## 计算机视觉和模式识别 作业 6

13331231 孙圣 计应2班

## 一、使用说明

通过 python3 adaboost.py 和 python3 svm.py 直接运行即可(需要安装 python3, numpy, scipy, scikit-learn)

测试环境: MAC OSX 10.11

Processor 1.6 GHz Intel Core i5 Memory 2 GB 1333 MHz DDR3

## 二、实验过程

一开始尝试使用 C++和 opencv 库进行训练和学习。 首先要做的就是从原始文件中读取相应的像素和标记信息。

根据网站上提供的数据存储格式[1]:

# TRAINING SET IMAGE FILE (train-images-idx3-ubyte):

| [offset] | [type]         | [value]          | [description]     |
|----------|----------------|------------------|-------------------|
| 0000     | 32 bit integer | 0x00000803(2051) | magic number      |
| 0004     | 32 bit integer | 60000            | number of images  |
| 8000     | 32 bit integer | 28               | number of rows    |
| 0012     | 32 bit integer | 28               | number of columns |
| 0016     | unsigned byte  | ??               | pixel             |

先定义两个 header 结构体,保存从原始文件中读到的值:

```
// The type must be unsigned, otherwise error may occur while reading number.
struct labelHeader {
    unsigned char magicNumber[4];
    unsigned char number[4];
};

// Image header, which is the first 16 bytes of the file.
struct imageHeader {
    unsigned char magicNumber[4];
    unsigned char number[4];
    unsigned char rows[4];
    unsigned char cols[4];
};
```

对于图像和标记的读取基本一样,因此这里以读取图像为例[2]: 首先打开文件流,利用 read()函数读取相应的 header 信息:

fs.read((char\*)(&header), sizeof(header));

然后,利用定义的 charToInt()方法,将 unsigned char 转换为 int。这里是通过左移 8 位相加的方法实现。需要注意的是:一定要把信息定义成 unsigned char, 否则在这一步是无法正确转换的。

之后进行判断 magic number 是否正确,如果不正确直接退出。

对于每个像素的读取同样是利用 fstream 提供的 read()函数:

```
int totalSize = number * size;
unsigned char* tmp = new unsigned char[totalSize];
fs.read((char*)tmp, totalSize);

Mat ret(number, size, CV_8UC1, tmp);
```

然后直接利用 opency 中 Mat 的构造函数转换成 Mat。

完成了数据的读取,接下来就是模型的训练了。查找了 opencv 的 adaboost 函数,发现其实并不是很容易使用。于是考虑将数据保存成 csv 文件 [3],然后用 python 读取进来进行训练。

尝试了一下之后发现并不是很现实,训练集的数据竟然有 140M 左右,如果用 python 读取会浪费很多时间进行 I/O:



因此考虑直接用 python 读取老师提供的. mat 文件[4]。虽然是 Matlab 保存的数据文件,但是 google 搜索后发现,其实读取. mat 的函数已经封装在 scipy 之中,只需要利用 loadmat()方法就可以将数据读取到 numpy 的 array 中:

```
# Read in .mat
# Ref: http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html
trainingImgMat = sio.loadmat('MNIST/mnist_train.mat')
trainingLabelMat = sio.loadmat('MNIST/mnist_train_labels.mat')
```

此时读取出来的还不是 array, 而是一个 dict, 里面保存了各种信息, 例如版本号等等, 因此要通过该数据集的名字作为下标来得到真正的 array:

```
trainingImg = trainingImgMat["mnist_train"]
trainingLabel = trainingLabelMat["mnist_train_labels"]
```

之后获得相应的维度信息,例如训练集样本数,feature 个数,测试集样本数等等。

然后我使用了 scikit-learn 库中的函数进行训练。

#### 1. Adaboost:

一开始定义一个 AdaBoostClassifier, 其中的 base\_estimator 为决策树,同时评价标准默认为 Gini [5]。以上数据都可以相对应的改变,例如:可以把评价标准改成我们熟悉的熵的信息增益,也可以把 base\_estimator 改成随机森林等等。

之后就只需要调用 fit()和 predict()方法便能训练和预测测试样本了。这个库还提供了 score 属性,用来衡量预测的准确性。同时,我又对错误预测的样本进行统计,输出相应的错误率:

```
# http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
bdt = AdaBoostClassifier(DecisionTreeClassifier(criterion="entropy"))
#bdt = AdaBoostClassifier(base_estimator=RandomForestClassifier())
bdt.fit(trainingImg, trainingLabel.ravel())

predict = bdt.predict(testImg).reshape(numberOfTestData, 1)
score = bdt.score(testImg, testLabel)
#predictProba = bdt.predict_proba(testImg)
wrongCount = numberOfTestData - np.count_nonzero(predict == testLabel)
```

由于一开始得到的错误率较大(约 27%),因此怀疑库函数提供的并不是 one-vs-all 的多分类方法,于是自己尝试实现了 one-vs-all:

```
trainingFullLabel = np.empty([10, numberOfTrainingData], dtype=np.int8)
predictProbaFull = np.empty([numberOfTestData, 10])

for i in range(10):
    trainingFullLabel[i] = (trainingLabel.transpose() == i)

for i in range(10):
    bdt = AdaBoostClassifier(DecisionTreeClassifier(criterion="entropy"))
    bdt.fit(trainingImg, trainingFullLabel[i].ravel())

    predictProbaFull[:,i] = bdt.predict_proba(testImg)[:,1]

predict = np.argmax(predictProbaFull, axis=1).reshape(numberOfTestData, 1)
```

先是要将一列的 label 扩展为 10 列,每一列对应一个数字,相应的列中元素的值为 0 和 1,分别代表是该数字和不是。

然后训练出 10 个 adaboost 分类器,并获得对每一个测试样本的正向预测概率。最后通过 numpy 提供的 argmax 函数,对每一行找到概率的最大值,返回相应的 index。该 index 就是我们最终的预测值。

测试完毕之后发现正确率依然没有改善,这说明库函数实际上是采用one-vs-all的方法解决多分类问题。正确率低的问题应该是其他参数没有调好所致(解决方案见实验结果部分)。

#### 2. SVM

```
# SVM Ref: http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
#clf = SVC()
# LinearSVM Ref: http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
clf = LinearSVC(dual=False)
clf.fit(trainingImg, trainingLabel.ravel())
```

SVM 的代码和 adaboost 基本一致[6]。唯一要注意的是,最好使用 linearSVM。一开始使用了普通的 SVM 进行训练,训练了 4 个小时依然没有结束。原因是 SVM 的复杂度较高,需要大量的计算,因此使用 linearSVM 可以减少训练时间,同时准确率又不受太大影响。初始化时根据官网的建议,将 dual 设置为 False,因为样本的数目大于 feature 的数目。

- 三、实验结果
- 1. Adaboost
- (1) 缺省情况:

错误率相当高:为27%。

Error Rate: 0.270100

Score: 0.729900

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 4m2.379s user 3m38.423s sys 0m6.642s

(2) Estimators 数目从 50 增长到 100:

错误率改变不大,说明这个调整作用不大,花费的时间还翻倍了。

Error Rate: 0.270400

Score: 0.729600

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 9m32.121s user 7m38.554s sys 0m16.522s

(3) 尝试限制决策树的深度为 1, 2, 4: 错误率逐步降低,但时间开销大幅度增加:

 adaboost maxDepth1 E.csv ×
 adaboost maxDepth2 E.csv ×
 adaboost maxDepth4 E.csv ×

 1 Error Rate: 0.256100
 1 Error Rate: 0.189500
 1 Error Rate: 0.122200

 2 Score: 0.743900
 2 Score: 0.810500
 2 Score: 0.877800

深度为2的时间:

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 8m30.794s user 7m42.595s sys 0m9.250s

深度为4的时间:

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 20m2.126s user 17m41.741s sys 0m19.935s (4) 使用熵代替 Gini 作为评价标准: 错误率大幅度降低,大约为 11%,时间开销基本不变

Error Rate: 0.117100

Score: 0.882900

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 2m21.164s user 2m0.775s sys 0m4.880s

(5) 之后再次尝试增加 estimators 的个数至 200 和 400: 错误率变化不大,说明 50 个 estimators 足够训练了。

adaboost Est200 Entropy.csv ×

adaboost Est400 Entropy.csv ×

1 Error Rate: 0.115700

1 Error Rate: 0.117500

2 Score: 0.884300

2 Score: 0.882500

(6) 尝试将学习率降低或提高,从1设置成0.5和2: 错误率依然变化不大。

adaboost LR0.5.csv ×

adaboost LR2.csv >

1 Error Rate: 0.115800

1 Error Rate: 0.115700

2 Score: 0.884200

2 Score: 0.884300

(7) 使用自己实现的 one-vs-all:

错误率变化不大,说明库函数也是使用 one-vs-all 方法,而且效率更高。

adaboost one vs all.csv ×

1 Error Rate: 0.130500

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 8m17.392s user 7m24.000s sys 0m10.290s

(8) 使用随机森林取代决策树作为 base estimator:

错误率大幅降低至 3%,原因可能是随机森林对样本和 feature 随机采样训练出 多个模型,因此模型的推广性更强。

Error Rate: 0.035600

Score: 0.964400

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 21m20.006s user 17m6.161s sys 0m45.044s (9) 对初始数据进行归一化,即所有像素除以255:错误率基本不变,但训练时间减少大约一半。

MacBook-Air-3:Ex6 sunsheng\$ time python3 adaboost.py

real 13m25.205s user 11m55.034s sys 0m35.284s

### 2. SVM

- (1) 普通的 SVM 训练时间过长, 4 小时内没有成功得到模型。
- (2) 换用 Linear SVM:

训练时间缩短为一个半小时(可能比实际开销更长,因为在训练的时候同时有在训练神经网络),错误率约为8%。

Error Rate: 0.082700 Score: 0.917300

MacBook-Air-3:Ex6 sunsheng\$ time python3 svm.py
==Finish fitting==

real 88m33.839s user 75m5.572s sys 1m47.647s

(3) 对初始数据进行归一化,即所有像素除以255:训练正确率变化不大,但训练时间大幅度减少:

MacBook-Air-3:Ex6 sunsheng\$ time python3 svm.py
==Finish fitting==

real 2m51.359s user 2m31.982s sys 0m7.745s

## 参考资料:

[1] MNIST 数据格式

http://yann.lecun.com/exdb/mnist/

[2] MNIST 数据读取

http://blog.csdn.net/sheng\_ai/article/details/23267039

[3] opencv 保存 Mat 数据

http://stackoverflow.com/questions/16312904/how-to-write-a-float-mat-to-a-file-in-opency

[4] scipy 读取. mat 文件

http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.
html

[5] adaboost

http://scikit-

 $\frac{learn.\ org/stable/modules/generated/sklearn.\ ensemble.\ AdaBoostClassifie}{r.\ html}$ 

[6] SVM

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html