置換群

置换的定义:

有限集A上的双射函数称为A上的置换或排列。

 $4\pi A = \{1,2,3,4\}, h: A \rightarrow A, h(1)=3, h(2)=2, h(3)=4, h(4)=1,$ 此置换可表示为:

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

 $p = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$ $A = \{a_1, a_2, \dots, a_n\}, \quad \mathbb{P}|A| = n \, \text{th}, \quad \text{称为A上的置换为n次置换。A上}$ 的n次置换p可表示为:

$$p = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ p(a_1) & p(a_2) & \cdots & p(a_n) \end{pmatrix}$$

置換群

|A|=n时, A上有 n!个n次置换,如A={1,2,3}时,

$$p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

一般地, |A|=n时,记A上所有置换集合为S_n,|S_n|=n!

置换的合成运算: c, p₁°p₂, 先进行p₂置换, 再进行p₁置换。

右合成运算: $\langle \rangle$, $p_1 \langle p_2$, 先进行 p_1 置换, 再进行 p_2 置换。

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \diamondsuit \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

不难验证: (右合成运算: \diamondsuit , $p_1 \diamondsuit p_2$, 先 p_1 置换, 再 p_2 置换)

- (1) <S_n, ♦>是一个代数;
- (2) <S_n, ◇>是一个群。

给定集合A,

- (1) S_n关于运算◇封闭
- (2)A上所有置换对运算令而言满足结合律
- (3) S_n关于运算◇存在么元—恒等置换,恒等函数,又称 么置换
- (4)每一置换都有逆置换——逆函数 所以<S_n, ◇>是一个群。

给定n个元素组成的集合A:

A上的若干置换所构成的群称为n次置换群;

A上所有置换构成的群称为n次对称群, $\langle S_n, \diamondsuit \rangle$ 。

n次对称群 $\langle S_n, \diamondsuit \rangle$ 的子群即为n次置换群。

例1令A={1,2,3}, A上置换的全体 S_3 ={ p_i |i=1,2,3,4,5,6}。

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad p_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

 p_1 为恒等置换, $p_2^{-1}=p_2$, $p_3^{-1}=p_3$, $p_4^{-1}=p_4$, $p_5^{-1}=p_6$

- <S₃, ◇>为三次对称群
- < {p₁,p₂}, ° > 为2阶三次置换群
- < {p₁,p₅,p₆}, °>为3阶三次置换群

<S₃,◇>为三次对称群,其运算表如下表所示:

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

♦	p ₁	p_2	p_3	p_4	p ₅	p_6
p_1	p_1	p_2	p_3	p_4	p ₅	p_6
P ₂	p ₂	p_1	p ₅	p_6	p_3	p_4
p ₃	p ₃	p_6	p_1	p_5	p_4	p_2
<i>p</i> ₄	p 4	p_5	p_6	p_1	p_2	p_3
p ₅	p ₅	p_4	p_2	p_3	p_6	p_1
P 6	p ₆	p_3	p_4	p_2	p_1	p ₅

例2两面体群

(a) 给定正三角形123(如左下图所示),将三角形围绕重心O旋转,分别旋转0°,120°,240°。可以把每一旋转看成是三角形的顶点集合{1,2,3}的置换,于是有

例2两面体群(续)

再将三角形围绕直线1A、2B、3C翻转。又得到顶点集合的置换:

正三角形的旋转和翻转在合成运算下可构成群,<S3, 令>就代表这个群。

例2两面体群(续)

(b)正四边形通过旋转和翻转也可以形成四个顶点集合{1,2,3,4}的置换(见下图):

例2两面体群(续)

正方形的翻转和旋转在合成运气类群通称两面体群。

这不是对称群,元素没有4!个,是一置换群。一般地说,在合成运算◇作用下,n边正多边形的所有旋转和翻转的集合构成一个n次的2n阶的置换群,这类群通称两面体群。

\Diamond	p_1	p_2	P 3	P 4	<i>p</i> ₅	P 6	P7	P ₈
p ₁	Pz	p ₃	P4	p_1	p ₈	Pr	p_5	p
p_2	p 3	p_4	p_1	p_z	p_6	P 5	PR	P
p ₃	p4	Pi	p_2	p_3	p ₇	p_8	P6	p
P 4	p ₁	p_2	<i>P</i> ₃	p_4	p ₅	P 6	P7	p
p ₅	PI	₽6	P ₃	p ₅	P 4	Pz	Pi	p.
p ₅	<i>p</i> ₈	p 5	pı	<i>P</i> ₆	p ₂	P4	P ₃	Þ
p_7	P 6	p_{8}	p_5	Pr	<i>p</i> ₃	p_1	P4	p
p 8	<i>p</i> ₅	p ₇	p_6	P8	p_1	p_3	p_2	p

<{p₁,p₂,p₃,p₄,p₅,p₆,p₇,p₈},◇>构成一个四次8阶置换群。

三、凯莱表示定理

定理12: 每一个n阶有限群,同构于n次置换群。

证明:

设k=mq+r, $0 \le r < m$,设< G,*>是一个n阶群,由定理6.7-4知道,< G,*>的合成表中每一行和列都是G的一个置换。对应于元素a \in G的列的置换是

$$p_a(x) = x * a$$

记对应于G的所有元素的列的置换集合为P。

下面首先证明<P,◆>是一个群,再证明G与P同构。

(a) 封闭性 对任意元素a、 $b \in G$,有

$$(p_a \Diamond p_b)(x) = (x * a) * b = x * (a * b) = p_{a*b}(x) \in P$$
 (1)

- (b) 存在幺元 设e是<G,*>的幺元, $a \in G$ 是任一元素,则有 $p_e \spadesuit p_a = p_a \diamondsuit p_e = p_a$,所以, p_e 是幺元。
- (c) 存在逆元 对任意元素 $a \in G$, 存在元素 $a^{-1} \in G$,有 $P_{a^{-1}} \spadesuit p_a = p_a \diamondsuit P_{a^{-1}} = p_e$, 所以,对任一 p_a 存在逆元 $P_{a^{-1}}$ 。
- (d) 满足结合律 置换的合成满足结合律。

三、凯莱表示定理

定理12证明(续):

下面证明G与P同构。

作映射 $h: G \rightarrow P$

$$h(a) = p_a$$

h显然是双射函数。再将已证明的等式(1)改写为

$$h(a * b) = h(a) \diamondsuit h(b)$$

根据群同态的定义以及h为双射函数,可得G与P同构。

本定理是1854年由凯莱(Arthur Cayley)得出,叫凯莱表示定理。凯莱表示定理说明抽象群的研究可归结于置换群的研究,如果一切置换群研究清楚了,那么一切有限群都清楚了,可见置换群的重要。但经验告诉我们,研究置换群并不比研究抽象群容易,所以,通常又不得不直接地研究抽象群。