CMPT-413 Computational Linguistics

Anoop Sarkar http://www.cs.sfu.ca/~anoop

March 3, 2011

noun attach: I bought the shirt with pockets

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – needs world knowledge, etc.

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – needs world knowledge, etc.
- Maybe there is a simpler solution: we can attempt to solve it using heuristics or associations between words

Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment
- Consider the grammar:

$$VP \rightarrow V NP PP$$
 (1)

$$NP \rightarrow NP PP$$
 (2)

for input: $I[_{VP} \ saw[_{NP} \ the \ man...[_{PP} \ with \ the \ telescope],$ RA predicts that the PP attaches to the NP, i.e. use rule (2), and MA predicts V attachment, i.e. use rule (1)

Structure Based Ambiguity Resolution

- Garden-paths look structural: The emergency crews hate most is domestic violence
- Neither MA or RA account for more than 55% of the cases in real text
- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate
- Garden-paths are caused by a combination of lexical and structural effects:
 - The flowers delivered for the patient arrived

Ambiguity Resolution: Prepositional Phrases in English

Learning Prepositional Phrase Attachment: Annotated Data

V	n1	р	n2	Attachment
join	board	as	director	V
is	chairman	of	N.V.	N
using	crocidolite	in	filters	V
bring	attention	to	problem	V
is	asbestos	in	products	N
making	paper	for	filters	N
including	three	with	cancer	N
:	÷	:	÷	:

Prepositional Phrase Attachment

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2

Let 1 represent noun attachment.

- Let 1 represent noun attachment.
- We want to compute probability of noun attachment: p(1 | v, n1, p, n2).

- Let 1 represent noun attachment.
- We want to compute probability of noun attachment: p(1 | v, n1, p, n2).
- ▶ Probability of verb attachment is $1 p(1 \mid v, n1, p, n2)$.

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v, p) + f(n1, p) + f(p, n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v, p) + f(n1, p) + f(p, n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if f(p) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v,p) + f(n1,p) + f(p,n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if f(p) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$

5. Else $\hat{p}(1 \mid v, n1, p, n2) = 1.0$

Prepositional Phrase Attachment: (Collins and Brooks 1995)

- Results: 84.5% accuracy with the use of some limited word classes for dates, numbers, etc.
- Using complex word classes taken from WordNet (which we shall be looking at later in this course) increases accuracy to 88% (Stetina and Nagao 1998)
- We can improve on parsing performance with Probabilistic CFGs by using the insights taken from PP attachment.
- Modify the PCFG model to be sensitive to words and other context-sensitive features of the input.
- And generalizing to other kinds of attachment problems, like coordination or deciding which constituent is an argument of a verb.

Some other studies

- Toutanova, Manning, and Ng, 2004: use sophisticated smoothing model for PP attachment 86.18% with words & stems; with word classes: 87.54%
- Merlo, Crocker and Berthouzoz, 1997:
 test on multiple PPs, generalize disambiguation of 1 PP to 2-3
 PPs

14 structures possible for 3PPs assuming a single verb: all 14 are attested in the Treebank

same model as CB95; but generalized to dealing with upto 3PPs

1PP: 84.3% 2PP: 69.6% 3PP: 43.6%

Note that this is still not the real problem faced in parsing natural language