Biotransformations from and to methylated flavonoids

Subtitle

Benjamin Weigel Leibniz-Institute of Plant Biochemistry Department of Bioorganic Chemistry Weinberg 3 06120 Halle(Saale) April 27, 2015

Advisor: Prof. Dr. Ludger A. Wessjohann wessjohann@ipb-halle.de +49 (345) 5582-1301

noch nicht bekannt

Contents

I	Preface	1
1	Abstracts	3
	1.1 English Abstract	3
	1.2 Deutsche Zusammenfassung	3
I	Thesis	5
2	Introduction	7
	2.1 Natural products and secondary metabolites	7
	2.1.1 General	7
	2.1.2 Classes of natural products	7
	2.2 Alkylating reactions in nature	7
	2.2.1 Methylation	7
	2.2.2 Prenylation	7
	2.2.3 Glycosylation	8
	2.3 Usage and expansion of natures reaction toolbox	8
	2.3.1 Terpene synthases and elongases	8
	2.3.2 Methyl transferases	8
	2.3.3 Glycosyl transferases	8
	2.3.4 Other important enzymes in biotech research	8
	2.4 Conclusion	8
3	Material And Methods	9
	3.1 Materials	9
	3.1.1 Chemicals	9

3.1.2 Instruments	9
3.1.3 Bacterial strains	10
3.1.4 Plasmids	11
3.1.5 Oligonucleotides	11
3.1.6 Software	12
3.2 Microbiology	12
3.3 Molecular Biology	12
3.3.1 Golden Gate Cloning	13
3.4 Protein biochemistry	13
3.4.1 Protein production test (Expression test)	13
3.4.2 Production of recombinant protein	14
3.5 Analytics	14
3.5.1 In vitro determination of glucose	14
3.5.2 HPLC measurements	14
4 Evaluation of PFOMT towards the acceptance of long-chain SAM	4 =
analogues	17
4.1 Introduction	17
4.2 Substrate binding studies using ITC	17
4.3 Determination of the structure of <i>apo</i> -PFOMT	17
4.3.1 PFOMT activity in deep eutectic solvent (DES) / Solubility-	4 =
enhancing effects of DES	17
4.4 Study of variants for long-chain alkylations	17
4.4.1 PFOMT-Paper (DIM)	17
4.4.2 Dockings???	17
4.5 Colclusion/Discussion	17
5 Enzymatic methylation of Non-catechols	19
5.1 Introduction	19
5.2 SOMT-2	19
5.2.1 In vivo methylation studies using <i>N. benthamiana</i>	19
5.2.2 In vivo studies in <i>E. coli</i>	19
5.2.3 In vitro studies using recombinantly produced SOMT-2	19
5.3 PFOMT	19
5.3.1 Acidity and Nucleophilicity of phenolic hydroxyl-groups	19
5.3.2 pH-Profiles of PFOMT-catalysis	19
5.3.3 Influence of Mg ²⁺ on PFOMT activity	19
5.4 Consensus or Bioinformatic points-of-view (COMT)???	19
5.5 Conclusion/Discussion	19

6 Development of an whole cell methyl transferase screening sys-	
tem	21
6.1 Introduction	21
6.2 Theoretical considerations / design of system	21
6.3 Detectability of <i>S</i> -adenosyl-textscL-homocysteine (SAH)	21
6.4 Usage of the lsr-promoter for true autoinduction	21
6.5 Conclusion/Discussion	21
7 DES in protein crystallography	23
7.1 Introduction	23
7.2 Solubility enhancement of hydrophopbic substances by addition of	
DES	23
7.3 Enzymatic <i>O</i> -methylation in DES	23
7.4 DES as precipitants in protein crystallization	23
7.5 Conclusion/Discussion	23
8 Acknowledgements	25
III Appendix	27
A Figures	29
B Tables	31
C Affidavit	33
Acronyms	37
Glossary	39

List of Figures

3.1	GOD assay	15
A.1	Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean com-	
	modo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus	
	et magnis dis parturient montes, nascetur ridiculus mus. Donec quam	
	felis, ultricies nec, pellentesque eu, pretium quis, sem	29

List of Tables

3.3	Plasmids used in this work	11
3.4	Primers used in this work. Recognition sites for endonucleases are underlined	12
B.1	Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam	
	felis, ultricies nec, pellentesque eu, pretium quis, sem	31

Preface

1 Abstracts

1.1 English Abstract

Test Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.2 Deutsche Zusammenfassung

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Thesis

2 Introduction

S ome introductionary text

2.1 Natural products and secondary metabolites

2.1.1 General

2.1.2 Classes of natural products

Terpenoids and Steroids

... here is some text

Polyketides and non-ribosomal peptides

... here is some text

Alkaloids

... here is some text

Phenylpropanoids

... here is some text

2.2 Alkylating reactions in nature

2.2.1 Methylation

2.2.2 Prenylation

- 2.2.3 Glycosylation
- 2.3 Usage and expansion of natures reaction toolbox
- 2.3.1 Terpene synthases and elongases
- 2.3.2 Methyl transferases
- 2.3.3 Glycosyl transferases
- 2.3.4 Other important enzymes in biotech research BMVOs

Esterases/Lipases

Oxidases

Lyases

Transaminases

2.4 Conclusion

3 Material And Methods

3.1 Materials

3.1.1 Chemicals

Enzymes and buffers used for molecular cloning were obtained from Thermo Scientific (Darmstadt, Germany), unless otherwise noted. Flavonoid HPLC standards were purchased from Extrasynthese (Genay, France). Deuterated solvents were aquired from Deutero GmbH (Kastellaun, Germany). Solvents, purchased from VWR (Poole, England), were distilled in-house before use.

All other chemicals were obtained from either Sigma-Aldrich (Steinheim, Germany), Applichem (Darmstadt, Germany), Carl Roth (Karlsruhe, Germany) or Merck (Darmstadt, Germany).

3.1.2 Instruments

circulary dichroism (CD)- Jasco J-815 (Eaton, USA) spectrometer electrophoresis (horizontal) Biometra Compact XS/S (Göttingen, Germany) electrophoresis (vertical) Biometra Compact M (Göttingen, Germany) Biometra Minigel-Twin (Göttingen, Germany) ÄKTA purifier (GE Healthcare, Freiburg, Germany) fast protein liquid chromatography (FPLC) gas chromatography coupled GC-MS-QP2010 Ultra (Shimadzu, Duisburg, Germany) mass-spectrometry (GC/MS) high-performance liquid chro-VWR-Hitachi LaChrom Elite (VWR, Darmstadt, Germany) matography (HPLC) Isothermal Titration Calorime-MicroCal iTC200 (Malvern, Worcestershire, UK) try (ITC) micro-titer plate (MTP)-reader SpectraMax M5 (Molecular Devices, Biberach, Germany) Varian Unity 400 (Agilent, Böblingen, Germany) nuclear magnetic resonance (NMR)-spectrometer Varian VNMRS 600 (Agilent, Böblingen, Germany)

photospectrometer Eppendorf Biophotometer Plus (Hamburg, Germany)

JASCO V-560 (Eaton, USA)

Colibri Microvolume Spectrometer (Biozym, Hess. Olden-

dorf, Germany)

centrifuges Eppendorf 5424 (Hamburg, Germany)

Hettich Mikro 120 (Kirchlengern, Germany)

Beckman Avanti J-E, Beckman Allegra X-30R (Krefeld, Ger-

many)

centrifuge rotors Beckman JA-10, JA-16.250, JS-4.3 (Krefeld, Germany)

3.1.3 Bacterial strains

E.coli

BL21(DE3) $F^- ompT \ hsdSB(r_B^-, m_B^-) \ gal \ dcm \ \lambda(DE3)$

Invitrogen, Karslruhe (Germany)

C41(DE3) $F^- ompT \ hsdSB(r_B^-, m_B^-) \ gal \ dcm \ \lambda(DE3)$

Lucigen, Wisconsin (USA)

C43(DE3) $F^- ompT \ hsdSB(r_B^-, m_B^-) \ gal \ dcm \ \lambda(DE3)$

Lucigen, Wisconsin (USA)

DH5 α F⁻ Φ 80 $lacZ\Delta$ M15 $\Delta(lacZYA-argF)$ U169 recA1 endA1

 $hsdR17(r_K^-m_K^+)$ phoA supE44 λ^- thi-1 gyrA96 relA1

Invitrogen, Karlsruhe (Germany)

JM110 rpsL thr leu thi lacY galK galT ara tonA tsx dam

 $dcm \ glnV44 \ \Delta(lac\text{-}proAB) \ e14\text{--} [F' \ traD36 \ proAB^+ \ lacI^q]$

 $lacZ\Delta M15$] $hsdR17(r_K^-m_K^+)$

Martin-Luther-University Halle-Wittenberg

JW1593 $rrnB \Delta lacZ4787 \ HsdR514 \ \Delta (araBAD)568 \ rph-1 \ \Delta ydgG$

(BW25113 derivative) (Kan^R)

Keio Collection, National Institute of Genetics (Japan)

MG1655 $F^- \lambda^- ilvG^- rfb$ -50 rph-1

DSMZ, Hamburg (Germany)

One Shot TOP10 $F^- \Phi 80 lac Z \Delta M15 \Delta (mrr-hsdRMS-mcrBC) recA1 endA1$

 $mcrA \Delta lacX74 \ araD139 \ \Delta (ara-leu)7697 \ galU \ galK \ rpsL$

(Str^R) λ^- nupG

Invitrogen, Karlsruhe (Germany)

Origami(DE3) Δ (ara-leu)7697 Δ lacX74 Δ phoA Pvull phoR araD139 ahpC

galE galK rpsL F'[lac + lacI q pro] (DE3)gor522::Tn10 trxB

 (Kan^R, Str^R, Tet^R)

Novagen, Wisconsin (USA)

Rosetta(DE3)	F ⁻ ompT $hsdSB(\mathbf{r}_{B}^{-},\mathbf{m}_{B}^{-})$ gal dcm $\lambda(DE3)$ pRARE (Cam ^R)
	Novagen, Wisconsin (USA)
Rosetta(DE3) pLysS	F^- ompT hsdSB(r_B^- , m_B^-) gal dcm λ (DE3) pLysSRARE
	(Cam^R)
	Novagen, Wisconsin (USA)
T7 Express	fhuA2 lacZ::T7 gene1 [lon] ompT gal sulA11 R(mcr-
_	73:: $miniTn10-Tet^S$)2 [dcm] $R(zgb-210::Tn10-Tet^S)$ $endA1$
	$\Delta (mcrC-mrr)$ 114:: IS 10
	NEB, Massachusetts (USA)

Agrobacterium tumefaciens

GV3101 chromosomal background: C58, marker gene: rif, tumor inducing

plasmid (Ti-plasmid): cured, opine: nopaline

Sylvestre Marillonet, IPB

3.1.4 Plasmids

Table 3.3.: Plasmids used in this work.

name	description
pACYC Duet-1	
pCDF Duet-1	
pET20b(+)	
pET28a(+)	
pET32a(+)	
pET41a(+)	
pQE30	
pUC19	

3.1.5 Oligonucleotides

Oligonucleotides and primers were ordered from Eurofins Genomics (Ebersberg, Germany). The purity grade was *high purity salt free* (HPSF).

 name
 sequence (5'→3')
 cloning site

 somt1
 TTGAAGACAAAATGGCTTCTTCATTAAACAATGGCCG
 Bpil

 somt2
 TTGAAGACAAGGACACCCCAAATACTGTGAGATCTTCC
 Bpil

 somt3
 TTGAAGACAAGTCCTTAGGAACACCTTTCTGGGAC
 Bpil

 somt4
 TTGAAGACAAAAGCTCAAGGATAGATCTCAATAAGAGAC
 Bpil

Table 3.4.: Primers used in this work. Recognition sites for endonucleases are underlined.

3.1.6 Software

All mathematical and statistical computations and graphics were done with the R software (versions 3.1.X, http://cran.r-project.org/). Visualizations of macromolecules were arranged using the PyMol Molecular Graphics System, version 1.7.0.0 (Schrödinger, New York (USA)).

Physicochemical calculations and calculations of different molecular descriptors were performed using Marvin Beans 15.4.13.0 (ChemAxon, Budapest (Hungary)) and Molecular Operating Environment 2008.10 (Chemical Computing Group, Montreal (Canada)).

3.2 Microbiology

3.3 Molecular Biology

Basic molecular biology methods like polymerase chain reaction (PCR), DNA restriction/ligation, DNA gel electrophoresis, preparation of competent cells and transformation were performed based on the protocols summarized by Sambrook and Russell [8].

Plasmid DNA was isolated using the QIAprep Spin Miniprep Kit (QIAGEN, Hilden (Germany)) according to the manufacturer's instructions.

In vitro site-directed mutatgenesis was set-up according to the protocol of the *QuikChange Site-Directed Mutagenesis* kit [10] offered by Agilent Technologies (Santa Clara, USA).

Nucleotide fragments obtained by PCR, restriction/ligation procedures or excision from electrophoresis gels were purified and concentrated using the *Nucleospin Gel and PCR Clean-up* kit provided by Machery-Nagel (Düren, Germany) according to the instructions provided by the manufacturer.

3.3.1 Golden Gate Cloning

The Golden Gate cloning procedure is a one-pot method, meaning the restriction digestion and ligation are carried out in the same reaction vessel at the same time [5, 2]. Consequently PCR-fragments, destination vector, restriction endonuclease and ligase are added together in this reaction. The methodology employs type II restriction enzymes, which together with proper design of the fragments allow for a ligation product lacking the original restriction sites.

For digestion/ligation reactions of fragments containing BpiI sites, 20 fmol of each fragment or vector, together with 5 U of BpiI and 5 U of T4 ligase were combined in a total volume of 15 μ l 1× ligase buffer. For fragments to be cloned via BsaI sites, BpiI in the above reaction was substituted by 5 U BsaI.

The reaction mixture was placed in a thermocycler and inbcubated at 37 $^{\circ}$ C for 2 min and 16 $^{\circ}$ C for 5 min. These two first steps were repeated 50 times over. Finally, the temperature was raised to 50 $^{\circ}$ C (5 min) and 80 $^{\circ}$ C (10 min) to inactivate the enzymes.

3.4 Protein biochemistry

Stock solutions of antibiotics, IPTG or sugars were generally prepared according to the pET System Manual by Novagen [7].

3.4.1 Protein production test (Expression test)

The heterologous production of proteins in *E. coli* was assessed in a small scale protein production test, henceforth called expression test. Single colonies of *E. coli* transformed with the constructs to be studied were used to inoculate a 2 ml starter culture in lysogeny broth (LB)-medium containing the appropriate antibiotics. The concentrations of antiobiotics used was as follows: $200 \,\mu g \, ml^{-1}$ ampicillin, $150 \,\mu g \, ml^{-1}$ kanamycin, $50 \,\mu g \, ml^{-1}$ chloramphenicol, $20 \,\mu g \, ml^{-1}$ tetracycline.

The starter culture was allowed to grow at 37 °C and 200 rpm over night. A 5 ml sampling culture in the medium to be studied containing the appropriate antibiotics was prepared. The media tested included LB, terrific broth (TB) and auto-induction media like auto-induction medium (ZYP-5052). The sampling culture was inoculated to an $\rm OD^{600}$ of 0.075 using the starter culture and incubated at different temperatures and 200 rpm in a shaking incubator. 1 mM isopropyl-D-thiogalactopyranosid (IPTG) was added when the $\rm OD^{600}$ reached 0.6-0.8, if appropriate for the studied construct. 1 ml samples were removed after different times of incubation (e.g. 4, 8, 12 hours), subfractionated and analyzed via sodium dodecylsulfate (SDS)-polyacrylamid gel electrophoresis (PAGE).

3.4.2 Production of recombinant protein

Heterologous production of PFOMT

3.5 Analytics

3.5.1 In vitro determination of glucose

The glucose concentration in clarified, aqueous samples was determined by a modified version of the glucose assay kit procedure provided by Sigma-Aldrich [9]. Glucose oxidase (GOD) oxidizes D-glucose to gluconic acid, whereby hydrogen peroxide is produced. The hydrogen peroxide can be detected and quantified by horseradish peroxidase (HRP), which reduces the produced $\rm H_2O_2$ and thereby oxidizes its chromogenic substrate o-dianisidine. The oxidized form of o-dianisidine can then be measured photospectrometrically [1].

The methodology employs a coupled photospectrometric assay using GOD and HRP with $\it o$ -dianisidine as reporter substrate. The assay was prepared in MTP-format. A reaction solution containing 12.5 U/ml GOD, 2.5 U/ml HRP and 0.125 mg ml $^{-1}$ $\it o$ -dianisidine dihydrochloride in 50 mM sodium acetate pH 5.1 was prepared. Sample solutions from culture supernatants were typically diluted in 9 volumes of water. The reaction was started, by adding 50 μ l reaction solution to 25 μ l of sample and was incubated at 37 °C and 200 rpm for 30 min in a shaking incubator. 50 μ l 6 M sulfuric acid was added to stop the reaction and achieve maximum color development (full oxidation of any $\it o$ -dianisidine charge transfer complexes). The developed pink color was measured at 540 nm in a MTP-reader. A calibration curve of a standard D-glucose solutions (0 to 100 μ g ml $^{-1}$), that was always part of the experiments, was used to quantify the sample measurements.

3.5.2 HPLC measurements

Figure 3.1.: GOD assay

4 Evaluation of PFOMT towards the acceptance of long-chain SAM analogues

- 4.1 Introduction
- 4.2 Substrate binding studies using ITC
- 4.3 Determination of the structure of apo-PFOMT
- 4.3.1 PFOMT activity in deep eutectic solvent (DES) / Solubility-enhancing effects of DES

vielleicht eigenes kapitel DES?

- 4.4 Study of variants for long-chain alkylations
- 4.4.1 PFOMT-Paper (DIM)
- **4.4.2 Dockings???**
- 4.5 Colclusion/Discussion

5 Enzymatic methylation of Noncatechols

5.1 Introduction

Non-catechols in nature (biosynthesis, mode of action?), chemical methylation???

5.2 **SOMT-2**

- 5.2.1 In vivo methylation studies using N. benthamiana
- 5.2.2 In vivo studies in E. coli
- 5.2.3 In vitro studies using recombinantly produced SOMT-2

5.3 PFOMT

- 5.3.1 Acidity and Nucleophilicity of phenolic hydroxyl-groups
- 5.3.2 pH-Profiles of PFOMT-catalysis
- 5.3.3 Influence of Mg²⁺ on PFOMT activity
- **5.4 Consensus or Bioinformatic points-of-view** (COMT)???
- 5.5 Conclusion/Discussion

6 Development of an whole cell methyl transferase screening system

- 6.1 Introduction
- 6.2 Theoretical considerations / design of system
- 6.3 Detectability of *S*-adenosyl-textscL-homocysteine (SAH)

S-adenosyl-L-methionine (SAM)

- 6.4 Usage of the Isr-promoter for true autoinduction
- 6.5 Conclusion/Discussion

7 DES in protein crystallography

- 7.1 Introduction
- 7.2 Solubility enhancement of hydrophopbic substances by addition of DES
- 7.3 Enzymatic *O*-methylation in DES
- 7.4 DES as precipitants in protein crystallization
- 7.5 Conclusion/Discussion

8 Acknowledgements

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Appendix

A Figures

Figure A.1.: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem.

B Tables

Table B.1.: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem.

A	В	С	D	Е	F	G	Н	I
1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9
1	2	3	4	5	6	7	8	9

C Affidavit

I hereby declare that this document has been written only by the undersigned and
without any assistance from third parties. Furthermore, I confirm that no sources
have been used in the preparation of this document other than those indicated in
the thesis itself.
Date:, Location:, Signature:

Bibliography

- [1] a Claiborne and Irwin Fridovich. "Chemical and Enzymatic Intermediates in the Peroxidation of o-Dianisidine by Horseradish Peroxidse. 1. Spectral Properties of the Products of Dianisidine Oxidation". In: *Biochemistry* 18 (1979), pp. 2324–2329.
- [2] Carola Engler, Romy Kandzia, and Sylvestre Marillonnet. "A one pot, one step, precision cloning method with high throughput capability". In: *PLoS ONE* 3.11 (2008).
- [3] Mwafaq Ibdah et al. "A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum." In: *The Journal of biological chemistry* 278.45 (Nov. 2003), pp. 43961–72.
- [4] Mwafaq Ibdah et al. "A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum." In: *The Journal of biological chemistry* 278.45 (Nov. 2003), pp. 43961–72.
- [5] Youichi Kondou et al. "cDNA Libraries". In: Methods 729 (2011), pp. 183–197.
- [6] Jakub G Kopycki et al. "Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases." In: *Journal of molecular biology* 378.1 (Apr. 2008), pp. 154–64.
- [7] Novagen. pET System Manual. 11th ed. Darmstadt: EMD Biosiences, 2005.
- [8] J. Sambrook and D.W. Russell. *Molecular Cloning: A Laboratory Manual.* 3rd ed. Cold Spring Harbor (NY, USA): Cold Spring Harbor Laboratory Press, 2001.
- [9] Sigma-Aldrich. Glucose (GO) Assay Kit Technical Bulletin GAGO-20.
- [10] Agilent Technologies. QuikChange Site-Directed Mutagenesis Kit Instruction Manual. 2013.
- [11] Thomas Vogt. "Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain." In: *FEBS letters* 561.1-3 (Mar. 2004), pp. 159–62.

Bibliography Bibliography

[12] Thomas Vogt. "Regiospecificity and kinetic properties of a plant natural product O-methyltransferase are determined by its N-terminal domain." In: *FEBS letters* 561.1-3 (Mar. 2004), pp. 159–62.

Acronyms

CD circulary dichroism. 9

```
FPLC fast protein liquid chromatography. 9
GC/MS gas chromatography coupled mass-spectrometry. 9
GOD glucose oxidase. 14, 39
HPLC high-performance liquid chromatography. 9
HRP horseradish peroxidase. 14
IPTG isopropyl-D-thiogalactopyranosid. 13
ITC Isothermal Titration Calorimetry. 9, 39
LB lysogeny broth. 13
MTP micro-titer plate. 9, 14, 39
NMR nuclear magnetic resonance. 9
PAGE polyacrylamid gel electrophoresis. 13
PCR polymerase chain reaction. 12, 13
PFOMT phenylpropanoid and flavonoid O-methyl transferase. 39
SAM S-adenosyl-L-methionine. 21
SDS sodium dodecylsulfate. 13
TB terrific broth. 13
Ti-plasmid tumor inducing plasmid. 11, 39
```

ZYP-5052 auto-induction medium. 13

Glossary

GOD Glucose oxidase is an enzyme.... . 37

Isothermal Titration Calorimetry (ITC) Fill in description here. 37

MTP Micro-titer plate. Small format rectangular plastic plate containing wells to allow for storage of multiple small samples or the containment multiple simultaneous reactions. Typical sizes include 24, 96 and 384-wells. 37

PFOMT Phenylpropanoid and flavonoid O-methyl transferase from *Mesembryan-themum crystallinum*, which was first described by Ibdah et al. in 2003 [3]. 37

Ti-plasmid Commonly found plasmids in *A. tumefaciens* and *A. rhizogenes* that confer virulence. 37