Examen final "Géométrie et nombres complexes"

Janvier 2020

Exercice 1

Soit $\mathbb C$ l'ensemble des nombres complexes, on admet que les trois sous-ensembles ci-dessous sont des groupes pour la multiplication des nombres complexes :

- \mathbb{C}^* : l'ensemble des nombres complexes non-nuls,
- \mathbb{R}^{*+} : l'ensemble des nombres réels strictement positifs,
- S^1 : l'ensemble des nombres complexes de module égal à 1.

On rappelle que si G et H sont deux groupes alors $G \times H$ est aussi un groupe pour la loi interne (g,h).(g',h')=(gg',hh').

Question 1. (1,5) Montrer que l'application ci-dessous est un morphisme de groupes :

$$mult: \begin{cases} \mathbb{R}^{*+} \times S^1 \to \mathbb{C}^* \\ (r, u) \mapsto r.u \end{cases}$$

montrer que ce morphisme est un isomorphisme.

Question 2. (1,5) Montrer que l'application ci-dessous est un morphisme de groupes :

$$m: \begin{cases} \mathbb{C}^* \to \mathbb{R}^{*+} \\ z \mapsto |z| \end{cases}$$

appliquer le 1
er théorème d'isomorphie à m afin de trouver une relation entre
 $\mathbb{C}^*,\mathbb{R}^{*+},S^1$.

Question 3. (1) Soit θ un angle (défini modulo 2π) et z_0 un nombre complexe donner l'expression de la rotation de centre M_0 point du plan d'affixe z_0 et d'angle θ sous la forme d'une similitude directe $z\mapsto az+b$.

Question 4. (2) L'ensemble des rotations du plan (angle et centre quelconques) est-il un sous-groupe du groupe des similitudes directes? Même question si on considère toutes les translations.

Question 5. (1,5) A quelles conditions sur les nombres complexes a et b la similitude directe $\phi(z) = az + b$ est-elle une rotation?

Question 6. (1,5) Montrer que le sous-ensemble

$$\mathcal{R} = \{ z \mapsto e^{i\theta} z + b \}$$

des similitudes directes forme un sous-groupe distingué. Ce sous-groupe est-il abélien?

Question 7. (1,5) Montrer que l'application $\psi : \mathcal{R} \to S^1$ donnée par $\psi(z \mapsto e^{i\theta}z + b) = e^{i\theta}$ est un morphisme de groupe surjectif, vous déterminerez son noyau. Puis vous appliquerez le 1er théorème d'isomorphie à ψ .

Question 8. (1,5) Montrer que les rotations et les homothéties engendrent le groupe des similitudes directes.

Exercice 2.

Question 1. (2) Montrer que si q est un quaternion imaginaire pur, c'est-àdire si q = a.i + b.j + c.k alors q^2 est un nombre réel négatif. La réciproque de ce résultat est-elle vraie? Que peut-on dire sur q un quaternion quelconque si q^2 est un réel positif?

Question 2. (5) Soit Q_8 le sous-ensemble des quaternions formé par les 8 éléments :

$$\{\pm 1, \pm i, \pm j, \pm k\}$$

Montrer qu'il s'agit d'un sous-groupe pour la multiplication, vous calculerez l'ordre de chacun des éléments de ce groupe et déterminerez tous ses sous-groupes.

Question 3. (4) On rapelle que le groupe des quaternions de norme 1 agit par conjugaison sur les quaternions imaginaires purs, on considère l'action induite par le quaternion $w = \frac{\sqrt{2}}{2}i + \frac{\sqrt{2}}{2}j$:

$$q \mapsto w.q.w^{-1}$$
.

En identifiant les quaternions imaginaires purs avec \mathbb{R}^3 et en considérant la base $\{i,j,k\}$ vous déterminerez la matrice de l'application $q\mapsto wqw^{-1}$ dans cette base et donnerez la nature de cette transformation de l'espace.