Ilana Sivan 205634272 Honors Course Homework 7

Question 1

Show that $(\mathbb{Z},-)$ is not a group.

 $(\mathbb{Z},-)$ denotes an algebraic structure formed by the set of integers under subtraction. We will show that $(\mathbb{Z},-)$ is not a group by checking which axioms it fulfills. We know that the set of integers is closed under subtraction, as all $a,b\in\mathbb{Z}$: $a-b\in\mathbb{Z}$. We can prove this formally by the definition of subtraction as a-b:=a+(-b) where -b is the inverse of integer addition. The group of integers under addition form an abelian group and the structure $(\mathbb{Z},+)$ is a group, so all $a,b\in\mathbb{Z}$: $a+(-b)\in\mathbb{Z}$ so integer subtraction is closed. So the group fulfills the closure axiom and we can continue to associativity. Subtraction on numbers is not associative as in general for $a-(b-c)\neq (a-b)-c$. We can show this formally as a-(b-c)=a+(-(b+(-c)))=a+(-b)+c and (a-b)-c=(a+(-b)+(-c))=a+(-b)+(-c), so we have a-(b-c)=(a-b)-c iff c=0, so in general we have $a-(b-c)\neq (a-b)-c$. Therefore, since subtraction on numbers is not associative we get that $(\mathbb{Z},-)$ does not satisfy the associative axiom and therefore it is not a group.

Question 2

Complete the following Cayley Diagram:

	\mathbf{e}	a	b	С	d
e	e	a	b	c	d
a	a	b	c	d	e
b	b	c	d	e	a
c	c	d	e	a	b
d	d	e	\mathbf{a}	b	c

- Describe the group corresponding to this diagram.

 The group corresponding to the diagram is addition modulo 5.
- Is it finite? Abelian? Cyclic?

The integers under addition are closed because the sum of two integers is always an integer. Therefore, the integers with the operation of addition, $(\mathbb{Z}, +)$, form a group. And, this group is **abelian** because a + b = b + a for all $a, b \in \mathbb{Z}$. Any two numbers added together and reduced mod 5 will always equal 0, 1, 2, 3 or 4 so the group is closed. The identity is 0 just like any group under addition, and every element has a unique inverse. A cyclic group is defined as a group which can be generated by a single element, so it is **cyclic**. And it is indeed **finite** as it contains a limited set.

• What is the order of the group?

The number of elements of a group is called the order. For the group, G, we denote |G| to denote the order of G. Since $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, we can see that \mathbb{Z}_5 has order 5.

Question 3

Show that there is a unique group of order 5.

It suffices to show that the group is cyclic up to isomorphism. First we show that any group of prime order is cyclic. Let p be a prime and G be a group such that |G|=p. Therefore, G contains more than one element. Now, let $g \in G$ such that $g \neq e_G$. Then $\langle g \rangle$ contains more than one element. We know that $\langle g \rangle \leq G$, and also by Lagrange's theorem, $|\langle g \rangle|$ divides p. Since $|\langle g \rangle| > 1$ and $|\langle g \rangle|$ divides the prime p, we have that $|\langle g \rangle| = p = |G|$. Hence, $\langle g \rangle = G$. So G is cyclic. We recall that $(\mathbb{Z}, +)$ is cyclic, since $\mathbb{Z} = <1>=<-1>$ and its order is $|\mathbb{Z}| = \infty$. Let (G, \circ) be a cyclic group of order n. $G = \{a^0, a^1, a^2, \ldots, a^n\}$, and $a^0 = e, a^1 = a$. Let

 $\varphi = G \to \mathbb{Z}$ be the mapping defined as $\forall k \in \{0, 1, ..., n-1\} : \varphi(a^k) = k_n$, we can see that this is a bijection because $\mathbb{Z}_n = \{0_n, 1_n, ...(n-1)_n\}$. Since φ is a bijection then can see that it is also a group isomorphism. Now, let G a group of order 5. We will show that $G \cong \mathbb{Z}_5$. We will show that G is a cyclic group as any cyclic group of order 5 is isomorphic to \mathbb{Z}_5 (according to the proof above). Let $a \neq e \in G$ (as |G| > 1 this exists), therefore we have O(a)|5 and $O(a) \neq 1$. 5 is a prime so we can see that O(a) = 5, therefore |a| = 5 and as $a \subseteq G$ we have a = G. So any group of order 5 is cyclic and therefore isomorphic to \mathbb{Z}_5 . As 5 is prime and our claim holds, we can see that up to isomorphism there is a unique group of order 5.

Question 4

For a finite group G, show that O(element)|O(group).

Let G be a finite group and let $a \in G$. We will prove that O(a)|O(g), where O(a) is the order of element a, and O(G) is the order of the group G and | means divides. By definition, the order of a is the order of the subgroup generated by a. Therefore, by Lagrange's Theorem, |a| is a divisor of |G|. In other words, if we let m be the order of the element athen the smallest positive integer m such that a^m is the identity element e, then m divides the order of G, so we have for any $a \in G$, we have that $a^{|G|} = e$.

Question 5

1. Let \mathbb{R} be the set of real numbers. Show that the 4-dimensional Euclidean space $\mathbb{R} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(r_1, r_2, r_3, r_4) : r_i \in \mathbb{R}\}$ is a group under component wise addition.

2. Let \mathbb{C} be the set of complex numbers. Show that the space $\mathbb{R}x(\mathbb{C}\setminus\{0\}) := \{(r,c) : r \in \mathbb{R}, c \in \mathbb{C}, c \neq 0\}$ is a group under the following operation: $(r_1,c_1)*(r_2,c_2) := (r_1+r_2,c_1*c_2)$ where c_1*c_2 is complex multiplication.

 \mathbb{R} under addition is a group and $\mathbb{C}\setminus\{0\}$ is also a group under complex multiplication so $\mathbb{R}x(\mathbb{C}\setminus\{0\}) := \{(r,c) : r \in \mathbb{R}, c \in \mathbb{C}, c \neq 0\}$ is a valid group with this operator :)

Question 6

Let $\varphi: G \to H$ be a group homomorphism. Show that $Ker\varphi$ is a subgroup of G and that image φ is a subgroup of H.

Question 7

Check if the following are group homomorphisms. If they are, describe the $ker\varphi$ and $im\varphi$.

- $\varphi: \mathbb{R}^x \to \mathbb{R}^x = (\{\mathbb{R} \setminus \{0\}\}, *), x \to |x|$ $x \to |x|$ is a homomorphism since |a| |b| = |ab|. Its image is $\{x: x > 0\}$ and its kernel is $\{1, -1\}$. Let $a, b \in \mathbb{R}^x$, $\varphi(a) = |a| \in \mathbb{R}^x$ is well defined, so $\varphi(ab) = |ab| = |a| |b| = \varphi(a)\varphi(b)$, and therefore $\varphi(a^{-1}) = |a^{-1}| = |a|^{-1} = (\varphi(a))^{-1}$.
- $\varphi: \mathbb{R} \to \mathbb{R} = (\mathbb{R}, +), x \to x^2$ $x \to x^2$ is a homomorphism since $a^2b^2 = (ab)^2$. Its image is $\{x: x > 0\}$ and its kernel is $\{1, -1\}$.
- $\varphi: \frac{\mathbb{Z}}{6} \to \frac{\mathbb{Z}}{2}, x \mod 6 \to x \mod 2$
 - If $x \mod 6$ is even (odd) then x is even (odd), therefore $\varphi(\{1,3,5\}) = 1$ and $\varphi(\{0,2,4\}) = 0$.
 - If x and y are odd then xy is odd and therefore $x \mod 6 \in \{1,3,5\} \Rightarrow x \mod 2 = 1$, and $y \mod 6 \in \{1,3,5\} \Rightarrow y \mod 2 = 1$ and

$$(xy) \mod 2 = 0 \Rightarrow \begin{cases} \varphi\left(x \mod 6\right) \phi\left(y \mod 6\right) = 0 \\ \varphi\left((xy) \mod 6\right) = 0 \end{cases} \Rightarrow \varphi\left((xy) \mod 6\right) = \varphi\left(x \mod 6\right) \varphi\left(y \mod 6\right).$$

– If x and y are even then xy is even and therefore $x \mod 6 \in \{0,2,4\} \Rightarrow x \mod 2 = 0$, and $y \mod 6 \in \{0,2,4\} \Rightarrow y \mod 2 = 0$, and

$$(xy) \mod 2 = 0 \Rightarrow \begin{cases} \varphi\left(x \mod 6\right) \varphi\left(y \mod 6\right) = 0 \\ \varphi\left((xy) \mod 6\right) = 0 \end{cases} \Rightarrow \varphi\left((xy) \mod 6\right) = \varphi\left(x \mod 6\right) \varphi\left(y \mod 6\right)$$

- If x is odd and y is even then xy is even and therefore $x \mod 6 \in \{1,3,5\} \Rightarrow x \mod 2 = 1$, and $y \mod 6 \in \{0,2,4\} \Rightarrow y \mod 2 = 0$ and

$$(xy) \mod 2 = 0 \Rightarrow \begin{cases} \varphi\left(x \mod 6\right) \varphi\left(y \mod 6\right) = 0 \\ \varphi\left((xy) \mod 6\right) = 0 \end{cases} \Rightarrow \varphi\left((xy) \mod 6\right) = \varphi\left(x \mod 6\right) \varphi\left(y \mod 6\right).$$

So φ is a homomorphism. Its image is $\{0,1\}$ and its kernel is $\{0,2,4\}$.

Question 8

Show that the following is a group homomorphism that outputs the 2nd least significant bit of its input:

$$\varphi: \frac{\omega}{8} \to \frac{\omega}{2}$$

$$x \to \left(\frac{x - \varphi_0(x)}{2}\right)$$
Where φ_0 is the map $\varphi_0(x) = x \mod 2$

A homomorphism from a group G to a group G is a mapping $G \to G$ that preserves the group operation: $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in G$. This is not a group homomorphism and fails already from

Let
$$a, b \in \frac{\mathbb{Z}}{8}$$
. $\varphi(a) = (\frac{a - \varphi_0(a)}{2}) \mod 2 \in \frac{\mathbb{Z}}{2}$ is well defined, so $\varphi(ab) = (\frac{a + b - \varphi_0(a + b)}{2}) \mod 2 = (\frac{a + b - \varphi_0(a) - \varphi_0(b)}{2}) \mod 2 = (\frac{a - \varphi_0(a) + b - \varphi_0(b)}{2}) \mod 2 = (\frac{a - \varphi_0(a)}{2}) + (\frac{b - \varphi_0(b)}{2}) \mod 2 = \varphi(a) + \varphi(b)$

$$\varphi(a^{-1}) = (\frac{a^{-1} \mod 8 - \varphi_0(a^{-1} \mod 8)}{2}) \mod 2 = (\frac{a^{-1} - \varphi_0(a^{-1})}{2})^{-1} \mod 2 = (\varphi(a))^{-1}$$

This is not a group homomorphism and fails as $\varphi(a+b) \neq \varphi(a) + \varphi(b)$ in this question.

Question 9

The following question gives an example of the Cayley's theorem . Recall that Cayley 's theorem says that every finite group is isomorphic to a subgroup of the permutation group S_n for some integer n > 1.

Permutation of a set A is a function from A to A that is both 1-1 and onto.

Let $A(n) := \{1, 2, ..., n\}$. Then ({permuations}, \circ) where \circ is function composition, forms a group. This group is called the symmetric group on n elements denoted by S_n .

- What is the order of S_3 ? $O(S_3) = |S_3| = 3!$
- What is the order of σ_3 ? $\sigma_3\sigma_3 = (123) \rightarrow O(\sigma_3) = 2$ $\sigma_5\sigma_5\sigma_5 = (123) \rightarrow O(\sigma_3) = 3$
- Check that it is an isomorphism We can draw the Cayley diagrams:

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
σ_1	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6
σ_2	σ_2	σ_1	σ_6	σ_5	σ_4	σ_3
σ_3	σ_3	σ_5	σ_1	σ_6	σ_2	σ_4
σ_4	σ_4	σ_6	σ_5	σ_1	σ_3	σ_2
σ_5	σ_5	σ_3	σ_4	σ_2	σ_6	σ_1
σ_6	σ_6	σ_4	σ_2	σ_3	σ_1	σ_5

	R_0	$Flip_2$	$Flip_3$	$Flip_1$	R_{60}	R_{120}
R_0	R_0	$Flip_2$	$Flip_3$	$Flip_1$	R_{60}	R_{120}
$Flip_2$	$Flip_2$	R_0	R_{120}	R_{60}	$Flip_1$	$Flip_3$
$Flip_3$	$Flip_3$	R_{60}	R_0	R_{120}	$Flip_2$	$Flip_1$
$Flip_1$	$Flip_1$	R_{120}	R_{60}	R_0	$Flip_3$	$Flip_2$
R_{60}	R_{60}	$Flip_3$	$Flip_1$	$Flip_2$	R_{120}	R_0
R_{120}	R_{120}	$Flip_1$	$Flip_2$	$Flip_3$	R_0	R_{60}

As we can see, the diagrams of the two groups are the same, so they are isomorphic.