

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HƠM KHOA CÔNG NGHỆ THÔNG TIN

IMAGE INPAINTING

(C)

Nhóm Ngọt

21120161	Tiêu Ân Tuấn
21120180	Nguyễn Bích Khuê
21120291	Nguyễn Đức Nam

Nhắc lại bài toán

PHÁT BIỂU BÀI TOÁN

Ẩn số của bài toán: Giá trị pixel cần khôi phục lấy từ đâu ra?

💌 Dữ liệu

- Mask generation
- Places dataset

Random Mask Generation


```
from np.random import uniform
2
def gen_large_mask(img_h, img_w, n):
      """ img_h: int, an image height
                    int, an image width
          ima w:
          marg:
                    int, a margin for a box starting coordinate
                    float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
          p irr:
          min_n_irr: int, min number of segments
          max_n_irr: int, max number of segments
10
          max_l_irr: max length of a segment in polygonal chain
11
          max_w_irr: max width of a segment in polygonal chain
13
          min_n_box: int, min bound for the number of box primitives
14
15
          min n box: int, max bound for the number of box primitives
          min_s_box: int, min length of a box side
16
17
          max_s_box: int, max length of a box side"""
18
      mask = ones(img_h, img_w)
19
20
      if np.random.uniform(0,1) < p_irr: # generate polygonal chain
21
22
          n = uniform(minn_irr, maxn_irr) # sample number of segments
23
          for _ in range(n):
24
              y = uniform(0, img_h) # sample a starting point
25
              x = uniform(0, imq_w)
26
27
              a = uniform(0, 360) # sample angle
28
              1 = uniform(10, max_l_irr) # sample segment length
29
30
              w = uniform(5, max_w_irr) # sample a segment width
31
              # draw segment starting from (x,y) to (x_,y_) using brush of width w
32
33
              x_{-} = x + 1 * sin(a)
34
              y_{-} = y + 1 \star \cos(a)
35
36
              gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
37
              x, y = x_, y_
      else: # generate Box masks
38
39
          n = uniform(min_n_box, min_n_box) # sample number of rectangles
40
          for _ in range(n):
41
              h = uniform(min_s_box, max_s_box) # sample box shape
42
43
              w = uniform(min_s_box, max_s_box)
44
              x_0 = uniform(marg, img_w - marg + w) # sample upper-left coordinates of box
45
              y_0 = uniform(marg, img_h - marg - h)
46
47
48
              gen_box_mask(mask, size=(img_w, img_h), masked=(x_0, y_0, w, h))
      return mask
49
```


Segmentation Mask Generation

Bộ dữ liệu Places

Tập dữ liệu huấn luyên: 1.8 triệu ảnh từ bộ dữ liệu Places-Standard gồm các hình ảnh về các khung cảnh khác nhau mỗi ảnh có kích thước 512x512 pixel.

Tập dữ liệu thẩm định: 2000 cặp ảnh-mặt nạ. ảnh được lấy ngẫu nhiên từ tập thẩm định (validation) của bộ dữ liệu Places. Mặt nạ được tạo ra từ segmentation-based mask generation.

Tập dữ liệu kiểm tra: kiểm tra trên 3 loại mặt na với kích thước khác nhau (nhỏ - trung bình - lớn) và mặt nạ phân đoạn (segmentation). Dùng 3000 cặp ảnh-mặt na cho 3 loại đầu và 4000 cho loai mặt na phân đoan.

conference center

shoe shop

PHƯƠNG PHÁP LAMA

- Mô hình
- Hàm mất mát

Mặt nạ

Đặt vấn đề

3x3 convolution

MÔ HÌNH LAMA

Input: $x' = stack(x \odot m, m)$

Output: $x^ = f\theta(x')$

Fast Frourier Convolution (FFC) - based

$$\mathbf{Y}^{l} = \mathbf{Y}^{l \to l} + \mathbf{Y}^{g \to l} = f_{l}(\mathbf{X}^{l}) + f_{g \to l}(\mathbf{X}^{g}),$$

$$\mathbf{Y}^{g} = \mathbf{Y}^{g \to g} + \mathbf{Y}^{l \to g} = f_{g}(\mathbf{X}^{g}) + f_{l \to g}(\mathbf{X}^{l}).$$

Fast Frourier Convolution (FFC) in Lama

 $\textit{Real FFT2d}: \mathbb{R}^{H \times W \times C} \rightarrow \mathbb{C}^{H \times \frac{W}{2} \times C},$

 $\textit{ComplexToReal}: \mathbb{C}^{H \times \frac{W}{2} \times C} \rightarrow \mathbb{R}^{H \times \frac{W}{2} \times 2C};$

 $ReLU \circ BN \circ Convl \times 1 : \mathbb{R}^{H \times \frac{W}{2} \times 2C} \to \mathbb{R}^{H \times \frac{W}{2} \times 2C};$

 $\textit{RealToComplex}: \mathbb{R}^{H \times \frac{W}{2} \times 2C} \rightarrow \mathbb{C}^{H \times \frac{W}{2} \times C},$

 $\textit{Inverse Real FFT2d}: \mathbb{C}^{H \times \frac{W}{2} \times C} \rightarrow \mathbb{R}^{H \times W \times C}.$

Perceptual Loss

$$\mathcal{L}_{HRFPL}(x,\hat{x}) = \mathcal{M}([\phi_{HRF}(x) - \phi_{HRF}(\hat{x})]^2),$$

$$L_{Adv} = \operatorname{sg}_{\theta}(\mathcal{L}_D) + \operatorname{sg}_{\xi}(\mathcal{L}_G) \to \min_{\theta, \xi}$$
 (4)

Fast Frourier Convolution (FFC)

► HÀM MẤT MÁT

- Ý nghĩa khoa học và ứng dụng của chủ đề
- Phát biểu bài toán

Đóng góp

DEMO

https://colab.research.google.com/drive/1PDRmMPso0Hg-3YLoPASvbJfkIPQckc1M?usp=sharing#scrollTo=7b__kN-n-hZH

Cảm ơn mọi người đã lắng nghe

