-> We can use characteristic function to prove this

$$\frac{Proof:}{\sum_{x} (\frac{t}{x})} = \exp \left[i \frac{t}{x} \mu - \frac{1}{2} \frac{t}{x} \sum_{x} \frac{t}{x} \right]$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} \frac{1}{n} X_i = \sum_{i=1}^{n} a_i X_i$$

Let
$$y = \sum_{j=1}^{n} a_j x_j$$

$$\overline{\Phi}_{\lambda}(\overline{\varphi}) = \bigcup_{i=1}^{n} \overline{\Phi}_{\alpha^{i}x^{i}}(\overline{\varphi})$$

=
$$\prod_{j=1}^{n} exp\left[a_{j}it^{T}\mu - a_{j}^{2}t^{T}\Sigma t\right]$$

=
$$\exp \left[\sum_{j=1}^{n} \left(a_{j} i + T_{\mu} - \frac{a_{j}^{2}}{2} t^{T} \Sigma t \right) \right]$$

at
$$a_i = \frac{1}{2}$$

Defn: Wishart distribution (WD)

Then
$$A = \sum_{j=1}^{n} Y_{j} Y_{j}^{T}$$
 is said to follow wishart distribution with parameters $n \in \Sigma$, it is denoted by $A \sim W_{P}(n, \Sigma)$

-> WD is multivariate generalization of χ^2 distribution

Result (1): Suppose $A \sim W_m(n, \Sigma)$ and C_{qxm} be a non-random matrix, $q \leq m$ then $CAC^T \sim W_q(n, C\Sigma C^T)$

Result 2: Let $A_1 \sim W_p(n, \Sigma)$ & $A_2 \sim W_p(n_2, \Sigma)$ are independent then $A_1 + A_2 \sim W_p(n_1 + n_2, \Sigma)$

Observe:

It is possible that $x_1 + x_2 \sim N$ but $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is not normal

$$\underbrace{\mathcal{E}_{3}}^{H/\omega}: \left(\begin{array}{c} x \\ y \end{array}\right) \sim \underbrace{\frac{1}{2}} \mathcal{N}_{2} \left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 & 0.5 \\ 0.5 & 1 \end{array}\right) \right) + \underbrace{\frac{1}{2}} \mathcal{N}_{2} \left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{c} 1 & -0.5 \\ -0.5 & 1 \end{array}\right) \right)$$

Marginal distribution is normal Cov(x, y) =0

Theorem: X, , ..., Xn iid Np (M, E)

- (i) x̄ ~ N_p(μ, Σ/n)
- (ii) $A = (n-1) S_{n-1} \sim W_P(n-1, \Sigma)$ (next class)
- (iii) x & A are independent

Proof: (i) Can be done using characteristic function

- (ii) next class
 - (iii) $A = \sum_{i \neq i}^{n} (\underline{x}_{i} \underline{x}) (\underline{x}_{i} \underline{x})^{T}$

$$= \sum_{i=1}^{n} \underline{y}_{i} \underline{y}_{i}^{\mathsf{T}}, \quad \text{where} \quad \underline{y}_{i} = \underline{x}_{i} - \overline{\underline{x}}$$

claim: joint dist of (\bar{X}, Y_i) is normal claim: $Cov(\bar{X}, Y_i) = 0$

$$\Rightarrow$$
 Σ \bot Σ y_i $y_i^T = A$

Consistency:

$$\underline{x} \xrightarrow{P} \mu$$
 $S_n \xrightarrow{P} \Sigma$