МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Лабораторная работа №5 по дисциплине «Исследование операций» Вариант 2

> Бобовоза Владислава Сергеевича студента 3 курса, 6 группы специальность «прикладная математика»

Постановка задачи.

- 1. Построить сетевой график для максимальной ($t_{\rm nec}$) продолжительности всех его работ, рассчитать наиболее ранние и наиболее поздние сроки наступления событий, найти критический путь, определить полные и независимые резервы времени всех работ и коэффициенты напряженности некритических дуг.
- 2. Для трехпараметрической модели найти ожидаемое время выполнения проекта, определить вероятность выполнения проекта не позднее заданного срока, найти интервал гарантированного (с вероятностью P=0,9973) времени выполнения проекта, оценить максимально возможный срок выполнения проекта с заданной надежностью.

Выполнить те же расчеты для двухпараметрической модели. Сравнить результаты.

3. Считая $t_{\text{пес}}$ продолжительностью работы с минимальной допустимой интенсивностью ($t_{\text{пес}}=t_{max}$), а $t_{\text{опт}}$ — продолжительностью работы с максимальной возможной интенсивностью ($t_{\text{опт}}=t_{min}$), найти оптимальный по стоимости вариант выполнения проекта.

Минимизировать стоимость проекта при минимально возможном сроке его исполнения.

Работа	Опирается на работы	$t_{\sf nec}$	$t_{ extsf{Bep}}$	$t_{OПT}$	Стоимость сокращения работы на один день, S_k
b_1	-	9	5	3	5
b_2	-	10	8	4	8
b_3	b_1	9	7	2	4
b_4	b_1	10	7	2	6
b_5	b_2	8	4	2	7
b_6	b_3	9	6	1	4
<i>b</i> ₇	b_4, b_5	5	2	1	5
b_8	b_2	6	4	1	9
b_9	b_6, b_7	7	4	2	5
b_{10}	b_4, b_5	12	9	5	9
b_{11}	b_4, b_5, b_8	9	6	2	7

Директивный (заданный) срок выполнения проекта $T_{\sf дир}=20$ дней. Заданная надежность $\gamma=0.95$. Стоимость одного дня проекта равна 10 денежным единицам: S=10.

Решение будем представлять в виде рукописных записей:

