

AMENDMENTS TO THE CLAIMS:

Please change the heading at page 127, line 1, from "Patent claims" to
--WHAT IS CLAIMED IS--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-9 (canceled)

-- Claim 10 (new) A pyrroline of formula (I)

in which

R¹ represents halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,
R² represents hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,
R³ represents hydrogen, halogen, or methyl,
R⁴ represents hydrogen, C₁-C₆-alkyl, (C₁-C₆-alkoxy)carbonyl, (C₃-C₆-cycloalkyl)-oxycarbonyl, or (C₁-C₆-haloalkoxy)carbonyl; or represents aryl that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, and C₁-C₄-haloalkylthio,
A¹ represents N or CH,
A² represents N or CR⁹,
R⁵ represents hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, C₁-C₆-haloalkoxy, C₁-C₆-haloalkylthio, C₁-C₆-haloalkylsulphanyl, or C₁-C₆-haloalkylsulphonyl,
R⁶, R⁷, R⁸, and R⁹ independently of one another represent hydrogen, halogen, cyano, formyl, nitro, tri(C₁-C₆-alkyl)silyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphanyl, C₁-C₆-alkylsulphonyl, C₂-C₆-alkenyl, C₂-C₆-

alkenyloxy, (C_1 - C_6 -alkyl)carbonyl, (C_1 - C_6 -alkoxy)carbonyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulphiny, C_1 - C_6 -haloalkylsulphonyl, C_2 - C_6 -haloalkenyl, C_2 - C_6 -haloalkenyloxy, (C_1 - C_6 -haloalkyl)-carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, pentafluorothio, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, or $-OSO_2NR^{12}R^{13}$,

R^{10} represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkenyl, or C_3 - C_6 -cycloalkyl,

R^{11} represents hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -haloalkenyl, or C_3 - C_6 -cycloalkyl- C_1 - C_4 -alkyl; or represents aryl- C_1 - C_4 -alkyl that is optionally mono- or polysubstituted by identical or different radicals R^5 ,

R^{12} and R^{13} independently of one another represent hydrogen, C_1 - C_6 -alkyl, or C_1 - C_6 -haloalkyl; represent C_3 - C_6 -cycloalkyl which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_6 -alkyl; represents C_3 - C_6 -cycloalkyl- C_1 - C_4 -alkyl; or represents aryl- C_1 - C_4 -alkyl that is optionally mono- or polysubstituted by identical or different radicals R^5 , or

R^{12} and R^{13} together represent C_2 - C_6 -alkylene, (C_1 - C_3 -alkoxy)- C_1 - C_3 -alkylene, or (C_1 - C_3 -alkylthio)- C_1 - C_3 -alkylene, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C_1 - C_6 -alkyl,

p represents 0, 1, or 2,

Q represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W^1 ,

W^1 represents halogen, cyano, C_1 - C_{16} -alkyl, C_1 - C_{16} -alkoxy, C_1 - C_{16} -alkylthio, C_1 - C_{16} -alkylsulphiny, C_1 - C_{16} -alkylsulphonyl, C_1 - C_{16} -haloalkyl, C_1 - C_{16} -haloalkoxy, C_1 - C_{16} -haloalkylthio, C_1 - C_{16} -haloalkylsulphiny, C_1 - C_{16} -haloalkylsulphonyl, or C_3 - C_{12} -cycloalkyl; or represents aryl or aryl- C_1 - C_4 -alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen, cyano, formyl, nitro, tri(C_1 - C_6 -alkyl)silyl, C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -

alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₂-C₆-alkenyl, C₂-C₆-alkenyloxy, (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, C₁-C₆-haloalkylthio, C₁-C₆-haloalkylsulphinyl, C₁-C₆-haloalkylsulphonyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkenyloxy, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³,

the symbol * denotes a stereogenic center and the symbol • denotes a further stereogenic center when R⁴ does not represent hydrogen, wherein the substituents at the two stereogenic centers are located at cis- or trans-positions relative to each other.

Claim 11 (new): A pyrroline of formula (I) according to Claim 10 in which

R¹ represents fluorine, chlorine, bromine, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R² represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, or C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms,

R³ represents hydrogen, fluorine, chlorine, bromine, or methyl,

R⁴ represents hydrogen, C₁-C₄-alkyl, (C₁-C₆-alkoxy)carbonyl, (C₃-C₆-cycloalkyl)-oxycarbonyl, or (C₁-C₄-haloalkoxy)carbonyl having 1 to 9 fluorine and/or chlorine atoms; or represents phenyl that is optionally mono- to tetra-substituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, iodine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, and C₁-C₄-haloalkylthio having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

A¹ represents N or CH,

A² represents N or CR⁹,

R⁵ represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl; C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, or C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

R^6 , R^7 , R^8 , and R^9 independently of one another represent hydrogen, fluorine, chlorine, bromine, cyano, formyl, nitro, tri(C_1 - C_4 -alkyl)silyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl; C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkyl-sulphinyl, or C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represent C_2 - C_4 -haloalkenyl or C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms; represent (C_1 - C_4 -haloalkyl)carbonyl or (C_1 - C_4 -haloalkoxy)carbonyl, having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represent pentafluorothio, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, or $-OSO_2NR^{12}R^{13}$,

R^{10} represents hydrogen, C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, C_1 - C_4 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl having 1 to 7 fluorine, chlorine, and/or bromine atoms, cyclopropyl, cyclopentyl, or cyclohexyl,

R^{11} represents hydrogen, C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, C_1 - C_4 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl having 1 to 7 fluorine, chlorine, and/or bromine atoms, or C_3 - C_6 -cycloalkyl- C_1 - C_2 -alkyl; or represents benzyl or phenylethyl, each of which is optionally mono- to tetrasubstituted by identical or different radicals R^5 ,

R^{12} and R^{13} independently of one another represent hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, C_3 - C_6 -cycloalkyl, or C_3 - C_6 -cycloalkyl- C_1 - C_2 -alkyl; or represents benzyl or phenylethyl, each of which is optionally mono- to tetrasubstituted by identical or different radicals R^5 , or

R^{12} and R^{13} together represent C_3 - C_5 -alkylene, $-(CH_2)_2-O-(CH_2)_2-$, or $-(CH_2)_2-S-(CH_2)_2-$,

p represents 0 or 1,

Q represents a completely unsaturated 5-membered heterocycle that has 1 to 3 identical or different heteroatoms selected from the group consisting of nitrogen, oxygen, and sulphur and that is mono- or polysubstituted by identical or different radicals selected from W^1 , and

W^1 represents fluorine, chlorine, bromine, cyano, C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphanyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} -haloalkylthio, C_1 - C_{12} -haloalkylsulphanyl, C_1 - C_{12} -haloalkylsulphonyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or aryl- C_1 - C_2 -alkyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphanyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphanyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$.

Claim 12 (new): A pyrroline of formula (I) according to Claim 10 in which

Q represents a completely unsaturated 5-membered heterocycle selected from the group consisting of

in which

R¹⁴ and R¹⁵ independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphiny, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl,

C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R¹⁶ represents hydrogen, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R¹⁴, R¹⁵, and R¹⁶ do not simultaneously represent hydrogen,

R¹⁷ and R¹⁹ independently of one another represent hydrogen, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphinyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkyl-

sulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R¹⁸ represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R¹⁷, R¹⁸, and R¹⁹ do not simultaneously represent hydrogen,

R²⁰ and R²³ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl,

(C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R²¹ and R²² independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R²⁰, R²¹, R²², and R²³ do not simultaneously represent hydrogen,

R²⁴ represents hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl,

R²⁵ and R²⁶ independently of one another represent hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)-carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy,

C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R²⁷ represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R²⁴, R²⁵, R²⁶, and R²⁷ do not simultaneously represent hydrogen,

R²⁸ and R³⁰ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-halo-

alkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R²⁹ represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R³¹ represents hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphinyl, C₁-C₄-alkyl-sulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R²⁸, R²⁹, R³⁰, and R³¹ do not simultaneously represent hydrogen,

R^{32} and R^{34} independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R^{33} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R^{32} , R^{33} , and R^{34} do not simultaneously represent hydrogen,

R^{35} and R^{36} independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R³¹, R³⁵, and R³⁶ do not simultaneously represent hydrogen,

R^{37} represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R^{38} represents hydrogen, chlorine, cyano, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyl-oxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R²⁴, R³⁷, and R³⁸ or R³¹, R³⁷, and R³⁸ do not simultaneously represent hydrogen,

R^{39} , R^{40} and R^{41} independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyl-oxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R³⁹, R⁴⁰, and R⁴¹ do not simultaneously represent hydrogen,

R⁴² and R⁴³ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R²⁴, R⁴², and R⁴³ do not simultaneously represent hydrogen,

R⁴⁴ and R⁴⁵ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³,

$-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and
 $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,
with the proviso that R^{24} , R^{44} , and R^{45} or R^{31} , R^{44} , and R^{45} do not
simultaneously represent hydrogen,
 R^{46} and R^{47} independently of one another represent hydrogen, C_1 - C_{12} -alkyl,
 C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkyl-
sulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or
benzyl, each of which is optionally mono- to tetrasubstituted by
identical or different substituents selected from the group consisting of
fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -
alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl,
 C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)-
carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -
haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9
fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -
haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or
bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$,
 $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and
 $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,
with the proviso that R^{46} and R^{47} do not simultaneously represent hydrogen,
 R^{48} and R^{49} independently of one another represent hydrogen, C_1 - C_{12} -alkyl,
 C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkyl-
sulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or
benzyl, each of which is optionally mono- to tetrasubstituted by
identical or different substituents selected from the group consisting of
fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -
alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 -
 C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)-
carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -
haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9
fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -
haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or
bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$,

$-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and
 $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,
with the proviso that R^{48} and R^{49} do not simultaneously represent hydrogen,
 R^{50} and R^{51} independently of one another represent hydrogen, C_1 - C_{12} -alkyl,
 C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkyl-
sulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represent phenyl or
benzyl, each of which is optionally mono- to tetrasubstituted by
identical or different substituents selected from the group consisting of
fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -
alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl,
 C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)-
carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -
haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9
fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -
haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or
bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$,
 $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and
 $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,
with the proviso that R^{50} and R^{51} do not simultaneously represent hydrogen,
 R^{52} represents hydrogen, C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio,
 C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or
 C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is
optionally mono- to tetrasubstituted by identical or different substituents
selected from the group consisting of fluorine, chlorine, cyano, formyl,
nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -
alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy,
(C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -
haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -halo-
alkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or
bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in
each case 1 to 7 fluorine, chlorine, and/or bromine atoms,
 $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$,

$-(\text{CH}_2)_p\text{N}(\text{R}^{12})\text{SO}_2\text{R}^{13}$, $-\text{OSO}_2\text{R}^{12}$, and $-\text{OSO}_2\text{NR}^{12}\text{R}^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R^{53} represents hydrogen, chlorine, cyano, $\text{C}_1\text{-C}_{12}\text{-alkyl}$, $\text{C}_1\text{-C}_{12}\text{-alkoxy}$, $\text{C}_1\text{-C}_{12}\text{-alkylthio}$, $\text{C}_1\text{-C}_{12}\text{-alkylsulphinyl}$, $\text{C}_1\text{-C}_{12}\text{-alkylsulphonyl}$, $\text{C}_1\text{-C}_{12}\text{-haloalkyl}$, or $\text{C}_3\text{-C}_{12}\text{-cycloalkyl}$; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, $\text{C}_1\text{-C}_4\text{-alkyl}$, $\text{C}_1\text{-C}_4\text{-alkoxy}$, $\text{C}_1\text{-C}_4\text{-alkylthio}$, $\text{C}_1\text{-C}_4\text{-alkylsulphinyl}$, $\text{C}_1\text{-C}_4\text{-alkylsulphonyl}$, $\text{C}_2\text{-C}_4\text{-alkenyl}$, $\text{C}_2\text{-C}_4\text{-alkenyloxy}$, $(\text{C}_1\text{-C}_4\text{-alkyl})\text{carbonyl}$, $(\text{C}_1\text{-C}_4\text{-alkoxy})\text{carbonyl}$, $\text{C}_1\text{-C}_4\text{-haloalkyl}$, $\text{C}_1\text{-C}_4\text{-haloalkoxy}$, $\text{C}_1\text{-C}_4\text{-haloalkylthio}$, $\text{C}_1\text{-C}_4\text{-haloalkylsulphinyl}$, $\text{C}_1\text{-C}_4\text{-haloalkylsulphonyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, $\text{C}_2\text{-C}_4\text{-haloalkenyl}$, $\text{C}_2\text{-C}_4\text{-haloalkenyl-oxy}$ having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-\text{C}(\text{R}^{10})=\text{N}-\text{OR}^{11}$, $-\text{SO}_2\text{NR}^{12}\text{R}^{13}$, $-(\text{CH}_2)_p\text{NR}^{12}\text{R}^{13}$, $-(\text{CH}_2)_p\text{N}(\text{R}^{12})\text{COR}^{13}$, $-(\text{CH}_2)_p\text{N}(\text{R}^{12})\text{SO}_2\text{R}^{13}$, $-\text{OSO}_2\text{R}^{12}$, and $-\text{OSO}_2\text{NR}^{12}\text{R}^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

with the proviso that R^{52} and R^{53} do not simultaneously represent hydrogen,

R^{54} represents hydrogen, chlorine, cyano, $\text{C}_1\text{-C}_{12}\text{-alkyl}$, $\text{C}_1\text{-C}_{12}\text{-alkoxy}$, $\text{C}_1\text{-C}_{12}\text{-alkylthio}$, $\text{C}_1\text{-C}_{12}\text{-alkylsulphinyl}$, $\text{C}_1\text{-C}_{12}\text{-alkylsulphonyl}$, $\text{C}_1\text{-C}_{12}\text{-haloalkyl}$, or $\text{C}_3\text{-C}_{12}\text{-cycloalkyl}$; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, $\text{C}_1\text{-C}_4\text{-alkyl}$, $\text{C}_1\text{-C}_4\text{-alkoxy}$, $\text{C}_1\text{-C}_4\text{-alkylthio}$, $\text{C}_1\text{-C}_4\text{-alkylsulphinyl}$, $\text{C}_1\text{-C}_4\text{-alkylsulphonyl}$, $\text{C}_2\text{-C}_4\text{-alkenyl}$, $\text{C}_2\text{-C}_4\text{-alkenyloxy}$, $(\text{C}_1\text{-C}_4\text{-alkyl})\text{carbonyl}$, $(\text{C}_1\text{-C}_4\text{-alkoxy})\text{carbonyl}$, $\text{C}_1\text{-C}_4\text{-haloalkyl}$, $\text{C}_1\text{-C}_4\text{-haloalkoxy}$, $\text{C}_1\text{-C}_4\text{-haloalkylthio}$, $\text{C}_1\text{-C}_4\text{-haloalkylsulphinyl}$, $\text{C}_1\text{-C}_4\text{-haloalkylsulphonyl}$ having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, $\text{C}_2\text{-C}_4\text{-haloalkenyl}$, $\text{C}_2\text{-C}_4\text{-haloalkenyl-oxy}$ having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-\text{C}(\text{R}^{10})=\text{N}-\text{OR}^{11}$, $-\text{SO}_2\text{NR}^{12}\text{R}^{13}$, $-(\text{CH}_2)_p\text{NR}^{12}\text{R}^{13}$, $-(\text{CH}_2)_p\text{N}(\text{R}^{12})\text{COR}^{13}$, $-(\text{CH}_2)_p\text{N}(\text{R}^{12})\text{SO}_2\text{R}^{13}$, $-\text{OSO}_2\text{R}^{12}$, and $-\text{OSO}_2\text{NR}^{12}\text{R}^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R^{55} represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R⁵⁴ and R⁵⁵ do not simultaneously represent hydrogen, R⁵⁶ and R⁵⁷ independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)-carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

with the proviso that R⁵⁶ and R⁵⁷ do not simultaneously represent hydrogen,

R^{58} and R^{59} independently of one another represent hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represent phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R⁵⁸ and R⁵⁹ do not simultaneously represent hydrogen, R⁶⁰ represents hydrogen, C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, with the proviso that R²⁴ and R⁶⁰ or R³¹ and R⁶⁰ do not simultaneously represent hydrogen,

R^{61} represents C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)-carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R^{62} represents cyano, C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -alkylthio, C_1 - C_{12} -alkylsulphinyl, C_1 - C_{12} -alkylsulphonyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)-carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphinyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10,

R^{63} represents C_1 - C_{12} -alkyl, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the

group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R⁶⁴ represents C₁-C₁₂-alkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-haloalkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R⁶⁵ represents C₁-C₁₂-alkyl, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in

each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-halo-alkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R⁶⁶ represents C₁-C₁₂-alkyl, C₁-C₁₂-alkylthio, C₁-C₁₂-alkylsulphanyl, C₁-C₁₂-alkylsulphonyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-halo-alkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10,

R⁶⁷ represents C₁-C₁₂-alkyl, C₁-C₁₂-haloalkyl, or C₃-C₁₂-cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulphanyl, C₁-C₄-alkylsulphonyl, C₂-C₄-alkenyl, C₂-C₄-alkenyloxy, (C₁-C₄-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphanyl, C₁-C₄-haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C₂-C₄-halo-alkenyl, C₂-C₄-haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, -C(R¹⁰)=N-OR¹¹, -SO₂NR¹²R¹³, -(CH₂)_pNR¹²R¹³, -(CH₂)_pN(R¹²)COR¹³, -(CH₂)_pN(R¹²)SO₂R¹³, -OSO₂R¹², and -OSO₂NR¹²R¹³, where R¹⁰ to R¹³ are as defined in Claim 10, and

R^{68} represents C_1 - C_{12} -alkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -haloalkyl, or C_3 - C_{12} -cycloalkyl; or represents phenyl or benzyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, cyano, formyl, nitro, trimethylsilyl, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulphanyl, C_1 - C_4 -alkylsulphonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenyloxy, (C_1 - C_4 -alkyl)carbonyl, (C_1 - C_4 -alkoxy)carbonyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulphanyl, C_1 - C_4 -haloalkylsulphonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkenyloxy having in each case 1 to 7 fluorine, chlorine, and/or bromine atoms, $-C(R^{10})=N-OR^{11}$, $-SO_2NR^{12}R^{13}$, $-(CH_2)_pNR^{12}R^{13}$, $-(CH_2)_pN(R^{12})COR^{13}$, $-(CH_2)_pN(R^{12})SO_2R^{13}$, $-OSO_2R^{12}$, and $-OSO_2NR^{12}R^{13}$, where R^{10} to R^{13} are as defined in Claim 10.

Claim 13 (new): A pyrroline of formula (I) according to Claim 10 in which A^1 and A^2 each represent CH.

Claim 14 (new): A pyrroline of formula (I-b) according to Claim 10 in which

in which

A^1 , A^2 , R^1 , R^2 , R^3 , R^5 , R^6 , R^7 , R^8 , and Q are as defined for formula (I) in Claim 10, R^4 is as defined for formula (I) in Claim 10 but does not represent hydrogen, the carbon atom in the 2-position of the pyrrole ring has the R configuration, and the two substituents in the 2- and 3-positions of the pyrrole ring are located *cis* to each other.

Claim 15 (new): A pyrroline of formula (I-a) according to Claim 10 in which

in which

$A^1, A^2, R^1, R^2, R^3, R^5, R^6, R^7, R^8$, and Q are as defined for formula (I) in Claim 10,

and

the carbon atom in the 2-position of the pyrrole ring has the R configuration.

Claim 16 (new): A pyrroline of formula (I-f) according to Claim 10 in which

in which

(1) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(2) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(3) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(4) R^1 is CH₃, R^2 is H, R^3 is H, R^4 is H, R^5 is H, and Q is

(5) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is F, and Q is

(6) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is H, and Q is

(7) R^1 is F, R^2 is F, R^3 is H, R^4 is H, R^5 is F, and Q is

(8) R^1 is F, R^2 is F, R^3 is H, R^4 is CO₂Et, R^5 is H, and Q is

(9) R^1 is F, R^2 is F, R^3 is H, R^4 is CO₂Et, R^5 is H, and Q is

(10) R^1 is F, R^2 is F, R^3 is H, R^4 is CO₂Et, R^5 is H, and Q is

(11) R^1 is CH₃, R^2 is H, R^3 is H, R^4 is H, R^5 is H, and Q is

(12) R^1 is CH₃, R^2 is H, R^3 is H, R^4 is H, R^5 is H, and Q is

(13) R^1 is F, R^2 is F, R^3 is H, R^4 is C₂H₅, R^5 is H, and Q is

(14) R¹ is CH₃, R² is H, R³ is H, R⁴ is H, R⁵ is F, and Q is

(15) R¹ is CH₃, R² is H, R³ is H, R⁴ is H, R⁵ is F, and Q is

(16) R¹ is CH₃, R² is H, R³ is H, R⁴ is H, R⁵ is F, and Q is

(17) R¹ is CH₃, R² is H, R³ is H, R⁴ is H, R⁵ is F, and Q is

(18) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

(19) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

(20) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

(21) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

(22) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

(23) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(24) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(25) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(26) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(27) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(28) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(29) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(30) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

(31) R¹ is F, R² is F, R³ is H, R⁴ is H, R⁵ is H, and Q is

,

Claim 17 (new): A process for preparing compounds of formula (I) according to
Claim 10 comprising reacting a Δ^1 -pyrroline of formula (II)

in which R^1 , R^2 , R^3 , R^4 , A^1 , and R^5 are as defined for formula (I) in Claim 10,
with a benzene derivative of formula (III)

in which

A^2 , R^6 , R^7 , R^8 , and Q are as defined for formula (I) in Claim 10, and
 X^1 represents bromine, iodine, or $-OSO_2CF_3$,

in the presence of a catalyst and in the presence of a diluent.

Claim 18 (new): A pesticide comprising one or more compounds of formula (I)
according to Claim 10 and one or more extenders and/or surfactants.

Claim 19 (new): A method for controlling pests comprising allowing an effective
amount of one or more compounds of formula (I) according to Claim 10 to act on
pests and/or their habitat.

Claim 20 (new): A process for preparing pesticides comprising mixing one or more
compounds of formula (I) according to Claim 10 with one or more extenders and/or
surfactants. --