

Please write clearly ir	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

INTERNATIONAL AS FURTHER MATHEMATICS

(9665/FM02) Unit FPSM1 Pure Mathematics, Statistics and Mechanics

Monday 15 May 2023

07:00 GMT

Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- · You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- There are three sections to this paper.
- The maximum mark for this paper is 80. There are 40 marks for **Section A**, 20 marks for **Section B** and 20 marks for **Section C**.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

For Examiner's Use					
Question	Mark				
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
TOTAL					

FM02

Section A

Pure Mathematics

Answer all questions in the spaces provided.

1 A curve passes through the point (2, 1) and satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{y + \sqrt{x}}$$

Use Euler's step-by-step method with a step length of 0.2 to estimate the value of y when x = 2.4

Give your answer to three decimal places.	
	[5 marks]

Answer

2	(a)	The matrices	Δ	and	R	are defined by
4	(a)	The manices	A	anu	D	are defined by

$$\mathbf{A} = \begin{bmatrix} 2p & -2 & 3 \\ -1 & 3p & 0 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

where p is a constant.

Find $\mathbf{A}^T \mathbf{B}$	in terms of p
--------------------------------	-----------------

[2 marks]

∖nswer			

2 (h)	(h)	The matrix C is defined by C	_	2
_	(D)	The matrix C is defined by C	_[_1	0

2 (b)) (i)	It is given that	$\mathbf{C}^2 = k\mathbf{I}$	where	k	is an integer and	I	is the	2×2	identity ma	trix.
-------	-------	------------------	------------------------------	-------	---	-------------------	---	--------	-----	-------------	-------

Find the value of k

[2 marks]

2 (b) (ii) Hence fin	c^{13}
----------------------	----------

[2 marks]

Answer

3 The variables t and S are related by the equation $S = ab^t$ where a and b are constants.

Some values of $\,t\,$ and $\,S\,$ are found in an experiment.

The values of $\log_{10} S$ are plotted against t on the grid below.

3 (a) (i) Draw a line of best fit on the grid.

[1 mark]

3	(a) (ii)	Use your line of best fit to estimate the value of a and the value of b	
		Give your values to two significant figures.	[4 marks]
		a = b =	
3	(b)	Use your values for a and b to estimate the value of t when $S = 11.2$	
		Give your answer to two significant figures.	[2 marks]
		Answer	

4		The equation $3x^3 - x^2 - 5x - 3 = 0$ has a single real root α			
4	(a)	Show that α lies in the interval $1 < x < 2$	[2 marks]		
			-		
4	(b)	Starting with the interval $1 < x < 2$, use interval bisection twice to find an interval $x < 2$, use interval $x < 2$.	al of		
		width 0.25 in which α must lie.	[3 marks]		
		,			
		Ancwor			
		Answer			

4 (c) The Newton–Raphson method is to be used once to find a second approximation to α

4 (c) (i) Explain why an initial value $x_1 = 1$ would **not** give an improved approximation to α after one iteration.

Draw an appropriate straight line on the graph of $y = 3x^3 - x^2 - 5x - 3$ below as part of your explanation.

[2 marks]

4 (c) (ii) Taking $x_1 = 1.75$ as a first approximation to α , use the Newton–Raphson method to find a second approximation x_2 to α

Give your answer to four decimal places.

[4 marks]

Answer

5		The matrix A is defined by $\mathbf{A} = \begin{bmatrix} 1 - 0.4k & -0.8k \\ 0.2k & 1 + 0.4k \end{bmatrix}$ where k is a non-zero constant.
5	(a)	Show that A is non-singular for all values of <i>k</i> [2 marks]
5	(b)	It is given that $k = -1$
5	(b) (i)	The image of the point $P(1, 2)$ under the transformation represented by $\bf A$ is the point P'
		Find the coordinates of P' [2 marks]
		Answer
5	(b) (ii)	Find the equations of the invariant lines of the transformation represented by A [5 marks]

			Do not write outside the box
			DOX
		Answer	
5	(b) (iii)	The transformation represented by A is a shear.	
		Using your answers to part (a) and part (b)(ii) , state two reasons that confirm this statement.	
		[2 marks]	
		Reason 1	
		Reason 2	11

Turn over ▶

Section B

Statistics

Answer all questions in the spaces provided.

f 6 The random variable $\it W$ has probability generating function

$$G_W(t) = 0.1 + pt + (0.9 - p)t^3$$

where p is a constant.

6	(a)	Find	$G'_W(t)$) in	terms	of	p
---	-----	------	-----------	------	-------	----	---

[1 mark]

Answer		

6 (b) The mean of W is 2.5

Use your answer to **part (a)** to find $P(W \le 1)$

[4 marks]

Answer _____

7 A company makes batteries.

Each battery is made using one of three different machines: A, B or C

Machine A is used to make 45% of the batteries.

Machine *B* is used to make 32% of the batteries.

A randomly selected battery is checked to see if it is damaged.

The probability that the battery is damaged given that it is made by machine A is 0.015

The probability that the battery is damaged given that it is made by machine *B* is 0.018

The probability that the battery is damaged given that it is made by machine *C* is 0.03

7 (a) Using the probabilities given above, draw a tree diagram to represent this information in the space provided below.

[2 marks]

Do not write outside the box

damaged is 0.228, correct to three significant figures.	[3 marks]
Answer	
Turn over for the next question	

Turn over ▶

Do not write outside the box

8		The random variable X has a discrete uniform distribution which takes the values 1, 2, 3,, n and $E(X) = 15$	
8	(a)	Find $Var(X)$	[2 marks]
		Answer	
8	(b)	The random variable Y has a geometric distribution with $P(Y=2)=0.1824$ and $E(Y)>2$	
8	(b) (i)	Show that $Var(Y) = \frac{475}{36}$	[5 marks]

8 (b) (ii)	The value of $Var(X-6Y)$ is 551	Do not write outside the box
	Explain whether X and Y are independent. [3 marks]	
		10
	Turn over for the next section	

Turn over ▶

Section C

Mechanics

		Answer all questions in the spaces provided.
9	(a)	Use the definition of impulse to find its dimensions. [2 marks]
		Answer
9	(b)	Show that the coefficient of restitution $\it e$ is dimensionless. [1 mark]
9	(c)	A ball of mass m kg is moving with speed u m s ⁻¹ when it collides with a wall that is perpendicular to its path.
		The coefficient of restitution between the ball and the wall is $\ e$
		The magnitude of the impulse on the ball during its contact with the wall is given by the formula $I = mu(1+e)$
		Show that the formula $I = mu(1+e)$ is dimensionally consistent.
		[3 marks]

10	Two spheres P and Q of equal radius are moving in the same direction on a line on a smooth horizontal table.	straight	utsic bo
	Sphere P has mass 0.1 kg and is moving with speed 12 m s ⁻¹ towards Q		
	Sphere Q has mass 0.4 kg and is moving with speed 8 m s ⁻¹		
	The spheres collide.		
	The spheres are in contact for 0.08 seconds during the collision.		
	The force that Q exerts on P while they are in contact is modelled as a cons with magnitude 6 newtons.	tant force	
10 (a)	Find the magnitude of the impulse that Q exerts on P during the collision.	[1 mark]	
	Answer		
10 (b)	Show that the speed of P after the collision is 7.2 m s ⁻¹	[2 marks]	
10 (c)	Find the coefficient of restitution between the spheres.	[3 marks]	
		 [.	
	Answer		6

11	Two drones A and B are flying with constant velocities at the same constant height above horizontal ground.
	Drone A is initially at the point with position vector $\begin{bmatrix} 80\\100 \end{bmatrix}$ metres and moves with a velocity of $\begin{bmatrix} 5\\p \end{bmatrix}$ m s ⁻¹ where p is a constant.
	Drone <i>B</i> is initially at the point with position vector $\begin{bmatrix} 200 \\ 40 \end{bmatrix}$ metres and moves with a velocity of $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$ m s ⁻¹
11 (a)	Find the value of p for which the drones collide. [4 marks]
	Answer

11 (b)	In the case where $p = 4$ find the shortest distance between the drones.	
	Give your answer to the nearest metre.	[4 marks]
	Answer	
	END OF QUESTIONS	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

