EE 101 Tutorial 9: Op-Amp Feedback Circuits

1. Consider the following Schmitt trigger circuit. Assume V_o =+/- V_{sat} , plot the V_o vs V_i characteristic, and find the threshold voltages in terms of R_1 , R_2 and V_{sat} .

- 2. The op-amp circuit below is an example of series-series feedback.
- (i) Assuming infinite A, $R_{in}=\infty$, $R_o=0$ Ω for the op-amp, find the gain A_F of the amplifier?
- (ii) Assume finite gain A, finite R_{in}, R_o=0 Ω for the op-amp. For R_{in}>>R show that the input resistance R_{iF} of the amplifier is given by, $R_{iF} = \frac{v_{in}}{i_{in}} \approx \left(1 + \frac{AR}{R + R_L}\right) R_{in}$.
- (iii) Assume finite gain A, finite R_{in} , non-zero R_o for the op-amp. For R_{in} >>R show that, $R_{oF} \approx (1+A)R + R_o$.

- 3. The op-amp in the circuit below is ideal.
- (a) Find the feedback transfer function β and oscillation frequency $\omega_{\text{o}}.$
- (b) Find the relationship between R_1 and R_2 for which the oscillation occurs.

