Introduction

One of the challenges in having autonomous systems in an extreme environment is to have an accurate heterogeneous multi-robot plan aiming to minimize online replanning due to incorrect domain specification. An adaptive execution monitoring system together with a temporal planning approach is utilized to mitigate. A simulated wind farm together with various autonomous vehicles is used to demonstrate our planning framework.

System architecture and simulated environment overview

Planner and Adaptive Problem Generator

UAV Planning ROSPlan KB Action Control UAV Problem Action→ Sequence Inteface Model PDDL Plan MAVROS Action PDDL Domain-USV Dispatcher USV Model Model Action-Control Learner Interface Updated Problem-**IRR** IRR Control Discrepancy Action-Model Interface Checker Problem Generator ROS

- A ROS-based platform.
- KB (Knowledge Base) provides the state of the domain.
- The ROSPlan together with a temporal planner POPF is used to generate mission plans based on the KB data.
- A plan is dissected into actions and then is sent by an action dispatcher.
- An adaptive problem generator monitors the discrepancy between an actual state and its expected state; replanning is done if necessary.
- A model learner dynamically learns the stochastic of each action duration and fuel consumption rate for a better domain representation.

Windfarm Simulator

- A GAZEBO-based environment.
- Allow multiple instances of different robotic platforms.
- Provide a world model, robot states, capabilities, and its operating environment.

Mission Scenario Example

Total	Action	Expected
0.0	(usv_navigate usv usv_wp0 usv_wp1)	[7.0]
7.0	(uav_takeoff uav usv_wp1)	[1.0]
8.0	(uav_navigate uav uav_wp0 uav_wp1)	[8.0]
8.0	(usv_navigate usv usv_wp1 usv_wp2)	[4.0]
12.0	(usv_navigate usv usv_wp2 usv_wp3)	[3.0]
15.0	(usv_inspect_wt usv usv_wp3)	[2.0]
16.0	(uav_deploy_irr uav irr uav_wp1 irr_wp0)	[8.0]
17.0	(usv_navigate usv usv_wp3 usv_wp2)	[3.0]
20.0	(usv_navigate usv usv_wp2 usv_wp1)	[4.0]
24.0	(uav_navigate uav uav_wp1 uav_wp0)	[8.0]
24.0	(irr_navigate irr irr_wp0 irr_wp1)	[15.0]
32.0	(uav_land uav uav_wp0 usv_wp1)	[2.0]
34.0	(usv_navigate usv usv_wp1 usv_wp2)	[4.0]
34.0	(uav_refuelling uav usv uav_wp0)	[11.0]
38.0	(usv_navigate usv usv_wp2 usv_wp4)	[8.0]
39.0	(irr_ndt_inspect irr irr_wp1)	[10.0]
46.0	(uav_takeoff uav usv_wp4)	[1.0]
47.0	(uav_navigate uav uav_wp0 uav_wp2)	[4.0]
49.0	(irr_navigate irr irr_wp1 irr_wp0)	[15.0]
51.0	(uav_inspect_blade uav uav_wp2)	[3.0]
54.0	(uav_navigate uav uav_wp2 uav_wp0)	[4.0]
58.0	(uav_navigate uav uav_wp0 uav_wp3)	[4.0]
62.0	(uav_inspect_blade uav uav_wp3)	[3.0]
65.0	(uav_navigate uav uav_wp3 uav_wp0)	[4.0]
69.0	(uav_land uav uav_wp0 usv_wp4)	[2.0]
71.0	(usv_navigate usv usv_wp4 usv_wp2)	[8.0]
71.0	(uav_refuelling uav usv uav_wp0)	[10.0]
79.0	(usv_navigate usv usv_wp2 usv_wp1)	[4.0]
83.0	(uav_takeoff uav usv_wp1)	[1.0]
84.0	(uav_navigate uav uav_wp0 uav_wp1)	[8.0]
92.0	(uav_retrieve_irr uav irr uav_wp1 irr_wp0)	[8.0]
100.0	(uav_navigate uav uav_wp1 uav_wp0)	[8.0]
108.0	(uav_land uav uav_wp0 usv_wp1)	[2.0]

The research leading to these results has received funding from the Innovate UK under MIMRee project (https://www.mimreesystem.co.uk/).