Лабораторная работа № 3

«Исследование постоянных и переменных аттенюаторов для ВОЛС»

Выполнила: Величкина А. С.

Теоретические сведения

Оптический аттенюатор – пассивный компонент волоконно-оптической линии связи (ВОЛС), осуществляющий управляемое понижение уровня оптического сигнала без искажения самого сигнала. Принцип действия оптического аттенюатора основан на воздушном зазоре между торцами волокон (коннекторами) или свойствами элемента с ограниченным светопропусканием. Оптические аттенюаторы делятся на два основных типа: фиксированные (постоянные) и регулируемые (переменные).

Рисунок 1. Различные типы постоянных оптических аттенюаторов.

Рисунок 2. Различные типы переменных оптических коннекторов.

Экспериментальная часть

Задание 1. Постоянные аттенюаторы.

Результаты измерений приведены в таблице:

Тип аттенюатора	Длина волны оптичесского излучения, нм	Результат измерения, дБ	Результат измерения в режиме дБм	Результат измерения в мВт
FC-FC 5 dB	1330	-17,4	12,6	18,20
	1550	-16	14	25,12
SC-SC 10 dB	1330	-10,1	19,9	97,72
	1550	-9,22	20,78	119,67
LC-LC 15 dB	1330	-32,1	-2,1	0,62
	1550	-29,8	0,2	1,05
LC-LC 5 dB	1330	-16,5	13,5	22,39
	1550	-15,2	14,8	30,20
FC-FC 10 dB	1330	-12,5	17,5	56,23
	1550	-11,5	18,5	70,79
SC-SC 5 dB	1330	-13,6	16,4	43,65
	1550	-11,8	18,2	66,07

Проанализируем полученный результат. Видно, что результаты измерений в дБ не совпадают с номиналами, указанными на аттенюаторах. Это связано с наличием потерь в самих ВОК без использования аттенюаторов и потерями в розетках. Эти потери зависят от длины волны излучения, что также прослеживается из результатов измерений.

Задание 2. Переменные аттенюаторы

Результаты измерений для разного количества оборотов и для разных длин волн приведены в таблице:

Количество оборотов	Длина волны оптического излучения	Результат измерения в режиме мВт	Результат измерения в режиме дБм	Результат измерения в режиме дБ
0	1310	1089,68	30,373	0,373
0	1550	1064,14	30,27	0,27
1	1310	1096,48	30,4	0,4
1	1550	1075,23	30,315	0,315
2	1310	843,33	29,26	-0,74
2	1550	794,33	29	-1
3	1310	809,10	29,08	-0,92
3	1550	788,68	28,969	-1,031
4	1310	831,76	29,2	-0,8
4	1550	726,11	28,61	-1,39
5	1310	827,56	29,178	-0,822

5	1550	781,81	28,931	-1,069
6	1310	809,10	29,08	-0,92
6	1550	776,25	28,9	-1,1
7	1310	854,08	29,315	-0,685
7	1550	737,90	28,68	-1,32
8	1310	830,23	29,192	-0,808
8	1550	744,73	28,72	-1,28
9	1310	776,25	28,9	-1,1
9	1550	753,36	28,77	-1,23

Проанализируем полученный результат. Видно, что ослабление при увеличении количества оборотов изменяется до достижения предельного значения нелинейно, с увеличением числа оборотов ослабление асимптотически стремится к предельному значению. Представим полученный результат графически.

Ослабление аттенюатора стремится к -1.4 дБ.

Вывод

В ходе лабораторной работы были изучены различные типы постоянных и переменных оптоволоконных аттенюаторов и измерены потери, возникающие при их использовании.

Ответы на контрольные вопросы

1. Что такое оптический аттенюатор?

<u>Ответ</u>: Оптический аттенюатор — пассивный компонент волоконнооптической линии связи (ВОЛС), осуществляющий управляемое понижение уровня оптического сигнала без искажения самого сигнала.

2. Каков принцип работы оптического аттенюатора?

<u>Ответ</u>: Принцип действия оптического аттенюатора основан на воздушном зазоре между торцами волокон (коннекторами) или свойствами элемента с ограниченным светопропусканием.

3. Какие типы оптических аттенюаторов существуют?

Ответ: Оптические аттенюаторы делятся на два основных типа: фиксированные (постоянные) и регулируемые (переменные). Значение фиксированного аттенюатора изменить нельзя он имеет фиксированный уровень вносимого затухания. Значение регулируемого аттенюатора можно плавно изменять в зависимости от решаемой задачи. Конфигурации оптических аттенюаторов в форме адаптеров female-male (розетка-вилка) и female-female (розетка-розетка) могут иметь коннекторы LC, SC, FC, ST и прочие.

4. Как осуществляется регулировка вносимого затухания α в переменном аттенюаторе?

<u>Ответ</u>: Регулировка вносимого затухания а осуществляется с помощью вращения фигурной гайки. Так изменяется величина зазора в аттенюаторе и таким образом изменяется величина вносимого им ослабления.