Contents

- Vincent Purcell HW 4 ECE487
- Problem 4.6
- SVM Classification
- Classification and Plot Function
- SVM Classifier
- Decision Tree Classification
- Functions Received From Textbook
- Data Generation Class

Vincent Purcell - HW 4 - ECE487

```
clear; clc; close all;
```

Problem 4.6

Problem 4.6 from the Text on page 248.

```
% Data generation based on inputs from text book
rng('default')
rng(1)
m = [-5 \ 5 \ 5 \ -5; \ 5 \ -5 \ 5 \ -5];
s = 2;
N = 100;
[x1,y1] = data_generator(m,s,N);
x1 = x1';
y1 = y1';
rng(10);
[x2,y2] = data_generator(m,s,N);
x2 = x2';
y2 = y2';
C_{\text{vec}} = [1,100,1000]';
sigma_vec = [0.5,1,2,4]';
tol = 0.001;
% Create 12 models and plot them based on all combinations of sigma and C
for i=1:size(C vec)
    for j=1:size(sigma_vec)
        plotSVM(x1,y1,x2,y2,tol,C_vec(i),sigma_vec(j));
    end
end
% Call Decision Tree Function
decisionTree(x1,y1,x2,y2);
```

SVM Classification

Classification and Plot Function

```
function plotSVM(x1,y1,x2,y2,tol,C,sigma)

%Get classifier model and errors
  [model, test_err, train_err] = SVM_clas(x1,y1,x2,y2,tol,C,sigma);
  svInd = model.IsSupportVector;
  %Below plotting methods adapted from fitcsvm MATLAB documentation
  h = 0.02;
  [X1,X2] = meshgrid(min(x1(:,1)):h:max(x1(:,1)),...
        min(x1(:,2)):h:max(x1(:,2)));
  [~,score] = predict(model,[X1(:),X2(:)]);
  scoreGrid = reshape(score(:,1),835,916);

figure
  plot(x1(:,1),x1(:,2),'k.')
  hold on
  plot(x1(svInd,1),x1(svInd,2),'ko','MarkerSize',10)
```

```
contour(X1,X2,scoreGrid)
    colorbar;
    title_str = "SVM Classification C=" + num2str(C) + " \sigma=" + num2str(sigma);
    title(title str)
    xlabel('X Axis')
    ylabel('Y Axis')
    legend('Observation','Support Vector')
    a = gca; % get the current axis;
   % set the width of the axis (the third value in Position)
    % to be 60% of the Figure's width
    a.Position(3) = 0.6;
    text1 = {"Error","Train = " + num2str(train_err) ...
        ,"Test = " + num2str(test_err)};
    annotation('textbox',[0.83 0 0 .5],'String',text1,'FitBoxToText','on')
    hold off
    snapnow
end
```

SVM Classifier

Function adapted from function on page 247 of the text

```
function [model,test_err,train_err]=SVM_clas(x1,y1,x2,y2,tol,C,sigma)
    % The following options are from the function in the textbook, it
    % required simple adaptation to the new function fitcsvm:
    % DeltaGradientTolerance = tol
   % Solver = SMO
   % Verbose = 1
   % IterationLimit = 20000
   % CacheSize = 10000
    % KernelFunction = RBF
    % KernelScale = sigma
    % BoxConstraint = C
    model = fitcsvm(x1,y1, ...
        'DeltaGradientTolerance',tol,...
        'Solver','SMO',...
        'Verbose',1,...
        'IterationLimit',20000,...
        'CacheSize',10000,...
        'KernelFunction','RBF',...
        'KernelScale',sigma,...
        'BoxConstraint',C);
    %Computation of the error probability
    test_err = loss(model,x2,y2);
    train_err = loss(model,x1,y1);
end
```

=									
	Iteration S	et	Set Size	Feasibility	Delta	KKT	Number of	Objective	Constraint
				Gap	Gradient	Violation	Supp. Vec.		Violation
=									
	0 ac	tive	400	9.975062e-01	2.000000e+00	1.000000e+00	0	0.000000e+00	0.000000e+00
	1000 ac	tive	400	8.407885e-04	1.983371e-03	1.018865e-03	297	-7.239337e+01	3.339343e-16
- 1	1151 ac	tive	400	3.855007e-04	9.980384e-04	5.010877e-04	297	-7.239356e+01	6.071532e-16

=									
	Iteration	Set	Set Size	Feasibility	Delta	KKT	Number of	Objective	Constraint
				Gap	Gradient	Violation	Supp. Vec.		Violation
=		=======				========			
ĺ	0	active	400	9.975062e-01	2.000000e+00	1.000000e+00	0	0.000000e+00	0.000000e+00
	1000	active	400	1.165708e-03	2.337429e-03	1.254457e-03	188	-3.195291e+01	8.413409e-17
	1167	active	400	4.927793e-04	9.834192e-04	5.021250e-04	184	-3.195314e+01	2.645453e-17

Exiting Active Set upon convergence due to DeltaGradient.

=======================================							=======
Iteration Set	Set Size	Feasibility	Delta	KKT	Number of	Objective	Constraint
		Gap	Gradient	Violation	Supp. Vec.		Violation
0 active	400	9.975062e-01	2.000000e+00	1.000000e+00	0	0.000000e+00	0.000000e+00
419 active	400	5.294154e-04	9.618164e-04	4.838165e-04	75	-1.382540e+01	1.953732e-16

	Iteration	Set	Set Size	Feasibility	Delta	KKT	Number of	Objective	Constraint
				Gap	Gradient	Violation	Supp. Vec.		Violation
ĺ	0	active	400	9.975062e-01	2.000000e+00	1.000000e+00	0	0.000000e+00	0.000000e+00
	88	active	400	1.282562e-04	6.374282e-04	3.575460e-04	28	-9.747927e+00	2.775558e-17

Exiting Active Set upon convergence due to DeltaGradient.

								-==	
Iteration	Set	Set Size	Feasibility	Delta	KKT	Number of	Objective		Constraint
			Gap	Gradient	Violation	Supp. Vec.			Violation
								-==	
0	active	400	9.999750e-01	2.000000e+00	1.000000e+00	0	0.000000e+00		0.000000e+00
1000	active	400	7.582241e-02	2.810799e-03	1.665751e-03	296	-7.240008e+01		5.585810e-16
1160	active	400	4.109412e-02	9.976687e-04	5.177254e-04	297	-7.240025e+01		7.754214e-16

Exiting Active Set upon convergence due to DeltaGradient.

					=========			
Iteration	Set	Set Size	Feasibility	Delta	KKT	Number of	Objective	Constraint
			Gap	Gradient	Violation	Supp. Vec.		Violation
0	active	400	9.999750e-01	2.000000e+00	1.000000e+00	0	0.000000e+00	0.000000e+00
1000	active	400	7.382879e-02	2.080937e-03	1.355332e-03	187	-3.195580e+01	3.068292e-16
1063	active	400	5.763212e-02	9.999235e-04	5.191424e-04	186	-3.195587e+01	1.040834e-16

=======================================				==========	
Iteration Set Set Size	Feasibility	Delta	KKT	Number of	Objective Constraint
	Gap	Gradient	Violation	Supp. Vec.	Violation
l					

10/30/2019 vdp29_HW5_Code

0 | active | 400 | 9.999750e-01 | 2.000000e+00 | 1.000000e+00 | 0 | 0.000000e+00 | 0.000000e+00 | 386 | active | 400 | 3.377326e-02 | 8.624039e-04 | 4.503157e-04 | 68 | -1.387275e+01 | 6.982262e-17 |

Exiting Active Set upon convergence due to DeltaGradient.

	Iteration Set	Set Size Feasibility	Delta	KKT	Number of	Objective Constraint	
		Gap	Gradient	Violation	Supp. Vec.	Violation	
			.==========				
i	0 active	400 9.999750e-01	2.000000e+00	1.000000e+00	0	0.000000e+00 0.000000e+00	
	61 active	400 1.694130e-02	9.455347e-04	5.715393e-04	19 -	-1.299826e+01 4.996004e-16	

Iteration Set Set Size	Feasibility	Delta	KKT	Number of	Objective	Constraint
	Gap	Gradient	Violation	Supp. Vec.		Violation

					=======================================
0 active	400	9.999975e-01	2.000000e+00	1.000000e+00	0 0.000000e+00 0.000000e+00
1000 active	400	4.503944e-01	2.810799e-03	1.665751e-03	296 -7.240008e+01 5.585810e-16
1160 active	400	2.999707e-01	9.976687e-04	5.177254e-04	297 -7.240025e+01 7.754214e-16

		Set Size	Feasibility Gap	Delta Gradient	 KKT Violation	Number of Supp. Vec.	 Objective 	Constraint Violation
	0 active 1000 active 1003 active	400	9.999975e-01 4.435076e-01 3.794840e-01	2.080937e-03	1.355332e-03	187	0.000000e+00 -3.195580e+01 -3.195587e+01	0.000000e+00 3.068292e-16 1.040834e-16

Exiting Active Set upon convergence due to DeltaGradient.

Iteration Set	Set Size Feasibility	Delta	KKT	Number of Objective	Constraint
	Gap	Gradient	Violation	Supp. Vec.	Violation
0 active	400 9.999975e-01	2.000000e+00	1.000000e+00	0 0.000000e+00	0.000000e+00
386 active	400 2.581275e-01	8.624039e-04	4.503157e-04	68 -1.387275e+01	6.982262e-17

Exiting Active Set upon convergence due to DeltaGradient.

Iteration	Set	Set Size	Feasibility	Delta	KKT	Number of	Objective	Constraint
			Gap	Gradient	Violation	Supp. Vec.		Violation
	=======							
0	active	400	9.999975e-01	2.000000e+00	1.000000e+00	0	0.000000e+00	0.000000e+00
61	active	400	1.475263e-01	9.455347e-04	5.715393e-04	19	-1.299826e+01	4.996004e-16

Exiting Active Set upon convergence due to DeltaGradient.

Decision Tree Classification

```
function decisionTree(x1,y1,x2,y2)
    tree = fitctree(x1, y1, 'Prune', 'off', 'PruneCriterion', 'impurity');
    tree_pruned = prune(tree);
   view(tree,'Mode','graph');
    view(tree_pruned,'Mode','graph');
    test_err = loss(tree,x2,y2);
    train_err = loss(tree,x1,y1);
    test_err_p = loss(tree_pruned,x2,y2);
    train_err_p = loss(tree_pruned,x1,y1);
    fprintf('Testing Error without Pruning: %f\n', test err);
    fprintf('Training Error without Pruning: %f\n', train_err);
    fprintf('Testing Error with Pruning:
                                             %f\n', test_err_p);
    fprintf('Training Error with Pruning:
                                             %f\n', train_err_p);
end
```

Testing Error without Pruning: 0.005000
Training Error without Pruning: 0.000000
Testing Error with Pruning: 0.005000
Training Error with Pruning: 0.000000

Functions Received From Textbook

The following functions were received from the Textbook Pattern Recognition - Theodoridis, Koutroumbas

Data Generation Class

Received from page 244 of the text

Published with MATLAB® R2019b