure 1: Fermilab accelerator complex with sample device data collected from Linac.

### Objective

> Evaluate state-of-the-art deep learning techniques for multivariate time series analysis to automate outage detection, prediction, and labeling.



Figure 2: Overview diagram illustrating proposed predictive maintenance pipeline along with its potential benefits over current practices.

# Data Collection and Preprocessing

### Data Logger

- Accelerator control system's data logger nodes record data streams into circular buffers.
- Pipeline created by the developers at the FNAL's Controls Department using SOTA tools & techniques.
- Solves a common problem and is being used on other ML projects.

### Data Stats

- L-CAPE makes requests over 2703 control system parameters and stores each request in Parquet format with the lossless snappy compression.
- The 2703 devices include 1719 reading, 842 settings, and 142 status bits.

**Finding-1:** Status bits show distinct patterns for different type of operator labeled outages, highlighting inconsistencies and ambiguity in human-generated labels

### Operator-Labeled Outages

- Operators assign labels based on their findings and prior experience, generally only for outages lasting longer than one minute.
- Our data contains 80 operator-labeled outages and 125 unlabeled outages.
- For each outage, we save a window of 30 seconds before the outage starts and 10 seconds later. We skip outages of less than 10 seconds

### Bit-Labeled Outages

 Status devices store multiple bits of information, where each bit is an indicator for a specific system event, including high voltage conditions or spark trips.

## Experimental Setup

### > Beam Permit Prediction: Modeling Parameters

- Look-back window size: 30 ticks; Look-forward window size: 60 ticks; Gap: 30 ticks
- Feature dimension: 1719 (only analog devices)
- Training data: 40 operator-labeled outages, 75 unlabeled outages, and 375 non-outages.
- Validation data: 10 unlabeled outages, and 21 non outage instances.
- Test data: 40 operator-labeled outages, 40 unlabeled outages, and 31 non-outages.

## Outage Labeler

- Look-back window size: 6 ticks; Feature dimension: 2703 (all devices)
- The data for outage classification is limited to the 80 operator-labeled outage instances.
- We used 8-fold cross-validation during hyperparameter tuning.

## Evaluation

Table 1: Performance Comparison (80 outages and 31 non-outages)

|                                                                            | True<br>Positives | Early<br>Detected | Late<br>Detected | Time Diff<br>(in secs) | False<br>Positives | #Params | Inf. Time<br>(in secs) |  |
|----------------------------------------------------------------------------|-------------------|-------------------|------------------|------------------------|--------------------|---------|------------------------|--|
| LSTM                                                                       | 80                | 75                | 5                | -11.16                 | 9                  | 181K    | 8.17                   |  |
| Transformer                                                                | 79                | 72                | 7                | -9.62                  | 8                  | 662K    | 1.77                   |  |
| N-BEATS                                                                    | 79                | 34                | 45               | -2.67                  | 4                  | 496M    | 33.38                  |  |
| N-HiTS                                                                     | 79                | 71                | 8                | -9.34                  | 10                 | 135M    | 17.39                  |  |
| TiDE                                                                       | 80                | 65                | 15               | -8.50                  | 10                 | 642K    | 3.17                   |  |
| <b>TSMixer</b>                                                             | 76                | 49                | 27               | -5.40                  | 8                  | 320K    | 5.72                   |  |
| LSTM Transformer N-BEATS N-HiTS TiDE TSMixer (40) (36) (11) (37) (33) (26) |                   |                   |                  |                        |                    |         |                        |  |

|             | (40) | (36) | (11) | (37) | (33) | (26) |                           |
|-------------|------|------|------|------|------|------|---------------------------|
| KRF1 (4) -  | 100% | 75%  | 0%   | 100% | 75%  | 75%  | Finding 2: LSTM           |
| KRF2 (16) - | 100% | 88%  | 25%  | 94%  | 94%  | 56%  | outperforming SOTA DL     |
| KRF5 (7) -  | 100% | 100% | 57%  | 100% | 86%  | 100% | architectures on multiple |
| LRF (10) -  | 100% | 90%  | 20%  | 80%  | 60%  | 50%  | performance criteria.     |
| Other (3) - | 100% | 100% | 33%  | 100% | 100% | 67%  |                           |
|             |      |      | _    |      |      |      |                           |

Figure 3: Model-wise detection rate by outage types.



Figure 4: Sensitivity of the top three models to varying threshold values.

Finding 3: Transformer and LSTM models exhibit greater robustness to threshold variations compared to N-HiTS.

#### > Impact of look-back window size:

• While increasing the size of the look-back window led to a decline in LSTM and Transformer performance, most linear models (excluding TiDE) showed improvement.

#### > Impact of gap:

- A gap between look-back and look-forward windows helps focus on future steps, but if too large, it weakens predictive power; if too small, it limits forecasting benefits.
- We observed an improvement in the early detection rate for all models when the gap was increased to 60, and a decline in performance when the gap was reduced.
- This suggests that 2–4 seconds before an outage, models detect precursor disturbances in correlated devices.

**Finding 4:** High degree of consistency between the pattern-based random forest-labeler and the bit-labeler. The number of unlabeled outages reduced to 1 (from 130), and particularly very short outages can now be labeled.





Figure 5: Random forest labeler performance on operator-labeled outages across fault types.

Figure 6: Performance comparison of random-forest labeler and bit-labeler for outages without human labels.

## Discussion & Future Work

- Finding 5 (Interpretability is important): Operators are not only interested in predictions but also in the interpretability of the predictions (e.g., which devices at what time led to this outage?)
- Finding 6 (Significance of batch normalization): Batch normalization obscure long-term shifts and trends but helpful in identifying abrupt local changes.
- Finding 7 (Data loading is time consuming): Overlapping windows, ensuring correct order, and multiple permutations of feature space and look-back, look-forward windows restricts parallelism and increases computational load.

## Acknowledgements

This work was supported in part by the U.S. DOE Office of Science, Office of High Energy Physics, under award 76651: "Machine learning for Accelerator Operations". Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. It was also partly supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

For more information, please reach out at milan.jain@pnnl.gov





