

Product Specification

(Preliminary)

Product Name: VGM128064C3W01

Product Code: M00980

Customer					
		Approved by Customer			
Approved	Date:				

Designed Pro	Charled Pv	Approved By .			
Designed By	Checked By	R&D QA			
新发线	ですかりかり121/18	It 2012 1.11 Harten 20121.18			

TEL:0755-8204 8740 FAX:0755-8293 3160 1/34

CONTENT

R	EVIS	SION RECORD	3
1	O	OVERVIEW	4
2	F	FEATURES	4
3	N	MECHANICAL DATA	4
4	N	MECHANICAL DRAWING	5
5	N	MODULE INTERFACE	6
6	F	FUNCTION BLOCK DIAGRAM	8
	6.1	FUNCTION BLOCK DIAGRAM	8
	6.2	PANEL LAYOUT DIAGRAM	8
7	A	ABSOLUTE MAXIMUM RATINGS	9
8	E	ELECTRICAL CHARACTERISTICS	9
	8.1	DC ELECTRICAL CHARACTERISTICS	9
	8.2	ELECTRO-OPTICAL CHARACTERISTICS	10
	8.3	AC ELECTRICAL CHARACTERISTICS	11
9	F	FUNCTIONAL SPECIFICATION AND APPLICATION CIRCUIT	18
	9.1	RESET TIMING	18
	9.2	APPLICATION CIRCUIT	19
	9.3	EXTERNAL DC-DC APPLICATION CIRCUIT	25
	9.4	DISPLAY CONTROL INSTRUCTION	26
	9.5	RECOMMENDED SOFTWARE INITIALIZATION	26
10) P	PACKAGE SPECIFICATION	27
11	R	RELIABILITY	28
	11.1	RELIABILITY TEST	28
	11.2	2 LIFETIME	28
		FAILURE CHECK STANDARD	
12		LLUSTRATION OF OLED PRODUCT NAME	
13		OUTGOING QUALITY CONTROL SPECIFICATIONS	
	13.1	SAMPLING METHOD	30
	13.2	2 Inspection Conditions	30
		QUALITY ASSURANCE ZONES	
	13.4	INSPECTION STANDARD	31
14	l P	PRECAUTIONS FOR OPERATION AND STORAGE	34
		PRECAUTIONS FOR OPERATION	
	14.2	2 Soldering	34
	14.3	PRECAUTIONS FOR STORAGE	34
	14.4	WARRANTY PERIOD	34

REVISION RECORD

REV.	REVISION DESCRIPTION	REV. DATE	REMARK
Y01	Initial release	2012-01-13	
		_	

1 Overview

VGM128064C3W01 is a monochrome OLED display module with 128×64 dot matrix. The characteristics of this display module are high brightness, self-emission, high contrast ratio, slim/thin outline, wide viewing angle, wide temperature range, and low power consumption.

2 Features

Display Color: White
 Dot Matrix:128×64
 Driver IC: SH1106G

➤ Interface: 8-bit 8080,8-bit 6800, I² C, 3-wire & 4-wire SPI

 \triangleright Wide range of operating temperature: -40°C to 70°C

3 Mechanical Data

NO.	ITEM	SPECIFICATION	UNIT
1	Dot Matrix	128(W)×64(H)	-
2	Dot Size	0.21(W)×0.21(H)	mm ²
3	Dot Pitch	0.23(W)×0.23 (H)	mm ²
4	Aperture Rate	83	%
5	Active Area	29.42(W)×14.7 (H)	mm ²
6	Panel Size	34.5(W)×23 (H) ×1.2(T)	mm ³
7	Module Size	34.5 (W)×35(H) ×1.43(T)	mm ³
8	Diagonal A/A Size	1.30	inch
9	Module Weight	TBD	gram

4 Mechanical Drawing

5 Module Interface

PIN NO.	PIN NAME	DESCRIPTION						
1	NC(GND)	No Conn	ection.					
2	Č1N	Connect	to charge pun	np capacitor.				
3	C1P				oe disconnedt	ed when Vpp is	supplied extern	nally.
4	C2P		to charge pun					
5	C2N		• •		be disconnedt	ed when Vpp is	supplied exteri	nally
						r charge pump of	**	iuiiy.
6	VDD2					when VPP is s		11157
7	NC	No Conn		nected of con	nect to VDD	when vii is s	upplied externa	.11 y
8	VSS	Ground.	ection.					
9	VDD1		pply input: 1.	65 - 3.5V				
10	IM0		 	terface mode s	select pads.			
11	IM1		8080	I2C	6800	4-wire SPI	3-wire SPI]
		IM0	0	0	0	0	1	1
12	IM2	IM1	1	1	0	0	0	
		IM2	1	0	1	0	0	1
		This pad	is the chip se	lect input. Wh	en CSB= "L'	', then the chip	select becomes	active,
13	CSB	and data/command I/O is enabled.						,
					n RESR is se	t to "L", the set	tings are initiali	ized
14	RESB			performed by			tings are initian	izca.
15	A0	a comma A0 = "H	nd. ": the inputs a	t D0 to D7 ar	e treated as di			data or
	710		-			o the command ruish the differen	_	LED
16	WRB	This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WRB signal. The signals on the data bus are latched at the rising edge of the WRB signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When WRB = "H": Read. When WRB= "L": Write.						
17	RDB	When co RDB sig signal is When co clock input of the	nal of the 808 "L".	8080 series M 0 series MPU 5800 series M s MPU.	, and the data	ve LOW. This pus is in an out	tput status wher	n this

PRODUCT SPECIFICATION

	D0~D7	This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus.
18~25		When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance.
		When the I2C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDAI). At this time, D2 to D7 are set to high impedance.
26	IREF	This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 10µA.
27	VCOMH	This is a pad for the voltage output high level for common signals.
27	V COMIT	A capacitor should be connected between this pad and VSS.
28	VPP	OLED panel power supply. Generated by internal charge pump.
28	VPP	Connect to capacitor. It could be supplied externally.
29	VLSS	Ground.
30	NC(GND)	No Connection.

6 Function Block Diagram

6.1 Function Block Diagram

6.2 Panel Layout Diagram

7 Absolute Maximum Ratings

ITEM	SYMBOL	MIN	MAX	UNIT	REMARK
DC Comply Voltage	VDD1	-0.3	+3.6	V	IC maximum rating
DC Supply Voltage	VDD2	-0.3	+4.3	V	IC maximum rating
OLED Operating voltage	VPP	-0.3	+13.5	V	IC maximum rating
Operating Temp.	Тор	-40	+70	$^{\circ}$	-
Storage Temp	Tstg	-40	+85	${\mathbb C}$	-

Note (1): All of the voltages are on the basis of "VSS = 0V".

Note (2): Permanent breakage of module may occur if the module is used beyond the maximum rating. The module can be normal operated under the conditions according to Section 8 "Electrical Characteristics". Malfunctioning of the module may occur and the reliability of the module may deteriorate if the module is used beyond the conditions.

8 Electrical Characteristics

8.1 DC Electrical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Lagia Supply Valtaga	VDD1	22±3°C, 55±15%R.H	1.65	3.0	3.5	V
Logic Supply Voltage	VDD2	22±3°C, 55±15%R.H	2.4	3.7	4.2	V
OLED Driver Supply Voltage	VPP	22±3°C, 55±15%R.H	11.5	12	12.5	V
High-level Input Voltage	$V_{ m IH}$	-	$0.8 \times VDD1$	1	VDD1	V
Low-level Input Voltage	$V_{ m IL}$	-	VSS	-	0.2×VDD1	V
High-level Output Voltage	V_{OH}	-	0.8×VDD1	1	VDD1	V
Low-level Output Voltage	V_{OL}	-	VSS	-	$0.2 \times VDD1$	V

Note: The VPP input must be kept in a stable value; ripple and noise are not allowed.

8.2 Electro-optical Characteristics

ITEM	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Normal Mode	T	All pixels ON(1) VPP = 12V (External)	90	120	-	cd/m ²
Brightness	$L_{ m br}$	All pixels ON(1) (VPP generated by internal DC/DC)	60	80	ı	Cu/III
Sleep mode current Consumption in VDD1&VDD2	ISP	During sleep,TA=+25°C VDD1=3VVDD2=3V(2)		-	5	uA
Sleep mode current Consumption in VPP		During sleep,TA=+25°C VPP=9V(2)	-	-	5	uA
Normal Mode Power	Pt	All pixels ON(1) VPP = 12V (External)	-	TBD	TBD	mW
Consumption	Γţ	All pixels ON(1) (VPP generated by internal DC/DC)	-	TBD	TBD	mW
C LE(White)	(x)	(CIE1021)	TBD	0.30	TBD	-
C.I.E(White)	(y)	x,y(CIE1931)		0.33	TBD	-
Dark Room Contrast	CR	-	≥2000:1	-	-	-
Response Time	-	-	-	10	-	μs
View Angle	-	-	≥160	-	-	Degree

Note(1):

Normal Mode test conditions are as follows:

Driving voltage: 12V Contrast setting: TBD

- Frame rate : TBD- Duty setting : 1/64

- Driving voltage: VDD2:3.7V(VPP Generated by Internal DC/DC).

Contrast setting : TBDFrame rate : TBD

- Duty setting: 1/64

Note(2):

Sleep Mode test conditions are as follows:

- Disable Charge Pump:0XAD,0X8A.
- Set \Display OFF:0XAE

When the display OFF command is executed, power saver mode will be entered.

Sleep mode:

This mode stops every operation of the OLED display system, and can reduce current consumption nearly to a static current value if no access is made from the microprocessor. The internal status in the sleep mode is as follows:

- -Stops the oscillator circuit and DC-DC circuit.
- -Stops the OLED drive and outputs HZ as the segment/common driver output.
- -Holds the display data and operation mode provided before the start of the sleep mode.
- -The MPU can access to the huilt-in display RAM.

8.3 AC Electrical Characteristics

(1) 8080-Series MPU Parallel Interface Timing Characteristics

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC8	System cycle time	600	-	-	ns	
tas8	Address setup time	0	-	-	ns	
tah8	Address hold time	0	-	-	ns	
tds8	Data setup time	80	-	-	ns	
tdh8	Data hold time	30	-	1	ns	
tch8	Output disable time	20	-	140	ns	CL = 100pF
tacc8	RD access time	-	-	280	ns	CL = 100pF
teclw	Control L pulse width (WR)	200	-	1	ns	
teelr	Control L pulse width (RD)	240	-	-	ns	
techw	Control H pulse width (WR)	200	-	-	ns	
techr	Control H pulse width (RD)	200	-	-	ns	
tR	Rise time	1	-	30	ns	
tF	Fall time	-	-	30	ns	

 $(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC8	System cycle time	300	1	-	ns	
tas8	Address setup time	0	-	-	ns	
tah8	Address hold time	0	-	-	ns	
tds8	Data setup time	40	-	-	ns	
tdh8	Data hold time	15	-	-	ns	
tch8	Output disable time	10	-	70	ns	CL = 100pF
tacc8	RD access time	-	-	140	ns	CL = 100pF
teclw	Control L pulse width (WR)	100	-	-	ns	
teclr	Control L pulse width (RD)	120	-	-	ns	
techw	Control H pulse width (WR)	100	-	-	ns	
techr	Control H pulse width (RD)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

8080-series parallel interface characteristics

(2)6800-Series MPU Parallel Interface Timing Characteristics

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	600	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	80	-	-	ns	
tDH6	Data hold time	30	-	-	ns	
tOH6	Output disable time	20	-	140	ns	CL = 100pF
tACC6	Access time	-	-	280	ns	CL = 100pF
tEWHW	Enable H pulse width (Write)	200	-	-	ns	
tEWHR	Enable H pulse width (Read)	240	-	-	ns	
tEWLW	Enable L pulse width (Write)	200	-	-	ns	
tEWLR	Enable L pulse width (Read)	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

$(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	15	-	-	ns	
tOH6	Output disable time	10	-	70	ns	CL = 100pF
tACC6	Access time	-	-	140	ns	CL = 100pF
tEWHW	Enable H pulse width (Write)	100	-	-	ns	
tEWHR	Enable H pulse width (Read)	120	-	-	ns	
tEWLW	Enable L pulse width (Write)	100	-	-	ns	
tEWLR	Enable L pulse width (Read)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

6800-series parallel interface characteristics

(3)Serial Interface Timing Characteristics(For 4 wire SPI)

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tSCYC	Serial clock cycle	500	-	-	ns	
tSAS	Address setup time	300	-	-	ns	
tSAH	Address hold time	300	-	-	ns	
tSDS	Data setup time	200	-	-	ns	
tSDH	Data hold time	200	-	-	ns	
tCSS	CS setup time	240	-	-	ns	
tCSH	CS hold time time	120	-	-	ns	
tSHW	Serial clock H pulse width	200	-	-	ns	
tSLW	Serial clock L pulse width	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

$(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tSCYC	Serial clock cycle	250	-	-	ns	
tSAS	Address setup time	150	-	-	ns	
tSAH	Address hold time	150	-	-	ns	
tSDS	Data setup time	100	-	-	ns	
tSDH	Data hold time	100	-	-	ns	
tCSS	CS setup time	120	-	-	ns	
tCSH	CS hold time time	60	-	-	ns	
tSHW	Serial clock H pulse width	100	-	-	ns	
tSLW	Serial clock L pulse width	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

Serial Interface characteristics

(4)Serial Interface Timing Characteristics(For 3 wire SPI)

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	500	-	-	ns	
tsds	Data setup time	200	-	-	ns	
tsdн	Data hold time	200	-	-	ns	
tcss	CS setup time	240	-	-	ns	
tcsн	cs hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tslw	Serial clock L pulse width	200	-	-	ns	
tr	Rise time	-	-	30	ns	
tf	Fall time	-	-	30	ns	

 $(VDD1 = 2.4V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tscyc	Serial clock cycle	250	•	-	ns	
tsds	Data setup time	100	ı	-	ns	
tsdн	Data hold time	100	1	-	ns	
tcss	CS setup time	120	ı	-	ns	
tсsн	cs hold time time	60	1	-	ns	
tshw	Serial clock H pulse	100	1	-	ns	
tslw	Serial clock L pulse	100	ı	-	ns	
tr	Rise time	-	ı	15	ns	
tf	Fall time	-	ı	15	ns	

Serial Interface characteristics

(5)I² C Interface Timing Characteristics

 $(VDD1 = 1.65V \text{ to } 3.5V, TA = 25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fSCL	SCL clock frequency	DC	-	400	kHz	
TLOW	SCL clock Low pulse width	1.3	-	-	uS	
THigh	SCL clock H pulse width	0.6	-	-	uS	
TSU:data	data setup time	100	-	-	nS	
THD:data	data hold time	0	-	0.9	uS	
Tr	SCL, SDA rise time	20+0.1C b	-	300	nS	
Tf	SCL, SDA fall time	20+0.1C b	-	300	nS	
Cb	Capacity load on each bus line	-	-	400	pF	
TSu:sTAr t	Setup timefor re-START	0.6	-	-	uS	
THD:start	START Hold time	0.6	-	-	uS	
Tsu:stop	Setup time for STOP	0.6	-	-	uS	
TBUF	Bus free times between STOP and START condition	1.3	-	-	uS	

Serial Interface characteristics

9 Functional Specification and Application Circuit

9.1 Reset Timing

$$(VDD1 = 1.65 - 3.5V, T_A = +25^{\circ}C)$$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tr	Reset time	ı		2.0	μs	
trw	Reset low pulse width	10.0	ı	ı	μs	

$$(VDD1 = 2.4 - 3.5V, T_A = +25^{\circ}C)$$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tr	Reset time	-	-	1.0	μs	
trw	Reset low pulse width	5.0	ı	1	μs	

TEL:0755-8204 8740 FAX:0755-8293 3160 18/34

9.2 Application Circuit

9.2.1 Under external VPP Mode, the charge Pump Setting (ADh) must be set as follow:

ADh:DC-DC Control Mode Set 8Ah:DC-DC is disable

(1). The configuration for 8080-parallel interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: D[7:0], RDB, WRB, A0, RESB, CSB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

(2). The configuration for 6800-parallel interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: D[7:0], RDB, WRB, A0, RESB,CSB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

(3). The configuration for 4-wire SPI interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SCL,SI,A0, RESB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

(4). The configuration for 3-wire SPI interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SCL,SI,RESB

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

(5). The configuration for I² C interface mode, external VPP is shown in the following diagram:

Pin connected to MCU interface: SCL,SDA,SA0, RES

Recommended components

C2, C3: 4.7µF/25V.ROHS (Tantalum Capacitors)

C1: 0.1uF-0603-X7R±10%.ROHS

R1: 0603 1/10W +/-5% 760Kohm.ROHS

R2,R3: 0603 1/10W +/-5% 10Kohm.ROHS

9.2.2 Under Internal DC/DC Mode, the charge Pump Setting (ADh) must be set as follow:

ADh: DC-DC Control Mode Set

8Bh:DC-DC is will be turned on when display on

The configuration for VPP Generated by Internal DC/DC Circuit is shown in the following diagram:

Pin connected to MCU interface: D[7:0], RDB, WRB, A0, RESB, CSB, IM0, IM1, IM2

Recommended components

C1: 0.1uF-0603-X7R±10%.ROHS

C2,C3,C6: 4.7µF/25V.ROHS (Tantalum Capacitors)

C4,C5: 1µF/25V.ROHS (Tantalum Capacitors)

9.3 External DC-DC application circuit

Recommend component

The C1 : 1 uF-0603-X7R±10%.ROHS

The C2 : 1 uF-0603-X7R±10%.ROHS

The C3 : 220pF-0603-X7R±10%.ROHS

The R1 : 0603 1/10W +/-1% 10Kohm.ROHS

The R2 : 0603 1/10W +/-1% 110Kohm.ROHS

The R3 : 0603 1/10W +/-5% 2Kohm.ROHS

The R4 : 0603 1/10W +/-5% 1Kohm.ROHS

The R5 : 0603 1/10W +/-5% 10Kohm.ROHS

The L1 : 22uH

The U1 : R1200

The U2 : FDN338P

The U3 : 8050

9.4 Display Control Instruction

Refer to SH1106G IC Specification.

9.5 Recommended Software Initialization

TBD

10 Package Specification

TBD

11 Reliability

11.1 Reliability Test

NO.	ITEM	CONDITION	QUANTITY
1	High Temperature (Non-operation)	85℃,240hrs	4
2	Low Temperature (Non-operation)	-40°C,240hrs	4
3	High Temperature (Operation)	70°C,240hrs	4
4	Low Temperature (Operation)	-40°C,240hrs	4
5	High Temperature / High Humidity (Operation)	60°C,90%RH,240hrs	4
6	Thermal shock (Non-operation)	-40°C~85°C(-40°C/30min;transit/3min;85°C/30min;transit/3min) 1 cycle: 66min,30 cycles	4
7	Vibration	Frequency: 5~50Hz,0.5G Scan rate: 1 oct/min Time: 2 hrs/axis Test axis: X,Y, Z	1 Carton
8	Drop	Height: 100 cm Sequence: 1 angle, 3 edges and 6 faces	1 Carton

Test and measurement conditions

- 1. All measurements shall not be started until the specimens attain to temperature stability, the stable time is at least 15 minutes.
- 2. The degradation of polarizer is ignored for item 5.
- 3. The tolerance of temperature is $\pm 3^{\circ}$ C, and the tolerance of relative humidity is $\pm 5\%$.

Evaluation criteria

- 1. The function test is OK.
- 2. No observable defects.
- 3. Luminance: ≥50% of initial value.
- 4. Current consumption: within \pm 50% of initial value.

11.2 Lifetime

End of lifetime is specified as 50% of initial brightness and the test pattern at operating condition is 50% alternating checkerboard.

ITEM	MIN	MAX	UNIT	CONDITION
Operation Life Time	13,000	-	hrs	120 cd/m ² , 50% alternating checkerboard, 22±3°C, 55±15% RH

11.3 Failure Check Standard

After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at 22±3°C; 55±15% RH.

12 Illustration of OLED Product Name

13 Outgoing Quality Control Specifications

13.1 Sampling Method

- (1) GB/T 2828.1-2003/ISO2859-1: 1999, inspection level II, normal inspection, single sample inspection
- (2) AQL: Major 0.65; Minor 1.0

13.2 Inspection Conditions

The environmental conditions for test and measurement are performed as follows.

Temperature: 22±3°C Humidity: 55±15%R.H Fluorescent Lamp: 30W

Distance between the Panel & Lamp: ≥50cm Distance between the Panel & Eyes: ≥30cm

Viewing angle from the vertical in each direction: ≤45°

(See the sketch below)

13.3 Quality Assurance Zones

13.4 Inspection Standard

Definition of Φ&L&W (Unit: mm)

I . Appearance Defects

NO.	ITEM		CRITE	RIA		CLASSIFICATION
1	Polarizer Black or White spot, Dirty spot, Foreign matter, Dent on the polarizer	Average Diameter (mm) Φ≤0.15 0.15<Φ≤0.30 Φ>0.30	Zone Zone Zone Zone Zone Zone Zone Zone		Number Zone C Ignore	Minor
2	Scratch/line on the glass/Polarizer	Width (mm) W≤0.03 0.03 <w≤0.08 w="">0.08</w≤0.08>	Length (mm) L≤5.0	Accept Zone A, Ignore 3		Minor
3	Polarizer Bubble	Average Diamete (mm) Φ>0.5 0.2<Φ≤0.5 Φ≤0.2	Zo	Acceptable one A,B 0 3 gnore	e Number Zone C Ignore	Minor
4	Any Dirt & Scratch on Polarizer's Protective Film	Ignore f	Acceptable			
5	Glass Crack		Major 2.			

6	Corner Chip		Minor
		t= Glass thickness Accept a≤2.0mm or b≤2.0mm, c≤t	
7	Corner Chip on Cap Glass	$t = Glass thickness$ $Accept$ $a \le 1.5 mm \text{ or } b \le 1.5 mm, c \le t$	Minor
8	Chip on Contact Pad	t= Glass thickness Accept a≤3.0mm or b≤0.8mm, c≤t (on the contact pin) a≤3.0mm or b≤1.5mm, c≤t (outside of the contact pin)	Minor
9	Chip on Face of Display	t= Glass thickness Accept a≤1.5mm or b≤1.5mm, c≤t	Minor
10	Chip on Cap Glass	t= Glass thickness Accept $a \le 3.0 \text{mm} \text{ or } b \le 1.5 \text{mm}, t/2 \le c \le t$	Minor
11	Stain on Surface	Stain removable by soft cloth or air blow is acceptable.	Minor
12	TCP/FPC Damage	 Crack, deep scratch, deep hole and deep pressure mark on the TCP/FPC are not acceptable. Terminal lead twisted or broken is not allowable. Copper exposed is not allowed by naked eye inspection. 	Minor
13	Dimension Unconformity	Checking by mechanical drawing.	Major

PRODUCT SPECIFICATION

${\rm I\hspace{-.1em}I}$. Displaying Defects

NO.	ITEM		CLASSIFICATION		
1	Black/White spot Dirty spot Foreign matter	Average Diameter (mm) Φ≤0.10 0.10<Φ≤0.20 Φ>0.20	Pieces P Zone A,B Ignore 3 0	Zone C Ignore	Minor
2	No Display		Major		
3	Irregular Display	Not allowable.			Major
4	Missing Line (row or column)	Not allowable.			Major
5	Short		Major		
6	Flicker	Not allowable.			Major
7	Abnormal Color	Refer to the SPEC.			Major
8	Luminance NG	R	Major		
9	Over Current	R	Major		

14 Precautions for operation and Storage

14.1 Precautions for Operation

- (1) Since OLED panel is made of glass, do not apply any mechanical shock or impact or excessive force to it when installing the OLED module. Any strong mechanical impact due to falling dropping etc. may cause damage (breakage or cracking).
- (2) The polarizer on the OLED surface is made of soft material and is easily scratched. Please take most care when handing. When the surface of the polarizer of OLED Module is contaminated, please wipe it off gently by using moisten soft cloth with isopropyl alcohol, do not use water, ketone or aromatics. If there is saliva or water on the OLED surface, please wipe it off immediately.
- (3) When handling OLED module, please be sure that the body and the tools are properly grounded. And do not touch I/O pins with bare hands or contaminate I/O pins, it will cause disconnection or defective insulation of terminals.
- (4) Do not attempt to disassemble or process the OLED module.
- (5) OLED module should be used under recommended operating conditions shown in the specification. Since the higher voltage leads to the shorter lifetime, be sure to use the specified operating voltage.
- (6) Foggy dew, moisture condensation or water droplets deposited on surface and contact terminals will cause polarizer stain or damage, the deteriorated display quality and electrochemical reaction then leads to shorter life time and permanent damage to the module probably. Please pay attention to the environmental temperature and humidity.
- (7) An afterimage is created by the difference in brightness between unused dot and the fixed dot, according to the decrease of brightness of the emitting time. Therefore, to avoid having an afterimage, the full set should be thoroughly used instead of using a fixed dot. When the fixed dot emits, an afterimage can be created.
- (8) Flicker could be come out at full on display. And it disappears when frame frequency increase, but brightness decreases too.

14.2 Soldering

- (1) Soldering should be performed only on the I/O terminals.
- (2) Use soldering irons with proper grounding and no leakage.
- (3) Iron: no higher than 300°C and 3~4 sec during soldering.

14.3 Precautions for Storage

- (1) Please store OLED module in a dark place. Avoid exposure to sunlight, the light of fluorescent lamp or any ultraviolet ray.
- (2) Keep the environment temperature between 10°C and 35°C and the relative humidity less than 60%. Avoid high temperature and high humidity.
- (3) Keep the OLED modules stored in the container when shipped from supplier before using them is recommended.
- (4) Do not leave any article on the OLED module surface for an extended period of time.

14.4 Warranty period

Visionox Display Co., Ltd. warrants for a period of 12 months from the shipping date when stored or used under normal condition.