LECTURE 4

September 13, 2023

1. The Division Algorithm

Recall in the previous lecture we started to have a look at divisibility and the Euclidean division algorithm.

NOTATION 1.1. For $a,b\in\mathbb{Z}$ with $a\neq 0$, we will say a divides b and write $a\mid b$ if b is an integer multiple of a, i.e. there exists some integer $k\in\mathbb{Z}$ such that b=ka.

THEOREM 1.2 (Division Algorithm). Let $a, b \in \mathbb{Z}$ with b > 0. Then there exists a unique $q, r \in \mathbb{Z}$ such that $0 \le r < b$ such that a = qb + r. We call q the quotient and r the remainder of the division a by b. By unique, we mean that there is exactly one q and one r that will make a = qb + r.

Remark 1.3. $a \equiv r \mod b$ since a - r = qb.

PROOF. Define $S = \{a - kb : k \in \mathbb{Z} \text{ and } a - kb \ge 0\}$. Note that S is bounded below by 0 and S has to be nonempty, which we have to verify! We will take two cases, depending on the value of a.

- (1) If a > 0, then $a = a 0 \cdot b \in S$.
- (2) If a < 0, then $(-a)(b-1) = a a \cdot b \ge 0$ and so $a ab \in S$.

Thus, S cannot be empty.

By the Well-Ordering Principle (Theorem 1.4), there exists an $r = \min(S)$, i.e. $r \in S$ and for all $m \in S$, $r \leq m$. Since $r \in S$, we know that $0 \leq r$ and there exists a $k \in \mathbb{Z}$ such that r = a - kb. Let us relabel k as q, so that a = qb + r.

We now need to show that $0 \le r < b$. We know $0 \le r$, so we check r < b. Towards contradiction, assume that $r \ge b$. Then this implies that $0 \le r - b = a - qb - b = a - b(q+1) \in S$ and $r - b < r = \min(S)$, which is absurd. Therefore, it must be the case that r < b.

Finally, we need to show that q and r are unique. Take $q', r' \in \mathbb{Z}$ such that $0 \le r' < b$ and a = q'b + r', we need to show that q' = q and r' = r. Observe that $0 \le r' = a - q'b \in S$ so $r' \ge \min(S) = r$. Now proceed by contradiction and assume that $r' \ne r$. Since $r' \ge r$ from, and $r' \ne r$, then r' > r. So now 0 < r' - r = a - q'b - (a - qb) = (q - q')b which implies that $b \mid r' - r$ therefore, by Proposition 2.4, $|b| \le |r' - r|$ which implies that $b \le r' - r \le r'$. This is absurd since r' < b. Therefore, r = r' and thus, it follows that q = q' as well.

2. Greatest Common Divisor

DEFINITION 2.1. Let $a, b \in \mathbb{Z} \setminus \{0\}$. The greatest common divisor of a and b is defined as

$$\gcd(a, b) = \max\{k \in \mathbb{N} : k \mid a \text{ and } k \mid b\}$$

REMARK 2.2. $\gcd(a,b)$ is well-defined and $1 \leq \gcd(a,b) \leq \min\{|a|,|b|\}$. We justify that We justify that $D = \{k \in \mathbb{N} : k \mid a \text{ and } k \mid b\}$ contains 1 and thus, nonempty. Second, if $k \in D$, then because $k \mid a$, then $|k| \leq |a|$ which implies that $k \leq |a|$. Similarly, since $k \mid b$, then $|k| \leq |b|$ which implies that $k \leq |b|$. Therefore, $\min\{|a|,|b|\}$ is an upper bound for D.

THEOREM 2.3 (Bezouts' Theorem). For $a, b \in \mathbb{Z} \setminus \{0\}$, there exists integers $x, y \in \mathbb{Z}$ such that gcd(a, b) = xa + yb.

PROOF. Define $S = \{xa + yb : x, y \in \mathbb{Z}, xa + yb \geq 1\}$. We need to observe that $S \neq \emptyset$. Indeed, take $1 \leq |a| = \frac{|a|}{a} \cdot a + 0 \cdot b \in S$ which implies that $|a| \in S$ and similarly, $|b| \in S$ as well. By the Well-Ordering Principle (Theorem 1.4), there exists a $d = \min(S)$ and $d \leq \min\{|a|, |b|\}$. Since $d \in S$, there exists $x, y \in \mathbb{Z}$ such that d = xa + yb and $d \geq 1$.

We want to show that $xa+yb=\gcd(a,b)$. The first step is to show that d divides a. By the Division Algorithm (Theorem 1.2), there exists $q,r\in\mathbb{Z}$ such that $0\leq r< d$ such that a=qd+r. We claim that r=0 so that $d\mid a$. Assume otherwise that $r\neq 0$, and so in particular, $1\leq r< d$, and so writing $1\leq r=a-qd=a-q(xa+yb)=(1-qx)a+(-qy)b$, and thus, $r\in S$ and $r< d=\min(S)$ which is absurd. The proof to show that $d\mid b$ is similar.

Finally, we need to show that d is a common divisor of a and b, and we need to show that it is the greatest. If we take $k \in \mathbb{N}$ such that $k \mid a$ and $k \mid b$, then we need to deduce that $k \leq d$. Since $k \mid a$ and $k \mid b$, then $k \mid xa + yb = d$ (by Proposition 2.3), which implies that $|k| \leq |d|$ (by Proposition 2.4) and therefore, $k \leq d$ as desired.

REMARK 2.4. If $a, b \in \mathbb{Z} \setminus \{0\}$ such that gcd(a, b) = 1, then a and b are called *relatively prime* or *coprime*. In this case, by Bezout's Theorem (Theorem 2.3), there exists integers $x, y \in \mathbb{Z}$ such that xa + yb = 1.

3. Prime Numbers

Definition 3.1. A $p \in \mathbb{N}$ is called a prime number if

- (1) $p \ge 2$
- (2) the number $k \in \mathbb{N}$ such that $k \mid p$ are k = 1 and k = p.

REMARK 3.2. If $n \in \mathbb{N}$ with $n \geq 2$, always $1, n \in \{k \in \mathbb{N} : k \mid n\}$. A number $p \geq 2$ if this set is the smallest possible.