5 Beta gama function

11. If $I_{m,n} = \int_0^{\pi/2} \cos^m x \cos nx \, dx$, prove that $I_{m,n} = \left[\frac{m (m-1)}{m^2 - n^2}\right] I_{m-2, n}. \quad \exists n \cdot \text{Pury}.$

3.6 Beta and Gamma Functions.

In the application of Integral Calculus to various problems, we often use Beta and Gamma functions. We give here their properties and uses.

Definitions:

1. The integral $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$, (m > 0, n > 0) is $\lim_{x \to \infty} \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$, the First Eulerian Integral or Beta function and is written as

$$\beta(m,n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx, (m > 0, n > 0).$$

2. The integral $\int_{0}^{\infty} e^{-x} x^{n-1} dx$, (n > 0) is known as the selection integral or Gamma function and is written as

$$I(n) = \int_0^\infty e^{-x} x^{n-1} dx, (n > 0).$$

3.7 Some Important Results.

- 1. $\beta(m, n) = \beta(n, m)$. $\beta(m, n) = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx = \int_{0}^{1} (1-x)^{m-1} \{1-(1-x)^{n-1}\} dx$ $= \int_{0}^{1} (1-x)^{m-1} x^{n-1} dx = \beta(n, m).$
- Putting $x = \sin^2 \theta$, $dx = 2 \sin \theta \cos \theta d\theta$.

(i)
$$\beta(m, n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$$

(ii)
$$\beta(m, n) = \int_0^\infty \frac{x^{m-1} dx}{(1+x)^{m+n}} = \int_0^\infty \frac{x^{n-1}}{(1+x)^{m+1}}$$

(iii)
$$\Gamma(m) \Gamma(1-m) = \frac{\pi}{\sin m \pi}$$
 (0 < m < 1)

6.
$$I\left(\frac{1}{2}\right) = \sqrt{\pi}$$
. $B(renn) = \frac{76\pi r}{76\pi r}$

If we put $m = n = \frac{1}{2}$ in (i) above,

$$\frac{\Gamma(1/2)}{\Gamma(1/2+1/2)} = \beta\left(\frac{1}{2}, \frac{1}{2}\right)$$

or
$$\frac{\Gamma(1/2) \Gamma(1/2)}{\Gamma(1)} = \int_0^1 x^{-1/2} (1-x)^{-1/2} dx$$
.

Put $x = \sin^2 \theta$. Then $dx = 2 \sin \theta \cos \theta d\theta$.

Also when
$$x = 0$$
, $\theta = 0$ and when $x = 1$, $\theta = \frac{\pi}{2}$.

$$\therefore \Gamma(1/2) \Gamma(1/2) = \int_{0}^{\pi/2} \frac{1}{\sin \theta} \cdot \frac{1}{\cos \theta} 2 \sin \theta \cos \theta d\theta$$

$$= [2\theta] \frac{\pi/2}{0} = \pi.$$

$$: \Gamma(1/2) = \sqrt{\pi} ,$$

The value of $\Gamma(1/2)$ can also be deduced by putting

$$m = \frac{1}{2}$$
 in $\Gamma(m)$ $\Gamma(1-m) = \frac{\pi}{\sin m\pi}$ so that

$$\Gamma(1/2) \Gamma(1/2) = \frac{\pi}{\sin \pi/2} = \pi$$

$$\therefore \Gamma(1/2) = \sqrt{\pi}.$$

3.8 The Integrals
$$\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x dx$$
, $\int_{0}^{\pi/2} \sin^{n} x dx$ and $\int_{0}^{\pi/2} \cos^{n} x dx$.

(1)
$$\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x \, dx, \, (m > -1, n > -1)$$

$$= \int_{0}^{\pi/2} (\sin^{2} x)^{m/2} (1 - \sin^{2} x)^{n/2} \, dx$$

Put $\sin^2 x = t$. Then $2 \sin x \cos x dx = dt$

or
$$dx = \frac{dt}{2\sqrt{\sin^2 x} \sqrt{1 - \sin^2 x}} = \frac{dt}{2\sqrt{t}\sqrt{1 - t}}$$

$$I = \int_{0}^{1} \frac{t^{m/2} (1-t)^{n/2} dt}{2 \sqrt{t} \sqrt{1-t}}$$

$$= \frac{1}{2} \int_{0}^{1} t^{(m+1)/2} - 1 (1-t)^{(n+1)/2} - 1 dt$$

$$=\frac{1}{2}\beta\left(\frac{m+1}{2},\frac{n+1}{2}\right)$$

$$\Gamma\left(\frac{m+1}{2},\frac{n+1}{2}\right)$$

$$=\frac{\Gamma\left(\frac{m+1}{2}\right)\Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{m+n+2}{2}\right)}.$$

(2) If we put n = 0 in the above result,

$$\int_{0}^{\pi/2} \sin^{m} x \, dx = \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{2\Gamma\left(\frac{m+2}{2}\right)} = \frac{\sqrt{\pi} \Gamma\left(\frac{m+1}{2}\right)}{2\Gamma\left(\frac{m+2}{2}\right)}$$

Replacing m by n,
$$\int_{0}^{\pi/2} \sin^{n} x \, dx = \frac{\sqrt{\pi} \, \Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{n+2}{2}\right)}$$

Similarly by putting
$$m = 0$$
, we get

$$\int_{0}^{\pi/2} \cos^{n} x \, dx = \frac{\sqrt{\pi} \, \Gamma\left(\frac{n+1}{2}\right)}{2\Gamma\left(\frac{n+2}{2}\right)}$$

3.9 The Integral $\int_0^\infty e^{-x^2} dx = \frac{1}{2} \sqrt{\pi}$.

Put $x^2 = z$. Then 2x dx = dz or $dx = \frac{dz}{2\sqrt{z}}$.

$$I = \int_{0}^{\infty} \frac{1}{2} e^{-z} z^{-1/2} dz = \frac{1}{2} \int_{0}^{\infty} e^{-z} z^{1/2 - 1} dz = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{1}{2}$$

Examples worked out

- 1. Find the value of (i) $\Gamma(8)$, (ii) $\Gamma\left(\frac{7}{2}\right)$ and (iii) $\frac{\Gamma\left(\frac{3}{2}\right) \cdot \Gamma\left(\frac{5}{2}\right)}{\Gamma(5)}$
- (i) We have $\Gamma(n+1) = n!$, when n is a positive integer $\Gamma(8) = \Gamma(7+1) = 7!$.
- (ii) We have $\Gamma(n+1) = n \Gamma(n)$

$$\therefore \Gamma\left(\frac{7}{2}\right) = \frac{5}{2} \Gamma\left(\frac{5}{2}\right) = \frac{5}{2} \cdot \frac{3}{2} \Gamma\left(\frac{3}{2}\right) = \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{15}{8}$$

(iii)
$$\frac{\Gamma(\frac{3}{2})\Gamma(\frac{5}{2})}{\Gamma(5)} = \frac{\frac{1}{2}\Gamma(\frac{1}{2}) \cdot \frac{3}{2} \cdot \frac{1}{2}\Gamma(\frac{1}{2})}{4 \cdot 3 \cdot 2 \cdot 1} = \frac{\sqrt{\pi} \cdot \sqrt{\pi}}{64} = \frac{\pi}{64}$$

- 2. Evaluate (i) $\int_{0}^{a} x^{3} (a^{2} x^{2})^{5/2} dx$ (ii) $\int_{0}^{\pi/4} (\cos 2\theta)^{3/2} \cos \theta d\theta$.
- (i) Put $x = a \sin \theta$. Then $dx = a \cos \theta d\theta$.

Also when
$$x = 0$$
, $\theta = 0$ and when $x = a$, $\theta = \frac{\pi}{2}$

$$I = \int_{0}^{\pi/2} a^{3} \sin^{3}\theta (a^{2}\cos^{2}\theta)^{5/2} a \cos\theta d\theta$$

$$=a^9\int_0^{\pi/2}\sin^3\theta\cos^6\theta\,d\theta$$

$$= a^{\theta} \frac{\Gamma\left(\frac{3+1}{2}\right) \Gamma\left(\frac{6+1}{2}\right)}{2 \Gamma\left(\frac{3+6+2}{2}\right)} = a^{\theta} \frac{\Gamma(2) \Gamma\left(\frac{7}{2}\right)}{2 \Gamma\left(\frac{11}{2}\right)}$$
$$= \frac{a^{\theta}}{2} \cdot \frac{1 \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)}{\frac{9}{2} \cdot \frac{7}{2} \cdot \frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \Gamma\left(\frac{1}{2}\right)} = \frac{2a^{\theta}}{63}.$$

(ii)
$$I = \int_{0}^{\pi/4} (1 - 2\sin^2\theta)^{3/2} \cos\theta \, d\theta$$

Put $\sqrt{2} \sin \theta = \sin x$. Then $\sqrt{2} \cos \theta d\theta = \cos x dx$. Also when $\theta = 0$, x = 0 and when $\theta = \frac{\pi}{4}$, $x = \frac{\pi}{2}$.

$$I = \int_{0}^{\pi/2} (1 - \sin^2 x)^{3/2} \frac{\cos x \, dx}{\sqrt{2}} = \frac{1}{\sqrt{2}} \int_{0}^{\pi/2} \cos^4 x \, dx$$

$$=\frac{1}{\sqrt{2}}\cdot\frac{\sqrt{\pi}}{2}\cdot\frac{\Gamma\left(\frac{5}{2}\right)}{\Gamma\left(\frac{6}{2}\right)}=\frac{\sqrt{\pi}}{2\sqrt{2}}\cdot\frac{\frac{3}{2}\cdot\frac{1}{2}\Gamma\left(\frac{1}{2}\right)}{2\cdot 1}$$

$$=\frac{3}{16\sqrt{2}} \cdot \sqrt{\pi} \cdot \sqrt{\pi} = \frac{3\pi}{16\sqrt{2}}$$
.

3. Show that
$$\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right) = \sqrt{2} \pi$$
.

$$\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right) = \Gamma\left(\frac{1}{4}\right)\Gamma\left(1 - \frac{1}{4}\right)$$

$$= \frac{\pi}{\sin \frac{1}{4} \pi} \quad [\because \Gamma(m) \Gamma(1-m)] = \frac{\pi}{\sin m \pi} = \sqrt{2} \pi.$$

4. Show that
$$\frac{\beta(m, n+1)}{n} = \frac{\beta(m+1)}{m} = \frac{\beta(m, n)}{m+n}$$

$$\frac{\beta(m, n+1)}{n} = \frac{\Gamma(m) \Gamma(n+1)}{n \Gamma(m+n+1)} = \frac{\Gamma(m) n \Gamma(n)}{n (m+n) \Gamma(m+n)}$$
$$= \frac{\beta(m, n)}{m+n}$$

$$\frac{\beta(m+1,n)}{m} = \frac{\Gamma(m+1) \Gamma(n)}{m \Gamma(m+n+1)} = \frac{m \Gamma(m) \Gamma(n)}{m (m+n) \Gamma(m+n)}$$
$$= \frac{\beta(m,n)}{m+n}$$

5. Show that
$$\int_{-1}^{1} (1+x)^p (1-x)^q dx = 2^{p+q+1} \frac{\Gamma(p+1)\Gamma(q+1)}{\Gamma(p+q+1)}$$

Put 1 + x = 2t. Then dx = 2dt. Also when x = -1, t = 0 and t = 1.

$$I = \int_{0}^{1} (2t)^{p} (2-2t)^{q} 2dt = \int_{0}^{1} 2^{p+q+1} t^{p} (1-t)^{q} dt$$

$$= 2^{p+q+1} \int_{0}^{1} t^{(p+1)-1} (1-t)^{(q+1)-1} dt$$

$$= 2^{p+q+1} \beta(p+1, q+1) \quad (\because p+1 > 0, q+1 > 0)$$

$$= 2^{p+q+1} \frac{1(p+1) \Gamma(q+1)}{\Gamma(p+q+2)}$$

6. Show that
$$\int_{0}^{\infty} e^{-x^4} x^2 dx \times \int_{0}^{\infty} e^{-x^4} dx = \frac{\pi}{8\sqrt{2}}$$
.

Put
$$x^4 = t$$
. Then $4x^3 dx = dt$ or $dx = \frac{dt}{4x^3} = \frac{dt}{4t^{3/4}}$

$$\therefore I = \int_0^\infty e^{-t} \frac{t^{1/2} dt}{4 t^{3/4}} \times \int_0^\infty e^{-t} \frac{dt}{4 t^{3/4}}$$

$$= \frac{1}{4} \int_{0}^{\infty} e^{-t} t^{-1/4} dt \times \frac{1}{4} \int_{0}^{\infty} e^{-t} t^{-3/4} dt$$

$$= \frac{1}{16} \int_{0}^{\infty} t^{3/4 - 1} e^{-t} dt \times \int_{0}^{\infty} t^{1/4 - 1} e^{-t} dt$$

$$= \frac{1}{16} \Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{4}\right) = \frac{1}{16} \sqrt{2} \pi$$

7. Prove that
$$\int_{0}^{\pi/2} \frac{dx}{\sqrt{\sin x}} \times \int_{0}^{\pi/2} \sqrt{\sin x} dx = \pi.$$

$$\int_{0}^{\pi/2} \frac{dx}{\sqrt{\sin x}} = \frac{\sqrt{\pi}}{2} \frac{r\left(-\frac{1}{2} + 1\right)}{r\left(-\frac{1}{2} + 2\right)} = \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}$$

$$\int_{0}^{\pi/2} \sqrt{\sin x} \, dx = \frac{\sqrt{\pi}}{2} \frac{r\left(\frac{\frac{1}{2}+1}{2}\right)}{r\left(\frac{\frac{1}{2}+2}{2}\right)} = \frac{\sqrt{\pi}}{2} \frac{r\left(\frac{3}{4}\right)}{r\left(\frac{5}{4}\right)} = \frac{\sqrt{\pi}}{2} \frac{r\left(\frac{3}{4}\right)}{\frac{1}{4}r\left(\frac{1}{4}\right)}$$

$$\therefore \int_0^{\pi/2} \frac{dx}{\sqrt{\sin x}} \times \int_0^{\pi/2} \sqrt{\sin x} \ dx$$

$$=\frac{\sqrt{\pi}}{2}\frac{\Gamma\binom{1}{4}}{\Gamma(\frac{3}{4})}\times\frac{\sqrt{\pi}}{2}\frac{4\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}=\pi.$$

8. Prove that
$$\sqrt{\pi} \Gamma(2n) = 2^{2n-1} \Gamma(n) \Gamma\left(n + \frac{1}{2}\right)$$
.

We have
$$\int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta = \frac{\Gamma(m) \Gamma(n)}{2 \Gamma(m+n)} \dots (1)$$

If we put m = n,

$$\frac{\Gamma(n) \Gamma(n)}{\Gamma(2n)} = 2 \int_0^{\pi/2} \sin^{2n-1} \theta \cos^{2n-1} \theta d\theta$$

$$=2\frac{1}{2^{2n-1}}\int_{0}^{\pi/2}(\sin 2\theta)^{2n-1}d\theta.$$

Put $2\theta = t$. Then $2 d\theta = dt$.

When
$$\theta = 0$$
, $t = 0$ and when $\theta = \frac{\pi}{2}$, $t = \pi$.

$$(i) \int_0^1 x^6 \sqrt{1-x^2} \ dx$$

(i)
$$\int_0^1 x^6 \sqrt{1-x^2} dx$$
 (ii) $\int_0^a x^2 (a^2-x^2)^{3/2} dx$

(iii)
$$\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} dx$$
 (iv) $\int_{0}^{1} x^{3/2} (1-x)^{3/2} dx$

(iv)
$$\int_0^1 x^{3/2} (1-x)^{3/2} dx$$

Evaluate by using Gamma function:

(i)
$$\int_{0}^{a} \frac{x^{4} dx}{\sqrt{a^{2} - x^{2}}}$$
 (ii) $\int_{0}^{1} \frac{x^{6} dx}{\sqrt{1 - x^{2}}}$

(ii)
$$\int_{0}^{1} \frac{x^{6} dx}{\sqrt{1 + x^{2}}}$$

(iii)
$$\int_{0}^{2a} x^{5} \sqrt{2ax-x^{2}} dx$$

$$2a \sin^{2}\theta$$

(iv)
$$\int_{0}^{2a} x^{9/2} (2a - x)^{-1/2} dx \ (Put \ x = 2a \sin^2 \theta)$$

(i)
$$\int_{0}^{\pi/8} \cos^3 4x \, dx = \frac{1}{6}$$

(ii)
$$\int_{0}^{\pi} \sin^{6} \frac{x}{2} \cos^{8} \frac{x}{2} dx = \frac{5\pi}{2^{11}}$$

Use Gamma function to prove

(i)
$$\int_{0}^{\pi/8} \cos^{3} 4x \, dx = \frac{1}{6}$$

(ii)
$$\int_{0}^{\pi} \sin^{6} \frac{x}{2} \cos^{8} \frac{x}{2} \, dx = \frac{5\pi}{2}$$

(iii)
$$\int_{0}^{\pi/4} \sin^4 x \cos^2 x \, dx = \frac{3\pi - 4}{192} \cdot \left(\frac{1 - \cos^2 x}{2} \right)^2 \left(\frac{1 + \cos^2 x}{2} \right)^2$$

(iv)
$$\int_0^{\pi/6} \cos^4 3\theta \sin^2 6\theta \, d\theta = \frac{5\pi}{192}$$

(v)
$$\int_{0}^{\pi/6} \cos^2 6\theta \sin^4 3\theta d\theta = \frac{7\pi}{192}$$

6. Prove that
$$\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right) = \frac{2\pi}{\sqrt{3}}$$
.

7. Show that
$$\beta(m, n)$$
 $\beta(m + n, l) = \beta(n, l)$ $\beta(n + l, m)$.

8. Prove that
$$\frac{2^n}{\sqrt{\pi}} \Gamma\left(\frac{2n+1}{2}\right) = 1.3.5....(2n-3)(2n-1).$$

