AVALIAÇÃO DE SCANNERS WEB OFERECIDOS COMO SERVIÇO (SaaS)

Felipe Melchior, Rafael Fernandes, Isadora Ferrão, Guilherme Neri Sá, Diego Kreutz

{fehmel,faelsfernandes,isadoraferrao9,guinbsa}@gmail.com, diego.kreutz@unipampa.edu.br

Universidade Federal do Pampa (UNIPAMPA)

1 INTRODUÇÃO

A Internet faz parte do cotidiano da maioria das pessoas. A gama de serviços online vai desde redes sociais, de uso geral, até sistemas mais complexos e críticos, como os sistemas produtivos, bancários e infraestruturas críticas (exemplo: distribuição de energia elétrica). Hoje, 2018, por exemplo, existem bancos 100% online (exemplos: N26/Alemanha, Revolut/Inglaterra, NuBank/Brasil), isto é, onde o cliente não precisa, em nenhum momento, apresentar-se fisicamente a uma agência do banco. Aliás, o próprio conceito de "agência bancária" deixa de existir neste novo modelo.

Em resumo, a sociedade está cada vez mais dependente dos sistemas e serviços oferecidos através da Internet. A maioria dos recursos e serviços online são disponibilizados aos usuários finais através de sistemas (ou aplicações) *Web* e serviços *Web*, também conhecidos como *Web Services*. Portanto, a segurança desses sistemas passa a ser de fundamental importância para o mercado e a sociedade.

O que se observa, já faz alguns anos, é um cenário bastante preocupante com relação a segurança dos sistemas *Web*. Os relatórios técnicos de empresas e especialistas em segurança de sistemas tem indicado claramente que este cenário tende a piorar nos próximos anos [IBM SECURITY. 2017; SYMANTEC. 2017]. Não é para menos, pois o número de atacantes e ferramentas de ataque, disponíveis livremente na Internet, tem crescido exponencialmente. Alguns dos fatores que tem contribuído para agravar esta situação são: o fácil acesso ao conhecimento técnico especializado, potencializando a formação e capacitação dos atacantes; a falta de conhecimentos técnicos em segurança por parte da maioria dos desenvolvedores de sistemas *Web*; a falta (ou fraca) de formação voltada à segurança da informação nas universidades; os prazos e metas dos projetos de software, priorizando o tempo em detrimento da qualidade e segurança do produto; entre outros.

Na área de segurança de dados e sistemas, existem diferentes técnicas que podem ajudar no combate às principais ameaças contra sistemas online. Uma das técnicas mais comumentemente utilizadas são as ferramentas de varrimento automático, também conhecimentos como *scanners* de vulnerabilidades, ou defeitos, de sistemas. Estes *scanners* são programados para detectar e diagnosticar vulnerabilidades como *bugs* de implementação de software (exemplos: campos que não são verificados, *buffer overflow*, execução remota de comandos), senhas padrão, sistemas utilizando software desatualizado ou com falhas de segurança, entre outras coisas.

Na literatura, existem diferentes estudos sobre *scanners* de vulnerabilidades *off-line*, isto é, que executam em uma máquina, como um outro software qualquer [BAU, J. et al. 2010; ROCHA, D. et al. 2012; FERRÃO, I. et al. 2017]. Entretanto, há uma carência de estudos relacionados aos *scanners* online, também conhecidos como serviços online de análise de vulnerabilidades em sistemas *Web*. Diferentemente dos *scanners* tradicionais, que demandam profissionais de tecnologia e precisam ser instalados, configurados e atualizados constantemente, os *scanners* online oferecem um serviço simples e prático aos usuários finais, como empresas de comércio eletrônico. A partir de um cadastro online, alguns cliques e uma validação técnica básica de propriedade do sistema alvo, o usuário pode utilizar o serviço

oferecido pelos *scanners* online. Entretanto, surge, de imediato, uma pergunta crucial: quão eficazes são os *scanners* online quando comparados aos *off-line*?

Buscando responder a esta pergunta, o objetivo deste trabalho é analisar a eficácia de *scanners* online de vulnerabilidades, ou seja, *scanners* no modelo *SaaS* (*Software as a Service*). De forma análoga às principais pesquisas relacionadas à análise de *scanners* de vulnerabilidades *off-line* [MAKINO, Y. et al. 2015; DALALANA, D. B, et al. 2017], é proposto um ambiente controlado para a análise dos serviços online de varredura. Este ambiente contém a implementação de algumas das principais vulnerabilidades mais recorrentemente encontradas em sistemas *Web*.

O desenvolvimento do trabalho é composto por seis etapas, sendo elas a (i) pesquisa e seleção dos *scanners* online; (ii) pesquisa e identificação das vulnerabilidades a serem utilizadas na avaliação dos *scanners* online; (iii) implementação e configuração do ambiente controlado; (iv) configuração e execução dos *scanners* online selecionados; (v) análise dos resultados; e (vi) prospecção de trabalhos futuros. Estas etapas são detalhadas na Secção 2.

A contribuição desta pesquisa pode ser resumida em:

- pesquisa e identificação dos principais scanners online, oferecidos como SaaS;
- avaliação empírica da eficácias dos scanners online;
- comparação dos resultados obtidos com scanners off-line;
- identificação de oportunidades de pesquisa e desenvolvimento futuro.

O restante do trabalho está organizado como segue. A Seção 2 detalha as etapas de desenvolvimento do trabalho. Na Seção 3 são analisados os resultados. Por fim, são apresentadas as considerações finais.

2 METODOLOGIA

O trabalho foi dividido em seis etapas. Na **primeira etapa** foram pesquisados e selecionados os *scanners* online a serem avaliados. Para a seleção foram realizadas buscas nos sites Google, OWASP e Geek Flare. Numa primeira fase, foram selecionadas as 10 ferramentas que estavam entre as melhores nos *rankings* dos sites. A disponibilidade de uma versão de testes completa, em termos de funcionalidades de varredura, do *scanner* foi utilizada como segundo critério de seleção. Com isto, a lista foi reduzida a 5 serviços online, sendo eles o ScanMyServer, Detectify, Tinfoil, Qualys e Acunetix.

Na **segunda etapa** foram investigadas e definidas as vulnerabilidades do cenário controlado a serem utilizadas na avaliação dos *scanners* online. A seleção foi baseada no *ranking* mantido pela organização internacional de segurança em aplicações *Web*, mais conhecida como OWASP [OWASP 2017]. As vulnerabilidades estão dividas em 10 categorias, sendo elas: injeção de código, quebra de autenticação e gerenciamento de sessão, cross-site scripting (XSS), quebra de controle de acesso, má configuração de segurança, exposição de dados sensíveis, falta de proteção contra ataques, cross-site request forgery (CSRF), uso de componentes com vulnerabilidades conhecidas e APIs desprotegidas.

A terceira etapa foi destinada ao planejamento e implementação cenário controlado. Este foi preparado utilizando a distribuição Ubuntu Server 16.04.4 LTS, servidor MySQL (versão 5.7), servidor Web Apache (versão 2.4.18) e PHP (versão 7.0). No cenário controlado, foram implementadas vulnerabilidades das 10 categorias da etapa anterior. Para disponibilizar o servidor Ubuntu na Internet, foi utilizada uma máquina virtual KVM, com endereço IP público, numa máquina física com processador Intel(R) Core 2 Q6600 2.40GHz, 8GB de memória RAM, e disco rígido SATA de 300GB.

A execução dos *scanners* online ocorreu na **quarta etapa**. Entretanto, diferentemente dos *scanners off-line*, os *scanners* online, oferecidos como serviços (SaaS) por empresas terceiras, requerem validação de propriedade do domínio (endereço IP) e sistema *Web*. Uma

das formas mais comuns de realizar este tipo de validação é através de arquivos específicos, gerados pelo provedor das ferramentas online, que são colocados no servidor *Web* para certificar de que o responsável pelo sistema *Web* está, de fato, ciente e de acordo com a execução *scanners*.

Na **quinta etapa** foi realizada a análise dos resultados dos *scanners* online. O primeiro passo foi analisar os relatórios de varredura de cada ferramenta. Estes documentos de saída contém uma lista de vulnerabilidades encontradas, incluindo o nível de gravidade e podem ou não conter informações adicionais sobre as falhas, onde estão localizadas no sistema *Web*, como podem ser corrigidas e estatísticas de varreduras anteriores. Uma compilação dos resultados é apresentada na Seção 3.

Por fim, na **sexta etapa** foi realizada uma prospecção de trabalhos futuros. Durante esta etapa, foram identificados alguns dos desafios de pesquisa, em aberto, e possíveis caminhos para dar seguimento à presente pesquisa, como apresentado na última seção deste trabalho.

3 RESULTADOS

A **Tabela 1** resume os resultados das etapas quatro e cinco do trabalho, apresentando quais *scanners* detectaram cada uma das 10 categorias de vulnerabilidades do cenário controlado. Os *scanners* foram enumerados como segue: [1] Acunetix, [2] Detectify, [3] Qualys, [4] Tinfoil e [5] ScanMyServer. Vale ressaltar que trata-se de uma análise *black-box*, uma vez que os *scanners* online não possuem acesso à informações sobre a infraestrutura, código fonte ou qualquer outra informação sobre o sistema alvo. Na prática, este é o tipo de análise mais comumentemente adotado pelos atacantes.

Ao observar a **Tabela 1**, nota-se que as categorias melhor cobertas pelos serviços online de varredura são injeção de código (apenas o Tinfoil não encontrou este tipo de falha) e má configuração de segurança. Surpreendentemente, os *scanners* online não detectaram nenhuma vulnerabilidade em três categorias, incluindo quebra de controle de acesso, uso de componentes com vulnerabilidades conhecidas e APIs desprotegidas.

Os *scanners* online mais eficazes no cenário controlado foram o Detectify e o Acunetix. O Detectify detectou vulnerabilidades em 50% do total das categorias, mas apenas 40% das falhas críticas. Já o Acunetix, apesar de também encontrar 50% das vulnerabilidades, detectou mais vulnerabilidades de criticidade alta (60% das falhas críticas). Isto significa que este *scanner* é mais eficaz na detecção de falhas críticas em ambientes *Web* similares ao utilizado neste trabalho, o que corresponde a maioria dos utilizados na prática.

Tabela 1 - Detecção de vulnerabilidades no cenário controlado.

Categorias de vulnerabilidades	Scanners Online
Injeção de Código	[1,2,4,5]
Quebra de Autenticação e Gerenciamento de Sessão	[4]
Cross site scripting	[1,5]
Quebra de controle de acesso	[]

Má configuração de segurança	[1,2,3,4,5]
Exposição de dados sensíveis	[1,2,3]
Falta de proteção contra ataques	[1,2,5]
Cross site request forgery (CSRF)	[2,4]
Uso de componentes com vulnerabilidades conhecidas	[]
APIs desprotegidas	

Fonte: do autor, 2018.

Como pode ser observado na **Tabela 2**, o tempo de execução não necessariamente tem uma relação direta com a taxa de detecção. Enquanto que a ferramenta Tinfoil detectou apenas 20% das falhas críticas em 2 horas e 34 minutos de execução, o Acunetix encontrou 60% em apenas 8 minutos e 12 segundos. Em outras palavras, o que mais importa são os métodos e as técnicas de detecção utilizados pelos *scanners*. Estes resultados reforçam a necessidade de uma constante avaliação dos *scanners* de vulnerabilidades devido a fatores como evolução das técnicas de detecção, evolução das tecnologias de desenvolvimento de sistemas *Web* e surgimento de novos tipos de vulnerabilidades e ataques.

Tabela 2 - Tempo de execução dos scanners

Tempo de execução	Taxa de detecção de falhas críticas
8 minutos e 12 segundos	60%
4 horas e 14 minutos	40%
9 minutos e 5 segundos	0%
2 horas e 34 minutos	20%
20 minutos	40%
	8 minutos e 12 segundos 4 horas e 14 minutos 9 minutos e 5 segundos 2 horas e 34 minutos

Fonte: do autor, 2018.

4 CONSIDERAÇÕES FINAIS

Os resultados da avaliação dos *scanners SaaS* deixaram a desejar. Surpreendentemente, o conjunto de 5 *scanners* detectou apenas 70% das categorias de vulnerabilidades do ambiente controlado. Estes resultados indicam claramente a necessidade de se utilizar mais de um *scanner* para detectar defeitos de segurança em sistemas *Web* e, mais importante, retratam um cenário bastante preocupante. Fica evidente a necessidade de pesquisa e desenvolvimento nesta área. Adicionalmente, os resultados corroboram também com a teoria, de trabalhos anteriores, de que pode ser difícil escolher um *scanner* de vulnerabilidades para dar suporte, no que diz respeito a aspectos de segurança, ao processo de desenvolvimento de software.

Apesar dos resultados, diga-se de passagem similares aos das ferramentas *off-line*, os *scanners* SaaS (online) possuem algumas vantagens e atrativos que os tornam alternativas

interessantes para muitas empresas e instituições. Alguns dos benefícios destes serviços são listados a seguir.

- não necessitam de mão de obra especializada, reduzindo custos operacionais e o tempo de ativação e utilização;
- são menos suscetíveis a problemas relacionados a atualização de software, uma vez que as empresas provedoras dos serviços mantém times especializados para garantir a atualização constante dos *scanners*;
- não demandam infraestrutura física própria para instalação e execução; e
- são mais escaláveis, uma vez que são disponibilizados em infraestruturas de nuvem, permitindo atender um número dinâmico e grande de clientes e sistemas.

Por fim, dando continuidade a este trabalho, pesquisas futuras podem tentar responder questões como as a seguir. Qual o impacto de frameworks *Web* no controle de vulnerabilidades? Qual é a eficácia dos *Web Application Firewalls* na proteção de sistemas *Web*? É possível atingir-se uma cobertura de 100% utilizando um único serviço online de varredura de vulnerabilidades? Múltiplos *scanners* off-line podem ser, com sucesso e eficácia, combinados em uma única plataforma SaaS online?

REFERÊNCIAS

BAU, J. et al. State of the art: Automated black-box web application vulnerability testing. In: IEEE Symposium on Security and Privacy. IEEE, 2010. p. 332-345

DALALANA, D. B, ZORZO, A. F. Overview and open issues on penetration test. In: Journal of the Brazilian Computer Society. 2017. p. 1-16.

DOUPÉ, A. et al. Why Johnny can't pentest: An analysis of black-box web vulnerability scanners. In: International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, Berlin, Heidelberg, 2010. p. 111-131.

FERRÃO, I. G, KREUTZ, D. L. Segurança na Web: análise black-box de scanners de vulnerabilidades. In: Escola Regional de Engenharia de Software (ERES), 2017. p. 149-156.

KUMAR, C. 7 SaaS Web Vulnerability Scanner for Continuous Security. 2017. Disponível em: https://geekflare.com/saas-web-vulnerability-scanner/ Acesso em 27 de Agosto de 2018.

IBM SECURITY. IBM X-Force Threat Intelligence Index 2017. 2017.

MAKINO, Y., KLYUEV, V. Evaluation of web vulnerability scanners. In: 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2015. p. 399-402.

ROCHA, D, KREUTZ, D, TURCHETTI, R. A free and extensible tool to detect vulnerabilities in web systems. In: Information Systems and Technologies (CISTI), 2012 7th Iberian Conference on. IEEE, 2012. p. 1-6.

VIEGAS, J. Por que o número de ataques virtuais aumentou e como evitá-los, 2016. Disponível em: https://goo.gl/zkNahP Acesso em 25 de Agosto de 2018.

SYMANTEC. Internet security threat report. 2017.

TURNER, M, BUDGEN, D, BRERETON, P. Turning software into a service, In: Computer, 36 (10), 2003, p. 38-44.

DUBEY, A, WAGLE. D. Delivering software as a service. In: The McKinsey Quarterly: The Online Journal of McKinsey & Co., 2007. p. 1-7.