LA CONCURRENCE

Objectifs

Les bases

Le verrouillage deux phases

L'ordonnancement par estampilles

Les applications avancées

©Gardarin 2001

1

1. Objectifs

- Permettre l'exécution simultanée d'un grand nombre de transactions
- > Régler les conflits lecture / écriture
- ➤ Garder de très bonne performance
- > Eviter les blocages

©Gardarin 2001

«N°

Les problèmes de concurrence

- Perte d'opérations
 - { T1 : Read A->a; T2 : Read A->b; T2 : b+1 -> b; T2 : Write b->A; T1: a*2 ->a; T1: Write a -> A }
 Oue contient A ?
- Introduction d'incohérence
 - A = B { T1 : A*2->A; T2 : A+1->A; T2 : B+1 -> B; T1 : B*2 -> B }
- Non reproductibilité des lectures
 - { T1 : Read A->a; T2 : Read A->b; T2 : b+1 -> b; T2 : Write b->A; T1: Read A -> a }

 $\langle N^{\circ} \rangle$

©Gardarin 2001

3

2. Les bases

- Chaque transaction Ti est composée d'une séquence d'actions <a11, a12, ..., a1ni>
- Une exécution simultanée (Histoire) des transactions {T1, T2, Tn} est une séquence d'actions
 - H = < ai1j1, ai2j2 aikjk > telle que aij < aij+1 pour tout i et tout j et quel que soit aij de T1 ,... Tn, aij est dans H
 - C'est une séquence d'actions complète respectant l'ordre des actions des transactions
- Une exécution est sérielle si toutes les actions des transactions ne sont pas entrelacées
 - elle est donc de la forme
 - <Tp(1), Tp(2), ...Tp(n)> ou p est une permutation de 1, 2, ... n.

(N°)

©Gardarin 2001

Sérialisabilité

> Exécution sérialisable

 Une exécution est dite sérialisable si elle est équivalente à une exécution sérielle

> Plusieurs critères d'équivalence possibles

- Equivalence de vue : tous les résultats visibles sont identiques
- Equivalence du conflit : toutes les actions conflictuelles sont effectuées dans le même ordre sur les objets de la base

(N°)

©Gardarin 2001

5

Graphe de précédence

Précédences

- Techniques basées sur la seule sémantique des opérations de lecture / écriture
- Ti lit O avant Tj écrit => Ti précède Tj
- Ti écrit O avant Tj écrit => Ti précède Tj
- Ti écrit O avant Tj lit => Ti précède Tj

> Condition de sérialisabilité

• Le graphe de précédence doit rester sans circuit

(N°

©Gardarin 2001

Bilan Problèmatique

 La sérialisabilité est une condition suffisante de correction

Exercice

 Démontrer que les cas de perte d'opérations et d'incohérences sont non sérialisables

©Gardarin 2001

7

3. Le Verrouillage 2 phases

> PRINCIPES

- verrouillage des objets en lecture/écriture
- opérations Lock(g,M) et Unlock(g)
- compatibilité:

L E L V F E F F

- toute transaction attend la fin des transactions incompatibles
- garantie un graphe de précédence sans circuit
- les circuits sont transformés en verrous mortels

(N°

©Gardarin 2001

Algorithmes Lock

9

Algorithme Unlock

```
Procédure Unlock(Transaction t, Objet O){
  t.verrou(O) := 0;
  Pour chaque transaction i dans la queue de O {
     si Lock(i, O,M) alors {
          enlever (i,M) de la queue de O;
          débloquer i; };
    }
}
```

Condition de corrections

- > Transactions deux phases
 - une transaction ne peut relâcher de verrous avant de les avoir tous acquis

11

Problèmes du Verrouillage

- Verrou mortel
 - risques de circuit d'attentes entre transactions

- ➤ Granularité des verrous
 - page : en cas de petits objets, trop d'objets verrouillés
 - objet : trop de verrous, gestion difficile

(N°

©Gardarin 2001

©Gardarin 2001

Résolution du verrou mortel

Prévention

- définir des critères de priorité de sorte à ce que le problème ne se pose pas
- exemple : priorité aux transactions les plus anciennes

Détection

- gérer le graphe des attentes
- lancer un algorithme de détection de circuits dès qu'une transaction attend trop longtemps
- choisir une victime qui brise le circuit

رN°

©Gardarin 2001

13

Améliorations du verrouillage

- > Relâchement des verrous en lecture après opération
 - - non garantie de la reproductibilité des lectures
 - + verrous conservés moins longtemps
- Accès à la version précédente lors d'une lecture bloquante
 - nécessité de conserver une version (journaux)
 - + une lecture n'est jamais bloquante

(N°

©Gardarin 2001

Granularité Variable

- Plusieurs granules de verrouillage sont définis, inclus l'un dans l'autre
- Le verrouillage s'effectue en mode intention sur les granules supérieurs et en mode effectif sur les granules choisis
 - les modes intentions sont compatibles
 - les modes effectifs et intentions obéissent aux compatibilités classiques

©Gardarin 2001

15

Verrouillage Altruiste

Restitution des verrous sur les données qui ne seront plus utilisées

(N°)

 L'abandon d'une transaction provoque des cascades d'abandons

Degré d'isolation en SQL2

- > Définition de degrés d'isolation emboîtés
 - Degré 0
 - garantit les non perte des mises à jour
 - pose de verrous courts exclusifs lors des écritures
 - Degré 1
 - garantit la cohérence des mises à jour
 - pose de verrous longs exclusifs en écriture
 - Degré 2
 - garantit la cohérence des lectures individuelles
 - pose de verrous courts partagés en lecture
 - Degré 3
 - garantit la reproductibilité des lectures
 - pose de verrous longs partagés en lecture

N°১

©Gardarin 2001

17

Bilan Verrouillage

- > Approche pessimiste
 - prévient les conflits
 - assez coûteuse
 - assez complexe
- Approche retenue
 - · dans tous les SGBD industriels
- Difficile de faire mieux !

©Gardarin 2001

 $\langle N^{\circ} \rangle$

4. Ordonnancement par estampillage

- Estampille (TimeStamp) associée à chaque transaction
 - date de lancement de la transaction
 - garantie d'ordre total (unicité)
- Conservation des estampilles
 - dernier écrivain : Writer
 - plus jeune lecteur : Reader
- Contrôle d'ordonnancement
 - en écriture: estampille écrivain > Writer et > Reader
 - en lecture: estampille lecteur > Writer
- Problèmes
 - reprise de transaction en cas d'accès non sérialisé
 - risque d'effet domino en cas de reprise de transaction

 $\langle N^{\circ} \rangle$

©Gardarin 2001

19

Algorithme d'ordonnancement

۷N°

©Gardarin 2001

La Certification Optimiste

- Les contrôles s'effectuent seulement en fin de transaction
 - Phase d'accès : on garde les OID des objets lus/écrits
 - Phase de certification : on vérifie l'absence de conflits (L/E ou E/E même objet) avec les transactions certifiées pendant la phase d'accès
 - Phase d'écriture (commit) pour les transactions certifiées
- Avantages et inconvénients
 - + test simple d'intersection d'ensembles d'OID en fin de transaction
 - tendance à trop de reprises en cas de conflits fréquents (effondrement)

 $\langle N^{\circ} \rangle$

©Gardarin 2001

21

Bilan Estampillage

- Approche optimiste
 - coût assez faible
 - détecte et guérit les problèmes
- Guérison difficile
 - catastrophique en cas de nombreux conflits
 - absorbe mal les pointes
- Sophistication
 - ordonnancement multiversions

©Gardarin 2001

 $\langle N^{\circ} \rangle$