

Time and Coordination

March 13, 2001

Time and Coordination

What is time? :-)

- Issue: How do you coordinate distributed computers if there is no global time?
- Problem: There is no Global Time that everyone can synchronize on
 - Issues: Clock drift, clock skew
- Approach Bound the amount of skew
- Why do we want to coordinate?
 - e.g., certificates, time stamps on files, ...

2

Time and Coordination, cont.

Synchronization

- Two systems agree to what time it is
 - External Use an external clock
 - Internal Use local clocks (subset of external)
- One approach to synchronizing two systems:
 - Send a message with the time, t, receiver sets time to t+transmission time
 - Problem: network is asynchronous, not isynchronous...
 - e.g., Bank Vault Problem

aD en initiality of the arabigita Panels

Time and Coordination, cont.

NTP - Network Time Protocol

- Designed to:
 - Synchronize computers on a large network to UTC
 - Reliability Can survive lengthy losses of connectivity
 - Provide significantly less drift than motherboard clocks
 - Security against denial of service and spoofing

4

Time and Coordination, cont.

NTP Implementation

- UDP-based
- Hierarchy of primary and secondary servers
 - Root nodes are Primary servers
 - Connected directly to master clocks
 - Next level are secondary servers
 - Synchronized to primary servers
 - Hierarchy continues, e.g., with your workstation at a leaf

5

Time and Coordination, cont.

NTP Implementation, cont.

- As servers become disconnected from higher tiers, they can synchronize with their peers (or lower)
- Synchronization occurs via three modes:
 - Multicast (on high-speed LANs)
 - Procedure-call, based on Christian's algorithm (probabilistic)
 - Symmetric Exchange time data regularly, use data to more accurately predict round trip times

6

Time and Coordination, cont.

Distributed Mutual Exclusion

- Need to restrict access to distributed resource
 - e.g., file on a distributed file system
- Need safety and fairness (liveness, maybe ordering)
- Key objectives Low bandwidth, low latency, low impact on peak rate at which resource can be accessed
- Simple: Central server algorithm
 - Performance: entering critical section 2 messages + 1 RT time delay, release is 1 message + no delay

aD.

Time and Coordination, cont.

Distributed Mutual Exclusion, cont.

- Ricart and Agrawala DME based on multicast and clocks
- A peer process multicasts a request to enter a critical section
 - Messages is <Ti, pi> (time stamp + unique process id)
 - Messages are totally ordered
- The process can enter once it hears back from all its peers

8

Time and Coordination, cont.

Consensus

- 1 process suggests a value, N processes agree to it
 - e.g., all systems must agree to launch or to abort
- Classes of consensus problems:
 - Byzantine generals (attack or retreat)
 - Interactive consistency (agree on a vector of values)

Time and Coordination, cont.

Byzantine Generals

- 3 or more generals must agree to attack
 - Only one issues the order
 - The others must decide to do "the right thing"
 - There can be treachery!
 - No authentication

1

Time and Coordination, cont.

Byzantine Generals, cont.

- In a synchronous system, impossible with N<= 3f
 - Example solution for N>= 4, f=1, majority function suffices
- In an asynchronous system, impossible
 - Cannot distinguish between treachery and slowness

11