Subject: Machine Learning Course code: COMP 484

Type: Elective (CE/CS) FM: 100 (50 internal + 50 final)

Credit: 3

Course Description:

The primary objective of the course is to introduce the students in the undergraduate level to the primary approaches to machine learning and the study of computer algorithms which improve automatically through experience. Students would be introduced to basic concepts from statistics, artificial intelligence, information theory and other disciplines with a balanced coverage of theory and practice. As part of the course, students would not only get the exposure to theoretical and practical know-how about building machine learning systems on real-world problems but also would be developing their own prototypes or proof-of-concepts in the form of project assignments.

Contents:

Lecture 1:

Introduction

Why is Machine Learning?

What is well-defined learning problem?

An example: learning to play checkers, what questions should we ask about Machine Learning?

Concept Learning

Learning from examples, General to specific ordering over hypotheses, Version spaces and candidate elimination algorithm, picking new examples, the need for inductive bias [5 hrs]

Lecture 2:

Decision Tree Learning

Decision tree representation, ID3 learning algorithm, Entropy, Information Gain, Overfitting

Artificial neural networks

Threshold units, Gradient descent, Multilayer networks, Backpropagation, Hidden layer representations, Example: Face Recognition, Advanced Topics [7 hrs]

Lecture 3:

Evaluating hypotheses

Sample error, True error, Confidence intervals for observed hypothesis error, Estimators, Binomial distribution, Normal Distribution, Central Limit Theorem, Paired t tests, Comparing Learning Methods

Bayesian Learning

Bayes Theorem, MAP, ML hypotheses, MAP learners, Minimum description length principle, Bayes optimal classifier, Naïve Bayes learner, Example: Learning over text data, Bayesian belief networks, Expectation Maximization algorithm [10 hrs]

Lecture 4:

Computational Learning Theory

Computational learning theory, Setting 1: learner poses queries to teacher, Setting 2: teacher chooses examples, Setting 3: randomly generated instances, labeled by teacher, probably Approximately Correct (PAC) learning, Vapnik-Chervonenkis Dimension, Mistake Bounds

Instance Based Learning

k-Nearest Neighbor, Locally weighted regression, Radial basis functions, Case-based reasoning, Lazy and eager learning [9 hrs]

Lecture 5:

Genetic Algorithms

Evolutionary computation, Prototypical GA, An example: GABIL, Genetic Programming, Individual learning and population evolution

Learning Sets of Rules

Sequential covering algorithms, FOIL, Induction as inverse of deduction, Inductive Logic Programming [8 hrs]

Lecture 6:

Reinforcement Learning

Learning task, Q Learning, Nondeterministic Rewards and Actions, Temporal Difference Learning, Generalizing from Examples, Relationship to Dynamic Programming [8 hrs]

Text book:

Machine Learning. Tom M. Mitchell. McGraw-Hill International Editions. Computer Science Series, 1997.

Reference books:

Machine Learning – A Probabilistic Perspective, Kevin P. Murphy. The MIT Press, Cambridge, Massachusetts. London, England. 2012.

Introduction to Machine Learning. Ethem Alpaydin. The MIT Press. Cambridge, Massachusetts. London, England. 2004

Deep Learning in Python. Francois Chollet, Manning, 2018.

Data Mining. Practical Machine Learning Tools and Techniques. Third Edition. Ian H. Witten, Eibe Frank, Mark A. Hall. Elsevier Inc., 2011.

Books for Lab works:

Building Machine Learning Systems Using Python, Second Edition, Luis Pedro Coelho, Willi Richart, Packt Publishing, 2015.

Mastering Machine Learning with Python in Six Steps – A Practical Implementation Guide to Predictive Data Analytics Using Python, Manohar Swamynathan, Apress, 2017.

Artificial Intelligence with Python – Build real-world Artificial Intelligence Applications with Python to intelligently interact with the world around you. Prateek Joshi, Packt Publishing, 2017.

Hands-On Machine Learning with Scikit-Learn and TensorFlow. Aurelien Geron, O'Reilly Media, Inc., 2017.

Data Science from Scratch. Joel Grus, O'Reilly Media, Inc., 2015.

Machine Learning in Action, Peter Harrington, Manning Publications, 2012.

Machine Learning in Python. Essential Techniques for Predictive Analysis, Michael Bowles, Wiley & Sons, 2015.

Machine Learning for Hackers, Drew Conway & John Myles White, O'Reilly, 2012.

Programming Collective Intelligence, Building Smart Web 2.0 Applications, Toby Segaran, O'Reilly, 2007.

Lab and practical assignments:

Note: The whole idea of the lab sessions is to engage the students with practical machine learning libraries and tools thus prepare them for the mini-project. Hence, the students are encouraged to go through the relevant chapters of the different books listed in this syllabus for the lab works besides the one prescribed for the lab sessions below.

Tasks	Timelines
Lab 1:	Week I
Getting started with Python Machine Learning	Chapter 1 - Building Machine Learning
Introduction to NumPy, SciPy, and Matplotlib	Systems Using Python
Installing with Python	
Chewing data efficiently with NumPy and	
intelligently with SciPy	
Learning NumPy, SciPy	
First application of machine learning	
- Reading in the data	
- Preprocessing and cleaning the data	

- Choosing the right model and learning	
algorithm	
Lab 2:	Week II
Classifying with Real-world examples	Chapter 2 - Building Machine Learning
The Iris dataset	Systems Using Python
Building more complex classifiers	
A more complex dataset and a more complex	
classifier	
Classifying with scikit-learn	
Binary and multiclass classification	
Lab 3:	Week III
Clustering – Finding related posts	Chapter 3 - Building Machine Learning
Measuring the relatedness of posts	Systems Using Python
Preprocessing – similarity measured as a	
similar number of common words	
Clustering	
Solving our initial challenge	
Tweaking the parameters	
Lab 4:	Week IV
Topic Modeling	Chapter 4 - Building Machine Learning
Latent Dirichlet allocation	Systems Using Python
Comparing documents by topics	
Choosing the number of topics	
Lab 5:	Week V
Classification – Detecting Poor Answers	Chapter 5 - Building Machine Learning
Sketching our roadmap	Systems Using Python
Learning to classify classy answers	
Fetching the data	
Creating our first classifier	
Deciding how to improve	
Using logistic regression	
Lab 6:	Week VI
Artificial Neural Networks	Chapter 14 – Artificial Intelligence with
Building a Perceptron based classifier	Python
Constructing a single layer neural network	
Constructing a multilayer neural network	Chapter 6 – Mastering Machine Learning
Building a vector quantizer	with Python in Six Steps
Analyzing sequential data using recurrent	
neural networks	

Visualizing characters in an Optical Character Recognition Building an Optical Character Recognition Engine	
Recurrent Neural Network Long Short-Term Memory (LSTM) Transfer Learning	
Lab 7:	Week VII
Reinforcement Learning	Chapter 15 – Artificial Intelligence with
Creating an environment	Python
Building a learning agent	
Example code for q-learning	Chapter 6 – Mastering Machine Learning with Python in Six Steps
Lab 8:	Week VIII
Deep Learning with Convolution Neural Networks	Chapter 16 – Artificial Intelligence with Python
Building a perceptron-based linear regressor	Tymon
Building an image classifier using a single layer neural network Building an image classifier using a Convolution Neural Network	Chapter 6 – Mastering Machine Learning with Python in Six Steps
CNN on CIFAR10 Dataset	
CNN on MNIST Dataset	
Visualization of Layers	

Mini-Project

This is an opportunity for you to explore interesting machine learning problems. To get some idea about the project, you may consult the page, http://www.cs.cmu.edu/~tom/10701_sp11/proj.shtml. Form a group of at most 3 people. Each group member should contribute equally to the project. The execution outline for the mini-project are as follows:

- Proposal submission
 - o Project title
 - o Data set
 - o Project idea (approximately two paragraphs)

- Software and tools
- Teammates and work division
- Midterm milestone
 - o Midterm report should be 4-5 pages
 - Proposed method and experiments done so far
 - Design of upcoming experiments
 - Plan of upcoming activities(align each project member with their respective activity)
- Final project demo and submission

Information regarding the deadline of the mini-project milestones will be provided separately.

Grading policy:

Final Exam: 50

Internals:

Lab and practical assignments: 12

First internal: 10

Second internal: 10

Quiz: 8

Mini Project: 10