

ЗАДАЧИ ВЫЧИСЛИТЕЛЬНЫЙ ПРАКТИКУМ

Задание 1(6 баллов).

«Абсолютно упругое взаимодействие»

Выполнить численное моделирование абсолютно упругого взаимодействия двух тел разной массы.

Тело массой m_2 , движущееся со скоростью v_θ сталкивается с неподвижным телом массой m_1 . Масса $m_1 < m_2$. Сколько соударений N со стенкой, расположенной слева и телом массой m_2 совершит тело массой m_1 до полной остановки. Столкновения со стенкой и телами считать абсолютно упругими.

Рассмотреть случаи когда $m_2 = m_1 \cdot 10^n$, где $n = 1, 2, 3, 4, \dots$ Проанализировать полученные результаты.

Задание 2 (5 баллов).

«Прецессия гироскопа»

На корабле вдоль продольной оси установлена турбина. Ротор турбины (1) имеет массу M и может считаться сплошным диском с радиусом R, который вращается с частотой v = 3000 об/мин. Расстояние между подшипниками (2 и 3) составляет 5 м. Определить максимальные гироскопические давления на подшипники турбины при килевой качке с амплитудой a и периодом T вокруг оси (4), перпендикулярной оси ротора.

ЗАДАЧИ ВЫЧИСЛИТЕЛЬНЫЙ ПРАКТИКУМ

$\mathcal{N}_{\underline{0}}$	Macca	Радиус	Амплитуда	Период
	ротора М, кг	ротора R, м	качки <i>а</i> , °	качки Т, с
1	1000	0.5	от 5 до 10	от 6 до 11
2	2000	0.4	от 4 до 9	от 7 до 12
3	3000	0.3	от 3 до 8	от 8 до 13
4	4000	0.2	от 2 до 7	от 9 до 14
5	5000	0.1	от 3 до 8	от 10 до 15
6	1000	0.5	от 4 до 9	от 9 до 14
7	2000	0.4	от 5 до 10	от 8 до 13
8	3000	0.3	от 4 до 9	от 7 до 12
9	4000	0.2	от 3 до 8	от 6 до 11
10	5000	0.1	от 2 до 7	от 7 до 12
11	1000	0.5	от 3 до 8	от 8 до 13
12	2000	0.4	от 4 до 9	от 9 до 14
13	3000	0.3	от 5 до 10	от 10 до 15
14	4000	0.2	от 4 до 9	от 9 до 14
15	5000	0.1	от 3 до 8	от 8 до 13
16	1000	0.5	от 2 до 7	от 7 до 12
17	2000	0.4	от 3 до 8	от 6 до 11
18	3000	0.3	от 4 до 9	от 7 до 12
19	4000	0.2	от 5 до 10	от 8 до 13
20	5000	0.1	от 4 до 9	от 9 до 14
21	1000	0.5	от 3 до 8	от 10 до 15
22	2000	0.4	от 2 до 7	от 9 до 14
23	3000	0.3	от 3 до 8	от 8 до 13
24	4000	0.2	от 4 до 9	от 7 до 12
25	5000	0.1	от 5 до 10	от 6 до 11

Задание 3 (4 балла).

«Мертвая петля»

Тело массой m, разгоняется в горизонтальной плоскости и попадает на вертикально расположенный фрагмент кольца (дугу) радиуса R и угловым размером a ($\pi/2 \le a \le 3\pi/2$).

Определить начальную скорость тела, необходимую для прохождения всей длины дуги. Построить (визуализировать) траекторию тела после отрыва от дуги. Дуга имеет коэффициент трения µ. Программа должна предусматривать изменение параметров, приведенных ниже в таблице.

No	Масса тела т,	Радиус кольца	Угловой	Коэффициент
	ΚΓ	R, м	размер дуги a ,	трения μ
			рад	
1	1	5	$\pi/2+\pi/6$	0,01
2	2	4	$\pi/2+\pi/3$	0,02
3	3	3	π + π /6	0,03
4	1	2	π + π /3	0,04
5	2	1	$\pi/2+\pi/6$	0,05
6	3	2	$\pi/2+\pi/3$	0,01
7	1	3	π + π /6	0,02

ЗАДАЧИ ВЫЧИСЛИТЕЛЬНЫЙ ПРАКТИКУМ

8	2	4	π + π /3	0,03
9	3	5	$\pi/2+\pi/6$	0,04
10	1	4	$\pi/2+\pi/3$	0,05
11	2	3	π + π /6	0,01
12	3	2	π + π /3	0,02
13	1	1	$\pi/2+\pi/6$	0,03
14	2	2	$\pi/2+\pi/3$	0,04
15	3	3	π + π /6	0,05
16	1	4	π + π /3	0,01
17	2	5	$\pi/2+\pi/6$	0,02
18	3	4	$\pi/2+\pi/3$	0,03
19	1	3	π + π /6	0,04
20	2	2	π + π /3	0,05
21	3	1	$\pi/2+\pi/6$	0,01
22	1	2	$\pi/2+\pi/3$	0,02
23	2	3	π + π /6	0,03
24	3	4	π + π /3	0,04
25	1	5	π	0,05