Both theory and programming questions are due Thursday, September 15 at 11:59PM. Please download the .zip archive for this problem set, and refer to the README.txt file for instructions on preparing your solutions. Remember, your goal is to communicate. Full credit will be given only to a correct solution which is described clearly. Convoluted and obtuse descriptions might receive low marks, even when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups, and also help you conceptualize the key idea of the problem.

We will provide the solutions to the problem set 10 hours after the problem set is due, which you will use to find any errors in the proof that you submitted. You will need to submit a critique of your solutions by **Tuesday, September 20th, 11:59PM**. Your grade will be based on both your solutions and your critique of the solutions.

Collaborators: Sashko Stubailo, Xinran Liu, Albert Wu, Alex Cole, Varun Ganesan

Problem 1-1. [15 points] **Asymptotic Practice**

For each group of functions, sort the functions in increasing order of asymptotic (big-O) complexity:

(a) [5 points] Group 1:

$$f_1(n) = n^{0.999999} \log n$$

$$f_2(n) = 10000000n$$

$$f_3(n) = 1.000001^n$$

$$f_4(n) = n^2$$

Your Solution: 1,2,4,3

(b) [5 points] **Group 2:**

$$f_1(n) = 2^{2^{1000000}}$$

$$f_2(n) = 2^{100000n}$$

$$f_3(n) = \binom{n}{2}$$

$$f_4(n) = n\sqrt{n}$$

Your Solution: 1,4,3,2

(c) [5 points] Group 3:

$$f_1(n) = n^{\sqrt{n}}$$

$$f_2(n) = 2^n$$

$$f_3(n) = n^{10} \cdot 2^{n/2}$$

$$f_4(n) = \sum_{i=1}^n (i+1)$$

Your Solution: 4,1,3,2

Problem 1-2. [15 points] **Recurrence Relation Resolution**

For each of the following recurrence relations, pick the correct asymptotic runtime:

(a) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) & = & \Theta(x) & \text{for } c \leq 2, \\ T(c,y) & = & \Theta(y) & \text{for } c \leq 2, \text{ and} \\ T(x,y) & = & \Theta(x+y) + T(x/2,y/2). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 2

(b) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lcl} T(x,c) & = & \Theta(x) & \text{for } c \leq 2, \\ T(c,y) & = & \Theta(y) & \text{for } c \leq 2, \text{ and } \\ T(x,y) & = & \Theta(x) + T(x,y/2). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 3

(c) [5 points] Select the correct asymptotic complexity of an algorithm with runtime T(n,n) where

$$\begin{array}{lll} T(x,c) &=& \Theta(x) & \text{for } c \leq 2, \\ T(x,y) &=& \Theta(x) + S(x,y/2), \\ S(c,y) &=& \Theta(y) & \text{for } c \leq 2, \text{ and } \\ S(x,y) &=& \Theta(y) + T(x/2,y). \end{array}$$

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 2

Peak-Finding

In Lecture 1, you saw the peak-finding problem. As a reminder, a *peak* in a matrix is a location with the property that its four neighbors (north, south, east, and west) have value less than or equal to the value of the peak. We have posted Python code for solving this problem to the website in a file called psl.zip. In the file algorithms.py, there are four different algorithms which have been written to solve the peak-finding problem, only some of which are correct. Your goal is to figure out which of these algorithms are correct and which are efficient.

Problem 1-3. [16 points] **Peak-Finding Correctness**

- (a) [4 points] Is algorithm1 correct?
 - 1. Yes.
 - 2. No.

Your Solution: 1

- (b) [4 points] Is algorithm2 correct?
 - 1. Yes.
 - 2. No.

Your Solution: 1

- (c) [4 points] Is algorithm3 correct?
 - 1. Yes.
 - 2. No.

Your Solution: 2

- (d) [4 points] Is algorithm4 correct?
 - 1. Yes.
 - 2. No.

Your Solution: 1

Problem 1-4. [16 points] Peak-Finding Efficiency

- (a) [4 points] What is the worst-case runtime of algorithm1 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 3

- (b) [4 points] What is the worst-case runtime of algorithm2 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 5

- (c) [4 points] What is the worst-case runtime of algorithm3 on a problem of size $n \times n$?
 - 1. $\Theta(\log n)$.
 - 2. $\Theta(n)$.
 - 3. $\Theta(n \log n)$.
 - 4. $\Theta(n \log^2 n)$.
 - 5. $\Theta(n^2)$.
 - 6. $\Theta(2^n)$.

Your Solution: 2

(d) [4 points] What is the worst-case runtime of algorithm 4 on a problem of size $n \times n$?

- 1. $\Theta(\log n)$.
- 2. $\Theta(n)$.
- 3. $\Theta(n \log n)$.
- 4. $\Theta(n \log^2 n)$.
- 5. $\Theta(n^2)$.
- 6. $\Theta(2^n)$.

Your Solution: 2

Problem 1-5. [19 points] **Peak-Finding Proof**

Please modify the proof below to construct a proof of correctness for the *most efficient correct algorithm* among algorithm2, algorithm3, and algorithm4.

The following is the proof of correctness for algorithm1, which was sketched in Lecture 1.

We wish to show that algorithm1 will always return a peak, as long as the problem is not empty. To that end, we wish to prove the following two statements:

1. If the peak problem is not empty, then algorithm1 will always return a location. Say that we start with a problem of size $m \times n$. The recursive subproblem examined by algorithm1 will have dimensions $m \times \lfloor n/2 \rfloor$ or $m \times (n - \lfloor n/2 \rfloor - 1)$. Therefore, the number of columns in the problem strictly decreases with each recursive call as long as n > 0. So algorithm1 either returns a location at some point, or eventually examines a subproblem with a non-positive number of columns. The only way for the number of columns to become strictly negative, according to the formulas that determine the size of the subproblem, is to have n = 0 at some point. So if algorithm1 doesn't return a location, it must eventually examine an empty subproblem.

We wish to show that there is no way that this can occur. Assume, to the contrary, that algorithm1 does examine an empty subproblem. Just prior to this, it must examine a subproblem of size $m \times 1$ or $m \times 2$. If the problem is of size $m \times 1$, then calculating the maximum of the central column is equivalent to calculating the maximum of the entire problem. Hence, the maximum that the algorithm finds must be a peak, and it will halt and return the location. If the problem has dimensions $m \times 2$, then there are two possibilities: either the maximum of the central column is a peak (in which case the algorithm will halt and return the location), or it has a strictly better neighbor in the other column (in which case the algorithm will recurse on the non-empty subproblem with dimensions $m \times 1$, thus reducing to the previous case). So algorithm1 can never recurse into an empty subproblem, and therefore algorithm1 must eventually return a location.

2. If algorithm1 returns a location, it will be a peak in the original problem. If algorithm1 returns a location (r_1, c_1) , then that location must have the best value in column c_1 , and must have been a peak within some recursive subproblem. Assume, for the sake of contradiction, that (r_1, c_1) is not also a peak within the original problem.

Then as the location (r_1, c_1) is passed up the chain of recursive calls, it must eventually reach a level where it stops being a peak. At that level, the location (r_1, c_1) must be adjacent to the dividing column c_2 (where $|c_1 - c_2| = 1$), and the values must satisfy the inequality $val(r_1, c_1) < val(r_1, c_2)$.

Let (r_2, c_2) be the location of the maximum value found by algorithm1 in the dividing column. As a result, it must be that $val(r_1, c_2) \leq val(r_2, c_2)$. Because the algorithm chose to recurse on the half containing (r_1, c_1) , we know that $val(r_2, c_2) < val(r_2, c_1)$. Hence, we have the following chain of inequalities:

$$val(r_1, c_1) < val(r_1, c_2) \le val(r_2, c_2) < val(r_2, c_1)$$

But in order for algorithm1 to return (r_1, c_1) as a peak, the value at (r_1, c_1) must have been the greatest in its column, making $val(r_1, c_1) \geq val(r_2, c_1)$. Hence, we have a contradiction.

Your Solution:

We wish to show that algorithm4 will always return a peak, as long as the problem is not empty. To that end, we wish to prove the following two statements:

1. If the peak problem is not empty, then algorithm4 will always return a location. Say that we start with a problem of size $m \times n$. The recursive subproblem examined by algorithm4 will have dimensions $m \times \lfloor n/2 \rfloor$ or $m \times (n - \lfloor n/2 \rfloor - 1)$, if rowSplit = False. If rowSplit = True then the recursive subproblem will have dimensions $\lfloor m/2 \rfloor \times n$ or $(m - \lfloor m/2 \rfloor - 1) \times n$. Therefore, the number of columns strictly decreases with every other recursive call as long as n > 0. The number of rows strictly decreases with every other recursive call as long as m > 0. So algorithm4 either returns a location at some point, or eventually examines a subproblem with a nonpositive number of columns or rows. The only way for the number of columns or rows to become strictly negative, according to the formulas that determine the size of the subproblem, is to have n = 0 or m = 0, respectively, at some point. So if algorithm4 doesn't return a location, it must eventually examine an empty subproblem.

We wish to show that there is no way that this can occur. Assume, to the contrary, that algorithm4 does examine an empty subproblem. Just prior to this, it must examine a subproblem of size $1\times1, 2\times1$, or 1×2 . If the subproblem is of size 1×1 , algorithm4 will simply return the location of the 1×1 square since it is larger than the null value of an empty subproblem. If the subproblem is of size 2×1 or 1×2 , then either the central column or row will be a peak, or it will have a strictly better neighbor. In each of these cases, the algorithm will return a location inside the 1×2 or 2×1 subproblem and halt execution. Thus, we have shown that algorithm4 must stop before it gets to an empty subproblem. Therefore, there is no way that we can arrive at an empty subproblem, and algorithm4 must return a location.

2. If algorithm4 returns a location, it will be a peak in the original problem. We will prove this by showing that a location (r_1, c_1) returned by the algorithm (which we

know exists from part 1) must be surrounded by points already directly observed by the algorithm. If all adjacent points in the set $A = \{(r_2, c_1), (r_0, c_1), (r_1, c_2), (r_1, c_0)\}$ have been explicitly examined by algorithm4, then we know that (r_1, c_1) must be a peak. To prove this, assume the contrary. This means that some location $(x, y) \in A$ must be larger than (r_1, c_1) so that $val(x, y) > val(r_1, c_1)$. However, since the algorithm always moves towards the Best Seen value, and will return the location with Best Seen, we must have $val(r_1, c_1) > val(x, y)$, which is a contradiction of our earlier statement. Thus, if the returned location (r_1, c_1) is surrounded by directly observed locations, then (r_1, c_1) will be a peak.

Thus, to prove the second statement, it is sufficient to show that any location $(x,y) \in A$ which is a neighbor of (r_1,c_1) has already been observed by algorithm4. Assume by contradiction that this is not the case and there exists some location $(a,b) \in A$ which has not been observed by the algorithm. In order for it to have been unobserved, there must exist some subproblem where (a,b) does not exist. The only way for this to occur, since (a,b) is adjacent to (r_1,c_1) , is for (a,b) to lie on a column or row that was used to divide the problem into subproblems. However, if (a,b) lies on a row or column used to divide the problem into subproblems, then it has already been examined because algorithm4 has already found the global max on that column or row. Hence, this is a contradiction, and all the locations $(x,y) \in A$ have been observed by algorithm4. Since this is sufficient to show that (r_1,c_1) is a peak, we have completed our proof.

Problem 1-6. [19 points] Peak-Finding Counterexamples

For each incorrect algorithm, upload a Python file giving a counterexample (i.e. a matrix for which the algorithm returns a location that is not a peak).

Your Solution:

```
problemMatrix = [
    [0, 0, 0, 1, 0, 0, 0],
    [0, 0, 0, 1, 0, 0, 0],
    [0, 0, 0, 1, 0, 0, 6],
    [0, 0, 0, 1, 2, 5, 8],
    [0, 0, 0, 5, 2, 1, 9],
    [0, 0, 0, 5, 3, 2, 2],
    [0, 0, 0, 1, 2, 2, 1]
]

problemMatrix = [
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0],
```