

ABSTRACT
AN OPTICAL WAVEGUIDE STRUCTURE

A waveguide structure according to the invention comprises a core layer (10),
5 having a refractive index n_{core} , and an array of rods (11) in the core layer having a
refractive index n_{rods} . The refractive indices satisfy the inequality:

$$n_{rods} > n_{core}.$$

In a planar waveguide structure buffer (12) and cladding (13) layers are
included, having a refractive index n_{buffer} and $n_{cladding}$ respectively. The refractive
10 indices then satisfy the inequality:

$$n_{rods} > n_{core} > n_{cladding} \text{ and } n_{buffer}.$$

This condition provides greater vertical confinement of the E-field of an optical
signal passing through the waveguide. Furthermore, it allows waveguides to be
formed of a glassy material having a similar refractive index and core dimensions to
15 that of a fibre. A high refractive index contrast within the photonic crystal region is
used while totally eliminating the need for mode conversion to launch light in and out
of the waveguide.

(Figure 2)