HW#1 Asymptotic Notation Exercise

Definitions:

a) Define Big O notation in your own words.

Big O defines the upper bound of a function b) Define Big Omega (Ω) notation in your own words. Big St defines the lower bound of a function

c) Define Big Theta (O) notation in your own words.

Big defines both the lower and ugger bound

d) How does Big Theta relate to Big O and Big Omega? It consists of both the lowce and ugger bound

Classifications:

- a) Is f(n) = 2n + 5 in O(n)? Explain. Ves, Becouse the highest order term in the function is 2n, therefore Big O is, O(n).
- b) Is $f(n) = n^2 + 3n \text{ in } \Omega(n)$? Explain. No, becomes against compared to n2. because of that the function isnt in ICM.
- c) Is $f(n) = 3n^2 + 2n + 1$ in $\Theta(n^2)$? Explain. Yes, because the function grows exactly like n2
- d) Is $f(n) = 2^n + n^2$ in $O(2^n)$? Explain. Yes, because 2" dominates the function, so f(n) = 0 kg

Rules for Combining Functions:

a) If f(n) is in O(g(n)) and h(n) is in O(g(n)), is f(n)+h(n) in O(g(n))? Explain.

Yes, because both f and h

b) If f(n) is in O(g(n)), is $c \square f(n)$ in O(g(n)) for any constant c? Explain.

Yes, because multiplying by a constant about change c) If f(n) is in O(g(n)) and h(n) is in O(k(n)), is $f(n)\Box h(n)$ in $O(g(n)\Box k(n))$? Explain.

Ves, because if 2 functions are bounded by different multiples, it will result in a bound that combines both

Comparing Functions:

a) Rank the following functions in order of increasing growth rate:

- 5. True or False:
- a) If f(n) is in O(g(n)), then f(n) is also in $\Omega(g(n))$.
- b) If f(n) is in $\Theta(g(n))$, then f(n) is also in O(g(n)) and $\Omega(g(n))$.
- c) If f(n) is in O(g(n)) and f(n) is in $\Omega(g(n))$, then f(n) is in $\Theta(g(n))$.