

TOTAL DISSOLVED GAS CASE STUDY

Zhonglong Zhang, PhD, PE, PH Portland State University

CE-QUAL-W2 Workshop

August 16 - 18, 2022

UNCLASSIFIED

Objectives

- This case study is used to demonstrate Total Dissolved Gas (SYSTDG) modeling capabilities in W2 V4.5 model.
- Bonneville Dam is located on Columbia River Mile (RM) 146.1 and is a run-of-river dam.
- The reservoir is 48 miles long, from Bonneville Dam to the foot of Dalles Dam upstream, with a surface area of 29.5 square miles, and a capacity of 537,000 acrefeet.
- The full forebay elevation is 77 feet, and the maximum forebay elevation is 82.5 feet.
- The Dam is 171 feet high and 2,477 feet long.
- The spillway is 1,070 feet long and contains 18 spill bays each with a 50 feet by 60 feet lift gate.
- Bonneville Dam is equipped with 2 powerhouse units, 18 spillbays, and 1 fish ladder.
- Columbia River System Operations Final Environmental Impact Statement:
 - https://www.nwd.usace.army.mil/CRSO/Final-EIS/

TDG Saturation

Calculating and reporting dissolved gas levels

1) Ratio of total dissolved gas pressure (TGP) to atmospheric pressure.

$$TDG(\%) = 100 \frac{P_a + \Delta P}{P_a}$$

 $TDG(\%) = \left(79 \frac{N2}{N2a} - 21 \frac{DO}{DO}\right)$

TDG = percent of total dissolved gas saturation (%),

 $TDG(\%) = 100 \frac{P_a + \Delta P}{P_a}$ $P_a = \text{local barometric pressure or atmospheric pressure (mmHg)},$

 ΔP = gauge pressure (mmHg), which can be directly measured by several types of instruments.

2) Gas concentrations measured in mg/L

$$N2$$
 = dissolved nitrogen gas (mg L⁻¹),

$$N2_s$$
 = nitrogen gas saturation (mg L⁻¹),

$$DO = \text{dissolved oxygen [mg-O}_2 L^{-1}],$$

$$DO_s$$
 = dissolved oxygen saturation [mg-O₂ L⁻¹].

TDG Modeling in CE-QUAL-W2

TDG is computed as a derived variable

1) N2 + DO

$$\frac{dN2}{dt} = -\frac{1}{h}k_{aN2}(N2 - N2_s)$$

 k_{aN2} = nitrogen gas reaeration coefficient, m s⁻¹.

2) DGP (Dissolved Gas Pressure)

$$\frac{dDGP}{dt} = -k_{DGP}(DGP - PALT_{atm})$$

$$k_{DGP} = max(k_{DGP}, MINKL)$$

 k_{DGP} = air/water gas exchange rate, d⁻¹.

Lake/reservoir Reaeration equations

It is assumed that wind is the dominant forcing function for reaeration.

Reaeration Effects of Spillways, Weirs, and Gates

#, EQGT	Equation	Empirical Coefficient Description
Linear function of spill on a per spillway basis; 2 empirical	$%TDG = aq_s + b$	%TDG = total dissolved gas saturation, % $q_s = \text{spill through an individual spillway, } kcfs$
coefficients: a and b	$C_{O_2} = \%TDG * C_{sO_2}$	C_{sO2} = dissolved oxygen saturation, $g m^{-3}$
2. Bounded exponential of the spill on a per spillway basis; 3 empirical coefficients: a, b, c	$\%TDG = a + be^{cq_s}$ $C_{O_2} = \%TDG * C_{sO_2}$	q_s = spill through an individual spillway, kcfs C_{so2} = dissolved oxygen saturation $g m^{-3}$
3. Reaeration effect for a small height weir or dam (<10 m); 3 empirical coefficients: a, b, c (Butts and Evans, 1983)	$\frac{D_a}{D_b} = 1 + 0.38ab(1 - 0.11c)$ $(1 + 0.046T)c$ $C_{02} = C_{s02} - D_b$	D_a = DO deficit above dam, $g m^{-3}$ D_b = DO deficit below dam, $g m^{-3}$ T = temperature, ${}^{\circ}C$ C_{sO2} = dissolved oxygen saturation, $g m^{-3}$

REAERATION

TYPE: LAKE, RIVER, or ESTUARY
EQN#: Equation # (see User Manual)
COEF1 User defined parameter

Total Dissolved Gas (TDG)

SPILLWAYS	SP1		COEF2 User defined parameter		0.2			
			COEF3 User defined parameter		0.5			
IUSP- Upstream segment number, spillway segment			COEF4 User defined parameter DGPO2, fraction of dissolved gas to reaeration coefficient, typical value 1.027		1.027			
IDSP- Downstream segment number, Down	stream segment		MINKL (if LAKE, m/d) or MINKA (if RIVER/ESTUARY, day-1)		0.6			
ESP - spillway elevation (crest), m		GATES		GATE1	GATE2	GTE3	GATE	<u>-</u> 4
		IUGT- Upstream segment n			76	76	76	76
A1SP-α1, empirical coefficient for free-flow		IDGT- Downstream segmen	nt number		0	0	0	0
B1SP-β1, empirical coefficient for free-flowi	ng conditions	EGT - Gate elevation m	equation for free flowing conditions		11.7	7.3	7.3	7.3
A2SP-α2, empirical coefficient for submerge	d conditions		equation for free flowing conditions		1.5	1.5	1.5	1.5
B2SP-β2, empirical coefficient for submerge		G1GT gamma1 coeff for fre	e flowing conditions		1	1	1	1
			equation for submerged conditions		10	10	10	10
LATSPC-Downstream or lateral withdrawal,	DOWN or LAT		equation for submerged conditions		1.5	1.5	1.5	1.5
PUSPC-How inflows enter into the upstream	n spillway seg-m	G2GT gamma2 coeff for sub	-	DOWN	1	1	1	1
·					DOWN	DOWN		_
ETUSP-Top elevation spillway inflows enter	using SPECIFY o	GTA1 α1 in gate equation for free flowing conditions as a spillway			10	10	10	10
EBUSP-Bottom elevation spillway inflows er	n <mark>ter using SPECII</mark>	GTB1 β1 in gate equation for free flowing conditions as a spillway GTA2 α2 in gate equation for submerged conditions as a spillway			1.5	1.5	1.5	1.5
KTUSP-Top layer above which selective with	n <mark>drawal will not</mark>	GTB2 β2 in gate equation for submerged conditions as a spillway			1.5	1.5	1.5	1.5
KBUSP-Spillway Up Selective withdrawal bo		, , , , , , , , , , , , , , , , , , ,		FLOW	FLOW	FLOW	FLOV	V
		drie Erriteit of or artificipolate gate me		ON	ON	ON	ON	
PDSPC-How inflows enter into the downstre	e <mark>am spillway seg</mark>			DISTR	DISTR	DISTR	DIST	2
ETUSP-Top elevation spillway inflows enter	using SPECIFY o		inflows enter using the SPECIFY option, m ate inflows using the SPECIFY option, m					
EBUSP-Bottom elevation spillway inflows er	ter using SDFCII				2	2	2	2
	KRUGT-		KBUGT-Selective withdrawal bottom layer, Bottom layer below which selective withdrawal will not occur			55	55	55
KTDSP-Top layer above which selective with drawal will not				DISTR	DISTR	DISTR	DIST	R
KBDSP-Spillway Down Selective withdrawal	bottom layer bo	ETDGT Top elevation gate inflows enter using the SPECIFY option, m						
ACCRO D: I I I I I I I I I I I I I I I I I I		EBDGT Bottom elevation ga	ate inflows using the SPECIFY option, m					
GASSPC Dissolved gas computations ON or			which selective withdrawal will not occur		2	2	2	2
EQSP Equation number for computing disso	lved gas	KBDGT-Selective withdrawal bottom layer, Bottom layer below which selective withdrawal will not occur GASGTC Dissolved gas computations ON or OFF		OFF	55 ON	55 ON	55 ON	55
AGASSP a empirical coefficient		EQGT Equation number for computing dissolved gas		0/1	2	2	2	2
BGASSP b empirical coefficient		AGASGT a empirical coefficient			135	135	135	135
·		BGASGT b empirical coefficient			-35	-35	-35	-35
CGASSP c empirical coefficient		CGASGT c empirical coefficient			-0.1	-0.1	-0.1	-0.1

Reaeration Effects of Gates - SYSTDG Approach

$$TDG_{rel} = \frac{TDG_{sp}(Q_{sp} + Q_{ent}) + TDG_{ph}(Q_{ph} - Q_{ent})}{Q_{ph} + Q_{sp}}$$

- Qtot, Qspill, Qph, Qent
- TDGspill is computed from spillway TDG production equation
- TDGrel is computed as the flow weighted average value

Schneider, M., Hamilton, L., 2015. SYSTDG Developer's Manual. U.S. Army Corps of Engineers, Northwestern Division, Reservoir Control Center.

SYSTDG Algorithms

No	TDG Production Equation
1	$TDG_{sp} = P1 * \left(1 - e^{P3 * Q_{sp}}\right) + bp$
2	$TDG_{sp} = P1 * (twe - twce)^{P2} * (1 - e^{P3*q_s}) + P4 + bp$
3	$TDG_{sp} = P1 * (twe - twce)^{P2} * q_s^{P3} + P4 + bp$
4	$TDG_{sp} = P1 * (twe - twce) + P2 * q_s^{P3} + P4 + bp$
5	$TDG_{sp} = P1 * (1 - e^{P2 * q_s}) + P3 * (Temp_{tw} - P4) + bp$

No	Powerhouse Flow Entrainment Equation				
1	$Q_{ent} = E1 * Q_{sp} + E2$				
2	$Q_{ent} = min[(Q_{tot} / 60), 1] * E1 * Q_{sp} + E2$				
3	$Q_{ent} = min[(Q_{sp}/20), 1] * E1 * Q_{sp} + E2$				

SYSTDG is an Excel-based spreadsheet model used to compute TDG saturation levels in reservoir and riverine systems.

System Total Dissolved Gas (SYSTDG) Control File

	SYSTDGC	SYSTDG	N2BND	DOBND	DGPBN	TDGTA				
16		OFF	OFF	OFF	OFF	OFF				
17										
18	GATE GAS	GTTYPE	SPBC							
19	POWR1	POW	1							
20	SB1	SPB	2.03							
21	SB2	SPB	2.03							
22	SB3	SPB	2.03							
23	SB4	SPB	2.03							
		SPB	2.03							
25	SB6	SPB	2.03							
26	SB7	SPB	2.03							
27	SB8	SPB	2.03							
		SPB	2.03							
		SPB	2.03							
30	SB11	SPB	2.03							
		SPB	2.03							
32	SB13	SPB	2.03							
		SPB	2.03							
		SPB	2.03							
35	SB16	SPB	2.03							
		SPB	2.03							
		SPB	2.03							
38	OTHER	FLD	1							
39										
		FBE	TWCE	TWEMO				QSPILL	TDGSPMN	
	SPB1	-1	0	0	18.92	ON	SPB	0	110	
42										
	GATE TDG	TDGEQ	P1					P2	P3	P4
44	SPB1	4	1.84	18.64	0.73	29.47				

US Army Corps of Engineers • Engineer Research and Development Center

Bonneville Dam Model Demo

Model Inputs

w2_con.csv w2_systdg.npt

File type		File name
Wind sheltering	WSC FILE WSCFN	BON_WSC.npt
Shading	SHDFN	BON_SHD_1.npt
Bathymetry	BTHFN	BON_NAVD88_BTH_2011.csv
Meteorological	METFN	BON_2011_2015_MET.csv
	QINFN branch inflow	DALLES_OUTFLOW.csv
	TINFN branch temp	two_41_TDA.opt
Branch inflow	CINFN branch conc	cwo_41_TDA.opt
Dranch millow	QDTFN Distributed flow	BON_DistributedTribInflow.npt
	TDTFN Distributed temp	two_41_TDA.opt
	CDTFN Distributed conc	cwo_41_TDA.opt
Spillway/Gate	QGTFN	QGT_BON_2011_2015.csv

TDG Results Predicted from Two Approaches

SYSTDG = ON

E1 = 0. E2 = 0

Eq 4:
$$TDG_{sp} = P1 * (twe - twce) + P2 * q_s^{P3} + P4 + bp$$

 $P1 = 1.84, P2 = 18.64, P3 = 0.73, P4 = 29.47$
 $Q_{ent} = E1 * Q_{sp} + E2$

SYSTDG = OFF

Eq 1:
$$TDG(\%) = a * Q_s + b$$

 $a = 0.12, b = 105.61$

Hands-On Exercises

Questions?

US Army Corps of Engineers • Engineer Research and Development Center