

P421 (a) [e-at cosustine) as COS(wot) = = = ejwot + = e-jwot X(ju) = (= e 3 wot + 1 e - 5 wot (e - 5 w t) dt $\times(j\omega) = \frac{1}{2}\left(\int_{0}^{\infty} e^{-\beta x} + j(\omega - \omega_{0})\right) + dt + \int_{0}^{\infty} e^{-(\alpha + j(\omega + \omega_{0})) + dt} dt$ $\times (j\omega) = -\frac{1}{2} = \frac{1}{2} = \frac{1}$ \times (ju) = $\frac{1}{2}$ ($\alpha+$ j($\omega-\omega$) + $\alpha+$ j($\omega+\omega$) (b) Written as t20 and £40, e -31tl sin 2t = e sin 2tu(E) + e 3tsin 2tu(-E) $X = X_1 + X_2$ $X_1 = e^{-3t} = ij2t$ $e^{-3t} - j2t$ $X_1 = ij2t$ $X_2 = ij2t$ $X_3 = ij2t$ $X_4 = ij2t$ $X_4 = ij2t$ $X_5 = ij2t$ $X_6 = ij2t$ $(j\omega) = \frac{1}{2j(3-j2+j\omega)} = \frac{2j(3+j2+j\omega)}{2}$ $x_2(j\omega) = -x_1(-j\omega) = \frac{2}{2}(3-j2-j\omega) - \frac{2}{2}(3+j2-j\omega)$ X(jw) = X, (jw) + x2(jw) = $\frac{35}{9+(w+2)^2} + \frac{35}{9+(w-2)^2}$