

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 10-177533

(43)Date of publication of application : 30.06.1998

(51)Int.CL G06F 13/00
G06F 15/16

(21)Application number : 08-353339

(71)Applicant : CANON INC

(22)Date of filing : 17.12.1996

(72)Inventor : SHINAGAWA TATSURO

(54) INFORMATION INPUT-OUTPUT DEVICE, INFORMATION INPUT-OUTPUT DEVICE MANAGEMENT SYSTEM, METHOD FOR SETTING POSITION OF INFORMATION INPUT-OUTPUT DEVICE, AND METHOD FOR MANAGING INFORMATION INPUT-OUTPUT DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an information input-output device management system which can prevent the user of the system from carelessly selecting a remote device at the time of selecting an information input-output device on a network.

SOLUTION: A physical positional information which indicates the physical position of a device in a network is set and the set physical positional information is displayed in a displaying section and, at the same time, provided to a server machine. In addition, the movement of the device is automatically recognized and, when the movement is recognized, a message requesting the change of the setting state of the physical positional information is displayed in the displaying section (a) and (b). The automatic recognition of the movement of the device is performed by measuring the moving distance of the device form the rotation of device moving wheels attached to the leg sections of the device and, when the moving distance exceeds a prescribed set value, the movement is recognized. When the power supply is again turned on after the movement of the device ends, the above-mentioned requesting message is displayed.

前記物理的位置情報を設定変更する設定変更処理とを実行することを特徴とする情報入出力装置の位置設定方

58

定する情報入出力装置の位置設定方法と、情報入出力装置に対する入出力情報を管理する情報入出力装置の管理方法とに属する。

けられた装置移動用の制限の回数により移動距離を測定して、その移動距離が所定の設定値を超えた時点で装置の移動を認識し、装置の移動完了後に呼び処理が投入された時点で前記要求メッセージを表示することを特徴とする請求項10記載の位置出入力装置の位置設定方法。

【從来の技術】近年、広範囲に渡ってLAN(ローカルネットワーク)が構築されている環境が多くなり始めている。国内では、1プロアだけに止まらず複数のプロアに渡ってネットワークが構築されてきている。【0003】このようなネットワークには、ユーザが利

わ十物理的位置情報を設定する位置情報設定手段と、前記位置情報設定手段により設定された物理的位置情報を表示部に表示する表示手段と、前記位置情報設定手段により設定された物理的位置情報を外部に通知する通知手段と、装置が移動されたことを自動的に認識し、その認識時に前記物理的位置情報の設定変更の要求メッセージを前記表示部に表示する移動認識手段と、前記物理的位置情報の設定変更を行うための設定変更手段とを備えたものである。

[0009] 第2の発明である移換入出力装置は、上記第1の発明において、前記移動認識手段は、装置の脚部に蒙けられた装置移動用の脚巻の回転により移動距離を測定して、その移動距離が所定の設定値を超えた時点で

する移動装置手段と、前記物理的位置情報の設定変更を行ふための設定変更手段とをそれぞれ備え、前記管理サーバは、前記各情報を入力装置からの物理的位位置情報を管理する物理的位置情報管理手段と、物理的位位置情報等を管理する位置詳細情報管理手段と、前記物理的位位置情報と前記物理的位置情報等を関連付けする関連付け手段と、前記関連付け手段により関連付けられた情報を前記情報入出力装置に提供する情報提供手段とを備えたものである。

【0013】第6の発明である情報入出力装置管理システムは、上記第5の発明において、前記各情報を入力装置の運動情報を手段、装置の周囲に設けられた装置移動用の触覚の回路により移動距離を測定して、その移動距離

位置情報と管理サーバーに通知する通知処理と、装置が移動されたことを自動的に認識し、その認識時に前記物理的位置情報の設定変更の要求メッセージを前記表示部に表示する移動装置処理と、前記物理的位置情報を設定変更する設定変更処理と、前記情報入力装置で実行し、前記各情報入出力装置からの物理的位置情報を管理する物理的位置情報管理処理と、物理的位置情報を管理する

[0004] こうした環境下で、ユーザが「ソナルコンピュータより情報を出力する場合は、出力先の装置の情報として装置名、装置状態をサーバーマシンから取得し、ユーザはその情報を参照して情報の出力を行っていいだ。

[0005] [発明が解決しようとする課題] しかしながら、上記既存技術では、情報を出力するためには、ユーザが

物理的位置情報を備え、各機器の動作状況を監視するための監視機能を実現する。また、各機器の動作状況を監視するための監視機能を実現する。

が装置を選択する際に、ユーザの居る場所と著しく離れた装置を選択して出力する場合があった。また、選択手段として装置名の情報を知ることが出来たが、装置の位置（物理的な）情報を設定・取得する手段を備えたものではなく、ユーザの望む装置を選択する際に物理的に遙隔装置にある出力端子を接続するという取扱いが

は、装置の脚部に設けられた装置移動用の脚輪の回転により移動距離を測定して、その移動距離が所定の設定値を超えた時点で装置の移動を認識し、装置の移動完了後に耳びき電源が投入された時点で動作amma-ツヤーンモード

30 位置を把握することも難しく、ユーザは出力を行ったにも拘らず出力先へ取りに行く際に困惑することもあるた。

前記要求第1-4 前記物理的位置図情報は、前記ネットワークにおける装置の物理的配置を扱う位置図情報を有することを特徴とする請求項1-2または請求項1-3記載の情報入出力装置の管理方法。
【請求項1-5】 前記管理サーバは、
前記情報入出力装置に対して、装置の存在するフロック毎に前記配置図情報を提供する、または装置が要求する所定フロックの配置図情報を提供する配置図情報提供装置を実行することを特徴とする請求項1-4記載の情報入出力装置の管理方法。

【0006】また、物理的立地情報が設定可能な装置であっても、装置の移動とともに情報の書き換えをユーザが意図的に行なわなければ情報は更新しない。したものの情報は更新することを忘れててしまうといったことも問題となっている。

【0007】本発明は上記従来の問題点に鑑み、装置の移動の際に、使用している装置の物理的位置情報の更新を確実に行なうことができる構成入出力装置及びその位置設定方法を提供することを目的とする。さらに、ネットワーク上の構成入出力装置を複数ある際に、ユーザから遠く離れた装置を用意なく照査してしまうのを防ぐことができる構成入出力装置管理システム及び構成入出力装置の構成方法を示す。

[0001] 平成26年6月7日

【課題を解決するための手段】上記目的を達成するため
に、第1の本発明である情報入出力装置は、複数の装置
と共にネットワーク上に接続された情報入出力装置にお
いて、前記ネットワークにおける装置の物理的位置を表
す。

6

萬葉卷一〇-一七七三三

[0019] 第12の発明である情報入出力装置の管理

支那の歴史と文化

卷之三

卷之三

方法は、ネットワーク上に接続された複数の情報入出力装置の物理的位置を表わす物理的位置情報を設定する位置情報設定処理と、前記位置情報設定処理により設定された物理的位置情報を表示部に表示する表示処理と、前記位置情報設定処理により設定された物理的位置情報を管理サーバーに通知する通知処理と、装置が移動されたことを自動的に認識し、その認識時に前記物理的位置情報を受送信装置114が配置されている。また、2/FのAブロックには、パソコン1-20、複合機1-21、サーバマシン1-22、及びFAX送受信装置1-23が配置され、2/FのBブロックには、パソコン1-24、プリンタ1-25、及びFAX送受信装置1-26が配置されている。さらに、2/FのCブロックには、FAX送受信装置1-127、スキャナ1-28、及び複合機1-29が配置されてい

CPU301が処理したデータを各機能ユニットに転送したり、各機能ユニット間同士でデータを高速に転送(DMA転送)するためのものである。一般的にはVLSIバス又はPCIバスが採用される。

[0032] RIP305は、後述するコンピュータと接続される外部インターフェースより入力された画像成コマンドを受け、その内容に従ってビットマップ画像等の入力クライアントの信号をCPU301に伝えたり、RIP305、圖像処理部306及び音響/伸長部307で作成された画像データを操作ペナル317にある液晶表示部に表示するための解像度変換を行うユニットであ

10	<p>[0026] 図1中の複合機110、121、129は、LANに接続し、機能としてプリント、スキャナ及びFAX送受信装置送受信の複数の機能を兼ね備えた画像入出力装置であり、LANを介しての画像データの入出力装置である。</p>
----	---

CPU 301が処理したデータを各機器ユニットに転送したり、各機器ユニット間でデータを高速に転送(DMA転送)するためのものである。一般的にはVLPバス又はPCIバスが挙げられる。

[0032] RIP 305は、後述するコンピュータと接続される外部インターフェースより入力された画像形成コマンドを受け、その内容に従ってビットマップ画像への変換を行う機器ユニットである。画像形成コマンドは、高速CPUバス304より入力され、後述する高速イメージバス318にイメージ画像を出力するものである。RIPの構成としては、PostScript(ポストスクリプト)、PCL、LIPS、CapSL等が

10 [0033] RIP 305は、後述するコンピュータと接続される外部インターフェースより入力された画像形成コマンドを受け、その内容に従ってビットマップ画像への変換を行う機器ユニットである。画像形成コマンドは、高速CPUバス304より入力され、後述する高速イメージバス318にイメージ画像を出力するものである。RIPの構成としては、PostScript(ポストスクリプト)、PCL、LIPS、CapSL等が

10 100371 高速イメージバス318は、各種画像生成ユニット(RIP 305、画像処理部306、圧縮/伸長部307)における画像入出力バスと、後述するスキナインターフェース319及びプリントインターフェ

[003-3] 画像処理部3-06は、高速イメージバス3-18から入力されたイメージ画像をCPU3-01の指示による処理命令に従って、スマージング処理やエッジ処理などのイメージ画像に対するフィルタリング処理を行なう機能ユニットである。この他にも、画像処理部3-06の機能としては、高速イメージバス3-18より入力された画像に対して文字認識(OCR)機能や、文字部をイメージ部分を分離するイメージセパレート機能をも有する。圧縮/伸長部3-07は、高速イメージバス3-18から入力されたイメージ画像に対して、MH、MR、MM、R、JPEG等の画像処理方法により圧縮をかけ、高速ユニット3-21で読み取られた画像データを、その後	バスの制御は、CPU3-01の管轄下にはおかれず、バスコントローラによって制御されデータ転送を行う。
[003-8] スキャナユニット3-21は、原紙自動送り装置(両面対応)を備えた可視範囲読み取り装置で、R/G白黒の3色ラインのCCDセンサ等を有するものである。このスキャナユニット3-21で読み取られた画像データは、スキャナインタフェースユニット3-19によつて、高速イメージバス3-18に転送される。スキャナインターフェースユニット3-19においては、前記スキャナユニット3-21で読み取られた画像データを、その後	[003-8] スキャナユニット3-21は、原紙自動送り装置(両面対応)を備えた可視範囲読み取り装置で、R/G白黒の3色ラインのCCDセンサ等を有するものである。このスキャナユニット3-21で読み取られた画像データは、スキャナインタフェースユニット3-19によつて、高速イメージバス3-18に転送される。スキャナインターフェースユニット3-19においては、前記スキャナユニット3-21で読み取られた画像データを、その後

方法では、上記第1.2または第1.3の発明において、前記物理的位置情報や操作情報を、前記ネットワークにおける接続の物理的配置を表す位置図情報としたものである。
【0021】第1.5の発明である情報入出力装置の管理方法では、上記第1.4の発明において、前記管理サーバーは、前記情報入出力装置に対して、装置の存在するプロトコル毎に前記位置図情報を提供する、または装置が要求される所定プロトコルの位置図情報を提供する位置図情報を

[100331] 画像処理部306は、高速イメージバス318から入力されたイメージ画像をCPU301の指示による処理命令に従って、スムージング処理やエッジ処理などのイメージ画像に対するフィルタリング処理を行う機能ユニットである。この他にも、画像処理部306の機能としては、高速イメージバス318より入力された画像に対して文字認識(OCR)機能や、文字部とイメージ部を分離するイメージバスレート機能等を有する。圧縮／伸張部307は、高速イメージバス18から入力されたイメージ画像に対して、MM／MBR、MMR、JPEG等の画像圧縮方法により圧縮をかけ、高速CPUバス304又は高速イメージバス318にその圧縮されたデータを送出したり、その逆にそれらの2つのバスから入力された圧縮データを、この機能ユニットにより圧縮された方式に従って伸長し、高速イメージバス318へ送出する機能を持つものである。

100341) バスプリッジ308は、高速CPUバス304と後述する低速CPUバス309とを繋ぐためのバスプリッジコントローラで、バス間の処理スピードの差を吸収するものである。このバスプリッジ308を介す

20 [100381] スキャナユニット321は、原稿自動送り装置(両面対応)を備えた可視回転読み取り装置で、RGBの3ラインのCCDカラーセンサーまたは、1ラインの白黒のCCDラインセンサーを有するものである。このスキャナユニット321で読み取られた画像データは、スキャナインシーブースユニット319によつて、高速イメージバス318に転送される。スキャナインシーブースユニット318においては、前記スキャナユニット321で読み取られた画像データを、その後の通常における処理の内容によって、最適な2種化を行ない、高速イメージバス318のデータ間に合わせたシリアル・パラレル変換を行ったり、読み込まれたRGBの3原色のカラーデータをCMYBkのデータに変換したデータを用いて、各機能部にデータを供給する。

30 [100391] プリンタユニット322は、後述するプリンタインターフェースユニット320から受け取った画像データを、記録用紙上に可視画像データとして印刷するものである。プリンタユニット322には、パブルジ

【0022】
【発明の実施の形態】以下、図面を参照して本発明の実施例について説明する。
図29 次に、図3を基に、本発明に属する画像入出力装置である前述した複合機110、121、12

[0033] 画像処理部306は、高速イメージバス3 18から入力されたイメージ画像をCPU301の指示による処理命令に従って、スマージング処理やエッジ処理などのイメージ画像に対するフィルタリング処理を行う機能ユニットである。この他にも、画像処理部306の機能としては、高速イメージバス3 18より入力された画像に対して文字認識(OCR)機能や、文字部とイメージ部を分離するイメージセパレート機能等を有する。圧縮部(映像部3 07)は、高速イメージバス3 18から入力されたイメージ画像に対して、MH、MR、MMR、JPEG等の画像圧縮手法により圧縮をかけ、高速 JPEG等の圧縮データを生成する。また、圧縮されたデータを送出したり、その逆にそれらの2つのバスから入力された圧縮データを、この機能ユニットにより圧縮された方式に従って伸長し、高速イメージバス3 18へ送り出す機能を持つものである。	[0034] バスプリング3 08は、高速CPUバス3 04と後述する低速CPUバス3 09とを繋ぐためのバスプリングコンローラで、バス間の処理スピードの差を吸収するものである。このバスプリング3 08を介することで高速動作するCPU301は、低速CPUバス3 09に接続された低速動作の機能ユニットをアクセスすることができる。
20 このスキャナユニット3 21で読み取られた画像データは、スキャナインシータフェースユニット3 19によつて、高速イメージバス3 18に転送される。スキャナインシータフェースユニット3 19においては、前記スキャナユニット3 21で読み取られた画像データを、その後の通信における処理の内容によって、最適な2値化を行ない、高速イメージバス3 18のデータ幅に合わせたシリアル・パラレル変換を行ったり、読み込まれたRGBのカラーデータをCMYBkのデータに変換したりする機能を持ち合わせる。	[0035] スキャナユニット3 21は、原稿自動送り装置(両面読み込み)を備えた可視範囲読み取り装置で、RGBの3ラインのCCDカラーセンサーまたは、1ラインの白黒のCCDラインセンサーを有するものである。このスキャナユニット3 21で読み取られた画像データは、スキャナインシータフェースユニット3 19によつて、高速イメージバス3 18に転送される。スキャナインシータフェースユニット3 19においては、前記スキャナユニット3 21で読み取られた画像データを、その後の通信における処理の内容によって、最適な2値化を行ない、高速イメージバス3 18のデータ幅に合わせたシリアル・パラレル変換を行ったり、読み込まれたRGBのカラーデータをCMYBkのデータに変換したりする機能を持ち合わせる。

[0023] 図1は、本発明の実施形態に係る情報出入力装置管理システムの概略構成を示すブロッケ図である。CPU301は、複数台全体の制御を司るマイクロプロセッサで、リアルタイムOSによって動作

[0033] 画像処理部306は、高速イメージバス3-18から入力されたイメージ画像をCPU301の指示による処理命令に従って、スマージング処理やエッジ処理などのイメージ画像に対するフィルタリング処理を行う機能ユニットである。この他にも、画像処理部306の機能としては、高速イメージバス3-18より入力された画像に対して文字認識(OCR)機能や、文字描写イメージ部を分離するイメージセパレート機能も有する。圧縮／伸長部3-07は、高速イメージバス3-18から入力されたイメージ画像に対して、MH、MR、MMR、JPEG等の画像圧縮方法により圧縮をかけ、高速CPUバス3-04又は高速イメージバス3-18にその圧縮されたデータを送出したり、その逆にそれらの2つのバスから入力された圧縮データを、この機能ユニットにより圧縮された方式に従って伸長し、高速イメージバス3-18へ送出する機能を持つものである。	[0034] バスプリング3-08は、高速CPUバス3-04と後述する低速CPUバス3-09とを繋ぐためのバスプリングコンロードで、バサ闊の処理スピードの差を吸収するものである。このバスプリング3-08を介することで高速に動作するCPU3-03は、低速CPUバス3-09に接続された低速動作の機能ユニットをアクセスすることができる。
[0035] 低速CPUバス3-09は、前記高速CPUバス3-04よりは転送速度の遅いバス構成で、処理能力の比較的小い機能ユニットを接続するためのバスであ	バスの制御は、CPU301の管轄下にはおかれが、バスコントローラによって制御されデータ転送を行う。 [0038] スキャナユニット3-21は、原稿自動送り装置(両面対応)を備えた可搬回転読み取り装置で、RGBの3ラインのCCDカラーセンサーまたは、1ラインの白黒のCCDラインセンサーを有するものである。このスキャナユニット3-21で読み取られた画像データは、スキャナユニット3-21で読み取られた画像データにて、高速イメージバス3-18に転送される。スキャナユニット3-21においては、前述スキャナユニット3-21で読み取られた画像データを、その後の過程における処理の内容によって、収益性2層化を行ない、高速イメージバス3-18のデータ欄に合わせたシリアル一パラレル変換を行ったり、部分込まれたRGBの3原色のカラーデータをCMYBkのデータに変換したりする機能を持ち合わせる。 [0039] プリンタユニット3-22は、後述するプリンタインターフェースユニット3-20から受け取った画像データを、記録用紙上に可視画像データとして印刷する装置である。プリンタユニット3-22は、バブルジメント方式を用いて記録用紙上に印刷するバブルジメントプリンタや、レーザ光路を利用して感光ドラム上に画像を形成し記録用紙に画像を形成する電子写真技術を利用したレーザビームプリンタが挙げられる。レーザーピームプリンタには熱色のものと、CMYBkによるカラーレーザーピームプリンタがある。

ているオフィス内の物理的配置図であり、両図(a)はオフィスの2階(2F)を示し、両図(b)はオフィス行う上での複数のアブリケーションもしくは画像データを蓄積しておく大容量ハードディスクであり、前述のC

[10033] 画像処理部306は、高速イメージバス3 18から入力されたイメージ画像に対するCPU301の指示による処理命令に従って、スマージング処理やエッジ処理などのイメージ画像に対するフィルタリング処理を行う機能ユニットである。この他にも、画像処理部306の機能としては、高速イメージバス3 18より入力された画像に対して文字認識(OCR)機能や、文字とイメージ部分を分離するイメージセパレート機能等を有する。圧縮/伸長部3 07は、高速イメージバス3 18から入力されたイメージ画像に対して、HJM、MR、MMR、JPEG等の画像圧縮方法により圧縮をかけ、高速CPUバス3 04又は高速イメージバス3 18にその圧縮されたデータを送出したり、その逆にそれらの2つのバスから入力された圧縮データを、この機能ユニットにより圧縮された方式に従って伸長し、高速イメージバス3 18へ送出する機能を持つものである。

10034] バスプリング3 08は、高速CPUバス3 04と後述する低速CPUバス3 09とを繋ぐためのバスプリングコントローラで、バス間の処理スピードの差を吸収するものである。このバスプリング3 08を介することで高速に動作するCPU301は、低速CPUバス3 09に接続された低速動作の機能ユニットをアクセスすることができる。

10035] 低速CPUバス3 09は、前記高速CPUバス3 04よりは低速速度の早いバス構成で、処理能力の比較的遅い機能ユニットを接続するためのバスである。FAX送受信装置3 10は、公団回線3 11と低速CPUバス3 09とを介在する機能ユニットで、低速CPUバス3 09より送られてきたデータをシリアルデータを用

20 30 40

[10038] スキャナユニット3 21は、原稿自動送り装置(両面読み)を備えた可視画面読み取り装置で、RGBの3ラインのCCDカラーセンサーまたは、1ラインの白黒のCCDラインセンサーを有するものである。このスキャナユニット3 21で読み取られた画像データは、スキャナインターフェースユニット3 19によつて、高速イメージバス3 18に転送される。スキャナインターフェースユニット3 18に転送され、前記スキャナユニット3 21で読み取られた画像データを、その後の通常における処理の内容によって、最適な2種類を行ない、高速イメージバス3 18のデータ間に合わせたシリアル・パラレル送受を行ったり、読み込まれたRGBの3原色のカラーデータをCMYBkのデータに変換したデータを合わせる。

[10039] プリンタユニット3 22は、後述するプリンタインターフェースユニット3 20から受け取った画像データを、記録用紙上に可視画面データとして印刷するものである。プリンタユニット3 22には、パフルジット方式を用いて記録用紙上に印刷するパフルジットプリントや、レーザ光線を利用して感光ドラム上に画像を形成し記録用紙に転写する電子写真技術を利用した形成レーザビームプリントが導入される。レーザーパーミューリンタは両者のものと、CMYBkによるカラーレーザビームプリンタがある。

[10040] プリンタインターフェースユニット3 20は、高速イメージバス3 18から送られてきた画像データをシリアルデータに轉送するもので、高速イメージ

（0024）なお、図2（a）、（b）との対応を示す
おに、図1には、オフィスの1F、2Fと各ブロック
は、イスクドライブを接続することによりリムーバブルな記
憶媒体を回路装置として利用することも可能である。

18から入力されたイメージ画像をCPU U301の指示による処理命令に従って、スマージング処理やエッジ処理などのイメージ画像に対するフィルタリング処理を行う機能としては、高速イメージバス31より入力された画像に対して文字認識(CPU)機能や、文字部とイメージ部を分離するイメージセパレート機能をも有する。圧縮部(押出し部)301は、高速イメージバス31から入力されたイメージ画像に対して、MM, MR, MM, R, JPEG等の圧縮方式法により圧縮をかけ、高速CPUバス3 04又は高速イメージバス3 18にその圧縮されたデータを送り出したり、その逆にそれらの2つのバスから入力された圧縮データを、この機能ユニットにより圧縮された方式に従って伸展し、高速イメージバス31 18へ送出する機能を持つものである。	100331)画像処理部306は、高速イメージバス3 04と後述する低速CPUバス3 09とを繋ぐためのバスプリッジコントローラで、バス間の処理スピードの差を吸収するものである。このバスプリッジ3 08を介することで高遅動作するCPU U301は、低速CPUバス3 09に接続された低速動作の機能ユニットをアクセスすることができる。	100341)バスプリッジ3 08は、高速CPUバス3 04と後述する低速CPUバス3 09とを繋ぐためのバスプリッジコントローラで、バス間の処理スピードの差を吸収するものである。このバスプリッジ3 08を介することで高遅動作するCPU U301は、低速CPUバス3 09に接続された低速動作の機能ユニットをアクセスすることができる。
100351)低速CPUバス3 09は、前記高遅CPUバス3 04よりは低速速度の遅いバス構成で、処理能力の比較的遅い機能ユニットを接続するためのバスである。FAX送受信装置3 01は、公衆回線3 11と低速CPUバス3 09とを介する機能ユニットで、低速CPUバス3 04より送られたデータを公衆回線3 11にデータを流せるよう変調する機能と、公衆回線3 11より送られてきた変調されたデータを複数機内で処理できるデジタルデータに変換する機能を複合	100381)スキヤナユニット3 21は、原稿自動送り装置(両面対応)で備えた可視範囲読み取り装置で、RGBの3ラインのCCDカラーセンサーまたは、1ラインの白黒のCCDセンサーを有するものである。	100381)スキヤナユニット3 21は、原稿自動送り装置(両面対応)で備えた可視範囲読み取り装置で、RGBの3ラインのCCDカラーセンサーまたは、1ラインの白黒のCCDセンサーを有するものである。
40 100391)プリントユニット3 22は、後述するプリンタインターフェースユニット3 20から受け取った圧縮データを、記録紙上に可視範囲データとして印刷するものである。プリントユニット3 22には、バブルジェット方式を用いて記録紙上に印刷するバブルジェットプリンタや、レーザ光線を利用して感光ドラム上に图像を形成し記録用紙に画像を形成する電子写真技術を利用したレーザビームプリンタが挿入される。レーザビームプリンタには熱色のものと、CMYBkによるカラーレーザビームプリンタがある。	100391)プリントユニット3 22は、後述するプリンタインターフェースユニット3 20から受け取った圧縮データを、記録紙上に可視範囲データとして印刷するものである。プリントユニット3 22には、バブルジェット方式を用いて記録紙上に印刷するバブルジェットプリンタや、レーザ光線を利用して感光ドラム上に图像を形成し記録用紙に画像を形成する電子写真技術を利用したレーザビームプリンタが挿入される。レーザビームプリンタには熱色のものと、CMYBkによるカラーレーザビームプリンタがある。	100391)プリントユニット3 22は、後述するプリンタインターフェースユニット3 20から受け取った圧縮データを、記録紙上に可視範囲データとして印刷するものである。プリントユニット3 22には、バブルジェット方式を用いて記録紙上に印刷するバブルジェットプリンタや、レーザ光線を利用して感光ドラム上に图像を形成し記録用紙に画像を形成する電子写真技術を利用したレーザビームプリンタが挿入される。レーザビームプリンタには熱色のものと、CMYBkによるカラーレーザビームプリンタがある。
100401)データを記録する記録部3 20は、高遅イメージバス3 18から送られた高遅データをプリントユニタリに送達するので、高遅イメージバス3 18のバス幅から出力しようとするプリントの出力に合わせたバス幅に変換するバス幅変換機能や、プリントの印刷速度と高遅イメージバス3 18の画像データ	100401)データを記録する記録部3 20は、高遅イメージバス3 18から送られた高遅データをプリントユニタリに送達するので、高遅イメージバス3 18のバス幅から出力しようとするプリントの出力に合わせたバス幅に変換するバス幅変換機能や、プリントの印刷速度と高遅イメージバス3 18の画像データ	100401)データを記録する記録部3 20は、高遅イメージバス3 18から送られた高遅データをプリントユニタリに送達するので、高遅イメージバス3 18のバス幅から出力しようとするプリントの出力に合わせたバス幅に変換するバス幅変換機能や、プリントの印刷速度と高遅イメージバス3 18の画像データ

A、B、Cを押すことで、Aノンバード、Bノンバード、Cノンバードを表示している。[0025] 図1に示すように、このオフィスの1FのAブロックには、複合機110とパソコン(ペソナルコンピュータ)111とFAX送受信装置112が配置され、Bブロックでは、複数のパソコン(ペソナルコンピュータ)113と複数のFAX送受信装置114が配置され、Cブロックでは、複数の複合機115と複数のFAX送受信装置116が配置される。各部屋のドアは、各部屋の外側に設けられた各部屋用のドア開閉装置によって開閉される。各部屋用のドア開閉装置は、各部屋用のドア開閉装置によって構成される。各部屋用のドア開閉装置は、各部屋用のドア開閉装置によって構成される。

ヤーにより入力された信号、前述したバネリインターフェース3-1、5を介してCPU3-1に伝えられ、液晶表示部はバネリインターフェース3-1、5から送られてきた画像データを表示するものである。液晶表示部には、複合機の動作における操作表示や画像データ等を表示する。

[0042] 脚部センサーユニット3-14は、複合機の脚部に取り付けたセンサー3-16を制御する部分であり、装置が移動されたかどうかの判断と装置の物理的位置情報を記憶するユニットである。

[0043] 図4を用いて脚部センサーユニット3-14の構成を説明する。

[0044] センサー制御CPU4-02は、脚部のセンサ-3-16を制御するものである。メモリ4-01は半導体メモリを用いており装置のCPU3-01と共にされる。このメモリ4-01には、物理的位置情報と、図5に示すような配置図の1部(この場合はAブロックに相当する範囲)と、この配置図における装置の位置情報とが記憶されている。メモリ4-01は、電源が供給されなくとも記憶された情報と保持するものである。

[0045] 次に、本実施形態の動作(A)、(B)、(C)について説明する。

[0046] (A) サーバーへの設定

まず、配置図(図2)の作成について説明する。LANの通用される範囲(図1)が紙(専用するものではない)に書かれている場合、複合機のスキナで読み込みその画像データをサーバーマシン1-2に送る。また、バックアップ電源4-03は、装置全体の電源が切れたときに本ユニットのみを動作させるため充電式バッテリーである。

[0047] 次に、本実施形態の動作(A)、(B)、(C)について説明する。

[0048] (A) サーバーへの設定

まず、配置図(図2)の作成について説明する。LANの通用される範囲(図1)が紙(専用するものではない)に書かれている場合、複合機のスキナで読み込みその画像データをサーバーマシン1-2に送る。また、サーバーマシン1-2上で作成してもよい。この場合、1F、2Fとに別れた2枚の画像データをサーバーマシン1-2上に持つこととなる。サーバーマシン1-2上での画像データを大きなブロックA、B、Cに分割する。分割されたブロックA、B、Cをそれぞれ分割して複数を生成する。

[0049] 図5に示すようなAブロックの場合は、総面積を5分割して、縦割をY0、Y1、Y2、Y3、Y4、横割をX0、X1、X2、X3、X4という座標を特化させる。複数のプロックも同じようにして座標を生成する。分割の方法及び分割限界は、各プロックの面積や装置の大きさを考慮して管理者がサーバーマシン1-2上でのソフトウェア上で行ってもよい。

[0050] この図面データと、各装置から通知または要求して得られる情報とを連携させるために図6に示すような情報テーブルを作成する。

[0051] (B) 複合機の初期設定

Aブロックの複合機1-21(名前MP1)の操作パネルを用いて装置位置情報の初期設定について、図7のフローチャートと図8(a)、(b)、(c)のメッセージ

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
758
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
778
779
779
780
781
782
783
784
785
786
787
788
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
10060

の状態を決定させることができる。

[0073] さらに、操作パネルを大型化することで配置図を表示することも可能となる。操作表示部のパネルを大型化できない場合は、サーバマシン上での物理的位置を特定させることによって、配置図上の座標を入力できるようにしてよい。これにより、小型の装置についてもユーザが装置を選択した場合にその物理的位置を特定できるのである。

[0074] このように、上記実施形態では、ネットワーク環境下における各装置の名前、状態と物理的位置情報を装置選択時点で初期設定してその情報を用いることにより、情報入出力装置を選択する際には、非常にわかりやすくなり、ユーザから遠く離れた装置を不用意に選択してしまうことを防ぐことができる。また、レイアウト変更による装置が移動された場合でも、装置自体がメッセージを自動的に表示するので、ユーザはされることなく装置の物理的位置情報を設定することができる。これらの情報は、複数の装置から構成されているシステムにおいて管理上有益となる。

[0075] [発明の効果] 以上述べたように、第1の本発明である情報入出力装置によれば、ユーザは、装置の移動の際に、使用している装置の物理的位置情報を忘れてなく確実に行なうことができる。

[0076] 第2の発明である情報入出力装置によれば、上記第1の発明において、移動認証手段の構成を簡素化することができる。

[0077] 第3の発明である情報入出力装置管理システムによれば、ユーザは、装置の移動の際に、使用している装置の物理的位置情報を忘れてなく確実に行なうことができる。そして、ユーザが複数の情報入出力装置の中から所定の装置を選択する際には、装置の物理的位置を画面上で正確に確認することができるため、ユーザから遠く離れた装置を不用意に選択してしまうことを防ぐことが可能になる。

[0078] 第4の発明である情報入出力装置管理システムによれば、上記第3の発明において、各情報入出力装置の移動認証手段の構成を簡素化することができる。

[0079] 第5の発明である情報入出力装置管理システムによれば、上記第4の発明である情報入出力装置管理システムによれば、上記第3の発明の効果と同様の効果を、より確実に享受することができる。

[0080] 第6の発明である情報入出力装置管理システムによれば、上記第5の発明において、各情報入出力装置の移動認証手段の構成を簡素化することができる。

[0081] 第7の発明である情報入出力装置管理システムによれば、上記第6または第6の発明において、各情報入出力装置の構成を簡素化することができる。

[0082] 第8の発明である情報入出力装置管理システムによれば、上記第7の発明において、ユーザは、ネットワークにおける装置の物理的位置をより分

かりやすく把握することができる。

[0083] 第9の発明である情報入出力装置管理システムによれば、上記第8の発明において、ユーザは、ネットワークにおける装置の物理的位置を一層分かりやすく把握することができる。

[0084] 第10の発明である情報入出力装置の位置設定方法によれば、上記第1の発明と同等の効果を享受することができる。

[0085] 第1の発明である情報入出力装置の位置設定方法によれば、上記第10の発明において、上記第2の発明と同等の効果を享受することができる。

[0086] 第2の発明である情報入出力装置の管理方法によれば、上記第1の発明において、上記第6の発明と同等の効果を享受することができる。

[0087] 第3の発明である情報入出力装置の管理方法によれば、上記第1-2または第1-3の発明において、上記第8の発明と同等の効果を享受することができる。

[0088] 第4の発明である情報入出力装置の管理方法によれば、上記第1-4の発明において、上記第9の発明と同等の効果を享受することができる。

[0089] 第5の発明である情報入出力装置管理システムによれば、上記第1-2または第1-3の発明において、上記第8の発明と同等の効果を享受することができる。

[0090] 第6の発明である情報入出力装置の管理方法によれば、上記第1-4の発明において、上記第9の発明と同等の効果を享受することができる。

[0091] 第7の発明のフローチャートである。

[0092] 第8のメッセージ表示画面を示す図である。

[0093] 第9のAプロックの配置マップ表示画面を示す図である。

[0094] 第10の移動時の制御フローチャートである。

[0095] 第11のAプロックの配置マップ表示画面を示す図である。

[0096] 第12の移動後の制御フローチャートである。

[0097] 第13のメッセージ表示画面を示す図である。

[0098] 第14の装置選択のフローチャートである。

[0099] 第15のパソコンのメッセージ表示画面である。

[0100] 第16のパソコンの配置マップ表示画面を示す図である。

[図3]

[図9]

[図10]

[図11]

[図12]

[図13]

[図16]

[図7]

[図8]

(a)

(b)

(c)

[図15]

[図17]

[図18]

[図14]

[図15]

701