

TARGET: JEE (Advanced) 2015

Course: VIJETA & VIJAY (ADP & ADR) Date: 12-05-2015

TEST INFORMATION

DATE: 13.05.2015 PART TEST (PT-05)

Syllabus: Differential Equation, Complex Number, Permutation & Combination, Probability

DATE: 17.05.2015 MAJOR TEST (MT)

Syllabus: Full Syllabus

REVISION DPP OF

CONIC SECTION, TANGENTS & NORMALS

Total Marks : 153

Max. Time : 113.5 min.

Single choice Objective (-1 negative marking) Q. 1 to 5

Multiple choice objective (-1 negative marking) Q. 6 to 30

Comprehension (MCQ)(-1 negative marking) Q.31 to 32

Max. Time : 113.5 min.

[15, 12.5]

(4 marks, 3 min.)

[200, 75]

(4 marks 3 min.)

Comprehension (MCQ)(-1 negative marking) Q.31 to 32 Comprehension (SCQ) (-1 negative marking) Q.33 to 34 Single digit type Questions (no negative marking) Q. 35 to 40

(3 marks 2.5 min.) [6, 5] (4 marks 2.5 min.) [24, 15]

1. Variable ellipses are drawn with x = -4 as a directrix and origin as corresponding foci. The locus of extremities of minor axes of these ellipses is

(A)
$$y^2 = 4x$$

(B)
$$y^2 = 2x$$

(C)
$$y^2 = x$$

(D)
$$x^2 = 4y$$

- 2. An endless inextensible string of length 15m passes around two pins, A & B which are 5m apart. This string is always kept tight and a small ring, R, of negligible dimensions, inserted in this string is made to move in a path keeping all segments RA, AB, RB tight (as mentioned earlier). The ring traces a path, given by conic C, then
 - (A) Conic C is an ellipse with eccentricity 1/2
 - (B) Conic C is an hyperbola with eccentricity 2
 - (C) Conic C is an ellipse with eccentricity 2/3
 - (D) Conic C is a hyperbola with eccentricity 3/2
- 3. Let PQ and RS be 2 perpendicular focal chords of a rectangular hyperbola, which are not parallel to its axes, then

$$(A) PQ = RS$$

(B)
$$PQ^2 + (RS)^2 = (latus rectum)^2$$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

- 4. If a variable line has intercepts of e₁ and e₂ on the co-ordinate axes, where e₁/2 & e₂/2 are the eccentricities of a hyperbola and its conjugate, then the line always touches a fixed circle x² + y² = r², then 'r' is

 (A) 1
 (B) 2
 (C) 3
 (D) 4

 5. P is a point on the circle x² + y² = 1. Line OP, where O is origin, and x = 1 meet at Q. L₁ is a line parallel to x-axis drawn from Q. A line is drawn parallel to x axis from P meeting x = 1 at R. OR meets L₁ at S. Then locus of S is

 (A) Circle
 (B) Parabola
- 6. Tangent to the curve $y = x^3 3x^2 + 2x + 1$ at $P(\alpha, \beta)$ does not meet the curve at any point other than P.

(D) Hyperbola

(A) There is only one such tangent

Then identify the correct statement(s)

- (B) There are two such tangents
- (C) $\alpha + \beta = 2$

(C) Ellipse

- (D) Equation of normal at P can be y = x
- 7. Consider the curve $x^n + y^n = a^n(a > 0)$. Tangent at any arbitrary point $P(x_1, y_1)$ of the curve meets x-axis at A and y-axis at B. $(x_1y_1 \neq 0)$, then
 - (A) OA + OB = constant \Rightarrow n = $\frac{1}{2}$ (O is origin)
 - (B) AB = constant \Rightarrow n = $\frac{2}{3}$
 - (C) Mid-point of AB remain same \forall (x₁, y₁) \Rightarrow n = 1
 - (D) Slope of AB = $-\frac{x_1}{y_1} \Rightarrow n = 2$
- 8. The curve $y^2 = x^3 + 1$ touches a circle whose centre is (4, 0). Then abscissa of point of contact of these curves can be
 - (A) -1
- (B) -2
- (C) 4/3
- (D) 1/3
- 9. Let $P(\alpha, 0)$ & $Q(0, \beta)$ be two-points on x-axis and y-axis respectively. Tangents from P touch the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at M_1 (x_1, y_1) & M_2 (x_2, y_2), similarly tangents from Q to this hyperbola touches it
 - at M_3 (x_3 , y_3) and M_4 (x_4 , y_4), then (given α , $\beta \neq 0$)
 - (A) $x_1 = x_2 & y_1 + y_2 = 0$

(B) $x_1 + x_2 = 0$, $y_1 = y_2$

(C) $x_3 + x_4 = 0$, $y_3 = y_4$

(D) $x_3 + x_4$, $y_3 + y_4 = 0$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

- 10. Circles are drawn with OA & OB as diameters, where A & B are points of parabola $y^2 = 4x$. These circles meet at P (other than O). m_1 and m_2 are slope of tangents at A & B respectively and m is slope of chord AB, then (given $m_1 + m_2 \neq 0$, A, B are points other than origin and 'O' is origin)
 - (A) A, P, B are collinear points
- (B) m is harmonic mean of m₁ and m₂
- (C) m is arithmetic mean of m₁ and m₂
- (D) OP is perpendicular to AB
- 11. Tangents are drawn to hyperbola $\frac{x^2}{16} \frac{y^2}{b^2} = 1$. ('b' being parameter) from A(0, 4). The locus of point of contact of these tangent is a conic C, then
 - (A) Eccentricity of conic C is 1
 - (B) (0, 3) is focus of C
 - (C) Eccentricity of conic C is 1/2
 - (D) (0, 5) is focus of C
- Major and minor axis of an ellipse are 8 and 6 respectively. Initially it touches positive x and y axis and line joining the two focii is parallel to x-axis. It then rotates in anti-clockwise sense, always touching both the positive co-ordinate axes, and the rotation stops when the line joining their focii is vertical for the first time. C is centre of ellipse and O is origin, then
 - (A) Locus of C is the complete portion of $x^2 + y^2 = 25$ lying in I^{st} quadrant
 - (B) Locus of C is part of the circle $x^2 + y^2 = 100$
 - (C) Total distance covered by C is 5 tan^{-1} $\left(\frac{7}{24}\right)$
 - (D) Initial and final positions of C lies on the curve xy = 12
- 13. From centre O, of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, two perpendicular rays are drawn meeting the ellipse at P &
 - Q, N is the foot of perpendicular from O to PQ, then

(A)
$$\frac{1}{OP^2} + \frac{1}{OQ^2} = \frac{25}{144}$$

(B)
$$\frac{1}{OP^2} - \frac{1}{OQ^2} = \frac{25}{144}$$

(C) ON =
$$\frac{12}{5}$$

(D) ON =
$$\frac{6}{5}$$

- **14.** Two distinct tangents are drawn to parabola $y^2 = 4x$ from P(h, k) then (given $h \neq 0$).
 - (A) If slopes of both the tangents are positive then hk > 0
 - (B) if h < 0, slopes of the two tangents are of different signs
 - (C) If product of slopes of tangents is negative and hk > 0, then sum of slopes is positive
 - (D) If product of slopes of tangents is negative and hk > 0, the sum of slopes is negative

- **15.** Tangents are drawn to the curve $y = \frac{3x+1}{x-2}$. These tangents meet x = 2 and y = 3 at P & Q respectively
 - if point R is (2, 3) then
 - (A) Area of triangle PQR is 7 square units
 - (B) Area of triangle PQR is 14 square units
 - (C) Locus of circumcentre of triangle PQR is (y 3)(x 2) = 1
 - (D) Locus of circumcentre of triangle PQR is (y 3)(x 2) = 7
- **16.** y = x is tangent to an ellipse whose foci are (1, 0) and (3, 0) then
 - (A) Major axis of ellipse is = $\sqrt{6}$
 - (B) Major axis of ellipse is = $\sqrt{10}$
 - (C) $\left(\frac{3}{4}, \frac{3}{4}\right)$ is the point of contact of this ellipse and this tangent
 - (D) $\left(\frac{1}{2}, \frac{1}{2}\right)$ is the point of contact of this ellipse and this tangent
- 17. Two perpendicular tangents to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ are such that the auxiliary circle intercepts chord
 - of length ℓ_1 & ℓ_2 on these tangents, then
 - (A) These tangents intersect on the circle $x^2 + y^2 = 49$
 - (B) These tangents intersect on the circle $x^2 + y^2 = 25$
 - (C) $\ell_1^2 + \ell_2^2 = 28$
 - (D) $\ell_1^2 + \ell_2^2 = 25$
- **18.** Focus & vertex of a parabola are A(5, 2) and B(8, 6) respectively. P & Q are two points on the parabola such that the tangents meet at T(11, 10). Then
 - (A) P & Q are mirror images of each other in the line 4x 3y = 14
 - (B) Area of quadrilateral formed by tangent & normal at P & Q is 400 sq. units
 - (C) Area of quadrilateral formed by tangents & normal at P & Q is 200 sq. units
 - (D) P & Q are extremities of latus rectum of this parabola
- **19.** Chord joining A(θ_1) & B(θ_2) is reflected by the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, at B. if AB is a focal chord and the

reflected ray meets the ellipse again at $C(\theta_3)$, then (given $\theta_1,\,\theta_2\neq\,\frac{n\pi}{2}\,,\,n\in Z)$

(where e equal to eccentricity of ellipse)

(A)
$$e = \frac{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)}$$

(B)
$$e = \frac{\left| \cos\left(\frac{\theta_1 + \theta_2}{2}\right) \right|}{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)}$$

(C)
$$\tan \frac{\theta_1}{2} \tan \frac{\theta_3}{2} = \cot^2 \left(\frac{\theta_2}{2}\right)$$

(D)
$$\tan \frac{\theta_1}{2} \tan \frac{\theta_3}{2} = \tan^2 \left(\frac{\theta_2}{2}\right)$$

- Let set S consists of all the points (x, y) satisfying $16x^2 + 25y^2 \le 400$. For points in S let maximum and 20. minimum value of $\frac{y-4}{y-9}$ be M and m respectively, then
 - (A) M = 1
- (B) $M = \frac{65}{7}$ (C) m = 1
- (D) m = $\frac{7}{65}$
- Consider the curve $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, where x, y are real variables and a, b, c, f, g, h 21. are real constants. Let $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2$, and curve S be the locus of point of intersection of perpendicular tangents of the above curve.
 - (A) If $\Delta \neq 0$ and $h^2 = ab$, then S is a straight line
 - (B) If $\Delta \neq 0$, h = 0, a = b $\neq 0$ then S is a circle of radius $\sqrt{2(g^2 + f^2 c)}$
 - (C) If $\Delta = 0$, a + b = 0, then S is a point only
 - (D) IF $\Delta = 0$, a + b = 0 then S is a pair of straight lines.
- The ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ has a double contact with a circle at the extremity of latus rectum. The point 22. of contact lying in first and fourth quadrant.
 - (A) Centre of circle is (0, 0)

(B) Centre of circle is $\left(\frac{1}{4},0\right)$

(C) Radius of circle is $\frac{3\sqrt{5}}{4}$

- (D) Radius of circle is $\frac{3\sqrt{5}}{2}$
- Normal at point P(x_1 , y_1), not lying on x-axis, to the hyperbola $x^2 y^2 = a^2$ meets x-axis at A and y-axis 23. at B. If O is origin then
 - (A) Circumcentre of triangle OAB is P.
 - (B) Slope of OP + slope of AB = 0
 - (C) Slope of OP = slope of AB
 - (D) Locus of centroid of triangle OAB is a rectangular hyperbola
- Tangents at A(acos θ_1 , bsin θ_1) & B(acos θ_2 , bsin θ_2) to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are perpendicular and 24. their point of intersection is T(x₁, y₁). Normal at A & B meet at point N(h, k). Then

(A)
$$(a^2 + b^2)\cos^2\left(\frac{\theta_1 - \theta_2}{2}\right) = a^2\cos^2\left(\frac{\theta_1 + \theta_2}{2}\right) + b^2\sin^2\left(\frac{\theta_1 + \theta_2}{2}\right)$$

(B) Origin, N and T are vertices of a right angle triangle

(C)
$$\cos^2\left(\frac{\theta_1 - \theta_2}{2}\right) = \frac{a^2 + b^2}{(a + b)^2}$$

(D) Origin, N and T are collinear points

- A & B two points on the curve $xy = a^2$. Let N be the mid-point of AB. The line through A and B meets. 25. x-axis at P and y-axis at Q, then
 - (A) N bisects PQ

(B) ON is perpendicular to AB (where O is origin)

(C) AP = BQ

- (D) AQ = BP
- 26. Two parabolas have same focus and same axis, but in opposite directions. Let P & Q be the point of intersection of these two parabolas, then
 - (A) PQ is latus rectum of at least one of these parabolas.
 - (B) PQ is a double ordinate of these parabolas
 - (C) These two parabolas meet orthogonally
 - (D) Tangent at P(or Q) to these parabola are equally inclined to both the axis
- Let A(x_1, y_1), $x_1 \ne 0$, be a point of the curve $y^2 = x^3$. Tangent at A meets the curve again at B(x_2, y_2). M 27. and N are foot of perpendicular drawn to x-axis from point A & B respectively. T is the point where tangent at A meets x-axis, then
 - (A) $y_1y_2 > 0$
 - (B) $y_1y_2 < 0$
 - (C) Area if triangle AMT = 8(Area of triangle BNT)
 - (D) Area of triangle AMT = 64(Area of triangle BNT)
- 28. Let, S, be a conic whose centre is M(p, q). Locus of middle points of chords of this conic, which passes through a fixed point $N(\alpha, \beta)$ is
 - (A) Another conic which has a centre
- (B) Another conic with same focus
- (C) Another conic with centre as $\left(\frac{\alpha+p}{2},\frac{\beta+q}{2}\right)$ (D) Another conic with centre as $\left(\frac{\alpha-p}{2},\frac{\beta-q}{2}\right)$
- Consider the ellipse $\frac{x^2}{f(k^2+2k+5)} + \frac{y^2}{f(k+11)} = 1$, where f(x) is a strictly decreasing positive function, 29.

then

- (A) the set of values of k for which the major axis of the ellipse is x-axis is (-3, 2)
- (B) the set of values of k for which the major axis of the ellipse is y-axis is $(-\infty, 2)$
- (C) the set of values of k for which the major axis of the ellipse is y-axis is $(-\infty, -3) \cup (2, \infty)$
- (D) the set of values of k for which the major axis of the ellipse is x-axis is $(-3, \infty)$
- 30. Two concentric ellipses are such that the foci of one lie on the other and the length of their major-axes are equal. If e₁ & e₂ be their eccentricities, then
 - (A) the quadrilateral formed by joining their foci is a parallelogram
 - (B) the angle between their axes is given by $\cos \theta = \sqrt{\frac{1}{e_1^2} + \frac{1}{e_2^2} \frac{1}{e_1^2 e_2^2}}$
 - (C) their axes are perpendicular if $e_1 = \sqrt{1 e_2^2}$
 - (D) None of these

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

Comprehension (Q. 31 to 32)

Consider the circle, S, with equation $x^2 + y^2 + 2gx + 2fy + c = 0$. This circle meets the parabola $y^2 = 4ax$ at A(x₁, y₁), B(x₂, y₂), C(x₃, y₃) and D(x₄, y₄). Also let x-intercept of the circle, S, be X_L.

- **31.** Identify the correct identity (identities)
 - (A) $y_1 + y_2 + y_3 + y_4 = 0$

(B) $x_1 + x_2 + x_3 + x_4 = -(8a + 4g)$

(C) $y_1y_2y_3y_4 = a^2c$

- (D) $v_1v_2v_3v_4 = 16a^2c$
- 32. If A, B, C are co-normal points and $X_L = 2\sqrt{9^2 + f^2 c}$, then
 - (A) $x_4 = 0$

(B) $x_1x_2x_3 = 0$

(C) Circle, touches parabola

(D) $(y_1 + y_2)(y_2 + y_3)(y_3 + y_1) = 0$

Comprehension: (Q.33 to 34)

Let P, Q, R be three distinct points on the circle $x^2 + y^2 = 25$. L, M, N are points on the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. PL, QM, NR are perpendicular to x-axis, with each segment not intersecting the x-axis. Further none of these points lie on coordinate axes and P,Q,R have been so chosen that area of triangle PQR is maximum.

- **33.** Area of triangle LMN is (in square units)
 - (A) 45√3

(B) $\frac{75\sqrt{3}}{4}$

(C) $25\sqrt{3}$

- (D) 15√3
- **34.** Normals to the ellipse at L, M and N are
 - (A) Concurrent at a point.
 - (B) such that they all pass through origin
 - (C) sides of an equilateral triangle with non-zero area.
 - (D) such that two of them are necessarily perpendicular.
- **35.** AB is focal chord of a parabola. Let D and C be foot of perpendicular from A & B on it's directrix respectively. If CD= 6 and area of trapezium ABCD is 24 square units, then find length of chord AB.
- 36. A circle is drawn whose centre is on x-axis and it touches y-axis. If no part of the circle lies ouside the parabola $y^2 = 8x$, then maximum possible radius of the circle is
- 37. Let P be a point on the curve $y = \ln \left(1 + \sqrt{1 x^2}\right) \ln x \sqrt{1 x^2}$, Tangent at point P meet y-axis at Q, then find the length of segment PQ.

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

- 38. Normal at the point P to the parabola $y^2 = 4x$, intersects the circle with SP as diameter at Q also. If PQ = 2 units (given that point S is focus of the given parabola), then find the abscissa of point P.
- 39. Parabola, P_1 has focus at S(2, 2) and y-axis is it's directrix. Parabola, P_2 is confocal with P_1 and it's directrix is x-axis. Let $Q(x_1, y_1)$ and $R(x_2, y_2)$ be real points of intersection of parabolas P_1 and P_2 . If the ratio $\frac{RS}{OS} = a + b\sqrt{b}$ find (a + b) (given $x_2 > x_1$ and $a, b \in N$)
- **40.** From point P $\left(-\frac{5}{4}, 2\right)$ variable straight lines are drawn to meet the curve $y = 2\sqrt{x}$ at A & B. Q is a point on this line such that PA.PB = $(PQ)^2$, then locus of point Q is the line ax + y = b, where (a + b) is equal to

ANSWER KEY

DPP # 10

REVISION DPP OF PERMUTATION & COMBINATION AND PROBABILITY

- 1. (A) 2. (D) 3. (D) (D) 5. (A) (C) 7. (A) (B) (B) 9. (B) 10. (B) 11. (D) 12. 13. (C) 14. (C) 8. (C) 15. (C) 16. (A) 17. (A) 18. 19. (A,B,C,)20. (B,C)
- **21.** (A,B,D) **22.** (B,D) **23.** (B,C,D) **24.** (A,C) **25.** (A,B,C) **26.** (B,C) **27.** (A,B,C)
- **28.** (A,C) **29.** (A,B,C,D) **30.** (B,C,D) **31.** (A,B,C,D) **32.** (A,B)
- **33**. (C,D) **34**. (D) **35**. (A) **36**. (B) **37**. 4 **38**. 5 **39**. 16
- **40.** 175

ANSWER KEY

DPP#11

REVISION DPP OF CONIC SECTION, TANGENTS & NORMALS

1. (A) 2. (A) 3. (A) 4. (B) 5. (D) 6. (A,C,D)(A,C) **9.** 7. (A,B,C,D)8. (A,C)10. (A,B,D) 11. (A,B)(A,C)12. (C,D) **13.** 14. (A,B,C) **15**. (B,D) 16. (B,C) **17.** (B,C)18. (A,C,D) 19. (A,C) **20.** (A,D) **21.** (A,C)22. (B,C) 23. (A,B,D)24. (A,D) **25.** (A,C,D) **26**. (B,C) **27**. (B,D) 28. (A,C)29. (A,C)(A,B,C) 31. (A,B,C,D)30. (A,B,D) **32.** 33. (D) 34. (A) 39. 35. 8 36. 37. 1 38. 3 5 40. 5

!! BEST OF LUCK FOR JEE-ADVANCED 2015 !!

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in
Toll Free: 1800 200 2244 | 1800 258 5555 | cin: u80302RJ2007PTC024029

PAGE NO.-8

Solution of DPP # 11

TARGET: JEE (ADVANCED) 2015

Course: VIJETA & VIJAY (ADP & ADR)

MATHEMATICS

Now
$$k = b$$
 and $h = ae$

1.

2.

Also
$$\frac{a}{e} - ae = 4$$
 \Rightarrow $a(1 - e^2) = 4e$ \Rightarrow $a^2(1 - e^2) = 4ae$ \Rightarrow $b^2 = 4h$ \Rightarrow $k^2 = 4h$ \Rightarrow $y^2 = 4x$

Since length of string is constant, RA + RB = 10, hence locus of R, i.e. conic C is an ellipse with eccentricity $\frac{5}{10} = \frac{1}{2}$.

Let the parameteric equation of chord be

$$x = a \sqrt{2} + r\cos\theta$$
 \Rightarrow $y = r\sin\theta$

Solving it with
$$x^2 - y^2 = a^2$$
 We get $r^2(\cos 2\theta) + (2\sqrt{2} a \cos \theta)r + a^2 = 0$

Solving it with
$$x^2 - y^2 = a^2$$
 We get $r^2(\cos 2\theta) + (2\sqrt{2} a \cos \theta)r + a^2 = 0$
 $(PQ)^2 = (r_1 + r_2)^2 - 4r_1r_2 = \frac{8a^2 \cos^2 \theta - 4a^2 \cos 2\theta}{\cos^2 2\theta} = 4a^2 \sec^2 2\theta$

Hence
$$(RS)^2 = 4a^2 sec^2 \left\{ 2 \left(\frac{\pi}{2} + \theta \right) \right\} = 4a^2 sec^2 2\theta$$

4. Line is
$$xe_2 + ye_1 - e_1e_2 = 0$$
 ...(i) also $4(e_1^2 + e_2^2) = e_1^2e_2^2$...(ii)

It is tangent to circle if
$$r = \frac{e_1e_2}{\sqrt{e_1^2 + e_2^2}} = 2$$

Let point P be $(\cos\theta, \sin\theta)$, so equation of OP is y = $(\tan\theta)x$, hence point Q is $(1, \tan\theta)$. Equation of L₁ is $y = tan\theta$. Now equation of line PR is $y = sin\theta$, hence point R is (1, $sin\theta$). Therefore equation of OR is $y = sin\theta$. $(\sin\theta)x$. Point of intersection of OR and L₁ is $S(\sec\theta, \tan\theta)$. Hence locus of S is $x^2 - y^2 = 1$, a hyperbola

If the tangent at P does not meet the curve at any other point then the equation 6.

 $x^3 - 3x^2 + 2x + 1 = mx + c$ (where y = mx + c in the equation tangent at P) has 3 coincident roots α .

- Hence $x^3 3x^2 + (2 m)x + (1 c) \equiv (x \alpha)^3$ $\Rightarrow 3\alpha = 3 \Rightarrow \alpha = 1 \Rightarrow 2 m = 3 \& 1 c = -1$
- m = -1 & c = 2 hence point P is (1, 1)

and corresponding tangent is x + y = 2 & normal is y = x

So (A) (C) (D)

Aliter: Since $y = x^3 - 3x^2 + 2x + 1 = f(x) & y = mx + c$ touch each other at $P(\alpha, \beta)$

 $f'(\alpha)$ = m, since the equation is a cubic equation these two curves when equated will give 3 roots and as 2 are real, third root too has to be real & as the given condition states 3^{rd} root can be α only.

 α = 1 m = –1 and c = 2 \Rightarrow (A)(C)(D)Hence $f''(\alpha) = 0$

7.

Tangent at P is $xx_1^{n-1} + yy_1^{n-1} = a^n$ \Rightarrow A is $(a^nx_1^{1-n}, 0)$ & B is $(0, a^ny_1^{1-n})$

OA + OB = $a^n(x_1^{1-n} + y_1^{1-n})$ = constant $\Rightarrow 1 - n = n$ \Rightarrow $n = \frac{1}{3}$.

 $AB = a^{n} \sqrt{x_{1}^{2-2n} + y_{1}^{2-2n}} = constant \qquad \Rightarrow \qquad 2 - 2n = n \qquad \Rightarrow \qquad n = 1$ $Mid-point of AB is \left(\frac{a^{n} x_{1}^{1-n}}{2}, \frac{a^{n} y_{1}^{1-n}}{2}\right) remain same \qquad \Rightarrow \qquad 1 - n = 0 \qquad \Rightarrow 1$

Slope of AB = $-\left(\frac{y_1}{x_4}\right)^{1-11} = -\frac{x_1}{y_4}$ \Rightarrow 1 - n = -1 \Rightarrow n = 2

For $y^2 = x^3 + 1$, $\frac{dy}{dx} = \frac{3x^2}{2y}$ (if $y \neq 0$) $\Rightarrow \frac{dy}{dx}\Big|_{\text{for circle}} = \frac{4-x}{y}$ (if $y \neq 0$) 8.

If they touch each other for
$$y \neq 0$$

$$\frac{3x^2}{2y} = \frac{4-x}{y} \implies 3x^2 + 2x - 8 = 0$$
 (rejected)

(Since $x = -2 \Rightarrow y^2 = -7$ for first curve) If y = 0, x = -1 & tangents to both the curves are parallel to y-axis

Tangent at (p, q) to the hyperbola is $\frac{xp}{a^2} - \frac{yq}{h^2} = 1$ 9.

 $\Rightarrow p = \frac{a^2}{\alpha} \Rightarrow x_1 = x_2 \Rightarrow y_1 + y_2 = 0$ If they pass through $(\alpha, 0)$

If they pass through $(0, \beta)$

 $x_3 + x_4 = 0$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Since OA & OB are diameters of circles ∠OPA = ∠OPB = 90° Hence A, P, B are collinear

Now m =
$$\frac{2}{t_1 + t_2} = \frac{2}{\frac{1}{m_1} + \frac{1}{m_2}} = \frac{2m_1m_2}{m_1 + m_2} \left(m_1 = \frac{1}{t_1} & m_2 = \frac{1}{t_2} \right)$$

Hence (A), (B), (D)

11.

Tangent at P is $\frac{x \sec \theta}{4} - \frac{y \tan \theta}{b} = 1$.

It passes through (0, 4) Hence $b = -4 \tan\theta$...(1) Now h = 4 $\sec\theta$ and k = $\tan\theta$ = -4 $\tan^2\theta$ (from (1))

$$\Rightarrow \qquad K = -4(\sec^2\theta - 1) \qquad \Rightarrow \qquad k = -4\left(\frac{h^2}{16} - 1\right).$$

$$\Rightarrow \qquad 4K - 16 = -h^2 \qquad \Rightarrow \qquad x^2 = -4(y - 4) \Rightarrow$$

$$\Rightarrow \qquad 4K - 16 = -h^2 \qquad \Rightarrow \qquad x^2 = -4 (y - 4) \Rightarrow \qquad (A) \& (B)$$

12.

Finally

Consider the ellipse in some intermediate position with C being (h, k).

Now
$$h^2 + k^2 = a^2 + b^2 = 16 + 9 = 25$$
.

Hence C moves in a circle of radius 5 units whose centre is O. Initially major axis is along y = 3 hence C is (4, 3) and finally major axis is along x = 3 hence C is (3, 4)

Distance curved by C in this motion in 5 $\left(\tan^{-1}\left(\frac{4}{3}\right) - \tan^{-1}\left(\frac{3}{4}\right)\right) = 5 \tan^{-1}\left(\frac{7}{24}\right)$

Let OP = $r_1 \& OQ = r_2$ 13.

Now P & Q lie on the ellipse hence

$$r_{1}^{2} \left(\frac{\cos^{2} \theta}{16} + \frac{\sin^{2} \theta}{9} \right) = 1 \qquad \Rightarrow \qquad \frac{\cos^{2} \theta}{16} + \frac{\sin^{2} \theta}{9} = \frac{1}{r_{1}^{2}} \qquad \dots (1)$$

$$r_{2}^{2} \left(\frac{\sin^{2} \theta}{16} + \frac{\cos^{2} \theta}{9} \right) = 1 \qquad \Rightarrow \qquad \frac{\sin^{2} \theta}{16} + \frac{\cos^{2} \theta}{9} = \frac{1}{r_{2}^{2}} \qquad \dots (2)$$

$$r_2^2 \left(\frac{\sin^2 \theta}{16} + \frac{\cos^2 \theta}{9} \right) = 1$$
 $\Rightarrow \frac{\sin^2 \theta}{16} + \frac{\cos^2 \theta}{9} = \frac{1}{r_2^2}$ (2)

Now (1) + (2)
$$\Rightarrow \frac{1}{16} + \frac{1}{9} = \frac{1}{r_1^2} + \frac{1}{r_2^2} = \frac{25}{144}$$

Let equation of chord PQ be $x \cos \alpha + y \sin \alpha = p$, homogenizing the equation of ellipse with this chord gives

$$\frac{x^2}{16} + \frac{y^2}{9} - \left(\frac{x\cos\alpha + y\sin\alpha}{p}\right)^2 = 0$$

As OP & OQ are perpendicular coefficient of x^2 + coefficient of y^2 = 0

$$\Rightarrow \qquad \left(\frac{1}{16} - \frac{\cos^2 \alpha}{p^2}\right) + \left(\frac{1}{9} - \frac{\sin^2 \alpha}{p^2}\right) = 0 \qquad \Rightarrow \qquad \frac{1}{16} + \frac{1}{9} = \frac{1}{p^2} \Rightarrow p^2 = \frac{144}{25} \Rightarrow p = 12/5$$

Let equation of tangent be $y = mx + \frac{1}{m}$, as this tangent passes through (h, k), we get $k = mh + \frac{1}{m}$ 14.

$$\Rightarrow hm^{2} - km + 1 = 0 < \frac{m_{1}}{m_{2}} \qquad m_{1} + m_{2} = \frac{k}{h}$$

$$m_1m_2 = \frac{1}{2}$$

$$\begin{split} m_1 m_2 &= \frac{1}{h} \\ \text{If } m_1, \, m_2 > 0 \quad \Rightarrow \qquad \frac{k}{h} > 0 \, \& \, \frac{1}{h} > 0 \qquad \Rightarrow \qquad k > 0 \, \& \, h > 0 \quad \Rightarrow \qquad hk > 0 \\ \text{If } h < 0 \qquad \Rightarrow \qquad m_1 m_2 < 0 \\ \text{If } m_1 m_2 < 0 \qquad \Rightarrow \qquad h < 0 \, \& \, \text{if } hk > 0 \qquad \Rightarrow \qquad k < 0 \quad \Rightarrow \qquad m_1 + m_2 = \frac{k}{h} > 0 \end{split}$$

If
$$m_1m_2 < 0 \Rightarrow h < 0 \& \text{if } hk > 0 \Rightarrow k < 0 \Rightarrow m_1 + m_2 = \frac{k}{n} > 0$$

$$y = \frac{3(x-2)+7}{x-2}$$
 \Rightarrow $(x-2)(y-3) = 7$

The given curve a rectangular hyperbola, now shifting origin at (2, 3) the curve transforms to xy = 7. We know that in a rectangular hyperbola portion between axes is bisected by point of tangency and area of triangle PQR is $2c^2$ (for $xy = c^2$). Hence, here area is 14 & circumcentre of PQR is mid-point of PQ which lies on the given curve.

16. Product of perpendicular from two foci on any tangent = $b^2 = \frac{3}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{3}{2}$ \Rightarrow $b = \sqrt{\frac{3}{2}}$

Now ae = 1
$$\Rightarrow$$
 $a^2 = b^2 + a^2 e^2 \Rightarrow$ $a = \sqrt{\frac{5}{2}}$

We know that tangent and normal bisect the angle between focal distances of a point.

Image of (1, 0) in y = x is (0, 1), line joining (0, 1) & (3, 0) is x + 3y = 3. Point of contact of y = x & ellipse is the point of intersection of y = x and x + 3y = 3, i.e. $\left(\frac{3}{4}, \frac{3}{4}\right)$

17. As these tangents are perpendicular they meet on director circle of the ellipse, hence locus of point of intersection of these tangents is $x^2 + y^2 = 16 + 9 = 25$.

Let equation of a tangent be $y = mx + \sqrt{16m^2 + 9}$

$$\ell_1$$
 = 2 $\sqrt{16-p^2}$, where p is perpendicular distance of the tangent from origin, here p² = $\frac{16m^2+9}{1+m^2}$

So
$$\ell_1^2 = 4 \left(16 - \frac{16m^2 + 9}{1 + m^2} \right) = \frac{28}{1 + m^2}$$

Similarly
$$\ell_2^2 = \frac{28m^2}{1+m^2}$$
 (replacing m by $-\frac{1}{m}$)

Hence
$${\ell_1}^2 + {\ell_2}^2 = \frac{28(1+m^2)}{1+m^2} = 28$$

Note that B is mid-point of AT, hence tangents at the extremities of latus rectum meet at T.

Area of quadrilateral formed by tangents an normal at the extremities of latus rectum = $\frac{1}{2}$ (latus rectum)²

$$= \frac{1}{2} \times (20)^2 = 200$$

18.

It passes through (ae, 0) or (-ae, 0)

Hence e =
$$\frac{\cos\left(\frac{\theta_1 - \theta_2}{2}\right)}{\cos\left(\frac{\theta_1 + \theta_2}{2}\right)}$$

WLOG let it passes through (ae, 0) then BC passes through (-ae, 0)

Hence e =
$$\frac{1 + \tan\frac{\theta_1}{2}\tan\frac{\theta_2}{2}}{1 - \tan\frac{\theta_1}{2}\tan\frac{\theta_2}{2}}$$

$$\Rightarrow \tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2} = \frac{e-1}{e+1} & \text{similarly } \tan \frac{\theta_2}{2} \tan \frac{\theta_3}{2} = \frac{-e-1}{-e+1} = \frac{e+1}{e-1}$$

So,
$$\left(\tan\frac{\theta_1}{2}\tan\frac{\theta_2}{2}\right)\left(\tan\frac{\theta_2}{2}\tan\frac{\theta_3}{2}\right) = 1$$

20.

 $\frac{y-4}{x-9}$ is the slope of line joining A(9, 4) & (x, y)

For maximum & minimum value of this expression we have to determine the slope of tangents to the

ellipse
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 from (9, 4)

Hence
$$y = Kx \pm \sqrt{16k^2 + 9}$$
 It passes through (9, 4)

Hence
$$(4 - 9k)^2 = 16K^2 + 9$$
 \Rightarrow $65K^2 - 72K + 7 = 0$

Hence y = Kx ±
$$\sqrt{16k^2 + 9}$$
 It passes through (9, 4)
Hence $(4 - 9k)^2 = 16K^2 + 9$ \Rightarrow $65K^2 - 72K + 7 = 0$
Hence K = 1 or $\frac{7}{65}$ \Rightarrow M = 1 & m = $\frac{7}{65}$

If $\Delta \neq 0$, $h^2 = ab \Rightarrow$ curve is a parabola, hence S is a straight line 21.

If
$$\Delta \neq 0$$
, h = 0, a = b $\neq 0 \Rightarrow$ curve is a circle & S is a circle of radius $\sqrt{2(g^2 + f^2 - c)}$ (provided a = b = 1)

If $\Delta = 0$, $a + b = 0 \Rightarrow$ curve is a pair of perpendicular straight lines for which S is a point which is the point of intersection of the two lines.

By symmetry centre of circle lies on x-axis

Normal at P is
$$\frac{4x}{1} - \frac{3y}{3/2} = 1$$
 \Rightarrow point C is $\left(\frac{1}{4}, 0\right)$

Radius =
$$\sqrt{\left(1 - \frac{1}{4}\right)^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{9}{16} + \frac{9}{4}} = \frac{3\sqrt{5}}{4}$$

Hence P is mid-point of AB, i.e. circumcentre of ∆OAB

$$m_{AB} = -\frac{y_1}{x_1}, m_{OP} = \frac{y_1}{x_1}$$

24.

25.

Let (h, k) be centroid of the triangle OAB

∴ 3h = 2asec
$$\theta_1$$
 3k = 2atan θ \Rightarrow $x^2 - y^2 = \frac{4a^2}{9}$

$$x^2 - y^2 = \frac{4a^2}{9}$$

$$x_1 = \frac{a\cos\left(\frac{\theta_1 + \theta_2}{2}\right)}{\cos\left(\frac{\theta_1 - \theta_1}{2}\right)} \qquad \dots (1), \qquad \qquad y_1 = \frac{b\sin\left(\frac{\theta_1 + \theta_2}{2}\right)}{\cos\left(\frac{\theta_1 - \theta_1}{2}\right)} \qquad \dots (2)$$

$$y_1 = \frac{b \sin\left(\frac{\theta_1 + \theta_2}{2}\right)}{\cos\left(\frac{\theta_1 - \theta_1}{2}\right)} \qquad \dots (2)$$

As tangents are perpendicular $x_1^2 + y_1^2 = (a^2 + b^2)$

Hence
$$(a^2 + b^2)\cos^2\left(\frac{\theta_1 - \theta_1}{2}\right) = a^2\cos^2\left(\frac{\theta_1 + \theta_2}{2}\right) + b^2\sin^2\left(\frac{\theta_1 + \theta_2}{2}\right)$$

Now it is clear that ATBN is a rectangle, hence diagonals bisect each other, therefore.

 $h + x_1 = a(\cos\theta_1 + \cos\theta_2) \& k + y_1 = b (\sin\theta_1 + \sin\theta_2)$

$$\Rightarrow \frac{k+y_1}{h+x_1} = \frac{b}{a} \tan \frac{\left(\theta_1 + \theta_2\right)}{2} = \frac{b}{a} \cdot \frac{ay_1}{bx_1} \text{ (from (1) & (2))}$$

$$\Rightarrow \qquad \frac{k+y_1}{h+x_1} = \frac{y_1}{x_1} \quad \Rightarrow \qquad kx_1 = hy_1 \qquad \Rightarrow \qquad \frac{y_1}{x_1} = \frac{k}{h}$$

So origin (O), T, N are collinear

Equation of AB is $x + t_1t_2y = a(t_1 + t_2)$

Hence point P is (a(t₁ + t₂), 0) and Q is
$$\left(0, a\left(\frac{1}{t_1} + \frac{1}{t_2}\right)\right)$$

$$N \text{ is } \left(\frac{a \left(t_1 + t_2\right)}{2}, \frac{a}{2} \left(\frac{1}{t_1} + \frac{1}{t_2} \right) \right)$$

Hence N bisects AB as well as PQ

$$m_{ON} = \frac{a(t_1 + t_2)}{2t_1t_2} \cdot \frac{2}{a(t_1 + t_2)} = \frac{1}{t_1t_2}$$

Now AN = BN and PN = QN
$$\Rightarrow$$
 AP + AN = BQ + BN

$$AP = BQ$$

Further AP + AB = BQ + ABBP = AQ

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Let the parabola be $y^2 = 4ax$ and $y^2 = -4b(x - a - b)$ (where ab > 0) 26. Let the point of intersection of parabola be (x_1, y_1)

then slope of tangents are say m₁ & m₂

$$m_1 = \frac{2a}{y_1} \& m_2 = -\frac{2b}{y_1}$$

Also,
$$4ax_1 = -4b(x_1 - a - b)$$
 \Rightarrow $x_1 = b \& y_1 = \pm 2\sqrt{ab}$

Hence $y_1^2 = 4ab \& PQ$ is perpendicular to axis, i.e. it is a double ordinate. further $m_1 m_2 = -\frac{4ab}{v^2} = -1$.

Let point A be (t_1^2, t_1^3) , hence equation of tangent is $y - t_1^3 = \frac{3t_1}{2}(x - t_1^2)$ 27.

If point B is $(t_2^2 t_2^3)$, then $t_2^3 - t_1^3 = \frac{3t_1}{2} (t_2^2 - t_1^2)$.

$$\Rightarrow t_1^2 + 2t_1t_2 + 2t_2^2 = 3t_1t_2 + 3t_1^2$$

$$\Rightarrow t_1 + 2t_1t_2 + 2t_2 = 3t_1t_2 + 3t_1$$

$$\Rightarrow 2t_2^2 - t_1t_2 - t_1^2 = 0 \Rightarrow (t_2 - t_1)(2t_2 + t_1) = 0 \Rightarrow t_2 = -\frac{t_1}{2}$$

$$\Rightarrow$$

$$(t_2 - t_1) (2t_2 + t_1) = 0$$

So point B is
$$\left(\frac{t_1^2}{4}, \frac{-t_1^3}{8}\right)$$

M is
$$({t_1}^2,\,0)$$
, N is $\left(\frac{t_1^2}{4},0\right)$ and T is $\left(\frac{t_1^2}{3},0\right)$

Triangle AMT and BNT are similar triangle

Hence
$$\frac{\Delta(AMT)}{\Delta(BNT)} = \left(\frac{AM}{BN}\right)^2 = 8^2 = 64$$

28. Since the above conic has a centre it must be a hyperbola or an ellipse

> Let origin be shifted to M(p,q) and axis be so rotated that it coincides with the principle axis of conic S, hence its equation is $Ax^2 + By^2 = 1$, and new-co-ordinates of N be (α', β')

Equation of chord whose mid-point is (h, k) is $T = S_1$, i.e.

$$Axh + Byk = Ah^2 + Bk^2$$

it passes through
$$(\alpha', \beta')$$

Hence A($x^2 - x\alpha'$) + B($y^2 - y\beta'$) = 0

$$\Rightarrow A\left(x-\frac{\alpha'}{2}\right)^2+B\left(y-\frac{\beta'}{2}\right)^2=\frac{A(\alpha')^2}{4}+\frac{B(\beta')^2}{4}$$

Hence locus is a similar conic whose centre is $\left(\frac{\alpha'}{2}, \frac{\beta'}{2}\right)$

i.e. mid-point of MN.

29. For major axis to be x-axis,

$$f(k^2 + 2k + 5) > f(k + 11)$$

$$f(k^2 + 2k + 5) > f(k + 11)$$

 $\Rightarrow k^2 + 2k + 5 < k + 11 \Rightarrow k \in (-3, 2)$

$$k \in (-3, 2)$$

30.

HH' & SS' have same mid-point HSH'S' is a parallelogram

let one ellipse be $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$...(i) \therefore H lies on it

also $H = (ae_2 \cos\theta, ae_2 \sin\theta)$

putting in equation (i)

$$\cos^2\theta = \frac{1}{e_1^2} + \frac{1}{e_2^2} - \frac{1}{e_1^2 e_2^2}$$

(A), (B) & (C) are correct. (C) follows from (B)

(31 to 32)

Considering a point (at², 2at) and substitute it in equation of circle, S, we get

$$a^{2} t^{4} + 2a(2a + g)t^{2} + 4aft + c = 0$$
 $\begin{cases} t_{1} \\ t_{3} \\ t_{4} \end{cases}$

$$t_1 + t_2 + t_3 + t_4 = 0$$

$$\Sigma t_1 t_2 = \frac{2a(2a+g)}{a^2}$$

$$\Sigma v_i = 2a\Sigma t_i = 0$$

$$\Sigma x_i = a\Sigma t_i^2 = a\{(\Sigma t_i)^2 - 2\Sigma t_1 t_2\} = -4(2a + g)$$

$$\Sigma y_i = 2a\Sigma t_i = 0$$

$$\Sigma x_i = a\Sigma t_i^2 = a\{(\Sigma t_i)^2 - 2\Sigma t_1 t_2\} = -4(2a + g)$$

$$\Pi t = \frac{c}{a^2} \qquad \Rightarrow \qquad \frac{\Pi y_i}{16a^4} = \frac{c}{a^2} \qquad \Rightarrow \qquad \Pi y_i = 16a^2c$$
If A. B. C are co-normal point to the table to and as $X_i = 2$ (ra

If A, B, C are co-normal point $t_1 + t_2 + t_3 = 0$ and as $X_L = 2$ (radius of S), centre lies on x-axis \Rightarrow f = 0 and t₄ = 0 (as Σ t_i = 0)

Hence t = 0 is a repeated root of circle and parabola

⇒ one of A, B, C is origin apart from D being origin, i.e. O coincides with one of the points amongst A,B,C

one of t_1 , t_2 , t_3 is zero \Rightarrow $t_1 + t_2 = 0$ or $t_2 + t_3 = 0$ or $t_3 + t_1 = 0$ and circle has double contact with parabola at origin.

(33 to 34)

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in Toll Free: 1800 200 2244 | 1800 258 5555 | cin: u80302RJ2007PTC024029 Note that PQR must be an equilateral triangle hence if P is $(5\cos\theta, 5\sin\theta)$, Q & R would be $\left(5\cos\left(\theta+\frac{2\pi}{3}\right),5\sin\left(\theta+\frac{2\pi}{3}\right)\right) \& \left(5\cos\left(\theta+\frac{4\pi}{3}\right),5\sin\left(\theta+\frac{4\pi}{3}\right)\right).$

Also area of
$$\triangle PQR = \frac{\sqrt{3}}{4} (10 \sin 60^{\circ})^2 = \frac{\sqrt{3}}{4} .100 \times \frac{3}{4} = \frac{75\sqrt{3}}{4}$$

Now
$$\frac{\text{area of } \triangle PQR}{\text{area of } \triangle LMN} = \frac{5}{4}$$
 \Rightarrow Area of $\triangle LMN = 15\sqrt{3}$

Now normals at L, M, N are

$$(5\sin\theta)x - (4\cos\theta)y = \frac{9}{2}\sin 2\theta$$

$$5\sin\left(\theta + \frac{2\pi}{3}\right)x - 4\cos\left(\theta + \frac{2\pi}{3}\right)y = \frac{9}{2}\sin\left(2\theta + \frac{4\pi}{3}\right)$$

$$5\sin\left(\theta + \frac{4\pi}{3}\right)x - 4\cos\left(\theta + \frac{4\pi}{3}\right)y = \frac{9}{2}\sin\left(2\theta + \frac{8\pi}{3}\right)$$

Hence the normals are concurrent

35.

Let S be focus AS = AD & BS = BC

Area of trapezium
$$= \frac{1}{2} \{AD + BC\}.6$$

$$= 3 (AS + BS)$$

$$= 3AB$$

hence AB = 8 units

36.

Let equation of circle be $(x - r)^2 + y^2 = r^2$

Solving at with $y^2 = 8x_1$ we get

Now
$$2r - 8 \le 0$$
 \Rightarrow $r \le 4$ Hence $r_{max} = 4$
Normal at $(2t^2, 4t)$ to $y^2 = 8x$, meets x-axis

Now
$$2r - 8 \le 0 \Rightarrow r \le 4$$
 Hence r_{max}

Alter:

at $(4 + 2t^2, 0)$, So x-coordinate of centre should be such that $r \le 4 + 2t^2 \le 4$, hence $r_{max} = 4$

Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in

Toll Free: 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PTC024029

37. Tangent to a curve at
$$(x_1, y_1)$$
 meets y-axis at $(0, y_1 - mx_1)$ where. $m = \frac{dy}{dx}\Big|_{(x_1, y_1)}$

Hence PQ =
$$|x_1| \sqrt{1 + m^2}$$

Now
$$\frac{dy}{dx} = \frac{1}{1+\sqrt{1-x^2}} \cdot \left(\frac{-x}{\sqrt{1-x^2}}\right) - \frac{1}{x} + \frac{x}{\sqrt{1-x^2}}$$

$$= \frac{-x^2 - \sqrt{1-x^2}(1+\sqrt{1-x^2}) + x^2(1+\sqrt{1-x^2})}{(1+\sqrt{1-x^2}) \cdot x \cdot \sqrt{1-x^2}} = \frac{-x^2 - \sqrt{1-x^2} - 1 + x^2 + x^2 + x^2 \sqrt{1-x^2}}{x(1+\sqrt{1-x^2})\sqrt{1-x^2}}$$

$$= \frac{-(1-x^2)(1+\sqrt{1-x^2})}{x(1+\sqrt{1-x^2})\sqrt{1-x^2}} = \frac{-\sqrt{1-x^2}}{x}$$

Hence
$$PQ^2 = x_1^2 \left(1 + \frac{1 - x_1^2}{x_1^2} \right) = 1$$
 \Rightarrow $PQ = \frac{1}{2}$

38.

Let P be $(t^2, 2t)$, then equation of normal is $y + tx = 2t + t^3$

Therefore SQ =
$$\left| \frac{t(t^2 + 1)}{\sqrt{1 + t^2}} \right| = |t\sqrt{1 + t^2}|$$

Now SP =
$$(1 + t^2)$$

So
$$PQ = \sqrt{SP^2 - SQ^2}$$

$$= \sqrt{(1+t^2)^2 - t^2(1+t^2)} = \sqrt{(1+t^2)(1+t^2-t^2)} = \sqrt{1+t^2}$$

Now PQ = 2
$$\Rightarrow$$
 t^2 = 3 Hence abscissa of point P is 3.

39.

$$\begin{array}{ll} P_1 & (y-2)^2 = 4(x-1) \\ P_2 & (x-2)^2 = 4(y-1) \end{array}$$
 Subtracting them we get $(x-y)(x+y) = 0 \Rightarrow$ line QR is $y=x$

Hence $x_1 \& x_2$ are roots of the equation

$$(x-2)^2 = 4(x-1) \qquad \Rightarrow \qquad x^2 - 8x + 8 = 0 \begin{cases} 4 - 2\sqrt{2} = x_1 \\ 4 + 2\sqrt{2} = x_2 \end{cases}$$
 (given $x_2 > x_1$)
So
$$\frac{RS}{QS} = \frac{2\sqrt{2} + 2}{2\sqrt{2} - 2} = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} = 3 + 2\sqrt{2}$$

Let PA = r_1 and PB = r_2 where r_1 and r_2 are roots of equation $(2 + r\sin\theta)^2 = 4\left(-\frac{5}{4} + r\cos\theta\right)$, 40.

$$\Rightarrow r^2 \sin^2 \theta + 4(\sin \theta - \cos \theta)r + 9 = 0$$

Let Q be (h, k) and PQ = r
$$\Rightarrow$$
 h = $-\frac{5}{4}$ + r cos θ , k = 2 + rsin θ

then
$$r_1 r_2 = \frac{9}{\sin^2 \theta} = r^2$$

$$\Rightarrow 9 = (k-2)^2 \Rightarrow k^2 - 4k - 5 = 0$$
Hence k = 5 or k = -1(rejected)

Hence locus is
$$y = 5$$
 \Rightarrow $a = 0, b = 5$ \Rightarrow $a + b = 5$