- LAMBDA CALCULUS -REVIEW

- 2. Substitution

 Each B-reduction triggers a substitution $(\lambda \times E)M \rightarrow E[M/x]$ E1
 - · Substitution may require renaming of formal parameters to avoid making free variables bound
 - · lu our examples, we will be performing renaming only when meassory

- Automated algorithm does aggressive renaming (Lec 15, Slide 20)

 (xy. E) [M/x]
- 3. Normal Form
 - 3.1 Canonical normal form NF
 - λ2.2 15 A NF
 - · Z v w is in NF
 - · & (vw) is in NF
 - · (Xx.x) z is not in NE
 - $\times \left(\frac{(\lambda \times . K) (\lambda y. y)}{E_1} \right)$ is not in NF
 - $K \left(Y \left((\lambda Z. Z) W \right) \right)$ is not in NE $E_1 \qquad E_2 \qquad E_3 \qquad E_4 \qquad Mp$

3.2 Weak normal forms (lazy normal forms)

HNF:

- · X is in the
- -> · X Eq E2 E3 ... En is in KNF
 - · XX. E IS TO HAVE if ETS TO HAVE
 - · XZ.Z is the HNP
 - $\times ((\lambda x. \times)(\lambda y. y))$ is in HNF

WHNF:

- ox is in WHNP
- · X E, E2 -- Eu is tu WHNF
- · XX. E is WHNF
- · Ax. (Ay.y) z is in WHNF

4. Combinators are terms with no free variables

$$I = \lambda x.x$$

 $S = \lambda x. \lambda y. \lambda z. \times z. (yz)$
 $K = \lambda x. \lambda y. x$

$$\begin{array}{l}
\rightarrow S K S K = ((S K) S) K \\
(\lambda x. \lambda y. \lambda z. \times z (yz)) K S K \rightarrow \beta \\
(\lambda y. \lambda z. K z (yz)) S K \rightarrow \beta \\
(\lambda z. K z (S z)) K \rightarrow \beta
\end{array}$$

$$\begin{array}{l}
K K (S K) = \\
(\lambda x. \lambda y. x) K (S K) \rightarrow \beta K
\end{array}$$