Homework 2 Kate Davis February 12, 2015

Coin Toss

A fair coin is tossed fifteen times, and the number of heads is records. This trial is repeated nine times. The resulting data should have nine observations of "Number of Head in Fifteen Tosses"

The mean we use is the arithmetic average, which is calculated by first adding the values of all the observations, then dividing by the number of observations.

$$\sum_{i=0}^{N} x_i = x_1 + x_2 + x_3 + \dots + x_{42} + x_{43} + x_{44} + x_{45}$$

$$\bar{x} = \frac{\sum\limits_{i=1}^{N} x_i}{N}$$

$$Dev_{\bar{x}} = (x_i - \bar{x})$$

$$Dev_{\bar{x}}^2 = (x_i - \bar{x})^2$$

$$Var(X) = \frac{\sum_{i=1}^{N} Dev_{\bar{x}}^2}{N} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N}$$

$$StdDev(X) = \sqrt{Var(X)}$$

Observation	Heads	Dev⊼	$Dev_{\bar{x}}^2$	
			· I	
x_1	6	-2.0	4.0	
x_2	7	-1.0	1.0	
<i>x</i> ₃	10	2.0	4.0	
x_4	5	-3.0	9.0	
x_5	9	1.0	1.0	
x_6	6	-2.0	4.0	
<i>x</i> ₇	6	-2.0	4.0	
x_8	9	1.0	1.0	
<i>x</i> ₉	11	3.0	9.0	
x_{10}	8	0.0	0.0	
x_{11}	5	-3.0	9.0	
x_{12}	9	1.0	1.0	
<i>x</i> ₁₃	10	2.0	4.0	
x_{14}	7	-1.0	1.0	
<i>x</i> ₁₅	8	0.0	0.0	
x_{16}	10	2.0	4.0	
<i>x</i> ₁₇	6	-2.0	4.0	
x_{18}	7	-1.0	1.0	
<i>x</i> ₁₉	8	0.0	0.0	
x_{20}	6	-2.0	4.0	
x_{21}	7	-1.0	1.0	
<i>x</i> ₂₂	8	0.0	0.0	
<i>x</i> ₂₃	6	-2.0	4.0	
x_{24}	11	3.0	9.0	
<i>x</i> ₂₅	7	-1.0	1.0	
<i>x</i> ₂₆	9	1.0	1.0	
x ₂₇	8	0.0	0.0	
<i>x</i> ₂₈	7	-1.0	1.0	
<i>x</i> ₂₉	9	1.0	1.0	
<i>x</i> ₃₀	8	0.0	0.0	
<i>x</i> ₃₁	8	0.0	0.0	
x_{32}	6	-2.0	4.0	
<i>x</i> ₃₃	5	-3.0	9.0	
<i>x</i> ₃₄	9	1.0	1.0	
<i>x</i> ₃₅	7	-1.0	1.0	
<i>x</i> ₃₆	7	-1.0	1.0	
<i>x</i> ₃₇	10	2.0	4.0	
<i>x</i> ₃₈	9	1.0	1.0	
<i>x</i> ₃₉	5	-3.0	9.0	
<i>x</i> ₄₀	12	4.0	16.0	
<i>x</i> ₄₁	13	5.0	25.0	
x ₄₂	10	2.0	4.0	
<i>x</i> ₄₃	8	0.0	0.0	
<i>x</i> ₄₄	13	5.0	25.0	
x ₄₅	7	-1.0	1.0	
Total	J		184.0	
Total over N 8.0 0		4.1		
	Average	Zero	Variance	

Table 1: Number of Heads in Fifteen Tosses

A frequency table and histogram visualize the center and spread with the mean as a center.

Histogram of Weights in Whole Inches

	Heads	Heads Frequency CumulativeFrequency		ency	ecdf	
	5	4		4	0.089	
	6	7		11	0.244	
	7	9		20	0.444	
	. 8	8		28	0.622	
J	Figure 1:	Histogram	s with Fre-	35	0.778	
(ruento P	olvgon5and	Ogive (Cu-	40	0.889	
				42	0.933	
1	mula <u>‡</u> įve	Frequency	Polygon).	43	0.956	
-	The Height data set is unimodal, 45 1.000					

skewed right, with out outlier Table 2: Frequency Table on the left.

Frequency Polygram of Weights in Whole Inches

Figure 2: Histograms with Frequency Polygon and Ogive (Cumulative Frequency Polygon). The Height data set is unimodal, skewed right, with out outlier on the left.

Figure 3: Histogram with Ogive (Cumulative Frequency Polygon).