cqattcaqcccqttttattttaaaaagttatqgttaqatgcatgggaagaaacgcatgaa cgtcgattggttgatgaaatttatcgtgttccaaccgaagatactgatcaagcaaaagca aaagtacaacttgcgttttgtattgatgtacgatccgaaccgtttagaagacatttagaa agtgaagggccttttgaaacaatagggattgctgggttctttggtctgccaattcaaaaa gaagtacttgatgaacaatttgcacatccatctttaccagtgatggtagaacctgcatat cgtattaaagaatatgctgatcaacatgaaatgaaaatttataatcaacaacaacataca cttacatctatqttttacaactttaaattaatqaaaaacaacqtqttqccaagtttqctt ttaccagaattaagtqqtccttttttaagtattqcqactatagctaacacaattttccct aaaaaagcaaaacgtattgttcatcgattctcacaaaaatggctacgtaaaccaacaggt aaattaactattcagcgtgagcaagatgcgtattcaaaactaccaatcggctttacttta gauguac::qattcaattttccaaaaaagcattacaattaatggacttaacagatg::ttt gcaccacttattgttctatgcggacacggtagtgaatcacataataatccctatcatgct tcattagagtgtggggcttgcgggggtgcctcgagtgggttcaatqcgaaattattaqca agacatacagtgtttatagctgctgaacatcaaacgtcagttgatgagttagagtatatt tatgttccacctttaactacagaagctcaaaatgcctttgacgaacttaagcatgtgatg ccaaaaqtatqttataaaqccaatttaqaacqtttqqcatcqttgccaaatataaataac act gaccata at cct a at gct gaag cgcat cgt cac gct ag cgat tgg ag t gaag t t cgtccagaatggggtctagcacgaaatgctgaattcattattgggaaacgtcaaatcacccaa aatagtaatctagagggacgggcatttcttcataattatgattggacaaaggatgaagac ggtgagattttaaatacaattatttctgggccagcactagtagcacaatggattaattta caatactacgcctcaaccqtggcacctcactattatqqaaqcqqtaqtaaaaccaacqcaa actqtaacaaqtqqtqtaqqtqtcatqcaaqqaaatqctaqtqatttaatqtatqqctta ccatggcagtcagtaatgatgaatgacaaagaggcgtatcacgcacctattaggctttta attqttattcaaqcqccaqatqcatatattcaacqtttqttaaaacatcataatcacttt agacaaaaggttgatcatcaatggataagacttgccagtattgatgaaaataatagttgg aaagactggtag

Sequence 2010

10

15

20

25

45

30 VKLPYGVOODAHEVEDALEFINRVITPLSPISTFAARNPWEGLEDASFDQVARWLKSVRD VDTYFNASTIHRAISNKEIDLKVFEERLDENRAHYNNRSLSDSDINTYIQRAKNLMTIEE GYFNTKDNEKLEKWVQTNFKDYKKKEDVIAQSASVFTKEGTRLIDILNAHMIKWSKLYVD DFOSSWTMPKREKGFYHAWORLVKHDPLFTKKQRLTLAHLPNQATEAIEYAFQELGVKEE HRQSYIESHLLSLPGWAGIMYHRSQTQSNDAYLLTDYVAIRLSIEMVLLNDHHTTLLKKS IYLOKKLEQIRYLLFNIQMNVEQWLNLSSKKQQAYIELGTRFSPFYFKKLWLDAWEETHE 35 RRLVDEIYRVPTEDTDOAKAKVQLAFCIDVRSEPFRRHLESEGPFETIGIAGFFGLPIQK EVLDEOFAHPSLPVMVEPAYRIKEYADQHEMKIYNQQQHTLTSMFYNFKLMKNNVLPSLL LPELSGPFLSIATIANTIFPKKAKRIVHRFSQKWLRKPTGKLTIQREQDAYSKLPIGFTL EEOIOFSKKALOLMDLTDDFAPLIVLCGHGSESHNNPYHASLECGACGGASSGFNAKLLA VMCNOENVRRGLLMEGIDIPRHTVFIAAEHOTSVDELEYIYVPPLTTEAQNAFDELKHVM 40 PKVCYKANLERLASLPNINNTDHNPNAEAHRHASDWSEVRPEWGLARNAEFIIGKRQITQ NSNLEGRAFLHNYDWTKDEDGEILNTIISGPALVAQWINLQYYASTVAPHYYGSGSKTTQ TVTSGVGVMQGNASDLMYGLPWQSVMMNDKEAYHAPIRLLIVIQAPDAYIQRLLKHHNHF ROKVDHQWIRLASIDENNSWKDW*

Sequence 2011

Contig 0693 pos 971 603,

putative peptide of unknown function

atgaaaaagacgaaaggtatttatgaatctgaaattagtaaagccattacacaatgggag
50 aaagattttttaggaagaggttctttgtctgtaaaaacagatattcttcgtgatatggtt
attgttagtttacaaggtattttgacacctgctgaatatcgcgtgtgtaaaacgaatgaa
gggcttttaaatattaaacgtacacgttctgaacttgtagagtctggtgaagaggacttg
agtcgcattattaaagatttgactggacttaatgtgaaaagttttcatagtgattaagt
actattaccggtgaacgcgtaatgatttttaagttggaagatcgttttgataaagcatta
55 catgagtaa

Sequence 2012

MKKTKGIYESEISKAITQWEKDFLGRGSLSVKTDILRDMVIVSLQGILTPAEYRVCKTNE GLLNIKRTRSELVESGEEDLSRIIKDLTGLNVKSFHSDLSTITGERVMIFKLEDRFDKAL

HE*

Sequence 2014
MIQRKGELILSWIGNGLHLLYVFLIGIFFIMTQTSDFKNGMIQGFIEENPGEYDLAYQTY
NLMLGLGVVLIIILLILLIVSIVAAILIGKNAKVSGILLVITGIIGLFLSFIAGALWLIA
GIMLLVRKPQTQNDQINSQYSNDIHSHVVPEEKKREQQQYNMNEPHIGQTSTSHHDHALN
DQNKRENHNHDNQPYK*

Sequence 2015 Contig 0694_pos_4776_6005, 25 putative peptide of unknown function attccaaatgttaaacagttattgtcaaagcgtactaaacatagtcaatggaatttcgac atcaaaqtcgatctcatqataqqatctqcaqaqqatqtacatqaaaqtqttqaaaaaqca qcacaaattaaaqaqqaacatcaqtqqqattacqttqtttgtctqacaqatttqcctaqt 30 atttcagataataaagtggttgtcagcgactttaatagtgacaaacatgttgcaatgctat cattac cgt cactagg ttt tattg atttg aag cgc aag ctagtta aa acg atg acttcattgattgaacaattatattataatcaaccgaaagacaaaaatgcgccacatccttttgtacgcgtgaaggctgtagaacctgacgaagacgccacatcaaaacaacgatatattaatatt ttatttatcataaqttqqattcaqttaattqqtqqactqacacqaqcaaatcaqccttqq 35 aaaaacatctttaattttaagaaaatcatttcagttgcctttgcaacaggaacttatgtc tcaatattttcaatqccatqqqaattaaqcqtqatttattcaccqcttcqacttatcata ttgatggtgattgctatacttgggatggctggatggctattctatgcgcatcaattgatt qaaaaqaaaactqctaaatctcaqcqtqtatatcqatatatttataattcaaccacactt agtattacactctttqtccctqtqqaattatttaataqttqqacqaqtqcccaatcacaa $tttacgttctcaaattatatgagattgatttggtttgtatcatcattaggactttt \verb|aget||$ qqaq statqqqatcaactqttqaaaatqaaqaqaaaatacqtcqtattacttattcctat agacaatatcatcgttataaagaagctggcaagaacaaaaagaacaagaaacttctcgtg atgtatcacaacaaatgtcgaacaacattcaagtaaagatgaaaataatgaacaat 45 atgaaggtaaaaaacaaggacatagagaggaggatgacgcatgacaaatcaaaaaactgt gggtctagtcgtcgctccaggtgttactga

Sequence 2016
MQTVGIIPSPGIAHQHAKKIIPNVKQLLSKRTKHSQWNFDIKVDLMIGSAEDVHESVEKA
50 AQIKEEHQWDYVVCLTDLPSISDNKVVVSDFNSDKHVAMLSLPSLGFIDLKRKLVKTMTS
LIEQLYYNQPKDKNAPHPFVRVKAVEPDEDATSKQRYINILFIISWIQLIGGLTRANQPW
KNIFNFKKIISVAFATGTYVSIFSMPWELSVIYSPLRLIILMVIAILGMAGWLFYAHQLI
EKKTAKSQRVYRYIYNSTTLVTLSLITLINYVILYLLIISITLFVPVELFNSWTSAQSQ
FTFSNYMRLIWFVSSLGLLAGAMGSTVENEEKIRRITYSYRQYHRYKEAGKNKKNKKLLV
55 MYHNKMSNNKLQVKMKIMNNMKVKNKDIERRMTHDKSKNCGSSRRSRCY*

Sequence 2017
Contig_0696_pos_5640_5990,
is similar to (with p-value 1.0e-27)

>gp:gp|AB015981|AB015981_2 Staphylococcus aureus genes for O
rfA, MnhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c
ds. NID: g4001723.

10

Sequence 2018
MPVISKLNNNPRPSTYKLKFIPICGIQFKFFITLLPDIVIEINDMKYINKTIGTGNTNHP
KCIRLTNRYRNGIMSANİNGNSTAICNKLTMFSSFKIYLRHILYIIALLLKNHVTA*

15 Sequence 2019 Contig 0696 pos 5913 3508, is similar to (with p-value 0.0e+00) >gp:gp|AB015981|AB015981_2 Staphylococcus aureus genes for O rfA, MnhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c 20 ds. NID: q4001723. gtqaqtttqttacatattqcqqtactattaccqttaatatttqcactcattattccattc ctataccqqttcqttaaacqtatacatttaqqatqqtttqtattacctqttcctattqtc ttatttatatatttcatatcattqatttcaatqacqatqtcaqqtaataacqtaatqaaa aacttaaattggatgccacatattggaatgaattttaatttatatgtggatggtctcgga 25 ttattattcagtttgcttatcactggcataggaagtctagtggttttatattctatcgga ggtgctcaaaaatctttaatcattaccgtattaggtggcttgagcatgctaggtggtatc 30 attttactttccctagctactgatacttttagtattcaggctatgatttcaaaagcaagtgacattcaaaatagtcctttctttatcttagtaatgatactttttatgattggtgcattt acaaaatctgcacaagtgcctttttatattttggttaccagatgctatggaggcgcctacg ccagtgagtgcataccttcattctgcaacgatggtaaaagcaggactatatctaatcgca agaatcacacctatttttgcaatatccgaaggttgggtatggacaattacacttg:tggt 35 ttaatcaccctattttgggcatcactcaatgcaacaaaacaacatgacttaaaaggtatt ttagettteteaactgtgteteaactagggatgattatgtetatgettggtattggtget gtaagttatcattatcaaggcgctaatagtcaactttatgttgctggatttgttgctgcc atatttcatttaattaatcatgccacgtttaaaggtgcactatttatgattacaggtggt cctatctcattcacqcttacagttattacaacattaagtatggctggtgtgccgccttttaacqqctttttatcaaaaqaqaaattcttaqaqtcaatqattaatqttacacatttaaat ttaatqaqtttaaatactttaqqtattcttttaccaatcattqccattattqqtaqtatt ttcacatttqtatattcaattaaatttatattqcatatattctttqqttcttataaacct qaaqctctqccaaaacaaqcqcatqaatcttcaattttaatqcttatttcacctatcatt 45 ttaacatcactagttatagtattcggtttattcccaagtatattaacgcaatctattata $\tt gagccggcatctgtagcagttagtcaaacatcaaatataactgctgagttccatttattc$ catggtataactccagcattcctatcaacaataggtatttatattattggtattttatta ttaatttcatttagttattgggttcgtttattacaaqcacatccatatcagttaacgttg aatcattggtatqacacttcaggccaacgtattccagqatattccgaaaatataacaaat agttatgttacaggtttttctagaaataatttggtgattatcttaggtattctcattgct 50 ttaacttttgttacaqtcatcagtgtacccttcagtattgactttaaaaacgtgagtcat ttacgcgtatttgaaggtgcaacagtattgtttttactgattgcttcaactttcattata tt!goaaaatcacgtttgtttagcattatcatgttaagcgctgtggggttacgcta!atca gtattatttattttctttaaagcgcccgacttagcattaacacaatttgtagtggaatct 55 qaaaaaccaacctttaaactqacaaatgctgtgatttcaattggaqtggqattatcaqtq attattttaggattaattggctatggtaatagacactttgactctattactaaattctat caagaacatgtttttgatttagcacatggtaaaaatatggtaaatgtcatcctcgtagat ttccqtqqtatqqatactttattcqaqtcatctqtactaqqtattqcaqqtttaqqcqta

Sequence 2020

- 5 VSLLHIAVLLPLIFALIIPFLYRFVKRIHLGWFVLPVPIVLFIYFISLISMTMSGNNVMK NLNWMPHIGMNFNLYVDGLGLLFSLLITGIGSLVVLYSIGYLSKSEQLGNFYCYLLLFMG AMLGVVLSDNFIILYLFWELTSFSSFLLISFWREKKASIYGAQKSLIITVLGGLSMLGGI ILLSLATDTFSIQAMISKASDIQNSPFFILVMILFMIGAFTKSAQVPFYIWLPDAMEAPT PVSAYLHSATMVKAGLYLIARITPIFAISEGWVWTITLVGLITLFWASLNATKOHDLKGI
- 10 LAFSTVSQLGMIMSMLGIGAVSYHYQGANSQLYVAGFVAAIFHLINHATFKGALFMITGG
 IDHSTGTRDVKKLGGLLTIMPISFTLTVITTLSMAGVPPFNGFLSKEKFLESMINVTHLN
 LMSLNTLGILLPIIAIIGSIFTFVYSIKFILHIFFGSYKPEALPKQAHESSILMLISPII
 LTSLVIVFGLFPSILTQSIIEPASVAVSQTSNITAEFHLFHGITPAFLSTIGIYIIGILL
 LISFSYWVRLLQAHPYQLTLNHWYDTSGORIPGYSENITNSYVTGFSRNNLVIILGILIA
- 15 LTFVTVISVPFSIDFKNVSHLRVFEGATVLFLLIASTFIIFAKSRLFSIIMLSAVGYAIS VLFIFFKAPDLALTQFVVESISTALFLLCFYHLPNLNRYNEKPTFKLTNAVISIGVGLSV IILGLIGYGNRHFDSITKFYQEHVFDLAHGKNMVNVILVDFRGMDTLFESSVLGIAGLGV YTMIKLRLKQKNQSSEVNDHE*
- 20 Sequence 2021

Contig 0696 pos 3473 3087,

is similar to (with p-value 4.0e-57)

>gp:gp|AB015981|AB015981_3 Staphylococcus aureus genes for O rfA, MnhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c

- ds. NID: g4001723.
 gtgattattttcttcatggtcattgtgtttggcttttcattattttttagctggacattat
 acacctggtggcggtttcgttggtggtttgcttttcgctagtgcattattagttattaca
 attgcatatgatgtaaaaacgatgcgaaagatttttcctttagattttaaaatcttaatt
 ggtattggtttattatttttgcgtgggtacaccattaacaagttggttcatgtctaaaaac
- 30 ttttttacacatgtcacttttgacatccctttgcctttacttgaacctatgcacatgacg acagcgatgttttttgatttcggtgttttatgtgcagttgtaggaactattatgactata attatttcgattggagaacgaatag

Sequence 2022

35 VIIFFMVIVFGFSLFLAGHYTPGGGFVGGLLFASALLVITIAYDVKTMRKIFPLDFKILI GIGLLFCVGTPLTSWFMSKNFFTHVTFDIPLPLLEPMHMTTAMFFDFGVLCAVVGTIMTI IISIGENE*

Sequence 2023

- 40 Contig_0696_pos_3075_2740,
 is similar to (with p-value 2.0e-37)
 >gp:gp;AB015981;AB015981_4 Staphylococcus aureus genes for O
 rfA, MnhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c
 ds. NID: g4001723.
- 45 atgatetttgttagtggtatteteacatetataagtgtetatetegttttgtetaaaagt ttgatacgtateattatggggactacaetactaacteatgetgeaaatttatttttaatt aetatgggaggtttaaageacggaaetgtteeaatatttgaaaaaggaaeateaagetat gttgaeeetateeecaageattgattttaaeagetategttategeetttgetacaaca getttetttttagttettgeatttagaacatataaagaaetaggeaetgataaegttgag
- 50 ctaatgaaaggagcgccagaagatgatagagagtaa

Sequence 2024 MIFVSGILTSISVYLVLSKSLIRIIMGTTLLTHAANLFLITMGGLKHGTVPIFEKGTSSY VDPIPQALILTAIVIAFATTAFFLVLAFRTYKELGTDNVELMKGAPEDDRE*

Sequence 2025
Contig_0696_pos_2408_1257,
is similar to (with p-value 0.0e+00)
>gp:gp|AB015981|AB015981 5 Staphylococcus aureus genes for O

rfA, MnhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c ds. NID: g4001723.

 $\verb|atgtttatgttgattggtattattggctcatttacaacaggagatattttcaacttgttt|\\$ gtqttctttgaagtctttttaatgtcttcatattgtttactcgttattggtactactaaa ataca attaca agaa aca atta agtatatttt agtca atgtt gttt catcgtctttcttt $\tt gtcatgggtgttgcagttttatattcagttgtaggaactttaaatctcgctcatattagt$ gaaagattgtcacaactttctgtacatgacagtggcttagtcaatattgttttatttta $\verb|tttatctttgtctttgccactaaagcaggcgtttttcctatgtacgtatggctacctggt|$ gcttattatgcccctccagtagcgatcatcacgttctttggtgcactattgactaaagtg ggtgtatacgcaattgcgagaactctaagtttattctttaataatacagtaagcttttct $\verb|cattatgtcatccttttcttagcattacttacaattatttttggatgtataggtgcgata|\\$ gcttactatgatacgaagaaaatcatcctttacaatattatgattgcagtaggtgtcata ttagttggtattgctatgatgaacgaatcaggcatgactggtgcaatatattacacacta $\verb|catgatatgttagttaaagcttcattgttcttactcattggcgtcatgtacaaaatcact|\\$ aaaacgactgacttacgtcattttggtggcttgataaaagggtatcctattctaggttgg ${\tt acettctttattgcagcgctaagcttagcgggtataccaccttttagtggtttctacggt}$ aaattctutattgttcgagcgacctttgaaaaaggattttatctaagtggtatca; tgta $\verb|ctttatcaag| ttaatcgtgttatattcagtcatacgtattttcttaaaaggattttc|$ qqtqaaqttqaaqgatatactttatctaaaaaqqtaaatqttaaatatctaacaactatc gctgttgcatctacagttattactgtaatctttggattatctgcagacacgttattccca atcatcaaaqatqqcqctqaaacqtttqtcqatccaaqtcaatatattcatagtgtgtta ggaggtaaatag

Sequence 2026

10

15

20

25 MFMLIGIIGSFTTGDIFNLFVFFEVFLMSSYCLLVIGTTKIQLQETIKYILVNVVSSSFF
VMGVAVLYSVVGTLNLAHISERLSQLSVHDSGLVNIVFILFIFVFATKAGVFPMYVWLPG
AYYAPPVAIITFFGALLTKVGVYAIARTLSLFFNNTVSFSHYVILFLALLTIIFGCIGAI
AYYDTKKIILYNIMIAVGVILVGIAMMNESGMTGAIYYTLHDMLVKASLFLLIGVMYKIT
KTTDLRHFGGLIKGYPILGWTFFIAALSLAGIPPFSGFYGKFYIVRATFEKGFYLSGIIV
30 LLSSLIVLYSVIRIFLKGFFGEVEGYTLSKKVNVKYLTTIAVASTVITVIFGLSADTLFP
IIKDGAETFVDPSQYIHSVLGGK*

Sequence 2027

Contig 0696_pos_1081_776,

is similar to (with p-value 3.0e-40)

>gp:gp[PB015981|AB015981_6 Staphylococcus aureus genes for O

rfA, MrhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c

ds. NID: g4001723.

atgettateattacatttttaactgagttaataaaagcaaactttggtgtactaaaaatt
40 atteteaaceaegaattgagaataaaceeggattetttgtgtaegagaeggaattagaa
egtgactggeaacttgttttaettteeaacttgattaegttaacacetggeaeagtegtt
ttaggtattagtgatgaeegtaaaaagatttatateeaeteaattgattteagtaeaaa
gaagaagagatteaaaatateaaatetteattagagaaggtegttagaaaggtaggegag
aaataa

45 Sequence 2028

MLIITFLTELIKANFGVLKIILKPRIENKPGFFVYETELERDWQLVLLSNLITLTPGTVV LGISDDRKKIYIHSIDFSTKEEEIQNIKSSLEKVVRKVGEK*

ete, containing transposition genes tnpA, tnpB and tnpC, and antibiotic resistance genes ermA and spc. NID: g154920.

50 Sequence 2029
 Contig_0697_pos_2646_3434,
 is similar to (with p-value 3.0e-34)
 >sp:sp|P06696|TNPA_STAAU TRANSPOSASE A (TRANSPOSON TN554). >
 pir:pir|A24584|A24584 transposition regulatory protein tnpA
55 - Staphylococcus aureus transposon Tn554 >gp:gp|X03216|ISTN5
54_i Staphylococcus aureus transposon Tn554. NID: g43726. >g
 p:gp|K02987|TRN554 1 Transposon Tn554 (from S.aureus), compl

15

20

10

Sequence 2030

VYTYTIKIRNEIIMKIVEVKSKNGTNFMILDGNNEPIVDAVRYLKYLDSVKKSLNTKKTY AYALKNFFVYLESKKICYKEVSFDNFVDFIRWMKTPFEYENVLSYHRKEKSISPKTINLT MTVVSNFYDYLYRSKKLDVNFYDFMHMESKYSKKYKSFMHHINKDYRTLKNILKVKEPKK KIEVLTNAEVKKLLEEANNIRDKFLIQLLYETGLRIGEVLSLRIDDIKFDFRNPSIKTIL GGTGISTCYPSPTPVGLSLGPD*

Sequence 2031

Contig 0697 pos 5460 5116,

putative peptide of unknown function
gtgacaaaccggaggaaggtggggatgacgtcaaatcatcatgccccttatgatttgggc
tacacacgtgctacaatggacaatacaaagggcagcgaaactgcgaggtcaagcaaatcc
cataaagttgttctcagttcggattgtagtctgcaactcgactatatgaagctgguatcg
ctagtaatcgtagatcagcatgctacggtgaatacgttcccgggtcttgtacacaccgcc
cgtcacaccacgagagtttgtaacacccgaagccggtggagtaaccatttggagctagcc
qtcqaaqqtqqqacaaatgattggggtgaagtcgtaacaaggtag

Sequence 2032

VTNRRKVGMTSNHHAPYDLGYTRATMDNTKGSETARSSKSHKVVLSSDCSLQLDYMKLES

LVIVDQHATVNTFPGLVHTARHTTRVCNTRSRWSNHLELAVEGGTNDWGEVVTR*

Sequence 2033

Contig 0697 pos 1439 399,

putative peptide of unknown function

40 atgcaaaaagtacgttctgatataatgactcatcgtggttctcactatgatttaggagtaaagactgctctttggttacaaaccactcctttattaaaaaaatcgaaataaagaatggcga aaqaqaattccacqttttqatattqatqtcaaggaaacctatqatatatttcaaatctat caaatgattttaaattttggccattatcgatttactgatttaaaggacagtggttgcaca 45 qtatataaaqqtcqtqattttttaqtccqaaattatgattatcatcctqcaacatatgat ggtagatacttattatttcaacctaatgacgggggattatctcaaataggaccgacttca agagt.gactggtagaatggatggtatgaacgagtatggtttagttatggcatataattttgaaaattgcaaaaatgtaactgaagcaatcaaattttttaaaggaagtaccgcatcgtagt 50 tcattcagttatatactaatggatagacattcgaattatgccattgtcgaagttacacct cqatcaataqatqtaaqqtatqaacatatatqcacaaatcattttqaattqcttacccat actecttetacaaacaaagatategeatteaaattatttaacgaecegeaatacgaaate tatagcaacctatttaaaagttggtctggtacaattcatacttcactatatgaacctaat 55

a attggtta aa aggaa agaa attgaa ta ta aatta ctttga aggcgaa ataga ta cacca

ttaacttttgccacatactaa

Sequence 2034

MQKVRSDIMTHRGSHYDLGVKTALWLQTTPLLKNRNKEWRKRIPRFDIDVKETYDIFQIY SPQIWEEIIGMQDVLNLPTKQMILNFGHYRFTDLKDSGCTVYKGRDFLVRNYDYHPATYD GRYLLFQPNDGGLSQIGPTSRVTGRMDGMNEYGLVMAYNFMHRKKPANGFVCYMVGRLIL ENCKNVTEAIKFLKEVPHRSSFSYILMDRHSNYAIVEVTPRSIDVRYEHICTNHFELLTH ENRNYTRESKERLNRVINKTTPSTNKDIAFKLFNDPQYEIYSNLFKSWSGTIHTSLYEPN SLISWMALGQNSHPTSINFSNWLKGKKLNINYFEGEIDTPLTFATY*

Sequence 2035

Contig 0699 pos_1065_1427,

is similar to (with p-value 1.0e-26)
>gp:gp|AB003188|AB003188_3 Micrococcus luteus hexs-a, menG,
hexs-b gene, complete cds. NID: g2982678.

 $\tt gtggcaaagttaaacattaacaacgaaataaagaaagtagaaaagcgacttgaagaagcaattataagttctgatcaaacattacaagaagcctcattccatttactatcttcaggggga$

5 aaaagagttagacccgcttttgttattttaagtggtcaatttggctctaacaacaaacct tcagaagacacgtatcgtgtagcagtagctttagaactaattcacatggctaccttagtc cacgatgatgtgatagataaaagtgataaacgtagaggccgactcactatttcaaaaaaa tgggaccaaagtacagctattttaacaggaaatttcttacttgctatggggctcaagcac tga

20

Sequence 2036

VAKLNINNEIKKVEKRLEEAIISSDQTLQEASFHLLSSGGKRVRPAFVILSGQFGSNNKP SEDTYRVAVALELIHMATLVHDDVIDKSDKRRGRLTISKKWDQSTAILTGNFLLAMGLKH

25

Sequence 2037

Contig_0699_pos_2988_3362,

is similar to (with p-value 1.0e-18)

>sp:sp|P31114|GRC3_BACSU PROBABLE HEPTAPRENYL DIPHOSPHATE SY

NTHASE COMPONENT II (EC 2.5.1.30) (HEPPP SYNTHASE) (SPORE GE RMINATION PROTEIN C3). >gp:gp|M80245|BACVARGNS_5 B.subtilis dbpA, mtr(A,B), gerC(1-3), ndk, cheR, aro(B,E,F,H), trp(A-F), hisH, and tyrA genes, complete cds. NID: g143798. >gp:gp|Z 99115|BSUB0012_214 Bacillus subtilis complete genome (section 12 of 21): from 2195541 to 2409220. NID: g2634478.

Sequence 2038

45 MIGHYIGMSFQIIDDVLDFTSSEKKLGKPVGSDLMNGHITLPVLLEMRKNKTFKDKISQL NPDSPQHAFETCITIIRQSESIEQSKQISEKYLNKAINLIDELEDGPNKELFRKLIKKMG SRNK*

Sequence 2039

50 Contig_0699_pos_4537_5598,

is similar to (with p-value 0.0e+00)

>sp:sp!Q59803|AROC_STAAU CHORISMATE SYNTHASE (EC 4.6.1.4) (5 -ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE PHOSPHOLYASE). >gp:gp|U319 79|SAU31979_3 Staphylococcus aureus chorismate synthase (aro

C) and nucleoside diphosphate kinase (ndk) genes, complete c ds, dehydroauinate synthase (aroB) and geranylgeranyl pyroph osphate synthetase homolog (gerCC) genes, partial cds. NID: q987495.

atgtttaaacgtcaagggggatatggtcgggggcgtcgtatgaaaattgaaaaagatact

atagaaattqtqtcaqqcqtcaqaaatqqctttactttaqqaagtccaataactttaqta qttactaacqacqatttcactcattqqaqaaaaataatqqqcgtcqcaccaattaqtqat qaaqaaaqaqaaaatatqaaacqtaccattacaaaacctagaccgggccatgctgatctt $\verb|ataggtggcatgaaatataatcatcgtgatttaagaaatgtgcttgagcgttcatctgct|$ agagaaacagcagcaagagttgctgtggggtgctgtttcaaaaattcttttagaacaatta gatatccacttatatagccgtgtagtcgaaattggtggtattaaagacaaaggtttatat gatqtaqatatqttcaaaaataatqtaqataaaaatqatqtacqtqtaattqacqaaaat attqcqcaacaaatqaqaqataaaataqatqaaqcqaaaaaaqacqqaqattcaatcqqq ggcgtagttcaagtaatggctgaaaacatgcctattggagtgggaagttatgtacactat qaccqtaaattaqatqqacqcattqcacaqqqtqttqtqaqtatcaacqccttcaaaqqt qtaaqttttqqtqaqqqatttaaaqcaqctqaaaaacctqqtaqcqaaattcaaqatgaa attcattataatcaagattcaggctattttagagctacaaatcacttaggtggatttgaa qqaqqcatqaqtaatgggatgcctataattgttaatggtgtcatgaagcctattcctact ttatataaaccactaaactcagttgatattaatactaaagaagacttcaaagctactata qaacqctcaqataqttqtqcaqtqcccqcaqctaqcqtaqtatqtqaacacqttqtcqct tttgagttagcaaaagcagtactcgaagagtttcaatctaaccacatggaccaactcgta qcacaaattaaaqaqcqtcqacaactcaacataqaattttaa

Sequence 2040

5

10

15

20 MFKRQGGYGRGRRMKIEKDTIEIVSGVRNGFTLGSPITLVVTNDDFTHWRKIMGVAPISD EERENMKRTITKPRPGHADLIGGMKYNHRDLRNVLERSSARETAARVAVGAVSKILLEQL DIHLYSRVVEIGGIKDKGLYDVDMFKNNVDKNDVRVIDENIAQQMRDKIDEAKKDGDSIG GVVQVMAENMPIGVGSYVHYDRKLDGRIAQGVVSINAFKGVSFGEGFKAAEKPGSEIQDE IHYNQDSGYFRATNHLGGFEGGMSNGMPIIVNGVMKPIPTLYKPLNSVDINTKEDFKATI ERSDSCAVPAASVVCEHVVAFELAKAVLEEFQSNHMDQLVAQIKERRQLNIEF*

Sequence 2041 Contig_0701_pos_1174_2742, is similar to (with p-value 0.0e+00)

- 30 >gp:gp|Z99111|BSUB0008_149 Bacillus subtilis complete genome
 (section 8 of 21): from 1394791 to 1603020. NID: g2633699.
 >gp:gp|Z97025|BSZ97025_8 Bacillus subtilis nprE, yla[A,B,C,D
 ,E,F,G,H,I,J,K,L,M,N,O] and pycA genes. NID: g2224758.
 atggttgacqqttgtcqtactaqtqqttqacqcatatqaaqgtacaatqcctcaaactcqt
- tttgttcttaaaaaagctttagaacaaaacttaaaaccggttgtagttgtgaataaaatt gataaaccagctgctagacctgagggagttgtagatgaagtattagacttattcattgaa ttggaagcgaatgatgagcaattagacttcccagttgtttatgcttcagctgtgaatgga acagcaagtttagactctgaaaagcaagacgaaaatatgcaatccctatacgagacgatt attgactatgtaccggcaccagtagataattcagatgaaccattacaattccaaattgct ttactagattataatgattatgtaggtcgtataggcgttggacgtgtgttcagaggtaaa
- 45 tttaaagtaaataactctccgtttgctggacgtgaaggtgattatgtaacagctcgacaa attcaagaaagattagatcaacaacttgaaacagatgtttctttaaaagttacacctact gatcaaccagattcatgggttgttgctggtcgtggtgaactacacttgtctattcttatt gaaaacatgagacgtgaaggctttgaattacaggtttctaaacctcaagttatttaaga gaaatcgatggtgttaaagtgaaccatttgagcgtgtacaatgtgaagtgccttctgaa
- aatgccgggcagtgattgagtcattaggtgcacgaaaaggtgaaatgttagatatgatg acgaccgacaatggtttgacgcgtttaatctttatggtacctgcacgcggtatgattggt tatactactgaatttatgtctatgacacgaggttatggaattattaaccatacatttgaa gaatttagacctcgcgttaaagctcaaatcggtggtagacgtaacggtgcattgatttct atggaccaaggtcaagcaacatcttatgcgattattaacttagaagatcgtggtgttaac

gaacaataa

Sequence 2042

MVDGVVLVVDAYEGTMPQTRFVLKKALEQNLKPVVVVNKIDKPAARPEGVVDEVLDLFIE
LEANDEQLDFPVVYASAVNGTASLDSEKQDENMQSLYETIIDYVPAPVDNSDEPLQFQIA
LLDYNDYVGRIGVGRVFRGKMRVGDNVSLIKLDGTVKNFRVTKIFGYFGLKREEIEEAQA
GDLIAVSGMEDINVGETVTPHDHRDPLPVLRIDEPTLEMTFKVNNSPFAGREGDYVTARQ
IQERLDQQLETDVSLKVTPTDQPDSWVVAGRGELHLSILIENMRREGFELQVSKPQVILR
EIDGVLSEPFERVQCEVPSENAGAVIESLGARKGEMLDMMTTDNGLTRLIFMVPARGMIG
YTTEFMSMTRGYGIINHTFEEFRPRVKAQIGGRRNGALISMDQGQATSYAIINLEDRGVN
FMEPGTEVYEGMIVGEHNRENDLTVNITKAKHQTNVRSATKDQTQTMNRPRILTLEEALQ
FINDDELVEVTPESIRLRKKILNKSAREKEAKRVKQLMQDEQ*

Sequence 2043

- Contig 0701 pos 3196 4209, 15 putative peptide of unknown function atggaacgattttgttgtgtaaatcaaattaactatattcaaatgaatccgttagaagcc aaatttaaaacgagcgctctaagatcatggaaaactgatcaggcaqatgctcataaqctt qcttqtttaqqaccqacqcttaaacaaacagacagcttacctatacatqagttaatattc 20 tttqaattaaqaqaacqcqtccqttttcatctagaaatcgagaatgaacaaaatcgactt aaatttcagatccttgaattactccatcaaacattccctggtttagaaagattgtttagt agtcgatattcaatcattgcactcaacatcgcagaaatctttactcattcagacatggtt cttqatatcqacaaqqaqqtactqattacacatatattcaattctacagataagggaatg tcaatggataaagctacaaaatatgcacttcaattaagggtgattgctcaagaaagctat cctaatgtcgatagacattcctttctagtcgaaaaattacqcttacttattcaacaatta 25 aaacaatctattcatcatctcaaacaattagatgatgccatgattcaattagcacaacaa attattggggagattggtgatattaagcgatttaaatcaaataaacaactcaatgctttt qttqqcattqatatcaaacqatatcaatcaqqtcatacacactqtagagataccatcaac 30 aaqcqtqqtaataaaaaaqcqagaaaacttttattttgggtgattatgaatataataaga qqqcaqcatcattatqacaatcatqtcqtcqattattactacaaactaaqaaaqcaqcct aatgaqaaacctcataaqactqccatcattqcttqtataaatcqattattaaaaacaatt cattatcttgtaatgaatcataaattgtacgattatcaaatgtcaccacattag
- 35 Sequence 2044
 MERFCCVNQINYIQMNPLEAKFKTSALRSWKTDQADAHKLACLGPTLKQTDSLPIHELIF
 FELRERVRFHLEIENEQNRLKFQILELLHQTFPGLERLFSSRYSIIALNIAEIFTHSDMV
 LDIDKEVLITHIFNSTDKGMSMDKATKYALQLRVIAQESYPNVDRHSFLVEKLRLLIQQL
 KQSIHHLKQLDDAMIQLAQQLDYFENIHSIPGIGKLSTAMIIGEIGDIKRFKSNKQLNAF
 40 VGIDIKRYQSGHTHCRDTINKRGNKKARKLLFWVIMNIIRGQHHYDNHVVDYYYKLRKQP
 NEFPHKTAIIACINRLLKTIHYLVMNHKLYDYQMSPH*

Sequence 2045

55

Contig 0701 pos 6054 6374,

putative peptide of unknown function
atgtaccggcgatggtatctttttcaactacagctacttgcttaccactttgctttaatg
ttaacgcagcatgccaagctgcatgaccacttcctaaaaatactacatcatattgtttca
ttaacactcatcctttcttatttttctatgagatgttttaatgtttgctctagttctca
aacacatatttcgtttcatcatactcagtcgtatcaaattcttgtggtaagcaacttgaa
attgcttcaaaaacagcttcttgttgttgttgtcccattgtcagttaacgtaattatcaac
tgtcgtttatcagattgttga

Sequence 2046
MYRRWYLFQLQLLAYHFALMLTQHAKLHDHFLKILHHIVSLTLILSYFSMRCFNVCSSSS
NTYFVSSYSVVSNSCGKQLEIASKTASCCCCPLSVNVIINCRLSDC*

Sequence 2047
Contig_0702_pos_13157_13459,
putative peptide of unknown function

Sequence 2048

VFCSRGKTNLISCLSFSFSYLSLYFFRLEIYRLVLAIPFNFYSCFRRFILVKNMFDIIKI
10 FNFMITYLNYFITFVOSSFISWRFLHNFSYDIGWRTLVVC*

Sequence 2049

Contig 0702 pos 14035 12749,

is similar to (with p-value 2.0e-24)

15 >sp:sp|P56136|Y258_HELPY HYPOTHETICAL PROTEIN HP0258. >gp:gp
|AE000545|HPAE000545_4 Helicobacter pylori section 23 of 134
 of the complete genome. NID: g2313349.

cacgaatatggacacatgttttttgctaagcgagcaggaattatgtgtcctgaatttgcg attggtatgggtcctaaaatttttagttttcgtaaagatgaaacattatatacaattcgt ctattaccggtgggtggttatgtcaggatggctggtggtggtcttgaagaaccaccagtt caaccaggtatgaacgtaaaaataaagttaaataaccaagacgaaatcacacatataatt ctagatgaccaacataaattccaacaaattgaagccatagaagttaagaaatgtgatttt aaagatgacctatatattgaaggtatcacttcttatgatgatgaaaggcatcacttcact

atgagcattttaattacgattatttcatttatcatcgtatttggtgtactcgtaactgtt

30 gttcttgaccaaaataaaacggcgaaaacaactgtaaaaattaaaagggatggccaaaac aagtctgtagatctccaacctaaaaagtagagaaagataactaaaactaaaactcaa acaacttatcaaattggttttgccctactacaagaacacagcgtttttaaaccaataagc tacggtatttataactttttcgataaaggtaagcttatttttacagctgttgttggtatg ttagctagtatattttacaggagaattttcatttgatatgttaaatggccctgttggtat

35 tatcacagtgttgattctgttgttaaatctggaattattaatttagtaggatacaccgct ttattaagtgttaacttaggaataatgaatttgctacctattccagcgcttgatggtggt cgcatattatttgtactatatgaggctatttttagaaaaccagtgaataaaaaagcggaa acaggaattattgctgtaggcgcactttttgtggttattattatgattttagtcacttgg aatgatatacaacggtatttcttataa

40

Sequence 2050

MSILITIISFIIVFGVLVTVHEYGHMFFAKRAGIMCPEFAIGMGPKIFSFRKDETLYTIR
LLPVGGYVRMAGDGLEEPPVQPGMNVKIKLNNQDEITHIILDDQHKFQQIEAIEVKKCDF
KDDLYIEGITSYDDERHHFTIAKKAFFVENGSLVQIAPRDRQFTHKKPLPKFLTLFAGPL
FNFILALVLFIGLAYYQGTPTNVIGEVVKKSPADEAGLHKGDKIVQVGNHKIKNFDDIKH
VLDQNKTAKTTVKIKRDGQNKSVDLQPKKVERKITKTKTQTTYQIGFAPTTEHSVFKPIS
YGIYNFFDKGKLIFTAVVGMLASIFTGEFSFDMLNGPVGIYHSVDSVVKSGIINLVGYTA
LLSVNLGIMNLLPIPALDGGRILFVLYEAIFRKPVNKKAETGIIAVGALFVVIIMILVTW
NDIQRYFL*

50

45

20

Sequence 2051

Contig_0702_pos_10795_6467, is similar to (with p-value 0.0e+00)

>gp:gp|D86727|D86727_1 Staphylococcus aureus DNA for DNA pol

55 ymerase III, complete cds. NID: g1483181.

gcaattgatttttcaattaaagataccaacaatcaagatgagtttgctttaaaatatttc qqacattqtattqatcaaacacqattqtcqccaaaaqtgaaagqtcaattqaaacaaaaa aaactcattatgagtggaaatgttttaaaagtcttagtttcaaatgacattgagagaaat $\verb|cattttgataaggcatgtaatggtagtttggttaaagcatttagacagtgtggctttgaa|\\$ attgataaagtegtttttgaaacagatteaacaaateacqatgatgacettgcategtta gaagcacatattcaacaagaagatgaacaaagtgcaagagaagcaactgaaaaattagaa aaaatqaaaqcaqaaaaaqcqaaacaacaaqataataatqaaagtacagtggaaaaatgt caqattqqaaaaccaattcaqattqaaaatataaaaccaattqaatcaattattgaagaa qaattcaaagtagctattgaaggtgttatatttgatattaacctaaaagaacttaaaagt 10 qqacqtcatataqttqaqcttaaaqttactqattacacaqattcacttqtattaaaaatq tttacaagaaaaaataaagatgacttggaccactttaaggcacttagtgttggtaaatgg gttagagctcaaggtcgtattgaagaagatacttttgttagggatcttgtcatgatgatg tcagatattgaagaaattaaaaagacacctaaacaagataaagcagaagataagcgtgtagagtttcatttacatacgtctatgagtcaaatggatggtattcctaatattagtgcatat gttgaacaagctgctaaatgggggcaccaagctttagcagtaacagatcacaacgtagta 15 caagetttteetgatgeacataatgetgeegaaaaacatggtattaagatgatttatggt atggaaggtatgctagtagacgatggtgttcctatagcttataaaccaacagaccgtaat ttaaaaqatqcaacatatqtqqtqtttqacqtagaqacaacaqqtctttctaatcaatat gataaaattattgaattagctgcagtaaaagtgcataacggtgaaattatagataagttt 20 gaacgttttagtaatccacacgaaagattatctgaaaccattatcaatcttacacatatc actgatgatatgttaactgatgctcccgaaattgaagaagtgttaactgaatttaaagag tgggttggagatgctatatttgtagctcataatgcttcatttgatatgggatttattgac acaggatatgaaaggttaggctttggaccttctacaaacggtgtaattgatacacttgag ctttcacqtacaattaataccqaatatqqqaaacatqqtttqaatttccttqccaaaaa 25 tatggtgtcgaattaacgcaacatcatagagcgatttatgatacagaagcaacag..ttat atttttataaaaatggttcaacaaatgaaagaactaggtgtgaacaaccatctagaaatt aataaaaaattaactaatgaagatgcatataaaagagctcgtccatctcacgttacactc aagtattattaccgtacgccaagaattccacgttctcttttaaatgaatatcgagaaggg atcttgattgqtacaqcttgtgatgagggtgaattattcacagcagtaatgcagaaggat cagtcggaaqtagaaaaataqcaaaqttctatqattttatagaagttcaaccgcctqcq ctttatcaagatttaatggatagagaattaatacgagataatgaaacgttaacacaaatt taca agc gatta at agatg ctg g taa aagc g ctaat at ccc agtg at t g ctactg g taacgcgcattatctatatgaacatgatgctatagccagaaaaattttaattgcatcccaacca 35 gggaatccattaaatcgttcaacattaccagaagctcactttagaaccactgatgaaatg ttagatgattttcacttcttaggtgaagaaaaagcatatgaaatcgttgtaacaaataca aatgagctcgctaataaaattgaaaaagtggttcctataaaagataaactatttacgcca tatggtgaagatttaccacaaattgttatagatcgccttgaaaaggaattagatagtatt 40 attggtaatggcttttctgttatttacctcatatctcaacgtttggtgaagaaatcgcta gatgatggttatttagttggatcgcgtggttcagttggttctagtttcgtagcaacaatg actgaaattacagaagttaatccgcttccaccacactacatttgttcacattgtaagaca agtgagttctttgatgatggttcggttggatctggattcgatttaccagataaaaaatgt cctacttgtggtaatgaattaattaaagaaggacaagatatcccttttgagacattcctt qqatttaaaqqaqataaaqttccaqatattqatttqaactttaqtqqtqaatatcaacct aacgctcataattacacaaaagtattgtttggtgaagataaagtatttcgtgctggaaca ataggtactgttgctgaaaaaacagcttttggtttcgtaaaaggttacttaaatgatcaa ggtattcacaaacgtggtgctgaaattgatcggttggttaaaggttgtacaggggtcaaa cgtacaactggtcaacatcctggaggaatcattgttgtaccggattacatggatatttat 50 gattttacaccgattcaattcccagcagacgaccaaagtgcagcgtggatgacaacccat ttcgacttccattcaatacacgataatgtcttaaaattagatatattaggacatgatgac ccaacgatgattcgtatgttacaagacttatcaggaattgaccccaaaactataccagta gatgataaagaaacaatgcaaatatttagtggtcctgagagtttaggtgttacagaagac gaaatattatgtaagacaggtacatttggtgtaccagaatttggtactggatttgtacgt 55 caaatgcttgaagatactaagccaacgacattctcagaattagttcaaatttcaggttta tctcatggtacggacgtttggttaggtaatgcacaagagttaattcgtcaagggatatqt gacttatctagtgtgataggctgtcgtgatgatatcatggtatatctgatgtatgctgqa cttgaaccgtcaatggcttttaaaacgatggaatttgtacgtaaaggtcgtggcttaaca gatgaaatggttgaagcgatgaaggaaaataacgtgccagattggtatttagattcttgt

PCT/US00/30782 WO 01/34809

cqtaaaattaaatatatgttccctaaagctcatgccgctgcttatgtactgatggctgta agaattgcatactttaaaqtacatcatccactatattattatqcagcatactttaccata agagetteeqattttgacettataacaatgattaaagataaaacgagtattegtaataca qttaaaqatatqtattcacgatatatggatttagggaaaaaagagaaagatgtattaact qtattaqaaataatgaatgaaatggcgcatcgaggttttcgattgcaaccgattagttta tcaqtqccaqqacttqqaqaaaacqttqcacaaaqaattqttqaaqcqaqaqaaqaqqqa ccatttttatccaaagaagatttaaataaaaagccggcttatctcaaaaggttattgac tatttagatgaattaggctcattgccagatttacctgacaaggcacaattgtcgatattt gatatgtaa

Sequence 2052

10

VVIILAMTNREKFKVLADQIKISNQLEQDILEQGELTRIDVSNKNRTWTFQISLPHFLSH EDYLLFTHAIEEEFKEIATVAIDFSIKDTNNODEFALKYFGHCIDOTRLSPKVKGOLKOK 15 KLIMSGNVLKVLVSNDIERNHFDKACNGSLVKAFRQCGFEIDKVVFETDSTNHDDDLASL EAL:100EDEQSAREATEKLEKMKAEKAKQQDNNESTVEKCQIGKPIQIENIKPIES11EE EFKVAIEGVIFDINLKELKSGRHIVELKVTDYTDSLVLKMFTRKNKDDLDHFKALSVGKW VRAOGRIEEDTFVRDLVMMMSDIEEIKKTPKQDKAEDKRVEFHLHTSMSQMDGIPNISAY VEOAAKWGHOALAVTDHNVVOAFPDAHNAAEKHGIKMIYGMEGMLVDDGVPIAYKPTDRN 20 LKDATYVVFDVETTGLSNOYDKIIELAAVKVHNGEIIDKFERFSNPHERLSETIINLTHI TDDMLTDAPEIEEVLTEFKEWVGDAIFVAHNASFDMGFIDTGYERLGFGPSTNGVIDTLE LSRTINTEYGKHGLNFLAKKYGVELTOHHRAIYDTEATAYIFIKMVOOMKELGVNNHLEI NKKLTNEDAYKRARPSHVTLIVONQEGLKNLFKIVSASLVKYYYRTPRIPRSLLNEYREG ILIGTACDEGELFTAVMQKDQSEVEKIAKFYDFIEVQPPALYQDLMDRELIRDNETLTQI 25 YKRLIDAGKSANIPVIATGNAHYLYEHDAIARKILIASOPGNPLNRSTLPEAHFRTTDEM LDDFHFLGEEKAYEIVVTNTNELANKIEKVVPIKDKLFTPRMDGANEEIRELSYSNAKKL YGEDLPOIVIDRLEKELDSIIGNGFSVIYLISORLVKKSLDDGYLVGSRGSVGSSFVATM TEITEVNPLPPHYICSHCKTSEFFDDGSVGSGFDLPDKKCPTCGNELIKEGQDIPFETFL GFKGDKVPDIDLNFSGEYOPNAHNYTKVLFGEDKVFRAGTIGTVAEKTAFGFVKGYLNDO 30 GIHKRGAEIDRLVKGCTGVKRTTGQHPGGIIVVPDYMDIYDFTPIQFPADDQSAAWMTTH FDFHSIHDNVLKLDILGHDDPTMIRMLQDLSGIDPKTIPVDDKETMQIFSGPESLGVTED EILCKTGTFGVPEFGTGFVROMLEDTKPTTFSELVOISGLSHGTDVWLGNAOELIROGIC DLSSVIGCRDDIMVYLMYAGLEPSMAFKTMEFVRKGRGLTDEMVEAMKENNVPDWYLDSC RKIKYMFPKAHAAAYVLMAVRIAYFKVHHPLYYYAAYFTIRASDFDLITMIKDKTSIRNT 35 VKDMYSRYMDLGKKEKDVLTVLEIMNEMAHRGFRLOPISLEKSOAFDFI1EGDTL1PPFI SVPGLGENVAQRIVEAREEGPFLSKEDLNKKAGLSQKVIDYLDELGSLPDLPDKAGLSIF DM*

Sequence 2053

40

Contig 0702 pos 5647 4577, is similar to (with p-value 0.0e+00) >sp:sp|P32727|NUSA BACSU N UTILIZATION SUBSTANCE PROTEIN A H OMOLOG (NUSA PROTEIN). >pir:pir/C36905/C36905 nusA homolog -Bacillus subtilis >qp:qp/218631/BSORF1T7A 2 B. subtilis infB 45 -nusA operon. NID: q49314. atggacgaaggttcatttagagtgattgcacgtaaagaagtcgtagaagaagtgtttgat gacagagatgaagttgatttaagtactgctttagtcaaaaatcctqcctatgaaqtaqqa gatatttatgaacaagatgtaacaccgaaagacttcggacgtgtaggagctcaagcagct aaqcaagctgtqatqcaacgacttagagacgcagaaagagaaattttatatgatgaattt 50 atcgataaagaagaagatattctaacaggtgtgattgaccgtgtagaccatcqctatqta tatgtgaatttaggaagaattgaagctgtgctgtcagaagctgaaagaagtcctaatgag ggtccacaaatttacgtatcaagaagtcatcctggattactaaaacgcttattcgaacaa gaagttccagaaatttatgatggtactgttattgttaaatcagtagcgcgtgaagctqga 55 gathoqttotaaaattagogtgtattotgataatootgatatagatgotgttggogcatqt gtaggttctaaaaggagcacgagtagaagcggttqttqaagaacttqqtqqcqaaaaaatc gatatcgtccaatgggatgaagatccgaaagtatttgttcgtaatgctttaagtccatca taccaattatccttagctataggtaaaaggggcaaaacgcacgtttagctgctaaatta

acaagttggaagatagatattaaatcagaatctgatgcccgagaagctggaatttatcct gttattgaatcagaagatgcagatgaaattgttaattccggtgacgaagatgttgag tttgataatgttaacttggaagagacaaacttaactagtacagaattagctgctgaaaat gatgaagataaaaaaagataaaacagaagaagataatgacacagaatcatag

Sequence 2054

MDEGSFRVIARKEVVEEVFDDRDEVDLSTALVKNPAYEVGDIYEQDVTPKDFGRVGAQAA KQAVNQPLRDAEREILYDEFIDKEEDILTGVIDRVDHRYVYVNLGRIEAVLSEAEASPNE KYIPNERIKVYVNKVEQTTKGPQIYVSRSHPGLLKRLFEQEVPEIYDGTVIVKSVAREAG DRSKISVYSDNPDIDAVGACVGSKGARVEAVVEELGGEKIDIVQWDEDPKVFVRNALSPS QVLEVIVDEENQSTVVVVPDYQLSLAIGKRGQNARLAAKLTSWKIDIKSESDAREAGIYP VIESEEVADEIVNSGDEDVEFDNVNLEETNLTSTELAAENDEDKKDKTEEDNDTES*

Sequence 2055

15 Contig_0702_pos_4266_3958,
 is similar to (with p-value 3.0e-21)
 >sp:sp|P32729|YLXQ_BACSU_PROBABLE_RIBOSOMAL_PROTEIN_IN_NUSA-INFB_INTERGENIC_REGION_(ORF4). >pir:pir|E36905|E36905_hypoth_etical_protein_2_(infB_5'_region) - Bacillus_subtilis_>gp:gp
1218631|BSORF1T7A_4_B.subtilis_infB-nusA_operon._NID: g49314_. >gp:gp|Z99112|BSUB0009_132_Bacillus_subtilis_complete_geno_me_(section_9_of_21): from 1598421_to 1807200. NID: g2633902

30

45

50

55

10

Sequence 2056
MKIFNLLGLAMRAGKIKSGESVILNELKKNQIKLVILASDASSNTLKQMNNKCNSYQVPL
KVFGTRNELGLAIGKSDRVNIGITDNGFAKKLLSMIDEYGKE*

35 Sequence 2057

Contig_0702_pos_3953_1791, is similar to (with p-value 0.0e+00)

>sp:sp|P17889|IF2_BACSU TRANSLATION INITIATION FACTOR IF-2. >pir:pir|A35269|A35269 translation initiation factor IF-2 -

Bacillus subtilis >gp:gp|M34836|BACPSIF2A_1 B.subtilis prote in synthesis initiation factor 2 (infB) gene, complete cds.
NID: g143358. >gp:gp|Z18631|BSORF1T7A_5 B.subtilis infB-nusA operon. NID: g49314.

atgaqtaaaaaaaqaatttacqaatatqcqaaaqaattaaatctaaaqaqtaaaqaqattataqatqaqttaaaaaqtatqaatqttqaaqtqtcaaatcatatqcaaqctttaqaaqaa qaacaaatcaaagcattagataaaaaatttaaagcctctcaagcgaaagacactaataaa caaaatactcaaaataatcaccaaaaatctaataataaacaaaattctaacgataaagaa aaacaqcaaaataaaacaataaaactaataaqaatcaaaaaaacaataaaaaataaaaaq aataataaaaataataaacctcaaaatqaqqtaqcaqaaacaaaaqaaatqccctctaaa atcacttatcaaqaaqqcataactqtcqqtqaqttaqctqaaaaqctaaatqtaqaatca qatqaaqaaacattaqaattaattqcaqatqactatqqcqttqaaataqaqaaqaaqta qtcgttgatgaagaagatttatcaatttattttgatgatgagactgatgattctgatgca attqaacqtccaqcaqttqttacaatcatqqqccacqtaqaccatqqtaaaacqacttta $\verb|ttagattctattcgtaacactaaagttacagaaggagaagctggcggaatcactcaacat|$ $\verb|attggtgcttatcaaattgaaaattcaggtaaaaaattacgttcttagatactcctgga|$ catgctgcatttacgactatgcgtgcacgtggtgctcaaqttactgatattacaatttta qtcqtqqccqctqatqatqqtqatqcctcaaacaattqaaqctataaatcacqctaaa

gaagcagaagtacctacgattgttgcagtaaacaaaattgataaaccaactgctaaccct gatcqtqttatqcaaqaactcactqagtatqqattaattccaqaaqactqqqqqqqtqac acaatctttgtaccactatctgcattgagtggagacggtattgatgatttattagaaatg atcqqtttaqtaqcqqaqqtacaaqaacttaaaqctaatcctaataaacaaqctqtaqqt 5 actgtgattgaggctgaattagataaatcacgaggtccagctgcatctttacttgttcaa aatgqtactttaaacqttggagatqcaattqttqtaqqtaatacttatqqacqtatacqt gcaatggttaatgatttaggaaaaagaattaaatctgccggtccttcaacacctgtagaa attactggtattaacgatgttccacttgcaggtgatcgttttgttgtatttggtgatgaa aaacaaqcacqtcqaattqqtqaaqcacqtcatqaqqcaaqtqtcatacaqcaacqtcaa 10 qaaaqtaaaaatgtttcattagacaatttatttgaqcaaatgaaacaaqqtqaaatgaaa qatttaaatgtcatcattaaaggtgatgtacaaggttcagttgaagcattggccgcatct ctaatgaaaatagatgttgaaggtgtgaatgtacgaattattcatacagctgttgqtqct atcaatqaatcagatgttacattagcaaatgcatcaaatggtattattattggttttaat qtacqcccagatqcaqqtqcqaaacqtqcqgctqaaqctqaaatqtaqatatqcqatta 15 cacagagttatctataatgttattgaagagatagaatcagctatgaaaggtttacttgac ccaqaatttqaaqaqcaaqtcattggacaaqctqaaqtqcqtcaaacatttaaaqtttct aaagttqgtacaattqctqqtagttatqtqactqaaqqtaaaatcactcqtaacqctqqt gtacgcgtaattagagatggtatcgtgttatttgaaggtgaacttgacacattaaaacqt ttcaaagatgatgctaaagaagtagctcaaggctatgaatgtggtattacaattgaaaaa 20 tataatgatctcaaagaaggagacattattgaagcgtttgaaatggtagaaattcaaaga

Sequence 2058

MSKKRIYEYAKELNLKSKEIIDELKSMNVEVSNHMQALEEEQIKALDKKFKASQAKDTNK
QNTQNNHQKSNNKQNSNDKEKQQSKNNSKPTKKKEQNNKGKQQNKNNKTNKNQKNNKNKK
NNKNNKPQNEVAETKEMPSKITYQEGITVGELAEKLNVESAGIIKKLFLLGIMANINQSL
DEETLELIADDYGVEIEKEVVVDEEDLSIYFDDETDDSDAIERPAVVTIMGHVDHGKTTL
LDSIRNTKVTEGEAGGITQHIGAYQIENSGKKITFLDTPGHAAFTTMRARGAQVTDITIL
VVAADDGVMPQTIEAINHAKEAEVPTIVAVNKIDKPTANPDRVMQELTEYGLIPEDWGGD
30 TIFVPLSALSGDGIDDLLEMIGLVAEVQELKANPNKQAVGTVIEAELDKSRGPAASLLVQ
NGTLNVGDAIVVGNTYGRIRAMVNDLGKRIKSAGPSTPVEITGINDVPLAGDRFVVFGDE
KQARRIGEARHEASVIQQRQESKNVSLDNLFEQMKQGEMKDLNVIIKGDVQGSVEALAAS
LMKIDVEGVNVRIIHTAVGAINESDVTLANASNGIIIGFNVRPDAGAKRAAEAENVDMRL
HRVIYNVIEEIESAMKGLLDPEFEEQVIGQAEVRQTFKVSKVGTIAGSYVTEGKITRNAG
VRVIRDGIVLFEGELDTLKRFKDDAKEVAQGYECGITIEKYNDLKEGDIIEAFEMVEIOR

Secuence 2059

Contig_0702_pos_1521_1138,

- is similar to (with p-value 2.0e-34)

 >sp:sp|P32731|RBFA_BACSU_RIBOSOME-BINDING_FACTOR_A_(P15B_PRO_TEIN). >pir:pir|G36905|G36905_protein_P15B_homolog_- Bacillus_subtilis >gp:gp|Z18631|BSORF1T7A_7_B.subtilis_infB-nusA_op_eron. NID: g49314. >gp:gp|Z99112|BSUB0009_135_Bacillus_subtilis_complete_genome_(section_9_of_21): from 1598421_to 18072
- 55 Sequence 2060
 VSKVKIKRGEMMNNIRAERVGEQMKQEIMDIVNNKVKDPRVGFLTITDVELTNDLSQAKV
 YLTVLGNDKEVDNTFKALHKATGFIKSELGSRMRLRIIPELTFEYDESIEYGNKIERMIQ

Sequence 2061 Contig_0702_pos 1000_83, is similar to (with p-value 6.0e-46) >qp:qp|X92946|LLLPK214 14 Lactococcus lactis sp. lactis plas mid pK214, complete sequence. NID: g2467210. tttaaattacqtaaaattttaaaaatgaaaaaattggtcatacaggaacattagatcct gaagtta atggtgtgttac caatttgtttaggcgatgcgacaaaagtcagtgattatatcatqqaaatqqqaaaaacttatcacqctatqataacqctaqqaaaqaqtacqactactqaa gaccaactggagatattttagaaactagggctgttgataagaatgatattaatgaagat acqartqaccaaqtqttqcaqcaatttqaqqqqcatattcaacaaattccgcctatqtat tcttctqttaaaqtaaatqqaaqaaaattatatqaatatqcgagaaataatgaaactqtc $\tt gaacgccctaaacgacaagtttttattaaagatatacatagaatatctgaagttactttt$ caggagcagacatgtcattttqaaqttqaaqtaacatgtqqtaaaqgaacttatattaga 15 actttaqctacaqatattqqacttaaacttqqttttccaqctcatatgtcacgtctaact agaattgcttctggcggttttcaattagaaagtagtttaacgattgatcaaattaaagaa ttacatgagcatgattcattacataatgaattgtttcctatagaatatggcttaaaaggt ctgaaatcattccaagtgaaagattcaaattttaaaaaagaaaatctgtaacggtcaaaaa tttcataaaaaaqtqttaaqtcaaaatqttaaaqaaccttttatatttqtcqataqtagc 20 actcaaaaagttttagcaatatatatagttcatccagataaaccttatgaaataaaacct aaaaaaqtttttaattaa

Sequence 2062

MYNGILPVFKKRGLTSHDVVFKLRKILKMKKIGHTGTLDPEVNGVLPICLGDATKVSDYI MEMGKTYHAMITLGKSTTTEDQTGDILETRAVDKNDINEDTIDQVLQQFEGHIQQIPPMY SSVKVNGRKLYEYARNNETVERPKRQVFIKDIHRISEVTFQEQTCHFEVEVTCGKGTYIR TLATDIGLKLGFPAHMSRLTRIASGGFQLESSLTIDQIKELHEHDSLHNELFPIEYGLKG LKSFQVKDSNFKKKICNGQKFHKKVLSQNVKEPFIFVDSSTQKVLAIYIVHPDKPYEIKP KKVFN*

30

25

Sequence 2063
Contig_0703_pos_784_1236,
putative peptide of unknown function

Sequence 2064

MYDELEVNKSRFKNCNFNEGIFKNIEAICNCKFTTCGFNNCIFEDVHFYKNQFKDSTFVN
45 TPFDQSVFNSTLFQNAMFDSNLIRSVKWTDIIFKNVSFKNVEIEGTTFKDVKFKNCEFKN
VIITNSTMSQKLMNELQKQDVTLENIDTSI*

Sequence 2065

Contig 0703 pos 4474 5274,

aacaatgcaaaagcattaaaagataaaattgaaaatgattataattttaaaattcaaagt attggcgicatatattttagtgatggtagcgttaatattattgaaggatccgacgagagt gataaatacgtcgacaccgtatctacaccgatatcacttgaaaaagtaattgaggaagct atcgatttatctaagcaccccttactgataaacaaatcgaagaaatttctgaaaacttt aaacaacatatgaataattaa

Sequence 2066

5

10

MKDRVETEEYARNQLISKNSILSEENLSLKNQMLSTNNDVGQHAFKNAKRELRKILNRFK EEGRLRSYTIVPTSNLAVKHPLFEYARSFDFIIITDVGLINVDVKNWNQKTFYHFDVPDQ HLEEGQPQYNTEKVVGHYISNRYHSQFKTTRSGVYTFIEILQDNRVIYEFYDHDPYDKAA NNAKALKDKIENDYNFKIQSIGVIYFSDGSVNIIEGSDESDKYVDTVSTPISLEKVIEEA IDLSKHPLTDKQIEEISENFKOHMNN*

Sequence 2067

15 Contig_0703_pos_3987_3481,
putative peptide of unknown function
atgcatctatttctgaatgatgattttatattaccatcgaaaatagatatttgtgttgag
cgcaaaaagttattggaaattatcagggtgattcctgaagaatttacgattcactattat
gataatcagttatatgaaagattaagagaatctttatctttatcagatgttgaacatgtt
20 aaagtctttaaaaacgatacagaagtcatgacaatatttgtttatgatgttgtaaatgat
gaatggctatttaggttagatcatcatatacgtttaccaaaaaataatatattttcat
tctttaagttggaacgtagattatattaagccagaaatagttcttatgatgatttaatg
agtgaacaaaaatatcatcagtttagtaattataaagctgttattgattctcttagttat
tatcaattctatattttaaaattggtagtagtgaacagcgtattaaaaaagctatagta
aatagttccactaaaaaagatatcttaa

Sequence 2068

MHLFLNDDFILPSKIDICVERKKLLEIIRVIPEEFTIHYYDNQLYERLRESLSLSDVEHV KVFKNDTEVMTIFVYDVVNDEWLFRLDHHIRLPKNNIYFHSLSWNVDYIKPEIVLMYDLM 30 SEQKYHQFSNYKAVIDSLSYYQFYILKLVVGEQRIKKAIVNSSTKKIS*

Sequence 2069
Contig_0703_pos_2163_1420,
putative peptide of unknown function

atgtcgtcattatgccttttgcctggagctgaaacgataatgattttacgttcagggtct
tcattcactataggacaatcgttttttacgctgtccctaggtacaaccggaatgattact
tatgcaagctatgcacctaaaaatatgacgataaagtcttcagcactttcaattgtcgta
atgaatattttaatttctgtcttggctggattagctatatttcctgcgcttaaaacattt
ggttaccaaccccaagaaggccctggcttattattttaaggttttaccactagtatttagc
gaaatgacttttggtacattcttttactttatatttttactattattcttatttgcggca
ttaacgtcttctatatcattattagagttaaatgtatctaattttactataaaaatgataat
agtaaaagacaaaaagtggcaatcataggtagtatacttgtatttatcattagtatccca
gcaacattatcttttagtagtctaagtcatttgcgttttggcgctggtacgatatttgat
aatatggatttattgtatctaatattcttatgcgcattaggggcactaggaacaacatta

Sequence 2070

50 MSSLCLLPGAETIMILRSGSSFTIGQSFFTLSLGTTGMITYASYAPKNMTIKSSALSIVV MNILISVLAGLAIFPALKTFGYQPQEGPGLLFKVLPLVFSEMTFGTFFYFIFLLLFLFAA LTSSISLLELNVSNFTKNDNSKRQKVAIIGSILVFIISIPATLSFSSLSHLRFGAGTIFD NMDFIVSNILMPLGALGTTLVVGQLLDKKLLKESFGKDKFNLFLPWYYLIKFIMPIVIIL VFIVQLF*

Sequence 2071
Contig_0703_pos_0_399,
is similar to (with p-value 9.0e-32)
>gp:gp|U93874|BSU93874_1 Bacillus subtilis cysteine synthase

(yrhA), cystathionine gamma-lyase (yrhB), YrhC (yrhC), YrhD (yrhD), formate dehydrogenase chain A (yrhE), YrhF (yrhF), formate dehydrogenase (yrhG), YrhH (yrhH), regulatory protein (yrhI), cytochrome P450 102 (yrhJ), YrhK (yrhK), hypothetical protein YrhL (yrhL), putative anti-SigV factor (yrhM), R NA polymerase sigma factor SigV (sigV) and YrhO (yrhO) genes, complete cds, and YrhP (yrhP) gene, partial cds. NID: g1934604. >gp:gp|Z99117|BSUB0014_206 Bacillus subtilis complete genome (section 14 of 21): from 2599451 to 2812870. NID: g2634966.

atgattgcatacgatttgataggacaaactccattagttttattagaaagctttagtgac gagaatgttaaaatatacgccaaacttgagcaatttaatcctggtggtagcatcaaagac cgtctagggaagtacttaattgaaaaagcaatagatgaaggacgacttaaagaaggggat acaatagtcgaagcgactgctggtaatacaggcattggacttgctattgcttctaatcgg cacaaagtaaaatgtatcatctttgctccagaaggatttgcagaagaaaaaatttcaatt atgaaagcattgggtgcagatgttagacgtacccccaaagctgagggaatgactggcgca cagcaagaggcgttggcatacgcaacacgatatgTACTA

Sequence 2072

15

20 MIAYDLIGQTPLVLLESFSDENVKIYAKLEQFNPGGSIKDRLGKYLIEKAIDEGRLKEGD TIVEATAGNTGIGLAIASNRHKVKCIIFAPEGFAEEKISIMKALGADVRRTPKAEGMTGA OOEALAYATRYVL

Sequence 2073

Sequence 2074

35 VLYRKMVAKIKLKRLYKPYSQTLFLLFILKYFYYFTIILVFYSKYFTSSLGKEGLILILI NNKCNYKSLSVNSISLNSKKRNRNLIIFFFVSIHYRTPTCFVC*

Sequence 2075

Contig 0704 pos 2016 0,

- 40 is similar to (with p-value 3.0e-76)
 >sp:sp|P47994|SECA_STACA_PREPROTEIN_TRANSLOCASE_SECA_SUBUNIT
 . >pir:pir|S47149|S47149 secA_protein Staphylococcus_carno
 sus_>gp:gp|X79725|SCSECA_2_S.carnosus_(TM300)_secA_gene. NID
 : q499333.
- atggataatagccgtgttgatcgtcaattaagaggacgctcaggtcgccaaggagatcct ggatattcacagatttttgtatcacttgatgatgatttagtaaaacgttggagtaactct aacttggcagaaaataaaaacctccaaacgatggatgcatctaaactagaaagtagtgca ctctttaaaaaaacgtgtaaagtcaattgttaataaagcgcaacgtgtatctgaagagact gctatgaaaaatagagaaatggcaaatgaattcgaaaaaagtattagtgttcaacgagat

10

15

5

Sequence 2076

MTCLDRITGRMLPGTKLQSGLHQAIEALENVEISQDMSVMATITFQNLFKQFDEFSGMTG
TGKLGEKEFFDLYSKVVIEIPTHSPIERDDRPDRVFANGDKKNDAILKTVIGIHETQQPV
LLITRTAEAAEYFSAELFKRDIPNNLLIAQNVAKEAQMIAEAGQLSAVTVATSMAGRGTD
IKLSKEVHDIGGLAVIINEHMDNSRVDRQLRGRSGRQGDPGYSQIFVSLDDDLVKRWSNS
NLAENKNLQTMDASKLESSALFKKRVKSIVNKAQRVSEETAMKNREMANEFEKSISVQRD
KIYAERNHILEASDFDDFNFEQLARDVFTKDVKNLDLSSERALVNYIYENLSFVFDEDVS
NINMQNDEEIIQFLIQQFTQQFNNRLEVAADSYLKLRFIQKSILKAIDSEWIEQVDNLQQ
LKASVNNRONGORNVIFEYHKVALETYEYMSEDIKRKMVRNLCLSILAFDKDGDX

20

35

40

45

Sequence 2077

Contig 0704 pos 1840 1244,

is similar to (with p-value 3.0e-87)

>sp:sp|P24277|RECR_BACSU RECOMBINATION PROTEIN RECR. >gp:gp|
25 D26185|BAC180K_85 B. subtilis DNA, 180 kilobase region of re
plication origin. NID: g467326. >gp:gp|X17014|BSRECM_3 Bacil
lus subtilis dnaZX and recR genes and two unidentified readi
ng frames. NID: g453238. >gp:gp|Z99104|BSUB0001_21 Bacillus
subtilis complete genome (section 1 of 21): from 1 to 213080

30 . NID: g2632267.

Sequence 2078

MHYPEPISKLIDSFMKLPGIGPKTAQRLAFHTLDMKEDDVVKFAKALVDVKRELTYCSVC GHITENDFCYICEDKQRDRSVICVVEDDKDVIAMEKMREYKGLYHVLHGSISPMDGIGPE DINIPALVERLKNDEVKELILAMNPNLEGESTAMYISRLVKPIGIKVTRLAQGLSVGGDL EYADEVTLSKAIAGRTEM*

Sequence 2079

Contig_0706 pos_183_1418,

is similar to (with p-value 0.0e+00)

>sp:sp|P55189|YBAR_BACSU HYPOTHETICAL 46.4 KD PROTEIN IN RRN
G-FEUC INTERGENIC REGION. >gp:gp|D84213|BACTHRTRNA_3 Bacillu
s subtilis genome, trnI-feuABC region. NID: g1256147.

gatttaggtaatattaagcaaactttgcctcatttcttaatccctaacattcctttaat ttagaaacacttcaaattattttcccatattcattatcaatggctattgtgggtctagtagaaagcctacttacagctaaaattgtagatgatgcaactgatacacacagtagtaaaaac aaaqaatcaagaggtcaagggattgctaatattattactqqtttctttggcggtatggga ggttgtgccatgattggacaatcagtaatcaatgttaaqtcaggtqcaaatagtagattq ${\tt tctacatttacagcaggtattgtacttatgtttatgattattgttctcggtggtgtagtc}$ gttcaaatcccgatqccaattcttqcaqqqataatqqttatqqtttctatcgggactgtt gattggaattcatttaagtatataaaaaaagcacctaaaacagatgcattcgttatggtt ttaacqqttattattqtattaataacacataacttaqctatcqqtqtaqttqtaqqtgtt 10 ttaggtaagcagcatcqtttttcttttaaagqtcagatattctttgtatcaattgattct atgatggagaaaattgattttaatattgaagatagtgtcatagtgttgaattttgatcac gctcacctatgggatgattcagcagtaaatgccattgatacgattgttaggaaatttgaa qaqaaaaacaatattgtgtatgttgaaaaattaaacgcagatagccgaaaaattatttca 15 qaactaaqttatttaaatgaaactcatttaaattaa

Sequence 2080

VALLVTPLVKEHGVEYLFAATILMGLIQLLLGILKVGRLMKFIPRPVMIGFVNALGIMIF
MSQIEHIFNISIATYIYVIITLLIVYVIPRFYKAIPAPLIAIIVLTALYMYTGSDVRTVG
DLGNIKQTLPHFLIPNIPFNLETLQIIFPYSLSMAIVGLVESLLTAKIVDDATDTHSSKN
KESRGQGIANIITGFFGGMGGCAMIGQSVINVKSGANSRLSTFTAGIVLMFMIIVLGGVV
VQIPMPILAGIMVMVSIGTVDWNSFKYIKKAPKTDAFVMVLTVIIVLITHNLAIGVVVGV
VFSAIFFATKISKVEVIYKELGKQHRFSFKGQIFFVSIDSMMEKIDFNIEDSVIVLNFDH
AHLWDDSAVNAIDTIVRKFEEKNNIVYVEKLNADSRKIISELSYLNETHLN*

25

20

Sequence 2081 Contig 0706 pos 1422 1844,

putative peptide of unknown function

Sequence 2082

VFFMYNSILLAADGSKNSIRAAQELLNFIGDYTIVTILTVVDIEESKTDVLHDHQGTNLT
40 QKRESKLQSIKDLFTEHNVNYKIKIVHGTPTDKVVEVSNSGEYQAIILGTRGLNSFQKMV
LGSVSHKVAKRSQIPVIIVK*

Sequence 2083

Contig 0706 pos 5297 6436,

45 putative peptide of unknown function atgaaaaaatatggattttaactataggtatgtttgccttaggtatggatgcttatata qtaqcaqqattaataccttcaataaqtaaaaqttttaataaaaqtaqctctqctattqqq caaggagtaacagtttttacattgtttttctctatctctgcccccattttttcaacaata ttagctaaatccccagttaaaaaaatactaataatagcattcagtatatttactttagcc 50 aatattataaccqcaatatctatqaactacatqctatatatcqtatcaaqaqcaatcqct qaaaaqcataaaqqaaaaqcaatcqcttttacaqtaqqcqqaatqaqtqtaqqaactqtt ataggagttcctctcggactagaaattgccaacatttctaattggcgatttgcaatgttg gttattattgtcattagttttattgcattaataagcatatctatattgatgcctaaattt 55 aanatagaageteeteeaaatttaaaagategtttteaattatttttaaacaageatgta ctaagagttatttcggttacattatgcgctgccattgctagtttaggtttgtatacttat ttagccgatattattaaaacaaatacagatacaaaaaatttaactcattaccttacagcg tqqqqaataqqcqqattaataqqaaqttttqqtataqqatttattataqataqatttaaa aatacaagatttgttatgctaattattttaattttactagcattaagttttggtttaatt

Sequence 2084

5

MKKIWILTIGMFALGMDAYIVAGLIPSISKSFNKSSSAIGQGVTVFTLFFSISAPIFSTI
10 LAKSPVKKILIIAFSIFTLANIITAISMNYMLYIVSRAIAGLGAGVFSPIAISASNHLVS
EKHKGKAIAFTVGGMSVGTVIGVPLGLEIANISNWRFAMLVIIVISFIALISISILMPKF
KIEAPPNLKDRFQLFLNKHVLRVISVTLCAAIASLGLYTYLADIIKTNTDTKNLTHYLTA
WGIGGLIGSFGIGFIIDRFKNTRFVMLIILILLALSFGLIPISINLPILGLIPFILWGAM
GWATQAPQQHILLKKHPEYGGSAVALNSSINYLGSAMGSAIGGIILFNANSTNVLIYSAL
15 GITIIGILLQLLNLSLEKN*

Sequence 2085

Contig_0706_pos_5156_4323,

putative peptide of unknown function

KSLKNENIYIOTPPCDTYDLLKNYSLKDKLHIDYVDYYETILANVKANKGITLTPOSLTT

- 35 Sequence 2086
 MGDFMNFNYMKDFIKVVEYNSLNKASRELNISTPALSKRIRSIEDYFDCQLFYRTSKGIF
 LTQKGNAVYHSFLKINEQFEELKSKISESKDKRIKLGVIPSFSLYKLHEKNYINESVVLV
 IENSTSILLEEIYKDNIDVVIGDITHLKNNSLYTOEIYTEDFIVAYGDENKFKNTNOVSI
- 40 RLESMNLYQKKLQSYKRVVGVVSRDKDKMNKIIDIIQ*

Sequence 2087

Contig_0706_pos_3655_3065,

putative peptide of unknown function

- Sequence 2088

55

VGEFKFPSGSIKVTRKGIEKDQEEYLRQFEKENDKSIEFDADEMSAKIGELFGVEYKDGL PIDNSGGGGAPPKSESYNPSVFNAHLFSIVASEDSLKEEYKFFGFKETIISLYTAYLSNY KKDKWVTKGGAPYHVSNREESLEKKAFDIITGYYLEAMNTRKEWNFNTIKSYOKLIRVVL

VSYOVIERELMEENEE*

Sequence 2089

Contig 0706 pos 2458 2060,

putative peptide of unknown function

atgcaaatgttacttaaagataaagttgacagtgaaggtaaatctattatctatgaagga caaagaggatctgggggaggagaattagatactcatgatcccatgtatttttcgaattta attactagtaaaatatttttaattaatcaagtagaaaaacataataagttttttatagct gaaaagctttttgaaggttatgaaagtaaatgtatggaaaaatatggaacaaattatcac ggagcaataatagagacaagagtgaaaataggatattagccgatgaaacaatacgtaaa ttttactttttaacgaaagacatggaaaaagagatgaatatttaagcttagatgatta

aataaatttagacttttaatatttgcatttactcattga

Sequence 2090

15 MQMLLKDKVDSEGKSIIYEGQRGSGGGELDTHDPMYFSNLITSKIFLINQVEKHNKFFIA EKLFEGYESKCMEKYGTNYHGAIIETRDENRILADETIRKFYFLTKDMEKENEYLSLDDL NKFRLLIFAFTH*

Sequence 2091

20 Contig_0707_pos_498_965,

putative peptide of unknown function

atgcaattagatgtttttcctgaattaaacgtagatcaactatctcaaaaagtgagaaaa atacttaatgcagaaccagataaatatattaaaaatagcttgcgaggattaatagaagag cggtatttattgtttattctcgaacaatctggtattaatgatgaaatgactgcacatcat

30

10

Sequence 2092

MQLDVFPELNVDQLSQKVRKILNAEPDKYIKNSLRGLIEERYLLFILEQSGINDEMTAHH LSNQQFQTFINLLKTFTFTVDGTLPLDKAFVTGGGISLKEIEPKTMMSKLVPGLFLCGEV LDIHGYTGGYNITSALVTGHVAGMFAGEFKIDONK*

35

Sequence 2093

Contig 0707 pos 1717 1337,

putative peptide of unknown function

45 gataaaaaagtaaatgactaa

Sequence 2094

MINANLSASTRVKQNARTLINEIVSNALSQLNKVTTNKEVDEIVNETIEKLKSIQIREDK ILSSQRSSTSMTEKSNQCYSSENNTIKSLPEAGNADKSLPLAGVTLISGLAIMSSRKKKK

50 DKKVND*

Sequence 2095

Contig 0707 pos 0 497,

putative peptide of unknown function

5

Sequence 2096
MDIFLFLIFLKINKLTTGDDSMKTYKPYRHQLRRSLFASTIFPVFMVMIIGLISFYAIY
IWVEHCTIHQHTYQTQTELQRIDKHFHTFVTQQQKQWRHVDLSHPTDITKMKRQLLKQVH
QQPAILYYDLKGSSQSFTNNYEQLDTTKMYLISKYRIDFKDDTYIL

10

Sequence 2097 Contig 0708 pos 1581 3635, is similar to (with p-value 0.0e+00) >qp:qp|AF090142|AF090142 1 Staphylococcus epidermidis lipase 15 precursor (gehD) gene, complete cds. NID: g3789931. gtgatttctttgacaaataataatagaataaaaagatttagcattagaaaatacgcagtg qqaqtaqtatcaattattacaqqtqtaacaattttcatcqqaqqqcaacaaqctcaaqca gctgaaacttcagtgcaacatgcggatgcacacccagaagactcgcaaacaacaacaacaa ttaaaaaatqataaqqtaqaaqaaacqttaaaaqcttcaaaacaaqqtactqcttataqt 20 caacaaqtacaaacaattaatcaatctaaaacaaatcaaaacaaccaacattctqtaqct qaaaqtqaacaactqaaaaqtqatqaqacaqctaatcaqccaaaaaaaqaaqaaqqtaqt tcaqtaaaacaaqacqtccaaccatctaaaaatqtaaatcaacaaqacqcaqctactcaa tcaaatgagagaaaaatattgacataaaaggtgaaggtcaaacttcaaagacaagcaat caacatattcaqaqttctaacaqtcataatcaatcaacaqaaacaaaaqacaqcqactca 25 qaaqaaatcgatcaaccattagtgaaattacaaaaqccgtctaatgattctacatatcaa acacaatcaaaaqctaaacaaqataqttctaaacaqctccctcaaqaaaaaacaacaaaa cqtcaaatccaaacaactqaaaatqaacaqacaactaaaqttqattctaaaaaaqctaat qacactcaaaatqttqaacaacatactcaaqaqcctaaaaatqatacatcaacatcacaa aaaaatcatcatcaaqtaqctacaaaaqaacaatctaataqaaqtacaacaaqqqayacq 30 casa egcaatcagcaaatgctaatcaaaatcatcagtctacacatcaagcacagttcaaa aaccaatatccagtagtatttqtccatggtttcctaggctttgcaggtgataatcaattt agtttagctccaaaatattggggtggtacaaaatacaatattgacagaaatttaactaat gagggatacaatgtacatgaggcaaatattggtgcttttaqtaqtaactatqatcqcqca qtaqaattgtattactatgtcaaaggaggacgtgttgattacggtgcagcgcatgcagct 35 aaatatqqtcatcatcqctatqqtcqaacatacaaqqqcatcatqcqtqattqqqaacct ggcaaaaaaattcattttataggtcacagtatgggtggtcaaaccattcgtcaaatggaa qaattottaaqaaatqqtaaccaaqaaqaataqaatatcaacqtcaacatqqqqqtact atatccgatttatttacaggtggtaaagataatatggttgcttcaattactacacttqqc acaccacataatggtacacctgctgcagataaaattggcacacgtaaacttgtaaaagaa acgattaatcqtattqqtaqattaaqtqqtqqtaaaqatqtaqatataqatttaqqtttt tctcaatggggattaaaacaaccaaccaaatgaaagctacattgattacqcqqaacqtqta tccaaaagtaagatttggaatactgaagatcaagctgttaatgatctgacaacgcaaggt gctgaaaaaattaatcaacaaacaagtctaaatcctaatattgtctacactacttataca qqqtcaqcqactcacacaqqacctcttqqtaatqaattacctaattctaqtqaaattctt 45 gatggtgtagttccagttatatcatcacaacatccttctaatcaaqcctttaaaaaaagtt gatgatcatacaccagctactgataaaggtgtttggcaagtgagacccqttcaacatgat tgggaccatttagatttagtaggtatggatgcatttgatttaacacatacaggtagagaa $\verb|ttaggtcaattctatctaggtattatggataatatcatgagaatcgaagaagcaga::ggt|\\$ 50 attacasataaataa

Sequence 2098

55

VISLTNNNRIKRFSIRKYAVGVVSIITGVTIFIGGQQAQAAETSVQHADAHPEDSQTTQQ
LKNDKVEETLKASKQGTAYSQQVQTINQSKTNQNNQHSVAESEQLKSDETANQPKKEEGS
SVKQDVQPSKNVNQQDAATQSNERKNIDIKGEGQTSKTSNQHIQSSNSHNQSTETKDSDS
EEIDQPLVKLQKPSNDSTYQTQSKAKQDSSKQLPQEKTTKRQIQTTENEQTTKVDSKKAN
DTQNVEQHTQEPKNDTSTSQKNHHQVATKEQSNRSTTRETQKQSANANQNHQSTHQAQFK
NQYPVVFVHGFLGFAGDNQFSLAPKYWGGTKYNIDRNLTNEGYNVHEANIGAFSSNYDRA
VELYYYVKGGRVDYGAAHAAKYGHHRYGRTYKGIMRDWEPGKKIHFIGHSMGGQTIRQME

EFI.RNGNQEEIEYQRQHGGTISDLFTGGKDNMVASITTLGTPHNGTPAADKIGTRKT,VKE TINR:GRLSGGKDVDIDLGFSQWGLKQQPNESYIDYAERVSKSKIWNTEDQAVNDLTTQG AEKINQQTSLNPNIVYTTYTGSATHTGPLGNELPNSSEILLLNLTSRIIGKDANKEIRPN DGVVPVISSQHPSNQAFKKVDDHTPATDKGVWQVRPVQHDWDHLDLVGMDAFDLTHTGRE LGQFYLGIMDNIMRIEEADGITNK*

Sequence 2099 Contig_0710_pos_168_1115, is similar to (with p-value 7.0e-45)

- 10 >gp:gp|Z99108|BSUB0005_69 Bacillus subtilis complete genome
 (section 5 of 21): from 802821 to 1011250. NID: g2633055. >g
 p:gp|D78509|D78509_11 Bacillus subtilis YfjG-YfjR genes, com
 plete cds. NID: g2780390.
 atgacggtgaccgttagatttcaatctttatcgcaacctcttacattagtttcaaatgtg

30

35

5

Sequence 2100
MTVTVRFQSLSQPLTLVSNVKEIPKDATIIWYDFENATDEENEYLKNHFDFNYLEIDDAI
NGDPRVKYIEYDAYQYMIFHSIINDDYSPISLSVFLEGNVLVTYHHKHFPSLKRVAQYNA
ENHDSELDCADIVIHILDCMVDKYFNFVYGIEDKVYNFEAKHVDDRYSKSVMENVFQLRS
DLIKIKRVLFPMQEVVDTMKQEGNIIKDAKHRMYIQHIDDHLIKQRSVIRTSQEMTNEIR
ENYESFTSFRMNSIMQILTLVSVIFSPLTFIAGVYGMNFEFMPELKWHYAYFVCLTLMLI
ITIILIIFFKKKKWF*

Sequence 2101

- 40 Contig_0710_pos_1206_1763,
 is similar to (with p-value 2.0e-29)
 >gp:gp|AF016485|AF016485_60 Halobacterium sp. NRC-1 plasmid
 pNRC100, complete plasmid sequence. NID: g2822278. >gp:gp|AF
 016485|AF016485_149 Halobacterium sp. NRC-1 plasmid pNRC100,
 45 complete plasmid sequence. NID: g2822278.
- atgtcacaaaaagatgcgctggtttcagattttgataaagtgagatttgttcatcattcc
 atccccagtattgatgttagtcaagtcgatatgacaagtcatactacgaaattcgatttg
 gcatatccaatctatataaatgcaatgactggtggaagtgattggacaaaacaaattaat
 gaaaaattagcaattgttgctagagaaactggaattgcaatggcggtgggatcaacacat
 gcagctttgcgcaatcctaatatgattgaaacatttagcattgtgcgtaaaacaaatccc
 aaaggaacaattttcagcaatgtgggtgccgatgtaccagtggataaagctctacaagcg
 gttgaattattagatgctcaagcgctacaaattcatgtgaactcacctcaagaattagtc
 atgcctgaagggaaccgtgaatttgcttcatggatgtcaaatattgaatctattgttaaa
 cgcgttgatgttccaqttattattaaaqaagttggtttcqqaatgagtaaagaacatta
- 55 caagcgttatatgattaa

Sequence 2102

MSQKDALVSDFDKVRFVHHSIPSIDVSQVDMTSHTTKFDLAYPIYINAMTGGSDWTKQIN EKLAIVARETGIAMAVGSTHAALRNPNMIETFSIVRKTNPKGTIFSNVGADVPVDKALQA

VELLDAQALQIHVNSPQELVMPEGNREFASWMSNIESIVKRVDVPVIIKEVGFGMSKETL OALYD*

Sequence 2103 Contig 0710 pos 1830 3305, is similar to (with p-value 4.0e-90) >qp:qp|AF006665|AF006665 31 Bacillus subtilis 168 region at 182 min containing the cge gene cluster. NID: g2529445. >gp: qp|AF015775|AF015775 7 Bacillus subtilis YodA (yodA), YodB (yodB), YodC (yodC), YodD (yodD), ABC-transporter (yodE), per mease (yodF), proteinase (ctpA), YodH (yodH), YodI (yodI), c arboxypeptidase (yodJ), purine nucleoside phosphorylase (deo D), YodI, (yodL), YodM (yodM), YodN (yodN), YodO (yodO), YodP (yodP), acetylornitine deacetylase (argE), butirate-acetoac etate CoA transferase (yodR), butyrate acetoacetate-CoA tran 15 sferase (yodS), YodT (yodT), CgeE (cgeE), CgeD (cgeD), CgeC (cgeC), CgeA (cgeA), CgeB (cgeB), YzxA (yzxA), UDP-glucose e pimerase (yodU), YodV (yodV), and YodW (yodW) genes, complet e cds; and YodZ (yodZ) gene, partial cds. NID: g2415383. >gp :qp/Z99114|BSUB0011 121 Bacillus subtilis complete genome (s ection 11 of 21): from 2000171 to 2207900. NID: g2634230. atgaatgatcatcaaaaaaatcatgcaacatctcaagatgataacacaatgtcaacacca tctaagaatagcaagcatataaaattaaattatggcatttcatactcgttattttgggt attattcttttaacatccatcattactgtagtatcaacaattttaattagccatcaaaaa 25 cttaataaagattattacaaaaagcaaagttctgataaattaactcaatctgccatagat ggtatggttaaaqaacttaaaqatccatattcagaatatatgactgctgaaqaaacaaaa caatttaatqaaqqtqtatcaqqtqatttcqttqqcataqqtqctqaaatqcaaaaqaaa aatqaacaqataaqtqttactaqcccaatqaaqqattcaccaqcaqaaaaaqctqqtatt 30 $\verb|caacctaaagatatcgtcacacaagtgaatcatcattcggtagtcggtaaaccacttgat|$ caagttgttaaaatggtccgcggcaaaaaaggaacatatgttactttaactataaaacqt ggttcgcaagaaaaggatattaagattaaacgcgataccattcacgttaagagtqtaqaq qqtqaactcaaatctqcaatcatcaaaqcqcataaqcaaqqcatccqtcatatcatttta 35 qatttqaqaaataatccqqqqqqqttattaqatqaqqcaqtcaaqatqgctaacatcttt attqataaqqqaaatactqtcqttcaattagaaaaagqtaaqqataaqgaaqaattaaaa acttctaatcaagcactaaaacaagcaaaagatatgaaagtatccatcttagttaatgag ggatcagctagtgcttcagaagtgtttacaggtgctatgaaagactatcataaagctaaa gtttacggttctaaaacatttggtaaaggtatcgttcagaccactcgtgaatttagtgat ggttcattaattaaatatacagagatgaaatggctaacgcctgatggccattatattcat qqtaaaqqaattaqaccaqatqttaqtatctcaacaccaaaataccaatcactcaatgtc attccagataacaaacttatcatcaaggtgaaaaagataaaaatgttaaaacgatgaaa ttagaatctgctattaaaacatttcaacaagacaataatttaaaagttaatggcaatttt 45 qataaaaaaaaacaaatgataaatttactgaaaaactagttgaaaaagcgaataaaaaagat actqttttaaacqatttactaaacaaactaaaataa

Sequence 2104

50

MNDHQKNHATSQDDNTMSTPSKNSKHIKIKLWHFILVILGIILLTSIITVVSTILISHQK
SGLNKEQRANLKKIEYVYQTLNKDYYKKQSSDKLTQSAIDGMVKELKDPYSEYMTAEETK
QFNEGVSGDFVGIGAEMQKKNEQISVTSPMKDSPAEKAGIQPKDIVTQVNHHSVVGKPLD
QVVKMVRGKKGTYVTLTIKRGSQEKDIKIKRDTIHVKSVEYEKKGNVGVLTINKFCGNTS
GELKSATIKAHKQGIRHIILDLRNNPGGLLDEAVKMANIFIDKGNTVVQLEKGKDKEELK
TSNQALKQAKDMKVSILVNEGSASASEVFTGAMKDYHKAKVYGSKTFGKGIVQTTREFSD
GSLIKYTEMKWLTPDGHYIHGKGIRPDVSISTPKYQSLNVIPDNKTYHQGEKDKNVKTMK
IGLKALGYPIDNETNIFDEQLESAIKTFQQDNNLKVNGNFDKKTNDKFTEKLVEKANKKD
TVLNDLLNKLK*

Sequence 2105

Contig 0710 pos 4812 3682, is similar to (with p-value 7.0e-51) >sp:sp|P53434|YRP2_LISMO HYPOTHETICAL 41.4 KD PROTEIN IN RPO D 1'REGION (ORFA2). >gp:gp|U17284|LMU17284 3 Listeria monocy togenes major sigma factor (rpoD) gene, partial cds, and dow nstream orfA1 and orfA2 genes, complete cds. NID: g687597. $\verb|atggttggtaatgtaggattatta| \verb|attggtaatgataagttagatattacaggtattctg|$ acaacactcqactqcaccqatqatqttqttaaccaaqcaattqaacttaataccaatacc atcattqctcatcatccacttattttcaaaqqaqtaaaacqtatcqttqaaqatqqatat ggtagtataattcgtaaacttatccaaaataatatcaatcttataqcattacacactaat 10 cttgatgtaaatcctaaaggtgtcaatcgaatgttagcggatcaaataggtttagagaac atatcaatqattaatacaaataqctcatattattacaaaqttcaaacttttatacctaaa aattatattqaaqatttcaaaqacaqtttaaacqaacttqqattaqctaaaqaaqqtaat tacqaatattqtttctttgaaagtgaaggtaaagggcaatttaaaccagtaggtgatgca15 aqtccttatataqqqaaqttaqataqtatcqaatatqttqatqaaataaaacttqaqttt atqataaaaqacaatqaattagaaataactaaacgtgctattttagataatcacccatac attggacaattaaaccaaactatgactttagatgaattttctgaatatgccaaaaaacag ctcaatataccqaqcqtacqatatacaqqtcaacatqataqtccaattaaqaaaqtaqct 20 atcataggtggttcaggtataggatttgagtataaagctagccaacttggagcagatgtt tttgttactggtgatattaaacaccatgatgctttagatgctaaaatccaaaatgtaaat qaaaaatqqttatttaaatatqaaaatcaatttccaatatatqcttctgaaatcaacaca $\tt agt.gt.tt.rattttcgatgtcttcttcaaaatgctctttcgcgggatattcatcatcacat$ 25 tggttgttgttgaattcttccataatctgtttagcctctttgactaattga

Sequence 2106

MVGNVGLLIGNDKLDITGILTTLDCTDDVVNQAIELNTNTIIAHHPLIFKGVKRIVEDGY GSIIRKLIQNNINLIALHTNLDVNPKGVNRMLADQIGLENISMINTNSSYYYKVQTFIPK NYIEDFKDSLNELGLAKEGNYEYCFFESEGKGQFKPVGDASPYIGKLDSIEYVDEIKLEF MIKDNELEITKRAILDNHPYETPVFDFIKMNKESEYGLGIIGQLNQTMTLDEFSEYAKKQ LNIPSVRYTGQHDSPIKKVAIIGGSGIGFEYKASQLGADVFVTGDIKHHDALDAKIQNVN LLDINHYSEYVMKEGLKELLEKWLFKYENQFPIYASEINTSVLFSMSSSKCSFAGYSSSH WLLLNSSIICLASLTN*

35

50

30

Sequence 2107 Contig_0711_pos_2494_2901, putative peptide of unknown function

atgaaattatctatttttcatgatggtcaatttttttgtaggtgtcgttgaataccaagaa 40 ggcttcattcataaatatctaaaagttacatttggcaatgaacctagcgatgaaacagtg ttacgattcataacttttaaacttattcctttattaaatcaaacacaggtaagaagaaa cctattcaaaagcataaaaagattaatccaaaacgtttacaacgtaaaatcgctaaagaa caaaagagaccaatttaactacatttgctcaacaagcgattaaagaagaacaagagttg aataagctaaagagtaaaaaacttcagcgattagaaaaagaacgacacagacaatacaaa agaatgttaaaaaagaaaaaaagcacatgaaaaggaccaaaggtcactaa

Sequence 2108

MKLSIFHDGQFFVGVVEYQEGFIHKYLKVTFGNEPSDETVLRFITFKLIPLLNQTHGKKK PIQKHKKINPKRLQRKIAKEQKETNLTTFAQQAIKEEQELNKLKSKKLQRLEKERHRQYK RMLKRKKAHEKHKGH*

Sequence 2109 Contig_0711_pos_3571_3053, putative peptide of unknown function

55 atgttagaaacacatagattaaagctagtgaagcctaatttgagttatacagatgaactt tatcaattgcatacaaataaggtagctacaaagtatacacctaaaggtattcatcagaat aaagtagcaacccaagattttattaaaaggatggatgaggcattgggatgaatatcaattt ggttacttcattttaattatgagagataatcacgaagtagtggggatagcgggatttgag tatcqtacaattcatcaacaacagtttcttaatgcgtattatagaatctttccatcgtat

Sequence 2110

MLETHRLKLVKPNLSYTDELYQLHTNKVATKYTPKGIHQNKVATQDFIKGWMRHWDEYQF GYFILIMRDNHEVVGIAGFEYRTIHQQQFLNAYYRIFPSYTGVGLAFESMEEIARHLKKH DTITPKLIRTNQYNTNSIKLAQKLGYNYDANWDDVINKGDRCFFNLQALDNN*

10

Sequence 2111

Contig 0711 pos 703 359,

putative peptide of unknown function

atggagatgatagaagaacgtaatttatcagggcttattcaaacactaactttcaatcat cccatcattcaaattcttaaagagaacacattaaatcaacttaaaatactctctcattat ttaccagagcgacaccctgcaatggtggcaattcaatcttggtcacaatggtttactgat catgggattactgaaatccaccttgatgtaactgcacaagcgcctagatcttattacaaa ggtatttttataaaatgtcatcttaaaaatactgctcatagcgttttgacaggtggatat tatcacggttcactagaaggttttggtttaggattaacactttaa

20

50

15

Sequence 2112

MEMIEERNLSGLIQTLTFNHPIIQILKENTLNQLKILSHYLPERHPAMVAIQSWSQWFTD HGITEIHLDVTAOAPRSYYKGIFIKCHLKNTAHSVLTGGYYHGSLEGFGLGLTL*

25 Sequence 2113

Contig 0711 pos 0 334,

putative peptide of unknown function

atgttacgagttgcattagcaaagggtcgtttattaaagagttttatcgaatatttacaa caagttaatcagatagtattgcaactgtacttttaaatagacagcgacagttattgctt acagtcgacaacattgaaatgattttagttaaaggaagcgatgtgcctacttatgtagaa caaggtattgctgatgtaggaatagtgggaagtgatattctgaatggtcaaaaatataat attaataaattactcgatttgccatttggtaaatgtcattttgcgttggcggcaaagcca gaaacatctcgctataaaaaagtagcaaGTATTG

35 Sequence 2114

 ${\tt MLRVALAKGRLLKSFIEYLQQVNQIDIATVLLNRQRQLLLTVDNIEMILVKGSDVPTYVE} \\ {\tt QGIADVGIVGSDILNGQKYNINKLLDLPFGKCHFALAAKPETSRYKKVASIX} \\$

Sequence 2115

40 Contig 0712 pos 299 928,

is similar to (with p-value 1.0e-52)

>sp:sp|Q02499|KPYK_BACST PYRUVATE KINASE (EC 2.7.1.40) (PK).
>pir:pir|S29783|S29783 pyruvate kinase (EC 2.7.1.40) (versi
on 2) - Bacillus stearothermophilus >qp:qp|D13095|BACPK 3 B.

stearothermophilus phosphofructokinase and pyruvate kinase genes. NID: q285620.

atgcctttttctaaacctataattgcgcttggtgaagtaataccattttcttctgtaatt agacctatagctttttcaacatatggtactaatgtttcatcaacagaatttgtaataata actttatcagataaatctttaccttctaaatcactagcactatctgcgacaattgcatgg cctacaacagatcctctaccaacaccttggcctttagcaatctcatcacctactaagtgg attttcatcatatttgtagttcctttttctccagtaggtacaccagcagtaataattaaatt aaatctccgtttgaaactctaccagtttctactgctgttgctacagcattatttagtaaa gcatcagttgttttacgtccttctttaacgaccggatttactccccatacaattgcacat tgtctagcagttttttcgctaggtgttacagcaatgatatctgaatgtggacgatattta

55 gaaatogtacgtgctgttgaaccactttcagttgctgctacaatagcttttacatttaag tttaaggcagtatgtgcaacagaaacaccaattgcatttactaatgaagtttcaactaat ttagtacgatcacttaataattttttatag

Sequence 2116

PCT/US00/30782 WO 01/34809

MPFSKPI IALGEVI PFSSVIRPIAFSTYGTNVSSTEFVI ITLSDKSLPSKSLALSATIAW PTTDPLPTPWPLAISSPTKWIFIIFVVPFSPVGTPAVIIIKSPFETLPVSTAVATALFSK ASVVLRPSLTTGFTPHTIAHCLAVFSLGVTAMISECGRYLEIVRAVEPLSVAATIAFTFK FKAVCATETPIAFTNEVSTNLVRSLNNFL*

5

Sequence 2117 Contig_0712 pos_5629 0, is similar to (with p-value 2.0e-21)

>gp:gp|Z99125|MLCL536 19 Mycobacterium leprae cosmid L536. N ID: q2398683. >qp:qp|U00013|U00013 5 Mycobacterium leprae co smid B1496. NID: g466868. >gp:gp/Z99125/MLCL536 19 Mycobacte rium leprae cosmid L536. NID: g2398683. atqaattttaataatttqqatcaattatataqatctqtaattatqqatcattacaaaaac

cctaqaaacaaaqqtqtcttaqacaatgqctcaatqactqttgatatqaataaccctaca 15 tgtggtgatcgcatacgtttgacatttgatattgaagacggaatcattaatgatgctaagtttqaaqqaqaaqqatqttcaatttcaatgtctaqtqcatctatgatqactqaaqcaqtt aaaqqtcattcacttqqtqaaqcaatqcaaatqaqccaaqaqtttactaaaatqatqctc qqtqaaqactacqaqattacaqaaqaaatqqqaqatattqaqqcqcttcaaqqtqtctca caattcccaqctaqaattaaatqtqcaacqcttqcatqqaaaqcattaqaaaaaqqqaca 20 gtcgaaaaagaaggtaagtcagaaggtaca

Sequence 2118

MNFNNLDOLYRSVIMDHYKNPRNKGVLDNGSMTVDMNNPTCGDRIRLTFDIEDGIINDAK FEGEGCSISMSSASMMTEAVKGHSLGEAMOMSOEFTKMMLGEDYEITEEMGDIEALOGVS

25 OFPARIKCATLAWKALEKGTVEKEGKSEGT

> Sequence 2119 Contig 0712_pos_5603_5016, is similar to (with p-value 3.0e-27)

- 30 >sp:sp|P16468|MAOX BACST MALATE OXIDOREDUCTASE (NAD) (EC 1.1 .1.38) (MALIC ENZYME). >pir:pir|A33307|DEBSXS malate dehydro genase (oxaloacetate-decarboxylating) (EC 1.1.1.38) - Bacill us stearothermophilus >qp:qp|M19485|BACMAL 1 B.stearothermop hilus malic acid gene, complete cds. NID: g143164.
- atgcttgaactaattgatctacatcttctttcgtattataaacgtaaaaacttgcacgtg ctqttqaaqaqacacctaaccatttcatcaaaqqttqcqcacaqtqatqqcctqcacqaa ctqcaacaccttctaggtqtatctgtaqcggatatattaactcaagatatggtgaagaca gaagccaaacaggcaggtgcaaaggtcgtaggtacaggtcgatctgattttccaaaccaa ${\tt attaataatgtattagcatttccaggtatttttagaggtgcattggatgttgaagccact}$ 40 catattaacqaaqatatgaaaaaqgcagctgtagaagctatcgttcatttaatagacgaa

aatgagttacatcctgattactgtataccaggaccatttgataaaagagtagctccatca gtagccaaaaatgtagctaaagctgctatggaatccggtgtagcaagaattaaaattgat acacaagaaatatttgataaaactatgaaacttactgacttaaaatag

45

Sequence 2120

MLELIDEHLLSYYKRKNLHVLLKRHLTISSKVAHSDGLHELQHLLGVSVADILTQDMVKT MADDPIIFAMANPNPEINPNEAKQAGAKVVGTGRSDFPNQINNVLAFPGIFRGALDVEAT HINEDMKKAAVEAIVHLIDENELHPDYCIPGPFDKRVAPSVAKNVAKAAMESGVARIKID TOEIFDKTMKLTDLK*

50

Sequence 2121 Contig 0712 pos 2893 1970, is similar to (with p-value 0.0e+00)

>sp:sp|P00512|K6PF BACST 6-PHOSPHOFRUCTOKINASE (EC 2.7.1.11) (PHOSPHOFRUCTOKINASE) (PHOSPHOHEXOKINASE). >pir:pir|A27474| KIBSFF 6-phosphofructokinase (EC 2.7.1.11) - Bacillus stearo thermophilus >gp:gp|M15643|BACPFK 1 B.stearothermophilus 6-p hosphofructo-1-kinase gene, complete cds. NID: g143311. >gp:

qp[D13095]BACPK 2 B. stearothermophilus phosphofructokinase and pyruvate kinase genes. NID: g285620. $\verb|atgaacgctgctgttcgtgcagtgactcggacagcaatttacaataatattgaagtttat|$ ggtgtttatcaaggttaccaaggtttacttgatgatgatattcataagcttgaattgggt tcagtaggggatacaattcaacgaggaggaactttcctcttttccgcaaggtgccctcag ttcaaagaagaggatgtacgtaagaaagctattgagaatttacgtaagcgtggtatcgaa qqtttaqttqttattqqaqqaqatqqcaqctataqaqqqqcacaacqaattaqtqaqqaa tgtaaagaaattcaaacaattggtattcctggtacaattgataatgatattaatggtaca qattttacaattqqttttqatactqcattaaacactattattqaatcaqtcqataaqatt 10 agagatacggcatcaagtcacgcaagaacgtttattgttgaagttatggggcgtgattgt ggagatttagctttatgggctggattatctgtaggtgctgaaacgattgttttaccagaa gtcaatacagatattaaggatgtagctgaaaagattgaacagggtattaaaagagggaaa aaacattctatcqttatqqttqcaqaaqqttqtatqaqcqqccaaqaatqtqcaqatqaq ttaacqaaqtatattaacattqatacacqaqtttcaqtqttaqqtcacattcaacqtqqc ggtagcccatctggtgctgatcgagtattagcttctcgacttgqtqqatatqctqttqaa 15 ctattaaaacaaqqcqaqacaqctaaaqqtqttqqcattaqqaataatcaattaacctct acqccqtttqatqaaatttttqctqaaaqtqatcqcaaatttaataqtcaaatqtatqaa ttaqcaaaaqaattatcaatttaa

20 Sequence 2122
MNAAVRAVTRTAIYNNIEVYGVYQGYQGLLDDDIHKLELGSVGDTIQRGGTFLFSARCPQ
FKEEDVRKKAIENLRKRGIEGLVVIGGDGSYRGAQRISEECKEIQTIGIPGTIDNDINGT
DFTIGFDTALNTIIESVDKIRDTASSHARTFIVEVMGRDCGDLALWAGLSVGAETIVLPE
VNTDIKDVAEKIEQGIKRGKKHSIVMVAEGCMSGQECADELTKYINIDTRVSVLGHIQRG
25 GSPSGADRVLASRLGGYAVELLKQGETAKGVGIRNNQLTSTPFDEIFAESDRKFNSQMYE
LAKELSI*

Sequence 2123 Contig 0712 pos 1946 189, 30 is similar to (with p-value 0.0e+00) >sp:sp|P51181|KPYK BACLI PYRUVATE KINASE (EC 2.7.1.40) (PK). >pir:pir|JC4220|JC4220 pyruvate kinase (EC 2.7.1.40) - Baci llus licheniformis >gp:gp|D31955|BACPYK2 2 Bacillus lichenif ormis gene for pyruvate kinase, complete cds. NID: gl041098. atgagaaagactaaaattgtatgtacaataggaccagcttcagaatcagaggaaatgctc 35 qaaaaactaatgaatgcaggaatgaacgttgcgcgtttaaatttctcacatggtagtcat att ggettgttattggatactaaagggccagaaattcgtacgcacaatatgaaagatgga 40 cctgaaaaattctctgtaacatatgaaaatctaatcaatgatgtcaatattggatcatat atactattagatgatggtttagttgaacttcaagtcaaagaaattaacaaagataaaggc qaagttaaatgtqatatcttaaatactggtqaattaaaaaaataaaaaaggtgttaactta ${\tt cctggtgttaaaqttaatttacctggtatcactgataaagatgccgatgatatcagattt}$ qqtataaaqqaaaatqtaqactttataqctqcaaqttttqtaaqacqtccaaqtqatqtt ttagatatccqtcaaattcttqaaqaaqaaaaqcaqaaataacaattttccctaaaatc qaaaaccaaqaaqqtatcqataatattqaaqaaattcttqaaqtatctqatqqattaatq qtaqcacqtqqtqatatqqqtqttqaaattccaccaqaaaqcqtaccaatqqttcaaaaa gatttaattaqaaaatgtaataaattaggaaaacctgtaattactgcgactcaaatgctt gattctatgcaacgtaatccacgtgcgacacgtgcagaagcaagtgacgtagctaatgca 50 atatacqatqqtactqacqctqtaatqttatcaqqcqaaactqcaqcaqqtcaatatcct qaaqaaqctqttaaaactatqcqtaatattqcaqtttctqctqaaqcaqcqcaaqactat aaaaaattattaagtgatcgtactaaattagttgaaacttcattagtaaatgcaattqqtqtttctqttqcacatactqccttaaacttaaatqtaaaaqctattqtaqcaqcaactqaa agtggttcaacagcacgtacgatttctaaatatcgtccacattcagatatcattqctqta 55 acacctagcgaaaaaactgctagacaatgtgcaattgtatggggagtaaatccqqtcqtt aaaqaaqqacqtaaaacaactqatqctttactaaataatqctqtaqcaacaqcaqtaqaa

actggtagagtttcaaacggagatttaattattattactgctggtgtacctactggagaa aaaggaactacaaatatgatgaaaatccacttagtaggtgatgagattgctaaaggccaa qqtqttqqtaqaqqatctqttqtaggccatqcaattgtcgcagatagtgctaqtqattta

gaaggtaaagatttatctgataaagttattattacaaaattctgttgatgaaacattagta ccatatgttgaaaaagctataggtctaattacagaagaaaatggtattacttcaccaagc gcaattataggtttagaaaaaggcatacctactgttgttggtgtagaacaagcaactaaa gaaattaaaaatgatatgttagtgactttagatgcgtcacaaggtaaagtgtttgaaggt tatgctaacgtcctttaa

Sequence 2124

10

15

MRKTKIVCTIGPASESEEMLEKLMNAGMNVARLNFSHGSHEEHKARIDTIRKVAKRLNKT
IGLLLDTKGPEIRTHNMKDGLIVLEKGKEVIVSMNEVEGTPEKFSVTYENLINDVNIGSY
ILLDDGLVELQVKEINKDKGEVKCDILNTGELKNKKGVNLPGVKVNLPGITDKDADDIRF
GIKENVDFIAASFVRRPSDVLDIRQILEEEKAEITIFPKIENQEGIDNIEEILEVSDGLM
VARGDMGVEIPPESVPMVQKDLIRKCNKLGKPVITATQMLDSMQRNPRATRAEASDVANA
IYDGTDAVMLSGETAAGQYPEEAVKTMRNIAVSAEAAQDYKKLLSDRTKLVETSLVNAIG
VSVAHTALNLNVKAIVAATESGSTARTISKYRPHSDIIAVTPSEKTARQCAIVWGVNPVV
KEGRKTTDALLNNAVATAVETGRVSNGDLIIITAGVPTGEKGTTNMMKIHLVGDEIAKGQ
GVGRGSVVGHAIVADSASDLEGKDLSDKVIITNSVDETLVPYVEKAIGLITEENGITSPS
AIIGLEKGIPTVVGVEQATKEIKNDMLVTLDASQGKVFEGYANVL*

Sequence 2125

- Contig_0714_pos_181_783,
 is similar to (with p-value 2.0e-33)
 >gp:gp|D50453|D50453_106 Bacillus subtilis DNA for 25-36 deg
 ree region containing the amyE-srfA region, complete cds. NI
 D: g1805369.
- atgettecaaagetgtttaegttggtaaagatttatataaaaggtaagteataeetteet
 ttegtaaategatetgetgtageaggtattttaacaaetggtgteatgegeaeettattg
 tttttagetgtaetaggtgttgttgtaaetggegttaegettagtteagaaaateeaeea
 gcateagttttecaacatgeattaggteetataggtaaaaatatttttggegtagtaata
 tttgeageageaatgteeteagtaattggttetgeatataeaagegeaaeatttttaaaa
 30 acaetaeaeaaategttaeteaataaaaataatettategttattaeatttattgtaatt
 teaaettttgttteettatttattggtaaaeeggtgagtttaettataatagetggtgeg
 attaatggttggattetaeeaateaeattaggtgeaatteteattgeaagtaggaaaaaa
 tetategttggtaattaeeaaeeeeaaeatggatgettgtttttggtattatageegta
 attgteacaataatgaetggtatetttteattaeaagatttageaagtetttggaaaggt
 taa

Sequence 2126

MLPKLFTLVKIYIKGKSYLPFVNRSAVAGILTTGVMRTLLFLAVLGVVVTGVTLSSENPP ASVFQHALGPIGKNIFGVVIFAAAMSSVIGSAYTSATFLKTLHKSLLNKNNLIVITFIVI STFVFLFIGKPVSLLIIAGAINGWILPITLGAILIASRKKSIVGNYQHPTWMLVFGIIAV IVTIMTGIFSLODLASLWKG*

Sequence 2127

55

Contig_0714_pos_1712_2215,

- is similar to (with p-value 4.0e-46)
 >sp:sp|P54452|YQEG_BACSU HYPOTHETICAL 20.1 KD PROTEIN IN NUC
 B-AROD INTERGENIC REGION. >gp:gp|D84432|BACJH642_91 Bacillus
 subtilis DNA, 283 Kb region containing skin element. NID: g
 2627063. >gp:gp|Z99117|BSUB0014_48 Bacillus subtilis corplet
 e genome (section 14 of 21): from 2599451 to 2812870. NID: g
 2634966.

tatattaaatgggaggaaaattga

Sequence 2128

MPNAYVKSIFEIDIEKLADSGVKGIITDLDNTLVGWDVKEPTKGVKSWFAKAKDLGITVT

VSNNNKSRVSSFSSNLGVDYIFKARKPMGKAFKMAIKKMKIQPRETVVVGDQMLTDVFG
GNCNGLYTIMVVPVKRTDGLITKFNRLIERRLLNHFRKKGYIKWEEN*

Sequence 2129

Contig 0714 pos_2822_3316,

is similar to (with p-value 6.0e-39)
>sp:sp|P54453|YQEH_BACSU HYPOTHETICAL 41.0 KD PROTEIN IN NUC
B-AROD INTERGENIC REGION. >gp:gp|D84432|BACJH642_92 Bacillus
subtilis DNA, 283 Kb region containing skin element. NID: g
2627063. >qp:qp|Z99117|BSUB0014 47 Bacillus subtilis complet

15 e genome (section 14 of 21): from 2599451 to 2812870. NID: g 2634966.

agactggaaactggtaaaactaaacgtgacatcatgatatctggtttaggattcataact attgatgctggtgcaaaagtgatagttcgtgttccaaaacatgtagatgttattttaaga

25 aattcaattctttaa

20

30

Sequence 2130

MIDIPLDEKSFMFDTPGIIQSHQMTNYVYENELKIIIPKNEIKQRVYQLNEKQTLFFGGL ARIDYVSGGKRPLVCFFSNDLNIHRTKTEKANDLWKSQLGALLSPPQDAQQFNLNDVKAV RLETGKTKRDIMISGLGFITIDAGAKVIVRVPKHVDVILRNSIL*

Sequence 2131

Contig_0714_pos_6740_7852,

is similar to (with p-value 0.0e+00)

- 45 ttcatcgctattttacaagcgaacatattattatcatgatttgctgtgtacttttaggg
 tctttacttggtttcttattctataactttcacccagcgaaaattttcctaggtgatagt
 ggtgcattaatgataggatttattatcggtttcttatccttactcggctttaagaatatc
 acatttattgcattattctttcctatagttatattagcggtgccatttattgatacatta
 tttgcaatgattcgtcgaatgaaaaaagggcaacatataatgcaagcggacaagtcacat

Sequence 2132

VRYNLFNEGELMYTLLLIAFTMIVSLIITPIIIVISKKLDLVDRPNFRKVHTKPISVMGG TVILFSFLIGIWLGHPIEREVKPLILGAITMYMVGLIDDIYDLRPYLKLAGQIVAALIVT FYGITIDFISLPIGPTIHFGIFSIPITVIWIVAITNAINLIDGLDGLASGVSALALMTIG

PCT/US00/30782 WO 01/34809

FIAILOANIFIIMICCVLLGSLLGFLFYNFHPAKIFLGDSGALMIGFIIGFLSLLGFKNI TFIALFFPIVILAVPFIDTLFAMIRRMKKGOHIMOADKSHLHHKLLALGYTHRQTVLLIY SIAIMFSLSSVILYLSQPLGALMMFILIVFTIELIVEFTGLIDDNYRPILNLITKKGNGK OHHYDEHHRS*

30

50

Sequence 2133 Contig_0714_pos_8431 7913, is similar to (with p-value 7.0e-41) >qp:qp|Z99122|BSUB0019 48 Bacillus subtilis complete genome 10 (section 19 of 21): from 3597091 to 3809700. NID: q2636029. >qp:qp|U56901|BSU56901 2 Bacillus subtilis putative transcri ptional regulator (yvhJ), Ycr59c/YigZ homolog (yvhK), histid ine kinase (degS), transcriptional regulator of degradation e nzyme (degU), (degV), (comFA), (comFB), (comFC), flagellar p rotein (yviB), negative regulator of flagellin (flgM), flage llar protein (yviC), flagellar-hook associated protein 1 (fl qK), flagellar-hook associated protein 3 (flqL), (yviE), tra nsmembrane protein (yviF), (csrA), flagellin (hag), flagella r protein (yviH), flagellar hook-associated protein 2 (fliD) , flagellar protein (flis), flagellar protein (fliT), sigma-20 54 modulator homolog (yviI), and (secA) genes, complete cds. NID: q1762326. gtgatccgttcgatacataaagatgcaactcataattgttcagcctatactgtcggacca qaqatqaatattcaaaaqqcaaacqacqatqqcqaaccaaqtqqaacaqctqqcatccca 25 atgcttqaaatactqaaaaaacaaqaqatacacaatqtttqtqtcqtcqtqacacqctac ttcggtggtatcaagttaggtgcaggcggtcttattagagcatatagcggcgccgtgcgtgatgtgatatatgatataggtagagtcgaactaagagaagctattccagtaaccgttacg

Sequence 2134

VIRSIHKDATHNCSAYTVGPEMNIQKANDDGEPSGTAGIPMLEILKKQEIHNVCVVVTRY 35 FGGIKLGAGGLIRAYSGAVRDVIYDIGRVELREAIPVTVTLDYDQTGKFEYELASTTFLL REOFYTDKVSYOIDVVKNEYDAFIDFLNRITSGNYDLKOEDLKLLPFDIETN*

ttagattatgatcagacaggtaaatttgaatatgaacttgcctctactacattcttatta agagaacaattttataccgataaagtaagttatcaaattgacgtagtaaaaaaatgaatat

gatgcttttatagactttttaaatcgaattacttctggaaattatgatttgaaacaagaa

Sequence 2135

Contig 0714 pos 6433 5357,

gaccttaaactattaccttttgatattgaaaccaattaa

is similar to (with p-value 2.0e-25) >sp:sp|P54595|YHCK BACSU HYPOTHETICAL 40.7 KD PROTEIN IN CSP B-GLPP INTERGENIC REGION. >gp:gp|X96983|BS75DGREG 12 B.subti lis chromosomal DNA (region 75 degrees: cspB upstream of qlp PFKD operon). NID: g1239975. >gp:gp|Z99108|BSUB0005 180 Baci

llus subtilis complete genome (section 5 of 21): from 802821 to 1011250. NID: g2633055. atggaaatgtttqaagctatcatatataacatatctgtcatggtggcaggtatatattta

tttcataggttacaatattctqaaaataaaaqaatqattttttctaaaqaatatqtaaca gtactaatgacattcgtttctttacttttagcggcataccctatcccatttcaaaacgaa tacctcgtccatttaacatttgtacctcttttgtttttagqacqttataccaacatqata tatacactcacqqctqcttttatcqtatctttaqtcqatqtatttatctttqqaaactca attable.tgqtattacattaatcqttattqcaqqtattqtcaqtqcaqtqqqaccattc $\verb|ttaaagcaaaacgatatcatttctttacttattttaaatttgattagcattatcattttg|$ $\verb|ttatttttagcattattaagccctatttatgaactcgtagagattttagtgcttatccct|\\$ atttcatttattattacaattgcttcagcaataacattcgttgatatatggcactttttc tctttagtcaatcgttatgaaaatgaagataaatacgattatcttacaggtctaggtaatgtgaaagaatttgatagacacttaaatgaggtctcaagtaaagctgaagaaaagaaacaa agtttagccttacttctcattgatattgatqqctttaaaqatqtaaacqatcattattca

caccaatcaggagatgctqttctcaaacaaatgtctcaactattaaaaaactatgtccca

aaccagttcaaaatatttagaaacggtggcgaagaattttctgttgtaataagagattac acactagatcaaagcgtgaaattagcagaaaatattcgaagtggtgttgaaaaatcttct ttccacctaccaaacaaagaagtaatcaagctatcagtttcaattggtgtaggatactta ac'.zagaagatcgtaaatctcaacgtaaagtatttaaagatgctgatgacatgg'acat gtggctaaaagtgaaqqaaqaaataaagtcatqtttaatcctattgtcaaattataa

Sequence 2136

MEMFEAIIYNISVMVAGIYLFHRLQYSENKRMIFSKEYVTVLMTFVSLLLAAYPIPFQNE
YLVHLTFVPLLFLGRYTNMIYTLTAAFIVSLVDVFIFGNSIIYGITLIVIAGIVSAVGPF
LKQNDIISLLILNLISIIILLFLALLSPIYELVEILVLIPISFIITIASAITFVDIWHFF
SLVNRYENEDKYDYLTGLGNVKEFDRHLNEVSSKAEEKKQSLALLLIDIDGFKDVNDHYS
HQSGDAVLKQMSQLLKNYVPNQFKIFRNGGEEFSVVIRDYTLDQSVKLAENIRSGVEKSS
FHLPNKEVIKLSVSIGVGYLTQEDRKSQRKVFKDADDMVHVAKSEGRNKVMFNPIVKL*

15 Sequence 2137

Contig 0714 pos 5051 4662,

putative peptide of unknown function

25

10

Sequence 2138

MNRIAHSYGLHDTYSFVTSTAIIFSLNDRTSTRLIRIRERTTDLEKIALTNSLSRKISSK QLTIDEAKSELLQLKRASLQYSFLTNLIAAFVACGFFLFMFGGVASDAWIACLAGGIAFL TFSFVHFSI* £ 1

30

Sequence 2139

Contig_0714_pos_2877_2557,

is similar to (with p-value 5.0e-30)

- >sp:sp|P54453|YQEH_BACSU HYPOTHETICAL 41.0 KD PROTEIN IN NUC B-AROD INTERGENIC REGION. >gp:gp|D84432|BACJH642_92 Bacillus subtilis DNA, 283 Kb region containing skin element. NID: g 2627063. >gp:gp|Z99117|BSUB0014_47 Bacillus subtilis complet e genome (section 14 of 21): from 2599451 to 2812870. NID: g 2634966.

45 cattettttacacgtcgatga

Sequence 2140

MIPGVSNINDFSSNGISIISKVVPGKRDVVTTSFSPTLCSINLLINVDFPTFVVPTMYTS SLFLTWFIDCNNSSIPQPLFAEIRTTSSASNPYLRADFLNHSFTRR*

50

Sequence 2141

Contig_0714_pos_644_213,

is similar to (with p-value 1.0e-21)

>gp:gp|D50453|D50453_106 Bacillus subtilis DNA for 25-36 deg
ree region containing the amyE-srfA region, complete cds. NI
D: q1805369.

atgagaattgcacctaatgtgattggtagaatccaaccattaatcgcaccagctattata agtaaactcaccggtttaccaataaataagaaaacaaaagttgaaattacaataaatgta ataacgataagattatttttattgagtaacgatttgtgtagtgtttttaaaaatgttgcg

Sequence 2142
MRIAPNVIGRIQPLIAPAIISKLTGLPINKKTKVEITINVITIRLFLLSNDLCSVFKNVA
LVYAEPITEDIAAANITTPKIFLPIGPNACWKTDAGGFSELSVTPVTTTPSTAKNNKVRM
10 TPVVKIPATADRFTKGRYDLPFI*

Sequence 2143 Contig_0715_pos_1038_1508, is similar to (with p-value 4.0e-35)

- 15 >sp::sp!Q02134 | HIS7_LACLA IMIDAZOLEGLYCEROL-PHOSPHATE DERYDRA
 TASE (EC 4.2.1.19) (IGPD). >pir:pir|G45734 | G45734 | HisB + Lac
 tococcus lactis subsp. lactis >gp:gp|U92974|LLU92974_6 Lacto
 coccus lactis unknown gene, partial cds, and HisC (hisC), un
 known, HisG (hisG), unknown, HisB (hisB), unknown, HisH (his
- h), HisA (hisA), HisF (hisF), HisIE (hisIE), unknown, unknown, LeuA (leuA), LeuB (leuB), LeuC (leuC), LeuD (leuD), unknown, IlvD (ilvD), IlvB (ilvB), IlvN, IlvC (ilvC), IlvA (ilvA), AldB (aldB) and aldR (aldR) genes, complete cds. NID: g256 5137.
- atgttaacgctatttacttttcatagtggattaactttatctattgaggccactggagat acgtatgttgatgatcatcatataactgaagatataggtatagttattggacaattactt cttgaattaataaagactcaacaaagttttacaagatatggttgctcatatgtacccatg gatgaggcgcttgctcgaacagtagtggacattagtggtcgtccatatttctcatttaat agcaagttgaggcgctcaaaaggtaggaacttttgacactgaactagtgaagaattttt
- 30 agagcattgataattaatgcgcgattaaccgttcacattgacttattaagaggtggaaat acacatcatgagattgaggcaatatttaaatcttttgcaagagcattaaagatttcttt gcacaaaatgaagatggacgtattccatcgtctaaaggagtaattgaatga

Sequence 2144

5

35 MLTLFTFESGLTLSIEATGDTYVDDHHITEDIGIVIGQLLLELIKTQQSFTRYGCSYVPM DEALARTVVDISGRPYFSFNSKLSAQKVGTFDTELVEEFFRALIINARLTVHIDLLRGGN THHEIEAIFKSFARALKISLAONEDGRIPSSKGVIE*

Sequence 2145

40 Contig_0715_pos_1607_1990,
 is similar to (with p-value 1.0e-21)
>sp:sp|Q02132|HIS5 LACLA AMIDOTRANSFERASE HISH (EC 2.4.2.-).

>pir:pir|I45734|I45734 HisH - Lactococcus lactis subsp. lactis >gp:gp|U92974|LLU92974_8 Lactococcus lactis unknown gene

45 , partial cds, and HisC (hisC), unknown, HisG (hisG), unknow
n, HisB (hisB), unknown, HisH (hish), HisA (hisA), HisF (his
F), HisIE (hisIE), unknown, unknown, LeuA (leuA), LeuB (leuB
), LeuC (leuC), LeuD (leuD), unknown, IlvD (ilvD), IlvB (ilv
B), IlvN, IlvC (ilvC), IlvA (ilvA), AldB (aldB) and aldR (al

55 ggttggaatgaattaaagagtacacatcccttactgcaaagtgatgtgtattttgttcat tcatatcaagcagaaatgtcagaatatgtagtagcttatgctgactatggtacaaagatt ccgggagtcattcaataccgatga

Sequence 2146

VQKAEAIVLPGVGHFQDAMHSIEEKSIKDMLKNIHDKPIIGICLGMQLLFQHSAEGDVSG LELVPGNIVPIQSSHPIPHLGWNELKSTHPLLQSDVYFVHSYQAEMSEYVVAYADYGTKI PGVIOYR*

- Sequence 2147
 Contig_0715_pos_2067_2615,
 is similar to (with p-value 9.0e-31)
 >sp:sp|P54471|YQFN_BACSU HYPOTHETICAL 23.7 KD PROTEIN IN CCC
 A-SODA INTERGENIC REGION. >gp:gp|D84432|BACJH642_139 Bacillu
 s subtilis DNA, 283 Kb region containing skin element. NID:
 g2627063. >gp:gp|Z99116|BSUB0013_228 Bacillus subtilis compl
 ete genome (section 13 of 21): from 2395261 to 2613730. NID:
 g2634723.
- 25 Sequence 2148
 VIQGPYKAAKRNIANYELNQQVDVRLGDGLSVINTEDQIDNITVCGMGGPLIAKILNDGK
 DKLVMHPKLILQSNIQTQALRQTLNKLSYEIVDERIIEEKGHIYEIVVAEFNNNLVKLNI
 LQEKFGPFLLRECNNIFQKKWQRELEALRDIKSQLNSTSHHERLKEIEDEINLIQEVLIN
 EN*

30
Sequence 2149
Contig_0715_pos_2623_3705,
is similar to (with p-value.2.0e-54)

>sp:sp|P53434|YRP2_LISMO HYPOTHETICAL 41.4 KD PROTEIN IN RPO 35 D 3'REGION (ORFA2). >gp:gp|U17284|LMU17284 3 Listeria monocy togenes major sigma factor (rpoD) gene, partial cds, and dow nstream orfAl and orfA2 genes, complete cds. NID: g687597. atggaagttttaaataatcacgttccatttcatcaagctgaatcatgggataatgtagga $\verb|ttattaattggtaatgataagttagatattacaggtattctgacaacactcgactgcacc|\\$ gatgatgttgttaaccaagcaattgaacttaataccaataccatcattgctcatcatcca cttattttcaaaggagtaaaacgtatcgttgaagatggatatggtagtataattcqtaaa cttatccaaaataatatcaatcttataqcattacacactaatcttqatqtaaatcctaaa qqtqtcaatcqaatqttaqcqqatcaaataqqtttaqaqaacatatcaatqattaataca aataqctcatattattacaaaqttcaaacttttatacctaaaaattatattqaaqatttc 45 ${\tt aaagacagtttaaacgaacttggattagctaaagaaggtaattacgaatattgtttcttt}$ gaaagtgaaggtaaagggcaatttaaaccagtaggtgatgcaagtccttatatagggaag ttagatagtatcgaatatgttgatgaaataaaacttqagtttatqataaaaqacaatgaa ttagaaataactaaacgtqctattttaqataatcacccatacqaaacaccaqtttttqat

Sequence 2150 MEVLNNHVPFHQAESWDNVGLLIGNDKLDITGILTTLDCTDDVVNQAIELNTNTIIAHHP

LIFKGVKRIVEDGYGSIIRKLIQNNINLIALHTNLDVNPKGVNRMLADQIGLENISMINT NSSYYYKVOTFIPKNYIEDFKDSLNELGLAKEGNYEYCFFESEGKGOFKPVGDASPYIGK LDSIEYVDEIKLEFMIKDNELEITKRAILDNHPYETPVFDFIKMNKESEYGLGIIGOLNO TMTLDEFSEYAKKOLNIPSVRYTGQHDSPIKKVAIIGGSGIGFEYKASQLGADVFVTGDI KHHDALDAKIQNVNLLDINHYSEYVMKEGLKELLEKWLFKYENQFPIYASEINTDPFKYK

Sequence 2151

Contig 0715 pos 3740 4072,

10 putative peptide of unknown function atgtcaaaacatccatttgaacactttaatttagatgagaatttaattgaagctgttaaa aatctcaattttgaaaaaccgactgaaatccaaaatagaatcataccgagaattcttaaa qqaacaaatttaataqqacaatctcaaactqqaactqqaaaqtcacacqcttttctttta atattgatggagatcgttcttttctgaagcagtacaattggacatacaagtacctggtg 15 cttttcctaaatttqqaactacaqatqqaacqattacqaaaaatqttqtcattqaaaaat

gttattttggctgttcagatcatcctaaaatga

Sequence 2152

MSKHPFEHFNLDENLIEAVKNLNFEKPTEIQNRIIPRILKGTNLIGQSQTGTGKSHAFLL 20 ILMEIVLFLKQYNWTYKYLVLFLNLELQMERLRKMLSLKNVILAVQIILK*

Sequence 2153

Contig 0717 pos 4083 5096,

putative peptide of unknown function

25 atggaacgattttgttgtgtaaatcaaattaactatattcaaatgaatccgttagaagcc aaatttaaaacgagcgctctaagatcatggaaaactgatcaggcagatgctcataagctt qcttqtttaggaccgacgcttaaacaaacagacaacttacctatacatgagttaatattc tttgaattaagagaacgcgtccgttttcatctagaaatcgagaatgaacaaaatcgactt aaatttcagatccttgaattactccatcaaacattccctggtttagaaagattatttagt 30 agtcgatattcaatcattgcactcaacatcgcagaaatctttactcatccagacatggtt cttgatatcqacaaqqaqqtactqattacacatatattcaattctacaqataaqqqaatq $\verb|tcaatggataaagctacaaaatatgcacttcaattaagggtgattgctcaagaaagctat|$ aaacaatctattcatcatatcaaacaattagatgatgccatgattcaattagcacaacaa 35 ctcgattattttgaaaatattcattcgatacctggtattggtaagctaagcacagctatg attattgggaagattggtgatattaagcgatttaaatcaaataaacaactcaatgctttt gttggcattgatatcaaacgatatcaatcaggtcatacactgtagagataccatgaac aagcctcgtaataaaaaaqcqaqaaaacttttattttqqqtqattatqaatataataaqa gggcagcatcattatgacaatcatgtcgtcgattattactacaaactaagaaagcagcct 40 aatgagaaacctcataagactgccatcattgcttqtataaatcqattattaaaaacaatt

Sequence 2154

MERFCCVNQINYIQMNPLEAKFKTSALRSWKTDQADAHKLACLGPTLKOTDNLPIHELIF 45 FELRERVRFHLEIENEQNRLKFQILELLHQTFPGLERLFSSRYSIIALNIAEIFTHPDMV LDIDKEVLITHIFNSTDKGMSMDKATKYALQLRVIAQESYPNVDRHSFLVEKLRLLIOOL KQSIHHIKQLDDAMIQLAQQLDYFENIHSIPGIGKLSTAMIIGKIGDIKRFKSNKQLNAF VGIDIKRYQSGHTHCRDTINKRGNKKARKLLFWVIMNIIRGOHHYDNHVVDYYYKLRKOP NEKPHKTAIIACINRLLKTIHYLVMNYKLYDYQMSPH*

cattatcttgtaatgaattataaattgtacgattatcaaatgtcaccacattag

50

Sequence 2155 Contig 0717 pos 8693 0, is similar to (with p-value 1.0e-49)

>sp:sp|P42423|YXDL BACSU HYPOTHETICAL ABC TRANSPORTER ATP-BI 55 NDING PROTEIN IN IDH 3'REGION. >qp:qp|D14399|BACIOLO 13 Baci llus subtilis 15 kb chromosome segment contains the iol oper on. NID: g709980. >gp:gp|Z99124|BSUB0021_68 Bacillus subtili s complete genome (section 21 of 21): from 3999281 to 421481 4. NID: g2636442. >qp:qp|D45912|D45912 2 Bacillus subtilis q

enome sequence between the iol and hut operon, partial and c omplete cds. NID: g1408482. atgggtccttctggatcaggtaaaacgactttactcaatgtgttaagttcaatagatact attcagaaggaactgtggaagttgaaggcaaagaaattaataaactgagccacaaagaa gtggcaaattttcgaaaacaacatctcggttttatttttcaagattatagcgttttaccc acattaacagtaaaagaaaatattatgctaccactctcagtacaaaaattccataaatat gaaatggaacaaaattataaagaagtggctgaggcattaggtatttataaacctgggaaat aaatatccaagtgaaatttctggcggtcagcaacaacgtacggcggcagcccgggcattc gtrcataaaccaacgattattttcgcagatgaacctactggcgcattagattctaaaagt gctcaagatttgttacaccgtctagaagatatgaataaacaatttaattcaaccattatg atggtgacacatgatccttcagccgctagttacgctgagagagtcattatgttgaaagac ggtgatatacactcagaaatctaccagggtaacgattcaaaacaacattttaccaagaa attatgaaacttcc

15 Sequence 2156

MGPSGSGKTTLLNVLSSIDTISEGTVEVEGKEINKLSHKEVANFRKQHLGFIFQDYSVLP TLTVKENIMLPLSVQKFHKYEMEQNYKEVAEALGIYNLGNKYPSEISGGQQQRTAAARAF VHKPTIIFADEPTGALDSKSAQDLLHRLEDMNKQFNSTIMMVTHDPSAASYAERVIMLKD GDIHSEIYQGNDSKQTFYQEIMKLP

20

Sequence 2157
Contig_0717_pos_8309_8007,
putative peptide of unknown function

30

50

55

Sequence 2158
MEKRSINMKKVFMIISILTITVTLSACGGSGKQKEPSKESQKSDKYDYVYYEILNDGDSE
TPNVEIKYKDKKGKSHIEKADLDHVYEHILGDGNKKPYMI*

35 Sequence 2159

Contig_0717_pos_3267_2203, is similar to (with p-value 0.0e+00)

>sp:sp|P38021|OAT_BACSU ORNITHINE AMINOTRANSFERASE (EC 2.6.1 .13) (ORNITHINE--OXO-ACID AMINOTRANSFERASE). >pir:pir|B53370 |B53370 orthinine aminotransferase - Bacillus subtilis >gp:gp|D78193|BACGNTZA_27 Bacillus subtilis 36kb sequence between gntZ and trnY genes encoding 34 ORFs. NID: g1064780. >gp:gp|X81802|BSROCDEF_1 B.subtilis rocD, rocE and rocF genes. NID: g550310. >gp:gp|Z99124|BSUB0021 139 Bacillus subtilis comp

: g550310. >gp:gp[299124|BSUBU021_139 Bacillus subtilis comp 45 lete genome (section 21 of 21): from 3999281 to 4214814. NID : g2636442.

atggatatgettteggcetacteggeagtgaateaaggteategacaceaagaattatt
caagcattgaaagateaagcagataaagteactttagtateaegtgetttteatagtgat
aattegggteaatggtatgagaaaatatgtaaactegeaggtaaagacaaagcattgeet
atgaatacgggagcagaggcggttgaaacagetttaaaagctgetegtegtegttgggettat
gatgttaagggtattgagcegaacaaagetgaaattategettttaatggtaattteeat
ggacgtacgatggeaceagtateattgtetteagaagetgagtateaacgaggetatggt
ccattgttagatggetttegaaaagttgagtttggtgacgttaateaactaaaagcagca
attaataaaaatacagcagcaattttagtagaacetatacagggagaagcagggattaac
gtaccaccagaaggatatttgaaaacaattagagaattatgtgatgaacatcaaatttta
tttattgetgatgaaatteaagcaggattaattttagtaggacgttcaggaaaattatttgcaacggat
tgggatcatgtaaaaccggatgtttatattttaggaaaagcgttaggtggaggggtattt
cctateteggtagttettgcagataatgaggtattagatgtatttactcetggetcacat
ggttetacatttggtggaaatccactagcgagtgcagttetattgcagctatagatgte

attailtgacgaggatttacctggtcgttcattagaattaggagaatattttaagtelgaa ttgaaalaaattgagcatccatctattaaagaagttaggggacgaggattatttalcggt attgaattacatgaaagtgccagaccatattgtgaagctttgaaagaacaaggattatta tgtaaagaaactcacgacaccgttattagatttgcacctccattagtgataacgaaagaa qaqttaqacatggctttagagaagattaagagtgtatttgcatag

Sequence 2160
MDMLSAYSAVNQGHRHPRIIQALKDQADKVTLVSRAFHSDNLGQWYEKICKLAGKDKALP
MNTGAEAVETALKAARRWAYDVKGIEPNKAEIIAFNGNFHGRTMAPVSLSSEAEYQRGYG
PLLDGFRKVEFGDVNQLKAAINKNTAAILVEPIQGEAGINVPPEGYLKTIRELCDEHQIL
FIADEIQAGLGRSGKLFATDWDHVKPDVYILGKALGGGVFPISVVLADNEVLDVFTPGSH
GSTFGGNPLASAVSIAAIDVIIDEDLPGRSLELGEYFKSELKKIEHPSIKEVRGRGLFIG
IELHESARPYCEALKEQGLLCKETHDTVIRFAPPLVITKEELDMALEKIKSVFA*

15 Sequence 2161 Contig 0717 pos 1974 850, is similar to (with p-value 0.0e+00) >sp:sp|P50735|YPCA BACSU HYPOTHETICAL 46.7 KD OXIDOREDUCTASE IN RECO-CMK INTERGENIC REGION (EC 1.4.1.-). >qp:qp|Z99115|B SUR0012 236 Bacillus subtilis complete genome (section 12 of 21): from 2195541 to 2409220. NID: q2634478. >qp:qp|Z99116| BSUB0013 8 Bacillus subtilis complete genome (section 13 of 21): from 2395261 to 2613730. NID: g2634723. >gp:gp|L47648|B ACSERA 11 Bacillus subtilis phosphoglycerate dehydrogenase (25 serA), ypaA, ferredoxin (fer), ypbB, recS, ypbD, ypbE, ypbF, ypbG, ypbH, glutamate dehydrogenase (ypcA), ypdA, ypdB, ypd C, spore cortex lytic enzyme (sleB), ypeB, ypfA, ypfB, cytid ine monophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC , NAD+ dependent glycerol-3-phosphate dehydrogenase (glyc), 30 yphE and yphF genes, complete cds. NID: gl146195. >gp:gp|L47 648|BACSERA 11 Bacillus subtilis phosphoglycerate dehydrogen ase (serA), ypaA, ferredoxin (fer), ypbB, recS, ypbD, ypbE, ypbF, ypbG, ypbH, glutamate dehydrogenase (ypcA), ypdA, ypdB , ypdC, spore cortex lytic enzyme (sleB), ypeB, ypfA, ypfB, cytidine monophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate dehydrogenase (gl yc), yphE and yphF genes, complete cds. NID: g1146195. gtgcgcattccagtacgaatggacgatgggacagttaaaacatttactggataccgtgca gaagaagaagtgaaggcattatcaatgtggatgactttaaaatgtggcattgttaatttta $\verb|ccttatcutgggggtaaaggcggtattgtttgtgatccacgtcaaatgagtatacacgaa|\\$ $\tt gttgagcgtctatctcgagggtatgtaagagctatatctcaatttgttgggcctaacaaa$ gatattccaqcaccaqacqtttttacaaactctcaaattatgqcttggatgatgag tataqtqcattaqataaatttaattcqccaqqttttataacaqqcaaacctattqtatta gqtqqatctcaaqqacqtqatcqctctacaqctttagqtgtaqtcattgcaattgaacaa gcggcaaaacgtcgtggcatggatattaaagatgccaaaattgtgattcaaggtttcggc aatqcaqqtaqtttcttaqctaaattcttatacqatttaqqtqctaaaqtaqttggtata agtgatqcatatqqaqccttacatqaccctaatgqacttqatataqattatttattagat $\verb|cgacgtgatagcttcggtacagttacaaatctattcgaagatacaatttctaacaaagaa|\\$ $\verb|ttattcgaattggattgtgacatccttgttcctgctgcaatttccaatcaaatcactgaa|\\$ gataatgcgcacgatattaaagcaagcattgtagttgaagctgctaatggccctacgacg cctgaaqcaacacqtattttaacaqaaaqaqatatattactaqtqccggatqtacttqca agtqcaqqaqqtqtactqtatcttatttcqaqtqqqtacaaaataatcaaqqttattat tqqactqaaqaaqtcaatqacaaactacqtqaqaaqttaqtaacaqcatttqatacq 55 atttatgaattqtcacaaaatagaaaaattgatatqagattaqcaqcatatatagtagqt

Sequence 2162 VRIPVRMDDGTVKTFTGYRAQHNDAVGPTKGGVRFHPEVDEEEVKALSMWMTLKCGIVNL

attaaacgtactgctgaagcagcaagatatagaggttgggcataa

PYGGGKGGIVCDPRQMSIHEVERLSRGYVRAISQFVGPNKDIPAPDVFTNSQIMAWMMDE YSALDKFNSPGFITGKPIVLGGSQGRDRSTALGVVIAIEQAAKRGMDIKDAKIVIQGFG NAGSFLAKFLYDLGAKVVGISDAYGALHDPNGLDIDYLLDRRDSFGTVTNLFEDTISNKE LFELDCDILVPAAISNQITEDNAHDIKASIVVEAANGPTTPEATRILTERDILLVPDVLA SAGGVTVSYFEWVQNNQGYYWTEEEVNDKLREKLVTAFDTIYELSQNRKIDMRLAAYIVG IKRTAEAARYRGWA*

Sequence 2163

Contig 0718 pos 4955_5407,

gttactttagaaaatatagacacttctatttaa

- 20 Sequence 2164
 MYDELEVNKSRFKNCNFNEGIFKNIEAICNCKFTTCGFNNCIFEDVHFYKNQFKDSTFVN
 TPFDQSVFNSTLFQNAMFDSNLIRSVKWTDIIFKNVSFKNVEIEGTTFKDVKFKNCEFKN
 VIITNSTMSOKLMNELOKODVTLENIDTSI*
- caagetgtattgttattacattettttacgggaactgtacgtgatgtaaaacatttagca
 caacagttgaatgaagagggatttacttgttacgtgcetagttatecaggccacggtttg
 ccacttaaggaatttacccaacacatattaatgattggtgggaacaagttacagcagca
 tatcaatttttaagaaatgcaggatacagtagaattaatgtgacaggcgtatcattaggc
 ggattatttactttaaggttagetgaacattttgatttagaacgtatagetgtgatgtca
 gccccacataaaaagcgtgaaagcgagattgcgtggcgtettgaaaggtatgggcatcga
 atgaatgaaattttgagtttaagcgaagaagaggtcgtcaccaaatggaaaccatettg
 tettatgataaagaaattgaagtgtttcaaggtgtaattgatgaaattatggettatett
 gcaaatattacagtaccagtgaatattatgtatggcgaagaagatgacccattatatget
 caaagtgcgcaatacatttatgataatgtaaatagcaacaggtagaacaatetatt
 gaaaaaagcggtcatettatgacgtatggcgatcatgcatacagagtagaacaatctatt

45 attcaatttttcagtaaataa

Sequence 2166

VNVKMKVKSPQSIYLKGHRQQAVLLLHSFTGTVRDVKHLAQQLNEEGFTCYVPSYPGHGL
PLKEFTQHNINDWWEQVTAAYQFLRNAGYSRINVTGVSLGGLFTLRLAEHFDLERIAVMS

APHKKRESEIAWRLERYGHRMNEILSLSEEERRHQMETILSYDKEIEVFQGVIDEIMAYL
ANITVPVNIMYGEEDDPLYAQSAQYIYDNVNSQDKELLKFEKSGHLMTYGDHAYRVEQSI
IOFFEK*

Sequence 2167

Contig_0718_pos_6737_5586,
putative peptide of unknown function
atggaatttacggtaggtaaaatgggtcgtacatatacaacgcaaatatataagaaatta
acgggaaagaaatggcttaatattatcggatggaatggtaatttagccgtatttatacta
tttggtttttatagtgttattggtggttggattattatatatatataggttatgtcatagca

caaatcatqqtttttaaatcaaqtacqctqacaaatattcaatttqaaacaatcattaqt atgttaggtgttgaaaaaggtttagaaaaagcttctaaaataatgatgcctctattattt atctrtt.aattatcgttgtagcacaatctttaactttaqaaggtgctttagaaqutgta cqttatatactgcaacctcgagttgaagatatqtctattcaaggtgtactatttqcqtta ggacaatcgttttttacgctgtccctaggtacaaccggaatgattacttatgcaagctat gcacctaaaaatatgacgataaagtcttcagcactttcaattgtcgtaatgaatatttta atttctqtcttqqctqqattaqctatatttcctqcqcttaaaacatttqqttaccaaccc caagaaggccctggcttattatttaaggttttaccactagtatttagcgaaatgactttt 10 ggtacattcttttactttatatttttactattattcttatttgcggcattaacqtcttct atatcattattagagttaaatgtatctaattttactaaaaatgataatagtaaaagacaa aaagtggcaatcataggtagtatacttgtatttatcattagtatcccagcaacattatct tttagtagtctaagtcatttgcgttttggcgctggtacgatatttgataatatggatttt attgtatctaatattcttatqccattagqqqcactagqaacaacattagtqqttqqccaa 15 ttactagataaaaaattattaaaagaaagctttgggaaagacaaattcaacctattttta ccgtggtattatttaattaagttcatcatgcctattgttattattttagtatttatagttcaattatttaa

Sequence 2168

20 MEFTVGKMGRTYTTQIYKKLTGKKWLNIIGWNGNLAVFILFGFYSVIGGWIIIYIGYVIA QIMVFKSSTLTNIQFETIISNPWLTVLGQGIFILITMVIVMLGVEKGLEKASKIMMPLLF IFLIIVVAQSLTLEGALEGVRYILQPRVEDMSIQGVLFALGQSFFTLSLGTTGMITYASY APKNMTIKSSALSIVVMNILISVLAGLAIFPALKTFGYQPQEGPGLLFKVLPLVFSEMTF GTFFYFIFLLLFLFAALTSSISLLELNVSNFTKNDNSKRQKVAIIGSILVFIISIPATLS FSSLSHLRFGAGTIFDNMDFIVSNILMPLGALGTTLVVGQLLDKKLLKESFGKDKFNLFL PWYYLIKFIMPIVIILVFIVQLF*

. . .

Sequence 2169

Contig_0718_pos_4565_3657,

30 is similar to (with p-value 9.0e-76)

>gp:gp|U93874|BSU93874_1 Bacillus subtilis cysteine synthase (yrhA), cystathionine gamma-lyase (yrhB), YrhC (yrhC), YrhD (yrhD), formate dehydrogenase chain A (yrhE), YrhF (yrhF),

- formate dehydrogenase (yrhG), YrhH (yrhH), regulatory protein (yrhI), cytochrome P450 102 (yrhJ), YrhK (yrhK), hypothetical protein YrhL (yrhL), putative anti-SigV factor (yrhM), R NA polymerase sigma factor SigV (sigV) and YrhO (yrhO) genes, complete cds, and YrhP (yrhP) gene, partial cds. NID: g193 4604. >gp:gp|Z99117|BSUB0014 206 Bacillus subtilis complete
- 4604. >gp:gp|Z99117|BSUB0014_206 Bacillus subtilis complete 40 genome (section 14 of 21): from 2599451 to 2812870. NID: g26 34966.

atgattgcatacgatttgataggacaaactccattagttttattagaaagctttagtgac gagaatgttaaaatatacgccaaacttgagcaatttaatcctggtggtagcatcaaagac cgtctagggaagtacttaattgaaaaagcaatagatgaaggacgacttaaagaaggggat

- 45 acaatagtcgaagcgactgctggtaatacaggcattggacttgctattgcttctaatcgg cacaaagtaaaatgtatcatctttgctccagaaggatttgcagaagaaaaaatttcaatt atgaaagcattgggtgcagatgttagacgtacccccaaagctgagggaatgactggcgca cagcaagaggcgttggcatacgcaacacgatatggatatttatatatgaatcaattcgaa actaaagataatcctggggcatatacacaaacacttgccaaacaactcacagatgaactt
- ttacaaggagcgttggaattaaaaaaagcattcaaaatggtgtgattgttaccatcttt ccagatggaagcgatcgatacatgtccaaacaaatattcaactataaggagagttttaat aatgaataa

Sequence 2170

MIAYDLIGQTPLVLLESFSDENVKIYAKLEQFNPGGSIKDRLGKYLIEKAIDEGRLKEGD TIVEATAGNTGIGLAIASNRHKVKCIIFAPEGFAEEKISIMKALGADVRRTPKAEGMTGA QQEALAYATRYGYLYMNQFETKDNPGAYTQTLAKQLTDELSHIDYFVAGVGSGGTFTGVA QHLKTYDVKNYIVEPEGSVLNGGVSHPHATEGIGSEKWPSFLEKELVDGIFTVADKDAFN NVKLVANKEGLLVGSSSGAALQGALELKKSIQNGVIVTIFPDGSDRYMSKQIFNYKESFN NE*

Sequence 2171 Contig_0718 pos_3646 2519, 10 is similar to (with p-value 0.0e+00) >gp:gp|U93874|BSU93874 2 Bacillus subtilis cysteine synthase (yrhA), cystathionine gamma-lyase (yrhB), YrhC (yrhC), YrhD (yrhD), formate dehydrogenase chain A (yrhE), YrhF (yrhF), formate dehydrogenase (yrhG), YrhH (yrhH), regulatory protei 15 n (yrhJ), cytochrome P450 102 (yrhJ), YrhK (yrhK), hypotheti cal protein YrhL (yrhL), putative anti-SigV factor (yrhM), R NA polymerase sigma factor SigV (sigV) and YrhO (yrhO) genes , complete cds, and YrhP (yrhP) gene, partial cds. NID: g193 4604. >gp:gp|Z99117|BSUB0014 205 Bacillus subtilis complete 20 genome (section 14 of 21): from 2599451 to 2812870. NID: q26 34966. atgatacatqqqqqacatacqacaqacaactatactqqaqcaqtqacaacacctatttat caaacaagtacttatttacaagatgatattggtgatttaagacaagggtacgaatattca $\verb|cgtactgcaaatcctacacgtgcgtctcttgaaagtgttattgctaatttagaacatggt|\\$ 25 aagcatggttttgcttttggttcaggaatggcagcaattagtgcagttatcatgttatta gataaaggagatcacttagttcttaattctgatgtttatggtggcacatatcgtgcatta actaaaqtatttactcqctttqqtataqacqtaqattttqttqatacaactaaaattqaa aacattqaacaatattataaacctqaaactaaaatqttatatqtaqaaacaccttcaaat ccattattgcgtgtgactgatattaaagcatcagcaaaaaattgcaaaaaaatatgatttg 30 attgatatcgtattgcattcggctacaaaatatattggaggccatagtgatgttgtagct ggtcttgttgctactgctgatgatgatttagcagaacgtctaggctttatttcaaattct acaqqtqqtqtacttqqacctcaaqataqctatttattaatcaqaqqtattaaaacqcta qqtctaaqaatqqaqcaaataaaccqaaacqttqaaqqtattqtqcaaatqttacaaaq 35 caccctamagttcaacaagtattccatcctagtattaaggaacatatgaactatactatc catcaaaatcaagcaactgggcatacaggggtagtatcttttgaagttaaagatacagaa gcggctaaacaagtgattcacgcaacaactactttacactggcagagagtttaggggca gttgaaagtctaatttctgtaccggcacttatgacgcatgcgtccatcccatcagatgta agagccaaggaaggtattacggatggtctcattcgtttatctattggtattgaagacaca

Sequence 2172

MIHGGHTTDNYTGAVTTPIYQTSTYLQDDIGDLRQGYEYSRTANPTRASLESVIANLEHG
KHGFAFGSGMAAISAVIMLLDKGDHLVLNSDVYGGTYRALTKVFTRFGIDVDFVDTTKIE
NIEQYIKPETKMLYVETPSNPLLRVTDIKASAKIAKKYDLISVVDNTFMTPYYQNPLDFG
IDIVLHSATKYIGGHSDVVAGLVATADDDLAERLGFISNSTGGVLGPQDSYLLIRGIKTL
GLRMEQINRNVEGIVQMLQKHPKVQQVFHPSIKEHMNYTIHQNQATGHTGVVSFEVKDTE
AAKQVIHATNYFTLAESLGAVESLISVPALMTHASIPSDVRAKEGITDGLIRLSIGIEDT
EDLVNDLEQALNTLR*

qaaqacttaqttaatqatttaqaacaagccttaaatactttgagataa

50

40

45

5

Sequence 2173
Contig_0719_pos_3554_2802,
is similar to (with p-value 1.0e-71)
>sg::sp|P29928|SUMT_BACME UROPORPHYRIN-III C-METHYLTRANSFERAS

55 E (EC 2.1.1.107) (UROGEN III METHYLASE) (SUMT) (UROPORPHYRIN
OGEN III METHYLASE) (UROM). >pir:pir|A42479|A42479 S-adenosy
1-L-methionine uroporphyrinogen III methyltransferase - Baci
llus megaterium >gp:gp|M62881|BACCOBA_1 Bacillus megaterium
S-adenosy-L-methionine:uroporphyrinogen III methyltransferas

15

20

10

Sequence 2174

VVHMGKVYLVGAGPGDPELITLKGLKAIKEADVILYDRLVNKEILNYASPSTKFFYCGKD PHRHSLPQEETNKMMVTLAKKGHIVTRLKGGDPFVFGRGGEEAEELACHNIHFEIIPGIP VTHRDYSSSVAFVTAVNKPGMDKGKYWQHLANGPETLCIYMGVKRLSEICELLIQYGRSS ETPVALVHMGTSKQQMTVTGTLDTIQERAHHIQNPAMIIVGEVVKMREKINWFVEQATVQ NETLTEMSST*

Sequence 2175 Contig 0719 pos 2721 2116,

is similar to (with p-value 4.0e-19)
>gp:gp|AJ000974|BSPYREYLO_8 Bacillus subtilis pyrE to yloA g
ene region. NID: g2462954. >gp:gp|Z99112|BSUB0009_34 Bacillu
s subtilis complete genome (section 9 of 21): from 1598421 t
o 1807200. NID: g2633902.

40 aaatga

45

50

55

Sequence 2176

MPLMIDLSNKKVVIVGGGKVATRRAKTLLAYTKHIHVVSPTITDTLQKYLETKQITYEKK HFEPQDVENADVVIAATNQSDVNNDVGAALSKNVLFNHAGQADLGNVTFPNFLKRDKLTI SVSTDGASPKLGQRIIKDLKDTYNEDYSMYIQFLYESRQYIKSLKIEPSDKQALLEQILS DKYLDEKKQQDFIRWLKSQVK*

Sequence 2177

Contig_0719_pos_2029_1196,

attaattggtttgctgtaattgctttaagtctcggtggaatggtagcagcacctattca gcgtatttagttaaagtgttacccattaacattcttgcaatttgtgtcggtggtttaatt atttttacaaatagtaatgcattattaagctattttgtaaaagataacactatttcaaat acagttcgattcattattattcttgcaattattattttgcttgtttttcaagtcgttcga aacaagaaattgtctttttcttataagaaaagccgagtaaacaaatataattaa

Sequence 2178
MGFGASSSSILLTYGIAPAVVSATVHFSEIATTAASGTSHWRFDNVHKPTMLKLAIPGSI
SAFIGAGVLTFIHGDYIKPFIALFLLSMGFYILYQFLFKRAHEHHHHVGNLSSFKVIPQG
FVAGFLDAIGGGGWGPVNTPLLLSSKKIQPRYAIGTVSASEFFVTSSAALSFIIFLGVTQ
INWFAVIALSLGGMVAAPISAYLVKVLPINILAICVGGLIIFTNSNALLSYFVKDNTISN
TVRFIIILAIIILLVFQVVRNKKLSFSYKKSRVNKYN*

Sequence 2179 15 Contig 0719 pos 0 1172, is similar to (with p-value 0.0e+00) >gp:gp|AJ000974|BSPYREYLO 4 Bacillus subtilis pyrE to yloA g ene region. NID: g2462954. >gp:gp|299112|BSUB0009 30 Bacillu s subtilis complete genome (section 9 of 21): from 1598421 t 20 o 1807200. NID: g2633902. atgtctaacaatgaaacaataaccaattatacaattaaaacctcatggaggagaactcatc aatcqtqttqttqaaqqaaacqaacqtqaacqtttgattgaggaaqcattaaattttaaa ccgattactttaaatccttggggaatatcggatctagagctcataggtattggcggattt aqtccccttacaqqatttatqaacaaqqaaqactacactaaqqttataqaggaaacacat tta agca at ggcttagtttggagtattcctatcactttacctgtaacagaatccgaaqca25 qataaacttqaaataggtgatgatattgctttatatggtgaagatggtcagttatatgga

atggcaactgctaaaacatgtccgcatgacgcttctcaacatttacatttaagtgctactaaaagtaagagaaaaactgcgtaatggcgaatcattgccaactaaattttcaagaccagaa gttgccgaagttctaattaaaggtttgcgagT

Sequence 2180

10

MSNNETITNYTIKPHGGELINRVVEGNERERLIEEALNFKPITLNPWGISDLELIGIGGF
SPLTGFMNKEDYTKVIEETHLSNGLVWSIPITLPVTESEADKLEIGDDIALYGEDGQLYG
TLKLEEKYTYDKEKEARLVYGTTEEAHPGVKKVYEKGNIYLGGPIKLLNRPKHDAFSNYH
LDPSETRQLFHDLGWKTVVGFQTRNPVHRAHEYIQKSALEIVDGLLLNPLVGETKSDDIP
ADVRMESYEVILKNYYPEDRARLVIYPAAMRYAGPREAILHATVRKNYGCTHFIVGRDHA
GVGDYYGTYEAQELITQFEDELGIQILKFEHAFYCEACGNMATAKTCPHDASQHLHLSGT
KVREKLRNGESLPTKFSRPEVAEVLIKGLRV

Sequence 2181

50

Contig_0720_pos_409_906, is similar to (with p-value 3.0e-25)

>sp:sp|P35164|RESE_BACSU SENSOR PROTEIN RESE (EC 2.7.3.-). >
pir:pir|S45560|S45560 hypothetical protein X18 - Bacillus subtilis >gp:gp|L09228|BACDIA_27 Bacillus subtilis spoVA to se rA region. NID: g410114. >gp:gp|Z99116|BSUB0013_23 Bacillus subtilis complete genome (section 13 of 21): from 2395261 to 2613730. NID: g2634723.

atggatgctgaaggattatcagttgagaaggaattacaacctattcaacaccttcttgat aaaatggagtctaaatatcgcatgcaaagtgaagaattaggtttaacaatgacgtttgat tctaataatgacgaacaattatggaactatgatatggatagaatggaccaagtgttaact aatttaattgataacgcaacaagatatacacaagctggtgattctataaagatttctatt gatgaagattcagatttcaatattttaacaataactgatacaggcactggtatagcaccg gaacatctgaaacaagtatttgaccgtttttataaagtggacgctgctcgaaaaagaggt aagcaaggcaccggattaggacttttcatttgtaaaatgattattgaagaacacggggga cgtattgatgttgagagcgaattaggcaaaggtacttcatttattattagactacctaaa tcraaacaaattagttag

10

Sequence 2182

MDAEGLSVEKELQPIQHLLDKMESKYRMQSEELGLTMTFDSNNDEQLWNYDMDRMDQVLT NLIDNATRYTQAGDSIKISIDEDSDFNILTITDTGTGIAPEHLKQVFDRFYKVDAARKRG KQGTGLGLFICKMIIEEHGGRIDVESELGKGTSFIIRLPKSKQIS*

15

Sequence 2183
Contig_0720_pos_1420_2037,
is similar to (with p-value 7.0e-39)

>sp:sp|P50726|YPAA BACSU HYPOTHETICAL 20.5 KD PROTEIN IN SER 20 A-FER INTERGENIC REGION. >gp:gp|Z99116|BSUB0013 17 Bacillus subtilis complete genome (section 13 of 21): from 2395261 to 2613730. NID: g2634723. >gp:gp|L47648|BACSERA 2 Bacillus su btilis phosphoglycerate dehydrogenase (serA), ypaA, ferredox in (fer), ypbB, recS, ypbD, ypbE, ypbF, ypbG, ypbH, glutamat 25 e dehydrogenase (ypcA), ypdA, ypdB, ypdC, spore cortex lytic enzyme (sleB), ypeB, ypfA, ypfB, cytidine monophosphate kin ase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glyc erol-3-phosphate dehydrogenase (glyc), yphE and yphF genes, complete cds. NID: g1146195. >gp:gp|L47648|BACSERA 2 Bac:llu s subtilis phosphoglycerate dehydrogenase (serA), ypaA, ferr edoxin (fer), ypbB, recS, ypbD, ypbE, ypbF, ypbG, ypbH, glut amate dehydrogenase (ypcA), ypdA, ypdB, ypdC, spore cortex l

ytic enzyme (sleB), ypeB, ypfA, ypfB, cytidine monophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate dehydrogenase (glyc), yphE and yphF gen es, complete cds. NID: gl146195.

agacatatcatcaaataa

Sequence 2184

50 MGEDGGFLLFKFPPFLSKMNGRRKLYMQQNKRLITISMLSAVAFVLTFIKFPLPFIPPYL TLDFSDVPTLLATFLLSPIAGIIVALIKNILNFLFNIGDPVGPVANFLAGVSFLLSSYYV YRKRKNNRSLIYGLITGTIVMTIVLSILNYFVLLPLYGMIFNLGDVLNNVKIVIVSGVIP FNLIKGIIISIIFVLLFRRLRHIIK*

55 Sequence 2185

Contig_0720_pos_2823_3761, putative peptide of unknown function atgagtcatgcatttaactacaaaaccaataaaagtatctataatattttaacaggcaag aagtcacaccaaacgtttttcgatgcgtcaagccaacacttttgtcattatatcatagt

15

40

Sequence 2186
MSHAFNYKTNKSIYNILTGKKSHQTFFDASSQQLLSLYHSLPNLKYSTFEQFILQKDDFK
KSIQVKIHPQYTYDSLTQTFSCIQLLIQTLSHTRKESNTFIPIVQNTYIQQRVKQLYHQV
IESNQVSNTIDEIYLLFENLNNKYNHTFLHYYLQGYEESMYTRQQISLIESIPQSELFER
20 EMNELIDILNQLKDSTKYPILSQAIILSPLLTNTYLSYQKLKSGLNLKEIAQLQNVKLNT
IEDHILEMYIKGYLIDYTLFINKKDILEFINYYQKHRGERLKFYKEHFTDWTYFQIKLVI
VGIERGDLIAER*

Sequence 2187

Sequence 2188

MSMDKATKYALQLRVIAQESYPSVDRHSFLVEKLRLLIQQLKQSIHHLKQLDDAMIQLAQ QLDYFENIHSIPGIGKLSTAMIIGEIGDIKRFKSNKQLNAFVGIDIKRYQSGHTHCRDTI NKRGNKKARKLLFWVIMNIIRGQHHYDNHVVDYYYKLRKQPNEKPHKTAIIACINRLLKT IHYLVMNHKLYDYQMSPH*

Sequence 2189 Contig 0721 pos 858 1772, is similar to (with p-value 0.0e+00) >sp:sp|P50307|METK STAAU S-ADENOSYLMETHIONINE SYNTHETASE (EC 2.5.1.6) (METHIONINE ADENOSYLTRANSFERASE) (ADOMET SYNTHETAS E). >qp:qp|U36379|SAU36379 1 Staphylococcus aureus S-adenosy 50 lmethionine synthetase gene, complete cds. NID: g1020316. atggttaaaaataaacagtctcctgatattgcacagggtgtagacaaagctcttgagtat cqaaatgatatttctqaaqaaqaaattgaagcaacaggtgcaggtgaccaaggattaatg tttggatatgcaactgatgaaactgatacgtatatgcctctacctatattcctgtcacat caacttqctaaacqattqqctqatqtacqaaaaqatqaaattttaqattatcttcqtcca qatqqaaaaqtacaqqtqactqttqaatatqqtaaaqatqacaaacctaqacqtattqat accattgtagtttctacacaacatgctgaagatgtagagttagcacaaattgaaaaggac attaaaacgcatgttatttacccaactgtagataaagctttattagatgatgaaactaaa ttttacattaacccaactggacgtttcgttattggaggacctcaaggagatgctggttta

actggacgtaaaattatagttgatacgtatggtggttatgcccgtcatggtggaggttgt

tttagtggtaaagatcctactaaagtagatcgttcagcagcttatgcagcaagatatgta gctaaaaatattgttgcagctggtttagctaaacaatgtgaagtacaacttgcatatgca attggtgtagcagaacccgtttccatttcaattaatacgtttgatactggaaaggtttca gaagcacgtttagttgaagctgtaagaaagcattttgatttaagaccagcaggtatcatt aaaatgttagacttaaaacaaccgatatatagacaaacagcagcgtatggtcattttgga cgtacagacgtattgttaccatgggaaaaattagataaagtcaatgtttaaaagatgct gttgaaattcaatga

Sequence 2190

10 MVKNKQSPDIAQGVDKALEYRNDISEEEIEATGAGDQGLMFGYATDETDTYMPLPIFLSH
QLAKRLADVRKDEILDYLRPDGKVQVTVEYGKDDKPRRIDTIVVSTQHAEDVELAQIEKD
IKTHVIYPTVDKALLDDETKFYINPTGRFVIGGPQGDAGLTGRKIIVDTYGGYARHGGGC
FSGKDPTKVDRSAAYAARYVAKNIVAAGLAKQCEVQLAYAIGVAEPVSISINTFDTGKVS
EARLVEAVRKHFDLRPAGIIKMLDLKQPIYRQTAAYGHFGRTDVLLPWEKLDKVNVLKDA
VEIO*

Sequence 2191

Contig_0721_pos_1923_2783,

putative peptide of unknown function

- 30 attaaacatattgaaaaattagcaggagatttacaaaatgaattgaataccaaatatacg cctacatcaatactgtattttaatcctaaaaaggataatgatgttacaatttctcattat acgcagtcatcaaatgttaaagttttagttggtcctgaacaattagatgaattcttcaac aagtttgttttccatggacgcatacagtacaatgtggatgatttacaagatatcatggat aaaatcgagtcattcaattaa

35

40

Sequence 2192

VAVLFFILFLVANHSKKKVKNQTEAHYKEKEQHLKESHEEALEKERVENKKVVTKQKEDF DVTVSNKNREIDALKLFSKNHSEYVTDMRLIGIRERLVNEKRIRPEDMHIMANIFLPSNE LTNIERVSHLVLTRTGLYIIDSQLLKGHVYNGISGAQFKELPTMSQVFDTLDLDSSQPQT LVLDQNEDQHSLSFVNYSDKIKHIEKLAGDLQNELNTKYTPTSILYFNPKKDNDVTISHY TQSSNVKVLVGPEQLDEFFNKFVFHGRIQYNVDDLQDIMDKIESFN*

Sequence 2193

Contig_0721 pos 3101 3799,

45 is similar to (with p-value 2.0e-56)
>gp:gp|AL034443|SC4B5_1 Streptomyces coelicolor cosmid 4B5.
NID: q4007668.

Sequence 2194

MIYGNEETVGQGIKEGLESTGLSREDLFITSKLWLTDFGRQNVEDAYRQSVAKLGIDYLD LYLMHWPGTNEAVMIDTWRGMEDLYKQNQVKNIGVSNFTPEHFEALLAQVSIKPV.NQVE FHPYLTQNELRKYLEAQNIIMESWSPLMNSQILHDEVINEVANEVGKTPAQVVIRWNIQH DVVVIPKSVTPHRIEENLDVWNFELSDNQMERIDQLNQDKRIGPNPLEFNGK*

Sequence 2195

Contig_0721_pos_5489_4476,

putative peptide of unknown function 10 -atggaacgattttgttgtgtaaatcaaattaactatattcaaatgaatccgttagaagcc aaatttaaaacqaqcqctctaaqatcatqqaaaactqatcaggcagatqctcataagctt gcttgtttaggaccgacgcttaaacaaacagacagcttacctatacatgagttaatattc tttqaattaaqaqaacgcgtccgttttcatctagaaatcgagaatgaacaaaatcgactt aaatttcagatccttgaattactccatcaaacattccctggtttagaaagattgtttagt 15 aqtcqatattcaatcattgcactcaacatcgcagaaatctttactcatccagacatggtt cttgatatcgacaaggatgtactgattacacatatattcaattctacagataagggaatg tcaatggataaagctacaaaatatgcacttcaattaagagtgattactcaagaaagctat 20 aaacaatctattcatcatctcaaacaattagatgatgccatgattcaattagcacaacaa ctcqattattttqaaaatattcattcgatacctggtattggtaaactaagcacagctatg attattqqqqaqattqqtqatattaaqcqatttaaatcaaataaacaactcaatqctttt gttggcattgatatcaaacgatatcaatcaggtcatacacactgtagagataccatcaac aagcqtqqtaataaaaaaqcqaqaaaacttttattttqqqtqattatqaatataalaaga gggcagcatcattatgacaatcatgtcgtcgattattactacaaactaagaaagcaqcct 25 aatgaqaaacctcataagactgccatcattgcttgtataaatcgattattaaaaacaatt

Sequence 2196

30 MERFCCVNQINYIQMNPLEAKFKTSALRSWKTDQADAHKLACLGPTLKQTDSLPIHELIF FELRERVRFHLEIENEQNRLKFQILELLHQTFPGLERLFSSRYSIIALNIAEIFTHPDMV LDIDKDVLITHIFNSTDKGMSMDKATKYALQLRVITQESYPNVDRHSFLVEKLRLLIQQL KQSIHHLKQLDDAMIQLAQQLDYFENIHSIPGIGKLSTAMIIGEIGDIKRFKSNKQLNAF VGIDIKRYQSGHTHCRDTINKRGNKKARKLLFWVIMNIIRGQHHYDNHVVDYYYKLRKQP 35 NEKPHKTAIIACINRLLKTIHYLVMNHKLYDYQMSPH*

cattatcttgtaatgaatcataaattgtacgattatcaaatgtcaccacattag

Sequence 2197 Contig_0724 pos 3443 3748,

putative peptide of unknown function

40 atgctcctttctgctatactccttataaaaggaggtgaaaatatgaaaagttttattatt gcgtatgatttaaataaccaaaaggattatccaaaattaatagagcgtattgaggattat cctaatgttgctaaaatcaataaatcagtttggtttattaattcaactaatgatgctaaa actattagaaacgaattaaaaatgtttattgatagcgatgatagtttgttcgttggtaag ctgactggtgaagccgcatggtctaatgtaatttgcagttcacaacatttaaaagattat ctttag

Sequence 2198

MLLSAILLIKGGENMKSFIIAYDLNNQKDYPKLIERIEDYPNVAKINKSVWFINSTNDAK TIRNELKMFIDSDDSLFVGKLTGEAAWSNVICSSQHLKDYL*

Sequence 2199

Contig 0724 pos_4321_4635,

putative peptide of unknown function

atgtgcttttcaaaaagaatgaaacaatcaagagaaaaacaaggtatgactttagctgaa
55 ctaggaagaaaaatcggtaaaactgaagctactgtacaacgttatgaaagcgggaatatt
aaaaatcttaaaaatgatactattgaaagtatagctactgcattaaatgttaaccctgct
ttcttgatgggttggatagaagaagttgaggaacaaccacaacatcgtgcagcgcatctt
gatggtgatttaactgacgaagaatggcaagaaattcttgattacgctgaatacataaga
agtaaaagaaaataa

Sequence 2200 MCFSKRMKQSREKQGMTLAELGRKIGKTEATVQRYESGNIKNLKNDTIESIATALNVNPA FLMGWIEEVEEQPQHRAAHLDGDLTDEEWQEILDYAEYIRSKRK*

Sequence 2201

Contig_0724_pos_4639_0,

putative peptide of unknown function

gtgttttatgtggggaaatatgaagatatgttaattgaacatgactatattgaagtcatt
gaatgtgataacttacctaaaaggttatctggtttgtggcttggagatatgattttaatt
aatcgtaacttgcctattacttccaaacttgaaacacttgcagaggaactcgctcataac
gaacttacatatggaaatatagttgatcaaagtagttttaatcatagaaaatttgaaggt
tatgcacgtaggttagcctatgaaaagttaatccctcttaaagatattgtaaaagcattt
ttgcaaggcattcatgacttgtatgaacttgctaatttttttga

15

5

Sequence 2202

VFYVGKYEDMLIEHDYIEVIECDNLPKRLSGLWLGDMILINRNLPITSKLETLAEELAHN ELTYGNIVDQSSFNHRKFEGYARRLAYEKLIPLKDIVKAFLQGIHDLYELANFFX

20 Sequence 2203

Contig 0724 pos 3437 2028,

is similar to (with p-value 0.0e+00)

>gp:gp|M57689|BACSPOOK_5 Bacillus subtilis spo0K operon. NID
: g143602.

- aaaaatgcgaaaataaaggaggtaaaagtaatgacagaaacggtattagaagtaaatgat ttgcacgtttcctttgatattgctgcaggagaagtgcaagctgtcagaggcgtggatttt catttaaataaaggggaaacgttagccattgttggagaatctggatctggaaaatctgta acaactaaggcaattacaaaactttttcaaaaggatacaggaagaataaaaaagggagaa atrttatttttaggtgaggacttagctcagaaaagtgaaaaagaactgatacagctaaga
- 35 ggtcgagatatttcaatgatatttcaggatcctatgacttctttaaatccaacaatgcaa atcggaaagcaagtcatggaacctttgattaaacataagaaattaagtaaagcaaaggcc aagcaaagagcattggaaattttgaatttagttgggttacctcgtgctgaaaaacgattt aaagcttatccacatcaattttcaggaggacaacgtcagagaatagttattgcaatagca ttggcatgtgagcctaaaatattaattgctgatgagcctacaactgctttagatgtgaca
- 40 atgcaggctcaaattttagatcttatgaaagaactacaaaataagattgaaacttcaatt atctttattacgcatgatttaggcgttgtagcaaatattgcggacaaagtagccgtaatg tatgggggacagatggttgaaacaggggatgtgaatgaaatattttatgatcctaaacat ccctatacctggggattgctttcttcaatgcctgatttaacaaccagtaatgacacggac ttaattgcaattccaggtacaccaccagatttacttcatccaccaattggtgatgctttc
- 45 gcacgtagaagtcgatatgctttagatattgattttaaagaagaaccaccttggttcaaa atttcacccacacattttgttaaatcttggttattagatgcaagagctccaaaagttacg ccaccttcaatggttcaaaaacgattaagaacaatgccaagtaattatgaacaaccacat agagtagagggtggcttttaatgagtaa
- 50 Sequence 2204

MQDLQVFNFEDLPVRKIEVDGEPYFLGKDVAEILGYTRSDNAIRNHVDDEDKLTHQVSAS GQKRNMVIINESGLYSLIFDAAKQSKNESIRKKAKRFKRPKNAKIKEVKVMTETVLEVND LHVSFDIAAGEVQAVRGVDFHLNKGETLAIVGESGSGKSVTTKAITKLFQKDTGRIKKGE ILI'LGEDIAQKSEKELIQLRGRDISMIFQDPMTSLNPTMQIGKQVMEPLIKHKKLSKAKA

55 KQRALEILNLVGLPRAEKRFKAYPHQFSGGQRQRIVIAIALACEPKILIADEPTTALDVT
MQAQILDLMKELQNKIETSIIFITHDLGVVANIADKVAVMYGGQMVETGDVNEIFYDPKH
PYTWGLLSSMPDLTTSNDTDLIAIPGTPPDLLHPPIGDAFARRSRYALDIDFKEEPPWFK
ISPTHFVKSWLLDARAPKVTPPSMVQKRLRTMPSNYEQPHRVERVAFNE*

Sequence 2205 Contig_0724 pos_1756 1097, is similar to (with p-value 3.0e-81) >pir:pir|E38447|E38447 sporulation initiation protein spo0KE 5 - Bacillus subtilis >gp:gp|M57689|BACSPOOK_6 Bacillus subti lis spoOK operon. NID: g143602. atgatarttcaagatccttatqcatctctaaatcctcqqttaaaggtaatgqatatcqta gctgaaggaatagatattcacaaacttgctagtagtcaqcqtgatcgaaagaaacqtqta tacqaccttttaqaaacaqttqqtttaqqtaaaqaacacqcqaatcqttacccacatqaq 10 ttttcaggcggacaaagacaacgtattggtatcgcacgtgcattagctgtagagccagaa tttattattqcaqatqaaccqatatcaqcattaqatqtatcqattcaaqctcaaqtcqtt aatcttttattaaagctacaacgtgaacgtgatattactttattgtttattgctcatgat ttatcaatggtgaaatatatttccgatagaattgcagtgatgcacttcggtaaaattgtaqaaattggaccggctgatgatatttataattatccattacatgattatactaagtcatta 15 ttaagtgccattccacagcctgatcctgatgttgagagaaatcgtcaacgtgttttatat catqaaqatqcaacqcttaatqaaqaacqtcaattaaatqaaattaqaccacaacattat qtattttctactcaaaacqaaqcaqttaaattqaaacaaaaqtatqqtttqtctqtttaa

20 Sequence 2206

MIFQDPYASLNPRLKVMDIVAEGIDIHKLASSQRDRKKRVYDLLETVGLGKEHANRYPHE FSGGQRQRIGIARALAVEPEFIIADEPISALDVSIQAQVVNLLLKLQRERDITLLFIAHD LSMVKYISDRIAVMHFGKIVEIGPADDIYNYPLHDYTKSLLSAIPQPDPDVERNRQRVLY HEDATLNEEROLNEIRPQHYVFSTQNEAVKLKQKYGLSV*

25

Sequence 2207
Contig_0724_pos_1070_234,
is similar to (with p-value 2.0e-51)

>pir:pir:A53310|A53310 pheromone cAD1 binding protein precur 30 sor - Enterococcus faecalis plasmid pAD1 >gp:gp|L19532|AD1TR AC_2 Plasmid pAD1 (from Enterococcus faecalis strain: DS16) hemolysin bacteriocin (traC) gene, complete cds, traA and tr aB genes, 3' end. NID: g388267.

atgaaaggttttaaagtcttaattatttattaagtgtatgcataattttatctgcttgt
agtaataagcagagtttatattcagaccaggggcaagtttttaggaaggtaatcacacaa
gatatgactacactagatacagctttaattacagatgctgtttctggtgatatagcagct
caagcttttgaaggattatatactttaaataaagaagacaaagctgaaccagctattgct
aaatcttttccaaagaaaagtaatggtggcaaaacacttacgattaatttaagaaaaat
gcaaaatggtccaatggagattcggtaactgcatatgacttcgtatatgcgtggagaaag
gtagttaatcctaagacggcttctgagtttgcatacataatgagcgatataaaaaatgca
gatgaagttaatgcaggtaaaaaatcagtcaaggatttgggtatcaaggctataggtaaa
tataaattacaagtagatttagaaagacctgtaccttatattaatgaactattagcactt
aatacatttaatcctcaaaatgagaaagttgctaaaaaggttggagaacaatatggaagat
actgctgaaaaaagcagtgtacaatggaccatttgaagtaacaaattggaaagtggaagat

45 aaaattcaattagttaaaaatgaacaatattgggataagaagaatgtaaaattagataaa gtgaactataaagtattaaaagatcaacaagcaggtgcatcgttatatgatactggctcg gtcgatgatactatgttaagtatactgcacaagcatctagtccatcagaaggtttag

Sequence 2208

50 MKGFKVLIILLSVCIILSACSNKQSLYSDQGQVFRKVITQDMTTLDTALITDAVSGDIAA QAFEGLYTLNKEDKAEPAIAKSFPKKSNGGKTLTINLRKNAKWSNGDSVTAYDFVYAWRK VVNPKTASEFAYIMSDIKNADEVNAGKKSVKDLGIKAIGKYKLQVDLERPVPYINELLAL NTFNPQNEKVAKKFGEQYGTTAEKAVYNGPFEVTNWKVEDKIQLVKNEQYWDKKNVKLDK VNYKVLKDQQAGASLYDTGSVDDTMLSILHKHLVHQKV*

55

Sequence 2209
Contig_0727_pos_3292_0,
putative peptide of unknown function
atgtcttttcttaggaaacacaccgaaattatatttagttatatcatcggtatcgtttca

Sequence 2210

MSFLRKHTEIIFSYIIGIVSLFTGLIIFINLPLIKQFKGDKKVDTHVHNVWEFLNAFFAE IIKVMSKFIGGFPITSAIVIIVFGILVMLLGHTLFRTIKYDYDISIFFLVIGIMYFIITL

15 LLMTQVYGFFAIVFIIPFTVHIGYIVYKDELNQDNRKNHYMWIIVTYGMSYLITQISLYG RIDANEIESIDILSVNTFFIIMWLLGQMAI

Sequence 2211

Contig 0727 pos 0 369,

- putative peptide of unknown function atgtttccaccatattttatcacgaacagggagtgtaagagcatgacgcgacagagaatc gccattgatatggatgaagtgcttgctgatacattgggtgctgttgttaaagcggtcaat gaacgagcggatttaaatatcaaaatggaatcattaaacggtaaaaaattaaaacatatg atacccgagcatgaggggttagtcatggatattttaaaagaacctggattctttagaaat
- 25 ttagatgtaatgccgcatgctcaagaagttgtaaaacaactcaatgagcattacgacata tacatagccacagcagcgatggatgttccaacctcttttcatgacaaatatgaatggtta ttCAAATGA

Sequence 2212

30 MFPPYFITNRECKSMTRQRIAIDMDEVLADTLGAVVKAVNERADLNIKMESLNGKKLKHM IPEHEGLVMDILKEPGFFRNLDVMPHAQEVVKQLNEHYDIYIATAAMDVPTSFHDKYEWL FK*

Sequence 2213

- 40 gcttttataccaggtaattctttaccttctaatgattcttattatatgatgctcctccaccagta gagatgtgtgtaaagtcatcttcgaaacctaatgaaattgctgctgctgcggcagagtcacca ccaccaataatagtagtagcgtcttccaatttagcaatagactcacatacaccgattgta cctttagcaaaattactaaattcgaatacacccataggtccattccatactacagtatgt gcaccttgtaattctttattaaataattctactgttttaggtccaatatccattgcttct
- 45 tga

Sequence 2214

MTFYCFIPTSKYLKTYLSLIAFIPGNSLPSKYSNDAPPPVEMCVKSSSKPNEIAAAAESP PPIIVVASSNLAIDSHTPIVPLAKLLNSNTPIGPFHTTVCAPCNSLLNNSTVLGPISIAS

50

Sequence 2215 Contig_0728_pos_6923_6258, is similar to (with p-value 2.0e-69)

>55 >gp:gp|AJ000339|LDGAPPGK_3 Lactobacillus delbrueckii ygaP, g ap, pgk, tpi, and ycsE genes. NID: g2624189. atgg=ia=agaaattaaatttattggtggcgtagtgaatgatccacaaaaaccag! agtt gctattttaggtggcgctaaagtttcagataaaattaatgttatcaaaaatttagttaat atcgcagataaaatcttaatcggtggcggtatggcttatacatttattaaagcgcaaggt

10

Sequence 2216

MEKEIKFIGGVVNDPQKPVVAILGGAKVSDKINVIKNLVNIADKILIGGGMAYTFIKAQG KEIGLSLLEEDKIDFAKDLLENNGDQIVLPVDCKIAKEFSNDAKITEVSINEIPSDQEAM DIGPKTVELFNKELQGAHTVVWNGPMGVFEFSNFAKGTIGVCESIAKLEDATTIIGGGDS

15 AAAAISLGFEDDFTHISTGGGASLEYLEGKELPGIKAINDK*

Sequence 2217
Contig_0728_pos_6127_5366,

is similar to (with p-value 2.0e-90)

- 20 >sp:sp[P35144|TPIS_BACME TRIOSEPHOSPHATE ISOMERASE (EC 5.3.1
 .1) (TIM). >pir:pir|JQ1955|JQ1955 triose-phosphate isomerase
 (EC 5.3.1.1) Bacillus megaterium >gp:gp|M87647|BACPGKTIMG
 _4 Bacillus megaterium glyceraldehyde-3-phosphate dehydrogen
 ase (gap), phosphoglycerate kinase (pgk), and triose phospha
- te isomerase (tpi) genes, complete cds. NID: g143315. >gp:gp |M87648|BACTPIPGK_2 Bacillus megaterium triose phosphate iso merase (tpi) gene, complete cds, and phosphoglycerate kinase (pgk) gene, 3' end. NID: g143759.
- atyagaagaccaattatagccggaaactggaaaatgaataaaacagttcaagaagctaaa gactttgtaaacgaattaccaacattacctgatcctaaagaagtagaatcagttatttgt gcaccaacaatccaattagacgctttagtaacagctgttaaagatggtaaagcaaaaggg ttaaaaattggagcacaaaacgcttactttgaagaaagcggtgcttatactggagaaact tcaccagtagcattactgaattaggtgttaaatatgtagtgattggtcactcagagcgt cgtgactatttccacgaaactgacgaagaagtaaacaaaaaagcgcatgctatcttcaat
- 40 attaaagaatatatggctcaatcagatatcgatggcgctcttgtaggtggcgcatcatta aaagttgaagatttcgtacaattgttagaaggtgcaaaataa

Sequence 2218

MRTPIIAGNWKMNKTVQEAKDFVNELPTLPDPKEVESVICAPTIQLDALVTAVKDGKAKG
45 LKIGAQNAYFEESGAYTGETSPVALSELGVKYVVIGHSERRDYFHETDEEVNKKAHAIFN
HGMTPIICVGESDEEREAGKANKIVGNQVKKAVEGLSDDQLKEVVIAYEPIWAIGTGKSS
TSEDANEMCAHVRQTLADLSSQEVADATRIQYGGSVKPNNIKEYMAQSDIDGALVGGASL
KVEDFVQJLEGAK*

50 Sequence 2219

55

Contig_0728_pos_5363 3846,

is similar to (with p-value 0.0e+00)

>sp:sp|P39773|PMGI_BACSU_2,3-BISPHOSPHOGLYCERATE-INDEPENDENT PHOSPHOGLYCERATE MUTASE (EC 5.4.2.1) (PHOSPHOGLYCEROMUTASE) (BPG-INDEPENDENT PGAM) (VEGETATIVE PROTEIN 107) (VEG107).

atggcaaaacaaccaactgccttaatcatcttagatggtttcgcaaatcgtgaaagtgaa catggcaatgcagttaagcaagcacataaacctaattttgatcgatattatgaaaaatat cctacaacacaaatagaagctagtggcttagatgtaggtcttcctgaaggtcaaatgggt aactctgaagtaggacatatgaatattggtgcaggacgcatcgtatatcaaagtttaact

cqtaltautaaatcgattgaagacggagaattctttgataacactgtattaaata/cgct qttaaacatgttaaagacaatggctctgcgcttcatgtattcggattgctttctgatggt qqtqtacacaqtcattataaqcatctatttqctattttaqaattaqctaaaaaqcaaqqa atagataaagtatatgtccacgcatttttagatggtcgtgatgttgatcaaaaatctgct ttgaaatatatagaggaaactgaagataaatttaaagaattaggtgtaggccaattcgct tctgtttcaggacgttattatgctatggaccgtgacaagcgttgggatcgtgaggaacgtqcctataatqctattcqtaactttqaaqqtcctacatttacttcaqctaaaqcaqqcqtt qaaqctaattataaaaatgatgtqactqatqaattcqtcqaaccgtttataqttqaaqqc caaaacqatqqtqaacqatqqaqacqcaqtaatcttttataatttccqtccaqataqa 10 qcaqctcaactttcaqaaatctttactaataaaqcqtttqatqqatttaaaqttqaacaa qtqqacaacttattctacqctacattcacqaaatataatqacaatqtaqatqctqaaatt gtatttgaaaaagttgacttaaataatacaatcggtgaagttgctcaagataatggcttg aaacaattacqtatcqctgaaactgaaaagtatccacatqtaacatactttatqaqtqqt qqacqaaatgaagagtttgaaggagaacqtcqtaqactcatcqattctccaaaagtaqcq 15 acttatgatttaaaacctgagatgagtgcatatgaagttaaagatgcattattagaagag ttagacaaaggtgacttagatttaattctactgaactttqctaacccagatatqqttqqa cataqtqqtatqcttqaaccaacaattaaaqcaatcqaaqcaqtaqatqtcttqqt qaaqtcqttqacaaaattattqatatqqqtqqtcatqccatcatcactqcaqaccacqqt 20 gttocagttattgtaactaaagaaggtgttacattaagagaaactggacgtttaggegat ttaqcqccqacattattaqatttattaaatqttaaacaaccatctqaaatqacaqqtqaa tcactgattaaacattag

Sequence 2220

- 25 MAKQPTALIILDGFANRESEHGNAVKQAHKPNFDRYYEKYPTTQIEASGLDVGLPEGQMG NSEVGHMNIGAGRIVYQSLTRINKSIEDGEFFDNTVLNNAVKHVKDNGSALHVFGLLSDG GVHSHYKHLFAILELAKKQGIDKVYVHAFLDGRDVDQKSALKYIEETEDKFKELGVGQFA SVSGRYYAMDRDKRWDREERAYNAIRNFEGPTFTSAKAGVEANYKNDVTDEFVEPFIVEG QNDGVNDGDAVIFYNFRPDRAAQLSEIFTNKAFDGFKVEQVDNLFYATFTKYNDNVDAEI VFEKVDLNNTIGEVAQDNGLKQLRIAETEKYPHVTYFMSGGRNEEFEGERRRLIDSPKVA TYDLKPEMSAYEVKDALLEELDKGDLDLILLNFANPDMVGHSGMLEPTIKAIEAVDECLG EVVDKIIDMGGHAIITADHGNSDQVLTDDDQPMTTHTTNPVPVIVTKEGVTLRETGRLGD LAPTLLDLLNVKQPSEMTGESLIKH*
- Sequence 2221
 Contig_0728_pos_3707_2403,
 is similar to (with p-value 0.0e+00)
 >gp:gp|AF065394|AF065394_1 Staphylococcus aureus enolase (en o) gene, complete cds. NID: g3152724.
- 40 atycuanitattacagatgtttacgctcgcgaagtcttagactcacgtggtaacccaaca qttqaaqttqaaqtattaactqaaaqtqqtqctttcqqacqtqcattaqtaccttctqqt gcttctactggtgaacatgaagcagttgaattacgtgatggagataaatcacgttattta ggtaaaggtgtgactaaagcggtagaaaatgttaacgaaatgatcgcaccagaaatcgtt qaaqqtqaattttcaqttttaqatcaaqtatctattqataaaatqatqattcaattaqac 45 ggtacacacaacaaggtaaattaggtgcaaatgccattttaggtgtttctattgccgta qctcqtqcaqctqacttattaqqtcaaccattatataaatatttaqqtqqatttaat ccaattqctttccaaqaqttcatqattttacctgtaqqtqctgaqtcattcaaaqaatca 50 qaaactqcaqtaqqtqatqaaqqtqqtttcqcacctaqatttqaaqqcactqaaqacqct gtagaaactattattaaaqctatcgaaaaaqcaqgatacaaaccaqgtgaaqatgtattc ttaggatttgactgtgcttcttctgaattctatgaaaatggtgtttatgattacactaaa $\verb|ttcqaaqqtgaacacggtqctaaacgtagtgcagcagagcaagttgactacttagaagaa|$ ttaattqqtaaatatccaatcatcactattqaaqatqqtatqqatqaaaacqattqqqaa 55 ggttggaaacaattaactgatcgtatcggtgataaagttcaattagttggtgatgattta
 - ttcgtaactaacactgaaattttatctaaaggtatcgaacaaggtattggtaactcaatc
 ttaatcaaagtaaaccaaatcggtacattaactgaaacattcgatgctattgaaatggct
 caaaaagctggatatactgcggttgtatctcaccgttctggtgaaactgaagatactaca
 attgctgatatcgcagttgctacaaatgcaggccaaattaaaacaggttcattatctaga

Sequence 2222

5 MPIITDVYAREVLDSRGNPTVEVEVLTESGAFGRALVPSGASTGEHEAVELRDGDKSRYL GKGVTKAVENVNEMIAPEIVEGEFSVLDQVSIDKMMIQLDGTHNKGKLGANAILGVSIAV ARAAADLLGQPLYKYLGGFNGKQLPVPMMNIVNGGSHSDAPIAFQEFMILPVGAESFKES LRWGAEIFHNLKSILSERGLETAVGDEGGFAPRFEGTEDAVETIIKAIEKAGYKPGEDVF LGFDCASSEFYENGVYDYTKFEGEHGAKRSAAEQVDYLEELIGKYPIITIEDGMDENDWE GWKQLTDRIGDKVQLVGDDLFVTNTEILSKGIEQGIGNSILIKVNQIGTLTETFDAIEMA QKAGYTAVVSHRSGETEDTTIADIAVATNAGQIKTGSLSRTDRIAKYNQLLRIEDELYET AKFEGIKSFYNLDK*

Sequence 2223

25

Sequence 2224 MTDSNAKEIRTGRLIAISSLVFCILLIIHHFIVLDESTAKSILSLAGQKTSDTAVKNILN SDRYTGIMYILAYLAGTVAFWNRHPYLWWFMFAVYISNALFTLVNLYLFIQGILDVKNVL AVLPILIVVIGSIILAIYMLVVSITRKSTFNR*

30

Sequence 2225
Contig_0728_pos_1710_1147,
is similar to (with p-value 3.0e-60)

>pir:pir|A40585|A40585 DNA topoisomerase (ATP-hydrolyzing) (
35 EC 5.99.1.3) chain B - Staphylococcus aureus >gp:gp|X71437|S
 AGYRREC_2 S.aureus genes gyrB, gyrA and recF (partial). NID:
 g296393. >gp:gp|D10489|STAGYRABA_1 Staphylococcus aureus ge
 nes for DNA gyrase A and B, complete cds. NID: g540540.
 atgcatacattaatcatcgttttattaattatagattgtattgcattagtgactgttgta

- 45 gcacgttacaaaggtcttggtgaaatgaacgcagaccaattatgggaaacgactatgaat cctgaacatcgctctatgttgcaagtgagacttgaagatgcaattgatgcagaccaaaca tttgaaatgttaatgggcgatgtagtagtagaaaatcgcagacaatttatcgaagacaatgca gtttatgccaacctagatttctag
- 50 Sequence 2226

MHT LITVILIIDCIALVTVVLLQEGKSNGLSGAISGGAEQLFGKQKQRGVDLFLHFLTIR TLLL:FFYRFMRPLIEAGYVYIAQPPLYKLTQGKQKYYVFNDRELDKLKQELNPSFKWSI ARYKGLGEMNADQLWETTMNPEHRSMLQVRLEDAIDADQTFEMLMGDVVENRRQFIEDNA VYANLDF*

55

Sequence 2227
Contig_0728_pos_0_1110,
is similar to (with p-value 0.0e+00)
>sp:sp|P20831|GYRA STAAU DNA GYRASE SUBUNIT A (EC 5.99.1.3).

atqqctqaattacctcaatcaagaattaatqaacqaaatataaccagtgaaatgcgtgaa tcattcttagactatgctatgagtgttatcgtttctcgtgcattacctgatgttagagac ggattaaagccagtacatcgtcgtattctttatggtttaaatgaacaaggtatgacyccc gataaaccttataagaaatctgcacgtatagtcggggatgtcatgggtaaatatcaccct catqqtqattcttcaatttatqaaqcaatqqtaaqaatqqcccaaqactttagttatcgt atgcqttataccqaaqcacqtatqactaaaataacattaqaacttttacqtqatattaac aaaqacacaattqattttattqacaactatqatqqtaatqaaagagagccgtcagtctta cctqcacqtttccctaacttactaqtaaatqqtqcqqcaqqaattqccqtaqqtatqqct $\verb| aatccagacatcacaattaatgagctgatggaagacatacaaggtcctgattttcctaca| \\$ gctggtttagtactagggaaaagtggtattcgtcgagcttatgaaacaggtcgtgggtca attcaaatqcqttctcqtqctqaaataqaaqaacqtqqtqqtqqccqtcaacqtattqtc gtaacggaaatacctttccaagtcaataaagcgcgtatgattgaaaaaatcgcagagtta qttaqaqataaqaaatcqacqqtattacaqatttacqtqatqaaacaaqtttqcqtaca qqtqtaaqaqtaqttattqatqtacqtaaaqatqcaaatqcqaqtqttattttaaataat ttatataaacaaacqccattacaaacatcatttqqtqtqaatatqattqctttaqtqaat qqtaqacctaaactaatcaatttaaaagaaqcacttatccattacttagaacaccaaaaa acagtggttagacgacgtactgaatataat

20

25

10

15

Sequence 2228

MAELPQSRINERNITSEMRESFLDYAMSVIVSRALPDVRDGLKPVHRRILYGLNEQGMTP DKPYKKSARIVGDVMGKYHPHGDSSIYEAMVRMAQDFSYRYPLVDGQGNFGSMDGDGAAA MRYTEARMTKITLELLRDINKDTIDFIDNYDGNEREPSVLPARFPNLLVNGAAGIAVGMA TNIPPHNLTEVIDGVLSLSKNPDITINELMEDIQGPDFPTAGLVLGKSGIRRAYETGRGS IQMRSRAEIEERGGGRQRIVVTEIPFQVNKARMIEKIAELVRDKKIDGITDLRDETSLRT GVRVVIDVRKDANASVILNNLYKQTPLQTSFGVNMIALVNGRPKLINLKEALIHYLEHQK TVVRRRTEYN

30 Sequence 2229
Contig_0730_pos_6751_0,
putative peptide of unknown function
atgettaattctacaatcaaatatgacactaagaagaaaaaactacctaaatttagtaaa
ggtactaaaagaagacggtatattagatgttattagetetggtgtaaaaaatgatgtt
35 aataaagtaaaagacattggtggtaaagcaagagacataggtggtactacgtttgacaaa
gcaaaagacataggtacaaaagcacttgataaagctaaagatgtgtctagcactgttatc
aagggtattggagatgtttttgattatgtaggtcatcctatgaaattggtaaataagtc
tttgagaaagttggtttaacctagactttatgaaaatgcaccattaccatttgattta
atgacagctatgattaagaaacttaaaaatggtattaaagacttettaatgaaggttta
40 gactctgcaggcggtggagatggttcttcgttcactaaattcccaattactacggggtat
tatcctaatggtggtgctcctggttatagttttaatggtggtgctcactttggtattgac
tatggcgctccatatggtacaactatcaat

Sequence 2230

- 45 MLNSTIKYDTKKKKLPKFSKGTKKKDGILDVISSGVKNDVNKVKDIGGKARDIGGTTFDK AKDIGTKALDKAKDVSSTVIKGIGDVFDYVGHPMKLVNKVFEKVGFNLDFMKNAPLPFDL MTAMIKKLKNGIKDFFNEGLDSAGGGDGSSFTKFPITTGYYPNGGAPGYSFNGGAHFGID YGAPYGTTIN

Sequence 2232 VLDTSLALSSAFVPMSFALSNVVPPMSLALPPMSFTLLTSFFTPELITSNIPSFFLVPLL NLGSFFFLVSYLIVELSIIKVAFNQVRRLNILNNILGDSLCKYY*

5 Sequence 2233

Contig_0730_pos_6435_6010,

is similar to (with p-value 3.0e-21)

>sp:sp|P42421|YXDJ_BACSU HYPOTHETICAL 26.6 KD SENSORY TRANSD UCTION PROTEIN IN IDH 3'REGION. >gp:gp|D14399|BACIOLO_11 Bac

- illus subtilis 15 kb chromosome segment contains the iol ope ron. NID: g709980. >gp:gp|Z99124|BSUB0021_70 Bacillus subtil is complete genome (section 21 of 21): from 3999281 to 42148 14. NID: g2636442.
- atcgatcaagtgatgagtatggaacttggtgcagatgattatatgcaaaaaccattttat
 15 acaaccglottaattgctaagctacaagctatttatagacgcgtttatgaatttgcagtt
 gaagaaaagagaacgttaagttggcaagacgctactgtggatttatcaaaagatagtatt
 caaaaagatgataaaactatctttttgtctaaaacagagatgattattttagagatgtta
 atcaataaacgtaatcaaatcgtgacacgagacactctcattactgctttgtgggatgat
 gaagcttttgttagtgataatactttaacagttaatgttaatagataagaaaaaaatta
 20 tcagaaattgacatggatagtgcaattgaaaccaaagttggtaaaggatacttagctcat

Sequence 2234

gaataa

MDQVMSMELGADDYMQKPFYTNVLIAKLQAIYRRVYEFGVEEKRTLSWQDATVDLSKDSI

QKDDKTIFLSKTEMIILEMLINKRNQIVTRDTLITALWDDEAFVSDNTLTVNVNRLRKKL
SEIDMDSAIETKVGKGYLAHE*

Sequence 2235

Contig 0730 pos_5606_4977,

٠. ٠.

ttataccttgtacaaagcgtgaaagaacaacttgggattgaagttaaagttgattcaata 40 gtggggaaaggaacaacgttttatttcattttcccacaacaaaatgaaatcattgagcgc atgtctaaagtgacaagattgtcattttaa

Sequence 2236

MKLLIDQENDDQRKRALLFEWSRINEMLDKQLYLTRLETHHRDMYFDYISLKRMVIDEIQ
45 VTRHISQAKGIGFELDFKDEQKVYTDVKWCRMMIRQVLSNSLKYSDNSTINLSGYNIEGH
VVLKIKDYGRGISKRDLPRIFDRGFTSTTDRNDTASSGMGLYLVQSVKEQLGIEVKVDSI
VGKGTTFYFIFPQQNEIIERMSKVTRLSF*

Sequence 2237

50 Contig_0730_pos_4513_4070,

is similar to (with p-value 8.0e-32)

>sp:sp|P42423|YXDL_BACSU HYPOTHETICAL ABC TRANSPORTER ATP-BI NDING PROTEIN IN 1DH 3'REGION. >gp:gp|D14399|BACIOLO_13 Baci llus subtilis 15 kb chromosome segment contains the iol oper on. NID: g709980. >gp:gp|Z99124|BSUB0021_68 Bacillus subtili s complete genome (section 21 of 21): from 3999281 to 421481

s complete genome (section 21 of 21): from 3999281 to 421481 4. NID: g2636442. >gp:gp|D45912|D45912_2 Bacillus subtilis g enome sequence between the iol and hut operon, partial and c omplete cds. NID: g1408482.

atgcttccactatcagttcaaaagttagataaacaaataatgcatgaacgttatcaacgt atagtagaagctttgaacattagtgatattagtgataaatatccatcagagttgtcaggt ggacagcgtcaacgtacctcagcagcaagggcatttattaatttaccttcaattatattt gctgatgagcctacaggtgctttagattctaaaagtacactagatttacttaagcgtctt aaatatatgaatgaggaatttaacacaaccatacttatggtgacacatgatccagtagcg gctagtttttcaaaccgtgttgtgatgttaaaggatggacaaatctttactgagttgtat caaggtgatgatgataaacaaacgttttataaagaaattataagaacgcaaagtgtactt ggtggcatcaattatgagctttaa

10 Sequence 2238

MLPLSVQKLDKQIMHERYQRIVEALNISDISDKYPSELSGGQRQRTSAARAFINLPSIIF ADEPTGALDSKSTLDLLKRLKYMNEEFNTTILMVTHDPVAASFSNRVVMLKDGQIFTELY QGDDDKQTFYKEIIRTQSVLGGINYEL*

15 Sequence 2239

Contig_0730_pos_3876_3457,

putative peptide of unknown function qtqqtctttttqctttatgctaattttttatttttgaaaaqacqaqqtcgtgaactatcq

ttattacaaattattggtctaacaaagaaagatatcatgaaaatgattatgttggagcaa ttgatgacatttatgatgacaactattgtaggtatcatattgggaatctttggttcgaaa attttactcatgattgtattgcgattattaggaatcaacgtgagtgtttctattatattt aattatcatgccattttagaaacgttattattaatagctgtgtcatatgtacttatagtc tttcaaagctatgtatatttacttaaacgttctattaaagagttagcgtctgatgtaaat aaaaaagagttcagtcatacacgcacaacacttggtgaagttgtattaqqtttcttataa

25

20

Sequence 2240

VVFLLYANFLFLKRRGRELSLLQIIGLTKKDIMKMIMLEQLMTFMMTTIVGIILGIFGSK ILLMIVLRLLGINVSVSIIFNYHAILETLLLIAVSYVLIVFQSYVYLLKRSIKELASDVN

30 KKEFSHTRTTLGEVVLGFL*

Sequence 2241
Contig_0730_pos_3418_2012,
is similar to (with p-value 2.0e-78)

- 35 >sp:sp|Q02001|TRPE_LACLA ANTHRANILATE SYNTHASE COMPONENT I (
 EC 4.1.3.27). >pir:pir|S35124|S35124 anthranilate synthase (
 EC 4.1.3.27) alpha chain Lactococcus lactis subsp. lactis
 >gp:gp|M87483|LACTRPOP_2 L. lactis trpE, trpG, trpD, trpF, t
 rpC, trpB trpA genes, complete cds. NID: g149514.

- 50 caacaatttgttcaaactattagaattttaaaaaagaaaattactgaaggagatatgttt caagtagttccttcaagaatttatagttataaacaccattttcaacacacaatttacatcaa ttaacttttcagttatatcaaaatttaaagcgacaaaatcctagtccatatatgtattat attaataaagatgtaccgattgtaataggaagttctcctgaaagttttgtaaaggtaaaa gatggaaaagtttatacgaatcctatagctggaacaattaaaagaggtcaaaataaaaa
- gatggaaaagtttatacgaatcctatagctggaacaattaaaagaggtcaaaataaaaaa
 gaagatgaaaataatgaaagacattaatgaaagatgaaaaggaattgagtgaacatcgt
 atgctcgtagatttaggaagaaatgatattcatcgaataagtaaaacaggcacttcacaa
 attaccaaactaatgacaatagaacgttatgaacatgtcatgcatatcgttagtgaagtt
 attggagaattaaaaccccatctatctcctatgagcgtcatcgcaagtttgctaccaacg
 ggtactgtctcaggtgcacctaaacttagagctatacagagaatatacgaatcttatcct

tataaaagaggtatctatagcggtggtgttgggtatatcaactgtaatcatcatttagat tttgcattggctatacgtaccatgattatcgatgaggaaaaagtcagtgtcgaggcagga tgtggagtagtatatgattctattccagagaaagaacttgaagaaacaaaacttaaagct aaaagtttattggaggtaactccatga

5

Sequence 2242

MDIVYKKVNAQITPEALAKLKQKKIIFESTNQQKLKGRYSIVVFDHYGKITLDNSQLLIK LDNHCEIVKNQPYQRLKEFVDKYYFEIKDKYLKDLPFISGFIGTCSFDLVRHEFKKLQDI KLEDHQTHDVQFYLVEDVFVFDHYKDELYIIASNLFSYRTKERLKESIERKIEDLKNIHF SVEDINYKSIPRHITTNISEQQFVQTIRILKKKITEGDMFQVVPSRIYSYKHHFQHNLHQ LTFQLYQNLKRQNPSPYMYYINKDVPIVIGSSPESFVKVKDGKVYTNPIAGTIKRGQNKK EDENNEKTLMKDEKELSEHRMLVDLGRNDIHRISKTGTSQITKLMTIERYEHVMHIVSEV IGELKPHLSPMSVIASLLPTGTVSGAPKLRAIQRIYESYPYKRGIYSGGVGYINCNHHLD FALAIRTMIIDEEKVSVEAGCGVVYDSIPEKELEETKLKAKSLLEVTP*

15

10

Sequence 2243

Cortig_0730_pos_1446_451,

is similar to (with p-value 8.0e-51)

- >sp:sp|P17170|TRPD_LACCA ANTHRANILATE PHOSPHORIBOSYLTRANSFER

 ASE (EC 2.4.2.18). >pir:pir|S42343|JS0340 anthranilate phosp horibosyltransferase (EC 2.4.2.18) Lactobacillus casei >gp:gp|D00496|LBATRP_2 Lactobacillus casei DNA, trp operon (trp D, trpC, trpF, trpB, trpA), complete cds. NID: g216754.

- 35 atggatgaggccacgctttctggtgaaaatatcatttatgaagttagcagcgaaagagca ttaaaaaaatatagtttaaaagcagaagaagtcggtttagcttatgcaaataatgacacg ttgataggtggttcacctcaaacaaataaacaaattgcattgaatatcctaagtggcacg gatcactcaagtaaacgagatgtagttttgttaaatgctggaattgctttatatgttgct gagcaagtggaaagtatcaaacatggcgtagagagagcgaaatatctcattgatacaggt
- ${\bf 40} \qquad {\tt atggcaatgaaacaatatttaaaaatgggaggttaa}$

Sequence 2244

MTLLEKIKQNKSLSKKDMQSFIVTLFDSNIETNVKVELLKAYTNKDMGQYELTYLVEYFI
QTNYPNQPFYNKAMCVCGTGGDQSNSFNISTTVAFVVASAGVPVIKHGNKSITSHSGSTD
VLHEMNIKTNKMNEVEQQLNLKGLAFISATDSYPMMKKLQSIRKSIATPTIFNLIGPLIN
PFKLTYQVMGVYEASQLENIAQTLKDLGRKRAILIHGANGMDEATLSGENIIYEVSSERA
LKKYSLKAEEVGLAYANNDTLIGGSPQTNKQIALNILSGTDHSSKRDVVLLNAGIALYVA
EQVESIKHGVERAKYLIDTGMAMKQYLKMGG*

50 Sequence 2245

Contig 0730 pos 447 70,

putative peptide of unknown function

Sequence 2246 MTILNEIIEYKKTLLERKYYDKKLEILODNGNVKRRKLIDSLNYDRTLSVIAEIKSKSPS VPOLPORDLVQQVKDYQKYGANAISILTDEKYFGGSFERLNQLSKITERLTFCTSSACSS

Sequence 2247 Contig 0732 pos 871 1170,

pulacive peptide of unknown function

10 atggaccatattccacaagtagttatttttaataaaaaagacttatgtaacgaacagatg gatgtacctgtatctaaatctgcgcatgtttttgtatctagtcgtgatgaaaatgataaa caaaaqqtqaaaaatttaqtaattcaaqaaataaaaaataqtctcaqcccatacqaaqaa attgtagatagtgctgatgcagatagattatattttcttaaacaacacacgcttgttact gaattaatatttgacgaaacacaagcatcttatcgtatcaaaggatttaaaaaaattataa

15

Sequence 2248

MDHIPOVVIFNKKDLCNEQMDVPVSKSAHVFVSSRDENDKOKVKNLVIQEIKNSLSPYEE IVDSADADRLYFLKQHTLVTELIFDETQASYRIKGFKKL*

20

30

Sequence 2249

Contig 0732 pos 3289 4629,

is similar to (with p-value 0.0e+00)

>sp:sp|Q59812|GLNA STAAU GLUTAMINE SYNTHETASE (EC 6.3.1.2) (25 GLUTAMATE--AMMONIA LIGASE) (GS). >qp:qp|X76490|SAGLNAR 3 S.a ureus (bb270) glnA and glnR genes. NID: gl134885.

atgccaaaacgtaqttttacaaaagatgatattcgtaaatttgctqaagaagaaaacgta agatatttaagattacaattcactgatattttagggactattaaaaaatgttgaagttcca gtaagtouattagaaaaagtattagataatgaaatgatgtttgatggttcatcta: tgaa ggtttcgttcgtatcgaagaatcagatatgtatttacatcctgatttagatacttgggtt atcttcccttqqactqctqqacaaqqaaaaqttqcacqactaatctqtqatqtatttaaa acagatggtacaccatttgaaggtgatccacgagctaacttgaagcgtgtattaagaaga

atggaagatatgggctttactgattttaatctagggcctgaaccagaatttttcttattt aaattaqacqaaaaagqcqaacctacattaqaattaaacqatqatqqtqqttatttcqat 35 ttagctcctacagatttaggtgaaaattgtcgccgtgacatcgttttagaattagaaqat atqqqctttqacattqaaqcaagccaccatgaagtagcgccaggtcaacatgaaattgac

tttaaatatgcagatgccgttacagcatgtgataatatccaaacatttaaactagttgtt aaaacaattqcacqtaagcataatttacatqcaacatttatqccaaaaccattatttqqt qtaaacqqtaqtqqtatqcacttcaacqtatcactatttaaaqqaaaaqaqaatqcqttc 40 tttgatcctgaaggtgatttacaattgactgatactgcatatcaatttacagctggtgtc

cttaaaaacgctagaggattcactgcagtatgtaatccaattgtcaactcatataaacgt $\verb|cttgtaccaggttacgaagcaccatgttatattgcatggagtggtaaaaaccgttcacct|\\$ ttagtacgtgttccaacatctagaggtctatcaactcgtattgaagtacgctcagttgac $\verb|cctgcagctaacccgtacatggcattagcagcaatcttagaagcagggttagatggaatt|\\$ 45

gagaataaacttgaggttccagaacctgtaaaccaaaatatctacgaaatgaatcgtgaa gaacgagaagcggttggtatccaaqacttaccttcaactttatacactgcgttaaaagca aadtcaasatcqattqaatqqqattactataqaactcaaqtatccqaatqqqaaacaqaa

cagtatactaagcaatactaa

50

Sequence 2250

MPKRSFTKDDIRKFAEEENVRYLRLQFTDILGTIKNVEVPVSQLEKVLDNEMMFDGSSIE GFVRIEESDMYLHPDLDTWVIFPWTAGQGKVARLICDVFKTDGTPFEGDPRANLKRVLRR MEDMGFTDFNLGPEPEFFLFKLDEKGEPTLELNDDGGYFDLAPTDLGENCRRDIVLELED MGFDIEASHHEVAPGQHEIDFKYADAVTACDNIOTFKLVVKTIARKHNLHATFMPKPLFG VNGSGMHFNVSLFKGKENAFFDPEGDLQLTDTAYOFTAGVLKNARGFTAVCNPIVNSYKR LVPGYEAPCYIAWSGKNRSPLVRVPTSRGLSTRIEVRSVDPAANPYMALAATLEAGLDGT ENKLEVPEPVNQNIYEMNREEREAVGIQDLPSTLYTALKAMRENKSIKNALGNHIYNQFI NSKSIEWDYYRTQVSEWEREQYIKQY*

Sequence 2252

MNKDQKNQYELEKLLKENEELKAEKALSQMKNETRSMLNESGLENFDDQIVNILVNTDAE KTRKNVESFTNLLNOMVKSNVEKALRODSPVSTOSNKMTKDEESDYLVSGRKCL*

15

10

Sequence 2253

Contig 0732 pos 8090 8434,

putative peptide of unknown function

gatgaagaatcagattatcttgtttcagggagaaaatgtctataa

atgctaattattttaattttactagcattaagttttggtttaattcctatttctattaac
ttgcstatattatggtttaattccctttattttatgggagctatgggatgggctacacaa
gctcctcaacaacatatattattgaaaaaacatcctgaatatggaggctctgctgtcgct
ttaaatagttctattaattatttaggcagtgctatgggatcagcaatcggaggaattatt
ttatttaatgctaatagtacaaatgtactaatatatagtgctttaggaattactattatt
ggtattttattacaattactaaatttatccctagaaaaaaattaa

25

Sequence 2254

MLIILILLALSFGLIPISINLPILGLIPFILWGAMGWATQAPQQHILLKKHPEYGGSAVA LNSSINYLGSAMGSAIGGIILFNANSTNVLIYSALGITIIGILLQLLNLSLEKN*

30 Sequence 2255

Contig_0732_pos_7495_7091,

putative peptide of unknown function

atggaaaatcaacgcagacagacaaacaaactctgtgaacttaaagcaaaacacaaaa gatcaaaataataacgcaaatgatgaagcagcttctccaactagcgaacaaaatgcagct atagcacaagcaaagtcatatgcaaatacattacctatctctaagaaaaagtttatacaaa caattaacttcggaatacggagagaaatatccggcagacatagcacagtatgctgttgac catatcagtgtagattataaaatgaatgcactgagattagcaaaaagttacgtaaaaaat ataaacatttctaatcaagcgttatatgatcaactcgtttcagaaaaatggagaaggattt actcctgaagaagcacaatatgcaatgaatcatttagataggtaa

40

Sequence 2256

MEKSTQTDKQNSVNLKQNTKDQNNNANDEAASPTSEQNAAIAQAKSYANTLPISKKSLYK QLTSEYGEKYPADIAQYAVDHISVDYKMNALRLAKSYVKNINISNQALYDQLVSENGEGF TPEEAQYAMNHLDR*

45

Sequence 2257

Contig_0733_pos_5081_5728,

putative peptide of unknown function

gtgtctacttcccaattgattgtttcgaattccggacgagctaactcagggtttttctct
aattcagcaacagtgttgaatttagcgttagcacgttttaagatcgggtatttcccactt
gcagttgatactgaagttttttgtaccaattctgataagtcttggactgtcttaacttct
ttttcaggaatatatttaatatcctctgggatagttacgccaacgtcatcagatttaaca
ttgtcacgtttagccccttttgatttcatgtactgttcaaatgctagaatttcttcgttt
gtctctggattttggtttaatttagccatagaacgtttcgctccttctttttttgtcttt

55 tcttttttaattcttcttctgttggttcttctactttttcaatagtaggtgtttctgg
gtttcttcaggtttgtcatctggttttggtgcatcatcaggtttttcttcatcttgaagt
ccttctggttcatcatcagaaggtttgttctctgattcttctccagaattaccatcttg
ttatcttcaacttctgcaccttcatctttaggtggttcatcttgttaggtgctgacgct

teaatttetttgaaagetgttegagttettegtactetttetttga

Sequence 2258

VSTSQLIVSNSGRANSGFFSNSATVLNLALARFKIGYFPLAVDTEVFCTNSDKSWTVLTS FSGIYLISSGIVTPTSSDLTLSRLAPFDFMYCSNARISSFVSGFWFNLAIERFAPSFLSF SFFNSSSVGSSTFSIVGVSGVSSGLSSGFGASSGFSSSEVPSGSSSEGLFSDSSPELPSL LSSTSAPSSLGGSSCLGADASISFESCSSSSYSFF*

Sequence 2259

Contig 0733 pos 11496 10366,

10 putative peptide of unknown function atgaattcgttgcacatagcaggacgtattttcaaacagacgattcgagatgtaagaaca ttggcactgttacttattgcacctatattactattgtcgctactatattacatttttaca qttqccqataatacqaatqqcqtaacaqttqqqqttcacqatqtaccaqattcattaatq actqaattacatqataaaqatattcacqttaaacattataaaaatqacaatqatataaqt 15

qataaaattaaaqacgacaaattaacaggatttttqcacagtqatgqtcaaaaaqtatca qtqacttatqctaacqataatcctacacaaqcaqqaqaactaacaqqtqcaaatcaaaaa tggttaatgagtcataacatgaatgccatgaaagataatactaataaattgcatcaagcg ttaactaaaatacaacaaaaatgcccggggatgggggagacacgcctcatcaagatatg qctaaaccatataaactaacaacqcactatttatatqqttcatcaqattctacqtatttt

20 qatatqataaatcctattttaattqqattttttqtctttttctttacqtttttaatttct ggcattggcttattaaaagagcgtacttctggcacattagaacgtttacttgcctctcca ataaaaaqaaqtqaaattatttttqqttatqttttcqqttatqqtaqttttaqcqttatc caaacaatagttqtcqtattatatqcaatttatattctqcatataqacttaqtaqqttcq atatggttcgtactattaacggcaatattaacagcgcttgtcgctgtgacattcggtata 25 $\verb|ttattatctacctttgcttcctcagaattccaaatgattcaatttataccattagtcata|\\$

gtgccacaagtactatttgcaggcattataccaattgaatcaatgaataaaggattacaa tacttttcacatatcatqccqttattctataccqqccaaacqatqcaaaatattatqatc aagggttatggattcaacgatatttacatttatttaattgtgttattcgcatttttcatt ttcttattgattttaaatattataggcatgaaaagatatagaaaagtttag

30

35

Sequence 2260

MNSLHIAGRIFKQTIRDVRTLALLLIAPILLLSLLYYIFTVADNTNGVTVGVHDV.DSLM TELHDKDIHVKHYKNDNDISDKIKDDKLTGFLHSDGOKVSVTYANDNPTOAGELTGANOK WLMSHNMNAMKDNTNKLHQALTKIQQKMPGDGGDTPHQDMAKPYKLTTHYLYGSSDSTYF DMINPILIGFFVFFFTFLISGIGLLKERTSGTLERLLASPIKRSEIIFGYVFGYGSFSVI QTIVVVLYAIYILHIDLVGSIWFVLLTAILTALVAVTFGILLSTFASSEFOMIOFIPLVI VPQVLFAGIIPIESMNKGLQYFSHIMPLFYTGQTMQNIMIKGYGFNDIYIYLIVLFAFFI FLLILNIIGMKRYRKV*

::

40 Sequence 2261

Contig 0733 pos 10356 9706,

putative peptide of unknown function

atgaaccaagatattaagtcattagttgaaaccattgtgcctcaacttgaatatttaagc gataaacaaagacgtgtcatagaaagtgctattgcattattcagtgaacaaggatttgat 45 aaaacgagtactaaagaaattgcgcagcgtgcaaatgtcgcagaaggaacggtatttaag cagtttaaaagtaaaagaatgttattatacgcaggattaattccaattttaagagatcat atcgcacctgtagctgttaaacaatttacaqatgaattaaacqaagtaacccattttqat cttaaagtcatcttaaatgaagctattactaatgaagattttcaaaatatattagttaat 50 attttcacccataaattaacqaqtaaattaaaaqataaaattqaatqqtttatcqataat

ggt pacatgcgcaatgttaaacctgagttttttatacgtacggtcgtcgcacaaal.tta aatttaaatatcccaataataqttaataatgactatactaagggtgaaaactatcagcag tttgcgttattcgtaaaagagggcttatataggatgtttaagcgagaatag

55 Sequence 2262

> MNQDIKSLVETIVPQLEYLSDKQRRVIESAIALFSEQGFDKTSTKEIAORANVAEGTVFK QFKSKRMLLYAGLIPILRDHIAPVAVKQFTDELNEVTHFDAFINLFVENRSKFIYDNRRI LKVILNEAITNEDFQNILVNIFTHKLTSKLKDKIEWFIDNGDMRNVKPEFFIRTVVAQIL NLNIPIIVNNDYTKGENYQQFALFVKEGLYRMFKRE*

Sequence 2263 Contig_0733_pos_4489_3998, putative peptide of unknown function

- atgccactttttgtgacagattatttaaatgaaaaggaaagatatgtaggctatttagca agtttatgtgcaggtttagaagtgccgtttatggttatattaggtatattatcagctaaa ttgccaactcgaactttattgataattggttctgtatttggtggcgcattttactttagt attggtgtatttaaaaaattttcatatgatgcttgttggacaaatatgtttagccatcttt ctagcaatattactaggtcttgggattagttattttcaagatattcttcctgattttcca ggttatgcatcaacactttttgccaatgccatggtaataggacaacttggtggtaatttg
- 10 ggttatgcatcaacactttttgccaatgccatggtaataggacaacttggtggtaatttg ctaggtggtgtatgagtcattgggttggtttggaaaatgtattctttgtctcagcaagt tctatcttcgtagggatgatactcatcttgtttacgaaagatcaaaaaattacaatagaa gatgtggagtag
- 15 Sequence 2264
 MPLFVTDYLNEKERYVGYLASLCAGLEVPFMVILGILSAKLPTRTLLIIGSVFGGAFYFS
 IGVFKNFHMMLVGQICLAIFLAILLGLGISYFQDILPDFPGYASTLFANAMVIGQLGGNL
 LGGVMSHWVGLENVFFVSASSIFVGMILILFTKDQKITIEDVE*
- 20 Sequence 2265
 Contig_0733_pos_3991_3503,
 putative peptide of unknown function
 atgacagegatattatggattttaattattatageetttgegttageatttattggttta
 attaaaceggtgataceateacttttaatgttatggattgtttttaatttateaattt
 25 ggtttcatgagggaagattategtggattttttatgttgeaatgattatetttaecatt
 atgatattagtageegattttgtgatgaataaatatttegteaategetttggaggaagt
 aaaataggtgaataceaegegeteataggtgtgattgtaggttgttteeteeee
- aactttcaacaagctataaaggtgagttttggctcagtgattgcatttttagcgagtaca 30 attgctcaaggtctaataatgattgtaatggttatttggttctttttagatgtctttcta ataaattaa

tttggtattatcattattccttttgttgctgtgttcattgttgaattggttcaagggttt

Sequence 2266

MTAILWILIIIAFALAFIGLIKPVIPSLLMLWIGFLIYQFGFHEGRLSWIFYVAMIIFTI
35 MILVADFVMNKYFVNRFGGSKIGEYTALIGVIVGCFVFPPFGIIIIPFVAVFIVELVQGF
NFQQAIKVSFGSVIAFLASTIAQGLIMIVMVIWFFLDVFLIN*

Sequence 2267 Contig 0733 pos 2319 1897,

- 50 Sequence 2268
 MRKWLTLLLITTLVLTACGKSNEKASLEKSIDQLKKENKDLKKQKKKLQEQKDKLKHKQD
 SLQEDVNDLPAKSTSRDKKNKDNHDAKEKSSDNQSTSANHDDQTNKIKSNQDEHDSQSSK
 PHTQQKPSQNDRKNNHRQER*
- Sequence 2269
 Contig_0733_pos_765_244,
 putative peptide of unknown function
 atgtcaaaaatcttaaacacacaattaactggtatttttaatcggcttgaaaaacaagag
 ttggatattcaaatggcagctcaatgtctcattcaagcaattggtggagaaggacatgtc

Sequence 2270

10 MSKILNTQLTGIFNRLEKQELDIQMAAQCLIQAIGGEGHVYIKGYDDLKFYESFILQSHE KLASSLPLEDLQNFNDIDTTDRVLLFSPYYTSEVESDVLQLIDLDVDLVLICNNPKRDDF PNHLIHYVNLSTPRPIVYTEDYDKIIOPHPMALNYIYYDIYTOMIEMTRDLDL*

Sequence 2271

- 15 Contig_0734_pos_2644_3024,
 putative peptide of unknown function
 atgcaccagcttgtccatactgacgataatgcaataaatgtagatgtattaccaccacaa
 caagctgacggtaaagcgactaatccagaacaattatttgctgcaggttacgcttcatgc
 tttaatggtgcatttgatttaattttaaaacaaaataaagtgcgcgatgctgaacctgaa
 20 gtaacgttaacggtacgcttggaagacgatccagatgccgaaagcccaaaacttagcgtt
 gatattcatgcaaaagttaaaaatgttttatcacaagaagatgctgaaaaatatttacaa
 gatgcgcacgacttttgtccgtattcaaaagctacacgtggcaatatcgatgtaaactta
 aatgttgaagtagaataa
- 25 Sequence 2272
 MHQLVHTDDNAINVDVLPPQQADGKATNPEQLFAAGYASCFNGAFDLILKQNKVRDAEPE
 VTLTVRLEDDPDAESPKLSVDIHAKVKNVLSQEDAEKYLQDAHDFCPYSKATRGNIDVNL
 NVEVVE*
- 30 Sequence 2273
 Contig_0734_pos_3557_4369,
 is similar to (with p-value 1.0e-96)
 >gp:gp|Y17554|BLY17554_1 Bacillus licheniformis arcA, arcB,
 arcC arcd arcD genes. NID: g3687415.
- 35 atggatgataaatateegttttatettgaceeaatgeetaatetatattteacaegtgat ceteaagetteaattggtagaggtatgacagtaaategtatgttttggagaggegagegaggaategattteattteatatattttaaaacateateetagatttaaagatgagaat atteetttatgggtggategtgactgteegtteaacategaaggtggagaegaactggtg ttatetaaagatgtaettgeaatagggatatetgaaegtaettetgeaeaageaattgaa
- 45 atcatcgacggtgctcgtgaacaatggaatggttcgaatactttatgcatacgtccc ggtgtggttgtaacttatgatcgtaattatgtttctaatcaattgttacgtgagcatggt atcaaagttattgaaattcctggaagtgaacttgtacgtggtcgaggaggccctcgatgt atgagtcaacctttaataagagaagatctatag
- 50 Sequence 2274
 MDDKYPFYLDPMPNLYFTRDPQASIGRGMTVNRMFWRARRRESIFISYILKHHPRFKDEN
 IPLWVDRDCPFNIEGGDELVLSKDVLAIGISERTSAQAIERLARRIFKDPLSTFKKVVAI
 EIPTSRTFMHLDTVCTMIDYDKFTTHSAILKSEGNMNIFIIEYDDKAEDIKIQHSSHLKQ
 TLEEVLDVDEITLIPTGNGDIIDGAREQWNDGSNTLCIRPGVVVTYDRNYVSNQLEREHG
 55 IKVIEIPGSELVRGRGGPRCMSQPLIREDL*

Sequence 2275 Contig_0734_pos_4456_5061, is similar to (with p-value 2.0e-70)

>gp:gp!AJ001330|LSAJ1330_2 Lactobacillus sake DNA encoding the arginine-deiminase pathway genes. NID: g2764610.
atgaaagggcgcatcccatgaaaaacatcaagaaaccctttgatttaaaaggtaagtca ttgctaaaagagtatgatcttacaggtgaagaatttgaaggtctaatcgattttgctatg acattaaaaaaatataaacaacaaggcacaccacatcgatatttagagggtaagaatatt gctttactcttcgaaaagacatctactcggacgcgtgccgcatttacagttgcatctatt gatctaggtgcacaccctgaatttttagggaaaaatgatattcaattaggaaaaaagaa tctgttgaggatactgctaaagttttaggcagaatgtttgatggaattgaatttagaggt ttttcccaaaaaactgttgaacaattggccgaattctctggagtaccagtatggaatggg ttaactgatgatgcatcctacacaaatgttagctgattatatgacaattaaagaaaat tttggatatttaaaaggcatcaacctaacttatgtaggaaacggacgtaataatgttgca cattcgcttatggtggcggtgctttcaatattcaatctgatatggaggccacgctggag gattag

15 Sequence 2276

MKGAHPMKNIKKPFDLKGKSLLKEYDLTGEEFEGLIDFAMTLKKYKQQGTPHRYLEGKNI ALLFEKTSTRTRAAFTVASIDLGAHPEFLGKNDIQLGKKESVEDTAKVLGRMFDGIEFRG FSQKTVEQLAEFSGVPVWNGLTDDWHPTQMLADYMTIKENFGYLKGINLTYVGNGRNNVA HSLMVAVLSIFNLIWEATLED*

20

30

Sequence 2277
Contig_0734_pos_5331_6341,
is similar to (with p-value 4.0e-96)

>gp:gp[Y17554|BLY17554_3 Bacillus licheniformis arcA, arcB,

25 arcC and arcD genes. NID: g3687415.

aatattggtcttattatttcagtattaggtgcatggctaggttggacattacttgccgga
gagttgccttttattgtagctaaagatggtttgtttcctaagtggtttgcaaaagaaaat
aaaaatggggcacctatgaacgccttattcattactaatgtgttagttcaaatattcctt
attagtatgctgtttaccaaaagtgcttatcattttgcattttctctcgcggcaagtgct
atactttatccatacatgttcagtgcgttttatcaggtgaaatatacaatagaacacaag
ttaactgcaacgcctaaacaatggattataggaattctagcatctatttatgcaatttgg

40 ctggtatacgcgtcaggtatagattacttgttacttaccatgttgctctatattccgggg attatcgtctatgttgttcagaaaaataatcaaaagcgacttacacaatttgactat atttcttcagtcttatcgttattttagcattgatagggttattacgatga

Sequence 2278

45 VASILLWSVHFLILKGVETAALINSIVTITKLIPILLVIICMIVAFNFNTFKIGFFGMDG
YGSLSFHFANTMSQVKSTMLVTVWVFIGIEGAVVFSGRAKNKKDVGTATVIGLISVLLIY
FLLTVLAQGIVIQNHISKLEAPSMAQILAYIVGDWGATFVNIGLIISVLGAWLGWTLLAG
ELPFIVAKDGLFPKWFAKENKNGAPMNALFITNVLVQIFLISMLFTKSAYHFAFSLAASA
ILYPYMFSAFYQVKYTÏEHKLTATPKQWIIGILASIYAIWLVYASGIDYLLLTMLLYIPG
50 IIVYVVVQKNNQKRLTQFDYIFFSLIVILALIGLLR*

Sequence 2279 Contig_0734_pos_2115_1636, putative peptide of unknown function

55 gtgccagatcatatagagaaagtagtggtcgtagtaaatcctcaaatgtccaccataaag agaataattaatcaaactgatattaacacaatccaattacatggaaatgaaagcattcaa ttaattagaaatattaagaaacttaattcaaaaataagaatcataaaagcaattccagca acaagaaatttaaataacattcaaaagtataaagatgagatagacatgtttattata gatacaccatcaatcacatacggagggacaggtcaaagttttgactggaaattattaaaa

aaaataaagggcgttgattttctcattgcgggtggtttggattttgaaaaggtaaaacga ttagaaatatattcatttggacaatgtggttatgacatctcaactggcattgagtcacat aatgaaaaagattttaataagatgactcgaatattaaaatttttgaaaggagacgaatga

5

Sequence 2280

VPDHIEKVVVVVNPQMSTIKRIINQTDINTIQLHGNESIQLIRNIKKLNSKIRIIKAIPA TRNLNNNIQKYKDEIDMFIIDTPSITYGGTGQSFDWKLLKKIKGVDFLIAGGLDFEKIKR LEIYSFGOCGYDISTGIESHNEKDFNKMTRILKFLKGDE*

10

Sequence 2281

Contig 0734 pos 1632 424,

is similar to (with p-value 0.0e+00)

>sp:sp|Q01998|TRPB_LACLA TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20). >pir:pir|S35129|S35129 tryptophan synthase (EC 4. 2.1.20) beta chain - Lactococcus lactis subsp. lactis >gp:gp |M67193'LACTRPOP_7 L. lactis trpE, trpG, trpD, trpF, trpC, t rpB trpA genes, complete cds. NID: g149514.

atgaaaattcaaacagaagtagatgaattgggctttttcggtgaatatggtggccaatat
20 gtacctgaaacattgatgccagctattattgaacttaaaaaagcatatgaggacgcgaaa
tcagatactcacttcaagaaagaatttaattattttaagtgaatatgttggtagagaa
acgcctttaacatttgctgaatcatacacaaaattgttaggtggtgccaaaatatatctt
aaaagagaagacttaaatcacactggtgctcataaaattaataacgcgataggacaggca
ctattagctaaaaggatggggaaaactaaattagtagccgaaacaggtgctggtcaacat

30 attttaagtaaagaaggacgacttccagatgcgttagtcgcgtgttgttggtggaggatcc aattcaataggtacgttctatccatttatacaagatgatgttaaattatatggggtagaa gctgcgggaaaaggaagtcatacgcataatcatgctttagctatagggaaaggtaaacca ggtgtattacatggttccaaaatgtaccttattcaaaatgatgatggacaaattgaattg gcacactctatatcagcgggactagattatccaggtattggacctgaacattcgtattat

aatgatattggtcgtgtatcatatgtaagtgctacagataatgaagctatggaagcactt ataacattctcaaaagttgaaggtatcattccagcaattgaaagtgcacatgcattgagt tatgttgaaaaattagcgccaaatatggatgaaaaagaaattattgttgtgactattca ggtcgtggagataaagatatggaaacaattaaacaatacaaagaaaacggtggtgaacaa aatgagtaa

40

45

35

Sequence 2282

MKIQTEVDELGFFGEYGGQYVPETLMPAIIELKKAYEDAKSDTHFKKEFNYYLSEYVGRE TPLTFAESYTKLLGGAKIYLKREDLNHTGAHKINNAIGQALLAKRMGKTKLVAETGAGQH GVASATIAALFDMDLIVFMGSEDIKRQQLNVFRMELLGAKVVSVSDGQGTLSDAVNKALQ YWVNHVEDTHYLLGSALGPDPFPTMVRDFQSVIGNEIKSQILSKEGRLPDALVACVGGGS NSIGTFYPFIQDDVKLYGVEAAGKGSHTHNHALAIGKGKPGVLHGSKMYLIQNDDGQIEL AHSISAGLDYPGIGPEHSYYNDIGRVSYVSATDNEAMEALITFSKVEGIIPAIESAHALS YVEKLAPNMDEKEIIVVTISGRGDKDMETIKOYKENGGEONE*

50 Sequence 2283

Contig 0734 pos 0 404,

is similar to (with p-value 8.0e-20)

>sp:sp|P17166|TRPA_LACCA TRYPTOPHAN SYNTHASE ALPHA CHAIN (EC 4.2.1.20). >pir:pir|S42347|JS0344 tryptophan synthase (EC 4 .2.1.20) alpha chain - Lactobacillus casei >gp:gp|D00496|LBA TRF_6 Lactobacillus casei DNA, trp operon (trpD, trpC, trpF, trpF, trpA), complete cds. NID: g216754.

atgggtgatttaaattttattcatcatttaaaaacattaactgagaatggagcagacatt gttgaaattggtgtgccattttctgatcctgttgcagatggacctataatcatgaaagca

gggcgcaacgctattgacgagggttcaaacattaaattcatttttgatgaattaataaaa aataaaaatactatttcatctaagtatgtattaatgacttattataatattctaagtgct tatggagaagaattatttttggataagtgtgatgaagctggtgtttatggtttaattatt ccagatttaccttacgaacttacaaaaaagtttaaaaaagatttttatcatcattctgtt aaaataatatcgttaattgccatgaccgcaagtgatgctaggat

Sequence 2284
MGDLNFIHHLKTLTENGADIVEIGVPFSDPVADGPIIMKAGRNAIDEGSNIKFIFDELIK
NKNTJSSKYVLMTYYNILSAYGEELFLDKCDEAGVYGLIIPDLPYELTKKFKKDFJHHSV
KIISLIAMTASDARX

Sequence 2285
Contig_0735_pos_1041_2267,
is similar to (with p-value 3.0e-89)

aaagttaaacacatcgttaaagaataa

5

10

>gp:gp|AF024571|AF024571_1 Staphylococcus aureus high affini
ty proline permease (putP) gene, complete cds. NID: g2565310

atqaqtttaqtatatqacaaacttactcaagatcaaccgtatcattcgtggtttaatatt gttgagcatttcttaccttctgatagtcatgatttgttagatattggttgcggtactggc 20 aacttaacacaattactaacqtcactaqqtqaaqtcactgqtatggatattagtgtagat atgttatcaatagctagacaaaaacaaatcaagtgaagtggatcgaaggtaatatgact cactttaatttgaacaaaaatttaatatgattacaatattttqtqattcactqaattat aatggtgtttttatttttgatgtacatactgttcataaaatgaaaacattatttaataat aaaagttatattgatgaatctgataatgtttttgtaggttgggatgcaatatgtggggat gaaccattagtaagatttatgtctatcaaatcacataaattactaccaaaagccagacgt ctgggaataagttggatggcagtcggtctattaggagcgattggtgtaggattaacagga atgagtcaaatattatttcatccgcttgtaggtggatttttattagcagccatccttgct qcaataatgagtactatctcttcacaattactagtaacatcaagttctttaactgaagat 30 attggacgcttatcagttctacttgttgcgatagttgctattacgattgcttggcatcca aacgatacaatactaaatttagttggtaatgcttgggctggttttggagctgcatttagt cctttagtactctactctttatattggaaagatttaacacgtgcaggagctattagcgga atggtagctggtgctgtggttgttattgtttggatttcttqqataaaacccttqqctaca 35 atcaatgcattctttggtatgtatgaaatcattccaggtttcataattaqcqtattgatt acctacatcgtaagtaaattaacaaaaaacctgatgattatgttattgaaaatcttaat

40 Sequence 2286
MSLVYDKLTQDQPYHSWFNIVEHFLPSDSHDLLDIGCGTGNLTQLLTSLGEVTGMDISVD
MLSIARQKTNQVKWIEGNMTHFNLNKKFNMITIFCDSLNYLETLNDVKMTFERVYQHLNK
NGVFIFDVHTVHKMKTLFNNKSYIDESDNVFVGWDAICGDEPLVRFMSIKSHKLLPKARR
LGISWMAVGLLGAIGVGLTGISFISERHIKSEDPETLFIVMSQILFHPLVGGFLLAAILA
45 AIMSTISSQLLVTSSSLTEDFYKLIRGSDKASSHQKEFVLIGRLSVLLVAIVAITIAWHP
NDTILNLVGNAWAGFGAAFSPLVLYSLYWKDLTRAGAISGMVAGAVVVIVWISWIKPLAT
INAFFGMYEIIPGFIISVLITYIVSKLTKKPDDYVIENLNKVKHIVKE*

ggagaagttgctttacgttgtattaatccaaaatgtcaggcacagcttattgaaggactt atacatttcgtttcaagacaagcgatgaatatagatggtttaggtactaaaattattcat cagctatacgaaaatcagttaatcaaagatgtcgcagatattttctatttgaaagaagaa gatttattaccattagagcgaatgggaaagaagaagttgataatcttttattagcgata gaaaaatctaaagaacagtcattagagcatttattatttggacttggtattagacattta ggtgtaaaagctagtcaagtacttgctgagcgatatgaaacgatggatcaactttttaa ggtgtaaaagctagtcaagtacttgctgagcgatatgaaacgatggatcaactttttaaa gtaactgaaagtgaattaattgaaattcaagatattggagataaacttgcacaatctgt gtaacatatctcgaaaatagtgatattcgttcattaattgaaaattaagtaataaaaa gttaatatgtcttataaaggaattaaacaactgaaatcgaaggtcatcctgatttagt gggaaaacaattgtattaacagggaaactcgagcaaatgacgagaaatgaagcatctgaa tggttgaaaatgcaaggtgctaaagttacaagcagcgtgactaaaagtactgatattgtc atagctggagcagatgcagggtctaaattagccaaagctgagaagtatggtactgaaatt tggactgaagcagcatttattgaaaaacaaatggaatctaa

15 Sequence 2288

10

20

MGYTQKSPRWAIAYKFPAEEVITKLLDIELSIGRTGVVTPTAILEPVKVAGTTVSRASLH
NEDLIHERDIRIGDSVVIKKAGDIIPEVVKSILDRRPNESEIYHMPTHCPSCGHELVRIE
GEVALRCINPKCQAQLIEGLIHFVSRQAMNIDGLGTKIIHQLYENQLIKDVADIFYLKEE
DLLPLERMGKKKVDNLLLAIEKSKEQSLEHLLFGLGIRHLGVKASQVLAERYETMDQLFK
VTESELIEIQDIGDKLAQSVVTYLENSDIRSLIEKLSNKNVNMSYKGIKTTEIEGHPDFS
GKTIVLTGKLEQMTRNEASEWLKMQGAKVTSSVTKSTDIVIAGADAGSKLAKAEKYGTEI
WTEAAFIEKQNGI*

Sequence 2289

25 Contig_0735_pos_3414_2596,
 is similar to (with p-value 1.0e-49)
 >gp:gp|Z99107|BSUB0004_111 Bacillus subtilis complete genome
 (section 4 of 21): from 600701 to 813890. NID: g2632866. >g
 p:gp|Y15254|BSYERABCD_7 Bacillus subtilis 13kB DNA fragment,
30 from yerA to sapB gene. NID: g2577959.

qaqtatqaaattaqaatcaaaqatqqaaatactccacqtqctctcattaqtaaaactaaa

gacgataaagaaccacaagttcatatctatcataattag

45

50

40

Sequence 2290

MSÉKEKKSKNANENLGLNPSHNGETDEEKIAKNSPAYLSNILEQDFYGNSDSKGKNIKGM TIGLAMNSVYYYKKEKDGETFSKDLSDKEIEKQGKQMASEMLSRLRENSDLKDIPIHFAI YKQSSQDSITPGEFIVGTTVEEGKTKINSWDNINEKAALIPSSTAADYDETLNNNFKQFN DNLQSYFSNFTQAVGKVKFVNKKAKQLTVDLPIDYYGQAETIGITQYVTEQAEKYFDKLD EYEIRIKDGNTPRALISKTKDDKEPOVHIYHN*

Sequence 2291 Contig 0735 pos 858 538,

55 putative peptide of unknown function atgtttatgtgccacttctttaacagatctagcaatggattgaacttgacgttcattgtt cccgtgacagactacaaaataaaggggataaaacctcttgggaatgatataagaatatta ggtgcatcaagtgatcatttgatgattgatttaaataaccaagatcattatcaaatcggt galaaacttcaatttagcttgaattatgaagcactgtctcagagcatgtatatgaaaaa

ttaactaagttatatagtagtgattcaaaaatagaatcccttgttcagaacttcgatatgcctatatattcccagtgctaa

Sequence 2292

MFMCHFFNRSSNGLNLTFIVPVTDYKIKGIKPLGNDIRILGASSDHLMIDLNNQDHYQIG DKLQFSLNYEALSQSMYMKNLTKLYSSDSKIESLVQNFDMPIYSQC*

Sequence 2293

Contig 0736 pos 4884 0,

is similar to (with p-value 3.0e-23) 10 >gp:gp[U93876|BSU93876 19 Bacillus subtilis aminoglycoside 6 -adenylyltransferase (aadK) gene, partial cds, and YrdA (yrd A), YrdB (yrdB), hypothetical protein YrdC (yrdC), YrdD (yrd D), hypothetical cytochrome P450 protein YrdE (yrdE), ribonu clease inhibitor (yrdF), regulatory protein YrdG (yrdG), hyp othetical protein YrdH (yrdH), hypothetical protein YrdI (yr dI), amino acid transporter (yrdJ), YrdK (yrdK), LysR family regulatory protein YrdL (yrdL), YrdN (yrdN), cation transpo rt protein YrdO (yrdO), hypothetical protein YrdP (yrdP), Ly sR family transcription regulator YrdQ (yrdQ), hypothetical protein YrdR (yrdR) and hypothetical protein YrkA (yrkA) gen. es, complete cds. NID: q1934641. >qp:qp|Z99117|BSUB0014 140 Bacillus subtilis complete genome (section 14 of 21): from 2 599451 to 2812870. NID: g2634966.

Sequence 2294

cttggtatggatattgaggatgaaa

40 VTILAIDIGVNVGIASAIVTIVIILISEVIPKSIAATFPDKISKLVYPIIHICVIVLKPI
TILLNKMTDGINHLLSRGQPVEKRFSKEEIRTLLNIAGREGAFNEIENTRLQNVMDFEQL
KVKDVDTTPRINVVAFSKEVTYDEAYDTVMNNPYTRYPVYDENIDDIIGVFHSKYLLAWS
KNKEDAITNYASSPLFVNEHNRAEWVLRKMTVSRKHLAIVLDEFGGTDAIVSHEDLIEEL
LGMDIEDEX

45

Sequence 2295 Contig_0736_pos_3556_2282, is similar to (with p-value 0.0e+00)

>sp:sp|P37949|LEPA_BACSU_GTP-BINDING_PROTEIN_LEPA. >gp:gp|D8
4432|BACJH642_108_Bacillus_subtilis_DNA, 283_Kb_region_conta
ining_smin_element. NID: g2627063. >gp:gp|X91655|BSLEPONF_1
B.subtilis_lepA_and_hemN_genes. NID: g1122397. >gp:gp|Z99117
|BSUB0014_31_Bacillus_subtilis_complete_genome_(section_14_of_21): from 2599451_to_2812870. NID: g2634966.

55 atgtcaaagatatattgcattaaagtaataaaaacgttactatatcaaagatacatagaa gtgacaggttataaagatgaaagcgagaaggataaaatggataagcaagaacgatacaat agaagagaaaatattagaaatttctccattattgctcatatagaccatggtaaatcgaca ttagctgatcgaattttagagaatacaaaatcagttgaaactcgagaaatgcaagatcaa ttacttgactctatggatttggaaagagaacgaggcatcactattaaactaaatgctgtt

ggacatgtcgactttacatatgaggtttctcgctcattagctgcatgtgaaggtgcaatt cttgtagttgatgctgcccaaggtatagaagcacaaaccttagcaaacgtttatt agca ttagataacgatttqqaacttttqccaqttqttaataaaatagacttqcctqcaqctqaq cccqataqaqttaaqcaaqaattaqaaqatqttataqqtataqatcaaqaaqatgtaqta cttqcaaqtqctaaqtcaaatataggtattgaagaaaattttagagaaaatagttgatgtt gtaccagcaccggacggtgatccagaagccccacttaaagcacttatctttgattcagaa $tatgatc catacagaggag taatat \verb|cttcaattcgaattattgatggtgttgttaaagct|$ ggaqataggattaaaatgatggctaccggtaaagaatttgaagttacagaagtcqqaatc aatacccctaagcaactaccggtagaagaattaacagttggtgatgtgggttatattatc gcaagtatcaaaaatgttgatgattctagagtaggtgacacaattactttagctgaaaga cctqctqacaaaccqttacaaqqatataaaaaqatgaatccaatqqtattttqtqqtcta ttccctattqacaataaaqactataatgacctaagagaagctttagaaaaattacaactt aatqacgcatccttagagttttgaaccagagtcttcacaagcacttggtttttggatacaga qqtattqaactcattqcaacagcqccttcatcccgcagaagtatcaatgcatgtgtgaac accattcqcttttaa

Sequence 2296

10

15

20 MSKIYCIKVIKTLLYQRYIEVTGYKDESEKDKMDKQERYNRRENIRNFSIIAHIDHGKST LADRILENTKSVETREMQDQLLDSMDLERERGITIKLNAVRLKYEAKDGETYTFHLIDTP GHVDFTYEVSRSLAACEGAILVVDAAQGIEAQTLANVYLALDNDLELLPVVNKIDLPAAE PDRVKQELEDVIGIDQEDVVLASAKSNIGIEEILEKIVDVVPAPDGDPEAPLKALTFDSE YDPYRGVISSIRIIDGVVKAGDRIKMMATGKEFEVTEVGINTPKQLPVEELTVGDVGYII ASIKNVDDSRVGDTITLAERPADKPLQGYKKMNPMVFCGLFPIDNKDYNDLREALEKLQL NDASLEFEPESSQALGFGYRTGFLGMLHMEIIQERIEREFGIELIATAPSSRRSINACVN TIRF*

Sequence 2297

30 Contig_0737_pos_2511_2855, putative peptide of unknown function atgcgtagtgtaattaagttggaaaatacatttatattcataatcacaatcgccgtttat gttaaattagaattttctatatggctgtttttacttttactattagttccagatatattt atgttaggatatgtgattaatagaaaaacagggagttatgtttacaatattggacacacg tatatcacacctataattatcgcgctattatatttatacattgatgaaaggttactatta cagattgctttaatatggttagctcatattagtatggatagaactttaggttcggactc aaatattcatcagatactgataaaacgataatacaaaagatgtaa

Sequence 2298

40 MRSVIKLENTFIFIITIAVYVKLEFSIWLFLLLLLVPDIFMLGYVINRKTGSYVYNIGHT YITPIIIALLYLYIDERLLLQIALIWLAHISMDRTLGFGLKYSSDTDKTIIQKM*

Sequence 2299

Contig_0737_pos_6151_4991,

45 putative peptide of unknown function gtgttttacgacacagacagtactgaagcgatgaaaagtcatatgagtgatttagtatta qqcaaqcaaqaacaaattqcttatatcaatcaqttaqaacqtqqacttqaaqaaaataaa attqaaaqaaactctaattctaatqaqattaatcaaqttqaqaatqaqcttqttcctqac gaaacctttgaaaagaaaaaggaatatacacaacaagttttagaattacatgaaaaagag caaaagtttttgagaataggatttattgttttgactattctatcagcagcactttctatt ttttcttttttcactgcaaatcttatttttggtataatatttgctctattaactgtgatt tttqtaqtaqqtatcattttttctaqatctaaaqcaqtaqattataqcacaqcaataaqt caggaaattaatgatttagaaaaccaactcacgcaacttgaaaaagaatataatcttgac 55 aaaatacttgaagaaaaacatcaatatatcaatcaatcattaacgactgcaaatgagcga ttagatagtttaaaacatagcatttttaaactactaatagctggcataatagcaggactt ttatctggtgtagtcaaactaggttgggaggtaatgttcccaccccgaacacctagtaga gatgccactaacccacctcaacaactcttacaattactaqqaataccqtcaaatattacc

catctcacatacaattttctgagcatgcattaccttggataagttttatcgtacactat agttttctatcgctattgcaataatctatatttatatcgcaaagaaatatacaaaaatc acactaggttatggtgctttatttggtatagttatttggattgtttttcatttaatctta atgccaattatgcatgtcgtaccgaatgcttttgatcaaccattttcagaacacctatca gaattttttggacacattgtttggatgatggttatagaaatggtcagaaggtattctat aatattcaattaaataa

Sequence 2300

VFYDTDSTEAMKSHMSDLVLGKQEQIAYINQLERGLEENKIERNSNSNEINQVENELVPD
10 ETFEKKKEYTQQVLELHEKENLYEKLKETFEEEQTQKNKRQKFLRIGFIVLTILSAALSI
FSFFTANLIFGIIFALLTVIFVVGIIFSRSKAVDYSTAISQEINDLENQLTQLEKEYNLD
FDLEYQQQVREQWRHAKKNKKILEEKHQYINQSLTTANERLDSLKHSIFKLLIAGIIAGL
LSGVVKLGWEVMFPPRTPSRDATNPPQQLLQLLGIPSNITHLTYNFSEHALPWISFIVHY
SFSIMIATIYIYIAKKYTKITLGYGALFGIVIWIVFHLILMPIMHVVPNAFDQPFSEHLS
15 EFFGHIVWMMVIEMVRRYFYNIQLNK*

Sequence 2301

Contig 0737_pos_3491_3075,

putative peptide of unknown function

atggaattatatagtatgcctatgtttaataaatttttagttaacgacatagataaatca tcggaatggtatcaagagaatttaggttttaaaagtatttttaaatttaaaaatgaacaa aatcaaattttaatggagcatttacgattagcaaaatatcaagatttgatgttaattct ggcaaacagtttgaagtcggtaatgcagtttatacaaatatacttgtaccaaatattcga attttaaaacaacgaataccttctcaatatatcgtggaagatcttgaagaaaaaccatgg aattctattgaaatgacaattaaagatttagataatcatttaattacgcttacacaaagt aacataaaaaatgaagaatttaatgctttgatgcaacatacttcaaaaacattttaa

Sequence 2302

MELYSMPMFNKFLVNDIDKSSEWYQENLGFKSIFKFKNEQNQILMEHLRLAKYQDLMLIS

GKQFEVGNAVYTNILVPNIRILKQRIPSQYIVEDLEEKPWNSIEMTIKDLDNHLITLTQS
NIKNEEFNALMQHTSKTF*

Sequence 2303

Contig 0738 pos 2962 3540,

- is similar to (with p-value 4.0e-47)

 >sp:sp|P42085|XPT_BACSU XANTHINE PHOSPHORIBOSYLTRANSFERASE (
 EC 2.4.2.-). >pir:pir|S51309|S51309 xanthine phosphoribosylt ransferase Bacillus subtilis >gp:gp|L77246|BACYACA_2 Bacil lus subtilis (YAC10-9 clone) DNA region between the serA and kdg loci. NID: g1256615. >gp:gp|Z99115|BSUB0012_148 Bacillu s subtilis complete genome (section 12 of 21): from 2195541 to 2409220. NID: g2634478. >gp:gp|X83878|BSXPTPBUX_1 B.subtilis xpt and pbuX genes. NID: g633168.
- 55 Sequence 2304
 VESLGRKVKEDGVVIDEKILKVDGFLNHQIDAKLMNDVGKTFYESFKDAGITKILTIEAS
 GIAPAIMASFHFDVPCLFAKKAKPSTLKDGFYSTDIHSFTKNKTSTVIVSEEFLGADDKV
 LIIDDFLANGDASLGLNDIVKQANATTVGVGIVVEKSFQNGRQRLEDAGLYVSSLCKVAS
 LKGNKVTLLGEA*

Sequence 2305 Contig 0738 pos 3579 4808, is similar to (with p-value 8.0e-95) >sp:sp|P42086|PBUX BACSU XANTHINE PERMEASE. >pir:pir|S51.310| S51310 xanthine permease - Bacillus subtilis >gp:gp|L77246|B ACYACA 3 Bacillus subtilis (YAC10-9 clone) DNA region betwee n the serA and kdg loci. NID: gl256615. >gp:gp/Z99115/BSUB00 12 147 Bacillus subtilis complete genome (section 12 of 21): from 2195541 to 2409220. NID: g2634478. >gp:gp|X83878|BSXPT 10 PBUX 2 B.subtilis xpt and pbuX genes. NID: g633168. atgtatgcagggctattcttqttcctattattqtqqqqacaagcttaaaattttcaqct $\tt gaaqaaattgcttatctagttactgttgatatatttatgtgcggggtagcgacatttctt$ caaqcaaataaaqtcacaqqqactqqattaccqattqtactaqqatqtacqtttactqcc 15 qttqcacctatqatactcatcqqtcaaacgaaaqgacttqatqttttatatqgttcgctt ttaatatccggtatcttagttgttttaattgcacctttttttctcttatttagttaaattc tttccacctgttgtaacaggaagtgttgtgacaattattggaatcaatttaatgccagttqcaatqaattacttqqcaqqtqqtqaaqqaqcqaaaaactatqqcqatactaaqaattta at attaggtggtgttacactact cattattcttattttgcaa agatttacaa agggcttc20 ttqaaatcaattqcqatacttataqqattaqcaataqqtactqctttaqctqqtatattt $\tt ggaatggttgatatcaaacaagtgggtgatgcacattggtttggtttccctgtqccattc$ agattttctggcttcggatttgatgtcagctcaatacttgtatttttcattgttgcagtt qtaaqtttaattqaatctactqqtqtctatcatqcactqaqtqaaattactqqtaqaaaa ctaqaaaqaaaaqattttcqaaaaqqqtacactqcqqaaqqtctaqcaatcattttaqqt 25 tcaatatttaatgcgttcccttacactgcatattcccaaaatgtaggtcttgtttcttta tcaqqaqctaaaaaqaacaatqtgatatatqgaatqqttattcttttactaatttqcqqt tgtatacctaaattaggtgctttagctaatattattccattgccggttttaggtggagca at gat ag caat gttt tg gaat ggtt at gg cat ac gg cgtt ag tat ttt gg gtaa cat taatttccaaaatcaaaataatttattaattattgcaatttcagtagggttaggtgctggtatt30 aqtqcaqtacctcaaqcatttaaaqqattaqqaqaacaatttqcttqqttaactcaaaat ggtatagtgcttggcgcaatttctgcaatcatcttaaatttctttttaatqgtataaag tataaacaaactgaagaaaatgtgaaataa

Sequence 2306

35 MYAGAILVPIIVGTSLKFSAEEIAYLVTVDIFMCGVATFLQANKVTGTGLPIVLGCTFTA VAPMILIGQTKGLDVLYGSLLISGILVVLIAPFFSYLVKFFPPVVTGSVVTIIGINLMPV AMNYLAGGEGAKNYGDTKNLILGGVTLLIILILQRFTKGFLKSIAILIGLAIGTALAGIF GMVDIKQVGDAHWFGFPVPFRFSGFGFDVSSILVFFIVAVVSLIESTGVYHALSEITGRK LERKDFRKGYTAEGLAIILGSIFNAFPYTAYSQNVGLVSLSGAKKNNVIYGMVILLLICG CIPKLGALANIIPLPVLGGAMIAMFGMVMAYGVSILGNINFQNQNNLLIIAISVGLGAGI SAVPQAFKGLGEQFAWLTQNGIVLGAISAIILNFFFNGIKYKQTEENVK*

Sequence 2307

55

Contig_0738_pos_4846_6312,

is similar to (with p-value 0.0e+00)
>sp:sp|F21879|IMDH_BACSU_INOSINE-5'-MONOPHOSPHATE_DEHYDROGEN
ASE (EC 1.1.1.205) (IMP_DEHYDROGENASE) (IMPDH) (IMPD). >pir:
pir|S12623|DEBSMP_IMP_dehydrogenase (EC 1.1.1.205) - Bacillu
s subtilis >gp:gp|X55669|BSIMPDE_1 Bacillus subtilis guaB ge
ne for IMP_dehydrogenase. NID: g39958.

atgtgggaaaataaatttgctaaagaatctttaacattcgacgacgtgttactcattcca gctgcatcagatgttttaccaagcgatgttgacttaagtgtcaaattatcagataagatc aagttaaacattcctgttatctcagcaggtatggatacagtaactgaatcaaaaatggca attgctatggctcgacaaggcggtttaggtgttattcataagaatatgggcgtcgaagag caagctgatgaggtacaaaaggttaaacgttcagaaaatggtgttattctaacccgttc ttcttaacaccggaagaaagtgtgtatgaggctgaagcattaatgggtaaataccgtatc tctggtgtacccattgtcgataatcaagaggatcgcaagttgattgggattttaacaaat cgtgatttacgttttattgaagatttttcaattaaaatatcagatgtaatgacgaaagat aatttaataacagctccagttggtacgactttagatgaagccqaqgctattcttcaaaaa

cataagattgagaaacttccattagtagaaaatggtcgtttagaaggattaatcactatt aaagatattgaaaaaqtacttgaattcccatatqcaqctaaaqatgaacatggcagattq ttagctgcggcagcaatcggtacgtctaaaqatactgaaattcgtgcacaaaaactagtt gaagctggcgtagatgcattaattattgatacagctcatggtcattctaaaggcgttatt aatcaagttaaacacatcaaggaaacatatcctgaaattactgttgtcgctggtaacgta $\tt gcgactgcagaggcaacacgtgctttatttgaagcgggtgccgatgttgttaaagtaggt$ attggtccaggctcaatttgcacaacacgtgttgttgcaggtgtaggtgtgcctcaaatt acaqcaqtttatqattqtqctacaqaaqcccqtaaqcatqqtaaqqctattattqctqat $\tt ggtggtattaagttctcaggtgatattatcaaagcattagctgctgqtgqtcatqcqqtt$ atgttaggtagtttgttagctggtacagaagaaagtcctggtgcaactgaagtattccaa ggtagacaatataaagtttatcgcggcatgggatctttaggtgctatggaaaaaggttca aatqatcqttacttccaaqaaqataaaacaccaaqaaaatttgttcctgaaggtattgaa qqtcqtacaqcttataaaqgaccattacaaqatacaatttatcaacttatqqqtqqcqtt agagctggcatgggttatactggttcagaaaacctaaaaaaattacgtgaagaagcacaa tttacacqtatqqqaccaqctqqcttagctqaaaqtcatcctcataatgttcaaattacq aaaqaatcaccaaactattctttctag

Sequence 2308

10

15

45

MWENKFAKESLTFDDVLLIPAASDVLPSDVDLSVKLSDKIKLNIPVISAGMDTVTESKMA
1AMARQGGLGVIHKNMGVEEQADEVQKVKRSENGVISNPFFLTPEESVYEAEALMGKYRI
SGVPIVDNQEDRKLIGILTNRDLRFIEDFSIKISDVMTKDNLITAPVGTTLDEAEAILQK
HKIEKLPLVENGRLEGLITIKDIEKVLEFPYAAKDEHGRLLAAAAIGTSKDTEIRAQKLV
EAGVDALIIDTAHGHSKGVINQVKHIKETYPEITVVAGNVATAEATRALFEAGADVVKVG
IGPGSICTTRVVAGVGVPQITAVYDCATEARKHGKAIIADGGIKFSGDIIKALAAGGHAV
MLGSLLAGTEESPGATEVFQGRQYKVYRGMGSLGAMEKGSNDRYFQEDKTPRKFVPEGIE
GRTAYKGPLQDTIYQLMGGVRAGMGYTGSENLKKLREEAQFTRMGPAGLAESHPHNVQIT
KESPNYSF*

Sequence 2309

30 Contig_0738_pos_6473_0, is similar to (with p-value 5.0e-94)

>gp:gp|U51115|BSU51115_8 Bacillus subtilis CotA (cotA), GabP
(gabP), YeaB (yeaB), YeaC (yeaC), YebA (yebA), GMP syntheta
se (guaA) genes, complete cds, and AIR carboxylase I (purE)

35 gene, partial cds. NID: g2239287. >gp:gp[Z99107|BSUB0004_83
Bacillus subtilis complete genome (section 4 of 21): from 60
0701 to 813890. NID: g2632866.

cgtaaagtattatgtgcaatgagtggtggagtagattcatccgtagttgctgtactttta

50 cataaggcaatcggcgaccaattaacatg

Sequence 2310

MTMEMAKEQELILVLDFGSQYNQLITRRIREMGVYSELHDHEISIEEIKRMNPKGIILSG
GPNSVYEEGSFTIDPEIYNLGIPVLGICYGMQLTTKLLGGKVERANEREYGKATINAKSD
55 ELFFGLPSEQTVWMSHSDKVIEIPEGFEVIADSPSTNYAAIEDKKRRIYGVQFHPEVRHT
EYGNOLLONFVRRVCNCTGEWTMENFIEIEIEKIRQQVGNRKVLCAMSGGVDSSVYAVLL
HKAIGDCLTX

Sequence 2311

10

Sequence 2312

 $\label{lem:makitvvnnqdelykvinqkksegyletelavisksklhlddlhnsqislmatsgsfsdr msrltgedgeetvlsrydltdnelegykqdilndkmlvvansdrsshdevednnaayke vdithyaaesegpka*$

15

Sequence 2313

Contig 0738 pos 1833 1282,

putative peptide of unknown function

- atigaattatag
- 30 Sequence 2314

MEFKVIESAKDPLFNEALKLYDDKLDIGLDEDSKIFKRSLENNKTENDYAFIVGIENQTV VSLATAHYEATTNSAFLIYLIAKESPNHDERMSLTLEAIEKQLNLLSQEVHNRDINFIML EVPKEPSTANIDDKLRNALEHRRQFLFENQFEKQDDIDYIHPNQNQKETPQKVDLFIKAN IEL*

35

Sequence 2315

Contig 0741 pos 1807 2565,

putative peptide of unknown function

ccggtatttgttggttatttatggctatattttagatag

- Sequence 2316

MDDLKQNQSSNEKPKGNKIINILIFIGMILLIQIPIGVSLIALPFSVKFSKLTSIALSML
5 ITGTALLIIWLVRNYYLSHTYERQYQSMRGKDIFINIGFLVLSMVFSILSSVLMVIFTGN
DTTANEKEINESLDLLLQKDHLPHISIVATVVLMICIIGPYLEELLFRGIFKETLFMKYR
FWLPFIISSIIFSSQHLSTNIFSYAIYFLMGCVLYLAYNRRRNIKDSMMVHMLNNSVSTL
PVFVGYLWLYFR*

Sequence 2317 Contig_0741_pos 3896 4231. putative peptide of unknown function qtqtatatcatqtatqaqaatatacaaaatattqaaqatttttaccqatttataaatqca cacqctttaqctqttqttcatattatqaqaqataattqtacaqtatqtcatqcagtatta ccccaaattcaagatttactaaaggactatccgaaagcacaattaggtgtgattaatcaa tctaatqttqaaqctattqccqqaqaactttctatttttacaqtacctqttqatttaatt tttttgaaagggaaagaaatgcatagacaagcacgttttatcgatatgcaatcgtttgaa aaacaattgtatataatgcaaaatgccatcgattaa 10 Sequence 2318 VYIMYENIONIEDFYRFINAHALAVVHIMRDNCTVCHAVLPQIQDLLKDYPKAQLGVINQ SNVEAIAGELSIFTVPVDLIFLKGKEMHRQARFIDMQSFEKQLYIMQNAID* 15 Sequence 2319 Contig 0741 pos 4399 5262, is similar to (with p-value 1.0e-31) >sp:sp|P42978|YPJC BACSU HYPOTHETICAL 23.6 KD PROTEIN IN QCR C-DAPB INTERGENIC REGION. >gp:gp|L38424|BACJOJC 1 Bacillus s ubtilis dihydropicolinate reductase (jojE) gene, complete cd s; poly(A) polymerase (jojI) gene, complete cds; biotin acet yl-CoA-carboxylase ligase (birA) gene, complete cds; jojC, j ojD, jojF, jojG, jojH genes, complete cds's. NID: g755600. > gp:gp|L47709|BACYPIA 9 Bacillus subtilis (clone YAC15-6B) yp 25 iABF genes, qcrABC genes, ypjABCDEFGHI genes, birA gene, pan BCD genes, dinG gene, ypmB gene, aspB gene, asnS gene, dnaD gene, nth gene and ypoC gene, complete cds's. NID: g1146223. >gp:gp|Z99115|BSUB0012_191 Bacillus subtilis complete genom e (section 12 of 21): from 2195541 to 2409220. NID: q2634478 30 atqaaqqaqqccaaaatqaaqaaqcaacaqaataaaqtccatatqattaatatcttta tgccttatagggacattacttattgcaatcgcagtaaatagttttgttataccgggcaat ttaggtgagggtggttctataggcctttcattaattctgaattatactctaggtatttca

Sequence 2320
MKEAKMKKQQNKVHMINISLCLIGTLLIAIAVNSFVIPGNLGEGGSIGLSLILNYTLGIS
PALSSFIINAILIIVGWKFLSRTTAIYTAITITASSIFLDLTHTFGLGIHDNFINSIFAG

LMLGIGSGLVITAHSTLGGTSVIARIISKYSEMKTSQALLILDAIIVLSFIVVLPITNVL
YTIVMLFIVEKSMSFVVEGFNPKKAVTVISKYNKEISADIYEMTGRGATLLSGKGAYQKS
DTEVLYAVVSQNQVGAIKKIVNQYDENAFLVIHDVRDVLGNGFINIK*

Sequence 2321

55 Contig_0741_pos_7460_8320,
 is similar to (with p-value 8.0e-77)
 >gp:gp{Z92954|BSZ92954_1 B.subtilis yws[A,B,C,D,E,F,G] and g
 erBC genes. NID: g1894764.
 gtggttscaccaaaaagcaaatgccctagttaatgagtgtatggctgtaaatccagattat

15

20

10

Sequence 2322

VVKQKANALVNECMAVNPDYQITFQNDLVKANIGVIVNVMEDHMDVLGPTLKDVAQAFTA TIPYNGKLVVMKDNYTSFFAKEAKKRNSELIVVDKDVIPESYLRKFDYLVFPDNVAIVLG IAQAVGVDEETALQGMLNAPADPGAVRIKYFHANRTKNVFVNAFAANEPQSTKAILNKVE SYNYPYDKKIIILNCRSDRVDRTQLFVDNFLGEVDYDVLICTGKSTQMVTQFMETMPEKT YINYEGRDFVEIEKGILHEAENALVFCVGNIHGPGGRIAEFIEGIE*

Sequence 2323

Contig_0741 pos 8322 8774,

atcatcttattttatatagttttattaattaa

- is similar to (with p-value 2.0e-43)
 >gp:gp|Z99122|BSUB0019_86 Bacillus subtilis complete genome
 (section 19 of 21): from 3597091 to 3809700. NID: g2636029.
 >gp:gp|Z92954|BSZ92954_2 B.subtilis yws[A,B,C,D,E,F,G] and g
 erBC genes. NID: g1894764.
- atgataggttcagaattatatttctccttattcgtaggtgtcgtactcagtttgatattt
 gctgagaaatttgggattaatccagcagggttagtcgttccaggttatttagctttgatt
 tttgatcaaccgatcatgttgttatcagtattaatcattagttgcttaacttattttatc
 gtaagcaacggtattagtaagtgggttattttatatggtagaagaaaattcgctgccatg
 atactgacgggaatggtgattaaatttatatttgatctcttgtacccattgaccccattt
 gaaatggttgaagtttcaggtataggtgttgtcattcctggtattattgcgaatacaatt
 caaaaacaaggtgtagtcattacactttctacaacaatgttattaacatgtattacatat

Sequence 2324

40 MIGSELYFSLFVGVVLSLIFAEKFGINPAGLVVPGYLALIFDQPIMLLSVLIISCLTYFI VSNGISKWVILYGRRKFAAMILTGMVIKFIFDLLYPLTPFEMVEVSGIGVVIPGIIANTI QKQGVVITLSTTMLLTCITYIILFLYSFIN*

Sequence 2325

MTKKKRLSPSEWLLKQSKRHKRKNTLYTAIVLLVALVLLIFAVKSIQVEPVKSDTRDKDS IR:TYLGHVTLNKHIRQTNLNDVFKGIQDTLDHSDFSTGSLIVNDFSRNQKDNINKNIEN IMFLRKENVKSVNLINESMDNIQATAMMRKIDSQAGYNFLTGNGSNPINSKTVQQDIKGK KIAKTYHIVADYLIDVNPDC*

5

Sequence 2327
Contig_0741_pos_10400_10837,
putative peptide of unknown function

caattaaaactattttaa

Sequence 2328

MSIEFRHQSWFDNQYKEQTLSFLTQHQIIHAVVDEPQVKEGSVPLVNRITSEIAFVRYHG

20 RNHYGWTKKDMTDQEWRDVRYLYDYSDDELADLARKVEILNQKAKKVYVIFNNNSGGHAA
NNAKKYONILDIDYEGLAPQQLKLF*

Sequence 2329

Contig 0741 pos 11189_0,

35

Sequence 2330

VFMIFVSILLMIRHKIKPFKIFDKPKYARTYVDAEGKTYRYSVPPLFAFITTLFIGLLTG LFGIGGGALMTPLMLIVFRFPPHVAVGTSMMMIFFSSVMSSIGHIFQGHVAWGYSIILII SSVIGAQIEDFISPTSGLKYERHQYNLYGQLHRKEYYYDDSSX

40

Sequence 2331 Contig_0741_pos_9875_9345, is similar to (with p-value 1.0e-58)

>sp:sp|P23920|SYM_BACST_METHIONYL-TRNA_SYNTHETASE (EC 6.1.1.
10) (METHIONINE--TRNA_LIGASE) (METRS). >pir:pir|S16682|S1668
2 methionine--tRNA_ligase (EC 6.1.1.10) - Bacillus stearothe
rmophilus >gp:gp|X57925|BSMETSG_1_B.stearothermophilus metS
gene for methionyl-tRNA_synthetase. NID: g39988.

ttattacaaccattcttgacgcatgcacctagagagatatttaagcaacttaatattaac aatccggatttacatcaattagatagtctgcaacaatatggtatgttttag

VVRDYLMRELPFGSDGVFTPEAFVERTNYDLANDLGNLVNRTISMINKYFHGELPAYQGP KHELDEKMEAMALETVKSFNDNMESLQFSVALSTVWKFISRTNKYIDETQPWVLAKDENQ REMLGNVMAHLVENIRFATILLQPFLTHAPREIFKQLNINNPDLHQLDSLQQYGMF*

- 5 Sequence 2333 Contig_0741_pos_6714_6397, putative peptide of unknown function atggagaagtcagttaaacttgctgttggcatctatctagcaattattttaattatttgt agtatttacctcgcatttatacttattggaagcttaaatggtaaagacatgagtaattct gttttagatactgatcactctcgtatcaacaatacttcaagaaacagtaacgaagatgtt acgtcatcaaataatgagtcaaacaatacaaaagcgcactcatttgcaaactctgaatat aaagctattaacataaacgaagcatttaaaaataataagcaaattaaaaaagcgaattcg agttatcaatactattga
- 15 Sequence 2334
 MEKSVKLAVGIYLAIILIICSIYLAFILIGSLNGKDMSNSVLDTDHSRINNTSRNSNEDV
 TSSNNESNNTKAHSFANSEYKAININEAFKNNKQIKKANSSYQYY*

Sequence 2335

- 20 Contig_0741_pos_2363_2061,
 putative peptide of unknown function
 atgaatggtagccaaaatcgatatttcataaataatgtttctttaaaaattcctcggaag
 agtaattcctctaaatacggacctataatacatatcattaaaacaacagttgcaacaatt
 gaaatatgtggtaaatggtctttttgtaaaagtaaatctaaactttcattgatttcttc
 25 tcattcgctgtagtatcgttgccagtaaatatgaccattaatacactacttagaatacta
 aaaaccattgataataccagaaaaccaatattaataaagatatcttttcccctcattgat
 - Sequence 2336

tqa

30 MNGSQNRYFINNVSLKIPRKSNSSKYGPIIHIIKTTVATIEICGKWSFCKSKSKLSLISF SFAVVSLPVNMTINTLLRILKTIDNTRKPILIKISFPLID*

Sequence 2337

Contig 0743 pos 1628 1969,

- putative peptide of unknown function atgttcacaatcaaactgtagaaatagctacaactaaaatggcgataacaaatgagact acaaattttttcttgaatagtttcgataataatacaacttctggaatacttgcaccagca ccaccaatgatcaaagcaacaactgtcccaagcgacattccttttgaagctaatgctca gctataggtaacattgtttcaggtctaatatacattggaatgcctataacagatgcaatg aatacagatataacgccatcaccacttgcgtattttgtaataaatgtttcgggtacaaag ccatatatgaacgctccaataaacacaccaataaataggtaa
 - Sequence 2338
- MFTIKPVEIATTKMAITNETTNFFLNSFDNNTTSGILAPAPPMIKATTVPSDIPFEANAS
 45 AIGNIVSGLIYIGMPITDAMNTDITPSPLAYFVINVSGTKPYMNAPINTPINR*

Sequence 2339
Contig_0743_pos_3389_3778,
is similar to (with p-value 2.0e-16)

ggatgctgtggtggagatggatgctgttaa

>gp:gp|AF016485|AF016485_124 Halobacterium sp. NRC-1 plasmid pNRC100, complete plasmid sequence. NID: g2822278. atdttaatctataatagcaaattaattaatgaggtgagtataatgttaaatattgaaata tacgsagaagctatgtgttctactggagtatgtggtccagaaccggatgaaaaacta ataaaagcgaaccaaatcaatgaatatttaaagcaaaatcaaatagaagttcaacgttat aatatgaataataataccgaatgaattcattaaaaaatcaagaagttattcgtttaattcaa gaaaaaggtgatgaagttttaccaatcacttttatagaaggcggtatagctaaaacgggc gcttatattacccaagaagaagccgatgaaattattaccaattgagaaattga

Sequence 2340

MLIYNSKLINEVSIMLNIEIYEEAMCCSTGVCGPEPDETLIKANQINEYLKQNQIEVQRY NMNNNPNEFIKNQEVIRLIQEKGDEVLPITFIEGGIAKTGAYITQEEADEIITVNQMRNG GCCGGDGCC*

5

Sequence 2341

Contig 0743 pos 4248 4676,

putative peptide of unknown function

Sequence 2342

MLELPSAWTDYLNTTSNDASCLGQLSGLNENRVKYNSALEKLRNQDDTTMMLVARPTHSS

1YEIQRAQQEFIIHWWCDYFACIRIFNSWFTWNVLLATFRCIWIKFILMAWLDFFATIMN
DFIYWLFCYFFCWFTFANFFPC*

Sequence 2343

Contig 0743 pos 5242 4406,

25 putative peptide of unknown function gtggatgatgtgacaaaatatggtccagttgatggagatccgattacgtcaacggaagaa attccgtttgataaaaaacgcgaatttgatccaaacttagcgccaggtacagagaaagtc gttcaaaaaggtgaaccaggaacaaaaacaattacaacaccaacaactaagaacccatta acaggggaaaaagttggcgaaggtgaaccaacagaaaaagtaacaaaacaaccaqtggat 30 qaaatcqttcattatqqtqqcqaaqaaatcaaqccaqqccataaqqatqaatttqatcca aatgcaccgaaaggtagccaagaggacgttccaggtaaaccaggagttaaaaaaccctgat acaggcgaagtagtcacaccaccagtggatgatgtgacaaaatatggtccagttgatgga gatccgatcacgtcaacggaagaaattccgtttgataaaaaacgcgaatttgatccaaac ttagcgccaggtacagagaaagtcgttcaaaaaggtgaaccaggaacaaaaacaattaca 35 acaccaacaactaagaacccattaacaggggaaaaagttggcgaaggtgaaccaacagaa aaagtaacaaaacaaccagtagatgaaatcgttcattatggtggcgaagaaatcaagcca qqccataaqqatqaatttqatccaaatqcaccgaaaqqtagccaagaggacgttccaggt aaaccaggaqttaaaaatcctgatacaggcgaaqtagtcacaccaccagtqqatqataa

40

Sequence 2344

VDDVTKYGPVDGDPITSTEEIPFDKKREFDPNLAPGTEKVVQKGEPGTKTITTPTTKNPL TGEKVGEGEPTEKVTKQPVDEIVHYGGEEIKPGHKDEFDPNAPKGSQEDVPGKPGVKNPD TGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFDPNLAPGTEKVVQKGEPGTKTIT TPTTKNPLTGEKVGEGEPTEKVTKQPVDEIVHYGGEEIKPGHKDEFDPNAPKGSQEDVPG KPGVKNPDTGEVVTPPVDDEFLLRSLNFIYRRVSRSRN*

Sequence 2345

Contig_0743_pos_2507_1623,

tttattggtgtgtttattggagcgttcatatatggctttgtacccgaaacatttattaca aaatacgcaagtggtgatggcgttatatctgtattcattgcatctgttataggcattcca atgtatattagacctgaaacaatgttacctatagctgaagcattagcttcaaaaggaatg tcgcttgggacagttgttgctttgatcattggtggtgctggtgcaagtattccagaagtt gtattattatcgaaactattcaagaaaaaatttgtagtctcatttgttatcgccatttta qttqtagctatttctacaggtttgattgtgaacatcgttatttaa

Sequence 2346

MLDSIMEFIKTFVMLFFELLILFIIVSFIVSIIQQIVSEEKIKHFLSKPNQAINYILGMA
10 FGAMTPFCSCSTIPILAGLLNSKVPFGPAMSFLIASPLMNPLMIFMLWALLGWKVAVVYF
ILLALFSVLTGLVFSKMNLAETYKGVNVKGDGFFANKMGSRFKQALNDAWAFLYPMLPYL
FIGVFIGAFIYGFVPETFITKYASGDGVISVFIASVIGIPMYIRPETMLPIAEALASKGM
SLGTVVALIIGGAGASIPEVVLLSKLFKKKFVVSFVIAILVVAISTGLIVNIVI*

atgaggagg catag catggaa atgt caga a agg ctag ctt caatt cctgat agct acttt25 $\tt ggcaaaacaatgggccgtatagttgaacatggtcctttaccacttataaatatggcagtt$ attccaqaaaatcaaaaqtatqqtccatttcacqgcaaagatqcctttaaacaagctatt gttaacttctaccaaagacattacgatgttgaattagacaaagaagatgaagtttqtatt ttatatgggactaaaaatggtcttgttgcattacctacttgtgttgttaatcctggtgaa attqtacttttacctqatccqqqatatacaqattatttaqcqqqqqqtcatqttaqctqat $\tt gctaagccactccctttaaaattgtcgccaccaaattatttgccgaattggaatactata$ agtgctaaagttcttgagaagactaagctaatttatttaacatatcccaataatcctacc $\verb|ggttcgacagcgacacaagatgattttgatgaagcgattcatcgttttaaaggtactcaa|\\$ 35 acaaaqataqttcatqactttqcatataqtgctttttggatttgacgccaaaaatccaagc atattagettetaaaaatgeaaaagatgttgetategagatattetetttatetaaaggt tataatatgtcaggctttcgtgttgggtttgctgttggtaataaaaaaatgattcaagcg ttaaaqaaqtatcaaactcatacaaatgcaggtatgtttggagcacttcaagatgctgctacgtatgcactcaatcattatgatgagtttttagaaaagcaaaatgaaatatttagacgt agacgtgataattttgaatcacaactaaaacatgcacatttaccgtttgttcactctaag40 ggaggtatttacatttggttacatacacccccgggttatgatagtgaagcattcgaacag ttgttattaaaagaaaagtcaattttagttgcacctggtaaaccatttggtgaaaatggt aatcaatatqtqaqqqtttcattqqcqctcqatqataaacaattagaagaagcggcgaat cgcttaacacaattacggtatttgtatgaaagataa

Sequence 2348

45

MRRHSMEMSERLASIPDSYFGKTMGRIVEHGPLPLINMAVGIPDGETPKGIINHFSEALC
IPENQKYGPFHGKDAFKQAIVNFYQRHYDVELDKEDEVCILYGTKNGLVALPTCVVNPGE
IVLLPDPGYTDYLAGVMLADAKPLPLKLSPPNYLPNWNTISAKVLEKTKLIYLTYPNNPT
50 GSTATQDDFDEAIHRFKGTQTKIVHDFAYSAFGFDAKNPSILASKNAKDVAIEIFSLSKG
YNMSGFRVGFAVGNKKMIQALKKYQTHTNAGMFGALQDAATYALNHYDEFLEKQNEIFRR
RRDNFESQLKHAHLPFVHSKGGIYIWLHTPPGYDSEAFEQLLLKEKSILVAPGKPFGENG
NQYVRVSLALDDKQLEEAANRLTQLRYLYER*

Sequence 2349
Contig_0744_pos_4718_5716,
is similar to (with p-value 7.0e-84)
>gp:gp|U31175|SAU31175_1 Staphylococcus aureus D-specific D2-hydroxyacid dehydrogenase (ddh) gene, complete cds. NID: q

1644432.

5

10

15

atgactaaaattaaattaatgggtgtcagagaagaagatgaacattatattgaaatgtgg tcacaacaacatgaagtggaagtggatatgtcgaaagaacagttaactgaagacaatgtc caatctattgaaggatttgatggactatcattgtctcaaacattaccattatcagaaaca ${\tt atttataataaattaaatcaacttggaattcggcagatcgctcaacgaagtgctggattt}$ gatggttataatttagagttagcatctaaatatggtcttattatatctaatgtgccttcc tattcacctcgaagcattgctgagtttaccgtgactcaagccatcaatattgtacgtcac tttaatcatattcaaagaaaaatgagattgcacgattttaggtgggaagcatcaatttta ${\tt tctcaatcaatcaaagatttaaaggtagcggttattggcacgggacatattggtggcatt}$ gttgcacaaatattctcagaaggatatctatgtgacgttgtagcgtatgatccttttcca agtgaacatgtgaaaccttacgttacctataaacaaagtataaatgaggcaattaaagag gcagatattgtcacaatacatatgccgtcaacacaatataacaattacctgtttaatqaa aacatgtttcaaatgtttaaaaagggtgctgtgtttgtaaattgtgctagaggatcctta gtagataccaaggctttgttatctgcaatagagcaaggtcaaattaaaggtgcagcactt gatacttatqaatatqaaattggagtatatacgacagatagaagtgaagaaggtttgaat gacccacttttagaggaattaattactagagaagatattattgttacaccgcatatagca ttttatactgaagaggcaatcaaacatcttatttttgatgctttagatgcaacaatggaa qtattaaatactggcacgacggagttaagagtaaattaa

20 Sequence 2350
MTKIKLMGVREEDEHYIEMWSQQHEVEVDMSKEQLTEDNVQSIEGFDGLSLSQTLPLSET
IYNKLNQLGIRQIAQRSAGFDGYNLELASKYGLIISNVPSYSPRSIAEFTVTQAINIVRH
FNHIQRKMRLHDFRWEASILSQSIKDLKVAVIGTGHIGGIVAQIFSEGYLCDVVAYDPFP
SEHVKPYVTYKQSINEAIKEADIVTIHMPSTQYNNYLFNENMFQMFKKGAVFVNCARGSL
VDTKALLSAIEQGQIKGAALDTYEYEIGVYTTDRSEEGLNDPLLEELITREDIIVTPHIA
FYTEEAIKHLIFDALDATMEVLNTGTTELRVN*

Sequence 2351

Contig_0744_pos_8456_6108,

is similar to (with p-value 0.0e+00)
>sp:sp|P32113|ATKA_ENTFA_POTASSIUM/COPPER-TRANSPORTING_ATPAS
E A (EC 3.6.1.36). >pir:pir|A45995|A45995 Cu2+-transporting
ATPase (EC 3.6.1.-) - Enterococcus hirae >gp:gp|L13292|ENECO
PPUMP_1 Enterococcus hirae ATPase (copA) gene, complete cds;
ATPase (copB) gene, complete cds. NID: g290641.

45 caattaattettteaacaeetgteeaatttattattgggtggcaattttaegttggegeg
tataaaaatttgegaaatggtteagetaaeatggatgtattggttgetgttggtaeeagt
geegeatatttttaatgeatttatgaaatgatgatgtggeteacaeateaaacaeateae
eegeatttatattttgaaacaagtgetattttaattaegttaattettettggtaaatat
ttagaageaegtgeeaaateaeagaetaeeaatgeattaagegaattgttaaatttaeaa
gegaaagaageaeggataattaaagaaaataaagaaattatgetteeaettgataaagtt

50 gcgaaagaagcacgagtaattaaagaaaataaagaaattatgcttccacttgataaagtt aaagtcggagatactttactaataaaacccggcgaaaagatacctgtagatggcaaagtc actaaaggtgatacttctattgacgaatccatgctaactggtgagtctatacctgttgaa aaaagtagtggcgattcagtgattggttctaccatgaataaaaatggttcaatcatgatt gaagcaactcaagtaggtggtgatactgcattatcacatataattaaagtggttgaggat gctcaaagttctaaagcaccgattcaacgcttagctgatattattattctggatattttgt

 $\verb|ctaqataaaacaggcaca|| attactaatggtcaacctgtagtaactgattatgttggtgac||$ aatqatacattacaacttttagcaaqtqctqaaaatqcttcagaacatcctcttgctgat gctattgttacttatgctaaagataaaggtcttaatttacttgataatgacacttttaaa t ca att ccqqqa catqqtatta aaqctacqatt catca acaacaa ca aatccttqtqqqcaatcgaaaattaatgaacgattacaatatatctattagtaataaattaaatgaccaattaaat cactatgaacatttaggtcaaacggcaatgatgattgccgtggataatcaaattaatgga atcattgctgttgctgatacagtaaaaaatgatgctaaacaagcgataaaagaactaaga aatatgaatatcgacgtggttatgctgactggtgataacaatcgaacagctcaaaccatc gccaaacaagttggcattgaacatgtaattgcagaagtgttgcccgaagaaaaggcacat ${\tt caaatctctttattacaagacaaaggtaaacaggttgccatggtcggtgatggaattaat}$ 10 qatqcqcctqcacttqtaaaagccgatattqqaatqqctataggcactggagctgaqqta gcgattgaagctgcagatattacgattcttggtggtgacttgctattagttccaaaagct tataacgtagctggcatcccaatagctgcttgtggtttattagcaccttggattgccggt gctgctatggcattaagttctgttagcgtagttatgaatgcattaagactgaaaaaaatg aaactataq

Sequence 2352

MTCAACSNRIEKKLNRMNHVQAKVNLTTEKATIDYESDDYHLEDFVEQIQSLGYDVAVEQ VELNINGMTCAACSNRIEKVLNQTQGVQQATVNLTTEQALIKYYPSATNTEALIKRIQNI 20 GYDAETKTSSKAQSNRKKQELKHKRNKLIISAILSLPLLLVMVVHISPISIPSILVNPWV QLILSTPVQFIIGWQFYVGAYKNLRNGSANMDVLVAVGTSAAYFYSIYEMMMWLTHQTHH PHLYFETSAILITLILLGKYLEARAKSQTTNALSELLNLQAKEARVIKENKEIMLPLDKV KVGDTLLIKPGEKIPVDGKVTKGDTSIDESMLTGESIPVEKSSGDSVIGSTMNKNGSIMI EATQVGGDTALSHIIKVVEDAQSSKAPIQRLADIISGYFVPIVVSIAVITFIIWIIFVHP 25 GQFEPALVSAISVLVIACPCALGLATPTSIMVGTGRAAENGILFKGGQFVERAHYVDTIV LDKTGTITNGQPVVTDYVGDNDTLQLLASAENASEHPLADAIVTYAKDKGLNLLDNDTFK SIPGHGIKATIHQQQILVGNRKLMNDYNISISNKLNDQLNHYEHLGQTAMMIAVDNQING IIAVADTVKNDAKQAIKELRNMNIDVVMLTGDNNRTAQTIAKQVGIEHVIAEVLPEEKAH QISLLQDKGKQVAMVGDGINDAPALVKADIGMAIGTGAEVAIEAADITILGGDLLLVPKA 30 IKASKATIKNIRONLFWAFGYNVAGIPIAACGLLAPWIAGAAMALSSVSVVMNALRLKKM KT.*

Sequence 2353

35 Contig 0745 pos 341 742, is similar to (with p-value 5.0e-21) >sp:sp|P35154|YPUG BACSU HYPOTHETICAL 29.6 KD PROTEIN IN RIB T-DACB INTERGENIC REGION (ORFX7). >pir:pir|S45549|S45549 hyp othetical protein X7 - Bacillus subtilis >gp:gp|L09228|FACDI A 16 Bacillus subtilis spoVA to serA region. NID: g410114. > 40 gp:gp|Z99116|BSUB0013_34 Bacillus subtilis complete genome (section 13 of 21): from 2395261 to 2613730. NID: g2634723. atgtattcatgctataataatttagtgaaatatgcattaacgatgcaatttgatatagag $\tt gtagatgtaatgtatgaagtaaaactcgatgcatttaatggtccattagacttattattg$ $\verb|catctaattcaaaaatatgaaattgatatttatgatatccctatgaaagccttaactgaa|\\$ 45 cagtacatg caatatg tt catg cgatgaat cag ctagaaat taatg tt g ctagtgaat atttagttatggcatcagaattactaatgattaaaagtaaattcaacgatqaatataaccaa aaatccaacactaaaaacatgctgtgcggcttctgcactatgaactgttgtttcaccatt aactgttgtagtaaaattagcatccatcgctccagtaattga

50

Sequence 2354 MYSCYNNLVKYALTMQFDIEVDVMYEVKLDAFNGPLDLLLHLIQKYEIDIYDIPMKALTE QYMQYVHAMNQLEINVASEYLVMASELLMIKSKFNDEYNQKSNTKNMLCGFCTMNCCFTI NCCSKISIHRSSN*

55

Sequence 2355
Contig_0745_pos_1717_2316,
putative peptide of unknown function
gtgacttrtatgtctacgaataatgagattgaatttaaacaaatactagatcaagatact

10

15

Sequence 2356

VTFMSTNNEIEFKQILDQDTYSKIYEHYFKNQSPFKQTNFYIDTENFKLKQHHAALRIRV KDYMFEMTLKVPAEVGLTEYNHSVNIEPELDMSLQLSQLPNDIRNILEQDFNILENELKV LGNLTTYRLETDYQNELLVLDKSEYLGKTDYELEFEVHSYDEGYSKFKTLLQHFNLQHQK PLNKVORFFOEKONASDKE*

Sequence 2357

Contig 0745 pos 2380 2763,

Sequence 2358

30 MELSDIMSKTPYELIGQKALYQMIDHFYQLVEKDSRINHLFPGDFKETSRKQKQFLTQFL GGPDLYTQEHGHPMLKRRHMEFTISEYERDAWLENMHTAIQHAKLPAGVGDYLFEKLRLT ANHMVNS*

Sequence 2359

35 Contig 0745 pos 2807 3583, putative peptide of unknown function atggagaataagagtcgtgaagatactaatctatcacctgttagcaaaatagaaatctat tctttttttgatccttttagcaaagattgttttaaattatctgcaatcttatcaaaatta agaattgaatataataaatatataaaggtaagacatattttaaacccttctttaaaggta 40 ttaactaagtgtcaagctcaaagtacttcagattttgacaatattgcacttgcctataaa gccgctgaacttcaaggtcgtatcagagcagaaagatttatacatttaatgcaaaatgaa atcattccaaaacqtqatattattaccgaagatatgatttctgattgtattaataatgcc aaagttgatcttcacattgcaagagaaatggaaatagaacaagctccctcacttgttttt 45 ttcaqcqaaaatqttcatqaaqaaqqtttaaaaqtcqaaqqattatatccttatcatatt tatacttacattattaatgagttaatgggacaacctatagagaaaaatcttcctccaaaa ttagaatactacattcaaaagaaacaactagtaacaatggaagaacttttaacgatctat qaatqqcctqaaaaattqctaaataaagaattaaagaaactcacacttcaacaaaaagtt gaaaagttgcaatatccagagggagaattttggaaatctaaaatgcctcagtgttas

50

55

Sequence 2360

MENKSREDTNLSPVSKIEIYSFFDPFSKDCFKLSAILSKLRIEYNKYIKVRHILNPSLKV LTKCQAQSTSDFDNIALAYKAAELQGRIRAERFIHLMQNEIIPKRDIITEDMISDCINNA GIDYQVFKEDLQKDKLTDSLKVDLHIAREMEIEQAPSLVFFSENVHEEGLKVEGLYPYHI YTYIINELMGQPIEKNLPPKLEYYIQKKQLVTMEELLTIYEWPEKLLNKELKKLTLQQKV EKLOYPEGEFWKSKMPOC*

Sequence 2361 Contig_0745_pos_5858_4050,

is similar to (with p-value 0.0e+00) >qp:qp!088209|D88209 | Bacillus licheniformis DNA for P2-pep tidase, complete cds. NID: q1651215. atgagtcaacaattaacaagagaagaacaggaacgtaaatatcctgaatatacatgggat ttaacaactatttttaaaagtgatgaagcatttgaagaagcttttaaaaagtattgaagct aaaataqqtqaaqaaqaaaatttaaaggtcatcttgqtgaaagtgctgaaacattatat qaaqcqctaagtcttgaaqacgagttaggtacaaaattagaaaaggtatatgtatacgca catttaaaacaagatcaagatactgcaaatgataaatataccggtttagaagcgcgtgca catcaacttqttattaaatataqctctqcatqqaqttttttaqtacctqaaattttacaa ctagatgaagctactattcaatcttttatcgattctaatgatgatttaaaacgatatgaa 10 ttcqatttqaaattqattaatqaqaaacqtccacatatattagatqcqaatacaqaaaaq ttattaacagaagcacaaqacqcactttcaacqccttctaatgtatatggaatgttcagc aatqcaqatttaqaatttqaaqatqctataqataaaqatqgtcaaqcttatcctttaaca caagqtacatttatcaagtatttagagtctgatgatcgtgagttaagagcttctgctttt 15 aqaaatqtttataaaqcatacqqtqcqcataataacacqctagqtqctactttagctqqt qaqqttaaqaaaatqtatttaatqctaqaactcatcattatcqttcaqcacqtgaaaqa qctttaagtaataatcatattccagaagctgtttacgataacttaatcaaaacggtccat aaatacttacctttattacacagatacacgaagcttaqacaagagttactaggtttagac qatttaaaaatqtatqatctttatacacctcttqttaaaqatqtcaaatttqaaatqcca 20 tatgaagaggcaaaatcctggatgttaaaagcacttgagccaatgggagaagaatactta aacqtqqttaaqqaaqqtctaqataaccqttqqqtcqatqtatatqaaaataaaqqtaaa cqttcaqqcqqatattcatccqqtqqacatttaactaatcctttcattttacttaactgq tcagacactgtttctgatttatatactttagtacatgaatttggtcactctgcacatagt tactttaqtaqacaqaatcaaccatcaaatttaaqcqattatacaatctttqtcqctqaq 25 qtaqcatcaacttqtaatqaqqctttacttaqtqactacatqqacaaacatttaqatqat qaacqacqtctattqttacttaaccaagaattagaacqatttagaqcaacactattccqt caaacaatqtttqctqaatttqaacataaaatacatcaaataqaaqaaqctqqqqqqccq ttaacqccaaatcqtatqaatqaaqaatatqctaaactqaacaaactatattttqqtqaa qcaqtaqaaactqacqatqatattaqtaaaqaatqqtcacqtattcctcatttctatatq 30 aattattatqtatatcaatacqcaactqqttataqtqcaqctcaaaqtttaaqtcatcaa attttaactqaqqqtcaacctqctqttqaacqatatatcaatqaattcttaaaaaaqqqt ageteaaactateeqattgaaattttaaaaaaatgeaggtgttgacatgacaacaceteaa ccaataqaqqaaqcttqtqaaqtattcqaacaaaaattaqatqcttttqaaaaqttaatq aaagcttag

35

40

45

Sequence 2362

MSQQLTREEQERKYPEYTWDLTTIFKSDEAFEEAFKSIEAKIGEEEKFKGHLGESAETLY
EALSLEDELGTKLEKVYVYAHLKQDQDTANDKYTGLEARAHQLVIKYSSAWSFLVPEILQ
LDEATIQSFIDSNDDLKRYEFDLKLINEKRPHILDANTEKLLTEAQDALSTPSNVYGMFS
NADLEFEDAIDKDGQAYPLTQGTFIKYLESDDRELRASAFRNVYKAYGAHNNTLGATLAG
EVIXNVFNARTHHYRSARERALSNNHIPEAVYDNLIKTVHKYLPLLHRYTKLRQELLGLD
DLKMYDLYTPLVKDVKFEMPYEEAKSWMLKALEPMGEEYLNVVKEGLDNRWVDVYZNKGK
RSGGYSSGGHLTNPFILLNWSDTVSDLYTLVHEFGHSAHSYFSRQNQPSNLSDYTIFVAE
VASTCNEALLSDYMDKHLDDERRLLLLNQELERFRATLFRQTMFAEFEHKIHQIEEAGEP
LTPNRMNEEYAKLNKLYFGEAVETDDDISKEWSRIPHFYMNYYVYQYATGYSAAQSLSHQ
ILTEGQPAVERYINEFLKKGSSNYPIEILKNAGVDMTTPQPIEEACEVFEQKLDAFEKLM
KA*

Sequence 2363

50 Contig_0745_pos_1454_846,
 is similar to (with p-value 2.0e-77)
 >sp:sp|006446|SECA_STAAU PREPROTEIN TRANSLOCASE SECA SUBUNIT
 . >gp:gp|U97062|SAU97062_1 Staphylococcus aureus NCTC 8325 S
 ecA (secA) gene, complete cds. NID: g2078389.

55 atgggtggtattgctatacataaaggtgatattgcagaaatgagaacaggtgaagggaaa acattgactgcaaccatgccgacgtatttgaatgctttagctggtagaggtgtacatgtt attacagtcaatgaatatctatcaagttcacaaagtgaagaaatggctgaactatataac tatcttggcttaactgtaggtttgaacttaaatagtaagtcaactgaagaaaaacgtgag gcttacgcacaagatatcacttatagtacgaataatgaacttgggtttgattatcttaga

Sequence 2364

5

25

MGGIAIHKGDIAEMRTGEGKTLTATMPTYLNALAGRGVHVITVNEYLSSSQSEEMAELYN
10 YLGLTVGLNLNSKSTEEKREAYAQDITYSTNNELGFDYLRDNMVNYAEERVMRPLHFAII
DEVDSILIDEARTPLIISGEAEKSTSLYGKLIISYKLFKNKEQLFYVAYEIKGKKVYYK
RDINPKDYIKEHKPDCKDIRRK*

Sequence 2365

15 Contig_0745_pos_0_300,
putative peptide of unknown function
atggattattattatcaatttcataagcatcaacattacttcctatgtcatgatatttta
gaagatgcttggaaatcacaaaatactttttcaaaacatgatgcagtagtaagtctcatt
ttgtttgcaacagctaattatcactatcgtcgtgggaatttaaaaggcgcattaaaatct
tttgaaaaagctttattaactattaaccacgctaaagatgacactcaattacaccttaat
atcaatgaatttaaacaacttattgtgaaaatgattgaagcagtaaaattacaaaaaACT

Sequence 2366 MDYYYQFHKHQHYFLCHDILEDAWKSQNTFSKHDAVVSLILFATANYHYRRGNLKGALKS FEKALLTINHAKDDTQLHLNINEFKQLIVKMIEAVKLQKT

Sequence 2367

Contig 0746 pos 541 1500,

- is similar to (with p-value 0.0e+00)
 >sp:sp!P05425|ATKB_ENTFA POTASSIUM/COPPER-TRANSPORTING ATPAS
 E B (EC 3.6.1.36). >pir:pir|B45995|B45995 Cu2+-transporting
 ATFase (EC 3.6.1.-) Enterococcus hirae >gp:gp|L13292|ENECO
 PPUMP 2 Enterococcus hirae ATPase (copA) gene, complete cds;
 ATPase (copB) gene, complete cds. NID: g290641.
- tatatttatagcttgtatgcttttatatgaataactttagtagtgcaactggtcataca atggacttttttttgggaattagcaaccttaattttaattatgctattaggacattggata gaaatgaatgctgtcggaaatgctggagatgctttaaagaaaatggcagaactattacct aatagtqctattaaagttatggataatggccaacqcgaaqaagttaaaatatcagacatc
- 45 atgactgatgatatcgtcgaagtaaaagccggagaaagcattccaacagatggtattatc
 gttcaaggacaaacatctatagatgaatccctagtcactggagaatctaaaaaagtacaa
 aaaaatcaaaatgacaacgtcatcgggggttctattaatgggtctggaacaatacaagtc
 aaggttacagctgttggagaagatggatatcttctccaagttatgggacttgttaatcaa
 gcacaaaatgataaatctagtgctgaattgttatctgataaagtagcgggttattatc
- $50 \qquad \text{tactttgctgtaagtgttggcgtgatttcttttattgtctggatgctcattcaaaatgat} \\ \text{gttgattttgcattagaacgtcttgtaactgtgttagtcattgcttgtcccatgctttag}$

Sequence 2368

55 MHHDNHASHHHSGHAHHHGNFKVKFFVSLIFAIPIILLSPMMGVNLPFQFTFPGSEWVVL
ILSTILFFYGGKPFLSGGKDEIATKKPGMMTLVALGISVAYIYSLYAFYMNNFSSATGHT
MDFFWELATLILIMLLGHWIEMNAVGNAGDALKKMAELLPNSAIKVMDNGQREEVKISDI
MTDDIVEVKAGESIPTDGIIVQGQTSIDESLVTGESKKVQKNQNDNVIGGSINGSGTIQV
KVTAVGEDGYLSQVMGLVNQAQNDKSSAELLSDKVAGYLFYFAVSVGVISFIVWMLIQND

VDFALERLVTVLVIACPML*

Sequence 2369 Contig 0746 pos 1614 2543, is similar to (with p-value 2.0e-78) >sp:sp|P05425|ATKB ENTFA POTASSIUM/COPPER-TRANSPORTING ATPAS E B (EC 3.6.1.36). >pir:pir|B45995|B45995 Cu2+-transporting ATPase (EC 3.6.1.-) - Enterococcus hirae >gp:gp|L13292|ENECO PPUMP 2 Enterococcus hirae ATPase (copA) gene, complete cds; ATPase (copB) gene, complete cds. NID: g290641. 10 atggataaaactggtactttaactgagggtaacttttctgtgaatcattatgagagcttt aaaaatqatttqaqtaatqatacaatattaaqccttttcqcctcattaqaaaqtcaatctaatcacccattagctataagtattgttgattttgcgaaaagtaaaaatgtttcatttact aatccacaaqacqttaataatattccagqtqtcggattagaaggtctaattgataataaa 15 acatataaaataacaaatgtctcttatcttgataaacataaacttaattatgacgatgac ttgtttactaaattagctcaacaaggtaattcaatcagttatttaattgaggatcaacaa qtcattqqcatqattqctcaaqqagatcaaattaaaqaaagctcaaaacaaatgatagct gatttactatcaagaaatattacaccagtcatgcttacaggtgacaataatgaagtggca cacqctqtcqcaaaaqaattaqqtattaqtqatqttcacqcacaactcatqccaqaaqat 20 aaqqaaaqcattataaaaqattatcaaaqtgacggtaataaagtcatgatggtcggagac qqtatcaacqatqcqccqaqtcttataaqaqccqatattqqtataqcaattqqtqcaqqc acagatqttqcagtqgattcaggtqatatcatacttqttaaaagtaatccatcagatatcattcatttcttqactctttcaaataatactatgagaaaaatggtgcaaaacttatggtgg qqtqcaqqttataatattqttqctqtacctttaqcaqctqqcqcattaqcttttatcqqq 25 ttaatattatcaccagctqtaqqaqcaatattaatqtctttaaqtacagttataqraqcq attaatgcttttacattaaaattaaaataa

Sequence 2370

MDKTGTLTEGNFSVNHYESFKNDLSNDTILSLFASLESQSNHPLAISIVDFAKSKNVSFT

NPQDVNNIPGVGLEGLIDNKTYKITNVSYLDKHKLNYDDDLFTKLAQQGNSISYLIEDQQ
VIGMIAQGDQIKESSKQMIADLLSRNITPVMLTGDNNEVAHAVAKELGISDVHAQLMPED
KESIIKDYQSDGNKVMMVGDGINDAPSLIRADIGIAIGAGTDVAVDSGDIILVKSNPSDI
IHFLTLSNNTMRKMVQNLWWGAGYNIVAVPLAAGALAFIGLILSPAVGAILMSLSTVIVA
INAFTLKLK*

35

Sequence 2371 Contig_0746_pos_4011_4493, putative peptide of unknown function

45 acagccaatatagataacgtgaaaaagacgactgtttacgtagttgattacaaatccaaa gataatggtaaaatcattaaaaatcataaatggatgacaggaaatgagctgaaagcacga taa

Sequence 2372

50 MMKKDKDTNDQKSESHMKHNDESKVPEDMTSTNEGEFKVGDKVTITAGHMPGMKGAEATV KGAYKTYAYVVSYKPTNGNEKVNNHKWIVNEEIKDAPKDGFSKGDTVKLEASHMSGMKGA TANIDNVKKTTVYVVDYKSKDNGKIIKNHKWMTGNELKAR*

Sequence 2373

Contig_0746_pos_5109_4705,
is similar to (with p-value 8.0e-65)
>sp:sp|P30330|ARSC_STAAU ARSENATE REDUCTASE (ARSENICAL PUMP MODIFIER). >pir:pir|D41903|D41903 arsenate reductase (EC 1.-.-) - Staphylococcus aureus plasmid pI258 >gp:gp|M86824|PI

10

Sequence 2374 VSIMTKKIIYFICTGNSCRSQMAEGWGKNILGDEWQVYSGGIEAHGVNPKAIEAMKEVGI DISNHTSNLIDNTILNQSDLVVTLCSDADNNCPILPPNVKKEHWGFDDPAGKPWSEFQRV RDEIKTAIESFKTR*

15

30

55

Sequence 2375
Contig_0746_pos_4270_3908,
putative peptide of unknown function

25 taa

Sequence 2376
MIVYFFISICGFITYNIGICFIRTFYSSFCTFHTWHMSCCNRYFISYFKFTLISRCHIFR
NFTFIIMLHMALTFLVISVFIFFHHIKISLLISLLLLFDPSFHYLHAQVYDSETCMFQYF

Sequence 2377

Contig_0747_pos_4050_4487,

is $\overline{\text{similar}}$ to (with $\overline{\text{p}}$ -value 8.0e-27)

- 35 >sp:sp|P42435|NASD_BACSU NITRITE REDUCTASE (NAD(P)H) (EC 1.6
 .6.4). >gp:gp|D30689|BACNARB_4 Bacillus subtilis DNA around
 narB region (nasB operon and nasA gene). NID: g710016. >gp:g
 p|Z99105|BSUB0002_159 Bacillus subtilis complete genome (sec
 tion 2 of 21): from 194651 to 415810. NID: g2632457. >gp:gp|
 40 D50453|D50453_33 Bacillus subtilis DNA for 25-36 degree regi
- 40 D50453|D50453_33 Bacillus subtilis DNA for 25-36 degree region containing the amyE-srfA region, complete cds. NID: g1805 369.

atgttatggaggtttgttatgggaagtttttttaatcggatgactcgaaaagagaatcct actgtagagtctggtgttaaagattttggcgtcatatctgttgaaaatggctaccaaata tttatcggaggtaatggtggtactgatgttactgtaggtaaattgttaacgacagttgaa accgaagatgaagtgattcaattatgtggtgccctcatgcagtattacagagaaacaggt gtttacgctgaaagaacagcaccatggttagaacgtatgggctttgaaaatgtcaagaat gtcttattaaatcaagaaaagcaaaaagaactgtatttaagaattatggaagccaaaaaa gctgttgaaaatgaaccatgggaaactattgttgaaaataaagaagcacaaaaaatcttt

50 gaagttgagaaggtgtaa

Sequence 2378

MLWRFVMGSFFNRMTRKENPTVESGVKDFGVISVENGYQIFIGGNGGTDVTVGKLLTTVE TEDEVIQLCGALMQYYRETGVYAERTAPWLERMGFENVKNVLLNQEKQKELYLRIMEAKK AVENEPWETIVENKEAQKIFEVEKV*

Sequence 2379
Contig_0747_pos_4490_4804,
is similar to (with p-value 3.0e-22)

>sp:sp|P42436|NASE_BACSU ASSIMILATORY NITRITE REDUCTASE (NAD (P)H) SMALL SUBUNIT (EC 1.6.6.4). >gp:gp|D30689|BACNARB_5 Ba cillus subtilis DNA around narB region (nasB operon and nasA gene). NID: g710016. >gp:gp|Z99105|BSUB0002_158 Bacillus su btilis complete genome (section 2 of 21): from 194651 to 415 810. NID: g2632457. >gp:gp|D50453|D50453_32 Bacillus subtili s DNA for 25-36 degree region containing the amyE-srfA regio n, complete cds. NID: g1805369.

15

Sequence 2380 MKAKEKIKVTTMNEMIPQIGKKVVVNEKEIGIFLTDNGDLYAIGNICPHKEGPLSEGTVS GDYVYCPLHDOKIALKTGEVQQPDTGCVETYEVEVIDGDIYLCL*

20 Sequence 2381 Contig 0747 pos 3285 2647, is similar to (with \overline{p} -value 8.0e-40) >sp:sp|P39592|YWBI BACSU HYPOTHETICAL TRANSCRIPTIONAL REGULA TOR IN EPR-GALK INTERGENIC REGION. >pir:pir|S39679|S39679 hy pothetical protein - Bacillus subtilis >gp:gp|X73124|BSGENR_ 25 25 B.subtilis genomic region (325 to 333). NID: g413923. >gp :gp[239223|BSUB0020_126 Bacillus subtilis complete genore (s ection 20 of 21): from 3798401 to 4010550. NID: g2636240. atgaatgacattgtgaacgttcaaaaaggtcatattaaaataggcttatcaccaatgatg aatgttcaaatgtttacaaatgcattgaatcagtttcacagactctatcctaatgtgaca 30 tatgaagtgattgagggtggtggtaaaattgttgagaacttaacatctaatgatgatgtg aatqaaqaattattattaqtaqtaaqtaatqaccatcatttagcacatttaaataaagta gacatggcagatttgaaagatgaagagtttgttttatttcatgatgattattatttaaaa gatcaaattatagagaactgtaaaaggctaggctattaccctaaaactgttgctaatatt 35 tctcaaattagttttatcgctaatatgattcaacaaggaataggaattagtatcgttcca gaaagtttagttaatttaatggggaataacgtaacgtccattcaattagagaatgttgaa $\verb|ttatcatggcatcttggcgtgatatggagaaaagatgcttatctcaatcatgtaactcgc|$

aaatggattgaatttatttctgagatgaaaccaacatag

40

45

Sequence 2382 MNDIVNVQKGHIKIGLSPMMNVQMFTNALNQFHRLYPNVTYEVIEGGGKIVENLTSNDDV DIGITTLPVDHTEFHSTSLYNEELLLVVSNDHHLAHLNKVDMADLKDEEFVLFHDDYYLK DQIIENCKRLGYYPKTVANISQISFIANMIQQGIGISIVPESLVNLMGNNVTSIQLENVE LSWHLGVIWRKDAYLNHVTRKWIEFISEMKPT*

gatttagttgttattacagcaggtgcacctcaaaaaccgggtgaaactcgtttacaactt gttgagaaaaatactaaaatcatgaaaagtatcgtaactagtgtcatggatagtggcttt gatggttcttccttaattgctgcaaacccagttgatatcttaacacgttatgttaaagaa gttacaggtttaccagctgaacgtgttattggttctggtacagtgcttgatagtgcaaga

ttcagatatttaataagtaaagaattaggtgttacatcaagtagtgttcacgctagcatt ataggtgaacatggtgactctgaacttgcagtttggtctcaagcaaacgttggaggtatt tcagtgtatgatacattgaaagaagaaactggtagcgatgctaaagcgaatgaaatttat attaatacaagagatgctgcttacgatatcattcaagctaaaggatctacgtattatggt atagctctagcactattacgtatttctaaagctttactaaataatgaaaatagtattttg acagtttctagtcaacttaatggtcaatatggatttaacgatgtttatcttggcttacca acacttatcaatcaaaatggtgcagttaaaatttatgaaacaccattaaatgataacgaa ctacaattactagaaaaatcagtgaaaactttagaagacacttatgattctataaaacat ttagtttaa

10

15

30

Sequence 2384

MKEFVKMKKFGKKVVLVGDGSVGSSYAFAMVTQGIADEFVIIDIAKDKVEADVKDLNHGA LYSSSPVTVKAGEYEDCKDADLVVITAGAPQKPGETRLQLVEKNTKIMKSIVTSVMDSGF DGFFLIAANPVDILTRYVKEVTGLPAERVIGSGTVLDSARFRYLISKELGVTSSSVHASI IGEHGDSELAVWSQANVGGISVYDTLKEETGSDAKANEIYINTRDAAYDIIQAKGSTYYG IALALLRISKALLNNENSILTVSSQLNGQYGFNDVYLGLPTLINQNGAVKIYETPLNDNE LQLLEKSVKTLEDTYDSIKHLV*

Sequence 2385

20 Contig_0747_pos_800_450, is similar to (with p-value 1.0e-34)

>gp:gp!L16975|LACALS_2 Lactococcus lactis alpha-acetolactate
synthase (als) gene, complete cds. NID: g473900. >gp:gp|A23
961|A23961_1 L. lactis alpha-acetolactate synthase gene. NID

25 : g809617.

Sequence 2386

MAEKQYSAAQMVIDTLKNNGVEYVFGIPGAKIDYLFNALEDDDIELVVTRHEQNAAMIAQ 35 GIGRLTGKPGVAITTSGPGVSNLTTGLLTATSEGDPVLAIGGQVKRNDLLRLTSIR*

Sequence 2387

Conting_0748_pos_1246_3342,

is similar to (with p-value 0.0e+00)

- 40 >sp:sp|P52026|DPO1_BACST DNA POLYMERASE I (EC 2.7.7.7) (POL
 I). >gp:gp|L42111|BACPOL_1 Bacillus stearothermophilus DNA p
 olymerase I (pol) gene, complete cds. NID: g806280.
 atgaaaggtctaatgggggatacctctgacaatattcctggcgttgctggtggtggcgaa
- aagacggctattaaattacttaatcaatttgagtcagtagaaggggtctatgaacatatt
 gaggaggtcactgcaaaaaaattaaaagaaaaactcatcaatagtaaagatgatgcctta
 atgagtaaagatttagcaacaatcaatgttcacagtccgattgaagtatcattagaagat
 acaaaattaactctacaagacgacactacagaaaaaattgaactatttaaaaagctagaa
 tttaaacaactattagcagatatagacacatcctctacgaatgaagaagtcatagataaa
 acttttgaaattgagcaagactttcaaaaatgtagatttgaatgatttaaacgaagcggta
- 55 ggacaaaattatgtaaaagataatattacaatatttgggaaaggtaagaaacatcatata cctgaagaaccaattctaaacgaacacattgcctctgtgacagaagctatagcagctgta actccaaccatgaaatcacagttagaagattataatcaaattgaactgttgaaagattta gaattacaaatttgaactgttatatataccgstatc aatqatttgaaagaaattgaaattggaagtattaataccaat

PCT/US00/30782 WO 01/34809

attcatgagtcggctggtgaagcgtttaatatcaattctcctaagcaattaggtgttgtt ttatttgaaacattacaattgcctgtcattaagaagaccaaaacgggctattcaacagct $\tt gtagacgtattagaaaaactacaaggtgagcatcctattatagatgatattttagaatat$ aqacaacttqctaaqttqcaatctacqtatqtaqaqqqattacaaaaaqtaataaqcaaa $\tt gatcatagaattcacacacgttttaatcaaacgcttgctcaaactggtagattatcaaqt$ qcctttaaaccaacttctaaagatagtgtgattttatctgctgattattcacaaattgag ttacqtqtacttqctcatattacqcaaqatqaaaqtttaaaacatqcatttataaacqqa catqatattcacactqcaacaqcaatqaaaqtatttaatgttgaatctqaccaqgttqat aqtttaat:qaqacqtcaaqcaaaaqctqttaactttggtattgtatatggtatcaqcqat tatgqattgagtcagagcttgggtattactagaaaacaagcaaaagcatttattgatgat tatttaqctaqttttccaqqtqtaaaacaatatatqtcagacattgttaaagatqcaaaa $\tt gcaca aggttatgtggaaacactacttcatcgtcgtcgatacattcctgatataacaagt$ agaaacgttaatttaagaagttttgcagaaagaacagcaatgaatacacccatacaaggt ${\tt agtgcagctgacataataaaattagcaatggttaaattcagtgaaaagattaaagaaact}$ aaatatcatgctaagttattattacaagttcatgatgaactcatatttgaaataccaaaa tcaqaaqtaqaaqattttaqtaaatttqtaqaaqaaattatqqaacaaqcattaqtqctc gatgtacctttaaaagtagattcgaattatggtgcaacatggtacgatgctaaataa

20 Sequence 2388 MKGLMGDTSDNIPGVAGVGEKTAIKLLNQFESVEGVYEHIEEVTAKKLKEKLINSKDDAL ${\tt MSKDLATINVHSPIEVSLEDTKLTLQDDTTEKIELFKKLEFKQLLADIDTSSTNEEVIDK}$ TFEIEODFONVDLNDLNEAVIHFELEGTNYLKDTILKFGFYTNHQHVVINAEDVKDYKHL VQWLEDKNTTKIVYDAKKTYVSAHRLGINIENIEFDVMLASYIIDPSRSIDDVKSVVSLY GONYVKDNITIFGKGKKHHIPEEPILNEHIASVTEAIAAVTPTMKSQLEDYNQIELLKDL ELPLARILSEMEEIGIYTDINDLKEMEFEIQKKLDVLISNIHESAGEAFNINSPKQLGVV LFETLOLPVIKKTKTGYSTAVDVLEKLQGEHPIIDDILEYRQLAKLQSTYVEGLQKVISK DHRIHTRFNOTLAQTGRLSSIDPNLQNIPIRLEEGRKIRKAFKPTSKDSVILSADYSQIE LRVLAHITQDESLKHAFINGHDIHTATAMKVFNVESDQVDSLMRRQAKAVNFGIVYGISD 30 YGLSOSLGITRKOAKAFIDDYLASFPGVKQYMSDIVKDAKAQGYVETLLHRRRYIFDITS RNVNLRSFAERTAMNTPIQGSAADIIKLAMVKFSEKIKETKYHAKLLLQVHDELIFEIPK SEVEDFSKFVEEIMEOALVLDVPLKVDSNYGATWYDAK*

Sequence 2389 35 Contig 0748 pos 4255 4857, is similar to (with p-value 2.0e-31) >sp:sp|Q55515|Y553 SYNY3 HYPOTHETICAL 22.5 KD PROTEIN SLR055

3. >gp:gp|D64006|SYCSLLLH 95 Synechocystis sp. PCC6803 compl ete genome, 25/27, 3138604-3270709. NID: g1001291.

- 40 qtqattqqqataactqqtqtattqccactqqaaaatcaacaqtttcaqaattattaaca qcatatqqqtttaaaatcqtaqatqctqatattqcttcacqcqaagcagttaaaaaaqgc $\verb|tctaagggtcttgaacaagttaaagagatttttggggaagaagcaattgacgaaaatggt|$ gagatgaatcgtcaatatgtaggagagatagtttttaatcatcctgacttacgcgaggct $\verb|cttaatgaaatagttcatcctattgtaagagagataatggaacaagagaaaaacaattat|$ 45 $\verb|ctagaacatggatatcatgtaattatggatatcccattgttgtacgaaaatgaactacaa|\\$
- atggagaggaataatttatcattagaagatgctaaagcacgtgtttatagtcaaatatct cttaaacaqaatttacaaaaattacttqaaqaaqqqqtatattcaatcqqaqaqqqaa

50

10

15

Sequence 2390 VIGITGGIATGKSTVSELLTAYGFKIVDADIASREAVKKGSKGLEQVKEIFGEEAIDENG EMNROYVGEIVFNHPDLREALNEIVHPIVREIMEQEKNNYLEHGYHVIMDIPLLYENELQ 55 DTVDEVWVYTSESIQIDRLMERNNLSLEDAKARVYSQISIDKKSRMADHVIDNLGDKLE LKQNLQKLLEEEGYIQSESE*

Sequence 2391 Contig 0751 pos 2197 2541,

putative peptide of unknown function atggagatgatagaagaacgtaatttatcagggcttattcaaacactaactttcaatcat cccatcattcaaatctttaaagagaacacattaaatcaacttaaaatactctctcattat ttaccagagcgacaccctgcaatggtggcaattcaatcttggtcacaatggtttactgat catgggattactgaaatccaccttgatgtaactgcacaagcgcctagatcttattacaaa ggtattttataaaaatgtcatcttaaaaatactgctcatagcgttttgacaggtggatat tatcacggttcactagaaggttttggtttaggattaacactttaa

Sequence 2392

10 MEMIEERNLSGLIQTLTFNHPIIQILKENTLNQLKILSHYLPERHPAMVAIQSWSQWFTD HGITEIHLDVTAOAPRSYYKGIFIKCHLKNTAHSVLTGGYYHGSLEGFGLGLTL*

Sequence 2393

Contig_0751_pos_2566_3180,

- is similar to (with p-value 5.0e-27)
 >sp:sp|Q02129|HIS1_LACLA ATP PHOSPHORIBOSYLTRANSFERASE (EC 2
 .4.2.17). >pir:pir|D45734|D45734 HisG Lactococcus lactis s
 ubsp. lactis >gp:gp|U92974|LLU92974_4 Lactococcus lactis unk
 nown gene, partial cds, and HisC (hisC), unknown, HisG (hisG)
- 20), unknown, HisB (hisB), unknown, HisH (hish), HisA (hisA), HisF (hisF), HisIE (hisIE), unknown, unknown, LeuA (leuA), L euB (leuB), LeuC (leuC), LeuD (leuD), unknown, IlvD (ilvD), IlvB (ilvB), IlvN, IlvC (ilvC), IlvA (ilvA), AldB (aldB) and aldR (aldR) genes, complete cds. NID: g2565137.
- 25 atgttacgagttgcattagcaaagggtcgtttattaaagagttttatcgaatatttacaa caagttaatcagatagatattgcaactgtacttttaaatagacagcgacagttattgctt acagtcgacaacattgaaatgattttagttaaaggaagcgatgtgcctacttatgtagaa caaggtattgctgatgtaggaatagtgggaagtgatattctgaatggtcaaaaatataat attaataaattactcgatttgccatttggtaaatgtcattttgcgttggcggcaaagcca
- 35 attaactatgcttag

40

Sequence 2394

MLRVALAKGRLLKSFIEYLQQVNQIDIATVLLNRQRQLLLTVDNIEMILVKGSDVPTYVE QGIADVGIVGSDILNGQKYNINKLLDLPFGKCHFALAAKPETSRYKKVATSYVHTATQFF NKEGMDVEVIHLNGSVELSCVVDMVDAIVDIVQTGSTLTANGLVEKKHISEINAKLITNK ESYFXQSSEIERLIKQLGVSINYA*

Sequence 2395

Contig_0751_pos_3320_4003,

- is similar to (with p-value 2.0e-41)
 >sp:sp|Q02136|HISX_LACLA HISTIDINOL DEHYDROGENASE (EC 1.1.1.
 23) (HDH). >pir:pir|E45734|E45734 HisD Lactococcus lactis subsp. lactis

qaaatqqcttqtacttatqtqattaqtqaaaatqaaaaggtacttaatcaattqaacact

ataatacaagagaaacttcagtag

Sequence 2396

VETEKLELEQSQLKNAYDMLDNETRDALEQSYQRIKVYQENIKVKQESSQQTECYERYHP
IERVGIYVPGGKASYPSTVLMTATLAQVAGVNEITVVTPPQNSGICQEVLAACYITGVHH
VYQVGGAQSIAALTYGTETIKKVDKIVGPGNQYVAYAKKFVFGQVGIDQIAEPTEIALII
DESADLDAIAYDVFAQAEHDEMACTYVISENEKVLNQLNTIIQEKLQ*

Sequence 2397

Contig_0751_pos_832_338, 10 is similar to (with p-value 3.0e-78) >sp:sp|P51065|PPCK_STAAU PHOSPHOENOLPYRUVATE CARBOXYKINASE (ATP) (EC 4.1.1.49). >gp:gp[U51133|SAU51133_1 Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene, comple te cds. NID: g1255261. >gp:gp|L42943|STAPEPCK 1 Staphylococc 15 us aureus (clone KIN50) phosphoenolpyruvate carboxykinase (p ckA) gene, complete cds. NID: g860731. atgtatcatttcttaagtggattcacgtctaaactagctggaacagaacgtggtgttact gaacctcaaccttcgttttcaacttgctttggtgcaccattcttacctttgagtccaaca 20 aagtacgctgatctacttggaaatttaatcgatattcatgatgtagatgtatatctagta aatactqqatqqacaqqtqqtaaatatggtgtagggcgaagaattagtctacactatact cgtgaaatggtagatcaagcaatatcaggtaaattaaaaaatactaaatattaaaagat gatacatttggcttaaatattccagttcaaattgacagtgtacctacaactattctgaat

 ${\tt cgctttaataataattttaaaaaattcggcaaggaagtcgaacatattgccaacaaaggt} \\ {\tt gcatttaatcaataa}$

cctatcaatgcttggaacaataaagataactacaaagcacaagcttacgatttgattcaa

Sequence 2398

25

MYHFLSGFTSKLAGTERGVTEPQPSFSTCFGAPFLPLSPTKYADLLGNLIDIHDVDVYLV
30 NTGWTGGKYGVGRRISLHYTREMVDQAISGKLKNTKYIKDDTFGLNIPVQIDSVPTTILN
PINAWNNKDNYKAQAYDLIQRFNNNFKKFGKEVEHIANKGAFNQ*

Sequence 2399

Contig_0752_pos_2931_2140,

gatatcaatgccacagcaccatattcaatatttatacgtggtgctaaatatcgttttgag ccacccaactag

50 Seguer

55

Sequence 2400
MSHNIFVRCRKLNLKLDHIIHYLHQLESFKFPGEILELQNGGRHHHLGTFNQIAPIKNSYI
ELLDVENESKLSNIAKTEEGRVSFATKIVQDHFKQGVKGICFRTKDINQVKSTLENRGVD
VIGPIDMERENKKGHQIRWRLLYIANPDYTVKPPFFIEWDNNKKQNLSQIHNFNLSSFKI
KEVIITSTQRETTVSLWKEWYNLKIVNETATSTDLKLETDEVIYKIEDGKDSGFHTLIMT
DINATAPYSIFIRGAKYRFEPPN*

Sequence 2401 Contig 0752 pos 1740 490,

is similar to (with p-value 3.0e-24) >gp:gp|AF099966|AF099966_1 Staphylococcus sciuri factor essential for methicillin resistance FEMA (femA) gene, complete cds. NID: g3820631.

 ${\tt atggaaaagatgaacatcactaatcaacaacatgacgcatttgtgaaatctcatcccaat}$ qqtqatttattacaattatctaaqtqqqcaqatacqaaaaaattaacaqqatqqtattca agaaqaattgctgtcggtgaaaatggtcaaattaaaggtgttggccagctactattcaaa aaaatacctaaacttccatacactttatgctatgtatctaggggatttgtagctgattat aataataaagaagtgttagaagctctacttagctatgctaaagaagtagcaaaagatgaa $\verb|aaqtcgtatgctatcaaaatagatcccgatgtcgaagtagataaaggtgcagaagcactt|$ aaaaatctacqtqaqcttqqqtttaaacataaaggttttaaaqaaggactgtctaaagac tatattcaaccaaqaatgactatgattacgcctattgacaaaacagatgatgaattagtt caaagtttcgaacgtcgaaatcgttcaaaagtaagacttgcactgaagcgtggaactaaa gtagaacqatcaaatcqcqaqqqqcttaaaatctttqctaatttaatgaagataactggg catgaagacggtgatgcagaactcttccttgttaaattagagcctaagccagtattagat acggttaatcaagatcttgaagcacaattagctgagaaaqagaaattacaatcaaaaaaag caagataaaaagacacttaataaacttaatgatattgataataaaattaagaaaacaaat gaattaaaatcggatttaacagaacttgaaaaaagcgagccagaaggtatttacttgtca ggagcgctcttaatgtttgcaggaaacaaatcttactatctctatggcgcttcctcgaatgactatcgtgatttcttaccaaaccatcacatgcaatttgaaatgatgaaatatgcacgt gagcatggtgcaacaacctatgactttggtggtacagataatgatcctgataaagattca qaacattatqqqttqtqqqqcttttaaacqaqtttqqqqqtacatatttaaqtqaaaaaatt ggagaatttgattatgtattaaatcaaccgctatatcatttagttgagaaagtgaaacct cqtttaacqaaaqctaaaattaaaatatcacgtaaacttaaaggtaaataa

Sequence 2402

MEKMNITNQQHDAFVKSHPNGDLLQLSKWADTKKLTGWYSRRIAVGENGQIKGVGQLLFK KIPKLPYTLCYVSRGFVADYNNKEVLEALLSYAKEVAKDEKSYAIKIDPDVEVDKGAEAL KNLRELGFKHKGFKEGLSKDYIQPRMTMITPIDKTDDELVQSFERRNRSKVRLALKRGTK VERSNREGLKIFANLMKITGERDGFLTRDISYFENIYDALHEDGDAELFLVKLEPKPVLD TVNQDLEAQLAEKEKLQSKKQDKKTLNKLNDIDNKIKKTNELKSDLTELEKSEPEGIYLS GALLMFAGNKSYYLYGASSNDYRDFLPNHHMQFEMMKYAREHGATTYDFGGTDNDPDKDS EHYGLWAFKRVWGTYLSEKIGEFDYVLNQPLYHLVEKVKPRLTKAKIKISRKLKGK*

35

40

10

15

20

25

30

Sequence 2403 Contig_0752_pos_0_359,

putative peptide of unknown function

atggtagttttaattattatggtggcgtttattcaagcgccaaattaaaacttgaatta ttaccagatgttgaaaatccagttatttcagttcaaactacaatgtctggagcaacaccc cagtcaacacaagatgaaataagtagcaagattgataatcaagtacgctcgttggcctac gtaaatagtgtacagactgaatctatacctaatgcttctatagtaactgtagaatacgat aatggtacagatatggataaagctgaagaacaattaaaaaaagaaatcgacaaaattaag tttaaagatggcgttggtgaacccgaattaacaaggaactctatggatgctttTGTTTG

45

Sequence 2404

MVVLIILGGVYSSAKLKLELLPDVENPVISVQTTMSGATPQSTQDEISSKIDNQVRSLAY VNSVQTESIPNASIVTVEYDNGTDMDKAEEQLKKEIDKIKFKDGVGEPELTRNSMDAFVX

50

55

Sequence 2405 Contig_0753_pos_2155_2514, putative peptide of unknown function

atgataaatattatattgaagaaaatagacttggaggtaattagaatgttcgttgttaca aatagaatcactgtaaaaaaaggatatgcaaaacaaatggcgcctaattttactaaagga ggacctattgaatctttaaagggctttgaaggtattgaagtttggcaaattgataaagat gattatagcgaagatatgtatgtaaatagttggtgggaaactgaagaagattttaaaaat tgggtgaatagtgatgtatttaaacaagcacataaaaatactggaaaatccgaagattca ccagtcattaaaagcgaaattgttaaatcaaatgttttatcttctttgaacaqaagataa

Sequence 2406

MINIILKKIDLEVIRMFVVTNRITVKKGYAKQMAPNFTKGGPIESLKGFEGIEVWQIDKD
5 DYSEDMYVNSWWETEEDFKNWVNSDVFKOAHKNTGKSEDSPVIKSEIVKSNVLSSLNRR*

Sequence 2407

Contig 0753 pos 4019 2700,

is similar to (with p-value 3.0e-88)
>sp:sp|P30267|YKAA_BACFI HYPOTHETICAL 50.9 KD PROTEIN IN KAT
A 3'REGION (ORF A). >pir:pir|S27491|S27491 hypothetical prot
ein A - Bacillus firmus >gp:gp|L02548|BACKATA2_1_B.firmus OR
F A and ORF B, complete cds. NID: g143118.

- 15 atritrattyttagggattatattattittagttootataccagtogttoaagatggaaag cagcaaccgacacttootatagotttittagotggttattaaaagattggottggtggt atcatgocaattttaattgtaaccatcataactgtatcaggtattttaacaatattatgo totacaatttataaaaataaattaaatcotcaaggtttaatgagcagtgotttoaacgtt aaaataggatggottgttttgagagtattagctgtottottitottggttaacattitta
 20 aatattggacotgaaatgattaaatotgaagatacaggtggattagtattttcaagttt
- 20 aatattggacctgaaatgattaaatctgaagatacaggtggattagtattttcaagttta ttacctactcttgtagcagtatttttatttgctgcaatctttttacctttattaatggag tatggtctattagaattacttggacccatctttagacctatcatgcgacctttgtttact ttacctggtagatcgacagttgataatctagcttcatttataggtgatggtacagttggt gttttaattactagtagacaatatggtgaaggatattactctagaagagaagcaacagta
- atatccacaacctttagtgttgtatctattacgttcgctattgtcattgccgaaacaatt agaatgcaagatcaatttttctatttttatttaacagttgtcatttcatgcttaattgca gcaatgattatgccaagaatttggccacttaaaaatattcctgacgaatatgctaaagaa gtaagtgaagaggctcgtaatgaacagctaccagaaggcaaaacagcattaaaatatggt tttgatttagcaactgaagttggaattaaatcgccagggtttaaagaatttttaatttca

Sequence 2408

- 40 MSLLGIILFLVPIPVVQDGKQQTTLPIAFLAGLLKDWLGGIMPILIVTIITVSGILTILC STIYKNKLNPQGLMSSAFNVKIGWLVLRVLAVFFSWLTFLNIGPEMIKSEDTGGLVFSSL LPTLVAVFLFAAIFLPLLMEYGLLELLGPIFRPIMRPLFTLPGRSTVDNLASFIGDGTVG VLITSRQYGEGYYSRREATVISTTFSVVSITFAIVIAETIRMQDQFFYFYLTVVISCLIA AMIMPRIWPLKNIPDEYAKEVSEEARNEQLPEGKTALKYGFDLATEVGIKSPGFKEFLIS
- 45 GFKTVVDMWFVILPVVMSIGTIATIIANYTPVFEIIGKPFVPVLELLQIPEAHEASQTIL IGFADMFLPSILIEGVQNDVTRFVIGALSISQLVYLSEVGGVILGSKIPVSISKLFMIFL IRTIITLPIIALLAHLFIG*

- 50 Contig_0753_pos_1617_1108,
 putative peptide of unknown function
 atgacaggtaaaacacagcatcatgtggctttttagtcggtgcaataaccacacaatat
 ttcatacagatatatttacttctatatcagtgattgtactttcagtcatttcaagtata
 ttgccagatatatgtcatacacaaagtaaaataggaagacgatttaggcttactagittt
- 55 tttgtcagaattttatttggtcatagaacatttacgcattcacttttattattatagga attagttttttactgtacttcatacaaactccgatgtattatatggttgcaattgttatt ggtatgttttcgcatgttatacttgatatattaaccccaagaggtgttaaactattatat cctttaccatttaatatcgtatcacccattcattttaaaactgggggactagtagatgta tctctagctactgcattaagtgttggtgcgatatatactttattcaaccatatttaaat

actatgatgcactattggttaatcaaataa

Sequence 2410

MTGKTHASCGFLVGAITTQYFHTDIFTSISVIVLSVISSILPDICHTQSKIGRRFRLTSF FVRILFGHRTFTHSLLFIIGISFLLYFIQTPMYYMVAIVIGMFSHVILDILTPRGVKLLY PLPFNIVSPIHFKTGGLVDVSLATALSVGAIYTLFQPYLNTMMHYWLIK*

Sequence 2411

Contig_0754_pos_2035_2466,

- 10 putative peptide of unknown function atgatacaaggtttaggctatttattgtccaatataacagattataaagaattaacgaat ttagctcaaaatggagatcgtgatgccattgatttaaaagtaaaacatatttataaagat actgaaccaccaattcctggagatttaacagcagcaaattttggaaatgtattacatcac ttagataatcagtttacatcagctaacaaacttgcctctgcaattggcgtcgttggtgaa gttataacaactatggctattacattagcacgtgaatataagactaagcacgttgtatat
- 15 gttataacaactatggctattacattagcacgtgaatataagactaagcacgttgtatat atcggttcatcatttaataacaatcaattactacgtgaagttgttgaaaattacactgtt ctaagaggatttaaaccgtactatattgagaatggtgcttttcaggcgctttaggagca ctttacctctaa
- 20 Sequence 2412
 MIQGLGYLLSNITDYKELTNLAQNGDRDAIDLKVKHIYKDTEPPIPGDLTAANFGNVLHH
 LDNQFTSANKLASAIGVVGEVITTMAITLAREYKTKHVVYIGSSFNNNQLLREVVENYTV
 LRGFKPYYIENGAFSGALGALYL*
- 25 Sequence 2413
 Contig 0754 pos 4500 5048,

putative peptide of unknown function atggatgattataaagaatatagaaaaagacttatcgttaaattaaaaaaacctataggt agagatttatataatagattatataaaaaatattcaagatactttagaacctgaggtttat

- 30 gaaattgeteetaataetaaattaggacatttteetggttateagaatgtaaegttatee cacccacaaatgcaacaaattatateaagaaatgaaectagttggaaacaagetttaatg aatgtaaaaggtgtttatgttataaecgaettaagtaatggeaaattatacataggatea gcateaggtaataetggaatatggeaaegatggteggaetatgeeaaeatagaaaat etaaeaggtggtaataaattataaattagaaaattagataaagggaaagattacate
- 35 ataaataattttcaatattcaattttagagatttttgatacaaagactaaggtagacact ataatcaatagagaaaattattggaagaatgtattttgcactagaaaatatggtatgaac tttaactaa

- 40 MDDYKEYRKLIVKLKKPIGRDLYNRLYKNIQDTLEPEVYEIAPNTKLGHFPGYQNVTLS HPQMQQIISRNEPSWKQALMNVKGVYVITDLSNGKLYIGSASGNTDGIWQRWSDYANIEN LTGGNKLLNEIKLDKGKDYIINNFQYSILEIFDTKTKVDTIINRENYWKNVFCTRKYGMN FN*
- 45 Sequence 2415
 Contig_0754_pos_5848_7851,
 is similar to (with p-value 0.0e+00)
 >sp:sp|P05425|ATKB_ENTFA POTASSIUM/COPPER-TRANSPORTING ATPAS
 E B (EC 3.6.1.36). >pir:pir|B45995|B45995 Cu2+-transporting
- ATPase (EC 3.6.1.-) Enterococcus hirae >gp:gp|L13292|ENECO PPUMP 2 Enterococcus hirae ATPase (copA) gene, complete cds; ATPase (copB) gene, complete cds. NID: g290641. atqcatcatgataaccatgcctcacatcatcatagtggccatgcacatcatcatggaaat
- tttaaagttaagttttttgtttcattaatttttgcaatacctatcattctcttatcgcca
 atgatgggtgttaacttaccttttcaattcacatttccaggttctgaatgggtagtgtta
 atattaagtacaattttattcttttatggtggtaaaccgttcttgtctggtggtaaagat
 gaaattgctacaaaaaaaccaggcatgatgaccttagttgctctaggtatttcagtagct
 tatatttatagcttgtatgctttttatatgaataactttagtagtgcaactggtcataca
 atggacttttttttgggaattagcaaccttaattttaattgtattaggacattggacat

gaaatgaatgctgtcggaaatgctggagatgctttaaagaaaatggcagaactattacct aatagtgctattaaagttatggataatggccaacgcgaagaagttaaaatatcagacatc atgactgatgatatcqtcqaaqtaaaaqccqqaqaaaqcattccaacagatggtattatc $\tt gttcaaggacaaacatctatagatgaatccctagtcactggagaatctaaaaaagtacaa$ $\tt aaaaatcaaaatgacaacgtcatcgggggttctattaatgggtctggaacaatacaagtc$ ${\tt aaggttacagctgttggagaagatggatatctttctcaagttatgggacttgttaatcaa}$ tactttgctgtaagtgttggcgtgatttcttttattgtctggatgctcattcaaaatgat gttgattttgcattagaacqtcttgtaactqtqttaqtcattqcttqtccacatqcttta 10 qqcttqqcaatacctttaqtcactqcacqttctacttcaattqqtqcacataatqqttta attattaaaaataqaqaqtetqtagaaatageteaacatategattatgtaatgatggat aaaactggtactttaactgagggtaacttttctgtgaatcattatgagagctttaaaaaat gatttgagtaatgatacaatattaagccttttcgcctcattagaaagtcaatctaatcac $\verb|ccattagctataagtattgttgattttgcgaaaagtaaaaatgtttcatttactaatcca|\\$ 15 caagacgttaataatattccaggtgtcggattagaaggtctaattgataataaaacatat aaaataacaaatqtctcttatcttqataaacataaacttaattatqacqatqacttqttt actaaattagctcaacaaggtaattcaatcagttatttaattgaggatcaacaagtcatt gqcatquttqctcaaqqaqatcaaattaaaqaaaqctcaaaacaaatqataqctquttta ctatcaagaaatattacaccagtcatgcttacaggtgacaataatgaagtggcacacgct 20 gtcgcaaaagaattaggtattagtgatgttcacgcacaactcatgccagaagataaggaa agcattataaaagattatcaaagtgacggtaataaagtcatgatggtcggagacggtatc aacgatgcgccgagtcttataagagccgatattggtatagcaattggtgcaggcacagat ttcttqactctttcaaataatactatqaqaaaaatqqtqcaaaacttatqqtqqqqtqca 25 ggttataatattgttgctgtacctttagcagctggcgcattagcttttatcgggttaata ttatcaccagctgtaggagcaatattaatgtctttaagtacagttatagtagcgattaat gcttttacattaaaattaaaataa

Sequence 2416

30 MHHDNHASHHHSGHAHHHGNFKVKFFVSLIFAIPIILLSPMMGVNLPFQFTFPGSEWVVL
ILSTILFFYGGKPFLSGGKDEIATKKPGMMTLVALGISVAYIYSLYAFYMNNFSSATGHT
MDFFWELATLILIMLLGHWIEMNAVGNAGDALKKMAELLPNSAIKVMDNGQREEVKISDI
MTDDIVEVKAGESIPTDGIIVQGQTSIDESLVTGESKKVQKNQNDNVIGGSINGSGTIQV
KVTAVGEDGYLSQVMGLVNQAQNDKSSAELLSDKVAGYLFYFAVSVGVISFIVWMLIQND
35 VDFALERLVTVLVIACPHALGLAIPLVTARSTSIGAHNGLIIKNRESVEIAQHIDYVMMD
KTGTLTEGNFSVNHYESFKNDLSNDTILSLFASLESQSNHPLAISIVDFAKSKNVSFTNP
QDVNNIPGVGLEGLIDNKTYKITNVSYLDKHKLNYDDDLFTKLAQQGNSISYLIEDQQVI
GMIAQGIQIKESSKQMIADLLSRNITPVMLTGDNNEVAHAVAKELGISDVHAQLMPEDKE
SIIKDYQSDGNKVMMVGDGINDAPSLIRADIGIAIGAGTDVAVDSGDIILVKSNPSDIIH
FLTLSNNTMRKMVQNLWWGAGYNIVAVPLAAGALAFIGLILSPAVGAILMSLSTVIVAIN
AFTLKLK*

Sequence 2417

Contig_0754_pos_3900_3526,

45 putative peptide of unknown function
atggaaataggcgtaagcaaaggtttttttggtgtagcaggttttgacttactagtagat
gataataatgatgtttatgcgattgatttaaactttaggcaaaacggatcaacgagtatg
ctacttttagcaaaagatttaactcatggatatcataaattttacagttacttttctaat
ggagataatacaaaattctataatgctattttaaaatacgtagaattaggtgtactttat
50 ccactttcctattacgatggagattggtatggaaagaatcaagttaattctagatttggc
tgcatttggcatggggaaaataaagaattaattaatcgatatgaacaacaatttatattg
gaagctggattataa

Sequence 2418

55 MEIGVSKGFFGVAGFDLLVDDNNDVYAIDLNFRQNGSTSMLLLAKDLTHGYHKFYSYFSN GDNTKFYNAILKYVELGVLYPLSYYDGDWYGKNQVNSRFGCIWHGENKELINRYEQQFIL EAGL*

15

Sequence 2420

MSYKYEAFFKDILINEYIYFASKNKKLIRIQHENLPYIAMWTDENVAESYLLHHSIDYDK IIRADIDRFVTYEMDEIFDPGDKVLVNVNNGEEGNIVDIVKMTDELMSELDDIRMREFIK DVAKYDEVYGLTNKGEKNFIMISDDDHNKPHIMPVWSIKSRARKVRDQDFEECDLIEIEG

20 EVFSEWLDKLRDDNKAVAIDLKSGVVGTVVSAQKLSNEATF*

Sequence 2421 Contig_0754_pos_1366_569,

putative peptide of unknown function

- 25 atgtttataaaaaaggattttgatgatattacagttcaagtatttgaagaaaaatataga gatgcacttaaccaatttgaattaagtgaacgacaacaaatatattcttcattgcctcaa gaaggaaaagtagtggggttcttcgttttgcatcgttattatcaacatgaaggttatgat acaccanaccatqttqtttatqtacqttcattqtcaqttaatqaaaaqtttcaaqccat 30 qqatatqqqacaaaaatqatqatqtttttaccaqaqtatqttcaaqcattatttcctqat tttacacatttatacttagtagtagacgctgaaaaccaaagtgcttggaacqtttatgaa cgtgcaggttttatgcatacagctacaaaagaagaaggacctattgggaaagaagactt tattatttagatttagattcaaaacatgtatcttctttaaggctaaaagagggggaagtc acatataatgatgatattcacgtgattaatttgcttaaagatgatgtaaaggtaggcttt35 attgcactagaacaaaatgataataaaatgaatatttctgcaatcgaagttaataagaaa aataqqaatqaqqqaattqcaqaaaqtqctttacqccaattaccaacqtatatacqtaaa ttaatgtatctgcaataa
- 40 Sequence 2422

 MFIKKDFDDITVQVFEEKYRDALNQFELSERQQIYSSLPQTVLDDALKDENRIANVALNK
 EGKVVGFFVLHRYYQHEGYDTPNNVVYVRSLSVNEKFQGHGYGTKMMMFLPEYVQALFPD
 FTHLYLVVDAENQSAWNVYERAGFMHTATKEEGPIGKERLYYLDLDSKHVSSLRLKEGEV
 TYNDDIHVINLLKDDVKVGFIALEQNDNKMNISAIEVNKKNRNEGIAESALRQLPTYIRK
 45 QFEDIEVLSITLVLQHALTHLMYLQ*

Sequence 2423
Contig_07.55_pos_1306_1917,
is similar to (with p-value 8.0e-42)

- 50 >gp:gp|AF012285|AF012285_40 Bacillus subtilis mobA-nprE gene region. NID: g3282109. >gp:gp|Z99111|BSUB0008_137 Bacillus subtilis complete genome (section 8 of 21): from 1394791 to 1603020. NID: g2633699.
- atgacccaatatactttttcacctaaagattttaaagcttttgaagtcgaaggtttagac
 55 caaagaatggaagcacttaatgactatgtcagacctcaacttcatcaattaggatcttat
 tttgaagaatatttcactacacaaacaggtgaaactttttatgctcacgtagctaaacac
 gcacgtagaagtgtcaatccacctatcgatacgtgggtagcttttgctcctaataaacgt
 ggttataaaatgttaccacactttcaaatcggattgtttagaaatcagcttttcattatg
 ttcggtatcatgcacgaaggtagaaataaagaagaaaaagtgaaaatatttgataaacat

PCT/US00/30782 WO 01/34809

tttgataaactgacatctttaccaagtgattatagtgtttctctagatcatatgasaact gaaaagcactatatcaaggatatgagtaatgaagagttgcatgctgctatcgatagagtt aaaaatqttaaaaaaqqtqaattttttqttqccaqaacattatcaccaaccgataaaaqa ttaaaatctqataaqtcttttctaaaatttqttqaqqaaacttttqatqaatttttaaaa ttttatcaataa

Sequence 2424

5

10

MTOYTFSPKDFKAFEVEGLDQRMEALNDYVRPQLHQLGSYFEEYFTTQTGETFYAHVAKH ARRSVNPPIDTWVAFAPNKRGYKMLPHFOIGLFRNOLFIMFGIMHEGRNKEEKVKIFDKH FDKLTSLPSDYSVSLDHMKTEKHYIKDMSNEELHAAIDRVKNVKKGEFFVARTLSPTDKR LKSDKSFLKFVEETFDEFLKFYQ*

Sequence 2425

Contig 0755 pos 5604 4453,

15 putative peptide of unknown function atgttaggagagcaatatacacaaattaagcgtccagcaaatcggctaactgaaaaaata ttaggttggtttagttgggtattcttactcatattaactattgtttcaatgtttattgcgctcqtatcttttaqtaatqatacqtcaattqccaatttaqaaaacacacttaataataat qaactcqtacaacaaattttaqccaataatqatttaaqtacaactcaatttqtqatttqq 20 ttagcgttaatttctatgaatataagaattttgtctggtttactttttttaatagctgct atagtcacaattccgcttgtattgttgattgtaactctaatcattcctatcttattcttt a at gaat at gat caac cat act at gat gag ag gg tt tt tat gaac cag ag tcaa gaaat25 gaacatggatataatgatgtgtatgaacctatgcatactaaaaaggaagatagaaat acaaqacqtcaattcaataqaaatqctcaqcaacaaqattcctataatqqtataactqat aatcaacccqatqaaqatacatcttccqatcaactttattcaqacqaatatqtaqataat qaaqataaatattctcaatttccaaaaaqaqcaqttqaaaqtqaatatqcatctcaacaa actgaagatgaaccaacagtcatgtcaagacaagctaagtacaataaaaaatctaaaaat 30 acggattttgaagatgcgcaacaggaacatatggaaggtaatcaatttgatgacatagga gttgttgaaccacaaattgatcctaaagaactaaaagcgcaaagaaaaagagaaaaagca gaaatacgtgctaagaaaaagaaaagagaaaagcatataataaacgtatgaaagaacga agaaaaaaccagccaagtgctgttaaccaacgacgtatgaattatgaagaacgtcgacaa atgattaataatgaacaagaagatacagataataacttaaatcaacaggaagattcaaaa 35 aaagaaaattaa

Sequence 2426

MLGEQYTQIKRPANRLTEKILGWFSWVFLLILTIVSMFIALVSFSNDTSIANLENTLNNN ELVOOILANNDLSTTOFVIWLONGVWAIIVYFIVCLLISFLALISMNIRILSGLLF; IAA 40 IV"IPLULIVILIPILFFIIAMMMFARRDRIETVPSYYNEYDOPYYDERGFYE'ESRN EHGYNDDVYEPMHTKKEDRNTRROFNRNAQQQDSYNGITDNOPDEDTSSDOLYSDEYVDN EDKYSQFPKRAVESEYASQQTEDEPTVMSRQAKYNKKSKNTDFEDAQQEHMEGNQFDDIG VVEPQIDPKELKAQRKREKAEIRAKKKEKRKAYNKRMKERRKNQPSAVNQRRMNYEERRQ MINNEQEDTDNNLNQQEDSKKEN*

45

Sequence 2427 Contig_0755_pos_1075_314, is similar to (with p-value 2.0e-65)

>sp:sp|Q45499|SUHB BACSU EXTRAGENIC SUPPRESSOR PROTEIN SUHB 50 HOMOLOG. >qp:qp|AF012285|AF012285 41 Bacillus subtilis mobAnprE gene region. NID: g3282109. >gp:gp[Z99111]BSUB0008 139 Bacillus subtilis complete genome (section 8 of 21): from 13 94791 to 1603020. NID: g2633699.

atgatgcaagaagagttagacattaaaactaaatcgaacccaaatgatttagttacaaat gtggataaggcgacagagaattatctatatgaaacgattcttcataattatccagatcat caggttattggcgaagagggacatggtcataatctcgagtatttaaagggggttatttgg gttattgatccaattgatggaacacttaattttgttcaccaaaaagaaaattttgccatc tctattggtatttatcatgatgggaagccttatgcaggttttgtttatgatgtcatgaaa gatgttttatatcatgcaaaggttggacagggtgcatttgaaaatacacataaacttgaa

Sequence 2428

10 MMQEELDIKTKSNPNDLVTNVDKATENYLYETILHNYPDHQVIGEEGHGHNLEYLKGVIW VIDPIDGTLNFVHQKENFAISIGIYHDGKPYAGFVYDVMKDVLYHAKVGQGAFENTHKLE MIQNTELKRSIIGINPNWLTKPILSDIFSSIVNEARSARAYGSAALEIISVAKGQLAAYL TPRLQPWDFAGGLLILNEVGGIGTNLLGDKLDFNQPNSILIANPSLHREILNHHLNQQRD TLITLHEKRFGKR*

15

5

Sequence 2429
Contig_0756_pos_1371_1877,
putative peptide of unknown function

25 gcttcagaaaggcaaccggtgaaaattcctgggtaccaacattatagaacttctgtgagt gacggaattactaagtttatttatcgtaaaattagcactgcacaatcacctatagttgaa aatcaaaaacgtatggtcgtggcatag

Sequence 2430

30 MKDNKPNNSKLIQTYLSKKTLRYGTASALTLALYLFNSNVTVYADENTANQNQGTSPKTS QTAPTNNTENTDATAITTDQNNNDEEEYDASYELPILYVTVWLDDQGNIIKDAVEDAKTP ASERQPVKIPGYQHYRTSVSDGITKFIYRKISTAQSPIVENQKRMVVA*

Sequence 2431

Contig_0756_pos_4998_4510,
putative peptide of unknown function
atgccaaaagtacatcaagttaaggaaagatttgtgaaattaggggaccaacagtttaaa

45 caaatatga

50

Sequence 2432

MPKVHQVKERFVKLGDQQFKAFEIRYDTYIHYVLMCDGVDLAMKQRVEDFVSAQTWHQQF KTIGVMLFQQDKQFIYPLIHIPKIDSLIWENSCGSGAASIGVLVNYLTDHDIQDYLVNQP GGSIIVSSRKSGQNEYQTTIKCQVSTVATGOAYIEOETMTOI*

Sequence 2433 Contig_0756_pos_3690_2413,

putative peptide of unknown function

55 atggttggtagtggaccggtcgctattcaacttgctcgactatgtcatttacatggagaa catatagttgatatggtgagtcgcgttcatgcatcaaccaaatctaagagagtctttgat gcttatcaacgtgacggctttttttcagtaatgactcaaaatgatgcacatcagtgtttt tcaggtaagtttacggttagacatttttttaaagatgttaaagatattactgaatattat gacgtggtgattttagcatgtactgccgatgcgtatcgaccgatattacagcaattatct

aagtccacattaaagcgtattaagcaaatcatcttggtctcaccaacattaggatcacat atqcttqttaaqcaattactatcagatgttcaatqtqaaqqtgaagtgatttcattttcc acttatotaggogatacccgaatatttgataaagcacaaccacattgtgtcctaaccaca cqaqttaaatcaaaattattcqtaqqttcqactcaatctcaqtctatqacqttqtaaq cttaagtctttatttgactatttgaatatagaattaacaacgatggacacaccactacat gcggagatacataatagttcactttatgtacacccaccattgtttatgaatcaattttca ttaaaqqcqqtatttqaaqqqacqaaaqtaccaqtatatqtatataaqctatttccaqaq qqtccaatcacaatgaccttaatacacgaaatgcgattaatgtggcaagaaatgatgatg 10 taccctatacqttatqaqaccatqcqcqaaqtaqatattqaaaactttaaaaatttacca gctattcatcaagagtatctactttatgtgcgatatacagcaattttaatcgatccgttt tctaatccqqacqatcaaqqtqcatattttqatttttctqccqtaccatacaaacatqtt qatactqatqaacaaqqaqtcatacatataccacqcatqccqaqtqaaqattattatcqt actttqataattcaaqcqattgqaaqaqcattaaacqttqcaacaccqatqattqacaca ttgttattacgttatgaaaatactgttaaacaatactgtgacacacatttacatcaacaa ctatcaaqqcaattcqaattacatcattttaaacaqqatttaqcqttaqtqacqaactac ttaactttttataaataa

- 20 MVGSGPVAIQLARLCHLHGEHIVDMVSRVHASTKSKRVFDAYQRDGFFSVMTQNDAHQCF
 SGKFTVRHFFKDVKDITEYYDVVILACTADAYRPILQQLSKSTLKRIKQIILVSPTLGSH
 MLVKQLLSDVQCEGEVISFSTYLGDTRIFDKAQPHCVLTTRVKSKLFVGSTQSQSMTLCK
 LKSLFDYLNIELTTMDTPLHAEIHNSSLYVHPPLFMNQFSLKAVFEGTKVPVYVYKLFPE
 GPITMTLIHEMRLMWQEMMMILKKLKVPSVNLLKFMVKENYPIRYETMREVDIENFKNLP
 25 AIHQEYLLYVRYTAILIDPFSNPDDQGAYFDFSAVPYKHVDTDEQGVIHIPRMPSEDYYR
 TLIIQAIGRALNVATPMIDTLLLRYENTVKQYCDTHLHQQLSRQFELHHFKQDLALVTNY
 LTFYK*
 - Sequence 2435
- Contig_0756_pos_2362_1841,
 is similar to (with p-value 3.0e-63)
 >gp:gp|AF076683|AF076683_1 Staphylococcus aureus oligopeptid
 e transporter putative substrate binding domain (opp-1A), ol
 igopeptide transporter putative membrane permease domain (op
 p-1B), oligopeptide transporter putative membrane permease d
 omain (opp-1C), oligopeptide transporter putative ATPase dom
- omain (opp-10), oligopeptide transporter putative ATPase dom ain (opp-1D), and oligopeptide transporter putative ATPase d omain (opp-1F) genes, complete cds; and unknown gene. NID: g 3800817. 40 atgaataaactcacaaaactaagtacagtcatttttgtatctggaattattttagccggt
- 40 atgaataaactcacaaaactaagtacagtcatttttgtatctggaattattttagccggt tgtggaaataacaaagaactaacagagaaaaaagagaataaagtattatcatatacaact gtcasagatattggagatatgaatccccatgtttatggaggttcaatgtcagcagaaagt atgatttatgagccgttagttcgcaataccaaggatggtattaagccattattagcaaaa aaatgggacatttcacctgatggtaagacatatacgtttcatttaagggatgatgtatct
- 50 Sequence 2436
 MNKLTKLSTVIFVSGIILAGCGNNKELTEKKENKVLSYTTVKDIGDMNPHVYGGSMSAES
 MIYEPLVRNTKDGIKPLLAKKWDISPDGKTYTFHLRDDVSFHDGTKFDADAVKKNIDAVQ
 QNKKLHSWLRLSTLIDDVKVKDKYTIQLHLKEAYQPALAELAMPRPYVFDFQL*
- 55 Sequence 2437
 Contig_0757_pos_801_1223,
 putative peptide of unknown function
 atgagaaatggttaaccttactattaattacaacattggtgttaactgcatgtggtaaa
 agtaacgaaaaagcttctttagaaaaaagcattgatcagttgaaaaaagaaaataaggat

Sequence 2438

MRKWLTLLLITTLVLTACGKSNEKASLEKSIDQLKKENKDLKKQKKKLQEQKDKLKHKQD

SLQEDVNDLPAKSTSRDKKNKDNHDAKEKSSDNQSTSANHDDQTNKIKSNQDEHDSQSSK
PHTOOKPSONDRKNNHRQER*

Sequence 2439

Contig 0757 pos 4581 4994,

- is similar to (with p-value 5.0e-18)
 >gp:gp|AF012906|AF012906_6 Bacillus subtilis yojP gene, part
 ial cds; yojQ/S, yojR, yojT, yojU, yojV, yojW, yojX, yojY, y
 - ial cds; yojQ/S, yojR, yojT, yojU, yojV, yojW, yojX, yojY, yojZ, and yokA genes, complete cds. NID: g2522404. >gp:gp|Z99114|BSUB0011_163_Bacillus_subtilis_complete_genome_(section)
- 20 11 of 21): from 2000171 to 2207900. NID: g2634230. >gp:gp|AF 020713|AF020713_166 Bacteriophage SPBc2 complete genome. NID : g3025478.

30

Sequence 2440

MIGTYQSDKNFEMMKTFKHWIQTNHYWKYVEKYGVLGIALDNPLHVQSNQCRYDVVLRID ETVNDQTISKRDFTGGIYAVFKVSHTKINIEKFFSNLENILNESHLRMRNEPIIERYIEE EGTDKVCEMLVPIYEVN*

35

Sequence 2441

Contig_0757_pos_6065_5280,

is similar to (with p-value 6.0e-63)

- >gp:gp!U87792|BSU87792_1 Bacillus subtilis tRNA-Ala, phospha
 40 tidylglycerophosphate synthase (pgsA) and CinA (cinA) genes,
 complete cds, and RecA (recA) gene, partial cds. NID: gl842
 434.
- gcaattaaaacattcttacacttaattaataaagttaagttagtaccttttgctasttat

 55 agaattgtcttagttatttttatagcaatcctatacttcggattcggtattggcaaagga
 atttaa

Sequence 2442

MILVDDMWLKSTNFLGSQSAFTFKVVIQLGSVFAAAWVFRERFLEILHIGQHKPEPSTSG

DRRSKPRRLNLIHVLVGMVPAGILGFLFDDLIEKYLFSVPTVLIGLFIGAIYMIIADKYS KTVQHPQTVDQINYFQAFVIGISQAIAMWPGFSRSGSTISTGVLMKLNHKAASDFTFIMS VPIMLAASGLSLLKHYEYIHLAHIPFYILGFLAAFIVGLIAIKTFLHLINKVKLVPFAIY RIVLVIFIAILYFGFGIGKGI*

5

Sequence 2443
Contig_0757_pos_3653_3204,
putative peptide of unknown function

atgaagactaacgtaattatagatggagatgcttgtcctgttgttaattctgtcattgaa
10 ttgacgaaagggacaggcatttttgttacaattttaagaagttttagccatttttcacaa
caaatacaacccgaacatgtaaaaattgtatacgttgatgacggtcccgatgcggtagac
tataaaatagtcgaacttgctagcaataatgatatcgtcatcacacaagattatggactt
gctagtctactgatagacaaagtacatactgtcatgcatcataaaggaaatatttatcac
tcaaacaacatccaaagcttattaaatcaaagatatctaaatgctcaaataagaagacga
ggtggtcgtcacaaaggccctcctcccttcacaacagaggatagacttaaattcgagcat
gcttttagaaaaatcattaatcaaataag

Sequence 2444

MKTNVIIDGDACPVVNSVIELTKGTGIFVTILRSFSHFSQQIQPEHVKIVYVDDGPDAVD

VKIVELASNNDIVITQDYGLASLLIDKVHTVMHHKGNIYHSNNIQSLLNQRYLNAQIRRR
GGRHKGPPPFTTEDRLKFEHAFRKIINQI*

Sequence 2445 Contig 0758 pos 2562 3488,

- is similar to (with p-value 0.0e+00)
 >gp:gp;AF072726|AF072726_1 Staphylococcus aureus putative he
 me A synthase (ctaA) gene, complete cds. NID: g3320605.
 atgatggggtgtttatcattgtttagaaagcaaaaccttaaatggttaggtgttttagct
 acgattattatgacctttgtacaattaggtggcgccctcgtaactaaaacgggatcagaa
- 30 gatggttgtggctcgtcttggcctttatgtaatggcgctttacttccagaaaatttacca atacaaacaattatagaactgagtcatcgcgcagtatcagccatttcacttatagttgta ttatggcttgtaattacagcttggaaaaacattggatatattaaagaaatcaaaccactc tctattattagtgttgtttttattagttcaagcacttgtaggtgctgctgctgctgtgata tggcaacaaaatccttatgtattagcgctacattttggtatttcacttatcagtttctct
- tctgttttcttaatgacattaattattttctcaattgacaaaaatatgaagctgacatt ttatttattcacaaacctttacgtatcttaacttggttaatggctatcatcgtatactta actatttatacaggtgctttagttagacatactaaatcaagtcttgcttatggtgcttgg cctattccatttgatgatatcgttcctcataatgcgcatgattgggtacaattttcgcac agaggtatggcgctcatcacttttatctggattatgattacatttatacacgctattaag aattattcagataatcgaactgtacgttatggttatactgcatcatttatacttgttatc
- 40 aattattoagataatogaactgtacgttatggttatactgcatcatttatacttgttato cttcaagttattacaggtgctttatcagtcataactaatgtcaatttaattattgcgtta ttccatgctttgtttatcacttacttattcggaatgattgcttattttattttactaatg ttaagaacgacgagaagtcaaaaataa
- 45 Sequence 2446
 MMGCLSLFRKQNLKWLGVLATIIMTFVQLGGALVTKTGSEDGCGSSWPLCNGALLPENLP
 IQTIIELSHRAVSAISLIVVLWLVITAWKNIGYIKEIKPLSIISVGFLLVQALVGAAAVI
 WQQNPYVLALHFGISLISFSSVFLMTLIIFSIDKKYEADILFIHKPLRILTWLMAIIVYL
 TIYTGALVRHTKSSLAYGAWPIPFDDIVPHNAHDWVQFSHRGMALITFIWIMITFIHAIK
 50 NYSDNRTVRYGYTASFILVILQVITGALSVITNVNLIIALFHALFITYLFGMIAYFILLM

Sequence 2447

LRTTRSOK*

Contig 0758 pos 7092 3637,

is similar to (with p-value 0.0e+00)
>gp:gp|D83706|D83706_1 Bacillus stearothermophilus DNA for p
yruvate carboxylase, complete cds. NID: g1695685.
gtgtcttggcttttgaaacaaataaagaaattacttgttgctaaccgtggtgaaatcgcc
attagaattttttagagcggcagcagaattaaatatcagtacagtagcaatttattctaat

qaaqataaaaqttcqttacataqatataaaqcaqatqaatcctatctaqttqgaaqtqat ttaggacctgctgaaagttatttgaatatcgaacgtatcatcgaagtagctcttcgcgca ggtgtcgatgcaattcatcctgggtatggttttttaagtgaaaatgaacaatttgcacgc cqatqtqctqaqqaaqqcattaaatttataqqtccqcatcttgaacatctagacatqttt qqaqataaqqttaaqqctaqaacaactqctattaacqctaacttacctqtaatcccqqqt acaqatqqtcctattqaaaqttttqaaqctqcaqaacaqtttqctaatgaaqcaqqttac tcaagcqaattagaagacgctttccatcgtgcgaaatcagaagccgaaaagtcatttggt aatagcqaagtttatatcgaaagatatattgataatccaaagcatatagaggttcaagtt 10 attqqtqatqaattcqqqaatatcattcatttqtatqaaaqaqattqctccqtacaacqa cgtcatcaaaaggttgttgaagttgcaccttcagtaggtctttctaacaaattaagagag cqaatttqtqatqccqcaattcaactqatqqaaaatataaaatacqtcaacqctqqaaca gtagaatttttagtttctqqqqatqaatttttcttcattqaqqttaatccacqtqttcaa gttgagcatacaattactgaaatgattactggtatagacattgtgaaaacgcaaatttta 15 gttgctgatggagaatcgttatttggagataaaatctctatgccacagcaaaatgaaatt caaacattagggtatgcgatacaatgtcgtataacaactgaagatcctactaatgetttt atgccaqattctggcacaattattgcatatcgatcaagtggcggtttttggtgtgagactt qatqcaqqqqatqqattccaaqqtqcaqaaatttcaccttactacqattcactattaqtt aaqetttetacacatqeeqttteatttaaacaaqetqaaqaqaaaatqqaacqtteatta 20 cgcgaaatgcgaattcgtggcgtaaagacgaatattccatttctcatcaatgttatqcqt aatgataaatttagaagtggtgattatactactaaatttattgaagaaacacctgaactt ttcgatattqcaccqacattqqacaqagqtaccaaqactttaqaqtatattqqtaatqtq acqataaacqqatttcctaatqtaqaaaaqcqtccaaaaccaqaatatqaatctaccaaa atcccaaaaatttctcaaaagaaaatcaatcagttatttggaacaaaacaaattcttgag 25 caacatggaccaacaggtgttacaaattgggttagagaacaagaagatgttttaattacc qatactacatttagagatgcacaccaatctttacttgcaacacgtgtaagaacaaaagat atgatgaacattgcatctaaaactgctgaagttttttaaagatagtttttcattagaaatg tggggtggtgcaacatttgatgtcgcctataatttcttgaaagagaatccatgggaacgtttagaaagattgcgcaaagccattccgaatgtgttattccaaatgttattacgagcttcg 30 aacqcaqtaqqttataaaaactatcctqataatqtaattaaqaaattcqttcatqaaaqt gcaaaagctggtgtagatgttttccgtatattcgactcattgaactgggttgatcaaatg aaagtagcgaatgaagctgttcaagaagctggaatggtatctgagggtacaatttgctat acaggtgatattttaaatgctgaacgttccaatatttatactttagattattacgttaaa atggctaaagaactggaaagaaggattccatatattagcaattaaagatatggctggt ttattgaaaccgaaagcagcttacgaattaattggtgaattacgtgaggcaacacatctt ccaattcatttacatacacatgatactagtggaaatggattgttgacatataaacaagca attgatgctqqcqtaqatattataqatactqctqttqcatctatqaqtqqtttaacqaqt caaccaagtgcaaattcattatattatgcactaaatggatttccacgtaatttaagaact qatattqatqqqttaqaaqaqttqaqtcattactqqtctqtaqtcaqaccttactatqca 40 gactttgagagtgatatcaaatcaccaaatacagaaatttatcaacatgaaatgccaggt ggccaatattcaaacttaagtcaacaagctaaaagtttaggattgggcgaacgttttgat gaagtcaaagagatgtatcgtcgtgtcaacttcctgtttggagatcttgtaaaagtaaca ccatcttcaaaqqtaqttqqaqatatqqcactatatatqqtqcaaaatqatcttqatqaa qatacqqtcatcaatqatqqttataaattaqatttcccaqaatctqttqtqtcattcttt 45 aaaqqtqacattqqacaacctqtcaacqqattcaacaaqaaattgcaaqatgttatttta aaaggacagcaaccaattactgaaagaccaggtgaatacttggagccggtcgattttgaa qcaatccqtcaaqaattaaqcqacatacaacaaqacqaqqtaacaqaacaaqatataatt agttatqtactttatccqaaqqtatataaacaatatattcaaacgaaagagcaatttggt aatgtatctttactggatacaccgacattcttatttggcatgcgtaatggtgaaacagtt 50 gaaattgaaattgatactggtaaacgtctaattattaaattagaaacaatcagtgaacca qatqaqaatqqtaaacqtacaatttattacqctatqaatgqtcaaqcaaqacqtatttat attcaagatgaaaatgttaaaacgaatgctaatgttaaacctaaggcggataaatcaaat ccaaatcatattqqtqctcaaatqcctqqttctqtaactqaaqtcaaaqtqtctqtaqqc qatqaaqttcaaqctaatcaqccattattaatcactqaaqcaatqaaqatqqaaacqacq 55 attcaggcaccatttgatggaattattaaacaaatcaatgttgctaatggagatgccatt gccabaggagatttattagtggaaattgaaaagtaa

Sequence 2448 VSWLLKQIKKLLVANRGEIAIRIFRAAAELNISTVAIYSNEDKSSLHRYKADESYLVGSD

LGPAESYLNIERIIEVALRAGVDAIHPGYGFLSENEQFARRCAEEGIKFIGPHLEHLDMF GDKVKARTTAINANLPVIPGTDGPIESFEAAEQFANEAGYPLMIKATSGGGGKGMRIVRE SSELEDAFHRAKSEAEKSFGNSEVYIERYIDNPKHIEVQVIGDEFGNIIHLYERDCSVQR RHOKVVEVAPSVGLSNKLRERICDAAIOLMENIKYVNAGTVEFLVSGDEFFFIEVNPRVO VEHTITEMITGIDIVKTOILVADGESLFGDKISMPOONEIOTLGYAIOCRITTEDPTNDF MPDSGTIIAYRSSGGFGVRLDAGDGFQGAEISPYYDSLLVKLSTHAVSFKQAEEKMERSL REMRIRGVKTNIPFLINVMRNDKFRSGDYTTKFIEETPELFDIAPTLDRGTKTLEYIGNV TINGFPNVEKRPKPEYESTKIPKISQKKINQLFGTKQTLEQHGPTGVTNWVREQEDVLIT DTTFRDAHQSLLATRVRTKDMMNIASKTAEVFKDSFSLEMWGGATFDVAYNFLKENPWER LERLRKAI PNVLFQMLLRASNAVGYKNYPDNVIKKFVHESAKAGVDVFRI FDSLNWVDQM KVANEAVOEAGMVSEGTICYTGDILNAERSNIYTLDYYVKMAKELEREGFHILAIKDMAG LLKPKAAYELIGELREATHLPIHLHTHDTSGNGLLTYKOAIDAGVDIIDTAVASMSGLTS OPSANSLYYALNGFPRNLRTDIDGLEELSHYWSVVRPYYADFESDIKSPNTEIYQHEMPG GOYSNLSQQAKSLGLGERFDEVKEMYRRVNFLFGDLVKVTPSSKVVGDMALYMVQNDLDE DTVINDGYKLDFPESVVSFFKGDIGQPVNGFNKKLQDVILKGQQPITERPGEYLEPVDFE AIROELSDIQODEVTEQDIISYVLYPKVYKQYIQTKEQFGNVSLLDTPTFLFGMRNGETV EIEIDTGKRLIIKLETISEPDENGKRTIYYAMNGQARRIYIQDENVKTNANVKPKADKSN PNHIGAQMPGSVTEVKVSVGDEVQANQPLLITEAMKMETTIQAPFDGIIKQINVANGDAI ATGDLLVEIEK*

20

10

15

Sequence 2449
Contig_0758_pos_2303_1368,
is similar to (with p-value 3.0e-59)

>sp:sp|P24009|COXX_BACSU_PROBABLE_CYTOCHROME_C_OXIDASE_ASSEM
BLY_FACTOR. >gp:gp|Z98682|BS16823KB_3_Bacillus_subtilis_geno
mic_DNA_23.9kB_fragment. NID: g2339988. >gp:gp|X54140|BSCTAB
F_1 B. subtilis_ctaB-F_genes_for_cytochrome_a_assembly_facto
r_and_cytochrome-c_oxidase_(EC_1.9.3.1)_subunits_II, I, II,
and_IVB._NID: g994793. >qp:qp|Z99111|BSUB0008_160_Bacillus_s

30 ubtilis complete genome (section 8 of 21): from 1394791 to 1 603020. NID: g2633699.

ggatcattaagtttagcagcagtagcactctttttagttgtctttttgttggcaacctatc catttctacgctctagcaattaaacgtagtgatgagtatgcgcttgcaaatattcctatg ttaccatcagtgaaaggtttcaaacggacaagagtaagcatgtttatttggttagtgtta ttattaccattgccattcttattatctaatttaggcgtaacttttgttgttattgctaca ctacttaatttaggatggttagctttaggttttacaacgttcagaaaagaatctaatcaa

45 ctacttaatttaggatggttagctttaggttttacaacgttcagaaaagaatctaatcaa actaaatgggcaacgcaaatgttcgtttattcattgaactacttagtagtattctttgca ctcgttgtagttgtttcattaatcaagatgatataa

Sequence 2450

50 MRNLRRGIMNKDQTLSHTTGRVSFKELQQIIKMGLVQGNLIPAFAGAWLAIVMTNHSFLS
SIPQILLMLVGSTLIMGGACALNNYYDQDIDRIMPSKQSRPTVNDRISDRNLLMLSFGMM
LIGEACLFLLNIPSGVLGLIGIVGYVSYYSIWSKRHTTWNTVVGSFPGAVPPLIGWVAID
GSLSLAAVALFLVVFCWQPIHFYALAIKRSDEYALANIPMLPSVKGFKRTRVSMFIWLVL
LLPLPFLLSNLGVTFVVIATLLNLGWLALGFTTFRKESNQTKWATQMFVYSLNYLVVFFA
55 LVVVVSLIKMI*

Sequence 2451 Contig_0758_pos_1351_881, putative peptide of unknown function

10 Sequence 2452

MKLMNVPILPTISTSCIVISAILVAIGWALIWKRQVHKHKNIMLWAAFFALTFFIIYAAR TIFIGNTAFGGPSSIKVYYTIFLVFHIILATVGGVLGLIQIILAFKDKLHIHRKIGPWAS IIWFFTAITGVAVYVLLYVLYPGGETTSLLKATLGL*

15 Sequence 2453

Contig 0759 pos 5038 3959,

is similar to (with p-value 2.0e-29)

>sp:sp|P33642|YFIT_PSEAE HYPOTHETICAL 39.5 KD OXIDOREDUCTASE
IN FIMT 3'REGION (DADA*) (ORFZ). >gp:gp|L48934|PSEPILRV_2 P
seudomonas aeruginosa (isolate pRIC351) pilR gene, 3' end of
cds, dada*, fimT, fimU and pilV genes, complete cds. NID: g

1161217. qtacctqqaaaqcatqcqtcatataaaqctqqaqqtatqcttqqcqcacaaaatqaattt acagaggatagtgacttgtttcaattagccatcgaatctcgtgctatgtttccacaatta agtaaatcattattagatgaaacaggcatagacattcaatttaaaaattcaggacttatcaaaattgctaatgaacacgatgatatctcatctataaaacgacaatatcaatttctgaat agtcaagaccgtagtgtcaaacaattatcagatgatgatttgctacaacttacacatggt qaaqttaaaccttcatacqcqqccattcacataccacacqatqqtcaaattaatqcacat cattacacactggcattattagaatcaatgaagttaagagatattaagcgttatgagtct acaqaqqtcacttcaataqaacqqcataatqqctattattcaqtqaaaaccqatcaatct tcaacaattgaagcgcacaaaattatcgttgcaggtggcgcatggtcttcgcaattattaacacaatatcatctacaacgacaagtgattggcgttaaaggtgaagttatcttattagaa a ata acgat cttt cacttact gag a cattatt tat gacta at ggtt gtt a cat cgtt ccaaaacaacccaatcqttttttaattqqtqcqacqaqtqaatttaattattctqtcqqtactacagatgaaggtatggattggcttcttcgccatgcatatcatcgtgtacctcaacta aaaqacaqtcatatactqaaqaaatqqtcaqqaqtaaqaccatacacaqaaaaaqaaatq ccaqtcatqqatcaaattqatqatqqcttatacqtqataaqtqqtcattatcqaaacqqa atateatigteacetattateggtegtgaeattgeeaattggetaetttetggtaftaaa

 ${\tt ccatcacgttattcaagttttacagttacaaggaggaataatcatgaagtgtatcattaa}$

Sequence 2454

MSIARHLSATHLDVAVIDRDVPGKHASYKAGGMLGAQNEFTEDSDLFQLAIESRAMFPQL

SKSLLDETGIDIQFKNSGLIKIANEHDDISSIKRQYQFLNSQDRSVKQLSDDDLLQLTHG
EVKPSYAAIHIPHDGQINAHHYTLALLESMKLRDIKRYESTEVTSIERHNGYYSVKTDQS
STIEAHKIIVAGGAWSSQLLTQYHLQRQVIGVKGEVILLENNDLSLTETLFMTNGCYIVP
KQPNRFLIGATSEFNNYSVGTTDEGMDWLLRHAYHRVPQLKDSHILKKWSGVRPYTEKEM
PVMDQIDDGLYVISGHYRNGILLSPIIGRDIANWLLSGIKPSRYSSFTVTRRNNHEVYH*

50

25

30

35

40

Sequence 2455
Contig_0759_pos_3004_2006,
is similar to (with p-value 2.0e-52)

>gp:gp|AF012285|AF012285_3 Bacillus subtilis mobA-nprE gene region. NID: g3282109. >gp:gp|Z99111|BSUB0008_99 Bacillus su btilis complete genome (section 8 of 21): from 1394791 to 16 03C20. NID: g2633699.

atgtogogttatgaacgtcaaacacqctttgcaccatttggagaaqaqqgtcaqcaaaaq

ctatcctctctcaaatacttatttttggcqctqqtqctttaqgaagccatattqtaqat ${\tt caactcgcacgcatgggggctcatcatattgcaatcgtcgatattggatattgttgaaatt}$ tcaaatttacatcgacaaacactcttcgatgaagaagacgcacatactttaatatccaaa $\tt gttgaagcaatcaagcataaggttaatcaaattaatataaatgtcaatctaacaacttat$ gatttagaagttacttcatcaaatatcgaaaatttgataaaaaatgtcgaaccagacatc atcattgatggcatggataacttcaaaatacgatacctgattaatgaggtttgtcacaag tatcaaatcccatqqqtttatqqtqcaqctqttqqtaqtaaaqqatcaqtatatqqaata gatcaccaaggaccatgtctaaaatgtttattgcaaacaattcctgacacaggggaaagt tqcqctattaatqqcqtaattccccctqttatatcaatqattqcaaqctatqaaqtaqca 10 qaqqcqtacqttatctttcaqqaaaaqqattttcaaaqcaattaatcactattqatqca tttaatatcaattataagtcaatgaatgtagatgcactcaaaaataaagattgcccagtg tgtgaaaaacatgaatatacgttactagaaagccaacaagaacgtactattgaggacttg tgtgggaatgcttatttatttagattcccacctaaagcttttaaacacgctgcccatttc 15 ttcaccttgtttaaagatggtcgtatgaatgcatatggtatacacaatgatgaagaagca catcacctatacaatacqttqttaaaatccatacqctaa

Sequence 2456

MSRYERQTRFAPFGEEGQQKLSSSQILIFGAGALGSHIVDQLARMGAHHIAIVDMDIVEI
SNLHRQTLFDEEDAHTLISKVEAIKHKVNQININVNLTTYDLEVTSSNIENLIKNVEPDI
IIDGMDNFKIRYLINEVCHKYQIPWVYGAAVGSKGSVYGIDHQGPCLKCLLQTIPDTGES
CAINGVIPPVISMIASYEVAEAVRYLSGKGFSKQLITIDAFNINYKSMNVDALKNKDCPV
CEKHEYTLLESQQERTIEDLCGNAYLFRFPPKAFKHAAHFPGNMVKSTSFAKLIQYQTYE
FTLFKDGRMNAYGIHNDEEAHHLYNTLLKSIR*

25

Sequence 2457
Contig_0759_pos_1898_1284,
is similar to (with p-value 4.0e-38)
>sp:sp!Q48630|APL_LACLA ALKALINE PHOSPHATASE LIKE PROTEIN. >
pix:pir!S39339|S39339 alkaline phosphatase-like protein -- La

pix:pir!S39339|S39339 alkaline phosphatase-like protein - La ctococcus lactis >gp:gp!Z29065|LLALPHLP_2 L.lactis (MG1363) apl gene for alkaline phosphatase like protein. NID: g435295

45

50

Sequence 2458
MEQIITDFISKWGYTAIFILILLENVLPVVPSEIILTFAGLLSVKSHLSIWTLLIIATIA
SFIGLLILYYICRLISEEKLYRFVDRHGKWMKLKSKDLKRANDWFKKYGAWAVFLCRFVP
VLRVLITIPAGINRMNVIQFTTLSLIGTTIWNFALILLGRLLSDSFDALMNGIHTYSRIM
YVIIIAVIYFVIRYLMKRRRSVK*

Sequence 2459
Contig_0759_pos_1086_151,
is similar to (with p-value 0.0e+00)

>55 >gp:gp|D78193|BACGNTZA_11 Bacillus subtilis 36kb sequence be tween gntZ and trnY genes encoding 34 ORFs. NID: g1064780. > gp:gp|Z99124|BSUB0021_124 Bacillus subtilis complete genome (section 21 of 21): from 3999281 to 4214814. NID: g2636442. atgaaacaaaaatatctagatttactctcacaaaaatttgacagtgcagaaaaacttgct

PCT/US00/30782 WO 01/34809

actgaaattattaacttagagtcaatcttagaattacctaaagggactgaacattttgtt ag/gacchtcatggtgaatacqaatctttccaacatgttttaagaaacggatctggaaat qtqcqtqctaaaattaatqatatcttcaaaqataaattatcccaqcaaqaaatcaucqac ttaqcaqcattaqtatactatccqqaaqaaaactaaaattaqttaaaaataatttcqat tcaatcqqaacattaaatatttqqtatattacaaccattcaacqattaattqatttaatt acatattgctcatcaaaatatacacgttcaaaattacgcaaagcattacctgaacaatac gtttatattattgaagagctactttacaagagcaatgaatttcataataaaaagccttat tatgaaacattagttaaccaaattattgaattagaacaatcagatgatttaatcattggc ctttcctatactqtacaacqtctaqtcqtaqaccatcttcatqtcqtqqqcqatatctat gaccqtqqtcctaaacctqataaqattatqqatacattaataaattatcattctqtaqat atccaatggggaaatcatgatgtattatggattggcgcctatgctggttcaaaagtatgt cttqctaaccttctacqtatctqtqcacqttatqataatttaqatattattqaaqatqca tatggcatcaatctacgccctttacttacgcttgctgaaaagtattacgatgctgaaaac ccagcgtttaaacctaagaaacgaccagataaagacgtcagtcttacaaaacgcgagaaa gtcaaatcacaaaaattcatcaagcaattgcgatga

10

15

20

25

55

Sequence 2460 MKOKYLDLLSOKFDSAEKLATEIINLESILELPKGTEHFVSDLHGEYESFOHVLRNGSGN VRAKINDIFKDKLSQQEINDLAALVYYPEEKLKLVKNNFDSIGTLNIWYITTIQRLIDLI TYCSSKYTRSKLRKALPEQYVYIIEELLYKSNEFHNKKPYYETLVNQIIELEQSDDLIIG LSYTVQRLVVDHLHVVGDIYDRGPKPDKIMDTLINYHSVDIQWGNHDVLWIGAYAGSKVC LANLIRICARYDNLDIIEDAYGINLRPLLTLAEKYYDAENPAFKPKKRPDKDVSLTKREK VKSQKF1KQLR*

Sequence 2461 Contig 0762 pos 5747 4368, is similar to (with p-value 0.0e+00) >sp:sp|P25811|THDF BACSU POSSIBLE THIOPHENE AND FURAN OXIDAT ION PROTEIN THDF. >pir:pir|JQ1215|JQ1215 hypothetical 50K pr 30 otein - Bacillus subtilis >gp:gp|D26185|BAC180K 60 B. subtil is DNA, 180 kilobase region of replication origin. NID: g467 326. >gp:gp|X62539|BSORIGS 5 B.subtilis genes rpmH, rnpA, 50 kd, gidA and gidB. NID: g40020. >qp:qp[Z99124]BSUB0021 207 B acillus subtilis complete genome (section 21 of 21): from 39 35 99281 to 4214814. NID: q2636442. atggattttgatacgattacaagtatttcaacaccgatgggtgaaggtgctattggaatt gtgagattatctgggccacaagctattgaaatcggagatatcttatataaaaggtaagaaa aaqttatetgaaqttqagacqcatacaataaattacqqtcatattattqatecaqaaaca aatgaaacagttgaagaagtcatggtgtctgtattacgtgcccctaaaactttcacacga qaaqatattattqaqataaattqtcatqqtqqtattttaacaattaatcqtatattaqaq ttaactatgacttatggtgcacgtatggcagaaccaggtgaatatacaaaacgtgcattt ttaaatggtcgtatagatttatctcaagcagaagcggttatggattttatacgttscaaa actgatcgagcttctaaggttgcgatgaatcaaatagaaggacgtttaagtgacttaatc aaqaaacaacqtcaatccatattaqaqatactcqcccaaqttqaaqttaacattqattat 45 ccaqaqtatgatgatqtaqaaqacqcaacgacqqacttcttactaqaacaqtctaaqcqt attaaagaagaaatcaatcagttacttgaaacaggagcacaaggtaaaataatgagagaaqqqttatctacaqttattqtaqqacqtcctaatqttqqqaaqtcttcqatqctaaataac cttattcaagataataaagcaattqtgactgagqtcgctggtacaacaagagacqtqtta gaagaatatgtcaatgttagaggtgtcccgttacgacttgtagatactgcggggtattagg 50 gatactgaagatatcgtagagaagattggtgtagaacgttctaggaaagctttaagtgaa qcaqatttaattttatttqtqcttaataacaatqaacctctqacqqaaqatqatcaaact ttattcgaagtcattaaaaatgaggatgttattgtaatcattaataaaacagatttagaa cagcgattagatgttagcgaactaagagatgattggtgatatgccacttatacaaaca tcgatgcttaaacaagaaggtattgatgaattagaaatacaaattaaagatttattcttt

ggtggcgaagtacaaaatcaagatatgacttatgtatctaattcacqtcacatttcattg ttgaaacaagcgagacaatcaattcaagatgcgattgatgctgctgagtctqqtatccca atggatatggtacagattgatttaacacgtacttgggaaattctaggagaaattattgga gaatcagcgagtgatgaattaatagatcaactatttagtcaattttgtttaggaaaataa

Sequence 2462

MDFDTITSISTPMGEGAIGIVRLSGPQAIEIGDILYKGKKKLSEVETHTINYGHIIDPET
NETVEEVMVSVLRAPKTFTREDIIEINCHGGILTINRILELTMTYGARMAEPGEYTKRAF
LNGRIDLSQAEAVMDFIRSKTDRASKVAMNQIEGRLSDLIKKQRQSILEILAQVEVNIDY
PEYDDVEDATTDFLLEQSKRIKEEINQLLETGAQGKIMREGLSTVIVGRPNVGKSSMLNN
LIQDNKAIVTEVAGTTRDVLEEYVNVRGVPLRLVDTAGIRDTEDIVEKIGVERSRKALSE
ADLILFVLNNNEPLTEDDQTLFEVIKNEDVIVIINKTDLEQRLDVSELREMIGDMPLIQT
SMLKQEGIDELEIQIKDLFFGGEVQNQDMTYVSNSRHISLLKQARQSIQDAIDAAESGIP
MDMVOIDLTRTWEILGEIIGESASDELIDQLFSQFCLGK*

Sequence 2463

10

25

30

35

45

50

Cor.tig 0762 pos 4295_2418,

is similar to (with p-value 0.0e+00)

15 >sp:sp|P25812|GIDA_BACSU GLUCOSE INHIBITED DIVISION PROTEIN
 A. >pir:pir|JQ1216|BWBSGA gidA protein - Bacillus subtilis >
 gp:gp|D26185|BAC180K_59 B. subtilis DNA, 180 kilobase region
 of replication origin. NID: g467326. >gp:gp|X62539|BSORIGS_
 6 B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB. NID: g40
20 020. >gp:gp|Z99124|BSUB0021_206 Bacillus subtilis complete g
 enome (section 21 of 21): from 3999281 to 4214814. NID: g263

 $\tt gtggttcaagaatatgatgtagtagtcattggtgctggtcacgccggtattgaagcaggt$ qctttcatqccatqtaatccatctqtaqqtqqtcctqcqaaaggaatcqttqtacqtqaa atagacgctttaggtggacaaatggcaaaaactattgataaaactcacattcaaatgcgt atgcttaatacaggtaaaggtccagctgttagagctttacgtgctcaagcagataaagta ttatatcaacaagaaatgaaqcqtqtacttgagaatgaggataatttagacatcatgcaa ggtatggttgatgaactcattatagaagataatgaagttaaaggtgttcgtactaatatt ggtacagaatatcgttctaaagctgtcattattacaacaggtacattcttacgtggagaa attatactaggaaacttaaaatattctagtggccctaaccatcaattaccatctgtaact ctagcqqataatttaaqaaaattaqqatttqatatcqttaqatttaaaacqqqtacacca compatry anatycogagaaccategattattetaaaactgaaatecaaccaggtgacgat ataggtegagegtttagttttgaaacaaccgaatttattttagatcaattaccttgttgg ttaacttatacaaatggagatacacatcaagtcattgatgataacttacatttatctgct atgtattccqqtatqattaaaqgtacaggtcctagatattgtccatcaattgaggataaa $\verb|tttgtccgctttaacgataaaccaagacatcaacttttcttagaacctgaaggacgtaat|$ acgaatgaggtatacgtgcaaggattatctactagtttacctgaacatgttcaacgtcaa qaatatgatgcaatcgtgcctactcaattatggccaacgttagaaacaaaagcgattaaa aacttqtatactqcaqqtcaqattaatqqaacatcaqqatatqaaqaaqcaqcqqqacaa qqaatcatqqcaqqtattaacqctqctqqtaatqttttaqqtacaqqtgaaaaaatactc agccqttcagacqcatatattqqtqtacttatagatgatttagtcactaagggtacaaat gaaccgtatcgattattaacttcacgtgcggaatatcgattattactacgtcatgataat

gaaccgtatcgattattaacttcacgtgcggaatatcgattattactacgtcatgataac gctgatttacgtcttactgatatggggtatgaattaggtttaatatcagaagaacgctat gcaagatttaatgaaaagcgtcaacaaatcaaagatgaaatacaacgacttaccgatgta cgtattaaaccaaatgaacatacgcaagcaattattgaagctaagggtggttcaagatta aaagatggcatattagcgattgatttattacgtcgtcccgaaatgaactacgaaacaatt ttagaaatcttagaagaatcacatcaacttcctgaagcggttgaggaacaagttgaaatt caaacaaaatatgaaggttatatcaataaatctttacaacaagtagaaaaagttaaaaga atggaagcgaaaaaattcctgaggatttagattatagcaaggtagatagtttagcatct gaagcacgcgaaaagttagctgaagttaaaccattaaatattgcacaggcttcacqaatt tcagqqgtgaaacaataa

55

Sequence 2464

VVQEYDVVVIGAGHAGIEAGLASARRGAKTLMLTINLDNIAFMPCNPSVGGPAKGIVVRE IDALGGQMAKTIDKTHIQMRMLNTGKGPAVRALRAQADKVLYQQEMKRVLENEDNLDIMQ GMVDELIIEDNEVKGVRTNIGTEYRSKAVIITTGTFLRGEIILGNLKYSSGPNHQLPSVT

LADNLRKLGFDIVRFKTGTPPRVNARTIDYSKTEIQPGDDIGRAFSFETTEFILDQLPCW
LTYTNGDTHQVIDDNLHLSAMYSGMIKGTGPRYCPSIEDKFVRFNDKPRHQLFLEPEGRN
TNEVYVQGLSTSLPEHVQRQMLETIPGLEKADMMRAGYAIEYDAIVPTQLWPTLETKAIK
NLYTAGQINGTSGYEEAAGQGIMAGINAAGNVLGTGEKILSRSDAYIGVLIDDLVTKGTN
EPYRLLTSRAEYRLLLRHDNADLRLTDMGYELGLISEERYARFNEKRQQIKDEIQRLTDV
RIKPNEHTQAIIEAKGGSRLKDGILAIDLLRRPEMNYETILEILEESHQLPEAVEEQVEI
QTKYEGYINKSLQQVEKVKRMEAKKIPEDLDYSKVDSLASEAREKLAEVKPLNIAQASRI
SGVNPADISILLVYLEQGKLQRVKQ*

10 Sequence 2465
 Contig_0762_pos_1424_816,
 is similar to (with p-value 1.0e-40)
 >sp:sp|P37524|YYAA_BACSU_HYPOTHETICAL_32.8 KD_PROTEIN_IN_SPO_
0J-GIDB_INTERGENIC_REGION. >pir:pir|S18078|S18078 hypothetic
15 al protein 3 - Bacillus subtilis >gp:gp|D26185|BAC180K_57 B.
 subtilis_DNA, 180 kilobase region of replication origin. NI
 D: g467326. >gp:gp|X62539|BSORIGS_8_B.subtilis_genes_rpmH, r
 npA, 50kd, gidA and gidB. NID: g40020. >gp:gp|Z99124|BSUB002
 1 204 Bacillus_subtilis_complete_genome_(section_21_of_21):

from 3999281 to 4214814. NID: g2636442.
atgttcgaaattatagccggcgaacgacgatttcgagcattacagtcgttgcataaacct
caagtagatgtcattgttcgagatatggatgatgaagaaacagcggtagttgcattgatt
gaaaatattcaacgtgaaaacttatctgtcgtcgaagaagcggaagcttataaaaagtta
cttgaaatcgggggaacgactcaaaatgaattagcaaaaagtctaggcaagagccaaagc
ttcattgctaataaacttagattattgaagttagcaccaatgtgattaagagatwacgt

30 cgcgttgaacaaaaagataaagaacatgaagattattatgaaattaaaataaagatatat aagaaataa

Sequence 2466

MFEIIAGERRFRALQSLHKPQVDVIVRDMDDEETAVVALIENIQRENLSVVEEAEAYKKL
35 LEIGGTTQNELAKSLGKSQSFIANKLRLLKLAPNVIKRLREGKITERHARAVLVLPDETQ
EELIEQVISQKLNVKQTEDRVRQKTGPEKVKAQTFQFSQDVTQAKEELGKSIETIEKSGI
RVEQKDKEHEDYYEIKIKIYKK*

Sequence 2467

40 Contig_0763_pos_624_1304, is similar to (with p-value 2.0e-26)

>gp:gp|U76260|PAU76260_1 Peptostreptococcus asaccharolyticus alpha- and beta-subunits of L-serine dehydratase (sdhB) and

(sdhA) genes, complete cds. NID: g2315864.

45 atggctaaaagctatgattatcaaagtgctttcgatattattggaccagtaatgatggga ccttcaagttctcatacagcaggtgcagtaaaaattggtaattcagcgagagctgtgtta ggagatatgcctaagcatatagaaattcgttattatgaatcttttgctaaaacgcatcaa gggcatggtacagacgttgctattgtcggaggtgctatgggctacagcactttcgatagt agaattaaatcatccttagacatagcaaaagatgaaaatattacaattgatattattgaa gatgaaggagaaagtattggtcaacatcctaactgtgcttatatcaaagcaaatacgaaa

ttaaataaagcaatctcagaatcagcattaaatattattaaagataaacatagtgattta aacgtttcctatatcaaatag

Sequence 2468
MAKSYDYOSAFDIIGPVMMGPSSSHTAGAVKIGNSARAVLGDMPKHIEIRYYESFAKTHO

GHGTDVAIVGGAMGYSTFDSRIKSSLDIAKDENITIDIIEDEGESIGQHPNCAYIKANTK DGRYIEVIGISIGGGTIKLKGINVNGLNVELNHGLPMLVIDGNMNKAKINHLINDLSDMD LDLGEELIETNDNEGLVVFPLNKAISESALNIIKDKHSDLNVSYIK*

- Sequence 2469 Contig 0763 pos 3838 4449, putative peptide of unknown function atqaaqcaqtqqatqaataqattaatcaccttaataqqcqtattqttaatcattttaqct atttatttattctcaaaqccatatatcqataattatctacatgaaaaagataacgatcat 10 aaaattgaaaattatgataaaaaggaaaaagaacagacaaagacatctaaatcgacgcca aagataccttccgataaatctaaaatggctggttatatagaagttccagatgcacaaata aaagaaccagtataccctggtccagcaacaccagaacaactcaatagaggtgttagtttt qcaqaaqqtqacqaatctcttaatcaacaqaatatttcaattqctqqtcatacqtttaca gatcgttcgcactatcaatttacaaatttaaaatcagccaaaatcggtagtaaagtgtat 15 tttaaaactqqaaatcaaactaqaaaqtataaaataactaaaatacqtqatqttaaqcct ach qaqqttaaqqtattaqacqaacatcctaataaqaaaaatcaattaacattaat.cact tqcqatqactataacqaaqaaacqqqtqtttqqqaaacaaqqaaaatattcataqctaca caaattaactaa
- 20 Sequence 2470
 MKQWMNRLITLIGVLLIILAIYLFSKPYIDNYLHEKDNDHKIENYDKKEKEQTKTSKSTP
 KIPSDKSKMAGYIEVPDAQIKEPVYPGPATPEQLNRGVSFAEGDESLNQQNISIAGHTFT
 DRSHYQFTNLKSAKIGSKVYFKTGNQTRKYKITKIRDVKPTEVKVLDEHPNKKNQLTLIT
 CDDYNEETGVWETRKIFIATQIN*

Contig_0763_pos_4794_5603,
putative peptide of unknown function
atgattaaagccattgcggtagatatggatggaacatttcttgacacaaataaacagttt
gatcgaaatcgttttgaaactatttttaaagaattaatagataaaaatattaagtttata
gctgcgagtgggaatcaatttgcaaagctaaaatcaatttttggagatagggaaatgttc
tttatatctgaaaatggagcagtcatctataaaggtaatcaactttacaattatcgaagt
tttgatcagtatatttttcaaaaagttgtaaattatttaaatttgaatcaaaagataaac
aatttgattatttgtggtgtaaaaagtgcatatattttaaaagaaacaagcgaagcattt
aagcaagatgcacgtacatattatcaccaactaatagaggttgactccttacaaacatta
cctgatgatgattatgtgaaaattgctttcaatataaatcgtcagactcatccagactta
gatgagaaattagctcttaagtttaaagacgatattaaactagtatcaagtggagagat
agtatagatgttattatgccaaatatgactaagggtcaagctttgtctagattattaaaa
gaatggcaaatgcctgcttcacatttaatggcatttggagatgcaaataacgataaagat

40 atgttggagettgeegaacatagttatgttatggetaatagtgaagateaateattattt aatatagegagteatgtggeacetteeaatgatgaacaaggegtaetateaacaategaa aatgttgtteteggttatteeaataaataa

Sequence 2472

Sequence 2471

25

45 MIKAIAVDMDGTFLDTNKQFDRNRFETIFKELIDKNIKFIAASGNQFAKLKSIFGDREMF FISENGAVIYKGNQLYNYRSFDQYIFQKVVNYLNLNQKINNLIICGVKSAYILKETSEAF KQDARTYYHQLIEVDSLQTLPDDDYVKIAFNINRQTHPDLDEKLALKFKDDIKLVSSGRD SIDVIMPNMTKGQALSRLLKEWQMPASHLMAFGDANNDKDMLELAEHSYVMANSEDQSLF NIASHVAPSNDEQGVLSTIENVVLGYSNK*

Sequence 2473
Contig_0763_pos_7023_7691,
is similar to (with p-value 2.0e-20)

>gp:gp|AF012552|AF012552_2 Helicobacter pylori prolipoprotei 55 n diacylglycerol transferase (lgt) and NADPH-linked flavin n itroreductase (rdxA) genes, complete cds. NID: g2564440. atgattatgaatcagatgaatcaaacgattattgatgcattccattttagacatgcgaca aaagaatttgaccctacgaaaaaaattagtgatgaagattttaatacgattttagaaaca ggtagattatctccaagttcactaggtttagaaccttggcactttgtagtggttcaaaat

10

Sequence 2474 -

MIMNQMNQTIIDAFHFRHATKEFDPTKKISDEDFNTILETGRLSPSSLGLEPWHFVVVQN KELREKLKAYSWGAQKQLDTASHFVLIFARKNVTAHTDYVQHLLRGVKKYEESTIPAVEN KFDDFQESFHIADNERTLYDWASKQTYIALANMMTSAALLGIDSCPIEGFDLDKVTEILS

15 DEGVLDTEQFGISVMVGFGYRAQEPKHGKVRQNEDDIISWIE*

Sequence 2475

Contig 0763 pos 6789 5797,

is similar to (with p-value 0.0e+00)

- 20 >gp:gp|U31175|SAU31175_1 Staphylococcus aureus D-specific D-2-hydroxyacid dehydrogenase (ddh) gene, complete cds. NID: g 1644432.
- atgacaaaaattatgtttttcggcacaagagcatatgagaaggacatggcattacgttgg ggaaagaaaataatatcgatgtcactacatcaacagaacttttaagtgtagatactgtc gatcaattaaaagattatgacggtgttacaacaatgcagttcggtaaattagaacctgaa gtttaccctaaattagagtcctatggtattaaacaaattgcacaacgtacggctggattt
- gatatgtatgacttagaacttgcaaaaaaacatgaaattattatctcgaatatacctagt tattcacctgaaacaattgctgaatattcggtatctatcgctctgcaactcgtacjaaaa ttcccaacaattgaaaaacgtgtgcaagcacataatttcacatgggcgtcccctattatg tctcgtccagtaaaaaatatgactgtagcaatcatcggtacagggcgtattggtgctgca

40

Sequence 2476

MTKIMFFGTRAYEKDMALRWGKKNNIDVTTSTELLSVDTVDQLKDYDGVTTMQFGKLEPE VYPKLESYGIKQIAQRTAGFDMYDLELAKKHEIIISNIPSYSPETIAEYSVSIALQLVRK FPTIEKRVQAHNFTWASPIMSRPVKNMTVAIIGTGRIGAATGKIYAGFGARVVGYDAYPN HSLSFLEYKETVEDAIKDADIISLHVPANKDSFHLFDNNMFKNVKKGAVLVNAARGAVIN TPDLIEAVNNGTLSGAAIDTYENEANYFTFDCSNQTIDDPILLDLIRNENILVTPHIAFF SDEAVQNI.VEGGLNAALSVINTGTCDTRLN*

Sequence 2477

50 Contig_0763_pos_3669_3175,

is similar to (with p-value 3.0e-17)

>pir:pir|JT0409|JT0409 phosphinothricin-N-acetyltransferase
- Streptomyces viridochromogenes >gp:gp|M22827|STMPAT_2 Stre
ptomyces viridochromogenes phosphinothricin N-acetyltransfer
ase (pat) gene, complete cds. NID: g295177. >gp:gp|X65195|SV
PTT_3 S.viridochromogenes genes pms, phsA, pat and dea for p
hosphinomethylmalic-acid-synthase, phosphinothricin-tripepti
de-synthetase A, phosphinothricin-N-acetyltransferase and Nacetylphosphinothricin-tripeptide deacetylase, respectively.

NID: g47997. >gp:gp|A02774|A02774_1 Artificial phosphinothr icin resistance gene. NID: g345279. >gp:gp|A02804|A02804_1 S.viridochromogenes phosphinothricin resistance gene. NID: g345154. >gp:gp|A29201|A29201_1 Synthetic DNA for phosphinothr icin resistance gene (viral/herbicide resistance) from patent W09111517. NID: g1248925. atgattagatttgcacgactagaagatcttcaagatattttgacaatttataatgatgccatccttaatacaacagctgtttatacgtataagccacaacaattagatgacgtctcaattggtatcaatctaaagcaacaataaagcaacaatagggtttatgaaaagaagggaaagaagaacgtatttagacaattagatggctattataataactat

15 ttatctgattcataa

Sequence 2478

MIRFARLEDLQDILTIYNDAILNTTAVYTYKPQQLDERLQWYQSKAKINEPIWVYEKEGK VVGFATYGSFRQWPAYLYTIEHSIYVHQQYRGLGIASQLLENLIRYAKEQGYRTIVAGID

20 ASNMDSIALHKKFDFSHAGTIKNVGYKFDRWLDLSFYQYDLSDS*

Sequence 2479
Contig_0764_pos_4801_5163,
is similar to (with p-value 2.0e-52)

atgattatttatgtagttttaattattgcattttgcatatttttatgcttttgtacaagtt
30 aatcctgaaaaaatggcagataaccttaaaaagcaaggtagttatgtcccaggaattaga
cctggtgaacaaacaaaaaaatatattactaaagtactttatagattgacttttgttggt
tcaattttcttagcagctatagctattttacctataattgcgactaaatttatgggctta
ccacaatcaattcaaattggtggtacgagtcttttgatcgttattggtgtagctattgaa
actatgaaaactttagaagcacaagtcactcaaaaagaatataaaggctttggtggtaga
35 taa

Sequence 2480

40

55

MILYVVLIIAFAYFYAFVQVNPEKMADNLKKQGSYVPGIRPGEQTKKYLTKVLYRLTFVG SIFLAATAILPIIATKFMGLPQSIQIGGTSLLIVIGVAIETMKTLEAQVTQKEYK&FGGR

Sequence 2481 Contig_0764_pos_6903_5197, is similar to (with p-value 2.0e-26)

45 >sp:sp|P54159|YPBR_BACSU HYPOTHETICAL 137.4 KD PROTEIN IN BC
SA-DEGR INTERGENIC REGION. >gp:gp|L77246|BACYACA_6 Bacillus
subtilis (YAC10-9 clone) DNA region between the serA and kdg
loci. NID: g1256615. >gp:gp|Z99115|BSUB0012_144 Bacillus su
btilis complete genome (section 12 of 21): from 2195541 to 2
50 409220. NID: g2634478.

qtqaatggatttttaataaaaggaagaaaaaagaagaagaacaaatcaaacgacttaat qaqqcqaccactcaattqcaaqaqaaaqttaatcaacaaqtacqacaaccacttcqtqaa caagaatatgacgtcgttccgtcacttatatcagagctatatcaaactcaaacgagcatt agcaacacatacgttttaacattttcagatgaagttataaaagctttgaataaaaaaata qaaaatqaqtcaacaccactatttgaagaagctgtcaatcatgtacaagttaatgaatta aaggattcgcttacatcccacaactacaaacattactatatccatttagacgattcttta gataaattaattggaagaacagagactcattttgaacttaaacaagaaaattcaactgct 10 talcatcqtaaacatqaqacacaacatcqtaacqaqtttqttacatctaatcaaqatatt aaqcqtqcattaqatatcqttaaaqatqtaccattatttqatcqcactaaacaaqatatc accgataccattctgagactcgataatcaaataacaaaagttggtgttttttggtacattt cctaatccaacaacagcqqcaacqacqqaattatcatatqqtaaaqaqagtcaaatcaca 15 ttaaaatcgaaagaacaattactagaggaagttaatcatgtactagaattttatgaaata $\verb|tcgttta| a cacatta gacgactttattgagagtgatttagataagttaaaattgaaacta|$ qaaaaqaaccaacttgcatttattagtgcaattgagaaacattatgaaatgtacacatct atgttaqaacattcacttatacacacagtatcgcttqaaqaaattaaaaaatggagtgcc qaqqatqaqtatqctactttcqtqaaaactqtacaccttaaqctacctttaqattqqctc 20 aagggtaaaatcattattgcccattaa

Sequence 2482

MKRINEVGIPIIFVINQIDKHNEEEITFETFKSRVEKSIKDWDIKLQDTYYVSKFDHPQN

EIDKLSNFLVFMDQHRESTEDYVNRTIQFITDAQYIYIQNEMQSILDTLQINEEQFEEAY

1QFQQNQEVSAEAQLLNDSNQLFNYLKQKRKDILDNAYIMTYDMRESLRNYLESMATDFK

VNGFFNKRKKKEEEQIKRLNEATTQLQEKVNQQVRQPLREDMSFLTRFINKHAVNEKILN

QEYDVVPSLISELYQTQTSISNTYVLTFSDEVIKALNKKIENESTPLFEEAVNHVQVNEL

SSDENEDRYEYDRYIELNTLKDSLTSHNYKHYYIHLDDSLDKLIGRTETHFELKQENSTA

YHRKHETQHRNEFVTSNQDIKRALDIVKDVPLFDRTKQDITDTILRLDNQITKVGV7GTF

30 SAGKSSLINALLGENYLVSSPNPTTAATTELSYGKESQITLKSKEQLLEEVNHVLLFYEI

SFNTLDDFIESDLDKLKLKLKEKNOLAFISAIEKHYEMYTSMLEHSLIHTVSLEEIKKWSA

Sequence 2483

EDEYATFVKTVHLKLPLDWLKGKIIIAH*

35 Contig_0764_pos_4419_4120,
 is similar to (with p-value 5.0e-52)
 >sp:sp!P43148|SEPA_STAEP_EXTRACELLULAR_ELASTASE_PRECURSOR_(E_C_3.4.24.-) (SEPP1). >pir:pir|A40659|A40659 elastase, SepP1=
 etrxtracellular_metalloprotease - Staphylococcus_epidermidis
40 >gp:gp!X69957|SESEPP1A_1 S.epidermis_gene_for_protease. NID
 : g396258.

Sequence 2484

45

50 MSNPFRFGQPSHMNDFVYTNSDNGGVHTNSGIPNKAAYNTIRSIGKQRSEQIYYRALTVY LTSNSDFQDAKASLQQAAFDLYGDGIAQQVGQAWDSVGV*

Sequence 2485 Contig 0764 pos 3606 3145,

tatatagaaacagaaattattaacactatgattaaagaatcgtatatactaataaagacg acaccaggatttgcacaaagcataaattattatattgatcagttacaactgaaagggatt ataggaacgataagtggtaatgatacaattatgattcttacacattcccagtctatagct gaatatgtctattacaaaatatttaatcataattattcataa

5

Sequence 2486
MKKSKRQDLVTMIVKQNHIYKKADIIDYIDDHFGVRYSMTTIARDLRELHIYRLPVKANQ
YEYKLLTQQSQLDSRVRLNDYIETEIINTMIKESYILIKTTPGFAQSINYYIDQLQLKEI
IGTISGNDTIMILTHSQSIAEYVYYKIFNHNYS*

10

Sequence 2487 Contig_0764_pos 2812 1742, is similar to (with p-value 0.0e+00) >qp:qp|Y17554|BLY17554 1 Bacillus licheniformis arcA, arcB, 15 arcC and arcD genes. NID: g3687415. atgagtatgacaaatggacctattcaagttaacagtgaaatcggcaaattaaaqacqqta ttacttaaaaqaccaqqqaaqqaattaqaaaacttaqtqcctqattacttaqatqqatta ttgtttgatgatattccatttttaaaqqtaqctcaacaaqaqcatgatcattttgctcaa gttcttcaagatgaaggaatagaagtgctttatttagaaaaattagcagcacaaagtata 20 qaaqattcaaatqtcaqaqaqcaatttataqatqacqttttaqcaqaatctaqaaaaact atcctaggtcatgaaaaagaaataaaaaaactcttttcaactttgtcaaatcaageatta attaataaqattatqqctqqcqtacqcaaaqaaqaatacaacttqaatcqacacatctt $\tt gtagagtacatggatgataaatatccgttttatcttgacccaatgcctaatctatatttc$ acacqtqatcctcaaqcttcaattqqtaqaqqtatqacaqtaaatcqtatqttttqqaqa 25 qcqaqacqcaqaqaatcqattttcatttcatatattttaaaacatcatcctagatttaaa qatqaqaatattcctttatqqqtqqatcqtqactqtccgttcaacatcqaaqqtqqaqac qaactggtgttatctaaagatgtacttgcaatagggatatctgaacgtacttctgcacaa qcaattqaacqtttaqcacqacqtatttttaaaqatccqttatctacttttaaaaaqgtq qtggcgattgagattccaactagtcgaacatttatgcacttagatactgtttgtacaatg 30 attgattacqacaaattcactacacattcaqcaattcttaaatcaqaaqqaaacatqaat atctttattatcqaatatqatqataaaqctqaaqatatcaaaatccaacattctaqtcat cttaaacaaacattagaagaagtgctcqatgttgatgaaatcacattaataccaactgga

35 Sequence 2488

40

45

50

55

MSMTNGPIQVNSEIGKLKTVLLKRPGKELENLVPDYLDGLLFDDIPFLKVAQQEHDHFAQ VLQDEGIEVLYLEKLAAQSIEDSNVREQFIDDVLAESRKTILGHEKEIKKLFSTLSNQAL INKIMAGVRKEEIQLESTHLVEYMDDKYPFYLDPMPNLYFTRDPQASIGRGMTVNRMFWR ARRESIFISYILKHHPRFKDENIPLWVDRDCPFNIEGGDELVLSKDVLAIGISERTSAQ AIERLARRIFKDPLSTFKKVVAIEIPTSRTFMHLDTVCTMIDYDKFTTHSAILKSEGNMN IF: ICYPPKAEDIKIQHSSHLKQTLEEVLDVDEITLIPTGNGDIIDGAREWMSRSI*

aatggtgatatcatcgacggtgctcgtgaatggatgtccaggtcctggtga

Sequence 2489 Contig 0765 pos 772 1692,

aggattgacataagttggtgttgttgttgtttcaattcctggttcaccttttttggactac tttttctgtacctggggctaa

Sequence 2490

5 VISSTGCFVTFSVGSPSPTFSPVNGFLVVGVVIVFVPGSPFCLTRSLPGFKSGLNSRFLS
NGISSVDVIGSPSTGPYFVTSSTGGVTTSPVSGFLTPGLPGTSSWLPFGAFGSNSSLWPG
LISSPPYSVISSTGCFVIFSVGSPSPTFSPVNGFLVVGVVIVFVPGSPFCLTRSSPGFKS
GLNSRFLSNGISSVDVIGSPSTGPYFVTSSTGGVTTSPVSGFLTPRLTWLRCLTTFRCIW
IKFILMAWLDFFATIMNDFIHWLFCYFFCWFTFANFFSCIRIDISWCCCCFNSWFTFLDY
10 FFCTWG*

Sequence 2491

Contig_0765_pos_3052_2720,

putative peptide of unknown function

15 atgcagaagcacctcaatctgagccaacgaagacagaagaagaagcaacgcaaaagcag ctcaatctgagccaacgaaggcagaagaaggaagcaatgcagaagcagctcaatctgagc caacgaagacagaagaaggaagcaatgcagaagcacctcaatctgagccaacgaaggcag aagaaggaggcaatgcagaagcacctcaatctgagccaacgaagaagaaggagca atgcagaagcaccgaatgttccaactatcaaagctaattcagataatgatacacaaacac

20 aattttcagaagcccctacaagaaatgacctag

Sequence 2492

MQKHLNLSQRRQKKEATQKQLNLSQRRQKKEAMQKQLNLSQRRQKKEAMQKHLNLSQRRQ KKEAMOKHLNLSORROKKEAMOKHRMFOLSKLIQIMIHKHNFOKPLOEMT*

25

Sequence 2493

Contig 0765 pos 2621 1443,

putative peptide of unknown function

- qtqaatttaaattatagttctccgtttatgtccttattaagcatgcctgctgatagttca 30 tccaataacactaaaaatacaatagatataccqccaactacqqttaaaqqtaqaqataat tacqatttttacqqtaqaqtaqatatcqaaaqtaatcctacaqatttaaatqcqacaaat ttaacgagatataattatggacagccacctggtacaacaacagctggtgcagttcaattt aaaaatcaagttagttttgataaagatttcgactttaacattagagtagcaaacaatcgt 35 gatttcctaaaaaacggtggtatcttacgtgaaaaaggtacacctagtgcagctggtttc agaattgatacaggatattataataacgatccattagataaaatacagaaacaagctggt caaqqctataqaqqqtatqqqacatttqttaaaaaatqactcccaaqqtaatacttctaaa gtaggatcaggtactccatcaacagattttcttaactacgcagataatactactaatgat ttagatggtaaattccatggtcaaaaattaaatatgttaatttgaaatataatgcttca 40 aatcaaacttttacagctacttatgctggtaaaacttggacggctacgttatctgaatta ggattgagtccaactgatagttacaattttttagttacatcaagtcaatatggaaatggt aatagtggtacatacgcaagtggcgttatgagagctgatttagatggtgcaacattgaca tacactcctaaagcagtcgatggagatccaattatatcaactaaggaaataccatttaataagaaacgtgaatttgatccaaacttagccccaggtacagaaaaagtagtccaaaaaggt qaaccaqqaattqaaacaacaacaacaacttatqtcaatcctaatacaqqaqaaaaa
- gttggcgaaggtgaaccaacagaaaaaataacaaacaaccagtggatgaaatcgttcat tatggtggcgaagaaatcaagccaggccataaggatgaatttgatccaaatgcaccgaaa ggtagtcaaaccaacgcaaccaggtaagccggggggttaa

50 Sequence 2494

VNLNYSSPFMSLLSMPADSSSNNTKNTIDIPPTTVKGRDNYDFYGRVDIESNPTDLNATN LTRYNYGOPPGTTTAGAVQFKNQVSFDKDFDFNIRVANNRQSNTTGADGWGFMFSEKDGD DFLKNGCTLREKGTPSAAGFRIDTGYYNNDPLDKIQKQAGQGYRGYGTFVKNDSQSNTSK VGSGTPSTDFLNYADNTTNDLDGKFHGQKLNNVNLKYNASNQTFTATYAGKTWTATLSEL

55 GLSPTDSYNFLVTSSQYGNGNSGTYASGVMRADLDGATLTYTPKAVDGDPIISTKEIPFN KKREFDPNLAPGTEKVVQKGEPGIETTTTPTYVNPNTGEKVGEGEPTEKITKQPVDEIVH YGGEEIKPGHKDEFDPNAPKGSQTTQPGKPGG*

Sequence 2495

Contig 0765 pos 0 1408, putative peptide of unknown function qtqqatqatqtqacaaaatatqqtccaqttqatqqagatccqatcacqtcaacqqaaqaa attccattcgacaagaaacgtgaattcaatcctgatttaaaaccaggtgaagagcgtgtt 5 aaacaaaaqqtqaaccaqqaacaaaaacaattacaacaccaacaactaaqaacccatta acaqqqqaaaaaqttqqcqaaqqtqaaccaacaqaaaaaataacaaaacaaccaqtagat gaaatcacagaatatggtggcgaagaaatcaagccaggccataaggatgaatttgatcca $\verb|aatgcaccgaaaggtagccaagaggacgttccaggtaaaccaggagttaaaaaccctgat|$ acaggcgaagtagtcacaccaccagtggatgatgtgacaaaatatggtccagttgatgga 10 qatccqatcacqtcaacqqaaqaaattccattcqacaaqaaacqtqaattcaatcctqat ttaaaaccaggtaaagagcgcgttaaacagaaaggtgaaccaggaacaaaacaattaca acaccaacaactaaqaacccattaacaqqqqaaaaaqttqqcqaaqqtqaaccaacaqaa aaagtaacaaacaaccagtagatgaaatcacagaatatggtggcgaagaaatcaagcca ggccataaggatgaatttgatccaaatgcaccgaaaggtagccaagaggacgttccaggt 15 aaaccaggaqttaaaaatcctgatacaggcgaagtagttactccaccagtggatgatgtg acaaaatatggtccagttgatggagatccgattacgtcaacggaagaaattccgtttgataaaaaacqcqaatttqatccaaacttaqcqccaqqtacaqaqaaaqtcqttcaaaaaqqt qaaccaqqaacaaaaacaattacaacaaccaactaaqaacccattaacaqqqqaaaaa qttqqcqaaqqtqaaccaacaqaaaaqtaacaaacaaccaqtqqatqaaatcqttcat 20 tatqqtqqcqaaqaatcaaqccaqqccataaqqatqaatttqatccaaatqcaccqaaa ggtagccaagaggacgttccaggtaaaccaggagttaaaaaccctgatacaggcgaagta gttactccaccagtggatgatgtgacaaaatatggtccagttgatggagatccgattacg tcaacqqaaqaaattccqtttqataaaaaacqcqaatttqatccaaacttaqcqccaqqt acagagaaagtcqttcaaaaagqtgaaccaggaacaaaaacaattacaacaccaacaact 25 aagaacccattaacaggggaaaaagttggcgaaggtgaaccaacagaaaagtaacaaaa caaccagtggatgaaatcgttcaTATCG

Sequence 2496

Sequence 2497

VDDVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGEERVKQKGEPGTKTITTPTTKNPL

TGEKVGEGEPTEKITKQPVDEITEYGGEEIKPGHKDEFDPNAPKGSQEDVPGKPGVKNPD
TGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGKERVKQKGEPGTKTIT
TPTTKNPLTGEKVGEGEPTEKVTKQPVDEITEYGGEEIKPGHKDEFDPNAPKGSQEDVPG
KPGVKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFDPNLAPGTEKVVQKG
EPGTKTITTPTTKNPLTGEKVGEGEPTEKVTKQPVDEIVHYGGEEIKPGHKDEFDPNAPK
GSQEDVPGKPGVKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFDPNLAPG
TEKVVQKGEPGTKTITTPTTKNPLTGEKVGEGEPTEKVTKOPVDEIVHIX

Contig 0766 pos 1949 3403, 40 is similar to (with p-value 1.0e-62) >sp:sp|P14567|DP3A SALTY DNA POLYMERASE III, ALPHA CHAIN (EC 2.7.7.7). >pir:pir|A45915|A45915 DNA-directed DNA polymeras e (EC 2.7.7.7) III alpha chain - Salmonella typhimurium >gp: gp[M29701|STYDNAE 1 S.typhimurium polymerase III polymerase 45 subunit gene, complete cds. NID: g153951. atggaagaaataccaacttatataacccqtaqacataatcctaaccaatttqcttattta catccagatttagaaccaatcttaaaaaacacatatqqtqttatcatttatcaaqaacaa ata atgcta atagca agtca agttgctggtttt agttatggtga agcaga tatttta agaagggcaatgagtaaaaagaatcgtgcaatcttagaaagtgagcgtcaacatttcattgat 50 ggtgcaaaaaataacggttacgatgaacagataagtaagcaaatttttgatttaatactt aagtttgcagattatgggttcccacgtgcccatgctgttaqttactcaaaaattgcatac attatgagctatttaaaagtgcactatcctcattatttttatgcaaatatcttgagtaat gtaataggaagtgaaaaaaaqactgcagctatgattgacgaagctaagcaccaaagaatt agcatcttqcctcccaatattaatcaaaqtcattqqtattataaqqcaaqtaataaaqqa 55 gatgaacgtcagcagaatggaccttatagagatttctttgatttttcaaqacgtatacca aaaagggtgaaaaatagaaaattacttgagtctcttatcttagtaggcgcattcgacact

tttggcaaaactagagcgacattattacaagcaattgatcaagtattagatttgaattctgatgttgagcaagatgaaatgcttttcgatcttttaactcctaaacaatcgtatgaaqaa

Sequence 2498

MEEIPTYITRRHNPNQFAYLHPDLEPILKNTYGVIIYQEQIMLIASQVAGFSYGEADILR
RAMSKKNRAILESERQHFIDGAKNNGYDEQISKQIFDLILKFADYGFPRAHAVSYSKIAY
IMSYLKYHYPHYFYANILSNVIGSEKKTAAMIDEAKHQRISILPPNINQSHWYYKISNKG
IYLSLGTIKGIGYQSVKLIIDERQQNGPYRDFFDFSRRIPKRVKNRKLLESLILVGAFDT
FGKTRATLLQAIDQVLDLNSDVEQDEMLFDLLTPKQSYEEKEELPDQLLSDYEKEYLGFY
ISKHPVEKKFEKKQYLGIFQLSNGSHYQPILVQFDHIKQIRTKNGQNMAFVTMNDGRTMM
OGVIFPDKFKKYETSISKEQMYIVLGKFEKRNQQMQLIINQLFEVEAYEQTKLSNSKKVI
LRNVTHLEPQFEHSKVESNEQHALNIYGFDESANKMTMLGQIERQRQNFDLLIQTYSPAD
IRFI*

Sequence 2499

25 Contig_0766_pos_3567_4364,
 is similar to (with p-value 7.0e-79)
 >sp:sp|P54537|YQIZ_BACSU_PROBABLE_AMINO-ACID_ABC_TRANSPORTER
 ATP-BINDING_PROTEIN_IN_BMRU-ANSR_INTERGENIC_REGION. >gp:gp|
 D84432|BACJH642_255_Bacillus_subtilis_DNA, 283_Kb_region_con
30 taining_skin_element. NID: g2627063. >gp:gp|Z99116|BSUB0013_
 107_Bacillus_subtilis_complete_genome_(section_13_of_21): fr
 om_2395261_to_2613730. NID: g2634723.
 atgattgtactattgttctacatatttactagtaaatcgtgtatatttaaaatgattcag
 tttcttttcagccagtgattaatattaaaaaatttagaacaattggagcaaatgaa

. 24,

atgaactttgctaaagaaataagtgataaagtagtatttatggccgatggtgttgtggtt 45 gaatctggtacaccacaaaacatatttgaaaatcctcagcacagtcgaactgaaaatttt ttatcacgagtgttataa

Sequence 2500

MIVLLFYIFTSKSCIFKMIQFSFQPVINIKNLNKKFGANEVLRDINLTVEKGEVVAIIGP
50 SGSGKSTLLRCMNLLDVPSKGKVIFEDNELTQHNVHLDNLRQKMGMVFQNFNLFPHKKVI
ENVMLAPLLLHKDSKDQLKEKALYLLEKVGLKDKADSYPNQLSGGQKQRVAIARALAMEP
DVMLFDEPTSALDPEVVGDVLKVMRQLANEGMTMVIVTHEMNFAKEISDKVVFMADGVVV
ESGTPQNIFENPQHSRTENFLSRVL*

55 Sequence 2501
 Contig_0766_pos_4706_5149,
 is similar to (with p-value 1.0e-20)
 >pir:pir|S05373|S05373 ctc protein - Bacillus subtilis (fragment)

atggtttcagattatcaatttgatccattaaaaaaccaaatcactcatattgacttttta qcaatcaacatqaqtqaaqaacqtactqttqaaqtacaaqttcaattaqttqqtqaaqct qtaqqtqctaaaqaaqqcqqcqtaqttqaacaaccattattcaacttaqaaqttacaqct acacctgaaaatattcctgaaactatcgaagtagatatcagtgaattacaagttaatgac aqcttaqcaqtttctqatattaaaatctctggtgatttcacaatcgaaaataatccagaa gattctatcgtaacagtagttcctccaacagatgaaccttctgaagaagaagttgaagct atggaaggcgaatcagcaactgaagaaccagaagttgttggtgaagacaaagaagacgat gaagaagaaataaagaagactaa

10 Sequence 2502

> MVSDYOFDPLKNOITHIDFLAINMSEERTVEVOVOLVGEAVGAKEGGVVEOPLFNLEVTA TPENIPETIEVDISELQVNDSLAVSDIKISGDFTIENNPEDSIVTVVPPTDEPSEEEVEA MEGESATEEPEVVGEDKEDDEEENKED*

15 Sequence 2503

Contig 0766 pos 5387 0,

is similar to (with p-value 4.0e-49)

>sp:sp|P37470|SP5C BACSU PROBABLE PEPTIDYL-TRNA HYDROLASE (E C 3.1.1.29) (PTH) (STAGE V SPORULATION PROTEIN C). >qp:qp|D2

- 20 6185|BAC180K 116 B. subtilis DNA, 180 kilobase region of rep lication origin. NID: g467326. >gp:gp|299104|BSUB0001 53 Bac illus subtilis complete genome (section 1 of 21): from 1 to 213080. NID: q2632267.
- qtqqaqqtaacaataatqaaatqcattqtcqqtcttqqcaacattqqtaaacqttttqaa 25 ttaacaagacataatattggtttcgaagttgtcgatgatattctagaacgccaccaattt actttaqacaaacaaaatttaaaqqtqcatatactattqaacqtttaaacqqcqaaaaa gtatralttattgagccaatgaccatgatgaacttatctggtcaagctgtagcccttta atggattattataatgtcqatgttqaaqatttqatcqttttatatqacqatttaqattta qaacaaggacaagtgcgtctgcgccaaaaggggagtgcaggcggtcataatggtatgaaa
- 30 tcgataattaaaatqcttqqtacaqatcaatttaaacqtattcqaattqqtqttqqccqt ccaacaaatgggatgtctgttccggactatgttttacaaaaattttcaaaagaagaaatg at cattat ggaaa aggta at t gaac at tot gcaa gag c t g t agaat c t t t t at t gaa ag t cattat gcaa gag c t g t agaat c t t t t at t gaa ag t cattat g cat g t agaat c t t t t at t gaa ag t cattat g cat gtctcgttttgatcatgttatgaatgaa
- 35 Sequence 2504

VEVTIMKCIVGLGNIGKRFELTRHNIGFEVVDDILERHOFTLDKOKFKGAYTIERLNGEK VLFIEPMTMMNLSGQAVAPLMDYYNVDVEDLIVLYDDLDLEQGQVRLRQKGSAGGHNGMK SIIKMLGTDQFKRIRIGVGRPTNGMSVPDYVLQKFSKEEMIIMEKVIEHSARAVESFIES SRFDHVMNE

40

Sequence 2505

Contig 0766 pos 1682 1317,

putative peptide of unknown function

- atqtataqtqaaaaaqaaatcatacqaaaaqtcqaaaqtttaqcaqaqaaaattqqaaaa 45 ctagaagttgttcaagattatcataatgtagaaaaacaaattcataataatcaagcaata aaacaaaaqatqaatcqtttqaaaqcqcaacaaaacaatcqqttaattttcaaaattat qqaaaacaaaatqcactcqaqcaatctqaaqttaaaattcaqaatctaaaaqatqaaatt aatgaattacctattgttgaagaatttcgttcagcacaatatgaagcgaatgatttacta caaatgatggtcaaaacaatggaagatagactcaatgaatataataaaaaaagaacacaat
- 50 gaataa

Sequence 2506

MYSEKEIIRKVESLAEKIGKLEVVQDYHNVEKOIHNNQAIKOKMNRLKAQOKOSVNFONY GKQNALEQSEVKIQNLKDEINELPIVEEFRSAQYEANDLLQMMVKTMEDRLNEYNKKEHN

55

Sequence 2507 Contig 0766 pos 1293 799, putative peptide of unknown function

10

Sequence 2508

MNIRKLTITAFLIAINVVLSSLIVIPLGPIKAAPVQHFVNVLCAVFVGPWYGLAQAFISS VLRISFGTGSAFAFPGSMIGVLLSSLFYMYRKHIFMASVGEVLGTGVIGSLMCIPLAWFL GLQDFFIKPLMLMFIVSSFIGALISYILLIILKRRGLLDRFNKN*

15

Sequence 2509

Contig 0766 pos 0 613,

is similar to (with p-value 4.0e-50)

>sp:sp:P49849|MUTS_BACSU DNA MISMATCH REPAIR PROTEIN MUTS. > gp:gp|U27343|BSU27343_2 Bacillus subtilis spore coat protein (cotE) gene, partial cds, and mismatch repair recognition p roteins (mutS) and (mutL) genes, complete cds. NID: g1002518

35

40

Sequence 2510

VKIEMANITPMMQQYLKIKSEYDDCLLFFRLGDFYEMFFDDAKEASRVLEITLTKRDAKK ENPISMCCVPYHSADNYIETLINNGYKVAICEQMEDPKQTKGMVRREVVRIITPGTVMDQ NGMDEKKNNYILSFIENEEFGLCYCDVSTGELKVTHFKDTATLLNEITTINPNEIVIKQA LSEELKRQINMITETITVREDIYVX

Sequence 2511 Contig_0767_pos_5389_5703, is similar to (with p-value 1.0e-24)

45 >gp:gp|AF006075|AF006075_3 Bacillus subtilis acetoin dehydro
genase enzyme system gene cluster, ribosomal protein L6-like
protein gene, partial cds, TPP-dependent acetoin dehydrogen
ase, E1 alpha-subunit (acoA), TPP-dependent acetoin dehydrog
enase, E1 beta-subunit (acoB), dihydrolipoamide acetyltransf
50 erase (acoC) and dihydrolipoamide dehydrogenase (acoL) genes
, complete cds, and regulatory protein (acoR) gene, partial
cds. NID: g2957145. >gp:gp|Z99108|BSUB0005_76 Bacillus subti
lis complete genome (section 5 of 21): from 802821 to 101125
0. NID: g2633055. >gp:gp|D78509|D78509_4 Bacillus subtilis Y
fjG-YfjR genes, complete cds. NID: g2780390.

 ${\tt atagcttcattaatagcccccataaatgttaacttgcgttcttcactcatcgtaaaaacctccttatgtgqttaq}$

Sequence 2512

5 MSSAIGRSPVAAAPTAVLNVMCSAIGVSITRLRLYFFASPFVTPNTPPNVSSSLMWSTFA PPETSVPIKMTSSSFSIDWSIASLIAPINVNLRSSLIVKTSLCG*

Sequence 2513

Contig 0767 pos 5685 4645,

10 is similar to (with p-value 0.0e+00)

>gp:gp!AF006075|AF006075_3 Bacillus subtilis acetoin dehydro genase enzyme system gene cluster, ribosomal protein L6-like protein gene, partial cds, TPP-dependent acetoin dehydrogen ase, E1 alpha-subunit (acoA), TPP-dependent acetoin dehydrog

- enase, El beta-subunit (acoB), dihydrolipoamide acetyltransf erase (acoC) and dihydrolipoamide dehydrogenase (acoL) genes , complete cds, and regulatory protein (acoR) gene, partial cds. NID: g2957145. >gp:gp|Z99108|BSUB0005_76 Bacillus subti lis complete genome (section 5 of 21): from 802821 to 101125
- 0. NID: g2633055. >gp:gp|D78509|D78509_4 Bacillus subtilis Y
 fjG-YfjR genes, complete cds. NID: g2780390.

atgagtgaagaacgcaagttaacatttatgggggctattaatgaagctattgaccaatct atggaaaaagatgaggatgtcattttaattggtactgatgtctcaggtggtgcaaaagta qaccacatcaaaqatqacqatacattcggtggtgtattttggtqtaacaaaaggacttgca

- 30 gttgttccatctaatccatatgatgcgaagggtctactgatgtcagctattcaagaggac aatcttgttgtcttttcagaagataaaacattattaggacaaaaaggtaatgttcctgaa gaaccttatactatagaaattggtaaagccaatgtgacgcgtgaaggtgacgatttaaca attgtggctattggaaaaatggtagctgtagcggaagaaactgctgaaaaacttgcagaa gaccaagtatcagttgaggtcatcgatttacgctcagtgtcaccatgggatcaagaaaca

40

45

55

Sequence 2514

MSEERKLTFMGAINEAIDQSMEKDEDVILIGTDVSGGAKVDHIKDDDTFGGVFGVTKGLA
KKYSRKRVIDTPIAEHITLSTAVGAAATGLRPIAELMFNDFIGFGLDPILNQGAKMRYMF
GGKAKIPLVVRTLHGAGASAAAQHSQSLYNMFAAIPGVKVVVPSNPYDAKGLLMSAIQED
NLVVFSEDKTLLGQKGNVPEEPYTIEIGKANVTREGDDLTIVAIGKMVAVAEETAEKLAE
DQVSVEVIDLRSVSPWDQETVLDSVKKTGRLIVIDESNPQCNIAGDVASVIGDVGFDYLD
GPIKKVTAPDTPVPFAANLEAAYMPNADKVLDIASELIDDLKKANA*

Sequence 2515

50 Contig_0767 pos_4613_3354,

is similar to (with p-value 3.0e-72)

>gp:gp!Z99108|BSUB0005_77 Bacillus subtilis complete genome (section 5 of 21): from 802821 to 1011250. NID: g2633055. >gp:gp|D78509|D78509_3 Bacillus subtilis YfjG-YfjR genes, complete cds. NID: g2780390.

atgccaaagcttggaatgacaatgaaagagggaactgttgaagagtggtttaaatcagag ggtgacaccgtaaaacaaggagagagtattgttacaataagctctgaaaaattaaccaac gatgttgaagcgccggcgagtgggacattgttagaaattaaagtgcaagccggagaagat gcagaggttaaagcggtattaggtataattggagaagaaggggaagctattgataaagat

gangatgatttagcatcagaaaaagtaaaagaagacaacgagcatgagaaggaaacgcaa gaagttaaagatacatcacaacagtetteegataataaagataattegeetaaaagegea gcacgagaaagaatetttateteaceetegcacgtaatatggctgaggataaaggatta qacattaacaagataaaaqqcacaggcggtaatcatcgtattacaaaactagatattcaa cgtgttgaagcaaatgggtacgactatgctagtgatacgacatctaatgaagatacaagt catqttccaacacaqactqtqqatacaaqtqcqattqgtqaaggattgaatcctatgcgt caacqtattqctcaaaacatqaqacaaaqtcttaataqtactgctcaattaacattacat cgtaaggttgatgcggatcgcttgctagatttcaaagacagattagctacggaacttaaa caagcagatcaagatgttaaattaactgttactacattattagctaaagcagtagtqctt gcacttaaagaatatggggcaatgaatgctcgctatgaacaaggcgagttaactgagtat 10 gaagatgttcatttaggaatcgcaacgtctctagatgaaggccttatggtgccagtgatt aatcatgcagatacaaaaagtatcggcactttagcccatgaaattaaatcatcggctgag gctgttcgggaaggaaacacaggagcagtacaattagagggagcaacatttacaattact aatatgggtgctagtggtatagaatactttacaccaattttaaatttaggtgaaacaggt attctaggcgttggtgctttaactaaagaagtcgtgctagaagcggataacattaaacaa 15 qtttcaaaaattcctttaaqcttqacatttgatcatcaaattttagatggtgcaggtgcg

- 20 Sequence 2516
 MPKLGMTMKEGTVEEWFKSEGDTVKQGESIVTISSEKLTNDVEAPASGTLLEIKVQAGED
 AEVKAVLGIIGEEGEAIDKDEDDLASEKVKEDNEHEKETQEVKDTSQQSSDNKDNSPKSA
 ARERIFISPLARNMAEDKGLDINKIKGTGGNHRITKLDIQRVEANGYDYASDTTSNEDTS
 HVPTQTVDTSAIGEGLNPMRQRIAQNMRQSLNSTAQLTLHRKVDADRLLDFKDRLATELK
- 25 QADQDVKLTVTTLLAKAVVLALKEYGAMNARYEQGELTEYEDVHLGIATSLDEGLMVPVI NHADTKSIGTLAHEIKSSAEAVREGNTGAVQLEGATFTITNMGASGIEYFTPILNLGETG ILGVGALTKEVVLEADNIKQVSKIPLSLTFDHQILDGAGAADFLKVLAKYIENPYLLML*
- 30 Sequence 2517
 Contig_0767_pos_2671_2159,
 putative peptide of unknown function
 atgaaaaggtttgcaaaagcatttgtcgtaagtggtattactttaggtgcagttttaggt
 ttaaacgtaacagagcataatggtgtatctaatgaagcaaaaggcacaaacagcacacagt
 tactggtataaatataatggttatactgcatcgggtggcgactttgtacttagcaattca
 tttatcaaggtttaaaagctggaaacgttacatttaatggtattaaggtaaatcaaaaa
 tatgaatctaagactgctactaaaaaaatatacgatcagacatttcaacaaattaatgga
 aataaagcaaacaacgtacaatttaaaattqcttccagaactgttactttagatcaagtt
- aaacaaaagtatggaaaaaattataattatcagccgtcattatctaaaaacaaaacaagt
 aagacagatggcttgtacggttatcaagtcggaaaaggaaacatcgttttccacgtiaaa
 qatgugtatgtcacaagtgctacattgtcataa

Sequence 2518

MKRFAKAFVVSGITLGAVLGLNVTEHNGVSNEAKAQTAHSYWYKYNGYTASGGDFVLSNS

45 FYQGLKAGNVTFNGIKVNQKYESKTATKKIYDQTFQQINGNKANNVQFKIASRTVTLDQV
KOKYGKNYNYQPSLSKNKTSKTDGLYGYQVGKGNIVFHVKDGYVTSATLS*

Sequence 2519

acaqtataa

Contig_0767_pos_1876_1568,

- 50 putative peptide of unknown function atgagtgagaatatcattaataataatagatagagaatggtagacctgtaataactgat gcagtttgtaaacttttaagaccacctgcaattgtcatagcaactgaaatcgccccaata agtagaccccataggactttatgttttaaagttggattgatagaaccacctgtagccata cctgcaacaatatgcgtagttgaatcagcacttgttacaataaagatgaaaataagtaca atagctaaggaactagtgacttccgacaatggaaaatgtgataataattcaaacaaggca
 - Sequence 2520
 MSENIINNKMIENGRPVITDAVCKLLRPPAIVIATEIAPISRPHRTLCFKVGLIEPPVAI

PATICVVESALVTIKMKISTIAKELVTSDNGKCDNNSNKATV*

Sequence 2521 Contig 0768 pos 2298 2642,

5 putative peptide of unknown function gtgacaaaccggaggaaggtggggatgacgtcaaatcatcatgccccttatgatttgggc tacacacgtgctacaatggacaatacaaagggtagcgaaaccgcgaggtcaagcaaatcc cataaagttgttctcagttcggattgtagtctgcaactcgactatatgaagctggaatcg ctagtaatcgtagatcagcatgctacggtgaatacgttcccgggtcttgtacacaccgcc

10 cgtcacaccacgagagtttgtaacacccgaagccggtggagtaaccatttggagctagcc gtcgaaggtgggacaaatgattggggtgaagtcgtaacaaggtag

Sequence 2522

VTNRRKVGMTSNHHAPYDLGYTRATMDNTKGSETARSSKSHKVVLSSDCSLQLDYMKLES

15 LVIVDQHATVNTFPGLVHTARHTTRVCNTRSRWSNHLELAVEGGTNDWGEVVTR*

Sequence 2523 Contig_0768_pos_7279_6914, is similar to (with p-value 1.0e-27)

20 >gp:gp|U96108|SCU96108_3 Staphylococcus carnosus (3R)-hydrox
ymyristoyl acyl carrier protein dehydrase homolog (fabZ) gen
e, partial cds, YwpF homolog, single-strand binding protein
homolog (ssb), SceD precursor (sceD), SceA precursor (sceA)
and SceE precursor (sceE) genes, complete cds, and TenA homo

25 log (tenA) gene, partial cds. NID: g2735509.
atgacgaaagatgctcaaatctatgaaaaggaggataacaaaatagcaacattttgcgtt
gctacagaaagaaactacaaagatgatattaatgaaatttctacagattatttactttgt
aaagctttcggtaaaactgccactaatattgaaaagtacactagtcaaggtactttagta
ggtataactggacaaatgcgttcaagaaaatatgaaaaagaaggccaaacacattttgtt

30 acagaattatacgttgaaacaataaaattcatgtccccaaaaaataaaacaatgaaact ccctctgataatcaatttgaaaacaacacttatcaacctgatgatttagaaataattcat atttaa

Sequence 2524

35 MTKDAQIYEKEDNKIATFCVATERNYKDDINEISTDYLLCKAFGKTATNIEKYTSQGTLV GITGQMRSRKYEKEGQTHFVTELYVETIKFMSPKNKNNETPSDNQFENNTYQPDDLEIIH I*

Sequence 2525

40 Contig_0768_pos_6526_5867,
 is similar to (with p-value 5.0e-49)
 >gp:gp|U96108|SCU96108_4 Staphylococcus carnosus (3R)-hydrox
 ymyristoyl acyl carrier protein dehydrase homolog (fabZ) gen
 e, partial cds, YwpF homolog, single-strand binding protein

45 homolog (ssb), SceD precursor (sceD), SceA precursor (sceA) and SceE precursor (sceE) genes, complete cds, and TenA homolog (tenA) gene, partial cds. NID: g2735509.

atgaaaaaaacattagttgcatcatcattagctataggactaggcgttgtagcaggtaac gcaggtcatgacgcacatgcaagtgagactacaaatgttgataaagcagagttagctcaa aaagcgttaactaatgatcaatcactaaatgaaagccctgttcaagaaggtgcttataat attaattttgattacaatggtaattcatatcattttgaatctgatggttctacttggagt tggagtt.tgaatcaacaacaacaacatgctacgcaacctgttcaaccaagccaatctcaagta gctacacaacaacaacatgtacaagtatcagcaccacaaaaatgagcaaacagcacaacca caaacaaaatcaacattacaagtcaaacttctcaagtagaatcaagtggttcatca

55 gtaaatgtaaattcacatttacaacaaattgctcaacgtgaatcaggtggcgatattcat gcaataaacccatcttcaggtgcagcaggtaaatatcaattcttacaatcaacttgggat tctgttgctccaagtcaatataaaggtgtttcacctgcaaaagctccagaaagcgtacaa gaccgagcagcagtaaaattatataatactggtggcccaggtcattgggtaactgcataa

Sequence 2526

MKKTLVASSLAIGLGVVAGNAGHDAHASETTNVDKAELAQKALTNDQSLNESPVQEGAYN INFDYNGNSYHFESDGSTWSWSYESTNNATQPVQPSQSQVATQQQPVQVSAPQNECTAQP QTKSTSTSQTSSSKASSGSSVNVNSHLQQIAQRESGGDIHAINPSSGAAGKYQFLQSTWD SVAPSQYKGVSPAKAPESVQDRAAVKLYNTGGPGHWVTA*

Sequence 2527

Contig 0768 pos 5390 4893,

is similar to (with p-value 3.0e-44)
>gp:gp|U96108|SCU96108_7 Staphylococcus carnosus (3R)-hydrox
ymyristoyl acyl carrier protein dehydrase homolog (fabZ) gen
e, partial cds, YwpF homolog, single-strand binding protein
homolog (ssb), SceD precursor (sceD), SceA precursor (sceA)
and SceE precursor (sceE) genes, complete cds, and TenA homo

15 and SceE precursor (sceE) genes, complete cds, and TenA homo log (tenA) gene, partial cds. NID: g2735509. atggaagatgttaaatttctagtagaacaaattgagtttatgttagaaggagaagttgaa gcgcatgaggttctagctgatttcattaatgaaccatatgaagaaatagtaaaagaaaaa gtatggcaccaagtggtgatcattatattaaacatatgtacttcaatgcatttgcacgt

20 gaaaatgcagccttcacgattgcagcgatggcaccctgtccatacgtctacgctgtcatt ggtaaacgtgcgatggaagatcccaaattaaataaagaatcagtgacttctaaatggttt caattttatagtactgaaatggacgaacttgttgatgtgttcgatcaattgatggaccgt ttaactaaacattgtagtgagacagaaaaaaaagagattaaagaaaatttcttgcaaagt actattcatgagagacatttcttcaatatggcatatattaatgaaaaatgggaatatggg

25 ggaaataacaatgaataa

Sequence 2528

MEDVKFLVEQIEFMLEGEVEAHEVLADFINEPYEEIVKEKVWPPSGDHYIKHMYFNAFAR ENAAFTIAAMAPCPYVYAVIGKRAMEDPKLNKESVTSKWFQFYSTEMDELVDVFDQLMDR

30 LTKHCSETEKKEIKENFLQSTIHERHFFNMAYINEKWEYGGNNNE*

Sequence 2529
Contig_0768_pos_4639_4079,
is similar to (with p-value 8.0e-41)

35 >sp:sp|P44697|THID_HAEIN PHOSPHOMETHYLPYRIMIDINE KINASE (EC
2.7.4.7) (HMP-PHOSPHATE KINASE) (HMP-P KINASE). >pir:pir|I64
151|I64151 hypothetical protein HI0416 - Haemophilus influen
 zae (strain Rd KW20) >gp:gp|U32725|U32725_3 Haemophilus infl
 uenzae Rd section 40 of 163 of the complete genome. NID: g15
40 73387.

- 45 gaaattggtagtaagggtgttgtaattaagggagggcattcagccgatttaaataatgct aaagattttctttttactaagaatgaaacgtatacctttgagaacaaacgctttgatact aaacatactcatggaactggttgtactttttcagcagttattacagcagaattagctaaa ggtcgttccataaaagatgcagttaaaaaagcaaaagggttatttcattaagtattgaa cataccccagaaattggcaaggggagaggacctgtaaatcattttgcttatatgaagaaa
- 50 gtaggtttagatgatgaataa

Sequence 2530

MELIQSYLKEHSNIPYVIDPVMLAKSGDSLMDENTKNHLQSTLLPLADVVTPNIPEAEEI
TGIKINDEESIRKAGQIFINEIGSKGVVIKGGHSADLNNAKDFLFTKNETYTFENKRFDT

KHTHGTGCTFSAVITAELAKGRSIKDAVKKAKEFISLSIEHTPEIGKGRGPVNHFAYMKK
VGLDDE*

Sequence 2531 Contig 0769 pos 1300 1833,

is similar to (with p-value 1.0e-69) >sp:sp1P37948|GLPT BACSU GLYCEROL-3-PHOSPHATE TRANSPORTER (G -3-P TRANSPORTER) (G-3-P PERMEASE). >pir:pir|S37250|S37250 g lycerol-3-phosphate transport protein - Bacillus subtilis >q p:qp|Z26522|BSGLPTQ 1 B.subtilis glpT and glpQ genes for gly cerol 3-phosphate permease and glycerophosphoryl diester pho sphodiesterase. NID: g403371. >gp:gp[Z99105]BSUB0002 43 Baci llus subtilis complete genome (section 2 of 21): from 194651 to 415810. NID: g2632457. >gp:gp|AB006424|AB006424 44 Bacil lus subtilis genomic DNA, 70 kb region between 17 and 23 deg 10 ree. NID: q3599592. atqtttaatttcttaaaaccaqctaqacatatcaaatcattgccatcagaaaaagtagat gatacqtataaaaqactacqctttcaaqtctttttaggaatatttatcqqttatqctqqt tactatttattaagaaagaacttctctttagcaatgccttcattaattgagcaaggcttt 15 ag'.alaggggaattaggtattgcattatctgcagtatctatcgcatatggctttagcaaa tttgtaatgggcactgtcagcgatcgaagtaatgctcggatgttcttaactttaggttta gtattgacagcaattattaacttattattaggatttattccattcttacttcaagcata actattatqtttatcatqctqtttttaqttqqatqqttccaaqqaatqqqctqqccacca tctqqacqtqtqttaqttcattqqtttaqtqtcaqcqaacqtqqaaqcaaaacqtcaata 20 tggaatgtagcacataatgtaggcggaggtttaatggcacctattgctacgtag

Sequence 2532

25

MFNFLKPARHIKSLPSEKVDDTYKRLRFQVFLGIFIGYAGYYLLRKNFSLAMPSLIEQGF SKGELGIALSAVSIAYGFSKFVMGTVSDRSNARMFLTLGLVLTAIINLLLGFIPFFTSSI TIMFIMLFLVGWFOGMGWPPSGRVLVHWFSVSERGSKTSIWNVAHNVGGGLMAPIAT*

Sequence 2533 Contig_0769_pos_1843_2658, is similar to (with p-value 2.0e-72)

- 30 >sp:sp|P37948|GLPT_BACSU GLYCEROL-3-PHOSPHATE TRANSPORTER (G
 -3-P TRANSPORTER) (G-3-P PERMEASE). >pir:pir|S37250|S37250 g
 lycerol-3-phosphate transport protein Bacillus subtilis >g
 p:gp|Z26522|BSGLPTQ_1 B.subtilis glpT and glpQ genes for gly
 cerol 3-phosphate permease and glycerophosphoryl diester pho
 35 sphodiesterase. NID: g403371. >gp:gp|Z99105|BSUB0002_43 Bacillus subtilis complete genome (section 2 of 21): from 194651
 to 415810. NID: g2632457. >gp:gp|AB006424|AB006424_44 Bacillus subtilis genomic DNA, 70 kb region between 17 and 23 deg
 ree. NID: g3599592.
- 55 Sequence 2534
 MTALYNFGYLKGFEGVFIYPALLVIIIAILSYILIRDTPQSQGLPPIEQYKNDYATSTKQ
 TIETELTTKEILFKYVLNNKWVWAIAFTNIFVYFVRYGVLDWAPTYLSEEKHFDLSASGW
 AYFLYEWAGIPGTLLCGYLSDKLFKGRRGPAGFFFMLGVTIFILIYWLNPPGHAWLDNLS
 LIGIGFLIYGPVMLIGLQALDYVPKKAAGTAAGLTGLFGYLFGAVMANIVLGFVVQHFGW

HIGFVLLTVISILAMLCFILTWNKRGOEOID*

Sequence 2535 Contig 0769 pos 4799 5716, putative peptide of unknown function atggttatttcaaagaaattagcatttatcactataggtatcttaatatgtattcttta agttcacctctqatcqatcaacagatttcaaattatttcatgaatcaagattcaautttc qtaattttaaattattattttaactacatttcaaaataaattaqcaaaaacqttaact 10 ttqattttatcttttatctttacqttqataaaaaccaatqaattcqtqtcaqaaaccqct caatatatgttatctacatcagaaaacatcaaaaatcataagccaatgggtatggcaaat aatgaaggaaacgctggaaatgctttatctttaggaatgagtttttttatttctttgatt atcattataattatcactattatttqttatcaqttttqqttaaaacatacaaataaccaa 15 qaactcqttqataqcttqaaacatttatqqqqacqttttaqaccatatqaaatcactqac aaagetqqacatttcactcactggcttacaataaatggaaacactggacatagttccttc ccttcaggacacactggaaatggtgcatttctaatgtttatcgcattttactttaaaaaa ttacqcactcaaaaaataqtqtttaqtatcqqattatqttataqtattttaatqqcattq 20 ttttcactcatqqttattqcaqattttatcattaatcaaqtcatatctatacataaaaac

Sequence 2536

aagctaagtaaagtctag

MVISKKLAFITIGILICILLSSPLIDQQISNYFMNQDSIFGTLFQNYGLFPPTLILIIST
VILNYYILTTFQNKLAKTLTLILSFIFTLIKTNEFVSETAQYMLSTSENIKNHKPMGMAN
NEGNAGNALSLGMSFFISLIIIIITIICYQFWLKHTNNQELDHLFKVSLISFMILEIGL
ELVDSLKHLWGRFRPYEITDKAGHFTHWLTINGNTGHSSFPSGHTGNGAFLMFIAEYFKK
LRTQKIVFSIGLCYSILMALSRIRIGAHFTSDVTMSLLIMFSLMVIADFIINQVISIHKN
KLSKV*

30

Sequence 2537 Contig_0769_pos_7866_7003, putative peptide of unknown function

atqccqttaatcttagqtatcqaaaaaqqttqqtttaaaqaaqaatcattaqaaattqaq 35 atgattgaaccaaaggaacactttgacqcactagacgagattgaaaatggttcaatggat atcgcgattactgaacctattcatctggttcaagatagagctaaagaacaaaaagtcatc gggtttgcgagatatcttcacactaatggaggtattatgtataacaaagataaaaatatc gctcgccccaaaqatttaatcqqtaaacqqcttcaatatcccqqtqctcccqqtccaqqt qqtattqctatggctaaaacgatgattgaagctgatggtggtacatttgaagaaggtgac 40 atcacaccagttaatcatagtttttatcatactgatgcacttttaactgataaagctgat gctgctacactcattttcgaaaatttttgaaattcttgaaqctagaaatcaaqgacttaat gtagattattttccacttaaaaattataatgtacccgatttttgtcaactcattttcatt acaacacctgaagtattaaatacgagtgaggttaaactcaaaaagttcctaaaaatcatt caaaaaacaattcattacatcaatcatttagaaagtgcaattgaaatttactcaacg 45 tatactcaaaccgatatctctaaccaattaaacaaagatacaattgaagcaacagctaaa tgttttacaaatgatttgtctatgagttccgactactacaatgatttacagttgtggctt

aaagaagtcaatgatattaaagacacgattaacccaactttatattttacaaatcaacta ctattcagtcgatatacaaaataa50 Sequence 2538

MPLILGIEKGWFKEESLEIEMIEPKEHFDALDEIENGSMDIAITEPIHLVQDRAKEQKVI GFARYLHTNGGIMYNKDKNIARPKDLIGKRLQYPGAPGPGGIAMAKTMIEADGGTFEEGD ITPVNHSFYHTDALLTDKADAATLIFENFEILEARNQGLNVDYFPLKNYNVPDFCQLIFI TTPEVLNTSEVKLKKFLKIIQKTIHYINHHLESAIEIYSTYTQTDISNQLNKDTIEATAK CFTNDLSMSSDYYNDLQLWLKEVNDIKDTINPTLYFTNQLLFSRYTK*

Sequence 2539
Contig_0769_pos_6570_6241,
putative peptide of unknown function

PCT/US00/30782 WO 01/34809

atggqtttqaagagaaattggaggttgagaaagatqtatgtagagagaaagcctgcactt tatatcqaaqatttacqaqacqaattcaaaaataqcttaaaacattttaaaqatqatqat qaaqcatttaatacattaqttqqatttqtqqaactqqaccacctatattcttcaqcactt aaaqaaataaqtacaaaattaaqtattttaqatqataactttaactatcaatataaacac aatccaattcatcatatqqaacqaqqaqaaqaqatqcacaqtttaqttaaaaaqttq aatcqtaaaqqatttqaaqtaaqtqcataa

Sequence 2540

MGLKRNWRLRKMYVERKPALYIEDLRDEFKNSLKHFKDDDEAFNTLVGFVELDHLYSSAL 10 KEISTKLSILDDNFNYQYKHNPIHHMERRVKEMHSLVKKLNRKGFEVSA*

Sequence 2541

Contig 0769 pos 4499 3618,

putative peptide of unknown function

qqcqtqqtaqatqaaattaaaqcqtqqatttcaaaaaaataa

- 15 atqtatatqattaaqcaaaattttacaactaaaqtttatccacttaaacaatttqaqqqa catqqtqcacttttaacatataaaattatqacqatqttcqaaccttacttcaqaqaitac aaattaat. atttattaattgtccaagtcgtggtagaagttcagatttagatcgtgacacacatacattagatgattacgctgcacgtatatatgatgtattaacgcaaattgttaaggag 20 caacaaataaaagaactgagtattgtcggttattcaatgggaggaatgattgcgacacgg ttacttaaqtataatacattaccagtctctcatcttatttatttacatagcgcagcgaaa attactccagatgcaaqtatqttagcacqattattcactagtgagagtaagagagcagtg ttaaaagatgaaattaaggcagtgaaaaatcttcctcaatatatactagataaaacgatt tatqcacaaaqqaaaacqcacttqatttqqtacaatttattqcacctattaaaactata 25 attacqqatatqatttacacqattaatacaqattatttaccaqatatcqatqaqattaaa ca atttccga aaatattatttat gtctggaaaa gaa gatca aattattccttatacggat $\verb|tctcaagctacqttagaaaagtttaaggcqttaggtggagaaactaaagaagttatttat|$ ccaqqaattqqtcatatcqatttcccaaqtqttttaqaaacccaatcqqatqqacaaact
- 30

35

Sequence 2542

MYMIKQNFTTKVYPLKQFEGEYSEVAYAGDSQADDVIVFIHGALLTYKIMTMFEPYFRDY KLIFINCPSRGRSSDLDRDTHTLDDYAARIYDVLTQIVKEQQIKELSIVGYSMGGMIATR LLKYNTLPVSHLIYLHSAAKITPDASMLARLFTSESKRAVLKDEIKAVKNLPQYILDKTI YAQKENALDLVQFIAPIKTIITDMIYTINTDYLPDIDEIKQFPKILFMSGKEDQIIPYTD SQATLEKFKALGGETKEVIYPGIGHIDFPSVLETQSDGQTGVVDEIKAWISKK*

Sequence 2543

Contig 0769 pos 3394 2816,

- 40 putative peptide of unknown function gtggagaaacttgaactgattttactacttaaggaaataggttgcacaattaaagaaatt aagcatgaaatacaacagtcaataacagataaagaaaacaaggtatgtaaaatagagcaa attcaacqctatqttcatcaaaattcaatttctccaattcattatttacaaqatataqct atttatatggaagaatctcatagactcaaaggtgtcagaaaqaaattatggttaagtata qctctqattqqttcattacaatatqqtqqtttqatcacctcaattqtaactcaaaqqaaa aaqcctttcttqtcqatqatqcctqtqqtaqctatqtattcactttqqttaacqaaaaaq tataaaaagaatgtttcatatgtctgtcctaattgccaccatgtgtttaatcctagtgtc attcattttgtaacagcatcacatacacctaaaacaagaaagcttcaatgtcctgattgt
- 50 cacqaaatqcattactqtqtaqaaattqctaaqctatqa

Sequence 2544

VEKLELILLLKEIGCTIKEIKVLLKDDSSMKSLYTFLQIKKHEIQOSITDKENKVCKIEO IQRYVHQNSISPIHYLQDIAIYMEESHRLKGVRKKLWLSIALIGSLQYGGLITSIVTORK 55 KPFLSMMPVVAMYSLWLTKKYKKNVSYVCPNCHHVFNPSVIHFVTASHTPKTRKLQCPDC HEMHYCVEIAKL*

Sequence 2545 Contig_0769 pos 850 251,

is similar to (with p-value 1.0e-51)

>sp:sp|P10585|GNTR_BACSU GLUCONATE OPERON TRANSCRIPTIONAL RE

PRESSOR (P28 PROTEIN). >pir:pir|C26190|C26190 transcriptiona

1 repressor GntR - Bacillus subtilis >gp:gp|AB005554|AB00555

4_4 Bacillus subtilis genomic DNA, 36 kb region between gnt

and iol operons. NID: g2280496. >gp:gp|J02584|BACGNT_1 B.sub

tilis (gluconate operon) gntR, gntK and gntP genes encoding

gnt repressor, gluconate kinase and permease, and gntZ gene.

N*D: g143013. >gp:gp|Z99124|BSUB0021_110 Bacillus subtilis

complete genome (section 21 of 21): from 3999281 to 421-814.

10 complere genome (section 21 of 21): from 3999281 to 421-814. NID: g2636442. gtgagtggtgagattgaatcccatatacaactaagtgaaaatcaagttgcacaacaattt

aatgttagtcgttcaccagtcagagatgcatttaagttacttcaaacagatcaactgatt caattagaacgtatgggcgctcaggtacttccttttggtgatcaagagaaaaaggaaatg tatgatttgcgtttgatgctcgaatcattcgccttttcaaaattaagtggaacagataca

- 15 tatgatttgcgtttgatgctcgaatcattcgccttttcaaaattaagtggaacagataca caacatattattaaggaaatgaaaaagcaattagaaatgatgaaggttgcagtccaattt gaggatgctgaagcatttacacaacatgattttgagtttcatgaggtgatgattcaagca acaaaccatcagtatcttaaagtgttttggaatcaccttaaacctgttatggaatcactc atactcatttcaatgagacaaagaatggcaaatgaccccaaagatttcgagagaattcat 20 aaaaatcatcaagtttttatagatgctgttgagaacgatgatgcctccatattgagaaaa
- 20 aaaaatcatcaagtttttatagatgctgttgagaacgatgatgcctccatattgagaaaa gcattccatttaaattttgatgatgtaggagaaaatattgaagcattctggttacgttaa

Sequence 2546

- 25 VSGEIESHIQLSENQVAQQFNVSRSPVRDAFKLLQTDQLIQLERMGAQVLPFGDQEKKEM YDLRLMLESFAFSKLSGTDTQHIIKEMKKQLEMMKVAVQFEDAEAFTQHDFEFHEVMIQA TNHQYLKVFWNHLKPVMESLILISMRQRMANDPKDFERIHKNHQVFIDAVENDDASILRK AFHLNFDDVGENIEAFWLR*
- 30 Sequence 2547
 Contig_0770_pos_3341_3688,
 is similar to (with p-value 3.0e-41)
 >sp:sp|P37527|YAAD_BACSU 31.6 KD GUANYLYLATED PROTEIN IN DAC
 A-SERS INTERGENIC REGION. >gp:gp|D26185|BAC180K_75 B. subtil

 35 is DNA, 180 kilobase region of replication origin. NID: g467
 326. >gp:gp|Z99104|BSUB0001_11 Bacillus subtilis complete ge
 nome (section 1 of 21): from 1 to 213080. NID: g2632267.
 atgtctaaaatagtaggatcagatcgagttaaaagaggaatggctgaaatgcaaaaaggc
 ggtgtcattatggacgtcgttaatgcagaacaagctaaaattgctgaagaagccggagct
 40 gttgccgtaatggcattagagcgtgtaccatcagatattcgtgctgctgctggcggtgttaga
 cgtatggcgaatcctaaaatagttgaagaagttatgaatgccgtatcaattccggttatg
 gctaaagccagaattggtcatattacagaagctagagttttagaatcgatgggtacacgg
 tttcaagaacccaacatactacaaacgaatttcaaaaggcgagagtaa
- 45 Sequence 2548
 MSKIVGSDRVKRGMAEMQKGGVIMDVVNAEQAKIAEEAGAVAVMALERVPSDIRAAGGVA
 RMANPKIVEEVMNAVSIPVMAKARIGHITEARVLESMGTRFQEPNILQTNFKRRE*

Sequence 2549

q3150045.

- 50 Contig_0770_pos_5637_5939,
 is similar to (with p-value 3.0e-42)
 >gp:gp|AF016634|AF016634_1 Lactococcus lactis cremoris ClpB
 chaperone homolog (clpB) and phosphoribosylformylglycinamide
 cyclo-ligase (pur5) genes, complete cds; and phosphoribosyl
 55 glycinamide formyltransferase (pur3) gene, partial cds. NID:
 - atgattcgaccttcagattcttttacttctttcaatactgcttttaaacgttcttcaaat tcacctctatattttgcacctgcaactaaggcacttaaatcaagctcgaaaatcgtttta tcgagtaatgattctggaacgtctttacgtacaattcgttgtgctaaaccttcaacaatt

gcagcttttacctacacctggttcaccgattaaaaccggattatttttttgtttttcgactt aatatacgaattgtattacgtatttcttcatctctaccgatgacagggtccattttacct tqa

5 Sequence 2550 MIRPSDSFTSFNTAFKRSSNSPLYFAPATKALKSSSKIVLSSNDSGTSLRTIRCAKPSTI AVLPTPGSPIKTGLFFVFRLNIRIVLRISSSLPMTGSILP*

Sequence 2551

20

10 Contig_0770_pos_4797_3853,
 is similar to (with p-value 0.0e+00)
 >gp:gp|AF016634|AF016634_1 Lactococcus lactis cremoris ClpB
 chaperone homolog (clpB) and phosphoribosylformylglycinamide
 cyclo-ligase (pur5) genes, complete cds; and phosphoribosyl
15 glycinamide formyltransferase (pur3) gene, partial cds. NID:
 q3150045.

gtggaaacagaaagagaaaagctattaagtttaagtgacatcttacacaaacgtgtagta ggtcaagataaagcagttgatttagtatcagacgcagtagttagagcacgtgctggaatt aaagatccgaatagaccaatcggaagtttcttattcttaggacctactggagtaggtaaa actgaattagcaaaatcgcttgcttcatcacttttcgattctgaaaaacatatgattaga attgåtatgagcgaatatatggaaaaacatgctgtatcacgtttaattggtgcacctcca ggttatgtaggtcacgatgaaggtggtcaattaactgaagcagttagacgtaatccatac tcagttattttgttagacgaagttgaaaaagcacatagcgatgtttttaatgtattactt caaatactagatgaaggtcgtcttacggattctaaaggtagaagttgaactttaaaat

25 accattatcatgactagtaatattggttcacaagtattacttgaaaatgtaaaagat gctggtgaaattagtgatgatacagagaaagcagttatggacagtctacatgcatacttc aaacctgaaatattaaatcgtatggatgacatcgtgttatttaaaccattatcagttaat gatatgagtatgatgatagataaaattttaacacaattaaatatgagattattagatcaa catatctcaattgaagtgacagaagaagcgaaaaaatggctaggtgaagaagcgtatgaa ccacaatttggtgcaagaccattaaaacgctttgttcaacgacaaatagaaactccaatt

30 ccacaatttggtgcaagaccattaaaacgctttgttcaacgacaaatagaaactccaatt gcacgtatgatgattaaagaaagtctacctgaaggtacaataattaaagtagatttaaat gacaataaagaacttgattttaaggttgttaaacctacgtcttaa

Sequence 2552

35 VETEREKLLSLSDILHKRVVGQDKAVDLVSDAVVRARAGIKDPNRPIGSFLFLGPTGVGK
TELAKSLASSLFDSEKHMIRIDMSEYMEKHAVSRLIGAPPGYVGHDEGGQLTEAVRRNPY
SVILLDEVEKAHSDVFNVLLQILDEGRLTDSKGRSVDFKNTIIIMTSNIGSQVLLENVKD
AGEISDDTEKAVMDSLHAYFKPEILNRMDDIVLFKPLSVNDMSMIVDKILTQLNMRLLDQ
HISIEVTEEAKKWLGEEAYEPQFGARPLKRFVQRQIETPIARMMIKESLPEGTIIKVDLN
40 DNKELDFKVVKPTS*

Sequence 2553 Contig_0770_pos_1762_383,

is similar to (with p-value 0.0e+00)

gcatacgtttctgttgttgaaggtggtattgaagaaacccaaacgttattaagtctacca

Sequence 2554

10

15

20

25

MTIIRDKFNNSKAFFNTHKTKNLKFRKQQLKLLSKNIKNHENELLDALYKDLGKSKVEAY
ATEIGMLLKSIKLMRKELKNWSKTKQTDTPLYLFPTKSYIKKEPYGTVLIIGPFNYPVQL
VFEPLIGAIAAGNTAIVKPSELTPHVAIVIKDIIEDTFDEAYVSVVEGGIEETQTLLSLP
FDYMFFTGSEKVGKIVYEAAARKLIPVTLELGGKSPVIVDDTANIKVASERISFGKFTNA
GQTCVAPDYILVQRKVKNDLIKALKKTITEFYGENIEKSPDFGRIVNQKHFNRLNDLIQI
HKDNVVFGGNSSKEDLYIEPTLLDNITNDNKIMKEEIFGPILPIITYDNFDEVLEIIQSK
SKPLSLYLFSEDENMTHRVVEELSFGGGAINDTLMHLANPNLPFGGVGSSGIGQYHGKYS
FDTFSHMKSYTFKSTRLESSLFFPPYKGKFKYIKTFFKN*

Sequence 2555 Contig_0771_pos_3650_4303, is similar to (with p-value 7.0e-69)

30 >gp:gp|AF008219|AF008219_3 Borrelia afzelii R-IP3 chromosome right end, arcA and arcB genes, complete cds. NID: g2697111

45 Sequence 2556

MKNLRNRSFLTLLDFSRQEVEFLLTLSEDLKRAKYIGTEKPMLKNKNIALLFEKDSTRTR CAFEVAAHDQGAHVTYLGPTGSQMGKKETAKDTARVLGGMYDGIEYRGFSQRTVETLAQY SGVPVWNGLTDEDHPTQVLADFLTAKEVLKKEYADINFTYVGDGRNNVANALMQGAAIMG MNFHLVCPKELNPTEELLNRCERIATENGGNILISLL*

50

tatgtactttttgccatcgtggcgattacacagttcaatttagagattaatgctaaattt
aaaccacaagattcgatagatttaaaaagcaaagaaaataaaaaacgatttactgctatg
atgctagtatgtgcaatgtttgcaatttgttggattgcatatattcaatgggaaacaacg
atagcttcattcacacaatcaattaatatttcaatgtctcaatatagtgtattatcgaca
attaatggaattatgattttagtagctcaacctttaataagaccaattattatcttatta
aaaggtaatttaaaacatcaaatgtttgtaggtattttaattttatagagttcttccta
gtgacgagttttgcaaatcactttgctatatttgtagttggcatggtcattttaacttt
ggagaaatgtttgtttggcctgcagtaccaactatagcaaatcaacttgcaccagttgga
aagcaagggcaataccaaggatttgttaattcagcatctacagtgggtaaagcatttgga
ccatttattgggggtatacttgtagatacatttaatatgagtatgatgtttattggatg
attatattattaagttttgcactgttatttttaagtttctatgataaagtgttacccaag
aattttaaaaaatcaacatcaatcaagaagacgacgaaatcagaatggtatttaa

Sequence 2558

10

15 MINSFGMVVGNLLGGFLFDKLGGYKTILIGTFTCLCSTTLLNLFHGWPWYAIWLVLLGFG
GGMIVPAIYAMAGAVWPNGGRQTFNAIYLAQNIGVALGAALGGFVAEFSFNYIFMANLIM
YVLFAIVAITQFNLEINAKFKPQDSIDLKSKENKKRFTAMMLVCAMFAICWIAYIQWETT
IASFTQSINISMSQYSVLWTINGIMILVAQPLIRPIIILLKGNLKHQMFVGILIFMSSFL
VTSFANHFAIFVVGMVILTFGEMFVWPAVPTIANQLAPVGKQGQYQGFVNSASTVGKAFG
20 PFIGGILVDTFNMSMMFIGMIILLSFALLFLSFYDKVLPKNFKNQHQSRRRRNQNGI*

Sequence 2559
Contig_0771_pos_2844_2416,
is similar to (with p-value 2.0e-50)

35 gagttttga

40

55

Sequence 2560

MEITNVNHICFSVSDLNTSIQFYKDILHGDLLVSDRTTAYLTIGHTWIALNLEKNIPRNE ISHSYTHVAFSIDEEDFQQWIQWLKENQVNILKGRPRDIKDKKSIYFTDLDGHKIELHTG TLKDRMEYYKCEKTHMQFYDEF*

Sequence 2561
Contig_0771_pos_1176_178,
is similar to (with p-value 0.0e+00)

tilis complete genome (section 16 of 21): from 2997771 to 32 13410. NID: g2635411. atgctaatttttaagaaaaaggagttaaagattatgacattaaacctagctcaacgtgtg

10

15

25

Sequence 2562
MLIFKKKELKIMTLNLAQRVLNQESLTKDEAISIFENAEIDTFDLLNEAYTVRKHYYGKK
VKLNMILNAKSGICAENCGYCGQSVKMKEKQRYALVEQDQIKEGAQVATENQIGTYCIVM
SGRGPSNREVDHICETVEDIKKIHPQLKICACLGLTKEEQAKKLKAAGVDRYNHNLNTSE
RYHDEVVTTHTYEDRVNTVEMMKDNNISPCSGVICGMGESNEDIIDMAFALRAIDADSIP
INFLHPIKGTKFGGLDLLSPMKCLRIIAMFRLINPTKEIRIAGGREVNLRSLQPLALKAA
NSIFVGDYLITGGQPNEEDYRMIEDLGFEIDS*

Sequence 2563

20 Contig_0774_pos_436_873, is similar to (with p-value 3.0e-34)

>sp:sp|P39149|UPP_BACSU URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9) (UMP PYROPHOSPHORYLASE) (UPRTASE). >pir:pir|S49364 |S49364 uracil phosphoribosyltransferase - Bacillus subtilis >gp:gp|Z38002|BSSPORUPP_10 B.subtilis spoII-R, glyC and upp genes. NID: g556877. >gp:gp|Z99122|BSUB0019_186 Bacillus subtilis complete genome (section 19 of 21): from 3597091 to 3 809700. NID: g2636029.

Sequence 2564

MLKVFNTESSISLCWAVTTTTGSRSESFSNVLINGAIFIASGLVPNMVITFFIKNIYLRI
40 YYLVPNNLSPASPKPGVIYALSFNFSSNAAIYISTSGCASCIFSTPSGAAIKHIKRILLA
PRFFNEEIASIAEAPVASIGSTTII*

Sequence 2565

Contig 0774 pos 2423 3718,

is similar to (with p-value 9.0e-29)
>pir:pir|S57509|S57509 integral membrane protein - Streptomy
ces pristinaespiralis >gp:gp|X84072|SPDNAPTR_1 S.pristinaesp
iralis ptr gene. NID: g872305.

gtgccattacaatcatcatacaatagtgatattggtactattaatatagcagttagctta
tcggcactattttctggtctgtttattgtaggtgcaggagatattgcagataaaattggt
agagtaaaagtgacgtacataggcttagcacttaatattgttgggtcgattttaatcatt
attacgccattaccaagtctattgattattggacgtgctattcaaggattgtcagcggca
tgtataatgccagcgacactcgcaatcattaatgaatattatatcgggacagcacgacaa
cgtgcattaagctactggtccatcggttcatggggaggtagtggtgtttgtactttgttt
ggtggtttaatggcaactaaccttggatggcgctcaatctttattgtttcaattatctg
acaatattatccatgtttctcattaaacatacacccgaaacaaagcagagcctatagga
gatcaaccgacagagacaaagaaatttgatgttgttgtttaatcatcttagtggttagt
atgttaagtattaatgtgataataactcaaacctctcaatttggtttgttctcaccattt
attttggqacttattgcaatttttgttatatcgttaattattcgtgatttacgaaaat

Sequence 2566

VPLQSSYNSDIGTINIAVSLSALFSGLFIVGAGDIADKIGRVKVTYIGLALNIVGSILII
15 ITPLPSLLIIGRAIQGLSAACIMPATLAIINEYYIGTARQRALSYWSIGSWGGSGVCTLF
GGLMATNLGWRSIFIVSIILTILSMFLIKHTPETKAEPIGDQPTETKKFDVVGLIILVVS
MLSINVIITQTSQFGLFSPFILGLIAIFVISLIIFVIYENKIKQPLVDFDIFKNKGYTGA
TISNFMLNGVAGGTLIVVNTFYQQKLDFNSQETGYISLTYLIAVLIMIRVGEMILQSLGP
KRPLLLGSALTVIGLILLSLTFLPNAWYIASSVIGYLLFGTGLGVYATPSTDTAVAQAPD
20 DKVGVASGVYKMASSLGNAFGVAISSTVYSVLAAQLNLTLGGFTGVMFNALIALLAFLSI
LFLIPKKQSNV*

Sequence 2567

Contig 0774 pos 4133 5074, 25 putative peptide of unknown function atggaatatatgaaaatagcaattgcaggttctggcgcattaggtagtggatttggtgct a agttgttt caa catggtt at gacgtcacttt a attgata attgggaacctca agttactacaatacaacaggacggtctacatatcgatattaatggtgaagcgcatcatttcaggcta cctatgtatagactaacggaaattcctaaagcaacgtcctatgatattgtttttctattt 30 cctaaatctatqcaattaqaaqaqqtqcttaqtcatattcaaccccatcttcatqataat acaattqttqtqtqcactatqaatqqtttqaaacatqaacqtcttatacaacaatatqtttctataqataqaattqtacqtqqaqtaacaacqtqqactqccqqtattqatcaacctggt cacacqcacttaatqqqqcaaqqtcctqttqaaattqqqtgtctcqtqcccqagggaaaa qaaaqcqtaqatatcattqttaatctqctacaaaatqcaqaattaaaaqqtqtaaaaaaqt 35 gaacatttacatcaatcaatttggaagaaaatatgtgttaatggaacagctaattcatta tgtactatacttgaatgtaatttggcagcactgaataatagtgatgacgctaaaaatttg atataaaaattacacaaqaaattqttcatqttqcaacaqttqatqatqttcatcttaat qttqatqaqatttttqattacttaattqctttaaatgataaagtagqcccacactatcct tctatqtaccaaqacttaattaaaqataatcqaacaactqaaataqattatattaatqqa 40 qcaqttaqtaaattaqqqaaaqaqaatcatattqctacacctqtaaatqattttqtaaca aatcttgtacatgctaaagaaaatcaacgtggtgcacaatga

Sequence 2568

45

50

MEYMKIAIAGSGALGSGFGAKLFQHGYDVTLIDNWEPQVTTIQQDGLHIDINGEAHHFRL PMYRLTEIPKATSYDIVFLFPKSMQLEEVLSHIQPHLHDNTIVVCTMNGLKHERLIQQYV SIDRIVRGVTTWTAGIDQPGHTHLMGQGPVEIGCLVPEGKESVDIIVNLLQNAELKGVKS EHLHQSIWKKICVNGTANSLCTILECNLAALNNSDDAKNLIYKITQEIVHVATVDDVHLN VDEIFDYLIALNDKVGPHYPSMYQDLIKDNRTTEIDYINGAVSKLGKENHIATPVNDFVT NLVHAKENQRGAQ*

Sequence 2569

Contig_0774_pos_2605_2297,

putative peptide of unknown function

atgattaaaatcgacccaacaatattaagtgctaagcctatgtacgtcacttttactcta
ccaattttatctgcaatatctcctgcacctacaataaacagaccagaaaatagtgccgat
aagctaactgctatattaatagtaccaatatcactattgtatgatgattgtaatggcacg
actagatttacaagtgattgtgcaaataaccaaaatgtaataacccctaaaataatccct
aataataagcgattatctcccctaaacttttgtgatgtattcatctatcacttactcctt
cacaattaa

Sequence 2570 MIKIDPTILSAKPMYVTFTLPILSAISPAPTINRPENSADKLTAILIVPISLLYDDCNGT TRFTSDCANNQNVITPKIIPNNKRLSPLNFCDVFIYHLLHN*

15

20

Sequence 2571 Contig_0774_pos_0_597,

is similar to (with p-value 3.0e-65)

>gp:gp|U81973|SAU81973_16 Staphylococcus aureus capsule gene 10 cluster Cap5A through Cap5P genes, complete cds. NID: g1773 339.

Sequence 2572

MKKVMTIFGTRPEAIKMAPLIKTLEKDSDLEPVVVVTAQHREMLDSVLNTFNISADYDLN

25 IMKAGQTLSEVTSEAMKKLEDIIQKEVPDMVLVHGDTVTTFSGALAAFYSQTPIGHVEAG
LRSYNKYSPYPEEINRQMVGVMADLHFAPTYNAAQNLVKEGKLAKHIAITGNTAIDAMNY
TIDHQYSSSIIQKHKNKNT

Sequence 2573

30 Contig_0775_pos_5156_0, putative peptide of unknown function gtgtttatagctgctgaacatcaaacgtcagttgatgagttagagtatatttatgttcca

- aatectaatgetgaagegeategteacgetagegattggagtgaagttegteeagaatgg
 ggtetageacgaaatgetgaatteattattgggaaacgteaaateaceeaaaatagtaat
 etagagggaegggeatttetteataattatgattggacaaaggatgaagacggtgagatt
 ttaaatacaattattetgggeeageactagtageacaatggattaatttacaattactae
 geeteaacegtggeaceteactattatggaageggtagtaaaacaacgcaaactgtaaca
- 40 agtggtgtaggtgtcatgcaaggaaatgctagtgatttaatgtatggcttaccatggcag tcagtaatgatgaatgacaaagaggcgtatcacgcacctattaggcttttaattgttatt caagcgccagatgcatatattcaacgtttgttaaaacatcataatcactttagacaaaag gttgatcatcaatggataagacttgccagtattgatgaaaataatagttggaaagactgg ta

45

50

Sequence 2574

VFIAAEHQTSVDELEYIYVPPLTTEAQNAFDELKHVMPKVCYKANLERLASLPNINNTDH NPNAEAHRHASDWSEVRPEWGLARNAEFIIGKRQITQNSNLEGRAFLHNYDWTKDEDGEI LNTIISGPALVAQWINLQYYASTVAPHYYGSGSKTTQTVTSGVGVMQGNASDLMYGLPWQ SVMMNDKEAYHAPIRLLIVIQAPDAYIQRLLKHHNHFRQKVDHQWIRLASIDENNSWKDW X

Sequence 2575

Contig 0775 pos 3674 2475,

is similar to (with p-value 2.0e-92)

>sp:sp|P44953|DFP_HAEIN_DNA/PANTOTHENATE_METABOLISM_FLAVOPRO TEIN_HOMOLOG. >pir:pir|G64104|G64104 pantothenate_metabolism flavoprotein (dfp) homolog - Haemophilus influenzae (scrain Rd_KW20) >gp:gp|U32776|U32776 9 Haemophilus influenzae Rd_s

ection 91 of 163 of the complete genome. NID: g1573969. atqaaacatattttattaqctqttacaqqcqqtatcqcaqcatataaaqcaattqattta acaagtaaattaatacaatccggctatgatgtaagagttatgctatctgatcatgctcaa gagtttgttactccgctagcttttcaagcaatcagtagaaatcctgtttacacaaataca tttaaaqaaqaaaatcctqaaqaqattcaacatqtatcattagqaqactqqqcaqatqcq attatagtcgcgccagcaactgctaatactatcgcaaaattaagtgttggaattgctgat gatttaattacttctacattacttqctacaacaacaccaaaattcqttqcacccqcaatq aatqtaaatatqtataacaatccacqtactaaacataatatqaaaqtqctaaqtcaaqac qqatattattttattqaacctqqtaqtqqctatttaqcatqtqqttatqtaqcaaaaqqq 10 cgaatggaagaacccatgcaaatcctatctgttattaataaattttttactcaacagaag aatqttqtcaaaaqctctttttctqqaaaqcqcqcattaqttacaqctqqqcctacaqtt gaagttattgatcctgttcgatacgtatcaaatcgttcatcaggaaaaatgggatatgct $\verb|atagctgaagcattacgagataagggagcaatcgtaactttaattagtgqtcccacccac|$ ttatctctacctgaagggattaatgtagtaaaagttgagagtgcagatgatatgtttcaa15 gctgtaaccgaacgctttgcgaaacaagatatagtgattaaagcagcggcggtgtctgat tatacaccaatggacatacttgaacataaattaaaaaaacaagaaggaggattatctgtt caatttaaqcqtacaaaqqatattttaaaatacttaqqaqaaaataaaacqcaccaatat cttqttqqttttqctqctqaaacacaaaatattqaacaqtatqctctaqacaaactcaaa agaaaaaatqcaqatqttatcatttcqaacaatqtaqqtqatacatccataqqctttaqt 20 qqaaaaaaatcaqctttaqcacatcaaattataqaaattttaqaaactaqqtqqcaqtaa

Sequence 2576

25 MKHILLAVTGGIAAYKAIDLTSKLIQSGYDVRVMLSDHAQEFVTPLAFQAISRNPVYTNT
FKEENPEEIQHVSLGDWADAIIVAPATANTIAKLSVGIADDLITSTLLATTTPKFVAPAM
NVNMYNNPRTKHNMKVLSQDGYYFIEPGSGYLACGYVAKGRMEEPMQILSVINKFFTQQK
NVVKSSFSGKRALVTAGPTVEVIDPVRYVSNRSSGKMGYAIAEALRDKGAIVTLISGPTH
LSLPEGLEVVKVESADDMFQAVTERFAKQDIVIKAAAVSDYTPMDILEHKLKKQEGGLSV
QFKRTKDILKYLGENKTHQYLVGFAAETQNIEQYALDKLKRKNADVIISNNVGDTSIGFS
SDDNELTMHFKNNEKVNIKKGKKSALAHOIIEILETRWO*

Sequence 2577 Contig 0775 pos 2367 67,

- is similar to (with p-value 0.0e+00)
 >sp:sp|P94461|PRIA_BACSU_PRIMOSOMAL_PROTEIN N' (REPLICATION
 FACTOR Y) (FRAGMENT). >gp:gp|Y10304|BSPRIADFS_1 B.subtilis p
 riA, def, fmt, sun genes. NID: g1772497.
- gtggtaccttttggccctagaactatacaaggatacgtcatgaatattcaacaaaaacca
 40 gatggaaatatggatatatcgaaactaaaagaaataaaagaagtacgtgatattaaacct
 gaattaacatccgaactgattcaattaagcgaatggatgagccattatcatgtgatgaaa
 cgtatttctgttttagaagcgatgttgccaagtgccattaaagcaaagtataagaaagct
 ttttcaattatcgatccaaaaaatttatcttcaaaaaccaaagcgctatttaacaatgac
 ggttattacttatataaagaagttcagcaaaacaatgattagaagaaatgttgacttg
 45 ttaaatcaaggattgattgaagaggtcacgatactttctcaaaacacaaaaaagaaaact
- caaaaagctgttggcgtagttaatacgttgaatggtgatgaagtacttgcaaaactcgag aaatatacaaaacaatatgatttgtatgcatttttattagaagagtctcatcgaacagtg tttttaaaagaaatcaatgatatgggcttctctcactcgagtttagattctttaatcaaa aaaggctatattgaaaaatatatcgccgaggttttcagagatccatatgcaaatcgtata tttgaacaagaacaaaagaggatattaactaaagaacagcaagatgcatttgaagctatt
- titgaacaagaacaaaagaggatattaactaaagaacagcaagatgcatttgaagctatt caacattatattcatgatgaaaaagaaagaacatttttattacacggagtcacaggttca ggtaaaaccgaagtctatcttcaaacaatagaagaagttcttaataaaggtaaagaagcc atgatgttagtgccggaaatcgccttaacacctcagatggtactaagatttaaacgtcga tttggagatgatgtagcggtattacattccggactttcaaaaggtgaacgttatgatgag
- titggagatgatgtagtgggtattacattccggactttcaaaaggtgaacgttatgatgatg tggcaaaaaattagagacggtcgagctcgagtgagtgtaggtgctcgttcaagtattttc gcaccgtttaaaaatttaggcatcattataattgatgaagaacatgaatctacatataaa caagaagattatcccagatatcatgcacgtgatattgcacaatggagaagtcaatttcat cattgtcctgtagttttaggtagcgcaacaccgagtcttgagtcatatgcaagagcagaa aaaaatgtttacgagttgttgtcattqccacatagagtcaatcaacaaqcgttaccqcat

attgatan.tatagatatgagagaagaattaagtgaaggtaatcgttccatgtttctata gcactaagacaagcgatacaagaacggttggataaaaaagaacaaatagtactattctta aataqaaqqqqatatqcttcatttatgttatgtaqaqattgtgqttacgttccccaatgt ccccattqtqatatttcqttaacatatcataaaacaaccqatcaattaaaatqtcattac tqtqqttatcaaqaaaatccaccatctcaatgtccaaattgtgaaggtgatcatatcaga caaqtcqqaactqqaacqcaacqtqtagaaqaattattacaacaaqaattccctcatqct cqtattataaqqatqqtqttqatacaacttcaaqaaaaqqtqcacatqaqaaattqtta aatgactttgaagcaggaaaaggagatatcttattaggtacgcaaatgattgctaaaggt ttggattatcctaacattactctaqttggtgttcaatgctgacactatgttaaactta cctqactttcqtqccaqtqaacqaacataccaacttttaactcaggtatctqqacqcqca qqtcqtcatgaaaaagaaggacaagttatcatacaaacgtacaaccctgatcattattca ataaaqqatqtqaaattaaacqattatctttctttttatcaaaaaqaaatqaattatcqa aaattaqqaaaatatccaccttactattttttqattaactttaccatttcacatactqat ataaaaaaggtcatgatggcctctaagcatatacatcaaattttagtacagcacttaagt gaaaaagcattcgtgctaggcccttcaccagcagcactagcaagaattaacaatgagtat cqttttcaaatactaqtaaaatataaqaqtqaqcctcaattacatcaaqcqttacaatat ttagatgattataatcatgatcaatatgtaaaggataaactatcattaaaaattgatatc aatccacaaatgatgatgtga

20 Sequence 2578

10

15

VVPFGPRTIQGYVMNIQQKPDGNMDISKLKEIKEVRDIKPELTSELIQLSEWMSHYHVMK RISVLEAMLPSAIKAKYKKAFSIIDPKNLSSKTKALFNNDGYYLYKEVQQNNDLEEMLTL LNQGLIEEVTILSQNTKKKTQKAVGVVNTLNGDEVLAKLEKYTKQYDLYAFLLEESHRTV FLKEINDMGFSHSSLDSLIKKGYIEKYIAEVFRDPYANRIFEQEQKRILTKEQQDAFEAI

- 25 QHYIHDEKERTFLLHGVTGSGKTEVYLQTIEEVLNKGKEAMMLVPEIALTPQMVLRFKRR FGDDVAVLHSGLSKGERYDEWQKIRDGRARVSVGARSSIFAPFKNLGIIIIDEEHESTYK QEDYPRYHARDIAQWRSQFHHCPVVLGSATPSLESYARAEKNVYELLSLPHRVNQQALPH IDIIDMREELSEGNRSMFSIALRQAIQERLDKKEQIVLFLNRRGYASFMLCRDCGYVPQC PHCDISLTYHKTTDQLKCHYCGYQENPPSQCPNCEGDHIRQVGTGTQRVEELLQQEFPHA
- 30 RIIRMDVDTTSRKGAHEKLLNDFEAGKGDILLGTQMIAKGLDYPNITLVGVLNADTMLNL PDFRASERTYQLLTQVSGRAGRHEKEGQVIIQTYNPDHYSIKDVKLNDYLSFYQKEMNYR KLGKYPPYYFLINFTISHTDIKKVMMASKHIHQILVQHLSEKAFVLGPSPAALARINNEY RFQILVKYKSEPQLHQALQYLDDYNHDQYVKDKLSLKIDINPQMMM*

35 Sequence 2579

Contig_0776_pos_1350_2054,

is $\overline{\text{similar to (with p-value 2.0e-50)}}$

>sp:sp|P54163|YPDP_BACSU HYPOTHETICAL 25.7 KD PROTEIN IN BCS A-DEGR INTERGENIC REGION. >qp:qp|L77246|BACYACA 10 Bacillus

- 40 subtilis (YAC10-9 clone) DNA region between the serA and kdg loci. NID: gl256615. >gp:gp|Z99115|BSUB0012_140 Bacillus su btilis complete genome (section 12 of 21): from 2195541 to 2 409220. NID: g2634478.
- atgtataatgaaatatttggtattgcgtcatttattgttacattcgctttaatggtactg
 45 atgtatcgctgttttggtaaacaaggactaattgcttgggtagcaataggaacgattatc
 gctaatatacaggtcataaaagcggttcatattttttggtattacggctacacttggaaat
 gtcatgtttgcttctatatatttagctactgatatattaaatgacatctatggtcgtaaa
 gttgctaaaagagcggtgtggcttggtttctcttctaccttagtaatgattatagtcatg
 caaatgtcattgcattttattcctgccccagtagacaatgcgcaaaactcattaaaaatg

${\tt 55} \qquad {\tt ctatatcgaaaaggaaagatagaacaactagataatgggtattga}$

Sequence 2580

MYNEIFGIASFIVTFALMVLMYRCFGKQGLIAWVAIGTIIANIQVIKAVHIFGITATLGN VMFASIYLATDILNDIYGRKVAKRAVWLGFSSTLVMIIVMQMSLHFIPAPVDNAQNSLKM

IFDLVPRIAIGSIIAYIIGQHIDVFIFSMIKKIFSSDKTFFIRAYGSTILSSIIDTGLFV
SIAFIGTMPGTAVFEIFITTYLLKLVSTIFNVPFGYIAKSLYRKGKIEQLDNGY*

Sequence 2581

5 Contig_0776_pos_2379_2771,

is similar to (with p-value 3.0e-19)

>sp:sp|P36921|EBSB_ENTFA CELL WALL ENZYME EBSB. >pir:pir|B49 939|B49939 ebsB protein - Enterococcus faecalis >gp:gp|L2380 2|ENEEBSA_2 Enterococcus faecalis pore forming, cell wall en zyme, regulatory, and dehydroquinase homologue proteins (ebs A,ebsB,ebsC,and ebsD) genes, complete cds with repeat region

zyme, regulatory, and dehydroquinase homologue proteins (ebs A,ebsB,ebsC,and ebsD) genes, complete cds with repeat region . NID: q388106.
atqqctaaaatacattttqatqctqcqactaaaqqaaatcccgqccqaaqtqcttqtqcq

20

Sequence 2582

MAKIHFDAATKGNPGRSACAIIIKENSQRYTFTHDLGEMDNHSAEWAAMLHALEHARELK VSNALLFTDSKLIEDSMMQGKVKNAKFKVYFENIEILEQSFDLMFVRWIPRKQNKEANQL AQOTLYKLTS*

25

45

Sequence 2583

Contig_0776_pos_5545_4955,

is similar to (with p-value 3.0e-22)

>gp:gp|AL034447|SC7A1_23 Streptomyces coelicolor cosmid 7A1.

30 NID: g4007715.

- 35 acttttatgctctcaagagcaccatttggatttaaaggcaatcatatacctgctttaatt ggctgggtaggtcaagttggttggttatctgttaatgtttctacaggaactttaactctt ctggctttattcaatacttttggttttaagactagtacatttctaattttgatgagtta gcgatttttgctgggctagttattatatctgttcttttttcacaaaaagtacttgtatca gtacaaacatttttcacatatgtatttggtgcattaaccttattagttataaccatttta
- $40 \qquad {\tt attactaatactgattggaacgcccttttttctatgaaatctgggtcttaa}$

Sequence 2584

VFVMEKEEIFLPESEKNGKPIDLFFIWFAANLGILGIVYGAVIVSYGLSFLQSILIAIIG PLSFVLVGYISVAGRDSGAITFMLSRAPFGFKGNHIPALIGWVGQVGWLSVNVSTGTLTL LALFNTFGFKTSTFLILMSLAIFAGLVIISVLFSOKVLVSVOTFFTYVFGALTLLVITIL

ITNTDWNALFSMKSGS*

Sequence 2585

Contig 0776 pos 4784 2949,

50 putative peptide of unknown function

gatatagattctaataacgaattaacgtctactcaacgtgaagatgcaaaagctgaaatt gaaagattgaaaaagcaagccatcgataaagtgactcattctaaatcgattaaagatatt gaaacagtaaaacgaactgattttgaagaaatagatcagtttgatcctaaacgctttacg ctaaataaaqctaaaaaggatatcattactgatgttaatactcaaaatccaaaatg.tttc aaaqaaattqaaacaataaaaggtttaacttctaatqaaaaactcagtttqataaacaa ttaactqcactacaaaaqaatttttaqaaaaaqtcqaqcatqctcataatttaqtaqaa ttaaatcaattacaacaagagtttaataataqatatqaacatattttaaaccaagcacat ttactaggtgaaaaacatatagcagaacataaattaggatatgttgtagtaaacaaaact cagcaaatactaaataatcaatctgcttcttactttataaaacaatgggcacttgataga 10 attaaacaaattcaactagaaacgatgaattcaattcgtggtgcgcataccgtacaagat qtacacaaaqcattqttacaaqqtataqaqcaaatcttqaaaqtaaatqtaaqtattata agattaagagaaaaggatgttgcaaaccatatcgtacaaactgaaacattcaaagaagtt ctaaaaqqaacqqqtgttqaaccaqqtaaaatcaacaaqaaacacaqcaaccaaaactt 15 cataagaatgataatgatagcctattcaaacatttagttgataatttcqqcaaaactgta ggtqttattacattaactggtttactttctagtttctggttagttttggctaaaaqacqt aaaaaagaaqaaqaaaaacaatcgataaaaaattatcacaaagacattcgtctttcagat actgataaaataqatccaattgtaataactaagcgtaaaataqataaaqaaqaacaaatt caaaacgatgacaaacattcaattccagttgctaaacataagaaatctaaagaaaagcaa 20 aaagatacaaaacagaagaaagttacttctaaaaaagaagaaaacqcctcaatcaactaaa aaagttgtaaaaaccaaaaagcgttctaaaaagtaa

Sequence 2586

VIKELSQKKRDAINNNTDLTPSQKAHALADIDKTEKDALQHIENSNSIDDINNNKEHAFN TLAHIIIWDTDQQPLVFELPELSLQNALVTSEVVVHRDETISLESIIGAMTLTDELKVNI VSLPNTDKVADHLTAKVKVILADGSFVTVNVPVKVVEKELQIAKKDAIKTIDVLVKQKIK DIDSNNELTSTQREDAKAEIERLKKQAIDKVTHSKSIKDIETVKRTDFEEIDQFDPKRFT LNKAKKDIITDVNTQIQNGFKEIETIKGLTSNEKTQFDKQLTALQKEFLEKVEHAHNLVE 30 LNQLQQEFNNRYEHILNQAHLLGEKHIAEHKLGYVVVNKTQQILNNQSASYFIKQWALDR IKQIQLETMNSIRGAHTVQDVHKALLQGIEQILKVNVSIINQSFNDSLHNFNYLHSKFDA RLREKDVANHIVQTETFKEVLKGTGVEPGKINKETQQPKLHKNDNDSLFKHLVDNFGKTV GVITLTGLLSSFWLVLAKRRKKEEEKQSIKNYHKDIRLSDTDKIDPIVITKRKIDKEEQI QNDDKHSIPVAKHKKSKEKQLSEGDIHSIPVVKRKQNSDNKDTKQKKVTSKKKKTPQSTK

Sequence 2587 Contig_0776_pos_587_147, is similar to (with p-value 9.0e-29)

- Sp:sp|P54170|YPHP_BACSU HYPOTHETICAL 15.9 KD PROTEIN IN ILV D-THYB INTERGENIC REGION. >gp:gp|L77246|BACYACA_21 Bacillus subtilis (YAC10-9 clone) DNA region between the serA and kdg loci. NID: g1256615. >gp:gp|Z99115|BSUB0012_128 Bacillus su btilis complete genome (section 12 of 21): from 2195541 to 2 409220. NID: g2634478.
- 55 Sequence 2588
 MMNGYEAYMKELAQQMRAELTDNGFTSLETSDDVNQYMQNIDNDDTTFVVINSTCGCAAG
 LARPAAVAVAEQNEVKPDHKVTVFAGQDKEATQTMRDYIQQVPSSPSYALFKGQHLVHFI
 PREHIEGRDINDIAMDLKDAFDDNCQ*

Sequence 2589
Contig_0777_pos_367_684,
putative peptide of unknown function
atgaggagaatatatatgaaaagattattaggtacattaattgctgctacactagtgtta
agtgcttgtagccaaaacgacactaaggaagatgaaaataaaaagtcagaaaatactact
gaaaagaaatctgacgataaaaaagacaaaaaactaatgaggataaaaagtctggagaa
caaaagaaatctcaagaaaaaaagaataacaagtcaatgcaagaatctgctacaaatgaa
caggttcaatctcaacaacaacattcacaaggtgtaccatcaaaatgctctttgccgatg
actgttttatcaatttga

10

40

45

50

Sequence 2590 MRRIYMKRLLGTLIAATLVLSACSQNDTKEDENKKSENTTEKKSDDKKDKKTNEDKKSGE QKKSQEKKNNKSMQESATNEQVQSQQOTSQGVPSKCSLPMTVLSI*

15 Sequence 2591
Contig_0777_pos_6354_6046,
putative peptide of unknown function
atgactgcattttaattcttaatttattgactatgaaagaggcttcaatatcgtctatt
attgtacgaactgtcattgcagctattgtttctttgtcatttatatcattgtatttaca
20 attttaagttcgtcagaacgtaaacttatttatggtacaactttgcctattgcgctttt
atatgccttatattcggagcaattttttcactccgcgtataggtatcattgccggacta
attataggtgtgtttgctggtgtcatatgggagttcttaaatagaaaaaatggaggtcgc
tcatcttga

25 Sequence 2592
MTAFLILNLLTMKEASISSIIVRTVIAAIVFFVIYIIVFTILSSSERKLIYGTTLPIALF
ICLIFGAIFFTPRIGIIAGLIIGVFAGVIWEFLNRKNGGRSS*

Sequence 2593

Contig_0777_pos_4678_1709,
 is similar to (with p-value 0.0e+00)

>sp:sp|P40815|T3RE_SALTY TYPE III RESTRICTION-MODIFICATION S
 YSTEM STYLTI ENZYME RES (EC 3.1.21.5). >pir:pir|JN0658|JN065
 8 restriction endonuclease (EC 3.1.-.-) - Salmonella typhimu

rium

atqaaaatattcttagaaqaactaattcaccaacaacaagcagttaaaaaaataatagat actttcacaqqaatcqaaaaqtatttaacttcaaaaaattgtgacaatqagttcqctaat aatttaataataaatagatattcagaagaagctaacatagatataaaaatqgagaccggg acaggtaaaacgtatgtttatactaaaatgatgtatgaattacataaaaaatttqqqatt tttaaatttatattagtagttccaagtcctgcaattaaagagggagcaaagaatttttaactagtttatcaactaaaagacatttccaagaaacatacqqaaatqttqaaataqaaata aatacaataaataaaggcgattttaatactagatcaggcagaaaaatttttccacctcat ttgagtaactttattgaaagcagtaatttaaatqctaatcaaattcaaqtattacttatt aatqcaqqtatqttaaattcatcaaatatqacaaaqqttqattacqaccaaactttatta agtaattactcaaaccctatagaagctttaaaagctaccaaatctgtagttataatagac gaaccccataggtttcctagggataagaagaactacaaatctatagaaaatcttgaacct caaatgattgttaggtttggtgctacttttcctqaagtaaaaaaqgaacaqqaaaaaaa gctgtatatattaaagattattatcgaggtaggcctcaatttgaattgaatgctgttgac agctttaatcagggacttgtaaagggaatagatatttactatccaaatttgactccagaa caagcgaaaaatagatataccattgataqtgtaaaagccaaagagatagttttgaaaaaa ggaaaaaataaatggacgctaggtataggcgagaatttagcaaatatagattcqttattt gaaggtgacttaagttattctggtgctaaaactttatctaatgacttagaaattagtaaa gctatcaatcaacattttgagcatgaaatcaataattttatgagagataacctaaaagaa

aattttcaaccaaaagtaaaacactatcattatttttattgattctattaggtcatat
agaacaaagagggctggttgaaacagacttttgaggagactcttaaaagttaaacttaga
aaattaataaaagaatttgaagttaaaaaattaccacgagagattgaatacttagattt
ttaagagtgacatatgatagtcttaatagtgagaatcaaatggtccatgcagggtatttt
ggtgaagacagaggttccggtgatgaagcaatacaggctgaagttaatgatatacttaaa

aataaagaaaaaatgctgagttttaaagacqagaatqqtaactggattacaagaagattt ttattttcaaaatggacattaagagaaggttgggataaccctaatgttttcgttattgcg aaattqaqaacttctqqttctqaaaataqcaaqatacaqqaaqtaqqaaqqtttqcqt ttacctqttqatqaqaatqqtcacaqattaacacaaqatqaatttccaaqtaqactttca gatgtagacgttaaattaagtgaagataaattaacagatgaaatgattaataaaatagtt gaacatagaaagcaagtggatcctcattataatgatgaagtgttattagaacaattagat qaacqaaatctaattaataggaaaaatqagtttaaaacagatgttgaaattgatggagtt aaaaaatcaggatttgaatggctgttagaattatatccagaagttaatgcatctaaatta aatgcagataaagtcagagatatgaaaaaaaaatccacccaatttaaaagtgaagttaaataaagagaattggaataaattgagattcttatgggaaaatttatctaaaagatatatgtta qatqatttatttqttaaacaacaaccaqaaaqaatacatcaatctttqqaaaaaqatqat qaaqqtaaacaaqttatcaaqqaatctatttcaqaatataattataqaaatqaatttatt 15 tatatqaactatqqtaaqtttttaaaacaaattqtacttaaaactaatqtaccaatatct ataatgcataaaaatttactttccqttttaaaagataaatataataqtgatqaacqattc $\verb|ttgagtgaattaagtttaaataataataataagagaatttaacaagcgttttgaagaaaaa||$ tatagtcaaagttatgaatataagaaattagatttttctgctactacaaccatttatgat tcagaaatatcagagtttaaagattgggtagatgcaaattatttaggtactaacgttgaa 20 aataacattcaaactgaaaaaagatttttatatgaaagaccaccagttagatatgatagt qtaacacctqaqttaqaqttqttaaaaaqaaattacqataaaaatqtaactqtatttqqt aatttqcctaaaaaqcqatacaaqttcctaaatatactqqtqqcactactacqcctqat tttqtctatatqataqaaactqatqaacaaqatqcaaaataccttattqttqaaacaaaa 25 acattagataatttgaatattaaatatcaattagctactagcgcgcaagatgtttataat gaaattaaaaaattagatgattcaaagtga

Sequence 2594

MKIFLEELIHQQQAVKKIIDTFTGIEKYLTSKNCDNEFANNLIINRYSEEANIDIKMETG 30 TGKTYVYTKMMYELHKKFGIFKFILVVPSPAIKEGAKNFLTSLSTKRHFQETYGNVEIEI NTINKGDFNTRSGRKIFPPHLSNFIESSNLNANQIQVLLINAGMLNSSNMTKVDYDQTLL SNYSNPIEALKATKSVVIIDEPHRFPRDKKNYKSIENLEPQMIVRFGATFPEVKKGTGKK AVYIKDYYRGRPQFELNAVDSFNQGLVKGIDIYYPNLTPEQAKNRYTIDSVKAKEIVLKK GKNKWTLGIGENLANIDSLFEGDLSYSGAKTLSNDLEISKGMDLLPGTFTTNYOELIIND AINOHFEHEINNFMRDNLKENFQPKVKTLSLFFIDSIRSYRNKEGWLKQTFERLLKVKLR 35 KLIKEFEVKKLPREIEYLDFLRVTYDSLNSENOMVHAGYFGEDRGSGDEAIOAEVNDILK NKEKMLSFKDENGNWITRRFLFSKWTLREGWDNPNVFVIAKLRTSGSENSKIOEVGRGLR LPVDENGHRLTQDEFPSRLSFLIGYDEKDFAEKLIGEINSDVDVKLSEDKLTDEMINKIV EHRKQVDPHYNDEVLLEQLDERNLINRKNEFKTDVEIDGVKKSGFEWLLELYPEVNASKL NADKVRDMKKNPPNLKVKLNKENWNKLRFLWENLSKRYMLEFKKMSEDDLYLFVERLLND DDLFVKQQPERIHQSLEKDDEGKQVIKESISEYNYRNEFIYMNYGKFLKOIVLKTNVPIS IMHKNLLSVLKDKYNSDERFLSELSLNNI I REFNKRFEEKYSOSYEYKKLDFSATTTI YD SEISEFKDWVDANYLGTNVENNIOTEKRFLYERPPVRYDSVTPELELLKRNYDKNVTVFG NLPKKAIQVPKYTGGTTTPDFVYMIETDEODAKYLIVETKAENMRLGDKSIGEIOKKFFN 45 TLDNLNIKYQLATSAQDVYNEIKKLDDSK*

Sequence 2595
Contig_0777_pos_1393_623,
is similar to (with p-value 0.0e+00)
>qp:qp|U92974|LLU92974 13 Lactococcu

>9p:gp!U92974|LLU92974_13 Lactococcus lactis unknown gene, p
artial cds, and HisC (hisC), unknown, HisG (hisG), unknown,
HisB (hisB), unknown, HisH (hish), HisA (hisA), HisF (hisF),
HisIE (hisIE), unknown, unknown, LeuA (leuA), LeuB (leuB),
LeuC (leuC), LeuD (leuD), unknown, IlvD (ilvD), IlvB (ilvB),
IlvN, IlvC (ilvC), IlvA (ilvA), AldB (aldB) and aldR (aldR)
genes, complete cds. NID: g2565137.

atggattatagagtactactttattataaatatgtaactatagatgaccctgaaactttt gcagccgaacatttgaaattttgtaaggaacatcatttaaaaggaagaatactagtttca acggaaggcattaatggaacattatctggaacaaaagaagatactgataaatatatagag

Sequence 2596

10

MDYRVLLYYKYVTIDDPETFAAEHLKFCKEHHLKGRILVSTEGINGTLSGTKEDTDKYIE HMHADSRFADLTFKIDEAESHAFKKMHVRPRREIVALDLEEDINPREITGKYYSPKEFKA ALEDENTVILDARNDYEYDLGHFRGAIRPDITRFRDLPEWVRNNKEQLDGKNIVTYCTGG IRCEKFSGWLVKEGFENVGQLHGGIATYGKDPETKGLYWDGKMYVFDERISVDVNQIDKT VIGKEHFDGTPCEVCC*

Sequence 2597

- 20 Contig_0778_pos_324_815,
 is similar to (with p-value 5.0e-52)
 >sp:sp|P38424|YSXC_BACSU_HYPOTHETICAL_GTP-BINDING_PROTEIN_IN
 LONA-HEMA_INTERGENIC_REGION_(ORFX). >pir:pir|S45102|S45102
 hypothetical_protein_X Bacillus_subtilis_>gp:gp|X76424|BSL
- ONLA_3 B.subtilis lon gene for protease La. NID: g496556. >g p:gp|Z99118|BSUB0015_84 Bacillus subtilis complete genome (s ection 15 of 21): from 2795131 to 3013540. NID: g2635200. >g p:gp|Z75208|BSZ75208_85 B.subtilis genomic sequence 89009bp. NID: g1769994.
- atgaatataaattttaataatattaacttaattataagtgctgtaaaaaaagcacagtat cctgacactggattaacagaagtagcgttaagtggacgctcaaatgtagggaaatctaca tttattaatagtatgattgggcgtaaaaatatggcgagaacgtcacaacaacctggtaag acacagacattgaatttctataatatagatgaacaacttatttttgttgatgtaccagga tatggatacgctaaagtaagtaagtcaacggaaaaatttggtaaaattggatagaaa
 - tatattacacaacgagagaatttaaaacttgttattcaacttgtcgatttaagacatcaa cctactgaagatgatgtgcttatgtacaattatcttaaacattttgatataccaacactt gtaatatgtactaaagaagataaaattgccaaaggaaaagtacgagggtccagagaggct ccgaagatatga
- 40 Sequence 2598 MNINFNNINLIISAVKKAQYPDTGLTEVALSGRSNVGKSTFINSMIGRKNMARTSQQPGK TQTLNFYNIDEQLIFVDVPGYGYAKVSKVQREKFGKMIEEYITQRENLKLVIQLVDLRHQ PTEDDVLMYNYLKHFDIPTLVICTKEDKIAKGKVRGSREAPKI*
- 45 Sequence 2599
 Contig_0778_pos_2037_3047,
 is similar to (with p-value 8.0e-80)
 >sp:sp|P41006|PYRP_BACCL URACIL PERMEASE (URACIL TRANSPORTER
). >pir:pir|S38893|S38893 uracil transport protein Bacillu
 50 s caldolyticus >gp:gp|X76083|BCPYRQP_2 B.caldolyticus (DSM40
 5) pyrR, pyrP and pyrB (partial) genes. NID: g431229.
 atgctggttgcattatttatgagtggattaatgtacgtgattataggtattttcattaaa
 ttgagtggaacacattggttaatgcacttgttaccaccagtagttgtcggaccagtaata
 atggtcattgggttaagtttagctcctacagcagtaaacatggccatgttcgaaaattct
 55 gctgaaatgaaagggtataacttaagttacttaattgttgctttgattacattagcagta
 accatcatcgtccaaggattcttcaaaggatttttatcactaatacctgtacttataggt
 attatagigggatatattgtatccattttcatgggcatagttaaatttgctccaat.agca

caagcgaaatggatagattttcctcatatttatctaccatttaaagattacacaccatct tttcatttaggactcattctcgtgatgatacccgtgqtgtttgtgacgqtaaqtgaacat

10

15

Sequence 2600
MLVALFMSGLMYVIIGIFIKLSGTHWLMHLLPPVVVGPVIMVIGLSLAPTAVNMAMFENS
AEMKGYNLSYLIVALITLAVTIIVQGFFKGFLSLIPVLIGIIVGYIVSIFMGIVKFAPIA
QAKWIDFPHIYLPFKDYTPSFHLGLILVMIPVVFVTVSEHIGHQMVINKIVGRNFFENPG
LDKSIIGDGVSTMFASMIGGPPSTTYGENIGVLAITKIYSIYVIGGAAVIAIILAFIGKF

TALISSIPTPVMGGVSILLFGIIAASGLRMLVESQVDFASNRNLVIASVVLVVGIGNLLI NLKGIGINLQIEGMALSALSGIILNLILPKDKNQIN*

Sequence 2601

20 Contig_0778_pos_3073_3954,
 is similar to (with p-value 2.0e-90)
 >sp:sp|P05654|PYRB_BACSU ASPARTATE CARBAMOYLTRANSFERASE (EC 2.1.3.2) (ASPARTATE TRANSCARBAMYLASE) (ATCASE). >pir:pir|A25
 015|OWBSAC aspartate carbamoyltransferase (EC 2.1.3.2) catal

ytic chain - Bacillus subtilis >gp:gp|M13128|BACPYRB_1 B.subtilis pyrB gene encoding aspartate transcarbamoylase, complete cds. NID: g143383. >gp:gp|M59757|BACPYROP_3 Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster (pyrR, pyrB, pyrB, pyrC, pyrAA, pyrAB, pyrD, pyrF and pyrE) genes, compl

30 ete cds. NID: g387576. >gp:gp|Z99112|BSUB0009_20 Bacillus su btilis complete genome (section 9 of 21): from 1598421 to 18 07200. NID: g2633902.

atggaacacttattatcaatggagcatttatctaattcagaaatttatgatttaattact atcgcttgccaattcaaatctggtgagcgaccattacctcaatttaacggtcaatacgta tcaaacttattcttcgaaaattcaacgcgaacaaagtgtagctttgagatggcagaacaa aaattaggattaaaacttattaattttgaaacaagtacatcatctgtaaaaaagggtgag tcactttatgacacatgtaaaacacttgaaagtataggtgttgatttacttgtcatacgt cactcccaaaattcttattacgaagaactggatcaattaaatattccaattgctaatgca ggtgatggaagtggacaacatcctactcagagtttattagacataatgacaatatatgaa gaatatggttcgtttgaaggtttgaatattctaatatgtggggacattaaaaattctcgt gtcgcaagaagtaattatcatagtttaacatcattaggtgccaacgtaatgttctcaagt

gtcgcaagaagtaattatcatagtttaacatcattaggtgccaacgtaatgttctcaagt ccaaaagaatgggtagataatacattagaggcgccttatgttgaaattgatgaagtcatt gataaagtagatattgttatgttgcttagagttcaacatgaaagacatggaatttcaggt gaagctaactttgctgctgaagaatatcatcaacaatttggtttaacacaggctagatat gataaattaaaagaggaagccattgtaatgcatccagctcctgtaaatagaggtgttgaa

attaaaagcgagctagttgaagcacctaagtctcgaatatttaagcagatggaaaatggaatgtatttaagaatggcagtaataagtgcgcttttacaatag

Sequence 2602

50 MEHLLSMEHLSNSEIYDLITIACQFKSGERPLPQFNGQYVSNLFFENSTRTKCSFEMAEQ KLGLKLINFETSTSSVKKGESLYDTCKTLESIGVDLLVIRHSQNSYYEELDQLNIPIANA GDGSGQHPTQSLLDIMTIYEEYGSFEGLNILICGDIKNSRVARSNYHSLTSLGANVMFSS PKEWVDNTLEAPYVEIDEVIDKVDIVMLLRVQHERHGISGEANFAAEEYHQQFGLTQARY DKLKEEAIVMHPAPVNRGVEIKSELVEAPKSRIFKQMENGMYLRMAVISALLQ*

55

45

Sequence 2603
Contig_0778_pos_3972_5249,
is similar to (with p-value 0.0e+00)
>sp:sp|P46538|PYRC BACCL DIHYDROOROTASE (EC 3.5.2.3) (DHOASE

). >pir:pir|S34319|S34319 dihydroorotase (EC 3.5.2.3) - Baci llus caldolyticus >gp:gp|X73308|BCPYR_2 B.caldolyticus pyrim idine biosynthesis genes. NID: g312439.

atgaaattaattaaaaacggaaaaatcttaaaaaacggtatcctaaaagacacagaaatt ttaatcqacqqtaaacqtattaaacaaattaqtaqtaaaattaatqcttcatcttcaaatattqaaqttattqatqcaaaagqaaatttaattqctcccqqttttqtagatqttcatqtq cacctacqtqaaccaqqtqqtqaacataaaqaaacaattqaaaqtqqtacaaaaqccqct qcaaqaqqtqqttttactacaqtatqtcctatqcctaatacaaqacctqtaccaqataca qttqaacatqttaqaqaattaaqacaacqaatttctqaaacaqcacaaqttaqqqtqttq ccttatgctgctattactaagagacaagcaggtactgaacttgttgattttgaaaaaatta gcactagaaggtgtttgcatttactgacgatggtgtgggagttcaaacagcaagtatg atqtatqctqctatqaaqcaaqctqcaaaaqttaaaaaaccqattqtcqcacactqtqaa qataatagcttaatctatggtggtgcaatgcataaaggtaaacgtagtgaagaattaggc atacctggtattccaaatattgctgaatctgtacaaattgctagagatgtattattggct qaaqcaactqqttqtcactatcatqtqtqtcatqtttcaactaaqqaaaqtqttcqaqta atcagagacgctaaaaaagctggtatccatgtaacagcagaagttacaccacatcattta ttattaactqaaaatqatqttcctqqcqatqattcaaactacaaaatqaatccaccatta attgcaacqqatcatqcacctcacqctaaaqaaqaaaaaqcacaacctatqacaaaaqca cct ttcqqcatcqtaqqtqaaacaqcattcccattactttatacacactttqtaaqa cqaqqtaattqqtcactqcaacaattaqttqattatttcactattaaaccaqctactatt ttcaacttaaattatggaaaattacacaaagatagttacgctgatttaacaataattgat cttaatactgaaaaagaaatcaaaagtgaagatttcttatctaaagctgataacactcca tttattqqtqaaaaagtttatggaaatccaacactaacaatgcttaaaqqtqaaqta

Sequence 2604

ttcgaggaggaaaagtag

10

15

20

25

55

MKLIKNGKILKNGILKDTEILIDGKRIKQISSKINASSSNIEVIDAKGNLIAPGFVDVHV
HLREPGGEHKETIESGTKAAARGGFTTVCPMPNTRPVPDTVEHVRELRQRISETAQVRVL

PYAAITKRQAGTELVDFEKLALEGVFAFTDDGVGVQTASMMYAAMKQAAKVKKPIVAHCE
DNSLIYGGAMHKGKRSEELGIPGIPNIAESVQIARDVLLAEATGCHYHVCHVSTKESVRV
IRDAKKAGIHVTAEVTPHHLLLTENDVPGDDSNYKMNPPLRSNEDREALLEGLLDGTIDC
IATDHAPHAKEEKAQPMTKAPFGIVGSETAFPLLYTHFVRRGNWSLQQLVDYFTIKPATI
FNLNYGKLHKDSYADLTIIDLNTEKEIKSEDFLSKADNTPFIGEKVYGNPTLTMLKGEVV

55 FEEEK*

Sequence 2605 Contig_0778_pos_5250_0, is similar to (with p-value 5.0e-51)

>si:spi?25993|CARA_BACSU CARBAMOYL-PHOSPHATE SYNTHASE, LTRIM
IDINE-SPECIFIC, SMALL CHAIN (EC 6.3.5.5) (CARBAMOYL-PHOSPHAT
E SYNTHETASE GLUTAMINE CHAIN). >pir:pir|E39845|E39845 carbam
oyl-phosphate synthase (glutamine-hydrolyzing) (EC 6.3.5.5),
 pyrimidine-repressible, small chain - Bacillus subtilis >gp
45 :gpiM59757|BACPYROP_5 Bacillus subtilis pyrimidine biosynthe
tic (pyr) gene cluster (pyrR, pyrP,pyrB, pyrC, pyrAA, pyrAB,
 pyrD, pyrF and pyrE) genes, complete cds. NID: g387576. >g
p:gpiZ99112|BSUB0009_22 Bacillus subtilis complete genome (s
ection 9 of 21): from 1598421 to 1807200. NID: g2633902.

atgcttgaaaaacgttatcttgtactggaagatggctcttattacgaaggatatcgctta gggtcagatgacttatctataggcgaaattgtattcaacactgctatgacggggtaccaa gaaacaatctctgacccgtcttacacaggtcaaatcataacttttacgtacccactaatt ggaaactatggtattaatcgcgatgattttgaatcattaacacctaaattaaatggggta gtagtaaaggaagcaagtacacaccctagtaactttagacaccaaaaaaactttacacgaa acacttgctcaatatcatattcctggtatatcgggggtagatactagaagtattactcgt aaaattagaaattatggtgttttaagagctggatttacagataataaagataacattcag gaacttgttgaacagttgaaaactgctgaattacctagagatgaagttcaaacggttct acaaaaacaccatatgtatcaacaggttccgatttaagcgtcgttttactcgactttggt aaaaagc

Sequence 2606
MLEKRYLVLEDGSYYEGYRLGSDDLSIGEIVFNTAMTGYQETISDPSYTGQIITFTYPLI
GNYGINRDDFESLTPKLNGVVVKEASTHPSNFRHQKTLHETLAQYHIPGISGVDTRSITR
KIRNYGVLRAGFTDNKDNIQELVEQLKTAELPRDEVQTVSTKTPYVSTGSDLSVVLLDFG

Sequence 2607

15

25

30

Contig 0779 pos 3369 1672,

is similar to (with p-value 0.0e+00)
>sp:sp|P18255|SYT1_BACSU_THREONYL-TRNA_SYNTHETASE 1 (EC 6.1.
1.3) (THREONINE--TRNA_LIGASE) (THRRS). >pir:pir|B37770|YSBST

1 threonine--tRNA ligase (EC 6.1.1.3) 1 - Bacillus subtilis >gp:gp|AF008220|AF008220_195 Bacillus subtilis rrnB-dnaB gen omic region. NID: g2293135. >gp:gp|M36594|BACTRNASB_1 B.subt ilis threonyl-tRNA synthetase (thrSv) gene, complete cds. NI D: g143765. >gp:gp|Z99118|BSUB0015_160 Bacillus subtilis com plete genome (section 15 of 21): from 2795131 to 3013540. NI D: g2635200. >gp:gp|Z75208|BSZ75208 5 B.subtilis genomic seq

20 uence 89009bp. NID: g1769994.

atgaagttagatgaagacgaagcaatggtcttaagaccaatgaactgtccacatcatatg atgatttataaaaacaaacctcattcttatcgcgaattacctatacgtattgctgaattg ggtactatgcatcgttacgaagcaagtggtgcagtatcaggtttacaacgtgttcgagga atgacattgaatgattcccatattttcgttagacctgatcaaattaaagaagaatttaaa cgtgtagttaatatgattcaagatgtgtacaaagattttggttttgaagattatcgcttc agattgagttatagagatcctgaagataagcataagtactttgatgatgatgaaatgtgg gaaaaagctgaatccatgcttaaagaagcatcagatgaattaaggtttaacttatgaagaa

quadadqctqdatccatqcttdadqdaqcattaqatqdattaqqtttaacttatqdaqad qctattggtgaggcagcattctatggacctaagttagatgttcaagtaaaaacagctatq ggaaaagaagaaactctatcaacagcacaacttgattttcttttaccagaacgttttgac ttaacgtacattggtcaagatggagaacaacatcgtcctgtagttatacaccgtggtgta gtttctactatggaacgttttgttgcatttttaacagaagaaaaaaaggtgcatttcca acttggttggcgcctatgcaagttgaaattattcctgtaaatatagatttacattatgat tatgcaagacttttacaagatgaactaaaatcgcaaggtgtccgcgttgaaattqatqac

acttggttggcgcctatgcaagttgaaattattcctgtaaatatagatttacattatgat
tatgcaagacttttacaagatgaactaaaatcgcaaggtgtccgcgttgaaattgatgac
cgtaatgaaaaaatgggatataaaattcgtgaagctcaaatgaaaaaataccttatcag
attgttgtaggtgaccaagaagtagagaatcaagaagtaaatgtaagaaaatatggttct
gaaaaacaagaatcagttgaaaaagatgaatttatttggaatgttattgatgaaatccgt
ttgaaaaagcatagataa

50

55

Sequence 2608
MAQALKRLYGDVKFGVGPVIEGGFYYDFDMDDKVSSDDFDKIEKTMKQIVNENHKTVREV
VSKEKAKDFFKDDPYKLELIDAIPEDESVTLYTQGEFTDLCRGVHVPSTSKIKEFKLLST
AGAYWRGNSDNKMLQRIYGTAFFDKKDLKAHLKMLEERRERDHRKIGKDLELFTNNQLVG
AGLPLWLPNGATIRREIERYIVDKEVSMGYDHVYTPVLANVDLYKTSGHWDHYQEDMFPA
MKLDEDEAMVLRPMNCPHHMMIYKNKPHSYRELPIRIAELGTMHRYEASGAVSGLQRVRG
MTLNDSHIFVRPDQIKEEFKRVVNMIQDVYKDFGFEDYRFRLSYRDPEDKHKYFDDDEMW
EKAESMLKEASDELGLTYEEAIGEAAFYGPKLDVQVKTAMGKEETLSTAQLDFLLPERFD
LTYIGODGEOHRPVVIHRGVVSTMERFVAFLTEETKGAFPTWLAPMQVEIIPVNIDLHYD

YARLLQDELKSQGVRVEIDDRNEKMGYKIREAQMKKIPYQIVVGDQEVENQEVNVRKYGS EKOESVEKDEFIWNVIDEIRLKKHR*

Sequence 2609

5 Contig_0781_pos_5154_4732, is similar to (with p-value 6.0e-49)

>gp:gp|D88209|D88209_1 Bacillus licheniformis DNA for Pz-pep tidase, complete cds. NID: g1651215.

atgtttgctgaatttgaacataaaatacatcaaatagaagaagctggggagccgttaacg
10 ccaaatcgtatgaatgaagaatatgctaaactgaacaaactatattttggtgaagcagta
gaaactgacgatgatattagtaaagaatggtcacgtattcctcatttctatatgaattat
tatgtatatcaatacgcaactggttatagtgcagctcaaagtttaagtcatcaaatttta
actgagggtcaacctgctgttgaacgatatatcaatgaattcttaaaaaagggtagctca
aactatccgattgaaattttaaaaaaatgcaggtgttgacatgacaacacctcaaccaata
gaggaagcttgtgaagtattcgaacaaaaattagatgcttttgaaaagttaatgaaagct

tag

MFAEFEHKIHQIEEAGEPLTPNRMNEEYAKLNKLYFGEAVETDDDISKEWSRIPHFYMNY
VVYQYATGYSAAQSLSHQILTEGQPAVERYINEFLKKGSSNYPIEILKNAGVDMTTPQPI
EEACEVFEQKLDAFEKLMKA*

Sequence 2611

Sequence 2610

Contig 9781_pos_3771_3247,

putative peptide of unknown function
atgtatgttggtacgagtaaaagtagtgttttaaatctaactgcagttcttaaaggtaaa
gatatttatcatgtatatgctgaatataagtctccatattataagcaatatggtaaatca
gaagcccttacaatatatgatgataatattacaagtcaatcagagttaaagaagaaatta
aaagaaacacttgatgacataccaacaatcgaagtagcaacgaattattaggattagaa
30 agtattcatgaaaataatactattcgatttatacacaaacctatcggatttaatactgat
ttaaaagttgtcaaacttactgaatatcacccccttgtttcgcagcctattgaagtggaa
ttcagtaatgcacagaaagatattataaaaaatgcaatcacagttcaatcgtaggttaaga
aaggttaataatcttatgaaaaaaggattcaaaactagtgactattctttaaatgtgtta
gaggaatataacgaaacagtaggaagtgtattgatgatgataa

35

Sequence 2612

MYVGTSKSSVLNLTAVLKGKDIYHVYAEYKSPYYKQYGKSEAPTIYDDNITSQSELKKKL KETLDDIPTIEVATNYLGLESIHENNTIRFIHKPIGFNTDLKVVKLTEYHPLVSQPIEVE FSNAQKDIIKMQSQFNRRLRKVNNLMKKGFKTSDYSLNVLEEYNETVGSVLIDE*

40

45

50

Sequence 2613

Contig_0781_pos_3065_1200,

putative peptide of unknown function

atgttattaactttagactttcctattcaaataggacacacatttagaaccaagatgata aataattttaqaacaatacttaattattataatqaattaqatcatcaqcatcqcqcacac acaqaaactaagcatcatgcacatcaagccatgcaggttgattatagaaatacaaacgtt $\verb|tctgcatttttagattatctta|| acggta a tatta atgggcttgttttaggagca aatgga||$ qacqqtataqctqaaacaaacaaqccaqaqtatcaataqatqqtaccqtacatcccttq $\verb|ttgcaagaaaggctgcttcatgactttttaggaattaacagaaaattagataaagaaata|$ $\verb|cattcta| at ggt g cagttg at ttt at tt gga at cct ccat at at accagga a at agattg$ qqaqaaaatqqqacaccaaataattqqqaaccaqaaqcccatattqaaqcqtttttaaac cctttagttgataatcaatacgttacaaaagaagttataggagaagatacatcaggaaaa tataatgtgtacaaatttacgtttgaaccacaaaattacaataaaacgttacttattact tcatgtatacacggtaatgaaactactggattttttgatatgtgccatatactcaatcta ttgqtcaatcaatqqqaaaaqtatcctcaattaacttacttaaqaaaaaatqtacqttta atttatqttcctatqqttaacccqtqqqqattcqcaaatcaagaaaqaqaatqtqaac $a at \verb|gtagatttaaacagaaattttgattataactggaaggcaggtaaagggacagatcct|$ qataaatctaacttcaaaqqtaaaaqtcctttttctqaaaaagaatcacaaaatatqcqt agcttagttcaaagtatagataatttaactgctcacttagatttgcatgatattatttca

gtaaataatgattactgtttattttatccgcgttgggccaatcaaaaaataataatatg actcatcttattaacaatttaaaaaqtaacqqaqacctcqttqtttqqqqqttccaqtaca ttatcatcttttaqtaattqqqtaqqaatccqaaataaaacaacqtcatatctttcagaa ataaatgaaaaacqtqtcqqtqaaaaqaaaaqtcccqaaqaaatgagacqttcagtacqc tgggtaggtaatgtaatttttagaatggcacaatttgaatcttatcaaaatggtcaaaca tcattaqatcctttcattaaaqtqatqqtatatqatqataqatttaacaataaaacatct qaaqtcattaccctacqtgcaqaaaggaatgaatggcaacgtataatgatgagtcagcag cgtttcaaagttttagcaaatggatttgtagagctctatggatatgtgactataaacgtt gatagagatgtcacagtggggattaatcctaatattgttcagaattatcatccattcttt ggatttaataaaagtagaaaacgtaatttattttcaattgaacatagactcaacaaagga aatacaactttccctatttacgctgctgctggagttcaaatgtcgacgattactgaacca ggtacaaaacgtactgatacagtaatgccggtactagatgttaagaaaaaaggtgctggt attqtaacaatcaaacaaattaaattatttgcgaagttcactcctacgcattctgctaat atugate attate ceacatttett gaattt gt ggttett tatte ggt aag collecte.tcatag

Sequence 2614

MLLTLDFPIQIGHTFRTKMINNFRTILNYYNELDHQHRAHTETKHHAHQAMQVDYRNTNV

SAFLDYLNGNINGLVLGANGDGIAETKQARVSIDGTVHPLLQERLLHDFLGINRKLDKEI
HSNGAVDFIWNPPYIPGNRLGENGTPNNWEPEAHIEAFLNPLVDNQYVTKEVIGEDTSGK
YNVYKFTFEPQNYNKTLLITSCIHGNETTGFFDMCHILNLLVNQWEKYPQLTYLRKNVRL
IYVPMVNPWGFANQERENVNNVDLNRNFDYNWKAGKGTDPDKSNFKGKSPFSEKESQNMR
SLVQSIDNLTAHLDLHDIISVNNDYCLFYPRWANQKNNNMTHLINNLKSNGDLVVWGSST
LSSFSNWVGIRNKTTSYLSEINEKRVGEKKSPEEMRRSVRWVGNVIFRMAQFESYQNGQT
SLDPFIKVMVYDDRFNNKTSEVITLRAERNEWQRIMMSQQRFKVLANGFVELYGYVTINV
DRDVTVGINPNIVQNYHPFFGFNKSRKRNLFSIEHRLNKGNTTFPIYAAAGVQMSTITEP
GTKRTDTVMPVLDVKKKGAGIVTIKQIKLFAKFTPTHSANSIQILKSGEYYFYFFLTLCD

30

10

15

Sequence 2615 Contig_0784_pos_1894_2202, putative peptide of unknown function

IAHHYPTFLEFVVLYSVSHLS*

gtgactaaagettetaaagattttgtagtaaacattaacatatgteeteegaatagatet
tggatageatttgtaateagtaeteeaggtacaateggeatgaeegetgeaatgataatt
gtagetaaateteegetaggaacaaatgeatgteeaattacagaaataataeetattaee
aaagaacetatgaattetggaataaattgtgegtgtagetttegatetaatatttetaet
actaagtateeaategtteeagetaataeagetgtgatgatateaaceagaegaeeteee
tgtagatag

40

Sequence 2616

VTKASKDFVVNINICPPNRSWIAFVISTPGTIGMTAAMIIVAKSPLGTNACPITEIIPIT KEPMNSGINCACSFRSNISTTKYPIVPANTAVMISTRRPPCR*

45 Sequence 2617

Contig_0784_pos_4022_5011,

is similar to (with p-value 0.0e+00)

>pir:pir|S39743|S39743 hypothetical protein - Bacillus subti lis

attqcaqtaqaqaqtqctaaatcaqcacaaaqctttqqaatqqaccctaaaqtaqctatq

50 atggctgatttattatctgtattacaagacaaattatccgggaaaaatgtaaaaatagta ttacctgaaggtgaagatgaacgagtgctcattgctgcgactcagctacaaaaaaactgac tatgtttcacctatcgttctaggaaacgaagataatattaaatctcttgcttctaaacac gctttagatttaactcaaattgaaatcatagatccagcaacgagtgaacttaaagatgag cttgtagatgcttttgttgaaagacgtaaaggtaaaggcaactaaagaacaagcagttgaa ttattagataatgtaaattatttcggaacaatgcttgtgtatactggaaaggctgaaggt ttagtgagtggtgctgcacattctactggagatacagtcagaccagcattacaaattatc aaaactaaacctggtgtatctagaacatctggtattttctttatgattaaaggcgacgaa caatattttttggagattgtgcgattaatccagaattagatgctcaaggacttqctqaa

ttaagcttttctacaaaaggttctgctaaatcggatgatgttactaaagtgcaagaagca ttgaagttagctcaagaaaaagctgaagcagatcaattagatcatgtagttattgatgga gaattccaatttgacgctgctattgttcctagcgtagcagaagaaagcacctggtgca aaaattcaaggtgatgcaaatgtattggttttccctagtctagaagcaggtaatattggt tataagattgctcaacgtttaggtggatacgatgcagtaggaccagtcctacaaggatta aactctccagtcaatgatttatctcgtggttgctcaactgaagacgtttataacttatct attattacagctgctcaagctttacaataa

Sequence 2618

10 MADLLSVLQDKLSGKNVKIVLPEGEDERVLIAATQLQKTDYVSPIVLGNEDNIKSLASKH ALDLTQIEIIDPATSELKDELVDAFVERRKGKATKEQAVELLDNVNYFGTMLVYTGKAEG LVSGAAHSTGDTVRPALQIIKTKPGVSRTSGIFFMIKGDEQYIFGDCAINPELDAQGLAE IAVESAKSAQSFGMDPKVAMLSFSTKGSAKSDDVTKVQEALKLAQEKAEADQLDHVVIDG EFQFDAAIVPSVAEKKAPGAKIQGDANVLVFPSLEAGNIGYKIAQRLGGYDAVGPVLQGL

15 NSPVNDLSRGCSTEDVYNLSIITAAQALQ*

Sequence 2619
Contig_0784_pos_5083_5850,
is similar to (with p-value 5.0e-66)

- 20 >sp:sp|P39648|YWFL_BACSU HYPOTHETICAL 31.4 KD PROTEIN IN PTA
 3'REGION. >pir:pir|S39745|S39745 hypothetical protein Bac
 illus subtilis >gp:gp|X73124|BSGENR_91 B.subtilis genomic re
 gion (325 to 333). NID: g413923. >gp:gp|Z99123|BSUB0020_60 B
 acillus subtilis complete genome (section 20 of 21): from 37
 98401 to 4010550. NID: g2636240.
- 98401 to 4010550. NID: g2636240.

 atgematettttgegtttgatgacactttttccgamagegttggtamagatttatettgt
 matgtagtacgamegtggatacatcmacacacegtgattttgggcamatemategegt
 ttaccatttttmagtgatggtattcgttttcttmagatgamacamaggatatmatgcamat
 gttaggamattctggtggcttgggtgtcgtmattagatcmaggamattttmamacatmatetttg

- 40 Sequence 2620
 MQSFAFDDTFSESVGKDLSCNVVRTWIHQHTVILGIHDSRLPFLSDGIRFLTDEQGYNAI
 VRNSGGLGVVLDQGILNISLIFKGQTETTIDEAFTVMYLLINKMFEDEDVSIDTKEIEQS
 YCPGKFDLSINDKKFAGISQRRVRGGIAVQIYLCIEGSGSERALMMQQFYQRALKGETTK
 FHYPDIDPSCMASLETLLNREIKVQDVMFLLLYALKDLGANLNMDPITEDEWTRYEGYYD

Sequence 2621
Contig_0784_pos_3890_3102,
is similar to (with p-value 9.0e-94)

KMLERNAKMNEKLDF*

- >50 >sp:sp|P39645|YWFI_BACSU HYPOTHETICAL 29.5 KD PROTEIN IN ROC
 C-PTA INTERGENIC REGION. >pir:pir|S39742|S39742 hypothetical
 protein Bacillus subtilis >gp:gp|X73124|BSGENR_88 B.subtilis genomic region (325 to 333). NID: g413923. >gp:gp|Z99123
 |BSUB0020_63 Bacillus subtilis complete genome (section 20 o
 f 21): from 3798401 to 4010550. NID: g2636240.

PCT/US00/30782 WO 01/34809

qcqqaccttttactatqqtttttacqtccaqaaatqaaaqaqttaaatcaaattgaaaat gagtttaataaattacgtatcgcagactatctcattccaacttattcctatgtgtcagtg ataqaattaaqtaattatttaqcaqqcaaatctqatqaqqqatccttatqaaaatccccac gataaacgacgcaatgaaacttataactggtatatgttacctatcgaagaccgtaaaact ttaatqtataaccatqqqatqataqqtcqtaaatatqctqqtaaaatcaaacaqtttatt acagqttcaqtaqqttttqatqactatqaqtqqqqtqttacattattttcaaatgatqta cttcaattcaaaaaattgtctatgaaatgcgttttgatgaaacgactgctcgttatqqc qaatttggtagtttctatattggtcacattctaaacatcgaagacttcaaacaatttttt agtatataa

Sequence 2622

10

MNPIKILKKERIIMSEAAETLDGWYSLHLFYAVDWTTFRLIAEDDREAMITELETFIKDK TVARESHOGDHAIYNITGOKADLLLWFLRPEMKELNQIENEFNKLRIADYLIPTYSYVSV IELSNYLAGKSDEDPYENPHVKARLYPELPHSEYICFYPMDKRRNETYNWYMLPIEDRKT 15 LMYNHGMIGRKYAGKIKQFITGSVGFDDYEWGVTLFSNDVLQFKKIVYEMRFDETTARYG EFGSFYIGHILNIEDFKQFFSI*

Sequence 2623

- 20 Contig 0784 pos 2495 1845, putative peptide of unknown function atggcacgtattgctacaaaattgggctatcctgaaagtaatagtttcgtgactaatact qtaattgaatttgttttacataatgaagcatatcctcggttgtatagaattaaaactcga gatacgaacttaataaaaatttctcaagctaatgaaatctcacgtcaaattacaaatggc acaatqacqcttqaaqaaqctaaqtatcaattaqaqqaaatatatqttqctaaaaqaqat cagggaggtcgtctggttgatatcatcacagctgtattagctggaacgattggatactta qtaqtaqaaatattaqatcqaaaqctacacqcacaatttattccaqaattcataqqttct ttqqtaataqqtattatttctqtaattqqacatqcatttqttcctaqcqqaqatttaqct 30 acaattatcattqcaqcqqtcatqccqattqtacctqqaqtactgattacaaatqctatc caagatctattcggaggacatatgttaatgtttactacaaaatctttagaagctttagtc accgcctttggtataggcgctggtgtaagttcaatattaattttagtctag
 - Sequence 2624
- 35 MARIATKLGYPESNSFVTNTVIEFVLHNEAYPRLYRIKTRDTNLIKISQANEISRQITNG TMTLEEAKYOLEEIYVAKRDSSLPFKGIAAAIIATSFLYLQGGRLVDIITAVLAGTIGYL VVFILDRKLHAQFIPEFIGSLVIGIISVIGHAFVPSGDLATIIIAAVMPIVPGVLITNAI QDLFCGFMLMFTTKSLEALVTAFGIGAGVSSILILV*
- Sequence 2625 Contig 0786 pos 2219 1125, is similar to (with p-value 1.0e-53) >sp:sp|P39604|YWCF BACSU HYPOTHETICAL 43.3 KD PROTEIN IN OOX D-VPR INTERGENIC REGION. >pir:pir|S39697|S39697 hypothetical 45 protein - Bacillus subtilis >gp:gp|X73124|BSGENR 43 B.subti lis genomic region (325 to 333). NID: g413923. >gp:gp|Z99123 |BSUB0020_107 Bacillus subtilis complete genome (section 20 of 21): from 3798401 to 4010550. NID: g2636240. 50 qqaqctattattqcatttttaattatqataatttcaccqaaaaaaattaaaaataatact tatattttatacagtatattttgcgttctattaatagggttacttattttacctgaaact tcaatcaccccaattattaatggtgctaaaagttggtacagtttcqqtcctataagcatc caaccttccgaattcatgaaaattatacttatacttgctttggctaaaacgatatctaaa cataaccaatttacatttaataagtcttttcagtctgatttaatgttattttttaaaatt 55 ttaggtgtatccattatacctatggcattaattctattgcaaaatgacctaggtactact $\tt ttggtgttatgtgcaattatagctggcgtcatgttagtaagtggaataacatggaggata$

ttingcocctctttttattgttgcatttgtaagtggttctagtattatattagctal.catt tataaaccatccttaatagaaaacctattaggaataaaaatgtatcaaatgggacqtatc aattottggttagatooctattoatacagtagtggagatggatatcacttaacagaatot

ttaaaagctattggttcaggtcaattattaggtaaaggttataaccatggcgaagtttat attcctgagaatcataccgactttattttttcagtgattggagaagaaatgggctttata ggttcagtattattgatattacttttcttattcttaatatttcaccttatacggttagct agtaaaattgatagtcagtttaacaaagtatttatcataggatatgtatcgttgattgtttcacgtgttacaaaatatcggcatgacggttcaattattaccgattacaggtatacca cttccgtttattagttacggtggaagttctttatggagtttaatgactggtataggagt gttctttcaatttattatcatgaaccccaaagatatgaaataaccacattatctaaaaaa tctaatacaatttaa

10 Sequence 2626

MGGGQYSANFSIRQIIYYIFGAIIAFLIMIISPKKIKNNTYILYSIFCVLLIGLLILPET SITPIINGAKSWYSFGPISIQPSEFMKIILILALAKTISKHNQFTFNKSFQSDLMLFFKI LGVSIIPMALILLQNDLGTTLVLCAIIAGVMLVSGITWRILAPLFIVAFVSGSSIILAII YKPSLIENLLGIKMYQMGRINSWLDPYSYSSGDGYHLTESLKAIGSGQLLGKGYNHGEVY

15 IPENHTDFIFSVIGEEMGFIGSVLLILLFLFLIFHLIRLASKIDSQFNKVFIIGYVSLIV FHVLQNIGMTVQLLPITGIPLPFISYGGSSLWSLMTGIGVVLSIYYHEPQRYEITTLSKK SNTI*

Sequence 2627

20 Contig_0787_pos_1817_2143, putative peptide of unknown function atgatttctttatcattaactttattcttatttcatatttgtacgataaacaatatgta ccttttcaagcaattaccggtataagcttgttttattgcttagttatatttccaataaca ctcattttatatgtgcgtattgccaaaaaaaattatctatacagtaataagtatgaaatg 25 agaactggaataatcattggtattattgctttaattctagtaattatgcaagggtttcac tttaactgggctatagatttttttaataatgttgtatggtggtcatttaaagtaccatc

Sequence: 2628

30 MIFFTINFILISYLYDKQYVPFQAITGISLFYCLVIFPITLILYVRIAKKNYLYSNKYEM RTGIIIGIIALILVIMQGFHFNWAIDFFNNVVWWSFKSTISIDRRIAT*

Sequence 2629

Contig 0787 pos 6394 6038,

tcaattqatagacgaatcqcaacatag

putative peptide of unknown function atgccagaaatattgtaagaacaaaagggattgtatggttagggcagtataatgatgta gcgtgtttgttatcacaggctggttcatcttgtaatattcaccccgttacatactgggtg gcaacaatgagtgaaagtcaacagcaagctattttggaggcggtcaagatgtagtagaa gattgggatatcgaatatggagatcgtcaaacgcaatttgtaattattggtacggattta gatcaagaaaaaatttcccgggaattagatgcatgcttaattcatagtagtgagattgat gaagattggcgattactagatagtccgtatcaatggacttatgatcgacgaatgtaa

Sequence 2630

MPENIVRTKGIVWLAQYNDVACLLSQAGSSCNIHPVTYWVATMSESQQQAILEARQDVVE 45 DWDIEYGDRQTQFVIIGTDLDQEKISRELDACLIHSSEIDEDWRLLDSPYQWTYDRRM*

Sequence 2631 Contig_0787_pos_4438_2969, is similar to (with p-value 0.0e+00)

>sp:sp|P39755|NDHF_BACSU NADH DEHYDROGENASE SUBUNIT 5 (EC 1. 6.5.3) (NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5). >gp:gp|U283 23|BSU28323_1 Bacillus subtilis NADH dehydrogenase subunit 5 (ndhF) gene, complete cds. NID: g903586. >gp:gp|Z99104|BSUB 0001_183 Bacillus subtilis complete genome (section 1 of 21) 55 : from 1 to 213080. NID: g2632267. >gp:gp|Z99105|BSUB0002_11 Bacillus subtilis complete genome (section 2 of 21): from 1 94651 to 415810. NID: g2632457. >gp:gp|AB006424|AB006424_9 B acillus subtilis genomic DNA, 70 kb region between 17 and 23 degree. NID: g3599592.

atgtttt.ttattacacttgtcattgctatactgagtggattaatatttttgaatcotcga gttcccattcaatattaaatttcatatatatttacttgttttacctatcattacqqqa ttaaqtqqattaatatttttcqqtqaaaqqqcqaatqttqqaccttttqtaqttqatcat cttacttggttaatgatgacatttattttgactttaggctttatcattcaaaagttttct atgcqttatttaattqqcqacatqcattaccqtaaatattttccqttttttacattaatt actqcatttqcttcattqqcatqqttaaqtqqaqacttaaqqttaatqaccatqttttqq qqtqcaacattattqtqttaacacqqctcattaaaqttaacaaattatqqaaqqtqcct agggaagcagcaagaatttcagcttggtcatttatattggcatggttgtcgttattgatt qataatqcaatcaattatqqaatqcqtctctqtatcaatttacttattqttttaqctqtq attattccggcggcacaatttccatttcaaggctggcttattgaatctgtagctgcgcctacqccaqtttcaqctattatqcacqctqqtattqttaatqctqqtqqcqttattcttaca atttcagtattgttgggttctggaatcagtcttgtgcatgttgattacaagagacaactt qtaqqttctacqataaqtcaaatqqqttttatqttaqtacaatqtqcqcttqqqqcatat tctqcqqcqataqtacatttaatattqcatqqtqttttaaaqcqacattatttctacaa tcgqqttctqttqttaaaaqatttaacattcctacqcctccatctqttaaaaaatcatat qqctqqcttqtatttqqtcqtctactaqctattcttataqcqataatattttqqttqaat agtgatagacatgcatatgatgtattaagcgctcttatattagcttggtcgttaatggtg tcatggaatcaattagttgcttttagtcatggactcatcggaagagtcatcggagtatgt atgartattqttqtaqtaattqtttatattattacqcatcattatttcttcacqacatta agtaacgttgatattcatattgtttcaccaccactcataagtattattctatcgattgct attataqttttcqqcaqtatqttaaqcatatqqqtatcacqqcqaaqaqaatcaaaqqca tttqcqaaqttatacttqtqqcttattaaaqtaqqaqaqqctaaaacccaatctataqaa agtcatccatcatatttaaaacgattttag

Sequence 2632

10

15

20

25

35

MFFITLVIAILSGLIFLNHRVPIQYIKFHIYLLVLPIITGLSGLIFFGERANVGPFVVDH
LTWLMMTFILTLGFIIQKFSMRYLIGDMHYRKYFPFFTLITAFASLAWLSGDLRLMTMFW
GATLFVLTRLIKVNKLWKVPREAARISAWSFILAWLSLLIAVILLYIATGDWYIYSNMSD
DNAINYGMRLCINLLIVLAVIIPAAQFPFQGWLIESVAAPTPVSAIMHAGIVNAGGVILT
RFSPVFNDEIAISLLLIIASISVLLGSGISLVHVDYKRQLVGSTISQMGFMLVQCALGAY
SAAIVHLILHGVFKATLFLQSGSVVKRFNIPTPPSVKKSYGWLVFGRLLAILIAIIFWLN
SDRHAYDVLSALILAWSLMVSWNQLVAFSHGLIGRVIGVCMIIVVVIVYIITHHYFFTTL
SNVDIHIVSPPLISIILSIAIIVFGSMLSIWVSRRRESKAFAKLYLWLIKVGEAKTQSIE
SHPSYLKRF*

Sequence 2633 Contig 0787 pos 2951 2058,

40 putative peptide of unknown function atgcttcaatcagatatcaatgaattagtcaatcaggctaaacgtgtaattacaccttta t caccgattt caa catttgctgcccgta atccgtgggaggggctagaagatgcttcgtttgatcaagtggcacgttggttaaaaagtgtgagggatgttgacatttatcctaatgcgtct 45 qatqaaaatcqtqcqcattataataataqqtcactatctqacaqtqatatcaacacatat attcaaagagcgaaaaatttaaaaacgattqaagaaggttactttaatacaaaagataac qaqaaactqqaaaaatqqqtacaaactaattttaaqqattataaqaaaaaaaqaaqatqtq atagcqcaaaqtqctaqtqttttcacaaaqqaaqqtacacqacttattqatattttaaat 50 ccaaaaagagaaaaaggattctatcatgcctggcaacgtttagttaaacatgatccatta ttcacaaaaaaacaacgacttactttaqcacatttqccaaatcaaqcaaccqaaqcaata gagtacqcctttcaagaattaggagtaaaagaaqaacatcgacaatcatatattgagagt catttattatctttaccaggttgggcaggaatcatgtatcatcggtcacagacacaaagt aatgatgcgtacttattaacagactatgttgcgattcgtctatcaattgagatgqtactt 55 ttaaatgaccaccatacaacattattaaaaaaatctatagcccagttaaagtga

Sequence 2634
MLQSDINELVNQAKRVITPLSPISTFAARNPWEGLEDASFDQVARWLKSVRDVDIYPNAS
TIHRAISNKEIDLKVFEERLDENRAHYNNRSLSDSDINTYIQRAKNLKTIEEGYFNTKDN

EKLEKWVQTNFKDYKKKEDVIAQSASVFTKEGTRLIDILNAHMIKWSKLYVDDFQSSWTM PKREKGFYHAWQRLVKHDPLFTKKQRLTLAHLPNQATEAIEYAFQELGVKEEHRQSYIES HLLSLPGWAGIMYHRSQTQSNDAYLLTDYVAIRLSIEMVLLNDHHTTLLKKSIAQLK*

Sequence 2635 Contig 0787 pos 0 876, is similar to (with p-value 0.0e+00) >pir:pir|A40585|A40585 DNA topoisomerase (ATP-hydrolyzing) (EC 5.99.1.3) chain B - Staphylococcus aureus >gp:gp|X71437|S 10 AGYRREC 2 S.aureus genes gyrB, gyrA and recF (partial). NID: g296393. >gp:qp|D10489|STAGYRABA 1 Staphylococcus aureus ge nes for DNA gyrase A and B, complete cds. NID: g540540. gtgatggtgaatacattgtcagatgtaaacaacacagataattatggtgctggacagata caagttttagaaggtctcgaagcggttcgtaaaaqaccqqqtatgtatattqqttcaact 15 tcaqaaaqaqqqttqcaccatttaqtatqqqaaattqttqataataqtattqacqaqqca ttagcaggttatgctagtcatattgaagttgtaattgagaaagacaattggattaaagtt actgacaatggccgtggtattcctgttgatattcaagaaaagatgggacgccctgctgtc gaagttatcttaactgtacttcacgctggaggtaaattcggaggtggcggatacaaagta tctggcggtcttcacggtgttggatcttcagttgttaatgcactctcacaagatcttgaa 20 gtttatqtacatcqtaatqqcacqatttatcatcaaqcctataaacaaqqtqtqccacaa tttgatcttaaagaaattggcgatacagataaaacaggtacagctattcgattcaaagcc gataaagaaatctttacagagacaacagtttataactatgaaacacttcaaaagcgtata cqtqaqcttqctttcttaaataaaqqtattcaaattactttaaaaqatqaaaqaqaaqaq gaagttagagaagactcatatcattatgaaggcgggattaaatcctatgtagatttatta25 gcqaataatattcatacatacqaqqqtqqtaTTCAA

Sequence 2636

30 VMVNTLSDVNNTDNYGAGQIQVLEGLEAVRKRPGMŸIGSTSERGLHHLVWEIVDNSIDEA LAGYASHIEVVIEKDNWIKVTDNGRGIPVDIQEKMGRPAVEVILTVLHAGGKFGGGYKV SGGLMGVGSSVVNALSQDLEVYVHRNGTIYHQAYKQGVPQFDLKEIGDTDKTGTAMRKA DKEIFTETTVYNYETLQKRIRELAFLNKGIQITLKDEREEEVREDSYHYEGGIKSYVDLL NENKEPLHDEPIYIHQSKDDIEVEIALQYNSGYATNLLTYANNIHTYEGGIQ

35

45

50

55

Sequence 2637 Contig_0788_pos_5197_6411, is similar to (with p-value 3.0e-17)

>pir:pir|164093|164093 ribosomal protein S14 (rpS14) homolog
40 - Haemophilus influenzae (strain Rd KW20) >gp:gp|U32762|U32
762_5 Haemophilus influenzae Rd section 77 of 163 of the com
plete genome. NID: g1573797.

gaattaaaagcaaaaggggactatgaagcattaagaaagttgccaagagattcatctcca actagattaactagaagatgtaaagtaactggtagacctagaggtgtgttacgtaaattt gaaatgtctagaattgcatttagagaacatgcgcataaaggtcaaattccaggtgtaaaa aaatctagttggtaa

Sequence 2638

10

20

VDDVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGEERVKQKGEPGTKTITTPTTKNPL
TGEKVGEGEPTEKITKQPVDEITEYGGEEIKPGHKDEFDPNAPKGSQEDVPGKPGVKNPD
TGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGKERVKQKGEPGTKTIT
TPTTKNPLTGEKVGEGEPTEKVTKQPVDEITEYGGEEIKPGHKDEFDPNAPKGSQEDVPG
KPGVKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFDPNLAPGTEKVVQKG
EPGTKTITTPTTKNPMAKKSKIAKEQKRQELVNKYYELRKELKAKGDYEALRKLPRDSSP
TRLTRCKVTGRPRGVLRKFEMSRIAFREHAHKGOIPGVKKSSW*

15 Sequence 2639
Contig_0788_pos_5829_4909,
putative peptide of unknown function
gtgattcatctactggttgtttgttacttttctgttggttcaccttcgccaacttt

tcccctgttaatgggttcttagttgttggtgttgtaattgtttttgttcctggttcacct ttctgtttaacgcgctctttacctggttttaaatcaggattgaattcacgtttcttgtcg aatggaatttcttccgttgacgtgatcggatctccatcaactggaccatattttgtcaca tcatccactggtggtgtgactacttcgcctgtatcagggtttttaactcctggtttacct ggaacgtcctcttggctacctttcggtgcatttggatcaaattcatccttatggcctggc ttgatttcttcgccaccatattctgtqatttcatctactgqttqttttgttattttttc

- 35 Sequence 2640

VISSTGCFVTFSVGSPSPTFSPVNGFLVVGVVIVFVPGSPFCLTRSLPGFKSGLNSRFLS NGISSVDVIGSPSTGPYFVTSSTGGVTTSPVSGFLTPGLPGTSSWLPFGAFGSNSSLWPG LISSPPYSVISSTGCFVIFSVGSPSPTFSPVNGFLVVGVVIVFVPGSPFCLTRSSPGFKS GLNSRFLSNGISSVDVIGSPSTGPYFVTSSTGGVTTSPVSGFLTPRLTWLRCLTTFRCIW IKFILMAWLDFFATIMNDFIHWLFCYFFCWFTFANFFSCIRIDISWCCCCFNSWFTFLDY

FFCTWG*

40

Sequence 2641

Contig 0788 pos 3383 2700,

- is similar to (with p-value 2.0e-16)
 >sp:sp|P54176|HLY3_BACCE HEMOLYSIN III (HLY-III). >pir:pir|S
 59967|S59967 hemolysin III Bacillus cereus >pir:pir|S52296
 |S52296 hemolytic factor Bacillus cereus >gp:gp|X84058|BCH
 MLYSN_1 B.cereus gene for hemolytic factor. NID: g662879.
- tggttaggtggctatttcaggaacatacacacctgttttgttaagtgttgtcggcggt tggttaggttggctcgtgacaatattattatggggaacgacattatgggggattttgtat aaatcaatagcaactaaagtcaatcatagattaagtctcattgtttatttggtgatggga tgggtaggtatcatatttttacctattattattatgcgaacatcatggtggtttattttc tttatatttcttggtgggttatcttatactatcggagcatggttttatgcccaaaaaaa

aaaccttattttcatatqatttggcatatatttattqttcttqcttctttcttacatatq ataggcattttttattttatgtga

Sequence 2642

MSQSSKRKNDSVVETFKDIIPLTFGEEIGNAASHGAAALLTLFILPYAAVHSFNNGGTLE SISVSVYVISIFMMFISSTIYHSMQNNTSHKYILRIIDHSMIYVAISGTYTPVLLSVVGG WLGWLVTILLWGTTLWGILYKSIATKVNHRLSLIVYLVMGWVGIIFLPIIIMRTSWWFIF FIFLGGLSYTIGAWFYAOKNKPYFHMIWHIFIVLASFLHMIGIFYFM*

10 Sequence 2643 Contig 0788 pos 2461 1124,

is similar to (with \overline{p} -value 7.0e-20)

>gp:gp|D50098|D50098_1 Bacillus subtilis macronuclear DNA fo r multidrug transporter, complete cds. NID: g1856976.

- 15 atgastontaagtotatoattaotgtaatggcactoataotaataatgtttatggragot ataqaaacatctattatttcattaqcattaccaacaataaaaaataqtttqaatqccqqt aatctagtttcattagtatttaccgtatattttattgctttagtcatagctaaccctatc gttggtgaacttatgtctagatttaaaattatttacattgctgttgtaggggtattattg tttgccttaggtagtttaatgtcgggattaagtcagacgtttacttttttaattatctct
- 20 cgaa cagtaca aggtttttggag caggagttat gatgtcactctcaca aatagttcctaagttggcttttgaaattcctttgagatataaaattatgggtatagttggaagtgtttgggga atttcg agtattattggcccattattaggtggtgcqattttagagtttgcttcatggcattggctattctatatcaatattcctattgctatagtggcaataatacttgtacttatgact
- 25 tttaacatattctcaattattttagctttagctgttttatggctactatttaaaatagaa aatagtatcgaacaaccatttcttccaacaaaagaatttaacatatcaatagttctagtt tatttacaagaaaacttagtttatcacctttacaaagtggatttgtaatattcccgttg
- 30 $\verb|tctgttqcttggattacgcttaatttcaatttagctaaaatagaagcgcattttactaga|\\$ ggcttaaaactcccattqcttattqcttttqcqqttqtttttqcaqqtttaaqttttqqt tatatttatacaaaagatagtgttattgtccaagaggaaacttctccaaaaaatatgaaa aagatgatgtcattttatgcattgacaaaaaatttaggttcgtcagtcggatctacgatt
- 35 atgggctatatgtatgcactaaatgttggtttatttggttctaatttacacaatgfatta ggattagtcttaataattgcagtatgtttaattgtaatgtggatgacattatataaaagc aatactattcaatcttag

Sequence 2644

- 40 MNLKSIITVMALILIMFMAAIETSIISLALPTIKNSLNAGNLVSLVFTVYFIALVIANPI VGELMSRFKIIYIAVVGVLLFALGSLMSGLSQTFTFLIISRTVQGFGAGVMMSLSQIVPK LAFEIPLRYKIMGIVGSVWGISSIIGPLLGGAILEFASWHWLFYINIPIAIVAIILVLMT FHFPDETQVQQSRFDIKGLIIFYIFIALLMFGLLNQHHIIFNIFSIILALAVLWLLFKIE NSIEQPFLPTKEFNISIVLVFITDLLIAITLMGYNLYIPVYLOEKLSLSPLOSGFVIFPL
- 45 SVAWITLNFNLAKIEAHFTRKTLYICSFFVLLVSSLMIMFGLKLPLLIAFAVVFAGLSFG YIYTKDSVIVQEETSPKNMKKMMSFYALTKNLGSSVGSTIMGYMYALNVGLFGSNLHNVL GLVLIIAVCLIVMWMTLYKSNTIQS*

Sequence 2645

- 50 Contig 0795 pos 9882 9001,
 - putative peptide of unknown function
 - atgccaagttcaatgttgcatgaqcatqqatqqaqcgqtatcaatttcaattcaccattt gcagatatggcaattttattaggtcttaactggttagcaatattactttatatggaagca gthgtgtcaccgtttggtactggagtttcttttgttgccgttactggacgtgtgttacgc gctatggaagaaatgggcatattcctaaattcttaggtaaaattaataaaaagtataat atcccacgtgttgccattgcatttaatgcaattatcagcatgattatggtgacattgttc
 - $\verb|cgtgactggggtacactagctgcggttatttctactgcaacattagttgcatatttaact|\\$ ggtccaactacggttatttcattacgtaaaatggcaccaaaaatgactcgtccatttaaa

tgggcaatgtggccaacaacagcagaagttattttaattattattttaggtttacctatt tatttcttctatgaatataaaatgaattggaagaatactaaaaaacaaattggcggaagc ttatggattattatctatcttattgttctcgcattcttatcatttattggaagtaaagag ttcaaaggcttaaattggattcactatccatgggattcttagtcattgtaatcgttgct ttaatcttctatcaactaggtacgacaagttactttgaaagtattatttcaagcgtgcg aacaagttgaataagaaaatgggcgataagttgcgtaaaacacgcaaaaaagcgcgtcat aaagatrggaaagacgcgatcgacaagagcaaaatcaataa

Sequence 2646

10 MPSSMLHEHGWSGINFNSPFADMAILLGLNWLAILLYMEAVVSPFGTGVSFVAVTGRVLR AMEENGHIPKFLGKINKKYNIPRVAIAFNAIISMIMVTLFRDWGTLAAVISTATLVAYLT GPTTVISLRKMAPKMTRPFKANILKFMAPLSFVLASLAIYWAMWPTTAEVILIIILGLPI YFFYEYKMNWKNTKKQIGGSLWIIIYLIVLAFLSFIGSKEFKGLNWIHYPWDFLVIVIVA LIFYOLGTTSYFESIYFKRANKLNKKMGDKLRKTRKKARHKDWKERDRQEQNQ*

15

Sequence 2647
Contig_0795_pos_8696_7329,
is similar to (with p-value 2.0e-47)

fragment (88 kb). NID: g1945641.

>gp:gp|U46134|BSU46134_3 Bacillus subtilis putative orf1 unk
nown protein, putative transcriptional regulator (slr), and
intracellular esterase B (estB) genes, complete cds. NID: gl
762123. >gp:gp|Z99121|BSUB0018_125 Bacillus subtilis complet
e genome (section 18 of 21): from 3399551 to 3609060. NID: g
2635827. >gp:gp|Z71928|BSYVEFGNS_1 B.subtilis pnbA, sigL, yv
e[J,K,L,M,N,O,P,Q,R,S,T] and yvf[A,B,C,D,E,F,G,H] genes. NID
: g1495276. >gp:gp|Z94043|BSZ94043 47 B.subtilis genomic DNA

ttgaactataatgggatttctgatcaaattaacgttttaagatggtacatcaatat atcgaacattttggcggtgattcaaataacgtgacactaatgggtcaatctgcaggtagt atgagtatcatgacattaatgcaaatgcccgaacttgatgattattatcataaagtgatg ttattaagtggaacgttaactactgatacaccactcaatgcacatactaaagtacaacat ttttcacaactcatgaggcattattttcctaataaaacacttaagacacttaaccagtgat

ccaatttatctatttttaaatcaaatgaatagttgcgacacttggctagcacgttttgat tggcaccaaccccatacctcctactttaaaagtgcatatcatatattggatttagtattt tggtttggtcacctctattttgactaaaaatcattattctataactcaacatgatatg aatttaagtagtaacatgatatctgacttagcttatttttgccgaaaaggtaagatgcca

50 tggaaatgttatgaacctcaacatcaagcgttacatatctatggataa

Sequence 2648

VCSNMVQVKIGNCTINGLHKKNIDVFLGIPYAKPFNKISRFQHSKFMELSKPMIDATHIQ SIPPQPYNSLEDFFSMTDSSFNSFKQNDYCLFLNIWKPSSNQNHLPVVIYFYGGSFLQGH GTAELYCPEHIVEQENIIVTFNYRLGALGYLDWSYFNQHLNYNNGISDQINVLRWVHQY IEHFGGDSNNVTLMGQSAGSMSIMTLMQMPELDDYYHKVMLLSGTLTTDTPLNAHTKVQH FSQLMRHYFPNKTLKTLTSDDILYLMESQKIERGRSRGLDLIYQPIKDHHMSRSIKKFPK PTFMSYTHDEGDIYIEDATRTLPSERFIHLMSQYGTHVEKNDALTMKQQRNLITEYCFVR PIYLFLNOMNSCDTWLARFDWHQPHTSYFKSAYHILDLVFWFGHLSILTKNHYSITQHDM

NLSSNMISDLAYFARKGKMPWKCYEPQHQALHIYG*

Sequence 2649

Contig 0795 pos 2619 2143,

is similar to (with p-value 4.0e-68)
>gp:gp|Z99108|BSUB0005_72 Bacillus subtilis complete genome
(section 5 of 21): from 802821 to 1011250. NID: g2633055. >g
p:gp|D78509|D78509_8 Bacillus subtilis YfjG-YfjR genes, comp
lete cds. NID: g2780390.

10 atggaagacgtgacagatattgtctttcggcatgttgtcagtgaagctgcgagaccagat gtattttttactgaatttaccaatactgagagttactgtcaccctgaaggtattcatagt gtgcgcggacgcttaacttttagtgacgacgaacaaccaatggtagcgcacatctggggc gataaaccagaacaattccgagaaatgagtatcggcttagcggatatgggttttaaaggt atagatttaaatatgggttgccctgtcgcaaacgttgcgaaaaaggtaaaggatccggc ttaattctacgacctgaaacggcagccgaaatcattcaagcttctaaagcaggtggtcta ccggtcagtgtaaaaacacgtttaggttattacgatatcgatgaatggcgagactggtta aaacacgtcttcgaacaagttaggtgcgcgctctggtttaatggcagagccaaatga

Sequence 2650

20 MEDVTDIVFRHVVSEAARPDVFFTEFTNTESYCHPEGIHSVRGRLTFSDDEQPMVAHIWG DKPEQFREMSIGLADMGFKGIDLNMGCPVANVAKKGKGSGLILRPETAAEIIQASKAGGL PVSVKTRLGYYDIDEWRDWLKHVFEQVRCALWFNGRAK*

Sequence 2651

- 25 Contig_0795_pos_2063_660,
 is similar to (with p-value 0.0e+00)
 >gp:gp|AF029225|AF029225_1 Staphylococcus carnosus NarG, Nar
 H, NarJ, and NarI genes, complete cds. NID: g3929521.
 atgactgcgacgccattatattcagatatcgttttacctqctqcaacttggtatqaaaaa
- atgactgcgacgccattatattcagatatcgttttacctgctgcaacttggtatgaaaa
 30 catgatttatcttctacagacatgcatccatttattcatccatttaacccagcgattgac
 ccattatgggaatcgcgttcggactgggatatttataaaactctaagtaaagctgtttca
 gaaatggcgaaagattatcttccaggtaaatttaaagatgtcgtaactacaccattagga
 catgattcaaaacaagaaatttcaactgaatacggtattgtaaaagattggtctaaagga
 gaaattgaaggtgtgccaggtaaaacaatgcctaatttttctatcgtagagcgagactat
- 35 acacaaatttacgataaattcgttactgttggtccaaaactagaaaaagggaaaataggt gctcatggtgtgagttatagcgttagtgaaggtacgaagaacttaaaagtatagttgga acttcgaatgatgataatactatttcagttaaaaatgatagaccgagaatagatacagcg agaaaagtagcagatgtcattttgaatatacctctgctacaaacggcaaattatcaaa aagtcatatgaagatttagaaaatcaaacaggtatggaacttaaagatattctaaagaa
- 40 cgtgcttctgaaaagatatcattcttaaacattacttctcaaccaagagaagtgattcca actgcagtattccctggctctaataaagatggaagacgctactcaccgtttacaactaat gttgaacgtttagtgccatttagaacactaactggacgtcaaagttattatatagatcat gaggtattccaacagtttggcgaaagtttaccggtatataaacctactttacctccaatg gtatttggtgctcgtgataaaaaagttaaaggtggacaagatacattagtgcttcgatac
- 45 cttacacctcatggaaaatggaatattcattcaacttatcaagataatgaacgcatgttg
 acgttgtttagaggtggaccagttgtatggatttcaaatgaagacgcagctgaccatggt
 attaatgataacgactggttagaagtatacaacagaaacggagttgttactgccagagct
 gtaacatctcatcgtatgcctagaggcacaatgtttatgtatcatgcacaagataaacat
 atagagacacctggttctgaaattactgatacgagagatatgcacaagattagcacaact
- 50 cgtattcacttgaaacctactcaattagtaggaggatatgcacaaattagttatcacttt aactattatggaccaattggaaatcaaagagatgagtatgtagctgttagaaaaatgaag gaggtcaattggcttgaagattaa

Sequence 2652

55 MTATPLYSDIVLPAATWYEKHDLSSTDMHPFIHPFNPAIDPLWESRSDWDIYKTLSKAVS EMAKDYLPGKFKDVVTTPLGHDSKQEISTEYGIVKDWSKGEIEGVPGKTMPNFSIVERDY TQIYDXFVTVGPKLEKGKIGAHGVSYSVSEEYEELKSIVGTWNDDNTISVKNDRPHIDTA RKVADVILNISSATNGKLSQKSYEDLENQTGMELKDISKERASEKISFLNITSQPREVIP TAVFPGSNKDGRRYSPFTTNVERLVPFRTLTGRQSYYIDHEVFQQFGESLPVYKPTLPPM

VFGARDKKVKGGQDTLVLRYLTPHGKWNIHSTYQDNERMLTLFRGGPVVWISNEDAADHG INDNDWLEVYNRNGVVTARAVTSHRMPRGTMFMYHAQDKHIETPGSEITDTRGGSHNAPT RIHLKPTQLVGGYAQISYHFNYYGPIGNQRDEYVAVRKMKEVNWLED*

Sequence 2653 Contig 0795 pos 0 646, is similar to (with p-value 0.0e+00) >qp:qp|AF029225|AF029225 2 Staphylococcus carnosus NarG, Nar H, NarJ, and NarI genes, complete cds. NID: g3929521.

- 10 atgglattgaatctagacaaatgtattggttgtcatacttgcagtgtgacatgta&aaac acatggacaaatcgacctggtgcagaatatatgtggtttaataacgtagaaacaaaaccg ggtgtaggatatccaaaaagatgggaagaccaaggacaatataaaggtggttgggtgcta aataaaaaaggaaagcttgaattaaaatctggtaacagatggtcaaaaattgctttaggt aaaatcttctataatccaqacatqccactcattcaaqattattatqaaccqtqqacatat
- aactatgaacacttaaccaatgctaaacaaggacagcactctcccgtggcgacagctcac tctttaatttcaqqtqataqattqaatcttaaatqqqqqccaaactqqqaaqatqattta gctqqaqqtcacattacaqqaccaqaqqatccaaatattcaqaaaataqaaqaaqatatt aaattccaattcqatqaqacatttatgatqtatttaccaaqactatqtqaacactqttta aatccaagttgcgtagcatcttgtccatcaggagctatgtataaacgagatgaggatggt
- 20 atcgtactcgtcgatcaagaagcctgtcgaggttggagatactgta

Sequence 2654

MVLNLDKCIGCHTCSVTCKNTWTNRPGAEYMWFNNVETKPGVGYPKRWEDOGOYKGGWVL NKKGKLELKSGNRWSKIALGKIFYNPDMPLIODYYEPWTYNYEHLTNAKOGOHSPVATAH 25 SLISGDRLNLKWGPNWEDDLAGGHITGPEDPNIQKIEEDIKFQFDETFMMYLPRLCEHCL NPSCVASCPSGAMYKRDEDGIVLVDQEACRGWRYCX

Sequence 2655 Contag 0796 pos 1625 2248,

- 30 putative peptide of unknown function atggattatgtatacacaatttataaaaatcctagatataacatcattcaaaaaagataat cqctatttaatqqtcqatttaqaacaaaattqqtattcatatttatqtccaatqctqaat tggtttatacctattaaattcacagaattaacttatcaagaattcaataatataaacata ${\tt tttcataatggaggacaaaagagtcatggtatgatggctgctggcgttggcgtcactatc}$ 35 agtgtgctattaagaagtcttgtgggttatatagatattaatattagtcgaatttggatagtttttatgtttttaattggatttgttgctgtgatcacacttcgtttatctataagaaag aaqttaaatcatccaqcatttaataaaaaqqqtaaacaaaaaqtaatattqataccatca tttaaaaatatqatattqqtqqtqttttqctattttatqatqctqtttttcccaattqca ccttttcaaatgatttttgaggaaaagaaaacatcttaggatatatactttgggtaggt
- 40 qtattatttatatttactactttqaatatqqcttcaatttctqataqaaaaqtacatqcc aaaattaaaaatataagaagatag .

Sequence 2656

MDYVYTIYKNPRYNIIOKDNRYLMVDLEONWYSYLCPMLNWFIPIKFTELTYOEFNNINI FHNGGOKSHGMMAAGVGVTISVLLRSLVGYIDINISRIWIVFMFLIGFVAVITLRLSIRK KLNHPAFNKKSKOKVILIPSFKNMILVVFCYFMMLFFSIAPFOMIFEEKKNILGYILWVG VLFIFTTLNMASISDRKVHAKIKNIRR*

Sequence 2657

50 Contig 0796 pos 4131 4508, putative peptide of unknown function atgcaattttattatagtaattgtgaacagaatgcatcaaacttattagtcatcaacqta caacctaatgaaggattttctttatgtqtqaatggtaaqaaaagtaatcaaaataatgaa atgcaaaaagtgaagctttcttatactatgccqattaaagataaaatgaacacagttgat 55 gaagaattaaaaattcttggaaatttattgatgatattgaaaatgtatggaaacaagaat agccacagtttcctaattatgcctttqgatgctatqqqcctaaagaaagtgaaaaattac ttagtgaagacggattga

Sequence 2658

MQFYYSNCEQNASNLLVINVQPNEGFSLCVNGKKSNQNNEMQKVKLSYTMPIKDKMNTVD AYENLIYDTLIGEQTKFTHWEELKILGNLLMILKMYGNKNSHSFLIMPLDAMGLKKVKNY LVKTD*

5

Sequence 2659
Contig_0796_pos_4627_0,
is similar to (with p-value 6.0e-53)

>gp:gp|L76359|STMDRRC_1 Streptomyces peucetius daunorubicin resistance protein (drrC) gene, complete cds. NID: gl196906. atggattttattaatattacaggtgcttcacaaaataacttgaaaaacatagatgtaaat atcccaaaacacttagtaacggtatttacaggtcgttctggttcagggaaatcatcttta gtgtttaatactgttgctgcggagtctgaacagctactaaatgaaagttattctagttat attcaatttcatttaaatcaacaacccagaccgaaagtaaagaaaattaaaaatcttcct gtagcaatgacgattaatcagaaaagattcaatgggaattctcgctccacggtaggaaca gtttcagatatatatagcttctgttagattactgtggtctagaataggcgaaccgtttgtt ggttattcagatgcatattccttcaatagtcctaagggcatgtgtaaaacttgtgagga ttaggatatattgaagacattaacttagatgaattgctagattgggataagtctttaaat gaaggtgcaatagactttccttcttttggaccagacaaagagcgtggtaaagcctatcga qafaqt

Sequence 2660

MDFINITGASQNNLKNIDVNIPKHLVTVFTGRSGSGKSSLVFNTVAAESEQLLNESYSSY IQFHLNQQPRPKVKKIKNLPVAMTINQKRFNGNSRSTVGTVSDIYASVRLLWSRIGEPFV GYSDAYSFNSPKGMCKTCEGLGYIEDINLDELLDWDKSLNEGAIDFPSFGPDKERGKAYR

Sequence 2661

Contig_0796_pos_728_342,

putative peptide of unknown function
atggctattgtaaataaggttattattgttgaaggtaaatcggataagaaaagagtacaa
caagtaatcgctgaacctgcaaatatcatttgtacacatggcactatgagtatagataag
atagacaacatgatagaaacactttatgacaaacaagtttatgttcttgccgattctgat
gatgagggtgaaaaaattagaaaatggtttaaacgttatttaagcgaaagtgaacatatt
tatgttgataaaacgttttgtgaggttgctaagtgtcctaaaaattatttagcacatgta
ttaagtagatatggttttaatgtaaaaaaagaaaagaaacttatgaataatttaaaaact
qaaaggctagttttagtaaatqaataa

Sequence 2662

40 MATVNKVTIVEGKSDKKRVQQVIAEPANIICTHGTMSIDKIDNMIETLYDKQVYVLADSD DEGEKIRKWFKRYLSESEHIYVDKTFCEVAKCPKNYLAHVLSRYGFNVKKEKKLMNNLKT ERLVLVNE*

Sequence 2663

45 Contig 0798 pos 5428 4553, putative peptide of unknown function atgatattgaattcaaaagttaaaggtattattgctatattgatttcagctgtgggtttt agttttatqtcaqtcttttttaqattqqccqqtqatttaccaqtctttcaaaaatctcta atgtttggaaaattaagtagtcaacccctactcatctcacgttcaacacttgggttaatt ggtgtcttacttaatatctacgcaattgatcacatggtattaagtgatgctgatacatta atgaaattaaatcctttttqqacaattqttcttaqtttaatttttttacatqaaaaqqta cqaaaatatcaaatcacggcgatgattattgctataatagggatgctattaattgttaaa ccaqaattttcatcatcaqttattccttcaataqcaqqattactatccqqtatttttqca 55 gcttctgcctacacatgtgttagagcactcagcactcgtgaaaaaccttatacgatagtg ttttatttttcattattctcaqttqtaqttcttatacctttttcaatatttacttataca cctatgacaacaattcaaattcttttcttactcggcgctggattatcagcagctqtaqqa caaattggtataacattggcttatagttttqctccaqcaaaagatatctccatcttcaca tatgcgtctataatatttactqcattatttqqatttattctgtttggagaatcacctgat

atgtttgcaacagtaggatatattgtcattatcggagcaagttactatatgtttgataaa qcaaqacgtgaaacaactataaatcaaaataattaa

Sequence 2664

MILNSKVKGIIAILISAVGFSFMSVFFRLAGDLPVFQKSLARNFVAMFIPLFFIYKYRQP MFGKLSSQPLLISRSTLGLIGVLLNIYAIDHMVLSDADTLMKLNPFWTIVLSLIFLHEKV RKYQITAMIIAIIGMLLIVKPEFSSSVIPSIAGLLSGIFAASAYTCVRALSTREKPYTIV FYFSLFSVVVLIPFSIFTYTPMTTIQILFLLGAGLSAAVGQIGITLAYSFAPAKDISIFT YASIIFTALFGFILFGESPDMFATVGYIVIIGASYYMFDKARRETTINQNN*

10 Sequence 2665

Contig 0798 pos 3629 2250,

is similar to (with p-value 0.0e+00)

>sp:sp|P94408|YCLF_BACSU HYPOTHETICAL 53.3 KD PROTEIN IN SFP
-GERKA INTERGENIC REGION. >gp:gp|Z99106|BSUB0003_15 Bacillus
subtilis complete genome (section 3 of 21): from 402751 to
611850. NID: g2632653. >gp:gp|D50453|D50453_69 Bacillus subt
ilis DNA for 25-36 degree region containing the amyE-srfA re
gion, complete cds. NID: g1805369.

- atgagagcaatgcttattttttatatgtattttgcactccaggaaaacggacttggaatg gacaaaacaacagccatgtctatcatgtctgtatatggatcattaatttatatgtcttca attccaggtggctggatagctgatagaattacaggtacccgaggtgccacattaatcgga gctatattaattattataggtcacatatgtttaaggcttccttttgcaatggtaggttta ttcacttctatgttctttattattgtaggatcaggtttaatgaaaccaaacatttcaaat attgttggtagactctatccagaaaacgacgtaggatgcaggatgctggatttgttatcttc

- 35 ttccaaaccattaacccattatttattttattttgcacccgtggttactcttttatgg caaaagctaggaaagaaacaacctagcctacctattaagtttgcaattggtactatttta gcaggcgcatcctacatacttatgggagcaatcggtcatatttatggggatacacaattc tcagttaactgggttattctttcatacgttatctgtgttattggtgagctttgtctctct ccaactggtagtagtgcagcagttaaattagcacctaaggcatttaacgcacaaatgatg
- 40 agcctttggttattaactaacgcttcagctcaggccattaacggtacattagttaaatta attaaaccacttggtcaaaccaattactttatcttcttaggtgttgttgcaaccgtgatt acgttaattatattagcgtttattcctaagatttctaaagcaatgaaaggtattcgttaa

45 Sequence 2666

MRAMLIFYMYFALQENGLGMDKTTAMSIMSVYGSLIYMSSIPGGWIADRITGTRGATLIG
AILIIIGHICLSLPFAMVGLFTSMFFIIVGSGLMKPNISNIVGRLYPENDVRMDAGFVIF
YMSVNMGALVSPIILQHYIDIRNFHGGFLIAAIGMALGLVWYLLFNRKTLGSIGMKPTNP
LSSSEKKKYGTIIGIVVIAIVLILMIAYFTHTLSFNLISNTVLILGIALPIIYFTTMIRS
KEVTDTERSRVKAFIPLFILGMLFWSIQEQGSNVLNIYGIENSDMKLNLFGWKTHFGEAI
FQTINPLFILLFAPVVTLLWQKLGKKQPSLPIKFAIGTILAGASYILMGAIGHIYGDTQF
SVNWVILGYVICVIGELCLSPTGSSAAVKLAPKAFNAQMMSLWLLTNASAQAING:LVKL
IKPLGQTNYFIFLGVVATVITLIILAFIPKISKAMKGIR*

55 Sequence 2667
 Contig_0798_pos_1595_672,
 is similar to (with p-value 7.0e-45)
 >sp:sp|P39074|BMRU_BACSU_BMRU_PROTEIN. >gp:gp|L25604|BACBMRU_RBE_1_Bacillus_subtilis_bmrU, multidrug_efflux_transporter_(

bmr) and its regulator (bmrR) genes, complete cds, and branc hed-chain 2-oxo acid dehydrogenase (bfmB) gene, 3' end. NID: q2558636. >qp:qp|D84432|BACJH642 251 Bacillus subtilis DNA, 283 Kb region containing skin element. NID: g2627063. :gp:g p|299116|BSUB0013 111 Bacillus subtilis complete genome (sec tion 13 of 21): from 2395261 to 2613730. NID: q2634723. atqaaacaaccqtataaccatqqtqttcttttctatcatqaacataqcqqtttqaaagat atacataatggcataggagaagttgcaaaatctcttagttcaatgtgtaaacacctctct cttcaactcagtgaaaataaaggcgatattattaaatattgtaaatctattaaaaatgaa 10 aattatagctctqatqtaqacgttttatttattttaggtggagatggtacacttaatgaa ctagtaaatggcgttatgcagtatcagttaaatttaccaatcggtgtaataccaggtggt acctttaacqattttacaaaaacacttcaactqcaccctaattttaaaacaqctaqtqaq caattattaacatcacatqctgaatcatatqatqttttaaaaqtgaacqacttatatgta cttaatttcqttqqacttqqcttaataqtacaaaatgcaqaqaatgttcaagatqgttct 15 aaaqatatattcqqtaaattcaqctatattqqatcaaccqttaaaacqttattaaatcct qttaaatttqatttctcattqactqttqatqqtqaaacaaaaqaaqqcaatacttcqatq atqttaataqcaaacqqtcccaatataqqtqqtqqacaaattccqctaaccqatttatcq ccacaaqatqqaaqaqcaaacacatttqtatttaatqatcaaacactaaatatattqaat qatatattaaaaaaacqtqataqtatqaattqqaacqaaatcacacaaqqtattqatcac 20 atatcaggtaagcacatcacactctcaacaaaccctagtatgaaagtggatattgatggc qaaattaatttaqaaacaccaattqaqattcaaqtattacccaaaqcqatacaacttctt actgcaactgaacaaaataattaa

Sequence 2668

25 MKQPYNHGVLFYHEHSGLKDIHNGIGEVAKSLSSMCKHLSLQLSENKGDIIKYCKSIKNE
NYSSDVDVLFILGGDGTLNELVNGVMQYQLNLPIGVIPGGTFNDFTKTLQLHPNFKTASE
QLLTSHAESYDVLKVNDLYVLNFVGLGLIVQNAENVQDGSKDIFGKFSYIGSTVKTLLNP
VKFDFSLTVDGETKEGNTSMMLIANGPNIGGGQIPLTDLSPQDGRANTFVFNDQTLNILN
DILKKRDSMNWNEITQGIDHISGKHITLSTNPSMKVDIDGEINLETPIEIQVLPKAIQLL
30 TATEONN*

--

Sequence 2669
Contig_0798_pos_0_315,
putative peptide of unknown function

33

Sequence 2670 MFVNYFTISKEWLYMLSVTKKNTYESNKDEVTQMIDSLAEKGQEALKELSKKSQHEINDI VHQMSMAAVDQHMHLAKLAYDETGRGIYEDKAIKNLYASEYIWNS

45

Sequence 2671 Contig_0799_pos_5458_5027, putative peptide of unknown function

atgttcaaaaatatattattaccctatgatttcgaaaatgattttagtgctatccctgac
tatttagaaaaagtcaccgatgaagattcagttgttgtaatttatcacgttgtaacagaa
aatgatcttgcaattagtgtcaagtattataaaagcataaagaagatattattagagaa
aaagagaaaaaactcactccatttttacgtgaattagaaaaaagagatattcaatataaa
atagatgtagattttgggcatattaaagatacaatcttagaaaaaattacttctggagat
ataaataatggtgaatttgatttagtaattatgagtaatcatagagtcgatttgaatatt
aaacatgttttaggagatgttacacataagattgctaaaagaagttctgtcccagtacta
attgttaaataa

Sequence 2672 MFKNILLPYDFENDFSAIPDYLEKVTDEDSVVVIYHVVTENDLAISVKYYNKHKEDIIRE KEKKLTPFLRELEKRDIQYKIDVDFGHIKDTILEKITSGDINNGEFDLVIMSNHRVDLNI KHVLGDVTHKTAKRSSVPVLIVK*

Sequence 2673 Contig 0799 pos 2591 1617, 5 putative peptide of unknown function atggaacgattttgttgtgtaaatcaaattaactatattcaaatgaatccgttagaagcc aa atttaaaacgagcgctctaagatcatggaaaactgatcaggcagatgctcataagcttgcttgtttaggaccgacgctcaaacaaacaggcagcttacctatacatgagttaatattc 10 tttqaattaaqaqaacqtqcccqttttcatctagaaatcgagaatgaacaaaatcgactt aaattttctttatgtttttctatttttactgagagaaataaagtqgtgacacaagattta tatqactctatttctaqaqcatattattqtctcqttqatacacaaqctaatcaaaatatq attgaacactacqcaqqattgaacatgaatqatattaatcttttaagggtaacgccttttqatqcqaaqtcattacctaaccaaagtagtcaattgtatgacacttatattggattatgg 15 atugatqutttqqacqaqattqaaatacqaqaqattqtaaacaqcttatttcaatatatt caacataaaqatqqctataaqttgaaaattttaactaaqagtagagataatcttacggaa aatcttataqatqaaqttqctcatctcaatqatttatatcaccaagaqaaaaaggaaata agtgatgtaattgaagacgtgatacagaataaaaaagaaacaatcattgatattgaaaca qtaccqtttqaaqaaqatcttqtaaqcqttatttcaaaattaaqaqttqtaqtaqattta 20 tctttaqaqccqaaactttttttacaaatctgttgtattggcgcgggtataccacaaatt aataaaaagagaacagattatgttaaacatatgcataatggatatattattgatgacata tcgcaaactgtagaatctttagattattttttggcacatttaaaaaatggaattattctt atqcatattccatqa

25 Sequence 2674
MERFCCVNQINYIQMNPLEAKFKTSALRSWKTDQADAHKLACLGPTLKQTGSLPIHELIF
FELRERARFHLEIENEQNRLKFSLCFSIFTERNKVVTQDLYDSISRAYYCLVDTQANQNM
IEHYAGLNMNDINLLRVTPFDAKSLPNQSSQLYDTYIGLWIDGLDEIEIREIVNSLFQYI
QHKDGYKLKILTKSRDNLTENLIDEVAHLNDLYHQEKKEISDVIEDVIQNKKETIIDIET
30 VPFEEDLVSVISKLRVVVDLSLEPKLFLQICCIGAGIPQINKKRTDYVKHMHNGYIIDDI
SOTVESLDYFLAHLKNGIILMHIP*

Sequence 2675 Contig 0799 pos 1108 701,

Sequence 2676

45 MFPPRTPSRDATNPPQQLLQLLGIPSNITHLTYNFSEHALPWISFIVHYSFSIAIAIIYI YIAKKYTKITLGYGALFGIVIWIVFHLILMPIMHVVPNAFDQPFSEHLSEFFGHIVWMMV IEMVRRYFYNIQLNK*

Sequence 2677

50 Contig_0800_pos_2627_2971,
 putative peptide of unknown function
 gtgacaaaccggaggaaggtggggatgacgtcaaatcatcatgccccttatgatttgggc
 tacacacgtgctacaatggacaatacaaagggcagcgaaaccgcgaggtcaagcaaatcc
 cataaagttgttctcagttcggattgtagtctgcaactcgactatatgaagctggattcg

55 ctagtaatcgtagatcagcatgctacggtgaatacgttcccgggtcttgtacacaccgcc
 cgtcacaccacgagagtttgtaacacccgaagccggtggagtaaccatttggagctagcc
 gtcqaaggtgggacaaatgattggggtgaagtcgtaacaaggtag

Sequence 2678

VTNRRKVGMTSNHHAPYDLGYTRATMDNTKGSETARSSKSHKVVLSSDCSLQLDYMKLES LVIVDQHATVNTFPGLVHTARHTTRVCNTRSRWSNHLELAVEGGTNDWGEVVTR*

Sequence 2679 5 Contig 0802 pos 6032 5214, is similar to (with p-value 0.0e+00) >sp:sp!P23966|MENB BACSU NAPHTHOATE SYNTHASE (EC 4.1.3.36) (DIHYDROXYNAPHTHOIC ACID SYNTHETASE) (DHNA SYNTHETASE). >pir: pir | A42715 | A42715 dihydroxynapthoic acid synthetase - Bacill 10 us subtilis >gp:gp|M74521|BACMENAQUI 6 Bacillus subtilis men aquinone operon, complete cds. NID: $\bar{g}557486$. >gp:gp|M74538|B ACMENAQOP 4 Bacillus subtilis menaquinone operon: menF, menD , menB and menE genes, complete cds. NID: g1185287. atgactagacagtgggaaacacttagagaatatgatgaaattaaatatgaatttttcgaa 15 gggattqccaaaqtaacqattaatcqtccaqaaqtaaqaaatqcatttactcctaaaaca gttgctgaaatgattgatgcattttcacgtgcgcgtgatgatcaaaatgtatcagtaatt gtattaactggtgaaggggacaaagcgttttgttcaggtggagatcaaaaaaacgtgga cacgqtqqttatqtaqqtqaaqatqatattcctcqtttaaatqtattaqatttacaacqt ttaattcgtgtgattcctaaaccagtaatagcaatggttagaggctatgcaattggtgga 20 ggaaatgtacttaatgttgtttgtgatttaactatcgctgcagacaatgctatttttgga caaactggaccaaaaqtaggctcatttqatqctqqqtacqqttctqqctacctaqctcqt atagttggccataaaaaagcaagagaaatctggtacttatgccgtcaatataatgcacag qaaqctttqqatatqqqcttaqtqaatactqtaqttccattaqaacaaqttqaaqacqaa acagttaaatggtgtaaagacatcatgcaacactcaccaactgctttacgtttcttaaaa 25 gcagcaatgaatgctgatactgatggtttagctggtttacaacaaatggctggagatgcg achttacttactactactqatqaaqcqaaqqqaqqtqacqcqtttaaaqmaaa cqtaatuctqattttqaccaattccctaaattcccataa

Sequence 2680

30 MTRQWETLREYDEIKYEFFEGIAKVTINRPEVRNAFTPKTVAEMIDAFSRARDDQNVSVI VLTGEGDKAFCSGGDQKKRGHGGYVGEDDIPRLNVLDLQRLIRVIPKPVIAMVRGYAIGG GNVLNVVCDLTIAADNAIFGQTGPKVGSFDAGYGSGYLARIVGHKKAREIWYLCRQYNAQ EALDMGLVNTVVPLEQVEDETVKWCKDIMQHSPTALRFLKAAMNADTDGLAGLQQMAGDA TLLYYTTDEAKEGRDAFKEKRNPDFDOFPKFP*

35

45

55

Sequence 2681
Contig_0802_pos_1667_123,
is similar to (with p-value 0.0e+00)

>sp:sp|P39634|ROCA_BACSU 1-PYRROLINE-5-CARBOXYLATE DEHYDROGE NASE (EC 1.5.1.12) (P5C DEHYDROGENASE). >pir:pir|S39731|S397 31 hypothetical protein - Bacillus subtilis >gp:gp|X73124|BS GENR_77 B.subtilis genomic region (325 to 333). NID: g413923 . >gp:gp|Z99123|BSUB0020_74 Bacillus subtilis complete genom e (section 20 of 21): from 3798401 to 4010550. NID: g2636240

atggtagtacctttcaaaaatgaacctggtattgatttttcagtacagacaaatgttgag cgttttaatgaagaattaaggaaagtaaaaggcaactaggacaagatataccacttgtg attaacggagaaaaacttactaaaactgatacttttaattcagtgaatcctgcgaataca tcacagctcattgcgaaagtgtctaaagcaacgcaagatgatattgaaaaagctttcgaa tcagcaaatcatgcgtatcaatcatggaagaagtggtcgcataaggaccgtgcagaatta ctgttacgtgtagccgcaattatccgtcgtcgaaaagaggaaatttccgctattatggtt tatgaagccggcaagccttgggatgaagcagttggagatgcagctgagggtattgattt atagaatattatgcaagatcaatgatggaacttgcagatggtaagccagtattagacag gaaggtgaacataatcgctatttttataaacctattggtacaggcgtgacaattccacca tggaatttccatttgcaattatggctggtacaaccttagcccctgttgttgcaggtaac actgtattattaaagcctgctgaggatacagttttgactgcttataaattaatggaaata ttagaagaagaggtttacccaaaggtgttgtaaattttgtccctggtgatccaaaagaa attggagattatttagtcgaccataaaggtgttgtaaattttgtcacatttacaggatcccga gctacaggtacacgtatttatgaacgtagtgtgtagtgcaagaagaacaacttttt

aaacgtgttattgcagagatgggtggcaaagatgcgatagttgtagataataatgtagat
acagatttagcggctgaagcaattgttacatctgcttttggtttctctggtcaaaaatgc
tctgcgtgttctcgtgtcatagtccatcaagacgtacatgatgaaatattggaaaaagca
attcaattaactcaaaaattaactttaggtaatactgaagagaacacatttatggggcca
gtaattaatcaaaaacaatttgataaaatcaaaaattatattgaaattggtaaaaaagaa
ggcaaactagagactggtggtggaacagatgattctaccggttatttcattgaaccaacg
atttctccggactacaatctgcggatcgtatcatgcaagaagaaatttttggaccagtc
gtaggctttattaaggtcaaggattttgatgaggctattgaagtagctaatgatactgac
tatggtttgacaggcgctgtaattactaatcatcgtgaacattggattaaggctgtgaat
gaatttgatgtaggtaacctttacttgatagaggttgtacagctgcagtagtgggttat
catccatttggtggattcaagatgtctggtacagatgctaaaacaggaagtccagattac
ttacttaatttcttaqaacaaaaagttgtttctqaaatgttttaa

Sequence 2682

10

- 15 MVVPFKNEPGIDFSVQTNVERFNEELRKVKAQLGQDIPLVINGEKLTKTDTFNSVNPANT
 SQLIAKVSKATQDDIEKAFESANHAYQSWKKWSHKDRAELLLRVAAIIRRRKEEISAIMV
 YEAGKPWDEAVGDAAEGIDFIEYYARSMMELADGKPVLDREGEHNRYFYKPIGTGVTIPP
 WNFPFAIMAGTTLAPVVAGNTVLLKPAEDTVLTAYKLMEILEEAGLPQGVVNFVPGDPKE
 IGDYLVDHKDTHFVTFTGSRATGTRIYERSAVVQEGQQFLKRVIAEMGGKDAIVVDNNVD
 TDLAAEAIVTSAFGFSQKCSACSRVIVHQDVHDEILEKAIQLTQKLTLGNTEENTFMGP
 VINQKQFDKIKNYIEIGKKEGKLETGGGTDDSTGYFIEPTIFSGLQSADRIMQEEIFGPV
 VGFIKVKDFDEAIEVANDTDYGLTGAVITNHREHWIKAVNEFDVGNLYLNRGCTAAVVGY
 HPFGGFKMSGTDAKTGSPDYLLNFLEQKVVSEMF*
- Sequence 2683 Contig_0804_pos_874 1548, is similar to (with p-value 3.0e-76) >sp:sp|P39788|END3 BACSU PROBABLE ENDONUCLEASE III (EC 4.2.9 9.18) (DNA-(APURINIC OR APYRIMIDINIC SITE) LYASE). >qp:qp|L4 30 7709|BACYPIA 26 Bacillus subtilis (clone YAC15-6B) ypiABF ge nes, qcrABC genes, ypjABCDEFGHI genes, birA gene, panBCD gen es, dinG gene, ypmB gene, aspB gene, asnS gene, dnaD gene, n th gene and ypoC gene, complete cds's. NID: gl146223. >gp:gp |U11289|BSU11289_3 Bacillus subtilis 168 asparaginyl-tRNA sy nthetase (asnS) and endonuclease III (jooB) genes, partial c 35 ds and DnaD protein (dnaD) and (jooC) genes, complete cds. NID: q533096. >qp:qp|Z99115|BSUB0012 174 Bacillus subtilis c omplete genome (section 12 of 21): from 2195541 to 2409320. NID: q2634478.

Sequence 2684

MERILMISKKKALQMIDVIADMFPNAECELNHRNAFDLTIAVLLSAQCTDNLVNRVTQSL

55 FRKYRTPEDYLNVSDEELQNDIRSIGLYRNKAKNIKKLCHSLIEQFNGQIPQTHKELESL
AGVGRKTANVVMSVAFGEPSLAVDTHVERVSKRLGINRWKDSVRQVEDRLCDIIPRDRWN
KSHAQLIFFGRYHCLARKPKCEICPLLNDCREGQKRHKAKIKEA*

Sequence 2685

10 Sequence 2686
MIEKQDFNHIEDQLDQLASNKQLKTPEARELLDSYFDLIINYFKQINNIDEIHFNQLDTY
PVVPMNFDERYHYMVARKHHFMGYRQMKTLKSELIKMNASYLIRKQRQQK*

Sequence 2687

Contig_0804_pos_5054_0,
 is similar to (with p-value 1.0e-16)

>gp:gp!AF076683|AF076683_2 Staphylococcus aureus oligopeptid e transporter putative substrate binding domain (opp-1A), ol igopeptide transporter putative membrane permease domain (op p-1B), oligopeptide transporter putative membrane permease d omain (opp-1C), oligopeptide transporter putative ATPase domain (opp-1D), and oligopeptide transporter putative ATPase d

omain (opp-1F) genes, complete cds; and unknown gene. NID: g

3800817.

25 atgctcaaacgtacaattaaattcatactttatttaatcgtaagttcgtttattatcttc attttagttgagaagacatctggtaatccagcgattctgtatctacaacgtcatggttat acgtcgattacgcaagacaatattgaagcggcacaacatcaacttggcttaggacaacat gtgttactaagatatatcgattgggttggacatgcactcacgggcaacttaggatacggc tttagtaccagaagcagttaccgctatgataatggaagccatcgtgccgacgcitgtg ctaatcattgtctctagttgtatcatgttgccatttggctatattgttggttactcgtt gggacgcgtccgcatacacgttacgctaatggaattcgtggattcgcccaagtgatgacc tcaatgccagaatactggttagctattttattcatttattatttaggcgtacgttggcaa ttgttaccatttgtaggtagtgattcatggcaacctttgtgccaatcttcacaatt gttgttatagaagggtgtcatatcttattgatgacagcacatctgattacacaaacgtta gatcaagatgcgtatcaactggcgcagttaagacatttttcqttaaaaagcgcgtatcatc

Sequence 2688

gtacaaattaaaqagatatttgcaccac

MLKRTIKFILYLIVSSFIIFILVEKTSGNPAILYLQRHGYTSITQDNIEAAQHQLGLGQH
VLLRYIDWVGHALTGNLGYGFSTNEAVTAMIMEAIVPTLVLIIVSSCIMLPFGYIVGYFV
GTRPHTRYANGIRGFAQVMTSMPEYWLAILFIYYLGVRWQLLPFVGSDSWQHFVLPIFTI
VVIEGCHILLMTAHLITQTLDQDAYQLAQLRHFSLKARIIVQIKEIFAPX

Sequence 2689

- 45 Contig_0804_pos_3696_3097,
 is similar to (with p-value 5.0e-33)
 >gp:gp|AF068901|AF068901_4 Streptococcus pneumoniae penicill
 in-binding protein 2b (pbp2b), RecM (recM), D-Ala-D-Ala liga
 se (cdl), D-Ala-D-Ala adding enzyme (murF), MutT (mutT), cel
 50 l division protein FtsA (ftsA), cell division protein FtsZ (
 ftsZ), YlmE (ylmE), YlmF (ylmF), YlmG (ylmG), YlmH (ylmH), c
 ell division protein DivIVA (divIVA), and isoleucine-tRNA sy
 nthetase (ileS) genes, complete cds; and unknown gene. NID:
 q4009462.
- 55 atgataaacgtaacattagagcaaattaaaaactggatagattgtgaaattgatgaaaaa catttaaaaaaacaataaatggcgtttcaattgattcacgaaaaatcaatgaagggcg ttatttataccttttaaaggtgagaatgttgatggccatcgttttatcacacaagctttg aacgatggtgctggagctgtttttagtgaaaaagagaataaacattctgaagggaaccaa ggtcctattatttgggtagaagatactttaatagccttacagcaattggcaaaagcatat

ctaaatcatgtaaatcctaaggtgatagcggttactggttctaatggaaaaacaacaacaacaaagacatgattgaaagtgtattatcaactgaatttaaagttaagaaaacacaaggaaattaataatgaaattggaatgccgttgactttactagaacttgatgaagacacagaaatt tctattctagaaatggggatgtcaggttttcatcaaatagagttgttatctcatatcgca caacctgatatagcggtcatcacaaacattggcgaatcacatatqcaagatttaaaataa

Sequence 2690

5

MINVTLEQIKNWIDCEIDEKHLKKTINGVSIDSRKINEGALFIPFKGENVDGHRFITQAL

10 NDGAGAVFSEKENKHSEGNQGPIIWVEDTLIALQQLAKAYLNHVNPKVIAVTGSNGKTTT

KDMIESVLSTEFKVKKTQGNYNNEIGMPLTLLELDEDTEISILEMGMSGFHQIELLSHIA

QPDIAVITNIGESHMQDLK*

Sequence 2691

15 Contig_0804_pos_2647_2078,
 is similar to (with p-value 3.0e-57)
 >gp:gp|Y17795|SAU17795_2 Staphylococcus aureus prfA, pbp2 ge
 nes. NID: g3955029.

- atggtaggttgtcgcattagatatgaatactatcgttcggcttatggacatggtgtgtca
 ggrgtaaacatgggtgcgaaaactggtactggtacgtatggacaagaaatatacgaaaag
 tataatttacctgataatgctgccaaagatgtttggattaatggtttcagtccagaatat
 actatgtcggtatggatgggcttcaataaggttaaacaatatggaacaaattcatttatc
 ggtcattcagaacaagattatccacaatacttgtatgaagatgtgatgtctagtatctca
 tctaaagatggtgaagatttcaaaaaggcctaatgatgtacaaggaagttcaccggacagt
- 25 ctatctgtatcaggtcattctgataataatactactaaccgtagtgttcatggaagtagc gatacatcttcttcatcaaatggtggctctaactcagcatcaagtggaaacaactcgaat agttcgaatggtaccagtcaaggtaactcaggcaatgcatttacacgtctgttcaattta aactctatattcgattataaagtttcataa
- 30 Sequence 2692

MVGCRIRYEYYRSAYGHGVSGVNMGAKTGTGTYGQEIYEKYNLPDNAAKDVWINGFSPEY TMSVWMGFNKVKQYGTNSFIGHSEQDYPQYLYEDVMSSISSKDGEDFKKPNDVQGSSPDS LSVSGHSDNNTTNRSVHGSSDTSSSSNGGSNSASSGNNSNSSNGTSQGNSGNAFTRLFNL NSIFDYKVS*

35

Sequence 2693 Contig_0804_pos_913_473,

putative peptide of unknown function

- 45 gcgtttggctatctcgtggtctattgtataatctttgtgagtaf aagaaaggagatgtacactaa

Sequence 2694

MLFSYLSLGFSPFNQSNFSVAHFYKDVHMTVFQWIFSALTLWIGVSLFLTLGLIIAQLND 50 IQKASSFANLLNITLAILGGLWFPVYTFPDWLQSISKHMPTYNLKLLAIDLAQNKGVNIE AFGYLVVYCIIFVSIALFMNKKGDVH*

Sequence 2695

Contig 0804 pos 0 452,

tttttcttctatagtgctttcgccttaccttttatttttaatgttcgtgttgtatcaaaa gaatttataacctttttaatagctatgataagttgtttaatactaacttatatttaat ccaacatttgtggttccattaagtgcattttatttggttatattaattgttgctgtaggt aattttaaaaaatagagacgaacgaattatGAC

5

Sequence 2696
VRIGELSTLIYLIFPILAIFVDKRGNFLTYLIVCTIFIISYVTMIIFYKYLSDSILYSLL
VIHYLGIFYFVYSVNPMNSLFFFYSAFALPFIFNVRVVSKEFITFLIAMISCLILTYIFN
PTFVVPLSAFYLVILIVAVGNFKNRDERIMT

10

Sequence 2697
Contig_0805_pos_575_1141,
putative peptide of unknown function

atgaaaggtttaattattatagggagtgctcaagtagggtctcatacgaacgctttatca
aaatatttaaaaggtcaactcggcgaacatgatgttgaggtggaaatctttgacctagct
gagaaacccattcatcaattggattttgctggtacaacacaagcagttgatgaaattaaa
aacaatgtcaaatctttacaaaataaagcaatggaagcagatttcttaattttaggaacg
ccaaattatcatggatcgttttcaggtattcttaaaatgcacttgaccaccttaatatg
gaccatttcaaaatgaaacccgtgggactcatttgcaatagtggaggaatagtaagttct
gagccattatcacacttgagagtcatcgtacgtagtttacttggtattgctgtaccaacg
caaattgctacacatgattctgattatgctaaattagaagatggtaccttatacttagaa
gataatgaatttcaactacgttcaaaattgttgttgatcaaattgtatccttcgtaaca
aatagtccatatgaacacttaaaataa

25 Sequence 2698

MKGLIIIGSAQVGSHTNALSKYLKGQLGEHDVEVEIFDLAEKPIHQLDFAGTTQAVDEIK NNVKSLQNKAMEADFLILGTPNYHGSFSGILKNALDHLNMDHFKMKPVGLICNSGGIVSS EPLSHLRVIVRSLLGIAVPTQIATHDSDYAKLEDGTLYLEDNEFQLRSKLFVDQIVSFVT NSPYEHLK*

30

40

45

50

55

Sequence 2699
Contig_9805_pos_1585_2421,
is similar to (with p-value 1.0e-95)

>gp:gp|Y17116|SEY17116_1 Staphylococcus epidermidis gene enc oding fibrinogen-binding protein, complete CDS. NID: g320154 9.

gataatgtagaagattcacacgtatcagattttgctaactctaaaataaaagagagtaac actgaatctggtaaagaagagaatactatagagcaacctaataaagtaaaagaagattca acaacaagtcagccgtctggctatacaaatatagatgaaaaaatttcaaatcaagatgag ttattaaatttaccaataaatgaatataaagtaacgaaacttagcgtcactttcttcatt gaaaagaaccgtgaaatacttttqactttcatatcaattctccttatgaattataa

Sequence 2700
MINKKNNLLTKKKPIANKSNKYAIRKFTVGTASIVIGATLLFGLGHNEAKAEENSVQDFK
DSNTDDELSDSNDQSSDEEENDVINNNQSINSDDNNQINKKEETNNNDGIEKSSEDRTES
TTNVDENEATFLQKSPQDNTHLTEEEVKEPSSVESSNSSIDTAQQPSHTTINREESVQTS
DNVEDSHVSDFANSKIKESNTESGKEENTIEQPNKVKEDSTTSQPSGYTNIDEKISNQDE
LLNLPINEYKVTKLSVTFFIEKNREILLTFISILLMNY*

Sequence 2701

Sequence 2702

MLIDIVVLLIICYFIVIGFRRGIWLSILHFASSIVSLYIASQHYQSIAQRLVVFVPFPKT
VAFDMVYTIPYDHLQYRFEKVIAFIIIFGMCKLILYLVVVTFDNIITYKKIHLVSRISSV
VLSIIAVFIYLQIGLYLLSLYPHSFIQYQLSQSLLSRVVIEQIPYLSQFILNL*

Sequence 2703 Contig 0805 pos 4994 5461,

cttatgaatcaaaaatacaataaataa

- 30 Sequence 2704
 MTKKDVIQLLEKIAIYMELKGENTFKVSAYRKAAQSLEVDERTLEEIDDVTELKGIGKGV
 GEVINEFKTQGQSSTLQALQDEVPEGLVPLLKIQGLGIPLIIIIFFNNWIYPHIHRFTIW
 TPVGFKLDNYWISTTNSRIKFFGLMNIFHHYLLLL*
- 35 Sequence 2705 Contig_0805_pos_3875 2949, is similar to (with p-value 2.0e-34) >sp:sp[007874]RNH2 STRPN RIBONUCLEASE HII (EC 3.1.26.4) (RNA SE HII). >qp:qp|U93576|SPU93576 1 Streptococcus pneumoniae r 40 ibonuclease HII (rnhB) gene, complete cds. NID: g2209338. atgggaaatgtcgtatacaaactcacgtcaaaaqaaattcaatcattgatggctcaaact acttttgagacgacgaagttacctcaaggtatgaaagctcgtacgagatatcaaaatact $\tt gttations tatotatagttotggcaaagtaatgtttoaaggtaagaatgotgaachaott$ actaqtattcaatataatcqttttcattgtattgqaaqcqatqaaqcagqcagtggcgac tattttqqtccattqactqtatqtqcaqcttatqtqaqccaatcacatatcaaaatctta aaaqaacttqqtqtaqatqattcaaaaaaactaaqcqatactaaaatcqtcqatcttqca qaacaqctcattacctttatcccqcattctttattaacattagataatgttaagtataac qaacqacaaagtctaggatggtctcaagttaaaatgaaagctgtcttacataatgaagct 50 atcaaaaatgtgcttcaaaaaattgagcaagatcaactggattatattgttattgatcaa $\verb|tttgcaaagcgagaagtttatcaacattatgcattatcagcattaccttttcctgacaaa|$ tctcgttatgcatttgttaaacacatggaccacatctctaaaaaaactccatatggaaata ccaaaaggaqcaaqtaacaaagtagatttaattqccqctaaagtcattcaaaaatatqat 55 attcaacaacttqatactatttcaaaaaacattttaaaaacaqaqataaaqcaattcat

Sequence 2706
MGNVVYKLTSKEIQSLMAQTTFETTKLPQGMKARTRYQNTVINIYSSGKVMFQGKNAEQL

ASQLLPNKQSTTGKHTSSNTTSIQYNRFHCIGSDEAGSGDYFGPLTVCAAYVSQSHIKIL KELGVDDSKKLSDTKIVDLAEQLITFIPHSLLTLDNVKYNERQSLGWSQVKMKAVLHNEA IKNVLQKIEQDQLDYIVIDQFAKREVYQHYALSALPFPDKTKFETKGESKSLAIAAASII SRYAFVKHMDHISKKLHMEIPKGASNKVDLIAAKVIQKYDIQQLDTISKKHFKNRDKAIH LMNQKYNK*

Sequence 2707
Contig_0806_pos_2408_3289,
is similar to (with p-value 0.0e+00)

- >sp:sp|P37565|YACC_BACSU HYPOTHETICAL 31.8 KD PROTEIN IN FTS
 H-CYSK INTERGENIC REGION. >gp:gp|D26185|BAC180K_134 B. subti
 lis DNA, 180 kilobase region of replication origin. NID: g46
 7326. >gp:gp|Z99104|BSUB0001_71 Bacillus subtilis complete g
 enome (section 1 of 21): from 1 to 213080. NID: g2632267.
- atya.ac.tgattatatagtgagaggtttagcatacggtggggaaataagagcatatgct gcaatcacaacagagtcagtacaagaagcacaaacacgtcattatacatggcctactgct tctgccgctatgggaagaactatgacagctactgttatgatgggtgcaatgttaaaagga aaccaaaagttaacagttactgttgatggcaaaggtccaattggcagaattattgctgac gcagatgctcaaggaaatgttcgtgcatatgtagaccatccacaaacgcattttccactc aacgatcaaggtaaattggatgcagcagcagttggtactgatggttccattcaggtt gttaaagatgttggaatgaaagactacttttctggtgcgagtccaatagtatcaggtgag ctaggagatgtttcacatcatcatcatcactactactactactactacaaggagagtgattattattattcaa gttatgccaggtgctactgatgaaacggtgactaaattagaagagccattagtcaaatg caacctgtatcgaaattaattgagaaacggtgactacactgaaggaatattaaatgaaatt ttgggtgaaggtaatgttcaaattttaaattcaacgtcagcgcaatttgaatgtaattgt agtcatgagaaatttttaaatgctattaaaggatttaggagagaqacatcatactacaaggagaattttaaattgaaatt agtcatgagaaatttttaaatgctattaaaggtttaggagagaqaaattcatagcatg agtcatgagaaatttttaaatgctattaaaggtttaggagagaqaaattcatagcatg

30
Sequence 2708
MTHDYIVRGLAYGGEIRAYAAITTESVQEAQTRHYTWPTASAAMGRTMTATVMMGAMLKG
NQKLTVTVDGKGPIGRIIADADAQGNVRAYVDHPQTHFPLNDQGKLDVRRAVGTDGSIQV
VKDVGMKDYFSGASPIVSGELGDDFTYYYATSEQTPSSVGLGVLVNPDNSIKAAGGFIIQ
VMPGATDETVTKLEEAISQMQPVSKLIEQGLTPEGILNEILGEGNVQILNSTSAQFECNC

SHEKFLNAIKGLGEAEIHSMIKEDHGAEAVCHFCGNKYQYSESELEDLLETMK*

agtgaaagtgaattagaagatttattagaaacaatgaaatag

Sequence 2709 Contig 0806 pos 3617 4558,

- 40 is similar to (with p-value 0.0e+00)
 >sp:sp|P37887|CYSK_BACSU CYSTEINE SYNTHASE (EC 4.2.99.8) (O-ACETYLSERINE SULFHYDRYLASE) (O-ACETYLSERINE (THIOL)-LYASE) (CSASE).
- ggccctcataaattacaaggattgggagcaggtttcgtacctgatactttaageggtggtgaacca gtttatgacagcatcatcaaagtaggtaatgatactgctatggatatggcacgtcgtgtt gctagagaagaaggtatattagcaggtatttcatctggtgctgcaatatatgctgctatt caaaaagcaaaagaattaggtaaaggtaaaacagttgtaacagtattaccaagtaatggg gaacgttacttatcaacaccattatattcatttgataattaa

Sequence 2710

VFWMAQKPVDYVTQIIGNTPVVKLRNVVDDDAADIYVKLEYQNPGGSVKDRIALAMIEKA EREGKIKPGDTIVEPTSGNTGIGLAFVCAAKGYKAVFTMPETMSQERRNLLKAYGAELVL TPGSEAMKGAIKKAKELKEEHGYFEPQQFENPANPEIHELTTGPELVEQFEGRQIDAFLA GVGTGGTLSGVGKVLKKEYPNVEIVAIEPEASPVLSGGEPGPHKLQGLGAGFVPDTLNTE VYDSIIKVGNDTAMDMARRVAREEGILAGISSGAAIYAAIQKAKELGKGKTVVTVLPSNG ERYLSTPLYSFDN*

10 Sequence 2711

Contig_0806_pos_5681_6160, putative peptide of unknown function

gtgaaaacttataacaataatcaatctgtgggtaacttcttaagtgtttcagtacaagat qqtcaaacaqttaaacaaqqtgaacqtatcatcaattatgatacaaatgggaataaacgc

- - Sequence 2712

VKTYNNNQSVGNFLSVSVQDGQTVKQGERIINYDTNGNKRQQLLNKVNQAQSQVNDDYQK

VNQSPNNHQLQVKLTQDQSALNEAQQSLSQYDRQLNDSMNASFDGKINIKNDSDVGEGQP
ILQLISSNPQINATITEFDINKIKEGDEVNVTVNSKCPI*

Sequence 2713

Contig 0806 pos 6623 6060,

- putative peptide of unknown function
 atgagaaaaggaaatcagaatgaagctttagaagaatttatcggaactttattaaaagat
 gagcaatattattatgagttagcattttttagaaagtgaaacacaaaatcttgaaatcata
 atggagaagatgattaagcaaggaattacaaaatttcgtattgtacctttactcatttt
 agtgcaatgcattatatcagtgatattccacaaatacttaaagagatgaaagctcgatat
- 35 ccacaaattgatagtaaaatgagtgcgcctcttggtacacatccatatatgaaaacatta gtagaaaatagaattgctgatgaaaaagtcagtgaaggttcaaccaaagcaactatagta attgcccatggaaatggaagtggacgttttacgaaagcacatgatgaattaaaagcattt gttaaaacgcttgatagtcatcatcctgtttatgcaagagctttatatgggacatttgct atttacagtgacatttacttcatcgccttctttaattttattaatatcaaactctgtgat
- 40 agttgcgttaatttgaggatttga

Sequence 2714

MRKGNQNEALEEFIGTLLKDEQYYYELAFLESETQNLEIIMEKMIKQGITKFRIVPLLIF SAMHYISDIPQILKEMKARYPQIDSKMSAPLGTHPYMKTLVENRIADEKVSEGSTKATIV

45 IAHGNGSGRFTKAHDELKAFVKTLDSHHPVYARALYGTFAIYSDIYFIAFFNFINIKLCD SCVNLRI*

Sequence 2715

Contig_0806_pos_5264_4722,

atctgctacttcatgatatcattcatttcaataagttttgagtatatattatcggcatat

taa

Sequence 2716

MSTQELKENDIQNSSIPFVNHFNKLRHQPKWILKSIIVIVLAIISAFITYNTSNELLDNQ SIANSQMDENMFRMSTTIGAFIGTIFSVVVVFLIFLIISKIFKSDAKASSLFSAALSYSI IILGFTTIISLIQIVFGLKITDYKLDSLNIFSKDNKTLMDICYFMISFISISFEYILSAY

Sequence 2717

Contig_0806_pos_833_267,
 is similar to (with p-value 3.0e-54)
>sp:sp|P37476|FTSH_BACSU CELL DIVISION PROTEIN FTSH HOMOLOG
(EC 3.4.24.-). >gp:gp|D26185|BAC180K_132 B. subtilis DNA, 18
0 kilobase region of replication origin. NID: g467326. >gp:g
p|Z99104|BSUB0001 69 Bacillus subtilis complete genome (sect

acaccttttggaattettgaacccatttgtttaaatttettgttatettttaagaaatet acaatttetattaattettgtttetettegteageteetgetacatetgagaaacgaact egacgtttattaetgtegtacatettagetttggatttteeaaagtteateataegaeca ecacegeegecacettgggettggetaaggaagaaaataaataatgcaatgattaat acaggaateagtgegttaaaatactaacgaatacaetttgtttteettettettaaet

25 gtaaatttaagattatettgtttettagetgtatetgtgattttttgtaaatettttea ttgttatataaaattgtegatgagtaa

Sequence 2718

MIHGAFFLAFSNKSRTRLAPTPTNISTKSDPLIEKNGAPASPATARANNVLPVPGGPTSK

TPFGILEPICLNFLLSFKKSTISINSCFSSSAPATSEKRTRRLLLSYILALDFPKFIIRP
PPPPPWAWLRKKINNNAMINTGISVVKILTNTLCFSSSLTVNLRLSCFLAVSVIFCKSFS
LLYKIVDE*

Sequence 2719

35 Contig_0808_pos_5584_4772,
 is similar to (with p-value 1.0e-62)
 >gr:qp[AJ223960|LLCAJ3960_4 Lactococcus lactis cremoris MG13
 63-ir.vi chromosomal inversion junction DNA. NID: g3647234.

atgaaagatcaattgagaggtaatgtcgtgattatacatcaacctgcagaagaaatgcca
ccgggcggtgcgaaaggtatgatagatgacggcgtattagaaggggtggaccatgtttta
ggtgcacatgtgatgagtatgatggaaacaggtaaaatatactatcgtgaaggttttgtt
caaacgggacgcgcttattttagacttgttgtgaaaggtcagggtggtcacggctcatcc
ccacatacatcgaatgacgctattgtagcaggtgcgcattttgtaacgaccgcacagacc
attgtttcaagacgcttaaatccgtttgaaacgggtgtagtcacaataggttccttcgac
gggaaaggacaattcaatgtgattaaagatacaataacaatcgaaggtgatgtacgtgca
ctgactgatgatacaagagacaatattcagaatgaaatgacacgactagtcagaggatta
gaagagatgttcggagtgatttgtgattttgaatttaaaaaggattatccagctctttac

aatgatcctgaatttacttcttatgtagcaacaactttaaaaaatgctaagctggatgac ataaaagcaatagatatttgtggagccgcagccacctcagaagatttcgcgttttatgcg ttagaaagaccttcaacatttatttattcgggtgcagcaccagaagatggacctatgtac cctcaccatcatcctaagtttaatatcaatgaaacatctatgcttgtagttgcagaggca qtqqqtacaattqtattaqattatttqaaataa

Sequence 2720

55 MKDQLRGNVVIIHQPAEEMPPGGAKGMIDDGVLEGVDHVLGAHVMSMMETGKIYYREGFV
QTGRAYFRLVVKGQGGHGSSPHTSNDAIVAGAHFVTTAQTIVSRRLNPFETGVVTIGSFD
GKCQFNVIKDTITIEGDVRALTDDTRDNIQNEMTRLVRGLEEMFGVICDFEFKKD: 9ALY
NDPELTSYVATTLKNAKLDDIKAIDICEPQPPSEDFAFYALERPSTFIYSGAAPEDGPMY
PHHHPKFNINETSMLVVAEAVGTIVLDYLK*

Sequence 2721 Contig_0808_pos_4094_3633, is similar to (with p-value 3.0e-18)

>sp:sp|P38049|YIXC_BACSU_HYPOTHETICAL_18.8 KD_PROTEIN_IN_PBP_F 5'REGION. >pir:pir|B40614|B40614 hypothetical_protein_X (p_bpF_5' region) - Bacillus_subtilis_>gp:gp|L10630|BACPBPF_2_B_acillus_subtilis_penicillin-binding_protein_(pbpF)_gene,_5' end. NID: g304158. >gp:gp|Z99109|BSUB0006_86_Bacillus_subtil_is_complete_genome_(section_6_of_21): from_999501_to_1269940_. NID: g2633260. >gp:gp|Y14083|BSY14083_4_Bacillus_subtilis_chromosomal_DNA,_region_76-78_degrees: between_glyB-aprE._NI

atgaagggatgtcttatgttaattagcgatacaaataaaacatatataatagaagaaact
agtaattcattcacaattgaaaagaataatgatcagcagcactacgaagtattagaatca
atcaacagcttatctaatgattcattttgtgtgttaaatcacttattcgtcaatggaggt
aatgaagaggtttttgagtcacggtttttaaagcgaaatcaacatttgcaagatgtgcct
ggttttaaagcgttaagatttcttagaccggtagtcaaagggagacattacattatcatc
acgctatggaacagtagacaagctttctatgattggcaaaattcacaagcatatgcgca
actcataaaaaacgtggaactcaaaaaggtgttgatcatcgtatagtcaatagagattta

Sequence 2722

D: q2226224.

MKGCLMLISDTNKTYIIEETSNSFTIEKNNDQQHYEVLESINSLSNDSFCVLNHLFVNGG
NEEVFESRFLKRNQHLQDVPGFKALRFLRPVVKGRHYIIITLWNSRQAFYDWQNSQAYAQ
THKKRGTQKGVDHRIVNRDLSYNIRIELESLNN*

Sequence 2723

Contleg_0808_pos_1986_1399,

is similar to (with p-value 4.0e-51)
>sp:sp|P37470|SP5C_BACSU_PROBABLE_PEPTIDYL-TRNA_HYDROLASE_(E_C_3.1.1.29) (PTH) (STAGE_V_SPORULATION_PROTEIN_C). >gp:gp|D2_6185|BAC180K_116_B. subtilis_DNA, 180_kilobase_region_of_rep_lication_origin. NID: g467326. >gp:gp|Z99104|BSUB0001_53_Bac_subtilis_complete_genome_(section_1_of_21): from 1_to_subtilis_complete_genome_(section_1_of_21):

5 illus subtilis complete genome (section 1 of 21): from 1 to 213080. NID: g2632267.

gtggaggtaacaataatgaaatgcattgtcggtcttggcaacattggtaaacgttttgaa ttaacaagacataatattggtttcgaagttgtcgatgatattctagaacgccaccaattt actttagacaaacaaaaatttaaaggtgcatatactattgaacgtttaaacggcgaaaaa gtattatttattgagccaatgaccatgatgaacttatctggtcaagctgtagccccttta atggattattataatgtcgatgttgaagatttgatcgttttatatgacgatttagattta gaacaaggacaagtgcgtctgcgccaaaaggggagtgcaggcggtcataatggtatgaaa tcgataattaaaatgcttggtacagatcaatttaaacgtattcgaattggtgtggccgt ccaacaaatgggatgtctgttccggactatgttttacaaaaaattttcaaaagaagaaatg atcattatggaaaggtaattgaacattctgcaaqagctgtagaatcttttattgaaagt

45 atcattatggaaaaggtaattgaacattctgcaagagctgtagaatcttttattgaaa tctcqttttgatcatgttatgaatqaatttaatggtgaagtcaagtga

Secuence 2724

VEVTIMKCIVGLGNIGKRFELTRHNIGFEVVDDILERHQFTLDKQKFKGAYTIERNGEK
50 VLFIEPMTMMNLSGQAVAPLMDYYNVDVEDLIVLYDDLDLEQGQVRLRQKGSAGGHNGMK
SIIKMLGTDQFKRIRIGVGRPTNGMSVPDYVLQKFSKEEMIIMEKVIEHSARAVESFIES
SRFDHVMNEFNGEVK*

Sequence 2725

55 Contig_0808_pos_0_1393,
is similar to (with p-value 4.0e-65)
>gp:gp|AF054624|AF054624_1 Lactobacillus sakei transcription
-repair coupling factor (mfd) gene, partial cds; L-lactate d
ehydrogenase (ldhL) gene, complete cds; and unknown genes. N

ID. #35.1014.

atgattgcaaattacattagcgaagataatcgttttcaagaattagatgaagtcttcggc caagagaatattttagttacgggattatccccgtcagcgaaggcaacaattattgctgaa aaatatttaaaaqatcataaacaaatgctactcgtaactaataatttataccaagcagat aaaatcqaaactqacattttacaatatqtaqatqactcaqaaqtttataaatatcctqtt agaacqttqactqcqttaqcccaaggcqaaaaaqqqttatttattgtqcctttaaacqqc tttaaaaaatqqctaacaccqqttgatttatqqaaaqatcatcaaatqacqcttaaaqta ggtcaggatattgatgttgatgcattcttaaataaattagttaatatgggttatcgccga 10 ccgttqataqqaacacctqtqaqaataqaqctatttqatactqaaqttqattccatcaqa gactttgatgtagaaacacaacgttctaacgataatataaatcaagttgaaatcacaaca qctaqtqactacattattactqatqaaqtqatacaacacttacaaaatqaacttaaaaaa qcatatqaatatacacqccctaaaattgaaaaqtccqtacqtaatgatttaaaaqaqaca 15 tatgaaagttttaagttgtttgaatctacctttttcgatcatcaattgttacgacgtctt qtttcatttatgtatqaaaaaccatcaacccttattqactattttcaaaaaaacqcqatt attgtagttgatgagtttaatcgtattaaggaaacagaagaaacacttacaacagaagtt gaagattttatgagtaacttaattgagagtggaaatggatttatcggacaaggatttatg aagtatqaaagttttqacqcattattaqaqcaacatqccqttqcatatttcacattattt acetettegatgeaagtaceattacaacatattattaagttetettgtaaaceagtteaa caattttatggtcaatatgacattatgcgctcggaatttcaaagatacgtgcatcaagat tacactg tcg tag ttcttg ttg aaactg aaacaa aag ttg aacg tattcaatcaatg cttaatqaaatqcatattccaacaqtatcaaatattcacqaaqatattqatqqtqqtcaaqtt gtagtgacggaaggtagtctttctgaaggctttgaattaccttatatgcagttggtagtc 25 atcacagaaagag

Sequence 2726

20

MIANYISEDNRFQELDEVFGQENILVTGLSPSAKATIIAEKYLKDHKQMLLVTNNLYQAD KIETDILQYVDDSEVYKYPVQDIMTEEFSTQSPQLMSERVRTLTALAQGEKGLFIVPLNG 30 FKKWLTPVDLWKDHOMTLKVGQDIDVDAFLNKLVNMGYRRESVVSHIGEFSLRGGIIDIY PLIGTPVRIELFDTEVDSIRDFDVETQRSNDNINQVEITTASDYIITDEVIQHLQNELKK AYEYTRPKIEKSVRNDLKETYESFKLFESTFFDHQLLRRLVSFMYEKPSTLIDYFQKNAI IVVDEFNRIKETEETLTTEVEDFMSNLIESGNGFIGQGFMKYESFDALLEQHAVAYFTLF TSSMQVPLQHIIKFSCKPVQQFYGQYDIMRSEFQRYVHQDYTVVVLVETETKVERIQSML 35 NEMHIPTVSNIHEDIDGGQVVVTEGSLSEGFELPYMQLVVITERX

Sequence 2727

Contig_0810_pos_182_592,

putative peptide of unknown function

40 atognaacacqaatqcqcaaaactqaaaqcttqqttatcaataatcctqtqttact.caat gaacatgaagacgaagcaqatatactgtatataggatttatatctactaaaaggtgctatt ggagaaggtgcagaaagactagaacgacatggtgtaaaaagtgaatacgatgcatattcga caattacatcctttccctaaagatattgttcaacaagctattaataaagcttcgaaagta $at a \verb|gttgcag| a a cata at tatca a \verb|ggaca| at tatca a \verb|gtatttta| a a a a a t ga a caca ca a$ 45 qttaatqataaattaqttaatcaaacaaaatacqatqqqaaacctttcttaccttatqaa attgaagaaaaaggtttggaaattgctaaagagttaaaggagttggtgtaa

Sequence 2728

MEKRMRKTESLVINNPVLLNEHEDEADILYIGFISTKGAIGEGAERLERHGVKVNTMHIR 50 QLHPFPKDIVQQAINKASKVIVAEHNYQGQLSSILKMNTQVNDKLVNQTKYDGKPFLPYE IEEKGLEIAKELKELV*

Sequence 2729

Contig 0810 pos 2045 3106,

putative peptide of unknown function atggacaaatttaaatctatgacagaattaaaagaattgactaaagaaggaaaagattgg gaaatagagtgtgaaaatcgttctagcatagtcactatattagcattacatggcggtgga attgaacctgcacaactgaattagcctatacaattgcacattgtggcgactataactat ttttcctttaaaggtatgagaagtaaggggaataatgagttacatgtgacttccacacat

15

10

Sequence 2730

MDKFKSMTELKELTKEGKDWEIECENRSSIVTILALHGGGIEPATTELAYTIAHCGDYNY FSFKGMRSKGNNELHVTSTHYDDQIALDLVRGSQRTVAIHGCEGNESVAYIGGSDDRLIE LITESLEDIGISVREAPHHISGTQENTENGAVIYKGNQLYNYRSFDQYIFQKVVNYLNLN QKINNLIICGVKSAYILKETSEAFKQDARTYYHQLIEVDSLQTLPDDDYVKIAFNINRQT HPDLDEKLALKFKDDIKLVSSGRDSIDVIMPNMTKGQALSRLKEWQMPASHLMAFGDAN NDKDMLELAEHSYVMANSEDQSLFNIASHVAPSNDEQGVLSTIENVVLGYSNK*

Sequence 2731

25 Contig_0810_pos_4526_5194,
 is similar to (with p-value 2.0e-20)
>gp:gp!AF012552!AF012552_2 Helicobacter pylori prolipoprotei
 n diacylglycerol transferase (lgt) and NADPH-linked flavin n
 itroreductase (rdxA) genes, complete cds. NID: g2564440.

40 agagcacaagaacctaaacatggcaaagttagacaaaacgaagacgacatcattagttgg attgaataa

Sequence 2732

MIMNQMNQTIIDAFHFRHATKEFDPTKKISDEDFNTILETGRLSPSSLGLEPWHFVVVQN

45 KELREKLKAYSWGAQKQLDTASHFVLIFARKNVTAHTDYVQHLLRGVKKYEESTIPAVEN

KFDDFQESFHIADNERTLYDWASKQTYIALANMMTSAALLGIDSCPIEGFDLDKVTEILS

DEGVLDTEQFGISVMVGFGYRAQEPKHGKVRQNEDDIISWIE*

Sequence 2733

- 50 Contig_0810_pos_4292_3300,
 is similar to (with p-value 0.0e+00)
 >gp:gp:U31175|SAU31175_1 Staphylococcus aureus D-specific D 2-hydroxyacid dehydrogenase (ddh) gene, complete cds. NID: g
 1644432
- 55 atgacaaaaattatgtttttcggcacaagagcatatgagaaggacatggcattacgttgg ggaaagaaaataatatcgatgtcactacatcaacagaacttttaagtgtagatactgtc gatcaattaaaagattatgacggtgttacaacaatgcagttcggtaaattagaacctgaa gtttaccctaaattagagtcctatggtattaaacaaattgcacaacgtacggctggattt gatatgtatgacttagaacttgcaaaaaaacatgaaattattatctcgaatatacctagt

Sequence 2734

10

15 MTKIMFFGTRAYEKDMALRWGKKNNI DVTTSTELLSVDTVDQLKDYDGVTTMQFGKLEPE VYPKLESYGIKQIAQRTAGFDMYDLELAKKHEIIISNI PSYSPETIAEYSVSIALQLVRK FPTIEKRVQAHNFTWASPIMSRPVKNMTVAIIGTGRIGAATGKIYAGFGARVVGYDAYPN HSLSFLEYKETVEDAIKDADIISLHVPANKDSFHLFDNNMFKNVKKGAVLVNAARGAVIN TPDLIEAVNNGTLSGAAIDTYENEANYFTFDCSNQTIDDPILLDLIRNENI LVTPHIAFF 20 SDEAVONLVEGGLNAALSVINTGTCDTRLN*

Sequence 2735
Contig_0812_pos_5666_6487,
is similar to (with p-value 1.0e-57)

25 >qp:qp|U75480|SMU75480 1 Streptococcus mutans putative HPr(s er) kinase (ptsK) and putative prolipoprotein diacylglycerol transferase (lgt) genes, complete cds. NID: g3924622. atggctggatatttttcacattatgcttcagaccgtattcaattattagggacaacggag 30 cgacctgaaactccagcgattattgttacacgtgggttagaaccacccgaagaacttata caagcatctcaagaaacgcatacaccaattattgttgcgaaagatgccacaacgagttta atqaqtaqqttaacqacatttctcqaacatqaactcqcqaaaactacttctttqcacqqt qtacttqttqatqtttacqqtqtaqqtqtactaattacaqqaqattctqqcattqqqaaa agtgaaactgcattagaattagtcaaacgaggccatagattagtggctgatgataatgtagaaatcaaagaaattactaaggatgaacttgtagggaaaccgcctaaacttatcgaacat atattaactqaaaaacaaqttcqattaaatattaatttaqaaaattqqaataaqaataaa ttatacqatcqtqtaqqtcttaatqaaqaaaatttqtaaaaattcttqatacqqaaatcactaaaaaaacgataccagttagaccagggcgtaatgtagcagtaattattgaagtagctgct 40 at gaat tate gtetta at at eatgggt at taat ac age ag tt gaat tt aat gag ag act taatgaagaaatcqttcgaaatagtcataaaagtgaggagtaa

Seguence 2736

MAGYFSKYASDRIQLLGTTELSFYNLLPDEEKKGRMRKLCRPETPAIIVTRGLEPPEELI
45 QASQETHTPIIVAKDATTSLMSRLTTFLEHELAKTTSLHGVLVDVYGVGVLITGDSGIGK
SETALELVKRGHRLVADDNVEIKEITKDELVGKPPKLIEHLLEIRGLGIINVMTLFGAGS
ILTEKQVRLNINLENWNKNKLYDRVGLNEETLKILDTEITKKTIPVRPGRNVAVIIEVAA
MNYRLNIMGINTAVEFNERLNEEIVRNSHKSEE*

50 Sequence 2737
Contig_0812_pos_6493_0,
is similar to (with p-value 8.0e-40)
>sp:sp|P52282|LGT_STAAU PROLIPOPROTEIN DIACYLGLYCERYL TRANSF
ERASE (EC 2.4.99.-). >gp:gp|U35773|SAU35773_1 Staphylococcus
aureus prolipoprotein diacylglyceryl transferase (lgt) gene
, complete cds. NID: g1016769.
atgaatataacattaggatatatcgatcctgttgcctttagcttgggaccaatccaagtt
cgatggtatggaattattattgcttgtggtatcttacttggatacttcattgcacaagca
gcattgaaacaggttggattacataaagacaccttaatcgatattattttatagcgcg

attgttggattcatagttgcgagaatatactttgttacatttcaatggccatattacatg aatcacttgagtgagataccaaaaatttggcatggtggtattgccatacatggtggctta attggtggacttatctctgggattattgtttgtaaaatcaaaaatctacatccgtttcaa ataggagatattgtggc

5

Sequence 2738

MNITLGYIDPVAFSLGPIQVRWYGIIIACGILLGYFIAQAALKQVGLHKDTLIDIIFYSA IVGFIVARIYFVTFQWPYYMNHLSEIPKIWHGGIAIHGGLIGGLISGIIVCKIKNLHPFQ IGDIVA

10

Sequence 2739

Contig_0812_pos_6327_5983,

is similar to (with p-value 3.0e-31)

>gp:gp|U75480|SMU75480_1 Streptococcus mutans putative HPr(s er, kirkse (ptsK) and putative prolipoprotein diacylglycerol transferase (lgt) genes, complete cds. NID: g3924622. gtgatttccgtatcaagaattttcaatgtttcttcattaagacctacacgatcgtataat ttattcttattccaattttctaaattaatatttaatcgaacttgtttttcagttaatatt gatcctgctccaaacaaagtcataacattaatgattccgagaccacgaatctctagcaaa tgttcgataagtttaggcggtttccctacaagttcatccttagtaatttctttgatttct acattatcatcagccactaatctatggcctcgtttgactaattctaatgcagtttcactt ttcccaatgccagaatctcctgtaattagtacacctacaccgtaa

Sequence 2740

25 VISVSRIFNVSSLRPTRSYNLFLFQFSKLIFNRTCFSVNIDPAPNKVITLMIPRPRISSK CSISLGGFPTSSSLVISLISTLSSATNLWPRLTNSNAVSLFPMPESPVISTPTP*

Sequence 2741

Contig_0813_pos_1018_2097,

30 putative peptide of unknown function atgcttgaaaaaacattcgaagtcacgtatacaaatgaacaaaaaattgaattagaagca $\tt gcccgaacatatattttgaatcaatcttacgagatacaacagcatagggtgattaggaat$ $\verb|ttacttgca| at \verb|gtgtatttgtatcta| g \verb|gtgatgattgata| g \verb|cgcca| a a g \verb|ca| at \verb|gtatttga| a to the constraint of the$ 35 gaactittaa aggaagata att cagacgtg catgcactttg to actacacattatt acttccactaaatgacgacgaaacctttaaattagqaatcqtattqaqttatttaaaacaqtat cgtgcttctcaaaatttactttatccactttataaaaaaggtaaatttgtctctattcaa atgtataatgcattgagtttcaatttttattacctaggaaataaagacgaaagtattgag 40 atgtggaacaagctcactcaaatttctgaagttgatgttggttatgcaccttgggtaatt gaggaaagtaaaacggtatttqaatcacqaqtqttaccattattactagatgataataat cattatcgactttacggtatttttttacttcatcaattaaatggaaaagaaatactaatg actgaagatatttggtcaattcttgaatcaatgaatgactatgagaaactttatctcaca tatttggtacaaggactcacactcaataaattagattttatacacagaggtatgcaaagg 45 ttgtataattttaagaaattcaaatataacacqtctttatttacaqattqqattaatcaa tttgtttacctatcgtatcgtcttaqccaaccacttaccaagaggcaattgatggac

50

55

Sequence 2742
MLEKTFEVTYTNEQKIELEAQLFSTQLLFQFLFSQGRLEEARTYILNQSYEIQQHRVIRN
LLAMCYLYLGEYDSAKAMFEELLKEDNSDVHALCHYTLLLYNKKETEKYQKYLKILNKVV
PLMDDETFKLGIVLSYLKQYRASQNLLYPLYKKGKFVSIQMYNALSFNFYYLGNKDESIE
MWNKLTQTSEVDVGYAPWVIEESKTVFESRVLPLLLDDNNHYRLYGIFLLHQLNGTEILM

gattttaatgtttctagatacaaactgaataaagcaattgaatttatattgagcatataa

TEDIWSILESMNDYEKLYLTYLVQGLTLNKLDFIHRGMQRLYNFKKFKYNTSLFTDWINQ AEMIIAENVDLVDVDRYVAAFVYLSYRRSSQPLTKRQLMDDFNVSRYKLNKAIEFILSI*

Sequence 2743
Contig_0813_pos_2162_2497,
is similar to (with p-value 6.0e-50)
>gp:gp|AJ223781|SAAJ3781_1 Staphylococcus aureus trxB gene.
NID: g3582102.
atgactgaagtagattttgatgtagcaataatcggtgcaggtcctgccggtatgacagcagcagtatatgcatctcgtgccaatttaaaaactgtcatgattgaacgcggtatgc.aggcggtcaaatggcaaacactgaagaagtagagaattttccaggatttgagatgatcacaggtcctgacttatctactaaaatgtttgaacatgctaaaaaatttggtgcggaataccaatatggcgatattaaatctgttgaagataaaaggcgactataaaagttatcaatttaggaatataa

Sequence 2744

10

MTEVDFDVAIIGAGPAGMTAAVYASRANLKTVMIERGMPGGQMANTEEVENFPGFEMITG
15 PDLSTKMFEHAKKFGAEYQYGDIKSVEDKGDYKVINLGNIVVDVNVCHSIV*

Sequence 2745
Contig_0813_pos_5893_6465,
putative peptide of unknown function

gttgttgatgtaaatgtgtgtcacagtattgtttaa

atgaaaaagtattagcactattatttgcgtcaacactcattttaggagcatgtggggac
aaaaatgacgaatctaaaaatgattcttcatctaattctacagatagcgtttctgtagac
aaaaatgacaatgaagataaaacaacgcgaaattcaaaaatgataaattaacaacagac
aattttgatattgaaattttagaagccaaaactgtcaaagcatctgagtacgatgatgac
aagaaaccaagtatcgctatcatctatggtgttaaaaataaaaaagacaaagatttaaca
gcatcttcagcatttatcgaatcatttgatatttatcaaaattctaaagatgttaagag
agattagaaattggcggtggatatgatactgatttaaaggaaaaatatgaagaagatatg
gataacaaaattaacaaagatggaaaagtaaaaggtgttatgttctttaaattgaagac
actaaaacaccagtaacacttgaagctaaagatccaaatcatagcaataacgaaaaagtg
ggtactaaagaatttaaaattaaagaaaaataa

30 Sequence 2746

MKKVLALLFASTLILGACGDKNDESKNDSSSNSTDSVSVDKNDNEDKTTAKFKNDKLTTD NFDIEILEAKTVKASEYDDDKKPSIAIIYGVKNKKDKDLTASSAFIESFDIYQNSKDVKR RLEIGGGYDTDLKEKYEEDMDNKINKDGKVKGVMFFKLKDTKTPVTLEAKDPNHSNNEKV

35 GTKEFKIKEK*

Sequence 2747
Contig_0813_pos_6510_0,
putative peptide of unknown function

- 40 atgtctcaaaaaattaaagttatagtgcctatcgtacttggattaatcattcttttgggg
 attgcttggggtgtatatgcctttgtaacaaatacacctaaaaatgcatatttactgagc
 gaaaaaaagaccgctataaatgtaaaatcttatgttgatcatcgttttagtaacgaaaag
 aaattccaaaaaaattaaaagataattcatatgttaatacgtataatctacatgctaat
 gcatctaaggaatatctaaaagatcttggtttacctaaaactatttagatagttctaaa
 45
- 45 ataactggaactatcggtcatgatccaaaatcaaataaaggaatcatgagcgtatcacct aaaatataagataaagatattggtaagttccaatggacagcaaatgattcaactcaattc ttcgaatcacccttattcaagaaaaagtatagcgtcaaaaactcagaactattagaaaca gctgctcaaatctttgatgaagatccttctgactataaagaagagggactttcaaatgca aactttgatctgaataataaattgggtattgttcattctcaacaagaagatgttaaaaaa
- 55 Sequence 2748
 MSQKIKVIVPIVLGLIILLGIAWGVYAFVTNTPKNAYLLSEKKTAINVKSYVDHRFSNEK
 KFQKKLKDNSYVNTYNLHANASKEYLKDLGLPKTILDSSKITGTIGHDPKSNKGIMSVSP
 KILDKDIGKFQWTANDSTQFFESPLFKKKYSVKNSELLETAAQIFDEDPSDYKEEGLSNA
 NFDLNNKLGIVHSQQEDVKKLIKRYTDLVIDQLEDDDFEKGKKEKVKIDGETKNLKPITL

NISRDKAKKITVAALKKAKNDKELX

Sequence 2749

Contig 0813 pos 5275 4484,

 ${\tt atcggtgtgttagttaattatctaacagatcatgatattcaagattacctagttaaccaa} \\ {\tt accggaggcagtattattgtctcatccagaaagtctggacaaaatgaataccaaacaacg} \\ {\tt attaagtgtcaagtttcaactgtcgcaacaggacaagcatatatagaacaggagacaatg} \\ {\tt acgcaaatatga} \\$

20

Sequence 2750

MTILVHSKHQPSEYAAIAHQLMATTHVCCEQVGFIESVNYENGDNYHLVMSGNEFCGNAT
MSYIHYLKERLLIQHQQFQLRVSGCSHPVECKVHSQHYEVTMPKVHQVKERFVKLGDQQF
KAFEIRYDTYIHYVLMCDGVDLAMKQRVEDFVSAQTWHQQFKTIGVMLFQQDKQFIYPLI
HIPKIDSLIWENSCGSGAASIGVLVNYLTDHDIQDYLVNQPGGSIIVSSRKSGQNEYQTT
IKCQVSTVATGQAYIEQETMTQI*

Sequence 2751

Contig_0813_pos_3664_2447,

30 putative peptide of unknown function atggttggtagtggaccggtcgctattcaacttgctcgactatgtcatttacatqqaqaa $\verb|catatagttgatatggtgagtcgcgttcatgcatcaaccaaatctaagagagtctttgat|\\$ gcttatcaacgtgacggctttttttcagtaatqactcaaaatqatqcacatcaqtqtttt ${\tt tcaggtaagtttacggttagacattttttaaagatgttaaagatattactgaatattat}$ 35 gacqtggtgattttagcatgtactgccgatgcgtatcgaccgatattacagcaattatct aagtccacattaaagcgtattaagcaaatcatcttggtctcaccaacattaggatcacat atccttgttaagcaattactatcagatgttcaatgtgaaggtgaagtgatttcattttcc acttatellaggogatacccgaatatttgataaaqcacaaccacattqtqtcctaa..caca cgagttaaatcaaaattattcgtaggttcgactcaatctcagtctatgacgttgtaag 40 $\verb|cttaagtctttatttgactatttgaatatagaattaacaacgatggacacaccactacat|\\$ gcggagatacataatagttcactttatgtacacccaccattgtttatgaatcaattttca ttaaaggcggtatttgaagggacgaaagtaccagtatatgtatataagctatttccagag qqtccaatcacaatgaccttaatacacgaaatgcgattaatgtggcaagaaatgatgatg 45 taccctatacgttatgagaccatgcgcgaagtagatattgaaaactttaaaaatttacca $\tt gctattcatcaagagtatctactttatgtgcgatatacagcaattttaatcgatccgttt$ tctaatccggacgatcaaggtqcatattttqatttttctgccqtaccatacaaacatgtt gatactgatgaacaaggagtcatacatataccacqcatqccqaqtqaaqattattatcqt actttgataattcaagcgattggaagagcattaaacgttgcaacaccgatgattgacaca 50 $\verb|ttgttattacgttatgaaaatactgttaaacaatactgttgacacacatttacatcaacaa|\\$ ctatattccctaaattga

Sequence 2752

MVGSGPVAIQLARLCHLHGEHIVDMVSRVHASTKSKRVFDAYQRDGFFSVMTQNDAHQCF
SGKFTVRHFFKDVKDITEYYDVVILACTADAYRPILQQLSKSTLKRIKQIILVSPTLGSH
MLVKQLLSDVQCEGEVISFSTYLGDTRIFDKAQPHCVLTTRVKSKLFVGSTQSQSMTLCK
LKGGFDYINIELTTMDTPLHAEIHNSSLYVHPPLFMNQFSLKAVFEGTKVPVYVYNGFPE
GPITMTLIHEMRLMWQEMMMILKKLKVPSVNLLKFMVKENYPIRYETMREVDIENGKNLP
AIHQEYLLYVRYTAILIDPFSNPDDQGAYFDFSAVPYKHVDTDEQGVIHIPRMPSEDYYR

TLIIOAIGRALNVATPMIDTLLLRYENTVKQYCDTHLHQQLYSLN*

Sequence 2753

Contig_0814_pos 338_709,

is similar to (with p-value 8.0e-51)

>gp:gp|D76414|D76414_4 Staphylococcus aureus gene for histid yl-tRNA synthetase, ppGpp hydrolase, lytic enzyme, complete cds. NID: g2580431.

15 ttctcgtcctag

Sequence 2754

MTRSNDKYVSLDDRNIKGDAFISIHNDALDSSNANGVTVYWFKDKQESLAQTLNSAIQKK ALLTNRGSRQQNYQVLRQTDIPAVLLELGYISNPTDESMINDQLHRQVVEQAIVDGLKQY

20 FSS*

Sequence 2755

Contig 0814 pos 1081 2355,

is similar to (with p-value 0.0e+00)

- 25 >sp:sp[032422|SYH_STAAU HISTIDYL-TRNA SYNTHETASE (EC 6.1.1.2
 1) (HISTIDINE--TRNA LIGASE) (HISRS). >gp:gp[D76414]D76414_5
 Staphylococcus aureus gene for histidyl-tRNA synthetase, ppG
 pp hydrolase, lytic enzyme, complete cds. NID: g2580431.
- atgattaagatgccaagaggtacccaagatatcttgccgcaagattctgctaaatqqcgt
 tacattgaaaatcgattacaccattaatggaattgtataattataaagaaataagaacg
 ccaatttttgaaagtactgaactttttgcaagaggcgtgggggattctactgacgttgtt
 caaaaggaaatgtatacatttaaagataaaggggatcgtagtttaacattacgtcctgaa
 ggaactgcagccgttgtacgttcatatattgaacacaaaatgcaaggtgaacccaatcaa
 cctatcaaactttactacaatggtcctatgtttagatacgaacgtaaacaaaaaggaaga
- 40 ccccgtatcacagattatctcaataatgattctaaatcttattatgaacaagttaaatta catcttgataatttgaacatatcttatgttgaagatcctaacttagttcgtgggttagat tattatactcatactgcctttgaattaatgattgataatccagagtatgatgaggctatc actacattatgtggtggtggtcgatataatgggttgttacaattattagatggtccagat gaaacaggtattgggtttgcactaagtattgaagattattgatggcacttgatgaagaa qgtatttcattagatgtaagtgaagattttgatttatttgttgtqacaatgggagaagat
- gccgatcgttatgctgttaagttaatcaatgatttaagaagaaatggaataaaagtagat aaggattatctaaacagaaaaattaaaggacaaatgaaacaagctgaccgtcttaatgct aaatatacagtagtaattggagatcaagagcttgaaaataatgaaattggtgtgaaaaac atgacutcagggaatcagaaaatgtacaattagacgaattggttaattattttacaagt
- 50 agaaaggaagtctaa

Sequence 2756

MIKMPRGTQDILPQDSAKWRYIENRLHTLMELYNYKEIRTPIFESTELFARGVGDSTDVV
QKEMYTFKDKGDRSLTLRPEGTAAVVRSYIEHKMQGEPNQPIKLYYNGPMFRYERKQKGR
YRQFNQFGVEAIGAENPSIDAEILAMVMHIYESFGLKHLKLVINSIGDSESRKEYNEALV
KHFEPVIDTFCSDCQSRLHTNPMRILDCKIDRDKEAVKNAPRITDYLNNDSKSYYEQVKL
HLDNLNISYVEDPNLVRGLDYYTHTAFELMIDNPEYDGAITTLCGGGRYNGLLQLLDGPD
ETGIGFALSIERLLMALDEEGISLDVSEDFDLFVVTMGEDADRYAVKLINDLRRNGIKVD
KDYLNRKIKGQMKQADRLNAKYTVVIGDQELENNEIGVKNMISGESENVQLDELVNYFKS

RKEV.

Sequence 2757 Contig 0815 pos 2348 3526, is similar to (with p-value 1.0e-92) >sp:sp|P38494|RS1H BACSU 30S RIBOSOMAL PROTEIN S1 HOMOLOG. > gp:qp|U11687|BSU11687 5 Bacillus subtilis 168 jofA, jofB, Ms sA homolog (jofC) and ribosomal protein S1 homolog (jofD) ge nes, complete cds, and joeB gene, partial cds. NID: g533101. 10 >gp:gp|Z99115|BSUB0012_228 Bacillus subtilis complete genom e (section 12 of 21): from 2195541 to 2409220. NID: g2634478 . >qp:qp|L47648|BACSERA 20 Bacillus subtilis phosphoglycerat e dehydrogenase (serA), ypaA, ferredoxin (fer), ypbB, recS, ypbD, ypbE, ypbF, ypbG, ypbH, glutamate dehydrogenase (ypcA) 15 , ypdA, ypdB, ypdC, spore cortex lytic enzyme (sleB), ypeB, ypfA, ypfB, cytidine monophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate dehyd rogenase (glyc), yphE and yphF genes, complete cds. NID: g11 46195. >gp:gp|L47648|BACSERA_20 Bacillus subtilis phosphogly 20 cerate dehydrogenase (serA), ypaA, ferredoxin (fer), ypbB, r ecS, ypbD, ypbE, ypbF, ypbG, ypbH, glutamate dehydrogenase (ypcA), ypdA, ypdB, ypdC, spore cortex lytic enzyme (sleB), y peB, ypfA, ypfB, cytidine monophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate 25 dehydrogenase (glyc), yphE and yphF genes, complete cds. NID : g1146195. atgactqaaqaattcaatgaatcaatgattaatgatattaaaqaaqqtqacaaaqtcact gttgaagttcaacaagtagaggataaacaagttgttgtgcatattaatggtggcaaattt aatggaattattcctattagccagctttcaacacatcatatcgaaaaccctagtgaagtt 30 $\tt gtaaaagtcggtgatgaagtcgaagcatatgtcactaaaatcgagttcgacgaagaaaat$ gatactggggcatacattttatcaaaaagacaacttgaaactgaaaaatcttatgaatat $\verb|ttacaagaaaaactagataacgatgaagtgattgaagctgaagttactgaagtagttaaa|$ qqtqqtttaqtcqttqacqttqqtcaaaqaqqqtttqtacctqcttctctaatttcaact gatttcattqaagatttttctgtattcgatqqtcaaacaatccgtattaaagtggaagaa 35 cttqatcctqaaaacaataqaqtcattttaaqccqtaaaqctqtqqaacaqttaqaaaac gacgctaaaaaagcttcaatattagattctttaaatgaaggcgatgttattgatggtaaa gttgctcgattaactaactttggtgctttcattgatattggtggcgtagatggtttagtt cacgtttctgaattatctcatgaacatgttcaaacaccagaagaagttgtgtcagtaggt qaaqcaqtcaaagttaaagttaaatctgtaqaaaaaqattctgaacgtatttcttatct 40 attazagacactttaccaacaccatttgaaaacattaaagggaaatttcacgaaga@gat gttaltgaaggtactgtagtacgtttggcgaactttggcgcattcgtagaaattgctcca $\verb|tccgtccaaggtttagtgcatatttctgaaatcgatcataaacatatcggttctcctaac|$ gaagtattagaacctggacaacaagttaatgtaaaaatattaggtatcgatgaagataat qaaaqaatttcattatcaatcaaaqcaacqttacctaaaqaaaatqtcattqaaaqtqac 45 gcatccacaactcaatcatatcttgaagatgataatgatgaagataaaccaacattaggc gatgtttttggtgataaatttaaagaccttaagttttaa

Sequence 2758

MTEEFNESMINDIKEGDKVTVEVQQVEDKQVVVHINGGKFNGIIPISQLSTHHIENPSEV

VKVGDEVEAYVTKIEFDEENDTGAYILSKRQLETEKSYEYLQEKLDNDEVIEAEVTEVVK
GGLVVDVGQRGFVPASLISTDFIEDFSVFDGQTIRIKVEELDPENNRVILSRKAVEQLEN
DAKKASILDSLNEGDVIDGKVARLTNFGAFIDIGGVDGLVHVSELSHEHVQTPEEVVSVG
EAVKVKVKSVEKDSERISLSIKDTLPTPFENIKGKFHEDDVIEGTVVRLANFGAFVEIAP
SVQGLVHISEIDHKHIGSPNEVLEPGQQVNVKILGIDEDNERISLSIKATLPKENVIESD

55 ASTTQSYLEDDNDEDKPTLGDVFGDKFKDLKF*

Sequence 2759
Contig_0815_pos_4093_5052,
is similar to (with p-value 0.0e+00)

>sp:sp|P50743|YPHC BACSU HYPOTHETICAL 48.8 KD GTP-BINDING PR OTEIN IN CMK-GPSA INTERGENIC REGION. >gp:gp|Z99115|BSUB0012 224 Bacillus subtilis complete genome (section 12 of 21): fr om 2195541 to 2409220. NID: g2634478. >gp:gp|L47648|BACSERA_ 24 Bacillus subtilis phosphoglycerate dehydrogenase (serA), ypaA, ferredoxin (fer), ypbB, recS, ypbD, ypbE, ypbF, ypbG, ypbH, glutamate dehydrogenase (ypcA), ypdA, ypdB, ypdC, spor e cortex lytic enzyme (sleB), ypeB, ypfA, ypfB, cytidine mon ophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate dehydrogenase (glyc), yphE an d yphF genes, complete cds. NID: g1146195. >gp:gp|L47648|BAC SERA 24 Bacillus subtilis phosphoglycerate dehydrogenase (se rA), ypaA, ferredoxin (fer), ypbB, recS, ypbD, ypbE, ypbF, y pbG, ypbH, glutamate dehydrogenase (ypcA), ypdA, ypdB, ypdC, 15 spore cortex lytic enzyme (sleB), ypeB, ypfA, ypfB, cytidin e monophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate dehydrogenase (glyc), yp hE and yphF genes, complete cds. NID: g1146195. gtgaataaagttgataatcttgaaatgcgtaatgatatctatgatttctattctttaggc tttqqaqatccatatcctatttctggttcacatggattaggacttggaggatttgctagatctttctatcatcqqtaqacctaatqttqqtaaatctaqcttqqtcaatqctattttaqqc qaaqaacqtqttattqtqtctaatqttqctqqtacaactcqaqatqccattqataccqaq tactcttatgatggacaagattatgtattgattgatactgctggaatgagaaaaaaggt 25 ${\tt aaggtgtatgaatcgactgaaaaatattctgtattacgtgcattaaaagcgattgagcgt}$ tcagaagtagtattagtagttatcgatgctgaacaaggtataattgaacaagataaacgt acagttqaaaaaqatagtaaqacaatgaaaaaattcactgatqatqttaqaaatgaattt caatttttagattatqctcaaatcqcqttcqtatcaqcaaaaqaaqqqctaaqattaaaa 30 acattattcccttatatcaatcaagccagtgaaaatcataaaaagcgtgtccaaagttct ${\tt acactaaatgaagttgttactgatgccatctctatgaatccaacacctactgacaaaggt}$ $agaayaos. taatgtattctatacaactcaggttgcaattgaaccaccgacatttg {\tt ragta}$ tttgtcaatgatgttgaattaatgcatttttcttataggagatatttagaaaatcaaata 35

40

Sequence 2760
VNKVDNLEMRNDIYDFYSLGFGDPYPISGSHGLGLGDLLDAVVENFNKESEDPYDEDTIR
LSIIGRPNVGKSSLVNAILGEERVIVSNVAGTTRDAIDTEYSYDGQDYVLIDTAGMRKKG
KVYESTEKYSVLRALKAIERSEVVLVVIDAEQGIIEQDKRVAGYAHEEGKAIVIVVNKWD
TVEKDSKTMKKFTDDVRNEFQFLDYAQIAFVSAKEGLRLKTLFPYINQASENHKKRVQSS
TLNEVVTDAISMNPTPTDKGRRLNVFYTTQVAIEPPTFVVFVNDVELMHFSYRRYLENQI
RNAFGFEGTPIHIIPRKRN*

45 Sequence 2761 Contig 0815 pos 5073 6071, is similar to (with p-value 0.0e+00) >gp:gp|Z99115|BSUB0012_223 Bacillus subtilis complete genome (section 12 of 21): from 2195541 to 2409220. NID: g2634478. 50 >gp:gp|L47648|BACSERA 25 Bacillus subtilis phosphoglycerate dehydrogenase (serA), ypaA, ferredoxin (fer), ypbB, recS, y pbD, ypbE, ypbF, ypbG, ypbH, glutamate dehydrogenase (yhcA), ypdA, ypdB, ypdC, spore cortex lytic enzyme (sleB), ypeB, y pfA, ypfB, cytidine monophosphate kinase (cmk), ypfD, ypgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate dehydr ogenase (glyc), yphE and yphF genes, complete cds. NID: gl14 6195. >gp:gp|L47648|BACSERA_25 Bacillus subtilis phosphoglyc erate dehydrogenase (serA), ypaA, ferredoxin (fer), ypbB, re cS, ypbD, ypbE, ypbF, ypbG, ypbH, glutamate dehydrogenase (y

pcA), ypdA, ypdB, ypdC, spore cortex lytic enzyme (sleB), yp eB, ypfA, ypfB, cytidine monophosphate kinase (cmk), ypfD, y pgA, yphA, yphB, yphC, NAD+ dependent glycerol-3-phosphate d ehydrogenase (glyc), yphE and yphF genes, complete cds. NID: q1146195.

Sequence 2762

10

15

- 25 MRKITVFGMGSFGTALANVLAQNGHDVLMWGKNVENVDELNTHHMNKNYLKDAKLDSSIK
 ATVDLNKAVQFSDIYLMALPTKAIREVSKDIDQLLTSKKTFIHVAKGIENDTFKRVSEMI
 EDSISSEHNGGIGVLSGPSHAEEVVIKQPTTVAASSKDNNVSKLIQDLFMNDYLRVYTNN
 DLVGVELGGALKNIIAIASGIVAGMGYGDNAKAALMTRGLAEISRLGEKLGADPMTFLGL
 GGIGDLIVTCTSTHSRNYTLGFKLGQGKTAEEALKEMKMVVEGIYTTKSVYHLAQQEGVE
 30 MPITNALYEVLFEDVPVSKSVRTLMERDKKAE*
 - Sequence 2763
 Contig_0815_pos_0_368,
 is similar to (with p-value 2.0e-21)
- 35 >sp:sp|P42086|PBUX_BACSU XANTHINE PERMEASE. >pir:pir|S51310|
 S51310 xanthine permease Bacillus subtilis >gp:gp|L77246|B
 ACYACA_3 Bacillus subtilis (YAC10-9 clone) DNA region betwee
 n the serA and kdg loci. NID: g1256615. >gp:gp|Z99115|BSUB00
 12 147 Bacillus subtilis complete genome (section 12 of 21):
- from 2195541 to 2409220. NID: g2634478. >gp:gp|X83878|BSXPT PBUX_2 B.subtilis xpt and pbuX genes. NID: g633168. atgtgcggggtagcgacatttcttcaagcaaataaagtcacagggactggattaccgatt gtastaggatgtacgtttactgccgttgcacctatgatactcatcggtcaaacgaaagga cttgatgttttatatggttcgcttttaatatccggtatcttagttgttttaattgcacct
- 45 tttttctcttatttagttaaattctttccacctgttgtaacaggaagtgttgtgacaatt attggaatcaatttaatgccagttgcaatgaattacttggcaggtggtgaaggagcgaaa aactatggcgatactaagaatttaatattaggtggtgttacactactcattattcttatt tGATTTAT
- 50 Sequence 2764
 MCGVATFLQANKVTGTGLPIVLGCTFTAVAPMILIGQTKGLDVLYGSLLISGILVVLIAP
 FFSYLVKFFPPVVTGSVVTIIGINLMPVAMNYLAGGEGAKNYGDTKNLILGGVTLLIILI
 *FX
- 55 Sequence 2765
 Contig_0818_pos_4072_3692,
 putative peptide of unknown function
 gtgtttattttgttaacatttggattttatgtattttttgctggccataataatccaggt
 ggtggctttattggtggcttgatttttagctcggcattatcttaatgtttcttgcctt

gatgtaaatgaagtgttgaaaagcttgcctattgattttaaaaaattaatgattataggt tcactcatatctgttgcaactgcatcagtgcctatgtttttttgggaagccatttttatat caaactgaagcaaatgtaacatttccattactaggacatgttcatgttactactgtgact ttatttgagcttggcatcttattaacagtagtaggtgtgattgttacagttatgctatct ataagtgggggtagatcatga

Sequence 2766

 ${\tt VFILLTFGFYVFFAGHNNPGGGFIGGLIFSSAFILMFLAFDVNEVLKSLPIDFKKLMIIG} \\ {\tt SLISVATASVPMFFGKPFLYQTEANVTFPLLGHVHVTTVTLFELGILLTVVGVIVTVMLS}$

10 ISGGRS*

5

Sequence 2767

Contig 0818 pos 3674 3351,

is similar to (with p-value 3.0e-20)

15 >gp:gp|AB015981|AB015981_4 Staphylococcus aureus genes for O
 rfA, MnhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c
 ds. NID: g4001723.
 qtqataqqatttttaqtqtttattqqaacttatatqattttatctattaatttaattcqt

attgttattggtatttctatttatacacacgccggtaatttaattattatgagtatggg
20 aaatatggacctcatatgtctgaaccgctaattcaaggtcatgctcaaaactttgttgat
cctttattacaagctatcgttttaacagctattgtggattggatttggtatgactgcgttt
ttattggtgttaatatatagaacttacagagtaactaaagaggatgaaataagtgcattg
aaaggtgatgaagatgatgagtaa

25 Sequence 2768

VIGFLVFTGTYMILSINLIRIVIGISIYTHAGNLIIMSMGKYGPHMSEPLIQGHAQNFVD PLLOAIVLTAIVIGFGMTAFLLVLIYRTYRVTKEDEISALKGDEDDE*

Sequence 2769

30 Contig_0818_pos_3334_1859, is similar to (with p-value 2.0e-62)
>gp:gp|AB015981|AB015981_5 Staphylococcus aureus genes for O rfA, MnhA, MnhB, MnhC, MnhD, MnhE, MnhF and MnhG, complete c ds. NID: g4001723.

35 atgttgttgccttttgtatgtgctttaattttagtcttcactaaaaataaaaatcgtatt tcgaaaatcctatccattacaactatgattgttaatacaatgatttcaattgctttactt atttatgtcgttaatcataaaccgataacacttgattttgggggatggaaagcacctttc ggcattcaatttctaggtgattcactgagtctgcttatggtgtcagtatcatcttttgtt gttacgctaataatggcatacggctttggtagaggggagaagcgagtcaatcgatttcac

- 40 cttcctacatttattcttttattaacagtaggtgttattggttcgttttaacttctgat ttatttaacctatacgtgatgtttgaaattatgcttcttgcttcgtttgtacttgttaca ttaggacaatctgttgaacaattacgtgcagcgatagtatatgttgttctgaatatttta ggttcgtggttgcttttattaggaattggcatgttatataagacagtcggaacacttaat ttctcacatttagcgatgcqattgaatcatatggaaataaccaaacaataacgatgata
- 45 tetttagtatttetagttgettttagtteaaaggeageactagtgatttteatgtggtta cetaaageatatgeagtgettaataeggaacttgeegggttatttgeageattgatgae aaagttggagettattgegettattegtttttttaettttaetattegaeeateateeaage gteaegeataeattgetegtgtttatggettgtateacaatgattateggtgeatttggt gteategettaeaaagatattaagaaaattgeggettateaagttattttgtetattgga
- ttcattattttaggtttaggttctcatactatatcaggtgtaaatggtgctatcttctat ttagcgaatgatattatcgttaagacattattgttttttgtaattggtagtcttgtttat atgtcaggctatcgaaattatcagtatttaagtggactggcaaaaagagaaccattcttt ggtgttgcatttgtcgtggtaatttttgctataggtggcgtacctccttttagtggctt ccgggtaaagtcttaatattccaaggggctattacaaatggtaattatattggtttagca
- 55 cttatgattgtgacaagtttaattgctatgtatagtctttttagagtgatgtttataatg tattttggtgatgctgacggagaacaagtacaatttagaccactacctatttatcgtaaa ggtttacttagtgttttagttgtagtggtattagcgatgggtattgcagcccctgttgtt ctgaaagtaacagaggatgcaacaaatcttaatatgaaagaagatgtctttcaaaagaat gtaaatacacatttgaaggaggttaatcataagtga

Sequence 2770

5

10

MLLPFVCALILVFTKNKNRISKILSITTMIVNTMISIALLIYVVNHKPITLDFGGWKAPF GIQFLGDSLSLLMVSVSSFVVTLIMAYGFGRGEKRVNRFHLPTFILLLTVGVIGSFLTSD LFNLYVMFEIMLLASFVLVTLGQSVEQLRAAIVYVVLNILGSWLLLLGIGMLYKTVGTLN FSHLAMRLNHMENNQTITMISLVFLVAFSSKAALVIFMWLPKAYAVLNTELAALFAALMT KVGAYALIRFFTLLFDHHPSVTHTLLVFMACITMIIGAFGVIAYKDIKKIAAYQVILSIG FIILGLGSHTISGVNGAIFYLANDIIVKTLLFFVIGSLVYMSGYRNYQYLSGLAKREPFF GVAFVVVIFAIGGVPPFSGFPGKVLIFQGAITNGNYIGLALMIVTSLIAMYSLFRVMFIM YFGDADGEQVQFRPLPIYRKGLLSVLVVVVLAMGIAAPVVLKVTEDATNLNMKEDVFQKN VNTHLKEVNHK*

Sequence 2771

Contig 0818 pos 1751 1380,

putative peptide of unknown function gtgatttatattctgcatcgcttttttggtgaagaattttatttgaaaaagatatgggtg gctattaaatttttagctgtatacctataccagcttattacttctagtataagtaccata aattacatcttatttaagacgaatgaagttaatccaggtttactcacatatgaaacttca ttaaaaagtaattgggctattacttttttaacgattttaattattactccaggatcg acagttattcgaatttctaaaaatactaataaattttttattcacagtattgatgtgtca gaaaaagataaagaaaatcttctaaaaagtattaagcagtatgaggatttaattttggag gtgacacgatga

Sequence 2772

25 VIÝILHRFFGEEFYLKKIWVAIKFLAVYLYQLITSSISTINYILFKTNEVNPGLLTYETS LKSNWAITFLTILIIITPGSTVIRISKNTNKFFIHSIDVSEKDKENLLKSIKQYEDLILE VTR*

Sequence 2773

30 Contig 0819 pos 5530 6732, is similar to (with p-value 0.0e+00) >sp:sp|Q53634|MENE STAAU O-SUCCINYLBENZOIC ACID--COA LIGASE (EC 6.2.1.26) (OSB-COA SYNTHETASE) (O-SUCCINYLBENZOATE-COA S YNTHASE). >gp:gp|U51132|SAU51132 1 Staphylococcus aureus o-s uccinylbenzoic acid CoA ligase (mene), and o-succinylbenzoic 35 acid synthetase (menc) genes, complete cds. NID: g1255258. atgataaatacacqtttaacqcqacatqaqatgataaatcaaatgaattcagtcgacata gcaacgattgtacacacgttgcctttagaattagaagggtttaatttatatcattttaat gatttaacacaattagataaacatgatgtttcaggttacaaatttaatttagaatcgatt 40 qcatcaattatqtttacqtctqqaacqacqqqacctcaaaaagctgtgcctcaaacqttt aataatcatttagccagtgctaaaggctgtaaacaaagtttaggattcgaacaaaatact qtqtqqctttcqqtcttacctatatatcatatttctqqqctcaqtqttattttqcqcqca qtqataqaaqqattcactqtcaqacttqttaaaaaaqtttcaaactgatgatatqttaaca caaataaaqacttatccaatcacccatatgtcccttgttccacaaacgttaaagtggtta 45 atggatgcaggattgactcaaccattttctttagaaaaaattctgctaggtggtgctaaa ttatcaccacaattaattgagcaagcattgacttatcgtttacctgtatataattctttt ggtatgacagaaacttgctctcagtttctaacagcctcacctcaaatgctcaaagaacgt ttcgatactgttggaaaaccaagtgaaaatgtcgaagtgaaaataaaaaatcccaacgca 50 aaatatttaaaagacacatttgataatgatgggtattttcaaactggagatatagctgaa atagatgatgaaggttacgtcataatatatgatcggcgcaaagatttgattataagtggt qqaqaqaatatttatccttaccaaattqaaacaatcqcaaaaqactttqaaqqcattqaa gatgccgtatgtgtaggaatatcagatgatacttggggtcaagtaccaatattatat qtqacaaatcaaqatattaatcaaactgaattaatagaacattttgagaatcatttagct 55 agatataaaattcctaaaaaatattatcaggtcaaatctttaccttatacatcgacaggt aaattacaacqtaaaaaqqtcaaaaqtgaaqacttqaatgagggaaagaataatqaaagt

Sequence 2774

taa

MINTRLTRHEMINQMNSVDIATIVHTLPLELEGFNLYHFNDLTQLDKHDVSGYKFNLESI
ASIMFTSGTTGPQKAVPQTFNNHLASAKGCKQSLGFEQNTVWLSVLPIYHISGLSVILRA
VIEGFTVRLVKKFQTDDMLTQIKTYPITHMSLVPQTLKWLMDAGLTQPFSLEKILLGGAK
LSPQLIEQALTYRLPVYNSFGMTETCSQFLTASPQMLKERFDTVGKPSENVEVKIKNPNA
YGHGELLIKGENVMNGYLYPKYLKDTFDNDGYFQTGDIAEIDDEGYVIIYDRRKDLIISG
GENIYPYQIETIAKDFEGIEDAVCVGISDDTWGQVPILYYVTNQDINQTELIEHFENHLA
RYKIPKKYYOVKSLPYTSTGKLQRKKVKSEDLNEGKNNES*

Sequence 2775

10 Contig_0819_pos_6791_0,
 is similar to (with p-value 6.0e-43)
 >gp:gp!U51132|SAU51132_2 Staphylococcus aureus o-succinylben
 zoic acid CoA ligase (mene), and o-succinylbenzoic acid synt
 hetase (menc) genes, complete cds. NID: g1255258.

- 20 acagttagtggcttaactaatagtcaaattgaaacattattagaaacaagaccgaaacgt ataaaacttaaatggtcaacatcactcatcaaagatcttgaaactatacgtttattaaat tttgattgtgatattgctatagatgcaaatgaatcattaacaaagccatcattttacaa ttagccaacgtaaatacatcagatattatatatattgaagaaccttttaaaattct
- 25 Sequence 2776
 VKLTHRESLFTEIVTYSGETYYGECNAFLTNWYDKETILTVVNRLRQWIPQVLHKDMTSF
 DSWLPYLNQMNDAPAARSMVVMAVYQMYNDLHDFEVQYGATVSGLTNSQIETLLETRPKR
 IKLKWSTSLIKDLETIRLLNFDCDIAIDANESLTKPSFLQLANVNTSDIIYIEEPFKIL
- gatgcacaatatgctatagatcatctagaggctgattatggagaaatgcacttgagaaa
 gcaaaatcatatgccaaagatatgcatatgtctaatgactcaatttacgatcttttggtg
 tctaactacggtgaaaaatttacagaatcagaagcaaaatatgctattgagcatttggat
 aattaa

Sequence 2778

MQQETTSWYKQEWFIVLSLLFIFPLGLFLMWKFSKWPSIARTIITVAISVIVLASITYYG
NLQMIVPATSNSNNETKETTENNVNDKDERNHKTAVEETKTNYDSTKENTKEPGKENESA
TRLENSALEKAKSYYDDFHMSKLGIYDILTSEYGEKFDKEDAQYAIDHLEADYEKNALEK
AKSYAKDMHMSNDSIYDLLVSNYGEKFTESEAKYAIEHLDN*

Sequence 2779
Contig_0819_pos_2417_1683,
putative peptide of unknown function

50

55 atgagaaattatttctatcaattttatctattataataatttcaagtttttgtgttgca acagggtttcaaaacgttaatgctgcaaataatgaggtgagcaaacctcaaagtaatgtg gatagtaaaactaaacaaaatattattaaaaaaataaaaaaatctaatgcttataaaaag cacgctaattcaacttctattgactcaataaaagatgacgatattattgttcatttggat aaaggtaaaaacaccaatgtatattctattaactatgtatttggtaaaaaattagctaaa

atgaatgataacettgcaatgattgaattaaaatataacgaagcaaacaatgaagttttc tacaatcatatqatqtattcaaaatttqttaaatataataataaqaatatattaatatq aaaggcattttaaatggcaaaccttattatgaatttaatatagatcagaaaggtc:ttac tacgataaaaactttaaacatacctctaaagatgaaatcgaaaaagattctgctaaaaac ttaccacctaaaqaqcqtqqttqqtqtaatqqqcaqtaqqaqctttatqtqqtaccqqt ggagctgcaggttqttqqqcaactgctacagctttaggtattactactqqttqqqqaqqc tatatttgtaaataa

10 Sequence 2780

> MRKLFLSILSIIIISSFCVATGFQNVNAANNEVSKPQSNVDSKTKQNIIKKIKKSNAYKK HANSTSIDSIKDDDIIVHLDKGKNTNVYSINYVFGKKLAKMNDNLAMIELKYNEANNEVF YNHMMYSKFVKYNNKEYINMKGILNGKPYYEFNIDOKGHYYDKNFKHTSKDEIEKDSAKN LPPKERGWCEWAVGALCGTGGAAGCWATATALGITTGWGGFSLATICGLISSLGCTGATN

15 YICK*

> Sequence 2781 Contig 0822 pos 6711_5857, is similar to (with p-value 2.0e-42)

- 20 >qp:qp|D78193|BACGNTZA 33 Bacillus subtilis 36kb sequence be tween gntZ and trnY genes encoding 34 ORFs. NID: g1064780. > gp:qp|Z99124|BSUB0021 145 Bacillus subtilis complete genome (section 21 of 21): from 3999281 to 4214814. NID: q2636442. atgaagtggcttaaacaactacaatcccttcacacgaaactcgttattgtttatgtacta
- 25 $\verb|ctcattattattggtatgcaaatcatcggtttgtattttacgaatagtttagaaaaggaa|\\$ ttactcqataacttcaaqaaqaacataacacaatatqcqaaqcaattaqacqtcaatatt gaaaaggtttataaagataaagataaaggttcagtcaacgctcaaaaggatatccaagac cttttqaatqaatatqcqaatcqccaaqaaataqqaqaaatacqctttattqataaaqac
- 30 qacqqttcaqttcaaaaqqcqctctccttaqqqcaaacqaatqatcatatqqttcttaaq gattacggaagtggtaaagagcgtgtttgggtatataatataccggttaaagttgataaa cagacaatcggtgatatatacatagaatcgaaaattaatgatgtatacaatcagctgaac aacattaatcaqatattcatcqtaqqqacaqcqatatcactattcattacaqtaatacta ggattcttcattgcacgaacgattactaagccgataaccgatatgcgtaaccaaaccgtt
- 35 qaqatqtctaaaqqtaactacacqcaacqaqtqaaqatatacqqtaacqatqaaatcqqt qaqctcqcacttqccttcaataacttatcqaaacgtgtccaaqaaqcacaagcqaataca qaaaqtqaqaaacqtcqcctagattctqttatcacacataattacttqttgaatqtatta cattttgattgttaa
- Sequence 2782

MKWLKOLOSLHTKLVIVYVLLIIIGMOIIGLYFTNSLEKELLDNFKKNITOYAKOLDVNI EKVYKDKDKGSVNAOKDIODLLNEYANROEIGEIRFIDKDOIIMATTKOSNRGLINOKVN DGSVQKALSLGQTNDHMVLKDYGSGKERVWVYNIPVKVDKQTIGDIYIESKINDVYNQLN NINQIFIVGTAISLFITVILGFFIARTITKPITDMRNQTVEMSKGNYTQRVKIYGNDEIG

45 ELALAFNNLSKRVQEAQANTESEKRRLDSVITHNYLLNVLHFDC*

Sequence 2783 Contig 0824 pos 5618 5929, putative peptide of unknown function

- atgcacataaattcaaaattagctaaaatqccgcgtagaattqatqqcaaqttattctcq 50 qttaqtcatacatcaqtaaqtaaaqcqtttaqaaaaqcaaaqaaqtqataqqattaaac gataataatataactccctattcactcaqacatacgcacatcttacttactatctaaa ggcataccaatcgagtatataagtaaacgtttaggtcacgctactatatcacaaacgtta gacacgtattcacatttattagaagaacataaaaaaagagcaaggccaacgtgtcaqagaa
- 55 atattctcttga

Sequence 2784 MHINSKLAKMPRRIDGKLFSVSHTSVSKAFRKAKEVIGLNDNNITPYSLRHTHTSYLLSK GIPIEYISKRLGHATISOTLDTYSHLLEEHKKEQGQRVREIFS*

Sequence 2785 Contig_0824 pos 4770 3757, putative peptide of unknown function atggaacgattttgttgtgtaaatcaaattaactatattcaaatgaatccgttagaagccaaatttaaaacgagcgctctaagatcatggaaaactgatcaggcagatgctcataagcttqcttqtttaqqaccqacqcttaaacaaacaqacaacttacctatacatqaqttaatattc tttqaattaaqaqaacqcqtccqttttcatctaqaaatcqaqaatqaacaaaatcqacttaaatttcaqatccttqaattactccatcaaacattccctggtttagaaagattatttagt agtcgatattcaatcattgcactcaacatcgcagaaatctttactcatccagacatqqtt 10 cttqatatcqacaaqqaqqtactqattacacatatattcaattctacagataagggaatg tcaatggataaagctacaaaatatgcacttcaattaagggtgattgctcaagaaagctat aaacaatattattattcatcatctcaaacaattagatgatgccatgattcaattagcacaacaa 15 attattqqqqaqattqqtqatattaaqcqatttaaatcaaataaacaactcaatqctttt gttggcattgatatcaaacgatatcaatcaggtcatacacactgtagagataccatcaac aagcgtggtaataaaaaagcgagaaaacttttattttgggtgattatgaatataataaga qqqcaqcatcattatqacaatcatqtcqtcqattattactacaaactaaqaaaqcaqcct 20 aatgagaaacctcataagactgccatcattgcttgtataaatcgattattaaaaacaatt cattatcttgtaatgaatcataaattgtacgattatcaaatgtcaccacattag

Sequence 2786

MERFCCVNQINYIQMNPLEAKFKTSALRSWKTDQADAHKLACLGPTLKQTDNLPIHELIF FELRERVRFHLEIENEQNRLKFQILELLHQTFPGLERLFSSRYSIIALNIAEIFTHPDMV LDIDKEVLITHIFNSTDKGMSMDKATKYALQLRVIAQESYPNVDRHSFLVEKLRLLIQQL KQSIHHLKQLDDAMIQLAQQLDYFENIHSIPGIGKLSTAMIIGEIGDIKRFKSNKQLNAF VGIDIKRYQSGHTHCRDTINKRGNKKARKLLFWVIMNIIRGQHHYDNHVVDYYYKLRKQP NEKPHKTAIIACINRLLKTIHYLVMNHKLYDYOMSPH*

30

25

Sequence 2787

Contig_0824_pos_2942_2442,
is similar to (with p-value 7.0e-38)

>gp:gp!AF082668|AF082668_1 Streptococcus pyogenes CsrR :csrR

35) and CsrS (csrS) genes, complete cds. NID: g3599370. atgcttccaaacataaatggtctagaaatttgtagacaaattcgtcaaaaaacaactact ccaattatcatcattactgcaaaaagcgagacatatgataaagtagctgggttggactat ggggcagatgactacattgtaaaaccctttgatatagaagaattgctcgcaagaataaga gcggtattgcgcagacagccagataaagatgttttagatatcaatggtattatcattgat aaagatgcctttaaagttactgttaatggccatcaattagaattaactaaaacagaatac gatttattatatgttttagctgaaaatcgtaaccacgtcatgcagcgtgaacaaattctc gatcacgtatgggggtataatagtgaagtagaaacgaatgtcgttgatgtttacattcgt tattacgtaataaactcaaaccttttaataagaaaaatccatagaaacagtacgtggc gtagggtatgttgatga

45

Sequence 2788
MLPNINGLEICRQIRQKTTTPIIIITAKSETYDKVAGLDYGADDYIVKPFDIEELLARIR
AVLRRQPDKDVLDINGIIIDKDAFKVTVNGHQLELTKTEYDLLYVLAENRNHVMQREQIL
DHVWGYNSEVETNVVDVYIRYLRNKLKPFNKEKSIETVRGVGYVIR*

50

Sequence 2790

15 VSYIFSSQITKPIVTMSNKMNQIRRDGFQNKLELTTNYEETDNLIDTFNEMMYQIEESFN
QQRQFVEDASHELRTPLQIIQGHLNLIQRWGKKDPAVLEESLNISIEEVNRITKLVEELL
LLTKDRVNHNVLECENVDVNSEIQSRVKSLQHLHPDYTFETHLATKPIQLKINRHQFEQL
LLIFIDNAMKYDTEHKHIKIVTQLKNKMIMIDITDHGMGIPKADLEFIFDRFYRVDKSRA
RSQGGNGLGLSIAEKIVQLNGGMIQVESELQKYTTFKISFPVLN*

20

25

40

50

10

Sequence 2791

Contig 0824 pos 0 597,

is similar to (with p-value 8.0e-29)

>pir:pir|S25295|A32879 oxoglutarate dehydrogenase (lipoamide
) (EC 1.2.4.2) - Bacillus subtilis

atgctagatttgtatgatgattatctacaaaatccatcctgtacctgaagatttacaa gtcttgttcagtacaattaaaacaggtgaagctcatatcgaagctaaacctaccactgat gggggtggttcacaagcgggagatagcacaattaaacgtgttatgcgcttaatcgataat attcgtcaatacggacatttaaaagcagatatttatccagtaaatcctccagagcgtcaa

- 30 aatgttcctaaattggaaatcgaagattttgatttagataaagaaactttggaaaaaata tcatctggaattgtctctgaacattttaaagacatttatgacaatgcctatgatgcaatt gttcgtatggaaagacgttacaaaggaccgatagcttttgaatacactcacattaataat aataaagaacgtgtgtggttaaaaagaagattgaaacgccttataaagcaagtttaaac gataatcaaaaaaaaagaacttttcaaaaaaactcgcacacgtagaaggttttgaaaaatat
- 35 ttgcacaaaaattttgttggggctaaacgtttttcaattgaaggcgtcgaTC

Sequence 2792

MLDLYDDYLQNPSSVPEDLQVLFSTIKTGEAHIEAKPTTDGGGSQAGDSTIKRVMRLIDN IRQYGHLKADIYPVNPPERQNVPKLEIEDFDLDKETLEKISSGIVSEHFKDIYDNAYDAI VRMERRYKGPIAFEYTHINNNKERVWLKRRIETPYKASLNDNQKKELFKKLAHVEGFEKY LHKNFVGAKRFSIEGVDX

Sequence 2793

Contig_0440_pos_5821_6999

45 is similar to (with p-value 2.0e-24)

>sp:sp|P23524|YHAD_ECOLI HYPOTHETICAL 42.1 KD PROTEIN IN RN PB-SOHA INTERGENIC REGION (ORF 3) (F408). >pir:pir|JQ0614|JQ 0614 hypothetical 42K protein - Escherichia coli >gp:gp|D902 12|ECORNPBW_3 E.coli rnpB gene and ORFs. NID: g216630. >gp:gp|U18997|ECOUW67_54 Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes. NID: g606010. >gp:gp|AE000394|AE 000394_2 Escherichia coli K-12 MG1655 section 284 of 400 of the complete genome. NID: g2367197.

15

20

35

10

Sequence 2794

MFK11FGKEKNKVVKTMKVLVAMDEFNGIISSYQANRYVEEAVASQIEDADIVQV?LFNG
RHELLDSVFLWQSGNKYRVSAHDADMKETEAIYGQTDSGMTIIEGHLFLNGKKPIQHRSS
YGLGEVIKAALDNHTEHLVISLGGIGSFDGGAGMLQALGATFYDDEAQIVDMRKGAYLIK
YIRRIDLSGVHPQLTKVNIQLMSDFSSRLYGKKSEIMQTYESLDLSQNEAAEIDNLIWYF
SELFKNELKIAMGPIERGGAGGGIAAVLNSLYQAEILTSHELVNQITHLENLIQQADLII
FGEGLKEEDQILETTTIRIAELTQQYSKPAIAICATNDKFDLFESLNVTAMFNTFIDMPD
SYTDFKMGIQIRHYTVQALKLLKTQINLPLSS*

25 Sequence 2795
 Contig_0440_pos_4831_4487
 is similar to (with p-value 1.0e-60)

>pir:pir|I67760|I67760 transposase (insertion sequence IS10) - Escherichia coli >gp:gp|S67119|S67119_2 BST=somatotropin ...BST/beta-Gal fusion protein [Escherichia coli, LBB84, pla smid pXT107, IS10L/R-1, PlasmidTransposonInsertionMutant, 3 genes, 1679 nt]. NID: g455674.

atgcagattgaagaaaccttccgagacttgaaaagtcctgcctacggactaggcctacgccatagccgaacgagcagctcagagcgttttgatatcatgctgctaatcgccctgatgcttcaactagccgaacgagcacttccaacaaggttgggacaagcacttccaggctaacacagtcagaaatcgaaacgtactctcaacagttcgcttaggcatggaagtttgcgcattctggcattctggcaaccctactaggcattctaacaatttattcacacatggttacgctttgggaaatttattga

40 Sequence 2796

MQTEETFRDLKSPAYGLGLRHSRTSSSERFDIMLLIALMLQLTCWLAGVHAQKQGWDKHF OANTVRNRNVLSTVRLGMEVLRHSGYTITREDLLVAATLLAONLFTHGYALGKL*

Sequence 2797

45 Contig_0441_pos_2559_3467
 is similar to (with p-value 2.0e-39)
 >sp:sp|O54983|CRYM_MOUSE MU-CRYSTALLIN HOMOLOG. >gp:gp|AF03
9391|AF039391_1 Mus musculus mu-crystallin (Crym) mRNA, comp
lete cds. NID: g2745895.

atgaatgaagtcattitagaagtagaaaaagctttgcaagcttttcagagaataagacg
ataacgccattaagatatgttttgccatttaatgagcaaaatcgttatttagtgatgcca
gcattatcagatgaattaaatatcgttggacttaaaacagtctcatttgcacctgaaaat
tcaaaaaaagggaaagcgactattactggatcagttattttaagtgactatgaaacagga
gaaacattgtctatattagatggtggttttcttactaaagtaagaactggtgcaatttca
ggtgtagctactaaatatctagcaaaagaaaacgctaaaacacttagtgtaataggggca
ggtgtacaagctgaaggtttaattgaagcgatacttgctgttagagatattgaaaaatt
cacatcgcaagtagaacgttcgaaaaagcagaaaatttgctcaaaatatacgaaatcga
tttaatattaaagtgagtgtatttagatcggcagatgaagcgatagacagtgcagatat
gtagttacagcaacaaatgcaaatcagcccqtttatactcattctttacatccaqqcqtg

catttaaatgcagtcggatcctttaaaccagatatgcaagaaataccttcagaaacaatg cttgttgctaataaaattgttgttgaatctatggaagcagctttagaagaaacaggtgat ttaaaaattcctcaagcagaaggaatattaactaaaaatatgctacatagtgaattaggc gacattatttctggtgaaaaagttggccgcgaaactgaagaagaagtgacagtctttaaa tcggtcggtctagcaattgtagatatcattgtggcacaatatttttataaaaaaattaata caatcttag

Sequence 2798

MNEV!LEVEKALQAFSENKTITPLRYVLPFNEQNRYLVMPALSDELNIVGLKTVSFAPEN

SKKGKATITGSVILSDYETGETLSILDGGFLTKVRTGAISGVATKYLAKENAKTLSVIGA
GVQAEGLIEAILAVRDIEKIHIASRTFEKAEKFAQNIRNRFNIKVSVFRSADEAIDSADI
VVTATNANQPVYTHSLHPGVHLNAVGSFKPDMQEIPSETMLVANKIVVESMEAALEETGD
LKIPQAEGILTKNMLHSELGDIISGEKVGRETEEEVTVFKSVGLAIVDIIVAQYFYKKLI
OS*

15

Sequence 2799 Contig_0441_pos_4023_4979 unknown

atqaaaaaaataatcactggagcacttggtcaaattggtactgaattagttattaaq 20 tqtaqaqaaaqatatqqaactqaaaatqtattaqctactqatataaqaaaqccaqaacca cactctccagttaaaaacggtccttttgaaatcttagatgttacagatagaaatcgttta tttgaaacagtgagatatttcaatgctgatacacttatgcatatggctgcactgctttct gctacagcggaaaagaaaccactagttqcctqggatttqaatatqqqqqqacttataaat acactcgaagcagcaagaaggtatcaattaaaatattttacgccaagttcaataggagct 25 atgtatggtataaacaaagtaactggggaattattatgtcagtattattatgtcaaattt ggagtagatacacgtagcgttagatttcctggtttaatttcacatgttaaagaacctggc qqfqqcataacaqattatqcaqttqatatqtattttaaqqcaqttaqaaaaqqaccctat acaaqttatattaatcqttacacttatatqqatatqatqtacatqqaaqatqctaitqat 30 qcqattatcaaattaatqqaaqaaqacaqtqttaaattaaaaacaaqaaatqqctataac ttaagtgcgatgagtattgaacctgaaatgctaaaacaagctatacaagtatactatcca gatttcaccttagattatgacattgatttagagcgtcaagatattgcattaagttggcca gatagtatagatacgagctgtgctcaggaagagtggggatttgatcctaaatatgattta ccaactatgactaaagtgatgttagaggcaattgagaaaaaaacaaaaagaatgctga

35

40

50

55

Sequence 2800
MKKIIITGALGQIGTELVIKCRERYGTENVLATDIRKPEPHSPVKNGPFEILDVTDRNRL
FETVRYFNADTLMHMAALLSATAEKKPLVAWDLNMGGLINTLEAARRYQLKYFTPSSIGA
FGISTPKVNTPQLTIQQPTTMYGINKVTGELLCQYYYVKFGVDTRSVRFPGLISHVKEPG
GGITDYÄVDMYFKAVRKGHYTSYINRYTYMDMMYMEDAIDAIIKLMEEDSVKLKTRNGYN
LSAMSIEPEMLKQAIQVYYPDFTLDYDIDLERQDIALSWPDSIDTSCAQEEWGFDPKYDL
PTMTKVMLEAIEKKOKEC*

Sequence 2801

45 Contig_0442_pos_1526_2359 is similar to (with p-value 1.0e-60)

>pir:pir|I67760|I67760 transposase (insertion sequence IS10) - Escherichia coli >gp:gp|S67119|S67119_2 BST=somatotropin ...BST/beta-Gal fusion protein [Escherichia coli, LBB84, pla smid pXT107, IS10L/R-1, PlasmidTransposonInsertionMutant, 3 genes, 1679 nt]. NID: q455674.

acacatyctcaaatcaatcagatgattgatgactttggagaggctacacgtcgcgctata gaagcggggtttgatggtgtcgaaattcatggcgccaacacatacttattacaacaattt ttctctccacattctaatcggagacaagattcatggggaggcagtcgtgaaaaacgtaca cgatttccaatcgaagttttgacaaaggttcaacacgtcgttgctgaaaaagggcttct cattttattataggatatcgattctcacctgaagaaattgaagaaccaggcatacgttt qaagataccatgtttttactaaatacattaqcaqaatgcttgactacaaaatag

Sequence 2802

MKSILFLSNNVKIFTKKLGGFAMSKEIFDTFKFKCGAELKNRVLMAPMTIQAGYFDGSVT
SEMIDYYQFRAGDASAIIVESCFVENHGRGFPGAIGIDNDDKIPGLKRLAEAIQAKGSKA
ILQLYHAGRMANPKFNEGEQPISASPIAALRPDAVPPREMTHAQINQMIDDFGEATRRAI
EAGFDGVEIHGANTYLLQQFFSPHSNRRQDSWGGSREKRTRFPIEVLTKVQHVVAEKEAS
HFIIGYRFSPEEIEEPGIRFEDTMFLLNTLAECLTTK*

15 Sequence 2803

Contig_0442_pos_13117 13461

is similar to (with p-value 5.0e-53)

>sp:sp|P54524|YQIG_BACSU PROBABLE NADH-DEPENDENT FLAVIN OXI DOREDUCTASE YQIG (EC 1.-.-). >gp:gp|D84432|BACJH642_230 Ba

- 20 cillus subtilis DNA, 283 Kb region containing skin element. NID: g2627063. >gp:gp|Z99116|BSUB0013_132 Bacillus subtilis complete genome (section 13 of 21): from 2395261 to 2613730. NID: g2634723.
- atgcagattgaagaaaccttccgagacttgaaaagtcctgcctacggactaggcctacgc
 25 catagccgaacgagcagctcagagcgttttgatatcatgctgctaatcgccctgatgctt
 caactaacatgttggcttgcgggcgttcatgctcagaaacaaggttgggacaagcacttc
 caggctaacacagtcagaaatcgaaacgtactctcaacagttcgcttaggcatggaagtt
 ttgcggcattctggctacacaataacaagggaagacttactcgtggctgcaaccctacta
 gctcaaaatttattcacacatggttacgctttggggaaattatga

30

Sequence 2804

MQTEETFRDLKSPAYGLGLRHSRTSSSERFDIMLLIALMLQLTCWLAGVHAQKQGWDKHF QANTVRNRNVLSTVRLGMEVLRHSGYTITREDLLVAATLLAQNLFTHGYALGKL*

35 Sequence 2805

Contig 0445 pos 0 322

is similar to (with p-value 8.0e-17)

>gp:gp|M89774|ECOLYSP_2 Escherichia coli lysine specific pe rmease (lysP) gene, complete cds. NID: g466776. >gp:gp|AE000

- 40 305 | AE 0 0 0 305 _ 1 Escherichia coli K-12 MG1655 section 195 of 4 00 of the complete genome. NID: g1788479.
 - $\tt gtggcaactggaagtgtcatttctcaagctggcccaggaggagctatattagcttatatactaattggtattatgctttatttttaatgtcatcaataggagaattagcaactttctatccggtttcttggttcttttagttcatactctaccagatttgttgattcgtcacttggtttt$
- 45 acaatgggttggttgtattggggtatgtggtcacttgtaacaagtgtagatatcattgtt gcttccaatgtattacaatattgggatgtatttaaagttttaaatccacttacatggagc ttaattttcttaactctgttgt

Sequence 2806

50 VATGSVISQAGPGGAILAYILIGIMLYFLMSSIGELATFYPVSGSFSSYSTRFVDSSLGF TMGWLYWGMWSLVTSVDIIVASNVLQYWDVFKVLNPLTWSLIFLTLLX

Sequence 2807

Contig 0447 pos 14098 15573

is similar to (with p-value 6.0e-40)
>gp:gp|X93084|MBFMDSUBS 1 M.barkeri fmdE, fmdF, fmdA, fmdC,
fmdD, fmdB, orf4, orf3, orf2, and orf1 genes. NID: g1124956

atgamazattgattactcttattgtcatgatatcttttgttttagcgagctgtgggggc

acatcaagtacagacaaagacaccctcaatgttgaaatacctttgaaaactaaatcaatt gcaccttacqaaactgatatcccagttaaaacaggtgccttggaatcgcttttaaaaatg tcgaagaatggtaaagtaaaacctttattagtcaaaaattatcatcaagtatctgacaat caactagaactcactttaaaagataatattaaatttcaaaacggtcatcatttaacaggc gaagctgtaaaacgtagtctcgaagaaggaatgaaaaaaagtgatttgttaaaaggatca cttcctattaaatcaatcatqctcatqqacaaaaaqtcacaatcactactaaaqaacct tatccaqaattaatqtctqaactcqcaaqcccatttqctqctatttacqacacaaaaqct aaaaacaaaqtaactgatcaacctgttggtacgggtccttataaaattgatcagtataaa cqttcqcaaaaatcqtactaaaacaattcaaaqactactqqcaaqqtacqccaaaatta aaaaqaattaatqtcacttatcatqaaqatqqtaatactcqtqttqatcacttattatca ggcaaatcaqatttgactactgatgttccaattgaacgcqttgatqatqtaaaaaaatct aacaaagcaaacattcaaagtacatcaggctttagaacgcatttaatgttatacaatcatqataqtaaaaaaqttaataaaaaaqtaaqaqaaqcactaqatatqattattaatcqaaaa gacattgctaaaaatgtttctaaaaattatgctgagccagcatcaggtccttttaaccat cgattaaaatcattagaaaaagaggaaattcaatcacaagacatcaagcgtgcaaaagaa cttttagctcaagaaggttattccaaatcgcatcctcttaaattaaacatggtcacatac gatggcagaccagaattgcctaaaattggacaggtgatacaatctgaagctaaaaaggca aatgttgatatacaattacgcaatgtagatgatatcgaaggatatctcaaaaacaacag aqttqqqatqtttcaatqtataqttatttaaqtqtqcacqtqqtqatacaqqttatttc tttaacactgcatacttacctgatggagcattaaataaaggtaattatagtaatactaaa gtcactcagttaattaaagaattaaatactactttcgqtqacaaqcaacqtgqtcaaqtq actaatqaaatactaaatqaatctaaaaaqatattcctaacaqctatatcacatacaac tctcaaatagatggtgtgaataataaagtaagacattttaatgttacaccagaatctatc tatttaattgattataaattaagtaaaaaagaataa

Sequence 2808

10

15

20

30

35

45

50

55

MKKLITLIVMISFVLASCGGTSSTDKDTLNVEIPLKTKSIAPYETDIPVKTGALESLFKM SKNGKVKPLLVKNYHQVSDNQLELTLKDNIKFQNGHHLTGEAVKRSLEEGMKKSDLLKGS LPIKSINAHGQKVTITTKEPYPELMSELASPFAAIYDTKAKNKVTDQPVGTGPYKIDQYK RSQKIVLKQFKDYWQGTPKLKRINVTYHEDGNTRVDHLLSGKSDLTTDVPIERVDDVKKS NKANIQSTSGFRTHLMLYNHDSKKVNKKVREALDMIINRKDIAKNVSKNYAEPASGPFNH RLKSLEKEEIQSQDIKRAKELLAQEGYSKSHPLKLNMVTYDGRPELPKIGQVIQSLAKKA NVDIQLRNVDDIEGYLKNKQSWDVSMYSYLSVPRGDTGYFFNTAYLPDGALNKGNYSNTK VTQLIKELNTTFGDKQRGQVTNEILNESKKDIPNSYITYNSQIDGVNNKVRHFNVTPESI YLIDYKLSKKE*

Sequence 2809

Contig_0447_pos_20772 21911

>gp:gp|Z82038|CTZ82038_4 C.thermosaccharolyticum etfB, etfA 40 , hbd, thlA and actA genes. NID: g1667352. >gp:gp|Z92974|TTB CSOPRN_6 T.thermosaccharolyticum BCS operon DNA. NID: g19033

gtgtttggtggtgtatttaaggatatacctgcctatgaactaggtgcaacagttattcgt caaattttagaacataqtcaaataqatcctaatqaaatcaatqaaqttattctaqqaaac gtattacaggcaggtcaaggacaaaatcctgctcgtattgctgcgattcatggtggtgtg $\verb|ccagaagcggtaccttcttttactgtaaataaagtttgcggttctggattaaaagcgatt|$ caacttgcctatcaatctattgtagcgggagataatgagattgttatcgctggaggcatg gaaagtatgtctcaatctccaatgcttcttaaaaatagtcqtttcqqttttaaaatqqqa aatcaaactttagaagatagtatgatagctgatggtttaactgataagtttaatgattac catatgggtatcacagccgaaaatctagttgaacagtatcagattagtcgtaaagaacaa gatewathtgcattcgattctcaacaaaaqcatcacqtqcacaacaaqctqqtqtattt gatgctgaaattgtacctgtagaggtaccacaacqtaaaggcgaccccctaattatttct caagatgaaggcattagacctcaaacgacaattgataagttagcacaactccgtccagca tttaaaaaagatggatcagtaactgctggtaatgcatccggtatcaatqacqgtqctqct gctatgctcgttatgacggaggacaaagcgaaagcattgggcttacaacctatagctgta ttagatagttttggtgcgaqtggtgtggcgccttcaattatgggtattqqtccaqttqaa gcgatacataaagctttaaaacgttctaataaagtgataaatgatgttqatatttttqaa $\verb|ttaaacgaagcttttgcagcgcaatcaattgctgtaaaccgtgagttgcaattaccgcaa|\\$ gataaagtcaatgttaatggtggtgcgattgcactaggacatccgataggggcttcgggt

gcgcgtactttagtttcattattacatcaattaagtgatgctaagccaacaggtgtggca tctttatgtatcggtggcggtcaaggtatcgctacggttgtatctaaatatgaagtttaa

Sequence 2810

5 VFGGVFKDIPAYELGATVIRQILEHSQIDPNEINEVILGNVLQAGQGQNPARIAAIHGGV
PEAVPSFTVNKVCGSGLKAIQLAYQSIVAGDNEIVIAGGMESMSQSPMLLKNSRFGFKMG
NQTLEDSMIADGLTDKFNDYHMGITAENLVEQYQISRKEQDQFAFDSQQKASRAQQAGVF
DAEIVPVEVPQRKGDPLIISQDEGIRPQTTIDKLAQLRPAFKKDGSVTAGNASGINDGAA
AMLVMTEDKAKALGLQPIAVLDSFGASGVAPSIMGIGPVEAIHKALKRSNKVINDVDIFE
10 LNEAFAAQSIAVNRELQLPQDKVNVNGGAIALGHPIGASGARTLVSLLHQLSDAKPTGVA
SLCIGGGQGIATVVSKYEV*

Sequence 2811

Contig_0447_pos_24387 22894

- 15 >pir:pir|S57636|S57636 5-methyltetrahydropteroyltriglutamat e--homocysteine S-methyltransferase (EC 2.1.1.14) - Madagasc ar periwinkle >gp:gp|X83499|CRMETS_1 C.roseus MetE mRNA for methionine synthase. NID: q886470.
- gtgggcggtttaggattagatttggtacacgataacggctataacttaaaacaaattgaa 20 gatggtaatttcgatcaaagtaaagcactttatgcaggaatcattgatggcagaaatgta tgggcggctgatattgaagcaaaaaaacaattaatcgaaacattacaacaacacacaa cagttagtcattcaaccttcatcattctacatgttccagtatcactagatgatgaa acacttgatgaatctattgcagaaggattaagttttgctactgaaaagttagacgaatta gatgcattgcgtcgcttattcaatgataatgacctgtcaaaatatgaacattacaaagca cgttatgaacgcttccaaagccaatcatttaaaaaatcttgaatacgattttgaaagtgta
- ccgacacatcgtaaatcaccatttgctaaacgcaagcaattacaaaaccaacgtctaaat
 ttaccagatttacctacgactacgattggttcattccctcaaactcgtgaagtccgtaaa
 tttagagcagattggaaaaataatcgcattacagatgctgagtatcaagaatttttacaa
 aatgaaatcgctcgttggattaaaatccaagaagatattggtttagacgtacttgtacac
- 30 ggtgagtttgagcgtaacgacatggttgaatttttttggggaaaaacttcaaggtttccta gtaacaaaattcggttgggtacagtcttacggttctcgtgcagttaaaccaccagttata tatggagatgtgaagtggactgccccacttactgtaaaagaaacagtatacggcaaagc ttaactgacaaaccagtaaaaggtatgcttacaggtccagttactattttaaactggtca tttgaacgcgtagacgtacctagaaaggttgttcaagatcaaattgccttagccattgat
- 40 gatttaggaattggattaggtgtttacgatattcacagtccacgtattccaaccgaagaa gagattactactgcaattaatcgttcattacaacaaattgatcgttctctattctgggtt aacccagactgtggtctaaaaacacgtaaagaaaatgaagtgaaagatgcattaacagtg ttagtcaatgcagttaaaaagaaacgtcaagaatctgaatcaacaacagcataa
- 45 Sequence 2812

VGGLGLDLVHDNGYNLKQIEDGNFDQSKALYAGIIDGRNVWAADIEAKKQLIETLQQHTQ QLVIQPSSSLLHVPVSLDDETLDESIAEGLSFATEKLDELDALRRLFNDNDLSKYEHYKA RYERFQSQSFKNLEYDFESVPTHRKSPFAKRKQLQNQRLNLPDLPTTTIGSFPQTREVRK FRADWKNNRITDAEYQEFLQNEIARWIKIQEDIGLDVLVHGEFERNDMVEFFGEKLQGFL

50 VTKFGWVQSYGSRAVKPPVIYGDVKWTAPLTVKETVYAQSLTDKPVKGMLTGPVTILNWS FERVDVPRKVVQDQIALAIDEEVLALEEAGIKVIQVDEPTLREGLPLRSEYHEQYLEDAV HSFKLATSSVHDETQIHTHMCYSQFGQIIHAIHDLDADVISIETSRSHGDLIQDFEDINY DLGIGLGVYDIHSPRIPTEEEITTAINRSLQQIDRSLFWVNPDCGLKTRKENEVKDALTV LVNAVKKKROESESTTA*

55

Sequence 2813
Contig_0450_pos_7632_8510
No hits found
atgaaagcgccagttctggtatcaggtactgacggtgtgggtacaaagttaaaattagca

15

30

35

40

45

Sequence 2814

MKAPVLVSGTDGVGTKLKLAIDYGKHDTIGIDAVAMCVNDILTTGAEPLYFLDYIATNKV VPSTIEQIVKGISDGCEQTNTALIGGETAEMGEMYHEGEYDIAGFAVGAVEKEDYIDGSN VEEGQAIIGLASSGIHSNGYSLVRKMIKESGVQLHDQFNGQTFLETFLAPTKLYVKPILE LKKHIDIKAMSHITGGGFYENIPRALPKGLSAKIDTQSFPTLEVFNWLQKQGNISTNEMY

20 LKKHIDIKAMSHITGGGFYENIPRALPKGLSAKIDTQSFPTLEVFNWLQKQGNISTNEM NIFNMGIGYTIIVDKKDVQTTLTTLRAMDTTAYEIGEIIKDDDTPIHLLEVE*

Sequence 2815

Contig 0450 pos 13563 14528

25 is similar to (with p-value 9.0e-27)

>gp:gp|Z99108|BSUB0005_100 Bacillus subtilis complete genom e (section 5 of 21): from 802821 to 1011250. NID: g2633055. >gp:gp|D78508|D78508_5 Bacillus subtilis DNA for YfiO, YfiP, YfiN, YfiM, YfiL, YfiK, YfiJ, YfiI, YfiH, complete cds. NID: g1817531.

gtgggtaaaggcaacaatcttggcaaaaatgctgctctcaaaacttataatgagaatcaa gcgcaacatctgcttaaacaqaatcaattacaaqqatactttqtcttcqaccqtqqtatq accgatactttttataaagatggtagccttcctataactatttatacatatgatgaacaa tcaagtaacagtgtcgtggttaatcaattaacacgctcagtttatgaccgtttaatgtta tcaatgggcggtgtgctaagctttaatcaattagctaaaqatccttcaaatgaaqacqta gcaatgacattgattgatatgttatttaccggtttaaatcgttcaggttcatttaatttt gaacccatacatatttatgacaccagtagttattatgtagtcactggatttcttttgtct atctttatattqtqtttatcactttatacaqtactaaaaatqaatcaaqaaactqcactc aaagaacgcttgcaaatgtttcatttttcctttgaaaagctcacgatagttcgaggtatc attgcatggttttattcactcatatgggcatttattqqctttatctqqattactcatqct ctaaatgccccatttgaaaaatacaattggccaacggtagctttacaactcacttattac gttacgttactcgtcctatgcttattacttatagacttaattactcgttcatggataaac $\verb|tttctactcaaattattacttagctttgttatcgttattttttctgggataattatccct|\\$ actatcttctttaaacacatgcttaatgatgtaatcattacacaaccatttagtttqqtt actaatcaaatgttagaaataacactcaataactatattttagacacacatccagcattt tatttaagttttattacactattgatactattcatcattgttttagtatggaggtatcgc cgatga

Sequence 2816

50 VGKGNNLGKNAALKTYNENQAQHLLKQNQLQGYFVFDRGMTDTFYKDGSLPITIYTYDEQ SSNSVVVNQLTRSVYDRLMLSMGGVLSFNQLAKDPSNEDVAMTLIDMLFTGLNRSGSFNF EPIHIYDTSSYYVVTGFLLSIFILCLSLYTVLKMNQETALKERLQMFHFSFEKLTIVRGI IAWFYSLIWAFIGFIWITHALNAPFEKYNWPTVALQLTYYVTLLVLCLLLIDLIT.3WIN FLLKLLISFVIVIFSGIIIPTIFFKHMLNDVIITQPFSLVTNQMLEITLNNYILD!HPAF 55 YLSFITLLILFIIVLVWRYRR*

Sequence 2817 Contig_0450_pos_15460_16149 is similar to (with p-value 1.0e-18)

>sp:sp|P22082|SNF2 YEAST TRANSCRIPTION REGULATORY PROTEIN S NF2 (SWI/SNF COMPLEX COMPONENT SNF2) (REGULATORY PROTEIN SWI 2) (REGULATORY PROTEIN GAM1) (TRANSCRIPTION FACTOR TYE3). >p ir:pir|S15047|S15047 SNF2 protein - yeast (Saccharomyces cer evisiae) >qp:qp|X57837|SCSNF2 1 Yeast GAM1/SNF2 gene for a n uclear protein required for transcription of STA1 gene. NID: q4499. >qp:qp|X89633|SCVCOSMGN 20 S.cerevisiae DNA for VPH1 , MOD5, CAP20, ORF1 and SNF2 genes. NID: g1279694. >qp:qp|Z7 5198|SCYOR290C 1 S.cerevisiae chromosome XV reading frame OR F YOR290c. NID: g1420643. >gp:gp|D90459|YSCRIC1 1 Yeast RIC1 gene (regulatory gene for phospholipid synthesis), complete cds. NID: g806531. >gp:gp|M61703|YSCSNF2A 1 Saccharomyces c erevisiae SNF2 protein gene, complete cds. NID: q172631. atgataqatattcaaaatqtttccaaaaqctataaaaaqaaqcatattttcqattcccta 15 gatatqcaatttcaaaatcataaaattactattttattaqqtqaaaatqqtqctqqaaaa tctacattattgcgtttaattgcaggtattgagaatgcagacgaaggacgtattcaatac ttcaatcaatatttgtcaagacgtcgaatacgtcatattgtaggctatgtccctcaagac atcgcactattcgagcatatgactgtcatggagaacattgagtttttcaagtcactttgt gaaaatectatttcagatgaaacacttcattcttatttatcacaattaaattttactgat 20 acaaaagtgaaagtatctaacctttctgggggaaataaacgtaaagtcaatattatgata ggtctacttagtcggcctaaaatacttattctagatgaqccaacagaaqqcattgattta qaatcaaqatatqatattcacaacttattacaacaaatqaccqatcaatqtttaatcatc atgacqacacatcatttaqacqaaqttqaaqcactaqcaqatqatattaaaqttataqqt caaaatcctttttatcatgatattttagaaaataaaggttggtcttttaaaaaatatgca 25 aatgccttagctgataatacgaaatcttaa

Sequence 2818

30

35

40

45

50

55

MIDIQNVSKSYKKKHIFDSLDMQFQNHKITILLGENGAGKSTLLRLIAGIENADEGRIQY FNQYLSRRRIRHIVGYVPQDIALFEHMTVMENIEFFKSLCENPISDETLHSYLSQLNFTD TKVKVSNLSGGNKRKVNIMIGLLSRPKILILDEPTEGIDLESRYDIHNLLQQMTDQCLII MTTHHLDEVEALADDIKVIGQNPFYHDILENKGWSFKKYANALADNTKS*

Sequence 2819 Contig_0450_pos_20344_21786

is similar to (with p-value 5.0e-85)

>sp:sp|P43848|PUR5_HAEIN PHOSPHORIBOSYLFORMYLGLYCINAMIDINE
CYCLO-LIGASE (EC 6.3.3.1) (AIRS) (PHOSPHORIBOSYL-AMINOIMIDAZ
OLE SYNTHETASE) (AIR SYNTHASE). >pir:pir|G64122|G64122 5'-ph
osphoribosyl-5-aminoimidazole synthetase (purM) homolog - Ha
emophilus influenzae (strain Rd KW20) >gp:gp|U32822|U32822_2
Haemophilus influenzae Rd section 137 of 163 of the complet
e genome. NID: g1574265.
atgaaaagagcagccaatttttctgtacctggagctggtaaaacggctatgatgtatggc

acatttgctttttgtctagtgaaataaagcggaaagttgataaattaatagttatttct ccaattaatgcatttgaagcttggcgttcagaatttattgaagtttttcaagataaaaga gaattacactttatgaacctaagagataaaaatataatgatttaggtaaagtacgaaca gattggggaagtgcaaatgtcattgttttgaattttgaagcaatacaaaagtatgtaggg gttttaaatgaacttattaatgataagacaatgatagtttatgatgaggttcataggata aaaggtattaatagtagcagagcaagttatgcattaactttaggtcctaaaagttattac agatacgttttaactggtaccccaattccaaatagttatcaagacatatttaacttctta aatcctgatcctaatqaaattaatqacaagttqaacccttttttctgqcqtacaaataaq aacgatttggaagtgcctcaagcagaaaatgatattatattatgtgttaagcctagtaat attcaaattqaattaqcaaaaqcqatatacqaaaatqaatctqqqatactaqcqatttat gaagaaaatcaagtaaaacaacaaatttataattcttttgatttaaaaaaatgtaacttct ctaqtatqqqqattqttqtaqqtacaatqaataaaatcaataaqaqqttactaqaaaqt

qatattaattcaatattgatttatggagaaacacctaaagaagatagggtagatatgatc aataattttaggaatggaaatgcacaagttctaatatctaatcctaatacattaggcgag tccatatctttacatcagacagtacatgatgcaatatattttgaatataactttaattta acgtttatgttgcaatcacgtgatagaatacatcgtttagggttaaataataatcaatat a caaggtat tattatttgat gtctgaaggggat agagcccataa aggttttatcgataaagcagtttataacagactgaaggaaaaagaagatgtaatgttaaatgctattgatqqaaat actttaaagccaatgattgaagatgattacttagaagatgttaagaaaattattattgaa tqa

10 Sequence 2820

MKRAANFSVPGAGKTAMMYGTFAFLSSEIKRKVDKLIVISPINAFEAWRSEFIEVFODKR ELHFMNLRDKKYNDLGKVRTDWGSANVIVLNFEAIQKYVGVLNELINDKTMIVYDEVHRI KGINSSRASYALTLGPKSYYRYVLTGTPIPNSYQDIFNFLNILYKDEYDTYFGWNVADLO NPDPNEINDKLNPFFWRTNKNDLEVPQAENDIILCVKPSNIQIELAKAIYENESGILAIY ${\tt IRLLQASTNPELLQKNINYSELGMLNDELNFDLDKALNKEEENQVKQQIYNSFDLKNVTS}$ PKFEKGIELIENLVSQGKKVLVWGLFVGTMNKINKRLLESDINSILIYGETPKEDRVDMI NNFRNGNAQVLISNPNTLGESISLHQTVHDAIYFEYNFNLTFMLQSRDRIHRLGLI'NNOY TRYYYLMSEGDRAHKGFIDKAVYNRLKEKEDVMLNAIDGNTLKPMIEDDYLEDVKKIIIE

20

15

Sequence 2821 Contig 0451 pos 806 1621 is similar to (with p-value 1.0e-20)

>gp:gp|U67964|EVU67964 2 Ectromelia virus H14-B and H14-E g enes, complete cds. NID: g2145123. 25

atgcattatataaaatttattgagtcaaaagataatacaaaactttatatgaaagtgaat qatattcaaqatqcaaaaqcqaatatcattataqctcatqqtqtqqcaqaacatttaqat cqttatgatgagataacaqcatatttaaatgaaqcqqqttttaqtqttattaqatatgat caaaqaqqqcatgqtcqttctqaaqqcaaqcqtqccttttataqcaataqtaatqaaatt 30 gtcgaagatttagatgcgataataaattatgtgaagtcaaactttgaaggtaaagtttac $\verb|ttaatcggtcatagtatgggttatacagtcactttatatggaacgaaacatccaaat|$ acagtgaatggtattataacttctggagcattaacacgttataataataaactatttggc aatcctqataqaaacatatcacctqatacttatataqaaaacaatttaaqtqaqqqqta tgttctgatttagaggtaatggaaaaatataaacttgatgatttgaatgcgaaacaaatc tctatggggctcgtcttttcaataatggatggtgttaggtatttgaaagacaatgctcaa caatttacagataatattttgatattgcatggcaaggaagatgggctagtaagctatgta gattett:Lacagetttatcaagaaataggatcageacataaatcattacacatetstgat cgtttggagcatgaaatatttaatgaaagttcttataatagaactatttttaacgaagtt

40

45

35

Sequence 2822

MHYIKFIESKDNTKLYMKVNDIQDAKANIIIAHGVAEHLDRYDEITAYLNEAGFSVIRYD QRGHGRSEGKRAFYSNSNEIVEDLDAIINYVKSNFEGKVYLIGHSMGGYTVTLYGTKHPN TVNGIITSGALTRYNNKLFGNPDRNISPDTYIENNLSEGVCSDLEVMEKYKLDDLNAKQI ${\tt SMGLVFSIMDGVRYLKDNAQQFTDNILILHGKEDGLVSYVDSLQLYQEIGSAHKSLHIYD}$ RLEHEIFNESSYNRTIFNEVIEWLETELTYN*

Sequence 2823

Contig 0455 pos 4830 4159

50 is similar to (with p-value 4.0e-17)

attgaatggcttgaaacggaattaacttataactaa

>sp:sp|Q10092|YAOD SCHPO HYPOTHETICAL 24.2 KD PROTEIN C11D3 .13 IN CHROMOSOME I. >qp:qp|Z68166|SPAC11D3 13 S.pombe chrom osome I cosmid c11D3. NID: g1107889.

gtgtatatattcatgagtaaaaaagttttatttgttttaacaagtacaagtcaatttaca 55 gacggtacagaaactggattatggttagaagaagctggagcaccatataatatattgact gaugaaggtatcaatgttgatgttatttctattaaaggtggaaaagtaaatcttqatcct aattotgtttctaatgaatcactgaatcagtatgctaaattcgtgtcacacttaaacqat acacctagtatcqaaaatqtaaatqcaqatqaqtatqacqctatttatctaccaqqtqqa catggtactgtatacgattttgccaataatgagaaattagctgatattttacttcaattt

aaaaatagtaataaaataatctcttcagtatgtcatggacctagtgcgtttgtaggtgta aaagatgcaaataatcactatctagtagatggtgtcaaaataacttcatttactgatagt gaagaaaaagcaatgggatttgaaaataaagtaccatttttaactcaatctaaattagaa gagcaaggtgcaaattttgtagtgaaagatgactttacatctcacgtagaaaaagacggt caatttatcactggacaaaatccccaatcaagtgaagacattggtaaagcacttgcaaat gaattaaaataa

Sequence 2824

VYIFNSKKVLFVLTSTSQFTDGTETGLWLEEAGAPYNILTEEGINVDVISIKGGK-NLDP
NSVSNESLNQYAKFVSHLNDTPSIENVNADEYDAIYLPGGHGTVYDFANNEKLADILLQF
KNSNKIISSVCHGPSAFVGVKDANNHYLVDGVKITSFTDSEEKAMGFENKVPFLTQSKLE
EQGANFVVKDDFTSHVEKDGQFITGQNPQSSEDIGKALANELK*

Sequence 2825

15 Contig_0458_pos_1499_1038

is similar to (with p-value 4.0e-51)

>sp:sp[031408|ARGR_BACST ARGININE REPRESSOR. >gp:gp[Y09546] BSARGR_1 B.stearothermophilus argR gene. NID: g2369705.

Seguence 2826

VLIVPKKSVRHIKIREIISNEQIETQDELVKRLNEYDLNVTQATVSRDIKELQLI&VPAP
30 TGQYVYSLPNDRRYHPLEKLGRYLMDSFVNIEGTGNLLVLKTLPGNAQSIGAILDQIDWD
EVLGTICGDDTCLLICRDEEASEEIKTRIFNLL*

Sequence 2827

Contig 0460 pos 2481 3032

35 is similar to (with p-value 2.0e-28)

>sp:sp|P26646|YHDH_ECOLI HYPOTHETICAL 34.7 KD PROTEIN IN MR EB-ACCB INTERGENIC REGION (ORF1) (O324). >pir:pir|JS0688|JS0 688 hypothetical 35K protein (fabE 5' region) - Escherichia coli >gp:gp|M80458|ECOACOAC_1 E.coli biotin carboxylase and

biotin carboxyl carrier protein (fabE) and ORF1 35 kDa prote in genes, complete cds. NID: g145172. >gp:gp|U18997|ECOUW67_183 Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes. NID: g606010. >gp:gp|AE000404|AE000404_7 Escherichia coli K-12 MG1655 section 294 of 400 of the complete gen ome. NID: g2367207.

55 ttcaatgtttaa

50

Sequence 2828

MSTEGKEVLVRGATGGVGTISLLMLNNLGYDVIASTGRDDAEEKLKKLGAKEVIGRLPED NSKPLEKRTWQAAIDPVGGENLPYIVKRLDNNGSVALIGMTGGNNFETTVFPFILRGASI

IGIDSVFTPIKLRKRVWRRLAKDLKPQQLHDIKHVISFDEIPKAIDQVINHNNTGRIVID FNV*

Sequence 2829

10

20

35

40

45

50

55

Contig_0460_pos_2826_2440 is similar to (with p-value 5.0e-19)

>sp:sp|P26646|YHDH_ECOLI HYPOTHETICAL 34.7 KD PROTEIN IN MR EB-ACCB INTERGENIC REGION (ORF1) (O324). >pir:pir|JS0688|JS0 688 hypothetical 35K protein (fabE 5' region) - Escherichia coli >gp:gp|M80458|ECOACOAC_1 E.coli biotin carboxylase and biotin carboxyl carrier protein (fabE) and ORF1 35 kDa prote in genes, complete cds. NID: g145172. >gp:gp|U18997|ECOUW67_183 Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes. NID: g606010. >gp:gp|AE000404|AE000404 7 Escheri

chia coli K-12 MG1655 section 294 of 400 of the complete gen ome. NID: g2367207.

25 Sequence 2830
MKGKTVVSKLLPPVMPINATLPLLSNRLTMYGKFSPPTGSMAACHVLFSNGLLLSSGKRP
ITSLAPSFLSFSSASSLPVLAITSYPKLFNMSNEIVPTPPVAPRTSTSLPSIDIPDFSSC
SIAKPAVK*

30 Sequence 2831
Contig_0463_pos_814_2568
is similar to (with p-value 7.0e-69)

>gp:gp|Z47210|SPDEXCAP_7 S.pneumoniae dexB, cap3A, cap3B and cap3C genes and orfs. NID: g1658316.

 $\verb|atgata| at a a q ttatta caca at a taa a taa a at t ga a a a a ctct a a ttttta g a ctt g$ actcaaaataaaaatggaaacatgatatactttaaaaaagaggtaatactaaaaaatgata gataattggatagatgtattagatgaaagtttagtcaaagatttttataataatcaaact tccqaaqaqcaacaaqaaqqacttqatactacactqtcttttqqcacqqctqqtattaqa gggaaattcggtttaggcgaaggccgattaaataagttcaccgtatctaaagtagcgtta ggctttgcccattatttaacatcaagtatcgcgcatcctgtcgtcgtcatacattatgac acaaqacacttatcacctqattttqctcaaattatcqctaatattctaqcaaqtcttqat attaaagtttatcttqctqatacatacaqaacaacacctqatttatcatttqcaqtcaqa tacttacaggcggatgcgggtattatgattacagctagccataatcctaaagattataatqqaatcaaaqtqtatqqaqaaqatqqtqctcaattatcaaccqacqattccqcacqacta agcacatatatcgataaqttaqqtcatccqcttcatattaatttacctaqtttaactact gaacaacaacattaattcattcagtcccgagcgaagttagagaagattatttcaaaaaac qtacaaqacttaqttqqaactattccacaqtctqatttqaaaqttqtctttacaaqcttq ${\tt catqqtacqaqtqtqccaqttqtacctqacatcttatcttctcttaactttaatcaattt}$ gagttagttgcatcacaatqtgaacctgattcagatttcagctctqtaqtcaqtgcaaat ccaqaqqatcataaaqcqtttqatcaatcqataqaacttqctaatcatattqatqctqat ttacttattqqcacaqatcccqatqcaqaccqtttaqqaataqttqaacqtqatqctqaa ggtaacatccactattacaacggaaatcagattggtgcacttttgttaaattatcgtatc qctaaatctcttqctcaatatcataatqtcaatttcaaaqaaqttttqacaqqttttaaa tatatcgcagctgaaataaqacatctgtctcctgaacaaaactttatttttgqctacqag gaaagttatggcttcttagcccgtcctttcgtgagagataaagatgcgattcaaattgtg ccattaatgattaagtatgcagctgaattaaaaaacaaaggacgcatgcttaaagatgaa

ccttcqqaaatqtqtqqtcttaaagtcattqcaatcqaagattttqaaacaggtaaaaaa actgacttacaaaatgatgaagtcagcgatataactttacctaaagcgaatgtaataaag atatactttaatqaaqqatttattqctttgcqtccttctggtacagagcctaaaattaaa atatttaactcttaa

Sequence 2832

5

10

15

MIISYLHNINKLKNSNFLDLTONKNGNMIYFKKEVILKMIDNWIDVLDESLVKDFYNNQT SEEQQEGLDTTLSFGTAGIRGKFGLGEGRLNKFTVSKVALGFAHYLTSSIAHPVVVIHYD TRHLSPDFAQIIANILASLDIKVYLADTYRTTPDLSFAVRYLQADAGIMITASHNPKDYN GINVYGEDGAQLSTDDSARLSTYIDKLGHPLHINLPSLTTEQQTLIHSVPSEVREDYFKN VQDLVGTIPQSDLKVVFTSLHGTSVPVVPDILSSLNFNQFELVASQCEPDSDFSSVVSAN PEDHKAFDQSIELANHIDADLLIGTDPDADRLGIVERDAEGNIHYYNGNQIGALLLNYRI KOTEGLPNRIMFOSIVSGGLAKSLAOYHNVNFKEVLTGFKYIAAEIRHLSPEONFIFGYE ESYGFLARPFVRDKDAIQIVPLMIKYAAELKNKGRMLKDELEDITRNVGNFNDKLFSHTF EGTQGKAKIENIMTQFRSETPSEMCGLKVIAIEDFETGKKTDLQNDEVSDITLPKANVIK IYFNEGFIALRPSGTEPKIKLYVSLSCDHFDVVAOKMNDAIFNS*

Sequence 2833

20 Contig 0464 pos 2837 3322

is similar to (with p-value 4.0e-24)

>sp:sp|P74561|HIS4 SYNY3 PHOSPHORIBOSYLFORMIMINO-5-AMINOIMI DAZOLE CARBOXAMIDE RIBOTIDE ISOMERASE (EC 5.3.1.16). >qp:qp! D90916|D90916 42 Synechocystis sp. PCC6803 complete genome,

26/27, 3270710-3418851. NID: g1653715.

tatattcattcaggaatagactattgtattgtaggtacaaaaggtatccaagatatagag tggttaacacatatgacacatcaatttccaaataaactctacttatccgtagatgctttt gttgccaaaattgagcatttacctttgggtggtgtgatttataccgatatttcgaaagat ggyasactttctggacctaattttgatttgacaggtcgtctcgcactttatacatcgttg cctgtaattgcttcaggaggtattagacatcaagaggacttgtttcgattagaatcgtta aatgttcatgctgctattgtaggaaaagcaqcacatctggatgaattctqgqaqqqatta tcttga

35

30

Sequence 2834

VTTKPIEVGGGIRSKQTIENYIHSGIDYCIVGTKGIQDIEWLTHMTHQFPNKLYLSVDAF GEKIKINGWKEDAKLNLFDYVAKIEHLPLGGVIYTDISKDGKLSGPNFDLTGRLALYTSL PVIASGGIRHQEDLFRLESLNVHAAIVGKAAHLDEFWEGLS*

40

Sequence 2835

Contig 0464 pos 4161 4709

is similar to (with p-value 5.0e-40)

>sp:sp|P44434|HIS2 HAEIN PHOSPHORIBOSYL-AMP CYCLOHYDROLASE 45 (EC 3.5.4.19) / PHOSPHORIBOSYL-ATP PYROPHOSPHOHYDROLASE (EC 3.6.1.31). >pir:pir|A64071|A64071 phosphoribosyl-AMP cyclohy drolase (hisIE) homolog - Haemophilus influenzae (strain Rd KW20) >gp:gp[U32730|U32730 6 Haemophilus influenzae Rd secti on 45 of 163 of the complete genome. NID: g3212191.

50 tctaeacaacgtttatggactaaaggtgaaacttctggtcatttccaacacgttgagagt attcatctagattgtgatcaagatgcaatcttaatcaaagtgatgccacaaggtcctaca tgtcacactggaagtctgagttgttttaataqtgaaattgaatcqcqctttaaaattcaa 55 tatttattaaaggaaggtatcgagaaaatatccaagaaatttggtgaagaggcatttgaa $\tt gttqtgataggtgcgataaaacataatcgtgaagaagttattaatgaaacagcagatgtc$

atgtatcacctttttgtgttactacatagtttggatattccattttcagaagtagaacag gtactagcqcatcgccatcaaaaaqaaataattttaaaqqcqaqcqcaaaaaaqqttcaa gaatggtaa

Sequence 2836

MNEEAYQKTLKEKKVTFFSRSKQRLWTKGETSGHFQHVESIHLDCDQDAILIKVM:QGPT CHTGSLSCFNSE:ESRFKIQALAQTIHQSAKSNQSNSYTQYLLKEGIEKISKKFGEEAFE VVIGAIKHNREEVINETADVMYHLFVLLHSLDIPFSEVEQVLAHRHQKRNNFKGERKKVQ EW*

Sequence 2837

Contig_0465_pos_10122_9604

is similar to (with p-value 3.0e-49)
>gp:gp|Y13052|SSK3MECA1_3 S.sciuri mecAl gene, strain K3(MM
2). NID: g2791901.

- 15 tcagcatataatgtaagtcgtttatttgctcaattttatgagaaaaagttaaaacagttt ggtataacttattctcagtatttagtattactgacgttatgggaagagaatcctcaaaca ttaaattcaattggtagacatttggatttatctagtaatactttaacccccttactaaaa agacttgagcaatctggctgggttaaaagagaacgtcaacaatctgataaacgacagttg ataattacgttaactgacaatgggcaacaacaacaagaagctgtttttgaagcaatttca
- 20 agttgcttaccacaagaatttgatacgactgagtatgatgaaacgaaatatgtgtttgaa qaactagagcaaacattaaaacatctcatagaaaaataa

Sequence 2838

VSIYIMNICESFYTIINRARLKRGGDVKQEQMRLANQLCFSAYNVSRLFAQFYEKKLKQF 25 GITYSQYLVLLTLWEENPQTLNSIGRHLDLSSNTLTPLLKRLEQSGWVKRERQQSDKRQL IITLTDNGQQQQEAVFEAISSCLPQEFDTTEYDETKYVFEELEQTLKHLIEK*

Sequence 2839

Contig_0465_pos_9362_8244

- >>p:sp!P47169|YJ9F_YEAST HYPOTHETICAL 161.2 KD PROTEIN IN N
 MD5-HOM6 INTERGENIC REGION. >pir:pir|S57160|S57160 sulfite r
 eductase homolog YJR137c yeast (Saccharomyces cerevisiae)
 >gp:gp|Z49637|SCYJR137C_1 S.cerevisiae chromosome X reading
 frame ORF YJR137c. NID: q1015875.
- 35 gtgaattggaagaatttaatgcattacaaagaacaagtcattaatcctatgtctgaaacc ctcacatcgatgtttgaacaacagggaattgatgtaatcatggggaaaggtaaacttgta gatgctcatacaatagaggtaaataatacaactttacaatcagattatattgttatagca actggacaacatagtcatcaattagatattgagggtaaagaatatacgcatgatagtcgg gaatttttatcaatgcaatctttaccggatagtatcacttttattggagcaggtattatc
- 45 agtgatagaggtattgaggttgacgattatttaagaacaaatgtgaaaaatatatacgca agtggggacgttatcaataaaatgattcctaaacttactcctacagctacatttgagtct aattatacgctgcccatatccttggattgaatacagatgccattcagtatccaccaata ccttcagtgctttattcattgcctcgtttatctcaaataggtgtcacagttagcgaggct aagaaagatgatacgtatatgattaaagatataccattcggaagacaaatggtatttgag
- tatcaaaacgaaacagaggctgaaatgtcaattgtattagatagtcacaaacgtttagta ggagcagagatttatggtaatgacgctggtgatttggttaatctcctagtctttatcatt aatcaaaaacttactgcacaagacttaaataaaaatatttttgcatttcctggagcttct agtggcgttatagatttattgaaattggcaatgatgtag
- 55 Sequence 2840

VNWKNLMHYKEQVINPMSETLTSMFEQQGIDVIMGKGKLVDAHTIEVNNTTLQSDYIVIA
TGQHSHQLDIEGKEYTHDSREFLSMQSLPDSITFIGAGIISIEFASIMIKSGVEVNVVHH
TNHALEGFNESHVNKLIQKLKDEGVKFYFSENTKSVKPNAQRFIVETESGKMIETDYVLD
ATGRKPNVQQIGLEKVGILFSDRGIEVDDYLRTNVKNIYASGDVINKMIPKLTPTATFES

NYIAAHILGLNTDAIQYPPIPSVLYSLPRLSQIGVTVSEAKKDDTYMIKDIPFGRQMVFE YQNETEAEMSIVLDSHKRLVGAEIYGNDAGDLVNLLVFIINQKLTAQDLNKNIFAFPGAS SGVIDLKLAMM*

5 Sequence 2841

Contig 0465 pos 8159 7755

>pir:pir|A34231|A34231 sulfite reductase (NADPH) (EC 1.8.1. 2) - Salmonella typhimurium >gp:gp|M23007|STYCYSJIHA_1 S.typ himurium NADPH-sulfite reductase flavoprotein component (cys J), NADPH-sulfite reductase hemoprotein component (cysI), and 3' phosphoadenosine 5'-phosphosulfate sulfotransferase (cysH) genes, complete cds. NID: g153928. gtgctcattatcgtaaatactgcaacgaattgtactctgaatgatcaatttaataaatta

gaaargonttaaaaaaatatcataagtatggtcttgaaattttgagcttcccttgcaat gattttaataatcaggagccagaattaatcaaagatatttatcgagtatataaatataag tttggtattactttccccatccatgctaagattaatgttaatggagagcatgaacaccct ttgtacacattattaaaatgtaaacaaccaggattatttggttcgcaaattaaatggaat tttactaaatttgtagtagatcaacagggaaatattgttaaacgatttttaccttgtgat aatcctaaccaaatggaaaaattaataagacaattattaaaataa

20

Sequence 2842

VLIIVNTATNCTLNDQFNKLEMLYKKYHKYGLEILSFPCNDFNNQEPELIKDIYRVYKYK FGITFPIHAKINVNGEHEHPLYTLLKCKQPGLFGSQIKWNFTKFVVDQQGNIVKRFLPCD NPNOMEKLIROLLK*

25

10

15

Sequence 2843
Contig_0465_pos_6454_4568
is similar to (with p-value 1.0e-30)

>sp:sp|P52035|BSAA BACSU GLUTATHIONE PEROXIDASE HOMOLOG BSA A. >gp:gp|L77246|BACYACA_17 Bacillus subtilis (YAC10-9 clone) DNA region between the serA and kdg loci. NID: g1256615. > qp:qp|Z99115|BSÜB0012 132 Bacillus subtilis complete genome (section 12 of 21): from 2195541 to 2409220. NID: g2634478. atgacaaa tatcggaataacaaa gtataa gaggtggataa gattgaacttaa gtgttacc35 aatagtccttttacggaagggcaagctaaacaaatcaatgaattgcttcacactttatca tctaaccaacaagtatggttaaqtggctatctgatggcaaatcaacaatcaaatacatct acagattctqtagaacaacataactcaqatgacaatacagaagcgatqctacatqaaaag qaaccttcaqttqaqccqqaaqctaqatcqataacaattttatatqqatctqaqtctqqt aatgcgcaaggacttgcagaaatatttgaacaacgtttatctgatattggaaatgacgtt 40 attatcacatctacacatggcgaaggagatccaccagataacgctgttgaattacatgaa tacatccacggacgtaaagcgccaaaattggatggggtgagattttcagtattagcatta

caaqaacqaqaqqaactaqqttttqaaqqaaatacatqqttattctttqqaqatcaacac

ttcactacagattttctgtatcaaacggaatggcaagaatggcttgaagatggaacttta tcaaaattagatgttgctttttctagagatactgataaaaaagtgtatgtgcaacataaa attgcagaaaatagtgaacaatttaatcgatggattgaaaatggcgctactatttatgta tgtggtgatgaaagtaaaatggcaaaggatgttcatcaagcgattaaaaatgtgttaatc aaagagcaaaacctatctgaaacagatgcagaagaatacttaaaacaaatgaaaaqagat aaaagatatcaaagagacgtgtattaa

Sequence 2844

MTNIGITKYKRWIRLNLSVTNSPFTEGQAKQINELLHTLSSNQQVWLSGYLMANQQSNTS
TDSVEQHNSDDNTEAMLHEKEPSVEPEARSITILYGSESGNAQGLAEIFEQRLSDIGNDV
TLKSMDDFKPKNLKKVEDLFIITSTHGEGDPPDNAVELHEYIHGRKAPKLDGVRFSVLAL
GDQTYEFFCQTGKDFDNRLAELGAERLYHRTDCDVDYEEDAEKWMANVINTIDSTPAGTE
SEQVVSESIKSAKEKKYSKSNPYDAEVLTNINLNGRGSDKETRHIELLLDNFGEEYEPGD
CVVVLPQNDPAIVDLLISTLGWSPETQVLINEDGDTLNLEEALTSHFEITKLTKPLIENA
AIFFDNEELSEKIQDKEWIQNYVEGRDLIDLLNDFATTELQPENLHQLLRKLPPREYSIS
SSYKATPDEVHITVGAVRYQAHGRERSGVCSVQFAERIQEGDTIPIYLKRNPNFKFPQDE
STPVIMIGPGTGVAPFRSYMQEREELGFEGNTWLFFGDQHFTTDFLYQTEWQEWLEDGTL
SKLDVAFSRDTDKKVYVQHKIAENSEQFNRWIENGATIYVCGDESKMAKDVHQAIKNVLI
KEONLSETDAEEYLKOMKRDKRYORDVY*

20

10

15

Sequence 2845

Contig 0465 pos 4548 2830

>gp:gp|Y13052|SSK3MECA1_4 S.sciuri mecA1 gene, strain K3(MM 2). NID: g2791901.

- 25 atggttaatacaaataatcatatttcggaagaattagataaaaatcttgatgaaatggaa tttttaaaaqcaaataqtqactttttqcqtqqaactattqaacaaaqtttaqctaatcca atcactggatccattacacaagatgatgcaaaactgctaaagtttcacggaagttatatg caaqatqacaqqqatttaaqaqatqaqcqtcqtaaaacaaaaacttqaqcctqcatataqt tttatgattcgagttcgtgtacctggggggaaagcgactcctgaacagtggattgctatg 30 gatgatatctctaatcaatatgcaaatcatacgattaaattaacaacacgccaagcattt caatttcatggaattcttaaacqtaatttgaaacaatcaatgaaaaatattaatcatgca qtacttqattctattqctqcatqtqqaqatqttaatcqtaatacqatqtqcaatcctaat ccttatcaatctcaaqtacataaqqaqattaatqattatqcaacqcqtataaqtaatcac ttacttccaagaacaaatgcatatcatgaaatttqgcttqatqqtqaaaaqqttttaqat 35 tcgagtgaggaaaaggaacctatttatgggaatacgtatttaccacgtaaattcaaaata $\tt qqtattqcaqtaccaccatctaatqatattqacqtctattctcaaqatattqqtttaatc$ gctatcgttgaacaagatgagttaattggatttaatgtgactatcggtggcggtatgggt atgactcatggtaatactgaaacatatcctcaacttqqacqtctcataqqttttatacct aaqqaaaaqqttqtaqatqtatqtqaqaaaatacttacaatacaacqtqattatqqtaat 40 cgtqaaaatcqaaaaatqcacqttttaaatatacaqtqqaccqtctaqqaqaaacttqq gtgactgaagaattaaaccgacgattaggttgggaaattaaagcgccacqtgatttcqaa tttgaacataatggtgatcgattaggttggattgaaqgtattaataattggaatttcactttatttatacaaaatgggcgtgtgaaagatactgaagactatttgttaaaaacaaccttaagagaaatcgcagaaatccatactggagatttcagattatcacctaatcagaacttagtt 45 attqcaaatgtttctcctgagaaaaaggaagaaatacaagctattattgataaatataaa ttaacagatggcaaaaattatacaggacttagaagaaattctatggcttgtgttgctttc ccaacgtgtggtttagctatgqcagaatctqaaaqatatcttccttcactaattacaaaa attgaagatttattagatgagtctggtttaaaagaggaagaaataacgattcgtatgaca ggttgtcccaatggatgtgcgagaccagcgctagcagaaatagcctttatcggtaaagca 50
- tataaagagaatatcgacgaaaatgagatattagaaagtctacgtccattgttgttgcgt tatagtaaagagcgtcttgacggagaacactttggggactttgtaattcgtgacggtgtg atagccaaagttcatgatggtcgcgattttcatagttaa

 55 Seguence 2846
 - MVNTNNHISEELDKNLDEMEFLKANSDFLRGTIEQSLANPITGSITQDDAKLLKFHGSYM QDDRDLRDERRKQKLEPAYSFMIRVRVPGGKATPEQWIAMDDISNQYANHTIKLTTRQAF QFHGILKRNLKQSMKNINHAVLDSIAACGDVNRNTMCNPNPYQSQVHKEINDYATRISNH LLPRTNAYHEIWLDGEKVLDSSEEKEPIYGNTYLPRKFKIGIAVPPSNDIDVYSQDIGLI

AIVEQDELIGFNVTIGGGMGMTHGNTETYPQLGRLIGFIPKEKVVDVCEKILTIQRDYGN RENRKNARFKYTVDRLGETWVTEELNRRLGWEIKAPRDFEFEHNGDRLGWIEGINNWNFT LFIQNGRVKDTEDYLLKTTLREIAEIHTGDFRLSPNQNLVIANVSPEKKEEIQAIIDKYK LTDGKNYTGLRRNSMACVAFPTCGLAMAESERYLPSLITKIEDLLDESGLKEEEITIRMT GCPNGCARPALAEIAFIGKAPGKYNMYLGGSFKGERLNKIYKENIDENEILESLRPLLLR YSKERLDGEHFGDFVIRDGVIAKVHDGRDFHS*

Sequence 2847

Contig_0467_pos_7413_6943

10 is similar to (with p-value 2.0e-17)

>sp:sp|P45637|YPRA_CORGL HYPOTHETICAL 33.0 KD PROTEIN IN PR OB-PROA INTERGENIC REGION. >gp:gp|U31230|CGU31230_3 Coryneba cterium glutamicum Obg protein homolog gene, partial cds, ga mma glutamyl kinase (proB) gene, complete cds, and (unkdh) g ene, complete cds. NID: q950194.

- 20 ctcaaagatcgattaatcagacatgcttatttagatgttttttgaaaaagaaccacttagt aaggacaatcctttatatgatttagataatgtgaccataactgctcatattacaggtaat gattctaataataatagagaagctacggacattttcaaaaagaatcttgagcattttctc aataattatgatgtaattgagaataaagtagacttagattatggttactaa
- 25 Sequence 2848
 MKVIGVSKSGKNVEQFDEVYTIEELDDVIEKANIIVNALPETEETIYLLKRKDFIQMDNN
 ALFINVGRGTIVDEEVLINVLKDRLIRHAYLDVFEKEPLSKDNPLYDLDNVTITAHITGN
 DSNNNREATDIFKKNLEHFLNNYDVIENKVDLDYGY*
- 30 Sequence 2849 Contig 0468 pos 13714 9209

>sp:sp|P39812|GLTB_BACSU_GLUTAMATE_SYNTHASE_[NADPH] LARGE C HAIN (EC 1.4.1.13) (NADPH-GOGAT). >gp:gp|Z99113|BSUB0010_138 Bacillus subtilis complete genome (section 10 of 21): from

35 1781201 to 2014980. NID: g2634090. >gp:gp|Z99114|BSUB0011_9
Bacillus subtilis complete genome (section 11 of 21): from 2
000171 to 2207900. NID: g2634230.

- stateteegetttagtaetaataeattteeaagttggaaaegtgeaeateeeaatege
 atgettatgeacaatggtgaaattaataceattaagggtaacgtaaaetggatgeagea
 egecaaaataaaetagttgaaaeattatttgaagatgagaaagataaggtgeattttatt
 gttgatgaagatggtagtgaeteateaatagttgataatgegttagagttettateatta
 geaatggageetgaaaaagcagegatgttattaatteeagageeatggttataeaatgaa
 tetaaegataaaaaagttegetetttetatgaattttatagttatttaatggageeatgg
- 55 gatggaccaactatgatttcctttttgcaatggagataagataggtgcattgactgataga aal.ygattaaagacctgggcgttatacaataactaaagacaattttattgttttttcttcct gaagtaygtgtcattgatgttccagaagaaaatgtagcatttaaaggacaacttaatcct ggaaagttattacttgtagacttttttgcaaaataaggttgtagaaaataatgagctaaaa actaatattgctaatgagttgccctacgaacaatggctaaaagattataaaaataaaaa

gatttagataatatttattaccaatcttccgactgggatgatcaaacactcttccgctta aataaaaaagatcccatcggagcgatgggatatgatgcacctattgcagttcttaatgat aagcctgagtcactatttaattattttaaacaattatttgcacaagttaccaatccaccc atcqatqcttatcqaqaaaaqattqtaactaqtqaactttcatatttaqqttcaqaaqqq aacctcttatqtcctqatqaatcaqttttaqaaaqaattcaattaaaaaaaccaqtttta aatgaaqcqcaattatcatcaatcqatcattcqtattttaatqtaacqtatttatctaca ctttatacaggtgatttggaaagtagcttaaatgaactagggaaccgagcaatacaggct gtacutçaaggtgcgaaaattttggtgttagacgatacgtctttaactcacgaaaatagt 10 tatgcaatqccaattttattagcqttaaqtcacqtqcatcaattattaattcqaqaaqqa ttaagaatggagaccagcctcattgcgcagtccggtgaaacacgagaagttcatcacgtt gcatgtttacttggttatggtgcaaacgctgtagttccatatttagcqcaacgaacgatt qaacaattaacqcqtcaaqqtcaactttcaqqaactqtcqctqaaaatqttqctacqtat accaatgtattqtcaqaaqqcqttattaaaqtqatqqctaaaatqqqcatttctactqta 15 caaaqttatcaaqqaqcacaqatatttgaaqcqqtaqqtttatcqaataqcqtcattqaa aaatattttacaggtacacagtcaaaattatctggtataagtattgaacaaatagacaaa gagaataaagcgagacaaagtgatgattctgattatcttgaatccggaagtgtattccaa tggagacagcaaggtcagcatcatgcatttaatcctcqtacqattttttttattqcaqcat gcatgtagagaaaatgattacgagttatttaaaaaattctccaaaactgtaaatttaaaa 20 cgtacggatcatattagacatttattagaattcaagacacgccaatctattgatattagt cgtgttgaaccagcaagtgaaatcgtaaaacqttttaatacaggagcaatgagttacggc tctatctcagcagaggcacatgagacgttggctcaagctatgaatcaaattggaggtaaa aqtaataqtqqaqaaqqtqqaqaagattcttcacqttacqaaattcaaaaqqatqqaaqt aataagataagtgcgattaagcaagttgcatcaggtcgttttggggtgacgagtgattac 25 ttgcaacatgcaaaagaaattcaaattaaagtcgcacaaggcgctaaaccaggggaaggt ggacaactaccaggttcaaaagtatatccatqgattqctqaqactaqaqqttcqacacca cayal anitoatgatttaaaaaatgcaaataqaaqaqctqatattqcaqttaaqchcqta tcaaaaactggcgttggaactatagcttcaggggtagctaaagctttcgccgataaaatt 30 gttataagtggttatgatggaggtacaggtgcatcgcctaaaacaagtattcaacatgca ggtttgccatgggagataggccttgccgaaacacatcaaacacttaaattaaatgatttg cgtagtcgcgtaaaattagaaacggatggtaagttactgacgggtaaagatgtagcttat gcttgtgcgcttggtgcagaagaatttggtttcgcaacagcaccacttgttgttttggg tgtattatgatgagggtttgtcataacgatacgtgtccagtaggggttgcaacacaaaac aaagatttaagagctttqtttaqaqqtaaqqcacaqcatqtaqttaactttatqtatttt atagctgaagaattacgtgaaattttggcttcacttggtttaqaaacagtaqaaqaqtta qtaqqaaqaacaqatcttcttcaacgttcgacgcaattgaaaccaaatagtaaagcagct tcgcttcaaatagaacgtttaatagaacaatttgacqqqqttaatacqaaaqagatatca 40 agtattgaaaacgggcactcttttaccggaaattatqttqttaataatgaacagcgagat gtaggtgtaattacaggtagtgcgatagctaaacaatatggagaagaaggattacctgaa gatacgatacttqcttacactqaaqqtcatqcaqqtcaaaqcttaqctqcatatqcacca cgcggattaacaatccatcataccggtgatgctaatgactacgtaggtaaaggattqtcc ggtggaactgtcatcgtaaatgctccaaatagtcaacgtgaaaatgaaattatagcagga 45 aatataaacttttacggggcttctagaggtaaagcgtttatcaatggtaaagctggtgag cqtttctqtatcaqaaataqtqqtqcaqatqttqtaqtaqaaqqtattqqtqatcatqqa cttgaatatatgacagggggacatgtcattatcttaggagatgttggaaagaactttggc caaggcalgagcggggggtaagttatattttctcttctgacgtggagaaatttasaaag gttaatgcgcttgaaactttaqaattcagtagcatacgttttgatgaggaaaatctctt 50 atcaaagacatgcttgaagcacattttaagcatacacgtagtaacaaagcacgccaatta cttgaccaatttgacaatattgaaaagttagcaattaaagttattccgaaagattacaaa ttaatgatgcaaaaaattgatttgaaaaaacgtcaaatggaacgtgaagatgaagcaaca tattaa 55

Sequence 2850

VCIMYNEKLKKGLYDYREEHDACGIGFYANMDNKRSHDIIEKSLEMLRRLDHRGGVGADG ITGDGAGIMTEIPYQLFEQLTEFKVPGEGYYAVGLFFSKEKVRDSIHEEMFNQYFESEGF KVIGYRDVPVDTRAIAQHVADTMPYIQQVFVDITGVKEVEKRLFLARKQIEKYSETOSID

LYFTSLSHRTIVYKGWLRSDQIKGLYLDLQNEAYOSKLGLVHSRFSTNTFPSWKRAHPNR MLMHNGEINTIKGNVNWMRARONKLVETLFEDEKDKVHFIVDEDGSDSSIVDNALEFLSL AMEPEKAAMLLI PEPWLYNESNDKKVRSFYEFYSYLMEPWDGPTMISFCNGDKIGALTDR NGLRPGRYTITKONFIVFSSEVGVIDVPEENVAFKGQLNPGKLLLVDFLQNKVVENNELK TNIANELPYEQWLKDYKNKNDLDNIYYQSSDWDDQTLFRLQKQFAYTKEDINKYMTDLVI NKKDPIGAMGYDAPIAVLNDKPESLFNYFKQLFAQVTNPPIDAYREKIVTSELSYLGSEG NLLCPDESVLERIQLKKPVLNEAQLSSIDHSYFNVTYLSTLYTGDLESSLNELGNRAIQA VHEGAKILVLDDTSLTHENSYAMPILLALSHVHQLLIREGLRMETSLIAQSGETREVHHV ACLLGYGANAVVPYLAQRTIEQLTRQGQLSGTVAENVATYTNVLSEGVIKVMAKMGISTV OSYOGAOI FEAVGLSNSVIEKYFTGTOSKLSGISIEOIDKENKAROSDDSDYLESGSVFO WROOGOHHAFNPRTIFLLQHACRENDYELFKKFSKTVNLKRTDHIRHLLEFKTROSIDIS RVEPASEIVKRFNTGAMSYGSISAEAHETLAQAMNQIGGKSNSGEGGEDSSRYEIQKDGS NKISAIKQVASGRFGVTSDYLQHAKEIQIKVAQGAKPGEGGQLPGSKVYPWIAETRGSTP GIGLISPPPHHDIYSIEDLAQLIHDLKNANRRADIAVKLVSKTGVGTIASGVAKAFADKI VISGYDGGTGASPKTSIQHAGLPWEIGLAETHQTLKLNDLRSRVKLETDGKLLTGKDVAY ACALGAEEFGFATAPLVVLGCIMMRVCHNDTCPVGVATQNKDLRALFRGKAQHVVNFMYF IAEELREILASLGLETVEELVGRTDLLORSTOLKPNSKAASLOIERLIEOFDGVNTKEIS ONHHLDEGFDLNYLYPDARYSIENGHSFTGNYVVNNEORDVGVITGSAIAKOYGEEGLPE DTILAYTEGHAGQSLAAYAPRGLTIHHTGDANDYVGKGLSGGTVIVNAPNSQRENEIIAG NINF%GASRGKAFINGKAGERFCIRNSGADVVVEGIGDHGLEYMTGGHVIILGDV@KNFG QGMSGGVSY1FSSDVEKFKKVNALETLEFSS1RFDEEKSL1KDMLEAHFKHTRSNKAROL LDQFDNIEKLAIKVIPKDYKLMMQKIDLKKRQMEREDEATLAAFYDDRETIEQELQPAVI

25 Sequence 2851
 Contig_0468_pos_9170_7728
 is similar to (with p-value 5.0e-25)
 >sp:sp|P33019|YEIH ECOLI HYPOTHETICAL 36.9 KD PROTEIN IN LY

10

15

20

30

35

40

45

SP-NFO INTERGENIC REGION. >gp:gp|U00007|ECOHU47_49 47 to 48 centisome region of E.coli K12 BHB2600. NID: g453983. >gp:gp |AE000305|AE000305_3 Escherichia coli K-12 MG1655 section 19 5 of 400 of the complete genome. NID: g1788479. atgaaatatgataaacagtcgctatcagaattgtctttqqtaqaccgtctttcqaatcat

gaagcgtttcaacaacgcttcactaaagaagatgcttcgattcaggtgcgcgctgtatg gattgtggaacacctttttgtcaaactgggcaatcttatggaagagaaacaataggatgc cctattggtaattatatacctgagtggaacgacttagtctatcatcaagattttaaagct gcttacgaaagattgagagagacgaataattttcctgaatttacaggaagagtttgtcct gcaccatgtgagcaatcatgtgttatgaaaattaatagagaatccgtggcgattaaaggt at: gaacgtacaattattgatgaagcatatgagaatgagtggttcatcccgcataccct gaagatcataaagaccaacgagttgctatcgtaggtagtggtccagcgggacttacagca gctgaagaattaaaagttactgatgagaattacagtgaacca gctgaagaattaaactttaaaggctataaagttactgtttatgaaaaggcgaataccaggcggcttgctaatggtataccaaatatgaaactagataaagacgtaatacgtcga cgtgtatcacttatgaaagatgctggggtttatttattaaaacaggcgttgaaattggcgtc gatgtgagccgtgaaacacttgaagaaaattatgatgctattattttatgcacaggtgct caaaatgcgagagatttaccattggaaggacgaatgggctctggtattcatttttgcaatg gactatcttactgaacaaacacagtatctaaatggtgagattgaaagtttgagcattact gctaaagataagaatgtaattattataggtgctggtgatactggtgcagactgtgtagcg acagcattacgtgaaaactgtaaatctattgttcaatttaataagaccgcct

gaagagattacttttgaaagtaatacttcctggccattagcaatgcctgttttcaaaatg
gattatgcgcataaggaatatgaagctaaatttggtcaagaaccaagagcctatggtgta
caaacaatgcgctatgatgttgacgagttaggaaatgttaaaggcttatatacacaaata
ttaaaagaaacgcctgatggcatggtgatggaagatggaccagaacgattttggccggct
gatttagtcttattatctatagggtttgttggtactgaaaccactgttccgcatgcgttt
gatatacacaccgagcgtaataaaattgtagctaatgatacaaattatcaaactaatcac
gctaaaatatttgctgcaggagatgcaagagtcagagtttggttgtttggtgttttgggcaata

aaagaaggtcgtgaagtagcacattctgttgatcaatacttaagtaaagaagttctagtg
taa

Sequence 2852

MKYDKQSLSELSLVDRLSNHEAFQQRFTKEDASIQGARCMDCGTPFCQTGQSYGRETIGC PIGNYIPEWNDLVYHQDFKAAYERLRETNNFPEFTGRVCPAPCEQSCVMKINRESVAIKG IERTIIDEAYENEWVHPAYPEDHKDQRVAIVGSGPAGLTAAEELNFKGYKVTVYEKAHEP GGLLMYGIPNMKLDKDVIRRRVSLMKDAGVLFKTGVEIGVDVSRETLEENYDAIILCTGA QNARDLPLEGRMGSGIHFAMDYLTEQTQYLNGEIESLSITAKDKNVIIIGAGDTGADCVA TALRENCKSIVQFNKYTKQPEEITFESNTSWPLAMPVFKMDYAHKEYEAKFGQEPRAYGV QTMRYDVDELGNVKGLYTQILKETPDGMVMEDGPERFWPADLVLLSIGFVGTETTVPHAF DIHTERNKIVANDTNYQTNHAKIFAAGDARRGQSLVVWAIKEGREVAHSVDQYLSKEVLV

10

20

Sequence 2853

Contig_0468_pos_6592_5564

>gp:gp|D85230|PEEGLTD 4 Plectonema boryanum URF141, ORF243, NADH-dependent glutamate synthase large subunit (gltB) and

qtqctaaqatttcatatcqaqqtqaaaqtacatatqaaatcaataacqcaqqcttcattt

15 small subunit (gltD) and URF289 genes, partial and complete cds. NID: gl339947.

atgaaaggtattatgtttacatttacgattgcaataatcagttatatattagctaaattt cctattttacatacgattggggcgttagctattgccatcatttttgcgatgatataccgc caagtcataggttatcctgagcatattcgcccaggtattacgtttgcatcgaaacgttta ttaaaatttgcgattatcttatatgggttaaaattaatatgggagatattctaggtaaa ggttggaaattactacttattgatattatcgtaattatcttttcaataagtttaacttta cttttgaatcaaattattaaaggaaataaagatatctctatactacttggtattggtaca ggagtatgtggagctgcagctattgcagctacagcaccaatcttaaaatctaaagaaaaa

35

40

Sequence 2854

VLRFHIEVKVHMKSITQASFMKGIMFTFTIAIISYILAKFPILHTIGALAIAIIFAMIYR QVIGYPEHIRPGITFASKRLLKFAIILYGLKLNMGDILGKGWKLLLIDIIVIIFSISLTL LLNQIIKGNKDISILLGIGTGVCGAAAIAATAPILKSKEKDIAISVGIIALVGTIFALIY TAIEAIFNIPTITYGAWTGISLHEIAQVVLAAGIGGSEAMTFALLGKLGRVFLLIPLSIV LILYMRYKSHSSQVQQKIDIPYFLIGFIIMACINTFVPIPSLLMNIINVITTLCMLMAMV ALGLNIVLKEVISKALKPFIVICITSICLSGVTLLVTSIMFK*

Sequence 2855

45 Contig 0469 pos 5825 5232

is similar to (with p-value 2.0e-40)

>gp:gp|Z67739|SPPARCETP_2 S.pneumoniae parC, parE and trans posase genes and unknown orf. NID: g1490398.

PCT/US00/30782 WO 01/34809

Sequence 2856

MLILSYLIGAFPSGLIIGKLFFKKDIRQYGSGNTGATNSFRVLGRPAGFIVTFLDIFKGF ITVFFPI.WFPVHADGVISTFFTNGLIVGLFAILGHVYPIYLKFNGGKAVATSAGV, LGVN PILLLILAIIFFSVLKIFKYVSLSSIIAAISCVIGSIIIHDYILLAVSGIVSIILIIRHK SNIVRIFKGEEPKIKWM*

Sequence 2857

5

15

20

Contig 0470 pos 7843 9180

is similar to (with p-value 3.0e-97)

10 >gp:gp|Y13052|SSK3MECA1 1 S.sciuri mecA1 gene, strain K3(MM 2). NID: q2791901.

atqaqtaaqqttaatcatttgataqttgaagatqaacqttattttgcacattctggacgg attaaatattatccactaqttattqatcatqqttatqqaqccacqttaatcqatqtaqac qqtaaqtcttatattqatttattaqcaaqtqcaaqttcqcaaaatqtqqqtcacqctccq tatatgtatcatgaaccgttagtgcgattatcaaaaaaattatgtgacattgctcctgga aattatgagaagagattactttcggattaagtggctctgatgctaatgatgggattata aagtttgcacqaqcqtatacaqqacqtccatacatcataaqttttactaatqcataccat qqttcaacatttqqttcattatcqatqtcttcaattaqtttqaatatqcqtaaqcattac qqqccattacttaatqqattttaccatataccttttcccqataaqtataqqqqqatqttt qaqcaaqctaaqcctaacacqqttqaqqaatatttaqctcctttaaaaqaaatqtttqca aaatacqtccctqcqqaqqaaqttqcatqtattqtaqttqaaacaattcaaqqtqacqqt $\tt ggcttacttgaacccgtaccaggttattttgaagcattacaagagctttgccacgctcac$ aatattettattgcagttgatgatatccaacaaggattaggtcgtacaggaaagtggagt

25 tccqtagatcattattattttactccaqatttaatqacatttqqaaaqtcattaqctqqa ggtttaccaatgtctgcgattgtaggtcgtaaagaaatcatggaaagtcttgaaqcacct gctcatttatttacaactggtgcaaatcctgtaaqttgcgaagcagccttagcaacgata aaqatqattqaaqatqaaqatttactaaacqcttcatqqaaaaaggggagttacgttaga aaaaqaataqacccatqqataqaacqttatcaatatqtaqqtqatqttcqaqqtattqqa 30 ttatcgattggaatagacatagtatcaaataaaattgagaaaactagagattctgaagca

gcattaaagatatgtaattactgctttgaaaatggtgtgattatcatagcagttgcgggt aatgttttaagatttcaaccaccacttgtaattacctataagcaacttgataaagcatta qatacaataqaacaqqcqcttqaaaaqttqqaaaqaqqaqaattaaatcaatatqacatt agtggtcaaggttggtaa

35

Sequence 2858

MSKVNHLIVEDERYFAHSGRIKYYPLVIDHGYGATLIDVDGKSYIDLLASASSQNVGHAP KPVVEAIKNOTEKFIHYTPAYMYHEPLVRLSKKLCDIAPGNYEKRVTFGLSGSDANDGII KFARAYTGRPYIISFTNAYHGSTFGSLSMSSISLNMRKHYGPLLNGFYHIPFPDKYRGMF EOAKPNTVEEYLAPLKEMFAKYVPAEEVACIVVETIOGDGGLLEPVPGYFEALOELCHAH NILIAVDDIOOGLGRTGKWSSVDHYYFTPDLMTFGKSLAGGLPMSAIVGRKEIMESLEAP AHLFITGANPVSCEAALATIKMIEDEDLLNASWKKGSYVRKRIDPWIERYQYVGDVRGIG LSIGIDIVSNKIEKTRDSEAALKICNYCFENGVIIIAVAGNVLRFQPPLVITYKQLDKAL DTIEQALEKLERGELNQYDISGQGW*

45

55

Sequence 2859

Contig 0471 pos 8235 6703

>qp:qp|Z46863|ACRBDOXN 10 Acinetobacter sp. cysD, cobQ, sod M, lysS, rubA, rubB, estB, oxyR, ppk, mtgA, ORF2 and ORF3 ge nes. NID: q2462044.

atqqaaqaaaqaattqqtttqataqacattqqttccaacacqattcqacttqttatattt ggctacaataaaaaaactgggctcaatgaaatactgaatataaaaacacctgcacgttta agtcaatatctcactaagtccaatgaaatgaatgatgaaggtattcatgttttaaaagag acttta ag cagtttta gaaaagttgcggataaattta acgttgatgcattatatcccatcqcaacaqctqctatccqtcaatctaaaaatcqtqaaqctatcattaaaqaaattaaacaa gatattcatatcgaaattcaaattgtacctgaagaagatgaagcattttacggttactat qcqattacacatactqctattqaaaatqqaatttctqtcqatatcqqtqqcqqttct accgaagttacccttttcaaagacaacaacttaaagaggctcatagctttccatttqqc gtggtatcacttaagcgtcagtttttttggtgataaaqaacataatgacaaaacagccatt

aaaaatatqqaacaqtttttacqtqagcaatttagtcagttagactggctatccaaccaa catattqcqctcqtaqqaqtaqgtggttctgcacgtaatgttgcacgcattcatcaatca qcacatqcataccctatcqqtqqcqttcataactatacqatqacttcqaaaqatattaac aatgtttatgatctaatccgtaaaagttctcgcgatgaactaacaaatttagacggttta ${\tt agtcgcgatcgcgatattattctgccggctatctccgtctttaaaaacacttttcaaa}$ aaaattgacgccacacaattcaccttctcaagaaaaggaattcgtgaaggatttattatg ttacqtcatttaqcqaacqaatatcatattqaaqaaacqaqtqctaatcqtcqtqtqaaa ttagctcaatccttattgaatcaaattataagtgaacgatcacttaatatttcagaaatg qaaaaaqaattatttattqaaqqtqcctacatttattatctaqqtaqtttcattqattca qactcaaqttcaccacatacqtattacttaatcqcaaattcaatqattaacqqcttttca cataaaqatcqtqtqaaattaqctttqttaqctaqttttaaaaaccaaatctttacttaaa ggagggattattaaatttgcaaacaccttgaatatctcacatactagttttgtagaggaa qttaaactaaaaqcaaaqaaqatqacaaatacqatttattaqtttattacaaaqgttca cctattqcaqaaqaataccaaqcaaatcqtcaqaaaaaqcatattqaqaaaattttaaaa ggtaaggtttctattatatttacaaaatcttaa.

Sequence 2860

10

15

40

45

50

55

- 20 MEERIGLIDIGSNTIRLVIFGYNKKTGLNEILNIKTPARLSQYLTKSNEMNDEGIHVLKE
 TLSSFRKVADKFNVDALYPIATAAIRQSKNREAIIKEIKQDIHIEIQIVPEEDEAFYGYY
 AITHTTDIENGISVDIGGGSTEVTLFKDKQLKEAHSFPFGVVSLKRQFFGDKEHNDKTAI
 KNMEQFLREQFSQLDWLSNQHIALVGVGGSARNVARIHQSAHAYPIGGVHNYTMTSKDIN
 NVYDLIRKSSRDELTNLDGLSRDRVDIILPAISVFKTLFKKIDATQFTFSRKGIREGFIM
 25 NHISKRYPDEFNKSNVRKDALRHLANEYHIEETSANRRVKLAQSLLNQIISERSLNISEM
 EKELFIEGAYIYYLGSFIDSDSSSPHTYYLIANSMINGFSHKDRVKLALLASFKNKSLLK
 FYCKETQWFSNKEIDTIQALGGIIKFANTLNISHTSFVEEVKLKAKKDDKYDLLVYYKGS
 PIAEEYQANRQKKHIEKILKGKVSIIFTKS*
- 30 Sequence 2861
 Contig_0471_pos_6659_4476
 is similar to (with p-value 1.0e-24)
 >gp:gp!AF083928|AF083928_2 Vibrio cholerae polyphosphate ki
 nase (ppk) and exopolyphosphatase (ppx) genes, complete cds.
 35 NID: g3452464.
 atgaggtgtatgtatagtatgcaaactcgattgggagaaaaagatattaatttaccgcag
 tattacaacaatagggagttaagttggctagattttaactacagagtattacaagaatca
 tatgataaaaataatccgttgcttgaaaaactttaattttctatcttcagttcaaat

ttagatgaattetttatggttegagtggetgggttaaaagaccaagteaaaatgggatat qacaaacctgaaaataaagcacagatgacgcctcaagaacaacttgatgctattaaaatt aaaaatactqactatqtqaacactcaatatcaacgttataacgaattaattaaagaatta qccaattacqatattqaqatqqtaaaacctgaagacttatcagatgcattgatagaaaaa tatcatccatttccaaaqttaaataataaaaqtttaaatatttttgttgatatcgatacg gaagatgccattaattcagctatcgttcaaattccttcattaattccacqctttttaact ttaaatqaqqqtacaaaacaatacqttqtcatqqtaqaaqatqtaattacqtatttcatc aattatctatttacaqqatacqaaqtactaaatacttttactttccqaataacacqtaat gcagatttaaccattcatgaagatggcgctgaggacttqcttatagaaattgaacqtttc ttgaaagaacgtaagagtggttcggctgtacgtttagaattagattgtcgcacttctgaa aaaqaqaatqtaqaatqqttaatcqatcaattaqaaattqaaqataatqatattattat ctcaaatatttaacgtatqaqaaatatacccctcaaccacctagatcattaggcaacaag aat atctatcaattatcattaqaaaqaqatatattcttccaccatccqtatqaatcattt qaacca4taqttqactttattcqacaaqcaqcaqatqacccaaatacaatcqctatcaaa caaaccttqtatcqaqtqaqtaaqqattcqccqattattaacagcttaaaaqaaqccqct gaaaacggcaagcaagtaacggtgctcgtagaattaaaagcacgctttgatgaagaaaat aacqtacattgggcacqtatqttagaaqatqctggctgtcacgttatttatggtatgaca

catctaaaaacgcatagtaaaattgcgctagtcgttaaacgcatcaacaataaacttacg tcatttgttcatttagqcacaggtaactataacgataaaactgctaaattatacacagat

15 Sequence 2862

MRCMYSMQTRLGEKDINLPQYYNNRELSWLDFNYRVLQESYDKNNPLLEKLNFISIFSSN LDEFFMVRVAGLKDQVKMGYDKPENKAQMTPQEQLDAIKIKNTDYVNTQYQRYNELIKEL ANYDIEMVKPEDLSDALIEKLEKEFKLSVLPTLTPLGIDAYHPFPKLNNKSLNIFVDIDT EDAINSAIVQIPSLIPRFLTLNEGTKQYVVMVEDVITYFINYLFTGYEVLNTFTFRITRN

- 20 ADLTIHEDGAEDLLIEIERFLKERKSGSAVRLELDCRTSEKENVEWLIDQLEIEDNDIYY LDGPLDLTFLFGLVDHLSHKLKYLTYEKYTPQPPRSLGNKNIYQLSLERDIFFHHPYESF EPIVDFIRQAADDPNTIAIKQTLYRVSKDSPIINSLKEAAENGKQVTVLVELKARFDEEN NVHWARMLEDAGCHVIYGMTHLKTHSKIALVVKRINNKLTSFVHLGTGNYNDKTAKLYTD MGIITTNKDIAEDAINFFNYLSGYSTKPEYNKLIVAPYDIRDVFIDRIDKEIRSHLQHGN
- 25 GKIMMKMNSLTDKTIIEKLFEASQAGVKIQLIIRGICCLKPGIPGISENIEVVSIVGRLL EHSRIYYFHNNGEAHIYLSSADVMTRNMIKRVEILFPVEDKSIGQRLVNYMNLQLSDNQK GRYQDAQGVYHYVENNSSPLNSQSYLMQEAIKYGEELKKQSVQPSGQPVHSRRGGSWIRK LKSTFKR*

30 Sequence 2863

Contig 0473 pos 5421 6053

is $\overline{\text{similar to (with p-value 8.0e-31)}}$

>gp:gp|D64024|D64024_2 Sulfolobus sp. DNA for 2-oxoacid:fer redoxin oxidoreductase subunit alpha and beta, complete cds.

35 NID: g1565182.

atggcaaacaaagatttaacagttatcgcttctggtggtgatggagacggctatgcaata ggaatgggacatactattcatgctcttagacgtaatatgaatatgacgtatattgtcatg gacaatcaaatatatggattaactaaaggacaaacatcaccttcctcagctaaaggattt gtaactaaatcaacacctaaaggaaatatagaaaagaatgtagctccattggaattggca ctgtcctctggtgcaacttttgtagcacaaggattctcaagtgatataaaggcattaact aaaatgattgaagatgcgattcatcatgatggtttttcttttgttaatgttttctcacct tgtgttacttacaataaagtgaatacttatgactggtttaaagaacatttaacaagtatc gatgatattgagggctatgacatcacagataaacaacttgctatgaaaactgtgctggat catgagtcactggttaaaggtatcgtttatcaagatacaacaacccttcttatgaatcg

45 caaatttcagaactagaacatgaggcgttagctaaaagagatattcatattacagaagaa actttcaacgatttaactgcacaatttttataa

Sequence 2864

MANKDLTVIASGGDGDGYAIGMGHTIHALRRNMNMTYIVMDNQIYGLTKGQTSPSSAKGF
VTKSTPKGNIEKNVAPLELALSSGATFVAQGFSSDIKALTKMIEDAIHHDGFSFVNVFSP
CVTYNKVNTYDWFKEHLTSIDDIEGYDITDKQLAMKTVLDHESLVKGIVYQDTTTPSYES
OISELEHEALAKRDIHITEETFNDLTAOFL*

Sequence 2865

55 Contig_0476_pos_11219_12265

is similar to (with p-value 3.0e-44)

>sp:sp|P36649|YACK_ECOLI PROBABLE 53.4 KD BLUE-COPPER PROTE IN YACQ PRECURSOR. >gp:gp|AE000121|AE000121_8 Escherichia co li K-12 MG1655 section 11 of 400 of the complete genome. NID

: g1786306.

atgtataataaagtttttgcaattttaattataattttttccataataattattgcqtct aatqatactttcqcaqaaagtaagaatgatatqatqaatatqaaagaagataaqaaaaat qqaaaaaatqaaataatatttcctaaagttgcagagtcaaaaaaagataacaatggttat aaaaattatacattaaaagctcaggaaggaaagacagagttttacaaaaataatttttct aatactctaqqctacaatqqaaatttacttqqaccaactttaaaaattaaaaaaaqqaqat aaaqttaaaattaaqttaataaataacttaqatqaaaatacaacatttcattqqcatqqa ttaqaaqtaaatqqaaaaqtqqatqqaqqqccttctcaqqttataaaaccaqqaaaaqaa aaaactataaaatttqaqqttaatcaaqattctqctacqttatqqtatcacccccacccc agtaaaaagaataattatcctagtgattatggaaaaaatgatttgcctataataatccaa gataaaacatttgtatctaaaaaaattaaattattcaaaaacgaaagacgaagatggcact caaggtqatactgttcttgtgaacggaatagtaaaccccaaactgacaacaaaagaagag aaaatacgtttgagacttttaaatggttctaatgctcgagatttaaatcttaagctaagtaataatcaaaqttttqaqtatattqcttcaqatqqcqqtcaattaaaaaacqctaaaaaa atqaaaqqcqaqaaatcaqtctqqttqataatqataaaactqtaattttaccqattaqt aaacaactggtaagtgtaagatattag

20

25

35

45

55

10

15

Sequence 2866

MYNKVFAILIIIFSIIIIASNDTFAESKNDMMNMKEDKKNTMDMTNMKHHDERKKLNSSQ GKNEIIFPKVAESKKDNNGYKNYTLKAQEGKTEFYKNNFSNTLGYNGNLLGPTLKLKKGD KVKIKLINNLDENTTFHWHGLEVNGKVDGGPSQVIKPGKEKTIKFEVNQDSATLWYHPHP SPNTAKQVYNGLSGLLYIEDSKKNNYPSDYGKNDLPIIIQDKTFVSKKLNYSKTKDEDGT QGDTVLVNGIVNPKLTTKEEKIRLRLLNGSNARDLNLKLSNNQSFEYIASDGGQLKNAKK LKEINLAPSERKEIVIDLSKMKGEKISLVDNDKTVILPISKQLVSVRY*

Sequence 2867

30 Contig 0476 pos 6429 5413

is similar to (with p-value 6.0e-55)

>gp:gp[X97452|ECPAA_12 E.coli paa cluster for phenylacetic acid degradation. NID: g2764820.

gcagcgttagtcacacgtttattttatatgaaacatcaatttagaactatagcaactatg
ggaataggtggagggataggaaatgcagctttatttgaaagatggtatggaaattag

Sequence 2868

MSLLDDVILGNTVGNGGNLARKSLLEAGLDFKIPGITIDRQCGSGLEAVIQACRMVQSGA GTIYIAGGVESTSRAPWKIKRPQSVYESEFPQFFERAPFAREGEDPSMIEAAENVAKKYH ISRNEQDDFAYRSHQLASKNMNNGNISQEILPFKVKGEYFNQDESIKPQLTLRTLGRLKP LLNEGTVTVGNSCKKNDGAVLLIVMEENRARQLGFTEGIKFVNSATVGVQPQYLGVGPVP AVNQLLAQERLTINDINAVELNEAFSSQVIASQQQLNIPLNKLNCWGGAIATGHPYGASG AALVTRLFYMKHQFRTIATMGIGGGIGNAALFERWYGN*

Sequence 2869

Contig 0477 pos 254 727

is similar to (with p-value 8.0e-35)

>gp:gp|U96107|SCU96107_3 Staphylococcus carnosus N5,N10-met hylenetetrahydromethanopterin reductase homolog, SceB precur sor (sceB) and putative transmembrane protein genes, complet e cds, and putative Na+/H+ antiporter NhaC (nhaC) gene, part ial cds. NID: g2735503.

atgaaaaaatcaaaacaatctcgacattggtagctggacttggtatagcatttctaggt
10 cacacaacacatgcagatgcggctgaaaataacaatcaacaacaaagtacatataactat
agtacaactgaagtatcattttctaattcaggaaatttatatacttctggccaatgtact
tggtatgtttatgataaaactggtggaaaaatcggatcaacatgggggaatgcaaatagc
tgggcaactgcagctcaagcaggattcactgtaaataatacacctgaagaaggtgca
attatgcaatcatctgaaggtgctttcggacatgttgctttcgttgaaagtgtcaataat

15 gatggttctattactgtatcagaaatgaactatgatggtggtccattcgctataagcaca cqaacaatctctgccagtgaagcaaqttcatataattacatccacctgaattaa

Sequence 2870

MKKIKTISTLVAGLGIAFLGHTTHADAAENNNQQQSTYNYSTTEVSFSNSGNLYTSGQCT

WYVYDKTGGKIGSTWGNANSWATAAQAAGFTVNNTPEEGAIMQSSEGAFGHVAFVESVNN
DGSITVSEMNYDGGPFAISTRTISASEASSYNYIHLN*

Sequence 2871

Contig 0478 pos_6998_6654

25 is similar to (with p-value 1.0e-60)

>pir:pir|I67760|I67760 transposase (insertion sequence IS10) - Escherichia coli >gp:gp|S67119|S67119_2 BST=somatotropin ...BST/beta-Gal fusion protein [Escherichia coli, LBB84 pla smid pXT107, IS10L/R-1, PlasmidTransposonInsertionMutant, 3

30 genes, 1679 nt]. NID: g455674.

 ${\tt atgcagattgaagaaaccttccgagacttgaaaagtcctgcctacggactaggcctacgccatagccgaaccgagcagctcagagcgttttgatatcatgctgctaatcgccctgatgcttcaacctaaccatgttggcttgcgggcgttcatgctcagaaacaaggttgggacaagcacttccaggctaacacagtcagaaatcgaaaccgtactctcaacagttcgcttaggcatggaagtt}$

35 ttgcggcattctggctacacaataacaagggaagacttactcgtggctgcaaccctacta gctcaaaatttattcacacatggttacgctttggggaaattatga

Sequence 2872

MQIEETFRDLKSPAYGLGLRHSRTSSSERFDIMLLIALMLQLTCWLAGVHAQKQGWDKHF 40 QANTVRNRNVLSTVRLGMEVLRHSGYTITREDLLVAATLLAQNLFTHGYALGKL*

Sequence 2873

Contig 0480 pos 5372 6550

is similar to (with p-value 2.0e-24)

- >>sp:sp|P23524|YHAD_ECOLI HYPOTHETICAL 42.1 KD PROTEIN IN RN
 PB-SOHA INTERGENIC REGION (ORF 3) (F408). >pir:pir|JQ0614|JQ
 0614 hypothetical 42K protein Escherichia coli >gp:gp|D902
 12|ECORNPBW_3 E.coli rnpB gene and ORFs. NID: g216630. >gp:g
 p|U18997|ECOUW67_54 Escherichia coli K-12 chromosomal region
 from 67.4 to 76.0 minutes. NID: g606010. >gp:gp|AE000394|AE
- from 67.4 to 76.0 minutes. NID: g606010. >gp:gp|AE000394|AE000394_2 Escherichia coli K-12 MG1655 section 284 of 400 of the complete genome. NID: g2367197.

15 Sequence 2874
MFKIIFGKEKNKVVKTMKVLVAMDEFNGIISSYQANRYVEEAVASQIEDADIVQVPLFNG
RHELLDSVFLWQSGNKYRVSAHDADMKETEAIYGQTDSGMTIIEGHLFLNGKKPIQHRSS
YGLGEVIKAALDNHTEHLVISLGGIGSFDGGAGMLQALGATFYDDEAQIVDMRKGAYLIK
YIRRIDLSGVHPQLTKVNIQLMSDFSSRLYGKKSEIMQTYESLDLSQNEAAEIDNLIWYF
20 SELFKNELKIAMGPIERGGAGGGIAAVLNSLYQAEILTSHELVNQITHLENLIQQ3DLII
FGEGLKEEDQILETTTIRIAELTQQYSKPAIAICATNDKFDLFESLNVTAMFNTFIDMPD
SYTDFKMGIQIRHYTVQALKLLKTQINLPLSS*

Sequence 2875

10

- 30 atgaaggatacagatttagctcaaattgctttaacacaagatcacactggcgcaattgcc aatccaatatatttatctactgcatatcagcatcctcacctaggtgaatcaacaggctat gattatacacgaactaaaaatccaacaagaacagcctttgaagaagcttttgcacaactt gaaaaaggcattgcttcatttgctacttccagtggtatggcggcgattcagttaatatgt aatattcaaaccaggtgatgaaaatctcgttgcatttgcactatatggtggaacattt cggttattcgattttacgaaaaacaatatggttgaagtttaaatatgtagactttta
 35 cggttattcgattttacgaaaaacaatatggtttgaagtttaaatatgtagactttta
- 40 gtgttagctggagttgtaactgttaaggatgctcaattagctgaacaattgaatcaattc cataatatgattggagcaactctatcacctcttgatagttatcttttacaaagaggtcta aagacattacatcttcgcatagagcgttcccaagaaaatgctcaaaaacttgcacaacga tgtcgccagtcagattcaattgatgaagttttatatagtggacgaacaggcatgcttagt ttaagactgaaccaagcatatagcgtcgctaaatttttagaaaatttagaaatttgtata
- tttgcagaaagcttaggtggtacagaaacatttatcaccttcccttatacacaaacacac gttgatatgccagatgaggaaaaagacaaacgtggaattgatgaatatctcatcagattg tccgtaggtatagaagactataacgatatagaagctgacataattcaagcattagagaat tctaaagtaggagtgatttcatga
- 50 Sequence 2876
 MKDTDLAQIALTQDHTGAIANPIYLSTAYQHPHLGESTGYDYTRTKNPTRTAFEEAFAQL
 EKGIASFATSSGMAAIQLICNIFKPGDEILVAFDLYGGTFRLFDFYEKQYGLKFKYVDFL
 NYEEVEKNITPQTRALFIEPISNPQMIEIDVEPYYILSKKHQLLTIIDNTFLTPYLSTPL
 EEGADIVLHSATKYIGGHNDVLAGVVTVKDAQLAEQLNQFHNMIGATLSPLDSYLLQRGL
 55 KTLHLRIERSQENAQKLAQRCRQSDSIDEVLYSGRTGMLSLRLNQAYSVAKFLENLEICI
 FAESLGGTETFITFPYTQTHVDMPDEEKDKRGIDEYLIRLSVGIEDYNDIEADIIQALEN
 SKVGVIS*

Sequence 2877

Contig 0484 pos 4823 4407

>sp:sp[069282]MQO_CORGL MALATE:QUINONE OXIDOREDUCTASE (EC 1 .1.99.16) (MALATE DEHYDROGENASE (ACCEPTOR)) (MQO).

atgataggtactatgattgaaacgcctagagcatgcttgattgcgaatgaccttgcgaaa cattgtgatttcttcagtttttggtactaatgatttaacgcaattgacatttggtttctct agagatgatgcaggaaaattcataaatgtgtatactgaaaataacattttacagcttgac ccattccaaactttagatagagaaggtgtaggacgactaattcaattagctgttgaacaa gctaaaaatacaaatccagagataaaaattggtgtatgtggtgagcttggtggcgatgca aaatcaattcgtaaatttaaccaatgggaaattgattatgtttcatgttcaccatttaga qttccqqqtqaaattttaqctacagctcaqagtcaaqcqqaqqaaaqcqaqcqataa

Sequence 2878

10

MIGTMIETPRACLIANDLAKHCDFFSFGTNDLTQLTFGFSRDDAGKFINVYTENNILQLD PFQTLDREGVGRLIQLAVEQAKNTNPEIKIGVCGELGGDAKSIRKFNQWEIDYVSCSPFR

15 VPGAILATAOSOAEESER*

Sequence 2879
Contig_0484_pos_3408_1879
is similar to (with p-value 6.0e-42)

20 >pir:pir|S53297|S53297 pyruvate,orthophosphate dikinase (EC
2.7.9.1) - Flaveria pringlei >gp:gp|X75516|FPPDK_1 F.pringl
ei mRNA for pyruvate, orthophosphate dikinase. NID: g577775.

atgataactactacacaagaggtgaacattatggctatgtctgacaaaaaagacgtcgtg 25 ttaatcggtgctggtgtactaagtactacatttggttctatgttgaaaacgattgcacct gattgggacattcatttatatgaacgtctagatcgtcctggtattgaaagttcaaatgaa cqtaacaatqcaqqaacaqqacatqcaqctttatqtqaattqaactatactqtacaacaa cctgatggttcaattgatattgaaaaagctaaagaaattaatgaacaatttgaaatttct aaacaattctqqqqtcatttaqttaaatcaqqaqaaattcaaaatcctaaaqaatttatt 30 aatccattacctcatattagttttgttcgtggtaaaaataacgttaaattcttaaaaqgat cqutatqaaqcqatqaaqcaattccctatqttcqataatatcqaatatactqaaqqtatt gaagaaatgagaaaatggattccattaatgatgaaaggccgtgaagataagggctacatg gcagcgagtaaaatagacgaaggaactgacgtaaactacggtgaattaactcgtaaaatg gctcaaaatcttaaaaactcaccaaacgttgaagtgcaatacaaacatgaagttgttgat 35 tttgaacgtttgtctaatggtaaatggtcagttaaaattaaaaatctaaataatggacaa qtattcqaacatcaaactgattatgtgtttatcqgtqctqqtqqtqqcqcaattccacta ttacaaaaaactggcattccagaaagtaaacatttaggtggattcccaatcagtggtcaa tttattgcttqtacaaatccgcaaqttattqaacaacacqatqccaaaqtttatqqtaaa qaaccacctqqtacaccaccaatqacqqtacctcacttaqatacacqttacattqatqqt 40 gaaagaacattattatttggaccatttgcaaacqtgggacctaaattcctaaaacatqqt tctaacttggatttattcaaatcaattaaaccatataacattacgactttacttgcttct gcagttaaaaacttaccattaattaagtattcatttgaccaagtcatcatgacaaaagaa ggttgtatgaaccatttacgtacgttctatcctgaagcacgtgatgaagattggcaagtt tatacagctggtaaacgtgtacaagttattaaagatactgaagagaatggtaaaggattt 45 atccaatttqqtactqaaqtqqttaattctqaaqaccactcaqttattqcattactaqqc gaatcaccaggagcatcaacttcagtatcagtagcactagaagttttagagaaaaacttc cctgaatacqcqaaaqactqqqaacctaaaatcaaqaaaatqattccttcatatqqtqaa tcacttattgatqatqttcaattaatqagaaaaatacqtaaacaaacatctaaaqatctt gaattaggattctataataaagcaaaataa

Sequence 2880

50

55

MITTTQEVNIMAMSDKKDVVLIGAGVLSTTFGSMLKTIAPDWDIHLYERLDRPGIESSNE RNNAGTGHAALCELNYTVQQPDGSIDIEKAKEINEQFEISKQFWGHLVKSGEIQNPKEFI NPLPHISFVRGKNNVKFLKDRYEAMKQFPMFDNIEYTEDIEEMRKWIPLMMKGREDKGYM AASKIDEGTDVNYGELTRKMAQNLKNSPNVEVQYKHEVVDFERLSNGKWSVKIKNLNNGQ VFEHQTDYVFIGAGGGAIPLLQKTGIPESKHLGGFPISGQFIACTNPQVIEQHDAKVYGK EPPGTPPMTVPHLDTRYIDGERTLLFGPFANVGPKFLKHGSNLDLFKSIKPYNITTLLAS AVKNLPLIKYSFDQVIMTKEGCMNHLRTFYPEARDEDWQVYTAGKRVQVIKDTEENGKGF IQFGTEVVNSEDHSVIALLGESPGASTSVSVALEVLEKNFPEYAKDWEPKIKKMIPSYGE

SLIDDVQLMRKIRKQTSKDLELGFYNKAK*

Sequence 2881

Contig 0486 pos 1073 1840

is similar to (with p-value 9.0e-58) >gp:gp[U38892|SSU38892|2 Synechocystis sp. ruvB gene, compl

ete cds, and secA gene, partial cds. NID: g1256587.
atgtttaaaataggaaatttagaattacaatctcqtttacttttaggtactggaaaattt

- ttaaaagattttatcacttttccaaatactgcaggtgccaaaacagctcaagaagctatcagaattgctgaaattgctaatcacgcaggtgtatgtgacatgattaaagtcgaagtcattggtgatgacgaaacattattacctgatccattcgaaacatacgaggcatgcaaagtattgttagaaaaaggttacactgtttgtccttacatctctaacgatttagttttagctcaacgt
- 15 ttagaagaattgggtgtacacgcagttatgccacttgcatcccctattggtacaggaaga ggtattaataacccattaaatttaagttatattatcgaaaatgctagtgtacctgtaatc gtagatgctggtattggttcccctaaagatgcgtgtcatgccatggagcttggcgcagat ggtatttactcaacacagccatttcagcggcaaaagatcctgtgaaaatggctgaagca atgaaattaggtataaatgctggcagactttcatatgaagctggacgcattcctgttaag
- 20 tatactgcacaagcatctagtccatcagaaggtttagggttcttgtaa

Sequence 2882

MFKIGNLELQSRLLLGTGKFENEEVQSKAIEASETNVLTFAVRRMNLYDRNLPNPLANVN LKDFITFPNTAGAKTAQEAIRIAEIANHAGVCDMIKVEVIGDDETLLPDPFETYEACKVL

25 LEKGYTVCPYISNDLVLAQRLEELGVHAVMPLASPIGTGRGINNPLNLSYIIENASVPVI VDAGIGSPKDACHAMELGADGILLNTAISAAKDPVKMAEAMKLGINAGRLSYEAGRIPVK YTAQASSPSEGLGFL*

Sequence 2883

30 Contig 0487 pos 1335 2006.

is similar to (with p-value 5.0e-34)

>sp:sp|P39762|AMPS_BACSU AMINOPEPTIDASE AMPS (EC 3.4.11.-). >gp:gp|AF012285|AF012285_21 Bacillus subtilis mobA-nprE gen e region. NID: g3282109. >gp:gp|Z99111|BSUB0008_117 Bacillus

e region. NID: g3282109. >gp:gp[Z99111]BSUBU008_117 Bacillus subtilis complete genome (section 8 of 21): from 1394791 to 1603020. NID: g2633699.

atgacgaattatcataataagttaaaacaatatgcagaattattagtaagagtgggaatg aatgtacaaccacagcaacctgtttttatacgttcatctgttgaagcgttagaattaact catttaatcgtcgaggaagcatataaagcaggggcagaagatgttcgagtgagctacaca

- 40 gacccgaaattaaaaagattaaaatttgaaaacgaatcagttgaacactttgaaaaacaa gaactcaaacaatatgatattgaagagcgtctggattatgttaatcgtggcgcagcgaac ttggcgctcattgctgaagatccagagctattaaatggaatagatgcgcaaaagttaaaa gcgtatcaaactgtatactcaaaaggatttaaaccatatatggaagcaagtcaaaaaaac caatttccatgggtagtggctgcgttccctactagggattgggcacgtcgtgtctatcca
- 45 gagttggatgttgaatcagcatatattaaattcattgatgaagtatttgatattgttcgt gtagatggacaaaatccaattgaaaattgggaaaaaccattaaagatttaagtgttcat gctaaacgattacaagagaaaaactatcaagctttacattacatatcagaaaattcatac atttggttttga
- 50 Sequence 2884

MTNYHNKLKQYAELLVRVGMNVQPQQPVFIRSSVEALELTHLIVEEAYKAGAEDVRVSYT DPKLKRLKFENESVEHFEKQELKQYDIEERLDYVNRGAANLALIAEDPELLNGIDAQKLK AYQTVYSKGFKPYMEASQKNQFPWVVAAFPTRDWARRVYPELDVESAYIKFIDEVFDIVR VDGQNPIENWEKHIKDLSVHAKRLQEKNYQALHYISENSYIWF*

Sequence 2885

55

Contig 0487 pos 3511 3086

is similar to (with p-value 6.0e-23)

>sp:sp|P14597|DUT_ORFN2 DEOXYURIDINE 5'-TRIPHOSPHATE NUCLEO

TIDOHYDROLASE (EC 3.6.1.23) (DUTPASE) (DUTP PYROPHOSPHATASE) . >gp:gp|M30023|ORFPRTPS_1 Orf virus homologue of retroviral pseudoprotease gene, complete cds. NID: g332561.

atgacaaatacattagaaattaaattattatcagaaaacgcgactatgccgaagagagca aattctacagatagtggattggacttatacgtatcagaaacgattaacattcctgcacac gcaactaaagtagttaaacagatatagcgattaatctgccttatgggtatgaggcgcaa gtaagacctagatctggtaaatcacttaaaactaaattgcgtgtagcactaggaacaata gaccaaacataccacaaagaaataggtatcatcacagataacataggtaatgaagatatc acagtagaaaaaggagaaagattagcgcaattagttgtagcgccagttgtatatcctaca cccaaacaggttgattggtttgaaaatgaaagcgacagaggtgcatatggaagcacagga qaataa

Sequence 2886

10

MTHREEKLLSENATMPKRANSTDSGLDLYVSETINIPAHATKVVKTDFAINLPYGYEAQ
15 VRPRSGKSLKTKLRVALGTIDQTYHKEIGIITDNIGNEDITVEKGERLAQLVVAPVVYPT
PKOVDWFENESDRGAYGSTGE*

Sequence 2887

Contig 0487 pos 988 515

20 is similar to (with p-value 2.0e-17)

>sp:sp|P41893|PPAL_SCHPO LOW MOLECULAR WEIGHT PHOSPHOTYROSI NE PROTEIN PHOSPHATASE (EC 3.1.3.48) (LOW MOLECULAR WEIGHT C YTOSOLIC ACID PHOSPHATASE) (EC 3.1.3.2) (PTPASE) (SMALL TYRO SINE PHOSPHATASE). >pir:pir|A55446|A55446 protein-tyrosine-p

- 25 hosphatase (EC 3.1.3.48), low molecular weight fission yea st (Schizosaccharomyces pombe) >gp:gp|L33929|YSPLMPTP_1 Schi zosaccharomyces pombe low Mr protein tyrosine phosphatase mR NA, complete cds. NID: g602991.
- gtgatactaatgatacatgtagcatttgtatgtotoggtaatatatgtogttotocaatg
 gctgaggotatcatgagacaaagactacaagaaagaggtatttcagatataaaagttcat
 tctagaggaacaggacgttggaatttaggcgaacotccacataacggaacacaaaaaatt
 ctacagaagtaccatattcottatgatggtatggtgagtgaacttttcgaacotgatgat
 gattttgactatattattgotatggaccaaagtaacgtagacaatatcaaacaaatgaat
 ccaaatttacaaggacaattgttcaaattgctagaatttagtaacatggaagagagtgat
 gtaccagatccatactacacaaataattttgaaggtgttttcgagatggtgcaatcatct
- 35 gtaccagatecatactacacaaataattttgaaggtgttttcgagatggtgcaatcat tqtgataatttaatagactacatcgtaaaagatgcaaatttgaaagagggtaa

Sequence 2888

VILMIHVAFVCLGNICRSPMAEAIMRQRLQERGISDIKVHSRGTGRWNLGEPPHNGTQKI
40 LQKYHIPYDGMVSELFEPDDDFDYIIAMDQSNVDNIKQINPNLQGQLFKLLEFSNMEESD
VPDPYYTNNFEGVFEMVQSSCDNLIDYIVKDANLKER*

Sequence 2889

Contig_0488_pos_5255_6256

- 45 >sp:sp|P44770|OTC_HAEIN ORNITHINE CARBAMOYLTRANSFERASE (EC 2.1.3.3) (OTCASE). >pir:pir|H64079|H64079 ornithine carbamoy ltransferase (arcB) homolog Haemophilus influenzae (strain Rd KW20) >gp:gp|U32741|U32741_4 Haemophilus influenzae Rd s ection 56 of 163 of the complete genome. NID: q1573582.

gttggcgatggacgtaacaatgttgctaacgcattaatgcaaggtgctgccattatgggtatqaatttccatcttgtttgtcctaaagaactcaatccgacagaagaattattaaatcgt

Sequence 2890

10 MKNLRNRSFLTLLDFSRQEVEFLLTLSEDLKRAKYIGTEKPMLKNKNIALLFEKDSTRTR
CAFEVAAHDQGAHVTYLGPTGSQMGKKETAKDTARVLGGMYDGIEYRGFSQRTVETLAQY
SGVPVWNGLTDEDHPTQVLADFLTAKEVLKKEYADINFTYVGDGRNNVANALMQGAAIMG
MNFHLVCPKELNPTEELLNRCERIATENGGNILITDDIDKGVKDSDVIYTDVWVSMGEPD
EVWQERLKLLKPYQVNQALLEKTGNPNVIFEHCLPSFHNAETKIGQQIYEKYGISEMEVT
15 DDVFESKASVVFOEAENRMHTIKAVMVATLGEF*

Sequence 2891 Contig_0488_pos_6270_7211 is similar to (with p-value 3.0e-76)

- 40 gcagcactagaaggtaaaattggcacactcattacaaagtaa

Sequence 2892

VSEMAKIVVALGGNALGKSPQEQLELVKNTAKSLVGLITKGHEIVISHGNGPQVGSINLG
LNYAAEHDQGPAFPFAECGAMSQAYIGYQLQESLQNELHSMGIDKQVVTLVTQVEVDEGD

45 PAFNSPSKPIGLFYTKEEANRIQQEKGYQFVEDAGRGYRRVVPSPQPISIIELESIKTLV
ENDTLVIAAGGGGIPVIREQHDSFKGIDAVIDKDKTSALLGADIHCDQLIILTAIDYVYI
NYHTDQQQALKTTNIDTLKTYIEEEQFAKGSMLPKIESAISFIENNPNGSVLITSLNQLD
AALEGKIGTLITK*

50 Sequence 2893

Contig_0489_pos_5066_5410

is similar to (with p-value 5.0e-39)

>sp:sp|P37941|ODBB_BACSU 2-OXOISOVALERATE DEHYDROGENASE BET A SUBUNIT (EC 1.2.4.4) (BRANCHED- CHAIN ALPHA-KETO ACID DEHY DROGENASE COMPONENT BETA CHAIN (E1)) (BCKDH E1-BETA). >pir:p ir|S32487|S32487 3-methyl-2-oxobutanoate dehydrogenase (lipo amide) (EC 1.2.4.4) E1 beta chain - Bacillus subtilis >gp:gp |M97391|BACBRANCH_2 Bacillus subtilis branched chain alpha-k eto acid dehydrogenase E1-alpha, branched chain alpha-keto a

actggtaaagttcttcttgttactgaagataatctagagggaagcattatgtctgaagta
10 tctgcaattatagctgaaaactgtctgttcgatttagatgcgccaatcatgcgattagct
gcaccggatgtcccatctatgccattttcaccaacattagaaaatgaaattatgatgaac
ccagaaaagatacaggacaaaatgcgtgaactcgcacaattttaa

Sequence 2894

15 VNYCLQAADILANDGIDVEVVDLRTVYPLDKATIIERSQRTGKVLLVTEDNLEGSIMSEV SAIIAENCLFDLDAPIMRLAAPDVPSMPFSPTLENEIMMNPEKIQDKMRELAOF*

Sequence 2895

Contig 0493 pos 2490 1000

20 >sp:sp|069282|MQO CORGL MALATE:QUINONE OXIDOREDUCTASE (EC 1 .1.99.16) (MALATE DEHYDROGENASE (ACCEPTOR)) (MQO). atgcacatgagtgaagcaaatcataaaaacatcgttgttqtaggtqcagqaattattqqt acqtcaqtaqcqacaatqctttcaaaaqtaaqtcctaactqqcatatcqatatqtttqaa agactagaaggcgctggtattgaaagttcaaatgaaaataataatgctgggacaggtcat 25 gcggcattatgtgaattaaactatacagttgaacaagatgatggttcaattgatgcatct aaagcgcaagaaattaatgaacaattcgaattatctagacaattctggggtaatttagtt aaaaatggtgatatttctaatcctgaagaatttattcaaccattacctcatatcagtttcgttatgggaccaacaacgttaactttttaagaaaacgttatgaaacactaagaactctt ccaatgttcgatacaatcgaatatacagaagacatggaaacaatgagaaaatggatgcca 30 ttaatgatggaaaatcgtgaaccaggtcatcaaatggcagcaagtaaaattgatgaaggt acaqatqtqaactatqqtqcqttaacacqtaaqttaqcacattacttaqaacaaaaatct aatgtttcattaaaatacaatcatqatqttqtaqatttaacacaaaqaqaaqatqqcaaa tgggaagttgtcgttgaaaatagagaaactaaagaaaaagtaactaaaatagcagataaa gtgtttattggtgctggcggtcactctattccgttattacaaaaatctggcgttaaacaa 35 agagaacacctaggtggtttcccaatcagtggtcaattcttaagatgtacaaacccagat attattaaacaacatgcggctaaagtttacagtaaagagcctcaaqqtaaqccaccaatg actgtaccacaccttgatacacqttatatcaatqqtaaacaaacattattatttqqtcca tatgcgaatatcggccctaaattcttgaaattcggttcaaatctaqacttattcqaatca atcaaaccatataacattactacaatqttqqcttcaqcaqttaaaaatqtacctttaatt 40 aaatattcaattgatcaaatgatcaaaactaaaqaaggttqtatgaactatttaagaaca tttattcctgatgctaaagatgaagattgggaactttacactqctqqtaaacqtqttcaa gttattaaagatagtgaacaacacgggaaaggtttcgtagtatttggtactgaagttgtc aattcagacgacaattctatgattgcattattaggtgaatctccaggggcttcaacatca ttatcagttgtattagaagttttagagaaaaacttcgctgatgacaaagaagcatqqqaa 45 atgagagaaacacgtcgcgaaacttctaaaaaacttacatttaaatagataa

Sequence 2896

MHMSEANHKNIVVVGAGIIGTSVATMLSKVSPNWHIDMFERLEGAGIESSNENNNAGTGH
AALCELNYTVEQDDGSIDASKAQEINEQFELSRQFWGNLVKNGDISNPEEFIQPLPHISF
VMGPTNVNFLRKRYETLRTLPMFDTIEYTEDMETMRKWMPLMMENREPGHQMAASKIDEG
TDVNYGALTRKLAHYLEQKSNVSLKYNHDVVDLTQREDGKWEVVVENRETKEKVTKIADK
VFIGAGGHSIPLLQKSGVKQREHLGGFPISGQFLRCTNPDIIKQHAAKVYSKEPQGKPPM
TVPHLDTRYINGKQTLLFGPYANIGPKFLKFGSNLDLFESIKPYNITTMLASAVKNVPLI
KYSIDQMIKTKEGCMNYLRTFIPDAKDEDWELYTAGKRVQVIKDSEQHGKGFVVFGTEVV
NS::DUSM::ALLGESPGASTSLSVVLEVLEKNFADDKEAWEPVVKEMVPTYGRSLINDEKL
MRETRRETSKNLHLNR*

Sequence 2897

Contig 0494 pos 12199 12525

>gp:gp|AB009866|AB009866_15 Bacteriophage phi PVL proviral DNA, complete sequence. NID: g3341907.

atgaattcagcagtagtagagtcagaactgaattctacaccatcttctttggtattacct tctaattcagggaatgtgaataatcctttaggtaatcccacatactcgcgtgaaccatct tccatagttttcgcaaacataacagctacatatggtggtgtatcgttaccaactgacacg atgccgtcctctgatttttctaatccgaacaatgcaactctgtcctctaatggtagtttg tggaaaccagcttctacttcaattgttccgttagcaactgccatttctgcaacttggta tcaccaiatgccttctcgatgtcttga

10

Sequence 2898

MNSAVVESELNSTPSSLVLPSNSGNVNNPLGNPTYSREPSSIVFANITATYGGVSLPTDT MPSSDFSNPNNATLSSNGSLWKPASTSIVPLATAISATWLSPYAFSMS*

15 Sequence 2899

Contig 0494 pos 16099 14756

is similar to (with p-value 3.0e-17)

>gp:gp|AB009866|AB009866_13 Bacteriophage phi PVL proviral DNA, complete sequence. NID: g3341907.

- 20 atggctaatttagatgagcgcaaaaaagaaatcgctaatctgatttctaaaqcqcaaqaa gcagtcgaaaaaggcgacctcgaaactgctcgtaatttaaaagctgatattgatgctcaa aaqaaagagtacgaagaactcgaacagctttcaaaagaaattgaagcgtcagcacctaaa caagatgaaccacctaaagatgaaggtgcagaagttgaagataacaaagatggtaattct ggagaagaatcagagaacaaaccttctgatgatgaaccagaaggaacttcagatgaagaa 25 aaacctgatgatgcaccaaaaccaqatgacaaacctgaaqaaacaccaqaaacacctact attgaaaaagtagaagaaccaacagaagaagaattaaaaaaagaaaaagacaaaaaagaa ggagcgaaacgttctatggctaaattaaaccaaaatccagagacaaacgaagaaaticta gcatstynacagtacatgaaatcaaaaggggctaaacgtgacaatgttaaatctqntgac gttggcgtaactatcccagaggatattaaatatattcctgaaaaagaagttaagacagtc 30 caagacttatcagaattggtacaaaaaacttcagtatcaactgcaagtqqqaaatacccq atcttaaaacgtgctaacgctaaattcaacactgttgctgaattagagaaaaaccctgag ttagctcgtccggaattcgaaacaatcaattqqqaaqtaqacacttatcqtqqatctatt
- ccgatttcacaagaagcattagatgattcagttgctaacttaactgctattgttctgaa aatattaacgaacaaaaatcaacactttaaatgaacgtattggtgaagttttaaaagca ttcaatcctactagtgtttctaatgttgacgacttaaaagaaattatcaacgttaaatta gatcctggttatgacgccaaattatctgtactcaaagtttctatcaaaaactagataca ttaaaagatggtaacggtcgttatttactacaagacagtatcatcaacactgcaggtaac actgtgttaggtatgaatgtaacagttgtgggtgatgacttgttaggtaaaaatggagat gcattagcattattattggtgatgtaaaaacgcggtgttatttgcagaccgtacagacgtt
- tctgttcaatggattgaaaatgaaatctacggtaaatacttaatgggtgctttccgtttc gatgtgaaacaggctgataaaaatgctggtttcttcgtaacatttgaagatgcaacagaa cctagtggggatctaggagcataa

Sequence 2900

45 MANLDERKKEIANLISKAQEAVEKGDLETARNLKADIDAQKKEYEELEQLSKEIEASAPK
QDEPPKDEGAEVEDNKDGNSGEESENKPSDDEPEGTSDEEKPDDAPKPDDKPEETPETT
IEKVEEPTEEELKKEKDKKEGAKRSMAKLNQNPETNEEILAFEQYMKSKGAKRDNVKSDD
VGVTIPEDIKYIPEKEVKTVQDLSELVQKTSVSTASGKYPILKRANAKFNTVAELEKNPE
LARPEFETINWEVDTYRGSIPISQEALDDSVANLTAIVSENINEQKINTLNERIGEVLKA
FNPTSVSNVDDLKEIINVKLDPGYDRQIICTQSFYQKLDTLKDGNGRYLLQDSIINTAGN
TVLGMNVTVVRDDLLGKNGDALAFIGDVKRGVLFADRTDVSVQWIENEIYGKYLMGAFRF
DVKOADKNAGFFVTFEDATEPSGDLGA*

Sequence 2901

55 Contig_0494_pos_14069_13677

is similar to (with p-value 5.0e-25)

>gp:gp!AB009866|AB009866_13 Bacteriophage phi PVL proviral DNA, complete sequence. NID: g3341907. atgaaaggcgataaagaaataattgcctatttagaaacgaaatacggtaaatctgctatg

aaacgcataactgactttgcactaactaaagctggcaataaagttgtaagtattatcaaa ggtaatatgaaaagttttgaagatactggagaatcagtagaagaaactacactttcaaag ccgatgacgataaaaggagtaaggaccgttaaaattcattggcgaggtcctaaacaacgt tatcgtattatccacctaaatgaatatggtcactttgatcgttctggaaagtgggttaat acagctggtaaaggtgttattgaaaacgctatgcgtgaaggcagagaaacgtatttcaga acagtaaaagaagaaatgagaaaggggtgtaa

Sequence 2902

MKGDKEIIAYLETKYGKSAMKRITDFALTKAGNKVVSIIKGNMKSFEDTGESVEETTLSK

10 PMTIKGVRTVKIHWRGPKQRYRIIHLNEYGHFDRSGKWVNTAGKGVIENAMREGRETYFR

TVKEEMRKRV*

Sequence 2903

Contig 0494 pos 12659 12030

15 No hits found

20

25

45

atggcagagaaaactatcgttcatttacagggttaacagaattttattataaagttcat ggagaaggtggagttcaaaaagttgctgatccagaacgcattaaatatttacaagaaatt tcagtatctaaagatcaagacatcgagaaggcatatggtgataaccaagttgcagaaatg gcagttgctaacggaacaattgaagtagaagctggtttccacaaactaccattagaggac agagttgcattgttcggattagaaaaatcagaggacggcatcgtgtcagttggtaacgat acaccaccatatgtagctgttatgtttgcgaaaactatggaagatggttcacgcgagtat gtgggattacctaaaggattattcacattccctgaattagaaggtaataccaaagaagat ggtgtagaattcagttctgactctactactgctgaattcatgcaagctaaaggtaaaagc ttcgaagaagaaaaagcaatgttattaggtcacgatgctaaaggcacaactgttatgaaa gacgctatctgggaagctatcttcggtgaatctgcaccaagcagtgatccaaaagaatctagtggaacaagaactaggaaccaactgttatgaaa

Sequence 2904

MAEKNYRSFTGLTEFYYKVHGEGGVQKVADPERIKYLQEISVSKDQDIEKAYGDNQVAEM
30 AVANGTIEVEAGFHKLPLEDRVALFGLEKSEDGIVSVGNDTPPYVAVMFAKTMEDGSREY
VGLPKGLFTFPELEGNTKEDGVEFSSDSTTAEFMQAKVKGFEEEKAMLLGHDAKGTTVMK
DAIWEAIFGESAPSSDPKESSGTESELGA*

Sequence 2905

35 Contig_0494_pos_11140_6422 is similar to (with p-value 1.0e-33)

>gp:gp|AB009866|AB009866_7 Bacteriophage phi PVL proviral D NA, complete sequence. NID: g3341907.

atgaaggatatgggcgttcaacgtagtatttcggaaataaaacgtagctttaaaggatta aacgctgacttaaaactatctaacaacaactttaagtattccgaaaaaagtttaaattca tataaqttaaqaactaqaqaattatcqcaaqcaqtcaaaqaatctaaaqctaacqttqca qcqttqaaaqcaaaataccaagaagcagcaagagcatctggtgtgaatagcaaaaaagcc qctcaattaaqqcaqqaatataqtcqacaaqctqacaatctcaactatttacaaaacgaa aqacttqqqcaaqcattttctqaaataqqacctaaqataaqatccatagqaqattcaatq aaqtcaqtcqqqcqtaacatqaqtttacacqttactqcaccaattqcaqcaqqttttqqc qctqcqqtqaaqaaaqtataqacttcqacqataccatqcqtaaaqtaaaagccacatct gqtqctactqqaqatqaatttaaccaqcttagaacaaaaqcacttcaaatqqqccqaqat actaaattcacggcctctgaatctgctgaagcaatgaactacatggcgcttgctggttgg qacaccaaagatatgctaaaagqtgttqgtggtgtaatqqatttaqctqctqcatctqqt qaaqatttaqcaaqcqtatctqatattqtaactqataacctaactqcatttqqtatqaaa gctaaagatagtacccactttqctgatqttttqqctcaaacgaqttcaaaagctaatact gatgtacqtqqtttaqqtqatqcqtttaaatatqctqctccaqttqctqqtqcqttaqqt tacacqqtaqaaqatacatcaataqctattqqtttqatqtctaatqctqqqataaaaqqt qaaaaaqccqqcacaqcattaaqaacaatqtttaccaacctatctaaaccaacaaaaqca atqaaaqacqaaatqqataaactaqqaatatctattactqataqcaacqqtqaaatqtta caagcagccgcagctagtacaatatttggtaaagaggccatgagtggtgcattagcagtt

atcaargeatcagacgaagattataaaaagctaactaaatccatagacggctctamaggt

qcttcaaaaaqaatqqctaaagaaatggaaggcggtattggtggcgcaatgcgtaaaatg a a atcgg caattga a a gttt a g c g attt cattag g t g at g cattag c c c a a t g t t a t a t a g c c c a a t g t t a t a t a g c c c a a t g t t a t a t a g c c c a a t g t t a t a t a g c c c a a t g t t a t a t a g c c c a a t g t t a t a t a g c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a t a g c c c c a a t g t t a t a t a t a g c c c c a a t g t t a t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g t a t a t a g c c c c a a t g c c c c a a t g c c c c a a t g c c c c a a t g c c c c a a t g c c c c a a t g c c c c a a t g c c c c a a t g c c c c a a t g c c c c a a t g caaagctgctaaatggatcacatcattagcgaataagttttctaatttacctactggcgtt caaaaaacgattgcagttgtaggattactcgccgcagctattggtccactactaatqqtc tttggcgttatggcatcaacaattggcactgctataacagtattaggctctttaatgacg agtatgagaacactatcatttttatctaaaaccagtgcagcagcgactggtatttggaat qqcqttactqccactqctcqtqqtatcqcaaatqqttataqatatqcqqtqqctqcatta accacttctcaqacaatacaqqctatqaaaactaaaattqctqcaqctqcaacaacaqct tggactacagttactaaaggtgcaactttagcaactaaaggcttgggattagcaataaga tttatqactqqaccaqtcqqtataqttattacaqccatcqqattattaqtaqcaqqqctt atteatttatggaaacaaatagetegtttagaaatgcagttateggcatttggaattea ataaaaaatqctqcaataqctatatttqqttttatcaaaccttatattattaatatttqq aacgcaattaaaaactctacaattgccatttggaacgcgattaaaagaagtgctgtaata atatqqaacqctattaaatttqctqttcaacatcctattcaaqcattaaaaaatqtctta tcagctttatggaatggcatgaaaaatgctgctattaaaatctggaccgccttaaagaac ggtgttatagcaattattaaagcatatgttgcgcaagtaaaatttaatatcaaccttatt aagcqcataqtaqttacqatatttaatqctattaaqqqtttctctattaaaqtttqqact qcattaaaaaatqqtqtqttaqqaatcqttcqaqctttqcqcaaaqqtqttctatctqta tttaacqcattaaaaaaagqtattqttqtaatatttaatqctqtaaaqaatqccqcaqtt aaaatctggacggctataaaaaaatcagtagtgaataaagcaaaagcattatggtctgga qttaaaaatacatggaatgcactcaaaaaaggtacaattggcatatttaaagcagttggc agtttcatqaqttctaaatqqaacaqtattaaaaaaqqtactqttaataaaqcqaaaqct ctatggtcaggcgtcaaaggtgcttggggatcacttaaaaaaggtactcataacaccatg aatqctqtaqqtqqcttcatqaqcaaqaaatqqaatqaaattaaaaqtactactqtatct atagtaaatggcatgaaatcgaaagttatgggcaccatgaataaaatgagagacggtatc aaaacagttaccggtaaaattgggaatctttttggtggaatggttaaaggcgttaaaaaa qqccttaatqqattaatcaaaqqtqttaactqqqtcqcaqataaattaqqtatqqataaa atacctaagattaaattatctacaggtactcaatctacgcatacacaaagttatattacc aacqqtaaaatcaataaaqqtacaatqqctactqtaggaqatagaggtcgaggtaatgga cctqqtqqctttaqaaatqaaatqatccqttatcctaacqqaaqaatqqcactaacacct aacaaagatacaacaattcttacctaaaqqctcaaqtqtatataqtqqcqcqccaaca catgctattttatctaattcaggatatgacactaagaagaaaaaactacctaaatttagt aaaggtactaaaaagaaagacggtatattagatgttattagctctggtgtaaaaaatgat gttaataaagtaaaagacattggtggtaaagcaagagacataggtggtactacgtttgac aaagcaaaagacataggtacaaaagcacttgataaagctaaagatgtgtctagcactgtt atcaaqqqtattqqaqatqtttttqattatqtaqqtcatcctatqaaattggtaaataaa qtctttqaqaaaqttqqttttaacctaqactttatqaaaaatqcaccattaccatttqat ttaatqacaqctatqattaaqaaacttaaaaaatqqtattaaaqacttctttaatgaaqqt ttaqactctqcaqqcqqtqqaqatqqttcttcqttcactaaattcccaattactacqggg tattatcctaatggtggtgctcctggttatagttttaatggtggtgctcactttggtatt qactatqqcqctccatatqqtacaactatcaatqctaccaatqatqqaaatqtaaaaqct at ccaca act taggtggaggact tgttg cacgact tt taa caggt cagt tcacattgt tctttatqcacttatctaaaatattaaaacaaqqtaaaatcaaaqctqqagaaccaatgqct aaaacaqqtaattcaqqtcaatqqactactggtccacacgtacacttccaagttgaaaga qqtcqccatqatqacatcacaaacaqaqqqacaqtaaaccctqctaaatqqctcaaaqqt cacqqtqqtqqaaaaqttqqtqqtaqtgqttctqtaaacqcacqtaqaqcaattcaaaga qcacaatctattttagqtqqacqttataaatcqtcttatattaccqaacaaatqatqaqa qttqccaaacqtqaqtctaacttccaatcagatqcggttaataactqggacatcaacgca caaaaaggaacgccttctaaaggtatgttccaaatgattgaaccatcttttagagcatat qctaaaccaqqacacqqaaacatcttaaatccaactqacqaaqctatatctqctat.ycgt tacantragqtaaqtqqqttcctattatqqqqaqttqqaaqtqcatttaaacjtqct $\tt ggagattatgctatgctacaggcggggttattaacactgctggattatataatttggca$ gaagatggataccctgagatagtaatccctacagatccaagcagacaatcagatgcgatg aaattgttacatcttgctgcaagtaaaattagtggaaataacagaaataaacqacctaac caattacqtacacctaatqttactaqtaatacaqttqataatqcaqaattactactacaa atqataqaaaatcaacaqaaacaaataaacgtgttaatggaaatagcacgaagtaataaa actattqaaaaacaaccqaaaqqtttttcaqaacqcqatqtaaqtcaqqcacaaqqttca aggttaagactcgctgcttatagccagggaggtttataa

10

15

20

25

30

35

40

45

50

Sequence 2906 MKDMGVORSISEIKRSFKGLNADLKLSNNNFKYSEKSLNSYKLRTRELSOAVKESKANVA ALKAKYOEAARASGVNSKKAAQLRQEYSRQADNLNYLQNELDQTRGKYREMIAVS: SSVG RLGQAFSEIGPKIRSIGDSMKSVGRNMSLHVTAPIAAGFGAAVKKSIDFDDTMRKVKATS GATGDEFNQLRTKALQMGRDTKFTASESAEAMNYMALAGWDTKDMLKGVGGVMDLAAASG 5 EDLASVSDIVTDNLTAFGMKAKDSTHFADVLAQTSSKANTDVRGLGDAFKYAAPVAGALG YTVEDTSIAIGLMSNAGIKGEKAGTALRTMFTNLSKPTKAMKDEMDKLGISITDSNGEML PMRDVLDOLRGKMGGLSKDOOAAAASTIFGKEAMSGALAVINASDEDYKKLTKSIDGSKG ASKRMAKEMEGGIGGAMRKMKSAIESLAISLGDALAPMLYKAAKWITSLANKFSNLPTGV 10 OKTIAVVGLLAAAIGPLLMVFGVMASTIGTAITVLGSLMTSMRTLSFLSKTSAAATGIWN GVTATARGIANGYRYAVAALTTSQTIQAMKTKIAAAATTAWTTVTKGATLATKGLGLAIR FMTGPVGIVITAIGLLVAGLIHLWKTNSSFRNAVIGIWNSIKNAAIAIFGFIKPYIINIW NAIKNSTIAIWNAIKRSAVIIWNAIKFAVQHPIQALKNVLSALWNGMKNAAIKIWTALKN GVIAIIKAYVAQVKFNINLIKRIVVTIFNAIKSFSIKVWTALKNGVLGIVRALRKGVLSV 15 FNALKKGIVVIFNAVKNAAVKIWTAIKKSVVNKAKALWSGVKNTWNALKKGTIGIFKAVG SFMSSKWNSIKKGTVNKAKALWSGVKGAWGSLKKGTHNTMNAVGGFMSKKWNGIKSTTVS IVNGMKSKVMGTMNKMRDGIKTVTGKIGNLFGGMVKGVKKGLNGLIKGVNWVADKLGMDK I PKI KLSTGTOSTHTOSYI TNGKI NKGTMAT VGDRGRGNG PGG FRNEMI RYPNGRMALTP NKDTTTFLPKGSSVYSGAQTHAILSNSGYDTKKKKLPKFSKGTKKKDGILDVISSGVKND 20 VNKVKDIGGKARDIGGTTFDKAKDIGTKALDKAKDVSSTVIKGIGDVFDYVGHPMKLVNK VFEKVGFNLDFMKNAPLPFDLMTAMIKKLKNGIKDFFNEGLDSAGGGDGSSFTKFPITTG YYPNGGAPGYSFNGGAHFGIDYGAPYGTTINATNDGNVKAIHNLGGGLVARLLTGQFTLF FMHLSKILKQGKIKAGEPMAKTGNSGQWTTGPHVHFQVERGRHDDITNRGTVNPAKWLKG HGGGKVGGSGSVNARRAIORAOSILGGRYKSSYITEOMMRVAKRESNFOSDAVNNWDINA 25 OKGTPSKGMFOMIEPSFRAYAKPGHGNILNPTDEAISAMRYIVGKWVPIMGSWRSAFKRA GDYAYATGGVINTAGLYNLAEDGYPEIVIPTDPSRQSDAMKLLHLAASKISGNNRNKRPN QLRTPNVTSNTVDNAELLLQMIENQQKQINVLMEIARSNKTIEKQPKGFSERDVSQAQGS RLRLAAYSQGGL*

30 Sequence 2907 Contig 0497 pos 4846 3491 is similar to (with p-value 9.0e-50) >gp:gp|Y10528|PACIOAB 1 P.aeruginosa cioA and cioB genes. N ID: g2208963. 35 atggattcagtagaaatagctcgattgttgacgggtatgacacttgcagtgcatatcata tttqcaacaattqqtqttqqtatqccacttatqtttqcaataqcagaqtttattqqcata aagaaaaatgatgegaattatateaeattggetaaaagatggtegaaaggetaeaegata accqttqctqttqqaqtcqttacaqqtactattattqqtttacaactttcacttqtctqq ccaacatttatgaaaatgggcggtcatgttatcgcattaccactattcatggaaactttt aataaatggacacattttttcatatctatacccgttattataggaggttcattctcagca ttotttal.tacatcagtcaattcatttatgaataccccagctggttttgaaattaaaaat ggtcgtatggtaaatgttcagccattagaagcaatgtttaattcatcgtttatggttcgt qctttacatgtagttqcaactgcaggtatqacgatgqcgtttatattagcagccatcqca 45 qcqtttaaattattacgtcataatcatacagaagatagaacataccatacaaaagctctt aatttaaqcatqattqttqqattcatcaataccqttctttcqatqattqcaqqaqattta tctqctaaatttttacacaaagttcaaccagataagcttqcaqcatatqaatqqcattat gatacqcaatctcatqcqaatttaqttcttttcqgtqtattaaatqaaaaaacacatqaa gtttcaggagcactagagattcccggattacttagttttttagcagataatagctttaat 50 acaaaaqttaaaqqtttaaatqaatttcctaaaaaatqaattacctcctatgataqtqcat tactttttcqatttqatggtatcaatgggaatattctgttttatcatttcaggactatat

atgttatttttaattgttaaaaagttacgtaaatatgtaactagtaatatgatgttatac

Sequence 2908

MDSVEIARLLTGMTLAVHIIFATIGVGMPLMFAIAEFIGIKKNDANYITLAKRWSKGYTI
TVAVGVVTGTIIGLQLSLVWPTFMKMGGHVIALPLFMETFAFFFEAIFLSIYLYTWERFK
NKWTHFFISIPVIIGGSFSAFFITSVNSFMNTPAGFEIKNGRMVNVQPLEAMFNSSFMVR
ALHVVATAGMTMAFILAAIAAFKLLRHNHTEDRTYHTKALNLSMIVGFINTVLSMIAGDL
SAKFLHKVQPDKLAAYEWHYDTQSHANLVLFGVLNEKTHEVSGALEIPGLLSFLADNSFN
TKVKGLNEFPKNELPPMIVHYFFDLMVSMGIFCFIISGLYMLFLIVKKLRKYVTSNMMLY
AILLTGPASMLAIEFGWFLTEMGRQPWIIRGYMRVSEAATQAGGITLVTTLFGLLYLLLL
VTSAYVLIRMFKNOPAYKDVEKVIKERGETK*

10 Sequence 2909

15

35

Contig_0499_pos_7860_8597 is similar to (with p-value 4.0e-71)

>sp:sp|Q46807|ARCL_ECOLI CARBAMATE KINASE-LIKE PROTEIN 1. > gp:gp|U28375|ECU28375_24 Escherichia coli K-12 genome; appro ximately 64 to 65 minutes. NID: g887800. >gp:gp|AE000370|AE0 00370_9 Escherichia coli K-12 MG1655 section 260 of 400 of the complete genome. NID: g2367170.

30 caagggagtacgaattag

Sequence 2910

VNHLNLFLGKKHILKDITFSLPINGEIIGIVGPNGAGKSSLLKAFIGEFKATGKHTLYDH PIHTQLRYITYIPQKAHIDLDFPIKVDQVILSGCYEDIGWFKKASVVEKTKLNQL.NDLE LDHIRHRQIAELSGGQLQRVLVARALMSNSDIYCLDEPFVGIDIYSEQLIMKKIKHLRHM GKLILIVHHDLSKADQYFDRILLLNQSLQFLGPTKEALSSERLNATFINYKDDSLLTLSS OGSTN*

Sequence 2911

40 Contig 0499 pos_8598_9434

>gp:gp|X99127|SEABCTS_1 S.epidermidis gene encoding ABC transport system. NID: g1617427. atqttagatttcattaaccatttqcttagttatcaatttttaaatcgtqcattaatcaca

attactgtactggttattttacttattattatcttttatagaccttaatgatttcaaca
tttgatgcaacttttagtcgtatgagcgggctgaacacaacattaattcactactttgtc
atgttattactcgcacttgtaactgttgcgagcatacaaacagttggaattatccttgta
gtt.gctttactaatcactccagcttctacagcttttttaatcagtaaacaactttacgcc
atgatggtaattgcaagcataatcagcgtgataagttcgattatcggtctatattitagt

55 tatatatataatattccaagtggagcaactattgtaatctgtacctttatgatttatatt gtaacgctatcaattactagaattaaaaataaacaaaaaaggagcgctttaacgtga

Sequence 2912

MLDFINHLLSYQFLNRALITSILVGIVCGTMGSIIVLRGLSLMGDAMSHAVLPGVALSFL

FNIPMFIGALVTGMLASLFIGFITSNSKTKPDAAIGISFTAFLASGVIIISLINSTTDLY
HILFGNLLAITHQSFWTTIVITVLVILLIIIFYRPLMISTFDATFSRMSGLNTTLIHYFV
MLLLALVTVASIQTVGIILVVALLITPASTAFLISKQLYAMMVIASIISVISSIIGLYFS
YIYNIPSGATIVICTFMIYIVTLSITRIKNKQKRSALT*

5

Sequence 2913

Contig 0499 pos_0_864

>gp:gp|X99127|SEABCTS_2 S.epidermidis gene encoding ABC transport system. NID: g1617427.

gtgagtgaaatggctaaaattgtagtagctttaggtggaaacgctttaggaaaatcacca 10 ggtcacqaaattgtgattagtcacggtaatggaccacaagtaggaagtattaaccttggt ctgaattatqcaqctqaacacqatcaaqqtcctqcttttccatttqctqaatqtqqcqct 15 atgggcatagataagcaagttgtcacactagttacccaagtagaagttgatgaaggcgat ccagcttttaatagtccaagtaaacccatcggtctgttctacactaaagaagaagcaaat cqtattcaacaqqaaaaaqqttatcaatttqtaqaaqatqctqqtcqaqqttaccqtcqc qttqtaccatcaccacaaccaatatctattatcgaactggaaagtattaaaactctagta gaaaatgacacactcgtcatcgctgcaggtggaggtggtataccagtcattcgcgaacag catqataqctttaaaqqtataqatqccqtcatcqataaaqacaaaacaaqtqcattatta aactatcatactqaccaacaaqaacttaaaacaacaatataqatacqcttaaaaca tatattqaaqaaqaacaatttqccaaaqqcaqcatqctacctaaaatcqaatctqccatctcctttattgaaaataatcctaac

25

30

Sequence 2914

VSEMAKIVVALGGNALGKSPQEQLELVKNTAKSLVGLITKGHEIVISHGNGPQVGSINLG LNYAAEHDQGPAFPFAECGAMSQAYIGYQLQESLQNELHSMGIDKQVVTLVTQVEVDEGD PAFNSPSKPIGLFYTKEEANRIQQEKGYQFVEDAGRGYRRVVPSPQPISIIELESIKTLV ENDTLVIAAGGGGIPVIREQHDSFKGIDAVIDKDKTSALLGADIHCDQLIILTAIDYVYI NYHTDQQQALKTTNIDTLKTYIEEEQFAKGSMLPKIESAISFIENNPN

Sequence 2915

Contig 0500 pos 3850 3113

- 5 is similar to (with p-value 2.0e-97)
 - >sp:sp|P36839|ARGD_BACSU ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11) (ACOAT). >pir:pir|S38431|S38431 N-acetylornithine aminotransferase Bacillus subtilis >gp:gp|Z26919|BSCITB O 4 B.subtilis (168) DNA for argC-F citrulline biosynthetic
- 40 operon. NID: g408113. >gp:gp|Z99109|BSUB0006_199 Bacillus su btilis complete genome (section 6 of 21): from 999501 to 120 9940. NID: g2633260. >gp:gp|Z99110|BSUB0007_4 Bacillus subti lis complete genome (section 7 of 21): from 1194391 to 14111 40. NID: g2633472.

- 55 acaaaaattgaaaataaataattacaggcggaatgatacctaaaattgagagtgcaatc caaacattagaatctggtgttgaatcgattttaattgcaaataatttacaaaaaggaaca atcataaggggtgattaa

Sequence 2916

MKNIIVIKLGGIAIENLNDAFIQQINAWHLENKKIIIVHGGGQVISNLLTKNNHSTIKID GMRVTAKNDLPIIYDALINIVGHQLLERLKESNLEFFQFKEKIKELVSAEFLNKNIYGYV GKVKEINTMLLEKMLSRDIIPIITSLGVNEQGEYLNVNADHLATAIAKKLKVEKLVYMTD VPGVIEKDKTLATLTINEAKTKIENKIITGGMIPKIESAIQTLESGVESILIANNLQKGT IIRGD*

Sequence 2917
Contig_0500_pos_3110_1983
is similar to (with p-value 1.0e-34)

5

- 10 >sp:sp|P36840|ARGB_BACSU ACETYLGLUTAMATE KINASE (EC 2.7.2.8
) (NAG KINASE) (AGK) (N-ACETYLGLUTAMATE 5-PHOSPHOTRANSFERASE
). >pir:pir|S38430|S38430 N-acetylglutamate 5-phosphotransfe
 rase Bacillus subtilis >gp:gp|Z26919|BSCITBO_3 B.subtilis
 (168) DNA for argC-F citrulline biosynthetic operon. NID: g4
 15 08113. >gp:gp|Z99109|BSUB0006_198 Bacillus subtilis complete
 genome (section 6 of 21): from 999501 to 1209940. NID: g263
- 15 08113. >gp:gp|Z99109|BSUB0006_198 Bacillus subtilis complete genome (section 6 of 21): from 999501 to 1209940. NID: g263 3260. >gp:gp|Z99110|BSUB0007_3 Bacillus subtilis complete ge nome (section 7 of 21): from 1194391 to 1411140. NID: g26334 72.
- 25 atcaaactcgcacgtaaagctactggtaagtcggaaattattgcttttaaaaaagtctttt cacggcagaacgtacggcgcaatgtctgcaacaggacagaagaaaattacagatcaattt ggtccggttgttcctggattcaaatttgctattttaatgattttaattcatttaaatca ttaacttcaaataatactgctgctgtaattatagaaataattcaaggtgaatcaggagta ctacctgctgattctttatttatgaagcaattaaatgagtattgtaaacaaaaagatatc
- 30 cttataattgtagacgaggttcaaacgggcataggtagaaccggtaagttatatgctcat gaacattatcaattgtetecagatatcatcacattagctaaaggattaggtaatggcett. cctattggagcaatgttaggcaaaaaaaaatttaggtcatgcatttggctacggttctcat ggtacaacattcggtggaaatagattatcattggctgctgcaaaccaaacgctttctatc attaatgatgctgattgctgaatgatgttcaatcaaaggggcaatttettattgaaaac
- ttaagaaaagtttagtaaataaagaaatgtaattgaagtacgtggtgtaggtttaatg gtaggaatagaggtcactaatgatcctagtcaagtagtgcgagaagctaaacgtatgggg ttaatcattttaacagctggtaaaaatgtgattaggttattaccgccattgaccatcact aaaaaacaattagaaaaaggtatagaaatattaactgaaatcatttga
- 40 Sequence 2918

 MSYLFNNYKRDNIEFVDANQNELIDKDNNVYLDFSSGIGVTNLGFNMEIYQAVYNQLNLI
 WHSPNLYLSSIQEEVAQKLIGQRDYLAFFCNSGTEANEAAIKLARKATGKSEIIAFKKSF
 HGRTYGAMSATGQKKITDQFGPVVPGFKFAIFNDFNSFKSLTSNNTAAVIIEIIQGESGV
 LPADSLFMKQLNEYCKQKDILIIVDEVQTGIGRTGKLYAHEHYQLSPDIITLAKGLGNGL
 PIGAMLGKKNLGHAFGYGSHGTTFGGNRLSLAAANQTLSIINDADLLNDVQSKGQFLIEN
 LRKSLVNKRNVIEVRGVGLMVGIEVTNDPSQVVREAKRMGLIILTAGKNVIRLLPPLTIT

Sequence 2919
Contig_0502_pos_13693_14094
is similar to (with p-value 7.0e-44)

KKQLEKGIEILTEII*

50

>sp:sp|P22806|BIOF_BACSH 8-AMINO-7-OXONONANOATE SYNTHASE (E C 2.3.1.47) (7-KETO-8-AMINO-PELARGONIC ACID SYNTHETASE) (7-KAP SYNTHETASE) (L-ALANINE--PIMELYL COA LIGASE). >pir:pir|JQ 0512|JQ0512 8-amino-7-oxononanoate synthase (EC 2.3.1.47) -Bacillus sphaericus >gp:gp|M29291|BACBIOXWF_3 B.sphaericus b

ioXWF operon genes, complete cds. NID: g142592. gtgcacctgattgtgctggcgtacctggttccactggtttacctggttctgctggcgtacctggttccgctggtttacctggttccgctggtttacctggtt

ccgctggtttacctggttctgctggtttacctggttccgctggtttacctggttctgctg gcgtacctggttccgctggtttacctggttccgctggtttacctggttcccctggtttacctggtttacctggttcccctggtttacctggttccgctggtttacctggttccgctggtttacctggttccgctggtttacctggttccgctggtttacctggttccgctggtttacctggttccgctggtttacctggttccgctgtttacctggttccqctggtttacctggttctgctttgttggtccatactccaacaatttcgtcaacaggttgtttag

Sequence 2921 Contig_0502_pos_15619_13529 is similar to (with p-value 3.0e-21)

>sp:sp|P22818|BIOD_BACSH DETHIOBIOTIN SYNTHETASE (EC 6.3.3.
3) (DETHIOBIOTIN SYNTHASE) (DTB SYNTHETASE) (DTBS). >pir:pir
|JQ0506|JQ0506 dethiobiotin synthase (EC 6.3.3.3) - Bacillus
sphaericus >gp:gp|M29292|BACBIODAYB_1 Bacillus sphaericus I
F03525 bioDAYB operon encoding dethiobiotin synthase (bioD),
adenosylmethionine-8-amino-7-oxononanoate aminotransferase
(bioA), biotin synthase (bioY) and bioB genes, complete cds.
NID: g142587.

gtggatgagatcgttcattatggtggcgaaqaaatcaagccaggccataaggatgaattt gatccaaacgcaccgaaaggtagccaagaggacgttccaggtaaaccaggagttaaaaaat cctgatacaggcgaagtagtcacaccaccagtggatgatgtgacaaaatatggtccagtt qatqqaqattcqattacqtcaacqgaagaaattccattcgacaagaaacgtgaattcaat cctgatttaaaaccaggtgaagagcgtgttaaacagaaaggtgaaccaggaacaaaaaca atraca@caccaacaactaagaacccattaacaggggaaaaagttggcgaaggtgracca acagaaaaaataacaaacaaccagtagatgaaatcacagaatatggtggcgaagaaatc aaqccaqqccataaaqatqaatttqatccaaatqcaccqaaaqqtaqccaaqaqqacqtt ccaggtaagccaggagttaaaaatcctgatacaggcgaagtagtcacaccaccagtggat gatgtgacaaaatatggtccagttgatggagatccgattacgtcaacggaagaaattccg tttgataaaaaacgcgaatttaatccaaacttagcgccaggtacagagaaagtcgttcaa aaaqqtqaaccaqqaacaaaacaattacaacaccaacaactaaqaacccattaacaggg qttcattatqqtqqcqaagaaatcaagccaqgccataaggatgaatttgatccaaacgca ccqaaaqqtaqccaaqaqqacqttccaqqtaaaccaqqaqttaaaaatcctqatacaqqc qaaqtaqtcacaccaccaqtqqatqatqtgacaaaatatqqtccaqttqatqqaqattcq attacqtcaacqgaaqaaattccqtttgataaaaaacqcqaatttgatccaaacttaqcq ccaggtacagagaaagtcgttcaaaaaggtgaaccaggaacaaaaacaattacaacgcca acaactaagaacccattaacaggagaaaaagttggcgaaggtgaaccaacagaaaaaata acaaaacaaccagtggatgagattgttcattatggtggtgaacaaataccacaaggtcat aaagatgaatttgatccaaatgcacctgtagatagtaaaactgaagttccaggtaaacca qqaqttaaaaatcctgatacaqqtgaaqttqttaccccaccaqtqqatqatqtgacaaaa tatqqtccqaaaqttqqtaatccaatcacatcaacqqaaqaqattccatttqataaqaaa

ggaacaaaaacaattacaacaccaatattagttaatcctattacagagaaaaaagttggc
gaaggtaaatcaacagaaaaagtcactaaacaacctgttgacgaaattgttgagtxtggt
ccaacaaaagcagaaccaggtaaaccagcggaaccaggtaaaccaggtaaa
ccagcggaaccaggtacgccagcagaaccaggtaaaccagggaaccaggtacaccaggtaaaccagggaaccaggtaaaccagggaaccaggtaaaccagggaacca
ggtacgccagcagaaccaggtaaaccagcggaaccaggtaaaccagggaacca
ggtacgccagcagaaccaggtaaaccagggaaccaggtaaaccaggtaaa
ccagcggaaccaggtaaaccagggaaccaggtaaaccaggtaaaccaggg
gaaccaggtacaccaggaaccaggtaaaccaggtaaaccaggtacaccagc
gaaccaggtacaccagaaccaggtaaaccaggtaaaccaggtacaccagc
gaaccaggtacaccagaaccaaatagatcaatgaaccaggtaccaggtaccatcattacct
gatacaggtgaaaatcgtcaagctaatgagggaactttagtcggatctctattagcaatt
gtcggatcattgttcatatttggtcgtcgtaaaaaaaggtaatgaaaaataa

cqtqtatttaatcctqatttaaaaccaqqtqaaqaqcqcqttaaacaaaaaqqtqaacca

Sequence 2922

25

35

VDEIVHYGGEEIKPGHKDEFDPNAPKGSQEDVPGKPGVKNPDTGEVVTPPVDDVTKYGPV
DGDSITSTEEIPFDKKREFNPDLKPGEERVKQKGEPGTKTITTPTTKNPLTGEKVGEGEP
TEKITKQPVDEITEYGGEEIKPGHKDEFDPNAPKGSQEDVPGKPGVKNPDTGEVVTPPVD
DVTKYGPVDGDPITSTEEIPFDKKREFNPNLAPGTEKVVQKGEPGTKTITTPTTKNPLTG
EKVGEGEPTEKITKQPVDEIVHYGGEEIKPGHKDEFDPNAPKGSQEDVPGKPGVKNPDTG
EVVTPPVDDVTKYGPVDGDSITSTEEIPFDKKREFDPNLAPGTEKVVQKGEPGTKTITTP
TTKNPLTGEKVGEGEPTEKITKQPVDEIVHYGGEQIPQGHKDEFDPNAPVDSKTEVPGKP
GVKNPDTGEVVTPPVDDVTKYGPKVGNPITSTEEIPFDKKRVFNPDLKPGEERVKQKGEP
GTKTITTPILVNPITGEKVGEGKSTEKVTKQPVDEIVEYGPTKAEPGKPAEPGKPAEPGK
PAEPGTPAEPGKPAEPGTPAEPGKPAEPGKPAEPGKPAEPGKPAEPGK
PAEPGTPAEPGKPAEPGTPAEPGKPAEPGKPAEPGKPAEPGKPAEPGK
PAEPGKPAEPGKPAEPGKPAEPGTPAEPGKP

Sequence 2923

- 15 Contig_0502_pos_12781_12110
 is similar to (with p-value 2.0e-34)
 >gp:gp|U67763|PBU67763_1 Plasmodium berghei thrombospondin
 related adhesion protein (PbTRAP) gene, complete cds. NID: g

Sequence 2924

tccaatggctaa

MNIFVTGTNTDIGKTYVTKYLYKALRTRGYRVCIFKPFQTEEIGGGRYPDLEIYKNECDL

DYDVTSLYTFKDPVSPHLAFKIERHQQLNHQTMIDKLESLEAQFDMILIEGAGGIAVPIY
EYSDHFYMTTDLIKDTSDFIVSVLPSKLGAINDAIVHQKYIDHQELPPNVLIMNNYTDSA
IEQDNLHTIEKLIHKSVYTLGHQATQESFSEAFIQRIIGGSNG*

Sequence 2925

- 40 Contig_0502_pos_10751_9618
 is similar to (with p-value 8.0e-36)
 - >gp:gp|U67763|PBU67763_1 Plasmodium berghei thrombospondin related adhesion protein (PbTRAP) gene, complete cds. NID: g 1906578.
- gttattttttctgatcaacagaatcatgccagtataatagacggtattaaattaagtggt
 ttatcaaaagtgatttatcaacatttaaactatgatgacctggaaagtcatttagcacgg
 cacaccaatccagatgttcaaaaagtaattgtctctgatagtgtgttttctactaatggc
 actaaagcagatattaataggctagtacatctcaagcaacgttacaatgcgatttaatt

gatcaaccattatctaatacacctatcaaaaatatcgtttgtgatagtttggcttcagca caagcacaatacgacatgttatttgaacatggtatatttgtcagttatttaaggtatcca acagtgtcacagctaacattaagaatttcattatcctattttcatgacacagatgatatt gatcgacttttcaatgtaatgaaacaatacgatgaaggtgatagctatgtatag

5
Sequence 2926
MDIKAQLKQIQDKGLYRELQPIQSVEKQYIYINDQSYINFTSNDYLGIGQVEYQPQNFLD
FIKTYSIHLSSSRLVSGNSVVYQQLEQEISEHFNFEDALIFNSGYDANLAVFNIFKNNNI
VIFSDQQNHASIIDGIKLSGLSKVIYQHLNYDDLESHLARHTNPDVQKVIVSDSVFSTNG
TKADINRLVHLKQRYNAILIIDASHSLGLNLFEYHADIDIVTSSLSKAWGAHGGVIFSSK
DIKDLIINKGRSLIYSSSLPSYHLYFIQVSLQHVIEDTYRREKLNVLSEYFNHQFMELFP
DQPLSNTPIKNIVCDSLASAQAQYDMLFEHGIFVSYLRYPTVSQLTLRISLSYFHDTDDI

15 Sequence 2927

20

25

30

35

45

Contig 0509 pos 6421 7818

DRLFNVMKQYDEGDSYV*

>sp:sp|P13408|UHPT_ECOLI HEXOSE PHOSPHATE TRANSPORT PROTEIN
. >pir:pir|A30395|MMECHP hexose phosphate transport protein
uhpT - Escherichia coli >gp:gp|M17102|ECOUHP_5 E.coli uhp op
eron encoding UhpA, UhpB, UhpC, and UhpT protein, (encoding
hexose phosphate transport protein), complete cds, and an il
vBN operon encoded protein, 3' end. NID: g148110. >gp:gp|M89
479|ECOUHPABCT_4 Escherichia coli uhpABCT operon encoding he
xosephosphate utilization protein (uhpA) gene, complete cds,
and hexosephosphate transport protein (uhpB, uhpC, uhpT) ge
nes, complete cds. NID: g148116. >gp:gp|AE000444|AE000444_5
Escherichia coli K-12 MG1655 section 334 of 400 of the compl
ete genome. NID: g2367258.

ccattagctgtacaacgcaaattatggctcagaaactttatgcaagcgttttttgtcgta $ttctttg{\tt \'uttacatggcgatgtatttaattcgaaacaattttaaaqcggcacaac...qtta}$ ttaaaagaagaaatcqqattaacaacattaqaactaqqttatataqqattaqcqtttaqt attacttacqqtttaqqaaaaacaatactcqqttatttcqttqatqqqcqtaatacqaaa cqtattatttccttcttattaatattatctqcqattacaqtacttattatqqqatttqta tttcaatctqtqqqtgggcctgcaagttactcaacgatttcaaqqtqggcqcctcqaaca aagcqcqqtcqttatttaqqcttttqqaatacatcacataacattqqtqqtqctattqct ggtggtgtcgcactttggggcgcgaatacatttttccacqgtaatgtggttggaatgttt qatccaqaqqaattaqqttqqaatcqtqccqaaqaaatttqqqaaqaqcctatcqaccaa gaaaacattgattctcaaggtatgactaaatgggatatctttaaaaaatatatccttqqa aatcctgtgatttggattttgtgtatctctaatgtttttgtatatatcqtgcgtattggt attgataactgggcaccgctatacgtatcagagcatttacattttaataaaggtgatgcg gtgaatactattttttactttgaaataggtgcattagtagctagtttattgtggggctat acctttgttgtactcttttataccaatgcaacaagcqtqacaatqqtcaatatttctcta tttgcattaggcgctttaatcttcggtccacagttactcattqgtqtatctctqactqqc

tteggggatteaatggetaaagtgggtetggetgeaategetgateeaacaegtaatggt ttaaatatttttgggtataegttgagtggttggaeagatgtetttattgtattetatgta getttattettaggaatgatattattageeattgttgettattaegaagaaaagasaatt agaaaattaaaaatttaa

tttqttcctaaaaatqcaattaqtqtcqctaacqqtatqacaqqttcatttqcatatcta

Sequence 2928

55 MIGVLGMNFFDIHKMPNKGIPLAVQRKLWLRNFMQAFFVVFFVYMAMYLIRNNFKAAQPL LKEEIGLTTLELGYIGLAFSITYGLGKTILGYFVDGRNTKRIISFLLILSAITVLIMGFV LSYFGSVMGLLIVLWGLNGIFQSVGGPASYSTISRWAPRTKRGRYLGFWNTSHNIGGAIA GGVALWGANTFFHGNVVGMFIFPSVIALIIGIVTLFIGKDDPEELGWNRAEEIWEEPIDQ ENIDSQGMTKWDIFKKYILGNPVIWILCISNVFVYIVRIGIDNWAPLYVSEHLHFNKGDA

VNT I FYFE I GALVASLLWGY I SDLLKGRRA I VA I GCMFM I T FVV L FYTNAT SVT MVN I SL FALGALI FGPOLLIGVSLTGFVPKNAISVANGMTGSFAYLFGDSMAKVGLAAIADFTRNG LNIFGYTLSGWTDVFIVFYVALFLGMILLAIVAYYEEKKIRKLKI*

Sequence 2929

Contig 0517 pos 10178 9693

is similar to (with p-value 2.0e-26)

>sp:sp|P55978|GREA HELPY TRANSCRIPTION ELONGATION FACTOR GR EA (TRANSCRIPT CLEAVAGE FACTOR GREA). >qp:qp|AE000596|HPAE00 0596 20 Helicobacter pylori section 74 of 134 of the complet

e genome. NID: g2313982. atqaqatttatqqaaaaccaaaacaatatcctatqactcaagaaqqttatqaqaaactt

qaacaaqaattaqaaqaattaaaaacqqttaaaaqacctqaqqtaqttqaaaaaataaaa qtaqctcqttcatttqqaqacctatctqaqaactctqaatatqatqctqctaaaqatqaa caaqqctttattqaacaaqatatacaacqtattqaacatatqattaqaaatqcqttaatc attgaagataacqqtgataacaatqtaqttcaaattgqtaaaacaqttacttttattqaa ttacctqqaqatqaaqaaqattatcaaatcqttqqttctqctqaaqctqacqcattt aaaggaaaaatttctaacgaatctccaatggcaaaagcactaatcggtaaaggattaaat

20 aaataa

Sequence 2930

MRFMENCKOYPMTOEGYEKLEOELEELKTVKRPEVVEKIKVARSFGDLSENSEYDAAKDE QGFIEQDIQRIEHMIRNALIIEDNGDNNVVQIGKTVTFIELPGDEEESYQIVGSAEADAF

25 KGKISNESPMAKALIGKGLNDQVRVPLPNGGEMNVKIVEIK*

Sequence 2931

Contig_0517_pos_9512 8913

is similar to (with p-value 1.0e-57)

30 >sp:sp|P24247|PFS ECOLI PFS PROTEIN (P46). >pir:pir|S45227| S45227 purine nucleoside phosphorylase homolog - Escherichia coli >gp:gp|D26562|ECO82K 47 Escherichia coli genome, 2.4-4 .1 min region (110,917-193,643 bp from 0 min). NID: g473770. >gp:gp|U70214|ECU70214 10 Escherichia coli chromosome minut es 4-6. NID: g1552727. >gp:gp|AE000125|AE000125 6 Escherichi a coli K-12 MG1655 section 15 of 400 of the complete genome.

NID: g1786348. >gp:gp|U24438|ECU24438 1 Escherichia coli MT A/SAH nucleosidase gene, complete cds. NID: g2981266.

gctagaatatatattggtcagccaaccaaaatattcaacacgaggagatgctttttatg tcatctgacacaaacagtttagcacatacaaaatggaattgtaagtatcacatagt::ttt gtaccamaatatagaagacaagtgatatacggaaaaatcaaaagagatattggaqttatt ttacqtcaactatqtqaaaqaaaaqqcqtaqaaataataqaaqcaqaaqcatctaaaqat $\verb|catattcatatgttagttagtattccacctaaattaggagtatcctcatttgttggatat|\\$

ttaaaaaggtaaaagcagtttaatgatttttgatagacatqctaatttaaaatatagatatgtaattgaaaattacattcgtaatcaattacaagaagatatcgttgcagatcaaatttca atggaagaatacctagatccctttacaggagaagaaattaaaaaaagacgaaaaaaatag

Sequence 2932

MRYAYGSEKVLPLSKKTSHHARIYIGOPTKIFNTRRCFFMSSDTNSLAHTKWNCKYHTVF VPKYRRQVIYGKIKRDIGVILRQLCERKGVEIIEAEASKDHIHMLVSIPPKLGVSSFVGY LKGKSSLMIFDRHANLKYRYGNRKFWCKGFYVDTVGRNKKVIENYIRNQLQEDIVADOIS MEEYLDPFTGEEIKKRRKK*

55

Sequence 2933

Contig 0517 pos 4627 4100

is similar to (with p-value 1.0e-41)

>gp:gp|AF006000|AF006000 5 Bordetella pertussis D-3-phospho

glycerate dehydrogenase homolog (serA) and Brgl (brgl) genes , complete cds. NID: g2290988.

atggatcttactccaaatgaaatttataacttagttatatatcaattaggtgcgttaagt ggcttttgtaaaatcaatcatgtaaaaatgatgcatgttaaacctcatggtgccctttat caaatgggggctagaaataaagaaattgcacatgcaattgctcaagcagtttttgatttc gactcaaatctaattttcgtcggcttagcgaatacattacttatttcggaagctgaatta gtggggcttaaggtagcttcggaagtatttgctgaccgtcgttatgaagatgacggacaa ttggtaagtagaaaaaaaccgatgccactatcactaatactgacgaagcaatccaacaa gcattaaaaatggttttggaaaataaagttgtaagtaaaaatggaaaaatcatcgatttg aaagctgatacaatttgtgttcacggagatggaaaaacacgcattagaatttgttacgcaa attagaaatgaattaatgaaattaatgaaagaaggcattgatattcaatccttatag

Sequence 2934

MDLTPNEIYNLVIYQLGALSGFCKINHVKMMHVKPHGALYQMGARNKEIAHAIAQAVFDF
15 DSNLIFVGLANTLLISEAELVGLKVASEVFADRRYEDDGQLVSRKKTDATITNTDEAIQQ
ALKMVLENKVVSKNGKIIDLKADTICVHGDGKHALEFVTQIRNELMKEGIDIQSL*

Sequence 2935

Contig 0517 pos 2645 1959

20 is similar to (with p-value 2.0e-52)

>gp:gp|AF025380|AF025380_1 Salmonella typhimurium IS200 tra nsposase (tnpA) gene, complete cds. NID: g2555163. >gp:gp|Y0 9990|STFLGLIS2_2 S.typhi flgL gene, gene encoding putative I S200 transposase and gene encoding putative RNAseE-like prot

- ein. NID: g2765044. >gp:gp|Y09991|STIS2T157_1 S.typhi encodi ng putative IS200 transposase, 1575bp. NID: g2765048. >gp:gp |Z54217|STISFLIBC_3 S.typhimurium fli[B,C] genes and inserti on sequence IS200. NID: g1150641. >gp:gp|U44749|STU44749_1 S almonella typhimurium putative IS200 transposase gene, compl
- 30 ete cds. NID: g1177216. >gp:gp|AF093749|AF093749_2 Salmonell a typhimurium strain LT2 NADP+-linked malic enzyme (maeB), p artial cds; insertion element IS200 transposase, complete cd s; eut operon, complete sequence; and unknown genes. NID: g3 885908. >gp:gp|L25848|STYIS200A_1 Salmonella typhimurium IS2
- 35 00 insertion sequence from SARAI7, partial. NID: g439618. atgataggaattattggagcaatggaagaagatgacgattttaaagcgtaaattgaat gatatgaatgaaataaatattgcgcatgttaaattttatgttggcaagctaaaccacaaa gaggtggttttaacacaaagtggtataggtaaagttaatgcttctatctcaacgactttg ttaatagaaaaatttaatccagaagtcgtcattaatactggatcagcaggtgcactagat
- 40 caaacactatctattggagatatattagtgagtaatcatgtattatatcatgatgctaat gctacagcgtttggttatgaatattggacaaatacctcaaatgcctaaaacttatactact gatcctactttgttgaaaaaaacaatgcatgtattagaacaacaacaactgaatggtaaa gtaggtatgattgttagtggtgatagttttataggtagctcagaacagcgacaaaaaattaagcaacaatttccagaagctatggctgtcgaaatggaggcaactgcaattgcgcaaaca
- 45 tgttatcaatttaaagtaccatttatcgtaactagagctgtttctgatttagcaaacggt aaagccgatatttcttttgaagaatttttagataaagcagctttatcatctagtgagaca gtttcattattagtagaatcattataa

Sequence 2936

- 50 MIGIIGAMEEEVTILKRKLNDMNEINIAHVKFYVGKLNHKEVVLTQSGIGKVNASISTTL LIEKFNPEVVINTGSAGALDQTLSIGDILVSNHVLYHDANATAFGYEYGQIPQMPKTYTT DPTLLKKTMHVLEQQQLNGKVGMIVSGDSFIGSSEQRQKIKQQFPEAMAVEMEATAIAQT CYQFKVPFIVTRAVSDLANGKADISFEEFLDKAALSSSETVSLLVESL*
- 55 Sequence 2937
 Contig_0518_pos_1926_964
 is similar to (with p-value 1.0e-49)
 >sp:sp|P45510|DHAK_CITFR DIHYDROXYACETONE KINASE (EC 2.7.1.
 29) (GLYCERONE KINASE). >gp:gp|U09771|CFU09771 2 Citrobacter

freundii DSM 30040 cyclopropane fatty acid synthase (cfa) q ene, partial cds, dihydroxyacetone kinase (dhaK), glycerol d ehydrogenase (dhaD), transcriptional activator (dhaR), 1,3-p ropanediol dehydrogenase (dhaT), glycerol dehydratase (dhaB) , glycerol dehydratase (dhaC) and glycerol dehydratase (dhaE) genes, complete cds. NID: g1229153. atqaaaaaqttaattcaaqataaaaacacaattttaaaaaqatatqcttqatqqaattaca gtttcaaacaacgatgttgaagttgtatctgacactattgttgttagaaagcataaaaaa caatcaqqtqttqcactcqtttctqqqqqcqqcaqtqqacatqaacctqcacacqcaqqa $\verb|cctgata| aaatattagatgccatta| aagctgtggacaatggtgacggcgttctacttgtt|$ attaaaaactatgcaggagacgttatgaactttgaaatggctcaagaaatggctcaaatg qaaqatattaaaqttqaaaqtqttattqtcaqaqatqatattqctatttctqacccqqaa aaacqccqtqqtqtaqcqqtacaqtatttqtqcataaatatqctqqatacctaqctqaa aaaqqtqttqcacttqatqaaatcaaatctaaaqttqaqqcacttttaccaqatattaaa aqtattqqtatqqcattaacqcctccaatqqtqcccacaactqqtaaaaacqqtttcqat attgaagacaatcaaatggaaattggtatcggtattcacqgtgaaaaaggtttacatcgt

gaagacgtacaacctattaacgtgattgttgaacgtttactcgatcaattatacaaagaa attgagaaaaaacctttaatcgtaatggttaatggtatggtggtacgccactatcagaa ttaaatatatatatatatatagatgaacaattcaatcagaatgatattggtgttaaa caatggttcgtaggtgactatatgacggttagacatgcaaggcttctctataactgta ctccccttcagtgaagaattgagtgaagctttagctgcacctacagcaagtaaatattc

25 Sequence 2938

15

MKKLIQDKNTILKDMLDGITVSNNDVEVVSDTIVVRKHKKQSGVALVSGGGSGHEPAHAG FVAEGMLDAAVCGEIFTSPTPDKILDAIKAVDNGDGVLLVIKNYAGDVMNFEMAQEMAQM EDIKVESVIVRDDIAISDPEKRRGVAGTVFVHKYAGYLAEKGVALDEIKSKVEALLPDIK SIGMALTPPMVPTTGKNGFDIEDNQMEIGIGIHGEKGLHREDVQPINVIVERLLDQLYKE IEKKPLIVMVNGMGGTPLSELNIVTKYLDEQFNQNDIGVKQWFVGDYMTALDMQGFSITV LPFSEELSEALAAPTASKYF*

Sequence 2939

Contig_0519_pos_4309_3827

35 is similar to (with p-value 2.0e-25)

>gp:gp|AF008183|AF008183_1 Populus balsamifera subsp. trich ocarpa X Populus deltoides 4-coumarate:CoA ligase 2 (4CL2) m RNA, complete cds. NID: q2911796.

atgaataaagtgctatttgagcaatatcctcattttgttaaaaaatcacattcatattcct
gatggcttatcagaaaatctagaagcagaagcggaacgatataacaatttattagatgaa
agagggccaatcgatattcaaattttatggaattggagaaaatggtcacattggttttaat
gaaccagggactgacttcaatagtgaaacacatgtggtgaacttaacagaaagcaccata
aaagcaaatagtcgattttttgacaatgaaaaggatgttcctagacaagcagtttcaatg
ggggtaaaaagtattttaaaagcaaaaaggattatcctactcgcatttggtccaaagaaa
45 aaagaggctataagtaaactgttaaatgaacaggttaccgaagatgtacctgcgaccatt
ttacacacacaccctaatgttgaagtttatgtagacgatgaagcagccagattgtta

taa

Sequence 2940

50 MNKVLFEQYPHFVKNHIHIPDGLSENLEAEAERYNNLLDERGPIDIQILGIGENGHIGFN EPGTDFNSETHVVNLTESTIKANSRFFDNEKDVPRQAVSMGVKSILKAKRIILLAFGPKK KEAISKLLNEQVTEDVPATILHTHPNVEVYVDDEAAPDCL*

Sequence 2941

55 Contig_0519_pos_1586_288 is similar to (with p-value 2.0e-22)

>sp:sp!Q04802|NAG1_CANAL_GLUCOSAMINE-6-PHOSPHATE_ISOMERASE (EC 5.3.1.10) (GLUCOSAMINE-6-PHOSPHATE_DEAMINASE). >pir:pir |A46652|A46652 glucosamine-6-phosphate_isomerase (EC 5.3.1.1

0) - yeast (Candida albicans) >gp:gp|L07558|YSANAG1A_1 Candida albicans glucosamine-6-phosphate deaminase (NAG1) mRNA, c omplete cds. NID: g170885.

qtqtttqaaqatcqacatctaacqtatgqaqaattaaqtaaaqaaatttatcaqqctaqt atgcqctataaaqaagtaaaattaaacaaaaaagtaggtctaatggatgaacatcctgta aataatattattaactattttqcqqtacatcaaaqaqqtqqaattccttqcatttttaat catcaatqqaqtaatqaaaqqatacatcaacttqtaaaaaqttatqacatacaatqqtta attaaaqataatcatcttacctcaaatcatgataactcaatttataatgatgaggttatc ccacqtaatqttatacatataqqtttcacqtcaqqaactacaqqtttacccaaaqcqttttatagaaatgaacattcttggatagtttcttttaaggaaaatgagaaattactccagcat tqtqaaqaaaccattqtaqcaccqqqtcctttatcacattcactttcattqtacqcatqt atttatgcattaagtactggaaaaacatttataggtcaaaaaaattttaatccactatct cttatgcqtcttattaatcaattqaacaaaacqacaqcaatatttqtaqtqccaacqatq qtacaacaacttattcaactcaacqacattgttcatcqattaaaaqtattttqaqtagt 15 qqtqctaaacttacattqcaacaqtttcaacaaatcaqaaatttatatccacaaqcaaat tt: ataqaattttttqqqacatctqaaqcaaqttttataaqctacaattttaaccnatca tctcctgctaattctgttggtaaacttttccctcatgtcgagacacgattattaaatcaa gatgatgatgcagtaggattattagccgttagaagtgaaatggtgtttagtggttatgtt qqacaaaqcaatcaaqaqqqqcatqqattaaaacaqqcqacttcqcttatattaaaaat caacatttqtttttaqtaqqtaqaqaqtqatcqtattataqttqqqqqqattaatqta

ggacaaagcaatcaagaggggcatggattaaaacaggcgacttcgcttatattaaaaat caacatttgtttttagtaggtagagagtgatcgtattatagttggggggattaatgta tatccaacagctattgaaagcttaattatggatattgaaggcattgatgatggcccttgtc attggtataccacatgctaaatttggagaaatagcgatattgctttattcaggtaaagta caattgaattaccgacaaattaaatcttttttaatgaaacatctttcaagacaagaagtt ccatcaaaattaaagaaaattgaccatatgattatacagaatcaggaaagattgctaga

25 aaagagatgaaaaataaatttattaatggagagttataa

Sequence 2942

VFEDRHLTYGELSKEIYQASMRYKEVKLNKKVGLMDEHPVNNIINYFAVHQRGGIPCIFN
HQWSNERIHQLVKSYDIQWLIKDNHLTSNHDNSIYNDEVIPRNVIHIGFTSGTTGLPKAF
30 YRNEHSWIVSFKENEKLLQHCEETIVAPGPLSHSLSLYACIYALSTGKTFIGQKNFNPLS
LMRLINQLNKTTAIFVVPTMVQQLISTQRHCSSIKSILSSGAKLTLQQFQQIRNLYPQAN
LIEFFGTSEASFISYNFNQSSPANSVGKLFPHVETRLLNQDDDAVGLLAVRSEMVFSGYV
GQSNQEGAWIKTGDFAYIKNQHLFLVGRESDRIIVGGINVYPTAIESLIMDIEGIDEALV
IGIPHAKFGEIAILLYSGKVQLNYRQIKSFLMKHLSRQEVPSKLKKIDHMIYTESGKIAR
35 KEMKNKFINGEL*

Sequence 2943 Contig_0523_pos_0_303

is similar to (with p-value 1.0e-31)

ysp:sp|P14638|TRPB_METVO TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20). >gp:gp|M35130|MVOTRPBA_2 M.voltae tryptophan syn thase operon (trp) genes, complete cds. NID: g150070. atgaaaattcaaacagaagtagatgaattgggctttttcggtgaatatggtggccaatat gtacctgaaacattgatgccagctattattgaacttaaaaaagcatatgaggacgcgaaa tcagatactcacttcaagaaagaatttaattatttaatttaagtgaatatgttggtagaaa acgcctttaacatttgctgaatcatacacaaaattgttaggtggtgccaaaatatctt aaaagagaagacttaaatcacactggtgctcataaaattaataacgcgataggacaggcA TAA

50 Sequence 2944
MKIQTEVDELGFFGEYGGQYVPETLMPAIIELKKAYEDAKSDTHFKKEFNYYLSEYVGRE
TPLTFAESYTKLLGGAKIYLKREDLNHTGAHKINNAIGQA*

Sequence 2945

55 Contig 0527 pos 178 1065

>sp:sp|P22983|PODK_CLOSY PYRUVATE, PHOSPHATE DIKINASE (3C 2. 7.9.1) (PYRUVATE, ORTHOPHOSPHATE DIKINASE).

 ${\tt atgggagcaacagcatttgtctataacggtcgtttccaccctgaaacatatctcgagttacttcaaaattatcaaattaatgttctatgttgtacaccaacagaatatcgtatgatggct}$

aaacttagtcatttagaacagtacaatttagagtatttacacagtgcggtgtctgcgggt
gaacctttaaatcgagaagttgttgaacaatttaaacgtcattttaatattactgttcga
gatggatatggacaaaccgaaagtacattgttgatcggatttctaaaagatactgaacca
cgtatgggttctatgggcaaaggtatacctggtagttttgttactgtcattgacgatgat
ggtaaagaggttggtccaaatgttaaaggtaatatcgccgtgcctttagacttaccggct
ttatttaaaggttactttaaagatgaagcacgcacaaaagcagcttcaacaggtgattat
tatgttactggagaccaagctcatattgataatgatggttatttctggttcgaaggtcgc
cgtgacgatattatcattagttcaggatataccattggacctttcgaggtagaagartgca
ctaacaaatcacgcagctgttaaagaatgtgcagttgttgcaagtcctcatgacattcgt
ggaaatattgttaaagcatttatcatcttgcaagatgattatgaagcaagtgatgagtta
atccaagaattacaagtattttgtaaaaatgaagtagcaccgtataaatatccaagagca
attgaatttgttgaacatctaccaaaaacaaattcaggtaagatacgtcgtgttgaatta
cgtgacgcagaaataaaaaaaaatataaacaacaagattcatcacattaa

10

15 Sequence 2946
MGATAFVYNGRFHPETYLELLQNYQINVLCCTPTEYRMMAKLSHLEQYNLEYLHSAVSAG
EPLNREVVEQFKRHFNITVRDGYGQTESTLLIGFLKDTEPRMGSMGKGIPGSFVTVIDDD
GKEVGPNVKGNIAVPLDLPALFKGYFKDEARTKAASTGDYYVTGDQAHIDNDGYFWFEGR
RDDIIISSGYTIGPFEVEDALTNHAAVKECAVVASPHDIRGNIVKAFIILQDDYEASDEL
20 IQELQVFCKNEVAPYKYPRAIEFVEHLPKTNSGKIRRVELRDAEIKKYKQQDSSH*

Sequence 2947 Contig 0527 pos 1455 0 is similar to (with p-value 3.0e-67) 25 >qp:qp|AF068246|AF068246 1 Mus musculus SA protein mRNA, co mplete cds. NID: g3928675. atqaaaqacttacttggtggtaaaggtgccaatctttcagagatgaagagactcgqacta ccagtaccagatggttttacaattacgactgaagcttgtattacatatttaaaaccaaat qaaqaactacctacaqaaqtaaaqacacaattaattgatcatttaqcaqctttttctaaa 30 cgaacaggaaaagccttttcctctgatgataacttgttattagtatcagtacgtagtggt qcaaaaatttccatqccaqqaatqatqqatacaattcttaatttagqacttaatgatgat ${\tt aatgtaaaaaagcttgttgacaaaacaaatgatgcacgatttgcatatgattgttaccgt}$ cqtttactacaaatgtttggagaggttgtttatggtattccaatgacagctttcgataca tattttaatgattttaaaacaaagcatcgttatcaaaatgatgctgaaattccggcagaa ggactacaaactatatgtgaaaaatataaagaaatctatgtagaagaggcatataaacct 35 tttccccaagaaccgttaaagcaattagaagaagcaattgaagcagtatttaaatcttgg gataatgatcgtgcacgtgtatatagagatttaaatgatattccacatgatattggtaca qccqtaaatattcaggaaatggtatttggtaatagtggtgaaaatagtggtacgggtgta 40 qctcaaqqtqaaqatqttqttqcaqqcattcqtacccctaaqqatattqacactttaaaa caacaaatgccagatgtacatcaagagtttgttgatgtaaccaaacaacttgaaaaacat tacaaaqatatqcaaqacataqaatttacaattqaaaatggtaaactttatttattacaa acacqtaacqqaaaacqtactqctaaaqctqcaataaaaattqctqtqqatttaqttcac qaqcaattaattacacqtgaagaaqcaqtatcaaaaqtaqaqqtaaaatcaataqaccaa qqcttaccaqctaqtcccqqtgcaqcaacagqaaaagtagtcttctctgctgaagaagca aaacttcaagctgaaaatggtaataaagtagtgttaatgcgaccggaaacatcacctgaa gatattgaggggatggtagcaagtgaagcaatcgtaacaactcatggtggtatga.atca cacqctqctqttqtaqcaaqaqqaatqgqcaaatqttqtqtqacaggatqttcgaatgta gagatagatacagtgaacaaaacagtatattatcctgaaggtgaattacatgaaggggat 50 atcqtttctqtaqatqqttcaqctqqtqatttatatttaqqaqcaattgaaacagtcaat gctgaacatagtgaagagttcgatcaatttatgacttgqtctgaagagattgcaagactg caaqttaqaatqaatqctqaaacaccacaaqatataaaqctqqatataattttqqttct aaaggaataggtttagttcgtactgagcacatgttctttggccctgaacgtttaatagaa 55 atgcgccgttttatcttagcttcaaatcatgacgaacgtgtacaagctttagaaaaaatt aaaacataccaaqtaqaaqattttqaaacaattttcagattatctcaagatagacctacg attqttcqtttacttqatccaccqttacatqagttcttaccatcatctgaagaagatata

gagttatatgagatgcaagttgaagctatcattgaaagtgttattaagcttcaaaaagag ggcataacgtgcctaccagaaattatgattcctctcgtgtcaacagtagaagaatttaca actttaaaagaacgattagttaatacaattacacatttagaaaaagaatcacaacaagat atacaatatatgataggtactatgattgaaacgcctagagcatgcttgattgcgaatgac cttgcgaaacattgtgatttcttcagtttttggtactaatgatttaacgcaattgtgcattt ggtttctctagagatgatgcaggaaaattcataaatgtgtatactgaaaataacatttta cagcttgacccattccaaactttagatagagaaggtgtaggacgactaattcaattagct gttgaacaagctaaaaaaatacaaatccagagataaaaattggtgtattta

10 Sequence 2948

MKDLLGGKGANLSEMKRLGLPVPDGFTITTEACITYLKQNEELPTEVKTQLIDHLAAFSK RTGKAFSSDDNLLLVSVRSGAKISMPGMMDTILNLGLNDDNVKKLVDKTNDARFAYDCYR RLLQMFGEVVYGIPMTAFDTYFNDFKTKHRYQNDAEIPAEGLQTICEKYKEIYVEEAYKP FPQEPLKQLEEAIEAVFKSWDNDRARVYRDLNDIPHDIGTAVNIQEMVFGNSGENSGTGV

- 15 AFTRNPVTGENHLFGEYLLNAQGEDVVAGIRTPKDIDTLKQQMPDVHQEFVDVTKQLEKH YKDMQDIEFTIENGKLYLLQTRNGKRTAKAAIKIAVDLVHEQLITREEAVSKVEVKSIDQ LLHPNFNEESLKQATVVSKMGLPASPGAATGKVVFSAEEAKLQAENGNKVVLMRPETSPE DIEGMVASEAIVTTHGGMTSHAAVVARGMGKCCVTGCSNVEIDTVNKTVYYPEGELHEGD IVSVDGSAGDLYLGAIETVNAEHSEEFDQFMTWSEEIARLQVRMNAETPQDIKAGYNFGS
- 20 KGIG.VETEHMFFGPERLIEMRRFILASNHDERVQALEKIKTYQVEDFETIFRLS ORPT IVRLLDPPLHEFLPSSEEDINNVSQQLNVSSEFLRKRIVDLNEVNSMLGHRGCRLAVTYP ELYEMQVEAIIESVIKLQKEGITCLPEIMIPLVSTVEEFTTLKERLVNTITHLEKESQQD IQYMIGTMIETPRACLIANDLAKHCDFFSFGTNDLTQLTFGFSRDDAGKFINVYTENNIL QLDPFQTLDREGVGRLIQLAVEQAKNTNPEIKIGVFX

25

30

5

Sequence 2949 Contig_0528_pos_3612_3271 No hits found

35

45

Sequence 2950

 ${\tt MSNSASISQSNVASQSTTASLSQSESANDSMSSSLSESNSITSESNTNSKSEIESKSTSTSEFLSESGSVSNSEKSESISHSQSTSATPSSQSTYQQQPKEEKKGFFARLFNL*}$

40 Sequence 2951

Contig 0530 pos 2171 1191

is similar to (with p-value 3.0e-28)

>gp:gp|Y14325|ATY14325_1 Arabidopsis thaliana mRNA for meva lonate diphosphate decarboxylase. NID: g2288886. >gp:gp|AC00 5499|ATAC005499_10 Arabidopsis thaliana chromosome II BAC T6 A23 genomic sequence, complete sequence. NID: g3785992. >gp:gp|Y17593|ATH17593_1 Arabidopsis thaliana MVD1 gene, exons 1 to 9. NID: g3250735.

gaggcagtcaaaaatcaagattttcaacgcttaggagaagtcattgaagcaaatggttta cgtatgcatgccactaacttaggcgctcaacctcctttcacgtatttagtgcaagaaagc tacgatgctatggcgattgtggaacagtgtcgaaaagccaatttaccttgttactttaca atggacgcgggtcccaatgtaaaagttttagtagaaaagaaaaataaacaagctgtgatg gaacaatttttaaaaagtatttgacgaatcgaagattatagcaagtgatatcattagctct qgtgttgaaattattaagtaa

Sequence 2952

VKSGKARAHTNIALIKYWGKADETYIIPMNNSLSVTLDRFYTETKVTFDPDFTEDCLILN
GNEVNAKEKEKIQNYMNIVRDLAGNRLHARIESENYVPTAAGLASSASAYAALAAACNEA
LSL:NLSDTDLSRLARRGSGSASRSIFGGFAEWEKGHDDLTSYAHGINSNGWEKDLSMIFV
VINNQSKKVSSRSGMSLTRDTSRFYQYWLDHVDEDLNEAKEAVKNQDFQRLGEVIEANGL
RMHATNLGAQPPFTYLVQESYDAMAIVEQCRKANLPCYFTMDAGPNVKVLVEKKNKQAVM
EOFLKVFDESKIIASDIISSGVEIIK*

15

20

Sequence 2953

Contig_0532 pos_1713_3254

>sp:sp|P54715|PTIB_BACSU PTS SYSTEM, ARBUTIN-LIKE IIBC COMP ONENT (PHOSPHOTRANSFERASE ENZYME II, BC COMPONENT) (EC 2.7.1 .69). >gp:gp|Z99108|BSUB0005_89 Bacillus subtilis complete g enome (section 5 of 21): from 802821 to 1011250. NID: g26330 55. >gp:gp|D50543|D50543_3 Bacillus subtilis DNA for 76-degr ee region, complete cds. NID: g1486240.

 $\verb|atgtttgctttttcggtattgttttgggattcgctacattatttaaaaatccaaccatt|$ atgggaggattagctgatcagcaaacattttggtttaaattttggtctgttattgaatca ggtggttgggtaatatttacacatatggaaattgtctttgtagttggcttaccattatct cttgctaaaaaagcaccaggacatgcagctttagcagctctaatgggatatttaatgttt aatacttttatcaatgcaattttaactcaatggccacatacttttggcgctaatttaaaa aaaqqtqtaqaaaacacaacaqqattaaaatcqattqcaqqtattqaaacqttaqatacc 30 aatattttaggtgcaatcattatctcaggaataataacgtggatacataatagata!:tac agtaagcgtttacctgaaatgttaggtgtatttcaaggattaacattcgttgtaacaatc ${\tt tctttctttgtcatqctaccagtggcagcaatcacttgtgttgtttggccaacgattcaa}$ cacggtattgcttcaattcaatattttattgttgcatcaggttatataqqtgtttqgtta tatcatttcttagagcqtqtactaatacctacaqqattqcatcattttatctatqcacca 35 atcqaaqtaqqtccaqtaqttqttaatcatqqtttqaaaqcaqaatqqcttcaacactta aaccaqtttqccqaaaqtaataaaccacttaaaqaacaattcccatatqqatttatqttq caaqqaaatqqaaaqqttttttqqttqtctaqqtataqcattqqcaatqtatqcaactaca ccaaaagaaaatcgtaaaaaagttgctgcattattaataccagcaacacttacqqcagta $\tt gtattacatgcactactagcagcaactatggatacactgatgtatggatttggtgtat$

50

Sequence 2954

MFAFFGIVLGFATLFKNPTIMGGLADQQTFWFKFWSVIESGGWVIFTHMEIVFVVGLPLS
LAKKAPGHAALAALMGYLMFNTFINAILTQWPHTFGANLKKGVENTTGLKSIAGIETLDT
NILGAIIISGIITWIHNRYYSKRLPEMLGVFQGLTFVVTISFFVMLPVAAITCVVWPTIQ
HGIASIQYFIVASGYIGVWLYHFLERVLIPTGLHHFIYAPIEVGPVVVNHGLKAEWLQHL
NQFAESNKPLKEQFPYGFMLQGNGKVFGCLGIALAMYATTPKENRKKVAALLIPATLTAV
VAGITEPLEFTFLFIAPFLFVLHALLAATMDTLMYGFGVVGNMGGGVLDFIATNWIPLGK
AHWMTYVFQVVIGLIFVAIYYFLFKYLILKFDIPLPGRKKGEEEVKLFSKQDYKDKKGDS
TRNHSPNSEYEEKAMYYLEGLGGKENIKDVTNCTTRLRLTVKDESKVQESAYFTHNOMSH

GLVKSGKSVQVVVGMSVPQVREAFENIVNDDLS*

Sequence 2955

Contig 0533 pos 2932 4371

is similar to (with p-value 7.0e-20)

>gp:gp|AB005556|AB005556_1 Plectonema boryanum DNA for NADP H:protochlorophyllide oxidoreductase, hypothetical protein, partial and complete cds. NID: g3123724.

atggaggtgtttaacatgacaaatcaattatttattaacaatgaatttatagaaagtcag
10 tctaaagagacaatggatgtcattaatccagctactggcgaggcatttgatactatcact
cttgcaactgaagaggaagtaaacgacgccattgaaaaatcgcaacaagcacaacttgaa
tgggagcgcgtgcctcaacctacacgtgcggaacatgttaaattacttatacctttatta
gaaaaaaatcgcgatgaaatagctcaattatacgtaaaagaacaaggtaaaactttagcg
caagcttatggagaaattgacaaatcaatctcatttatcgattatatgacaagtctgagt
atgtcagataaaggacgtgttctacaaaaatagtattgcaaatgaaacqattcaaattatc

atgtcagataaaggacgtgttctacaaaatagtattgcaaatgaaacgattcaaattatc aacaaacctatcggagttactgctggtattgtgccatggaacgcaccgatacttgtcctt atgcgaaaagtcattccagctatagtaactggttgttcagtagtgattaaacctagtgaa gagacaacgttactcactcttcgattagctgaattattcagagcatcaactataccagca ggattgtttcaaattgttcctggcactggagaaacagtaggtacacaattagcttcgcat

20 aaagacattcaacttatttctttaactggaagtatgagagctggtaaatctgtttacgaa aatgctgctcaaactgtaaagaaagtaaatttagaattaggtggaaacgcaccagtcatt gtcacatcaaatgccgatttagataaagcagttgactatatcgtgacagcccgtataaat aatgcaggtcaagtttgtacgtgccctgaacgtatctttgtacatgaagatgttcacgat gactttttaaataaagtaacttccaaaatgaaaagcttaactgttggagatccatttgat

25 gaaaacaccgattacggcgcaattattaaccaaaaacaacttgatagtattcatgaaaag gttcaagatgctattaaaaatggtgcaacattgatgactggtggacatcaattaaaacgc catggtttcttctacgcaccaacagtattagataacgttagaaaagacgataatgtgttt aaagatgaaatttttggtccagttcttgcgataacaacctaccgtgatattgaacaagtg attgaagacgctaatgatacaaacgctggcttatcttcttatatcttctctgaaaattta

30 acagaagtaatgacagcaaccgaacgtctaaaatttggtgaagtatatgcaaattgtgag
gctgaagaagtggttaatggctatcacgcaggttggcgtgaatcaggcttaggtggcgct
gacggtattcacggttttgaagaatactacaataccacagtaagttatattagatactaa

Sequence 2956

- 35 MEVFNMTNQLFINNEFIESQSKETMDVINPATGEAFDTITLATEEEVNDAIEKSQQAQLE
 WERVPQPTRAEHVKLLIPLLEKNRDEIAQLYVKEQGKTLAQAYGEIDKSISFIDYMTSLS
 MSDKGRVLQNSIANETIQIINKPIGVTAGIVPWNAPILVLMRKVIPAIVTGCSVVIKPSE
 ETTLLTLRLAELFRASTIPAGLFQIVPGTGETVGTQLASHKDIQLISLTGSMRAGKSVYE
 NAAQTVKKVNLELGGNAPVIVTSNADLDKAVDYIVTARINNAGQVCTCPERIFVHEDVHD
 40 DFLNKVTSKMKSLTVGDPFDENTDYGAIINQKQLDSIHEKVQDAIKNGATLMTGGHQLKR
 HGFFYAPTVLDNVRKDDNVFKDEIFGPVLAITTYRDIEQVIEDANDTNAGLSSYIFSENL
 TEVMTATERLKFGEVYANCEAEEVVNGYHAGWRESGLGGADGIHGFEEYYNTTVSYIRY*
- 45 Sequence 2957
 Contig_0533_pos_8501_7722
 is similar to (with p-value 2.0e-98)
 >sp:sp!P25553|ALDA_ECOLI ALDEHYDE DEHYDROGENASE A (EC 1.2.1
 .22) (LACTALDEHYDE DEHYDROGENASE).
- 50 gtgggttacggtgtagcacaagcaggtgctgaacgtatcgttcctacaacattagaacta ggtggtaaaagtgctaatattatctttgatgatgctaatttagagcaagtgattgaaggt gttcaacttggtatattatttaaccaaggtgaagtatgtagtgcaggttcaagattatta gtacaatcatctatttacgatgaattgttgccaaaattgaaagaagcatttgaaaatatt aaagttggcgatccatttgatgaagatactaaaatgagtgcgcaaactggaccagaacaa ttagataaaattgaaagttatataaaaaattgctgaagaagatgacaaagcgaacatctta actggtggtcatcgaatcacagataacggcttagacaaaggttacttcttttgagcctaca attattgagattaacgataacaagcatcaacttgctcaagaagaaatcttcggtccagtt gtagtagttgaaaaattcgatgatgagcaagaagctatcgaaattgcaaatgattctgag tatggtttagctggaggtatcttcactacagatatcatcgtgcattaaatgtagctaaa

gctatgagaacaggtcgtatttggattaatacttataatcaaattcctgctggtgcgccattcggaggatataaaaaatcaggtattgggcgcgaagtatataaagatgctatcaaaaactatcaacaagttaaaagattatattaa

5 Sequence 2958
VGYGVAQAGAERIVPTTLELGGKSANIIFDDANLEQVIEGVQLGILFNQGEVCSAGSRLL
VQSSIYDELLPKLKEAFENIKVGDPFDEDTKMSAQTGPEQLDKIESYIKIAEEDDKANIL
TGGHRITDNGLDKGYFFEPTIIEINDNKHQLAQEEIFGPVVVVEKFDDEQEAIEIANDSE
YGLAGGIFTTDIHRALNVAKAMRTGRIWINTYNQIPAGAPFGGYKKSGIGREVYKDAIKN

Sequence 2959
Contig_0533_pos_0_1310
is.similar to (with p-value 7.0e-62)

YQQVKNIFIDTSNQTKGLY*

- >sp:sp!P40047|DHA3_YEAST ALDEHYDE DEHYDROGENASE, MITOCHONDR IAL 3 PRECURSOR (EC 1.2.1.3). >gp:gp|U56605|SCU56605_1 Sacch aromyces cerevisiae precursor aldehyde dehydrogenase gene, n uclear gene encoding mitochondrial protein, complete cds. NI D: q1336077.
- 20 gtgtttaatatgtcattggaattgcccgtgatgctaacgattgtgttgttcttagcacta ggcatttttagtcaatggttagcgagtagaataaaatggccatcgattgttgtcatggcc atcgtaggtttacttgtaggacctatttttggattagcaaatccaaaagaggcacttgga cctgaggcatttagttcaattgtatctcttgctgtagcaattatattatttgaaggtagt agtaatctagattttagagaattaaaaggcatttctaaagctgttataagaattattaca

- 35 ttgctcaatgtgttatcttggcagctcatactctttagtttggttatgattgtattagta agaccaatttcagtgtttctttcaacattaggtactgaaataactaaaaaggaacgtgca gtagtagcactaatggcgcctagaggtattgtggttttaacagtggcacaattcttctca agtttatttatggacgataaaattcctatggctcaatatattacaccagtaacttttggt cttgtatttatcactgtagtcatttatggatttggttttacacctttaagtaaactgttc
- 40 ggtgtagcaagtacggagccaccaggcgtaatcattgtcggagaaagtgaattttcgttc catcttggtattaatctaagggatcatggtatacccgtcatgatgttcaa

Sequence 2960

10

VFNMSLELPVMLTIVLFLALGIFSQWLASRIKWPSIVVMAIVGLLVGPIFGLANPKEALG
45 PEAFSSIVSLAVAIILFEGSSNLDFRELKGISKAVIRIITIGAGIAWILGAIALHVTMNF
PLSISFVIGGLFLITGPTVIQPLLKQAKVKRNVDSVLRWESIILDPIGPIIALTAFYVFQ
IFEEGIGFVVIILFILKLLAAILIGFGAAFLFNWLIGQDKIPQSLMPPIQFVFILLTFSI
CDEILSESGLLAVTIFGLMMARKKRHDLIFKESDHFIDNASSILVSTVFILITSSLTKDV
LLNVLSWQLILFSLVMIVLVRPISVFLSTLGTEITKKERAVVALMAPRGIVVLTVAQFFS
50 SLFMDDKIPMAQYITPVTFGLVFITVVIYGFGFTPLSKLFGVASTEPPGVIIVGESEFSF
HLGINLRDHGIPVMMFX

Sequence 2961

Contig_0534_pos_7490_6273

55 is similar to (with p-value 3.0e-99)

>sp:sp|P39312|CYCA_ECOLI D-SERINE/D-ALANINE/GLYCINE TRANSPO RTER. >pir:pir|S56433|S56433 hypothetical protein o470 - Esc herichia coli >gp:gp|U14003|ECOUW93_120 Escherichia coli K-1 2 chromosomal region from 92.8 to 00.1 minutes. NID: g126317

2. >qp:qp|AE000492|AE000492 4 Escherichia coli K-12 MG1655 s ection 382 of 400 of the complete genome. NID: g1790649. atqttcatqaqaqctatqgqagaattactgttatccaatttaggatttaaatcqtttggt qacattqctcatcatcatattggttctatggcaggttttatggtggggtggacatattgg ttaacatqqattatttcaqqaatqqcaqaaqtqactqctqttqccaaqtatqtttccttc tqqtatccaacaattccaaactqqttaacaqctqcaqcqactattttaqttttaqttqct ttaaatctattcaqtqctaaattatttgqaqaattaqaattttqqctatctattattaaa gttttgactattttagctttgatagccgttggtgttgttatgattgtatttggaatgaag acaagctatggccctgcaacggtaacgaatatatggaaagacggaggctttttccctaat qqtqcacaaqqtttcttcatqtcattccaaatqqcaattttctcatttattqqtattqaq ttqattqqaataactgcaggggagactaaagatcctcacaaaacaattcctcaaqcaatt aataatgtaccgtttagaatattattattttatataqqatcgttqqcaqttatcatgtct qttqtaccatqqcaacaattqaatcctqctqacaqtccatacqttaaaatqtttqqatta qttqqaatcccttttgcaqcaqgtattattaactttgttqtacttacaqctqcagcctct 15 tcttqtaataqtqqtatatttqctaataqccqtacqatqtttqqattaqctqqaaqaaaq caaqqtccaqcattcttacataqaaccaataaqcacqqcqtaccacattatqctatttta gtgacatgtggcttattaagtatttcagtcgtgttaaatgcaatttttaaagatgcgact aaagtgttcgtacaaattacaacattttcaactgttttaaatattatgatttggacaatt attatgatcgcgtatctaggttatttaagacatgaaccqaaacaqcataaagaaaqtaac 20 tataaaatqtqqqqqaaaatacatqqcttacaqtattttaqqqttctttqcatttatt tttattatactattgattaatagtgcaacgcgttatgccgtactttctgcacccgtatgg tttqttatcatqctattgatgtatcaaaaatataaaaaaqaatctcgcaaagctaaaatt aaaaatgaggaagagtaa

25 Sequence 2962
MFMRAMGELLLSNLGFKSFGDIAHHHIGSMAGFMVGWTYWLTWIISGMAEVTAVARYVSF
WYPTIPNWLTAAATILVLVALNLFSAKLFGELEFWLSIIKVLTILALIAVGVVMIVFGMK
TSYGPATVTNIWKDGGFFPNGAQGFFMSFQMAIFSFIGIELIGITAGETKDPHKTIPQAI
NNVPFRILLFYIGSLAVIMSVVPWQQLNPADSPYVKMFGLVGIPFAAGIINFVVLTAAAS
30 SCNSGIFANSRTMFGLAGRKOGPAFLHRTNKHGVPHYAILVTCGLLSISVVLNAIFKDAT

35

40

45

50

55

SCNSGIFANSRTMFGLAGRKQGPAFLHRTNKHGVPHYAILVTCGLLSISVVLNAIFKDAT KVFVQITTFSTVLNIMIWTIIMIAYLGYLRHEPKQHKESNYKMWGGKYMAYSILGFFAFI FIILLINSATRYAVLSAPVWFVIMLLMYQKYKKESRKAKIKNEEE*

Sequence 2963
Contig_0539_pos_0_15071
is similar to (with p-value 8.0e-35)
>gp:gp|X81475|MHLMP_1 M.hominis lmpl and lmp2 genes. NID: g
587470.

attaacgaagatcaacctgagcaatctgcctacaatgattccattacaatgggacaaact ataattaataaaacagctgatccagtacttgataaaactttagttgataacgcaatcagt aacatttcaactaaaqagaatgcactgcatqqtqaacaaaaattaacaactgctaaaacq gaagcaattaatgcacttaatacattagctqatttaaacacacctcagaaagaggctatt aaaacaqctattaacactqctcatacaaqaactqatqtaactqcaqaqcaaaqtaaqqct aatcaaataatagtgcaatgcacacgttgagacaaaacatttctgacaacgaatcagta acaaacgaaagtaattatattaacgctgaacccgaaaaacaacatgcctttactgaqqct ctaaataatgctaaagaaatagttaatgaacaacaagccactcttgatgccaattcaatt aaccaaaaagcacaagcgattcttactactaaaaatgctttagatggtgaagaacaatta cqtcqtqctaaaqaaaatqccqatcaagaaatcaatacgttaaatcaattgactgatgcg caaagaaatagtgaaaaaggtttagtcaacagttctcaaactagaacagaagttgcttct caattagcaaaagctaaagaactaaataaggtgatgqaacaactgaataaccttatcaat qqtaaaaaccaaatqataaataqcaqtaaatttatcaatqaaqatqcqaaccaacaa gcatattcaaatgcgattgcaagtgcagaagtgcttaaaaaccaaatcacaaaaccctgaa ttagataaaqtaacaattqaacaaqcaattaataatattaattctqcaattaataatcta aacggtgaagctaaactgactaaagctaaaqaagatgctgttgcttcaataaacaaccta agcggattaactaacgagcaaaaaacaaaagaaaatcaagccgttaatggctctcaaact agagacca agttgcta acgttttacgtgattca aaggcattagatca atctatgca aacattacqtqatttaqttaacaatcaaaatqtaatacattcaacaaqtaattattttaacqaq gattcaactcaaaagaatacttatgataatqcaattgataatqgctcgacatatataact

ggtcaacacaattcagaattaaataaatctactattgatcaaacgattagccaaattaac acagctaaaaatgatttacatggtgcagaaaagttacaaagagataagggaactgctaat caagaaattggacaattaggttatttaaatgaccctcaaaaatctgctgaggaatcctta gtcaacggttcaaatacacgttctgaagtagaagagcatcttaatgaagctaaatcatta agcqattacattaatqattcaactgaacatcaacgtgggtatgatcaaqcacttcaaqaa qcaqaaaatattattaatqaaatcqgtaatccaacattaaataaatcqqaaattqaacaa aagttacaacaattqactqacqctcaaaatqcqttacaaqqttcacatctattaqaaqaa gctaaaaataatgcgattactgaaatcaataaacttacagcattaaatgatgcacaacgt 10 caaaaaqcaattqaaaatqttcaagcacagcagacaatcccagcagttaatcaacaatta actttqqatagagaaataaatactqcaatqcaaqctttacqaqataaagtagqccaacaa aataacgttcaccaacaagtaattatttcaatgaagatgaacaaccaaaacataactat gataattctgtacaagccggtcaaactattattgataaacttcaagatccaatcatgaac aaaaatgaaattgagcaggctattaatcaaatcaatacgactcaaacagcgttaagtgga 15 qaaaataaattacacactgaccaagaaagcacaaatagacaaatagaaggtttatctagt gaught@stcaaaagttagctacagctaaagaaataaattctgctatgagtaattmaaga gatggcattcaaaataaaqaqqacatcaaacqtaqcaqtgcatatatcaacqcagatccq actaaaqttacaqcttacqatcaaqcactacaqaacqcaqaaaatatcatcaatqccaca 20 ccaaacqtaqaqcttaataaagctacaattgaacaaqcgctatcacqcgttcaacaagca caacaagatcttgatggtgttcaacaattagctaatgctaaacaacaagctacacaaact tcaqctaatacccqtacaaaaqtacaaqaaqaattaaacaaaqcaactqaatcqaaccat gcgatggaagctttaagaaacagtgttcaaaacgttgatcaagtaaaacaaagtaacaat 25 tatqtcaatqaaqatcaacctqaacaqcacaattatqataatqctqtcaatqaaqctcaa gctacaatcaacaatgctcaacctgttctagacaaattagctatagaacgtttaact caaactgttaacactacaaaagatgcattacatggtactcaaaaactgatacaagaccaa caagctqctqaaactqqaatacqtqqtttaacqaqtctcaatqaacctcaqaaaaatqct gaagtagctaaagtaactgcagcaacaacacgtgatgaagtgagaaatattcgtcaagaa qcaacaacattagatactqcaatqcttqqtttacqtaaaaqcattaaaqataaaaacqat actaaaaataqtaqtaaatatattaatqaqqatcatqaccaacaacaaqcttatqacaat gctgtaaataatgctcaacacgttatcgatgaaactcaagcaacgttaagctcagataca atcaatcaattggcaaatgccgtaactcaagctaaatctaatcttcatggagatactaaa ctacaacacgataaagatagtgctaaacaaacgattgctcaattacagaatttgaattca 35 gctcaaaaacatatggaagattctttaattgataatgaatctacacgtacgcaagtccaa aaagataatactaatattgtttcaaacggtaattacatcaatgcggaaccatctaagaaa caagcatatgatgcagctgtacaaaatgctcaaaatataataaatggaacgaatcaacca acaattaataaaggtaatgtcactacagcaacacaaaccgtgaaaaatactaaagatgcc 40 ttagacqqtqatcatagattagaqqaaqctaaaaataatqccaatcaaacaatcagaaat ctatctaatttgaacaatgcccaaaaagatgcagagaaaaatctagttaatagcgcatca acattagaacaagttcaacaaaacttacaaaccgctcaacaattagataatgctatgggt gagttacgacaaagtattgctaacaaagatcaagtgaaagcagatagtaaatatctaaat gaagateeteaaattaageaaaaetatgatgatgeagtteaaegtgttgaaaetattatt 45 aacgaaactcaaaaccctgaattacttaaagcaaacattgaccaagcaactcaatccgtt caaaatgcaqaacaagctttacatggtqctgaaaaattaaatcaaqacaaacaaacgtct tcgacagaactagatggattaacagatttaacagatgcacaacgtgaaaaactcagagaa ctaaatqacqcaatqaaaaaacttaaaqaacaaqttqcqcaaaaaqatqqtqttcatqct 50 aacagtgattatacaaatgaagattctqcacaaaaagatqcqtataataatqcacttaaa caagcggaagacattattaataacagctcaaatcctaacttaaatgcacaaqacattact aatgetttaaataatattaaacaageacaagataaeetteatggageteaaaaattaeag caagacaaaaatacaactaatcaaqccattqqtaacttaaatcatcttaatcaacctcaa aaagatgcgcttatacaagctattaatggagctacatctagggaccaagttgcagaaaaa cttaaagaggccgaagcgcttgatgaagctatgaaacaacttgaagatcaagtgaatcaa tataatgataaaatccaagctgcaaaagaaataattaatcaaacatctaatccaacctta gataaacaaaaaattgctgatacacttcaaaatattaaagatgcagtgaataatttacat ggtgatcaaaattagctcaatctaaacaaqacqctaataatcaattaaatcatttagat

qatqaqqtaaataaacaactagagattqctaaacaattaaatqqtqatatqaqtacactt cataaagtcataaatgataaagatcaaattcaacatttaagcaattacattaatgctgat aatgataaaaaacaaattatgataatgctattaaagaagctgaggatttaattcataat catccagatacattagatcataaagcattacaagatttattaaacaagatagaccaagcg cataacqaattaaatggagaatccagatttaaacaggctttagacaatgctttaaacqac atagatagcttaaacagtctcaatgttccacaacgtcaaactgttaaggataacatcaac catgtgacaactctagaaagtttagctcaagaattqcagaaagcaaaagagcttaatqat gctalgaaagcaatgagagatagcattatgaatcaagagcaaattegtaaaaatagcaat tatactaatgaagacttagctcaacaaaatgcctataatcatgcagtagataatataaat aacattattggtgaagacaatgcgacgatggatcctcaaataatcaaacaagcaactcaa qatataaatacaqctataaatqqattaaatqqaqatcaaaaacttcaaqatqcaaaqaca gatgctaaacaacaaattactaactttactggtttaactgaaccacaaaaacaagcattg gaaaacatcattaaccaacaacaagtagagcaaatgttqctaaacagttaagtcatgct aaattottaaatqqaaaaatqqaaqaattaaaaqttqcaqtaqccaaaqcqtcattaqta agacaaaatagtaactatattaatgaagatgtctctqaaaaaqaagcatatqaacaagct attqcaaaaggtcaggaaataattaattcagaaaataatccaacaataagtagtactgat atcaatcgtaccattcaagaaattaatgatgctgaacaaaatcttcatggtgaaaataaa ttaaqacaaqcacaqqaaattqcaaaqaatqaaatacaaaatctaqacqqattaaattca gctcaaataacaaaattaatccaaqatataggcagaacaacaactaaacctgcagtaact cagaaactagaagaagcaaaagcaataaaccaagctatqcaacaacttaaacaaagtata gccgataaggatgctactctaaattctagtaactatctcaatgaagattctqaqaaaaaq ttagcgtacgataatgctgtaagccaagctgaacaactcataaatcaacttaacgaccca actatggatataagtaatattcaagctattactcaaaaggtcattcaagcaaaagattca $\verb|ttgcacggttgcgaataaacttgcacaaaatcaagcagattcaaatttaataataaatcaa|\\$ actaaacaqcaaqtqqcaqaaataattqcacaaqctaataaqttaaataacqaaatqqqc acustian aacactogtagaagaacagtcaaacgttcatcaacaaagtaaatatattaat gaaqatccqcaaqttcaaaatatttataatqactccattcaaaaaqqtcqaqaaatatta aacggcactacagatgatgttttaaacaacaataaaatagcagatgccattcaaaacatt catttaactaaaaacgatttacatggtgatcaaaaattacaaaaaqcacaacaagatgca accaatgaattaaactatttaacaaatctaaacaattctcaaagacaaagcgagcatgat gagattaactctgctccttcaagaactgaagtttctaatgatttaaatcatgctaaagca cttaatgaagctatgcgtcaacttgagaatgaagttgctcttgaaaacaqtgttaaaaaa ttaagcgactttatcaatgaagatgaaqcggcacaaaatgaatatagtaatgcacttcaa aaagctaaagacattatcaacggcgttccaagtagcactttagataaagctacaattgaa gatgctttattagaattgcaaaatgctagagaaagtttacatggtgagcaaaaacttcaa gaggctaaaaatcaagctattgctgaaattgataatttacaagcattaaatcctggacag gttcttgctgaaaaaacattagttaaccaagcatcaaccaaaccagaagttcaagaagcc aaaqaacaaatcaaggctgatagtagatatgtaaatgctgacagtggtcttcaagcaaat tacaattctgcgttaaattatggttctcaaattattgcaactacccaaccaccaqaqctt aataaagatgtaataaatagagcaactcaaacgattaaaactgctgaaaataatttaaat gggcaatctaaattagcagaggctaagtcagacggaaatcaaagcatcgaacatttgcaa caacaggtagatgatatcgtaaataactctaaacaattagataactctatgaatcaacta caacaaattgttaacaatgacaatacagtaaaacaaaatagtgatttcattaatgaagat tocayccaacaggatgcttataatcatgcaattcaagcagcaaaagatttgataagtgct catcctactatcatggataaaaatcaaatagatcaagctattgaaaatatcaaacaagca cttaatgatttacacggtagtaataaactatcagaaqataaaaaaqaagcttcagaacaa ctacaaaaccttaatagcttqacqaacqqqcaaaaaqatacqattttaaatcatatttc agtgcaccaacaagaagccaagtaggagaaaaaattgcaagtgctaaacaattaaataat acaatgaaagcacttagagattctattqctgataataatgaaattttacaaagtagtagq tacttcaatgaagattctgaacaacaaaatgcttataatcaagccqtaaataaagctaaa aatataattaatgatcaaccaacaccagtaatggcaaatgatgagattcaaagtgtccta aatgaagttaaacaaactaaagataatttacatggtgatcaaaaacttgctaacqacaaq acagatgcccaagcaacattaaatgcgttaaattacttaaatcaagcgcaaagaggtaat cttgaaactaaagttcaaaactctaattctagaccagaagtacaaaaagtagttcaatta gcaaatcaacttaatgatgcgatgaaaaaattagatgatgctttaactgqtaatgacqca

10

15

20

25

30

35

40

45

50

ataaaacaaacqaqtaattatattaatgaagatacttctcaacaagttaactttqatgag aatattaacactattgctgataaaattactgaagctaaaaatgatttacatggcqtacaa aaactagaacaagctcaacaacagtccatcaatactattaatcaaatgactggtctaaac 5 caaqctcaaaaaqaacaattaaatcaaqaaattcaacaaactcaaacccqttctqaaqta catcaaqtaattaataaaqcacaaqctttaaatqattcaatqaatactttacqtcaaaqt attactgatgaacatgaagttaaacaaacaagtaactacatcaatgaaactgttqqtaat ccaactatqaatcctttaqaqqtqqaacqtqcaacatcaaatqtaaaaacttctaaaqat 10 qcacttcatqqtqaacqtqaattqaatqacaataaaaaattcaaaaacttttqcaqtcaat cacttagataacctcaatcaagctcaaaaagaagcattaactcatgaaattgaacaagca actataqtttcacaaqtaaataatatctataacaaaqcqaaaqctttaaataatqatatq aaaaaacttaaaqatatcqttqctcaacaaqataatqtqaqacaatcaaacaattatata aacqaggatagtacacctcaaaatatgtacaacgatacaattaatcatqcacaatcaatc 15 ataaaqcatqccatcaatqcactcqatqqaqaacataaattacaacaaqcaaaaqaaaat gcaaacttattgattaatagtttaaacgatttaaatgcaccacaaagagatgccataaat agattggttaatgaagctcaaacaagagaaaaagtagctgaacaacttcaaagtgctcaa 20 caaqaqaqcaaatatattaatqcaaqtqatqctaaaaaaqaqcaatataatcacqcaqtt agaqaagtcgaaaatattatcaatgaacaacatccaacattggataaagaaataattaag caactaacqgatgctgtaaatcaaqcqaataatqacttaaatqqcqttqaattattaqat gctqataaqcaaaacqcacatcaatcqatacctacattqatqcacttaaatcaaqcacaa caaaacgcattaaatgaaaaaattaataacgcagttaccagagctaaagttgcggctatt 25 attggccaagcaaaaatactcgatcatgctatggagaatttagaagaaagtatcaaagat a a agag caagt caagt caagta acta ta tta at gaag accct gat gtt caagaa acaga accct gat gtt caagaa acaga accct gat gtt caagaa accaga acctacaataacgccqttqatcatqtqacaqaaatacttaatcaaacaqtaaatccaacttta tctattqaaqatataqaqcatqctatcaacqaaqttaatcaaqcqaaaaaacaactcaqa qqtaaacaaaaactttatcaaactatcqatttaqctqataaaqaattaaqtaaattqqat 30 gatttaacatcacaacaaqcaqttcaatatctaatcaaatatatactqctaaaacqaqa acagaagttgcccaagcaattgaaaaagcaaaatcattaaatcatgcaatgaaagcactt aacaaaatatataaaaatgcagataaagtgttagatagtagtcgattcattaacgaagat caaacaaatcctgaaatggatccaacagtaatcaatagcataactcatqaactcqaaaca 35 gctcaaaataacttacatggtqatcaqaaacttqctcatqcaaaacaaqatqccqctaat qtaattaatqqtctaattcatcttaatqttqctcaacqcqaqqtaatqataaatacqaat acaaatgctacaacacqcqaaaaaqttqcaaaqaacttaqataatqctcaaqctcttqat aaagctatggaaacactacaacaagtagttqctcataaaaataatatattqaacqatagt aaatatttaaaatgaagattcaaaatatcaacaacaatacgatcgagttattgctgatqcc 40 gaacaactacttaatcagacaacaaatccaacattagaaccttataaagtcgatattgtt aaggataatgtcctagctaacgaaaaatactatttggcgcagaaaaactatcatatgac aaatcaaatgcaaatgatgaaattaaacatatgaattatcttaataatgcacaaaagcaa tctataaaagatatgatttctcacqcaqcattaaqaactqaaqttaaacaacttctqcaa caaqctaaaacccttqatqaaqctatqaaatcacttqaaqataaaactcaaqtaqtqatt 45 acagatactactttgcctaattacactgaagcttcagaggataaaaaggaaaaaqtagac gatcaagtacgacaagcactagaacaattaactcaagcatcagaaaacctcgatggtgat cagcgagttgaagaagctaaagttcatgctaatcaaacaattgaccaattaacacatctt aattcattacaacaacaactgcgaaagaaagtgttaaaaacgcaacaaaactagaagaa 50 atcgctactgctagtaacaatgctctggcattaaacaaagtaatgqqtaaattagaacaa ttcattaatcatgctgattctattgaaaatagtgataattatagacaagccgacgacgac aaaattategettatqatqatqeaetaqaacatgqacaagatatacaaaaatetaaeqea acccaaaatgaagcaaaacaagcgttacaacaattaataaatgcagaaacatcgttaaat ggtttcgaaagattaaatcatgctagaccacqagctttaqaatatattaaatcactaqaa 55 aaaataaacaatgctcaaaagtctgctttagaqgataaaqtaacqcaatcqcatqattta $\verb|ttagaattagaacatcttgtcaacgagggcacaaacctcaatgacattatgggtgaatta|\\$ gctaacgcaatcgttaataactatgctccaaccaaagcaagtataaattatattaacgcc gataacctacgcaaagataactttactcaagctatcaacaatgcacgtgatgcactcaac aaaactcaaggtcagaacttagatttcaatgcaattgatacatttaaagatgatamattc

aaaactaaaqatqcacttaacqqtattqaacqtttaacaqctqcaaaatcaaaaqcaqaa aaactaattgatagtttaaaatttattaataaagctcaattcacacatgcaaatgatgaa attatgaatactaattctattgcacaattgtctagaatcgtgaatcaagcatttqattta aatgatgcaatgaaatctttaagagatgaacttaataatcaagcttttcctqtccaaqca 5 aqctcaaattatataaattcaqatqaaqatttaaaacaacaatttqaccatqctttaaqt aatgctcgaaaagtacttgcaaaagaaaatggtaaaaatttagatgaaatacaaattgag ggactcaaacaagtgattgaggatactaaagatgctttaaatggtatccaacgtttatca aaagctaaagctaaagcaattcaatacgtacaatctttatcttatatcaatgatgcacag cqtcatattqctqaaaqtaatattcacaactctqatqatttatcatctttaqcaaataca 10 ttatctaaagctagtgatttagataatgcaatgaaagacttacgagatactctagaaagt aattcaacttctqttccaaataqtqtqaattatattaatqctqataaqaatttacaaatt qaatttgatqaqqcqctacaacaaqcaaqtqcaacaaqttctaaaacttcaqaaaatcca gcaacgattgaagaagtattaggtcttagtcaagccatttacgatacaaaaaatgcattg aatqqtqaacaacqtcttqcaactqaqaaqaqcaaaqatttaaaaattaataaaaqqatta 15 ttaacagagttatctcagctcactcaatcaacgttaaaaattaaacgataaaatgaaatta ttgagagataagcttaaaaccttagtaaatcctgttaaagcaagtttaaattatagaaac gctgattataatttaaaacgtcaatttaacaaagctttaaaagaagctaaaggcgtatta aataaaaataqcqqtacaaatqtcaatatcaatqacattcaacatcttttaacacaaata 20 gataatgctaaagaccaattaaatggtgaacgacgtctaaaagaacatcaacaaaaatct gaagtatttattattaaagaattagatatacttaataatqctcaaaaagctgcaataatt aatcagattagagcgtctaaagacattaaaataattaatcaaatcgttgataatgcaata gaattaaatqatqctatqcaaqqtttaaaaqqacatqtaqctcaattaacaqcaactaca aaagacaacattgaatatttaaatgctgatgaagaccttaaaatacaatatgattacgct 25 atcaacttagcgaataatgttcttgacaaagaaacggtacaaataaagacgctaatatc ataattggaatgattcaaaacatggatgatgctagagcacttctaaatggaattgaaaga cttaaaqatgctcaaacaaaaqcacataatgacattaaagatacgctcaaacgtcaactt gatqaaattqaacacqctaatqcaacatcaaattctaaaqctcaaqcaaaacaaatqqta aatgaggaagctagaaaagcqttttctaatattaatcacqcaacatcaaatgatttagtt 30 aaagwaaaactagatgctaatcaaatgattgaccaaaaagttgaagatataaatcabtta attagtcaaaatccaaacttatcaaatgaagaaaaaaataaactaatatctcaaactaat 35 gcagaagctaaacaagtgataaaagagttatcacaaaagaaacqagatqcaataaataac aacactgatttaacaccttctcaaaaggcacatgctttagcagatattgataaaacagaa aaagatgcacttcaacatatcqaaaattctaattcaattqatqatatcaataacaataaa gtttttgaactacctgaattgagccttcaaaatgctctagtaacaagtgaggtggttgtt cacagagatgaaactatttcattagaatctataattggagctatgactttaactgatgaa 40 cttaaagtcaatattgtttcattaccgaacactgataaagtagctgatcacctaaccgct aaagttaaggttattttagctgatggctcatttgtcactgtaaatgttccagtcaaagtt gtagaaaaagaattacaaatagctaaaaaggatgctataaaaacaattgatgttctggta aaacaaaaaatcaaagatatagattctaataacgaattaacgtctactcaacgtgaagat 45 gcaaaagctgaaattgaaagattgaaaaagcaagccatcgataaagtgactcattctaaa ${\tt tcgattaaagatattgaaacagtaaaacgaactgattttgaagaaatagatcagtttgat}$ cctaaacgctttacgctaaataaagctaaaaaggatatcattactgatgttaatactcaa atccaaaatggtttcaaagaaattgaaacaataaaaggtttaacttctaatgaaaaaact caqtttqataaacaattaactgcactacaaaaagaatttttagaaaaagtcgagcatgct 50 cataatttagtagaattaaatcaattacaacaagagtttaataatagatatgaacatatt ttaaaccaagcacatttactaggtgaaaaacatatagcagaacataaattaggatatgtt gtagtaaacaaaactcagcaaatactaaataatcaatctgcttcttactttataaaacaa cataccgtaca 55

Sequence 2964

MGTLKSLVAKQPTVQKTSVYINEDQPEQSAYNDSITMGQTIINKTADPVLDKTLVDNAIS NISTKENALHGEQKLTTAKTEAINALNTLADLNTPQKEAIKTAINTAHTRTDVTAEQSKA NQINSAMHTLRQNISDNESVTNESNYINAEPEKQHAFTEALNNAKEIVNEQQATLDANSI

NOKAOAILTTKNALDGEEQLRRAKENADQEINTLNQLTDAQRNSEKGLVNSSQTRTEVAS OLAKAKELNKYMEOLNNLINGKNQMINSSKFINEDANQQQAYSNAIASAEVLKNKSQNPE LDKVT1EQAINNINSAINNLNGEAKLTKAKEDAVASINNLSGLTNEQKTKENQAV/GSQT RDQVANVLRDSKALDQSMQTLRDLVNNQNVIHSTSNYFNEDSTQKNTYDNAIDNGSTYIT GOHNSELNKSTIDQTISQINTAKNDLHGAEKLQRDKGTANQEIGQLGYLNDPQKSAEESL VNGSNTRSEVEEHLNEAKSLNNAMKQLRDKVAEKTNVKQSSDYINDSTEHQRGYDQALQE AENIINEIGNPTLNKSEIEQKLQQLTDAQNALQGSHLLEEAKNNAITEINKLTALNDAQR OKA I ENVOAOOT I PAVNQQLTLDRE I NTAMQALRDKVGQQNNVHQQSNYFNEDEQPKHNY DNSVOAGOTIIDKLQDPIMNKNEIEQAINQINTTQTALSGENKLHTDQESTNRQIEGLSS LNTAOINAEKDLVNOAKTRTDVAOKLATAKEINSAMSNLRDGIQNKEDIKRSSAYINADP 10 TKVTAYDOALONAENI INATPNVELNKATI EOALSRVOOAOODLDGVOOLANAKOOATOT VNGLNSLNDGOKRELNLLINSANTRTKVQEELNKATESNHAMEALRNSVQNVDQVKQSNN YVNEDQPEQHNYDNAVNEAQATINNNAQPVLDKLAIERLTQTVNTTKDALHGTQKLIQDQ QAAETGIRGLTSLNEPQKNAEVAKVTAATTRDEVRNIRQEATTLDTAMLGLRKSIKDKND 15 TKNSSKYINEDHDQQQAYDNAVNNAQHVIDETQATLSSDTINQLANAVTQAKSNLHGDTK LQHDKDSAKQTIAQLQNLNSAQKHMEDSLIDNESTRTQVQHDLTEAQALDGLMGALKESI KDNTNIVSNGNYINAEPSKKQAYDAAVQNAQNIINGTNQPTINKGNVTTATQTVKNTKDA LDGDHRLEEAKNNANQTIRNLSNLNNAQKDAEKNLVNSASTLEQVQQNLQTAQOLDNAMG ELROSIANKDOVKADSKYLNEDPQIKONYDDAVQRVETIINETQNPELLKANIDQATQSV 20 ONAEOALHGAEKLNODKQTSSTELDGLTDLTDAQREKLREQINTSNSRDDIKQKIEQAKA LNDAMKKLKEQVAQKDGVHANSDYTNEDSAQKDAYNNALKQAEDIINNSSNPNLNAQDIT NALNNIKOAODNLHGAOKLOODKNTTNQAIGNLNHLNQPQKDALIQAINGATSRDQVAEK LKEAEALDEAMKOLEDOVNODDQISNSSPFINEDSDKQKTYNDKIQAAKEIINQT3NPTL DKQKIADTLQNIKDAVNNLHGDQKLAQSKQDANNQLNHLDDLTEEQKNHFKPLINNADTR 25 DEVNKOLEIAKOLNGDMSTLHKVINDKDQIQHLSNYINADNDKKQNYDNAIKEAEDLIHN HPDTLDHKALODLLNKI DOAHNELNGESRFKOALDNALNDI DSLNSLNVPORQTVKDNI N HVTTLESLAQELQKAKELNDAMKAMRDSIMNQEQIRKNSNYTNEDLAQQNAYNHAVDNIN NIIGEDNATMDPOIIKQATQDINTAINGLNGDQKLQDAKTDAKQQITNFTGLTEPQKQAL ENI INQOTSRANVAKQLSHAKFLNGKMEELKVAVAKASLVRQNSNYINEDVSEKEAYEQA 30 IAKGQEIINSENNPTISSTDINRTIQEINDAEQNLHGENKLRQAQEIAKNEIQNLDGLNS AQITKLIQDIGRTTTKPAVTQKLEEAKAINQAMQQLKQSIADKDATLNSSNYLNEDSEKK LAYDNAVSQAEQLINQLNDPTMDISNIQAITQKVIQAKDSLHGANKLAQNQADSNLIINQ STNLNDKOKOALNDLINHAQTKOQVAEIIAQANKLNNEMGTLKTLVEEQSNVHQQSKYIN EDPQVQNIYNDSIQKGREILNGTTDDVLNNNKIADAIQNIHLTKNDLHGDQKLQKAQQDA 35 TNELNYLTNLNNSOROSEHDEINSAPSRTEVSNDLNHAKALNEAMROLENEVALENSVKK LSDFINEDEAAQNEYSNALQKAKDIINGVPSSTLDKATIEDALLELQNARESLHGEQKLQ EAKNQAIAEIDNLQALNPGQVLAEKTLVNQASTKPEVQEALQKAKELNEAMKALKTEINK KEOIKADSRYVNADSGLOANYNSALNYGSQIIATTOPPELNKDVINRATOTIKTAENNLN GQSKLAEAKSDGNQSIEHLQGLTQSQKDKQHDLINQAQTKQQVDDIVNNSKQLDNSMNQL 40 OOIVNNDNTVKONSDFINEDSSOODAYNHAIQAAKDLITAHPTIMDKNOIDQAIENIKQA LNDLHGSNKLSEDKKEASEQLQNLNSLTNGQKDTILNHIFSAPTRSQVGEKIASAKQLNN TMKALRDSIADNNEILQSSKYFNEDSEQQNAYNQAVNKAKNIINDQPTPVMANDEEQSVL NEVKOTKONLHGDQKLANDKTDAQATLNALNYLNQAQRGNLETKVQNSNSRPEVQKVVQL ANQLNDAMKKLDDALTGNDAIKQTSNYINEDTSQQVNFDEYTDRGKNIVAEQTNPNMSPT 45 NINTIADKITEAKNDLHGVQKLEQAQQQSINTINQMTGLNQAQKEQLNQEIQQTQTRSEV HQVINKAQALNDSMNTLRQSITDEHEVKQTSNYINETVGNQTAYNNAVDRVKQIINQTSN PTMNPLEVERATSNVKTSKDALHGERELNDNKNSKTFAVNHLDNLNQAQKEALTHEIEQA TIVSQVNNIYNKAKALNNDMKKLKDIVAQQDNVRQSNNYINEDSTPQNMYNDTINHAQSI IDQVANPTMSHDEIENAINNIKHAINALDGEHKLQQAKENANLLINSLNDLNAPQRDAIN 50 RLVNEAQTREKVAEQLOSAQALNDAMKHLRNSIQNQSSVRQESKYINASDAKKEQYNHAV REVENIINEQHPTLDKEIIKQLTDAVNQANNDLNGVELLDADKQNAHQSIPTLMHLNQAQ ONALNEKI NNAVTRAKVAA I I GOAKI LDHAMENLEES I KDKEOVKOSSNY I NEDPDVOET YNNAVDHVTEILNOTVNPTLSIEDIEHAINEVNOAKKOLRGKOKLYOTIDLADKELSKLD DLTSQQSSSISNQIYTAKTRTEVAQAIEKAKSLNHAMKALNKIYKNADKVLDSSRFINED 55 QPEKEAYQQAINHVDSIIHRQTNPEMDPTVINSITHELETAQNNLHGDQKLAHAKQDAAN VINGLIHLNVAQREVMINTNTNATTREKVAKNLDNAQALDKAMETLQQVVAHKNNILNDS KYLNEDSKYQQQYDRVIADAEQLLNQTTNPTLEPYKVDIVKDNVLANEKILFGAEKLSYD KSNANDEIKHMNYLNNAQKQSIKDMISHAALRTEVKQLLQQAKTLDEAMKSLEDKTQVVI TDTTLPNYTEASEDKKEKVDQTVSHAQAIIDKINGSNVSLDQVRQALEQLTQASENLDGD

ORVEEAKVHANOTIDOLTHLNSLOOOTAKESVKNATKLEEIATASNNALALNKVMGKLEO FINHADSIENSDNYROADDDKIIAYDDALEHGODIOKSNATONEAKOALOOLINAETSLN GFERLNHARPRALEYIKSLEKINNAQKSALEDKVTQSHDLLELEHLVNEGTNLNDIMGEL ANAIVNNYAPTKASINYINADNLRKDNFTQAINNARDALNKTQGQNLDFNAIDTFKDDIF KTKDALNGIERLTAAKSKAEKLIDSLKFINKAQFTHANDEIMNTNSIAQLSRIVNQAFDL NDAMKSLRDELNNOAFPVOASSNYINSDEDLKQQFDHALSNARKVLAKENGKNLDEIOIE GLKOVIEDTKDALNGIORLSKAKAKAIQYVQSLSYINDAORHIAESNIHNSDDLSSLANT LSKASDLDNAMKDLRDTLESNSTSVPNSVNYINADKNLQIEFDEALQQASATSSKTSENP AT I EEVLGLSOA I YDTKNALNGEORLATEKSKDLKLIKGLKDLNKAOLEDVTNKVNSANT 10 LTELSOLTOSTLKLNDKMKLLRDKLKTLVNPVKASLNYRNADYNLKROFNKALKEAKGVL NKNSGTNVNINDIQHLLTQIDNAKDQLNGERRLKEHQQKSEVFIIKELDILNNAOKAAII NQIRASKDIKIINQIVDNAIELNDAMQGLKEHVAQLTATTKDNIEYLNADEDLKIQYDYA INLANNVLDKENGTNKDANIIIGMIQNMDDARALLNGIERLKDAQTKAHNDIKDTLKRQL DE1EHANATSNSKAQAKQMVNEEARKAFSNINHATSNDLVNQAKDEGQSAIEHIHADELP 15 KAKLDANQMIDQKVEDINHLISQNPNLSNEEKNKLISQINKLVNGIKNEIQQAINKQQIE NATTKLDEVIETTKKLI I AKAEAKQVIKELSQKKRDAINNNTDLTPSQKAHALADI DKTE KDALOHIENSNSIDDINNNKEHAFNTLAHIIIWDTDOOPLVFELPELSLONALVTSEVVV HRDETISLESIIGAMTLTDELKVNIVSLPNTDKVADHLTAKVKVILADGSFVTVNVPVKV VEKELQIAKKDAIKTIDVLVKQKIKDIDSNNELTSTQREDAKAEIERLKKQAIDKVTHSK 20 SIKDIETVKRTDFEEIDQFDPKRFTLNKAKKDIITDVNTQIQNGFKEIETIKGLTSNEKT QFDKQLTALQKEFLEKVEHAHNLVELNQLQQEFNNRYEHILNQAHLLGEKHIAEHKLGYV VVNKTQQILNNQSASYFIKQWALDRIKQIQLETMNSIRGAHTVX

Sequence 2965

25 Contig_0541_pos_1894_2919
 is similar to (with p-value 2.0e-28)

>gp:gp|AB001577|AB001577_1 Pseudomonas sp. DNA for low spec ificity L-threonine aldolase, complete cds. NID: g2865133.

- 40 aatgaacctaaaaacttcactacaattataaaacatcatggtgctttattagcaaaaggc cgtctaactggtgttcaatttttagaattattcactgatgatttatattttgatataagt cgacatgctattaaaatggctgaaaaggtaaaaaaggatttatagataaaggatatcaa gtctattttgattcaccaaccaatcaacaattttttattttaagcaacgataaaattgaa gaactaaaacaaaaggtaaaattcgcagtttgggagaaatacgataatcaacatcgtgta
- 45 gttcgcttcgcaacaagttgggccacaactgaagaaaatgttaatcaactacttgaacta atataa

Sequence 2966

VISFENDYLEGAHEKVLNRLVETNRIQAAGYGFDDFSAQAADKIRQRIDCPDATIRFLVG
GTQTNQVVINSMLDSYEGVISADTGHVAVHEGGAIEFSGHKVLTIPSQEGKITAQDVENY
IETFESDFKKEHMVYPGMVYISHPTEYGTLYTKEELQSLSRVCRRHQIPLFMDGARLGYG
LMSNQTNVTIEDVAKYCDVFYIGGTKIGALCGEAIVFTKQNEPKNFTTIIKHHGALLAKG
RLTGVQF!ELFTDDLYFDISRHAIKMAEKVKKGFIDKGYQVYFDSPTNQQFFILSIDKIE
ELKQKVF:FAVWEKYDNQHRVVRFATSWATTEENVNQLLELI*

Sequence 2967
Contig_0541_pos_7422_6532
is similar to (with p-value 3.0e-74)
>sp:sp|P54204|FUR STAEP FERRIC UPTAKE REGULATION PROTEIN. >

gp:gp|X97011|SEFURSOD_1 S.epidermidis genes fur and sod (par tial). NID: g1263907.

atgttaataggatcacatgtttcaatgagtggcaaaaaatgctgcaagggtcagcagaa qaaqcacataaatatggtgaatctacatttatqatttatacaggtgcgcctcaaaataca agacqtaaaaatattqaaqatttaaatatcqaaaaaqqccaqcaqqcaatqaaaacatat qqcttatcaaatatcqttqtacatqcaccatatatcattaacattqcaaatacaaccaaa cctgaagtatttaatttaggagtcgactttctacaaaaagaaatcgaaagaactcaagcg ctcggagcgaaagatattgtactgcatcctggagcgcatgtcggagcaggtgtagataaa qqaattcaaaaaattattqaaqqacttaatqaaqtactcacacatqataatqatqtaaqa ataqcacttqaaactatqqcqqqtaaaqqaacaqaaqtaqqqaqatcttttqaaqaaatt gctcaaataattgatggtgttacacataatgatcgcttatcagtatgttttgatacgtgc cacactcatgatgccggttataacgtcaaagaagatttcgatggtgtactagaaaaattc qacaqcataattqqaqtaqatcqaattaaaqtaqtacatqttaatqacaqtaaaaaccta agaggtgcacagaaggatcgtcacgaaaatatcggctttggtcatattggctttgatgca 15 cttaattacqtaqtacatcatqatacttttaaaaaatattcccaaaatattaqaaactcca tatqttqqtqaaqataaaaaaataaaaaaccaccqtataaattaqaaataqacatqtta aaatcacaaaatttgatccagaactcaaaaacaaaattttaactcaataa

Sequence 2968

20 MLIGSHVSMSGKKMLQGSAEEAHKYGESTFMIYTGAPQNTRRKNIEDLNIEKGQQAMKTY GLSNIVVHAPYIINIANTTKPEVFNLGVDFLQKEIERTQALGAKDIVLHPGAHVGAGVDK GIQKIIEGLNEVLTHDNDVRIALETMAGKGTEVGRSFEEIAQIIDGVTHNDRLSVCFDTC HTHDAGYNVKEDFDGVLEKFDSIIGVDRIKVVHVNDSKNLRGAQKDRHENIGFGHIGFDA LNYVVHHDTFKNIPKILETPYVGEDKKNKKPPYKLEIDMLKSQKFDPELKNKILTQ*

25

30

45

Sequence 2969

Contig_0541_pos_4647 4228

>sp:sp|P54476|END4_BACSU_PROBABLE_ENDONUCLEASE_IV (EC 3.1.2 1.2) (ENDODEOXYRIBONUCLEASE_IV). >gp:gp|D84432|BACJH642_144 Bacillus subtilis DNA, 283 Kb region containing skin element. NID: g2627063. >gp:gp|Z99116|BSUB0013_223 Bacillus subtilis complete genome (section 13 of 21): from 2395261 to 261373 0. NID: g2634723.

atgaatacaaatgatgcaattaaagttttaaaggaaaacggacttaaatatactgataaa
cgtaaagatatgctagatatctttgttaaagaggataaatatttaaatgctaaacatatt
caacaacaaatggataaagactatcctggaatatcatttgatactgtatacagaaatctt
catttatttaaagatttaggcattatagagaggtaccgaattagatggagaaatgaaattc
agaatcgcatgcacaaatcatcaccatcattttatttgcgaaaattgcggagaaact
aaagtgattgatttttgtccaatagaaaagattaaaagtcaattacccaatgtaaatatt
catactcataaattagaagtgtatggtatttgtgaagaatgtcaacgtaaagcaaactaa

Sequence 2970

MNTNDAIKVLKENGLKYTDKRKDMLDIFVKEDKYLNAKHIQQQMDKDYPGISFDTVYRNL HLFKDLGIIESTELDGEMKFRIACTNHHHHHFICENCGETKVIDFCPIEKIKSQLPNVNI HTHKLEVYGICEECQRKAN*

Sequence 2971

Contig 0542 pos 5747 5274

is similar to (with p-value 2.0e-17)

>sp:sp!P41893|PPAL_SCHPO LOW MOLECULAR WEIGHT PHOSPHOTYROSI
NE PROTEIN PHOSPHATASE (EC 3.1.3.48) (LOW MOLECULAR WEIGHT C
YTOSOLIC ACID PHOSPHATASE) (EC 3.1.3.2) (PTPASE) (SMALL TYRO
SINE PHOSPHATASE). >pir:pir|A55446[A55446 protein-tyrosine-p
hosphatase (EC 3.1.3.48), low molecular weight - fission yea
st (Schizosaccharomyces pombe) >gp:gp|L33929|YSPLMPTP_1 Schi
zosaccharomyces pombe low Mr protein tyrosine phosphatase mR
NA, complete cds. NID: g602991.

gtgatactaatgatacatgtagcatttgtatgtctcggtaatatatgtcgttctccaatg gctgaggctatcatgagacaaagactacaagaaagaggtatttcagatataaaagttcat

Sequence 2972

VILMIHVAFVCLGNICRSPMAEAIMRQRLQERGISDIKVHSRGTGRWNLGEPPHNGTQKI
10 LQKYHIPYDGMVSELFEPDDDFDYIIAMDQSNVDNIKQINPNLQGQLFKLLEFSNMEESD
VPDPYYTNNFEGVFEMVOSSCDNLIDYIVKDANLKER*

Sequence 2973

Contig 0546 pos 1878 160

>sp:sp!P17444|BETA_ECOLI CHOLINE DEHYDROGENASE (EC 1.1.99.1
) (CHD). >gp:gp|X52905|ECBET_5 Escherichia coli betT, betI,
betB and betA genes. NID: g48714. >gp:gp|M77738|ECOBETA_1 E.
coli choline dehydrogenase (betA) gene, complete cds. NID: g
145401. >gp:gp|AE000138|AE000138_2 Escherichia coli K-12 MG1
655 section 28 of 400 of the complete genome. NID: g1786501.

atgagaaqaaaacgcgattcatacgattatgtcatcattggtggcggtagtgcaggttca qttcttqqtqcacqcctttcaqaqqataaaqataaaaatqttttqqtattaqaaqctqqa cqtaqtqactatttctqqqatttatttattcaaatqccaqcaqcattqatqttcccatca 25 ggtaatcgtttttatgactgggaatatcaaactgacgaagaaccacatatgggacgtaga gtagatcatgcgagaggtaaagtattaggtggctcaagttctattaacggtatgatttat caacgaggtaacccaatggactatgaaggatgggcagaacctgaaggaatggacacatgg gactttgcacattgtctaccatacttcaaaaagttagaaacaacatatggtgcagcgcca tacqataaaqttaqaqqccatqatqqtccaatcaaattaaaacqtqqaccaqctactaat 30 ccattatttaaatcattctttaatgcaggtgttgaagcgggctatcataaaactgcagac qttaatqqatacaqacaaqaaqqttttqqaccatttqataqccaaqtacatcatqqacqt cgtatgtctgcttcaagagcgtatctacgcccagcattaagacgtagaaacttagatgtt qaaacacqtqcattcqttacaaaattaatttttqatqaaaataataqtaaaaaqtaaca ggcgtgactttcaagaaaaatggtaaagaacatactgttcatgcaaacgaagttatttta 35 tctqqcqgtqctttcaatacaccacaactattacaattatcaqqtattqqtqactcaqaa ttottaaaatcaaaaggtatagagccacgtatgcatttaccaggtgttggtgagaacttc qaaqatcacttaqaaqtatatttcaacataaatqtaaacaaccqqtttcactacsacct agccttgatgtcaaacgtatgccgttcatcggtttacaatggatttttgcacgtaaaggt gcagcggcgtctaaccactttgaaggtggtggctttgtaagatcaaatgatgatgttgat 40 tatccaaacctcatgttccatttcttaccaattgctgtaagatatgatggtcaaaaagca ${\tt ccagtagcacatggttaccaagtacatgttggaccaatgtactccaactcaagaggtagt}$ ttgaaaatcaaatctaaggatccatttgaaaaaccaagtatcgtgtttaattacttatctacqaaaqaaqacqaaaqaqaatqqqttqaaqcaattaqaqtaqcaaqaaatatcctaaaa caaaaaqctatqqacccatttaatqqtqqcqaaatttcaccaqqaccacaaqttcaaacq 45 agcgcgaaaatgggacctgcatctgacccaatggcagtagtcgatccattaactatgaaa gtacatggtatggaaaatttacgtgtcgttgatgcttcagcaatgcctagaacaacaaat agaaaaccgcttgaacctcaatatgttgactattataaacatggtattgatgatgaaaaa 50 gcaggtgcaatggaagatgatccattctaccaatattaa

Sequence 2974

55

MRRKRDSYDYVIIGGGSAGSVLGARLSEDKDKNVLVLEAGRSDYFWDLFIQMPAALMFPS
GNRFYDWEYQTDEEPHMGRRVDHARGKVLGGSSSINGMIYQRGNPMDYEGWAEPEGMDTW
DFAHCLPYFKKLETTYGAAPYDKVRGHDGPIKLKRGPATNPLFKSFFNAGVEAGYHKTAD
VNYYRQEGFGPFDSQVHHGRRMSASRAYLRPALRRNLDVETRAFVTKLIFDENNYKKVT
GVTFKKHGKEHTVHANEVILSGGAFNTPQLLQLSGIGDSEFLKSKGIEPRMHLPGVGENF
EDHLEVYIQHKCKQPVSLQPSLDVKRMPFIGLQWIFARKGAAASNHFEGGGFVRSNDDVD
YPNLMFHFLPIAVRYDGQKAPVAHGYQVHVGPMYSNSRGSLKIKSKDPFEKPSIVFNYLS

TKEDEREWVEAIRVARNILKQKAMDPFNGGEISPGPQVQTDEEILDWVRKDGETALHPSC SAKMGPASDPMAVVDPLTMKVHGMENLRVVDASAMPRTTNGNIHAPVLMLAEKAADIIRG RKPLEPQYVDYYKHGIDDEKAGAMEDDPFYQY*

5 Sequence 2975

Contig 0547 pos 6940 6371

is similar to (with p-value 2.0e-34)

>pir:pir|S47148|S47148 hypothetical protein 1 - Staphylococ cus carnosus >gp:gp|X79725|SCSECA_1 S.carnosus (TM300) secA

10 gene. NID: q499333.

 $atgattagatttgaaattcatggagataacctcactatcacagatgcaattcgcaactat\\ attgaggagaaagtaggtaaattagaaagatactttaacaatgtgccaaatgctgtagca\\ catgttagagttaaaacttattctaattctacaactaaaattgaagttacaattccttta\\ aaagatgtcactcttagagctgaagaaagacatgatgatttatatgcaggcattgattta$

- 20 aaatacggtctgattgaaacaactgaataa

Sequence 2976

MIRFEIHGDNLTITDAIRNYIEEKVGKLERYFNNVPNAVAHVRVKTYSNSTTKIEVTIPL KDVTLRAEERHDDLYAGIDLITNKLERQVRKYKTRVNRKHRDRGDQDIFVAEVQESTTNN HADDIESENDIEIIRSKQFSLKPMDSEEAVLQMNLLGHDFFIFTDRETDGTSIVYRRKDG

KYGLIETTE*

25

Sequence 2977

Contig 0550 pos 2797 2369

30 is similar to (with p-value 5.0e-26)

>gp:gp|AF036166|AF036166_1 Xanthomonas campestris organic h ydroperoxide resistance protein (ohr) gene, complete cds. NI D: g3098341.

- 40 caattetgtecatactcaaaagcgacacgtggtaacattgacgttcagttagatgttaca gcgcaataa

Sequence 2978

MANSIYSTTMISNGGRDGRVFSPDNTFVQNLATPKEMGGQGGNDTNPEQLFAAGYSACFN
45 SALSLILSQNKISDANPEVEITIELLKDDTDNGFKLGADIKVTLENMSQQDAEKFVEQAH
QFCPYSKATRGNIDVQLDVTAQ*

Sequence 2979

Contig 0553 pos 7975 7067

- is similar to (with p-value 1.0e-37)
 - >sp:sp|Q27546|IUNH_CRIFA INOSINE-URIDINE PREFERRING NUCLEOS IDE HYDROLASE (EC 3.2.2.1) (IU-NUCLEOSIDE HYDROLASE) (PURINE NUCLEOSIDASE).

Sequence 2980

10

15

25

MSIPIIIDTDPGIDDATAISIALSHPQFDVKMISTVNGNVGIEKTTANALKLKRFFNSSV PVHRGASQPLINDIFEATSIHGESGMDGYEFPQINQDDLTSIHAVEAMRNLLVNTQEPLT LIAIGPLTNIAILLTSYPEVQPFIKEIVLMGGSTGRGNVTPLAEFNIYCDPEAAQIVFNS GLPLTMIGLDLAREALFTHHFVKDFKDTNATSNMLYNLFQHYKSEDFEIGFKLYDVFTIL YLLDPEAFNVKEAYTQIELNGNFTRGATVVDFNMEHPNCTVVLSPVERQYEDLFLNALSY

20 Sequence 2981

Contig 0554 pos 5578 0

is similar to (with p-value 9.0e-26)

>gp:gp|D87664|D87664_1 Thermus aquaticus DNA for DNA polyme rase family X, aminopeptidase T, QAH/OAS sulfhydrylase, complete cds. NID: g1526546.

- 35 gctggtagttttcgaagatataaggaaatgagtaaagatttagatttcataattagtaca tcagagcctaaaaaagttcaacaacaattacttcgtattccgaataaagtcaaagatgtt gctgttggggatactaaaatttctctggaattagcttatgatgatgagacgattggcgtt gattttagattgatagaacctt

40 Sequence 2982

MTKKDVIQLLEKIAIYMELKGENTFKVSAYRKAAQSLEVDERTLEEIDDVTELKGIGKGV GEVINEFKTQGQSSTLQALQDEVPEGLVPLLKIQGLGSKKIAKLYHELQITDKEILQKAC EEGKVSALKGFAKKTEQNILEAVKSMGAKKDRYPIELMRGLNQEIVKFIEQLEGVEQYST AGSFRRYKEMSKDLDFIISTSEPKKVQQQLLRIPNKVKDVAVGDTKISLELAYDDETIGV

45 DFRLIEPX

Sequence 2983

Contig_0555_pos 3938 2001

- >gp:gp|D85230|PEEGLTD_4 Plectonema boryanum URF141, ORF243,
 NADH-dependent glutamate synthase large subunit (gltB) and
 small subunit (gltD) and URF289 genes, partial and complete
 cds. NID: g1339947.

gttaagcttgtatcaaaaactggcgttggaactatagcttcaggggtagctaaagctttc qccqataaaattgttataagtggttatgatggaggtacaggtgcatcgcctaaaacaagtattcaacatgcaggtttgccatgggagataggccttgccgaaacacatcaaacacttaaa ttaaatqatttqcqtaqtcqcqtaaaattaqaaacqqatqqtaaqttactqacqqqtaaa gatgtagcttatgcttgtgcgcttggtgcagaagaatttggtttcgcaacagcaccactt gttgttttggggtgtattatgatgagggtttgtcataacgatacgtgtccagtaggggtt gcaacacaaaacaaagatttaagagctttgtttagaggtaaggcacagcatgtagttaac tttatqtattttataqctgaaqaattacqtgaaatttttgqcttcacttggtttagaaaca gtagaagagttagtaggaagaacagatcttcttcaacgttcgacgcaattgaaaccaaat agtaaagcagcttcgcttcaaatagaacgtttaatagaacaatttgacggggttaatacg aaagagatatcacaaaaccatcatcttgatgaaggattcgatttgaattatctgtaccca qacqcacqctataqtattqaaaacqqqcactcttttaccqgaaattatqttqttaataat qaacaqcqaqatgtaggtgtaattacaggtagtgcgatagctaaacaatatggagaagaa qqattacctqaaqatacqatacttqcttacactqaaqqtcatgcagqtcaaaqcttagct gcatatgcaccacgcggattaacaatccatcataccggtgatgctaatgactacgtaggt aaaggattgtccggtggaactgtcatcgtaaatgctccaaatagtcaacgtgaaaatgaa attataqcaqqaaatataaacttttacqqqqcttctaqaqqtaaaqcqtttatcaatqqt aaagctqqtqaqcqtttctqtatcaqaaataqtqqtqcaqatqttqtaqtaqaaqgtatt qqtqatcatqqacttqaatatatqacaqqqqqacatqtcattatcttagqaqatqttgga aaqaactttqqccaaqqcatgaqcqqqqqqcqtaaqttatattttctcttctqacqtqqaq aaatttaaaaaqqttaatgcgcttgaaactttagaattcagtagcatacgttttgatgag qaaaaatctcttatcaaaqacatgcttgaaqcacattttaagcatacacgtagtaacaaa qcacqccaattacttqaccaatttqacaatattqaaaaqttaqcaattaaaqttattccq aaagattacaaattaatgatgcaaaaaattgatttgaaaaaacgtcaaatqqaacqtqaa qatqaaqcaacactqqcaqcqttttatqatqacagagaaacaattgaacaagagctacag ccagcagtcatttattaa

Sequence 2984

. 5

10

15

20

25

40

45

50

55

MSYGSISAEAHETLAQAMNQIGGKSNSGEGGEDSSRYEIQKDGSNKISAIKQVASGRFGV

TSDYLQHAKEIQIKVAQGAKPGEGGQLPGSKVYPWIAETRGSTPGIGLISPPPHHDIYSI
EDLAQLIHDLKNANRRADIAVKLVSKTGVGTIASGVAKAFADKIVISGYDGGTGASPKTS
IQHAGLFWEIGLAETHQTLKLNDLRSRVKLETDGKLLTGKDVAYACALGAEEFGFATAPL
VVLGCIMMRVCHNDTCPVGVATQNKDLRALFRGKAQHVVNFMYFIAEELREILASLGLET
VEELVGRTDLLQRSTQLKPNSKAASLQIERLIEQFDGVNTKEISQNHHLDEGFDLNYLYP

DARYSIENGHSFTGNYVVNNEQRDVGVITGSAIAKQYGEEGLPEDTILAYTEGHAGQSLA
AYAPRGLTIHHTGDANDYVGKGLSGGTVIVNAPNSQRENEIIAGNINFYGASRGKAFING
KAGERFCIRNSGADVVVEGIGDHGLEYMTGGHVIILGDVGKNFGQGMSGGVSYIFSSDVE
KFKKVNALETLEFSSIRFDEEKSLIKDMLEAHFKHTRSNKARQLLDQFDNIEKLAIKVIP
KDYKLMMQKIDLKKRQMEREDEATLAAFYDDRETIEQELQPAVIY*

Sequence 2985

Contig_0555_pos_1962_520

>sp:sp!P39812|GLTB_BACSU GLUTAMATE SYNTHASE [NADPH] LARGE C HAIN (EC 1.4.1.13) (NADPH-GOGAT). >gp:gp|Z99113|BSUB0010_138
Bacillus subtilis complete genome (section 10 of 21): from 1781201 to 2014980. NID: g2634090. >gp:gp|Z99114|BSUB0011_9
Bacillus subtilis complete genome (section 11 of 21): from 2 000171 to 2207900. NID: g2634230.

atgaaatatgataaacagtcgctatcagaattgtctttggtagaccgtctttcgaatcat gaagcgtttcaacaacgcttcactaaagaagatgcttcgattcagggtgcgcgctglatg gattotggaacacctttttgtcaaactgggcaatcttatggaagagaaacaataggatgc cctattggtaattatatacctgagtggaacgacttagtctatcatcaagattttaaagct gcttacgaaagattgagagagagagaataattttcctgaatttacaggaagagtttgtcct gcaccatgtgagcaatcatgtgttatgaaaattaatagagaatccgtggcgattaaaggt attgaacgtacaattattgatgaagcatatgagaatgagtggttcatcccgcatatcct gaagatcataaagaccaacgagttgctatcgtaggtagtggtccagcgggacttacagca gctgaagaattaaactttaaaggctataaagttactgtttatgaaaaggcgcatgaacca ggcggcttgctaatgtatggtataccaaatatgaaactagataaagacgtaatacgtcga cqtqtatcacttatgaaaagatgctgggttttatttaaaacaggcgttgaaattggcgtc

15

20

10

Sequence 2986
MKYDKQSLSELSLVDRLSNHEAFQQRFTKEDASIQGARCMDCGTPFCQTGQSYGRETIGC
PIGNYIPEWNDLVYHQDFKAAYERLRETNNFPEFTGRVCPAPCEQSCVMKINRESVAIKG
IERTIIDEAYENEWVHPAYPEDHKDQRVAIVGSGPAGLTAAEELNFKGYKVTVYEKAHEP
GGLLMYGIPNMKLDKDVIRRRVSLMKDAGVLFKTGVEIGVDVSRETLEENYDAIILCTGA
QNARDLPLEGRMGSGIHFAMDYLTEQTQYLNGEIESLSITAKDKNVIIIGAGDTGADCVA
TALRENCKSIVOFNKYTKQPEEITFESNTSWPLAMPVFKMDYAHKEYEAKFGQEPPAYGV

TALRENCKSIVQFNKYTKQPEEITFESNTSWPLAMPVFKMDYAHKEYEAKFGQEPRAYGV QTMRYDVDELGNVKGLYTQILKETPDGMVMEDGPERFWPADLVLLSIGFVGTETTVPHAF DIHTERNKIVANDTNYOTNHAKIFAAGDARRGQSLVVWAIKEGREVAHSVDQYLSKEVLV

25

35

45

Sequence 2987
Contig_0557_pos_8699_9661
is similar to (with p-value 1.0e-71)

>sp:sp!P76113|YNCB_ECOLI PUTATIVE NADP-DEPENDENT OXIDOREDUC TASE IN TEHB-RHSE INTERGENIC REGION (EC 1.-.-). >gp:gp|D90 784|D90784_8 E.coli genomic DNA, Kohara clone #273(32.5-32.8 min.). NID: g1742353. >gp:gp|D90785|D90785_2 E.coli genomic DNA, Kohara clone #274(32.7-33.0 min.). NID: g1742363.

atgccacaagacgatacatttaaatatgaagatatagatgttattgaaccttcagaaaat gaattgcaattgaaaacattatatatatatatggttgatccatatatgagaggacgtatgaca aatgctgattcttatgtagatccgttcaaacaaggggaaccgttcaatggacatacggta tctaaagttttgaaatccaaggatagtaattttgatgaaggtgatatagtagtgggtatg ctaccttggagaaaataaatacagtaaatagtgagtatgttaacaaagtacctacttct gacgtaccattacatctttatcttagtgtgttggggatgcctggtcagactgcttatcat ggattacttgatattggacaacctaaagaaggtgaaacagtagttatttcagcagcttca ggt.gcagttggttcagttgtgggccaaattgcgaagcttaaaggttgcagagtcgctggt atagctggtggagataaaaaagtgaactactaaaaaatgaacttcgttttgatgctggt atcgattacaaaaaagtgaactatctaaaaaaatgaacttcgttttggtgatagatgatagtcaacaggtata gatgtctacttcgaaaatgtaggtggatatattggcgatgaagcgttcaaacaggtata acacatgcaagaattcctgtttgtgtgtgcgatttcatcctataatcatccagaaaaagat attggaccacgcattcagcaaacattgattaaaaaatcaagcaatgatgagggttcaaa gagaataaaattcaagcaatggttttaaagaagcgagcaaacaattagctcaatgggttcaa gagaataaaattaaaaatcaagcaattggttcaaagagatttcataaaaaattaaagtgcccaagcc

50 tttagaaatctgctaactggtgataattttggtaaacaagttattaaagtggcaagtgaa taa

Sequence 2988

MPQDDTFKYEDIDVIEPSENELQLKTLYISVDPYMRGRMTNADSYVDPFKQGEPFNGHTV

55 SKVLKSKDSNFDEGDIVVGMLPWRKINTVNSEYVNKVPTSDVPLHLYLSVLGMPGQTAYH
GLLDIGQPKEGETVVISAASGAVGSVVGQIAKLKGCRVVGIAGGDKKVNYLKNELRFDAG
IDYKKDNFPEALKEAVPNGIDVYFENVGGYIGDEVFKHLNTHARIPVCGAISSYNHPEKD
IGPRIQQTLIKNQAMMRGFIVAEFADGFKEASKQLAQWVQENKIKTQVSVEDGFDKVPQA
FRNLLTGDNFGKQVIKVASE*

Sequence 2989
Contig_0557_pos_9913_0
is similar to (with p-value 3.0e-17)

>sp:sp|Q08257|QOR_HUMAN QUINONE OXIDOREDUCTASE (EC 1.6.5.5)
(NADPH:QUINONE REDUCTASE) (ZETA- CRYSTALLIN). >pir:pir|PN04
48|PN0448 zeta-crystallin / quinone reductase (NADPH) (EC 1.
6.-.-) - human >gp:gp|L13278|HUMQUINZ_1 Homo sapiens zeta-cr
ystallin/quinone reductase mRNA, complete cds. NID: g292414.

atgccagttgacaaagcgccacgtgtacttggctttgatgctgttggtgtgattgaaaag ataggagatcaagtgtcaatgtttcaagaaggggacgtcgttttttattcaggttctcct aaccaaaatggttcgaatgaagaataccaattaatagaggaatatttagtagctaaagca cctacaaatttgaaaagtgaacaagcagctagcctacctttaactgggctaacaggctat gaaacgcttttcgatgtttttggaatttcaaaagaaccatctgaaaataaaggtaaatca ttgttaataattaatggagcaggtggtgtaggtagtattgcaacacagatagcgaaattt tatgggttgaaggttattacaactgcttcqaqaqaggatactataaagtggtctgttaat

20 Sequence 2990
MPVDKAPRVLGFDAVGVIEKIGDQVSMFQEGDVVFYSGSPNQNGSNEEYQLIEEYLVAKA
PTNLKSEQAASLPLTGLTAYETLFDVFGISKEPSENKGKSLLIINGAGGVGSIATQIAKF
YGLKVITTASREDTIKWSVNMGADVVLNHKKDLSX

atgggtgctgatgttgtactgaatcataagaaagatttaagtc

25 Sequence 2991
 Contig_0558_pos_11954_0
 is similar to (with p-value 1.0e-22)
 >pir:pir|A43577|A43577 regulatory protein pfoR - Clostridiu
 m perfringens

5 attggtgcagcttgtggaggtatggacttgttgccaggatttttcgctgggtatattgta ggctacatgatgaagtataccgagaaatatgtgccagatggtattgatttaattg

Sequence 2992

VLWGVFDMDLLIGTLFLILVLVVFTLFTYKAPSGMKAMGALANAAIASFLVEAFNKYVGG

QVFGIKFLEELGDAAGGLGGVAAAGLTALAIGVSPVYALVIGAACGGMDLLPGFFAGYIV
GYMMKYTEKYVPDGIDLIX

Sequence 2993

50

55

Contig 0558 pos 7113 6400

45 is similar to (with p-value 2.0e-21)

>pir:pir|A55345|A55345 diamine N-acetyltransferase (EC 2.3. 1.57) - Escherichia coli >gp:gp|D25276|ECOSN1A_1 Escherichia coli gene for spermidine acetyltransferase, complete cds. N ID: g517104. >gp:gp|AE000254|AE000254_5 Escherichia coli K-1 2 MG1655 section 144 of 400 of the complete genome. NID: g17

atggcattaacatattctctagatgattttacggtaagcttctttgttactggaaacgga tttagtgtattgtctgtagaagtttatgctatggctcgaaaaggtataagtatggagatt aatgccatttctacaataatatttattgctattatgtttggagtatttggatattacttt attcaacatatcqttaatcqtcagaaaaagatgaagcgaggtgttaatgaatga

5

10

Sequence 2994
MSHFEHFTLEHYHSLFHNDRLMSVIFNTVAVALLSASIATVIGTFGAIALYYLRNKRFKV
TLLTMNNVLMVSSDVVIGASFLIMFTAIGHFTGLGLGFSTVLASHIAFCIPIVVIIVLPQ
LYEMNDNMLNAARDLGANESQLLTSIIIPNIMPSIIGGFFMALTYSLDDFTVSFFVTGNG
FSVLSVEVYAMARKGISMEINAISTIIFIAIMFGVFGYYFIOHIVNROKKMKRGVNE*

Sequence 2995 Contig_0558_pos_1973_1638 is similar to (with p-value 1.0e-26)

>sp:sp!P23859|POTC_ECOLI SPERMIDINE/PUTRESCINE TRANSPORT SY
STEM PERMEASE PROTEIN POTC. >pir:pir|C40840|C40840 spermidin
e/putrescine transmembrane protein C - Escherichia coli >gp:
gp|D90747|D90747_3 Escherichia coli genomic DNA.(25.1 - 25.5
min). NID: g1651548. >gp:gp|AE000212|AE000212_10 Escherichi
a coli K-12 MG1655 section 102 of 400 of the complete genome
. NID: g1787358. >gp:gp|M64519|ECOPOTABCD_3 E.coli transport
protein (potA, potB, potC and potD) genes, complete cds. NI
D: g147325.

gtggtagagttattagaaattaactttatacatagaacttgtgaagtgttaattattatc
25 gatccgcagtatgcaaataatgggtacgcgaaaaaagcctttaaaatggctattgactat
gcttttttagtattaaatatgaataaggtatacttatatgtggatattaagaatgagaaa
gcagtacatatctatcaaagtaataatttcgaaatagaggaacgttaaaggaacacttc
tatacaaggggagaatatagagttgctatgtaatgggcttgttaaaaaggaattgggtt
aataagaatgatgattgtctcatataagatga

30

Sequence 2996

VVELLEINFIHRTCEVLIIIDPQYANNGYAKKAFKMAIDYAFLVLNMNKVYLYVDIKNEK AVHIYQSNNFEIEGTLKEHFYTRGEYRDCYVMGLLKRNWVNKNDDDLSHIR*

35 Sequence 2997

Contig 0561_pos_2326_3213

is similar to (with p-value 4.0e-30)

>sp:sp|P28246|BCR_ECOLI BICYCLOMYCIN RESISTANCE PROTEIN (SU LFONAMIDE RESISTANCE PROTEIN).

atgatgatgactacaagttccaaacacttatctaaaatattaatcgttatacttggcgtt atgactgcatttggtcctttgactattgatatgtacggaccatctttacctaaagttcag catgcgtttggttcatcaatttcagaaatacaacttacattatcctttgctatgataggt ttagctattggtcaatttgtattcgggccactatcagatgtattaggtcgtaaaaaaatg qcactcattttattqattqqatatttaataqcctcattattatcaqtttttacaqtt.cat 45 ttääsaatatttttaattateegtttaatteaaggtttageaggaggtggtgeaategte atagccaaagcttctattggagataactatgacggagacgaattagcaaaatttttaact tctcttatggtcataaacggtataatcaccatcattgctccactgttaggtggcctcgct ttatctattgcaagttggagaatgatttttatatttttaacaatcattaccttaatagtc atcttaggcattttattaaagatgccagttgggccccatcaagaacaatctcagttaaat 50 tttaaaqcaatatttaaaqattttqqtctqttattaacaaaacccaccttcqttattcca atqttattqcaaqqattaacttatqtcatqttattcaqttattcqtcaqccqcacctttt atttcacaaaaqatqtatcatatqacaccacttcaatacaqtqcaatqtttqctattaat qqaqtqqqtttqataqtcqtcaqtcaqataaccqctattataqtaqaaaaqqtaaqccqa

tatqcqatqctcatatatttaacaatcattcaaatqttaqqtqtttaa

55

Sequence 2998

MMMTTSSKHLSKILIVILGVMTAFGPLTIDMYGPSLPKVQHAFGSSISEIQLTLSFAMIG LAIGQFVFGPLSDVLGRKKMALILLIGYLIASLLSVFTVHLTIFLIIRLIQGLAGGGAIV IAKASIGDNYDGDELAKFLTSLMVINGIITIIAPLLGGLALSIASWRMIFIFLTIITLIV

ILGILLKMPVGPHQEQSQLNFKAIFKDFGLLLTKPTFVIPMLLQGLTYVMLFSYSSAAPF ISQKMYHMTPLQYSAMFAINGVGLIVVSQITAIIVEKVSRYAMLIYLTIIQMLGV*

Sequence 2999

Contig_0561_pos_4708_4139
is similar to (with p-value 3.0e-49)

>sp:sp|P28368|YVYD BACSU HYPOTHETICAL 22.0 KD PROTEIN IN FL IT-SECA INTERGENIC REGION. >gp:gp|Z31376|BSFLIDST_5 B.subtil is (HB2058) genes for FliD, FliS, FliT proteins. NID: g49937 9. >qp:qp|Z99122|BSUB0019 28 Bacillus subtilis complete geno me (section 19 of 21): from 3597091 to 3809700. NID: g263602 9. >qp:qp|U56901|BSU56901 22 Bacillus subtilis putative tran scriptional regulator (yvhJ), Ycr59c/Yig2 homolog (yvhK), hi stidine kinase (degS), transcriptional regulator of degradati on enzyme (degU), (degV), (comFA), (comFB), (comFC), flagell ar protein (yviB), negative regulator of flagellin (flgM), f lagellar protein (yviC), flagellar-hook associated protein 1 (flgK), flagellar-hook associated protein 3 (flgL), (yviE), transmembrane protein (yviF), (csrA), flagellin (hag), flag ellar protein (yviH), flagellar hook-associated protein 2 (f liD), flagellar protein (fliS), flagellar protein (fliT), si gma-54 modulator homolog (yviI), and (secA) genes, complete cds. NID: q1762326.

35 Sequence 3000

MIRFEIHGDNLTITDAIRNYIEEKVGKLERYFNNVPNAVAHVRVKTYSNSTTKIEVTIPL KDVT: RALERHDDLYAGIDLITNKLERQVRKYKTRVNRKHRDRGDQDIFVAEVQESTTNN HADDIESENDIEIIRSKQFSLKPMDSEEAVLQMNLLGHDFFIFTDRETDGTSIVYRRKDG KYGLIETTE*

40

15

20

Sequence 3001 Contig_0562_pos_12885_13190 is similar to (with p-value 1.0e-20)

>sp:sp|P46378|FAS6_RHOFA HYPOTHETICAL 21.1 KD PROTEIN IN FA SCIATION LOCUS (ORF6). >pir:pir|F55578|F55578 hypothetical p rotein 2 (ipt 3' region) - Rhodococcus fascians plasmid pFiD 188 >gp:gp|Z29635|RFCCIPTFD_6 R.fascians (D188) genes for P4 50 cytochrome, isopentenyltransferase and ferredoxine. NID: q455000.

Sequence 3002

VLKKIHGLLFCPTLDHDTTSVISSKVPGPPGSAMHTSPFFKITSFLSDILSTIISSSNLS CANSLCFKNVGITPIVFPLLCITVFAIVPINPAFPPPKTKV*

Sequence 3003 Contig_0562_pos_13285_12725 is similar to (with p-value 8.0e-24)

>sp:sp|P46378|FAS6_RHOFA_HYPOTHETICAL_21.1 KD_PROTEIN_IN_FA_SCIATION_LOCUS_(ORF6). >pir:pir|F55578|F55578 hypothetical_p_rotein_2 (ipt_3'_region) - Rhodococcus_fascians_plasmid_pFiD_188 >gp:gp|Z29635|RFCCIPTFD_6 R.fascians_(D188)_genes_fcr_P4_50_cytochrome, isopentenyltransferase_and_ferredoxine. %ID:

10 g455000.

- 20 ccaaaaataagaacttattaa

Sequence 3004

MNÍIVYCGASKGNKKEYENSAIQLGEWIAKNNHTLVFGGGNAGLMGTIANTVIHNNGKTI GVMPTFLKQRELAHDKLDELIIVESMSERKEVILKKGDVCIALPGGPGTLEEITEVVSWS

25 RVGQNNNPCIFFNTNNYYSLIEQFYDQMVSNEFLTQEDRDKILFSNSFQEIEEFIENYKT PKIRTY*

Sequence 3005

Contig_0563_pos_5497_5093

30 is similar to (with p-value 4.0e-71)

>gp:gp|AF046871|AF046871_3 Anabaena PCC7120 heterocyst-inhi biting signaling peptide (patS) and holiday junction resolva se (ruvC) genes, complete cds; and unknown genes. NID: g2896 023.

Sequence 3006

MLANNGLIAINLAYQNLERAFVQDVSDIESKLTLAATPKLASKSAIRESIRLAIVPTIDS

VKTYGLVSIPGMMTGLIIGGVDPLQAIKFQLLVVFIHTTATIMSALIATYMSYGQFFNAR
HQLIARTQRTRQSS*

Sequence 3007

Contig 0563 pos 1994 1008

50 is similar to (with p-value 2.0e-32)

>sp:sp|P77307|YBBM_ECOLI HYPOTHETICAL 28.2 KD PROTEIN IN US HA-TESA INTERGENIC REGION.

atgaatgtagtacttattggtggtggcactggactttctgtccttgctagaggccttaga gaatttccaatagacattactgccattgttactgtagcggacaatggtgggagcacgggg 55 aaaattagagatgtcatggatattccagcgcctggtgatattcgtaatgtcattgctgct ttaagtgactcagaatcgatattaactcaattgttccagtaccgttttggtgaaaatcaa gtagatgggcattcattaggtaatttagttattgctggaatgactaacattactaatgat tttggacacgctattaaagagttaagcaaagttttaaatattaaaggccaagtcatccct tcaacaaacgcaagtgtgcaactcaacgcggtgatggaagacggtgaaattgtacatgga

Sequence 3008

10

25

MNVVLIGGGTGLSVLARGLREFPIDITAIVTVADNGGSTGKIRDVMDIPAPGDIRNVIAA LSDSESILTQLFQYRFGENQVDGHSLGNLVIAGMTNITNDFGHAIKELSKVLNIKGQVIP STNASVQLNAVMEDGEIVHGETNIPKTHKKIDRVFLEPSDVEPMNEAIEALEQADLIVLG PGSLYTSVISNLCVKGISEALLRTSAPKLYVSNVMTQPGETDNYDVKEHIDALTRQVGEP FIDFVICSSESYSKDVLQRYEEKNSKPVAVHKEQLKDSGIRVLTASNLVEISNEHYVRHN TKVLSKMIYELALELTSTIRFTPSDKKK*

20 Sequence 3009

Contig_0564_pos_5882_6601

is similar to (with p-value 7.0e-36)

>sp:sp|P49309|MOCR_RHIME PROBABLE RHIZOPINE CATABOLISM REGULATORY PROTEIN MOCR. >pir:pir|S51574|S51574 mocR protein - Rhizobium meliloti >gp:gp|X78503|RMMOCCABR_6 R.meliloti mocC, ORF334, ORF293, mocA, mocB and mocR genes. NID: g468758.

atgattatcgttgctacagctactggggatatgcctttcccaagcgtggctaacatctta caagaaagactaggaacaggtaaggttgctactatggatcaacttgctgcatgttctggc tttatgtattcaatgattactgctaaacaatatacaatctggtgattacaaacatatt

- 40 Sequence 3010

MIIVATATGDMPFPSVANILQERLGTGKVATMDQLAACSGFMYSMITAKQYIQSGDYKHI LVVGADKLSKITDMTDRSTAVLFGDGAGAVVMGEVAEGRGIISYEMGSDGSGGKYLYLDR ETGKLKMNGREVFKFAVRIMGDASTRVVEKAGLSSEDIDLFVPHQANIRIMESARERLGI EREKMSVSVNKYGNTSAASIPLSINOELONGKIKDDDTLVLVGFGGGLTWGAIVIKWGK*

45

Sequence 3011

Contig 0564 pos 6613 0

is similar to (with p-value 9.0e-47)

- >sp:sp|P30790|YHI3_RHOCA HYPOTHETICAL 33.7 KD PROTEIN IN HI MA 5'REGION (ORF3). >pir:pir|C41608|C41608 hypothetical prot ein 3 (himA 5' region) Rhodobacter capsulatus >gp:gp|M8403 0|RCAHIMA_3 Rhodobacter capsulatus integration host factor (himA) gene, complete cds. NID: g151940.
- 55 atgaataaaaataatagagttgttataacgggtatcggagccttatctccaattggtaac gatgctaaaacaacatgggacaatgcactaaaaggtgttaacggtatagataaaatcaca agaatagatactgatgattataatgtacatcttgctggtgaattgaaagattttaatata gaagaccacattgatagaaaagagctcgccgtatggatcggtttacacaatacgcqgtg gttqctgcaagagagaqcggttaaagatgcacaattaaatattaatgaaaaaatgccgac

15

20

10

5

Sequence 3012
MNKNNRVVITGIGALSPIGNDAKTTWDNALKGVNGIDKITRIDTDDYNVHLAGELKDFNI
EDHIDRKEARRMDRFTQYAVVAAREAVKDAQLNINEKNADRIGVWIGSGIGGMETFEVAH
TTLVERGPRRVSPFFVPMLIPDMATGQVSIDLGAKGPNGSTVTACATGTNSIGEAFKIIQ
RGDADAMVTGGTEAPITHMAIAGFSASRALSTNNDPETACRPFQEGRDGFVMGEGAGIVV
LESLDSAKERGAEIYAEVVGYGSSGDAHHITAPAPEGEGGSRAMQAALDDAGIKAQDVQY
LNAHGTSTPVGDLYEVQAIKNTFGDAAKSLKVSSTKSMTGHLLGATGGIEAIFSALSIRD
SKVAPTIHAITPDEECDL

25 Sequence 3013

Contig 0564 pos 1547 414 >pir:pir|I41060|I41060 3-oxoacyl-[acyl-carrier-protein] syn thase (EC 2.3.1.41) - Escherichia coli >pir:pir|I84544|I8454 4 beta-ketoacyl-acyl carrier protein synthase II - Escherich ia coli >qp:qp|U20767|ECU20767 1 Escherichia coli beta-ketoa cyl-acyl carrier protein synthase II (fabF) gene, complete c ds. NID: q664869. >qp:qp|AE000210|AE000210 5 Escherichia col i K-12 MG1655 section 100 of 400 of the complete genome. NID : q1787332. >qp:qp|Z34979|ECFABJ 1 E.coli fabJ gene encoding 35 beta ketoacyl-acyl carrier protein synthase. NID: g510831. gtgatacatcgacaaacaaatcaattaaacactgataacttagaaaagaagcaacgacaa tataaatatqcttttaatttaqctqaaattqattctqaaaqttttcctatqcacatttttagaaaatatgcgaaagacgtttttgaagaccatcagctatcactattacaacgaggcgag cqtcaaqqqqaatatattttaaqqcaacaaatttcacattacttatttaataqtcqtqqc gtcacttqtcacccaaatcaaattattqttqgatcatcaacaaqccagttactcgatatq ataaccaatttactaaaaaaaqaaqaatttattattqaacaqccaaqttatccacctatt aaacatacqcttqataaaaaaqqtataaqttatattcaaqtcccaqttqaacaaaatqqa atacaaatcqaccctattttaaatacaaataacaatattttgtatataacaccatctcat caatttccaactggttatgtcaccaatttaaaaaaaagaacacaattaatcaattggtcc 45 catcaagctaagcaaagatatattatcqaagatgattatgattcagaatttagatatttt $\tt ggcaaacccatacctgcattacaaagtttagacacaaaaggaaaagtcatttatattagt$ actttctcaaaatctttatatccaaqctqtaqqattqcatatattqttttqccacaaaat ttaatqcacaaatataataatcaaaaatataaaqqqqaaatacaqtqcctqtqcatqtt caacacatgattgctcaattcatgataagtgggaaatttgaaagacatttgaataaaatg cqaaaqatatataqaqataaacttqattatattttaaaacqattaaaqccctacaatact caaa:aauqattqaaqqcqcactaactqqaatqcattttacaataactqttaatastqga ttgtcaatgaaacaatgtttaaaaaatgcgaaaaaaaataatttaaaaattaaaaccttat

55

Sequence 3014 VIHRQTNQLNTDNLEKKQRQYKYAFNLAEIDSESFPMHIFRKYAKDVFEDHQLSLLQRGE RQGEYILRQQISHYLFNSRGVTCHPNQIIVGSSTSQLLDMITNLLKKEEFIIEQPSYPPI KHTLDKKGISYIOVPVEONGIOIDPILNTNNNILYITPSHQFPTGYVTNLKKRTQLINWS

HQAKQRYIIEDDYDSEFRYFGKPIPALQSLDTKGKVIYISTFSKSLYPSCRIAYIVLPQN LMHKYNNQKYKEGNTVPVHVQHMIAQFMISGKFERHLNKMRKIYRDKLDYILKRLKPYNT QIKIEGALTGMHFTITVNNGLSMKQCLKNAKKNNLKLKPYHYENYSKVYPKFILGFGGIK KEELEDHVNALIHSLVI*

5

40

Sequence 3015
Contig_0566_pos_9236_0
is similar to (with p-value 5.0e-35)
>sp:sp|P94378|3MGH_BACSU_PUTATIVE 3-METHYLADENINE_DNA_GLYCO
SYLASE (EC 3.2.2.-). >gp:gp|Z99123|BSUB0020_157_Bacillus_sub
tilis_complete_genome_(section_20_of_21): from 3798401_to_40
10550. NID: g2636240. >gp:gp|D83026|D83026_59_Bacillus_subti

lis genome sequence covering lic-cel region. NID: g1783231. atgaatatagttgatgtaaatgatgttgagaaaatcgacttagcaatagatggcgctgat gaagtagacagtgcgcttaaccttattaaaggcggtggtggagccttatttagggaaaag gtcatagatgaaatggctgaccgatttgtcgttgttgtagatgaaagtaaactcgtcaac tatttaggagaaacatttgcattaccagttgaagtcgataaatttaattggtaccaagtt gccaaaaaaattgagcgtacttatgatattcatgtaagcagaagagttaatgaagatgta ccgtttataaccgacaatggtaattacatattagattgttcattgcaaaatagaattcct

20 gcttatgagctac

Sequence 3016
MNIVOVNDVEKIDLAIDGADEVDSALNLIKGGGGALFREKVIDEMADRFVVVVDESKLVN
YLGETFALPVEVDKFNWYQVAKKIERTYDIHVSRRVNEDVPFITDNGNYILDCSLQNRIP
25 AYELX

Sequence 3017 Contig_0566_pos_8875_8186 is similar to (with p-value 3.0e-19)

30 >sp:sp|P32157|YIIM_ECOLI HYPOTHETICAL 26.6 KD PROTEIN IN KD
 GT-CPXA INTERGENIC REGION (0234). >pir:pir|S40854|S40854 hyp
 othetical protein o234 - Escherichia coli >gp:gp|L19201|ECOU
 W87_53 E. coli chromosomal region from 87.2 to 89.2 minutes.
 NID: g304961. >gp:gp|AE000466|AE000466_1 Escherichia coli K
35 -12 MG1655 section 356 of 400 of the complete genome. NID: g
 2367328.

gtgatatacatgattaaagtgaatgccatatctattggcaaaatagaaacattgtettat ggaaactataaaccaatgcaatcagcgttaaacaaaattccttttaaaggtcaaatgtgg ctcaatcgacttgggttcgtggacgatgaacaagcctatcataaccatggtggtatacat aaagcgatatgttgttttagtaaatctaattatcaattattaaagatgacttagatcaa ttacctgaatttgcaatgtttggagagaatttgacagttgaacatctagatgaagcagat gtttatttggtaaatcaagtacaactaggcgatacaatcatagaagtatcaagatatacga gaaccttgttggaaaattcaagctaaatatgcaatacctaatttagttcaaaaaacgtcg caatctggtaaaactggattttatttaggttataaaaggaatgtacatcagag gataattaaaactcattaaaaaggcagaatcaaacacaccttatttgaaaagactta

50 Sequence 3018
VIYMIKVNAISIGKIETLSYGNYKPMQSALNKIPFKGQMWLNRLGFVDDEQAYHNHGGIH
KAICCFSKSNYQLFKDDLDQLPEFAMFGENLTVEHLDEADVYFGNQYQLGDTIIEVSDIR
EPCWKIQAKYAIPNLVQKMSQSGKTGFYFRVIKEGYVHQSDNLKLIKKAESNTRLSVKDL
NHLFYNERNNLRLIYHALRNPYLSPDRKKKLOKMKTRAENRKFIKSDDK*

Sequence 3019
Contig_0566_pos_3563_2946
is similar to (with p-value 8.0e-19)
>sp:sp|P47968|RPIA MOUSE RIBOSE 5-PHOSPHATE ISOMERASE (EC 5

.3.1.6) (PHOSPHORIBOISOMERASE). >gp:gp|L35034|MUSRPI_1 Mus m usculus ribose 5-phosphate isomerase (RPI) mRNA exons 1-6, c omplete cds. NID: g836673.

gtgatatatttggactttataaatcagcagacaaccaaaactgcaaaagctttattaggt gttaaaattatttaccaagatgactatcaaacatatactggatatattgtagaaactgaa gcttatttaggtatacaagataaagctgcacatggttttggtggcaaaataacaccaaaa gtgacttcttatataaaaaaggtggcacgatatatgcacatgtgatgcatacgcactta ttaatcaattttgttacacggactgagggcataccagaaggtgtacttattcgtgctatt gaaccagatgaaggtatcggcgctatgaacgtcaatcgtggaaaatctggatacgagctc actaatggtccaggaaagtggactaaagctttcaatattccacgatcaattgatggctca accttaaatgactgcaaattatctatagataccaatcatcgcaaatatcaaaaactatt atagaaagtggtcgtatcggtattcctaataaaggagaatggacaaataaaccactacgt ttcactgttaaaggcaatccatatgtctctagaatgcgcaaatcagattttcaaaatccc gacgatacatggaaataa

Sequence 3020

10

20

35

40

VIYLDFINQQTTQTAKALLGVKIIYQDDYQTYTGYIVETEAYLGIQDKAAHGFGGKITPK VTSLYKKGGTIYAHVMHTHLLINFVTRTEGIPEGVLIRAIEPDEGIGAMNVNRGKSGYEL TNGPGKWTKAFNIPRSIDGSTLNDCKLSIDTNHRKYPKTIIESGRIGIPNKGEWTNKPLR FTVKGNPYVSRMRKSDFQNPDDTWK*

Sequence 3021 Contig_0568_pos_4867_2714 is similar to (with p-value 3.0e-54)

ttaaatgcggttggtagactagaagatgcatcattagctgctgaacttttattgtccgat
gaatttgaagaggcggaatttttagctgaacaagttgaacattttaatcatgaacgtaaæ
45 gatatagtatctaaaattactaatgaagcattgttattagcagagggaacaaatcaagcaæ
ggccatttgtttcttttacttgccaaagaggggtggcatgagggtgtattaggtattgtt
gcatctaaaattgtagaaacatatgcactacctacattaattttaaatattgaagaaat
caaaatcatgccaagggttctgcgaggtcgattgaacaagtttccatgtttgatattta
aatgatcatcaacagttaattgataagtttggtggtcatcacatggctgcaggaatgaca
atgtctatcgataatattgaacatttacataaagagctagatatgtggatgaaagaa
actgttaccacttcattagagccttcaataaaggtggatgcacaacttgaagaaaaagaa
attaacattaaaaatattaaagatatatttcaattaaggccttttggtacggactttaat
agtcctctttttatggttagagatctaattgtcaagttaactgctttattttggaacaggat
aataagcatcttaagttaacgcttggtcatcaggtttaactgctttattttggaatcat
ggacatttggcaagtgaacttgaaccaggtcaaccgattcatataaaggaacattgcaa

Sequence 3022

10 VDNQEIQNLFEGTNISHDYMLLSDMQKAIDRIKLAIDQNERILVYGDYDADGVTSTTILV
STLRLLGAQVGWYIPNRFTEGYGPNELAFKNAYDEGISLIITVDNGIQGHHEISTIQELG
VDVIVTDHHEIGETLPDAFAIVHPMHPNFEYPFKYLCGAGVAYKLAQGLIEHPPQHFIAL
AAIGTIADLVSLTDENRYIVKQGVKILNNHTPSSIKAILNQAGFNDEITEETIGFIIGPR
LNAVGRLEDASLAAELLLSDEFEEAEFLAEQVEHFNHERKDIVSKITNEALLLAEEQIKQ
15 GHLFLLLAKEGWHEGVLGIVASKIVETYALPTLILNIDENQNHAKGSARSIEQVSMFDIL
NDHQQLIDKFGGHHMAAGMTMSIDNIEHLHKELDMWMKELTVTTSLEPSIKVDAQLEEKE
INIKNIKDIFQLRPFGTDFNSPLFMVRDLIVKSTKGIGQDNKHLKLTLGHSGLTALFWNH
GHLASELEPGQPIHIIGTLQINEWNGNQTPQFIIKDIAIDQLQILDYRSKRKNIQFKETE
SNVAYVIHPKLKKSNSHYYHYGEVIDRPYDKIVFRDLPNTMVEIEQTLEHSQISQLYLVL
20 QHEKSIYFEGIPSKSLFKKCYKALINKKETDLIKEGMLLCEYLNIKPEILTFMLKVFKEL
EFIYDEKGLIKINPAPNKQDIENSRIYQMRRARMEVEERLLYDDFLNIKEWIISKLT*

Sequence 3023 Contig_0569_pos_4529_5401

25 is similar to (with p-value 3.0e-33) >sp:sp|P39312|CYCA_ECOLI D-SERINE/D-ALANINE/GLYCINE TRANSPO RTER. >pir:pir|S56433|S56433 hypothetical protein o470 - Esc herichia coli >gp:gp|U14003|ECOUW93_120 Escherichia coli K-1 2 chromosomal region from 92.8 to 00.1 minutes. NID: g126317 30 2. >gp:gp|AE000492|AE000492_4 Escherichia coli K-12 MG1655 s ection 382 of 400 of the complete genome. NID: g1790649. atgcctgaactacctgaagttgaacatgttaaaagaggtattgagccatttataaaaagt gcaaaaatagagaaagtaacttttgctaaaaatgtaattaacggtaagaataataaccgt gagacgattataaaaggtatggaattagatacttttaaaaaaacttactgaaggttatgtt ataaaaaaagttgaaagaagtaagtacattattttttatatagcggatcatgacgat gatagaatcttagttagtcatttaggtatggcaggcggattctttgttgttaataacctt qatqagataagtacaccgaattatcgaaagcattggcaagtcattttcgatttggataat aaacaaaaattagtctattctgatatcagacggtttggagaaattagaaatatagtcaat tttgatagttatccatctttattagaaatcgctccagaaccatttgaagaggtggcattt 40

attettgateategtgttatageaggagetggaaatatetatgeetgtgaagetttatte

Sequence 3024

MPELPEVEHVKRGIEPFIKSAKIEKVTFAKNVINGKNNNRETIIKGMELDTFKKLTEGYV

1KKVERRSKYIIFYIADHDDDRILVSHLGMAGGFFVVNNLDEISTPNYRKHWQVIFDLDN
KQKLVYSDIRRFGEIRNIVNFDSYPSLLEIAPEPFEEVAFEHYLECLTMKKYKNKPIKQT
ILDHRVIAGAGNIYACEALFRAGITPDKITNSLTKQERKSLFYYVREVLEEGIKYGGTSI
SDYRHADGKTGQMQLHLNVYKQKKCKVCGHSIETKVIAGRNSHFCPNCQR*

55 Sequence 3025

Contig_0569_pos_8390_8887
is similar to (with p-value 1.0e-38)
>sp:sp|P44948|FPG_HAEIN FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE
(EC 3.2.2.23) (FAPY-DNA GLYCOSYLASE). >pir:pir|A64104|A6410

4 formamidopyrimidine-DNA glycosylase (fpg) homolog - Haemop hilus influenzae (strain Rd KW20) >gp:gp|U32776|U32776_1 Hae mophilus influenzae Rd section 91 of 163 of the complete gen ome. NID: g1573969.

- 5 gtgattaaacttgggagggtgacatatatgaaatgcccaaaatgtaattctacacattcc agagtggttgattcaagacatgcagatgaggccaatgcgattagacgtagaagagaatgt gaaaattgcggaacgcgttttacaacatttgaacatattgaagttagtccattaatagta gtgaagaaagatgggactagagaacaatttttaagagaaaaaatattaaatggtttagta agatcttgcgagaaacgaccagtacgttatcaacaacttgaagacataactaataaagtg gagtggcaacttagagatgagggacaaactgaaatttcttctagagaaaattggagagcat gttatgaatttgttaatgcatgttgaccaagtttcctatgtaagatttgcatctgtatat aaagaattcaaagatgttgatcaactcttagagtcaatgcaaggtatcttgagtgataat aaacggagtgataaatag
- 15 Sequence 3026
 VIKLGRVTYMKCPKCNSTHSRVVDSRHADEANAIRRRECENCGTRFTTFEHIEVSPLIV
 VKKDGTREQFLREKILNGLVRSCEKRPVRYQQLEDITNKVEWQLRDEGQTEISSREIGEH
 VMNLLMHVDQVSYVRFASVYKEFKDVDQLLESMQGILSDNKRSDK*
- 20 Sequence 3027 Contig_0569_pos_1314_691 is similar to (with p-value 1.0e-33) >sp:sp|P46227|YRS1_SYNP6 HYPOTHETICAL 19.1 KD PROTEIN IN PS BB-RPS1 INTERGENIC REGION (ORF 168). >pir:pir|S51484|S51484 hypothetical protein 168 - Synechococcus sp. >gp:gp|D28752|S YORPS1_2 Synechococcus sp. gene for ribosomal protein S1, co mplete cds. NID: q560122. ${\tt atgtctgttgtaccatggcaacaattgaatcctgctgacagtccatacgttaaaatgttt}$ ggattagttggaatcccttttgcagcaggtattattaactttgttgtacttacagctgca 30 $\tt gcctcttcttgtaatagtggtatatttgctaatagccgtacgatgtttggattagctgga$ agaaagcaaggtccagcattcttacatagaaccaataagcacggcgtaccacattatgct attttagtgacatgtggcttattaagtatttcagtcgtgttaaatgcaatttttaaagat gcgactaaagtgttcgtacaaattacaacattttcaactgttttaaatattatgatttgg
- 40 Sequence 3028
 MSVVPWQQLNPADSPYVKMFGLVGIPFAAGIINFVVLTAAASSCNSGIFANSRTMFGLAG
 RKQGPAFLHRTNKHGVPHYAILVTCGLLSISVVLNAIFKDATKVFVQITTFSTVLNIMIW
 TIIMIAYLGYLRHEPKQHKESNYKMWGGKYMAYSILGFFAFIFIILLINSATRYAVLSAP
 VWFVIMLLMYQKYKKESRKAKIKNEEE*

Sequence 3029
Contig_0570_pos_0_488
is similar to (with p-value 5.0e-39)

>sp:sp|P54715|PTIB_BACSU PTS SYSTEM, ARBUTIN-LIKE IIBC COMP ONENT (PHOSPHOTRANSFERASE ENZYME II, BC COMPONENT) (EC 2.7.1 .69). >gp:gp|Z99108|BSUB0005_89 Bacillus subtilis complete g enome (section 5 of 21): from 802821 to 1011250. NID: g26330 55. >gp:gp|D50543|D50543_3 Bacillus subtilis DNA for 76-degr ee region, complete cds. NID: g1486240.

55 atgtttgcttttttcggtattgttttgggattcgctacattatttaaaaatccaaccatt atgggaggattagctgatcagcaaacattttggtttaaattttggtctgttattgaatca ggtggttgggtaatatttacacatatggaaattgtctttgtagttggcttaccattatct cttgctaaaaaagcaccaggacatgcagctttagcagctctaatgggatatttaatgttt aatacttttatcaatgcaattttaactcaatggccacatacttttggcgctaatttaaaa

PCT/US00/30782 WO 01/34809

aaaggtgtagaaaacacaacaggattaaaatcgattgcaggtattgaaacgttagatacc aatattttaggtgcaatcattatctcaggaataataacgtggatacataatagatattac agtaagcgtttacctgaaatgttaggtgtatttcaaggattaacattcgttgtaacaatc tctttctt

Sequence 3030 MFAFFGIVLGFATLFKNPTIMGGLADQQTFWFKFWSVIESGGWVIFTHMEIVFVVGLPLS LAKKAPGHAALAALMGYLMFNTFINAILTQWPHTFGANLKKGVENTTGLKSIAGIETLDT NILGAIIISGIITWIHNRYYSKRLPEMLGVFQGLTFVVTISFX

10

25

Sequence 3031 Contig_0580_pos_966_1382 is similar to (with p-value 5.0e-85)

>sp:sp|P43848|PUR5_HAEIN PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1) (AIRS) (PHOSPHORIBOSYL-AMINOIMIDAZ 15 OLE SYNTHETASE) (AIR SYNTHASE). >pir:pir|G64122|G64122 5'-ph osphoribosyl-5-aminoimidazole synthetase (purM) homolog - Ha emophilus influenzae (strain Rd KW20) >gp:gp|U32822|U32822_2 Haemophilus influenzae Rd section 137 of 163 of the complet e genome. NID: g1574265. 20

 $\verb|atggaag| cacaa atggaaa aagatggtaattactatatggaaggaatattagatgatatt|$ ${\tt caacaagatggatatggtttcttaagaaccgttaactattctaaaggtgagaaggatatt}$ tatatttctgcaagccaaattcgacgttttgaaataaaacgtggtgataaagtaacgggt aaagttcgtaaaccaaaagataatgaaaaatattatggtctacttcaagttgattttgta aacgaccataatgcagaagaagtcaaaaaacgtccttcacttccaagctttaacacctct ttatccggaagaaagaatcctattagaaacgcaatctacaaattattccactcgtattat ggatttagtcacaccaataggtcttggtcaacgtggtcttatagttgcaccacctaa

Seguence 3032

MEAQMEKDGNYYMEGILDDIQQDGYGFLRTVNYSKGEKDIYISASQIRRFEIKRGDKVTG 30 KVRKPKDNEKYYGLLQVDFVNDHNAEEVKKRPSLPSFNTSLSGRKNPIRNAIYKLFHSYY GFSHTNRSWSTWSYSCTT*

Sequence 3033

35 Contig_0580_pos_2122_3000 is similar to (with p-value 1.0e-27)

>sp:sp|P38527|RHO_THEMA TRANSCRIPTION TERMINATION FACTOR RH O. >gp:gp|L27279|TMORHO_1 Thermotoga maritima rho gene, comp lete cds. NID: g454858.

atgaaagcgccagttctggtatcaggtactgacggtgtgggtacaaagttaaaattagca 40 attgactatggaaagcatgacacaattggtattgatgctgtcgcaatgtgtgtaaatgat attttaacaacaggtgctgaacctttatactttttagactatattgccacgaataaagta gtgccaagtactatagagcaaatcgttaaaggtataagtgacggttgcgaacaaaccaat acggcacttataggcggtgaaactgctgaaatgggagaaatgtatcatgaaggtgaatat gatattgctggttttgcagtaggagcggtagagaaagaggactatattgatggttcaaat 45 agtctagttagaaaaatgataaaagaatcaggagttcaattacatgatcaatttaatggt ttaaagaaacatattgatatcaaagcgatgagccatattactggtggaggtttctatgaa aatattccgcgtgcccttcctaaaggtttatcagcaaaaatagatacacaatcattccca 50 acqttggaagtctttaattggcttcaaaaacagggcaacatttcaacgaatgaaatgtat aacatatttaatatgggtattggatatacaattattgttgacaaaaaagatgttcaaaca

gatgatgatacacctattcatttattggaggtagaatag

acattaacaacgttacgtgcaatggatacaactgcatatgaaattggtgagattataaaa

55

Sequence 3034

MKAPVLVSGTDGVGTKLKLAIDYGKHDTIGIDAVAMCVNDILTTGAEPLYFLDYIATNKV VPSTIEQIVKGISDGCEQTNTALIGGETAEMGEMYHEGEYDIAGFAVGAVEKEDYIDGSN VEEGQAIIGLASSGIHSNGYSLVRKMIKESGVQLHDQFNGQTFLETFLAPTKLYVKPILE

LKKHIDIKAMSHITGGGFYENIPRALPKGLSAKIDTQSFPTLEVFNWLQKQGNISTNEMY NIFNMGIGYTIIVDKKDVQTTLTTLRAMDTTAYEIGEIIKDDDTPIHLLEVE*

Sequence 3035 Contig 0581 pos_6447_3826 5 is similar to (with p-value 4.0e-19) >gp:gp|X99710|LLLVSFPEP_4 L.lactis ORF, genes homologous to vsf-1 and pepF2 and gene encoding protein homologous to met hyltransferase. NID: g1771200. atgaaagctagtgaaattaggcaaaaatatttgaatttctttgtagaaaaaggacatatg 10 attgaaccgtctgcaccacttgtacctatcgatgatgattcattattgtggatcaattct ggtgtagctaccttgaaaaatactttgacggacgcgaaactcctaaaaaaaccaagaatt qtcaattctcaaaaagctatacgaacaacgatatagaaaacgtcggttttactgctcgc catcatactttttttgagatgctaggtaatttttcaatcggtgactactttaaacatgaa 15 aagctatatgtgactattcatcctgaagatactgaagcttttagaattttggcatgaagac attggtttagaggaaagtcgcatcattcgaatagaaggcaatttttgggatatcggggaa ggaccatctggaccaaatacagaaattttctatgatcgtggatcggcttatggaaaagat gatcctgctgaagaaatgtatcctggtggtgaaaatgaaagatatttagaagtttggaat ctagtgtttagtgagtttaatcacaataaagacaatacttacacaccactaccaaataaa 20 aatattgatactggcatgggattagaacgtatgacgtctatctcacaaaatgtaagaaca aattatgaaacagacttatttatgcctataattaaggaagtagaacatgtttcaggaaaa aaatatttaattgatgatgcacaagatgttgcatttaaagttatcgcagaccacattaga acgatttctttcgcaattgctgatggcgcattaccagctaatgagggtagaggatatgta ttaagaagattattacgcagagcagttcgctttagccaatcattaggaattaatgaacca 25 tttatgtataaacttgttgatatagtcgctgatatcatggaaccatattatccaaatgtc aaagacaaatccaactttattaaacgtgtcattaaatcagaggaagaacgcttccatgaa acgcttgaggaaggtcttacgattttaaatgaactgataaaagaagcgaagaatagtgat caggttattaaaggtcatgatgcttttaagttatatgatacttatggattcccaatagaa ttaactgaagaattagcaactcaagaaaatttgtctgttgatatgcctacttttgaacag 30 $\tt gttcaaagtgaagtactaaaaaaatattcaagatgaaagtcaatttgttggctatgaaact$ acggactatcaatcattaataactcatatcatatacaatggtgaagaagttaaacatgttqaaqcaqqaqaaacaatttactttattttaagagaaacgcctttctatgcagtaagtggt 35 qtaactaaagcgcctaatggccaaaacttacacaaaggtattgtgcaatttggtgaagca acacagaacgcgaaagtagaagcacgtgttaacaaagaggatagacgacttattcaaaaa ${\tt aatcatagtgctacacatttattacatgctgcattaaaagaagtattaggagatcatgtt}$ aatcaggctggttcgttagtagaacctgaaagactacgttttgatttctcacattttggt 40 cctatqacacaaqaaqaaattaatttagtagaacgtagagtaaatgaagaaatttggaga gctatcqacqtccqtattcaagaaatgagtattgaagaagccaaatcaataggcgctatg qctttatttggtgaaaaatatggagatattgttcgcgttgtcaatatggcaccattttca atagaattgtgcggtggaatacatgtgaataatactgcggaaattggtctctttaagatt $\tt gtgagtgaatctggaacaggtgccggtgttagaagaattgaagctttaacaggtaaaggt$ 45 gcattcttacatcttgaagaaattgaaacacagtttaataatattaaaaatcatttaaaa gttaaatccgataaccaagtagttgaaaaagttaaacaacttcaagaagaagaaaaagga ctgcttaaacaattagaacaacgcaacaaagaaataacatcactaaagatggggaacatt gaagaacaggttgagttgattaataatttgaaagttttagcaacagaagtagaaattcca aatccaaaagcgatacgttcaactatggatgactttaaatctaaacttcaagatactatt ataqtqttaqtcqqacaagttqatqqaaaggtttctqtaattqctacagtaccaaaatca 50 cttacaaatcaagtaaaagctggagatcttatcaaaaacatgacaccaattattggtgga

55 Sequence 3036
MKASEIRQKYLNFFVEKGHMIEPSAPLVPIDDDSLLWINSGVATLKKYFDGRETPKKPRI
VNSQKAIRTNDIENVGFTARHHTFFEMLGNFSIGDYFKHEAIEFAWEFLTSDKWMGMEPE
KLYVTIHPEDTEAFRIWHEDIGLEESRIIRIEGNFWDIGEGPSGPNTEIFYDRGSAYGKD
DPAEEMYPGGENERYLEVWNLVFSEFNHNKDNTYTPLPNKNIDTGMGLERMTSISQNVRT

qaagcattacgctttattaaagattacattaaaaatctataa

aaaqqtqgagqtcgtcctgatatggctcaaggtggcggaactcaacctgaaaaaataaca

NYETDLFMPIIKEVEHVSGKKYLIDDAQDVAFKVIADHIRTISFAIADGALPANEGRGYV
LRRLLRRAVRFSQSLGINEPFMYKLVDIVADIMEPYYPNVKDKSNFIKRVIKSEEERFHE
TLEEGLTILNELIKEAKNSDQVIKGHDAFKLYDTYGFPIELTEELATQENLSVDMPTFEQ
EMQQQRDRARQARQNSQSMQVQSEVLKNIQDESQFVGYETTDYQSLITHIIYNGEEVKHV
5 EAGETIYFILRETPFYAVSGGQVADKGTVGNESFEINVTDVTKAPNGQNLHKGIVQFGEA
TQNAKVEARVNKEDRRLIQKNHSATHLLHAALKEVLGDHVNQAGSLVEPERLRFDFSHFG
PMTQEEINLVERRVNEEIWRAIDVRIQEMSIEEAKSIGAMALFGEKYGDIVRVVNMAPFS
IELCGGIHVNNTAEIGLFKIVSESGTGAGVRRIEALTGKGAFLHLEEIETQFNNIKNHLK
VKSDNQVVEKVKQLQEEEKGLLKQLEQRNKEITSLKMGNIEEQVELINNLKVLATEVEIP
NPKAIRSTMDDFKSKLQDTIIVLVGQVDGKVSVIATVPKSLTNQVKAGDLIKNMTPIIGG
KGGGRPDMAOGGGTOPEKITEALRFIKDYIKNL*

Sequence 3037

Contig_0581_pos_3500_3072

15 is similar to (with p-value 5.0e-25)

>gp:gp|U46071|RCU46071_3 Rhodobacter capsulatus cytochrome c biogenesis (cycH) gene, complete cds, and sarcosine oxidas e gene, partial cds. NID: g1353871.

attcaataa

Sequence 3038

MLKHKILGLDVGSKTVGIAISDLMGWTAQGLDTLRINEEQDDLGIDQLVKIIKDNQVGTV
30 VIGLPKNMNNSIGFRGEASIKYKEKLQESIPSIDIVMWDERLSTMAAERSLLEADVSRQK
RKKVIDKMAAVFILQGYLDSIQ*

Sequence 3039

Contig_0581_pos_2179_1685

35 >sp:sp|P00957|SYA_ECOLI ALANYL-TRNA SYNTHETASE (EC 6.1.1.7)
 (ALANINE--TRNA LIGASE) (ALARS). >gp:gp|D90892|D90892_9 E.co
li genomic DNA, Kohara clone #446(60.5-60.9 min.). NID: g180
0074. >gp:gp|AE000353|AE000353_11 Escherichia coli K-12 MG16
55 section 243 of 400 of the complete genome. NID: g1789037.

40

45

50

Sequence 3040

MNRTKNILEIGTAIGYSSMQFANISKDINVTTIERNEDMIHLAKKFIKKYRYQNQIRLIE YDALNAFEQVNDKQYDMIFIDAAKAQSMKFFQLYTPLLKKGGIVVTDNVLYHGFVSNIDV VRSRNVKQMVKKVQQYNEWLMEQSQFTTNFINMDDGLAISIKGE*

55

Sequence 3041
Contig_0584_pos_9628_10956
is similar to (with p-value 2.0e-23)
>sp:sp|P75822|YBJT_ECOLI HYPOTHETICAL 53.7 KD PROTEIN IN AR

TP-POXB INTERGENIC REGION.

atgatgccatcagcaaaattaacgcaggctagctttgaagatatggatgcattgttagca gataattttgcgcgtgcggcgcaaaagcagggtgttaagcatattgtctacatgagtggt ttaataccagaaaatgatgagctatctgcacatttaagaagtcgacttgaatgtgaaaaa attcttggtgattacggtataccagttagcacattacgtgcaggtttaattattggtgca aaaggaagttcttatccaattcttaaacgactagttaagagattgccagcaatggttttg cctagttgggcttacaataaaattgcacctgttgccattgacgatgtgatagatggttta gcagcattggtgaatcgaacacccaaagataacgaagcaattgatatcacaggtcctgaa qtqatqaattataaaacgctgatacagcgcacagctaacgtacttgataagcgactgcct atgcttgatttacctattatacccattatcataagtcggtattgggtacaactgatttca 10 aatgtaccgaaagaaatggtatatccattaatgaatagtttaactcacgatatggtacca catcgaaaacgcgttgtgtctaacttgtccgtaggaaatatcacctttgaagatagtgtg aaaagagcactaagagaagaacaaaagacttctaagaaaaagtcggattcgaaaaattct caatcatttgggcgtatgcatcaagaaattaaagatgtacgagccattacacggtttaaa attccggaaggttattcgattaaagatgtgactaaagaatatgcaaaattcatcaataat 15 atcacactacatctcgttaaaggtacgataaatgaacgagaatttaatatgaatttgccc ttcattaataaatttattttaaaaatggaacgtgatgaagctgactctacagaagatatg gtggtatataatattgtgggtggcgatttagcacattcaaatgatggtggaaatgcacgc tttqaattccgaagaataagaaacaccaatgagggtattattgctttacaagaatatgaa cctacattaccttgggtagtatataaactaactcaagctaaagcacacaagactgttatq 20 aatatttttaaaaataaaatggcacgtttatcgcaacaaaaaatgtgaaagatgaaaca qcaqtaqqqttccaactttttaaaaagcatcaaatcaaaaagaacacaatgtcgaatgca gaattataa

25

Sequence 3042

MMPSAKLTQASFEDMDALLADNFARAAQKQGVKHIVYMSGLIPENDELSAHLRSRLECEK ILGDYGIPVSTLRAGLIIGAKGSSYPILKRLVKRLPAMVLPSWAYNKIAPVAIDDVIDGL AALVNRTPKDNEAIDITGPEVMNYKTLIQRTANVLDKRLPMLDLPIIPIIISRYWVQLIS NVPKEMVYPLMNSLTHDMVPHRKRVVSNLSVGNITFEDSVKRALREEQKTSKKKSDSKNS QSFGRMHQEIKDVRAITRFKIPEGYSIKDVTKEYAKFINNITLHLVKGTINEREFNMNLP FINKFILKMERDEADSTEDMVVYNIVGGDLAHSNDGGNARFEFRRIRNTNEGIIALQEYE PTLPWVVYKLTQAKAHKTVMNIFKNKMARLSQQKNVKDETYMSNRVTIGVTVASAFVIGS AVGFQLFKKHQIKKNTMSNAEL*

35

Sequence 3043

Contig_0585_pos_4328_4747 is similar to (with p-value 7.0e-17)

>sp:sp|P77279|YBBL_ECOLI HYPOTHETICAL ABC TRANSPORTER ATP-B
INDING PROTEIN IN USHA-TESA INTERGENIC REGION. >gp:gp|U82664
|ECU82664_88 Escherichia coli minutes 9 to 11 genomic sequen
ce. NID: g1773084. >gp:gp|AE000155|AE000155_6 Escherichia co
li K-12 MG1655 section 45 of 400 of the complete genome. NID
: g1786692.

45 atgcaacaagtgagttaatcggttatacaattgaagataatatgaaatttcctgctgag gctagaagtgaagcttttgaccgtgataaagcgaaacaactcatctctcaagtaggatta ggtaattatcagttagatgctcaaattgagcacatgtctggggggagagcaacaacgtatt accatcgctagacaactcatgtatgaacctgaagttttattattggacgaagctactagc gctttagatacacataataaaaagaaaattgaagaaattatatttaaactagcagataaa gggattgccattttgtgggattacgcatagtgatgaccaaagtatgcgtcattttaagcgt agaatcacaattactgacggtaagatatcgagtgatgaggagttgaatggtaatggtaa

Sequence 3044

MQQSELIGYTIEDNMKFPAEARSEAFDRDKAKQLISQVGLGNYQLDAQIEHMSGGEQQRI
TIARQLMYEPEVLLLDEATSALDTHNKKKIEEIIFKLADKGIAILWITHSDDQSMRHFKR
RITITDGKISSDEELNGNE*

Sequence 3045 Contig_0585_pos_5112_5516

is similar to (with p-value 2.0e-32) >sp:sp|P77307|YBBM_ECOLI HYPOTHETICAL 28.2 KD PROTEIN IN US HA-TESA INTERGENIC REGION.

Sequence 3046
MLANNGLIAINLAYQNLERAFVQDVSDIESKLTLAATPKLASKSAIRESIRLAIVPTIDS
VKTYGLVSIPGMMTGLIIGGVDPLQAIKFQLLVVFIHTTATIMSALIATYMSYGQFFNAR
HOLIARTQRTRQSS*

Sequence 3047 Contig_0589_pos_999_559 is similar to (with p-value 1.0e-35)

20 >gp:gp|Y10549|BSFMS_1 B.stearothermophilus fms gene. NID: g 2266413.

atgataacaatgaaagatattataagagatggtcatccaacacttcgtgaaaaagcgaaa gaattaagcttcccactttctaacaatgataaagaaacattgcgcgcaatgcgtgaattt ctaatcaatagtcaggatgaagaaaccgcaaaacgttatggtttacgttctggcgtaggt ttagctgctccacaaattaatgaaccaaaacgtatgattgctgtctacttacctgatgat ggaaacggtaaatcgtatgattatatgctcgtaaatcctaaaataatgagttacagtgta caagaagcttatttaccaactggcgaaggttgtctaagtgttgatgaaaacatcccaggt ttagtgcatcgtcatcatttcttaatatcactttcggttttaaaaccacaaaatttaact atcatagagattcttctttaa

30

25

Sequence 3048

MITMKDIIRDGHPTLREKAKELSFPLSNNDKETLRAMREFLINSQDEETAKRYGLRSGVG LAAPQINEPKRMIAVYLPDDGNGKSYDYMLVNPKIMSYSVQEAYLPTGEGCLSVDENIPG LVHRHHFLISLSVLKPQNLTIIEILL*

35

Sequence 3049

Contig_0591_pos_1336_2091 is similar to (with p-value 7.0e-70)

>sp:sp|Q06753|YACO_BACSU HYPOTHETICAL RRNA METHYLASE IN CYS
40 S 3'REGION. >gp:gp|D26185|BAC180K_157 B. subtilis DNA, 180 k
ilobase region of replication origin. NID: g467326. >gp:gp|Z
99104|BSUB0001_96 Bacillus subtilis complete genome (section
1 of 21): from 1 to 213080. NID: g2632267.

gtgaatgtggaagatatagtgatagtaggtagacacgcagttaaagaagcaattataca
45 ggtcacgccataaataagattttgattcaagacggtataaaaaagcaacaaattaacgac
attttaaaaaatgcaaaatcacaaaaattaattgtacaaacggtaccaaaatctaaatta
gatttttagcaaatgcacctcaccagggtgtggctgctttagtagccccatatgaatat
gcaaacttcgatgaatttttacaaaaacaaaagaaaaaagcccgttattcaactgttatc
attttagatggtttagaagacccgcataatcttggctctatattaagaacagcagatgct
tctggtgttgatgcggttattatacctaaaagacgatcagttgcgctaacacagaccgtt

gcaaaagcttctacaggagcgattcagcatgttccggttataagggttactaatctttcg
aaaactatcgacgaattaaaagacaacggcttttggattgcggggacagaagctaataat
gcaacggattatagagatttacaagcagatatgtcactaggtattgtaataggtagtgag
gggcaaggtatgagtcgtttagtgagtgataagtgatttcatattaagattccaatg

gttggacatgtcaatagcttgaacgcgtctgtggctgcaagtttaatgatgtatgaagta tatcgtaaacgtcatcagttagaggaaaagtcatga

Sequence 3050 VNVEDIVIVGRHAVKEAIISGHAINKILIQDGIKKQQINDILKNAKSQKLIVQTVPKSKL

DFLANAPHQGVAALVAPYEYANFDEFLQKQKKKARYSTVIILDGLEDPHNLGSILRTADA SGVDAVIIPKRRSVALTQTVAKASTGAIQHVPVIRVTNLSKTIDELKDNGFWIAGTEANN ATDYRDLQADMSLGIVIGSEGQGMSRLVSDKCDFHIKIPMVGHVNSLNASVAASLMMYEV YRKRHQLEEKS*

5

20

25

40

Sequence 3051 Contig_0592_pos_3596_3057 is similar to (with p-value 3.0e-43)

>sp:sp|Q47155|DINP_ECOLI DNA-DAMAGE-INDUCIBLE PROTEIN P. >g
10 p:gp|D38582|ECODINJ_11 Escherichia coli genes for 'YafH, Yaf
I, YafJ, YafK, YafQ, DinJ, YafL, YafM, FhiA, MbhA, DinP, Yaf
N, YafO and YafP. NID: g984576. >gp:gp|D83536|ECOTSF_39 Esch
erichia coli genome, 4.0 - 6.0 min region. NID: g1208942. >g
p:gp|U70214|ECU70214_72 Escherichia coli chromosome minutes
15 4-6. NID: g1552727. >gp:gp|AE000131|AE000131_10 Escherichia

4-6. NID: g1552727. >gp:gp[AE000131[AE000131_10 Escherichia coli K-12 MG1655 section 21 of 400 of the complete genome. N ID: g1786415.

atggattattttttttgctcaagttgaaatgagagataatcctaaactaaaaggaaaacct gtcatcgttggcggtaaagcgagtcatcgaggcgtagtttctacggcatcatacgaagca agagcttatggtgttcactctgctatgcctatgactcaagcacataagctatgccccaat ggatattatgtaacaagccgttttgatacttatagagaggtatctggtcaaatcatgaaa atattcagaagttatacagaattagtagaacccatgtctttagatgaagcttatttagat attacacatttagtgagaccggatttaccagcatcaaccattgcaaattatattcgcaga gatatatacgaagtaacacgtttaactgcgtcagctggcgtgtcttataataagtttta gcaaagttagcgagtggtatgaacaagccgaatggtttgacagtaattgattacaataat gtacatgaaatattaattcaatag

Sequence 3052

MDYFFAQVEMRDNPKLKGKPVIVGGKASHRGVVSTASYEARAYGVHSAMPMTQAHKLCPN
30 GYYVTSRFDTYREVSGQIMKIFRSYTELVEPMSLDEAYLDITHLVRPDLPASTIANYIRR
DIYEVTRLTASAGVSYNKFLAKLASGMNKPNGLTVIDYNNVHEILMQLDIGDFPGVKSI*

Sequence 3053

35 Contig_0593_pos_608_1306

is similar to (with p-value 1.0e-57)

>sp:sp|Q41364|SOT1_SPIOL 2-OXOGLUTARATE/MALATE TRANSLOCATOR PRECURSOR. >gp:gp|A47930|A47930_1 Sequence 1 from Patent WO 9534654. NID: g2301793. >gp:gp|U13238|SOU13238_1 Spinacia ol eracea envelope membrane 2-oxoglutarate/malate translocator (SODiT1) mRNA, chloroplast mRNA encoding chloroplast protein, complete cds. NID: g595680.

55

50

Sequence 3054
MAFFISRGFVKTGLGRRIALQFVKLFGKKTLGLAYSLVGVDLILAPATPSNTARAGGIMF
PIIKSLSESFGSSPRDGSERKMGAFLIFTEFQGNLITSAMFLTAMAGNPIAQSLAEKTAH
VQITWMNWFVAAIIPGLISLIVVPFIIYKLYPPTVKETPNAKKWATEQLEEMGHMSIAEK

LMVGVFIIALALWVLGSFINVDATLTAFIALALLLLTGVLAWSDILNETDSA*

Sequence 3055 Contig_0593_pos_6260_5115 is similar to (with p-value 4.0e-36) 5 >sp:sp|P37469|DNAC_BACSU REPLICATIVE DNA HELICASE (EC 3.6.1 .-). >gp:gp|D26185|BAC180K_4 B. subtilis DNA, 180 kilobase r egion of replication origin. NID: g467326. >gp:gp|Z99124|BSU B0021 149 Bacillus subtilis complete genome (section 21 of 2 1): from 3999281 to 4214814. NID: g2636442. 10 atgttctcacatgatggtatgaagtcatttatggaatatgtattcgaagtcggtaaggta gatcataacgaaatctatttaaaaaccacaaaagataagtcattcctagatatggacacc atttcaaatttgtataactcaaaatttataggttacggattctttgaaagatatcaacaa gatttgctcaatctttatcaaatagagcgtacgcaaaacgtattacaagaattcaattct 15 qatccgaatatacaaaattttgatgaaatgcttaacaaactacaaaaggtcagtttaatt agtgcaagtgaagaaagtgggactaaaaaaattgtagatcactttgtcgaagaattatat aqcqaaqaaccaaaacaaaaatcaatacaggttataaactggtggattacaaaataggt qqtttaqaacctacacaqttqattqtaatcqctqcqaqaccqtcaqtaqqtaaaacqqqq tttqcqcttaatatgatgcttaatatagcgtctcaaggctataaaacttcattcttcagt 20 ctagagacaactggcgtgtctgtattgaaaaggatgttatcagcagaaactgggatagaa ctaactcgtatcaaagaattaaagatttagaaccggatgaattaacacgtttaacaact gcagcagacagaatactcaaacttgatatagatatacacgataaaagcaatattactaca catgatgtacgtaaacaagcgatgaagaacaaagatgtgcaacaggttatcttcattgac ${\tt tacttacaacttatgcagacagtaagttagatcgtcgtaatggtatcgaaaagata}$ tcgcgagatttgaagattattgcaaatgaaacaggtgcaattattgtgttgctatctcaa25 ttgagcagaggtgtagaaacaagaaatgacaaaagacctatgctatctgacatgaaagaa gcaggtggaattgaagcagatgcaagtttagctatgttgttatatcgagatgattactac aaccgtgatgatgttgatgactcaggcaagtcaattgttgaatgtaacatcgcaaagaat

Sequence 3056

acatga

MFSHDGMKSFMEYVFEVGKVDHNEIYLKTTKDKSFLDMDTISNLYNSKFIGYGFFERYQQ DLLNLYQIERTQNVLQEFNSDPNIQNFDEMLNKLQKVSLISASEESGTKKIVDHFVEELY SEEPKQKINTGYKLVDYKIGGLEPTQLIVIAARPSVGKTGFALNMMLNIASQGYKTSFFS LETTGVSVLKRMLSAETGIELTRIKEIKDLEPDELTRLTTAADRILKLDIDIHDKSNITT HDVRKQAMKNKDVQQVIFIDYLQLMQTDSKLDRRNGIEKISRDLKIIANETGAIIVLLSQ LSRGVETRNDKRPMLSDMKEAGGIEADASLAMLLYRDDYYNRDDVDDSGKSIVECNIAKN KDGETGVVEFEYYKKTORFFT*

aaagacggagaaacaggtgtagttgagtttgagtactacaagaaaacgcagaggttcttc

40

45

50

30

35

Sequence 3057
Contig_0594_pos_2706_2050
is similar to (with p-value 2.0e-76)

>sp:sp|Q59935|MANA_STRMU MANNOSE-6-PHOSPHATE ISOMERASE (EC 5.3.1.8) (PHOSPHOMANNOSE ISOMERASE) (PMI) (PHOSPHOHEXOMUTASE). >gp:gp|D16594|STRPMI_2 S.mutans pmi gene for mannosephosp hate isomerase (complete cds) and scrK gene for fructokinase (partial cds). NID: g451214.

Sequence 3058

MSILVIGANGGVGSKLVSQLNEEHVDFTAGVRKEDQVKELENKGIKAILIDVEKNSINDL KNIFTDYDKVIFSVGSGGSTGADKTIIVDLDGAVKTIKASKEAGIKHYVMVSTYDSRREA FDASGDLKPYTIAKHYADDYLRTSDLNYTIVHPGSLTDDAGTGKIEADLYFDKAGSIPRE DVATVLKEVVTSDGFNNQEFQILSGNHGVKDALKNYES*

Sequence 3059

Contig_0594_pos_1408_470

10 is similar to (with p-value 3.0e-28)

>sp:sp|Q04304|YMY0_YEAST HYPOTHETICAL 24.9 KD PROTEIN IN RC A1-NPL6 INTERGENIC REGION. >pir:pir|S54466|S54466 hypothetic al protein YM9582.15 - yeast (Saccharomyces cerevisiae) >gp:gp|Z49259|SC9582X_15 S.cerevisiae chromosome XIII cosmid 958 2. NID: g807956.

atatatgatatatctaaaggttcaaactttgtgttaacttctgaagatttagatagtgtt

Sequence 3060

MPLFLKPIFLDKVWGSDNLRQFGYQLPNNHIGECWGISAHPHGKSVIENGIFAGQTLDQV
35 WNNHREIFGDFPSKDFPLMAKIVDAAAPLSIHVHPDDSYAYEHEEGQYGKSECWYIIEAD
EGAKITIGTYAKSRDEFEEQLEQGTFENYLRTIQVQPGDFYFIPAGTIHSIGAGIMAYEV
MQSSDISYRIYDYHRKTDNSEERELNIDKALDVINYSNELPNITPQNEVIENHNCTHIVS
SDFFTMVKWDISGTLNYMKPREFCLVSVLDGQGKLIVDGDIYDISKGSNFVLTSEDLDSV
FEGDFKLIISYI*

40

15

25

30

Sequence 3061

Contig_0595_pos_2494_3402

is similar to (with p-value 2.0e-60)

ttcgaaggagattttaaactaatcattagttacatttaa

>sp:sp|P44331|RBSK_HAEIN RIBOKINASE (EC 2.7.1.15). >pir:pir |B64073|B64073 ribokinase (rbsK) homolog - Haemophilus influ enzae (strain Rd KW20) >gp:gp|U32732|U32732_6 Haemophilus in fluenzae Rd section 47 of 163 of the complete genome. NID: g 1573480.

gagcaaggcacgtattgtgcatatcaagaacaatacaaaatgattcctgcgtgtaatgta aaagcaatagatacgacagcaggagatacatttataggtgcttttttaagtgagtta aataaagattttgagtaatatagaatcggctattcgacttgcaaatcaagcgtcgtctcta acggtacaacgaaaaggagcacaagcttctataccaacacgtaaagaagtagaggcagaa tataattaa

Sequence 3062
VIVIGSTNVDKFLNVKRFPKPGETLHINQAQKEFGGGKGANQAIAASRLAADTTFISKVG
KDGNANFILEDFKKAGIHTQYILTSESEETGQAFITVDEAGQNTILVYGGANMTLSATDV
EMSADAFIGADFVVAQLEVPFEAIEQAFKIARKQNITTVLNPAPAIELPKSLLELTDIII
PNETEAELLTGISINNESDMKETATYFLDLGISAVLITLGEQGTYCAYQEQYKMIPACNV
KAIDTTAAGDTFIGAFLSELNKDLSNIESAIRLANQASSLTVQRKGAQASIPTRKEVEAE
YN*

15 Sequence 3063 Contig_0596_pos_4550_3993 is similar to (with p-value 3.0e-45) >sp:sp|P20368|ADH1_ZYMMO ALCOHOL DEHYDROGENASE I (EC 1.1.1. 1) (ADH I). >pir:pir A35260 A35260 alcohol dehydrogenase (EC 1.1.1.1) I - Zymomonas mobilis >gp:gp|M32100|ZMOADHA_1 Z.mo 20 bilis alcohol dehydrogenase I (adhA) gene, complete cds. NID : g155570. gtgagtggtatcgaaccaggacaatggttaggcgtatttggtgtgggaggattaggtaat ttagcattgcaatacgccaaaaacgtaatgggcgcgaaagtcgttgcatttgacattaat qatqataaattaaattttgctaaagagcttggtgctgatgcaatcataaattcaactaat 25 qttgatcctattgaggaagttaatcgtctaacgaataataaaggattagatgcaacggtg attactgctgtagctaaaacaccttttaatcaagcagttgatgttgttaaggcgggtgca cgtgtggtagcagtaggacttccagtagataaaatggatttagatattccacgtttagtg cttgatggaattgaagtcgttggttcattagttggtaccagacaagatttaagagaagca

tttcaatttgctgccgaaaataaagttattcctaaaatccaattaagacaattatctgaa attaacgatatttttgatgaaatggaaaaaggaacaattacgggtcgaatggtaattgat atgaaaagcacgcactga

Seguence 3064

- 35 VSGIEPGQWLGVFGVGGLGNLALQYAKNVMGAKVVAFDINDDKLNFAKELGADAIINSTN VDPIEEVNRLTNNKGLDATVITAVAKTPFNQAVDVVKAGARVVAVGLPVDKMDLDIPRLV LDGIEVVGSLVGTRQDLREAFQFAAENKVIPKIQLRQLSEINDIFDEMEKGTITGRMVID MKSTH*

5 Sequence 3066

MLIDKARSFIQTMYSELKYNTNEIENRMKEIEQEINLTGSYTHTYEELSYGAKMAWRNSN RCIGRLFWNSLNVKDARDVCDEKEFIKFIHTHIKEATNGGKIKPYITIFSPEDTPKIYNN QLIRYAGYENVGDPSEKKVTRLAEHLGWKGKGSNFDILPLIYQLPNDTIKIHELPNDIVK EVSIHHEHYPKLSKLGLKWYAVPIISNMDLKIGGITYPTAPFNGWYMVTEIAVRNFTDTY

10 RLM*

Sequence 3067 Contig_0598_pos_4756_3287 unknown

qtqtaccaatataacqacqatagcttaatgttacacaatgatttatatcaaattaatatg gctgaaagctactggaatgatggtatccatgaaagaatagcagtgtttgatttgtatttt cgaaaaatgccatttaatagtggatatgcggtattcaacggattgaaacgcgttgtgaat ttcatcgaaaactttgggtttacaaatgaagatatcacatatttaaaatcgataggttat gaagaagattttctaaattacctaaaagatttgaaatttacagggaatattaaatctatg caagaaggtgaaatttgttttggtaatgagccattattaagagttgaagcacctttaatc 20 caagcgcaacttattgaaactattttgttaaatatcattaatttccaaacattaattgca actaaagccagccgaattcgtcaaatagcaactcatgacactttgatggaatttggtaca aqaaqaqctcaaqaqatcgatgctgcactgtggggcgctagagcagcctttattggaggg tttgattctacaagtaatgttagagcaggaaaactttttaatatacctgtatctggcaca 25 catgcacacgcactagtacaaacatatggtgatgagtatatagcattcaaaaagtatgct gagcgacataaaaattgtgtgttcttagttgatacttttcatactttaaaatcaggagta ccaaccgcaattaaggttgcaaaagagttaggagatactattaattttataggtatcaga ttagattctggtgatattgcgtacctatctaaagaagctcgtagaatgttagatgaggct ggttttacagaagctaaaattatcgcatcaaatgatttggatgagcagactattacaagt 30 ttaaaagcacaaggcgctaaagttgacggatggggagtaggtacaaaactgattacagga tatgatcaaccagccttaggtgcagtttataaattggtttctattgaaacagatgatggc acaatgagtgatcgcattaaattatcaaataatgctgagaaagttactaccaccaggcaaaaaaaatgtttatcgtattattaataataaaaacaggcaaggctgagggcgactatattacg ctagaaggtgaaaatcctaatgacgaatctccattgaaaatgttccatcctgttcacact 35 tacaaaatgaagtttattaaatcatttaaagcggttaatctacatcaatctatatttgaa aatggcaaacttgtataccatcttccagatgaatatgaagctcaggactatcttaaaaat aatttaagtattttatgggaagaaaataaacgatatcttaacccgcaagattatccagta qatttaagcactaaatqttqqqaaaataagcataagcgtatttttgaagttgctgaacac

40

Sequence 3068

VYQYNDDSLMLHNDLYQINMAESYWNDGIHERIAVFDLYFRKMPFNSGYAVFNGLKRVVN
FIENFGFTNEDITYLKSIGYEEDFLNYLKDLKFTGNIKSMQEGEICFGNEPLLRVEAPLI
QAQLIETILLNIINFQTLIATKASRIRQIATHDTLMEFGTRRAQEIDAALWGARAAFIGG

45 FDSTSNVRAGKLFNIPVSGTHAHALVQTYGDEYIAFKKYAERHKNCVFLVDTFHTLKSGV
PTAIKVAKELGDTINFIGIRLDSGDIAYLSKEARRMLDEAGFTEAKIIASNDLDEQTITS
LKAQGAKVDGWGVGTKLITGYDQPALGAVYKLVSIETDDGTMSDRIKLSNNAEKVTTPGK
KNVYRIINNKTGKAEGDYITLEGENPNDESPLKMFHPVHTYKMKFIKSFKAVNLHQSIFE
NGKLVYHLPDEYEAQDYLKNNLSILWEENKRYLNPQDYPVDLSTKCWENKHKRIFEVAEH

Sequence 3069
Contig_0598_pos_3057_2467
is similar to (with p-value 5.0e-55)

gttaaagagatggaggatgaaaatgagtag

>pir:pir|A47501|A47501 nitric-oxide synthase (EC 1.14.13.39), endothelial - human >gp:gp|M93718|HUMNIOXSYN_1 Human nitric oxide synthase mRNA, complete cds. NID: g189211. >gp:gp|L 10709|HUMNITOX17_1 Human constitutive endothelial nitric oxide synthase gene, exons 25 and 26 and complete cds. NID: g34

8235. >gp:gp|M95296|HUMNOS_1 Human nitric oxide synthase mRN A, complete cds. NID: g189259. >gp:gp|L26914|HUMNOSA_1 Human nitric oxide synthase mRNA, complete cds. NID: g434699. gtgaaattaccttatggtgtgcaacaagacgctcatgaagtagaagatgcacttgagttt attaatcctgacacaacatatacagttaatattaaaccagcagttgatcagagtgttcaa tcacttagtgaagcaggcatcaaacttactgattttcaaaaggtaatgaaaagacagt gaacgaatgaaagttcaattttcaattgcttctaatactcaaaggtatagttttaggaact gatcactctgccgaaaatattacaggattttacactaaatatggagatgtgtgctgcggac attgcgcctatctttgggttaaataaaagacaaggtaaacaattactagcttatctagga gcacctaaacacctttatgaaaaagtgccaacagctgatttagaagatgataaacctcag ttaccagacgaggaagcactaggcgtatcttatcatgatattgatgattatttagaaggt aaagaaattcctgcaactgctcgtgaaacaatcgaaaaacaattatgttagaaatgcacat aagcgtgaacttgcttatacacgatattcatggcctaaatataacaaatga

15 Sequence 3070

VKLPYGVQQDAHEVEDALEFINPDTTYTVNIKPAVDQSVQSLSEAGIKLTDFQKGNEKAR ERMKVQFSIASNTQGIVLGTDHSAENITGFYTKYGDGAADIAPIFGLNKRQGKQLLAYLG APKHLYEKVPTADLEDDKPQLPDEEALGVSYHDIDDYLEGKEIPATARETIEKHYVRNAH KRELAYTRYSWPKYNK*

20

40

10

Sequence 3071 Contig_0605_pos_6367_0 is similar to (with p-value 2.0e-46)

>sp:sp|Q43157|RPE_SPIOL RIBULOSE-PHOSPHATE 3-EPIMERASE PREC
URSOR (EC 5.1.3.1) (PENTOSE-5- PHOSPHATE 3-EPIMERASE) (PPE)
(RPE). >gp:gp|AF070941|AF070941_1 Spinacia oleracea ribulose
-phosphate 3-epimerase (RPE) mRNA, nuclear gene encoding chl
oroplast protein, complete cds. NID: g3264787. >gp:gp|L42328
|SPIR5P3E_1 Spinacia oleracea nuclear-encoded chloroplast ri
bulose-5-phosphate 3-epimerase mRNA, complete cds. NID: g116
2979.

atggttaaaattttaccatcacttttatctatagattttttaaatttaaaagaagagctt
caattgttagaaacagcaaaggtagacggattacactttgatgtaatggacggtaaattt
gtccctaatatttcaatcggtattccgattttggatgctgttagacaacaatctcatttg
ccaatagatgttcatttaatgattgagcaacctgaaaattatattaatcttttttgccgaa
catggtgctgatatgatttctgttcatgttgagtcgacaacacatatacatagagcaatt
gaacaaattaaacaattagggaaaaaagcaggtgtcgtcatcaatcctggaacatctgta
gaacaattttacctatattgagtattgttgattatgttctagtaatgactgtaaatcct
ggttttggtggacaaacattcatagaacaatgcgtgactaagattgagcaattaaatcaa
cttaaacatgaaaatcatttaactttttgatattgaggtagatggaggcattaacgatcaa
acgagtaaacgatgtgtaga

Sequence 3072

MVKILPSLLSIDFLNLKEELQLLETAKVDGLHFDVMDGKFVPNISIGIPILDAVRQQSHL
45 PIDVHLMIEQPENYINLFAEHGADMISVHVESTTHIHRAIEQIKQLGKKAGVVINPGTSV
ETILPILSIVDYVLVMTVNPGFGGQTFIEQCVTKIEQLNQLKHENHLTFDIEVDGGINDQ
TSKRCVX

Sequence 3073

50 Contig_0607_pos_1070_726

is similar to (with p-value 1.0e-60)

>pir:pir|I67760|I67760 transposase (insertion sequence IS10) - Escherichia coli >gp:gp|S67119|S67119_2 BST=somatotropin ...BST/beta-Gal fusion protein [Escherichia coli, LBB84, pla

smid pXT107, IS10L/R-1, PlasmidTransposonInsertionMutant, 3 genes, 1679 nt]. NID: g455674.

atgcagattgaagaaaccttccgagacttgaaaagtcctgcctacggactaggcctacgccatagccgaacgagcagctcagagcgttttgatatcatgctgctaatcgccctgatgcttcaactaacatgttggcttgcgggcgttcatgctcagaaacaaggttgggacaagcacttc

caggctaacacagtcagaaatcgaaacgtactctcaacagttcgcttaggcatggaagtt ttgcggcattctggctacacaataacaagggaagacttactcgtggctgcaaccctacta gctcaaaatttattcacacatggttacgctttggggaaattatga

5 Sequence 3074 MQIEETFRDLKSPAYGLGLRHSRTSSSERFDIMLLIALMLQLTCWLAGVHAQKQGWDKHF QANTVRNRNVLSTVRLGMEVLRHSGYTITREDLLVAATLLAQNLFTHGYALGKL*

Sequence 3075

- 20 atqataactqcaqaaaaaaqaaqaaaaacaaattcttacctaatttcgaaaaacaatcg atctactccttaagatatgacgagatgcaacaatggcttattgatcacggacaacaaaaa ttcagagcaaaacaaatttttgaatggttataccaaaagcgtgtgaatactattgatgaa atgactaacctgtctaaagagttacgtcaaattctcaaagatcattttgcaatgacgaca ttgaccactgttgttaaacaagaaagtaaagatggaacaattaagttcttatttgaatta 2.5 qtaacaacacaagtaggatgtagaattggttgtacgttttgtgcttccactttgggcgga ttaaagcgtaatttagaggccggagagattgtctctcaagtattaactgtacaaaaggca ctaqacqaaacgaatgaacgtgtatcacaaattgtcattatgggcataggtgaacctttc gagaattatgatgaaatgatggatttcttaagaattgttaatgatgataacagtttaaat 30 attggtgcacgtcatattactgtatctacttcaggaattattccaagaatttatgatttt gccgaagaagatatacaaattatttgctgtgagtcttcatggtgctaaagacgaaata agatca agatta at gcct at caatcg tgctta taacgttgata agtta at ggaagct at the substitution of the substitut $\verb|cgttatta| tca aga a aa aga ca aat cgccgtgttacttttga at at ggattgtttggtggt|\\$ cacqttaatttaataccagttaaccatgtcccagaaagaaattatgtaaagacaccaaaa gatgatatttttaaattcgagaaggaattaaagagattaggaattaatgctacaattaga
- 40 Sequence 3076
 MITAEKKKKNKFLPNFEKQSIYSLRYDEMQQWLIDHGQQKFRAKQIFEWLYQKRVNTIDE
 MTNLSKELRQILKDHFAMTTLTTVVKQESKDGTIKFLFELQDGYTIETVLMRHEYGNSVC
 VTTQVGCRIGCTFCASTLGGLKRNLEAGEIVSQVLTVQKALDETNERVSQIVIMGIGEPF
 ENYDEMMDFLRIVNDDNSLNIGARHITVSTSGIIPRIYDFAEEDIQINFAVSLHGAKDEI
 45 RSRLMPINRAYNVDKLMEAIRYYQEKTNRRVTFEYGLFGGVNDQLEHARDLAHLIKNLNC
 HVNLIPVNHVPERNYVKTPKDDIFKFEKELKRLGINATIRREQGSDIDAACGQLRAKERQ
 VETR*

cgtgagcaagggtcagatattgatgctgcgtgtggacaattaagagcgaaggaacgacaa

Sequence 3077

gtagaaacgaggtaa

50 Contig_0608_pos_4794_4123
 is similar to (with p-value 7.0e-63)
 >sp:sp|P36979|YFGB_ECOLI HYPOTHETICAL 43.1 KD PROTEIN IN ND
 K-GCPE INTERGENIC REGION. >gp:gp|D90881|D90881_3 E.coli geno
 mic DNA, Kohara clone #428(56.8-57.0 min.). NID: g1799913. >
55 gp:gp|D90882|D90882_2 E.coli genomic DNA, Kohara clone #429(
 56.9-57.2 min.). NID: g1799919. >gp:gp|U02965|ECU02965_1 Esc
 herichia coli K12 ORF384 gene, complete cds, and ORF337 gene
 , partial cds. NID: g493518. >gp:gp|AE000338|AE000338_3 Esch
 erichia coli K-12 MG1655 section 228 of 400 of the complete

genome. NID: g1788862.

atggttaaaattttaccatcacttttatctatagattttttaaatttaaaagaagagctt
caattgttagaaacagcaaaggtagacggattacactttgatgtaatggacggtaaattt
gtccctaatatttcaatcggtattccgattttggatgctgttagacaacaatctcatttg
5 ccaatagatgttcatttaatgattgagcaacctgaaaattatattaatctttttgccgaa
catggtgctgatatgatttctgttcatgttgagtcgacaacacatatacatagagcaatt
gaacaaattaaacaattagggaaaaaagcaggtgtcgtcatcaatcctggaacatctgta
gaacaattttacctatattgagtattgttgattatgttctagtaatgactgtaaatcct
ggttttggtggacaaacattcatagaacaatgcgtgactaagattgagcaattaaatcaa
cttaaacatgaaaatcatttaacttttgatattgaggtagtagaggggattaacgatcaa
acgagtaaacgatgtgtagaacagggtgctacaatgttagtcactggttcatacttctt
aaacaagaggattatgcaaaagtaactagaaactttatgtcatattacagttttatcata
tatcatttatag

15 Sequence 3078

MVKILPSLLSIDFLNLKEELQLLETAKVDGLHFDVMDGKFVPNISIGIPILDAVRQQSHL PIDVHLMIEQPENYINLFAEHGADMISVHVESTTHIHRAIEQIKQLGKKAGVVINPGTSV ETILPILSIVDYVLVMTVNPGFGGQTFIEQCVTKIEQLNQLKHENHLTFDIEVDGGINDQ TSKRCVEQGATMLVTGSYFFKQEDYAKVTRNFMSYYSFIIYHL*

20

Sequence 3079
Contig_0612_pos_14901_13966
is similar to (with p-value 1.0e-57)

>gp:gp|AB009866|AB009866_17 Bacteriophage phi PVL proviral DNA, complete sequence. NID: g3341907.

atgcacttatctaaaatattaaaacaaggtaaaatcaaagctggagaaccaatggctaaa acaggtaattcaggtcaatggactactggtccacacgtacacttccaagttgaaagaggt cgccatgatgacatcacaaacagagggacagtaaaccctgctaaatggctcaaaggtcac ggtggtggaaaagttggtggtagtggttctgtaaacgcacgtagagcaattcaaagagca 30 caatctattttaggtggacgttataaatcgtcttatattaccgaacaaatgatgagagtt qccaaacqtqaqtctaacttccaatcagatqcggttaataactgggacatcaacgcacaa aaaggaacgccttctaaaggtatgttccaaatgattgaaccatcttttagagcatatgct aaaccaggacacggaaacatcttaaatccaactgacgaagctatatctgctatgcgttac attgtaggtaagtgggttcctattatggggagttggagaagtgcatttaaacgtgctgga $\tt gattatgcttatgctacaggcggggttattaacactgctggattatataattttggcagaa$ 35 gatggataccctgagatagtaatccctacagatccaagcagacaatcagatgcgatgaaa ttgttacatcttgctgcaagtaaaattagtggaaataacagaaataaacgacctaaccaa ttacqtacacctaatqttactaqtaatacagttqataatqcagaattactactacaaatg atagaaaatcaacagaaacaaataaacgtgttaatggaaatagcacgaagtaataaaact 40 attgaaaaacaaccgaaaggtttttcagaacgcgatgtaagtcaggcacaaggttcaagg ttaagactcgctgcttatagccagggaggtttataa

Sequence 3080

MHLSKILKQGKIKAGEPMAKTGNSGQWTTGPHVHFQVERGRHDDITNRGTVNPAKWLKGH
45 GGGKVGGSGSVNARRAIQRAQSILGGRYKSSYITEQMMRVAKRESNFQSDAVNNWDINAQ
KGTPSKGMFQMIEPSFRAYAKPGHGNILNPTDEAISAMRYIVGKWVPIMGSWRSAFKRAG
DYAYATGGVINTAGLYNLAEDGYPEIVIPTDPSRQSDAMKLLHLAASKISGNNRNKRPNQ
LRTPNVTSNTVDNAELLLQMIENQQKQINVLMEIARSNKTIEKQPKGFSERDVSQAQGSR
LRLAAYSQGGL*

50

Sequence 3081

Contig_0612_pos_6018_3844

>pir:pir|S01788|S01788 formate C-acetyltransferase (EC 2.3.
1.54) - Escherichia coli >gp:gp|D90728|D90728_3 Escherichia
coli genomic DNA. (20.3 - 20.7 min). NID: g1651424. >gp:gp|X
08035|ECPFL_1 E. coli pf1 gene for pyruvate formate-lyase (E
C 2.3.1.54). NID: g42369. >gp:gp|AE000192|AE000192_6 Escheri
chia coli K-12 MG1655 section 82 of 400 of the complete geno
me. NID: g1787125.

qtqaqaqaattcatacaattgaactattcattatatgaaggtgacgatgaatttttagaa qgtcctacaaaagcaactgaaactttatgggatcaagtaatgcaattatcaaaagaagaa cgtgagcgcggtggcatgtgggacatggatactaaagtggcatcgacaatcacttctcat qacqctqqttacttagacaaagatttagaaaaagttgttggtgttcaaactgaaaaacca ttcaaacgttctatgcaaccattcggtggtattcgtatggcaaaagcagcatgtgaagcg tatggttacgaattagatccagaaacagaaaaatcttcactgaatatcgtaaaacacac aaccaaggtgtattcgatgcatattcaagagaaatgttaaactgtcgtaaagctggtatt attactggtttgccagatgcttacggacgtggacgtattatcggagactatcgtcgtgtt gctttatacggtgtagatttcttaatggaacaaaaacttaaagactttaacacaatgtct actqaaatqtctgaagatgtaattcgtttacgtgaagaattatcagagcaatatcgttca cttcaagatttaaaagaattaggtcaaaaatatggatttgatattagccgtcctgctact aacttcaaagaagctgtgcaatggttatacttagcatatt'tagctgctatcaaagaacaa aatggtgcagcaatgagtttaggacgtacttcaacattcttagatatttatgctgaacgt $\tt gatttacaaaatggtgacatcactgaacaagaagttcaagaaatcattgaccacttcatt\\$ atgaaattgcgtatcgttaaattcgcgcgtacgcctgaatataatgaattattctctggaactaaaaactcattccgtttcttacactcattagataatttaggtccagcaccagaacca aacttaacaqtqttatqqtctactcqcttacctgaaaacttcaaaatctattqtqctaaa atqaqtattaaaacgagctcaatccaatatgaaaatgatgacttaatgcgtgaaagctat ggcgatgattatggtatcgcttgctgtgtatctgccatgaagattggtaaacaaatgcaa ttcttcqqtqcacgtgctaacttagctaaagcattactttacgctatcaatggtggtaaa gatgaaaaatctggtaaacaagttgggccaagttatgaaggtattaaatcagacgtacta gattatgatgaagtettegaaagatatgaaaaaatgatggaetggttagetggegtatat atcaactcattaaatatcattcactatatgcatgataaatatagctatgaacgtcttgaa atggetttacatgatacagaaattattegcacaatggcaactggtattgeeggattgtet gtagcagctgactctttatcagcgattaaatatgcacaagttaaacctatccgtaacgaa gaaggtcttgtaactgactttaaaatcgaaggcgacttccctaaatatggtaataatgac agtcgtgttgatgaaattgcagtagatttagttgaacgtttcatgactaaattacgtagc cataaaacataccgtaattctgaacacacaatgagtgtattaacaattacttcaaacgtt gtttatggtaagaaaactggtaacacaccagatggacgtaaagctggcgaaccatttgca cctggcgcaaacccaatgcatggtcgtgaccaaaaaggtgcattatcttcactaagttca qtaqctaaaataccttacgattgctgtaaagatggtatctcaaatacatttagtatcgta ccgaaatcactaggtaaagaagaagcagatcaaaataaaaacttaactagtatgttagat qqttatqcaatqcaacatqqtcatcacctcaacattaacgtatttaatagagaaacatta attgatgcaatggaacatccagaagagtatccacaattaacgattcgtgtatctggatac $\tt gctgtaaacttcattaaattaacacgtgaacaacaattagatgttatttcacgtacattc$ cacgaatctatgtaa

Sequence 3082

10

15

20

25

30

35

40 VREFIOLNYSLYEGDDEFLEGPTKATETLWDQVMQLSKEERERGGMWDMDTKVASTITSH DAGYLDKDLEKVVGVQTEKPFKRSMQPFGGIRMAKAACEAYGYELDPETEKIFTEYRKTH NOGVFDAYSREMLNCRKAGIITGLPDAYGRGRIIGDYRRVALYGVDFLMEQKLKDFNTMS TEMSEDVIRLREELSEQYRSLQDLKELGQKYGFDISRPATNFKEAVQWLYLAYLAAIKEQ NGAAMSLGRTSTFLDIYAERDLQNGDITEQEVQEIIDHFIMKLRIVKFARTPEYNELFSG DPTWVTESIGGVGIDGRPMVTKNSFRFLHSLDNLGPAPEPNLTVLWSTRLPENFKIYCAK 45 MSIKTSSIOYENDDLMRESYGDDYGIACCVSAMKIGKQMQFFGARANLAKALLYAINGGK DEKSGKOVGPSYEGIKSDVLDYDEVFERYEKMMDWLAGVYINSLNIIHYMHDKYSYERLE MALHDTEIIRTMATGIAGLSVAADSLSAIKYAQVKPIRNEEGLVTDFKIEGDFPKYGNND SRVDETAVDLVERFMTKLRSHKTYRNSEHTMSVLTITSNVVYGKKTGNTPDGRKAGEPFA ${\tt PGANPMHGRDQKGALSSLSSVAKIPYDCCKDGISNTFSIVPKSLGKEEADQNKNLTSMLD}$ 50 GYAMQHGHHLNINVFNRETLIDAMEHPEEYPQLTIRVSGYAVNFIKLTREQQLDVISRTF HESM*

Sequence 3083 Contig_0613_pos_918_1343

55

is similar to (with p-value 1.0e-32)

>gp:gp|AB009866|AB009866_61 Bacteriophage phi PVL proviral DNA, complete sequence. NID: g3341907. atgacaaatacattagaaattaaattattatcagaaaacgcgactatgccgaagagagca

aattctacagatagtggattggacttatacgtatcagaaacgattaacattcctgcacac gcaactaaagtagttaaacagatatagcgattaatctgccttatgggtatgaggcgcaa gtaagacctagatctggtaaatcacttaaaactaaattgcgtgtagcactaggaacaata gaccaaacataccacaaagaaataggtatcatcacagataacataggtaatgaagatatc acagtagaaaaaggagaaagattagcgcaattagttgtagcgccagttgtatatcctaca cccaaacaggttgattggtttgaaaatgaaaggagagaggtgcatatggaagcacagga gaataa

Sequence 3084

10 MTNTLEIKLLSENATMPKRANSTDSGLDLYVSETINIPAHATKVVKTDIAINLPYGYEAQ VRPRSGKSLKTKLRVALGTIDQTYHKEIGIITDNIGNEDITVEKGERLAQLVVAPVVYPT PKOVDWFENESDRGAYGSTGE*

Sequence 3085

15 Contig_0613_pos_2864_3259

is similar to (with p-value 2.0e-21)

>gp:gp|AB009866|AB009866_1 Bacteriophage phi PVL proviral D NA, complete sequence. NID: g3341907.

25 gtatatatggatgcacagaaaggatattacgattag

Sequence 3086

VKEMIYNYKWMTNIITSQIYDADSTSIAQYGIESVMPKAKGQAGDKVFLKVMNRNKAWRR NLKLIEKIEFIDKYEEYITNEMNFHILQMIKLGTKLKTVMDLMEIKSKSTFYGCLNEIVN VYMDAOKGYYD*

Sequence 3087

30

35

Contig_0613_pos_4377_4844

>gp:gp|X97563|BPHA3GP3_5 Bacteriophage A2 gp3 gene and 4 op en reading frames. NID: g1523807.

- 45 Sequence 3088

 MPPRKLLSQQKGNLTVEQQENKENAEKAMAQLTEIDEKPPEWLDKDAIKEWHRILPLIQE
 LPIAALDMGLLATYCQTYSNYKNATIQLEKEGMIVETERGTKLSSYYTVQRDSVNAMNSI
 CPKLGLTVESRLKILSPDTKKEKKDEFEDLMNGKD*
- 50 Sequence 3089

Contig_0613_pos_4909_6483

is similar to (with p-value 6.0e-23)

>sp:sp|P14597|DUT_ORFN2 DEOXYURIDINE 5'-TRIPHOSPHATE NUCLEO TIDOHYDROLASE (EC 3.6.1.23) (DUTPASE) (DUTP PYROPHOSPHATASE)

>gp:gp|M30023|ORFPRTPS_1 Orf virus homologue of retroviral pseudoprotease gene, complete cds. NID: g332561.

gtgaaagcctgtcaacgccatttagatgacttgaacgattcggaactcccttatcatttt gatgtaaagaaagctaatcacattattaagtttcttgaaatgttgccagatcctaaaact ggtaaacaattatcgttaggcggttttcaaaaattcattgctggtagcttaaatggttgg

tacqacaqacatqqqtacaaaagatttacaaaagcctatatatcaatgagcagaaaaaat qqtaaaacattattgatctctggaatggcattgtacgatttattgatgggtaaagatccg ttgaatgaacggttgattggtttgagcgccaattcaagagaccaagctggtatagcatac gatatgacattggcacaactgaaagctattagaagcgtttctcctaaggttaaatcgatg actaagataacgccaagtgcaaaagaaatattgaatattaatgatcgaagtaaagttaaa gccgtttcaaatgaagctgcaaatttagaaggtcatcagtttagctacgcaatcatcgat gaatatcatgaagctaaagataaaaagatttatgaaacgttaagacgtgggcaagtgcta ctgcacaaccctatattaattattatctcaacagctggaactaatttgaatggtccgatg tatgaagaatatttatatattgataagatacttgacggcatagcaaaaaatgaaaactac tttqttttctqtqctqaacaaqatgatgagaaagaagtatatgacgttaaaacttggatt aaatccaatccacttatggagttgccagaaatggcacaattgttaactaagaatattcaa ccagaaqttaaaactgcaattgatagtggttcaggattaaatgggatattaataaagaat tt caa tat gtggcgtgcag caag cacag a a tctt a ttt a gat ttc a a tgg t a gaa gaa aaatgaaatagactttgatataaatggctctaaaacttatatcggtttagacttatcgcgtgctgacgacttaaccgcagtatcgtttgttcatcttgatgaagataatcaagagtattat qtaactaqtcattcqtttgtggctactaaaggtggattagatggcaagattgatagagac tttattgattacagacaacttgcagaaagtggttattgtacgattaccgatttacaaagt qqaattatcaatactqaccaagttttaaattacattgagaattatatcgaccaatataaa $\verb|ttagacgtacaagcgttatgttatgatccttactcaatacatggtgttattgcagaaatt|$ 20 gagcgtagagattggccttatgatttagtagaaatcagacaagggccacaaacactatct aatccgatactggattttagactgaaagtgattaatggggacatcaagcatcataaaaaat ccgttactagacattgcagtcaaaaatgctgtggcaaaagataccaatgactcattaatg attqaaaaqaagatqaaccgagaaaaaatagatccactcatggctaccatatttgcttat gttataaatagctga

25 Sequence 3090

5

10

15

30

35

40

45

50

55

VKACQRHLDDLNDSELPYHFDVKKANHIIKFLEMLPDPKTGKQLSLGGFQKFIAGSLNGW YDRHGYKRFTKAYISMSRKNGKTLLISGMALYDLLMGKDPLNERLIGLSANSRDOAGIAY DMTLAOLKAIRSVSPKVKSMTKITPSAKEILNINDRSKVKAVSNEAANLEGHQFSYAIID EYHEAKDKKIYETLRRGOVLLHNPILIIISTAGTNLNGPMYEEYLYIDKILDGIAKNENY FVFCAEODDEKEVYDVKTWIKSNPLMELPEMAQLLTKNIQPEVKTAIDSGSGLNGILIKN FNMWRAASTESYLDFNDWKKNEIDFDINGSKTYIGLDLSRADDLTAVSFVHLDEDNQEYY VTSHSFVATKGGLDGKIDRDFIDYRQLAESGYCTITDLQSGIINTDQVLNYIENYIDQYK LDVQALCYDPYSIHGVIAEIERRDWPYDLVEIRQGPQTLSNPILDFRLKVINGDIKHHKN PLLDIAVKNAVAKDTNDSLMIEKKMNREKIDPLMATIFAYVINS*

Sequence 3091

Contig 0619 pos 4899_6257

>sp:sp|069282|MQO_CORGL MALATE:QUINONE OXIDOREDUCTASE (EC 1 .1.99.16) (MALATE DEHYDROGENASE (ACCEPTOR)) (MQO). gtgagtcaacccggcgaagaaagttcaaatgtttggaataatgcgggaacaggtcattca gcattgtgtgaattgaactatacgaaagaaggtaaagatggttcagtagatattactaaa gcaattcatattaacgagcaatttcaaatatctaaacagttttgggcttatttaatacgt qaaqqtcatattqaaaqtccaqataaatttattcaatcaqtgccacatatgagctttgtt aaaqqqqaaqaaatqttaaatttttaaaaaqtcqaqtgqcqaqtttacaqaaaaatgta ttatttgaaaaaatgaaaatttctcaagatccagaaaaaattaactcatgggttccttta atgatggaaggacgccaatcagatgaagcaattgccattacgtatgacgagacaggtaca gatgttaactttggtgctttgactaaaaagttaatagctaatttacaacaaaaaaatgtt ggcattaattataaacatgaagttttagatataaaaaaattaaataatggtaactggcaa qttgtggttaaagatttaaatacatcaaatgtaatgaattatgaatctaagttcgtcttc atcggagctggtggtgcaagtttacctttattacaaaaaacaaagattaaggaatctaaa ${\tt cacattggtggtttcccagtaagtggattatttttacgatgtaaaaatccagatgtcata}$ catagacatcatgcaaaagtctacggtaaagccgaggttggtgcacctccaatgtcagtt $\verb|ccacatttagatacacgatttgttaatggtgaaaaatcattactatttggaccttttgca|\\$ gggttttcgccaaaattcttaaaaaacggttcatatttagatttagttaaatctgtgaaa cccaataatatgataacaatgttaagtgctggcgtaaaagaatttaatttgacgaaatat ttagtttctcaattaatgctttcaaatgaagaacggatcaatgatttgcgtgtattctta ccagaagcgaaagatgaagattgggaagtaattactgcaggtcaacgtgttcaagtaatt aaagatacagataagtctaaaggtcaattacaatttggtacggaagtaataacatcagaa

gatggttcacttgctgcattattaggtgcttcacctggtgcttcgactgctgttgatatc atgtttgatgtcttgcaacgttgttacaaatcagagtttaagtcatgggaaccaaaaatt aaagaaatggtcccatcatttggtttaaaattgtcagagcatgaagatatgtaccattca ataaacgaagaagtaaaaaaaatacttgaatgtaaagtag

5

Sequence 3092
VSQPGEESSNVWNNAGTGHSALCELNYTKEGKDGSVDITKAIHINEQFQISKQFWAYLIR
EGHIESPDKFIQSVPHMSFVKGEENVKFLKSRVASLQKNVLFEKMKISQDPEKINSWVPL
MMEGRQSDEAIAITYDETGTDVNFGALTKKLIANLQQKNVGINYKHEVLDIKKLNNGNWQ
VVVKDLNTSNVMNYESKFVFIGAGGASLPLLQKTKIKESKHIGGFPVSGLFLRCKNPDVI
HRHHAKVYGKAEVGAPPMSVPHLDTRFVNGEKSLLFGPFAGFSPKFLKNGSYLDLVKSVK
PNNMITMLSAGVKEFNLTKYLVSQLMLSNEERINDLRVFLPEAKDEDWEVITAGQRVQVI
KDTDKSKGQLQFGTEVITSEDGSLAALLGASPGASTAVDIMFDVLQRCYKSEFKSWEPKI
KEMVPSFGLKLSEHEDMYHSINEEVKKYLNVK*

15

10

Sequence 3093 Contig_0620_pos_2802_3113 is similar to (with p-value 7.0e-21)

>pir:pir|A00461|DEECR NADH dehydrogenase (EC 1.6.99.3) - Es

cherichia coli >gp:gp|D90746|D90746_3 Escherichia coli genom
 ic DNA.(24.9 - 25.3 min). NID: g1651543. >gp:gp|V00306|ECNDH
 X_1 E. coli gene ndh coding for respiratory NADH dehydrogena
 se (a component of the electron transport chain). This enzym
 e catalyses the transfer of electrons from NADH to the respi

ratory chain and thus links the major catabolic and energy-p
 roducing pathways of the cell. NID: g42112. >gp:gp|AE000211|
 AE000211_7 Escherichia coli K-12 MG1655 section 101 of 400 o
 f the complete genome. NID: g1787345.

atgttaaaaataacgacatgtctgatggttatttaaaaattaaagtaaatggtggagga
30 tgcacaggattaacttatggtatgtcagccgaagcagaacctggtgaaaatgatgaaatt
ctcgaatactatggtttgaaagttctagtagaccgaaatgatgctcctgtattaaatgga
acaacaattgattttaaacagtcacttatgggtggaggatttcaaataaacaatcctaat
gctattgcctcatgtggttgtggaagttcatttaaaacagctaaagtcgctggaaatcca
gagcaatgttaa

35

45

50

55

Sequence 3094
MLKNNDMSDGYLKIKVNGGGCTGLTYGMSAEAEPGENDEILEYYGLKVLVDRNDAPVLNG
TTIDFKQSLMGGGFQINNPNAIASCGCGSSFKTAKVAGNPEQC*

40 Sequence 3095

Contig_0620_pos_3383_4507 is similar to (with p-value 9.0e-18)

>sp:sp|Q44540|YNIU_AZOVI HYPOTHETICAL 11.0 KD PROTEIN IN NI FU 5'REGION (ORF6). >gp:gp|M20568|AVINIFC_16 A.vinelandii ma

jor nif gene cluster encoding nitrogen fixation complex, complete cds. NID: g758356.

tggactgctggagtgcgtggaagtcatttaatggaagaatcatttgaaggtgttaaacgt ggacgtattatcaataaacaagatttaacaattgaaggtcataatgacatctttgttata ggagattgttcagcgtttattccagctggtgaagagcgtccattaccaacaacagctcaa attqctatqcaacaaggtgagcatactgctagcaacattaaacgtttattaaatggtgaa tcaacacaagatttccaatatgttaacctaacgatcaagatgcagttgaaaggaaagaga aagaaactgagtttcaaaaacaacaagatgaagaaattgctttaa

Sequence 3096

10

15

MAODRKKVLVLGAGYAGLQTVTKLQKELSADAAEITLINKNEYHYESTWLHEASAGTINY EDLLYPVEKTVNKNKVNFVVAEVTKIDRNAKRVETDKGVYDFDILVVALGFVSETFGIDG MKEHAFOIENVLTSRKLSRHIEDKFANYAASKEKDDKDLSILVGGAGFTGIEFLGELTDR I PELCSKYGVDOSKVKLTCVEAAPKMLPMFSDDLVSYAVKYLEDRGVEFKIATPIVACNE KGFVVEVNGEKQOLEAGTSVWTAGVRGSHLMEESFEGVKRGRIINKQDLTIEGHNDIFVI GDCSAFIPAGEERPLPTTAQIAMQQGEHTASNIKRLLNGESTQDFQYVNLTIKMQLKGKR KKLSFKNNKMKKLL*

Sequence 3097 Contig_0620_pos_2198_1134 is similar to (with p-value 7.0e-29)

20 >gp:gp|Y09899|CVPME131_3 C.viguieri phS gene, gene encoding putative NADH dehydrogenase and two genes encoding unknown proteins. NID: g2765033.

 ${\tt atgaaaaacttagtattactaggcgggggctatggtaatatgcgaattatgtcgcgcatt}$ $\verb|ttacctcattcaattcctg| agggatatcacttaactttaatcgaccgcatgccattccac|$ ggtttaaaacctgaattttatgcacttgcagcaggaactaaatctgacaaagaggtgcga atccaatttccagatagcagtcaaattaatacggtttatggggaaatcagtgatatagat ${\tt ttggacgaacaaatgataacagttggaaattcaaaaatagattatgacgaacttatcatt}$ ggtctagggtgtgaggataaatatcataatgtccctggtgctgaagcatatacacatagc attcaaacattatctaaatcgcgtgaaacataccatagaattagcgagttacctaaaggg

30 gaaagtcgatcagacttggaaattttgttatatgatagagggcctcgaattttaaggaat tttccagagaaactgagtaaatacatatctaattggttttctaaacacaatgttactgta gtacctaattcagtcatcgacagagtagaacccggaaaaatttataataatggtaaacca gaaaatattgatttagtcgtttggacagcaggcatacaacctgttgaaattgtgcgtaat 35 cttcctattgatatgagtaccactggacgcgtaattattaatcagtaccatcaagtccca

acctatagaaatgtttatgtcgtaggtgactgtgctaatttaccacatgcacccagtgct caactagcagaactacaaggtgaacagattgctgaggtgttgaagaagcaatggaataac gaaccacttccagataaaatgcctgaaattaaagtacaaggctttttaggctctttaggt gacaaacaaggttttgcttatatcatggatcgaacagttaccggacgattagcctctatt

40 $\verb|ctaaaatcaggtgttctgtggcgctataaatatcataatggttaa|\\$

Sequence 3098

MKNLVLLGGGYGNMRIMSRILPHSIPEGYHLTLIDRMPFHGLKPEFYALAAGTKSDKEVR IQFPDSSQINTVYGEISDIDLDEQMITVGNSKIDYDELIIGLGCEDKYHNVPGAEAYTHS IQTLSKSRETYHRISELPKGARVGIVGAGLSGIELASELRESRSDLEILLYDRGPRILRN FPEKLSKYISNWFSKHNVTVVPNSVIDRVEPGKIYNNGKPENIDLVVWTAGIQPVEIVRN

LPIDMSTTGRVIINOYHOVPTYRNVYVVGDCANLPHAPSAQLAELQGEQIAEVLKKQWNN EPLPDKMPEIKVQGFLGSLGDKQGFAYIMDRTVTGRLASILKSGVLWRYKYHNG*

50 Sequence 3099

45

Contig_0622_pos_4948_4412

is similar to (with p-value 1.0e-61)

>qp:qp M57622 BACRGB_1 B.stearothermophilus ribosomal prote in L6 gene, complete cds. NID: g143418.

atgagtcgtgttggtaagaaaattattgacattcctagtgacgtaacagtaacttttgac atgacatttaaacaagaagaaaacactgttgaagttgtaagaccatctgattctaaagaa gacagaacagatcatggtacaactcgtgctttattaaataatatggtactaggtgtttct caaggttacgaaaaaacacttgagcttgttggtgtaggttaccgtgcacaaatgcaaggt

aaagatttagtacttaatgttggatactctcacccagttgaaattaaagcagaagaaggcattactttcgctgttgagaaaaatacaactgttaaagtatctggtgtttctaaagaacaagttggtgcgattgcttctaacattcgttctgtaagacctccagaaccttataaaggtaaaggtattcgctaccaaggtgaatatgtacgccgtaaagaaggtaaaactggtaaataa

5

Sequence 3100 MSRVGKKIIDIPSDVTVTFDGSHVTVKGPKGELERTLNERMTFKQEENTVEVVRPSDSKE DRTDHGTTRALLNNMVLGVSQGYEKTLELVGVGYRAQMQGKDLVLNVGYSHPVEIKAEEG ITFAVEKNTTVKVSGVSKEQVGAIASNIRSVRPPEPYKGKGIRYQGEYVRRKEGKTGK*

10

20

30

55

Sequence 3101 Contig_0623_pos_10299_9358 is similar to (with p-value 7.0e-34)

>gp:gp|AF017231|AF017231_1 Trypanosoma brucei brucei inosin e-adenosine-guanosine-nucleoside hydrolase mRNA, complete cd s. NID: g2645494.

Sequence 3102

35 MTKVYFNHDGGVDDLVSLFLLLQMENIELVGVSTIGADCYLEPSLSASLKIINRFSDVEI NVAPSYERGKNPFPKEWRMHAFFMDALPVLNESCIPKRCKASEDEAYIDIIRKVKSCDEK VTLLFTGPLTDLAKAIKYDNSILKNIEKLVWMGGTFLDKGNVEEPEHDGTAEWNAFWDPE AVKVVLDSDMNVDIVALESTNQVPLTMEVRQMWADKRQYLGVDFLGTSYAAVPPLTHFVT NSTYFLWDVLTTAYVGSPNLVESTKLKIDVVSQGPSQGRTFQSEYGREVQVITDVNKQAF 40 FNYITDLAKKIES*

Sequence 3103
Contig_0625_pos_635_1573
is similar to (with p-value 4.0e-70)

tttaactacataacggatttagcaaagaaaatcgagtcctaa

>sp:sp|P54524|YQIG_BACSU PROBABLE NADH-DEPENDENT FLAVIN OXI
DOREDUCTASE YQIG (EC 1.-.-.). >gp:gp|D84432|BACJH642_230 Ba
cillus subtilis DNA, 283 Kb region containing skin element.
NID: g2627063. >gp:gp|Z99116|BSUB0013_132 Bacillus subtilis
complete genome (section 13 of 21): from 2395261 to 2613730.
NID: g2634723.

gtggaaagggggagtcaaaaggtgaaaacgctaatgattaaagcaatggggacggtgata cgtttatcgattgagcatcaacatccggatacattacttcaagaagctgaaataaaaatt cgtgcttgggaatcacaatttagtgctaatgatccgaaatcagatttgatgaatgtgaat cagcatgcaggtatcgcaccagtcaaggttagttctgagatgtttaacatgatacgtttt ggttacgaaactacattatcttctaattttaagatgaacattttgatagggccactagtc aaattatggaaaattggttttaaagatgcattgaaacctaaagaagaggatatacaacgt gctttattggtatggatcctgaaaatcttgttctaaattcaaaacacatgaagtattt cttacacaatcaggaatggagttgatttaggagctataggtaaaggcatttttgctgat caattacagcaatactttttagctcatggtgtatcttctggcattatcggatttaggtggt

Sequence 3104

45

50

10 VERGSQKVKTLMIKAMGTVIRLSIEHQHPDTLLQEAEIKIRAWESQFSANDPKSDLMNVN QHAGIAPVKVSSEMFNMIRFGYETTLSSNFKMNILIGPLVKLWKIGFKDALKPKEEDIQR ALLCMDPENLVLNSKTHEVFLTQSGMEIDLGAIVKGYFADQLQQYFLAHGVSSGIIDLGG NVLTIGRQPETLEKWHVGVRNPFHKDTLPLVTLSVEHQSVVTSGIYERYFIQENQLFHHI LDSTTGYPVDNDIASVTIISDHGIDGEVWSTICSFGQSQKNIELLNLIDGIEGIIVTRDG SVLMTSKMQKYL*

Sequence 3105 Contig_0625_pos_1591_4674 is similar to (with p-value 8.0e-25)

>sp:sp|P33944|YOJL_ECOLI HYPOTHETICAL 38.5 KD LIPOPROTEIN I N ADA-OMPC INTERGENIC REGION PRECURSOR. >gp:gp|AE000310|AE00 0310_6 Escherichia coli K-12 MG1655 section 200 of 400 of th e complete genome. NID: g2367131.

atgaagagtattttatttttaagtaataatgtgaaaatattcacaaaaaactaggagga 25 tttgctatgagtaaggaaatattcgatacttttaaatttaaatgtggtgccgaattaaaa aatagagtattaatggcacccatgactatccaagctgggtattttgatggaagtgttaca tcagaaatgattgattattatcaatttagagctggtgatgcttcagcaatcattgttgaa ${\tt agttgttttgttgaaaatcacggacgaggatttccgggagctataggtattgataatgat}$ gacaaaatacctggactcaaacgtttagcagaagcgattcaagctaagggatcaaaagcg 30 $\verb|attttgcaactttatcatgccggaagaatggcaaatcctaaatttaatgaaggagagcag|$ ccqatatctqcqaqccccattqcaqcattaaqacctqatqctqtaccacctagagaaatg acacatqctcaaatcaatcagatgattgatgactttggagaggctacacgtcgcgctata gaagcggggtttgatggtgtcgaaattcatggcgccaacacatacttattacaacaattt ttctctccacattctaatcggagacaagattcatggggaggcagtcgtgaaaaacgtaca35 cgatttccaatcgaagttttgacaaaggttcaacacgtcgttgctgaaaaagaggcttct cattttattataggatatcgattctcacctgaagaaattgaagaaccaggcatacgtttt gaagataccatgtttttactaaatacattagcagaatatgaacctgattacttccatata tcagcaaacaqttatcaacqtacatctattqtqaatcaaqaaqatacaqaacctttaatt aataagtacatcaaaatgcaaagtgcacagttggcaaaaattccattaattggtgtaggt 40 agtattgcccaacgacaagatgcagaacatgcccttgaactaggatatgatcttttaagt gttgggaaagcctatttagtggaaccacaatggacagataaaatttcacaaaacgaagaa gtagaacaatttgtcgatatacatgatcagaaagtacttcacataccatcccctttatgg aaagtaatggactttatgattttagataaagaagaagagcatcgtaaatatgaaaaatta aaagcacttcaaaataaaaagttaaatttaacaaaggtacgtatcatgtctatgcaaaa

aaagcacttcaaaataaaaaagttaaatttaacaaaggtacgtatcatgtctatgcaaaa ggtcataatggcaacttacctatgaaagtccaattatcagaagataagattgtaagtatc gaggtagatgatagcggagagtctgaaggcatagcgaacccagtgtttgaacgtttacct caagatattatcaatgggcaaacactgaatgtagatgtcatttcaggtgcgacagtaaca agtgaaggcatcgtgcaaggtattgcagatgcaattgaacaagcaggagaagacccagat atttacgggcgcgtcctaaaccagtcgttcagtggtctgatgaggttgttgaagagacg actgatgtcgttgtgattggtacaggaggtgccggactcagtgcagctgctacggcatta gatgaaggaaaagacgcatcatgcttgagaaggtcatcatgctactat

cgtacaggtggtcaagtcaacgctgctgagcctaaatggcaaaatgcattcccggcactt

gctggtgaaaaagagacactcatacagttattaaatcatgatgaaaatgatatagatgaa gcttacattgaagatttcaatactttaaaacgtcaaattaaagactatcttgaaaatagc 35 agtaatgaagatgaatatctttttgattctgtcgaattacatcgtattcaaacatattta ggtggtaaacgtaaagatcgtaataatgtcgaaatttcaggtgattatgatttagttaaa acactcacagataacgttttggaatcagtatattggttgaaagacaaaggtgtacatttt gatcgttcgtttgtagatatgcctgtgggtgctttatggcgtcgtggtcataaaccaatg aaagcacaaggtttagagtacattgaaaatttaggagactacgttaaacataatcatggt

cqtatttttacaqaaactactgcagaaaagttaattaaagaaggtaatcaagttgttggt attgaaqcacqtaaaqcaaatggtgctaaagtgaagattcatacacgtcatggtgtagtg ttqqctactgqtggctttggagcgaatacaaaaatgctacaacaatataatacgtattgg gataatattcctgatgacattaagacaacgaattctcctgcaattacaggtgatggtata cgtttaggtgtgcaggcaggcgctgacatcgtaggtatgggattctctcaaatgatgccg atttctgatccgaagacaggtgcattgtttactggattaattgtaacaccttcaaacttt gtcttcgttaataaggaaggacagcgttttgttaacgaatttgaaagtagagatgtatta tctaaqqcaqcattaqaacaaaaagacggtatcttctatattattgcagatgcaaatatt aaaqcactagctatgaatacaactgaggataaaattaatcaagaattagaagacggcact ttagtaaaagcagataccttagaagcattagcccaaaaattaaacattgatacaactact tttgtgaacacgattgaaagatataataccttcgtagaacaaggacaagatgaggatttc aataaaaatgcatttgatttaaaaattgaaaaagcaccattctacgcgacaccacgtaaa cctgcaatacatcatactatgggtggtttaaaaaataaacacgcatgcacaagttatagat gttgaaggtcatatcattgaaggtttatatgcggctggtgaagttgccggtggtattcat qctqqtaaccgtttaggcggaaatgcactggcagatatttttacttttggtcgcattgcc ggtcaaagtgctgtaacgaaataa

Sequence 3106

5

10

15

40

45

50

MKSILFLSNNVKIFTKKLGGFAMSKEIFDTFKFKCGAELKNRVLMAPMTIQAGYFDGSVT SEMIDYYQFRAGDASAIIVESCFVENHGRGFPGAIGIDNDDKIPGLKRLAEAIQAKGSKA 20 ILOLYHAGRMANPKFNEGEOPISASPIAALRPDAVPPREMTHAQINQMIDDFGEATRRAI EAGFDGVEIHGANTYLLOOFFSPHSNRRODSWGGSREKRTRFPIEVLTKVOHVVAEKEAS HFIIGYRFSPEEIEEPGIRFEDTMFLLNTLAEYEPDYFHISANSYQRTSIVNQEDTEPLI NKYIKMOSAOLAKIPLIGVGSIAQRQDAEHALELGYDLLSVGKAYLVEPQWTDKISQNEE 25 VEOFVDIHDQKVLHIPSPLWKVMDFMILDKEEEHRKYEKLKALQNKKVKFNKGTYHVYAK GHNGNLPMKVQLSEDKIVSIEVDDSGESEGIANPVFERLPQDIINGQTLNVDVISGATVT SEGIVQGIADAIEQAGEDPDILRARPKPVVQWSDEVVEETTDVVVIGTGGAGLSAAATAL DEGKEVIMLEKFAAIGGNTIRTGGOVNAAEPKWONAFPALAGEKETLIOLLNHDENDIDE AYIEDFNTLKROIKDYLENSSNEDEYLFDSVELHRIOTYLGGKRKDRNNVEISGDYDLVK 30 TLTDNVLESVYWLKDKGVHFDRSFVDMPVGALWRRGHKPMKAQGLEYIENLGDYVKHNHG RIFTETTAEKLIKEGNQVVGIEARKANGAKVKIHTRHGVVLATGGFGANTKMLQQYNTYW DNIPDDIKTTNSPAITGDGIRLGVQAGADIVGMGFSQMMPISDPKTGALFTGLIVTPSNF VFVNKEGQRFVNEFESRDVLSKAALEQKDGIFYIIADANIKALAMNTTEDKINQELEDGT LVKADTLEALAQKLNIDTTTFVNTIERYNTFVEQGQDEDFNKNAFDLKIEKAPFYATPRK 35 PAIHHTMGGLKINTHAQVIDVEGHIIEGLYAAGEVAGGIHAGNRLGGNALADIFTFGRIA GOSAVTK*

Sequence 3107

Contig_0625_pos_7554_4822

is similar to (with p-value 3.0e-18)

>gp:gp|AF061185|AF061185_1 Phytophthora infestans cyst germ ination specific acidic repeat protein precursor (car90) gen e, complete cds. NID: g3851513.

qtqqatqaaatcqttcattatggtggcqaaqaaatcaagccaggccataaggatgaattt gatecaaatgcaccgaaaggtagtcaaacaacgcaaccaggtaagccgggggttaaaaat cctgatacaggcgaagtagttactccacctgtggatgatgtgacaaaatatggtccagtt gatggagatccgatcacgtcaacggaagaaattccattcgacaagaaacgtgaattcaat cctgatttaaaaccaggtgaagagcgtgttaaacaaaaaggtgaaccaggaacaaaaaca attacaacaccaacaactaagaacccattaacaggggaaaaagttggcgaaggtgaacca acagaaaaataacaaacaaccagtagatgaaatcacagaatatggtggcgaagaaatc aagccaggccataaggatgaatttgatccaaatgcaccgaaaggtagccaagaggacgtt qatqtqacaaaatatqqtccaqttqatqqaqatccqatcacqtcaacqqaaqaaattcca $\verb|ttcgacaagaaacgtgaattcaatcctgatttaaaaccaggtaaagagcgcgttaaacag|$ aaaggtgaaccaggaacaaaacaattacaacaccaacaactaagaacccattaacaggg gaaaaagttggcgaaggtgaaccaacagaaaaagtaacaaaaaacaaccagtagatgaaatc acagaatatggtggcgaagaaatcaagccaggccataaggatgaatttgatccaaatgca ccqaaaqqtaqccaaqaqqacqttccaggtaaaccaggagttaaaaatcctgatacaggc qaaqtaqttactccaccaqtqqatqatqtqacaaaatatggtccagttgatggagatccq

attacqtcaacqqaaqaattccqtttqataaaaacqcqaatttqatccaaacttaqcq ccaqqtacagagaaagtcgttcaaaaaggtgaaccaggaacaaaaacaattacaacacca acaactaaqaacccattaacaggggaaaaagttqqcgaaqqtgaaccaacagaaaaagta acaaaacaaccaqtggatgaaatcgttcattatggtggcgaagaaatcaagccaggccat ${\tt aaggatgaatttgatccaaatgcaccgaaaggtagccaagaggacgttccaggtaaacca}$ ggagttaaaaaccctgatacaggcgaagtagtcacaccaccagtggatgatgtgacaaaa tatggtccagttgatggagatccgatcacgtcaacggaagaaattccgtttgataaaaaa cqcqaatttgatccaaacttagcgccaggtacagagaaagtcgttcaaaaaaggtgaacca ggaacaaaaacaattacaacaccaacaactaagaacccattaacaggggaaaaagttggc qaaqqtqaaccaacaqaaaaqtaacaaaacaaccagtagatgaaatcgttcattatggt qqcqaaqaaatcaaqccaggccataaggatgaatttgatccaaatgcaccgaaaggtagc caagaggacgttccaggtaaaccaggagttaaaaatcctgatacaggcgaagtagtcaca ccaccagtggatgatgtgacaaaatatggtccagttgatggagatccgattacgtcaacg qaaqaaattccattcgacaagaaacgtgaattcaatcctgatttaaaaccaggtgaagag cgtgttaaacagaaaggtgaaccaggaacaaaaacaattacaacaccaacaactaagaac ccattaacaggggaaaaagttggcgaaggtgaaccaacagaaaaaataacaaaacaacca gtagatgaaatcacagaatatggtggcgaagaaatcaagccaggccataaggatgaattt qatccqaacqcaccqaaaggtagccaagaggacgttccaggtaaaccaggagttaaaaaat cctgatacaggcgaagtagtcacaccaccagtggatgatgtgacaaaatatggtccagtt gatggagatccgattacgtcaacggaagaaattccgtttgataaaaaacgcgaatttgat ccaaacttagcgccaggtacagagaaagtcgttcaaaaaggtgaaccaggaacaaaaaca attacaacaccaacaactaagaacccattaacaggagaaaaagttggcgaaggtgaacca acagaaaaaataacaaacaaccagtggatgagatcgttcattatggtggcgaagaaatc aagacaggccataaggatgaatttgatccgaacgcaccgaaaggtagtcaaacaacgcaa ccaggtaagccaggagttaaaaatcctgatacaggcgaagtagtcacaccaccagtggat gatgtgacaaaatatggtccagttgatggagatccgattacgtcaacggaagaaattccg tttgataaaaaacgcgaatttgatccaaacttagcgccaggtacagagaaagtcgttcaa aaaggtgaaccaggaacaaaacaattacaacgccaacaactaagaacccattaacaggg gaaaaagttggtgaaggtgaaccaactctaaagacacctgttaagagtgatgtcagactg accgcaatattaacaatactcatatctacatga

10

15

20

Sequence 3108 VDEIVHYGGEEIKPGHKDEFDPNAPKGSQTTQPGKPGVKNPDTGEVVTPPVDDVTKYGPV ${\tt DGDPITSTEEIPFDKKREFNPDLKPGEERVKQKGEPGTKTITTPTTKNPLTGEKVGEGEP}$ 35 TEKITKQPVDEITEYGGEEIKPGHKDEFDPNAPKGSQEDVPGKPGVKNPDTGEVVTPPVD DVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGKERVKOKGEPGTKTITTPTTKNPLTG EKVGEGEPTEKVTKOPVDEITEYGGEEIKPGHKDEFDPNAPKGSOEDVPGKPGVKNPDTG EVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFDPNLAPGTEKVVQKGEPGTKTITTP TTKNPLTGEKVGEGEPTEKVTKQPVDEIVHYGGEEIKPGHKDEFDPNAPKGSQEDVPGKP 40 GVKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFDPNLAPGTEKVVQKGEP ${\tt GTKTITTPTTKNPLTGEKVGEGEPTEKVTKQPVDEIVHYGGEEIKPGHKDEFDPNAPKGS}$ OEDVPGKPGVKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGEE RVKOKGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKOPVDEITEYGGEEIKPGHKDEF DPNAPKGSOEDVPGKPGVKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFD PNLAPGTEKVVQKGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKQPVDEIVHYGGEEI KTGHKDEFDPNAPKGSQTTQPGKPGVKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIP FDKKREFDPNLAPGTEKVVQKGEPGTKTITTPTTKNPLTGEKVGEGEPTLKTPVKSDVRL TAILTILIST*

50 Sequence 3109
 Contig_0627_pos_5488_4337
 is similar to (with p-value 2.0e-86)
 >sp:sp|P77364|YBBZ_ECOLI HYPOTHETICAL 38.7 KD PROTEIN IN GI
 P-FDRA INTERGENIC REGION. >gp:gp|U82664|ECU82664_110 Escheri
55 chia coli minutes 9 to 11 genomic sequence. NID: g1773084. >
 gp:gp|U89279|ECU89279_5 Escherichia coli glyoxylate induced
 proteins GlxB1, GlxB2, GlxB3, GlxB4, GlxB6, GlxB7 and GlxB8,
 and glycerate kinase GlxB5 genes, complete cds. NID: g27352
 35. >gp:gp|AE000157|AE000157_8 Escherichia coli K-12 MG1655

section 47 of 400 of the complete genome. NID: g1786716. gaagctgctttagctattaaagatggattccaagaggtgttcgattccagtacaatatat gacattattcctatggctgatggtggcgagggaacaaccgaagtattgaaagaagcctta ${\tt aatgctacctcttattgtgtagaagtaaaagatccacttaatagaaatatcatggctagt}$ tatqcqagaagcgacgaacaccaaacagctatcattgaaatggcagctgcttcaggacta qcattattgagtaaagatgaaagagatccatctattacaacttcgtacggtaccggccaa ctcattaatgatgcacttaatcacgatgttaataaaattattttaggaataggtggaagt gccacgaatgatggtggtgtaggaatgttaaaggctttaggtgtctcttttaaagataaa aacaatcaagagattcgcgatggaggtttagccctatctcaaatagaatacattgatatt 10 actcgtataaacccacgattgaaagatgtgaatattaaagtagcctgtgatgtaactaat ccattattaggagacaatggagcaacaatagtttatggtccacaaaaaggcgctcagcaa aagatgataccaaagttggattcagcattacgtcactatcatgataaaattgaaagagaa ttaaatatgaatgtaaaagatatcccgggcgctggtgctgcaggaggcatgggaactgca ttaatcgcgtttctaaacgctaaattacgtcctggaattgatgtagttcttgaagagact 15 caatttaaacaaaggataaaagatgcgaatttagttgttactggcgaaggtaaaatggat aaacaaacaatctatqqcaaaacacccattggcgtagccaaagttgcaaaatcatatgat atacccgtcattgctatttgtggtagtttaggaaaagattacgaagcaatttatcaccac ggtatcgatagcgtgtttagtatcatggaacgtccatgccaccttgacgaagctttgaaa gaaggcgcacttcatgttaaacatacaacaataaatatcgcacgacttttacaagtaaaa 20 attgaaaaatga

Sequence 3110

MSPYKVIIAPDSFKESMSAKEAALAIKDGFQEVFDSSTIYDIIPMADGGEGTTEVLKEAL

NATSYCVEVKDPLNRNIMASYARSDEHQTAIIEMAAASGLALLSKDERDPSITTSYGTGQ
LINDALNHDVNKIILGIGGSATNDGGVGMLKALGVSFKDKNNQEIRDGGLALSQIEYIDI
TRINPRLKDVNIKVACDVTNPLLGDNGATIVYGPQKGAQQKMIPKLDSALRHYHDKIERE
LNMNVKDIPGAGAAGGMGTALIAFLNAKLRPGIDVVLEETQFKQRIKDANLVVTGEGKMD
KQTIYGKTPIGVAKVAKSYDIPVIAICGSLGKDYEAIYHHGIDSVFSIMERPCHLDEALK

GGALHVKHTTINIARLLQVKIEK*

Sequence 3111 Contig_0630_pos_4111_3176 is similar to (with p-value 3.0e-25)

- >sp:sp|P19452|HUTG_KLEAE FORMIMINOGLUTAMASE (EC 3.5.3.8) (F
 ORMIMINOGLUTAMATE HYDROLASE) (HISTIDINE UTILIZATION PROTEIN
 G) (FRAGMENT). >gp:gp|M34604|KPNHUTC_1 K.aerogenes histidine
 utilization repressor C (hutC) gene, complete cds. NID: g14
 9203
- 40 atgtatcaacttgcacaatctaatctatggacaggtcgtttagatagtgaaactgatcct
 acacaatttagacacttccaaactgttaaattcggtgatttaagtcaattagatttttcg
 gatgaacacaaaggcgtgggcttattaggatatgcaattgataaaggagtagaattaaac
 aaaggacgtgtaggtgcaaaaggatcccaatgccattaagcgagcttttgctggattg
 ccagatttgaatcaatgtgaagagattatagattatggtaatgtagaacacaatcatgag
 ttgctaatagatacacagcgcgaattcgcagatcttgctgctaagtctatcaaacgacat
 aaacaaacatttttacttggtggcggtcatgatatagcataatgcacaatatttagctact
 cgtaaagtttatcctgagtcgtcaataggtgtgattaatagatgcgcactttgacaca
 cgcgatgagggttattcaacctctggtactagttttagacagattctagaagaagatgat
 aatgcagattatttagtgttaggtatatctcaaggtggtaatacacacaagctttattaat
 tatgctaaagaaaaagatattcaatttgtatatgcagattgaattactacatcaggtact

Sequence 3112 MYQLAQSNLWTGRLDSETDPTQFRHFQTVKFGDLSQLDFSDEHKGVGLLGYAIDKGVELN KGRVGAKEGPNAIKRAFAGLPDLNQCEEIIDYGNVEHNHELLIDTQREFADLAAKSIKRH

KQTFLLGGGHDIAYAQYLATRKVYPESSIGVINIDAHFDTRDEGYSTSGTSFRQILEEDD NADYLVLGISQGGNTQALFNYAKEKDIQFVYADELLHQVSPPIKDMIERFIHNHDTVMFT ICMDVVDSAFAPGVSAPAVLGIYPHTVFELAKRVIPSEKVKSISIAEMNPTYDSDQRTAK LVANLVHHCLI*

5

10

30

40

45

50

55

Sequence 3113 Contig_0634_pos_2695_2021

>gp:gp|U40385|SEU40385_1 Staphyloccous epidermidis plasmid pSK818 insertion sequence IS257(818B) putative transposase g ene, complete cds. NID: g1762099 >gp:gp|U40386|SEU40386_1 S taphyloccous epidermidis plasmid pSK818 insertion sequence I S257(818C) putative transposase gene, complete cds. NID: g1762101.

Sequence 3114 MNYFRYKQFNKDVITVAVGYYLRYALSYRDISEILRERGVNVHHSTVYRWVQEYAPILYQ IWKKKHKKAYYKWRIDETYIKIKGKWSYLYRAIDAEGHTLDIWLRKQRDNHSAYAFIKRL IKQFGKPQKVITDQAPSTKVAMAKVIKGFKLKPDCHCTSKYLNNLIEQDHRHIKVRKTRY OSINTAKNTLKGIECIYALYKKNRRSLQIYGFSPCHEISIMLAS*

Sequence 3115

Contig_0635_pos_3548_4750

35 is similar to (with p-value 1.0e-24)

>gp:gp|U33059|APU33059_5 Actinosynnema pretiosum auranticum diaminopimelate decarboxylase (lysA), 3-amino-5-hydroxybenz oic acid synthase, oxidoreductase, phosphatase, and aminodeh ydroquinate synthase genes, complete cds; transcription acti vator gene, partial cds; and unknown genes. NID: g3056877. gtgtatcagtcagaaaatcaatcattactttttattgttattttaggttcattaacagca tttggcccattggctattgatatgtttttacctggactacctaatattagtcatgatttt gatatttctgcatctacaactcagcttactatctccttttttatgattggattagcgtta ggaaattttttggctggcccatatctgatattactggtagaaaaaaaccattaattttctcactgattatttttactattgcgagtttaggtattatattcgtcacaaatatatggatt atgattattttacgatttattcaaggattaactggtggtgcaggtgcagtcatctcaaga qccattqctagtgatatgtactcaggtaatgcgctaactaaatttttatcattattaatg cttgtcaatggcattgcgccaattatcgcacctgcgcttggcggtatcattttaaattat qqqccatqqcqaattqtatttqtaatactaacaatqtttqggattqtcatqttaatagga actttatttaaagttcctgagtcgcttgaaaagagcctaagggaaagtagtaacataggt ${\tt acgatgctaattaatttcaaagaactttttaaaacaccccgttttgtattacccatgttg}$ at a caaggggtgt catttgt attact atttact tatatt to tgc atctccttt tatagttcaaacaatttatggtttaacgccattaaacttcagtattatgtttgcttttataggcgtt $a cact cattattt caag ccaatta accggaaa actt {\tt gttgactatatagatagattactg}$ ttgctgagaatcatgtctactatacaagttattggtgttataatcgtatcactaacttta ctcaaccattqqacttttttqqatactttcttgtggctttgtgattttagtggcaccagtt acaqqqattqcaacqttaqqattttcgatagcaatggatgagagtaaaggggccaaaggt agttcttcaagtttgttgggattgtttcaaactttacttggtggcgtcatctctccactt

gttggtattaagggagacagtaatgcgataccttatataatcgttatcgttattacagca

ataattettatggttttacagttgattaatgtgaagatatttaaaaaagetaaaatteat

Sequence 3116

5 VYQSENQSLLFIVILGSLTAFGPLAIDMFLPGLPNISHDFDISASTTQLTISFFMIGLAL GNFLAGPISDITGRKKPLIFSLIIFTIASLGIIFVTNIWIMIILRFIQGLTGGAGAVISR AIASDMYSGNALTKFLSLLMLVNGIAPIIAPALGGIILNYGPWRIVFVILTMFGIVMLIG TLFKVPESLEKSLRESSNIGTMLINFKELFKTPRFVLPMLIQGVSFVLLFTYISASPFIV QTIYGLTPLNFSIMFAFIGVTLIISSQLTGKLVDYIDRLLLLRIMSTIQVIGVIIVSLTL LNHWTFWILSCGFVILVAPVTGIATLGFSIAMDESKGAKGSSSSLLGLFQTLLGGVISPL VGIKGDSNAIPYIIVIVITAIILMVLQLINVKIFKKAKIH*

Sequence 3117

Contig_0635_pos_1170_214

- is similar to (with p-value 3.0e-40)
 >sp:sp|P28246|BCR_ECOLI BICYCLOMYCIN RESISTANCE PROTEIN (SU
 LFONAMIDE RESISTANCE PROTEIN).

- cttaaatttgctaaaaaagctcatctttctttcgatggtattggaagtcgtacaccatac
 cactttttggcacaatctatgattatagactttttgggtttaatgtatcaatataaaaca
 atacttactatttatttcgctatgttgttttggcttgcaatactacaaaccatataa
- 35 Sequence 3118

MLLFLCFLIELLLIVLLYTKQSFTLNLFSFILYTIIGFVMMTYHMVTVSIPYDMFIIVIV AMILLLIKYRYIFKLQTGRFFILQLSHHFYTVGLFAVSCLYISTIPLIIINSLALWAAII AFSTIYSFIGYLSWSTAFENHQYYKHVKLIMVLGAGIFSEEVTTLLAARLDKALSVYHSQ RTKPIIIVSGGQGPDEPISEALAMKRYLIAHNVPENHIFMENQSTNTRTNFLYSKSIIHS

40 MMPTSSQMLCVTSQFHVLRALKFAKKAHLSFDGIGSRTPYHFLAQSMIIDFLGLMYQYKT ILTIYFAMLFWLAILQTI*

Sequence 3119

Contig_0637_pos_1621_2709

- 45 is similar to (with p-value 9.0e-27)
 - >gp:gp|D45211|ARGOD_1 Arthrobacter sp. gene for opine dehyd rogenase, complete cds. NID: g1060847.

gtgaaaagaggtaaaaaaatgaaaatagctattgtaggttcaggtaatggtgcagtaact

- gctgcagtggatatggtagataaaggtcatgatgtacgattatattgtcgtaacgaatct 50 attagtaaatttgatgtcgccctagaaaaaggtggctttgattttaataatgagggagaa gagaagtttatagagtttactgatattagtgatgatatggagtatgttttagatggtgca
- aatacattaacatatggtacacgtgttgactttaacaatgctaaagtagatttatcttta
 aatgttcgtcgggtgttcttttcaacatttgatcgtagtgagttaaatgaaagttatgaa
 aaggtatctaaaatttacgattatcttgtaaaagaagaaagtttacttaaaactaatctt
 gaaaatggtaacccagaagtacatcctggaccaacattattgaacgttggacgtattgat
 tattcagaagagttttctttatataaagaaggcataacaaaacatactgtgagattatta

PCT/US00/30782 WO 01/34809

 $\verb|catgctattgagatagaacgtttaaatttagggagaaaattaggttttgaattatcgact|\\$ gccaaagaatcacgtattcaaaggggttatttagaacggaaagacgaggatgaaccgtta aatcgtctttttaatactagtcctgtgttttctcaaattccaggaccgaatcacgttqaa aaccgttatttaactgaagatatcgcatatggattagtattatggtctagtttaggacgtgtcattgatgtcccgacacctaatatcgatgctgttattatgatagcttcaactattctt gaacgcgatttctttgaagagggcctcactatcgaggaattaggcttagataaattagga ttagagtaa

Sequence 3120

VKRGKKMKIAIVGSGNGAVTAAVDMVDKGHDVRLYCRNESISKFDVALEKGGFDFNNEGE 10 EKFIEFTDISDDMEYVLDGADIVQVIIPSSFIEYYAKVMSKFVTNDHLIFFNIAASMGSI RFMNVLEDRHIDVHPHFAEANTLTYGTRVDFNNAKVDLSLNVRRVFFSTFDRSELNESYE KVSKIYDYLVKEESLLKTNLENGNPEVHPGPTLLNVGRIDYSEEFSLYKEGITKHTVRLL HAIEIERLNLGRKLGFELSTAKESRIORGYLERKDEDEPLNRLFNTSPVFSQIPGPNHVE NRYLTEDIAYGLVLWSSLGRVIDVPTPNIDAVIMIASTILERDFFEEGLTIEELGLDKLG 15

Sequence 3121

Contig_0640_pos_7034_6588

20 is similar to (with p-value 9.0e-16)

>gp:gp|AB012285|AB012285_1 Photobacterium damsela gene for sialyltransferase 0160, complete cds. NID: g2988378. atgctaattacgagacaaccaacctattgccaaagatttacgtatgatggtaggcagcactc aaaatctctactgactttgaacgaatgggggataatgctgctagtatcgctcatatacgt 25 ttaagagttaaaataaatgataactatgtgtttacacgtttaaaaaaccatgggtaaatta qcqatqctcatqttagaagatttaaataacgctattagaaataaagatttaccactgata aaagaagtcattgagagagatgaagatattgatgatttatacgttaacatcgtcaatacc agttacttaattgataatgacccattcgtagctggtcaagcacacttagcagctagacac ttagaacgaataggtgatcatataagcaatattgctgaaagtgtttattattatttaaca

30 ggccaacattttgaaacttttgattaa

Seguence 3122

35

MLITROOPIAKOLRMMMAALKISTOFERMGDNAASIAHIRLRVKINDNYVFTRLKTMGKL AMLMLEDLNNAIRNKDLPLIKEVIERDEDIDDLYVNIVNTSYLIDNDPFVAGQAHLAARH LERIGDHISNIAESVYYYLTGQHFETFD*

Sequence 3123

Contig_0642_pos_5096_4452

is similar to (with p-value 7.0e-22)

- >pir:pir|S56598|S56598 yjjG protein Escherichia coli >gp: 40 gp|U14003|ECOUW93_286 Escherichia coli K-12 chromosomal regi on from 92.8 to 00.1 minutes. NID: g1263172. >gp:gp AE000507 AE000507_13 Escherichia coli K-12 MG1655 section 397 of 400 of the complete genome. NID: g2367380.
- qtqqatttttatqacqctqaqaaaaaagcgttttataatttagcgcagaaatacaatcat caqccaactcaacaggatttcgaacattttaagaaagtgaaccaagcgcattgggaagca aatqactatcaaattcatgtaaatggaaaagaagctgatgagtgctttagagctgaatta gcaaaggcaccagttaaattatttgatcatacattagaagttatacaacaattaaaatta 50 aatcattctctatatagtaaccaatggtgtaacagaaacacagctacgacgaattgct
- cagacacaatttaatgaaatatttcaagatgtctttatatctgaacaagctggatttcaa aagtcgatgacagagttcttcgattttgtgtttgaacatatcggagagaataacaggaat caaactctaattgtgggagattctttaacgtctgacattttaggtggtaaaaatgctaat atatcaacatgttggtttaatattagacaaaagaaaaccatacgtctattcaaccggat
- 55 tatatcattaatgatttatcagaaatgattcgcattgttgagtga

Sequence 3124 VDFYDAEKKAFYNLAQKYNHQPTQQDFEHFKKVNQAHWEAFQQNKLTKDEVLSQRFINYF NDYOIHVNGKEADECFRAELAKAPVKLFDHTLEVIQQLKLNHSLYIVTNGVTETQLRRIA

QTQFNEIFQDVFISEQAGFQKSMTEFFDFVFEHIGENNRNQTLIVGDSLTSDILGGKNAN ISTCWFNIRQKENHTSIQPDYIINDLSEMIRIVE*

Sequence 3125

10

15

20

Contig_0645_pos_2339_3055

is similar to (with p-value 1.0e-45)

>gp:gp|AB014075|AB014075_8 Clostridium histolyticum genes f or hypoxanthine-guanine phosphoribosyl-transferase (HGPRTase), GTPase and 12 ORFs, complete and partial cds. NID: g38688

Sequence 3126

- 25 MGRKWNNIKEKKAQKDKNTSRIYAKFGKEIYVAAKSGEPNPESNQTLRLVLERAKTYSVP NHIIDRAIDKAKGAGDENYDHLRYEGFGPNGSMLIVDALTNNVNRTASDVRAAFGKNGGN MGVSGSVAYMFDHTATFGVEGKSVDEVLETLMEQDIDVRDVIDDNGLTIVYAEPDQFAQV ODALREAGVEEFKVAEFEMLPQTDIELSEEDQAIFEKLIDALEDLEDVQNVFHNVDLK*
- 30 Sequence 3127

Contig_0645_pos_4722_5774

is similar to (with p-value 1.0e-57)

- >sp:sp|P39676|FHP_YEAST FLAVOHEMOPROTEIN (HAEMOGLOBIN-LIKE PROTEIN) (FLAVOHEMOGLOBIN).
- 40 gtatttatcaaattagagcaagaaatttacaaccatatgttatggaaaggttttaaacca tttaaaatcacaacattacacaagaaacaagtgacatcaaatctttcacagttgaatct gaagaatatgatttaagtcaattcgaaccaggtcaatacattaccgtagatgtttctagt gaaaagttaccatatagagctaaacgtcattattcaatcatagatggagatgaaaatcac ttagtatttggtgtcaaacgtgatgtgactactgaacatgaaggtgaagtttcaacaatt
- ttacatgatgaaatatcagaaggtgacatgattaatttatctgctcctgtaggtggcttt
 tcaatagaaaatactgaaagaccgcaattgtttattggttctggcgtaggtatgacacca
 ttagtttcaatgtttaaaaaagctgcatcattaaacgttccaactcaaatgattcaagcg
 gttgtgacagaagatgaacgaccatttgctcaaaaacttgatagcattacagataattat
 gagcaagcacagctacatttacacgtgaaagataaagaaggttatttagaagctaaagaa
 ttagaacaatatttaagtgaacagcctgaaatttatatttgtggtggtacgaaattctta

Sequence 3128

55 MFEANPELLNMFNQTNQKKGMQSAALAQAVLAAAMNINNLGAIKPAIMPVAHKHCALQVY
PEHYPIVGENLLAAIQDVTGLESDDPVIQTWAKAYGEIADVFIKLEQEIYNHMLWKGFKP
FKITNITQETSDIKSFTVESEEYDLSQFEPGQYITVDVSSEKLPYRAKRHYSIIDGDENH
LVFGVKRDVTTEHEGEVSTILHDEISEGDMINLSAPVGGFSIENTERPQLFIGSGVGMTP
LVSMFKKAASLNVPTOMIOAVVTEDERPFAQKLDSITDNYEQAQLHLHVKDKEGYLEAKE

PCT/US00/30782 WO 01/34809

LEOYLSEOPEIYICGGTKFLHSIINSLKELNYDMNHVHFETFIPRLSVQV*

Sequence 3129

Contig_0650_pos_7844_8518

is similar to (with p-value 1.0e-98)

>gp:gp|U50335|MSU50335_2 Mycobacterium smegmatis phage resi stance (mpr) gene, complete cds. NID: g1477566. atgaactatttcagatataaacaatttaacaaggatgttatcactgtagcggttggctac tatctaagatatgcattgagttatcgtgatatatctgaaatattaagggaacgtggtgta aacgttcatcattcaacggtctaccgttgggttcaagaatatgccccaattttatatcaaatttggaagaaaagcataaaaaagcttattacaaatggcgtattgatgagacgtacatc gatatttggttgcgtaagcaacgagataatcattcagcatatgcgtttattaaacgtctc attaaacaatttggtaaacctcaaaaggtaattacagatcaggcaccttcaacgaaggta gcaatggctaaagtaattaaagcttttaaacttaaacctgactgccattgtacatcgaaa caaagtatcaatacagcaaagaatactttaaaaaggtattgaatgtatttacgctctatat aaaaagaaccgcaggtctcttcagatctacggattttcgccatgccacgaaattagcatc

20

10

15

Sequence 3130

atgctagcaagttaa.

MNYFRYKQFNKDVITVAVGYYLRYALSYRDISEILRERGVNVHHSTVYRWVQEYAPILYO IWKKKHKKAYYKWRIDETYIKIKGKWSYLYRAIDAEGHTLDIWLRKQRDNHSAYAFIKRL IKOFGKPOKVITDOAPSTKVAMAKVIKAFKLKPDCHCTSKYLNNLIEQDHRHIKVRKTRY OSINTAKNTLKGIECIYALYKKNRRSLOIYGFSPCHEISIMLAS*

25

Sequence 3131

Contig_0650_pos_6596_5145

>gp:gp|U40385|SEU40385_1 Staphyloccous epidermidis plasmid pSK818 insertion sequence IS257(818B) putative transposase g 30 ene, complete cds. NID: g1762099. >gp:gp|U40386|SEU40386_1 S taphyloccous epidermidis plasmid pSK818 insertion sequence I S257(818C) putative transposase gene, complete cds. NID: g17

35 atcgtggttgccttagctttaatccctgaagctatcgcattttcaattattgctggcgta gatecaatggttggtttgtatgetteatttateategetgttgttaetgetattgttggt ggtagacctgcaatgatatcaggtgcaacaggggctgttgccttattagttacaccactt gtgaaagattatggtgtagaatatcttttagctgccacgatattaatgggagtaattcaa 40 ${\tt ttag} {\tt tttag} {\tt gccttctca} {\tt aagtg} {\tt gggcgtttaatga} {\tt aatttatacctcattccgtcatg}$ ataggttttgtaaatgcattaggtattatgattttcatgtcccaaatagaacatatcttc $\verb|cctaaatttttcaaagcaatacctgcaccattaatagctatcatcgtattgactgctctt|\\$ ttaccgcactttttaattcctaatgttccctttaatttagaaacacttcaaatcattttt45

ccatactcqctatctatqqctattqtaqqtctaqtaqaaagtttacttactgctaaaatt gtagatgatgcaacagacacttatagtagtaaaaacagagaatctcgtggccaaggcatt qctaatatgattacaggattattcggtggtatgggaggttgtgccatgattggacaatct qtaatcaatgtcaaatcaggtgcaaacagtagattatctactttttctgctggtgttgtc

ttaatattcatgattattgttcttggaggacttgttgttcaaattccaatgccaatttta gcaggtattatggttatggtttcgattggtacatttgattggaattcttttaaatatatt caaaaagcaccaaaaacagatgcagttgttatgatacttacagtgataattgtactgatg ${\tt acacataacttagctctcggcgtggtcgtaggtgttattttcagtgctttattctttgct}$ actaaaatatcaaaagtagaagtaacatctgagaagtttggtaaaactaaccgtttatct

 $\verb|tttaaaggtcaaatctttttgtttctattgactctatgatggatcaaattagctttaat|$ attgaaaatagtattatagaattaaactttaataatgctcatttatgggatgattcagca gtagatgctattgatacaatggtaaggaagttcgaagaaaaaaataacattgttcatgta gaaaaactaaattcagatagtcgtaaaatagtctcagaattaagcaaactaaatgaaaat catttaaactaa

Sequence 3132

5

10

MVEKLKHEWFNQPGKNILAGIVVALALIPEAIAFSIIAGVDPMVGLYASFIIAVVTAIVG
GRPAMISGATGAVALLVTPLVKDYGVEYLLAATILMGVIQLVLGLLKVGRLMKFIPHSVM
IGFVNALGIMIFMSQIEHIFGISISTYIYVIVTLLIVYIIPKFFKAIPAPLIAIIVLTAL
YMYTGSDVRTVGDLGNIKQALPHFLIPNVPFNLETLQIIFPYSLSMAIVGLVESLLTAKI
VDDATDTYSSKNRESRGQGIANMITGLFGGMGGCAMIGQSVINVKSGANSRLSTFSAGVV
LIFMIIVLGGLVVQIPMPILAGIMVMVSIGTFDWNSFKYIQKAPKTDAVVMILTVIIVLM
THNLALGVVVGVIFSALFFATKISKVEVTSEKFGKTNRLSFKGQIFFVSIDSMMDQISFN
IENSIIELNFNNAHLWDDSAVDAIDTMVRKFEEKNNIVHVEKLNSDSRKIVSELSKLNEN
HLN*

Sequence 3133

Contig_0651_pos_3288_1672

- is similar to (with p-value 5.0e-34)
 >sp:sp|P31679|YAAU_ECOLI HYPOTHETICAL METABOLITE TRANSPORT
 PROTEIN IN CARB-KEFC INTERGENIC REGION (ORF65/66). >gp:gp|AE
 000114|AE000114_12 Escherichia coli K-12 MG1655 section 4 of
 400 of the complete genome. NID: g1786217.
- 400 of the complete genome. NID: g1/8621/.

 20 atgaaaataagggatgaaaatatggatttcgttaaatcaaaaactgacttatttagactc
 atagacaatgaagcgcaaacatcgacatctaagatggttttattcttaatattaggaact
 atatttttagatgcatatgatattactattttaggtacaatgactgatcaactcaactcaa
 cagtttcacttatcaccatcaacgctatctatagtaatgacctctttacctattggtgca
 ttatttggtgcattacttggtggtacattagcacatcagtttggacgcaagcatatttta
- 25 tcaattgccttactaacactcactgtaacctctcttggtgcggcactcgcaccaaatgta attattctaataatatgtcgttgtataatggggtttgctattggaatggatagtccagtt gctttcacttttattgcggaaataagtaatttaaagcacaaaggaagaaatgttaactat tggcaagtcgtttggtatgttgcaatagttacttctgctttagtggtcattgcgttctt atgctaggggctggtgcacatttgtggagatatgcaattggatttggtgcacttattgct
- 35 attagtaaggataaaataggtgtattattaggtactgctatagtcaatatagcaggtatt ctaggcgcatatttaggtgctcaattgacttataaattaggtacacgcaagcttacaatg ataggcttcacacttgtattactttcaatggtatgtgtaggactcttttatcatcatcta ccaatgcttcttaacactttccttattggattatttttattttggccattcaggaggtcct ggtactcaaggaaaaacaattggtgccttatcattcccgactcatttacgttcacaagct
- 40 actggctttgtagaatctgtaagtcgtactggtagtatcataggtacttttgtctttcca atcattcttgctgcagtaggtctaacgaatactatgttaatcttgtccattgtcccttta ctcggaattatcataacagtatctataaaatgggaagctgtcggtaaggaatacattgtt gaatataacgctactttggcattaaacgatatagaaagatcgataattagaaaagaatta acattagcttttaaaagaagcgaagtcaaactcagtcgaatggaaagacgtatcattcga
- ttactacttaatgattacaagccaaaggagattgctatggttttaaatttggaatccaaa gttgtttataatgcgattcaacgtagtaaatgtaaacttaaaagaagttttgaataa

Sequence 3134

Sequence 3135

Contig_0652_pos_1335_2843

>sp:sp|069282|MQO_CORGL MALATE:QUINONE OXIDOREDUCTASE (EC 1 .1.99.16) (MALATE DEHYDROGENASE (ACCEPTOR)) (MQO).

gtgagcaaaaaatggctaataaagagtcaaaaaatgttgttattattggcgctggtgtc ttaaqtacqacatttggttctatgattaaagaattagaacctgattggaacatcaaactc qqacatqcqqcqttatgtgaattgaactatacagtacaacaacctgatggttcaattgat atagaaaaagccaaagaaatcaacgaacaattcgagatttcaaaacaattctggggtcac ttagtaaaaagtggtaacatcagtaaccctagagatttcattaatccacttcctcacatt agtttcgtaagaggtaaaaataacgttaaattcttaaaaaaccgttacgaagcaatgcqt aacttccctatgttcgataacatcgaatatacagaagatatcgaagaaatgagaaaatgg atqccattaatqatgacaggccgtactggtaacgaaatcatggcggctagtaaaatcgac qaaggtacagatgttaactacggtgaattaactcgtaaaatggcaaaaagtattgaaaaa qqtatttqqqaaqttaaaqttaaaaaccqtaattctqqaaacqttqaaactqttctaqct qattatgtatttatcggtgcaggcggtggcgctattccactattacaaaaaactggtatc ccagaaagtaaacatcttggtggattccctatcagtggtcagttcttaatttgtacaaac cctqatgtaattaatgaacatgacgtcaaagtatatggtaaagaaccaccaggcacacct ccaatgactgtaccacatttagatacacqttatatcgatggtgaaagaacattattattt qqaccatttqcaaatattqqccctaaattcttaagaaacggttctaacttagacttattc aaatcagttaaaccttataacatcacaacattactagcatctgcagttaaaaacttacct tta at caa at act ctat cgac caa gtat ta at gac ta aa gaa g g tt g tat g aa c cat c tacqcacqttctaccctgaagctcgtgacgaagattggcaattatacactgcaggtaaacgt qttqttaactctaaagaccactctgttatcgcactattgggtgaatcacctggagcatca acttcagtatcagtagccctagaagttttagagaaaaactttgctgagtatgaaaaagat tqqactccaaaattacaaaaaatqatcccatcatatggtaaatctcttatcgatgatgtt

30

35

10

15

20

25

Sequence 3136

tctaaataa

VSKKMANKESKNVVIIGAGVLSTTFGSMIKELEPDWNIKLYERLDRPGIESSNERNNAGT
GHAALCELNYTVQQPDGSIDIEKAKEINEQFEISKQFWGHLVKSGNISNPRDFINPLPHI
SFVRGKNNVKFLKNRYEAMRNFPMFDNIEYTEDIEEMRKWMPLMMTGRTGNEIMAASKID
EGTDVNYGELTRKMAKSIEKHPNADVQYNHEVINFNRRKDGIWEVKVKNRNSGDVETVLA
DYVFIGAGGGAIPLLQKTGIPESKHLGGFPISGQFLICTNPDVINEHDVKVYGKEPPGTP
PMTVPHLDTRYIDGERTLLFGPFANIGPKFLRNGSNLDLFKSVKPYNITTLLASAVKNLP
LIKYSIDQVLMTKEGCMNHLRTFYPEARDEDWQLYTAGKRVQVIKDTKEHGKGFIQFGTE
VVNSKDHSVIALLGESPGASTSVSVALEVLEKNFAEYEKDWTPKLQKMIPSYGKSLIDDV

aagttaatgagagcaactcgtaaacaaacatctaaagatttagaattaaattattacgaa

40 KLMRATRKQTSKDLELNYYESK*

Sequence 3137

Contig_0652_pos_7388_7999

is similar to (with p-value 9.0e-32)

>sp:sp|P15029|FECD_ECOLI IRON(III) DICITRATE TRANSPORT SYST
EM PERMEASE PROTEIN FECD. >pir:pir|S56513|S56513 citrate-dep
endent iron transport protein fecD - Escherichia coli >gp:gp
|U14003|ECOUW93_200 Escherichia coli K-12 chromosomal region
from 92.8 to 00.1 minutes. NID: g1263172. >gp:gp|AE000499|A
E000499_8 Escherichia coli K-12 MG1655 section 389 of 400 of

the complete genome. NID: g1790732.

atgatcataatgatatttccatcagcacctctatttgttcttcctttaggttcatttatc
ggtgctttgacaataagtattattctttcagttcttatttcaaaatttgatgtaaaggga
tcaaaattagcattgataggtttagcgataggtgcaatttgtacggccattgtccaattc
ttgcttatacgtaatcctcttgatgcaaataatgcgttattatggttgactggtgtta
tacggtcataatatagtcaatttttatagtttattaccatggtttattatcactgtacct

tacggtcataatatagtcaatttttatagtttattaccatggtttattatcactgtacct atagtattgttattagggtatcaacttgatattttaaatttaggtgatcatgtagccatt gcactaggagcacgtgtaaaaatcttaaaaatgattttacttgtattagcagtaatgtta gcaggtgcttccattgcggtagtagggggtattagtttttaggtcttatagcacctcat

attgcacgtcaacttgtcggccataaaaatatacatgttataatcatgtcaggtttggta ggagcaatattattaacttttggtgatggtttagcaagaggtatacaacctcctcttgat attcctgtatga

5 Sequence 3138

MIIMIFPSAPLFVLPLGSFIGALTISIILSVLISKFDVKGSKLALIGLAIGAICTAIVQF LLIRNPLDANNALLWLTGSLYGHNIVNFYSLLPWFIITVPIVLLLGYQLDILNLGDHVAI ALGARVKILKMILLVLAVMLAGASIAVVGGISFLGLIAPHIARQLVGHKNIHVIIMSGLV GAILLTFGDGLARGIQPPLDIPV*

10

15

Sequence 3139

Contig_0653_pos_2824_2252

is similar to (with p-value 6.0e-31)

>sp:sp|P14776|DHSS_SYNP1 SOLUBLE HYDROGENASE, SMALL SUBUNIT (EC 1.12.-.-) (TRITIUM EXCHANGE SUBUNIT). >pir:pir|S06919|H QYCSS soluble hydrogenase (EC 1.12.-.-) small chain - Synech ococcus sp. (PCC 6716) >gp:gp|X16658|SYNSOLHY_1 Synechococcus DNA for the small subunit of soluble hydrogenase. NID: g48

- caatttatggaggttattagacatgagtcataa

30

Sequence 3140

MLPPGLAFVAYSDRAKKRFADVKTPRFYLDLNKYIKSQEQNSTPFTPNVGLFRGINAYVE LVKKEGLNHVISRHFKIRNALRAALKALELELLVKDDAHASPTVTSFVPKNQEELNIIKN QLKSQFNITIAGGQGHLKGQILRIGHMGKISPFDILAVVSALEIILTSNRNVNYIGTGIT

35 QFMEVIRHES*

Sequence 3141

Contig_0657_pos_4668_5093

is similar to (with p-value 2.0e-19)

- 40 >gp:gp|AF001974|AF001974_1 Thermoanaerobacter ethanolicus p utative TrkG gene, partial cds, and putative TrkA, xylose is omerase (xylA) and xylulose kinase (xylB) genes, complete cd s. NID: g2581794.
- 50 gtcactgattggaaaaatgcatttcctattttttcaattaatcccatgtgtaacatagag ttttga

Sequence 3142

VRPTVPNADTTSKSILIKGILELIMVSINVTIPINAIEMRIVTKDNCMYLSDISLLNIEL

55 FFSLRIVLKIAIVAITKVVTFIPPAALNGAPPINMRAISNKAVGVLMFPTSIVLNPAVLV

VTDWKNAFPIFSINPMCNIEF*

Sequence 3143 Contig_0660_pos_3013_3495

is similar to (with p-value 3.0e-18)

>gp:gp|D89592|D89592_3 Vibrio alginolyticus rhlE, KtrA and
KtrB genes, complete cds. NID: g3927863.

atgaatgaaataagtcctacacgacctataaacattaatacattaatacagccttggta

atgtcgttgacatcgcttgtcacacctaagcttaaaccacatgtaccaaacgcagacatt
acttcaaagaaaatttgtaaaaaggacaacttgccttgttcagtggcagatataataatc
atgctaataaatgtaattaatgacgccatagtaaatacggcaaatgatctttgtacatcc
ataatatgtacttctctgttgaaaattttaatacctgttttgtcaccagtattattaaaa
ttaataacaaacaaaattaaaatagcaaatgttgttgttctgattccacctcctacagaa
ctgggagatgatcctataaacatcaataatccattacaatatttgttgcgtcgctgaaa
tgtgacacatctatcgtttgcaaacctgcacttctggtcgttgatgattggaacaatgca
taa

Sequence 3144

15 MNEISPTRPININIINTALVMSLTSLVTPKLKPHVPNADITSKKICKKDNLPCSVADIII MLINVINDAIVNTANDLCTSIICTSLLKILIPVLSPVLLKLITNKIKIANVVVLIPPPTE LGDDPININNPITIFVASLKCDTSIVCKPALLVVDDWNNA*

Sequence 3145

30

20 Contig_0660_pos_988_47

is similar to (with p-value 3.0e-76)

>sp:sp|Q46807|ARCL_ECOLI CARBAMATE KINASE-LIKE PROTEIN 1. > gp:gp|U28375|ECU28375_24 Escherichia coli K-12 genome; appro ximately 64 to 65 minutes. NID: g887800. >gp:gp|AE000370|AE0 00370_9 Escherichia coli K-12 MG1655 section 260 of 400 of t

25 00370_9 Escherichia coli K-12 MG1655 section 260 of 400 of the complete genome. NID: g2367170. gtqaqtqaaatqqctaaaattqtagtagtatttaggtggaaacqctttaggaaaatcacca

40 tatattgaagaagaacaatttgccaaaggcagcatgctacctaaaatcgaatctgccatc tcctttattgaaaataatcctaacggtagcgtgctcatcacatcattaaatcaattagat gcagcactagaaggtaaaattggcacactcattacaaagtaa

Sequence 3146

45 VSEMAKIVVALGGNALGKSPQEQLELVKNTAKSLVGLITKGHEIVISHGNGPQVGSINLG LNYAAEHDQGPAFPFAECGAMSQAYIGYQLQESLQNELHSMGIDKQVVTLVTQVEVDEGD PAFNSPSKPIGLFYTKEEANRIQQEKGYQFVEDAGRGYRRVVPSPQPISIIELESIKTLV ENDTLVIAAGGGGIPVIREQHDSFKGIDAVIDKDKTSALLGADIHCDQLIILTAIDYVYI NYHTDQQQALKTTNIDTLKTYIEEEQFAKGSMLPKIESAISFIENNPNGSVLITSLNQLD

50 AALEGKIGTLITK*

Sequence 3147
Contig_0661_pos_4592_5317
is similar to (with p-value 5.0e-26)

>sp:sp|P23553|XYNC_CALSA ACETYL ESTERASE (EC 3.1.-.-). >pir :pir|B37202|B37202 acetylesterase (EC 3.1.1.6) (XynC) - Cald ocellum saccharolyticum >gp:gp|AF005383|AF005383_9 Caldicell ulosiruptor saccharolyticus putative transport protein (XynG), putative transport protein (XynH), xylanase (XynF), xylan

ase (XynE), xylanase (XynD), xylanase (XynA), acetylxylosida se (XynC) and xylanase (XynB) genes, complete cds. NID: g264 5411. >gp:gp|M34459|CDCXYNAB_2 C.saccharolyticum xylanase A (XynA), beta-xylosidase (XynB) and acetyl esterase (XynC) genes complete cds. NID: g144295.

20 Sequence 3148
MHQTINVILPEDKSYFDTNENAKPLKTMLLLHGLSSDTSSYMRYTSIERYANTHQLAVVM
PNADHSFYSNMAYGHSYYDYILEVYDYVHQIFPLSKKREDNFIAGHSMGGYGAIKFALTQ
SYRFSKAAMLSAPYDVSMIGQYQWYDFTPEAIVGNTQHVAGTSFDPYYLVEQAIDNGQTL
PQLYITCGTEDELYQGNIDFVNYLDEKGISYQFKKAPGHHDYAFWDKAIEDVIDRFTSSH
25 I*

Sequence 3149
Contig_0667_pos_3956_3216
is similar to (with p-value 2.0e-20)

10

15

30 >gp:gp|Y12813|BPA2INT_1 Bacteriophage A2 rep, xis and int g enes. NID: g3005824. atqcaaqatttacaagtatttaattttgaagatttaccagtaagaaaaatagaagtagat qqaqaaccatattttttaggtaaagacgtggcagaaatattaggttacacaagatctgat aatgcaattagaaatcatgttgatgatgaagataagctgacgcaccaagttagtgcatca 35 ggtcaaaaacgaaacatggtaatcatcaacgaatctggtttatacagcttaatctttgac gctgctaaacaaagtaaaacgaaagtattagaaagaaagctaaacgttttaaacgttgg gtaaccgaagatgttttaccttccattcgtaaaacaggtacttatcaagttcctgataat actqttaaaqcaqatqttattqatatcaaaqaaaatcaaaaqctagatqcaggagaatac ggattgataacaaaaacagttcatcaacgcgttgcttatatcagacaaattcacggacta 40 cctaataataaagaagttaacaaacctttatatagagatattaacagtaacgtaaatacg

45
Sequence 3150
MQDLQVFNFEDLPVRKIEVDGEPYFLGKDVAEILGYTRSDNAIRNHVDDEDKLTHQVSAS
GQKRNMVIINESGLYSLIFDAAKQSKNESIRKKAKRFKRWVTEDVLPSIRKTGTYQVPDN
PMDALQLMFDAQKQTKEEIATVKADVIDIKENQKLDAGEYGLITKTVHQRVAYIRQIHGL
50
PNNKEVNKPLYRDINSNVNTMAGIKTRTQLKQKHFDDVMNMITNWFPSQSTMYVIKQLEM
DFENEV*

Sequence 3151 Contig_0670_pos_3378_4094 55 is similar to (with p-value 1.0e-45) >qp:gp|AB014075|AB014075_8 Clostrid

gactttgaaaacgaagtataa

>gp:gp|AB014075|AB014075_8 Clostridium histolyticum genes f or hypoxanthine-guanine phosphoribosyl-transferase (HGPRTase), GTPase and 12 ORFs, complete and partial cds. NID: g38688 63.

Sequence 3152

10

50

55

15 MGRKWNNIKEKKAQKDKNTSRIYAKFGKEIYVAAKSGEPNPESNQTLRLVLERAKTYSVP NHIIDRAIDKAKGAGDENYDHLRYEGFGPNGSMLIVDALTNNVNRTASDVRAAFGKNGGN MGVSGSVAYMFDHTATFGVEGKSVDEVLETLMEQDIDVRDVIDDNGLTIVYAEPDQFAQV QDALREAGVEEFKVAEFEMLPQTDIELSEEDQAIFEKLIDALEDLEDVQNVFHNVDLK*

20 Sequence 3153 Contig_0673_pos_2813_0 is similar to (with p-value 2.0e-34) >gp:gp|X81475|MHLMP_1 M.hominis lmp1 and lmp2 genes. NID: g 587470. 25 atgactgaagcaacaattcaaaattataacgctaaacgtcaaaaagcagagcaagttata caaaatgcaaataaaattattgaaaacgctcaacctagtgtacaacaagtgtctgatgag aaatctaaggtagagcaagcactcagtgaattgaacaacgccaaatcagcgcttagagct aagaaaccagcttctatcactgcgtacaatcaaagatatcaacaatttagtaacgaattg 30 aacagcactaaaacaaatacagatcgcattttaaaaagagcaaaatccaagtgtagctgat gtcaacaatgcactaaataaagtaagagaagtacaacaaaaattaaacgaagccagagca cttttacaaaataaagaagataatagtgcactagttcgagccaaagaacaacttcaacag gcagttgaccaagtcccttcaacagaaggtatgacgcaacaaactaaagatgattacaattcaaaacaacaagctgctcaacaagaaatatcaaaagcacaacaagttatcgataatggc 35 gatgcgactacacaacaatttctaacgccaaaacaaatgttgaacgcgctttagaagca ttaaataatgcaaaaactggtttaagagcagataaagaggaacttcaaaatgcatataat caattaactcaaaatattgatacgagcggtaaaacgcctgcaagtatcaggaaatacaat gaagctaagtcacgtattcaaactcaaattgattcagctaaaaataaagcaaacagtatt ttaacaaatgacaatcctcaagtatcacaagtgactgctgcgttaaacaaaataaaagct 40 gttcaacctgaattagataaagcgatagcaatgcttaaaaataaagagaataataatgca ttggttcaagcgaaacaacattcaacaaattgttaatgaagtagatccaacacaaggc atgacaacagatactgctaataactataaatcaaaaaacgtgaagctgaagatgaaata caaaaagctcaacaaatcattaacaatggcgatgccactgagcaacaaattactaacgaa acaaatagagtaaatcaagcgattaatgcaataaacaaagccaaaaacgatttacgtgct 45 gataagteteaattggaaaatgettataaccaattaatacaaaatgttgatacaaatggt

gtagcacaagcattacaaaaagttgaagctgtacaacttaaagttaatgacgcgattcat atgcttcaaaataaagagaataatagtgcacttgtcacagctaaaaatcaacttcagcaa gcagttaatgatcaaccattaacaacaggtatgactcaagattctattaataactatgta gctaagagaaatgaggctcaaagtgctatcagaaatgcagaagctgtcatcaacaatggc gatgcaactgcaaaacaaatttcagacgagaaatctaaagttgaacaagcactagcacat ttgaatgatgctaaacagcaattaactgcagatactactgaattacaaacagcagttcaa caattaaacagaagaggcgatacaaataataaaaagccaagaagtatcaatgcatataa aaagcaattcaatcattagaacacacactgtg

aaaaaacctgctagtattcaacaataccaagctgctcgacaagctattgagacgcaatac aataacgctaaatcagaagcacatcaaattcttgaaaatagtaacccttcagttaatgaa

aacactgctttagcattaattaataacggcgatgccgatgaacaacaaattacaactgaa acagaccgagtcaatcagcaaactacaaacttaactcaagcaattaacgggttaacagtt aataaagaaccattagaaaccgctaaaacagcgttacaaaataacatcgaccaggtacct aqtacaqatqqtatgactcaqcaatctgttgcaaattataatcaaaaactacaaatagct aaaaacgaaattaacacaattaataacgttttagcgaacaatctagatgttaatgcaatc aaaacgaataaagcagaagcggaacgaatcagtaacgatttaacacaagctaagaataac ttacaagttgatactcaacctttagaaaaaataaaaagacaacttcaagatgaaattgat caaggtactaacacagatggaatgactcaagattcagtggataattacaatgatagctta agtgcagcaattatagaaaaaggcaaagtaaataaattacttaaacgtaatccgacagta qaacaagttaaagagagcgttgctaatgcacaacaagtcatacaagatttacaaaatgct cqaacttcacttqttccagacaaaactcaacttcaagaagctaaaaatagattagaaaac agtattaaccaacaacagatactgacggcatgactcaagattcgcttaacaattataat gataaattagcaaaagctagacaaaaccttgaaaaaatatctaaagttttaggtggtcaa cctactgtagctgaaattagacaaaatacagatgaagcaaatgcacataaacaagcatta gaaagtcatttaaataacgcgcaaaaagataattttaaagctcaagttaactcagcacct qcattaagtggaagtattgcagattacgaaaatcaaaaacaacaagaaaattatttagat gcatctaacaataaacgtcaagactatgacaatgcagtcaatgcggctaaaggtatttta

Sequence 3154

10

15

20

MTEATIONYNAKROKAEQVIQNANKIIENAQPSVQQVSDEKSKVEQALSELNNAKSALRA DKOELOOAYNOLIOPTDLNNKKPASITAYNORYOOFSNELNSTKTNTDRILKEQNPSVAD 25 VNNALNKVREVOOKLNEARALLONKEDNSALVRAKEOLOOAVDOVPSTEGMTOOTKDDYN SKQQAAQQEISKAQQVIDNGDATTQQISNAKTNVERALEALNNAKTGLRADKEELQNAYN QLTQNIDTSGKTPASIRKYNEAKSRIQTQIDSAKNKANSILTNDNPQVSQVTAALNKIKA VQPELDKAIAMLKNKENNNALVQAKQQLQQIVNEVDPTQGMTTDTANNYKSKKREAEDEI QKAQQIINNGDATEQQITNETNRVNQAINAINKAKNDLRADKSQLENAYNQLIQNVDTNG 30 KKPASIQQYQAARQAIETQYNNAKSEAHQILENSNPSVNEVAQALQKVEAVQLKVNDAIH MLONKENNSALVTAKNOLOOAVNDOPLTTGMTQDSINNYVAKRNEAQSAIRNAEAVINNG DATAKOISDEKSKVEOALAHLNDAKOOLTADTTELOTAVOOLNRRGDTNNKKPRSINAYN KAIQSLETQITSAKDNANAVIQKPIRTVQEVNNALQQVNQLNQQLTEAINQLQPLSNNDA LKAARLNLENKINQTVQTDGMTQQSIEAYQNAKRVAQNESNTALALINNGDADEQQITTE 35 TDRVNQQTTNLTQAINGLTVNKEPLETAKTALQNNIDQVPSTDGMTQQSVANYNQKLQIA KNEINTINNVLANNLDVNAIKTNKAEAERISNDLTQAKNNLQVDTQPLEKIKRQLQDEID OGTNTDGMTODSVDNYNDSLSAAIIEKGKVNKLLKRNPTVEOVKESVANAOOVIODLONA RTSLVPDKTQLQEAKNRLENSINQQTDTDGMTQDSLNNYNDKLAKARQNLEKISKVLGGQ PTVAEIRONTDEANAHKOALDTARSOLTLNREPYINHINNESHLNNAOKDNFKAQVNSAP 40 NHNTLETIKNKADTLNQSMTALSGSIADYENQKQQENYLDASNNKRQDYDNAVNAAKGIL NQTQSPTMSADVIDQ

Sequence 3155

Contig_0681_pos_7383_6148

- is similar to (with p-value 4.0e-56)
 >sp:sp|P71359|RECQ_HAEIN ATP-DEPENDENT DNA HELICASE RECQ (E
 C 3.6.1.-). >gp:gp|U32756|U32756_4 Haemophilus influenzae Rd
 section 71 of 163 of the complete genome. NID: g1573729.

actgtatcccaagctgatgatgactataaagataaaatgggcgaaaaattaacgaaaatg attcaatataccaaaacgaaaaagtgtttagaagcgacaattgttcattattttgaaccc aatgaaaatttagaggaatgcaatcaatgtagtaattgtatacaggaaaataaaacgtat

gatatgactcgtgaagcgaaaatgattattagctgtattgctcgaatgaagcaacaggaa aattatagtgttattatacaagttttacgtggagaagtgacagattatataaaacaccat cattataatgaattaacgacacatgggttgatgaaaaattatacaacatctgagttatca cacttaattgatgagctacgtttcaaaggatatttaaatgaaaatgatgaaaattcttatg tgtgatacatcagtgaaacaattactaaataatcataccaaggtttataccactccgttc aaacaaaaaactaaagagaaggtatttatcaacactgttgaaggtgtggatagagcgtta tatcgtgagcttgttgatgtacgtaaacagctaagtgataaacttggaatagcacctgta agtatattttctgattacacgctcgaagaatttgctaagcgtaaacctgaatcgaaacaa gaaatgattgctattgatggtgtaggtagttataaattaaagcattattgtcctaagttt atcgaaaccatacaaagctataaaactagaatataa

Sequence 3156

MSKLSIGQNDVVKTSTKRRNLIFKVNPTYQRQKFVVDYVANHEGQAGIIYCSTRKQVEEL HEALNSEKIKSTIYHAGLTNKERIEAQNDFLYDRVEVVIATNAFGMGIDKSNVRYVIHYN MPGDLESYYQEAGRAGRDGLKSECILLFSERDKGLHEYFITVSQADDDYKDKMGEKLTKM IQYTKTKKCLEATIVHYFEPNENLEECNQCSNCIQENKTYDMTREAKMIISCIARMKQQE NYSVIIQVLRGEVTDYIKHHHYNELTTHGLMKNYTTSELSHLIDELRFKGYLNENDEILM CDTSVKQLLNNHTKVYTTPFKQKTKEKVFINTVEGVDRALYRELVDVRKQLSDKLGIAPV SIFSDYTLEEFAKRKPESKQEMIAIDGVGSYKLKHYCPKFIETIQSYKTRI*

20

25

10

15

Sequence 3157 Contig_0683_pos_4043_4831 is similar to (with p-value 1.0e-70)

>sp:sp|P23355|PTFB_XANCP PTS SYSTEM, FRUCTOSE-SPECIFIC IIBC COMPONENT (EIIBC-FRU) (FRUCTOSE-PERMEASE IIBC COMPONENT) (PHOSPHOTRANSFERASE ENZYME II, BC COMPONENT) (EC 2.7.1.69) (EII-FRU). >pir:pir|B40944|B40944 phosphotransferase system en zyme II (EC 2.7.1.69), fructose-specific - Xanthomonas campe stris pv. campestris >gp:gp|M69242|XANFRUKAA_3 X.campestris 1-phosphofructokinase (fruK) and PTS enzyme-II fructose (fru

A) genes, complete cds. NID: g155366.
gtggttttgttgagtaactcaaaaaaagtagccgttgtcacaggtgcagcacaaggtatt
ggcttgaaaattgctgagcgtctatttgaagacggatatagcatcgcgcttgtagacttt
aatgaagaggtagctaaagagtcagctgaaaaattatcaaaagaggcaagaggcagtt
gcttttaaagcagacgtttcaaatcgcgatcaagtatttagtgtgttaaatcaagtcgtt
gaacactttggcgatttaaatgtcctagttaataatgctggtcttggaccaatgacaca

45 ttccactaa

Sequence 3158

VVLLSNSKKVAVVTGAAQGIGLKIAERLFEDGYSIALVDFNEEVAKESAEKLSKEGQEAV
AFKADVSNRDQVFSVLNQVVEHFGDLNVLVNNAGLGPMTPIESVTPEQFNQVVGVNVGGV
50 FWGIQAAIEQFDKLGHGGKIINATSQAGVEGNAGLSLYSSTKFAVRGLTQVAARDLAEKN
ITVNAFAPGIVETPMMKGIAEKLAEENNQPMEWGWKQFTDQIALKRLSKPEDVANVVSFL
AGSDSDYITGQTIIVDGGMRFH*

Sequence 3159

55 Contig_0683_pos_0_1268

is similar to (with p-value 3.0e-73)

>sp:sp|Q48436|BUDC_KLEPN ACETOIN(DIACETYL) REDUCTASE (EC 1. 1.1.5) (ACETOIN DEHYDROGENASE) (AR). >gp:gp|D86412|D86412_1 Klebsiella pneumoniae gene for meso-2,3-butanediol dehydroge

nase (D-acetoin forming), complete cds. NID: g1468938. gtgctcacttctaaagaaatcaaagaagctgatggaatcatcattgctgccgatagacag gtagatttatcaaggtttaatggtaaacctctcatcaatgaaagtgtacgtgaaggtatt catagacccaaggaattaatacaacgtgtgattgaccaagatgcacaaatttaccatgat caaaatatttcttcaaatatgtctagagaccaggaagaatctcataaaagtaatattcaa atggtatatcagcatttaatgaatggtgtttccttcatggttccatttatcgtcgttggc ggtttactcatagctattgccttaactcttggaggacacaccactccaaaaggattagtt atccccqaaqattcattttggaaatctattgaaaatattggtagtttatcgtttaaattc atggttcccatccttgctggttatatcgcggtgagtattgctgataagcctggtcttgttccaggtatgattggtggtgccattgctgctgatggtagtttatatggaagtgaagcagga gccggtttccttggtggtatcgtcgcaggtttcttagcgggctatattgcaaaatggatt aaacagattaaagttcctaaagctatggctcctattatgcctattattattattacctatt $\verb|ctatcttctttaatagttggtctcattttatatttgtaataggcgcaccaatttcaaat|\\$ at a tttggtg catta a catcatggtta a a aggaatg caaggtg ctaa catcattatt cttgctcttattattggcgcgatgattgcttttgatatgggaggtccagtaaacaaagtagca ttcttattcgqttctqcattaattqctgaaggcaactacactgtgatgggaatggttgct qtaqcaqtatqtacaccaccqattggtttaggtttagctacatttgttcgtaaacaccaa ttcaataaagcagaacaagaaatgggtaaggcatcatttacgatgggattatttggtatt ${\tt actgaaggggcaatcccttttgctgcacaagatcctctaagaatcattccagccaatatg}$ attggcgcgatgattgcttcagtaatagcggcggttggaggtgtcggtgataaagttgct ${\tt catggaggtcctattgtcgctgtactaggtggaataagtaatattttatggttctttata}$ gctgttgtcgttggaagcttagtaaccatgttcacagtcttgttatttaagcgtcacacc cctgcTTT

10

15

20

- 25 Sequence 3160
 VLTSKEIKEADGIIIAADRQVDLSRFNGKPLINESVREGIHRPKELIQRVIDQDAQIYHD
 QNISSNMSRDQEESHKSNIQMVYQHLMNGVSFMVPFIVVGGLLIAIALTLGGHTTPKGLV
 IPEDSFWKSIENIGSLSFKFMVPILAGYIAVSIADKPGLVPGMIGGAIAADGSLYGSEAG
 AGFLGGIVAGFLAGYIAKWIKQIKVPKAMAPIMPIIIIPILSSLIVGLIFIFVIGAPISN
 30 IFGALTSWLKGMQGANIIILALIIGAMIAFDMGGPVNKVAFLFGSALIAEGNYTVMGMVA
 VAVCTPPIGLGLATFVRKHQFNKAEQEMGKASFTMGLFGITEGAIPFAAQDPLRIIPANM
 IGAMIASVIAAVGGVGDKVAHGGPIVAVLGGISNILWFFIAVVVGSLVTMFTVLLFKRHT
 PAX
- 35 Sequence 3161 Contig_0687_pos_5614_4433 is similar to (with p-value 4.0e-55) >sp:sp|Q44681|RISB_BACAM 6,7-DIMETHYL-8-RIBITYLLUMAZINE SYN THASE (EC 2.5.1.9) (DMRL SYNTHASE) (LUMAZINE SYNTHASE) (RIBO FLAVIN SYNTHASE BETA CHAIN). >gp:gp|X95955|BARIBGENS_4 B.amy 40 loliquefaciens ribB, ribG, ribA, ribH & ribT genes. NID: g15 92687. ${\tt atgcaattcgatacaattgagttggctatagaggctttaagaaatggagagagcattatt}$ qtaqttqacqatqaaqataqaqaaaatqaaggagatcttgtagctgttacggaatggatg qatqataataccattaattttatggctaaagagggtcgtggtctgatttgtgcaccaatt gataaatctatagctgaaagattaaaactacaatctatggagcaaaataacactgatatt tatggcacacattttactgtaagcattgatcattataaaactactacaggaatcagtgca catgaacgtacacaaacggctagagcactcatagatgaaaatactaatcctgaagatttt catcgtccggggcacttatttccacttatagcaaaagagaatggtgttaacacgtaat 50 qqtcatactgaagctgccgtagatttggcacggttaacaggagcacaaccagctggagta $\verb|atctgcgaaattatgaatgatgggacaatggctaagggtgaagatctccagtcattt|$ aaagaacgccaccatttaaaaatgattactataaaaagtttggttgcttttcgtaaggct gttgaacttaatgttaatcttaaggcaaaggtcaagatgccaactgattttggtcatttt gatatgtatggatttacaacggattatagcgatgaagaaatcgtagctattgttaaagga gatttaaaaagcaatcctaatgtacgtatgcattctgcttgtctgactggggatattttt 55 catagtcaaagatgtgattgcggggcacaacttgaagcgtcaatgaaatatattgacgaa ttgcgcgcatatgagttgatagaaaaaggttatgatacagttactgcaaatcttgctctt

ggttttgatgaggatttgagagattatcatgttgcagctgaaatattaaagtattttgat

5 Sequence 3162

10

MQFDTIELAIEALRNGESIIVVDDEDRENEGDLVAVTEWMDDNTINFMAKEGRGLICAPI
DKSIAERLKLQSMEQNNTDIYGTHFTVSIDHYKTTTGISAHERTQTARALIDENTNPEDF
HRPGHLFPLIAKENGVLTRNGHTEAAVDLARLTGAQPAGVICEIMNDDGTMAKGEDLQSF
KERHHLKMITIKSLVAFRKAVELNVNLKAKVKMPTDFGHFDMYGFTTDYSDEEIVAIVKG
DLKSNPNVRMHSACLTGDIFHSQRCDCGAQLEASMKYIDEHGGMIIYLPQEGRGIGLINK
LRAYELIEKGYDTVTANLALGFDEDLRDYHVAAEILKYFDISEINLLSNNPKKFEGLEDY
GIEIVDRIELIVPETOYNHSYMETKKNKMGHLI*

Sequence 3163

15 Contig_0687_pos_4420_3959

>sp:sp|P51695|GCH2_BACAM GTP CYCLOHYDROLASE II (EC 3.5.4.25) / 3,4-DIHYDROXY-2-BUTANONE 4- PHOSPHATE SYNTHASE (DHBP SYN THASE). >gp:gp|X95955|BARIBGENS_3 B.amyloliquefaciens ribB, ribG, ribA, ribH & ribT genes. NID: g1592687.

- 20 atgaattttgaaggtaaattagttggtaaggatttaaaaattgcgattgttgttagtaga tttaatgatttattactacacgtctacttgaaggggctaaagatacacttattcgtcat gaagtagaagatacaaatattgatgtagcttatgtgcctggcgcattcgaaattccactc gttgcaaaaaaattagctcaaaaaggtgaatatgatgctgtgtgattacattaggatgtgtg attagaggcgcaacttcacattatgactatgtatgtaatgaagtagctaaaggtgtttct
 25 aagcaagcagttgaagagctggtactaaaggttggaataaaggttcagaagcagtt

Sequence 3164

30 MNFEGKLVGKDLKIAIVVSRFNDFITTRLLEGAKDTLIRHEVEDTNIDVAYVPGAFEIPL VAKKLAQKGEYDAVITLGCVIRGATSHYDYVCNEVAKGVSKANDISDTPVIFGVLTTESI EQAVERAGTKAGNKGSEAAVSAIEMANLIKQIN*

Sequence 3165

35 Contig_0691_pos_489_154

is similar to (with p-value 2.0e-21)

>pir:pir|A55345|A55345 diamine N-acetyltransferase (EC 2.3.
1.57) - Escherichia coli >gp:gp|D25276|ECOSN1A_1 Escherichia
coli gene for spermidine acetyltransferase, complete cds. N

40 ID: g517104. >gp:gp|AE000254|AE000254_5 Escherichia coli K-1 2 MG1655 section 144 of 400 of the complete genome. NID: g17 87862.

gtggtagagttattagaaattaactttatacatagaacttgtgaagtgttaattattatc gatccgcagtatgcaaataatgggtacgcgaaaaaagcctttaaaaatggctattgactat

- 45 gcttttttagtattaaatatgaataaggtatacttatatgtggatattaagaatgagaaa gcagtacatatctatcaaagtaataatttcgaaatagaaggaacgttaaaggaacacttc tatacaaggggagaatatagaggattgctatgtaatgggcttgttaaaaaggaattgggttaaatagagattgctatataagatga
- 50 Sequence 3166

VVELLEINFIHRTCEVLIIIDPQYANNGYAKKAFKMAIDYAFLVLNMNKVYLYVDIKNEK AVHIYOSNNFEIEGTLKEHFYTRGEYRDCYVMGLLKRNWVNKNDDDLSHIR*

Sequence 3167

55 Contig_0692_pos_844_1881

is similar to (with p-value 9.0e-27)

>sp:sp|P45578|YGAG_ECOLI 19.3 KD PROTEIN IN EMRB-GSHA INTER GENIC REGION.

atgcataataaacaaaagatattagattttatagaaaataataataatgattatgttgaa

ataaqtcatcgtattcatgaacgccctgaattaggcaatgaagaaattttttgcatcgaga acattaattgaccaattaagagcaaatcgattcgaaatcgaaacggatattgcaggacat gcaacaggatttatagcaacgtatgattctgatatgactggaccggttataggatttcta qctqaatatgatgctttacctggtcttggtcacgcatgcgggcataatattattggtact gctagcgtacttgctgcagtagcactaaaagaagtcgtcgatgaaattggtggtaaagta gtcgttttgggatgtcctgctgaagaaggtggggaaaatggctccgcaaaagcttcttat gttaaagcaggtgtcattgatgaaattgatgtagcattgatgattcatcctggaaatgaa acttatcgtacaattaatactttagctgtggatgttctagatattaaattctatggacgt agtgcgcatgcatctgaaaatgcagatgaagcattaaacgctttagatgcaatgatttca tatattaatqqtatagcacagttaaggcaacacattaaaaaaggacaacgagttcacggg gttatttttagacggtggtaaagcggctaatattatacctgattttacacatgcgagattt tacactcgagctacttcgcggagagaacttgatgttttaactgaaaaagtaaaccaaatt qcaaqaqqtqctqctattcaaactgggtgtgatttttgaattttggtcctatccagaatggt 15 ttaqqaqaaqaagtgattgatgatgttttggctatggatctacagatacaggtaatgta agtcatgttgtaccaacaatacatccacatattaaaattggttctcgaaatcttgttagg acatacccaccgctttag

Sequence 3168

20 MHNKQKILDFIENNKYDYVEISHRIHERPELGNEEIFASRTLIDQLRANRFEIETDIAGH
ATGFIATYDSDMTGPVIGFLAEYDALPGLGHACGHNIIGTASVLAAVALKEVVDEIGGKV
VVLGCPAEEGGENGSAKASYVKAGVIDEIDVALMIHPGNETYRTINTLAVDVLDIKFYGR
SAHASENADEALNALDAMISYINGIAQLRQHIKKGQRVHGVILDGGKAANIIPDFTHARF
YTRATSRRELDVLTEKVNQIARGAAIQTGCDFEFGPIQNGVNEFIKAPKLDDLFEKYATE
LGEEVIDDDFGYGSTDTGNVSHVVPTIHPHIKIGSRNLVRTYPPL*

Sequence 3169
Contig_0692_pos_609_148
is similar to (with p-value 8.0e-17)

30 >gp:gp|AF006687|AF006687_1 Enterobacter agglomerans indole-3-acetyl-L-aspartic acid hydrolase gene, complete cds. NID: g2654566.

atgaatgtagaaagctttaatttagaccatactaaggttgttgcaccttttattcgtcta gccgggactatggaaggtcttaatggtgatgtcatacacaaatatgacattcgtttcaaa cagcccaataaggaacatatggatatgcctggtctacattccttagagcatttaatggca gaaaacattagaaatcatactgataaagtagatttaagtcctatgggttgtcaaact ggattctatgtttcatttattaatcatgacgactacgatgacgtattaaatattatcgat caaacattgcatgatgtgttaaatgctagcgaagtcccagcttgtaatgaggttcaatgt ggttgggctgcaagtcattctttagaaggtgctaaaacaattgctcaagcatttttagat aaaagagagcaatggaatgacatctacggagaaggtaaataa

Sequence 3170

40

45

MNVESFNLDHTKVVAPFIRLAGTMEGLNGDVIHKYDIRFKQPNKEHMDMPGLHSLEHLMA ENIRNHTDKVVDLSPMGCQTGFYVSFINHDDYDDVLNIIDQTLHDVLNASEVPACNEVQC GWAASHSLEGAKTIAQAFLDKREQWNDIYGEGK*

Sequence 3171
Contig_0693_pos_5566_6633
is similar to (with p-value 9.0e-84)

Sequence 3172

10

15

MLIDKARSFIQTMYSELKYNTNEIENRMKEIEQEINLTGSYTHTYEELSYGAKMAWRNSN RCIGRLFWNSLNVKDARDVCDEKEFIKFIHTHIKEATNGGKIKPYITIFSPEDTPKIYNN QLIRYAGYENVGDPSEKKVTRLAEHLGWKGKGSNFDILPLIYQLPNDTIKIHELPNDIVK EVSIHHEHYPKLSKLGLKWYAVPIISNMDLKIGGITYPTAPFNGWYMVTEIAVRNFTDTY RYNLLEKVAEAFEFDTLKNNSFNKDRALVELNHAVYHSFKADGVSIVDHLTAAKQFEMFE RNEHOONRNVTGKWSWLAPPLSPTLTSNYHHGYDNTMHHTNFFYKKEEPMKCPFH*

20 Sequence 3173

Contig_0693_pos_12681_13970

>gp:gp|U13618|SEU13618_2 Staphylococcus epidermidis 9759 he at shock protein 10 (hsp10) and heat shock protein 60 (hsp60) genes, complete cds. NID: g535340.

-) genes, complete cds. NID: g535340. 25 atgatgaatccattagcccaaaaattgaatgatgaaataaagcaatcaagtccagaagta ttagatatgatgtcacaattaggtaaagatatgttttatccaaaaggaattttatcgcaa tctqccqaaqcaaaacqcacaacatataatgctactattggtatggcaaccaaaaaagaa ggtaaaatgtacgcaaattcacttaaccaaatgtttaatgaccttacaccggatgaaatt ttcccatatqcacctcctcaaqqtqtagaqqaattacqtgatttatggcagaaaaaaatg $\verb|cttaaagaaaatcccgacttaaagtctaaatctatctctcgtcccatcgttacaaatgct|\\$ 30 $\verb|ctcacgcacggtctttctctagtagctgatttatttgtagatacagatgataccgtctta|\\$ $\verb|ttaccgacacacacatggggtaattataaacttgtatttagcacacgtcacggtgctcat|$.acattaaaagaatataaaaaagacaaagtgattattattttaaattatcctaataaccca 35 actggttacacaccaaataaaaaagaagttaatactattgtaaatgcaattgaagaacta gctaataaaggtactaaagtagtaactgttgtcgatgatgcatactatgggttattttat gaagaagtttaccaacagtcaattttcacggctttaacacaggtgaaatcttctaaccttttaccagtgcgtttggatggagctactaaagaattcttctcttggggggttccgagttggctttatgacgtttggaattgatcatgaaacgttaaaaaatgcgctagaagctaaagtaaaa ggattaattcgtagcaatatttcaagttctccactaccttctcaaagtgcaatcaaacat gtacttaaatatcatgagcaatttgataaagaaatcgatcaaaatatcaatattttaaaa
- attgctaatgcaattgatgatattaaataa

Sequence 3174

MMNPLAQKLNDEIKQSSPEVLDMMSQLGKDMFYPKGILSQSAEAKRTTYNATIGMATKKE
GKMYANSLNQMFNDLTPDEIFPYAPPQGVEELRDLWQKKMLKENPDLKSKSISRPIVTNA
LTHGLSLVADLFVDTDDTVLLPTHNWGNYKLVFSTRHGAHINTYSIFDDSGHFTTSELVK
TLKEYKKDKVIIILNYPNNPTGYTPNKKEVNTIVNAIEELANKGTKVVTVVDDAYYGLFY
EEVYQQSIFTALTQVKSSNLLPVRLDGATKEFFSWGFRVGFMTFGIDHETLKNALEAKVK
GLIRSNISSSPLPSQSAIKHVLKYHEQFDKEIDQNINILKERYEVTKQVVYDNKYAKYWQ
AYDFNSGYFMSLKLNQVDPEELRKHLINNYSIGIIALNSTDIRIAFSCVEKEDIPYVFES
IANAIDDIK*

Sequence 3175 Contig_0693_pos_16689_15784

unknown; although very good hit (p=0) to B. subtilis genome

gtgcaggctagtcgaccaattttaattgttgcggatgaagtagaaggcgatgcacttact aatattgttttaaaccgtatgcgtggaacatttactgctgtagcagttaaagccccaqqa $\verb|tttggtgatcgacgtaaagcaatgttagaagacctagcaatattaactggtgctcaagtc|$ 5 attactgatgatttaggtttagaacttaaagatgcatctcttgatatgctaggtactgct aataaagttgaagtgactaaagatcatacaacagtcgtagatggtaatggtgatgaaaat aatattgatgctcgtgtaggtcaaattaaagcacaaattgaagaaactgattcagagttt gataaagaaaaattacaggaacgtttggcaaaactagctggcggcgtagctgttatcaaa 10 gtaqqqqctgcaagtgaaacagagcttaaagaacgtaaattaagaattgaagacgcatta aattcaacacgtgcggcggtggaagaaggtatcgttgctggtggtggtactgcgttagtc aatatatatcaaaaagtaagtgaaattaaagcagaaggtgatgttgaaacgggtgttaat atcgtattaaaagcattacaagcacctgttagacaaattgctgaaaatgcaggattagag ggttcaattattgttgaacgtttaaaacatgctgaagcgggcgttggtttcaatgcagca 15 acaaatqaatqqqttaatatqttagaagaaggtatagtagatccaactaaagtaactcgt t cag cgttaca a cat g cag cag tg tag ctg ctat gtt cttaa caac tg aag cag tcg ttgctagtattccagagccagaaaataatgaacaacctggaatgggtggcatgccaggtatg atgtaa

20 Sequence 3176
VQASRPILIVADEVEGDALTNIVLNRMRGTFTAVAVKAPGFGDRRKAMLEDLAILTGAQV
ITDDLGLELKDASLDMLGTANKVEVTKDHTTVVDGNGDENNIDARVGQIKAQIEETDSEF
DKEKLQERLAKLAGGVAVIKVGAASETELKERKLRIEDALNSTRAAVEEGIVAGGGTALV
NIYQKVSEIKAEGDVETGVNIVLKALQAPVRQIAENAGLEGSIIVERLKHAEAGVGFNAA
25 TNEWVNMLEEGIVDPTKVTRSALQHAASVAAMFLTTEAVVASIPEPENNEQPGMGGMPGM

Sequence 3177 Contig_0693_pos_5374_3905

M*

35

40

45

30 is similar to (with p-value 3.0e-77)
 >gp:gp|U59924|SSU59924_1 Sus scrofa nitric oxide synthase (
 NOS) mRNA, complete cds. NID: g1762433.

gtgtaccaatataacgacgatagcttaatgttacacaatgatttatatcaaattaatag gctgaaagctactggaatggtatccatgaaagaatagcagtgtttgatttgtatttt cgaaaaatgccatttaatagtggatatgcggtattcaacggattgaaacgcgttgtgaat tcatcgaaaactttgggtttacaaatgaagatatcacatatttaaaatcgataggttat gaagaagattttctaaattacctaaaagatttgaaatttacagggaatattaaatctatg caagaaggtgaaatttgttttggtaatgagccattattaagagttgaagcacctttaatc caagcgcaacttattgaaactattttgttaaatacatatttaatttccaaacattaattgca actaaagccagccgaattcgtcaaatagcaactcatgacactttgatggaatttggtaca agaagagctcaagagatcgatgctgcactgtggggcgctagagcagcctttattggagg tttgattctacaagtaatgttagagcaggaaaactttttaatatacctgtatctggagg tttgatctacaagtaatgttagagcaggaaaactttttaatatacctgtatctggcaca catgcacacgcactagtacaaacatatggtgatgagtatatagcattcaaaaagtatgct gagcgacataaaaattgtgtgttcttagttgatacttttcatactttaaatttaaggagta ccaaccgcaattaaggttgcaaaagagttaggagatactattaattttataggtatcaga ttagattctggtgatattgcgtacctactacaaaaagctcgtagaatgttagatgct

ggttttacagaagctaaaattatcgcatcaaatgatttggatgagcagactattacaagt

ttaaaagcacaaggcgctaaagttgacggatggggagtaggtacaaaactgattacagga tatgatcaaccagccttaggtgcagtttataaattggtttctattgaaacagatgatggc 50 acaatgagtgatcgcattaaattatcaaataatgctgagaaagttactacaccaggcaaa aaaaatgtttatcgtattattaataataaaaacaggcaaggctgagggcgactatattacg ctagaaggtgaaaatcctaatgacgaatctccattgaaaatgttccatcctgttcacact tacaaaatgaagtttattaaatcatttaaagcggttaatctacatcaatctatatttgaa aatggcaaacttgtataccatcttccagatgaatatgaagctcaggactatcttaaaat

aatttaagtattttatgggaagaaataaacgatatcttaacccgcaagattatccagta gatttaagcactaaatgttgggaaaataagcataagcgtatttttgaagttgctgaacac gttaaagagatggaggatgaaaatgagtag

Sequence 3178

VYQYNDDSLMLHNDLYQINMAESYWNDGIHERIAVFDLYFRKMPFNSGYAVFNGLKRVVN FIENFGFTNEDITYLKSIGYEEDFLNYLKDLKFTGNIKSMQEGEICFGNEPLLRVEAPLI QAQLIETILLNIINFQTLIATKASRIRQIATHDTLMEFGTRRAQEIDAALWGARAAFIGG FDSTSNVRAGKLFNIPVSGTHAHALVQTYGDEYIAFKKYAERHKNCVFLVDTFHTLKSGV PTAIKVAKELGDTINFIGIRLDSGDIAYLSKEARRMLDEAGFTEAKIIASNDLDEQTITS LKAQGAKVDGWGVGTKLITGYDQPALGAVYKLVSIETDDGTMSDRIKLSNNAEKVTTPGK KNYYRIINNKTGKAEGDYITLEGENPNDESPLKMFHPVHTYKMKFIKSFKAVNLHQSIFE NGKLVYHLPDEYEAQDYLKNNLSILWEENKRYLNPQDYPVDLSTKCWENKHKRIFEVAEH VKEMEDENE*

10

15

25

45

Sequence 3179 Contig_0694_pos_3485_4648 is similar to (with p-value 2.0e-36) >sp:sp|P31448|YIDK_ECOLI HYPOTHETICAL 62.1 KD PROTEIN IN EM RD-GLVG INTERGENIC REGION. >gp:gp|L10328|ECOUW82_44 E. coli; the region from 81.5 to 84.5 minutes. NID: g290484. >gp:gp| AE000445 AE000445_8 Escherichia coli K-12 MG1655 section 335 of 400 of the complete genome. NID: g1790105. gtgttcaataaaatgtttaaagttgatgaatacttaggtgtaagtagttcaactgctgtc tcqttaaqtqcttttaqtqattcqatttatgqcatggctttaattataqctggacttgcg attacaatattaggtctaggtcaattaggagatggcaacttcctacatggtttcgacaaa atcqtqcaaqacacqcctqaqaaattqaatgqttttggtaaggtggactcggatgttgta $\verb|ccttggccaaccctattcttcggtatgttctttaacaatttattcttctggtgcgcaaac| \\$ cagatgatagttcaaaaagcactcgcagctaaaaatttaaaagaatctcaaaaaggtgca qcatttaactattttaatggtagtcttgataaatcagataacgcttaccctgcacttgta

acttcaqtattaccagaatgggcattcggcttattttggtgcggttatttttggtgcaata

tcaccactcgtgttggcaaaataa

40 Sequence 3180

VFNKMFKVDEYLGVSSSTAVIIISSIIGIIGIIYLFIGGLSLSAFSDSIYGMALIIAGLA
ITILGLGQLGDGNFLHGFDKIVQDTPEKLNGFGKVDSDVVPWPTLFFGMFFNNLFFWCAN
QMIVQKALAAKNLKESQKGAIYLSLFKVFGPLFTVLPGVVAFNYFNGSLDKSDNAYPALV
TSVLPEWAFGLFGAVIFGAILSSFVGSLNSTTTLLTLDFYKPIFGKNKSDKHIARVGHIA
TVVIGVIVVALAPVISLFPSGLYAVVQQFNGVYSMPVLALILIAFFSKRTSKLGAKVTLF
THIILYAIISFVFTEINYLYTFSVLFFVDLIIILIFNKVKLSSEFDLSTHQPKVDMTPWK
YRYVAGIIVLALVVVSYIIFSPLVLAK*

Sequence 3181

50 Contig_0699_pos_1788_1444

is similar to (with p-value 4.0e-59)

>pir:pir|167760|167760 transposase (insertion sequence IS10) - Escherichia coli >gp:gp|S67119|S67119_2 BST=somatotropin ...BST/beta-Gal fusion protein (Escherichia coli, LBB84, pla smid pXT107, IS10L/R-1, PlasmidTransposonInsertionMutant, 3 genes, 1679 nt]. NID: g455674.

atgcagattgaagaaaccttccgagacttgaaaagtcctgcctacggactaggcctacgcctatgccgaacgagcagctcagagcgttttgatatcatgctgctaatcgccctgatgcttcaactaacatgttggcttgcgggcgttcatgctcagaaacaaggttgggacaagcacttc

5 Sequence 3182 MQIEETFRDLKSPAYGLGLRHSRTSSSERFDIMLLIALMLQLTCWLAGVHAQKQGWDKHF OANTVRNRNVLSTVRLGMEVLRHSGYTITREDSLVAATLLTONLFTHGYVLGKL*

Sequence 3183

10 Contig_0702_pos_12730_11027

>sp:sp|P16659|SYP_ECOLI PROLYL-TRNA SYNTHETASE (EC 6.1.1.15) (PROLINE--TRNA LIGASE) (PRORS) (GLOBAL RNA SYNTHESIS FACTOR).

15 tta agc catcg tt tatta taa aag cag g g ttaattaa acag ag tacaa g t g g tatatatagttacttaccacttgctacacgtgtactaaataatatatctaaaatcatacgtgaagaa atggaaagtatagatgctgtagaaattcttatgccagctttacaacaagcagaattatgg qaaqaqtcaqqacqttggaqtgcatatggtccagaactaatgcgtttaaaagacagaaac ggacgtgaatttgcattaggacctactcatgaggaagtagtcacttctttagtaagagat 20 gaattaaaatcatataaacagttaccccttactttatttcaaattcaatccaatataga gatgagaaaagaccacgctttggattattaagaggacgcgaatttcttatgaaagatgca tattccttccattcagatgaagcttcattagatgcaacttatcaagatatgtatcaagca tatagtcgcatattcaaacgtgtaggcatcaatgcaagaccggttgtggcagattcaggtgcaatagggggaagtcatacacacgagtttatggcattgagtgaaattggggaagataca 25 ataqtttataqtaatqaqaqtqactatqcaqcqaatattqaaaaqgctgaagttgtttat catccttctcataagcattctgcacttgcggaattgactaaagttgagacgcccaatgtt aaaacagctcaagaagttgcagaatatttaaagagaccattagatgaaattgtaaaaact atgatetttaaaatagatggegaatttattatgtttetagttegtggacateatgaatta aatgaagtgaaattaaaatcatatttcggcacggaacatgttgaaatggctactccagatgaaattgttaatcttgtagatgccaatccggggtctcttggtcctatttttgataaagat attaaaatttatqccqataattacttacaaqatttaaataactttgttgtaggagctaat gaagatcattatcactatataaatgtcaatattggtagagactttgatgtaacagaatac ggtgactttagattcattacacaaggtgagatgttaagtgatggctcgggagtagcacaa tttgctgaaggcattgaagtaggacaagttttcaaattagggacaaaatattctgaatca 35 ${\tt atgaatgcaacttttctagataatcagggaaaagctcaaccactcattatgggctgttat\\$ ggtattggagtatcaagaacattaagtgcaattgttgaacaaaacaatgacgagaatgga attatttggccaaaatcagtaacgcctttcgatatccatctaattactatcaatcctaaa aaggatgatcaacgtactttaggtgatcaactttatcaaaaattaatggattcatacgat gttttatatgatgaccgaaaagaacgtgctggtgttaaatttaatgattcagacctaatt 40 gggttaccggtacgagttgttgttggtaaaagagctgaagaaggtattgttgaggtaaaa

Sequence 3184

55

gaattatttaagaatattaagtaa

45 MKQSKVFIPTMREVPAEAEALSHRLLLKAGLIKQSTSGIYSYLPLATRVLNNISKIIREE
MESIDAVEILMPALQQAELWEESGRWSAYGPELMRLKDRNGREFALGPTHEEVVTSLVRD
ELKSYKQLPLTLFQIQSKYRDEKRPRFGLLRGREFLMKDAYSFHSDEASLDATYQDMYQA
YSRIFKRVGINARPVVADSGAIGGSHTHEFMALSEIGEDTIVYSNESDYAANIEKAEVVY
HPSHKHSALAELTKVETPNVKTAQEVAEYLKRPLDEIVKTMIFKIDGEFIMFLVRGHHEL
50 NEVKLKSYFGTEHVEMATPDEIVNLVDANPGSLGPIFDKDIKIYADNYLQDLNNFVVGAN
EDHYHYINVNIGRDFDVTEYGDFRFITQGEMLSDGSGVAQFAEGIEVGQVFKLGTKYSES
MNATFLDNQGKAQPLIMGCYGIGVSRTLSAIVEQNNDENGIIWPKSVTPFDIHLITINPK
KDDQRTLGDQLYQKLMDSYDVLYDDRKERAGVKFNDSDLIGLPVRVVVGKRAEEGIVEVK
QRINGLSEEVQIDELEYYLQELFKNIK*

Sequence 3185
Contig_0703_pos_2091_3398
is similar to (with p-value 3.0e-36)
>sp:sp|Q57991|AK_METJA PROBABLE ASPARTOKINASE (EC 2.7.2.4)

(ASPARTATE KINASE). >gp:gp|U67506|U67506_4 Methanococcus jan naschii section 48 of 150 of the complete genome. NID: g1591 274.

gtgaatgaagaccctgaacgtaaaatcattatcgtttcagctccaggcaaaaggcataat gacgacattaaaactactgatttattaattcgtctctatgaaaaagtacttaataaatta aattatqaaaqtaaaaaacaagaaattatccaaagatatgctgatatagtagaagaatta qqtataggaaatgacattttaataacaattaatgacactttagaggaatacattaaacat ctttctgacaacctaaccgtttatatgatgctttattatcttgtggcgaaaattttaat gctcaattaatagcccagtataataatagtcaaggtattcctactcgttatatttctcct aaagaagctggattaactgtaactgatttaccacagcaagctcaaattttagattccgca 10 ggagtttcaaagcaaaattatatcgttacgtttccacgcggtggttctgacataactggt gctatcatagcacgtggcgtccgagcctcactttatgagaacttcactgatgtatcagga atataaaagctaatccgaatatcataaataatcctgaactcatagaggaaataacttat 15 aqaqaaatqcqaqaqctatcttatgcaggattttggagtttttcacgatgaagctctacaa cctttatacaaagatcgaattcccgtagttatcaaaaatactaatcgtccaaatgataaa gggacctacattttacatgaccgtgaaatcgattctaaaaatgtcattagtggaattagt ${\tt tgtgataaaggctttactgtgattaatattaaaaaaatatttaatgaatagattagttgga}$ $\verb|tttacacgaaagattcttggcgttttagaagaatttaatatcatttgaccacatgcct|\\$ 20 caagttcttaatgccatacgcaaacgttgtgaagttgatgaattaagtatcgaccatgat ttaqcaqtactaatqattqttqqtqaaqqtatqaatcaaqttqttqqttaqtaaa attactcacgccctttcagaatcaaacattaatttaataatgattaaccaaggtgcttct gaaatttcaatgatgtttggaattcatgaagcagatgctgaaaaagcagtattatctacg 25 tacgaattttgttacaacggtgtttgtttaaaaaatttgtgtaaataa

Sequence 3186

45

50

55

VNEDPERKIIIVSAPGKRHNDDIKTTDLLIRLYEKVLNKLNYESKKQEIIQRYADIVEEL
GIGNDILITINDTLEEYIKHLSDKPNRLYDALLSCGENFNAQLIAQYNNSQGIPTRYISP
30 KEAGLTVTDLPQQAQILDSAYNEIYKLRDYDEKLIIPGFFGVSKQNYIVTFPRGGSDITG
AIIARGVRASLYENFTDVSGIYKANPNIINNPELIEEITYREMRELSYAGFGVFHDEALQ
PLYKDRIPVVIKNTNRPNDKGTYILHDREIDSKNVISGISCDKGFTVINIKKYLMNRLVG
FTRKILGVLEEFNISFDHMPSGIDNISIIMRTNQIQGKESQVLNAIRKRCEVDELSIDHD
LAVLMIVGEGMNQVVGTASKITHALSESNINLIMINQGASEISMMFGIHEADAEKAVLST
35 YEFCYNGVCLKNLCK*

Sequence 3187 Contig_0707_pos_8234_4395

>gp:gp|AF067776|AF067776_1 Abiotrophia defectiva extracellu 40 lar matrix binding protein (emb) gene, partial cds. NID: g32

gtgaaatctgaagctagacaagcagtacagaataaagcaaatgaacagattaatcatatt caaaacacqcctqatqcaactaatqaaqaaaaacaaqaggcaataaatagagtaagtgct qaattaqcaaqaqttcaaqcacaaataaatgcagaacatacaacccaaggtgtcaaaact atcaaagacgacgcgataacttctttatctcgaattaatgcacaagttgttgagaaagag tctgcaagaaatgcaatcgaacaaaaggcaacacaacaacgcaatttattaataataat gataatgctacagatgaagaaaaagaggtcgccaacaatttagttatcgctacaaaacaa aaatcattagataatattaactccttatcttcaaataatgatgttgaaaatgctaaagta gcaggaataaatgaaatagctaacgttttaccagcaaccgctgttaagtcaaaagcaaaa aaagatattgatcaaaaactcgcgcaacagattaatcaaattcaaacgcatcaaactgct acaactgaggaaaaagaagcggctattcaattggcaaatcaaaatcaaatgaagcaaga acagcaattcaaaatgaacatagtaacaatggtgtcgcacaagctaaatctaacggcatt catgaaattgaattagttatgccagatgcgcacaaaaaatctgatgctaaacaaagtatc gataataaatataatgagcaaagtaatactatcaacactacaccagatgcaacagatgaa gaaaagcaaaaagcattagataaattaaaaaatagctaaagatgcaggatacaacaaagtt qatcaaqcqcaaaccaaccaagtatctgatgcaaaaactgaggctatagatacgata actaatattcaagcaaatgttgcaaaaaaaccatccgctcgagtggaattagattcaaag tttqaqqatttaaagcgtcaaatcaatgcaacgcccaatgctacagaagaagaaaaacaa gatgcaattcaaagattgaatggtaaaagagatgaagttaagaatctaataaatcaagat

agacgtgacaatgaagttgaacagcacaaaaatattggacttcaagaattagaaacgatt caaacagagttaattaataataacaaagatgcaactaatgaagaaaaagatgaagccaaa aatcaagttgataatgctaaagataacggcatgaatgagattgctaccataataccagca acaacaattaaaacagatgcaaaaacggctattgataaaaaagctgagcaacaagttaca atcatcaatggtaacaacgatgcaacagatgaagaaaaagcagaggctagaaagctggtt gaaaaagcgaaaattgaagccaaatctaatattacaaatagtgatactgaaagqqaagtc aatggtgctaaaaccaatgggttagaaaaaataaacaatattcaaccatcaactcaaact aaaacaaatgctaagcaagaaataaatgacaaagctcaaqaacaattaatccaaattaat aacacgcctgatgcaaccgaagaagaaaagcaagaggcaacaaatagagtcaatqctqqa ttagcacaagcaatacaaaatattaataatgcacatagtactcaagaagtaaatgaatct aaaacaaatagtattgctacaatcaagagtgtacaacccaatgtgatcaaaaaaccgact gctataaatagtttgactcaagaagctaataatcaaaagacgttaataggtaatgatggt aatgctactgatgatgaaaaagaggctgcaaagcaattagtgacccaaaaattaaatgaa caaattcaaaaaattcatgaaagtacacaagataatcaagttgataacgtaaaagcacaa gctatcactgcaattaaattgattaatgcaaatgcacataaaagacaagatgccattaat attttgactaatctagctgaaagtaaaaaatcagatataaqaqccaatcaagatqcaact actgaagagaaaaatacggcaatacaatctatagatgatacgttagcacaagcacgtaac aatattaatggtgcaaatacaaatgcgttagtggatgagaatttagaagatggtaagcaa aagttacaacgtattgtgttgtcaactcaaactaaaacacaagctaaagcagacattgct caagcaataggtcaacaaaggtcgacaatagaccagaatcaaaatgctacaacagaagaa aaacaagaagcccttgagagacttaatcaagaaacaaatggagtcaatgatagaatacaa gcagctttagcaaatcaaaatgttacagacgaaaaaaataatattagaaacaataaga aatgttgaacctattgtaattgtaaaaccaaaggctaatgaaataattagaaaaaaggct gcggaacaaacgactttaataaatcaaaatcaagatgcgacactagaagaaaaacaaata gcacttggcaaattagaagaagtaaagaatgaagcgttaaatcaagtatcacaggcacac tcaaataatgatgtgaaaattgtggaaaataatggaattgctaaaatttctgaggtccat cctgagactataattaaacgtaatgctaaacaagaaattgaacaagatgcgcaaagtcaa attgatactatcaatgcaaataataaatcaactaatgaagaaaaatcagccgctatagat agagttaatgtagctaaaattgatgctattaacaatattactaatgctacaactacacaa ttagttaatgatgctaaaaatagtggtaacacgagtattagccaaatattaccaagtaca gcagtcaaaactaatgcattagcagctctagctagcgaagctaaaaataaaaacgctata atagatcaaacaccaaatgcgacagcagaagaaaaaagaagaagcaaataataaagttgat cgtcttcaagaagaagcagatgctaatatcctaaaagcacactactgatgaagttaat aatattaaaaatcaagctgttcaaaatattaacgctgttcaagttgaagttatcaagaaa caaaacgctaaaaaccaattaaatcaattcattgataatcaaaagaaaattattgaaaat acgcctgatgcaacactagaagaaaaagctgaagctaatagattgcttcaaaatgtacta acttccacatcagatgaaattgctaatgtagatcataacaacgaggttgatcaagcttta gataaagctagaccaaaaatcgaggcaattgtaccacaagttagtaagaaacqagatqct ttaaatgcaatccaagaagcatttaattcacaaactcaagaaatacaagagaagcaagaa aaagtaaatattgatcaagcacagtcaaataaagatgtagatagtgcgaaaacacgtagt ttaaatgaaaaagctaaccaacaacaaagtactattgcaactcatcctaattcaacaatt

Sequence 3188

10

15

20

25

30

35

40

45

50

55

VKSEARQAVQNKANEQINHIQNTPDATNEEKQEAINRVSAELARVQAQINAEHTTQGVKT IKDDAITSLSRINAQVVEKESARNAIEQKATQQTQFINNNDNATDEEKEVANNLVIATKQ KSLDNINSLSSNNDVENAKVAGINEIANVLPATAVKSKAKKDIDQKLAQQINQIQTHQTA TTEEKEAAIQLANQKSNEARTAIQNEHSNNGVAQAKSNGIHEIELVMPDAHKKSDAKQSI DNKYNEQSNTINTTPDATDEEKQKALDKLKIAKDAGYNKVDQAQTNQQVSDAKTEAIDTI TNIQANVAKKPSARVELDSKFEDLKRQINATPNATEEEKQDAIQRLNGKRDEVKNLINQD RRDNEVEQHKNIGLQELETIHANPTRKSDALQELQTKFISQTELINNNKDATNEEKDEAK RLLEISKNKTITNINQAQTNNQVDNAKDNGMNEIATIIPATTIKTDAKTAIDKKAEQQVT IINGNNDATDEEKAEARKLVEKAKIEAKSNITNSDTEREVNGAKTNGLEKINNIQPSTQT KTNAKQEINDKAQEQLIQINNTPDATEEEKQEATNRVNAGLAQAIQNINNAHSTQEVNES KTNSIATIKSVQPNVIKKPTAINSLTQEANNQKTLIGNDGNATDDEKEAAKQLVTQKLNE

QIQKIHESTQDNQVDNVKAQAITAIKLINANAHKRQDAINILTNLAESKKSDIRANQDAT
TEEKNTAIQSIDDTLAQARNNINGANTNALVDENLEDGKQKLQRIVLSTQTKTQAKADIA
QAIGQQRSTIDQNQNATTEEKQEALERLNQETNGVNDRIQAALANQNVTDEKNNILETIR
NVEPIVIVKPKANEIIRKKAAEQTTLINQNQDATLEEKQIALGKLEEVKNEALNQVSQAH
5 SNNDVKIVENNGIAKISEVHPETIIKRNAKQEIEQDAQSQIDTINANNKSTNEEKSAAID
RVNVAKIDAINNITNATTTQLVNDAKNSGNTSISQILPSTAVKTNALAALASEAKNKNAI
IDQTPNATAEEKEEANNKVDRLQEEADANILKAHTTDEVNNIKNQAVQNINAVQVEVIKK
QNAKNQLNQFIDNQKKIIENTPDATLEEKAEANRLLQNVLTSTSDEIANVDHNNEVDQAL
DKARPKIEAIVPQVSKKRDALNAIQEAFNSQTQEIQEKQEATNEEKTEALNKINQLLNQA
10 KVNIDQAQSNKDVDSAKTRSIQDIEQIQPHPQTKATGRHRLNEKANQQQSTIATHPNSTI
EERQEASAKLQEVLKKSHS*

Sequence 3189

Contig_0711_pos_3905_0

15 is similar to (with p-value 2.0e-53)

>sp:sp|069282|MQO_CORGL MALATE:QUINONE OXIDOREDUCTASE (EC 1 .1.99.16) (MALATE DEHYDROGENASE (ACCEPTOR)) (MQO).

ggtatttgggaagttaaagtta

30

35

45

20

25

Sequence 3190

VSKKMANKESKNVVIIGAGVLSTTFGSMIKELEPDWNIKLYERLDRPGIESSNERNNAGT GHAALCELNYTVQQPDGSIDIEKAKEINEQFEISKQFWGHLVKSGNISNPRDFINPLPHI SFVRGKNNVKFLKNRYEAMRNFPMFDNIEYTEDIEEMRKWMPLMMTGRTGNEIMAASKID EGTDVNYGELTRKMAKSIEKHPNADVQYNHEVINFNRRKDGIWEVKVX

Sequence 3191

Contig_0712_pos_4917_4060

is similar to (with p-value 3.0e-91)

40 >gp:gp|D13095|BACPK_1 B. stearothermophilus phosphofructoki nase and pyruvate kinase genes. NID: g285620.

atgtttaaagatttttttaatcgaagcaagaaaagaaatatttaacagttcaagattct aaacaaaatgatgtacctgctggtataatgacaaaatgtcctaattgcaaaaaaataatg tatacaaaagaattgaatgaaaatttaaatgtatgctttaattgtgatcatcatatagct

- ttaaccgcatataaaagaatagaagcaatttcagacgatggatcatttatagaatttgat agaggtatgacatctgctaacccattagactttcctgggtatgaagaaaaaattgaaaaa gatcagcaaaagactggacttaatgaagcgttagtgtctggtactgcgaaattagatgga atacaatatggtgttgcagttatggatgctcgttttagaatgggaagcatgggctctgta gttggtgaaaaaatatgcagaattattgattattgtacagaacatcgtttgccatttatt
- 55 gataaagtcattcatcgaaaagatatgcgtgagactttatcaaatattttaaaaatccat caagaggtgagtaactaa

Sequence 3192

MFKDFFNRSKKKKYLTVQDSKQNDVPAGIMTKCPNCKKIMYTKELNENLNVCFNCDHHIA

PCT/US00/30782 WO 01/34809

LTAYKRIEAISDDGSFIEFDRGMTSANPLDFPGYEEKIEKDQQKTGLNEALVSGTAKLDG TOYGVAVMDARFRMGSMGSVVGEKICRIIDYCTEHRLPFILFSASGGARMOEGIISLMOM GKTSVSLKRHSDAGLLYISYITNPTTGGVSASFASVGDINLSEPKALIGFAGRRVIEQTI NEKLPDDFQTAEFLLEHGQLDKVIHRKDMRETLSNILKIHQEVSN*

5

tga

50

10

Sequence 3193 Contig_0712_pos_3958_3116 is similar to (with p-value 2.0e-74)

>sp:sp|Q54776|ACCD_SYNP7 ACETYL-COENZYME A CARBOXYLASE CARB OXYL TRANSFERASE SUBUNIT BETA (EC 6.4.1.2). >gp:gp|U59237|SP U59237_6 Synechococcus PCC7942 ORF102, ORF120, ORF113, ORF12 8, CTP synthetase (pyrG), carboxyltransferase beta subunit (accD), ORF145 and ORF123 genes, complete cds. NID: g1399849.

- atqctgqaaqcatcattaaaaagagaaactacaaaagtgtacactaatctaaaaccttgg gatcqtqttcaaatcqctcqtttaccagaaagaccaaccacattagattatattccctat atttttqattcatttattgagttacatggcgatagaagttttagggatgatccagcaatg attggtggaattggttacttagatggtaagtctgtaacagttataggccaacaacgtggt aaagacacgaaagataatatttatcgtaattttggtatggctcacccagaagggtataga 20 aaagctttgcgtttaatgaaacaagcagagaaatttaatcgtccaatatttacttttata qcaaaaaatttgatggaaatggcttcattaacggtaccagttattgctgttgttattggt qaaqqcqqaaqtqqcqcctttaqqaattqqaatctcaaatcgtgttctgatgcttgaa aataqtacttattcaqttatttcacctgaaggagcagctgcacttttatggaaagatagt 25 aacttageteaaattgeegetgaaactatgaaaateactgegeatgatttactagattta ggtattatagatgaagtgattaatgagccacttggtggtgcgcaaaaagatgaagaagca caagetttateaattaagaaaatgtteettaaacatttaaaatgaattaaageaacteaca cctgaagaattagcaaatgatcgttttgaaaaatttagaaaaattggttcagttgtggag
- 30 Sequence 3194 $\verb|MLEASLKRETTKVYTNLKPWDRVQIARLPERPTTLDYIPYIFDSFIELHGDRSFRDDPAM|$ IGGIGYLDGKSVTVIGQQRGKDTKDNIYRNFGMAHPEGYRKALRLMKQAEKFNRPIFTFI DTKGAYPGKAAEERGQSESIAKNLMEMASLTVPVIAVVIGEGGSGGALGIGISNRVLMLE 35 NSTYSVISPEGAAALLWKDSNLAQIAAETMKITAHDLLDLGIIDEVINEPLGGAQKDEEA OALSIKKMFLKHLNELKOLTPEELANDRFEKFRKIGSVVE*

Sequence 3195 Contig_0714_pos_982_1668

40 is similar to (with p-value 9.0e-54) >sp:sp|P54374|AROE_BACSU SHIKIMATE 5-DEHYDROGENASE (EC 1.1. 1.25). >gp:gp|D84432|BACJH642_93 Bacillus subtilis DNA, 283 Kb region containing skin element. NID: g2627063. >gp:gp 299 117/BSUB0014 46 Bacillus subtilis complete genome (section 1 4 of 21): from 2599451 to 2812870. NID: g2634966.

atgataggaattattggagcaatggaagaagtgacgattttaaagcgtaaattgaat gatatgaatgaaataaatattgcgcatgttaaatttttatgttggcaagctaaaccacaaa gaggtggttttaacacaaagtggtataggtaaagttaatgcttctatctcaacgactttg ttaatagaaaaatttaatccagaagtcgtcattaatactggatcagcaggtgcactagat caa a cactat ctattg gag at a tattag t gag ta a t cat g tattat a t cat g a t g cta a t cat g a t cat g a t cat g cta a t cat g a t ca $\tt gctacagcgtttggttatgaatatggacaaatacctcaaatgcctaaaacttatactact$ gatcctactttgttgaaaaaacaatgcatgtattagaacaacaacaactgaatggtaaa $\tt gtaggtatgattgttagtggtgatagttttataggtagctcagaacagcgacaaaaaatt$ aagcaacaatttccagaagctatggctgtcgaaatggaggcaactgcaattgcgcaaaca tqttatcaatttaaaqtaccatttatcgtaactagagctgtttctgatttagcaaacggt aaaqccqatatttcttttgaagaatttttagataaagcagctttatcatctagtgagaca

55 gtttcattattagtagaatcattataa

Sequence 3196

MIGIIGAMEEEVTILKRKLNDMNEINIAHVKFYVGKLNHKEVVLTQSGIGKVNASISTTL LIEKFNPEVVINTGSAGALDQTLSIGDILVSNHVLYHDANATAFGYEYGQIPQMPKTYTT DPTLLKKTMHVLEQQQLNGKVGMIVSGDSFIGSSEQRQKIKQQFPEAMAVEMEATAIAQT CYQFKVPFIVTRAVSDLANGKADISFEEFLDKAALSSSETVSLLVESL*

5 Sequence 3197 Contig_0714_pos_3323_4141 is similar to (with p-value 1.0e-57) >sp:sp|P24247|PFS_ECOLI PFS PROTEIN (P46). >pir:pir|S45227| 10 \$45227 purine nucleoside phosphorylase homolog - Escherichia coli >gp:gp|D26562|ECO82K_47 Escherichia coli genome, 2.4-4 .1 min region (110,917-193,643 bp from 0 min). NID: g473770. >gp:gp|U70214|ECU70214_10 Escherichia coli chromosome minut es 4-6. NID: g1552727. >gp:gp AE000125 AE000125_6 Escherichi a coli K-12 MG1655 section 15 of 400 of the complete genome. 15 NID: g1786348. >gp:gp | U24438 | ECU24438_1 Escherichia coli MT A/SAH nucleosidase gene, complete cds. NID: g2981266. atgcatcatgctaattttcaatctttaaatttggaaaacacgtatgaagcgataaatgta 20 ccaqttaatcaatttcaaqacattaaaaaaataatttcagaaaagagtattgatggattc aatgttactattccacataaagaacgtattattccgtacctagatgatattaatgaacaa gcgaaatctgttggggcggtaaatacagttttagttaaagatggtaagtggattggttat aatactgatggaattggttatgttaatggtttaaaacaaatatatgaaggtatagaagac gcttatatattaattttaggtgcaggtggagcaagtaaaggtatagcaaatgaattatat 25 aaaatcgttcgtccgactttaacagttgcaaatagaacgatgtctcgttttaataattgg tcgttaaatattaacaaaataaatttaagccatgcagaaagccatttagatgaatttgat attataataaacactacacctgctggtatgaacggcaatacagattctgtaatttcttta aatcgtttagcttcacatactttagtaagtgatattgtttataatccatataaaacacca atactaatagaagctgaacaaagaggtaatccaatctataatggtcttgatatgttcgtt 30 catcaaggtgctgaaagttttaaaattttggactaatctagaaccagatataaaagcaatg

Sequence 3198

VIKVKFAVIGNPISHSLSPLMHHANFQSLNLENTYEAINVPVNQFQDIKKIISEKSIDGF
NVTIPHKERIIPYLDDINEQAKSVGAVNTVLVKDGKWIGYNTDGIGYVNGLKQIYEGIED
AYILILGAGGASKGIANELYKIVRPTLTVANRTMSRFNNWSLNINKINLSHAESHLDEFD
IIINTTPAGMNGNTDSVISLNRLASHTLVSDIVYNPYKTPILIEAEQRGNPIYNGLDMFV
HOGAESFKIWTNLEPDIKAMKNIVIOKLKGEL*

40 Sequence 3199

50

55

Contig_0717_pos_7272_6145

is similar to (with p-value 1.0e-99)

aaaaacatagtaattcaaaaattgaaaggagaattatga

>sp:sp|P54524|YQIG_BACSU PROBABLE NADH-DEPENDENT FLAVIN OXI DOREDUCTASE YQIG (EC 1.-.-.). >gp:gp|D84432|BACJH642_230 Ba cillus subtilis DNA, 283 Kb region containing skin element. NID: g2627063. >gp:gp|Z99116|BSUB0013_132 Bacillus subtilis complete genome (section 13 of 21): from 2395261 to 2613730. NID: g2634723.

gattttattattggttacagattgtcacctgaagaagcggaatcaccaggtatttcaatg gagataactgaagaattaattcaccaaatcgcaaataaaccacttgattatattcatgtg tcattaatggatgttaactcagttacgcgagaaggtaaatataaaggtgaaaatcgcttg gaacttattcatcaatggataaatggacgtatgccgcttattggtataggttctgtctt acagctgaagatgcactaaatgctgttgaaaacattggagttgaatttgttgcgttaggt tgtgaaattctacttgattatgattttgttgctaaaattaaagaaggtcgagaagacgaa attataaatgcttttgatcctaatcgtgaagaccaacattatctaacaccaaatctttgg gaacagtttaatcaaggattctatccattacctcgaaaagacaaataa

10 Sequence 3200
MNNKYEPLFKSLTLPNGVEVRNRFVLAPLTHTSSNDDGTISDIELPYIEKRSKDVGIAIN
AASNVNDVGKAFPGQPSVAHDSDIEGLKELAQVMKKNGAKAIVQIHHGGAQALPELTPDG
DVVAPSAISLKSFGQQKEHDAREMTAEEIEQTIRDFGEATRRAIEAGFDGVEIHGANHYL
IHQFVSPYYNRRNDVWADNYKFPVAVIDEVVKAKKAHAYDDFIIGYRLSPEEAESPGISM
EITEELIHQIANKPLDYIHVSLMDVNSVTREGKYKGENRLELIHQWINGRMPLIGIGSVF
TAEDALNAVENIGVEFVALGCEILLDYDFVAKIKEGREDEIINAFDPNREDQHYLTPNLW
EOFNOGFYPLPRKDK*

Sequence 3201 Contig_0718_pos_2272_1247 20 is similar to (with p-value 3.0e-29) >sp:sp|P31547|YAEE_ECOLI HYPOTHETICAL ABC TRANSPORTER PERME ASE PROTEIN YAEE. >gp:gp|D83536|ECOTSF_23 Escherichia coli g enome, 4.0 - 6.0 min region. NID: g1208942. >gp:gp|U70214|EC U70214_47 Escherichia coli chromosome minutes 4-6. NID: g155 2727. >gp:gp|AE000129|AE000129_2 Escherichia coli K-12 MG165 5 section 19 of 400 of the complete genome. NID: g1786395. gtgattgaattcaaaaatgttaacaaagtttttcgcaaaaaaagagaaactattcaagct ttgaaaaatgtatcatttaagattgaccaacatgatatttttggtgttattggttatagt ggtgctggtaaaagtacattagttcggttagtcaatcaacttgagacagtatcagatggt 30 caagttattgttgatggtcatgagattgatacatataaagaaaaagatttacgtgatatt aaaaaagatatcggtatgatctttcaacatttcaatttgcttaattctaaatcagtctat gttgacgaaatgttagaatttgtggggcttgctgataaaaaagatcaatttccagatgaa ttatcaggtggacaaaaacaacgtgttgccatcgcaagagcattagtaacgcatcctaaa atattattatgtgatgaagcgacaagtgctctggatccagctactacaagctcaatttta aatttattaaqtaatgtgaatcgaacatttggtgtgacgattatgatgattacacatgaa atgagcgtaattcaaaaaatttgtcatcgtgtagctgtcatggaaaatggcgaagtgata gaaatggggacagttaaagatgtctttagtcatccacaaacgaacactgcaaaaaatttc 40 qtttcgacggtgattaacactgagccttcaaaagagttacgggcctcttttaactcgaga aaaqattcaaatttcacagattataaactgtttttagactctgaacaaattcaattgcca atattgaacgagcttatcaacgagcatcatcttaacgttaacgtattattttcttctatg tcagaaattcaagatgaaacggtttgttatttgtggttgagatttgagcatgatgagtcatttaatqattttaaacttactqattacctttcaaaacgacatattcggtatgaggaggtt

Sequence 3202
VIEFKNVNKVFRKKRETIQALKNVSFKIDQHDIFGVIGYSGAGKSTLVRLVNQLETVSDG
QVIVDGHEIDTYKEKDLRDIKKDIGMIFQHFNLLNSKSVYKNVAMPLILSKTNKKEIKEK
50 VDEMLEFVGLADKKDQFPDELSGGQKQRVAIARALVTHPKILLCDEATSALDPATTSSIL
NLLSNVNRTFGVTIMMITHEMSVIQKICHRVAVMENGEVIEMGTVKDVFSHPQTNTAKNF
VSTVINTEPSKELRASFNSRKDSNFTDYKLFLDSEQIQLPILNELINEHHLNVNVLFSSM
SEIQDETVCYLWLRFEHDESFNDFKLTDYLSKRHIRYEEVI*

45

atataa

Sequence 3203
Contig_0718_pos_1244_585
is similar to (with p-value 6.0e-81)
>sp:sp|P30750|ABC_ECOLI ATP-BINDING PROTEIN ABC. >gp:gp|U70
214|ECU70214_48 Escherichia coli chromosome minutes 4-6. NID

: g1552727. >gp:gp|AE000129|AE000129_3 Escherichia coli K-12 MG1655 section 19 of 400 of the complete genome. NID: g1786 395.

atgtttggttcaagtttagattcatctcaattattacaagctctatacgaaacattgtat atggtgactgtatcacttgtaatcggtgctttaataggtatacctcttggcatcttgtta gtggtaactagaaaaaacggtatatggtcgaatacaatattgcatcaagtattaaatcct atcattaatattttaagatcaattccgttcattattttattaatagccatagtgcctttt actaaattgctagttggcacatctatcggcacaacagcagccatagtaccactcacggtt tatgtagcaccttatatcgcacgcttagtagaaaactcattactggaagtcgatgacggg attattgaggcagctaaagcaatgggtgcatcacctcttcaaattatcgttattttta ttgccagaagcacttggttcattaattctagctataactacagctattattggtctcata ggtagtacagcaatggctgtgtgtgtggtggtggtgtataggtgatttggctttagtg tatggttatcaacgattcgatacaattgtcattgtgttatacagctattattatt attgttcaaattatacaaacgttaggtaaccttatcgaaattatacaaacgttaggtaaccttatcgctagaaattat

Sequence 3204

20

25

30

35

50

55

MFGSSLDSSQLLQALYETLYMVTVSLVIGALIGIPLGILLVVTRKNGIWSNTILHQVLNP IINILRSIPFIILLIAIVPFTKLLVGTSIGTTAAIVPLTVYVAPYIARLVENSLLEVDDG IIEAAKAMGASPLQIIRYFLLPEALGSLILAITTAIIGLIGSTAMAGAVGGGGIGDLALV YGYQRFDTIVIVITVIVLIIIVQIIQTLGNFIARVIRRN*

Seguence 3205

Contig_0719_pos_4886_3567

>sp:sp|P52673|CYSI_THIRO SULFITE REDUCTASE (NADPH) HEMOPROT EIN BETA-COMPONENT (EC 1.8.1.2) (SIR-HP). >gp:gp|Z23169|TRCY SCOMA_3 T.roseopersicina cysJ, cysI, cysH genes, complete CD S, and cysB gene 5' end. NID: g1518424.

40 tatttgttaaaaacaaccttaagagaaatcgcagaaatccatactggagatttcagatta tcacctaatcagaacttagttattgcaaatgttctccctgagaaaaaggaagaaatacaa gctattattgataaatataaattaacagatggcaaaaattatacaggacttagaagaaat tctatggcttgtgttgctttcccaacgtgtggtttagctatggcagaatctgaaagatat cttccttcactaattacaaaaattgaagatttattagatgagtctggtttaaaaagaggaa gaaataacgattcgtatgacaggttgtcccaatggatgtgcgagaccagcgctagcagaa

atagcetttategtatagattgteedaatggatgtgegagaedagegetageaga atagcetttateggtaaagcaeetggtaaatataatatgtaettaggtggtagttttaaa ggcgaaegtetaaataaaatatataaagagaatategaegaaaatgagatattagaaagt etaegteeattgttgttgegttatagtaaagagegtettgaeggagaaeaetttggggae tttgtaattegtgaeggtgtgatageeaaagtteatgatggtegegatttteatagttaa

Sequence 3206

MKNINHAVLDSIAACGDVNRNTMCNPNPYQSQVHKEINDYATRISNHLLPRTNAYHEIWL DGEKVLDSSEEKEPIYGNTYLPRKFKIGIAVPPSNDIDVYSQDIGLIAIVEQDELIGFNV TIGGGMGMTHGNTETYPQLGRLIGFIPKEKVVDVCEKILTIQRDYGNRENRKNARFKYTV DRLGETWVTEELNRRLGWEIKAPRDFEFEHNGDRLGWIEGINNWNFTLFIQNGRVKDTED YLLKTTLREIAEIHTGDFRLSPNQNLVIANVSPEKKEEIQAIIDKYKLTDGKNYTGLRRN SMACVAFPTCGLAMAESERYLPSLITKIEDLLDESGLKEEEITIRMTGCPNGCARPALAE IAFIGKAPGKYNMYLGGSFKGERLNKIYKENIDENEILESLRPLLLRYSKERLDGEHFGD FVIRDGVIAKVHDGRDFHS*

Sequence 3207 Contig_0728_pos_9983_10327

>gp:gp|AF043386|AF043386_2 Clostridium acetobutylicum glyce raldehyde-3-phosphate dehydrogenase (gap), phosphoglycerate kinase (pgk), and triosephosphate isomerase (tpi) genes, com plete cds; and 2,3-bpg-independent phosphoglycerate mutase (pgm-i) gene, partial cds. NID: g2829136.

15

25

30

35

10

Sequence 3208
MQIEETFRDLKSPAYGLGLRHSRTSSSERFDIMLLIALMLQLTCWLAGVHAQKQGWDKHF
OANTVRNRVLSTVRLGMEVLRHSGYTITREDSLVAATLLTQNLFTHGYVLGKL*

20 Sequence 3209

Contig_0728_pos_8652_7642 is similar to (with p-value 4.0e-59)

>pir:pir|I67760|I67760 transposase (insertion sequence IS10
) - Escherichia coli >gp:gp|S67119|S67119_2 BST=somatotropin
...BST/beta-Gal fusion protein [Escherichia coli, LBB84, pla
smid pXT107, IS10L/R-1, PlasmidTransposonInsertionMutant, 3
genes, 1679 nt). NID: g455674.

atggcaattaaagtagcaattaatggttttggtagaattggtcgtttagcattcagaaga attcaagatgtagaaggtcttgaagtagttgcagttaacgacttaacagatgacgatatg ttagctcatttattaaaatacgatactatgcaaggtcgtttcactggagaagttgaagtt atcgaaggtggattccgtgtgaacggtaaagaaattaaatcattcgatgaaccagatgct ggtaaattaccatggggcgatttagatatcgacgtagtattagaatgtactggtttctat actgataaagaaaaagcacaagctcacatcgatgcaggtgctaaaaaagtattaatctca gctccagctaaaggtgatgtaaaaacaatcgtattcaacactaaccatgatacattagat ggttcagaacagttgttcaggtgcttcttgtactactaactcattagcaccagttgca aaagttttaagtgacgaattcggtttagttgaaggtttcatgactacaattcacgcttac actggtgaccaaaatacacaagacgcacctcacagaaaaggtgacaaacgtcgtgcacgt gcagcagctgaaaatattatccctaactcaacaggtgctgctaaagctatcggtaaagtt

attccagaaatcgatggtaaattagacggtggagcacaacgtgttccagttgctactggt
tctttaactgaattaactgtagtattagacaaacaagatgtaactgttgaccaagttaac
agtgctatgaaacaagcttctgacgaatcattcggttacactgaagacgaaatcgtatct
tctgatattgttggtatgacttacggttcattatttgatgcgactcaaactcgtgttatg
actgttggagatcgtcaattagttaaagttgcagcttggtacgacaatgaaatgtcttac
actgctcaattagtacgtacattagctcacttagctgaactttctaaataa

45

40

Sequence 3210
MAIKVAINGFGRIGRLAFRRIQDVEGLEVVAVNDLTDDDMLAHLLKYDTMQGRFTGEVEV
IEGGFRVNGKEIKSFDEPDAGKLPWGDLDIDVVLECTGFYTDKEKAQAHIDAGAKKVLIS
APAKGDVKTIVFNTNHDTLDGSETVVSGASCTTNSLAPVAKVLSDEFGLVEGFMTTIHAY
TGDQNTQDAPHRKGDKRRARAAAENIIPNSTGAAKAIGKVIPEIDGKLDGGAQRVPVATG
SLTELTVVLDKQDVTVDQVNSAMKQASDESFGYTEDEIVSSDIVGMTYGSLFDATQTRVM

Sequence 3211

55 Contig_0732_pos_1186_2424

TVGDROLVKVAAWYDNEMSYTAQLVRTLAHLAELSK*

>gp:gp|AF043609|AF043609_1 Arthrobacter viscosus aluminum r esistance protein (Alu-2) gene, complete cds. NID: g2827438.

atgcaagattttagcaatttagttgaagaagttgaaaacacacttattccttactttaga

aaaattgaaaagcgtgcattatttaatcaggaaaaggtcttaaatgcttttcaccatgtt aaagctagcgaaagtgatttacaggggtctacgggttatggatatgatgattttgggaga gaccatttagaacaaatttatgcgcacacatttaaagcagatgacgcacttgtaagacct caa attattt caggtact catgct attactt tagctt tacaa agtacgt taa aa aa acaatgatgaactactttatattacaggtagtccatatgatacacttctagaagtcattggtata aatggcaatggtgttgaaagtcttaaagaatatggtgttcgctataatgaagtcgaatta cgtgacggtcgaattgatattcctaaagtcatcactgcaattaatgacaatacaaaagtt gtagcaattcaacgatcaaaaggatatgatcaacgtccatcaattacaattaatgaaatt gaacaagcaataacatctattaaagaggtttatcccaatatcattatttttgttgataat 10 tgttatggagaatttgtagaagataaagaaccgattgaagtaggtgctgatttaatcgccggatcattaattaaaaatccaggtggaggtttagctaaaattggaggatatattgctggt agacaagacttaattgaacgctgtggttatcgtttaacagcaccaggcattggtaaggaa gtggttagccaaagtttaaaaggtgcactgtttactagtttgttattagaaaaaataaac 15 atgaagacctcccctaaatataatgtttatcgtacagacttaattcaaacggttcaattt gagaccaaagagcaaatgatttcattttgccaaagtatacaacacgcttcaccaattaac gcacattttagtccagaacctagctatatgcctggatacgaagatgatgtcatcatggct gcaggtacatttattcagggctcgtctattgaattatccgcagacggacctatacgtccg ccttatgaagcatatgttcaaggtggtttaacttatgaacatgtcaaattagctgttaca 20 cgtgcggtgcaacatatgcaagaaaacaatttactataa

Sequence 3212

MQDFSNLVEEVENTLIPYFRKIEKRALFNQEKVLNAFHHVKASESDLQGSTGYGYDDFGR DHLEQIYAHTFKADDALVRPQIISGTHAITLALQSTLKNNDELLYITGSPYDTLLEVIGI NGNGVESLKEYGVRYNEVELRDGRIDIPKVITAINDNTKVVAIQRSKGYDQRPSITINEI EQAITSIKEVYPNIIIFVDNCYGEFVEDKEPIEVGADLIAGSLIKNPGGGLAKIGGYIAG RQDLIERCGYRLTAPGIGKEAGASLNSLQEMYQGFFLAPHVVSQSLKGALFTSLLLEKIN MKTSPKYNVYRTDLIQTVQFETKEQMISFCQSIQHASPINAHFSPEPSYMPGYEDDVIMA AGTFIQGSSIELSADGPIRPPYEAYVQGGLTYEHVKLAVTRAVQHMQENNLL*

30

40

25

Sequence 3213
Contig_0732_pos_2905_3270
is similar to (with p-value 5.0e-55)

 $>gp:gp[X76490]SAGLNAR_2$ S.aureus (bb270) glnA and glnR gene s. NID: g1134885.

Sequence 3214

45 MSNDSIRRNMAVFSMSVVSKLTDLSPRQIRYYETHELVMPERTDGNKRLFSMNDLERLLE IKSLIEKGFNIRGIKQIIFDEQGHLTTDEQETRKRMIVDATQKPRSETLPINRGDLSRFI K*

Sequence 3215

50 Contig_0733_pos_1000_1344 is similar to (with p-value 2.0e-46)

>sp:sp|P94453|ALF_BACST FRUCTOSE-BISPHOSPHATE ALDOLASE (EC

4.1.2.13) (FRAGMENT).

atgaaagaaatgttaatcgatgcgaaagaaaacggttatgcggttggtcaatacaatctt
aataacctcgaatttacacaagctattttagaagcgtctcaagaagagaatgcgccagtt
attttaggtgtttctgaaggggcagctcgttatatgagtggtttttatacagttgtgaaa
atggtagaaggtttaatgcatgacttaaacatcacaatcccagtagcaattcatttagac
cacggttcaagctttgaaaaatgtaaagaagcaattgatgctggattcacatctgtaatg
attgatgcatctcatagtccttttgaagaaaatgttgaaatatag

Sequence 3216
MKEMLIDAKENGYAVGQYNLNNLEFTQAILEASQEENAPVILGVSEGAARYMSGFYTVVK
MVEGLMHDLNITIPVAIHLDHGSSFEKCKEAIDAGFTSVMIDASHSPFEENVEI*

5 Seguence 3217

15

30

45

50

55

Contig_0733_pos_12244_11498

is similar to (with p-value 4.0e-40)

>sp:sp|P55476|NODI_RHISN NODULATION ATP-BINDING PROTEIN I.
10 >gp:gp|AE000076|AE000076_5 Rhizobium sp. NGR234 plasmid pNGR
234a, section 13 of 46 of the complete plasmid sequence. NID
: g2182419.

gtgagtggtcactcattttatcggtgtgagggaggaacaatttatgatagaggtaaaaaat gtaagtaaatcctttggtaaacaacaagtggtagatgatatatctatatcatttaatgct ggtgaggttgtggggtctaatcggtccttcaggtactggaaaaacgacattaatacagtgc attttaggcatggagaaaattgatggtggggcaagtcactattcaagaacatacaatgccg aatagaagatattatcaaatattggttatatggctcaaaatgatgctttatataatgat ttaactggacgtgaaaatttaacgttttcgcaagaatttatatgcgtgataaagaagat attaaaaacgtgtgaacctatgcagttccatggtcaattagacaatgatttagataag aaagttgaaatgtattctggtggaatgaaacgacgcttatctttagctattagctttta caaaatcctaatatccttatattagacgaacctacagttggcattggcattgatcataagtgccacagcgttatagtgacaacgcgttatagtgacaacgcattatagtgacaacgcatgtattagatgaagctacacgctgtgataagctcgtattaatgaatcaaggaaagaatttggaacagggtacaccagattgaagtgaaaaaacaatatcacacagatacgattgaaactaacacagattgaaacaacgattgaaaccacagattgaagtgaaaaaacaatatcacacagatacgattgaa

25 ggcgtatttctgaatatggagggataa

Sequence 3218

VSGHSFYRCEEEQFMIEVKNVSKSFGKQQVVDDISISFNAGEVVGLIGPSGTGKTTLIQC ILGMEKIDGGQVTIQEHTMPNRKILSNIGYMAQNDALYNDLTGRENLTFFARIYMRDKED IKKRVNLCSSMVQLDNDLDKKVEMYSGGMKRRLSLAISFLQNPNILILDEPTVGIDPKLR QTIWKDLTKAKAEDKCIIVTTHVLDEATRCDKLVLMNQGKILATGTPDEVKKQYHTDTIE GVFLNMEG*

Sequence 3219

35 Contig_0733_pos_9564_7870

is similar to (with p-value 7.0e-31)

>gp:gp|AB009866|AB009866_7 Bacteriophage phi PVL proviral D NA, complete sequence. NID: g3341907.

atggcaaagattagggattatgttacagaatatgcaaaaaaagtagttaatggcgatatt ataqctaqtaaaaaaacqtqaaaqcctqtcaacqccatttagatgacttgaacgattcg qaactcccttatcattttgatgtaaagaaagctaatcacattattaagtttcttgaaatg ttqccagatcctaaaactggtaaacaattatcgttaggcggttttcaaaaattcattgct ggtagcttaaatggttggtacgacagacatgggtacaaaagatttacaaaagcctatata tcaatgagcagaaaaaatggtaaaacattattgatctctggaatggcattgtacgattta $\verb|ttgatgggtaaagatccgttgaatgaacggttgattggtttgagcgccaattcaagagac|$ caagetggtatagcatacgatatgacattggcacaactgaaagctattagaagcgtttct $\verb|cctaaggttaaatcgatgactaagataacgccaagtgcaaaagaaatattgaatattaat|$ qatcgaagtaaagttaaagccgtttcaaatgaagctgcaaatttagaaggtcatcagttt agctacqcaatcatcqatqaatatcatgaagctaaagataaaaagatttatgaaacgtta agacqtqqqcaaqtqctactqcacaaccctatattaattattatctcaacagctggaact aattttgaatggtccgatgtatgaagaatatttatatattgataagatacttgacggcata gacgttaaaacttggattaaatccaatccacttatggagttgccagaaatggcacaattg ttaactaagaatattcaaccagaagttaaaactgcaattgatagtggttcaggattaaat

10 Sequence 3220

30

MAKIRDYVTEYAKKVVNGDIIASKKNVKACQRHLDDLNDSELPYHFDVKKANHIIKFLEM LPDPKTGKQLSLGGFQKFIAGSLNGWYDRHGYKRFTKAYISMSRKNGKTLLISGMALYDL LMGKDPLNERLIGLSANSRDQAGIAYDMTLAQLKAIRSVSPKVKSMTKITPSAKEILNIN DRSKVKAVSNEAANLEGHQFSYAIIDEYHEAKDKKIYETLRRGQVLLHNPILIIISTAGT

15 NLNGPMYEEYLYIDKILDGIAKNENYFVFCAEQDDEKEVYDVKTWIKSNPLMELPEMAQL LTKNIQPEVKTAIDSGSGLNGILIKNFNMWRAASTESYLDFNDWKKNEIDFDINGSKTYI GLDLSRADDLTAVSFVHLDEDNQEYYVTSHSFVATKGGLDGKIDRDFIDYRQLAESGYCT ITDLQSGIINTDQVLNYIENYIDQYKLDVQALCYDPYSIHGVIAEIERRDWPYDLVEIRQ GPQTLSNPILDFRLKVINGDIKHHKNPLLDIAVKNAVAKDTNDSLMIEKKMNREKIDPLM

20 ATIFAYVMACEHEWDTETLMPLFL*

Sequence 3221 Contig_0733_pos_7622_6432

is similar to (with p-value 2.0e-16)

25 >gp:gp|AB009866|AB009866_5 Bacteriophage phi PVL proviral D NA, complete sequence. NID: g3341907. atgaacagagatttagaacgattattgtattggcaagaacatggcacacatgcaagctat

gttggtataaacgcgctacgtaacagtgatgtatttactgctacacgtattatatctgca gacattgcaagtaccaagttgaaagttaaaggtcacgaaacaaatacagtgatggaccaa atactggatctatttaataacaatccgtattcggacttaccgggttggcactttaagttt ataatcatcgcgaatatgctgcttaacggtcaatcttttgttgaaattgtgcgtggcaaa aatgattttcctgttggattccacttcttacataacgacttagtaggaattgaggaaaaa gacggcgaaattatttacaacgtaagtgaagatgtggaaggtaatgccgttaagataaca agcgatgatatattacatttcagatatatcacattagatggatatataggatacagtccg

35 ttgtatgcactagcacatgagattggtatttctcaaggctctaagagcttcctgcgtaac ttcttcgataatggtgggacttcgacatcagtattgaagtatagaaaagggcaaatcaat gctgaacaattaagagaattgaaaaagaacttttcagaaagtcaattaaaaaacaacggt ggtttagttgctatcgatgacacaatggaatttaacagactacaaattcctaccgaagta ttgaacttcttaaatagttataagttcagcacatctcaagttgctaaagcgttcggtttg

40 ccggtatctaaactaggtattgaaacagtcaatacatctatcacacaagcaaacttagag tatttgcaaagtacattagatccaatatttaaaatgatgattgctgaactcgaaacgaaa atatttaaatttattgattctggtaacgaattagagtttgactcatcacgtctcattgac attgatccagagttacaattacaacgtattactgaattgcatagtaaaggaattatttca acagacgaagctagaagtgtatttggctatcaacctattgaacatggcgagcaaccattg

45 gttgatcttaacagagcgccacttaacactttagaaaattaccaaaaatcgaaaattgac aaagaagtcgaaaagaactccattaaagggggtgatgagtatgacgaatag

Sequence 3222

MNRDLERLLYWQEHGTHASYVGINALRNSDVFTATRIISADIASTKLKVKGHETNTVMDQ
50 ILDLFNNNPYSDLPGWHFKFIIIANMLLNGQSFVEIVRGKNDFPVGFHFLHNDLVGIEEK
DGEIIYNVSEDVEGNAVKITSDDILHFRYITLDGYIGYSPLYALAHEIGISQGSKSFLRN
FFDNGGTSTSVLKYRKGQINAEQLRELKKNFSESQLKNNGGLVAIDDTMEFNRLQIPTEV
LNFLNSYKFSTSQVAKAFGLPVSKLGIETVNTSITQANLEYLQSTLDPIFKMMIAELETK
IFKFIDSGNELEFDSSRLIDIDPELQLQRITELHSKGIISTDEARSVFGYQPIEHGEQPL
VDLNRAPLNTLENYQKSKIDKEVEKNSIKGGDEYDE*

Sequence 3223 Contig_0733_pos_6406_5885 is similar to (with p-value 2.0e-46)

PCT/US00/30782 WO 01/34809

>gp:gp|AB009866|AB009866_4 Bacteriophage phi PVL proviral D NA, complete sequence. NID: g3341907. atggttgtcgaaggttacgccattatctttaattcaatgagtgatgatttgggtggattt agagaaattgtagcgcctaatgctttaaatgatgtagatgtaagtgatgtgaaatgtcta atcaatcatgattttagttatgttataggacgcacacaagcaggaacgcttgagctacag gtggatgaaaaagggctatactttaaatgccacttacctaatacatcatacgcaagagat atttatgagaatattaaagcaggcaacgttaatcagtgcagtttcttttacacattgcca cctaatgactcaacggctcgtacgtggcaaaacatagataatgagtacgttcaaaccata aataaaatcgatgaattgattgaggttagtattgttacagtgccagcctacaaagataca tcggttgaagtcggtcaacgtgcgaaagacttaaagaaattcaaacagttggaacaaatg aagatagcattggatttagaaagcctacgttttgaaacgtaa

Sequence 3224

10

MVVEGYAIIFNSMSDDLGGFREIVAPNALNDVDVSDVKCLINHDFSYVIGRTQAGTLELO VDEKGLYFKCHLPNTSYARDIYENIKAGNVNOCSFFYTLPPNDSTARTWONIDNEYVOTI NKIDELIEVSIVTVPAYKDTSVEVGQRAKDLKKFKQLEQMKIALDLESLRFET*

Sequence 3225

Contig_0733_pos_5844_4492

20 >gp:gp|X97563|BPHA3GP3_5 Bacteriophage A2 gp3 gene and 4 op en reading frames. NID: g1523807. atggctaatttagatgagcgcaaaaaagaaatcgctaatctgatttctaaagcgcaagaa gcagtcgaaaaaggcgacctcgaaactgctcgtaatttaaaagctgatattgatgctcaa aaqaaaqaqtacqaaqaactcgaacaqctttcaaaagaaattgaagcgtcaqcacctaaa 25 caagatgaaccacctaaagatgaaggtgcagaagttgaagataacaaagatggtaattct ggagaagaatcagagaacaaaccttctgatgatgaaccagaaggaacttcagatgaagaa aaacctgatgatgcaccaaaaccagatgacaaacctgaagaaacaccagaaacacctact qqaqcqaaacgttctatqqctaaattaaaccaaaatccagagacaaacgaagaaattcta gcatttgaacagtacatgaaatcaaaaggggctaaacgtgacaatgttaaatctgatgac qttqqcqtaactatcccagaggatattaaatatattcctgaaaaagaagttaagacagtc ${\tt caagacttatcagaattggtacaaaaaacttcagtatcaactgcaagtgggaaatacccg}$ atcttaaaacgtgctaacgctaaattcaacactgttgctgaattagagaaaaaccctgag t tageteg teeggaat tegaaacaat caat tgggaag tagacact tateg tggatet at tageteg tagacact tageteg tagete35 ccgatttcacaagaagcattagatgattcagttgctaacttaactgctattgtttctgaa aatattaacgaacaaaaatcaacactttaaatgaacgtattggtgaagttttaaaagca ttcaatcctactagtgtttctaatgttgacgacttaaaagaaattatcaacgttaaatta qatcctqgttatgaccgccaaattatctgtactcaaagtttctatcaaaaactagataca $\verb|ttaaaagatggtaacggtcgttatttactacaagacagtatcatcaacactgcaggtaac|$ 40 actgtgttaggtatgaatgtaacagttgtgcgtgatgacttgttaggtaaaaatggagatgcattagcatttattggtgatgtaaaacgcggtgtttatttgcagaccgtacagacgtt ${\tt tctgttcaatggattgaaaatgaaatctacggtaaatacttaatgggtgctttccgtttc}$ gatgtgaaacaggctgataaaaatgctggtttcttcgtaacatttgaagagcgtttatat tacttcatattgggcaatggatgtatacgatga

45

Sequence 3226

MANLDERKKEIANLISKAQEAVEKGDLETARNLKADIDAQKKEYEELEQLSKEIEASAPK QDEPPKDEGAEVEDNKDGNSGEESENKPSDDEPEGTSDEEKPDDAPKPDDKPEETPETPT **IEKVEEPTEEELKKEKDKKEGAKRSMAKLNQNPETNEEILAFEQYMKSKGAKRDNVKSDD** VGVTIPEDIKYIPEKEVKTVQDLSELVQKTSVSTASGKYPILKRANAKFNTVAELEKNPE LARPEFETINWEVDTYRGSIPISQEALDDSVANLTAIVSENINEQKINTLNERIGEVLKA FNPTSVSNVDDLKEIINVKLDPGYDRQIICTQSFYQKLDTLKDGNGRYLLQDSIINTAGN TVLGMNVTVVRDDLLGKNGDALAFIGDVKRGVLFADRTDVSVQWIENEIYGKYLMGAFRF DVKOADKNAGFFVTFEERLYYFILGNGCIR*

55

50

Sequence 3227 Contig_0734_pos_2701_2249 is similar to (with p-value 9.0e-25) >sp:sp | P00937 | TRPG_YEAST ANTHRANILATE SYNTHASE COMPONENT II

(EC 4.1.3.27) (CONTAINS: GLUTAMINE AMIDOTRANSFERASE; INDOLE -3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) (PRAI)). >pir:pir|S38049|NNBY2 anthranilate synthase multifunctional enzyme - yeast (Saccharomyces cerevisiae) >gp:gp|X75951|SC6ORF_9 S.cerevisiae URA1, SAC1, RSD1 and TRP3 genes and 6 new orfs. NID: g473130. >gp:gp|Z28211|SCYKL211C_1 S.cerevisiae chromos ome XI reading frame ORF YKL211c. NID: g486376. gtggtggtaatacatctacatttattgcattatcgtcagtatggacaagctggtgcatct attatttattatagtaaatatttaagtgatgaccaattaaaagaattgtattcatat gcaacaaaccataatttagaagctctagtagtagaagttcatcaaattagagaacttgaacgt

gcacaccaaattaaccctaaaattattggtgttaataatcgtgatttaaaacgatttgaa accgatgttctacatacaaataaattacttaagtttaaaaagtctaattgctgctacatt tcagagagtggcattcatacaaaagaagatgttgagaaaatagtagattcaagtattgac ggtttacttgtaggggaggcattaatgaaaacaaatgacttaagtcagtttttgcctagt ttaaagttaaagaagaatctctatgatagttaa

Sequence 3228

10

VVVIHLHLLHYRQYGQAGASIILLIVNILSDDQLKELYSYATNHNLEALVEVHTIRELER AHQINPKIIGVNNRDLKRFETDVLHTNKLLKFKKSNCCYISESGIHTKEDVEKIVDSSID GLLVGEALMKTNDLSQFLPSLKLKKNLYDS*

Sequence 3229

Contig_0737_pos_1135_1560

is similar to (with p-value 2.0e-19)

25 >gp:gp|AF001974|AF001974_1 Thermoanaerobacter ethanolicus p utative TrkG gene, partial cds, and putative TrkA, xylose is omerase (xylA) and xylulose kinase (xylB) genes, complete cd s. NID: g2581794.

Sequence 3230

VRPTVPNADTTSKSILIKGILELIMVSINVTIPINAIEMRIVTKDNCMYLSDISLLNIEL
40 FFSLRIVLKIAIVAITKVVTFIPPAALNGAPPINMRAISNKAVGVLMFPTSIVLNPAVLV
VTDWKNAFPIFSINPMCNIEF*

Sequence 3231

Contig_0737_pos_1585_2199

- is similar to (with p-value 3.0e-19)

 >sp:sp|P43440|NTPJ_ENTHR V-TYPE SODIUM ATP SYNTHASE SUBUNIT

 J (EC 3.6.1.34) (NA(+) TRANSLOCATING ATPASE SUBUNIT J). >g

 p:gp|D17462|ENENTP_11 Enterococcus hirae ntp genes for Na+
 ATPase subunits, complete cds. NID: g487271.
- 50 gtgcctatcaaaattaatactcagtggtagttaacacgagtttagagtgtaaggataat tttctaaaactttttggcgttccacaaatcaaccacgactaaatgtcccaaacctcccaaa atgataagtattggaatagtgataatgattaccggatcatttgaaaaatcgattaagttg tttttaaaaagggcgaatcctgcgttgttaaatgcggaaactgaagtgaataaacttaaa aatagacctttacctatgccaaattttggaataaacgataaacatagacaaagtgtacca aataattcagtggcgatgctgtatatggctagatgtttaataagtttaattacaccaccg ggttcgtcaatattccaagtaatcataaataaaattctattgttaattgatattttctta tttaaaaagatgagagttagcattgctacagtgacaatacctaatccaccaatttgtata agtaataagataatgatttctccaaaaaatattaaattgtgttccaacatcaactggtgat

agacctgttactgtgaatgcgctagaagctacaaacaatgcgtcaataaagttaataggt

ttcttccctgtatag

Sequence 3232

VPIKINNPVVVNTSLECKDNFLKLLAFHKSTTTKCPKPPKMISIGIVIMITGSFEKSIKL FLKRANPALLNAETEVNKLKNRPLPMPNFGINDKHRQSVPNNSVAMLYMARCLISLITPP GSSIFQVIINKILLLIDIFLFKKMRVSIATVTIPNPPICISNKIMISPKILNCVPTSTGD RPVTVNALEATNNASIKLIGFFPV*

Sequence 3233

10 Contig_0737_pos_2249_978

is similar to (with p-value 1.0e-54)

>gp:gp|D89592|D89592_3 Vibrio alginolyticus rhlE, KtrA and KtrB genes, complete cds. NID: g3927863.

atgttatttctgttgacaactttaattggtgcttttctactctatttgccctatacaggg 15 aagaaacctattaactttattgacgcattgtttgtagcttctagcgcattcacagtaaca qqtctatcaccagttgatgttggaacacaatttaatatttttggagaaatcattatctta ttacttatacaaattggtggattaggtattgtcactgtagcaatgctaactctcatctttttaaataaqaaaatatcaattaacaatagaattttatttatgattacttggaatattgac gaacccggtggtgtaattaaacttattaaacatctagccatatacagcatcgccactqaa 20 ttatttqqtacactttqtctatgtttatcgtttattccaaaatttggcataggtaaaggt ctatttttaagtttattcacttcagtttccgcatttaacaacgcaggattcgcccttttt aaaaacaacttaatcgatttttcaaatgatccggtaatcattatcactattccaatactt at cattttgggaggtttgggacatttagtcgtggttgatttgtggaacgccaaaagttttagaaaattatccttacactctaaactcgtgttaactaccactggattattaattttgata $\tt ggcacggttttcttctttttactagaaaatcaaaactctatgttacacatgggattaatt$ 25 gaaaaaataggaaatgcatttttccaatcagtgacaacaaggactgcaggatttaacaca

35 attcacttataa

Sequence 3234

MLFLLTTLIGAFLLYLPYTGKKPINFIDALFVASSAFTVTGLSPVDVGTQFNIFGEIIIL LLIQIGGLGIVTVAMLTLIFLNKKISINNRILFMITWNIDEPGGVIKLIKHLAIYSIATE LFGTLCLCLSFIPKFGIGKGLFLSLFTSVSAFNNAGFALFKNNLIDFSNDPVIIITIPIL IILGGLGHLVVVDLWNAKSFRKLSLHSKLVLTTTGLLILIGTVFFFLLENQNSMLHMGLI EKIGNAFFQSVTTRTAGFNTIDVGNIKTPTALLLMALMFIGGAPLSAAGGIKVTTFVIAT IAIFNTIRKEKNNSIFNREISERYIQLSFVTILISIAFIGMVTFILTIINSNIPLIKILF EVVSAFGTVGLTMDLTSEYYNWTEFIIIIVMLCGKIGLLNISRALVPPKDPKNYRYTKGH

45 IHL*

40

Sequence 3235

Contig_0738_pos_1259_24

>sp:sp|034863|UVRA_BACSU EXCINUCLEASE ABC SUBUNIT A. >gp:gp |Z99122|BSUB0019_13 Bacillus subtilis complete genome (section 19 of 21): from 3597091 to 3809700. NID: g2636029. >gp:gp |AF017113|AF017113_13 Bacillus subtilis 300-304 degree genom ic sequence. NID: g2618830.

atgcgtgatttaggtaatacacttattgtcgttgaacatgacgatgatactatgagagca
gctgattatttagttgatgtgggtccgggagctggtaaccacggtggagaggttgtctca
agtggtacccctaataaagtaatgaaagataaaaaatccttaactggtcaatatttaagt
ggaaaaaaacgaattgaagtccctgaatacagacgagaaatcaccgatagaaagattcaa
attaaaggtgctaaaagtaataatttgaaaaatgtaaatgtagacttcccactatctgtc
ttaactgttgttacaggtgtgtcaggttctggtaaaagttcacccgtcaatgaaatttta

Sequence 3236

MRDLGNTLIVVEHDDDTMRAADYLVDVGPGAGNHGGEVVSSGTPNKVMKDKKSLTGQYLS
GKKRIEVPEYRREITDRKIQIKGAKSNNLKNVNVDFPLSVLTVVTGVSGSGKSSLVNEIL
YKALAQKINKSKVKPGNFDEIKGIDQLDKIIDIDQSPIGRTPRSNPATYTGVFDDIRDVF
AQTNEAKIRGYQKGRFSFNVKGGRCEACKGDGIIKIEMHFLPDVYVPCEVCDGKRYNRET
LEVTYKGKNIADVLEMTVEEATHFFENIPKIKRKLQTLVDVGLGYITLGQQATTLSGGEA
QRVKLASELHKRSTGRSIYILDEPTTGLHVDDISRLLKVLNRIVENGDTVVIIEHNLDVI
KTADHIIDLGPEGGEGGGTIIATGTPEEIAQNKGSYTGQYLKPVLERDSVE*

25

30

35

40

45

10

15

20

Sequence 3237 Contig_0741_pos_5345_6325 is similar to (with p-value 1.0e-21)

>sp:sp|P14940|ADH_ALCEU ALCOHOL DEHYDROGENASE (EC 1.1.1.1). >pir:pir|A30196|A30196 alcohol dehydrogenase (EC 1.1.1.1) -Alcaligenes eutrophus >gp:gp|J03362|AFAADH_1 A.eutrophus al cohol dehydrogenase (ADH) gene, complete cds. NID: g141899. atgtttaaaaagattgctactataataggttcgacattatttggtacagttttattcgca aaagtgaaagaaaagcgtagttataaaagttttttacaagagaaaatgattagaatatca ggaatgaaaaagacatttgaaagtatagatgacgcgaaaaaagctttgaatgagactaaa tatcaaactgcaggtaaatataatggaacaacatatgaatttaagcataaagttcaaata agagattattatggttctttagtctatgttgttaatgatcatggtcttccagatcaacgcacqqtcttatatgtacatggaggcgcatggttccaagatcctttggaaaatcattttgaa tatttaqacttactcqttqatqcqctcqatqctaqgqtgattatgcccgtatatcctaaa ataccacacagagattatcqtacgacatttgaattattaacaaaaatatataagcgatta ttgactaaaattgatgaacctgaaaacttggtcatcattggagattcagccgggggacaa attgcattagcttttgcacaaatgttaaaaaaagagcaactcagtcaacctggccatatt qttcttatttcaccggtgcttgatgcgacatttaagaatccagaagcaagaaaatatgaa aaagaagatccaatgcttggaattgaaggcagtaaatatcttgtagagttatgggctggt catattacacttactgtaggaaccaaagaaacattatatcctgatgcagttaagttctct attgtcacaaaagagttataa

50

Sequence 3238

MFKKIATIIGSTLFGTVLFAKVKEKRSYKSFLQEKMIRISGMKKTFESIDDAKKALNETK
YQTAGKYNGTTYEFKHKVQIRDYYGSLVYVVNDHGLPDQRTVLYVHGGAWFQDPLENHFE
YLDLLVDALDARVIMPVYPKIPHRDYRTTFELLTKIYKRLLTKIDEPENLVIIGDSAGGQ

IALAFAQMLKKEQLSQPGHIVLISPVLDATFKNPEARKYEKEDPMLGIEGSKYLVELWAG
DAPLDDYKMSPMNGDLEGLGHITLTVGTKETLYPDAVKFSHMLNDKGIKHQFIPGYNLFH
IYPLFPIPERQRFLEQLKKIIVTKEL*

Sequence 3239

Contig_0741_pos_3244_2630 is similar to (with p-value 2.0e-21)

 $>gp:gp|L38252|ACCEST_2$ Acinetobacter lwoffii orf1 and ester ase (est) genes, complete cds. NID: g1209221.

15 gatatcacaatttaa

20

Sequence 3240

MLSDILPTGYEIGVLKGKVKPGCTVAIVGAGPVGLAALLTAQFYSPSKIIMIDLDDNRLE TAKELGATHLINSKETETAIKKVKSLNPRGVDVAIEAVGIPQTFDLCQNLIGVDGTIANV GVHGLPVQLDIDKLWIKNINVTTGLVSGNTTEELLEALKSKIIQPEQLVTHYSKLSEIES AYDLFRNATDHKAIKLIIENDITI*

Sequence 3241

Contig_0743_pos_0_688

25 is similar to (with p-value 1.0e-50)

>sp:sp|P70814|RIBG_BACAM RIBOFLAVIN-SPECIFIC DEAMINASE (EC
3.5.4.-). >gp:gp|X95955|BARIBGENS_1 B.amyloliquefaciens ribB
, ribG, ribA, ribH & ribT genes. NID: g1592687.

40 caaatatttaaagatactgcatcCCCTG

Sequence 3242

MDDAIQLAKMVNGQTGVNPPVGSVVVKNGRIVGLGAHLKKGDKHAEVQAIEMAGLNTQGA
TIYVSLEPCTHHGSTPPCVHKIIEAGISKVIYAVKDTTLVSKGDEILREAGIEVEFQYNE
NAAALYRDFFTAKRNEVPEVTVKVSSSLDGKQATDFNESKWITNKEVKEDVYQLRHEHDA
VITGRRTIEADNPLYTTRVPDGKHPIRVILSKKGQLDFNQQIFKDTASPX

Sequence 3243

55

Contig_0744_pos_2445_3218

50 is similar to (with p-value 5.0e-69)

>gp:gp|U96107|SCU96107_3 Staphylococcus carnosus N5,N10-met hylenetetrahydromethanopterin reductase homolog, SceB precur sor (sceB) and putative transmembrane protein genes, complet e cds, and putative Na+/H+ antiporter NhaC (nhaC) gene, part ial cds. NID: g2735503.

atgaaaaaatcgctacagctacaattgcaactgcaggaatcgctactttcgcatttgca caccatgacgcacaagcagcagaacaaaataatgatgggtacaatccaaacgacccttat tcatatagctacacttacacaatcgatgctgaaggtaactaccactacacttggaaaggt aactggagtccagatcgtgtaaatacttcatataactataataattataataactacaac

10

15

5

Sequence 3244

MKKIATATIATAGIATFAFAHHDAQAAEQNNDGYNPNDPYSYSYTYTIDAEGNYHYTWKG NWSPDRVNTSYNYNNYNNYNYYGYNNYSNYNNYSNYNNYNNYQSNNTQSQRTTQPTGGLG ASYSTSSNVHVTTTSAPSSNGVSLSNARSASGNLYTSGQCTYYVFDRVGGKIGSTWGNA NNWANAAARSGYTVNNSPAKGAILQTSQGAYGHVAYVEGVNSNGSIRVSEMNYGHGAGVV TSRTISASQAASYNYIH*

Sequence 3245

Contig_0744_pos_7402_7740

- is similar to (with p-value 9.0e-30)

 >sp:sp|P37279|ATCS_SYNP7 CATION-TRANSPORTING ATPASE PACS (E
 C 3.6.1.-). >pir:pir|S36741|S36741 cation-transporting ATPas
 e pacS Synechococcus sp. >gp:gp|D16437|SYOPACS_1 Synechoco
 ccus sp. DNA for PacS, complete cds. NID: g435124.
- 25 atggtagaaccaatcactgaatcgccactacttttttcaacaggtatagactcaccagtt agcatggattcgtcaatagaagtatcacctttagtgactttgccatctacaggtatcttt tcgccgggttttattagtaaagtatctccgactttaactttatcaagtggaagcataatt tctttattttctttaattactcgtgcttctttcgcttgtaaatttaacaattcgcttaat gcattggtagtctgtgatttggcacgtgcttctaaatatttaccaagaagaattaacgta attaaaatagcacttgtttcaaaatataaatgcgggtga

Sequence 3246

MVEPITESPLLFSTGIDSPVSMDSSIEVSPLVTLPSTGIFSPGFISKVSPTLTLSSGSII SLFSLITRASFACKFNNSLNALVVCDLARASKYLPRRINVIKIALVSKYKCG*

35

Sequence 3247

Contig_0744_pos_9912_8887

is similar to (with p-value 3.0e-66)

- >sp:sp|P56157|DP3A_HELPY DNA POLYMERASE III, ALPHA CHAIN (E 40 C 2.7.7.7). >gp:gp|AE000646|HPAE000646_3 Helicobacter pylori section 124 of 134 of the complete genome. NID: g2314635. atgggatttgatgaaacgagtttaaatgagatttcaaaacttattccacataaattaggt ataactettgaagaagcataccaaaagccagagtttaaagcatttgttcatcgtaatcat agaaatgaacgttggtttgaagtgagtaaaaagttagagggattaccaagacatacgtct acgcatgctgcaggtatcattatcaatgatcaaccattattcaaattttgccccattaacaactggtgatacaggattattaacgcagtggactatgacagaagcggaacgtataggattattaaaaattgatttcttgggattacgcaatctatcaattattcatcaaattattttacaa gttaaaaaggatttaaatataaatattgatatagaagctataccttatgatgataaaaaa gtttttgatttattatcaaacggtgacactacaggtatatttcaattggaatcagacggt 50 qttagaagcgtattaaaaagattgcaacccgaacattttgaagatatcgtagctgtcaca tcattatatagaccaggaccaatggaagaaataccaacttatataacccgtagacataat $\verb|cctaaccaatttgcttatttacatccagatttagaaccaatcttaaaaaaacacatatggt|$ $\verb"ggtgaagcagatattttaagaagggcaatgagtaaaaagaatcgtgcaatcttagaaagt"$

Sequence 3248

MGFDETSLNEISKLIPHKLGITLEEAYQKPEFKAFVHRNHRNERWFEVSKKLEGLPRHTS
THAAGIIINDQPLFKFAPLTTGDTGLLTQWTMTEAERIGLLKIDFLGLRNLSIIHQIILQ
VKKDLNINIDIEAIPYDDKKVFDLLSNGDTTGIFQLESDGVRSVLKRLQPEHFEDIVAVT
SLYRPGPMEEIPTYITRRHNPNQFAYLHPDLEPILKNTYGVIIYQEQIMLIASQVAGFSY
GEADILRRAMSKKNRAILESERQHFIDGAKNNGYDEQISKQIFDLILKFADYGFPRAHAV
SYSKIAYIMSYLKVPQISTEPLCLASNMKHHQIKIKSILMN*

10 Sequence 3249

15

Contig_0746_pos_2558_3991

is similar to (with p-value 2.0e-45)

>sp:sp|P26648|SUFI_ECOLI SUFI PROTEIN PRECURSOR. >gp:gp|U28 377|ECU28377_116 Escherichia coli K-12 genome; approximately 65 to 68 minutes. NID: g882431. >gp:gp|AE000384|AE000384_1 Escherichia coli K-12 MG1655 section 274 of 400 of the complete genome. NID: g2367186.

Sequence 3250

MYNKVFAILIIIFSIIIIASNDTFAESKNDMMNMKEDKKNTMDMTNMKHHDERKKLNSSQ
45 GKNEIIFPKVAESKKDNNGYKNYTLKAQEGKTEFYKNNFSNTLGYNGNLLGPTLKLKKGD
KVKIKLINNLDENTTFHWHGLEVNGKVDGGPSQVIKPGKEKTIKFEVNQDSATLWYHPHP
SPNTAKQVYNGLSGLLYIEDSKKNNYPSDYGKNDLPIIIQDKTFVSKKLNYSKTKDEDGT
QGDTVLVNGIVNPKLTTKEEKIRLRLLNGSNARDLNLKLSNNQSFEYIASDGGQLKNAKK
LKEINLAPSERKEIVIDLSKMKGEKISLVDNDKTVILPISNKEKSSNKGNTPKVSKKIKL
50 EGMNDNVTINGNKFDPKRIDFTQKLNQKEVWEIENVKDKMGGMKHPFHIHGTQFKVLSVD
GEKPPKDMRGKKDVISLEPGQKAKIEVVFKNTGTYMFHCHILEHEDNGMMGQIKVTN*

Sequence 3251

Contig_0748_pos_3358_4230

55 is similar to (with p-value 1.0e-38)

>sp:sp|P44948|FPG_HAEIN FORMAMIDOPYRIMIDINE-DNA GLYCOSYLASE (EC 3.2.2.23) (FAPY-DNA GLYCOSYLASE). >pir:pir|A64104|A64104 formamidopyrimidine-DNA glycosylase (fpg) homolog - Haemop hilus influenzae (strain Rd KW20) >gp:gp|U32776|U32776_1 Hae

mophilus influenzae Rd section 91 of 163 of the complete gen ome. NID: ${\tt g1573969}$.

Sequence 3252

10

15

35

40

20 MPELPEVEHVKRGIEPFIKSAKIEKVTFAKNVINGKNNNRETIIKGMELDTFKKLTEGYV IKKVERRSKYIIFYIADHDDDRILVSHLGMAGGFFVVNNLDEISTPNYRKHWQVIFDLDN KQKLVYSDIRRFGEIRNIVNFDSYPSLLEIAPEPFEEVAFEHYLECLTMKKYKNKPIKQT ILDHRVIAGAGNIYACEALFRAGITPDKITNSLTKQERKSLFYYVREVLEEGIKYGGTSI SDYRHADGKTGQMQLHLNVYKQKKCKVCGHSIETKVIAGRNSHFCPNCQR*

25 Sequence 3253

Contig_0748_pos_4883_5752

is similar to (with p-value 4.0e-89)

>gp:gp|Z82038|CTZ82038_4 C.thermosaccharolyticum etfB, etfA
0 , hbd, thlA and actA genes. NID: g1667352. >gp:gp|Z92974|TTB
CSOPRN_6 T.thermosaccharolyticum BCS operon DNA. NID: g19033
26.

gtgtttggtggtgtatttaaggatatacctgcctatgaactaggtgcaacagttattcgt caaattttagaacatagtcaaatagatcctaatgaaatcaatgaagttattctaggaaac gtattacaggcaggtcaaggacaaaatcctgctcgtattgctgcgattcatggtggtgt ccagaagcggtaccttcttttactgtaaataaagtttgcggttctggattaaaagcgatt caacttgcctatcaatctattgtagcgggagataatgagattgttatcgctggaggcatg gaaagtatgtctcaatctccaatgcttcttaaaaatagtcgtttcggttttaaaatggga aatcaaactttagaagatagtatgatagctgatggtttaactgataagtttaatgattac catatgggtatcacagccgaaaatctagttgaacagtatcagattagtcgtaaagaacaa gatcaatttgcattcgattctcaacaaaaaagcatcacgtgcacaacaagctggtgtattt gatgctgaaattgtacctgtagaggtaccacaacgtaaaggcgaccccctaattatttct caagatgaaggcattagacctcaaacgacaattgataagttagcacaactccgtccagca tttaaaaaaagatggatcagtaactgctggtaatgcatccggtatcaatgacggtgctgct

gctatgctcgttatgacggaggacaaagcgaaagcattgggcttacaacctatagctgta ttagatagttttggtgcgagtggtgtggcgccttcaattatgggtattcgacgcacaaa acaaaccaaagaagaaatagcaactgttaa

Sequence 3254

50 VFGGVFKDIPAYELGATVIRQILEHSQIDPNEINEVILGNVLQAGQGQNPARIAAIHGGV PEAVPSFTVNKVCGSGLKAIQLAYQSIVAGDNEIVIAGGMESMSQSPMLLKNSRFGFKMG NQTLEDSMIADGLTDKFNDYHMGITAENLVEQYQISRKEQDQFAFDSQQKASRAQQAGVF DAEIVPVEVPQRKGDPLIISQDEGIRPQTTIDKLAQLRPAFKKDGSVTAGNASGINDGAA AMLVMTEDKAKALGLQPIAVLDSFGASGVAPSIMGIRRTKTNQRRNSNC*

Sequence 3255

Contig_0753_pos_1053_58

is similar to (with p-value 3.0e-40)

>gp:gp|AB011003|AB011003_1 Candida albicans CaUAP1 gene for

PCT/US00/30782 WO 01/34809

UDP-N-acetylglucosamine pyrophosphorylase, complete cds. NI D: g3273313.

atgttagacaaaaatcaattggaaaagtataaccaagagcatttgtatgaatatgaaaaa ttaatgagtagtaatgaaaagaatgctttagatgaaaaagtagatcagttaaatcttgca gaaattcaagatttatatcaagatttatatgttaatagaaaaactattgatgatgtatct tctgtatctgaagtcaaatatgaagtgaaatcacgactcaatgaagaagaacgacataca tatgaacaaaaaggttatgaggcaatacgaaatggtgaatttgctgtattattgatggct ggaggacaaggtacgcgtttaggatataaagggcctaaaggttcttttgaaatagagggt acgagtttatttgaacttcaggcgcgtcaactgattcgtttaaaagaagaaaccggccac acaattaattggtatattatgacaagtgacattaatcataaagatacaatagagtattttaaacaacataatttttaactatgatgccaatcatattcatttctttaagcaagataac attgttgctttaagtgaagaaggaaagcttgttttaaatagagatggacatataatggaa acacctaatggtaatgggggtgtattcaagtctcttaagaaagcaggataccttgataag atgcaacaagatcacgtcaaatatatcttcttaaataacattgataatgtcttagttaaa gttttagacccgttatttgccggttttacagtgacacaaagtaaagacatcacatcaaaa acaattcaacctaaagatagtgaaagtgtaggtcggcttgtaaatgttgattgtaaagac actgtgttagagtattctgaattaatgtcatatttccaggagctgcactccagttcattt ctgaaactaaaatacttccatcgctattcacgcgctctacaaacgctacgtgaccatagt aaccagcgtcagtttgtgcaattgagcctactgtag

20

25

35

40

45

50

10

15

Sequence 3256

MLDKNQLEKYNQEHLYEYEKLMSSNEKNALDEKVDQLNLAEIQDLYQDLYVNRKTIDDVS SVSEVKYEVKSRLNEEERHTYEQKGYEAIRNGEFAVLLMAGGQGTRLGYKGPKGSFEIEG TSLFELQARQLIRLKEETGHTINWYIMTSDINHKDTIEYFKQHKYFNYDANHIHFFKQDN IVALSEEGKLVLNRDGHIMETPNGNGGVFKSLKKAGYLDKMQQDHVKYIFLNNIDNVLVK VLDPLFAGFTVTQSKDITSKTIQPKDSESVGRLVNVDCKDTVLEYSELMSYFQELHSSSF LKLKYFHRYSRALQTLRDHSNQRQFVQLSLL*

Sequence 3257

30 Contig_0754_pos_7866_0

is similar to (with p-value 4.0e-44)

>sp:sp|P36649|YACK_ECOLI PROBABLE 53.4 KD BLUE-COPPER PROTE IN YACQ PRECURSOR. >gp:gp|AE000121|AE000121_8 Escherichia co li K-12 MG1655 section 11 of 400 of the complete genome. NID : g1786306.

atgtataataaagtttttgcaattttaattataattttttccataataattattgcgtct aatgatactttcgcagaaagtaagaatgatatgatgaatatgaaagaagataagaaaaat ggaaaaaatgaaataatatttcctaaagttgcagagtcaaaaaaagataacaatggttat aaaaattatacattaaaagctcaggaaggaaagacagagttttacaaaaataatttttct aatactctaggctacaatggaaatttacttggaccaactttaaaattaaaaaaggagat aaagttaaaattaagttaataaataacttagatgaaaatacaacatttcattggcatgga ttagaagtaaatggaaaagtggatggagggccttctcaggttataaaaccaggaaaagaa aaaactataaaatttgaggttaatcaagattctgctacgttatggtatcaccccacccc agtaaaaagaataattatcctagtgattatggaaaaaatgatttgcctataataatccaa gataaaacatttgtatctaaaaaattaattattcaaaaacgaaagacgaagatggcact caaggtgatactgttcttgtgaacggaatagtaaaccccaaactgacaacaaaagaagag aaaatacgtttgagacttttaaatggttctaatgctcgagatttaaatcttaagctaagt aataatcaaagttttgagtatattgcttcagatggcggtcaattaaaaaacgctaaaaaa

atgaaaggcgagaaaatcagtctggttgataatgataaaactgtaattttaccgattagt qaaqqtatqaatqataatqttaccattaatggtaataaattcgatcctaaaagaatagat 55 tttacacaaaagttaaaccagaaagaagtatgggaaattgaaaacgtcaaagataaaatg ggtggtatgaaacatcctttccacatccat

Sequence 3258

MYNKVFAILIIIFSIIIIASNDTFAESKNDMMNMKEDKKNTMDMTNMKHHDERKKLNSSQ

GKNEIIFPKVAESKKDNNGYKNYTLKAQEGKTEFYKNNFSNTLGYNGNLLGPTLKLKKGD
KVKIKLINNLDENTTFHWHGLEVNGKVDGGPSQVIKPGKEKTIKFEVNQDSATLWYHPHP
SPNTAKQVYNGLSGLLYIEDSKKNNYPSDYGKNDLPIIIQDKTFVSKKLNYSKTKDEDGT
QGDTVLVNGIVNPKLTTKEEKIRLRLLNGSNARDLNLKLSNNQSFEYIASDGGQLKNAKK
LKEINLAPSERKEIVIDLSKMKGEKISLVDNDKTVILPISNKEKSSNKGNTPKVSKKIKL
EGMNDNVTINGNKFDPKRIDFTQKLNQKEVWEIENVKDKMGGMKHPFHIH

Sequence 3259

15

Contig_0755_pos_2032_3393

- 10 is similar to (with p-value 8.0e-68)
 - >gp:gp|L41217|RICNRAMP_1 Oryza Sativa integral membrane protein (OsNramp) mRNA. NID: g2231131. >gp:gp|S81897|S81897_1 OsNramp1=Nramp1 homolog/Bcg product homolog [Oryza sativa, in dica, cv. IR 36, etiolated shoots, mRNA, 1967 nt]. NID: g147 0319.
 - atgggggtgattttattgaattccaataataacaatcatgaacaacaacgaagtttagat gaaatcaataacaccataaacttcaatcataatgatagtgcaagtcaaaaatttctggct tttttaggaccgggattgcttgttgcagttggttacatggatcctggaaattggattaca tccatgcaaggaggagcacaatatggctataccttgttattcataatcttaatctctagc ttatctgctatgctgttacaaagtatgactgtgagattaggaatagcaactggtatggat
- 20 ttatctgctatgctgttacaaagtatgactgtgagattaggaatagcaactggtatggat ttagcacaaatgacacgtcattttttaaataagcctgtagcaattatgttctggattatt gcagaattagcaattatcgctactgatattgcagaagttataggtagcgctatcgcatta gatttaatcttcggcataccattaattgtaggcgcattaatcactgtatttgatgtattt ttattattattcatcatgaaatttggctttagaaagattgaagctatcgtgggaacgtta
- 25 atctttaccgtattggccatttttgtatttgaagtttatatttcttctccacaaataaca gatatgcttaatggttttgtgcctcataaagaaattattacaaaccaagggatactttat attgcactaggtatcataggtgctactattatgccacataacttatatttacattcttct attgtacaatctcgaaaatatgatagacacagtattcatgaaaaagcacaagcgattaag tatgctactatcgactctaatatacagctatccatcgcttttgtagtcaattgcttatta
- 30 cttacacttggtgcagcgctatttttttggaactaaaactgaagatttgggtggtttttat gatctttatttggctctaaaaacagaacctgctttaggtgcaacgcttggcggtattatg agtactttatttgctgttgcccttttagcttctggtcaaaattcaactataacgggaacg ttagcaggccaaattgtgatggaaggatttcttaaattatccattccaaattggttacgt cgtcttatcactcggtctttagcagtgatacctgttatcatttgtcttatagtatttaa
- 35 ggaaatactgaaaaattgaacaattacttgtcttttctcaagtgttcttgagtattgct ttgccattttcgttaataccgcttcaattagctacaagtaatcaaaatcttatgggtcct tttaagaataaaacatggattaacatcatttcttggttactcataattgtcttaagtgga cttaacgtatatcttatcattcaaacattccaagaattatga
- 40 Sequence 3260
 - MGVILLNSNNNNHEQQRSLDEINNTINFNHNDSASQKFLAFLGPGLLVAVGYMDPGNWIT SMQGGAQYGYTLLFIILISSLSAMLLQSMTVRLGIATGMDLAQMTRHFLNKPVAIMFWII AELAIIATDIAEVIGSAIALDLIFGIPLIVGALITVFDVFLLLFIMKFGFRKIEAIVGTL IFTVLAIFVFEVYISSPOITDMLNGFVPHKEIITNQGILYIALGIIGATIMPHNLYLHSS
- 45 IVQSRKYDRHSIHEKAQAIKYATIDSNIQLSIAFVVNCLLLTLGAALFFGTKTEDLGGFY
 DLYLALKTEPALGATLGGIMSTLFAVALLASGQNSTITGTLAGQIVMEGFLKLSIPNWLR
 RLITRSLAVIPVIICLIVFKGNTEKIEQLLVFSQVFLSIALPFSLIPLQLATSNQNLMGP
 FKNKTWINIISWLLIIVLSGLNVYLIIQTFQEL*
- 50 Sequence 3261

Contig_0755_pos_6203_5673

No hits found

atgggattaaataaattagggtatagtcttaatgacaaaaatccgacccatattcatcaa gcagaaaaagatttgcataatttagcacctcaagttagagggatagtaggcgacgaaatt 55 actatgatgcttcaacaaaacgaaggacatgttgcagtagtttggagtggcgttgctgca ccacttgtacaggaaaatactcgttataattacgtgatacctaaagaaggctctaaccta tggtttgataatatggtgatacctaaaactgcacaaaataaagaaggtgcgtataagttt atgaatttcttactagacgcgcaaaatagtgcccagaatacggaatgggtaggatatgca acacctaataaagcagctcgaagtaagttgcctaaaaaggtaagaaatgattatagattt

tatccatcaaatcaagaacagcaacggttagaagtctataaagatttaggtcaaacgtctctagtgaatataatgaaagctttttaaattttaaaatgtctttaaaatag

Sequence 3262

5 MGLNKLGYSLNDKNPTHIHQAEKDLHNLAPQVRGIVGDEITMMLQQNEGHVAVVWSGVAA PLVQENTRYNYVIPKEGSNLWFDNMVIPKTAQNKEGAYKFMNFLLDAQNSAQNTEWVGYA TPNKAARSKLPKKVRNDYRFYPSNQEQQRLEVYKDLGQTSLSEYNESFLNFKMSLK*

Sequence 3263

10 Contig_0755_pos_3989_3612
 is similar to (with p-value 8.0e-25)

>sp:sp|P23861|POTD_ECOLI SPERMIDINE/PUTRESCINE-BINDING PERI PLASMIC PROTEIN PRECURSOR (SPBP). >pir:pir|D40840|D40840 spe rmidine/putrescine transport protein D - Escherichia coli >g

- p:gp|D90747|D90747_2 Escherichia coli genomic DNA.(25.1 25
 .5 min). NID: g1651548. >gp:gp|AE000212|AE000212_9 Escherich
 ia coli K-12 MG1655 section 102 of 400 of the complete genom
 e. NID: g1787358. >gp:gp|M64519|ECOPOTABCD_4 E.coli transpor
 t protein (potA, potB, potC and potD) genes, complete cds. N
- 20 ID: g147325. atgtcatctgaaatgtttttagtttctcttattgcgtcattagtcattttaggtttttca acgctattaggttttgttggtacaatggtaattgaaggtagaaaaaaccttgctgctagt ttactcatagcagcggctatcgtaggtttatttacgactaatttaatcgcaatggttta tggatgattgctgcgattagactttttgcaaaaaaagataaaacagatgtaaatgaaaat

Sequence 3264

30 MSSEMFLVSLIASLVILGFSTLLGFVGTMVIEGRKNLAASLLIAAAIVGLFTTNLIAMVL WMIAAIRLFAKKDKTDVNENATAQLRQNHSKSQSDWNHQQNQQQKDAWDPEQEINKQKKD DPYIY*

Sequence 3265

35 Contig_0756_pos_5439_6113

is similar to (with p-value 3.0e-39)

>gp:gp|U67196|TMU67196_1 Thermotoga maritima DNA-binding re sponse regulator (drrA) and histidine protein kinase (hpkA) genes, complete cds, thymidne/pyrimidine phosphorylase homolog gene, partial cds. complete cds. NID: g1575576.

- 45 agagatgcattaagtgataaagaacgtgcatttctaagtgggactgacgattatgtcact aaaccttttgaggttaaagaattattatttagaattaaagctgtcttaagacgatatcaa attaatgctgataacgagttacaacttggcaacttaatattaaatcagtcttacatggaa attactgtgggttcaaaaacgatgaatcttccaaacaaagaatttcagttgttatttta ttagcctctaatcctaaacatattttcactcgagatgatattattgaaaaaatttggggc
- 50 ttcgattatgaaggagatgatcgtactgttgatgttcatattaaaagattacgtcaacgt ttatctaaattgaaatcatcagtatcaattcaaactgtaagaggtcaaggatatagggtg gaccaaaatgtttaa

Sequence 3266

55 MINCLIVDDDKKLLQYVSSHLERESIQTHTFTSGEASLDFLENKNVDIAIVDIMMSGMDG FELCQTLKDDYHIPVIMLTARDALSDKERAFLSGTDDYVTKPFEVKELLFRIKAVLRRYQ INADNELQLGNLILNQSYMEITVGSKTMNLPNKEFQLLFLLASNPKHIFTRDDIIEKIWG FDYEGDDRTVDVHIKRLRQRLSKLKSSVSIQTVRGQGYRVDQNV*

Sequence 3267

Contig_0757_pos_1852_2325

is similar to (with p-value 1.0e-26)

15 Sequence 3268

10

MNANAQVRRYFPSLLSYRRSEIDMENMDSIIQESGLGLFAVELKETGEWLGFIGVNYVSK DSHYPFKELPFYEIGWRLIPEVWGNGLATEGAEAVMKYARDKGIKELYSFTSENNLPSRK VMEKLGMTFLDNFEYPNLSKYHPLKRHVRYYKELLPS*

20 Sequence 3269

Contig_0757_pos_4021_3656

is similar to (with p-value 2.0e-29)

>sp:sp|P46378|FAS6_RHOFA HYPOTHETICAL 21.1 KD PROTEIN IN FA SCIATION LOCUS (ORF6). >pir:pir|F55578|F55578 hypothetical p rotein 2 (ipt 3' region) - Rhodococcus fascians plasmid pFiD 188 >gp:gp|Z29635|RFCCIPTFD_6 R.fascians (D188) genes for P4 50 cytochrome, isopentenyltransferase and ferredoxine. NID: g455000.

atggacaaaaagcttcaaaagaatattgagaaacgtcataaagaagaacaaaaacaacgt gaagctaatcagaacaacgtattaaagacatgaaaaaactcaaaaatacgaagagcaa gttggcttaactcctggtaaaatagatcacgaaattgagaaaaaaggcgaaaaactagaa aaagataatcgtaaagatattaaaaaattagataaaaagcttcaaaagaatattgaaaaa cgtcataaagaagaacaaaaacagcgtgaagaagcagagaaagctagaaaaaaagaattt aaaaaaatatgaaaattacgtggctgacagtgtcgtaaaacaacataaggaatcaaatcat

35 tcttaa

40

Sequence 3270

 ${\tt MDKKLQKNIEKRHKEEQKQREANQKQRIKDMKKTQKYEEQVGLTPGKIDHEIEKKGEKLE}\\ {\tt KDNRKDIKKLDKKLQKNIEKRHKEEQKQREEAEKARKKEFKKYENYVADSVVKQHKESNH}\\ {\tt S*}$

Sequence 3271

Contig_0757_pos_3193_2627

ccacttggtgtacgtacatacgattaa

No hits found

55

Sequence 3272

MKRIAVYCGASKGKNPSYVKEAYELGKYMAEQGYELVFGAGSVGIMGAIQDGILEHGGKA IGVMPKMLDEREITSQKVSELILVDSMHERKNKMTELADAFIMAPGGAGSLEEFFEMYSW AQIGIHQKPIGVFNLNGFFEPLQHLIDHMIKEGFIDEKYQKLAPLYDTKESLIEGLKHYK

PLGVRTYD*

10

25

Sequence 3273

Contig_0759_pos_3773_3006

is similar to (with p-value 9.0e-58)

>gp:gp|U38892|SSU38892_2 Synechocystis sp. ruvB gene, compl
ete cds, and secA gene, partial cds. NID: g1256587.

15 ttagaagaattgggtgtacacgcagttatgccacttgcatcccctattggtacaggaaga ggtattaataacccattaaatttaagttatattatcgaaaatgctagtgtacctgtaatc gtagatgctggtattggttcccctaaagatgcgtgtcatgccatggagcttggcgcagat ggtatttactcaacacagccatttcagcggcaaaagatcctgtgaaaatggctgaagca atgaaattaggtataaatgctggcagactttcatatgaagctggacgcattcctgttaag

20 tatactgcacaagcatctagtccatcagaaggtttagggttcttgtaa

Sequence 3274

MFKIGNLELQSRLLLGTGKFENEEVQSKAIEASETNVLTFAVRRMNLYDRNLPNPLANVN LKDFITFPNTAGAKTAQEAIRIAEIANHAGVCDMIKVEVIGDDETLLPDPFETYEACKVL LEKGYTVCPYISNDLVLAQRLEELGVHAVMPLASPIGTGRGINNPLNLSYIIENASVPVI VDAGIGSPKDACHAMELGADGILLNTAISAAKDPVKMAEAMKLGINAGRLSYEAGRIPVK YTAOASSPSEGLGFL*

Sequence 3275

30 Contig_0763_pos_1317_2216

is similar to (with p-value 1.0e-47)

>gp:gp|U76260|PAU76260_2 Peptostreptococcus asaccharolyticus alpha- and beta-subunits of L-serine dehydratase (sdhB) and (sdhA) genes, complete cds. NID: g2315864.

- ggaacgattcccggcgtaatatttaaaattagaacaactcataatatcactgaagatcaa
 atgatagatttctattcaactcagctttattcgggcgatagttgcaaacaacgcgagc
 gttgccggtgcaactggtgttgtcaagccgaagtgggttcggcatctgcaatggctgca
 gctgctgcagtatcaattttaacgggtcaccagaacaatcaggacattg

Sequence 3276

MFDSIRETIDYSVENNISFADMMINDEMEREGKSREEVRDLMRQNLNVMREAVEKGTTGD GVESVTGYTGHDAAKLRDYNENNHALSGHEMIDAVKGAVATNEVNAAMGIICATPTAGSS GTIPGVIFKLEKTHNITEDQMIDFLFTSALFGRVVANNASVAGATGGCQAEVGSASAMAA

55 AAAVSIFNGSPEQSGHAMALAISNLLGLVCDPVAGLVEIPCVMRNAIGSGNALISADLAL AGVESQIPVDEVIGAMDRVGRNLPASLRETGLGGLAGTPTGEEIKRKIFGEADNMVKNK*

Sequence 3277

Contig_0765_pos_2844_3362 is similar to (with p-value 3.0e-17) >sp:sp|P04928|SANT_PLAFN S-ANTIGEN PROTEIN PRECURSOR. >pir: pir | B22011 | YAZQN7 S-antigen precursor - Plasmodium falciparu m (strain NF7/Ghana) >gp:gp|M10130|PFASA7_1 Plasdmodium falc iparum (isolate NF7) S antigen gene, complete cds. NID: g160 670. gtgcttctgcattgcctccttcttctgccttcgttggctcagattgaggtgcttctgcat tgcttccttcttctgtcttcgttggctcagattgagctgcttctgcattgcctccttctt ctgccttcqttqqctcaqattqaqctgcttttgcgttgcttccttcttctgtcttcgttg qctcaqattqaqqtqcttctgcattgcttccttcttcttgccttcgttggctcagattgag ctgcttttacgttgcttccttcttctgtcttcgttggctcagattgagctgcttctgcat ${\tt tgcctccttcttctgccttcgttggctcagattgagctgcttctgcattgcctccttctt}$ ctgccttcgttggctcagattgaggtgcttctgcattgcctccttcttctgccttcgttg gctcagattgagctgcttctgcattgcctccttcttctgccttcgttggctcagattgag 15

Sequence 3278

VLLHCLLLLPSLAQIEVLLHCFLLLSSLAQIELLLHCLLLLPSLAQIELLLRCFLLLSSL

20 AQIEVLLHCFLLLPSLAQIELLLRCFLLLSSLAQIELLHCLLLLPSLAQIELLLHCLLL
LPSLAQIEVLLHCLLLLPSLAQIELLHCLLLLPSLAQIEVLLHCLLLLAM*

qtqcttctqcattqcctccttcttctgcttqcaatgtag

Sequence 3279

Contig_0768_pos_1456_1800

is similar to (with p-value 4.0e-59)
>pir:pir|I67760|I67760 transposase (insertion sequence IS10)
) - Escherichia coli >gp:gp|S67119|S67119_2 BST=somatotropin
...BST/beta-Gal fusion protein (Escherichia coli, LBB84, pla
smid pXT107, IS10L/R-1, PlasmidTransposonInsertionMutant, 3

30 genes, 1679 nt]. NID: g455674.
atgcagattgaagaaaccttccgagacttgaaaagtcctgcctacggactaggcctacgc
catagccgaacgagcagctcagagcgttttgatatcatgctgctaatcgccctgatgctt
caactaacatgttggcttgcgggcgttcatgctcagaaacaaggttgggacaagcacttc
caggctaacacagtcagaaatcgaaacgtactctcaacagttcgcttaggcatggaagtt

Sequence 3280

MQIEETFRDLKSPAYGLGLRHSRTSSSERFDIMLLIALMLQLTCWLAGVHAQKQGWDKHF
40 QANTVRNRNVLSTVRLGMEVLRHSGYTITREDSLVAATLLTQNLFTHGYVLGKL*

Sequence 3281

55

Contig_0769_pos_8606_8947

is similar to (with p-value 6.0e-18)

>sp:sp|Q41364|SOT1_SPIOL 2-OXOGLUTARATE/MALATE TRANSLOCATOR
PRECURSOR. >gp:gp|A47930|A47930_1 Sequence 1 from Patent WO
9534654. NID: g2301793. >gp:gp|U13238|SOU13238_1 Spinacia ol
eracea envelope membrane 2-oxoglutarate/malate translocator
(SODIT1) mRNA, chloroplast mRNA encoding chloroplast protein
, complete cds. NID: g595680.

gcgttaggcgtttctttaacagtaggtgggtataatttataa

Sequence 3282 MSLLNHGIKPNLFNCSAINTRTENQTSVFHAPVSFKISDHANTPVNSNNAKAINAVSVAS

TLMKLPNTHKANAMIKTPTINFSAIDICPISSSCSVAHFLALGVSLTVGGYNL*

Sequence 3283

Contig_0769_pos_9387_8242

>sp:sp|Q41364|SOT1_SPIOL 2-OXOGLUTARATE/MALATE TRANSLOCATOR PRECURSOR. >gp:gp|A47930|A47930_1 Sequence 1 from Patent WO 9534654. NID: g2301793. >gp:gp|U13238|SOU13238_1 Spinacia ol eracea envelope membrane 2-oxoglutarate/malate translocator (SODiT1) mRNA, chloroplast mRNA encoding chloroplast protein , complete cds. NID: g595680.

atggcctttttcatttcaagaggatttgtaaaaacagggctaggtcgacgtattgctctg caattcqttaaattatttggaaagaaacgcttggtttggcttattcacttgttggtgtt ccaatcattaagtccttgtcagagtcatttggttcatcgccgagagatggttctgagaga aaaatgggtgcgtttttaatctttactgagttccaaggtaatttaattacttcagctatg tttttaacagctatggccggtaaccctatagcgcaaagtttagctgaaaaaacggcacac atogttgtccctttcattatttataaattatacccacctactgttaaagaaacgcctaac gctaaaaaatgggctactgaacaactagaagaaatgggacatatgtctatagccgaaaaa ttgatggttggtgtctttatcatagcattggctttgtgggtattaggaagcttcattaat gttgatgccacgctcactgcatttattgctttagcattgttactattaacaggtgtatta qcqtqqtcagatattttaaatgaaacaggcqcatggaatacactcgtttggttctcagtt cttgtattaatggcagaacaattaaacaagttaggctttatcccatggttaagcaaactc attgctcaaggtttgaatggctttagttggcctatcgttttagttttactcatcttgttt tatttctactcacattatttattcgcaagtgcaacagcacatgtcagcgccatgtacgccgcgttactcggtgttgcagtcgcttcgggtgcaccgccattattcagtgcattaatgtta gggttctttggtaacttactggcatcaacaacacactatagtagtggaccagcgcctata ttatacgcagatggctatgttacacaaaagcgctggtggactatgaatattgtacttggt ataqtctattttattatttggattggtgtaggttcactatggatgaaactcattggtatg

Sequence 3284

atqtaa

MAFFISRGFVKTGLGRRIALQFVKLFGKKTLGLAYSLVGVDLILAPATPSNTARAGGIMF PIIKSLSESFGSSPRDGSERKMGAFLIFTEFQGNLITSAMFLTAMAGNPIAQSLAEKTAH VQITWMNWFVAAIIPGLISLIVVPFIIYKLYPPTVKETPNAKKWATEQLEEMGHMSIAEK LMVGVFIIALALWVLGSFINVDATLTAFIALALLLLTGVLAWSDILNETGAWNTLVWFSV LVLMAEQLNKLGFIPWLSKLIAQGLNGFSWPIVLVLLILFYFYSHYLFASATAHVSAMYA ALLGVAVASGAPPLFSALMLGFFGNLLASTTHYSSGPAPILYADGYVTQKRWWTMNIVLG IVYFIIWIGVGSLWMKLIGMM*

40

55

35

10

15

20

25

30

Sequence 3285

Contig_0771_pos_5868_0

is similar to (with p-value 1.0e-34)

>sp:sp|P45476|YHCC_ECOLI HYPOTHETICAL 34.6 KD PROTEIN IN AR CB-GLTB INTERGENIC REGION (F309). >gp:gp|U18997|ECOUW67_140 Escherichia coli K-12 chromosomal region from 67.4 to 76.0 m inutes. NID: g606010.

atgcatgaaaaatggagtgaaggtcaatatattgcatactttcaggcgtttacaaatacg catgcacctgttgaagtactaaaagaaaaatatgaacctgtcttaaaagaagatggcgtc gttggtttatcaatcgcgacaagacctgattgtttgcctgatgatgttgtagaatattta gctgaacttaatcagcgcacttacttatgggtagaattgggcctacaaactgtgcatcag tcaacttccgatttaataaatcgtgctcatgatatgcaaacatactatgacggcgtaaca aaattacgcaaacataatataaatgtttgtacgcacataatcaacggcttaccaggtgaa aattatgacatgatggagactgctaaagaagtcgctcagatggacgttcaaggtatt aaaattcatttattacacttgctaaaaggaacgcctatggttaaacaatatgaaaaaggt atgctcgagtttatg

Sequence 3286

MHEKWSEGQYIAYFQAFTNTHAPVEVLKEKYEPVLKEDGVVGLSIATRPDCLPDDVVEYL

PCT/US00/30782 WO 01/34809

AELNORTYLWVELGLQTVHQSTSDLINRAHDMQTYYDGVTKLRKHNINVCTHIINGLPGE NYDMMMETAKEVAQMDVQGIKIHLLHLLKGTPMVKQYEKGMLEFM

Sequence 3287

10

Contig_0774_pos_1335_622

3809700. NID: g2636029.

is similar to (with p-value 2.0e-89) >sp:sp|P39149|UPP_BACSU URACIL PHOSPHORIBOSYLTRANSFERASE (E C 2.4.2.9) (UMP PYROPHOSPHORYLASE) (UPRTASE). >pir:pir|S4936 4|S49364 uracil phosphoribosyltransferase - Bacillus subtili s >gp:gp|Z38002|BSSPORUPP_10 B.subtilis spoII-R, glyC and up p genes. NID: g556877. >gp:gp|Z99122|BSUB0019_186 Bacillus s ubtilis complete genome (section 19 of 21): from 3597091 to

catacacattggaggaaaatgattatgagtaaagtacatgtttttgatcacccattaata 15 caacacaaactaagttatattagagatgctcgcactggaacaaaagagtttagggaactt gtagatgaagtcggtatgttaatggcttatgaagtaactagagacttagaactgcaagat gttgaaatacaaacacctgtgactaaaatgacagctaaacgtttggcgggtaaaaagtta qcaattqtacctattttaagagctggtctaggcatgacagatggtgtttaagtcttgtt 20 cctgctgctagggtaggacatataggactatatagagatccagagactcttgaagcggta gagtactttgcgaaaatgcctcaagacatcgatgaacgtcaaattattgtggttgatcct

 ${\tt atgcttgctactggtgcttcagctattgaagcaatttcttcattaaaaaaacgtggagct}$ a a a a g tatac g t t t t a t g t g t t t a a t a g c t g c c c c t g a a g g c g t t g a a a a a t g c a a g a a g c g t t g a a a a a t g c a a g a a g c g t t g a a a a a t g c a a g a a g c g c c c t g a a g c g c c c t g a a g c g c c c t g a a g c g c c c t g a a g c g c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c c t g a a g c c c c t g a a g c c c c c t ggcacacccagatgtagatatatatattgcggcattagatgaaaaattaaatgacaaagcg

tatattacaccaggtttaggtgatgcaggggatagattattcggtactaaataa 25

Sequence 3288

MKLKREFTHSHLNIHYIINRHTHWRKMIMSKVHVFDHPLIQHKLSYIRDARTGTKEFREL VDEVGMLMAYEVTRDLELQDVEIQTPVTKMTAKRLAGKKLAIVPILRAGLGMTDGVLSLV PAARVGHIGLYRDPETLEAVEYFAKMPQDIDERQIIVVDPMLATGASAIEAISSLKKRGA 30 KSIRFMCLIAAPEGVEKMQEAHPDVDIYIAALDEKLNDKAYITPGLGDAGDRLFGTK*

Sequence 3289

Contig_0775_pos_5036_4413

- 35 is similar to (with p-value 2.0e-43) >sp:sp|P44310|KGUA_HAEIN GUANYLATE KINASE (EC 2.7.4.8) (GMP KINASE). >pir:pir | H64139 | H64139 5'guanylate kinase (gmk) ho molog - Haemophilus influenzae (strain Rd KW20) >gp:gp U3284 8|U32848_2 Haemophilus influenzae Rd section 163 of 163 of t 40 he complete genome. NID: g3212240.
- atqqataaqqaaaaqqactgttaattgttctttcaggcccttcaggtgttggaaaggga actgttagaaagaagatatttgaagacccaactacttcatataagtattctatatcaatg acgacacgtcatatgcgtgaaggtgaaattgatggtgtagattacttctttaaaacaaag gaagaatttgaggcgttaattaaagacgaccagtttattgagtatgcacaatatgtaggt aattactatggtacacctgtacaatatgtaaaggatactatggaagaaggtcatgacgtc ttcatattttttagcgcctccaagttttagatgacttgaaagaacgtcttgttggtagagga actgaatcagatgaaaagattcaaagtcgtgtgaacgaggcacgaaaagaagtagaaatg atgaatttatacgactacgttgtagttaacgacgaggttgaactcgctaagaatcgaatt
- 50 cagtcaatagttgaagctgagcatttaaaaaagagagcgaatcgaagctaaatatagaaaa atgttactggaggtcaaaaaataa

Sequence 3290

MDKEKGLLIVLSGPSGVGKGTVRKK1FEDPTTSYKYS1SMTTRHMREGE1DGVDYFFKTK EEFEALIKDDOFIEYAQYVGNYYGTPVQYVKDTMEEGHDVFLEIEVEGAKQVRKKFPDAL FIFLAPPSLDDLKERLVGRGTESDEKIOSRVNEARKEVEMMNLYDYVVVNDEVELAKNRI OSIVEAEHLKRERIEAKYRKMLLEVKK*

Sequence 3291

Contig_0779_pos_0_1180 is similar to (with p-value 6.0e-61) >qp:qp|U31756|BSU31756_2 Bacillus subtilis gamma-aminobutyr ate permease (gabP) gene and spore coat protein (cotA) gene, partial cds. NID: g969025. ${\tt atgattgccattgggggatgtataggaactggtctattcatgacttctggtggagctata}$ $\verb|catgacg| caggtg| cattgggtg| ctttgattg| cctatg| cagttattggag| cgatggtg| ttc|$ tttctaatqacqtcgttagggqagatggcgacatatttgcctgtgtcaggttcatttagt acttatgctacacgctttgtcgatccttcactaggttttgctttaggatggaattattgg 10 ttcaactqqqtqataacaqtaqcaqctqatgttactattgcagcgcaagttatacaatat tggtcccctatgcaaggtataccagcttgggtctggagttgtattttccttattattatt ttcgcgcttaattctttatccgttagagtatatggagagagtgaatattggttcgcactt ${\tt atcaaagtagttacagtcatcatatttataggaattggtatcttaactattttagggatt}$ atgggtggagaatttgtaggatttgatacgtttacaaaaggagatgggccaatactaggt15 gggaatttaggaggtagcttgctatcaattcttggtgtatttctagtcgcaggcttctca ttccaaqqaactqaacttattggtattacagcaggtgaatctgaaaatccagaaagagca ttcattattqqtatqttqattccatatqataqtaaqqcattaatgggcggtggtgatagt atagctacttcaccttttacattagtatttaagaatgctggattagcttttgctgcttca 20 tttatgaatgctgttatattaacaagtgtattatcagcaggtaactcaggaatgtatgcttcaacaagaatgttatattcgatgagtaaagataaattagcttataattcttttggaaaa acaaataaaagtggcgtaccttatgtatctctaattgcaactggagtactagtcattcttattttcqcattqcaacatttaaqtqqaqatqcatatqaatacattqtaqctqctaqcqqa atgactggttttattgcttgggttggtatagcaatcagtcactttagatttagacgcgca 25 tttgataaacaaaattatgataaatcaaaattaaaatatC

Sequence 3292

MIAIGGCIGTGLFMTSGGAIHDAGALGALIAYAVIGAMVFFLMTSLGEMATYLPVSGSFS
TYATRFVDPSLGFALGWNYWFNWVITVAADVTIAAQVIQYWSPMQGIPAWVWSCIFLIII
FALNSLSVRVYGESEYWFALIKVVTVIIFIGIGILTILGIMGGEFVGFDTFTKGDGPILG
GNLGGSLLSILGVFLVAGFSFQGTELIGITAGESENPERAVPKAIKQVFWRILLFYILAI
FIIGMLIPYDSKALMGGGDSIATSPFTLVFKNAGLAFAASFMNAVILTSVLSAGNSGMYA
STRMLYSMSKDKLAYNSFGKTNKSGVPYVSLIATGVLVILIFALQHLSGDAYEYIVAASG
MTGFIAWVGIAISHFRFRRAFDKQNYDKSKLKYX

35

40

50

Sequence 3293 Contig_0786_pos_2712_3827 is similar to (with p-value 7.0e-97)

>sp:sp|P96612|DDL_BACSU D-ALANINE-D-ALANINE LIGASE (EC 6.3 .2.4) (D-ALANYLALANINE SYNTHETASE). >gp:gp|AB001488|AB001488 _40 Bacillus subtilis genome sequence, 148 kb sequence of the region between 35 and 47 degree. NID: g1881226. >gp:gp|Z99 106|BSUB0003_103 Bacillus subtilis complete genome (section 3 of 21): from 402751 to 611850. NID: g2632653.

5

Sequence 3294

MEENEMTKENICIVFGGKSAEHDVSILTAQNVLNAIDKERYQVDIIYITNDGEWKKKDNI
TQEIKNTDELVINDVETGEISQLLSKGSLGKSYDAVFPLLHGPNGEDGTIQGLFEVLDIP
YVGNGVLAASSSMDKLVMKQLFEHRGLPQLPYISFLRSEYEKYENNIIKLVNDKLTYPVF
VKPANLGSSVGISKCNNEEELKSGIAEAFQFDRKLVIEQGINAREIEVAVLGNDYPETTW
PGEVVKDVAFYDYKSKYKDGKIRLDIPADLDQDVQMTLRNMALEAFKATDCSGLVRADFF
VTDDNQIYINETNAMPGFTAYSMYPNLWKNMGLSYPDLIAKLIDLAKERYEDKKKNKYSQ
MFHLKPIVFYI*

15 Sequence 3295

Contig_0788_pos_6565_7542

is similar to (with p-value 8.0e-33)

>gp:gp|AB011003|AB011003_1 Candida albicans CaUAP1 gene for UDP-N-acetylglucosamine pyrophosphorylase, complete cds. NI D: g3273313.

20 atqaaaatttttgattatgaagatatacaattaattcccaataaatgtattgttgaaagc agatotgagtgtaatacttoggttaaatttgggcotogtacttttaaattgcoagttgtt ccagcaaatatgcaaacagtcatgaatgaagaacttgcacaatggtttgcagaaaacgat tatttttatatcatgcatagatttaatgaagaaaatagaattccatttataaaaaaatg catcatqcaqqqttatttqcttctatttctqttqqaqttaaaqaaaacqaatttaatttt attqaaaaattagcttcttcatcgctcataccagaatatataacaattgatattgctcat ggtcactcaaattcagttataaatatgattaagcatataaaaaaacatttaccaaatagt tttgtgatagctggtaatgttgggacgcctgaaggagtaagagaacttgagaatgccggt 30 ggatttggtacaggaggttggcaactttctgcgttaaatctttgtaataaggcagctaga aaacctattattgcagatggagggttaagaacccacggtgatatagccaaatcaattcgt tttqqtqccactatqqtaatqattqqctctttatttqctqcccacqaggaatcaccgggt gaaaccgtcgagctagatggcaaaaaatataaaagaatattttggtagtgcctcagaatat caaaaaggtgaacataagaacgttgaaggtaaaaaaatgtttgtagaacacaaaggatct 35 cttaaagatacccttactgaaatggaacaagatttacagagttcaatttcatatgcagga ggaaaggacttgaagtcattaagaacagttgattacgtcatagtaagaaattcaatcttt aatggtgatagagattag

Sequence 3296

40 MKIFDYEDIQLIPNKCIVESRSECNTSVKFGPRTFKLPVVPANMQTVMNEELAQWFAEND
YFYIMHRFNEENRIPFIKKMHHÄGLFASISVGVKENEFNFIEKLASSSLIPEYITIDIAH
GHSNSVINMIKHIKKHLPNSFVIAGNVGTPEGVRELENAGADATKVGIGPGRVCITKIKT
GFGTGGWQLSALNLCNKAARKPIIADGGLRTHGDIAKSIRFGATMVMIGSLFAAHEESPG
ETVELDGKKYKEYFGSASEYQKGEHKNVEGKKMFVEHKGSLKDTLTEMEQDLQSSISYAG
45 GKDLKSLRTVDYVIVRNSIFNGDRD*

Sequence 3297

Contig_0788_pos_4151_3402

is similar to (with p-value 6.0e-40)

- >sp:sp|P27442|GUAC_ASCSU GMP REDUCTASE (EC 1.6.6.8) (GUANOS
 INE 5'-MONOPHOSPHATE OXIDOREDUCTASE). >gp:gp|M82838|NEMGMP_1
 Ascaris lumbricoides GMP reductase mRNA, complete cds. NID:
 g159660.
- atgacaagtgacattaatcataaagatacaatagagtattttaaacaacataaatatttt
 55 aactatgatgccaatcatattcatttctttaagcaagataacattgttgctttaagtgaa
 gaaggaaagcttgttttaaatagagatggacatataatggaaacacctaatggtaatgg
 ggtgtattcaagtctcttaagaaagcaggataccttgataagatgcaacaagatcacgtc
 aaatatatcttcttaaataacattgataatgtcttagttaaagttttagacccgttattt
 gccgqttttacagtgacacaaagtaaagacatcacatcaaaaacaattcaacctaaagat

Sequence 3298

10 MTSDINHKDTIEYFKQHKYFNYDANHIHFFKQDNIVALSEEGKLVLNRDGHIMETPNGNG GVFKSLKKAGYLDKMQQDHVKYIFLNNIDNVLVKVLDPLFAGFTVTQSKDITSKTIQPKD SESVGRLVNVDCKDTVLEYSELDTDIANQFNNANIGIHAFKLGFITSAVDRELPYHLAIK QLKQLDENFGVVERPTLKFELFYFDIFRYGTSFVTLQVPREEEFSPLKNKEGKDSVHTAT EDLKRMDLI*

15

40

5

Sequence 3299

Contig_0795_pos_2866_4128

>gp:gp|AJ224946|CGA224946_1 Corynebacterium glutamicum DNA for L-Malate:quinone oxidoreductase. NID: g3059092.

atqcacatqaqtqaaqcaaatcataaaaacatcgttgttgtaggtgcaggaattattggt 20 acgtcagtagcgacaatgctttcaaaagtaagtcctaactggcatatcgatatgtttgaa agactagaaggcgctggtattgaaagttcaaatgaaaataataatgctgggacaggtcat gcggcattatgtgaattaaactatacagttgaacaagatgatggttcaattgatgcatct aaagcgcaagaaattaatgaacaattcgaattatctagacaattctggggtaatttagtt 25 aaaaatggtgatatttctaatcctgaagaatttattcaaccattacctcatatcagtttc gttatgggaccaacaaacgttaactttttaagaaaacgttatgaaacactaagaactctt ccaatgttcgatacaatcgaatatacagaagacatggaaacaatgagaaaatggatgcca ttaatgatggaaaatcgtgaaccaggtcatcaaatggcagcaagtaaaattgatgaaggt acagatgtgaactatggtgcgttaacacgtaagttagcacattacttagaacaaaaatct aatgtttcattaaaatacaatcatgatgttgtagatttaacacaaagagaagatggcaaa 30 tqqqaaqttqtcqttgaaaatagagaaactaaagaaaaagtaactaaaatagcagataaa gtgtttattggtgctggcggtcactctattccgttattacaaaaatctggcgttaaacaa agagaacacctaggtggtttcccaatcagtggtcaattcttaagatgtacaaacccagat attattaaacaacatgcggctaaagtttacagtaaagagcctcaaggtaagccaccaatg 35 actqtaccacaccttqatacacqttatatcaatqqtaaacaacattattatttggtcca tatgcgaatatcggccctaaattcttgaaattcggttcaaatctagacttattcgaatca atcaaaccatataacattactacaatgttggcttcagcagttaaaaatgtacctttaatt aaatattcaattgatcaaatgatcaaaactaaagaaggttgtatgaactatttaagaaca tttattcctgatgctaaagatgaagattgggaactttacactgctggtaaacgtgttcaa

Sequence 3300

MHMSEANHKNIVVVGAGIIGTSVATMLSKVSPNWHIDMFERLEGAGIESSNENNNAGTGH
45 AALCELNYTVEQDDGSIDASKAQEINEQFELSRQFWGNLVKNGDISNPEEFIQPLPHISF
VMGPTNVNFLRKRYETLRTLPMFDTIEYTEDMETMRKWMPLMMENREPGHQMAASKIDEG
TDVNYGALTRKLAHYLEQKSNVSLKYNHDVVDLTQREDGKWEVVVENRETKEKVTKIADK
VFIGAGGHSIPLLQKSGVKQREHLGGFPISGQFLRCTNPDIIKQHAAKVYSKEPQGKPPM
TVPHLDTRYINGKQTLLFGPYANIGPKFLKFGSNLDLFESIKPYNITTMLASAVKNVPLI
50 KYSIDQMIKTKEGCMNYLRTFIPDAKDEDWELYTAGKRVQVIKDNHLKQDLTLLQQSYLL

gttattaaagataaccatttgaagcaggaccttactttattgcagcagtcgtatttgtta

Sequence 3301

Contig_0795_pos_4741_5160

55 is similar to (with p-value 7.0e-17)

>sp:sp|P77279|YBBL_ECOLI HYPOTHETICAL ABC TRANSPORTER ATP-B INDING PROTEIN IN USHA-TESA INTERGENIC REGION. >gp:gp|U82664 |ECU82664_88 Escherichia coli minutes 9 to 11 genomic sequen ce. NID: g1773084. >gp:gp|AE000155|AE000155_6 Escherichia co

li K-12 MG1655 section 45 of 400 of the complete genome. NID : g1786692.

atgcaacaaagtgagttaatcggttatacaattgaagataatatgaaatttcctgctgag gctagaagtgaagcttttgaccgtgataaagcgaaacaactcatctctcaagtaggatta ggtaattatcagttagatgctcaaattgagcacatgtctgggggagagcaacaacgtatt accatcgctagacaactcatgtatgaacctgaagttttattattggacgaagctactagc gctttagatacacataataaaaagaaaattgaagaaattatatttaaactagcagataaa gggattgccattttgtggattacgcatagtgatgaccaaagtatgcgtcattttaagcgt agaatcacaattactgacggtaagatatcgagtgatgaggagttgaatggtaatgagtaa

10 Sequence 3302

MQQSELIGYTIEDNMKFPAEARSEAFDRDKAKQLISQVGLGNYQLDAQIEHMSGGEQQRI TIARQLMYEPEVLLLDEATSALDTHNKKKIEEIIFKLADKGIAILWITHSDDQSMRHFKR RITITDGKISSDEELNGNE*

15

20

25

Sequence 3303

Contig_0795_pos_5525_5929

is similar to (with p-value 2.0e-32)

>sp:sp|P77307|YBBM_ECOLI HYPOTHETICAL 28.2 KD PROTEIN IN US HA-TESA INTERGENIC REGION.

Sequence 3304

30 MLANNGLIAINLAYQNLERAFVQDVSDIESKLTLAATPKLASKSAIRESIRLAIVPTIDS VKTYGLVSIPGMMTGLIIGGVDPLQAIKFQLLVVFIHTTATIMSALIATYMSYGQFFNAR HQLIARTQRTRQSS*

Sequence 3305

35 Contig_0795_pos_6068_7246

is similar to (with p-value 7.0e-24)

>gp:gp|A08113|A08113_1 Synthetic DNA sequence of chloramphe nicol-resistance gene. NID: g413362.

atgactgtcgcacgcacaacaacatttatattaagtgttttcatcgtaggtatggttgag 40 atgatggttgcaggtattatgaatttaatgagtcaagatcttcatgtttctgaagcggtg $\tt gttgggcaactggtaacgttgtacgcgcttacctttgcgatatgtggtccgttattagtg$ ${\tt aagttgactcatcggtttacttcgcgatcagtattattatggacgttaattgtctttatc}$ ttcgggaatggtatgattgccattgcacctcattttggaataatagttgtaggacgtatt ttatcttctgccgcagcttcactcattattgtgaaagttttagcactcacagcgatgctc acatcagcaaaaaacagaggtaaaatgattggtattgtttatacaggttttagtggggcg 45 aatqtctttqqtqttcccatcqqtacagtgattggcgactgggtaggatggcgatttaca tttttattcattattattgtaagtgtatttgttggtgttttaatgttaatttatctacca aaagaagatgaattgtcacatccaaatcaaacacctcgttcatctagtattgaatcacaa actggctcaagcgtcataagacctcgtgaggtttttaaatatctgatgattacattttta 50 gtgctggttgctaattctgtaacattcgtgtttattaatccattaattttatccaatgga catgaaatgtcttttgtgtctttagcactacttgttaatggtgtagcaggtgtgattggt acttcattaggcggtgttttatctgataagtttactagtaagcgttggttaataatttcg atttcaatatttataataatgatgataattcttaacttattattaccaggaacaggatta ttattagttggcttatttatgtggaatttaatgcagtggagtacaaatccagctattcaa agtggtattattgaacacgtcgaaggagatacaagccaagtgatgagttggaatatgtcg

55 agtggtattattgaacacgtcgaaggagatacaagccaagtgatgagttggaatatgtcg agtctcaatgccggtattggcgttggcggaatcgtaggtggactcgttatgacacattta tcagtggaatatgttacttatactagtgcattgataggtttaattagtcttatcattgta ttcactttaaaaaatagacattatgctaaaaatttatga

Sequence 3306

MTVARTTTFILSVFIVGMVEMMVAGIMNLMSQDLHVSEAVVGQLVTLYALTFAICGPLLV
KLTHRFTSRSVLLWTLIVFIFGNGMIAIAPHFGIIVVGRILSSAAASLIIVKVLALTAML
TSAKNRGKMIGIVYTGFSGANVFGVPIGTVIGDWVGWRFTFLFIIIVSVFVGVLMLIYLP
KEDELSHPNQTPRSSSIESQTGSSVIRPREVFKYLMITFLVLVANSVTFVFINPLILSNG
HEMSFVSLALLVNGVAGVIGTSLGGVLSDKFTSKRWLIISISIFIIMMIILNLLLPGTGL
LLVGLFMWNLMQWSTNPAIQSGIIEHVEGDTSQVMSWNMSSLNAGIGVGGIVGGLVMTHL
SVEYVTYTSALIGLISLIIVFTLKNRHYAKNL*

10 Sequence 3307

Contig_0799_pos_3893_3078

is similar to (with p-value 1.0e-20)

 $>gp:gp|U67964|EVU67964_2$ Ectromelia virus H14-B and H14-E g enes, complete cds. NID: g2145123.

- 15 atgcattatataaaatttattgagtcaaaagataatacaaaactttatatgaaagtgaat gatattcaagatgcaaaagcgaatatcattatagctcatggtgtggcagaacatttagat cgttatgatgagataacagcatatttaaaatgaagcgggttttagtgttattagatatgat caaagagggcatggtcgttctgaaggcaagcgtgccttttatagcaatagtaatgaaatt gtcgaagatttagatgcgataataaattatgtgaagtcaaactttgaaggtaaagttac
- 20 ttaatcggtcatagtatgggtggttatacagtcactttatatggaacgaaacatccaaat acagtgaatggtattataacttctggagcattaacacgttataataataaactatttggc aatcctgatagaaacatatcacctgatacttatatagaaaacaatttaagtgagggggta tgttctgatttagaggtaatggaaaaatataaacttgatgatttgaatgcgaaacaaatc tctatggggctcgtcttttcaataatggatggtgttaggtatttgaaagacaatgctcaa
- 30 Sequence 3308

MHYIKFIESKDNTKLYMKVNDIQDAKANIIIAHGVAEHLDRYDEITAYLNEAGFSVIRYD QRGHGRSEGKRAFYSNSNEIVEDLDAIINYVKSNFEGKVYLIGHSMGGYTVTLYGTKHPN TVNGIITSGALTRYNNKLFGNPDRNISPDTYIENNLSEGVCSDLEVMEKYKLDDLNAKQI SMGLVFSIMDGVRYLKDNAQQFTDNILILHGKEDGLVSYVDSLQLYQEIGSAHKSLHIYD

35 RLEHEIFNESSYNRTIFNEVIEWLETELTYN*

Sequence 3309

Contig_0802_pos_4926_3982

is similar to (with p-value 3.0e-73)

- ygp:gp|S72926|S72926_1 Hordeum vulgare glucose and ribitol dehydrogenase homolog mRNA, complete cds. NID: g633889. gtgtgggcttggtacactcatttacaagaattcaattctgatccgaatatacaaaatttt gatgaaatgcttaacaaactacaaaaggtcagtttaattagtgcaagtgaagaaagtggg actaaaaaaattgtagatcactttgtcgaagaattatatagcgaagaaccaaaacaaaa atcaatacaggttataaactggtggattacaaaataggtggtttagaacctacacagttg
- 50 cttgatatagatatacacgataaaagcaatattactacacatgatgtacgtaaacaagcg atgaagaacaaagatgtgcaacaggttatcttcattgactacttacaacttatgcagaca gacagtaagttagatcgtcgtaatggtatcgaaaagatatcgcgagatttgaagattatt gcaaatgaaacaggtgcaattattgtgttgctatctcaattgagcagaggtgtagaaaca agaaatgacaaaagacctatgctatctgacatgaaagaagcaggtggaattgaagcagat
- 55 gcaagtttagctatgttgttatatcgagatgattactacaaccgtgatgatgttgatgac tcaggcaagtcaattgttgaatgtaacatcgcaaagaataaagacggagaaacaggtgta qttqagtttgagtactacaagaaaacgcagaggttcttcacatga

Sequence 3310

VWAWYTHLQEFNSDPNIQNFDEMLNKLQKVSLISASEESGTKKIVDHFVEELYSEEPKQK
INTGYKLVDYKIGGLEPTQLIVIAARPSVGKTGFALNMMLNIASQGYKTSFFSLETTGVS
VLKRMLSAETGIELTRIKEIKDLEPDELTRLTTAADRILKLDIDIHDKSNITTHDVRKQA
MKNKDVQQVIFIDYLQLMQTDSKLDRRNGIEKISRDLKIIANETGAIIVLLSQLSRGVET
RNDKRPMLSDMKEAGGIEADASLAMLLYRDDYYNRDDVDDSGKSIVECNIAKNKDGETGV
VEFEYYKKTORFFT*

Sequence 3311

Contig_0802_pos_3039_2170

- 10 is similar to (with p-value 3.0e-36)
 - >sp:sp|P37469|DNAC_BACSU REPLICATIVE DNA HELICASE (EC 3.6.1 .-). >gp:gp|D26185|BAC180K_4 B. subtilis DNA, 180 kilobase r egion of replication origin. NID: g467326. >gp:gp|Z99124|BSU B0021_149 Bacillus subtilis complete genome (section 21 of 2 1): from 3999281 to 4214814. NID: g2636442.
- 15 1): from 3999281 to 4214814. NID: g2636442.
 gtgaatttattaaaatttcacaacaaaatcaaaggatatactcaaaatagacaaccaggt
 attgaagcggatatggaacctaaacccattgcagaattagaagaatataaagcagcagga
 aagttagagaataaagttgctctaataacaggaggagattcaggtattggacgtgcgata
 gcaatactatatgctaaagaagggcaaatgttgctattggttattatgacgaacatcaa
 gatgcgaagacacagttaatcgacttcaagaaatggtgtgtaaaagctaaagcttatgct

- 30 gtcaatggtggcgattttatcacatcttaa

Sequence 3312

VNLLKFHNKIKGYTQNRQPGIEADMEPKPIAELEEYKAAGKLENKVALITGGDSGIGRAI AILYAKEGANVAIGYYDEHQDAEDTVNRLQEMGVKAKAYAHDLKDEKQSQKLIKDVINDF GSLNILVNNGGVQFPRDHFEDITPQQVKETFMTNIFGMMFLSQSAVPYLSEGDTIINTTS VTAYRGSGHLIDYSATKGAIVSFTRSLATTLMEKGIRVNAVAPGPIYSPLIPATFDEEKV EHQGDETPMGRRGQPAELAPSYVFLATHADSSYITGQVIHVNGGDFITS*

Sequence 3313

- 40 Contig_0804_pos_4400_3708
 - is similar to (with p-value 3.0e-62)
 - >sp:sp|P96612|DDL_BACSU D-ALANINE--D-ALANINE LIGASE (EC 6.3 .2.4) (D-ALANYLALANINE SYNTHETASE). >gp:gp|AB001488|AB001488 _40 Bacillus subtilis genome sequence, 148 kb sequence of th
- 45 e region between 35 and 47 degree. NID: g1881226. >gp:gp|299 106|BSUB0003_103 Bacillus subtilis complete genome (section 3 of 21): from 402751 to 611850. NID: g2632653.
- atggataaactcgtgatgaaacaattatttgagcatagaggtttacctcaattaccttat attagctttttaagaagtgagtatgaaaaatatgaaaatatcattaaattagttaat 50 qataagttaacatatccggtatttgtaaaacctgctaatctcggttcaagtgttggtata

Sequence 3314

MDKLVMKQLFEHRGLPQLPYISFLRSEYEKYENNIIKLVNDKLTYPVFVKPANLGSSVGI SKCNNEEELKSGIAEAFQFDRKLVIEQGINAREIEVAVLGNDYPETTWPGEVVKDVAFYD YKSKYKDGKIRLDIPADLDQDVQMTLRNMALEAFKATDCSGLVRADFFVTDDNQIYINET NAMPGFTAYSMYPNLWKNMGLSYPDLIAKLIDLAKERYEDKKKNKYKIDY*

Sequence 3315

Contig_0808_pos_6745_6269

10 is similar to (with p-value 1.0e-55)

>gp:gp|AF068246|AF068246_1 Mus musculus SA protein mRNA, complete cds. NID: g3928675.

gtgtttaattacttatctacgaaagaagacgaaagagaatgggttgaagcaattagagta gcaagaaatatcctaaaacaaaaagctatggacccatttaatggtggcgaaatttcacca ggaccacaagttcaaacggatgaagaaattctagattgggtacgtaaagatggagaaact gcattacatccatcttgtagcgcgaaaatgggacctgcatctgacccaatggcagtagtc gatccattaactatgaaagtacatggtatggaaaatttacgtgtcgttgatgcttcagca atgcctagaacaacaaatggtaatattcatgcacctgtattgatgttagctgagaaagca gcggacattattcgtggtagaaaaccgcttgaacctcaatatgttgactattataaacat ggtattgatgatgaaaaagcaggtgcaatggaagatgatccattctaccaatattaa

Sequence 3316

15

20

25

VFNYLSTKEDEREWVEAIRVARNILKQKAMDPFNGGEISPGPQVQTDEEILDWVRKDGET ALHPSCSAKMGPASDPMAVVDPLTMKVHGMENLRVVDASAMPRTTNGNIHAPVLMLAEKA ADIIRGRKPLEPQYVDYYKHGIDDEKAGAMEDDPFYQY*

Sequence 3317 Contig_0808_pos_3296_2034

is similar to (with p-value 7.0e-29)

30 >sp:sp|P17444|BETA_ECOLI CHOLINE DEHYDROGENASE (EC 1.1.99.1
) (CHD). >gp:gp|X52905|ECBET_5 Escherichia coli betT, betI,
 betB and betA genes. NID: g48714. >gp:gp|M77738|ECOBETA_1 E.
 coli choline dehydrogenase (betA) gene, complete cds. NID: g
 145401. >gp:gp|AE000138|AE000138_2 Escherichia coli K-12 MG1
35 655 section 28 of 400 of the complete genome. NID: g1786501.

atgaataaatcaaatttactagcacctgagaattataatattgttacagaaatagaaaaa tatgeeteagaagateataaaaaageeattatttacaaggataaegageatgaaaatatt tctqtaaqttataaagaacttatcagtaatgctaataaagtagggaatgtattcctcaat 40 catgggctaaaaaagggagataaagttctcatcatgatgccacgtgcaatcgttacatat qaattatatattgcagcattgaaactagggatagcgattgttccaagttcggaaatgtta cgaacaaaagatttacaatatcgaattactcacggtgagattgatgcagttatttcattt gattctctaactaaagaatttgaaaacgttaaagaatatgaccaattaaaaaaatttata 45 acaacaqqcaatccaaaaqcaqtaacqcattcacatggatgggggtatgcccatttacaa atqqcaccaaaacattqqttatqtatacaagagaatgatcttqtatqgqcaactgcagca ccagggtggcaaaagtgggtgtggagtccatttttatctgtattagggatgggagcaaca gcatttgtctataacggtcgtttccaccctgaaacatatctcgagttacttcaaaattat 50 caaattaatgttctatgttgtacaccaacagaatatcgtatgatggctaaacttagtcat ttagaacagtacaatttagagtatttacacagtgcggtgtctgcggggtgaacctttaaat cgagaagttgttgaacaatttaaacgtcattttaatattactgttcgagatggatatgga caaaccgaaagtacattgttgatcggatttctaaaagatactgaaccacgtatgggttct ${\tt atgggcaaaggtatacctggtagttttgttactgtcattgacgatgatggtaaagaggtt}$ 55 tactttaaagatgaagcacgcacaaaagcagcttcaacaggtgattattatgttactgga gaccaagctcatattgatatatatcagtggtcaatcatttttacgtcctttattttaaaa taa

Sequence 3318

MNKSNLLAPENYNIVTEIEKYASEDHKKAIIYKDNEHENISVSYKELISNANKVGNVFLN

HGLKKGDKVLIMMPRAIVTYELYIAALKLGIAIVPSSEMLRTKDLQYRITHGEIDAVISF

DSLTKEFENVKEYDQLKKFIVAGHKEDWVSIEDEKEKVSDDLKGADTTRDDLAILSYTSG

TTGNPKAVTHSHGWGYAHLQMAPKHWLCIQENDLVWATAAPGWQKWVWSPFLSVLGMGAT

AFVYNGRFHPETYLELLQNYQINVLCCTPTEYRMMAKLSHLEQYNLEYLHSAVSAGEPLN

REVVEQFKRHFNITVRDGYGQTESTLLIGFLKDTEPRMGSMGKGIPGSFVTVIDDDGKEV

GPNVKGNIAVPLDLPALFKGYFKDEARTKAASTGDYYVTGDQAHIDIYQWSIIFTSFILK

10

20

Sequence 3319
Contig_0810_pos_827_1459
is similar to (with p-value 8.0e-31)

>gp:gp|D64024|D64024_2 Sulfolobus sp. DNA for 2-oxoacid:fer
fedoxin oxidoreductase subunit alpha and beta, complete cds.
NID: g1565182.

atggcaaacaaagatttaacagttatcgcttctggtggtgatggagacggctatgcaata ggaatgggacatactattcatgctcttagacgtaatatgaatatgacgtatattgtcatg gacaatcaaatatatggattaactaaaggacaaacatcaccttcctcagctaaaggattt gtaactaaatcaacacctaaaggaaatatagaaaagaatgtagctccattggaattggca ctgtcctctggtgcaactttttgtagcacaaggattctcaagtgatataaaggcattaact aaatgattgaagatgcgattcatcatgatggtttttctttttgttaatgttttctcacct tgtgttacttacaataaagtgaatacttatgacggtttaaagaacatttaacaagtatc gatgatattgagggctatgacatcacagataaacaacttgctatgaaaactgtgctggat

25 catgagtcactggttaaaggtatcgtttatcaagatacaacaacaccttcttatgaatcg caaatttcagaactagaacatgaggcgttagctaaaagagatattcatattacagaagaa actttcaacgatttaactgcacaatttttataa

Sequence 3320

30 MANKOLTVIASGGDGDGYAIGMGHTIHALRRNMNMTYIVMDNQIYGLTKGQTSPSSAKGF VTKSTPKGNIEKNVAPLELALSSGATFVAQGFSSDIKALTKMIEDAIHHDGFSFVNVFSP CVTYNKVNTYDWFKEHLTSIDDIEGYDITDKQLAMKTVLDHESLVKGIVYQDTTTPSYES QISELEHEALAKRDIHITEETFNDLTAQFL*

35 Sequence 3321

Contig_0812_pos_620_1003

is similar to (with p-value 3.0e-63)

>pir:pir|A43577|A43577 regulatory protein pfoR - Clostridiu m perfringens

45 ccaacagctataccacttaaactccctgctagatcaccaatttcttggaaaaaatttaaca tggaatacgccaccaattgcgtaa

Sequence 3322

MTANAYGLLSPTEVIALPICLSTAITPGEIKFARPNVTAGANKITTIKSSPSGTFFSTNL
50 IPNATTYAAINAGNNFESCNTKPTMTANTGDTSNFRQVNIPTAIPLKLPARSPISWKNLT
WNTPPIA*

Sequence 3323

Contig_0812_pos_2366_5200

is similar to (with p-value 2.0e-07)
>sp:sp|O34863|UVRA_BACSU EXCINUCLEASE ABC SUBUNIT A. >gp:gp
|Z99122|BSUB0019_13 Bacillus subtilis complete genome (section 19 of 21): from 3597091 to 3809700. NID: g2636029. >gp:gp
|AF017113|AF017113_13 Bacillus subtilis 300-304 degree genom

ic sequence. NID: g2618830. atgaaaggaccgtcaattgtagtaaaaggtgcacgagcacataatttaaaaggagtagat attgaattacctaaaaacaagttgattgtcatgactggactttcaggctcaggtaaatct tcgttagcgttcgatactatttatgctgaaggtcaacgacgttatgtggaatcgttaagtgcatatgcgcgacaatttttaggacaaatggacaaacctgatgtagataccattgaaggt $\verb|ttgtcaccagcaatatctattgatcagaagacgacaagtaaaaacccacgttctaccgtt|$ gccactgtgactgaaatctatgattatattcgattattatatgcgcgtgtcggtaaaccg ${\tt tactgtccttatcacggtatagaaattgaatcacaaactgttcaacaaatggttgatcgt}$ attttagaattggaagaacgtacaaaaattcaattacttgctccagttatatcacataga 10 aaaqqaaqtcatqaaaaattaattgaagatataggtaagaaaggatatgtgcgtttacgt gttgatgatgaaatcgtcgatgtaaatgaagtgcctcaattggataaaaataaaaatcac acaattgaagttgttgttgatagacttgtagttaaagatggcattgagacgcgtttagcg $\tt gactctattgagacagcacttgaacttgctgaaggtaatttaacagttgacgttattaat\\$ $\tt ggagaagaacttaaattctctgagaaccacgcatgtcctatatgtggtttctctattggt$ gaattagaacctagaatgtttagtttcaacagtccgtttggtgcgtgtccaacttgtgat 15 ggtttaggtcaaaaactaaaagtagacctagatttagtcattcctgataaaaataaaact ttaaatgaaggtgcaattgaaccatgggaaccaacaagttcggatttttatccaacttta ttaaaacgtgtatgtgaagtctacaaaattaatatggataagccatataaaaaattgact qataqacaaaaaaatatacttatgaatggttctggagaaaaagaaattgaatttactttc 20 acqcaacqaaatqqtqqtactcqtaaacqtaaaatqqttttttgaagqtqtggtacctaac attgaccgtcgttaccatgaatctccctctgaatatacacgcgaaatgatgagtaaatat at gacagag t taccg tg tg aaact tg tcatgg caaacg ct taag caaag aag cg t tatctgtatacgtaggcgactataatataggtgaagtcgttgaatattcaattaaaaacgcgctt tattatttcgaaaatttaaaattaagcgaccaagataaatcgattgcagatcaaatttta aaagagattatttcaagattatcatttttaaataatgttggtttggaatatttgacttta 25 qatcqctcatcaqqqactttatctggaggggaagcacaacgtattcgtttagcaacacaa attqqttcacqattaaccggagtactatatgttttagatgaaccttctattggattacat caaagagataatgatagattaattaatactttaaaaagaaatgcgtgatttaggtaataca $\verb"cttattgtcgttgaacatgacgatgatactatgagagcagctgattatttagttgatgtg"$ ggtccgggagctggtaaccacggtggagaggttgtctcaagtggtacccctaataaagta 30 atgaaagataaaaaatccttaactggtcaatatttaagtggaaaaaaacgaattgaagtc cctgaatacagacgagaaatcaccgatagaaagattcaaattaaaggtgctaaaagtaat aatttgaaaaatgtaaatgtagacttcccactatctgtcttaactgttgttacaggtgtg tcaggttctggtaaaagttcactcgtcaatgaaattttatataaagcattagctcaaaaa ${\tt attaataaatctaaagtgaaacctgggaattttgatgaaattaaaggaattgatcaatta}$ 35 gataaaatcattgatattgatcaatcgccaataggtagaacaccacgttctaacccagcc acatacactggtgtctttgatgacataagagatgtctttgcacaaacgaatgaagctaaa atacqaqqttatcaaaaaggtagatttagttttaatgtcaaaggtggacgatgtgaagct tqtaaaqqtqatqqaattataaaaaattqaaatqcattttttaccagatqtctatqtacct 40 tqtqaaqtatqtqatqqtaaacgctataatcgtgagactttagaggtaacatacaaaggt aaaaatattgcggatgtattagaaatgactgttgaagaagctacgcatttctttgaaaaat attcctaagattaaacqtaaattacaaacacttgtagatgttggggttagggtacattact ttaggtcaacaagctactacattatctggtggcgaagcgcaacgtgtaaaactcgcatca gaattgcacaaacgttcaacggggcgttctatttatattcttgatgaaccaactacagga ttacatgtcgacgatataagtcgtttattaaaggtattgaatcgtatagtggaaaatggt 45 gatacggtcgttattatcgaacacaatcttgatgttattaaaacggctgatcatattatt gatttaggtccagaaggcggtgaaggtggaggaacaatcatcgcaactggtacacctgaa gagattgctcaaaataaagggtcttacactggtcaatacttaaaaccagtattagagaga gacagcgttgaatag 50

Sequence 3324
MKGPSIVVKGARAHNLKGVDIELPKNKLIVMTGLSGSGKSSLAFDTIYAEGQRRYVESLS
AYARQFLGQMDKPDVDTIEGLSPAISIDQKTTSKNPRSTVATVTEIYDYIRLLYARVGKP
YCPYHGIEIESQTVQQMVDRILELEERTKIQLLAPVISHRKGSHEKLIEDIGKKGYVRLR
VDDEIVDVNEVPQLDKNKNHTIEVVVDRLVVKDGIETRLADSIETALELAEGNLTVDVIN
GEELKFSENHACPICGFSIGELEPRMFSFNSPFGACPTCDGLGQKLKVDLDLVIPDKNKT
LNEGAIEPWEPTSSDFYPTLLKRVCEVYKINMDKPYKKLTDRQKNILMNGSGEKEIEFTF
TQRNGGTRKRKMVFEGVVPNIDRRYHESPSEYTREMMSKYMTELPCETCHGKRLSKEALS
VYVGDYNIGEVVEYSIKNALYYFENLKLSDQDKSIADQILKEIISRLSFLNNVGLEYLTL

55

DRSSGTLSGGEAQRIRLATQIGSRLTGVLYVLDEPSIGLHQRDNDRLINTLKEMRDLGNT
LIVVEHDDDTMRAADYLVDVGPGAGNHGGEVVSSGTPNKVMKDKKSLTGQYLSGKKRIEV
PEYRREITDRKIQIKGAKSNNLKNVNVDFPLSVLTVVTGVSGSGKSSLVNEILYKALAQK
INKSKVKPGNFDEIKGIDQLDKIIDIDQSPIGRTPRSNPATYTGVFDDIRDVFAQTNEAK
IRGYQKGRFSFNVKGGRCEACKGDGIIKIEMHFLPDVYVPCEVCDGKRYNRETLEVTYKG
KNIADVLEMTVEEATHFFENIPKIKRKLQTLVDVGLGYITLGQQATTLSGGEAQRVKLAS
ELHKRSTGRSIYILDEPTTGLHVDDISRLLKVLNRIVENGDTVVIIEHNLDVIKTADHII
DLGPEGGEGGGTIIATGTPEEIAQNKGSYTGQYLKPVLERDSVE*

10 Sequence 3325

Contig_0812_pos_1152_109

is similar to (with p-value 2.0e-22)

>pir:pir|A43577|A43577 regulatory protein pfoR - Clostridiu
m perfringens

atggatattattttaggagtagggactttagtactcgttcttattatcatgacgcttttc15 $\verb|ttaaattttgcgccatatggtaaacaaggtttacaagctttatcaggggctgcttgttgcc|$ acgtttttaccacaggcgttcttaagttacgcaattggtggcgtattccatgttaaattt ttccaaqaaattggtgatctagcagggagtttaagtggtatagctgttggtatattaact tqtctaaagttagaagtgtctccagtatttgcagtcattgtaggtttagtattacatgac 20 tcaaaattattacctqcqtttatcgcagcgtatgttgttgcatttggaatcaagtttgtt qaqaaaaaagttccagagggactagatttaattgttgttattttattggctccagcagtt acatttggtcttgcaaacttaatttctccaggggttattgcagtacttaaacaaattggt ${\tt agtgcaatcacttcagtaggtgataacaacccatatgcattagcagtcattttaggactt}$ gttattcctgtaactggtatgacgccattaagctcaatggtacttacaagcttattaggt 25 $\verb|ttaactggtattccaatggcaattggtgcattaacatgtacaggagcatcttttgttaat|$ qqaatcttatttagcaaattaaaaattggtaataaaggtaatgccttcgcggtatttgta gaaccgttaactcaaattgacttaattgccaaatatccactacaactgtttggtgcgaat qccattattqqtqttqtaaatqcttqtattqtcacatacaqtqqactaattattqatatt aaaggtatggcaacacctatagcaggtgctattgtactttatggctttaacgacgctgta agatctacaattacaattatcgcagtagcaattgcaagtgtgatattagcgtacgttatt

Sequence 3326

35 MDIILGVGTLVLVLIIMTLFLNFAPYGKQGLQALSGAACATFLPQAFLSYAIGGVFHVKF FQEIGDLAGSLSGIAVGILTCLKLEVSPVFAVIVGLVLHDSKLLPAFIAAYVVAFGIKFV EKKVPEGLDLIVVILLAPAVTFGLANLISPGVIAVLKQIGSAITSVGDNNPYALAVILGL VIPVTGMTPLSSMVLTSLLGLTGIPMAIGALTCTGASFVNGILFSKLKIGNKGNAFAVFV EPLTQIDLIAKYPLQLFGANAIIGVVNACIVTYSGLIIDIKGMATPIAGAIVLYGFNDAV 40 RSTITIIAVAIASVILAYVISAIINKFNLMNVGFKLPRRKNQVKESV*

agtgctattattaataaatttaacttgatgaatgtcggattcaagttaccacgtagaaaa

Sequence 3327

Contig_0814_pos_2358_4124

aaccaagttaaggagagtgtttaa

- >sp:sp|067589|SYD_AQUAE ASPARTYL-TRNA SYNTHETASE (EC 6.1.1.
 45 12) (ASPARTATE--TRNA LIGASE) (ASPRS). >gp:gp|AE000750|AE0007
 50_9 Aquifex aeolicus section 82 of 109 of the complete geno
 me. NID: g2983999.
- atgaataaagaacaacgtattgtggtttagtcacagaagaatttttaaacgaaaaagta acattaaaaggttgggttcataacagacgagatttaggtggattaatttttgttgattta 50 agagatcgtggaggtattgtccaaatagtttttaatcctgacttttccgaagaagcattg caagttgctgaaacagtacgctcagaatatgtagtcgaagttgaaggtgtagtaacaaaa cgtgatgctgaaactattaacccaaaaatcaaaacaggtcaagttgaggttcaagtttca aatattgagattattaacaaatcagaacacctccattttcaattaatgaagaaaatgta aacgttgatgaaaatattcgattaaaatatagatatttagatttacgtagacaagaatta 55 gcgcaaacttttaaaatgagacatcaaactacgcgttctatccgtcaatacttagataat aatggcttcttcgatattgaaacaccagtattaacaaaatcagaggtgcgcga gattatctagtaccttcccgtgtacacgagggtgaattttacgcgttgccacaatcacca caattatttaaacaactattaatgataagtggttttgataaatattatcaaattgttaaa tgtttccgtgatgaagacttacgtgcagatcgtcaaccagaattcactcaagttgatatt

gaaatgagttttgtcgatcaagaagatatcatagccatgggtgaagatatgttacgtaag gttgtaaaagatgtaaaaggaatagacgttagtggcccattcccacgtatgacatatgca gaggctatggaccgttttggttcagataaacctgacactcgtttcggtatggaacttatc aatgtgtcacagcttggtaaagaaatgaattttaaagtttttaaagatacggtagataac atggatgcattaacagagtttgtaaatatatatggtgcaaaaggattagcttgggttaaa gttgttgatgatggtttaagtggcccaattgctagatttttcgaagatgttaatgttgaa acacttaaacagttaacagaagctaaacctggagatttagtaatgtttgtagctgataaa $\verb|cctaatgttgttgctcaaagtttaggggctttaagaattaaattagcaaaagaattaggt|\\$ $\verb|ttaattgatgaatcaaaattaaatttcttatgggtaactgattggccgttattagagtat|\\$ gatgaagatgcaaaacgttatgtagcagcacatcatccatttacttcacctaaaagagaa $\tt gatatcgaaaagctagacactgaacctgaaaatgtacaagccaacgcttatgatattgtt$ ctaaatqqttatqaacttggtggtggttctataagaatacacgatggtgaattgcaacaa aaaatgtttgaagtattaggatttactaatgaacaagctcaagaacaatttggtttctta cttqtqatqttattaacaaatagaacaaacttgagagatacaattgcattccctaaaaca gcatcagctacatgtcttttaactgacgctccaggagaagtatctgataaacaactccaa gaactctcactaagaatcagacactag

20 Sequence 3328

MNKRTTYCGLVTEEFLNEKVTLKGWVHNRRDLGGLIFVDLRDRGGIVQIVFNPDFSEEAL
QVAETVRSEYVVEVEGVVTKRDAETINPKIKTGQVEVQVSNIEIINKSETPPFSINEENV
NVDENIRLKYRYLDLRRQELAQTFKMRHQTTRSIRQYLDNNGFFDIETPVLTKSTPEGAR
DYLVPSRVHEGEFYALPQSPQLFKQLLMISGFDKYYQIVKCFRDEDLRADRQPEFTQVDI
25 EMSFVDQEDIIAMGEDMLRKVVKDVKGIDVSGPFPRMTYAEAMDRFGSDKPDTRFGMELI
NVSQLGKEMNFKVFKDTVDNNGEIKAIVAKDAANKYTRKDMDALTEFVNIYGAKGLAWVK
VVDDGLSGPIARFFEDVNVETLKQLTEAKPGDLVMFVADKPNVVAQSLGALRIKLAKELG
LIDESKLNFLWVTDWPLLEYDEDAKRYVAAHHPFTSPKREDIEKLDTEPENVQANAYDIV
LNGYELGGGSIRIHDGELQQKMFEVLGFTNEQAQEQFGFLLDAFKYGAPPHGGIALGLDR
30 LVMLLTNRTNLRDTIAFPKTASATCLLTDAPGEVSDKQLQELSLRIRH*

Sequence 3329 Contig_0814_pos_4680_5456 is similar to (with p-value 6.0e-34)

- >sp:sp|Q57097|YGDL_HAEIN HYPOTHETICAL PROTEIN HI0118. >pir:
 pir|C64049|C64049 molybdopterin biosynthesis protein (chlN)
 homolog Haemophilus influenzae (strain Rd KW20) >gp:gp|U32
 698|U32698_1 Haemophilus influenzae Rd section 13 of 163 of
 the complete genome. NID: g3212178.
- - Sequence 3330

10

15

55 MKHQFSRNELAIGQEGLNLLKNKTVAVLGVGGVGSFAAEALARTNIGHIILIDKDDVDIT NVNRQIHALTSTIGQSKVTLMEERIKLINPDCKVTSLHMFYTEETYKDIFNNYDIDYFID ASDTIIYKVHLMKECLERGIELISSMGAANKTDPTRFEIADISKTHTDPMAKVIRNRLKR LGIRKGVKVVFSDESPIVIREDVKETVGDKNAINRKGQMPPSSNAFVPSVVGLICASYVV NDILKDIPVRRIKDKGQN*

aacqatattttaaaagatatacctgtaaggcgaattaaagataaaggacaaaattaa

Sequence 3331 Contig_0815_pos_2100_949 is similar to (with p-value 2.0e-49) >gp:gp|U59234|SPU59234_4 Synechococcus PCC7942 biotin carbo 5 xylase (accC) gene, complete cds. NID: g2661137. atgcgtgcagaaaatgaattagtagaacaaaaacaacaagaaaaacaaaaagcattgtat aaacaagagttagcatggatgcgagcaggagcaaaggcaagaactactaaacaacaggca cqtatcaataqatttaatcaactagaatcagacgttaagacgcaacatacacaagataag 10 qqtqaacttaatcttgcatattcaaggttaggtaaacaagtatatgaattaaagaattta tcaaaatcaattaataataaagttttatttgaagatgtcactgaaattattcaaagtggt agacgtataggtattgtaggacctaatggagcgggaaaaacaacattacttaatatttta agtaatgaagatcaggactatgagggtgagcttaaaatcggtcagactgttaaggtagct tattttaagcaaacagaaaagacacttgaccgtgatattagagtgattgactacctaaga 15 qaaqaaaqtqaaatqqctaaaqaaaaaqatggtacctcaatttcagttacacaattgtta qaaaqatttttatttccqaqcqctacacacqqtaaaaaaqtttataaactctcaggtgga gaacaaaaacqtctgtatttattgcgtttacttgttcataaacctaatgtactcctttta gatgaaccgactaatgatttagatactgaaacacttacgattttagaagattacattgat 20 caagaatattggtttattcatgatggtaaaatcgaaaaaattattggatcatttgaagat caaaataaacataagcatcaaccaaaaaagaaaacaggactatcttataaagagaagtta gaatacgaaacaattatgacgcgtatagaaatgactgaaacgcgtttagaagaccttgaa caaqaaatgattaatgcaagtgataattatgcaagaatcaaagaacttaatgaggaaaaa 25 qaqcaacttqaaqcaacctatgaagcagacatcacgagatggagtgagcttgaggaaatt aaagaacaataa

Sequence 3332

30

35

MRAENELVEQKQQEKQKALYKQELAWMRAGAKARTTKQQARINRFNQLESDVKTQHTQDK GELNLAYSRLGKQVYELKNLSKSINNKVLFEDVTEIIQSGRRIGIVGPNGAGKTTLLNIL SNEDQDYEGELKIGQTVKVAYFKQTEKTLDRDIRVIDYLREESEMAKEKDGTSISVTQLL ERFLFPSATHGKKVYKLSGGEQKRLYLLRLLVHKPNVLLLDEPTNDLDTETLTILEDYID DFGGSVITVSHDRYFLNKVVQEYWFIHDGKIEKIIGSFEDYESFKKEHERQAMLSKQTEQ QNKHKHQPKKKTGLSYKEKLEYETIMTRIEMTETRLEDLEQEMINASDNYARIKELNEEK EQLEATYEADITRWSELEEIKEQ*

Sequence 3333
Contig_0815_pos_935_528
is similar to (with p-value 1.0e-32)

Sequence 3334

50 MQETLSHYFGYKSFRPGQEEIITKILNHQHTLGVLPTGGGKSICYQVPGLMQGGTTIVIS PLISLMKDQVDQLQAMGIQAAYLNSSLTHKQQKEIEEQIKRGAIQFLYVAPERFENTFFL NLLRKIEIPLIAFEQ*

PU3480

1

55

SEQUENCE LISTING

Sequence 3335

step.1000b10.cons.ok TCATACCCATAATGGCAGCACCTTGCATTAATGCGTTAGCAACATTGTTAC GTCCATCGCCAACATAAGTAAAGTTGATATCAGCATACTCTTTTTTCAATA CTTCTTTAGCAGTTAAAAAGTCAGCAAGCACTTGTGTAGGGTGATCTTCAT CGGTTAATCCATTCCATACCGGAACACCTGAATATTGCGCTAATGTTTCTA GTACACGTGCTGTATCTTTAGCAGTTTCTTTTTTACCCATTTGAGAACCTG TAGGTCCAAGATAAGTGACGTGTGCACCTTGATCATGTGCGGCAACTTCGA ATGCGCAACGTGTTCTAGTGGAATCTTTTTCAAAAAGAAGCGCGATATTTT 10 TATTTTTTAGCATAGGCTTTTCAGTGCCGATATATTTTGGCACGCTTCAAAT CTTCGGAGAGTGTTAATAAAAATTCTACCTCTTGTCGTGAAAAGTCTAATA AAGTTAAAAAGCTTCTGTTACGTAAATTTTTCATCAATAACAACTCCTTGT GAATGAATTACAATTTTATTGTAAGCGTTTCCTTGTAGTTTTCAACTTAAC TCAAAAATTGTAATTTTTTATTAATAAATCAATGAACTTTTTATTAACATT 15 GAATTTGAATAGTGTGAAATTTGTCAAAAAAGGTTTATGTTTAAGTTAAAA CCAACTTTAAAGAATTTAGAAAATTCAATTAAAGTGAATTTAACACATTTT AAATAATGAAGGTAGATTAGAATCAAAATGTAAGAGGTATGTTAGTTGAAT AAACCGTATTAACTTCTTTATATTATTAGTGAATTCTCAAAATACTTGTAA 20 AATTATATTGATTAATTACTTGTTCTTTATTATATTTAGAAACATCTCTTA CAATAAACCACAACTTACATGAAATTTAAGCTAACAGTGGATTATTCTAAT TAAATTGAAGGTCATTCAAAGTAAAAAGGGCATATTAGTATAATAGGAGGA ACAGTAAGATGAAAGTGTATAAGTTGAATTATCAACACCATAAAGATATTG TTGATGATAATGTATTAACGATGTTCGTAACAGCTGATAATCAAGATGAAG TTGAAGCGTTTGCGAAAAATTACATTACAAGATTGAACATTTATCTCCAT 25 TAACTAAAAAGGAATTTGAAGATGAGAAAGCGAAAGATTCACACTATAGAC TTGAACACGTGGATCACTATTTAAATTAATTATTCAATCATATATCAGAAC ATCCTGTGATCATTCGTTTGGTTACAGGTTTTTTTACGCATGAGATTAAATG TTAATGTCACTAATACAAGGAGTGTATAAATGGAAATAACAAATGTTAATC ATATTTGTTTTCAGTGAGTGATTTAAATACCTCTATACAATTTTATAAAG 30 ATATTTTACATGGTGACTTATTAGTATCAGATAGAACGACAGCATATTTAA CTATTGGTCATACTTGGATTGCACTGAATCTAGAAAAAAATATACCAAGGA ATGAAATAAGTCATTCCTATACGCACGTTGCTTTCTCCATAGATGAAGAAG ATTTTCAACAGTGGATTCAATGGCTTAAAGAGAATCAAGTAAATATTTTAA AAGGGCGACCAAGAGACATTAAAGACAAAAAATCGATATATTTTACAGATC TGGATGGCATAAAATTGAATTACATACTGGAACATTAAAAGATAGAATGG AATATTATAAATGTGAGAAGACGCATATGCAATTTTACGATGAGTTTTGAT ATTTTAATTGATATGTAATTTTTTGAAAAAATTTATGATTCATTTTGTAAT AAAATTACTATATACTAAAATTTGTAATTTTCAATTATTTTAATGAGGTGA ATCAATGAATAAATTATCAAAGTACATTGCAATAGCTACATTAGCATCGAC AGTTACAATTTCAGCACCAATTCATACATATGCATGTGAATCTCATACTAA AGATAACCATAATCAAACGACACAACATCAAAATGACCCCAACCTTGGTGA ACAAAATGTAATGGCTGTCTCATGGTATCAAAATTCTGCCGAAGCGAAGGC **ACTTTATCTACAGGGATACAATACTGCAAAATATCAGTTAGATGAACATAT** TAAAAAGGATAAAGGTAAGAAAAAACTTGCTATAGCTTTAGACTTAGATGA 45 AACAGTTCTTGATAATTCACCATATCAAGGATATGCTTCTATGCACGATAC GTCTTTTCCAGAAGGATGGCATGAATGGGTTGCTGCAGCGAAGGCAAAACC TGTTTATGGCGCCAAATCATTCTTAAAATATGCTGACAAAAAAGGTATCGA TATTTACTATATTTCGGACCGTGATAAGGAAAAAGATTTTAAAGCTACAAA GGAAAATTTAAAAAATATTGGACTACCGCAAGCGAAAGATAATCATATTTT ACTAAAAGGGAAAAACGATAAAAGTAAAGCATCGCGACGTCAACAAGTCGA AAAAAATCATAAGTTAGTGATGTTATTTGGTGACAATTTGTTAGATTTTAC AGATCCTAAAAATCTACTGCTAAAGAACGTGAGAAACTCGTACAGAAGCA TGCAAAAGATTTTGGCAAAAAGTATATTATTTTCCCAAATCCAATGTATGG AAAGGATGAACTACGAAAGTCATCAATTAAACAATTTAATCCTAAAACGGG TGAAGTAAAATAATTCCTGACATTAAATACTAAATTTCTATTAGTAAAAGA AAGTTATATTTACATGGAGTACTTTAATTCCGTGTTATACCATTGCGAGGA

TGAAACAATGTACGCGTTGTTCCATCCTTTTTTTTATAAATATTTTCAATC
GTATCTAGATTAATGTAAACTTATAATATCGAAAAGTTTACAATGTGCAAT
CGAATGATTTGAAAATGCTAATTTTTAAGAAAAAGGAGTTAAAGATTATGA
CATTAAACCTAGCTCAACGTGTGTTAAATCAAGAGTCATTAACAAAAGATG
AAGCAATATCTATTTTCGAAAATGCTGAAATTGATACATTTGATTTATTAA
ATGAAGCCTACACAGTGAGAAAACATTACTATGGTAAAAAAGTTAAGCTTA
ATATGATATTAAATGCTAAAAGTGGTATCTGTGCAGAAGATTGTGGGTACT
GTGGGCAATCTGTAAAAATGAAAGAAAAGCAACGTTATGACTTGTTGAAC
AGGACCAAATTAAAGAAGGCGCTCAAGTGGCAACTGAAAATCAAATCGGTA
CATACTGTATTGTTATGAGTGGTAGAGGTCCTAGTAACAGAGAAGTCGATC
ATATTTGCGAAACAGTAGAAGATATTAAAAAGATACACCCACAACTAAAGA
TTTGTGCGTGCTTAGGATTAACGAAAGAAAAAAAATTAAAGG
CTGCTGGTGTCGATCGTTATAATCATAATTTAAATACGAGTGACTGAATACCGTT

15

20 GTTATACTATAAAACCGGTTTCTGAGACAAATGACGTTCGGATATATGATC AACAACAATTTATAATGTATGCGCATTTTGCTGATGAAGCTTATCAAAAAA TTGATTACATTAATTTTTGACACATCTAGAAGAAAAATAAAAAGAGAGT TATACGATACACGCGGATTTTTAAGTTGTGTTAGAGTCTTATCAACGGACC AAAAAATACAAGCGGAGTACTATCTTTCTCCTCAAGGAAACGTGAAAATTG AAAAGTATTATGATATTAATTCAAATCATCCCTATGAGGCAAAAAAGATTA TATTAAATCATTTAGGTAAAACGCACTTTTTAAACAATGAAACTGAGCTAG GTGCTTTTTTTTTTGAAACAATATATCAAAATAGTGACTTATTCTTTAGCG ATCGTAACCTTGTTACATCACATATATTTAACATAGTTGCATCTTACATCC CTGTTATTGCAGTGTTACATAGCACTCATGTTAAAGACGTTACTGATTTAG CGCATTCACCAATCAAAAATGTTTATAAAGGGGTTTTTGAACATTTACAAA 30 GGTATAAAGCCATCATTGTTTCAACCCAACAACAAAAAGCTGACGTAATTG AGAGAATCAGTGGAGTTATTCCAGTATATGCTATTCCAGTTGGCTATTCAT CTATCGATATGAAAGATTACTCTAATGAAAATAAATATGTTTCACCTAAGA AAATTATTTCTGTCGCAAGATACTCACCTGAAAAGCAATTGATACAACAAA TCGAACTTATTAATAAGCTTAAAGATTCATTTCCAAATATCGAACTACATA TGTATGGTTTTGGTAAAGAAGAACAACATTTAAAAGAACGAATTCAAGAAT TAGGATTAGAAAAGCACGTAATATTAAGAGGTTTTTTAAAAGATTTAACTG ATGAATATCAAGATGCATATCTAAATTTAATAACAAGTAATATGGAAGGCT TTTCCTTAGCATTATTAGAATGTGAGTCACATGGTGTACCTTCTATCAGTT 40 ATGATATTCAATATGGTCCAGGTGAATTGATACAGGATGGTAAGAATGGAT ATTTAGTAGAAAAGAATAATCAACACATGCTATTTGAAAAAGTAAAATTAT TGCTCAACAACCCTCAACTTCAACAGTCTTTTTCTCACCATTGTATTGAAA CTGCACAAAAGTATTCTCGAACACAAATCATGTTACTGTGGAAAAATTTAC TTCAACATTTTAACTAAAGCATAAAAATATAAGTCGTCAAATTTTGCTATG 45 GAATTTTTATTAATTCAATAAAAAGGAACCATGAATTCATTTAAAATTCAC GGTTCCTCTATTAAATCATTGTCAGATTGTGAGTTGTATATGTTTCTCTAA AAATCATACATTTAAGTCATTTTTAATAGAAATGACCTTGTTTGCATCATC 50 ATCTTACATTTGTTGGACTAAATCTACTTTCTATTCAAATCTCATATCTGC TTCTTTCTACAAATTTCATTTGAACATTTTAATTTTTATTTTTTTCTATTTT TGCGACGTTTCCCTAATAATAACGCTCCTAAACCTGCAAACAGAGTTCCAA GTAACGTGCCTTTAGAGCCATAATCTTCATTAGCTCCTGTATCAGGTAATT TATCTTTTGTACTCTTATCTGAGCTATTGCCTAAATCTGAGTCGTTGTCTG AGTCTGAATCACTATCGGAATCCGAATCACTGCCTGAGTCTGAATCACTAT CAGAATCTGAGTCACTATCCGAGTCTGAGTCACTATCCGAGTCTGAGTCGC TATCGGAGTCTGAATCACTATCGGAATCTGAATCACTGTCTGAGTCTGAAT CACTATCAGAATCTGAGTCACTGTCTGAGTCTGAATCACTATCGGAATCTG

AGTCGCTGTCTGAGTCTGAATCACTATCGGAATCTGAGTCGCTGTCTGAAT

CTGAATCACTGTCTGAATCTGAATCACTGTCTGAGTCTGAGTCGCTGTCTG **AATCCGAGTCGCTATCAGAATCCGAGTCGCTGTCTGAATCTGAGTCGCTGT** CTGAATCCGAGTCGCTATCGGAGTCTGAATCACTATCGGAATCTGAGTCGC TGTCTGAGTCACTATCGGAATCCGATTCGTCATCATAGTATCCGTTATCTA TACTAAAGTCATCATGATCAGTAATTGTTACATGAACTTCTTCCCCATCAG CATCCTGTTCGTCATCACCAGAATCTGTTGTTGTTTGAGTCATACCTG AAGGTTTATCAAAATGAACAATATAATTACCACTATTTAAATTATCAAATT GATACTTTCCATTTTCATCGGTTGTAGTTGTACTAATGATATTTCCGTTTT ${\tt CATCTTTAACGTCACTTTAACTCCAGAGATTCCTTTTTCATCATCACCTT}$ GAATACCATCTTTATTAGTGTCATACCATACATAGTTCCCTAAGCTGTATT TAGGTGTTTGATGGGGAAAACAATTATGTTAAGTATTAAAAACTTAACCAA GATTTATTCAGGGAATAAAAAAGCGGTAGATAATATTTCTTTGGATATTCA ATCTGGTGAATTTATCGCTTTTATTGGGACGAGTGGTAGTGGTAAAACAAC TGCACTACGCATGATTAATCGTATGATTGAGGCGACAGATGGACAGATTAT GATGAATGGAAAAGATGTCCGTAATATGAATCCTGTTGAATTGCGGAGAAG TATCGGTTATGTCATTCAACAAATTGGTTTGATGCCACATATGACTATTCG AGAAAATATTGTTTTAGTACCTAAACTTTTAAAATGGTCTAAAGAGAAGAA AGATGAAAAAGCTAAAGAACTTATTAAACTGGTAGATTTACCTGAAGAATA TTTGGATCGTTATCCAGCTGAATTGTCAGGAGGGCAACAACAACGAATTGG TTTCGGTGCATTAGATCCTATTACACGCGATACATTACAAGATTTAGTAAA GGAATTACAACAAAATTAGGAAAAACATTTATTTTTGTCACTCATGATAT GGATGAGGCTATTAAATTAGCAGACAAAATATG

25

15

20

Sequence 3337 step.1000d09.cons.ok AAACAGAAACGCGAGCTTCAATTAAAACCTCATCACCTTCTTTAGGCTCAA AGCCTAACTTAGAAGCATTTCCTTTAAACATCATTCCACTGATGACACTTT ${\tt CTTTGTCCTTGACATTAAAATATAAATGTCCGCTTGAATGCTTTTTAAAGT}$ TAGATAATTCTCCTTTAATAAGAACTGACTGTAGATGAGGATCTTGGTCAA ATTTATATTTTATATTTTAGTTAGTGCAGAAACACTTAAATATTCAGTCA TAGTTATCACTCATTTTAATCATTTATATTACTTAAAACACCATTAACAAA TTTATAATGATCATCATCACTAAACTGTTTTGTGAGTTCTACAGCTTCATT AACAACTACTTTTTTAGGTGTGTCGCTGTGCAATATTTCAAAAGTTGCCAT TCTTAAAATAATACGATCTGATTTCAGTAAACGATCGATAGACCAGTCTTT TAAATGGGGTTTAATTGTTTCGTCTAAAACGATTTGATGATCTTTGACTCC AGTAACTAACCAGTATATAAAATCAAAGTCTAAATCAGAATGATCATCTTT AATAAATTCAATTGCTTCTTGAATTGTTAAATCTGTCTCTTTTATTTCAAG TTGAAATAAAGTTTGAAAAGCTTGTACTCTTGCATCTTTACGACTCATATT TTACTCCTTCAAATGTATTTATAAAATTATAGGTACAACTTTCTAGTAAAG TGCACCTATAATTTAAATTATTTTTTTTTTTCTGCGACGATACTTCTGATGTG AATATTAATTTGCTGTGGTTCAATAGCTGTCATTGTCGTAATTGAATTGAA AATTGCTTCTTGAATTTGATTTGCAGTTTTAGAAATATTTACGCCATGTTT TAAAGAACAAAATACATCAATGTATATTCCGTCTTCTTTAGCTTCGATTTT 45 TAAATCTCTGTTTAAATTTTTTCGACTAATCTTCTCTAGATTTGTTTTTTT TAGTTCAGCAAAATGGCCTGTAATACCTTCTACTTCTGATGTCGCAATGGA TGCGATAACAGATAATACTTCTGGTGCTATTTCAATTTTTCCTAAATTAGA TTGAGAATAATCTGCTACATTGACCATTCTTTATCCTCCTATTGGTTATTA TCGTCCATAATATTATACTTTTCTAGGAATTTTGTATTAAATTCCCCACTT 50 CTAAAAATATGATTATTTAGAAGTCTTAAGTGGAATGGAATCGTAGTGTCG ATACCTAAAACAAGATATTCACTTAAAGCACGAATGCCTGTCATAATTGAT TCTTCACGTGTAGGTTCGTGAACTATAAGTTTTGCCACCATGGAGTCATAG TAAGGTGGTATCGTATAATTAGTATAACATGCTGATTCAATTCTCACTCCA AAACCGCCTGGAGCAAGATATTGGGTAATCTTGCCTGGTGATGGCATAAAG TTTTTGTAAGGATTTTCAGCATTGATTCGAAATTCAATAGCGTGACCGTTA ATGGAAATATCTTCTTGTTTAAAAGGTAACGCCTCACCCATAGCAACTTTG AGTTGTAATTTTACTAAATCTACTCCTGTTACCATTTCAGTTACTGGGTGT

TCAACTTGAATACGTGTATTCATTTCCATGAAATAAAATTGGTTATCATCT

AAATCATATATAAATTCAATTGTACCTGCGTTTTCATAATTTACAGCTTTT GCGGCTCTAATTGCAGCATTACCCATTTCTTGGCGTTTATCTTCACTTAAA ACTGGTGAGGGTGCTTCTTCAACGAGCTTTTGCATTCTTCTTTGAATTGTA CAATCACGTTCACCTAAATGTATAACGTTTCCATAAGTATCGCCAATAATT TGAATCTCTATATGTCTAAAGTTTTCTATAAATTTTTCTAAGTATAAACCA 5 CCATTTCCGAACGCGGTTTCAGCTTCTTGTTGTCATACGGTAACCAGTT TCAAGTTCTTTCTCATCACGAGCAACCCGAATACCTTTTCCACCACCACCT GCTGTGGCTTTGATGATAACTGGATAGCCGATTTTTTTAGCTATTTTTTA GCGTCATCTATACTTTGAATAAGTCCTTCACTTCCTGGTACTACAGGTACA 10 TTGGCTTTAATCATTTCAGCTTTAGCAATATCTTTTATTCCCATTTTCTGA ATTGATTGATAGCTTGGCCCAATAAATTTTAATTGGCATGCTTCACACAAT TCAGCAAAATCACCATTTTCAGCCAAAAAGCCGTATCCAGGATGAACACCA TCACATCCTGTAGAAGTAGCGATAGATAAAATATTTGGTATATTTAAATAA GAATCTTTTGATAAAGTAGGACCGACGCAGTATGCTTCATCAGCAATTTGA GTATGTAATGCATCTTTGTCACCTTCTCCGTGTTACAAATTATGTTACAAG TTTGCATGAAGGTTTATTTAACATCGCTGCAGCTGTAGGTGTTCATAGTCC AACGGAGATTACTTCCGACCATATTATCTATAGACAATTAGATGGCACTAC AACGTCCATTCAGGATTATAAACTTAAATTAATTTCTTAAATCACAACATT GAAAAGGAGCGAGACAGAATGCTGTCTCACTCCTTTTCAATTTAATTATCT 20 TCATTCATTTTACTTTTATCTTTTAAACCATTACGTTTGAGTTGTTTAACA ACCCTATCCATACTCACATGGTCACCCTTTTTTTGCATCTGATGATATGAAA CCTAAATTTTTCTTAAGCTGATCTATATCCGCATCTTTATAATCAATATCG ATATGTTCGATGGCCTTTCGATCTTTAAAATCAACTTTATATGTGACCCCG TCTATCCCTTTGAATGCTTGTTCATCATTTTTAAACATTTGTTTAGCTTCA 25 TCTTTATCGATGCCTAAATCATCATATTTAATTGTTGCTATAGTAGATTGT TTGAGAACTTCATCATCTTTGTATGTCAAAGATGTAATCACTTGTTTACCG TTGACTTCGCCTTCATAAGTTTTTGTGCGTTCTTTCCCACATGCCGAAAGA GATACAGCACTTATAACTAATACTACTAAAAAGCGATATGACTTTTTTCATA GTAGTCGCCTTCTCTCATCTTTAATCATGTTAATTATATCATCTTTAATTT GAATATGTTACTTATATGAAGATAAATATCTTTTTATTTCGAAAATTTAAA CATCTATAAACATGGAATTCAGAATTTCACTACTTAGAATGTTATACTACT TTTAAAGACTTATTAATGGAGGAATGACTATGCCAGAATCTAAAGCGTTAC TTAAATCTTTAACAGATGTTAATGGTATTTCTGGACATGAAATGCAAGTTA AATCT

35

Sequence 3338 step.1000f04.cons.ok

TAATATCTTTTTTTTTTGGTAACCAAACGTTTTCAGCTTGAGTAAATGGAT AAATTGTATCTGATGCGGCTACTCGAGCTATTGGAGCTTCTAATGAAAGAA 40 TTGCTCGCTCTGCTAATTCTGCTGCCACTTGTGCACCCACACCAGCTTGAC GTTGTGCTTCTTGTACAACTACAGCACGTCCAGTTTTCTCAACTGATGCTA CTAAAGTATCTATATCAATTGGTTGTACAGTACGTAAGTCAATAACTTCAA CTGAATAACCATCTTTTCTAACTCTTCAGCAGCTTTTAGTGATTCTTGTA 45 CCATTGCCCCGTAAGATATTAGAGTAATATCATTACCTTCTTTTTTAACAT TGGCTTTTCCAATGTCAATTTTGTATTCTTCTTCAGGAACCTCTTCACGGA AAGAACGATATAATTTCATATGTTCTAGATATACAACTGGATCATTACTTT GAATAGAAGAAATTAATAATCCTTTAGCATCATAAGGACCTGATGGAATAA CTACTTTCAAACCAGGTGATTGAGCTAAGATACCTTCTAAATTATCAGCAT GCAACTCTGGAGTGTGGACGCCACCACCAAAAGGTGTACGAATTGTAACAG 50 GCGCTGGTTTAGTTCCACCTGAACGGAAACGAGTACGAGCAATTTGACCAG CTACTTCGTCAAATACTTCATAAACGAATCCTAAGAATTGAATTTCCATAA CAGGACGGAAGCCAGTCACTGCTAAGCCTAGTGCAAGCCCACCAATTCCAG ACTCTGCTAATGGTGTATCAAATACTCGATCTTCGCCAAATTCTTTTTGTA AACCTTCAGTAACACGGAATACACCACCGTTAACACCAACGTCTTCACCGA 55 AAACTAAAACGTCTTCGTCTCTTTTGAGTTCACTTTTAAGCGCATCGTTAA TCGCTTGAACCATTGTCATTTGTGCCATGGCTTACTTCGACTCCTTCTCTT TGTAAATTTCATATTGTTCTGCTAAATTTTGAGGCATTTCTTCATACATGA TATCCATTAGAGAAGTAACAGTTTGTTTTTCTGTATTGTCAGCCTCTTTAA

TAGCTGCTTTTATTTCAGATTTTGCACGTTCAACCACTTCATTTTCTTTGT CTTCATTCCAAAGACCTTTAGCTTCTAAATATTTTCTGAAACGTACTAATG GGTCTTTTTTCTCCCATTCAGCATCTTCATCTGAAGTTCTATAACGAGTAG GATCATCACCAGCCATAGTATGTGGTCCATAACGATAAGTTAAAGTTTCGA TAACAGTAGGACCTTCTCCTGCTACTGCACGTTCACGTGCTTCTAATGTTG CTTGATAAACAGCTAAAGCATCCATACCATCAACTTGAATTCCAGGGATAC GTGGTGTAGAGATGGCATAGTTATTGTTTTGAATTACAAAAATTGCAGGTG CTTTGTATGCAGATGCAAAGTTAATTCCTTCATAGAAGTCACCTTGTGATG AACCACCATCACCTGTATAAGTAATTGCGACTGCATTTTTGCCACGTTTTT 10 TAAGTCCAAACGCTACACCGGCAGTTTGAATATATTGTGCACCGATAATAA TTTGAGGGCTAAGTGCATTAACTCCCTCAGGGAATTGGTTACCTTTGAAGT GTCCTCTTGAGAATAAGAATGCGTCTGTAAGAGGTAAGCCATGCCAAATAA TCTGAGGCACATCACGATAACCAGGTAAAATGAAGTCTTCACTTTCTAAAG CATACTGAGATGCTAATTGTGAAGCTTCTTGTCCTGCTGTTGGTGCATAGA 15 AACCTAAACGTCCTTGTCTATTTAACGAAATAGAACGTTGATCAAGAATTC TAGTCCATACCATTCTTTCCATTAATTCCACTAATTGTTCGTCTGTTAAAT CAGGTACTAAGTCTTCATTAACGACATTTCCGTCTTCATCCAAAATTTGAA CCATTTCAAATTTCGATTGAGTCTCATTTAAAACTTTAACTGCATCGAATT GGGCTTGTAACTTAGGAGCCATTCAATTCACCATACCTTTCCCATGTAAAT AGAAATTCATTTTATCCTCCTTAATTGTATCACAAATAAAAATCTCTGTTA AACGATTTCATAAAGTTCTGTTCCACATAAAAATAATACAGTTACATGACC GTCTACATCTTGTTTTTCTCTTTTTACTTTCTCAATGGCTTTTGAGTAAGC ATTAAATTTATTCATTTCTTTATATGCTTTAGAAAGATCTTTCGATTT 25 TCCGTCTACTTCCGATTGTGTTGCATTATCTTCATTCAAATAAGAAAACAG TTCTTTTTCCTTATTAAGTGCTTTTTTGTAAGCCTTTGCATAAGCATCATG TGATTTATATTTTTTTTAATAGCACTATCAAGTTGTTCAACTTCTTTTTT ${\tt CTTTGCTTTGTTTCTACATGTTCAAGATATTGCTTGGCTTGTTTAAATGC}$ TTTTTCAGAATTATCTAGAGCCTTCTCTTTTTTTCAAATTCTTTTTGTCT 30 TTGTTTTACATTTTCAACTATATCTTCAGCTGCTTTTTTACGTGTGCTTTG ATCTTTATCATTTACCTTTTTAAATAATTTTTTGCTTTTTCTCTTCTAATTC GTTTATTTTTTTTTACTTACTTGATTAACGGTTTTCTCTTTGGTCCATAGCTTT TTGTACTTGATCATCATATTTTTTAATTTCTTTTTATCTATAGTACATCC AGCTAATAACACTGCTGACGTTAGGACAATTGCTACAGTCTTTTTAAAATT CATGAACTGTTACCTCCTCAAAGTTGTTCGCTTGTAATATTAAATAATAAA TTATAATAAATCAATATAAAGCTATCATTCTATATTCTAGTGCAAACATTT AAAGCAATAAAATCTTTGAGTATCTATTAATGTACTTGTGTCTATCTTATC TGATATATTATTAATAAGGAAGGTGTATGACATGATAACAATGAAAGATA TTATAAGAGATGGTCATCCAACACTTCGTGAAAAAGCGAAAGAATTAAGCT TCCCACTTTCTAACAATGATAAAGAAACATTGCGCGCAATGCGTGAATTTC TAATCAATAGTCAGGATGAAGAAACCGCAAAACGTTATGGTTTACGTTCTG GCGTAGGTTTAGCTGCTCCACAAATTAATGAACCAAAACGTATGATTGCTG TCTACTTACCTGATGATGGAAACGGTAAATCGTATGATTATATGCTCGTAA ATCCTAAAATAATGAGTTACAGTGTACAAGAAGCTTATTTACCAACTGGCG 45 AAGGTTGTCTAAGTGTTGATGAAAACATCCCAGGTTTAGTGCATCGTCATC ATAGAGTCACTATTAAAGCTCAAGATATTGATGGAAATGATGTTAAATTAC GTCTCAAAGGCTATCCTGCAATTGTATTTCAACACGAAATTGATCATCTAA ATGGCATTATGTTTTATGATTATATTGATGCCAATGAACCTCTAAAACCAC AAGTTGTATTTTATACTTACTTAATGAAGTGTTTTTTTAAAAGTAATTCAA ATGTCATTAGGATTAATTT

55 Sequence 3339 step.1000f07.cons.ok TCAATATTTTTTTCCTTCAATATCATTTTATTAATATAATTAGGTAGAAG TCTACGCTGTCTCTAAGTGGTAGATGAATGATCTCTATTTTTTATTATGTT ATACATTTATATTATTTCTGTAAGGTTCTGATTCTAAAAGATATTTATAA

TAGGAGTCTTTCTTTTGTAAATCTGTTTCCCCCCACACCTTATATTCTTTA TCATCTGTCCATGGTGCTGGTGTCACGTTATACTCATACTCACTATATGGT TGATCTTTAAAAACAATATCTTTTTCAGCATATCCCATTATAATATTAAAA CTCATTTTTCATTTTTATTTTTTTTTTTTCCCAACCCTTACGTTCTATAACG TGATTGATGATTTTCTCACTCTTGTGTTTCTGAATATATTGTAGTATAAAG CAATAAATAACCGCATCATAATCTAAAATGATTATAATACGGTAAATTTTG ATATTATTTTATAACTCAATTGTAGCTGGCGTATCTAGTTCATCATCATTC ATTAATTTAATTGAACGAGGTATAACTTTGAGTACACATAATTCAGGATCT 10 ACTTTTTGATTTTTGACAACTTCTATAGTGGCATCTATTTCAACAAAGCTA TTGTTTGTTTCGTTATAGCCTAATAAAATATGAGCATCAGGATTATTT TCTATTTCTTCGACTTTTAGTGAATTGATATTCGTTTTTGTATATAAGTTT AAGTCATCGTTGTAAAAGACCATATATCTGCTATTAGGTTTATTATGATGT GCTGTTGATAGGACACCAATTTTTGAAGAATTTAATACTTTTTCTATTGCT 15 TTTGTCACTTGTTGTTTATTCAAAATTATCATCTCCTTATTATTGTATATA TCCTTATCACACATAATTTAAACGAAACAACCTTATGATGATTTTTAAGAA GGTTTAAAACAAATATATTTGACTTCATCGTGTTTTAAGGTGACTTGGAAA GGAAGATGATGGTCATGTTGTATAGCTAATTCTGTTTTTGGTTGATTTGAT 20 TTATCAAGTTCATCAAGAATACTACGTTCAATATAAAATTGTTGTTTAGTT TGTGGTAGAAGGTTTTGAATTGCGCCATGCTCATGATTTAACGTTTTAATA ATAATTAATGAGTTGGTTGATAATGTATTTTTAAAAACGTAGCGCTGTTGA CTATCAGATAGATAACGATCATTTATTTATTAAATAATAAAAAAGTGATAG TTACCATCTTTGCGACTCATTAAAAAATTGTTAGCTATCTCTAAAGGTTCA TTTAAAAATGGTTCGATTAATTTATAGAGGTGCATGAGAGGTAGGGGACTA CCATAACGATTAAATAAGGCAATAAAAGGACTCTCATCTTCTATCAGTTGA TCAGATAATTGAAGTGGATAAGTACCATTGTTTGTATATTTAAAACACTTT AAAGATAAATTATTGTAAACAAATTTAGTTGAAGGTATACCGGAATCTAAT ATAAATTGTTTATAATTTTCAAAGTGTGTGGACGAATGTAAGTACGATTTA 30 CGTTTGGTAATTAATGAGTTTTTGGTTTCTAGATTTTCAATGTCTATAAAA TAGTAATCGAAATTTAATCGCTTCATCATATCATAAGTTCGATCAATAGAA GAATTTTGGTGTAGTAATCCTTCAACAGTTATACTATAACGGATAGCTTTA TTTTTTTTTTAATTTTTAAATGGCATAAATGTATATCGTTCACTGACATA TAATCTTGGTGGCTATTAAGAAATAATAAAATTATTTCTTTGATAGATTCA AATTCATTTGTAGATGTTAATCTCATGGCTAAACCTATATTTTTTTCGAAT AATTTTTCAAAGCATCGATTTAATAAATTAAAGTTCACCTCTCGCGTCGAA ATATCAGTGATATCATTGATAAAAATTACAGCTTGTGGCAGGGAGGTAAAA TCAATGTTGTAATATTCATTAAAAACAAATTGAAATAATTCGTTGAAATTT TGAAAACGTATAAACGCTTTAGAGTTTTTAGTCTGATCTTGAGGATAAAAT TCATTGATATCTCTTTCAGTCGTTTCAGTAGCCAAATGATCACTAAACTCA **AATTGATTAATTAAATCAATATATTGTGAAAAGTCAGTATCACTAAAACTT** ATCGAAGGTAAGGAGTCTAACTTAGAGATAATCGTTCGGTATTGTTTTGGG CTACAACCTAAATAATTTTTAAATTGATTTGTAAAATTGGTATGACTACTA 45 AATCCAGATTGTTCTGAAATAGCGTTAATTGAGTCCTCAGATGAAAGTAGC CTTTTTATAGAGTCAATCACTTTTAAGCTTGTAAAATAATCTTTAAAATTC ATATTAAGATATCTTGCAAATAGGTTAGAACAATAAGATTCAGATATATTA CAATGTTGAGCTACTTCTCGTAGTGAAAGTGACTGTGATACTTTTGAATGA ATAAATGTTAATCCTTCAGTAAACACTGAATGATTAACTGCAATTTGAGGA ATATATTTTTTTTTTATATCGAATGACTGCTTCTTTTAGTAGCGTTTGTATT ATTTTAGAGATGGATTGCTCATCTTGATTTTCTCCTTTTATTAAATGTTGA ATAGCTTGTAAAATAATTGTTTTAACAAAACTGCTTGATTGTAATAAATGT CTGTCAAAATAACATTTAAAAAATTTATTATTATCTTACTATAAAAATAAATA ACTGGAATAGAGAGTAATACGAGATTTGAAGCACTATTAATAAAATAGATG TCAGATTGATTAATGATAGCTATATGATTACCTAAATCTTTTGTTTCACCA TTAATAGTGATTTTTAAGTCATTTGTAAGTGAAAACATCAGAATAATTCTA CATGTCATTGTATATTACATTAGCTCCTTGAATGAATTGAATAACTAAATT

TAAATGTGACCGTGT

Sequence 3340 5 step.1000f11.cons.ok CCATAACCATGATCAATAACTAGTGGATAATATTTAATCCGTCCAGAATGT GCAAAATAACGTTCATCTTCAACTATCAAATGATTAACCTTACTCATTGAG TTCCCTCCCAATAGTGACTCTTTTTAATATAGCTATCTACATATGAAGCTA TAAAAACTATCAACTGCTATCGTTTTAAAATAAATCAATATTAATAGGATA 10 GTAATCAATATCTAATAATTTTCAGATTTGTAAATATTTTCTGATAATTT AGAATACTTACGTTCCGAATCTTTTGTGATAAAGAAATATATGTCATTGAG GCTTAGAATATATGTTTAAAGGGAATTTAGAATAAAATATTTTACGGAGGA GATTAATATGCATTGGTTAAAAATATTTTATCATTTATTATGCGCAACCAC GATTAGCGTGATATTACTTATTATAACTATATTAATGGATGCGTTACTACA 15 AAACACACACTTAACTCAGTTATTACTCAATATTGATTTTTTAATCAACCC TGATGAAGTGCCAACAATTATTGAAGTACTGATTCATTTAAGTATTGGAAT ATTGATTTATCTCGCCTTTTTAATTATCTATCATTATTCAAAATCCTTGTA TCATCTAGCATACTTACCTTTAGTATTGATATTTACTTTGATGTATCCACT TCTCGTTTTTCTTGCGCAACGTCCATTTTTTTCCTTTAGTTGGAACGAATT 20 TGCATGGTGGTTAGTTGCACATCTTTTTTTCATCATTTTAATGGCGACTTG TCTACCTATCATTCGAAAAAAATTTTATGATTTAAAACTCATATCTCAA TGTCTTTTACACATTATAAAATAAATATTGGCAGTAGAAACATCATAGATA ATTAGACTATGATATCTCTACTGCCTTATTAGTTATTCTGGCTCTCCATCT TCATCATACTTCGTTACTTCTCCATCTTTATCGATAATATAAGATCCTTCT 25 AAATGGCCTTCTTTATCTGTAAATGAGAACCCCCAACTACCATCGCTATCT TTTTCTGGTTCTTTGTAAATATATGTGTCTGTATCTAATTGATGCCCTTCG TAGTCTTCAACTATATCGATAACATTACTTCGTGTCACCGTTGCTTCATCA GAACTACTTGATTGATCTTCAGATTCAGAAGTATCATCTTCATCTGTTAAA TTATCACCAACTGAAAATTCAGTCCTCATCATCTGACTTATCTTATTGATT TCACTTCACTAGCGTTGTATAACTTAACTGTACGAGCATCATCTATAATG 30 CGTTGAGATTCTCTTTTAGAGTAATCAGCGTCACGCCAACTCCCTTGGAAA TGTGATGGTACACTATATATTGTAATTGTGCCÄTCTCCATTACTTTTATAA TAAACTGAACCTGCTGCAGTAACACTTGCTGTTAACAATTCTGTTCCTTCA GGTAGTTTGGCTGATTCGTCTGGGTGATAGGGATCTAAAACTTTATTAGAA ATATTTGATGTACAATTTCTAAATCGTCAAAAGGAAGGTCACTTTCACCT CTATAACTATCTAAAGCAGTTAACCAAACTTGAGCATAGTATCTATTCGAA TGGGTATCTTGTTGTGTGTCCTGCTGATTATCTTCTGTTTGATTTCTACTT ATACTTGATTTTGAATCTCTGTTACTTTTATATCCTGATTGTTGATCATCA TTTATCGTTGAGCTTCCATTATTATCACTATCACCAAGACCACAACCAGCT 40 AATATTAATATTGTAAACGCACATATCACTGCTAATTTCTTCAATTCAAAT ACTCCCTCACATTCTAATATTTTAACTCAACAAAATAAACCACTTTATAA AATAATTATAAACTAACTATTTTTAAAAATGTACAACAATTTAACAAATTC TTAAAGATTCGCTATTTACGAAGCAATACTTGCCGTCTGTTTTACTGCTAT ATCATTAGCAATGGTTTATGATTATTAAGATTTTTAACGTATCTTAAAATT 45 TGTATTTGAATTCTTTTAAACTACTATCATCTCGCAATCAAGGTGCTAAAC TATAATCGTAAAGTAATTTAAATACATCATATATCATCAATTCGAAATGGG GTTATCAATGTGAAAAAGATTTCTCTAATTGCAACGACTGTATTAACAGGA TTATTATTATTTCCAAGTGTCAATGACACAACGACACATGCAGCCGAAGTA ACATCTCATGATGCAAAAGTGCTTTAAATGAAGCTCAGCAGTCATTGTCAC AATATGACAGACAACTCAATGACAGCATGAATGCATCATTTGATGGTAAAA 50 TTAACATTAAAAATGATTCAGATGTAGGCGAAGGGCAACCTATTTTGCAAT TAATTTCTTCAAATCCTCAAATTAACGCAACTATCACAGAGTTTGATATTA ATAAAATTAAAGAAGGCGATGAAGTAAATGTCACTGTAAATAGCACAGGTA AAAAAGGAAAAGGAAAAATTCTTAAAATAGATGAACTTCCTACAAGCTATG ATACAAGTGACGATAGTACAGCATCATCGGCACAAGCAGGGGCACAAGGTG ATAGTGAAGAAGGAACTGAAATGACGACATCTAATCCTACAATTAATCAGC CAACAGGTGGTAAAAGTGGCGAAACATCAAAATATAAAGTTATCATTGGTG ATTTAGATATACCCGTGAGATCAGGCTTCTCTATGGATGCTAAAATCCCTC TTAAAACTAAAAAGCTACCAAATAACGTGTTAACAAAAGATAATAACGTAT

TTGTCGTTGATAAAATAATAAAGTTCACAAACGTGAAATTAAAATTGAAC GTAATAATGGTGAAATCATTGTGAAAAAAGGATTGAAATCTGGCGATAAAG TCCTTAAAAGTCCAAAAGGTAATTTAAATGATGGAGAAAAAGTAGAGGTGT CATCATGATTGAATTGAGAAAAATCAATCGACACTTTAAAAATGGAAATGA ATCAAATCATATTTTGAAAGACATAGATATTCATATTGATGAAGGTGAATT CTTGGGATTTATTGATCGTGGATATGAAGGAGAATACTTTTTTAACAATGA GAATTATCAAAAAAGCTCAGATAATAAGCTCGCAGAAATTCGAAATCATAC TGTAGGTTTCGTCTTTCAGAATTTTAAATTGATTCAAAATAACACTATTTT AGAAAATGTAAGTATTCCGCTAATTTATAATGGTTTGAGTAATAAAGCGAG AAAAAGCAAAGTTTTAGACGGACTTCATGACGTCGGTCTCAAAGGTAAAGA GAATCTCTTACCAAATAAATTGTCAGGAGGGCAGCAACAACGTGTAGCTAT TGCCGGGCAATTATTAATGACCCTAAGTTTATTATTGCCGATGAACCTAC TGGCGCTCTTGATTCGAAGACATCTCAAGATATTATGGAGCTTTTCGTAAA ACTGAACAAGAACAGAATACAACTATTATTATGGTAACGCATGATCGTGA AGTGGCGGAAAAAGCTGATCGTATTATCCATATTTTGGATGGGCGTGTGCA AGAGGAAGAGGTGTTGACACGTGAATAACTTTTCAAATGTCATATCAGTTG CTATTCGTTCCATTTTAAAAAAACAAACG

20

15

Sequence 3341 step.1000f12.cons.ok AAAATTAGGTCCAGAAAGTTTCCCATCTTTCGAAATATCGGTATAAATCAC TTTAGCATCCTCTTTCCATCCATTAATCTTTATTTTCTCTCCAAAAGCATC TACGGATAAGTAGAGTTTATTTGGAAATTGATGTGTCATATGTGTTAACCA TATAGGCTTAGTGGTCACCTTTCTTAAGGAACGGATGTAGTCGAATTCTTT TACCTCTTTTGCTTTAGCCCCAATTAAATCTACAATATGTATACGTTTCAC 30 ACATTTAAATTGACTATAAAATCGGATACTGTCTTCTACAGATTTTTCCAT TTTTTTTTTGAATCATATTTGCCTTCTGTTAATCGAACACTTGTTGAATT AATTAAATCAATAGCTGGCCATAAATCAATCATTAATAAACCCTCCTTTAA GCGCTTGATTTAGAATCTCTAATCCATACGTTCCACTTTTTTCAGGATGAA ACTGGATACCTATATAATTTCGGTATTGAATGACTCCCGGAATCTTTGTAC CATAGTCAGCATAAGCTACTACATATTCTGACATTTCTGCTTGATATGAAT GAACAAAATACACATCACTTTGCAGTAAGGGATGTGTACTCTTTAATTCAT CCGGGACAAGTTCCAATCCACTAACGTCACCTTCTGCGCTATGTTGAAAAA 40 GTAATTGCATACCTAAACATATTCCAATTATCGGTTTATCATGTATATTTT TAAGCATATCTTTAATGCTTTTTTTCTTCTATAGAATGCATCGCATCCTGAA AATGTCCAACACCTGGAAGTACGATAGCTTCAGCTTTTTTGCACGTCTTTAT CATCACATGTCAAAATCACATCATATCCTAAATGTTGAATTGCTCGAGTGA CGTTACTTATGTTTCCCAATCCATAATCAATAATCGCAATCATTCAATTAC TCCTTTAGACGATGGAATACGTCCATCTTCATTTTGTGCAAGAGAAATCTT 45 TAATGCTCTTGCAAAAGATTTAAATATTGCCTCAATCTCATGATGTGTATT TGCTCTAAAAAATTCTTCAACTAGTTCAGTGTCAAAAGTTCCTACCTTTTG AGCGCTCAACTTGCTATTAAATGAGAAATATGGACGACCACTAATGTCCAC 50 TACTGTTCGAGCAAGCGCCTCATCCATGGGTACATATGAGCAACCATATCT TGTAAAACTTTGTTGAGTCTTTATTAATTCAAGAAGTAATTGTCCAATAAC TATACCTATATCTTCAGTTATATGATGATCATCAACATACGTATCTCCAGT GGCCTCAATAGATAAAGTTAATCCACTATGAAAAGTAAATAGCGTTAACAT ATGATCTAAAAATCCTACACCAGTATTAATATGAGATTGTGTTCCGTTATT AGCCAGTGAAATATTAAGCTGAGTTTCTTCAGTGTTTCTTTTGATTTGATA 55 GTTCATAACATACGCTCCATTTCTTCACTATTTTTCCAGTAGAAGAAGTTG TTCTTCTGTAGCAATAGAGTAACGAACATACGCTTTCATTTTTATTAACAG ATATCGTAATAACCTATCTTTATCGGCGTACGTGAATCGATTTTTCATGAT TAAATAAAGATTCTATATGTGCAATATGCTCAGCTGATTCTGCCACTTCGT

TAAATGTTTTTTGTGATAAATGAATGACTGAATGTCGTGTCATAAAGTCAT TCACAGAAAGCCCATTTGTAAATCTAGCTGTTTGATTAGTAGGAAGTACAT GACTTGGACCTGCCACATAGTCCCCAATAACTTCAGGAGAAAAATGACCTA AAAAAAGTGCGCCTACATATTTAACTTTATCTATATACATTTCAGGTGCTC GAGTTTGAATAGATGCATGTTCAGGTGCAATCGTGTTCATAATTAAACATG CTTCTTCAGTATCTTGAGCTAATATTAGATAATGATGGTTAGCAATACTTT GTGATATGATATCTTGCCGTTCAACATACTGAAGTTTCTCTTGTATTATAG TGTTCAATTGATTAAGTACCTTTTCATTTTCACTAATCACATAAGTACAAG CCATTTCATCATGTTCTGCTTGTGCAAATACGTCATAAGCGATTGCGTCTA AGTCAGCACTTTCGTCTATAATCAAGGCTATTTCTGTCGGTTCTGCGATTT 10 GGTCTATGCCTACTTGACCGAATACAAACTTTTTGGCATAAGCAACATATT GATTCCCTGGACCTACGATTTTGTCGACTTTTTTTATAGTTTCCGTGCCAT AAGTTAGCGCCGCAATACTTTGTGCTCCACCGACTTGATAAACATGATGAA CGCCTGTAATGTAACAAGCGGCTAACACCTCTTGACATATACCGCTATTTT GAGGTGGGGTAACAACAGTAATCTCATTAACACCTGCTACTTGAGCAAGTG 15 TTGCAGTCATTAATACTGTAGACGGATAGCTAGCCTTACCTCCCGGCACAT AAATACCTACACGTTCGATAGGATGGTATCGTTCATAACATTCAGTTTGTT GAGATGATTCCTGTTTTACCTTAATATTTTCTTGGTACACTTTAATTCTCT GATAGCTTTGCTCTAATGCATCTCGTGTTTCATTATCTAGCATGTCGTATG CATTTTTTAGTTGGCTTTGCTCTAATTCAAGCTTCTCAGTTTCCACTTGAT 20 CAAATTGTAAATTATAATTTTTTAAAGCTTTATCTCCCTGTAATTTAACTT CTTCACAAATCTGACTCACTATCTCGTACAAAGATTCATCTAGAGATTCAA CATTATTAAATTCTTTTAAAAATTGTTGTGCGCTAAGCATAGTTAATAGAC ACTCCTAACTGCTTGATTAGTCTCTCTATTTCAGATGATTGCTTAAAATAT GATTCTTTATTTGTAATTAACTTAGCGTTAATTTCACTGATATGC

Sequence 3342 step.1000g04.cons.ok

ACACCATCCCTATCATATATACGGCAGTAAAGATGAAGACCCAAACAACAT CTAAGAAGTGCCAGTATAAACTTACTATAAATAATTTAGGAGCATTGTATG AATCCAAACCACGAGTGCCGATTTGAATTAACAAACAAATAACCCAAACAA TACCTAATGATACGTGTGCACCGTGCGTACCTAGTAGTATAAAGAAACTAG ACCAGAAGGAGCCAATAGTTGGGTTAACACCTTCAGAAGCATAGTGTGCGA ATTCGTAAATTTCGAAACCTACGAATACAAGACCTAGGATAACTGTGATAA TCATCCAAAACATCATTAAGTTTTGTTTTTTTTTTTGTCGCATGTAATAAATTG CAATACCACAAGTATAAGAACTAATTAATAATGCAAAAGTCATTATTAAAA TCAAATGTAATTCGAATAAGTCGGTAGTTAATTTACCGCCATATCCGCCAC CATGTTGTAACGTTAATAACGTTGCAAATAGGGTACCGAATAACGCAAATT CAGCTGTAAGGAAAATCCAAAAGCCAAGTTTATTTAATTCGCCTTCGTGTG 40 TACGAGAATCAATAGTATTTGCATCATGACTCATGACTTACAGCCTCCCTT TCTTTAATTCGAGCTTCTCTTAAACGAGCTTCAGTTTCTGCAACTTCTGAA GCAGGGATGTGGTAACCATGATCAATTTGGAAACTTCTCCAAATCATAGTA ATGAAGATACCTGCTAAACAGATAAGTGCTGGAACAATAGATTCGAAGATT AAGAAGAAACCACCAATAGTCATAAATATACCCATCCAGAATCCTACTGGA **GTATTGTTTGGCATATGAATATCTTTGTAGTTATGGTTGTCTAAATAATGA** CGACCATGTTCTTTCATATCAACGAATGTATCGTAGTCATTCCAATCAGGA GTGATAGCAAAGTTGTATTTAGGTGGAATAGCTGATGCTGTAGACCATTCT AAAGTACGACCAAGTCCATCCCAGTTATCTCCAGTAGCTTCACGTGGAGCT TTGATATGACTATAAACGATACTTGCAACTAGGAATAAGAATCCAATTGCC 50 GAAGGCATGTAAGTGTATAGACGACGTGGCATACCATCTAAACCTAGAATG AATTGTGGTAAGAAACAAACGTTAAATCCGATCATGAAGAACCAGAAGCAC CATTTGTTTAATGTTTCATTTAACTTGTAGCCCATCATTTTTGGATACCAG AAGATTAAACCAGCTAAGCAGGCAAATACTACACCAGTAACCAATGTATAG TGGAAGTGAGCTACTAAGAAATAAGTGTTGTGATATTGATAGTCAGCTGAT GCCATTGCAAGCATTACACCAGTAACCCCTCCTAATAAGAAGTTAGGGATG AATGCTAATGAGAATAGCATAGGTGACTCAAATGTAATTCTACCTTTGTAT AATGTGAGCAACCAGTTAAATAGTTTAACTCCGGTTGGAACACCGATTAAC

ATTGTTGAGATAGAGAAGAATGAGTTAATTAACGCACCATTACCCATAGTG AAGAAATGGTGAACCCAAACTAAGAAACTTAAGAATGCGATACCTGCAGTT GCCCAAATCATACTTTGATGACCGAATAAACGTTTACGGGCAAAAGTAGGG ATGATTTCTGAGTACATACCGAATGCTGGCAAAATAACGATATAAACTTCA GGGTGCCCCCATACCCAGAAGAAGTTTGCCCAAAGCATTGGCATACCGCCA 5 TTTGCTACAGTGAAGAACTGAGTTCCAAAAATTCTATCAGCAGTCATTAAA GCAAGTGCTACAGTGAACACTGGGAATGCTAATATAACGATTAATGTTGTA ATGAATGTTGTTACACTGAACATTGGCATTTGCATAAACTTCATTGTTGGA GTTTTACATCTTAGAATCGTAACAAAGAAGTTGATACCAGTCATTAACGAT CCGATACCAGATATTTGAATTGCAATTAAATAATAGTTAACACCTGGACCT GGACTGAATTCACCAGCAAGTGGTGCGTAGTTAGTCCAACCAGCAGCTGGT GATCCACCTACAATAAATGATAGGTTGAATAAAATCATACCAGCGAAGAAT AGCCAGAAACTAACGTTATTCATTACAGGGAAGGCAACATCGCGTGCACCA AGTTGTAATGGAATAACAACATTCCATAAACCAAAGATAAATGGCATAGCC ATAAATATAATCATAATTACGCCGTGCGTAGTAAATACTTCATTATAGTGG TTTGCTTCCAAGAATTTGTTATCTGGAATTGTTAATTGAGTACGTAACATT AACGCATCGATACCACCACGAACGAACATTAATACGGCAGAAATTAAATAC

20

Sequence 3343 step.1000g08.cons.ok TGTGCTCTAAAGAAGATCCAAATAACATAGTTATTAGACCAACAAATGTCA CTGTATAAATATAAACATTACTAAGTCCCAATAAAGGTGTAAATCTAAATA GTAAAAAGATTCCAGCCTTTACCATTGTTGCCGAATGAAGATAAGCACTTA CTGGTGTAGGTGCTGCCATGGCCTTTGGTAACCAAATATGAAACGGAAATT GTGCAGATTTGGTAAAAGCACCTAATAATAGCATCAAAATCATTGGTATAA ATAAAGGATGTCGTGAAATTGCATTGCGTTGATTAAGGATATCAGTAATTG TGTTTGTTCCTGTAATGATATATAAAATGATAAATCCTGTTAATAACGCTA GCCCACCAAACACTGTAATCATGAAAGATTGAATGGCGCCTAATTGACTTT 30 CACCATTATTGTACCAATAGGATATAAGCAAGAATGAGGAAATACTTGTGA GTTCCCAAAATACATACATTAAGATGGTATTATTAGCTATTACAATGCCAA TCATACTGAACATAAATAATAGTAAATAGATGAAAAATCTAGGAAGATTGT CCGTACTGTGGGATAAATATTGCGTAGCATAAAAAAATACACCCACACCTA TTAGCGAAATAATTAAGCCGAACATTAAACTTAAACCATCTAATCTTAAAT 35 CTAAATTAATATCAATTGAAGGCATCCATGGTAATCGAACAGCAATAAACT TATTTCGAATCACATCTGGTATTTTCATAATAAAATATGTAGATGTCACAA TAGGAGCTATTAATGCAACATAGCCCGCAACCTTTCTTAGTTGACGATGAC TCAGAGTGAATAAAACTATGAGCATGACTAATAAATTAGTCGCCATAAGAT ATACTAAACTCATTTAACCCCTCCTTTTCTTTTTACATTTATATTAAGTGT 40 AATCATTTATTAAGTGTAATCATTGTATGGCGATTTGAAACATATCGTATT TCAATAAATCTCAATATTTCTTAAGTTATCTGATATCCAAAATATTGTTGA ATGATAGAAATTAATATTCCCGATTGAAAGAGAAGATAATCAAATGTTTTT СТТАААТТАGTTAAACTAACAGGTTTTAATCCTTATTATGGTGCAACACGA TTTATGATTTGATATTGCTAGTTGATTTGAATGAGTTTATTGAGCATACAT AGATTCAAGCACTGTCGCTTTTTTTTCTGAATTGGCATATCACAAAAAGGTA ACTATTCTTATTTATATCCAAAAGGGAATAGAACTTTATTTTATATAAGAT AGAATCCATGAGGCTATAATTTTTCAATCATCGATAAACTTAAACTAATTC ATTCTCATATTGGGAGATCTTAATATTTTAATTCATATATAAATAGTAATT TTAGACACTGATCAATCTTTTAAGTTGGTTATTTTAAATATCAGGTTCCAA 50 TTTTTTTTTTACAACTTAACAATTCTACTTACCTCATATACCTTCTAAAA CAGGTTTCATAATTAATGATAAATGACGTTTGTATCACATCAAAGGCATTT GCCTATATTTTTCAAAAAATGTGTCCTTTTTTTTTCAATCTATTTCGATATA CTTTACTCAAATCAAACATAATTCTGAAGGTAAAGTAGTCGAACATAAGCG 55 TCGTTTTTCTAACATTAATCCGCTTGTTTCTAATGATCAAATCAAATCTTT TCGTTCCATCATTGAACGTATCAGTGGCGAAGAGTATGACAAAGTCGAGAT CGTTAAAACAGAATCTTTAATTTAAGGAGGATACATCAGTATGTCAAAAAC TTTGGAACTCGTATTTAAATCAAATCTTAATAAACCCGTCAAATTACTATT

CCAACTTTTAGAATTAGACATTTTAAGATTTAGTTTGGGAAAGCCTGTCAA AATTTATGCTGCACAACTTATTGATAAAAGTACAACTGTTATATTTGAAGA AATCATAAAAAAGACTTATCGAAGAACAAATTTTTTAAAATTGTTCAAGTC TAAAAAAGAACTTAATTTACATTGTTCTTTTATTAATATGAAGTGAGATAT CAAATTCAAAATGATGTCTCGCTTTTTTTAATTCTAAAACTTGTTTAATGT GCATTTTATTATAATGATTCATCAAAATAGTATCGGCTGTATGACACCTCG GAACATTCACAACTTATTTCTATACTTTGCTTATGGCTCAATCATTTTAGA AACATGATTATGAATGCAGTTTTTCTATGATAATCATAAATTCTATATGAA 10 ATATCTGATGATTGCATGACTTCATACGCCATAATGCCTGCACCTATGGAA TGTATCGTTCCAGCTGGTATAAAGTAAAAATCACCTGGTTGCACTTGTATT GTTCTCAAATAATTTTCAAATGTACCTTGCTCCAATTGCTCTTCAAATTCA TCACGAGATTTCGCATACGTACCTATAGTAATCTTTGCACCTTCATCAGCT TCAATGATGTACCAACATTCAGATTTTCCATATTGACCTTCTTCGTGTTCA 15 TATGCATAAGAATCGTCGGGATGTACATGAATAGACAATGGCGCAGCAGCA TCTACAATTTTAGCCATTAATGGAAAATCTTTACTTGGAAAATCTCCAAAT ATTTCTCTATGATTGTTCCATACTTGATCCAATGTTTGACCAGCAAATATA CCATTTCAATCACACTTTTTCCGTGTGGATGTGCTGAAATTCCCCAACAT 20 TCACCTATGTGATTATTAGGTAGTTGATACCCAAATTGACGAAGATTATCA CTGCCCCATACTTTATCCAGAAAAATGGGTTTTAAAAATAACGGCATGTTC ACACCTCCATTATTAAAAGCTTAAACTTAAATCATTATCTATGCTTGAATA TCACACAATGTTAAATAAAAACTACTTTTGATACAACATAGCCCTTCTT TTAAGATATGTATTTGAAGCTAACTATCTTTCTCACTCGTATTGAGTGTAG CATATATGATTATTTCACAAACTACTATATGAATATACTATCATTTTATAA ACTTTCTATCCTGTGTCCATTTGACGTAGGATTCTTACATATTATATCAAC TGCCTAATAAATTGAATAGCATCATTTTTACTAATCTAATAAAGCGTTTTA TTGATTACTATACCATTATTTTCTGAAAATGACCCTTTAAAATAACAATGC TTTAAATTGGATTCAATAGAATCAAGCATTACACTTTTTTCAAGTTCATTT AAAAGTAGAAAATTTAGTATAATTATACTCATTAAAATATTTAACTTTGAA 30 TATAAAAAGGGAACAAGATAAGACTTTTGATTTCCTTATCTTGCCCCCTCA AATAC

35 Sequence 3344 step.1001a01.cons.ok TCTTCGTTTAATTGATAGTTCTCACTAATGAAATCGATGGGTTTTTTATAT CTATAAGCTTTAAATAAAACTTTAGCAACTTCTTTATTTGTTAGTGTCATA TTGTACCCCTCCCTAAATTATCTGAAAATTTATACTATTATGATAACTTT TAAATGTGAAGTGTGCAAATTGATTTAAATATACTTCATTTAGGGTATAAA ATAATTAATAATGTAAATTTTGATAGGAGTGGGTATAGTGTCAGATTATGT TTATGAGTTGATGAAACAACATCATTCAGTTAGAAAATTTAAGAATCAACC ACTTGGTTCTGAAACGGTAGAAAAATTAGTAGAGGCGGGACAGAGTGCTTC TACATCCAGTTATCTTCAAACTTATTCTATTATTGGTGTTGAAGATCCAAG CATTAAAGCGCGTTTAAAGGAAGTGTCAGGTCAGCCTTATGTTTTAGATAA 45 TGGTTATTTATTTGTATTTGTTTTAGATTATTATCGTCATCATTTAGTAGA TGAAGTTGCGGCGTCAAATATGGAGACATCATATGGTTCTGCAGAAGGACT ATTAGTAGGTACAATAGATGTTGCATTAGTTGCGCAAAACATGGCAGTTGC TGCCGAAGATATGGGGTATGGAATTGTTTATTTAGGGTCATTGCGTAATGA TGTTGCGCGAGTGCGTGAAATTTTAAATTTACCTGATTATACGTTTCCGTT ATTTGGTATGGCAGTAGGTGAACCTTCTGATGAAGAAAATGGGTCACCTAA ACCGCGCTTGCCATTTAAACATATTTTTCATAAAGACCAGTATGATGCGAA ATATTATAAAGAACGTACTCACGGTGTGCGTACAGAAAATTGGTCACAACA AATAGAAACATTTCTAGGACGTAAAACACGTTTAGATATGTTAGATGAATT GAAAAAAGCAGGATTTATTCAAAGATAAAAAGAACCTGAGACAGAAATACA TGTCTCAGGCTAGGGTGGGGCGATATTTTCAACACGAATGTTGCCCCGCTC TTTTTATAATTGTATGTCGTAATGATCAATGACCACTTTTCTTACATTTAA

TGATTCGTTAAGCGTGCGGTACCTGTTCCAGCTAGCATTGAGTCATTAACG CCTGCGAGAGCAACTGGTAGATTAAGTGTAGATAATACGAGTATTGATGCG AATGTTGCCCCGCCACCTACACCTGCAACGCCAAATGAACTTATAATAACA ACAGCAATAAGTGTAACAACAAATTGGAAGTCAATTTCTACATTTGCTACT 5 GGTGCCACCATAACTGCTAGCATAGCAGGATAGATTCCTGCACAGCCATTT TGCCCTATGGATAAACCAAAAGTTGCAGAGAAGTTTGCAATTCCCTCAGGT ACACCTAAACGTTTTGTTTGCGTTTGAACATTTAACGGTAATGCACCTGCA CTTGAACGTGAAGTAAATGCAAAGATTAGTACTTCTATTGTCTTTTTCACG TATTTAACGGGATTGATACCTAAGACACTCAGTATAATTAAATGGATAATA TACATTGTGATTAGAGCTGCGTATGAAGCAATTAAGAATTTACCTAACGTC CAAATTGCAGAAAAATCACTTGTCGCAAGAGTAGAAGCCATAATAGCTAAA ATGCCATAAGGCGTTAATCGTAAAACAAAAGTTACGATAGCCATAACGATA GAATAGATTGCTTCTATACCACGTTTAAGTAAGCTTCCATGTTCCGGCTGT 15 TTTCTTGCAACTCTAAGATAAGCAAAGCCCACAAACGTTGCAAAAATAACA ACTGCAATTGTCGAAGTTGTACGTTGTCCTGTGAAATCTAAAAATGGATTG CTTGGGAATACTTCGAGAATTTGTTGTGGTAAAGTGTTTGCAGTTAAATCT TTGGCTTGTTTTGAAATTTCTGTACCACGTGAATGTTCTGCACTACCTAAA TCAATAGACGATGCATCTAAACCAAAGATCAAAGCGTAAAAAATTCCAACG ATAGCTGCAATGGCTACAGTACCAATTAAAAACATAAAAATATAAGAACCG 20 ATCTTAGCGAATTTTCACCAATTTGTATTTTGCTAAAAGCGGCAACAATT GAAATGAATATTAGTGGCATGACAATCATTTGTAATAGTGCAACATAACCA TCTCCAACAATACTAAACCAGTCTGTTGATTGTTCGAGAGTTTTAGACTCT GCACCATATATGAGGTGTAATACAATGCCAAATACGATACCTATTGCTAAA GCGGTAAAGACACGTTTAGGGAATGAGACGTGTTTTCTTGCCATAATATTT ATTTCCATATCGATATATAGCTCCTTTTTAATTTTTAGTATTCCGACATAT GTAATAAGAATAAAGGGGGTTAAGAAGAAATTCAAGTTGTTGATTTATAGT TTTCAGATTCATTTAAAGTTGAATAGAGTGAAGGTGATTACTAGAACAATG AAAAATGAGAAGTTTATGTTTATCAGAAAAGTGAGCAAAGAGGACGTAAAG AGGTTTATATTAATAAAAAAGACGCGTGCAATCATGCTATAAGAAGACATG ATTGCACGCGTTTTTATTTAATATTATGAATAAACATGAGTCAGCTATGAA TACAAATCATTTATAAGTTAAATAGACGTGCAAAGAAACCTTTCTTCTTT CTTTAGGTTGTTGGTAAGTCGATTGAGAAGAAGGTGTAGCTGATGTTG ATTGAGAATGAGAAATTGACTCAGATTTTTCTGAGTTAGATACACTTCCTG ATTCTGACAAGAACTCGCTTGTAGACGTACTTTTTGATTCAATTTCCGATT TGCTATTTGTATTACTTTCGGATGTTATTGAGTTAGACTCGGACAGAGATG AACTCATTGAATCATTTGCTGATTCAGATTGGCTCAAACTTGCTGTAGTAC TTTGACTTGCGACGTTGCTCTGAGATATTGAAGCGCTATTTGACATTGAAT 40 CAAAATGACTACGTAATTCAAAATATTACATTTAATAAAGATATAACACCT AATTACGTTTGTACGTTAATAAATGAAGATTCCAGAAAAATAATTTTAAGT AATGTAGACAATCCGAATATCATTATTGAAATGATTCTTATTAATTCAAAA AAATTGGTTTTTAATGCTATAAGTAAAGAAGGCTTAGGTACCTCGCCTAAA ATATGATATAACTAAAAAGCTCCCAGTAAAGGTCACATTTTAAATGCT

Sequence 3345

step.1001a04.cons.ok

50 ATAAGCTGTTGTGGCAGCAGCAAATGTGCATCCTGCACCATGATTATAACT
TTGTTGGAACATGTCAGTAGTTAATTGATAAAATTGTTGGCCATCATAGTA
CAAGTCATAAGATTTATCTTGATCGAGTGCTTTACCACCTTTAATAATGAC
ATGAGGTGTGCCTTTGTCATAAATCACTTGAGCAGCTTTTTTCATATCCTC
AATTGATGTTAATTTTCCTAAACCAGAGAGTTGACCTGCTTCGAATAAATT

55 CGGGGTAACAACTGTAGCTTTAGGTAGTAAATATTGAATCATTGCTTCTGT
GTTTCCTGGGTTAAGTACTTCGTCTTCTCCTTTACAAACCATTACTGGATC
AACTACAAAATAGTCTGCACCAGATTCAACAAAAACATCTCCGGCACGTTT
AATAATGTCTTGTGTCCCTAACATTCCTGTTTTAATAGCATCAGGTCCAAT

TACATCATGGGACCATGTTTCTTTATCCATTGTTACAATAGATGTTAAAGC GACCATTCCATATACATCAAGTTCTTGGAACGTTTTAAGATCTGCTTGCAT ACCGGCACCAGCACTTGTATCTGAACCAGCTATCGTTAATACTTTTTTTAA AGCCATCATTCACTCCCCATTAATTTCTAGTGTCTTTATCATATCATG 5 TACTTAGCTATTGTATTGATGTTATCTTTAATTCGTGATTAATAGGTAAGA ATGTCATCTCATTCTTACTTAAAAGGTCTTCAGTTAATTTTATTTTGAAAA TCACTAATTGATATTGTGTGTAATGTATTTTATTGGCATCGATAACTGCAC CTTGAGGGATACTGACTGATTCTAGAACTTTAAAACAATTCATTAAATTTT CATCTTCATTATGGGAACAGCGTAGTTGGTGTCTTAAATATGTAGCGCGTA TAAAACGATCTGTTGACGTATAACCACCCGGTAAGCCATTTGTTCCTGCTT ATTTAGGTTCATTTGTTAAGGTATGAACATAATTATCTTTAACTATTAATA 15 AGCCATTGTGAGGTTCTATGGCTACGGTATGTCCTGTTTCATCAGTGACCA TATTGATTTTCTTAACCTTTTGTTTTAATTCGCTAATACTTTTATTAAAAC CTAAAACCCAAACAATAAACTCCTCAGGTGCTAAGTTAAAATAACCATAAC GTTTATGGGTACTGTATGAGGCTTCACCAGTGAAGTAATGGTTCGAAATAG 20 CTAAACCTTTTTCGTTTATACCATCACCAAATCTATAACGTCCTACTTTTA AATTTGTTCCAACAAAACCATATTCAAGACGCATGTCTGAATCTAGATCAA ATTGGTAGTGATAATGGCGTGGAACAATGGTTGGGATACCATTAAATTCAA ATGCAAAGTCCATTGTTCTAGCTAAATAATGGTAACGTTGTTTTGTATATA AAGAAATGGCAGTACACATATATAACACTCCAAACTACTGAAATTTATCTA TATTAATTGTAATATAGATAAAAATGCGCTTATTGTAAACCTGAATCATAT AAAAGTTTACAAAAATTAATGCTTATAAAATCAGTCATTTTTCTAATATGA ATATGTTAAAATGTAGCTTGAGGTGAAAACGAATGAAATGGTCAGAGGTAT TTCATGATATAACAACGCGCCATGATTTTCAGGCGATGCATGACTTTTTAG AAGCATTTGATTTAACGCCGTTTGAAGATATCAAGGTTGTTATTTTAGGGC AAGATCCTTATCACGGTCCTAATCAAGCACATGGTTTAGCATTTTCAGTGC AACCTCATGCTAAATTTCCACCATCTTTAAGAAATATGTATCAAGAACTAG AAAATGATATAGGGTGTCATAGAACTTCGCCTCATTTACAAGACTGGGCAA GAGAAGGTGTCTTGTTATTAAATACGGTATTGACTGTTCGACAAGGTGAAG CACATTCACATCGAAATATTGGATGGGAAACATTCACGGATGAAATCATAC AAGCTGTTTCTAATTATCGTGAGCATGTTGTTTTTATTCTGTGGGGAAGAC CGGCTCAACAAAAGGAACGATTCATTGATACATCTAAACACTTAATCATTA AATCGCCACATCCTAGTCCACTATCGGCTTTTAGAGGATTTTTTGGTTCTA 40 AACCTTATTCAACTACAAATAACTATTTAAAATCTAAAGGGAAAACACCAG TTCAGTGGTGTGAAAGTTAGGTGAGAATAATGAACAAAGAACAGATTCTAC AATTTGAAAAGCATATGTATGCTATACACATGCTCACATCTCTTGTTAGTT CTCATCAAAGTCGTTCTACAATAGAGAAATTAAATCATTCTAAACCAATGA ATAGTAATATCAAAGATGATTATGAGATGAAACAACAGTCTTCACAAAAAC ATCATGTAACTGCAGCTGAAATAGAAGCAATGGGTGGTAAAGTACCACAAT CAATGAAAAAGCATCATACTTCTAATAATATGATGATTACAGATGATCAAG TTGGTAATGGTGAATCTATTTTTGATTTTTAAATATAAAGGAGTACATTCA AAATGATGAAAGTTTTT

50

Sequence 3346 step.1001a09.cons.ok

ATATGTTTAAAATTTTTATAAGCATTTAAAACTTCGTCACCTTTTACAGAT GCCTCATAATAATTTCGATTTTATTAAAGAAATGAATTACTTTCATCATT TCATCATTAGTCCAATCTAAATCTAATGGATATTGATATTCCATAGTGTCC TCTCCTTCATATACTTTTATTTTTCACATTTAGATATATTAAAAATAACAC AGTATACCTTTATTGGCATAAAAAGATGGGATAAAATCCATTTTTGAATTC TATCCCACCATGAATAAATACCCCTAGCAGATTGCTATTATTTAGAGTAGC TAAACGCTAAGGGTATTTTGAAATGATTTAAGATACGTATGTCTTTGCCAG CATATTAATTTATATACATTTATCATTATTAACTAGTAATTACATAGTATG AATTGGATAACCAATTGCTTTTTCAGCAGCTTCCATTGTCATTTCACCTAA 10 AGTTGGGTGTGCATGTACAGTTAATGCGATATCTTCAGCATTCATACCTGA CTCAATAGCTAAACCTAATTCAGAGATAATATCAGATGCGCCAGTACCTAC AACTTGTGCTCCAATAAGCGTATCATCTTCTTTAAGTGTAATTAACTTAAC AAAACCATTTGTATCATCTAATGATAAAGCTCGTCCATTAGCTGCATAAGG GAATTTAGAAGCTTTAATTGATAAACCTTCTTCTTTTGCTTGAGCTTCAGT 15 ATAACCAACTTGTGCTAATTCTGGTTCTGTAAAGCAAACTGCTGGCATACC AATATAGTCTACCTCTGCGGCTTGACCATCTATCGCTTCAGCAGCAACTTT ACCTTCATAACTAGCTTTGTGAGCTAATGGTAATCCAGGTACAATATCTCC 20 TAATCCACGATCAGCAAATTTCAGACCAAGTTCTTCTAATCCTAATTCATC AGTATTAGGGCGACGGCCAACTGTAACTAATACATAATCAGCTTCGATAGT TTGTTCCTCACCTTTTGCCTCATAAGTTACTTTGACACCATTTTCAGTTTC TTCTGCAGATTTTGCCATTGCTTCAGTAACGATTTCGATACCTTTTTCTTT CATACCTTTTTTAACAGGTTGTGTCATTTGCTTTTCAAATCCGCCTAAAAT ATCTTTTGCACCTTCAAGGATAGTAACTTCAGAGCCAAAGTTTGCAAAAGC AGTACCTAATTCAGAACCGATATATCCGCCACCAACTACAACTAGTTTGTT AGGTACTTCTTGTAGATTTAAAGCTCCTGTTGAATCGATAACACGTTTACC AAATTCAAAATTTGGAATTTCAATTGGTCTTGAACCTGTAGCTATAATCGC ATGTTTGAAATTGTAAGTTTGAGCACTCTTTTCGTCCATGACACGTAAACT ATTGTTATCAACGAAATAAGCTTCACCTCTAACAATCTCTACTTTGTTACC 30 TTTTAAAAGTCCTTCAACACCGCCAGTTAATTTATTAACTACAGAAGTCTT GAATTCTTGAACTTTTTGATAGTTTAACGAAACGCTTTCAGCAATTACCCC TAAGTTTTCTGAATTTTGCGCTTCAACAAAGCGATGAGAAGCATGTAGTAA TGCTTTTGAAGGTATACAACCAACGTTTAAGCATACACCACCTAAATTACC TTTCTCAACGATTGTTACCTTTTGTCCTAATTGAGCCGCGCGAATGGCTGC GACATATCCACCTGGACCTGCTCCTATTACAATAGTATCTGTTTCAATTGG GAAATCTCCAACTACCATGTTTTTACCCCTCCATTAATAATAATTCTGGAT TATTTAATAAGCGTTTAATGTGATTCATAGCATTTTGTCCAGTAGCACCAT CGATTTGTCTATGGTCAAAGCTTAATGATAAAGCTAACACTGGTGCAGCTA 40 CAATTTCTCCATCTTTAACGATAGGTTTTTGAGCGATACGGCCAATTCCTA AGATAGCTACTTCTGGGTGATTGATAACTGGAGTGAACCATTGTCCACCAG CGGAACCGATATTACTAATTGTGCATGTTGCACCTTTCATTTCTTCTGAAG TTAATTTACCATCACGTGCTTTTACAGCTAGTTCATTAATTTCATCAGAAA TTTCGAATATTGATTTACGATCGGCATGTTTAACTACTGGTACTAATAATC CTTTATCCGTATCTGCAGCAATACCAATATTCCAGTAATGTTTGTGTACAA 45 CCTCTCCAGCTTCTTCATTGAAAGAAGTATTAAGTGCTGGATATTTTTTAA CTTGTTCAGCAGCAATTTCTTTAAATTTCTTACGGTGATCCCATAATTCTT GCACATCAATTTCATCCATTAATGTAACATGAGGTGCAGTGTGTTTAGAAT 50 TTTCAGGGAAGTCGCCTTCTGGTAATGCTTGTGTTGCAGAAGCATTAACGA CATCACTAGAAGTTGATTCAGATGCTGCGCTAGTGTTTGAACCTTCTTCGG **AACTACCACCATTTAAGTATGCATCGATGTCTTCTTTTTGTGATTCGTCCAT** TTTTACCAGAACCATTTACAGCTTTAATATTGACACCATTTTCACGTGCAT ACTTACGCACTGACGGCATCGCTTTAACAGTTTTACTTTCATCTACTTCTG TCTTTTCTTGTGATTGAGTTGATGAAGCTTCTTCTTGCACTGGTGATTCTT GTTCTTTTCTTTCTTAGAATCCTCATCATCGCCATGACCTTTAAATT GCATTTCTTCTGCATCAGGTGCATCAATTTTAACGATGACATCTCCTACTA CTGCCACTGTTCCTTCATCTACTAACACTTCTTCAACAGTACCACTTACTG

GAGAAGGAATTTCTACTACAGATTTATCATTTTGAACTTCTGCTAATACAT CATCTTCTTCAATTGTATCGCCGGCTTTAATAAACCATTTAACAATTTCAC CTTCGTGGATACCTTCCCCGATATCGGGTAATCTAAATTCAAATGCCACGT TCTTGTCCTCCTAAGATTTACGTATTTAAATTT

5

Sequence 3347 step.1001b03.cons.ok AATTTTAACCTCTCAACAAAAAGTCGTGATGGAACAATTTTTTACACCTAC ACAAAAAGTTAAATTTCAAAAATATTACAACCCTGAGCACGAACATCCTAC 10 TGAAAATGAACTTTTAGCGTTTGCAATTAATGCGCTATATCATTTAGGAGA CGTATTTTTATGTGATAAAAACATCGTTACAGGGCCAATCATTGATCAAAC TGATACTAAAATACCAGTTCTCGCCGTTTTTCCACAGTACCCACGTAAAAAA TATCAATGATATATCATTCTGAAATCAAACAAGCGTATAAACCTGTTTT 15 AGATAACTTATCCCGATATTCAGGAATCATAGTATCTACTGAACAACAAAA AACAGATTTATCTGTAAAAATTAATAACGTTATTCCCATTTACGTTATACC TGCAGGTTATATTGATACAAATGAATCTCATCATAGTAGTGACAATAAACC ATTGCCTAACAAAATGATTTCTATCGGCCGTTATTCTCCTGAAAAGCAATT AGATCATCAAATAGAACTAATGTCTAAGCTAGTTCCAGCATTTCCAAATTT 20 ACAGTTACATTTATTTGGGTTTGGTAAAGAAGAACACATTATCGTAAATT AATAGCTCAATATCATTTAGAAAATCACGTGTTTTTACGTGGCTTCATTTA TGATTTAAATCAAGAAATAGAGACCGCCTATTTATCTTTATTGACAAGTAA AATGGAAGGGTTCAATTTAGGTGTACTTGAAACGATTGCTAAAGGCGTACC TACAGTAAGTTATGATACCAAATACGGACCTTCTGAGTTAATTGTTAATCA 25 TAAAAATGGCTTTTTAATTGAACAAGATAATAAAGAACAACTCTATCACAG CGTTAAAAAGTTATTACTCGATTCTAACTTAAGAGAACAATTTTCTAAGGA AAGTATTAAACATGCCCAAATATTTAATGACAAAAATGTTTTTGATACATG GCTCACTGTTTTCAGAACGTTAAAAGTTAATTTATAATCGCCAATTTATTA AGATATATAAGGGTGAAGAGAGTGTGAAACATCATACATCATCTTCACCT TTAATTTATTCTATAATATTTCATCTTTAATCTGTGCCTTTTGATATTGAA CATAGCCTGATATATATGTTCGATATCATCAATCCGAACTCGATACCCAT GGTGTTTTATGAAGAAACTACCAAGAATTCGCTTTGGATTTTTGAAGTACA TTGCAATTTCAGGATAGAAAAATCCTACTCGTTGATATTCTGCTCTTGTAT GAATCACATTGATTAATTTTTCTTCATCAATCAACTGAGTCACAAGCTCTT GACGATGTGTAGCTTTTGCTTTTTGAATAAGCTTATAGGTTGCCATTAACA TTTCTAAAAATGTTGGGAATGTTGTTTCACGTTGTTCAATATATTCCAAAT AGGTGTTCACATTCTTAATCCCAAATTCAAAATATTTATCTTGCGGACACA ATTGAACTAACTCGTTCGTGCAATACCCAAGCCAATGATCATGGTATTGCC AATACTCTTTTTCAATAAATCGATCCATTAACTTCTTCACAACTTCCAACC 40 ATTTATCATTATGATCTTGGTGATATAAGCGTAATAATGCTAAAGCTGCTT CACCATCATAATAAATAATTCTAAATGATTCTTTCACAGTTAAATCCGGAT AATTTAAAATATGAGTTGTTTCGTATGTATCTTGATTAATCATTGATAAAA TTCCTCGAGCAACTTTTTGTGCCACGCATAAGTATTGCTTATTGGGGTTAT GCTTTAAATATTCACAAACCGCAAATATAAAGGCAGCATTTTGTCCTAATT TTATTTCGTTAATATCTTTTGTATCATCAAAGATATATCCAACACCTTCAT TATCATAGAAATAATTCTCAATAACGTAGTTAATTGCCTTTTCGACTATAG TTAAATCTTCTCCTAAATAATCTAAACCCTCTATTAATGCATAAGTTGAAG AAGCATGTCTTAATATATTATAGAAATTGATTTCTTTATCAAAATGTGGAA AATAACCATATTGATATCTTCCAGTATCTGATAGCATATTTCCTAGGAAAT 50 ATGTACCACTTTCAATTAATTGGTCTATTTCTTTATGTAAATAATCGACCT TTCTTAATCCTTTTTTATAACCTTCATCGTGTAATTCATATATCTTTTGTT CGTCTAAGATAAAACCTTTAGTTTTGAACTTAATGACTTCTTTGTTTTCAT AAAAATCATAAGCAAACTTTTTCTTATGGTTCGTATACTTTCTTAAATAGT TATTTATATTTTGTTCAGATAGAATAAGCTTCGTTTTCCCATCTGTTTTCA 55 CTGGTTTAATAAATGCATTAGTGTTTATTTCTTCAGGTAAAAATGATAAAT TCCAGTATTGATCTAAAGCTATACCAAAATCAATATAATTTCTTCTAGTTT GCGTTAATTCATCTTTAACATCTTTAAATAAAGTAACTTCTTCTTCAGTAA CAATGTCTATTTTTACCCATGAAGGAAACGCTCCTGTTTTCTGTCTAAACT

TTTGAATTTCTTTAGTAATATCCCTTCTAAGGTAATTAGGCTTTTTTAATA
ATTTAACTTTGGCTTTTATATATAGATTTTCCAAGGCTTAAAAAAGCATATT
CTTTTATTTCTATTGTTTTTTCAACATGATTAATCAATCTTTCTATATGAT
TTTCCATACTCATCTTTTTCTCCTTTCAATTTAATATGATTTCAAACCAGG
CCATATAGACCTGGCTTGAAATAACTTATGAATCAATAATGATCTTTTT
TTCTTTATTATCTTTTTTACGACGTCTTCCTAATAATAATGATCCTCCTAAACC
TGCAAATAAAGTTCCAAGTAATGTGCCTTTAGAATCATGATCTTCATTTGC
TCC

10

Sequence 3348 step.1001b04.cons.ok CGTGACTATATGATGGTAGAAATGTGTCCTCGTTGTAAAGCGCATTTTAAC 15 TCGCTTTAGGAGCTCTTCTTATATCAACATTCTATTCATGCATTTAAAGTT TTCTTCTTATACCTCGGTTGATTTTCTCTTATTATAAGATTATTTTCAAC TTTCTCTACTACTTCATTTAATTCATCAATTTGTTTGATAGTTGTCGTTGA AGATCCTGAAGAGAAATACCATAGTTTTGGATCTAATTCGTAAATATGATT ACTTTTTACTGCTTTTACATTTTTTTATAACTTTGTTTTTTAAAACTTGATT 20 TGTTGTTGCTTTACCACCTACAACTGAACCACGATCCATAGCTAAAATAAC ATCTGGATTCTGCTTGTTAATATATTCATTATTTATATTTTGACCATGCGG GCTTTTGCTAACCTTTTTGTCTGCAGGTTTAAATCCTAATGTATCAAACAC TAAACCACCAAATCTTCCTCCTGGTCCAAACGTTGATAGTTCACCTTCGTT AACCAATAAATACATTACTTTCTTATTAAAGTCTTTAGTTTTATCTTTCAT TTTATCGTAGATTTTCCCTAAATTTTCTGTATTTTTTTCATATCTTTAAT ${\tt TAAGTTGTCATCACTTGTACCTACATATACAACTTTAGCTTTTGGTGCAGC}$ TTTTTTAAATTCATCTAAATTTTTCTGATTAGCTGTTCTTCCTGAAATAAA AATCACATCTGGTTTAGCTGATGCAACTTTATCAAAGTTCACTTCTTTTAA ATTTCCAGTATTAATATACTTATCATCTTAAAATTCATCTAAAAATTTAGG TAAAGATTGGTTATTTTCACCTTTAGGTAAACCTTTTACTTTATCAGCCAC ACCTAATTCTTTCAACACATCAAGCGCTCCATAATCTAATACAACGGCATT GCCATTATTTTCTTTACCACTTGCTTCAAAACTATTTTTGATGGTTACAGT 35 TTCTTTAGAATCACTATTTTTCTTTTTCGAAGTTGAATTATTATTCGAACT ATTACTACAAGCCGTTAAAACTAAAACTAGAGACAATAATAAAAATAAGAC TGTTTTTTCATATGTGCAACTCCCTAATCAAATTTATAATTTCTTTTCGT ATGGATAACCTCTTTTACTATGCGTCTCAATTTTAATCATTAAACTGAGTC 40 AAAAGTAGTTCATCATAATATAGACAAATACGTTGTCCCCTTATCTCCTC TATACGTACTTCCATTTCATATAAACTTTTTAAAATGTCAGACTGAATAAC ATTATCTTTATCATCAGCTTTAACTAGCTCACCTTGTTTAAGCGCAATGAT GTCGTCTGAATAACAAGAAGCAAAGTTGATATCATGTAATACGATAATGAT TGTTTTATTTAACTGACGACATAAATCTCGTAACGTTTGCATAATCTGTAC 45 AGTATCTTGTGCTATAGTCATAGCAATATATGCACGTTGTCGCTGACCTCC AGATAGTGTTTTAATATTACGATGTTTAATTTCATTAAGCTGTAATAAGTC AAGAGCATATTCCACTTTGTCATAGTCTTCTTGCTTCATTCGACCTTTTGA ATATGGAAAACGACCAAATTTAACTAGTTGCTCGATAGTTATGTTCATATC 50 AGTGTGATTAGATTGTTTTAAAATACTTAATTTTTTAGCTAAATCGTCAGT TTTATATTCTGAAATTTCTTTGTCTTCAATCAAAATTGAACCGTTCTCATA ACTAAATAAGCGACTGATAGCAGATAATAATGTACTCTTACCAGCACCGTT AGGACCTATGAGTGAAGTCAATTTTCCCTTTTTTAATATCTACGCTAATATC TTTTAAAATAGGTTTATTGTCTATCGTTTTATCTAAATTTCGAATTTGAAT CAATTTGCATTTCTCCTTTTGACAAGCAAATATATGAAGTAACTTCCACCA 55 ACTAAATCTACTATCAAACTGAATTCAGTTGTTGCTTCGAATAGATTTTCA ACTACCCATTGCGCTATAAATAAACTAATCCAGCTGAATAATATTGTTGCC GGTAAAATAAATTTGTGTTCATAGGTCTTCATAAATTCGTGTGCTAAGTTG ACAGTTAATAAGCCAAGAAATGTTACAGGACCTATTAATGCAGTAGATATA

GAGACGAGTAAAGCAACCAAAATAAGAAACATACGCGTCATATTCTCATAA GAAACACCTAGATTAATTGCTTGTGCTCTACCTAACAAAAGAACATCTAAA TATGGTCGAAGTATTATTGTAACAATTATTAATATAACTAATAATATGCCT GAAACAGTTACTAATTTAGAATTTGATGCTTCAAAGCTAGCAAACATAACA TTTTGAACTGCTAAAAAAGATTCAGGATTCATTATAAGTTGGAGAAAACTT GTAATACTACGGAAGAAAGTTCCTAATATTACACCAACTAGTAATATGAAA TAGACTGAAAAGTGACCTAGTTTAAATATAACTTGAAATAATAGCAATGAA AAAAACACCATTGCGATCAAAGTGATTAAAAAATTAAGGTAGATATTTGTA ACAACAGTTGCTTGTTCACCTAAAATAAAAATAGGTAAGACTTTGACAAAT AAATACACAGAATCAAGTCCCATAATAGAAGGAGTTAATAATCTATTTGTA 10 GTAATAGATTGGAAAATAACTACGGACGTTCCTATCGATGCTCCTACTAAT AATATAAGAATAAATTTTTTGAAACGGCTTTGGAATTGATATTCAAATATA TCAAAATCTAAACCTACCAATAAATAAAAAATTGCCATACAAATTGCCATA ACGACCAGTATACTTATTTTTTTTTTATTAGCGCTCATTTGCATAATTTTTCCT ACCTTTCATTAGCAAGATTAGGAAAATAATTGTGCCAAATAC

Sequence 3349 step.1001b10.cons.ok

20 TCGAGCCATACCTATTGTTCCAATAAATAATAAAGAAATAACATTAATATA TTCCATTTCAGTCATACGGTGTATTTTCTTCATGTTTCTACCCACTTTCTA TCATTAAGTGCAGCACAAATAGCATTAGCATAATAATACATATCTTCTGTC CAATTATGTGTATTTTCTCTATTCTTTTTACTAAAATCGTTTCGACTAAAA AATTCTTTTCTTTGTTGAGTCGATATTTCAATCTGTACACCCATGCCATAG 25 GCATTTTTGTTGGTTATATTATTAATTTCTCTGCCCGCAATTCTGTCAGGA GCAGCTTCCACATTAAAACCTGAAACTTTTAAATTGTGAGTAATAAGAGAT ATAAGTCTTTCATCCAATCCACCAATATAACTATTTGCTTGATTGCTCGAA TAACCATGTACGGCTATCGTTACATTCATAAATTGATTCCAATATAATAAA TTGGGGTTATCATAATTTGTTGAAGTGACGTGTAGAGTTCTATTGTTTTTC GGTTTTAAACCTTTAAAAGTAAAATAGTTTGCATTCGATAATTCTGCAACC AATAACGCTAATTCAGAAGTGCCACACTCTATACCGCCTCCGTGTATAGCA GTTATAAGTGATTTACTATTTCTATCTTGTGTCTCAATCATCCAATCTTTT TCATTCCTCACAAGTTCAGTCATAGATTTATAAGTATCCATCACTTTATTC ACCTCCTTTATCTATCATTCTAATTTCTCCGTAAATATAAGCTTCACGACT TACTGACCACTGATCGCTCTGAGAAATATAAACTTTAACATCTCCATTAGG TTCAATAGTTAATTGAGCACCACAAGCTTTAACAGGCACCGATCTTAGGAA $\tt CGCAGTTTGCGTACTTGTAATTAGTTCACTCGGTAACTTCGCTATAACAGT$ TCCACTTTTAAAGTTGTCAGCGTTAATTCTTAACATCACTTCCTTATAGTC TTGATGTTGAATGATTTATAAGCGCAATTAAAACCATTTTGTCCTTCAGC 40 TTTATAATGCCTATTTTTTATAGCTCCATTAATCAAATCATATTCAATCCA GTCTGAAGATTCAGGTAACTTTTCTTGTATTTCAGTAATGCTTTTACGATG TTCATCAATTGTGACGTATCCCTCTTGACTTAATATATTTTCAATATTCCT AACTTCGATTCTTAAATCTTTTAAATATTGACTTCCTTTTGTGTCAATTTC 45 GTTGTCATATTCTTCATAAAGATTTTTGAATTGTATTTTTAGCCGCGTTAAG AGATTCCTCGACGTCTTTTAAACTTTTACTACGCTGTTGATTAAGTTTGTC CAATCCTTTTTTTTTTCAATCTGAATCTTTGTAATTCCTTCATCACTTGC ATCTTTCACTTTAACAACGTAATCTTCTAAATTATCTAATTGTTCTTGTAT TTCAGTGGCTCGTGCATTAATTTGTCTTTTTAATTCATCAAACATACGGAT 50 ATATTTAATTTTAGTTGCACCATTAATTTTATTTATTATTATTGCGTCACCCAC TTCGAATTCAAATTCAGTTAAAACTGCAGTTGATGATTATCGCTATCTAC CTGATTTCGATGGTTAATCGAAATATATTTTGACCTATAACAGTTGTATT CGTTGAAGCTTGTAAGAATTCAATAGGTATAGTTACTTCAATAACACCATT TAAAGGGTCAATAAAACGTACATTTTCTACTACTTGATTAGAACCGTTAGA CTTTTTGTTTTTAGTCACATAAAACCTTAAAACTGCAGTTTTATCATCTAA

TTTATAACATTTCTTAAATCATCATCATATATAGTATTAGGGTAAATTTGT

GTGAACGTATCTTCTTTAAGATTACCGTATTCTCCAGATTTTAATATCTGA ATGGAATTAGCAGAATGCGTAGGAGTGAACTTCGCAAATAATTTAATTTGT TTGATTGTTACAATACCAGCACCTTTTTTCTTAACATCTAGTACCGGCATT ACTGTATCAGTACGTTTTGTACCTGGTTCAGTAATCGTCGACATTTGAACT CCAGCAGCAGCGTAAATAGGGAAAGTTGTATTTCCTTTGTTGAGTCTATGT TCAATTGAAAATAAATTACGTTTTCTACTTTTATTAAATCCAAAGAATGGA TGATAATTCTGAACAATATTAGGATTAATCCCCACTGTGACATCTCTATCA ACGTTTATAGTCACATATCCATAGAGCTCTACAAATCCATTTGCTAAAACT CGTAGGGTAATGACTTCAGATGTTTTATTGTTAAATCTATCATCATATACC ATCACTTTAATGAAAGGATCTAATGATGTTTGACCATTTTGATAAGATTCA AATTGTGCCATTCTAAAAATTACATTACCTACCCAGCGTACTGAACGTCTC AGATATGACGTTGTTTTATTTCGGATTCCTACCCAATTACTAAAAGATGAT AATGTACTGGAACCCCAAACAACGAGGTCTCCGTTACTTTTTAAATTGTTA ATAAGATGAGTCATATTATTATTTTTTTGATTGGCCCAACGCGGATAAAAT AAACAGTAATCATTATTTACTGAAATAATATCATGCAAATCTAAGTGAGCA GTTAAATTATCTATACTTTGAACTAAGCTACGCATATTTTGTG

20

5

Sequence 3350 step.1001c01.cons.ok CCCAGGAATATATCCGAATTGTCGAAATGCGTCAAACCATTCTTCTAACTG AGAAAGCGACAATACATCAAATCCTTTCTTAGGGTTGTATTACTTATTCAT 25 TATAGTTGTAAATGATATTTTTTTGAAACATTAAAATTAGGTCAACAACATA AATCAGACTTAGGTAGGAATTAATAAATCTATATATTGATATCTAATTCAT CAATTTTATTATTCCATTCTTTATCGAAACTCTAATGAATTGAAAATTTAA TATTTCCTATCTGAATTTGACTTCTTATTAATCTGACGTTAATCAATTTTC ATTTACTCTTATTAATACACATAATAAAAATGAGCCTAGATAATCCTAGGC 30 TCATTTTTAAGTTCAACTTAAAATTATAAACGATTTTCTAATTCTTTTTTC TTATCTTCAAAGCCTGGTTTACCTAATAGCGCAAACATATTTTGTTTATAG GCTTCAACTCCAGGTTGATTAAATGGATTAACACCTAATTGATATCCACTC ATTGCACAAGCTAATTCAAAGAAATAAACAACATATCCAAATGTTTCTTCA TCTAACTGAGGAATATTTACAACGATATTTGGAACGCCACCATCGGTATGT 35 CCAGCAAGATAGTTCAGTCCGTCTAAATCATCTGCATCCTCTTCAATTTTG ATATCATGTTTTGGATGGTTGACCTTAACCACTGTCTCGAATAAGAAACGA CGGCCCTCTTGAACATATTGTCCTAAGGAATGTAAATCAGTTGTGTAATTC GCACTTGATGGATAAATACCTTTGAAATCTTTCCCTTCTGATTCACCGTAT 40 AACATTTCAGTAGTATAACCTTTGCTGTATAAAATATTTCGAATAGTTGCA TATTGATATGCGATATTTTGATCTAAATCATCAGAAGATAACTCTTCACGT GCCTTAGCCGCACCAATCATGATTGATTCAATATTGATACCTGCAGTTGCA ATTGGTAGTAATCCTACAGCTGTAAGAACAGAATAACGACCTCCCACATCA TCAGGTACAACAAACGTCTCATAACCCTCATTGTCTGCTAATTGTTTAAGT GCACCTTTAGATTTATCTGTCGTTGCAAAAATACGTTTCTTAGCTTCATCT TTTCCATATTTTTCTTCAACCAATTGTTTAAATAATCTAAATGCAACTGCT GGTTCTGTCGTAGTACCTGATTTTGAAATAACGTTAACTGAAAAATCTTTT CCTTGTAAATAATCAAGTAATTCTTTTGTATAACTTGAGGATAAATGATTA 50 CCTACAAATACAATTTCAGGGTATTCCGTATTTGTTCTAAATGAAGATGTA AGCATCTCGATTGCAGCACGTGCACCTAAGTATGAACCTCCAATACCGATA ACAACAAGTACATCGGAATTTGATTTGATACGTTTAGATGCTTCGACGATT AAGTCATTACCTGCTCCTGTACCTTTATGAATAGTTTGATGGATAGTTTTA ACAATATCCTTTTGCTGATCTAGTTCATGCTTATCAAAAAATTCTAAAGTT TTGCCATAGTCTAATTGAATGTGAGTCATCTTATTGCCTCCTGTTATAAGT ACTTATACTAATTCTACTAAGTTTAGATGCGCTATTCAATTCTCAAGGCTA

Sequence 3351 step.1001d08.cons.ok

5

TCCCCTTCGGGGGACAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGT GTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTAAGCTTAG TTGCCATCATTAAGTTGGGCACTCTAAGTTGACTGCCGGTGACAAACCGGA GGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGATTTGGGCTACA CACGTGCTACAATGGACAATACAAAGGGCAGCGAAACCGCGAGGTCAAGCA 15 AATCCCATAAAGTTGTTCTCAGTTCGGATTGTAGTCTGCAACTCGACTATA TGAAGCTGGAATCGCTAGTAATCGTAGATCAGCATGCTACGGTGAATACGT TCCCGGGTCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCC GAAGCCGGTGGAGTAACCATTTGGAGCTAGCCGTCGAAGGTGGGACAAATG ${\tt ATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGGAAGGTGCGGCTGGATC}$ ACCTCCTTTCTAAGGATATATTCGGAACATCTTCTACGAAGATGAGGGAAT 20 ATTGAAAACTAGATAAGTAAGTAAGATTTTACCAAGCAAAACCGAGTGAAT AGAGTTTTAAATAAGCTTGAATTCATAAATAATCGCTAGTGTTCGAAAGAA CACTCACAAGATTAATAACTAGTTTTAGCTATTTATTTTGAATAACAATTC AAAATATGGTGGAAACATAGATTAAGTTATTAAGGGCGCACGGTGGATGCC TTGGCACTAGAAGCCGATGAAGGACGTTACTAACGACGATATGCTTTGGGT AGCTGTAAGTAAGCGTTGATCCAGAGATTTCCGAATGGGGGAACCCAGCAT GAGTTATGTCATGTTATCGATATGTGAATTTATAGCATGTCAGAAGGCAGA TTCCCTGAGTAGCGGCGAGCGAAACGGGAAGAGCCCAAACCAACAAGCTTG 30 CTTGTTGGGGTTGTAGGACACTCTATACGGAGTTACAAAAGAACATGTTAG ACGAATCATCTGGAAAGATGAATCAAAGAAGGTAATAATCCTGTAGTCGAA AACATATTCTCTCTTGAGTGGATCCTGAGTACGACGGAGCACGTGAAATTC CGTCGGAATCTGGGAGGACCATCTCCTAAGGCTAAATACTCTCTAGTGACC GATAGTGAACCAGTACCGTGAGGGAAAGGTGAAAAGTACCCCGGAAGGGGA GTGAAAGAGAACTTGAAACCGTGTGCTTACAAGTAGTCAGAGCCCGTTAAT GGGTGATGGCGTGCCTTTTGTAGAATGAACCGGCGAGTTACGATCTGATGC AAGGTTAAGCAGCAAATGCGGAGCCGCAGCGAAAGCGAGTCTGAATAGGGC GTTGAGTATTTGGTCGTAGACCCGAAACCAGGTGATCTACCCTTGGTCAGG TTGAAGTTCAGGTAACACTGAATGGAGGACCGAACCGACTTACGTTGAAAA 40 GTGAGCGGATGAACTGAGGGTAGCGGAGAAATTCCAATCGAACTTGGAGAT AGCTGGTTCTCCCGAAATAGCTTTAGGGCTAGCCTCAAGTGATGATTATT GGAGGTAGAGCACTGTTTGGACGAGGGGCCCCTCTCGGGTTACCGAATTCA GACAAACTCCGAATGCCAATTAATTTAACTTGGGAGTCAGAACATGGGTGA TAAGGTCCGTGTTCGAAAGGGAAACAGCCCAGACCACCAGCTAAGGTCCCA 45 AAATATATGTTAAGTGGAAAAGGATGTGGCGTTGCCCAGACAACTAGGATG TTGGCTTAGAAGCAGCCATCATTTAAAGAGTGCGTAATAGCTCACTAGTCG AGTGACACTGCGCCGAAAATGTACCGGGGCTAAACATATTACCGAAGCTGT GGATTGTCCTTTGGACAATGGTAGGAGAGCGTTCTAAGGGCGTCGAAGCAT GATCGCAAGGACATGTGGAGCGCTTAGAAGTGAGAATGCCGGTGTGAGTAG 50 CGAAAGACGGGTGAGAATCCCGTCCACCGATTGACTAAGGTTTCCAGAGGA AGGCTCGTCCGCTCTGGGTTAGTCGGGTCCTAAGCTGAGGCCGACAGGCGT AGGCGATGGATAACAGGTTGATATTCCTGTACCACCTAGTATCGTTTTAAT CGATGGGGGGACGCAGTAGGATAGGCGAAGCGTGCTGTTGGAGTGCACGTC CAAGCAGTAAGGCTGAGTGTTAGGCAAATCCGGCACTCATAAGGCTGAGCT 55 GTGATGGGGAGAGGAAATTGTTTCCTCGAGTCGTTGATTTCACACTGCCGA GAAAAGCCTCTAGATAGATAACAGGTGCCCGTACCGCAAACCGACACAGGT AGTCAAGATGAGAATTCTAAGGTGAGCGAGCGAACTCTCGTTAAGGAACTC

GGCAAAATGACCCCGTAACTTCGGGAGAAGGGGTGCTCTTTAGGGTTCACG

CCCAGAAGAGCCGCAGTGAATAGGCCCAAGCGACTGTTTATCAAAAACACA GGTCTCTGCTAAACCGTAAGGTGATGTATAGGGGCTGACGCCTGCCCGGTG ${\tt CTGGAAGGTTAAGAGGAGTGGTTAGCTTCTGCGAAGCTACGAATCGAAGCC}$ CCAGTAAACGGCGGCCGTAACTATAACGGTCCTAAGGTAGCGAAATTCCTT GTCGGGTAAGTTCCGACCCGCACGAAAGGCGTAACGATTTGGGCACTGTCT CAACGAGAGACTCGGTGAAATCATAGTACCTGTGAAGATGCAGGTTACCCG CGACAGGACGGAAAGACCCCGTGGAGCTTTACTGTAGCCTGATATTGAAAT TCGGCACAGCTTGTACAGGATAGGTAGGAGCCTTTGAAACGTGAGCGCTAG CTTACGTGGAGGCGTTGGTGGGATACTACCCTAGCTGTGTTGGCTTTCTAA CCCGCACCACTTATCGTGGTGGGAGACAGTGTCAGGCGGGCAGTTTGACTG GGGCGGTCGCCTCCTAAAAGGTAACGGAGGCGCTCAAAGGTTCCCTCAGAA TGGTTGGAAATCATTCATAGAGTGTAAAGGCATAAGGGAGCTTGACTGCGA GACCTACAAGTCGAGCAGGGTCGAAAGACGGACTTAGTGATCCGGTGGTTC CGCATGGAAGGGCCATCGCTCAACGGATAAAAGCTACCCCGGGGATAACAG GCTTATCTCCCCCAAGAGTTCACATCGACGGGGAGGTTTGGCACCTCGATG TCGGCTCATCGCATCCTGGGGCTGTAGTCGGTCCCAAGGGTTGGGCTGTTC GCCCATTAAAGCGGTACGCGAGCTGGGTTCAGAACGTCGTGAGACAGTTCG GTCCCTATCCGTCGTGGGCGTAGGAAATTTGAGAGGAGCTGTCCTTAGTAC ${\tt GAGAGGACCGGGATGGACATACCTCTGGTGTACCAGTTGTCGTGC}$

20

Sequence 3352

15

5

10

step.1001e05.cons.ok TTCATTACCTAATGCAGGTAAAATTTTCTTAATTGCCTGTGGCATAACTAC TGATTGCATAGTCTGTCTATAATTCAATCCTAAACTTCTAGCAGCTTCAGT TTGTCCTTTATCTACAGCATTAATACCAGCTCTAATAATCTCGGCAATGTA GGCTGAAGAATTTATAACAAGCGCAATAGTACCACAAATTAAAGCTGAAAT ATCTAACCCCAAAGCTGCAGTAGTCCCAAAAAATACAATAAACACTTGCAC AAGCATAGGAGTACCTCTTAAAAATTCTATGTATATACTTGCTATCCATTG TAATGGTCTAATTTTACTTATTTTTAATAAAGCTATAAAAGAGCCTAAAAT AGACCCCAATACCACACCTACTAATGAAATCAAAATAGTATTTTTAATTCC TTTAATGAAAAACTGCCATATTTAGAAATAAAATTTCCATCATCTTGCAT ATTATCAATCGTTTGATTTAGCTTATCTAAAAGTACAGGAGAGTTCTTAGG 35 AACAGCTATACATGTTTGTTTCTTTCTTCATTAAATTTAATCTTTGAAAA TGTTAGTTCTGAATTTTGTTTTAAATATGCCTCACCTACTGGTTTTTCAAC AACTACACCTGCTACTTTTCCACTTTTTAAAGATAATATAGCTTCAGGTAA TCTATTGAGTGAAGAAATTTTACTATCTTCAATCTCAGTTTGTGCAATTTT TTCTTGATCTGTCCCTTTTTGCGCAGCAATTTTTTTTGCCTTCAAAATCTTT ACCTGTTGTCATCATCATTCCAGGATGTGTGAACATTACTTTTCGTGCTTC 40 ATTAAGCATCATCCCCCATTCGGCTGTAGGTGCCTTAACACCTAATCCAAG GAACGAGAATCCTGACATTTGTAATATCATTGAGCACATCGAACTACTAGC AATAATCGCTATGTCAGTAAAGGTTAGTGGCAAAATATGTTTGCGAATGAT TGTTAAATCATTCATACCAATTACTTTGGCAAATTTTACATGATCAGCTTC AATATATTGCATTACACTGGTTCGAATCACGCGACAAAACCACGCCCATCG AGTCAATATAAACGCAATAATAATATTTTCTACACCCATGCCAAACAACGT AATCAATGCCAATGTCACCACATAGCTTGGAAAAGCTAACATCACATCGCA TATACGCATAATTATTGCATCGATATAACCTGGGAAATAACCTGAAATAAA CCCAAGTATCGCTCCTATCACAACGGAAATAATCAATGCGACAAATACATA TAACAAACTAGGTCTTATGGCGTATATTATCCGTGTTAATACGTCCCGGCC 50 TAAATGGTCTGTCCCCAACCAGTGAGACCAACTTATACCAGCAAATTTATT TGCTGTATCAATGTGATTCGCTTCATAAAATGTAATTAAAGGAGCTAAAAC TCCAAGCACTACGTAGATTGTAATAATAGCTATAGCAACTATGGCACCTCT ATCTTGAAATAGACGACGTAACACAATCATTTCATTGCCTCCCTTAAACGC GGATTTAATATTGCATTAATGATATCTGCAAGTGTATTAAAAAGAATAAAC AACACCGCGACAATGAGCACGTATGCTTGAATTACTGGAAAATCATGTTCA GTAATCGCTTTAACACTTAATGGTCCTAAACCTGGCCACGCAAATACATTT TCAATAACGACTAAACCTCCCATGATCATTGGTATCGACATACAAAAAATA

GATACGGCTACCTGTAATGCATTACGTAATACATGCAGCAACATTGTCAGA

CGAGGTACACCACTAGCTTTTAAATACAAAACATAATCTTCATTTAATTGT TCAAGCATAGATCGTCGGACATTTCTAAAATAAATTCCTGCATAGGTAATC GTAATAACAAAGACTGGAAGAATATAACTTTCTGGACCTGTGAGTCCTGAA GTTGGTAATAAATTGAGTTTTACAGATACATAAATAACTAATATTGAAGCT ACCCAATATGAAGGCAGAGCTGTTAGTAGAAAAGCTATTGAACGTATAGCA 5 CGATCTGTAAATCGACCACTAGTCAAAGCACTCACTATGCCTAGAACAACA GATGTTATCATCACCACCACACTGGAAATCAAAGTGAGTTTTAATGTATTC ATAAACGCTGGACCCATACGCTCAGATACTGGATCCCCTGTGATATAACTC GTTCCAAATTTAAACTGCAAGGCATCAACAAGCCAATTTTTATATTGCGTG AATATCGGTTGATTTAATCCATATTTTTCTTTAGTTTCAGCTATTAAATCT 10 TCTGTTATATTAGGTGTTCCTTGGGCATGTAAAATTGTTACTGCTGGATCT TCGTTTGTGAGATAGGTCATCATGAAAGTCATAAAAGTCACTACAATTAAT AATGGAATCATGAGCGTAAGACGTTTCATAATAAATTTAACCATGACGACG CTCCTTTATTTATATTGCATTTCATTAAATGGAAGCTCATATTGTGATTGT GTAAAGGATAATTTTTGTAAATCTTTAGGTGCAACAACAGTCATTCTGCCG 15 TGAGTAATTGGAATAAAGACACCTTCATCGTCAACTTGTTTTAAAATTTGC TGATACGCTTTTGAACGTGCCTTTGCATCTTGAATTTTGAAAGCATCATCA ATATCTTTGTACAGTTGTGTCTTATTCTTAATACCTAATGTTGCACTTTCA TATCCCGTTTTCGTCTTAAATGCTGCTAATGTACTCTGAGGATCATATAAT AGCCCCCATGTTTGATTAAACATTAAATCGTAATCACCAGAACTACGACGT TCAGCTACTTTATCTGACGTTTCTCCGTTTATATCTAGTTGTACACCTAAC TTCTTAAATTCTGCTTCTAAGAATTCAGCTTGTTCTTTTTGACTGGAAGAC CCTTTGTCATAATACAACTTAAGATTCAAATCTTTGCCCTCTTTTTGACGA ACTTGTCGATCTTTTGAAAGCACCCATCCAGCCTTGTCTAATAACGCTTGC ACATTTTTAGCAAATAGTTGTGTGGCTGGCTTTTCTTGTTTTGTCTAAAATA TCTTGAGCTATTTTATCTCTATTTACCATGTGACCTAATGCTTGTCTGACT GCTTTATCACTGACTGCACTATCTTTCTTACCAGAATTAACAACAAGCATT TTTGTATTCATAGCCTGGCTACGTTTTACTTGGTAGCTTCCGGTTTCTTTT AATTGTTTTAAACTATCTTTATCTAAGCTGTCTGTACCTCTATCATCTGTA TAAGCAAAGTTGGTTTCTCCTTTTTTCATTGATAAAAATGTTGTTTCTCCT GCAGGTTTAACTTTTGCTTCTACTTTATTTAATTTTGCCTTTTCTCCCCAA TATTGATTATTTTATTAAACTCTGCAGATATATCTTTTTTGTGTC

35 Sequence 3353 step.1001e06.cons.ok TTAAAGTAGGTCAACCAAGAGAAGAAGGAACTCAAGTAGGTCCTATTATTA GTAAAAAACAATTTGATCAAGTTCAGGATTACATTGATAAAGGTATCAATG AAGGAGCAGAGTTATTCTACGGTGGTCCAGGTAAACCAGAAGGATTAGATA 40 AAGGATATTTTGCGCGTCCAACTATATTTATTAATGTAGATAATCACATGA CGATTGCACAAGAAGAAATTTTCGGACCTGTCATGTCTGTAATCACTTATA ATAATCTTGACGAAGCTATTGAAATTGCTAATGATACTAAATATGGTCTTG CTGGCTATGTTATTGGTAAAGATAAAGATACATTGAGACATGTTGCTCGTT CAATCGAAGCTGGTACAATTGAAATTAATGAAGCTGGTAGAAAACCAGACT 45 TACCATTCGGTGGTTATAAAGAATCTGGCTTAGGTCGTGAATGGGGCGATT ATGGTATCGAAGAATTCTTAGAAGTAAAATCAATAGCTGGATATTTTAAAT AATTAGTAAATTAAATTAAATGTTGCAATTAAACAAAGCACGGAACTAATT TTGTTCTGTGTTTTGTTTTTTTTATGTTAAAATTCCTAAAATCATTTTGTAAT TAAAATGAAAATTTGCTATAGTTAGTCTAGTAATTAGAAGGTTGAGAAATA ATAAATATCGAGATAAGAATCTATTATTTGGTTAAGCTAACTATACGTTTA TTATTTTTGAACTTCGTAAAATAAATAATTAATGAAATGGGTGCAAGTCTA TGCCTGGTAGAGAACGAACATCTCCGCAGTATGAATCTTTCCACGAATTAT ATAAAAACAATACTAAAGAGCTCACTCAAAAAGCCAAATCTTTAAAAT TAACTAATTACAGTAAATTAAATAAAAAAGAATTGGTACTTGCCATTATGG ATATTCAACAAGATGGATATGGTTTCTTAAGAACCGTTAACTATTCTAAAG

GTGAGAAGGATATTTATATTTCTGCAAGCCAAATTCGACGTTTTGAAATAA

AACGTGGTGATAAAGTAACGGGTAAAGTTCGTAAACCAAAAGATAATGAAA AATATTATGGTCTACTTCAAGTTGATTTTGTAAACGACCATAATGCAGAAG AAGTCAAAAAACGTCCTTCACTTCCAAGCTTTAACACCTCTTTATCCGGAA GAAAGAATCCTATTAGAAACGCAATCTACAAATTATTCCACTCGTATTATG GATTTAGTCACACCAATAGGTCTTGGTCAACGTGGTCTTATAGTTGCACCA CCTAAAGCTGGTAAGACAAGTTTATTAAAAGAAATCGCTAACGCAATAGCG AGTAATAAACCGGAAGCGAATTTGTTTATATTACTAGTAGACCTACTCAGG AATTAAGAGAGCAAGGTGTACGTGTGAAACTGTCGGCTGTTAAGGATATTG TTGATGGTAAAGATATCGTACTTGTAGATGATTCGATTGTTCGAGGTACAA CGATTAAACGCATAGTTAAAATGCTTAAGGATTCAGGAGCTAACCGCATTC 10 ACGTAAGAATTGCTTCTCCCGAATTCATGTTCCCTAGTTTTTATGGTATTG ACGTATCTACAACAGCTGAACTCATCTCAGCAAGTAAGTCTCCTGAGGAAA TTAAAAATCATATTGGTGCAGATTCTCTTGCTTATTTAAGCGTTGATGGCT TAATCGAGTCTATAGGACTTGATTATGATGCGCCATATCATGGCTTGTGTG TAGAAAGTTTTACAGGTGATTATCCAGCAGGACTTTACGATTATGAGAAAA ATTATAAAAAGCATTTAAGTGAACGTCAAAAATCATATATAGCTAATAATA AACATTATTTTGATAGTGAGGGAAATTTACATGTCTAAAGCATATGAGGAA TCTGGTGTAAATATTCAAGCAGGATATGAAGCAGTCGAAAGAATAACAAGT CATGTTGAACGTACATTGCGCAAAGAAGTATTAGGTGGTTTAGGTGGATTT GGTGCAACATTTGATTTGTCTCAATTAAAAATGAAAGCGCCAGTTCTGGTA 20 TCAGGTACTGACGGTGTGGGTACAAAGTTAAAATTAGCAATTGACTATGGA AAGCATGACACAATTGGTATTGATGCTGTCGCAATGTGTGTAAATGATATT TTAACAACAGGTGCTGAACCTTTATACTTTTTAGACTATATTGCCACGAAT AAAGTAGTGCCAAGTACTATAGAGCAAATCGTTAAAGGTATAAGTGACGGT TGCGAACAAACCAATACGGCACTTATAGGCGGTGAAACTGCTGAAATGGGA GAAATGTATCATGAAGGTGAATATGATATTGCTGGTTTTGCAGTAGGAGCG GTAGAGAAAGAGGACTATATTGATGGTTCAAATGTTGAAGAAGGACAAGCA ATTATTGGTTTAGCTTCAAGTGGTATTCATTCAAATGGCTATAGTCTAGTT AGAAAAATGATAAAAGAATCAGGAGTTCAATTACATGATCAATTTAATGGT ATTCTTGAATTAAAGAAACATATTGATATCAAAGCGATGAGCCATATTACT GGTGGAGGTTTCTATGAAAATATTCCGCGTGCCCTTCCTAAAGGTTTATCA GCAAAAATAGATACACAATCATTCCCAACGTTGGAAGTCTTTAATTGGCTT CAAAAACAGGGCAACATTTCAACGAATGAAATGTATAACATATTTAATATG **GGTATTGGATATACAATTATTGTTGACAAAAAAGATGTTCAAACAACATTA** ACAACGTTACGTGCAATGGATACAACTGCATATGAAATTGGTGAGATTATA AAAGATGATGATACACCTATTCATTTATTGGAGGTAGAATAGTGACCAATA TAGCGATTTTTGCCTCAGGATCAGGTAGTAACTTTGAAAATATTGTAAAAC ATATCCAAACAGGGCAATTATCTGGTATCAATGTAACGGCACTGTATACAG ATAATGAAGGGGTACCCTGTATTGATAGAGCTAAAAATTTAAATATTCCAA 40 TTCATATTAACAAGCCAAAAGACTTTTCATCCAAATCTTTATATGAACAGC ATCTACTTAAATTATTATCCAGTGAGGAAGTTCAGTGGATTGTATTAGCTG GTTATATGAGACTAGTTGGCCAAGACTTATTACAAGCTTATGAAGGACGGA TATTAAATATACATCCCTCATTATTGCCTAAATTCAAAGGTTTAGATGCCA 45 TAGGTCAAGCGTTAGAAAGTGGAGATACTGTAACTGGATCAACTGTCCATT ATGTAGATAGTGGGATGGATACGGGAGAAATTATTGAACAACAGCAATGTG ATATAAAACCGGACGATACTAAAGAACAATTAGAAGATAGAGTAAAACATT TAGAATATGAACTTTATCCAAGAGTTATAGCTAAAATCATTAAATAGAGGA GTATCTTATAGAATGAAAA

50

AATTAATAGCCCAGTATAATAATAGTCAAGGTATTCCTACTCGTTATATTT CTCCTAAAGAAGCTGGATTAACTGTAACTGATTTACCACAGCAAGCTCAAA TTTTAGATTCCGCATATAATGAAATATACAAATTGCGTGATTATGATGAAA AGCTAATTATTCCTGGTTTTTTCGGAGTTTCAAAGCAAAATTATATCGTTA CGTTTCCACGCGGTGGTTCTGACATAACTGGTGCTATCATAGCACGTGGCG TCCGAGCCTCACTTTATGAGAACTTCACTGATGTATCAGGAATATATAAAG CTAATCCGAATATCATAAATAATCCTGAACTCATAGAGGAAATAACTTATA GAGAAATGCGAGAGCTATCTTATGCAGGATTTGGAGTTTTTCACGATGAAG CTCTACAACCTTTATACAAAGATCGAATTCCCGTAGTTATCAAAAATACTA ATCGTCCAAATGATAAAGGGACCTACATTTTACATGACCGTGAAATCGATT 10 CTAAAAATGTCATTAGTGGAATTAGTTGTGATAAAGGCTTTACTGTGATTA ATATTAAAAAATATTTAATGAATAGATTAGTTGGATTTACACGAAAGATTC TTGGCGTTTTAGAAGAATTTAATATATCATTTGACCACATGCCTTCTGGTA TTGATAACATAAGTATTATCATGCGTACAAATCAAATTCAAGGTAAAGAAA GTCAAGTTCTTAATGCCATACGCAAACGTTGTGAAGTTGATGAATTAAGTA TCGACCATGATTTAGCAGTACTAATGATTGTTGGTGAAGGTATGAATCAAG TTGTTGGTACAGCTAGTAAAATTACTCACGCCCTTTCAGAATCAAACATTA **ATTTAATAATGATTAACCAAGGTGCTTCTGAAATTTCAATGATGTTTGGAA** 20 ACATCACTTTCAATACATAAAGTAAATTTATTAACTCTGTATCAATGATGT AGAAATCTTTTTAAGATATCTTTTTAGTGGAACTATTTACTATAGCTTTTTT TAATACGCTGTTCACCTACTACCAATTTTAAAATATAGAATTGATAATAAC TAAGAGAATCAATAACAGCTTTATAATTACTAAACTGATGATATTTTTTGTT CACTCATTAAATCATACATAAGAACTATTTCTGGCTTAATATAATCTACGT TCCAACTTAAAGAATGAAAATATATTATTTTTTTTGGTAAACGTATATGAT GATCTAACCTAAATAGCCATTCATCATTTACAACATCATAAACAAATATTG TCATGACTTCTGTATCGTTTTTAAAGACTTTAACATGTTCAACATCTGATA AAGATAAAGATTCTCTTAATCTTTCATATAACTGATTATCATAATAGTGAA 30 TCGTAAATTCTTCAGGAATCACCCTGATAATTTCCAATAACTTTTTGCGCT CAACACAAATATCTATTTTCGATGGTAATATAAAATCATCATTCAGAAATA GATGCATCGCTACCTCGCCGTGAAATTTGAATAAATGAGATGATGTTTTCC TACCACCCCTATAGCAAGCGCTTTCACAATCAAATTATACATTTTCTTTTT CAATAAAATTATTTTCATAAAAAGTTACTATATCACTATTCGCTACGCATA TGATAGGGCTCTCATAAAAATTCACGAAAGTTTAATTGATATGTAAATATT TCGTCACTACTATTGATAAAACACATTTCCCCTTTCATTTCATTGAACT CAAAATTTAAGAAGTTTATAATTTATCTTGCAAATAGAATTTAATATTAAA 40 AGATTTGGGTGAGTAGTAATGTCTTTAACGATTATCTTATCTATAATAATT ATTATTTTGATTATGGCTATGGTTCTTAATCAAAAATTTATGAAAGATAGG GTTGAAACAGAAGAATATGCTAGAAATCAATTAATCTCTAAAAATTCAATT GACGTCGGTCAACACGCTTTTAAAAACGCCAAGCGTGAATTAAGAAAAATA 45 TTAAATAGATTTAAAGAAGAGGGTCGTTTACGATCATATACAATTGTTCCT ACGAGTAATTTGGCTGTTAAACATCCCCTTTTCGAATATGCACGTTCATTC GATTTTATTATCATTACTGATGTTGGTTTGATAAATGTGGATGTTAAAAAT TGGAACCAAAAAACGTTTTATCATTTTGATGTGCCAGATCAACATCTTGAA GAAGGACAACCACAATATAATACCGAAAAAGTTGTCGGTCATTATATTAGC AATCGATATCATAGTCAGTTTAAAACAACACGTTCTGGTGTCTATACTTTT ATTGAGATTTTACAGGATAATCGTGTAATATATGAATTTTATGACCACGAT CCATACGATAAAGCCGCAAACAATGCAAAAGCATTAAAAGATAAAATTGAA AATGATTATAATTTTAAAATTCAAAGTATTGGCGTCATATATTTTAGTGAT GGTAGCGTTAATATTATTGAAGGATCCGACGAGAGTGATAAATACGTCGAC ACCGTATCTACACCGATATCACTTGAAAAAGTAATTGAGGAAGCTATCGAT TTATCTAAGCACCCCCTTACTGATAAACAAATCGAAGAAATTTCTGAAAAC TTTAAACAACATATGAATAATTAAAATTCAAAAAGAGTTTGGGGCATGAAG TTATTTGACTAATAAAAAGACAATTTCTATTTATAAAATGTAGAAATTGTC TTTTTATTATATTAAATTGTTGAGCAACTACTTTTTTATATTCAT

Sequence 3355 step.1001f07.cons.ok

10

15

20 ACTTGAAAAATCAAATGCAGATCGTGACATTTTCTATTTAAAATCTATTGA TAACAATATTCGTGAATATCATATAGCAGAATAATCTAAACTCAATTCTTT ${\tt TGCTTTTTAATTTTTAAAATGAAAGAAACGAATTTACTATTCATACTTG}$ CCCCCTAAAAACAACGTCATATAGCTGTTTTTAGGGGGGTTTTTAATCCCAA GATAGTGCATTTCATCTATTATAGACCTCTACTATTTATATACTGTTTACC TACTATTCATAGATAAAAACGAATCCTATCCATAGATCAACATTGACAAAT 25 AACTAAAGCAATTCTATACAATAACGTATCTCAAGGTTTCGTTGTTTTTTT AGGTCTGTATAAATGTGTCATATCTATTTCTTCCAATTTTAATAATTTTAT TTTGTTGTCTAAAGTACCTCCGTATCCTGTTAAATTTCCATCTTTACCAAC CACTCGATGACATGGTATAAGTATAGAAATAGGATTACTCCCAACAGCACC TCCTACAGCCTGAGCAGACATTGCTGGCTTATTCATTGCTCGTCCTACTGT 30 TTTAGCAATCTCTCCATATGTTTTAAGTTCTCTATAACGAATTGTCTGAAG TTCATTCCATACCTTCTGTTGAAAATCAGTGCCTTTTGGTGCTAACGGTAC TTTTATCTCAGGATAATTCCCTTTAAAATACTCTCTTAACCACGCTTTAGT ATCTTTAAAAACATCTAACGTATCCTTTGTTTTAATTCCTTTCAAATGTTG CAATAAGCCAACGGGCGAGTCATACATTGATTGATACATATTTCTCCAACT ${\tt CCTTAAATGTGTATATCATTCTAGTCATATCCTTATAAACTAACGCATTCT}$ ATTCTGAACATAATTTTATAATATAGATAATTGCTATATTTATGAAATTGG ATAAACATTCGAATAGAATGTGATACACCATTAACGATAACTAAAATTGAA AAATGTCATCATTTATATATTAAGTCAATTATCGACAGGTCATACTTTAAG AAAGTCTGGAACTTTGATTTACGTCCCAGACTGGTCAAGATATAGAATTTA AAAGTTCATACCCTTTATTTTTTGCATATTCTAATGCGAGAATTTCTAAAA CATTAATGAACGCAGGTTCGTCTTTTACTTTTATATATTGAAAAGTGAGGC 45 CGTATTTATCTGCAGTAATGTCTTTTAAATGATTTGGATTTAAGTCCTTAT TTTGAGCATAAGCTTTTCTAAATTTAGTCGTACCTGTTTCTGAACGTGAAT TGTATTGTCCTAATTTTGTATACAAATCACTATTTATAGGTTGATGTGTGG ATGAATATCCTCCAGTTTGACCTACAAACACTGGTTTTTTCTCATCGAAAA TCACATAGACACCAAACTTATCCTTAACTTTTCCCCTATCCTCTGGTGTAA 50 ACGCCAAAGCCTTTTTATGATCGTACTTAAATAATTTTTTTAGTTTCTTCT GATTATCTTCTAGTAACTCATTTAATTTTTTGCTACCCTTCATACATTTAT TCCTCCCCATTAGCAATAAACTTATATACATACATTTTACATGTAGTATAT CACTTTTTAAAACTTTTAATCATTTTCAGTTTTAATAATTTTCACTATTAC CTCAGGTACTAAAAAACCTAAGATTGAAAACACAAAACCATTTAAAACGTA GCCTAAAATACTCCATGTGTGATTATAGCTCATCTGTAATTGTGTTCTCGT 55 TTGAGCTATACGGTCACGTTCAAATCCATGCACGAGTCCCGCAACTACTGC TGCAATAATCCCTGATGCATGGAATAATTCAGCAATCAAATAAGTGACAAA CGGCGTCAGCAATTGTATAAATGTAAACATGTTAATGTTCTCAATGCCACG

TCTCATTAATGTTAAACGAAATCTCACTAAAGCCATGCCTATAATTAGACC

AACAATAGCACCTCCAATAGAGGCAATCAAAAATTGTTGAATCGCATCAAA AATGGAAAAAGTTCCAGTAATCAATACACCTACGGCAATTTTAAATGAAAT GATACCTGCAGCATCATTAAGTAAAGATTCACCTTCAAGAATGGTCATTGA ACCTTTTGGTAAAACCTTACCTTTCGTGATTGCTTGTACCGCAACAGCGTC TGTAGGACAAAGTATAGCCGCAATTGCGAAAGCAGCACCTATAGGTAATTC AGGCCAAATCCAATGAATAAACAATCCTACGCCTATAACGGTAGTTATGAC AAGACCTAGAGCCATCATCATAACAGGTTTGATATACTTCCTTAAATGTAC CATAAATAATTCAGAATCAAAATTGAATTCAACTGGAATGGGAGTGAGGTA TAAAATCATCCCAAGGAAAATTTGGATAAATGCAAGAGGTACTTTAGGTAT 10 GAAAGTATGTACAAAGGAGCTCACAATAACTAGTGCGACAAATATGAGTAG AGTTTCAAATATCTCCACACTTTCACCTCTTTATTAATTTTAATTGCAAA TTTAGTCATCAAAACAATAAAAAGTTGCAAGGTTATCTACTGCAACACTGA AGAAGTGAAATAATAACAATAGAGTCATTCCTGTAAGGACATAACTATTAA 15 CAGTGAAATCAAACATGAACATTTAAATTAACTTATGAAGCTCGCTTCTTC GAACGAGAAAATGCTTATGTGTAATTTCATTGAAAAAATTAGTGACAACTG TCATTCACAATTATTCTTGTTTACAATTTTATCATTTATTAACCAGATTCT TAAATAAATAGCTTTTATATCATTAATATCTTCACCTCAGATATACAAAAA 20 ACTACTAGCATATAAAAGATATATCTTTTATATGCTAGTAGTTTAAAAGCT ATTTTTCTCGTCTTTCTCGTAGTTTTGCACGTTTTTTTAATTCTTCTG GCGTATTAAACTCTTTTTGGCTTAATAAGATAGTAGATTGTCTAGATGCAT CGTCTTTCCTGTACATATATGCACCATTACGGTAGGCCGCTCTACTTATCA AATGCATTCCAACCGGAGATGTAAGATTGATAAAAACTAGTGATAATAATA ATCTGACACTGAAAAACCTGAAACTATGCACTCATACATCATAACAAATT TGAATCTTTTATAGATGATTTCAACCTTACTGTAAATCAAGAGATGAAATG **GGCAAT**

30

Sequence 3356 step.1001g01.cons.ok TGGGCTGTTTCCCTTTCGAACACGGACCTTATCACCCATGTTCTGACTCCC AAGTTAAATTAATTGGCATTCGGAGTTTGTCTGAATTCGGTAACCCGAGAG GGGCCCTCGTCCAAACAGTGCTCTACCTCCAATAATCATCACTTGAGGCT AGCCCTAAAGCTATTTCGGAGAGAACCAGCTATCTCCAAGTTCGATTGGAA TTTCTCCGCTACCCTCAGTTCATCCGCTCACTTTTCAACGTAAGTCGGTTC GGTCCTCCATTCAGTGTTACCTGAACTTCAACCTGACCAAGGGTAGATCAC CTGGTTTCGGGTCTACGACCAAATACTCAACGCCCTATTCAGACTCGCTTT 40 CGCTGCGGCTCCACATTTGCTGCTTAACCTTGCATCAGATCGTAACTCGCC GGTTCATTCTACAAAAGGCACGCCATCACCCATTAACGGGCTCTGACTACT TGTAAGCACACGGTTTCAAGTTCTCTTTCACTCCCCTTCCGGGGTACTTTT CACCTTTCCCTCACGGTACTGGTTCACTATCGGTCACTAGAGAGTATTTAG CCTTAGGAGATGGTCCTCCCAGATTCCGACGGAATTTCACGTGCTCCGTCG TACTCAGGATCCACTCAAGAGAGAATATGTTTTCGACTACAGGATTATTAC 45 CTTCTTTGATTCATCTTTCCAGATGATTCGTCTAACATGTTCTTTTGTAAC TCCGTATAGAGTGTCCTACAACCCCAACAAGCAAGCTTGTTGGTTTGGGCT TCCGGGTACTAAGATGTTTCAGTTCTCCGGGTCTGCCTTCTGACATGCTAT GAATTCACATGTCGATAACATGACATAACTCATGCTGGGTTCCCCCATTCG 50 GAAATCTCTGGATCAACGCTTACTTACAGCTACCCAAAGCATATCGTCGTT AGTAACGTCCTTCATCGGCTTCTAGTGCCAAGGCATCCACCGTGCGCCCTT AATAACTTAATCTATGTTTCCACCATATTTTGAATTGTTATTCAAAATAAA TAGCTAAAACTAGTTATTAATCTTGTGAGTGTTCTTTCGAACACTAGCGAT TATTTATGAATTCAAGCTTATTTAAAACTCTATTCACTCGGTTTTGCTTGG TAAAATCTTACTTACTTATCTAGTTTTCAATGTACAAAGAATGTTAATAAA CATTCAAAACTGAATACAATATGTCACGTTATCCCTCATCTTCGTAGAAGA TGTTCCGAATATATCCTTAGAAAGGAGGTGATCCAGCCGCACCTTCCGATA CGGCTACCTTGTTACGACTTCACCCCAATCATTTGTCCCACCTTCGACGGC

TAGCTCCAAATGGTTACTCCACCGGCTTCGGGTGTTACAAACTCTCGTGGT GTGACGGGCGGTGTGTACAAGACCCGGGAACGTATTCACCGTAGCATGCTG ATCTACGATTACTAGCGATTCCAGCTTCATATAGTCGAGTTGCAGACTACA ATCCGAACTGAGAACAACTTTATGGGATTTGCTTGACCTCGCGGTTTCGCT GCCCTTTGTATTGTCCATTGTAGCACGTGTGTAGCCCAAATCATAAGGGGC ATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCA ACTTAGAGTGCCCAACTTAATGATGGCAACTAAGCTTAAGGGTTGCGCTCG TTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCA CCACCTGTTACTCTGTCCCCCGAAGGGGAAAACTCTATCTCTAGAGGGGTC AGAGGATGTCAAGATTTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCA 10 CATGCTCCACCGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTCAACCT TGCGGTCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTGCAGCACTAA GGGGCGGAAACCCCCTAACACTTAGCACTCATCGTTTACGGCGTGGACTAC CAGGGTATCTAATCCTGTTTGATCCCCACGCTTTCGCACATCAGCGTCAGT TACAGACCAGAAAGTCGCCTTCGCCACTGGTGTTCCTCCATATCTCTGCGC 15 ATTTCACCGCTACACATGGAATTCCACTTTCCTCTTCTGCACTCAAGTTTT CCAGTTTCCAATGACCCTCCACGGTTGAGCCGTGGGCTTTCACATCAGACT TAAAAAACCGCCTACGCGCGCTTTACGCCCAATAATTCCGGATAACGCTTG CCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTTCTG 20 ATTAGGTACCGTCAAGACGTGCATAGTTACTTACACATTTGTTCTTCCCTA ATAACAGAGTTTTACGATCCGAAGACCTTCATCACTCACGCGGCGTTGCTC CGTCAGGCTTTCGCCCATTGCGGAAGATTCCCTACTGCTGCCTCCCGTAGG AGTCTGGACCGTGTCTCAGTTCCAGTGTGGCCGATCACCCTCTCAGGTCGG CTACGCATCGTCGCCTTGGTAAGCCGTTACCTTACCAACTAGCTAATGCGG CGCGGATCCATCTATAAGTGACAGCAAAACCGTCTTTCACTATTGAACCAT GCGGTTCAATATATTATCCGGTATTAGCTCCGGTTTCCCGAAGTTATCCCA GTCTTATAGGTAGGTTATCCACGTGTTACTCACCCGTCCGCCGCTAACGTC AGAGGAGCAAGCTCCTCGTCTGTTCGCTCGACTTGCATGTATTAGGCACGC CGCCAGCGTTCATCCTGAGCCAGGATCAAACTCTCCATAAAAAATTATGAT GTTTGATTAGCTCATAAATACTAAATAGTTTGTAACGTTTCGTTACTGTTT 30 ATTGGAATTAACGTTGACATATTGTCATTCAGTTTTCAATGTTCATTTAGT AAAATCAATCTTTTTTATTGTACTATATTGTTTTAAGAAAAGTCAATAACT AATTGATATTACTTAATTAATTTAAAAGCTTTTTAACGATAAGTCTTTTTC ATACTTCAGGTTCAATCTTTTTGATTTTATATAATCCCCCAAAAATAAAAT ATTCTGG

Sequence 3357

40 step.1001h02.cons.ok TATAACTTCCGTGAAACTTTAGCAGTTTTTGCATCATCTTGTGTAATGGATC CAGTGATTGGATTAGCTAAACTTTGTTCAATAGTTCCACGCAAAAAGTCAC TATTTGCTTTTAAAAATTCCATTTCATCAAGATTTTTATCTAATTCTTCCG AAATATGATTATTTGTATTAACCATGTATCCCCCGTCCCTTCTATTAATAC ACGTCTCTTGATATCTTTTATCTCTTTTTCATTTGTTTTAAGTATTCTTCT 45 **GCATCTGTTTCAGATAGGTTTTGCTCTTTGATTAACACATTTTTAATCGCT** GCGCCATTTTCAATCCATCGATTAAATTGTTCACTATTTTCTGCAATTTTA TGTTGCACATACACTTTTTTATCAGTATCTCTAGAAAAAGCAACATCTAAT TTTGATAAAGTTCCATCTTCAAGCCATTCTTGCCATTCCGTTTGATACAGA 50 **AAATCTGTAGTGAAGTGTTGATCTCCAAAGAATAACCATGTATTTCCTTCA** AAACCTAGTTCCTCGTTCTTGCATATAGGATCTAAACGGTGCAACACCT GTCCCAGGACCTATCATAATCACAGGTGTTGATTCATCTTGCGGAAACTTA AAATTCGGATTTCGTTTTAAATAGATAGGAATTGTATCGCCCCTCTTGTATT CTCTCTGCAAATTGTACTGAACAACACCTGAACGTTCCCGACCGTGTGCT 55 TGATATCTAACTGCTCCAACAGTAATGTGAACTTCATCTGGTGTTGCTTTA TAACTACTAGATATTGAGTACTCTCTAGGTGGTAACTTTCTTAATAATTGA TGTAAATTTCAGGTTGTAGTTCTGTCGTTGCGAAGTCATTTAATAAGTCA ATCAAATCCCTTCCCTCAACGTAGTTTTGAATCCATTCTTTATCTTGAATT

TTTTCAGAAAGCTCTTCATTATCAAAAAATATCGCAGCATTTTCTATTAAC GGTTTTGTTAATTTAGTAATTTCAAAATGCGATGTTAATGCCTCTTCAAGA TTTAAAGTATCTCCATCCTCGTTAATTAAAACTTGTGTTTCTGGACTCCAA CCTAATGTGCTAATAAGTAAGTCTACGATAGCTGGATCATTTTGAGGCAAG ACAACTACACAATCTCCCGGTTCATATTCCTCACCAAAATTATCAAGTAAT AACTCAATATGTCTCGTCTCTTTGTCTGAACCTCTACCATTCAAATTAATA TTGGTCAATACTTCAGCATCGTAAGGATTAGACTTACTATATTTCTTTTCT TTTGCTGATTTTATAGATTCGCTAACAACTTGTTCACTTTCAGTACCAGCC GGTGTTGAATCAATCGTATTAATAACATTGGCCATCCACTTTTCAGCGTCT TCTTCATAATCAACATCGCAATCAGTACGATGATAAAGTCTTTCTGCCCCT 10 AATTCAGCCAAACGGTTATCAAAATCTTTACCAGTTTGACAGAAGAATTCA TAGGTTTGATCTCCTAATGCTAATACTGAAAATCTCACCCCATCCAATTTT GGCGCTTTACGTCCGTGGATGTATTCATGTAATTCAACAGCGTTATCTGGT TTCAAATTCTTAGGTTTAAAGTCATCCATTGATTTGAGCGTAACGTCATTT 15 CCAATATCAGATAAACGTTGTTCAAATATTTCTGCAAGTCCTTGCGCATTA CCAGACTCAGATCCATATAAAATTGTTATCGATCTAGCTTCCGGCTCAACT GAAGGTTCCTTTTCATGTAGCATCGCTTCTGTATTGTCATCTGAGTTATGT TGTTCTACAGAATCTGTAGATGTATTTGATTGTTGATTTGCCATCAGATAG 20 CCACTTAACCATACTTGTTGGTTAGATGATAAAGTGTGAAGCAATTCATTG ATTTGTTTAGCTTGCCCTTCCGTAAAAGGACTATTGGTAACACTTAAGTTC ATATGTCTATTTTGAAAGTTATTAATTATATCTTCAATTCTAGTATGTAC CATTTGTTATTTTCAGTAAATGTAATACTCAATTGATAACTAAAATCGAAA AGACAATTCATAATATCAAAGGGCAATACAAACTTTTATTACTCAAAATTA TCGTTACTAAATAAAGCTGTATCAGCTTTTAACAAACAACTCTTTATTTCT TATCGGAATACTATGTTTTGAAATTAAAATTTTTTTGACTATCTCTTATGGT TTATCAGCTACATGTAATCCACATTCAGTCTTACTAGAATTGGACCAACGA CCAGCACGTGAATCATTAGAATCAAATACGGGTGATGTACATGGAATACAA CCAATACTTGGATAATTTTGATCATGTAATTCATTATATGGTAAATCCTTA TCACGTATATAAGACCATACTTCTTCTTCTGTCCAATAGATTAAGGGACAC ACTTTAATTGACTTAAATCTTTCATCTTTGTTAATGAAATTTGTATGTGCT CGTGTTGGTGATTGTGCTCGTCTAAGACCTGATATCCAAGCTACAGCACCA GATAATACGTCTTCTAGTGGTTTAATCTTGCGTATGTAGCAACATTGGTTA GGATCATTCTTCCATAAAGCAGGATTATATTTCTCACCTTGTTCCTCTAAC GTAAGTTCCGGTTTTTTCATTTTAATGCGTAATTGCGGATATTTATCTTTC ACCCTATCTATTAAGTCATATGTTTCTTGAAAATGTAAATCAGTGTCTAAA ATACTCTCAGCACCAAAACTGCAAGAATAAACAATATCATTTTCATAAGTT TGATATGCCCATTTTAAAATCTCATAAGCACCTTTTGTCTCATCATTAATA TCTAATTCATTTATAAATGGATCGTTTTGAAAATTGTCATAAGTAATTCTT ACAAAACATATCAGAATTGTCAGAATAATTATGTTTAATACTTTAACTACT TTTATAACGAAAGTCAAGGTAACTCGAGAAATTATCGAAATAAAGATAAGA TTAATTTAAATTTTTTGTCCTATATGCTCATAAAAAATTTAAAGAGCCTAC 45 ACATATGATATGGCAGACTCTTTAATAATTTCTTTTACATTCGTTTATAGT GACTTCATTCAAAATATTACAAATGGAACAAGATTATTTTATTCTTTAATC CAAGAAGAATATAGGCATTTATTTTAATAATTGTCTTATTAATTTTTCCAT TTGGTTAGGATTATCACAAGGTAAAAATCGTTTAACAATATTTCCCTGTTG ATCTACTACAAATTTAGTAAAATTCCATTTAATTTGCGAACCAAATAATCC TGGTTGTTTACATTTTAATAATGTGTACAAAGGGTGTTCATGCTCTCCATT AACATTAATCTTAGCATGGATGGGGAAAGTAATACCAAACTTATATTTATA TACTCGATAAATATCTTTGATTAATTCTGGCTCCTGATTATTAAAATCATT GCAAGGGAAGCTCAAAATTTCAAGACCATACTTATGATATTTTTTATAAAG CATTTCTAATTTATTAAATTGATCATTCAGAGTACAATTCGTTGCAGTATT TACGATAATGAGCACTTTCCCTTTATATCTTTTTAGTAAATAGGTAGAGCC ATCATAATTCTTTACCGCAATATCATAAATACTCATTTAGATACACCTCTA CATCATTGCCAATTTCAATAAATCTATAACGCCACTAGAAGCTCCAGGAAA TGCAAAAATATTTTATTTAAGTCTTGTGCAGTAAGTTTTTGATTAATGAT

AAAGACTAGGAGATTAACCAAATCACCAGCGTCATTACCATAAATCTCTGC TCCTACTAAACGTTTGTGACTATCTA

5 Sequence 3358 step.1001h07.cons.ok TAGGCTAGTGGTACTAAAACACGGTCTTTATAATGTTTGAATCTGTTGTAA TAAAAACTATCTTCTCTATCTGCAAAATCTTTAGTTTCAGAGGTATCCTCC ATAAATGACCTAAATATAGGTAACTCTTCTTCAGATAAAAAGCGGACTTTA TTTTTTAAAACATCATTAGCACTTTTGTTTGCTAAATTTAGAACAGAATGA TATCGGATTTGTAATACAGGATCAAATCCTTTGTGGAATCCTTCGTGTTTA TATCCTAAACTCTCTAATTCATCAAAAATCCAATCATGACCTGCATTTCCA GTTATTTCTCCCTCATGATTTAAATATTGATATGGAAGGTATGGGTCAACT CTTAAATATAAACAATTATATTTTTTTTACATATTTACTCAATTCATTAAAG AAAAAATGTACAAGCTCTTTATTATTATAATCTATTACTGGACCGCGATTG GAATAAAAATATTTAAATATTTTCATTACAGGAACAGCTGTTAATAAACAA GCTGCAATCACTTCGTTATCATTATTTTTAATTCCAACTAAATGTGACTCG GTACCTTCAGCAACCTTTAATTCGTAATTACCTTCCATTTGTGTAAAATGA CTATATGTCATACGATCAGTAAAGTCACTAAATTCTTTAGCTGTCAAATTC 20 GTAAACTTCATCTTCATAACTCCCATTTATATCTTTATATCTATTTCTTTT TATTTTTAGAAAATAGGTCGTTTTACTTCACCTTTTATATTTAACATTTG GTTCATTTAATACTATTTATATTTCTAATCTAAACAAGTATACAATAGTTG TAGTGAAAACTAAAATATTATCCTGCAAAACTTTTATATAAAATTAAAAGT TAAATCTCGTTTATTCTGTTTATGTATAAAATAATATGGGCTAAACACTAA TGTCGCCCATATCACTAATTATTTACTATTATTTTAATTCATTTGCAAGTG CTTTACCAATGTCTTCACTTGATTGGGGATTTTGTCCAGTGATAAATTGAC CGTCTTTTCTACGTGAGATGTAAAGTCATCTTTCACTACAAAATTTGCAC CTTGCTCTTAATTTAGATTGAGTTAAAAATGGTACTTTATTTTCAAATC CCATTGCTTTTTCTTCACTATCAGTAAATGAAGTTATTTTGACACCATCTA CTAGATAGTGATTATTTGCATCTTTTACACCTACAAACGCACTAGGTCCAT GACATACTGAAGAGATTATTTTATTACTATTTTTAAATTGAAGTAAAATAT CAGCTAATTTCTCATTATTGGCAAAATCGTATACAGTACCATGTCCACCTG GTAGATAAATAGCGTCATACTCATCTGCATTTACATTTTCGATACTAGGTG TATCGTTTAAGTGTGACACGAATTTAGCATACTGATTCAGTGATTCATTAG AAACAGAATTAGGATCAAGATTTACTTTTCCACCTTTAATAGAAATAACAT CAACATTGATACCTTCTTCAGTCAATATATTATATGGTGCTCCAGCTTCTT CTAACCATAATCCAGTTTCTGTACCGTCTGTAAATTGACTTGTACTTGTTA AAACAAATAAAACTTTTTTACTCATGAATATATACACCTCTTCAAATTAAT TGTGATTATTATTTACCCACATTAGTAGTAGATTATTCAATAGTGATCATT 40 TAATTTTTTGAAGTTACTATTAGTATAGTAGTTAATTCATAGAGTAATCAT TGTTTTTGATATGTATATTTTTCATCTATTTTCTTAACTTTGATTTAACTT AATATTAATTTTTATAAAGAATTCAACGTAGTTCTTATTGATTTGATATAA GTGATAAATTCTTTCTTGAATCTATTTCAATACGTTTTACAATTCACTA CCAATTACAATACCATCTGCAACGGACGCTATATCTTTAACATGTTCAGGA TTTTTGATACCAAATCCAGCAACCACAGGAATTTTTGAAACTTTTTTATA TATTCAATTTTTCTCTTTTAAATCTGGATGGAACTCCCCACTGTTACCTGTT GTGGCATTCATTGTTACCGTGTAAATAAATCCTTCTGAGTTCTTTGCAATT TGCATAATCCTAGCATCACTTGCGGTCATGGCAATTAACGATATTATTTTA ACAGAATGATGATAAAAATCTTTTTTAAACTTTTTTGTAAGTTCGTAAGGT 50 AAATCTGGAATAATTAAACCATAAACACCAGCTTCATCACACTTATCCAAA AATAATTCTTCTCCATAAGCACTTAGAATATTATAATAAGTCATTAATACA TACTTAGATGAAATAGTATTTTTATTTTTTTATTAATTCATCAAAAATGAAT TTAATGTTTGAACCCTCGTCAATAGCGTTGCGCCCTGCTTTCATGATTATA GGTCCATCTGCAACAGGATCAGAAAATGGCACACCAATTTCAACAATGTCT 55 GCTCCATTCTCAGTTAATGTTTTTAAATGATGAATAAAATTTAAATCACCC ATAATATACGGAATGAATAATTTACTCATTTTGTTCACCACCGTTTTCTTT GTATTGTTTAATTGTTTCCATATCTTTATCTCCACGACCTGAAATAGTCAC AACAATAATTTCTTTTTCATCCATATTTGGCGCTAATTTTTCAACATAACT 10

20

Sequence 3359
step.1001h09.cons.ok
CACAACTGAAGCTTGTAAAACCTGGCTTAATAATTGTATTTGCTCCTACTTG
TTGATCGTATTGTTCATATAAATGATGTTTAGATGCTATTGTTGGGTGTTG
TAATAACTTGATAAATGTATCATGTACATCTATATTGCTGTAAATCGTTTTT
TGATGTATTATATTCCTTTTCTTCTCTCTTAAAATATACACTGGTGCCTC
ATCAGCAAGAGGTTGCACAGGAATGTCTGCATACACTTCATCATCGTATGT
AAGCACGAATCTATCAGTGTCTGTTACTTCACCGATTACTGCACTATCTAG
TTCGTGTTTATTGAATAAATCTAAAAACTTTTGTTCTGTACCTTTTTCTAC
AACTCTTTAAGCCCATGTTTTTTTATAGGTTCTGTTGCAAAGTAAAAAAATA
TAGCTAACCACTAATTTATCATGTCAGTGTTCGCTTAACTTGCTAGCATGA
TGCTAATTTCGTGGCAAAATCCGTAGATCTGAAGAGACCTGCGGT
TCTTTTTTATATAGAGCGTAAATACATTCAATACCTTTTAAAGTATTCTTTG

- 25 CTGTATTGATATTTTGATACCTTGTCTTTCTTATTTTAATATGACAGTGAT
 CTTGCTCAATGAGGTTATTCAGATATTTCGATGTACAATAACAGTCAGGTT
 TAAGTTTAAAAGCTTTAATTACTTTAGCCATTGCTACCTTCGTTGAAGGTG
 CCTGATCTGTAATTACCTTTTGAGGTTTACCAAATTGTTTAATGAGACGTT
 TGATAAACGCATATGCTGAATGATTATCTCGTTGCTTACGCAACCAAATAT
 CTAATGTATATCCCTCTGCATCAATGGCACGATATAAATAGCTCCATTTTC
 CTTTTATTTTGATGTACGTCTCATCAATACGCCATTTGTAATTAGCTTTTT
 ATGCTTTTTCTTCCAAATTTGATATAAAATTGGGGCATATTCTTGAACCCA
- ACGGTAGACCGTTGAATGATGAACGTTTACACCACGTTCCCTTAATATTTC
 AGATATATCACGATAACTCAATGCATATCTTAGATAGTAGCCAACGGCTAC
 35 AGTGATAACATCCTTGTTAAATTGTTTATATCTGAAATAGTTCATACAGAA
 GACTCCTTTTTGTTAAAATTATACTATAGATTCAACTTTGCAACAGAACCT
 ATATTTTGCTATAATTATAAATTAATTGCCTTTGTGTTAGTATTCCCTGG
 ATTACTAACACTTTGGTTAGCTGTTCTAAGTGATACAGGTGCAGCAATATT
 AGTTATATTAAATTCATTACGTTTATTAAAAAAAAATAAAAAAGCCTAAATAC

- 55 ACTCTCATTATTAATGTTATTATTTTATTTATACATAGTAAATGTAACTGT
 AAGACATTCTCACCTAACATGTTTTGTTATTACCTGACATTTACAATTTAC
 ACATTTCGCTATTATTACGCAAATTATTTTGATTTATAAATTATGATGACT
 ATAATCTATTCTAATTAATCTCTCCTTTTAGGCATAAAATAATCTACTTAT
 AATTAAAGCATCCACTATTTCAAAATTATTTGTAAATTGAGATTTATAAAGT

15 Sequence 3360 step.1002a01.cons.ok AACACAACTCTTATTAACTTTTGATAAGATTTTATAGTATTAAAGTTCCAT TCTTTACGAGTATTCATAGCTTCTAAATAATACCCAGTTATAATATCAAAT GCTTTCTTCTCAAGCTCTCTTCTCTATTTGAAACATGATAAGGAGCACCA CCTTTAGTAACCCACTTATCTTTTTTATAATTAGATAAATAGGCAGTATAT 20 AAAGAGATAATGGTCTCTTTGAAACCGAAAAATTTATACTCTTCTTTTAAA GAATCTTCACTAGCCACTATAGAAAATAGATGAGCGTTAAAAACTGAGGGG TTATAACTTTCTGATTTAGGTGGAGCACCACCACCACCAGAATTATCAATA GGCAAACCATCTTTATATTCTACTCCAAATAATTCTCCGATTTTAGCGCTC ATCTCATCAGCATCAAATTCTATACTTTTATCATTTTCTTTTTCAAACTGT 25 CTTAAATACTCTTCCTGATCTTTTTCAATACCTTTACGTGTTACTTTTATC GATCCACTAGGGAATTTGAATTCACCCACTGTAAAATCAGTCAAAATTTTT TTTATTTGTTCTTTAAATAAAAAAATGATGATAAGAAATAAAACTGGAAAA GAAAAATTCTGATACAAAAATTTAACGAAACTAAAAATTGATTTTAATATC TCATAAATACACTCCAAAACTTACCTCCAAAATTTTAATTGACTTTTAGAT 30 TTTATTGACGTTGATCCTCTGAACCCTTAACAAATCCAAAACTTGTCGAAT GGTTGGTTTAATAACTTACGCTATGCCGACATTCGTTTCAATCTGTTTGAT AAGTTAAAATTTCATATATAGTCGTGAATTTCAATGTTCTCTTTAAAACAA GGATCGTGAAAATATGCCTAAAAATCAAAACTAAATGATTCATTAGTCTTT 35 AATTATTTCTGTTACTTATAGGTGTGATAACCTTTTGTGCTTATTATTTT TTAGGTGAAGTTAATGTTAATATAGATTTATAACGTTTAAAATTGCATGTTT AAGATTTAAAATCTTAACTAAGAGATTTTTGTATTCTTTACATAATAAAGT CTTATGGGTAGTTGAATTGTATACTCTATTCATTTACTGAATTATATCAAT 40 AATTTTATTCATCTTATCTTTATCACGTGATACTACGCCTACAACTCTTTT ATAACTTTGTAATTTTTTTTGATATAAGTTCATACTTTCAAGTCTTGTAGT CAAAGATTGAGGAGTCAAAGTAATACCTTTATTTGCTTTGACATTAGCTAA TATAGTTTCATAATAATCAACATAATCAATATGTAACTTATCTTTCAAGGA ATAATTTTTAAGAAGATCATATGTATCACATGGCGGTGTTTGTATATAAAT ATTCTCATTTTTAAAGATTTTATACTTACTTGGTTAGTGTTTTTAAACTT ATTTTCATCACCATAAGCCACAATAAAGTCCTCAGTGTAAATTTCTTGTGT ATAGAGCGAGTTATTTTTTAAATGTGTAATATCACCAATAACAACATCTAT ATTATCTTTATAAATTTCCTCAAGTAAAATTGAAGTACTATTTTCAATAAC TAAAACGACACTTTCATTAATATAATTCTTTTCATGTAGCTTATATAAAGA 50 AAAGCTAGGTATGACTCCTAATTTAATTCTTTTATCTTTAGACTCACTTAT TTTACTTTTAATTCTTCAAATTGCTCGTTTATTTTTAAAAACGAATGATA AACAGCATTTCCTTTTTGAGTTAAAAAAATACCCTTAGAAGTTCTATAAAA TAACTGACAATCAAAATAATCTTCAATACTTCTAATTCTTTTACTTAAGGC TGGTGTACTTATATTCAATTCTCTAGAAGCTTTATTTAAGCTATTGTACTC 55 GACAACTTTAATGAAGTCCTTCATATAATTAAAATTCATAAAATCCCCCAT GGTATTAACTATTTGTTTATACCCATATTAATACATTACTTATTCATATAT TTCAAGTAAAGGTTTATCCTTCTATTGTTCCCAAAAATAGGCAACTAATCT

GGATTTTAACTATAGGTATGTTTGCCTTAGGTATGGATGCTTATATAGTAG CAGGATTAATACCTTCAATAAGTAAAAGTTTTAATAAAAGTAGCTCTGCTA TTGGGCAAGGAGTAACAGTTTTTACATTGTTTTTCTCTATCTCTGCCCCCA TTTTTCAACAATATTAGCTAAATCCCCAGTTAAAAAAATACTAATAATAG CATTCAGTATATTTACTTTAGCCAATATTATAACCGCAATATCTATGAACT ACATGCTATATATCGTATCAAGAGCAATCGCTGGTTTAGGAGCTGGCGTAT TCTCACCAATTGCAATAAGTGCAAGCAATCATTTAGTCTCCGAAAAGCATA AAGGAAAAGCAATCGCTTTTACAGTAGGCGGAATGAGTGTAGGAACTGTTA TAGGAGTTCCTCTGGACTAGAAATTGCCAACATTTCTAATTGGCGATTTG CAATGTTGGTTATTATTGTCATTAGTTTTATTGCATTAATAAGCATATCTA 10 TATTGATGCCTAAATTTAAAATAGAAGCTCCTCCAAATTTAAAAGATCGTT TTCAATTATTTTTAAACAAGCATGTACTAAGAGTTATTTCGGTTACATTAT GCGCTGCCATTGCTAGTTTAGGTTTGTATACTTATTTAGCCGATATTATTA AAACAAATACAGATACAAAAAATTTAACTCATTACCTTACAGCGTGGGGAA TAGGCGGATTAATAGGAAGTTTTGGTATAGGATTTATTATAGATAGATTTA 15 AAAATACAAGATTTGTTATGCTAATTATTTTAATTTTACTAGCATTAAGTT TTGGTTTAATTCCTATTTCTATTAACTTGCCTATATTAGGTTTAATTCCCT TTATTTTATGGGGAGCTATGGGATGGGCTACACAAGCTCCTCAACAACATA TATTATTGAAAAAACATCCTGAATATGGAGGCTCTGCTGTCGCTTTAAATA 20

Sequence 3361 step.1002a02.cons.ok

TTAATTAATTTATTTATTTAATTAATATTTTGTAAAATTAAATACAATAA 25 TACATATTTATGATATGTTTTTAAATGTAATAAAGTCAAATAAAAGGAGGA AATTTATGAAAAAGTTAATGATGAGCTTATTATGTTGCACAATATGTGGAA CTGAGTCGTTAAAGGAACTTCAAAATGAAGGTATTGTGTCTAAATCAATTA CTGAACAACAATGGCAACAAATGAAAGCTCAAGAGCGTAAAGATGAAGCAG 30 AATTTGAGAAAACAGCTGAAGTACAATGGCAGAAACAACAAAAACAAGATC GAATAGATCGAGAAAATCGTTCAAGAAAAAAGAAATTTCATTTGAAAAAAG GTGATTTTTTCATCACAAATAACGTAAGTTCAAAAGGGTTTACAGGTCATG CTGCAATATATACTGGAAAAGGAAAAGTTAAAGAAGCGCCTGGATATGGAC AACCTGTGAGGGTAAAAAGTTTTAGTGATTGGAAAAAGAGTACTTTGAAAA AAAGAAAAGGAAGTCCCAAACATCGTTATATCAAGGTTTATCGAGCACCAA AAAAATATAGAGGTAAAGCTGGAAACTATGCGAAATCTCATTTTAACGGTG TACCTTACAGTATAACGACGAATCCATATTCTAAAAGCGTTACATACTGTT CGAAACTTGTTTGGCAATCGTATTATTATGGTGCCGGACGATTATCAGTTC 40 TTCCGGTTGTTACATCTCAATTTATTATTGAGCCATATAGTCTCAATAAAT ATATTCCATCAAAAGCAGTTAGGTCTTATAAAAGAAGCTAAAAAATTAAGG TGTTAAATATATAATTTATACATTTTAATTACCCATAATCGTTAATTATGT TACTTTTCTTTGATTTCATCGTTTATTAGAACACTTTGATAATACATCATT TATGAACTTCAGTACATATTATGTGATAATCGACCATTAAAAAATACGATT AAATGATTAAAAGAACAATAAAAAAGCAAGCGACTAATAATATGATTATTA 45 ACTCTACTGTTTTTATCTTTGGTATTTCTGGAAGAAATGCATACTTAATCT TTATAAATAATGAAGCTGGCTTTCCATTGATATCAATACGATAATAACCTA TATGCCCACTTCCTTGATTATCAGATTTTCCATCTATAGAAATTTTATTTT GCTTTTTTAAGAATTGATACGTTTTATTATCTTTAGCAACCTCTTTTAATT 50 TCTTAGTATCTTCATGCTTAACATAATTATTTAATTGCTTTTCACTTGAAT GACACGCCCATGAATCAAAATAGAAAAAGTTTACAAAAATATAACAAATTG CTAAAAAATTATTATACCAATAACATAGAATACTTTTTTCATTAAAGTTC ACCTAGTTTTCAAAAAATTTTTATAATTTATGATAACTTAAAAGTGTATA TTTTTTCTACATAATATATTTAATTTTCAAGGAGATGTAAAAAAGTTGAAA AATTTCGCAAAACTAATTTTGGTGGGCATTTTAGTATCGGGGTCAGGGATA GCGAGTGTACAAACAAATATAACTCACGCAAAAGAAAGTCACGATTCAACT CCTCAAAATATTAAATTAGTGGGAACGTATGATACTTCTCAAGTTGATTCC AAAACGATGAAACAATTTAAAGAAATAGAAAAAGAAGATAATAATTTCCAC

ATAACTAAACATGGAAATAAAGTCGTTGTAGAAGACAAATTACCTAATCCA GAGAATAAAACTTCAAGTTATTCAGCTGATGGTAGTGCTGAAAATAATACA GGAAAAATATCGGATGGGATAACCTTTTATAGTGGTAAATCATATAACGGA CAACACGATGGTCAAAAAGTAAAAAAAAGGGACTCATGTACATTGTAATAGA TTTAACGGAACAAAATCTGATCATAGATACTGGTCAAAAAAACATCCTAGA GCTTATGTAGATTTTTATAAAAGTGATTGCTGGTATCACGCCAAAGCTTAT AAATGTTCTTCCTTGGGAAAAATGACTAAATGCGATGGTTTGAATAGTATT TATAGAAAAGGTGTCAAAGATTGCTCATCATGGAAAGGTAAACCCAAACAT AAAAACTGGCCTAAAACAGCATGGTATAGAAATTAAAAAATGAATAAAATC TTAAAAATATTAATAACTTCTATTATTGTTATCATTATTACCTTAACAGTT TGGACTTTTAGTGTGATTACTTATCAGAAACACAAGAGTGAGAAAATCATC AATCACGTTATAGAACGTAAGGGTTGGGATAAAAAAATAAAAAATGAAAAA ATGAGTTTTAATATTATAATGGGATATGCTGAAAAAGATATTGTTTTTAAA GATCAACCATATAGTGAGTATGAGTATAACGTGACACCAGCACCATGGACA 15 TCCTATTATAAATATCTTTTAGAATCAGAACCTTACAGAAAATAATATAAA TGTATAACATAATAAAAATAGAGATCATTCATGGACTTCTAGTAAGATTC AAGGTAGAAATACAGATGGTGGATTAGAATGGTCACCAGATCATAAATCAC TGTTAACTTTACTTCAAGCAACAGCTAAAAACTCAAATTTACGTTCAAATA TCAATAGTAATGAAAAACAGTTAGCAGAACGAGGGTCTAATGGGTATTCTA AATCTATAATTAGAGATGATGGCGAGAAATCTTATTACTTAACTCAAATC CTATTCAAGTATTAGACTTAGTAGAACCAGATAATGGTTACGGTGGACGTC AAGTCAGTCATTCTAACGTTATATATATAATGAAAAAATTCTTCTATCGTAA ATGGTCAAGTTCCAGAAGCTAATGGGGCATCCGCTTTTAATATTGATAAAG TTGTTAAAGCTAATGCGGCAAATAATGGTATTATGGGTGTTATCTATAAGG CACAATTATACTTAGCACCATACAGTCCAAAAGGTTACATTGAAAAATTAG GCCAAAATTTAAGCAATACCAATAACGTGATTAATGTTTATTTTGTGCCTT CTGATAAAGTAAATCCTAGTATAACTGTAGGTAATTACGACCATCATACGG TATATTCTGGTGAAACATTTAAAAATACTATCAATGTAAATGATAATTATG GATTAAATACAGTAGCTTCTACAAGTGATAGTGCAATTACTATGACCAGAA ACAACAACGAGTTAGTAGGTCAGGCTCCTAATGTTACTAATAGCACAAATA AAATTGTAAAAGTTAAAGCCACAGATAAAAGTGGAAATGAAAGTATTGTTT CTTTCACAGTAAATATAAAACCATTAAACGAGAAATATAGAATAACAACTT CATCAAGTAATCAAACACCAGTGAGAATTAGTAATATTCAAAACAATGCTA ACCTTTCAATTGAAGATCAAAATAGAGTAAAATCTTCACTCAGCATGACTA AAATTTTAGGTACAAGAAATTATGTCAATGAGTCAAATAATGACGTTCGTA GTCAGGTTGTAAGTAAAGTAAATAGAAGTGGGAACAATGCTACAGTTAATG TTACAACTACATTTTCTGATGGTACAACTAATACAATAACCGTTCCAGTTA AACATGTGTTATTAGAAGTTGTACCTACTACTAGAACAACAGTAAGAGGAC AACAATTTCCAACCGGCAAAGGAACTTCCCCAAATGATTTCTTTAGTTTAA GAACGGGAGGTCCAGTTGATGCGAGAATAGTTTGGGTTAATAATCAGGGAC CCGATATAAATAGTAATCAAATTGGTAGAGATTTAACATTACACGCTGAAA 45 TATTCTTTGA

Sequence 3362

step.1002a06.cons.ok

50 GGTGCGATATATACTTTATTTCAACCATATTTAAATACTATGATGCACTAT
TGGTTAATCAAATAAGATTATTATGAGAAAAAATAACAATTAAAATTACGTA
TACATAAGGAGCGTTATCATGTTAGACAAAAATCAATTGAAAAAGTATAAC
CAAGAGCATTTGTATGAATATGAAAAATTAATGAGTAGTAATGAAAAAGAAT
GCTTTAGATGAAAAAGTAGATCAGTTAAATCTTGCAGAAAATTCAAGATTTA
TATCAAGATTTATATGTTAATAGAAAAACTATTGATGATGATATCTTCTGTA
TCTGAAGTCAAATATGAAGTGAAATCACGACTCAATGAAGAAACGACAT
ACATATGAACAAAAAGGTTATGAGGCAATACGAAATGGTGAATTTGCTGTA
TTATTGATGGCTGGAGGACAAGGTACGCGTTTAGGATATAAAGGGCCTAAA
GGTTCTTTTGAAATAGAGGGTACGAGTTTATTTGAACTTCAGGCGCGTCAA

10

15

Sequence 3363 step.1002a08.cons.ok TTACCTCCATTTAAGATTCAAAGTGATATGTCCAAAATGGCTCTATTTTTA AGAAACTTTGTGCTTGACCATCTATTTCGGGACTAGCAAGTTGTTTTAAAA ATGGTCCTGTTTGTGAAGCATGTGCTTCAAAAGCTTTAAGTTTTATATCAC 20 TATATTGAGATATGTCATTTTGAATATCAGGTTCTCCAAGAATTTCTGATG CATCATTGCTAAACGCTACAAGTGTAAGACGGGGTCGATCTGATTCATGCA TGCGTCCAACTGTACGTACTACAGCTTCTGCAGTTGCCTCGTGATCAGGGT GAACTGCAAATTTAGGATAGAACGAAATAATTAATGATGGATTTGTTTCGT CAATAAGTGATTGAATCATTTGATCCATTTGATCGTAAGGTTCAAATTCAA 25 CAGTTTTATCTCTTAACCCCATTTTCCTTAAATCTGTAATCCCAATTGCTT TGCATGCTTCTTCTAACTCACGTTCACGTATAAATGGTAAAGATTCTCTTG TTGCAAAAGGAGGGTTACCTAGATTACGTCCCATTTGTCCTAGGGTAAGAC ATGCATATGTGACGGGAATACCTTTTTCAATATAACTTGCGATAGTTCCAG CAGACGAAAAAGTTTCATCATCAGGATGGGGGAAAATCACAAGTACGTGTC TTTCATCAGTCATGATTGGCAACCTCCTTTATATAGTAAATGGCTGTTTAC TTATTTCTATTGTAGCAGCCAATTGTCCTTCATAATTAAAACCTGCAATTA AAAATTCGTTATTCTCATTAACTTCATAGTGCGTAAGTCCTTGCACGTAAA CCCAGCCACCATCTTTTAATTTAAGACCTACACGATATGGATCTTTGTCGC CGCCTTTAAGTTGTGCATGTTCAAAAGTCACGACAATATTTCTTAAAAAATG TTCCAGCGTTAAATACGCGTTGATCGAAATGATTTGCATAAGCACCATTTG TTGTTTCAACGTGTAGGTAAACAGGCTGATTTGAGTAAGAAGTTAATAAAT CTAGCACTTCTTGTTCTTTAATTGGTTCCAACACGTTCACTCCCTTAAACT AAACAATATGTCAGTGACGGACTACCGATAAACATATTATTTACCAGCAAA CTCGTTTATCTATCTATTTTACTAGAAAGCTATGTATATTTGTACACGAAT 40 GCTCGATTTAATTAGGAAAAATTCAAGAAATAACGTTGAATATTACATATA GAGCGTTAATATGTTTAAAATCTTAATCATTTGTTACAGTATAATTTAAGA GATATAAAAGAGTAAGGCGTTAGTCATCAATCATTGTGATATTGAAATTAG AGGTGTTTGATATTGAAAATTATTAATTTAGATTCAAAAAATCTTGCGTCA TTTTATGTAGCATGCGAGTTGTTTAAACAAATACAGCAGCACCCTCATGCC AAACTCGGTTTAGCAACTGGTGGAACTATGACTGACGTATATCATTACTTA GTAAATTTATTAATCAAAAATAAAGTTGATGTGTCGCAGGTTGAAACATTT AATTTAAATGAATATGTAGGTTTAAAAGCAAGTCATCAACAAAGTTACCAT ACCTACATGAATAAAGTGCTATTTGAGCAATATCCTCATTTTGTTAAAAAT CACATTCATATTCCTGATGGCTTATCAGAAAATCTAGAAGCAGAAGCGGAA CGATATAACAATTTATTAGATGAAAGAGGGCCAATCGATATTCAAATTTTA AATAGTGAAACACATGTGGTGAACTTAACAGAAAGCACCATAAAAGCAAAT AGTCGATTTTTTGACAATGAAAAGGATGTTCCTAGACAAGCAGTTTCAATG

GGGGTAAAAAGTATTTTAAAAGCAAAAAGGATTATCCTACTCGCATTTGGT CCAAAGAAAAAAGAGGCTATAAGTAAACTGTTAAATGAACAGGTTACCGAA GATGTACCTGCGACCATTTTACACACACACCCTAATGTTGAAGTTTATGTA GACGATGAAGCAGCGCCAGATTGTTTATAATTATATATGTTGTTTTATATAC AAAATATTTTATATGTTTAATAAGTTTAGCGAAGGGTATACAACTATAAGC

AAAAGAGAATTTCCCAAAACGAAAGGATGAATTTCATTGGAACTACAATTA GCCATTGATTTATTAAATAAAGAAGAAGCAGCAAAATTAGCTCAAAAAGTT GGGTTACCTGCAGTTCAACATTTAAATGAAAATATTAATAATGCTAAAGTA TTAGCTGACTTGAAAATTATGGATGCAGCAGATTACGAAGTGAGCCAAGCA 5 GTAAAATATGGTGCAGATATTGTTACAATTTTAGGTGTTGCTGAAGATGCT TCAATTAAAGCAGCAGTTGAAGAAGCGCATAAACATGGAAAAGCATTGCTT GTTGATATGATAGCAGTGCAAAACTTAGAACAACGTGCTAAAGAACTAGAT GAGATGGGTGCAGACTATATCGCAGTTCATACAGGTTACGACTTACAAGCT GAAGGAAAATCTCCATTAGACAGCTTGCGTACAGTTAAATCTGTTATCAAA 10 AACTCTAAGGTTGCAGTAGCAGGTGGTATTAAACCAGATACTATCAAAGAT ATTGTTGCTGAAGATCCAGATTTAGTTATTGTTGGTGGCGGTATTGCGAAT GCTGACGATCCTGTAGAAGCAGCAAAACAATGTAGAGCAGCTATTGAAGGT AAATAAGATGAGTGAATTTAATAATTATCGTCTTATTCTTGAAGAGTTAGA TTCTACTTTATCTCAAGTAGATAATACAGAGTATGAACGTTTTGCTAATGA TGTTATAGGTGCAGATCGCATATTTACAGCTGGTAAAGGTCGTTCAGGTTT TGTTGCTAATAGTTTTGCAATGCGCTTAAATCAATTAGGTAAAAATGCCTA CGTTGTAGGTGAGTCAACAACACCTTCAATTAAAGAACATGATTTGTTTAT TATTATTTCAGGTTCAGGTTCTACAGAACATTTAAGATTATTAGCTGAAAA AGCACAATCTGAGGGTGCAAAAATTGTCTTATTAACTACAAATGCGGAATC 20 GCCAATCGGTAATCTTGCAGAGACGGTTGTTGAATTGCCTGCAGGTACTAA ACATGATGTTGAGGGTTCGAAACAACCACTTGGTAGTTTATTTGAACAGGC TTCACTTATATTCTTAGATAGTGTTGTATTACCTTTAATGGATGCATTTCA CATTAGTGAAAAAACAATGCAAGAGAATCATGCTAATTTAGAATAACTAGA 25 ATGAGAGATGAGCACTT

Sequence 3364

step.1002a09.cons.ok

AGTATCAGAATTGTCATTAGATGTGTCGTCATTACCACATGCGCCTAAAAT 30 TAAAGCACTACTAAAAATTAAGACTAAAAACTTTTTCATATGTAATTCTCC TTTACTATATCTTTATATTCAAACACTCGTAACGGCTCAAATTGAATAA CGTATTTGCTATACCGAGTGGAATAACCATATTTTTGTTTATAATGTTCAA TACTTTGTAGGACAAAACCTTCTGTAACCTCAAAAAAATTAGCAAGTTCAT ACAAGTCATGAATGCCTTGCAAAAATGCTTTTACAATATCTTTAAGAGGGA TTAACTTTTCATAGGCTAACCTACGTGCATAACCTTCAAATTTTCTATGAT TAAAACTACTTTGATCAACTATATTTCCATATGTAAGTTCGTTATGAGCGA ${\tt GTTCCTCTGCAAGTGTTTCAAGTTTGGAAGTAATAGGCAAGTTACGATTAAGGCAAGTTACGATTAAGGCAAGTTACGATTAAGGCAAGTTACGATTAAGGCAAGTTACGATTAAGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGTTAAGGGCAAGGTTAAGGGCAAGTTAAGGGCAAGGTTAAGGGAAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAGGGAAGGTTAAGGGCAAGGTTAGGAGGAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAAGGGAAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAAGGGCAAGGTTAGGGAGGAGGTTAAGGGCAAGGTTAGGGAGGTTAGGGAGGTTAGGGGAGGTTAGGGGAGGGTTAGGGAGGTTAGGGAGGTTAGGGAGGTTAGGGGAGGGTTAGGGGAGGGTTAGGGGAGGTTAGGGGAGGGTTAGGGGA$ TTAAAATCATATCTCCAAGCCACAAACCAGATAACCTTTTAGGTAAGTTAT CACATTCAATGACTTCAATATAGTCATGTTCAATTAACATATCTTCATATT 40 TCCCCACATAAAACACCCTTTATTTTCTTTTACTTCTTATGTATTCAGCGT AATCAAGAATTTCTTGCCATTCTTCGTCAGTTAAATCACCATCAAGATGCG CTGCACGATGTTGTGGTTGTTCCTCAACTTCTTCTATCCAACCCATCAAGA AAGCAGGGTTAACATTTAATGCAGTAGCTATACTTTCAATAGTATCATTTT TAAGATTTTTAATATTCCCGCTTTCATAACGTTGTACAGTAGCTTCAGTTT TACCGATTTTCTTCCTAGTTCAGCTAAAGTCATACCTTGTTTTTCTCTTG ATTGTTTCATTCTTTTGAAAAGCACATCGTAATACAGCTCCTTTTACTTT AACTTTCGTAAAATGCTTGACCTATTTTGTACAGCCATGATAAGATTACTT ACGTAATACGAAAGGTGGTGAAATGAAATGCCTATCGACACTAAACTTTTA AAATCAAAAATGGCTTTAAAAGGACACAACATCAAAACTCTTTCTGAAGAA ATAGGTGTTAATAGAGATACATTGTCCAATATGATACACGGAAGAACTAAA CCTTCATATCCAGTAATAAATGGAATTTATTTCGCGTTAGATTTAACACCT TTAACTTAAAGGAGGAATTCAAATGACTGAAAACAAGGTATTATACAGGGT TTTTGTAAAAGAAACAAAGAATAGTGGATATACATTAGTTTTTGAAAGTTT AGAAGAAGTCGCAGCTAATATAAAAAATGCAGAAGAATTTGACGAAATTAT AATAAGCCCCTCAAAAAGAGAGGCTCAAGATTAACGATACTAAAGATAATC TTTTAAATGTTGTGAACTGCAAATTACATTAGACCATGCGGCTTCACCAGT

CAGCTTACCAACGAACAAACTATCATCGCTATCAATAAACATTTTTAATTC GTTTCTAATAGTTTTAGCATCATTAGTTGAATTAATAAACCAAACTGATTT ATTGATTTTAGCAACATTAGGATAATCCTCAATACGCTCTATTAATTTTGG ATAATCCTTTTGGTTATTTAAATCATACGCAATAATAAAACTTTTCATATT TTCACCTCCTTTTATAAGGAGTATAGCAGAAAGGAGCATAAACAATATGCA AGATTTACAAGTATTTAATTTTGAAGATTTACCAGTAAGAAAAATAGAAGT AGATGGAGAACCATATTTTTTAGGTAAAGACGTGGCAGAAATATTAGGTTA CACAAGATCTGATAATGCAATTAGAAATCATGTTGATGATGAAGATAAGCT GACGCACCAAGTTAGTGCATCAGGTCAAAAACGAAACATGGTAATCATCAA CGAATCTGGTTTATACAGCTTAATCTTTGACGCTGCTAAACAAAGTAAAAA 10 CGAAAGTATTAGAAAGAAAGCTAAACGTTTTAAACGTTGGGTAACCGAAGA TGTTTTACCTTCCATTCGTAAAACAGGTACTTATCAAGTTCCTGATAATCC AATAGCAACTGTTAAAGCAGATGTTATTGATATCAAAGAAAATCAAAAGCT AGATGCAGGAGAATACGGATTGATAACAAAAACAGTTCATCAACGCGTTGC 15 TTATATCAGACAAATTCACGGACTACCTAATAATAAAGAAGTTAACAAACC TTTATATAGAGATATTAACAGTAACGTAAATACGATGGCTGGTATTAAAAC AAGAACACAATTAAAACAAAAACATTTCGATGACGTAATGAATATGATCAC AAATTGGTTTCCATCTCAATCAACAATGTATGTCATCAAACAATTAGAAAT 20 GGACTTTGAAAACGAAGTATAAGGAGTGATAGCAATGGAATACATTGGATT TGCGGACGCTATCGAGTTTGTGAAAATAAGTGGAATTTCTAAAAACGATTT ATTTGGCAAGAATCATAAACGCTACATCAAGATTAGACCGGCAATTGACTT TATAGAACAAAATTTAATGGTGTCAGAAACGTCACTTTAGAGGAGTTTTAC TGAAGAAAGAGGATATATCGAAAAACTTTTAGAAATGAAAGGAGAGAATGA TAAATGAAATATCTATTAAGTTACATGACGATGTTTATCGCAATGATCATC ACATTACTTTTAGGAGGTGGTTTCTTTACGGTAATAGCATTTTCAATGTTA ACACTTATCTTTAGCACATTCTTCTGGGAAAAGTGGCTTGAGATAACAAAA AAGACTGAAACTTGCGCCAACAAGTAACAGTCAGAATCTAATCAAAATATA CAACTTAATTTAATCAAAATATACGGAGGTAGTCAAGTTGAGACACAAATT 30 ATTAAAAACGGCCAATGATTTAAATA

Seguence 3365

35 step.1002a10.cons.ok TCTATTTCTTTAAAAATGTTTGTTTCTAAAGATTTTAGCGCACGTTTTTTA GTACGTACTTTTCGTGTGGATGTATTTTACCATCTTCTTCAAAACGCAAG ACAGGTTTCATTTTCAATAATGTACCTACCCAAGCTTGAGCTCCAGTGATA CGACCACTTTTTTGTAAATTTTTTAAATCATCAACAATTAAGTATGCACCA ATATGTTGTCTTATTTCAGTTAGTTCATTAATAATATCATCAGGTTTATAT CCCTTTTGTACCAATTGAGCAGCGTAAATTGCAAAGCTACCTTCAATCATC GCAGCAGACGCTATCAAACGTATGTACTTGAATATCTTCAACCATTTCA CCAGCTTGTGTTGCTGAAGGATAGCTTCCGCTTATACCACTTGATAAGTTA ATCACGATGACATCAGTGTATCCTTGTTCTCTTAATCTCTCAAAATTTTCA 45 ATCCAATCGCCAATAGCAGGTTGGCTTGTTGTTGGTATAGTTTTAGATGAA GCCATTTTTTTATAAAAATCATCTACAGAAAAATCATCACTCTCAGTGAAA TTCACTCCATCATCGAAAGTTACACTTAGTGAAGCGACTGGTATGTTATAT TGTTCTATTATATGTTGTGGTAAATAACTTGTAGAATCGGTCATAACTGCA ATCTTCATCTTAATACTTATCCTCCTCAATTATACTCATAGTTATGATACA 50 ATAATTTTTTAAAAAAGAAAATATCATCGTAATAATTTAGAACCTATCTTG TTACGTGTATAATAATGTTAGAAAACTGAATTGTAGGTGGCAAAAATAAGA TGGATAAATCCATAATTACTATTAAACAAGCACATTCAATTGAAAATGTGA TAAGTAAATCACGCTTTATAGCATATATTAAGCCTGTTTCGACTGAAAATG AAGCAAAAGCTTTTATAGATGAAATTAAAACAAAACATAAAGATGCAACTC ATAATTGTTCAGCCTATACTGTCGGACCAGAGATGAATATTCAAAAGGCAA ACGACGATGCCAACCAAGTGGAACAGCTGGCATCCCAATGCTTGAAATAC TGAAAAAACAAGAGATACACAATGTTTGTGTCGTCGTGACACGCTACTTCG GTGGTATCAAGTTAGGTGCAGGCGGTCTTATTAGAGCATATAGCGGCGCCG TGCGTGATGTGATATATGATATAGGTAGAGTCGAACTAAGAGAAGCTATTC

CAGTAACCGTTACGTTAGATTATGATCAGACAGGTAAATTTGAATATGAAC TTGCCTCTACTACATTCTTATTAAGAGAACAATTTTATACCGATAAAGTAA GTTATCAAATTGACGTAGTAAAAAATGAATATGATGCTTTTATAGACTTTT TAAATCGAATTACTTCTGGAAATTATGATTTGAAACAAGAAGACCTTAAAC TATTACCTTTTGATATTGAAACCAATTAAATAAAAAACACTATGCAAGTTA AAGCAACGCGTGCTTATGACCTACATAGTGTTTTTTTTATTATGAACGGTGA AATATTGGTCGATAATTATCATCTATTAATCCAGTAAATTCAACGATCAAC TCAATCGTAAAGACAATGAGAATGAACATCATAAGTGCACCCAACGGTTGG GATAAATAGAGGATAACACTAGATAAACTAAACATAATCGCTATTGAATAA 10 ATAAGTAAAACGGTTTGTCTATGCGTATATCCTAAAGCAAGTAATTTATGA TGTAAATGTGACTTGTCCGCTTGCATTATATGTTGCCCTTTTTTCATTCGA CGAATCATTGCAAATAATGTATCAATAAATGGCACCGCTAATATAACTATA GGAAAGAATAATGCAATAAATGTGATATTCTTAAAGCCGAGTAAGGATAAG AAACCGATAATAAATCCTATCATTAATGCACCACTATCACCTAGGAAAATT 15 TTCGCTGGGTGAAAGTTATAGAATAAGAAACCAAGTAAAGACCCTAAAAGT ACACAGCAAATCATGATAATAAATATGTTCGCTTGTAAAATAGCGATGAAT CCAATAGTCATTAATGCCAATGCTGAGACGCCTGAGGCAAGTCCATCAAGT CCGTCGATAAGATTAATAGCATTGGTAATTGCTACAATCCATATTACTGTA ATAGGAATGCTGAATATGCCAAAATGAATCGTTGGACCAATTGGCAATGAA 20 ATAAAGTCTATTGTAATTCCATAAAACGTAACAATTAAAGCTGCAACAATT CCAACCATATACATTGTAATTGCACCTAATATAAGCGGTTTAACCTCACGT GTTCCTCCCATCACTGAGATAGGTTTCGTATGTACTTTTCTGAAATTAGGA CGATCTACTAAATCTAATTTTTTTGATATTACAATAATAATGGGTGTAATT ATTAAACTGACTATCATAGTAAAAGCTATAAGTAATAGTGTATACATCAGT TCACCTTCATTGAATAAGTTGTACCTCACGCTACCACTGTTTTGTGATTTG CTTTCACTTTAGTTCTTTCACCTGAAGATTTTTGACTATTTTCAACATCA TCTTTTCTTAAAACATCATTGCCTTTTCCGGATACTTCGCTTAAATCAACG 30 CCATTTTTACGCGCATGTCGACGTGCAGATGGTGTTGCATTGATACGTTGC TGGCTATTATCTTGTGTATTTTCACTTCACTAGAATTCGGATTTGATTGT TTTGGCGTTTCTTTCTCTTTAGCTTCATCTTTTTGTGAATTTTATTATCTT TAGCAACCTCTTTTAATTTCTTAGTATCTTCATGCTTAACATAATTATTTA ATTGCTTTTCACTTGAATGACACGCCCATGAATCAAAATAGAAAAAGTTTA CAAAAATATAACAAATTGCTAAAAAAATTATTATACCAATAACATAGAATA CTTTTTTCATTAAAGTTCACCTAGTTTTCAAAAAATTTTTATAATTTATAT ATAACTTAAAAGTGTATATTTTTTCTACATAATATATTTAATTTTCAAGGA GATGTAAAAAAGTTGAAAAATTTCGCAAAACTAATTTTGGTGGGCATTTTA 40 GTATCGGGGTCAGGGATAGCGAGTGTACAAACAAATATAACTCACGCAAAA GAAAGTCACGATTCAACTCCTCAAAATATTAAATTAGTGGGAACGTATGAT ACTTCTCAAGTTGATTCCAAAACGATGAAACAATTTAAAGAAATAGAAAAA GAAGATAATAATTTCCACATAACTAAAC

45 Sequence 3366 step.1002a12.cons.ok GGGAGTGGGCATTTATGATTCAAATAAAAGGAGCAGTCGATTTCCCTATTT CATTGGATAGTACGACTTGGATATTTGACGATAGAAAAGTTACTATTGATG ATTTAGAACGTGGGGTATTTGATGGTACTAGACCCATCAACTTTGATGATA 50 TTGATTCTGAAATTAAATATAAAAAACGATCGGTTTTAGATGAAACATTTG TGATAAATATGACACCATTTTTCAAAAACGCCGAACCTATGGAAAATGCTA GCACAATAAAACTTTCTAATAAAGATTATTCCATCAATGTACCCATGGACT TATTACCTTATTTGTTCTTTCAATTTTCTAGTAATGGCAAACGTTTATATA GTGATAATGCTGTTGATAGTTTCATATATATTCCTGAAGAAGGATACTCTC ATCAATTTAAGTATGTCACACATATAGAGGTGATTTAATATGAGAAAGGTT CAATGTATTATTTGCGATACTAAAGTTTTTATTGATGAACATACAGTCGAG GCTAAACGCTTAAAAAATAATCCTATACGCACTTTCATGTGCGATGATTGT

AAAAGTAGACTCGATACACCTAAACAAAGCAAACGAGATTAAAATGATATA TTGGAAATTTCAAACTATCTCACATAAATAAAGAGTGTGGGACTTAAAGTT CCAAGATAAATAAAAAAGACAATTTCTATTGAAATTATATAGAAATTGTCT TTTTTATTATTTTTTGATTATTTTCAGCTCGTTGAGCTGTTACTTTTCTT CCTCGAACGGACATTCGAGTAAAACCCAAAATAGCCTTCATAAATCCAAAA ACAGGCTCCACATCAATTTTTCTTGACTGTAGATGCTTTTTTGTTTTTGGTT CTGAAAACTTTTTAATAATTTGGACTTTAAAATATTCCCAATTATAATTTT TCATTATTTTTTTTTTTTTGCTTTTGAATCGATTAATTGTTATATAAGAAGGC TTTTGATTTATGATAGACACATCATTCGAATATTATCATTAAGTATTTTT TCTATCTACGTCCTGAAAACACAGATTGGGTATAGGCATATAAAACTACTT TTAACATTATTTTTGGATGGTATGATATTGCATCACGATGATGTCTGAATT CAGTCTCTAGAATTGTTTCTACAATATCATTTACATGTCGTGAAATATCAT TTGTGGGGATAAGAACTGAAGTTTCCATTGGTAGAGTAAGTTGAGTCATGT TATAATCTTTATACATAAGGCACCTCGTTAATTTAGTTTAGTGATGTTTAT 15 TAAATTATACGAAAGGGCCTTATTTTTTTAAAGTATTTTAATGTAAAATTA CATATGAATACAAAGTATTTTGGCGAGACTCTTGAGGGAACAGGACAAGCT GAAGACTACAGGCTGAAGCTGTCCTCTAAGAAAGCGAGCCAACAATACGAA GTATTGTAAATAAAGAAGCCAGTAAATGAATTTATGAAAACTCATTTACTG GCTATTTTGCTAGGAATTATGTCTCAGGCTCTTTCCTACGATTAGTCAAGT 20 ACTTATAATTAAAATAAGCATTACTTAACTAAACCGTTCATTTTAATTTTT TTGAATAAGGTGTTAAACTATATTTGATTGTACGTTTGGCTAATGTGGTGA CATTTGATAATCGTACAATTTATGATTCATTACAAGATAATGAATTGTTTT TAATAATCGATTTATACAAGCAATGATGGCAGTCTTATGAGGTTTCTCATT AGGCTGCTTTCTTAGTTTGTAGTAATAATCGACGACATGATTGTCATAATG ATGCTGCCCTCTTATTATATTCATAATCACCCAAAATAAAAGTTTTCTCGC TTTTTTATTACCACGCTTGTTGATGGTATCTCTACAGTGTGTATGACCTGA TTGATATCGTTTGATATCAATGCCAACAAAAGCATTGAGTTGTTTATTTGA TTTAAATCGCTTAATATCACCAATCTCCCCAATAATCATAGCTGTGCTTAG CTTACCAATACCAGGTATCGAATGAATATTTTCAAAATAATCGAGTTGTTG 30 TGCTAATTGAATCATGGCATCATCTAATTGTTTGAGATGATGAATAGATTG TTTTAATTGTTGAATAAGTAAGCGTAATTTTTCGACTAGAAAGGAATGTCT ATCGACATTAGGATAGCTTTCTTGAGCAATCACCCTTAATTGAAGTGCATA TTTTGTAGCTTTATCCATTGACATTCCCTTATCTGTAGAATTGAATATATG TGTAATCAGTACCTCCTTGTCGATATCAAGAACCATGTCTGAATGAGTAAA GATTTCTGCGATGTTGAGTGCAATGATTGAATATCGACTACTAAACAATCT TTCTAAACCAGGGAATGTTTGATGGAGTAATTCAAGGATCTGAAATTTAAG TCGATTTTGTTCATTCTCGATTTCTAGATGAAAACGGACGCGTTCTCTTAA 40 CGGTCCTAAACAAGCAAGCTTATGAGCATCTGCCTGATCAGTTTTCCATGA TCTTAGAGCGCTCGTTTTAAATTTGGCTTCTAACGGATTCATTTGAATATA GTTAATTTGATTTACACAACAAAATCGTTCCATACCTCTTGAATAGATACC TGTAGATTCAAAAATGAGTTGTGGGTGGTCTAAGTCATTCAAATACTTGAG TAAATAATTGTAACCATTTTTATTATTCTGGATGAAAAACTCTTTTTGGAA TTTTCCATTTTTATAATGTGCAACTACACTACTTCTTTTACTAATATCAAC ACCTAAGTAATCGATAAAAAAACCTCCTTTGAATAATTGAGAAGCTAAAAA CTTTACTTAACCTTTCTCATTTCATTTTCCTATACACGGTTTCAAGAACCC AACATACTACAAACGAATTTCAAAAGGCGAGAGTAAAGCTGACTTGTTTTT TATACGGATTTAAAATCCAAGAGTCTGGACAGTCTACTTCTCTCTATAACT ATAAAAAATAGCTATGAAAAAATCTATCGTCATAGATTTCTTCATAGCTAA 50 TCTTAGTATGTTTGTAATATATTTAAATTATTGTTCGTCTTGCATTAATTG TTTAACTCTTTTTGCTTCTTTTTCACGGGCAGATTTATTAAGTATTTCTT TCTTAAGCGAATACTTTCAGGAGTTACTTCCACCAATTCATCATCATTGAT AAATTGTAACGCTTCTTCTA

55

Sequence 3367 step.1002b02.cons.ok CTAAAAAATTGATTGTATATAACTTACTTTGAAATTGATCGAATATATAGT

ATCTTTAATAAAATGCAGATATTGTGGCGTAGAATTTGAGAATCAAAAAAT GATTAATATAGTTTGAAGAAACTGAGCATAAGTACTAGAAAAATAGCCAGT AAATGAGTTTATTATGAATTCATTTACTGGCTTCTTTAAATAATGATTTAG ACAGTTTGCTTTCTAGAACTACTTTGAAATGCGTTATTTTCTTTAAGAAT ${\tt ATTAATATATAACTTGTGTTGCTAATGCTAACCTTGGTCAGAGTGTATTGT}$ 5 CATGCGATAGTTAAGATGAGATCTTTTAATTAAAACCTTGTTTTAAACATC GATGACAAGGTCTAATGTAGGAGGTGTAGAAATAATTTTCAGAATGATATA AATAAATCCATAAATGAAGATAAATCGAAACTATTTATACCGTAGGGGGGT ATATGTTATGGTATAAGTAACTTTACTATCACGTTTTCATTGGGAGGGGTT AATTTGAATAATAATGGTGAAGAGCATAATCATCAAAATCACATGAATCAT TCCAATCACATGCATCATGATAACCATGCCTCACATCATCATAGTGGCCAT GCACATCATGGAAATTTTAAAGTTAAGTTTTTTGTTTCATTAATTTTT GCAATACCTATCATTCTCTTATCGCCAATGATGGGTGTTAACTTACCTTTT CAATTCACATTTCCAGGTTCTGAATGGGTAGTGTTAATATTAAGTACAATT TTATTCTTTTATGGTGGTAAACCGTTCTTGTCTGGTGGTAAAGATGAAATT GCTACAAAAAACCAGGCATGATGACCTTAGTTGCTCTAGGTATTTCAGTA GCTTATATTTATAGCTTGTATGCTTTTTATATGAATAACTTTAGTAGTGCA ACTGGTCATACAATGGACTTTTTTTGGGAATTAGCAACCTTAATTTTAATT ATGCTATTAGGACATTGGATAGAAATGAATGCTGTCGGAAATGCTGGAGAT GCTTTAAAGAAATGGCAGAACTATTACCTAATAGTGCTATTAAAGTTATG 20 GATAATGGCCAACGCGAAGAAGTTAAAATATCAGACATCATGACTGATGAT ATCGTCGAAGTAAAAGCCGGAGAAAGCATTCCAACAGATGGTATTATCGTT CAAGGACAAACATCTATAGATGAATCCCTAGTCACTGGAGAATCTAAAAAA GTACAAAAAATCAAAATGACAACGTCATCGGGGGTTCTATTAATGGGTCT 25 GGAACAATACAAGTCAAGGTTACAGCTGTTGGAGAAGATGGATATCTTTCT CAAGTTATGGGACTTGTTAATCAAGCACAAAATGATAAATCTAGTGCTGAA TTGTTATCTGATAAAGTAGCGGGTTATTTATTCTACTTTGCTGTAAGTGTT GGCGTGATTTCTTTTATTGTCTGGATGCTCATTCAAAATGATGTTGATTTT GCATTAGAACGTCTTGTAACTGTGTTAGTCATTGCTTGTCCACATGCTTTA 30 GGCTTGGCAATACCTTTAGTCACTGCACGTTCTACTTCAATTGGTGCACAT AATGGTTTAATTATTAAAAATAGAGAGTCTGTAGAAATAGCTCAACATATC GATTATGTAATGATGGATAAAACTGGTACTTTAACTGAGGGTAACTTTTCT GTGAATCATTATGAGAGCTTTAAAAATGATTTGAGTAATGATACAATATTA AGCCTTTTCGCCTCATTAGAAAGTCAATCTAATCACCCATTAGCTATAAGT ATTGTTGATTTTGCGAAAAGTAAAAATGTTTCATTTACTAATCCACAAGAC GTTAATAATATTCCAGGTGTCGGATTAGAAGGTCTAATTGATAATAAAACA TATAAAATAACAAATGTCTCTTATCTTGATAAACATAAACTTAATTATGAC GATGACTTGTTTACTAAATTAGCTCAACAAGGTAATTCAATCAGTTATTTA ATTGAGGATCAACAAGTCATTGGCATGATTGCTCAAGGAGATCAAATTAAA 40 GAAAGCTCAAAACAAATGATAGCTGATTTACTATCAAGAAATATTACACCA GTCATGCTTACAGGTGACAATAATGAAGTGGCACACGCTGTCGCAAAAGAA TTAGGTATTAGTGATGTTCACGCACAACTCATGCCAGAAGATAAGGAAAAGC ATTATAAAAGATTATCAAAGTGACGGTAATAAAGTCATGATGGTCGGAGAC GGTATCAACGATGCGCCGAGTCTTATAAGAGCCGATATTGGTATAGCAATT 45 GGTGCAGGCACAGATGTTGCAGTGGATTCAGGTGATATCATACTTGTTAAA AGTAATCCATCAGATATCATTCATTTCTTGACTCTTTCAAATAATACTATG AGAAAATGGTGCAAAACTTATGGTGGGGTGCAGGTTATAATATTGTTGCT GTACCTTTAGCAGCTGGCGCATTAGCTTTTATCGGGTTAATATTATCACCA GCTGTAGGAGCAATATTAATGTCTTTAAGTACAGTTATAGTAGCGATTAAT 50 GCTTTTACATTAAAATTAAAATAAAAGAGGTAAACCTTATGTATAATAAAG TTTTTGCAATTTTAATTATAATTTTTTCCATAATAATTATTGCGTCTAATG ATACTTTCGCAGAAAGTAAGAATGATATGATGAATATGAAAGAAGATAAGA TAAATTCTTCACAAGGAAAAAATGAAATAATATTTCCTAAAGTTGCAGAGT CAAAAAAAGATAACAATGGTTATAAAAATTATACATTAAAAGCTCAGGAAG 55 GAAAGACAGAGTTTTACAAAAATAATTTTTCTAATACTCTAGGCTACAATG GAAATTTACTTGGACCAACTTTAAAAATTAAAAAAAGGAGATAAAGTTAAAA TTAAGTTAATAAATAACTTAGATGAAAATACAACATTTCATTGGCATGGAT TAGAAGTAAATGGAAAAGTGGATGGAGGGCCTTCTCAGGTTATAAAACCAG

10

15

Sequence 3368

step.1002b04.cons.ok TGATAAATTAGTGGTTAGCTATATTTTTTACTTTGCAACAGAACCGTTTTT TGTATATAGTCTTATAGGAATTGCTATATTTTTTTGTGCCGGTAACGATTAA TAATAACTCTTCAATTTTATTAGATCATTTTGTCACATGGATAAGTAGCGC ATTACCTCTTTTAACTAAGATATTCATAATGATTATCATTATACTAGGTGC TATTTATCCATTTATTAAAGGGACATGGAATCGGAATACCGTTGAAACAAT TTTTAGTTTATTTAAAGTTTTTGGGAGTCATTATAGGCGTTTTGTTAATTTT TAACTATTTGGTAATTCCGGTAGGATTAACAGTACCTGCAGGAGGCGCGGT ATTAGCTTTATTAGTAGGATATGGCTTATTAGAATTTGTAGGTGTTTATGC GCAAAAAATTATGTACCCGATATGGAAAACGCCTGGACGTTCAGCAGTTAA TGCTTTAGCATCTTTTGTTGCTAGTTTTGCTGTGGGTTTACTTATAACGAA 30 TAAAGAGTATAAAGAAGGTAAATTCACGGAAAAACAAGCTGTTATCATAGC AACCGGCTTTTCTACAGTTACTGTAGCTTTTATGATAGTTATTGCTAAAAC TACTGCTGCAGTAACAGCTTGTACAGTTAGGATTTGGCCTATCAGTAAAAT 35 TAGCAACACATATTATGATCAGCCATTTATAGAAGAAGATACAAGCGAATT AAAAGGTTAAAAAAAGCTACTTTTTGCATGGGAAAAAGCAATGGAAACTGT TCTGATTATGACTATGAATATCTTACCCACCATATTATCAATAGGTTTAAT TTGCTTGTTACTCGCAGAATATACAGTGATTTTCGATTATTTAGCATATGT 40 TTTTTATCCATTAACTTGGATACTTCAAATACCAGATTCCTTTTTAACTGC AAAAGGCGCAGCTATTGGTATAACAGAAATGTTTTTGCCTTCATTAATTGT AGTCGAAGCACCATTAATCACTAAATTTATAATTGCTGTTACTTCTGTTTC TACAATTATATTCTTTTCAGCTAGTGTGCCTAGTATTCTCTCTACTGATAT ACCCATCCGCATAAGAGATTTAGTGGTTATATGGTTTGAGAGAACTGTATT 45 TAAAATATCGTATATAAAAAAATCACCTTTTTTTACAAATATTTATAGTGAT AAACTCAATTATATTTTAGGGTACACCCTAATCATACAAAATGAATTGTT GAAACTAAATGATTGTGGGCTATGCGCGGGTATCATCAGTAGATCAAAATT TAGAAAGACAACTTGAAAATTTAAAAACATTTGGTGCTGAAAAAATTTTTTA CAGAAAAACAATCAGGTCAATCTATAGAAAACAGACCCGTCTTTCAAGAAG CATTGAACTTTGTGAGAATGGGAGATCGTTTTGTCGTGGAATCAATTGATC

TTGTAGAAATGTTAGAGGAAGGCAAAGCGATTAGTAAAATTGCGAAAGAAG TGAATATTACAAGACAAACTGTTTATAGAATTAAACACGATAACGATGATT TGGGTTCTGTTGCAAAGTAAAAAAATATAGCTAACCACTAATTTATCATGT CAGTGTTCGCTTAACTTGCTAGCATGATGCTAATTTCGTGGCATGGCGAAA ATCCGTAGATCTGAAGAGACCTGCGGTTCTTTTTATATAGAGCGTAAATAC TGGGGTGTTAAAATATTCGGAGGCATTTGACTTAGTTCACGAGCATAATTT ATAGATTCACCCAATTGTTGGCCTTCGTTAATCTTCGTTTCTATATTATGC TCTGTCGTTTGTATATAGACTCTACCTTGATATGGAGGCTTTTTATCCGAT TTATAATGGTCAAATTCAAAGATAGATTGTGCACTTTGTAAACCTAAAGTT 10 TGACAAATTTCAACAATGTTACCATGTTTAGATTTGAAAGTATCTAACAAT AATTCACAATCCGTGACATGAACGTCTTTTAAATATTGAAACAACTGACCC CAAACTTTTAATAAACGTTGATATGATAAGATTTTTTAAGTTTCCTAGTCCT ACAGTTAATAATCTTTTAGGCTTTTCATCAATGTAGATAAGCGTTGATGAT 15 ATTTTGCCGATTGAGCTATTGATGACATGATATTGTTTTAATGTTTCTAAT CGTTCTTTAATTAACGTCTTATGATATTTTATCTCACCTAATTGGTTGAGG TGATCTGGCACACCCACCACAATCGTTTCAATTGATGTTGGCGTATCTTGA TTAATAAAAATTGCATATAGATCCTCCGTTCCTCATTCTGTATAACAATA ATTATAAGTTATGAACACCCCAATATTAAACAAAACCACTTTTTACTCTAA CTCTAAATAAAAACCACTTTTGTTTAATTAAGTGTGAAATTCTTCTTCATC ATATTTTTCTGATAAAAATAACCTGGGACAATCATTTTGTCCCAGGTATT ATTAAAATATAAACAATCGATGACAAAATTAATTTGAGTTGTTTACATATT TTAACTCTAGTCATCTTTGCTAAGGGAGACAACAAATTATGTCTCGTACCT TTTTATTGTTTTTTTTATATCTATTACTTGATTAAAATTTTCCTTTTTTAAA GGCTAATCCTATGCCACCAAGTTTGTAAATCGCACGAGTATCAATAACTTT CTTCAAGAATGCTGCTTTTTTACCAGCGAT

Sequence 3369

step.1002b05.cons.ok

30

CAATATGTTCGAGTAATGACTTGCGCGCATCGTCTTGCTGTTTCAAATATT CAAATAAAAAGCCAGTCCATACCCAAATTGTTTTTGTATTAAGAGCACTAC AAGGCGTATTTGCTGCATCATTTTCTCCTGTAGTCATGACTTATACAACTG AAACTTATCCACGTGTGAAACGTGTAACAGCAATTAGTTTCATCAGTACAA 35 GTTTTATGTTATCAGGTGTGTTAGGGCAAAATATGAGTGAATTAGTCGTAA GTTATTTGAATTGGCAGTGGGTATATTTTATTTTAACAATCTTATATTTAA TTCTCGTATTAGTTATTATAAAAATGTACCTGAGAGTCCACATAAAAATC CTGATATTCAACTCATTAAGTTTTTCAATAACTTTAAAGATTTCAAAGACA ATCTTAAAGTTTTCTATTGTTTATTTATTTCACTAACATTACTGATTATGT TTATAAGTATGTATGATATTTTAAATGAATATGTCACATCACACCAAGTTG GGGGAGACATGTCTGTGTCCTCAATGATGAAATTGTTCGGTGTGATAGGCA TAGAAACTAAAGTAATCATTTTTATTTAAAAAGTAGATTTTAATTTTTATAT ACATATTAGCGTTGTGGAATAGGTGGAAAGGGGGGAGTCAAAAGGTGAAAAC GCTAATGATTAAAGCAATGGGGACGGTGATACGTTTATCGATTGAGCATCA 45 ACATCCGGATACATTACTTCAAGAAGCTGAAATAAAAATTCGTGCTTGGGA **ATCACAATTTAGTGCTAATGATCCGAAATCAGATTTGATGAATGTGAATCA** GCATGCAGGTATCGCACCAGTCAAGGTTAGTTCTGAGATGTTTAACATGAT ACGTTTTGGTTACGAAACTACATTATCTTCTAATTTTAAGATGAACATTTT GATAGGGCCACTAGTCAAATTATGGAAAATTGGTTTTAAAGATGCATTGAA ACCTAAAGAAGAGGATATACAACGTGCTTTATTGTGTATGGATCCTGAAAA TCTTGTTCTAAATTCAAAAACACATGAAGTATTTCTTACACAATCAGGAAT GGAGATTGATTTAGGAGCTATAGTTAAAGGCTATTTTGCTGATCAATTACA GCAATACTTTTTAGCTCATGGTGTATCTTCTGGCATTATCGATTTAGGTGG TAATGTTTTAACAATTGGTAGACAACCCGAAACATTAGAAAAATGGCATGT AGGTGTACGTAATCCATTTCATAAGGATACACTACCACTCGTTACATTAAG 55 CGTAGAGCATCAATCAGTTGTCACATCAGGTATCTACGAACGCTACTTCAT ACAGGAAAATCAATTATTTCATCATATATTTGGATTCAACAACAGGTTATCC TGTAGATAATGATATCGCTAGCGTGACAATCATATCTGATCATGGGATTGA

TGAATTATTAAATCTCATTGACGGTATTGAAGGCATTATTGTGACAAGAGA TGGAAGCGTTTTAATGACTTCGAAAATGCAAAAGTATTTATAAAAATTTAA AGAATACTCATGAAGAGTATTTTATTTTTAAGTAATAATGTGAAAATATTC ACAAAAAACTAGGAGGATTTGCTATGAGTAAGGAAATATTCGATACTTTT AAATTTAAATGTGGTGCCGAATTAAAAAATAGAGTATTAATGGCACCCATG 5 TATTATCAATTTAGAGCTGGTGATGCTTCAGCAATCATTGTTGAAAGTTGT TTTGTTGAAAATCACGGACGAGGATTTCCGGGAGCTATAGGTATTGATAAT GATGACAAAATACCTGGACTCAAACGTTTAGCAGAAGCGATTCAAGCTAAG 10 GGATCAAAAGCGATTTTGCAACTTTATCATGCCGGAAGAATGGCAAATCCT AAATTTAATGAAGGAGAGCAGCCGATATCTGCGAGCCCCATTGCAGCATTA ATGATTGATGACTTTGGAGAGGCTACACGTCGCGCTATAGAAGCGGGGTTT GATGGTGTCGAAATTCATGGCGCCAACACATACTTATTACAACAATTTTTC 15 TCTCCACATTCTAATCGGAGACAAGATTCATGGGGAGGCAGTCGTGAAAAA CGTACACGATTTCCAATCGAAGTTTTGACAAAGGTTCAACACGTCGTTGCT GAAAAAGAGGCTTCTCATTTTATTATAGGATATCGATTCTCACCTGAAGAA ATTGAAGAACCAGGCATACGTTTIGAAGATACCATGTTTTTACTAAATACA TTAGCAGAATATGAACCTGATTACTTCCATATATCAGCAAACAGTTATCAA 20 ATCAAAATGCAAAGTGCACAGTTGGCAAAAATTCCATTAATTGGTGTAGGT **AGTATTGCCCAACGACAAGATGCAGAACATGCCCTTGAACTAGGATATGAT** CTTTTAAGTGTTGGGAAAGCCTATTTAGTGGAACCACAATGGACAGATAAA ATTTCACAAAACGAAGAAGTAGAACAATTTGTCGATATACATGATCAGAAA GTACTTCACATACCATCCCCTTTATGGAAAGTAATGGACTTTATGATTTTA GATAAAGAAGAAGAGCATCGTAAATATGAAAAATTAAAAGCACTTCAAAAT AAAAAAGTTAAATTTAACAAAGGTACGTATCATGTCTATGCAAAAGGTCAT AATGGCAACTTACCTATGAAAGTCCAATTATCAGAAGATAAGATTGTAAGT ATCGAGGTAGATGATAGCGGAGAGTCTGAAGGCATAGCGAACCCAGTGTTT GAACGTTTACCTCAAGATATTATCAATGGGCAAACACTGAATGTAGATGTC ATTTCAGGTGCGACAGTAACAAGTGAAGGCATCGTGCAAGGTATTGCAGAT GCAATTGAACAAGCAGGAGAAGACCCAGATATTTTACGGGCGCGTCCTAAA CCAGTCGTTCAGTGGTCTGATGAGGTTGTTGAAGAGA

35

Sequence 3370 step.1002b07.cons.ok GATAAGAATTCTTAATTCAACTTCGGCAATATTATAGTCTATAATATACAA GTCAATTTATTCAGTTGTTTCAATCAGACCGTATTTGCCATCTTTTCGTCT 40 ATAAACAATGCTTGTGCCATCAGTTTCTCTATCGGTAAAAATAAAGAAATC ATGTCCCAATAAATTCATTTGCAATACTGCTTCTTCAGAATCCATTGGTTT TAAGCTGAATTGTTTAGAACGAATAATTTCAATATCATTTTCACTTTCTAT ATCATCTGCATGATTGTTGTTGTAGACTCTTGTACTTCAGCAACAAAGAT ATCTTGATCTCCACGATCTCTATGTTTACGATTTACACGAGTTTTGTATTT ACGTACTTGTCTTTCCAATTTGTTAGTAATTAAATCAATGCCTGCATATAA ATCATCATGTCTTTCTTCAGCTCTAAGAGTGACATCTTTTAAAGGAATTGT **AACTTCAATTTTAGTTGTAGAATTAGAATAAGTTTTTAACTCTAACATGTGC** TACAGCATTTGGCACATTGTTAAAGTATCTTTCTAATTTACCTACTTTCTC CTCAATATAGTTGCGAATTGCATCTGTGATAGTGAGGTTATCTCCATGAAT 50 TTCAAATCTAATCATAGTAATCTCTCCTTAAACCTCTATATTGATACTTCT TACCTATATTTTACCATGTTTATGTTATCGTGCAAACGCAAACACTTTGAA TTTTCTGACTTTTTTATCGTACAATTTACACCCTGCGTGATGAATAGTTAA CCCTGTTGTATAAATATCATCTATGAGTAGTATTACTTTCCCTTCGATATT TATCTCTTCATCTTTATATAAAATGGATTAGGGGCTTTTGAACGTTCAAT CTTTCCTAACTTTGACTGCTTAGGACGTATATGTGTACCTAATACATCTTG 55 ATATGAGATGCCCATTTTATCTAAGACAGTGGTCACAGGATTAAATGTACG TTCAATGTCGCGTTCAATTGGAGAAGGAATGGGAACTATATAATCATATTG CGTTTGAGGTAAAACTAATTTTCTCGCCAATACTTCTGCCAAATAGAAGTC TCGCTTAATCTTATACTGGTGTATGATTTCTTTCATCATACCATCATAACT

ATAATCACAAAACAATTGTTCCATTAAATAAAATGTTTTACTTAAGAATTG ACAGTCATGACATTCGCCATCAGTAGAAATTTTGTTGTTAAGGCACTTAGG ACACCTACCATCTTTATGAATTTTGGAGTTAAGCCATAATGTTTCACATCG TTCACAAAATATCTGAGGTGGTTTAAATAAGTTATAAATATGAATGGTCTC 5 TAATTGCTAAACGATTCATTGAAATAATGTTTCTTTTAGCTAAAATCATCG ATAATGTAACACCTTCATGAAGAAATAAAACTAAGCCACTTGGAGACTGCT GTTTACGTCCTACGCGACCAGCAATTTGAATTAAAGCCTCTTGTTGAAAAC TTCCAGCATCAACTACAACGACATCTAAGTGTGTCATTGTAAATCCTCTTT CTAAAATAGTTGTAGTGAATACAATTTTGTGTTGTCCTCGTCTTAAAGCTT CAATTTTTTCAAATCGTAAATCATCTTCACTGTGAACGCAAATCAAATCAG GGATGTCCATTTTATACTGTTGATACATTTTATTCATAATTTCTATATTAT TAATAAAGACCAAAGTAAAACGTTGTTGGTTAATTTGATATCTAAATATAT TAAGTAATAAATTTTGTTTTCGTGTTGATTTTAATTTGAAATATTTGAACT TAGGAATAGGAAGGGGGGATCGGTGAAAACGGGCTGGTAACTTAATTATTT 15 TTTCTGGGGGGAATTGTTTTAAAAAATGACGCGGTGGTGTGGCCGTCATGA AAATATGTGAATGATTCGATTTTGAAGCAAGTTGTATTGCATTTGATAATT GTGGATCCATAGACAACGGAAAAGCATCTACCTCATCGACAAATACAGTAT CAAAATGCTGTTTAAACCTCAATAATTGATGGATAGTAGCAATAACAAAAT 20 GACCATTATATTGCTGTCTACTAGATTGATGTAGCACATCTATATGTTCAT CGATAAAAGCATCTTTAATTCGATGACTTATCTCAATAATAACGTCTACAC GAGGTGATACAATAGCAATATTATGTCCCATCTGACGAGCTATCCTAATTC CCTCAAACATCATTTCAGTTTTCCCTGCTCCTGTGACGGCATATAACAAGA GGTCATTATTATTTTTTATAGCTTGAACGATAGTTTCTGAAGCGTATTGCT GTTGCTTTGATAATTCAAAGGGTAACTGATAATTCGCTTTTGTTGCTTTTT 25 GAAAACTTTTTACGAGACATATATCTGTAATACTATCCATTCTGCCTAATT GAATGCATCGTCTACAGTATGTGATTGTTTTATCCAATATCGTTGAATTGT AAGTCACAAAATATTGCAAGGAAGTGTTTCCACATTGAATACAATACCAAC GCTCACTGTCTTTTATAACACCTTTTGAAACTTGAGATACTGATTCATCTT CAAGTTGATGCGTTGGAGAAATCAGTCTACCGTAATATTTAATTTTACTTC 30 ACTACTTTCAAAAAAGTCTGAAATACTCAAATAAGCGAACACAAGTGATAT CTAATGATATTACCACTGTGTTCTTTCCTATCAAGCTTTCAGACTTTTGAT TATATATTAATTAATGTCGATTCTTCTTGGGAAGTAACCCAATCCTAAACC GCCTGATCCTAAATGTGATGCTATCACTGGTCCAAATTCACAATACTGAAT ATGAACATTAGGATGATCTTCCTTTAATTGCTGAAGAAATGACTTTCCATC TTCAGTTTTATCACCGTTTATTACAAATACTGTCACATCTTCCATGCCTTC TATTTCTTTAAAAATGTTTGTTTCTAAAGATTTTAGCGCACGTTTTTTAGT ACGTACTTTTTCGTGTGGATGTATTTTACCATCTTCTTCAAAACGCAAGAC AGGTTTCATTTTCAATAATGTACCTACCCAAGCTTGAGCTCCAGTGATACG ACCACTTTTTTGTAAATTTTTTAAATCATCAACAATTAAGTATGCACCAAT ATGTTGTCTTATTTCAGTTAGTTCATTAATAATATCATCAGGTTTATATCC CTTTTGTACCAATTGAGCAGCGTAAÁTTGCAAAGCTACCTTCAATCATCGC AGCAAGACGCTATCAAACGTATGTACTTGAATATCTTCAACCATTTCACC AGCTTGTGTTGCTGAAGGATAGCTTCCGCTTAT

45

TACGAAGATGTTGAAAAACGTAGGGAAGAATTTCATCCTTCAGGAAGTCGT TCTAATTTAACCATTAAAGCAATGGGAAAAGAAATTCTTCCTTATATCGAT GCGACATTTCCAACTTATAAAGTAGGTAATACAAGGTTACTTATTGGAGAT AGTTTAGCAGGAAGTATCGCTTTAATGACTGCAATGACTTACCCAACTATT 5 TTTAGTCGAGTTGCGTTATTGAGCCCAATGTATAATGAAAATATTAAGAAA **AAAATTGATACATGTATGAATAAAGGTCAATTGACGATATGGCATGCCATT** GGTTTAGAAGAAGCAGATTTTATTTTACCAACTAATGGTAAAAGAGCTAAC TTTTTAACACCTAACCGTGAATTAAATCAACTGATTAAAGAAGATAATATT GAATATTTCTATAAAGAATTTAACGGTGGACATCATTGGAAATCATGGAAA 10 CCATTGCTAGGAGATATTCTCTTACAATTTTTAGGTGATCCAATAAATGGA AAATATGTTTAATAAAGTAAGATAAATAAAATAGTATGTTAGCGAATGGTT GTTGAATGCGAAACACTATTAATTTCAGAAATGTAATTGTTTTCATGATAA AAGTAACGGTTTTCAAAAAGTTTTGATATAATAGGAATAAGTTAAACAAAG GAGGAATTTAAATGATTTTAGGATTAGCATTGGTTCCGTCAAAGTCATTTC 15 AAGATGAGGTGAATGCTTATCGCAAGCGATATGACAATCATTATGCTCAAA TAATGCCTCATATCACGATTAAACCTCAATTTGAAATCGATGATCATGATT TTAATTTAATTAAAAATGAAGTGAAAAATCGAATTTCTAGTATTAAACCAG TAGAAGTACATGCTACAAAGGCATCTAATTTCGCTCCAATCAGTAATGTTA TATACTTCAAAGTTGCTAAAACAGAGTCATTAGATCAATTATTTAATCAAT 20 TTAATACAGAAGATTTTTACGGTACAGCTGAACATCCTTTTGTACCACATT AAGTAAAATTAGCAGGGGTAGACCATAGAGAAATAATTGAAGAACTATCGT TACTTCAATATAGTGAAGAAGAGGACAAATGGACTATTATTGAAACTTTTA CATTAGGATAAAAAGTTCAAAATTGTAAAGTGAAATTGAATTTACAGAATC ATTATTGTTAAATACGTGAAGAGCGCTTAATCAACTAAAAACGCCAAATCC 25 TATTGTGTTTCAGTGGGATTTGGCGTTTTTATATGAAACATAATTATATTG TATAGTTAATCATTCAAAAAGATTAATGTACGTTTTATATTGAATATTCAT ATTTCAAATGCATATGAATGACGTTTCATTAATATATACAACTAATCTTTA 30 AGTAATATCCGTAAAATACTGCAAGTGCAAGAAAAATCATCGCTGAAAAGT AAAAGGTATTATTAAATTATTAGTAAATTGAGTAATTAGACCTCCGACTA GTGGGCCTATCATTGAACCGAAGCCTTGAACACTGTTGAACACGCCCCATG TTTCTTCCTGTTCGTTAGGATTAATATGCCCAGCCATAAAGGTATTCCAAG CCGGTAAGAGGATACCGTACATTAGCCCAATAAAAAGTCCTATGGCCCAAA 35 CTATATATATATTTGTAATTGTAGATAGCCCGAATATAAGAATTGTATATA GTATAAAGCCACTAAAAATAACTCCATACATAAACCCTTTGCTATTATTGT CGATGATTTTTGATAAAAATAACATAGAGAAAGCACAGCCTATGCCACCAA TAATGATTGCTACTGTATATTCAACGGTTGATACTTTCACAACTTGCGTTG CATATTTTGGAAGAATAGGTACAAGTGCTGCTATAGCTGCTCCTTGTAACA 40 AGATACCCGGAAATAGAATAAGATGACGTTGTGTAACATCTACAATTTGCT TTAATTGTGCTTTCACAGGTTTAGTATTGTAATTTGTTAAGTTGATATTAA CAAAATAGTATAGTACCCAGGCAATAAGCACAACCAAGGCCATTAAAAATG CAAAACGAGTAGGATGGAATTTAATAAGCAAGTTCATGATAACCATACCCA 45 GATTTCTTCATCTACACTAGATAACATGATAACCCAAATCGGACTCACAG CAATTCCTAACATAATAGCACTGAAAATAATTATGAATGGTGATGCCGGGA ACCATATCACTAAAAACAAGCTTATAAAAGCAAGTAAG

50 Sequence 3372
step.1002b09.cons.ok
TTGCTAATAAATATGGCAAGGTTAAGGCGATTGCGAGTGAAATGGTTCCAT
GTACACCACATAGAGTCATGATTAGTGCATATAAGCTACGCTTAGGTTTAC
TCTCAGTAACTTTATCTTCATCATTTTTAGAAATCATTTTTTGGAATGGAC
55 TGACAGATAAATAGAAATAAGGATAAAGTACATATACCCACACAAATCTAA
AGAGATACACCGCAAGAGCGACTAGCAATGTGATGACGATTAAGAATAATA
AATTATGCGGTTCAGTTTTAATAATTTTCACTATTACCTCAGGTACTAAAA
AACCTAAGATTGAAAACCAAAACCATTTAAAACGTAGCCTAAAATACTCC
ATGTGTGATTATAGCTCATCTGTAATTGTGTTCTCGTTTGAGCTATACGGT

CACGTTCAAATCCATGCACGAGTCCCGCAACTACTGCTGCAATAATCCCTG ATGCATGGAATAATTCAGCAATCAAATAAGTGACAAACGGCGTCAGCAATT GTATAAATGTAAACATGTTAATGTTCTCAATGCCACGTCTCATTAATGTTA AACGAAATCTCACTAAAGCCATGCCTATAATTAGACCAACAATAGCACCTC 5 CAATAGAGGCAATCAAAAATTGTTGAATCGCATCAAAAATGGAAAAAGTTC CATTAAGTAAAGATTCACCTTCAAGAATGGTCATTGAACCTTTTGGTAAAA CCTTACCTTTCGTGATTGCTTGTACCGCAACAGCGTCTGTAGGACAAAGTA TAGCCGCAATTGCGAAAGCAGCACCTATAGGTAATTCAGGCCAAATCCAAT 10 GAATAAACAATCCTACGCCTATAACGGTAGTTATGACAAGACCTAGAGCCA TCATCATAACAGGTTTGATATACTTCCTTAAATGTACTCTTGAAACATTAA AATCAAAATTGAATTCAACTGGAATGGGAGTGAGGTATAAAATCATCCCAA GGAAAATTTGGATAAATGCAAGAGGTACTTTAGGTATGAAAGTATGTACAA AGGAGCTCACAATAACTAGTGCGACAAATATGAGTAGAGTTTCAAATATCT CCACACTTTCACCTCTTTATTAATTTTTAATTGCAAATTTAGTCATCAAAA CAATAAAAAGTTGCAAGGTTATCTACTGCAACACTGAAGAAGTGAAATAAT AACAATAGAGTCATTCCTGTAAGGACATAACTATTAACACTCAATCATGCC ACAAATATACTATTCAAAACTCAATTATTTTCTTTATCAGTGAAATCAAAC ATGAACATTTAAATTAACTTATGAAGCTCGCTTCTTCGAACGAGAAAATGC TTATGTGTAATTTCATTGAAAAAATTAGTGACAACTGTCATTCACAATTAT TTATATCATTAATATCTTCACCTCAGATATACAAAAAACTACTAGCATATA TCCATTTTATTAATATATTCTTTTTCTTTATAGTATAATTTTTCTCGTCTT TCTTCTCGTAGTTTTGCACGTTTTTTTAATTCTTCTGGCGTATTAAACTCT TTTTGGCTTAATAAGATAGTAGATTGTCTAGATGCATCGTCTTTCCTGTAC ATATATGCACCATTACGGTAGGCCGCTCTACTTATCAAATGCATTCCAACC GGAGATGTAAGATTGATAAAAACTAGTGATAATAATAATCTGACACTGAAA AAACCTGAATTCACAATAAAATAGATCAGTACACCAACTACAGTTAGTAAT ACTGACAATGTAGAACTTTTCGTTGAGGCGTGACTTCTTAGAAAGACATCT TGAAATTTTACAATCCCTATTGCACTAATTAATGCAATAATACTTCCTAAG AAAATAAGTATCTTATTATCTAATTAAAAAAACAATAGAATACTTAGTTTGA CTGTTCATGATTAAAATATTCTTTTAATTCTTCCCACTAAATACGAATAAA 35 AGCATATTTTTACTGTTCTTACGCATTCTTCCGATTAGCTTTTCTGTATCG TTTTTCATTCAATAATAATTTTCTTAACATCTTCTAAGTAATCATCTTCAA TCATTGGCTTTAAAGTATTTCCATCAATAGCATTTAACATTACATCTTCTT TTTCCTTCAGTCTGTTATAAACTGCTTTATCGATAAAACCTTTATGGGCTC TATCCCCTTCAGACATCAAATAATAATACCTTGTATATTGATTATTATTTA 40 ACCCTAAACGATGTATTCTATCACGTGATTGCAACATAAACGTTAAATTAA AGTTATATTCAAAATATATTGCATCATGTACTGTCTGATGTAAAGATATGG ACTCGCCTAATGTATTAGGATTAGATATTAGAACTTGTGCATTTCCATTCC TAAAATTATTGATCATATCTACCCTATCTTCTTTAGGTGTTTTCTCCATAAA TCAATATTGAATTAATATCACTTTCTAGTAACCTCTTATTGATTTTATTCA TTGTACCTACAAACAATCCCCATACTAGAACTTTTTTTCCTTGGCTAACTA AGTTTTCAATCAATTCAATACCTTTTTCGAATTTTGGAGAAGTTACATTTT TTAAATCAAAAGAATTATAAATTIGTTGTTTTACTTGATTTTCTTCTTCTT TATTTAATGCTTTATCCAAATCGAAATTTAATTCATCATCATCAACATTCCTA GTTCGCTATAATTAATATTCTTTTGCAATAATTCTGGGTTAGTTGAAGCTT 50 GTAGTAACCTTATATAAATCGCTAGTATCCCAGATTCATTTTCGTATATCG CTTTTGCTAATTCAATTTGAATATTACTAGGCTTAACACATAATATAATAT CATTTTCTGCTTGAGGCACTTCCAAATCGTTCTTATTTGTACGCCAGAAAA AAGGGTTCAACTTGTCATTAATTTCATTAGGATCAGGATTTTGTAAATCAG CAACATTCCAACCAAAATAAGTATCATACTCATCTTTATATAAAATATTTA AGAAGTTAAATATGTCTTGATAACTATTTGGAATTGGGGTACCAGTTAAAA CGTATCTGTAATAACTTTTAGGACCTAAAGTTAATGCATAACTTGCTCTGC TACTATTAATACCTTTTATCCTATGAACCTCATCATAAACTATCATTGTCT TATCATTAATAAGTTCATTTAAAACCCCTACATACTTTTGTATTGCTTCAA AATTCAAAACAATGACATTTGCACTTCCCCAATCTGTTCGTACTTTACCTA

AATCATTATATTTTTTATCTCTTAGGTTCATAAAGTGTAATTCTCTTTTAT CTTGAAAAACTTCAATAAATTCTGAACGCCAAGCTTCAAATGCATTAATTG GAGAAATAACTATTAATTTATCAACTTTCCGCTTTATTTCACTA

5

Sequence 3373 step.1002b11.cons.ok GAATTATAGTTGGGAATATTTCAATGTCCAAATTAATCAAAAGCTTTCAGA 10 ACGAAAAGCAAAAACCATCTACAGTCAAAGAAAAATTGATGTGGAGTCTGT TTTTGGAATTATGAAGCCTATTTTGAGTTTCACTCGAAAGTCCGTTCGAGG GATAAATAAAGACAAAAGAGAACTAGGACTTGTGCTAATGACACTTAATAT AAGAAAAGTACCAGCTCAACGAGCTGAAAATTATAAAAAATCATAAAAAAG ACTTTATGTTCCGGACTCTTTCCTACGATTAGTCAAGTACTTATAATTAAA 15 ATAAGCATTACTTAACTAAACCGTTCATTTTAATTTTTTTGAATAAGGTGT TAAACTATATTTGATTGTACGTTTGGCTAATGTGGTGACATTTGATAATCG TACAATTTATAATTCATTACAAGATAATGAATTGTTTTTAATAATCGATTT ATACAAGCAATGATGGCAGTCTTATGAGGTTTCTCATTAGGCTGCTTTCTT AGTTTGTAGTAATAATCGACGACATGATTGTCATAATGATGCTGCCCTCTT ATTATATTCATAATCACCCAAAATAAAAGTTTTCTCGCTTTTTTATTACCA ATATCAATGCCAACAAAAGCATTGAGTTGTTTATTTGATTTAAATCGCTTA ATATCACCAATCTTCCCAATAATCATAGCTGTGCTTAGCTTACCAATACCA GGTATCGAATGAATATTTTCAAAATAATCGAGTTGTTGTGCTAATTGAATC ATGGCATCATCTAATTGTTTGATATGATGAATAGATTGTTTAATTGTTGA ATAAGTAAGCGTAATTTTTCGACTAGAAAGGAATGTCTATCGACATTAGGA TAGCTTTCTTGAGCAATCACCCTTAATTGAAGTGCATATTTTGTAGCTTTA TCCATTGACATTCCCTTATCTGTAGAATTGAATATATGTGTAATCAGTACC TCCTTGTCGATATCAAGAACCATGTCTGGATGAGTAAAGATTTCTGCGATG 30 TTGAGTGCAATGATTGAATATCGACTACTAAATAATCTTTCTAAACCAGGG AATGTTTGATGGAGTAATTCAAGGATCTGAAATTTAAGTCGATTTTGTTCA TTCTCGATTTCTAGATGAAAACGGACGCGTTCTCTTAATTCAAAGAATATT AACTCATGTATAGGTAAGTTGTCTGTTTGTTTAAGCGTCGGTCCTAAACAA 35 GCAAGCTTATGAGCATCTGCCTGATCAGTTTTCCATGATCTTAGAGCGCTC GTTTTAAATTTGGCTTCTAACGGATTCATTTGAATATAGTTAATTTGATTT ACACAACAAAATCGTTCCATACCTCTTGAATAGATACCTGTAGATTCAAAA ATGAGTTGTGGGTGGTCTAAGTCATTCAAATACTTGAGTAAATAGTTGTAA CCATTTTTATTATTTTGGATGAAAAACTCTTTTTGGAATTTTTCATTTTTA TAATGTGCAACTACACTACTTCTTTTACTAATATCAACACCTAAGTAATCG ATAAAAAAACCTCCTTTGAATAATTGAGAAGCTAAAAACTTTACTTAACCT TTCTCATTTCATTTTCCTATACACGGTTTCAAGAACCCAACATACTACAAA CGAATTTCAAAAGGCGAGAGTAAAGCTGACTTGTTTTTTATACGGATTTAA AATCCAAGAGTCTGGACAGTCTACTTCTCTCTATAACTATAAAAAAATAGCT ATGAAAAATCTATCGTCATAGATTTCTTCATAGCTAATCTTAGTATGTTT 45 TTATTTTATTGAAATTAATTGTTTATTAGCGATATAACTTGTCAATGATAG AGTCGTTATGTCATTATAAATGTAAGGGCTTACATATATGTTTTGCATCAA CATTTAGTCTGTTTCATACAATTCAATTTTTCGATTATGACGATATTGATT CATTTTATTGTTATATTAAAAAATAAGTTTGAGAGTCGATAGAAATCAGTT ATGATATTGTTAATAAGTTTTTATTCGAAAACGAAGGGGAGATTTTATGAC TCAATCTGAAAAATTATTAACTTAACAAATCACTATGGGGCGCATAACTA CGTTCCACTTCCAATTGTTATTTCTGAAGCAGAGGGTGTATGGGTGAAAGA TCCGGAAGGTAACACGTATATGGATATGCTTTCGGCCTACTCGGCAGTGAA TCAAGGTCATCGACACCCAAGAATTATTCAAGCATTGAAAGATCAAGCAGA TAAAGTCACTTTAGTATCACGTGCTTTTCATAGTGATAATTTGGGTCAATG GTATGAGAAAATATGTAAACTCGCAGGTAAAGACAAAGCATTGCCTATGAA TACGGGAGCAGAGGCGGTTGAAACAGCTTTAAAAGCTGCTCGTCGTTGGGC TTATGATGTTAAGGGTATTGAGCCGAACAAAGCTGAAATTATCGCTTTTAA CATAAAAGCTATCAATAGCAATACAAATACATTGACGACCAAATTTCTCGC

TTGCTTGTCGAATTAATTCTGGATGTTTTAAAGCGCTTGAATTGAGTGATA
TTTTATCTGCTCCGTGATTTAATAGTTGCGTAATATCATCTAAATTTTGAA
TCCCTCCTCCTACTGTTAAAGGGATAAATAATTGTTTTGCCGTTGCTTCTA
TCACTTCTATCATAAGATCATGTCCTGCTTCCGTCTTCGAAATATCAAGAA
AGACTAGTTCATCTGCACCGGCTTCATTATAATAAAGAGCCAAATCAACTG
GATTACCGATATCTCTTAATGACTGGAACTGGATACCCTTTACGACGCGTC
CATCTTTAACATCTAAACATGGAATCACTCTTTTTTTAATCAAGATAATCC
CTCCCAGAATTCATCCAGATGTGCTGCTTTTCCTACAATAGCAGCATGAAC
ATTTAACGATTCTAATCGAAACAAGTCCTCTTTGATGTCTAATACCTCCTGA
AGCAATTACAGGCAACGATGTATAAAAGTGCGAGACGACCTGTCCTTTAGAG
CACAGTGGCGATGATATC

5

10

Sequence 3374 15 step.1002b12.cons.ok TATTTAGCTGCTATCAAAGAACAAAATGGTGCAGCAATGAGTTTAGGACGT ACTTCAACATTCTTAGATATTTATGCTGAACGTGATTTACAAAATGGTGAC ATCACTGAACAAGAAGTTCAAGAAATCATTGACCACTTCATTATGAAATTG CGTATCGTTAAATTCGCGCGTACGCCTGAATATAATGAATTATTCTCTGGA 20 CCAATGGTAACTAAAAACTCATTCCGTTTCTTACACTCATTAGATAATTTA GGTCCAGCACCAGAACCAAACTTAACAGTGTTATGGTCTACTCGCTTACCT GAAAACTTCAAAATCTATTGTGCTAAAATGAGTATTAAAACGAGCTCAATC CAATATGAAAATGATGACTTAATGCGTGAAAGCTATGGCGATGATTATGGT ATCGCTTGCTGTATCTGCCATGAAGATTGGTAAACAAATGCAATTCTTC GGTGCACGTGCTAACTTAGCTAAAGCATTACTTTACGCTATCAATGGTGGT AAAGATGAAAAATCTGGTAAACAAGTTGGGCCAAGTTATGAAGGTATTAAA TCAGACGTACTAGATTATGATGAAGTCTTCGAAAGATATGAAAAAATGATG GACTGGTTAGCTGGCGTATATATCAACTCATTAAATATCATTCACTATATG CATGATAAATATAGCTATGAACGTCTTGAAATGGCTTTACATGATACAGAA 30 ATTATTCGCACAATGGCAACTGGTATTGCCGGATTGTCTGTAGCAGCTGAC TCTTTATCAGCGATTAAATATGCACAAGTTAAACCTATCCGTAACGAAGAA GGTCTTGTAACTGACTTTAAAATCGAAGGCGACTTCCCTAAATATGGTAAT AATGACAGTCGTGTTGATGAAATTGCAGTAGATTTAGTTGAACGTTTCATG ACTAAATTACGTAGCCATAAAACATACCGTAATTCTGAACACACAATGAGT 35 GTATTAACAATTACTTCAAACGTTGTTTATGGTAAGAAAACTGGTAACACA CCAGATGGACGTAAAGCTGGCGAACCATTTGCACCTGGCGCAAACCCAATG CATGGTCGTGACCAAAAAGGTGCATTATCTTCACTAAGTTCAGTAGCTAAA ATACCTTACGATTGCTGTAAAGATGGTATCTCAAATACATTTAGTATCGTA CCGAAATCACTAGGTAAAGAAGAAGCAGATCAAAATAAAAACTTAACTAGT 40 ATGTTAGATGGTTATGCAATGCAACATGGTCATCACCTCAACATTAACGTA TTTAATAGAGAAACATTAATTGATGCAATGGAACATCCAGAAGAGTATCCA CAATTAACGATTCGTGTATCTGGATACGCTGTAAACTTCATTAAATTAACA CGTGAACAACAATTAGATGTTATTTCACGTACATTCCACGAATCTATGTAA TAAATTTAAGGTGGGAGCAAAATGCTTAAAGGACACTTACACTCCGTTGAA 45 GGTTGTTTGTTAAGATGTTTATATTGTCATAATCCAGACACTTGGAAGATT AACGAACCATCAAGAGAAGTGACGGTTGATGAAATGGTAAATGAAATCTTA GGCGAACCATTACTACAAATGCCTTTCTTGGAGCAATTATTCAAAGAATTA AAAGCGAATGGTGTTCACACATGCATTGATACTTCTGCGGGATGTGTGAAT GATACACCAGCATTTAATCGTCATTTTGATGAATTGCAAAAGCATACAGAT TTAATCTTATTAGATATTAAACATATTGATAATGATAAGCACATCAAATTA ACAGGCAAACCTAACACACATATTTTAAAGTTTGCACGTAAATTATCTGAT ATGAAACAACCTGTTTGGATTAGACATGTTTTAGTACCTGGTATTTCGGAT GATAAAGAAGATTTGATAAAACTAGGAGAATTTATTAATTCTTTAGATAAC GTTGAAAAGTTTGAAATCTTACCATATCATCAACTCGGTGTGCATAAGTGG AAAAATTTAGGCATCCCTTATCAACTCGAAAATGTTGAACCATCTGACGAT GAAGCGGTTAAAGAAGCTTATCGCTATGTTAACTTTAATGGCAAAATACCC

GTAACATTATAGAAAGATAAATATAGTAATAGCCTGAGACATCAATCGTTG TCTCAGGCTTCTTACGTTTAATCAGTCGATAAACTGAGTATAAAATATAT CTCAATTAACTTTATTTAATAAAAATATGATTCATAAGTTTAAATAGTTTA TTTTTCTAGATATGCTTTAAATACATCTTTATAAACATCGATGTAACTTAA ATACATATCTTTTCTAATAAATTCATCAACTTGATGCGCCATAATAGATTC 5 ACCAGGTCCAAAGACAGCAAAATCCACGTTATTTTCATTTGTTCCTAGGAA ACTAGATGCATCAGTTGTACCAATCAATGCACTCACAACAATGTCTTCATG TACATAATTCGGTGCAATACGTGTAATATTTTGAATAAGAGGATTATCACG ATCACTTGCCACTGGATCGTGACTGCTAGGTATATCTACAGTTAAATAATC TTCGCCCACATGACGAATGACTTTTTCAAATAAATCCTTCACGAAAGTACT 10 GTCATATTCTGGAACAGTTCTTACATTATATTTAGCTGTCGCTTTATGAGG AACAGAATTAACTTGTTTACCACCATTGAATACAGAGTTTAACATTACAAA TCCAGAGTAGATATGTGATTCTTCTTCACCAATTTTTCTGTGGAGATGTTT CTCAATCATTGGAACAGCGTCTAACTCGTGTACTTTATCATGTTCTTTAAT 15 ATTTTTATATTCTTGTTTCATTTCATTTACAAAATCAACTAAAATATCAAC AGCATTTGTACCTAGGTGTGGCATGGAACTATGTGCAGCCTTACCTTTCGC TGTGACTACACAGCTCATAGAACCTTTATGAGCATAGTAAGCGATATTACT AGTTGGTTCGCCAATAATTAAACCACTCACATCATCTAAGTAACCTTCATC AGCTAGTAATTGTGCACCATATTGTTCCGTCTCTTCTCCTGTAGTAGCTAA 20 TAAACGTATCGTACCTTGCTTTAATGCGTTTGATTGTTTTAATTCAATCAT CGCGATGACCATCGCCATAAGACCACCTTTCATGTCAGTGGTACCTCTGCC GAATAACTTGCCATCTTTATCTGTGAGTTCAAATGGAGGAAAAGTCCAATC ATCATGGTCACCAGCATCTACAACATCCATGTGTCCACTGATTGCTAAGAC TGGAGCGCCACTACCAATTTCAGCAACTAAATTAGCGCGTGAATCATTAAC TTTAACAATCTTAGAATCAATATCATATTGACTTAACAGGTCTTTTAAGTA CTCACATACTTTAATTTCATGATCATTCTCAGTTTGAATCTTGACGATATC AGCTAATAATCTTATTTTGTCTTGCTCACTCAATACAGTCATTTCACAGTC CTCCTCATTTTTAGTAATGATTTTCACTTTTTAATAAAAAATAAAAATCCT ТGTACACTTAATATTATCAAAAACTTTTATTAATTAAAAATTATATGCTAA 30 AAAACAACAATGTATAGAAATATTAAAAAATTTTTCATTATTATAGTTTGA ATCGTGTTATAAAATGAAAAGCTATGA

35 Sequence 3375 step.1002c01.cons.ok TCAACATTATAATATTGATTAATTAAATAACAATTGCAAGTATAATTAAA TATTTCTCTAATATACAGTGTCAATTTATTTATTCACATAAGAAAATAGC TATGAAGAATCTATCAATTTAAATTTCTTCATAGCTAATTTTTTCATTT 40 AAATTTATTGACGGCTTGAAAAATGAGTCAAAATCATCAATAACATCAAAA TGCAAATATATTCCTTTGGTAATGGATTGACCATTAAACTTAATTCGAATT CTATTCTTTCTATACAATGAAACGGGTGTCATACATCATCGGTAACTAAT TATGATAGATATGAACTTGTGGTTCTTTATCGTCTTTAGTTTTACTAATGA GAGCACGTGGAGTATTTCCATCTTTGATTCTAATTTCATACTCATCTAGTT 45 TATCAAAATATTTTTCGGCTTGCTCTGTAACATATTGTGTAATACCTATCG TTTCTGCCTGTCCGTAATAATCTATAGGCAAATCAACTGTAAGTTGTTTAG CTTTTTTTTTTACGAATTTAACCTTACCAACTGCTTGTGTGAAGTTTGAAA AATACGATTGCAAATTATCATTAAACTGTTTAAAGTTATTATTCAACGTTT CATCATAATCAGCTGCAGTTGACGAAGGAATTAAGGCTGCTTTTTCATTAA TATTATCCCATGAGTTAATTTTAGTTTTACCCTCTTCAACCGTAGTACCAA CAAAATGAATAGGAATATCTTTCAAATCACTATTCTCACGTAAACGAGAAA GCATTTCACTAGCCATCTGTTTACCTTGCTTTTCAATCTCTTTATCAGATA AATCTTTACTAAATGTTTCGCCATCTTTCTCTCTTTTTTGTAATAATAAACAC TATTCATAGCTAAACCAATTGTCATCCCTTTTATATTTTTTACCTTTAGAAT CACTATTTCCATAAAAATCCTGCTCGAGTATATTTGAAAGATAGGCTGGAG AATTTTTAGCTATTTTCTCTTCATCTGTTTCACCATTGTGAGATGGATTGA GTCCAAGATTCTCATTAGCATTTTTGCTTTTCTTTTTCTTTTTCGCTCATCT TGTCAATTTCTTTTTTCGTATACTTCGGATCTAAGTATGCATTAATCGTTT

TTTTATCTAAATATTGTCCATCTTGATATAAATACTTATTTGTTGGAAAGA TTTCTTTACTTAATTCTAGTAAACCACTTTCAAAATCTTCTCCATTATAAC GTAATATAGTCCTATAGTTATCACCTTGAACTTTTTTATCAGTCGCTATTT GTTTCACTTGATTTTTATTATGGTTATCCTTATGTTCACTTTGTTCTTTAT 5 CTGATGAAGTTTGTTTATGTCCATCTCCGCAAGCCGTTAATAATAACAGTA TCGACATGAGTAAAAATATTGTTCGCTTCATTCACGTACTCCTCTAATTAT TAGATTCCATTTTGTTTTTCAATAAATGCTGCTTCAGTCCAAATTTCAGTA CCATACTTCTCAGCTTTGGCTAATTTAGACCCTGCATCTGCTCCAGCTATG ACAATATCAGTACTTTTAGTCACGCTGCTTGTAACTTTAGCACCTTGCATT TTCAACCATTCAGATGCTTCATTTCTCGTCATTTGCTCGAGTTTCCCTGTT AATACAATTGTTTTCCCACTAAAATCAGGATGACCTTCGATTTCAGTTGTT TTAATTCCTTTATAAGACATATTAACATTTTATTACTTAATTTTCAATT AATGAACGAATATCACTATTTTCGAGATATGTTACAACAGATTGTGCAAGT 15 TTATCTCCAATATCTTGAATTTCAATTAATTCACTTTCAGTTACTTTAAAA AGTTGATCCATCGTTTCATATCGCTCAGCAAGTACTTGACTAGCTTTTACA CCTAAATGTCTAATACCAAGTCCAAATAATAAATGCTCTAATGACTGTTCT TTAGATTTTTCTATCGCTAATAAAAGATTATCAACTTTCTTCTTTCCCATT CGCTCTAATGGTAATAAATCTTCTTCTTTCAAATAGAAAATATCTGCGACA TCTTTGATTAACTGATTTTCGTATAGCTGATGAATAATTTTAGTACCTAAA 20 CCATCTATATTCATCGCTTGTCTTGAAACGAAATGTATAAGTCCTTCAATA AGCTGTGCCTGACATTTTGGATTAATACAACGTAAAGCAACTTCTCCTTCA ATACGAACTAATTCATGTCCACAACTAGGACAATGTGTTGGCATATGATAA ATTTCCGATTCGTTAGGTCGTCTATCTAAAATACTTTTACAACTTCAGGG ATGATGTCCCCGGCTTTTTTAATAACAACACTATCTCCGATACGTATATCT CTTTCATGTATTAAATCTTCATTATGAAGTGAGGCTCTTGAAACTGTAGTA CCAGCTACTTTTACAGGTTCTAGAATTGCAGTTGGTGTCACAACACCCCGTA CGCCCAATACTTAGCTCAATATCCAATAATTTTGTAATAACTTCTTCAGCT GGAAATTTATAAGCAATCGCCCATCTTGGAGATTTTTGCGTATAACCCATT TCCTCTTGTTGAGATAAATCGTTAACTTTTATAACAATACCATCAATATCG TAAGATAAAGATCCTCTTTTGCTTGTCCATTTCTCTATATAATTAAGTACG CCCTCAATATCTGATACTCGTTCACGTTCTTGGTTAGTTTTAAAACCTAAT TGGTCCAATTCCTCTAGCGCTTCACTTTGTGTTGTTGCATTAAACTCGGTT 35 TTAGAGTCAAGTTGTCTTAAAGAGCCTGCAGCAGCGTTTCGTGGATTTGCA CGACGTGGCATATAAGCTTCCCCACGGACTGAAGGATATCAGGTTACGACA ACAACATGTGGTAAAGAAGCACTAAAATTATTATCTTCAGATATAGATATT ATGATTTTAGACATTATGATGCCGGAAGTTAGCGG

40

Sequence 3376 step.1002c03.cons.ok

GGTTGTAAAAGATGTAAAAGGAATAGACGTTAGTGGCCCATTCCCACGTAT GACATATGCAGAGGCTATGGACCGTTTTGGTTCAGATAAACCTGACACTCG TTTCGGTATGGAACTTATCAATGTGTCACAGCTTGGTAAAGAAATGAATTT TAAAGTTTTTAAAGATACGGTAGATAACAACGGCGAAATTAAAGCAATTGT CGCAAAAGACGCTGCAAATAAATATACACGTAAAGACATGGATGCATTAAC AGAGTTTGTAAATATATATGGTGCAAAAGGATTAGCTTGGGTTAAAGTTGT TGATGATGGTTTAAGTGGCCCAATTGCTAGATTTTTCGAAGATGTTAATGT 50 TGAAACACTTAAACAGTTAACAGAAGCTAAACCTGGAGATTTAGTAATGTT TGTAGCTGATAAACCTAATGTTGTTGCTCAAAGTTTAGGGGCCTTTAAGAAT TAAATTAGCAAAAGAATTAGGTTTAATTGATGAATCAAAATTAAATTTCTT ATGGGTAACTGATTGGCCGTTATTAGAGTATGATGAAGATGCAAAACGTTA TGTAGCAGCACATCATCCATTTACTTCACCTAAAAGAGAAGATATCGAAAA 55 GCTAGACACTGAACCTGAAAATGTACAAGCCAACGCTTATGATATTGTTCT AAATGGTTATGAACTTGGTGGTGGTTCTATAAGAATACACGATGGTGAATT GCAACAAAAATGTTTGAAGTATTAGGATTTACTAATGAACAAGCTCAAGA ACAATTTGGTTTCTTATTAGATGCTTTTAAATACGGTGCTCCACCTCATGG

TGGCATCGCGTTAGGTTTAGATAGACTTGTGATGTTATTAACAAATAGAAC AAACTTGAGAGATACAATTGCATTCCCTAAAACAGCATCAGCTACATGTCT TTTAACTGACGCTCCAGGAGAAGTATCTGATAAACAACTCCAAGAACTCTC ACTAAGAATCAGACACTAGGGCCCCAACAAAGAAATTTCACAAAGAAATT CAACAGGCAGAGCAAGTTGGGACTAGGGCCTTAATTTAATGTTTCTTAAGA AATTAGCACAGAGAGCTTAATTGTACGAATTGAATATAAAACATCGGTGTG TAATATAATTAATCAGACATTATATTATAATTTTTGGTAACTAGTTTAGAAT ACACGAGAAAATAATACACATTTGAGTTAAATGATAAGTCTTTAAAATTTA CTTCTCTTTTTAAATTGTGGTATGATATTTTCATAAGATAGTCATCTGTGG TGTTCGTAAGTTTGCTTTTTATTTGGGCCTAACACTCTTTGATCAGGGAGC 10 CCAATAGGTTTTCTCGCAGCGCACACGCCTCTATAGGAGGACTTGCAAAAC GAGAAACAGGGCACCCACCTGTATATAGCAGGCCGAATGATCAAGCTATTT ATAACTACGGCATCAACGGACTCTATCGGTACGCAAGACTTTTGTCTTGCG TATTTTTATGTATATAATTATAAAGAAGCATAGATATAATGAATTGGAATC 15 ACAAGAAGGGCTGAACTTACTAAAAAATAAGACTGTTGCAGTTTTAGGTGT TGGTGGCGTCGGGTCATTTGCAGCTGAGGCATTGGCTCGGACTAATATAGG GCACATCATACTTATAGATAAAGATGATGTCGATATTACAAATGTGAACAG GCAAATTCATGCACTGACTTCAACTATTGGTCAAAGTAAAGTCACGCTAAT GGAAGAAAGAATCAAATTAATAAATCCCGATTGTAAAGTAACTTCTTTGCA 20 TATGTTTTATACCGAGGAAACATACAAAGATATCTTCAATAATTATGATAT TGATTATTTATTGATGCAAGCGATACAATCATTTATAAAGTTCATCTCAT GAAAGAGTGTTTAGAAAGAGGAATTGAGTTAATTTCAAGTATGGGTGCAGC AAATAAGACTGACCCGACACGTTTTGAAATTGCAGATATTTCAAAAACACA 25 TACTGATCCTATGGCTAAAGTAATTAGAAATCGTTTAAAACGCCTTGGTAT TCGTAAAGGTGTTAAAGTAGTATTTTCTGATGAAAGTCCTATTGTTATTCG GCAAATGCCTCCATCTTCTAATGCATTTGTTCCAAGTGTAGTAGGCCTTAT TTGTGCAAGCTACGTTGTCAACGATATTTTAAAAGATATACCTGTAAGGCG AATTAAAGATAAAGGACAAAATTAAAGTTATCTATCTCATTGCAAGAAAAT TGTATTTTAAATAAATCTACAACAACTCATAGTAAAAAAACCTGAGGCATC AGTATTGTCCCAGGTTTTTTTGCATCTAAGATATTAATTTCAACTACATATT TTCAATGAATAAAATTATGTTTTATTTCGTAAGTTATCGTAAATTGTTTTA AATTGTTGTTCACTTTTTGATGTGGTTTTTTGGTTCATAATACACTCTGTTT TTTAATTTTTCTGGTAAGTACTGTTGTACAACATGACCATTTTCATAGTTA TGAGGATATTTGTAACCTATAGCCCGTCCTAACTTTTTAGCACCTGAATAA TGACCGTCTTTCAGATAATCCGGTATTTGACCTATATGTCCATTTCTTATA TCGCCAAGAGCTTTATCTATTGCTGTGATACCAGAATTTGATTTAGGTGAT AAGCATAATTCTATTACAGCTTGACTAAGGGGAATTCGTGCTTCTGGAAAA 40 CCTAGACGTTCAGCTGATTGTATTGCTGCTAAAGTCCTCTGACCAGCATTA GGTGATGCTAACCCAACATCTTCATAACTAATTACAAGTAATCGACGTACG ATTGTAGGTAAGTCACCAGCTTCAATTAGACGTGCTAAGTAGTGGAGTGCT GCATTGACATCACTACCTCTAATTGATTTTTTGAAAAGCGCTCATGACGTCA 45 TAATGCATGTCTCCATCTTTATCACTTACAAAAGCACCTTTTTGTAAGCAA TCTTTTGCGTCATCTAATGTAATATGTCTTTCGTTTTCTTCACCAATATGA GCACTTAGTACAGCTAATTCCAAAGCGTTTAATGCACTCCTAACGTCGCCT TGGCTTTGCGTTGAAAAATATTCGATAGCATCTTCATCTACAATAGGATGA CTTATATCATCTTGATCTAATGGGTAAAGCTCAAATATTTGTGCTCTAGAT CGTATCGCTGGATTTATCGCATGATAAGGATTTGAAGTTGTTGCACCTATT AATACAATTTTGCCATTTTCAAGATGTGGTAATAAAAAATCTTGTTTAGCT TTGTCTAAACGA

55

Sequence 3377 step.1002c04.cons.ok ACATTATTGCGTTTAATTGCAGGTATTGAGAATGCAGACGAAGGACGTATT CAATACTTCAATCAATATTTGTCAAGACGTCGAATACGTCATATTGTAGGC

TATGTCCCTCAAGACATCGCACTATTCGAGCATATGACTGTCATGGAGAAC ATTGAGTTTTTCAAGTCACTTTGTGAAAATCCTATTTCAGATGAAACACTT CATTCTTATTTATCACAATTAAATTTTACTGATACAAAAGTGAAAGTATCT AACCTTTCTGGGGGAAATAAACGTAAAGTCAATATTATGATAGGTCTACTT AGTCGGCCTAAAATACTTATTCTAGATGAGCCAACAGAAGGCATTGATTTA GAATCAAGATATGATATTCACAACTTATTACAACAAATGACCGATCAATGT TTAATCATCATGACGACACATCATTTAGACGAAGTTGAAGCACTAGCAGAT GATATTAAAGTTATAGGTCAAAATCCTTTTTATCATGATATTTTAGAAAAT AAAGGTTGGTCTTTTAAAAAATATGCAAATGCCTTAGCTGATAATACGAAA TCTTAAGCTGTACTTCACTCCATCACTTCATCAATATTTAACATCAAAAA GGCTTGCCCTTTCGTCGTATATTTCTCGATTGAAAAGGCAAGCCTTAATAA ATTTTATACACATTTATTTATCGTGTCTAACTTATCTGTACACTAATCCAC CATCAGTTAAAATGGATTGACCTGTAATATAATCAGAATCATTTGAAGCTA AGAATGATACTAAGTTCGCAACATCTGATGGCTCTTGATATCTTCCAAGTT TGATTTCTGAAGAAAATGCTTCAAACGCGTCTCCTATTTCTAGACTATCAT 15 CAAGTTTCACCATTTCTTCATCAATACGATCCCACATTTCAGTTTTGGCAA $\tt CTCCTGGGCAATAAGCGTTTACGGTAATGCCTTTGTCTGCTAATTCTTTAG$ CAGCTGTTTGAGTGAAGGAACGTACAGAGTGTTTTGTAGCTGAGTAAGTGC CGAGTACTTCATAAGATTCATGTCCTGCAATACTACATGCGTTGATAATTT 20 TACCTTTACTTTTTGTTTAATAAATTGGTTAGCAGCTGCTTGAATTCCAA ACAATGTACCAAATACGTTAATATTAAATAACTTAGATAATTCCTCTTCAC CAATTTCTAAAATTGGCGTCACTGCATCAACACCTGCGTTATTCACCATGA CATCTAATTGACCAAATTCTGTAACTGCGAACTGAACTAATTCTTCCTGTT ${\tt CTTTCTTTTAGATACATCACTCTTGAATGCGACAGCTTGATAACCTTTTT}$ CTTTGAATTCTTTCTCAGTTTCTAATAGAAGTGCTTCATTAATATCTTGTA 25 GTACTATATTAAACCCATCGTTAGCAAGACGTTCTGCAATACCTTTACCTA TCCTTATTTATCATCTACCCTTTAAACATGGTGGTAGTAATAAGATTGGGA AATGTCAAATGTTGTTAATATATTTGTCGAAAAGTTGTTGTTTTATGCAT TATTAAATACAACTTCAAATTACTAACACTGCTTTTTACTGCAACAATATA CCTTTTAGATATCTACATTCTTTTTAGGAATTAAACAATACGCCGCAATAA ATGCGATAAACACTAAACCTGCACCCACGATAAATGCGATAGTAGCTGCTA AATATGCCGGGTGATTTACAGATAATGCCGTATATATTGTTGTCACAACAG CGATTCCAAATGCTGCACCTAGTGTAGAAGTCATTTTGATAATTCCTGATG CAGTACCTGCTTTTTCAGCTGGAACATTAGATACAGCTGTAGATAGCGCGG GTGTAGCAAAAAATCCTAATCCTAGACCTATAAAGATAAAGCCAATACATG CCACAATATAATAAATCATATTAGGCAAAGAAGTGAATGCTAAAAGTATAA TACCAACAGTAATTGATACCGGACCTAACATCAATGGCAATTGCGGTCCTC TTTTTTGCATAAAACGTTCACCAACACGAATCATTAACAAACTACACAGCA TATATGGAATTGTAATTAAACCGGCTTGTGCAGCTGATAGATGTTTATCGT CTTGAACATAATATTAAATAATGCTAATGAACCAATATCCATGTTCACCA TCAAGTTGGCTAATGTTGTTCCAATATAAACATTATTTGAAAATAAACTTA AATCTATAAAAGGTTCATCTTGACGTTTTTCAAATATATAAAATGCAATTA ATGTCACAATGAATATAGCAATTAATATCAATATAAGAGGATTTAACCATC 45 CAATTCTATCTCCTTGCGTAATCACTACGTTAATGCTTAACATCATGACAA CAAAAATAATGATTCCAACGATATCAAATTTTTTTATTATATGCAGACTCAT CTTTAGATTCTGGTATACCTCTAAGCAATATGAGTGAATTAAGTTTAAATA ATATAATAAGAGAATTTAACAAGCGTTTTGAAGAAAAATATAGTCAAAGTT ATGAATATAAAAATTAGATTTTTCTGCTACTACAACCATTTATGATTCAG AAATATCAGAGTTTAAAGATTGGGTAGATGCAAATTATTTAGGTACTAACG TTGAAAATAACATTCAAACTGAAAAAAGATTTTTATATGAAAGACCACCAG TTAGATATGATAGTGTAACACCTGAGTTAGAGTTGTTAAAAAGAAATTACG ATAAAAATGTAACTGTATTTGGTAATTTGCCTAAAAAAGCGATACAAGTTC CTAAATATACTGGTGGCACTACTACGCCTGATTTTGTCTATATGATAGAAA CTGATGAACAAGATGCAAAATACCTTATTGTTGAAACAAAAGCAGAAAACA 55 CATTAGATAATTTGAATATTAAATATCAATTAGCTACTAGCGCGCAAGATG TTTATAATGAAATTAAAAAATTAGATGATTCAAAGTGAGGGAATATGATGG GGAAATCAGAAAAATTTCATTACTTGAAAAAGTCCAAGATGGTTTAGTAG

ATAAAACCGGAGCAAAACCTAAGTTACCAACAACTATTACCGATTTAAATC
AAGAAACTTTAGAGGTATATAGAATACCACTAAAGTTTCTGTATTATAATG
ATAGAAATGGAAGAATTGCTTCTGTAATATCCAGAGTAAGCGACGATATAA
AAGTTGCTTATGAATTTGAAGATAATAATTATAAAAAGTATTGAAAATA
TGATATATGAGGCTAATACTTCTGCTTTAAAAAAACACTAAAAAAATCTATTA
AAGATAAA

5

Sequence 3378 10 step.1002c05.cons.ok AGATATCTCACCATTAGGTGCTGCAGCTTTAAGTGGAACTACACACCCTAT AGATAGACATCTGACTCAAGAACTTCTAGGATTTGCAAATCTGTATGAAAA TAGTTTAGATGCTGTCAGTGATCGTGACTATATCGTTGAAACATTGCATCA TATTTCACTCACTATGGTACATCTATCACGTTTTGCAGAAGAAATCATTTT TTGGTCGACTGATGAGGCAAAATTTATCACTTTATCAGATGCGTTTTCTAC 15 TGGCTCATCTATTATGCCACAAAAGAAAACCCTGATATGGCTGAACTAAT AAGAGGAAAAGTCGGACGTACTACAGGACACTTGATGAGTATGTTAGTAAC ACTTAAAGGCTTACCCTTAGCTTATAATAAAGACATGCAAGAAGATAAAGA AGGTTTATTTGATGCTGTACACACACTTAAAGGCTCTCTTCGAATCTTCGA AGGTATGGTTGCATCTATGAAAGTTAATTCAAACCGTTTAAGTCAAACAGT 20 AAAAAATGATTTTTCAAATGCAACAGAATTAGCAGACTATTTAGTCAGTAA AAGTGTACCTTTTAGAACCGCTCATGAAATCGTTGGTAAAATCGTATTAAA TTGTATTCATAAAGGTATATACCTATTAGACGTACCTTTAAGCGAATATCA AGAACATCATGAGAATATTGAGGAAGATATATATGATTATTTAACACCTGA AAATTGTCTCAAGCGTCGCCAAAGCTATGGTTCAACTGGTCAAGAATCAGT AAAACATCAACTAAAAGTCGCAAAAGCATTATTAAAAGACAACGAATCAAA ATAGTTATTAAAAATAATAGCCATCTAAAATTACAAAAATTTAATTTTGTA TTAAGTTATCAAAGTTAGTGCTAAGTGTTAGGGGGGTTTCCGCCCCTTAGTG CTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTG AAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTT AATTCGAAGCAACGCGAAGAACCTTACCAAATCTTGACATCCTCTGACCCC TCTAGAGATAGAGTTTTCCCCTTCGGGGGACAGAGTGACAGGTGGTGCATG GTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCG CAACCCTTAAGCTTAGTTGCCATCATTAAGTTGGGCACTCTAAGTTGACTG CCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCT TATGATTTGGGCTACACGCGTGCTACAATGGACAATACAAAGGGCAGCGAA ACTGCGAGGTCAAGCAAATCCCATAAAGTTGTTCTCAGTTCGGATTGTAGT $\tt CTGCAACTCGACTATATGAAGCTGGAATCGCTAGTAATCGTAGATCAGCAT$ GCTACGGTGAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCACG AGAGTTTGTAACACCCGAAGCCGGTGGAGTAACCATTTGGAGCTAGCCGTC GAAGGTGGGACAAATGATTGGGGTGAAGTCGTAACAAGGTAGCCGTATCGG AAGGTGCGGCTGGATCACCTCCTTTCTAAGGATATATTCGGAACATCTTCT ACGAAGATGAGGGAATAACGTGACATATTGTATTCAGTTTTGAATGTTTAT TAACATTCATTTGTACATTGAAAACTAGATAAGCAAGTAAGATTTTACCAA 45 CTAGTGTTCGAAAGAACACTCACAAGATTAATAACTAGTTTTAGCTATTTA TTTTGAATAACAATTCAAAATATGGTGGAAACATAGATTAAGTTATTAAGG GCGCACGGTGGATGCCTTGGCACTAGAAGCCGATGAAGGACGTTACTAACG ACGATATGCTTTGGGTAGCTGTAAGTAAGCGTTGATCCAGAGATTTCCGAA TGGGGGAACCCAGCATGAGTTATGTCATGTTATCGACATGTGAATTTATAG CATGTCAGAAGGCAGACCCGGAGAACTGAAACATCTTAGTACCCGGAGGAA GAGAAAGAAAATCGATTCCCTGAGTAGCGGCGAGCGAAACGGGAAGAGCC CAAACCAACAAGCTTGCTTGTTGGGGTTGTAGGACACTCTATACGGAGTTA CAAAAGAACATGTTAGACGAATCATCTGGAAAGATGAATCAAAGAAGGTAA TAATCCTGTAGTCGAAAACATATTCTCTCTTGAGTGGATCCTGAGTACGAC GGAGCACGTGAAATTCCGTCGGAATCTGGGAGGACCATCTCCTAAGGCTAA ATACTCTCTAGTGACCGATAGTGAACCAGTACCGTGAGGGAAAGGTGAAAA GTACCCCGGAAGGGGAGTGAAAGAGAACTTGAAACCGTGTGCTTACAAGTA GTCAGAGCCCGTTAATGGGTGATGGCGTGCCTTTTGTAGAATGAACCGGCG

AGTTACGATCTGATGCAAGGTTAAGCAGCAAATGTGGAGCCGCAGCGAAAG CGAGTCTGAATAGGGCGTTGAGTATTTGGTCGTAGACCCGAAACCAGGTGA TCTACCCTTGGTCAGGTTGAAGTTCAGGTAACACTGAATGGAGGACCGAAC CGACTTACGTTGAAAAGTGAGCGGATGAACTGAGGGTAGCGGAGAAATTCC AATCGAACTTGGAGATAGCTGGTTCTCTCCGAAATAGCTTTAGGGCTAGCC TCAAGTGATGATTATTGGAGGTAGAGCACTGTTTGGACGAGGGGCCCCTCT GTCAGAACATGGGTGATAAGGTCCGTGTTCGAAAGGGAAACAGCCCAGACC ACCAGCTAAGGTCCCAAAATATATGTTAAGTGGAAAAGGATGTGGCGTTGC CCAGACAACTAGGATGTTGGCTTAGAAGCAGCCATCATTTAAAGAGTGCGT AATAGCTCACTAGTCGAGTGACACTGCGCCGAAAATGTACCGGGGCTAAAC ATATTACCGAAGCTGTGGATTGTCCTTTGGACAATGGTAGGAGAGCGTTCT AAGGGTGTCGAAGCATGATCGCAAGGACATGTGGAGCGCTTAGAAGTGAGA ATGCCGGTGTGAGTAGCGAAAGACGGGTGAGAATCCCGTCCACCGATTGAC TAAGGTTTCCAGAGGAAGGCTCGTCCGCTCTGGGTTAGTCGGGTCCTAAGC TGAGGCCGACAGGCGTAGGCGATGGATAACAGGTTGATATTCCTGTACCAC CTAGTATCGTTTTAATCGATGGGGGGACGCAGTAGGATAGGCGAAGCGTGC TGTTGGAGTGCACGTCCAAGCAGTAAGGCTGAGTGTTAGGCAAATCCGGCA CTCATAAGGCTGAGCTGTGATGGGGAGAGGAAATTGTTTCCTCGAGTCGTT GATTTCACACTGCCGAGAAAAGCCTCTAGATAGATAACAGGTGCCCGTACC TCTCGTTAAGGAACTCGGCAAAATGACCCCGTAACTTCGGGAGAAGGGGTG CTCTTTAGGGTTCACGCCCAGAAGAGCCGCAGTGAATAGGCCCAAGCGACT GTTTATCAAAAACACAGGTCTCTGCTAAACCGTAAGGTGAT

TATCTAAAACCTCTTCATAAAGTGGACAAGAAGGTAAAGTTAAGTTATCCA

25

10

15

Sequence 3379 step.1002c06.cons.ok

30 TTTGAACTTTAATTAGATGTAATATTCTGTCTGCATCTTTATTCAATTGGT CATATGCCGCACTATTTAACTTCGATTGGTTAGACATGACATATTCCCCCT ATCGTTTCAATTAATATCTTCACAATAGAAGTTTATCCTACTGAATGTTAA AAAGCAAGCGAATTTAAATTAAGTGAAAGCGATTCTATGTTAAAATAATGA AAGATAAAAATTTAGGGAGTGGGCATTTATGATTCAAATAAAAGGAGCAGT 35 CAATTTCCCTATTTCATTGGATAGTACGACTTGGATATTTGACGATAGAAA AGTTACTATTGATGATTTAGAACGTGGGGTATTTGATGGTACTAGACCCAT CAACTTTGATGATAACAAGGAATGGAACCGTGCTATTTTAGAAGGACAAAC AAATCCACCAACGCTTGATTCTGAAATTAAATATAAAAAACGATCGGTTTT AGATGAAACATTTGTGAATATTTATTTTTTTTTTTTTATCTTCATAACGTTCT TTAGCTAAATCAATCAATTTAGCAATTAAATCAGGGTAAGATAAGCCCATA TTTTTCCATAAGTTTGGATACATACTATATGCAGTAAATCCTGGCATGGCA TTTGTTTCATTAATATAAATTTGATTATCATCAGTAACAAAGAAATCTGCA CGAACTAATCCCGAACAATCAGTAGCTTTAAAGGCCTCTAATGCCATGTTT CTTAATGTCATTTGAACATCTTGATCTAAATCTGCTGGAATATCTAATCTA 45 ATCTTACCGTCTTTATACTTTGATTTATAATCATAAAACGCTACATCCTTA ACAACCTCACCAGGCCATGTCGTTTCAGGATAATCGTTACCTAAGACAGCT ACTTCGATCTCTAGCATTAATCCCTTGTTCAATGACAAGTTTACGATCA AATTGGAATGCTTCAGCTATCCCAGATTTTAATTCTTCTTCATTGTTACAT TTACTTATACCAACACTTGAACCGAGATTAGCAGGTTTTACAAATACCGGA TATGTTAACTTATCATTAACTAATTTAATGATATTATTTTCATATTTTTCA TACTCACTTCTTAAAAAGCTAATATAAGGTAATTGAGGTAAACCTCTATGC TCAAATAATTGTTTCATCACGAGTTTATCCATTGAGCTTGAAGCAGCTAAC ACACCATTACCTACATATGGTATATCAAGTACTTCAAAAAAGACCTTGGATA GTTCCATCTTCCATTTGGACCATGCAATAATGGGAATACTGCATCATAT GATTTTCCTAAACTACCTTTACTGAGTAACTGTGAGATTTCTCCAGTCTCT 55 TCTTTTTTTCTTCCATTCACCATCGTTTGTTATATAAATGATATCAACTTGA TATCGTTCTTTATCAATTGCGTTTAAAACATTTTGTGCAGTTAAAAATTGAA ACAT

Sequence 3380 step.1002c07.cons.ok TATATCGCTTTTGTTGCTTAAGGTTTAAATCGTAACCATCAACATTAATGG ATAACGTGTAATATTTTTCTGGTTTAAAATAGTTAATCTCATCTTGTCTTG ATTTAACTATTTGTATTGTTGGAGTTTGTACACGACCTAATGATAATTGTG CATCATATTTTGTCGTTAGTGCACGTGTTGCATTAATCCCTACTATCCAAT CTGCTTCACTTCGTGCAAGTGCTGCTTCATATAAATTTTGATACGCGTTTC CATTTTTTAACTGTTTAAATCCTTCTTGTATGGCTTTTTTTGTAACCGAAC 10 TAATCCACAAACGCTTGATTGGTTTTTTTATTACCTACTTTATCTAAAATAA GACGAGCTACTAGTTCACCTTCTCGTCCAGCATCTGTTGCTATAATAATTT CTTTAACATTTTATCTAAAATTAAAGATTTTACAATTTTAAATTGTCTAT TTGTTTTACTAATCACTACTGTTTTCATTTTCTTAGGAATGATAGGTAAGT 15 CTTCTAAATTCCATTCTTTATATGAAGGGTTATATTGTTCAGGCGTTGCAT TTGTCACAAGATGCCCCAATGCCCAAGTTACTATATACTGTTTCCCTTCTA TATAACCATTACTTTTTTGTTGAAGATTCAAAGCATTAGCGATATCTCTTC CGACAGATGGTTTTCAGCTAAGATTAAAGATTTCATTTTAATTTTCCTTT 20 TATCTTGTTCAATCATATAGTTCAAAAACACATTATCACTTAATACGAATA TTTACTTACTAAAAATTTCAACACTTTTAAGGTGTTGTTTTTACTTCTTT TTTTAATTACTATAGAATGATTTCGAGTGTAATTGGGACACTTAATTTTGT TCTTAGGAGAGTGAGTAATAAGTGCAAATTGTAGATTTTTTGATAGCACTT TTACCAGCCCTATTTTGGGGTAGTGTAGTCATTATAAATGTTTTTGTAGGT 25 GGTGGACCATATAATCAGATTCGAGGTACAACTTTAGGTACACTTTTATC GGATTTTCTCTACTTGCTACTGGACACGCAGCGTTTGATAACCTTACAGTA ATTATTGTCGGTTTAGTATCAGGAGCTCTATGGGCTTTTGGTCAAGGTAAT CAATTAAAATCAGTGCATTTAATAGGTGTATCTAAAACGATGCCTATTTCA 30 ACGGGTATGCAACTTGTCGGTACCACTCTATTTAGCGCTATTTTCTTAGGT GAATGGAGCACGATTGTTCAAGTAGTGATGGGACTTATAGCAATGATCTTA TTGGTTGTAGGTATTTCTTTAACATCACTTAAAGCCAAAAGCGAAGGCAAA TCCGATAACCCAGAATTTAAAAAAGCAATGGGAATATTACTTCTATCAACA ATCGGTTACGTAGGTTATGTCGTTCTTGGAGATATTTTTGGAGTAAGTGGT ACAGATGCTCTCTTCCTAATCAATTGGTATGGCAATTGGAGGATTAATC CTTTCAATGAATCATAATACTTCAATTAAATCTACTGCTCTAAATCTTATA CCAGGTGTTATCTGGGGTATCGGTAACTTATTTATGTTCTATTCACAACCT AAAGTTGGTGTAGCAACTAGTTTCTCATTATCACAACTGCTTGTTATTGTT TCAACTTTAGGGGGTATCTTTATTCTAGGGGAGAAAAAAGATCGTCGCCAA 40 ATGATTGGTATTTGGTCAGGTATTATCGTTATAGTTATAGCTTCAATCATT TTAGGCAACTTAAAATAGAATTTTAAACTTTAGGGAGGTAACATAGTGTTT GAAGAATTAGAAAATAAAGTGGTTCTTATTACTGGAGCTGCCACTGGAATT GGCAAATCTATTGCGGAAAATTTTGGTAAAGCTAAGGCCAAGGTTGTTATA 45 GTTGCTAAATTTGGTGGTCAAACATTGGTGGTTCAAGGTGATGTTTCAATT GAAGAAGATATTAAACGAATGATTGAAACAACAATTAATCACTTTGGAACT TTAGACATTATAATTAATAATGCTGGATTCGAAAATTCAATCCCAACTCAT GAAATGTCGATTGACGACTGGCAAAAAGTTATTGACATAAACTTAACTGGC GCCTTTGTGGGTTCAAGAGAAGCCATCAATCAATTTTTAAAGGAAAACAAG AAAGGTACTATTATTAACATTTCGAGTGTTCATGACACTATTCCATGGCCT AATTATGTACACTATGCCGCAAGTAAAGGTGGCTTAAAATTAATGATGGAA ACAATGTCAATGGAATATGCCCAATACGGTATTCGTATTAATAATATATCT CCTGGGGCAATTGTTACTGAACACACTGAAGAAAATTTTCTGACCCAACG ACGCGTGAAGAAACAATAAAAATGATACCTGCACGTGAAATTGGAAATGCT CAAGATGTAGCTAATGCAGTACTATTCCTATCTTCAGATCTTGCAAGTTAT ATACACGGTACAACATTGTACGTTGATGGTGGCATGATGAACTATCCAGCA

TTTATGGGTGGTAAAGGTTAAGTAGCATTTTTCAATTTTAACTAGAAATAA AATGTCATAAATTAGTAATGAATAGTAGTCTTAAAAAGTATCAGTCATCGA CTGAATATAAGTGACAAACTATAATAAAAAAGCTATGAAGATATCTACAAT

PCT/US00/30782 WO 01/34809

GATACATTTCTTCATAGCTTTTTTAGTTATATAAATAAGTATATTGATTAT GCAATCAATTTTTATACAAATACAGCTTGATAAATATACAAAATGATAATG CTAATATGAATATTTAGCAAACAATTCCGTTTCTAATGATGATCAATTATC TAGTCATGTTGACTTAAATTCATTACCTGCTACAGATTTTCGAACAGATTG GATGTCTGAATCTGGTCAAAAACAAGTGAATGATTTAGCAAACCAAAAAGA TAGCGGTCAAATTTCACAATACGAATTTAATGATCGCGTATCTGATGTGAT GAATAATGAAATAGATAATCAACAGCCATAATTGAAATATAGGGTAGCACG TCTACCCTTTTTATTTAGGGAGGGTAAACACGTGGCATAAGAAATTCACCT 10 ATAAACATGGTGAAACTAAAAATCGCTATTATGAGAAGTACAAAGACCCTC TCACAAACAAATGACGACGTGTTAGCGTGGTACTTAATAAAGAATGGTAAA CAGTCACAAAAAGAGGCTCAGAAGCGCTTAAATGAGCTTATAGAGGCAAAA TTAAACGATAAGACACCTACTACACTTAAGTCACTAACATTCCATGATCAT TTGATGAGTGGTTTGAAAGATACAAATTAACTTCCGGATTTAAACAATCTA CCGTTACAACGAAAAGTTATAAAATAGCGCACATCAAAAGAAATATTGATA 15 AAAATATACTCGCTCAAAATACGAATGCTGATGTTTTACAAGACTTAATTA ATTCTTCATTAACAGAGGGATTAAGTCATAAAGTGGTTAAAGATGATTTGA GTATTATAAAAAATATACTACGCTATACTCAAAAGAAATATAACATTACTG ATAAATCTTACATAGATGATGTAATAGTACCTAAAAAAGCGACTACAATAG 20 TTATCGCTGAAGAGTT

Sequence 3381

25

step.1002c12.cons.ok GCTTTTCTCAAATTATCTTTAACACGTTCCTCATTGACTTTAGTTTGATGT TGTTCTCTTTTAGCTTGATTTTCCTTCTCTATTTTCTCACGTCTTATGCGC TCTTCTCGCTCTACGTTATGAAAGTATTCACGTCTTTTACGTCGATATTGA CTGCGTGGTATGACTTGTTTTTTATTGTTATCCACTAGAAGACCACTCCTA TAGTTTCTTTAACTCATTCTTTATCTGTAAAATTCAAGTTATTTTAATACT ATATATCATCATCATTTTAAATTCGTTTATAATCTAAAGTTTAATATTTTA ACTATAAAACTGCAATGTTCTAATAAAAATTAAAATAAAAAGAACCTCCAC TTACCTTTTTTCTTGTTGCCAATTGCTGAAGTTAACCATCCTATTAAAACT AAGCCAACTAATACTACCCAGAAGATTGTTTGCCATAAAGCACTATGTGGA AATGCTTCTGGTAAAACGCCAATATCAGGATGTGCAAGTACCATTATAACA AGTTTAATACCTACCCAACCTACAATTGCAAACGCAGCACCTTCAAGTCCT GGATATTTATTCAACAATTCTACAAACCAAGTTGCTGCAAATCTCATCAAG ATGACACCTATCATTCCACCAAGGAACATAACAATAAATTGGCCTAAGTCC 40 ATACCACCAAAATGTATGCCAACTTTTGGTAATGTAACGGCTATGGCTAAT GCGGCAAGCATCGAATCAATTGCAAACGCGATATCAGCGAATTCAACTTTA AATACTGTTCCCCAAAAAGATTTAGGGCCTACTTCTTTTTCGTTGCCTGTT TCATCGAAATGATGTTCGTCTCCTGTTTCTTTATGGTGTTTTTCATTTGAC TGATGGAAAATTGCCATAAATTTTTAATAGACATATAGATTAAGTAAACA GCACCTGCTGCTTGAATCCACCAGAAGTTTGCAATAATACTTATTAAAAAT AAAGCAATAAATCTAAAAATGAATGCACCTAATAGGCCATAAAAAAGTGCT TTTTTACGTTGTTTAGGTGGTAGATGTTTAACCATTACCGCCATTACAATT GCATTATCAGCTGCTAATAATCCTTCTAAAAATACAAGTACTAAAAAGTACC CATAAATAAGGTAAAATCAAACTCGGATCCATTGTGGACAACTCCTTTTAG TTTAAATACAAATAAAGAGACCTATGCTAATTTAATAGCAAAGGTCTCACT 50 TAGCAATATTTTTGCCCACTTTACCGGAAGACTTATCTTCGTAATGACGAC AAAGTGTTGAATAGTTATTATCGGTTTAAATGCATTCAATAACTATTCTCA TATACATACTATGACACTGCATAGCAATATAAACATTTTTCATATACTATG GTGTGCCCGAATAGTGATATGTTTAAACATTCAATTATAATAAACTATACA 55 GTTTAATATCAGAGAATTTTTCTTCAAACCAACGCGTTGCAAATTCATTTT CAAATAGGAATACATAATTGTCGTATCTATCTTTTACTAAAATTGATCTAG AAGTATTCATATTATCTTTAATATCTTCTTCATTTTCAATCCAACGCGCAA TTTTACGTCCAACTGGTTCCATAACCACATCTACATTATATTCATTATTCA

TGCGGTGTTCAAACACCTCAAATTGTAATTGACCCACAGCACCTAAGATAA TTTGATTTGTGTGCAACGTTTTATAATATTGAATTGCACCTTCTTGAACAA GCTGTTCAATCCCTTTATGAAAATGCTTTTGTTTCATTACATTTTTGGCAG AAACCTTCATAAATATTTCTGGAGTAAATTGTGGTAACTCTTGGAAACTAT ATTTCTGCTTACCACCAACTAAAGTATCGCCTATTTGATAGTTACCTGTAT 5 CATACAAACCAATAATATCGCCTGCTACAGCATGATTAACAGTTTCTTTAT TTTGTAAGGTTACATCCATTCCTCTTTCAAACGCACCACTTACCACGCGCA TAAATGCAATTCTGTCACGATGCTTTGGATCCATATTGGCTTGAATTTTAA 10 AGATAAACCCAGAAAAATCTGTGTCGAATGGACTAACATCAACCTCTTCTT TAGTTTGTCTCGCATTAGGCATTGGCGCATGATCAACGTATGCATTTAAGA AATTTTGTACGCCGAAGTTTGCTAATGCCGATCCAAAGAAAACAGGTGTTA ATTCACCGTTCAGTAACGCTTCATTATCAAATGCTTCACCCGCTTCATCGA CAAGCATCATTCTTCAATTGCTTGTTCAAATGCACTATCATTTTTTATCG CGTGTTCTTTTAAGTTCGTAATCTTCGTTTAAATGTAATAAATTTTCTT CATCTCTAAATGGTTCAATCGTTTTAGAGTGTCTATCAATAATACCAAAGA **AATTTTGTCCCATACCAACAGGCCAATTCATTGGATAAGTGTCAATATTAA** GTGTTTCTTCTATTCATCAAGTAATTCAAATGGCTCTTTACCTACTCTAT CCAATTTATTGATGAATGTAAAAATAGGGATACCTCGCATTTTACAAACTT TAAATAATTTTAATGTTTGTGGTTCTATACCTTTTGCACAGTCAATAACCA TAACTGCACTATCTACTGCCATTAATGTACGATACGTATCCTCTGAAAAAT CTTCATGCCCGGGCGTATCTAAAATATTTATCTTATAATCATCATAATCAA ATTGCATTACAGAGCTTGTAACTGAGATACCACGTTCTTGTTCTACCTTCA TCCAATCACTTGTTGCAAATTTACCCGTCTTTTTCCCTTTAACTGTCCCAG CTTCACGAATCGCTCCACTGAAATACAACAATTTTTCAGTTAAAGTTGTTT CTTCTTTTAAATTCATTTATCATTCTCCTTTTGGATTCATTTCTAATCAAAT CAGTTATATTACGTGCCAATGCATCTGCTTCAACTTCAGTCAACAAATTGA ATAATTGCATCACTAATTCCTCATATAGCTGATTTGCATCTAACTCTTTGG ATAACTCAATGGACCAAAAAAGTTCTGGAATAGCTAACATGATTAAATCAT TAGAATGATAATGATATACGTTCATCATCATCCATGAAACTGAAGTGATT TAATCCTCAAGAGGTCCACCACCAAATTTTTGATATGCTGCTTTTAAGCCA ATTAAGTCATCGCGATGTGGGACTTTAACATGACCAGGCATAATTTGATAA GGCTCTCGACCTTTTGAGGCCAAAACAACTGTATCACCTGGTTCAGCAATA TCAATCGCGTGTCTAATACCTTCTGCACGGTCATCAAACTCTATATAATTG 35 TTATGCGTTGCACCTTTAGCTAATTCAGCTGTCAACATTTTAGGATCATCG TTAGCAGGATTATCTGGAGTAAAAATAACATAATCTGCTCGACATGCTACT CTCCCCATCTCAGGTGTTTTCGTTAAATCTCTTTCCCCAGCCATACCTACT 40 TTCATACCATCAGCTGTATGTGCATAATCTATAATCAAATCTATAGGAAGT GATGGATCAAGTACTTCTAAGCGCCCCTCTACAGGTTCAAGCTCAGTAACA GCATTAATAATTTCATTTAAATTTGTTCCCTTACTCCAAACCGCAATCATA GCAGCCATAATATTTGAAATGTTAAACCTACCTACATAAGGAGATTTAACT GGAAAACTTCCAAATGGAGTACAAAATTCAAATTCTACACCTTGCAATGAT TCTTTAATGTTTTTAGCCATAAATTGTGCTTCGTGAGTAATACCATATGTA AATACTTCATAGGGTGTCACACTTGCTAAATAATCGGAGAAG

Sequence 3382

50 step.1002d01.cons.ok
CTGTCGTAAAGCTGGTATTATTACTGGTTTGCCAGATGCTTACGGACGTGG
ACGTATTATCGGAGACTATCGTCGTGTTGCTTTATACGGTGTAGATTTCTT
AATGGAACAAAAACTTAAAGACTTTAACACAATGTCTACTGAAATGTCTGA
AGATGTAATTCGTTTACGTGAAGAATTATCAGAGCAATATCGTTCACTTCA
55 AGATTTAAAAGAATTAGGTCAAAAATATGGATTTGATATTAGCCGTCCTGC
TACTAACTTCAAAGAAGCTGTGCACTGAGAGATCCCCTCATAATTTCCCCA
AAGCGTAACCATGTGTGAATAAATTTTGAGCTAGTAGGGTTGCAGCCACGA
GTAAGTCTTCCCTTGTTATTGTGTAGCCAGAATGCCGCAAAACTTCCATGC
CTAAGCGAACTGTTGAGAGTACGTTTCGATTTCTGACTGTTAGCCTGGA

AGTGCTTGTCCCAACCTTGTTTCTGAGCATGAACGCCCGCAAGCCAACATG TTAGTTGAAGCATCAGGGCGATTAGCAGCATGATATCAAAACGCTCTGAGC TGCTCGTTCGGCTATGGCGTAGGCCTAGTCCGTAGGCAGGACTTTTCAAGT CTCGGAAGGTTTCTTCAATCTGCATTCGCTTCGAATAGATATTAACAAGTT GTTTGGGTGTTCGAATTTCAACAGGTAAGTTAGTTGCTAGAATCCATGGCT CCTTTGCCGACGCTGAGTAGATTTTAGGTGACGGGTGGTGACAATGAGTCC GTGTCGAGCGCTGATTTTTCGGCCTTTAGAGCGAGATTTATACAATAGAA TTTGGCATGAGATTGGATTGCTTTTAGTCAGCCTCTTATAGCCTAAAGTCT TTGAGTGACTAGATGACATATCATGTAAGTTGCTGATAGGTTTCCAGTTTT 10 CCGCTCCTAGGTCTGCATATTGTACTTTTCCTCTTACTCGACTTAACCAGT ACCAACCCAGCTTCTCAACGGATTTATACCATGGCACTTTAAAGCCAGCAT CACTGACAATGAGCGGTGTGGTGTTACTCGGTAGAATGCTCGCAAGGTCGG CTAGAAATTGGTCATGAGCTTTCTTTGAACATTGCTCTGAAAGCGGGAACG CTTTCTCATAAAGAGTAACAGAACGACCGTGTAGTGCGACTGAAGCTCGCA ATACCATAAGCCGTTTTTGCTCACGGATATCAGACCAGTCAACAAGTACAA TGGGCATCGTATTGCCCGAACAGATAAAGCTAGCATGCCAACGGTATACAG CGAGTCGCTCTTTGTGGAGGTGACGATTACCTAACAATCGGTCGATTCGTT TGATGTTATGTTTTGTTCTCGCTTTGGTTGGCAGGTTACGGCCAAGTTCGG TAAGAGTGAGAGTTTTACAGTCAAGTAAGGCGTGGCAAGCCAACGTTAAGC 20 TGTTGAGTCGTTTTAAGTGTAATTCGGGGCAGAATTGGTAAAGAGAGTCGT GTAAAATATCGAGTTCGCACATTTTGTTGTCTGATTATTGATTTTTTGGCGA AACCATTTGATCATATGACAAGATGTGTATCTACCTTAACTTAATGATTTT GATAAAAATCATTAGGGGATTCATCAGAGCTGTGCAATGGTTATACTTAGC ATATTTAGCTGCTATCAAAGAACAAAATGGTGCAGCAATGAGTTTAGGACG TACTTCAACATTCTTAGATATTTATGCTGAACGTGATTTACAAAATGGTGA CATCACTGAACAAGAAGTTCAAGAAATCATTGACCACTTCATTATGAAATT GCGTATCGTTAAATTCGCGCGTACGCCTGAATATAATGAATTATTCTCTGG TCCAATGGTAACTAAAAACTCATTCCGTTTCTTACACTCATTAGATAATTT 30 AGGTCCAGCACCAGAACCAAACTTAACAGTGTTATGGTCTACTCGCTTACC TGAAAACTTCAAAATCTATTGTGCTAAAATGAGTATTAAAACGAGCTCAAT CCAATATGAAAATGATGACTTAATGCGTGAAAGCTATGGCGATGATTATGG TATCGCTTGCTGTATCTGCCATGAAGATTGGTAAACAAATGCAATTCTT CGGTGCACGTGCTAACTTAGCTAAAGCATTACTTTACGCTATCAATGGTGG TAAAGATGAAAAATCTGGTAAACAAGTTGGGCCAAGTTATGAAGGTATTAA ATCAGACGTACTAGATTATGATGAAGTCTTCGAAAGATATGAAAAAATGAT GGACTGGTTAGCTGGCGTATATATCAACTCATTAAATATCATTCACTATAT GCATGATAAATATAGCTATGAACGTCTTGAAATGGCTTTACATGATACAGA AATTATTCGCACAATGGCAACTGGTATTGCCGGATTGTCTGTAGCAGCTGA CTCTTTATCAGCGATTAAATATGCACAAGTTAAACCTATCCGTAACGAAGA 40 AGGTCTTGTAACTGACTTTAAAATCGAAGGCGACTTCCCTAAATATGGTAA TAATGACAGTCGTGTTGATGAAATTGCAGTAGATTTAGTTGAACGTTTCAT GACTAAATTACGTAGCCATAAAACATACCGTAATTCTGAACACACAATGAG TGTATTAACAATTACTTCAAACGTTGTTTATGGTAAGAAAACTGGTAACAC 45 ACCAGATGGACGTAAAGCTGGCGAACCATTTGCACCTGGCGCAAACCCAAT GCATGGTCGTGACCAAAAAGGTGCATTATCTTCACTAAGTTCAGTAGCTAA AATACCTTACGATTGCTGTAAAGATGGTATCTCAAATACATTTAGTATCGT ACCGAAATCACTAGGTAAAGAAGAAGCAGATCAAAATAAAAACTTAACTAG TATGTTAGATGGTTATGCAATGCAACATGGTCATCACCTCAACATTAACGT ATTTAATAGAGAAACATTAATTGATGCAATGGAACATCCAGAAGAGTATCC ACAATTAACGATTCGTGTATCTGGATACGCTGTAAACTTCATTAAATTAAC ACGTGAACAACAATTAGATGTTATTTCACGTACATTCCACGAATCTATGTA ATAAATTTAAGGTGGGAGCAAAATGCTTAAAGGACACTTACACTCCGTTGA **AAGTATGGGCACTGTCGACGGGCCAGGACTTAGATATATTATTTACTCA** AGGTTGTTTAAGATGTTTATATTGTCATAATCCAGACACTTGGAAGAT 55 TAACGAACCATCAAGAGAAGTGACGGTTGATGAAATGGTAAATGAAATCTT TGGCGAACCATTACTACAAATGCCTTTCTTGGAGCAATTATTCAAAGAATT AAAAGCGAATGGTGTTCACACATGCATTGATACTTCTGCGGGATGTGTGAA

TGATACACCAGCATTTAATCGTCATTTTGATGAATTGCAAAAGCATACAGA TTTAAACATATTGATAATGATAAGCACATCAAATTAACAGGCAAACCTAAC ACACATATTTTAAAGTTTGCACGTAAATTATCTGATATGAAACAACCTGTT TGGATTAGACATGTTTTAGTACCTGGTATTTCGGATGATAAAGAAGATTTG ATAAAACTAGGAGAATTTATTAATTCTTTAGATAACGTTGAAAAGTTTGAA 5 ATCTTACCATATCATCAACTCGGTGTGCATAAGTGGAAAAATTTAGGCATC CCTTATCAACTCGAAAATGTTGAACCATCTGACGATGAAGCGGTTAAAGAA GCTTATCGCTATGTTAACTTTAATGGCAAAATACCCGTAACATTATAGAAA GATAAATATAGTAATAGCCTGAGACATCAATCGTTGTCTCAGGCTTCTTTA CGTTTAATCAGTCGATAAACTGAGTATAAAATATATCTCAATTAACTTTAT 10 TTAATAAAAATATGATTCATAAGTTTAAATAGTTTATTTTTCTAGATATGC TTTAAATACATCTTTATAAACATCGATGTAACTTAAATACATATCTTTTCT AATAAATTCATCAACTTGATGCGCCATAATAGATTCACCAGGTCCAAAGAC AGCAAAATCCACGTTATTTTCATTTGTTCCTAGGAAACTAGATGCATCAGT TGTACCAATCAATGCACTCACAACAATGTCTTCATGTACATAATTCGGTGC **AATACGTGTAATATTTTGAATAAGAGGATTATCACGATCACTTGCCACTGG** ATCGTGACTGCTAGGTATATCTACAGTTAAATAATCTTCGCCCACATGACG AATGACTTTTTCAAATAAATCCTTCACGAAAGTACTGTCATATTCTGGAAC AGTTCTTACATTATATTTAGCTGTCGCTTTATGAGGAACAGAATTAACTTG 20 TTTACCACCATTGAATACAGAGTTTAACATTACAAATCCAGAGTAGATATG TGATTCTTCTCACCAATTTTTCTGTGGAGATGTTTCTCAATCATTGGAAC AGCGTCTAACTCGTGTACTTTATCATGTTCTTTAATATTTTTATATTCTTG TTTCATTTCATTTACAAAATCAACTAAAATATCAACAGCATTTGTACCTAG GTGTGGCATGGAACTATGTGCAGCCTTACCTTTCGCTGTGACTACACAGCT CATAGAACCTTTATGAGCATAGTAAGCGATATTACTAGTTGGTTCGCCAAT AATTAAACCACTCACATCATCTAAGTAACCTTCATCAGCTAGTAATTGTGC ACCATATTGTT

30 Sequence 3383 step.1002d02.cons.ok GAGATAATCATAAAAATTAGATACTACAGTCATAGTCAGATTAATTGTCTT AGGACTAATGCTTTTTCTTTTCGGTGATAAGAGAGGACATTCTCATATTC AAAAGGTGTTTTCATCCATCTTATAAAATCAACAAAGTTATCAAAACTAAC TTCTTTATAGCATATCTTTTTACTTTCTAAGTAAACAAAAAATTTTTTAG TGCATAGGCATAGGTTTTCTTGGTATTTAAACTTTTCTTAACACTATCCAG ATACTTCAAATATCTTACTGCATCTACTATAGGTTCATTATTACCATCTAA AATCATAAAATTGGTACCATTCTTAGATTTTACTTCTACTATTTTCATAAT AATCTCATTTCTAATTTTAATAGTATAAGTATACACTATTCAAATTCTTTT 40 TACATCATACATATTAAACTTATTACACGTAATAAAAAAAGACTATTTAAT ATTTTTACTTTGTTCATTTTTTCTTAAAATATGATTCATTTTAAACAAAAT **AGTCTATATTCTTCAACATATATATAACCATTCGCAACTTTACCAGAACAG** TTTGAAACAATTTATCAATATATGATAGATCAAAATAAAGTGAGCAGACCA GTGCTTTCAGACGACCAACTTTCGCAACTAAATATACATTTACATGAAGCA 45 CTACAACAATCACGCCCAGTCAATATCAAATATTACGAAGAAGGATATATT AATTTTATAGAGCTCATTGTACATCGGATTGATTCAATAAATTATGAGATT GAAGGTACTGCTCCTCATTCAAGAGAACGTCATAAAGTTTCATTTTAGAT ATTATAGATATTTCTTTTATATAAAGAGTACAAGAGAATTTATTATGAATT TCTCATTTTACACTTATATAACCACCAACATACTTAGTGTTATCTAAAGCC 50 TGACTGATAATTGGTAAAATCAACTAATAAAAATAAGCCTACACATCTCAA TGATGTACAGGCTTATTCCTAAATTATTATAAATTAATTGTTGTTTTCGAT ATCAGAAACGATTTCTTTCGTTTTTCTTTCGATATCTTCAAAGTCTTTTTT AAAAATATAAGCAAAGGCAACTACACCGATGCCTACTACTACTGTAGTAAT AGCTAATAAACTAAAGACAAATTTGAATAACCCTTTAATAAAGTTCCACAT TAGTTTTCACCTCTATAATTAATATGCATAGCTACATTTCATAATGATAAC ATACTTAACTTTATCATTAAATATATACCCTTTTTTACAGGTAATTATTCTA

AATATGAATATAAATTATGATAATATATCAACTAAAGATGCTTAAAATGAA
ACAATTAAATGATTCTTTAATCATGGTACACACACAGATTAACTTAGCAA

CCAAGATTTTAATTTATCAGTGATTACTTTGTAATTATCAATATTCAGAAT GATCACTCCTATTGAGATAATGTCATTATCTTAATTTAGATTGTATGATTT ACGCAAATCAAGTTCAATTAATAATAAGTTACTTTTATATTACATTGAAGT AAAAATATAAGGAGAGATTATAAAATGCAAAAAGTACGTTCTGATATAATG ACTCATCGTGGTTCTCACTATGATTTAGGAGTAAAGACTGCTCTTTGGTTA 5 CAAACCACTCCTTTATTAAAAAATCGAAATAAAGAATGGCGAAAGAGAATT CCACGTTTTGATATTGATGTCAAGGAAACCTATGATATATTTCAAATCTAT TCGCCACAGATTTGGGAAGAAATAATTGGTATGCAAGATGTATTGAATCTA CCTACAAAACAAATGATTTTAAATTTTGGCCATTATCGATTTACTGATTTA 10 AAGGACAGTGGTTGCACAGTATATAAAGGTCGTGATTTTTTAGTCCGAAAT TATGATTATCATCCTGCAACATATGATGGTAGATACTTATTATTTCAACCT AATGACGGGGGATTATCTCAAATAGGACCGACTTCAAGAGTGACTGGTAGA ATGGATGGTATGAACGAGTATGGTTTAGTTATGCATATAATTTTATGCAT CTTGAAAATTGCAAAAATGTAACTGAAGCAATCAAATTTTTAAAGGAAGTA CCGCATCGTAGTTCATTCAGTTATATACTAATGGATAGACATTCGAATTAT GCCATTGTCGAAGTTACACCTCGATCAATAGATGTAAGGTATGAACATATA TGCACAAATCATTTTGAATTGCTTACCCATGAAAATAGAAACTATACAAGA GAATCTAAAGAACGCTTAAATCGTGTAATAAATAAAACAACTCCTTCTACA AACAAAGATATCGCATTCAAATTATTTAACGACCCGCAATACGAAATCTAT 20 AGCAACCTATTTAAAAGTTGGTCTGGTACAATTCATACTTCACTATATGAA CCTAATTCATTAATATCATGGATGGCATTAGGTCAAAACAGTCATCCAACC TCAATCAATTTTCTAATTGGTTAAAAGGAAAGAAATTGAATAAATTAC TTTGAAGGCGAAATAGATACACCATTAACTTTTGCCACATACTAATTAAAA ATTCGACCCTATCTTGATAAATCAAAGGGTCGAATAATTTATATTATTATTAT TCAATTTTAATATCGCCATCTACAGTGTAAAATTCCAATATATTATCGCTA TTTCCCACTTTTCCTTTATCGAAATATCGATTTTTAATTTCTTTATTTCCA TGACCAGGATGAAGTTTAAGCAAAGTGTTTTTAGGTTTTTCGCCAAAATGA TAATTAATATTACCTCTTTGTGTAGAAGCTTTTATATCATTGTTAGATTTC 30 ATGTCCGTCATAGAAATATCTCCTCTATTAACCAAGAAAACAGTATTAGCA AGAAAGCAATCCAAAAGAAGAACAAAATA

35 Sequence 3384 step.1002d03.cons.ok TCTGCACCATATTTTACTGCTTGGCTCACTTCGTAATCTGCTGCATCCATA ATTTTCAAGTCAGCTAATACTTTAGCATTATTAATATTTTCATTTAAATGT TGAACTGCAGGTAACCCTTCATTAATTACAATTGGCGTACCAATTTCAACA 40 ATATCTACATATTCTTCAACTTTTTGAGCTAATTTTGCTGCTTCTTCTTTA TTTAATAAATCAATGGCTAATTGTAGTTCCAATGAAATTCATCCTTTCGTT TTGGGAAATTCTCTTTTGCTTATAGTTGTATACCCTTCGCTAAACTTATTA AACATATAAAATATTTTGTATATAAAACAACTATATAATTATAAACAATCT 45 ATGGTCGCAGGTACATCTTCGGTAACCTGTTCATTTAACAGTTTACTTATA GCCTCTTTTTTCTTTGGACCAAATGCGAGTAGGATAATCCTTTTTGCTTTT AAAATACTTTTTACCCCCATTGAAACTGCTTGTCTAGGAACATCCTTTTCA TTGTCAAAAATCGACTATTTGCTTTTATGGTGCTTTCTGTTAAGTTCACC ACATGTGTTTCACTATTGAAGTCAGTCCCTGGTTCATTAAAACCAATGTGA CCATTTTCTCCAATTCCTAAAATTTGAATATCGATTGGCCCTCTTTCATCT AATAAATTGTTATATCGTTCCGCTTCTGCTTCTAGATTTTCTGATAAGCCA TCAGGAATATGAATGTGATTTTTAACAAAATGAGGATATTGCTCAAATAGC ACTTTATTCATGTAGGTATGGTAACTTTGTTGATGACTTGCTTTTAAACCT ACATATTCATTTAAATTAAATGTTTCAACCTGCGACACATCAACTTTATTT 55 GTTGCTAAACCGAGTTTGGCATGAGGGTGCTGCTGTATTTGTTTAAACAAC TCGCATGCTACATAAAATGACGCAAGATTTTTTGAATCTAAATTAATAATT CCTTACTCTTTATATCTCTTAAATTATACTGTAACAAATGATTAAGATTT

TAAACATATTAACGCTCTATATGTAATATTCAACGTTATTTCTTGAATTTT TCCTAATTAAATCGAGCATTCGTGTACAAATATACATAGCTTTCTAGTAAA ATAGATAGATAAACGAGTTTGCTGGTAAATAATATGTTTATCGGTAGTCCG TCACTGACATATTGTTTAGTTTAAGGGAGTGAACGTGTTGGAACCAATTAA AGAACAAGAAGTGCTAGATTTATTAACTTCTTACTCAAATCAGCCTGTTTA CCTACACGTTGAAACAACAAATGGTGCTTATGCAAATCATTTCGATCAACG CGTATTTAACGCTGGAACATTTTTAAGAAATATTGTCGTGACTTTTGAACA TGCACAACTTAAAGGCGGCGACAAAGATCCATATCGTGTAGGTCTTAAATT AAAAGATGGTGGCTGGGTTTACGTGCAAGGACTTACGCACTATGAAGTTAA TGAGAATAACGAATTTTTAATTGCAGGTTTTAATTATGAAGGACAATTGGC TGCTACAATAGAAATAAGTAAACAGCCATTTACTATATAAAGGAGGTTGCC **AATCATGACTGATGAAAGACACGTACTTGTGATTTTCCCCCATCCTGATGA** TGAAACTTTTTCGTCTGCTGGAACTATCGCAAGTTATATTGAAAAAGGTAT TCCCGTCACATATGCATGTCTTACCCTAGGACAAATGGGACGTAATCTAGG TAACCCTCCTTTTGCAACAAGAGAATCTTTACCATTTATACGTGAACGTGA 15 GTTAGAAGAAGCATGCAAAGCAATTGGGATTACAGATTTAAGGAAAATGGG GTTAAGAGATAAAACTGTTGAATTTGAACCTTACGATCAAATGGATCAAAT TCCTAAATTTGCAGTTCACCCTGATCACGAGGCAACTGCAGAAGCTGTAGT ACGTACAGTTGGACGCATGCATGAATCAGATCGACCCCGTCTTACACTTGT 20 AGCGTTTAGCAATGATGCATCAGAAATTCTTGGAGAACCTGATATTCAAAA TGACATATCTCAATATAGTGATATAAAACTTAAAGCTTTTGAAGCACATGC TTCACAAACAGGACCATTTTTAAAACAACTTGCTAGTCCCGAAATAGATGG TCAAGCACAAAGTTTCTTAAAAATAGAGCCATTTTGGACATATCACTTTGA ATCTTAAATGGAGGTAAAACATGACAGAATTTGACTTATCCACTAGAGAGG GTCGTTGGAAACATTTCGGTTCTGTTGACCCTGTCAAAGGTACGAAACCAA CTACTAAAAATGAAATGACCGATTTACAAAGTACTCATAAAAATTTCTTAT TTGAAATAGAGGAAGTAGGCATTAAAAATTTAACTTATCCAGTTTTAATTG ATGAAAAAGGCATTAATATGAGTCGCATATTAGAAAGCGTTGAAAAACATT 30 ATGATAATGGCATTGAACTTGAATTTAACACACTACATCAATTGTTGCGTA CTCTACAAGATAAAATGAATCAAAATGCTGCAGGTGTTGATGTGTCAGGTA AATGGTTCTTTGATCGTTATAGTCCTGTGACTAATATTAAAGCTGTAGGCC ACGCAGATGTTACTTATGGTTTGGCTATTGAAAATCATACCGTTACACGCA AAGAATTAACTATTCAAGCCAAAGTAACAACACTATGTCCTTGCTCAAAAG AAATTAGTGAATATTCCGCACATAATCAACGTGGTATCGTTACAGTTAAAG CATATTTAGATAAAAATAATGATGTCATCGATGATTATAAAGATAAAATTT TAGACGCTATGGAAGCCAACGCTAGTTCTATCTTATATCCAATCTTAAAAC GTCCTGATGAAAAACGAGTAACAGAACGCGCTTATGAAAATCCACGATTTG 40 TTGAAGATTTAATTCGACTAATTGCAGCTGACTTAGTTGAATTTGACTGGA TTGAAGGGTTCGATATTGAATGTCGTAATGAAGAGTCTATCCACCAGCATG ATGCTTTCGCACGTCTGAAATATCGCAAATAAAACATTGAATTTCAACTAC AATGCCAGTTGTATTTTAGTTTATAAGATGCAACTGGCAATTTTTTAGCA TCATCAATATCGATGATACATAATGTAACACAAAAGAAACTCACCCCATGC 45 AGAAATTCTAGATTTAATTTATTGTAGTGTATTTATGCACTTGTAATTTAC ATACATATTATAACGTTTACAACCAACTTTAAGTCATCAGATTAAAGTATT CAATTCAATTATAGGTTACCTGAGCTATTGACAAACTATTTACATTTAATA 50 CATTCGACTAGTGAACCAAGAATGTGTCATGCTATGAAGAAAGGTGAAATT CATGATTACTG

Sequence 3385

TTCGTTAATTGTCATCTGTTGTTGCAGTTCTTTTTTTTTGAACAACTTATG TTTACGTTTAAGTTTTCTAGTTCATCTTTCGTTACTGTTCCTGAGAATGT GTTTCTAAAGTGTATGCCTGCATAGTTACCTAGTTTGAATGTATCTTCTCC TAACGGCGTTACACTACACATCTCCCAACCGTCAATTTGATACAACATGTA TTGCTTTTTAAGTCCGTCGATAAGCCCCATCTGGTTGCCTCCATTTCGTTT 5 CATTCATGATTAATTCCTGAACTTTTTCATATTCGTCAAATGGTGATATCG TTTTGTTTTCTAACAAACGTTTAACTGCCCAGCCTGACTCAATAAGCGTCT TAGCTATTAATGGGTCGTTTTGATAATCTTCTCGATACATAACGCCTAACA ACTTTTGATATTCAACTACTTTCATGTGAAGAACCTCTGCGTTTTCTTGTA GTACTCAAACTCAACTACACCTGTTTCTCCGTCTTTATTCTTTGCGATGTT ACATTCAACAATTGACTTGCCTGAGTCATCAACATCATCACGGTTGTAGTA ATCATCTCGATATAACAACATAGCTAAACTTGCATCTGCTTCAATTCCACC TGCTTCTTTCATGTCAGATAGCATAGGTCTTTTGTCATTTCTTGTTTTCTAC ACCTCTGCTCAATTGAGATAGCAACACAATAATTGCACCTGTTTCATTTGC AATAATCTTCAAATCTCGCGATATCTTTTCGATACCATTACGACGATCTAA CTTACTGTCTGTCTGCATAAGTTGTAAGTAGTCAATGAAGATAACCTGTTG CACATCTTTGTTCTTCATCGCTTGTTTACGTACATCATGTGTAGTAATATT TGTTAAACGTGTTAATTCATCCGGTTCTAAATCTTTAATTTCTTTGATACG 20 AGTTAGTTCTATCCCAGTTTCTGCTGATAACATCCTTTTCAATACAGACAC GCCAGTTGTCTCTAGACTGAAGAATGAAGTTTTATAGCCTTGAGACGCTAT ATTAAGCATCATATTAAGCGCAAACCCCGTTTTACCTACTGACGGTCTCGC AGCGATTACAATCAACTGTGTAGGTTCTAAACCACCTATTTTGTAATCCAC CAGTTTATAACCTGTATTGATTTTTTGTTTTGGTTCTTCGCTATATAATTC TTCGACAAAGTGATCTACAATTTTTTTAGTCCCACTTTCTTCACTTGCACT AATTAAACTGACCTTTTGTAGTTTGTTAAGCATTTCATCAAAATTTTGTAT ATTCGGATCAGAATTGAATTCTTGTAATACGTTTTGCGTACGCTCTATTTG ATAAAGATTGAGCAAATCTTGTTGATATCTTTCAAAGAATCCGTAACCTAT AAATTTTGAGTTATACAAATTTGAAATGGTGTCCATATCTAGGAATGACTT ATCTTTTGTGGTTTTTAAATAGATTTCGTTATGATCTACCTTACCGACTTC GAATACATATTCCATAAATGACTTCATACCATCATGTGAGAACATTTCCGG TCTCACACGTAACTTCTCAATTATGTCCGGTTTTTGAAGTAAACTAGCAAC CACTTAACTTCTTCTGAAGTCGTCTAATATCTTTTTACGTTGTGCTACGT ATTCTGGATCATTTTTCATTCTCCAACGATGTCTAGCAGTTTTTTCGTCGA CAGGCTCTTCTTTTACGACTTTGACTTCTTTTCTCATTATGTTTGGAATAC TAGGTGGATAAGGATTAGCATCATTGATATATTGCATTACTGTTTTTTTAG TCGGTTCATAATCCCCATTTTGGCTCAAAATGTTAACCCATGTTTCTAATT TAGGTCTGTCAAAGTCAATGTTGTATACATGTCTAATTGTCTTAATTACTT CTAGGGCTTGTTTTAGTCATAGGCATTAACTTTCATCTCCTAGCTCTTT AATTTTATTTCAGCCTCTTTTTTATTCTTAACGTTCTCTTTAGCCCAGTT GTTTAACACTTTGATTAGGTAACCTGCATGACAACCTTTGTCTTTTGTATA ATCAGTAGCTACTTCAACAACTTCATCTGCATGTTGTCCAATATCATCAAT GGCATATCCTATCTGTTCCATTTGGTTAGGAGTTAAATTATGAGTAAGGTT ACTCATGATGTAATTAATTGAGTTTTTTGAAGATATCTTTATCTACTTCTTT TTCTCTTCTTCTTCTTACTTCTTTATCTTCTTATATCTGCTTGCGTGACT TTGTTTACGCAAACGGTTTTGTTCTCTTATCTTTTCTAAACCTTCGATGTT CTGATGTTTTTCCCAATTAGATACTTTAAAGACACCATTCACTTCTTCAAT 50 CATGCTTAGCTTTTCGAATGTTTGTAACGCTAATCTTATTGAATTGATAGG TCTATTAAATTCGTTAGCTAACATTTCTTCGTTATAGGGTAGACTTTCGGA TAACATAATGTATCCTTGTTCGTTATACTTTCCAGCTAATGTCAGCAACTT AACCCATAAAGTGATGATTGTATCTCGTTCTGGCAGTGCTTCTATATACTT GATTTTGCTATCATCGAACATTCC 55

Sequence 3386 step.1002d06.cons.ok

AAACATCACCTTTAAATAACTGATTAATTTGATGAATAATATTAATTGAAC TAAAATCATCCGTTAATCTCATGGAATATGCATAAGAATAATTCCAATTTT TTAAATGTGCCAAAAAATAATCTAAAGATTCTACAGTTTGCGATATGTCAT CAATAATATATCCATTATGCATATGTTTAACATAATCTGTTCTCTTTTTAT TAATTTGTGGTATACCCGCGCCAATACAACAGATTTGTAAAAAAAGTTTCG GCTCTAAAGATAAATCTACTACAACTCTTAATTTTGAAATAACGCTTACAA GATCTTCTTCAAACGGTACTGTTTCAATATCAATGATTGTTTCTTTTTTAT TCTGTATCACGTCTTCAATTACATCACTTATTTCCTTTTTCTCTTGGTGAT ATAAATCATTGAGATGAGCAACTTCATCTATAAGATTTTCCGTAAGATTAT CTCTACTCTTAGTTAAAATTTTCAACTTATAGCCATCTTTATGTTGAATAT 10 ATTGAAATAAGCTGTTTACAATCTCTCGTATTTCAATCTCGTCCAAACCAT CTATCCATAATCCAATATAAGTGTCATACAATTGACTACTTTGGTTAGGTA TCAATCCTGCGTAGTGTTCAATCATATTTTGATTAGCTTGTGTATCAACGA GACAATAATATGCTCTAGAAATAGAGTCATATAAATCTTGTGTCACCACTT 15 TATTTCTCTCAGTAAAAATAGAAAAACATAAAGACGATGCATCAATAGTGC GTGCCATCATTGAATTATGACGTTCATCAGATGCCACTATAACAGAATCAT CTTCATTCAATTCTCTTTCTACATATGATTGGAATTTCTCTTCTATCAACT CAGCCATAGATGAATACGTAACCCTTTTAAATTTTGATTGGAAATTTTTAT TAATCGTTACTGTATTAACATTTAAGTCTTCAACAAATATTTCTTCCCCAT 20 CTTTTGAAAAATAGTGTTTTTTATTGTTATCACCATCAGGTGTATAAGTAC GCACTGCCGATATAAATCCTCTGTCATCGAATACAAATCGTCTTTGAATTG TACTATACTTGTAATCCTCTACCCACATCAGGTACCCCTCTTGGCTGAAGT GAATTTTAGAAAACGTGTTATCACCTGTAATCGCTTGAATTTGAAAGGGAG TAAAAATAAATTCAGTGCCTTCTGGCCATGAAAGATCGCGATAATCAATAG CTTGAGGCGTTTGATGTCCAACGCCCTGTATCTCATCAAATACAGACCAAT AATGACTTTCATACAAATCATATCGATGGAGGAATGTTCTAAGATATGGAC TAAAATTTAAAACTATCAATTGATAATCCACATTATTCGAACTATGCATTG ATGGTCTTGAGGTACTTTCCCACCATCTGTTACGGCTATACCAAGCTGGTA 30 TTGCTTATAGCTGTCAAAGTATAAGTACGCTTTAATTACTATGGGAGGTTT AAAGCACGGAACTGTTCCAATATTTGAAAAAGGAACATCAAGCTATGTTGA CCCTATCCCCCAAGCATTGATTTTAACAGCTATCGTTATCGCCTTTGCTAC AACAGCTTTCTTTTAGTTCTTGCATTTAGAACATATAAAGAACTAGGCAC 35 TGATAACGTTGAGCTAATGAAAGGAGCGCCAGAAGATGATAGAGAGTAACT TGCTTGTTTTAACTTTAGTCATACCTATCCTAACTGCAATTTTACTCATAT TTATTGGAAAGCGCCCAATAATAAAAAGATATGTTGCACTTGTCGGTACAT TGCTAACATTGGTCATTGCATTGATTAACTTAAAGAATGTGCTACGAGATG 40 GACCAATCAAGGTTGAACTGGGCTCTTGGAAAGCCCCATACAGCATTGTAT TTGTAGTCGATATTTTTAGCGCTCTACTCATCATCACAAGTATTATTATTA ${\tt GTCATTATTATTATTTCTCTATCATGTTTATGTTGATTGGTATTATTTGGCT}$ CATTTACAACAGGAGATATTTTCAACTTGTTTTGTGTTCTTTGAAGTCTTTT 45 TAATGTCTTCATATTGTTTACTCGTTATTGGTACTACTAAAATACAATTAC TCATGGGTGTTGCAGTTTTATATTCAGTTGTAGGAACTTTAAATCTCGCTC ATATTAGTGAAAGATTGTCACAACTTTCTGTACATGACAGTGGCTTAGTCA ATATTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCCACTAAAGCAGCGTTT TTCCTATGTACGTATGGCTACCTGGTGCTTATTATGCCCCTCCAGTAGCGA TCATCACGTTCTTTGGTGCACTATTGACTAAAGTGGGTGTATACGCAATTG CGAGAACTCTAAGTTTATTCTTTAATAATACAGTAAGCTTTTCTCATTATG TCATCCTTTTCTTAGCATTACTTACAATTATTTTTGGATGTATAGGTGCGA TAGCTTACTATGATACGAAGAAAATCATCCTTTACAATATTATGATTGCAG TAGGTGTCATATTAGTTGGTATTGCTATGATGAACGAATCAGGCATGACTG GTGCAATATATTACACACTACATGATATGTTAGTTAAAGCTTCATTGTTCT TTGGTGGCTTGATAAAAGGGTATCCTATTCTAGGTTGGACATTCTTTATTG CAGCGCTAAGCTTAGCGGGTATACCACCTTTTAGTGGTTTCTACGGTAAAT

TCTATATTGTTCGAGCGACCTTTGAAAAAGGATTTTATCTAAGTGGTATCA TTGTACTTTTATCAAGTTTAATCGTGTTATATTCAGTCATACGTATTTTCT TAAAAGGATTTTTCGGTGAAGTTGAAGGATATACTTTATCTAAAAAGGTAA ATGTTAAATATCTAACAACTATCGCTGTTGCATCTACAGT

5

Sequence 3387

step.1002d07.cons.ok CAAAATACTTTAATATTTCAGCTGCAACATGATAATCTCTCAAATCCTCAT CAAAACCAAGAGCAAGATTTGCAGTAACTGTATCATAACCTTTTTCTATCA 10 ACTCATATGCGCGCAACTTATTAATTAACCCTATTCCTCTACCTTCTTGAG GTAAATAAATAATCATTCCACCATGTTCGTCAATATATTTCATTGACGCTT CAAGTTGTGCCCCGCAATCACATCTTTGACTATGAAAAATATCCCCAGTCA GACAAGCAGAATGCATACGTACATTAGGATTGCTTTTTAAATCTCCTTTAA CAAAATGACCAAAATCAGTTGGCATCTTGACCTTTGCCTTAAGATTAACAT TAAGTTCAACAGCCTTACGAAAAGCAACCAAACTTTTTATAGTAATCATTT TTAAATGGTGGCGTTCTTTAAATGACTGGAGATCTTCACCCTTAGCCATTG TCCCATCATCATTCATAATTTCGCAGATTACTCCAGCTGGTTGTGCTCCTG TTAACCGTGCCAAATCTACGGCAGCTTCAGTATGACCATTACGTGTTAACA 20 CACCATTCTCTTTTGCTATAAGTGGAAATAAGTGCCCCGGACGATGAAAAT CTTCAGGATTAGTATTTTCATCTATGAGTGCTCTAGCCGTTTGTGTACGTT CATGTGCACTGATTCCTGTAGTAGTTTTATAATGATCAATGCTTACAGTAA AATGTGTGCCATAAATATCAGTGTTATTTTGCTCCATAGATTGTAGTTTTA ATCTTTCAGCTATAGATTTATCAATTGGTGCACAAATCAGACCACGACCCT CTTTAGCCATAAAATTAATGGTATTATCATCCATCCATTCCGTAACAGCTA CAAGATCTCCTTCATTTTCTCTATCTTCATCGTCAACTACAATAATGCTCT CTCCATTTCTTAAAGCCTCTATAGCCAACTCAATTGTATCGAATTGCATGT GATATTCCTCCTAAAAACCAAATGCTCTAAGCTTTTCTTCTGTTAACTGCG ATTGATTTTGATTCATGATGTTTTCAACATATTTGAATAGTACGTCAGACT CCAAGTGCACTTTGTCGCCCACTTTTTTAGATGAAAGAATAGTAGATCGAC GTGTTTCTGGTATAAGATGTATATCAAAAGTATAATCATGTAAATCAAATA CAGTAAGACTAACTCCGTCTACAGTTATAGAACCTTGCTTTACCATTTGAT TCAAAATATTTTTAGTTGTTTTAATAGAAATAATTTTTTGAGTTAGCAGTTT CATTGATTTTAGAAATTGTTCCAAGCTCATCAACATGACCTAACACGAAAT GTCCACCAAATCTCCCACTTCCACTCATGGCTCTTTCGAGATTAACTTCTG TATTACGTTGAACACTTCCAAGATATGTTTTGTTTTCAGTCCCTTTGATGA CTTGAACTGAAAAACTTGAGTCAGTGAAATCTATCACAGTTAAACATGCAC CGTTAACACTTATTGAATCACCAATATGCATATCAACTAAAATGTTTTGTG 40 CTTTAATTTCAAGCGTTCTTACTGATTGTTCAGAGCGAACTTGTTGTACAG TACCTATTTCTTCAATGATACCTGTAAACATAGACATTCACTTCTTTCGTA ATTTCAATTTTAAATTTTGATTAATTAACTTGGAATCAACAATTTCAAATT GAGTTGCTTCAGGCAAATCAATGACCTCGTCAGTCTTATAAAATTGATGTT TGCCAGAACCACCAATTAATTTCGGGGCTATATATAAAATGAGTTCATTTA 45 GCAGTTTCCCAATACCTCTTTGATATAAGTCTTGTAATATTGTCGTTGTAT CACAATTACTAATATTTATTTTAATAAAACTTTTATTTGTTTTTAATT TTTCATTTCAGTGTAAATCCATATCTCCGATGCAGTATCTTTAAATATTT GTTGATTAAAATCGAGTTGACCTTTCTTAGAAAGAATAACTCGAATCGGAT GCTTTCCATCAGGAACCCTGGTTGTATACAATGGATTGTCTGCTTCAATGG TTCTACGCCCAGTAATAACTGCATCATGCTCATGTCTTAATTGATAAACAT CTTCTTTAACTTCTTTGTTTGTTATCCACTTACTTTCATTAAAGTCTGTTG CTTGTTTACCATCTAGACTAGATGAGACCTTTACAGTTACTTCTGGAACTT CGTTTCTTTTAGCAGTAAAAAGTCACGGTATAATGCAGCTGCATTTTCAT TATATTGAAATTCAACCTCTATACCAGCTTCTCTCAGAATCTCGTCACCCT TACTTACTAAAGTAGTATCTTTAACAGCATAGATGACCTTAGATATGCCCG CTTCAATGATTTTATGCACACAAGGTGGTGTTGAACCATGGTGTGTGCAAG GTTCTAATGAAACGTATATGGTAGCACCTTGGGTATTTAAACCTGCCATTT CAATAGCTTGTACTTCGGCATGTTTATCTCCCTTTTTTAAATGTGCACCTA

AACCTACAATCCTACCGTTTTTAACAACAACGGATCCTACTGGTGGATTAA CACCTGTTTGTCCATTTACCATTTTTGCTAGTTGAATAGCATCATCCATAA ATCTACTCAATTGATCACCTCAAAAAAAACCTTATACCTATATTGTAGGCA TAAGGAGATATCTATATCTTTAAATAAGCCTATTAGCATACTTAAAATTGC ACATAAGTATACAATACGCTTATCATAACTACACGAATTTGTGTAAGTCGA TAATTCAACTTCTTTCTCCCATCCAGACTCTAACTGTCGGCTCTAGATTCA CACTAGATCAGCCACTAACATCAAAAACAATATTAGTGGGTCGCAGGCTCA TGTTATGATTAATTGAGTCCAGTAGTTCTTCACTACATTGTAAATCTTACT ATATTTAAATTTAAAATACAATTTTATAGCTTACTTTATTAAAAGATTTTA 10 TGAGAATATATTAAACTCACAAACACGCTTAATGCATATTACTTATTTCTA TTTTCCTGTGTTATATATAATTGAGATACTGTATCAACAACTTGATTAACA ATCATCTTTACGCCATTTCTAAGTTTATTGACACCGTTGGTCATTTGTCCA ATTGCAATCACATTTTTTAAGGTTCCATATCTGGGGCTTATGACTTGATTT GTTTCTGGGATAATTTGAATGCCACCCATAGGATGACGTTGAACAATTTGT CTATTTTCTAAGTTTAAAATTAATTGATCATCCTCATCTAATTGAGAAAGA TGTGTTTTAGAGCCCGTTGCATTAATAACGATGTCAAACAACTCATAATTT TGCGTAGTGTCGTTATACTTCAACATTAAGAGGAATCCTGCACAAAAATGT CTCCATTCGGTAGCCATTTTTGTTAAAAACATTGATTTGACAGTGTCAAAT AGAATTCCTTTTTATGCGCTGAAATTTGTTATATGGAGACTGAATGTA 20

Sequence 3388 step.1002d08.cons.ok

GATTTAGAACAGAATGTTACAGTTACACAAGTTAATGATGCATTTAAAAAAT 25 GCCGATTTATCAGGTGTTCTTGATGTTGAAGAAGCTCCTTTAGTTTCTGTA GACTTTAACACAAATCCTCATTCAGCAATTATTGATTCTCAATCTACGATG GATGATAAAGCAATGGTAAAAGCCATTTAATTAAATATTTATACTTACACT 30 AAACCTGAGATAGCCATATTATCTCAGGTTTATTTATATACAAATAGCCCT AAACAAAGTTGAAGCACCATTGATGTTATTATAGATAACCAATTAGCTTTA GACATATTTCTAGATACTTTCTTTATAAAAAAATGATCCATAGTCATTATT TATTAATCAAGTTGAGATGATTTTGAAATGAGGTGATTTTAACGAATCATC 35 TTTCAAATTATAATTTAATAATGGTACTTTTGGTCGTATTTATAAAATTGT GTAGTACATTTAAATGGTTGAAATTCATTTAATATGGTTAATCACGTTAAA ACAATTTTTCCTTTTTTACACATAGTGGTATTAACAATGTATCATTACATT CTTTCGTTTATAGTTGCAATTGACCTTTCTTTTTTACACAGTACTTTTATA GTATAATGTACGGTGATTAAACTTGGGAGGGTGACATATATGAAATGCCCA AAATGTAATTCTACACATTCCAGAGTGGTTGATTCAAGACATGCAGATGAG GCCAATGCGATTAGACGTAGAAGAGAATGTGAAAATTGCGGAACGCGTTTT GGGACTAGAGAACAATTTTTAAGAGAAAAAATATTAAATGGTTTAGTAAGA TCTTGCGAGAAACGACCAGTACGTTATCAACAACTTGAAGACATAACTAAT 45 AAAGTGGAGTGGCAACTTAGAGATGAGGGACAAACTGAAATTTCTTCTAGA GAAATTGGAGAGCATGTTATGAATTTGTTAATGCATGTTGACCAAGTTTCC TATGTAAGATTTGCATCTGTATATAAAGAATTCAAAGATGTTGATCAACTC TTAGAGTCAATGCAAGGTATCTTGAGTGATAATAAACGGAGTGATAAATAG ATGGGGTTACAAACCTATGAATATGGTCTAAAACCACAAGATGGATTTGAG GTGATTACACATTTCGAATTCACCTCACAACATTTAGATATTTTAAATCGA CTATTCACCCCTTTAATCGGAGTTGAATCAATTGGACTCTATCATTTTATG AGTCAATTCATAGATAAAAGTCAACAACTCGGGTTAACGCATTATATATTC ATGAATGAACTAAAAATTAACTTATTAGATTTCAGGGAGCAAATGGACAAT TTAGAGGCTATTGGATTGATTAAAACATTTGTAAGGCATGAAGAAAAGTAC TCTCACTTTGTTTATGAGTTAATTCAGCCTCCAACAGCCTATCAATTTTTT AATGATCCTATGTTATCAGTATTTTTATTTAGTGAGGTTGATAAAAAACGT TATCAAGCACTTAAATCTTATTTCGAAAAAGATGAGAAAGATTTAAGCAAA

TATCAACAGACAACTAGAAAATTTACAGAAGTATTCAACGTACCTAAAAAAG

GTCAATGTTTCTGATCAAATTAATTTAAAGCAAATCAAACACTATGATGGT ATAGATTTATCTAATGAAACTTTTGATTTTGAAATGTTGAGACAGATGTTG AACCATCATTTTATTAGTAATGAAATTATCGATAAAGAAGCTAAGAATTTG ATTATACAACTTGCGACACTTTATGGAATTACTGAAGATGGTATGAAAAAT GTTATATTAAGTTCCATTACCAGTGCACAACAATTATCTTTTGAAGAAATG CGTAAGAAAGCTAGAACTTATTACCTGATTGAACATGATAATCAATTACCA GCGGAAGATACAACAAATGATTGGTTACAACTGCTAGATGAAACAAGTCCG ATTGATATGTTAGCAAGTTGGTCTGATTCGGAACCTACACAGTCGCAAAAA AGTATGATAGAAGAATTGATTAACCGTGAAAAAATGAATTTTGGTGTAATC 10 **AATATACTTTTACAGTTTGTTATGTTAAAAGAAGATATGAAGTTGCCAAAA** TCTTATATTTTTGAAATTGCTTCCAACTGGAAGAAAATTGGTATTTCAAAT GCCAAACAAGCATATGAATATGCATTACAAGTTAATCAACCTAAAAATTAC GAAACACATTCTAATGATAAACGACAGAACAATCGTGGAAGACAAAATCAA TTTTTATCCAAAGAAAAGACACCTAAATGGCTTCAAAATAGGGACGATCAA 15 GAAGAAATAAAGAAATAAATGATGACACTCTCGAAGAAGATCGACAAGCA TTTCTTGAAAAGTTAAATCAAAAGTGGAAGGAGGAAGATAACTAATGAAAA GTTTCAGAAATATCATGGGCGATTCTCAAAATCTAGATAAACGTATACAAA AAATAAAACAAAATGTAATCAATGATACTGACGTTAAACATTTTCTTGAGA AAAATCGTAGTAATATAACTAATGAGATGATAGACGAAGATTTAAATGTTC 20 TTCAAGAGTATAAAGATCAACAAAAAGTTTATGATGGACATCGCTATGATG ATTGTCCGAATTTTGTAAAAGGACATGTTCCTGAACTATATATTGAAAATG AAAGAATCAAAATTAGATATCTACCTTGCCCGTGTAAAATTAAACATGATG AGGAACGATTTGATTCACAACTTATTACATCTCACCATATGCAAAGAGATA ATGTAGCAATGGCAGCTGATCAAATCTGTACAGCAATTACTAACGATGAAA AAGTAAAGGGGTTATATTTATATGGTCCTTTTGGTACAGGAAAATCATTCA TATTGGGTGCTATTGCAAATCAACTTAAATCGCAAAAGATTTCATCAACAA TTGTATATTTACCAGAATTTATTCGCACTTTAAAAGGTGGCTTTAAAGACG GTAGTTTTGAGAAAAATTACAACGTGTGCGAGAAGCTAATATTTTGATGT TAGATGATATTGGCGCAGAAGAAGTCACACCGTGGGTAAGAGATGAAGTGA TTGGTCCTTTATTACA

35 Sequence 3389 step.1002d09.cons.ok CAATGGCTTTGGGAAACTTCACTTTATCAAAAATGGTTGATTTCTTTTATT TTAATTTGCAATATATTTGGTACGATATACGGTTATCATTGGTATAGTAGT CAATTAGCTAACACACCAAATTATTTTAAATTATTTGTTCCAGATAGTCCC ACTGCTACATTATTTTTATGTTTATCATTATTATTCATACTATTTAATAAG 40 CGTTATGCCCTGATTGACGCTTTAGCTTTTATAACTCTATTTAAATATGGT GCCATAAACGGACTTATGTTGCTCATTTCTCACGCAATTATGATATTAGAA GCTATCTATTTTTATCCTCGTTTTAAAATATCTAAATTGGCTGGATTGATG AGTTTCATATGGGTGACGATCAATGACGTAATAGATTACATATACGGACAA TATCCCTACTATGATTTTATCGCCAAACATTTAATTGAAGTAGGGGTATTG GCTTATAGTCTCACTATCATTTCGTATATTTTATTTTTAAAATTACAAAAG TGGTTGAAAGTTAAAACATTTGATTAAAGACAAATTTGACAGTAAAATGAA **AATAAAGGAGAGTGAGTTTAATGTCTTTAATATCAATGATTATATATTTCG** TAATATTAATGGTCATTCCAATGTGGGCTCAACACAAAGTTAAATCTAATT 50 ATGAAAAATACTCACAAGTGAGATCCACAAGCGGTAAAACTGGTCGTGAAG TTGCTGAAGAAATTTTACATGCTAATGGCATTTACGATGTTGACGTCGTTA AAGGCGAAGGTTTCTTAACTGATCACTATGACCCAAATAAAAAAGTTGTTT GTTTATCTCCTGCAAACTACGATAGACCATCAGTTGCTGGTACTGCAATTG CAGCCCATGAAGTAGGACATGCAATTCAACATCAGCAAGGATACGCACCAT 55 TAAGATTTAGAACAGCATTAGTACCATTAGCTAATATTGGTAGTTCTTTAA GCTACATTATTATGGTAGGTATTGTTTTAACAGCTCTCGGTAGTGTCT TTGGCTCTACAGTTCTATGGGTTGGTGCTGGTTTAATGTCACTTGCAGTTT

TATTCTCTATCGTGACATTACCTGTTGAGTTTAACGCTAGTTCAAGAGCGA

CGAAAAAAGTTTTATCTGCAGCAGCAATGACATATGTGGCATCTACTGCAG TTGCGTTAGCTGAACTTGCTCGTATTATATTAATTGCAAGATCAAGTGATT **AATCATATATAACAACGCAGTTCCTGGTAATCATTACAATGGATTTGTAAT** GGTTACCTTTTTTTTTTTGAATACGTGACAAAATCCTATCTTTTAATCCAT ATTAAACATTGCACTTGAAATGCAAGTCACTTTATTTTGTAATATACTATA TAAGAATAGCGATAAAGGAGTACTTCTATATGAAATCTATGGAGCAAATGC AACAAGAAGTTGATGACTATATCAGTCAGTTTAAAGCTGGTTATTTTTCTC CACTTGCTAATCTAGCAAGAATGACAGAAGAAGTTGGAGAATTAGCACGCG 10 AAATTAACCATCATTTTGGAGAGAAAAAAAAAGAAAGATACAGAAGAAGATA ATACAATTAAAGCTGAATTGGGAGACAATTTATTTGTTTTACTGTGTATTG CAAACTCTCTAAACATAGATATGACAGAAAGCTTTAATGACACGATGAATA AGTTTAATACAAGAGATAAAAATCGCTTTGAAAGAAAATAATTTAAGAAAG GATGGGCACAAATGAAAATCGGTATAACGTGTTACCCGTCCATGGGTGGTT CTGGCATTATTGCTACAGAACTCGGTATTAAAATGGCAGAACGTGGCCATG AAGTTCACTTTATTACCTCAAACATACCCTTTAGAATACGCAAACCTTTAC CTAACATGACGTTCCACCAAGTTGAAGTCAATCAATATGCCGTATTCCAAT ATCCACCATACGATATTACATTAAGTACAAAAATTTCTGACGTTATACAAG AATATGATTTAGACATATTGCATATGCATTATGCTGTACCTCACGCTGTAT GTGGTATATTAGCGAAACAAATGTCAGGTAAAAACGTCAAAATTATGACAA 20 CACTACATGGCACTGATATAACTGTGTTAGGTTATGACCATACTTTACAAA ACGCGATAAAATTTGGCATAGAACAAAGTGATATTGTAACAAGTGTTAGCC ATTCTCTAGCACAGCAAACTTATGAAATTATCAATACTAAAAAGGAAATCA TCCCTATATATAATTTTATAAGGGAAAATGAATTCCCAACTCGGCATAATG AAGAATTAAAAGATTGTTATGGTATTTCACCTGAAGAAAAGGTATTGATAC ATGTTTCTAATTTCAGAAAAGTAAAACGTATTGATACAGTGATTGAGACAT TTGCAAAAGTTCATGAGAGTATACCATCCAAGTTGATACTTTTAGGAGATG GTCCAGAATTAATCGATATGCGACATAAAGCACGAGAACTTGATGTTGAAA CACACGTACTCTTTTTAGGCAAACAAAATGACGTAAGCGCATTCTACCAAC TATCTGATTTAGTACTACTCTTAAGTGAGAAAGAAAGTTTTGGATTAACTC TCTTAGAAGCAATGAAAACAGGCGTCTTACCTATAGGGAGTCATGCAGGTG GTATTAAAGAGGTCATCAGACATGAAGAAACTGGATTTATAGTAGATATAG GGGATAGTACACAAGCTGCAAAATATGCTATTAAACTTTTATCAAATCCAG AGTTATATCAAAAAATGCAATCACAAATGCTGAAAGATATTGAAGCAAGAT TTAGTTCAGATTTAATTACTGACCAATATGAAAACTATTATCGAAAGATGC TAGAACAAGGTGAGAACAACAATGAGTCATGAGATATTTGAACAAGCAAAA CCTATTTAAAAAAGATTCAAAATAAAGGTTTTAAGGCTTATTT

40 Sequence 3390 step.1002d10.cons.ok TTAAAGATTTGAAAGAACTTTCTGACGCAGATATCAAAAGTTTTGAAGAAC GTTTAGATAAAGTCGATAATCAATCAAGTATTGACCGTATTATAAATGATG CAAAAGATAAAAATAATCATTTAAAATCGACAGACTCTAGTGCCACATCAT 45 CAAAAACTGAAGATGACGATACATCTGAAAAAGATAATGATGATATGACTA AAGACTTAGATAAAATACTGTCGGATTTAGATTCAATTGCTAAAAATGTTG ATAACCGTCAACAAGGTGAAAATAGTGCTTCTAAACCTAGTGACTCAACAA CCGATGAAAAAGATGATTCAAATAATAAAGTACACGATACAAATGCTAGTA ${\tt CACGCAATGCAACTACTGATGATTCTGAAGAGTCGGTTATTGATAAATTAG}$ ATAAAATCCAACAAGATTTTAAGTCTGACTCTAATAATAAGCTTTCTGAAC 50 AAAGCGATCAGCAAGCATCACCATCTAATAAAAACGAAAATAACAAAGAAG AATCTAGTACGACAACAAATCAATCCGATAGTGATAGTAAAGACGATAAAA GTAATGATGGTCGTCGCTCAACATTAGAACGTATAGCATCAGATACTGATC AAATTAGGGATTCAAAAGATCAACATGTCACAGATGAAAAAACAAGATATAC AAGCAATTACACGTTCACTACAAGGTAGTGATAAGATTGAAAAAGCACTTG AATTAATGAATTTAAGATCACTAGATACAAAAGTAGAGGATAATAACACTT TATCTGATGATAAGAAACAAGCGCTTAAACAAGAAATTGATAAGACTAAGC AAAGTATTGACCGACAAAGAAATATTATTATAGATCAACTCAATGGTGCTA

GTAATAAAAAACAAGCAACCGAAGATATCTTAAATAGTGTTTTCAGCAAAA ATGAAGTAGAAGACATAATGAAACGTATTAAAACAAATGGCCGAAGTAATG AAGATATTGCTAATCAAATTGCCAAGCAAATTGATGGTCTTGCATTAACTT CTAGTGATGATATTTTAAAATCAATGTTAGATCAATCTAAAGATAAAGAAA GTTTAATTAAACAATTGTTGACGACACGACTTGGTAATGATGAAGCAGATC **GTATTGCTAAAAAATTGTTAAGCCAAAACTTGTCGAATTCTCAAATCGTAG** AACAATTAAAACGTCATTTCAATAGTCAAGGAACAGCTACAGCTGATGATA TATTGAATGGTGTGATTAATGATGCTAAAGACAAAAGACAAGCGATTGAAA CAATATTACAAACCCGTATCAATAAAGACAAAGCTAAAATTATCGCTGATG TTATTGCGCGTGTACAAAAGGACAAATCAGATATCATGGATCTCATTCACT CTGCGATTGAAGGCAAGGCAAATGATTTATTAGATATAGAAAAACGAGCAA AACAAGCTAAGAAAGATTTAGAATATTTTTAGATCCTATAAAGAATAGAC CATCCTTGTTAGATCGTATTAACAAAGGTGTCGGTGATTCTAATTCAATAT TTGATAGACCAAGTTTACTTGATAAACTTCACTCAAGAGGATCTATTCTTG ATAAATTAGATCATTCGGCACCGGAGAATGGATTATCTTTAGATAATAAAG 15 GTGGCCTTTTAAGTGATCTATTTGACGACGATGGTAATATCTCATTACCAG CGACAGGTGAAGTCATCAAACAACATTGGATACCAGTGGCTGTTGTACTCA ATTAATTTAAAAATTATATATAGTAATAGGCATCATCAATCTTATGTGTAG TTAAACTATTTCACAGTTAGTGATTGAGGTGGTGCAACGCTTACTCAAAGT 20 TTATAACAAGAGTCAGTATAAAAGAGTAGGACTAAGAATTTAAAATCAATT ATATACTTTTAGAAATCACTTGAGTAAATTATAAAAATGGACTTTTCAATG TAAAGTTACTCTAATATAGTTATTGAATATAAATAAGCACAAAGATGTATT ATAAATTTGAATACATCTTTGTGCTATTATTTTGTGGATGGTACCTCAAAT AATTTTAAATTTTTACTATTTACCTTTAATGTAATCTAAATCTTGAGCATC TTCTGCATCAATAGTTCTGAATGAAATGACACCTAATCCTTTAACATTTGA TTCAGAAATAACAATTGAACCGTCGTCATTAACTTTTTCAACGAAAGCAAC ATGACCATACTGTGTATCAGCACCTAATTGTCCAGCTTCAAACACAACTGC AGTATGATTTTTAGGTGTGTGCGTTACCGTATAGCCTTCACTTTCAGCACG ATTATTCCAATTATGAGCATCACCTAAGTCACCAGAAATGGATGCATCAAA TTGATTCATACGGTGGTACACATACCAAGTACATTGGCCATGTGGGTAAGG TGATGTACCGGAAGTTTCAGTAAATGGTTTGAAGTCATTACCAGAGACATC CGTACCTATTGATTTGTTGTATTTCTTCATGTTAGGCATTTTTTCTTTGTC 35 AAAAGATGTTAAATGATAATGTTTAATAATACTATTTAATTTTTTAGAATA ATTAGGATCTGTGGCGTATGAGCGTGACAGATGTGAAGTAGCATCTTTATA TGATAGAGCTTCACTCTTCCAAGTTGGTTTATAAATTGACGGATTACCATC GATACCATGTTTGATTAAATCTGCATAATCTTCAAGAGATTGTTTAGTACT TGGGTATTTACGGAAACCTGCTTGGATACTGAACATATGATTACTGCTATC 40 AGCTTCTAAAGTATTAAAAGTTACAGATTGTCCTTTGTAGTCACCTTTGAT TCCAAACAAGTTATGATTTGGTGATTGTGCAAGTGAACTTTTTCCAGAGTC GTCTTGACTGTCAACAACATTAAATGAATCAGAAGATAAGTCACCATTGTC TAATTCAGGTAGTTGTTGGAAAAGACTTGTTGAACGTGTATTTGAGCGTTT 45 AATGTCATCCTCAAATGATTGTGCAGGTTTTGATTGATGTTTTAATTCATC ATCTGTTGGTAATTGTGGATTCTTGTCGGCATTATCACTTTGAGATGTTTT AGTGTGACTTGTATTCTTGCTCTTATTGTAATCTTTTTCTGTTTTCTTAGC GTCCTGACTATATTCATCTAATATAGAGTCTAATGCTGAATCTGTAATACT AGAATATTTCTTGTTACGTTCTGAGCTATCATCATTCGCTTGAGTTTGTTG 50 TTGCTCAGAAGAAGATTGATTTTTGTTTGTATCT

Sequence 3391 step.1002d11.cons.ok

55 step.1002d11.cons.ok
TCATAGGGCTTAGATAATGCTTTATCCAAACCCACCTTTCCATCATTCTCT
ATATCAACAGTATAATTTTCATGAGTTAACTCAAGCTCTATAAATCTAGCA
AGATTTTGCTCATCTTCTACAATTAAAATATTTGTCATATTTGCACCTCAC
GCTACATCTTAAACAATTAACTCGTATTTCTAAAGATGTAATTCAAAATTG

TAAATGATTTGTTATGAAACTAGTATCATTTTACCATGAACCACGATAATA GATAGTCGAATAAGTAGTCTGTATTTAGAAAAAGTCACTCTAGTATTATCA TTGTATTTAAGTTAAATGGAAAAAAATATATATTTCTAATTGACAATCATT ATCAATCATGTATAATGATAATTGAAAATGATTATCAATACCAATTGAAAA ACATTCCCCCCACATACAAGTTGTTCTTTTGGATTGGTCATTTTCAACTAT CCCCTTTTATATGCCCGTAAAAGACTAACGTTAAGAAATGACGTTTCAATA AAAGCAGTAGACCTTTGACACTTGAGGTCTGCTGTTTTTTCAATGATAATA TAATGAGAGAAAGTAAAATAATAAGTGACTAATAATCTTATCAAAATTTTT AGAACGCTCATCACTTTTGATTAATGAAATAATATATACAAAAGAGTCTGT AACACATGAAGTGCACAGACTCTTTCCTACGATTAGTCAAGTACTTATAAT TAAAATAAGCATTACTTAACTAAACCGTTCATTTTAATTTTTTTGAATAAG GTGTTAAACTATATTTGATTGTACGTTTGGCTAATGTGGTGACATTTGATA ATCGTACAATTTATGATTCATTACAAGATAATGAATTGTTTTTAATAATCG ATTTATACAAGCAATGATGGCAGTCTTATGAGGTTTCTCATTAGGCTGCTT TCTTAGTTTGTAGTAATAATCGACGACATGATTGTCATAATGATGCTGCCC 15 TCTTATTATATTCATAATCACCCAAAATAAAAGTTTTCTCGCTTTTTTATT TTTGATATCAATGCCAACAAAAGCATTGAGTTGTTTATTTGATTTAAATCG CTTAATATCACCAATCTCCCCAATAATCATAGCTGTGCTTAGCTTACCAAT 20 ACCAGGTATCGAATGAATATTTTCAAAATAATCGAGTTGTTGTGCTAATTG AATCATGGCATCATCTAATTGTTTGAGATGATGAATAGATTGTTTTAATTG TTGAATAAGTAAGCGTAATTTTTCGACTAGAAAGGAATGTCTATCGACATT AGGATAGCTTTCTTGAGCAATCACCCTTAATTGAAGTGCATATTTTGTAGC TTTATCCATTGACATTCCCTTATCTGTAGAATTGAATATATGTGTAATCAG TACCTCCTTGTCGATATCAAGAACCATGTCTGGATGAGTAAAGATTTCTGC 25 GATGTTGAGTGCAATGATTGAATATCGACTACTAAATAATCTTTCTAAACC AGGGAATGTTTGATGGAGTAATTCAAGGATCTGAAATTTAAGTCGATTTTG TTCATTCTCGATTTCTAGATGAAAACGGACGCGTTCTCTTAATTCAAAGAA TATTAACTCATGTATAGGTAAGTTGTCTGTTTGTTTAAGCGTCGGTCCTAA ACAAGCAAGCTTATGAGCATCTGCCTGATCAGTTTTCCATGATCTTAGAGC 30 GCTCGTTTTAAATTTGGCTTCTAACGGATTCATTTGAATATAGTTAATTTG ATTTACACAACAAAATCGTTCCATACTTCTTGAATAGATACCTGTAGATTC AAAAATGAGTTGTGGGTGGTCTAAGTCATTCAAATACTTGAGTAAATAGTT GTAACCATTTTTATTATTTTGGATGAAAAACTCTTTTTGGAATTTTTCATT TTTATAATGTGCAACTACACTACTTCTTTTACTAATATCAACACCTAAGTA ATCGATAAAAAACCTCCTTTGAATAATTGAGAAGCTAAAAACTTTACTTA ACCTTTCTCATTTCATTTTCCTATACACGGTTTCAAGAACCCAACATACTA CAAACGAATTTCAAAAGGCGAGAGTAAAGCTGACTTGTTTTTTATACGGAT TTAAAATCCAAGAGTCTGGACAGTCTACTTCTCTCTATAACTATAAAAAAAT AGCTATGAAAAATCTATCGTCATAGATTTCTTCATAGCTAATCTTAGTAT GTTTTTATTTCATAATTAATTGTTATGTTGCTAATTTTGGATGGTTTTCA ATCTAATCAGCTTCGTTAGTCACATAATATTGAATGAACTAGGTTCAAACT TAAATATCAAAGGGACTGAAAAAGCTAAAGATGAGAAATTTAAGTTTATTA 45 CGATAAAAGACTATTTAAACTTGCTAGATTATTTCAAGAAAAGAGATGAAG AAAGTTATGTTTTGCTATATCTATTAGGCATTACTGGCGCAAGATATAGCG ATGTCATTTATATGACTTACAAAGATCTAAACAAAGCGAATGGCATAATTC ATTTGCCTGGAACGAAACAAAGAATTCAAAACGTGATGTAGAAGTTAATT CAAAAGATATCATGCACATAAATTCAAAATTAGCTAAAATGCCGCGTAGAA 50 GAAAAGCAAAAGAAGTGATAGGATTAAACGATAATAATATAACTCCCTATT CACTCAGACATACGCACACATCTTACTTACTATCTAAAGGCATACCAATCG AGTATATAAGTAAACGTTTAGGTCACGCTACTATATCACAAACGTTAGACA CGTATTCACATTTATTAGAAGAACATAAAAAAGAGCCAAGGCCAACGTGTCA GAGAAATATTCTCTTGACACTTATTTGACACTTACTCTCTCGAAAGCCCGT 55 CATATCAACGGTATAGTACGGAGAGTTTCATTACTTCTTAATGGTGGATTC ATTTTGTAGTTTGAATCATCGCCAGGAACATCATTTTCAGTTAATAATAAA TGATGTGGTGTAACTTCTGCTGTTACATGGATACCAGCTTTTTTAGCGTCT CTGAT

Sequence 3392 step.1002d12.cons.ok TCAAGATTGGAAGTTACGTCATGTTCTAATTGAAATGCATGGTAATAATGG TAGTATCGATAACGATCCTCCAGCTGCTATGCGTTACACAGAAGCTAAACT TAGTCAATTATCAGAAGAACTATTAAGGGATATTAATAAGGAAACAGTATC ATTTATTCCAAACTATGATGACACAACTTTGGAACCAATGGTATTACCAGC GAGATTTCCTAATTTATTAATTAATGGATCTACGGGGATTTCTTCAGGATA 10 TGCTACTGATATCCCGCCGCATAACCTCGCCGAAGTAATACAAGGCACATT GAAGTATATCGATCAACCTGATATTACAATTAATCAACTGATGAAATATAT CAAAGGGCCTGACTTTCCTACAGGTGGTATCATTCAAGGAATAGAAGGTAT AAAAAAGCGTATGAGACCGGTAAAGGAAAGGTTGTCGTGCGTTCACGAGT TCCGTATGAAGTGAATAAAAGTAGTTTAGTTAAAAGAATTGACGAATTACG TGCCGATAAAAAGGTTGATGGTATTGTAGAAGTTCGAGATGAGACTGATAG AACTGGATTACGAATTGCAATCGAATTAAAAAAAGATGCTAATAGCGAATC AATCAAAAACTATTTATATAAGAATTCGGATTTACAAATTTCATATAATTT TAATATGGTTGCTATTAGTGAAGGTCGCCCTAAGTTGATGGGATTACGTGA 20 AATTATAGAAAGTTATTTAAATCATCAAATTGAAGTGGTTACAAATAGAAC GCGTTATGACTTAGAGCAAGCTGAAAAACGTATGCATATTGTGGAAGGATT AATGAAAGCTTTATCTATACTTGATGAAGTTATTGCATTGATACGTAATTC TAAAAATAAAAAAGATGCTAAAGATAATTTAGTTGCAGAGTATGACTTTAC TGAAGCTCAAGCAGAAGCTATTGTCATGTTACAGCTGTATAGATTAACAAA 25 TACTGACATTGAAGCTTTGAAAAAAGAACATGAAGAGTTAGAAGCTTTAAT AAAAGAATTAAGAAATATCTTAGATAATCATGAGGCACTTTTAGCAGTAAT TAAAGATGAACTAAATGAAATTAAAAAGAAATTTAAAGTGGATCGACTATC TACAATCGAAGCTGAAATTTCCGAAATCAAAATTGATAAAGAAGTTATGGT GCCTAGTGAAGAAGTGATTTTAAGTTTGACGCAACATGGCTATATAAAACG 30 TACATCTACACGTAGTTTTAACGCAAGTGGTGTGACTGAAATCGGTTTGAA GGACGGCGACCGTTTATTAAAACATGAAAGCGTGAATACTCAAGATACTGT TCTTGTATTTACAAATAAAGGTAGATATTTGTTTATACCTGTTCATAAATT AGCCGATATCCGTTGGAAAGAGCTTGGTCAACACATATCACAAATTGTGCC AATAGATGAAGATGAAGAAGTGGTAAATGTATACAACGAAAAAGATTTTAA AAATGAAGCCTTTTATATTATGGCTACAAAAAACGGCATGATTAAGAAAAG TAGTGCTTCACAATTTAAAACTACTCGGTTTAATAAACCACTCATAAATAT GAAGGTTAAAGACAAAGATGAACTTATTAATGTCGTTCGATTAGAGTCTGA TCAGTTAATTACTGTTCTAACCCATAAAGGCATGTCATTAACTTATTCAAC TAATGAATTATCGGATACAGGCTTAAGAGCAGCTGGTGTTAAATCAATTAA TCTTAAAGATGAAGACTATGTTGTTATGACAGAAGATGTGAACGACTCAGA 40 TTCCATAATAATGGTTACACAACGTGGTGCTATGAAGCGTATTGATTTTAA ATTAAAGAAAAACCGCATCGAATTGTGGCAGGTGCAGTAGTTAAAGAAAA TCACACGAAATATTGTATTCTCTCAACATCATGAAGAATATGGTAATAT 45 CGATGATGTACACTTATCTGAACAATATACTAATGGATCATTTATTATTGA TACTGATGATTTTGGAGAAGTAGAAAGTATGATTCTAGAGTAAAAGTATAT GCAATCACAAAATAAAATGATAAAATAAAAATTAATAATAGCAACTAAAAT GAGCACAAGGGATTTATGTCTAATTTGAACTATCAAAGTGATAATATACAT TTATTGTTAATATGAATGTTTAATCTTTGTTAATGAAATTAAAGCATAAAT CTCTTGGTGTATTTAAAACGATAAATTTAAGTGGATGAGAGGGATTCGTTT 50 TGCAAGATTTTGATAACTTAATTCCTGGCTGGTTTAAAACATTTGTTCAAG TCGGGAATGACTTAATTTGGTCTCAATATCTTATTGGATTATTATTAACAG CAGGTTTTTTCTTTACAATTAGTTCTAAATTTATTCAACTCAGAATGTTAC CAGAGATGTTTAGAGCATTAACTGAAAAGCCAGAAACTTTAAGTAGTGGTG AGAAGGGTATTTCACCATTTCAAGCTTTTGCGATTAGTGCTGGGTCAAGAG TAGGAACTGGAAATATTGCCGGTGTTGCAACTGCTATTGTTCTTGGTGGCC CCGGTGCAGTCTTCTGGATGTGGATTATTGCTTTTATTGGTGCAGCTAGTG CATTTATGGAAGCAACGCTTGCTCAAGTTTATAAGGTACATGACAAAGAAG

GTGGATTCCGTGGCGGACCAGCCTATTACATAACAAAAGGGCTAAACCAAA

AATGGCTTGGAATTGTATTTGCTGTTTTAATTACAGTTACATTTGCTTTTTG TATTTAATACTGTTCAAGCGAATACAATTGCTGAATCATTAAATACACAAT ACAATATTAGCCCGGTAATTACTGGAATAGTACTTGCAGTTATTACAGGTA TTATCATCTTTGGTGGTGTTCGTAGCATAGCTACACTATCTTCACTTATTG TGCCTATTATGGCTATTGTTTATATAGGTATGGTTTTAATCATTTTATTAC TCAATATAGATCAAATTGTACCTATGATTGGCACTATTATTAAAAGTGCAT TCGGAGTTCAGCAGGTTACTGGTGGTGCTGTAGGAGCTGCTATTCTTCAAG GTATTAAACGTGGTTTATTCTCAAACGAAGCTGGTATGGGATCTGCACCTA ATGCTGCTACATCTGCTGTGCCCCATCCCGTTAAACAAGGTTTAATTC AATCATTAGGTGTATTCTTTGACACTATGCTTGTTTGTACAGCTACAGCAA TTATGATTTATTATTATTCTGGTTTTGCAATTTGGTGATAGCGCGCCTCAAG GTGTAGCAGTTACGCAATCAGCGTTGAACGAACATTTAGGTTCAGCAGGAG GTATTTTCTTAACTGTAGCAGTTACCTTATTTGCATTTTCATCTGTTGTAG GTAACTATTACTATGGACAATCCAATATTGAATTTTTATCTAACAATAAGA CTGTTGCTAAAACAGAAACAGTTTGGAGTACTGCCGATTTATTATGGGTC TTATGGCAATAGTAAATATCATATCAATTATAGGTTTGTCGAATATTGCGT TTGCAGTGATGAAAGATTATCAAAGACAG

20

Sequence 3393

15

10

step.1002e02.cons.ok TACGTTACAACAAAATAAAATCTTTAATGCACGTCAAACTCGACCTATTTT ACATGAATTTGGAACTCAAGAATATCCAGAAGAATATAGATATGGTTTTTA 25 CATAACTCCGTATTTAAATAGAGTCAACGGGGTATTCTTTGGTCAAATTTT TACTGTTTACTTTAATGATCGGTATATTGTCATTTTAGGGACGAATGTAAG TAATACACCTGGATTAGTGAGTAATGAAGACAAAATGAGACACATTTTCTA TAATATTCTTGACCAGAAAAAGCCTTATAATACAGCAGGTGTTAAAGTTGA GTAATTGTAATTTTGTTAATAATGGATTAGACTCGTTATTCCATATTTACA 30 AGGTTAGTCTTCAATAAATTATATATAACGAATGCCCGGAACTTCAATCTG AATTTAATTATTTACAATAAGAAAGGGCGTTTAAGAATAAATCCTCATACT GTCTTTCAACAGGACTTAAAACAACTGTACAATTGGGATGCTCCATATTAA AGTCTACCACTGTGGCTCCCCTTGTAAAGTTGCCATTTAATTCTATTTGAG TATACGCCTCCTTGACATTAAAGGCTTCTGGATCCAACAAATATAATATAG TGAATACATCGTATAATTTAAATCCTATTTCAAAATCTTCACTCTTATAGT GCTGAAATAAATTATATAACATGTTTGAAGTTGCATTTGTATCTTTGAAGT CTTTTACAAAATGGTGAGTAAACAATGCTTCACGAGCCAAATCAAGACCAA TCATAGTCAAAGGTAATCCAGAGTTAAATACAATTTGAGCAGCTTCTGGAT 40 CACAATATATTAAATTCAGCTAAAGGCGTTACATTACCTCTACCGGTAC TACCACCCATTAAAACAATTTCCTTAATAAATGGTTGAACTTCGGGATAAC TAGTTAAAAGAATAGCGATATTTGTTAGTGGACCTATGGCAATCAAGGTTA AAGGTTCTTGAGTATTTACTAATAGATTTCTCATTGCTTCAACTGCATGAA 45 CAGACTCACCATGAATTGATGTAGCTTCAAAGATGTCATTAATCAATGGTT GGGATGCCCCTCTATGTACAGGAACAGAACTATTAAAAAACCTTTTTAGCT TTAATGCATTTGCTGTCGTTTTCTCAATACCTACATTACCATTCACAGTTG ATATCATTTTAACGTCAAATTGAGGGTGTGAAAGTGCGATACTAATTGCTG TAGCATCATCTATACCAGGATCAGTATCAATTATAATGGGAATAGACATAT 50 CATCATCTCCGTATTTCATAATAATTAAAGCATAACATGGTATGGGATTGT TACGATAACGAAATAAAAAGAGCCTGAGACTTTTAAGTCTCAGGCTCTTTA TTTATTGAAATCAACCCTGGAAAACTCATCTTTATAAGTGAGAAGAGTGTC CACCTTGCATTACCCAGTATGTTCCGATAACAGTTACTAAAGTAATGATAA 55 TTGCAAAGATAACTTTGAACGATTGTAAACGTCCATCTTTACCTTCAGTTA AGATGATAGTTACCTTAGCATGGAATGTCATATTAGTGTATAGAGTTACAA AAACTGCTAAAAGCGTTAGTACGATAGAAGCAATAAAACCTACTGTATGTT

TTACGATTGTATTCATCCGCTATACACCATCCCTATCATATATACGGCAGT AAAGATGAAGACCCAAACAACATCTAAGAAGTGCCAGTATAAACTTACTAT AAATAATTTAGGAGCATTGTATGAATCCAAACCACGAGTGCCGATTTGAAT TAACAAACAAATAACCCAAACAATACCTAATGATACGTGTGCACCGTGCGT ACCTAGTAGTATAAAGAAACTAGACCAGAAGGAGCCAATAGTTGGGTTAAC ACCTTCAGAAGCATAGTGTGCGAATTCGTAAATTTCGAAACCTACGAATAC AAGACCTAGGATAACTGTGATAATCATCCAAAACATCATTAAGTTTTGTTT TTCTTGTCGCATGTAATAAATTGCAATACCACAAGTATAAGAACTAATTAA TAATGCAAAAGTCATTATTAAAATCAAATGTAATTCGAATAAGTCGGTAGT TAATTTACCGCCATATCCGCCACCATGTTGTAACGTTAATAACGTTGCAAA TAGGGTACCGAATAACGCAAATTCAGCTGTAAGGAAAATCCAAAAGCCAAG TTTATTTAATTCGCCTTCGTGTGTACGAGAATCAATAGTATTTGCATCATG ACTCATGACTTACAGCCTCCCTTTCTTTAATTCGAGCTTCTCTTAAACGAG CTTCAGTTTCTGCAACTTCTGAAGCAGGGATGTGGTAACCATGATCAATTT GGAAACTTCTCCAAATCATAGTAATGAAGATACCTGCTAAACAGATAAGTG 15 CTGGAACAATAGATTCGAAGATTAAGAAGAAACCACCAATAGTCATAAATA TACCCATCCAGAATCCTACTGGAGTATTGTTTGGCATATGAATATCTTTGT AGTTATGGTTGTCTAAATAATGACGACCATGTTCTTTCATATCAACGAATG TATCGTAGTCATTCCAATCAGGAGTGATAGCAAAGTTGTATTTAGGTGGAA TAGCTGATGCTGTAGACCATTCTAAAGTACGACCAAGTCCATCCCAGTTAT 20 CTCCAGTAGCTTCACGTGGAGCTTTGATATGACTATAAACGATACTTGCAA CTAGGAATAAGAATCCAATTGCCATCAATACTGCACCGATAGTTGAGATGA AGTTTAGTAACCACCAACCATCAGAAGGCATGTAAGTGTATAGACGACGTG CGATCATGAAGAACCAGAAGCACCATTTGTTTAATGTTTCATTTAACTTGT AGCCCATCATTTTTGGATACCAGAAGATTAAACCAGCTAAGCAGGCAAATA CTACACCAGTAACCAATGTATAGTGGAAGTGAGCTACTAAGAAATAAGTGT TGTGATATTGATAGTCAGCTGATGCCATTGCAAGCATTACACCAGTAACCC CTCCTAATAAGAAGTTAGGGATGAATGCTAATGAGAATAGCATAGGTGACT CAAATGTAATTCTACCTTTGTATAATGTGAGCAACCAGTTAAATAGTTTAA CTCCGGTTGGAACACCGATTAACATTGTTGAGATAGAGAAGAATGAGTTAA TTAACGCACCATTACCCATAGTGAAGAAATGGTGAACCCAAACTAAGAAAC TTAAGAATGCGATACCTGCAGTTGCCCAAATCATACTTTGATGACCGAATA AACGTTTACGGGCAAAAGTAGGGATGATTTCTGAGTACATACCGAATGCTG 35 GCAAAATAACGATATAAA

Sequence 3394 step.1002e03.cons.ok

GCATTAGCACTTAAAATGGATAACAAGCCAAATATTGCTACCGCAACAGTT 40 GGAGAAGGCAGTTCAAATCAAGGTGACTTTCACGAAGGTATGAACTTTGCT ATATCTGTACCAGATTCACTACAATATGCTGCTGAAAAGTTATCAGATCGT GCATTAGGTTACGGTATGCATGGAATACAGGTAGATGGAAATGACCCAATT GCAGTATACAAAGCGATGAAAGAAGCAAGAGAACGAGCGCTAGCAGGTGAA GGTCCAACATTGATAGAAGCTGTCACTTCACGTATGACACCACATTCATCT GATGATGATGATACATATCGTACAAAAGAAGAAGAAGACCTATTGAAACAA GAGGATTGTAATATAAAATTTAAAACGGCCTTACTCGATCAAGGCATCATA AACGAAAATTGGTTGAGTCAATTGGAAAAAGAGCATAAAGAACTCATTAAT GAAGCTACTAAATCTGCTGAAGCAGCACCATATCCTTCAGAAGAAGAAGCT 50 TTGACATATGTTTATGAAGAGGGAGGTCAACGAAATGACTAAATTATCATA CTTAGAAGCTATACAAAATGCACAAGACTTAGCACTAAATCATTTTAGTAA TGCATTTATACTTGGCGAAGATGTAGGAAAAAAGGGTGGCGTTTTCGGCAC AACCAAAGGATTACAAAGTAAGTATGGTGATGAACGTGTAATTGATACACC TCTTGCGGAATCGAATATTATTGGTACTGCTATTGGTGCAGCAATGCTAGG 55 TAAGAGACCTATTGCCGAAATACAATTTGCAGATTTCATTTTGCCTGCTAC AAATCAAATTATAAGTGAAGCAGCTAAAATGAGATACCGTTCAAATAATGA CTGGAATTGCCCACTGACTATCAGAGCACCTTTTGGTGGTGGAGTTCATGG TGGATTATATCATTCACAAAGTGTTGAAAGCATTTTTGCTTCAACTCCTGG

ATTAACTATTGTTATTCCTTCATCACCTTATGATGCTAAAGGTCTTCTATT GTCCTCTATAGAGTCTAACGATCCAGTCTTATACTTTGAACATAAAAAAGC ATATCGTTTTCTAAAAGAGGAAGTTCCCGAAACATATTATACTGTACCTCT AGGTAAAGCAGATGTTAAAAGGCCAGGCGAGGACATCACTGTATTTTGTTA CGGATTGATGGTGAATTACTGTTTACAAGCTGCAGATATTTTTGGCAAATGA CGGCATCGATGTTGAAGTAGTCGACTTAAGAACAGTTTATCCACTAGATAA AGCAACTATCATTGAACGCTCTCAACGTACTGGTAAAGTTCTTCTTGTTAC TGAAGATAATCTAGAGGGAAGCATTATGTCTGAAGTATCTGCAATTATAGC TGAAAACTGTCTGTTCGATTTAGATGCGCCAATCATGCGATTAGCTGCACC GGATGTCCCATCTATGCCATTTTCACCAACATTAGAAAATGAAATTATGAT GAACCCAGAAAAGATACAGGACAAAATGCGTGAACTCGCACAATTTTAAGG AGGGTGTCAATTGGATATAAAAATGCCTAAGCTTGGTGAAAGTGTGCATGA AGGTACGATTGAACAATGGTTAGTATCAGTAGGAGATCATGTAGATGAGTA TGAACCATTATGTGAAGTTATTACAGATAAAGTAACAGCTGAAGTGCCTTC AACAATTTCTGGAACAATAACAGAATTAGTGGTTGAAGAAGGACAAACTGT 15 CAATATTAACACGGTGATTTGTAAAATCGATTCGGAAAATGGTCAAAATCA AACAGAATCGGCAAATGAGTTTAAGGAAGAACAAAATCAGCATTCTCAATC AAATATAAACGTGTCACAATTCGAAAATAATCCTAAAACTCATGAAAGTGA GGTGCATACAGCCTCTAGTCGCGCAAATAACAATGGACGATTTTCACCAGT TGTCTTTAAATTAGCTTCTGAACATGATATTGATTTAACACAAGTCAAAGG 20 AACTGGTTTTGAAGGTCGTGTTACTAAGAAAGATATTCAAAATATTATTAA AGATCATTCAACGAACCATTGTGACTTTTTACATCAATCCTCAACTAAAAA CGAACACTCACCATTATCAAATGAACGTGTCGTACCAGTTAAAGGTATTAG AAAAGCTATCGCACAAAATATGGTTACTAGTGTCAGCGAAATACCACACGG TTGGATGATGGTTGAAGCTGATGCAACGAATTTGGTTCAGACTAGAAACTA GTTTTTTGTAAAAGCTGTTGCAGAGGCTTTAAAAGTAAATCCATTACTCAA TAGTACATGGCAAGGAGATGAAATTGTTATCCACAAAGATATTAATATCTC TATTGCTGTTGCAGACGATGATAAGTTGTATGTGCCAGTCATTAAAAATGC 30 AGATGAAAAATCAATTAAAGGTATCGCGCGTGAAATCAATGATTTAGCTAC TAAAGCAAGATTAGGAAAATTAGCACAAAGTGATATGCAAAACGGTACATT TACGGTTAATAATACTGGTTCTTTTGGTTCTGTTTCTTCAATGGGAATCAT TAATCATCCACAAGCTGCCATTTTACAAGTAGAATCAGTCGTTAAGAAACC TGTAGTTATAGATGATATGATTGCAATTAGAAATATGGTTAATTTGTGTAT TTCAATCGATCATCGTATTCTCGATGGTGTTCAAACGGGAAAATTTATGAA TCTTGTTAAGAAAAAATAGAACAATATTCTATTGAAAACACTTCTATTTA TTAATTACAAACAATGATTACCAATTAAACTTCATATTAAAGTTGAACGCT TTAAGGAGGATAATTTCTTCTTAAAGCGTTCTTCAGTATTCGTTTTAAATT TCAACTAGAATTTTCAATCATCATAAATTAATCCTGTTGAACAATGTGTT GTTAATTAGTAGAATAAAATAAGTAAAATTAACTTATTATGGAAGGTGACA AATCATGGATTTAAACTTTGATTTATATATGAATGATGTTGTTGAACAAGC ACGAAACGAAATTGAGCATGCTGGTTATCATCAATTAACTTCTGCTGAGGA TGTTGATCAAGTTTTACAACAAAAGGGGACATCTTTAGTCATGGTAAATTC 45 CGTA

Sequence 3395

step.1002e04.cons.ok

TTTCTATTACTCATCGACACTTGCCATGAGAATGTCTTACTAGATAACTGC CAAGACTATCAAAAACAAATTCAACATAAACAATTCTCTTTACAAGAAGAT ATTATTCACCAAATAAATCAGTCAAAGGAATTCGAATCATTTTTATCAACT TATTATGTAAATAAAGGTAAATATGATATCACCAGCAAAATAAAAACATTA CTTGAATAAATACTATTGTTTAAATAAAATGATTATCTCATACATCACTAG TTCACATCACTTTTAAAATACAGTTAAAAATCTATTCAATTCTTACTCTAA GATTGATTTAGTGATGTGTTTTAACACCTTGTGAGATTGGCGTATGGGATA GATAGGAAAATCATGCACCATTTTAGGATACTCTTTAAACTCAACATCGTT CCCACATTCCTCTAGAGCATGAGTAAATGCATGCATGTCTGGGCTTAATAT TTCTCTGCCACCTCCATACATATATATAGGTGGCAACCCTTTTAGAGTACC GTATAATGGTGATATACGCGCGTCTGATAAAGGTAAATCATTCGTCCAAGA TTTCATGAGTTGATGAACACCAAATCGACTAACTAAGATATCATTTTCTTC CAACGTTTTCGTAATATTAGGATTAGTCAAAGTGGCATCTAAAAGCGGTGA AAGTAAAAATAACTTTCTAGGCACTTCTTGATTATCATTGATAAGTGATTG AACAAAACTTAATGCTAGTCCTCCACCAGAACCATCCCCCATCATAACAAT GTTGTTCGCACCAACTTCTTCAACTAATTGATTATAAACGTCACGAATCGC AACGACCTCATGCAATGTATTTAAAGTTAGTTTATCTAAAAGTCTCCAATG 20 AAATGGAGAAGGTTGCAAAGTATTATATCCACCATGCAGATAGAGTATCTT TTGATTTTTCTCATGTCTAAAATTAAATCTAAACACTTGCATATCATTAAG AGTAAGTTTATCTAAATTTGACTTTACATTAAGTGTCGCAGGTTGCTGATG TTTTTTACTATTTCGATACTTCTCTTTTCTAAAAAAATGTTTAACTTCATC ATTTTAAATTTAAGAAATAATTTGTTTAAATATCTATATACCTTTGCTAAA AAAAGATATAATGATAAGTATGTCATTTTAAAGAAATATTTTTTAATCAAT ACTTAGGATACTAGATTAAACCCAATTATAACAGACATAAAATTAAAAAGA TAAACTTAGTAAATTTGCATCTAAAGGAGGCATTTAAATGTCTGAAACATT 30 ACAAAACCAAAGACAATTCAACTCTCAATTTGAACATCAAGAGATCCATCG TGGAAAAAGATATGGTAAAAAGAAACGCTCATGGGTAAGTCTCATTATTCA AGTTTTCGTTTTAGTATTAACTGCTATTACTGGCTATAGTATGCTTAAACA ACCTATATTTAAAATTTCATTTGTAAATGAAACTATAAATTTCCATCAATT AAGAAATTTTCAAGATACAGTTACGCAAATCGGTAATTTGAATTTAGGTAA TATTGATCAATTACAACAGTCTGTCGATAATCTCATCATTATATTTAATAT TTTCTTTGTCCTATGTCTGATTAGTTTGTTTATAACCGTAATTACAATTAT TTTTAATCGCACAGCACTCAAAGTAGTCAATATATTACTTTTTAGCTATTA AAATTTCCGAATCTCTAAAACAATATTATTTAACAGTATCACCAGAACAAG TATTAACTGAAGCAGATGCGATTCACAATGCACTGATACTCATTGGATGTA 40 GTATTGCGTTATTGATTGTAAGTTTGTTTTTCCGTAATCGTTTACCACGTA TTAAATAAAGATGATTTTAATGTTCTTTTAA

45 Sequence 3396 step.1002e05.cons.ok CCATAGCAACATTTTCAGTTATGAATTGATTACTTTGTATGGGATGTGTAA 50 TTTGAGTGCTACTATCGACAAATATAAAAGGTTCTTTAACATTTTGACTTA ACACTTTTTTATGAAATTTTTGACCGTTACAGATTTTCTTTTTAAAATTTG AATCTTTCACTTGGAATGATTTCAGACCTTTTAAGCCATATTCTATAGGAA ACAATTCATTATGTAATGAATCATGCTCATGTAATTCTTTAATTTGATCAA TCGTTAAACTACTTCTAATTGAAAACCGCCAGAAGCAATTCTAGTTAGAC GTGACATATGAGCTGGAAAACCAAGTTTAAGTCCAATATCTGTAGCTAAAG 55 TTCTAATATAAGTTCCTTTACCACATGTTACTTCAACTTCAAAATGACATG TCTGCTCCTGAAAAGTAACTTCAGATATTCTATGTATATCTTTAATAAAAA CTTGTCGTTTAGGGCGTTCGACAGTTTCATTATTTCTCGCATATTCATATA ATTTTCTTCCATTTACTTTAACAGAAGAATACATAGGCGGAATTTGTTGAA

TATGCCCCTCAAATTGCTGCAACACTTGGTCAATCGTATCTTCATTAATAT CATTCTTATCAACAGCCCTAGTTTCTAAAATATCTCCAGTTTGGTCTTCAG TAGTCGTACTCTTTCCTAGCGTTATCATAGCGTGATAAGTTTTTCCCATTT CCATGATATAATCACTGACTTTTGTCGCATCGCCTAAACAAATTGGTAACA CACCATTAACTTCAGGATCTAATGTTCCTGTATGACCAATTTTTTTCATTT TTAAAATTTTACGTAATTTAAAAACGACGTCGTGACTTGTTAAACCTCGTT TCTTAAATACCGGTAGTATGCCATTATACATGTTGTCACACCTTTAACTTT TAATAACGTGTATTATTATAACACGATATTTTAATTCTTTAATTAGCGTTT CTACTATAAAATATATTATTATCATTTTTGTGTAACTCTTGAATCATGCG TTCTATCTTATTACCGTATTCGATAGATTCATCATATTCGAATGTTAACTC AGGTATAATTCTTAGGCGCATTCGAGAACCAAGTTCAGATTTTATAAACCC AGTTGCTTTATGCAAAGCTTTAAACGTATTATCAACTTCTTTATCATTCCC TAACACTGTTAAATATACCTTTGCTTGTGAAAGGTCATTGGTTAGTTCAAC ATCAGTAATTGTTAAAAAACCAACTCTAGGGTCTTTAACTTTATTATTAAC 15 AATGTCCATGATTTCCTGTTTCATTTGTTCTCCTACACGTTCTGCTCTTAT ATTATTCATCATCTCACCTCTCTTTATTTTTACTTACTCACAAATAAATG TGAAATATCAGATTTAATGATTAACTATTGATGTTCATTTATTAAAATTAT CAACAACGAATCAATAAAATAATACTAAATGAGAGACCATAACTAAAGTAT 20 TGATAGCATAACATTAAGCTTTTCCAAATCAAAAATTTATATCTTCAATTT GATTGTTGGTTAAGCAAAGTATGTCATACTCTCCTTTAAGATATTAGGTTT ATGAAATATCTTAAAGTACTTAACTTAGCATATAGCCTCTCAATAAGTTTC AAAAATTATCTTTGAATTTCTACCATTTCAAACGCTTCAATAATGTCTCCT TCTTTGAGATCATTATATTTTTCAATTGTAATACCACATTCATAGCCTTGA GCTACTTCTTTAGCATCATCTTTGAAACGTTTTAATGTGTCAAGTTCACCT 25 TCAAATAACACGATACCATCTCTAATTACGCGTACACCAGCGTTACGAGTG ATTTTACCTTCAGTCACATAACTACCAGCAATTGTACCAACTTTAGAAACT TTAAATGTTTGACGCACTTCAGCTTGTCCAATGACTTGCTCTTCAAATTCT GGGTCAAGTAAACCTTTCATAGCTGATTCTATCTCTTCAATAACATTATAG ATAACTCTGTGTAATCGCATATCTACATTTTCAGCTTCAGCCGCACGTTTC 30 GCACCTGCATCTGGGCGTACATTAAAACCAATAATAATACCATTTGATGCA TTTGCTAATGTAACATCTGATTCATTGATAGCACCAACAGCTGTATGAATA ATTCGTACATTCACACCTTCAACATCTATTTTCATTAGAGATGCGGCCAAT GCTTCAACTGAACCTTGTACATCACCTTTAATGATGACATTTAAATCTTTC ATTTCACCTTGTTTCATTTGCTCAAATAAATTGTCTAATGAAACATTTTTA CTTTCTTGACGTTGCTGTATGACACTTGCCTCATGACGTGCTTCACCAATT CGACGTGCTTGTTTTTCATCACCAAATACAACAAAACGATCACCTGCAAGT GGAACATCGTTAATACCAGTAATTTCTACAGGTGTTGAAGGACCGGCAGAT TTAATTCTTTTCCTAAATCATTAACCATTGCACGTATACGTCCATAAGTA 40 TTACCTACAACAATTGCATCTCCAACGTTTAAAGTACCATTTTGAACAAGT AAAGATGCAGCTGGACCTCGTGATTTATCTAATTCAGCCTCAATCACAGTA CCTACAGCTTGTTTATTAGGATTAGCTTTAAGTTCTTGTACCTCCGCTACT AAACCGATCATTTCTAATAAATCATCAATACCGTCTCCACTCAATGCAGAT AGTGGTACAAAGATTGTGTCACCGCCCCAGTCTTCTGGAATTAATCCATAC TCAGTGAGTTCTTGCATAACACGATCAGGGTTAGCAGTTGGTTTATCAATT 45 TTGTTTACTGCAACAATCGTAGGTACTTCTGCTTCTTTAGCGTGATTTATA GCTTCAATTGTTTGAGGCATCACACCATCATCAGCGGCCACGACTAAAATT GTAATATCAGTAACTTGAGCACCACGTGCACGCATAGTCGTAAATGCAGCA TGTCCAGGAGTATCTAAGAACGTAATTTTTTTTACCTGAATTTTCAATTTGA TAAGCACCAATATGTTGAGTGATTCCGCCAGCTTCTCCTTCTGTAACTTTA GTGTTACGAATAGAATCTAATAAAGTCGTTTTACCATGGTCTACGTGGCCC ATGATTGTAACAACTGCTGGACGTTCAATTGCATCAGAATCATCAGTCTCA TCATCAAAATAAATTGATAAATCTTCTTCATCAACGACTACTTCTTCTCT ATTTCAACGCCATAGTCATCTGCAATTAATTCTAATGTTTCTTCATCCAAT GATTGATTGATATTAGCCATAATACCTAGTAAGAACAATTTTTTAATAATA CCAGCTGATTCTACATTTAGCTTTTCAGCTAACTCACCGACAGTTATGCCT TCTTGATAAGTGATTTTAGAGGGCATTTCTTTTGTTTCTGCTACCTCATTT TTATTAGTTTATTTTATTTTGCTGTTTTCCTTTGTTGTTTTGTTCT

TTTTTCTTCGTTGGTTTACTATTATTCTTACTTTGTTTTTTCTTTATCG TTAGAATTTTGTTTATTATTAGAATTTTTGGTGATTATTTGAGTATTTTGT TTATTAGTGTCTTTCGCT

5

Sequence 3397 step.1002e06.cons.ok AAAATTCAATATACGTTTCTTTTATAATTTTAGTAATTTCTCTTTAAAAAAT ATCACGTAAAAATTCAGGCATAATATAATCTGTAGATAACCCCTTTAGCAA TGGGAAATATCTTCCAAATGTATACATATCAACAGTACCTAACGTATATTG 10 TTTATCATTTGAATCTCTTCATCGCCTATAAAATAACGGTCTTCTGACTC AATAAAGCCTAGATTATATAAAATATATCCTCCAAATATATCCCCCTCTAAA ACCAAGACCTTGTGCATGTTCGTGCATATATTCTTGCTTTTTGGCTTTTTTG AATCACTTGCTTTAATTGTTTACCGGTTAATCGAACTCTTACAATATTGAT TGGATGGGGTAACATGCGATGTATATCATATTCCGTCACTTTATCAGCTTC 15 AATGCCATTAACTATAAGTCCAGCATTTACGATTGCACAATCAGCCCTTGA AAACTCATATACACTTTCAGCCAGTAAATACGATGTTCTTGTAACAACATC TGTTCTTTTGACTAAGTTCACATGATGATTAACTACTGGTTTACTTAGAAG TGCTCTTCCTTCTTCAAAATGTGTCTCGACTAAGGGAAGTGTTTCAAT AGGATGAATTTTGGCGATTTTATCAACGATTTTTCCATTTTCAATCGTAAT 20 ATTAACTTCACCTAAATAATAGCCATATTTTCCGGCAGCTGCCATCAAAAC ACCATTGTTTATTTCTCCATGTTCAAAATGATGATGCGTATGACTACCAAA GATAACATCTATTTCCGGAATCTCTTGGCATAACTTTTCATCAAAAAAAGAT ACCGACATGGCTCATAACCATTAAAAGATCATATTCACCTTGATGTGCATT GATTTCATCTTTGATTGCCGCTAATGGGTCAGTAACAATCCAATCCAGTGC 25 TCGATAAAAAGGTGTGAACGGTGCCGTTGCTGCAACAAATAAAATACGTGT TCCTTTTATTTCTTTGATATACGAAGAGGTAATATGATGTGGAAGATGTCC CTCTTCATCTATGACATTCGTGCAAATCACTTTAAAATCCGCGTCGTTATA TAGATTTTGTAAAGCATCATGAGAAATTGTCATTCCTTCATTATTTCCAAT GGTTGCAATATCACAATGTGCTTCATTTAAAAGTTCTATATTTTATGTCC 30 TACCGTAGCTTCTGTCACAGGTGCTGATAAATCAACATGGTCACCTATATC TATATAGAGTGAGGGATGTTCAAGTTGCGGTCTATGTTTTGCCATATAAGC TTGAATACGAGCATATTCATTTAAATGACTATGAATATCATTCGTGTGATA TATTGTTAATTCCATAACATGATCCCCCTCTTTAAAATTTATATACTTAAT TGTACTTTAGCATTAAAGAACAAAGTCTCAAAGCATAACTACTTCGCATTT AAATAAAAGATTTAATGATTAAATATACACCCATGATAAGCATTACTGTTC TCAATAACATTACAACTGTGTCGGATTTCATAGATCGATTGACCCTCACAC CTATTTGTGCACCTATAACACTTGAAATAATGAGAATGATAGAATAGCCCC AAGCCACATGTCCTTGAAAGATGTGCCCTATTGAACTCATCACACTTGAAA AGAAAATCATCATCATACTTGTGCCTACTGCAACATGTGGTGGAAATCTAA AGACGATGAGCATAAGAGGGGTCATCAATGCACCTCCACCTATGCCAAACA GTCCTGTTAATAGCCCAATAAATAACGTTGTTATAAAAGCAAACAGGGGTG GTACACTATAACGGTATGTTTTCCCTTCAGCATCAACATATGTACGCGCAT ATTTAGGTTTGTCAAAAATTTTAAAAGGTTTGATTTTGTGACGAATCATCA GTAATATCGACACAAATATCATAAACACGCCAAAGTATAAGTTAAACGAAT 45 CAAGTGTAAGGTATCTACTTAAAAAAGAACCAACCAAAGATCCAGGTAGTA GTCCAAATAGAAATATCGAACCATTTTTTATATCTACTTGTTTGGTTTTTA AATATCCTAATGAGGAAGATAATCCAGTAACAATCAGAATAACTGAAGAAG TACCTATTGCAATTTGCGTCGTAATACCATGTAGAAGATGATGGTTAACGC CTAAATAAACAAGTGTGGGGACGATGATGATTCCACCACCAATACCAACGA TAGATCCTAAAATCGCTGATAATCCCCCCTATTAATATTAATAGAATAATTG TTAATAACATGACATTCGCCTCTTAAAATAGTTTTAATTGTTGCGGTGCTA AACCTTCATAATCAATGTCTAAAATATTTTTGATACTTTTTAGCATTATTAG CTGCATGACCGCCAGAGTTATTATTAAAAATTACATATACTTTCTTAGCCT TTTGATTAAGTATTTCGACTTTACGAGCCAAGTCAGCTAACTCATCATCGC TATAATCATATAAATATCTTACATCTCGCCATTCTTGATCAGTCATATCTT TTTTAGTCCAACCATAATGATTACGTCCATGATAACGTACAAAAGCAATTT CACTAGTAATCCTATTTACTAAAGGAACGCTCCCCTCTTTAACTTGAGGTT CATCTACCACTGCATGAATGATTTGATGTTGTGTTAAGAAGGATAAAGTTT

GTTCTTTATACTGATTGTCAAACCATGATTGATGTCTAAATTCAATGCTCA TCGGAATATCAGTTAATTGTTTTCTCACATATAAGATGTAATTTATATTTT GGACGTTACAATCAAACCAAGGTGGAAATTGTACGAGCACCATCGCCAATT TATTATGCTCTTTTAACGGATTGATCATTTCTTTAAACTGTTTAAATAATA TATCTCTCGACTCTGCATAATCTCTATAGTCAGCATGCAATGTTAATGCTT GATGAATTTTAACAACGAATTGAAATCTATTCGGCGTTTCATTTATCCATT TAATTATATTTCGCTCTGGCTGTATCGCATAATACGAAGCATCCAACTCTA CTATTGGGAAGTGACTAGCATACGTTTTTAACTTATCTGTTTTACGCTCTA AATCCTCATATAATGTATCATGGTCACCCCAGCCTTCTAAAAACTCTGGAT AAAAATCACAATTACCTTTCACACGCTGATACAAACTAAGTTCTGTGTCAT 10 TATAACTAAATTCAGAATCCCCTAAATGTAAAAATTTATCTGCATCTTTAT GTAGTTCATAAATATGATATAAGATACCTGTTTCTTTGTGATTATCACTAA GAATAATCCACTTAGACATGTTGTTCACCCTCTAAATATTCTTTTAACAGT CGAATAGCATTTCCACGATGACTGATTTTACCCTTTTCATCATTTGTAATT TCCGCCATCGTTTTATTTAATTCTGGGACAAAAAATATTGGATCATAACCA 15 AAACCATTCTTTCCATGTCGTTCAGTTGTTATCACTCCAGAAACTGTTC

Sequence 3398

20 step.1002e07.cons.ok TTTGGAAGTTCTGTTGATAAAATCAAATTATTCGCTGAATTGACTTCTAAA TATAAAGATTACCATCCTGAGTATCTGGGTAAGTTTAACAGATATGAAATA GATAAATATATTCAAGAAATTAGCAAAAGTTATAAAAAAAGAGGTAATGAA AATGGCTGAAAATCAAGCTAAAAAAGAACAAGTTCATACAGTATTCCAAAA TATTTCTCAAAAATACGATCGACTCAACAACATCATAAGTTTCGAACAGCA TAAAGTATGGAGAAAACATGTTATGAGTACTATGAATGTACAAAAAGGCAG TAAAGCTTTAGATGTGTTGTGGTACTGCAGATTGGACTATTGCATTAAG CGAAGCAGTAGGCTCAAAAGGCCAAGTAACTGGTCTTGATTTTAGTGAAAA TATGCTTGAGGTAGGTAAACAGAAAACTGCTTCATTGGAAAATATCCAGCT TGTTCATGGTGATGCTATGAATTTACCTTTTGATGATAACTCATTTGATTA TGTTACTATTGGTTTTGGCTTACGCAATGTTCCGGATTATTTGTCAGCACT CAAAGAAATGCATCGAGTTTTAAAACCAGGAGGCATGGTGGTATGTCTTGA AACAAGCCAACCGACATTGCCATTATTCAAACAAATCTATAGTTTATACTT TAAATTTGTGATGCCAATTTTTGGTAAAATGTTTGCTAAGTCCAAAGAAGA GAAAGGCTTATTCTTCGAAGCAGGATTTAACGATATCATTGTACGTAGCTT TACAGGTGGCGTTGCTGCAATGCACCTTGGCTATAAAGAAAACAGTTCTAG TAGAAAAGCGACTTGAAGAAGCAATTATAAGTTCTGATCAAACATTACAAG AAGCCTCATTCCATTTACTATCTTCAGGGGGAAAAAGAGTTAGACCCGCTT 40 TTGTTATTTTAAGTGGTCAATTTGGCTCTAACAACAAACCTTCAGAAGACA CGTATCGTGTAGCAGTAGCTTTAGAACTAATTCACATGGCTACCTTAGTCC ACGATGATGTGATAGATAAAAGTGATAAACGTAGAGGCCGACTCACTATTT CAAAAAATGGGACCAAAGTACAGCTATTTTAACAGGAAATTTCTTACTTG CTATGGGGCTCAAGCATTTATCTGAAATCAGTGATACTCGTGTCCATTCGA CCATTTCTAAATCAATTGTTGATGTGTGTAGAGGAGAACTATTCCAATTTC ACCGTAAAACAGCACTTCTTATTCAACTGTCTACACAAGTTGGTGCGATTA CTTCCAATGCGTCAAATGACGTTATTCGTAAATTAAAAATGATCGGACATT ATATAGGTATGAGTTTCCAAATAATAGATGATGTGCTAGATTTTACTAGTT 50 CTGAAAAGAAACTTGGTAAGCCGGTTGGTAGTGACCTTATGAATGGTCATA TTACATTACCTGTACTATTAGAAATGCGAAAAAATAAGACTTTTAAAGATA AAATTTCACAACTTAATCCTGACAGTCCTCAACATGCCTTTGAAACTTGTA TAACAATAATTAGACAGTCCGAAAGCATAGAACAATCAAAACAAATAAGTG AAAAGTATTTAAATAAAGCAATCAATTTAATCGATGAATTAGAGGATGGTC CTAATAAAGAACTATTTAGAAAGCTTATTAAAAAAATGGGAAGTCGAAATA AGTAAGTTTTGTGACAAAAGTTGAAAGCGCTTCATTATCCTGTTACCATAC TAAGTAGCAGGATATTTTTATAGCTTGCAATGTTTTAAGTTTTTTACATAC

TTATAAAAATGAATGAAACACATGCACAGGGGGACACACGAAGTGGAACGC

ACATTTTTGATGATTAAACCGGACGCTGTCCAAAGAAATTTAATTGGTGAG ATTATATCTCGCATTGAAAAGAAAGGTCTTAAGCTTGTTGGCGGTAAGTTT ATGCAAGTGCCTATGGAACTAGCTGAAAAACATTATAGTGAACATGAAGGA AAACCGTTCTACGACAAGTTAATTTCATTCATTACTTCTGCACCCGTTTTT GCTATGGTAGTAGAAGGTGAAAATGCTGTAGCTGTATCTCGTAAAATTATT GGAAGCACAAATCCAAGCGAAGCAGCTCCTGGTACAATCCGAGGCGACTAT GGTTTAAATCTAGGTCGTAATATTATACATGGTTCAGATTCAACAGAATCA GCACAACGTGAAGTTAAATTATGGTTTACAAGTAGCGAAATTGCTGATTAT AAAGAACCAAGAGAAGATTGGCTATACGAATAATAAAAATATCAAATAATG AAATTCATTTATCCATTAATGTCTGTGACGCATATTTGTGTCTCAGGCAT 10 TTTTTATGATTAACCAAATTTTATTTGCTTAAAATAATACTTATTGAATTA GTCTATTTATTTTTTTATCTAGGGATTTAACGATGCAATACCGTATATTGT AATGACCTACTTTTAATATATCAATCATGTATCTAATGATTTCGGTCTTTT GAGTTTTTTAATAGACTGATCTTTAATTGGTATAATGTCACTATGACATAA CAATCATCTTGGTGCTATTCTTTTTTAAATATTTATAACTGCTAAAATAAA AATCTCCTTGTTTGTCTAACTGACTTATGTTGTGTGATTGAATATGATAAT ATATTAAACATATTACAATTTAATGTATTGAAGAATAGAAAGGGGCGTGCG ATCATGAGATACCTTACATCCGGTGAATCACATGGACCACAACTTACAGTC ATCATAGAAGCTTTAGAGCACAGTGGCGA 20

Sequence 3399 step.1002e08.cons.ok

5

TTTAAATTGTCAGATGATCAAGAAAATGAAATTGAGCAATTATTAGATCAA 25 ACCAATCCTGATTTACCACGACCAGTAGGAGAGGATATTGTACATTATTCA GATTATTTTGAAGGTGCACAAAAGTATCTAAGTTATCTTAAATCAACTGTT GATGTTAATTTTGAGGGTCTTAAAATTGTATTAGATGGTGCAAACGGGTCA ACTTCTTCTTTAGCCCCATTCTTGTTTGGCGATTTAGAAGCGGATACTGAG ACAATTGGATGTAATCCAGATGGTTATAACATTAATGAACAATGTGGCTCT ACTCATCCAGAAAATTAGCTGAAGCTGTGTTAGAAACTGAAAGTGACTTT GGTTTAGCTTTTGATGGAGATGGCGATCGAATTATTGCGGTAGATGAAAAT GGACAAATTGTAGATGGAGATCAAATTATGTTCATTATTGGTCAAGAGATG TATAAAAACCAAGAACTCAATGGAAATATGATAGTTTCGACAGTAATGAGT ACTAAAGTTGGAGATCGCTATGTTGTCGAGGAAATGAGAAGAGGAAATTAT AATCTTGGTGGTGAACAATCCGGTCATATCGTATTAATGGATTACAATACT ACTGGTGATGGATTATTAACGGGTGTTCAGTTGGCTTCCGTTATTAAAATG AGTGGTAAAACTCTAAGCGAGTTAGCTTCTCAAATGAAAAAGTACCCACAA TCTTTAATTAATGTGAGAGTGACTGACAAATATCGTGTTGAAGAGAATATT 40 CATGTTCAAGAGATAATGACGAAAGTTGAAACAGAGATGAATGGTGAAGGA AGAATTCTTGTTCGTCCTTCTGGAACTGAACCTTTAGTACGTGTAATGGTT GAGGCTGCAACTGACGCGGATGCTGAAAGATATGCTCAAAGTATCGCTGAC GTTGTTGAAGACAAAATGGGCTTAGATAAATAATACTTTCATGTTTAAATT 45 AATAATTCATCGATGTATCTATTCAGAACTATTACTATTTGTGAAAAATAC TGTTAAATCGTTTGCAAATTAATTCGTTGACAGTGTACAATGAATATTAAT GGAAAGGAGGAGACTCTAGGTTATTAATAATTAAAGCGCCTGTGCAAAATA CCTAAATAGTTATCAAGTATTAAAAGTTAAAATAGTAGAACTTTTATAGAT 50 AACGATTTGGATTTTGTAGACGAGGAGGATAGTGATCGAATCAGATCGGCG GATGCTATCCCGGATGTGGCACATTCGTTAGCTTATTAAGTAAATCATTAA TGGGAAACTACGGATAGCGTGTATAAAATTCATATAATAGCACGCTTATTT CATGATGTATTCGTTGATAATGATTATGATAGGGGGATTATCAAATTTAAGC AGTGATAATTAATCATAATAGCCGTGTTATCCCATTTGTTGGAGGATATTA TATGTGTGGAATTGTTGGTTATATTGGCTACGATAATGCCAAAGAATTACT ATTAAAAGGGTTAGAAAAATTAGAATATCGTGGTTATGACTCAGCAGGTAT

TGCTGTAGTTAATGATGATGGTACAAAACTTTTTAAAGAAAAAGGAAGAAT

TGCTGAATTACGTAAAGTTGCAGATAATAGTGATGAGGATGGTACGTTAGG AATTGGTCATACACGTTGGGCGACACATGGTGTTCCAAATTATGAAAATTC ACATCCACACCAGTCAACATCTGGACGTTTTACATTAGTTCATAATGGTGT AATTGAAAATTATGAAGAATTAAAAGCTGAATATTTATCTGATGTCACTTT TTCATCAGAAACTGATACGGAAGTTATTGTACAATTAGTAGATTATTTTTC 5 TAGACAAGGATTAGCTACAGAAGATGCATTTACAAAAGTAGTTAAATTATT ACATGGTTCATATGCTTTAGGATTATTAGATGATAATGATAAAGATACTAT TTATGTGGCTAAAAACAAGTCTCCGCTTTTAGTAGGTGTAGGTGAAGGTTT CAATGTTATTGCTTCTGATGCTCTAGCAATGTTACAAACTACAAACCAATA 10 CAAAGAGATACATGACCATGAAATAGTTATTGTTAAGCGAGACACAGTAGA **AATTAAAGATCTTGAGGGGCACATTCAACAACGTGATACGTATACGGCAGA** ${\tt AATAGATGCTGCTGATGCAGAAAAAGGCGTATATGATCATTACATGTTAAA}$ AGAAATTCATGAACAGCCTGCAGTGATGCGTCGCATTATTCAAGAATATCA AGATGAAAAAGGTAATTTAAAAATCGATTCAGAGATTATTAATGATGTAGC AGATGCTGATCGTATTTACATCGTTGCAGCTGGTACTAGTTATCATGCTGG 15 ATTGGTTGGTAAAGAATTTATTGAAAAATGGGCAGGTGTACCTACTGAGGT ACTATTTATTTATATTTCACAATCTGGTGAAACAGCTGATAGTCGTGCTGT ATTAGTTGAAACAAATAAGTTAGGTCACAAATCATTAACAATTACTAATGT TGCTGGTTCAACATTATCACGTGAAGCGGATCATACATTACTTTTACATGC 20 TGGACCTGAGATTGCAGTCGCATCTACAAAAGCATATACAGCGCAAATTGC TGTTTTATCTATCTCAAATTGTTGCTAAAAATCATGGTCGTGAAAC CGATGTTGATTTATTAAGAGAACTAGCTAAGGTTACTACAGCTATTGAAAC AATTGTTGACGATGCACCTAAGATGGAGCAAATTGCAACGGATTTCTTAAA AACTACTCGTAATGCATTCTTCATTGGACGAACAATTGATTATAATGTTAG TTTAGAAGGTGCATTAAAATTAAAAGAAATTTCTTATATTCAAGCTGAAGG CACACCTGTTATAGGTTTAGCTACACAAGAAAACGTTAATCTATCAATTCG TGGAAATATGAAAGAAGTACTTTAGAGCACAGTGGCGATGATATCA

30

Seguence 3400

step.1002e10.cons.ok

35 ATAGGACGGATGTTCTGTTCCGTGGTACCACCTATATTCAAGAAGAAATAA TTCATTCTTTCTTCAAGCACTTAAGTCTCTGATTAACGCTCATACACGCT TCTACCTACTTGTCGTCTATGTTTCAATAGAAGTTATAAAATAGGGCTACC TTCAGACTTAATCATTTACATATTCACAGCCACCATATGCTCTCTTTAAAA TGATATAAACTTACTCTTCCCAAATAATATATTCTTTTACTCATTTATATT 40 TGTGCTTTTAACACAACTGATCCTATCTATATAGAGTATCATGATTATTAT TGGGGACAACCAATCTATGATAGCAAAGAATTATTTAAGCTAATGGCTCTT GAATCACAACATGCAGGATTATCATGGTTGACAATATTAAAGAAAAAAGAA TCGTATGAACAGGCATTTTACAACTTTGAACCTCAATTTATCGCACATATG 45 ACTGAACAGGATATTGATTATTTAATGAAATTCCCAAACATTATTCATAAT CGTAAAAAGTTAGAAGCAATTGTGAGCCAAGCGAAGGGATATTTAAAAATT GAAAAAGACTATGGTAGTTTTAGTAAATTTTTTATGGTCTTATGTAAATCAT CAACCCATAAATATGGGTTATAAAAAACCTAGAGATCGTAAAAAAGTTGAT CAAAGAGCTACTCAATTATCAAAAGATTTAAAAGCATATGGTTTTAAATTT 50 TTAGGTCCAGTAACCGTGTTCTCATTCTTAGAAGCTGCTGGATTGTATGAC TCACATCTTGAAGGATGTCCTTTCAAACCAAATCATGAGTGAAGCATAGAC ATAAGTTGCGCTGCGGATATTCAAACAATATGAGTTTTTCACGCATACTAA AAGTTTACAACGTTTAATTTATCTAGATTTTACTTTAAGTAATTACAATT 55 ACTCGCAAATATTTTCGAAGTTTTATTTAAAAAATGTATAACTTAAGTCATT AAAATCATTTATTTAATTTAACATTAATAAAATAACCAATTAGTGGCG CAATGACAAATAATATAAAAAATATTCTAAAAATGTGATAGCTTGAAATCA TCGCTACATCAGCTCCAGTAGCCATAGCCACTAAAACTATTTGACTCATAC CTCCTGGTGCTCCTAAAAACAATTCATTGATGGATTCATTAGTAATCA

TTCCTCATAACGACCCTTTTCAACTTCTCTTGGATCATATTTTGGTTTCAT

AATGTATTCCTATTATCATTATAAACGTTGTGACTATGAGCATTATATTTT GAAAGGCTATTGCTATTGCAATTCTTCCCTTTAAATCACTCATTAAGTTGG CAATCTGTAATCCAATACGTATCATATAAATAAGTTGCGCTGTGGCTAACA ACCAATGATCTAGTGAAAATGTTAAATGTGTTGTCATATTCCATATAATTA AAACTATTATAGGTGCTAATAATTGTTTAGTGGGGAAGTTAATTTTTGACA TTCCTATATAGATGATTCCCACCATTGAGAATAAGATGATTATTTGCCATA TATTTAAAGTCTGAGAAAGTGTGGGTACTTCCATTGTAGTATGATTCATTT CATGATGGTTATCCTGAAAAAAATACGAAATAAGTGGTACTAAAATAACAA CAAATATTACACGTGATGTCTGTGTTAAACTCACAACTAATATATTTGCTT 10 TCTTATTTTCTTCTGCCATCACTAACATTTGGCTTAGCGCACCTGGTATAA CACTTAAAATTGCAGTTTCTAAATTTACTTGTGCAATTTTCTTAAAAAAGA ATGCAATTATCAAAGCTAATAAAATTAGTAGGATAGTGACAAAAACGATAG TTAGCCAATTTTTACTTATGTCTTTAATCACTTGTTGTGTGAAGGTAGAGC CAATTTGAACTCCAAGTAGTATTAAACCAATTTGACTCAACCAAAATGGCC 15 ATCGTATTTTAATTTTAATACTTTTACACATAATAACGCCGCTAATATTG GTCCAAACATAAATGGCAAAATCACATGTAACATTTTTAATAACAGACTTA ACATAATAGCAATTAATAATATGATTAAATTATTAATAAAATTCCGCTTCA AAATACCACTCTACTTTCGTTAAAAGTAAGTCACAAAATTTCTAACTTTAT TTAAATTCAAAGAGTAGAACAAAATGCATCTTAAATTCCTAGTCCACCATC GAACCCCAACTTGCCCTGTCTGTTGAATTTCTCAGTGAAATTCTTTTTTGTT 20 AGGGCCCCAAACCCCAACTCGCCTTGTCTGTTGAATTTCTAAGTGGAATTT ACTGTATTGATGACATAACATAGCTTTAAAAGTTGATATAAGTGCATTTTT AATTCAGTTATAAACTACTTATAAGTTAAGAAAGTCTAGGACATTGACTTT TGCCCTAGACTCAATTAATTTAAATAATTATATTTTAAAATTATCACACAA TACGACTTAATGCATTATCAAATGCTTGGATAGTTTTCTCAATATCATCTT TAGTATGTGCAGTTGATAAAAATGTTCCTTCAAATTGTGAAGGTGGTAGGA AAACACCTTCCTTAGCCATTTCTCTATACATATTACTAAATAATTTTAAAT CACTTTTATTTGCTTCCTCAAAATTTGTTACAGGCCCCTCATTTAAGAAGT AACCAATCATTGAACCAGCGCGATTTACTGTGATTGGAACATTATGCTTAG CAAATACCTCTTTTAATCCTTTTTCAAGTATATCTCCTAGAGAATTAAAAT ACTCATAAGATTCAGGAGTAAGTTGACTCAATGTTTCATAACCACTAGTCA TTGCTAAAGGATTACCTGAAAGTGTGCCAGCTTGATAAATAGTCCCAACAG GAGCAATGTAATCCATAATTTCTTTTTTACCACCAAAAGCTCCAACGGGTA AACCTCCACCTATCACTTTTCCTAAGCAAGTTAAATCAGGTGTTACACCAA AGTATCCTTGCGCACAATTATAACCTACACGGAAACCAGTCATCACTTCAT CAAATATAAGTAATGCTCCATATTCATTAGTAATATCTCTTAAACCTTGTA GAAATCCATTCACTGGAGGCACTACACCCATATTTCCAGCAACCGGTTCAA CAATAACACCAGCAATATCATCGCCATATTTTTCGAACGCTAATTTAAGTG AATCTAAATCATTATATGGCACCGTGATAGTGTTTTTAGCAATACCTTCAG GGACGCCTGGTGAATCAGGTAAACCTAGTGTTGCAACACCTGATCCTGCTT TAATCAATAAAGAATCACTGTGTCCATGATAACACCCCTTCAAATTTTATAA TTTTATTACGTCCTGTATAACCCCTAGCTAAACGAAGTGTGTCTAAAGTAG CTTCAGTTCCTGAGGAAACCATTCTTACTTTTTCAATTGAAGGTACACGGT CAATCACAAGTTCAGCAAGTTTATTTTCTTGAAGTGTTGAAGCGCCGAAGC TTGTACCTTTATCTACTGCTTCATGTAATTTGGATATAACTTGTTGATTTT TATGTCCCAGAATTAATGGGCCCCAACTTAGCACATAATCAATGTATTCAT TTCCATCAATATCATATATTTTAGATCCTTCACCATGATCCATAAAAATAG CTGGTGTGTCTACTGATTTAAATGCTCTTACGGGACTGTTAACACCGCCAG GCATTAATTTCTCAGCTTGCTCCATTGCTTTAATAGATTTTTCAAAACTCA TCATATGACCTCCTCAATTATCATCTATTTATCTAAATAACGACAGATATC 50 TTTTGCAAAATAAGTAATTATTAAATCAGCACCTGCACGTTTCATAGATAT CATTTGTTCCATAACAATTTTCTCTTCATCTATCCAACCATTTAACGCTGC TGCTTTTGTCATACTATATTCTCCACTAACGTTG

55

Sequence 3401 step.1002e12.cons.ok GGTAGGTGTATTATTTATATTTACTACTTTGAATATGGCTTCAATTTCTGA TAGAAAAGTACATGCCAAAATTAAAAAATATAAGAAGATAGGTGAGATAAAG

TGGAAACAATAGGAGTATCATATATTTAAAAGAAGGTTCCCAAAAGTTAAT TGATTATTCAGCATGTAATTATCCTGTCGGTGTCGTAGAAGATCAAATATA CTATTTTAACGAAGACAATATCGATAAAGTCGTTTTTGAAGGTTATTCTGA 5 TCAAGATGAGATGAGATTTCAAGAATTATTTAAAGAAATGAAAAATAATTT **AGATGATGATATTCAACAAGGTATTGTTCAAAAGCAAGATAATTTAGGTTT** AATTTAACATAAGTCATGATTATCTGAAGTTATCTATTATCGAATATTCAG AGATGATATAATATGAGTCGCCTATCTCTCAGGCGTCAATTGACGAAGA GAGGAGGTGCATTAATTGCTAATCATTTTCGTTCACATCACGACCACAGTC CTCAGTTGTTGTATTATTGCATTATTTACTCATTGGATATGTAATTGCAAT AATAAATAGGCAACCATAGACACACATAAAAATCCCCACACTATTGCAGTA GTGTGGGGATTGGTGCATTAATTGCTAATCATTTTCATTATCTAGATTATA ATAAAGATATAAAACAAACATACTTTCCTCATTTTGATACCATAGCCACCA ACTTTTTACTTGTGTTCTATTTCTAATATTTAATTCTTTCATAATTTCTTT TGTTGAAAATTCTGCTGCTTTCATTTCAACGGCTTTATACTTTGTTTCTAC TGAATAAGAAGCTCTTTATTTTGGAGCAACAGGTGTTTTAAGCTATCGAAA ATTTTTCCCATTTATTATAATTTGTTTCAAAAAGGATACTTTGAAAATTC ACTAACAATTATTGGCAGTGGTTTAAATGAGTTAACTACTGATGAATTTAG 20 AGAAAAAGTCAAAAATGCTATTCAAAATAATATTGAAAACTCAAAGGAAAT TGGTGCGTTTTTAAAACGTTTATTTTATAAACAACAGGACGCTAATAGTAA AGATAGCTACCAAAAATTTTTGGAAATGAGTTTAGAACTAGATGATAAGTT TGACCTAAAAGAAAATCGATTGTTCTATCTTGCAATGTCCCCTAAATTTTT GGTGATGCGAATAATTATAGAAAAACCATTTGGTGATGATTTAAAATCTGC AAAAAATTAAATAATCAAATAAGAAAGTCTTTTAAGAAGAAAAATATTTG GAATTGATCACTATTTAGGTAAAGAAATGATTCAAAATATTGAACGTCTAC GATTTTGAAACACTATATTTGAACCACTTTGGAATAATAAGTATATTTCCA ATATACAAGCAACTTCTTCAGAAACGATTAGTATAGAATATCGTGGTGGTT ACTACGAATCAAGCGGCGCCCTAAAATTCATGGTTCAAAATCATTTATTAC AAATGGTTTAATTACTTGCAATAGAACCTCCAATTAGTAGAAAAAGTAGTG ATATAAGAAAAGAAAACATTTCAAGTCTTAAAATCCTTGAAATGTTTTAAT CCAAATGAAATTAAAGAAAGTTTCGTTCGTGGTCAATATGATGGGGGAATG ATGAATAATGAGTTCGTTCCTGCATATAGAAATGAACCTAATGTAAATTCA CAATCTAATACTGAAACTTTTGTAGCAGGTAAAATAGAAATTGAAAACTCT AAATGGGCTAGTGTTACATTTTATATTCGTACAGAAAAAAGAATGAAAAAA ATCTATCCAAATCGTTATAGAGTTTAAAAAAATCCAATGCAATTTTATTATA GTAATTGTGAACAGAATGCATCAAACTTATTAGTCATCAACGTACAACCTA ATGAAGGATTTTCTTTATGTGTGAATGGTAAGAAAAGTAATCAAAATAATG 40 AAATGCAAAAAGTGAAGCTTTCTTATACTATGCCGATTAAAGATAAAATGA ACACAGTTGATGCATATGAAAATCTTATTTACGATACATTAATTGGAGAAC AAACAAAATTTACGCATTGGGAAGAATTAAAAATTCTTGGAAATTTATTGA TGATATTGAAAATGTATGGAAACAAGAATAGCCACAGTTTCCTAATTATGC CTTTGGATGCTATGGGCCTAAAGAAAGTGAAAAATTACTTAGTGAAGACGG 45 ATTGAATTGGTGGAATAATTTGTAATATAAAAGACCTAAAGTTGTCGTGTT TTGAATGAGTAGTTAATCCTTAATTAATATGCAATAATCAATGTTATAAAG TTTATAAAGGGAGGACAATTAATGGATTTTATTAATATTACAGGTGCTTCA CAAAATAACTTGAAAAACATAGATGTAAATATCCCAAAACACTTAGTAACG GTATTTACAGGTCGTTCTGGTTCAGGGAAATCATCTTTAGTGTTTAATACT GTTGCTGCGGAGTCTGAACAGCTACTAAATGAAAGTTATTCTAGTTATATT 50 CAATTTCATTTAAATCAACAACCCAGACCGAAAGTAAAGAAAATTAAAAAT CTTCCTGTAGCAATGACGATTAATCAGAAAAGATTCAATGGGAATTCTCGC TCCACGGTAGGAACAGTTTCAGATATATATGCTTCTGTTAGATTACTGTGG TCTAGAATAGGCGAACCGTTTGTTGGTTATTCAGATGCATATTCCTTCAAT AGTCCTAAGGGCATGTGTAAAACTTGTGAGGGATTAGGATATATTGAAGAC ATTAACTTAGATGAATTGCTAGATTGGGATAAGTCTTTAAATGAAGGTGCA ATAGACTTTCCTTCTTTTGGACCAGACAAAGAGCGTGGTAAAGCCTATCGA GATAGT

step.1002f01.cons.ok GTATTCAACAAGTTTTTTTAATTTATCTTTTCGTGTTAAATGTCTAAATCC TTTATCTAAACTTTTCATTTATGTACTCCTTTAAAATATCTTTATATTACT GTAGTAATGTAACCTTTTAACTTTCGCTTTAAATATCAACTGCTAACATTG TCTTGCACTCAAATAATTCAAAACTTTTCACAATTTTTGTAAAGCGCTTAC ATATTTATTATATATTCCTGGTCATGTCTGTTATATTTCATTGTATAAAAC GAATTTTCTTTGGTATGATACTAGTGCTACTTCAAAAAATGAAAGGATGTC ACACCTTATGAATATAGGTATAGATAAAATAAGTTTCTATGTACCCAAATA TTATGTAGACATGGCTAAACTTGCAGAAGCGCGCCAAGTCGATCCTAATAA ATTTTTAATTGGAATTGGTCAAACTGAAATGACTGTGAGCCCAGTGAATCA AGATATCGTATCTATGGGAGCCAATGCTGCTAAAGATATTATAACAGAAGA AGATAAAAAGAATATTGGTATGGTTATAGTAGCAACTGAGTCTGCGATTGA TAATGCCAAAGCAGCAGCCGTTCAAATTCACCATCTTTTAGGTATTCAACC 15 CTTTGCAAGATGCTTTGAAATGAAAGAGGCTTGTTATGCAGCAACACCTGC AATTCAACTTGCCAAAGATTATCTTGCTCAACGCCCTAACGAAAAGGTTCT TGTCATTGCTAGTGACACAGCTCGTTATGGTATTCATTCTGGTGGTGAGCC TACTCAAGGTGCCGGTGCAGTTGCAATGATGATTTCACATAACCCAAGTAT 20 TTTAAAACTTAATGATGATGCCGTAGCATATACTGAAGACGTTTATGATTT CTGGCGTCCAACGGGTCATCAATATCCCTTAGTTGCTGGTGCATTGTCGAA CCATAATAAAACACTCGCTGATTTCGCTTCACTATGTTTCCATGTACCATT CACCAAAATGGGACAAAAAGCTTTAGATTCTATTAATCATGCCGATGA AACTACACAAGACCGTCTTAACTCTAGTTACCAAGATGCAGTTGATTATAA 25 TCGTTATGTCGGTAATATTTACACAGGGTCCTTATATTTAAGTCTCATCTC TTTATTAGAAACACGTGATTTAAAAGGCGGACAAACGATTGGTCTCTTTAG TTATGGTTCTGGTTCTGTAGGCGAGTTCTTTAGTGGAACATTAGTAGATGG ATTCAAGGAGCAATTAGATGTTGAGCGCCACAAATTTTTATTAAATAATAG AATAGAGGTTTCTGTTGATGAATATGAACATTTCTTCAAACGCTTTGACCA ATTAGAATTGAATCATGAACTTGAAAAATCAAATGCAGATCGTGACATTTT CTATTTAAAATCTATTGATAACAATATTCGTGAATATCATATAGCAGAATA ATTTACTATTCATACTTGCCCCCTAAAAACAACGTCATATAGCTGTTTTTA GGGGGTTTTTAATCCCAAGATAGTGCATTTCATCTATTATAGACCTCTACT ATTTATATACTGTTTACCTACTATTCATAGATAAAAACGAATCCTATCCAT AGATCAACATTGACAAATAACTAAAGCAATTCTATACAATAACGTATCTCA AGGTTTCGTTGTTTTTTTAGGTCTGTATAAATGTGTCATATCTATTTCTTC CAATTTTAATAATTTTATTTTGTTGTCTAAAGTACCTCCGTATCCTGTTAA ATTTCCATCTTTACCAACCACTCGATGACATGGTATAAGTATAGAAATAGG 40 ATTACTCCCAACAGCACCTCCTACAGCCTGAGCAGACATTGCTGGCTTATT CATTGCTCGTCCTACTGTTTTAGCAATCTCTCCATATGTTTTAAGTTCTCT ATAACGAATTGTCTGAAGTTCATTCCATACCTTCTGTTGAAAATCAGTGCC TTTTGGTGCTAACGGTACTTTTATCTCAGGATAATTCCCTTTAAAATACTC TCTTAACCACGCTTTAGTATCTTTAAAAACATCTAACGTATCCTTTGTTTT AATTCCTTTCAAATGTTGATTAGGGTATAAGACATGTGACAACGAGATGCC ATACATATTTCTCCAACTCCTTAAATGTGTATATCATTCTAGTCATATCCT TATAAACTAACGCATTCTATTCTGAACATAATTTTATAATATAGATAATTG CTATATTTATGAAATTGGATAAACATTCGAATAGAATGTGATACACCAAAG 50 AATTGATACGTTTTATTATCTTTAGCAACCTCTTTTAATTTCTTAGTATCT TCATGCTTAACATAATTATTTAATTGCTTTTCACTTGAATGACACGCCCAT GAATCAAAATAGAAAAAGTTTACAAAAATATAACAAATTGCTAAAAAAATT ATTATACCAATAACATAGAATACTTTTTTCATTAAAGTTCACCTAGTTTTC AAAAAATTTTTATAATTTATGATAACTTAAAAGTGTATATTTTTTCTACA 55 TAATATATTTAATTTCAAGGAGATGTAAAAAAGTTGAAAAATTTCGCAAA ACTAATTTTGGTGGGCATTTTAGTATCGGGGTCAGGGATAGCGAGTGTACA AACAAATATAACTCACGCAAAAGAAAGTCACGATTCAACTCCTCAAAATAT TAAATTAGTGGGAACGTATGATACTTCTCAAGTTGATTCCAAAACGATGAA

Sequence 3402

ACAATTTAAAGAAATAGAAAAAGAAGATAATTAATTTCCACAT

Sequence 3403 5 step.1002f02.cons.ok CAGAAGGATCAATCACACCATAGCGATGTGTATCAGATTCTGGCACTTCTT GAACACCTATTACTGAATGGCCTGTTTCTTCATAAACATCCATTAATTGTT TAATAGCTGGTGTATCAGACTCTACAATGTCATCTCCTAATAACACTGCAA ATGGTTCGTTACCTATAAACTGTTTTGCAGTATGAATTGCATGTCCTAGCC CTTTTTGTTCTTTTTGTCGCACGTAAAAAATATTAGCTAAATCTGTTGAAT 10 ATTGTACTTTTCAAGTAAATCTGCTTTTCCTTTACTTTCAAGTACTATCT CTAGTTCTTTTGATTGTCAAAGTGATCCTCAATTGCACGTTTATGCTTGC CAGTCACTATAATAATATCTTCTATTCCTGCATTAAAAGCTTCTTCTACAA TATATTGAATTGTTGGTTTATCTAATATTGGTAACATTTCTTTTGGCATCG CCTTAGTTGCTGGTAAAAAACGAGTACCTAAACCAGCAGCTGGTATGATTG CTTTTTTTATGTTTTCAACGTATAAACTCCTTTAACAACCTAAGTTTTTG ACTACTTAATAAAGTGTATCACTATTTAAAATGCTTTCATAGTAATGTTTT TTCACCACAATCTTTTTCAATATTAACATTAACTTAATCAAGAATTGAGTT AGAAATTAAAAATACTCGAATAGAAATTAACTTTGTTTTAAATATATCGGT GACAGACATCTACTGAAAAACACTCGCTATATTTTTAAAATGAGAGCTTCA 20 AGATACTGAAATAATTGTCTCTAATAACGACCATGTTAAAAATGTTTCTTT AACTGTCAGCCCGAAATATTCTTTAAACATCCAGAATCCAGCATCATTGAC GTGAGAGAGAATTACGCTACCTGCACCTATTGCAAGAACGACCAAAGCTAC ATTAACATCTGAATGTTCTAAAAGTGGTAACACAATGCCTGTTGTTGATAC GGCAGCAACTGTAGCTGATCCTAATGAAATCCTTAAGACTGCAGCTACAAT CCATGCTAATAAAATGGGCGACATGCTTGTTCCTTCAAACATCTTAGCGAT TGTATCACCTACGCCACCATCGATGAGCACTTGTTTAAATGTACCACCACC ACCGATGATGAGTAACATCATGCCGATTGGATAAATAGCATGCGTAACTGA TTTCATAATGTCTTCCATTTTCCGTTGTTGCTTCATTCCCATTGTAAAGAT TGCAAATATCACTGCGATAAGCATTGCAGTACCAGCAGTTCCTATGAAGTA AACAATTTGTTCGAATACATTTGTTGCTTCTTCGTGTCCTGTACTATGGAT GGTGACGGTGCAGCTGCAATGCGTTATACCGAAGCACGTATGACTAAAATA ACATTAGAACTTTTACGTGATATTAACAAAGACACAATTGATTTTATTGAC AACTATGATGGTAATGAAAGAGAGCCGTCAGTCTTACCTGCACGTTTCCCT AACTTACTAGTAAATGGTGCGGCAGGAATTGCCGTAGGTATGGCTACAAAT ATTCCTCCCCACAATTTAACTGAAGTTATTGATGGTGTGCTCAGTTTAAGT AAGAATCCAGACATCACAATTAATGAGCTGATGGAAGACATACAAGGTCCT GATTTTCCTACAGCTGGTTTAGTACTAGGGAAAAGTGGTATTCGTCGAGCT TATGAAACAGGTCGTGGGTCAATTCAAATGCGTTCTCGTGCTGAAATAGAA 40 GAACGTGGTGGCCGTCAACGTATTGTCGTAACGGAAATACCTTTCCAA AAAATCGACGGTATTACAGATTTACGTGATGAAACAAGTTTGCGTACAGGT GTAAGAGTAGTTATTGATGTACGTAAAGATGCAAATGCGAGTGTTATTTTA AATAATTTATATAAACAAACGCCATTACAAACATCATTTGGTGTGAATATG ATTGCTTTAGTGAATGGTAGACCTAAACTAATCAATTTAAAAGAAGCACTT ATCCATTACTTAGAACACCAAAAAACAGTGGTTAGACGACGTACTGAATAT AATCTTAAAAAAGCAAGAGACCGTGCCCATATTCTAGAAGGTTTACGAATA GCACTAGATCATATTGATGAAATTATCACAACAATTCGTGAATCGGACACT 50 CAAGCTCAAGCAATTTTAGATATGCGTTTAAGACGTTTAACTGGATTAGAA AGAGATAAAATAGAATCTGAGTATAATGAACTTCTAGAATATATTAAAGAG TTAGAAGAGATTTTAGCTGATGAAGAAGTACTATTACAATTAGTTCGTGAT GAATTGACTGAAATTAAAGAACGTTTCGGCGATGAACGTCGCACTGAAATT CAATTAGGTGGTCTAGAAGATCTTGAAGATGAAGACTTAATCCCTGAAGAA CAAATTGTTATTACATTAAGTCATAATAACTATATTAAACGTTTACCAGTA TCTACATATCGTTCTCAAAATCGTGGTGGTCGTGGCATACAAGGTATGAAC ACGTTGGATGAGGACTTCGTTAGTCAATTGGTAACAATGAGTACACATGAT TATGTTCTGTTCTTTACGAATAAAGGTCGTGTATATAAACTCAAAGGTTAT

GAAGTTCCTGAGTTGTCACGTCAATCCAAAGGCATACCTATTATTAATGCG ATTGAACTCGAAAATGACGAAACAATAAGTACGATGATTGCAGTTAAAGAC CTTGAAAGTGAAGAAGATTATCTCGTATTTGCGACAAAACAAGGTATCGTT AAACGTTCATCATTAAGTAACTTCTCCCGTATTAACAAAAACGGTAAAATT GCAATTAACTTTAAAGAAGATGATGAATTAATTGCAG

Sequence 3404 step.1002f03.cons.ok GGACAGTATTCCTATTATCACACCCATAATAATGGGACGAATACTGGTTTG 10 AACTTGTAATAATGAGATATTCATCATTATTAACGAAACACATATCACTGT AAACATATAAACACTCAAAGTTAGAGTTAAATGATTACTTTTAAAGAATAC AACATTCATAAGTGGAAGCAGATTAATTAATCCTATACTAGCTGCTGTACT TATTACTACCGTGATTTTAATTGATGCATTTGCATAACGATTCATATGAAT TTGATTATGTTCACGAATTGCTTGAGTAAGTAATGGGATAAGAACGAAACT AAAAGTCGTAGTTACAATCAAACCCATTTGTATAAATGAAGCACCACGATC ATAAATGCCTTTTTGAATAATTGCTTCTTTAAAAGCAATACCGCTATGTTG TAATAAACGTATTATTGTAAAACTATCCACAACTTGCCATAAAATAACGAT AAGTTGACTCAATGCAAATATGGATATGGAAATAAACAACTGCTTCCATTG AATGGAAGTATTATTAAAGCGATAGCATAACTTAAGTTTAAGTGGTTTTTT 20 AAGTAATAAATATAACATTGAACCTAAAAAACCAATCGAAGATGCCAATAT AGCTAATGCTCCTGCTTGATAAATAGACCAGTGTTTCATTGAAAACATAAT AATTGCAACAATGATTAAACTAACTCTAATTACCTGTTCTATAACCTGGGA AATTGCTGGTATGGTCATTACTTGTTTTGATTGATAAAATCCTCTTAACAC TCCTAAGACACCTATTAAAATAAAACTAAAACTGGCCATCTTTAACATGGG TGCTAAATTAGAATCGCCCATCCATCGGGTAATCATATTCGCAAACATAAA AAGCAAAATAAAGACGATAAAACCTATGCATTGTAATCGAAACATAACCCT TGTATAGACTTCATCGGATCGATTAACACCTATCACTTGAGTCACAGCACT TGGAATAGCATTCATAGATAAAATAACCCCTAGTGCTACGACAGGATATAT TTGTTGATAAGCATATAAACCGTCATCACCTAAAACATTTTGATACGGAAT 30 GCGATAAATGGCACTTAGTATCTTCACAATAATTAATGCTAAGGTAAGTAT AACGACGCCGTTAAACGCCGTCTCACTCTTAGTCTTCATCTTTAATCGCCA TACTTCTTCAATACATCTAACTAAGAATTTCAAACTATCTAACCATTGTT TTGATTTTGTTAGCGTTACATTCATTGCATTATTTTGCACGCCAACTTTCA TTGCTCTACCAAGAGGTTGCGTCTGTTTAAACAATTCTTCTCCATTAATAT CTTCAGTCGCTTTAGGTGATAAAATGATTTGTATAGATTTGCCTTTGTCTT TTATCAATTCGACACCCGCATGTAGAGCGTGGACTTTGATTTCAACAATAT CTAATAATCGTTCGACTTCAATTGGATAATCATTAAAACGATCTATTAATT CATCTTTGACATCGAAAAGTTGTTCTTCAGTTTCTACTTTTCGAAGTTTTT TATAAATCTCAATTTTAGCCTGTTCACTTTGTATATATTCAGCTGGTAAAT 40 AAGCATCTAAGTGCAATTCTACTTCAATATCTGGTGCATCCGGCGATTCTT CTTTAATGCCACGTTTTTCGTTTACTGCTTCTTCTAACATTTGAGAGTATA AATCGAAACCAACCGAATCAATAAAGCCATGTTGTTGCTTACCGAGTAAAT TGCCTGCACCACGAATATTTAAATCTCGCATAGCGATTTTAAAACCTGAAC 45 CTAGTTCGGTAAACTCCTTAATAGCTTGCAATCGCTCTTCAGCAGTCTCAT TTAACACTTTGTTAGCTGGATGTAAGAAATAAGCGTAACCAATTCTACTTG AACGTCCTACACGTCCTCTTAATTGGTATAGCTGGCTTAAACCAAAACGAT CAGCCTCTTCTATGATTAAAGTATTAGCATTTGGTACATCTACACCTGTTT CAATAATTGTAGTCGTTACTAAAATATCGTACTCGTGATTAATAAAGCTTA 50 ACATTGTTTCCTCTAAATCACGTTCAGTCATTTGGCCATGTGCTACAGCAA TGTTAGCGTCAGGCATTAACCTTTGAAGTTGTTCTCTTTTTTCATAAATGG ACTGCACTTTGTTATACAAATAAAATACTTGTCCATCGCGAGATAATTCAC GCTCTAATGCCTCTTTAATAAAGTTCGTATTCTGTTCTAAGACATAAGTTT GTACAGGAAAACGATTTTCAGGTGGTGTTTCAATCACTGATAAGTCACGTA CACCTAACATACTCATATGCAATGTTCTTGGTATTGGTGTTGCAGTAAGCG TCAGTACATCAACGTTTTTTTTCAAAGTTTTTAATGCGTTCTTTATGTCGCA CTCCAAAACGTTGTTCTTCATCAACAATAAGCAATCCCAAATCTTTATATT GAATATCTTTACCTAATAATTTATGTGTACCTACGACAATGTCAACATATC

CTGATTTGAGCCCTTCTTTAGTTTCCCTTATTTCTTTAGCTGCGGAATC

GACTTACCAATTGAATTTCGACCGGAAAATCTTGCATACGTTCAAGTAGTG TTTCGTAGTGTTGTTGTGCAAGAATCGTTGTTGGTACTAAAAACGCAACTT GCTTACCATCCATGACAGCTTTAAACGCTGCACGGACAGCCACTTCAGTTT TACCATATCCCACATCACCACAAAGAAGACGGTCCATAGGTCTTGCTCTTT CCATGTCACCTTTAATTTCATCGAATGACTTACTTTGATCGGGTGTTAATT 5 CATATGGAAAATCATGCTCAAATGCTGATTGCTCTGCAGTATCTTGGCCGT CAGCTATATCTTCAACACTTTGTTGAACTTTCGCCTTTGTTTTTTTCCATT CTGTCCCGCCTAATTTATTTAATCTAGGCGACTTATCTTCAGAAGCCACAT ACTTTTGAACTTGATCCATTTGATCAACTGGAACGAATAATTGATCAGTTC 10 CTTCCACCTCGAACCTATTAACCTCGTCATCTTCGAGGGATCTTATAACCG AAGTTGGGAAATCTCATCTTGAGGGGGGCTTCATGCTTAGATGCTTTCAGC ACTTATCCCGTCCATACATAGCTACCCAGCTATGCCGTTGGCACGACAACT GGTACACCAGAGGTATGTCCATCCCGGTCCTCTCGTACTAAGGACAGCTCC TCTCAAATTTCCTACGCCCACGACGGATAGGGACCGAACTGTCTCACGACG 15 TTCTGAACCCAGCTCGCGTACCGCTTTAATGGGCGAACAGCCCAACCCTTG GGACCGACTACAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCAAACC TCCCCGTCGATGTGAACTCTTGGGGGAGATAAGCCTGTTATCCCCGGGGTA GCTTTTATCCGTTGAGCGATGGCCCTTCCATGCGGAACCACCGGATCACTA AGTCCGTCTTTCGACCCTGCTCGACTTGTAGGTCTCGCAGTCAAGCTCCCT 20 TATGCCTTTACACTCTATGAATGATTTCCAACCATTCTGAGGGAACCTTTG AGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCAGTCAAACTGCCCGCC TGACACTGTCTCCCACCACGATAAGTGGTGCGGGTTAG

25

Sequence 3405 step.1002f05.cons.ok GTGGTATTAAACCAGATACTATCAAAGATATTGTTGCTGAAGATCCAGATT TAGTTATTGTTGGTGGCGGTATTGCGAATGCTGACGATCCTGTAGAAGCAG CAAAACAATGTAGAGCAGCTATTGAAGGTAAATAAGATGAGTGAATTTAAT 30 AATTATCGTCTTATTCTTGAAGAGTTAGATTCTACTTTATCTCAAGTAGAT **AATACAGAGTATGAACGTTTTGCTAATGATGTTATAGGTGCAGATCGCATA** TTTACAGCTGGTAAAGGTCGTTCAGGTTTTGTTGCTAATAGTTTTGCAATG CGCTTAAATCAATTAGGTAAAAATGCCTACGTTGTAGGTGAGTCAACAACA CCTTCAATTAAAGAACATGATTTGTTTATTATTATTATTCAGGTTCAGGTTCT ACAGAACATTTAAGATTATTAGCTGAAAAAGCACAATCTGAGGGTGCAAAA ATTGTCTTATTAACTACAAATGCGGAATCGCCAATCGGTAATCTTGCAGAG ACGGTTGTTGAATTGCCTGCAGGTACTAAACATGATGTTGAGGGTTCGAAA CAACCACTTGGTAGTTTATTTGAACAGGCTTCACTTATATTCTTAGATAGT 40 GTTGTATTACCTTTAATGGATGCATTTCACATTAGTGAAAAAACAATGCAA GAGAATCATGCTAATTTAGAATAACTAGAATGAGAGATGAGCACTTTTGTC TATGATTAGACAAAGGTGCTTTTTTAATAAATGGTGCAACATTACTCCTTT AAGTGTATATTATAATATAACTTTAACTATGAGGTGAACATCATGAATTT TGATAGTTATATTTTTGATTTTGATGGAACGCTAATTGATACAACAACATG TCACGTCAAAGCTACGCAAAGCGCTTTTAAAAGATTAAATTTAGATGAACC 45 TACAGAACAAGCTATTTTACATACATATCATTTAAAATTTATATAACAATTT TAAAGCGCTAGCTTCACATGAACTGTCTTTTTATCAAATAGAAAAATTAAT ATATACCGGAATAAGTGAAGCATTAAAATTTTTACATAACCAAAAGAAAAA AATATTTGTAGTGTCTAATAAAGAAATACTAACAACTCAAAAGTATTTAGA 50 TTATCTCGGATTAAGCCGTTTTATAACTGATTCATTAGGTGTCTGTATTAA AAATGAAGACAAACTTCTTTGTGAAACGATTCAAAATTTGATACAGAAACA TCATTTAATGATAGGTAAAACCGTGTATATAGGGGACACAGCACAGAATAT CAAGAGTGCGAATCAAGCTCATGTGCAAACATGCGCTGTCACATGGGGAGC ACAATCTGCACACGAATTGTTGCATGAAAATCCTCATTATATTGTTAATGA 55 TCCAGAAGAATTTTTAACAATTTTATAATATTTTCAATGGTAGGATGATAA TTCATGAGGAATTTTATCCTACTCTTTTTTTAAAACTATGAAGCAAGTATA ATGTAAACATAATTATATAAAGTGTTTACAAATGGTGATGAAGATGAAAAA AATAATGGAATATTTACAGCATTATATTAATCAATACCCGCATCGATTAGC

TTTAGTGTTTGAAGATCGACATCTAACGTATGGAGAATTAAGTAAAGAAAT TTATCAGGCTAGTATGCGCTATAAAGAAGTAAAATTAAACAAAAAAGTAGG TCTAATGGATGAACATCCTGTAAATAATATTATTAACTATTTTGCGGTACA TCAAAGAGGTGGAATTCCTTGCATTTTTAATCATCAATGGAGTAATGAAAG TCATCTTACCTCAAATCATGATAACTCAATTTATAATGATGAGGTTATCCC ACGTAATGTTATACATATAGGTTTCACGTCAGGAACTACAGGTTTACCCAA AGCGTTTTATAGAAATGAACATTCTTGGATAGTTTCTTTTAAGGAAAATGA GAAATTACTCCAGCATTGTGAAGAAACCATTGTAGCACCGGGTCCTTTATC ACATTCACTTTCATTGTACGCATGTATTTATGCATTAAGTACTGGAAAAAC 10 ATTTATAGGTCAAAAAATTTTAATCCACTATCTCTTATGCGTCTTATTAA TCAATTGAACAAAACGACAGCAATATTTGTAGTGCCAACGATGGTACAACA ACTTATTTCAACTCAACGACATTGTTCATCGATTAAAAGTATTTTGAGTAG TGGTGCTAAACTTACATTGCAACAGTTTCAACAAATCAGAAATTTATATCC ACAAGCAAATTTAATAGAATTTTTTGGGACATCTGAAGCAAGTTTTATAAG CTACAATTTTAACCAATCATCTCCTGCTAATTCTGTTGGTAAACTTTTCCC TCATGTCGAGACACGATTATTAAATCAAGATGATGATGCAGTAGGATTATT AGCCGTTAGAAGTGAAATGGTGTTTTAGTGGTTATGTTGGACAAAGCAATCA AGAGGGGCATGGATTAAAACAGGCGACTTCGCTTATATTAAAAAATCAACA TTTGTTTTAGTAGGTAGAGAGAGTGATCGTATTATAGTTGGGGGGATTAA 20 TGTATATCCAACAGCTATTGAAAGCTTAATTATGGATATTGAAGGCATTGA TGAGGCCCTTGTCATTGGTATACCACATGCTAAATTTGGAGAAATAGCGAT ATTGCTTTATTCAGGTAAAGTACAATTGAATTACCGACAAATTAAATCTTT TTTAATGAAACATCTTTCAAGACAAGAAGTTCCATCAAAATTAAAGAAAAT TGACCATATGATTTATACAGAATCAGGAAAGATTGCTAGAAAAGAGATGAA AAATAAATTTATTAATGGAGAGTTATAAAAATGAAACAACCTGTTATTATT GCAGCAAAACGTATAGCTTTCGGTAAGTATGGTGGCCGATTGAGGCATTTA GAACCTGAATCATTACTAGAACCTTTATTTAATCATTTACAGATCAGTAT CCAAAAGTAATGTCTCTTTTGGATGACGTCATTTTAGGTAATACGGTAGGT AATGGGGGGAATTTAGCTAGAAAATCATTACTTGAAGCGGGATTAGATTTT AAAATACCTGGTATAACAATTGATCGTCAATGTGGCTCAGGTCTTGAAGCC GTTATA

35 Sequence 3406 step.1002f06.cons.ok TGAAGTTTAAGTCTTTTAATAAATCTACAACAAAAACTTTACGTTCTCCTT TGAAAAATTTACCGATTGCTGGGATAAATTTTTCATGATCTTTTAGCATAT ATATCAGGAAGAAAGGCACCATTATTAATAAAAATACAGTTGAGATGAAAG ACGTAATATATGACACTGAATTAGATAAAATAGACGTTGCGCCATCTCCCA 40 TGGATTTAACCGCTTTATTAATACGATGTGTGACATCATCTGGTAATTTAT CCATTTGTCTTAACGAGAAATTAATTAATTGTTCGGCTTCTTTTTGTAATG TAAATGATACCACAATAGCGATGATAGCTATTAATCCTATGAATATTGTTG TTATACTAGCCCAACGTGGAAAGCCCCACTTTTCTAATATGTTTTGAAAAG AACCAATGATAGTAGCTATTGGAGCAAATACTTCATGCACTTCCATAAATA GTTTGATGAGTATGAACAGCATAATAAAAAATATTCCTGTTCTAAACCAAA CCTTATTGAACATAGATTGTGATCCTCCTATTTTATTCTTTTTCATACTCA ATAAGTATATCAAAACTCAGTCATTAAAAAGAGTAAATACTTTTACAAT 50 ATAACTGCATGCACTTTATTTTAATAAAATGAAAAAACTAGTATGAAATT AATTTGTATACGAGCTTGCTATAAATTTAAAAGTATTATAAGTATTGATAC **AATAGTATTAACATTACAAGGGAGCATCGGTTTATGTCGGAGTTTAAAGTA** GGTAAGATTAATAAAAAAATAATACATAGTGATATTTTAAATAGAGATGTA 55 ACATTATCGGTTTATTTACCTGAGGATTATACAAACTTATTTAAATATCAG TTGATTTTTTGCTTTGATGGTTTAGATTTTTTTAGATTTGGTAGAATACAA CGCATATATGAACAGTTACGTGAAGAACAATCAATACAACGTGCAATTATA GTAGGATTCCATTACGAAGATGTTGAAAAACGTAGGGAAGAATTTCATCCT TCAGGAAGTCGTTCTAATTTAACCATTAAAGCAATGGGAAAAGAAATTCTT

CCTTATATCGATGCGACATTTCCAACTTATAAAGTAGGTAATACAAGGTTA CTTATTGGAGATAGTTTAGCAGGAAGTATCGCTTTAATGACTGCAATGACT TACCCAACTATTTTTAGTCGAGTTGCGTTATTGAGCCCAATGTATAATGAA **AATATTAAGAAAAAATTGATACATGTATGAATAAAGGTCAATTGACGATA** AAAAGAGCTAACTTTTTAACACCTAACCGTGAATTAAATCAACTGATTAAA GAAGATAATATTGAATATTCTATAAAGAATTTAACGGTGGACATCATTGG AAATCATGGAAACCATTGCTAGGAGATATTCTCTTACAATTTTTAGGTGAT TAGCGAATGGTTGTTGAATGCGAAACACTATTAATTTCAGAAATGTAATTG 10 TTTTCATGATAAAAGTAACGGTTTTCAAAAAGTTTTGATATAATAGGAATA AGTTAAACAAAGGAGGAATTTAAATGATTTTAGGATTAGCATTGGTTCCGT CAAAGTCATTTCAAGATGAGGTGAATGCTTATCGCAAGCGATATGACAATC ATTATGCTCAAATAATGCCTCATATCACGATTAAACCTCAATTTGAAATCG ATGATCATGATTTAATTTAATTAAAAATGAAGTGAAAAATCGAATTTCTA 15 GTATTAAACCAGTAGAAGTACATGCTACAAAGGCATCTAATTTCGCTCCAA TCAGTAATGTTATATACTTCAAAGTTGCTAAAACAGAGTCATTAGATCAAT TATTTAATCAATTTAATACAGAAGATTTTTACGGTACAGCTGAACATCCTT TTGTACCACATTTTACAATTGCCCAAGGTCTAACAAGTCAAGAATTTGAAG ATATATATGGTCAAGTAAAATTAGCAGGGGTAGACCATAGAGAAATAATTG AAGAACTATCGTTACTTCAATATAGTGAAGAAGAGGGACAAATGGACTATTA TTGAAACTTTTACATTAGGATAAAAAGTTCAAAATTGTAAAGTGAAATTGA ATTTACAGAATCATTATTGTTAAATACGTGAAGAGCGCTTAATCAACTAAA AACGCCAAATCCTATTGTGTTTCAGTGGGATTTGGCGTTTTTATATGAAAC ATAATTATATTGTATAGTTAATCATTCAAAAAGATTAATGTACGTTTTATA 25 TTGAATATTCATATTTCAAATGCATATGAATGACGTTTCATTAATATATAC AACTAATCTTTATATAAACGATTTATAGATTTTAAGGTTTAACCCTTCTGT TTGTTTTAATAAAGTAATATCCGTAAAATACTGCAAGTGCAAGAAAAATCA TCGCTGAAAAGTAAAAGGTATTATTTAAATTATTAGTAAATTGAGTAATTA GACCTCCGACTAGTGGGCCTATCATTGAACCGAAGCCTTGAACACTGTTGA 30 ACACGCCCCATGTTTCTTCCTGTTCGTTAGGATTAATATGCCCAGCCATAA AGGTATTCCAAGCCGGTAAGAGGATACCGTACATTAGCCCAATAAAAAGTC CTATGGCCCAAACTATATATATTTGTAATTGTAGATAGCCCGAATATAA TGCTATTATTGTCGATGATTTTTGATAAAAATAACATAGAGAAAGCACAGC CTATGCCACCAATAATGATTGCTACTGTATATTCAACGGTTGATACTTTCA CAACTTGCGTTGCATATTTTGGAAGAATAGGTACAAGTGCTGCTATAGCTG CTCCTTGTAACAAGATACCCGGAAATAGAATAAGATGACG

40

Sequence 3407 step.1002f08.cons.ok TAACGTGTGTCTCGCTATCAGTAATTACTGCAAAAGGTGTCACTTCAGAAC CAGTTCCTGATGTCGTTGGTATACATATAAATTTTGCGTTTTTAGGTTTGG TAATTTTATAAGTACGTTTACGAATATCTAAGAACTTTTGTTTTGCCCCAA 45 AAAATGAAGTTTCTGGATGCTCAAAGAACATCCATATTGCTTTGGCTGCAT CCATTGCCGAACCGCCACCGAGTGCAATAATAGTATTAGGTTGGAAATTTA TAAACATTTCTAACCCCTTATAGACTGTATGAGTTGATGGATTAGGTTCAA CTTCGTTAAACACTTTGATTTGTGGTTGGTTTTCTCGGCGTCTCAGCACTT GTTCAACTATATCAGTATAACCAATATTAACCATTCCTGGATCACAAACTA TCATTACACGTTCAACATTATCCATCTCTGTCAAATACATAACTGAATTTT CTTCAAAATAAACTTTAGGTGGGAGTTTAAACCATTGCATATTATTACGAC GTTTTGCTATTGTTTTAATATTTAATAAGTCTACTGCGCTTACATTATGAG GTTCATTATACATATTTCCAATTCCTCCGACAGCAGAAGGTGTATTTACCA 55 ATACACGGCAAGCTTTCATTTTTAGACCGAATTTTTTGTTGTAATTGACTAT CCTCGGTGTGAATTACAGCAGTGTGACCTAAACCACCAAATTTTAATATGT CTTCACAAATTTGTAGTGCATGTCCTGTTGATTTTGCAGTTACCATTGCGA GTACAGGTGATAATTTTTCACGTGATAAAGGATAATCTTTTCCAATTCCAT

CAATTTCTGCGACTAATAATTTTGTTTTTTTCTGGAACACTAATTCCTGACA ATTTCGCTATATCTACAGCAGATTTACCAACTATATCAGGTTTAACTGCAG TTTTATCTTCATTCATGATGGCATCTTCTAATTGTTGTAGTTCATTTTTAT TAACAAAATATGTTTGGTGTAATTTGAATTCTTTAACGACGTCAGTGTATA CTTCTTTATCAACAACCATGACTTGTTCAGAAGCACAAATCATACCATTAT CAAAAGTTTTAGAACCAATGATATCATTAACAGCACGTTTGATATGAGCAG TTTTTTCAATATAAGTAGGAACATTACCTGGACCGACTCCTAATGCAGGTT TACCTGTCGAATATGCGGACTTTACCATTCCAGAGCCTCCAGTCGCTAGAA CTAAAGCAATATCTTTATGATTCATTAATTGTTTAGTTGCCTCAATTGATG GCACTTCTATCCATTGAATACAATCTTTAGGAGCACCTGCTTTTGTTGCAG CTTCTAAAATGACTTTAGCAGCATATTTTGATGATTGTTGTGCACTTGGAT GAAATGCGAAAATAATTGGATTACCTGTTTTAATAGCAATCATTGCTTTGA AAATAGTTGTAGATGTAGGGTTGGTCGTTGGTGTCACTCCACAAATCACGC CTATAGGTTCAGCTACATACGTTAATCCTTTTTGTTTATCTTCACCTATGA TACCTACTGTTTTATTGTCTTTGATTGAATTCCATATGTACTCTGAGGCAT ATAAATTTTTGATAGCTTTGTCTTCATAAATACCTCTACCTGTTTCGTCGT AAGCTAGTTTAGCTAAATGCATATGCTGATCAACAGCAGCCATGCTCATCT GATGTACAATGTCATTAATCTCATGTTGTGATTTTTTAGATAGTTCTTTTA GAGCTTCTTGTCCTTTTTCTGCTAATGAATCAATCATTTGTGTGACTTCAT CTTTGTTTGATTCATATGTATTTTTTTTTTAGTTACAGATAACATATACAACC 20 ACTCCTTAGATATTGTGAAATAATTCACAAACATTATAGTACAGCTCTTTC CAAATTAAAAGAAAATACAGACTATTAAAGAGTCAATTGTGATGTTTATAT GAACACATTTTTAACCTATATATTTAGTCGGGGTTGAGGTGTAAGACTTGA TGCAATGGGAACAAGACGTATTTGGTAGTTAAAAAAATCTATTTTAAAAG AAGTAAATTTTAAAAAAATTATTGTAAGTATTCTTACTAAAAATAATGAGG GGTGTTGTAATGAAATTATCGTCTCACCCGACTAACGATGTTATCAGTTTA TAAAATAAAAAACTGAGACAATCATTTATGTCTCAGTAGCTCATGCTTTAA TGCAGTAAGAAGTTGTATCGCTTTGGGTAATACTTGAATCTCAATTGGTGT TTCTAAATTAATTTCGCCATCAATATCCACTTTCATACTAGGGTTTGTTGA 30 GAGTGTGATGTGCTTACCTGATATGTGATCAATACCTTGTGTGATTTCGTT CCAATTCATACTATCACGTTTTTTTTAATATATCATTCAATATATTTAGTGT TTGATCATTAAATACAAATGTGTTTGCTCTTCCATCTTGTGGCGATAAATC GGTTAGCGGAATTTGTCCACCACCTATATTGGGACCGTTTGCTATTAACAT CATCGAAGTATTGCCTTCTTTTGTTTCACCATCAACAGTCAATGAGAAATC AAATTTAACAGGATTTAATAACGTTTTAACGGTTGATCCAATATAGCTGAA TTTACCGAATATATCTTTAGAACCATCTTGAACATTCTCTGCATTTTGTAC TATTAAGCCAAGTCCAACGAAATTAAGTACATATAAGTCGTTCACTTTTAA CACATCATATGATTCAGCATGTGATGTTAATAATTGCTCACTAGCTGTTTT 40 AAAATTAGGGTGCAGTTGAAGTGTTTTTGTAAAATCGTTAAAGGTACCACC TGGTATTACACCGATTGGTAAATTTAACTGATACTGCATAACGCCATTTAC AGAGCTATAATTTCATTTTAATAGATTTACAATATTTAATAATATCGCC TTTATTTTCACTGAGTTGAAGAGAGAGGTGTTTACACATTGAACTAAGAGA TTTTGCAACTTCTCCTATGCCATTATGTATATCTTTCAAACCGCTATGTTC ATTCAAACTTGGCACGGTACACCATTAAAACGTTTAGCGAATGATATGAAA GTGGTACGTATGCCGGGTACTACGACACCAAAGTATAAGCGTAATTTTAAT CGTGAAACATCACGTTGGGATTATTTAATTTCGCCAAATAGATATTCAACT GGTTATCCAAGAAATGATGTATTAGTTAATAGAGCCAATGATCAAGAGTAT 50 TTAGATGAAATTAGAACTCACTTAAATTTACCTAGTGATAAAAAGGTTATT ATGTATGCTCCGACATGGAGAGACGATGAATTTGTGAGTAAAGGAAAATAT TTGTTTGAATTAAAAATTGATTTAGACAACCTTTATAAAGAACTCGGAGAT GATTATGTGATTTTATTACGCATGCATTATCTCATTTCTAACGCACTTGAT TTATCTGGTTATGAAAATTTTGCAATTGATGTTTCAAACTATAATGACGTC 55 TCTGAATTATTTTTAATAAG

Sequence 3408

step.1002f10.cons.ok CGCCACTGTGCTCTAAAGATATACGTGTCGCGCAACTTGTTTCTGTCGTGC TTATTATGATTAGTGTGATATTCGTAATTTATAGAAGAGTTAAATACCAAC CAATAAAATATGAAAATTCAGGACCATTAACATGGCCGATTAAAAAGGCTA AGTGATTATTTTGAGAAGATTAAGTAAAGAGAAGCATCATCAAGTGAATCC TTTATGGCATATATATAGAAAAATTAAATTCGTAAAAGTGCTAAAGCAAAC GTTGATTATAGAAATTGCAAGATTTGTTCCTAGTATGAAACTTAAAAATAA AATATATAAAAAGCTTTTAAAAATGGATGTCGGGAATCATACTTCATTTGC ATATAAAGTGTTGCCTGATTTGTTTTATCCAGAATACATTTCGGTTGGCAA GAATACAGTCATTGGTTATAATACAACAATATTAACTCACGAAGTACTTGT 10 TGATGAGTGGAGAGTAGGAAAAGTCATTATAGGCGATTACACTTTAATAGG TGCAAATACGACAATATTACCAGGAATAACCATAGGAAATCATGTTAAAAT TGGTGCGGGTACGGTTGTGTCTAAAGATGTTCCCGATTACAGTTTTGCATT CAAAAAGAAATAACATCATTCCAATGATTTTTGATGAGGCTTTTTATCGT 15 AAAATGGCTACCCAAAAGTGGCGACAACAGGACTACAAGAAGGCGGCAGAA TATTATGAAAAAGTGCTTGAGTTGTCACCTAAGGATTTTGATATTCAACAA CACTATGCTCAATGTTTAGTTAAATTAAATATCGGCAAAAAAGCAGAACGT CTATTTTATGAGAATATTGTTAAAGACTTTCATGTAGCAGAAAGTTTCTAT 20 GAACTAAGTCAATTAAATATAGAATTAAACGAGCCAAACAAGGCATTCTTG TTTGGTATTAATTATGTAATATTGTCAGAGGATAAAGATTTTAGAGAAATG CTTGAAAAAACATTCGAAGTCACGTATACAAATGAACAAAAAATTGAATTA GAAGCACAATTGTTTTCAACACAACTTTTATTTCAATTTCTCTTTTTCGCAA CAACAGCATAGGGTGATTAGGAATTTACTTGCAATGTGTTATTTGTATCTA GGTGAGTATGATAGCGCCAAAGCAATGTTTGAAGAACTTTTAAAGGAAGAT AATTCAGACGTGCATGCACTTTGTCACTACACATTATTACTTTATAATAAA AAAGAAACAGAAAAATATCAAAAATATCTTAAAAATACTTAATAAAGTAGTA CCACTAAATGACGACGAAACCTTTAAATTAGGAATCGTATTGAGTTATTTA AAACAGTATCGTGCTTCTCAAAATTTACTTTATCCACTTTATAAAAAAGGT AAATTTGTCTCTATTCAAATGTATAATGCATTGAGTTTCAATTTTTATTAC TCTGAAGTTGATGTTGGTTATGCACCTTGGGTAATTGAGGAAAGTAAAACG GTATTTGAATCACGAGTGTTACCATTATTACTAGATGATAATAATCATTAT CGACTTTACGGTATTTTTTTTACTTCATCAATTAAATGGAAAAGAAATACTA CTTTATCTCACATATTTGGTACAAGGACTCACACTCAATAAATTAGATTTT ATACACAGAGGTATGCAAAGGTTGTATAATTTTAAGAAATTCAAATATAAC ACGTCTTTATTTACAGATTGGATTAATCAAGCAGAAATGATTATAGCTGAA 40 AATGTAGATTTAGTAGATGTCGATAGATATGTAGCTGCATTTGTTTACCTA TCGTATCGTCGTTCTAGCCAACCACTTACCAAGAGGCAATTGATGGACGAT TTTAATGTTTCTAGATACAAACTGAATAAAGCAATTGAATTTATATTGAGC ATATAAATTTATGAAATGAAAAGTATGATATATAATGCGCATAATGATTAA TAAGTAGGAGGCATTTAAAATGACTGAAGTAGATTTTGATGTAGCAATAAT 45 CGGTGCAGGTCCTGCCGGTATGACAGCAGCAGTATATGCATCTCGTGCCAA TTTAAAAACTGTCATGATTGAACGCGGTATGCCAGGCGGTCAAATGGCAAA CACTGAAGAAGTAGAGAATTTTCCAGGATTTGAGATGATCACAGGTCCTGA CTTATCTACTAAAATGTTTGAACATGCTAAAAAATTTGGTGCGGAATACCA ATATGGCGATATTAAATCTGTTGAAGATAAAGGCGACTATAAAGTTATCAA TTTAGGGAATATAGTTGTTGATGTAAATGTGTGTCACAGTATTGTTTAACA 50 GTATTTCATAACGTAATAACAATGTGTCAATCATCGGTGTTGCAACGTTT AATGCTCTTCCAATCGCTTGAATTATCAAAGTACGATAATAATCTTCACTC GGCATGCGTGGTATATGTATGACTCCTTGTTCATCAGTATCAACATGTTTG TATGGTACGGCAGAAAAATCAAAATATGCACCTTGATCGTCCGGATTAGAA AACGGATCGATTAAAATTGCTGTATATCGCACATAAAGTAGATACTCTTGA TGAATAGCTGGTAAATTTTTAAAGTTTTCAATATCTACTTCGCGCATGGTC TCATAACGTATAGGGTAGTTTTCTTTCACCATAAACTTTAGAAGATTGACC GAAGGTACCTTTAATTTTTTTAATATCATCATCATTTTTTTGCCACATTAAT CGCATTTCGTGTATTAAGGTCATTGTGATTGGACCCTCTGGAAATAGCTTA

TATACATATACTGGTACTTTCGTCCCTTCAAATACCGCCTTTAATGAAAAT TGATTCATAAACAATGGTGGGTGTACATAAAGTGAACTATTATGTATCTCC GCATGTAGTGGTGTCCATCGTTGTTAATTCTATATTCAAATAGTCAAAT AAAGACTTAAGCTTACACAACGTCATAGACTGAGATTGAGTCGAACCTACG 5 **AATAATTTTGATTTAACTCGTGTGGTTAGGACACAATGTGGTTGTGCTTTA** TCAAATATTCGGGTATCGCCTAGATAAGTGGAAAATGAAATCACTTCACCT TCACATTGAACATCTGATAGTAATTGCTTAACAAGCATATGTGATCCTAAT GTTGGTGAGACCAAGATGATTTGCTTAATACGCTTTAATGTGGACTTAGAT AATTGCTGTAATATCGGTCGATACGCATCGGCAGTACATGCTAAAATCACC GTAAACTTACCTGAAAAACACTGATGTGCATCATTTTGAGTCATTACTGAA AAAAAGCCGTCACGTTGATAAGCATCAAAGACTCTCTTAGATTTGGTTGAT GCATGAACGCGACTCACCATATCAACTATATGTTCTCCATGTAAATGACAT GACATGTTCAACACCAACTTTTGATGCCACTTTACAATAAAGTGCAATATC 15 AAAAATCTGCTTCGGTCGTGTTTTGTAGTTCTTCACATCGCCACTGTGTTTTC GTCAGTTGCTTGAGATGGATAATTAAACAATGCTTTTATATCATCACCGTA AATGTCATATTTGATAGGTATCGTCGAACTGAATATAATATGTGTCACAGA 20

Sequence 3409 step.1002f12.cons.ok

AAGATGTAAAAAAACAAAATGATTATTTAGATAAAATTTTACCTGAAGCTT 25 ATGCACTTGTACGTGAGGGGTCAAAGAGAGTATTTAATATGATTCCTTATA AAGTACAAGTAATGGGTGGTATTGCTATACATAAAGGTGATATTGCAGAAA TGAGAACAGGTGAAGGGAAAACATTGACTGCAACCATGCCGACGTATTTGA ATGCTTTAGCTGGTAGAGGTGTACATGTTATTACAGTCAATGAATATCTAT CAAGTTCACAAAGTGAAGAAATGGCTGAACTATATAACTATCTTGGCTTAA CTGTAGGTTTGAACTTAAATAGTAAGTCAACTGAAGAAAAACGTGAGGCTT ACGCACAAGATATCACTTATAGTACGAATAATGAACTTGGGTTTGATTATC TTAGAGATAATATGGTGAACTATGCTGAAGAGAGAGTAATGCGTCCTCTAC ATTTTGCAATTATTGATGAGGTCGATTCCATATTGATCGACGAAGCAAGAA CACCTTTAATTATTTCTGGTGAAGCGGAAAAATCTACTTCTTTATATACTC AAGCAAATGTTTTTGCAAAAATGCTTAAAGCGGAAGATGATTATAATTATG ATGAAAAAACCAAAGCTGTACATCTTACAGAACAAGGTGCAGATAAAGCTG AACGTATGTTCAAAGTAGATAATCTTTATGATGTTCAAAATGTGGAAGTGA TTAGTCATATTAATACAGCTTTAAGAGCTCATGTTACTTTGCAACGCGATG TTGATTACATGGTCGTTGACGGTGAAGTATTAATTGTTGACCAATTTACTG 40 GACGTACAATGCCTGGACGTCGTTTTTCTGAAGGTTTACACCAAGCAATTG AGGCTAAAGAAGGTGTAGCAATTCAAAATGAGTCTAAAACGATGGCATCCA TTACTTTCCAAAACTATTTCAGAATGTATAATAAGTTAGCGGGGATGACTG GTACAGCGAAAACCGAAGAGGAAGAATTTCGTAATATCTATAATATGACAG 45 TTACCCAAATTCCAACAAACAAACCTGTTCAACGTAAAGATAATTCAGACT TAATTTATATTAGTCAAAAAGGAAAGTTTGATGCGGTAGTTGAAGATGTTG TAGAAAAACATAAAAAAGGACAACCCGTCTTACTAGGTACTGTTGCTGTTG AGACTTCTGAATATATTTCAAATTTACTAAAAAAACGTGGTGTCAGACATG ACGTATTAAACGCTAAAAATCATGAACGCGAAGCTGAAATCGTTTCAAACG 50 CGGGGCAAAAAGGTGCAGTTACAATTGCCACAAATATGGCTGGACGTGGAA CAGATATTAAACTTGGTGATGGTGTTGAAGAGTTAGGTGGACTTGCTGTTA TTGGTACTGAGCGTCATGAATCAAGACGTATTGATGATCAATTACGTGGAC GTTCAGGACGCCAAGGTGATAGAGGAGATAGTCGTTTTTACCTATCTTTAC AAGATGAATTAATGGTACGTTTTGGTTCAGAACGCTTACAGAAAATGATGA ACCGTTTAGGAATGGATGATTCAACGCCAATCGAGTCGAAAATGGTATCTC 55 GAGCTGTAGAATCAGCTCAAAAACGAGTAGAAGGTAATAACTTTGACGCGC GTAAACGTATTCTAGAATACGATGAAGTTTTACGTAAGCAACGTGAAATTA TTTATAATGAGCGTAATGAAATCATTGATAGTGAAGAAAGTTCTCAAGTCG

TTAACGCGATGTTACGTTCTACATTGCAACGTGCGATTAATCATTTATTA

ATGAAGAAGACGATAATCCTGACTACACGCCATTTATCAATTACGTTAATG ATGTGTTCTTGCTGAATTATTAATGTTAAATGCTATCCATGTGCCATTACA CACCGGTAAAATTGAAGAAATGACACGTGTACTTCGTGAAAAATAAGCATA ATATATTAAGCGTCTGGATTATCATCCCCAGACGCTTTTAAAATGTTTAG AGAATTATCAAATTTTATTTGAATGCTTTCGCTAAAACAAAGATAAACATA TCTTTCGAGGAGTTTTATCTAGTATACGTACATTCTTCCCTCAACAAGCTA AAAACATAACTATCTGAGAATTCCCCTTGTAATCGTTCATTACTTCTCAAT ATACCTTTGCGTGAACCCAAGTCTAATTGGTATAGCTCTGCTTTTCTTATT TTTAGTAGACATTCGTATTTCTATACGATTAATATCATACACTTCATATAC 10 GTCTTCAGCTAAATAATAACCAATTGAAGTTGTTTTATTAACTAAATCTAA GTAATGCAATCCTATGACTCCAATCAATTCTTTATTACTCCATATTCCACA ATGAAATCCATTACCATCGATAAATTGTTGCAACGCCGAATGGATAAAGTG TTTACTATCTTCAACTTTCTTCGTATGTTCAACAAAAGGCAGAAATTCAGC TAAATAGTCACGATTGCTATCTACTAATTTAAATAACTGTTCGGCTTCTCG TTCTTCTAATATTTTAATTTTAATATTTTTATTTATTTGATAACTAAACAT ACAAAATCATCCTTTCTTAGAATTTTCTGTCATTTTAGTATACGCGAGTAT AGGATTATGTCATAAAACTTGATTACTAGAATTCGATATTCTTTAAGTTAC AAGTGTGTATGTAGTATTTCTCTTGCTTCTATTGTCTTATACTTACAACCA ATATTAGAGTGAAAAAGCTTAACTTAAGATAGATAATCATCAACAACAACAA 20 ACGTTAAAAACACTGAGAAAACTTTTTTAAAATATACTTCTCAATATTGAT TAGTAAAATCCAAAATATGAATAATAAGTAGACATTAAACAATCTTTATTT TATTCTATAAATAATAAAATAAATTATTAGATTAATACATTATTTTTT ATTTCTAATTTAAGTTGAAATCGTATGTAATCGGAGGAAACCATAATGATA TATTCTATCGGTAAGAATTTAGGTAATAAATTAACAGGTATAGAACAAGCT ATGATCAATAGATTAAAGCTATTTAAAGATAATTTAGTCCCAAATAAACTC ATATTCACATCTTGGTCACCACGTTTATATATGCATGCACATTCGTTAAAC ATCGATTCAAAAGATATTTTCAGTCTTTACGATTTTCTACAAGATAGTATT AACTTTGAGAAAAAACATATTGATTGGATAAATTATTGGCAAAATATATGT AATTATACCTTAAAATTCGTTGAAAATACGAATGATATTAAAATATACGAT AACGACACATATAAAATGTATGTGCATTTTGTTGATTCAAATTATCAAACT TTAGACTATATTAACCATTTTGATATACAACAACGTAAAATTCGAAGAGAT TTTTACGATACAAGAGGCTTTTTTAAGTTGTAGTAGAATTTTAACCTCTCAA С

35

Sequence 3410 step.1002g01.cons.ok TAACCGTAGGTATAGTGGTTAGCTTTACATAATTCAATGACTTTTTGTGTT 40 ACGGTATCATTTTTATAGGTTTTGTTTTTCCATCGGTAATATGTTGATTTA GGTATGTTTAATACTTCTAGTATCAATTTGATTGAATATTTTACTTTTAAT TGATCCACTAAATCTATGACTACTGTTGGTACCACTTCCTTTCCAATGCCT TGTACTTTTTTAAAATATCCAATTCTATATCTTTTTCTCTTATTTTCTAATT TTAATTGTTCTACTTCTGACAGCTCTTCTAATCCTTTACCGTAGGTATATT 45 GTTTACCAACTTGTTGTGAAAATCTATAACTTTCCCCATTTCGATACCATC GCCACCAAGTTTTCACTTGCGTCCTATTTCTAATATTTAATTCTTTCATAA TTTCTTTTGTTGAAAATCCTGCTGCTTTCATTTCAACTGCTTTATACTTTG TTTCTACTGAATAAGAAGCTCTTTTCATAGAAAAAACCTCCGTATGATTC ATTTTAATATGAATTCAACGAAAGTGTTTTTATATAATTCCCACAAATTGG CATTAATTTCTCTTCTTGACGGATACGTACAATTAAAAAATAAGCATATGG AACTAATAAGAGTGTTGTGTATGTAGCATTTGTTAGTAGTAATACACCAAT TAATTCGGGAATGATATTTAAAAAATAGTTTGGATGTTTCGTTACTTTATA CCAAATACGACCTAATGTCTTAATAACTATAAATAGCATGATATAAGCGAT GATCAATATGATTAAGCCAATGCCGTTAAGTAGACTAAATGTATCCTTACG AATGAATGCTTCTATAGCTGCACTCATGTAAATTAATACATGCGTAATGGC TAGATATTTTGAATTTTTCACACCATATTCCACCGCGCCCCTCTACCTTTAG CTGTTTTGCGTGTTGCATAGATATCTTTAAGCTGATGAGTCGAATACAGAA

ATATATTCTTTTGCTCGTACAATACAAAGTATTTTATATAGAAAATGTTTC AAATGCCATTAACTATTTATTAACTTTAGCACCAACTCATAACTCTTCTAA CACCTCACATATTAAGTTCAGTTTTTCGGATAATTTAATACTTTTAAGGAT ATTAAGCGCTTACATTGATGTGATATATTTTTTTAACGAAGATGATAGGG CCATTAGCTGTACAACGCAAATTATGGCTCAGAAACTTTATGCAAGCGTTT TTTGTCGTATTCTTTGTTTACATGGCGATGTATTTAATTCGAAACAATTTT AAAGCGGCACAACCGTTATTAAAAGAAGAAATCGGATTAACAACATTAGAA CTAGGTTATATAGGATTAGCGTTTAGTATTACTTACGGTTTAGGAAAAACA ATACTCGGTTATTTCGTTGATGGGCGTAATACGAAACGTATTATTTCCTTC TTATTAATATTATCTGCGATTACAGTACTTATTATGGGATTTGTATTAAGT TATTTCGGTTCTGTGATGGGGCTATTAATTGTATTGTGGGGGCCTTAACGGT ATATTTCAATCTGTGGGTGGGCCTGCAAGTTACTCAACGATTTCAAGGTGG GCGCCTCGAACAAGCGCGGTCGTTATTTAGGCTTTTTGGAATACATCACAT AACATTGGTGGTGCTATTGCTGGTGGTGTCGCACTTTGGGGCGCGAATACA TTAATCATTGGGATTGTGACATTATTTATTGGTAAAGATGATCCAGAGGAA TTAGGTTGGAATCGTGCCGAAGAATTTGGGAAGAGCCTATCGACCAAGAA 20 AACATTGATTCTCAAGGTATGACTAAATGGGATATCTTTAAAAAATATATC CTTGGAAATCCTGTGATTTGGATTTTGTGTATCTCTAATGTTTTTGTATAT ATCGTGCGTATTGGTATTGATAACTGGGCACCGCTATACGTATCAGAGCAT TTACATTTTAATAAAGGTGATGCGGTGAATACTATTTTTTTACTTTGAAATA GGTGCATTAGTAGCTAGTTTATTGTGGGGCTATATCTCAGATTTATTAAAA GGTCGTCGTGCGATTGTAGCGATTGGATGTATGTTTATGATCACCTTTGTT GTACTCTTTTATACCAATGCAACAAGCGTGACAATGGTCAATATTTCTCTA TTTGCATTAGGCGCTTTAATCTTCGGTCCACAGTTACTCATTGGTGTATCT CTGACTGGCTTTGTTCCTAAAAATGCAATTAGTGTCGCTAACGGTATGACA GGTTCATTTGCATATCTATTCGGGGATTCAATGGCTAAAGTGGGTCTGGCT GCAATCGCTGATCCAACACGTAATGGTTTAAATATTTTTTGGGTATACGTTG 30 AGTGGTTGGACAGATGTCTTTATTGTATTCTATGTAGCTTTATTCTTAGGA ATGATATTATTAGCCATTGTTGCTTATTACGAAGAAAAGAAAATTAGAAAA TTAAAAATTTAAGATTAAGTGAATTTAAATATATACTCCCTACTATAAATT TTATCATTATGGTAGGGAGCTTTTTCGTGATTGATTTGCACTATTTTGATT 35 GCTTATTATAATCACTTGGTGACATATGTAAATATTTTTTAAAATGATAGC AAAACATTTTATACTCAGAAAAACCTACTTTTTCAGCAATTTCAT

Sequence 3411

40 step.1002g02.cons.ok TTCAAAATTGATTTTTGAATGAAACGAAGTTTTAAATATGAATCAGCAGCA ACTTCTAAACGATTGTTAAATTGTTGAGTAAATTGTTGTATTAAGAATTGT ATGATTTCTTCATCATTTTGCATATTAATATTTGATACATCTTCATCGAAG 45 ACAAAACTTAAGTTTTCGTATATATAATTCACAAGTGCACGTTCACTACTT AAGTCAAGATTTTTAACGTCTTTTGTAAACACATCTCGTGCAAGCTGTTCA **AAATTAAAATCATCAAAATCGCTTGCTTCAAGTATGTGATTACGTTCAGCA** TAAATTTTATCTCGTTGAACACTAATACTTTTTTCGAATTCATTTGCCATT TCTCTATTTTCATAGCAGTCTCTTCAGATACACGTTGCGCTTTATTAACA 50 ATTGACTTTACACGTTTTTTAAAGAGTGCACTACTTTCTAGTTTAGATGCA TCCATCGTTTGGAGGTTTTTATTTTCTGCCAAGTTAGAGTTACTCCAACGT TTTACTAAATCATCATCAAGTGATACAAAAATCTGTGAATATCCAGGATCT CCTTGGCGACCTGAGCGTCCTCTTAATTGACGATCAACACGGCTATTATCC ATATGTTCATTAATAATCACTGCTAAGCCACCGATATCATGAACCTCTTTT GATAACTTTATATCAGTTCCACGCCCTGCCATACTTGTAGCAACAGTAACT 55 GCAGATAATTGTCCCGCCTCAGCAATCATTTGTGCCTCTTTAGCTACATTT TGAGCGATTAATAAATTGTTGGGTATATCACGTTTAAATAACTCAGCTGAA AAATATTCTGCCGCTTCTGCAGTACGTGTAATTAGTAACACAGGTTGTTGA GTTTCATGTATACCAATCACTGTCTTTAAAATTGCATCGTTCTTTTTGTCA

CCATTAGCAAATACTCTATCAGGTCTATCATCTCGTTCAATCGGACTGTGA GT

5 Sequence 3412 step.1002g03.cons.ok GTATTCGGTAATATCATCTGTAAGATTTTTAATTTCTTGTCTTGCATTTTT CATTGCAACAGTGTGATGGCCAAAATTAAACATAGCTCTATCATTATCACT TTCCTTGATACCTGTACCCTTATCTGTATGATATGGCATCGTTTCAGCATT ATAACGCGAAGAATTAGATACGGTAATACCTAAATTTGATTGGTTTTCAAC TATTTTAGAAAAGTGTGCATCAGGTAAGGTATCTCGCCAATCTATTTTTCC TTTAATTGCCTCTCTCGCGATGACCACTCACTTTGACTTACAGCGTCAGG TGGCTCTATAGTGGAAATCATTTCTTTCATCCAATCTTCATCTTTAAG 15 TTTAGCCAATTCCACAATTTTCTGTACTCGTTCTAAAGTTAAACTATGTCT AAACAAATTATCTCCATGAATTTCACCTGAAGTTCCATTCGAACTGATAAT ACCATCTACAGTGAATCCATCAGGAACAAGCTGACTGATTTCTGAATAAGA TCTCCCAGTAGCAAGGAAAACTTTATAATTTTGCTCTCTCAATTCATTAAT 20 CACTTGTTTAGTATATTCCGAGGCTTTATTATTTTCATGTAAAATCGTTCC ATCCATATCTAAAAAAATTGCTTTTATATTTTTCATATTATCCTCCATTCA AGACTCTAACTTATACACTTAAATTGTGTCACTTATCATACTAAAGTGCAA CGGCTTTGATTACACTTTGAACATACTATAACGTTGTCTTCTCTTATTTAC AATGACATCCCTATCAAAAAAATTGTCATCCGATAAAGATCTCATAACATC TTAAATATTAACCTTGTTAAATATTTAAAAGTCTTTAAGTAAATCTTTTTC AAAAATAACGGCATTTCTTCTATTATATGTGTTACAAGTATGACAGAAAGT TGTGAATCATTTAAAATATGCTTACCAAATGTTTTAAATAGTTGTCTCTTT ATATAAAATCCATTCCAGTTGTAGGTTTATCCAATACTAGTTAATTTAGGG TACTCATTAAAGTCATTTAACAACGGCATTAAAACCGCTTCGTTAAAATTAA TTGAAGGATAAATCTAAAATTAATTCAAAAATAAAGAGTAGCCATTTAGGC TACTCTAAATTATAAACATTTTACTCTACTGTAACCGATTTGGCTAAGTTA CGAGGTTTGTCAACATCTAAATCTCGTTGTAACGCAGCATAATATGAGATT AATTGCATTGTCACTACAGATACTAAAGGAGTTAATAATTCATGTACTTGT GGAATCACGTATGTGTCTCCTTCTTTATTCAAACCTTCCATTGAAATCATA CAAGGATATGCACCACGTGCTACTACTTCTTTCATATTTCCACGAATTGAT AGATTAACGTTTTCTTGTGTAGCTAAACCTATAACAGGTGTGCCATCTTCA ATCAAAGCGATTGTTCCGTGCTTTAATTCCCCACCTGCAAATCCTTCAGCT TGAATATAAGAAATTTCTTTTAATTTTAATGCACCTTCTAAACTAACATTA 40 TAATCAATTGTTCGTCCAATGAAGAATGCATTACGAGTAGTTTTTAAGAAA TCCGTTGCAATTTGCTCCATCTTAGGTGCATCGTCAACAATTGTTTCAATA GCTGTAGTAACCTTAGCTAGTTCTCTTAATAAATCAACATCGGTTTCACGA CCATGATTTTTAGCAACAATTTGAGATAAGATAGATAAAACAGCAATTTGC GCTGTATATGCTTTTGTAGATGCGACTGCAATCTCAGGTCCAGCATGTAAA AGTAATGTATGATCCGCTTCACGTGATAATGTTGAACCAGCAACATTAGTA 45 ATTGTTAATGATTTGTGACCTAACTTATTTGTTTCAACTAATACAGCACGA GAAAGAAGTGGCATATTATATACAAATTCAGAAGCTACATGAACCTCAGTA TAACTAGTACCAGCTGCAACGATGTAAATACGATCAGCATCTGCTACATCA TTAATAATCTCTGAATCGATTTTTAAATTACCTTTTTCATCTTGATATTCT TGAATAATGCGACGCATCACTGCAGGCTGTTCATGAATTTCTTTTAACATG TAATGATCATATACGCCTTTTTCTGCATCAGCAGCATCTATTTCTGCCGTA TACGTATCACGTTGTTGAATGTGCCCCTCAAGATCTTTAATTTCTACTGTG TCTCGCTTAACAATAACTATTTCATGGTCATGTATCTCTTTGTATTGGTTT 55 GTAGTTTGTAACATTGCTAGAGCATCAGAAGCAATAACATTGAAACCTTCA CCTACACCTACTAAAAGCGGAGACTTGTTTTTAGCCACATAAATAGTATCT TTATCATTATCATCTAATAATCCTAAAGCATATGAACCATGTAATAATTTA ACTACTTTTGTAAATGCATCTTCTGTAGCTAATCCTTGTCTAGAAAAATAA

TCTACTAATTGTACAATAACTTCCGTATCAGTTTCTGATGAAAAAGTGACA TCAGATAAATATTCAGCTTTTAATTCTTCATAATTTTCAATTACACCATTA TGAACTAATGTAAAACGTCCAGATGTTGACTGGTGTGGATGTGAATTTTCA TAATTTGGAACACCATGTGTCGCCCCAACGTGTATGACCAATTCCTAACGTA CCATCCTCATCACTATTATCTGCAAC

Sequence 3413 step.1002g04.cons.ok

ACTGGTCCACACGTACACTTCCAAGTTGAAAGAGGTCGCCATGATGACATC ACAAACAGAGGGACAGTAAACCCTGCTAAATGGCTCAAAGGTCACGGTGGT GGAAAAGTTGGTGGTAGTGGTTCTGTAAACGCACGTAGAGCAATTCAAAGA GCACAATCTATTTTAGGTGGACGTTATAAATCGTCTTATATTACCGAACAA ATGATGAGAGTTGCCAAACGTGAGTCTAACTTCCAATCAGATGCGGTTAAT AACTGGGACATCAACGCACAAAAAGGAACGCCTTCTAAAGGTATGTTCCAA ATGATTGAACCATCTTTTAGAGCATATGCTAAACCAGGACACGGAAACATC TTAAATCCAACTGACGAAGCTATATCTGCTATGCGTTACATTGTAGGTAAG TGGGTTCCTATTATGGGGAGTTGGAGAAGTGCATTTAAACGTGCTGGAGAT TATGCTTATGCTACAGGCGGGGTTATTAACACTGCTGGATTATATAATTTG 20 GCAGAAGATGGATACCCTGAGATAGTAATCCCTACAGATCCAAGCAGACAA TCAGATGCGATGAAATTGTTACATCTTGCTGCAAGTAAAATTAGTGGAAAT AACAGAAATAAACGACCTAACCAATTACGTACACCTAATGTTACTAGTAAT ACAGTTGATAATGCAGAATTACTACTACAAATGATAGAAAATCAACAGAAA CAAATAAACGTGTTAATGGAAATAGCACGAAGTAATAAAACTATTGAAAAA CAACCGAAAGGTTTTTCAGAACGCGATGTAAGTCAGGCACAAGGTTCAAGG 25 TTAAGACTCGCTGCTTATAGCCAGGGAGGTTTATAAATTGGAAAATAAAAA AGTAAAAATATTTAACGATCATTTCGAAGAAACACTAACGGATATTCCTCA TCTTAAGTTTCACAGAGGATAAATATCACATACAGATTTTGCTATACGCAA CATTGTTAAAACATGATAACTCAATCCACTCGCGAAATTATGATGATGAGA 30 TCTAGTAATGCGTTGTAAGTTAGCATTTTCAATATCTAACATAAAATGCGA TAATTCCTCTTGTATTTCTGTAGGTGACATTGGCGCACCGTCAACAAAGTC TTTAGTTGACACTTTGTCTTCAGCTTGTGCAAGACGTATTTGATGTATTTT CATCTGTTTGCGTCCACGATAATTGATGATATCACCTTTGACATGAACTAT TGTTTCTGGTTTTAAAGTTTGCATATCATCTTTCGTAGCAGTCCATAATTT AGCTTCAATATCACCACTTTTATCTTGCAGAAATAGTGTCATGTAATCTTT ACCCTGAGCTGTAACACCTTGAGTTGCACGATGGATCAAGAAAAATGATC CACTGAGTCGCCGGGATTTAATTTTTCTACATTTCTCATTTTTTCCCGCCT TCCTGTAATTTATTTAAAGTTAATACTTCTTTAGCCGGTATGACATGATCT TTTGTACAAGTAAAATAAAGTATTTGATAATGTTCTGATAGTTCTCTCAAA TATTTCAACATACGTTCTTTACGATATTTATCAAAATGAACAAATGCATCA TCTACAATCACTGGGAATGGATAATACGGTTTTAATACTTTAATAAGACTA ATACGTAAAGCCACATATAATAATTCTTTTGTAGATTGACTCAACTCAACT ${\tt GGCTCAAATACTTGTCCGTTAGAATGCTTTACATGTATTTTATGATTTTCA}$ GTATAATGAATCATATTGTAAGTACCATTTGTTAAATTTTTAAAAATAGAT 45 ACAGCTTCATTAATCACTTGTGGTAGACGCTTATCTTTTATTTGCTTGATA TGTTCTTCCACTAAAGCTTGCATATAACTTAAGCTTGCCCAATCCTTAGCA ATATCGTTAAGTCTATTTTTTAAGCTATAATATTCATGTCTTAATTGTGCT AAAGTTCTATCTGTTTCCATATGATTAATCTGAGCATTTAAATCACTAACT TCTGCTTGCATTTCTAAAAATTGATCATTGTAATCGTCAACTTGTTTAGCC 50 AATCTATGATCTTCTTCTTCTAGTTGAGCAGTAGTTTTCTCACTTAATTGC GAACTCATTTCATAAGTGTAATTTTGATTTTCTAAATATTGATTTAÂATCA TTAAATCGATTTAAATCACTTTGATATGTTTCAAAATGATGATGATGTGTA ATTTGATTCGTTTCACTTAAGCGTGACTTCAATTGCTTTAATTCATTATTG AGTAATTGCGTTTCAGTTTGATTTTTATTCCAAGCCTCATTTTGTTCTTCT GCATTTTTTAACCACTGTTTCACATCATGGAAGAAAGACATCTGATTAAAT AGTTTTAAATGTGGTTCAGTTACAGATTGTGCACGTTCATAAAAGTGATTG ATATCTTTTAGCAGATTATTGCGTTGTTGATTTAAATCAATAATGTATTTA

10

15

Sequence 3414 step.1002g05.cons.ok ACTTTGTTGATTCAACAGTCTCTGTAGCTAAAGAAGTTCAAAAGTCCGACG ACAATCTAGGTATTGCTATAGATGCCTATGGTGCAGGTAGTTTTATTGTAG CAACTAAAATTAAGGGAATGATTGCGGCTGAGGTTTCAGATGAGCGTTCAG 20 CTTACATGACACGTAGCCATAATAATGCACGCATGATTACTATGGGAGCTG AAATTGTTGGAGATACGCTTGCTAAGAATGTCGCAAAAGAATTTGTCAATG TGTGTTAATAGGAGGAATAAAAATGAAAATTGCAATAGGTTGCGATCATAT TGTTACTGATACAAAAATGGAAGTTTCACAACACTTAAAATCACAGGGACA TGAAGTGATAGATGTTGGAACTTATGATTTCACACGTACACATTATCCGAT TTATGGAAAAAAGGTAGGAGAAAAAGTTGCGAGTGGTGAAGCAGATTTAGG ACCAGGTGTTAGAACTGCTTTAGTTAGAGATATGACATCAGCGCTTTATTC TAAAGAAGAGTTAAACGCCAATGTTGTAAGTTTTGGCGGTAAAGTAGCAGG 30 TGAATTATTTATTTTCGACATCGTTGATGCATTCATTGAGGCAGAGTACAA ACATAACAATGACCAAGCTGATCCACATTTCTTCGACGAGTTCTTAGAAAA ATGGAATAAAGGTGAATATCACGATTAAGGAAGATGTCCAATGATTTTAAC ATTAACTTTAAATCCCTCAGTTGATATATCTTATCCTTTAGATCAGTTTAA TTTAGATACTGTTAATAGGGTATCTCAAACAAGCAAAACAGCAGGCGGTAA AGGATTAAATGTTACTAGAGTATTGTCTGAATTTGGTGAAGACGTAATAGC AAGTGGTTTTTTAGGTGGAGCATTAGGTCAATATATTGAAGAACAAATAGA AACTACTCGTATTAAACAAGCATTTTTCAAAATCAAAGGCGAAACACGAAA TTGTATTGCAATACTACATGAAGGACAACAAACTGAAATCCTTGAAAAGGG 40 TCCCACGATTGAACTTAAGGAATCAGAGGAATTCAAGTCACATCTATTAAA ACTTTTCAAAGAAACTGATGTGGCTGTTATGTCTGGTAGTCTGCCCAAAGG ACTTAATACTGATTATTATGCGGATATTGTGAGATTAGCAAAAGAACAAGG AATTTTGACCATTTTAGATAGCTCTGGTCAATCACTTGAGGAAGTTCTTAT TAGTAATGTGAAACCTACAGTAATTAAACCCAATATAGATGAATTATCACA 45 ACTTTTAAATTACAAAGTAACCAATGATATTAAAGAATTGAAAGCGGCAGT AAGTCAGCCAATATTTAATGATATTGAATGGATTATTGTTTCATTGGGCAG TGAAGGTGCTTTTGCAAAACATAATCAAAAATTTTATAAGGTGAATATTCC CAACATTAAAGTAGTTAATCCTGTTGGGTCAGGAGATTCCACTGTAGCAGG AATTGCTTCTGGACTCATTCATCAACAAACCGATGAAGAGTTATTAAAAAA 50 TAATACAGATAAATTTGACGAAATATTCAAACAAATAGAAGTTATAGAGGT GTAATTTATGACAAAATCACAACAAAAAGTGTCATCAATTGAGAAATTAAG TAATCAAGAAGGTATTATTTCAGCTTTAGCATTTGATCAACGTGGTGCATT

AAAAAGAATGATGGCAGAACATCAATCTGAAACACCCAACAGTTGAACAAAT AGAACAATTAAAAGTACTTGTTTCTGAAGAATTAACTCAATATGCGTCTTC AATTTTATTAGATCCAGAATATGGTTTACCAGCATCAGATGCTCGAAATAA TGACTGCGGACTATTACTTGCATACGAAAAAACTGGATATGATGTGAATGC GAAAGGTCGTTTGCCAGATTGCTTGGTAGAATGGTCTGCGAAACGTTTGAA

AGAGCAAGGGGCCAATGCAGTTAAATTTTTACTTTATTATGATGTAGATGA CACAGAAGAAATTAACATACAAAAGAAAGCATATATTGAACGAATTGGTTC AGAATGTGTTGCCGAAGATATTCCTTTCTTCTTGGAAGTTTTAACATATGA CGACAATATTCCTGACAATAAAAGTGCAGAATTCGCTAAAGTTAAGCCACG TAAAGTTAATGAAGCAATGAAGTTATTCTCTGAAGATCGTTTTAATGTGGA TGTACTTAAAGTTGAAGTACCTGTGAATATGAATTTTGTGGAAGGATTTTC AGAAGGAGAAGTTGTTTATACTAAAGAAGAAGCTGCACAACATTTCCGTGA TCAAGATGCAGCTACTCACTTACCATATATTTATTTAAGTGCAGGTGTATC AGCAGAATTGTTCCAAGATACATTAAAATTTGCGCATGATTCTGGTGCGCA ATTCAATGGTGTTTTATGTGGACGTGCCACATGGTCAGGAGCAGTTAAGGT 10 ATACATTGAAGAAGGAGGAGCAAGCTGCCAGAGAATGGTTGCGTACGGTAGG ATTTAAGAATATTGATGATTTGAATACAGTATTGAAAACAACAGCTACATC ATGGAAAAACAAATAATGTAAGGGAGGATATTCAAATGAATAGAGATGAGG TACAATTACTCGGATTTGAAATTGTTGCCTATGCTGGGGATGCACGTTCAA AATTATTAGAAGCTTTAAATGCTGCTAAAGATAGTGAATTTGATAAAGCAG 15 AACAACTTGTAGAGGAAGCGAATGAATGTATTGCTAATGCACATAAAGCAC AAACCAATCTTCTAGCTCAAGAGGCTAAAGGCGAGGATATCGCATATAGTA TCACTATGATTCATGGTCAAGACCATTTAATGACAACATTACTTTTAAAAG ATTTAATGAAGCATTTAATTGAATTATACAAAAAAGGGAGCTGACCCCTAT GAATAAATTAATAGCATGGATAGAAAAAGGAAAGCCATTCTTTGAAAAAAT 20 ATCACGAAATATTTATTTAAGAGCGATTCGTGATGGATTTATTGCTGCTAT TCCAATTATCTTATTCTCAAGTATATTTATTTTAATTACCTATGTACCAAA TGTGTTTGGTTTTACTTGGAGTAAAACTATGGAAGGTATATTGATGAAACC СТАТААСТАТАС

25

Sequence 3415 step.1002g07.cons.ok

TTTCATCCTCAATATCCATACCAAGTAGCTCTTCTATTAAATCTTCGTGCG ATACGATAGCATCCGTACCTCCAAATTCATCTAAAACAATCGCTAAATGTT 30 TTCGTGAAACGGTCATTTTACGCAATACCCATTCTGCCCTATTATGTTCAT TTACAAATAAAGGGCTTGATGCATAATTAGTAATTGCGTCCTCTTTATTTT TACTCCAAGCTAATAAATATTTTGAGTGGAATACGCCGATGATATCATCTA TATTTTCATCATATACTGGATATCTTGTATATGGGTTATTCATCACTGTAT CATAAGCTTCGTCATATGTTACTTCCTTTGAAAAAGCTACAACATTAATAC GAGGCGTGGTATCAACATCCTTAACCTTCAATTGTTCAAAGTCCATAACGT TTTGAAGTCGAGTATTTTCTATCTCATTAAATGCACCTTCTCTACCCGCAA TATTTAATAATGTACGAATTTCTTCTTTAGAAAATCTTTTTTCAACAGGTT GGCCTCGAGATAGTAAATGATTAATACCATCTGTCATCTTGTTTAATAAGA 40 TTGTAATGGGCTTGAGTACAATAACACATATATGAATGATAGGATACACAA GTTTTGAAATTTTATCAGGAAATGTTGCAGCAATTGATTTAGGAATCACTT CAGAAATAAGTATAATCACAATTGTTACAATTGCTGATGCTATTCCCACAT TCACTCCAATATCAATCGCTAAGATTGTCACGAGTGTAGGTAAAATAATAT TCGCTACATTGTTACCGATTAATATAGTAGTGATAAATTCACTTGGTTTAT CTAATAACTTTGTTAAACCTTGCGCCTTACGATCTCCCTTTTTAGCTTCAG 45 TTTGAAACTTAGTGCGATTCGCGGCTGTTAATGCTGTCTCACTACCTGAAA AGAAAAATGAAACAAATATTAATAGTATAATTGCAATAATCATGATGCATT TCTCCTTAAGATTTAGTCCGTATTAATACATTATTTCCCGAGAAATGAATT ATCAAACTTATCATTTATATTGAATTAACACAACACACGAATAAGAATGAA CTAATGCAAAATATTTTTATAGTTTGCCTATAATTAATAAAGAAGATATCG 50 ATTTAATTATTAATAGAAGTTTAGAACAAAATGTATTTCTACTAACTGAAT ACATTCAAAAAGGTAATAAGAATAAAGCTATACAATTAGTCAATGATTTAA ATAGATTATATCAATGTAAAATTCTTAGTCAAAAAGGCTATAGTGGGC AACAAATTGCAAAGACTGTAAATGCACACCCTTATAGAGTAAAACTAGCAC TCAATCAATCCCGACATTATAAACTAGAAAGTTTGTTTAACATCATAAACG CTTGTGCAGAGACTGACTACAAACTAAAATCATCTTATATGGATAAACAAC TCATTTTAGAATTATTCATACTATCTCTATAAAAAATTTGAGGTAGGAGAT

ATAAAATAAATCCTATCGACAATAGAAATATTGGTTGTAAAGTAATAAAAA

AGAGCCTAGGACAATTCGTTTTGTCCTAAGCTCTGTTTTAATAATCATTAT TTATTAGCTGACATAAGTTTAGATTTAATACGGTCAGCTTTATTAGAATGG ATTAAATTACTTTGAGATGCTTTGTCAACTTGTTTGATAGCAAATCTTAAT AATTCATCTTTGTTTTCAGCATCAGTAGAGATAGCTGTTTTAGCTCGTTTC TCAGTTGTTCTTACACGTTTGATTGCAGATTTAATATTTGGCATTACTGTC ACCTCCTAAAAGTGATCATAACTTATCAAAATTTATTTGATTACAACAAGA TTCATTTGAATTTATTACTTTTTAATTGTTGGAATGAACTACTGAACTAGA 10 TATAATAGTTATGTTAGAATTTACATTTAATTAATTATGTCAAAGATATAT TGCATTAAAGTAATAAAAACGTTACTATATCAAAGATACATAGAAGTGACA GGTTATAAAGATGAAAGCGAGAAGGATAAAATGGATAAGCAAGAACGATAC AATAGAAGAGAAAATATTAGAAATTTCTCCATTATTGCTCATATAGACCAT GGTAAATCGACATTAGCTGATCGAATTTTAGAGAATACAAAATCAGTTGAA ACTCGAGAAATGCAAGATCAATTACTTGACTCTATGGATTTGGAAAGAGAA 15 CGAGGCATCACTATTAAACTAAATGCTGTTCGATTAAAATACGAAGCTAAA GATGGAGAAACTTACACATTTCATTTGATAGATACACCAGGACATGTCGAC TTTACATATGAGGTTTCTCGCTCATTAGCTGCATGTGAAGGTGCAATTCTT GTAGTTGATGCTGCCCAAGGTATAGAAGCACAAACCTTAGCAAACGTTTAT 20 TTAGCATTAGATAACGATTTGGAACTTTTGCCAGTTGTTAATAAAATAGAC TTGCCTGCAGCTGAGCCCGATAGAGTTAAGCAAGAATTAGAAGATGTTATA GGTATAGATCAAGAAGATGTAGTACTTGCAAGTGCTAAGTCAAATATAGGT ATTGAAGAAATTTTAGAGAAAATAGTTGATGTTGTACCAGCACCGGACGGT GATCCAGAAGCCCCACTTAAAGCACTTATCTTTGATTCAGAATATGATCCA TACAGAGGAGTAATATCTTCAATTCGAATTATTGATGGTGTTGTTAAAGCT 25 GGAGATAGGATTAAAATGATGGCTACCGGTAAAGAATTTGAAGTTACAGAA GTCGGAATCAATACCCCTAAGCAACTACCGGTAGAAGAATTAACAGTTGGT GATGTGGGTTATATTATCGCAAGTATCAAAAATGTTGATGATTCTAGAGTA GGTGACACAATTACTTTAGCTGAAAGACCTGCTGACAAACCGTTACAAGGA TATAAAAAGATGAATCCAATGGTATTTTGTGGTCTATTCCCTATTGACAAT 30 AAAGACTATAATGACCTAAGAGAAGCTTTAGAAAAATTACAA

Sequence 3416 35 step.1002g10.coms.ok TGTAATACCAATAAGTTCAGTTCCTTGGAATGAGAAGCCTGCGACTAGAAA TACACCAAGAATTGATAGCAAGCTACCTCCTAAATTCCCACCTAGTATTGG CCCATCTCCTTTTGTAAACGTATCAAATCCTACAAATTCTCCACCCATAAT CCCTAAAATAGTTAAGATACCAATTCCTATAAATATGATGACTGTAACTAC TTTGATAAGTGCGAACCAATATTCACTCTCTCCATATACTCTAACGGATAA AGAATTAAGCGCGAAAATAATAATAAGGAAAATACAACTCCAGACCCAAGC TGGTATACCTTGCATAGGGGACCAATATTGTATAACTTGCGCTGCAATAGT AACATCAGCTGCTACTGTTATCACCCAGTTGAACCAATAATTCCATCCTAA AGCAAAACCTAGTGAAGGATCGACAAAGCGTGTAGCATAAGTACTAAATGA ACCTGACACAGGCAAATATGTCGCCATCTCCCCTAACGACGTCATTAGAAA 45 GAACACCATCGCTCCAATAACTGCATAGGCAATCAAAGCACCCAATGCACC TGCGTCATGTATAGCTCCACCAGAAGTCATGAATAGACCAGTTCCTATACA TCCCCCAATGGCAATCATTGAAATATGTCTATCTTTTAATCCTCTTTGAAC ACCGTCATTTGTTTATTATTCTTTTTCATAGAAGCTCCCTTTCCTTCATA AGTAGAGGCTAACTTGTTACCACATCAATGCATATCATTGTTGTAGATAAA TTTGGTATAGATGATAAAAAGTAAAATAATATTAATATCATTTTACTTTT ATATCACTTGTCTTTATATCTGTATCAATAATGTAAAAAGTGGTTACATAC CTTTAAGATATGCAACCACTAATGTTTATCTATATAAGGTAGCACATCACA TAAAGTGACAGTACAACTTCTATTCGAAAGTTGTCCCAACAATGCTAATTT ATGGAAATAACATCATTTCGGCATTATTACCTTTCACTTATTCAACACATG TCCCATACGACTTCTGATAAGTTAGTCATTAATAATGCAACCTCTAACTCT ATTTATTATATTAATTTGTAATATACATGATATACTTTATATTTTCAAGTT TCTTTTTCAACTGATTCTTGTTTTTCAGAACCATATTTTCTTACATTTACT

TCTTGATTCTCTACTTCTTGGTCACCTACAACAATCTGATAAGGTATTTTT TTCATTTGAGCTTCACGAATTTTATATCCCATTTTTTCATTACGGTCATCA ATTTCAACGCGGACACCTTGCGATTTTAGTTCATCTTGTAAAAGTCTTGCA TAATCATAATGTAAATCTATATTTACAGGAATAATTTCAACTTGCATAGGC GCCAACCAAGTTGGAAATGCACCTTTTGTTTCTTCTGTTAAAAATGCAACA AAACGTTCCATAGTAGAAACTACACCACGGTGTATAACTACAGGACGATGT TGTTCTCCATCTTGACCAATGTACGTTAAGTCAAAACGTTCTGGTAAAAGA AAATCAAGTTGTGCTGTTGATAGAGTTTCTTCTTTTTCCCATAGCTGTTTTT ACTTGAACATCTAACTTAGGTCCATAGAATGCTGCCTCACCAATAGCTTCT TCATAAGTTAAACCTAATTCATCTGATGCTTCTTTAAGCATGGATTCAGCT 10 TTTTCCCACATTTCATCATCATCAAAGTACTTATGCTTATCTTCAGGATCT CTATAACTCAATCTGAAGCGATAATCTTCAAAACCAAAATCTTTGTACACA TCTTGAATCATATTAACTACACGTTTAAATTCTTCTTTAATTTGATCAGGT CTAACGAAAATATGGGAATCATTCAATGTCATTCCTCGAACACGTTGTAAA CCTGATACTGCACCACTTGCTTCGTAACGATGCATAGTACCCAATTCAGCA 15 ATACGTATAGGTAATTCGCGATAAGAATGAGGTTTGTTTTTATAAATCATC ATATGATGTGGACAGTTCATTGGTCTTAAGACCATTGCTTCGTCTTCATCT AACTTCATTGCTGGGAACATATCTTCTTGATAATGATCCCAGTGACCAGAT GTTTTATATAAATCAACATTGGCTAATACTGGTGTGTAAACATGATCGTAT 20 CCCATACTTACTTCTTTATCGACAATATAACGTTCTATTTCCCTACGTATT GTAGCACCATTTGGTAACCATAATGGTAAACCAGCACCAACGAGTTGATTG TTTGTAAACAATTCTAAATCTTTACCAATTTTACGATGATCACGCTCACGA CGTTCTTCCAACATTTTTAGATGTGCTTTCAAATCTTTTTTTGTCAAAGAAT GCTGTACCATAAATTCGTTGTAACATTTTATTATCACTATTTCCACGCCAA TAAGCACCAGCTGTAGATAATAGTTTGAACTCTTTAATTTTAGAAGTAGAA 25 GGTACGTGTACACCTCGACATAAATCAGTAAATTCACCTTGAGTATAAAGT GTTACACTCTCATCTTCAGGAATTGCATCAATAAGTTCTAATTTATAAGGG ATTTTATGATTTTCGTTCACAATTTGTTTCATTGTTTTCTCAATTTTATCA AAATCATCCGATGAAACCTTATCATCCATATCAAAATCATAATAGAATCCG ${\tt CCTTCTATTACAGGTCCAACTCCAAATTTAACGTCTCCGTATAAACGTTTT}$ AATGCTTGTGCCATTAAATGAGCTGTTGAATGACGAAGTACTTCTAACGCT TCTTCACTCCCAGGAGTAATAATTTCAATAGCTCCATCTTGTTCTAAAGGG CGTGTTAAATCTACAAGTTGACCATTGAATTTTCCCGCAACTGCTTTTTTT CTTAATCCTGGACTAATTGATTGAGCGATGTCTTCTGTAGTAGT

Sequence 3417 step.1002g12.cons.ok

ATACTGCGATATTAACCGATGAAGAAATACGTGAAAAAAACAAAATCTTTTC 40 AAAAAGAGTTAGCAGAAATTGAAGATGTAAAAAAACAAAATGATTATTTAG ATAAAATTTTACCTGAAGCTTATGCACTTGTACGTGAGGGGTCAAAGAGAG TATTTAATATGATTCCTTATAAAGTACAAGTAATGGGTGGTATTGCTATAC ATAAAGGTGATATTGCAGAAATGAGAACAGGTGAAGGGAAAACATTGACTG CAACCATGCCGACGTATTTGAATGCTTTAGCTGGTAGAGGTGTACATGTTA TTACAGTCAATGAATATCTATCAAGTTCACAAAGTGAAGAAATGGCTGAAC TATATAACTATCTTGGCTTAACTGTAGGTTTGAACTTAAATAGTAAGTCAA CTGAAGAAAACGTGAGGCTTACGCACAAGATATCACTTATAGTACGAATA ATGAACTTGGGTTTGATTATCTTAGAGATAATATGGTGAACTATGCTGAAG AGAGAGTAATGCGTCCTCTACATTTTGCAATTATTGATGAGGTCGATTCCA 50 TATTGATCGACGAAGCAAGAACACCTTTAATTATTTCTGGTGAAGCGGAAA AATCTACTTCTTTATATACTCAAGCAAATGTTTTTGCAAAAATGCTTAAAG CGGAAGATGATTATAATTATGATGAAAAAACCAAAGCTGTACATCTTACAG AACAAGGTGCAGATAAAGCTGAACGTATGTTCAAAGTAGATAATCTTTATG ATGTTCAAAATGTGGAAGTGATTAGTCATATTAATACAGCTTTAAGAGCTC 55 ATGTTACTTTGCAACGCGATGTTGATTACATGGTCGTTGACGGTGAAGTAT TAATTGTTGACCAATTTACTGGACGTACAATGCCTGGACGTCGTTTTTCTG AAGGTTTACACCAAGCAATTGAGGCTAAAGAAGGTGTAGCAATTCAAAATG AGTCTAAAACGATGGCATCCATTACTTTCCAAAACTATTTCAGAATGTATA

ATAAGTTAGCGGGGATGACTGGTACAGCGAAAACCGAAGAGGAAGAATTTC AACGTAAAGATAATTCAGACTTAATTTATATTAGTCAAAAAGGAAAGTTTG ATGCGGTAGTTGAAGATGTTGTAGAAAAACATAAAAAAGGACAACCCGTCT TACTAGGTACTGTTGCTGTTGAGACTTCTGAATATATTTCAAATTTACTAA AAAAACGTGGTGTCAGACATGACGTATTAAACGCTAAAAATCATGAACGCG AAGCTGAAATCGTTTCAAACGCGGGGCAAAAAGGTGCAGTTACAATTGCCA CAAATATGGCTGGACGTGGAACAGATATTAAACTTGGTGATGGTGTTGAAG AGTTAGGTGGACTTGCTGTTATTGGTACTGAGCGTCATGAATCAAGACGTA TTGATGATCAATTACGTGGACGTTCAGGACGCCAAGGTGATAGAGGAGATA 10 GTCGTTTTTACCTATCTTTACAAGATGAATTAATGGTACGTTTTGGTTCAG AACGCTTACAGAAAATGATGAACCGTTTAGGAATGGATGATTCAACGCCAA TCGAGTCGAAAATGGTATCTCGAGCTGTAGAATCAGCTCAAAAACGAGTAG AAGGTAATAACTTTGACGCGCGTAAACGTATTCTAGAATACGATGAAGTTT TACGTAAGCAACGTGAAATTATTTATAATGAGCGTAATGAAATCATTGATA GTGAAGAAAGTTCTCAAGTCGTTAACGCGATGTTACGTTCTACATTGCAAC GTGCGATTAATCATTTTATTAATGAAGAAGACGATAATCCTGACTACACGC CATTTATCAATTACGTTAATGATGTGTTCTTGCTGAATTATTAATGTTAAA TGCTATCCATGTGCCATTACACACCGGTAAAATTGAAGAAATGACACGTGT 20 ACTTCGTGAAAAATAAGCATAATATATTTAAGCGTCTGGATTATCATCCCC AGACGCTTTTAAAATGTTTAGAGAATTATCAAATTTTATTTGAATGCTTTC GCTAAAACAAAGATAAACATATCTTTCGAGGAGTTTTATCTAGTATACGTA CATTCTTCCCTCAACAAGCTAAAAACATAACTATCTGAGAATTCCCCTTGT AATCGTTCATTACTTCTCAATATACCTTTGCGTGAACCCAAGTCTAATTGG 25 AATATCATACACTTCATATACATAGCGAATTAACGCTTTAGTACATTTAGT CATAATACCTTTCTTTTGAAAGTCTTCAGCTAAATAATAACCAATTGAAGT TTTATTACTCCATATTCCACAATGAAATCCATTACCATCGATAAATTGTTG CAACGCCGAATGGATAAAGTGTTTACTATCTTCAACTTTCTTCGTATGTTC 30 AACAAAAGGCAGAAATTCAGCTAAATAGTCACGATTGCTATCTACTAATTT AAATAACTGTTCGGCTTCTCGTTCTTCTAATATTTTTAATTTAATATTTTT ATTTATTTGATAACTAAACATACAAAATCATCCTTTCTTAGAATTTTCTGT CATTTTAGTATACGCGAGTATAGGATTATGTCATAAAACTTGATTACTAGA ATTCGATATTCTTTAAGTTACAAGTGTGTATGTAGTATTTCTCTTGCTTCT ATTGTCTTATACTTACAACCAATATTAGAGTGAAAAAGCTTAACTTAAGAT AGATAATCATCAACAACACAAACGTTAAAAACACTGAGAAAACTTTTTTAA AATATACTTCTCAATATTGATTAGTAAAATCCAAAATATGAATAATAAGTA 40 AGATTAATACATTATTTTTTTTTTTTTTTAATTTAAGTTGAAATCGTATGTAA TCGGAGGAAACCATAATGATATATTCTATCGGTAAGAATTTAGGTAATAAA TTAACAGGTATAGAACAAGCTATGATCAATAGATTAAAGCTATTTAAAGAT AATTTAGTCCCAAATAAACTCATATTCACATCTTGGTCACCACGTTTATAT ATGCATGCACATTCGTTAAACATCGATTCAAAAGATATTTTCAGTCTTTAC 45 AATTATTGGCAAAATATATGTAATTATACCTTAAAATTCGTTGAAAATACG GTTGATTCAAATTATCAAACTTTAGACTATATTAACCATTTTGATATACAA CAACGTAAAATTCGAAGAGATTTTTACGATACAAGAGGCTTTTTAAGTTGT AGTAGAATTTTAACCTCTCAACAAAAAGTCGTGATGGAACAATTTTTTACA CCTACACAAAAAGTTAAATTTCAAAAATATTACAACCCTGAGCACGAACAT CCTACGGTACAATCTATCATTT

55 Sequence 3418 step.1002h01.cons.ok CTTGAAATATCATTTGAATTTTCTTATTAAACTTCAATCGCTCTTTACGTT TTCTAATTTGATGAATATCTTTACCATCATACTCGATTGCGCCATCAGTAA TATCATTTAATTTGATAATGGCTTTTCCAGTCGTTGATTTACCACATCCAG

ACTCTCCTACTAGGCCTAAAGTTTCCCCTTTATAAACATCAAAACTTATAT TATCAATCGCTTTAACTTCATTATGTTTACCTTGATTAAAATACTGTTTTA AATTTTTAACTTGTAATAATACATTTTCATTACTCATTAAAAGCCACCCTC TCTACTCTATGTGGTTGTTCATAATTACTTGGCATTGTTCTTAATCGTTTT TGAACCATTGAAGGTGGCGTAACTTTTGGAGCTCTTGCATCTAATAACCAA GATTTAACAAAATGTGTGGGTGAAATTTTGAACCAAGGTGGTTCTTCTTTA AAATCAATATCTAAAGCATATCGACTTCTACGTGCGAAAGCATCACCAATT GGTGGATGAAGTAAATCTGGTGGTGTACCTGGAATTGCAATTAAGTCCGTG TCATTACTGGTTGTTAAATCAGGCATTGAAGAAAGCAATCCCCAGGTATAG GGATGTTTAGGATCATAAAATATTTCATTCACATCCCCTGTTTCAACCATC 10 TGTCCCCCATACATTACGGCTACTTTGTCCGCAATATTTGCTACAACGCCT AAATCATGCGTAATAAAGATAATTGAAGTTTCAATCTTATTTTGTAGTTCT TTCATAAGATCTAAAATTTGAGCCTGCATTGTCACATCTAAAGCAGTTGTA GGCTCATCAGCAATTAATATTTTAGGCTCACATGCCAATGCTATTGCAATA ACTATTCTCTGACGTTGTCCTCCTGAAAATTGATGTGGATAAGCTTTAAAT 15 CGTTTTTCAGCACGAGGTAACCCAACTAAATTCAAAATTTCCAATGCTCTT TGCTTGGCCTTTGCTTTACTTAATTTCTTATGTTTAATCAAAGGTTCCATG ACTTGCTTTCCGATTTGCATTGTTGGATTTAAAGAAGTCATAGGATCCTGA AATATCATTGAAATATCTCGACCTCTTAGCTGTATCAGTTCTTTTTCACTT TTCTGAGCTAAGTCCTCACCTAAAAATAAGATTTCTCCCTTTTTTATTCTT 20 CCTGTATCCTTTTGAAAAGTTTTGTAATTGCCTTAGTTGTTACAGATTTT AAATCCACGCCTCTGACAGCTTGCACTTCTCCTGCAGCAATATCAAAGGAA ACGTGCAAATCATTTACTTCTAATACCGTTTCTGTCATTACTTTTACCTCC TTTATTTTCGCATTTTGGGACGTTTAAAACGTTTAGCTTTCTTAATA CTTTCGTTTTACTTTGTTTAGCAGCGTCAAAGATTAAGCTGTATAAACCA GATTCGTTGATGATTACCATGTTTCGTTTTTGACCTGATGCACTAACTTGG TGCGTCAGCTTATCTTCATCATCAACATGATTTCTAATTGCATTATCAGAT CTTGTGTAACCTAATATTTCTGCCACGTCTTTACCTAAAAAATATGGTTCT CCATCTACTTCTATTTTTCTTACTGGTAAATCTTCAAAATTAAATACTTGT AAATCTTGCATATTGTTTATGCTCCTTTCTGCTATACTCCTTATAAAAGGA GGTGAAAATATGAAAAGTTTTATTATTGCGTATGATTTAAATAACCAAAAG GATTATCCAAAATTAATAGAGCGTATTGAGGATTATCCTAATGTTGCTAAA ATCAATAAATCAGTTTGGTTTATTAATTCAACTAATGATGCTAAAACTATT AGAAACGAATTAAAAATGTTTATTGATAGCGATGATAGTTTGTTCGTTGGT AAGCTGACTGGTGAAGCCGCATGGTCTAATGTAATTTGCAGTTCACAACAT TTAAAAGATTATCTTTAGTATCGTTAATCTTGAGCCTCTCTTTTTGAGGGG CTTATTATAATTTCGTCAAATTCTTCTGCATTTTTTATATTAGCTGCGACT TCTTCTAAACTTTCAAAAACTAATGTATATCCACTATTCTTTGTTTCTTTT ACAAAAACCCTGTATAATACCTTGTTTTCAGTCATTTGAATTCCTCCTTTA 40 TTCTTGAGGTGTTAAATCTAACGCGAAATAAATTCCATTTATTACTGGATA TGAAGGTTTAGTTCTTCCGTGTATCATATTGGACAATGTATCTCTATTAAC ACCTATTTCTTCAGAAAGAGTTTTGATGTTGTGTCCTTTTAAAGCCATTTT 45 TTACGTAAGTAATCTTATCATGGCTGTACAAAATAGGTCAAGCATTTTACG AAAGTTTTTAAGAAAAAATATTGCAAATCACGAAAGTTTTCCTTATAATAT AGTTATAAAGTAAAAGGAGCTGTATTACGATGTGCTTTTCAAAAAGAATGA AACAATCAAGAGAAAAACAAGGTATGACTTTAGCTGAACTAGGAAGAAAAA TCGGTAAAACTGAAGCTACTGTACAACGTTATGAAAGCGGGAATATTAAAA 50 ATCTTAAAAATGATACTATTGAAAGTATAGCTACTGCATTAAATGTTAACC CTGCTTTCTTGATGGGTTGGATAGAAGAAGTTGAGGAACAACCACAACATC GTGCAGCGCATCTTGATGGTGATTTAACTGACGAAGAATGGCAAGAAATTC TTGATTACGCTGAATACATAAGAAGTAAAAGAAAATAAAGGGTGTTTTATG TGGGGAAATATGAAGATATGTTAATTGAACATGACTATATTGAAGTCATTG AATGTGATAACTTACCTAAAAGGTTATCTGGTTTGTGGCTTGGAGATATGA TTTTAATTAATCGTAACTTGCCTATTACTTCCAAACTTGAAACACTTGCAG AGGAACTCGCTCATAACGAACTTACATATGGAAATATAGTTGATCAAAGTA GTTTTAATCATAGAAAATTTGAAGGTTATGCACGTAGGTTAGCCTATGAAA

AGTTAATCCCTCTTAAAGATATTGTAAAAGCATTTTTGCAAGGCATTCATG ACTTGTATGAACTTGCTAATTTTTTTGA

Sequence 3419 step.1002h02.cons.ok AAATAAACGAGAAAACCATAATCATGATAATCAACCATACAAATAGTACAA ATGTATTAAAGGTTGGATACTTATATCATATGTTTTAATGTTTGAAACTTT TATTATAAATAAATGAATTGAAAAATGCTTGTTGCTGACTGTTTCGAATCA TAGTCAGTTGTAAGGGAGCGAGACGACGAATCTGAAAAGAATCGGTCTCGC 10 TTTTTTAGTATAAAATTTAATTATTTTTTAAAATGATAAAGTGATTTCT ATAGTTAAATTTAGTGCGAGGATACTTTAAAAAATTATATTGAAAAAATGT CGCTATTACAAAATGTTCTAAAGTGCACAATTCAATTTAAAAAACAAAAAAG AAGTTTTAAAATTTATATTTCTGTCTATATATGAGTTGTGCACGAAATGAC AAACGCAATTCACATATGAAATATTTATCACTTTACAATAATATGTTGTTA AGTTGATGTAGATAAATTCATTGTTTTACGTATAAGTCACTATCATTGTTT TTTAGGATTCATTTTAATTATATCCAATCGACTAAAGTGAAAAGGAGGAAC ATATTAAATGAATTGGATATCGATTATTTTATTTATTATGGTCGTATGTGG CATTTCTTTTTATGCCTATTTGCAATCAAGAAAATTAAAACGAATAGTTC AGATGGTTATTTTATGGGAGGAAATAGCCTTACTGGATTTACAGTTGCCTC TACAATTATCATGACCAATTTGTCGACAGAACAAATTGTTGGGCAAAATGG TCAAAGCTATGCACAAGGAATGGAAGTAATGGCTTGGGAGGTTACGGCTGC CGTAGCAGTTGTATTGTTGGCCTGGGTCTTTCTTCCTAAATATCTAAAATA ${\tt CGGTGTTAATACAATTTCTGAGTTTTTGGAATTACGTTATGATACATTTAC}$ 25 GCCTGTAGTATTGTATTCTGGTTCCCTAGTGTTCAATAAAATGTTTAAAGT TGATGAATACTTAGGTGTAAGTAGTTCAACTGCTGTCATTATTATTTCATC TATTATTGGTATAATTGGCATTATTTACTTATTATAGGTGGTTTATCGTT AAGTGCTTTTAGTGATTCGATTTATGGCATGGCTTTAATTATAGCTGGACT 30 TGCGATTACAATATTAGGTCTAGGTCAATTAGGAGATGGCAACTTCCTACA TGGTTTCGACAAAATCGTGCAAGACACGCCTGAGAAATTGAATGGTTTTGG TAAGGTGGACTCGGATGTTGTACCTTGGCCAACCCTATTCTTCGGTATGTT CTTTAACAATTTATTCTTCTGGTGCGCAAACCAGATGATAGTTCAAAAAGC ACTCGCAGCTAAAAATTTAAAAGAATCTCAAAAAGGTGCAATATATTTAAG 35 CTTATTTAAAGTGTTCGGACCTTTATTTACAGTCTTACCAGGCGTAGTAGC ATTTAACTATTTTAATGGTAGTCTTGATAAATCAGATAACGCTTACCCTGC ACTTGTAACTTCAGTATTACCAGAATGGGCATTCGGCTTATTTGGTGCGGT TATTTTTGGTGCAATATTGAGCTCATTTGTTGGCTCATTGAATAGTACAAC AGATAAACATATTGCTCGAGTAGGCCATATTGCTACTGTAGTCATTGGAGT TATTGTTGTAGCACTTGCACCAGTCATCTCATTATTCCCTAGTGGTCTTTA TGCAGTAGTTCAACAGTTTAATGGTGTGTATAGTATGCCAGTGCTAGCTTT AATTTAATCGCTTTCTTTTCTAAACGCACATCTAAATTGGGCGCTAAAGT GACACTCTTCACACATATAATTTTATACGCTATAATCAGCTTTGTATTTAC 45 AGAAATTAATTATCTATACACATTTAGTGTATTATTCTTTGTAGATTTAAT TATTATTTTGATTTTTAACAAAGTTAAACTATCTAGTGAGTTTGATTTAAG CACGCACCAACCGAAAGTAGATATGACGCCATGGAAATATCGTTACGTTGC AGGTATTATTGTTCTTGCTTTAGTAGTAGTAAGTTATATTATCTTCTCACC ACTCGTGTTGGCAAAATAAATGTTACAATTAAAACTTAATGAGTAAGAAAA TAAAAGTGTACGTTAAGGACGTTTATCAGCGTGATCACGTGCACTTTAACT ATGAATAAAGTTGATTTAAAAATTAGAAAGGAGGGACAACGACGATGCAAA TAATTCCAAATGTTAAACAGTTATTGTCAAAGCGTACTAAACATAGTCAAT GGAATTTCGACATCAAAGTCGATCTCATGATAGGATCTGCAGAGGATGTAC ATGAAAGTGTTGAAAAAGCAGCACAAATTAAAGAGGAACATCAGTGGGATT ACGTTGTTTGTCTGACAGATTTGCCTAGTATTTCAGATAATAAAGTGGTTG TCAGCGACTTTAATAGTGACAAACATGTTGCAATGCTATCATTACCGTCAC TAGGTTTTATTGATTTGAAGCGCAAGCTAGTTAAAACGATGACTTCATTGA TTGAACAATTATATTATAATCAACCGAAAGACAAAAATGCGCCACATCCTT

TTGTACGCGTGAAGGCTGTAGAACCTGACGAAGACGCCACATCAAAACAAC GATATATTAATATTTATTATCATAAGTTGGATTCAGTTAATTGGTGGAC TGACACGAGCAAATCAGCCTTGGAAAAACATCTTTAATTTTAAGAAAATCA TTTCAGTTGCCTTTGCAACAGGAACTTATGTCTCAATATTTTCAATGCCAT GGGAATTAAGCGTGATTTATTCACCGCTTCGACTTATCATATTGATGGTGA AAAAGAAAACTGCTAAATCTCAGCGTGTATATCGATATATTTATAATTCAA CCACACTTGTTACACTAAGTTTGATTACACTCATAAATTATGTCATTTTAT ATTTATTGTTAATCATCAGTATTACACTCTTTGTCCCTGTGGAATTATTTA ATAGTTGGACGAGTGCCCAATCACAATTTACGTTCTCAAATTATATGAGAT TGATTTGGTTTGTATCATCATTAGGACTTTTAGCTGGAGCTATGGGATCAA CTGTTGAAAATGAAGAGAAAATACGTCGTATTACTTATTCTTATAGACAAT ATCATCGTTATAAAGAAGCTGGCAAGAACAAAAAGAACAAGAAACTTCTCG TGATGTATCACAACAAAATGTCGAACAACAAACTTCAAGTAAAGATGAAAA TAATGAACAATATGAAGGTAAAAAACAAGGACATAGAGAGGAGGATGACGC ATGACAAATCAAAAAACTGTGGGTCTAGTCGTCGCTCCAGGTGTTACTGAA CGCCTTGCAGAAAATCTCATACAAGAAATGCCTAAAATGTTATCTACGCAT TATGATCATCAGCAAGAATGGATTTTTGATTTA

20

10

15

Sequence 3420 step.1002h05.cons.ok CCAACGTGAGATAATCAGCACCTTTTTCATTAATAATAGCTGCGGCCGATT CTAATATTAATTGTCTTTTGGAAGTTCTAGGCATTTCGTCACCTTCTTTAT CGAATTCTAAATAATATATAATTGTAATTATTTAACACTTTTTCAACATCC ATACTTATCGAGTGTATTTATTATATAAACAACTTTTCTTAAATTCAACTT TATTAACATGAATTGTATTTATTAATAACGATTTACTTATTACTATATGTC ACAAACATATAAAAAGTAAACTTATCATATAATATATGTTCCTCTGTCAAC GTCGGTTAATTATGAAAAATATTAAGTAGCTCCATTCCGTTGCTTAATAC TTTTTTTTTTCACTTATAAAAATCCAAGAAAAGAGAGAGCGATTTCGCCCTC TCTTTTTTGTGTAGTAGTACTATTAAATTTTATCTCACTAACAATTAATAT ACTTATTAATAAAATGATGTATTTAAAAAATTATAATAATCTTGAAATATAA TTATTAAGAAATTCGCAGTTATATCATTTATTAACTCAGCCTTATTGTACG TGGGACGATTTTTTAGCAGTCATAAAGTATACAATAATACCAATAATGAAA CCAATAAGTGCTGGAACAATCCATCCCATACCAATGTTAAAGAATGGGAGA 35 TAATTTTCACCAAATCCAATGATTGTTTGTGCAAATTTTGTATTAACAAAG AACTCTGGACTTGCTTTCACACCATCTACAAATGCCGCCACCATTGTAAAT AATGTTGTAAATCGATAGACAATTTTAGAATGTTTAAATAATGGACTAAGT AATGCTAATAAAATTAAAGTAATCGCTAAAGGATAAATGAACATCAACACT 40 GGTGTTGAATACATAATAATTTTTTTTTAAACCTACATTAGCAAATATACAA GCTAATATACTCACCCCAGTAGCTAACCAAAGATAGTTAGATTTAGGGAAT AACTCTGTAAATGTTTCCGAAAAGGCTGTGATCAATCCTATTGCTGTTTTC AGACATGCCACAATGATGATTAGTGACAAAATAATAATTCCGTAATCCCCT AAATAATGTTGTGCAATCTGAGCAAGCGCAATACCACCATTTTCACTTACT TTAAAACGACCTAAACTCATCGTACCCATTAAAGCTAATAAAGTATAAATA 45 ACGCCCATAGCTATAATACTAATCGTACCTGATTTTAAAGTTTCTTTAGCG ATTGTATTCGGATTAGTAATCCCCAACTTTTTAATTGTAGTAACAATGATA ATACCAAATGCTAATGATGCCAAAGCGTCTAATGTATTATATCCATCGATA **AACCCTTTGAGTAACACGCTATTGCTATAATCAGCACTTACTGGCGCATGA** 50 CTAATTCCACCCATAGGACGGATAAATGCAAGCACAACAACAATTCCAAGC AAGATGAGAAAGACCGGATTTAAGAATTTTCCAATATAGTCTAATATTTTA GAAGGTTTACGCGAAAATAACCACGCTACTCCGAAGAATAAAATACTAAAA ATAGCAACAACGCTTGGGCCGTACCAGATGAAATAAATGGTGAAAATGCTA TTTCAAATGACGTCGTCGCAAGTCTTGGCAACGCAAAAAACGGACCTATAA CAAGATACAAGCCAATTGTGAACAAATAACCATATATTTTACTTATCCTTG 55 AGGAAATTTCAAAGACCCCGTTTGTTTTAGATACACCTATCGCTATAATTC CTAAAAAAGGTAGTCCGATAGCCGTGATAAGAAATCCTAAATTGGCGGTCC ATACATTTGCCCCCGCAGTTTGACCTAAGTGAATTGGAAAAATGAGATTTC

CAGCACCAAAAAAAAGACCAAACAGCATTGAGCCGATAAATAGATTCTCTT

TTAATGTTAATTTATTTTTCATCATTAATTATGTATCTCCTAATATGTATT ATTAGCTATTATACATGATTTTAACCGTCTGCGTGGCACGAAGTTATATTT ATATATGTGTGTATTATTACATCTTAATCTCATAGCTTTTCATTTTATAAC ACGATTCAAACTATAAATAATGAAAAATTTTTAATATTTCTATACATTGTT TTATTTTAGCATATAATTTTAATTAATAAAAGTTTTTGATAATAATAAGT GTACAAGGATTTTTTTTTTTTTATTAAAAAGTGAAAATCATTACTAAAAATG AGGAGGACTGTGAAATGACTGTATTGAGTGAGCAAGACAAAATAAGATTAT TAGCTGATATCGTCAAGATTCAAACTGAGAATGATCATGAAATTAAAGTAT 10 GTGAGTACTTAAAAGACCTGTTAAGTCAATATGATATTGATTCTAAGATTG TTAAAGTTAATGATTCACGCGCTAATTTAGTTGCTGAAATTGGTAGTGGCG CTCCAGTCTTAGCAATCAGTGGACACATGGATGTTGTAGATGCTGGTGACC ATGATGATTGGACTTTTCCTCCATTTGAACTCACAGATAAAGATGGCAAGT TATTCGGCAGAGGTACCACTGACATGAAAGGTGGTCTTATGGCGATGGTCA 15 TCGCGATGATTGAATTAAAACAATCAAACGCATTAAAGCAAGGTACGATAC GTTTATTAGCTACTACAGGAGAAGAGACGGAACAATATGGTGCACAATTAC TAGCTGATGAAGGTTACTTAGATGATGTGAGTGGTTTAATTATTGGCGAAC CAACTAGTAATATCGCTTACTATGCTCATAAAGGTTCTATGAGCTGTGTAG TCACAGCGAAAGGTAAGGCTGCACATAGTTCCATGCCACACCTAGGTACAA 20 AAAATATTAAAGAACATGATAAAGTACACGAGTTAGACGCTGTTCCAATGA TTGAGAAACATCTCCACAGAAAAATTGGTGAAGAAGAATCACATATCTACT CTGGATTTGTAATGTTAAACTCTGTATTCAATGGTGGTAAACAAGTTAATT CTGTTCCTCATAAAGCGACAGCTAAATATAATGTAAGAACTGTTCCAGAAT ATGACAGTACTTTCGTGAAGGATTTATTTGAAAAAGTCATTCGTCATGTGG GCGAAGATTATTTAACTGTAGATATACCTAGCAGTCACGATCCAGTGGCAA GTGATCGTTGGAGATTTAATTAAACATTTTAAAAAATAGGAGTGCATTTAC ATGTTTAAAAAGTTATTTGGAAAAGCTAAAGAAGTTGACAAAAACATTAAA ATCTACGCACCTTTGACAGGTGAGTATGTCAAAATTGAAGATATTCCTGAT CCAGTGTTTGCGCAAAAAATGATGGGAGAAGGCTTTGGTATTAATCCTACA GAGGGTGAAGTTGTTTCACCGATTGAAGGCAAAGTCGATAATGTTTTTCCA ACGAAACATGCCGTAGGGTTAAAAGCCGAAAATGGATTAGAGTTATTAGTT CATATCGGATTAGATACCGTTCAATTGGATGGCAAAGGGTTTGAAGTACTT GTTGAAAGTGGAGATGACATTAAAATAGGTGACCCACTTATACGTTTTGAC ACAAACTCTGATCAAACTGAATCAATTCATATTGAAGACGTACAAGCAGTA GTTAAAGGGGAAACACAAGTTATTGATGTGACAGTAAGCTAATGGTTAAGA ATTATTCATTTATCAATTTATTATGACCGTGCGCGGAAGAAAAGACGATA AAGGGGTTTTTGCTGAGCAAATTTTTTGAAGACCTTGCCTTTCCAAAACACG 40 AAGATGATTTTAATACATTATCTGAATATATTGAGACACATAGCGAATTCA CCCTA

Sequence 3421

45 step.1002h06.cons.ok ATACTTTCCTAAACTTCTAAATTGATTAGCATAAGCATCCAAATCGTCTTG ATGTTTATTTAGTTCAATAATCTTGTCTGCAAATTGATTAATTTTAGGCAA ATTATCTTCAATTGATAGTCCGACTTTATTAGCTTCAGAAAGTAAAGCGGT 50 TCCCGTATCGGTTAACTTAGCTGCTACAGCATTAATCTTCTGATTTACTTT AAAATCTATATCCGCCTTTTGAGGATGTTTTCTTAAAGTACCAGTGATTTC ATGTGTGAATTTCTTCGGTATATAAATACCTGCATAATATTTTCCCATCTT AATTTCATGGTCGGCTTTTTCTCTACTCACAAATTGCCAGTCAAAACTATC ATTCTTTTTAAAGTTTTGACCATTTTATTTCCTACATTAATATTCTTACC ACGAACTTTTCACCTTGGTCTTCATTCACTACGGCAACTTTGATATGTCC TGTATGACCATACGGATCCCACATAGCCCAGAGGTTAAACCATGCATAGAA TGAAGGAAGAATTGCTAAACCAGCTAAGATGACCCATACACCTGGTGTTTT AGCAACTCTTTTTAAATCCGTGATAAAAAGTTTTAGTGCGTTTTTCATTTT

CACACTCCTAATTATCATTATTCTTTTTTTTTTTTTATTGTAATACATTTCCGTACAG ATGATTACTTAAATGTGCATATTTTTTTGCTTACGTAAAGATGATACACAT ATTATATTAAAATTTGATTAAATGGATTTATTTTTCTAATGTTGATTAGTA TAATATTTGTATTAAGGCGTAATTCATTTTTGTTGATGCTTGTCAACTTTA TAAACCATAAGATAAATTATCAAATTCTCATTTGTTATGACAATAACTA TAATGGCGTTTCAACATATCTAAATGATAATTCGGCTAATAATACAGTAAT TACGATATCCATAATATAAACATAAGTTGGTAATTGACCATCAATAAAATA ACTATGAATAAAGCTAATTACAGGAAAATGCCATAAGTATAAACTGTATGA ACGCTTTCCAATGTAGACAAATAAAGGATTTCCTAATAACTTAGCTAAAAT 10 TGTCGTTGGATGAACAACACTTGCAATAATTAGCAAAGTCATTGTTGAAAT AAGATAAAATCCACCGTTATAAATCCAATCACTTTCATCACTAACAGTAAA GAATAATAGAATTAAAAATGTAAGTCCTATGATACCCGCACTATTAATCAC AGTTTTTAATCCTTTAGGTGGATTGGGATTTAATTTAAAAGGTGGCCAGAT AAATGCTAGAAGTACACCTAAAAGCAGTGTCTGCAATCTTGTATCAGTTCC 15 AAAATATACTCTAGAATGGTTCAAGTGAGGTTGAGAAATAACAACCATCAT TAATAATGAAACCAGGGATATGATCCAAAACATCAGTATGACATTTTTCTT TTTCTTAACTATTGCCATAAATAATAAGAGTACTGCTGGGAAAAAAAGGTA AAACTGCTCTTCAATGGCTAGTGACCATAGGTGCTTTAAAGGCATAAAAGA AAATTGCTCGAAATAATTGACATCTTTAGCAATATACCACCAATTAGATAC 20 GTAAAATATTGCTGCTATCATATCATGTTTAACTCTTACAATATGCTCGGG GTGCAATAATAAAGTTGCAATTCCAACTACTACTATTAATGCAAATACCGC TGGTAATAACCTTTTAATACGACGAATCCAAAAATTTTTAAGATTTATTGT TCCAGTATCTTCATACTCTTTAAGTAATAAGCTCGTAATCAAATAACCTGA AATAACAAAAAAGTATCTACGCCTAAAAAACCACCTGTTAACCATTGTTT ATTCAAGTGATAAATAATAATACCAATGACTGCAATTGCTCGCAAACCATC TAATCCAGGCATATATCGTATTTTTTTAGCAGAGCGATATTCATTATTTAA TTTTTTTTCTCATTGTTACATTCTTCCCTATTAATAATAATTTCGTTAGAC AAGTAACTTTTTTACTAATCAATTTCATAAGACGAACGCTATTGCTTCTAA TCAACTTATTCAAACAAATTTTATCTCATTCAAATTAACAAGGTCATTCTC TTATGTTATAGCTATCCCTATCATATAGCGCACGTTTCCATTGAGTTAATT ATCATACTTCGTAAGATATACCTCATTAAAAGGTTATAAGTCTTAAGTATT GTAATACATTTGTAATATTAATTCAATTTTATTATAGGCCTAATTTATAAA AATATTAAATGAACATACGATAATTCTTATTGAATTTCTTTAATAATTAA AAAGGATAGCTACATCATTATTCCAAACAATGAGTAGCTATCCTTTATATT ATCCGATGCCTAAAGCTATTTTGGCATATCGTGACATCATATCTTTATTCC AAGGTGGACTCCATACAATCATCACTTCTGTATCAGAAATTTCAGGAATCT CAGCCAAAACACTCTTAACTTGTTCAATAATTTGTGGTCCTAATGGACATC CCATCGAAGTCAATGTCATTTCAACTGTACATAAACCTTCATCATCAACAT CAACTTTATATACTAAACCTAAATTAACGATATCTATCCCTAACTCAGGAT 40 CTATTACCATTTCAAGAGCGCCTAAGATACTATCTTTTAGTGCTTCTTCCA TCAGTATCACCTCTTTAAAATTTTCTTTACACCAATATATCAAATATCCGA CAAAACGCCAATAAAATGCTATGATACTGTTACATAATAATTAACAACACA AGGAGTAATATATGCAACCTTATTTAATTTGTCTAGATCTAGATGGTACAT TATTAAATGACAATAAAGAAATCTCACCTTACACTAAACAAGTATTAACCG AATTACAACAATGTGGACACTACGTTATGATTGCTACTGGAAGACCCTATC GCGCAAGCCAGATGTATTATCATGAACTAAATATGAGCACACCTGTTGTTA ACTTTAATGGAGCATTTGTACATCATCCAAAAGCAAACGATTTTAAAGTGA TACATGAAGTACTTGATGTGGAAATTTCTAAAAATATTATTACAGCACTTC 50 AACAATCTCATATTACAAATATCATTGCTGAAGTAAAAGACTATGTCTTTA TAAATAGT

Sequence 3422

55 step.1002h07.cons.ok
ACATATCGCACGTGCAATAGCTACACGCTGTGCTTCTCCACCTGAAAGCAT
ATGTGGATAACAATACAAACAATCAGATTTTAACCCTACTTCACGTAGTAA
CGCTGTTACATACTCTCCATATTCTCCTTTGATGTACATCGACACTGATT
CATTACTTCAAACAAAATATCTTTGACAGTATGAAAAGGATGCAAAGAAGA

AGTATAGTCTTGAAAAACCGCAGCAATTCGATGACGTCTCACTTTTTTTAA ATGAACAGGCTGACCGTCCAACGTCACTTGTCCTTGATCTGGTTTTTCTAG TCCTAAAATCATACGACTCAACGTAGACTTTCCACTTCCACTTTCTCCAAT AATTGCTATTGATGCACCAGTGGGGCAATCAAATGACACGCCTTTAACTAC AGGAATACGTTTATCACGAAATATTGATTTTTTTCCATAAAATTTAATAAC ATTTTGAACCTTAAGCATTGAAATCACCCCTCAGCACTAACTGAAAATAAT CATGAATTGTCTTTTTAGTAGATAATAAATAAGCTGTATAGTGATGACGAG GTTGTTGTAATACCATATTTGTTCGACCTTCTTCTATCACGCGACCTTCTT TCATAACTACAACACGATCTGCAATTTTATTAATCACTGTGAGGTCATGAG ATATAAAAATCATGGCGCAATCAAAATGTTGTTTTATATCTTTAAAAGCAT TGATGACTTCATATTGTGTAATGGTATCTAATGCTGTGGTAGGCTCATCAG CAATAATCAATTTAGGTTTCAATGCCAATGCTAGTGCAATCATCATACGTT GAAGCATCCCACCTGACAACATGTAGGGATATGCTTTTAATAACGAGCGGG GATCTTTCAACTTCATATACGTCATATAATGAATGAGTTCTTGTTTTATTT GTTGCTTTGATAATGTCGTÄTGTGCACGCAAAGTTTCAATCATTTGCTTCC 15 CCACTTTAGTTGAAGGATCAAATGCTCGTGTTCCTTGTTGCATAATCATAG CAATATCTTTACCACGAATTTTGCGTAGTTGCTTTTCAGTTATTGTATTTA AATTTTGATGTTCAAAAAAGATATCTCCGCTTACAGATAAACGTTGAGCAT TTAAACCTATTAATGCTTTACAAGTAATCGATTTTCCGCTTCCACTTTCTC CAATAATACCTAATGTTTCACCACATTGAACTGTGAAATTCACGTTATCAA 20 CGAGTGTCTCATCTGACCATGTGTCCTTAATTCTTAAATGCGCTACTTTAA GCAATGTCATGTGCTTTCACACCTTTCTTCAATGCCAGTCGTTTCTCTTTA GAGGACATACGAGGATCAATCGCCATTTGTAAAGCATCTGATAAAAAGTTA AACGCCATTACAATTATGACGATAGCCACACCTGTTGTCATCATCATTCCA GGATGTGTGAACATTACTTTTCGTGCTTCATTAAGCATCATCCCCCATTCG GCTGTAGGTGCCTTAACACCTAATCCAAGGAACGAGAATCCTGACATTTGT AATATCATTGAGCACATCGAACTACTAGCAATAATCGCTATGTCAGTAAAG ACTTTGGCAAATTTTACATGATCAGCTTCAATATATTGCATTACACTGGTT CGAATCACGCGACAAAACCACGCCCATCGAGTCAATATAAACGCAATAATA 30 ATATTTTCTACACCCATGCCAAACAACGTAATCAATGCCAATGTCACCACA TAGCTTGGAAAAGCTAACATCACATCGCATATACGCATAATTATTGCATCG ATATAACCTGGGAAATAACCTGAAATAAACCCAAGTATCGCTCCTATCACA ACGGAAATAATCAATGCGACAAATACATATAACAAACTAGGTCTTATGGCG TATATTATCCGTGTTAATACGTCCCGGCCTAAATGGTCTGTCCCCAACCAG 35 TGAGACCAACTTATACCAGCAAATTTATTTGCTGTATCAATGTGATTCGCT TCATAAAATGTAATTAAAGGAGCTAAAACTCCAAGCACTACGTAGATTGTA ATAATAGCTATAGCAACTATGGCACCTCTATCTTGAAATAGACGACGTAAC ACAATCATTTCATTGCCTCCCTTAAACGCGGATTTAATATTGCATTAATGA 40 TATCTGCAAGTGTATTAAAAAGAATAAACAACACCGCGACAATGAGCACGT ATGCTTGAATTACTGGAAAATCATGTTCAGTAATCGCTTTAACACTTAATG GTCCTAAACCTGGCCACGCAAATACATTTTCAATAACGACTAAACCTCCCA TGATCATTGGTATCGACATACAAAAATAGATACGGCTACCTGTAATGCAT TACGTAATACA

45

Sequence 3423 step.1002h08.cons.ok

CTGGATGAACTTCAGCCATAACTCCATCAGCACCAACGGCTAAAGCCGCTT

TCGCTGTCGGTAACATAATATCTTTTCTACCTGTACTATGCGTTACATCAA
CCATAACAGGTAGATGTGTTCCTTGCTTTAAAATAGGTACAGCAGAGATAT
CTAATGTATTTCTAGTTGCTTTTTCGTATGTACCACTACATA
AAATAATATTTCGGTTACCTTGTGAAGCAATATTTCTGCTGCATAGATAA
ATTCTTCTATCGTTGCTGATAAACCACGTTTCAATAAAATAGGTTTATCTG

TACGACCAGCTTCTTTGAGTAACTCAAAATTTTGCATATTTCTAGCACCAA
TTTGGAAAACATCCAAATAATCTGAAGCGATTTCGAAATCATTTGGGTTAA
CTATTTCACTTACTACATTTAAGTTATATTTTATCTTTAACATTTTCAAAA
TTTTGAGACCTTCTACTCCAAGACCTTGGAAATCATAAGGAGAAGTTCTCG
GCTTAAACGCTCCGCCACGAATAAATTTCTCGCCTTTAGCCTGCAAATCTT

GTGCTACAGCATCAACTTGTTCTTGTGATTCTACAGAACAAGGACCAAATA CAAATGATTTATTACCATCACCAATGATTCCACCATTATCAAATTTAACGA TCGTATCTTCAGGTTTCAATTTACGTGATACATAAAGATGTTTTTCATTTT CTGATTTTTGTAAATCTGTAGAGGCTTTAAAAATTTCTTTAAATAATTGCT TAATCACATTGTCGTTAAATGGACCTTTATTTTTATCTAATAGCTGATTAA TCATTTCCTTTTCACGCTGAGGATCATATACTCGTGTACCTTGCTTAATTT TTTCTTCACCAATTTTCTGTGCTAATTCTCCTCGCTTCGATAGTAATTCTA ATATTTGATCATTTAAGGAAACAATTTCTTCTCTATACTGTTCTAATTTAT TAGTCATTTCTACTCACCTCTAAGATATAGTTACGCATAAAGTATGTTACT TTAAAGCGATAAAATTAAAATTATTCAAATCTAATTTTAACAATTTCACAT TTATAGTTCAAGCGTCAATTTACAGAAAATACTAAATCTTCTGTAAATTTA TGTAAGTAATAATTGTTAAATAATGATATTACAATATTATTTAAATGTTA AAAAAGATAGGAACGAACTGAATATAAATTCGTCGTCCTACCTCAAGATTT CAGATATTATTTAAATATCTAATTTTAAAGTGAAATAATCTCTTAAATTAA 15 TTAAGTAGATAAAGAATATAACTTTTATAATGTTCAATACACTTCATTTTA CTCTTTATCATTGTTAATATTTTAAAACTCGAGATTAATCATTAAATGTTCG TTTTTCAATTTTGCTACTAGTTTTTTCTACTTTTTTGTTGTTTATTACGTTT GTTTTGGTTAGGTGTATGTTGCTGTTTGCCTTTTGGAATCCTCTTTAGTTGC 20 TGTTATATTCTTAGTCTGATTCGAATTTTTTTGGCTGTGCGGATTATTTGA AGCTTTAGCAATTGATGGTTCTTTTAACAACGCTTCTGTAAGTTGTGTTTTC TACAAGATTTGGAACATCAGAGTTATTTGAAGCTTTTATAGCTTCTTCTTG TTTTTTTTCTGTTTTGCCGCTGCAGCTAATTTTTCTGTTTCAGTTTCTGACTT **ACTTTTAGTATCTTCTCCACTTGCAGAAGGGTTTGCTAAATCATGATTGCG** TGCTTCTTCATTAACTGCCGTTTGAGCAATTGCAATTTCTTCAGCAGAAGG TTCTTTCTCACTATCTATGTGCGTCGTAGATGTTTTATTGTTTGAATCAAC TTCACTTTTAGCTTCTTGAATTGCCTGCGCTTCCGGTGATTCATCCGCTAA GTCTGTTTCGTGTTGAATAGCATTTTGTTGAGCTGCTAATTCTGTTGCTGA TGGTCTCACATCATCCACTTGTTTTGTTTTCTTTTTTTTGCTTCTTGAATTGC TTGCGCTTCCGGTGATTCATCCGCTAAGTCTGTTTCGCGTTGAATAGCAGC TTTTTGAGCTTGTAATTCATCTGCATGGATATTATCTTTGGAATCATATTT TAATTGCTCAACTTTAGATTTAACAGAAACCACTGTATCTTCCGCTCGTTG ATCCGTTTTTTTATATATTTTTTTTTTTTTTTATAGTACAATCCAACAGCAGAACC TACTATCGCACTTGCTATGAAACTAACTACAAAATCCTTACGCTTCAATGA GTTAGATTGTGAACGAGATGTGCGATGATACAATTCTTCGCTTGTATGGCT TTTCTCGAAATTATCACGATTATAATGTTCCATAAACTTTCCTCCTAAAAC AAAAGCACTTAAATAAGTAAAAGCCTCATTTAAGTGCATTTGTCATTAAAT AGTATTAATTATTATTAACACGTGAATTGTAGCTATGATTTGCATCATCT GCTACAGTGTTTGTTTTGTAGTTTGCACTTCCTCTACGATTGTATCTGTTT 45 TGCCATTTGTCAGCAATTTCCATTGCAACATTTGACCATTGTACAACTTGA GAAATTTTATCTTCATTTTGAGAAATATTGTGCGTAATTGAGTTTGTAACT CTATCTACAGATCCATTTAAGTTTTGTACTGAGTCTCCAATGCCCTTAACA GCATCAACTACAGAATTTAAACGATCAACTTTACCTTGAATATCTTCAGTT AAGCGATTCACTTTATGAAGTAAATCAGTCGTTTCACGAGTAATACCTTGA ACTTGACCTTCAACACCATCTAGTGTTTTAGCCACATAGTCTAAATTCTTT 50 TTAACAGAAATAAGTACCACGACGATACCGATACATAAAATTAAAAACGCT TCCTAATTACCATAAAATAAAAGTCATTAATATTTAATACCCATGATGCTT TTATATAAACATATTAAAAATCATTTTTTACGCCTAATTTTTCGAAATAAG TATCAAATTTTTCTAATACATCAATACTATTTCATCTATAAGCGTCGAGC CGTCAATACGATTGATTAAATCTTCTATAGTTAAATCTCCCGTATTTTCTC TTATTGAACCGAATATTTCACATAAAAATACTTGGTCT

step.1002h09.cons.ok GAGACGTCCAAGTTGAGGATATGTTTCAGTATTACCATGAGTCATACCCAT ACCGCCACCGATAGTCACATTAAATCCAATTAACTCATCTTGTTCAACGAT 5 AGCGATTAAACCAATATCTTGAGAATAGACGTCAATATCATTAGATGGTGG TACTGCAATACCTATTTTGAATTTACGTGGTAAATACGTATTCCCATAAAT AGGTTCCTTTTCCTCACTCGAATCTAAAACCTTTTCACCATCAAGCCAAAT TTCATGATATGCATTTGTTCTTGGAAGTAAGTGATTACTTATACGCGTTGC ATAATCATTAATCTCCTTATGTACTTGAGATTGATAAGGATTAGGATTGCA 10 CATCGTATTACGATTAACATCTCCACATGCAGCAATAGAATCAAGTACTGC ATGATTAATATTTTTCATTGATTGTTTCAAATTACGTTTAAGAATTCCATG AAATTGAAATGCTTGGCGTGTTGTTAATTTAATCGTATGATTTGCATATTG ATTAGAGATATCATCCATAGCAATCCACTGTTCAGGAGTCGCTTTCCCCCC AGGTACACGAACTCGAATCATAAAACTATATGCAGGCTCAAGTTTTTGTTT ACGACGCTCATCTCTTAAATCCCTGTCATCTTGCATATAACTTCCGTGAAA CTTTAGCAGTTTTGCATCATCTTGTGTAATGGATCCAGTGATTGGATTAGC TAAACTTTGTTCAATAGTTCCACGCAAAAAGTCACTATTTGCTTTTAAAAA TTCCATTTCATCAAGATTTTTATCTAATTCTTCCGAAATATGATTATTTGT ATTAACCATGTATCCCCCGTCCCTTCTATTAATACACGTCTCTTTGATATC 20 TTTTATCTCTTTTCATTTGTTTTAAGTATTCTTCTGCATCTGTTTCAGATA GGTTTTGCTCTTTGATTAACACATTTTTTAATCGCTTGATGAACATCCTTTG CCATTTTACTTTCATCACCACATACATAAATAGTAGCGCCATTTTCAATCC ATCGATTAAATTGTTCACTATTTTCTGCAATTTTATGTTGCACATACACTT TTTTATCAGTATCTCTAGAAAAAGCAACATCTAATTTTGATAAAGTTCCAT CTTCAAGCCATTCTTGCCATTCCGTTTGATACAGAAAATCTGTAGTGAAGT GTTGATCTCCAAAGAATAACCATGTATTTCCTTCAAAACCTAGTTCCTCTC GTTCTTGCATATAGGATCTAAACGGTGCAACACCTGTCCCAGGACCTATCA TAATCACAGGTGTTGATTCATCTTGCGGAAACTTAAAATTCGGATTTCGTT TTAAATAGATAGGAATTGTATCGCCCTCTTGTATTCTCTCTGCAAATTGTA CTGAACAAACACCTGAACGTTCCCGACCGTGTGCTTGATATCTAACTGCTC CAACAGTAATGTGAACTTCATCTGGTGTTGCTTTATAACTACTAGATATTG AGTACTCTCTAGGTGGTAACTTTCTTAATAATTGATGTAAATTTTCAGGTT CAACGTAGTTTTGAATCCATTCTTTATCTTGAATTTTTTCAGAAAGCTCTT CATTATCAAAAAATATCGCAGCATTTTCTATTAACGGTTTTGTTAATTTAG TAATTTCAAAATGCGATGTTAATGCCTCTTCAAGATTTAAAGTATCTCCAT CCTCGTTAATTAAAACTTGTGTTTCTGGACTCCAACCTAATGTGCTAATAA GTAAGTCTACGATAGCTGGATCATTTTGAGGCAAGACAACTACACAATCTC CCGGTTCATATTCCTCACCAAAATTATCAAGTAATAACTCAATATGTCTCG 40 TCTCTTTGTCTGAACCTCTACCATTCAAATTAATATTGGTCAATACTTCAG CATCGTAAGGATTAGACTTACTATATTTCTTTTCTTTTGCTGATTTTATAG TATTAATAACATTGGCCATCCACTTTTCAGCGTCTTCTTCATAATCAACAT CGCAATCAGTACGATGATAAAGTCTTTCTGCCCCTAATTCAGCCAAACGGT TATCAAAATCTTTACCAGTTTGACAGAAGAATTCATAGGTTTGATCTCCTA ATGCTAATACTGAAAATCTCACCCCATCCAATTTTGGCGCTTTACGTCCGT GGATGTATTCATGTAATTCAACAGCGTTATCTGGTGGATCTCCTTCGCCAT GTGTAGATGTGATAATAAATAAATCTTCTACTTTCTTCAAATTCTTAGGTT TAAAGTCATCCATTGATTTGAGCGTAACGTCATTTCCAATATCAGATAAAC 50 GTTGTTCAAATATTTCTGCAAGTCCTTGCGCATTACCAGACTCAGATCCAT ATAAAATTGTTATCGATCTAGCTTCCGGCTCAACTGAAGGTTCCTTTTCAT GTAGCATCGCTTCTGTATTGTCATCTGAGTTATGTTGTTCTACAGAATCTG TAGATGTATTTGATTGTTGATTTGCCATCAGATAGCCACTTAACCATACTT GTTGGTTAGATGATAAAGTGTGAAGCAATTCATTGATTTGTTTAGCTTGCC CTTCCGTAAAAGGACTATTGGTAACACTTAAGTTCAATCTTATCCACCTCT AAGTTATTAATTATATCTTCAATTCTAGTATGTACCATTTGTTATTTTCAG TAAATGTAATACTCAATTGATAACTAAAATCGAAAAGACAATTCATAATAT

Sequence 3424

5

Sequence 3425 10 step.1002h10.cons.ok TAGGTAAACAATGATTGATACTTTGATTTGTTCATTGCTTTATCATTTAAA CAAACATAGTGATTTTAATTTTTATCATATAAAAGAATGAAGATAAAAAAG ATGTATGTGAAAAGTGTGCTCACATACATCTTTTTATTAATATACATCTTA GTTAGCACCAACTGCTACTATAGAATTTGATGTGGATGCATCATCGTAAGA ATTGTGATATACCCAAAAGCCATTTATTTCAGCTATATCCCTATCATTAAT TTTTAAATCCGTCATGGTCGAACACCCTATACTCATTAATTTGATTGTTAC TTATGTTTGGATCGTTGATTTTTAATTTGTTATTGCTAAATAATAAGTGGA ATGTGAAATTATGTGGAATAGATGGCTCTTTTCTCATTTCTTTAGCCATGG ATAAAGTATTTTTTCTAATGATTTTTTTCGTCATATTCGTCCAGAGTACTGA 20 AAAGTGTAGTCGTTATTTCTGTATTAATATACGTATCTTTTTTAGACTTTA CAAAATGTTTTCTATAATCTCGTAATTTCGTGGAACTAGTAGTAATGTAAA AGTAATTATTTTGATAACCTATATTTTGAGTTTTAGTTATTGCTTCATCGG TGAATCCAGTATAGTGATATTTATCTTCTTTATCTTTGAGGTATTTTTCTA 25 AGTTATCCATTTTTCCTTATTTGCTCTATACTCAAAACCGCTTAACACAG TTCCTACCATCATACTCATAGTATCTCCGTTATCATTGCTTCGCATGGAGC CTTCTTCATGGATTGATTCCATATCAAAAGGGATGCTTGCATTAAACACAA TGTCATGATCATCGCAATGAACGTAAACTTCGGCGCCATCACCACTTCCTA CAACATTTGTGGCTTTAACATTAAGGCTAAAATTATCTTTAAAAAATTGTT 30 CGCCAAGTTTTTCGTATTCTTCACGATATTTTTTCGCATGTGCGATAGCAC TTTTTTCAGCTAATGGTTGGAAATCTTGACCTTTGTATTGACTTGCAGGAA CTTTTTCTATTTCGTCTTTCATTGTCGAACAACTTCCTAATATTAGTGTTG TATTACATCTTAATTAATATGAAATACATTATTTAAATCAAGCCCAAAAGC TATTTAATTCAGCAATATCTCTATCATTGATTTTACTCATGTTTATGCACT TTTGGCTCACTTAATTGTAAAGTTATGTTTTGTGTTTTCAGGTTTTTCTTTG TTAGTGAAATCAGATTTAGTACTGAATAATGTTGAAACAACTTCAATTTTG 40 GCTTTGAAATTTGTTGCTTCATTTGCTTTTTTCATGCCTTCTTTGAAATTC TTAGAATCTTTTTTTATTAAAGGTTCATAATATTTTCTATAATTATTAATA TTAGTAACGTTACCTGCTAAATAATAATACTCATTTTGATATCCAACATTC TGTGTCTTATGTATTGCTTCTTTAGTAAAACCGGTATATTGATATTTTTCT TCATTGTCTTTAAAGAACTTTGTTAAGTTATCATATTTTTCTTTTTTGTGCT 45 TTATATTCAAAACCACTTAACACCGTTCCAACCATATTACTCATGGTATCT CCGTTATCATTGCTTCGCATGGAGCCTTCTTCATGTATTGCTTCCTTATCA AAAGGGATGCTTGCATTAAACACAATGTCATGATCATCGCAATGAACGTAG ACTTCGACGCCATCACCACTTCCTACAACATTTGTGGCTTTAACATTAAGG CTAAAATTATCTTTAAAAAATTGTTCGCCAAGTTTTTCGTATTCTTCACGA 50 TATTTTTTCGCATGTGCGATAGCACTTTTTTTCAGCTACTGGTTGGAAACCT TGTTTTGCTTCTTTATGCACTGTGGAACATCCTCCAATTAATAATGTTGAA ACGATAATGGTAGATATCAGTTTTCTCATGATACACCTCAATATAAGATTA 55 AGTATTGAACAAATATAACATTTTTCACATATTAGTTATATTGATTTATA GCAATTTCAAACATATTCGAATAAAAAAATAAAAAGCTTACACAATGTAAT TTGATACATGCATAAGCTTTGTCATATGATTAACGATTTTATTCTGTTTA TCATTTGTTCCATGATTTTGATTGTTGGAATTATTATTTGAGTTGCCATTT

10

Sequence 3426 step.1002h11.cons.ok TAACCCAGCCACTCGAACCATAAAGAATTCATCTAAATTTGAACTGAAGAT AGAAATAAAGTTAAGTTTTCAAGCAACGGATTATTTTTATCATATGATTC TTGTAATACTCTGTAGTTAAAATCTAGCCAACTTAACTCCCTATTGTTGTA 15 ATACTGCGGTAAATTAATATCTTTTTCTCCCAATCGAGTTTGCATACTATA CATACACCTCATTAATTAATCTTTATTATGCCCAATCTAAAATATCATAAT CAATATGCTTTTCTGACGATTTGCTTGGTATTCTTCTGCAATAGGTGAAC 20 TAACTTCCTCTACAAAACTAGTATGTGAGATATTCAAGGTGTTTGCAAATT TAATAATCCCTCCTAAAGCTTGTATTGTATCTATTTCTTTATTACTAAACC ACTGTGTTTCTTTGCAATAAAATTTAAGTAAAGATTTGTTTTTAAAACTAG CTAACAAAGCTAATTTCACACGATCTTTATGTGAAAAGCCGTTAATCATTG AATTTGCGATTAAGTAATACGTATGTGGTGAACTTGAGTCTGAATCAATGA TTTCTGAAATATTAAGTGATCGTTCACTTATAATTTGATTCAATAAGGATT GAGCTAATTTCACACGACGATTAGCACTCGTTTCTTCAATATGATATTCGT TCGCTAAATGACGTAATGCATCTTTACGTACGTTACTTTATTAAACTCAT CAGGATATCGTTTGCTGATGTGGTTCATAATAAATCCTTCACGAATTCCTT TTCTTGAGAAGGTGAATTGTGTGGCGTCAATTTTTTTGAAAAGTGTTTTAA AGACGGAGATAGCCGGCAGAATAATATCGACGCGATCGCGACTTAAACCGT CTAAATTTGTTAGTTCATCGCGAGAACTTTTACGGATTAGATCATAAACAT TGTTAATATCTTTCGAAGTCATCGTATAGTTATGAACGCCACCGATAGGGT ATGCATGTGCTGATTGATGAATGCGTGCAACATTACGTGCAGAACCACCTA CTCCTACGAGCGCAATATGTTGGTTGGATAGCCAGTCTAACTGACTAAATT GCTCACGTAAAAACTGTTCCATATTTTTAATGGCTGTTTTGTCATTATGTT CTTTATCACCAAAAACTGACGCTTAAGTGATACCACGCCAAATGGAAAGC TATGAGCCTCTTTAAGTTGTTTGTCTTTGAAAAGGGTAACTTCGGTAGAAC CGCCACCGATATCGACAGAAATTCCATTTTCAATATCAGTAGTATGTGTAA 40 TCGCATAGTAACCGTAAAATGCTTCATCTTCTTCAGGTACAATTTGAATTT CGATATGAATATCTTGTTTAATTTCTTTAATGATAGCTTCACGATTTTTAG ATTGACGGATAGCAGCTGTTGCGATGGGATATAATGCATCAACGTTAAATT TATCCGCAACTTTTCTAAAACTGCTTAAAGTCTCTTTTAAAACATGAATAC CTTCATCATTCATTCATTGGACTTAGTGAGATATTGACTTAAACGTGCAG ATATAACAAGTCGAATCGTGTTGGAACCAATGTCTATCAAACCAATTCTTT CTTCCATGTTTGCCTCCTATTATTCAAACAATGCGTTTAAAATAATCCCTA TTTAATTTTATTGTACATGATATAGATAAATTGAAAAGAACTTACAGTTAA 50 ACAATTTTAGTAAAAAGAGAAGTATATAAATGTATAGCTTAACTCAGCTAT TCATTCTTCGTGCGTCTTATTCTTATCACTGTTTAAGTTGATTCACATCGT GGAAAACTAAAACTAACATGATACCTAATTGTATTAAGTATGTACAAGTGA TAGGAGAGTGACTTTGGATGGAACGTTTAGAAAACAAAATCGCAGTGATTA CTGGTGCGAGTACTGGTATTGGACAAGCATCGGCCGTGGCGTTAGCAAAAG 55 AAGGAGCACATGTGTTAGCGCTTGATATATCAGATCAATTAGAAGAAACTG TGCAGTCTATTAATGATAATGGTGGGAAAGCAACTGCATATCGCGTAGACA TTTCAGATGATAAACAAGTCAAACAATTCTCAGAAAAAATAGCACAAGAAT TTGGACATGTAGATGTTATTTTAACAATGCGGGTGTAGATAATGGCGCCG

15

10

5

Sequence 3427 step.1002h12.cons.ok TGTTCTAAATTAGCAATAACACTTTCAAGAGACGCACGTGTAGGATTTGCA GTACGTGAATATTCGTACCCTTGTCTTAAATCACCAATATCATCTTGTAAA TAAGTACTTGTTTGATAAATAGGTGTTGTCACTGCTCCAGTATAGTTGTCT 20 GTCGTATGTCCCCCATGTATCATTTGCGTTTTTTTTATTCATTATAAAACT AAAGATGGTAACAATCACACCATTTTGAATGCTTTTTTTAATTCCAACGC TCCTTGTAATGCCGCTCCCGAAGAACTACCAACTAACAATCCTTCTTTATT CGCGACAAGTTTAACATTATTAAAAGCATCTTTATCGGCAACAGTAAAAAT ACCATCTACTAATTCTTTTTCTAAAAATGATGGCCACTTTTCAGAACCAAT CCCTTCAGTTGCATGAGGATGACTGACACCACCATTTAAGACAGAGCCTTC TGGTTCTACAATATAATTTTTTACATCATACGTTTTTAAGTGTTGTGCAAC TCCTGTAAACGTACCACCGGACCCAACACCTGCCACAAAATAATCAATATG TGAAAGTTCATCTGTGAGTTGTTTGGCAAGTGTTTGTGTATATGCCCCAGG ATTATCTTTAGTTTCGAATTGATTCATATATAAATATCCATATCGTGTTGC GTATGCCAACGCCTCTTGCTGTGCGCCAGTCATTCCCTCAGCTTTGGGGGT ACGTCTAACATCTGCACCCAATGCTTTCATAATTGAAATTTTTTCTTCTGC AAATCCTTCTGGAGCAAAGATGATACATTTTACTTTGTGCCGATTAGAAGC AATAGCAAGTCCAATGCCTGTATTACCAGCAGTCGCTTCGACTATTGTATC 35 CCCTTCTTTAAGTCGTCCTTCATCTATTGCTTTTTCAATTAAGTACTTCCC TAGACGGTCTTTGATGCTACCACCAGGATTAAATTGCTCAAGTTTGGCGTA TATTTTAACATTCTCGTCACTAAAGCTTTCTAATAAACTAATGGAGTTTG TCCTATCAAATCGTATGCAATCATTATTTTTGGTTCAGATGACAACAATGA GTATCACTGAACTTAACCCACTTTCTTTATTTATGTTAGCGCTAATTCTTA 40 CTTATCAGATATGAATTATAACTTATCGGCATTGTTTTTGCAATTTCTGAA AAACGTACAATCAATTTGAAATTTAAACATTATTTAAAATAAGTATTTTTA TAATTGATTACGTTTATATGAGAATACATACCGAAAGTGTTATGATAGGGG GATAAGGAGCTGCTTTAATTATGACGAAACAAGATTTATCTTTATCTGTAT 45 TTACCAATGAAAATTATAAGAATCTTCGTTACACATCATCTAGTTTTAGAA ATTCTATGTATGATGAATTAGAGGTTAATAAAAGTCGTTTTAAAAACTGTA ATTTTAATGAAGGTATTTTTAAGAATATAGAAGCAATTTGTAATTGTAAAT TTACAACGTGCGGGTTTAATAATTGTATTTTCGAAGATGTTCATTTTTACA AAAACCAATTTAAAGATTCAACATTTGTGAATACACCATTTGATCAATCCG 50 TATTTAATAGTACTTTATTCCAAAATGCAATGTTCGATAGCAATCTCATTC TAGAAATTGAAGGAACAACATTTAAAGATGTAAAATTCAAAAATTGTGAGT AATTACAAAAACAAGATGTTACTTTAGAAAATATAGACACTTCTATTTAAC 55 ATTCATTATCTTCCGCTTAAGAAAACAATTTAAGATCATAGTTAAACATTC GCTCGTTTAATGGTGTTAGATATTTCGAATCAACTACATAACATTCTTTAT TTTTATCAATAACGTCTCAATGACTTAAAATAATTGAACTATAAATACTAA

AATAATAACAATAGGCATGATGAACTTAATTAAATAATACCACGGTAAAAA TAGGTTGAATTTGTCTTTCCCAAAGCTTTCTTTTAATAATTTTTTATCTAG TAATTGGCCAACCACTAATGTTGTTCCTAGTGCCCCTAATGGCATAAGAAT ATTAGATACAATAAAATCCATATTATCAAATATCGTACCAGCGCCAAAACG CAAATGACTTAGACTACTAAAAGATAATGTTGCTGGGATACTAATGATAAA TACAAGTATACTACCTATGATTGCCACTTTTTGTCTTTTACTATTATCATT TTTAGTAAAATTAGATACATTTAACTCTAATAATGATATAGAAGACGTTAA TGCCGCAAATAAGAATAATAGTAAAAATATAAAGTAAAAGAATGTACCAAA AGTCATTTCGCTAAATACTAGTGGTAAAACCTTAAATAATAAGCCAGGGCC TTCTTGGGGTTGGTAACCAAATGTTTTAAGCGCAGGAAATATAGCTAATCC AGCCAAGACAGAAATTAAAATATTCATTACGACAATTGAAAGTGCTGAAGA CTTTATCGTCATATTTTTAGGTGCATAGCTTGCATAAGTAATCATTCCGGT TGTACCTAGGGACAGCGTAAAAAACGATTGTCCTAACGCAAATAGTACACC TTGAATAGACATATCTTCAACTCGAGGTTGCAGTATATAACGTACACCTTC TAAAGCACCTTCTAAAGTTAAAGATTGTGCTACAACGATAATTAAAAAAGAT AAATAATAGAGGCATCATTATTTTAGAAGCTTTTTCTAAACCTTTTTCAAC ACCTAACATAACAATTACCATTGTTATCAAAATAAATATGCCTTGACCTAA AACAGTCAACCATGGATTACTAATGATTGTTTCAAATTGAATATTTGTCAG CGTACTTGATTTAAAAACCATGATTTGTGCTATGACATAACCTATATA

20

5

10

15

Sequence 3428 step.1003a02.cons.ok

GCATCGAATTGTTTTTACCTTTTTTTACATCTTTAGGATAATCATCCACA 25 GTGGATACACCAACTATATCTTCTCCGATTCCTAAGCGATATAAAATTTCT GTGTTACTAGGAATGAGCGAAATAATTCTATGATATTTTTTATCGCTTTTT TCAGTGTCTTTATTATTAGATGAATGATTGGCATCTTGACCACATGCAGCC AGTACTACAATCAATGCACATATAACTATCCATAGTTTACTTTTCATTTGG AGCATCACCCTTTCACAAATTATTTTTAATGTTCCTATTCATCATATCAAA ATATACCAATATTTGTAGATACAATTTTATTTGATTTTCACAAAATATGAA AAAAGACAACTTTGAATTAAATCTATTAATATATTTAACCCCAACTTGCTT TGTCTGTAGAATTTCTCGTTGAAATTCTCTGTGTTGGGGCCACAACCCCAA CTTGCTTTGTCCGTAGAATTTCTCATTGAAATTCTCTGTGTTGGGGCCACA ATCCCAACTTGCTTTGTCCGTAGAATTTCTCGTTGAAATTTTCTGTGTTTGG GGCCCGACCCAACTTGCCTTGTCTGTGGAATTTCTCGTTGAAATTTTCT GTGTTGATCAGTTTTATAATGTTAGTATCAATCGGTAAAATGCTAAAATGT CTGAGACAATCAACAATGTCCCAGACACATAATGTTTTATAATTTAATAAA TGTTTTTATCGCGTCAGAAATGTATAAATTCAAACCACGTTCACGTTGCTT GTTAATAAACTTTACAAATCGCTCGTCCTCAATATAAATCTGAGCTATATA 40 TTCTAAAAATTGATTGTCACAATTAGGAACTTGTTCTTTCAAAATACATTG TAATTTCTTAGTTTTTCCACTTGCTTCAAGTATAGAAACTTTGTTTAAGTA TAGTTGATTCATTTCGTCAAAAAACATATTTAATTGCTTATTAATTTCCTC AAAATGATTTTGCTGTTCTGATTCATCCTTACATTTTTTGTTTATCTTTATA 45 TGCTTGATAATAATGAGTATCTCCATACTTACTTGCTGCTTCTTTTTCATA CTGTTCATTTAAATTGAAATTTTGCATTGTAGTTACCTCAATCTCATCGTT ATCTTTGTGAAAATGATGTTCTAACGTACGGATAATATCGTTTAAGCGATC TCTTTTTTAACAATGTGATAAAAATTATCATGTAATATTTTAGTTCTAAA ATCACTATCACCTTCAAAATACGTCTGTATTTGCTTTAATGTTAAATCTAA TTCCTTTAAAAAGAGAATATATTGTAACTTTGAAATATCTTGAACATTATA 50 ATATCGGTATCCATTAGCACTCATTTGTTGTGGCACGAGTAACCCCTTTTC ATGATAATAATGAAGCGTGCGTATACTAACTCCGGTAATGTCAGAAAGCGT TTTGGGACTGAAGCGTTCTTTCATCATTTCACCTCCTGAATTAAAGTATGA GGTATGACGTTACGTTAAGGTCAATACTTATTTTTTAAAATAGGTATCTAA AAAGGTATAGCGTTGTTTCCCCTTACCATTAAAATAATTTTTCCCAAAATT 55 ATCTAATAAAGCGTGAAACTCATTTGCATCTTGATTTGAAAATGATTCAGG AAGTGTTAATTCCTGTTTCAATTTATGATAACTTTCTGTATGTTGATATCC CAATTTTCTAAAAATACGTCTAGTATAACTATCAGGTATGAATTCTTTACC TTTAAAAATATATACTATTAAGACATCGGCGGTCTCTTCACCTATACCACG

GATGGTGAGTAATTCTTTTCTTAAGCTATCACCGTATAACTTAGCTATACT ACTATAATCAAAATGATGTTGATTTAACCATAGTAACAATGCCTGTATAGC CTTAGCTTTATTTTATAGAAACCACTCGAACGTATCACTTGCTGCAACGA TTCTAAAGGCATTTCAATATCGTCTGTGCATTAAAAGAAGTTTCTTCTTT TAATCTTGATAACGCTATATCTGCATTGTTCCAATTAGTATTTTGGACTAG **AATTGCCCCAAGCATCATTTCTATTGGCGTTTCTGCTGGCCACCAATATTG** AACAATGTTTGTAACATGTTAACAGATTTTACAAAGACGGTAGCTAAATAT ATAATATGGTACATAGATGATGAAAGTGAGATGACATTATGGGACGTAAAT GGAACAACATTAAAGAGAAAAAAGCCCAAAAAGATAAAAATACTAGTAGAA TATATGCCAAATTTGGTAAAGAAATATATGTAGCTGCAAAGTCTGGTGAGC CTAATCCAGAGTCAAATCAAACTTTAAGATTAGTATTAGAACGTGCAAAAA CATATTCAGTACCTAATCATATTATAGATAGAGCTATTGATAAGGCTAAAG GCGCTGGTGACGAAAACTACGATCACTTAAGATATGAAGGTTTTGGTCCGA ATGGTTCAATGCTTATAGTTGACGCATTAACAAACAATGTAAATCGTACAG 15 CATCAGATGTACGTGCTGCGTTCGGTAAGAATGGAGGAAATATGGGAGTAT CTGGTTCAGTAGCTTATATGTTTGACCATACTGCAACCTTTGGTGTAGAAG GTAAATCTGTAGATGAAGTCTTAGAAACACTAATGGAGCAAGATATTGATG TAAGAGATGTAATTGATGACAATGGCTTGACTATTGTTTACGCAGAACCAG ATCAATTTGCACAAGTTCAGGATGCATTACGTGAAGCTGGCGTTGAGGAAT 20 TTAAAGTAGCAGAGTTTGAAATGTTACCTCAAACTGATATTGAGTTGTCTG AAGAGGATCAAGCTATTTTTGAAAAATTAATCGATGCACTTGAAGACTTGG AAGATGTTCAAAATGTTTCCATAATGTAGATTTAAAATAATGATGACTGC TAATGATTGGATAGACCGGTTGGAATTAATTTCGCATCCTGAAAGTTTCAA TCATAATCATTATATAGCTGTTGGATTTGGTATTGAAGCAATATCAAATAT AGTGAAAACATATTCATATTGAAATTGTTTTCAACATAAAAAATAATTA CCTTTGTCATTCACACTATCGCTTAATATATAAGATAAATCTCTTATTTTC ATTTATATAACTTGAATCAAAAATATTAAAAAGAGCCAAGGACATTCACTT 30 TCTTCTCGAAGAAGAACATAATTAATACAGTTTATTACGTATCTTTCACTT ATAAGAATATTAGTTAATTTGTGTAGCTATGAATATTTTCCTTGTTTCCCA TTTCTTATTAGGATGTTCGTCTAATACCTTAACCTCTGTAGGCTTAACATC . ACGTATTTTAGTTATTTTATACTTTCTAGTTTGATTTCCAGTTTTAAAAATA CACTTTACTACCGATTTTGGCTGATTTTAAATTTGTAAATTGATAGTGCGA ACGATCTGTAAACGTATGACCAGCAATTGAAATATTCTGTTGATTAAGAGA TTCGTCACCTTCTGCAAAACTAACACCTCTATTGAGTTGTTCTGGTGTTGC 40 TGGACCAGGGTATACTGGTTCTTTTATTTGTGCATCTGGAACTTCTATATA ACCAGCCATTTTAGATTTATCGGAAGGTATCTTTGGCGTCGATTTAGATGT CTTTGTCTGTTCTTTTTCCTTTTTATCATAATTTTCAATTTTATGATCGTT ATCTTTTTCATGTAGATAATTATCGATATATGGCTTTGA

45

Sequence 3429
step.1003a04.cons.ok
ATAGTGTTTGATCTAGTGCACCTGCGGATCCAGTATTAATGACGACTTCTG
GATTAAATTTTTCTATTAACAAAGTCGTTGAGATAGAAGCATTAACTTTAC

CTATACCACTTTGTGTTAAAACCACCTCTTTGTGGTTTAGCTTGCCAACAT
AAAATTTAACATGCGCAATATTTATTCATTCATATCATTCAATTTACGCT
TTAAAATCGTCACTTCTTCTTCCATTGCTCCAATAATTCCTATCATATATC
AATATCTCCACGATAGCTAGTTTTAAAGCATAAGTATTTTATCACATTTTA
AATATCTCCACGATAGCTAGTTTTAAAGTATCAATGCTTAAATCACTATGA

TTAAAGACAGTTGCGGGTAGTCATAGAACTTTATTATACAATTAACCTTTCC
AAAGACTTGCTAAATCTTGTAATGAAAAGATACCAGTCATTATTTGTGACAA
TTACGGCTATAATACCAAAAACAAGCATCCATGTTGGGTGTTGGTAATTAC
CAACGATAGATTTTTTCCTACTTGCAATGAGAATTGCACCTAATGTGATTG

GTAGAATCCAACCATTAATCGCACCAGCTATTATAAGTAAACTCACCGGTT TACCAATAAATAAGAAAACAAAAGTTGAAATTACAATAAATGTAATAACGA TAAGATTATTTTATTGAGTAACGATTTGTGTAGTGTTTTTAAAAATGTTG CGCTTGTATATGCAGAACCAATTACTGAGGACATTGCTGCTGCAAATATTA CTACGCCAAAAATATTTTTACCTATAGGACCTAATGCATGTTGGAAAACTG ATGCTGGTGGATTTTCTGAACTAAGCGTAACGCCAGTTACAACAACACCTA GTACAGCTAAAAACAATAAGGTGCGCATGACACCAGTTGTTAAAATACCTG CTACAGCAGATCGATTTACGAAAGGAAGGTATGACTTACCTTTTATACCAG AATCTAGAATTCTATGTGCACCTGCAAAAGTAATATAACCCCCTACTGTAC CACCAACTAATGTAATTATAGGTAATATAAGTTTGAAAGGATGTTCAGGTG 10 CAAATGTATGTACTAATGCATCTCCATAAGGGGGATTTGAAACAACCATGA CATAAGCGACTACTAAAATCATTACGATACCTAGAATCATACTAATAACAT CCATTATTTTCTGACCACTTCTACTAACAAAGATAAGTATCGCAAAAATAG CTGTTATTGCAGCACCCCATTTTACATCAAGACCAAACATTGCATTTAAAC CTAAACCTGCACCAGCAATATTACCTATGTTAAATGCGAGACCACCAAATG 15 CAATTAGTATGGAGATAATAGTACCAAGTCCAGGTAATACTTTATTAGATA GAGCGCCTATATCTATAATAATAGAAATTAATATTGCAAATGCAAAACTAG CATAAAATTGTGCAGTAAACACTGCAGTTTGAGTCAGAAATGCTGGACCAA TAGCTGATGTAGCCATTAAAAAAACTGAACCATATAATAATCGTCTATGTT TTTTTGTGAATTTAAAATTTTGTCCTTTTTGATTGAAATCTTGTTTTGTAT TTTCCCCCATCTTTTGACCCCCTATAAGGATTGAATATCAATGCCTTCTTT CATTAATTCATTTCTAATTTGCGTAACAAATTCTAATGCGTGTTTTCCATC TCCGTGAACACAAATTGTATCAGCTTTCAAATCGATGATTTTTCCATTTTT ACTTACAACTTTATTTTCCAAAACCATTTTTAATGCTTGTTGGATTGCTTC 25 GTCAGTATTAGTGATAGTGGCATCGGTTTTTTTTTTTTACTACCAATTGTCC GTCATCTTCATAACGACGGTCAGCAAATACTTCCGAAGCTACCTTAAGCCC CACTAATTCAGCTTCCGAAATAAGTAATGTATTCGCTAAGCCGACGAAAAT TAGATTTGAGTCGAAATCAAAAACTGCTTGAGCAATTGCATGTGCAATTTC TTTATTTCTAGCCCCCATTTGATAAAGGGCACCATGAGGTTTAACATGCAT 30 CATTTTTACATGATTGATTTTACAAAAGCCACTTAACGCACCTAATTGATA TATAACTAAGTTATAAATTTCATTTGGAGTAAGATCCATTTTACGACGACC AAAGCCTTTCAAATCAGGAAGACCCGGATGTGCTCCAATACTTATATTATT TTTTTTCGCTAATTGAACAGTTTCATTCATAACATCTTCATCACCTGCATG 35 ATAACCACAAGCAATATTAGCAGAAGTTATTAATGGTAAAATGTGCTGATC TCCACCGAATGTATAGTTACCAAAAGCTTCTCCTAAATCACAATTTAAATC AATTTTCAACTTCATTTCACCTCTTTAATGATTTGATGTTTTTCAAGAAAT TTTATATCTACTTTACTGGCATCGCCTTTTGCATATATTGGATAATTTAAA ACCGCATATAAAAAGTCAGCTGTAGTAGTAAAACCTTCGATGACCATTTCA TCTAACGCAACTTTTAATTTATTAATAGCAGTTTGTCTATTAGAATCCTTT 40 ACAATCACTTTAGCTACAAGTGAATCATAATAAGGAGAAACCTGATAACCT GTGTAAAGTAAAGAATCTACACGTATATTAAATCCTTGTGGTAAGTGTAAT TTATTAACTTTTCCTGGAGAGAATTAAATGCTAAACCAGTTCAAGCTGGTG CTTACGATATTCATTTCGTAGACAATGGATACCAATACAACTTCACTTCAA ATGGTTCTGAATGGTCATGGAGCTACGCTGTAGCTGGTTCAGATGCTGATT 45 ACACAGAATCATCATCAAACCAAGAAGTAAGTGCAAATACACAATCTAGTA ACACAAATGTACAAGCTGTTTCAGCTCCAACTTCTTCAGAAAGTCGTAGCT ACAGCACATCAACTACTTCATACTCAGCACCAAGCCATAACTACAGCTCTC ACAGTAGTTCAGTAAGATTATCAAATGGTAATACTGCTGGTTCTGTAGGTT CATATGCTGCTCAAATGGCTGCACGTACTGGTGTATCTGCTTCAACAT 50 **GGGAACACATCATTGCTAGAGAATCAAATGGTCAATTACATGCACGTAATG** CTTCAGGTGCTGCTGGATTATTCCAAACTATGCCAGGTTGGGGTTCAACTG GTTCAGTAAATGATCAAATCAATGCCGCTTATAAAGCATATAAAGCACAAG GTTTATCTGCTTGGGGTATGTAATCCAAATCTAATAATATAATTAGAAAGA 55 GTGAGACAGCATTCGTTGTTCTCAGCAACGAGGACTAAAATTGACTCCT TGTATATAAGTAAGTTTAATTTTAGTTATCGATGCAATACATTAAAAAGC CTAGGACACATTGCTTTGTGTTCTAGGCTCTTTTTTATTTGAAAGTCTAAT TAAAATGATTTATATAACAAAGTGATGTTAACAAAGTGAAAATATAACATC TAGACTGAAAAAATATAATAAAATTAAATGATATTATGTTTGTATTTATTT

5

Sequence 3430

step.1003a06.cons.ok **GTATTATATTCAATATTGACGACATAGTCATCTTGATCTTCTTCAATAATA** AATGACAAATCAAATTTAGCTGTTGTTGACTGAGGTGGAATATGTGTCAAT TGACTATGTCCAAAATTCGCATGATTTGTTTCATTATTTTGAAGTACGAGC ATCACATCAAATAACGGATTATGTGAAGCATCTCTTTCATCAACAAGATCA TTGACTAAGCTTTCAAAAGGATATTCTTGATGTTCATATGCCCCTAGACAC ATCTCTTTCATCTCAGCCATCAATTGATCCCATGTCTTTTGATCATGTGGT CGACCACGATATACAAGTGTATTAGCAAACATACCTAACATATTTTCAGTA 15 TCGCGATGAGTACGCGCACTGATTACACTACCAATAGCGATATCGTCCTGA CGTGTATATTTGTGCAATAATACCATGATTGCACTAGCAAAGAACATAAAG TCTGTCACTTGATGTTGTTCTACATAAGATTTCAATTGCTGTTTGATTTGA CGATTGTAATGAAACGTCAACATATTACCGTTGGTTGTTTTAATACTTGGT CTAGGATAATCCGTAGGCATATTTAATATTGGAACCTGATTTTCAAATTGC 20 TGTAACCAAAAGTGACGTTGTTTAGATAAGTCTCTGTGCACCATCCACTCA CTATAATCTTTATACTGAAGCTTAAGTTCAGGTAATGATTTATCTTGGTAT AAAGCGTTCAAATCAGATAGTAAAATCGTGTTACTCATACCATCATTAATA CTATGATGAGTATCCATAAATAAATAATCTTGTTGTGGTCCATGTATATAT TTAACTCGCATCTGACTTGGTTGTTCTAAATCAAACGGTTCCATAAATGAT TGAATAATATCTTGCTCGTTCGTTAGAGATGTCGTTACCTCTTCAAAATCA GGCGAAACATGTGTCGCAATACGTTGTTTAACTTCATTGTCATCAATTACA TATTGTGTTCGTAATATTTCATGACGTTCAATCAACTTAGATAATGCACGT TGCAATTGCATAACATTAAGTTCAGAAGATAATCTCCATAAGAATGGAATG 30 TGAGACGCACTTAAATCATATTGATACGATTCATTTGCTTTGGGAATCACT TCATAGACATCATTTTGCAGTTCTTCAATTTGTTGTCCAAGTTGCTCTACA GTAGGCGATTTCATTAAATCACCTACTTTAAGACGTTTTTTTAACCTTTCT TCAATACGGTTTACAACTAATGTTGCTCTAAGAGAGTGTCCACCTAGTTCA AAGAAATTATCTTTAACACCTACCTGATCAACATGTAAAATCTCTTCGAAA ATACGGCAAACTGTGCGTTCAATATCGTTACGTGGTTCTACATAATTTCTA TTATTCTTTAGATTAATTTCAGGTAATGCACGCACATCTAATTTCCCATTC ATCGTGATAGGTATACGATCCACCTTCATAAAATGCACAGGTATCATATAT TCAGGTAATGTTTCACTTAAAATATCTTTTAATTGACCTGTTGATTTTAAT 40 TGCGATGCTTCATAATATGCCACTATTTGTTTATCTTGGTCTTGCTCTCGA ACGATGACTACAGCTTTATTAATATCACGTATAGCTTCTAATGCTTTTTCA ATTTCTGATAATTCTATTCTAAAACCGCGTATTTTAACTTGCTTATCGATA CGACTAATATAATCAATATAGCCATCTTCTTGAAGACGAACTAAATCACCG CTTCGATAAAGCATTTCATTGTTAAAAGGTGACTGAATAAAACGTTCAGCA GTAAGTTTAGGTTGATTTAAATAACCTTTTGCTAAACCTGCACCACCAATG CACAATTCACCTGGAACACCTACGCCACAAATACGATTACCTTGCATGACA TAAACTGTCGTTCCACTAATAGGTAAACCAATAGGTATACGTGAAGGCATC TCTTGTGGAATCGCAAAAGTTGTAGTAAATGTTGTATTCTCTGTCGGTCCA TAACCATTGATTATTTGAGGATGACACTCACGCGAATTTAATAAGTGAACC CATTTAGCATTTAACACTTCCCCACCAATAAGTAAATAAGTTAAAGATTCT 50 AGTGCTTCGATACGTTCGCTAGCAATTTGATTAAATAAAGATGACGTTAAC CACATCGTGTTGACTTTATTTTCAGTAATAGCTTGATCTAACAATTGAGGA TTTAACAACGTATCTTTAGATGTAATGACTAACCGTCCACCATTCAATAAT GGACCATATATTCAAAGGTTGCTGCATCAAAAGCTACTGTTCCTGATAAT AAGACGGTTGTATTTTCGTTCAATTCGACATAATTTGGATTGTGTACTAAG 55 CGATCAATTCCTCTATGTGGCACCAGTGTCCCTTTAGGTTTACCAGTCGTT CCTGATGTATAGATGACATAAGCGATATCTTCTGAACAATTAATGCCTCTC GGGTTATCAATATCATGTTCTCTTGAATCAACTATCAATTCTATATCCATT TGAGGTAAACCTGATTGAAATGATGTACGATATGTTACAACCGCTTTAGGT

TTTGCGTCCTCAATAATATAATTCATTCTTTCTTCAGGATAATCCGGATCA ATTGGTATGTAGCCTGCACCAGCTTTCAAGATCCCTAACATTCCAATAATC ATTTCTAAGCTGCGTTCTGCTATTAATGCCACCATATCATTAGGTTCAATC TGATGATTTAAACGCAATCTATATGCTAAAAGATTCGCACATTGATTTAAT TGATGATATGTCATCGATCGTTGTTCATATTGCAACGCAATACTATCGGGA TGTTGGTGCACTTGACGTTCGAATCTTTCAACCACGGTTTTATAAGTGACC TCACTATAATTAATGTCATTGTTTTGAAGATTGATGTCATTATATTTAGCT AAATCTGAGCGATCACTGAGTTTTATATCTTTAATTAATAATGATGGATTT TGTGTAATTTGCATATAAATCCCATTAATTAATTTGACTAACGTATTTACA 10 GTTAATTCATCATAAACGTTGTCATTATAAACTATATCAAAACCACCCTGC ACATGAGGATAAAACTCTAAATCCGCGAATGATGATGCTTCATTGTATAGA CGATGTATATGATGACATATATGATTAAGCTCAAATTGTTCTTGTACTTTT TCAATATGAATCATCGTTTCTACATCTATTTGTACTGCTTTAGGTTGAACA ACAAAAGACGCACCACACATTTGAAGCTCTTCAAGTAGCGCGGAACACTCA TCCACCATATCTTTTACGGCGTCACTTTGACTAATACTTAAATTAAGTGGG 15 GAAAAATGGATGCCTAACGTCACATCAGAAGACTGACTTATAAAATGATGC GCTAAGTAAATACTTACAATCCACGCATCAATGTCTAAAGATGGTAGTTCT GCATGCAAAGAACACATTTTTTTTTTTTTCAGATGTATTCTTTACAGGTATG TAAGCGTAATTATCACCGTCTGCATTCAATAC 20

Sequence 3431 step.1003a07.cons.ok

5

AACATTAAGATACTCCCCTTGCTCATTTACACCCAAACTAGTGATAATTGG TATTATGTCGCGTGATAACATTTTTTCTAATAGCATCGTGTTGATTTCTTT AACTTTACCAACGTAACCATAGATATTTTTATTTAAAAATTCGGCGCTTAC AAGTTCTTTTATCTTTTCTTTAAATTGAAAAATTCTAAATTAGATTCTTT AAGTCTTTCTAAAAGTTGATGGCCAACTATGTTAATTAAAGCATCATATAT GATAGGTAAATCATTTTTAGCAGTTACTCTCATGCCATCAATTTTAATAGT 30 TGAATGATTGTTTTTAGTTAATAAATTACTGATGACTTGGCCGCCACCGTG AACAATAATTATTTTTTTTTTTTCAAGGTGCCAAGCATTAATTTGTTGTAT AAATGCGTCGTTTAAATTTTCTATAGCTATACCACCGAGCTTAATTACGAT GATGTTTTCATATGTTCCTCCTAAGTGGTGTATAGTGCGTTGATTTTAAC 35 GTAGTCATACGATAAATCACATCCCCATGCTTGACCTTCACAATTCCCTTG ATGAAGGTCAAGCTGAATTGATATTTCTTCAGCACTCATTATTTCTTGAAT TTCTTCTTTATCGTACTTTACTGGTGAGGATCTTATTAATACAGGTATCCT ACCTATAAAAATGTCTACCTGATTAATATCAAAATATGTTTTAGCATAACC TGCAGCAGCAATAATTCTACCCCAATTAGGATCTTCGCCAAAAATTGCGGT TTTTACTAAACTTGAACCCACCACACTTTTAGCAATCATTCTTGCAGCACT AGATTCTTTTGCACCTTTAACCGTGACTTCTATTAATTTAGAAGCACCTTC GCCATCCCTTGCAATACTTTTTGCTAAATCGGTCATAATATATAGAAGCAT CTGCTTAAATTTATAGTAGTCTTCGCTGTCTTTTTTAATTTCGTTATTATT TGTACATCCATTTGACATCACAAGCACCATATCATTTGTTGAAGTGTCACC ATCTACAGTGATTGATTGAATGTAACTTCAACCACATCTTTTAAAGCCTG 45 TTGTAATGTTTGTGATGAGATGTTAGCGTCACAGGTTATAAATGCTAGCAT TGTAGCCAAATTAGGATGTATCATTCCTGACCCTTTTGCTACACCTGCCAT CGTTACTGTATCGCTACCAAATTCTTCGTTTACAACGCATGTTTTTGTATG AGTATCCGTTGTTAATATCGCTTTTGCAAAGTCATCAGCATTACCGTTTTT AACTAGTTTGGAAAAGCCATTCTTTAGAATAGACATTGGCATCACCTTTCC AATAACACCAGTAGATGCGACACCAACATATTCTGGTTGAATTTGTAATTT ATTTGCGGCCAGTTGTTGCATTTTAAAAGCATCTTTTTCTCCTTGTTTACC AGTACAAGAATTAGCAATACCTGAATTAACAACAATAGCTTGCATTTTACC ACTTTTTCGATGCTGTTTTTTGTTAATTTTAATGGTGCAGCAATGACCTT ATTAGTTGTAAATACACCAGCTACATTTGCAGGTACTTCTGAAACAATCCA ACCAAAGTCTAATTTTTTTTTTTTAAAGCCAGCGTGCAGACCATCAGCTGA AAATCCAAGAGGACTTGCAATATTTCCCTTAATTATATTCATAATTTAGTC CCCCTATATTAGATATAAAGGCGCCAAAATTAAACCATCAGTTTCGTCG

AAATTAAACATCAGATTCATGTTTTGAATTGCTTGTCCAGCGGCACCTTTA

ATTAAATTATCAATAACTGATGAAATTGTTAAAACACCCGTGGTTTCGTTA TAAACAAAACCAATATCAGTGTAATTTGTTCCTATTACTTCATTTAACTGT GGTAATCCATCTTTAATTCTTATGAAAGGCTTATTTTATATACATCCTTG TAGGTAGATTCTATTTGATTTATTTTAACTCCGTTTTCAAGCCGTGTGTAT ATAGTTGCAACAATTAATTAGAATCTAGTGATTGATTGTCAGATTGTACCT TAGCAAGTGCTTTTTCAATCTTATCACTACCTTGTAGTGAACGTGTAATTG CTTGTATATCTTGTTTTTCATCTGTGACATGTTGATCTTTTGAATCCCTAA TTTGATCAGTATCTGATGCTATACGTTCTAATGTTGAGCGACGACCATCAT TACTTTTATCGTCTTTACTATCACTATCGGATTGATTTGTTGTCGTACTAG 10 CTTTGTTCAGAAAGCTTATTATTAGAGTCAGACTTAAAATCTTGTTGGATT ${\tt TTATCTAATTTATCAATAACCGACTCTTCAGAATCATCAGTAGTTGCATTG}$ CGTGTACTAGCATTTGTATCGTGTACTTTATTATTTGAATCATCTTTTTCA TCGGTTGTTGAGTCACTAGGTTTAGAAGCACTATTTTCACCTTGTTGACGG 15 TTATCAACATTTTTAGCAATTGAATCTAAATCCGACAGTATTTTATCTAAG TCTTTAGTCATATCATCATTATCTTTTTCAGATGTATCGTCATCTTCAGTT TTTGATGATGTGGCACTAGAGTCTGTCGATTTTAAATGATTATTTTATCT TTTGCATCATTTATAATACGGTCAATACTTGATTGATTATCGACTTTATCT AAACGTTCTTCAAAACTTTTGATATCTGCGTCAGAAAGTTCTTTCAAATCT ${\tt TTAATATCATCTTTAGCTTGTTGGATTTTGTCAGCGATGGAGTTACTATTA}$ 20 GAAGTATTTCAACATTTGATGATGTACTTTCTGAATCTGCAAAAGCATCT TTTGTGAAGCCATAACCAACCAGCGAACCACTAAGTAACAACGCAGAACAT GACAGCTTGAGGTAGACACCAATTTTATCTGTTCTCTTCATTTACACATAC TCCTTTAATAAAGTTACCTGTATTATTCTTTAAATAGATTTATATGATTTA ATCAAAAATATACATATCACATTATAATACATAATTTCATAGATTTGTAGA TAATGAACCTAAAATAACAAATTTAAAAAAACAAATTTCTTGTAATTATTAG TAATTTGGTATTACACTTCTTT

30 Sequence 3432 step.1003a08.cons.ok TGGATGAACTTGTTGTCCTTTAATAATATGACTTGCTTCAATAAGATCAGA TAATCTTGCATTCGTGCATGAACCTAAAAAAACATAACCTAATTTTATATC TTCGGCTTTTTGACCTGGGTGAAGTCCCATATAGTCATAAGCACGTTGGTC 35 TGGGTTAGTTCCCCAAGTTACTTGAGGTTCTAAATTTGTTACATCAAGTTC AATAACTTTATCAAAATAGGCATCATCATCAGAATAAAGTTCTTTCCACCA CGCCATAGAACTATCAAAATCAGTAGCATAAGGACGACCTTTTACGTAATT AAAGGTTGTTTCATCAGGTTGCATTAAACCATACTTTGCTCCTGCTTCAAT 40 AGCCATATTACAAATCGTCATACGTGCTTCCATGGATAAATTTTTTATAGT TTCTCCTGTAAATTCAAGAGCATAACCAGTACCGAAATCTACACCATATTG ATTGATTAAATATAAAATAATGTCTTTAGCATAAACTCCAGCTGGTAAAGA TGTGGCAAATACATGTTCAACCTCGCTTGTTCCTATCCCAAATGCGATAGC ACCAAATGCGCCATGTGTAGCAGTATGTGAATCTCCACATACAATAGTTTT TCCTGGTTGAGTTAATCCAGTTTCTGGTCCAACCATATGCACAATACCTTG TTCGTCAGAACCCATATCAAAAATATGTACACCAAAGTCCTTAGCATTTTG TTGTAAAGTTGTAATTTGTTTATTAGCAATTTCATCTTTATATATTAAAAAAT ATCAATTGTGGGAACGTTATGATCTAAAGTTGCAAAGGTTAGATCAGGTCT TCTGAGTTTACGATTTTGTATTCTAAGTCCTTCAAACGCTTGAGGAGAAGT 50 GACTTCATGAATGAGATGTAAATCAATGTATAATAATTGTGGTTCACCTTC TTTTCCATGAAGCACATGTTTTTTCCATACTTTATCAAACAGTGTTTGACC CATAATTTTCTCCTCCTCTTATAGATATTTTTCTTTAAGCAATTTAAAAAAT TTCTGAAGTTCGATATTGTCCACCTAAATCTGCAGTTGTCTTATTAGATTG AATAAACGAGTAAACAATTGACTCAAGTTCGTTAGCAGCATCATTTTGATT TAAACTTTCTCTTAAGCAAAGTGCTAAAGATAGAACCATACCAAATGGATT CGCTTTATCTTCATTAGCTATATATAAAGAACAATGTGAACTGACCTGTTA AAAGTCGTGCAACAAGTCCTCCACCTAAGTTGTGGATAGCTTTTACATTTC CATCATTGGTAGCATTGATAGTTGTACCATATGGAGCGCCATAGTCAATAC

CAAAGTGAGCACCACCATTAAAACTATAACCAGGAGCACCACCATTAGGAT AATACCCCGTAGTAATTGGGAATTTAGTGAACGAAGAACCATCTCCACCGC CTGCAGAGTCTAAACCTTCATTAAAGAAGTCTTTAATACCATTTTTAAGTT TCTTAATCATAGCTGTCATTAAATCAAATGGTAATGGTGCATTTTTCATAA AGTCTAGGTTAAAACCAACTTTCTCAAAGACTTTATTTACCAATTTCATAG GATGACCTACATAATCAAAAACATCTCCAATACCCTTGATAACAGTGCTAG ACACATCTTTAGCTTTATCAAGTGCTTTTGTACCTATGTCTTTTGCTTTGT CAAACGTAGTACCACCTATGTCTCTTGCTTTACCACCAATGTCTTTTACTT TATTAACATCATTTTTTACACCAGAGCTAATAACATCTAATATACCGTCTT TCTTTTTAGTACCTTTACTAAATTTAGGTAGTTTTTTTCTTCTTAGTGTCAT ATCCTGAATTAGATAAAATAGCATGTGTTTGCGCGCCCACTATATACACTTG AGCCTTTAGGTAAGAATGTTGTTGTATCTTTGTTAGGTGTTAGTGCCATTC TTCCGTTAGGATAACGGATCATTTCATTTCTAAAGCCACCAGGTCCATTAC CTCGACCTCTATCTCCTACAGTAGCCATTGTACCTTTATTGATTTTACCGT TGGTAATATAACTTTGTGTATGCGTAGATTGAGTACCTGTAGATAATTTAA TCTTAGGTATTTTATCCATACCTAATTTATCTGCGACCCAGTTAACACCTT TGATTAATCCATTAAGGCCTTTTTTAACGCCTTTAACCATTCCACCAAAAA GATTCCCAATTTACCGGTAACTGTTTTGATACCGTCTCTCATTTATTCA TGGTGCCCATAACTTTCGATTTCATGCCATTTACTATAGATACAGTAGTAC TTTTAATTCCATTCCATTTCTTGCTCATGAAGCCACCTACAGCATTCATGG TGTTATGAGTACCTTTTTTAAGTGATCCCCAAGCACCTTTGACGCCTGACC ATAGAGCTTTCGCTTTATTAACAGTACCTTTTTTAATACTGTTCCATTTAG AACTCATGAAACTGCCAACTGCTTTAAATATGCCAATTGTACCTTTTTTGA GTGCATTCCATGTATTTTTAACTCCAGACCATAATGCTTTTGCTTTATTCA CTACTGATTTTTTTATAGCCGTCCAGATTTTAACTGCGGCATTCTTTACAG CATTAAATATTACAACAATACCTTTTTTTAATGCGTTAAATACAGATAGAA CACCTTTGCGCAAAGCTCGAACGATTCCTAACACACCATTTTTTAATGCAG TCCAAACTTTAATAGAGAAACTCTTAATAGCATTAAATATCGTAACTACTA TGCGCTTAATAAGGTTGATATTAAATTTTACTTGCGCAACATATGCTTTAA TAAACTAAGTAAATTAGAAGTACAAGATCGAACACAAGCAGTAATATATGC GTTCCAGCATAATTTAATTCAATAAATTATTAAAGGCGAAAGTAAAGATAC ATCTATCGATACTTTCGCCTTTCAATATTATCAGTCGCTTGTGTGATGTTC TTC

35

10

15

20

25

Sequence 3433 step.1003a11.cons.ok TTTAATTGTTCTACTTCTGACAGCTCTTCTAATCCTTTACCGTAGGTATAT TGTTTACCAACTTGTTGTGAAAATCTATAACTTTCCCCATTTCGATACCAT CGCCACCAAGTTTTCACTTGCGTCCTATTTCTAATATTTAATTCTTTCATA ATTTCTTTTGTTGAAAATCCTGCTGCTTTCATTTCAACTGCTTTATACTTT GTTTCTACTGAATAAGAAGCTCTTTTCATAGAAAAAACCTCCGTATGATT CATTTTAATATGAATTCAACGAAAGTGTTTTTATATAATTCCCACAAATTG TCATTAATTTCTCTTCTTGACGGATACGTACAATTAAAAAATAAGCATATG 45 GAACTAATAAGAGTGTTGTGTATGTAGCATTTGTTAGTAGTAATACACCAA TTAATTCGGGAATGATATTTAAAAAATAGTTTGGATGTTTCGTTACTTTAT TCCAAATACGACCTAATGTCTTAATAACTATAAATAGCATGATATAAGCGA TGATCAATATGATTAAGCCAATGCCGTTAAGTAGACTAAATGTATCCTTAC 50 GAATGAATGCTTCTATAGCTGCACTCATGTAAATTAATACATGCGTAATGG CTAGATATTTTGAATTTTTCACACCATATTCCACCGCGCCCTCTACCTTTA GCTGTTTTGCGTGTTGCATAGATATCTTTAAGCTGATGAGTCGAATACAGA TATATATTCTTTTGCTCGTACAATACAAAGTATTTTATATAGAAAATGTTT 55 CAAATGCCATTAACTATTTATTAACTTTAGCACCAACTCATAACTCTTCTA ACACCTCACATATTAAGTTCAGTTTTTCGGATAATTTAATACTTTTAAGGA TATTAAGCGCTTACATTGATGTGATATATTTTTTTTAACGAAGATGATAGG

ACCATTAGCTGTACAACGCAAATTATGGCTCAGAAACTTTATGCAAGCGTT TTTTGTCGTATTCTTTGTTTACATGGCGATGTATTTAATTCGAAACAATTT TAAAGCGGCACAACCGTTATTAAAAGAAGAAATCGGATTAACAACATTAGA ACTAGGTTATATAGGATTAGCGTTTAGTATTACTTACGGTTTAGGAAAAAC AATACTCGGTTATTTCGTTGATGGGCGTAATACGAAACGTATTATTTCCTT CTTATTAATATTATCTGCGATTACAGTACTTATTATGGGATTTGTATTAAG TTATTTCGGTTCTGTGATGGGGCTATTAATTGTATTGTGGGGGCTTAACGG TATATTTCAATCTGTGGGTGGGCCTGCAAGTTACTCAACGATTTCAAGGTG GGCGCCTCGAACAAGCGCGGTCGTTATTTAGGCTTTTTGGAATACATCACA TAACATTGGTGGTGCTATTGCTGGTGGTGTCGCACTTTGGGGCGCGAATAC TTTAATCATTGGGATTGTGACATTATTTATTGGTAAAGATGATCCAGAGGA ATTAGGTTGGAATCGTGCCGAAGAAATTTGGGAAGAGCCTATCGACCAAGA AAACATTGATTCTCAAGGTATGACTAAATGGGATATCTTTAAAAAATATAT ${\tt CCTTGGAAATCCTGTGATTTGGATTTTGTGTATCTCTAATGTTTTTGTATA}$ 15 TATCGTGCGTATTGGTATTGATAACTGGGCACCGCTATACGTATCAGAGCA TTTACATTTTAATAAAGGTGATGCGGTGAATACTATTTTTTACTTTGAAAT AGGTGCATTAGTAGCTAGTTTATTGTGGGGCTATATCTCAGATTTATTAAA AGGTCGTCGTGCGATTGTAGCGATTGGATGTATGTTTATGATCACCTTTGT 20 TGTACTCTTTTATACCAATGCAACAAGCGTGACAATGGTCAATATTTCTCT ATTTGCATTAGGCGCTTTAATCTTCGGTCCACAGTTACTCATTGGTGTATC TCTGACTGGCTTTGTTCCTAAAAATGCAATTAGTGTCGCTAACGGTATGAC AGGTTCATTTGCATATCTATTCGGGGATTCAATGGCTAAAGTGGGTCTGGC TGCAATCGCTGATCCAACACGTAATGGTTTAAATATTTTTGGGTATACGTT GAGTGGTTGGACAGATGTCTTTATTGTATTCTATGTAGCTTTATTCTTAGG 25 AATGATATTATTAGCCATTGTTGCTTATTACGAAGAAAAGAAAATTAGAAA ATTAAAAATTTAAGATTAAGTGAATTTAAATATATACTCCCTACTATAAAT TGCTTATTATAATCACTTGGTGACATATGTAAATATTTTTTAAAATGATAG CAAAACATTTTATACTCAGAAAAACCTACTTTTTCAGCAATTTCATAATGC 30 TTGTAGTGCTGGTCTAAAAGATGTAATGATTTTAAAATACGATAACGATTT AGATAATCAACTATCGTAATGCCTACATGTTCTTTAAACGTCCTCATGGCG TATGACTCACTTACATCAATAGGATTAATTAAGTCAAGAACAGTCACTTTC TCGTAATCAATTTTTAATAATGGTTGAAAGGCAGTATGATATGCCGCGTCA TCATTGGTAGAATGTGGGCGTTCTAATAACCTTTGAACTAATATGTCTAGA ATATGCTCTAACTGAGTGTGGTCTACTGGCTTTAGTAAATAATCAAGAACA TGATGTTGTATACCGGCTTTCATATATTCGAAGTCGTCATAACTCGATAAA ATGATAATCTGGCAATCAAGGTCTTTGATGTCATCTAGTAGGTCAACACCA TTTTTTCGAGGCATTCGTATATCAGTAATGACGAGTTCAGGTTGATGTTGG CGAATTAAAGACAATGCTTCCACGCCGTCTTTGGCAGTATAAACAGTGGTG AAATGATAGTCCTCCCATGGAACCATTTGCTTTAAGCCTTCTCTTATAATC GTGGTATTTGGTAACACATTAATGTCCCTTGCTGGCTTCTTGAGAAAATGT 45 GCAGACGTGCATATGTTCCATATTGAATCATGGCTCTATTATGTAAATGAT TTAAACCTAGGTGTGTCGTATCAAAAACATCGTGATGAAGGGATTGGCGCA CGTGTTCTAAATGTGATGGAGACATACCGATGCCATTATCATGAACCAGAA TATGTAATTTGCGCTTCGTAAGTCTGATACGAATTGTTATCTTTAAAGGTT CACTATCACGACCATGCTTGATGGCATTTTCTACGAGTGGTTGAAGCATCA TCTTACCAATTGTTTGATGTTGTACACCCTCAGTAGCATCGATGTAAAGCT 50 GTATCATATCATCGAAGCGGATATTTTGTATGGCAACATACTGCTCAATGT AGCTTAATTCTTCTGCTAATTTGACTGTGCGATGCTGTGCGTAGAGAAT **AACGTAGCATTTGTGATAGTTGTTGTATGACTGTTTTGTGCTACTTTGGGTG** AAAGAGGAAT 55

,

Sequence 3434 step.1003b04.cons.ok GCGCGGCAATTGAACAAAAGAAAAAAGGTATTGAAACATTAGTAATTGAAA

AAGGTAATGTTGTTGAATCAATCTATAATTATCCAACACATCAGACTTTTT TCTCATCAAGTGATAAATTAAGTATCGGCGATATTCCTTTTATTGTTGAAG ATAGTAAGCCAAGACGTAATCAAGCGCTTGTATATTATAGGGAAGTCGTTA AACATCATCAACTTAACATACATCCATTCGAAGAAGTTTTAACAGTTAAAA AAATAAACAATAAATTTGCAATTACAACTACAAAAGGTGTATATGAATGTA AATATTTAACTGTTGCTACGGGTTATTATGGTCAACATAACACTTTAGAAG CGGAAGGGCAGAATTACCAAAAGTATTCCATTACTTTAAAGAAGCACATC CGTATTTTAATCAAAATGTTGTTATTATTGGAGGCAAAAACTCTGCTGTTG ATGCTGCCTTAGAATTAGAAAAAGCTGGTGCTAATGTAACTGTTTTATATC GTGGCGAACAGTACCCTAAAGCAATTAAACCATGGATATTACCCAATTTCG 10 AATCATTAGTCAATCACGAAAAAATTACGATGGAATTTAATGCGACAGTAA CCAAAATTACCGATCATTCAGTGACTTATGAAAAAGATGGTCAACTTATAG AAATTGATAATGACTACGTTTTTGCTATGATTGGTTATCATCCAGATTACG ATTTCTTAAAAACAATAGGTATTGATATCCATACCAATGAATATGGAACTG CTCCTGTTTATAATCGAGAAACATTCGAAACAAACGTCGAAAATTGTTATA 15 TAGCTGGTGTTATTGCTGCGGGTAATGATGCAAATACTATTTTTATCGAAA AAACACCTCTTGAAACATAGAGCTTACAAAAAGCTTGGGATACTAAACAAT GTCCCAAGCTTTCTTAATGTATAGTCAATCAATGACTCAATTAAAATGCAC ATATTAATAATAGGTAATCCTTAATTATAGTATAATTGCACTAAAGAAGTT 20 TCATAGACAATGCATACAACTAATAGAAATCGGAGTGTGACAATGAACTTG ATACGAATTTTGTCCCACTCTTTTTAATTACTCTTCGAAATATCGCTCTAA TTGATTTTGAGTCATGTCTTGACTCAAACCAACTAGTAATTTTAGCCTTGC CTTTGGTCCATTTAAACCGTTCGAAAAAATAACACCATTATTTTTCAAATC TGCGCCACCACCTTCATAAGCATATACAGGACTAACAATACCATTGAATGA TCTAGATACGAGAACTAGAGGAATGTTTTTTCTTTAGACATTGCTGTAGTCC ATTAAGACAACTTTTTGGAAGGTTACCTTGTCCTAGTGCTTCGATGACTAT ACCATCAACGTGTTGTTGTGAATAAAATGATAGTACATCATCTTCCATACC CATGTATGCTTTTACAAGTGGAACACGTAAATTTACATCGATATATTGGTA GGTAGTTTGTCTGTAAGGATGATGATAAAATTGTACTCGATTCTTGGTAAG 30 TACACCTAGAGGCCCCTGATTAGGACTTTGAAATGTATTAATATTCGAAGT ATGTGTCTTTGTCACATTACGAGCAGTGTGAATCTCATCATTAAATACGAC CATAACACCTTTATGATTAGCCTCAGATGAAGAAGCAACCCTTATAGCAGA AATAAAATTATAGAGACCATCGGAACCAATTTCATTGGATGATCTCATTGC TCCAGTAATTACTATAGGCTCTTGAATATCAATTAATAAATCTATTAAAAA 35 AGCTGTTTCCTCAAGTGTATCTGTTCCATGAGTAATGACAAATCCATCATA TATATTTTCTTTAGAATATGTAATGATTTCGTCTCTTAATCGCACAACATT CTCTGCATATTGACTAATGATATTTTGATGTTGTGATATTGGATTTTCTTC ATTCGTTATCACTTTATTAGTTTGATCTTGTGACATACTTATTGTGCCACC 40 ATAATGAGTTCAATTAATATTGCACTAGATGGCCCAGCTGCTGCAGGTAAG AGTACAATTGCTAAACGTGTAGCCAGTCGTCTATCAATGATATATGTTGAT ACAGGAGCAATGTATCGTGCCATTACATATAAATATTTACAAAATGGCAAA GATGAAGTAAAAGGGCAAAGAATCTTACTAGATAATCAAGACGTCACTGAT TATTTAAGAGAAAATGATGTAACACATCACGTATCTTATGTTGCATCTAAA GAACCAGTGCGTTCATTTGCAGTGAAAATACAAAAAGAATTAGCTGCTAAA **AAAGGTATCGTTATGGATGGCCGAGATATTGGTACAGTTGTATTACCAGAT** 50 GCCGAATTAAAAGTTTATATGATTGCATCTGTTGCTGAACGTGCTGAACGT CGACAAAAAGAGAATGAGCAACGTGGCATTGAATCAAATTTAGAACAATTA AAGGAGGAAATTGAAGCACGAGATCATTATGATATGAATCGTGAAATTTCG CCATTACAAAAAGCCGAAGATGCTATTACACTTGATACAACTGGCAAATCT ATAGAAGAGGTAACAAATGAAATATTATCTCTACTTTAAATGTTAAAATTA 55 AACTTTTTATATTGTTATTGTAAACATTTAAGCGGAGTAGAATTAATAAT CAATGACTCGAAAATATTGAATATTAGTATTGATTTATAGAAAAGCCAC GGACGCTCTGTCTCTGGCTTTTATTTTTGACCATTGAGAACTATGTAAATA AACTTATTTTAACCAAGTCCCCTCTATAGAGAAGTAATACTATGTTTATT

TAGGGTTAATTGCCATAAAATTTATGTTACAATAAAAATAACAATGTTATT AAATATACTACAAACTAAATTGACCATCACTTAACTAGGTGCTCTGTTAAA CTTTTGTTATAAATTAAAGATAGAAGCAACCTATTCATATAAAGTGGTATC TCTTGACAATTTTACTCGTTTATAAGATGTTATAATTATGTAGTGTATAAG GAGGCATACAAGATGACTGAAGAATTCAATGAATCAATGATTAATGATATT AAAGAAGGTGACAAAGTCACTGTTGAAGTTCAACAAGTAGAGGATAAACAA GTTGTTGTGCATATTAATGGTGGCAAATTTAATGGAATTATTCCTATTAGC CAGCTTTCAACACATCATATCGAAAACCCTAGTGAAGTTGTAAAAGTCGGT GATGAAGTCGAAGCATATGTCACTAAAATCGAGTTCGACGAAGAAAATGAT ACTGGGGCATACATTTTATCAAAAAGACAACTTGAAACTGAAAAATCTTAT GAATATTTACAAGAAAAACTAGATAACGATGAAGTGATTGAAGCTGAAGTT ACTGAAGTAGTTAAAGGTGGTTTAGTCGTTGACGTTGGTCAAAGAGGGTTT GTACCTGCTTCTCTAATTTCAACTGATTTCATTGAAGATTTTTCTGTATTC GATGGTCAAACAATCCGTATTAAAGTGGAAGAACTTGATCCTGAAAACAAT AGAGTCATTTTAAGCCGTAAAGCTGTGGAACAGTTAGAAAACGACGCTAAA AAAGCTTCAATATTAGATTCTTTAAATGAAGGCGATGTTATTGATGGTAAA GTTGCTCGATTAACTAACTTTGGTGCTTTCATTGATATTGGTGGCGTAGAT GGTTTAGTTCACGTTTCTGAATTATCTCATGAACATGTTCAA

ATCTACTATTTCTCAACATCTTCTTTTGTATGAATGCCACTCTCTGAAAT

20

10

15

Sequence 3435 step.1003b05.cons.ok

ATCGGTTTCAAATCGTTTTAAATCACGATTATTAACACCAATAATTTTAGG GTTAATTTGGTGTGCACGTTCAAGTTCTCTAATTGTATGAACTTCTACTAG AGCTTCTAAATTATGGTTTGTTGCATATGAATACAATTCTTTTAATTGGTC ATCACTTAAAATATTTACTATTAATAAAATAATAGATGCACCAGCTCGTTT TGCAACATCTATTTGAATTTTATCAATAATAAAATCTTTACATAAAACTGG 30 TAACGATGTTATCTTTGATAACTGATTTAATCGTTCAAAACTACCGCCAAA GTATTTTTCATCAGTTAATATTGAAATAGCATTAGCACCATATTTTTGATA ATCTTTAACTTGTTGAACAAGATCACGTTGCGGTAATTGAGGTACAGATGG GCTTTTCGATTTTATTTCAGCAATAACTGATAATGTTCTATCATAGTTAAG TGAATCAATCAGCTTTCTCCTCTTAACATTTCCGTTATCTTGTAAAATTTC 35 AAGTTTTTTATCATAGTATTTACGCTCAAGCAAAGTTTTTTTATACTCAAT AATTTCATTTAAAATAGTCATTACTTAACCTCCCATTTTTAAATATTGTTT GATACTTTCCACTTGCTCAGCAACATATAAAGCAATTCCAGCATTTAACAA AACTACATCTCGTTTACTTGAGTGATCCGTGCCACTTAGGATATTCAATGC 40 **AATTTGTTTATTTGTTTGAGGTGAACCACCTATCAACGTGTCATTATTTGC** ATAAGCTAAACCGACTTCTTCTGCTTTTAAACTATATTTTTTAATGCTCT TTCGCTGCTAACTTCATAAATGATATTTTCACCAGAAAGCGTGGCCTCATC CATCCCATTTGCACCATGAATTAAAATTGCTCGTTTTCTACCTAAATCCTT TAATGTTTGTGCTATATTTTCAAGTTGTGAAGCTTCATATACCCCCATCAC TTGATAAGTTAATTTGAAAGGATTAATTAATGGTCCAATCAAGTTAAAAAT TGTAGGTGTTGCAATCGATTTTCTAATTGATTGAAGCTTTTTCATCATTGG ATAAGAATCAGTTGCACTTATGAATGCTAATCCTTTCAAATTTAATTGTTG CTCTACTTCGTTCATTTTGTTTGTTTTTTATATTCATTTCATGTAATACATC TGTACTTCCTGAATGTGAAGTAATACTTTTATTACCGTGTTTAATGACTGG 50 CACTCCTGCACTTGCTACAACAAAAGCTACAGTTGTAGAAATATTAAAGCT ATTTGATTGATCTCCACCTGTGCCACAAACACACATAGCTTTATTATAAAA TGGTTGGTTTGGATAGTTTGTCTGGATAAAATATTCAACTAAATACGTTAG CTCATATTGACCCATGTCTTTATTTGTATAAGCTTTCAATAATTCAACCTT TACATTGGTTTCTATATTTGAATCAAACAGTGTAACAATAAATGATTGCAT 55 ATCTTTTTTAGATAAAGATTTATTTTGTTTAATTTTCTCAAGAAGGGTCAT TTTCAACTTCCTCTCGTTGCTATATTTATAAAATTAATAATGATTTGTTTC CCATTTTCTGTAGCGAATGACTCTGGATGAAACTGTATGCCATAATGTTTT CTGTTTTTGTGTTGGAAAGATTGTATACTATCATATGTTTGGCCAGTGATT

ATAACTTTGAAACTTGACTTAATTCCTTTGTATAGTGGTGACTGATTAACA ATAGTTAAAGTATCTACTTTTCCATGTTTGACACAACTACCTTGTATAACA TCGCCACCGTAATAACAAGTGAGCGCTTGTGCACCTAAGCAAACACCTAAA AATGGATGTCCAGGTCCTGGTGAAATAATAACTGCTGTAATACCTTTCAGA TTACATATATCTGTATCATCGGGATATTTAACAATCGTTTCACATTGTTTT TCTACAATATCTACAAGATTGTAGGTAAAAGAATCATAGTTATCTATTATT AATATCATGGAGTTACCTCCAATAAACTTTTAGCTTTAAGTTTTGTTTCTT CAAGTTCTTTCTCTGGAATAGAATCATATACTACTCCACATCCTGCCTCGA 10 CACTGACTTTTTCCTCATCGATAATCATGGTACGTATAGCCAATGCAAAAT CTAAATGATGATTACAGTTGATATACCCAACACCACCGCTATAGATACCTC TTTTATAAGGATAAGATTCGTATATTCTCTGTATAGCTCTAAGTTTAGGTG CACCTGAGACAGTACCCGTTGGTAGCAAACTTGCGATGACGCTCATAGGAG ATAGATGGGGTTTTAATTCTCCAATAACTTCACTAACGATATGCATGACAT GTTCATAACGTTCTATTGTCATTAGTTTGGTAATTTGTGAAGTGCCTGTTT TACTTATTCGATGAATATCATTTCTTCCTAAATCTACGAGCATACGATGTT CACTCAATTCCTTTTCATCTTTCATTAATGTCTTTTCATTATTTTCATCTT CTTTTTTATTTTGACCTCTTTTAATTGTTCCAGCTATAGGATTCGTATAAA CTTTTCCATCTTTTACCTTTACAAAACTTTCAGGAGAACTTCCTATTACAA TCGGTACATCTTTATTAATATAATACATATATGGACTAGGATTTTGTCGCT TTAAATTTTGATATAACTGAAAAGTTAATTGATGTAAATTGTGTTGAAAAT GGTGTTTATAACTATAAATTCTTGAAGGAACTACTTGAAACATATCTCCTT CAGTAATTTCTTTTTTTAAAATTCTAATAGTTTGAACAAATTGTTGCTCTG ATATATTGGTGGTTATATGTCGAGGGAT 25

Sequence 3436

30

step.1003b06.cons.ok ACAATTATATTTGATATAAGTATGGTTGTAATTGAAAAATAAAAATAGGAC

AGAATTCATGTTGAATCGACTGTCCCACTCTTGTGAATGATATTACTTTTA GTGATTCTTTGACATAGCTATCTTATTAGACAATATTAAGTTTATTGACAA TTATCATCAAAAGCATCTTTTAAATCCATAGCTATATCATTGATGTCGCGC CCTTCAATATGTTCGCGAGGTATAAAATGAACTAAATGTTGACCTTTAAAT AATGCGTATGAGGGACTTGAAGGAACTTGTTGGATGTAATCTCTCATTGTT 35 TGTGTTGCTTCTTTATCTTGACCAGCAAATACAGTTACTTTATGATCTGGT TTCACTTCATTTTGCTCTGCAACTGCAACAGCTGCTGGACGTGCTAATCCT GCAGCGCAACCGCATGTTGAGTTGATTACAACAAATGTTGTATCATCATTA TCTATATTTTGCATATACTGATTGACGTCATCACTCGTTTCAAGACTTGTG AATCCATTGTCTGTTAATTCAGCTCTCATTTGTTGTGCAAGTTCTTTCATA 40 TAAGCTTCGTATCCATTCATCATAAAATGCTCCTCTACTAATAATTGTTTC TAATTGTACTATATAGAAAATTAATTGCTTTTAGCGAACGTGTTTTCTATT TGTGGTAATAATTCATTCCAGTTAGCGTTATCTTCTTTATCAATTGATATA AAATCCAAAACATAGAATATTGATTTAACACCTTCTATTTCAAATAATCGA TTAATAAATTCAGGTTGACCTTCTTGAGCGGCAGTATATGTTGTAGATGAG 45 TTATCTTGACGTGGTTCACTCAACGAAACTTTCATTGTATTATGATTAGGT GTTTCTGAAATTCCTATAATCTCCATGTGACATCCTCCTATTGTAACTCAT GATGTGCTTGTGTTTTACCGTGAGTTTTTCTATTGTGCTTTTTTAATGGAC ATTGGTGACAATAAGTATTCATCAATTGGTCGATGTGTTGAATTGCTTGTT GTTCTGTATTAGTGAGTATAGCTTTCACTTCCCTTAGCTATAGACTATTTA TATTTATACCCATTTCACATGTTTGTATTATAGCATTTATAAGTTGGGAAT TTGAAATAATCAATTTTAGTTTTGAGAAAACTGATAACTTAGACATTTGTT TAAGTTATTATTTACTCTTCTTTTTTAGCATTGCATTAAAGATGAAT TTTAAGTAAAATAGTATAGTTAATTTTGGCGGTTTCTAAACACCCGCTTTA ACAAAATTTAGGAGGAAAGTTATATGTATAATGAAATATTTGGTATTGCGT CATTTATTGTTACATTCGCTTTAATGGTACTGATGTATCGCTGTTTTGGTA AACAAGGACTAATTGCTTGGGTAGCAATAGGAACGATTATCGCTAATATAC AGGTCATAAAAGCGGTTCATATTTTTGGTATTACGGCTACACTTGGAAATG

TCATGTTTGCTTCTATATATTTAGCTACTGATATATTAAATGACATCTATG GTCGTAAAGTTGCTAAAAGAGCGGTGTGGCTTGGTTTCTCTTCTACCTTAG TAATGATTATAGTCATGCAAATGTCATTGCATTTTATTCCTGCCCCAGTAG ACAATGCGCAAAACTCATTAAAAATGATTTTTGATTTAGTGCCTAGAATTG CTATAGGTTCCATTATTGCTTATATCATAGGCCAACATATTGATGTATTTA 5 TATTCAGTATGATTAAAAAGATATTTAGCTCTGATAAGACCTTTTTTTATTA GAGCATATGGTAGTACCATTTTAAGTTCTATCATTGATACCGGTTTATTTG TTTCAATTGCTTTTATTGGTACTATGCCTGGTACTGCTGTTTTTGAAATAT TTATTACCACTTACTTGTTAAAACTAGTGTCAACTATTTTTAATGTACCAT TTGGATATATCGCTAAGTCACTATATCGAAAAGGAAAGATAGAACAACTAG 10 ATAATGGGTATTGATATTTATTGTATCAGAAATATAGATATACAAAAGCGA ATCAGAGTTCCATGTGCTGAACTAGCTTCGAAATTCAATTTGGTTTGTCCG TAGAATTTTCGAGCAAAATTCTCAATGATAGGACCTACGACCAAAGTTAAA TAAATCTTAATATAAGGGCTAAATTTAGACATCAATGCCCTATTTGTTAGC 15 TTTTAGTGTTTTGTCTTTTTAGTTTGATACAATAGAATAGATACATTTTAG TGAGTAGACAATTCTGAAGAGGAGTAAAAGTAATGGCTAAAATACATTTTG ATGCTGCGACTAAAGGAAATCCCGGCCGAAGTGCTTGTGCGATTATTATTA AAGAAAATTCACAAAGATATACATTTACCCATGATTTAGGTGAAATGGATA ATCATAGTGCAGAATGGGCAGCAATGTTACACGCTTTGGAACATGCACGCG 20 ATAGTATGATGCAAGGTAAAGTTAAAAATGCTAAGTTTAAAGTTTATTTTG AAAACATAGAAATCTTAGAGCAAAGTTTTGATTTTGATGTTTGTGAGATGGA ACAAACTTACATCATAATAATCTAAAGTGTTAATATGATATGTTACGTATT TAATTGTTTGTTCAACCTTACCAATAAGATTTCGGCTTTGAAAAGCTTATT ATAATATGTTTGTACTGAATTATCGATGGTTAACAAAAAACAAGCCTGGGA CATTAAGTCCCGGGCTTGTTCTGTGTTAAAGATATATTTTACTTTTTAGAA CGCTTTTTGGTTTTTACAACTTTTTTAGTTGATTGAGGCGTTTTCTTCTTT TTAGAAGTAACTTTCTTCTGTTTTGTATCTTTGTTATCACTGTTTTGTTTA 30 CGTTTAACGACGGGGATTGAATGAATATCTCCTTCACTCAATTGCTTTTCT TTAGATTTCTTATGTTTAGCAACTGGAATTGAATGTTTGTCATCGTTTTGA ATTTGTTCTTCTTTATCTATTTTACGCTTAGTTATTACAATTGGATCTATT TTATCAGTATCTGAAAGACGAATGTCTTTGTGATAATTTTTTATCGATTGT TTTTCTTCTTCTTTTTTACGTCTTTTAGCCAAAACTAACCAGAAACTAGAA AGTAAACCAGTTAATGTAATAACACCTACAGTTTTGCCGAAATTATCAACT AAATGTTTGAATAGG

40 Sequence 3437 step.1003b07.cons.ok CTTCAGCAGCAAAGTTAGCTTCACCTGAAATTCCATGTCTTTCATGTTGAA CTCTAAGCAACATAACAATATCTACTTTATCAATGACTTCATCAATTTCAA CATAAGGCGCCTCTAATGTATTATCTACCCATTCTTTTGGACTTGAGAACA TTACGTTGGCACCTAATGATGTTAAACTATGATAATTACTTCTTGCGACAC GAGAATTTTTAATGTCCCCACATATTAGAATATTCAAACCTTCAAACGAAC CATATTCTTCATATATTGTCATTATGTCTAATAAACTCTGAGTAGGATGTT GTCCACTTCCATCACCTGCATTAGCAATTGGAATATTTAATTGATCCAGTT CTTCGTAATAAGAATTTTGGGAGTGACGTATGACAAGTAAATCAACACCTA TACTTTCAAGTGTTTTACATGTGTCATAAAGTGACTCACCCTTTTTTACAG 50 ATGATGTACTTGTTTCAAAATTAATAAGTTTTAATCCTAATTTTTGTTCTG CCATCTCAAAGCTACACTTTGTTCGCGTTGAATTTTCGAAGAATAAGTTTG ATACGTATTGACCGTTAAATTGAGGTAATGGTCGCTCACCAGATTTGAATT GGCAAGCGATAGTAATTAAATCATAAATTTCTGAATTAGATAAATGCTCCA TTGATAATAAGTGTTCCATAAAGCGCCTCCTATAGAAATAAAGCTTAATTT 55 ATTTGGTTTTTATCTTTTGGCAAAATTAAATTTAATATTATTCCTGAAAGT GCTGATAATGCCATTCCTTCAATTTGTAAATTGATACCTATGCCTTTTAAA TTGATAAGAAGATTACCAATCCCGACAACAAGCACAACTGATGCTATAACC AAGTTGCGATTGCTTGCGAAATCTACTTGACTTTCAACAAGCATTCTTAAA

CCACTAGCTGCTATAATACCGAATAATAAAATTGAGACACCACCCATCACT GGCGTAGGTATTGAAGATATTAAAGCAGTGAACTTACCAATAAATGCAAGA ATGATAGCTATAACTGCCGCACCACCAATAACGTAAATACTATATTTTTG GTGATCGCTAGTACACCTATATTTTCACCATAAGTTGTACTAGGAGGACCT ATTTGATGACCAATATGTTCACTTACCGTCACAAACACCACGGGTATCATC ACGAGAATGAGTCCTAAATGAAAAGATGGTGTGTAATCTTTAAATGGTAGA TAAATATGAGGAAAATCTATCCATTTCGCTTGTGCTATTGGAGCAAATTTA ACTATGCCCATGAAAATGGATACAATATATCCCACTATAATACCTATAAGT ACAGGTATTAGTGATAAAAATCCTTTGAAGAATCCTTGGACGATGATGGTT ACTGCTAATGTAATCAAAGCAACAATTAAGTAACTTAAGTTATACCCTTTC ATTTCAGCAGAATTTTCGAACATGGCCATGTTTACTGCTGTAGGAGCTAAA CTTAACCCAATGACCATTATTACTGGTCCGACAACTACTGGTGGTAACAAG TGCATTAACCAATGTGTTCCACTCAATTTAATGAAAATACCTATAATCACG 15 TACATTAATCCACTCATAAATAATGCAACCAGCATATCTCCAAGACTATGT GTACTTAACCCTGTAATGATAGGTGTAATAAAGGCAAAACTCGATCCTAGG TAGGCAGGAATTTTCGCTTTTGTGATTAATATGTATAAAAGTGTACCAATA CCTGATGCCAACAAGCTGCTGATATAGGCAGATGTGTTAAAAATGGTACA AGTACAGTTGATCCAAACATTGCAAATAAATGTTGAAGACTCAGAAATGCC 20 CATTGTGCTGGTTTTGGTTTATCTTTTACATCAAGAACTGGCTGAACGGTA CGCTCAAACATTTGCTCATTTTCCATGTTGATTCATTTCCTTTCATAAAAA AAGTCTCTTTACAATCAGTAGAATGTAAAGAGACTAAAATGAAATATATCT AAGTGTAATGTTAAGTTAAACTTTTATCATCACATTTATCAATGAAGCTTC TATTGGATATTTATAGTTTACATAATCTTTTTATAGTCATATGTAGATTTA TCCATAAGAAACACTTCACCTTTTTCAGTCTCTCGTACTGTTTTAAAAGGA TGAAACAGATTCATCTCGTGCTGTAGGTATATTTTTTCCTACAAAATCTGC GCGTATAGGGAGTTCACGATGACCACGATCCACAAGTGCTGCAAGCCCTAT TTTAATAGGTCTTGTATGTAATAAAATCGCATCTAATGAGGCTCTTACTGT 30 ACGTCCGGTATACAAAACATCGTCAATGATAACAACCACTTTGTTATTAAT ATCTACATTAATATCAAAAGCGTATTGATCAGCTTGTTGCACTACCTTATC AACGTCATCTCGAAAATGCGTGATATCGATAGTACCTGTTGGTACTAATTG TTGTTCAATTGAATTTATTTTATCTTGTATACGATGTGCTAAAAAAAGCACC ${\tt TCTTGTTTTAATGCCTAATAGAACTAAATCTTTAGTTCCCTTGTTATATTC}$ TAGAATTTCATGAGCAATTCGTGTAATTGTACGTTGTATCGCTGCCTCATC ATATCTTTAATAAAGATATGAGACAAAAAGTTAAAGAGAATAATCTATATT CTCTATTATATTCACATTCTTAAGTTATAAACACAGCAAAAGTATTAGTAA CTTAATCATCAAAATATTATTATCCTAATTATTCATATCTTCGGAGCCTCT CTGGACCCTCAATTAAAGATGACGTTTTTATATTTAAACTGTTATTAGTTT AAAACTTTTAATAGTATAAGTCAATGGCAAAGTTAGTATTTATAATTAAAA ATCGATGCCTCATTCGTTTATGCATCTCTACGTCTTATATCATCTAGTAAC TTTTCAAAATCGTTAGGTAATGTTGCATGCTTCTCAATGTATTCATGTGTT ACAGGATGTTCGAAACCAATTATACCAGCATGTAAAGCTTGTCCATCGATA TCTAACGTTTTTTTAGGTCCATACTTCGGATCCCCTACAAGAGGATAACCA ATATATTCATATGTACACGAATTTGATGTGTACGCCCTGTTTCTAATTGA CATTCTATCAATGTATAATCTTTAAAATGCTCTAATACATTAAAGTGTGTC ACAGCTTCTTTACCGTCATCAACCACAGCCATCGATTGTCTATCGTTTTTA TTTCGACCAATTGGTGCGTCAATAGTGCCATAATCATGAGGGATATTACCA TGAACTAACGCCGTGTATTTTCGTTTAACAGTTTTAGACATAAGTTGTTCA ACTAAATGACGATGAGCAACATCATTTTTAGCAACCATTAATAAACCAGAC GTATCTTTATCTATTCTATGAACTATGCCGGGACGTATTTCGCCATTGATT CCTGATAAATCTTTAATTTGATACATTAATCCATTTACTAATGTTCCACTA TAATGGCCTGGAGATGGATGTACAACCATACCTTTTGGTTTATACTTTAGA 55 **GCACAGTGGCG**

Sequence 3438

step.1003b08.cons.ok CTGTAATTATGAGTGAACGACTAGTTAAAGATGATGTATATACATCTATTC ATATTGAAGAGTATGAGTCAGAAGCTCGTGATACGAAATTAGGACCTGAGG AAATCACACGTGATATTCCAAACGTATCTGAAAGTGCACTTAAGAACTTAG ATGATCGTGGTATCGTTTATGTTGGTGCAGAAGTTAAAGATGGTGACATCT TAGTAGGTAAAGTAACGCCTAAAGGTGTAACTGAATTAACAGCTGAAGAGA GATTATTACACGCTATCTTTGGTGAAAAAGCACGTGAAGTTCGTGATACAT CATTACGTGTACCTCATGGTGCTGGCGGTATCGTTTTAGATGTTAAAGTCT TTAATCGTGAAGAAGGAGACGACACTCTATCTCCTGGAGTTAACCAATTAG 10 TACGTGTATATTGTCCAAAAACGTAAAATACATGTTGGGGACAAAATGT GTGGTCGTCACGGTAACAAAGGTGTTATTTCTAAGATTGTTCCAGAAGAAG ATATGCCTTATTTACCAGATGGTCGACCAATCGATATTATGTTAAACCCAT TAGGTGTACCATCACGTATGAACATTGGACAAGTATTAGAATTACATTTAG GTATGGCAGCTAAAAACTTAGGAATTCACGTTGCTTCCCCAGTGTTTGATG GTGCCAACGATGATGACGTTTGGTCAACTATCGAAGAAGCTGGAATGGCGC 15 GTGACGGTAAAACTGTTCTATACGATGGACGAACTGGTGAACCATTCGATA ATCGTATTTCAGTTGGTGTCATGTACATGCTTAAACTTGCACACATGGTAG ATGATAAGTTACATGCACGTTCTACTGGACCATACTCACTTGTTACACAAC AACCATTAGGTGGTAAAGCACAATTCGGTGGTCAACGTTTCGGTGAGATGG AGGTATGGGCACTTGAAGCTTATGGTGCTGCTTATACTTTACAAGAAATCT 20 TAACTTATAAATCTGATGATACTGTAGGTCGTGTTAAAACTTACGAGTCTA TAGTTAAAGGTGAGAACATTTCTAGACCTAGTGTTCCAGAATCATTCCGAG AGCATGATAATGAAATCGAAATGGCTGATGTTGATGACGAAGATGCAGCAG AACGCAAAGTAGTAAAATATACTGGATTAAATAACATAATTTGATGAATCA AACCACTTACGCCGTGATTTTTTGGCACCCATAAAATTGGAGACATATAAA ACAATATTCTCATTAATGCTTGCATAATCATCTGCGTATCTCTAATTAAAA TCCCCAAAGTGGATGTTAAAAGTGCCACCGACGATGTTAGCAAATATGCAA AAGGTACATATATAAGTAATTGTACAATGTGAATTGAAGGGATAATTCCAT TGAACATACAAGCTATTATAATAATTGCTAATAATCCTAAATGACCATAGA ACCTACTTGTTACAATATAAGTAGGAATGATTGAGAGTGGGAAATTCATCT TTGCCACTTGATTGAATTTCTGTGAGATTGATTTAGTTCCTTCTAGGACAC CTTGATTAATAAAGAACCACATACTTATACCAACTAACAACCAAAATACAA ACGGAATGCCGTGTATAGGTGCATTGCTTCTAATTCCTAAACCAAAAACAA 35 GCCAATACACCATGATTTGTAAAGCAGGATTCAACACTTCCCATGCAATAC CTAGATAGTTATTATGATTGGTAATTTTAATTTGGAATTGTGCTAGTCTTT GAATTAAATAGAAGTTTTTAATATGTTCTTTTAAAAACCGTTCCAACTGCGA AATCATTAATAGTTTCTCTTTAATTTGATTCATTGAGTCCATTCTTAAATA 40 TTAAAAATTGTTAGAAATTTCGTGTAAGATTTAATTTTAGAAAATGAATCA CTTTCTTAACTCACTGTGTTATATTTATTTTCAACAAAATCTTCTATTCAC TTTACACTAGGTTAATAAATTTAACAACTGATGTGTTGTATATTATAATCT ATATAAATGTTTATAAGGAAGGTACAAAAATGAGCGTTTCGGTAAATATTG AAAATTTAACAAAAGAATACCGTATCTATAGAAATAATAAAGATAGAATTA AAGATGCATTAATACCTAAAAACAAAAATAAAACATTTTACGCTCTGGATA ACGTAAGTTTAACAGCGCATGAGGGAGATGTGATAGGTTTAGTCGGCATCA ACGGTTCAGGTAAGTCTACTTTAAGTAATATGATTGGTGGCTCTATTTCAC CAAGTTCCGGTGAAATAACGAGACATGGTGATGTGAGTGTCATCGCTATTA 50 ATGCAGGACTAAATGGACAATTGACAGGTGTAGAAAATATTGAATTTAAAA TGCTCTGCATGGGCTTTAAAAGGAAAGAAATTAAAAAATTAATGCCGGAAA TTATAGAATTTAGTGAACTCGGCGAATTTATTTATCAACCTGTTAAAAAAT ATTCAAGTGGTATGCGTGCAAAACTTGGATTTTCAATTAATATTACTGTTA ATCCTGACATATTAGTTATTGACGAAGCATTATCAGTAGGCGATCAAACAT TTACTCAAAAATGTTTAGATAAAATTTATGAATTTAAAGCGGCTAAAAAAA AAATCGCTTGGATTGAGGGCGGTAAACTAAAAGAATTCGGCGAACTTGAAG AAGTATTACCTGATTATGAGGCGTTTCTTAAAACTTTTAAGAAAAATCTA AAGCAGAACAAAAGGAATTTAGAAATAAATTAGATGAGTCACGTTTTGTCG

10

Sequence 3439

step.1003b09.cons.ok

AGCAGAAGTAGCTGAAAACAACATTGTGAAGGAAAACCCAGATGTAGAAAT CTTTGAAGAAGGTATTATTGATTCATTTCAAACTGTAGGTTTACTTTTAGA 15 AATTCAAAATAAATTGGATATTGAAGTGTCAATTATGGACTTTGATAGAGA TGAGTGGGCAACTCCTAATAAAATTGTAGAAGCTTTAGAAGAGTTACGATG TTTTTATTTTTACCAGCAAGTTGGTTTACTGGTCTTGTGACAAATAAGACG 20 TTAGCTGATAATAGAATTTCTTTAACTGATCAAGTTTTAAAAGGCACGCTC ATTCAAAATAAATTATTCGAGTCAAATAAGTATTACCCGATTTATGGTTCA CAAAATGCTAGTAAAGAAACGTTCCTTATTGGTGCGGGAGGTTCGACAGAT TTAATTAATGCAGTTGAACTTGCAGCGCAATACGACAATTTAAAAGGAAAG 25 AAATTTACATTTATTATTTCTCCACAGTGGTTTACGAATCATGGATTAACA AATCAAAAAGATATGCCAGCTAATTTGAAGAAACGGTATGCACAAAGATTG TTACAGTTTCCGCATGCACACAATAAGTCATACCTTAGAGAACAAGCAAAA CATCCTAATGATGTCTCTGGAAACTACATTTCTTCATTTAAAGAAAATCAA 30 TTAACTAAGATTGAAGCTATTAAATCATTATTCTCATTCACTAAGCCACCT CTAGCAGAAGTAAAACCTGCAACAAGAGAAGATGCTTCATGGGATGAGATG AAAAGGGATTATGAGTTCAACATTAACTCACCCGAGTTCCAAGATTTAAAA 35 TTATTAGTGCAAACGCTACATGCTGCTGGAGCTGATGTACAATATGTTTGT ATACCTTCAAATGGAAGATGGTATGATCATATAGGTATCAAAAAAAGATAGA CGTGAAGCTGTATATAAAAAGATTCACTCAACTGTAGTTGATAATGGTGGG AAAATTTATGATTTGACAAATAAGGACTATGAAAAGTACGTAATTAGTGAT GCTGTTCATATTGGATGGAAAGGTTGGGTTTACGTCGACCAGCAAATTGCA AGACATATGGATGGTCATGCGCCTAAAAATCATGAAGTCGATTATTCTAAA AATAAACCACCGCACAAACATCACAACGATCGTCAAGATGATCAACATCAA GGCAACAAATAATATTATTAACCGAAATAAAATTAAGTGAGCTAGGTACAG AATTCGTTATTTCATCCCGTGTAACGAGATTTATAAAGGAAATACCTCGAC GTAATGTATTTTCGTTTACTTCTTTGATAGCCAGTATATAAAATGCTTAG GTTAATATTAGTGCGCTATGACTTCATTTATTAATTTCTATCAAATTAAAA AACCTAGGACGTCACTATCTATCCTAGGTTAATAAATAATTATATAGGGAT GTATTAGAATACTTGTTCTACTTCTATTACACCTGGAACTTCTTCATGAAG TGCACGCTCGATGCCAGCTTTTAAGGTAATTGTAGAACTAGGACATGTTCC GCAAGCGCCATGTAATTGTAGCTTAACAATACCATCTTCAACATCTACAAG CGTACAATCGCCACCATCTCGTAATAAGAATGGACGCAAACGTTCTATAAC TTCTGCTACTTGATCAAACATTGTTGGATTCTCAGTAGGCATGTGACATGT CTCCTTTCAGAGCAATTATTTCATAATCATTATTATTACATTATAATAGAT AAAGTAGTAAAAATCTATAAAACAAGATAGGGGATTTTAATGACTAAAATT AGTGTTGTCGTATATGGAGCAGAAGTCGTTTGTGCGAGTTGTGTAAATGCA CCTACATCTATAGATACTTATCAATGGCTTCAAGCATTACTTTTAAGAAAG TTTCCTCAACATCATTTTGAATTTACATATATTGACATACGAAATGATACT

GAATTGTTTTACCCATTAGTTACGATGAATGATGAATATGTAGCAGATGGT

TACATACAATATAAACAAATAACCCGTTTTATTAAATCATATTTTACTATG TAAGATTAAAAGAGGGGCAATATTCATACTAACGATGTGCCTCAATTGAC AGTGTCTGTGTTATTTTTAGTGAAAATCTTCATTTTAGGCTATATCTTT 5 GATATTTATAGCGCCACAGAACACCTGATTTTAGAATAGAGGCTAATCGTC AGCCTAAAAAGCCTTGTACTTTAATTTCAGGCATTTTATCTGGAAGTGGTT CGTTATTCCATTGCTTCTTCAACACCTCAGCAATCTGTTCACCTTGTAGTT CTGCTAGTTGAGCACTGGGTGCATGTGGTAAATTAGCACAGTCACCTACGA CATAAACATTTCTATAGGTTGGGACTTGATGGTACTGATTAATAATTACGC GTCCAGTGGTACTCATATCAATAGGAAGATTACGCACAATTTCAACAGGTT GTATGCCTGCTCCAAACGACTAAATCAATATTTTCTGGTTTACCATTAT TATAAATTTTTCCGGGTTCTACTCTGTCGATGACTGAATTAGGTACTACAG TAACATTGTGTTTAGAAAACCAATTAGATATGTATTTACTCAGTTTCTCTG GAAAATTCCTTAAAATTCGAGGCCCTCTATCATATAACAAAATTTCCAAGT CTGATCGACTTCACGTAGCTCGCTCGCTAATTCAATGCCACTTAAACCTG CCCCAACGATACCTACACGTGCCCCTTTAGGTAACTCGCTAATTCTATGGT ATGTTTCACGCGATTTAGATAATGTTTGAATGCTATGTGTATATGCTTCAG 20 CACCAGGGACATTATGATATTTATCCTCACACCCTAGACCAATGATAAGTT CGTCATAATCTATTTTTGAATTTCCAACTGTTATCATTTGTTCGTCCAAAT CTATATCACTGATTTCCCCATAAACCGTATTAATTTGACTGCTATCTGGAA ATTGGATTCGCACCTCTTTGTCAGATTTAGTTCCTGCTGCAAGTGCATAAA ATTCAGGTTTTAAACCGTGGAATGGCATGCGGTCGATTAAAGTTAAGTGAT 25 ATCCCTCAGGAATTGAATGAGGTAAAATGCGCGACATAATTCGCATATTAC CATAGCCCCCGCCTAGTAATACTAAGTTTTTCATTGATTCTTTAGAGCACA GTGGCGATGATATCAGAT

30 Sequence 3440 step.1003b10.cons.ok ATTCAACCACTTTACGAATATATATAATAATAACGTTTGCATTACCATATT **AACTATCTGAGTGATAGGAAATCTTAAAAACTTTTCTATTGTAGGTTTTAC** TTTATATACAAAATAACAATTAAATAATAATAATAATAAAAACTTACAAT AAATCCAACAATGTGACTAACCATATAATTCACATGTAACACCTTTAACAA 35 AAATAAGTATGTTATATAGTAGTTAAAGGTATTAATTCCACCAACTATGAT AAACTTTATAATCTCATAATGTATTCGGGTTAACTTCATAATATTTCCCCT TTGAACAGTTATTGTTTTGTACCATATGGGACTACTTTAAATGTGATGTCT TTGGGCAAATCATAATAGTGTTTGAAATCTTGAAGTTGTTCCTTCGACTTT GGTGTAGTCATATGAGTATATCGCTCAAATGGTAATCTTTCCAATGTTATT TTCTGATAGCGATGATGTTGTGTTATTTGTTCTTTAATGAAGTCTATTCTG TGCACACTACTAATATGTATAAAAGTAAATCCAATCATCATAATGATGCTG ATGATAATCGCAAATATTTTAATTATATGTTCAAGTTGTTTAAATAGCACA TCACATTGCTGAATTAAACAAAGTAATATCACGATCCATAAAGTATAAATA AAATAAAAATTTCTATAACTTATAGGCGTCACAAATAAAAGTGGCAAAACA GATGAAGCCATAGCTATAAAACTCCCCATCACAATCATTCTTATGTATCTT TGCTGTATCATTTTAAACACAACGTATATCACACTTATCATGTAAATGAAG CAAATCGTTGTATTCAAAACGGCTATAGAAAATGAAGCTTTATATAATTCA AAATGAAATTGATTGTAAACGAAGATCTTATAAATAGGTAAAGTAATTAAA 50 CCTAAGAGTAGTGGTATTTTAATATAAACTCTCATATGCTTCAGGCTTTTA TTTTGCTTAAGTAAAACTATACTTACTATTGATATCACGGTAAGAATAATC ATTTGATTAATAAACATATATTCTGGTACAAGCTTAAATAACGTCACACCT GCTTTATGTATCATTCCATGACTATCGGAAATTGAATAATGCGTATTTAAT CCATCCTTAATTAAAAAATAATTGAAGTTTAAAAACATTATAATGTTACCT 55 ATACAACTAAGCATAAATCCTACAATTAAGAAATAACTGAGTCTTTTTTTA ACAAAGAAATAGACTACCATTCCTATTAAAATAATTAAGCTATTAGCGATG GAAAGATTCTCCAAGAAGAATTGTCCAAACAAACTTACTAATAAAAATACC CATAATTGCATTTCAGAAACTGTATCGTGCGACTCAATCTTTTTAACTACC

GTAAAAAGAATAAAAAGTGATAGGACTGTAGCAGGTATATAACTAAAAAAT

CCAGTAAACCACCCGTAAGTTTCGCTATAAATTGTATTAGGTACAGTAACC ATTAACACAAAACTCAAAATAAATAAATACGATTCGTATGTAATTGAACC ATATAAGCAACTAAATAGATAACTAAAAACGAAGTTATCGCATATATTAAA TAACGACCATTTTCTTGAGTCAAATATTGACTTAGATTAACTTTATATGCA TGCCAATCCGTAGTTGATAATGGTGTTAGAATTGCCATTATAAGATAAAAG ATAAAAATTCCTATTAACCAAAAAAATGATTCATATTGTTTTAAGTTATTC ATTGTTGACCTCTCTGTTCTTCATGATGTAATTCAAAACTAACATTTAAAC GATTATCATGTTTATTCTCTTTTTTATGTGATTTATTCAATTATCTACTGA AAATATATAGACATTTATTGAAGCTTTAATCATATTAATATATACATATTG CTCATCGTCAATTTTATATTCTTATTATTATACAATTCACGTATGATTTCC ATTTTAATTATCAAGATTTCTTTAGTTTAATTTCATTTTTGGATAGAATAA ATATAAACCAATTGTTTAGGAAGTGATATAAATGTCACCATATAAAGTTAT AGCTATTAAAGATGGATTCCAAGAGGTGTTCGATTCCAGTACAATATATGA CATTATTCCTATGTTGAAATAAGTCATCGTATTCATGAACGCCCTGAATTA GGCAATGAAGAAATTTTTGCATCGAGAACATTAATTGACCAATTAAGAGCA AATCGATTCGAAATCGAAACGGATATTGCAGGACATGCAACAGGATTTATA GCAACGTATGATTCTGATATGACTGGACCGGTTATAGGATTTCTAGCTGAA TATGATGCTTTACCTGGTCTTGGTCACGCATGCGGGCATAATATTATTGGT ACTGCTAGCGTACTTGCTGCAGTAGCACTAAAAGAAGTCGTCGATGAAATT GGTGGTAAAGTAGTCGTTTTGGGATGTCCTGCTGAAGAAGGTGGGGAAAAT GGCTCCGCAAAAGCTTCTTATGTTAAAGCAGGTGTCATTGATGAAATTGAT GTAGCATTGATGATTCATCCTGGAAATGAAACTTATCGTACAATTAATACT TTAGCTGTGGATGTTCTAGATATTAAATTCTATGGACGTAGTGCGCATGCA TCTGAAAATGCAGATGAAGCATTAAACGCTTTAGATGCAATGATTTCATAT ATTAATGGTATAGCACAGTTAAGGCAACACATTAAAAAAGGACAACGAGTT CACGGGGTTATTTTAGACGGTGGTAAAGCGGCTAATATTATACCTGATTTT

30

5

10

20

Sequence 3441 step.1003c04.cons.ok GTATAAGTAGCTAATTTTTCATCGTATAAAGTGTAAGGAGATTGTCTGCCA 35 TTGACAATAGCGTTCCCTTTAAATAATTTAATTCTCACATCTCCCTCAACA TATTGTTGAGTACTATCGATAAAGAGTTTTAAACTATCTGTTAATGGCGAG AACCACAAACCATTGTATATTTGTTCTGAAAATTGTTTTTCAATGACAGGC TTAAAGTGCGCTACGTCTTTAGTTAATGTAATTGTTTCTAGTGCTTTGTGT ATCCCGACCATTCTGTTTTCAACATGATCGATTCTACCAATACCGTGTTTG 40 CCAGCAAGTTGATTCAAGTAAAGAATAAGGTCATCTAATTGATAATCTTTG CCATCAACTTGTACTGGAATACCTTGTTTAAATGTAAGGATAATTTCGTCT GCATTGTCTGGAGTTTCTTCTAAAGGTGTAGTTAAATCAAATGCATCTTCC ATATTATGTTTGATTGCGTAATCAATTTCTTCTTCTCTGCTCCAAGCCCAT TCACGAACAGGTGCAAATGCTTTTAACTTAGGATTTAAAGCTTTGATTGCC ACTTCGAAACGTACTTGATCATTACCTTTACCAGTACATCCATGCGCAATA ${\tt CCAATAGAATTTGTTTTTCAGCAATTTCAACCAGTTTTTTCGCGATGAGT}$ GGACGTGATAATGCTGAAACTAGAGGATATGCATTTCATACATTAAATTT CCTTTAATAGCATAACTTACATAATCATCACTAAATTCTTTAGTTGCATCA ATAATATGACATTCGACTGCACCCATATCTAAAGCTTTTTGATATACAACG TCTAAATCTTTGCCTTCGCCTACGTCAAGACAACAAGCAACTACATCATAT CCTTTATCAATAAGCCATTGAACTGCAACGCTTGTATCTAAACCACCTGAA TATGCTAAAACGATTTTATCTTTCATATTTACACCTCAAATAATTTTTTAT GATTATTAATATGCATCTATCATATCAGATTGATAATGAAAATAAAACCAT TATTTTACATAAATATTCATTTTTAAATCTGATTATATTTAGATATTTTTG TTTGAAATACTGTTATAAAAGCTTTTATATATATATTTTAAAAATTTCTGTAAA TTGTATATCTAAAGTGGTGGTGTGACCTTTGATATTAAAAATAACTTTTTT

ATGAATGAAAGGTTACATAAAAAATAATTTTCCTGTGATAAGTTAGCCTTG AGAATTGAATAGCGCATCTAAACTTAGTAGAATTAGTATAAGTACTTATAA CAGGAGGCAATAAGATGACTCACATTCAATTAGACTATGGCAAAACTTTAG AATTTTTTGATAAGCATGAACTAGATCAGCAAAAGGATATTGTTAAAACTA TCCATCAAACTATTCATAAAGGTACAGGAGCAGGTAATGACTTTTTAGGTT GGTTAGATTTACCTGTTGATTATGATAAAGAAGAATTTTCTAGAATCGTCG AAGCATCTAAACGTATCAAATCAAATTCCGATGTACTTGTTGTTATCGGTA TTGGAGGTTCATACTTAGGTGCACGTGCTGCAATCGAGATGCTTACATCTT CATTTAGAACAAATACGGAATACCCTGAAATTGTATTTGTAGGTAATCATT TATCCTCAAGTTATACAAAAGAATTACTTGATTATTTACAAGGAAAAGATT 10 TTTCAGTTAACGTTATTTCAAAATCAGGTACTACGACAGAACCAGCAGTTG CATTTAGATTATTTAAACAATTGGTTGAAGAAAAATATGGAAAAGATGAAG CTAAGAAACGTATTTTTGCAACGACAGATAAATCTAAAGGTGCACTTAAAC AATTAGCAGACAATGAGGGTTATGAGACGTTTGTTGTACCTGATGATGTGG GAGGTCGTTATTCTGTTCTTACAGCTGTAGGATTACTACCAATTGCAACTG 15 CAGGTATCAATATTGAATCAATCATGATTGGTGCGGCTAAGGCACGTGAAG AGTTATCTTCTGATGATTTAGATCAAAATATCGCATATCAATATGCAACTA ACGAACCCTCTATGCAGTATTTCAACGAATGGTGGAAACAATTATACGGTG 20 AATCAGAAGGGAAAGATTTCAAAGGTATTTATCCATCAAGTGCGAATTACA CAACTGATTTACATTCCTTAGGACAATATGTTCAAGAGGGCCGTCGTTTCT TATTCGAGACAGTGGTTAAGGTCAACCATCCAAAACATGATATCAAAATTG AAGAGGATGCAGATGATTTAGACGGACTGAACTATCTTGCTGGCAAATCAA TCGATGAAGTGAATACTAAAGCATTTGAAGGTACATTACTTGCACATACCG 25 ATGGTGGCGTTCCAAATATCGTTGTAAATATTCCTCAGTTAGATGAAGAAA CATTTGGATATGTTGTTTATTTCTTTGAATTAGCTTGTGCAATGAGTGGAT ATCAATTAGGTGTTAATCCATTTAATCAACCTGGAGTTGAAGCCTATAAAC AAAATATGTTTGCGCTATTAGGTAAACCAGGCTTTGAAGATAAGAAAAAAG AATTAGAAAATCGTTTATAATTTTTAAGTTGAACTTAAAAATGAGCCTAGGA 30 TTATCTAGGCTCATTTTTATTATGTGTATTAATAAGAGTAAATGAAAATTG ATTAACGTCAGATTAATAAGAAGTCAAATTCAGATAGGAAATATTAAATTT TCAATTCATTAGAGTTTCGATAAAGAATGGAATAATAAAATTGATGAATTA GATATCAATATAGATTTATTAATTCCTACCTAAGTCTGATTTATGTTGT TGACCTAATTTTAATGTTTCAAAAAATATCATTTACAACTATAATGAATAA GTAATACAACCCTAAGAAAGGATTTGATGTATTGTCGCTTTCTCAGTTAGA 35 AGAATGGTTTGACGCATTTCGACAATTCGGATATATTCCTGG

Sequence 3442

40 step.1003c05.cons.ok ACATTCAAAACTAGATAGTAAGTAAGATTTTGCGTCGCAAAACGTTTTTTA AAAATTGATTAAGTCTTCGATCGATTAGTATTCGTCAGCTCCACGTGTCAC CACGCTTCCACCTCGAACCTATTAACCTCGTCATCTTCGAGGGATCTTATA ACCGAAGTTGGGAAATCTCATCTTGAGGGGGGCTTCATGCTTAGATGCTTT CAGCACTTATCCCGTCCATACATAGCTACCCAGCTATGCCGTTGGCACGAC AACTGGTACACCAGAGGTATGTCCATCCCGGTCCTCTCGTACTAAGGACAG CTCCTCTCAAATTTCCTACGCCCACGACGGATAGGGACCGAACTGTCTCAC GACGTTCTGAACCCAGCTCGCGTACCGCTTTAATGGGCGAACAGCCCAACC CTTGGGACCGACTACAGCCCCAGGATGCGATGAGCCGACATCGAGGTGCCA AACCTCCCGTCGATGTGAACTCTTGGGGGAGATAAGCCTGTTATCCCCGG 50 GGTAGCTTTTATCCGTTGAGCGATGGCCCTTCCATGCGGAACCACCGGATC ACTAAGTCCGTCTTTCGACCCTGCTCGACTTGTAGGTCTCGCAGTCAAGCT CCCTTATGCCTTTACACTCTATGAATGATTTCCAACCATTCTGAGGGAACC TTTGAGCGCCTCCGTTACCTTTTAGGAGGCGACCGCCCCAGTCAAACTGCC CGCCTGACACTGTCTCCCACCACGATAAGTGGTGCGGGTTAGAAAGCCAAC ACAGCTAGGGTAGTATCCCACCAACGCCTCCACGTAAGCTAGCGCTCACGT TTCAAAGGCTCCTACCTATCCTGTACAAGCTGTGCCGAATTTCAATATCAG GCTACAGTAAAGCTCCACGGGGTCTTTCCGTCCTGTCGCGGGTAACCTGCA TCTTCACAGGTACTATGATTTCACCGAGTCTCTCGTTGAGACAGTGCCCAA

ATCGTTACGCCTTTCGTGCGGGTCGGAACTTACCCGACAAGGAATTTCGCT ACCTTAGGACCGTTATAGTTACGGCCGCCGTTTACTGGGGCTTTGATTCGT AGCTTCGCAGAAGCTAACCACTCCTCTTAACCTTCCAGCACCGGGCAGGCG TCAGCCCTATACATCACCTTACGGTTTAGCAGAGACCTGTGTTTTTGATA AACAGTCGCTTGGGCCTATTCACTGCGGCTCTTCTGGGCGTGAACCCTAAA GAGCACCCCTTCTCCCGAAGTTACGGGGTCATTTTGCCGAGTTCCTTAACG AGAGTTCGCTCGCTCACCTTAGAATTCTCATCTTGACTACCTGTGTCGGTT TGCGGTACGGGCACCTGTTATCTATCTAGAGGCTTTTCTCGGCAGTGTGAA ATCAACGACTCGAGGAAACAATTTCCTCTCCCCATCACAGCTCAGCCTTAT GAGTGCCGGATTTGCCTAACACTCAGCCTTACTGCTTGGACGTGCACTCCA 10 ACAGCACGCTTCGCCTATCCTACTGCGTCCCCCCATCGATTAAAACGATAC TAGGTGGTACAGGAATATCAACCTGTTATCCATCGCCTACGCCTGTCGGCC TCAGCTTAGGACCCGACTAACCCAGAGCGGACGAGCCTTCCTCTGGAAACC TTAGTCAATCGGTGGACGGGATTCTCACCCGTCTTTCGCTACTCACACCGG CATTCTCACTTCTAAGCGCTCCACATGTCCTTGCGATCATGCTTCGACACC CTTAGAACGCTCTCCTACCATTGTCCAAAGGACAATCCACAGCTTCGGTAA TATGTTTAGCCCCGGTACATTTTCGGCGCAGTGTCACTCGACTAGTGAGCT ATTACGCACTCTTTAAATGATGGCTGCTTCTAAGCCAACATCCTAGTTGTC TGGGCAACGCCACATCCTTTTCCACTTAACATATATTTTGGGACCTTAGCT GGTGGTCTGGGCTGTTTCCCTTTCGAACACGGACCTTATCACCCATGTTCT GACTCCCAAGTTAAATTAATTGGCATTCGGAGTTTGTCTGAATTCGGTAAC CCGAGAGGGCCCCTCGTCCAAACAGTGCTCTACCTCCAATAATCATCACT TGAGGCTAGCCCTAAAGCTATTTCGGAGAGAACCAGCTATCTCCAAGTTCG ATTGGAATTTCTCCGCTACCCTCAGTTCATCCGCTCACTTTTCAACGTAAG TCGGTTCGGTCCTCCATTCAGTGTTACCTGAACTTCAACCTGACCAAGGGT AGATCACCTGGTTTCGGGTCTACGACCAAATACTCAACGCCCTATTCAGAC TCGCTTTCGCTGCGGCTCCACATTTGCTGCTTAACCTTGCATCAGATCGTA ACTCGCCGGTTCATTCTACAAAAGGCACGCCATCACCCATTAACGGGCTCT GACTACTTGTAAGCACACGGTTTCAAGTTCTCTTTCACTCCCCTTCCGGGG TACTTTCACCTTTCCCTCACGGTACTGGTTCACTATCGGTCACTAGAGAG 30 TATTTAGCCTTAGGAGATGGTCCTCCCAGATTCCGACGGAATTTCACGTGC TCCGTCGTACTCAGGATCCACTCAAGAGAGAATATGTTTTCGACTACAGGA TTATTACCTTCTTTGATTCATCTTTCCAGATGATTCGTCTAACATGTTCTT TTGGGCTCTTCCCGTTTCGCTCGCCGCTACTCAGGGAATCGATTTTTCTTT 35 $\tt CTCTTCCTCCGGGTACTAAGATGTTTCAGTTCTCCGGGTCTGCCTTCTGAC$ ATGCTATAAATTCACATGTCGATAACATGACATAACTCATGCTGGGTTCCC CCATTCGGAAATCTCTGGATCAACGCTTACTTACAGCTACCCAAAGCATAT CGTCGTTAGTAACGTCCTTCATCGGCTTCTAGTGCCAAGGCATCCACCGTG 40 CGCCCTTAATAACTTAATCTATGTTTCCACCATATTTTGAATTGTTATTCA AAATAAATAGCTAAAACTAGTTATTAATCTTGTGAGTGTTCTTTCGAACAC TAGCGATTATTTATGAATTCAAGCTTATTTAAAACTCTATTCACTCGGTTT TTAATAAACATTCAAAACTGAATACAATATGTCACGTTATTCCCTCATCTT CGTAGAAGATGTTCCGAATATATCCTTAGAAAGGAGGTGATCCAGCCGCAC CTTCCGATACGGCTACCTTGTTACGACTTCACCCCAATCATTTGTCCCACC TTCGACGGCTAGCTCCAAATGGTTACTCCACCGGCTTCGGGTGTTACAAAC TCTCGTGGTGTGACGGGCGGTGTGTACAAGACCCGGGAACGTATTCACCGT AGCATGCTGATCTACGATTACTAGCGATTTCACTAATTTCTTGAAAAGTTT TTTCTAATTTTTCAAAGAAACCACCTTCTTGATGTTGCTCGTTTGAGGTTT TTTGATTGGGTCTTTGATTTTGTCTGTCCTCGTGACTTTTATCTCGTAATG CGCTAACACCTGTAATTATCACAGATATGATGAAAATGATAATGCCAATAT TCATCTTATCACCTCTTCATTATTGTTGTGGTGATTCATCATCGTTTTGAT CAGTGCGCTTATTTATTGCATTTCTCATACCTGTATCCGCTTCA

55

Sequence 3443 step.1003c07.cons.ok TGTAGCAATACCACCATGCAACTGACCTACGTTTTCAAATCCTTCTTTTAC

TAACCAACCAGAAAATTTTTCACAACGAATGCCACCTGTACAATATGTGAC AATATTTTTCCGTCGAGTTGTTCTTTATTATTACGCACCCATTCAGGTAA GTCACGGAATCGTGTTATATCAGGACGAATAGCTCCACGGAAATGTCCTAA ATCGTATTCATAATCATTTCGAGCATCTAATATAACAGTATTTTCATCTTC TAGTGCGGCTTTAAATTCTTTAGGAGAATAGTATTTACCGGTAATTTCACG TGGATTAATATCTTCTTCTAAGTCAAGTGCAACAATTTCACGTCTTGGACG CACGTGCATCTTTTTAAACGCATGACTTTCAGCTTCATCAATTTTAAAAGT TAAATCAGCAAAACGACTATCTGCATGCATATGCTCTATATATTTATCAGT ATCTTCTTTTGTTCCAGATAATGTTCCATTAATGCCTTCCGTTGAAACTAG TATTCTTCCTTTTAAATGATGTTCCTTACAAAATTTCAAATGTTCGGCTGC 10 AAAAGTTTCAGGGTCATCTATAGTTACATATTTATAATAAAGTAGTACTCT ATAATCCATAAATCTGTGCTCCTCTTTAGTCAATTTTAGTTAATTTAAAAG TATTTGAAGTTATATAAAAAAATGATAGTGATTGAAGTTTAAAAATTAGAC ATTTTAATATTGTATCAAAATGAGAATTGCTTTCAATAAGATAGCCTATAA ATCCGTCATTTGACCGATATAAGATGTGGTGGTTTTCATATATGAATAAAA GTGTAGTCGTGTAGCTATAATGACATTTAATATAAATTTTTATAAAATGAG AATAAAGTCACTGAATAAAGAGAGGGATTCAATCGATGGCAAATCAAAAAT TACCAACATTAAAATATACTGGTAAATCAGAAAGTGCAGTGCCAATTGTGT CAGAAAGTGAATTGCAAACGGTAACAGCAGAGCCGTGGGTGAAAATTTCAG ATAAAGGGTTACAACTAGAAGGACTTAATTTTAATCGCGAAGGTCAGTTAT 20 TCTTATTAGACGTGTTTGAAGGGAATATTTTTAAAGTTAATCCCGCAACAA AAGAGGTTACAACAAAATTTCAGTCTGTTAAAGATAATCCGGCAGCGATTA AAGTACATAAAGATGGTCGTTTATTTATCTGTTATCTAGGTGATTTTAAGA CAACTGGAGGCATATTTGCGACAACAGAAAAAGGTGAACAAATAGAAGAAA TTATTTCTGATTTAAATACAGAATATTGTATTGATGACATGGTTTTTGACA GTAAAGGCGGATTTTATTTCACTGATTTTAGAGGGTATTCTACACAACCTT TGGGCGGTGTTTACTATGTAGATCCAGACTTTAAGACGGTTACGCCAATTA TTCAAAATATTTCTGTGGCGAATGGTATTGCTTTAAGTACGGATGAAAAAG TGCTATGGGTAACTGAAACTACAACTAATCGACTTCACCGAATCGCATTAG AGGATGATGGCGTGACTATTGCACCATTTGGAGCGACAATACCATATTATT 30 TTACAGGTCATGAAGGACCGGATTCTTGTTGTATTGATAGTAATGATAATT TATATGTGGCTATGTATGGCCAAGGACGTGTATTAGTTTTCAATAAGAGAG GTTATCCTATAGGTCAAATTTTAATGCCAGGACGTGATGATGGAAAGATGT TACGTACAACACATCCACAATTTATACCTGGTACAAATCAACTTATAATTT GTACTAATGATATTGAAAACCATTCTGAAGGTGGATCTATGCTTTATACAG TTAATGGTTTTGCTAAAGGATATGAGAGTTATCAATTCAATAAACTCTTG AAAAAGCGTATAGAATAAGTTGTTATGTATAAATAAAAGAAGTAGAACAAA GGTTGAATAAAACTTTATGTTCCTCACTCGTATAGCTTAATTTGAAAATTT 40 TGCCTGAGACATTTAATGTGTCCCAGGCATTTATAATATGTGTTCTTGTAT TTTACTGTTAAAGATAAAAGCTTAAGAAAATTTTCTATAACAAATCGTTTA ATTGTCGATGCTAAATTCTGCTGATGCTTCAAATTTTACGTTTTTACCTAA CATCACGCCACCAGTTTCTAAAGCTTGGTTAAAATTAATACCATATTTTTC GCGGTTAATTGTTCCACTAACGATAAAACCAGTGACTTGTTGTCCATTCAT 45 TGGATTTTTACTTACACCATTAAATTCAACATCAAATGTCTCTTCATGAGT TTCACCTTTAATTGTCAAATCTCCAACTACTTGATTTTCGTTAATTTCTTT AGTTACAAATGTCATTTTATCGTTGTCTTCTGTACCAAAGAAATCGTTTGA TCTTAAATGGTTGTCTCTGTCCTCATTTTGAGTGTCAATTGAACTTGGAAT AATAGTAGCTGTTGCTTTTAGTGAAGTTAAATCATTAATATCTCCATCTAA TTGAACATCGAATTGCTTAAATGTTCCTTTTACTTGGGACACCATAAGATG 50 TTTAATTTTAAACTGAATATCACTGTGAACTTGATCAAAGTTAAATTTTGT CATTATTATAACCCCTTCTCTCTTTATTACAATAATTACGTTTCTTGTACT TGTTATTCTAGATACAGTAAGATGACTTATCAATTTTTTTACTCTCATTAA ATTTACGGCTTTTTAAACTTTTTTAGTGTGTCTATATTACTATATTCGTTA AAAAGAATGAAGTATACATAAGAGAATGATGATATTTGGCAATCAACAGT AAATATATCTTCCAGAAAAATGTTGTGAAATTTCACATAAATATAAAAAAAG AACATGTGATTGTTGATTTGAGGTTGCTCATAGTGAGGATTATTGAATTAT AAACTAAAAATATTTCATTTAATACTGAAGTAAAATAACGTATGTCTCAAA AAATAATTAAACACATACATTTTCATTTGACATTGCAATTAGAAGAAAGTA

Sequence 3444 15 step.1003c08.cons.ok AAATATAGATTGTCGCTTTAACAACAGAATTCAAATCAGAACCTGCTTCTT TTAATACCACAGTTAAATTTTCTAAAACTTGCTTAGTTTGTTCTTGAACAT CATCGCTAACAATTGTTCCATCAAGTGTGAGTGGAATTTGACCTGATGTAA AGACAAAACCGTTTATAACAGTTGCATGCGAATATGGGCCTAGTGCTTCGG 20 GTACCTTATCTGAGTTACAACAACTTATTCCTAAATATTGTGTTATTTTCC CTTAAATCTCCTCAAAGATAAATGATTTAAGGGTTTTTTTATGCATAAATC ATTTGTTCTAACCCGTTTTACTATCTATAAGATTGTTATTGTAATAAAATA TTGACATTAAATACTAACATAACGAAAAATAATTGAAAGGAATGAAATAAT GGTACAAATGCATTGTTGCACTGGACTTTGAAACTGCTAACAGTAAACG AACAAGTATTTGCTCTGTAGGTATGGTTAAAGTTATTGATAATCAAATAAC AGAGTCATTTCATACCCTTGTGAATCCTTTTGACTACTTTACTGAAACAAA TATTACTGTACATGGCATCCATCCCGAAGATGTGCAAGATGCTCCTGGATT CAAGCATGTCTATCCATATATGCTAAAATTTATTGATCAACTTCCTGTTGT TGCCCATAATGCTGCTTTTGATATGAATGTGTTACATCAAAGTTTAAAAAG TCATAATATAGATACACCTTCTTTGACATACTTTTGTTCATATCAATTAGC 30 TAAACGAACAATTAATGCATATCGATATGGGCTAAAACATTTAATGAATCA TTACCATTTAGATTTTCACGGTCATCATGATGCGTTAAATGATGCTAAAGC TTGTGCAATGATTACCTACCGCTTATTGAAACATTATGATGATCTTCAAAG CATGTTGAGTATATATGGAAAAAATCTCAAAGATAAAGGCTGATTGTCCAC TTAACTTGTGTTCATCAGCCATTTAAATAAAATCATATATTGTTAAATTTT 35 TAAAATCAGATTGCTCTAAACTCCCGACCGTTACACCTATTAATCGAATCG GAATCTCTGGATCTTTTAAGTCGTTATATAAAGTATAGGCAATATTATAGA TATCAGTTTCAGTACGAATAGGATCTCTCAAACTTTTTTGCTTTGAGATTG TTTCATATTGATAGGTCTTTATTTTTACAGTGACTGTTTTACCTGATTTTT GAATTTTATTTAAACGTTCTGCTGTTTTTTCCTGAAAGCTCTCTTATTTTTC 40 TTAAAATAACATCATCATCGTTAACATCTGTAGAAAATGTCCTTTCAGTCC CAACAGATTTACGAACTCTACTCGCCTTTACTTCATTATGGTCTATACCTC GAGCTTTATTATACAAACCTCGTCCTCTTTTACCGAATAAACGTATTAATT 45 GCATTTTTTTTTCTTCGAAGCTTTGCCTACCCCTGGAAAATCTCCAATATCTA ATTGCATTAATATTTCATGTACATTATTGTAATCAATTACTGTCAAACCAT TCGGCTTGTTCATACCACTCGCTAACTTTGCTAAAAACTTATTATAAGACA CGCCAGCTGACGCAGTTAAACGTGTTACTTCGTATATATCTCTGCGAATAT AATTTGCAATGGTTGATGCTGGTAAATCCGGTCTCACTAAATGTGTAATAT CTAAATAAGCTTCATCTAAAGACATGGGTTCTACTAATTCTGTATAACTTC TGAATATTTTCATGATTTGACCAGATACCTCTCTATAAGTATCAAAACGGC TTGTTACATAATATCCATTGGGGCATAGCTTATGTGCTTGAGTCATAGGCA TAGCAGAGTGAACACCATAAGCTCTTGCTTCGTATGATGCCGTAGAAACTA CGCCTCGATGACTCGCTTTACCGCCAACGATGACAGGTTTTCCTTTTAGTT TAGGATTATCTCTCATTTCAACTTGAGCAAAAAAATAATCCATATCTATAT 55 GAATAATTCTTCTTCAGTCATCGACTCACCTCACTATGTCTTCCAAATAA TGGCTTTATATTATTATACGCCATCCTTTCTATGTTTACATGTATTGTGCA

CTACAATTTTTAGAATAAATTCATAGTCCTATCCTTTTCTACATAAGTAGT

15 Sequence 3445 step.1003c09.cons.ok AATAAATTTTTTGAAACGGCTTTGGAATTGATATTCAAATATATCAAAATC TAAACCTACCAATAAATAAAAAATTGCCATACAAATTGCCATAACGACCAG TATACTTATTTTTTTTTATTAGCGCTCATTTGCATAATTTTTCCTACCTTTCA TTAGCAAGATTAGGAAAATAATTGTGCCAAATACACCTATCGTCAATCCAA 20 TATTAATTTCGTAAGGGTAAACAATTATTCTACCAATAATATCAGCAATTA AAACAAAAATTGCACCGAGCATAAGCGTGTGTGGTAAAGCATTTTTCAAAT GATCGCCTCTATAGATAGATATGATATTCGGTACGATTAAACCTAAAAATG GTAATGTTCCAACAGTAACAACAACTAATGCTGTTAGCGTTGCTGTTATGA ATAATGCTATTTTAATGATTTTTTCATAACTTACACCTAAATTATGACTAA 25 AGTCTTTTCCCATACCTGCAATAGTAAAATGATTTGCAAATACAAATGCCA AAATAAGTAATGGTATTGTGAGATACAACACCTCAAAACGACCACTCGTTA TAACTGCAAAGTTACCAGTTAACCAGTTTCCAATGCTTTGTAAAGCATTGG TTCTCAACGCTACAAATGTAGTAAAACTGGATAAAATACCACCAATCATAA 30 ATTGGACAAATAAAACGTTCCAACAATACTTAGAACAACAGCAAATAATA ATTTGATTAAAATGGGACCATTAGGAAAGAACAACAATGACATTAAAATAC CTAATTTTGCCCACTCCATAGTACCAGCAGTCGTTGGGCTTACAAATTTAT TTTGCATCATCTGTTGCATAATTAATCCTGATAAAGCTAGTGAACTACCCG AAAGTAGAATACTAACTGTTCTGGGAATTCGACTCGAAAACAAAATATTTA AACCTTTAAAAATAAATTTCATTAGTTAATCTCCTTGCTAAATATTAAAGA TGTATAAGGTCAATATACGAAAGTAATGATAATGATAATGATTATCATTAA CATCAATATTATAGACTCTATTTTCTTTTTTCAATAGTTTTTTCATATTTT 40 TTGGGAATTTTATAAATGTTTTATCCAGCAGTAATAATACATCAAAATATT TTATAATACCAACTTTCATAAAAAAAGAGATTCCTACTAATTTTAATAGAA ATCTCTTTAAAAGTACTATATTAATTATCAAAAACAAAGTCTTCATCACGT AGAGGCTCAACATTTAAAGCCAATGTATAGCCATCACCTTTAACAGAGAAG AAATCGTGGTTCTTTGTAGATGTATCTAGTGCATTTTCAATAATAGGGTTA 45 AACTCTCTCTCTCGAAATATGGTTCAAAACCTAAATTCGATAATGCTTTA TTTCCATTATATCGAACATAATTTAATACATCTTCAGCAAGACCAATATCA TCATATAAATGTGTATATGAAACTTCATTATCATAAAGTTCATTAAT AATTTGTACATTTCTTGATCAGCTTTTTGTTTCTCACTTTCAGATAACTCA TTACGTAGACTTTGTGCATCTAAACCTGTGAACACTCCATGTATAGATTCA 50 TCTAAAAGTATCTTACGTATAATTTCACCTGACGTAGTCATTTTTCCTTGT AAGAATACACTAGAAACACGAGCAATATATTGATCGTAAATCGATGCTTCT TTACCCCAAAGTTTGTGGTAATTTTCTACAATTTTATCTGATTTATATTTT AAATGTGGCTCTTCAATAACCCAAGTATCCAATAAATAGTTGGTTTCACTA GATGGTAATAATGTAGTGAAGATATGAGAATAACTTTTCGCATGGATTTGT TCCATCATAGCCATAAATGAATAAACAGCTTTCTTTCTTAAATCAGTAGTA TGAAGCATGATTAATGGCATACCATCATCAGCTTGATGTGTATCTAAACCT GTTAAACCTGCAAGCGCTTTTTTAAAAGTATTTTTCTCAGAATCTGTTAAT

ATTTGTGAGATATTTTGACGCCAGAACATATTAGTCATATCTTCTTGGGTG TTCCAATTTACCGCCTTCATTAAAATCCTCCTGTCATATTTATGTATAAAA TAAAGAGTTTTGAACCAATGTAAATCTATAATTTAAAGAAATACATCAATT CATCACTCTACTCTAAAATCTTTACAACTTAATCAATTAAATCGCACAACT TGTACATTCTTCCACACTTAATAATTTATTACGTGTATAGTATAAAGATTT AAGGCCTTTATGGTGTGCATATACATATAATCTTGAAAGTTCACGTGTTGA AATTTCTGAATTAACATAAAGTATCGTTGAAATACCTTGGTCTACGTGAGT TTGAATTGTAGCTACTAAGTCAATAAGTTTCATTTGGTCAGTATTAAATGC 10 TGATTTGTAGTACCACATTGTTTCTGGTGATAAAAATGGCATTGGATAAAA TGTTTCCGCATTTCCATACGTACGACGTTCAATTTGGTCAACAATAGGCAT AACAGAACTTGTCGCATTTTGAACATAAGAAATACTTTGAGTCGGAGCAAT AGCTAATCTATAAGCGTGATAAAGTCCATATTGTTCTACTTTATTTTGCAA TTCTTTCCAATCATTTGAAGTAGGTATATCGATACCATCAAAAAGTTGGCG AACCTTTTCAAATTTTGGTTCAAATTCTTGAGATGTATAGAATTCAAAATA TTTACCATTTGCATAGTCTGATTGCTCAAAGTCTTGATACTTTTCTCCACG CTCTTTTGCAATTTCCATTGAACGTTCGATGGAATAATAGTTCATAATCAT AAAGAATATATTAGCAAAGTCTTTTGCTTCTTCAGATTCATAGCCAATTTT ATTTTTAGCTAGATAACCATGTAAGTTCATTACTCCTAGTCCAACAGAATG TAGTTCACTATTCGCTTTTTTTACACCTGGTGCATTTTGAATATTTGCTTC ATCACTTACAACTGTAAGAGCATCCATACCTGTGAACACAGAATCTCTGAA TTTACCTGATTCCATAACATTCACTATATTCAATGAGCCTAAGTTACATGA AATATCTCTTTAATTTCATCTTCAATTCCATAGTCGTTAATTACTGATGT CTCTTGTAAT

25

15

Sequence 3446 step.1003c10.cons.ok

TATATTTCGTGTGATTTTCTTTAACTACTGCACCTGCCACAATTCGATGCG GTTTTTTTTTAATTCTTTTAGTAAAGTAATTCCACGTTGTGCGCGTTTAG 30 CTTCTTGAAGAACATTAAAATCAATACGCTTCATAGCACCACGTTGTGTAA CCATTATTATGGAATCTGAGTCGTTCACATCTTCTGTCATAACAACATAGT CTTCATCTTTAAGATTAATTGATTTAACACCAGCTGCTCTTAAGCCTGTAT CCGATAATTCATTAGTTGAATAAGTTAATGACATGCCTTTATGGGTTAGAA CAGTAATTAACTGATCAGACTCTAATCGAACGACATTAATAAGTTCATCTT 35 TGTCTTTAACCTTCATATTTATGAGTGGTTTATTAAACCGAGTAGTTTTAA ATTGTGAAGCACTACTTTTCTTAATCATGCCGTTTTTTGTAGCCATAATAT AAAAGGCTTCATTTTTAAAATCTTTTTCGTTGTATACATTTACCACTTCTT CATCTTCATCTATTGGCACAATTTGTGATATGTGTTGACCAAGCTCTTTCC AACGGATATCGGCTAATTTATGAACAGGTATAAACAAATATCTACCTTTAT 40 TTGTAAATACAAGAACAGTATCTTGAGTATTCACGCTTTCATGTTTTAATA AACGGTCGCCGTCCTTCAAACCGATTTCAGTCACACCACTTGCGTTAAAAC TACGTGTAGATGTACGTTTTATATAGCCATGTTGCGTCAAACTTAAAATCA CTTCTTCACTAGGCACCATAACTTCTTTATCAATTTTGATTTCGGAAATTT CAGCTTCGATTGTAGATAGTCGATCCACTTTAAATTTCTTTTTAATTTCAT 45 TTAGTTCATCTTTAATTACTGCTAAAAGTGCCTCATGATTATCTAAGATAT TTCTTAATTCTTTTATTAAAGCTTCTAACTCTTCATGTTCTTTTTTCAAAG CTTCAATGTCAGTATTTGTTAATCTATACAGCTGTAACATGACAATAGCTT CTGCTTGAGCTTCAGTAAAGTCATACTCTGCAACTAAATTATCTTTAGCAT CTTTTTTTTTTTTAGAATTACGTATCAATGCAATAACTTCATCAAGTATAG ATAAAGCTTTCATTAATCCTTCCACAATATGCATACGTTTTTCAGCTTGCT CTAAGTCATAACGCGTTCTATTTGTAACCACTTCAATTTGATGATTTAAAT AACTTTCTATAATTTCACGTAATCCCATCAACTTAGGGCGACCTTCACTAA TAGCAACCATATTAAAATTATATGAAATTTGTAAATCCGAATTCTTATATA AATAGTTTTTGATTGATTCGCTATTAGCATCTTTTTTTAATTCGATTGCAA TTCGTAATCCAGTTCTATCAGTCTCATCTCGAACTTCTACAATACCATCAA CCTTTTTATCGGCACGTAATTCGTCAATTCTTTTAACTAAACTACTTTTAT TCACTTCATACGGAATTTCAGTCACAATTAATTGTTTACGTCCACTTCTTA AAGGCTCTTCATCTACTCGTGAACGCACGACAACCTTTCCTTTACCGGTCT

CATACGCTTTTTTTATACCTTCTATTCCTTGAATGATACCACCTGTAGGAA AGTCAGGCCCTTTGATATATTTCATCAGTTGATTAATTGTAATATCAGGTT GATCGATATACTTCAATGTGCCTTGTATTACTTCGGCGAGGTTATGCGGCG AATTAGGAAATCTCGCTGGTAATACCATTGGTTCCAAAGTTGTGTCATCAT AGTTTGGAATAAATGATACTGTTTCCTTATTAATATCCCTTAATAGTTCTT CTGATAATTGACTAAGTTTAGCTTCTGTGTAACGCATAGCAGCTGGAGGAT CGTTATCGATACTACCATTATTACCATGCATTTCAATTAGAACATGACGTA ACTTCCAATCTTGACTTAAGCGCACCATAGCATCATATACTGAAGAGTCTC CATGAGGATGATATTGACCTATTACATCACCGACAGTTTTCGCACTTTTAC 10 GGAAATTTTTATCATACGTATTCCCACTTGAATACATTGCGAATAGTATAC GTCGTTGTACTGGTTTTAAACCATCACGTACATCAGGTAATGCACGTTCTT GAATGATATATTACTATAACGTCCAAATCGGTCACCAATAACATCTTCAA GTGACAAATCTTGAATTATCTCACTCAATTCGTTTCCTCCTCAATATATTT TTCATTCTCTAGTATTTGGACTTCTTTATTATCCAAAATGCTTTGATCTTC TTGCATACCAAATTCAACGTGTTTTTCAATCCACTCTCTTCGTGGGGCAAC AACTTGAACTCTAATTAATGTCCGAGTTTCTGGATTCATGGTAGTTTCCCA TAATTGTTCTGGATTCATTTCACCAAGACCTTTATAACGCTGTAATATGAA ACCTTTTCCTAATTGCTTTTGTAAATTTTCTAATTCTTCATCAGTCCAAGC GTACTCAACTTTTTTATTCTTACCTTTGCCTTTTTCTAATTTGTATAAAGG CGGTAACGCAATAAAGACACGTCCAGCTTGAACAAGTGGTTTCATATATTT AAAGAAAATGTAAGCAATAATACTTGAATATGTGCACCATCCGTATCAGC ATCTGTCATGATAATAATTCTGTTGTAATTACTATCCTCAATTTTAAAGTC AGTACCAACACCAGCACCAATAGTATGAATAATCGTATTAATTTCTTCATT TTTAAAAATATCCTCTAAACGTGCCTTTTCTGTATTAATAACCTTTCCACG AAGAGGTAAAATAGCTTGGAATTTACGGTCGCGTCCCAATTTTGCAGAACC TCCCGCTGAATCACCCTCAACTAGATATAACTCGTTTTTATCAGTATTTTT ACTTTGCGCAGGAGTTAACTTACCTGATAACATGTATCTTTACGTTTATT 30 TTTCTTTCCGGAGCGTGCATCTTCTCTAGCTTTACGAGCAGCCTCGCGTGC TTGTTGAGCTTTAATTGCTTTTTTAACTAATGATTAGATAATTGGCCCCTT TTCTTCTAAGTAATATGGTAATTTTTCTGAAACAACAGAGTCTACAGCACT $\verb|CCTTGCTTCTGAAGTGCCAAGTTTTGATTTCGTTTGCCCTTCAAATTGAAG| \\$ AAGTTCTTCTGGTATACGTACTGAAATTATCGCTGTTAAACCTTCGCGTAT 35 ATCATTACCGTCT

Sequence 3447 step.1003c11.cons.ok

CAAATTTACATCGACAAACACTCTTCGATGAAGAAGACGCACATACTTTAA 40 TATCCAAAGTTGAAGCAATCAAGCATAAGGTTAATCAAATTAATATAAATG TCAATCTAACAACTTATGATTTAGAAGTTACTTCATCAAATATCGAAAATT TGATAAAAATGTCGAACCAGACATCATCATTGATGGCATGGATAACTTCA AAATACGATACCTGATTAATGAGGTTTGTCACAAGTATCAAATCCCATGGG TTTATGGTGCAGCTGTTGGTAGTAAAGGATCAGTATATGGAATAGATCACC AAGGACCATGTCTAAAATGTTTATTGCAAACAATTCCTGACACAGGGGAAA GTTGCGCTATTAATGGCGTAATTCCCCCTGTTATATCAATGATTGCAAGCT ATGAAGTAGCAGAGGCCGTACGTTATCTTTCAGGAAAAGGATTTTCAAAGC ATGCACTCAAAAATAAAGATTGCCCAGTGTGTGAAAAACATGAATATACGT TACTAGAAAGCCAACAAGAACGTACTATTGAGGACTTGTGTGGGAATGCTT ATTTATTTAGATTCCCACCTAAAGCTTTTAAACACGCTGCCCATTTCCCTG GGAATATGGTGAAATCTACTTCCTTTGCCAAATTAATTCAATATCAAACTT ATGAATTCACCTTGTTTAAAGATGGTCGTATGAATGCATATGGTATACACA ATGATGAAGAAGCACATCACCTATACAATACGTTGTTAAAATCCATACGCT AATTAAAGTAAGATTGTTACCCTTTCAACCTGTTTCTTGTTAAAATAACTT ATACTTAACATCAAGTTTACGACAACTGGATTAATTTAAAAGGAGAAACTA ACGTTGTATGGAACAAATTATCACTGATTTTATTAGTAAGTGGGGTTATAC AGCGATATTCATTTTAATCTTATTAGAGAACGTATTACCTGTCGTTCCATC

TGAGATTATTTTAACTTTTGCAGGCTTATTATCTGTGAAATCACACTTATC CATTTTGTATTATTTTGTAGACTTATCTCAGAAGAGAAATTATATCGTTT CGTTGATCGACATGGTAAGTGGATGAAGTTAAAAAGTAAAGATTTGAAACG GGCAAATGATTGGTTTAAAAAGTATGGTGCGTGGGCTGTATTTTTATGTCG TTTTGTCCCAGTACTTCGAGTATTAATTACAATACCTGCTGGCATTAATCG AATGAACGTTATACAGTTTACAACTTTATCTTTAATAGGTACTACAATTTG GAATTTTGCTTTAATACTGCTCGGTCGTTTGCTCAGTGACAGTTTTGACGC TATTGCAGTCATATATTTTGTTATACGTTATTTAATGAAACGTCGTCGGAG 10 TGTTAAATAAATGTTATGCTAAGTTTTCCGTTTCTTAACGGTTAACTTAGC TTTTCAAGATAATCTATGTAAGCGCATTATTATAAATAATCGTATCGTTAG GTCGGAAAATATAATTAGAGGTGACTATGCATGACCCATATTACAGAAAGT GAAATGAAACAAAAATATCTAGATTTACTCTCACAAAAATTTGACAGTGCA 15 GAAAAACTTGCTACTGAAATTATTAACTTAGAGTCAATCTTAGAATTACCT AAAGGGACTGAACATTTTGTTAGTGACCTTCATGGTGAATACGAATCTTTC CAACATGTTTTAAGAAACGGATCTGGAAATGTGCGTGCTAAAATTAATGAT ATCTTCAAAGATAAATTATCCCAGCAAGAAATCAACGACTTAGCAGCATTA GTATACTATCCGGAAGAAAACTAAAATTAGTTAAAAATAATTTCGATTCA ATCGGAACATTAAATATTTGGTATATTACAACCATTCAACGATTAATTGAT TTAATTACATATTGCTCATCAAAATATACACGTTCAAAATTACGCAAAGCA TTACCTGAACAATACGTTTATATTATTGAAGAGCTACTTTACAAGAGCAAT GAATTTCATAATAAAAAGCCTTATTATGAAACATTAGTTAACCAAATTATT GAATTAGAACAATCAGATGATTTAATCATTGGCCTTTCCTATACTGTACAA CGTCTAGTCGTAGACCATCTTCATGTCGTGGGCGATATCTATGACCGTGGT CCTAAACCTGATAAGATTATGGATACATTAATAAATTATCATTCTGTAGAT ATCCAATGGGGAAATCATGATGTATTATGGATTGGCGCCTATGCTGGTTCA AAAGTATGTCTTGCTAACCTTCTACGTATCTGTGCACGTTATGATAATTTA 30 GCTGAAAAGTATTACGATGCTGAAAACCCAGCGTTTAAACCTAAGAAACGA CCAGATAAAGACGTCAGTCTTACAAAACGCGAGAAAGTCAAAATCACAAAAA TTCATCAAGCAATTGCGATGATTCAATTTAAACTTGAAATGCCTATTATTA AGCGTCGTCCTTCTTTTGAGATGGAAGAACGTTTAGTTTTAGAAAAAATAG 35 ATTATGATAACAATGAAATCACTATATATAAAAACATATCCGCTTAAAG ATACTTGTTTCCA

Sequence 3448

40 step.1003c12.cons.ok TGAGTTCTAATTGGCAATGATTTAAAACAGATTGAACAATGTGAGACACAT ACTGTTCTTGTATTTCTAAGCTTTCTGCATGATTTGTAAAGGCCATTTCTG GTTCAATCATCCAGAATTCAATTAAATGACGGCGTGTTTTAGATTTTTCTG CACGAAAAGTTGGGCCAAATGAAAAAACACGTCCGTGAGCCATTGCGGCTG CTTCCATATACAACTGCCCACTTTGTGATAAGAATGCATCTTCATCGAAAT ATTTTGTATGGAATAACTCACTTGTTCCCTCTGGTGCACTTGCTGTTAAAA TAGGTGGATCAATTTTAGTGAAGCCATTTTCATTGAAAAACTCATATGTTG CACGGATAATTTCATTTCTTATTTTCATGACAGCATGTTGTTTTTTTGAAC GTAACCATAAGTGACGATGATCCATTAAAAATTCTGTTCCATGATTCTTTG GCATTTCGTAGCCTAAATCAGAACGATTATCTTCTGTAATCGTTCCTGTGA TGTATAAAGATGATTCTTGAGTTATATCTTTTGCTAGTTGAAATGTTTCTT CATCTACTTCAGATTTTACTACTACTCCTTGCATAAATCCTGTACCATCGC ${\tt GTAATTGTAAAAACGCTATTTTACCACTTGAACGTTTATTAGTTAACCAAG}$ CACCAATTGTTACTTCTTGGTTAAGATGTTTTTTCGCTTGTTTAATCGTAG TTTTCATAACCAAACTCCTATATTTTTCTTTTTAAATACTTATTTATTTTA ACAAAATATGTCTTTAACTTCTACAAGTTGAGTAACTGGAATCATTCGATA TTATTATTATATTTCTAAAACGTTAGCTTTTACTCTCATTATCGATAG ACCTCTGTATTTGATTCAGTAATTTATTAAAACTGTTTAATATTACCTTTTC

GTTGTTTAAAATGTTCTAGTGATTGAGCAAAAAAGCTTTTATATGTGCTAT TTACTAGTCGATCATCAAATGACACAATAAGTCCTTTGTCGTCTTCGTGTC GAATAAGACGTCCAAGACCTTGTCTAAACCTTGTTACAGCATCAGGTAATA CATAATCTTAAAAGTTGATGTGAATTCAGAATCCATAAGCCAGTATTTAA TATTATGTTTATTCATAAATGGTAATTTAGCTATCATTACACATTTAAGGC CATTGGCTTGAAAATCAAAACCTTCAAAAAATGTTGATGTTCCAAGAAGTA TAGATTTATCAAAGTTATTAAATTGTTGAACAATTTTATAATTTTGGTTTT GTTGTTGGGTTAAAATGACATAATCTTCTAACTCAGGTAATTCATTTAACA AATCTTGAACCATATGCATCATTTTATAGCTTGTAAATAAGACAAGACATT In TCGACTGTGTCACTGTGATGTATTCAACAATATAGTCTACAATTGAAGCTA CATAATCGTCTAAATTTTTATAATTGTACGTTTCAACATCATTGGGCACAA AAACATTTGTATGGTTGGATGATGTTAAAGGTGTTGAAATTTCAAATGTAT TAAAGTCTATATCTTCATTAAACCAATTTTGAAATGCTTTAAATGAGTGAT TGAAAGTTAATGTGCCAGATATAAATGTAAGAGACTTAAATTTTTCGAGTA CTTGTTTCGTCAAGATATCTTTAACATCATAATCCTTGACTAAGAGTCGGA TTGTTGATTTTTGTGCTAAATTTTTAATTGAAATAAAGCTTGTATGATGAT CTTTTATACTTTGTTCGATAAGTTTAAATTTGTCATGTAAGTATAATAATT GTTTCCGTACAGACTTGATTGTTTTGTGATTCATTCCGTTAAAAATTTCTA TCGTTTTATTTAATTTATCTATGATTGCACGTAAATCTTTTAAAATCTCAC CCGTTTCAAAGTCATAAACGTAATGATACTTATGAATGTCATCATCATAAA CGTCTGATGTTTGAATAATATTATAAATTGTAGTGAATAGTTGCTCATTTA AATCATGTAACTCATTGATATTTATTTTCAGTCCAAAAACGTCTATAGGTG CAATATCTAGTTTCTCTAAAATACGTTGTTGCTCAAGTTTGTCTACTGCTT TAAGTAGTTTTTCATTTTCATTTTTGCCAATAAGTCCTAATTGATATTTAA CATCTGAATAATTTAAATCATTAGTAACTTGATTTAGCGCATAGTCAGGCA ATCTATGTGCTTCATCGATGATGCAATCATCAAATAGTTGATATATAGTGT TTTCACTGTCTGAATGAATTAAGTGCGCATGATTAGTGATACCAATTTGTA TGTTTTGAGCATTTCTTTTTATATAATTATAATAATGGATATCATGACGAA CTGGAACGTATGTTTCAATTTTTTGGTCAACATACATTTTTTGTCCACCTT TAAGATTTAATTCCTGTATGTCCCCAGTATTTGTTTCAGTTATCCAAATAA 30 ${\tt GTAACTGCATTTTAAGAATACTTACTTCATAATTATTTGTATCGTCTTTAA}$ GAATTTGGCTGATAAGACCAAGAGATATATAATCATTTTTACTTTTGATTA ATGACGCGTTAATTTTAAAATCTAAAACATCATTGAGTAATGGTATGTCTT TCTCTAATAGCTGACTTTGTAATAATTTTGTATTTGTTGAAATCATTACAT 35 GACGACCGGTCTCAATATTATACATTGTTGCTGCAAGCAGGTAAGCAAGAG ACTTTCCACTACCCAAAGGAGCTTCAATCATTGCCTTATCACTATGCATCA ACTGATCAAGTATAATTTCGGCTAGGTATAACTGTTGTGGCCGATATGTAA GATTTAATGATTGAGTGACATTTTTATATAAATCTTTTAAGGTACCATCAA AATTGACAGCCGGTTTTTTTAAATCAATTTGTTTACGGTAAATAATTTGTT CAAATTGTTCAAATTGGTTGTTAGGCGGTTTAGTTTGATAATTTCTAACCA TTTCAAACAAAATATGATAAAGATCATACTTGAGATTTTTACTTAAATAGT ACAGTTGTTTTTGTGTATCTAAATGCAATTGCTCGAACTTCTCAAAAGCTT TAATCATCAATTTAGCAGTTGTTGTTGCATCTTCATCTGCTCTATGTGCAT TATTTAATGGTATATGATGAGATTCAGCCAATGCACTTAACTGGTAGCTTT TGTCTGTAGGGAATGCGATTTTAAACAATTCTAAAGTATCCATTACTCTTT 45 TAGGTTTAAATTGAATATTAC

Sequence 3449

AGTATGTTAAGTCATATTATAATCTTTATACATAAGACACCTCGTTAATTT AGTTTAGTGGTATTTATTAAATTATACGAAAGCACCTTATTTTTCAAAGTA TTTTAATATAAAATTACATATAAACACAAAGTATTTTGGCGAGACTCTTGA GGGAACAGGACAAGCTGAAGACTACAGGCTGAAGCTGTCACCTAAGAAAGC GAGCCAACAATACGAATTATTTTAAATAAAGATGCCAATAAATGAATTTAT GAAAATCCATTTACTGGCTATTTTGCTAGGAATTATGTCTCAGCGTCTCTT CTCTTTCCTTTCAATCCATAATAAATATTGTATACATATAAAGTCTTAGAA AGTAATCAGTTTATCGTCGTATGTAAATTTGATACTACAGACCCATGATTT CTTATGATTTATCTTTTATTATTTAAAGTGTAGAGAGGCAAGGGAGGTATA AACAACATGATTATCTACAGAAGAAATATAGAAAATGGAACACCCATTTAT 10 GAAATCATAACTAAAACTTTCAAGACAATTACTATAAAGTGTGATGAAACT TTTAATAAGTATGAAATCTATCAATTGCTCTCTCTACTAGAGAATGACGTT GACAACATGCCGACAAGTTACTCATATCGTTAACGTTATTCTAGACAACTA GACATTGCATCAAACCTAATTGAGATTTAGCACTTTTGTCTTTTCCAGTCCC AAATAAAATGAGTTTTAAAGCATTTAGTCCCTTAATACGTTTAGCTTTAAA 15 GACATTCTATCATCCCTAAATTAACACTCACCTTAACAAGTGAGAAACGCT AATGTTAGCCAAAACTTGTCCCCTTTTGTAGCTCGGAGAGAACCTTTGAGC TTTATCATTCTCAACTTCTAGTAATTGTTAGTTTGGTATCATCATATGTTT TAAAAACTACAATTTCATCATTTTCTTTTATTAAAAATTGTACTTCTTCAT 20 CTATATTTATAGGTTTTAAGTACTTAATTTTGTAATTCATCCAATTCACAT TAAGTTCAGAAAATACTTTTTCACATATGAGTTGTCCTGGTACAATGGAAC CTATTGTAAATTTCATAATTTATCTTACCTCGATAAATATTTGTTTTATAT ACATACAATGTTTTTTATCTTTATTGATTTCGAGTCCATATGTATATTTAA TGATATTTTAATTAATTTTTTGTGAAACCTTATGCAATGTCGCTTCATACG TACAATCGACTTGAAGTTGATGTTGTGTCTTAATGTGTGTCTCTTTTAATA TGATAGGCTTCTTTGAAAAAGATTGAAATAACTCAAATTGTGGCCATAACT TGGCACACATAAGAGTAGGAACATAATGGTCATACTTTATATTAAGCAATT CGCAATAATTTTGAACTTCTTCATTTGTAAATTGAACTTCTCTAATTTCCA TACCATCTTTCAAATAAAGCTGCATTTCCTATCCCTCCACCTATTCCCATA GCTGCTCCACTTGCACCATATGGATGCCCTGTAGCAATTGCTCCTCCCAA CAATTCAACTTATTCAAAGGAATGTTAAGCTGTTGTTGGCTCGCAATAACT 35 TGAGAGCTAAATGCTTCATTTAATTCTACTGCATTTATATCATTTATAGTT **AATCGTTCTTGAGCTAATAATTGATTTACTGCTGGCACTGGACCTACTCCT** AAATACTGTGGTTGAACACCTACAGTTGCACTATTCACAAACTTAATCCCT TCTGTGAATCCTAATTGACGTGCCCGATTTTCTTCCATAACAATCAGTAAT ACTGCACCATCATTTTTCTTACAACTATTTCCTACTGTGACTGTTCCTTCA 40 TTTAAAAGTGGTTTAAGTCTGCCAAGTGTTCTGAGAGTAAGTTGAGGTTTA ATACTTTCATCTTGATTAAAATATTCACCTTTCACTTTGAACGGTAAAATT TCTTGGGAAATATTACCGTTATTCATATTTTTTGATGCCAACTGATGACTG CGATACGCAAAGTCATCTTGTTCATTTCTACTGATATGATATTTCTTCGCT ACATTTTCGGCTGCTTCAATCATTGAAGGGTCTTCTCCTTCTCTTTGCAAAA CGTTTGATTTTCCAAGGTGCTCTACTGGTACTCTCAACACCACCTGCAATA TATATTGTTCCAGCACCACTTTGTACCATCCTACAGGCTTGTATAACGGCT TCAAGACCTGAGCCACATTGACGATCAATTGTTATACCAGGTATTTTAAAA TCTAATCCCGCTTCAAGTAATGATTTTCTAGCTAAATTCCCCCCCATTACCT 50 ACCGTATTACCTA

Sequence 3450 step.1003d03.cons.ok

AATGCTACGGCTCAACTTCGTCAAAACCATTCAAAGAGCCAAAGTGATTGG
AATCATCAACAAAACCAACAACAGAAAGATGCTTGGGATCCTGAACAAGAA
ATCAACAAACAAAAAAAGGACGATCCATATATATTAATAGGTTTAGATT
GATGTTTGACTATTAAATGTTGAATGCAGTCCATAAAAATACGCCCTATCA
GTAAAAATAATTGATAAAGGCGTATTTTTTATAAAGTAAGAAAGGGACTATA

CAACTTGAAGTTAACTATATGAATAAATAGTGATAGAAAATGACTTTTTAA TTCGTCATTTCAAAATAGAGGATACATTTCTTTGTTATTCATTTAATCAT AATTCTTGGAATGTTTGAATGATAAGATATACGTTAAGTCCACTTAAGACA ATTATGAGTAACATATCAAAAATATGTACACCAAAGTCCTTAGCATTTTGT TGTAAAGTTGTAATTTGTTTATTAGCAATTTCATCTTTTATATTAAAAATA 5 TCAATTGTGGGAACGTTATGATCTAAAGTTGCAAAGGTTAGATCAGGTCTT CTGAGTTTACGATTTTGTATTCTAAGTCCTTCAAACGCTTGAGGAGAAGTG ACTTCATGAATGAGATGTAAATCAATGTATAATAATTGTGGTTCACCTTCT TTTCCATGAAGCACATGTTTTTTCCATACTTTATCAAACAGTGTTTGACCC 10 ATAATTTTCTCCTCCTCTTATAGATATTTTTCTTTAAGCAATTTAAAAATT TCTGAAGTTCGATATTGTCCACCTAAATCTGCAGTTGTCTTATTAGATTGA ATAAACGAGTAAACAATTGACTCAAGTTCGTTAGCAGCATCATTTTGATTT AAACTTTCTCTTAAGCAAAGTGCTAAAGATAGAACCATACCAAATGGATTC GCTTTATCTTCATTAGCTATATCTGGTGCTGAACCATGAATTGGTTCATAA 15 AGACGTGTACCTGTTTGACCAAAACTAGCTGATGGAGAAAGACCTAGAGAC CCTGGTATAACAGATGCTTCATCACTTAAAATATCTCCGAAAAGATTCTCT GCATCAACTAGCATATGATTAACTTCTACTTCTGGATAATCCTTTTTTACA TCGTTTACTATTTGTCGCCATAACTTACTAGAGGATAGAACGTTTTCCTTA TCAACAGAAGTTAATTTTTTACGTCTACGATTTGCAAGATTAAAAGCGATT 20 CTCACAATACGTTCAATTTCTTGACTTGAATATTTTAATGAGTCTAAAGCT TCGGTTTTTTTAACATAGCTTGGTTCACCAAAATAAATCCCGCTCGTTAAT TCTCTTACTATAACTAAATCTGTGCCTTCTACAATATCTTGTTTTAGTGGT GAAAGATGACTAGCCCCTTTAGTTACAAATGTAGGTCGAATATTAGCAAAT AAATTTAAGGATTTCCTCAGTTTTAACAAACCGTGTTCTGGACGATTATTT GGGTCTGTCCATTTAGGCCCTCCAATCGCGCCTAATAAAATAGCATCTGCA TTTTTACATGATTGTAATGTTTCGTTAGTTAAAGGTGTACCATAATAATCT ATTGAAACACCTCCAAAATGATGACTTTCCAAATGGTATTCAAAATGATAT TTTTCACTTATTAATTTTAAAAGTTCTAATGTACCAGATAGAATCTCTGGT CCTATACCATCTCCAGGTAAGGCAACTATTTTATAACTCATGTACGTATAC CTTCTTTCAACTCATATTCTGAAATATATTTAGCATGAGCATCGATATATG CTTTACATGAAGCTTTTAATATATCGTGGTCTATACCTATGCCTGTCACTT CAATATGATTAATAATGATTCGTACATGTACTTCTGCTTGAGCATCAGTAC AAATTCGGTCAACAGCATTATAAATTGCAACAATTGAACCCGTTCCAATAC TTGAATCTTGTTTAACTTGTCCGTTTCTTTCCTTTATAACTACTACTGCAC TTTGTAGACCTTTAGATACGTATTGAAGTTGTAAGTTATCAAGTTGAAAAA TAGCATTGTGTTCATGTTCGGAGCCATGTATAATCGCATGAATATCTCTAT CGGATACATTTTTTTTTTTTTTCTTATCGGCAATTTCTTTAAATTGTTTAAATAATG 40 TAACTTGATCTTCCAATTTAATTTCATATCCCAGAGCTTTAAGCTTTTCGG CAAATGCATGTTTACCAGACAATTTACCTAGTGGCAATTCTGTTGTATTCA CACCTACAAGTTGAGGTGTCATGATTTCATAGGTTTTCACGATGTTTAAGGA CACCGTCTTGGTGAATTCCGGATTCATGACTAAATGCATTTTGACCGACTA TAGCTTTATTTCTAGGTACACGGATACCAGCATATCTTGAAATTAAGTCAG ATGTTTTCTTAGTTTCTTCAAGGTTAATTTGAGATTCAAGACCATAGTGGT CCTTCCTTACATATAAAGCCAAAGCGACTTCTTCAAGTGAGGCATTTCCTG CTCTTTCACCAATACCGTTCACGGTACCTTCAATACGTCTAGCTCCACCTT CAATAGCTGCTAAACTATTAGCAACTGCCATTCCGAGATCATCATGACAAT GTGCACTAAAGATAATTTTAGAATTTGACTTAACGGCCTGTGTTAATTGTT TAAAAATTTCGCCATACTCTGTAGGATAACTAAATCCAACTGTATCAGGGA TGTTGATAATTGTGGCTCCTGCGTTAATCGCAGTTTGAACACATTCAATTA AAAATGGAATTTCAGTTCTTGTTGCATCCTCTGGAGAGAATTGTACGACTT CAAAAATTGTTTTGCATAAGAAACGTGTTCTTTTATTGATGTTAAAACTT CATCTTGAGTCATTTTTAATTTATGTTCTAAATGAATAGGGGAGGTTGCAA TGAATACATGTACTTGAGGTTTTACAGCTTCTTTAGTGGCTTCATATACAG 55 CATCAATATCAGATTTTTTACATCTAGCTAAAC

Sequence 3451

step.1003d04.cons.ok GAGAAGCAACAGTAATATCCACAACCTTTAGTGTTGTATCTATTACGTTCG CTATTGTCATTGCCGAAACAATTAGAATGCAAGATCAATTTTTCTATTTTT ATTTAACAGTTGTCATTTCATGCTTAATTGCAGCAATGATTATGCCAAGAA AGGCTCGTAATGAACAGCTACCAGAAGGCAAAACAGCATTAAAATATGGTT TTGATTTAGCAACTGAAGTTGGAATTAAATCGCCAGGGTTTAAAGAATTTT TAATTTCAGGTTTTAAAACAGTTGTAGATATGTGGTTTGTAATTTTACCAG TTGTTATGAGTATAGGAACAATAGCTACCATTATTGCTAACTACACGCCTG TTTTTGAAATTATAGGAAAACCATTTGTTCCAGTACTAGAATTGTTACAAA 10 TTCCAGAAGCACATGAAGCATCACAAACAATTTTAATTGGGTTTGCCGATA TGTTCTTACCTTCAATTCTTATTGAAGGGGTTCAAAATGATGTAACACGTT TTGTAATTGGAGCATTGAGTATCTCACAACTTGTGTATTTATCTGAAGTAG GCGGCGTGATTCTTGGTTCTAAAATTCCAGTTAGTATAAGTAAATTATTTA TGATTTTTTTAATTCGTACTATCATTACGCTTCCAATAATTGCTTTATTAG 15 CGCATTTATTTATCGGATAAAAGATATACTCATTTTTAATTTAGTGAGAGT GGGGGAAGAAATCATAACAACAGTAATATAAATTACTAATGGTTGAAAT **AAAAATTCTCATATATCAAACTTGTTCTAATTTTTTATAATTAAAAAATTA** GACAATAAATCATATACGTATTCTAGCCCACTCCCTTTAGATAATTTATCT TCTGTTCAAAGAAGATAAAACATTTGATTTAACAATTTCGCTTTTAATGAC 20 TGGTTATTTAACATTTATAGTCCTCCAATTATTTACTTAGACATTTATATT ATATAGAAAATAGCGCTTTTTTACTATGATAGATGTACAATCAAAATTATT ACAATTTTATAAATTCATTTAAAACTGCATATACGATAGCAATTCAGGGCA AGAACTATTTTTTTAGGTAGCCCTCTTTATTTACTTGTCTTGCACGCGCTA **ATGCTAAACTATCTTCAGGGATATTATCTGTAATTGTGGATCCAGCTGCAA** 25 TAAGAGTATGATTACCTACTGTTACAGGTGCTATAAGGTTCGTATTACATC CTATAAAAGCATCTTTACCTACTATTGTTTAAATTTGTTAGCGCCGTCAT AGTTTACAGTGATAGAACCACATCCGATATTTGTACGCTCACCTATTTCAG CATCTCCAATGTAGCTCAAGTGTGATACTTTAGCACCATCTTTAATATCTG CTTTCTTCACTTCAACAAAGTTTCCTACTTTAACTTCAGAACCTAAATTAG 30 ATCCTGGGCGTAGTTGAGCGAAAGGTCCAACTGTTGTGTTCTCTCCAACAA TATTATTAATTTCAGAGTATTGGCCTATCCACACATCTTCTTCAATCGTTG TATGACCTCCGATGCGCACGCCCGGTTCAATAGTTGTATCTATTCCAATTT TCACATCTGTTCCAATAAATGTTGAACTAGGATCAATGATTGTCACACCAT 35 TTTCCATATGATAGCGATTGATACGTTGTTGCAAAGCCTTTTCAGCTTCAC TTAACATCAAACGATCATTAACACCAATGATTTCATCAAAATCTTCGGTAC **AATAAACTTCAGCTTTACCTCCGTCTTTTAAAATTAAAGACAAAACATCAG** GTAAATAATATTCTCCTTGAGCATTATCATTTTTAACTTGTTCTAACTTCT 40 CAAATAGTACTCGATTATTAAAGGCAAAAATACCTGAACTAATTTCTTTAA TCGCACGTTCTGAGTCATTTGCGTCTTTCTCTTCAACAATACGCTCTAATA TTCCATTATGATTTCTAATAATTCGTCCATAACCATAAGGATTGATAGTAG AAGCAGATAATACAGTAACATGTGATTGTGTACTTTCATGATGTTCAATAA GTGATTGTAAAGTTTGGTATGTAATAAGTGGTGTATCTCCACATACTACTA 45 GAGTAGTTCCTTCTTTATCTGCTAAATGTTCATGTGCCATTTTCACAGCAT ATGTATCTTTCACACTCTCAGCGCCATGACCAATAATAGTTACAATTTGAT CAACGCCAGCTTGTTTTACGTTGTTAAGCACATGTTCAACCATTGGTTTGC CAGCAACCTCATGGAGCACTTTATATTTCTTTGATTTCATTCTTGTGCCCT TACCTGCTGCCAGAATAATCGCATGTCTTTGCATGAATGCTAACCCTCCAT TAAAATTTACACTTCATAGTTATTATAGTTGAATAACAAAGAGAGTTTCAA CTTATAAAAGGTTTTGTTAATCATTCATTAAAGGTTTGATAATTTTAGAAA TTCAAATAAGTTGTTATGCTTTAATAAGGAAAACGAGGTCATCAAACCCAA CAGTTACATTACATATTCAACCTCTTTATTAATCATTGGTATTTTATTTCA GTGTCTAAATCATCATATTATCAATCATAATTTATGACGATAAAGTTATAA TCATACAGACATATTAATTACGTCTATCATAAGTAAATTTTTATAGATGAA GTTAAATGTTTATTTCGTTTTCGTTTATGGAAATACAAAGTACATTAAAAA

Sequence 3452 5 step.1003d06.cons.ok GTAGCCTAATGGCACATTATAATTATATTCAGAAATTTTGATTTTCCATT CTTATATACTTTTCAACCACTGCTACGTGCCCATAATAGCCTCTCGTTGA TTGCATAACAGCGTATTTTCGAGGCTTATGTCCAGTTGCATAACCAGATCG ACGTGCATTGCTATACCAATTCTTAGCATTACCCCATCGATTTGATACAGG TTTACCTAATTGAGCACGACGTTTAAATGCCCACCAAGTGCATTGTTTTTT 10 ACCATAATAATTATGTGCAGCATGGGAAATATGCGTTTGTTCAATAGCTTG ATATGAGAGTGTTCCAGTAAATGTAATCATTGTAGCGATAATAATACGAGA TGACAGTAATAATAATAGTATTTAAAAATGCGCTATACAATATAAGAAATG AATTATCAAAGTAAATGTAACATTAATGAAATATACATATTTTTATCGTAA TAATCGTTTGAGTAAAAAAAGAGTGAGACTACATTCAAATAAAATGTAATC TCACTCAGGTACGAGATGATTAACTCCATGTATATAAGTATGCGTAAATGT TAAAGTCATGTCATAACATCAATTTATACTTTAGTGAATTGGTTGAAAACA GCTAGTGCCCGTTTGATACTCGTCACTGGTATGTTTTCCGGACATGGATGA TTTCGAAAATATGTCAAGATTTCTTTTTGGCTCGTCACGTCTTTAGGGAAA 20 TTGATATCTTGATTAATCCAATCAACCAATTCACCTAATGGCGTGTCATCA CCTAGGAAATTTTGCATAAATTCGTAAAAGCTCAATATCTCACCTCATAAT ATATTTTATGAGCCGACTTTTATTTTAACATATTTTCGTTTTTTAAAATAC TTGAAAAACTAAATAAAATGTTTTGAATTATAGTTTTTAAATATATTAATC GCTAGAAAGGTCAATTTTGTTGTATAATTAAACTTACTATTGAATTATATC AAAACTAGGGGGATATGCATGGATATAAAACACATGAAATACTTTGTTGAA GTTGTCAAACAAGGTGGTATGACAAACGCTTCAAAATCCTTGTATATTGCG CAACCAACTATCAGTAAAGCAATTAAGGATATTGAAGCAGAGATGGCTGTC CCTTTATTTGACCGGAGTAAAAGAAGTTTAGTACTTACTGATGCAGGTAAA 30 ATTTTTTCAAGAAATGTCAAGAAATCATCGCACTATATGATAATTTGCCC ACTGAAATTAATAGTTTGTATGGTTTAGAAACAGGTCATATCACTATTAGT ATGTCTGCAGTGATGAGCATGCGTAAATTTATTGGCGTATTAGGAGACTTT CATCAACTTTATCCGAATATTACGTACAACTTAATCGAAAGTGGTGGTAAG ACGACTGAAAACCTTATACTTAATGATGAAGTGGATATTGGTGTGACAACA TTGCCAGTAGATCATCAAAAATTTGAATGTATATCTTTAAACAAAGAAGAA 35 CTGACTGTAGTTTTAAATAAAGAACATCCTTTAGCACAAAAATCTTCTATT TATCTCAACGATAAAATTATTGAAAATGCGAAGAATGCTGGATTCGTGCCG AACATGGCCTCACAAATCTCACAATGGAATGTGATTGAAAAATCTTGTCATT 40 AATCAATTAGGTATTTCCATATTGCCAGCCACTATAGCACAATTACTTAAT GATGACGTCAAAATTGTACATTTGGAAAATGCACATACAACTTGGGAGCTT ATAGAATTTTTGAAAGAAAGATTATCCGAAGAATAATATAAATATAAAC AAACAATGCATTTAATAAAAGAGCGAAGTTGTTAAAGATGTGAAATAATAT GTTTTTACAAAGTCATATTACAACGAAAACGTAGGGTTTTGAATTATAAAT TAATTCTGCCCTACGTTTTTTTACTATCAATTAGTTCTCAGCACTATTAAT TTTTAATATATAATAGCAAACACTATAATAGAAAATGTCACTAAAAAAATA CAGTAACAATTTGGACACATTTTTAGAAAGGGGTGTTGTTGATGGAAAAAG CAAAATTTGTCATTAAGTTAATACTTCAACTTGCCCTTATCATGCTTATTA CTTTTATAGGCACAGAAGTTCAAAAATTACTTCATATACCTCTAGCAGGTA GTATCGTAGGGCTTATGCTTTTTTTCCTATTGTTACAATTTAAAATTGTAC CTGAATCATGGATTAATGTAGGAGCAGACTTTTTACTTAAAACAATGGTTT TCTTCTTTATCCCATCAGTGGTAGGAATTATGGATGTTGCATCTAATATCA CGATGAATTATATTATTCTTTATTGTTATTATAATTGGTACATGCCTTG 55 TAGCACTATCATCAGGTTATATCGCTGAAAAAATGCTAGAAAAAAGCAATA CACGTAAAGGAACTGATCACTCATGAATGAATACTTACAAGCAGTTCTAAT GATTTTGTTAACTATTGTTCTGTACTATGTTTCCAAAAAGATTCAAGATAA ATACAATAATCCACTATTAAATCCAGCTCTTATTGCATCAATTGCAATAAT

PCT/US00/30782 WO 01/34809

TATTGTTTTATTGGTTTGCGGAGTAAGCTATAAGGGGTATATGAAAGGTGG TACCTGGATTAACCATGTTTTAAACGCTACAGTTGTATGTCTTGCATACCC ACTTTATCAAAATAAAAAGAAAATAAAAAAAATATTTAACAATTATTTTCAC AAGCGTGTTGACTGGTGTAGTTCTCAATTTTGTGTTAGTATTTACAACGTT GAAAATCTTTGGTTATTCTAAAGACACAATTGTTACCCTGTTACCTA

Sequence 3453 step.1003d08.cons.ok

GTTATCCTCTTGTTAAAAAACATTTTCAATTTCTAATATTTTTAAAAATTC 10 ACTAGCTGCATATTTTAATGAAGATTCATCAATGTCAAAATGAGGATTATG ATGAGGTGCAGTAATGCCTTTGTCTTTATTACCACAACCAGTTAAGAAGAA TGCACCAGGTCGTACTTTAAGGTAATGTGAAAAGTCCTCACCAATCATCAT TAAGTCTGACTCATTAAATCTTAAATGTAAATCATTAGCTGCTTGTTTGAC 15 TACATCATATGATTGTTGATGATTGTTGTACTGGTAAATAACCTTTAATATA TTCCAATTCATATGTAATATCGTTTGATAAAGATAAACCTTGTAAGAGCTT AGTACCTTTACAAAAAGCTGTATCTGGAATAACACTATCTGTTGATCCTGC TTGAATCATTCCGAAAGTAAGAACAGCTTCCTTTACTGGATCAATTGTTCG AGAAATTATTTTTTGGGCACTTAAAATAAACTCAGCCATAATGACAATAGG 20 GTCTATTGTTTCGTGTGGTTTTGCACCGTGACCACCTTTTCCATATATAGT CACACTAAATTCATCTGGTGAAGCCATTATTGCTCCAGGTCTAGAATAGAT TGTCCCAGATGGATAACCACTCCATAAGTGTGTGCCATATATTTTATCGAC ATTCTGTAGACAGCCATCATCAATCATCTCTTGAGAACCACCTGGCATAAT TTCCTCACCATATTGGAATATAAAAACAACATTACCTTTCAATAAATGACG ATGCTCATGAACAATTTCAGCTACTCCAAGCAAAATAGCTGTATGTCCGTC ATGTCCACAAGCATGCATGCACCCTTTATTTTTTGAACGATAGGGTACATC ATTTAATTCTTGAACAGGTAGTGCATCGAAATCTGCTCGTAATGCAATCGT TGGTCCATTTGAATCAGATCCTTTAAAAGTTGCTTTTATACCATTACGTCC 30 AACTGGTGTTTCTATGGTGCATGCTAATTGGCTCAATTGATTTACAATAAA ATCATGCGTACGTTTTTCCTCAAAAGAAAGTTCTGGGTATTGATGCAAATA TCGTCGTAATTGCACCATTCTCTTTTTTTTTTTTTTTCTTGCTAATTGAAACCA ATCAAACACATGTATCACTTCTTCCATCTTAATTATTGATATTAGTATATC ATTATTGTTTTAGCTTAAATAGACTTTGTTTTTTTTTATTAAGATATCACACG TTTTTTACACTATCTATTAAGATTTGGAAACATTAAAATGATTAAAATATAA 35 ATGAATAGCCCCATAAAAATACAACACAAATCATAATACCTCACTTAAAAT TAATAAGAAAAATCGTCCATAAAATTTTTGTTATTAACTGTTATTATAGA AGATAAAGTTTATGTAAAAGTATTCAAAAATATGTAGAATACTAAAATACT AGGTAGTGATGTGAATTAGGCGTATTTCTAAGAATTTAATTGGTATACGAC 40 ATTTTAATATTATGAAGTTCTGGCTAAAGGAATATTAGAATTAGTAATT TAATACCTTAACTTATATGTAGAAATATAAAATTATTATGATATAGTTTGT TATAATTTTTGATGTTCACAGTTAATCACATTAAAATAGAGTTATCAATAA TATAAGTTATGGGGTATTTAAGTGGAGGAAATAAGACCAATAACCTATCAA GATAAAGAGGCATACTATTATTATATTCAAGAGTGGTATGAAAATGAGGAA AAAGTGGTACCAGGGAATACAGATATTGCCAATTATAGTTCATTTAACAAT ATGGTTGATCGGCTTAATTGTAGTGAAGTTGATGAGGGTTTTGTACCGACT ACAACACTATTTTATTTTAAAGATTCAATTATTATAGGTGCTGTTGATATC AGACATCAATTAAATGATAAACTATCTAATATTGGTGGTCATGTGGGATAC 50 GGTGTAGCTAAATCTTATAGAGGGAAAGGTTACGCTACTATCCTTCTAGAA AAGGCTTTAGATGAACTTAAGACATTAAATGTAGAGGTCGTACTTATGACT TGTAATCCACTTAATTTTGCTTCTCAAACAGTGATGAAGAAATGTGGTĠGA TATCAAATTGAATCCTATATTAAAAAAAATGGTAAACCTGTTCATCGATAT

CATATACCTAATACAAAATAATCATGATTATTAAGAATATATTGTGATAAA GCAAATATATGATTTTATTTTAAAATGATTAGAAGAAAAGAGCTTTTTA 55 AAAGAATTTTAATGGAGACTTACGATTTAACACATCTTGTTATATTAAAACT TTGTGAAAAACTTAACCATCTAAATAATCCTATATAATACATTAAACGCGT GGGGGGGATTCATAATAATGAAATATATAGATGAGCAAACACAAGCTCAAT

PCT/US00/30782 WO 01/34809

TATTAGACATGAATGAAGTCATTTTAGAAGTAGAAAAAGCTTTGCAAGCTT TTTCAGAGAATAAGACGATAACGCCATTAAGATATGTTTTGCCATTTAATG AGCAAAATCGTTATTTAGTGATGCCAGCATTATCAGATGAATTAAATATCG TTGGACTTAAAACAGTCTCATTTGCACCTGAAAATTCAAAAAAAGGGAAAG CGACTATTACTGGATCAGTTATTTTAAGTGACTATGAAACAGGAGAAACAT TGTCTATATTAGATGGTGGTTTTCTTACTAAAGTAAGAACTGGTGCAATTT CAGGTGTAGCTACTAAATATCTAGCAAAAGAAAACGCTAAAACACTTAGTG TAATAGGGGCAGGTGTACAAGCTGAAGGTTTAATTGAAGCGATACTTGCTG TTAGAGATATTGAAAAAATTCACATCGCAAGTAGAACGTTCGAAAAAGCAG TTAGATCGGCAGATGAAGCGATAGACAGTGCAGATATTGTAGTTACAGCAA CAAATGCAAATCAGCCCGTTTATACTCATTCTTTACATCCAGGCGTGCATT TAAATGCAGTCGGATCCTTTAAACCAGATATGCAAGAAATACCTTCAGAAA CAATGCTTGTTGCTAATAAAATTGTTGTTGAATCTATGGAAGCAGCTTTAG AAGAAACAGGTGATTTAAAAATTCCTCAAGCAGAAGGAATATTAACTAAAA ATATGCTACATAGTGAATTAGGCGACATTATTTCT

Sequence 3454

10

15

20

step.1003d09.cons.ok GTGAGGGTGCTTCTGGTAAAGATGCTATCACTAAAGCGCATGAGCTAAAAC CAACTACTGAAATAAAAAAAGATTTACCTCAAATTAAAGTAGTCATGTTAA CAAGCTTTATAGAGGATAAAGAAGTTTATCGTGCACTTGATTCTGGAGTAG ATAGTTATATTTTAAAGACAACAAGTGCAAGTGATATAGCTGACGCTGTGC GTAAAACGTATGAAGGTGAATCAGTATTTGAACCAGAAGTGTTAGTAAAAA TGCGCAATCGTATGAAAAAACGTGCCGAGCTTTATGAAATGTTGACAGAAA GAGAAATGGAGATCCTATTACTTATAGCTAAAGGATACTCTAACCAAGAGA TTGCAAGCGCCTCTCATATCACCATCAAAACAGTAAAAACTCATGTAAGTA ACATACTAAGTAAATTAGAAGTACAAGATCGAACACAAGCAGTAATATATG CGTTCCAGCATAATTTAATTCAATAAATTATTAAAGGCGAAAGTAAAGATA CATCTATCGATACTTTCGCCTTTCAATATTATCAGTCGCTTGTGTGATGTT CTTCTTTAGATTGATGATTGATATTATACGTGTCATCTTCATTAGAGATAT CTACATCTTTGCTATCTTCATAGTATTCATAAGTCGTATTTTCGTTATAGT GATTTTCATTGTTATCATCATGTTTAATAGCGGCTTCTTCAGGCGTGTGAC CAGCTATGACTTTTCTTTGGTGAATAATTGCATTGATTTCAGCACCGATAA TAATAATAAAGCTTGTGATATACAACCATAAGAATAAAATGATAATACCAG CTAAACTTCCGTATGTTTTCGAATAGTTACTAAAGTTTGAAATATAGTAAC CGAATGCAAAGGACCCTAGTAACCAAATAATGGAAGTGAAAATAGCGCCAG 40 GAATAACAGAACGTAATTTTGTTTTAACATTAGGTGCAACTGAATAAAGTA CAGTAAATATGATGAAAATAATAATCAATGGAATAACAATTCGTACTAAAT TAAAAATCCATTCAATTTGATTATCAATACCTAGTGGTCCAAATAAAAATT TATTAATGACTGGACCTAGTGTTATAAGTACTACAGCAACAACAAATACTG CACCTAAAACAAGTGTATATAGAATACTTAATAATTTAACTACTACACCGT TTCGAGAATCCTCAACGTCATAAGCAACATTAAATGAGTTAATAATAGCGG ACATTCCATTTGATGCTGACCAAATAGCTAAAATTAACCCAACTGACAAAA TACCTCCACTGGCAGTGTCAGAGATATCTTTAACAATTCCACCAACGATGC TAGCTGTTTCTTGATCAGGGACATATTGACTTACTTTTTGATTAATCTGAT 50 TTGGGAAAAGTGCTAATACAAAATGATATGTCATCTGTGCTGCTAAACCTG CAGCGTCATCTTTACCTATCCTATAAATCAGGTAAGAAAAGAAATTAGAGT TTTCGGTGTATTTTGCTGGTTTATTCAGCCGGGAAACAAAAATACTTGAT TCTTTTTTTAGGTTTCTTAGATTGGAATTCTTGAGGTTCTATATATGTAC TAAGATATTTAGAAGTTGTTTTCTCTTTTTTTTGACATAACAATCTCCTTTG CTTTTTATGTTTTACTTTTAAAATTGATATTCCCGTATTTGCGGTATAGTA AAACAAATATGGTTTTATTTATATATGATAAATCCAATACCCTTTAAAAAG TAATGTATTTTTAACACTCAATGATTATTTTGGCCTAAATTAAATAGAAAG GCAATAGTTTTTAAATATTGATTTATAGTTTTTAACATGAGTTAAAGTATT

AAACAAGTGCGAGTCAAAATTTAACAATTATTGTAAAGTTTATAATCAATA AAGATAAAAAGAGTGGAGCAGAATCCATCTAAAATGAATTCCGTTCCACTT CATAGTTATTAAATATCATAAACTTATATGCGTACATTTCCAATTGATGT TGATTTTTACGATTTACAAAAGTTTCTTTGGCATCTTTAATAGAACGTTCT AATTCAGGATTATTACGACGTATTTCATCTAATGTATCTTTCCAATACATT ACTTCATCTTTGATGCTACTTATTTTTTGAAGGTTTACGTGTACGATTTCCT TCTTTGATGTCTTTGAATGATTGTTTTAAAGAATGACGTGTAGATTTATCA GCAAGAGCAGCCGCCCACCAATTACGGCACCAATTAAAATACCAGGTACT AATTTATTTCCATAGTTGAATTACCTCTCTTTCAAATTTGCATCTTTTAC GATGTAGTCTATTAAATTATCACAAGATGATTGCACCATCTCGAAAACACC TTCAAAATTATTTGTGTAGTATGGATCTGGTACATCACTCTCTTCCATGTT TTTGATATTGTCTACGTTACTTTGGTCCATAGCAATAATATAGTCAAAATC ATCATCAGGTTCGAAAAGTTCACTCACCATACCATCATAAGGAATATGGTA CTTCTGTAGAATTTTTTGTGTTCCGTTATGTGGAGGTTCGCCTAAATTCCA TAGTCTTTGTCTCATGATAGCCTCAGCCATTGGAGAACGACATATATTACC GAGACATACAAATGCTACATGTATCATTAGTATCACTCCAAACTATGTATT TATATACAAATAGCTCATATTATTACAAAGTTCAAACTTTTATACCTAAAA ATTATATTGAAGATTTCAAAGACAGTTTAAACGAACTTGGATTAGCTAAAG AAGGTAATTACGAATATTGTTTCTTTGAAAGTGAAGGTAAAGGGCAATTTA AACCAGTAGGTGATGCAAGTCCTTATATAGGGAAGTTAGATAGTATCGAAT ATGTTGATGAAATAAAACTTGAGTTTATGATAAA

25

5

10

15

20

Sequence 3455 step.1003d10.cons.ok

30 CCAAAACAACAGAAGCACCAACTGTTAATGAGGAATCAATAGCTGAAACA CCCAAAACCTCAACTACACAACAAGATTCGACTGAGAAGAATAATCCATCT GACGAACATTCTACTAAGCAAGCTCAAATGTCTACTAATAAATCAAATTTA GACACAAATGACTCTCCAACTCAAAGTGAGAAAACTTCATCACAAGCAAAT AACGACAGTACAGACAATCAGTCAGCACCTTCTAAACAATTAGATTCAAAA 35 CCATCAGAACAAAAGTATATAAAACAAAATTTAATGATGAACCTACTCAA GATGTTGAACACACGACAACTAAATTAAAAACACCTTCTATTTCAACAGAT AGTTCAGTCAATGATAAGCAAGATTACACACGAAGTGCTGTAGCTAGTTTA GGTGTTGATTCTAATGAAACAGAAGCAATTACAAATGCAGTTAGAGATAAT TTAGATTTAAAAGCTGCATCTAGAGAACAAATCAATGAAGCAATCATTGCT 40 GAAGCACTAAAAAAAGACTTTTCTAACCCTGATTATGGTGTCGATACGCCA TTAGCTCTGAACACATCTCAATCAAAAAATTCACCACATAAGAGTGCAAGT CCACGCATGAATTTAATGAGTTTAGCTGCTGAGCCTAATAGTGGTAAAAAT GTGAATGATAAAGTTAAAATCACAAACCCTACGCTTTCACTTAATAAGAGT AATAATCACGCTAATAACGTAATATGGCCAACAAGTAACGAACAATTTAAT 45 TTAAAAGCAAATTATGAATTAGATGACAGCATAAAAGAGGGAGATACTTTT ACTATTAAGTATGGTCAGTATATTAGACCGGGTGGTTTAGAACTTCCTGCA ATAAAAACTCAACTACGTAGTAAGGATGGCTCTATTGTAGCTAATGGTGTA CAATATCAAAATATTACAGGTAGTTTTGATTTAATTGCGACGCCTAAGAGG GAAACAGCAATTAAGGATAATCAGAATTATCCTATGGAAGTGACGATTGCT AACGAAGTAGTCAAAAAAGACTTCATTGTGGATTATGGTAATAAAAAGGAC **AATACAACTACAGCAGCGGTAGCAAATGTGGATAATGTAAATAATAAAC**AT AACGAAGTTGTTTATCTAAACCAAAATAACCAAAATCCTAAATATGCTAAA TATTTCTCAACAGTAAAAAATGGTAAATTTATACCAGGTGAAGTGAAAGTT 55 TACGAAGTGACGGATACCAATGCGATGGTAGATAGCTTCAATCCTGATTTA GCAGATGGTACTAGAGTTGATATCAATTTTGCTAGAAGTATGGCAAATGGT AAAAAGTATATTGTAACTCAAGCAGTGAGACCAACGGGAACTGGAAATGTT

TATACCGAATATTGGTTAACAAGAGATGGTACTACCAATACAAATGATTTT TATCGTGGAACGAAGTCTACAACGGTGACTTATCTCAATGGTTCTTCAACA AAAAATAAAAACGGTGTTCAAGATGATGATGAGAAAGGTTTAGCAGGTGTT TATGTTACTCTTAAAGACAGTAACAATAGAGAATTACAACGTGTAACTACT 5 GATCAATCTGGACATTATCAATTTGATAATTTACAAAATGGAACGTACACA GTCGAGTTTGCGATTCCTGATAATTATACGCCATCTCCCGCAAATAATTCT ACAAATGATGCAATAGATTCAGATGGTGAACGTGATGGTACACGTAAAGTA GTTGTTGCCAAAGGAACAATTAATAATGCTGATAATATGACTGTAGATACT 10 ACAAATAAAGATGGTATCCAAGATGACAATGAAAAGGGAATTTCAAATGTC AAAGTGACGTTAAAAAATAAAAATGGAGATACCATTGGGACAACGACAACA GATTCAAATGGTAAATATGAATTCACAGGTTTAGAGAACGGGGATTACACA ATAGAATTTGAGACGCCGGAAGGCTACACCCGACTAAACAAAACTCGGGA AGTGACGAAGGTAAAGATTCAAATGGTACGAAAACAACAGTCACAGTCAAA 15 GATGCAGATAATAAAACAATAGACTCAGGTTTCTACAAGCCAATATATAAC TTAGGTGACTATGTATGGGAAGATACAAATAAAGATGGTATTCAAGACGAC AGTGAAAAAGGGATTTCTGGTGTTAAAGTGACGTTAAAAGATAAAAATGGA AATGCCATTGGGACAACGACAACAGACGCAAGTGGTCATTATCAATTTAAA GGATTAGAAAATGGAAGCTACACAGTTGAGTTTGAGACACCATCAGGTTAT 20 ACACCGACAAAAGCGAATTCAGGTCAAGATATAACTGTAGATTCCAACGGT ATAACAACAACAGGTATCATTAACGGAGCTGATAATCTCACAATTGATAGT ACAAATAAAGATGGTATCCAAGATGACAATGAAAAAGGAATTTCTGGTGTT AAAGTAACGTTAAAGGATGAAAAAGGAAATATAATTAGCACTACAACAACT GATGAAAATGGGAAGTATCAATTTGATAATTTAGATAGTGGTAATTACATT ATTCATTTTGAGAAACCGGAAGGCATGACTCAAACTACAGCAAATTCTGGA AATGATGATGAAAAAGATGCTGATGGGGAAGATGTTCGTGTAACGATTACT GATCATGATGACTTTAGTATAGATAATGGTTATTTTGACGATGATTCAGAC 30 AGTGACTCAGACGCAGATAGTGATTCAGACTCCGACAGTGACTCGGACGCA GACAGCGATTCTGACGCAGAC

Sequence 3456

35 step.1003d11.cons.ok GCATTTGCTAAGGGACTTGTTTCATCGTTTTGGGCCATTTCCTTCAGCAACA ATACAACATATAGGCTATGGCGCCGGCAGTAAGGATTTTGATTTCCCTAAT ATATTAAGGGTTATTCAATTTGAATCTGAATTCGAGCAACAAGATAGCGTC CAAGTAATAGAGTGTCAAATAGATGATATGACACCTGAAGCATTAGGTTAT TTTATGAATAATGCGTTAGAGCAAGGTGCTTTAGATGCTTACTATACGCCT 40 ATATTTATGAAAAAAGTCGCCCAAGCACGCAGTTAACGTTAATATGTAAA TTACATGATAAGACATATTTCGAACAACTTATCTTACAAGAAACAAGTTCT TTAGGCGTCAGAAGTACTTCTGTTAATAGAAAGACCTTGAACCGCGCATTC AAAATTCTTTCTACACAACACGGCACTGTTTCCATTAAATTTGGCCTACAA AATGGAAAATTATGAAAATGAAACCCGAGTATGAAGATTTGAAGAAAATA GCTAAAACTACAAAACAACCGTTTCAAGTAATTCATAACGAGGTATTACAA CAACTCTATCAAACATATCATATAGGAAATATACTTCAATAAATTAGTTTT ATTCATTTAAATTTTGCACATCAAAAAAGGATAGGGACAGTCATTCTACAT AAAACAGTCACCTATCCTTTTATTCTATTCAAATGCTCGATATAGTTCTTC ACTAGAATTATTCCACATTTCAACGTTATGATTTTTGTAGAAATTCTTTTAA **AATTTGTTTGTTATCATCACCGATTTGGTCGATGATAAATTGATGTTTCAT** AGACTTATCCATCATATTAACATGTTCTGGCATGCTCTTATAACCACGTCT AATACTTTTGTTAACTAATAAATAGCATGCAGTCACACCCGCATAATATGG CCCTTCTTCACTACGTTCGGTCGTCACCCAACATAGCCAGTATGCTTTAGC CTCCTCACCTTCAACTTGTGATTTGTCAGTAATCCACTTGACACCCTTTTC AACTTCAGCACGTGCGTGCATACCACCAATATCAACAAATGCCTTCTGATT TTCAACATCTATAAAAACCGGGGCAATATTATCTAAACTAATCGAACCAAT ATTGGTTCCTTTATGACCATCTAGTGGATCATTTTTTATAATATTGAAATT

GAAACCTTTTTTCTCAGACAAACGAGATACCTCCTAATAAGTCATCAAATA

ATAATAGAACCTTTAATTTGATAATCTTTAATTTTTAAAATCATCTCTTTA GGATAATATAATTTATGGTCTTCTCTATTAATCCCTGTAATACTATTAATC ACCAATGATTGATTACTTATTTCTGTAATTCCACCATTACTTTTTAATAAA TGAATCGGTTTGCGATTTGAGCCTGGGCGATCATAATCATAAGGTAAATCT 5 GAAAATGCTTCACTTACAAAGTAATAATCAGGATTAATACCACCCGCTTCA AATAATTCTTGCAATTCCGAAATGGTAATAATTGAACCGTCGAAAGGAATA TATTTAAATAAATCTCGATTGATAAACCGTCTTGATAAATCACTTAATATT GTATCATTTCATGAATCCATTTCTTCAAGTAATACAATACAACTGCTTCA TCAAGTTCTACATATTGTTCAATCGTCATTGTTCCTTCAAAGAATGGTATA 10 AAGTCTTTTGGATACATTTTAAATTCATATCCTTCATTATAAAGCTGCTTA GCTCGTTTTAAACAATTGTTTAATAAAACTTCCCCACCACGGCTTACTGGA TGAAAATATATTTGCCAATACATTTGATAACGACTCATAATAAAATTTTCG ACAGCATGCATACCACTATCTTTAATTAACACTTCTTCTTTAGATGGTCTC ATCAACCTTAAAATACGCTCCATATCAAATGAGCCATACGTTACGCCTGTA 15 AAATATGCATCTCTTTGTAAATAGTCCATTCGATCAGCATCAATTTGTGAG GCTACTTGTTTAGGAAAGTTATCAGAGACTCGACTTAGTACACCATTAACC TCAGTGTCTCCTGTGATAATAGCTTGTGTAAATGCTTCATGGTCTGTATTA AATATTTTTTCAAAACTATGAGAGAAAGGACCATGACCTAAATCATGTAAC 20 AACGCAGCACACACGCAAGTGGCCGATCAGTATTATCCCACGCGTCTTGT CCTATAAATGTCTCATCAATCATTCGGCGCACAATTTCATAAACACCCAAA GAGTGTCCAAAACGACTATGTTCGGCTGTATGAAATGATAAATACAAAGTA TCCCAAATCAATTGATCCTGTACGTGGATAAATCGATGAATTGGATCTTTA AATACCTTTTCTTCTGTTAATTTACTCGTTGCATATGATGATAGCGTCATA CTTCATTAAAGCTAAATCCATGATTTCACCATACATTTCAGGTTGATATGA GCGAATAATCTCGAATCCATGATTTTGATAATATTCGATGCCATTACTATT ATTGTTATCAACTTCTAAATAAACTGTTTCATACTGGTCTTTAAACCTTTT CAACCCCGCTTCTAGCAAACGAGTTCCATAACCTCTATGTTGAGATTCAGG TCTAACATAGTGTGCAGATAAATAAAGCTCTTCACCATAAATGAAATTTGC AAAACCAACAATCTCACTATCTTCTTCTGCCACTAAAAATAATTGCTCATT 35 TAGTCTCTTTTTTAAATGCGTTTCATTATATGAAGCGGCCAACAGTTCATT AACTGTTGAAGCAGCATAAATATTTAAATATGTGTTATACCAAGCTTTTGT CGCAACATCTCTTATCGCTACAACATCTTTTTCAGTTGCTTGTCTGACACT ATACATGTGACTTCTCCCCTAACTATTTACTTCACTATTAATCGATGGGTG GATTGGTAACTTGTGCAAATAATTGTTTAAAATAATTAAATAGTGACTCAG GCTTATCATTAAGAACTGCAATAGGTGCATCATATCCCATCGCTCCGATGG 40 AGTGGCGATGATATC

45 Sequence 3457 step.1003d12.cons.ok ATTTTTCAATCATCGATAAACTTAAACTAATTCATTCTCATATTGGGAGAT CTTAATATTTAATTCATATATAAATAGTAATTTTAGACACTGATCAATCT TTTAAGTTGGTTATTTTAAATATCAGGTTCCAATTTTTTCTTTTACAACTT ATAAATGACGTTTGTATCACATCAAAGGCATTTGCCTATATTTTTCAAAAA ATGTGTCCTTTTTTTCAATCTATTTCGATATATATAGTGAAAGGAGGTTT TATTATGAATGAAGTCAATCAAGTGACGATTATCTTTACTCAAATCAAACA TAATTCTGAAGGTAAAGTAGTCGAACATAAGCGTCGTTTTTCTAACATTAA TCCGCTTGTTTCTAATGATCAAATCAAATCTTTTCGTTCCATCATTGAACG TATCAGTGGCGAAGAGTATGACAAAGTCGAGATCGTTAAAACAGAATCTTT AATTTAAGGAGGATACATCAGTATGTCAAAAACTTTGGAACTCGTATTTAA ATCAAATCTTAATAAACCCGTCAAATTACTATTACCCGATTTTAACGCTAT TACTACAGAACAATTAATTAAAGAAAGTATGAACCAACTTTTAGAATTAGA

CATTTTAAGATTTAGTTTGGGAAAGCCTGTCAAAATTTATGCTGCACAACT ΤΑΤΤGΑΤΆλΑΑGΤΑCAACTGTTATATTTGAAGATAAAAATTAATTCATAAA ACATTATTTTGACGCTTTATTTAAAGTACTAAAATCATAAAAAAGACTTA TCGAAGAACAAATTTTTTAAAATTGTTCAAGTCTAAAAAAGAACTTAATTT ACATTGTTCTTTTATTAATATGAAGTGAGATATCAAATTCAAAATGATGTC TCGCTTTTTTTAATTCTAAAACTTGTTTAATGTGCATTTTATTATAATGAT TCATCAAAATAGTATCGGCTGTATGACACCTCGGAACATTCACAACTTATT TCTATACTTTGCTTATGGCTCAATCATTTTAGAAACATGATTATGAATGGT ATGATAATCATATTAAATTGAGAAAGTTGGTTTTTATCATTGTTTTTTCTA TATCTTTTAGGAATTTTTGTTGGCATGTTACTTCCTATTCAAACTTCAATC 10 AACTCAAGGCTAAGCCAATTTACCCGTTCATCTTTTTATGCTTCAACCATA TCTTTTGCTGTCGGAACAATATGCTTACTTGTGCTTAATATCATTATTCAT CCACAAGTATTAACACCAGAATTCTTTTCTAAGCAAACACTTAACTATACT TGGGTCCTAGGAGGACTATTAGGTGTTATCTATTTAACTGGAAACTTATTA TTATTACCAAGATTAGGCGCAGCACTTACTGTTGTTATTACGGTTACAGGG CAAATTATTATGGGTGTAATCATTGATACATTTGGATTATTGGGCGCCCCAT CAACAATCTTTTACATTATTTAAAGGTGTTGGAATTATATTTTTAATTACT GGAATTATTATGAATTATGTTCGTAGACATCCTGTTAATAGACATAAG AATACACCAATAGTATTCTGGTTGCTTATTGGATTCGTATTTGGTTTCGCT 20 TCCATATTTGCTTCACTCATATCATTTAGCGTTGGTACAATAGCGTTATTT ATATTAACATTAGTATTTAATCGTAGTCTGAAAATATCATCTACTCATAAA ACACTAGGTAAGATTAAATCTATTTATTTATTGGAGGGATACTAGGAATG GCATTCGTAACATCTAATATTATTTTAATGCCTTTCTTAGGAGCAGCTTTA ACTACTATAATTGCTATGATGGGCCAAATGATTATGGGTATTATTATCGAT CATTTCGGTTTGTTGGGTTCACCTAAAAACAAAATAACATCACGTAAGTTA GGTGGATTATTATGTATAGCTATAGGTATTATTTTATTACGATTATTTAAA ATTCCTTATTCTGAATAAAAATTATCCGCTTATATTAATGTAGATTCCTCA TACAAATAAATGTCTATTTCGAACTGCCAACAAAGATTTTGTCTTTGTCTTGG CAGTTTTTATGAGTGATTCTTCTTATAGTAACATTTATGTAGAATCATATA 30 TTTTAAAATTAAAGATAGCCTTCTATTTTTCAATTTATTAAATTGATTTAC TTTATTTTTGAAATAAAACAATAGTAATTGTGCACCATATTGTTCCGTCT CTTCTCCTGTAGTAGCTAATAAACGTATCGTACCTTGCTTTAATGCGTTTG ATTGTTTTAATTCAATCATCGCGATGACCATCGCCATAAGACCACCTTTCA TGTCAGTGGTACCTCTGCCGAATAACTTGCCATCTTTATCTGTGAGTTCAA ATGGAGGAAAAGTCCAATCATCATGGTCACCAGCATCTACAACATCCATGT GTCCACTGATTGCTAAGACTGGAGCGCCACTACCAATTTCAGCAACTAAAT TAGCGCGTGAATCATTAACTTTAACAATCTTAGAATCAATATCATATTGAC TTAACAGGTCTTTTAAGTACTCACATACTTTAATTTCATGATCATTCTCAG 40 ATACAGTCATTTCACAGTCCTCCTCATTTTTAGTAATGATTTTCACTTTTT AATAAAAAATAAAAATCCTTGTACACTTAATATTATCAAAAACTTTTATTA AACTTAACATTTCTTATAAAAAACAACAATGTATAGAAATATTAAAAATTT 45 TTCATTATTATAGTTTGAATCGTGTTATAAAATGAAAAGCTATGAGATTA AGATGTAATAATACACACATATATAAATATAACTTCGTGCCACGCAGACGG TTAAAATCATGTATAATAGCTAATAATACATATTAGGAGATACATAATTAA TGATGAAAAATAAATTAACATTAAAAGAGAATCTATTTATCGGCTCAATGC TGTTTGGTCTTTTTTTGGTGCTGGAAATCTCATTTTTCCAATTCACTTAG GTCAAACTGCGGGGCAAATGTATGGACCGCCAATTTAGGATTTCTTATCA 50 CGGCTATCGGACTACCTTTTTTAGGAATTATAGCGATAGGTGTATCTAAAA CAAACGGGGTCTTTGAAATTTCCTCAAGGATAAGTAAAATATATGGTTATT TGTTCACAATTGGCTTGTATCTTGTTATAGGTCCGTTTTTTGCGTTGCCAA GTACGGCCCAAGCGTTGTTGCCTATTTTTAGTATTTTATTCTTCGGAGTAG CGTGGTTATTTTCGCGTAAACCTTCTAAAATATTAGACTATATTGGAAAAT TCCTTTAGAGCACAGTGGCGATGATAT

Sequence 3458 step.1003e02.cons.ok CCATTCTGAGGGAACCTTTGAGCGCCTCCGTTACCTTTTAGGAGGCGACCG CCCCAGTCAAACTGCCCGCCTGACACTGTCTCCCACCACGATAAGTGGTGC 5 GGGTTAGAAAGCCAACACAGCTAGGGTAGTATCCCACCAACGCCTCCACGT AAGCTAGCGCTCACGTTTCAAAGGCTCCTACCTATCCTGTACAAGCTGTGC CGAATTTCAATATCAGGCTACAGTAAAGCTCCACGGGGTCTTTCCGTCCTG TCGCGGGTAACCTGCATCTTCACAGGTACTATGATTTCACCGAGTCTCTCG TTGAGACAGTGCCCAAATCGTTACGCCTTTCGTGCGGGTCGGAACTTACCC 10 GACAAGGAATTTCGCTACCTTAGGACCGTTATAGTTACGGCCGCCGTTTAC TGGGGCTTCGATTCGTAGCTTCGCAGAAGCTAACCACTCCTCTTAACCTTC CAGCACCGGGCAGGCGTCAGCCCCTATACATCACCTTACGGTTTAGCAGAG ACCTGTGTTTTTGATAAACAGTCGCTTGGGCCTATTCACTGCGGCTCTTCT GGGCGTGAACCCTAAAGAGCACCCCTTCTCCCGAAGTTACGGGGTCATTTT 15 GCCGAGTTCCTTAACGAGAGTTCGCTCGCTCACCTTAGAATTCTCATCTTG TTCTCGGCAGTGTGAAATCAACGACTCGAGGAAACAATTTCCTCTCCCCAT CACAGCTCAGCCTTATGAGTGCCGGATTTGCCTAACACTCAGCCTTACTGC TTGGACGTGCACTCCAACAGCACGCTTCGCCTATCCTACTGCGTCCCCCCA 20 TCGATTAAAACGATACTAGGTGGTACAGGAATATCAACCTGTTATCCATCG CCTACGCCTGTCGGCCTCAGCTTAGGACCCGACTAACCCAGAGCGGACGAG CCTTCCTCTGGAAACCTTAGTCAATCGGTGGACGGGATTCTCACCCGTCTT TCGCTACTCACACCGGCATTCTCACTTCTAAGCGCTCCACATGTCCTTGCG ATCATGCTTCGACGCCCTTAGAACGCTCTCCTACCATTGTCCAAAGGACAA TCCACAGCTTCGGTAATATGTTTAGCCCCGGTACATTTTCGGCGCAGTGTC ACTCGACTAGTGAGCTATTACGCACTCTTTAAATGATGGCTGCTTCTAAGC CAACATCCTAGTTGTCTGGGCAACGCCACATCCTTTTCCACTTAACATATA TTTTGGGACCTTAGCTGGTGGTCTGGGCTGTTTCCCTTTCGAACACGGACC 30 TTATCACCCATGTTCTGACTCCCAAGTTAAATTAATTGGCATTCGGAGTTT GTCTGAATTCGGTAACCCGAGAGGGGCCCCTCGTCCAAACAGTGCTCTACC TCCAATAATCATCACTTGAGGCTAGCCCTAAAGCTATTTCGGAGAGAACCA GCTATCTCCAAGTTCGATTGGAATTTCTCCGCTACCCTCAGTTCATCCGCT CACTTTTCAACGTAAGTCGGTTCGGTCCTCCATTCAGTGTTACCTGAACTT CAACCTGACCAAGGGTAGATCACCTGGTTTCGGGTCTACGACCAAATACTC AACGCCCTATTCAGACTCGCTTTCGCTGCGGCTCCGCATTTGCTGCTTAAC CTTGCATCAGATCGTAACTCGCCGGTTCATTCTACAAAAGGCACGCCATCA CCCATTAACGGGCTCTGACTACTTGTAAGCACACGGTTTCAAGTTCTCTTT CACTCCCCTTCCGGGGTACTTTTCACCTTTCCCTCACGGTACTGGTTCACT ATCGGTCACTAGAGAGTATTTAGCCTTAGGAGATGGTCCTCCCAGATTCCG ACGGAATTTCACGTGCTCCGTCGTACTCAGGATCCACTCAAGAGAGAATAT GTTTTCGACTACAGGATTATTACCTTCTTTGATTCATCTTTCCAGATGATT CGTCTAACATGTTCTTTTGTAACTCCGTATAGAGTGTCCTACAACCCCAAC 45 GAATCGATTTTTCTTTCTCTTCCTCCGGGTACTAAGATGTTTCAGTTCTCC GGGTCTGCCTTCTGACATGCTATAAATTCACATATCGATAACATGACATAA GCTACCCAAAGCATATCGTCGTTAGTAACGTCCTTCATCGGCTTCTAGTGC CAAGGCATCCACCGTGCGCCCTTAATAACTTAATCTATGTTTCCACCATAT 50 TTTGAATTGTTATTCAAAATAAATAGCTAAAACTAGTTATTAATCTTGTGA GTGTTCTTTCGAACACTAGCGATTATTTATGAATTCAAGCTTATTTAAAAC AATGTACAAATGAATGTTAATAAACATTCAAAACTGAATACAATATGTCAC GTTATTCCCTCATCTTCGTAGAAGATGTTCCGAATATATCCTTAGAAAGGA GATGACAAGTTCATATAATCATTGTCTAAATTTCTGATATTTGGAATTTTG TCATGATTTAAAGTCTCAAGCAGTTTAGCTTTTTTTAATTTTTGAACAGTA TATTCACTTGGAAAAGCTACATCATAGTGTGTGCCTCCATTTCGAATTTTC GCTTCCATTGCTTCATTTGAATCAAAGGTTTCATATACGACTTGTATACCT GTTTCTTTTTTAAACTTCTTAATTAAGCTAGGATCAATATATTCTCCCCAA

TTGTAAACATATAACTTCTCATTTGAGTGGGTATTATCTTTTGATTTAAAC CAATGACTAATCATTAAACATAAAATACCAATAACTATAGCAGAAATGATA AGTTGAAAAAATCGCTTCATTCATTAACACCTCGCTTCATCTTTTCTGAC GATTAACGATATGTTGAATAAAGTAATATCCAAATACTCCAAACATAATAG CAATAAATATTATTGTAGAAATGGCATTAATCTCCATACTTATACCTTTTC GAGCCATAGCATAAACTTCTACAGACAATACACTAAATCCGTTTCCAGTAA CAAAGAAGCTTACCGTAAAATCATCTAGAGAATATGTTAATGCCATAAAGA ATCCTCCTATAATCGAGGGCATAATATTAGGTATAATAATGCTAGTTAATA ATTGTGATTCATTAGCACCTAAATCTCTTGCTGCATTTAACATGTTATCAT TCATTTCATATAATTGGGGTAAGACGATGATAACAACAATTGGAATACAGA ACGCTATATGAGATGCTAGCACTGTTGAAAATCCTAAACCTAAACCTGTGA AATGTCCTATTGCAGTGAACATAATTAAAAAAAGAAGCACCAATGACTACGT CTGAAGATACCATTAATACATTATTCATCGTTAATAGCGTAACCTTAAACC GTTTGTTGCGTAAGTAATATAAAGCGATCGCACCAAATGTACCTATAACTG TAGCAATCGATGCAGATAAAAGTGCCACTGCAACTGTATTAAAAATCACCG ACATCAACCGATCATTATGAAAAAGGGAGTGGTAATGTTCTAAAGTAAAAT GTTCGAAGTGACTCATATTACCCGCAGAATTAAAAGAATAAATCATTAAAA CGTACCATTTCACACTAATCACCCCTTCCCATTAGATGATTTTGATTTTGT AATAATGAGTAAAAAGGCCATAAAAATAATGAGAAAAAGTGCTATAGTGGA ACCTAATCCATAATTTTG

Sequence 3459

10

15

20

step.1003e03.cons.ok 25 TTTTTGTAATTTTACTGCTTCAATCATTTTCACAATAAGTTGTTTAAATTC ATTGATATTAAGGTGTAATTGAGTGTCATCTTTAGCGTGGTTAATAGTTAA TAAAGCTTTTTCAAAAGATTTTAATGCGCCTTTTAAATTCCCACGACGATA GTGATAATTAGCTGTTGCAAACAAAATGAGACTTACTACTGCATCATGTTT TGAAAAAGTATTTTGTGATTTCCAAGCATCTTCTAAAATATCATGACATAG 30 GAAGTAATGTTGATGCTTATGAAATTGATAATAATAATCCATTAATGATTG TAATTTAGTGAAATATGCATTAACGATGCAATTTGATATAGAGGTAGATGT AATGTATGAAGTAAAACTCGATGCATTTAATGGTCCATTAGACTTATTATT GCATCTAATTCAAAAATATGAAATTGATATTTATGATATCCCTATGAAAGC 35 CTTAACTGAACAGTACATGCAATATGTTCATGCGATGAATCAGCTAGAAAT TAATGTTGCTAGTGAATATTTAGTTATGGCATCAGAATTACTAATGATTAA AAGTAAATTCAACGATGAATATAACCAAAAATCCAACACTAAAAACATGCT GTGCGGCTTCTGCACTATGAACTGTTGTTTCACCATTAACTGTTGTAGTAA AATTAGCATCCATCGCTCCAGTAATTGAAAATACCAAGAAAACTAAAAACA ATAGACTAGAAAAACTTTGTAAAATGATTCCTATCAATGATGTTATATTAA TTGCTTTATTCATCATAATTCTCCTTTCATTTTCTACGTATATCCTTACAA TCAGGTTTATGTTCTTTAATATATATCTTTAGGATTTATATCTCGTTTATAG TAGACTTTCTTTCCCTTTATTTCATATGCAACATAAAATAGTTGCTCTTTA TTTTTGAATAATTTATAACTAATAATAATCAATTTTCCATATAAAGAAGTA 45 GATTTTTCCGCTTCACCAGAAATAATTAAAGGTGTTCTTGCTTCGTCGATC AATATGGAATCGACCTCATCAATAATTGCAAAATGTAGAGGACGCATTACT CTCTCTTCAGCATAGTTCACCATATTATCTCTAAGATAATCAAACCCAAGT TCATTATTCGTACTATAAGTGATATCTTGTGCGTAAGCCTCACGTTTTTCT TCAGTTGACTTACTATTTAAGTTCAAACCTACAGTTAAGCCAAGATAGTTA GTAATAACATGTACACCTCTACCAGCTAAAGCATTCAAATACGTCGGCATG GTTGCAGTCAATGTTTTCCCTTCACCTGTTCTCATTTCTGCAATATCACCT TTATGTATAGCAATACCACCCATTACTTGTACTTATAAGGAATCATATTA AATACTCTCTTTGACCCCTCACGTACAAGTGCATAAGCTTCAGGTAAAATT TTATCTAAATAATCATTTTGTTTTTTTTACATCTTGATGATTTAGTGATCAC CACAATCCTTTTATCATGTAACTAACCTAGTAAATTTAAGTTTCAACTTTT ACTTATAGTGTTTGACTTTAATTATAAATCAAAATTCGTCATAATAAGACG TGCTAAATTTACAATAGCTAAAACATGATAGAGGTGACTTTTATGTCTACG

ATCTATGAACACTATTTCAAAAATCAATCACCTTTTAAGCAAACTAATTTC TATATCGACACAGAGAATTTTAAATTAAAACAGCATCATGCTGCTTTGCGT ATAAGGGTAAAAGATTATATGTTTGAAATGACTTTAAAAGTCCCTGCTGAA GTTGGATTGACAGAATATAATCACTCAGTAAATATAGAACCTGAACTTGAT ATGTCACTTCAACTTTCTCAATTACCCAACGATATTAGAAATATTTTAGAA CAGGACTTTAATATTTTAGAAAATGAGCTTAAAGTACTAGGAAACTTAACT ACCTATCGTTTAGAAACCGATTATCAAAATGAATTACTAGTATTAGATAAG AGTGAATATCTCGGCAAAACTGATTATGAATTAGAGTTTGAAGTTCATTCT TATGATGAAGGATATTCAAAATTTAAAACTTTACTTCAACATTTTAATCTT 10 CAACATCAAAAACCCTTGAATAAAGTGCAACGTTTTTTTCAAGAAAAACAA AATGCAAGTGATAAAGAGTAACAGTTGTCGATAAGGCAAATTACTTTTAAA TGTAAAAATTCATGTTATATTAGATATATATTAATGGAACACGGTGATATT ATGTCTAAAACACCATATGAGTTGATTGGTCAAAAAGCCTTGTATCAAATG 15 TTCCCAGGCGATTTCAAGGAAACCAGTCGAAAGCAGAAGCAATTTTTGACA CAGTTTCTTGGAGGTCCTGACTTATATACCCAAGAACATGGTCATCCCATG TTAAAACGAAGACATATGGAATTTACAATTAGCGAGTATGAACGTGATGCA TGGCTTGAGAACATGCATACTGCTATTCAACACGCCAAACTTCCTGCGGGT GTAGGCGATTACTTGTTTGAGCGATTAAGACTTACTGCAAATCACATGGTA 20 AATTCCTAAATTTAATTGTAGGTGAAAATACATGGCTGAAGAATTAAGAAT CATGGAGAATAAGAGTCGTGAAGATACTAATCTATCACCTGTTAGCAAAAT AGAAATCTATTCTTTTTTGATCCTTTTAGCAAAGATTGTTTTAAATTATC TGCAATCTTATCAAAATTAAGAATTGAATATAATAATAATATAAAGGTAAG ACATATTTTAAACCCTTCTTTAAAGGTATTAACTAAGTGTCAAGCTCAAAG TACTTCAGATTTTGACAATATTGCACTTGCCTATAAAGCCGCTGAACTTCA AGGTCGTATCAGAGCAGAAAGATTTATACATTTAATGCAAAATGAAATCAT TCCAAAACGTGATATTATTACCGAAGATATGATTTCTGATTGTATTAATAA TGCCGGCATTGACTATCAAGTTTTTAAAGAAGACTTGCAAAAGGACAAGTT 30 GACTGACAGCTTGAAAGTTGATCTTCACATTGC

Sequence 3460 step.1003e04.cons.ok

TATATCGGCACTGAAAAGCCTATGCTAAAAAATAAAAATATCGCGCTTCTT TTTGAAAAAGATTCCACTAGAACACGTTGCGCATTCGAAGTTGCCGCACAT GATCAAGGTGCACACGTCACTTATCTTGGACCTACAGGTTCTCAAATGGGT GGTATTGAGTACCGAGGTTTCTCTCAACGTACTGTAGAAACATTAGCGCAA TATTCAGGTGTTCCGGTATGGAATGGATTAACCGATGAAGATCACCCTACA 40 CAAGTGCTTGCTGACTTTTTAACTGCTAAAGAAGTATTGAAAAAAGAGTAT GCTGATATCAACTTTACTTATGTTGGCGATGGACGTAACAATGTTGCTAAC CCTAAAGAACTCAATCCGACAGAAGAATTATTAAATCGTTGCGAACGTATT 45 GCGACGGAAAATGGCGGTAACATTTTAATAACAGATGATATTGATAAAGGC GTGAAAGATTCTGATGTTATTTATACAGATGTTTGGGTATCAATGGGCGAA CCTGATGAAGTATGGCAAGAACGCCTTAAACTTTTAAAACCATATCAAGTT AACCAAGCATTATTAGAAAAAACAGGCAATCCAAATGTTATTTTTGAACAT TGTTTACCTTCTTTCCACAATGCAGAAACTAAAATTGGTCAACAAATTTAT 50 GAAAAATATGGCATTAGTGAAATGGAAGTCACTGATGATGTCTTCGAAAGC AAAGCTTCTGTAGTATTCCAAGAAGCTGAGAATAGAATGCATACAATTAAA TGAAATGGCTAAAATTGTAGTAGCTTTAGGTGGAAACGCTTTAGGAAAATC ACCACAAGAACAACTTGAATTAGTAAAAAATACAGCTAAATCCCTAGTAGG 55 ATTAATTACTAAAGGTCACGAAATTGTGATTAGTCACGGTAATGGACCACA AGTAGGAAGTATTAACCTTGGTCTGAATTATGCAGCTGAACACGATCAAGG TCCTGCTTTTCCATTTGCTGAATGTGGCGCTATGAGTCAAGCCTACATCGG TAAGCAAGTTGTCACACTAGTTACCCAAGTAGAAGTTGATGAAGGCGATCC

AGCTTTTAATAGTCCAAGTAAACCCATCGGTCTGTTCTACACTAAAGAAGA AGCAAATCGTATTCAACAGGAAAAAGGTTATCAATTTGTAGAAGATGCTGG TCGAGGTTACCGTCGCGTTGTACCATCACCACAACCAATATCTATTATCGA ACTGGAAAGTATTAAAACTCTAGTAGAAAATGACACACTCGTCATCGCTGC AGGTGGAGGTGGTATACCAGTCATTCGCGAACAGCATGATAGCTTTAAAGG TATAGATGCCGTCATCGATAAAGACAAAACAAGTGCATTATTAGGTGCTGA CAACTATCATACTGACCAACAACAAGCACTTAAAACAACAAATATAGATAC GCTTAAAACATATATTGAAGAAGAACAATTTGCCAAAGGCAGCATGCTACC 10 TAAAATCGAATCTGCCATCTCCTTTATTGAAAATAATCCTAACGGTAGCGT GCTCATCACATCATTAAATCAATTAGATGCAGCACTAGAAGGTAAAATTGG CATATTCATACAGTGCATCCTGTTATTCCACTCCTCTCCATTTCATACAGG GTGCACTTCCTTAATCAATCATGTAAAATACTAACCAAATTCAATTGATAG GCTTTTATTTTAGGTTAACTGTCGAAGGAGATGAAACCGTTGGAACAAGCG ATCAATGATAATAAAAAGAAAAAACGTTTTAACTTTAGAATGCCAGGTGCA TTTATGATTCTCTTATCCTAACAGTTGTCGCAGTTATAGCAACTTGGATA ATCCCCGCGGGTGCATACTCAAAACTTTCATATGAACCTTCATCCCAAGAA TTAAAAATTGTCAATCCTCATCATCAAGTAAAAAAAGTTCCTGGAACACAA AAGGAGCTTGATCGATTAGGAGTTAAAATCAAAATAGAACAATTTAAATCT GGTGCAATTAATAAACCCGTTTCAATTCCTAATACTTACGAACGTCTAAAA CAACATCCAGCTGGTCTTGATCAAATTACTAGTAGCATGGTTAAAGGAACC ATCGAAGCCGTCGATATTATGGTCTTTATACTTGTTCTAGGTGGACTGATT GGTATTGTTCAAGCGAGCGGGTCCTTTGAATCAGGATTGTTAGCACTTACT CAAAAAACGAAAGGCCACGAATTTATGTTGATTATGTTCGTAGCAATTTTA ATGATTCTGGGTGGAACACTATGTGGCATTGAAGAGGAAGCTGTAGCGTTC TATCCTGTACTCGTTCCAATATTTATTGCGCTTGGATATGATTCTATTGTC TCAGTCGGTGCAATTTTCTTAGCAAGCTCTGTGGGTAGTACATTCTCAACA ATCAACCATTCTCAGTCGTCATTGCTTCTAATGCAGCAGGAACAACTTTT ACTGATGGTCTTTATTGGAGAATAGGCGCTTGTATCATCGGTGCCATATTT 30 GTTATTAGTTATTTATTCTGGTATTGTAAAAAAATTAAAAAAAGATCCTAAA TCCTCTTATCTTATGAAGACAAAGCAGCATTTGAAAAACAGTGGTCTGTG CTCCATGATGACGGTTCTTCTGAGTTTACATTACGTAAAAAGATTATTCTT ACGCTTTTCGTCCTACCATTCCCTATTATGGTTTTGGGGCGTCATGACACAA GGATGGTGGTTCCCAGTCATGGCATCTGCATTCTTGATCTTTACCATTGTC ATCATGTTTATTGCTGGAACAGGACAATATGGTTTAGGCGAAAAAGGCACT GTAGATGCATTCGTTAATGGCGCTTCAAGTTTAGTAGGTGTATCTTTAATC ATTGGTTTAGCTCGAGGAATCAACTTAGTATTGAATAAAGGAATGATTTCT GACACAATCTTGCACTTTTCATCATCTATCGTGCAACATATGAGTGGGCCT TTATTTATCATTGTTCTGCTCTTTATCTTTTTCTGTTTAGGATTTATCGTG CCGTCCTCATCAGGATTAGCAGTACTATCTATGCCTATCTTTGCGCCATTA **GCTGATACAGTAGGTA**

45 Sequence 3461 step.1003e05.cons.ok CTATTTCATGATGATCTGTCACTATAACATCTACACCTAATTCTTGTATGG TACTTATTTCATGATGTCCCTGTATACCATTATCTACAGTTATTATTAAGG AAATCCCTTCGTCATAAGCATTTTTAAATGCTAATTCATTAGGTCCATATC CTTCTGTAAATCTATTGGGAATATACCACCCCACCTGAGCGCCAAGTAGAC GTAAAGTAGACACTAGAATTGTAGTAGATGTAACACCATCTGCATCATAGT CACCATATACTAGTATTCGTTCATTTTGATCGATAGCTAATTTAATACGAT CAATGGCTTTTTGCATATCACTTAATAACATATAATCATGACTAATGTTAG TGCCTTCAAATAGATTTTGAATCTCCTGATTATCCACAATATTTTTACTCT CTAATACCTTTTTTACTATAGGTGAAAGTTTAAATTGATCACTGCTACTCT CACTTATAAAGGTATTCGGTTGAGTTATATCCCAATTATATTTTGATTTAA TCATTATAATCGTCCTCATTTCCACAGGTCATTATACCGAAATTTTATTGA AATAAAAAGTACTTGCATTTTTTAAAAGAATATATCATTTCAATTCTTCAC AAAACTTTTATCATTCAATTTGTTCATTAACTGCTATCTTTATGATTAAAC

GCTAATATATAAAATCAAGAGGCAGGGGCATAATTCCTAGCAAAATAGACA CGTATTGTTGGCTCGCTTTCTTAGGGGACAGCTTCAGCCTGTAGTCTTCAA CTTGTCCTGCTCCCTCAATAGTCTCGCCAAAATACTTTGTGTTTATATGTA 5 ATAGCAATAAACTAAATTAACGAGGTGCCTTATGTATAAAGATTATAATAT GACTTAACTTACTCTACCAATGGAAATTTCAGTTCTTATCCCCACACATGA TATTTCACGACATGTAAATGATATTGTAGAAATAATTCCAGATACAGAATT CGATGAATTCAGACATCATCGTGGCTTAATATAAAAAATAATAGCTCAACG AGCTGAAAATAATCAAAAAATTATAAAAAAGACAATTTCTATATTATTTCA 10 ATAGAAATTGTCTTTAATTACTTATCTTGGACCTTTTTGTTCCAGCCTCTT GTAAATTTTTAAAATTATTAAAATGTGAAGAAGTTAAACTAAGATTTTTTC TTTAAACTGTCGTTTCTTAAGCATGCCCCATAATGGTACAGCAATGAAAAT TGACGAGAATACACCAGATAATAATCCAATTAGTAATGCTAAAGAGAAATT AAATATTGTTGGTGCACCTAATATTAATATTGCAACTACAACTACAACTAC AGTCAACACTGTATTAATAGAACGTGTCATAGTTTGTCTAATAGAGCGGTT GACTATATCATCAATTTGATCAGTATGCGTAATTACTTTAACTTTATGCAG AACGATAGTTAATACTGCTGCAATAAATGTTAAATCTACTTCTAATCTAAA 20 CAAACTAAAGATTGCAATGATGATAAATACGTCATGTAATAATGCAAGTAC AGAAGATAGACCCATACGCCATTCAAATCTTAGTGAAACATAGATAATAAT GCCTATGAGAGGTGAAACGGTATTAATTTGTGGATTATCTCCAAATTCAGA TTTCACCTTAGCACTTAATTTATTGTCTTCCTCACGTGATAAATCTTTTTT AAACTGAACTGTGGCATTTTTATTTCCACTACCATTAATCTGTATTTGATC TGGTTCCAATCCAACTGATTTTACAGTTTTCTCAACCTGTGCTTGTGTTAT AGCATTTTTAGATTGAATATCTGCTCTTGTTCCGGATGAGAAATCAATACC TAAGTTTAATTTAAATATTGAAATGATAATCAAACCAATAATTACAATTAA AATACTAAGTGAAATAAGTGGCTTAGCTAATTTAACAAAGTTTAACCTTTC ATATGATGTTTTTAAATCATGTACATCTTTACCTTCATTAATATCATGTCT ATCCTTCTTCAACACCAAATAACCAGTATTGTTTTTAAAGAAGTTTGA AGATACCAGTAATGATAACAACCCTCTTGATAAGAATACTGCGGTTACAAA TATCATTAAAATACCTAAGAGTAACATGGTTGCGAAGCCTTTGACTGAACT TTCTCCAAAGAAGAAAAGCACAGCTGCAGCGATGACAGTTGTTAAGTTGGA ATCAAATATAGTTAAGAATGAACTTTTATTTGCTTTTGAATACGCTTGTTT AAGCGTGCGTCCAATTCTTAGTTCATCTTTAATACGTTCATACATTATGAT ATTGGCATCGACAGCCATACCTACACCTAAAACTAATGCCGCCAATCCAGG 40 ATAAGTGGTTAAGGCAATGATTGCAACTAAACCAGGCAAACGATAGAAACC AAGCATAAATAAATAAATTAATGCTATACCTACAATTGATGCAAACATGGT CTTATCAAGAGCATCTTGACCAAATTGTGCACCAACAGAGTTAGAGTAAAT TTCTTTTAAATCAACTGGTAATGAGCCGGCATTTAATAACTCAGCTATTTG TTTCGCTTCTTCAACACCTTTTTTCCCATTGAAGCCACCTGAAATTTCAAC ACTACTAGAATTAATAGGTTGGTCTACACTCGCTGCAGATATAAATTTAGG CTTTTTACCTTCTTGTTGCTTTTTAGCTTCTTTCTTGTAACTATCGCCTTT TTCGAAATCTAACCAAACTACCATGACATTGTCACGTTTTTTAGAAATCTT TTCAGTTACTTTCTTAAATTTATCTTTACTTTTACTTTAAATGTAACTGT TGGTTGATTAGTTTCTTGTTTAAATTCTTGTTTAGCAGAGCCTTGTTTAAT GTCTGAACCAGACATTAAAACATGATCTTCAGCATCTCTAATTGTTAAATT 50 AGCTTGTGTCGATAATAATTTACGCGCTTGTGCTTGATCCTTGATACCTGC TAATTGTACACGAATTCGATTTGGATCTTCGATTTGTATTTTCGGTTCTGA TACACCTAGAACATTTACACGATTTTCTAATGTTTGAGATGTAGCTTGAAG TGCTTTTTTATCAATTTTATCTCCTTTATTTAAAGGATCTACTTGGAAGAG GACTTCAAAACCACCTTGCAAATCTAGACCTAAATTAACATTTTTAACTAC 55 ATTCTTATACGTCATACCCTTTAGAGCACAGTGGCGATGATAT

Sequence 3462

step.1003e06.cons.ok ATTTCTTAAAATGTTGTAAGTCTTATGTTTGCTTTTATTTCACGAATCTTT TTATTTATTTCAAACAATTGTTTACATGTGATTTTAAATCATCTCTTCTAA ATACAATTAAGAATACTATACCTGTATCTGACATTCGTCAATAGTTAAATG AAACTCTTTTCACATCGTCATGTATCATTCATTATTTTAGTAGACTGATAG CATAATGTAGCAGTTTTATTTATTTAATTAAAAATATTAAATGGAAATAGA ACGTAAGGTGACATTACAAGCAGTTAATTATAATAATGTTGAAATTCTCTC GCCTCTCATCCGAGAAAAATTGTATGTATATCGTCACAATGTATCTACTAT TACACAGAACAAAATATTTAGTTTCAACAAGTTGTAGAAGCGGGACACTAA TTATTTAAAAAGTGTTGCATATAAGCACATCTAAATATGACGTAATTGTTG 10 CAAATTTAAAATAACTTGAAATGTGATAATGACTTTGCTATATTAAAATTA GAGAGCTTGTGGTAAGTGAGAACAAGTAATCGACATTCATGTGAATCTACC TACTATATGTGAACAATCGGTAATAACCGTTATTTTAGTTAAGCGCAATTT GAGGTAAATGTTTTAATTTACTTGAAATTGTTAAATAGGGTGGCAACGCG 15 TAGACCACGTCCCTTGTCTGGGATGTGGTCTTTTTTTATTGTTTTATCACA CGAAGTCATCCATAAAATTGAATATATTTTATTTGGGAAAGGATGAAGGTT ACATGTTAGACATTCGTTTATTTAGAAATGAACCTGAGAAAGTGAAGAGCA AAATTGAATTAAGAGGCGACGATCCTAAAGTTGTCGACCAAGTTTTAGAAT TAGATGAACAACGCCGTGAATTAATCAGTAAAACTGAAGAGATGAAGGCGA AAAGAAATAAAGTGAGCGAAGAAATAGCTCAAAAGAAACGTAATAAAGAAG ACGCTGATGATGTCATTGCTGAGATGCGTCATTTAGGTGATGAAATTAAAG ATATCGATAATCAACTTAATGAAGTAGATAATAAAATTAGAGATATCTTAA TTCGTATTCCTAACTTAATTAATGAAGATGTACCTCAAGGTGATTCTGATG AAGAAAACGTTGAAGTTAAAAAATGGGGTACGCCACGTGATTTTGAATTTG AACCTAAAGCGCACTGGGATTTAGTTGAAGAATTAAAAATGGCTGACTTTG AACGTGCTGCTAAAGTATCTGGTGCTCGTTTCGTATACTTAACTAAAGATG GCGCATTACTTGAACGTGCTTTAATGAATTACATGTTGACAAAACATACAA CGCAACATGGTTATACTGAAATGATGACACCTCAATTAGTGAATGCTGATA CGATGTTTGGAACAGGTCAATTACCTAAATTTGAAGAAGATTTATTAAAG 30 TTGAAAAAGAAGGCTTATATACGATTCCAACTGCAGAAGTACCTTTAACAA ACTTCTATAGAGATGAAATTATTCAACCAGGTGTACTACCTGAATTATTTA CAGCTCAAACTGCATGTTTCCGTAGTGAAGCAGGATCAGCTGGTAGAGATA CTAGAGGGTTAATTCGTTTACATCAATTTGATAAAGTTGAAATGGTTCGTA TTGTACAACCTGAAGATTCTTGGGATGCTTTAGAAGAAATGACACAAAATG 35 $\tt CTGAAGCTATTCTTGAAGAATTAGGTTTACCATACCGTCGTGTTATCTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTTATCTT$ GTACTGGCGATATTGGTTTCAGTGCTAGTAAAACATATGATTTAGAAGTTT GGTTACCAAGTTACAATGATTATAAAGAAATCAGTTCTTGCTCTAACTGTA CTGATTTCCAAGCACGTCGCGCAAATATCAGATTCAAACGTGATGCTGCTT 40 CTAAACCAGAATTAGTACACACATTAAATGGTAGTGGTTTAGCAGTAGGTC GTACATTTGCAGCCATCGTTGAAAACTATCAAAACGAAGATGGTACATTAA CAATTCCTGAAGCATTAGTACCATTTATGGGTGGCAAAACTAAAATTGAAA AACCAATCAAATAATCATATAAACTTAACTAGATGATTACAATATTAAAAA GTTATTTAACTGTCGATAAGATTCTATAAACTTATCGACAGTTTTTTAATA 45 ATAGTTTAAAATGATTTTCACGATTTAAAATACTGGTATAAAAGCGATTTT ATAGATACGGTTGTCTGACGTCACACAAACGAATGTCTAAAAAAATAGTGAA TATTTATTGTCATAGATTGAGTTATAAAATCATGAAAATAGTACATGAAGT AGCAAGTATTTATCTTTTAGATAACGCCTGTAAAAATATAAAATAGTGGAA ATTGATTTTTAAACGTTATCATTCATATTCAAAATATTTAACTTAGTTTG TCAAACAACGTTTATTTTTATATAACCATAAAATAATATCATAAAGAAGCT ATATGAAATTCGAAGTATAATGCCAATGTTTCATATAGCTCCTATTCTAAA TATTAAAATTTAATAATTAAATGTATCAATCGTCCTATTCATTTGATGCAT AGCCTGAGAGTGGGTAATGATCTGAGTAATCATTGTATTTGTATGTTTTTC CCCAAGATTTCACGGACCATTCTGGTGACTTCACTCTATGTGTATCATTAT 55 GCCATGAGCTTGGTTGTGCATGGTCATGATCTAATAAAATATAATCTAAGT GTTGAGGTTCTAATTTAGGATAATTATATTTCGCAATACTATTACTGCTAG TATCCCAACTATATGCATTACCATCGAATTGAGTAGGTAATGAAACATTTA AGTTATTTGCCATTTGTTGATATTCATCTGAATCTTTAATGACATTTAAGT

CACCACCGATATAGACGGGTTCATTTTTAGGGATATTCTTGTCTTTGATAA ACTGTTTAATTTCACTCATTTGACTCTGTCTAATGTCTTTATCTTTTCCTT TAAAGCATGTTGGATCTTCAGCTTGTAGATGTTCCGATAAT

5

Sequence 3463 step.1003e08.cons.ok ATGCGTTTATCAAACGTCTCATTAAACAATTTGGTAAACCTCAAAAGGTAA TTACAGATCAGGCACCTTCAACGAAGGTAGCAATGGCTAAAGTAATTAAAG CTTTTAAACTTAAACCTGACTGTTATTGTACATCGAAATATCTGAATAACC 10 TCATTGAGCAAGATCACTGTCATATTAAAATAAGAAAGACAAGGTATCAAA ATATCAATACAGCAAAGAATACTTTAAAAAGGTATTGAATGTATTTACGCTC TATATAAAAAGAACCGCAGGTCTCTTCAGATCTACGGATTTTCGCCATGCC ACGAAATTAGCATCATGCTAGCAAGTTAAGCGAACACTGACATGATAAATT AGTGGTTAGCTATATTTTTTTTACTTTGCAACAGAACCTATAAAAAACATGG GCTTAAAGGGTTAATTTATATAGTATTACTGCAAACATTGATTTGGGTCAA AAATTAGGGGTATTAAAAAAATGAATGAATCATAATTTTATCAAGCTGATT GGAGAGGTTAAAATGCATTATATAAAACTTTAGAGTATCATTAATATCTTC ACCTCAGATATACAAAAAACTACTAGCATATAAAAGATATATCTTTTATAT GCTAGTAGTTTAAAAGCTTAAACAATCAATCGTCCATTTTATTAATATATT CTTTTTCTTTATAGTATAATTTTTCTCGTCTTTCTCGTAGTTTTGCAC GTTTTTTTAATTCTTCTGGCGTATTAAACTCTTTTTGGCTTAATAAGATAG TAGATTGTCTAGATGCATCGTCTTTCCTGTACATATATGCACCATTACGGT AGGCCGCTCTACTTATCAAATGCATTCCAACCGGAGATGTAAGATTGATAA AAACTAGTGATAATAATAATCTGACACTGAAAAAACCTGAATTCACAATAA AATAGATCAGTACACCAACTACAGTTAGTAATACTGACAATGTAGAACTTT TCGTTGAGGCGTGACTTCTTAGAAAGACATCTTGAAATTTTACAATCCCTA TTGCACTAATTAATGCAATAATACTTCCTAAGAAAATAAGTATCGAAGCAA TAAGACTAACGATGTCTTTTATGATTTCCATTGAAGACACGTCCTTCCCCG ATGAATCTTGAAATTGAGACCGAACTGACAAACGAAATAATTGCAATTAAC ATGATTGAATCTAAATAAGACACTGAGTTAAAAATAACGCTCATCACACCA ACAATAGACATAACAACAGCACTCGAGGCATCAAATGATACAACTCTATCA CCAAAAATCACTAATGCACTTATAATAAATATTTGAGTGAACATTTCAATC ATCGTGTCACCTCCAAAATTAAATCCTCATACTGCTTAATACTTTTTAGAA GATTTTCTTTATCTTTTCTGACACATCAATACTGTGAATAAAAAATTTAT TAGTATTTTTAGAAATTCGAATAACTGTCGATCCTGGAGTAATAATTA AAATCGTTAAAAAAGTAATAGCCCAATTACTTTTTAATGAAGTTTCATATG TGAGTAAACCTGGATTAACTTCATTCGTCTTAAATAAGATGTAATTTATGG TACTTATACTAGAAGTAATAAGCTGGTATAGGTATACAGCTAAAAATTTAA TAGCCACCCATATCTTTTCAAATAAAATTCTTCACCAAAAAAGCGATGCA GAATATAAATCACAATTAAACCAATTAAAAATCCAGCAAAGAAGGTTGTAA ATTTAAATTCATCTTCATCTTGAAAGAGTACCCAAAGGAACGCGATAACAA TATTTAATACAACTTGCTTCACTTATGATTAACCTCCTTCAAATGTGTATT TACATTCTTTTGAAAGACATCTTCTTTCATATTAAGATTTGTTGCATCCTC 45 TGTTACTTTCAGAACAACAGGGGCTGCAATACCCATCGCTAATACCACTAC AACTAAAACACTAAGTAAACCTTTACGATAAATAGGTAGTGGTCTAAATTG TACTTGTTCTCCGTCAGCATCACCAAAATACATTATAAACATCACTCT

TAAAGTTTATTATAATTAACCATACTATTAAATCATAAGTAATCTGCATAT GCCTTAAAGATAAATTATATATTTAATGATTAATGTACAATCTAAAGTTAT TAGTAGCTGGATTGATAATATAGCAAAATTCATCTACTTTTTCTTATACCT AACTATACAATAGGAATGTGATTCAACTTTATATATCATATTTAGGCCAAG AGAGTATGATATTTAAAAATTATGTCCGAAGTTTAAGAAGCTTGATGCCAC 5 AAATTTAGAAGTTTAAAATTTATTTAATTAACTTTAGTATCATCCTTATTC TAGTGGACGCTGAAAGGAACTATTAATTATGATTACAGCTTATAAACACGC ATGGATAAATGTAGTAGAACCAGATAGAGAAGAAATTGAAGGTTTGATGGA ATTTTACAATATACCTGAGGATTTTATTCGAGATCCGTTAGACTCTGAAGA 10 GAGTGCACGTATTGAATATGACGAAGATACGGGATACTCGCTAATTATTAT TGACTTACCTATCGTCAATTCTACCAATCGGCGTGTCTTGTCGTTTGTGAC CATCCCATTAGGCATTATTATTGGAAATGGTATCGTTATGACTGTTTGCGA TGCTGAAAATGAATTTTTAGAAAACTTTGCTAAACAAGAAGATATTAACTT GAAATTTCACAGTCGATTTGCACTTGAAATACTAACAACAATAGCAAATCA CTACAATAGAAATTTAAGATTGCTTAATAAATCTAGGATTCGTATTGAAAG AGAACTCAAAAATAACATTACTAACAAGCAGCTTTTTAAACTAATGGAAGT AGAAAAAAGTTTAGTATACTTCTTAGCTGCACTAAAAGGTAACGACACAAT TATTAAAAAACTCTTTCGTCTTCCTGCAATCAAACGTTTTGAAGAGGATGA AGAGCTACTTGAAGACTTGGTGATAGAAAACAACCAAGCTATTGAAACGAC 20 TGAATTACATCAACGAATACTTGAGAGTATCACTTCTTCGTATGCTTCATT ATTATCTAATGATATGAATAACATCATGAAAACATTAACGTTGTTTACGGT TCTTTTGACCCTTCCTACACTCGTCTTTAGTTTCTTTGGTATGAATGTACC CTTACCAATTGATGATCATAGTTACGTGTCTTGGATTATTGTTGTGGGAAT TTCACTTATTCTAGTAGCTATCGTTAGTATCTTTTTATGGAAAAAACAAAA GGTATTATTATATGTTTAAAATTGTGTCAAAATTTTAAGTCTCTACTATGA TTCAACAGCTGTCTTATTTGTTTTTCTTCGAGAAAGTACTAAAGTGACGAC AGCGTGTGTAGGATTTATAGATATAAATCCAGGTAATCCAGCTGTACCAAG CGCTATCGCTTTTACTTTGAAGAATGAAATATAAGCCGCACCTATACCTGA TCCTGCAACAGCACCTATAAATGGATATCTCAATTTAAGATTGACACCAAA CATTGCTGGTTCTGTAATTCCTAGTAAAGCTGAAATACCCGCCGCGGAAGC AACACCTTTTAATTTTTTTTTTTGCTTAATGATAAAGAATGCAGCTAAAGC TGCACCACCTTGTGCAATATTTGACATCGTTGCGATTGGGAAGATAAATGA ACCACCTGTTTTAGTCGCATCAGCAATTAATGTCGTTTCAACTGCAATAAA GCTATGGTGCATTCCTGTAATGACGATTGGCGCATATAATAAACCAAATAT AAGTCCACCAATAGCTCCACCAAATTCATATAACCAAGTCAATCCATCAGA TAACCAATAACCTAATTGACGAGTGACAGGCCCTACAAATAAAAATGTTAT AAATGCTGTAATAAAAATTGATAATAATGGCGTCAATAAATTATCTAACAC 40 AGTTGGAATAACTTTACGTAACCATTTTTCAATCGTAGCTAAAATATATGT TGCTACGAGCATAGGTAATACTTGTCCCTGATAACCTACTTCATTAATATG TAGCCCAAAGACATCCCAGTGTGGAATAGCTTTTCCTTCTTCTAAAGCTTT TGGAAAATCATATGCACTCATCAATCCAGGATGAACAAGTATCATACCTAG AGCTGCACCTAAATAAGGATTACCACCAAATCGCTTAGCTGCACTAAAACC AATAAGTATTGGTAATAATGTAAAAGGTGCATTTGCAAATATATTAATCAT ATCAGCCAAGCCAGAAAATTGACTATGTACATCTATGATAGATTTACCATC ATAAAACAAATCTTTAGCTGTGAAAATATTATTTAATCCCATTAACAAACC ACCAGCTACAATAGCCGGAATAATAGGAACAAAGATATCAGATAACATTTT CACAAATTTTTGGAATGGATTCATATGCTTAGATGATTTATCTTTAACTTC 50 TGAAGT

ATAAATCATTTTTGATAATACTTTTGTGTTATGTCTGACATAGTGTTCATT AGATATTTCAACTAAATTAGATGCCGTTAAAACTCTAATTCCACTATCTTT TAATTGTTCTTTATGTACTGCTACTGGTTTCGAATTCTTTTCTTCATATCG TTGTAAAACATCTTTACTATAGGATTCTGAGCTACATATGACAAAATCAAT AAATGGTTCACCAACTTGTCGAGTAAGTGCATCAATATGCTCTTTGACATC ATAATTATCAGTCTCGCCTGGTTGTGTCATAACATTAGATACATAAAGTTT TGGAGCAGATGTACGTAATAATGCTTCTGAAATACCTTTGACACATAAATT TGATATAACACTTGTATATAATGAACCTGGTCCTAAGACAATTAAATCTGC TTGTTCTAAAGCTTCTATCGCTTCATTCATTGGTTCAACATCACTTGGTTC TAAAAACACACGATCTATTTTTTTTTTTTTTTTGTGTTTTTAGGTATATTAGTTTCTCC 10 ATGTACAATTTCACCGTCTTCCATCACCGCGTTGAGTTGCACACTTGCGTT TGTTGAAGGGATGACTTGGCCTTTAATATTTAAAACTTTGCTTAACTCTTT AATAGCGTGTCCAAAATCATTAGTAATGTTAGTCATTCCAGCAATAACTAA ATTACCTAATGAATGCCCATCTACTTGATTTTCACCAAAACGGTACTGGAA CAATTGAGTTAATATCGATTCTGAGTCACTTAAAGCAGCAATGACATTACG 15 **AATATCACCAGGCGCTGGAATATCCATGACATCTCTAATTTTCCCCGTGCT** CCCACCATTGTCCGCTACAGTAACAATGGCAGTAATGTCTATTGGAAATTC TCTAAGGCCTCTAGCAAGGACAGAAAGTCCAGTGCCACCACCAATAAGTAC TACATTCATTTGTTTCATTATCTCTCTCCACTTTCAATATGCGCATCTCTA TGATGCACATAAACATTATATTCAAAAATCTCGTTAAGATATTCAGCTAAA CGTTTAGCTAATGCGACTGATCGATGTTGTCCACCCGTACAACCTATAGCA ATAACCAATTGCGATTTACCTTCTTTTTTGTAGCCAGGAATCATAAATTTT ACGTAATTGTACACTGGCTCATCTAAACCAGTAAATGGACGCAATTCCTCT ACATAGTAGGGATTAGGTAGAAATCTGACATCAAAAACTAAATCAGCATCC ATTTGTATACCATGCTTGAAACCGAAACTTGTCACGTTGATTGTAAATGTT TCAAAGTTTTCATCTAAATAAAACTTTGAAATGCGTTGCTTTAATTCTTTA GGTTTTAATTTGTTGTATCAATCACGTAATTAGCGATACTTCGGATTTCT GATAGATGTTCACGTTCCTCATTTATTGCATCTATTAATGATCTTTGTCCT TGTTCATTTAGTGGGTGCGCTCTTCTTGATTCTTTATAACGTGAAATAATT 30 TTTTCAGTTTTAGCTTCTAAAAACATAACATCTAAAATCACGTCATTACGA CTTTTAATAATATCAATTTCTTTAACTAGAGATTTAAATAATTCCTTACCT CTTAAATCTATTGCAATTGCTACTTTTTGCAATGAAGGTCAATGTGTATTA CTGGTATGCAATTTGGCAATGAGGTAGCTATGCATGTGAGCAGAGGTGCAG 35 TCTTCGGTATGATAGGAGTTTTATGTAGTATACTAGCAACCTGGGGATTAC TACAAGCTACACATATGTGGCTATTGAGTATTATTGGTGGTTTTTGTAGCTT GGTTTGTAAGTGCATTGATTATTTTTGAAATTGTGGAATTCATAGCACATA AAAATTTATACTGAGATTCAACGTTTATTGGAAACGACTCATTTTAGAGAT ATTACTATAGATCAAATTTCTGAGAATACTGGTATTTCTAAAGCAACTATT TATAGACGTTGGAAGGATAAATCTTCAATTATCATGTCCGCGTTTATTGAA CAATCTCAATATATTGCGATTCATAATCAAGATAATTTATATGATGATTTA TTCCAGTTTTTAGTAAAAATAAAAGATATCTATAAAACAAAACTAGGTAGT GCTGTGATTGAAATATTAATTAGTCATCAACAAATGGAAGCTAGAGAAACT TTTATGACTAATTACTTTAATCATAATCGCAAAGTTTTAAAAGAGATTGTT 45 CGTAAGCACATACAAGAGGAAGAACAAGATTTGTTTATTGATTTAATCTTC TCACCCATCTATTTTAATATATTAATTAAACCTGAAACTCTGGATGAAAAT TACATTAAAAAGATGTTGAATCAAGTTTTACGTATATATCATTGATATGAA AAACGCTCCTTTCGAGGAGCGTTTTTTTTTTTTTTTCATGTAACAGGTTAGCCT AAGGTCAGTCTATTAAAACCTTTAACCATACTATGTCAAAGCATTTTGACA ATGATAAAGGTGACATCGCAAAAACTATTTGATAGCTTTTATAGAGAAAAC CTGATTTGATTTAATAATAATATTAAATGATTTCAAATCATAATTAAGGAG TTTAACGTAATGAATGTTAGCAATCAAATCAAAAATTTAGAGAAAAGAGAT ATTTCAAATTGGGAAAATGATAAAAGTTATCCGGATATTCATAATTTACTT ATTATGTGTCAACTCTTCAAGGTATCTCTAGACGAACTAGTGGAGGATGAT TTGAAAAACGTGCAAATCAAAAATATTAAAAAAGAATTAGACTTTTGGACA TGGATGATGATAATTCCAATGGTATTAGGAAGTGTTCTCATAGGTCCTATG ATTCATTACTTTCATTGGTTAGGAATAGGAATAACATATTTAGTATTTTA

ATAGGTATCATTGCTTCTACAAAATTAGAAAAATTAAAATCAAAAATGAT ATTGAAACATACGACAGGATATCTTTAGAGCACAGTGGCGATGATATC

Sequence 3466 step.1003e11.cons.ok TATAAATTTAAATGTACATTAGCAAATGCATCGTTATCAAGTCCGTCTACA GGGTCACCTACTACGACAAGTCCTGTTGCGGTATTATCTGATATTAAATCT GATAAAGTAAAATTTGGAAACCAATTTTTATATCTTGCATCTGGAATTTCA ATGCCTGGCGCGATACGGGTATGATATCTAATTGTTTCTAAATCAGCATCA 10 TAAGGTAAGTCTTCCTGCACTATAAAGATAATTTCTGGTTCTAGTAATGGT GAAAATAATTCTGAAAGAGAGACTGAGGCACCATCATTAACAATTTGGTTA GCCTTGCTAGTCATACTAACTTTATACCCTGTAACAGTCGAACGGTCTTTG AAAGTTAATTGGTCAATTAGTTCTTCTTGTACATGATATGCTTCTTCTTCG 15 TTTAATTGATAGTTCTCACTAATGAAATCGATGGGTTTTTTATATCTATAA GCTTTAAATAAAACTTTAGCAACTTCTTTATTTGTTAGTGTCATATTGTAC CCCTCCCTAAATTATCTGAAAATTTATACTATTATGATAACTTTTAAATG TGAAGTGTGCAAATTGATTTAAATATACTTCATTTAGGGTATAAAATAATT AATAATGTAAATTTTGATAGGAGTGGGTATAGTGTCAGATTATGTTTATGA 20 GTTGATGAAACAACATCATTCAGTTAGAAAATTTAAGAATCAACCACTTGG TTCTGAAACGGTAGAAAAATTAGTAGAGGCGGGACAGAGTGCTTCTACATC CAGTTATCTTCAAACTTATTCTATTATTGGTGTTGAAGATCCAAGCATTAA AGCGCGTTTAAAGGAAGTGTCAGGTCAGCCTTATGTTTTAGATAATGGTTA TTTATTTGTATTTGTTTTAGATTATTATCGTCATCATTTAGTAGATGAAGT 25 TGCGGCGTCAAATATGGAGACATCATATGGTTCTGCAGAAGGACTATTAGT AGGTACAATAGATGTTGCATTAGTTGCGCAAAACATGGCAGTTGCTGCCGA AGATATGGGGTATGGAATTGTTTATTTAGGGTCATTGCGTAATGATGTTGC GCGAGTGCGTGAAATTTTAAATTTACCTGATTATACGTTTCCGTTATTTGG TATGGCAGTAGGTGAACCTTCTGATGAAGAAAATGGGTCACCTAAACCGCG CTTGCCATTTAAACATATTTTTCATAAAGACCAGTATGATGCGAATCAGCA TAAAGAACGTACTCACGGTGTGCGTACAGAAAATTGGTCACAACAAATAGA AACATTTCTAGGACGTAAAACACGTTTAGATATGTTAGATGAATTGAAAAA 35 AGCAGGATTTATTCAAAGATAAAAAGAACCTGAGACAGAAATACATGTCTC AGGCTAGGGTGGGGCGATATTTTCAACACGAATGTTGCCCCGCTCTTTTTA TAATTGTATGTCGTAATGATCAATGACCACTTTTCTTACATTTAATTTGCA GTTAAGCGTGCGGTACCTGTTCCAGCTAGCATTGAGTCATTAACGTTAAGT GCTGTACGACCCATATCGATGAGAGGTTCGATAGATATCAGTACCCCTGCG AGAGCAACTGGTAGATTAAGTGTAGATAATACGAGTATTGATGCGAATGTT GCCCGCCACCTACACCTGCAACGCCAAATGAACTTATAATAACAACAGCA ATAAGTGTAACAACAAATTGGAAGTCAATTTCTACATTTGCTACTGGTGCC ACCATAACTGCTAGCATAGCAGGATAGATTCCTGCACAGCCATTTTGCCCT ATGGATAAACCAAAAGTTGCAGAGAAGTTTGCAATTCCCTCAGGTACACCT 45 AAACGTTTTGTTTGCGTTTGAACATTTAACGGTAATGCACCTGCACTTGAA CGTGAAGTAAATGCAAAGATTAGTACTTCTATTGTCTTTTTCACGTATTTA ACGGGATTGATACCTAAGACACTCAGTATAATTAAATGGATAATATACATT GTGATTAGAGCTGCGTATGAAGCAATTAAGAATTTACCTAACGTCCAAATT GCAGAAAAATCACTTGTCGCAAGAGTAGAAGCCATAATAGCTAAAATGCCA TAAGGCGTTAATCGTAAAACAAAAGTTACGATAGCCATAACGATAGAATAG ATTGCTTCTATACCACGTTTAAGTAAGCTTCCATGTTCCGGCTGTTTTCTT GCAACTCTAAGATAAGCAAAGCCCACAAACGTTGCAAAAATAACAACTGCA ATTGTCGAAGTTGTACGTTGTCCTGTGAAATCTAAAAATGGATTGCTTGGG AATACTTCGAGAATTTGTTGTGGTAAAGTGTTTGCAGTTAAATCTTTGGCT TGTTTTGAAATTTCTGTACCACGTGAATGTTCTGCACTACCTAAATCAATA GACGATGCATCTAAACCAAAGATCAAAGCGTAAAAAATTCCAACGATAGCT GCAATGGCTACAGTACCAATTAAAAACATAAAAATATAAGAACCGATCTTA GCGAATTTTCACCAATTTGTATTTTGCTAAAAGCGGCAACAATTGAAATG

AATATTAGTGGCATGACAATCATTTGTAATAGTGCAACATAACCATCTCCA ACAATACTAAACCAGTCTGTTGATTGTTCGAGAGTTTTAGACTCTGCACCA TATATGAGGTGTAATACAATGCCAAATACGATACCTATTGCTAAAGCGGTA AAGACACGTTTAGGGAATGAGACGTGTTTTCTTGCCATAATATTTAACATT ATTAGGAAAACAAGTAACACGATGACATTAATTACTGTAAAAAAGTATTTCC ATATCGATA

5

Sequence 3467 10 step.1003f01.cons.ok TATAAGATAATATAAACTAAGCCTGAGACACCGATGAGTAATCTCAGGCTT TTTTACGTATTGAAAGTGATTGAGTAATTAAATAGGGTGGATATCAAAAAT GATGTTGGTCGATATGTTAGGTTCTTTAAGAGAATGCAATGCCAGGCTCAA TATCGACGTAGTTATGAAGCGGTGTGTATTTTAAATGGCCGTTAGTATCAT GTATAAACGGACTATTGGAACTCAACTTTTAAAATTGATATAGTATAATAT 15 AAAGGAAATTTAGAGGACGTGACGTTTCGATATTTGAATAACTGTATTAAG GAATATCGAAACTTTAAAATATCTACGCAATTTAGGATAAAAAATCAACAT TGAGTGAAAGCCAACTTAGTCGAAGCATCTCAATAAAGCGTAAGACACTCG AGTTCCCCCACACCCCTATAAACAAAATAACTATGGTACATATGAGAAAGG ATGAGTCGCTTGATACGTATGAGTGTATTAGCAAGTGGTAGTACAGGTAAC GCCACTTACGTAGAAAGTGAGAAAGGTAGCCTACTCGTCGATGTAGGTTTA ACTGGCAAGAAGATGGAAGAACTTTTCAGCCAAATCGACAGAAACATTAAG GATTTAAACGGAATTTTAGTGACACATGAACACATCGACCATATTAAAGGT CTTGGTGTTTTAGCACGTAAATATAAACTTCCGATTTACGCGAATGAGAAT ACATGGAAAGCGATAGAGAAGAAAGATAGCCGCATTCCAATGGATCAGAAA TTTATCTTTAATCCATATGAAACGAAATCTCTTGCAGGATTTGATATAGAA TCATTTAACGTGTCACATGACGCGATTGATCCACAATTCTACATCTTCCAC AATAACTATAAGAAATTTACGATGATAACTGACACTGGTTACGTTTCAGAT CGTATGAAAGGTATGATTCAAGGTAGTGATGTCTTTATGTTTGAAAGTAAT CACGATGTCGATATGTTACGCATGTGTCGCTATCCATGGAAGACGAAACAA 30 CGTATTTTAAGTGATATGGGTCACGTATCCAATGAAGACGCGGGTCTTGCG ATGAGTGATGTCATTACAGGTAATACGAAACGTATATACCTCTCTCATTTG TCACAAGACAATAATATGAAAGACCTCGCACGCATGAGTGTTGGACAAGTG CTCAACGAACACGATATCGATACAGAGAAAGAAGTATTGCTTTGCGATACC GATAAAGCACAAGCCACACCGATTTATACACTATAATTGAATAGAGGTAAG 35 ACAAACGACCTACTTAAGTATTACGCTTAAGTAGGTTATTTTTTTGGAAAA GTGATCAGGAGAATTGCAGGGAATGATTATGTGTTAGTTTAAACAGGCTTG CGCATGAACGATTGATTAAGGAATTTTTTTTGAAATGAAAGCGCATCATGGA 40 TTTTACTTTTAAACTGCTTAAATACCGTTCCTTCTGCGACATTTGCACGCT GCGCAATTTCTTTAGTACTCGTTTTATCAAATCCTTGTTCACTGAATAATG CAATAGCACTTTCTATGACACGTCTTTGTTTATCGCTTAAATATTCAAGTT GAGGCACAATGGTTTCAACTAATGACTTAATATCTTGGTTCATATTGACCT CCTAAACTTTTCTATATCTTTTCATGCCTATAATATTTAAAATCAATAAGA AAATGAAAAATGCGAATAACACAATTAAATAAATGTAAATATCGTTGAATC 45 CATAACCCTTGATCATAATATTTTGCATCGTTTGGCCGGTATAGAATAACG GCATGATATGTGAAAAGTATTGTAATCCTTTATTCATTGATTCAATTGGTA TAATGCCTGCAAATAGTACTTGTGGCACTATGACTAATGGTATAAATTGAA TCATTTGGAATTCTGAGGAAGCAAAGGTAGATAATAATATACCGAATGTCA CAGCGACAAGCGCTGTTAATATTGCCGTTAATAGTACGAACCATATCGAAC CTACTAAGTCTATATGCAGAATATAAATTGCATATAATACGACAACTATTG TTTGGATAACGCTAAAACTACCATAACCGAAAACATAACCAAAAATAATTT CACTTCTTTTTTTTGGAGAGGCAAGTAAACGTTCTAATGTGCCAGAAGTAC GCTCTTTTAATAAGCCAATGCCAGAAATTAAAAACGTAAAGAAAAAGACAA AAAATCCAATTAAAATAGGATTTATCATATCAAAATACGTAGAATCTGATG **AACCATATAAATAGTGCGTTGTTAGTTTATATGGTTTAGCCATATCTTGAT** CTTGATGCAATTTATTAGTATTATCTTTCATGGCATTCATGTTATGACTCA TTAACCATTTTTGATTTGCACCTGTTAGTTCTCCTGCTTGTGTAGGATTAT

CGTTAGCATAAGTCACTGATACTTTTTGACCATCACTGTGCAAAAATCCTG
TTAATTTGTCGTCTTTAATTTTATCACTTATATCATTGTCATTTTTATAAT
GTTTAACGTGAATATCTTTATCATGTAATTCAGTCATTAATGAATCTGGTA
CATCGTGAACCCCAACTGTTACGCCATTCGTATTATCGGCAACTGTAAAAA
TGTAATATAGTAGCGACAATAGTAATATAGGTGCAATAAGTAACAGTGCCA
ATGTTCTTACATCTCGAATCGTCTGTTTGAAAAATACGTCCTGCTATGTGCA
ACGAATTCATTTTATCCCTCCATATTCAGAAATACGCCTTCAATCGTATCT
GTGTGATATTGTTTTTCACTTCATCTGGTGTACCCGTTGCCAATATCTTT
CCTTGATTCATTAATACGAGCTTATCACAGCGTGTAGCTTCATCTAATACA
TGCGTTGTCACTATAATGCATTTATCTTCAGCCTTTGCTTTAGTTAAATCC
TTCCAAATCTTTAGAGCACAGTGGCGATGATAT

5

10

Sequence 3468 15 step.1003f02.cons.ok TACAGAAAATAAGACCTCTAAAATGCTAACTAGTTAGTATTTTAGAAGGCT ATAATGATATTAATTAAGCTTTTATGCTTAGTTGTATTGTTAATTATTTAC CTTCTCCGTAGATGTCATTCCATTGCTCTTTTTATCTAAAAATGCTTGAG CAATTGTTTTAGCACCTTCTAAAGAATGACTTGCAGCCCAACCACATTGAA 20 CCTCATTACAAGCTGGGACTTCGCTAGCATTTAACACATCATGCAATGTTT GATCGATAATATTTAATACGTCATCGTAGTCGTCATGATTAATAAATGAAA CATAGAATCCAGTTTGACAACCCATAGGACTTAAATCTACTACTTTATCAG TATGATTTCTAATGTTTTCTGCCATTAAATGCTCTAAGGAATGTAGACCAG 25 GCATATCCATATGTTCCTTATTGGGCTGTTTGAAACGAATGTCATATTTGT GTATGACATCACCATTAAGACCTTCCATAGTCCCGGCTAGACGAATAAAAG TCATGCATTTATCCTCCTTATTGCTCTACAGCAATTTTTTTGTTTAATTCAA TAAATAGATTGTAACAATACTCTAATACATTTACAATTTTTCTAAACTAAT AGACTGTTGTCTTTTAAATTGTAAGAAAATTGTGTAAAAATTAATGACAAC GCAAAGTTTCAAAGGGAGTTAGATACAATGCATAATAAACAAAAGATATTA GATTTTATAGAAAATAATAAATATGATTATGTTGAAATAAGTCATCGTATT CATGAACGCCCTGAATTAGGCAATGAAGAAATTTTTGCATCGAGAACATTA 35 ATTGACCAATTAAGAGCAAATCGATTCGAAATCGAAACGGATATTGCAGGA CATGCAACAGGATTTATAGCAACGTATGATTCTGATATGACTGGACCGGTT ATAGGATTTCTAGCTGAATATGATGCTTTACCTGGTCTTGGTCACGCATGC GGGCATAATATTATTGGTACTGCTAGCGTACTTGCTGCAGTAGCACTAAAA GAAGTCGTCGATGAAATTGGTGGTAAAGTAGTCGTTTTGGGATGTCCTGCT 40 GAAGAAGGTGGGGAAAATGGCTCCGCAAAAGCTTCTTATGTTAAAGCAGGT GTCATTGATGAAATTGATGTAGCATTGATGATTCATCCTGGAAATGAAACT TATCGTACAATTAATACTTTAGCTGTGGATGTTCTAGATATTAAATTCTAT GGACGTAGTGCGCATGCATCTGAAAATGCAGATGAAGCATTAAACGCTTTA GATGCAATGATTTCATATATTAATGGTATAGCACAGTTAAGGCAACACATT 45 AAAAAAGGACAACGAGTTCACGGGGTTATTTTAGACGGTGGTAAAGCGGCT AATATTATACCTGATTTTACACATGCGAGATTTTACACTCGAGCTACTTCG CGGAGAGAACTTGATGTTTTAACTGAAAAAGTAAACCAAATTGCAAGAGGT GCTGCTATTCAAACTGGGTGTGATTTTGAATTTGGTCCTATCCAGAATGGT GCAACTGAATTAGGAGAAGAAGTGATTGATGATGATTTTGGCTATGGATCT 50 ACAGATACAGGTAATGTAAGTCATGTTGTACCAACAATACATCCACATATT AAAATTGGTTCTCGAAATCTTGTTAGGACATACCCACCGCTTTAGAGAAGC GGCTGCAAGTTTACAAGGTGATCAGGCACTCATTCGAGGTGCAAAAATTTT AGCATTAATGGGACTAGAATTAATCGAAAATAAACCGTTGTTAGACGAAAT AATTGAAGAGCATACGCATATAAAGGGGCATGTTAAGTAATGAATAATAAA GTAAATGGTCCGTTTCTCACACTTAGTGATTTGTATAATGATGACATTGTT TACACATCTCGACCTTCATATGTGTCGAACCCATGGTTGAAACCAGATGAA CACCAATCAAATTTCTTAACTGGAAGAGAATTACTTATAGCTAATCGTTTT

CCTGTCATTGTTCATGAGGCAAGTGTTACAAACAAATTAGAACAACTTTTT

AATATAGTGGGTAGGGAAATTCCACCACATACTTATAAATTTAAAGATCAA GAAACATATGAAAGCTTGATAAGGAATTTAGCTCTTCATCAAGGTAAAAAA ATCTACTTCAATATATTCATGATGAAGATATTTTACCTAAAGAATATTAT GCACTTGATAAAGATGTTTTTGTTGCTCTTAATAATAAAGCACGAATTCCA GAATGGACTAATAACAAATATCTACCACAAAGAGAAATTGTCTCAATTAAA GATTTTGAATCTCATATTCAAGCATGGTCGTATCCATTTGTCATAAAACCA GGCGATGATTTACCTACAGCAGGAGGATATGGTGTTATGATTTGTTATAAT GATACAGATTTAGCTAAAGCTATCACACGCATCAACAATGCATCAGCAGAG ACTGAAAATTTAATCATTGAACAAAAAATTAATGCAGTGAATAACTATTGT GTACAATTTGCTTATTCAGATGATATTGGTATCAAATACTTAGGAACAGCG CAACAGTTAACTAATGACTATGGATTTTACAACGGAAATGAAAATGTTAAT GATGTGCCTCAGAATGTAATAGACGCTGGTAGAGAGATTATGGAAATAGGC GTAAGCAAAGGTTTTTTTGGTGTAGCAGGTTTTTGACTTACTAGTAGATGAT AATAATGATGTTTATGCGATTGATTTAAACTTTAGGCAAAACGGATCAACG AGTATGCTACTTTTAGCAAAAGATTTAACTCATGGATATCATAAATTTTAC AGTTACTTTCTAATGGAGATAATACAAAATTCTATAATGCTATTTTAAAA TACGTAGAATTAGGTGTACTTTATCCACTTTCCTATTACGATGGAGATTGG TATGGAAAGAATCAAGTTAATTCTAGATTTGGCTGCATTTGGCATGGGGAA AATAAAGAATTAATTAATCGATATGAACAACAATTTATATTGGAAGCTGGA TTATA

Sequence 3469 step.1003f03.cons.ok

15

20

ATGAAGCAGCCGCTGGATCAAGATTTTCGGGAACTTTAACTGCATAATTCG CATCAACAATGACTTCTTCAGCCATTGCCCCATCAACAGTATATCCGGCAT TAAGGACATCCCTGCATAATGTTTCTCTACCAGTTGTGCAATACTCACAAT TACCACATGCTGCATACATCCATGCTATAGATACACGATCCCCTACCTTTA ATGAATCTACGTTATCAGCAATTTTAATGACACGTCCAATTCCTTCATGTC CTAATGTTACACCTGTTACGTCACCGAAATCTGCATTTTTAACATGTAAAT CAGTATGACATACACCACAATATTCAGTCTTTACTAATGCTTCTCCAGGTC TTAATTCTCTTAAACGTTTTTCTTCAATACTTACTCTATGATCTTTGGTTA CTACAGCTGCTTTCATAAAAAGCCCTCCCTAGTATTAAAGTGTAATTCTAT TACTTCCACCCTTATTTTACACTCTTTTGAAATCGTTTTCCAAAAGTCCTT TCATTTATACTGAATTTTTTGTAAATTGTATATAGAGCGACATAATATCGT CACTTTTATAGCATATTTTATGATTTATTCATATATTTTATTTTTAACTA TATATATATCATGTCAGTGAAAAGTCATCGCTCTTAATCACACCTTATA ATTTTGGGGATGAAGGTGTTTATTTTAAAAATCTTAATTGGAGGGGATAAA AGTGAAGACGCAAGTTTTGTACGGAAAATCTGAAATTGAAATCAATGTGCC 40 TGATGATAGCACAATCATAGAGCCTCAAAACATCGACGCTATTCAAGATTA TGAATCAACAATTAAAAATGTATTAAGAAACCCCACAAATTCTAAACCTTT AAAAGAAATGGTAAACAGTAATGATATTGTTTCTATTGTTATTAGTGATAT TACACGTCCAACGCCCAACCATATTCTTGTACCTTTACTAATTGAGGAATT AAATCATGTTCCTCGTGAGAATTTCGTAATTATTAATGGTACAGGGACTCA TCGAGATCAAACGCGAGATGAATTGATTCAAATGTTAGGTGAAGATATTGT TAAAGTGGGACACAGTCAATATGGATGTGATGTTATTTAAACAAAGCATA TGTAGAATCCGATTTTAAAATTGTAACAGGTTTTATTGAACCACACTTTTT CGCCGGATTTTCAGGTGGACCTAAAGGGATAATGCCTGGAATTGCAGGTTT AGAAACAATTCAAACATTTCATAATGCAAAAATGATTGGCGATCCGAGATC 50 AACGTGGGGAAATTTAGAAGACAATCCAGTTCAAGATATGGCACGGGAAGT TAACCGTATGTGTAAACCTGACTTTTTACTTAATGTTGCATTGAATAAAAG TAAAGAAATTACTGCAGCATTTGCTGGTGAAATCTTAGATACACACAAAGA AGGATGCGCATATGTAAAAGATCATGCAATGTTTAAATGTGAGCAACGCTT TGATATTGTTATCGCATCAAATTCTGGCTATCCTTTAGATCAAAATTTATA 55 TCAAACAGTTAAAGGGATGAGTGCAGCGAGTAAAGTTGTTAAAAAAAGACGG TCATATTATTATGGTATCTGAGTGTGCAGATGGCTTTCCTGATCATGGTAA GTTTGCCGAAATTTTCAAAATGGCAGACACACCTCAAGGTATTTTAGAACT

TATTCACAATCCAAACTTTAAGGAAGTTGACCAATGGCAAGTACAAAAACA

AGCAAGTATTCAAACTTTTGCCAATGTGCATGTTTATTCAGAACTTACTGA
CCAACAACTTAAAGACTCGATGTTAATCCCAACCTCTAACATTGAACATAC
AATACAAGAATTAGAACATCGATATGGCCGTAAATTAACCATTGGTGTTAT
GCCACAAGGTCCTTTAACAATACCGTACGTAGAAGATAAAGAATAAAAT
GGAGGATGGAAACTATGACTGAATTAAATACTAAAGAAATGAAATTAGACG
CACTATTGAAAGACATGCAGAGTGTAGTAATTGCCTTCTCAGGTGGAGTAG
ATAGTAGCTTGTTACTGAAAAAAAGCGATTGATATTTTAGAAATGAAGTTTGAAC
TTAAACCTGTTGTAGTAAAATCAGAATTATTTAGAAATGAAGATTTGAAC
TAGCGCTTAAACTTGGACAAAGTCTAGGTGTTGAAGTATTAGAAA
TGTCTGAACTTCAAGATGCGAATATCGTTAAAAATACGCCTGAAAGTTGGT
ACTATAGCAAGCGCTTGATGTATATGTCAACTTGAGAATATAAAC
TAGGATTTAATTATGTGCTAGATGGTATGATTATGGATGACTTAGATGATT
TTCGTCCCGGATTAAAAGCAAGAGACCACTTTGGTGTTCGTAGCGTTTTAC
AAGAAGCAAAACTATCTTTAGAGCACAGTGGCGATGATATC

15

10

Sequence 3470 step.1003f04.cons.ok AGGTGAAGATGTATTCTTAGGATTTGACTGTGCTTCTTCTGAATTCTATGA AAATGGTGTTTATGATTACACTAAATTCGAAGGTGAACACGGTGCTAAACG 20 TAGTGCAGCAGGCAAGTTGACTACTTAGAAGAATTAATTGGTAAATATCC AATCATCACTATTGAAGATGGTATGGATGAAAACGATTGGGAAGGTTGGAA ACAATTAACTGATCGTATCGGTGATAAAGTTCAATTAGTTGGTGATGATTT ATTCGTAACTAACACTGAAATTTTATCTAAAGGTATCGAACAAGGTATTGG TAACTCAATCTTAATCAAAGTAAACCAAATCGGTACATTAACTGAAACATT CGATGCTATTGAAATGGCTCAAAAAGCTGGATATACTGCGGTTGTATCTCA CCGTTCTGGTGAAÀCTGAAGATACTACAATTGCTGATATCGCAGTTGCTAC AAATGCAGGCCAAATTAAAACAGGTTCATTATCTAGAACTGACCGTATTGC TAAATACAATCAATTATTACGTATTGAAGATGAATTATACGAAACAGCTAA TTTTTATAAGAGTTCACGCTTATTATTTAATATCTTAATTGAATTGTCCGT TGCAGAGTTGAAGCTGCAACGGGCTTTTTTAGTTAAGTACATTTTAAATTA TTAATGTAAACTGATATAATGATGTGAGTAATTTTTGTAAAAGGAGTACAAT TATGACAGACTCAAATGCTAAAGAAATAAGAACTGGACGTTTAATTGCGAT AAGTTCATTAGTGTTTTGTATTTTACTTATCATACACCACTTTATTGTATT AGATGAATCAACAGCTAAATCAATTTTATCTTTAGCTGGTCAAAAAACATC AGATACAGCAGTGAAAAACATTTTAAATAGTGACCGATACACTGGAATTAT GTATATTTTAGCTTACTTAGCAGGTACTGTTGCTTTCTGGAATCGCCATCC ATATTTATGGTGGTTTATGTTTGCCGTATATATTTCTAATGCACTATTTAC ACTCGTAAATCTTTACTTATTTATTCAAGGTATTTTAGATGTAAAAAATGT ACTTGCAGTTTTACCAATTTTAATTGTAGTGATTGGATCTATAATTCTAGC **AATTTATATGCTAGTTGTTTCTATTACACGTAAAAGTACTTTCAATAGATA** GATTGTATTGCATTAGTGACTGTTGTATTACTCCAAGAAGGTAAAAGTAAT GGACTTTCAGGTGCTATTAGTGGTGGCGCTGAACAATTGTTTGGTAAACAA AAACAACGTGGCGTCGATTTATTCTTGCATAGATTAACAATAATTTTAGCT ATTTTATTCTTTGTACTTATGTTTTGTATTAGTTACTTAGGTATGTAGAGA ATATTATATTTGTTTTAATGAAGTAAATGAATCTTAACCAAGACTGATAAA TGATAGGGCAAATTAATCACATTTGCTATTAAGGTGATGCTGCCAACTTAC 50 TGATTTAGTGTATGATGGTGTTTTTGAGGTGCTCCAGTGGCTTCTGTTTCT ATCAGCTGTCCCTCCTGTTCAGCTACTGACGGGGTGGTGCGTAACGGCAAA AGCACCGCCGGACATCAGCGCTATCTCTGCTCTCACTGCCGTAAAACATGG CAACTGCAGTTCACTTACACCGCTTCTCAACCCGGTACGCACCAGAAAATC ATTGATATGGCCATGAATGGCGTTGGATGCCGGGCAACAGCCCGCATTATG 55 GGCGTTGGCCTCAACACGATTTTACGTCACTTAAAAAACTCAGGCCGCAGT CGGTAACCTCGCGCATACAGCCGGGCAGTGACGTCATCGTCTGCGCGGAAA TTTACGCGTATGACAGTCTCCGGAAGACGGTTGTTGCGCACGTATTCGGTG

AACGCACTATGGCGACGCTGGGGGCGTCTTATGAGCCTGCTGTCACCCTTTG ACGTGGTGATATGGATGACGGATGGCTGGCCGCTGTATGAATCCCGCCTGA AGGGAAAGCTGCACGTAATCAGCAAGCGATATACGCAGCGAATTGAGCGGC ATAACCTGAATCTGAGGCAGCACCTGGCACGGCTGGGACGGAAGTCGCTGT CGTTCTCAAAATCGGTGGAGCTGCATGACAAAGTCATCGGGCATTATCTGA ACATAAAACACTATCAATAAGTTGGAGTCATTACCTGCTATTAAGTATTAT CAGCCTGAGTCCGACGATGTACTTGTCGGACTTTTTTATTATTTTATAATTGAG ACAATCATGTTTTTAAATCATATGTTAAAGGGAATAATGATTTATCAAGTC **AATTTGATAATGAAGAGATTTTTAAATATATGAAATAAATTGAAATAC** TTAACTTATTTAGGATAAATTGAGTACTTACTATAAGGGAGAGGGATTTTA 10 ATCATGCAAATTAAACTACCAAAACCATTCTTTTTTGAAGAAGGGAAACGT GCAGTGTTACTTCTTCACGGCTTTACAGGTAACTCTGCTGATGTAAGACAA CTTGGGCGTTATCTTCAAAAAAAGGGCTATACATCTTATGCTCCACAATAT GAAGGACATGCAGCGCCCCCAGAAGAAATATTAAAATCTAGCCCTTTTGTT GAAGAAATAGCAGTAGCTGGTTTATCATTAGGTGGCGCCTTCGCATTAAAA CTAAGTTTAAATCGTGATGTGAAGGGGATTATAACTATGTGTGCACCTATG GAGAATAAAACAGAAGGTTCGATTTATGAAGGCTTTCTTGAATATGCACGT AACTTTAAAAAATATGAAGGCAAAGATCAACAAACGATTGATCAAGAAATG GAACAATTTCATCCAACTGAAACCCTGAGAGAACTGAGTGACACTCTAAAT 20 GGAGTTAAAGAACATGTCGATGAAGTAATTGATCCAATACTTGTCGTACAA CATGTCGATTCTGATGAAAAAGAAATCAAATGGTATCAACATTCAGGTCAT GTGATTACCATTGATAAAGAAAAAGAGAAAGTCTTTGAAGATGTATATCAA TTTTTAGAATCATTGGAATGGACAGAGTAAAAAATAAAGATGTAGGAGAGA AAGGAGGGGCATAATGAATTTAAAGCAATCCATCGAAGAAATGATAAAACA ACCTGACTATGAACCCATGTCAGTATCTGACTTTCAAGATGCGTTAGGTTT **AAACAGTGCCGACTCATTTAGAGATTTAATTAAAAATACTCGTTGAATTAGA** ACAGTCTGGTTTAATTGAACGTACAAGAACAGACAGATATCAACGTAAACA ATCCAACAAAACAAATTCAAAACTAATCAAAGGAACGTTAAGTCAAAATAA TATTCCACCAACTAAAATCAATAGAGCATTAGATGGAGATACTGTCATCGT GGAAATTCAAAAATCTCGTGGAGAACATAAAGGTAAAATTGAAGGTGAAGT AAAATCTATTGAAAAGCATTCAGTTACACAAGTTGTTGGAACGTATAGCGA AGCAAAGCATTTTGGTTTCGTATTACCGGATGACAAACGTATTATGCAAGA TATCTTTATACCTAAAGGACAAAATTTAGGTGCTGTAGATGGTCATAAAGT ATTAGTACAAATTACGAAGTATGCCGATAGTACTGACAAT

40 Sequence 3471 step.1003f07.cons.ok TAAGCAATAAAGTTCTTCAATTTTATGTAAAATATGGAGGAGAATTCCAAT TAAAACAAGGATTTAGTCCAGCGTTCACCGTAGAAAATAAAGATGCTATTG ATATAGGTTTTGAACAAACATTCTATGAAATAAATGTCGTTATTGCGGAAA AAGATTTATGGTATTTTCAAGATGAAAAACTAACTGTAGATGCAATCGATC AAAGAAGCGATAAAAACTACTTCGCTTCTTTTTATAAATGATTAATGCCAA ACGTAACCTCAGCATCTTTACCTTCTTTATTTAACTGGTTAACTTTACTAT AAGTCTCATGCCACTCAGGAAAATATCTATCCAAGCGTATGGGTTTAAATG TATCTGCTTTAATACAGATAAGTTCTGTTGAACCAGTAGTAGCTAACTCTC CATTTTCATTATAAACCTCATAACAATAAGTTGAACGTAATCTAGAATATT TTTCCACCCATGTTTTTACTGTCACCTTTTCAGGATAGTAAATTGATTTTT TATATTGCACTTTTAAATCTACAACTGGTGAAATAACACCTTGTTCTTCCA TAGAGGCATAACTGAAGCCAAGCTTTCTTATATAGTCTGTTCTCGCAACTT CAAACCATGTTGCGTAGTTACCGTGATAGATAACCCCCATTTTATCGGTTT CTTGATATCTTGCTTCAATTTCAGTCAAACTGTATATCATTGGAATAATCC TTCTTTCAACTTAACTTATTCTTTCAATTAAGGATAACATAAAGCAGTCA TGCCAACACAATAGTTAGCATGACTGCTTGTACTCAATAGTGAGTCAAAAT CATATTAAATTACTGCGCAAGTTTATTTCTTAGTACCATTTGTAAAATACC

ACCATGACGATAATAATCTAATTCTACTAGTGAATCAAAACGTACAATAGC TTTGAAATTAATGATTTCACCATTTTCTTTTTTTGCAGTCACATTTACAAG ATCATGTGGCTGTACATCTTCATTAATATCTACAGATATTTCTTCTTTTTCC ATCAAGACCCAGTGCTTCTGCAGATTCTCCTTGTTGGAATTGAAGCGGTAG TACACCCATCATAACTAAGTTAGAGCGATGAATACGTTCATAGCTTTGTGC AATGACAGTTTTAACTCCTAATAAATTGGTACCTTTTGCAGCCCAGTCACG AGAAGATCCCATTCCATAGTCATTACCAGCTAAGACAACTAAGCCAGTTCC ATCTTCTTTATATTTCATTGCTGCATCATATATAGGCATTATTTCTCCGGT AGGCCAATATGTTGTAAATCCGCCTTCAGTACCTGGAGCAAGTTGGTTTTT GATACGAATATTGGCAAATGTACCACGTACCATAACTTCGTGGTTACCGCG ACGGGAACCATAAGAGTTAAAGTTGCGAATTGCAACATCATGATCTAATAA GTATTTTCCTGCTGGTGTATCTTTACCGATAGCACCTGCTGGAGAAATATG GTCTGTTGTAACAGAATCACCAAATTTACCCATAACTCTCAAACTTTTAAG TGGTTCAATTTTACCCGGCTCTTTAGATAATCCTTGGAAAAATGTTGGATT TTGAATATGTTGAATTAGGATCGAAATCATATAATGGTTCATCGGTTAC 15 ATCTATTCATTCCACATTCATTGTTATGATATACATTTTTATATTCTTC TAAGAATAGTTCAGGTGTAACAACTTTATCTACAGTATCAGAAACTTCTTG TATTGAAGGCCAAATGTCTTGTAAATATACATCTTTACCATCTTTACCTTT ACCAATTGGTTCATTTTGTAAATCAATATCTACTGTACCAGCAAGCGCATA 20 AGCTACAACAAGTTGTGGTGAGGCTAAATAGTTTGCTTTCACTAATGGATG GATTCGCCCCTCAAAATTACGATTACCTGATAAAACTGAAGTTACTAATAA ATCTTCATCCGCAACTGCCTTTTCAATTTCAGGTAATAGTGGCCCTGAGTT ACCAATACATGTAGTACAACCATAACCAACAAGATTGAAACCTAAATCATC TAAATACTGTTGTAATCCAGAATCTCTTAAATATCCTGTAACAACTTTTGA ACCTGGAGCAAGTGACGTCTTAACAAACTCTGGTACTTTCAATCCTTTTTC TACAGCTTTTTTAGCAACTAAACCAGCACCTAACATAACATATGGATTAGA AGTGTTAGTACATGAGGTAATAGCAGCAATTGCTATATCTCCTGTTTTCAT TGTTGCTTTAGATCCATCATTAAAATTAATTTCTGCTTTTTTTATCAAATTC ACTTTGATCAAGTCCATGTCCTTGATTACCAGCAGGAGCAGTTACTGATTT TTCAAATTCTTTTTCATATCACTTAAGAAAATTAAGTCTTGTGGACGCTT 30 TGGACCAGAAAGTGATGCCTCTACTGTAGATAAGTCTAAATCAATAACATC TGTATATTCAGGATCCTCTTTTTCTACATCAAAGAACATATGGTTTTGTTG TAAATATTCTTTAACCAATTCAATATGTTCTTCGTCACGGCCTGTAAGTTT CATATATTTCAATGATTCTTCATCTACTGGGAAGAAACCACACGTTGCACC ATATTCTGGAGCCATGTTAGCAATTGTAGCTCTGTCTGCTAATGGTAAATG TTGAACACCTGGACCGAAGAATTCAACAAATTTTCCAACTACACCTTTTTT ACGTAATTCTTCAGTCACACGTAAAGCTAAATCCGTAGCTGTTGAGCCTTG TGGTAAAGAGTGAGTTAAACGCACTCCGATAACTTCAGGAATTGGGAAATA TGATGGTTGTCCTAACATACCTGCTTCGGCTTCGATACCACCAACGCCCCA ACCTAGAACACCAATACCATTAATCATTGTAGTATGTGAATCAGTACCTAC TAAAGTGTCAGGAAATGCTGTTTTTTCACCATCAACATCTCTTACATGTAC TACATTTGCTAAATACTCTAAGTTTACTTGATGGACAATACCTGTAGCAGG AGGTACTGCATTATAGTTATCAAAAGCTTTTGTTGCCCAGTTTAAAAATTG ATAACGTTCATAGTTACGTTCAAATTCTAATTTCATATTACGTTCTAATGC TTCTGGATTAGCGTAACTATCAACTTGAACTGAATGGTCGATAACTAAATC 45 AGCTTTACGTAAAGAAGCCAAATCTACTACTGCTGGCACACCTGTAAAGTC TTGTAAAATAACTCTAGAAGGTTTGAATGGAACTTCACCTTCGTTACCTGC ATTTCCGAATTTACTTAATGCTTTGATATGATCATCTGTTATAACAAAATC 50 ATCCTCTTGTCGTAACACAGATTCTAACAATACGCGAATTGAGTATGGTAA

Sequence 3472

55 step.1003f08.cons.ok
AGCCACTGACCGTATTTACGGCCAGTGGCTTATTAAATATAATATAAAAAA
CCGAGCGTATAAACGCTCGGATATAATGATTTATTTTAATTGTAAATCAAC
TTCATTTATTTCTTTTAAAATTTCAGCTGTATCATAGCAATTTGTAGCGAT
ATTTGCATATTTCTCTCTGCTAAACGATAAGCATTAATGTATAAAATTAAACT

TTCTTTAGCGATATCTTCAGCGTCATCAGATTTGGCTGGATTTGAAGTTAC AACAACTCCTATATTTTTATTAGTTTCATATTAACACAATACTTAAATACA AAAAAGTAAAGTCTTTTAATTTTCAGAATAATTAATTTGTTAATGAGACTT 5 TTATTATAGTACGGTATCCATTAAACTTAATTTATGAGAGGATGAACAGAG AATGAGAATATTGTTTATAGGTGACATCGTTGGTAAAGTGGGCAGGAAAAT GATTACTACTTATTTACCTAAAATTAAACAAACTTATCACCCAACAGTTTC TATAGTAAACGCTGAAAATGCCGCACACGGTAAAGGATTAACAGAAAAAAT TTACAAACAACTTTTGAGAGAGGCGTGGATTTCATGACTATGGGTAATCA 10 TACATATGGTCAAAGAGAAATTTACGATTTTATTGATGATGCTCATCGAAT GGTGAGACCTGCAAATTTTCCTGATGAAGCTCCAGGAACAGGTATGAGAAT AATAAAAATTAACGATATTAAATTGGCTATTATTAATTTACAAGGCCGTTC ATTTATGCAAGACATTGATGATCCATTTAAAAAGGCTGACCAGCTAATCGA AGAAGCTCAAAAATCTACACCATATATATTTGTAGATTTTCATGCTGAAAC 15 TACATCTGAAAAAATGCTATGGGTTGGTATTTAGATGGTAGAGTGAGCGC TGTTGTTGGTACTCACACACATATTCAAACTTCTGATGATCGTATATTACC TCATGGCACAGGATATATCACAGATGTCGGGATGACAGGTTATTACGATGG TATTTAGGTATCAATAGAGATGAAGTTATTCAACGTTTTATTACTAGTTT GCCACAAAGGCATGTTCCCAGATGATGGGCGAGGCGTATTATCAGGAGT 20 TATCATAGATTTAGATAAAGAAGGTAAAACGACTCAAATAAAAAGACTGTT AATAAATGAGGACCATCCTTTCCAAATTTAAAGGGATATAGTCCATTAGTA TGAATTTAAACTTGTACCACTGTTGAAATAGTAAAACGGTGGTTTATTTTG TTATCATAGAGTATGAATTAATACCACAGGAGGCATGTGATATGAAATCAC AAATATCATGGAAAGTGGGCGGTCAGCAAGGCGAAGGTATTGAATCTACCG ATAGACACTTTTCTAGTCGTATAAAAGGTGGCCATACTAATAATAAGATAA GAGTTTCAAAATCGCCTGTGCATGCGATTAGTGATGATTTGGATATACTCA TTGCTTTTGACCAGGAAACGATTGAATTAAATCATCATGAAATGAGAGAAG ATAGTATTATAATTGCGGATGCTAAAGCAAAACCCCAAAAGCCAGAGAACT GTGTGGCTCAATTAATTGAGTTACCATTCACTAGCACGGCAAAGGAACTTG GAACAGCATTAATGAAGAATATGGTGGCAATTGGTGCGACATCTGCACTGA TGGATTTAAATACATCAACTTTTGAAACTTTAATCGATAACATGTTTTCAA AAAAAGGTAATAAAGTCGTTGATATGAATATACAAGCCCTTAATATGGGTT ATGATTTAATGAAGCAACAAGTTACCAACGTTAATGGAGACTTTACATTAG 35 AGAATGGTAGCGGTCATCCTCATTTATATATGATAGGTAATGACGCAATCG GATTAGGAGCAATAGCAGCTGGATCAAGATTTATGTCCGCTTATCCAATTA CGCCAGCTTCTGAAATTATGGAATACATGATTGCCAATCTACCTAAAGTTG ATGGTACTGTTCAAACTGAAGATGAAATAGCAGCAGCAACGATGGCGA TTGGAGCTAACTATGCTGGCGTACGAGGCTTTACAGCGAGTGCGGGTCCAG 40 GTCTTTCTTTAATGATGGAATCTATTGGATTGTCTGGTATGACTGAAACGC CATTAGTCATTATTAATACTCAAAGAGGTGGTCCTTCTACTGGCTTACCAA CAAAGCAAGAACAATCAGATTTAATGCAAATGATTTATGGTACCCATGGTG ATATTCCGAAAATTGTCGTTGCTCCTACAGATGCTGAAGATGCGTTTTATC TTACTATGGAAGCATTTAATTTAGCTGAAGAATACCAATGTCCAGTCATTC TGTTAAGTGATTACAATTATCATTAGGAAAACAAACTGTTAAAACACTCG ATTATAATAAAATCGATATTCGTCGTGGAGAAATAATACAGTCAGATATCG AGAGAGCTGAAGATGATAAAGCATACTTTAAAAGATATGCATTAACAGCTA GTGGCGTATCACCACGACCAATACCAGGTGTTAAAGGTGGTATACATCATG TAACA

50

Sequence 3473 step.1003f10.cons.ok

GGTCATGTTGTGGGATTATTGATTCCCGCTAATTGGTTAGAGGCGATAGGA GTAAATAATCATATCTATCATATAGGTGCAGTTTATATAGGTAGTGTTTTT GGTATAATAACATTAATAGGAATGTTGTTGCTAACTTTAAGACGACTATCC ATCAAAAACGTTAGACGATTAAGTTCATTTTCAGATATATTTGTGAATATC GTTTTGTTGATTATTTTAATAATGGGTTGTTATTCTACGCTTGTAACCAAT GCGATTCAACCTGAATTTGATTATCGTCAAACCATTGCGATATGGTTTAGA CATTTATTCATGTTTTCTCCAAATGCTGACTTAATGTTAAACGTGCCTTGG ${\tt TCGTTTAAACTGCACATATTATTAGGGTTTACAGTGTTTGCGTGTTGGCCA}$ TTTACTCGTTTAGTACATGTTTGGAGTGTACCACTGTCTTATATGAACAGA AGATATATTGTTTATCGCAAAAACAAAATTTAATTTATTATGAGGTGAAAG 10 TGTGGAACCAGAATCTTTAAAACATAATCAACATTTACAAATGAATTTAGA TAAGTTGAGAGCACAAGAGGGTTATGATTTTGGTGGTATCGCTTTATATGA TTATCATCACACTTCATCACCAATTAAATGGCAATATGTTTCAGGTAACAC AAATGATAGATATAAACTTATCATTTTGAGAAAGGGTAGAGGGCTTGCTGG AATGGTGATGAAAACCGGTAAGCGTATGGTTATTGCTGATGTAGATACAGC TTTATCTCCAGAAGAGAAAGTTAAATTTCCAATCATTCTTAGTGAGTCATT GACAGCTGTAGTTGCAGTCCCTTTATGGTTAGAAAATTCAATGTATGGCGT ${\tt TTTATTATTAGGTCAAAGAAATCATCAGCCGTTACCTCAGTCATTGGACCA}$ ACTTAATATTGAAAAACAAATCGGTATTTTTACAGAAATAAACTAGGTGGT AAATATGTTGGAGCAAACTGATTTAAGTTTAGAGCAATTACTTAAGAATTA 20 TTATGAAACCACGAACGAGAAAATTGTATTTGTTAATAGACAAGGCAAAAT TATTGCTATGAATGACGCAGCAAAAGATATTTTAACTGAGGAAGATAATTA TAATGCTATGACAAATGCGATTTGTCATCGATGCGAAGGATACTCTAATGA ATATGATGTACAATCGTGTAAAGATTGTTTTTTAGAGACAACGCAATTACA ACATTCCAATTTCCAAGTATTTATGAAGACAAAAGATAATGAAATTAAGCC TTTTACAGCTATGTATCAAAATATTGATGAACAAAGAGGTATTAGTGCATT TACCTTACAGAATGTGGCGCCTCAGATTGAAAGGCAAGAAAAAATGTATCA ACAAAAATGTTACATCGTTCAATTCAAGCACAAGAAAATGAACGAAAGCG TATTTCTAGAGAATTACATGATAGTGTAATACAGGATATGCTCAATATAGA TGTTGAACTAAGGCTTTTGAAGTATAAGCACAGGGATAAGGTGTTAGCTGA ${\tt AACATCTCAACGTATAGAAGGCTTATTATCACAGCTTATTGATGATATTAG}$ AAATATGTCTGTTGAATTAAGACCTTCTTCTCTCGACGATTTAGGCATTGA AGCAGCTTTTAAATCATATTTTAAACAGTTTGAAGAAAATTATGGTATGCA TATTAAATATGATTCGAACATTAAAGGCATGCGTTTTGATAATGAAATTGA AACAGTTGTGTATCGTGTAGTTCAAGAGGGTGTATTTAATGCTCTAAAATA TGCTGAGGTTAATGAAATTGAGGTAAGTACGCATAGTGATGGCAAGCAGCT TGTAGCAGAGGTTGTGGATCGAGGTAAAGGGTTTAGTTTAGATCATCACCC TAAAGGCTCTGGACTTGGATTGTACGGAATGAGAGAACGTGCAGAATTAGT TAACGGTCATGTTAATATAGAGACACATATTAATAGAGGTACTATAATTAC ATTAGATATACCGATTTAAGTTGATGATGTAAGTTGGGGGAATTGAAGTGA AAATAGTTATAGCGGATGACCATGCAGTTGTTAGGACAGGATTTTCAATGA TATTAAATTATCAAGAAGATATGGAAGTTGTTGCAACTGCAGCTGACGGGG TTGAAGCTTATCAAAAAGTGTTAGAACATCGACCAGATGTTTTAATTTTAG ATTTGAGCATGCCGCCAGGAGAGTCAGGCTTAATCGCAACCAGTAAAATTT ${\tt CTGAAAGTTTTCCTGATACTAAAATTTTAATACTTACGATGTTTGATGACG}$ AAGAATATTTATTTCATGTGTTAAAAAGTGGTGCTAAAGGATACATTTTAA GTGAAACTTATGTTGATATGAAATTGACGACGTCTTTAGTCAATGAGTTTG TCAATCAATCACAAACGGATGAAGTGTCATCATCTTCAGATCCATTTAAAA TTTTATCGAAACGAGAGTTAGAAATATTACCTCTTATAGCAAAAGGCTATG GCAATAAAGATATTGCAGAAAAGTTGTTTGTATCGGTGAAAACGGTAGAGG CACATAAAACGCATATTATGACGAAACTAAATTTAAAGAGTAAACCTGAAT TAGTTGAATATGCCTTAAAGAAAAATTATTAGAATTTTAAATGTATATCA ${\tt TGATTGATTATTAGGGCTTACTTAGTCTATGACTAAGTAGTCCTTTTTTTG}$ TACCTTTATATAGGGAAAAATAAAAGTAAAATCAGGGTATGTCCTTATGTT CATATTTTCACAAACATATTAAAATGAATTTGTGATTGGTACTTTGTTTAT AATTTTGTTTTATATTATTAATTTTGACCTCTTAT

Sequence 3474 step.1003f11.cons.ok TTCGTCATTGTTCGACTTTATTTGTTAATAAAATAGATAAGATAGAGGTGG AAGAAACCGCCCGCTTGCTACGTCAACTCGAGCGTCTCAATAGCGATGCCA ATATTCAAGTTGGTCAATTTGGAGAATTAAATTTAAAATCACTGCTAGAGC CAACACATATAAATTCAAATGCATGTGGCACTTTGCATAGTAATATAAATC ATCAATTCATCGAAAATCCTAGGCTACAAACAAAAGAAGAAATGATTAGTG CGTTAGATAACTTGCCTCAAGATGTTTACCGTGTCAAAGGGTTTGTTCGTT TTTCAGATCAGCAACACGTTTATTTAGTACAGTATGCACAAGGAAATATAG AATTATCTCCCATTCAACTTAAAAACGATGTACCATTGTACCTCATTGTTA 10 TAGGAAAACATTTAAAACAAATACAATTTGATTTATAAAAACACATCTCTC AATTATCATCAGTTAAACTTTATACATAAACAAACCTCTAAATGACTTTTG TTCATTTAGAGGTTTTTGGTACTTATTTCTATTGTTCGTCTTTTATTAATG TTTGCGCTTTTGAACTGATTCCATGCTTACTTCTACTCATTATTTACCTCA ${\tt CTTGGATTAAATTCCAAACTATCCGCAAAGTAGACGCTTTCTTCTTTATTG}$ 15 TCGACAAAAGAAAACTCGATATCTTTATAACCTATAGATGAACCTTTAAGG TCACCGTCCCCTTTTAATATTAGTTTAGGAGCTCTCTTAATCGGAATATCA TACCTCTTTCTGAGTTGCTTCACATTGTCATCTTCATTACTTAATTGGTAC TCTGCCGAATAGCTTGGTACGTTTGGGTTATAAGACACATTTCCATTCTTG TAGTCTTTTAAATTTTTAAAATTCCCATATTGAGAGAAAAACTGAAAGTTT ${\tt TTAATTTCATTTTTAATTTTTCATCGGCGATAGGTTTAGTCGGTTCAATT}$ ${\tt TTATTGTTTTAAGGCGAACCGGATATTCTTTATCTTTACTGTGCACTCTC}$ CCTTTTTTATCTTCTGTAATTATATTTGTATAAAAATGACCAGTCGTCTTT CTAGTATTCTATTCATATACAAAACCATACCTCTAGATTTCATCGCTTGA TCTTTTTTCTGAATATTCATTTCTGAATTAATAATCCATGTCCCTTTGTCC 25 TCTTTTCAAATTCTTCATCACGATAGCCTTCTTTATCGTATAAATCTTCT AAATTTTTAATTGGATACATACTTAATGTTTTATTAAAATTTTTCTTTAATT TCCGCTTCTTTATTATTTTCTTTATTCATAAATCCACATCCGCCAATAAAA AACGTTAATATTAAAATGCTTATGTAAGAAATGCACTTCCCATAATATTTC ATCTTTTCACATCTCTCTATTATTGTATACATTTATTAAATATACATTTTA 30 TTGATATAAATATCAGTTTATAAAAATTCAATTTTATATCATCAAATTATT CATACACATTCAATTTAATTTATTTATATGTTTTTTTCGGCGAAACAATCA AAAAACCTCATTAAATGTACCGCAATCATACATCTAATGAGGCTATTATCG TTCTTTTAATCGCTACTTACGTGTAATACCATCTAACTCTTCGACTTTCAA CATATTATTATCATACTCATATAGAATTGACCTAATTCTTCTCCAGTTCG 35 CTTATAATCAGTAGTATCTAAGCCGACTAAATCTAGATGATCCCAATCATA TTGTACGGGTCTCACTTGCCAAATACCCTTGTCAGTTGCTAGGTTCATCAT ACCTACCTTCTTAAATGCTTCATCACTTGGATGTAGTGAAGAAGACACAGG TACTATGCCATCATTTACTCTGACATTTTTATTATCATCTCCACCTATCAC ACGACTTGTTAAATCGAATAGTGGGAATTGTCTAATATTCGGCACTTCATT GCCTAATGGTCCAGTATGTGTTGCAGCACCTGTATATGATGTATAGACGAT ATTAGGATTCAATGTCGTCATTTGGTTTAACTTTTCTGCTCCAACAGTTGT TAAATCATTTACAGCCTGATCTTCAGTCTCCCAAACTTTACTATTCGCTAT ACGTTTTGCATATTCAGCATATGATTCATTAGGTTTCTGTTTGAAGCCCCA TTGAGAAAAACCTAGTTCTAAATCGAGCGCTTTAGTTCCACCAATTTTTCC 45 AATTCTATTAATTGTATCTTTGATAAATTTAGTCGACCCTAGTTTATCTGC AGCAGGTGTGCCATTATGAGGTGTTCCTAATGTAGTAATCGTAGACACCAT GTTATCTTGTCCACCTTTAAACAAATCAGATACCGTACCACCATATTGACG TTGATAATCTATTTCTTCTTGATTTCCATTTCTTAAAAAATGTTCCATCAA GCGTATCGTTTGGCCACCCATACTATGTCCAACAAGATGTATCTTTTTACC TGGTTCCCAATCAGGCATGATGCCTTCATATGTTCTGCCATAACGCTTGTG ACCATATTTTGCAGCATGTGCTGCACCATAATCTACTCTTCCACCTTTAAT ATAATAATACAGTTCAACAGCACGGTCATAATTGCTGCTAAATGCTCCTAC ${\tt ATTGGCTTCGTGAACTCGGTAACCTAATTTTGTAAGTTCTTGTTTCACGTT}$ GACTAAACCTACAAATCCATGTACAAACACGACTGGATATTGATTTTATA TTGAGCTTGCGCAGTAAGTTGATTGATTAGTTTAGTTTTGATTTCAC AACGCGTGGTGAAGTTAATGATGTTTGCTTTTTTTGATTTGTTTTAACTGT TTTATCAGTTTTTGTATTACCTATTTTGTGTACTTTAGAAGATGGTTGTTT

5

10

Sequence 3475 15 step.1003f12.cons.ok AACGAAATACAAGAAAATGTGACTGAAAAGACGAAAGGTCATAAATTAAAA AAAAGTGCAGCTAAAACAACAGCCCTAGTTGGTGGAGCATTTACATTTAAT ATGTTGAATAATCATCAAGCATTAGCTGCCTCAGAAACACCAATCACCTCT GAAATTTCATCCAATAGCGAGACAGTAGCCAATCAAAATTCAACTACGATT AAAAACTCACAAAAAGAAACAGTCAATTCTACAAGTTTGGAATCTAACCAT TCTAATAGTACAAATAAGCAAATGTCTTCAGAAGTTACAAATACAGCTCAA TCAAGTGAAAAAGCTGGAATTAGTCAACAAAGTAGTGAAACATCAAATCAA TCATCTAAGTTAAATACATATGCCTCCACAGACCATGTAGAGAGTACAACT **ACTAACAATGATAATACTGCACAACAAGATCAAAATAAGTCTTCGAATGTA** ACCTCTAAGTCAACACAATCAAACACGTCATCCTCAGAAAAGAGCATTAGC TCCAATTTAACCCAGTCAATCGAAACAAAAGCAACCGATTCATTAGCGACC AGTGAAGTACGTACTAGTACAAATCAAATATCTAATCTGACATCAACATCT ACTTCAAATCAATCGAGTCCTACTTCTTTTGCAAATTTAAGAACATTTAGT AGATTTACCGTTTTGAATACGATGGCAGCACCGACAACAACGTCCACGACA ACAACTTCAAGTCTGACATCTAATTCTGTTGTGGTGAACAAAGATAACTTT 30 AATGAACATATGAATCTATCTGGATCTGCGACGTATGATCCAAAAACAGGT ATTGCTACCTTAACGCCAGATGCATATAGTCAAAAGGGTGCCATATCTTTA AACACTCGATTAGATTCAAACCGTAGCTTCCGTTTTACAGGTAAAGTTAAC CTTGGTAATAGATATGAAGGTTATTCTCCTGATGGTGTAGTAGGTGGAGAT GGCATTGGCTTTGCATTTTCACCAGGTCCTTTAGGACAGATAGGTAAAGAG 35 GGGGCTGCCGTTGGAATAGGTGGTTTGAATAATGCCTTTGGATTTAAATTG GATACGTATCATAACACATCACCTCCTAAATCTGATGCTAAAGCAAAAGCA GACCCACGTAATGTTGGTGGTGGTGGCGCTTTTTGGTGCCTTCGTAAGTACA GATAGAAATGGTATGGCTACCACTGAGGCATCATCTGCGGCTAAATTAAAT GTACAACCTACTGACAATTCATTCCAAGATTTTGTCATTGACTATAATGGT GATACAAAAGTGATGACAGTGACGTACGCTGGACAAACTTTTACGAGAAAT ACTGCCTCAACTGGTGGCGCAAAAAACTTACAACAAGTTCAATTTGGAACA TTCGAGTATACAGAATCAGCTGTTGCTAAAGTACGCTATGTAGATGCAAAT ACTGGTAAGGATATTATTCCACCTAAAACCATTGCAGGTGAAGTTGATGCG ACTGTGAATATAGATAAACAATTAAACAACTTGAAAAATTCAGGTTACAGT TATGTTAGTACAGACGCTTTACAAAACTCCAATTATTCAGAAACATCAGGT ACACCTACACTTAAATTAACTAACTCAAGCCAAACGGTGATTTATAAATTC AAAGATGTTCAAGGTCCTCAAATTAGTGTTGATAGTCAAACTAGAGAAGTT GGAAAGACCATTAATCCAATTACAATTACTACAACTGACAATAGTAAAGAC GTATTAACTACAACTGTGACAGGTCTACCTTCAGGGTTATCTTTTGATCAA ACGACAAATACAATTACTGGCACGCCAAGTGAAGTAGGAACTACAACTGTG ACAGTTAATACTACTGATGCTACTGGGAACGTAACATCTAAGCAATTTACA ATAACGATTCAAGATACAATCAGCCCTGTTGTAAATGTGACGCCAAGTCAA GCATCAGAGGTCAACGACAACAGCTATAAAGAACCATAAAATATTACTTAT TCCACCTAGTACAGCGACAATAGGACCTCCATGAGCAACTTTATCACCGAC ACCTCCAACCGCCGCTATTACTGAAGCAATCATCGCGCCAATCATATTGGC

TGGAATGATTCTTAGAGGATCTTGTGCAGCAAAAGGGATTGCCCCTTCAGT AATACCAAATAATCCCATCGTAAATGATGCCTTACCCATTTCTTGTTCTGC

TTTATTGAATTGGTGTTTACGAACAAATGTAGCTAAACCTAAACCAATCGG TGGTGTACATACTGCTACAGCAACCATTCCCATCACAGTGTAGTTGCCTTC AGCAATTAATGCAGAACCGAATAAGAATGCTACTTTGTTTACTGGACCTCC CATATCAAAAGCAATCATCGCGCCAATAATAAGAGCAAGAATAATGATGTT AGCACCTTGCATTCCTTTTAACCATGATGTTAATGCACCAAATATATTTGA AATTGGTGCGCCTATTACAAATATAAAAATGAGACCAACTATTAAAGAAGA TAGAATAGGTATAATAATAATAGGCATAATAGGÄGCCATAGCTTTAGGAAC TTTAATCTGTTTAATCCATTTTGCAATATAGCCCGCTAAGAAACCTGCGAC GATACCACCAAGGAAACCGGCTCCTGCTTCACTTCCATATAAACTACCATC 10 -AGCAGCAATGGCACCACCAATCATACCTGGAACAAGACCAGGCTTATCAGC AATACTCACCGCGATATAACCAGCAAGGATGGGAACCATGAATTTAAACGA TAAACTACCAATATTTTCAATAGATTTCCAAAATGAATCTTCGGGGATAAC TAATCCTTTTGGAGTGGTGTCCTCCAAGAGTTAAGGCAATAGCTATGAG 15 ATGCTGATATACCATTTGAATATTACTTTTATGAGATT

Sequence 3476 step.1003q01.cons.ok

CGCCAAAACTGATATTGAATGGACATGTTGATGTAGCTTCTGTAGATGACG 20 ATCAATATTGGCAGTATCCACCTTTTAAACTTACCAACAAGAAGAATGGT TATACGGTCGTGGCGTTAGCGATATGAAAGGTGGTATGTCTTCATTATTCT ACGTCTTGGAGCAATTACATCAAGAGGGGCAACGTCCAGAAGGTGATATTA TTGTTCAATCAGTAGTCGGTGAAGAAGTAGGTGAAGCAGGAACTAAACGTG CATGTGAAATAGGACCTAAAGGTGACTTAGCCCTTGTCTTAGATACGAGTG AAAGTAAAAATACAATACATGATGGTGCGCGTAGTCAAACGATACATGCTG GTGGGGGCTTGTTTGGTGCAAGTGCCATTGAAAAAATGACAAAGGTGATTC AATCGCTTAATGAACTTGAAAGGCATTGGGCTGTCATGAAGAAGAGCCCTG 30 GAATGCCTCCAGGTGCGAATACAATTAACCCAGCTGTCATAGAAGGTGGAC GTCACCCTGCATTTATTGCAGATGAATGTCGATTATGGATTACTGTTCATT ACTTACCGAACGAAAGTTATGAATCTGTAGTTAATGAAATAGAGCAATATT TAAATAAGGTTGCAGAAGCAGATGTATGGCTCAGAGAGAATCCACTTGAAT TTGAATGGGGTGGTACATCCATGATTGAGGATAAAGGAGAAATCTTCCCAA GTTTCACTGTTCCGACACATCATCCAGGTTTTAAGCAATTAGAAGAAGCAC ATGAACATATTCATAATAAAAAGCTTGAACATGGTATGAGTACAACTGTAA CTGATGGAGGTTGGACAGCACATTTTGGCATTCCCACGATATTATATGGCC CAGGTAGTTTAGAAGAGGCACATAGTGTAGATGAGAAAATAAAAGCAAAGG AATTAGCTCAATATAGTGATGTTTTATATACATTTTTAAAAGAGTGGTATG 40 CACACCCACAATCCTATAAATCATCATAGATAAAAAAGAGGTACAAGCACG ACCTTTTATACTCACAAAATGTTGAGTTAAAGTGATGTGTTCTGTACCTCT ATTTCGTGTTCATTTCATATAAAATACAATTGTCAAGGTGAGTTTATCTTT TAAATGTACTTTTTAATTTTCGTATCCAACTACCACCACGTCTAGAATGAA 45 CGGGTTGTCCAGAAGGTTGTACCGATTGTTTTTTTAGTTCTTCTCCATACT TAATTGCTTCTTGCATCAAGTAAGATTGAGAGTTTAAAGGAGATGAATTGT TTTCGACATAATGATAAACGCCTTGTGCATCTTGGTAACGACCTTTTTGGT TGTCAGATAATTGTAAATTCATATAGTTAACTAATCGTTGTCCTATTGATT TATCTTCAACAGGGAATAATATTTCGACACGTTTAATCATATTACGTGTCA TARCGTCAGCTGAAGATAAATAAATATGCGCCTCACCATTATTATGGAAGT AGTANA PACGTGAATGTTCAAGCAAACGACCCACAATACTAACAACCTCTA TATTTTCGCTAATACCTGGAATGCCTGGTTTAAGACAACATATACCACGAA TGATGAGTTGTATTTTAACGCCTGCTTGGGATGCTTCGAAGAGCTTTTCGA TAATCGTTTTATCGGTTAAAGAGTTCATTTTCATCATAATTTTACCGTTAC 55 CATGTTGTAAATGACTACGTATTTCTTTATCGATACGATCAATGAAGACGT CTCGAATATCGTATGGTGCTACAATCAATTTATTGTATTCTGGTTTTGTTG AGTAACCACTCAAGTAATTAAAGAAGTTAATTGCATCCTCAGCGATATCTT TATTTGTCGTGATGATACCCATATCTGTGTATAATTTAGCAGTTTTATCGT

TATAGTTACCTGTGCCTAAATGAACAAATGACGTAAGTTTATTGTTGATGC