Métodos Multivariados: Tarea 3

Aldo, Diego, Mateo, Victor 2026-03-02

Ejercicio 1

Encuentra los estimados máximo-verosímiles del vector promedio μ y la matriz de covarianzas Σ de la muestra aleatoria X de una población normal bivariada.

La muestra aleatoria X es:

$$X = \begin{bmatrix} 3 & 6 \\ 4 & 4 \\ 5 & 7 \\ 4 & 7 \end{bmatrix}$$

Los estimados máximo-verosímiles son:

Para el vector promedio μ :

$$\mu = \begin{pmatrix} 4.0 \\ 6.0 \end{pmatrix}$$

Para la matriz de covarianzas Σ :

$$\Sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})'$$

$$\Sigma = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & 2 \end{pmatrix}$$

Ejercicio 2

Sean (x_1,\ldots,x_{20}) una muestra de una población (N_6 (μ,Σ)). Especificar cada una de las distribuciones completamente de las siguientes variables:

a.
$$(x_1 - \mu)\Sigma^{-1}(x_1 - \mu)$$

La variable $(x_1 - \mu)' \Sigma^{-1}(x_1 - \mu)$ es una forma cuadrática que, bajo la suposición de normalidad multivariada, sigue una distribución Chi-cuadrado con k grados de libertad, donde k es la dimensión del vector x_i . En este caso, k=6 debido a que la muestra proviene de una distribución normal multivariada de dimensión 6.

b.
$$\bar{x}$$
 y $\sqrt{n}(\bar{x}-\mu)$

El vector de medias de la muestra \bar{x} sigue una distribución normal multivariada $\mathcal{N}_6(\mu, \frac{1}{n}\Sigma)$. La variable $\sqrt{n}(\bar{x}-\mu)$, que es un escalamiento de \bar{x} , sigue una distribución normal multivariada $\mathcal{N}_6(0,\Sigma)$ debido al Teorema del Límite Central, que aplica incluso en el contexto multivariado.

c.
$$(n-1)S$$

La matriz S es la matriz de covarianzas de la muestra y, al multiplicarla por (n-1), obtenemos una variable que sigue una distribución Wishart con n-1 grados de libertad y matriz de parámetro Σ . Esto se debe a que la distribución Wishart es la generalización de la distribución Chi-cuadrado para matrices de covarianzas muestrales.

d.
$$n(\bar{x}-\mu)'\Sigma^{-1}(x-\mu)$$
 (distribución aproximada)

La variable $n(\bar{x}-\mu)'\Sigma^{-1}(\bar{x}-\mu)$ es una forma cuadrática basada en la media de la muestra. Bajo la suposición de normalidad multivariada, seguiría una distribución Chi-cuadrado con k grados de libertad si \bar{x} fuera la verdadera media poblacional. Sin embargo, como \bar{x} es una estimación, la distribución resultante es solo aproximadamente Chi-cuadrado y esta aproximación mejora con el tamaño de la muestra. En este caso, k=6 ya que es la dimensión del vector \bar{x} .

```
# El código R debe realizar alguna operación o demostración relevante para el ejercicio.

# Por ejemplo, si se espera calcular algo basado en la descripción, incluye el código necesa:

# Si el "cat('jola')" es un marcador de posición, reemplázalo con el código pertinente o elim

# Ejemplo de código R (reemplaza con el cálculo o demostración adecuada):

# print("Aquí va el código R relevante para el ejercicio")
```