In [1]: # This Python 3 environment comes with many helpful analytics libraries installed
It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-p
ython

For example, here's several helpful packages to load in

import warnings

warnings.filterwarnings('ignore')

import numpy as np # linear algebra

import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)

import seaborn as sns

import matplotlib.pyplot as plt

Input data files are available in the "../input/" directory.

For example, running this (by clicking run or pressing Shift+Enter) will list the f iles in the input directory

Any results you write to the current directory are saved as output.

In [2]: haberman = pd.read_csv("haberman.csv")
haberman.head()

Out[2]:

	age	year	nodes	status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

In [3]: haberman.columns=["age","year","nodes","status"]
haberman.head()

Out[3]:

	age	year	nodes	status
0	30	64	1	1
1	30	62	3	1
2	30	65	0	1
3	31	59	2	1
4	31	65	4	1

3/4/2019
In [4]: print("Shape:",haberman.shape)
print("",haberman.info())

Shape: (306, 4)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 306 entries, 0 to 305
Data columns (total 4 columns):
age 306 non-null int64
year 306 non-null int64
nodes 306 non-null int64
status 306 non-null int64

dtypes: int64(4)
memory usage: 9.6 KB

None

In [5]: haberman.describe()

Out[5]:

	age	year	nodes	status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

```
In [6]: haberman['status'] = haberman['status'].map({1:'survived', 2:'dead'})
```

In [7]: haberman.groupby("status").count()

Out[7]:

	age	year	nodes
status			
dead	81	81	81
survived	225	225	225

Observation

the dataset is unbalanced

- 224 observations where the patient dint survive over 5 years
- 81 observations wherer the patient survived over 5 years

Univariable Analysis

Haberman_EDA print("Box plot of age") In [8]: sns.boxplot(x='status',y='age', data=haberman) plt.show()

Box plot of age

In [9]: print("Box plot of year") sns.boxplot(x='status',y='year', data=haberman) plt.show()

Box plot of year


```
3/4/2019
In [10]: Haberman_EDA
In [10]: print("Box plot of nodes")
sns.boxplot(x='status',y='nodes', data=haberman)
plt.show()
```

Box plot of nodes

Observations

Box plot shows that, the more number of axil nodes, the more patients likely to die

The patients who had axil nodes from 1 to 24 are the majority of patients who died.

2-D Scatter Plot

Here with this scatter plot we get insight that patients with 0 axil nodes are more likely to survive irrespective to there age.

It is very much less likely to have patients with axil nodes more than 30.

Patients who are older than 50 and have axil nodes greater than 10 are more likely to die.

```
In [12]: Haberman_EDA

ax = sns.scatterplot( x='nodes', y='year', data=haberman,hue="status")
plt.show()
```


Here we can conclude that large number of operation were done in span of 7 years between 1960 and 1966

Looks uniform through out the years

Pair Plot

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:2065: UserWarning: Th
e `size` parameter has been renamed to `height`; pleaes update your code.
warnings.warn(msg, UserWarning)

Histograms and PDF

```
In [26]:
```

```
## age histogram
sns.FacetGrid(haberman, hue="status", size=5) \
    .map(sns.distplot, "age") \
    .add_legend();
plt.show();
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The
`size` paramter has been renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The
`size` paramter has been renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

3/4/2019 Haberman_EDA

1. This histogram is overlapping each other, but still we can say that people within range of 40-60 are more likely to die.

2.People less than age 40 are more likely to survive

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\axisgrid.py:230: UserWarning: The
`size` paramter has been renamed to `height`; please update your code.
 warnings.warn(msg, UserWarning)

We can conclude that from this histogram (axil_node) that, Patients having 0 axil nodes are more likely to survive

In [21]: sns.jointplot(x="year", y="age", data=haberman, kind="kde");
plt.show();

In [22]: sns.jointplot(x="year", y="nodes", data=haberman, kind="kde");
plt.show();

In [23]: sns.jointplot(x="age", y="nodes", data=haberman, kind="kde");
plt.show();

Final Conclusion

- 1. From this Dataset we can say that the majority of operations are performed on people age range between 38 and 68, where most of the points plotted on scatter plot (Operation_year vs Age)
- 2. We can see that there is quite good concentration of data point When axil_node is 0.
- 3. Here with this scatter plot we get insight that patients with 0 axil nodes are more likely to survive irrespective to there age as the axillary nodes detected is 0
- 4. Patients with axil nodes more than 30.have a very low survival rate.
- 5. Patients who are older than 50 have a very low survuval rate
- 6. People less than age 40 are more likely to survive
- 7. the more number of axil nodes is directly corelated with the likelyhood of death