Network Simplex Method

Fatme Elmoukaddem
Jignesh Patel
Martin Porcelli

Outline

- Definitions
- Economic Interpretation
- Algebraic Explanation
- Initialization

Transshipment Problem

 Find the cheapest way to ship prescribed amounts of a commodity from specified origins to specified destinations through a transportation network

www.docin.com

Network

- A network is a collection of nodes connected by arcs
- Each node has a demand for the commodity
 - Nodes that are sources of the commodity have a negative demand
 - The sum of all the demands is zero
- Each arc has a cost to ship a unit of commodity over it

Example

Schedule

- A schedule describes how much of the commodity is shipped over each arc
- Requirements
 - The amount entering a node minus the amount leaving it is equal to its demand
 - The amount shipped over any arc is nonnegative

Example

LP Formulation

- Let c be a row vector and x a column vector indexed by the set of arcs
 - $-c_{ij}$ is the cost of shipping over ij
 - $-x_{ij}$ is the amount to ship over ij
- Let b be a column vector indexed by the set of nodes
 - $-b_i$ is the demand at i

Example

LP Formulation

minimize
$$\mathbf{cx} = \sum_{ij} c_{ij} x_{ij}$$
 subject to
 (ij) $x_{ij} \geq 0$
 (i) $\sum_{ji} x_{ji} - \sum_{ji} x_{ij} = b_{i}$
 $\sum_{i} b_{i} = 0$

LP Formulation (2)

- Let A be the matrix indexed by the set of nodes x the set of arcs
 - $-A_{i,jk}$ is either
 - -1 if *i=j*
 - 1 if *i=k*
 - 0 otherwise Cincom
- A is known as the incidence matrix of the network

Example

LP Formulation (2)

minimize $\mathbf{c}\mathbf{x}$ subject to $(ij) \quad x_{ij} \geq 0$ $\mathbf{A}\mathbf{x} = \mathbf{b}$ $\sum_{i} b_{i} = 0$

Tree Solution

- A spanning tree of a network is a network containing every node and enough arcs such that the undirected graph it induces is a tree
- A feasible tree solution x associated with a spanning tree T is a feasible solution with
 - $-x_{ij} = 0$ if ij is not an arc of T

Network Simplex Method

- Search through feasible tree solutions to find the optimal solution
- Has a nice economic interpretation

www.docin.com

Economic Interpretation

- Given a spanning tree T and an associated feasible tree solution x
- Imagine you are the only company that produces the commodity
- What price should you sell the commodity for at each node?
 - Assume that you ship according to x

Price Setting

- You want to set the price y_i at node i
 - For all ji in T, $y_i = y_j + c_{ji}$
 - If the price was lower then you would lose money
 - If the price was higher then a competitor could undercut your price

Problem / Solution

- A competitor could still undercut your price
 - If there was an arc ki not in T with $y_i > y_k + c_{ki}$
- You don't want to lose business, so you also plan to ship over ki
 - You want to ship as much as possible
 - You must also adjust the rest of your schedule to conform with demand

Example

Optimality

- If no arc like ki exists, then your prices can not be undercut
 - A competitor could break even at best

www.docin.com

- Each step begins with a feasible tree solution x defined by a tree T.
 - x is a column vector with a flow value for each arc.
- In step 1 we calculate a value for each node such that y_i + c_{ij} = y_j, ∀ ij ∈ T.
 - y is a row vector with value of each node.
- c is the cost (row) vector, b is the demand (column) vector, and A is the incidence matrix.

- We define c' = c yA.
- c' is the difference between the cost of an arc and the value difference across the arc.
- If $ij \in T$ then $c'_{ij} = c_{ij} + y_i y_j = 0$.
- If ij ∉ T and if c'_{ij} < 0 then ij is candidate for entering arc.
- Also if $ij \notin T$ then $x_{ij} = 0$, combining with above we get $\mathbf{c'x} = \mathbf{0}$ ($\forall ij$, either $c'_{ij} = 0$ or $x_{ij} = 0$).

For any feasible solution x' (i.e. Ax' = b, x' ≥ 0), its cost is

$$cx' = (c' + yA)x'$$
 $(c' = c - yA)$
= $c'x' + yAx'$
= $c'x' + yb$. $(Ax' = b)$

In particular for x, its cost is

$$cx = c'x + yb = yb$$
. $(c'x = 0)$

- Substituting for yb in the cost of x' we get
 cx' = cx + c'x' (1)
- So if c'x' < 0 then x' is a better solution than x.

- In step 2 we find an arc e = uv such that $y_u + c_{uv} < y_v$ (i.e. $c'_{uv} < 0$).
- If no such arc exists then c' ≥ 0 and so c'x' ≥ 0.
- Hence equation (1) implies cx' ≥ cx for every feasible solution x', and so x' is optimal.
- If we find such an arc e, we it to the tree T.

- For step 3, T + e has a unique cycle.
- Traversing the cycle in the direction of e
 we define forward arcs as arcs pointing in
 the same direction as e and reverse arcs
 as arcs pointing in the opposite direction.
- Then we set $x_{ij} + t$ if ij is a forward arc, $x_{ij} = \begin{cases} x_{ij} + t & \text{if } ij \text{ is a reverse arc,} \\ x_{ij} & \text{if } ij \text{ is not on the cycle.} \end{cases}$

$\begin{bmatrix} \mathbf{c} \\ \mathbf{c} \\ \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \mathbf{c}$

- Now, Ax' = Ax = b, because for each node
 of the cycle the extra ±t cancel each other.
- So if we choose t such that x' ≥ 0, then x' is feasible.
- Since e is the only arc with c'_{ij} ≠ 0 and x'_{ij} ≠ 0, we have c'x' = c'_ex'_e = c'_et.
- Substituting in equation (1) we get cx' = cx + c'et.
- We want to choose t such that x' is feasible and which minimizes cx'.

- We have, $\mathbf{cx'} = \mathbf{cx} + c'_e t$.
- Since c'_e < 0, to minimize cx', we have to maximize t.
- To make sure x' is feasible (i.e. x' ≥ 0), we find a reverse arc f with minimal value x_f, and let t = x_f.
- The new feasible solution x' has x'_f = 0, so f is the leaving arc.
- Removing f breaks the only cycle in T + e, so T + e f is the new tree that defines the new feasible tree solution x'.

Degeneracy and Cycling

- If there is more than one candidate for the leaving arc, then for each candidate arc ij, x'_{ii} = 0.
- Only one of the candidate arcs leaves the tree, so the new solution has x'_{ij}=0 for at least one of its tree arcs.
- Such a solution is called a degenerate solution.
- They could lead to pivots with t = x_f = 0, that is no decrease in the cost.
- Degeneracy is necessary but not sufficient for cycling.

Degeneracy and Cycling

Degeneracy and Cycling

- Cycling is very rare. No practical example with cycling has been found.
- The first artificial example was constructed 13 years after the appearance of the network simplex method.
- Cycling can be avoided by proper choice of the leaving arc. We will see this later.

Initialization

- If there is a node w | there is an arc:
 - from every supply node to w
 - from w to every sink/intermediary node

Then there is an initial feasible solution

Initialization

- If no such w, add artificial arcs
- Associate a penalty p_{ii} for using these arcs ij:
 - $-p_{ii} = 0$ for original arcs
- $-p_{ij} = 1 \text{ for artificial arcs}$ $\bullet \text{ Solve auxiliary problem: } Min \ \Sigma p_{ij} x_{ij}$

Initialization

- i. T contains an artificial arc ij with $x_{ij} > 0$
 - => Original problem has no feasible sol
- ii.T contains no artificial arc
 - => T is a feasible sol. for original problem
- iii. Every artificial arcs ij in T has $x_{ij} = 0$
 - => original problem has a feasible sol. But not a feasible tree sol.

For each set S and feasible solution x:

$$\sum_{\substack{i \notin S \\ j \in S}} x_{ij} - \sum_{\substack{i \in S \\ j \notin S}} x_{ij} = \sum_{\substack{k \in S \\ j \notin S}} b_k$$

- Import Export = Net demand
- In Ax = b, sum equations corresponding to nodes in S

- Assume there is a partition R and S of the nodes such that
 - there is no arc ij with i in R and j in S
- S cannot afford to export
 If i in S and j in R then x_{ij} = 0

Decompose optimal tree T of auxiliary problem same way:

Take arbitrary artificial arc uv k in R if $y_k \le y_u$ and k in S otherwise

www.docin.com

In the solution of the auxiliary problem:

$$\sum_{\substack{i \notin S \\ j \in S}} x_{ij} - \sum_{\substack{i \in S \\ j \notin S}} x_{ij} = \sum_{\substack{k \in S \\ }} b_k$$

- No original arc has i in None of these R and j in S

- x_{ii} for artificial arcs in 0

 $k \in S$

 $\sum b_k = 0$ and no arc ij with i in R and j in S

arcs is in T

Updating nodes

In T: $y_i + c_{ij} = y_j$, \forall ij in T Goal: $y'_i + c_{ii} = y'_i$, \forall ij in T + e – f

Define:

$$y'_{k} = y_{k} (k in T_{u})$$

$$y'_{k} + c'_{e} (k in T_{v})$$

$$c'_{e} = c_{e} + y_{u} - y_{v}$$

Direction of an arc with respect to root

Thm: If each degenerate pivot leads from T to T + e – f such that e is directed away from the root of T + e – f => no cycling

www.docin.com

Define:
$$g(T) = cx$$

 $h(T) = \Sigma_k(y_k - y_w)$

- $g(T_i) \ge g(T_{i+1})$
- $h(T_{i+1}) = \Sigma_k(y_k y_w) = \Sigma_k(y_k y_w) + c_e|T_v|$

$$g(T_i) = g(T_{i+1}) => h(T_i) > h(T_{i+1})$$

$$T_i = T_j, i < j =>$$
 $g(T_i) = g(T_{i+1}) = ... = g(T_j)$
 $h(T_i) > h(T_{i+1}) > ... > h(T_j)$
Contradicting $h(T_i) = h(T_j)$

WWW.docin.com

- Strongly feasible: all arcs ij in $T \mid x_{ii} = 0$ are directed away from the root
- 1. initial solution is strongly feasible
- 2. if T is strongly feasible, then T + e f is strongly feasible => No cycling

1. Starting with a strongly feasible:

Bad arc: directed toward the root and $x_{arc} = 0$

- i. Start with T
- ii. Remove bad arc uv: T_v and T_u
- iii. If there is an arc ij | i in T_v and j in T_u, add ij to T
 - => T' with less bad arcs

else decompose into two subproblems

2. Arrive at a strongly feasible solution:

Entering arc: any candidate

Leaving arc: first candidate while traversing C in direction of e starting at the join

Case 1: the pivot is non-degenerate

Case 2: the pivot is degenerate

Questions?

www.docin.com