Data Collection and Preprocessing Phase

Date	٤th June ٢٠٢٤
Team ID	LTVIPY.YoTMID&malo
Project Title	Revolutionizing Liver Care : Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques .
Maximum Marks	

Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions

Section	Description														
	Dimension: 484 rows xr4 columns Descriptivestatistics:														
Data Overview		S.NO /	pe Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	тон	HDL	Hemoglobin (g/dl)	PCV (%)	RBC (million cells/microliter)	MCV (femtoliters/cell)	_	Basophils (%)	Platelet Count (lakhs/mm)	Direct (mg/dl)	Indirect (mg/dl)
	count 950.0	00000 950.000	00 950.000000	950.000000	591.000000	582.000000	950.000000	920.000000	398.000000	941.000000	9	01.000000	950.000000	950.000000	895.000000
	mean 475.5	00000 50.632	32 20.606316	5.158947	197.544839	35.486254	10.263979	33.810000	3.390704	87.651435	-	0.498557	475.130042	4.040737	2.457542
	std 274.3	85677 8.808		22.908785	26.694968	7.982057	1.942300	5.751592	0:937089	13,844181		0.712546	6515.406159	2.757443	1.093691
		000000 32.000		1.000000	100,000000	25.000000	4.000000	12.000000	1.000000	60.000000	-	0.0000000	0.520000	0.800000	0.200000
		50000 44,000		2.000000	180.000000	30.000000	9.000000	30.000000	2.825000	78.000000	-	0.0000000	1,200000	2.700000	2.000000
		00000 S0.000		2.000000	194,000000	35.000000	10.000000	35.000000	3,500000	87,000000	-	0.0000000	1.420000	3.700000	2.300000
	and the second second	750000 57,000 00000 80,000		180,000000	210,000000	38.000000 81.000000	15,900000	38.000000 48.000000	4.000000 5.700000	94,000000 126,000000	-	1,000000	1,700000	4,200000	3.000000 6.600000
	-nax 9503	00000	45,0000	1920000	270,00000		1,30000	40,0000	3.70000	12000000		4.00000	20000000	2300000	0.00000

Data Preprocessing Code Screenshots

			pd.read	ne Dutase f_excel('		Codes\Data\HealthCar	retuta.xisx')													
		S.NO	Age	Gender	Place(location where the patient lives)	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	Type of alcohol consumed	Hepatitis B infection	Hepatitis C infection	Diabetes Result	Blood pressure (mmhg)	Obesity	Family history of cirrhosis/ hereditary	тсн	TG	LDL	HDL	Hemoglobin (g/dl)	PCV (%)
Loading Data	0	,	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	12.0	40.0
204411.92444	1	2	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	9.2	40.0
	2	3	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2	40.0
	3	4	55	male	rural	12	2	branded liquor	negative	negative	NO	138/90	no	no	NaN	NaN	NoN	NaN	7.2	40.0
	4	5	55	female	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2	40.0

```
df['TCH']=df['TCH'],fillna(df['TCH'],mean())
df['YCH']=df['YCH'],fillna(df['YCH'],mean())
df['YCH']=df['YCH'],fillna(df['YCH'],mean())
df['YCH']=df['YCH',fillna(df['YCH'],mean())
df['YCH']=df['YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df[YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],fillna(df['YCH'],mean())
df['YCH']=df[YCH',fillna(df['YCH'],fillna(df['YCH'],mean())
df['YCH',fillna(df['YCH',fillna(df['YCH'],fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fillna(df['YCH',fi
Handling Missing Data
                                                                                                                                                                 df['A/G Ratio']=df['A/G Ratio'].fillna(df['A/G Ratio'].mode()[0])
                                                                                                                                                                                                                        from sklearn.preprocessing import StandardScaler
                                                                                                                                                                                                                         sc = StandardScaler()
                                                                                                                                                                                                                        x_train = sc.fit_transform(x_train)
#x_test = sc.transform(x_test)
                                                                                                                                                                                                            array([[ 2.44060333, -1.84159498, 1.29329571, ..., 1.08599342,
                                                                                                                                                                                                                                    4.92950302, 6.81450659],
[ 0.15458485, 0.50365769, 1.29329571, ..., -0.83331467, -0.20286021, -0.14674577],
                                                                                                                                                                                                                                     [-1.44562809, 0.50365769, 1.29329571, ..., 0.49543709, -0.20286021, -0.14674577],
                                                                                                                                                                                                                                     [ 0.72608947, 0.50365769, -0.76458992, ..., 0.27397846,
                                                                                                                                                                                                                                     -0.20286021, -0.14674577],

[ 0.49748762, -1.84159498, -0.76458992, ..., 2.61774893,

-0.20286021, -0.14674577],
Data Transformation
                                                                                                                                                                                                                                     [ 0.15458485, 0.50365769, -0.76458992, ..., 0.20015892, -0.20286021, -0.14674577]])
                                                                                                                                                                                                                                        from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
                                                                                                                                                                                                                                           for column in df.columns:
                                                                                                                                                                                                                                                        # Check if the column has categorical data
                                                                                                                                                                                                                                                        if df[column].dtype == 'object':
    # Perform label encoding
                                                                                                                                                                                                                                                                     df[column] = le.fit_transform(df[column])
```

```
categorical_features = df.select_dtypes(include=[np.object])
                                             categorical_features.columns
                                         Index(['Gender', 'Place(location where the patient lives)',
                                                 'Type of alcohol consumed', 'Hepatitis B infection',
                                                 'Hepatitis C infection', 'Diabetes Result', 'Blood pressure (mmhg)',
                                                 'Obesity', 'Family history of cirrhosis/ hereditary', 'TG', 'LDL',
                                                 'Total Bilirubin
                                                                     (mg/dl)', 'A/G Ratio',
                                                'USG Abdomen (diffuse liver or not)', 'Outcome'],
                                               dtype='object')
                                            numeric_features = df.select_dtypes(include=[np.number])
Feature Engineering
                                            numeric_features.columns
                                         Index(['S.NO', 'Age', 'Duration of alcohol consumption(years)',
                                                 'Quantity of alcohol consumption (quarters/day)', 'TCH', 'HDL',
                                                 'Hemoglobin (g/dl)', 'PCV (%)', 'RBC (million cells/microliter)',
                                                'MCV (femtoliters/cell)', 'MCH (picograms/cell)', 'MCHC (grams/deciliter)', 'Total Count', 'Polymorphs (%)',
                                                 'Lymphocytes (%)', 'Monocytes (%)', 'Eosinophils (%)',
                                                 'Basophils (%)', 'Platelet Count (lakhs/mm)', 'Direct
                                                'Indirect
                                                                (mg/dl)', 'Total Protein
                                                                                              (g/dl)', 'Albumin
                                                                                                                    (g/dl)',
                                                'Globulin (g/dl)', 'AL.Phosphatase
                                                                                            (U/L)', 'SGOT/AST
                                                                                                                      (U/L)',
                                                'SGPT/ALT (U/L)'],
                                               dtype='object')
                                             # Save the cleaned and processed DataFrame to a CSV file
                                             df.to_csv('cleaned_data.csv', index=False)
                                            df.head()
                                                                                      Quantity of
                                                         Place(location
                                                                                                                  Blood
                                                                                                  Type of
                                                                    Duration of alcohol
                                                                                                        Diabetes
                                                                                         alcohol
                                                                                                                pressure Obesity
                                             Age Gender
                                                           where the
                                                                                                  alcohol
                                                                    consumption(years)
                                                                                     consumption
                                                                                                           Result
                                                          patient lives)
                                                                                                                 (mmhg)
                                                                                    (quarters/day)
Save Processed Data
                                           0 55.0
                                                                                                                     32
                                                                               12.0
                                                                                            2.0
                                                                                                      2
                                           2 55.0
                                                                                12.0
                                                                                            2.0
                                                                                                                     32
                                                                                                                             0
                                          3 55.0
                                                                               12.0
                                                                                            2.0
                                                                                                      2
                                                                                                                     32
                                                                                                                             0
                                                                                                              0
                                           4 55.0
                                                                                12.0
                                                                                            2.0
                                                                                                                     32
                                                                                                                             0
```