

Regression on distributions based on regularized Optimal Transport

Léonard Gousset Louis Allain Julien Heurtons

Methodological project - Groupe 37

January 2024

INTRODUCTION 1/3

Problem:

Find the best shape for a blade

A blade in \mathbb{R}^3

Fluid dynamics simulation

Aerodynamic coefficient 0.648

INTRODUCTION 2/3

2 majors problems

Simulation too heavy

x_1	0.256	
x_2	14.89	
•••	•••	
<i>x</i> ₄₀	78.02	
Coefficie	nt	
0.6	648	

INTRODUCTION 2/3

2 majors problems

Simulation too heavy

Can't always do it

INTRODUCTION 3/3

Goal:

Find a model to make predictions of the aerodynamic coefficient

Machine Learning for regression

x	у		
Distribution 1	0.465		
Distribution 2	0.586		
•••	•••		
Distribution p	0.258		

INTRODUCTION 3/3

Goal:

Find a model to make predictions of the aerodynamic coefficient

Machine Learning for regression

x	у		
Distribution 1	0.465		
Distribution 2	0.586		
•••	•••		
Distribution p	0.258		

Kernel for comparing Distributions

SUMMARY

I. Reminder on Kernel Ridge Regression

II. Optimal Transport

- 1. Monge problem
- 2. Kantorovich formulation
- 3. Regularized Optimal Transport

III. Suggested Kernel

- 1. Definitions
- 2. Properties

IV. Applications

SUMMARY

I. Reminder on Kernel Ridge Regression

II. Optimal Transport

- 1. Monge problem
- 2. Kantorovich formulation
- 3. Regularized Optimal Transport

III. Suggested Kernel

- 1. Definitions
- 2. Properties

IV. Applications

Ridge Regression with a kernel

$$\min_{f \in \mathcal{H}_k} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}_k}^2$$

Ridge Regression with a kernel

$$\min_{f \in \mathcal{H}_k} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}_k}^2$$

Formulation with the Representer Theorem

$$\min_{\alpha \in \mathbb{R}^n} ||Y - K\alpha||^2 + \lambda \alpha^{\mathsf{T}} K\alpha$$

Kernel Ridge estimator

$$\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k\left(\cdot, x_i\right)$$

Kernel Ridge estimator

$$\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k\left(\cdot, x_i\right)$$

Additional remarks

If K is the linear kernel, we have: $K=X^\intercal X$ and we have the same formulation as the ridge regression

Kernel Ridge estimator

$$\hat{f} = \sum_{i=1}^{n} \hat{\alpha}_i k\left(\cdot, x_i\right)$$

Additional remarks

If K is the linear kernel, we have: $K=X^\intercal X$ and we have the same formulation as the ridge regression

With the linear Kernel and when $\lambda \to 0$, we get the usual linear regression

SUMMARY

I. Reminder on Kernel methods

II. Optimal Transport

- 1. Monge problem
- 2. Kantorovich formulation
- 3. Regularized Optimal Transport

III. Suggested Kernel

- 1. Definitions
- 2. Properties

IV. Applications

Gaspard Monge (1746-1818)

« MASS TRANSPORTATION »

Gaspard Monge (1746-1818)

« MASS TRANSPORTATION »

Gabriel Peyré – 2020 « Computational Optimal Transport »

Discrete-Discrete

Continuous-Continous

Continuous-Discrete

Gaspard Monge (1746-1818)

« MASS TRANSPORTATION »

Gabriel Peyré – 2020 « Computational Optimal Transport »

Discrete-Discrete

Continuous-Continous

Continuous-Discrete

2 discretes distributions: Breweries and Pubs

$$\mathbf{i} \in \{1, 2, 3, 4, 5\}$$
 $\mathbf{j} \in \{1, 2, 3, 4, 5\}$

$$\alpha = \sum_{i=1}^{5} a_i \delta_{x_i}$$
 $\beta = \sum_{i=1}^{5} b_i \delta_{y_i}$

2 discretes distributions: Breweries and Pubs

$$\mathbf{i} \in \{1, 2, 3, 4, 5\}$$
 $\mathbf{j} \in \{1, 2, 3, 4, 5\}$

$$\mathbf{\alpha} = \sum_{i=1}^{5} a_i \delta_{x_i}$$
 $\mathbf{\beta} = \sum_{i=1}^{5} b_i \delta_{y_i}$

Transport map:

$$T: \{1, \ldots, 5\} \rightarrow \{1, \ldots, 5\}$$

Solve:

$$\min_{T} \left\{ \sum_{i} c(x_i, T(x_i)) : T_{\sharp} \alpha = \beta \right\}$$

Solve:

$$\min_{T} \left\{ \sum_{i} c(x_i, T(x_i)) : T_{\sharp} \alpha = \beta \right\}$$

With:

C _{ij}	y 1	y 2	у з	y 4	y 5
X 1	8	12	22	30	25
X ₂	18	2	13	29	12
X 3	12	5	13	26	17
X 4	7	18	18	16	27
X 5	17	7	6	23	10

C _{ij}	y 1	y ₂	y 3	y 4	y 5
X 1	8	12	22	30	25
X 2	18	2	13	29	12
X 3	12	5	13	26	17
X 4	7	18	18	16	27
X 5	17	7	6	23	10

Total Cost = 47

Optimal Transport map:

$$T: \{1,2,3,4,5\} \rightarrow \{1,5,2,4,3\}$$

1

Computationally impossible

```
x_i: i \in \{1, ..., 5\} y_j: j \in \{1, ..., 5\}

Permutations \sigma: \{1, ..., 5\} \rightarrow \{1, ..., 5\}

5! = 120

permutations possibles
```

23 bars and breweries:

 $23! = 2.585202 \times 10^{22}$ permutations possibles

1

Computationally impossible

2

 $n \neq m : not always a solution$

$$x_i : i \in \{1, ..., 5\}$$
 $y_j : j \in \{1, ..., 5\}$

Permutations

$$\sigma: \{1, ..., 5\} \rightarrow \{1, ..., 5\}$$

23 bars and breweries:

 $23! = 2.585202 \times 10^{22}$ permutations possibles

$$T_{\#}\alpha$$
 exists $T_{\#}\beta$ does not exists

SUMMARY

I. Reminder on Kernel methods

II. Optimal Transport

- 1. Monge problem
- 2. Kantorovich formulation
- 3. Regularized Optimal Transport

III. Suggested Kernel

- 1. Definitions
- 2. Properties

IV. Applications

Leonid Kantorovich (1912-1986)

« MASS SPLITTING »

Leonid Kantorovich (1912-1986)

« MASS SPLITTING »

P: coupling matrix $\in \mathbb{R}_+^{n \times m}$

 $P_{i,j}$: amount of mass flowing from source x_i to destination y_i

Leonid Kantorovich (1912-1986)

« MASS SPLITTING »

Kantorovich's Relaxation

$$L_{\mathbf{C}(\mathbf{a},\mathbf{b})} \coloneqq \min_{\mathbf{P} \in \mathbf{U}(\mathbf{a},\mathbf{b})} \langle \mathbf{C}, \mathbf{P} \rangle \coloneqq \sum_{i,j} \mathbf{C}_{i,j} \mathbf{P}_{i,j}.$$

2 discretes distributions: Breweries and Pubs

$$\mathbf{i} \in \{1, 2, 3\}$$
 $\mathbf{j} \in \{1, 2, 3, 4, 5\}$

$$\alpha = \sum_{i=1}^{3} a_i \delta_{x_i}$$
 $\boldsymbol{\beta} = \sum_{i=1}^{5} b_i \delta_{y_i}$

2 discretes distributions: Breweries and Pubs

$$\mathbf{i} \in \{1, 2, 3\}$$
 $\mathbf{j} \in \{1, 2, 3, 4, 5\}$

$$\alpha = \sum_{i=1}^{3} a_i \delta_{x_i}$$
 $\beta = \sum_{i=1}^{5} b_i \delta_{y_i}$

Mass conservation constraint:

$$\sum_{i=1}^{3} a_i = \sum_{i=1}^{5} b_i = 1$$

Solving

$$L_{\mathbf{C}(\mathbf{a},\mathbf{b})} \coloneqq \min_{\mathbf{P} \in \mathbf{U}(\mathbf{a},\mathbf{b})} \langle \mathbf{C}, \mathbf{P} \rangle \coloneqq \sum_{i,j} \mathbf{C}_{i,j} \mathbf{P}_{i,j}.$$

With

C _{ij}	y ₁	y ₂	y ₃	y ₄	y 5
X ₁	8	12	22	30	25
X ₂	12	5	13	26	17
X ₃	17	7	6	23	10

Optimal Transport Plan:

SUMMARY

I. Reminder on Kernel methods

II. Optimal Transport

- 1. Monge problem
- 2. Kantorovich formulation
- 3. Regularized Optimal Transport

III. Suggested Kernel

- 1. Definitions
- 2. Properties

IV. Applications

OPTIMAL TRANSPORT – Regularized OT

Introduction of the entropy

$$H(\mathbf{P}) \stackrel{\text{def}}{=} -\sum_{i,j} \mathbf{P}_{i,j} (\log(\mathbf{P}_{i,j}) - 1)$$

OPTIMAL TRANSPORT – Regularized OT

Introduction of the entropy

$$H(\mathbf{P}) \stackrel{\text{def}}{=} -\sum_{i,j} \mathbf{P}_{i,j} (\log(\mathbf{P}_{i,j}) - 1)$$

The entropy as a regularization parameter of the Kantorovich's formulation

$$L_C^{\varepsilon}(\mathbf{a}, \mathbf{b}) \stackrel{\text{def}}{=} \min_{\mathbf{P} \in U(a, b)} \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P})$$

OPTIMAL TRANSPORT – Regularized OT

Introduction of the entropy

$$H(\mathbf{P}) \stackrel{\text{def}}{=} -\sum_{i,j} \mathbf{P}_{i,j} (\log(\mathbf{P}_{i,j}) - 1)$$

The entropy as a regularization parameter of the Kantorovich's formulation

$$L_C^{\varepsilon}(\mathbf{a}, \mathbf{b}) \stackrel{\text{def}}{=} \min_{\mathbf{P} \in U(a, b)} \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P})$$

Link between Regularized OT and Kantorovich's formulation

$$L_C^{\varepsilon}(\mathbf{a}, \mathbf{b}) \xrightarrow[\varepsilon \to 0]{} L_C(\mathbf{a}, \mathbf{b})$$

Impact of the regularization parameter on the solution

$$\Lambda_{\mathbf{C}}^{\varepsilon}(\mathbf{P}, \mathbf{f}, \mathbf{g}) = \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P}) - \langle \mathbf{f}, \mathbf{P} \mathbb{1}_m - \mathbf{a} \rangle - \langle \mathbf{g}, \mathbf{P}^{\dagger} \mathbb{1}_n - \mathbf{b} \rangle$$

$$\begin{split} \Lambda_{\mathbf{C}}^{\varepsilon}(\mathbf{P}, \mathbf{f}, \mathbf{g}) &= \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P}) - \langle \mathbf{f}, \mathbf{P} \mathbb{1}_m - \mathbf{a} \rangle - \langle \mathbf{g}, \mathbf{P}^{\intercal} \mathbb{1}_n - \mathbf{b} \rangle \\ \\ \mathbf{P}_{i,j} &= e^{\frac{\mathbf{f}_i}{\varepsilon}} e^{-\frac{\mathbf{C}_{i,j}}{\varepsilon}} e^{\frac{\mathbf{g}_j}{\varepsilon}}, \quad \forall (i,j) \in \llbracket n \rrbracket \times \llbracket m \rrbracket \end{split}$$

$$\begin{split} \Lambda_{\mathbf{C}}^{\varepsilon}(\mathbf{P}, \mathbf{f}, \mathbf{g}) &= \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P}) - \langle \mathbf{f}, \mathbf{P} \mathbb{1}_{m} - \mathbf{a} \rangle - \langle \mathbf{g}, \mathbf{P}^{\intercal} \mathbb{1}_{n} - \mathbf{b} \rangle \\ \mathbf{P}_{i,j} &= e^{\frac{\mathbf{f}_{i}}{\varepsilon}} e^{-\frac{\mathbf{C}_{i,j}}{\varepsilon}} e^{\frac{\mathbf{g}_{j}}{\varepsilon}}, \quad \forall (i,j) \in \llbracket n \rrbracket \times \llbracket m \rrbracket \\ \mathbf{P}_{i,j} &= \mathbf{u}_{i} \mathbf{K}_{i,j} \mathbf{v}_{i}, \quad \forall (i,j) \in \llbracket n \rrbracket \times \llbracket m \rrbracket \end{split}$$

$$\begin{split} \Lambda_{\mathbf{C}}^{\varepsilon}(\mathbf{P}, \mathbf{f}, \mathbf{g}) &= \langle \mathbf{P}, \mathbf{C} \rangle - \varepsilon H(\mathbf{P}) - \langle \mathbf{f}, \mathbf{P} \mathbb{1}_{m} - \mathbf{a} \rangle - \langle \mathbf{g}, \mathbf{P}^{\intercal} \mathbb{1}_{n} - \mathbf{b} \rangle \\ \mathbf{P}_{i,j} &= e^{\frac{\mathbf{f}_{i}}{\varepsilon}} e^{-\frac{\mathbf{C}_{i,j}}{\varepsilon}} e^{\frac{\mathbf{g}_{j}}{\varepsilon}}, \quad \forall (i,j) \in \llbracket n \rrbracket \times \llbracket m \rrbracket \\ \mathbf{P}_{i,j} &= \mathbf{u}_{i} \mathbf{K}_{i,j} \mathbf{v}_{i}, \quad \forall (i,j) \in \llbracket n \rrbracket \times \llbracket m \rrbracket \\ \\ \mathbf{P}_{i,j} &= \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}) \end{split}$$

Sinkhorn's Algorithm

$$\begin{split} \Lambda_{\mathbf{C}}^{\varepsilon}(\mathbf{P},\mathbf{f},\mathbf{g}) &= \langle \mathbf{P},\mathbf{C} \rangle - \varepsilon H(\mathbf{P}) - \langle \mathbf{f},\mathbf{P}\mathbb{1}_{m} - \mathbf{a} \rangle - \langle \mathbf{g},\mathbf{P}^{\intercal}\mathbb{1}_{n} - \mathbf{b} \rangle \\ \\ \mathbf{P}_{i,j} &= e^{\frac{\mathbf{f}_{i}}{\varepsilon}} e^{-\frac{\mathbf{C}_{i,j}}{\varepsilon}} e^{\frac{\mathbf{g}_{j}}{\varepsilon}}, \quad \forall (i,j) \in \llbracket n \rrbracket \times \llbracket m \rrbracket \\ \\ \mathbf{P}_{i,j} &= \mathbf{u}_{i} \mathbf{K}_{i,j} \mathbf{v}_{i}, \quad \forall (i,j) \in \llbracket n \rrbracket \times \llbracket m \rrbracket \\ \\ \\ \mathbf{P}_{i,j} &= \mathrm{diag}(\mathbf{u}) \mathbf{K} \mathrm{diag}(\mathbf{v}) \end{split}$$

Under the mass conservation constraints:

$$\mathbf{u} \circ (\mathbf{K}\mathbf{v}) = \mathbf{a}$$

$$\mathbf{v} \circ (\mathbf{K}^{\intercal}\mathbf{u}) = \mathbf{b}$$

$$\begin{split} \mathbf{u} &\leftarrow \mathbf{1}_n \\ \mathbf{v} &\leftarrow \mathbf{1}_m \\ \mathbf{P} &\leftarrow \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}) \\ \mathbf{while} \ \mathbf{P} \ \operatorname{change} \ \mathbf{do} \\ \mathbf{u} &\leftarrow \frac{\mathbf{a}}{\mathbf{K}\mathbf{v}} \\ \mathbf{v} &\leftarrow \frac{\mathbf{b}}{\mathbf{K}^T \mathbf{u}} \\ \mathbf{P} &\leftarrow \operatorname{diag}(\mathbf{u}) \mathbf{K} \operatorname{diag}(\mathbf{v}) \\ \mathbf{end} \ \mathbf{while} \end{split}$$

SUMMARY

- I. Reminder on Kernel methods
- II. Optimal Transport
 - 1. Monge problem
 - 2. Kantorovich formulation
 - 3. Regularized Optimal Transport
- III. Suggested Kernel
 - 1. Definitions
 - 2. Properties
- IV. Applications

SUGGESTED KERNEL

Definition

Theorem 4. Let $F: [0, +\infty[\to \mathbb{R} \text{ be a continuous function and } \mathcal{U} \in \mathcal{P}_{SG}(\Omega)$. If:

- 1. $F \circ \sqrt{\cdot}$ is completely monotonous on $[0, +\infty[$
- 2. There exist a nonnegative Borel measure ν on $[0, +\infty[$ such that for $t>0, F(t)=\int_0^{+\infty}e^{-ut^2}\,d\nu(u)$

Then

$$K \colon \mathcal{P}_{SG}(\Omega) \times \mathcal{P}_{SG}(\Omega) \longrightarrow \mathbb{R}$$

$$(P,Q) \longmapsto F\left(\|g_{\mathcal{U}}^P - g_{\mathcal{U}}^Q\|_{L^2(\mathcal{U})}\right)$$

is a positive definite kernel on $\mathcal{P}_{SG}(\Omega)$.

SUMMARY

- I. Reminder on Kernel methods
- **II. Optimal Transport**
 - 1. Monge problem
 - 2. Kantorovich formulation
 - 3. Regularized Optimal Transport
- III. Suggested Kernel
 - 1. Definitions
 - 2. Properties
- IV. Applications

SUGGESTED KERNEL

Proprieties

Proposition 1. Let $s \in \mathbb{N}$. Assume that Ω is compact and let $P, Q \in \mathcal{P}(\Omega)$. Then there exists a constant c, depending on the dimension, such that

$$\|g_{\mathcal{U}}^{P} - g_{\mathcal{U}}^{Q}\|_{L^{2}(\mathcal{U})} \le c \times \|P - Q\|_{s}$$

Remark: There exists another property than assures that, under specific assumptions, the distributions P and Q are equal if and only if

$$\|g_{\mathcal{U}}^{P} - g_{\mathcal{U}}^{Q}\|_{L^{2}(\mathcal{U})} = 0$$

SUGGESTED KERNEL

Proprieties

We consider two empirical distributions: $P_n=rac{1}{n}\sum_{i=1}^n\delta_{X_i}$ and $Q_m=rac{1}{m}\sum_{i=1}^m\delta_{Y_i}$

Proposition 2. If F is continuous, then

$$F\left(\|g_{\mathcal{U}}^{P_n} - g_{\mathcal{U}}^{Q_m}\|_{L^2(\mathcal{U})}\right) \xrightarrow[n,m \to +\infty]{a.s} F\left(\|g_{\mathcal{U}}^P - g_{\mathcal{U}}^Q\|_{L^2(\mathcal{U})}\right)$$

Remark: This allows one to use this kernel on samples of distributions with theoretical guaranties.

SUMMARY

I. Reminder on Kernel methods

II. Optimal Transport

- 1. Monge problem
- 2. Kantorovich formulation
- 3. Regularized Optimal Transport

III. Suggested Kernel

- 1. Definitions
- 2. Properties

IV. Applications

Generating the data

Training and test samples

$$(m_1, m_2) \sim (\mathcal{U}(-0.3, 0.3))^2$$

$$\sigma^2 \sim \mathcal{U}(0.0001, 0.0004)$$

$$P \sim \mathcal{N}\left(\left(m_1, m_2\right), \sigma^2 I_2\right)$$

$$Y = \frac{\left(m_1 + 0.5 - \left(m_2 + 0.5\right)^2\right)}{1 + \sigma}$$

Reference measure

$$U \sim \mathcal{N}\left(\left(0,0\right), 0.1I_2\right)$$

Performing Kernel Ridge Regression

Performance of the KRR and the test set

Performance of the KRR, on the test set, as a function of epsilon 51

What happens with a different reference measure?

Representation of all the training data and the reference measure

$$U \sim \mathcal{U}\left(-20, -10\right)^2$$

Performance of the KRR and the test set

What happens with a different reference measure?

Representation of all the training data and the reference measure

 $U \sim \mathcal{N}((-0.2, -0.2), 0.0001I_2)$

Performance of the KRR and the test set

CONCLUSION

- Optimal transport is a great theoretical framework to compare distributions
- Defining a kernel on optimal transport object enables to compare distributions accurately
- All kernel methods are thereby available once such a kernel is constructed
- On a toy experiment we observe great performances (of the model and in computation term).
- Optimizing the reference measure is a key aspect to ensure good performances
- Computation does not scale well on bigger datasets

THANK YOU FOR YOUR ATTENTION