10 Grundbegriffe der Testtheorie

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum, $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta\})$ statistischer Raum, $X : \Omega \to \mathfrak{X}$ Zufallsvariable, $\Theta = \Theta_0 + \Theta_1$ mit $\Theta_0, \Theta_1 \neq \emptyset$. $(\Theta_0 \cap \Theta_1 = \emptyset)$

10.1 Definition

Die Aussage $H_0: \vartheta \in \Theta_0$ heißt (Null-)Hypothese, $H_1: \vartheta \in \Theta_1$ heißt Alternativhypothese oder Alternative.

 $|\Theta_j| = 1 \Rightarrow \Theta_j$ heißt einfach, sonst zusammengesetzt

10.2 Definition

Ein **randomisierter Test** zur Prüfung von H_0 gegen H_1 ist eine messbare Abbildung $\varphi: \mathfrak{X} \to [0,1]$ mit der Interpretation

$$\varphi(x) = P(H_0 \text{ ablehnen} | X = x)$$

Gilt $\varphi(\mathfrak{X}) = \{0,1\}$, so heißt φ nicht randomisiert. Mit $\mathcal{K} := \{x \in \mathfrak{X} : \varphi(x) = 1\}$ gilt dann $\varphi = \mathbf{1}_{\mathcal{K}}$ und die Testvorschrift lautet:

$$x \in \mathcal{K} \Rightarrow H_0$$
 ablehnen $x \in \mathfrak{X} \setminus \mathcal{K} \Rightarrow H_0$ nicht ablehnen

 \mathcal{K} heißt kritischer Bereich (Ablehnbereich), $\mathfrak{X}\backslash\mathcal{K}$ heißt Annahmebereich.

10.3 Bemerkung

Falls $0 < \varphi(x) < 1$, so muss "externes" Bernoulli-Experiment durchgeführt werden; man erhält also Realisierung y einer Zufallsvariablen Y mit $Y \sim \text{Bin}(1, \varphi(x))$.

In praktischen Anwendungen ist "Randomisierung" unerwünscht.

10.4 Definition

Es sei $T: \mathfrak{X} \to \mathbb{R}$ eine messbare Abbildung. Häufig besitzt ein nicht randomisierter Test die Gestalt

$$(*) \quad \begin{array}{ll} T(x) \geq c & \Rightarrow & H_0 \text{ ablehnen} \\ T(x) < c & \Rightarrow & \text{kein Widerspruch zu } H_0 \end{array}$$

(d.h.
$$\mathcal{K} = \{x \in \mathfrak{X} : T(x) \ge c\} = T^{-1}([c, \infty))$$

Dann heißt T Testgröße (Prüfgröße) und $c \in \mathbb{R}$ heißt kritischer Wert. (*) liefert Test mit **oberem Ablehnbereich**.

In $(*) \ge \text{durch} \le \text{und} < \text{durch} > \text{ersetzen} \hookrightarrow \text{Test mit unterem Ablehnbereich}$

10.5 Beispiel

$$(\mathfrak{X},\mathcal{B})=(\mathbb{R}^{m+n},\mathcal{B}^{n+m}),\ X=(\underbrace{X_1,\ldots,X_m}_{\stackrel{uiv}{\sim}F},\underbrace{Y_1,\ldots,Y_n}_{\stackrel{uiv}{\sim}G}),\ X_1,\ldots,Y_n$$
 unabhängig, $\vartheta=(F,G),\ \Theta=\{(F,G):\ F,G\ \mathrm{stetig}\},\ \Theta_0=\{(F,G)\in\Theta:\ F=G\}$
$$H_0:\ F=G$$

$$H_1: F \neq G$$

(nichtparametrisches 2-Stichproben-Problem mit allgemeiner Alternative)

Sei

$$\hat{F}_m(x) = \frac{1}{m} \sum_{i=1}^m \mathbf{1} \{ X_i \le x \}, \ \hat{G}_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1} \{ Y_j \le x \}$$

Mögliche Prüfgröße (mit oberem Anlehnbereich):

$$T(X_1, ..., X_m, Y_1, ..., Y_n) = \sup_{x \in \mathbb{R}} |\hat{F}_m(x) - \hat{G}_n(x)|$$

(Kolmogorov-Smirnov-Testgröße)

10.6 Definition und Bemerkung

Ein Fehler 1. Art ist das Verwerfen von H_0 , obwohl H_0 richtig ist. Ein Fehler 2. Art ist das Nichtverwerfen von H_0 , obwohl H_0 falsch ist. 10.7 Definition 79

Entscheidung	H_0 richtig	H_0 falsch
H_0 nicht	richtige	Fehler 2. Art
verwerfen	Entscheidung	
H_0 verwerfen	Fehler 1. Art	richtige
		Entscheidung

Die Funktion

$$G_{\varphi}: \begin{array}{l} \Theta \to [0,1] \\ \vartheta \mapsto G_{\varphi}(\vartheta) := E_{\vartheta}[\varphi] = \int_{\mathfrak{X}} \varphi(x) P_{\vartheta}(dx) \end{array}$$

heißt Gütefunktion des Tests φ .

$$(\varphi = \mathbf{1}_{\mathcal{K}} \Rightarrow G_{\varphi}(\vartheta) = P_{\vartheta}(\mathcal{K}), \ \varphi = \mathbf{1}\{T(x) \ge c\} \Rightarrow G_{\varphi}(\vartheta) = P_{\vartheta}(T \ge c))$$

Ideale Gütefunktion wäre

$$G_{\varphi}(\vartheta) = \left\{ \begin{array}{l} 1, \vartheta \in \Theta_1 \\ 0, \vartheta \in \Theta_0 \end{array} \right.$$

Sei $\alpha \in (0,1)$. φ heißt Test zum **Niveau** $\alpha :\Leftrightarrow G_{\varphi}(\vartheta) \leq \alpha \ \forall \vartheta \in \Theta_0^{26}$

In Praxis übliche Werte: $\alpha = 0,05;\ 0,01;\ 0,001$ Kleines α dient "Sicherung von H_1 ".²⁷

Die Zahl $\sup_{\vartheta \in \Theta_0} G_{\varphi}(\vartheta)$ heißt **Umfang** (size) von φ .

10.7 Definition

Sei

$$\Phi_{\alpha} = \{ \varphi : \mathfrak{X} \to [0, 1] | \sup_{\vartheta \in \Theta_{0}} G_{\varphi}(\vartheta) \le \alpha \}$$

die Menge aller Niveau α -Tests.

 $\Phi_{\alpha} \neq \emptyset$, da $\varphi \equiv \alpha \in \Phi_{\alpha}$.

Sei $\widetilde{\Phi}_{\underline{\alpha}} \subset \Phi_{\alpha}$

 $\varphi_1 \in \overset{\circ}{\widetilde{\Phi}}_{\alpha}$ heißt gleichmäßig besser als $\varphi_2 \in \overset{\circ}{\Phi}_{\alpha} :\Leftrightarrow$

$$G_{\varphi_1}(\vartheta) \ge G_{\varphi_2}(\vartheta) \ \forall \vartheta \in \Theta_1$$

 $\varphi^*\in\widetilde{\Phi}_\alpha$ heißt (gleichmäßig) bester Test in $\widetilde{\Phi}_\alpha:\Leftrightarrow$

$$G_{\varphi^*}(\vartheta) \ge G_{\varphi}(\vartheta) \ \forall \vartheta \in \Theta_1 \ \forall \varphi \in \widetilde{\Phi}_{\alpha}$$

Bezeichnung: UMP-Test ("uniformly most powerfully")

 $^{^{26}}$ Wahrscheinlichkeit für einen Fehler 1. Art ist $\leq \alpha$

 $^{^{27}}$ vgl. "Wahl der Nullhypothese"; das Verwerfen von H_0 ist "fast nie" falsch, also in diesem Fall umgekehrt H_1 auch "fast immer" richtig (…)