

基于语音表型特征的情绪识别系统

系统使用说明书

作者: 山东省精神卫生中心

时间: 2024年7月1日

版本: 1.0

目录

第	一章	引言	1
	1.1	编写目的	1
	1.2	使用对象	1
	1.3	软件范围	1
第	二章	软件概述	2
	2.1	软件基本信息	2
	2.2	软件功能和技术特点	2
		2.2.1 硬件环境	2
		2.2.2 软件环境	2
		2.2.3 编程语言	3
		2.2.4 主要功能和技术特点	3
		2.2.4.1 开发目的	3
		2.2.4.2 面向领域	3
		2.2.4.3 主要功能	3
第	三章	使用说明	4
	3.1	使用流程说明	4
		3.1.1 系统运行	4
		3.1.2 样本设置	4
		3.1.3 音频录制	4
		3.1.4 音频播放	6

			日氷
	3.1.5	音频分析	6
	3.1.6	情绪识别	6
第四章	特征数	数据	9
4.1	音频特	· 萨征	9
	4.1.1	音频特征提取	9
	4.1.2	变换与滤波	9
	4.1.3	音频可视化	10
	4.1.4	音高估计和音频时间拉伸	10
4.2	语音情	f绪识别技术	10
	4.2.1	基础概念	10
	4.2.2	语音情绪识别流程	10
	4.2.3	特征提取	11
	4.2.4	情感分类	11
4.3	语音情	f绪识别模型	11
	4.3.1	CNN-RNN 混合模型	12
	4.3.2	Transformer 模型	12
	4.3.3	预训练和微调	12
	4.3.4	多模态融合	13
	4.3.5	总结	13

第一章 引言

1.1 编写目的

本文档为使用说明文档, 为软件的使用与维护提供信息基础。

1.2 使用对象

本文档的使用对象主要为产品测试与使用人员。

1.3 软件范围

本产品面向需要进行语音表型特征研究的科研人员,软件提供语音表型特征和情绪识别的功能。

第二章 软件概述

为了便于研究人员获取更多的标准化研究数据,自动化提取语音表型特征,所以开发了 此软件。

本软件使用 Python 3.10 进行开发,使用 Web 浏览器作为 GUI 界面。软件使用 librosa 语音分析库实现语音特征的分析和提取,使用 matplotlib 和 seaborn 库实现了图表的绘制功能。

另外, 软件集成了语音情绪识别模型, 可以实现六种情绪的识别。

2.1 软件基本信息

软件全称	语音表型特征提取和情绪识别系统	版本号	1.0
软件简称	语音情绪识别	软件分类	应用软件

2.2 软件功能和技术特点

2.2.1 硬件环境

开发: 华为 MateBook, Intel i5 处理器, 16GB 内存, 512GB 固态硬盘。

运行: 华为 MateBook, Intel i5 处理器, 16GB 内存, 512GB 固态硬盘; 或 macbook pro, 支持 M1, M2, M3 处理器, 16GB 内存, 512GB 固态硬盘;

2.2.2 软件环境

开发: Windows 10 系统; Python 3.10 版本; VS Code 开发工具;

运行: Windows 10 系统或 MacOS 系统, 需要安装 Python 运行环境; Python 3.10;

2.2.3 编程语言

Python 3.10

2.2.4 主要功能和技术特点

2.2.4.1 开发目的

语音特征可以作为诸多疾病的诊断辅助依据,以及用于情绪的识别,针对科研人员在进行语音表型研究过程中,设备操作复杂和特征提取流程繁琐的问题,采用音频采集和特征提取自动化的设计思路,开发了该语音表型特征提取系统软件,可以提取语音的共 165 个特征值,然后进行情绪的识别。

2.2.4.2 面向领域

医疗大数据分析领域

2.2.4.3 主要功能

- 1、样本设置。自定义样本基本信息,基本信息会附加到数据文件命名中,方便用户区分 样本数据。
- 2、音频录制。基于麦克风等音频源,进行音频文件的录制,并按自定义文件命名保存为 WAV 音频文件。
- 3、音频分析。基于 librosa 语音库,提取音频文件的 MFCC、harmonic、percussive 等特征值,并将时序数据、频域数据、频谱数据绘制成图表。
- 4、情绪识别。基于语音情绪识别模型,针对录制的语音数据进行情绪识别,支持识别"生气","厌恶","恐惧","高兴","中性","伤心"共6种情绪。

第三章 使用说明

3.1 使用流程说明

本软件使用流程主要包括 4 个步骤。

- 1. 样本设置
- 2. 音频录制
- 3. 音频分析
- 4. 情绪识别

3.1.1 系统运行

点击系统运行程序后,系统会在系统本地启动一个 web 服务器,然后自动在系统浏览器中新开一个窗口页面,并打开系统的默认首页。首页地址为:http://localhost:8501或 http://192.168.0.1:8501

3.1.2 样本设置

自定义样本基本信息,基本信息会附加到数据文件命名中,方便用户区分样本数据。样本设置的界面如图??所示。

3.1.3 音频录制

设置样本编号后,可以点击"1. 录制语音"按钮,系统会使用本地机器自带的麦克风等音频输入源设备进行录制,录制过程中,系统会给出"正在录音中"的提示,系统默认会录制 30 秒的音频数据。界面如图??所示。

图 3.1: 样本编号设置界面

图 3.2: 音频录制界面

图 3.3: 音频播放界面

3.1.4 音频播放

等待录音结束后,系统会提示录制完成,并显示一个音频播放器,用户可以使用播放器 回放当前样本录制的音频内容,系统操作界面如图**??**所示。

3.1.5 音频分析

音频录制完成后,可以点击语音分析按钮进行当前音频数据的分析,分析结果会分别按 时序数据、频域数据、频谱数据三种种类用图表的形式展示出来,如图**??**所示。

3.1.6 情绪识别

点击情绪预测按扭,系统会调用情绪识别模型,针对当前的样本音频分析结果进行情绪的识别,并显示出预测结果,如图??所示。

图 3.4: 音频分析图表

图 3.5: 情绪识别

第四章 特征数据

4.1 音频特征

软件使用 librosa 库实现了音频数据的分析,Librosa 是一个功能强大且灵活的音频处理库,它提供了丰富的工具和函数,能够满足从音频加载、特征提取、变换到可视化的各种需求。通过 Librosa,开发者可以轻松地进行复杂的音频分析和处理任务。

4.1.1 音频特征提取

1. 时域特征

- (a). librosa.feature.zero_crossing_rate: 计算过零率 (zero-crossing rate)。
- (b). librosa.feature.rmse: 计算根均方能量(root-mean-square energy)。

2. 频域特征

- (a). librosa.feature.mfcc: 提取梅尔频率倒谱系数 (MFCC)。
- (b). librosa.feature.spectral_centroid: 计算谱质心 (spectral centroid)。
- (c). librosa.feature.spectral_bandwidth: 计算谱带宽 (spectral bandwidth)。
- (d). librosa.feature.chroma_stft: 计算色度特征 (chroma features)。

4.1.2 变换与滤波

- 1. 短时傅里叶变换 (STFT): librosa.stft
- 2. 梅尔频谱: librosa.feature.melspectrogram
- 3. 倒谱变换: librosa.feature.mfcc

4.1.3 音频可视化

1. 波形图: librosa.display.waveplot

2. 谱图: librosa.display.specshow

3. 色度图: librosa.display.specshow

4.1.4 音高估计和音频时间拉伸

1. librosa.pyin: 估计音高

2. librosa.effects.time_stretch: 时间拉伸。

3. librosa.effects.pitch_shift: 音高偏移。

4.2 语音情绪识别技术

语音情绪识别(Speech Emotion Recognition, SER)是一种通过分析和处理语音信号来识别说话者情绪状态的技术。它在人机交互、心理健康监测、客服系统等领域有着广泛的应用。以下是对语音情绪识别的详细介绍:

4.2.1 基础概念

语音情绪识别的目标是通过分析语音信号中的特征,判断说话者的情绪状态。常见的情绪分类包括高兴、愤怒、悲伤、惊讶、厌恶、恐惧和中性等。

4.2.2 语音情绪识别流程

语音情绪识别一般包括以下几个步骤:

1. 音频采集: 通过麦克风或其他设备采集语音信号。

2. 预处理:对采集到的语音信号进行去噪、归一化等预处理操作,以提高信号质量。

- 3. 特征提取: 从语音信号中提取能够反映情绪特征的参数。
- 4. 情感分类: 使用机器学习或深度学习算法, 根据提取的特征进行情感分类。

4.2.3 特征提取

特征提取是语音情绪识别的关键步骤。常用的特征包括:

- 时域特征:如平均音量、音量变化率等。
- 频域特征: 如基频 (F0)、频谱质心、频谱带宽等。
- 时频域特征: 如梅尔频率倒谱系数 (MFCC)、能量谱包络等。
- 高阶特征:如语速、语音节奏等。

4.2.4 情感分类

常用的情感分类方法包括:

- 机器学习方法:如支持向量机(SVM)、K近邻(KNN)、随机森林(RF)等。
- •深度学习方法: 如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。

4.3 语音情绪识别模型

近年来,语音情绪识别技术随着深度学习的进步得到了显著提升。最新的基于语音的情绪识别模型通常结合了复杂的神经网络架构,如卷积神经网络(CNN)、循环神经网络(RNN)以及变换器(Transformer)模型。这些模型能够更有效地捕捉语音信号中的情绪特征,提供更高的准确性和鲁棒性。以下是一些最新的基于语音情绪识别的模型及其特点:

4.3.1 CNN-RNN 混合模型

混合模型结合了 CNN 和 RNN 的优势,通常先使用 CNN 提取语音信号的时频特征,然后通过 RNN 捕捉序列中的时间依赖性。这种方法能够更好地处理语音信号的时变特性。

例子:

- CNN-LSTM 模型:
- CNN 部分:用于提取局部时频特征,如梅尔频谱或 MFCC。
- LSTM 部分:用于捕捉语音信号中的长时间依赖关系。

4.3.2 Transformer 模型

Transformer 模型在自然语言处理(NLP)中取得了巨大的成功,也被引入语音情绪识别中。它们通过自注意力机制能够更好地捕捉长时间依赖和复杂关系。

例子:

- Wav2vec 2.0:
- 由 Facebook AI Research 提出,基于 Transformer 架构。
- •通过自监督学习方法,从未标注的语音数据中预训练模型,再在情绪识别任务上进行微调。

4.3.3 预训练和微调

使用预训练的音频模型(如 Wav2vec 2.0、HuBERT)进行语音情绪识别。预训练模型能够从大量未标注的数据中学习通用的音频特征,然后通过在小规模标注数据上微调,显著提高情绪识别的准确性。

例子:

HuBERT:

- •由 Facebook AI Research 提出,基于自监督学习的音频表示学习模型。
- 在大量未标注的语音数据上进行预训练, 然后在情绪识别任务上微调。

4.3.4 多模态融合

结合语音信号和其他模态(如视频、文本)进行情绪识别。多模态融合方法通过同时分析多个数据源,能够提高情绪识别的准确性和鲁棒性。

例子:

- 语音-视频情绪识别模型:
- 通过融合语音和视频信号,结合 CNN 处理视频特征,RNN 或 Transformer 处理语音特征,实现情绪识别。

4.3.5 总结

最新的语音情绪识别模型结合了先进的深度学习技术,能够更有效地捕捉语音信号中的情绪特征。通过混合模型、Transformer模型、预训练和微调、多模态融合等方法,语音情绪识别的准确性和鲁棒性得到了显著提升。这些技术的进步为更自然、更智能的人机交互奠定了基础,并在心理健康监测、客服系统等领域具有广泛的应用前景。