Práctico 3. Clase 4 de Análisis y Curación

Andrés Vázquez y Sergio Buzzi

Inciso 1

• Elija un dataset clasificado de su preferencia y area (domain expertise), aplique un metodo de clustering y/o mixtura de Gaussianas en el mismo.

Datos

Se tiene información sobre 46 variables, para los 479 barrios de la Ciudad de Córdoba, originaria de la Encuesta Provincial de hogares de la Provincia de Córdoba 2008.

```
#load("base.RData")
# En base se tiene la información de 46 variables
#save(base, file="datosbarrios.RData")
#dim(base)
load("datosbarrios.RData")
attach(base)
educ=base[,1:11]
leer=base[,12:13]
salud=base[,14:15]
empleo=base[,16:18]
nbi=base[,20:24]
privacion=base[,25:28]
vivienda=base[,29:33]
habitantes=base[,34:41]
std=base[,42:46]
#Para que tenga sentido el análisis se toman algunos ratios por cuestiones conceptuales,
# por ejemplo la cantidad de personas empleadas en un barrio esta influenciada por las personas en
# condición de trabajar (14 años o mas)
educstd=educ/jefes
leerstd=leer/pob3omas
saludstd=salud/poblacion
empleostd=empleo/pob14omas
nbistd=nbi/poblacion
privacionstd=privacion/poblacion
viviendastd=vivienda/hogares
habitantesstd=habitantes/hogares
basestd=cbind(educstd,leerstd,saludstd,empleostd,nbistd,privacionstd,viviendastd,habitantesstd)
sub=subset(cbind(basestd, poblacion), poblacion>=2000)
semibase=sub[,-ncol(sub)]
# se saca del listado sacar del listado: inicial, sabeleer, cobertura, ocupados, inactivos, sinprivacio
datos=semibase[,-c(1,12,14,16,18,24,28,33)]
```

Aplicación de clustering

Un alogritmo de clustering jerárquico

```
#cluster jerárquico
hc = hclust(dist(dat), method = 'ward')

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"

par(mar=c(0,5,0,0), cex=0.08)
y=cutree(hc, 7)
library(sparcl)
```


Clustering por kmeans con un k arbitrario (k=3)

```
library(fpc)
fit=kmeansruns(dat,krange=3,criterion="ch")
```

En muchos casos se recomienda armar los grupos en base a los componentes principales mas importantes. Del siguiente modo se puede aplicar componentes principales:

library(FactoMineR)

Warning: package 'FactoMineR' was built under R version 3.5.3

```
par(cex=0.05)
result <- PCA(dat)</pre>
```


summary(result)

```
##
## Call:
## PCA(X = dat)
##
##
## Eigenvalues
##
                          Dim.1
                                  Dim.2
                                          Dim.3
                                                  Dim.4
                                                                   Dim.6
                                                          Dim.5
## Variance
                         15.226
                                  4.051
                                          2.582
                                                  2.150
                                                           1.137
                                                                   1.015
                                 12.660
                                                  6.718
                                                                   3.172
## % of var.
                         47.582
                                          8.068
                                                           3.553
## Cumulative % of var.
                                         68.310
                         47.582
                                 60.242
                                                 75.028
                                                         78.581
                                                                 81.753
##
                                                 Dim.10
                          Dim.7
                                  Dim.8
                                          Dim.9
                                                         Dim.11
                                                                  Dim. 12
## Variance
                          0.772
                                  0.701
                                          0.595
                                                  0.543
                                                           0.482
                                                                   0.391
                                                  1.696
                                                                   1.222
## % of var.
                          2.412
                                  2.190
                                          1.861
                                                           1.507
## Cumulative % of var. 84.165
                                 86.355
                                        88.216
                                                 89.911
                                                                 92.641
                                                         91.419
##
                         Dim.13
                                 Dim.14
                                         Dim.15
                                                 Dim.16
                                                         Dim.17
                                                                  Dim. 18
## Variance
                          0.321
                                  0.297
                                          0.260
                                                  0.233
                                                           0.190
                                                                   0.184
                                          0.811
                                                  0.729
                                                           0.593
                                                                   0.576
## % of var.
                          1.002
                                  0.927
## Cumulative % of var.
                         93.643
                                 94.570
                                        95.381
                                                 96.110
                                                         96.703
                                                                 97.279
                         Dim.19
                                 Dim.20
                                         Dim.21
                                                 Dim.22
                                                         Dim.23
                                                                 Dim.24
## Variance
                          0.145
                                  0.124
                                          0.117
                                                  0.101
                                                          0.081
                                                                   0.073
                                                                   0.229
## % of var.
                          0.453
                                  0.387
                                          0.366
                                                  0.316
                                                           0.254
                                                                 99.283
## Cumulative % of var. 97.731
                                 98.118 98.484
                                                 98.800 99.054
##
                         Dim.25 Dim.26 Dim.27 Dim.28 Dim.29 Dim.30
```

```
## Variance
                           0.052
                                   0.046
                                           0.038
                                                   0.037
                                                            0.029
                                                                    0.018
## % of var.
                          0.163
                                   0.144
                                                   0.115
                                                            0.089
                                                                    0.056
                                           0.118
                                          99.709
## Cumulative % of var.
                         99.446
                                  99.590
                                                  99.824
                                                          99.913
                                                                   99.970
##
                         Dim.31
                                  Dim.32
## Variance
                           0.010
                                   0.000
## % of var.
                           0.030
                                   0.000
## Cumulative % of var. 100.000 100.000
##
## Individuals (the 10 first)
##
                                                                       cos2
                       Dist
                                Dim.1
                                         ctr
                                               cos2
                                                       Dim.2
                                                                 ctr
## 1 de Mayo
                      2.487 |
                               1.231
                                       0.051
                                              0.245 \mid -1.427
                                                               0.259
                                                                      0.329
## 2 de Septiembre |
                      9.444
                               7.960
                                       2.145
                                              0.710 |
                                                       0.341
                                                               0.015
                                                                      0.001
## Acosta
                      2.957
                               1.639
                                       0.091
                                              0.307 \mid -0.754
                                                               0.072
                                                                      0.065
                      9.956 | -6.340
                                                               6.264
                                                                      0.497
## Alberdi
                                       1.361
                                              0.406 |
                                                       7.016
## Alta Córdoba
                      4.682 | -3.510
                                       0.417
                                              0.562 |
                                                       2.418
                                                               0.744
                                                                      0.267
                   1
## Altamira
                   Ι
                      3.243 | -1.450
                                       0.071
                                              0.200 | -1.204
                                                               0.185
                                                                      0.138
## Alto Alberdi
                      2.885 | -2.549
                                       0.220
                                              0.781 | 0.597
                                                               0.045
                                                                      0.043 |
                   ## Alto Verde
                      5.570 | -5.169 0.904
                                              0.861 | -0.238
                                                               0.007
                                                                      0.002 |
## Ameghino Norte
                      5.251 | 4.112 0.572
                                              0.613 |
                                                               0.003
                                                       0.148
                                                                      0.001 I
                   ## Ameghino Sud
                   3.801 | -2.622 0.233
                                             0.476 \mid -1.157
                                                              0.170
                                                                      0.093 l
                              ctr
##
                    Dim.3
                                    cos2
## 1 de Mayo
                   -0.803
                           0.129
                                  0.104 |
## 2 de Septiembre 0.052
                           0.001
                                  0.000 |
## Acosta
                   -1.555
                           0.483
                                  0.276 I
## Alberdi
                                  0.033 l
                           0.655
                   -1.811
## Alta Córdoba
                    0.652
                           0.085
                                  0.019 l
## Altamira
                   -0.791
                           0.125
                                  0.060 |
## Alto Alberdi
                           0.041
                   -0.451
                                  0.024 |
## Alto Verde
                    1.072
                           0.229
                                  0.037 |
## Ameghino Norte
                   -0.375
                           0.028 0.005 L
## Ameghino Sud
                   -0.518 0.054 0.019 |
##
## Variables (the 10 first)
##
                                              Dim.2
                      Dim.1
                                ctr
                                      cos2
                                                        ctr
                                                              cos2
                                                                      Dim.3
## priminc
                      0.933
                             5.719
                                     0.871 |
                                              0.045
                                                     0.050
                                                            0.002 \mid -0.099
## primcomp
                   0.919
                             5.552
                                     0.845 | -0.135
                                                     0.452
                                                           0.018 | -0.224
## secinc
                   0.785
                             4.042
                                     0.616 \mid -0.274
                                                     1.851
                                                            0.075 \mid -0.290
## seccomp
                   | -0.598
                             2.351
                                     0.358 | -0.366
                                                     3.309
                                                            0.134 | -0.118
## terinc
                   | -0.852
                             4.765
                                     0.725 | -0.003
                                                     0.000
                                                            0.000 | -0.043
                   I -0.910
                             5.444
                                     0.829 | -0.026
                                                     0.017
                                                            0.001 | 0.225
## tercomp
## univinc
                   | -0.825
                             4.467
                                     0.680 |
                                              0.401
                                                     3.966
                                                            0.161 | -0.038
## univcomp
                   | -0.800
                             4.206
                                     0.640 |
                                              0.108
                                                     0.288
                                                            0.012 l
                                                                      0.389
                             3.348
## posinc
                   1 - 0.714
                                     0.510 l
                                              0.268
                                                     1.780
                                                            0.072 |
                                                                      0.295
                   | -0.624
                             2.557
                                     0.389 |
## poscomp
                                              0.057
                                                     0.081 0.003 |
##
                      ctr
                            cos2
                    0.379
                           0.010
## priminc
## primcomp
                    1.938
                           0.050
## secinc
                    3.256
                           0.084
## seccomp
                    0.536
                           0.014 |
## terinc
                    0.070
                           0.002
                           0.051 I
                    1.965
## tercomp
## univinc
                    0.056
                           0.001
## univcomp
                    5.867
                           0.151 l
## posinc
                    3.378 0.087 |
```

```
plot(result) # gráficos varios entre ellos el biplot
```

```
res=result$ind$coord[]
#primeros dos componentes
x1 = res[,1]
x2 = res[,2]
```

y luego correr kmeans, sobre los primeros componentes principales, por ejemplo los dos primeros:

```
fit=kmeansruns(cbind(x1,x2),krange=3,criterion="ch")
```

Inciso 2

• Investigue los resultados en el meta parametro K numero de cumulos e investigue posibles procesos de seleccion del mismo.

Se puede aplicar kmeans para diversos k usando el argumento krange de la función kmeansruns, por ejemplo para k=1,...10. Para seleccionar k, se podría acudir alguna función de la suma de cuadrados dentro de los clusters y entre clusters. En la misma función kmeansruns estan implementados algunos criterios de selección de k (average silhouette width y Calinski-Harabasz). Por ejemplo aquí se implementa la selección del k optimo entre k=1,...10, por el método Calinski-Harabasz:

```
fit = kmeansruns(dat,krange=1:10,criterion="ch")
```

El algoritmo indica que el optimo es k=2.

Inciso 3

• Comente la influencia de la normalización de los datos en los resultados del clustering.

```
fit =kmeansruns(dat,krange=1:10,criterion="ch", scaledata=TRUE)
```

Al trabajar con los datos estandarizados se encuentran dos clusters. La estandarización no modificó demasiado el análisis. Esto puede deberse a que las transformaciónes previar realizadas sobre las variables generan cierto grado de estandarización.

Finalmente, se grafican los clusters y se ven cuantos barrios hay en cada uno de ellos

#par(opar) table(fit\$cluster)

```
## 1 2 ## 107 87
```