CSE3151 COMPUTER NETWORKS

Dr. Asif Zaman

Associate Professor, CSE, RU

Course Contents

Medium Access Sublayer: Pure and slotted ALOHA, Persistent and Non persistent CSMA, CSMA with collision detection and collision free protocols, IEEE standard 802.3 and Ethernet.

Data Link Layer: Types of errors, framing, error detection & correction methods; Flow control, Stop & wait ARQ, Go-Back- N ARQ, Selective repeat ARQ, HDLC.

Network Layer: Internet address, classful address, <u>subnetting</u>, static vs. dynamic routing, shortest path algorithm, flooding, distance vector routing, link state routing, ARP, RARP, IP, ICMP.

Transport Layer: UDP, TCP, Connection management, Addressing, Establishing and Releasing Connection, Congestion control algorithm, Flow control and Buffering, Multiplexing.

Presentation Layer: Data Compression techniques, Frequency Dependent Coding, Context Dependent Encoding.

Internetworks

https://www.submarinecablemap.com/

Internetworks

MAIN STORY

ADDRESSES IN A NETWORK WITH AND WITHOUT SUBNETTING

Default mask and subnet mask

VARIABLE-LENGTH BLOCKS

Address Space

	Blocks of different sizes	,
103.120.110.0/24	University of Rajshahi	256
103.79.117.0/24	University of Rajshahi	256
103.99.176.0/23	University of Rajshahi	512
103.99.176.0/24	University of Rajshahi	256

Variable-Length Subnet Masks

Variable-Length Subnet Masks –VLSM

up to 2^8 - 2 = 254 hosts can be addressed.

Variable-Length Subnet Masks

Variable-Length Subnet Masks

Use 10.5.16.0/20 to address this network, conserving as many addresses as possible.

10.5.16.0/20

Netw bits		ginal et bits	Original host bits					
10	-	5	0001	0000		0000	0000	

Use 10.5.16.0/20 to address this network, conserving as many addresses as possible.

- For the left LAN, 150 addresses are needed;
 - rounding up to the next power of 2 gives 256.
 - \circ Because $2^8 = 256$, 8 host bits are needed.
- For the other two LANs, 100 addresses are needed;
 - rounding up to the next power of 2 gives 128.
 - \circ Because $2^7 = 128$, 7 host bits are needed for each LAN.
- The WANs require 2 host bits each.

 Because at most 8 host bits are needed, the 10.5.16.0/20 address can be further subnetted into sixteen /24 subnets (leaving 8 host bits)

10.5.16.0/20

Network Original bits subnet bits						Original host bits						
	10		5	÷	0001	0000		0000	0000			
						Addition subnet b		hos	t bits			
	10		5	i,	0001	0000		0000	0000	= 10.5.16.0/24		
	10	•	5		0001	0001		0000	0000	= 10.5.17.0/24		
	10		5	•	0001	0010		0000	0000	= 10.5.18.0/24		
						•	•		•			
	10		5		0001	1111		0000	0000	= 10.5.31.0/24		

10.5.17.0/24

Network

84	bits		S	ubr	net bits						
	10	٠	5	٠	0001	0001	. 0 000 0000 VLSM subnet bits host bits				
	10 10	¥ .	5 5		0001 0001			0	000	0000	= 10.5.17.0/25 = 10.5.17.128/25

10.5.18.0/24

Network

bits	Subnet bits									
10		5		0001	0010					
10		5		0001	0010					
10		5		0001	0010					
10		5		0001	0010					
		•	٠							
10		5		0001	0010					

0 000 0000

VI SM cubnot bost

bits	bits	_	
000000	00	=	10.5.
000001	00	=	10.5.
000010	00	=	10.5.
111111	00	=	10.5.

18.0/30 18.4/30

18.8/30

18.252/30

Report Submission

Use 10.5.16.0/20 to address this network, conserving as many addresses as possible. 00 addresses 150 addresses 100 addresses 150 addresses

- For the B & C LAN, 150 addresses are needed;
 - rounding up to the next power of 2 gives 256.
 - \circ Because $2^8 = 256$, 8 host bits are needed.
- For the A LANs, 100 addresses are needed;
 - rounding up to the next power of 2 gives 128.
 - \circ Because $2^7 = 128$, 7 host bits are needed for each LAN

10.5.16.0/20

10.5.16.0/20

bits		onet bits	Origin	al host bits	
10 .	5	. 0001	0000 .	0000 0000	
			Additional subnet bits	host bits	
10.	5	. 0001	0000.	0000 0000	= 10.5.16.0/24
10.	5	. 0001	0001.	0000 0000	= 10.5.17.0/24
10 .	5	. 0001	0010 .	0000 0000	= 10.5.18.0/24
	1.0			ž.	
10 .	5	. 0001	1111 .	0000 0000	= 10.5.31.0/24

10.5.19.0/24

Network

bits	3		Sı	ubr	et bits					
10		•	5		0001	0011	0 000	0	000	
							VLSM subi	net	host bits	
10			5		0001	0011	00000	0	00	= 10.5. 19 .0/30
10			5		0001	0011	00000	1	00	= 10.5. 19 .4/30
10			5		0001	0011	00001	0	00	= 10.5. 19 .8/30
						c)				-ii
	-								1.	
	-		•						•	
10			5	٠	0001	0011	11111	1	00	= 10.5. 19 .252/30