Stronger Together? Government Size and Recovery From War

Shinnosuke Kikuchi (r) Jie Zhou

H2325 Research Proposal Very Very Preliminary Idea (do not circulate) Apr 16, 2021

Overview

- Better to have larger local government size?
 - # of mergers increase in developed countries (Europe, Japan)
 - Tradeoffs: Alesina and Spolaore (1997 QJE)
 - Large is better: efficiency gain
 - Small is better: cost associated with heterogeneity, loss of autonomy
- Empirical challenges:
 - Data: previous municipalities disappear from data
 - Endogeneity: municipalities choose whether to merge
- This paper: Estimate effects of local government size on spatial growth
 - Unique data: newly digitized archival data
 - Unique setting: mass mergers in 1950's Japan with fuzzy pair-wise RD
 - Unique outcome: Long-run outcome, recovery from war

Existing research and contributions

Optimal size of jurisdictions

- Tiebout (1956 JPE), Alesina and Spolaore (1997 QJE, 2003 Book)
- New here: Effects on long-run, non-fiscal outcomes

Causal effects of impact of mergers

- Blom-Hansen et al (2016 APSR), Blesse and Baskaran (2016 RSUE), Breuille et al (2018 JUrbanE), Cobban (2019 UrbanAR), Luca and Modrego (2020 JRS), Tricaud (2021 WP)
- New here:
 - Pair-wise RD design
 - Also examines long-run, non-fiscal outcomes

Determinants of regional growth/recovery

- Davis and Weinstein (2002 AER), Kline and Moretti (2013 QJE), Peters (2021 ECTA),...
- New here:
 - Government size

Institutional Setting

Data and Empirical Framework

Institutional Setting

Data and Empirical Framework

Historical Background

- Recovery and miracles
 - 1945: WWII ends

- ▶ 1954-1972: Recovery to Japanese economic miracle
 - Roles of local government in industrialization?

- Mass changes in local government systems in parallel
 - ► 1947: Local Autonomy Act
 - 1953: The great Showa mergers

- Over 10,000 municipalities in 1953
- Aimed to decrease # to 1/3 for efficiency gains
- ► Target ones with population below 8,000 (\approx 80%)

Japanese economic miracle

Log Real GDP of Japan, US, and UK: 1900-2018

7

The great Showa mergers

Number of municipalities (市区町村) in Japan

Institutional Setting

Data and Empirical Framework

Empirical Framework: Overview

- Goal: Estimate the effect of municipality size on outcome
 - Mass mergers (1953-60) as shocks to municipality size
 - Unit: pairs of two adjacent municipalities in 1950
- Step 1. Merge or not
- Step 2. Compare merged and non-merged pairs

Empirical Framework 1st stage: Pair-wise Fuzzy RD

- Concern: Merger is an endogenous decision
 - → Pair-wise Fuzzy RD
 - Threshold of population < 8,000</p>
 - Higher propensity to merge with adjacent municipality

$$Merge_{i,j} = \beta_1 \Big(\mathbf{1} \{ Pop_{i,1950} < 8,000 \land Pop_{j,1950} > 8,000 \} \Big)$$

$$+ \beta_2 \Big(\mathbf{1} \{ Pop_{i,1950} > 8,000 \land Pop_{j,1950} < 8,000 \} \Big)$$

$$+ \beta_3 \Big(\mathbf{1} \{ Pop_{i,1950} < 8,000 \land Pop_{j,1950} < 8,000 \} \Big)$$

$$+ \gamma f (Pop_{i,1950}, Pop_{i,1960}) + const. + \epsilon_{i,j}$$

- $Merge_{i,j}$: Take 1 if i and j are merged
- $f(\cdot)$: some polynomial

Empirical Framework 2nd Stage: Effect of Pairs' Total Outcomes

- Effect of merged status (instrumented) on outcome
 - Firm creation in 1970
 - Average income growth in 1950-70
- Standard specification for the effect on outcome

$$Y_{i,j} = \lambda \cdot \widehat{Merge}_{i,j} + \delta_1 g(Pop_i) + \delta_2 g(Pop_j) + const. + \varepsilon_{i,j}$$

- $ightharpoonup Y_{i,j}$: Total outcomes of i and j
 - If i and j merge, the unit is at the new municipality
 - If not merged, the sum of two municipalities
- $\widehat{Merge}_{i,j}$: Fitted value from the 1st stage
- $g(\cdot)$: Some polynomial
- Pop_{i,j}: baseline population in 1950

Data: Unique data via digitization of archival data

Pre-merger municipalities level

Merger status: Digitize from govt. archival data

- Population
 - Digitize from census: 1940, 1950
 - Digitize from yearbook in each prefecture: 1960 -
 - Open govt. data at 500m-mesh level in 2010 (Stat. Bureau)
- Firm creation from firm-level, geo-coded data (*Teikoku*)
 - Restricted-access data in 1938, 1943, 1957, 1970 for 7/47 pref.
 - Restricted-access data from 1993 for all pref.

Post-merger municipalities level

- Government revenue/expenditure by large items
 - Digitize from 1960-1969
 - Restricted-access data from 1970
- Average income, total manuf. shipping, total retail sales, # of estab.
 - Open govt. data from 1975 (Cabinet Office)

Institutional Setting

Data and Empirical Framework

- This paper: Estimate effects of local government size on spatial growth (recovery from the war)
 - Unique data: newly digitized archival data
 - Unique setting:
 - mass mergers in 1950's Japan
 - fuzzy pair-wise RD
 - Unique outcome: Long-run outcome, recovery

- Extension
 - More than 2 region case

Comments/Feedback Appreciated!

skikuchi@mit.edu, jiezhou@mit.edu

Appendix

Empirical Framework: More than 2 regions (figure)

To precisely estimate propensity of merger of A-B pair, we need to think about neighborhoods

Empirical Framework: Pair-wise Fuzzy RD

$$\begin{split} Merge_{i,j} &= \beta_1 \Big(\mathbf{1} \{ Pop_{i,1950} < 8,000 \land Pop_{j,1950} > 8,000 \} \Big) \\ &+ \beta_2 \Big(\mathbf{1} \{ Pop_{i,1950} > 8,000 \land Pop_{j,1950} < 8,000 \} \Big) \\ &+ \beta_3 \Big(\mathbf{1} \{ Pop_{i,1950} < 8,000 \land Pop_{j,1950} < 8,000 \} \Big) \\ &+ \gamma_1 f_1 \big(Pop_{i,1950}, Pop_{j,1960} \big) \\ &+ \gamma_2 \sum_{k \in neighbor_{i,j}} f_k \big(Pop_{k,1960} \big) \\ &+ const. + \epsilon_{i,j} \end{split}$$

- $Merge_{i,j}$: Take 1 if i and j are merged
- $f_1(\cdot), f_k(\cdot)$: some polynomial

<u>back</u>