Lecture 4: K-means and K-nearest neighbors

Reading: Sections 13.3, 14.3.6

GU4241/GR5241 Statistical Machine Learning

Linxi Liu February 1, 2019

Clustering

We assign a class to each sample in the data matrix. However, the class is not an output variable; we only use input variables.

Clustering is an **unsupervised** procedure, whose goal is to find homogeneous subgroups among the observations. It has wide applications in practice. Image segmentation, handwritten digit identification, vector quantization

We will discuss 4 algorithms in this semester:

- ► K-means clustering
- ► *K*-medoids clustering
- Hierarchical clustering
- ► EM algorithm

Handwritten digit identification

FIGURE 11.9. Examples of training cases from ZIP code data. Each image is a 16×16 8-bit grayscale representation of a handwritten digit.

Image segmentation

K-means clustering

▶ K is the number of clusters and must be fixed in advance.

ISL Figure 10.5

► The goal of this method is to maximize the similarity of samples within each cluster:

$$\min_{C} W(C) \quad ; \quad W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} d(x_i, x_j).$$

K-means clustering algorithm

- 1. Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random.
- 2. Iterate these two steps until the clustering is constant:
 - ▶ Find the *centroid* of each cluster ℓ ; i.e. the average $\overline{x}_{\ell,:}$ of all the samples in the cluster:

$$\overline{x}_{\ell,j} = \frac{1}{|\{i: C(i) = \ell\}|} \sum_{i: C(i) = \ell} x_{i,j} \text{ for } j = 1, \dots, p.$$

Reassign each sample to the nearest centroid.

K-means clustering algorithm

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 14

FIGURE 14.6. Successive iterations of the K-means clustering algorithm for the simulated data of Figure 14.4.

Properties of K-means clustering

▶ The algorithm always converges to a local minimum of

$$\min_{C} W(C) \quad ; \quad W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} d(x_i, x_j).$$

Why? When d is the Euclidean distance

$$\frac{1}{2} \sum_{C(i)=\ell} \sum_{C(j)=\ell} d(x_i, x_j) = |N_{\ell}| \sum_{C(i)=\ell} d(x_i, \overline{x}_{\ell})$$

Properties of K-means clustering

▶ The algorithm always converges to a local minimum of

$$\min_{C} W(C) \quad ; \quad W(C) = \frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C(j)=k} d(x_i, x_j).$$

Why? When d is the Euclidean distance

$$\frac{1}{2} \sum_{C(i)=\ell} \sum_{C(j)=\ell} d(x_i, x_j) = |N_{\ell}| \sum_{C(i)=\ell} d(x_i, \overline{x}_{\ell})$$

This side can only be reduced in each iteration.

► Each initialization could yield a different minimum.

Example: K-means output with different initializations

In practice, we start from many random initializations and choose the output which minimizes the objective function.

ISL Figure 10.7

Practical Issues

► Categorical features are usually coded as dummy variables:

$$(1 \ 0 \ 0)$$

$$(0 \ 1 \ 0)$$

$$X=1,2, \text{ or } 3 \quad \rightarrow \quad \text{or } \quad (0 \ 0 \ 1)$$

- ► Weighting is also possible
- ▶ How to choose the number of clusters *K*?

Correlation distance

- Euclidean distance would cluster all customers who purchase few things (orange and purple).
- ▶ Perhaps we want to cluster customers who purchase *similar* things (orange and teal).
- ► Then, the **correlation distance** may be a more appropriate measure of dissimilarity between samples.

Fact of correlation distance

Correlation is defined by

$$\rho(x_i, x_{i'}) = \frac{\sum_j (x_{ij} - \bar{x}_i)(x_{i'j} - \bar{x}_{i'})}{\sqrt{\sum_j (x_{ij} - \bar{x}_i)^2 \sum_j (x_{i'j} - \bar{x}_{i'})^2}},$$

where $\bar{x}_i = \text{mean of observation } i$.

If observations are standardized:

$$x_{ij} \leftarrow \frac{x_{ij} - \bar{x}_i}{\sqrt{\sum_j (x_{ij} - \bar{x}_i)^2}},$$

then
$$2(1 - \rho(x_i, x_{i'})) = \sum_j (x_{ij} - x_{i'j})^2$$
.

K-medoids clustering

- 1. Assign each sample to a cluster from 1 to K arbitrarily, e.g. at random.
- 2. Iterate these two steps until the clustering is constant:
 - ► For a given cluster assignment *C* find the observation in the cluster minimizing total pairwise distance with the other cluster members:

$$i_k^* = \mathop{\mathrm{argmin}}_{\{i:C(i)=k\}} \sum_{C(i')=k} d(x_i, x_{i'}). \label{eq:ik}$$

Then $z_k = x_{i_k^*}$, $k = 1, 2, \dots, K$ are the current estimates of the cluster centers.

▶ Given a current set of cluster centers $\{z_1, \ldots, z_K\}$, minimize the total error by assigning each observation to the closest (current) cluster center:

$$C(i) = \underset{1 \le k \le K}{\operatorname{argmin}} d(x_i, z_k).$$

K-medoids clustering

- ► Same as *K*-means, except that centroid is required to be one of the observations.
- ▶ Advantage: centroid is one of the observations— useful, for example when features are 0 or 1. Also, one only needs pairwise ditances for *K*-medoids rather than the raw observations.

K-nearest neighbors regression

KNN regression: prototypical nonparametric method. Given a training set (X, y):

$$\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$$

$$K = 1 \qquad K = 9$$

Classification problem

ISL Figure 2.13

Recall:

- ▶ $X = (X_1, X_2)$ are inputs.
- ▶ Color $Y \in \{\text{Yellow }, \text{Blue}\}$ is the output.
- ▶ (X, Y) have a joint distribution.
- ► Purple line is *Bayes boundary* the best we could do if we knew the joint distribution of (*X*, *Y*)

K-nearest neighbors

To assign a color to the input \times , we look at its K=3 nearest neighbors. We predict the color of the majority of the neighbors.

ISL Figure 2.14

K-nearest neighbors also has a decision boundary

ISL Figure 2.15

The higher K, the smoother the decision boundary

ISL Figure 2.16

Test error vs. training error

ISL Figure 2.17

Curse of dimensionality

K-nearest neighbors can fail in high dimensions, because it becomes difficult to gather K observations close to a target point x_0 :

- near neighborhoods tend to be spatially large, the estimates are biased.
- reducing the spatial size of the neighborhood means reducing K, and the variance of the estimate increases.

Curse of dimensionality

ESL Figure 2.6

- ▶ We want to obtain a hypercubicual neighborhood about a target point to capture a fraction r of the observations.
- ▶ The expected edge length will be $e_p(r) = r^{1/p}$. In ten dimensions, $e_{10}(0.01) = 63\%$.

Example

- ▶ 1000 training examples x_i generated uniformly on $[-1,1]^p$.
- $Y = f(X) = e^{-8||X||^2}$ (no measurement error).
- use the 1-nearest-neighbor rule to predict y_0 at the test-point $x_0=0$.

$$\begin{aligned} \mathsf{MSE}(x_0) &= & \mathbb{E}_{\mathcal{T}}[f(x_0) - \hat{y}_0]^2 \\ &= & \mathbb{E}_{\mathcal{T}}[\hat{y}_0 - \mathbb{E}_{\mathcal{T}}(\hat{y}_0)]^2 + [\mathbb{E}_{\mathcal{T}}(\hat{y}_0) - f(x_0)]^2 \\ &= & \mathsf{Var}_{\mathcal{T}}(\hat{y}_0) + \mathsf{Bias}^2(\hat{y}_0). \end{aligned}$$

An example when the variance dominates

Assume the regression function is: $f(X) = \frac{1}{2}(X_1 + 1)^3$.

