Partiel 1

Durée : trois heures

Documents et calculatrices non autorisés

Nom:	Prénom :	Classe:
Entourer votre professeur de TI	O: M. Goron / M. Rodot	
Exercice 1 (5 points)		
1. Déterminer, via la règle de d	l'Alembert, la nature de la série $\sum \frac{(n!)^2}{(3n)!}$.	
	(Gray).	
1		
2. Soit $k \in \mathbb{N}^*$. Déterminer, en	fonction de k , via la règle de d'Alembert, la nature de la s	érie $\sum \frac{(n!)^2}{(kn)!}$.
		(1010)
		[suite du cadre page suivante]

3. Soit $a \in \mathbb{R}$. Déterminer, via la règle de Cauchy la nature de la série $\sum \left(\frac{n}{n+a}\right)^{n^2}$.

Exercice 2 (4 points)

Soient
$$A = \begin{pmatrix} 0 & 3 & 0 \\ 1 & -2 & 4 \\ 1 & 1 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 2 & -4 \\ 1 & 1 & -3 \end{pmatrix}$.

A et B sont-elles diagonalisables dans $\mathcal{M}_3(\mathbb{R})$? Si oui, déterminer D et P.

N.B.: l'obtention des sous-espaces propres sous forme de sous-espaces engendrés doit découler d'un raisonnement clair et non pas d'une manière hasardeuse en prenant directement des valeurs particulières.

[suite du cadre page suivante]

Exercice 3 (4 points)

Soient $a \in \mathbb{R}$ et $A = \begin{pmatrix} -3 & 1 & 0 \\ a-3 & 0 & 1-a \\ -1 & 1 & -2 \end{pmatrix}$. Discuter de la diagonalisabilité de A dans $\mathcal{M}_3(\mathbb{R})$ suivant les valeurs de a.

N.B.: la diagonalisation dans les cas favorables n'est pas demandée.

Exercice 4 (4 points)

1. Soit
$$f: \left\{ \begin{array}{ccc} \mathbb{R}_3[X] & \longrightarrow & \mathbb{R}_3[X] \\ \\ P(X) & \longmapsto & 3XP(X) - (X^2 - 1)P'(X) \end{array} \right.$$

a. Déterminer (sans justificatif) la matrice de f relativement à la base canonique $\mathcal{B}=(1,X,X^2,X^3)$ de $\mathbb{R}_3[X]$.

b. f est-elle bijective? Justifiez votre réponse.

2. Soient $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ et $f : \begin{cases} \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}) \\ X \mapsto AX - XA \end{cases}$. Déterminer (sans justificatif) la matrice de f relativement à la base canonique $\mathcal{B} = \begin{pmatrix} E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$.

Exercice 5 (4 points)

Soient
$$(a, b, c, d, e, f) \in \mathbb{R}^6$$
 et $A = \begin{pmatrix} 1 & a & b & c \\ 0 & 2 & d & e \\ 0 & 0 & 2 & f \\ 0 & 0 & 0 & 2 \end{pmatrix}$.

Discuter de la diagonalisabilité de A suivant les valeurs de a, b, c, d, e et f.

[suite du cadre page suivante]

()
(,