```
In [1]: # Dependencies and Setup
        %matplotlib inline
        import matplotlib.pyplot as plt
        import pandas as pd
        import numpy as np
        from scipy.stats import sem
        # Hide warning messages in notebook
        import warnings
        warnings.filterwarnings('ignore')
        # File to Load (Remember to Change These)
        mouse_drug_data_to_load = "mouse_drug_data.csv"
        clinical_trial_data_to_load = "clinicaltrial_data.csv"
        # Read the Mouse and Drug Data and the Clinical Trial Data
        md = pd.read_csv("mouse_drug_data.csv")
        cd = pd.read_csv("clinicaltrial_data.csv")
        # Combine the data into a single dataset
        merged data = pd.merge(md , cd, left on="Mouse ID", right on="Mouse ID")
        # Display the data table for preview
        merged data.head()
```

Out[1]:

	Mouse ID	Drug	Timepoint	Tumor Volume (mm3)	Metastatic Sites
(f234	Stelasyn	0	45.000000	0
	f234	Stelasyn	5	47.313491	0
2	2 f234	Stelasyn	10	47.904324	0
;	f234	Stelasyn	15	48.735197	1
4	f234	Stelasyn	20	51.112713	2

Tumor Response to Treatment

```
In [3]:
    drug_time = merged_data.groupby(["Drug", "Timepoint"])
    m_t_v = drug_time["Tumor Volume (mm3)"].mean()
    response = pd.DataFrame(m_t_v)
    response.head()
```

Out[3]:

Tumor Volume (mm3)

Drug	Timepoint	
Capomulin	0	45.000000
	5	44.266086
	10	43.084291
	15	42.064317
	20	40.716325

```
In [ ]:
```

```
In [4]: # Store the Standard Error of Tumor Volumes Grouped by Drug and Timepoint

d_t = merged_data.groupby(["Drug", "Timepoint"]).sem()["Tumor Volume (mm3)"
# setv = d_t["Tumor Volume (mm3)"].std()
# setv

response_setv_df = pd.DataFrame(d_t)
response_setv_df.head()
```

Out[4]:

Tumor Volume (mm3)

Drug	Timepoint	
Capomulin	0	0.000000
	5	0.448593
	10	0.702684
	15	0.838617
	20	0.909731

```
In [ ]:
```

In [5]: # Minor Data Munging to Re-Format the Data Frames
 reformated_response = response.pivot_table(index='Timepoint',columns='Drug'
 reformated_response.head()

Out[5]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane
Timepoint								
0	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000	45.000000
5	44.266086	46.503051	47.062001	47.389175	46.796098	47.125589	47.248967	43.944859
10	43.084291	48.285125	49.403909	49.582269	48.694210	49.423329	49.101541	42.531957
15	42.064317	50.094055	51.296397	52.399974	50.933018	51.359742	51.067318	41.495061
20	40.716325	52.157049	53.197691	54.920935	53.644087	54.364417	53.346737	40.238325

In []:

```
# Generate the Plot (with Error Bars)
fig, ax = plt.subplots()
ax.errorbar(np.arange(0, 50, 5), response.loc["Capomulin", 'Tumor Volume (m
            yerr = response setv_df.loc["Capomulin", "Tumor Volume (mm3)"],
            color = 'r', marker = 'o', linestyle = '--', label = "Capomulin
ax.errorbar(np.arange(0, 50, 5), response.loc["Infubinol", 'Tumor Volume (m
            yerr = response_setv_df.loc["Infubinol", "Tumor Volume (mm3)"],
            color = 'b', marker = '^', linestyle = '--', label = "Infubinol
ax.errorbar(np.arange(0, 50, 5), response.loc["Ketapril", 'Tumor Volume (mm
            yerr = response setv_df.loc["Ketapril", "Tumor Volume (mm3)",],
            color = 'g', marker = 's', linestyle = '--', label = "Ketapril"
ax.errorbar(np.arange(0, 50, 5), response.loc["Placebo", 'Tumor Volume (mm3
            yerr = response_setv_df.loc["Placebo", "Tumor Volume (mm3)"],
            color = 'purple', marker = 'x', linestyle = '--', label = "Plac"
plt.legend(loc="best", fontsize="small", fancybox=True)
ax.set xlim(0,60)
ax.set_ylim(34, 80)
ax.set_xlabel("Time (days)")
ax.set_ylabel("Tumor Volume (mm3)")
plt.title("Response to Tumor Treatment")
# Save the Figure
```

Out[6]: Text(0.5, 1.0, 'Response to Tumor Treatment')


```
In [7]: # Show the Figure
plt.show()
```

Tumor Response to Treatment

Metastatic Response to Treatment

```
In [8]:
    df = merged_data.loc[:,["Timepoint", "Drug", "Metastatic Sites"]]
    met_means = df.groupby(["Drug", "Timepoint"]).mean()
    met_means.head()
```

Out[8]:

Metastatic Sites

Drug	Timepoint	
Capomulin	0	0.000000
	5	0.160000
	10	0.320000
	15	0.375000
	20	0.652174

```
In [ ]:
```

```
In [9]: # Store the Standard Error associated with Met. Sites Grouped by Drug and I
sems_gb = merged_data.groupby(["Drug", "Timepoint"]).sem()["Metastatic Site
met_sems = pd.DataFrame(sems_gb)
met sems.head()
```

Out[9]:

Metastatic Sites

Drug	Timepoint	
Capomulin	0	0.000000
	5	0.074833
	10	0.125433
	15	0.132048
	20	0.161621

```
In [ ]:
```

```
In [10]: # Minor Data Munging to Re-Format the Data Frames
    reformated_data = met_sems.pivot_table(index='Timepoint',columns='Drug',val
    reformated_data.head()
# Preview that Reformatting worked
```

Out[10]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	Stel
Timepoint									
0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
5	0.074833	0.108588	0.091652	0.098100	0.093618	0.100947	0.095219	0.066332	0.08
10	0.125433	0.152177	0.159364	0.142018	0.163577	0.115261	0.105690	0.090289	0.12
15	0.132048	0.180625	0.194015	0.191381	0.158651	0.190221	0.136377	0.115261	0.15
20	0.161621	0.241034	0.234801	0.236680	0.181731	0.234064	0.171499	0.119430	0.20

In []:

```
# Generate the Plot (with Error Bars)
fig, bc = plt.subplots()
bc.errorbar(np.arange(0, 50, 5), met_means.loc["Capomulin", 'Metastatic Sit
            yerr = met_sems.loc["Capomulin", "Metastatic Sites"],
            color = 'r', marker = 'o', linestyle = '--', label = "Capomulin
bc.errorbar(np.arange(0, 50, 5), met_means.loc["Infubinol", 'Metastatic Sit
            yerr = met sems.loc["Infubinol", "Metastatic Sites"],
            color = 'b', marker = '^', linestyle = '--', label = "Infubinol
bc.errorbar(np.arange(0, 50, 5), met_means.loc["Ketapril", 'Metastatic Site
            yerr = met_sems.loc["Ketapril", "Metastatic Sites",],
            color = 'g', marker = 's', linestyle = '--', label = "Ketapril"
bc.errorbar(np.arange(0, 50, 5), met_means.loc["Placebo", 'Metastatic Sites
            yerr = met_sems.loc["Placebo", "Metastatic Sites"],
            color = 'purple', marker = 'x', linestyle = '--', label = "Plac
plt.legend(loc="best", fontsize="small", fancybox=True)
bc.set xlim(0,50)
bc.set_ylim(0.0, 3.5)
bc.set_xlabel("Treatment Duration (days)")
bc.set_ylabel("Met. Sites)")
plt.title("Metastatic Spread During Treatment")
# Save the Figure
# Show the Figure
plt.show()
```


Metastatic Spread During Treatment

Survival Rates

```
In [12]: # Store the Count of Mice Grouped by Drug and Timepoint (W can pass any met
    mouse = merged_data.groupby(["Drug", "Timepoint"])
    m_count = drug_time["Mouse ID"].count()

m_count_df = pd.DataFrame(m_count)

m_count_df.head()
    # Convert to DataFrame

# Preview DataFrame
```

Out[12]:

Mouse ID

Drug	Timepoint	
Capomulin	0	25
	5	25
	10	25
	15	24
	20	23

```
In [ ]:
```

```
In [13]: # Minor Data Munging to Re-Format the Data Frames
    reformated_mouse = m_count_df.pivot_table(index='Timepoint',columns='Drug',
    reformated_mouse.head()
# Preview the Data Frame
```

Out[13]:

Drug	Capomulin	Ceftamin	Infubinol	Ketapril	Naftisol	Placebo	Propriva	Ramicane	Stelasy
Timepoint									
0	25	25	25	25	25	25	26	25	21
5	25	21	25	23	23	24	25	25	2
10	25	20	21	22	21	24	23	24	2:
15	24	19	21	19	21	20	17	24	2:
20	23	18	20	19	20	19	17	23	2

```
In [14]: mouse_rate = (m_count_df / m_count_df.iloc[0]).round()*100
mouse rate.head()
```

Out[14]:

Mouse ID

Drug	Timepoint	
Capomulin	0	100.0
	5	100.0
	10	100.0
	15	100.0
	20	100.0

```
# Generate the Plot (Accounting for percentages)
fig, de = plt.subplots()
de.errorbar(np.arange(0, 50, 5), m_count_df.loc["Capomulin", 'Mouse ID'],
            yerr = mouse_rate.loc["Capomulin", "Mouse ID"],
            color = 'r', marker = 'o', linestyle = '--', label = "Capomulin"
de.errorbar(np.arange(0, 50, 5), m count df.loc["Infubinol", 'Mouse ID'],
            yerr = mouse_rate.loc["Infubinol", "Mouse ID"],
            color = 'b', marker = '^', linestyle = '--', label = "Infubinol
de.errorbar(np.arange(0, 50, 5), m_count_df.loc["Ketapril", 'Mouse ID'],
            yerr = mouse_rate.loc["Ketapril", "Mouse ID"],
            color = 'g', marker = 's', linestyle = '--', label = "Ketapril"
de.errorbar(np.arange(0, 50, 5), m count df.loc["Placebo", 'Mouse ID'],
            yerr = mouse_rate.loc["Placebo", "Mouse ID"],
            color = 'purple', marker = 'x', linestyle = '--', label = "Plac
plt.legend(loc="best", fontsize="small", fancybox=True)
de.set xlim(0,50)
de.set_ylim(0, 40)
de.set xlabel("Time (days)")
de.set ylabel("Survival Rates (%)")
plt.title("Metastatic Spread During Treatment")
# Save the Figure
# Show the Figure
plt.show()
# Save the Figure
# Show the Figure
plt.show()
```


Metastatic Spread During Treatment

Summary Bar Graph

```
In [16]: # Calculate the percent changes for each drug
         per_change = round(((reformated_response.iloc[9,:] - reformated_response.il
                              reformated_response.iloc[0,:]),0)
         per_change
         # Display the data to confirm
Out[16]: Drug
         Capomulin
                     -19.0
         Ceftamin
                      43.0
         Infubinol
                      46.0
         Ketapril
                      57.0
         Naftisol
                      54.0
         Placebo
                      51.0
         Propriva
                      47.0
         Ramicane
                     -22.0
         Stelasyn
                      52.0
         Zoniferol
                      47.0
         dtype: float64
 In [ ]:
```

```
In [24]: # Store all Relevant Percent Changes into a Tuple
         t_pc = (per_change["Capomulin"],
                        per_change["Infubinol"],
                        per_change["Ketapril"],
                        per change["Placebo"])
         # Splice the data between passing and failing drugs
         fig, pc = plt.subplots()
         pc_len = np.arange(len(per_change))
         width = .7
         rxpass = pc.bar(pc_len[0], t_pc[0:], width, color='green')
         rxfail = pc.bar(pc_len[1], t_pc[1:], width, color='red')
         # Orient widths. Add labels, tick marks, etc.
         pc.set_ylabel("Tumor Volume Change (%)")
         pc.set xlabel("Drugs")
         plt.title("Tumor Change Over 45 Day Treatment")
         pc.set_xticks(pc_len + 0.5)
         pc.set_xticklabels(('Capomulin', 'Infubinol', 'Ketapril', 'Placebo'))
         pc.set autoscaley on(True)
         pc.set_ylim([-30,70])
         pc.grid(True)
         # Use functions to label the percentages of changes
         # Call functions to implement the function calls
         # Save the Figure
         # Show the Figure
         fig.show()
```


Metastatic Spread During Treatment

In []: