Decomposing Complete Hypergraphs

Jackson Gatenby

Supervisor: Barbara Maenhaut

17 October 2014

Problem (Steiner, 1853)

Given a set of v elements, take subsets of size 3 so that every pair of elements occurs in precisely one of the subsets.

Problem (Steiner, 1853)

Given a set of v elements, take subsets of size 3 so that every pair of elements occurs in precisely one of the subsets.

Example: every pair of elements from $\{0,1,2,3,4,5,6\}$ occurs in exactly one of the following triples:

Problem (Steiner, 1853)

Given a set of v elements, take subsets of size 3 so that every pair of elements occurs in precisely one of the subsets.

Example: every pair of elements from $\{0,1,2,3,4,5,6\}$ occurs in exactly one of the following triples:

Definition

A *Steiner Triple System* of order v, denoted STS(v), is a set V of v points with a collection \mathscr{B} of 3-element subsets of V, called *blocks*, so that every 2-element subset of V is contained in exactly one block.

 \Rightarrow We can draw the complete graph K_7 as a number of copies of K_3 .

Let G, H be graphs. A G-decomposition of H is a collection of graphs isomorphic to G whose edges partition E(H).

Lemma

An STS(v) is equivalent to a K_3 -decomposition of K_v .

An STS(9), expressed as a K_3 -decomposition of K_9 :

$$\{0,1,3\},\{1,2,4\},\{2,3,5\},\ldots$$

$$\{0,4,\infty\},\{1,5,\infty\},\ldots$$

• K_v has $\binom{v}{2}$ edges, which are partitioned into parts of size $|E(K_3)|=3$, so 3 must divide $\binom{v}{2}=\frac{v(v-1)}{2}$.

- K_v has $\binom{v}{2}$ edges, which are partitioned into parts of size $|E(K_3)|=3$, so 3 must divide $\binom{v}{2}=\frac{v(v-1)}{2}$.
- ② Consider a vertex $x \in V(K_v)$. Whenever x appears in a copy of K_3 , there are 2 edges incident with x. There are a total of $\deg_{K_v}(x) = v 1$ edges incident with x, so 2 must divide v 1.

- K_v has $\binom{v}{2}$ edges, which are partitioned into parts of size $|E(K_3)|=3$, so 3 must divide $\binom{v}{2}=\frac{v(v-1)}{2}$.
- ② Consider a vertex $x \in V(K_v)$. Whenever x appears in a copy of K_3 , there are 2 edges incident with x. There are a total of $\deg_{K_v}(x) = v 1$ edges incident with x, so 2 must divide v 1.

Theorem (Kirkman, 1847)

An STS(v) exists iff $v \equiv 1$ or 3 (mod 6).

Proof.

- (⇒) Obvious necessary conditions above.
- (⇐) Generalise the constructions shown before.

Definition

A *Steiner system*, denoted S(t, k, v), consists of a set of v points, and sets of k points (*blocks*), so that every set of t points occurs in precisely one block.

Definition

A *Steiner system*, denoted S(t,k,v), consists of a set of v points, and sets of k points (*blocks*), so that every set of t points occurs in precisely one block.

Problem

Given k and t, for which v does there exist an S(t, k, v)?

Definition

A *Steiner system*, denoted S(t,k,v), consists of a set of v points, and sets of k points (*blocks*), so that every set of t points occurs in precisely one block.

Problem

Given k and t, for which v does there exist an S(t, k, v)?

We would like to form an equivalent 'graph theoretic' question.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of nonempty subsets of V called hyperedges (or edges).

A hypergraph is t-uniform if every edge has size t.

The *complete t-uniform hypergraph of order v*, denoted $K_v^{(t)}$, consists of v vertices and edges given by every t-set of vertices.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of nonempty subsets of V called hyperedges (or edges).

A hypergraph is *t-uniform* if every edge has size *t*.

The *complete t-uniform hypergraph of order v*, denoted $K_v^{(t)}$, consists of v vertices and edges given by every t-set of vertices.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of nonempty subsets of V called hyperedges (or edges).

A hypergraph is *t-uniform* if every edge has size *t*.

The *complete t-uniform hypergraph of order v*, denoted $K_v^{(t)}$, consists of v vertices and edges given by every t-set of vertices.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of nonempty subsets of V called hyperedges (or edges).

A hypergraph is t-uniform if every edge has size t.

The *complete t-uniform hypergraph of order v*, denoted $K_v^{(t)}$, consists of *v* vertices and edges given by every *t*-set of vertices.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of nonempty subsets of V called hyperedges (or edges).

A hypergraph is t-uniform if every edge has size t.

The *complete t-uniform hypergraph of order v*, denoted $K_v^{(t)}$, consists of *v* vertices and edges given by every *t*-set of vertices.

A hypergraph is a pair (V, E), where V is a set of vertices and E is a set of nonempty subsets of V called hyperedges (or edges).

A hypergraph is *t-uniform* if every edge has size *t*.

The *complete t-uniform hypergraph of order v*, denoted $K_v^{(t)}$, consists of *v* vertices and edges given by every *t*-set of vertices.

An S(t, k, v) is a $K_k^{(t)}$ -decomposition of $K_v^{(t)}$.

An S(t, k, v) is a $K_k^{(t)}$ -decomposition of $K_v^{(t)}$.

$$|E(\mathcal{K}_k^{(t)})| = {k \choose t} \text{ divides } |E(\mathcal{K}_v^{(t)})| = {v \choose t}$$

An S(t, k, v) is a $K_k^{(t)}$ -decomposition of $K_v^{(t)}$.

- $\textbf{ 9 For } x \in V(\mathcal{K}_{v}^{(t)}) \text{: } \deg_{\mathcal{K}_{k}^{(t)}}(x) = \binom{k-1}{t-1} \text{ divides } \deg_{\mathcal{K}_{v}^{(t)}}(x) = \binom{v-1}{t-1}$

An S(t, k, v) is a $K_k^{(t)}$ -decomposition of $K_v^{(t)}$.

- $\textbf{ § For } x \in V(\mathcal{K}_{v}^{(t)}) \text{: } \deg_{\mathcal{K}_{k}^{(t)}}(x) = \binom{k-1}{t-1} \text{ divides } \deg_{\mathcal{K}_{v}^{(t)}}(x) = \binom{v-1}{t-1}$

An S(t, k, v) is a $K_k^{(t)}$ -decomposition of $K_v^{(t)}$.

- $\textbf{ 9 For } x \in V(\mathcal{K}_{v}^{(t)}) \text{: } \deg_{\mathcal{K}_{k}^{(t)}}(x) = \binom{k-1}{t-1} \text{ divides } \deg_{\mathcal{K}_{v}^{(t)}}(x) = \binom{v-1}{t-1}$
- **3** For x, y: $\deg_{K_{\nu}^{(t)}}(\{x, y\}) = \binom{k-2}{t-2}$ divides $\deg_{K_{\nu}^{(t)}}(\{x, y\}) = \binom{\nu-2}{t-2}$
- 4 ...

An S(t, k, v) is a $K_k^{(t)}$ -decomposition of $K_v^{(t)}$.

The necessary divisibility conditions for the existence of an S(t, k, v) are:

- **3** For x, y: $\deg_{K_{\nu}^{(t)}}(\{x, y\}) = \binom{k-2}{t-2}$ divides $\deg_{K_{\nu}^{(t)}}(\{x, y\}) = \binom{\nu-2}{t-2}$
- 4 ...

In summary:

For $i \geq 0$, $\binom{k-i}{t-i}$ must divide $\binom{v-i}{t-i}$.

Problem

Given a *t*-uniform hypergraph H, for which v does there exist an H-decomposition of $K_v^{(t)}$?

These can also be referred to as *H-designs of order v*.

Problem

Given a *t*-uniform hypergraph H, for which v does there exist an H-decomposition of $K_v^{(t)}$?

These can also be referred to as *H*-designs of order v. Example: for the hypergraph H below, does there exist an H-decomposition of $K_6^{(3)}$?

The necessary divisibility conditions for *H*-decompositions of $K_{\nu}^{(t)}$ are: For all $i \ge 0$, $\gcd(\{\deg_H(S) : S \subseteq V(H), |S| = i\})$ must divide $\binom{V-i}{t-i}$.

The necessary divisibility conditions for H-decompositions of $K_v^{(t)}$ are: For all $i \geq 0$, $\gcd\left(\{\deg_H(S): S \subseteq V(H), |S| = i\}\right)$ must divide $\binom{v-i}{t-i}$.

Example

If H is as before, and there is a H-design of order v, then

The necessary divisibility conditions for H-decompositions of $K_v^{(t)}$ are: For all $i \geq 0$, $\gcd\left(\{\deg_H(S): S \subseteq V(H), |S| = i\}\right)$ must divide $\binom{v-i}{t-i}$.

Example

If H is as before, and there is a H-design of order v, then

② For all
$$x \in V(H)$$
, $\deg_H(x) = 2$. So 2 divides $\binom{v-1}{2}$

The necessary divisibility conditions for H-decompositions of $K_{\nu}^{(t)}$ are: For all $i \geq 0$, $\gcd\left(\{\deg_H(S): S \subseteq V(H), |S| = i\}\right)$ must divide $\binom{\nu-i}{t-i}$.

Example

If H is as before, and there is a H-design of order v, then

- ② For all $x \in V(H)$, $\deg_H(x) = 2$. So 2 divides $\binom{v-1}{2}$
- **③** {deg_H({x,y}): x,y ∈ V(H), x ≠ y} = {1,2}. So gcd({1,2}) = 1 divides $\binom{v-2}{1} = v-2$.

The necessary divisibility conditions for H-decompositions of $K_{\nu}^{(t)}$ are: For all $i \geq 0$, $\gcd\left(\{\deg_H(S): S \subseteq V(H), |S| = i\}\right)$ must divide $\binom{\nu-i}{t-i}$.

Example

If H is as before, and there is a H-design of order v, then

- ② For all $x \in V(H)$, $\deg_H(x) = 2$. So 2 divides $\binom{v-1}{2}$
- **③** {deg_H({x,y}) : x,y ∈ V(H), x ≠ y} = {1,2}. So gcd({1,2}) = 1 divides $\binom{v-2}{1} = v-2$.

These conditions are equivalent to $v \equiv 1, 2 \text{ or } 6 \pmod{8}$.

Does there always exist an H-design for these values of v?

If we can find *H*-decompositions of the following hypergraphs, then multiple copies of them will cover all three cases:

If we can find *H*-decompositions of the following hypergraphs, then multiple copies of them will cover all three cases:

If we can find *H*-decompositions of the following hypergraphs, then multiple copies of them will cover all three cases:

It can be shown that all of these exist, so H-designs of order v exist for all $v \equiv 1 \pmod{8}$. Similarly for $v \equiv 2$ and 6, so

It can be shown that all of these exist, so *H*-designs of order v exist for all $v \equiv 1 \pmod 8$. Similarly for $v \equiv 2$ and 6, so

Theorem

For the hypergraph H given before, there is an H-design of order v (H-decomposition of $K_v^{(3)}$) iff $v \equiv 1, 2, \text{ or } 6 \pmod{8}$.

It can be shown that all of these exist, so *H*-designs of order v exist for all $v \equiv 1 \pmod{8}$. Similarly for $v \equiv 2$ and 6, so

Theorem

For the hypergraph H given before, there is an H-design of order v (H-decomposition of $K_v^{(3)}$) iff $v \equiv 1, 2, \text{ or } 6 \pmod{8}$.

Proof.

- (⇒) Necessary divisibility conditions.
- (\Leftarrow) Divide into three cases: 1, 2, 6 (mod 8).

Find *H*-decompositions of certain small hypergraphs.

Combine copies of these decompositions as necessary.

