Problem 3.1 10 points:

Capturing capillary wave propagation around an interface plays and important role in numerical stability of two-phase flow simulations, and it also poses restrictions on the time step size. For a capillary wave with wave number $k=\frac{2\pi}{\lambda}$, the phase velocity can be expressed as:

$$c_{\sigma}(k) = \sqrt{\frac{\sigma k}{\rho_1 - \rho_2}}$$

where λ is the wavelength, c_{σ} is the phase velocity, σ is the surface tension coefficient, and ρ_1, ρ_2 are the density of the fluids at the respective side of the interface ($\rho_1 > \rho_2$). Consider a two-phase flow simulation conducted on a mesh with uniform spacing Δx :

- a) Find the expression for the minimum wavelength of a sinusoidal capillary wave (λ_{min}) that can be **unambiguously represented** by the given mesh spacing Δx [2 points] and discuss your reasons [3 points]. (Hint: Nyquist theorem)
- b) Based on the result of a), find the expression for the time step size restriction (Δt_{max}) such that the propagation of the capillary wave with wavelength λ_{min} can be captured by the grid. [5 points]
- (a) Given the assumption that the capillary wave is sinusoidal, and its wavelength is λ . If one would like to sample a frequency of characteristic frequency f, the sampling rate should be at least twice of the sampled frequency, or $f_{sampling} \geq 2f$, so that the signal can be unambiguously represented (or the aliasing effect can be avoided). Now consider a sinusoidal capillary wave of wavelength λ , the analogy of the Nyquist theorem tells us that the spacing between the two neighboring grid points (treat them as spatial sampling points) should be less then $\frac{\lambda}{2}$ such that the wave can be unambiguously captured. Hence, given a uniform grid with spatial spacing Δx , the minimal wavelength that can be unambiguously represented by the grid is $\lambda_{min} = 2\Delta x$.

(b) The capillary wave of wavelength of λ_{min} is also the fastest one that can be captured by the grid with spacing Δx (since the wave number is the highest, k_{max}). To capture the wave propagation, the CFL number based on the $c_{\sigma}(k_{max})$ should be lower than one, i.e.:

$$CFL_{C_{\sigma}} = \frac{c_{\sigma}(k_{max})\Delta t}{\Delta x} \le 1$$

Hence the limiting time step size:

$$\Delta t_{max} = \frac{\Delta x}{c_{\sigma}(k_{max})}$$