25 实分析期中

1.

- (1) 简述函数 f 可测的定义
- (2) 求证: f 可测且集合 $\{f > 0\}$ 可测 $\Rightarrow f$ 可测

2.

- (1) 课本中的不可测集 N 的可测子集一定为零测集
- (2) $m(E) = 0 \Leftrightarrow E$ 的任何可测子集都是零测集
- 3. 设 $B = \{||x|| < 1\}$ 为 R^d 中的开球且 f 非负可测,有 $\int_B f dx = 1$ 求证:

$$\int_{B} f(x) \|x\| \ dx < 1$$

4. 求解

$$\lim_{k \to \infty} \int_0^{+\infty} \frac{x + \sin^k x}{1 - e^{-kx} + x^k} dx$$

- 5. f, f_1, \dots, f_n 均在 [0, 1] 上可测
- (1) $f_n \xrightarrow{L_1} f$ 是否能推出 $f_n \xrightarrow{L_2} f$, 证明或者给出反例
- (2) $f_n \xrightarrow{L_2} f$ 是否能推出 $f_n \xrightarrow{L_1} f$, 证明或者给出反例
- (3) $f_n \xrightarrow{m} f$ 是否能推出 $\lim_{n \to \infty} m\left(\{|f_n f| > 0\}\right) = 0$, 证明或者给出反例
- 6. 设 $E_k = \{|f| \geqslant k\}$ 且 f 可积,求证:
- $(1) \lim_{k \to \infty} m(E_k) = 0$
- $(2) \sum_{k=1}^{\infty} m(E_k) < +\infty$
- 7. g 为周期为 1 的光滑函数且 $\int_0^1 g(x)dx = 0$ 。
- (1) 求证: 对任意闭区间 [a,b] 都有

$$\lim_{n \to \infty} \int_{a}^{b} g(nx)dx = 0$$

(2) 对任意可积函数 f, 都有

$$\lim_{n \to \infty} \int_R f(x)g(nx)dx = 0$$

成立