Cellular networks

- How do cellular networks manage spectrum access?
 - FDMA?
 - TDMA?
 - CDMA?
 - Power management?

All of the above!

Mountains & Minds

360

360

Mountains & Minds

361

History of cellular networks

History of cellular networks

CDMA/CA (not CSMA/CA)

Carrier signal generated at a chipping rate faster than transmission rate

Data bits d_0 , d_1 , ... represented as ± 1

Transmissions can deal with interference

Decode d_i from the following received symbols: 1,1,1,1,1,-1,-1,-1

$$d_i = \frac{\sum_{m=1}^{M} Z_{i,m} \cdot c_m}{M}$$

 $\underline{1*1+1*1+1*1+1*(-1)+1*1+(-1)*(-1)+(-1)*(-1)+(-1)*(-1)}$

$$d_i = \frac{7}{8} \approx 1 \text{ not } -1$$

Mountains & Minds

364

364

CDMA/CA with multiple senders

- Transmissions from senders, using different codes, combine at the receiver
- CDMA partitions the code space into orthogonal codes
 - 1 -1 -1 1 and 1 -1 1 -1 when multiplied together give 1 1 -1 -1 which gives the sum
 - Pseudo-random number (PN) codes, random numbers, are close to orthogonal
- Receiver uses same code as sender 1 to

$$\begin{split} d_i &= \frac{\sum_{m=1}^{M} Z_{i,m} \cdot c_m^1}{M} \\ d_i &= \frac{-2*1 + 2*(-1) + 2*(-1) + 2*(-1)}{8} \\ d_i &= \frac{-8}{8} = -1 \end{split}$$

Mountains & Minds

Senders $d_0^1 = 1$ Data bits $d_1^1 = -1$ $Z_{i,m}^1 = d_i^1 \cdot c_m^1$ 1 1 1 1 Channel, $Z_{i,m}^*$ Data bits $d_1^2 = 1$ $d_0^2 = 1$ $Z_{i,m}^2 = d_i^2 \cdot c_m^2$

366

History of cellular networks

Mountains & Minds 2008 4G

366

(GPRS) Core Network

Access Network (UTRAN)

Mountains & Minds

5G

Mountains & Minds

368

5G development objectives

Mountains & Minds

Cloud/Centralized RAN (C-RAN)

Macro-base station

C-RAN

Mountains & Minds

370

Cloud/Centralized RAN (C-RAN)

How far can we place the BBU?

Backhaul type	Access technology	Latency (one way)	Throughput	Priority			
Non-ideal	Fiber 1	10-30 ms	10 M-10 Gbps	1			
	Fiber 2	5–10 ms	100-1000 Mbp	s 2			
	Fiber 3	2–5 ms	50 M-10 Gbps	1		Anteni	10
	DSL	15-60 ms	10-100 Mbps	1		Anten	• Compact
	Cable	25–35 ms	10-100 Mbps	2		1##	Easy to install No extra TMA
	Wireless	5–35 ms	10-100 Mbps	1	ппп	Remote PA	Increase site choice
Ideal	Fiber 4	Less than 2.5 μs	Up to 10 Gbps	1	UŲĐ	radio head Radio	Lower power consumption
 C-RAN needs fast front haul Digital radio over fiber (D-RoF) technologies such as common public radio interface (CPRI) or open base station architecture initiative (OBSAI) Latency has to be low enough to process multipath/multipoint 			Shared inSimplificShared b	erver for many masts adoor site delimate control attery backup Dumba asse pure assembly a control attery backup	OI	otical fiber	No loss of power in cable light and flexible Higher reliability

Base station hotel

Mountains & Minds

Cloud/Centralized RAN (C-RAN)

Feature	Benefit			
BBU and RRH can be spaced miles apart	Higher degree of deployment flexibility			
Reduced space (footprint)	Lower rental costs			
	Easier site acquisition			
Lightweight RRH	Easier installation			
	No need for feeders			
Better coverage than old-style macro sites when deployed in tower-top (no feeder loss)	Reduced total number of sites			
	No need for TMAs			
Integrated maintenance and administration	Reduced OPEX			
Reduc Enable spectrum sharing between operators. Why?				
natural heat dissipation mode)				
	Reduced OPEX			

Mountains & Minds

372

Future Trends

Non-orthogonal multiple access (NOMA)

- Code domain NOMA uses spreading sequences for sharing the resources.
- Power domain NOMA exploits the channel gain differences between the users for multiplexing via power allocation
- The new wave of research on NOMA is motivated by the advance of processors which make it practically implementable.

Time slot 1

Mountains & Minds

Future Trends

374

