universität freiburg

Assignment 06

Neural Networks – Part 1

Assignment 06 Solution

- **1. Activation Functions**
- 2. Neural networks

Task 1.1: Non-Linear vs. Linear

Why do we use non-linear activation functions?

- Stacking multiple linear functions will again create a linear function (collapse).
- Example:

2 Layer Linear Network

$$h^{(1)} = W^{(1)} \cdot x + b^{(1)}$$

 $h^{(2)} = W^{(2)} \cdot h^{(1)} + b^{(2)}$

Equivalent single-layer Network

$$h^{(2)} = W^{(2)} \cdot (W^{(1)} \cdot x + b^{(1)}) + b^{(2)}$$

$$= (W^{(2)} W^{(1)}) \cdot x + (W^{(2)} b^{(1)}) + b^{(2)}$$

$$= W' \cdot x + b'$$

Task 1.2: Computing Gradients

Gradient for ReLU

$$ReLU(z) = \max(z,0)
= \begin{cases} z & z > 0 \\ 0 & z \le 0 \end{cases} \qquad \frac{\partial ReLU(z)}{\partial z} = \begin{cases} 1 & z > 0 \\ 0 & z < 0 \end{cases}$$

$$\frac{\partial \operatorname{ReLU}(z)}{\partial z} = \begin{cases} 1 & z > 0 \\ 0 & z < 0 \end{cases}$$

Undefined for z = 0!

Task 1.2: Computing Gradients

Gradient for Sigmoid

Start with basic derivation:

$$\sigma(z) = \frac{1}{1+e^{-z}} \qquad \frac{\partial \sigma(z)}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1+e^{-z}} \right) = -1 \cdot (1+e^{-z})^{-2} \cdot (-e^{-z}) = \frac{e^{-z}}{(1+e^{-z})^2}$$

• Express terms via $\sigma(z)$:

$$\sigma(z) = \frac{1}{1 + e^{-z}}, \quad 1 + e^{-z} = \frac{1}{\sigma(z)}, \quad e^{-z} = \frac{1 - \sigma(z)}{\sigma(z)}$$

Then simplify:

$$\frac{\partial \sigma(z)}{\partial z} = \frac{1 - \sigma(z)}{\sigma(z)} \cdot (\sigma(z))^2 = (1 - \sigma(z)) \cdot \sigma(z)$$

Task 1.2: Computing Gradients

Gradient for TanH

$$\tanh(z) = \frac{e^{2z} - 1}{e^{2z} + 1} \qquad \frac{\partial \tanh(z)}{\partial z} = \frac{\partial}{\partial z} \left(\frac{e^{2z} - 1}{e^{2z} + 1} \right)$$
 apply quotient rule
$$= \frac{2e^{2z} \cdot (e^{2z} + 1) - (e^{2z} - 1) \cdot 2e^{2z}}{(e^{2z} + 1)^2}$$
 multiply out
$$= \frac{2e^{4z} + 2e^{2z} - 2e^{4z} + 2e^{2z}}{(e^{2z} + 1)^2}$$
 subtract e^{4z} and expand by +/-1
$$= \frac{e^{4z} + 2e^{2z} + 1 - e^{4z} + 2e^{2z} - 1}{(e^{2z} + 1)^2}$$
 separate
$$= \frac{(e^{4z} + 2e^{2z} + 1) - (e^{4z} - 2e^{2z} + 1)}{(e^{2z} + 1)^2}$$
 apply square rule
$$= \frac{(e^{2z} + 1)^2 - (e^{2z} - 1)^2}{(e^{2z} + 1)^2} = 1 - \tanh^2(z)$$

Task 1.3: Advantages and Disadvantages

Advantages and disadvantages of the ReLU activation function

- Fixes vanishing gradient problem
- Computationally inexpensive
- Fragile during training, can "die"
 - Can be overcome with Leaky ReLU, Parametric ReLU

Task 1.3: Advantages and Disadvantages

Advantages and disadvantages of the Sigmoid activation function

- Computationally more expensive than ReLU
- Not zero-centered
- Has a smooth gradient
- Well-suited for binary classification when used on the output layer (cf. Logistic regression)
- Suffers from vanishing gradient problems

Task 1.3: Advantages and Disadvantages

Advantages and disadvantages of the TanH activation function

- Computationally more expensive than ReLU
- Is zero-centered
- Has a smooth gradient
- Used more frequently compared to the sigmoid as an activation function in hidden layers.
 - Special use in recurrent networks (LSTM, GRU)
- Suffers from vanishing gradient problems

Task 1.4: Softmax Predictions

Given a single data point x with:

true label possible labels unnormalized log probability

$$y=A$$

$$Y = \{A, B, C\}$$

$$y=A$$
 $Y=\{A,B,C\}$ $z_A=7$, $z_B=1$, $z_C=2.2$

Compute softmax output:

$$P(y=i \mid x) \approx softmax(z_i) = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

$$P(y=i \mid x) \approx softmax(z_i) = \frac{e^{z_i}}{\sum_i e^{z_i}}$$
 $A: softmax(z_A) = \frac{e^{z_A}}{e^{z_A} + e^{z_B} + e^{z_C}} \approx \frac{1097}{1097 + 2.72 + 9.03} \approx 98.9\%$

B:
$$softmax(z_B) = \frac{e^{z_B}}{e^{z_A} + e^{z_B} + e^{z_C}} \approx \frac{2.72}{1097 + 2.72 + 9.03} \approx 0.25\%$$

C:
$$softmax(z_C) = \frac{e^{z_C}}{e^{z_A} + e^{z_B} + e^{z_C}} \approx \frac{9.03}{1097 + 2.72 + 9.03} \approx 0.81\%$$

Task 1.4: Softmax Predictions

Given a single data point x with:

true label possible labels

unnormalized log probability

$$y=A$$
 $Y=\{A,B,C\}$ $z_A=7$, $z_B=1$, $z_C=2.2$

Predicted class:

A: $softmax(z_A) \approx 98.9\%$

The predicted class is the class with the highest softmax score → predicted class is A

B: $softmax(z_B) \approx 0.25\%$

C: $softmax(z_C) \approx 0.81\%$

Task 1.4: Softmax Predictions

Given a single data point x with:

true label possible labels

unnormalized log probability

$$y=A$$

$$Y = \{A, B, C\}$$

$$y=A$$
 $Y=\{A,B,C\}$ $z_A=7$, $z_B=1$, $z_C=2.2$

Log-likelihood loss:

A:
$$P(y=A | x) \approx 98.9\%$$

B:
$$P(y=B|x) \approx 0.25\%$$

$$C: P(y=C | x) \approx 0.81\%$$

$$J(w,x) = -\sum_{i \in Y} 1_{y_i=i} \cdot \log P(y_i=i \mid x)$$

$$= -1 \cdot \log P(y_i=A \mid x)$$

$$\approx -1 \cdot \log 0.989$$

$$\approx 0.011$$

Task 2.1: Basis Functions and Neural Networks

What is the difference between using basis functions and neural networks on in put features?

- Basis functions are difficult to design by hand
 - Especially non-linear ones
- Neural networks can be thought of as learning basis functions!
 - Automatic, adapt to the task at hand to achieve optimal performance

Task 2.2: Compute the Number of Weights in a Neural Network

Given:

• 80 examples

6 features

Labels: {Spring, Summer, Fall, Winter}

3 hidden layers, 32 units each

Translate to relevant information:

- 6 input units
- 32 hidden units, 3 hidden layers
- 4 output units

Compute weights per Layer:

• 1st layer: 6.32+32=224

• 2^{nd} layer: $32 \cdot 32 + 32 = 1056$

• 3^{rd} layer: $32 \cdot 32 + 32 = 1056$

• Output layer: 32.4+4=132

Compute total number of weights:

• Sum up over layers: 2468 weights

#inputs·#neurons + #neurons #multiplicative + #biases

Task 2.3: Manual Optimization

Dataset:

X	У
1	0
2	0.3
10	1

Network:

$$h^{(1)} = \text{ReLU}(w_{1,1}^{(1)} \cdot x) \qquad w_{1,1}^{(1)} = -0.1$$

 $h^{(2)} = \text{ReLU}(w_{1,1}^{(2)} \cdot h^{(1)}) \qquad w_{1,1}^{(2)} = 0.1$

Loss function:

$$J(w) = \frac{1}{N} \sum_{(x,y)\in D} (\hat{y}(x) - y)^2$$

Should we increase or decrease w⁽¹⁾_{1,1}?

- All values x in our dataset are positive
- $w^{(1)}_{1,1}$ is negative
- → ReLU for h⁽¹⁾ will always output zero
- → Network will always output zero
- \rightarrow Must change $w^{(1)}_{1,1}$ to be positive, e.g.:
 - Current loss is approx. 0.36
 - Set $w^{(1)}_{1,1} = 1$ and loss is approx. 0.02

Task 2.3: Manual Optimization

Dataset:

X	У
1	0
2	0.3
10	1

Network:

$$h^{(1)} = \text{ReLU}(w_{1,1}^{(1)} \cdot x) \qquad w_{1,1}^{(1)} = -0.1$$

 $h^{(2)} = \text{ReLU}(w_{1,1}^{(2)} \cdot h^{(1)}) \qquad w_{1,1}^{(2)} = 0.1$

Loss function:

$$J(w) = \frac{1}{N} \sum_{(x,y)\in D} (\hat{y}(x) - y)^2$$

Bonus: Compute gradient for w⁽¹⁾_{1,1}

Expand

$$h^{(1)} = \text{ReLU}(a^{(1)}), \quad a^{(1)} = w_{1,1}^{(1)} \cdot x$$

Apply chain-rule

$$\frac{\partial J(w)}{\partial w_{1,1}^{(1)}} = \frac{\partial J(w)}{\partial h^{(2)}} \cdot \frac{\partial h^{(2)}}{\partial h^{(1)}} \cdot \frac{\partial h^{(1)}}{\partial w_{1,1}^{(1)}}$$

$$= \frac{\partial J(w)}{\partial h^{(2)}} \cdot \frac{\partial h^{(2)}}{\partial h^{(1)}} \cdot \frac{\partial h^{(1)}}{\partial a^{(1)}} \cdot \frac{\partial a^{(1)}}{\partial w_{1,1}^{(1)}}$$

Note: a⁽¹⁾ will always be negative! Therefore

$$\frac{\partial h^{(1)}}{\partial a^{(1)}} = 0$$
 and $\frac{\partial J(w)}{\partial w_{1,1}^{(1)}} = 0$

Task 2.3: Manual Optimization

Dataset:

X	у
1	0
2	0.3
10	1

Network:

$$h^{(1)} = \text{ReLU}(w_{1,1}^{(1)} \cdot x) \qquad w_{1,1}^{(1)} = -0.1$$

 $h^{(2)} = \text{ReLU}(w_{1,1}^{(2)} \cdot h^{(1)}) \qquad w_{1,1}^{(2)} = 0.1$

Loss function:

$$J(w) = \frac{1}{N} \sum_{(x,y)\in D} (\hat{y}(x) - y)^2$$

Bonus: Compute gradient for w(1)_{1,1}

Gradient is zero for all samples in our dataset

$$\frac{\partial J(w)}{\partial w_{1,1}^{(1)}} = 0$$

- This means:
 - Any gradient based optimization procedure will not change this weight (for our dataset)!
 - "Dead" ReLU, network is not learning.
- Note: If we set $w^{(2)}_{1,1} < 0$, this would even be independent of our dataset!

Task 2.4: Setting up PyTorch

In short:

- Set up a python environment (or use your standard python installation)
 - E.g. conda
- Then run pip install torch

Any problems?

Task 2.5: Implementing a Network (a)

```
def create 2unit net() \rightarrow Module:
   Create a two-layer MLP (1 hidden layer, 1 output layer) with 2 hidden units
   as described in the exercise.
   Returns:
       2-layer MLP module with 2 hidden units.
linear units = 2
   model = Sequential(
Linear(2, linear_units),
ReLU(),
Linear(linear units, 2),
   params = model.state dict()
   params['0.weight'] = torch.Tensor(np.array([[3.21, 3.21], [-2.34, -2.34]]))
   params['0.bias'] = torch.Tensor(np.array([-3.21, 2.34]))
   params['2.weight'] = torch.Tensor(np.array([[3.19, 4.64], [-2.68, -3.44]]))
   params['2.bias'] = torch.Tensor(np.array([-4.08, 4.42]))
   model.load state dict(params)
   return model
```

```
$ python run 2unit model.py
Raw prediction logits:
 [[ 6.7775993 -3.6295996]
 [-4.08
              4.42
 [-4.08 4.42
 [ 6.1599007 -4.1828003]]
Prediction after softmax:
 [[9.9996984e-01 3.0213278e-05]
 [2.0342699e-04 9.9979657e-01]
 [2.0342699e-04 9.9979657e-01]
 [9.9996781e-01 3.2226122e-05]]
True labels, one-hot encoded:
[[1. 0.]]
 [0. 1.]
 [0. 1.]
 [1. 0.]
Loss: 0.00011732114
```

Task 2.5: Implementing a Network (b)

```
def create 3unit net() → Module:
   Create a two-layer MLP (1 hidden layer, 1 output layer) with 3 hidden units
   as described in the exercise.
   Returns:
       2-layer MLP module with 3 hidden units.
   linear units = 3
   model = Sequential(Linear(2, linear_units), ReLU(), Linear(linear_units, 2))
   params = model.state_dict()
   params['0.weight'] = torch.Tensor(np.array([[3.21, 3.21], [-2.34, -2.34], [0, 0]]))
   params['0.bias'] = torch.Tensor(np.array([-3.21, 2.34, 0]))
   params['2.weight'] = torch.Tensor(np.array([[3.19, 4.64, 0], [-2.68, -3.44, 0]]))
   params['2.bias'] = torch.Tensor(np.array([-4.08, 4.42]))
   model.load state dict(params)
   return model
```

```
$ python run 3unit model.py
Raw prediction logits:
[[ 6.7775993 -3.6295996]
 [-4.08
              4.42
 [-4.08
              4.42
 [ 6.1599007 -4.1828003]]
Prediction after softmax:
[[9.9996984e-01 3.0213278e-05]
 [2.0342699e-04 9.9979657e-01]
 [2.0342699e-04 9.9979657e-01]
 [9.9996781e-01 3.2226122e-05]]
True labels, one-hot encoded:
[[1. 0.]
 [0. 1.]
 [0. 1.]
 [1. 0.]]
Loss: 0.00011732114
```