Théorie des graphes et algèbre computationnelle Algèbre

Brandon LIN

November 17, 2023

Contents

Chapter 1	Définitions et premières propriétés	Page 2_
1.1	Groupe Groupe abélien — $2 \bullet$ Groupe fini et infini — $2 \bullet$ Groupe symétrique — $3 \bullet$ Sous-groupes — 4	2
1.2	Morphismes de groupes	8

Chapter 1

Définitions et premières propriétés

1.1 Groupe

Definition 1.1.1: Groupe

On dit que (G, \times) est un **groupe** lorsque G est un ensemble non vide et \times une loi de composition interne sur G notée $(x, y) \mapsto x \times y$ vérifiant :

• \times associative:

$$\forall (x, y, z) \in G^3, \ (x \times y) \times z = x \times (y \times z) \tag{1.1}$$

• Existence d'un **élément neutre** $e \in G$ pour \times :

$$\forall x \in G, \ e \times x = x \times e = x \tag{1.2}$$

- Tout élément de G possède un inverse pour \times :

$$\forall x \in G, \exists y \in G, \ x \times y = y \times x = e \tag{1.3}$$

on note $x^{-1} \stackrel{Not}{=} y$ l'inverse de $x \in G$.

1.1.1 Groupe abélien

Definition 1.1.2: Groupe abélien ou commutatif

 (G, \times) un groupe est **commutatif** ou **abélien** si x est commutative :

$$\forall (x, y) \in G^2, \ x \times y = y \times x \tag{1.4}$$

1.1.2 Groupe fini et infini

Definition 1.1.3: Groupe fini, Ordre

Si G est un ensemble fini, alors on dit (G, \times) est un **groupe fini**, on note $\operatorname{card}(G)$ l'**ordre** de (G, \times) . Sinon on dit que (G, \times) est d'**ordre infini**.

1.1.3 Groupe symétrique

Definition 1.1.4

- Soit E un ensemble. On note $\mathcal{S}(E)$ l'ensemble des bijections de E dans E qu'on appelle l'ensemble des **permutations** de E.
- $(\mathcal{S}(E), \circ)$ est appelé le **groupe symétrique** de E.
- Si E = [[1, n]] où $n \in \mathbb{N}^*$ alors on note simplement \mathcal{S}_n le groupe symétrique de [[1, n]]. Son **ordre** est égal à card $(\mathcal{S}_n) = n!$.
- Pour tout $\psi \in \mathcal{S}_n$, on note

$$\psi = \begin{pmatrix} 1 & 2 & \dots & n \\ \psi(1) & \psi(2) & \dots & \psi(n) \end{pmatrix}$$
 (1.5)

Example 1.1.1

Pour n = 3, il y a 6 permutations de [1,3]:

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \tau_{1,2} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad \tau_{1,3} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
 (1.6)

$$\tau_{2,3} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \sigma_{+} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \sigma_{-} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
 (1.7)

Example 1.1.2

On peut calculer:

$$\tau_{1,2} \circ \tau_{2,3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \sigma_{+}$$
 (1.8)

Proposition 1.1.1

Si $n \geq 3$, (\mathcal{S}_n, \circ) n'est pas abélien.

Proof: Soient $(a, b, c) \in [1, n]^3$ trois éléments distincts.

On considère des permutations φ et ψ de [1, n], telles que :

$$\begin{cases} \varphi(a) = b \\ \varphi(b) = a \end{cases}, \quad \begin{cases} \psi(a) = c \\ \psi(b) = b \\ \psi(c) = a \end{cases}$$
 (1.9)

Alors, $(\varphi \circ \psi)(a) = \varphi(\psi(a)) = \varphi(c) = c$ et $(\psi \circ \varphi)(a) = \psi(\varphi(a)) = \psi(b) = b \neq c$ Donc $\varphi \circ \psi \neq \psi \circ \varphi$, donc S_n n'est pas abélien.

Example 1.1.3

Dans (\mathcal{S}_3, \circ) , on remarque que

$$\sigma_{+} \circ \tau_{1,2} = \tau_{1,3}, \quad \tau_{1,2} \circ \sigma_{+} = \tau_{2,3} \neq \tau_{1,3}$$
 (1.10)

${\bf Remarque}:$

• De même $\mathcal{S}(E)$ n'est pas abélien lorsque E est un ensemble infini.

• Le sous-ensemble $\{id, \sigma_+, \sigma_-\}$ a aussi une structure de groupe pour la composition \circ ($\{id, \sigma_+, \sigma_-\}$ est un groupe abélien fini d'ordre 3). Par contre $\{id, \tau_{1,2}, \tau_{2,3}, \tau_{1,3}\}$ n'a pas de structure de groupe.

Par exemple, $\tau_{1,2} \circ \tau_{2,3} = \sigma_+$ donc \circ n'est pas un loi de composition interne.

1.1.4 Sous-groupes

Definition 1.1.5: Sous-groupe

Soit (G,*) un groupe et $H \subseteq G$, alors on dit que H est un sous-groupe de (G,*) lorsque

- $e \in H$
- Stabilité par la loi de composition interne :

$$\forall (x,y) \in H, \quad x * y \in H \tag{1.11}$$

• Stabilité par passage au symétrie :

$$\forall x \in H, \ \bar{x} \in H \tag{1.12}$$

Proposition 1.1.2

H est un sous-groupe de (G,*) si et seulement si

- e ∈ H
- $\forall (x,y) \in H, \ x * \bar{y} \in H$

Proof: • (\Longrightarrow) Simple.

• (\iff) Soit $x \in H$, alors $\bar{x} = e * \bar{x} \in H$ car $(e, x) \in H^2$, donc 1.12 est vérifié. Soit $(x, y) \in H^2$, alors $x * y = x * \bar{y} \in H$ car $(x, \bar{y}) \in H^2$, donc 1.11 est vérifié.

Example 1.1.4

- \mathbb{Z} est un sous-groupe de $(\mathbb{Q}, +)$, de $(\mathbb{R}, +)$ et aussi de $(\mathbb{C}, +)$. C'est parce que \mathbb{Q} est un sous-groupe de $(\mathbb{R}, +)$ et \mathbb{R} est un sous-groupe de $(\mathbb{C}, +)$.
- Pour tout $n \in \mathbb{N}$, $n\mathbb{Z} = \{nk, k \in \mathbb{Z}\}$ est un sous-groupe de $(\mathbb{Z}, +)$

En particulier, l'ensemble $2\mathbb{Z}$ des entiers pairs est un sous-groupe de $(\mathbb{Z}, +)$.

Mais, l'ensemble $\{2k+1, k \in \mathbb{Z}\}$ des entiers impairs n'est pas un sous-groupe de $(\mathbb{Z}, +)$ (car il ne contient pas 0 et il n'est pas stable par addition)

• L'ensemble des fonctions réelles continues sur $I \subset \mathbb{R}$ est un sous-groupe additif de l'ensemble ds fonctions réelle définies sur I (car une somme de fonctions continues est continue)

De même l'ensemble des fonctions dérivables sur I est bien un sous-groupe additif.

Mais, l'ensemble des fonctions positives sur I n'est pas un sous-groupe additif car il n'est pas stable par passage à l'opposé.

• Le sous-ensemble des suites réelles croissantes n'est pas un sous-groupe additif de l'ensemble des suites réelles.

Mais, le sous-ensemble des suites réelles nulles à partir d'un certain rang est bien un sous-groupe additif.

Example 1.1.5

• Pour tout $n \in \mathbb{N}^*$, $\mathbb{U}_n = \{z \in \mathbb{C}, z^n = 1\}$ est un sous-groupe de $(\mathbb{U} = \{z \in \mathbb{C}, |z| = 1\}, \times)$. Ces deux groupes sont des sous-groupes de (\mathbb{C}^*, \times) .

De même \mathbb{R}^* et $]0,+\infty[$ sont des sous-groupes multiplicatifs de \mathbb{C}^* .

Mais, $i\mathbb{R} = \{iy, y \in \mathbb{R}\}$ n'est pas un sous-groupe multiplicatif de \mathbb{C}^* (car $1 \notin i\mathbb{R}$)

- {id, σ_+ , σ_- } est un sous-groupe de (\mathcal{S}_3 , \circ)
- Soit E un ensemble et $A \subset E$. On note $H = \{ \varphi \in \mathcal{S}(E), \ \varphi(A) \subset A \}$ l'ensemble des permutations de E qui laissent A stable, alors H est un sous-groupe de groupe symétrique $\mathcal{S}(E)$, en effet :
 - $\operatorname{id} \in H \operatorname{car} \operatorname{id}(A) = A$
 - Si $\varphi \in H$ alros φ est une bijection qui envoie $\varphi(A)$ dans A
 - Or $A \subset E$ est un ensemble fini donc card(φ(A)) = card(A).
 - Donc, $\varphi(A) = A$, $\varphi^{0-1}(A) = A$, donc H est stable par passage à symétrique. (la bijection réciproque de φ = le symétrique de φ par 0)
 - La stabilité de H par composition est immédiate.

Remarque : Soit (G, *) un groupe. Alors le plus petit sous-groupe est $\{e\}$ et le plus grand sous-groupe est G. Ces deux sous-groupes sont appelés les sous-groupes **triviaux** de G.

Proposition 1.1.3

Toute intersection de sous-groupes de (G,*) est un sous-groupe de (G,*).

C'est en général faux pour l'union.

Proof: Intersection Soit $(H_i)_{i\in I}$ des sous-groupes de (G,*), on pose $H=\bigcap_{i\in I}H_i$, alors $\forall i\in I,\ e\in H_i$ car H_i est un sous-groupe donc $e\in H$.

Si $(x, y) \in H^2$, alors $\forall i \in I$, $(x, y) \in H_i^2$ donc $x * \bar{y} \in H_i$ car H_i est un sous-groupe donc $x * \bar{y} \in H$. Par conséquent, H est bien un sous-groupe.

Example 1.1.6

Dans $(\mathbb{Z}, +)$, $2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$ sont les sous-groupes.

Par exemple $2\mathbb{Z} \cup 3\mathbb{Z}$ n'est pas un sous-groupe de $(\mathbb{Z}, +)$ car $5 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$

Definition 1.1.6: Sous-groupe engendrée

Soit (G,*) un groupe et $A \subset G$ alors l'intersection de tous les sous-groupes de (G,*) qui contiennant A est appelées le **sous-groupe engendrée** par A, on le note :

$$\langle A \rangle = \bigcap_{H \text{ sous-groupe de } (G,*), A \subset H} H$$
 (1.13)

Proposition 1.1.4

 $\langle A \rangle$ est le plus petit sous-groupe qui contient A.

Proof: • $\langle A \rangle$ est bien un sous-groupe comme intersection de sous-groupes.

• Il est immédiat que $A \subset \langle A \rangle$

• Si B est un sous-groupe qui contient A, alors $\langle A \rangle \subset H$ par définition.

[Manque un cours ici]

Definition 1.1.7: Groupe momogène

Un groupe (G,*) est dit **monogène** s'il est engendré par un élément :

$$\exists a \in G, G = \langle \{a\} \rangle = \{a^{*k, k \in \mathbb{Z}}\}$$

$$(1.14)$$

(2)

Autrement dit, G est le groupe itérés de a. Dans ce cas, on dit que a est un **générateur** de (G,*).

Example 1.1.7

Pour tout $n \in \mathbb{Z}$, $n\mathbb{Z} = \{k_n, k \in \mathbb{Z}\}$ est un groupe additif homogène. n est -n sont des générateurs de $n\mathbb{Z}$.

Theorem 1.1.1

Tout sous-groupe additif de $(\mathbb{Z}, +)$ est monogène, c'est-à-dire de la forme $n\mathbb{Z}$ où $n \in \mathbb{N}$ est unique.

Proof: Soit H un sous-groupe additif de $(\mathbb{Z}, +)$. Si $H = \{0\}$ alors $H = 0\mathbb{Z}$, sinon $H \cap \mathbb{N}^* \neq \emptyset$ car H est stable par passage à l'opposé.

On pose

$$n = \min(H \cap \mathbb{N}^*)$$

• Montrons que $H=n\mathbb{Z}$, on a déjà que $n\mathbb{Z}\subset H$ car $n\in H,$ H est stable par addition et par passage à l'opposé.

Par l'inclusion réciproque, on fixe $h \in H$. On pose

$$k = \max\{k \in \mathbb{Z}, \ k_n \le h\} = E\left(\frac{h}{n}\right) \quad (n \ne 0, \ n \in \mathbb{N}^*)$$
(1.15)

Donc, $k \le h/n < k+1$ donc $k_n \le h < k_n+n$, donc $h-k_n \in [0, n-1]$.

Or $h - k_n \in H$ par stabilité car $h \in H$ et $n \in H$.

On en déduit que $h-k_n=0$ car $\min(H\cap \mathbb{N}^*)=n$ donc $h=kn\in n\mathbb{Z}$. Par conséquent $H=n\mathbb{Z}$

• L'unicité est immédiate car $\min(n\mathbb{Z} \cap \mathbb{N}^*) = n$

Remarque : Les sous-groupes additifs de \mathbb{R} ne sont pas tous monogènes. Par exemple \mathbb{Q} n'est pas de la forme $x\mathbb{Z}$ où $x\in\mathbb{R}$

En effet, le complémentaire de $n\mathbb{Z}$ contient des intervalles (par exemple $]0, |n|[\cap n\mathbb{Z} = \emptyset \text{ si } n \neq 0)$ alors que \mathbb{Q} est dense dans \mathbb{R} :

$$\forall a < b, \]a, b[\cap \mathbb{Q} \neq \emptyset \tag{1.16}$$

Theorem 1.1.2

Tout sous-groupe additif de $(\mathbb{R},+)$ est de l'un des deux types suivants :

- Monogène, c'est-à-dire de la forme $x\mathbb{Z}$ où $x\in\mathbb{R}_+$ est unique
- Dense dans R, c'est-à-dire qu'il intersectetout intervalle de R (aussi petit qu'on veut)

Proof: Soit Hun sous-groupe de $(\mathbb{R}, +)$. Si $H = \{0\}$ alors $H = 0\mathbb{Z}$. Sinon $H \cap \mathbb{R}_+^* \neq \emptyset$ (car H est stable par passage à l'opposé)

On pose

$$\chi = \inf(H \cap \mathbb{R}_+^*) \tag{1.17}$$

Il y a deux cas selon que l'inf est atteint ou non.

- 1. x > 0 donc $x = \min(H \cap \mathbb{R}_+^*)$. On peut montrer que $H = x\mathbb{Z}$ en raisonment comme dans la démonstration de sous-groupes de $(\mathbb{Z}, +)$ de même pour l'unicité.
- 2. x = 0 Donc il existe une suite $(h_n)_{n \in \mathbb{N}}$ telle que :
 - $\forall n \in \mathbb{N}, h_n \in H \cap \mathbb{R}^*_{\perp}$
 - $\forall n \in \mathbb{N}, 0 < h_{n+1} < h_n \text{ (strictement décroissante)}$
 - $h_n \xrightarrow[n \to +\infty]{} 0$

Montrons que H est dense dans \mathbb{R} , donc qu'il intersecte tout intervalle de \mathbb{R} . Soit $]a,b[\subset \mathbb{R}$, montrons $H \cap]a,b[\neq \emptyset$.

On sait que $\exists n \in \mathbb{N}, 0 < h_n < b - a$. On pose

$$j = \max\{k \in \mathbb{Z}, \ kh_n \le a\} = E\left(\frac{a}{h_n}\right) \tag{1.18}$$

Alors $a - kh_n \in [0, h_n[$.

$$kh_n \le a < kh_n + h_n < kh_n + b - a \le b$$
 (1.19)

Donc, $(k+1)h_n \in]a,b[$ et $(k+1)h_n \in H$ car $h_n \in H$ et par stabilité de H.

Par conséquent $]a,b[\cap H \neq \emptyset]$, on en déduit que H est dense dans \mathbb{R} .

(2)

Example 1.1.8

Soit $x \in \mathbb{R}$, alors il existe deux suites $(a_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}}$ telles que

$$x = \lim_{n \to +\infty} a_n + b_n \sqrt{2} \tag{1.20}$$

car $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}, (a, b) \in \mathbb{Z}^2\}$ l'anneaux des entiers de Gauss.

En effet, $(\mathbb{Z}[\sqrt{2}, +))$ est le sous-groupe de $(\mathbb{R}, +)$ engendré par 1 et $\sqrt{2}$, s'il $\mathbb{Z}[\sqrt{2}]$ est de la forme $y\mathbb{Z}$ où $y \in \mathbb{R}_+$ alors

$$\exists (k_1, k_2) \in \mathbb{Z}^2, \ 1 = k_1 y, \ \sqrt{2} = k_2 y$$
 (1.21)

Donc,

$$\sqrt{2} = \frac{k_2}{k_1} \in \mathbb{Q} \tag{1.22}$$

ce qui est absurde. Donc $\mathbb{Z}[\sqrt{2}]$ est danse dans R.

Definition 1.1.8: Groupe cyclique

Soit (G,*) un groupe.

- On dit que G est $\mathbf{cyclique}$ si G est monogène est fini
- Soit $a \in G$, si $\langle \{a\} \rangle$ est fini (donc cyclique) alors son ordre $|\langle \{a\} \rangle|$ est appelé l'**ordre** de a dans (G, *). Sinon a est dit d'**ordre infini**.

Proposition 1.1.5

Soient (G,*) un groupe et $x \in G$. Si a est d'ordre fini alors son ordre est égal à

$$\min\{n \in \mathbb{N}, \ a^{*n} = e\} \tag{1.23}$$

Proof: Puisque $\langle \{a\} \rangle = \{a^{*k}, k \in \mathbb{Z}\}$ est fini, on sait que

$$\exists (k_1, k_2) \in \mathbb{Z}^2, \ a^{*k_1} = a^{*k_2}, \ k_1 \neq k_2$$
 (1.24)

On peut supposer que $k_1\subset k_2$, alors $a^{*(k_2-k_1)}=a^{*k_2}\times\overline{a^{*k_2}}=e$ et $k_2-k_1\in\mathbb{N}^*$ Donc $\{n \in \mathbb{N}^*, \ a^{*n} = e\} \neq \emptyset$, donc $n = \min\{n \in \mathbb{N}^*, \ n^{*n} = e\}$ existe. Montrons que $\langle \{a\} \rangle = \{a^{*k}, k \in \llbracket 0, n-1 \rrbracket \}.$

- L'inclusion inverse est évidente.
- Pour l'inclusion, onfixe $k \in \mathbb{Z}$, on pose $l = \max\{l \in \mathbb{Z}, ln \le k\} = E\left(\frac{k}{n}\right)$ donc $k = ln \in [0, n-1]$

Et $a^{*k} = a^{*(j-ln)} * (a^{*n})^{*l=a^{*(j-ln)}}$ Donc l'ordre de a est égal à

$$|\langle \{a\} \rangle| = \operatorname{card}\{a^{*k}, \ k \in [[0, n-1]]\} = n$$
 (1.25)

 $\operatorname{car} n = \min\{n \in \mathbb{N}^*, \ a^{*n=e}\} \ \operatorname{donc} \ \forall (k_1, k_2) \in [\![0, n-1]\!]^2, \ k_1 \neq k_2 \implies a^{*k_1} \neq a^{*k_2}$

(2)

Example 1.1.9

Soit $n \in \mathbb{N}$, alors

$$\mathbb{U}_n = \{ e^{i\frac{2k\pi}{n}}, \ k \in [[0, n-1]] \}$$
 (1.26)

donc (\mathbb{U}_n, \times) est cyclique et $\omega = e^{\frac{2i\pi}{n}}$ est d'ordre n, qui est un générateur de \mathbb{U}_n

1.2 Morphismes de groupes

Definition 1.2.1: Homomorphisme

Soit (G,*) et (H,.) deux groupes. Un **homomorphisme** de (G,*) vers (H,.) est une application $f:G\to H$ telle que

$$\forall (x, y) \in G^2, \ f(x * y) = f(x).f(y) \tag{1.27}$$

Proposition 1.2.1

Si $f:(G,*)\to (H,.)$ est un homomorphisme de groupes alors :

- f(e_G) = f(e_H)
 ∀x ∈ G, f(x̄) = f(x) (n = -1)
 ∀x ∈ G, n ∈ Z, f(x*n) = (f(x)).n

• On a $f(e_G) = f(e_G * e_G) = f(e_G).f(e_G)$ **Proof:**

• Soit $x \in G$, on a:

$$f(x).f(\overline{x}) = f(x * \overline{x}) = f(e_G) = e_H \tag{1.28}$$

- De même $f(\overline{x}).f(x) = e_H$.
- Récurrence

Example 1.2.1

• Soit $n \in \mathbb{R}$, alors $x \mapsto ax$ est un homomorphisme du groupe $(\mathbb{R},+)$ vers lui-même.

- $x\mapsto \ln x$ est un homomorphisme du groupe (\mathbb{R}_+^*,\times) vers $(\mathbb{R},+)$
- $x\mapsto e^{i\theta}$ est un homomorphisme de groupe $(\mathbb{R},+)$ vers le groupe (\mathbb{C}^*,\times) au (\mathbb{U},\times)

Example 1.2.2

L'application qui associe à chaque suitre convergente sa limite est un homomorphisme additif.

Example 1.2.3

a transposée des matrices de $(M_n(\mathbb{K})$ est un homomorphisme additif. Le déterminant des matrice de $\mathrm{GL}_n(\mathbb{K})$ est un homomorphisme multiplicatif.