Problem Set 5

- 1. Construct a MO diagram for H₂⁺ and make rough sketches of the form of the MO's. Explain how symmetry labels are assigned to the two MO's.
- 2. Use MO diagrams to rationalize why He₂ is an unknown species, but the ion He₂⁺ has been observed. Make what predictions you can about the stability of the molecules He₂²⁺ and H₂²⁻ with respect to dissociation.
- 3. Draw qualitative MO pictures with proper signs (+ or) and assign the symmetries (g/u) of MO's formed from the AO's as shown below.

- $4/\text{In } O_2$, the lowest energy MOs (formed from the 1s AOs of O) are given the label σ_g and σ_u . Sketch the form of the MO's. Explain why it is that although both of these MO's are occupied, they make little contribution to the bonding in O_2 .
- Sketch the π^*_g and π_u MO's of O₂. How does the π^*_g and π_u MO's of O₂ occupied differently for the ground state (triplet state) and the first excited state (singlet state) of O₂.
- 8. What are the different spin states of O_2 ? Show the electron occupation in HOMO for the ground state, first excited state and second excited state of O_2 . Why did we see luminescence during the generation of singlet oxygen?
- 6. Write the balanced equation for the complete combustion of Methanol? If the ΔH of the reaction $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ is 460 kJ/mol, what would be the predicted value of ΔH for the combustion of Methanol?