Basic definitions of kinematics

· position: $\vec{x} = \langle x, y \rangle$

· displacement: $\Delta \vec{x} = \vec{x}_f - \vec{x}_i$ for finite displacement

· instantaneous velocity: $\vec{v} = \frac{d\vec{x}}{dt}$

· instantaneous acceleration: $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{x}}{dt^2}$

Kinematic equations, $\vec{v} = \text{constant (i.e., } \vec{a} = 0)$

$$\cdot \ \vec{v} = \frac{\Delta \vec{x}}{\Delta t}$$

$$\cdot \vec{x}_f = \vec{x}_i + \vec{v}\Delta t$$

Kinematic equations, $\vec{a} \neq 0$ and $\vec{a} = \text{constant}$

$$\cdot \ \vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

$$\cdot \vec{v}_f = \vec{v}_i + \vec{a}\Delta t$$

$$\cdot \ \Delta \vec{x} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

$$(v_{x,f})^2 - (v_{x,i})^2 = 2a_x \Delta x$$
 and $(v_{y,f})^2 - (v_{y,i})^2 = 2a_y \Delta y$

$$\cdot$$
 common example of $a={\rm constant}$ is $g=9.81~{\rm m/s^2}$

Motion of object A relative to object C

$$\cdot \ \vec{v}_{ac} = \vec{v}_{ab} + \vec{v}_{bc}$$

Basic definitions for circular and rotational motion

· angular position: $\theta(\text{radians}) = \frac{s}{r}$; s = arclength, r = radius

· angular displacement: $\Delta \theta = \theta_f - \theta_i$

· angular velocity: $\omega = \frac{d\theta}{dt} = 2\pi f = \frac{2\pi}{T}$; f =frequency, T =period

· angular acceleration:
$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

Kinematic equations for constant angular acceleration

$$\cdot \ \omega_f = \omega_i + \alpha \Delta t$$

·
$$\Delta \theta = \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2$$
; if $\alpha = 0$, $\omega_f = \omega_i = \text{constant}$.

$$\cdot \ \omega_f^2 - \omega_i^2 = 2\alpha\Delta\theta$$

Speed, acceleration, and forces

· speed: $v = \omega r$

· centripetal acceleration: $a_c = \frac{v^2}{r} = \omega^2 r$

· centripetal force: $F_c = ma_c = m\frac{v^2}{r} = m\omega^2 r$; points toward center of circle

· tangential acceleration: $a_t = \alpha r$

Newton's Laws

1. if $\vec{F}_{net} = 0 \Rightarrow \vec{a} = 0$

 $2. \ \sum \vec{F} = m\vec{a}$

3. $\vec{F}_{12} = -\vec{F}_{21}$

Types of forces

· Newton's Law of Gravity: $F_{12} = F_{21} = \frac{Gm_1m_2}{r^2}$; points from one object to another; this can also be expressed as $\vec{F}_{12} = -\frac{Gm_1m_2}{r^2}\hat{r}_{12}$ where \hat{r}_{12} is the unit vector that points from object 1 to object 2.

- Gravitational constant: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

. For objects near the Earth's surface, $F_g=mg$

· normal force, \vec{F}_n , is perpendicular to surface and prevents objects from penetrating the surface

· frictional force depends on \vec{F}_n and \vec{v}

- if $\vec{v}=0$ use static friction; \vec{F}_s balances other forces as long as $\left|\vec{F}_s\right| \leq \mu_s \left|\vec{F}_n\right|$

- if $\vec{v} \neq 0$ use kinetic friction; $\left| \vec{F}_k \right| = \mu_k \left| \vec{F}_n \right|$

· tensional force, \vec{F}_t , is transmitted through a rope and around pulleys

Impulse and momentum

· momentum, $\vec{p} = m\vec{v}$

· Newton's second law, $\sum \vec{F} = \frac{d\vec{p}}{dt}$

· Impulse-Momentum Theorem, $\vec{J} = \Delta \vec{p} = \int_{t_0}^{t_1} \vec{F}_{net} \, dt = \vec{F}_{avg} \Delta t$

· total momentum, $\vec{P} = \vec{p_1} + \vec{p_2} + \dots$

· conservation of momentum, $\Delta P = 0$ if $\vec{F}_{net} = 0$ or if \vec{F}_{net} is small compared to other forces for short Δt

Orbits and gravity

· orbital velocity: $v = \sqrt{\frac{GM}{r}}$ at a distance of r from the center of a planet with mass M

Torque and moment of inertia

- · Torque: $\tau = rF_{\perp}$; F_{\perp} is force perpendicular to radial axis; depending on what angles are given, you may find that $F_{\perp} = F \sin \phi$
- · Newton's Second Law for rotation: $\sum \tau = I\alpha = \frac{dL}{dt}$; L =angular momentum.
- \cdot Moment of inertia: I, indicates how difficult it is to rotate an object
- · Conservation of angular momentum: if $\tau_{ext} = 0$ then $\Delta L = 0$.
- · Rolling constraint: $v = \omega R$ and $a = \alpha R$; rolling object, with perfect friction, moves forward with this velocity

Static equilibrium

$$\cdot \sum F_x = 0; \sum F_y = 0; \sum \tau = 0$$

 \cdot Choose convenient pivot point

Stability and balance

- · Does torque restore object to its original position?
- · Critical angle: $\theta_c = \tan^{-1}\left(\frac{t}{2h}\right)$; t =width of object's base, h is the height to the center of mass

Springs and elasticity

- · Hooke's 'Law': $F = -k\Delta x$; k is empirically determined spring constant
- · For elastic materials, $k = \frac{YA}{L}$; Y = Young's modulus
- · Hooke's Law sometimes written $\left(\frac{F}{A}\right) = Y\left(\frac{\Delta L}{L}\right)$; stress = $Y \times$ strain

Energy and work

- · Total energy: $E = K + U_g + U_s + E_{th} + \dots$
- · Work: $W = \int_{x_0}^{x_1} F_{ext} dx = \Delta E$; mechanical transfer of energy into or out of a system
- · Conservation of energy: for an isolated system, $F_{ext} = 0$ and therefore and therefore $W = \Delta E = 0$.
- · Work: $W = F_{\parallel} \cdot d$; force × displacement
- · Translational kinetic energy: $K_{trans} = \frac{1}{2}mv^2$; scalar quantity (note that v is speed, not velocity)

- · Rotational kinetic energy: $K_{rot} = \frac{1}{2}I\omega^2$
- · Total kinetic energy: $K = K_{trans} + K_{rot}$
- · Gravitational potential energy: $\Delta U_g = mg\Delta y$; choose convenient reference height
- · Elastic potential energy: $U_s = \frac{1}{2}k(\Delta x)^2$; k is the spring constant
- · Thermal energy (from friction): $\Delta E_{th} = F_f \Delta x$
- · Conservation of mechanical energy: for isolated system with no friction, $\Delta K + \Delta U_g + \Delta U_s = 0$
- · Power: $P = \frac{dE}{dt}$

Thermodynamics

- · 1st Law: $Q + W = \Delta E$; Q is heat transferred into or out of the system
- · 2nd Law: Entropy in a closed system (which describes disorder) can never decrease
- · energy needed to change material's temperature: $Q = mc\Delta T$; c is the specific heat capacity, a material property
- · energy need to change a material's phase: $Q = \pm mL_f$ to melt solid and $Q = \pm mL_v$ to turn liquid into gas; use negative sign if going from gas to liquid or liquid to solid
- · $L_v > L_f$ (specific latent heat of vaporization is greater than specific latent heat of fusion)
- · conduction: $\frac{Q}{\Delta t} = \left(\frac{kA}{L}\right) \Delta T$; k is thermal conductivity
- · advection/convection: need to solve for motion of an object
- · radiation: $\frac{Q}{\Delta t} = e\sigma A T^4$; e is emissivity and $\sigma = 5.67 \times 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}$ is the Stefan-Boltzmann constant
- · ideal gas law: PV = nRT, where R = 8.314 J/(mol · K) is the gas constant
- · for ideal gas in enclosed, insulated container, $\frac{PV}{T}$ = constant
- · work done by expanding a gas at constant pressure: $W_{\rm gas} = P \Delta V$
- · note that for gases, specific heat at constant pressure c_p differs from specific heat at constant volume c_v . c_p is approximately 50% larger than c_v
- · Conversions: 1 cm³=10^6 m³; 1 atm = 101.3 kPa

Fluids

- · density: $\rho = \frac{m}{V}$
- · hydrostatic pressure: $P = \rho gd + P_0$; P_0 is pressure from above
- · gauge pressure: $P_g = P_{gas} P_{atm}$; $P_{atm} = 101.3 \text{ kPa}$

- · Archimedes' principle (upward buoyant force): $F_b = \rho_f gV$; ρ_f is fluid density and V is volume displaced
- · flux: Q = vA; Q is constant in a pipe for ideal fluid
- · Bernoulli's equation: along a streamline, $P + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$

Simple harmonic motion

- · displacement: $x(t) = A\cos(2\pi ft)$
- · velocity: $v(t) = -v_{\text{max}} \sin(2\pi f t)$
- · acceleration: $a(t) = -a_{\text{max}} \cos(2\pi f t)$
- $v_{\text{max}} = 2\pi f A$ and $a_{\text{max}} = (2\pi f)^2 A$
- · for a spring, $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$; for a pendulum, $f = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$
- · damped oscillation: $x(t) = A \exp^{-t/\tau} \cos(2\pi f t)$, where τ is a decay constant

Waves

- · in general, $v = \lambda/T$, where λ is wavelength and T is period
- · velocity of a wave on a string: $v = \sqrt{\frac{F_t}{\mu}}$, where μ is linear density
- · velocity of sound waves in ideal gas: $v = \sqrt{\frac{\gamma RT}{M}}$, where γ is adiabatic index, R is the gas constant, T is temperature in Kelvin, and M is the molar mass
- · travelling wave displacement: $y(x,t) = A \sin(2\pi \frac{x}{\lambda} \pm 2\pi \frac{t}{T} + \phi)$; Use if wave is travelling to the right, + if it is travelling to the left
- · Doppler effect: $f = f_0\left(\frac{v}{v \pm v_s}\right)$; v_s is speed of source, v is wave speed. Use + if the source is moving away from the receiver, if the source is moving toward the receiver.
- · wave superposition: $y(x,t) = y_1 + y_2 + y_3$ where y_i are given by different amplitudes, wavelengths, and frequencies/periods.
- · standing wave displacement: $y(x,t) = A \sin\left(2\pi\left(\frac{x}{\lambda} \frac{t}{T}\right)\right) + A \sin\left(2\pi\left(\frac{x}{\lambda} + \frac{t}{T}\right)\right)$
- · harmonics: $\lambda_m = \frac{2L}{m}$, where m = 1, 2, 3...; for a string that is pinned on both ends, a tube that is open on both ends, and a tube that is closed on both ends.
- · harmonics: $\lambda_m = \frac{4L}{m}$, where m = 1, 3, 5...; for a tube that is open on one end and closed on the other