### 看解答 上微信小程序 搜数之谜



#### 2021 年全国高中数学联合竞赛一试(A1卷)

- 一、填空题: 本大题共 8 小题, 每小题 8 分, 满分 64 分.
- 1. 设  $A = \{1, 2, 3\}, B = \{2x + y \mid x, y \in A, x < y\}, C = \{2x + y \mid x, y \in A, x > y\},$ 则  $B \cap C$ 的所有元素之和为\_\_\_\_\_.
- **2.** 设 m 为实数,向量  $\overrightarrow{a} = (1+2^m, 1-2^m)$ , $\overrightarrow{b} = (4^m-3, 4^m+5)$ ,则  $\overrightarrow{a} \cdot \overrightarrow{b}$  的最小值为\_\_\_\_\_.
- 3. 已知  $\triangle ABC$  满足:  $\tan A, \tan B$  是方程  $x^2 10x + 6 = 0$  的两个根,则  $\cos C$  的值为\_\_\_\_\_.
- **4.** 在平面直角坐标系中,双曲线  $\Gamma: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a,b>0)$ ,一条倾斜角为  $\frac{\pi}{4}$  的 直线经过  $\Gamma$  的一个顶点及  $\Gamma$  上另外一点 (2,3),则  $\Gamma$  的离心率为\_\_\_\_\_.
  - **5.** 设数列  $\{a_n\}$  满足  $a_1=1, a_n=\frac{1}{4a_{n-1}}+\frac{1}{n}(n\geq 2)$ ,则  $a_{100}$  的值为\_\_\_\_\_\_.
- **6.** 设正四棱锥 P-ABCD 的底面边长与高相等,点 G 为侧面  $\triangle PBC$  的重心,则直线 AG 与底面 ABCD 所成角的正弦值为\_\_\_\_\_.
- 7. 设  $a_1,a_2,\cdots,a_{21}$  为  $1,2,\cdots,21$  的排列,满足  $|a_{20}-a_{21}|\geq |a_{19}-a_{21}|\geq \cdots \geq |a_1-a_{21}|.$  这样的排列的个数为\_\_\_\_\_.
- 8. 正实数 x,y 满足如下条件:存在  $a \in [0,x], b \in [0,y]$ ,使得  $a^2 + y^2 = 2, \quad b^2 + x^2 = 1, \quad ax + by = 1,$  则 x + y 的最大值为

## 看解答 上微信小程序 搜数之谜

# 看解答 上微信小程序 搜数之谜



9. (本题满分 16 分) 设函数  $f(x) = |2 - \log_3 x|$ ,正实数 a,b,c 满足 a < b < c,且 f(a) = 2f(b) = 2f(c). 求  $\frac{ac}{b}$  的值.

**10.** (本题满分 20 分) 设  $a, b \in \mathbb{R}$ . 若关于 z 的方程

$$(z^2 + az + b)(z^2 + az + 2b) = 0$$

有 4 个互不相等的复数根  $z_1, z_2, z_3, z_4$ ,且它们在复平面上对应的点恰是一个边长为 1 的正方形的四个顶点,求  $|z_1| + |z_2| + |z_3| + |z_4|$  的值.

**11. (本题满分 20 分)** 在平面直角坐标系中,椭圆  $\Gamma: \frac{x^2}{2} + y^2 = 1$  的左、右焦点分别为  $F_1, F_2$ ,P 是第一象限内  $\Gamma$  上一点, $PF_1, PF_2$  的延长分别交  $\Gamma$  于点  $Q_1, Q_2$ . 设  $r_1, r_2$  分别为  $\triangle PF_1Q_2, \triangle PF_2Q_1$  的内切圆半径,求  $r_1 - r_2$  的最大值.

### 看解答 看讨论 上微信小程序 搜数之谜



#### 2021 年全国高中数学联合竞赛加试(A1卷)

一、(本题满分 40 分)如图,在  $\triangle ABC$  中,AB > AC, $\triangle ABC$  内两点 X,Y 均在  $\angle BAC$  的平分线上,且满足  $\angle ABX = \angle ACY$ . 设 BX 的延长线与线段 CY 交于点 P, $\triangle BPY$  的外接圆  $\omega_1$  与  $\triangle CPX$  的外接圆  $\omega_2$  交于另一点 Q. 求证: A,P,Q 三点共线.



二、**(本题满分 40 分)** 求正整数 a,b,n (其中  $n \ge 2$ ) 满足的充分必要条件,使得存在一个从集合

$$S = \{a + bt \mid t = 0, 1, \cdots, n - 1\}$$

到自身的一一映射  $f: S \to S$ , 满足: 对任意  $x \in S$ , 均有 x 与 f(x) 互质.

三、(本题满分 50 分)设正实数数列  $\{a_n\}$ ,  $\{b_n\}$  满足:对任意整数  $n \ge 101$ ,有

$$a_n = \sqrt{\frac{1}{100} \sum_{j=1}^{100} b_{n-j}^2}, \quad b_n = \sqrt{\frac{1}{100} \sum_{j=1}^{100} a_{n-j}^2}.$$

求证:存在正整数 m,使得  $|a_m - b_m| < 0.001$ .

四、(本题满分 50 分)圆周上给定 100 个不同的点. 试确定最大的正整数 k: 将这 100 个点中任意 k 个点任意染为红、蓝两色之一,均可将其余的点适当地染为红色或蓝色,使得可用这 100 个点为端点作 50 条线段,任意两条线段没有公共点,且每条线段的端点同色.