Doble Titulación

ÁLGEBRA LINEAL

Hoja 3: Aplicaciones lineales

- 1. Determina cuáles de las siguientes aplicaciones son lineales:
 - (a) $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por F(x,y) = (2x, y x).
 - (b) $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por F(x,y) = (y,x).
 - (c) $F: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por F(x,y) = xy.
 - (d) $F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por $F(x,y) = (\sin x, y)$.
 - (e) $F: \mathbb{C} \longrightarrow \mathbb{C}^2$ definida por F(x) = (2x, 0).
 - (f) $F: \mathbb{R}^3 \longrightarrow \mathbb{R}$ definida por $F(x, y, z) = e^{x+y+z}$.
 - (g) $F: \mathbb{Q} \longrightarrow \mathbb{Q}^3$ definida por F(x) = (2x, 0, x/2).
 - (h) $F: \mathbb{P}^3_{\mathbb{R}}[x] \longrightarrow \mathbb{P}^3_{\mathbb{R}}[x]$ definida por F(p(x)) = p'(x).
 - (i) $F: \mathbb{Q}^2 \longrightarrow \mathbb{M}_2(\mathbb{Q})$ definida por $F(x,y) = \begin{pmatrix} 5x & 0 \\ x 3y & x \end{pmatrix}$
 - (j) $F: \mathbb{M}_n(\mathbb{C}) \longrightarrow M_n$ definida por F(A) = A

 - (k) $I: \{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ continua}\} \longrightarrow \mathbb{R} \text{ definida por } I(f) = \int_0^1 f(x) dx.$ (l) $J: \{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f \text{ derivable}\} \longrightarrow \mathbb{R}^2 \text{ definida por } J(f) = (f'(-1), f(2) + f'(0)).$
- **2.** (i) Halla T(1,0) si $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ es una aplicación lineal para la que sabemos que T(3,1)=(1,2) y T(-1,0) = (1,1).
 - (ii) Lo mismo sabiendo que T(4,1) = (1,1) y T(1,1) = (3,-2).
- 3. Decide en cada caso si existe una aplicación lineal con las propiedades que se indican. (Si existe defínela y si no existe da una justificación).
 - (a) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(1, -1, 1) = (1, 0) y T(1, 1, 1) = (0, 1). (b) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $T(\alpha_i) = \beta_i$ (i = 1, 2, 3) con $\alpha_1 = (1, 1)$, $\alpha_2 = (2, -1), \alpha_3 = (-3, 2), \beta_1 = (1, 0), \beta_2 = (0, 1) \text{ y } \beta_3 = (1, 1)$.
- **4.** Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por

$$T(x_1, x_2, x_3) = (x_1 + x_3, x_2, x_3 - x_1).$$

Determina la imagen por T del plano $\{x_1 + x_2 + x_3 = 0\}$.

- **5.** Sea $f: \mathbb{M}_2(\mathbb{R}) \longrightarrow \mathbb{P}^2_{\mathbb{R}}[x]$ la aplicación definida por $f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a-b)x^2 + (c+d)x$.
 - (a) Demuestra que f es lineal y halla bases para el núcleo de f y la imagen de f.
 - (b) Halla la matriz de f respecto a la base estándar de $\mathbb{M}_2(\mathbb{R})$ y la base $\{x^2+1, x^2+3x, 5\}$ de $\mathbb{P}^2_{\mathbb{R}}[x]$.
- **6.** Sean $f: \mathbb{M}_2(\mathbb{R}) \longrightarrow \mathbb{M}_2(\mathbb{R})$ y $g: \mathbb{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ las aplicaciones lineales definidas por:

$$f\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & 0 \\ c-d & 5a \end{pmatrix} \quad \text{y} \quad g\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a+b,-c,d-a).$$

(a) Halla las matrices de f y g respecto a las bases estándar.

- (b) Comprueba que $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ es una base de $\mathbb{M}_2(\mathbb{R})$. Halla la matriz de f y las coordenadas de $f \begin{pmatrix} 1 & 1 \\ 1 & 5 \end{pmatrix}$ respecto a la base \mathcal{B} .
 - (c) Halla la matriz de g respecto a la base \mathcal{B} en $\mathbb{M}_2(\mathbb{R})$ y la base estándar \mathcal{C} de \mathbb{R}^3 .
- (d) Halla la matriz de $g \circ f$ respecto a las bases estándar y respecto la base \mathcal{B} en $\mathbb{M}_2(\mathbb{R})$ y la base estándar de \mathbb{R}^3 .
 - (e) Relaciona las diferentes matrices obtenidas.
- 7. En \mathbb{R}^3 se consideran las bases

$$\mathcal{B}_1 = \{(1,0,1), (-1,1,1), (1,-1,0)\}$$
 y $\mathcal{B}_2 = \{(2,1,1), (1,1,1), (1,-1,1)\}.$

- (a) Calcula la matriz de cambio de base de \mathcal{B}_2 a \mathcal{B}_1 .
- (b) Calcula las coordenadas en la base \mathcal{B}_1 del vector cuyas coordenadas en la base \mathcal{B}_2 son (3, -2, 1).
- 8. Sea $f: \mathbb{M}_2(\mathbb{R}) \to \mathbb{M}_2(\mathbb{R})$ la aplicación lineal dada por

$$f\left(\begin{array}{cc}a&b\\c&d\end{array}\right)=\left(\begin{array}{cc}a+5b&b+3c+2d\\c-d&d\end{array}\right).$$

- (a) Encuentra la matriz A de f respecto de la base canónica C (tanto en el espacio de partida como en el de llegada).
 - (b) Encuentra la matriz D de f respecto de la base \mathcal{C} y la base \mathcal{B} formada por los vectores siguientes:

$$\mathcal{B} = \left\{ v_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), v_2 = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right), v_3 = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right), v_4 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) \right\}.$$

- (c) Calcula $D\begin{pmatrix} 1\\1\\2\\1 \end{pmatrix}$.
- (d) Encuentra las coordenadas del vector $f\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ respecto de \mathcal{B} .
- 9. Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ el endomorfismo definido por

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$

- (a) Halla la matriz de T en la base estándar y la matriz de T respecto a la base $\{(1,0,1),(-1,2,1),(2,1,1)\}$.
- (b) Demuestra que T es un isomorfismo y da una expresión para T^{-1} .
- 10. Sean v_1, v_2 y v_3 tres vectores linealmente independientes de un espacio vectorial V. Demuestra que:
 - (a) Los vectores $u_1 = v_1 + v_2$, $u_2 = v_2 + v_3$ y $u_3 = v_3 + v_1$ son linealmente independientes.
 - (b) Los vectores $w_1 = v_1, w_2 = v_1 + v_2$ y $w_3 = v_1 + v_2 + v_3$ son linealmente independientes.
- (c) Tres vectores cualesquiera u_1, u_2, u_3 del subespacio $F = \langle v_1, v_2, v_3 \rangle$ son independientes \Leftrightarrow sus coordenadas respecto a la base $\{v_1, v_2, v_3\}$ son vectores independientes de \mathbb{R}^3 .

(Sugerencia: escribe la matriz del endomorfismo $f: F \to F$ caracterizado por $f(v_i) = u_i, i = 1, 2, 3$ y deduce que f es un isomorfismo).

- 11. Sean f y g dos aplicaciones lineales. Demuestra que:
 - (a) $\operatorname{Ker}(f) \cap \operatorname{Ker}(g) \subset \operatorname{Ker}(f+g)$
 - (b) Si $\operatorname{Im}(f) \cap \operatorname{Im}(g) = {\vec{0}}$, entonces $\operatorname{Ker}(f) \cap \operatorname{Ker}(g) = \operatorname{Ker}(f+g)$.

- **12.** Sea $f: \mathbb{P}^3_{\mathbb{R}}[x] \to \mathbb{P}^3_{\mathbb{R}}[x]$ la aplicación que asocia a cada polinomio su derivada. Demuestra que f es lineal, escribe su mariz respecto a la base estándar de $\mathbb{P}^3_{\mathbb{R}}[x]$ y describe su núcleo y su imagen.
- **13.** Sean $V_1, V_2 \subset V$ dos subespacios vectoriales de modo que $V_1 \oplus V_2 = V$. Definimos la función $p_1 : V \to V$ como la aplicación que asocia a cada vector $u \in V$ su proyección sobre V_1 en la dirección de V_2 , es decir, si $u = v_1 + v_2$ con $v_1 \in V_1$ y $v_2 \in V_2$, entonces $p_1(u) = v_1$.
 - (a) Demuestra que p_1 es lineal y que $p_1^2 = p_1$.
- (b) Si $B_1 = \{w_1, \dots, w_m\}$ y $B_2 = \{w_{m+1}, \dots, w_n\}$ son bases de V_1 y V_2 respectivamente escribe la matriz de p_1 respecto a la base $B = B_1 \cup B_2$.
 - (c) Si la suma $V_1 + V_2$ no fuera directa: ¿se podría definir la proyección de manera similar?
- **14.** Sean $V_1, V_2 \subset V$ dos subespacios vectoriales de modo que $V_1 \oplus V_2 = V$. Definimos la función $s: V \to V$ como la aplicación que asocia a cada vector $u \in V$ su simétrico sobre V_1 en la dirección de V_2 , es decir, si $u = v_1 + v_2$ con $v_1 \in V_1$ y $v_2 \in V_2$, entonces $s(u) = v_1 v_2$.
 - (a)Demuestra que s es lineal y que $s^2 = id$.
- (b) Si $B_1 = \{w_1, \ldots, w_m\}$ y $B_2 = \{w_{m+1}, \ldots, w_n\}$ son bases de V_1 y V_2 respectivamente escribe la matriz de s respecto a la base $B = B_1 \cup B_2$.
 - (c) Si la suma $V_1 + V_2$ no fuera directa: ¿se podría definir la simetría de manera similar?