姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月24日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月24日

目录

第一章	常微分方程	1
1.1	一阶微分方程	1
1.2	二阶常系数线性微分方程	8
1.3	高阶常系数线性齐次微分方程	12
1.4	二阶可降阶微分方程	13
1.5	欧拉方程	13
1.6	变量代换求解二阶变系数线性微分方程	14
1.7	微分方程综合题	15

第一章 常微分方程

1.1 一阶微分方程

1. (1998, 数一、数二) 已知函数 y=y(x) 在任意点 x 处的增量 $\Delta y=\frac{y\Delta x}{1+x^2}+\alpha$, 其中 α 是 Δx 的高阶无穷小, $y(0)=\pi$,则 y(1) 等于

(A) 2π (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

2. (2002, 数二) 已知函数 f(x) 在 $(0,+\infty)$ 内可导, f(x)>0, $\lim_{x\to+\infty}f(x)=1$, 且满足

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}$$

求 f(x)。

3. (1999, 数二) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0 & (x > 0) \\ y|_{x=1} = 0 \end{cases}$$

4. (2010, 数二、数三) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解。 若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

(A)
$$\lambda = \frac{1}{2}, \ \mu = \frac{1}{2}$$
 (B) $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$

(C)
$$\lambda = \frac{2}{3}, \ \mu = \frac{1}{3}$$
 (D) $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$

- 5. (2018, 数一) 已知微分方程 y' + y = f(x), 其中 f(x) 是 \mathbb{R} 上的连续函数。
 - (1) 若 f(x) = x, 求方程的通解;
 - (2) 若 f(x) 是周期为 T 的函数, 证明: 方程存在唯一的以 T 为周期的解。

6. 求解微分方程 $y' - \frac{4}{x}y = x^2\sqrt{y}$.

 ${\color{red} Solution}.$

7. 求解下列微分方程:

(1)
$$(2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0;$$

$$(2) \frac{2x}{y^3} dx + \frac{y^2 - 3x^2}{y^4} dy = 0.$$

1.2 二阶常系数线性微分方程

- 8. (2017, 数二) 微分方程 $y'' 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* =$
 - (A) $Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - (B) $Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - (C) $Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$
 - (D) $Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$

9. (2015, 数一) 设 $y=\frac{1}{2}e^{2x}+(x-\frac{1}{3})e^x$ 是二阶常系数非齐次线性微分方程 $y''+ay'+by=ce^x$ 的一个特解,则

(A)
$$a = -3, b = 2, c = -1$$
 (B) $a = 3, b = 2, c = -1$

(B)
$$a = 3, b = 2, c = -1$$

(C)
$$a = -3, b = 2, c = 1$$
 (D) $a = 3, b = 2, c = 1$

(D)
$$a = 3$$
 $b = 2$ $c = 1$

10. (2016, 数二) 已知 $y_1(x) = e^x, y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y'' - (2x+1)y' + 2y = 0 的两个解。若 u(-1) = e, u(0) = -1,求 u(x),并写出该微分方程的通解。

- 11. (2016, 数一) 设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1。
 - (1) 证明反常积分 $\int_0^{+\infty} y(x) dx$ 收敛;
 - (2) 若 y(0) = 1, y'(0) = 1, 求 $\int_0^{+\infty} y(x) dx$ 的值。

1.3 高阶常系数线性齐次微分方程

12. 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$ 。

1.4 二阶可降阶微分方程

13. 求微分方程 $y''(x+y'^2) = y'$ 满足初始条件 y(1) = y'(1) = 1 的特解。

 \square

1.5 欧拉方程

14. 求解微分方程 $x^2y'' + xy' + y = 2\sin\ln x$ 。

1.6 变量代换求解二阶变系数线性微分方程

17. (2005, 数二) 用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1-x^2)y'' - xy' + y = 0$, 并求其满足 $y|_{x=0} = 1, y'|_{x=0} = 2$ 的特解。

1.7 微分方程综合题

18. (2001, 数二) 设 L 是一条平面曲线, 其上任意一点 P(x,y)(x>0) 到坐标原点的距离, 恒等于该点处的切线在 y 轴上的截距, 且 L 经过点 $(\frac{1}{2},0)$ 。求曲线 L 的方程。

19. (2009, 数三) 设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0。已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的立体体积 值是该曲边梯形面积值的 πt 倍, 求该曲线的方程。

20. (2016, 数三) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$, 求 f(x)。

21. (2014, 数一、数二、数三) 设函数 f(u) 具有二阶连续导数, $z=f(e^x\cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式。

22. (2011, 数三) 设函数 f(x) 在区间 [0,1] 上具有连续导数,f(0)=1, 且满足

$$\iint_{D_t} f'(x+y) dx dy = \iint_{D_t} f(t) dx dy$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t\} (0 < t \le 1)$, 求 f(x) 的表达式。