

INSTITUTO FEDERAL DE CIÊNCIA E TECNOLOGIA DO MARANHÃO DEE - DEPARTAMENTO DE ELETROELETRÔNICA

CONVERSOR BOOST

1. APRESENTAÇÃO

A seguinte pratica de laboratório tem como objetivo exercitar o conteúdo estudado, precisamente sobre o estudo de conversores **cc-cc** do tipo Boost. Contudo, deve-se compreender:

- Implementar moduladores de largura de pulso (PWM);
- Montar um conversor **cc-cc** Boost;
- Entender os princípios básicos de conversores cc-cc;
- Realizar medições no circuito;
- Observar as formas de onda sobre os elementos do circuito.

2. CIRCUITO

Monte na matriz de contatos o circuito mostrado abaixo. A tensão de entrada (**Vi**) será de 15 V. O diodo será ideal e o indutor será de 5 mH. Já o capacitor de saída será de 680 μ F. Conecte um resistor de 270 Ω na carga. O PWM está configurado para operar na faixa de 500 Hz.

Figura 1 - Conversor cc-cc Boost

Anote os valores obtidos na tabela abaixo, respectivamente.

Parâmetr o	Explicação	Valor Calculado	Valor Simulado
$V_{o(avg)}$	Tensão média na carga		
V _{o(RMS)}	Tensão eficaz na carga		
I _{o(RMS)}	Corrente eficaz na carga		
I _{o(avg)}	Corrente média na carga		
Po	Potência na saída		
ΔL1 _{max}	Ondulação média do indutor		
I _{Lo(max)}	Corrente máxima no indutor		
I _{Lo(avg)}	Corrente média no indutor		
I _{Lo(rms)}	Corrente eficaz no indutor		
I _{Co(max)}	Corrente máxima no capacitor		
I _{Co(rms)}	Corrente eficaz no capacitor		
V _{S1}	Tensão máxima sobre a chave		
V _{D1}	Tensão máxima sobre o diodo		

Utilize as formulas abaixo para fazer o que se pede na atividade:

$$Io = Io_{med} = Io_{rms} = Io_{pk} = \frac{Vo}{Ro} \quad I_{Li} = I_{Li(med)} = I_o \quad V_{D1} = V_{S1} = Vi_{pk}$$

$$\Delta I_{Li} = \frac{Vi}{L_i \cdot F_s} \times D \cdot (1 - D)$$

$$I_{Co(rms)} = \sqrt{\left(\frac{1}{2} \cdot \sqrt{\frac{(1 - D) \cdot \left(12 \cdot Ii^2 + \Delta I_{Li}^2\right)}{3}}\right)^2 - I_o^2} \qquad P_o = V_o \times I_o \qquad I_{Li(max)} = I_{Li} + \frac{\Delta I_{Li}}{2}$$

3. VERIFICAÇÃO

- 1) Os resultados obtidos na simulação condizem com os valores calculados?
- 2) Qual foi o rendimento do circuito analisado acima?
- 3) Compare os valores medidos com os valores calculados no ensaio realizado e explique a razão das discrepâncias (erros de grande amplitude), caso tenham ocorrido.