- 实验报告
 - 主要思路
 - 测试程序
 - 对偶问题
 - 原问题
 - 运行结果
 - 总结

实验报告

主要思路

1.在相同的基规模下,通过计算比较考虑对偶问题运算时间问题-->time 2.在相同的基规模下,比较两种算法在0处误差大小,考虑duality是否在0处误差更小-->errorat0 3.进一步通过比较两者平均误差,考虑duality是否以在其他地方误差更大为代价-->average_error

测试程序

对偶问题

```
% Duality
t1=clock;
uk = Duality_approx_simple_PDE(BASE_SIZE);
t2=clock;
time_dual(k)=etime(t2,t1);
errorat0_dual(k)=double(subs(uk,x,0)-subs(u,x,0));
average_error_dual(k)=int(uk-u,x,0,1);
```

原问题

```
% original
t1=clock;
uk = Approx_simple_PDE(BASE_SIZE);
t2=clock;
time_ori(k)=etime(t2,t1);
errorat0_ori(k)=double(subs(uk,x,0)-subs(u,x,0));
average_error_ori(k)=int(uk-u,x,0,1);
```

运行结果

time_dual	time_ori	error at 0_dual	error at 0_ori	average error_dual	average error_ori
18.3203190	17.3211230	-0.23784	-0.237840011320181	-0.309945062063126	-0.309945062063126
59.9963550	63.4911460	0.01660	0.00215762969316735	5.92118946466750e- 16	3.76587649952853e- 16

time_dual	time_ori	error at 0_dual	error at 0_ori	average error_dual	average error_ori
79.3734140	123.723180	0.00087	6.98938710428365e- 05	-2.58060239843871e- 15	-4.04417240436790e- 16
129.793720	217.263306	0.00032	1.70970360242226e- 05	-7.13858601860314e- 15	-4.18535576566607e- 16
202.121174	313.499025	2.00123e- 05	1.03498927499590e- 05	-1.03265544263801e- 15	-2.02800739164862e- 17

以基的规模为x轴,以0处误差为y轴,作图如下:

以0处误差为x轴,运行时间为y轴,作图如下:

取后三个误差在e-4之内的值作图:

总结

考虑了对偶问题后,虽然相同的基规模下,0处误差仍是原问题更小,但运行时间更短了。

我们考虑收敛速率,即第二、第三张图,可以发现红线(dual)与黑线(ori)不相上下,并且第三张图红线甚至有高于黑线的趋势。

由于误差随着基的规模增大收敛很快,第三张图必然是非常陡峭的;如果我们想要探索在基的规模很大的情况下两者的收敛速度,我们将需要更强的机器,因为得到此规模的数据开销很大。