Bit Sum Problem KPS

No Author Given

No Institute Given

The system counts the number of descendants in a tree-like structure of nodes.

$$sk\Pi_{Broadcast}(n) = (A, L, IO, \mu, \{C_i\}_{i=0}^3),$$

where:

- $-A = \{a, b, c\}$ is the alphabet.
- $-L = \{0, 1, 2, 3\}$ is the set of labels corresponding to levels in the tree.
- $-IO = \emptyset$, as there is no external input/output.
- $-\mu$ is the membrane structure representing the hierarchy:

$$\mu = [[[[\]_3]_2]_1]_0.$$

- Compartments:
 - $C_0 = (0, w_{0,0}, R_0)$, the root node.
 - $C_1 = (1, w_{1,0}, R_1)$, the first level of child nodes.
 - $C_2 = (2, w_{2,0}, R_2)$, the second level of child nodes.
 - $C_3 = (3, w_{3,0}, R_3)$, the third level of child nodes.

Rules for Each Compartment

Rules in C_0 (Level 0)

$$r_{0,1}: a \to a(1).$$

 $r_{0,2}: a \to \emptyset.$

Rules in C_1 (Level 1)

$$r_{1,1}: b \to b, b(0).$$

 $r_{1,2}: a \to b(0), a(2).$
 $r_{1,3}: a \to \emptyset.$
 $r_{1,4}: c \to \emptyset(0).$

Rules in C_2 (Level 2)

$$\begin{split} r_{2,1} : b &\to b, b(1). \\ r_{2,2} : a &\to b(1), a(3). \\ r_{2,3} : a &\to \emptyset. \\ r_{2,4} : c &\to \emptyset(1). \end{split}$$

Rules in C_3 (Level 3)

$$r_{3,1}: a \to b(2).$$

 $r_{3,2}: a \to \emptyset.$
 $r_{3,3}: c \to \emptyset(2).$

Initial Configuration

```
\begin{array}{l} - \ C_0\colon w_{0,0} = \{10a\}. \\ - \ C_1\colon w_{1,0} = \{c\} \text{ in nodes } m_{10}, m_{11}, m_{12}. \\ - \ C_2\colon w_{2,0} = \{c\} \text{ in nodes } m_{20}, m_{21}, m_{22}, m_{23}, m_{24}, m_{25}. \\ - \ C_3\colon w_{3,0} = \{c\} \text{ in nodes } m_{30}, m_{31}, m_{32}, m_{33}, m_{34}, m_{35}, m_{36}, m_{37}. \end{array}
```

Communication Links

$$\begin{split} C_0 &\to \{C_1\}. \\ m_{10} &\to \{m_{20}\}. \\ m_{11} &\to \{m_{21}, m_{22}, m_{23}\}. \\ m_{12} &\to \{m_{24}, m_{25}\}. \\ m_{20} &\to \{m_{30}, m_{31}\}. \\ m_{21} &\to \{m_{32}, m_{33}\}. \\ m_{25} &\to \{m_{34}, m_{35}, m_{36}, m_{37}\}. \end{split}$$

References