

Prof. David Cooke

Feb. 6, 2018

MARKING SCHEME

Title	Weight
Introduction to the PC report Counting statistics report Calibration of Arduino microcontroller report Calibration of Arduino microcontroller test Properties of laser report Temperature controller report	10% 15% 5% 10% 15%
Project proposal Project report Log book	5% 20% 5%

February 26, deadline for project proposal. 1 month away!!

LAB OVERVIEW

• GOAL OF THIS LAB:

- Calibration of Digital to Analog Converter (DAC)
- Calibration of Analog to Digital Converter (ADC)

MHAš

- To CONTROL something, you need to know the calibrated voltage corresponding to the digital number you send to the microcontroller.
- To READ something, it often sends you a voltage related to a physical quantity so the value must be calibrated for it to mean something.

DAC (note: not true analog out)

ARDUINO I/O

8-bit digital number sent to outputs = N_{DAC}

- $2^8 = 256$
- i.e. input ranges from 0 to 255 (unsigned)

PULSE WIDTH MODULATION

- The catch...NOT a real DAC.
- Uses Pulse Width Modulation + low pass filter.
- Input changes <u>duty cycle</u>.

Pulse Width Modulation 0% Duty Cycle - analogWrite(0) 25% Duty Cycle - analogWrite(64) 50% Duty Cycle - analogWrite(127) 75% Duty Cycle - analogWrite(191) 5v 100% Duty Cycle - analogWrite(255)

FAKING A DAC

Voltage out (V)

Low pass filter

Time (seconds)

CALIBRATION

- Use a voltmeter to calibrate your pseudo-DAC.
 - Use linear regression to determine DAC characteristics.
 - Write function to give a voltage on command.
- Use your new DAC to:
 - Write to your ADC's, check if working/similar characteristics
 - Write function GetVoltage()
 - Investigate low pass filter using oscilloscope.
- Make a function generator!
 - Demonstrate sinewave, triangle, squarewave and sawtooth
 - Discuss limitations of generator in report
 - I will verify that it works and question you on its limitations (5 points)