Generalized Search Trees for Database Systems

Matthias Springer

Hasso-Plattner-Institut

11. Juni 2012

- 1. Motivation
- 2. Struktur eines GiST
- 3. Suche
- 4. Einfügen
- 5. Effizienz
- 6. Zusammenfassung

Daten- und Anfragetypen

B⁺- und R-Bäume

- Daten mit linearer Ordnung, räumliche Daten
- Bereichsanfragen, etc.

Neue Daten- und Anfragetypen

- Daten möglicherweise ohne lineare Ordnung
- Komplexe Anfragen

Die Autoren

- Joseph M. Hellerstein: Professor an der University of California
- Jeffrey Naughton: Professor an der University of Wisconsin-Madison
- Avi Pfeffer: Associate Professor an der Harvard School of Engineering

- 1. Motivation
- 2. Struktur eines GiST
- 3. Suche
- 4. Einfügen
- 5. Effizienz
- 6. Zusammenfassung

Struktur eines GiST

- Ballancierter Suchbaum
- Innere Knoten: Prädikat (Key), Zeiger Paare
- Key ist auch für Kindknoten erfüllt
- Beispiel: ist_student(t) ∧ belegt_biob(t)

Prädikatenlogische Formel

- Beispiel: ist_student(t) ∧ belegt_biob(t)
- ist_student : $Tupel \rightarrow \{T, \bot\}$
- Keys und Queries sind prädikatenlogische Formeln

Beispiel: Index für numerische Daten

- Query-Prädikate:
 - □ range(from, to, t): Bereichsanfrage [from, to]
 - □ equal(*value*, *t*): Gleichheit
 - □ multiple(*value*, *t*): Alle Vielfachen von *value*
- Key-Prädikat: contains(from, to, t), kurz (from, to)

Methoden eines GiST

Pro GiST

- Search(R, q)
- Insert(*E*)
- ChooseSubtree(R, E)
- Split(*L*, *E*)
- AdjustKeys(*L*)

Pro Datentyp

- Implementierung jedes Query-Prädikats
- Consistent(*E*, *q*)
- Union(*P*)
- Penalty(E_1 , E_2)
- PickSplit(*P*)
- Compress(*E*)
- Decompress(*E*)

- 1. Motivation
- 2. Struktur eines GiST
- 3. Suche
- 4. Einfügen
- 5. Effizienz
- 6. Zusammenfassung

Search(R, q)

Eingabe:

- R: Startknoten
- □ q: Query-Prädikat
- Ausgabe: Ein/mehrere Blätter
- Algorithmus:
 - □ Innere Knoten: Rekursiver Aufruf für alle Keys *p* mit Consistent(*p*, *q*)
 - □ Blätter: Prüfe Prädikat exakt und gib Element ggf. aus

Consistent (P, q)

Eingabe:

- □ P: Einzelner Key (Prädikat)
- □ q: Query-Prädikat

Ausgabe:

 \square false, falls $P \land q$ sicher unerfüllbar ist, true sonst

Beispiele:

- \square Consistent($\langle 1,4 \rangle$, equal(3)) = T
- □ Consistent($\langle 1,4\rangle$, equal(5)) = \bot
- \square Consistent($\langle 1,4 \rangle$, range(5,9) = \bot
- \square Consistent($\langle 1, 4 \rangle$, multiple(10)) = \bot
- \square Consistent($\langle 18, 24 \rangle$, multiple(10)) = T

Consistent (P, q)

Eingabe:

- □ P: Einzelner Key (Prädikat)
- □ q: Query-Prädikat

Ausgabe:

- Heuristik für Erfüllbarkeit
- \square false, falls $P \land q$ sicher unerfüllbar ist, true sonst

Beispiele:

- □ Consistent($\langle 1, 4 \rangle$, equal(3)) $\in \{T\}$
- o Consistent($\langle 1,4
 angle, ext{ equal(5)}) \in \{\perp, T\}$
- □ Consistent($\langle 1, 4 \rangle$, range(3,9) ∈ {T}
- □ Consistent($\langle 1, 4 \rangle$, multiple(10)) $\in \{\bot, T\}$
- □ Consistent($\langle 18, 24 \rangle$, multiple(10)) ∈ { T}

- 1. Motivation
- 2. Struktur eines GiST
- 3. Suche
- 4. Einfügen
- 5. Effizienz
- 6. Zusammenfassung

Insert(E)

- **Eingabe:** E = (p, ptr): einzufügendes Key-Pointer-Paar
- Danach: GiST mit zusätzlichem Element E
- Algorithmus:
 - 1. Suche Knoten $L = \frac{\text{ChooseSubtree}(R, E)}{\text{Suche Knoten}}$ zum Einfügen
 - 2. Falls zu wenig Platz: Aufteilen mit Split(L, E)
 - 3. Füge *E* in *L* ein
 - 4. Keys anpassen mit AdjustKeys(L)

ChooseSubtree (R, E)

- Eingabe:
 - □ R: Wurzel des Teilbaums, in den eingefügt wird
 - \Box E = (p, ptr): einzufügendes Key-Pointer-Paar
- Ausgabe: Knoten, in den E eingefügt wird
- Algorithmus:
 - Innere Knoten:
 - Finde Eintrag F mit kleinster Penalty(F, E)
 - Gib ChooseSubtree(F.ptr, E) zurück
 - □ Unterste Ebene: Gib *R* zurück

Penalty(F, E)

- Eingabe:
 - □ *F*: Key für einen Knoten
 - □ *E*: Einzufügendes Tupel
- Ausgabe: Maß für das Wachstum von F
- Regel: Keys möglichst kompakt halten
- Penalty(F, x) = $\max\{F.left - x, 0\} +$ $\max\{x - F.right, 0\}$

Split(L)

- **Eingabe:** *L*: Knoten, in den *E* eingefügt wird
- Danach: In *L* ist genügend Platz
- Algorithmus:
 - 1. Teile L in zwei gleich große Knoten L und L_2 auf (PickSplit)
 - 2. Füge (Union(L_2), ptr_{L_2}) zu parent(L) hinzu
 - Passe Key von L in parent(L) mittels Union an
 - □ Falls kein Platz: Rufe Split rekursiv auf
 - Wurzel aufteilen: erzeuge neue Wurzel

Union(P)

- **Eingabe:** P: Menge an Key-Pointer-Paaren (p_i, ptr_i)
- **Ausgabe:** Prädikat a, sodass $\bigvee_i p_i \to a$

Beispiel:

$$P = \left\{ \begin{array}{l} (\langle 1, 4 \rangle, \mathtt{ptr}_1) \\ (\langle 10, 20 \rangle, \mathtt{ptr}_2) \\ (\langle 18, 24 \rangle, \mathtt{ptr}_3) \end{array} \right\}$$

- $\ \ \square \ \langle 1,4\rangle \vee \langle 10,20\rangle \vee \langle 18,24\rangle \rightarrow \textit{a}$
- $a \equiv \langle 1, 24 \rangle$
- \Box $a \equiv \langle 0, 100 \rangle$

Beispiel: Split(L)

AdjustKeys(L)

- Eingabe: Knoten L
- Danach: Alle Keys sind aktuell
- Algorithmus:
 - 1. Berechne p = Union(L)
 - 2. Falls L Wurzel oder p in parent(L) aktuell: Abbrechen
 - Rufe AdjustKeys(parent(L)) rekursiv auf

- 1. Motivation
- 2. Struktur eines GiST
- 3. Suche
- 4. Einfügen
- 5. Effizienz
- 6. Zusammenfassung

Effizienz von Search(R, q)

- B⁺-Baum: O(log n) (balancierter Suchbaum)
- Laufzeit: Anzahl paralleler Suchzweige entscheidend
 - Echte Überschneidung der Schlüssel
 - Genauigkeit der Heuristik für Consistent
 - Informationsverlust bei Compress, Decompress

- Consistent ist eine Heuristik für SATISFIABILITY (false positives erlaubt)
- SATISFIABILITY ist \mathcal{NP} -vollständig

Implementierung von Insert(R, q)

- Je genauer Union und PickSplit, desto weniger Überschneidungen
- Platzkomplexität: Mit Compress, Decompress nicht schlechter als im B⁺-Baum

- 1. Motivation
- 2. Struktur eines GiST
- 3. Suche
- 4. Einfügen
- 5. Effizienz
- 6. Zusammenfassung

Zusammenfassung und Ausblick

- Implementation Issues [HNP95b]
 - Bulk Loading
 - Query Optimizer und Kostenschätzung
- GiST erleichtert Implementierung neuer Indexstrukturen
- Nur für Index-Bäume geeignet
- libgist, amdb: GiST-Implementierung und grafischer Debugger
- GiST-Implementierung für PostgreSQL [SB02]

Zusammenfassung

- Suche
 - \square Search(R, q)
 - □ Consistent(*P*, *q*)
- Einfügen
 - □ Insert(*E*)
 - \square ChooseSubtree(R, E)
 - \square Penalty(F, E)
 - □ Split(*L*)
 - □ PickSplit(*P*)
 - □ Union(*P*)
 - □ AdjustKeys(*L*)

Beispielimplementierung für Consistent

Quellen

- HNP95a Joseph M. Hellerstein, Jeffrey F. Naughton, Avi Pfeffer: Generalized Search Trees for Database Systems. VLDB 1995: 562-573
- HNP95b Joseph M. Hellerstein, Jeffrey F. Naughton, Avi Pfeffer:
 Generalized Search Trees for Database Systems. Technical Report #1274, University of Wisconsin at Madison, 1995.
 - SB02 Teodor Sigaev, Oleg Bartunov: GiST for PostgreSQL. http://www.sai.msu.su/~megera/postgres/gist/ Aufgerufen am 03.06.2012