SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, EEROZEPUR

• V		TT		Total number of
ROLL No:				pages:[02]
			Tota	al number of questions: 09

B. Tech. || All || 1st Semester **Engineering Physics** Subject Code: BTPH-101

Paper ID:

(for office use)

Time allowed: 3 Hrs Important Instructions:

Max Marks: 60

- Section A is compulsory. Each question in this section carries 2 marks.
- Attempt any five questions from Section B and Section C selecting at least two
 questions each from Section B and Section C. Each question of Section B and
 Section C carries 8 marks.
- Assume any missing data.

PART A

- Q. 1. Short-Answer Questions:
 - (a) What is the physical significance of divergence of a vector?
 - (b) Differentiate between ferro- and ferri- magnetic materials.
 - (c) What is X-ray radiography?
 - (d) Differentiate between ordinary photography and holography.
 - (e) Differentiate between fibre connectors and splices.
 - (f) Discuss ether concept.
 - (g) What is uncertainty principle?
 - (h) Find the surface area to volume ratio of a spherical particle.
 - (i) X-rays of wavelength 2 A° suffers first order reflection from (111) crystal plane at an angle of 45°. Calculate the inter-atomic spacing of the crystal.
 - (j) Calculate the critical current that can flow through a long thin superconductor of diameter 10^{-3} m. Given $H_c = 7.9 \times 10^3$ Amp/ m.

PART B

- Q. 2. (a) Write Maxwell's equations and explain their physical significance. (4)
 (b) What is dielectric polarization? Discuss the origin of various types of dielectric polarization. (4)
- Q. 3. (a) Derive London first equation for superconductors. On its basis, justify the existence of persistent current in superconductors. (6)
 - (b) What is Meissner effect? (2)
- Q. 4. (a) Derive Bragg's law of X-ray diffraction. Explain Bragg's spectrometer and discuss its application. (6)
 - (b) Find Miller Indices of a plane intercepting the axes at 1a, 3b, 2c. Also represent the plane and its direction. (2)
- Q. 5. (a) What is population inversion? (2)
 - (b) Explain the construction, principle and working of a Ruby laser. Why is the output of Ruby laser pulsed? (6)

Could.

PART C

	f acceptance angle of the optical fibre.	(2)
Q. 6.	(a) Deduce an expression of acceptance angle of the optical fibre.	(3)
Q. J	(b) Discuss the physical structure	particle
0.7		(6)
Q. 7.	confined to one dimensional box of infinitely ingline an electron is 7.3 x10 ⁷ m/s	and its
	(a) Deduce expressions for the confined to one dimensional box of infinitely high and impenetrable wans. (b) Calculate Planck's constant if the velocity of an electron is 7.3 x10 ⁷ m/s	(2)
	(b) Calculate Flatter 5 constant is 0.1 A°.	
	de Broglie wavelength is 0.1 A°.	(5)
	$F = mc^2$.	
Q. 8.	(a) Establish the relation $E = mc^2$. (b) Show by direct application of Lorentz transformation equations that	(3)
	(b) Show by direct application of Editors	(5)
	(a) Discuss the synthesis and properties of carbon nanotubes. (a) Discuss the synthesis and properties?	
	be synthesis and properties of the	(3)
Q. 9.	(a) Discuss the synthesis and particles? (b) What are 1D, 2D and 3D nanoaprticles?	
	(h) What are 1D, 2D and 32	