2. Решение задачи взвешивания монет с использованием эталонной монеты и построением оптимальных деревьев взвешиваний

Введение

Задача взвешивания монет с использованием эталонной монеты имеет важное отличие от предыдущих вариантов этой задачи: наличие дополнительной эталонной монеты позволяет строить оптимальные деревья взвешиваний. В этой задаче для выполнения равенства на дереве взвешиваний должно быть выполнено следующее соотношение:

$$3l = 2n_l + 1$$

где l — уровень дерева, а n_l — число монет, при котором выполняется равенство. Далее будет рассмотрена схема взвешивания с использованием эталонной монеты.

Математическая модель

Обозначим через n_l число монет, для которых выполняется равенство $3l=2n_l+1$. Сначала заметим, что для выполнения равенства задачи дерево взвешиваний должно быть полным. Таким образом, если мы строим дерево с l уровнями, оно задаст схему взвешивания для n_l монет.

Для вычисления числа монет n_l используется рекуррентное соотношение:

$$n_l = 3n_{l-1} + 1$$

С помощью этого соотношения, начиная с $n_0 = 0$, можно вычислить последовательность чисел:

$$0, 1, 4, 13, 40, \dots$$

Следовательно, последовательность n_l образует набор значений, где каждая группа монет делится на три равные части с одной оставшейся монетой.

Схема взвешивания

Для каждого подмассива монет существует несколько возможных состояний после взвешивания. Рассмотрим три возможные схемы взвешивания:

Схема 1

Пусть в начале взвешивания у нас есть n_i монет, где n_i принадлежит последовательности чисел n_l . Положим на каждую чашу весов по n_{i-1} монет. Затем на левую чашу добавим эталонную монету, а на правую — одну из оставшихся $n_{i-1}+1$ монет. Рассмотрим три возможных исхода взвешивания:

• Если SL = SR, то фальшивая монета находится среди неиспользованных n_{i-1} монет.

- Если SL < SR, то фальшивая монета находится либо среди легких монет на левой чаше, либо среди тяжелых монет на правой чаше.
- Если SL > SR, то фальшивая монета находится либо среди тяжелых монет на левой чаше, либо среди легких монет на правой чаше.

В каждом из этих случаев количество исходов делится на три равные части.

Схема 2

Если в результате взвешивания SL < SR, то нужно использовать следующую стратегию. На каждой чаше весов размещаем n_{i-1} легких монет и $n_{i-1}+1$ тяжелых монет. Если весы не уравновешены, то фальшивая монета будет либо среди легких монет, либо среди тяжелых. Если весы уравновешены, то фальшивая монета находится среди оставшихся монет.

Схема 3

Если SL > SR, то на чаши весов следует положить $n_{i-1} + 1$ легких монет и n_{i-1} тяжелых. Аналогично, если весы не уравновешены, фальшивая монета будет либо среди легких, либо среди тяжелых монет.