# **Data Engineering Batch 1**

# PROJECT 1

**Hybrid Cloud Data Movement** 

# Akilesh K

k.akilesh123@gmail.com

## **Project Statement**

Implement a solution that involves moving data between on-premises data sources and Azure cloud using Azure Data Factory, and perform data processing tasks in Azure Databricks.

## **Project Overview**

The project entails orchestrating a data pipeline to facilitate seamless data movement between on-premises data sources and the Azure cloud environment. Initially, a SQL server will be set up, along with the creation of a database to house the source data. Azure Data Factory will play a pivotal role in this process, acting as the conduit for transferring data from the SQL database to Blob storage. This transfer will be facilitated by utilizing a self-hosted integration runtime, ensuring secure and efficient data transmission. Subsequently, Azure Databricks will be leveraged to execute essential data transformation tasks using PySpark, enabling the manipulation and refinement of the ingested data. Overall, the solution aims to streamline data integration and processing workflows, enhancing data accessibility and usability within the Azure ecosystem.

## **About the Project**

### **Database:**

The Northwind database is a sample database that was originally created by Microsoft and used as the basis for their tutorials in a variety of database products for decades. The Northwind database contains the sales data for a fictitious company called "Northwind Traders," which imports and exports specialty foods from around the world. The Northwind database is an excellent tutorial schema for a small-business ERP, with customers, orders, inventory, purchasing, suppliers, shipping, employees, and single-entry accounting.

The Northwind dataset includes sample data for the following.

Suppliers: Suppliers and vendors of Northwind

Customers: Customers who buy products from Northwind

Employees: Employee details of Northwind traders

**Products: Product information** 

Shippers: The details of the shippers who ship the products from the traders to the end-

customers

Orders and Order\_Details: Sales Order transactions taking place between the customers & the company

### **Schema**



## **Architecture diagram**



The data flow in this architecture starts with SQL Server as the source, where data is extracted using ADF and loaded into Blob storage. Then, Azure Databricks performs the necessary data transformations using PySpark, leveraging the data stored in Blob storage. Overall, this architecture enables efficient data movement and processing between onpremises and cloud environments, facilitating analytics, reporting, and other data-driven tasks.

## **Azure Resources Used for this Project**

### • Azure Data Factory (ADF):

An ADF instance will be created to orchestrate and automate the data movement process.

Linked Services: Configured to establish connections to on-premises data sources and Azure Blob Storage.

Datasets: Defined to represent the data structures and schemas of the data sources.

Pipelines: Created to define the sequence of activities for copying data from on-premises to Azure Blob Storage.

## • Azure Blob Storage:

Blob storage containers will be used as the destination for storing data transferred from onpremises sources.

The stored data will be accessed by Azure Databricks for data processing tasks.

### • Azure Databricks:

A Databricks workspace will be provisioned to perform data processing tasks using PySpark.

Databricks Notebooks: Utilized to write and execute PySpark code for data transformation, cleaning, and analysis.

## **Project Requirements**

### • Setting up Data Sources:

Begin by identifying the on-premises data sources from which you want to extract data. These could be databases, files, or any other structured or unstructured data repositories.

Ensure that the necessary connectivity options are available for accessing these on-premises data sources securely from the Azure cloud environment.

### • Azure Data Factory Configuration:

Create an Azure Data Factory (ADF) instance in your Azure subscription.

Configure linked services in ADF to establish connections to both the on-premises data sources and the Azure cloud environment. This involves providing authentication credentials and connection details.

Define datasets in ADF to represent the data structures and schemas of the data sources. This includes specifying the location, format, and schema of the data residing in both the onpremises and Azure cloud environments.

Create pipelines in ADF to orchestrate the data movement process. Pipelines define the sequence of activities required to copy data from the on-premises sources to the Azure cloud.

### • Data Movement with Azure Data Factory:

Use ADF activities such as Copy Data to copy data from the on-premises sources to Azure Blob Storage. This activity handles the movement of data securely and efficiently, with options for parallelism, fault tolerance, and monitoring.

Configure the Copy Data activity with appropriate settings such as source and destination datasets, data integration runtime, scheduling options, and error handling mechanisms.

### • Data Processing with Azure Databricks:

Provision an Azure Databricks workspace in your Azure subscription.

Define and implement data processing tasks using PySpark within the Databricks environment. PySpark provides a powerful framework for distributed data processing, enabling tasks such as data cleaning, transformation, aggregation, and analysis.

Use Databricks notebooks to write and execute PySpark code interactively, leveraging the scalability and performance of the Databricks runtime.

## Tasks performed:

- Set up SQL Server with a database, create schema, and add data.
- Create a new user with SQL Server Authentication as System Admin.
- Create Azure storage account and blob container.
- Set up an Azure Data Factory account and configure a data pipeline for data transfer.
- Install self-hosted integration runtime on-premises for SQL Server connection.
- Mount blob storage to Azure Databricks and read CSV file into dataframe.

- Perform data transformations including aggregation, sorting, and joining.
- Profile data to assess quality and characteristics.
- Visualize data using pie chart representation.
- Transfer manipulated dataframe to blob storage

# **Implementation**

• For On premise database, set it up in SQL server



• Write query of the schema for the table and add data into it

```
INSERT "Order Details" VALUES(10622,2,19,20,0)
    INSERT "Order Details" VALUES(10622,68,12.5,18,0.2)
    INSERT "Order Details" VALUES(10623,14,23.25,21,0)
    INSERT "Order Details" VALUES(10623,19,9.2,15,0.1)
    INSERT "Order Details" VALUES(10623,21,10,25,0.1)
    INSERT "Order Details" VALUES(10623,24,4.5,3,0)
    INSERT "Order Details" VALUES(10623,35,18,30,0.1)
    INSERT "Order Details" VALUES(10624,28,45.6,10,0)
    INSERT "Order Details" VALUES(10624,29,123.79,6,0)
    INSERT "Order Details" VALUES(10624,44,19.45,10,0)
    INSERT "Order Details" VALUES(10625,14,23.25,3,0)
    INSERT "Order Details" VALUES(10625,42,14,5,0)
    INSERT "Order Details" VALUES(10625,60,34,10,0)
    INSERT "Order Details" VALUES(10626,53,32.8,12,0)
    INSERT "Order Details" VALUES(10626,60,34,20,0)
    INSERT "Order Details" VALUES(10626,71,21.5,20,0)
TNSERT "Ondon Dotails" WALLIES (18627 62 49 3 15 8)

    Messages

  Commands completed successfully.
  Completion time: 2024-02-25T15:20:44.9096926+05:30
```

• Tables are created in the database of the SQl server



• Create a new user with SQL server Authentication with the role of System admin





## • In azure ,create a storage account mentioning the location



### • create a new blob container



### • keep the container file empty



## • create a azure data factory account



## • select ingest data to create a new data pipeline



- In Properties set type as built in copy task.
- task schedule as run once now

### Copy Data tool Use Copy Data Tool to perform a one-time or scheduled data load from 90+ data sources. Properties Follow the wizard experience to specify your data loading settings, and let the Copy Data Tool generate the artifacts for you, including pipelines, **Properties** 2 Source Select copy data task type and configure task schedule Task type Built-in copy task Metadata-driven copy task You will get single pipeline to copy data You will get parameterized pipelines which (4) Settings from 90+ data source easily. can read metadata from an external store to load data at a large scale. (5) Review and finish You will get single pipeline to quickly copy objects from data source store to destination in a very intuitive manner. Task cadence or task schedule \* ■ Run once now Schedule Tumbling window

• In integration runtime setup, select self Hosted for running on premises activities

### Integration runtime setup

### Network environment:

Choose the network environment of the data source / destination or external compute to which the integration runtime will connect to for data flows, data movement or dispatch activities:



### Azure

Use this for running data flows, data movement, external and pipeline activities in a fully managed, serverless compute in Azure.



### Self-Hosted

Use this for running activities in an on-premises / private network View more  $\,^{\checkmark}$ 

### **External Resources:**

You can use an existing self-hosted integration runtime that exists in another resource. This way you can reuse your existing infrastructure where self-hosted integration runtime is setup.



## • Give a name for the integration runtime setup

## Integration runtime setup

Private network support is realized by installing integration runtime to machines in the same on-premises network/VNET as the resource the integration runtime is connecting to. Follow below steps to register and install integration runtime on your self-hosted machines.



• In this setup, click to launch express setup for this computer.





- create the connection by mentioning server name and database name of the premise database
- select SQL authentication and enter user and password to access the database connection





# Select the container subfolder Destination data store Specify the destination data store for the copy task. You can use an existing data store connection or specify a new data store. Destination type ✓ Ø Edit + New connection AzureBlobStorage1 Connection \* Folder path \* If the identity you use to access the data store only has permission to subdirectory instead of the entire account, specify the path to browse. Browse project/ File name is defined by source table name > Advanced settings File name suffix Max concurrent connections $^{\scriptsize \bigcirc}$ Block size (MB) $^{\scriptsize \bigcirc}$ < Previous Enter the data pipeline name Settings Enter name and description for the copy data task, more options for data movement onpremisetoazure\_adf Task name \* Task description Data consistency verification <sup>(i)</sup> Fault tolerance (i) Enable logging ① Enable staging (i)

> Advanced

## • Summary of the deployment of from SQL server to azure blob storage



## Deployment complete

| Deployment step                     | Status             |
|-------------------------------------|--------------------|
| Validating copy runtime environment | <b>⊘</b> Succeeded |
| > Creating datasets                 | ✓ Succeeded        |
| > Creating pipelines                | ✓ Succeeded        |
| > Running pipelines                 | ✓ Succeeded        |

Datasets and pipelines have been created. You can now monitor and edit the copy pipelines or click finish to close Copy Data Tool.

### • The table is converted to CSV file and stored in the container



## • Data pipeline of the activity



## Create a Azure databricks and launch it



## Mount blob storage to azure databricks

- Add source line of the blob storage
- enter the mount points to store in databricks
- Configure extra\_configs by mentioning the access key and pasting the key of the blob storage.

```
Python 

1 dbutils.fs.mount(source = 'wasbs://project@1079test.blob.core.windows.net',
2 | mount_point='/mnt/blobstrorage1',
3 | extra_configs = {'fs.azure.account.key.1079test.blob.core.windows.net':'ZOVqyFNZ+DoE5qfL8nYgTt409YgMem80Iitni0fsyJJVdrusQYWH/
V09vkfAldgEYBwlR4auSlbe+AStlLC3tQ=='})

True

Command took 13.25 seconds -- by azuser1079_mml.local@iihtl.onmicrosoft.com at 2/26/2024, 9:28:10 AM on azuser1079_mml.local's Personal Compute Cluster
```

### List of the files mounted on Databricks

```
Pythor
dbutils.fs.ls('/mnt/blobstrorage1')
  [FileInfo(path='dbfs:/mnt/blobstrorage1/dboCategories.csv', name='dboCategories.csv', size=172394, modificationTime=1708858985000),
     FileInfo(path='dbfs:/mnt/blobstrorage1/dboCustomerCustomerDemo.csv', name='dboCustomerDemo.csv', size=27, modificationTime=1708858994000),
     FileInfo(path='dbfs:/mnt/blobstrorage1/dboCustomerDemographics.csv', name='dboCustomerDemographics.csv', size=29, modificationTime=1708858999000),
     File Info (path='dbfs:/mnt/blobstrorage1/dboCustomers.csv', name='dboCustomers.csv', size=13438, modificationTime=1708858983000), and the first of the first of
      FileInfo(path='dbfs:/mnt/blobstrorage1/dboEmployeeTerritories.csv', name='dboEmployeeTerritories.csv', size=563, modificationTime=1708859003000),
      FileInfo(path='dbfs:/mnt/blobstrorage1/dboEmployees.csv', name='dboEmployees.csv', size=394073, modificationTime=1708859000000),
      FileInfo(path='dbfs:/mnt/blobstrorage1/dboOrder%20Details.csv', name='dboOrder%20Details.csv', size=56160, modificationTime=1708858998000),
     FileInfo(path='dbfs:/mnt/blobstrorage1/dboOrders.csv', name='dboOrders.csv', size=153280, modificationTime=1708858999000)
     FileInfo(path='dbfs:/mnt/blobstrorage1/dboProducts.csv', name='dboProducts.csv', size=5315, modificationTime=1708858991000),
     FileInfo(path='dbfs:/mnt/blobstrorage1/dboRegion.csv', name='dboRegion.csv', size=252, modificationTime=1708858983000),
     File Info (path='dbfs:/mnt/blobstrorage1/dboShippers.csv', name='dboShippers.csv', size=142, modificationTime=1708858991000), and the file of the fi
      FileInfo(path='dbfs:/mnt/blobstrorage1/dboSuppliers.csv', name='dboSuppliers.csv', size=4537, modificationTime=1708858983000),
      FileInfo(path='dbfs:/mnt/blobstrorage1/dboTerritories.csv', name='dboTerritories.csv', size=3435, modificationTime=1708858992000)]
   Command took 0.97 seconds -- by azuser1079 mml.local@iihtl.onmicrosoft.com at 2/26/2024, 9:29:19 AM on azuser1079 mml.local" Personal Compute Cluster
```

### • Read the Csv file from the mount and convert into a dataframe



### Create a spark session and display the data frame



## Aggregation of the average of the unit price

```
1 pro.agg(({"UnitPrice":"avg"})).show()
  ▶ (2) Spark Jobs
 | avg(UnitPrice)|
 28.866363636363637
 Command took 2.81 seconds -- by azuser1079_mml.local@iihtl.onmicrosoft.com at 2/26/2024, 10:05:40 AM on azuser1079_mml.local's Personal Compute Cluster
```

## **Display Grouped by product name**

```
1 pro.groupBy("ProductName").count().show()
 ▶ (2) Spark Jobs
     Chocolade 1
          Filo Mix | 1|
     Longlife Tofu| 1|
|Wimmers gute Semm...| 1|
|Rhönbräu Klosterbier| 1|
         Tourtière 1
      Vegie-spread| 1|
    Mishi Kobe Niku
                    1
                    1
|Grandma's Boysenb...|
                    1
 |Laughing Lumberja...|
                    1
      Côte de Blaye
   Camembert Pierrot
       Pâté chinois
                     1
       Gula Malacca | 1|
| Boston Crab Meat| 1|
 | Queso Cabrales| 1|
            Konbu 1
only showing top 20 rows
```

Command took 3.52 seconds -- by azuser1079 mml.local@iihtl.onmicrosoft.com at 2/26/2024, 11:02:01 AM on azuser1079 mml

# • Drop rows with Null values

| (1) | Spark Jobs           |   |                         |         |     |    |    |       |
|-----|----------------------|---|-------------------------|---------|-----|----|----|-------|
|     | 3  Aniseed Syrup     | 1 | 2 12 - 550 ml bottles   | 10.0000 | 13  | 70 | 25 | False |
|     | 4 Chef Anton's Caju  | 2 | 2  48 - 6 oz jars       | 22.0000 | 53  | 0  | 0  | False |
|     | 5 Chef Anton's Gumb  | 2 | 2   36 boxes            | 21.3500 | 0   | 0  | 0  | True  |
|     | 6 Grandma's Boysenb  | 3 | 2   12 - 8 oz jars      | 25.0000 | 120 | 0  | 25 | False |
|     | 7 Uncle Bob's Organ  | 3 | 7  12 - 1 lb pkgs.      | 30.0000 | 15  | 0  | 10 | False |
|     | 8 Northwoods Cranbe  | 3 | 2   12 - 12 oz jars     | 40.0000 | 6   | 0  | 0  | False |
|     | 9  Mishi Kobe Niku   | 4 | 6   18 - 500 g pkgs.    | 97.0000 | 29  | 0  | 0  | True  |
|     | 10  Ikura            | 4 | 8  12 - 200 ml jars     | 31.0000 | 31  | 0  | 0  | False |
|     | 11  Queso Cabrales   | 5 | 4 1 kg pkg.             | 21.0000 | 22  | 30 | 30 | False |
|     | 12 Queso Manchego La | 5 | 4  10 - 500 g pkgs.     | 38.0000 | 86  | 0  | 0  | False |
|     | 13 Konbu             | 6 | 8 2 kg box              | 6.0000  | 24  | 0  | 5  | False |
|     | 14  Tofu             | 6 | 7   40 - 100 g pkgs.    | 23.2500 | 35  | 0  | 0  | False |
|     | 15 Genen Shouyu      | 6 | 2   24 - 250 ml bottles | 15.5000 | 39  | 0  | 5  | False |
|     | 16  Pavlova          | 7 | 3  32 - 500 g boxes     | 17.4500 | 29  | 0  | 10 | False |
|     | 17 Alice Mutton      | 7 | 6  20 - 1 kg tins       | 39.0000 | 0   | 0  | 0  | True  |
|     | 18  Carnarvon Tigers | 7 | 8   16 kg pkg.          | 62.5000 | 42  | 0  | 0  | False |
|     | 19 Teatime Chocolate | 8 | 3 10 boxes x 12 pieces  | 9.2000  | 25  | 0  | 5  | False |
|     | 20 Sir Rodney's Marm | 8 | 3   30 gift boxes       | 81.0000 | 40  | 0  | 0  | False |

Display data in Ascending order

| 11) | Spark Jobs               |    |                        |          |     |     |    |     |
|-----|--------------------------|----|------------------------|----------|-----|-----|----|-----|
| ')  | 74 Longlife Tofu         | 4  | 7 5 kg pkg.            | 10.0000  | 4   | 20  | 5  | Fal |
|     | 46 Spegesild             | 21 | 8 4 - 450 g glasses    |          | 95  | 0   | 0  | Fa  |
|     | 31 Gorgonzola Telino     | 14 | 4 12 - 100 g pkgs      | 12.5000  | 0   | 70  | 20 | Fa  |
|     | 68   Scottish Longbreads | 8  | 3 10 boxes x 8 pieces  | 12.5000  | 6   | 10  | 15 | Fa: |
|     | 48 Chocolade             | 22 | 3 10 pkgs.             | 12.7500  | 15  | 70  | 25 | Fa  |
|     | 29 Thüringer Rostbra     | 12 | 6 50 bags x 30 sausgs. | 123.7900 | 0   | 0   | 0  | T   |
|     | 77 Original Frankfur     | 12 | 2 12 boxes             | 13.0000  | 32  | 0   | 15 | Fa  |
|     | 58 Escargots de Bour     | 27 | 8 24 pieces            | 13.2500  | 62  | 0   | 20 | Fa  |
|     | 42 Singaporean Hokki     | 20 | 5  32 - 1 kg pkgs.     | 14.0000  | 26  | 0   | 0  | Т   |
|     | 25 NuNuCa Nuß-Nougat     | 11 | 3  20 - 450 g glasses  | 14.0000  | 76  | 0   | 30 | Fa  |
|     | 34  Sasquatch Ale        | 16 | 1   24 - 12 oz bottles | 14.0000  | 111 | 0   | 15 | Fa  |
|     | 67 Laughing Lumberja     | 16 | 1   24 - 12 oz bottles | 14.0000  | 52  | 0   | 10 | Fa  |
|     | 70 Outback Lager         | 7  | 1  24 - 355 ml bottles | 15.0000  | 15  | 10  | 30 | Fa  |
|     | 73  Röd Kaviar           | 17 | 8  24 - 150 g jars     | 15.0000  | 101 | 0   | 5  | Fa  |
|     | 15 Genen Shouyu          | 6  | 2  24 - 250 ml bottles | 15.5000  | 39  | 0   | 5  | Fa  |
|     | 50  Valkoinen suklaa     | 23 | 3   12 - 100 g bars    | 16.2500  | 65  | 0   | 30 | Fa  |
|     | 66 Louisiana Hot Spi     | 2  | 2  24 - 8 oz jars      | 17.0000  | 4   | 100 | 20 | Fa  |
|     | 16 Pavlova               | 7  | 3 32 - 500 g boxes     | 17.4500  | 29  | 0   | 10 | Fa  |

Command took 1.96 seconds -- by azuser1079\_mml.local@iihtl.onmicrosoft.com at 2/26/2024, 11:02:17 AM on azuser1079\_mml.local's Personal Compute Cluster

### • Sort the data based on unit in stock

| (1) | Spark Jobs              |    |                        |          |     |    |    |       |
|-----|-------------------------|----|------------------------|----------|-----|----|----|-------|
|     | 29 Thüringer Rostbra    | 12 | 6 50 bags x 30 sausgs. | 123.7900 | 0   | 0  | 0  | True  |
|     | 31  Gorgonzola Telino   | 14 | 4   12 - 100 g pkgs    | 12.5000  | 0   | 70 | 20 | False |
|     | 53  Perth Pasties       | 24 | 6 48 pieces            | 32.8000  | 0   | 0  | 0  | True  |
|     | 30 Nord-Ost Matjeshe    | 13 | 8  10 - 200 g glasses  | 25.8900  | 10  | 0  | 15 | False |
|     | 49  Maxilaku            | 23 | 3 24 - 50 g pkgs.      | 20.0000  | 10  | 60 | 15 | False |
|     | 73  Röd Kaviar          | 17 | 8  24 - 150 g jars     | 15.0000  | 101 | 0  | 5  | False |
|     | 22  Gustaf's Knäckebröd | 9  | 5  24 - 500 g pkgs.    | 21.0000  | 104 | 0  | 25 | False |
|     | 37  Gravad lax          | 17 | 8  12 - 500 g pkgs.    | 26.0000  | 11  | 50 | 25 | False |
|     | 34  Sasquatch Ale       | 16 | 1   24 - 12 oz bottles | 14.0000  | 111 | 0  | 15 | False |
|     | 33  Geitost             | 15 | 4  500 g               | 2.5000   | 112 | 0  | 20 | False |
|     | 36  Inlagd Sill         | 17 | 8  24 - 250 g jars     | 19.0000  | 112 | 0  | 20 | False |
|     | 61  Sirop d'érable      | 29 | 2  24 - 500 ml bottles | 28.5000  | 113 | 0  | 25 | False |
|     | 55  Pâté chinois        | 25 | 6 24 boxes x 2 pies    | 24.0000  | 115 | 0  | 20 | False |
|     | 6 Grandma's Boysenb     | 3  | 2   12 - 8 oz jars     | 25.0000  | 120 | 0  | 25 | False |
|     | 40  Boston Crab Meat    | 19 | 8 24 - 4 oz tins       | 18.4000  | 123 | 0  | 30 | False |
|     | 75 Rhönbräu Klosterbier | 12 | 1   24 - 0.5 l bottles | 7.7500   | 125 | 0  | 25 | False |
|     | 3  Aniseed Syrup        | 1  | 2  12 - 550 ml bottles | 10.0000  | 13  | 70 | 25 | False |
|     | 72 Mozzarella di Gio    | 14 | 4 24 - 200 g pkgs.     | 34.8000  | 14  | 0  | 0  | False |

Command took 1.69 seconds -- by azuser1079\_mml.local@iihtl.onmicrosoft.com at 2/26/2024, 11:02:24 AM on azuser1079\_mml.local's Personal Compute Cluster

## • Inner join of customer and order table based on customer ID



# • Display the table with a changed column name

| 31     | Aniseed Syrup    | 1 | 2   1 | 12 - 550 ml bottles | 10.0000 | 13  | 70 | 25 | False |
|--------|------------------|---|-------|---------------------|---------|-----|----|----|-------|
| 4   Ch | ef Anton's Caju  | 2 | 2     | 48 - 6 oz jars      | 22.0000 | 53  | 0  | 0  | False |
|        | ef Anton's Gumb  | 2 | 2     | 36 boxes            | 21.3500 | 0   | 0  | 0  | True  |
| 6 Gr   | andma's Boysenb  | 3 | 2     | 12 - 8 oz jars      | 25.0000 | 120 | øİ | 25 | False |
|        | cle Bob's Organ  | 3 | 7     | 12 - 1 lb pkgs.     | 30.0000 | 15  | 0  | 10 | False |
| 8 No   | rthwoods Cranbe  | 3 | 2     | 12 - 12 oz jars     | 40.0000 | 6   | 0  | 0  | False |
| 9      | Mishi Kobe Niku  | 4 | 6     | 18 - 500 g pkgs.    | 97.0000 | 29  | 0  | 0  | True  |
| 10     | Ikura            | 4 | 8     | 12 - 200 ml jars    | 31.0000 | 31  | 0  | 0  | False |
| 11     | Queso Cabrales   | 5 | 4     | 1 kg pkg.           | 21.0000 | 22  | 30 | 30 | False |
| 12 Qu  | eso Manchego La  | 5 | 4     | 10 - 500 g pkgs.    | 38.0000 | 86  | 0  | 0  | False |
| 13     | Konbu            | 6 | 8     | 2 kg box            | 6.0000  | 24  | 0  | 5  | False |
| 14     | Tofu             | 6 | 7     | 40 - 100 g pkgs.    | 23.2500 | 35  | 0  | 0  | False |
| 15     | Genen Shouyu     | 6 | 2 2   | 24 - 250 ml bottles | 15.5000 | 39  | 0  | 5  | False |
| 16     | Pavlova          | 7 | 3     | 32 - 500 g boxes    | 17.4500 | 29  | 0  | 10 | False |
| 17     | Alice Mutton     | 7 | 6     | 20 - 1 kg tins      | 39.0000 | 0   | 0  | 0  | True  |
| 18     | Carnarvon Tigers | 7 | 8     | 16 kg pkg.          | 62.5000 | 42  | 0  | 0  | False |
| 19 Te  | atime Chocolate  | 8 | 3 10  | boxes x 12 pieces   | 9.2000  | 25  | 0  | 5  | False |
| 20 Si  | r Rodney's Marm  | 8 | 3     | 30 gift boxes       | 81.0000 | 40  | 0  | 0  | False |

# • Display dataframe of order table

- order = spark.read.option("header","true").format("csv").load("/mnt/blobstrorage1/dboOrders.csv")
  display(order)
- ▶ (2) Spark Jobs
- Im order: pyspark.sql.dataframe.DataFrame = [OrderID: string, CustomerID: string ... 12 more fields]

|   | OrderID 📥 | CustomerID 📤 | EmployeeID 📤 | OrderDate                   | _ | RequiredDate                | ShippedDate                 | $\triangle$ | ShipVia | _ | Freight |
|---|-----------|--------------|--------------|-----------------------------|---|-----------------------------|-----------------------------|-------------|---------|---|---------|
| 1 | 10248     | VINET        | 5            | 1996-07-04 00:00:00.0000000 |   | 1996-08-01 00:00:00.0000000 | 1996-07-16 00:00:00.0000000 |             | 3       |   | 32.3800 |
| 2 | 10249     | TOMSP        | 6            | 1996-07-05 00:00:00.0000000 |   | 1996-08-16 00:00:00.0000000 | 1996-07-10 00:00:00.0000000 |             | 1       |   | 11.6100 |
| 3 | 10250     | HANAR        | 4            | 1996-07-08 00:00:00.0000000 |   | 1996-08-05 00:00:00.0000000 | 1996-07-12 00:00:00.0000000 |             | 2       |   | 65.8300 |
| 4 | 10251     | VICTE        | 3            | 1996-07-08 00:00:00.0000000 |   | 1996-08-05 00:00:00.0000000 | 1996-07-15 00:00:00.0000000 |             | 1       |   | 41.3400 |
| 5 | 10252     | SUPRD        | 4            | 1996-07-09 00:00:00.0000000 |   | 1996-08-06 00:00:00.0000000 | 1996-07-11 00:00:00.0000000 |             | 2       |   | 51.3000 |
| 6 | 10253     | HANAR        | 3            | 1996-07-10 00:00:00.0000000 |   | 1996-07-24 00:00:00.0000000 | 1996-07-16 00:00:00.0000000 |             | 2       |   | 58.1700 |
| 7 | 10254     | CHOPS        | 5            | 1996-07-11 00:00:00.0000000 |   | 1996-08-08 00:00:00.0000000 | 1996-07-23 00:00:00.0000000 |             | 2       |   | 22.9800 |

Command took 4.76 seconds -- by azuser1079\_mml.local@iihtl.onmicrosoft.com at 2/26/2024, 11:04:53 AM on azuser1079\_mml.local's Personal Compute Cluster

## Display the profiling of the data in the table

Data profiling is the process of collecting statistics and summaries of data to assess its quality and other characteristics



Visualization of the country data represented in the form of the pie chart.



d took 4.76 seconds -- by azuser1079 mml.local@iihtl.onmicrosoft.com at 2/26/2024, 11:04:53 AM on azuser1079 mml.local's Personal Compute Cluster

• Transfer of the dataframe which we manipulated to a blob storage thorough access key.

```
purple of the state of the
```

• The Dataframe gets committed to a new storage



## **Conclusion**

In conclusion, the project successfully implemented a robust data pipeline leveraging various Azure services. By setting up a SQL server with a database, data was securely stored onpremises. Azure Data Factory was then employed to seamlessly transfer data from the SQL database to Blob storage in the Azure cloud, ensuring scalability and reliability. Additionally, Azure Databricks played a crucial role in performing data transformations and enabling visualization using PySpark, empowering data analysts and engineers to derive insights and make informed decisions. Overall, this project demonstrates the power of Azure services in building end-to-end data solutions, from ingestion to transformation and visualization, paving the way for efficient data-driven workflows and analytics.