Non-ideal reactors

- Construction of C(t) and E(t)
- Convolution integral and the Step-input
- $\Box t_m$ and τ and other moments
- RTD of PFR/PBR and CSTR
- RTD of LFR

Lecture # 30 CHE331A

Non-ideal reactors – from the RTD curves to conversions

Goutam Deo

2020-2021 1st semester

Knowledge of the E(t) (or other) curves for a real reactor can provide insights into the reactors functioning

- Let the volume of the CSTR be V and mean residence time be τ
- The E(t) curve for this CSTR is given by the equation: $E(t) = \frac{1}{\tau} \exp(-t/\tau)$
- ▶ With only dead-volume, V_1 , then: $V = V_{CSTR-D} + V_1$
- ▶ Thus, $\tau_{CSTR-D} < \tau$ (v_o is the same!)
- ► Thus, *E(t)* will decay more rapidly and start from a larger value
- ▶ The E(t) curve for an ideal CSTR with bypass can also be rationalized. There will be a bump in the exponential decay!

Deadzone (no mixing)

A real CSTR

PFR with non-ideal flows

PFR with dead-volume

With dead-volume V_D then with similar logic as before

 $au_{PFR-D} < au_{PFR}$ and the F(t) curves are shown

► How would the E(t) curve look like?

PFR with bypass

Nith bypass-volumetric flow v_1 then some of v_0 has been diverted to bypass and $\tau_{PFR-B} > \tau_{PFR}$ and the F(t) curves are shown

Reactor combinations and effects of (micro/macro) mixing

- Let us look at a combination of ideal reactors in series:
 - o (a) ideal PFR followed by an ideal CSTR and
 - o (b) ideal CSTR followed by an ideal PFR
- The residence time τ_{TPR} and τ_{CSTR} are the same
- ► The E(t) curve after the above reactor combinations are shown
- ▶ RTD given by: E(t) = 0 for $t < \tau_{PFR}$ and

$$E(t) = \frac{\exp(-\frac{(t - \tau_{PFR})}{\tau_{CSTR}})}{\tau_{CSTR}} \text{ for } t \ge \tau_{PFR}$$

Conversions for a 2nd order reaction in the combination of reactors

- ▶ Reaction $A \rightarrow products$, where $-r_A = kC_A^2$
 - \circ Conversion would depend on τ_{CSTR} , τ_{PFR} , k and C_{A0}
 - \circ Assume all τ_{CSTR} , τ_{PFR} , k and C_{A0} are equal to 1.0
- ightharpoonup CSTR
 ightharpoonup PFR combo
 - $\circ X_{CSTR} = 0.382 \text{ and } X_{CSTR \to PFR} = 0.618$
- ightharpoonup PFR
 ightharpoonup CSTR combo
 - $X_{PFR} = 0.5 \text{ and } X_{PFR \to CSTR} = 0.634$
- ▶ Though the RTD is the same (previous overhead) the conversions are not!

RTD is unique for a particular reactor – not a comp<mark>lete description</mark>

- ▶ We see that for CSTR-PFR and PFR-CSTR combinations the conversions are not the same
 - For CSTR-PFR we have early mixing and then segregated flow, and for PFR-CSTR we have segregated flow and then late mixing
- RTD tells us how long fluid elements spend in the reactor
 - Not sufficient to determine performance of the reactor (e.g., conversion) and more information required
 - For first order reactions RTD is sufficient since only the time a fluid element spends in the reactor is required, and mixing (conc.) is not important

Models are required to describe quality of mixing or degree of segregation

- Models can then be used along with RTD and known kinetics to predict conversions
 - RTD + Model + kinetics ⇒ exit X and C_A
- ▶ Five main models used
 - Zero adjustable parameters: (a) Segregation & (b) Maximum mixedness
 - One adjustable parameter: (a) Tank-in-series & (b) Dispersion
- ► Two adjustable parameter

Segregation model (little batch reactors!)

- ▶ In an CSTR, the entering fluid elements are distributed immediately and evenly throughout the reacting mixture
- ► Fluid elements of different ages mix completely → ideal CSTR
- ► Fluid elements of different ages do not mix at all then element completely segregated → non-ideal **CSTR**

- ▶ In a PFR the segregated model can also be conceptualized
- After spending the required time in the reactor, given by the E(t) curve, the fluid element is removed and mixed with the other stream

Reaction time is the time spent by each globule in the reaction environment

- ▶ Time spent is given by the RTD of the particular reactor
- Mean conversion at exit is average of the conversions of all exiting globules
- ► That is:

Mean conversion of those fluid elements spending between t and t + dt in the reactor

Conversion achieved

Fraction of fluid elements in a fluid element after spending a time t in the reactor

* Traction of fluid elements that spend between t and t + dt in the reactor

▶ Then: $d\overline{X} = X(t) * E(t)dt$

and summing over all globules

$$\bar{X} = \int_0^\infty X(t).E(t).dt$$

► Thus, knowledge of RTD + rate law + model (segregated flow) the conversion can be calculated

Application of the segregated model

- ▶ RTD + kinetics + Model → conversion
- ▶ 1st order reaction: $A \rightarrow products$
- ▶ Batch reactor: $\frac{dN_A}{dt} = r_A V \rightarrow N_{A0} \frac{dX}{dt} = -r_A V = kC_A V = kN_A = kN_{A0} (1 X)$ $\frac{dX}{dt} = k(1 X)$ $X(t) = 1 \exp(-kt)$
- ▶ Mean conversion for a reactor with RTD of E(t) : $\bar{X} = \int_0^\infty X(t)E(t)dt$
- Thus, $\bar{X} = \int_0^\infty X(t)E(t)dt = \int_0^\infty [1 \exp(-kt)]E(t)dt$ and $\bar{X} = 1 \int_0^\infty \exp(-kt)E(t)dt$
- Above equation can be applied for a 1st order reaction occurring in a reactor of known E(t)

Segregated model applied to a PFR and CSTR

- ▶ For a PFR: $E(t) = \delta(t \tau)$
- Substituting, $\overline{X} = 1 \int_0^\infty \exp(-kt)E(t)dt = 1 \int_0^\infty \exp(-kt)\delta(t \tau)dt$ $\overline{X} = 1 \exp(-k\tau)$
- ► For a PFR and a 1st order reaction: $\frac{dX}{d\tau} = k(1-X)$ \implies $X = 1 \exp(-k\tau)$
- Conversions using segregated model and MB equation for PFR are identical
- ► For a CSTR: $E(t) = \frac{1}{\tau} \exp(-t/\tau)$, and $\bar{X} = 1 \int_0^\infty \exp(-kt) \left[\frac{1}{\tau} \exp(-t/\tau)dt\right]$

$$\bar{X} = 1 - \int_0^\infty \frac{1}{\tau} \exp\left[-t\left(\frac{1}{\tau} + k\right)\right] dt = 1 + \frac{1}{\left(\frac{1}{\tau} + k\right)} \frac{1}{\tau} \exp\left[-t\left(\frac{1}{\tau} + k\right)\right]_0^\infty = 1 - \frac{1}{(1+k\tau)}$$

$$\bar{X} = \frac{k\tau}{(1+k\tau)} \quad same \text{ as that of CSTR}$$

Conversions based on segregated model and MB equation are identical

Segregated model applied to a LFR

► The RTD function for a LFR is given by: E(t) = 0 for $t < \frac{\tau}{2}$

$$E(t) = 0 \text{ for } t < \frac{\tau}{2}$$

$$E(t) = \frac{\tau^2}{2t^3} \text{ for } t \ge \frac{\tau}{2}$$

► Thus, $\bar{X} = 1 - \int_0^\infty \exp(-kt)E(t)dt = 1 - \int_{\tau/2}^\infty \exp(-kt)\frac{\tau^2}{2t^3}dt$ (Hilder's approx.) $\bar{X} = \frac{(4+Da)e^{0.5Da} + Da - 4}{(4+Da)e^{0.5Da} + Da}$, where $Da = k\tau$

For an experimentally obtained RTD curve

ightharpoonup Experimentally determined E(t) curve from C(t)

X(t) determined for a batch reactor for specified kinetics

And so on

