Special unipotent representations of real classical groups and theta correspondence

Ma, Jia-Jun

(joint with Dan Barbasch, Binyong Sun and Chengbo Zhu)

School of Mathematical Sciences Shanghai Jiao Tong University

April 24, 2021

(Xiamen, Tianyuan Mathematical Cernter)

	G	G	\mathbf{G}^\vee	
$\overline{D_n}$	O(p, 2n - p)	$\mathrm{O}(2n,\mathbb{C})$	$\mathrm{O}(2n,\mathbb{C})$	D_n
C_n	$\mathrm{Sp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n
$\overline{B_n}$	$\mathrm{O}(p, 2n + 1 - p)$	$O(2n+1,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
\tilde{C}_n	$\mathrm{Mp}(2n,\mathbb{R})$	$\operatorname{Sp}(2n,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
$\overline{D_n}$	$O^*(n)$	$\mathrm{SO}(2n,\mathbb{C})$	$\mathrm{SO}(2n,\mathbb{C})$	D_n
C_n	$\operatorname{Sp}(p,q)$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n

	G	G	\mathbf{G}^\vee	
$\overline{D_n}$	O(p, 2n - p)	$\mathrm{O}(2n,\mathbb{C})$	$\mathrm{O}(2n,\mathbb{C})$	D_n
C_n	$\mathrm{Sp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n
$\overline{B_n}$	$\mathrm{O}(p, 2n + 1 - p)$	$O(2n+1,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
\tilde{C}_n	$\mathrm{Mp}(2n,\mathbb{R})$	$\operatorname{Sp}(2n,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
$\overline{D_n}$	$O^*(n)$	$SO(2n, \mathbb{C})$	$\mathrm{SO}(2n,\mathbb{C})$	D_n
C_n	$\operatorname{Sp}(p,q)$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n

$$\operatorname{Nil}(\mathbf{G}^\vee) := \{ \, \operatorname{nilpotent} \, \mathbf{G}^\vee\text{-oribt in} \, \mathfrak{g}^\vee \, \}$$

	G	G	\mathbf{G}^\vee	
$\overline{D_n}$	O(p, 2n - p)	$\mathrm{O}(2n,\mathbb{C})$	$\mathrm{O}(2n,\mathbb{C})$	D_n
C_n	$\mathrm{Sp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n
$\overline{B_n}$	$\mathrm{O}(p, 2n + 1 - p)$	$O(2n+1,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
\tilde{C}_n	$\mathrm{Mp}(2n,\mathbb{R})$	$\operatorname{Sp}(2n,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
$\overline{D_n}$	$O^*(n)$	$SO(2n, \mathbb{C})$	$SO(2n, \mathbb{C})$	D_n
C_n	$\operatorname{Sp}(p,q)$	$\operatorname{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n

$$\operatorname{Nil}(\mathbf{G}^\vee) := \{ \, \operatorname{nilpotent} \, \mathbf{G}^\vee\text{-oribt in} \, \mathfrak{g}^\vee \, \}$$

Theorem (Barbasch-M.-Sun-Zhu)

Arthur-Barbasch-Vogan's conj. on special unipotent repn. holds:

	G	G	\mathbf{G}^\vee	
D_n	O(p, 2n - p)	$\mathrm{O}(2n,\mathbb{C})$	$\mathrm{O}(2n,\mathbb{C})$	D_n
C_n	$\mathrm{Sp}(2n,\mathbb{R})$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n
B_n	$\mathrm{O}(p, 2n + 1 - p)$	$O(2n+1,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
\tilde{C}_n	$\mathrm{Mp}(2n,\mathbb{R})$	$\operatorname{Sp}(2n,\mathbb{C})$	$\mathrm{Sp}(2n,\mathbb{C})$	C_n
D_n	$O^*(n)$	$SO(2n, \mathbb{C})$	$\mathrm{SO}(2n,\mathbb{C})$	D_n
C_n	$\mathrm{Sp}(p,q)$	$\mathrm{Sp}(2n,\mathbb{C})$	$SO(2n+1,\mathbb{C})$	B_n

 $\operatorname{Nil}(\mathbf{G}^\vee) := \{ \, \operatorname{nilpotent} \, \mathbf{G}^\vee\text{-oribt in} \, \mathfrak{g}^\vee \, \}$

Theorem (Barbasch-M.-Sun-Zhu)

Arthur-Barbasch-Vogan's conj. on special unipotent repn. holds: All $special \ unipotent \ representations$ of G are unitarizable.

G: a real reductive group.

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

 $\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

 $\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$

 \leadsto an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^\vee}$

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\rightarrow$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^{\vee}}$

 \leadsto the maximal primitive ideal $\mathcal{I}_{\mathcal{O}}$ with inf. char. $\chi_{\mathcal{O}}$

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\rightsquigarrow$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^{\vee}}$

 \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}}$ with inf. char. $\chi_{\check{\mathcal{O}}}$

■ *Definition* (Barbasch-Vogan):

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\rightsquigarrow$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^{\vee}}$

- \leadsto the maximal primitive ideal $\mathcal{I}_{\mathcal{O}}$ with inf. char. $\chi_{\mathcal{O}}$
- lacktriangle Definition (Barbasch-Vogan):

An irr. admissible G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\leadsto$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^\vee}$

 \leadsto the maximal primitive ideal $\mathcal{I}_{\mathcal{O}}$ with inf. char. $\chi_{\mathcal{O}}$

■ *Definition* (Barbasch-Vogan):

An irr. admissible G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

 $\iff \pi$ has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathbf{G} \cdot \mathrm{AV}(\pi) = \overline{\mathcal{O}}$

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\rightsquigarrow$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^{\vee}}$

 \leadsto the maximal primitive ideal $\mathcal{I}_{\mathcal{O}}$ with inf. char. $\chi_{\mathcal{O}}$

■ *Definition* (Barbasch-Vogan):

An irr. admissible G-module is called *special unipotent* if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

$$\iff \pi$$
 has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathbf{G} \cdot \mathrm{AV}(\pi) = \overline{\mathcal{O}}$

■ Here \mathcal{O} is the Lusztig-Spaltenstein-Barbasch-Vogan dual of $\check{\mathcal{O}}$,

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\rightsquigarrow$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^{\vee}}$

 \leadsto the maximal primitive ideal $\mathcal{I}_{\mathcal{O}}$ with inf. char. $\chi_{\mathcal{O}}$

lacktriangle Definition (Barbasch-Vogan):

An irr. admissible G-module is called *special unipotent* if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

$$\iff \pi$$
 has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathbf{G} \cdot \mathrm{AV}(\pi) = \overline{\mathcal{O}}$

■ Here \mathcal{O} is the Lusztig-Spaltenstein-Barbasch-Vogan dual of $\check{\mathcal{O}}$, which is a *(metaplectic) specail nilpotent orbit.*

G: a real reductive group.

Nilpotent orbit $\check{\mathcal{O}}$ in \mathbf{G}^{\vee} .

$$\rightsquigarrow \varphi \colon \mathrm{SL}(2,\mathbb{C}) \to \mathbf{G}^{\vee} \text{ (Jacobson-Morozov)}$$

$$\rightsquigarrow$$
 an infinitesimal character $d\varphi(\frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}) \leftrightarrow \chi_{\mathcal{O}^{\vee}}$

- \leadsto the maximal primitive ideal $\mathcal{I}_{\mathcal{O}}$ with inf. char. $\chi_{\mathcal{O}}$
- *Definition* (Barbasch-Vogan):

An irr. admissible G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

$$\iff \pi$$
 has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathbf{G} \cdot \mathrm{AV}(\pi) = \overline{\mathcal{O}}$

- Here \mathcal{O} is the Lusztig-Spaltenstein-Barbasch-Vogan dual of $\check{\mathcal{O}}$, which is a *(metaplectic) specail nilpotent orbit.*
- Unip $_{\check{\mathcal{O}}}(G) := \{ \text{ special unipotent repn. attached to } \check{\mathcal{O}} \}.$

 $\operatorname{Unip}_{\check{\mathcal{O}}}(\mathit{G}) := \{ \text{ special unipotent repn. attached to } \check{\mathcal{O}} \}.$

 $\operatorname{Unip}_{\check{\mathcal{O}}}(\mathit{G}) := \{ \text{ special unipotent repn. attached to } \check{\mathcal{O}} \}.$

■ Conjecture: Unip_Õ(G) consists of unitary representations.

 $\operatorname{Unip}_{\check{\mathcal{O}}}(G) := \{ \text{ special unipotent repn. attached to } \check{\mathcal{O}} \}.$

- Conjecture: Unip_Õ(G) consists of unitary representations.
- Question: How to construct elements in $\operatorname{Unip}_{\check{\mathcal{O}}}(G)$?

```
\operatorname{Unip}_{\check{\mathcal{O}}}(G) := \{ \text{ special unipotent repn. attached to } \check{\mathcal{O}} \}.
```

- Conjecture: Unip_Õ(G) consists of unitary representations.
- Question: How to construct elements in $\mathrm{Unip}_{\check{\mathcal{O}}}(G)$?
- Question: How many elements are there in $\operatorname{Unip}_{\mathcal{O}}(G)$?

■ Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$

- Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$
- integral Weyl group

$$W\!(\lambda) := \{ \, w \in \, W \, | \, \langle \lambda - w \lambda, \check{\alpha} \rangle \in \mathbb{Z}, \, \, \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \, \}$$

- Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$
- integral Weyl group

$$W(\lambda) := \{ w \in W \mid \langle \lambda - w\lambda, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

Double cell \mathcal{D} in $W(\lambda) \longleftrightarrow$ the special repn. $\tau_0 \in \mathcal{D}$

- Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$
- integral Weyl group

$$W(\lambda) := \{ w \in W \mid \langle \lambda - w\lambda, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

Double cell \mathcal{D} in $W(\lambda) \longleftrightarrow$ the special repn. $\tau_0 \in \mathcal{D}$

 \longrightarrow truncated induction $J_{W(\lambda)}^W \tau_0$

- Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$
- integral Weyl group

$$W(\lambda) := \{ w \in W \mid \langle \lambda - w\lambda, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

Double cell \mathcal{D} in $W(\lambda) \longleftrightarrow$ the specail repn. $\tau_0 \in \mathcal{D} \longleftrightarrow$ truncated induction $J_{W(\lambda)}^W \tau_0$

 $\xrightarrow{\text{Springer corr.}} \mathcal{O}.$

- Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$
- integral Weyl group

$$W(\lambda) := \{ w \in W \mid \langle \lambda - w\lambda, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

Double cell \mathcal{D} in $W(\lambda) \longleftrightarrow$ the specail repn. $\tau_0 \in \mathcal{D} \longleftrightarrow$ truncated induction $J_{W(\lambda)}^W \tau_0$ $\xrightarrow{\text{Springer corr.}} \mathcal{O}$

• Let $\mu \in \lambda + Q$ (Q is the root lattice),

$$W_{\mu} = \{ w \in W \mid w \cdot \mu = \mu \}.$$

- Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$
- integral Weyl group

$$W(\lambda) := \{ w \in W \mid \langle \lambda - w\lambda, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

Double cell \mathcal{D} in $W(\lambda) \longleftrightarrow$ the specail repn. $\tau_0 \in \mathcal{D} \longleftrightarrow$ truncated induction $J_{W(\lambda)}^W \tau_0$ $\xrightarrow{\text{Springer corr.}} \mathcal{O}$

• Let $\mu \in \lambda + Q$ (Q is the root lattice),

$$W_{\mu} = \{ w \in W \mid w \cdot \mu = \mu \}.$$

■ $\mathcal{K}_{\lambda}(\mathfrak{g}, K)$: the Groth. gp. of (\mathfrak{g}, K) -modules with inf. char. λ .

- Fix regular. inf. char. $\lambda \in \mathfrak{h}^*/W$
- integral Weyl group

$$W(\lambda) := \{ w \in W \mid \langle \lambda - w\lambda, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

Double cell \mathcal{D} in $W(\lambda) \longleftrightarrow$ the specail repn. $\tau_0 \in \mathcal{D} \longleftrightarrow$ truncated induction $J_{W(\lambda)}^W \tau_0$ $\xrightarrow{\text{Springer corr.}} \mathcal{O}$

• Let $\mu \in \lambda + Q$ (Q is the root lattice),

$$W_{\mu} = \{ w \in W \mid w \cdot \mu = \mu \}.$$

- $\mathcal{K}_{\lambda}(\mathfrak{g}, K)$: the Groth. gp. of (\mathfrak{g}, K) -modules with inf. char. λ .
- Lemma:

$$\# \{ \pi \in \operatorname{Irr}_{\mu}(\mathfrak{g}, K)(G) \mid \operatorname{AV}_{\mathbb{C}}(\pi) = \overline{\mathcal{O}} \}$$

$$= \sum_{\substack{\tau \in \mathcal{D} \\ \mathcal{D} : \mathcal{O}}} [\tau : 1_{W_{\mu}}] \cdot [\tau : \mathcal{K}_{\lambda}(\mathfrak{g}, K)]$$

■ Bad parity (must occurs with even multiplicity in $\check{\mathcal{O}}$):

```
\begin{cases} \text{even number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{odd number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}
```

■ Bad parity (must occurs with even multiplicity in $\check{\mathcal{O}}$):

```
\begin{cases} \text{even number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{odd number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}
```

 \blacksquare $\check{\mathcal{O}}$ has "good parity" if $\check{\mathcal{O}}$ only contains

```
\begin{cases} \text{odd rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{even rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}
```

■ Bad parity (must occurs with even multiplicity in $\check{\mathcal{O}}$):

```
\begin{cases} \text{even number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{odd number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}
```

 \blacksquare $\check{\mathcal{O}}$ has "good parity" if $\check{\mathcal{O}}$ only contains

```
\begin{cases} \text{odd rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{even rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}
```

 \bullet $\chi_{\check{\mathcal{O}}}$ is integral.

■ Bad parity (must occurs with even multiplicity in $\check{\mathcal{O}}$):

$$\begin{cases} \text{even number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{odd number,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}$$

 \blacksquare $\check{\mathcal{O}}$ has "good parity" if $\check{\mathcal{O}}$ only contains

$$\begin{cases} \text{odd rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } B, D \\ \text{even rows,} & \text{when } \mathbf{G}^{\vee} \text{ is type } C \end{cases}$$

- \bullet $\chi_{\check{\mathcal{O}}}$ is integral.
- Example of good parity:

• Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\check{\mathcal{O}}_b = \{r_1, r_1, \cdots, r_k, r_k\}.$

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\mathcal{O}_b = \{r_1, r_1, \cdots, r_k, r_k\}$. Theorem (Let $\mathcal{O}_b' = \{r_1, \cdots, r_k\} \in \text{Nil}_{\text{GL}}$.)

$$\operatorname{Unip}_{\check{\mathcal{O}}'_b}(\operatorname{GL}_{\mathbb{R}}) \times \operatorname{Unip}_{\check{\mathcal{O}}_g}(\operatorname{Sp}_{\mathbb{R}}) \xrightarrow{1-1} \operatorname{Unip}_{\check{\mathcal{O}}}(\operatorname{Sp}_{\mathbb{R}})
(\pi_1, \pi_0) \mapsto \operatorname{Ind}_{\operatorname{GL}(|\check{\mathcal{O}}'_b|, \mathbb{R}) \times \operatorname{Sp}(2n_0, \mathbb{R})}^{\operatorname{Sp}(2n, \mathbb{R})}$$

$$\operatorname{Unip}_{\mathcal{O}_b'}(\operatorname{GL}) = \left\{ \left. \operatorname{Ind} \underset{j=1}{\overset{k}{\otimes}} \operatorname{sgn}_{\operatorname{GL}(r_j, \mathbb{R})}^{\epsilon_j} \, \right| \, \epsilon_j \in \mathbb{Z}/2\mathbb{Z} \, \right\}$$

Reduction to the "good parity"

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\mathcal{O}_b = \{r_1, r_1, \cdots, r_k, r_k\}$. Theorem (Let $\mathcal{O}_b' = \{r_1, \cdots, r_k\} \in \text{Nil}_{\text{GL}}$.)

$$\operatorname{Unip}_{\check{\mathcal{O}}_b'}(\operatorname{GL}_{\mathbb{R}}) \times \operatorname{Unip}_{\check{\mathcal{O}}_g}(\operatorname{Sp}_{\mathbb{R}}) \xrightarrow{1-1} \operatorname{Unip}_{\check{\mathcal{O}}}(\operatorname{Sp}_{\mathbb{R}})
(\pi_1, \pi_0) \mapsto \operatorname{Ind}_{\operatorname{GL}(|\check{\mathcal{O}}_b'|, \mathbb{R}) \times \operatorname{Sp}(2n_0, \mathbb{R})}^{\operatorname{Sp}(2n, \mathbb{R})}$$

$$\operatorname{Unip}_{\mathcal{\tilde{O}}'_b}(\operatorname{GL}) = \left\{ \operatorname{Ind} \bigotimes_{j=1}^k \operatorname{sgn}_{\operatorname{GL}(r_j,\mathbb{R})}^{\epsilon_j} \mid \epsilon_j \in \mathbb{Z}/2\mathbb{Z} \right\}$$

• Use theta correspondence to construct $\operatorname{Unip}_{\check{\mathcal{O}}_a}(G)$.

Reduction to the "good parity"

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- \mathcal{O} decompose into two parts \mathcal{O}_g (good parity) and \mathcal{O}_b (bad parity).
- Assume $\mathcal{O}_b = \{r_1, r_1, \cdots, r_k, r_k\}$. Theorem (Let $\mathcal{O}_b' = \{r_1, \cdots, r_k\} \in \text{Nil}_{\text{GL}}$.)

$$\begin{array}{cccc} \operatorname{Unip}_{\check{\mathcal{O}}_b'}(\operatorname{GL}_{\mathbb{R}}) \times \operatorname{Unip}_{\check{\mathcal{O}}_g}(\operatorname{Sp}_{\mathbb{R}}) & \xrightarrow{1-1} & \operatorname{Unip}_{\check{\mathcal{O}}}(\operatorname{Sp}_{\mathbb{R}}) \\ & (\pi_1, \pi_0) & \mapsto & \operatorname{Ind} \underset{\operatorname{GL}(|\check{\mathcal{O}}_b'|, \mathbb{R}) \times \operatorname{Sp}(2n_0, \mathbb{R})}{\pi_1 \otimes \pi_0} \end{array}$$

$$\operatorname{Unip}_{\mathcal{\tilde{O}}_{b}'}(\operatorname{GL}) = \left\{ \left. \operatorname{Ind} \bigotimes_{j=1}^{k} \operatorname{sgn}_{\operatorname{GL}(r_{j},\mathbb{R})}^{\epsilon_{j}} \, \right| \, \epsilon_{j} \in \mathbb{Z}/2\mathbb{Z} \, \right\}$$

- Use theta correspondence to construct Unip $\check{\mathcal{O}}_q(G)$.
- We assume $\check{\mathcal{O}}$ has good parity from now on.

■ Take $\check{\mathcal{O}} \in \text{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

- Take $\check{\mathcal{O}} \in \text{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

lacksquare A descent sequence for \mathcal{O} is a sequence of real classical groups

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

• G_{2k} is a symplectic group

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

lacksquare A descent sequence for \mathcal{O} is a sequence of real classical groups

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

• G_{2k} is a symplectic group allow $G_0 = \operatorname{Sp}(0, \mathbb{R}) = \text{the trivial group.}$

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

- G_{2k} is a symplectic group allow $G_0 = \operatorname{Sp}(0, \mathbb{R}) = \text{the trivial group.}$
- $\bullet \ G_{2k-1} = \mathcal{O}(p_k, q_k)$

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

- G_{2k} is a symplectic group allow $G_0 = \operatorname{Sp}(0, \mathbb{R}) =$ the trivial group.
- $G_{2k-1} = \mathcal{O}(p_k, q_k)$
- \mathcal{O}_i^{\vee} is nilpotent orbit of \mathbf{G}_i^{\vee}

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

- G_{2k} is a symplectic group allow $G_0 = \operatorname{Sp}(0, \mathbb{R}) =$ the trivial group.
- $G_{2k-1} = \mathcal{O}(p_k, q_k)$
- \mathcal{O}_i^{\vee} is nilpotent orbit of \mathbf{G}_i^{\vee}
- (G_i, G_{i-1}) forms a reductive dual pair.

- Take $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathfrak{g}^{\vee})$ (nilpotent orbits with good parity).
- Descent sequence on the dual side:

$$\mathcal{O}^{\vee} = \mathcal{O}_{2a}^{\vee} \qquad \mathcal{O}_{2a-1}^{\vee} \qquad \cdots \qquad \mathcal{O}_{0}^{\vee}$$

 \mathcal{O}_i^{\vee} = removing the first rows of \mathcal{O}_{i+1}^{\vee} .

$$G = G_{2a} \qquad G_{2a-1} \qquad \cdots \qquad G_0$$

- G_{2k} is a symplectic group allow $G_0 = \operatorname{Sp}(0, \mathbb{R}) = \text{the trivial group.}$
- $G_{2k-1} = \mathcal{O}(p_k, q_k)$
- \mathcal{O}_i^{\vee} is nilpotent orbit of \mathbf{G}_i^{\vee}
- (G_i, G_{i-1}) forms a reductive dual pair.
- \mathcal{O}_i = delete the first col. of \mathcal{O}_{i+1} and may add one box back.

Example of descent sequences

- $\chi_j \in \{1, \operatorname{sgn}^{+,-}, \operatorname{sgn}^{-,+}, \det\}$

- $\chi = \bigotimes_{j=0}^{2a} \chi_j$, a 1-dim repn. of $\prod_{j=0}^{2a} G_j$.
- $\chi_j \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth repn. of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-2}, G_{2a-3}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_0}$$

- $\chi = \bigotimes_{j=0}^{2a} \chi_j$, a 1-dim repn. of $\prod_{j=0}^{2a} G_j$.
- $\chi_j \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth repn. of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-2}, G_{2a-3}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_0}$$

- $\chi = \bigotimes_{j=0}^{2a} \chi_j$, a 1-dim repn. of $\prod_{j=0}^{2a} G_j$.
- $\chi_j \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth repn. of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-2}, G_{2a-3}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_0}$$

Theorem (Barbasch-M.-Sun-Zhu)

Let $\check{\mathcal{O}}^{\vee}$ be an orbit with good parity. Then

- $\chi = \bigotimes_{j=0}^{2a} \chi_j$, a 1-dim repn. of $\prod_{j=0}^{2a} G_j$.
- $\chi_j \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth repn. of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-2}, G_{2a-3}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1, G_0} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_0}$$

Theorem (Barbasch-M.-Sun-Zhu)

Let $\check{\mathcal{O}}^{\vee}$ be an orbit with good parity. Then

• either $\pi_{\chi} = 0$ or

- $\chi = \bigotimes_{j=0}^{2a} \chi_j$, a 1-dim repn. of $\prod_{j=0}^{2a} G_j$.
- $\chi_j \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth repn. of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-2}, G_{2a-3}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_{1}, G_{0}} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_{0}}$$

Theorem (Barbasch-M.-Sun-Zhu)

Let $\check{\mathcal{O}}^{\vee}$ be an orbit with good parity. Then

- either $\pi_{\gamma} = 0$ or
- $\pi_{\chi} \in \operatorname{Unip}_{\mathcal{O}}(G)$ and unitarizable.

- $\chi = \bigotimes_{j=0}^{2a} \chi_j$, a 1-dim repn. of $\prod_{j=0}^{2a} G_j$.
- $\chi_j \in \{1, \text{sgn}^{+,-}, \text{sgn}^{-,+}, \text{det}\}$
- Define a smooth repn. of $G = G_{2a}$ (the symplectic group).

$$\pi_{\chi} := (\omega_{G_{2a}, G_{2a-1}} \widehat{\otimes} \omega_{G_{2a-2}, G_{2a-3}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_{1}, G_{0}} \otimes \chi)_{G_{2a-1} \times G_{2a-2} \times \cdots \times G_{0}}$$

Theorem (Barbasch-M.-Sun-Zhu)

Let $\check{\mathcal{O}}^{\vee}$ be an orbit with good parity. Then

- either $\pi_{\mathbf{v}} = 0$ or
- $\pi_{\gamma} \in \text{Unip}_{\tilde{\mathcal{O}}}(G)$ and unitarizable.
- Moreover,

$$\mathrm{Unip}_{\mathcal{O}^{\vee}}(\mathit{G}) = \{ \pi_{\chi} \mid \pi_{\chi} \neq 0 \}.$$

Example: Coincidences of theta lifting

Lift to $G = \operatorname{Sp}(6, \mathbb{R})$ from real forms of $\mathbf{G} = \operatorname{O}(4, \mathbb{C})$. $\check{\mathcal{O}} = 3^2 1^1$ and $\mathcal{O} = 2^3$.

		$\mathrm{Sp}(6,\mathbb{R})$	
O(4,0)		$\theta(\operatorname{sgn}^{+,-})$	
O(3,1)	heta(1)	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(2, 2)	heta(1)	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(1, 3)	heta(1)	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(0, 4)			$\theta(\operatorname{sgn}^{-,+})$

■ Many people have studied the problem

Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 - Work of Li, He, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 - Work of Li, He, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 Work of Li, He, and an idea of Harris-Li-Sun showing the
 - nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:
 - **Geometry**: moment maps provide the <u>upper bound</u>.

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.

 Work of Li Ho and an idea of Harris Li Sun showing the
 - Work of Li, He, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:
 - **Geometry**: moment maps provide the upper bound.
 - Analysis: degenerate principal series force the <u>lower bound</u>.

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 - Work of Li, He, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:
 - **Geometry**: moment maps provide the upper bound.
 - Analysis: degenerate principal series force the lower bound.
 - Geometry meets Analysis: the equality.

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 - Work of Li, He, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:
 - **Geometry**: moment maps provide the upper bound.
 - Analysis: degenerate principal series force the lower bound.
 - Geometry meets Analysis: the equality.
- Exhaustion: Combinatorics (recent breakthrough!)

- Many people have studied the problem Adams, Barbasch, He, Huang, Li, Loke, Mœglin, Paul, Przebinda, Trapa,
- Unitarity:
 - Estimate of matrix coefficients using the explicit realization of the Weil representations.
 - Work of Li, He, and an idea of Harris-Li-Sun showing the nonnegativity of a matrix coefficient integral.
- non-vanishing and compute associated cycle:
 - **Geometry**: moment maps provide the upper bound.
 - Analysis: degenerate principal series force the lower bound.
 - Geometry meets Analysis: the equality.
- Exhaustion: Combinatorics (recent breakthrough!)
- Corollary: (using [Gomez-Zhu]) For π_{χ} ,

Whittaker cycle = Wavefront cycle.

Counting unipotent representations I

 $\check{\mathcal{O}} \in \mathrm{Nil}^{gp}(\mathbf{G}^{\vee})$

Counting unipotent representations I

 \bullet $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathbf{G}^{\vee})$

 \leadsto special representation $\tau \leftrightarrow \mathcal{O}$

Counting unipotent representations I

- $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathbf{G}^{\vee})$ \leadsto special representation $\tau \leftrightarrow \mathcal{O}$
- $\mathcal{K}_{\rho}(G)$: the Groth. gp. of (\mathfrak{g}, K) -modules with inf. char. ρ .

- $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathbf{G}^{\vee})$ \leadsto special representation $\tau \leftrightarrow \mathcal{O}$
- $\mathcal{K}_{\rho}(G)$: the Groth. gp. of (\mathfrak{g}, K) -modules with inf. char. ρ .

$$\#\mathrm{Unip}_{\mathcal{O}^{\vee}}(G) = 2^l \cdot [\tau : \mathcal{K}_{\rho}(G)]$$

- $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathbf{G}^{\vee})$ \leadsto special representation $\tau \leftrightarrow \mathcal{O}$
- $\mathcal{K}_{\rho}(G)$: the Groth. gp. of (\mathfrak{g}, K) -modules with inf. char. ρ .

$$\#\mathrm{Unip}_{\mathcal{O}^{\vee}}(G) = 2^l \cdot [\tau : \mathcal{K}_{\rho}(G)]$$

$$W(\operatorname{Sp}(2n)) = S_n \ltimes \{\pm 1\}^n,$$

- $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathbf{G}^{\vee})$ \leadsto special representation $\tau \leftrightarrow \mathcal{O}$
- $\mathcal{K}_{\rho}(G)$: the Groth. gp. of (\mathfrak{g}, K) -modules with inf. char. ρ .

$$\#\mathrm{Unip}_{\mathcal{O}^{\vee}}(G) = 2^l \cdot [\tau : \mathcal{K}_{\rho}(G)]$$

$$W(\operatorname{Sp}(2n)) = S_n \ltimes \{\pm 1\}^n,$$

$$\mathcal{K}_{\rho}(\operatorname{Sp}(2n,\mathbb{R})) = \sum_{\substack{p,q,t,s,\\\sigma \in \widehat{S}_s}} \operatorname{Ind}_{S_t \times W_{2s} \times W_p \times W_q}^{W_n} \operatorname{sgn} \otimes (\sigma \times \sigma) \otimes \mathbf{1} \otimes \mathbf{1}.$$

- $\check{\mathcal{O}} \in \operatorname{Nil}^{gp}(\mathbf{G}^{\vee})$ \leadsto special representation $\tau \leftrightarrow \mathcal{O}$
- $\mathcal{K}_{\rho}(G)$: the Groth. gp. of (\mathfrak{g}, K) -modules with inf. char. ρ .

$$#Unip_{\mathcal{O}^{\vee}}(G) = 2^{l} \cdot [\tau : \mathcal{K}_{\rho}(G)]$$

$$W(\operatorname{Sp}(2n)) = S_n \ltimes \{\pm 1\}^n,$$

$$\mathcal{K}_{\rho}(\operatorname{Sp}(2n,\mathbb{R})) = \sum_{\substack{p,q,t,s,\\\sigma \in \widehat{S}_s}} \operatorname{Ind}_{S_t \times W_{2s} \times W_p \times W_q}^{W_n} \operatorname{sgn} \otimes (\sigma \times \sigma) \otimes \mathbf{1} \otimes \mathbf{1}.$$

• $[\tau : \mathcal{K}_{\rho}(G)]$ is counted by painted bi-partitions PBP($\check{\mathcal{O}}$).

 \blacksquare PBP($\check{\mathcal{O}})$ is complicate.

- $PBP(\check{\mathcal{O}})$ is complicate.
- $LS(\check{\mathcal{O}}) = \{AC(\pi_{\chi})\}$ is also complicate.

- $PBP(\check{\mathcal{O}})$ is complicate.
- LS($\check{\mathcal{O}}$) = { AC(π_{χ}) } is also complicate.
- Proof of Exhaustion

- $PBP(\check{\mathcal{O}})$ is complicate.
- LS($\check{\mathcal{O}}$) = { AC(π_{χ}) } is also complicate.
- Proof of Exhaustion
 Define descent of painted bi-partitions,

- $PBP(\check{\mathcal{O}})$ is complicate.
- LS($\check{\mathcal{O}}$) = { AC(π_{χ}) } is also complicate.
- Proof of Exhaustion
 Define descent of painted bi-partitions,
 compatible with the theta lifting!

$$\begin{array}{ccc} \operatorname{LS}(\check{\mathcal{O}}) \xleftarrow{} & \operatorname{PBP}(\check{\mathcal{O}}) \longleftrightarrow \operatorname{Unip}_{\check{\mathcal{O}}}(G) \\ \\ \operatorname{geo.\ lift} & \nabla \Big\downarrow & & \Big\uparrow \theta \\ \operatorname{LS}(\check{\mathcal{O}}') \xleftarrow{} & \operatorname{PBP}(\check{\mathcal{O}}') \longleftrightarrow \operatorname{Unip}_{\check{\mathcal{O}}'}(G') \end{array}$$

- $PBP(\check{\mathcal{O}})$ is complicate.
- LS($\check{\mathcal{O}}$) = { AC(π_{χ}) } is also complicate.
- Proof of Exhaustion
 Define descent of painted bi-partitions,
 compatible with the theta lifting!

$$\begin{array}{cccc} \operatorname{LS}(\check{\mathcal{O}}) & \longleftarrow & \operatorname{PBP}(\check{\mathcal{O}}) & \longleftarrow & \operatorname{Unip}_{\check{\mathcal{O}}}(G) \\ & & & & & & & & & & & & & \\ \operatorname{geo.\ lift} \Big) & & & & & & & & & & & & \\ \operatorname{LS}(\check{\mathcal{O}}') & & \longleftarrow & \operatorname{PBP}(\check{\mathcal{O}}') & \longleftarrow & \operatorname{Unip}_{\check{\mathcal{O}}'}(G') \end{array}$$

■ The injectivity of theta lifting is crucial!

Example: $\mathcal{O} = \text{regular nilpotent orbit}$

• Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \mathrm{Gal}(\mathbb{C}/\mathbb{R}).$

■ Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle \hat{\jmath} \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$:

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$: {local components of automorphic cusp. repn. }

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$:
 {local components of automorphic cusp. repn. }
 They are unitary by definition!

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$: {local components of automorphic cusp. repn. } They are unitary by definition!
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial.

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$:
 {local components of automorphic cusp. repn. }
 They are unitary by definition!
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial. Mæglin: $\pi_{\psi,\eta}$ is zero or multiplicity free $(\eta \in \operatorname{Irr}(\pi_1(Z_{\mathbf{G}^{\vee}}(\psi))))$.

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$: {local components of automorphic cusp. repn. } They are unitary by definition!
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial. Mæglin: $\pi_{\psi,\eta}$ is zero or multiplicity free $(\eta \in \operatorname{Irr}(\pi_1(Z_{\mathbf{G}^{\vee}}(\psi))))$. Warning: $\Pi_{\psi}^A(G) \cap \Pi_{\psi'}^A(G) \neq \emptyset$ in general.

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R}).$ Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle \hat{\jmath} \rangle.$
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$: {local components of automorphic cusp. repn. } They are unitary by definition!
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial. Mæglin: $\pi_{\psi,\eta}$ is zero or multiplicity free $(\eta \in \operatorname{Irr}(\pi_1(Z_{\mathbf{G}^{\vee}}(\psi))))$. Warning: $\Pi_{\psi}^A(G) \cap \Pi_{\psi'}^A(G) \neq \emptyset$ in general.
- \blacksquare "Corollary":

$$\Pi_{\psi}^{A}(G) = \Pi_{\psi}^{ABV}(G)$$

- Arthur parameter: $\psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to \mathbf{G}^{\vee} \rtimes \operatorname{Gal}(\mathbb{C}/\mathbb{R})$. Here $W_{\mathbb{R}} = \mathbb{C} \rtimes \langle j \rangle$.
- Arthur's Arthur packet $\Pi_{\psi}^{A}(G)$: {local components of automorphic cusp. repn. } They are unitary by definition!
- Unipotent Arthur parameter: $\psi|_{\mathbb{C}^{\times}}$ is trivial. Mæglin: $\pi_{\psi,\eta}$ is zero or multiplicity free $(\eta \in \operatorname{Irr}(\pi_1(Z_{\mathbf{G}^{\vee}}(\psi))))$. Warning: $\Pi_{\psi}^A(G) \cap \Pi_{\psi'}^A(G) \neq \emptyset$ in general.
- "Corollary":

$$\Pi_{\psi}^{A}(G) = \Pi_{\psi}^{ABV}(G)$$

• Question: How to describe $\pi_{\psi,n}$ explicitly?

Thank you for your attention!

