Physical parameters of stars in the Scorpio-Centaurus OB association *

E.J. de Geus 1,2, P.T. de Zeeuw 3, and J. Lub 1,4,**

- ¹ Sterrewacht Leiden, Postbus 9513, NL-2300 RA Leiden, The Netherlands
- ² Astronomy Department, University of Maryland, College Park, MD 20742, USA
- ³ Institute for Advanced Study, Princeton, USA
- ⁴ Observatorio del Roque de los Muchachos, La Palma, Spain

Summary. Walraven photometry is presented of established and probable members of the Scorpio-Centaurus OB association. For each star effective temperature and surface gravity are derived using Kurucz atmosphere models. From the Straižys and Kuriliene tables, absolute magnitudes are calculated. Distance moduli and visual extinctions are determined for all stars. From a comparison of the HR-diagrams of the stars in each subgroup with theoretical isochrones, the ages of the three subgroups are derived. The distances to the three subgroups are shown to be different; there is a general trend (also within each subgroup) for the distances to be larger at higher galactic longitudes. The visual extinction in the youngest subgroup Upper-Scorpius is well correlated with the IRAS 100 µm map. The distance towards the Ophiuchus dark clouds is found to be 125 pc, based on the photometric distances to the stars. Most of the early-type stars in Upper-Scorpius are located at the far side of the dark clouds.

Key words: clusters: associations – distances – photometry – stars: Hertzsprung-Russell diagram

1. Introduction

Since the work of Ambartsumian and Blaauw (see the review by Blaauw, 1964, and the references therein). OB associations have been in the focus of astronomical interest. The study of the stellar content of nearby OB associations is important for understanding starformation processes (e.g. Elmegreen and Lada, 1977), the nature and origin of the initial mass function, and the spatial distribution of high- and low-mass starformation during the evolution of a giant molecular cloud (e.g. Mathieu, 1986). For example, recent speculation that high- and low-mass stars form by different processes (e.g. Larson, 1986) can be tested directly by studying the mass functions of OB associations over as large a mass-interval as possible. However, a serious problem in these investigations is the lack of knowledge of reliable membership from proper-motion studies, even for the nearby OB associations. In most cases no main-sequence members of spectral type later than B5 are known. The HIPPARCOS astrometric measurements

Send offprint requests to: E.J. de Geus (USA address)

of the nearby OB associations, as proposed by the SPECTER consortium at Leiden Observatory, are meant to remedy this situation. Results from HIPPARCOS are anticipated in 1992/1993.

Scorpio-Centaurus (or Sco OB 2) is the OB association nearest to the Sun, and is therefore very well suited to study the details of the interaction of the early-type stars with the interstellar medium. It consists of three well known subgroups: Upper-Scorpius, Upper-Centaurus Lupus and Lower-Centaurus Crux (Blaauw, 1964). Proper motion studies of this association by Blaauw (1946), Bertiau (1958) and Jones (1970) have established membership for stars with spectral types down to B 9 in Upper-Scorpius and to B 5 in Upper-Centaurus Lupus and Lower-Centaurus Crux, and have provided distances based on the convergent point method.

Photometric studies of Sco-Cen as a whole were made by Gutierrez-Moreno and Moreno (1968) and Glaspey (1971), and of Upper-Scorpius in particular by Hardie and Crawford (1961) and Garrison (1967). Our photometric study contains a larger number of stars than the previous studies, and it uses the latest calibrations of the absolute magnitude scale (Straižys and Kuriliene, 1981). The resulting distance estimates are therefore expected to be of higher accuracy. The comparison of the HR diagrams for the stars with recent models of stellar evolution allow an accurate determination of the relative and absolute ages of the subgroups.

The present paper deals with the photometric observations and the derivation of physical parameters of the stellar content of Sco OB 2. We define a large sample of stars, for which we obtained homogeneous photometric data with the Dutch 91-cm telescope on La Silla (see Sect. 2). In Sect. 3, several physical parameters, such as $\log T_{\rm eff}$, $\log g$, M_V , $M_{\rm bol}$, $\log L/L_{\odot}$, A_V and the distance modulus, are derived from the photometry. In Sect. 4 HRdiagrams are constructed for the established member stars, the locations of several individual stars are discussed, and ages are derived for the three subgroups through isochrone fitting. The distance to the association is determined in Sect. 5 using the photometric distances to the established members. For all stars we will indicate the probability of membership on the basis of the distances of the separate stars compared to the mean of the subgroup. We also discuss the relation between the stars in Upper-Scorpius and the dark clouds in Ophiuchus. The distance to the dark clouds is determined from the A_V vs. distance modulus diagram of the stars in this subgroup.

This paper is the first of a series in which we will present and discuss observations of both the stars and the interstellar matter of the Upper-Scorpius/Ophiuchus region, and in which we will

^{*} Based on VBLUW Photometry obtained with the 91-cm Dutch Telescope at ESO, La Silla

^{**} On leave from Sterrewacht Leiden

present a model describing the present state of the aggregate of gas and stars from the perspective of an ongoing interaction.

2. Observations

2.1. Programme stars

The stars studied in this article are established or probable members of the Scorpio-Centaurus OB association. Reliable membership determinations from proper motion studies of stars of spectral type earlier than B 5 were made by Blaauw (1946) for the whole association. Bertiau (1958) added a number of fainter stars to the list of members of the Upper-Scorpius subgroup, also based on proper motions. For Upper-Scorpius therefore members are known down to B9, but for the other two subgroups membership is only determined down to B 5. The total of propermotion-members is 106, including the runaway star ζ Oph (Blaauw, 1961). The rest of the stars in our programme were taken from the CSI catalogue (Jung and Bischoff, 1971) with the restrictions that the spectral type is O or B, and of course that the coordinates are within the boundaries defined by Blaauw (1964). An additional 32 A 0-F 2 stars in a small region in Upper Scorpius, from a photometric study by Garrison (1967), were included. This results in a total of 309 stars in our programme. Photometry has been obtained for a much larger number of stars including later spectral types (de Geus et al., 1988). However the accuracy of those measurements is relatively low, so that they were not included in the present study.

When determining general properties of a subgroup or the whole association, we will restrict ourselves to the proper-motion members only.

The list of proper-motion member stars of course is by no means complete; the very existence of this study is due to that problem. Regarding the rest of the stars, we have to distinguish between different spectral types. The CSI catalogue is complete down to $m_V \approx 9^{\text{m}}$ and is limited at $m_V \approx 12^{\text{m}}$, so that the same limits hold for the early-type stars in our programme. The A and F stars of the photometric study by Garrison (1967) are located in a small area of Upper-Scorpius, with magnitude limit $m_V \approx 10^{\text{m}}.5$.

The relatively low completeness limit of the sample will have important consequences for our study of the Upper-Scorpius region, where high values of the visual extinction are found.

2.2. Photometric system

The Walraven photometer mounted on the Dutch 91-cm telescope at ESO La Silla (Lub, 1979) was used for this study. The data were obtained in several observing sessions during the months of April to August in the years 1983 to 1987. The photometric system

measures five bands simultaneously: V, B, L, U, and W. The properties of the passbands are given in Table 1 (from de Ruiter and Lub, 1985). More detailed information on the telescope and the photometric system can be found in Lub and Pel (1977).

Four independent colour indices can be obtained from the five bands: (V-B), (B-U), (U-W), and (B-L). For early-type stars (V-B) measures the reddening, (B-U) covers the Balmer jump and therefore measures the effective temperature, and both (U-W) and (B-L) are indicators of the surface gravity. The Walraven colours are defined in units of log (intensity). So unless another unit is specifically mentioned, we will use log (intensity) throughout this article. The conversion to units of magnitude is obtained by multiplying by -2.5.

2.3. Accuracy of the observations

The errors in the observations are mainly due to photon noise. The effect of this noise can be reduced by using sufficiently long integration times, depending on the brightness of the star. A study by de Ruiter and Lub (1985) showed that the 1% accuracy level, including the effect of subtracting the skybackground, for a $V_J = 13^{\text{m}}8$ star is reached after an integration of 64 s. Considering the magnitudes of the stars in our sample, the effects of photon statistics are hardly important. All stars were integrated long enough to ensure a good accuracy, and because the faintest stars are of 11^{th} magnitude, integration times were never longer than 1 min. Each star was observed at least 3 times on different nights, so the repeatability of the measurements is an indication of the accuracy of the observations. The mean RMS errors are: $\bar{\sigma}(V) = 0.0016$, $\bar{\sigma}(V - B) = 0.0008$, $\bar{\sigma}(B - U) = 0.0010$, $\bar{\sigma}(U - W) = 0.0009$, $\bar{\sigma}(B - L) = 0.0007$.

The results of the observations are listed in Table 2. The first three columns give the identifications of each star: column 1 is the HD number (HD), column 2 gives the running number in the SPECTER input catalogue for HIPPARCOS (HIPP), and column 3 gives the name. Column 4 gives the Walraven V-band. In columns 5–8 the Walraven colours are given: (V-B), (B-U), (U-W) and (B-L), respectively. Column 9 shows the number of measurements per star.

3. Derivation of physical parameters

The derivation of physical parameters from photometric data, involves a number of steps in which theoretical and empirical transformations are used. We will basically follow the procedure that was used by Brand and Wouterloot (1988, hereafter BW). In this section we give a schematic presentation of the steps necessary to determine effective temperature, surface gravity, visual extinction and the distance modulus. Further details can be found in

Table 1. Properties of the passbands in the Walraven system

	V	В	L	U	W
$\frac{\lambda_{eff} (\mathring{A})}{\text{Bandwidth } (\mathring{A})}$ Cal. constant erg s cm ² \mathring{A})	5441	4298	3837	3623	3235
	708	423	221	232	157
	-11.172	-10.910	-10.818	-10.793	-10.673

Note: Numbers adopted from de Ruiter and Lub (1985)

Table 2a. Walraven colours for stars in Lower-Centaurus Crux

HD	Hipp	Name	v	(V – B)	(B - U)	(U - W)	(B - L)	#	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
99264	7341		0.5258	0.0296	0.1158	0.0356	0.0436	5	
99556	6775	θ^2 Cru	0.6439	-0.0187	0.1398	0.0323	0.0292	6	
100929	6777		0.4206	-0.0288	0.1088	0.0162	0.0247	4	
102776	6967		1.0276	-0.0530	0.1157	0.0064	0.0294	5	
103079	7022		0.7996	-0.0446	0.1330	0.0062	0.0518	5	
103884	6855		0.5263	-0.0567	0.0973	-0.0018	0.0323	7	
104841	6913		0.8650	-0.0274	0.1074	0.0119	0.0320	5	
104878	7188		0.6178	-0.0010	0.3233	0.0665	0.1288	5	
105382	5992		0.9577	-0.0530	0.0725	-0.0120	0.0087	8	
105383	6111		0.2067	-0.0186	0.3244	0.0621	0.1169	5	
105416	5853		0.6195	-0.0034	0.4218	0.1123	0.1267	4	
105435	6113	$\delta \mathrm{Cen}$	1.7216	-0.0443	-0.0346	0.0021	-0.0128	7	
105580	6724		-0.1024	-0.0143	0.1504	0.0267	0.0516	5	
105937	6238	ρ Cen	1.1717	-0.0580	0.1114	-0.0024	0.0377	6	
106490	6663	δCru	1.6414	-0.0799	-0.0182	-0.0309	-0.0216	6	
107696	6557		0.6021	-0.0355	0.2190	0.0395	0.0716	5	
108257	6133		0.8288	-0.0533	0.1077	0.0045	0.0313	7	
109026	7343	γMus	1.2172	-0.0539	0.1169	0.0110	0.0344	6	
109668	7237	α Mus	1.6804	-0.0744	0.0136	-0.0237	-0.0056	7	
110335	6732		0.7684	-0.0013	0.2107	0.0760	0.0509	5	
110879	7194	β Mus	1.5379	-0.0656	0.0529	-0.0133	0.0138	5	
110956	6512		0.9040	-0.0557	0.0978	-0.0011	0.0334	6	
111123	6733	β Cru	2.2589	-0.0819	-0.0570	-0.0381	-0.0418	3	
111613	6737		0.4618	0.1746	0.3283	0.2456	0.0975	6	
112078	6682	λCru	0.9083	-0.0530	0.1180	0.0072	0.0339	7	
112091	6570	μ^2 Cru	0.6860	-0.0369	0.1488	0.0241	0.0560	6	
112092	6569	μ^1 Cru	1.1499	-0.0647	0.0445	-0.0138	0.0099	6	
113314	5940	ξ^1 Cen	0.8191	0.0087	0.4340	0.1054	0.1691	7	
113703	5865		0.8728	-0.0515	0.1302	0.0048	0.0467	7	
113791	6056	ξ^2 Cen	1.0467	-0.0675	0.0318	-0.0193	0.0055	7	
115823	6369		0.5692	-0.0451	0.1671	0.0193	0.0600	7	
115846	7149		-0.0606	-0.0078	0.1466	0.0218	0.0568	5	
116072	6823		0.2747	0.0118	0.1145	0.0333	0.0375	8	
116087	6822		0.9461	-0.0491	0.1195	0.0037	0.0418	6	
116226	5870		0.2104	-0.0202	0.2002	0.0557	0.0437	5	
118716	6373	ϵ Cen	1.8397	-0.0786	-0.0287	-0.0312	-0.0282	6	
118978	6698		0.6027	-0.0043	0.3103	0.0864	0.0832	5	
120908	6378		0.4047	0.0123	0.2019	0.0586	0.0626	6	
123335	6706		0.2169	0.0280	0.1519	0.0451	0.0605	6	
124182	7105		-0.0237	0.0028	0.1304	0.0342	0.0397	6	

BW. The errors introduced in the different steps are discussed at the end of each section. The procedure we used to determine the errors in the final result is to take the specific combination of input parameters (and their errors) that will result in the maximum deviation in the end result. The probable error in the end result is then estimated as half this maximum error.

3.1. Reddening-free colours

In order to avoid having to solve for reddening when determining $\log T_{\rm eff}$ and $\log g$, reddening-free colours (RFC's) were defined in the same way as the Q-colours in the UBV-system (Lub and Pel, 1977). The three reddening-free parameters in the Walraven system are defined as:

$$[B-U] = (B-U) - 0.61 (V-B),$$

$$[U-W] = (U-W) - 0.45 (V-B),$$

$$[B-L] = (B-L) - 0.39 (V-B).$$
(1)

The colour (V-B) basically only measures the reddening, therefore the reddening-free colours still have the same physical meaning as the principal colour they are derived from. So [B-U] is an indicator of log $T_{\rm eff}$, and each of [U-W] and [B-L] determine $\log g$.

The errors in the reddening-free colours have two independent sources. The observational errors in the colours will influence the errors in the RFC's in a straightforward way. The coefficients in Eq. (1) are the slopes of the reddening lines in the corresponding

colour-colour diagrams, and are therefore based on the value of total to selective extinction: $R = 3.2 \pm 0.2$, (an average value of several studies: Harris, 1973; Hackwell and Gehrz, 1974; Schultz and Weimar, 1975; Barlow and Cohen, 1977; Sneden et al., 1978). This value may differ from one region to the other, and especially the region around ϱ Oph is known to have a deviating R (Gutierrez-Moreno et al., 1968; Whittet, 1974). In order to obtain an internally consistent set of results, we will use the conventional value of R throughout this article. This may lead to errors, especially for highly extinguished stars (e.g. the results for HD 147889 cannot be trusted). However, most of the stars studied here have small visual extinctions, and hence errors in the value of R have a negligible effect.

3.2. Effective temperature and gravity; reddening corrected colours

In order to determine the effective temperature and surface gravity of a star from its reddening-free colours, we used a grid of theoretical colours for a wide range of $T_{\rm eff}$ and $\log g$. The Kurucz (1979) atmosphere models (stellar spectral energy distributions for different temperatures, gravities and abundances) were folded with the Walraven passbands, in order to obtain this grid (henceforth: "Kurucz grid"). Absolute calibration of the Kurucz grid is done by comparing the colours of stars having either a known energy distribution or known $T_{\rm eff}$ and $\log g$, with the theoretical colours. As was shown by BW, the Kurucz models do not give an adequate description of the atmospheres of both cool $(T_{\rm eff} < 8000 \, {\rm K})$ and very hot $(T_{\rm eff} > 30000 \, {\rm K})$ stars. As a result the grids in the two-colour diagrams should not be trusted for these stars. Few stars in our programme fall in the cool part of the grid, and we have ignored them. Because of their importance in this study, hot stars which have a colour outside the Kurucz grid are given the temperature and gravity of the point in the grid closest to that of the star. Great care was taken that these hot stars would not introduce spurious effects in the age or distance determination.

A different chemical composition obviously affects the theoretical colours. The Kurucz models were calculated for different values of the metal-abundance, however for the range of physical parameters of interest here the influence on the theoretical atmospheres is negligible. Much more important is the effect upon the interior structure of the star, i.e. upon the massluminosity relation. For studies on young associations at greater distances from the solar circle than the association studied here, this effect obviously has to be taken into account. Chemically peculiar stars are known to have a distorted spectral energy distribution. In the case of the Scorpio-Centaurus stars such peculiarities are known beforehand from available spectroscopic studies. These objects have not been included in the final distance and age determination. It is of considerable interest to study the effect of chemical peculiarities in a systematic way, however we prefer to refer this discussion to the presentation of the complete set of VBLUW data taken for the SPECTER programme and the HIPPARCOS input catalogue.

The availability of three reddening-free parameters enables us to construct two independent reddening-free colour-diagrams (RFD): [B-U] vs. [U-W] and [B-U] vs. [B-L]. Due to uncertainties in the calibration of the grid in the [B-U] vs. [U-W] plane (the clearly defined empirical main-sequence lies outside the grid), we decided to use only the [B-U] vs. [B-L] diagram. Any further reference to the reddening-free colour-diagram will mean the latter. Figure 1 shows the Kurucz grid in

Table 2b. Walraven colours for stars in Upper-Centaurus Lupus

	l																															
#(6)	4470	4 ro	່ພຸດ	ro.	73 4	22	0 r	י מיני	۱ م	ທຸນດ	4 4	4	o 4	<u>ه</u> م	. 70	4 4	ر د د	4 10	2	4 9	4 9	20	9 =	9	4	4						
(B - L) (8)	0.1810 0.0628 0.0256	0.2270	0.1885	0.2113	0.2268	0.1386	0.2085	0.1906	0.2065	-0.0197 0.1920	0.1094	0.0097	0.0347	0.2032	0.0432	0.1954	0.1817	-0.0076	0.0225	0.1275	0.1176	0.0539	0.2140	-0.0153	0.0421	0.0184						
(U - W) (7)	0.1021	0.1503	0.1225	0.1340	0.1622	0.0816	0.1720	0.1035	0.1377	-0.0287 0.1159	0.0613	-0.0142	-0.0007 0.1240	0.1564	0.0077	0.1712	0.0897	0.0080	-0.0101	0.0739	0.0579	0.0098	0.1350	-0.0263	0.0116	-0.0096						
(B – U) (6)	0.4357 0.1929 0.0827	0.4103	0.4442	0.4285	0.4796	0.3730	0.3939	0.4342	0.4307	0.4483	0.3131	0.0475	0.1013	0.4829	0.1257	0.3661	0.4100	0.0133	0.0755	0.3591	0.3248	0.1447	0.4376	-0.0032	0.1214	0.0681						
(V - B) (5)	0.0227	0.1072	0.0568	0.0756	0.1063	-0.0116	0.1293	0.0348	0.0779	-0.0788 0.0279	-0.0243 0.1926	-0.0689	-0.0562 0.0273	0.0642	-0.0546	0.1410	0.0105	-0.0103	-0.0675	-0.0141 0.1431	-0.0256 0.0074	-0.0520	0.0688	-0.0807	-0.0525	-0.0657						
> (4)		-0.1448	0.8243		-0.5784 -0.0731	0.0491	-0.7356	-0.3533			0.0941	_	0.9379			0.1737	-0.2464	1.6444			0.1198		-0.5518	1.3842		1.0663						
Name (3)	λĽuр									φΓnb		eLup	ϕ^2 Lup					$\gamma_{\rm Lup}$				$\psi^2 \text{Lup}$		4Lup		θLup						
Нірр (2)	4238 4886 5071	4541	4334	4978	4380 4547	4793	4699	4287	4337	4704	4494	5078	4438	4709	4441	4558	4502	4714	5085	4716 4565	4566 5002	3862	5005 4626	3970	3971	3928						
田田	133750 133937 133955	134518	134685	134930	134950 134990	135454	135814	136013	136164	136298 136334	136482	136504	136664	137169	137432	137785	138285	138690	138769	138940 139048	139233	140008	140602	143118	143699	144294						
#6	410101	က မ	2 2	· ro	മെ	4	ro. ≺	. . .	4 1	or or	n o	2	70 44	4 r	4	2 %	9 1	o 4	ß	2 0	4 9	NO I	ທິດ) 44	9	44 rc	۰ ۲	es :	9	9 4	• 65	ro.
(B – L) (8)	0.0147	0.2039	-0.0249	0.2069	0.1981	-0.0014	0.2135	0.0889	0.1619	0.2033	0.2051	0.1924	0.0580	0.2100	0.1018	0.1607	0.0216	0.1635	0.2114	0.0367	0.2037	0.1896	0.2151	0.1694	0.1920	0.1847	0.2226	0.1322	0.0006	0.2131	0.0423	0.2057
(U - W) (7)	0.0908	0.1539	-0.0141	0.1543	0.1044	-0.0109	0.1474	0.0624	0.1668	0.1697	0.1537	0.1657	0.0442	0.1421	0.0530	0.1464	-0.0092	0.1090	0.1468	0.0109	0.1117	0.0978	0.1648	0.1027	0.1133	0.1215	0.1710	0.0756	-0.0185	0.1497	0.0052	0.1647
(B – U) (6)	0.0667	0.4571	-0.0306	0.4263	0.4276	0.0243	0.4519	0.2983	0.5042	0.3949	0.4086	0.3582	0.1927 0.2924	0.4605	0.2904	0.4724	0.0702	0.4299	0.4538	0.1111	0.4315	0.4225	0.4570	0.4057	0.4353	0.4522	0.4322	0.3635	0.0351	0.4323	0.1158	0.3905
(V – B) (5)	-0.0653 0.0314 -0.0093	0.0859	-0.0385	0.1004	0.0263	-0.0504	0.0729	-0.0299	0.0281	0.1336	0.1040	0.1401	-0.0240 -0.0038	0.0668	-0.0250	0.0260	-0.0633	0.0096	0.0777	-0.0548	0.0428	0.0281	0.0981	0.0260	0.0310	0.0396	0.1253	-0.0106	-0.0722	0.0965	-0.0421	0.1348
> (4)	1.3366 -0.0853 -0.3288	-0.9493	0.3184	-0.4896	-0.2284 0.0731	0.9288	-0.4778	0.5513	0.1141	-0.8673 -1.1913	-0.3874	-0.8050	-0.3252 0.0894	0.0401	0.0954	-0.1911	1.1554	-0.0128	-0.3031	1.0214	-0.0696	-0.1408	-0.4467	0.2094	-0.5065	-0.1260	-1.1301	-0.1528	1.5007	-0.3451	0.5776	-0.7349
Name (3)	dn71					$\tau^1 \mathrm{Lup}$					ηCen					al'no	4			dnŢo						an.18	1 1	(кСеп	60 Hva		
Hipp (2)	5157 5158 4311	4764	5367	5161	5272 4402	5051	4589	5055	4//1	4770	4951	4669	4407	4321	4671	4672	4468	4600	4367	4960 4476	4280	4370	4973	4538	4780	4231	4781	4422	4782	4185		4331
(I)	125238 125253 125509	125718	125721	125937	126062 126194	126341	126476	126981	12//10	1277117	127879	128066	128224	128532	128819	128855 129056	129116	130163	130388	130807	131399	131461	131503	131752	131777	131901	132080	132094	132200	132761	132955	133574
# (6)	70 44 1	- 10	ი ∞	7	9 9	4	∞ હ	9 9 1	n ı	വം	4 4	4	9	9 9	9	9 4	9 1	. 9	4	4 2	2 9	ro o	n n	9	ro.	o ic	2 0	- 4	۰۰	ο 4	4	7
(B-L) (8)	0.1818 0.1000 0.2116	0.0705	0.1301	-0.0151	0.2127	0.0115	0.0270	0.0626	0.0340	0.2029	0.2177	0.1941	0.0964	0.2172	0.0016	0.0011	0.0973	0.0586	0.0417	0.2082	0.1945	0.0735	0.2015	0.0880	0.1342	0.1624).2156	0.0683	0.1823	0.2022).0363	0.2146
(U – W) (F	0.0976 0.0855 0.1298		0.1116		-0.0183 -(0.0008				0.1428		0.0538 (- 1		0.0169				0.1524 0.1214 (0.1572			0.0994			.	0.1524 0		0.1532 (
(B – U) ((6)	0.4157	0.2744	0.4220		0.0255		0.0814	0.2019	0.1450	0.3730	0.4579	0.4536	0.2718	0.4216		0.0479	0.2805	0.2056	0.1045	0.4347	0.3298	0.2215			0.3838	0.4070	0.3759	0.2365	0.4923	0.4702	0.0804	0.4364
(V – B) (5)	0.0129	-0.0250	-0.0044 0.1300		-0.0736	-0.0537	-0.0500	0.0123	0.0400	0.1380	0.0728	0.0349	-0.0121 0.1640	0.1438	-0.0752	-0.0311 0.0127	-0.0036	-0.0220	-0.0175	0.0508	0.0495	-0.0027	0.1058	0.0175	0.0076	0.0122	0.2098	-0.0036	0.0400	0.0894	-0.0103	0.0978
> Æ	-0.3068 -0.0995 -0.1580		-0.0841					0.4047		-0.3894			-0.8487			-0.4811					-0.7205 -0.7055	-0.4815							-0.3037	-0.3928		
Name (3)				vCen	μCen	. (S Cen		_					φCen	_							į										
(2)	4389 4834 4835	4731	4837	4736	4637	5248	4196	6378	4104	4744	5668	5252	5347 4511	4641 4750	5031	4201 4353	5354	5263	5678	4394 5521	4651 4652	5752		5728	4939	4304 4754	4941	4942	1010	5155	5802	4170
E E	118335 119103 119221	119361	119430	120307	120487	120640	120709	120908	120050	120960	121057	121226			121790	121983 122109	122159	122449	122479	122705	122756 122757	122925	123021	123130	123291	123344	123635	123635	107000	124254		124504
,																																

Table 2c. Walraven colours for stars in Upper Scorpius

# (6)	23 5 70 6 23 4 31 5	20 7 22 4 4 20 6 50 6 50 6 51 3 57 3	25.25.25.35.25.35.25.35.35.35.35.35.35.35.35.35.35.35.35.35	4 4 4	
(B - L) (8)	0.1008 0.0223 0.2470 0.0023	0.2120 0.1511 0.1924 0.1029 0.1250 0.1336 0.0932 -0.0467	-0.0104 0.1462 0.1919 0.1282 0.1009 0.0462 0.1269 0.0281 0.1268 -0.0107	0.0744	
(U - W) (7)	0.0802 -0.0062 0.1926 -0.0177 0.1978	0.1485 0.1099 0.1275 0.0568 0.1140 0.0985 0.0836 -0.0443	0.0150 0.1058 0.1046 0.1018 0.1026 0.0297 0.1358 0.0827 0.0970	0.0886	
(B - U) (6)	0.2818 0.0617 0.5106 0.0208 0.4241	0.4810 0.3907 0.4645 0.2413 0.2852 0.3505 0.2400 0.3949	0.3909 0.4774 0.3674 0.3077 0.1149 0.2911 0.2828 0.3129 0.0068	0.2906	
(V – B) (5)	0.0458 -0.0448 0.1678 -0.0572 0.1963	0.1016 0.0641 0.0842 0.0323 0.1357 0.0652 0.0725	0.0212 0.0568 0.1011 0.0371 0.0512 0.0294 0.0678 0.0678	-0.0095	
> (4)	$\begin{array}{c} -0.0092 \\ 0.8397 \\ -1.3971 \\ 1.0584 \\ -1.1077 \end{array}$	-1.5054 -0.4637 -1.4463 -1.2137 -1.2502 -0.6579 -0.9308 1.6247	1.7248 -0.6274 -0.7238 -0.8425 -0.7083 -0.9968 -0.4205 -1.4539 -0.7871 1.5540	0.2460	
Name (3)	22 Sco	7Sco	ς Oph μ18co μ28co	дор	
Hipp (2)	3517 3272 3440 3879 3443	3444 2897 3445 3446 3359 3447 3718 3519	84 3448 3521 3591 2969 3061 3196 3453 748 750	3303	
(1)	148594 148605 148624 148703	148842 148860 149069 149168 149228 149367 149387 149438	149757 149883 150035 150347 150314 151310 15,1346 15,1831 15,1865 15,1895	154481	
# (6)	70 60 64 70	იიი40 4 0 ⊱ი	ი ეიღი 4 ი 4 4 0 4	6 % 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	40
	0.1558 0.0798 0.2188 0.0901 0.1473	0.1193 0.1490 0.0828 0.1267 0.1561 0.1441 0.2676 0.2773	0.1043 0.2112 1 0.2387 0.2632 0.2311 0.0194 0.1240 0.3306 0.2729 0.2219	0.2337 0.2140 0.2516 0.1638 0.2582 0.1624 0.2431 0.1023 0.1339	0.1006 0.0435 0.0569 0.1749 0.1848 0.2508 0.1158 0.2157 0.2129 0.1746 0.2133
- W) (E	0.1027 0 0.0361 0 0.1437 0 0.0498 0	0.1025 0.1002 0.0945 0.0732 0.0805 0.0985 0.2348 0.1984 0.1409			0.0744 0 0.0435 0 0.0460 0 0.1574 0 0.1574 0 0.0731 0 0.2094 0 0.2094 0 0.2094 0 0.2094 0 0.2094 0
(B-U) (U-W) (B-L) (6) (7) (8)	0.3917 0. 0.1797 0. 0.4448 0. 0.2222 0. 0.3908 0.			0.4809 0. 0.4504 0. 0.4951 0. 0.3139 0. 0.5133 0. 0.4114 0. 0.5091 0. 0.2225 0. 0.3483 0.	0.1956 0.00901 0.00901 0.00901 0.00904 0.00904 0.00904 0.0090000000000
(V – B) (i	0.0609 0.0179 0.0979 0.0194 0.0349	0.0670 0.0937 0.0871 0.0072 -0.0029 0.0502 0.2659 0.2682	0.0654 0.2062 0.1725 0.3532 0.2051 0.0645 0.0697 0.3522 0.2756 0.1077	0.1234 0.3163 0.1849 0.2364 0.1890 0.0709 0.1671 0.1328 0.3640 0.0939	0.1290 0.1036 0.0992 0.1024 0.1051 0.1076 0.2099 0.0019 0.0050 0.0920
> (4)	-0.2844 0.1913 -0.4256 0.3273 -0.2002	0.0725 -0.4165 -0.2977 0.1124 -0.0747 -1.3503 -1.0765	-0.2019 -1.1684 -0.8859 0.9242 -0.7790 1.5919 -0.0659 -1.3734 -0.0936 -0.0936	-0.8180 -1.0347 -1.1010 -0.6001 -0.2396 -0.6941 0.0483 -0.4246	0.1623 0.9170 0.9050 0.9050 0.9050 0.9050 1.0229 1.0229 1.0229 1.0229 1.0229 1.1248 1.1248 1.1248 1.1248 1.1248 1.1248 1.1248
Name (3)			o Sco o Sco		pOph ^A xOph
Hipp (2)	2962 3259 3512 3341 3104	3186 3260 3646 3016 3513 3107 3425 3343	2965 3345 3344 3188 3346 3347 3189 3264 3265 3266	3349 3351 3350 3267 3352 3428 3428 3353 3191 3268 3653	3194 3192 3193 3430 3432 3431 3654 3435 3435 3270 3435 3270
品田	145631 145792 145793 146001 146029	146284 146285 146332 146416 146606 146706 146899 146998	147010 147012 147013 147084 147105 147165 147196 147283 147384 147384	147592 147649 147701 147702 147703 147809 147889 147889	147932 147933 147954 147955 148117 148118 148199 148302 148302 148303 148503 148563
# (6)	44740	ытоп4 ысоп	и ффииф пфф	40444 844117	70 00 44 44 00 45 00 45 00 10 10 10 10 10 10 10 10 10 10 10 10
(B - L) (8)	0.2101 0.1065 0.0236 0.1534 0.2067	0.1520 0.2050 0.1064 0.1483 0.1274 0.0205 0.1378 0.2201	0.2436 0.0362 0.0797 0.0451 0.0757 0.1208 0.0652 0.2006 0.0000 0.1543	0.0715 0.0367 0.0349 -0.0192 0.1463 0.1497 0.2130 0.0333	0.0501 0.0008 0.0056 0.0056 0.1170 0.1170 0.1130 0.0153 0.0064 0.0404 0.1649 0.1649
(U - W) (7)	0.1335 0.0704 -0.0085 0.0803 0.1129	0.0791 0.1444 0.0606 0.1413 0.0829 0.0013 0.0938 0.1637 0.1440	0.1731 0.0057 0.0398 0.0231 0.0309 0.0690 0.0228 0.1288 0.1288		0.0236 0.0308 0.0308 0.0512 0.0566 0.1683 0.0996 0.1683 0.0670 0.0170 0.0170
(B – U) (6)	0.4182 0.2617 0.0750 0.3785 0.4288	0.3615 0.4092 0.2964 0.4538 0.3615 0.0481 0.3724 0.4932 0.4569			0.1354 0.0027 0.1542 0.2517 0.3381 0.3790 0.0497 0.0497 0.0397 0.3997
(V – B) (5)	0.0697 0.0372 -0.0638 0.0164 0.0415	0.0085 0.0886 0.0558 0.0558 0.0173 0.0360 0.0956	0.1569 -0.0234 0.0005 -0.0046 -0.0181 0.0011 0.0455 0.0678 0.0678	0.0116 -0.0239 -0.0307 -0.0315 0.0409 0.0395 0.0863 -0.0214	-0.0247 -0.0020 -0.0103 0.0102 0.0304 0.0545 0.0546 0.0534 0.00348 0.00348
(4)	$\begin{array}{c} 0.0008 \\ -0.2054 \\ 1.2900 \\ -0.2990 \\ -0.3346 \end{array}$	0.0183 -0.4764 -0.5566 -0.335 1.1645 0.8975 -0.3287 -0.5778			0.3848 1.1738 1.2225 0.4028 0.1117 0.1117 0.0272 0.0272 0.0272 0.2399 1.1504 0.2399 0.2399 0.2399 0.2399
Name (3)		χLup 1 Sco	2 Sco 47 Lib pSco	48 Lib π Sco δ Sco β Sco β^1 Sco β^2 Sco	2, 8co
Hipp (2)	3830 3394 3622 2945 3865	3890 3947 3492 3000 3835 3321 3001 3986	3038 3247 3248 3169 3402 3095 2911 4000 3572 3043	3173 2809 3252 3330 3045 3045 3099 3100 2956 2956	3180 3010 3254 3184 3418 3419 3420 3102 3508 3508 3508 2960 2960 2960
HD (1)	138138 139094 139365 139486 140475	140817 140958 141180 141556 141637 141774 141905	142097 142114 142165 142184 14220 142315 142318 142318 142808	142884 142983 142990 143018 143275 143567 143600 143692 144217	144334 144470 144861 144844 144941 145102 145102 145468 145482 145483 145502 145502 145502 145554

Fig. 1. Grid of $\log T_{\rm eff}$ and $\log g$ in the reddening-free two-colour diagram of [B-U] vs. [B-L] (Kurucz grid). The thin drawn lines are lines of constant effective temperature, the thick drawn lines are lines of constant surface gravity. The values at the grid-lines are indicated

this diagram. $\log T_{\rm eff}$ and $\log g$ can now be determined by two-dimensional linear interpolation in the grid.

Inversely, it is clear that we can use the same grid, but now in normal-colour space, to transform $\log T_{\rm eff}$ and $\log g$ into the reddening corrected colours, i.e. the colours that the star of given effective temperature and surface gravity would have had in the absence of extinction. In practice only the reddening corrected (V-B) is used further.

The errors in the derived $\log T_{\rm eff}$ and $\log g$ will basically be due to the propagation of the errors in the original input-colours. From Fig. 1 it is clear that, because the grid gets narrower at higher $T_{\rm eff}$, the errors will be larger at higher $T_{\rm eff}$. From the calculated

propagation of the errors we find that $\bar{\sigma}(\log T_{\rm eff}) \approx 0.015$ for $\log T_{\rm eff} < 4.3$ and $\bar{\sigma}(\log T_{\rm eff}) \approx 0.03$ for $\log T_{\rm eff} \ge 4.3$. For $\log g$ we find that $\bar{\sigma}(\log g) \approx 0.1$ for $\log T_{\rm eff} < 4.3$ and $\bar{\sigma}(\log g) \approx 0.25$ for $\log T_{\rm eff} \ge 4.3$.

3.3. Absolute magnitude; log L/L_{\odot}

From log $T_{\rm eff}$ and log g we can now determine the absolute visual magnitude and the absolute bolometric magnitude. Straižys and Kuriliene (1981) published tables with log $T_{\rm eff}$, log g, M_V , $M_{\rm bol}$, spectral type, and luminosity class, based on both observations and theoretical calculations. Figure 2 shows their coverage in log $T_{\rm eff}$, log g space. Two-dimensional linear interpolation is used to derive M_V and $M_{\rm bol}$. The luminosity is calculated from the bolometric magnitude using the relation:

$$\log \frac{L}{L_{\odot}} = -0.4 \, M_{\text{bol}} + 1.888 \,. \tag{2}$$

The absolute magnitude of a star is very sensitive to both $T_{\rm eff}$ and $\log g$, so that the errors in the derived temperature and gravity will cause large uncertainties in the values of M_V and $M_{\rm bol}$. Again we can calculate the propagation of the errors for each star. A plot of $\sigma(M_V)$ as a function of $\log T_{\rm eff}$ shows that $\overline{\sigma(M_V)} \approx 0^{\rm m}3$. This will of course result in errors of the same magnitude in the final distance modulus.

3.4. Colour excess, visual extinction and distance modulus

The colour excess in the Walraven system, $E_{(V-B)}$, is calculated from the observed colour (V-B) and the reddening corrected colour $(V-B)_0$: $E_{(V-B)} = (V-B) - (V-B)_0$. In order to calculate the visual extinction in the Johnson UBV-system, we first have to calculate the colour excess in the Johnson system from that in the Walraven system, using the formula:

$$E_{(B-V)_{1}} = 2.39 \times E_{(V-B)_{W}} - 0.17 \times E_{(V-B)_{W}}^{2}$$
(3)

(Pel, 1987, private communication). From $A_V = R \times E_{(B-V)}$ and $R = 3.2 \pm 0.2$, A_V can then be calculated.

As a check on the derived values of A_V , we have taken published Strömgren uvby photometry from Mermilliod and

Fig. 2. Coverage in the (log $T_{\rm eff}$, log g) plane of the Straižys and Kuriliene grid (points) and the Kurucz grid (lines). For the Straižys and Kuriliene points the corresponding spectral type (vertical) and luminosity class (horizontal) are indicated. Note that especially for the earliest spectral types the two grids do not overlap

Fig. 3. Differential reddening $E_{(B-V)}$ calculated from Strömgren photometric data vs. the visual extinction calculated from the Walraven photometry. The line gives the standard ratio between A_V and $E_{(B-V)}$: R=3.2. The dashed lines give the upper and lower limits to R. The data all lie close to the line R=3.2, which indicates the validity of the procedure used in this study

Hauck (1980) for stars in our sample, and used the empirical calibration of Crawford (1978) to derive the visual extinction $E_{(b-y)}$. For a normal extinction curve (e.g., van de Hulst, 15) $A_V = 4.3 \times E_{(b-y)}$, so that in this case $E_{(B-V)} = 1.3 \times E_{(b-y)}$. In Fig. 3 we have plotted the values of $1.3 \times E_{(b-y)}$ against the values of A_V determined from the Walraven colours. The agreement between the two studies shows the validity of the procedure used in this study. It should be noted that we can *not* infer the value of R from Fig. 3, since it was assumed in the calculation of A_V . However, Fig. 3 does show that the colours of the stars in our programme are consistent with a normal extinction curve.

In order to determine the distance modulus we need the apparent visual magnitude in the Johnson system, because the Straižys and Kuriliene grids give the absolute magnitude in the Johnson system. A transformation formula was calculated by Pel (1987, private communication), to derive m_V from V_W and (V-B):

$$m_V = 6.886 - 2.5 \times V_W - 0.082 \times (V - B)$$
. (4)

The distance modulus is now derived from the relation: $5 \times \log D - 5 = m_V - M_V - A_V$.

The two conversion formulae from the Walraven system to the Johnson system are based on empirical relations, so the errors can be estimated from the standard deviation of the points around the best fit. This results in: $\sigma(E_{(B-V)}) = 0.001$ and $\sigma(m_V) = 0.001$. The error in $E_{(B-V)}$ results in a significant mean error in A_V of 0.001. The error in the distance modulus is dominated by the error in M_V , so the mean error in the distance modulus is 0.001.

The results are presented in Table 3. The first three columns give the identification of each star: column 1 is the HD number (HD), column 2 gives the running number in the SPECTER input catalogue for HIPPARCOS (HIPP), and column 3 gives the name. In columns 4 and 5 the galactic coordinates l and b are given. Columns 6–8 are the reddening-free parameters [B-U], [U-W], and [B-L], respectively. In columns 9–11 log $T_{\rm eff}$, log g and log L/L_{\odot} are presented. Column 12 is the apparent magnitude in the Johnson system as calculated from the Walraven V-intensity. Column 13 shows the absolute magnitude and column 14 the visual extinction. Columns 15 and 16 give the distance modulus and distance respectively. Column 17 gives an indication of the

membership: a proper-motion member is denoted by a capital letter M (Blaauw, 1946; Bertiau, 1958), and a photometric member by a small m. Non-members have a blank here. Column 17 gives the spectral-type according to the MK-classification (Buscombe, 1974, and later issues).

4. The Hertzsprung-Russel diagram

4.1. Empirical and theoretical diagrams

In Fig. 4 we have plotted the reddening-free two-colour diagram [B-U] vs. [B-L] for the whole set of programme stars. Because of the physical meaning of these two parameters (see Sect. 3.1), it is basically the observational counterpart of the $\log T_{\rm eff}$ vs. $\log g$ diagram. The line is the zero-age main-sequence (ZAMS) calculated from theoretical stellar evolution models (see Sect. 4.2). Figure 5 shows the HR-diagram in its basic form of $\log L/L_{\odot}$ vs. $\log T_{\rm eff}$. The results from the calculations described in Sects. 3.2 and 3.3 are plotted. Again the line is the ZAMS.

In Fig. 4 stellar evolution moves a star approximately to the lower left in the diagram. The ZAMS should therefore be the upper right boundary of the datapoints. It is clear that this is the case for the bulk of the stars in our programme. The spread away from the ZAMS, especially at lower temperatures, may be due to several effects. First of all the occurrence of peculiar features or emission lines in the spectrum of a star can influence the observed colours, thus giving it an abnormal position in the two-colour diagram. Secondly, a number of stars in the sample may be either pre-main-sequence objects or they may already have evolved away from the main sequence. Most of these objects turn out to be nonmembers. An exception to this is the A5 II star o Sco, which was shown by Blaauw et al. (1955) to be a proper-motion member of the Upper-Scorpius subgroup. Its location in the HR-diagram is entirely consistent with its spectral type, therefore its evolutionary state is inconsistent with the age of Upper Scorpius. A third cause for a shift in the two-colour diagram is duplicity. This is of

Fig. 4. Reddening-free two-clour diagram of all program stars in Scorpio-Centaurus. The line is the theoretical zero-age main-sequence, i.e. isochrone of age zero

Table 3a. Derived physical parameters for stars in Lower-Centaurus Crux

HD	Hipp	Name	1	ь	[B - U]	[U - W]	[B - L]	log T _{eff}	log g	\logL/L_{\odot}	m _V	M _V	A _V	D.M.	Dist.	Mem.	MK Spectral Type
			-	=											pc.		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
99264	7341		296.321	-10.515	0.0977	0.0223	0.0321	4.27	3.80	3.5	5.57	-2.5	0.78	7.3	294		B 2 IV-V
99556	6775	θ^2 Cru	292.869	0.087	0.1512	0.0407	0.0365	4.19	3.32	3.7	5.28	-3.5	0.30	8.5	504		B 3 III/IV
100929	6777		293.977	0.507	0.1264	0.0292	0.0359	4.23	3.58	3.6	5.83	-2.9	0.28	8.5	509		B 2.5 IV
102776	6967		296.180	-1.729	0.1480	0.0302	0.0501	4.20	3.86	3.1	4.32	-1.7	0.06	6.0	158	m	B 3 V n e
103079	7022		296.738	-3.054	0.1602	0.0263	0.0692	4.19	4.36	2.5	4.89	-0.2	0.08	5.0	100	M	B 4 V
103884	€855		296.762	-0.223	0.1319	0.0237	0.0544	4.23	4.20	2.8	5.57	-0.8	0.05	6.3	186	M	B 3 V
104841	6913		297.647	-0.779	0.1241	0.0242	0.0427	4.23	3.88	3.3	4.72	-1.9	0.29	6.4	190	m	B 2 V
104878	7188		298.619	-5.850	0.3239	0.0670	0.1292	4.05	4.40	1.7	5.34	1.0	0.18	4.1	68		
105382	5992		295.946	11.621	0.1048	0.0118	0.0294	4.25	3.58	3.8	4.49	-3.2	0.14	7.6	335	M	B 2 III n e
105383	6111		295.962	11.521	0.3357	0.0705	0.1242	4.04	4.20	1.8	6.37	0.7	0.05	5.6	133	m	B 9 V
105416	5853		295.626	13.565	0.4239	0.1138	0.1280	3.98	3.54	2.3	5.34	-0.9	0.05	6.1	172	m	A 0 V
105435	6113	δ Cen	296.000	11.568	-0.0076	0.0220	0.0045	4.45	4.64	5.1	2.58	-4.0	0.41	6.1	171	M	B 2 IV n e
105580	6724		297.659	2.671	0.1591	0.0331	0.0572	4.19	4.00	2.9	7.14	-1.2	0.33	8.0	405		B 6 V
105937	6238	ρ Cen	296.787	10.028	0.1468	0.0237	0.0603	4.21	4.22	2.7	3.96	-0.6	0.01	4.6	83	M	B 3 V
106490	6663	δ Cru	298.232	3.791	0.0305	0.0051	0.0096	4.36	3.88	4.0	2.78	-3.2	0.05	5.9	153	M	B 2 IV n
107696	6557		299.103	4.983	0.2407	0.0555	0.0854	4.11	4.08	2.3	5.38	-0.2	0.05	5.6	132	m	B 7 V
108257	6133		298.983	11.230	0.1402	0.0285	0.0521	4.22	4.04	2.9	4.81	-1.2	0.06	6.0	159	M	B 3 V n
109026	7343	γ Mus	301.462	-9.316	0.1498	0.0353	0.0554	4.20	4.04	2.9	3.84	-1.1	0.04	4.9	98	M	B 5 V
109668	7237	α Mus	301.659	-6.299	0.0590	0.0098	0.0234	4.33	4.06	3.6	2.68	-2.2	0.06	4.8	92	M	B 2 IV-V n
110335	6732	w 1/140	301.735	3.164	0.2115	0.0766	0.0514	4.12	3.28	3.4	4.96	-2.9	0.35	7.5	326	***	B 5 III e
110879	7194	β Mus	302.452	-5.241	0.0929	0.0162	0.0394	4.28	4.18	3.1	3.04	-1.3	0.06	4.3	73	m	B 2 V
110956	6512	p mu	302.232	6.376	0.1318	0.0240	0.0551	4.23	4.24	2.8	4.63	-0.7	0.05	5.2	114	M	B 3 V
111123	6733	β Cru	302.465	3.180	-0.0070	-0.0012	-0.0099	4.39	3.50	4.7	1.24	-4.8	0.06	6.0	162	M	B 0.5 III
111613	6737	ρ οι α	302.917	2.542	0.2218	0.1670	0.0294	4.07	2.34	4.5	5.73	-5.8	1.56	10.0	1019		B 9.5 Iab
112078	6682	λ Cru	303.348	3.723	0.1503	0.0311	0.0546	4.20	4.00	2.9	4.61	-1.2	0.05	5.8	147	M	B 4 V n e
112091	6570	μ^2 Cru	303.368	5.701	0.1713	0.0407	0.0704	4.18	4.28	2.4	5.17	-0.0	0.13	5.1	105	М	B 5 V n e
112092	6569	μ^1 Cru	303.365	5.691	0.0840	0.0153	0.0351	4.29	4.14	3.3	4.01	-1.5	0.08	5.5	126	M	B 2 IV-V
113314	5940	ξ¹ Cen	304.955	13.297	0.4287	0.1015	0.1657	3.96	3.98	1.6	4.84	0.8	0.00	4.0	63		D 2 11-1
113703	5865	Ç Cen	305.473	14.335	0.1616	0.0280	0.0668	4.19	4.26	2.5	4.70	-0.3	0.03	5.0	101	М	B 5 V
113791	6056	ξ ² Cen	305.489	12.889	0.0730	0.0111	0.0318	4.31	4.18	3.3	4.27	0.0	0.08	4.1	68	M	B 1.5 V
115823	6369	•	307.411	9.870	0.1946	0.0396	0.0776	4.16	4.26	2.3	5.46	-0.0	0.03	5.4	123	M	B 6 V
115846	7149		305.807	-4.833	0.1514	0.0353	0.0598	4.20	4.16	2.7	7.04	-0.7	0.39	7.4	303	141	B3V
116072	6823		306.707	1.671	0.1073	0.0233	0.0338	4.25	3.70	3.6	6.20	-2.7	0.62	8.3	456		B 2.5 V n
116087	6822		306.710	1.655	0.1495	0.0258	0.0609	4.21	4.22	2.7	4.52	-0.6	0.02	5 .0	103	М	B 3 V
116226	5870		308.314	13.978	0.2125	0.0238	0.0516	4.12	3.28	3.4	6.36	-2.9	0.20	9.1	659	141	B 6 IV
		. 0															
118716	6373	ϵ Cen	310.195	8.721	0.0192	0.0042	0.0025	4.37	3.68	4.3	2.29	-3.9	0.07	6.1	168	M	B 1 III n
118978	6698		309.460	3.442	0.3129	0.0883	0.0849	4.05	3.52	2.7	5.38	-1.6	0.22	6.7	226	m	D = 111
120908	6378		312.249	8.368	0.1944	0.0531	0.0578	4.15	3.66	3.1	5.87	-1.9	0.48	7.3	288		B 5 III
123335	6706		312.699	2.118	0.1348	0.0325	0.0496	4.22	4.00	3.0	6.34	-1.4	0.69	7.1	263		B 5 IV
124182	7105		311.210	-4.628	0.1287	0.0329	0.0386	4.22	3.66	3.5	6.94	-2.6	0.51	9.0	642		B 5 III
124197	7106		311.361	-4.201	0.1612	0.0281	0.0620	4.19	4.12	2.7	6.72	-0.7	0.40	7.1	264		B 3 V n

Fig. 5. Hertzsprung-Russell diagram of $\log L/L_{\odot}$ vs. $\log T_{\rm eff}$ for all programme stars. The line is the ZAMS

course dependent on the spectral type and brightness of the two components. If duplicity is known for an object, and the two components were observed together and their spectral types known, the colours can be corrected for this effect, giving the colours of the brighter one. If the magnitude difference is larger than 5^m, the correction is negligible. In our programme, for most stars for which duplicity is known we could either observe the components separately or the magnitude difference was large enough, so that no corrections were necessary. For stars of which duplicity is undetected, the colours may be influenced. A fourth effect, that of rotation, is important in the Strömgren system (Collins and Sonneborn, 1977; de Zeeuw and Brand, 1985), and was thought to cause an effect on the colours in the Walraven system (BW). However, a recent study by van de Grift (1987, MSc Thesis) shows that no correlation is apparent between the displacement away from the ZAMS and the rotational velocity of the star. This point needs further study.

4.2. Isochrones

In order to study the evolutionary stage of a group of stars, or the actual age, one compares the position of the stars in the HR-diagram with isochrones, i.e., lines connecting points of equal age.

Table 3b. Derived physical parameters for stars in Upper-Centaurus Lupus

HD	Hipp	Name	1	b	[B - U]	[U - W]	[B - L]	log T _{eff}	log g	$\log L/L_{\odot}$	m _V	M _V	A _V	D.M.	Dist.	Mem.	MK Spectral Type
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
118335 119103	4389 4834		312.935 312.647	24.885 18.769	0.4078 0.3609	0.0918	0.1768 0.1072	3.97 4.02	4.30 3.66	· 1.3 2.4	7.65 7.13	1.5 -0.8	0.01	6.0 7.9	163 392	m	A 1 III B 8 III
119221	4835		312.772	18.704	0.3886	0.0937	0.1846	3.91	4.40	0.9	7.28	2.4	0.00	4.8	93	m	D 6 III
119338	4447		314.036	23.492	0.1825	0.0371	0.0715	4.17	4.20	2.5	8.93	-0.3	0.10	9.1	674		B 5 V
119361	4731		313.200	19.761	0.2896	0.0793	0.0803	4.07	3.56	2.7	5.97	-1.6	0.08	7.4	313		4 0 111
119430 119674	4837 4344		312.980 314.919	18.400 25.229	0.4247 0.3786	0.1136 0.1226	0.1318 0.1821	3.98 3.92	3.58 4.44	2.2 1.0	7.10 9.04	-0.7 2.2	$0.04 \\ 0.54$	7.8 6.2	367 177	m	A 0 III A M
120307	4736	ν Cen	314.417	19.886	0.0399	0.0053	0.0153	4.35	4.02	3.7	3.41	-2.4	0.06	5.8	146	M	B 2 IV e
120324	4737	μ Cen	314.240	19.117	0.0704	0.0148	0.0254	4.31	3.94	3.6	3.46	-2.4	0.04	5.8	145	M	ВЗVрпе
120487	4637		314.801	20.496	0.3483	0.1068	0.1725	3.91	4.50	1.0	9.01	2.0	0.23	6.7	218	m	
120640 120709	5248 4196	3 Cen	313.530 317.285	14.728 28.189	0.0832 0.1119	0.0138 0.0233	0.0324 0.0465	4.29 4.26	4.04 4.18	3.4 3.0	5.76 4.49	-1.8 -1.1	0.17 0.14	7.4 5.4	304 125	М	B 2 V p B 5 III p
120710	4195	o cen	317.287	28.188	0.3221	0.0628	0.1263	4.05	4.34	1.7	5.92	1.0	0.06	4.8	91	m	B 8 V n
120908	6378		312.249	8.368	0.1944	0.0531	0.0578	4.15	3.66	3.1	5.87	-1.9	0.48	7.3	288	M	B 5 III
120955	4164	4 Cen	317.930	29.139	0.1752	0.0433	0.0530	4.17	3.68	3.1	4.74	-1.9	0.05	6.6	217	M	B 4 IV
120959	4510		315.814	21.950	0.4437	0.1300	0.1746	3.92	3.78	1.8	8.74	0.2	0.13	8.4	477		A 3 V
120960 121057	4744 5421		315.206 313.509	19.753	0.2888	0.1030 0.1100	0.1491	3.87 3.91	4.46 4.25	0.7 1.0	7.86 7.19	2.8 2.1	0.21 0.06	4.8 5.0	91 101	m	
121190	5668		313.509	12.883 9.489	0.4135 0.2907	0.1100	0.1893 0.1169	4.07	4.44	1.0	5.66	0.6	0.04	5.0 5.0	101	m	B 8 V
121226	5252		314.069	14.396	0.4323	0.1063	0.1805	3.92	3.96	1.4	7.44	1.0	-0.05	6.4	193	m	20.
121292	5347		313.947	13.627	0.2792	0.0592	0.1011	4.08	4.16	2.0	9.01	0.2	0.17	8.6	533		
121399	4511		316.303	21.781	0.3809	0.0872	0.1531	4.00	4.28	1.5	7.20	1.2	1.30	4.6	84	m	
121528 121743	4641 4750	φ Cen	316.054 315.979	20.343 19.072	0.3339 0.0591	0.1282 0.0096	0.1611 0.0243	3.89	4.38	0.8 3.6	9.21	2.6	0.40 0.03	6.1	169 157	m M	B 2 IV
121790	5031	υ ¹ Cen	315.289	16.449	0.0696	0.0090	0.0243	4.33 4.31	4.10 4.20	3.3	3.81 3.85	-2.2 -1.5	0.03	5.9 5.4	120	M	B 2 IV-V
121983	4201		318.904	27.206	0.0669	0.0309	0.0132	4.29	3.36	4.3	8.09	-4.3	0.35	12.1	2629		B 3 III
122109	4353		318.339	25.012	0.4391	0.1133	0.1606	3.96	3.80	1.8	8.02	0.4	0.02	7.5	325		A 2 V
122159	5354		314.668	12.688	0.2827	0.0639	0.0987	4.08	4.08	2.1	8.58	-0.0	0.24	8.4	478		
122324 122449	5789 5263		312.846 315.479	5.488 14.305	-0.0432 0.2190	0.0115 0.0543	-0.0240 0.0672	4.47 4.13	3.50 3.72	5.3 2.9	9.09 8.12	-5.7 -1.5	2.01 0.19	12.8 9.5	3714 798		B 0.5 Ia B 5 III
122479	5678		314.045	9.251	0.1152	0.0200	0.0485	4.25	4.22	2.9	7.36	-0.9	0.38	7.9	393		D 0 III
122664	4394		318.608	23.367	0.1132	0.0200	0.1732	3.91	4.30	0.9	8.35	2.2	0.17	5.9	152	m	
122705	5521		314.796	11.105	0.4037	0.0985	0.1898	3.95	4.42	1.1	7.65	1.8	0.16	5.6	133	m	A 4 V
122756	4651		317.444	19.512	0.2330	0.0963	0.1326	3.81	4.50	0.4	8.68	3.7	-0.19	5.1	108	m	
122757	4652		317.401	19.341	0.4209	0.1131	0.1813	3.92	4.06	1.3	8.65	1.3	0.03	7.2	281		A 4 V
122925 122980	5752 4654	γ Cen	313.822 317.733	7.077 19.538	0.2231 0.0819	0.0544 0.0103	0.0746 0.0364	4.13 4.30	3.92 4.24	2.6 3.2	8.09 4.35	-0.8 -1.3	0.32 0.03	8.6 5.6	535 134	М	B 2 V
123021	4655	χ Cen	317.758	19.536	0.3369	0.1096	0.1602	3.89	4.32	0.8	8.35	2.6	0.03	5.6	134	m	AlVn
123130	5728		314.198	7.678	0.2388	0.0631	0.0812	4.11	3.98	2.4	8.71	-0.5	0.46	8.8	587		
123291	4939		317.180	16.753	0.3792	0.0893	0.1312	4.01	3.96	1.9	8.24	0.2	0.19	7.8	372		
123344	4304		320.188	25.351	0.3996	0.0939	0.1576	3.99	4.18	1.5	7.36	1.0	0.12	6.1	172	m	A 0 III
123431 123635	4754 4941		317.779 317.445	18.033 16.366	0.4092 0.2479	0.0904 0.1009	0.1592	3.98 3.81	4.10 4.25	1.6 0.4	8.73 11.73	0.8 3.5	0.01 0.22	7.8 7.9	373 395		
123635	4941		317.445	16.369	0.2387	0.1009	0.1338 0.0697	4.11	3.64	2.8	7.74	-1.6	0.22	9.0	642		
123664	5151		316.964	14.802	0.4675	0.1275	0.1665	3.92	3.52	2.1	7.64	-0.6	0.11	8.1	427		A 2 IV.
124228	4585		319.541	20.236	0.4277	0.1211	0.1751	3.92	3.88	1.5	7.87	0.8	0.16	6.8	234	m	
124254	5155		317.529	14.543	0.3678	0.1091	0.1688	3.90	4.24	1.0	7.45	2.1	0.11	5.1	107	m	
124367 124504	5802 4170		314.128 322.918	3.960 27.833	0.0867 0.3767	0.0377	0.0403	4.29	4.32	3.0	5.00	-1.0	0.48 0.26	5.5 5.5	130 129	m	B 5 V n e
124540	4586		319.792	19.813	0.4526	0.1092 0.1276	0.1765 0.1787	3.91 3.92	4.34 3.75	0.9 1.8	8.13 9.02	2.3 0.2	0.20	8.5	523	m	

We have calculated isochrones for the evolutionary models of Maeder (1981a, b, c). We limited ourselves to his cases of zero mass-loss, and we used only the core-hydrogen-burning phase and the overall-contraction phase. These two cover basically the whole main-sequence strip in the HR-diagram. We used a linear interpolation between the points of the given age on the different evolutionary tracks. The interpolation was done in $\log M/M_{\odot}$ in the ($\log L/L_{\odot}$, $\log M/M_{\odot}$) plane, and the ($\log T_{\rm eff}$, $\log M/M_{\odot}$) plane. Surface gravity was calculated from the basic formulae:

$$g = G\frac{M}{R^2},\tag{5}$$

and

$$L = 4\pi R^2 \sigma T_{\text{eff}}^4 . \tag{6}$$

Reddening-free colours were calculated from $\log g$ and $\log T_{\rm eff}$ using the Kurucz grid (see Sect. 3.2). The zero-age main-sequence that was plotted in Figs. 4 and 5 is just the isochrone of age zero.

4.3. Ages of the subgroups

The isochrones can now be used to determine the so-called nuclear age of an OB association, i.e. the age according to the evolutionary state of the stars since they arrived on the ZAMS. The age of the isochrone fitting the observations of the stars best is taken as the age of the association or subgroup. The accuracy of the absolute age determined in this way unfortunately still depends on the model from which the isochrones were calculated. A comparison of different evolutionary models showed (de Geus, 1984) that models using the same basic input parameters have differences in for instance the main-sequence lifetime of 0.5 to 1.0 million years. The relative age determination however is much more accurate, because the evolutionary models are all internally consistent. Figures 6-8 show both the reddening-free colourcolour diagrams and the log L/L_{\odot} vs. log $T_{\rm eff}$ diagrams for the three subgroups of Scorpio-Centaurus, with the best fitting isochrone drawn in. Note that in the age-determination the

Table 3b (continued)

HD	Hipp	Name	1	b	[B - U]	[U - W]	[B-L]	$\log T_{\rm eff}$	log g	$\log L/L_{\odot}$	m _V	M _V	A _V	D.M.	Dist.	Mem.	MK Spectral Typ
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	рс. (16)	(17)	(18)
											<u> </u>		_ <u>`</u>	<u>`</u>	<u>`</u>	<u> </u>	
5238	5157	ι Lup	318.478	14.142	0.1065	0.0218	0.0402	4.26	4.02	3.2	3.54	-1.7	0.04	5.2	109	m	B 2 IV
5253 5509	5158 4311		318.482 323.019	14.097 24.692	0.4261 0.3947	0.0960 0.0950	0.1869 0.1332	3.91 4.00	4.10	1.2	7.10 7.71	1.6 0.0	-0.22 0.03	5.7 7.6	138 332	m	B 9.5 III
5541	4763		320.380	18.164	0.3947	0.1053	0.1532	3.89	3.88 4.50	1.9 0.8	8.89	2.7	0.03	7.6 5.9	332 153		Б 9.5 Ш
5718	4764		320.462	17.734	0.4047	0.1152	0.1339	3.97	4.36	1.2	9.26	1.7	0.53	7.0	252	m	
25721	5367		318.200	11.830	-0.0071	0.0032	-0.0099	4.39	3.50	4.7	6.09	-4.8	0.39	10.5	1304		B 1 III
5823	4519		321.568	20.023	0.0902	0.0154	0.0392	4.28	4.22	3.1	4.41	-1.2	0.03	5.6	135	M	B 7 IIIp var H
25937	5161		319.362	14.241	0.3651	0.1091	0.1677	3.90	4.24	1.0	8.11	2.1	0.18	5.7	140	m	
26062	5272		318.934	12.778	0.4116	0.0926	0.1878	3.91	4.40	0.9	7.46	2.4	-0.33	5.3	118	m	
6194	4402		322.781	21.792	0.3689	0.0881	0.1722	3.91	4.32	0.9	6.70	2.3	-0.17	4.5	80	m	A 2 V
26341	5051	$ au^1$ Lup	319.921	14.504	0.0550	0.0118	0.0183	4.33	3.86	3.8	4.56	-2.8	0.24	7.1	273		B 2 II
26476	458 9		321.933	18.889	0.4074	0.1146	0.1851	3.96	4.36	1.2	8.08	1.8	0.37	5.9	151	m	
6561	5166		319.779	13.491	0.4005	0.0815	0.1692	3.98	4.30	1.3	7.22	1.5	-0.02	5.7	140	m	
6981	5055		320.556	14.146	0.3165	0.0759	0.1006	4.05	3.86	2.2	5.51	-0.4	0.01	5.9	157	m	B 8 V n
27716	4771		322.558	16.826	0.4871	0.1542	0.1509	3.92	3.20	2.6	6.60	-1.7	0.04	8.3	457		A 3 IV
27717	4770		322.519	16.774	0.3134	0.1096	0.1512	3.87	4.26	0.8	9.05	2.5	0.21	6.2	178	m	
27778	4772		322.604	16.797	0.2831	0.1210	0.1474	3.87	4.48	0.7	9.86	2.8	0.52	6.4	196	m	
27879	4951		322.114	15.423	0.3452	0.1069	0.1645	3.90	4.36	0.8	7.85	2.6	0.14	5.0	104	m	A 5 V
27972	4773	η Cen	322.777	16.669	0.0777	0.0238	0.0133	4.27	3.20	4.4	2.44	-4.7	0.01	7.1	273	M	B 1.5 V n
28066	4669		323.217	17.373	0.2727	0.1027	0.1378	3.84	4.04	0.9	8.90	2.4	0.01	6.4	192	m	
28224	4407		325.430	21.562	0.2073	0.0550	0.0674	4.14	3.84	2.8	7.70	-1.2	0.18	8.7	563		
28344	5372		320.718	11.137	0.2947	0.0725	0.0894	4.07	3.76	2.4	6.66	-0.9	0.23	7.3	293		B 9 V
28532	4321		326.398	22.675	0.4198	0.1120	0.1839	3.95	4.25	1.2	6.78	1.6	0.32	4.8	93	m	
28788	4670		324.138	17.455	0.3766	0.1026	0.1821	3.92	4.46	1.0	8.31	2.2	0.14	5.9	152	m	
28819	4671		324.203	17.491	0.3056	0.0642	0.1116	4.06	4.18	1.9	6.65	0.4	0.04	6.2	173	m	
28855	4672		324.347	17.684	0.4565	0.1347	0.1506	3.95	3.52	2.1	7.36	-0.6	0.15	7.8	369		A 1 V
9056	5287	α Lup	321.613	11.437	0.0343	0.0089	0.0042	4.34	3.46	4.4	2.30	-4.3	0.08	6.6	209	M	B 1.5 III
29116	4468		325.904	20.100	0.1088	0.0193	0.0463	4.26	4.22	2.9	4.00	-1.0	0.04	4.9	99	M	B 3 V
29791	5064		323.368	13.413	0.3910	0.0896	0.1585	4.00	4.26	1.5	6.92	1.2	0.18	5.4	122	m	B 9.5 V
30163	4600		325.968	17.685	0.4240	0.1047	0.1598	3.97	3.96	1.7	6.92	0.6	0.06	6.2	175	m	B 9.5 V
30388	4367		328.344	21.454	0.4064	0.1118	0.1811	3.96	4.34	1.2	7.64	1.7	0.47	5.4	122	m	B 9.5 V
0807	4960	o Lup	324.901	14.110	0.1445	0.0356	0.0581	4.21	4.18	2.7	4.33	-0.7	0.04	5.0	102	M	B 5 IV
31120	4476		327.930	19.106	0.1026	0.0211	0.0438	4.27	4.22	3.0	5.02	-1.1	0.09	6.0	163	m	B 7 III p
31399	4280		330.118	22.156	0.4054	0.0924	0.1870	3.95	4.38	1.2	7.06	1.8	0.14	5.1	105	m	A 3 III
31460	4369		329.142	20.361	0.3493	0.1080	0.1670	3.90	4.38	0.8	8.99	2.5	0.36	6.0	164	m	
31461	4370		329.013	20.112	0.4054	0.0852	0.1786	3.97	4.34	1.2	7.24	1.6	0.12	5.4	122	m	A 1 IV
31503	4973		325.160	13.121	0.3972	0.1207	0.1768	3.98	4.40	1.3	8.00	1.5	0.68	5.7	139	m	
31518	4974		325.155	13.057	0.3563	0.1127	0.1679	3.90	4.34	0.9	9.14	2.4	0.35	6.3	182	m	
31752	4538		327.791	17.340	0.3898	0.0910	0.1593	4.00	4.28	1.4	6.36	1.3	0.24	4.7	90	m	
31777	4780		326.322	14.641	0.4164	0.0994	0.1799	3.92	4.06	1.3	8.15	1.3	-0.13	6.9	240	m	
1901	4231		331.394	22.989	0.4280	0.1037	0.1693	3.96	4.02	1.5	7.20	0.9	0.22	6.0	161	m	
2058	4874	β Lup	326.255	13.910	0.0398	0.0079	0.0112	4.34	3.76	4.0	2.68	-3.3	0.05	5.9	156	M	B 2 III
2080	4781		326.917	15.028	0.3558	0.1146	0.1737	3.91	4.48	0.9	9.71	2.4	0.40	6.8	238	m	
32094	4422		329.173	18.957	0.3700	0.0804	0.1363	4.02	4.12	1.7	7.27	0.7	0.04	6.5	199	m	
32200	4782	κ Cen	326.874	14.754	0.0791	0.0140	0.0288	4.30	3.94	3.5	3.13	-2.2	0.04	5.3	118	M	B 2 IV
32761	4185		333.001	23.608	0.3734	0.1063	0.1755	3.91	4.34	0.9	7.75	2.3	0.23	5.1	108	m	
32851	4051	60 Hya	335.098	26.529	0.4303	0.1239	0.1817	3.92	3.98	1.4	5.84	1.1	0.22	4.4	78		A 5 V
32955	4237	-	332.606	22.541	0.1415	0.0241	0.0587	4.22	4.24	2.7	5.44	-0.6	0.14	5.9	152	M	B 3 V
33574	4331		331.680	19.829	0.3083	0.1040	0.1531	3.88	4.38	0.7	8.72	2.7	0.23	5.7	138	m	
33716	4485		330.423	17.580	0.4371	0.1116	0.1733	3.92	3.78	1.6	7.18	0.5	-0.11	6.7	224	m	

chemically peculiar stars were given zero weight when fitting the isochrone. It is clear that the derived age for Lower-Centaurus Crux is least well determined, due to the large spread in the colours of the stars at the high-mass end of the diagram. In Table 4 we list the derived nuclear ages, and compare them with nuclear ages found by de Zeeuw and Brand (1985), and for Upper-Scorpius with the kinematic age determined by Blaauw (1964, 1978), based on proper motion studies of the stars. Our nuclear ages are close to the ages determined by de Zeeuw and Brand (1985), the difference can be explained by the differences in the stellar evolution models used to calculate the isochrones. For Upper-Scorpius the photometric age corresponds well with the kinematic age. Furthermore, we note that within the observational errors there is no evidence for a spread in age within a subgroup.

Table 4. Nuclear and kinematic ages

	$\tau_{\rm nuc} (VBLUW)$ [10 ⁶ yr]	$\tau_{\text{nuc}} = (uvby\beta)$ $[10^6 \text{ yr}]$	τ _{kin} [10 ⁶ yr]
Upper Scorpius	5- 6	6- 8	5
Upper-Centaurus Lupus	14-15	12-13	
Lower-Centaurus Crux	11-12	10-11	

Note: Column 1 lists the nuclear age derived from the Walraven data. Column 2 gives the nuclear age as given by de Zeeuw and Brand (1985). For comparison, column 3 shows the kinematic age (only available for Upper-Scorpius) given by Blaauw (1964, 1978). Note that the nuclear age derived from the Walraven photometric data is consistent with the kinematic age

Table 3b (continued)

HD	Hipp	Name	1	b	[B-U]	$[\mathbf{U}-\mathbf{W}]$	[B - L]	$\logT_{\rm eff}$	log g	\logL/L_{\odot}	mγ	Μv	Av	D.M.	Dist.	Mem.	MK Spectral Type
			0	•							m	m	m	m	pc.		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
133750	4238		333.270	21.843	0.4219	0.0919	0.1721	3.96	4.10	1.5	7.18	1.1	0.08	5.9	156	m	B 8 V
133937	4886		328.040	13.216	0.2178	0.0470	0.0787	4.13	4.08	2.4	5.82	-0.4	0.04	6.2	174	M	B 7 V nn
133955	5071	λLup	326.802	11.129	0.1199	0.0196	0.0494	4.24	4.18	2.9	4.06	-1.0	0.04	5.0	104	M	B 3 V
134055	4541	-	330.440	16.879	0.3449	0.1021	0.1714	3.91	4.50	1.0	7.25	2.0	0.26	4.9	95	m	
134518	4377		332.141	18.560	0.3682	0.1147	0.1754	3.91	4.40	0.9	9.28	2.4	0.48	6.4	190	m	
134685	4334		333.034	19.541	0.4096	0.0969	0.1663	3.98	4.18	1.4	7.68	1.1	0.40	6.1	167	m	A 0 V
134687	5075		327.831	11.430	0.1177	0.0205	0.0495	4.25	4.22	2.9	4.82	-0.9	0.03	5.7	141	m	B 3 IV
134930	4978		328.392	11.920	0.3824	0.1000	0.1818	3.92	4.40	1.0	7.37	2.2	0.14	4.9	99	m	
134950	4380		332.800	18.650	0.4148	0.1144	0.1853	3.95	4.25	1.2	8.33	1.6	0.62	6.1	165	m	
134990	4547		331.349	16.380	0.4161	0.1117	0.1725	3.91	3.90	1.4	7.07	1.0	-0.05	6.0	163	m	
135454	4793		329.588	12.866	0.3801	0.0868	0.1431	4.01	4.14	1.7	6.76	0.8	0.01	5.8	150	m	B 9 V
135814	4699		330.771	13.948	0.3150	0.1138	0.1581	3.89	4.48	0.8	8.72	2.7	0.24	5.7	143	m	=
135877	4701		330.551	13.485	0.4223	0.1349	0.1618	3.97	4.02	1.6	8.74	0.7	0.62	7.3	293		
136013	4287		334.866	19.510	0.4130	0.0878	0.1770	3.96	4.24	1.3	7.77	1.4	0.15	6.1	169	m	A 1 V
136164	4337		334.483	18.675	0.3832	0.1026	0.1761	3.91	4.28	1.0	7.79	2.1	0.11	5.5	127	m	
136298	4704	δ Lup	331.324	13.816	0.0351	0.0068	0.0110	4.36	3.86	4.0	3.22	-3.1	0.05	6.3	185	М	B 1.5 IV
136334	4705	· Dup	331.301	13.709	0.4313	0.1033	0.1811	3.92	3.96	1.4	6.20	1.0	-0.10	5.2	111	m	D 1.0 11
136482	4494		333.212	16.219	0.3279	0.0722	0.1189	4.05	4.16	1.9	6.65	0.4	0.02	6.1	169	m	
136483	4706		331.333	13.474	0.3251	0.1561	0.1426	3.85	3.72	1.3	8.93	1.2	0.54	7.1	264	•••	
136504	5078	ϵ Lup	329.230	10.323	0.0895	0.0168	0.0366	4.28	4.12	3.2	3.38	-1.5	0.04	4.9	95	m	B 3 IV
136664	4438	ϕ^2 Lup	333.839	16.748	0.1356	0.0246	0.0566	4.22	4.24	2.7	4.54	-0.6	0.04	5.1	108	М	B 4 V
136961	4385	y 24p	334.669	17.340	0.4320	0.1117	0.1804	3.92	3.96	1.4	6.75	1.0	-0.10	5.8	144	m	21.
137169	4709		332.132	13.404	0.4437	0.1275	0.1782	3.92	3.80	1.7	8.98	0.3	0.23	8.3	475	•••	
137193	4613		332.535	13.931	0.3015	0.0972	0.1142	4.07	4.28	1.8	7.38	0.6	0.27	6.4	192	m	A 0 p Si
137432	4441		334.600	16.343	0.1590	0.0323	0.0645	4.19	4.22	2.6	5.46	-0.5	0.02	5.9	156	M	B 4 V p shell
137785	4558		333.806	14.594	0.2801	0.1078	0.1404	3.85	4.10	0.9	6.45	2.4	0.07	3.8	59		•
137957	5081		330,008	8.905	0.4419	0.1132	0.1647	3.95	3.82	1.7	7.46	0.4	0.11	6.8	236	m	
138285	4502		334.672	14.680	0.4036	0.0850	0.1776	3.97	4.36	1.3	7.50	1.6	0.00	5.8	148	m	A 2 V
138564	4563		334.183	13.440	0.3807	0.0726	0.1535	4.00	4.28	1.5	6.37	1.2	-0.02	5.1	106	m	11 2 4
138690	4714	γ Lup	333.196	11.892	0.0592	0.0109	0.0217	4.32	3.96	3.7	2.77	-2.4	0.05	5.2	110	M	B 2 IV
138769	5085		331.019	8.760	0.1167	0.0203	0.0488	4.25	4.20	2.9	4.55	-1.0	0.00	5.6	132	М	B 3 IV p shell
138940	4716		333.507	11.797	0.1107	0.0203	0.0488	4.02	4.20	1.8	7.63	0.6	0.00	7.0	251	m	D 3 IV p shen
139048	4565		334.993	13.515	0.3190	0.0002	0.1546	3.88	4.32	0.8	9.12	2.6	0.32	6.1	166	m	
139233	4566		334.965	13.102	0.3190	0.1131	0.1346	4.04	4.34	1.7	6.59	0.8	-0.02	5.7	142	m	B 9 V
139524	5002		332.100	8.849	0.3371	0.0795	0.1278	4.04	3.86	2.2	8.05	-0.3	0.27	8.1	424	111	БЭТ
		12 T															D # 11/
140008	3862	ψ^2 Lup	338.484	16.084	0.1764	0.0332	0.0742	4.18	4.34	2.4	4.74	-0.1	0.00	4.8	92	M	B 5 IV
140602	5005		333.051	8.327	0.3956	0.1040	0.1872	3.91	4.40	0.9	8.26	2.4	-0.01	5.8	148	m	
142201	4626	т	336.815	10.366	0.3764	0.1059	0.1389	4.01	4.10	1.7	10.51	0.7	0.81	8.9	625		Dor IV
143118 143699	3970 3971	η Lup	338.776	11.009	0.0460	0.0100	0.0162	4.34	3.92	3.8	3.43	-2.8	0.03	6.2	175	M M	B 2.5 IV B 6 IV
			339.122	10.427	0.1534	0.0352	0.0626	4.20	4.22	2.7	4.90	-0.5	0.04	5.4	122		
144294	3928	θ Lup	340.836	11.323	0.1082	0.0200	0.0440	4.26	4.14	3.1	4.22	-1.2	0.03	5.4	124	M	B 2.5 V n

Fig. 6a. Reddening-free two-colour diagram of the stars in the Upper-Scorpius subgroup. Circles denote the established members of the association, plusses denote the remaining programme stars. The dashed line shows the ZAMS, whereas the full line gives the isochrone of age 5.5 million years

Fig. 6b. HR-diagram of the stars in the Upper-Scorpius subgroup. Circles denote the established members of the association, plusses denote the remaining programme stars. Note that the three member stars with strongly deviating position in the diagram are stars with a peculiar, emission-line spectrum (χ Oph and 48 Lib), and the bright giant o Sco (A 5II)

Table 3c. Derived physical parameters for stars in Upper Scorpius

HD	Hipp	Name	1	ь	[B-U]	[U - W]	[B-L]	$\log T_{\rm eff}$	log g	\logL/L_{\odot}	m_V	M_V	$\mathbf{A}_{\mathbf{V}}$	D.M.	Dist.	Mem.	MK Spectral Typ
			0	۰							m	m	m	m	pc.		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
8138	3830		337.116	18.236	0.3757	0.1021	0.1829	3.92	4.50	1.0	6.88	2.2	0.07	4.5	82	m	
9094	3394		343.037	23.198	0.2390	0.0537	0.0920	4.12	4.26	2.1	7.40	0.2	0.59	6.5	203	M	B 7 V
9365	3622		341.067	20.448	0.1139	0.0202	0.0485	4.25	4.22	2.9	3.66	-1.0	0.03	4.6	85	M	B 2.5 V
9486	2945		348.324	28.014	0.3685	0.0729	0.1470	4.01	4.30	1.5	7.63	1.2	0.22	6.1	168	M	B 9.5 V
0475	3865		338.626	15.467	0.4035	0.0942	0.1905	3.95	4.40	1.1	7.72	1.8	0.10	5.7	142	m	A 5 III
0817	3890		338.678	14.897	0.3563	0.0753	0.1487	4.02	4.44	1.5	6.84	1.3	0.16	5.3	118	m	
0958	3947		336.999	12.677	0.3552	0.1045	0.1704	3.91	4.40	0.9	8.08	2.4	0.11	5.4	125	m	
1180	3492		344.381	20.686	0.2997	0.0630	0.1085	4.07	4.16	2.0	8.28	0.3	0.20	7.7	358		B 8 V
1404	3000		349.573	25.541	0.4198	0.1162	0.1265	3.98	3.56	2.3	7.72	-0.8	0.51	8.0	399	M	B 9.5 IV
1556	3835	χ Lup	340.572	15.818	0.3721	0.0907	0.1341	4.01	4.08	1.8	3.97	0.6	-0.01	3.3	46		B 9 IV p Sr Eu
1637	3321	1 Sco	346.099	21.706	0.0580	0.0086	0.0268	4.33	4.22	3.4	4.64	0.0	0.49	4.1	67	M	B 1.5 V n
1774	3001		350.060	25.381	0.3504	0.0776	0.1238	4.03	4.08	1.9	7.71	0.4	0.45	6.8	232	M	B 9 V
1905	3986		336.722	10.777	0.4349	0.1207	0.1828	3.92	4.00	1.4	8.33	1.1	0.43	6.7	222	m	201
1939	3401		345.437	20.456	0.4041	0.1051	0.1916	3.95	4.40	1.1	8.25	1.8	0.44	5.9	154	m	
2097	3038		349.344	24.084	0.3783	0.1025	0.1824	3.92	4.46	1.0	8.43	2.2	0.75	5.4	122	m	
2114	3247	2 Sco	346.879	21.614	0.1037	0.0162	0.0453	4.27	4.26	2.9	4.60	-1.0	0.36	5.2	112		B 2 V n
2165	3248	2 500	347.516	22.148	0.2049	0.0102	0.0433	4.15	4.22	2.3	5.38	-0.0	0.36	5.2 5.0	102	M	B 6 IV n
2184	3169		347.934	22.545	0.1054	0.0350	0.0469	4.26	4.28	2.9	5.40	-0.9	0.49	5.8	147	m M	B 2.5 V n
2250	3402		345.570	20.005	0.2094	0.0232	0.0409	4.14	4.32	2.4	6.15	-0.9	0.16	6.1	167	M	B 6 V p
2315	3095		348.982	23.299	0.3022	0.0609	0.1137	4.07	4.26	1.9	6.86	0.6	0.10	5.8	149	M	B8V B8V
		467 T 13															
2378	2911	47 Lib	351.648	25.658	0.1479	0.0228	0.0652	4.21	4.38	2.5	5.95	-0.3	0.44	5.8	146	M	B 5 V
2431 2669	4000 3572	ρ Sco	336.636	9.784	0.4156	0.1083	0.1829	3.92	4.14	1.2	7.07	1.5	0.01	5.4	124	m	
2805	3043	ρ δου	344.631	18.271	0.0661	0.0125	0.0276	4.32	4.12	3.4	3.88	-1.8	0.07	5.7	138	M	B 2 IV-V
2883	3043		350.414 350.886	23.806	0.4125	0.1090	0.1279	3.99	3.64	2.2	7.15	-0.5	0.61	7.1	267	M	A O III
				24.086	0.1503	0.0239	0.0685	4.21	4.46	2.8	5.84	-1.0	0.55	6.3	182	M	B 3 V
2884	3173		348,965	22.254	0.1664	0.0368	0.0670	4.19	4.22	2.6	6.78	-0.4	0.51	6.7	219	m	B 9 V p Si
12983	2809	48 Lib	356.388	28.632	0.2294	0.0685	0.0460	4.10	2.96	3.9	4.91	-4.3	0.14	9.1	673	M	B 5 III pe sh
12990	3252	_	348.121	21.197	0.1105	0.0247	0.0469	4.26	4.22	3.0	5.43	-1.0	0.29	6.2	174	M	B 4 IV p
3018	3330	πSco	347.217	20.231	0.0121	0.0010	0.0047	4.40	4.04	4.0	2.89	-2.9	0.23	5.6	133	M	B 1 V
13275	3098	δ Sco	350.099	22.491	-0.0103	-0.0002	-0.0060	4.44	3.9 2	4.4	2.32	-3.8	0.47	5.6	135	M	B 0.3 IV
13567	3045		350.873	22.681	0.3371	0.0689	0.1303	4.04	4.32	1.6	7.21	1.1	0.48	5.5	130	M	B 9 V
3600	3099		350.381	22.135	0.3587	0.0802	0.1343	4.02	4.18	1.7	7.34	0.8	0.44	6.0	164	M	B 9 V n
13692	3100	_	350.096	21.700	0.4141	0.1136	0.1793	3.92	4.06	1.3	7.98	1.4	0.27	6.2	181	m	
44217	2956	β ¹ Sco	353.195	23.600	-0.0036	-0.0026	-0.0049	4.42	3.78	4.5	2.72	-4.1	0.55	6.3	186	M	B 0.5 V
14218	2957	β^2 Sco	353.198	23.601	0.0750	0.0112	0.0338	4.31	4.24	3.2	4.94	0.0	0.58	4.3	74	M	B 2 IV-V
14334	3180		350.349	20.855	0.1505	0.0347	0.0597	4.20	4.16	2.7	5.92	-0.7	0.26	6.4	192	M	B 5 V
4470	3010	ω^1 Sco	352.752	22.773	0.0039	0.0002	0.0016	4.42	4.06	4.1	3.95	-3.0	0.70	6.3	183	M	BIV
14661	3254		349.996	19.969	0.1635	0.0377	0.0656	4.19	4.22	2.6	6.33	-0.4	0.31	6.5	199	M	B 7 IIIP He-wk
14844	3184		350.736	20.368	0.2455	0.0466	0.1027	4.11	4.48	2.2	5.88	0.3	0.37	5.2	110	M	B 9 IV0 p
14941	3418		348.142	17.753	0.0194	0.0478	0.0129	4.39	4.36	5.1	10.14	-4.0	0.83	13.3	4594		
15102	3419		348.548-	17.871	0.3176	0.0756	0.1051	4.06	3.96	2.1	6.61	-0.1	0.46	6.3	184	M	B 9 V p Si
15353	3420		348.578	17.496	0.3458	0.0751	0.1206	4.04	4.08	1.9	6.95	0.3	0.60	6.0	158	M	B 9 IV
15468	3102		352.151	20.629	0.3889	0.1070	0.1769	3.99	4.50	1.3	8.23	1.5	0.99	5.7	138	m	2011
15482	3508		348.118	16.836	0.0842	0.0155	0.0374	4.29	4.24	3.1	4.58	-1.3	0.14	5.7	140	M	B 2 V
15483	3582		347.747	16.498	0.3304	0.0709	0.1298	4.05	4.36	1.7	5.68	1.0	0.19	4.4	78	M	B 9 V n
15501	2959	$\nu \operatorname{Sco}^C$	354.616	22.711	0.1849	0.0430	0.0760	4.17	4.30	2.3	6.28	0.0					
15501 15502	2959	ν Sco ^A	354.611	22.711	0.1849	0.0430	0.0760	4.17	4.30	3.5	4.01	-1.6	0.79 0.79	5.4	120	m	B 9 III (B 8 V)
15519	2916	V BLO	354.948	22.701	0.0630	0.0060	0.0308	4.33 4.04	4.32	1.8	8.00	0.7	0.79	4.8 6.2	91	M	B 2 IV p
45554	2961		354.579	22.557	0.3308	0.0712	0.1252	4.04	4.22	1.7	7.65	0.7	0.95	6.2	181	M	B 9 V n
45556	3509		347.891	16.492	0.3308	0.0634	0.1269	4.03	3.36	3.3	8.90	-2.6	0.60		161	M	B 9 V n
.5550	0009		041.091	10.492	0.2191	0.0700	0.0556	4.12	3.30	3.3	0.90	-2.0	0.00	10.9	1542		B 6 V

5. Properties of the Scorpio-Centaurus OB association

5.1. Distance to the subgroups; photometric membership determination

In order to determine the distance and the distance spread of the three subgroups, we will use only the stars for which membership is established by the proper motion studies of Blaauw (1946) and Bertiau (1958). However we will not include stars with peculiar spectra or emission lines, because these will have spectral energy distributions deviating from the normal one, which influences the colours.

Figure 9 shows the distance modulus as a function of galactic longitude for the member stars with normal spectra. Projected onto the Galactic plane, the three subgroups show a very smooth distribution, which strongly supports the idea that the groups in the Scorpio-Centaurus OB association have a common origin. The average distances to the three subgroups are listed in Table 5.

Table 5. Photometric and astrometric distances (D.M. is the distance modulus)

	D.M. (Phot) [mag]	D.M. (Astr) [mag]
Upper Scorpius	6.0 ± 0.8	6.0 ± 0.3
Upper-Centaurus Lupus	5.8 ± 0.7	5.7 ± 0.3
Lower-Centaurus Crux	5.4 ± 0.6	5.6 ± 0.4

Note: Column 1 lists the distance moduli as derived from the Walraven photometric data, and column 2 shows the distance moduli based on astrometric measurements (Jones, 1970). Note the excellent correspondence between the photometric and astrometric distances to the subgroups

Table 3c (continued)

HD	Hipp	Name	1	b °	[B-U]	[U - W]	[B-L]	$\logT_{\rm eff}$	log g	\logL/L_{\odot}	m _V	$M_{\mathbf{V}}$	A _V	D.M.	Dist. pc.	Mem.	MK Spectral Typ
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
631	2962		354.703	22.543	0.3546	0.0753	0.1320	4.03	4.18	1.7	7.60	0.7	0.61	6.2	176	M	B 9.5 V n
792	3259		351.012	19.029	0.1688	0.0280	0.0728	4.18	4.38	2.4	6.41	-0.1	0.54	5.9	155	M	B 5 V
793	3512		348.143	16.345	0.3851	0.0996	0.1806	3.92	4.36	0.9	7.95	2.2	0.31	5.3	118	m	A 3 V
6001	3341		350.389	18.118	0.2104	0.0411	0.0825	4.14	4.26	2.2	6.07	0.1	0.49	5.4	123	M	B 7 IV
6029	3104		352.785	20.231	0.3695	0.0780	0.1337	4.02	4.08	1.8	7.39	0.6	0.39	6.3	189	M	B 9 V
6284	3186		351.561	18.678	0.2944	0.0724	0.0932	4.07	3.86	2.3	6.70	-0.5	0.77	6.5	201	M	B 8 V
3285	3260		351.012	18.201	0.2896	0.0580	0.1125	4.08	4.34	2.0	7.93	0.5	0.95	6.4	193	M	B 9 V
6332	3646		347.490	14.850	0.1691	0.0553	0.0488	4.18	3.60	3.3	7.63	-2.4	1.08	8.9	626	M	B 5 III
6416	3016		353.983	20.598	0.3361	0.0700	0.1239	4.04	4.20	1.8	6.60	0.7	0.24	5.6	135	M	B 9 V
6606	3513		348.984	15.807	0.3849	0.0818	0.1572	4.00	4.30	1.4	7.07	1.3	0.02	5.6	136	m	A 0 V
6706	3107		352.676	19.019	0.3434	0.0759	0.1245	4.04	4.16	1.8	7.53	0.6	0.56	6.3	187	m	B 9 V
6899	3425		350.082	16.384	0.3732	0.1151	0.1639	4.00	4.48	1.4	10.26	1.4	2.02	6.7	228	m	A 7 V
6998	3343		350.948	16.990	0.3332	0.0777	0.1727	3.91	4.50	1.0	9.57	2.1	1.43	5.9	156	m	A2pSr
7009	2964		355.502	20.894	0.4061	0.0868	0.1703	3.98	4.26	1.4	8.07	1.4	0.87	5.8	144	M	B 9.5 V
7010	2965		355.497	20.882	0.2071	0.0836	0.0788	4.14	4.18	2.4	7.39	-0.1	0.85	6.7	218	m	Ар
7012	3345		351.162	17.133	0.3509	0.0772	0.1308	4.03	4.20	1.7	9.80	0.7	1.71	7.3	289		B 9 V
7013	3344		351.125	17.119	0.4022	0.0890	0.1714	3.98	4.30	1.3	9.10	1.5	1.26	6.3	182	m	A 0 V
7084	3188	o Sco	352.329	18.050	0.5125	0.2411	0.1255	3.91	2.42	3.5	4.57	-4.0	2.48	6.1	169	M	A 5 II
17105	3346		351.409	17.194	0.3873	0.1142	0.1511	3.87	3.52	1.7	8.83	0.2	0.84	7.7	357		A0 pSrCre
7165	3347	σSco	351.315	16.999	-0.0058	-0.0049	-0.0058	4.42	3.76	4.5	2.90	-4.3	1.20	6.0	159	M	B 1 III
7196	3189		352.800	18.244	0.2926	0.0684	0.0968	4.07	3.96	2.2	7.05	-0.3	0.79	6.5	207	M	B 8 IV
7283	3264		352.288	17.608	0.4193	0.1037	0.1932	3.92	4.25	1.1	10.32	1.9	2.23	6.1	166	m	A 3 V
7343	3265		352.451	17.634	0.3999	0.0960	0.1654	3.98	4.26	1.4	9.37	1.3	2.06	5.9	154	m	AlVn
7384	3266		352.480	17.573	0.3966	0.0867	0.1588	3.99	4.22	1.5	8.61	1.1	1.24	6.1	172	m	B 9.5 V
17432	3110		353.511	18.373	0.3771	0.0908	0.1799	3.92	4.42	0.9	7.55	2.2	0.36	4.9	96	m	A 2 V
17592	3349		351.202	16.111	0.4056	0.0867	0.1856	3.96	4.38	1.2	8.93	1.8	0.76	6.3	188	M	A 1 V
7648	3351		351.905	16.641	0.2575	0.0610	0.0906	4.10	4.08	2.2	9.47	-0.1	2.65	7.0	251	m	B 8 V
17649	3350		351.358	16.153	0.3823	0.0931	0.1795	3.92	4.36	0.9	9.64	2.3	0.94	6.4	190	m	A 7 V
7701	3267		352.257	16.849	0.1697	0.0343	0.0716	4.18	4.34	2.4	8.38	-0.1	2.17	6.3	182	m	B 5 V
17702	3352		351.738	16.382	0.3980	0.0955	0.1845	3.97	4.48	1.2	9.16	1.6	1.31	6.1	172	m	A 3 V
7703	3428		350.637	15.400	0.3682	0.0766	0.1347	4.02	4.12	1.7	7.48	0.7	0.66	6.1	167	m	B 9 V n
7809	3353		352.100	16.523	0.4072	0.0865	0.1779	3.97	4.32	1.3	8.62	1.6	1.17	5.8	147	m	A 1 V
7888	3191		353.649	17.709	0.1211	0.0106	0.0505	4.24	4.20	2.9	6.76	-0.9	1.50	6.2	177	M	B 5 V
17889	3268		352.859	17.044	0.0005	-0.0121	-0.0081	4.38	3.34	4.8	7.94	-5.2	3.34	9.8	931		B 4 V
17890	3653		349.098	13.696	0.2910	0.0907	0.0838	4.07	3.64	2.6	7.67	-1.3	0.98	8.0	401	M	B 8 p Si
7932	3194		353.721	17.715	0.1169	0.0164	0.0503	4.25	4.26	2.9	7.29	-0.8	1.48	6.6	218	m	B 5 V
17933	3192	$\rho \ \mathrm{Oph}^A$	353.688	17.687	0.0269	-0.0031	0.0031	4.35	3.56	4.4	4.59	-2.1	1.45	5.3	114	M	B 2 IV-V
17934	3193	$ ho$ Oph B	353.689	17.688	0.0339	0.0014	0.0182	4.37	4.30	3.8	4.62	-2.3	1.40	5.5	129	M	B 2 IV-V
17955	3430		351.294	15.569	0.3367	0.0671	0.1350	4.04	4.40	1.7	8.09	1.0	0.94	6.1	169	m	B 9.5 V
8117	3432		351.327	15.269	0.3617	0.1101	0.1438	4.02	4.30	1.5	10.65	1.2	0.91	8.5	503		A7pCrEu
8118	3431		351.025	15.004	0.4254	0.1093	0.1815	3.92	4.02	1.4	9.48	1.2	1.01	7.2	280		A 5 V
8184	2921	χ Oph	357.934	20.677	-0.0835	0.0140	-0.0170	4.62	4.13	5.3	4.33	-4.6	1.82	7.1	263	M	B 1.5 V e
8199	3654		349.461	13.475	0.2905	0.0753	0.1004	4.07	4.06	2.1	7.03	-0.0	0.56	6.4	198	m	B 8 V Si
18302	3434		351.737	15.262	0.3550	0.1149	0.1638	3.89	4.24	0.9	10.01	2.2	0.95	6.7	227	. m	A7V
8321	3355		352.531	15.906	0.3850	0.1020	0.1810	3.92	4.36	0.9	6.99	2.2	0.19	4.5	80		A 5 m p Sr
8334	3435		351.622	15.105	0.3073	0.0584	0.1137	4.06	4.22	1.9	9.95	0.5	0.83	8.5	514		B 9 V
18499	3516		351.092	14.280	0.3718	0.0870	0.1147	4.02	3.72	2.2	9.84	-0.5	1.32	9.0	656		4 0 37
18562	3270		353.161	15.936	0.4032	0.0990	0.1877	3.96	4.42	1.2	7.84	1.8	0.31	5.7	140	m	A3V
18563	3438		351.906	14.872	0.4107	0.0912	0.1834	3.96	4.30	1.2	8.61	1.7	0.53	6.3	185	m	A 2 V
18579	3271		353.040	15.812	0.3180	0.0660	0.1174	4.05	4.20	1.8	7.35	0.5	1.05	5.7	141	m	B 9 V

The chemically peculiar stars were *not* included in the determination of the average distances. In Fig. 9 we see a slight rise in the distance as we go to higher galactic longitudes. A similar effect was found by Jones (1970) who used distances based on the parallaxes of the stars. The spread in distance in Fig. 9 is due to the intrinsic depth structure of the subgroups, combined with the error in the distance determination. A comparison with the study by Jones (1970), who used the latest proper motion data (from the FK 4), shows a good agreement of the averages for the three subgroups. A star-to-star comparison of the distances from Jones's and our study is shown in Fig. 10. Within the errors the two studies give the same result. This implies that the relative proper-motion distances reflect the depth structure of each subgroup, which will become very important for the study of the interaction of the stars with the gas.

The spread in the photometric distances of the member stars is used to define boundaries within which we expect all members to lie. Figure 11 again shows a plot of distance modulus versus galactic longitude, but now for all our programme stars. The lines

drawn in are the adopted boundaries of the groups. We see from Fig. 11 that many stars. The lines drawn in are the adopted boundaries of the groups. We see from Fig. 11 that many stars are definitely not members of the association. The membership criterion for each separate star is given in column 17 of Table 3.

5.2. Upper-Scorpius and the Ophiuchus dark clouds

The youngest of the three subgroups of Scorpio-Centaurus, Upper-Scorpius, is an extremely interesting object because of its vicinity to the Ophiuchus dark clouds. In this section we will combine properties of the stars in the subgroup with properties of the dark clouds, in order to establish their relationship in a more quantitative way.

All previous photometric studies of Sco OB 2 concluded that the Upper-Scorpius subgroup shows a much higher mean visual extinction than the other two (e.g. Gutierrez-Moreno et al., 1968; Garrison, 1967). Within the Upper-Scorpius subgroup however considerable spread in A_V is also found. In Fig. 12 we plotted the

Table 3c (continued)

HD	Hipp	Name	1	ь	[B - U]	[U - W]	[B - L]	log T _{eff}	log g	log L/L _⊙	m _V	M _V	A _V	D.M.	Dist.	Mem.	MK Spectral Type
			o	. 0							m	m	m	m	pc.		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
148594	3517		350.930	13.939	0.2539	0.0596	0.0829	4.10	3.90	2.5	6.91	-0.7	0.65	6.9	249	M	B 8 V nn
148605	3272	22 Sco	353.100	15.796	0.0890	0.0140	0.0398	4.29	4.26	3.1	4.79	-1.1	0.22	5.7	141	M	B 2 V
148624	3440		352.086	14.905	0.4082	0.1171	0.1816	3.96	4.32	1.2	10.38	1.7	1.13	7.5	321		A 7 IV
148703	3879		345.943	9.218	0.0557	0.0080	0.0246	4.33	4.16	3.5	4.24	-1.9	0.19	5.9	154	M	B 2 III
148822	3443		352.177	14.538	0.3044	0.1095	0.1525	3.88	4.40	0.7	9.65	2.8	0.68	6.1	170	m	F 0 V
148842	3444		352.166	14.493	0.4190	0.1028	0.1724	3.91	3.88	1.5	10.65	0.9	0.36	9.3	727		A 1 V
148860	2897		359.291	20.299	0.3516	0.0811	0.1261	4.03	4.12	1.8	8.04	0.5	0.65	6.8	234	m	B 9.5 V
149069	3445		352.047	13.944	0.4131	0.0896	0.1596	3.98	4.06	1.6	10.50	0.7	0.64	9.0	657		A 1 V
149168	3446		352.597	14.232	0.2216	0.0423	0.0903	4.13	4.36	2.2	9.92	0.3	0.57	9.0	644		B 7 V
149228	3359		353.400	14.794	0.2024	0.0529	0.0721	4.15	4.02	2.6	10.01	-0.7	1.39	9.3	733		B 9 p Si
149367	3447		352.798	14.046	0.3107	0.0692	0.1082	4.06	4.08	2.0	8.53	0.0	0.73	7.7	350		B 9 V
149387	3718		349.893	11.529	0.1958	0.0510	0.0649	4.15	3.86	2.8	9.21	-1.2	0.93	9.5	812		
149438	3519	τ Sco	351.536	12.808	-0.0276	-0.0057	-0.0133	4.47	3.86	4.7	2.82	-4.2	0.11	6.9	247	M	B 0 V
149464	3590		351.449	12.688	0.3513	0.0765	0.1288	4.03	4.16	1.8	8.61	0.6	0.71	7.2	278		B 9 V n
149757	84	ς Oph	366.282	23.588	-0.0368	0.0055	-0.0187	4.47	3.62	5.0	2.57	-5.1	0.91	6.8	228	M	O 9.5 V n n(e)
149883	3448		352.896	13.145	0.3563	0.0802	0.1240	4.03	4.04	1.9	8.45	0.3	0.60	7.5	318		B 9 V
150035	3521		352.799	12.797	0.4157	0.1191	0.1525	3.98	3.96	1.7	8.69	0.4	0.79	7.4	304		A 5 p Sr Cr
150347	3591		352.079	11.612	0.3448	0.0851	0.1137	4.04	3.96	2.0	8.99	-0.0	0.48	8.5	510		B 9 V
150514	2969		358.906	16.789	0.2765	0.0796	0.0809	4.08	3.68	2.6	8.66	-1.2	0.67	9.2	711		B 8 III
151310	3061		358.059	14.608	0.1018	0.0201	0.0379	4.27	4.00	3.3	9.38	-1.7	0.71	10.4	1230		B 2 V
151346	3196		356.641	13.446	0.1833	0.0562	0.0579	4.16	3.76	3.0	7.93	-1.7	1.73	7.9	390		B 7 V p wk He
151831	3453		354.837	11.159	0.2646	0.0692	0.0864	4.09	3.90	2.4	10.52	-0.6	0.52	10.6	1360		
151865	2975		360.484	15.394	0.2715	0.0665	0.1004	4.09	4.20	2.0	8.85	0.2	0.79	7.7	360		B 8 V
151890	748	μ^1 Sco	346.117	3.914	0.0490	0.0040	0.0162	4.34	3.86	3.9	3.00	-2.9	0.11	5.8	147	M	B 1 V
151985	750	μ ² Sco	346.198	3.862	0.0420	0.0080	0.0142	4.35	3.90	3.9	3.56	-2.9	0.08	6.4	191	M	B 2 IV
154481	3460		357.243	8.470	0.2964	0.0929	0.0781	4.06	3.46	2.8	6.27	-1.8	0.20	7.9	381		
157056	3303	θ Oph	360.466	6.553	0.0453	0.0094	0.0178	4.35	4.04	3.7	3.26	-2.4	0.09	5.5	130	M	B 2 IV

Fig. 7b. As Fig. 6b, for the stars in the Upper-Centaurus Lupus subgroup. The two stars (+) lying at $\log L/L_{\odot} > 4.5$ turn out to be non-members. The two lines have the same meaning as in Fig. 7a

stars in Upper-Scorpius in galactic coordinates, and denoted their visual extinction by the symbol size. It is evident from this plot that the distribution of the extinction is not random. A detailed comparison of the IRAS 100 μ m map of Fig. 13 with A_V (Fig. 12) shows that there is a tight correlation between the two. From this we conclude that the stars in Upper-Scorpius are located either at the same distance as, or behind the Ophiuchus dark clouds, but definitely not in front of them.

In order to determine the distance to the dark clouds in Ophiuchus we followed the same procedure as e.g. Turner (1986),

who determined the distance to L 810. We made a plot of A_V as a function of distance modulus (Fig. 14). The presence of stars at large distance moduli but with low visual extinctions is caused by the fact that the distribution of the dust is extremely irregular see Fig. 13): stars may be behind a region containing little dust. The flattening of the extinction as a function of distance modulus occurs at the far side of the cloud. Stars at a larger distance will have the same extinction. The observations however show a drop at distance moduli larger than $7^{\rm m}$. This drop is due to the completeness limit of our programme. As was pointed out in

Fig. 8a. As Fig. 7a, for the stars in the Lower-Centaurus Crux subgroup. The dashed line shows the ZAMS, and the full line indicates the position of the isochrone of age 11.5 million years

Fig. 8b. As Fig. 7b, for the stars in the Lower-Centaurus Crux subgroup. The member star at log $L/L_{\odot} > 5$ is the emission line star δ Cen. The two lines have the same meaning as in Fig. 8a.

Fig. 9. Distance modulus as a function of galactic longitude for the established member-stars of the three subgroups. •: Upper-Scorpius; o: Upper-Centaurus Lupus; *: Lower-Centaurus Crux. The average error in the distance modulus is indicated by the errorbar in the top-right corner. The dashed lines indicate the adopted boundaries of the subgroups. There is a general trend for the distances to be larger towards larger longitudes

Fig. 10. Distance modulus based on the photometric data plotted against the distance modulus from proper motions (Jones, 1971). From this figure stars with emission-line spectra and chemical peculiarities were excluded

Sect. 2.1 this limit is at roughly 9^m. So given a certain spectral type (i.e. M_{ν}), we can translate the completeness limit into terms of A_{ν} and distance modulus. In Fig. 14 the full line shows this limit in case of a B 5 V star. To the right of this line only programme stars of a spectral type earlier than B 5 V are possible, and because of the scarcity of these stars, we see only few.

The most important feature in Fig. 14 is the rise in A_V at small distance moduli. At a certain distance we expect to see the near edge of the cloud, and going towards larger distances we expect A_V to rise, depending on the density-distribution of the dust. At the far edge we expect the plot to flatten again. From this we can determine the distance to, and the depth of, the Ophiuchus dark clouds. This results in the following distance:

$$d$$
 (near edge) = 80 ± 20 pc,
 d (far edge) = 170 ± 35 pc,
 d (centre) = 125 ± 25 pc.

The determination of the distance of the dark cloud complex in Ophiuchus with respect to the stars in Upper-Scorpius reveals two very intersting effects: first of all throughout the cloud the stars appear to be evenly distributed in distance, and secondly a number

Fig. 11. As Fig. 9, for the remaining stars in the programme. The membership criterion is based on the position of each star in this diagram

Fig. 14. Plot of the visual extinction as a function of distance modulus for the stars in the Upper-Scorpius region. Circles denote the established members of the subgroup, plusses denotes the remainder of the programme. The line indicates the completeness limit of our sample for B 5V stars. The rise in visual extinction at distance moduli smaller than 6 shows that a number of stars are distributed throughout the molecular cloud. A number of member stars are indeed found behind the cloud

of stars is actually located behind the cloud. These two results will become very important in the detailed study of the interaction processes between the stars and the interstellar medium in this region (de Geus, 1988, in preparation). Straižys (1984) determined the distance to Ophiuchus in a similar way as done here. He derived a distance to the near edge of 120 pc, and argues that the nebula extends up to $d=200\,\mathrm{pc}$. We find a smaller distance and, what is more important, that a number of the earliest-type stars lie behind the dark cloud.

6. Conclusions and future work

From the photometric data of 300 stars in the Scorpio-Centaurus OB association we derived several physical properties for its three subgroups. By comparing the HR diagrams for the stars with theoretical isochrones, we obtained nuclear ages. We found somewhat lower ages than de Zeeuw and Brand (1985), due to the use of different models for stellar evolution in the calculation of the isochrones. The classical picture of sequential starformation is clearly not valid for the Sco OB 2 association as a whole, because the oldest subgroup is right inbetween the two younger ones. Possibly, for some unknown reason, massive star formation was ignited near the middle of the giant molecular cloud, forming Upper-Centaurus Lupus, which in turn ignited star-formation in two directions: forming Upper-Scorpius and Lower-Centaurus Crux. The presence of an infrared cluster inside the Upper-Scorpius subgroup (Grasdalen et al., 1973; Vrba et al., 1975; Elias, 1978; Wilking and Lada, 1983) possibly containing early-type stars, indicates a continuing ignition of starformation by the already formed stars.

The distances to the subgroups were found to be a function of galactic longitude, with the Upper-Scorpius subgroup having the

largest distance. On the basis of a distance vs. galactic longitude plot of the established member stars we derived the "boundaries" of the association and in this way determined membership for the rest of the stars. This way of membership determination should however be treated with the necessary caution, because of its inaccuracy.

The calculated visual extinctions to the stars in the Upper-Scorpius subgroup were shown to correlate well with the distribution of the dust in the Ophiuchus dark clouds, as seen in the IRAS 100 μ m map. From the plot of A_V against distance modulus we found the distance of the Ophiuchus clouds to be: 125 ± 25 pc. The depth of the cloud could also be determined from this plot, the near edge being at 80 ± 20 pc, and the far edge at 170 ± 35 pc. The stars were found to be distributed mainly at the far side of the dark cloud.

The fact that a number of the brightest stars are behind the molecular clouds is important for understanding the morphology of the atomic and molecular gas in this region, as well as for understanding the origin of a slow shock seen in CH and CH⁺ absorption towards a number of early-type stars in Upper-Scorpius by Meyers et al. (1985). A discussion of the distribution of the interstellar matter in Ophiuchus will be presented in a future paper (de Geus et al., 1988, in preparation).

OB associations are very important objects for the calibration of the distance scale. The lack of knowledge regarding membership of OB associations and the lack of accurate distances for stars over a large range in spectral types are the two most important problems in the study of these groups. The observations by the HIPPARCOS satellite will be a major improvement on this. The first results are anticipated around 1992/1993. In order to determine the radial velocities of the stars we are obtaining high-resolution spectra of candidate member stars in nearby associations. These radial velocities will already give us a more accurate determination of the membership than based on the photometry.

Fig. 12. Map in galactic coordinates of the visual extinction towards the stars in Upper-Scorpius. The size of the symbol denotes the strength of the extinction $(A_{V, \text{max}} = 3^{\text{m}}.5)$. Comparison of this figure with Fig. 13 shows that the stars cannot be in front of the Ophiuchus molecular clouds

Fig. 13. Map of the IRAS 100 µm emission in the Ophiuchus dark cloud. The emission at 100 µm is a measure of the amount of dust along the line of sight. The fact that the features in this map are closely traced by the values of the extinction of the stars, enables us to estimate the distance to the Ophiuchus molecular cloud

Acknowledgements. It is a pleasure to thank Prof. A. Blaauw for his continued interest, and for constructive criticism on the manuscript. We thank the following students, who have spent cold and lonely weeks on La Silla observing stars for this programme: J.W. de Bruyn, J.H. Burger, J. Hooimeyer, A. Roobeek, P. Houtekamer, and H. Röttgering. TdZ was supported in part by an RCA Fellowship.

References

Barlow, M.J., Cohen, M.: 1977, Astrophys. J. 213, 737 Bertiau, F.C.S.J.: 1958, Astrophys. J. 128, 533 Blaauw, A.: 1946, Ph. D. Thesis, University of Groningen Blaauw, A.: 1961, Bull. Astron. Inst. Neth. 15, 265 Blaauw, A.: 1964, Ann. Rev. Astron. Astrophys. 2, 213

Blaauw, A.: 1978, in Problems of Physics and Evolution of the Universe, ed. L. Mirzoyan, Yerevan, USSR, p. 101 Blaauw, A., Morgan, W.W., Bertiau, F.C.: 1955, Astrophys. J. **121** (2)

Brand, J., Wouterloot, J.G.A.: 1988, Astron. Astrophys. Suppl. 75, 117

Buscombe, W.: 1974, General Catalogue of MK Spectral Classifications, Vol. 1-5

Collins, G. W., Sonneborn, G. H.: 1977, Astrophys. J. Suppl. 34, 41 Crawford, D.L.: 1978, Astron. J. 83, 48

de Geus, E.J.: 1984, M. Sc. Thesis, University of Leiden

de Ruiter, H., Lub, J.: 1985, Astron. Astrophys. Suppl. 63, 59

de Zeeuw, P.T., Brand, J.: 1985, in Birth and Evolution of massive stars and stellar groups, eds. H. van Woerden, W. Boland, Reidel, Dordrecht, p. 95

Elias, J.H.: 1978, Astrophys. J. 224, 453

- Elmegreen, B.G., Lada, C.J.: 1977, Astrophys. J. 214, 725
- Garrison, R.F.: 1967, Astrophys. J. 147, 1003
- Glaspey, J.W.: 1971, Astron. J. 76, (10), 1041
- Grasdalen, G. L., Strom, K., Strom, S. E.: 1973, *Astrophys. J.* **184**, L 53
- Gutierrez-Moreno, A., Moreno, H.: 1968, Astrophys. J. Suppl. 15, 459
- Hackwell, J.A., Gehrz, R.D.: 1974, Astrophys. J. 194, 49
- Hardie, R.H., Crawford, D.L.: 1961, Astrophys. J. 133, 843
- Harris, D.H.: 1973, in *IAU Symposium* **52**, *Interstellar Dust and Related Topics*, eds. J.M. Greenberg, H.C. van de Hulst, Reidel, Dordrecht, p. 31
- Hauck, B., Mermilliod, M.: 1980, Astron. Astrophys. Suppl. 40, 1
 Jones, D.H.P.: 1970, Monthly Notices Roy. Astron. Soc. 152, 231
 Jung, J., Bischoff, M.: 1971, Bulletin d'Information du Centre de Donnees Stellaires 2, 8
- Kurucz, R.: 1979, Astrophys. J. Suppl. 40, 1
- Larson, R.: 1986, Monthly Notices Roy. Astron. Soc. 218, 409
- Lub, J.: 1979, The Messenger 19, 1

- Lub, J., Pel, J.W.: 1977, Astron. Astrophys. 54, 137
- Maeder, A.: 1981a, Astron. Astrophys. 93, 136
- Maeder, A.: 1981b, Astron. Astrophys. 99, 97
- Maeder, A.: 1981 c, Astron. Astrophys. 102, 401
- Mathieu, R.D.: 1986, Highlights of Astronomy 7, 481
- Meyers, K.A., Snow, T.P., Federman, S.R., Breger, M.: 1985, Astrophys. J. 288, 148
- Schultz, G.V., Weimar, W.: 1975, Astron. Astrophys. 43, 133
- Sneden, C., Gehrz, R.D., Hackwell, J.A., York, D.G., Snow, T.P.: 1978, Astrophys. J. 223, 168
- Straižys, V.: 1984, Vilniaus Astron. Obs. Biul. 67, 3
- Straižys, V., Kuriliene, G.: 1981, Astrophys. Sp. Sci. 80, 353
- Turner, D.G.: 1986, Astron. Astrophys. 167, 157
- Vrba, F.J., Strom, K.M., Strom, S.E., Grasdalen, G.L.: 1975, *Astrophys. J.* 197, 77
- Whittet, D.C.B.: 1974, Monthly Notices Roy. Astron. Soc. 168, 371
- Wilking, B.A., Lada, C.J.: 1983, Astrophys. J. 274, 698