

Problem Jumpy

Input file jumpy.in
Output file jumpy.out

Pătrățel și Triunghiuleț joacă împreună jocul Jumpy. În acest joc ei îl controlează alternativ pe Jumpy tâmplarul, în timp ce acesta se aleargă pe o tablă dreptunghiulară formată din $N \times M$ celule. Fiecare celulă este fie zid fie o celulă liberă, care este colorată cu una dintre culorile albastru, roșu sau verde. Jumpy va porni dintr-o celulă liberă. Pătrățel și Triunghiuleț mută alternativ și li se permite să joace numai într-un mod foarte particular: Pătrățel poate sări numai pe orizontală (stânga și dreapta) and Triunghiuleț poate sări numai pe verticală (sus și jos). În timpul unui salt, ei nu pot trece printr-un zid. Ei nu sunt obligați să sară într-o celulă alăturată: este permis să sară peste mai multe celule libere, dar nu peste ziduri. Înițial, toate celulele sunt albastre, dar acestea pot să-și schimbe culorile după fiecare mutare. Dacă Jumpy aterizează pe o celulă roșie, atunci jucătorul care-l controlează pe Jumpy, pierde; dar dacă aterizează pe o celulă verde, atunci jucătorul care-l controlează pe Jumpy, câștigă. Dacă jucătorul aterizează pe o celulă albastră, celula din care a sărit devine verde iar celula pe care aterizează devine roșie, în această ordine. Aceste shimbări au loc după aterizare și nu pot conduce sau preveni o victorie sau o pierdere imediată. **Ordinea schimbărilor culorilor contează dacă celula de start și cea de final coincid.**

Dorim să aflăm, pentru fiecare poziție de start și jucător de start, cine ar câștiga dacă atât Pătrățel și Triunghiuleț joacă în mod optim.

Fisier de intrare

Prima linie a fișierului de intrare va conține N și M, dimensiunile tablei. Următoarele N linii vor conține câte M caractere, fie . (care reprezintă o celulă liberă) fie # (care reprezintă zid). Acestea reprezintă tabla de joc.

Fisierul de iesire

Fișierul de ieșire va conține N linii, fiecare având M caractere, reprezentând răspunsurile pentru fiecare celulă. Dacă o celulă conține zid, afișați #. Dacă nici un jucător nu ar câștiga dacă ar muta primii începând dintr-o celulă, afișați N. Dacă ambii jucători ar câștiga dacă ar muta primii începând dintr-o celulă, afișați B. Dacă numai Pătrățel ar câștiga dacă ar muta primul începând dintr-o celulă, afișați S. Dacă numai Triunghiuleț ar câștiga dacă ar muta primul începând dintr-o celulă, afișați T.

Restrictii:

• $1 \le N, M \le 500$

Subtask 1 (31 points)

• $1 \le N \cdot M \le 20$

Subtask 2 (13 points)

• Nu există ziduri.

Subtask 3 (7 points)

• Este cel mult 1 zid

Subtask 4 (22 points)

• Nu există un drum de la o celulă la ea însăși care să treacă prin fiecare celulă cel mult odată

Subtask 5 (17 points)

 $\bullet \ 1 \leq N, M \leq 300$

Subtask 6 (10 points)

• Nu sunt restricții suplimentare

Exemple

jumpy.in	jumpy.out
9 9	BSSS#TT#T
##.	T####TT#T
.#####.	BSBBSBB#T
#.	T#BB#T##T
.##.##.	T#BB#BSSB
.##	#######T
#######.	SSBS#BSSB
#	##B##B##T
##.##.##.	SSBSSBS#T
#.	
5 5	BSS#T
#.	B###T
.###.	BBB#T
#.	##B#T
##.#.	SSBSB