Математика для Data Science. Математический анализ. Условия устных задач

Содержание

2.1 Знакомство с последовательностями и пределом	1
Задача 1	 1
Задача 2	 2
2.2 Единственность предела и предел суммы	2
Задача 1	
Задача 2	 3
Задача 3	 3
Задача 4	
Задача 5	 3
Задача 6	 4
2.3 Предел произведения и бесконечно малые последовательности	4
Задача 1	 4
Задача 2	 4
Задача 3	 Ę
Задача 4	 Ę
Задача 5	 Ę
Задача 6	 5
2.4 Предел частного	6
Задача 1	 6
Задача 2	 6
Задача 3	 6
Подсказки	8
2.2 Задача 2	 8
2.2 Задача 3	 ç
2.2 Задача 4	 10
2.2 Задача 5	
2.3 Задача 4	
2.3 Задача 5	
2.4 Задача 1	
2.4 Задача 3	

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

2.1 Знакомство с последовательностями и пределом

Задача 1

Приведите пример:

- ограниченной последовательности,
- последовательности не ограниченной сверху,
- последовательности ограниченной сверху, но не являющейся ограниченной,
- последовательности не ограниченной ни сверху, ни снизу.

Контрольный вопрос. Если последовательность не является ограниченной, значит ли это, что она не ограничена ни сверху, ни снизу?

Напоминание. Последовательность можно задать, явно указав, чему равен x_n для всех натуральных n, а можно просто перечислить первые несколько членов, поставив многоточие, когда логика построения последовательности становится ясна.

Задача 2

Определение. Последовательности $\{x_n\}$ и $\{y_n\}$ считаются различными, если у них различается хотя бы один элемент, то есть существует $n \in \mathbb{N}$ такое что $x_n \neq y_n$.

На прошлом шаге мы привели пример последовательности 2, 2, 2, 2, . . . , которая сходится к числу 2.

- 1. Приведите ещё 3 различных последовательности, которые сходятся к числу 2. Для каждой из них докажите, что последовательность действительно сходятся к числу 2.
- 2. Приведите пример последовательности, которая не будет сходиться, и покажите это по определению.

Постарайтесь привести примеры, не совпадающие с примерами, которые мы выписали на прошлом шаге. Если какие-то примеры с прошлого шага оказались непонятными – обязательно обсудите их с преподавателем.

2.2 Единственность предела и предел суммы

Задача 1

Для каждой из следующих последовательностей найдите предел, либо покажите, что его не существует:

- 1. $\left\{\frac{1000}{n}\right\}$,
- 2. $\{\frac{1}{2^n}\}$,
- 3. $\{0.9^n\}$,
- 4. $\{1.2^n\}$

Пункты 1 и 2. В конце двенадцатого шага прошлого урока мы научились строго доказывать, что предел последовательности $\left\{\frac{1}{n}\right\}$ равен нулю. Это доказательство может помочь вам решить пункты 1 и 2

Пункты 3 и 4. Для решения последних двух пунктов этой задачи будут полезны свойства логарифма. По определению, $\log_c y$ — это степень, в которую нужно возвести c, чтобы получить y. То есть $\log_c y$ это такое число, что $c^{\log_c y} = y$.

Про логарифм \log_c можно думать, как про функцию, обратную к показательной функции, то есть к функции вида $f(x) = c^x$, где c — некоторая константа (её еще называют основанием степени). Под словом "обратная функция"мы понимаем следующее: $\log_c(c^x) := x$. То есть показательная функция f отправляет x в c^x , а логарифм \log_c отправляет c^x в x.

Вам могут пригодиться следующие свойства логарифма:

- $x \le y \iff \log_c x \le \log_c y$ для c > 1
- $x \le y \iff \log_c x \ge \log_c y$ для 0 < c < 1

Их можно использовать без доказательства.

Пример 1. $\log_2 8 = \log_2 2^3 = 3$

Пример 2. $\log_{0.9} (0.9^n) = n$

Пример 3. $0.9^n < \varepsilon \iff log_{0.9}(0.9^n) > log_{0.9}(\varepsilon) \iff n > log_{0.9}(\varepsilon)$

Задача 2

В предыдущих задачах мы неявно пользовались тем, что если у последовательности есть предел, то он единственен. Докажите это.

Другими словами, докажите, что не может возникнуть такой ситуации:

- $\bullet \lim_{n \to \infty} (x_n) = a,$
- $\bullet \lim_{n\to\infty} (x_n) = b,$
- $a \neq b$.

Здесь вы найдёте подсказку к решению этой задачи.

Пример. Пусть у последовательности x_n два предела – число 3 и число 10.

- Число 3 это предел. Поэтому, начиная с некоторого номера N_1 все элементы последовательности лежат в 1-окрестности числа 3, то есть в интервале (2,4). Будем считать, что $N_1 = 500$.
- Число 10 это предел. Поэтому, начиная с некоторого номера N_2 все элементы последовательности лежат в 1-окрестности числа 10, то есть в интервале (9,11). Будем считать, что $N_2 = 800$.

Тогда x_{900} лежит и в (2,4), и в (9,11) (так как $900 \ge 500$ и $900 \ge 800$). Но это невозможно, так как интервалы (2,4) и (9,11) не пересекаются. Противоречие.

Для решения этой задачи вам потребуется обобщить это рассуждение на случай произвольных a, b, N_1, N_2 .

Задача 3

На прошлом уроке мы определили, что такое ограниченная последовательность. В этой задаче мы попробуем связать понятия сходимости и ограниченности.

- 1. Докажите, что если последовательность $\{x_n\}$ сходится, то она ограничена.
- 2. Верно ли обратное? То есть верно ли, что если последовательность ограничена, то она сходится?

Здесь вы найдёте подсказку к первому пункту.

Здесь вы найдете подсказку к решению этой задачи.

Пример. Сходящаяся последовательность $\left\{\frac{10}{n}\right\} = \frac{10}{1}, \frac{10}{2}, \frac{10}{3}, \dots$ ограничена снизу числом -1 и сверху числом 11.

Задача 4

Допустим, про последовательность $\{x_n\}$ известно, что она сходится и её предел равен a. Докажите, что тогда последовательность $\{42+x_n\}$ тоже сходится. Чему будет равен её предел?

Что можно сказать про сходимость последовательности $\{x_n - 33\}$? Тот же вопрос для последовательности $\{33 - x_n\}$.

Возможно, вы заметили, что эти последовательности чем-то похожи. Попробуйте сформулировать более общие утверждения вида: если последовательность $\{x_n\}$ сходится к a, то <какая-то другая последовательность> сходится к <чему-то>. Ответ вы найдёте здесь.

Задача 5

Допустим, последовательности $\{x_n\}$ и $\{y_n\}$ сходятся к a и b соответственно. Докажите, что последовательность $\{x_n+y_n\}$ сходится к a+b.

Сокращённая формулировка: $\lim_{n\to\infty}(x_n)=a$, $\lim_{n\to\infty}(y_n)=b \implies \lim_{n\to\infty}(x_n+y_n)=a+b$ И ещё одна. Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся, то $\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}(x_n)+\lim_{n\to\infty}(y_n)$

Комментарий. Может показаться, что альтернативные формулировки — это переливание из пустого в порожнее. Однако, если вы попробуете сказать то же самое утверждение другими словами, оно может стать понятнее.

Пример. Пусть у последовательности $\{x_n\}$ предел это число a=5, а у последовательности $\{y_n\}$ предел это число b=8. Мы хотим доказать, что у последовательности $\{x_n+y_n\}$ предел это число 13. Для этого нужно доказать, что для любого $\varepsilon > 0$ найдётся N, такое что $x_n + y_n \in (13 - \varepsilon, 13 + \varepsilon)$ при всех $n \ge N$.

В этом примере мы не будем доказывать для всех $\varepsilon > 0$, а докажем только для конкретного $\varepsilon = 0.5$. Итак, нам нужно найти N, такое что $x_n + y_n \in (13 - 0.5, 13 + 0.5)$ при всех $n \ge N$.

- Число 5 это предел последовательности $\{x_n\}$. Поэтому, начиная с некоторого номера N_1 все элементы последовательности $\{x_n\}$ лежат в 0.25-окрестности числа 5, то есть в интервале (5-0.25,5+0.25). Будем считать, что $N_1 = 600$.
- \bullet Число 8 это предел последовательности $\{y_n\}$. Поэтому, начиная с некоторого номера N_2 все элементы последовательности $\{y_n\}$ лежат в 0.25-окрестности числа 8, то есть в интервале (8-0.25,8+0.25). Будем считать, что $N_2 = 400$.

Тогда при любом $n \ge 600$ имеем $x_n \in (5-0.25, 5+0.25)$ и $y_n \in (8-0.25, 8+0.25)$ (так как из $n \ge 600$ следует, что $n \ge N_1 = 600$ и $n \ge N_2 = 400$). Перепишем это в виде неравенств:

- $5 0.25 < x_n < 5 + 0.25$
- $8 0.25 < y_n < 8 + 0.25$

Сложив эти две цепочки неравенств, получаем $5-0.25+8-0.25 < x_n + y_n < 5+0.25+8+0.25$. Это эквивалентно $13-0.5 < x_n + y_n < 13+0.5$. Как мы помним, эти неравенства выполнены при любом $n \ge 600$. Значит, можно взять N=600: мы доказали, что $x_n+y_n\in (13-0.5,13+0.5)$ при всех $n\geq N=600$.

Для решения этой задачи вам потребуется обобщить это рассуждение на случай произвольных $a, b, N_1, N_2, \varepsilon$.

Задача 6

Допустим, последовательности $\{x_n\}$, $\{y_n\}$ и $\{z_n\}$ сходятся к a, b и c соответственно. Сходится ли последовательность $\{x_n + y_n + z_n\}$? Чему равен её предел?

Попробуйте решить эту задачу двумя способами: по определению и через предыдущую задачу.

2.3 Предел произведения и бесконечно малые последовательности

Задача 1

Бесконечно малой последовательностью называют последовательность, которая сходится к нулю.

Пример 1. Последовательность $\{\frac{-1}{n^2}\}$ сходится к 0, поэтому она бесконечно малая. **Пример 2.** Последовательность $\{(-1)^n\}$ не сходится, поэтому не является бесконечно малой.

Пример 3. Последовательность $\{\frac{n+1}{n}\}$ сходится к 1, поэтому не является бесконечно малой.

Докажите, что последовательность $\{x_n\}$ сходится к a тогда и только тогда, когда последовательность $\{\alpha_n\} := \{x_n - a\}$ является бесконечно малой.

Другими словами, если a — предел последовательности $\{x_n\}$, то её можно представить в виде $\{a+\alpha_n\}$, где $\{\alpha_n\}$ — бесконечно малая последовательность.

Бесконечно малые последовательности помогут проще доказать утверждения про предел произведения последовательностей. Факты про предел частного тоже можно доказывать с их помощью, а можно без них на ваш вкус.

Задача 2

Пусть $\{\alpha_n\}$ — бесконечно малая последовательность. Докажите, что

- 1. $\{c \cdot \alpha_n\}$ бесконечно малая последовательность для любого $c \in \mathbb{R}$,
- 2. если последовательность $\{\beta_n\}$ бесконечно малая, то $\{\alpha_n + \beta_n\}$ бесконечно малая последовательность,
- 3. если последовательность $\{\beta_n\}$ ограниченная, то $\{\alpha_n \cdot \beta_n\}$ бесконечно малая последовательность.

Напомним удобное определение ограниченной последовательности:

Определение. Последовательность $\{\beta_n\}$ называется *ограниченной*, если она ограничена сверху константой C и ограничена снизу константой (-C) для какого-то $C \in \mathbb{R}$.

Мы уже доказывали, что любая сходящая последовательность ограничена. Любая бесконечно малая последовательность сходится, следовательно, она ограничена. Пользуясь этими двумя наблюдениями и Пунктом 3 мы приходим к таким утверждениями:

- если $\{\beta_n\}$ сходящаяся, то $\{\alpha_n \cdot \beta_n\}$ бесконечно малая последовательность,
- если $\{\beta_n\}$ бесконечно малая, то $\{\alpha_n \cdot \beta_n\}$ бесконечно малая последовательность.

Пример 1. $\{\alpha_n\}=\left\{\frac{1}{n}\right\}$ — бесконечно малая последовательность, c=10. В этом случае $\left\{10\cdot\frac{1}{n}\right\}=\left\{\frac{10}{n}\right\}$ — тоже бесконечно малая последовательность.

Пример 2. $\{\alpha_n\}=\{0.5^n\},\ \{\beta_n\}=\left\{\frac{1}{n^2}\right\}$ — бесконечно малые последовательности, следовательно, их сумма $\{0.5^n + \frac{1}{n^2}\}$ тоже стремится к нулю.

Пример 3. $\{\alpha_n\}=\left\{\frac{n+1}{n^2}\right\}$ — бесконечно малая последовательность, $\{\beta_n\}=(-1)^n$ — ограниченная последовательность. Тогда их произведение $\{(-1)^n\cdot \frac{n+1}{n^2}\}$, которое состоит их членов $\{\alpha_n\}$ с чередующимися знаками — бесконечно малая последовательность.

Задача 3

Пусть последовательность $\{x_n\}$ сходится к a. Докажите, что для любого действительного числа $c \in \mathbb{R}$ последовательность $\{c \cdot x_n\}$ тоже сходится и её предел равен ca.

Пример. Последовательность $\left\{\frac{3n+1}{n}\right\}$ сходится к $\hat{3}$. Поэтому последовательность $\left\{5 \cdot \frac{3n+1}{n}\right\} = \left\{\frac{15n+5}{n}\right\}$ сходится к $5 \cdot 3 = 15$.

Задача 4

Пусть последовательности $\{x_n\}$ и $\{y_n\}$ сходятся к a и b соответственно. Докажите, что тогда последовательность $\{x_ny_n\}$ сходится к ab.

Другими словами, $\lim_{n\to\infty}(x_n)=a$, $\lim_{n\to\infty}(y_n)=b\Longrightarrow\lim_{n\to\infty}(x_ny_n)=ab$. И ещё одна формулировка: если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся, то $\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}(x_n)$. $\lim (y_n)$

^{>∞} Здесь вы найдёте небольшую подсказку.

Задача 5

- 1. Приведите пример последовательности, стремящейся к $+\infty$,
- 2. Приведите пример неограниченной последовательности, которая не стремится ни $\kappa + \infty$, ни $\kappa \infty$.
- 3. Существует ли последовательность, которая стремится одновременно и к $+\infty$, и к $-\infty$? Если да приведите пример. Если нет – докажите, что не существует.
- 4. Обязательно ли последовательность, стремящаяся $\kappa \infty$, ограничена сверху? Если да докажите. Если нет – приведите пример последовательности, стремящаяся к $-\infty$, и не ограниченной сверху.

Постарайтесь привести примеры, не совпадающие с примерами, которые мы выписали два шага назад.

Задача 6

Для каждой из следующих последовательностей

- а) найдите предел или покажите, что последовательность не сходится,
- б) выясните, будет ли последовательность стремиться к $+\infty$ или $-\infty$:

1.
$$\left\{\frac{100n^2+1000n+10000}{n^3}\right\}$$
,

2.
$$\left\{ \frac{5n^3 - 16n}{n^3} - \frac{80n^4 + 256n^2}{n^4} + 0.99^n \right\}$$

$$3. \left\{ \frac{0.001n^5 - 200n^4}{n^4} \right\}.$$

Подумайте, как можно обобщить наблюдаемые вами закономерности. Свою гипотезу вы можете сверить с ответом здесь. Доказательство более общего факта не обязательно для сдачи этой задачи, но при желании вы можете обсудить его с преподавателем на устной встрече.

Пример. Найдём предел последовательности $\left\{\frac{2n^2+3n+1}{n^2}\right\}$.

- $\bullet \lim_{n \to \infty} \left(\frac{2n^2}{n^2} \right) = \lim_{n \to \infty} (2) = 2.$
- $\lim_{n \to \infty} \left(\frac{3n}{n^2} \right) = \lim_{n \to \infty} \left(\frac{3}{n} \right) = 0.$
- $\lim_{n\to\infty} \left(\frac{1}{n^2}\right) = 0.$
- Поэтому $\lim_{n \to \infty} \left(\frac{2n^2 + 3n + 1}{n^2} \right) = \lim_{n \to \infty} \left(\frac{2n^2}{n^2} + \frac{3n}{n^2} + \frac{1}{n^2} \right) = 2 + 0 + 0 = 2$ как предел суммы последовательностей.

2.4 Предел частного

Задача 1

Пусть последовательность $\{y_n\}$ сходится к $b \neq 0$. Также известно, что $y_n \neq 0$ для всех $n \in \mathbb{N}$. Докажите, что последовательность $\left\{\frac{1}{y_n}\right\}$ сходится к $\frac{1}{b}$.

Это непростая задача. Здесь вы найдёте подсказку с планом решения.

Пример. Последовательность $\left\{\frac{2n+3}{n}\right\}$ сходится к 2. Поэтому последовательность $\left\{\frac{n}{2n+3}\right\}$ должна сходится к $\frac{1}{2}$.

Задача 2

Пусть последовательности $\{x_n\}$ и $\{y_n\}$ сходятся к a и b соответственно. Также известно, что $b \neq 0$ и $y_n \neq 0$ для всех $n\in\mathbb{N}.$ Докажите, что последовательность $\left\{\frac{x_n}{y_n}\right\}$ сходится к $\frac{a}{b}.$

Другими словами, $\left(\lim_{n\to\infty}(x_n)=a,\lim_{n\to\infty}(y_n)=b,b\neq0,\forall n:y_n\neq0\right)\Longrightarrow\lim_{n\to\infty}\left(\frac{x_n}{y_n}\right)=\frac{a}{b}$ Заметим, что условия $b\neq0$ и $\forall n:y_n\neq0$ необходимы, чтобы избежать деления на ноль в выражении $\lim_{n \to \infty} \left(\frac{x_n}{y_n} \right) = \frac{a}{b}$

Задача 3

Для каждой из следующих последовательностей

- а) найдите предел или покажите, что последовательность не сходится,
- б) выясните, будет ли последовательность стремиться к $+\infty$ или $-\infty$:
- 1. $\lim_{n\to\infty} \left(\frac{20n^3+80n+4}{-5n^3-33n^2}\right)$,
- 2. $\lim_{n\to\infty} \left(\frac{11n^4-3n^3+77}{8n^5+14n^3-19}\right)$
- 3. $\lim_{n\to\infty} \left(\frac{2n^5-2n-1}{8n^3+14n^2-19}\right)$.

Попробуйте обобщить эти примеры. Ответ вы найдёте здесь.

Пример 1. Последовательность $\left\{\frac{3n^2+5}{4n^2-3n+1}\right\}$ это произведение последовательности $\left\{\frac{3n^2+5}{n^2}\right\}$ и последовательности $\left\{\frac{n^2}{4n^2-3n+1}\right\}$.

• Предел последовательности $\left\{ \frac{3n^2+5}{n^2} \right\}$ равен 3.

- Предел последовательности $\left\{\frac{n^2}{4n^2-3n+1}\right\}$ равен $\frac{1}{4}$, потому что предел $\left\{\frac{4n^2-3n+1}{n^2}\right\}$ равен 4.
- ullet Значит, предел $\left\{ \frac{3n^2+5}{4n^2-3n+1} \right\}$ равен $3\cdot \frac{1}{4}=\frac{3}{4}$ как произведение пределов.

Пример 2. Последовательность $\left\{\frac{5n^2+1}{2n^3-8n}\right\}$ это произведение последовательности $\left\{\frac{5n^2+1}{n^3}\right\}$ и последовательности $\left\{\frac{n^3}{2n^3-8n}\right\}$.

- Предел последовательности $\left\{\frac{5n^2+1}{n^3}\right\}$ равен 0.
- Предел последовательности $\left\{\frac{n^3}{2n^3-8n}\right\}$ равен $\frac{1}{2}$, потому что предел $\left\{\frac{2n^3-8n}{n^3}\right\}$ равен 2.
- ullet Значит, предел $\left\{ \frac{3n^2+5}{4n^2-3n+1} \right\}$ равен $0\cdot \frac{1}{2}=0$ как произведение пределов.

Пример 3. Докажем, что последовательность $\left\{\frac{n^3+1}{2n^2-5}\right\}$ стремится к $+\infty$. Выберем любую константу C. Последовательность $\left\{\frac{n^3+1}{2n^2-5}\right\}$ это произведение последовательности $\left\{\frac{n^2}{2n^2-5}\right\}$ и $\left\{\frac{n^3+1}{n^2}\right\}$.

- Предел последовательности $\left\{\frac{n^2}{2n^2-5}\right\}$ равен $\frac{1}{2}$, потому что предел $\left\{\frac{2n^2-5}{n^2}\right\}$ равен 2. Значит, начиная с какого-то номера N_1 все элементы последовательности $\left\{\frac{n^2}{2n^2-5}\right\}$ больше $\frac{1}{3}$ (так как $\frac{1}{3}<\frac{1}{2}=\lim_{n\to\infty}(\frac{n^2}{2n^2-5})$)
- Последовательность $\left\{\frac{n^3+1}{n^2}\right\}$ стремится к $+\infty$. Значит, начиная с какого-то номера N_1 все элементы последовательности $\left\{\frac{n^3+1}{n^2}\right\}$ больше, чем 3C
- Значит, начиная с номера $\max(N_1, N_2)$ все элементы последовательности $\left\{\frac{n^2}{2n^2-5}\right\}$ больше $\frac{1}{3}$, и все элементы последовательности $\left\{\frac{n^3+1}{n^2}\right\}$ больше, чем 3C.
- Следовательно, начиная с номера $\max(N_1,N_2)$ все элементы последовательности $\left\{\frac{n^2}{2n^2-5}\cdot\frac{n^3+1}{n^2}\right\}=\left\{\frac{n^3+1}{2n^2-5}\right\}$ больше, чем $\frac{1}{3}\cdot 3C=C$. Что и требовалось доказать.

Подсказки

2.2 Задача 2

Условие. Докажите, что если у последовательности есть предел, то он единственен. Другими словами, докажите, что не может возникнуть такой ситуации:

- $\bullet \lim_{n\to\infty} (x_n) = a,$
- $\lim_{n\to\infty}(x_n)=b,$
- $a \neq b$.

Ниже вы найдёте две подсказки к решению этой задачи.

Подсказка 1. Рассмотрите $\frac{|a-b|}{2}$ -окрестности точек a и b.

Подсказка 2. Вспоминаем определение предела: если мы возьмём какую угодно окрестность предела, то начиная с некоторого номера все члены последовательности будут лежать в этой окрестности. А как будут выглядеть $\frac{|a-b|}{2}$ -окрестности точки a и точки b? Попробуйте найти противоречие в нашем случае, когда $a \neq b$.

2.2 Задача 3

Условие. Попробуем связать понятия сходимости и ограниченности.

- 1. Докажите, что если последовательность $\{x_n\}$ сходится, то она ограничена.
- 2. Верно ли обратное? То есть верно ли, что если последовательность ограничена, то она сходится?

Ниже вы найдёте две подсказки к первому пункту.

Подсказка 1. Конечное множество точек всегда ограничено. Множество точек, которые попадают в некоторую окрестность числа, тоже ограничено.

Подсказка 2. Пусть $\lim_{n\to\infty} x_n=a$. Возьмём в определении предела последовательности $\varepsilon=1$. Тогда начиная с некоторого номера N все члены последовательности попадают в 1-окрестность точки a. Вне этой окрестности лежит конечное число членов последовательности: $x_1, x_2, \ldots, x_{N-1}$.

2.2 Задача 4

Условие. Допустим, про последовательность $\{x_n\}$ известно, что она сходится и её предел равен a. Докажите, что тогда последовательность $\{42 + x_n\}$ тоже сходится. Чему будет равен её предел?

Что можно сказать про сходимость последовательности $\{x_n - 33\}$? Тот же вопрос для последовательности $\{33 - x_n\}$.

Возможно, вы заметили, что эти последовательности чем-то похожи. Попробуйте сформулировать более общие утверждения вида: если последовательность $\{x_n\}$ сходится к a, то <какая-то другая последовательность> сходится к <чему-то>. Ответ вы найдёте ниже.

Ответ. Допустим, последовательность $\{x_n\}$ сходится к a. Тогда для любого числа $c \in \mathbb{R}$:

- последовательность $\{c+x_n\}$ сходится к c+a,
- последовательность $\{c-x_n\}$ сходится к c-a

В примерах из нашей задачи:

- последовательность $\{42+x_n\}$ это $\{c+x_n\}$, где c=42,
- последовательность $\{x_n 33\}$ это $\{c + x_n\}$, где c = -33,
- последовательность $\{33-x_n\}$ это $\{c-x_n\}$, где c=33.

2.2 Задача 5

Условие. Допустим, последовательности $\{x_n\}$ и $\{y_n\}$ сходятся к a и b соответственно. Докажите, что последовательность $\{x_n + y_n\}$ сходится к a + b.

Сокращённая формулировка: $\lim_{n\to\infty}(x_n)=a, \lim_{n\to\infty}(y_n)=b \implies \lim_{n\to\infty}(x_n+y_n)=a+b$ И ещё одна. Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся, то $\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}(x_n)+\lim_{n\to\infty}(y_n)$ Комментарий. Может показаться, что альтернативные формулировки — это переливание из пустого в порожнее. Однако, если вы попробуете сказать то же самое утверждение другими словами, оно может стать понятнее.

Подсказка. Если x_n лежит в ε -окрестности точки a, а y_n в ε -окрестности точки b, то x_n+y_n лежит в 2ε -окрестности точки a+b.

Какие окрестности точек a и b нужно взять, чтобы $x_n + y_n$ лежало в ε -окрестности точки a + b?

2.3 Задача 4

Условие. Пусть последовательности $\{x_n\}$ и $\{y_n\}$ сходятся к a и b соответственно. Докажите, что тогда последовательность $\{x_ny_n\}$ сходится к ab.

Другими словами, $\lim_{n\to\infty}(x_n)=a$, $\lim_{n\to\infty}(y_n)=b\Longrightarrow\lim_{n\to\infty}(x_ny_n)=ab$. И ещё одна формулировка: если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся, то $\lim_{n\to\infty}(x_ny_n)=\lim_{n\to\infty}(x_n)$. $\lim_{n\to\infty}(y_n)$

∞. Ниже вы найдёте небольшую подсказку.

Подсказка. Представьте $\{x_n\}$ в виде $\{a+\alpha_n\}$, где a — предел $\{x_n\}$, $\{\alpha_n\}$ — бесконечно малая, а $\{y_n\}$ — в виде $\{b+\beta_n\}$, где b — предел $\{y_n\}$, $\{\beta_n\}$ — бесконечно малая.

2.3 Задача 5

Условие. Для каждой из следующих последовательностей

- а) найдите предел или покажите, что последовательность не сходится,
- б) выясните, будет ли последовательность стремиться к $+\infty$ или $-\infty$:

1.
$$\left\{\frac{100n^2+1000n+10000}{n^3}\right\}$$
,

2.
$$\left\{ \frac{5n^3 - 16n}{n^3} - \frac{80n^4 + 256n^2}{n^4} + 0.99^n \right\}$$

$$3. \left\{ \frac{0.001n^5 - 200n^4}{n^4} \right\}.$$

Подумайте, как можно обобщить наблюдаемые вами закономерности. Свою гипотезу вы можете сверить с ответом ниже. Доказательство более общего факта не обязательно для сдачи этой задачи, но при желании вы можете обсудить его с преподавателем на устной встрече.

Ответ. Пусть дана последовательность $\{x_n\} = \left\{\frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0}{n^l}\right\}$, где $a_k \neq 0$. Тогда

- если k < l, то $\lim_{n \to \infty} (x_n) = 0$,
- если k = l, то $\lim_{n \to \infty} (x_n) = a_k$,
- если k > l, то $\lim_{n \to \infty} (x_n)$ не существует.

Воспринимать это можно так:

- \bullet если k < l, то знаменатель растёт быстрее числителя, поэтому предел равен 0,
- если k = l, то знаменатель и числитель растут примерно с одинаковой скоростью; важен только старший коэффициент числителя (это a_k), а коэффициенты при младших степенях числителя не имеют значения,
- ullet если k>l, то числитель растёт быстрее знаменателя, поэтому последовательность уходит на бесконечность и предела нет.

2.4 Задача 1

Пусть последовательность $\{y_n\}$ сходится к $b \neq 0$. Также известно, что $y_n \neq 0$ для всех $n \in \mathbb{N}$. Докажите, что последовательность $\left\{\frac{1}{y_n}\right\}$ сходится к $\frac{1}{b}$.

Подсказка. 1) Понадобится доказать, что найдётся такое число C>0, что $\left|\frac{1}{y_n}\right|< C$ для всех натуральных n. Другими словами, нужно доказать, что если $\{y_n\}$ сходится к ненулевому числу, то последовательность $\left\{\frac{1}{y_n}\right\}$ ограничена.

- 2) Тогда последовательность $\left\{\frac{1}{y_n}-\frac{1}{b}\right\}=\left\{\frac{b-y_n}{y_nb}\right\}$ является произведением ограниченной последовательности $\left\{\frac{1}{y_nb}\right\}$ и бесконечно малой последовательности $\{b-y_n\}$. Значит, по Пункту 3 этой задачи, последовательность $\left\{\frac{1}{y_n}-\frac{1}{b}\right\}$ бесконечно малая.
- 3) Из того, что последовательность $\left\{\frac{1}{y_n} \frac{1}{b}\right\}$ бесконечно малая, следует, что $\frac{1}{b}$ это предел последовательности $\left\{\frac{1}{y_n}\right\}$.

2.4 Задача 3

Условие. Для каждой из следующих последовательностей

- а) найдите предел или покажите, что последовательность не сходится,
- б) выясните, будет ли последовательность стремиться к $+\infty$ или $-\infty$:

1.
$$\lim_{n\to\infty} \left(\frac{20n^3+80n+4}{-5n^3-33n^2}\right)$$
,

2.
$$\lim_{n \to \infty} \left(\frac{11n^4 - 3n^3 + 77}{8n^5 + 14n^3 - 19} \right),$$

3.
$$\lim_{n \to \infty} \left(\frac{2n^5 - 2n - 1}{8n^3 + 14n^2 - 19} \right)$$
.

Попробуйте обобщить эти примеры. Ответ вы найдёте ниже.

Ответ. Пусть $P(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$ и $Q(n) = b_l n^l + b_{l-1} n^{l-1} + \dots + b_1 n + b_0$, где $a_k \neq 0$ и $b_l \neq 0$.

Тогда $\lim_{n \to \infty} \left(\frac{P(n)}{Q(n)} \right)$ будет равен

- 0, если k < l,
- $\frac{a_k}{b_l}$, если k=l,
- $+\infty$, если k>l и $\frac{a_k}{b_l}>0$,
- $-\infty$, если k > l и $\frac{a_k}{b_l} < 0$.