Exercícios - 9

Díodos

- 1- Um díodo é caracterizado por um corrente de saturação inversa, I_S , de 0.01nA, uma tensão térmica, v_T , de 25mV à temperatura ambiente, e um coeficiente de emissão, n, de valor unitário. Determine:
- a) as tensões aos terminais do díodo para correntes de 1 e 20mA.
- **b**) a resistência dinâmica do díodo no intervalo de correntes da alínea anterior.
- **2-** Suponha que o díodo do problema anterior é inserido no circuito da fig. 1. Determine:
- *a)* I_D , considerando o díodo descrito pelo modelo exponencial;
- b) a percentagem de erro que obtém no calculo de I_D se considerar o díodo descrito pelo modelo de tensão constante.

3- Considerando os díodos no circuito da fig. 2 descritos pelo modelo de tensão constante, determine os valores de V_o , I_{D1} e I_{D2} .

Fig. 2

4- Considerando os díodos descritos pelo modelo de tensão constante, calcule *V* e *I* nos circuitos da fig. 3.

5- No circuito da fig. 4 considere os díodos ideais. Se as tensões V_A , V_B e V_o forem binárias, com ∂V a representar o valor lógico Falso (F) e ∂V o Verdadeiro (V), qual será a função Booleana implementada pelo circuito?

6- Considerando no circuito da fig. 5 $v_s(t)$ uma tensão sinusoidal com $20V_{pp}$ (centrada em zero) e o díodo descrito pelo modelo de tensão constante, determine o valor da tensão inversa máxima no díodo. Calcule também a corrente máxima no díodo.

7- Para cada um dos circuitos da fig. 6 considere os díodos descritos pelo modelo de tensão constante. Determine os valores mínimo e máximo de v_0 , considerando que v_I é uma tensão que varia entre -10 e +10V.

- **8-** No circuito da fig. 7 considere v_s uma tensão sinusoidal de 50Hz com $43.4V_{pp}$ e o díodo descrito pelo modelo de tensão constante. Calcule:
- a) o valor de C de forma a ter na saída um tensão de ripple de 2V;
- **b**) a tensão inversa máxima a que o díodo fica submetido.

- **9-** No circuito da fig. 8 suponha que v_I é uma tensão quadrada com 10kHz, $20V_{pp}$ e centrada em zero. Calcule:
- a) os valores mínimo, máximo e médio de v_0 ;
- **b**) os valores mínimo, máximo e médio da corrente nos zeners.

Fig. 8

- **10-** No circuito da fig. 9 suponha que v_I é uma tensão positiva, ondulatória produzida por um rectificador com filtragem. Esta tensão tem um máximo de 15V e um ripple de 3V. O elemento Carga consome 0.81W mas pode ser desligado (0W). O díodo Zener é usado para estabilizar a tensão neste elemento, devendo ser percorrido por uma corrente de, no mínimo, 10mA. Calcule:
- a) o valor de R.
- b) a potência máxima dissipada pelo díodo Zener.
- c) a potência máxima dissipada em R.

Respostas

1- a)
$$V(1mA) = 0.461V$$
; $V(20mA) = 0.535V$; **b)** $r_d = 3.9\Omega$.

2- a)
$$I_D = 4.32mA$$
; **b)** $I_D = 4.23mA$, $\varepsilon = -2.1\%$.

3-
$$V_0 = 0.7V$$
 , $I_{D1} = 2.25mA$, $I_{D2} = 2.95mA$.

4- a)
$$V = 9.53V$$
, $I = 0A$; **b)** $V = 5.3V$, $I = 5.3mA$; **c)** $V = 28.6V$, $I = 32.5mA$.

5- Função lógica AND: $V_o = V_A \wedge V_B$.

6-
$$V_{inv(max)} = 1.4V$$
, $I_{max} = 1.58A$.

7- a)
$$v_O(v_I = -10V) = 4.3V$$
, $v_O(v_I = +10V) = 10V$;

b)
$$v_o(v_I = -10V) = -10V$$
, $v_o(v_I = +10V) = 6.82V$;

8-a)
$$C = 2.1mF$$
; **b)** $V_{inv(max)} = 42.7V$.

9- a)
$$v_{O(\min)} = -4V$$
, $v_{O(\max)} = 5V$, $\overline{v_O} = 0.5V$;

b)
$$I_{\text{(min)}} = -6mA$$
, $I_{\text{(max)}} = 5mA$, $\overline{I} = -0.5mA$.

10- a)
$$R = 30\Omega$$
; **b)** $P_{Z(\text{max})} = 1.8W$,

c)
$$P_{R(\text{max})} = 1.2W$$
.