Algorithms and Data Structures II

Lecture 3:

Graphs, Definitions and Representations

 $\rm https://elms.u\hbox{-}aizu.ac.jp$

Directed Graphs

A graph G(V, E) consists of a set of vertices (nodes) V and a set of edges E. If the edges are ordered pairs (v, w) of vertices then the graph is directed (edges are also called arcs)

Undirected Graphs

▶ If the edges are unordered pairs (sets) of distinct vertices (also denoted by (v, w)) then the graph is undirected.

Graph Representations

- In a directed graph G(V, E), if (v, w) is an edge in E then we say vertex w is adjacent to v. We also say edge (v, w) is from v to w. The number of vertices adjacent to v is the (out-) degree of v.
- In an undirected graph G(V, E), (w, v) and (v, w) are the same edge. w is adjacent to v if (v, w) is in E. The degree of a vertex is the number of vertices adjacent to it. We say the edge (v, w) is incident on v.

Path

- A path in a graph is a sequence of edges of the form $(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n)$. The path is from v_1 to v_n of length n-1.
- ➤ As a special case, a single vertex denotes a path of length 0 from itself to itself.

Simple, Cycle

- ➤ A path is simple if all edges and all vertices on the path, except possibly the first and the last vertices, are distinct.
- ▶ A cycle is a simple path of length at least 1 which begins and ends at the same vertex. In an undirected graph, a cycle must be of length at least 3.

Adjacency Matrix

One of the common representations for a graph G(V, E) is the adjacency matrix, a $|V| \times |V|$ matrix A of 0's and 1's, where A[i, j] = 1 iff there is an edge from vertex i to vertex j. The adjacency matrix requires $O(|V|^2)$ memory space for graph G(V, E).

Graphs and adjacency matrices

	a	b	c	d	e	f
\overline{a}	0	1	1	1	0	0
b	1	0	1	0	0	0
c	0	0	0	0	1	0
d	0	1	1	0	1	0
e	0	1	0	0	0	0
f	0 1 0 0 0 0	0	0	1	1	0

Graphs and adjacency matrices

	a	b	c	d
\overline{a}	0	1	1	0
b	1	0	1	1
c	1	1	0	1
d	0 1 1 0	1	1	0

Adjacency List

- ➤ Another possible representation for a graph is adjacency list.
- An adjacent list for a vertex is a list of all vertices adjacent to it. A graph can be represented by |V| adjacency lists, one for each vertex.

Representation of Adjacency Lists

- Adjacency lists require O(|V| + |E|) memory space for graph G(V, E). Adjacency lists are often used for sparse graph G(V, E) with $|E| \ll |V|^2$.
- Note that $|E| \leq |V|(|V|-1)$ for directed graph and $|E| \leq (|V|(|V|-1))/2$ for undirected graph.

Graphs and adjacency lists

Search Process

Once the representation of a graph G is established, the types(directed or undirected) of graph is not matter on the next search processes, DFS & BFS: Just process on adjacency matrix or list!

Depth-first Search

- ▶ Depth-first search (DFS) is a natural way to visit every vertex and check every edge in the graph systematically.
- ▶ It has applications for many graph problems, such as checking the connectivity, finding the connected components or cycles, and so on, in graphs.

First step of DFS

▶ DFS visits graph G(V, E) in the following way. Select a vertex v and visit v. (v is also called the root of the DFS search tree.) Then select any edge (v, w)incident on v and visit w.

Second step of DFS

▶ In general, suppose x is the most recently visited vertex. The search is continued by selecting some unexplored edge (x, y) incident to x.

Next steps of DFS

▶ If y has been previously visited, then we find another new edge incident on x. If y has not been previously visited, then we visit y and begin the search anew starting at vertex y.

Returning to c

After completing the search through all paths beginning at the y, the search returns to x, the vertex from which y was first reached.

finaly...

➤ The process of selecting unexplored edges incident on x is continued until the list of these edges is exhausted.

DFS

This method is called depth-first search since we continue searching in the forward (deeper) direction as long as possible.

DFS Representation

- ➤ The following is a recursive procedure written in C that realizes DFS for graphs represented by adjacency matrices.
- In the procedure val[|V|+1] is used to indicate if a vertex has been visited. Initially val[|V|+1] is set to all zero, so val[k] = 0, indicating vertex k has not been visited yet.

DFS code

```
If vertex k is the i-th visited vertex, then val[k] is set to
   i, 1 \le i \le |V|.
DFS(int k){
  int t:
  val[k] = ++i:
  for (t=1; t \le |V|; t++)
    if (A[k][t] != 0 \&\& val[t] == 0) DFS(t);
```

Numbering nodes by visiting order or reversed order

Numbering the nodes by visiting order (or somehow) such as $v=1, w=2, c=3, \ldots, g=6, d=7, e=8$ or $v=8, w=7, c=6, \ldots, g=3, d=2, e=1$ is sometimes useful in Applications for finding strongly connected components or finding articulation points, etc.

Breadth-first Search

- Another classical graph-traversal algorithm is breadth-first search (BFS).
- ▶ BFS searches the graph as follows:
 - **1.** Select a vertex v and visit v.
 - **2.** For all edges (v, w), visit the vertices w and put w into a first-in first-out (FIFO) queue.
 - **3.** After w's are visited for all (v, w), we select a vertex w from the FIFO queue, visit all unvisited vertices x for (w, x), and put x into the queue.
 - 4. Repeat the above process until all the vertices in the graph are visited.

BFS

- ▶ BFS visits all successors of a visited vertex before visiting any successors of any of those successors.
- ➤ This is in contradistinction to the DFS which visits the successors of a visited vertex before visiting any of its "brothers".

DFS & BFS

- ➤ Whereas DFS tends to create very long, narrow trees, BFS tends to create wide, short trees.
- ► Exercise Problem 2 gives a C program for BFS.

Connectivity of Graphs

- Let G(V, E) be a directed graph. Two vertices u and v of G is strongly connected if there is a path from u to v and a path from v to u.
- ▶ A strongly connected component of *G* is a maximal subgraph of *G* whose vertices are all strongly connected with each other.

Finding strongly connected components

- \triangleright The problem of finding the strongly connected components of G can be done by DFS as follows:
 - 1. The first step is to perform a DFS on G.
 - 2. The next step is to reverse all edges of G creating an inverse graph G_r , taking transpose of adjacent
 - matrix of G.

 3. Finally, a DFS on G_r is performed, beginning at the vertex with the lowest label given in the DFS on G.

Finding strongly connected components 2

If this search does not visit all the vertices of G_r , the unvisited vertex with the lowest label is chosen and the search is resumed there, carrying on in this way until all vertices of G_r have been visited.

connected, k-connected

- An undirected graph G is called connected if there is a path between any pair of vertices in G.
- ▶ G is called k-connected if the removal of any k-1 vertices leaves the remaining subgraph connected.
 - ▶ 1-connected is connected;
 - ▶ 2-connected (biconnected) means that one vertex failure can be tolerated.

articulation point

➤ If a graph is connected but not biconnected, it has articulation points: vertices whose removal would disconnect the graph.

Example of articulation point

For example, the articulation points of the graph are c, e, and f. Articulation points can be found by DFS.

Finding articulation point

▶ For example, the articulation points of the graph are c, e, and f. Articulation points can be found by DFS.

