BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin; Ming-Wei Chang; Kenton Lee; Kristina Toutanova

Presented by Mitchell Donley & Yinghao Li

Citations

GLUE Benchmark

Rank	Name		Model	Score			
1	Facebook Al		RoBERTa	88.5	9 Danqi Chen	SpanBERT (single-task training)	
2	XLNet Team		XLNet-Large (ensemble)	88.4	10 Kevin Clark	BERT + BAM	
3	Microsoft D365 AI & MSR AI		MT-DNN-ensemble	87.6	11 Nitish Shirish Keskar	Span-Extractive BERT on STILTs	
4	GLUE Human Baselines		GLUE Human Baselines	87.1	12 Jason Phang	BERT on STILTs	
5	王玮		ALICE large ensemble (Alibaba DAMO NLP)	87.0	13 廖亿	RGLM-base (Huawei Noah's Ark Lab)	
6	Stanford Hazy Research		Snorkel MeTaL	83.2	14 Jacob Devlin	BERT: 24-layers, 16-heads, 1024-hidden	
7	XLM Systems		XLM (English only)	83.1	15 Neil Houlsby	BERT + Single-task Adapters	
8	张倬胜		SemBERT	82.9	16 Zhuohan Li	Macaron Net-base	
		17	蘇大鈞	SES	SAME-BERT-Base	78.6	
		18	Linyuan Gong	Stac	ckingBERT-Base	78.4	
		19	GLUE Baselines	BiLs	STM+ELMo+Attn	70.0	

General Information & Background

Containin g

Model Architecture

Performances

General Information

9/3/19

BERT is a <u>language representation</u> model;

Designed to pre-train deep bidirectional representations from unlabeled text;

<u>Pre-trained</u> model can be <u>fine-tuned</u> with minimum adjustment to network structure to adapt to different tasks;

Achieves state-of-the-art performances on GLUE Benchmarks;

NOT suitable for text generation (which is the strength of OpenAI GPT).

Language Representation

- **Word Embedding** (Word2Vec, GloVe): irrelevant to the input context;
- Semi-Supervised Sequence Learning:

Problem with Previous Contextual Representation Methods

- Training objective: Next word prediction
- Previous language models only use left context or right context, but language understanding is bidirectional.

- Why?
 - Words can "see themselves (from the previous or subsequent inputs)" in a bidirectional encoder.

Masked Language Model (MLM)

- To prevent words from seeing themselves, 15% of the input tokens are randomly selected and
 - 80% of them are substitute by [MASK]token;
 - went to the store -> went to the [MASK]
 - 10% of them are substitute by random tokens;
 - went to the store -> went to the covfefe
 - The rest 10% are unchanged.
 - went to the store -> went to the store
- Above procedure is to mitigate the mismatch between pre-training and fine-tuning where [MASK] token never appears.

Next Sentence Prediction (NSP)

• To learn relationships between sentences, predict whether Sentence B is actual sentence that proceeds Sentence A, or a random sentence

```
Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Label = IsNextSentence
```

```
Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence
```

Pre-training and Fine-tuning

Finetuning BERT

Plug in the task-specific inputs and outputs into BERT and fine-tune all the parameters end-to-end

9/3/19

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Model Architecture

Attention

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional \angle Positional Encoding Encoding Output Input Embedding Embedding Outputs Inputs (shifted right)

Transformer

Scaled Dot-Product Attention

Bert Architecture

BERT-base

- 12 layers of Transformer encoders
- 768 hidden size
- 12 heads
- 110M parameters

BERT-large

- 24 layers of Transformer encoders
- 1024 hidden size
- 16 heads
- 340M parameters

15

Input/Output

- 30,000 WordPiece vocabulary
- Token representation: sum of 3 embeddings
- 1 sequence is more efficient

WordPiece tokens

- similar to byte pair encoding (BPE), to solve out-of-vocabulary (OOV) problem
 - Instead "the boy is playing", the sentence is tokenized as "the boy is play ##ing"
 - "play ##s", "play ##ing" and "play ##ed" are better semantic and syntactic representations than "plays", "playing" and "played"

Experiments

GLUE

11 NLP tasks

Text Entailment

Sentiment Analysis

Question Answering

Question Duplication

Paraphrase matching

Pronoun Disambiguity

Grammatical Acceptability

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

4 GLUE Human Baselines GLUE Human Baselines 87.1

MultiNLI

- Premise: At the end of Pennsylvania Ave, people began to line up for a White House tour.
- Hypothesis: People formed a line at the end of Pennsylvania Ave
- Label: {entailment, contradiction, neutral}

SQuAD

- Question Answering: Is the answer to a question found in a snippet? If yes where?
- BERT: Introduced "Start" and "End" vectors to determine where to start and stop the answer snippet
- Used the CLS token as the "no answer" token (if start and end had highest probability here)

$$P_i = rac{e^{S \cdot T_i}}{\sum_j e^{S \cdot T_j}}$$
 $\hat{s_{i,j}} = \max_{j \geq i} S \cdot T_i + E \cdot T_j$ $\hat{s_{i,j}} > s_{ exttt{null}} + au$

SQuAD

BERT Predictions

The atomic number of the periodic table for oxygen? Ground Truth Answers: 8 8 8 8 8 8 8 Prediction: 8
What is the second most abundant element? Ground Truth Answers: helium helium helium helium helium helium Prediction: <no answer=""></no>
Which gas makes up 20.8% of the Earth's atmosphere? Ground Truth Answers: Diatomic oxygen Diatomic oxygen Diatomic oxygen Diatomic oxygen Diatomic oxygen gas Prediction: Diatomic oxygen
How many atoms combine to form dioxygen? Ground Truth Answers: two atoms two two two Prediction: two

SQuAD Results

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Jul 22, 2019	XLNet + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	88.592	90.859
2 Jul 26, 2019	UPM (ensemble) Anonymous	88.231	90.713
3 Aug 04, 2019	XLNet + SG-Net Verifier (ensemble) Shanghai Jiao Tong University & CloudWalk https://arxiv.org/abs/1908.05147	88.174	90.702
4 Aug 04, 2019	XLNet + SG-Net Verifier++ (single model) Shanghai Jiao Tong University & CloudWalk https://arxiv.org/abs/1908.05147	87.238	90.071
5 Jul 26, 2019	UPM (single model) Anonymous	87.193	89.934
6 Mar 20, 2019	BERT + DAE + AoA (ensemble) Joint Laboratory of HIT and iFLYTEK Research	87.147	89.474
6 Jul 20, 2019	RoBERTa (single model) Facebook Al	86.820	89.795
7 Mar 15, 2019	BERT + ConvLSTM + MTL + Verifier (ensemble) Layer 6 Al	86.730	89.286
8 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (ensemble) Google Al Language https://github.com/google-research/bert	86.673	89.147
9 May 21, 2019	XLNet (single model) Google Brain & CMU	86.346	89.133
10 May 14, 2019	SG-Net (ensemble) Shanghai Jiao Tong University https://arxiv.org/abs/1908.05147	86.211	88.848
10 Apr 13, 2019	SemBERT(ensemble) Shanghai Jiao Tong University	86.166	88.886

Architecture Effects

Pre-training Effects

• MLM performs much better on sentence semantic similarity (MRPC) and question answering (SQuAD) compared to Left-to-Right

- Only predicting 15% thus takes longer to converge
- Results much better with MLM

Other BERT cases

• Multilingual BERT (text entailment)

System	English	Chinese	Spanish
XNLI Baseline - Translate Train	73.7	67.0	68.8
XNLI Baseline - Translate Test	73.7	68.4	70.7
BERT - Translate Train	81.9	76.6	77.8
BERT - Translate Test	81.9	70.1	74.9
BERT - Zero Shot	81.9	63.8	74.3

- Zero Shot (no machine translation)
- Domain Specific Text
 - ClinicalBERT

References

- arXiv Page: https://arxiv.org/abs/1810.04805
- GitHub Page: https://github.com/google-research/bert
- Jacob Devlin's Seminar: https://nlp.stanford.edu/seminar/details/jdevlin.pdf
- Illustrated BERT: http://jalammar.github.io/illustrated-bert/
- Illustrated Transformer: http://jalammar.github.io/illustrated-transformer/
- GLUE Benchmark Leaderboard: https://gluebenchmark.com/leaderboard/
- SQuAD: https://rajpurkar.github.io/SQuAD-explorer/
- MultiLingual BERT: https://github.com/google-research/bert/blob/master/multilingual.md