PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 98/21328
C12N 15/12, C07K 14/705, C12N 5/10, 15/57, 9/48, 9/14, 15/55	A2	(43) International Publication Date: 22 May 1998 (22.05.98)
(21) International Application Number: PCT/J (22) International Filing Date: 7 November 1997	P97/040 (07.11.9	(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
(30) Priority Data: 8/301429 13 November 1996 (13.11	.96)	Published Without international search report and to be republished upon receipt of that report.
(71) Applicants (for all designated States except US): CHEMICAL RESEARCH CENTER [JP/. Nishi-Ohnuma 4-chome, Sagamihara-shi, Kan (JP). PROTEGENE INC. [JP/JP]; 2-20-3, Meguro-ku, Tokyo 153 (JP).	JPJ; 4- agawa 2	9
(72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seis 3-46-50, Wakamatsu, Sagamihara-shi, Kanagaw SEKINE, Shingo [JP/JP]; 4-4-1, Nishi-Ohnum hara-shi, Kanagawa 229 (JP). YAMAGUCH [JP/JP]; 5-13-11, Takasago, Katsushika-ku, ' (JP). KOBAYASHI, Midori [JP/JP]; 647-2, Ci jisawa-shi, Kanagawa 252 (JP).	a 229 (J. a, Sagar I, Tomo Tokyo 1). i. io 55
(74) Agents: AOYAMA, Tamotsu et al.; Aoyama & IMP Building, 3-7, Shiromi 1-chome, Chuo-ku,	& Partne Osaka–s	S, ui,

(54) Title: HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAS ENCODING THESE PROTEINS

(57) Abstract

Proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25 and DNAs encoding said proteins exemplified by cDNAs containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50. Said proteins can be provided by expressing cDNAs encoding human proteins having transmembrane domains and recombinants of these human cDNAs.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Słovakia
AТ	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	- Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

DESCRIPTION

Human Proteins Having Transmembrane Domains and DNAs Encoding These Proteins

TECHINICAL FIELD

The present invention relates to human proteins having transmembrane domains, DNAs encoding these proteins and eukaryotic cells expressing those DNAs. The proteins of the present invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. The cDNAs of the present invention can be used as probes for the gene diagnosis and gene sources for the gene therapy. Furthermore, the cDNAs can be used as gene sources for large-scale production of the proteins encoded by said cDNAs. Moreover, the cells introduced with DNAs encoding transmembrane proteins therein and expressing transmembrane proteins in large amounts can be used for detection of the corresponding ligands as well as screening of novel low molecular medicines.

BACKGROUND ART

Membrane proteins play important roles, as signal receptors, ion channels, transporters, etc., for the material transportation and the information transmission which are mediated by the cell membrane. Their examples include receptors for a variety of cytokines, ion channels for the sodium ion, the potassium ion, the chloride ion, etc., transporters for saccharides and amino acids, and so on,

where the genes for many of them have been cloned already.

It has been clarified that the abnormalities of these membrane proteins are related to a number of hitherto cryptogenic diseases. For example, a gene for a membrane protein having 12 transmembrane domains was identified as the gene responsible for cystic fibrosis [Rommens, J. M. et al., Science 245: 1059-1065 (1989)]. In addition, it has been clarified that several membrane proteins act as the receptors when a virus infects the cells. For example, HIV-1 is revealed to infect into the cells through the mediation of a membrane protein fusin, a membrane protein on the T-cell membrane, having a CD-4 antigen and 7 transmembrane domains [Feng, Y. et al., Science 272: 872-877 (1996)]. Therefore, discovery of a new membrane protein is anticipated to lead to the elucidation of the causes of many diseases, whereby isolation of a new gene coding for the membrane protein has been desired.

Heretofore, owing to difficulty in the purification, many of membrane proteins have been isolated by an approach from the gene side. A general method is the so-called expression cloning which comprises transfection of a cDNA library in the animal cells to express the cDNA and then detection of the cells expressing the target membrane protein on the membrane by an immunological technique using an antibody or a biological technique for the change in the membrane permeability. However, this method is applicable only to cloning of a gene for a membrane protein with a known function.

In general, membrane proteins possess hydrophobic

inside the proteins which are domains transmembrane the and then remain the ribosome synthesized in phospholipid to be trapped in the membrane. Accordingly, the evidence of the cDNA for encoding the membrane protein is provided by determination of the whole base sequence of a full-length cDNA followed by detection of highly hydrophobic transmembrane domains in the amino acid sequence of the protein encoded by said cDNA.

The object of the present invention is to provide novel human proteins having transmembrane domains, DNAs encoding said proteins and transformed eukaryotic cells capable of expressing said DNAs.

As the result of intensive studies, the present inventors were successful in cloning of cDNAs having transmembrane domains from a human full-length cDNA bank, thereby completing the present invention. That is to say, the present invention provides proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25 that are human proteins having transmembrane domains. The present invention also provides DNAs encoding said proteins such as cDNAs containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50 and transformed eukaryotic cells capable of expressing said DNAs.

Each of the proteins of the present invention can be obtained, for example, by a method for isolation from human organs, cell lines, etc, a method for preparation of the peptide by the chemical synthesis on the basis of the amino acid sequence of the present invention, or a method for

production with the recombinant DNA technology using the DNA encoding the transmembrane domains of the present invention, wherein the method for obtainment by the recombinant DNA technology is employed preferably. For example, an in vitro expression can be achieved by preparation of an RNA by the in vitro transcription from a vector having a cDNA of the present invention, followed by the in vitro translation using this RNA as a template. Also, the recombination of the translation domain to a suitable expression vector by the method known in the art leads to the expression of a large amount of the encoded protein by using prokaryotic cells (e.g. Escherichia coli, Bacillus subtilis) or eukaryotic cells (e.g. yeasts, insect cells, animal cells).

In the case in which a protein of the present invention is expressed by a microorganism such as Escherichia coli, the translation region of a cDNA of the present invention is constructed in an expression vector having an origin, a promoter, ribosome-binding site(s), cDNA-cloning site(s), a terminator, etc. that can be replicated in the microorganism and, after transformation of the host cells with said the thus-obtained transformant expression vector, incubated, whereby the protein encoded by said cDNA can be produced on a large scale in the microorganism. In that case, a protein fragment containing an optional region can be obtained by performing the expression with inserting an initiation codon and a termination codon before and after the optional translation region. Alternatively, a fusion protein with another protein can be expressed. Only a protein portion encoding said cDNA can be obtained by cleavage of said fusion

protein with an appropriate protease.

In the case wherein a protein of the present invention is to be produced in eukaryotic cells, the translation region of said cDNA may be subjected to recombination to an expression vector for eukaryotic cells having a promoter, a splicing domain, a poly(A) addition site, etc. and transfected into the eukaryotic cells so that the protein is produced as a membrane protein on the cell membrane surface. expression vector, there are exemplified pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS, pYES2, etc. Examples of the eukaryotic cells are mamamlian animal culture cells (e.g. simian renal cells COS7, chinese hamster ovarian cells CHO), blast yeasts, fission yeasts, silkworm yeasts, South African clawed toad oocytes, etc. However, any eukaryotic cells may be used insofar as the protein of the invention can be expressed on the cell membrane surface. order to introduce the expression vector into the eukaryotic cells, there may be used any per se conventional method such as electroporation method, calcium phosphate method, liposome method or DEAE dextran method.

For separation and purification of the protein of the invention from the culture after expression of such protein in prokaryotic cells or eukaryotic cells, conventional separation operations may be adopted, if necessary, in their proper combinaion. Examples of the conventional separation operations are treatment with a denaturing agent (e.g. urea) or a surfactant, ultrasonic treatment, enzymatic digestion, salting out, solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric point

electrophoresis, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, etc.

The proteins of the present invention include peptide fragments (more than 5 amino acid residues) containing any partial amino acid sequence of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25. These fragments can be used as antigens for preparation of the antibodies. Also, the proteins of the present invention that have signal sequences appear in the form of maturation proteins on the cell surface, after the signal sequences are removed. Therefore, these maturation proteins shall come within the scope of the present invention. The N-terminal amino acid sequences of the maturation proteins can be easily identified by using the method for the cleavage-site determination in a signal sequence [Japanese Patent Kokai Publication No. 1996-187100]. Furthermore, many membrane proteins are subjected to the processing on the cell surface to be converted to the secretor forms. These secretor proteins or peptides shall come within the scope of the present invention. When glycosylation sites are present in the amino acid sequences, expression in appropriate animal cells affords glycosylated proteins. Therefore, these glycosylated proteins or peptides also shall come within the scope of the present invention.

The DNAs of the present invention include all DNAs encoding the above-mentioned proteins. Said DNAs can be obtained using the method by chemical synthesis, the method by cDNA cloning, and so on.

Each of the cDNAs of the present invention can be cloned from, for example, a cDNA library of the human cell origin. The cDNA is synthesized using as a template a poly(A) RNA extracted from human cells. The human cells may be cells delivered from the human body, for example, by the operation or may be the culture cells. The cDNA can be synthesized by using any method selected from the Okayama-Berg method [Okayama, H. and Berg, P., Mol. Cell. Biol. 2: 161-170 (1982)], the Gubler-Hoffman method [Gubler, U. and Hoffman, J. Gene 25: 263-269 (1983)], and so on, but it is preferred to use the capping method [Kato, S. et al., Gene 150: 243-250 (1994)] as illustrated in Examples in order to obtain a full-length clone in an effective manner.

The primary selection of a cDNA encoding a human protein transmembrane domain(s) is performed by the sequencing of a partial base sequence of the cDNA clone selected at random from the cDNA library, sequencing of the amino acid sequence encoded by the base sequence, and recognition of the presence or absence of hydrophobic site(s) in the resulting N-terminal amino acid sequence region. Next, the secondary selection is carried out by determination of the whole base sequence by the sequencing and the protein expression by the in vitro translation. The ascertainment of the cDNA of the present invention for encoding the protein having the secretory signal sequence is performed by using the signal sequence detection method [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. In other words, the ascertainment for the coding portion of the inserted cDNA fragment to function as a signal sequence is provided by fusing a cDNA fragment encoding the N-terminus of the target protein with a cDNA encoding the protease domain of urokinase and then expressing the resulting cDNA in COS7 cells to detect the urokinase activity in the cell culture medium. On the other hand, the N-terminal region is judged to remain in the membrane in the case where the urokinase activity is not detected in the cell culture medium.

The cDNAs of the present invention are characterized by containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50 and any of the base sequences represented by Sequence No. 51 to Sequence No. 75. Table 1 summarizes the clone number (HP number), the cells affording the cDNA, the total base number of the cDNA, and the number of the amino acid residues of the encoded protein, for each of the cDNAs.

Table 1

Sequence Number	HP Number	Cells	Number of Bases	Number of Amino Acid Residues
1, 26, 51	HP00442	HT-1080	986	205
2, 27, 52	нр00804	Leucocyte	1824	371
3, 28, 53	HP01098	Stomach	1076	179
		cancer	•	•
4, 29, 54	HP01148	Liver	1591	347
5, 30, 55	HP01293	Liver	1888	554
6, 31, 56	HP10013	KB ,	2033	350
7, 32, 57	HP10034	HT-1080	911	209
8, 33, 58	HP10050	HT-1080	601	163

		9			
9, 34, 59	НР10071	Stomach cancer	394	92	
10, 35, 60	HP10076	U937	732	172	
11, 36, 61	HP10085	U937	697	149	
12, 37, 62	HP10122	Stomach cancer	1186	188	ı
13, 38, 63	HP10136	U937	1409	215	
14, 40, 64	HP10175	Stomach cancer	974	112	
15, 41, 65	HP10179	KB	925	114	
16, 41, 66	HP10196	HT-1080	1115	327	
17, 42, 67	HP10235	HT-1080	1721	373	•
18, 43, 68	HP10297	Stomach cancer	1504	183	
19, 44, 69	HP10299	Stomach cancer	532	116	
20, 45, 70	HP10301	KB.	662	152	
21, 46, 71	HP10302	Liver	2373	559	•
22, 47, 72	HP10304	U-2 OS	1404	330	
23, 48, 73	HP10305	U-2 OS	893	108	
24, 49, 74	нр10306	U-2 OS	690	101	
25, 50, 75	HP10328	кв	2186	372	_

Hereupon, the same clone as any of the cDNAs of the present invention can be easily obtained by screening of the cDNA library constructed from the cell line or the human tissue employed in the present invention, by the use of an oligonucleotide probe synthesized on the basis of the corresponding cDNA base sequence depicted in Sequence No. 51 to Sequence No. 75.

In general, the polymorphism due to the individual difference is frequently observed in human genes. Therefore, any cDNA that is subjected to insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides in Sequence No. 51 to Sequence No. 75 shall come within the scope of the present invention.

In a similar manner, any protein that is produced by these modifications comprising insertion or deletion of one or plural nucleotides and/or substitution with other nucleotides shall come within the scope of the present invention, as far as said protein possesses the activity of the corresponding protein having the amino acid sequence represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25.

The cDNAs of the present invention include cDNA fragments (more than 10 bp) containing any partial base sequence of the base sequence represented by Sequence No. 26 to No. 50 or of the base sequence represented by Sequence No. 51 to No. 75. Also, DNA fragments consisting of a sense chain and an anti-sense chain shall come within this scope. These DNA fragments can be used as the probes for the gene diagnosis.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1: A figure depicting the structure of the secretory signal sequence detection vector pSSD3.

Figure 2: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00442.

- Figure 3: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP00804.
- Figure 4: A figure showing the result on the northern-blot hybridization of clone HP00804.
- Figure 5: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01098.
- Figure 6: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01148.
- Figure 7: A figure showing the result on the northern-blot hybridization of clone HP01148.
- Figure 8: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP01293.
- Figure 9: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10013.
- Figure 10: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10034.
- Figure 11: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10050.
- Figure 12: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10071.
 - Figure 13: A figure depicting the

hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10076.

Figure 14: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10085.

Figure 15: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10122.

Figure 16: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10136.

Figure 17: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10175.

Figure 18: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10179.

Figure 19: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10196.

Figure 20: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10235.

Figure 21: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10297.

Figure 22: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10299.

Figure 23: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10301.

Figure 24: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10302.

Figure 25: A figure depicting the hydrophobicity/hydrophil the protein encoded by clone HP10304.

Figure 26: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10305.

Figure 27: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10306.

Figure 28: A figure depicting the hydrophobicity/hydrophilicity profile of the protein encoded by clone HP10328.

BEST MODE FOR CARRING OUT INVENTION EXAMPLE

The present invention is embodied in more detail by the following examples, but this embodiment is not intended to restrict the present invention. The basic operations and the enzyme reactions with regard to the DNA recombination are carried out according to the literature [Molecular Cloning. A Laboratory Manual", Cold Spring Harbor Laboratory, 1989]. Unless otherwise stated, restrictive enzymes and a variety of modification enzymes to be used were those available from

TAKARA SHUZO. The manufacturer's instructions were used for the buffer compositions as well as for the reaction conditions, in each of the enzyme reactions. The cDNA synthesis was carried out according to the literature [Kato, S. et al., Gene 150: 243-250 (1994)].

(1) Preparation of Poly(A) + RNA

The fibrosarcoma cell line HT-1080 (ATCC CCL 121), the epidermoid carcinoma cell line KB (ATCC CRL 17), the histiocyte lymphoma cell line U937 (ATCC CRL 1593), the osterosarcoma U-2 OS (ATCC HTB 96), a leukocyte isolated from the peripheral blood, tissues of stomach cancer delivered by the operation, and liver were used for human cells to extract mRNAs. Each of the cell lines was cultured by a conventional procedure.

After about 1 g of human tissues was homogenized in 20 ml of a 5.5 M guanidinium thiocyanate solution, total mRNAs were prepared in accordance with the literature [Okayama, H. et al., "Methods in Enzymology" Vol. 164, Academic Press, 1987]. These mRNAs were subjected to chromatography using an oligo(dT)-cellulose column washed with 20 mM Trishydrochloric acid buffer solution (pH 7.6), 0.5 M NaCl, and 1 mM EDTA to obtain a poly(A) RNA in accordance with the above-mentioned literature.

(2) Construction of cDNA Library

To a solution of 10 μ g of the above-mentioned poly(A)[†] RNA in 100 mM Tris-hydrochloric acid buffer solution (pH 8) was added one unit of an RNase-free, bacterium-origin alkaline phosphatase and the resulting solution was allowed to react at 37°C for one hour. After the reaction solution

underwent the phenol extraction followed by the ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 50 mM sodium acetate (pH 6), 1 mM EDTA, 0.1% 2-mercaptoethanol, and 0.01% Triton X-100. Thereto was added one unit of a tobacco-origin pyrophosphatase (Epicenter Technologies) and the resulting solution at a total volume of 100 μ l was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a decapped poly(A) RNA solution.

To a solution of the decapped poly(A) † RNA and 3 nmol of a DNA-RNA chimeric oligonucleotide (5'-dG-dG-dG-dG-dA-dA-dT-dT-dC-dG-dA-G-G-A-3') in a mixed aqueous solution of 50 mM Tris-hydrochloric acid buffer solution (pH 7.5), 0.5 mM ATP, 5 mM MgCl₂, 10 mM 2-mercaptoethanol, and 25% polyethylene glycol were added 50 units of T4 RNA ligase and the resulting solution at a total volume of 30 μ l was allowed to react at 20°C for 12 hours. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thus-obtained pellets were dissolved in water to obtain a chimeric oligo-capped poly(A) RNA.

After the vector pKAl developed by the present inventors (Japanese Patent Kokai Publication No. 1992-117292) was digested with KpnI, an about 60-dT tail was inserted by a terminal transferase. This product was digested with EcoRV to remove the dT tail at one side and the resulting molecule was used as a vectorial primer.

After 6 μg of the previously-prepared chimeric oligo-

capped poly(A) + RNA was annealed with 1.2 µg of the vectorial primer, the product was dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 8.3), 75 mM KCl, 3 mM $MgCl_2$, 10 mM dithiothreitol, and 1.25 mM dNTP (dATP + dCTP + dGTP + dTTP), mixed with 200 units of a reverse transferase (GIBCO-BRL), and the resulting solution at a total volume of 20 μl was allowed to react at 42°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the thusobtained pellets were dissolved in a mixed solution of 50 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM NaCl, 10 mM ${\rm MgCl}_2$, and 1 mM dithiothreitol. Thereto were added 100 units of EcoRI and the resulting solution at a total volume of 20 µl was allowed to react at 37°C for one hour. After the reaction solution underwent the phenol extraction followed by the ethanol precipitation, the obtained pellets were dissolved in a mixed solution of 20 mM Tris-hydrochloric acid buffer solution (pH 7.5), 100 mM KCl, 4 mM MgCl2, 10 mM $(NH_4)_2SO_4$, and 50 μ g/ml bovine serum albumin. Thereto were added 60 units of Escherichia coli DNA ligase and the resulting solution was allowed to react at 16°C for 16 hours. To the reaction solution were added 2 μl of 2 mM dNTP, 4 units of Escherichia coli DNA polymerase I, and 0.1 unit of Escherichia coli DNase H and the resulting solution was allowed to react at 12°C for one hour and then at 22°C for one hour.

Next, the cDNA-synthesis reaction solution was used to transform Escherichia coli DH12S (GIBCO-BRL). The

transformation was carried out by the electroporation method. A portion of the transformant was inoculated on a 2xYT agar culture medium containing 100 µg/ml ampicillin, which was incubated at 37°C overnight. A colony grown on the culture medium was randomly picked up and inoculated on 2 ml of the 2xYT culture medium containing 100 µg/ml ampicillin, which was incubated at 37°C overnight. The culture medium was centrifuged to separate the cells, from which a plasmid DNA was prepared by the alkaline lysis method. After the plasmid DNA was double-digested with EcoRI and NotI, the product was subjected to 0.8% agarose gel electrophoresis to determine the size of the cDNA insert. In addition, by the use of the obtained plasmid as a template, the sequence reaction using M13 universal primer labeled with a fluorescent dye and Taq polymerase (a kit of Applied Biosystems Inc.) was carried out and the product was analyzed by a fluorescent DNA-sequencer (Applied Biosystems Inc.) to determine the base sequence of the cDNA 5'-terminal of about 400 bp. The sequence data were filed as a homo-protein cDNA bank data base.

(3) Selection of cDNAs Encoding Proteins Having Transmembrane Domains

The base sequence registered in the homo-protein cDNA bank was converted to three frames of amino acid sequences and the presence or absence of an open reading frame (ORF) beginning from the initiation codon. Then, the selection was made for the presence of a signal sequence that is characteristic to a secretory protein at the N-terminal of the portion encoded by ORF. These clones were sequenced from the both 5' and 3' directions by using the deletion method to

determine the whole base sequence. The hydrophobicity/hydrophilicity profiles were obtained for proteins encoded by ORF by the Kyte-Doolittle method [Kyte, J. & Doolittle, R. F., J. Mol. Bio. 157: 105-132 (1982)] to examine the presence or absence of a hydrophobic region. In the case in which there is a hydrophobic region of putative transmembrane domain(s) in the amino acid sequence of an encoded protein, this protein was considered as a membrane protein.

(4) Construction of Secretory Signal Detection Vector pSSD3

One microgram of pSSD1 carrying the SV40 promoter and a
cDNA encoding the protease domain of urokinase [YokoyamaKobayashi, M. et al., Gene 163: 193-196 (1995)] was digested
with 5 units of BglII and 5 units of EcoRV. Then, after
dephosphorylation at the 5' terminal by the CIP treatment, a
DNA fragment of about 4.2 kbp was purified by cutting off
from the gel of agarose gel electrophoresis.

Two oligo DNA linkers, L1 (5'-GATCCCGGGTCACGTGGGAT-3') (5'-ATCCCACGTGACCCGG-3'), were synthesized phosphorylated by T4 polynucleotide kinase. After annealing followed by ligation with both linkers, previously-prepared pSSD1 fragment by T4DNA Escherichia coli JM109 was transformed. A plasmid pSSD3 was prepared from the transformant and the objective recombinant was confirmed by the determination of the base sequence of the linker-inserted fragment. Figure 1 illustrates the structure of the thus-obtained plasmid. The present plasmid vector carries three types of blunt-end formation restriction enzyme sites, SmaI, PmaCI, and EcoRV. Since these cleavage sites are positioned in succession at an interval of 7 bp, selection of an appropriate site in combination of three types of frames for the inserting cDNA allows to construct a vector expressing a fusion protein.

(5) Functional Verification of Secretory Signal Sequence

Whether the N-terminal hydrophobic region in the secretory protein clone candidate obtained in the abovementioned steps functions as the secretory signal sequence was verified by the method described in the literature [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)]. First, the plasmid containing the target cDNA was cleaved at an appropriate restriction enzyme site that existed at the downstream of the portion expected for encoding the secretory signal sequence. In the case in which this restriction enzyme site was a protruding terminus, the site was blunt-ended by the Klenow treatment or treatment with the mung-bean nuclease. Digestion with HindIII was further carried out and a DNA fragment containing the SV40 promoter and a cDNA encoding the secretory sequence at the downstream of the promoter was separated by agarose gel electrophoresis. This fragment was inserted between the pSSD3 HindIII site and a restriction enzyme site selected so as to match with the urokinase-coding frame, thereby constructing a vector expressing a fusion protein of the secretory signal portion of the target cDNA and the urokinase protease domain.

After Escherichia coli (host: JM109) bearing the fusion-protein expression vector was incubated at 37°C for 2 hours in 2 ml of the 2xYT culture medium containing 100 μ g/ml ampicillin, the helper phage M13KO7 (50 μ l) was added and the

incubation was continued at 37°C overnight. A supernatant separated by centrifugation underwent precipitation with polyethylene glycol to obtain single-stranded phage particles. These particles were suspended in 100 µl of 1 mM Tris-0.1 mM EDTA, pH 8 (TE). Also, there was used as a control a suspension of single-stranded particles prepared in the same manner from the vector pKA1-UPA containing pSSD3 and a full-length cDNA of urokinase [Yokoyama-Kobayashi, M. et al., Gene 163: 193-196 (1995)].

The simian-kidney-origin culture cells, COS7, incubated at 37°C in the presence of 5% CO2 in the Dulbecco's modified Eagle's culture medium (DMEM) containing 10% fetal calf albumin. Into a 6-well plate (Nunc Inc., 3 cm in the well diameter) were inoculated 1 imes 10⁵ COS7 cells and incubation was carried out at 37°C for 22 hours in the presence of 5% CO2. After the culture medium was removed, the cell surface was washed with a phosphate buffer solution and washed again with DMEM containing 50 hydrochloric acid (pH 7.5) (TDMEM). To the cells were added 1 μl of the single-stranded phage suspension, 0.6 ml of the DMEM culture medium, and 3 μl of TRANSFECTAM (IBF Inc.) and the resulting mixture was incubated at 37°C for 3 hours in the presence of 5% CO2. After the sample solution was removed, the cell surface was washed with TDMEM, 2 ml per well of DMEM containing 10% fetal calf albumin was added, and the incubation was carried out at 37°C for 2 days in the presence of 5% CO2.

To 10 ml of 50 mM phosphate buffer solution (pH 7.4)

containing 2% bovine fibrinogen (Miles Inc.), 0.5% agarose, and 1 mM potassium chloride were added 10 units of human thrombin (Mochida Pharmaceutical Co., Ltd.) and the resulting mixture was solidified in a plate of 9 cm in diameter to prepare a fibrin plate. Ten microliters of the culture supernatant of the transfected COS7 cells were spotted on the fibrin plate, which was incubated at 37°C for 15 hours. The diameter of the thus-obtained clear circle was taken as an index for the urokinase activity. In the case in which a cDNA fragment codes for the amino acid sequence that functions as a secretory signal sequence, a fusion protein is secreted to form a clear circle by its urokinase activity. Therefore, in the case in which a clear circle is not formed, the fusion protein remains as trapped in the membrane and the cDNA fragment is considered to code for a transmembrane domain.

(6) Protein Synthesis by In Vitro Translation

The plasmid vector carrying the cDNA of the present vitro utilized for in the was invention transcription/translation by the $T_{\mathrm{N}}\mathrm{T}$ rabbit reticulocyte lysate kit (Promega Biotec). In this case, [35]methionine was added and the expression product was labeled with the radioisotope. All reactions were carried out by following the protocols attached to the kit. Two micrograms of the plasmid was allowed to react at 30°C for 90 minutes in total 25 ml of a reaction solution containing 12.5 μl of the $T_N T$ rabbit reticulocyte lysate, $0.5~\mu l$ of the buffer solution (attached to the kit), 2 µl of an amino acid mixture (methionine-free), 2 μ l (0.37 MBq/ μ l) of [35 S]methionine (Amersham Corporation), 0.5 μ l of T7 RNA polymerase, and 20 U of RNasin. To 3 μ l of

the reaction solution was added 2 µl of an SDS sampling buffer (125 mM Tris-hydrochloric acid buffer solution, pH 6.8, 120 mM 2-mercaptoethanol, 2% SDS solution, 0.025% bromophenol blue, and 20% glycerol) and the resulting solution was heated at 95°C for 3 minutes and then subjected to SDS-polyacrylamide gel electrophoresis. The molecular weight of the translation product was determined by carrying out the autoradiography.

(7) Northern Blot Hybridization

The northern blot hybridization was carried out in order to examine the expression pattern in the human tissues. Membranes on which poly(A)⁺ RNAs isolated from each of the human tissues are blotted are purchased from Clontech Inc. cDNA fragments which were excised from the objective clones with appropriate restriction enzymes were subjected to separation by agarose gel electrophoresis followed by labeling with [³²p] dCPT (Amersham Corporation) using the Random Primer Labeling Kit (Takara Shuzo Co., Ltd.). Hybridization was carried out using a solution attached to the blotted membrane in accordance to the protocol.

(8) Expression in COS7

Escherichia coli having an expression vector of the protein of the invention was infected with helper phage M13KO7, and single stranded phage was obtained by the above method. Using the thus obtained phage, the expression vector was introduced into simian kidney-originated culture cells COS7 according to the above method. Cultivation was carried out at 37°C in the presence of 5 % CO₂ for 2 hours and then in a medium containing [35 S]cysteine for 1 hour. The cells

were collected, dissolved and subjected to SDS-PAGE, whereby a band corresponding to a protein as the expression product, which was not present in the COS cells, was revealed.

(9) Clone Examples

<HP00442> (Sequence Number 1, 26, 51)

Determination of the whole base sequence for the cDNA insert of clone HP00442 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 81 bp, an ORF of 618 bp, and a 3'-non-translation region of 287 bp. The ORF codes for a protein consisting of 205 amino acid residues with 5 transmembrane domains. Figure 2 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The result of the in vitro translation did not reveal the formation of distinct bands for the translation products and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the proteolipid protein PPAl of the baker's yeast proton ATPase (SWISS-PROT Accession No. P23968). Table 2 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the proteolipid protein PPAl of the baker's yeast proton ATPase (PL). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 56.8% in the entire region

except for the N-terminal.

Table 2

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more and also containing the initiation codon (for example, Accession No. H87379), but the present protein can not be predicted from this sequence.

The proteolipid protein PPAl of the baker's yeast proton ATPase is a membrane protein essential to the growth

of cells [Apperson, M. et al., Biochem. Biophys. Res. Commun. 168: 574-579 (1990)]. Accordingly, the protein of present invention, which is homologous to said protein, is considered to be essential to the growth of human cells and can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of the present protein. <HP00804> (Sequence Number 2, 27, 52)

Determination of the whole base sequence for the cDNA insert of clone HP00804 obtained from the human leukocyte cell cDNA libraries revealed the structure consisting of a 5'-non-translation region of 132 bp, an ORF of 1116 bp, and a 3'-non-translation region of 576 bp. The ORF codes for a protein consisting of 371 amino acid residues with 7 transmembrane domains. Figure 3 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle. The result of the in vitro translation did not reveal the formation of distinct bands for the translation products.

Examination of the expression pattern in the tissues by the northern blot hybridization using the cDNA fragment of the present invention revealed that the expression occurred in all tissues examined as shown in Figure 4. Therefore, the protein of the present invention is considered to be a housekeeping protein.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the rat NMDA receptor - glutamate-binding subunit (GenBank Accession No. S61973). Table 3 indicates the comparison of the amino acid sequences

between the human protein of the present invention (HP) and the rat NMDA receptor - glutamate-binding subunit (RN). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and represents an amino acid residue analogous to that in the protein of the present invention. This subunit consists of 516 amino acid residues and a region from glutamine at position 68 to arginine at position 342 possessed a 92.6 % homology with the C-terminal 270 amino acid residues in the protein of the present invention. However, any homology was not observed in the N-terminal region. Hereupon, a characteristic repeated sequence that is rich with proline, tyrosine, and glycine was observed in the N-terminal region of the protein of the present invention.

Table 3

MSHEKSFLVSGDNYPPPNPGYPGGPQPPMPPYAQPPYPGAPYPQPPFQPSPYGQPGYPHG

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. W25936), but any of them was shorter than the present cDNA and did not contain the initiation codon.

The rat NMDA receptor - glutamate-binding subunit has been found as one of the subunits of the NMDA receptor complex which exists specifically in the brain [Kumar. K. N. et al., Nature 354: 70-73 (1991)]. Despite a high homology with the protein of the present invention, the subunit shows different expression patterns in the N-terminal sequence and the tissues, whereby both molecules are considered to possess different functions. Since the protein of the present invention possesses 7 transmembrane

domains which are characteristic to channels and transporters, this protein is considered to play a role as a channel and a transporter. Because the protein of the present invention is a housekeeping protein essential to the cells, the present protein can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of this protein.

<HP01098> (Sequence Number 3, 28, 53)

Determination of the whole base sequence for the cDNA insert of clone HP01098 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 61 bp, an ORF of 540 bp, and a 3'-non-translation region of 475 bp. The ORF codes for a protein consisting of 179 amino acid residues with one transmembrane domain. Figure 5 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 20 kDa that was almost consistent with the molecular weight of 20,625 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was completely identical with a 18-kDa subunit of the canine microsomal signal peptidase (SWISS-PROT Accession No. P21378). Therefore, it was verified that the cDNA of the present invention codes for the human homologue of the 18-kDa subunit of the microsomal signal peptidase.

The search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs

possessing the homology of 90% or more (for example, Accession No. T60549), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

The 18-kDa subunit of the canine microsomal signal peptidase has been found as one of subunits of the signal peptidase complex that exist in the microsome [Schelness, G. S. & Blobel, G., J. Biol. Chem. 265: 9512-9519 (1990)]. The signal peptidase is an enzyme that cleaves the signal sequence upon secretion of a secretory protein at the endoplasmic reticulum. Therefore, the cDNA of the present invention can be utilized for the production of the present protein as well as for the diagnosis and the treatment of diseases caused by the abnormality of the present protein. <HP01148> (Sequence Number 4, 29, 54)

Determination of the whole base sequence for the cDNA insert of clone HP01148 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 101 bp, an ORF of 1044 bp, and a 3'-non-translation region of 446 bp. The ORF codes for a protein consisting of 347 amino acid residues with one transmembrane domain at the N-terminal. Figure 6 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified, upon transduction into the COS7 cells of an expression vector in which a HindIII-PvuII fragment containing a cDNA fragment encoding the N-terminal 178

HP

amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 41 kDa that was almost consistent with the molecular weight of 38,101 predicted from the ORF.

Examination of the expression pattern in the tissues by the northern blot hybridization using the cDNA fragment of the present invention revealed that a strong expression occurred in the spleen, as shown in Figure 7. It was also indicated that a slight expression occurred in the liver.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the bovine WCl antigen (SWISS-PROT Accession No. P30205). Table 4 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the bovine WCl antigen (WC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 38%.

Table 4

MALLFSLILAICTRPGFLASPSGVRLVGGLHRCEGRVEVEQKGQWGTVCDDGW

HP	DIKDVAVLCRELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEV
	. *..**.*
WC	DLDDARVVCRQLGCGEALNATGSAHFGAGSGPIWLDDLNCTGKESHVWRCPSRGWGR
ĦР	YDCSHEEDAGASCENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRA
	.*. .
WC	HDCRHKEDAGVICSEFLALRMVSEDQQCAGWLEVFYNGTWGSVCRSPMEDIT
HP	AKVVCRQLGCGRAVLTQKRCNKHAYGRKPIWLSQMSCSGREATLQDCPSGFWGKNTCNHD
	*.*****
wc	VSVICRQLGCGDSGSLNTSVGLRE-GSRPRWVDLIQCRKMDTSLWQCPSGPWKYSSCSPK
ĦР	EDTWVECEDPFDLRLVGGDNLCSGRLEVLHKGVWGSVCDDNWGEKE

WC	EEAYISCEGRRPKSCPTAAACTDREKLRLRGGDSECSGRVEVWHNGSWGTVCDDSWSLAE
HP	DQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIWLDNVRCSGEEQSLEQCQHRFWGFHDCTH
	.. *** *.*.*.* * **.*
wċ	AEVVCQQLGCGQALE-AVR-SAAFGPGNGSIWLDEVQCGGRESSLWDCVAEPWGQSDCKH
HР	QEDVAVICSG
	.*** ***
WC	EEDAGVRCSGVRTTLPTTTAGTRTTSNSLPGIFSLPGVLCLILGSLLFLVLVILVTQLLR

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H91200), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

The bovine WCl antigen has been found as a membrane

antigen which is expressed specifically in γ6 T cells [Wijngaard, P. L. J. et al., J. Immunol. 149: 3273-3277 (1992)]. The region showing an analogy is called the scavenger receptor cysteine-rich domain (SRCR) which also exists as a repeated sequence in macrophage scavenger receptors [Matsumoto, A. et al., Proc. Natl. Acad. Sci. USA 87: 9133-9137 (1990)], T cell differentiation antigen CD6 [Aruffo, A. et al., J. Exp. Med. 174: 949-952 (1991)], and so on. Since the present protein is expressed specifically in the spleen, This protein is considered to be deeply associated with the functions of the spleen and also to function as a receptor in the same manner as other SRCR family members.

<HP01293> (Sequence Number 5, 30, 55)

Determination of the whole base sequence for the cDNA insert of clone HP01293 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 89 bp, an ORF of 1665 bp, and a 3'-non-translation region of 134 bp. The ORF codes for a protein consisting of 554 amino acid residues with 12 transmembrane domains. Figure 8 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation did not reveal the formation of distinct bands and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the rat cation transporter

(GenBank Accession No. X78855). Table 5 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the mouse interstitial cell protein (MM). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 78.1% among the entire regions.

Table 5

IP	MPTVDDILEQVGESGWFQKQAFLILCLLSAAFAPICVGIVFLGFTPDHHCQSPGVAELSQ
	****** ***** ****** ****************
RN	MPTVDDVLEQVGEFGWFQKQAFLLLCLISASLAPIYVGIVFLGFTPGHYCQNPGVAELSQ
ВP	RCGWSPAEELNYTVPGLGPAGEA-FLGQCRRYEVDWNQSALSCVDPLASLATNRSHLPLG
	***** *********** ** ** ** ** ** ** **
RN	RCGWSQAEELNYTVPGLGPSDEASFLSQCMRYEVDWNQSTLDCVDPLSSLVANRSQLPLG
HР	PCQDGWVYDTPGSSIVTEFNLVCADSWKLDLFQSCLNAGFFFGSLGVGYFADRFGRKLCL
	** ********************
r.n	PCEHGWVYDTPGSSIVTEFNLVCGDAWKVDLFQSCVNLGFFLGSLVVGYIADRFGRKLCL
ĦР	LGTVLVNAVSGVLMAFSPNYMSMLLFRLLQGLVSKGNWMAGYTLITEFVGSGSRRTVAIM
	* * ** * * * * * * * * * * * * * * * * *
RN	LVTTLVTSVSGVLTAVAPDYTSMLLFRLLQGMVSKGSWVSGYTLITEFVGSGYRRTTAIL
ĦР	YQMAFTVGLVALTGLAYALPHWRWLQLAVSLPTFLFLLYYWCVPESPRWLLSQKRNTEAI
	******** * * * * * * * * * * * * * * * *

YQMAFTVGLVGLAGVAYAIPDWRWLQLAVSLPTFLFLLYYWFVPESPRWLLSQKRTTRAV KIMDHIAQKNGKLPPADLKMLSLEEDVTEKLSPSFADLFRTPRLRKRTFILMYLWFTDSV RIMEQIAQKNGKVPPADLKMLCLEEDASEKRSPSFADLFRTPNLRKHTVILMYLWFSCAV LYQGLILHMGATSGNLYLDFLYSALVEIPGAFIALITIDRVGRIYPMAVSNLLAGAACLV ΗP LYQGLIMHVGATGANLYLDFFYSSLVEFPAAFIILVTIDRIGRIYPIAASNLVTGAACLL HP MIFISPDLHWLNIIIMCVGRMGITIAIQMICLVNAELYPTFVRNLGVMVCSSLCDIGGII RN MIFIPHELHWLNVTLACLGRMGATIVLQMVCLVNAELYPTFIRNLGMMVCSALCDLGGIF HP TPFIVFRLREVWQALPLILFAVLGLLAAGVTLLLPETKGVALPETMKDAENLG-RKAKPK ****************** RN TPFMVFRLMEVWQALPLILFGVLGLTAGAMTLLLPETKGVALPETIEEAENLGRRKSKAK HP ENTIYLKVQTSEPSGT ***** ENTIYLQVQTGKSSST

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there did not exist any human gene and human EST possessing the homology of 90% or more.

The rat cation transporter has been found as a membrane protein that relates to the drug excretion in the kidney [Grundemann, D. et al., Nature 372: 549-552 (1994)]. Accordingly, the protein of the present invention which is homologous to this transporter is considered to possess a

similar function and can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of this protein. In addition, since the present protein is considered to relate to the drug excretion, the cells in which this protein is expressed can be utilized as a tool for the drug design of these drugs. Furthermore, since the present protein is expressed principally in the liver and the kidney, a molecule that is prepared so as to possess an affinity to this protein is applicable for the drug delivery system into these tissues.

<HP10013> (Sequence Number 6, 31, 56)

Determination of the whole base sequence for the cDNA insert of clone HP10013 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 96 bp, an ORF of 1053 bp, and a 3'-non-translation region of 884 bp. The ORF codes for a protein consisting of 350 amino acid residues with a signal sequence at the N-terminal and one internal transmembrane domain. Figure 9 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein functioned as a signal sequence at the N-terminal from the observation that the urokinase activity was detected in the culture medium, upon transduction into the COS7 cells of an expression vector in which a HindIII-EcoO65I fragment (treated with the mungbean nuclease) containing a cDNA fragment encoding the Nterminal 65 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the

present protein is considered to be a type-I membrane protein. The in vitro translation resulted in the formation of a translation product of 39 kDa that was almost consistent with the molecular weight of 39,008 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H07998), but any of them was shorter than the present cDNA and did not contain the initiation codon.

<HP10034> (Sequence Number 7, 32, 57)

Determination of the whole base sequence for the cDNA insert of clone HP10034 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 175 bp, an ORF of 630 bp, and a 3'-non-translation region of 106 bp. The ORF codes for a protein consisting of 209 amino acid residues with 4 transmembrane domains. Figure 10 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 21 kDa that was almost consistent with the molecular weight of 22,432 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human tumor-associated antigen

L6 (SWISS-PROT Accession No. P30408). Table 6 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human tumorassociated antigen L6 (L6). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 31.8%.

Table 6

ĦР	MVSSPCTQASSRTCSRILGLSLGTAALFAAGANVALLLPNWDVTYLLRGLLGRHAMLGTG
	..*.***
L6	MCYGKCARCIGHSLVGLALLCIAANILLYFPNGETKYASENHLSRFVWFFSG
HP	LWGGGLMVLTAA-ILISL-MGWRYGCFSKSGLCRSVLTALLSGGLALLGALICFVTSG
	. ***** .* .* .****** *
L6 .	IVGGGLLMLLPAFVFIGLEQDDCCGCCGHENCGKRCAMLSSVLAALIGIAGSGYCVIVAA
HP	VALKDGPFCMFDVSSFNQTQAWKYGYPFKDLHSRNYLYDRSLWNSVCLEPSAAVVWHVSL
	.* .** . *
L6	LGLAEGPLCL-DSLGQWNYTFASTEGQYLLDTSTWSE-CTEPKHIVEWNVSL
нр	FSALLCISLLQLLLVVVHVINSLLGLFCSLCEK
	** **
1.6	PSILLALGGIEFILCLIQVINGVLGGICGFCCSHQQQYDC

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there did not exist any human gene and human EST possessing the homology of 90% or more.

The human tumor-associated antigen L6 is a member of the membrane antigen TM4 super-family proteins that are expressed abundantly on the cell surface of human tumors [Marken, J. S. et al., Proc. Natl. Acad. Sci. USA 89: 3503-3507 (1992)]. Since these membrane antigens are expressed specifically in specific cells and in cancer cells, an antibody that is prepared so as to bind to this antigen is applicable for a variety of diagnoses and as a carrier for the drug delivery. Furthermore, cells in which such a membrane antigen is expressed by transduction of the membrane antigen gene are applicable to the detection of the corresponding ligand.

<HP10050> (Sequence Number 8, 33, 58)

Determination of the whole base sequence for the cDNA insert of clone HP10050 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 9 bp, an ORF of 492 bp, and a 3'-non-translation region of 100 bp. The ORF codes for a protein consisting of 163 amino acid residues with one transmembrane domain. Figure 11 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 23 kDa that was almost consistent with the molecular weight of 18,364 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H03117), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10071> (Sequence Number 9, 34, 59)

Determination of the whole base sequence for the cDNA insert of clone HP10071 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 46 bp, an ORF of 279 bp, and a 3'-non-translation region of 69 bp. The ORF codes for a protein consisting of 92 amino acid residues with 2 transmembrane domains. Figure 12 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 12 kDa that was almost consistent with the molecular weight of 10,094 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins. Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R097442), but many sequences were not

distinct and the same ORF as that in the present cDNA was not identified.

<HP10076> (Sequence Number 10, 35, 60)

Determination of the whole base sequence for the cDNA insert of clone HP10076 obtained from the human lymphoma cell line U937 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 81 bp, an ORF of 519 bp, and a 3'-non-translation region of 132 bp. The ORF codes for a protein consisting of 172 amino acid residues with 2 transmembrane domains. Figure 13 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-EcoO651 (treated with mung-bean nuclease) fragment containing a cDNA fragment encoding the N-terminal 167 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. The in vitro translation resulted in the formation of a translation product of 24 kDa that was almost consistent with the molecular weight of 18,450 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast hypothetical membrane protein of 23.1 kDa (SWISS-PROT Accession No. P34222). Table 7 indicates the comparison of the amino acid sequences between the human protein of the present

invention (HP) and the baker's yeast hypothetical membrane protein of 23.1 kDa (SC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 47.5% in the C-terminal region of 139 amino acid residues.

Table 7

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed

some ESTs possessing the homology of 90% or more (for example, Accession No. T74847), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10085> (Sequence Number 11, 36, 61)

Determination of the whole base sequence for the cDNA insert of clone HP10085 obtained from the human lymphoma cell line U937 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 150 bp, an ORF of 450 bp, and a 3'-non-translation region of 97 bp. The ORF codes for a protein consisting of 149 amino acid residues with one transmembrane domain at the N-terminal. Figure 14 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-EcoRI fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 57 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 20 kDa that was almost consistent with the molecular weight of 17,307 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human early activation antigen

CD69 (SWISS-PROT Accession No. Q07108). Table 8 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human early activation antigen CD69 (CD). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 36.6% in the C-terminal region of 112 amino acid residues.

Table 8

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H11808), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

The human early activation antigen CD69 is a glycoprotein that appears on the surface of activated lymphocytes and a member of the C-type lectin super-family [Hamann, J. et al., J. Immunol. 150: 4920-4927 (1993)]. Since these membrane antigens are expressed specifically in some specific cells, an antibody that is prepared so as to bind to this antigen is applicable for a variety of diagnoses and as a carrier for the drug delivery. Furthermore, cells in which such a membrane antigen is expressed by transduction of the membrane antigen gene are applicable to the detection of the corresponding ligand. <HP10122> (Sequence Number 12, 37, 62)

Determination of the whole base sequence for the cDNA insert of clone HP10122 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 138 bp, an ORF of 567 bp, and a 3'-non-translation region of 481 bp. The ORF codes for a protein consisting of 188 amino acid residues with 2 transmembrane domains. Figure 15 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 22 kDa that was almost consistent with the

molecular weight of 21,175 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any of known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T80360), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10136> (Sequence Number 13, 38, 63)

Determination of the whole base sequence for the cDNA insert of clone HP10136 obtained from the human lymphoma cell line U937 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 81 bp, an ORF of 648 bp, and a 3'-non-translation region of 680 bp. The ORF codes for a protein consisting of 215 amino acid residues with one transmembrane domain at the C-terminal. Figure 16 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 28 kDa that was almost consistent with the molecular weight of 24,740 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast protein transport protein SLY2 (SWISS-PROT Accession No. P22214). Table 9 indicates the comparison of the amino acid

sequences between the human protein of the present invention (HP) and the baker's yeast protein transport protein SLY2 (SC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 36.1% in the entire regions.

Table 9

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed

some ESTs possessing the homology of 90% or more (for example, Accession No. R80136), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

The baker's yeast protein transport protein SLY2 has been known to be essential for endoplasmic reticulum-to-Golgi protein transport and to be also associated with the control of the cell cycle [Dascher, C. et al., Mol. Cell. Biol. 11: 872-885 (1991)]. Therefore, the cDNA of the present invention can be utilized for the production of the present protein as well as for the diagnosis and the treatment of diseases caused by the abnormality of the present protein.

<HP10175> (Sequence Number 14, 39, 64)

Determination of the whole base sequence for the cDNA insert of clone HP10175 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 173 bp, an ORF of 339 bp, and a 3'-non-translation region of 462 bp. The ORF codes for a protein consisting of 112 amino acid residues with 4 transmembrane domains. Figure 17 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The result of the in vitro translation resulted in the formation of a translation product of 13 kDa that was almost consistent with the molecular weight of 11,564 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. W52852), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10179> (Sequence Number 15, 40, 65)

Determination of the whole base sequence for the cDNA insert of clone HP10179 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 121 bp, an ORF of 345 bp, and a 3'-non-translation region of 459 bp. The ORF codes for a protein consisting of 114 amino acid residues with 4 transmembrane domains. Figure 18 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 14 kDa that was almost consistent with the molecular weight of 12,078 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins. However, this protein was analogous to the protein encoded by the cDNA clone Hp 10175 of the present invention. Table 10 indicates the comparison of the amino acid sequences between the protein encoded by HP 10179 and the protein encoded by HP 10175. - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue

analogous to that in the protein of the present invention. The both proteins possessed a homology of 80.8% in the entire regions.

Table 10

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N55991), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10196> (Sequence Number 16, 41, 66)

Determination of the whole base sequence for the cDNA insert of clone HP10196 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 9 bp, an ORF of 984 bp, and a 3'-non-translation region of 122 bp. The ORF codes for a protein consisting of 327 amino acid residues with one transmembrane domain at the N-

hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-Bg1II fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 162 amino acid residues in the present protein was inserted at the HindIII-EcoRV site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 37 kDa that was almost consistent with the molecular weight of 36,163 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. T17026), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

<HP10235> (Sequence Number 17, 42, 67)

Determination of the whole base sequence for the cDNA insert of clone HP10235 obtained from the human fibrosarcoma cell line HT-1080 cDNA libraries revealed the structure consisting of a 5'-non-translation region of 5

bp, an ORF of 1122 bp, and a 3'-non-translation region of 594 bp. The ORF codes for a protein consisting of 373 amino acid residues with 11 transmembrane domains. Figure 20 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation did not reveal the formation of distinct bands and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the human nucleolar protein HNP36 (EMBL Accession No. X86681). Table 11 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the human nucleolar protein HNP36 (NP). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 45.3% in the entire regions.

Table 11

HP MTLCAMLPLLLFTYLNSFLHQRIPQSVRILGSLVAILLVFLITAILVKVQLDALPFFVIT

HP MIKIVLINSFGAILQGSLFGLAGLLPASYTAPIMSGQGLAGFFASVAMICAIASGSELSE

NP MASVCFINSFSAVLQGSLFGQLGTMPSTYSTLFLSGQGLAGIFAALAMLLSMASGVDAET

HP	SAFGYFITACAVIILTIICYLGLPRLEFYRYYQQLKLEGPGEQETKLDLISKGEE
	.*** **.***.** ** . * ** . *
NP	SALGYFITPYVGIIMSIVCYLSLPHLKFARYYLANKSSQAQAQELETKAELLQSDENGIP
ĦP	PRAGKEESGVSVSNSQPTNESHSIKAILKNISVLAFSVCFIFTITIGMFPA
	*
NP	SSPQKVALTLDLDLEKEPESEPDEPQKPGKPSVFTVFQKIWLTALCLVLVFTVTLSVFPA
HP	VTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLGRSLTAVFMWPGKDSRWLPSLVLARL
	.*. *.*** *** *** ****** *.** **
NP _.	ITAMVTSS-TSPGKWSQFFNPICCFLLFNIMDWLGRSLTSYFLWPDEDSRLLPLLVCLRF
HP	VFVPLLLLCNIKPRRYLTVVFEHDAWFIFFMAAFAFSNGYLASLCMCFGPKKVKPAKAET
	***** ** * * * * * * * * * * * * * * * *
NP	LFVPLFMLCHVPQRSRLPILFPQDAYFITFMLLFAVSNGYLVSLTMCLAPRQVLPHEREV
HP	AGAIMAFFLCLGLALGAVFSFLFRAIV
	.*.** ***. ** ..*.
NP	AGALMTFFLALGLSCGASLSFLFKALL

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R57372), but it can not be assessed whether these ESTs with partial sequences code for the same protein as the protein of the present invention.

The human nucleolar protein HNP36 has been found as a gene product that plays a role in the growth and multiplication of cells [Williams, J. B. & Lanahan, A. A., Biochem. Biophys. Res. Commun. 213: 325-333 (1995)].

Accordingly, the protein of present invention, which is homologous to said protein, is considered to be a housekeeping protein essential to the growth and multiplication of cells and thereby can be utilized for the diagnosis and the treatment of diseases caused by the abnormality of the present protein.

<HP10297> (Sequence Number 18, 43, 68)

Determination of the whole base sequence for the cDNA insert of clone HP10297 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 62 bp, an ORF of 552 bp, and a 3'-non-translation region of 890 bp. The ORF codes for a protein consisting of 183 amino acid residues with a signal sequence at the N-terminal and one internal transmembrane domain. Therefore, the present protein is considered to be a type-I membrane protein. Figure 21 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 24 kDa that was almost consistent with the molecular weight of 20,574 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R47823), but many sequences are not distinct and the same ORF as that in the present cDNA was not

identified.

<HP10299> (Sequence Number 19, 44, 69)

Determination of the whole base sequence for the cDNA insert of clone HP10299 obtained from the human stomach cancer cDNA libraries revealed the structure consisting of a 5'-non-translation region of 92 bp, an ORF of 351 bp, and a 3'-non-translation region of 89 bp. The ORF codes for a protein consisting of 116 amino acid residues with one transmembrane domain at the N-terminal. Figure 22 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-VspI fragment (after the Klenow treatment) containing a cDNA fragment encoding the N-terminal 65 amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 13 kDa that was almost consistent with the molecular weight of 12,498 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was analogous to the baker's yeast hypothetical membrane protein of 16.5 kDa (SWISS-PROT Accession No. P42834). Table 12 indicates the comparison of the amino acid sequences between the human protein of the present

invention (HP) and the baker's yeast hypothetical membrane protein of 16.5 kDa (SC). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 53.0% in the C-terminal region of 66 amino acid residues.

Table 12

HP MASTVVAVGLTIAAAGFAGRYVLQAMKHMEPQVKQVF

- SC MVLPIIIGLGVTMVALSVKSGLNAWTVYKTLSPLTIAKLNNIRIENPTAGYRDALKFKSS
- HP QSLPKSAFSGGYYRGGFEPKMTKREAALILGVSP----TANKGKIRDAHRRIMLLNHPDK
- SC LIDEELKNRLNQYQGGFAPRMTEPEALLILDISAREINHLDEKLLKKKHRKAMVRNHPDR
- HP GGSPYLAAKINEAKDLLEGQAKK
 - *****.******
- SC GGSPYMAAKINEAKEVLERSVLLRKR

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R27748), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10301> (Sequence Number 20, 45, 70)

Determination of the whole base sequence for the cDNA insert of clone HP10301 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 91 bp, an ORF of 459 bp, and a 3'-non-translation region of 112 bp. The ORF codes for a protein consisting of 152 amino acid residues with four transmembrane domains. Figure 23 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 18 kDa that was almost consistent with the molecular weight of 16,516 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N28828), but many sequences were not distinct and the same ORF as that in the present cDNA was not identified.

<HP10302> (Sequence Number 21, 46, 71)

Determination of the whole base sequence for the cDNA insert of clone HP10302 obtained from the human liver cDNA libraries revealed the structure consisting of a 5'-non-translation region of 133 bp, an ORF of 1680 bp, and a 3'-non-translation region of 560 bp. The ORF codes for a protein consisting of 559 amino acid residues with 12

transmembrane domains. Figure 24 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation did not reveal the formation of distinct bands and revealed the formation of smeary bands at the high-molecular-weight position.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N72434), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

<HP10304> (Sequence Number 22, 47, 72)

Determination of the whole base sequence for the cDNA insert of clone HP10304 obtained from the human osterosarcoma U-2 OS cDNA libraries revealed the structure consisting of a 5'-non-translation region of 10 bp, an ORF of 993 bp, and a 3'-non-translation region of 313 bp. The ORF codes for a protein consisting of 330 amino acid residues with a signal sequence at the N-terminal and one internal transmembrane domain. Therefore, the present protein is considered to be a type-I membrane protein. Figure 25 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 36 kDa that was almost

consistent with the molecular weight of 36,840 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. N26840), but the same ORF as that in the present cDNA was not identified.

<HP10305> (Sequence Number 23, 48, 73)

Determination of the whole base sequence for the cDNA insert of clone HP10305 obtained from the human osterosarcoma U-2 OS cDNA libraries revealed the structure consisting of a 5'-non-translation region of 109 bp, an ORF of 327 bp, and a 3'-non-translation region of 457 bp. The ORF codes for a protein consisting of 108 amino acid residues with one transmembrane domain. Figure 26 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-ApaI fragment (treated with mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 162 amino acid residues in the present protein was inserted at the HindIII-PmaCI site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted

in the formation of a translation product of 15 kDa that was almost consistent with the molecular weight of 12,199 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H02768), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

<HP10306> (Sequence Number 24, 49, 74)

Determination of the whole base sequence for the cDNA insert of clone HP10306 obtained from the human osterosarcoma U-2 OS cDNA libraries revealed the structure consisting of a 5'-non-translation region of 229 bp, an ORF of 306 bp, and a 3'-non-translation region of 155 bp. The ORF codes for a protein consisting of 101 amino acid residues with 2 transmembrane domains. Figure 27 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. The in vitro translation resulted in the formation of a translation product of 14 kDa that was almost consistent with the molecular weight of 12,029 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the protein was not analogous to any known proteins.

Furthermore, the search of GenBank using the base sequence

of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. H44711), but many sequences are not distinct and the same ORF as that in the present cDNA was not identified.

<HP10328> (Sequence Number 25, 50, 75)

Determination of the whole base sequence for the cDNA insert of clone HP10328 obtained from the human epidermoid carcinoma cell line KB cDNA libraries revealed the structure consisting of a 5'-non-translation region of 117 bp, an ORF of 1119 bp, and a 3'-non-translation region of 950 bp. The ORF codes for a protein consisting of 372 amino acid residues with one transmembrane domain. Figure 28 depicts the hydrophobicity/hydrophilicity profile of the present protein obtained by the Kyte-Doolittle method. It was indicated that the present protein remained in the membrane from the observation that the urokinase secretion was not identified upon transduction into the COS7 cells of an expression vector in which a HindIII-PmaCI fragment (treated with mung-bean nuclease) containing a cDNA fragment encoding the N-terminal 129 amino acid residues in the present protein was inserted at the HindIII-Smal site of pSSD3. Therefore, the present protein is considered to be a type-II membrane protein. The in vitro translation resulted in the formation of a translation product of 41 kDa that was almost consistent with the molecular weight of 42,514 predicted from the ORF.

The search of the protein data base using the amino acid sequence of the present protein revealed that the

protein was analogous to the *Drosophila* neurological secretory signal protein (GenBank Accession No. U41449). Table 13 indicates the comparison of the amino acid sequences between the human protein of the present invention (HP) and the *Drosophila* neurological secretory signal protein (DM). - represents a gap, * represents an amino acid residue identical to that in the protein of the present invention, and . represents an amino acid residue analogous to that in the protein of the present invention. The both proteins possessed a homology of 38.6% in the middle region of 202 amino acid residues.

Table 13

DM HVFQ-TSPLRHKFSKWYVSLEEYPFDRWPPYVTAGAFILSQKALRQLYAASVHLPLFRFD

HP DVFLGMCLELEGLKPASHSGIRTSGVRAPSQHLSSFDPCFYRDLLLVHRFLPYEMLLMWD

DM DVYLGIVALKAGISLQHCDDFRFHRPAYKGPDSYSSVIASHEFGDPEEMTRVWNECRSAN

HP ALNOPHLTCGNQTQIY

DM YA

Furthermore, the search of GenBank using the base sequence of the present cDNA revealed that there existed some ESTs possessing the homology of 90% or more (for example, Accession No. R75815), but they were shorter than the present cDNA and any molecule containing the initiation codon was not identified.

The present invention provides human proteins having transmembrane domains, cDNAs encoding said proteins and eykaryotic cells expressing said cDNA. All of the proteins of the present invention are putative proteins controlling the proliferation and differentiation of the cells, because said proteins exist on the cell membrane. Therefore, the proteins of the present invention can be used as pharmaceuticals or as antigens for preparing antibodies against said proteins. Furthermore, said DNAs can be used for the expression of large amounts of said proteins. The cells expressing large amounts of membrane proteins with transfection of these membrane protein genes can be applied

to the detection of the corresponding ligands, the screening of novel low-molecular medicines, and so on.

In addition to the activities and uses described above, the polynucleotides and proteins of the present invention may exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel

polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodiesusing DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors

of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1,

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J.

Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol.
152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Po lyclonal T cell stimulation, Kruisbeek, A.M. and Shevach, E.M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology, J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6 -Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and

Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic

activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial orfungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be

possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as , for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration

of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et

al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy.

Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the commoncold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β_2 microglobulin protein or an

MHC class IIα chain protein and an MHC class IIβ chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J.

Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J.J. and Brunswick, M. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992. Dendritic cell-dependent assays (which will identify,

among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995;

Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Hematopoiesis Regulating Activity

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without

limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss,

Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced

craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic

disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. W095/16035 (bone, cartilage, tendon); International Patent Publication No. W095/05846 (nerve, neuronal); International Patent Publication No. W091/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol.71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin- β group, may be useful as a fertility inducing

therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

Chemotactic/Chemokinetic Activity

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of

infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (includinghereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular

adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting

cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of ytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other

factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth

Other Activities

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating

deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

SEQUENCE LISTING

Sequence No.: 1 Sequence length: 205 Sequence type: Amino acid Topology: Linear Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma Cell line: HT-1080 Clone name: HP00442 Sequence description

195

Met Thr Gly Leu Ala Leu Leu Tyr Ser Gly Val Phe Val Ala Phe Trp 10 Ala Cys Ala Leu Ala Val Gly Val Cys Tyr Thr Ile Phe Asp Leu Gly 25 Phe Arg Phe Asp Val Ala Trp Phe Leu Thr Glu Thr Ser Pro Phe Met Trp Ser Asn Leu Gly Ile Gly Leu Ala Ile Ser Leu Ser Val Val Gly 55 Ala Ala Trp Gly Ile Tyr Ile Thr Gly Ser Ser Ile Ile Gly Gly 75 Val Lys Ala Pro Arg Ile Lys Thr Lys Asn Leu Val Ser Ile Ile Phe 90 Cys Glu Ala Val Ala Ile Tyr Gly Ile Ile Met Ala Ile Val Ile Ser Asn Met Ala Glu Pro Phe Ser Ala Thr Asp Pro Lys Ala Ile Gly His 120 Arg Asn Tyr His Ala Gly Tyr Ser Met Phe Gly Ala Gly Leu Thr Val 135 Gly Leu Ser Asn Leu Phe Cys Gly Val Cys Val Gly Ile Val Gly Ser 150 Gly Ala Ala Leu Ala Asp Ala Gln Asn Pro Ser Leu Phe Val Lys Ile 165 Leu Ile Val Glu Ile Phe Gly Ser Ala Ile Gly Leu Phe Gly Val Ile 185 Val Ala Ile Leu Gln Thr Ser Arg Val Lys Met Gly Asp 200

Sequence No.: 2

Sequence length: 371

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Leukocyte Clone name: HP00804 Sequence description

Met Ser His Glu Lys Ser Phe Leu Val Ser Gly Asp Asn Tyr Pro Pro 10 5 Pro Asn Pro Gly Tyr Pro Gly Gly Pro Gln Pro Pro Met Pro Pro Tyr 25 Ala Gln Pro Pro Tyr Pro Gly Ala Pro Tyr Pro Gln Pro Pro Phe Gln Pro Ser Pro Tyr Gly Gln Pro Gly Tyr Pro His Gly Pro Ser Pro Tyr Pro Gln Gly Gly Tyr Pro Gln Gly Pro Tyr Pro Gln Gly Gly Tyr Pro Gln Gly Pro Tyr Pro Gln Glu Gly Tyr Pro Gln Gly Pro Tyr Pro Gln 90 Gly Gly Tyr Pro Gln Gly Pro Tyr Pro Gln Ser Pro Phe Pro Pro Asn 105 Pro Tyr Gly Gln Pro Gln Val Phe Pro Gly Gln Asp Pro Asp Ser Pro **120**. Gln His Gly Asn Tyr Gln Glu Glu Gly Pro Pro Ser Tyr Tyr Asp Asn 135 Gln Asp Phe Pro Ala Thr Asn Trp Asp Asp Lys Ser Ile Arg Gln Ala 150 Phe Ile Arg Lys Val Phe Leu Val Leu Thr Leu Gln Leu Ser Val Thr 170 Leu Ser Thr Val Ser Val Phe Thr Phe Val Ala Glu Val Lys Gly Phe 185 Val Arg Glu Asn Val Trp Thr Tyr Tyr Val Ser Tyr Ala Val Phe Phe 200 Ile Ser Leu Ile Val Leu Ser Cys Cys Gly Asp Phe Arg Arg Lys His 215 Pro Trp Asn Leu Val Ala Leu Ser Val Leu Thr Ala Ser Leu Ser Tyr 235 230 Met Val Gly Met Ile Ala Ser Phe Tyr Asn Thr Glu Ala Val Ile Met 255 250 245

Ala Val Gly Ile Thr Thr Ala Val Cys Phe Thr Val Val Ile Phe Ser 265 Met Gin Thr Arg Tyr Asp Phe Thr Ser Cys Met Gly Val Leu Leu Val 280 Ser Met Val Val Leu Phe Ile Phe Ala Ile Leu Cys Ile Phe Ile Arg 295 Asn Arg Ile Leu Glu Ile Val Tyr Ala Ser Leu Gly Ala Leu Leu Phe 315 310 Thr Cys Phe Leu Ala Val Asp Thr Gln Leu Leu Gly Asn Lys Gln 325 330 Leu Ser Leu Ser Pro Glu Glu Tyr Val Phe Ala Ala Leu Asn Leu Tyr 345 340 Thr Asp Ile Ile Asn Ile Phe Leu Tyr Ile Leu Thr Ile Ile Gly Arg 360 Ala Lys Glu 370

Sequence No.: 3
Sequence length: 179
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP01098 Sequence description

 Met
 Leu
 Ser
 Leu
 Asp
 Phe
 Leu
 Asp
 Asp
 Val
 Arg
 Arg
 Met
 Ass
 Lys
 Arg

 Gln
 Leu
 Tyr
 Tyr
 Gln
 Val
 Leu
 Asn
 Phe
 Gly
 Met
 Ile
 Val
 Ile
 Val
 Ser
 Asa
 Ass
 Ile
 Thr
 Gly
 Ser
 Ass
 Ile
 Thr
 Gly
 Ser
 Ass
 Ile
 Thr
 Gly
 Ser
 Ass
 Ass
 Ass
 Ile
 Thr
 Gly
 Ser
 Arg
 Val
 Ass
 Arg
 Ass
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Arg
 Ile
 Ile
 Arg
 Ile
 Ile
 Arg
 Ile
 Ile

Sequence No.: 4
Sequence length: 347
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Liver Clone name: HP01148 Sequence description

Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly 10 1 Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg 25 Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val 40 Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu 65 Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr 105 Asp Cys Ser His Glu Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 155 150 145 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys

170 165 Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn 185 Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys 200 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly 215 Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp 230 Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg 250 245 Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly 285 280 275 Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly 295 Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln 315 310 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 330 325 His Gln Glu Asp Val Ala Val Ile Cys Ser Gly 340

Sequence No.: 5

Sequence length: 554

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP01293
Sequence description

	50					55					60				
Ser	Pro	Ala	G1u	Glu	Leu	Asn	Tyr	Thr	Va1	Pro	G1y	Leu	Gly	Pro	Ala
65					70					75					80
Gly	Glu	Ala	Phe	Leu	Gly	Gln	Cys	Arg	Arg	Tyr	Glu	Val	Asp	Trp	Asn
				85					90					95	
Gln	Ser	Ala	Leu	Ser	Cys	Val	Asp	Pro	Leu	Ala	Ser	Leu	Ala	Thr	Asn
			100					105					110		
Arg	Ser	His	Leu	Pro	Leu	Gly	Pro	Cys	Gln	Asp	Gly	Trp	Val	Tyr	Asp
		115					120		•			125			
Thr	Pro	Gly	Ser	Ser	Ile	Val	Thr	Glu	Phe	Asn		Val	CAs	Ala	Asp
	130					135					140	_			
Ser	Trp	Lys	Leu	Asp	Leu	Phe	Gln	Ser	Cys		Asn	Ala	Gly	Phe	
145					150					155					160
Phe	Gly	Ser	Leu	-	Val	Gly	Tyr	Phe		Asp	Arg	Phe	Gly		Lys
		_	_	165				1	170		vv. 7	0	61 –	175	T
Leu	Cys	Leu		GLY	Thr	Val	Leu		ASD	ALA	VAI	ser	190	Val	rea
	A1 =	Db	180	n	A	Tyr	Wat	185	Vot	7.011	'T 033	Pho		Lan	Lou
Met	ALA	195	ser	PIO	ASII	Tyr	200	Ser	met	Leu	Leu	205	wrg	Leu	neu
Cln	C1 w		Vo 1	Ser	I.ve	G1 y		Trn	Met	Ala	G1 v		Thr	Leu	Ile
GIII	210	Leu	Val	Ser	Буз	215		,	1100	****	220	-,-			
Thr		Phe	Va1	G1v	Ser	Gly			Arg	Thr		Ala	Ile	Met	Tyr
225	01			,	230	,				235			•		240
	Met	Ala	Phe	Thr	Val	Gly	Leu	Val	Ala	Leu	Thr	Gly	Leu	Ala	Tyr
				245		-			250					255	
Ala	Leu	Pro	His	Trp	Arg	Trp	Leu	Gln	Leu	Ala	Va1	Ser	Leu	Pro	Thr
			260					265					270		
Phe	Leu	Phe	Leu	Leu	Tyr	Tyr	Trp	Cys	Val	Pro	Glu	Ser	Pro	Arg	Trp
		275					280					285			
Leu	Leu	Ser	Gln	Lys	Arg	Asn	Thr	Glu	Ala	Ile	Lys	Ile	Met	Asp	His
	290					295					300				
Ile	Ala	Gln	Lys	Asn	Gly	Lys	Leu	Pro	Pro	Ala	Asp	Leu	Lys	Met	
305					310					315					320
Ser	Leu	Glu	Glu			Thr	Glu	Lys			Pro	Ser	Phe		
				325		_		_	330			~~	_	335	
Leu	Phe	Arg		Pro	Arg	Leu	Arg		Arg	Thr	Pne	TIE		Met	Tyr
			340			T	-	345		01	¥	~1 _	350	n:-	14-4
Leu	Trp		Thr	Asp	ser	Val		Tyr	GIN	GIY	ren		rea	ais	net
		355	_		A	T	360	7		Dho	Lou	365	C ~ ~	41-	T our
GTA		Thr	ser	GTÀ	ASIL	Leu 375	ıyr	Leu	wah	FIRE	380	TYL	Ser	TI	กผถ
¥7- 1	370	71.	Dec	61	Δ1 c	Phe	Tle	Als	Leu	716		Ile	Asn	Arg	Ve 1
385	GIU	TTG	ETO	GLY	390	1116	***	424.04	204	395			P	5	400
	A	T1 e	Tor	Pro		Ala	Val	Ser	Asp		Leu	Ala	Glv	Ala	

410 415 405 Cys Leu Val Met Ile Phe Ile Ser Pro Asp Leu His Trp Leu Asn Ile Ile Ile Met Cys Val Gly Arg Met Gly Ile Thr Ile Ala Ile Gln Met 440 Ile Cys Leu Val Asn Ala Glu Leu Tyr Pro Thr Phe Val Arg Asn Leu 450 Gly Val Met Val Cys Ser Ser Leu Cys Asp Ile Gly Gly Ile Ile Thr 475 470 Pro Phe Ile Val Phe Arg Leu Arg Glu Val Trp Gln Ala Leu Pro Leu 490 Ile Leu Phe Ala Val Leu Gly Leu Leu Ala Ala Gly Val Thr Leu Leu 505 500 Leu Pro Glu Thr Lys Gly Val Ala Leu Pro Glu Thr Met Lys Asp Ala Glu Asn Leu Gly Arg Lys Ala Lys Pro Lys Glu Asn Thr Ile Tyr Leu Lys Val Gln Thr Ser Glu Pro Ser Gly Thr 550 545

Sequence No.: 6

Sequence length: 350

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10013 Sequence description

ГÀв	Gly	Val	Asn	Lys	Leu	Ala	Leu	Pro	Pro	Gly	Ser	Val	Ile		Ty
				85					90					95	
Pro	Leu	Glu	Asn	Ala	Val	Pro	Phe	Ser	Leu	Asp	Ser	Val	Ala	Asn	Sei
			100	•				105					110		
Ile	His	Ser	Leu	Phe	Ser	Glu	Glu	Thr	Pro	Val	Val	Leu	Gln	Leu	Ala
		115					120					125			
Pro	Ser	${\tt Glu}$	G1u	Arg	Val	Tyr	Met	Val	Gly	Lys	Ala	Asn	Ser	Val	Phe
	130					135					140				
Glu	Asp	Leu	Ser	Val	Thr	Leu	Arg	Gln	Leu	Arg	Asn	Arg	Leu	Phe	Gli
145					150					155					160
Glu	Asn	Ser	Val	Leu	Ser	Ser	Leu	Pro	Leu	Asn	Ser	Leu	Ser	Arg	Ası
				165					170		•			175	
Asn	Glu	Val	Asp	Leu	Leu	Phe	Leu	Ser	Glu	Leu	Gln	Val	Leu	His	Ası
			180			-		185					190		
Ile	Ser	Ser	Leu	Leu	Ser	Arg	His	Lys	His	Leu	Ala	Lys	Asp	His	Sea
		195					200					205			
Pro	Asp	Leu	Tyr	Ser	Leu	Glu	Leu	Ala	Gly	Leu	Asp	Glu	Ile	Gly	Lys
	210					215					220				
Arg	Tyr	Gly	Glu	Asp	Ser	G1u	Gln	Phe	Arg	Asp	Ala	Ser	Lys	Ile	Leı
225					230					235					240
Va1	Asp	Ala	Leu	Gln	Lys	Phe	Ala	Asp	Asp	Met	Tyr	Ser	Leu	Tyr	G13
				245					250					255	
Gly	Asn	Ala	Val	Val	Glu	Leu	Val	Thr	Val	Lys	Ser	Phe	Asp	Thr	Se
			260					265					270		
Leu	Ile	Arg	Lys	Thr	Arg	Thr	Ile	Leu	Glu	Ala	Lys	Gln	Ala	Lys	Ası
		275					280					285			
Pro	Ala	Ser	Pro	Tyr	Asn	Leu	Ala	Tyr	Lys	Tyr	Asn	Phe	Glu	Tyr	Sea
	290					295					300			-	
Val	Val	Phe	Asn	Met	Val	Leu	Trp	Ile	Met	Ile	Ala	Leu	Ala	Leu	Ala
305					310					315					320
Val	Ile	Ile	Thr	Ser	Tyr	Asn	Ile	Trp	Asn	Met	Asp	Pro	Gly	Tyr	Asj
				325					330					335	
Ser	Ile	Ile	Tyr	Arg	Met	Thr	Asn	Gln	Lys	Ile	Arg	Met	Asp		
			340					345					350		

Sequence No.: 7

Sequence length: 209

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10034
Sequence description

Met Val Ser Ser Pro Cys Thr Gln Ala Ser Ser Arg Thr Cys Ser Arg 10 1 Ile Leu Gly Leu Ser Leu Gly Thr Ala Ala Leu Phe Ala Ala Gly Ala 25 Asn Val Ala Leu Leu Pro Asn Trp Asp Val Thr Tyr Leu Leu Arg 40 Gly Leu Leu Gly Arg His Ala Met Leu Gly Thr Gly Leu Trp Gly Gly 55 Gly Leu Met Val Leu Thr Ala Ala Ile Leu Ile Ser Leu Met Gly Trp 70 75 65 Arg Tyr Gly Cys Phe Ser Lys Ser Gly Leu Cys Arg Ser Val Leu Thr 90 85 Ala Leu Leu Ser Gly Gly Leu Ala Leu Leu Gly Ala Leu Ile Cys Phe 105 Val Thr Ser Gly Val Ala Leu Lys Asp Gly Pro Phe Cys Met Phe Asp 120 Val Ser Ser Phe Asn Gln Thr Gln Ala Trp Lys Tyr Gly Tyr Pro Phe 140 135 Lys Asp Leu His Ser Arg Asn Tyr Leu Tyr Asp Arg Ser Leu Trp Asn 160 155 145 150 Ser Val Cys Leu Glu Pro Ser Ala Ala Val Val Trp His Val Ser Leu 170 165 Phe Ser Ala Leu Leu Cys Ile Ser Leu Leu Gln Leu Leu Leu Val Val 185 Val His Val Ile Asn Ser Leu Leu Gly Leu Phe Cys Ser Leu Cys Glu 205 200 195 Lys

Sequence No.: 8
Sequence length: 163
Sequence type: Amino acid
Topology: Linear
Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma Cell line: HT-1080 Clone name: HP10050 Sequence description

Met Ala Ala Gly Leu Phe Gly Leu Ser Ala Arg Arg Leu Leu Ala Ala 10 Ala Ala Thr Arg Gly Leu Pro Ala Ala Arg Val Arg Trp Glu Ser Ser 25 20 Phe Ser Arg Thr Val Val Ala Pro Ser Ala Val Ala Gly Lys Arg Pro Pro Glu Pro Thr Thr Pro Trp Gln Glu Asp Pro Glu Pro Glu Asp Glu 55 Asn Leu Tyr Glu Lys Asn Pro Asp Ser His Gly Tyr Asp Lys Asp Pro 70 Val Leu Asp Val Trp Asn Met Arg Leu Val Phe Phe Phe Gly Val Ser 90 Ile Ile Leu Val Leu Gly Ser Thr Phe Val Ala Tyr Leu Pro Asp Tyr 105 Arg Cys Thr Gly Cys Pro Arg Ala Trp Asp Gly Met Lys Glu Trp Ser 120 Arg Arg Glu Ala Glu Arg Leu Val Lys Tyr Arg Glu Ala Asn Gly Leu 135 Pro Ile Met Glu Ser Asn Cys Phe Asp Pro Ser Lys Ile Gln Leu Pro 155 160 145 150 Glu Asp Glu

Sequence No.: 9

Sequence length: 92

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10071 Sequence description

35

Met Thr Lys Leu Ala Gln Trp Leu Trp Gly Leu Ala Ile Leu Gly Ser

1 5 10 15

Thr Trp Val Ala Leu Thr Thr Gly Ala Leu Gly Leu Glu Leu Pro Leu
20 25 30

Ser Cys Gln Glu Val Leu Trp Pro Leu Pro Ala Tyr Leu Leu Val Ser

45

40

Ala Gly Cys Tyr Ala Leu Gly Thr Val Gly Tyr Arg Val Ala Thr Phe
50 55 60

His Asp Cys Glu Asp Ala Ala Arg Glu Leu Gln Ser Gln Ile Gln Glu
65 70 75 80

Ala Arg Ala Asp Leu Ala Arg Arg Gly Leu Arg Phe
85 90

Sequence No.: 10 Sequence length: 172 Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma Cell line: U937 Clone name: HP10076 Sequence description

Met Glu Tyr Leu Ala His Pro Ser Thr Leu Gly Leu Ala Val Gly Val 1 Ala Cys Gly Met Cys Leu Gly Trp Ser Leu Arg Val Cys Phe Gly Met 25 Leu Pro Lys Ser Lys Thr Ser Lys Thr His Thr Asp Thr Glu Ser Glu 40 Ala Ser Ile Leu Gly Asp Ser Gly Glu Tyr Lys Met Ile Leu Val Val Arg Asn Asp Leu Lys Met Gly Lys Gly Lys Val Ala Ala Gln Cys Ser His Ala Ala Val Ser Ala Tyr Lys Gln Ile Gln Arg Arg Asn Pro Glu Met Leu Lys Gln Trp Glu Tyr Cys Gly Gln Pro Lys Val Val Lys 105 Ala Pro Asp Glu Glu Thr Leu Ile Ala Leu Leu Ala His Ala Lys Met 120 Leu Gly Leu Thr Val Ser Leu Ile Gln Asp Ala Gly Arg Thr Gln Ile 135 Ala Pro Gly Ser Gln Thr Val Leu Gly Ile Gly Pro Gly Pro Ala Asp 155 145 Leu Ile Asp Lys Val Thr Gly His Leu Lys Leu Tyr 165

Sequence No.: 11 Sequence length: 149 Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence description

Met Met Thr Lys His Lys Lys Cys Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile Val Lys Leu Thr Arg Asp Ser Gln 25 Ser Leu Cys Pro Tyr Asp Trp Ile Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp Asn Ser Ser Lys Tyr Asn Cys Ser 55 Thr Gln His Ala Asp Leu Thr Ile Ile Asp Asn Ile Glu Glu Met Asn 75 65 Phe Leu Arg Arg Tyr Lys Cys Ser Ser Asp His Trp Ile Gly Leu Lys 90 Met Ala Lys Asn Arg Thr Gly Gln Trp Val Asp Gly Ala Thr Phe Thr 105 Lys Ser Phe Gly Met Arg Gly Ser Glu Gly Cys Ala Tyr Leu Ser Asp 120 Asp Gly Ala Ala Thr Ala Arg Cys Tyr Thr Glu Arg Lys Trp Ile Cys 135 140

Arg Lys Arg Ile His 145

130

Sequence No.: 12 Sequence length: 188 Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10122 Sequence description

Met Ser Thr Met Phe Ala Asp Thr Leu Leu Ile Val Phe Ile Ser Val 5 10 Cys Thr Ala Leu Leu Ala Glu Gly Ile Thr Trp Val Leu Val Tyr Arg 20 Thr Asp Lys Tyr Lys Arg Leu Lys Ala Glu Val Glu Lys Gln Ser Lys 40 Lys Leu Glu Lys Lys Lys Glu Thr Ile Thr Glu Ser Ala Gly Arg Gln Gln Lys Lys Lys Ile Glu Arg Gln Glu Glu Lys Leu Lys Asn Asn Asn 75 Arg Asp Leu Ser Met Val Arg Met Lys Ser Met Phe Ala Ile Gly Phe 90 Cys Phe Thr Ala Leu Met Gly Met Phe Asn Ser Ile Phe Asp Gly Arg 105 Val Val Ala Lys Leu Pro Phe Thr Pro Leu Ser Tyr Ile Gln Gly Leu 120 Ser His Arg Asn Leu Leu Gly Asp Asp Thr Thr Asp Cys Ser Phe Ile 135 Phe Leu Tyr Ile Leu Cys Thr Met Ser Ile Arg Gln Asn Ile Gln Lys 155 150 145 Ile Leu Gly Leu Ala Pro Ser Arg Ala Ala Thr Lys Gln Ala Gly Gly 170 175 165 Phe Leu Gly Pro Pro Pro Pro Ser Gly Lys Phe Ser 185 180

Sequence No.: 13 Sequence length: 215

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10136
Sequence description

Met Val Leu Leu Thr Met Ile Ala Arg Val Ala Asp Gly Leu Pro Leu

10 Ala Ala Ser Met Gln Glu Asp Glu Gln Ser Gly Arg Asp Leu Gln Gln 25 Tyr Gln Ser Gln Ala Lys Gln Leu Phe Arg Lys Leu Asn Glu Gln Ser 40 Pro Thr Arg Cys Thr Leu Glu Ala Gly Ala Met Thr Phe His Tyr Ile Ile Glu Gln Gly Val Cys Tyr Leu Val Leu Cys Glu Ala Ala Phe Pro 70 Lys Lys Leu Ala Phe Ala Tyr Leu Glu Asp Leu His Ser Glu Phe Asp 90 Glu Gln His Gly Lys Lys Val Pro Thr Val Ser Arg Pro Tyr Ser Phe 105 Ile Glu Phe Asp Thr Phe Ile Gln Lys Thr Lys Lys Leu Tyr Ile Asp 120 . Ser Arg Ala Arg Arg Asn Leu Gly Ser Ile Asn Thr Glu Leu Gln Asp 135 Val Gln Arg Ile Met Val Ala Asn Ile Glu Glu Val Leu Gln Arg Gly 155 150 Glu Ala Leu Ser Ala Leu Asp Ser Lys Ala Asn Asn Leu Ser Ser Leu 165 170 Ser Lys Lys Tyr Arg Gln Asp Ala Lys Tyr Leu Asn Met Arg Ser Thr 180 Tyr Ala Lys Leu Ala Ala Val Ala Val Phe Phe Ile Met Leu Ile Val 200 205 Tyr Val Arg Phe Trp Trp Leu 210

Sequence No.: 14
Sequence length: 112
Sequence type: Amino acid
Topology: Linear

- Lopezogy . Daneur

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10175 Sequence description

Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe Gly

1 5 10 15

Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys Ala

Sequence No.: 15 Sequence length: 114 Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10179 Sequence description

Met Glu Lys Pro Leu Phe Pro Leu Val Pro Leu His Trp Phe Gly Phe 10 1 Gly Tyr Thr Ala Leu Val Val Ser Gly Gly Ile Val Gly Tyr Val Lys 25 Thr Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu 40 Ala Gly Leu Gly Ala Tyr Gln Leu Tyr Gln Asp Pro Arg Asn Val Trp 55 Gly Phe Leu Ala Ala Thr Ser Val Thr Phe Val Gly Val Met Gly Met 65 Arg Ser Tyr Tyr Gly Lys Phe Met Pro Val Gly Leu Ile Ala Gly Ala Ser Leu Leu Met Ala Ala Lys Val Gly Val Arg Met Leu Met Thr 110 100 105 Ser Asp

Sequence length: 327

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10196 Sequence description

Met Ala Ala Ala Ala Ala Ala Ala Ala Thr Asn Gly Thr Gly Gly 10 5 Ser Ser Gly Met Glu Val Asp Ala Ala Val Val Pro Ser Val Met Ala 25 Cys Gly Val Thr Gly Ser Val Ser Val Ala Leu His Pro Leu Val Ile 40 Leu Asn Ile Ser Asp His Trp Ile Arg Met Arg Ser Gln Glu Gly Arg 55 Pro Val Gln Val Ile Gly Ala Leu Ile Gly Lys Gln Glu Gly Arg Asn 70 75 Ile Glu Val Met Asn Ser Phe Glu Leu Leu Ser His Thr Val Glu Glu Lys Ile Ile Asp Lys Glu Tyr Tyr Tyr Thr Lys Glu Glu Gln Phe 100 105 Lys Gln Val Phe Lys Glu Leu Glu Phe Leu Gly Trp Tyr Thr Thr Gly 120 115 Gly Pro Pro Asp Pro Ser Asp Ile His Val His Lys Gln Val Cys Glu 135 Ile Ile Glu Ser Pro Leu Phe Leu Lys Leu Asn Pro Met Thr Lys His 155 150 Thr Asp Leu Pro Val Ser Val Phe Glu Ser Val Ile Asp Ile Ile Asn 170 Gly Glu Ala Thr Met Leu Phe Ala Glu Leu Thr Tyr Thr Leu Ala Thr 185 Glu Glu Ala Glu Arg Ile Gly Val Asp His Val Ala Arg Met Thr Ala 205 200 Thr Gly Ser Gly Glu Asn Ser Thr Val Ala Glu His Leu Ile Ala Gln 220 215 His Ser Ala Ile Lys Met Leu His Ser Arg Val Lys Leu Ile Leu Glu 235 230 Tyr Val Lys Ala Ser Glu Ala Gly Glu Val Pro Phe Asn His Glu Ile 250 245

 Leu
 Arg
 Glu
 Ala
 Tyr
 Ala
 Leu
 Cys
 His
 Cys
 Leu
 Pro
 Val
 Leu
 Ser
 Thr

 Asp
 Lys
 Phe
 Lys
 Thr
 Asp
 Phe
 Tyr
 Asp
 Gln
 Cys
 Asn
 Asp
 Val
 Gly
 Leu

 Met
 Ala
 Tyr
 Leu
 Gly
 Thr
 Ile
 Thr
 Lys
 Thr
 Cys
 Asn
 Thr
 Met
 Asn
 Gl
 Asn
 Gl
 Asn
 Gl
 Asn
 Gl
 Asn
 Gl
 Asn
 Gl
 Arg
 Asn
 Asn
 Gl
 Arg
 Asn
 Asn
 Asn
 Asn
 Arg
 Asn
 Asn

Sequence No.: 17
Sequence length: 373

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10235
Sequence description

Met Thr Leu Cys Ala Met Leu Pro Leu Leu Leu Phe Thr Tyr Leu Asn 10 Ser Phe Leu His Gln Arg Ile Pro Gln Ser Val Arg Ile Leu Gly Ser Leu Val Ala Ile Leu Leu Val Phe Leu Ile Thr Ala Ile Leu Val Lys 40 Val Gln Leu Asp Ala Leu Pro Phe Phe Val Ile Thr Met Ile Lys Ile 55 Val Leu Ile Asn Ser Phe Gly Ala Ile Leu Gln Gly Ser Leu Phe Gly 75 70 Leu Ala Gly Leu Leu Pro Ala Ser Tyr Thr Ala Pro Ile Met Ser Gly 90 Gln Gly Leu Ala Gly Phe Phe Ala Ser Val Ala Met Ile Cys Ala Ile 105 100 Ala Ser Gly Ser Glu Leu Ser Glu Ser Ala Phe Gly Tyr Phe Ile Thr 125 115 120 Ala Cys Ala Val Ile Ile Leu Thr Ile Ile Cys Tyr Leu Gly Leu Pro 135 Arg Leu Glu Phe Tyr Arg Tyr Tyr Gln Gln Leu Lys Leu Glu Gly Pro

145					150					155					160
G1y	Glu	Gln	Glu	Thr	Lys	Leu	Asp	Leu	Ile	Ser	Lys	Gly	Glu	Glu	Pro
				165					170					175	
Arg	Ala	Gly	Lys	Glu	Glu	Ser	Gly	Val	Ser	Val	Ser	Asn	Ser	Gln	Pro
			180					185		٠.			190		
Thr	Asn	Glu	Ser	His	Ser	Ile	Lys	Ala	Ile	Leu	Lys	Asn	Ile	Ser	Val
		195				-	200					205			
Leu	Ala	Phe	Ser	Val	Cys	Phe	Ile	Phe	Thr	Ile	Thr	Ile	Gly	Met	Phe
	210		•			215	-	•			220				
Pro	Ala	Val	Thr	Val	Glu	Val	Lys	Ser	Ser	Ile	Ala	Gly	Ser	Ser	Thr
225					230					235					240
Trp	Glu	Arg	Tyr	Phe	Ile	Pro	Val	Ser	Cys	Phe	Leu	Thr	Phe	Asn	Ile
_				245					250					255	
Phe	Asp	Trp	Leu	Gly	Arg	Ser	Leu	Thr	Ala	Va1	Phe	Met	Trp	Pro	G1y
•			260					265			,		270		
Lys	Asp	Ser	Arg	Trp	Leu	Pro	Ser	Leu	Val	Leu	Ala	Arg	Leu	Val	Phe
_		275					280					285			
Va1	Pro	Leu	Leu	Leu	Leu	Cys	Asn	Ile	Lys	Pro	Arg	Arg	Tyr	Leu	Thr
	290					295					300				
Val	Val	Phe	Glu	His	Asp	Ala	Trp	Phe	Ile	Phe	Phe	Met	Ala	Ala	Phe
305					310					315					320
Ala	Phe	Ser	Asn	Gly	Tyr	Leu	Ala	Ser	Leu	Cys	Met	Cys	Phe	Gly	Pro
				325					330				•	335	
Lys	Lys	Va1	Lys	Pro	Ala	Glu	Ala	Glu	Thr	Ala	Gly	Ala	Ile	Met	Ala
			340					345					350		
Phe	Phe	Leu	Cys	Leu	Gly	Leu	Ala	Leu	Gly	Ala	Val	Phe	Ser	Phe	Leu
		355	•				360					365			
Phe	Arg	Ala	Ile	Val					•						
	370														

Sequence No.: 18
Sequence length: 183
Sequence type: Amino acid
Topology: Linear
Sequence kind: Protein
Hypothetical: No
Original source:
Organism species: Homo sapiens

Cell kind: Stomach cancer Clone name: HP10297

Sequence description

Met Lys Leu Leu Ser Leu Val Ala Val Val Gly Cys Leu Leu Val Pro 10 Pro Ala Glu Ala Asn Lys Ser Ser Glu Asp Ile Arg Cys Lys Cys Ile 20 25 Cys Pro Pro Tyr Arg Asn Ile Ser Gly His Ile Tyr Asn Gln Asn Val 40 Ser Gln Lys Asp Cys Asn Cys Leu His Val Val Glu Pro Met Pro Val 55 Pro Gly His Asp Val Glu Ala Tyr Cys Leu Leu Cys Glu Cys Arg Tyr 70 75 Glu Glu Arg Ser Thr Thr Thr Ile Lys Val Ile Ile Val Ile Tyr Leu Ser Val Val Gly Ala Leu Leu Leu Tyr Met Ala Phe Leu Met Leu Val 105 Asp Pro Leu Ile Arg Lys Pro Asp Ala Tyr Thr Glu Gln Leu His Asn Glu Glu Glu Asn Glu Asp Ala Arg Ser Met Ala Ala Ala Ala Ser 140 Leu Gly Gly Pro Arg Ala Asn Thr Val Leu Glu Arg Val Glu Gly Ala 150 155 145 Gln Gln Arg Trp Lys Leu Gln Val Gln Glu Gln Arg Lys Thr Val Phe 165 170 Asp Arg His Lys Met Leu Ser 180

Sequence No.: 19
Sequence length: 116
Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10299 Sequence description

Sequence No.: 20
Sequence length: 152
Sequence type: Amino acid
Topology: Linear
Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Gly Ser Gly Pro Lys Cys Cys His

Cell line: KB

Clone name: HP10301 Sequence description

Met Ala Val Leu Ser Lys Glu Tyr Gly Phe Val Leu Leu Thr Gly Ala 10 Ala Ser Phe Ile Met Val Ala His Leu Ala Ile Asn Val Ser Lys Ala 25 Arg Lys Lys Tyr Lys Val Glu Tyr Pro Ile Met Tyr Ser Thr Asp Pro 40 Glu Asn Gly His Ile Phe Asn Cys Ile Gln Arg Ala His Gln Asn Thr Leu Glu Val Tyr Pro Pro Phe Leu Phe Phe Leu Ala Val Gly Gly Val 75 70 Tyr His Pro Arg Ile Ala Ser Gly Leu Gly Leu Ala Trp Ile Val Gly 90 Arg Val Leu Tyr Ala Tyr Gly Tyr Tyr Thr Gly Glu Pro Ser Lys Arg 105 Ser Arg Gly Ala Leu Gly Ser Ile Ala Leu Leu Gly Leu Val Gly Thr 120 Thr Val Cys Ser Ala Phe Gln His Leu Gly Trp Val Lys Ser Gly Leu 140 135

150

Sequence No.: 21 Sequence length: 559 Sequence type: Amino acid Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Liver Clone name: HP10302 Sequence description

Met Ala Pro Thr Leu Gln Gln Ala Tyr Arg Arg Arg Trp Trp Met Ala 10 Cys Thr Ala Val Leu Glu Asn Leu Phe Phe Ser Ala Val Leu Leu Gly 25 Trp Gly Ser Leu Leu Ile Ile Leu Lys Asn Glu Gly Phe Tyr Ser Ser 40 Thr Cys Pro Ala Glu Ser Ser Thr Asn Thr Thr Gln Asp Glu Gln Arg 55 Arg Trp Pro Gly Cys Asp Gln Gln Asp Glu Met Leu Asn Leu Gly Phe Thr Ile Gly Ser Phe Val Leu Ser Ala Thr Thr Leu Pro Leu Gly Ile 90 Leu Met Asp Arg Phe Gly Pro Arg Pro Val Arg Leu Val Gly Ser Ala 105 Cys Phe Thr Ala Ser Cys Thr Leu Met Ala Leu Ala Ser Arg Asp Val 120 Glu Ala Leu Ser Pro Leu Ile Phe Leu Ala Leu Ser Leu Asn Gly Phe 135 Gly Gly Ile Cys Leu Thr Phe Thr Ser Leu Thr Leu Pro Asn Met Phe 155 150 Gly Asn Leu Arg Ser Thr Leu Met Ala Leu Met Ile Gly Ser Tyr Ala 170 Ser Ser Ala Ile Thr Phe Pro Gly Ile Lys Leu Ile Tyr Asp Ala Gly Val Ala Phe Val Val Ile Met Phe Thr Trp Ser Gly Leu Ala Cys Leu 205 200 Ile Phe Leu Asn Cys Thr Leu Asn Trp Pro Ile Glu Ala Phe Pro Ala 215 Pro Glu Glu Val Asn Tyr Thr Lys Lys Ile Lys Leu Ser Gly Leu Ala

225					230					235					240
Leu	Asp	His	Lys	Val	Thr	Gly	Asp	Leu	Phe	Tyr	Thr	His	Val	Thr	Thr
				245					250					255	
Met	Gly	Gln	Arg	Leu	Ser	G1n	Lys	Ala	Pro	Ser	Leu	Glu	Asp	Gly	Ser
			260					265					270		
Asp	Ala	Phe	Met	Ser	Pro	Gln	Asp	Val	Arg	Gly	Thr	Ser	G1u	Asn	Leu
		275					280					285			
Pro	G1u	Arg	Ser	Va1	Pro	Leu	Arg	Lys	Ser	Leu	CAs	Ser	Pro	Thr	Phe
	290					295					300				
Leu	Trp	Ser	Leu	Leu	Thr	Met	Gly	Met	Thr		Leu	Arg	Ile	Ile	
305					310					315					320
Tyr	Met	Ala	Ala	Val	Asn	Lys	Met			Tyr	Leu	Val	Thr	Gly	Gly
				325					330					335	
Gln	Glu	His	Glu	Thr	Asn	G1u	Gln		Gln	Lys	Val	Ala		Thr	Val
			340	,				345		_		_	350	_	_
Gly	Phe	Tyr	Ser	Ser	Val	Phe		Ala	Met	Gln	Leu		Cys	Leu	Leu
	•	355	·				360					365			_
Thr	Cys	Pro	Leu	Ile	G1y		Ile	Met	Asp	Trp		Ile	Lys	Asp	Cys
	370					375		_			380				
Val	Asp	Ala	Pro	Thr		Gly	Thr	Val	Leu		Asp	Ala	Arg	Asp	
385					390				_	395	_				400
Va1	Ala	Thr	Lys		Ile	Arg	Pro	Arg		Cys	Lys	Ile	Gin	Lys	Leu
				405				_	410		•	•	•	415	C1
Thr	Asn	Ala		Ser	Ala	Phe	Thr		Thr	Asn	Leu	Leu		Val	GIA
		_	420	_	_			425	•	77.3 _	7	01-	430	17. 1	The sec
Phe	Gly			Cys	Leu	IIe		ASD	Leu	HIS	rea		Pne	Val	III
		435			~-1	I	440	01	DL -	71k -	nia	445	A T =	C~~	C1
Phe		Leu	His	Thr	TTE			GTA	Pne	Pne		ser	ATA	Cys	GLY
	450	_			1	455		0	A	¥77.2	460	C1	mh -	T ou	Th~
	Leu	Tyr	Ala	ALA		Pne	Pro	ser	Asn		rne	GLY	IIII	Leu	480
465	_		_		470	0		₹7_ T	nt -	475	Y	T 011	Cla	Cin	
Gly	Leu	Gln	Ser			ser	Ala	Val		Ala	reu	Leu	GIII	Gln 495	FLU
			. =	485		0.1	n	T	490	~1_	CI.	D=0	Dho	•	Wa 1
Leu	Phe	Met			Val	GTA	Pro			GTÀ	GIU	PIG	510	Trp	441
	_		500		T	DL a	C	505		C1	Dho	ĭ 011		Dro	Sar
Asn	Leu	_		Leu	rea	Phe			Leu	GLY	rne	525	Leu	Pro	SEL
-	_	515		m		A 1 -	520		01-	GI m	61		Αle	Alo	Aen
Tyr			Tyr	TAL	AIG	535		reg	GTU	GIII	. 614 540		WIG	Ala	wen
	530		Pro	7	T — ~			80-	C1	Sar			ም ኮ ተ	a l A	
-		GTA	rro	rén			red	ser	GTÀ	555		*41		ma	
545					550					درر					

Sequence length: 330

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS
Clone name: HP10304
Sequence description

Met Glu Gly Ala Pro Pro Gly Ser Leu Ala Leu Arg Leu Leu Leu Phe 5 Val Ala Leu Pro Ala Ser Gly Trp Leu Thr Thr Gly Ala Pro Glu Pro 20 Pro Pro Leu Ser Gly Ala Pro Gln Asp Gly Ile Arg Ile Asn Val Thr 40 Thr Leu Lys Asp Asp Gly Asp Ile Ser Lys Gln Gln Val Val Leu Asn 55 Ile Thr Tyr Glu Ser Gly Gln Val Tyr Val Asn Asp Leu Pro Val Asn Ser Gly Val Thr Arg Ile Ser Cys Gln Thr Leu Ile Val Lys Asn Glu 85 Asn Leu Glu Asn Leu Glu Glu Lys Glu Tyr Phe Gly Ile Val Ser Val 105 Arg Ile Leu Val His Glu Trp Pro Met Thr Ser Gly Ser Ser Leu Gln 125 120 Leu Ile Val Ile Gln Glu Glu Val Val Glu Ile Asp Gly Lys Gln Val 135 Gln Gln Lys Asp Val Thr Glu Ile Asp Ile Leu Val Lys Asn Arg Gly 155 150 Val Leu Arg His Ser Asn Tyr Thr Leu Pro Leu Glu Glu Ser Met Leu 170 165 Tyr Ser Ile Ser Arg Asp Ser Asp Ile Leu Phe Thr Leu Pro Asn Leu 185 Ser Lys Lys Glu Ser Val Ser Ser Leu Gln Thr Thr Ser Gln Tyr Leu Ile Arg Asn Val Glu Thr Thr Val Asp Glu Asp Val Leu Pro Gly Lys 220 215 Leu Pro Glu Thr Pro Leu Arg Ala Glu Pro Pro Ser Ser Tyr Lys Val 235 230 Met Cys Gln Trp Met Glu Lys Phe Arg Lys Asp Leu Cys Arg Phe Trp 255 245 250

 Ser
 Asn
 Val
 Phe
 Pro
 Val
 Phe
 Phe
 Gln
 Phe
 Leu
 Asn
 Ile
 Met
 Val
 Val

 Gly
 Ile
 Thr
 Gly
 Ala
 Ala
 Val
 Val
 Ile
 Thr
 Ile
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Phe
 P

Sequence No.: 23 Sequence length: 108

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: HU-2 OS Clone name: HP10305 Sequence description

Met Ser Leu Thr Ser Ser Ser Ser Val Arg Val Glu Trp Ile Ala Ala

1 5 10 15

Val Thr Ile Ala Ala Gly Thr Ala Ala Ile Gly Tyr Leu Ala Tyr Lys
20 25 30

Arg Phe Tyr Val Lys Asp His Arg Asn Lys Ala Met Ile Asn Leu His
35 40 45

Ile Gln Lys Asp Asn Pro Lys Ile Val His Ala Phe Asp Met Glu Asp
50 55 60

Leu Gly Asp Lys Ala Val Tyr Cys Arg Cys Trp Arg Ser Lys Lys Phe 65 70 75 80

Pro Phe Cys Asp Gly Ala His Thr Lys His Asn Glu Glu Thr Gly Asp

Asn Val Gly Pro Leu Ile Ile Lys Lys Lys Glu Thr 100 105

Sequence No.: 24
Sequence length: 101

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS Clone name: HP10306 Sequence description

Met Asn Leu Glu Arg Val Ser Asn Glu Glu Lys Leu Asn Leu Cys Arg

Lys Tyr Tyr Leu Gly Gly Phe Ala Phe Leu Pro Phe Leu Trp Leu Val 20 . 25 30

Asn Ile Phe Trp Phe Phe Arg Glu Ala Phe Leu Val Pro Ala Tyr Thr

35 40 45 Glu Gln Ser Gln Ile Lys Gly Tyr Val Trp Arg Ser Ala Val Gly Phe

50 55 60

Leu Phe Trp Val Ile Val Leu Thr Ser Trp Ile Thr Ile Phe Gln Ile
65 70 75 80

Tyr Arg Pro Arg Trp Gly Ala Leu Gly Asp Tyr Leu Ser Phe Thr Ile 85 90 95

Pro Leu Gly Thr Pro 100

Sequence No.: 25

Sequence length: 372

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10328 Sequence description

Met Lys Tyr Leu Arg His Arg Arg Pro Asn Ala Thr Leu Ile Leu Ala

Ile Gly Ala Phe Thr Leu Leu Leu Phe Ser Leu Leu Val Ser Pro Pro 20 25 30

Thr Cys Lys Val Gln Glu Gln Pro Pro Ala Ile Pro Glu Ala Leu Ala

		35					40					45		_	
Trp	Pro	Thr	Pro	Pro	Thr	Arg	Pro	Ala	Pro	Ala	Pro	Cys	His	Ala	Asn
	50					55					60				
Thr	Ser	Met	Val	Thr	His	Pro	Asp	Phe	Ala	Thr	G1n	Pro	Gln	His	
65					70				•	75					80
Gln	naA	Phe	Leu	Leu	Tyr	Arg	His	Cys	Arg	His	Phe	Pro	Leu	Leu	Gln
				85					90					95	
Asp	Val	Pro	Pro	Ser	Lys	Cys	Ala	Gln	Pro	Val.	Phe	Leu	Leu	Leu	Val
			100					105	-				110		
Ile	Lys	Ser	Ser	Pro	Ser	Asn	Tyr	Val	Arg	Arg	Glu	Leu	Leu	Arg	Arg
•		115					120					125			
Thr	Trp	Gly	Arg	Glu	Arg	Lys	Val	Arg	Gly	Leu	Gln	Leu	Arg	Leu	Leu
	130					135					140				
Phe	Leu	Val	Gly	Thr	Ala	Ser	Asn	Pro	His	Glu	Ala	Arg	Lys	Val	Asn
145					150					155					160
Arg	Leu	Leu	G1u	Leu	Glu	Ala	Gln	Thr	His	Gly	Asp	Ile	Leu	Gln	Trp
				165					170					175	
Asp	Phe	His	Asp	Ser	Phe	Phe	Asn	Leu	Thr	Leu	Lys	Gln	Val	Leu	Phe
			180					185					190		
Leu	${\tt Gln}$	Trp	Gln	Glu	Thr	Arg	Cys	Ala	Asn	Ala	Ser	Phe	Val	Leu	Asn
		195					200					205			
Gly	Asp	Asp	Asp	Val	Phe	Ala	His	Thr	Asp	Asn	Met	Va1	Phe	Tyr	Leu
	210					215					220				
Gln	Asp	His	Asp	Pro	Gly	Arg	His	Leu	Phe	Val	Gly	Gln	Leu	Ile	Gln
225					230					235					240
Asn	Val	Gly	Pro	Ile	Arg	Ala	Phe	Trp	Ser	Lys	Tyr	Tyr	Val	Pro	Glu
				245					250					255	
Va1	Val	Thr	Gln	Asn	Glu	Arg	Tyr	Pro	Pro	Tyr	Cys	Gly	G1y	Gly	Gly
			260					265					270		
Phe	Leu	Leu	Ser	Arg	Phe	Thr	Ala	Ala	Ala	Leu	Arg	Arg	Ala	Ala	His
		275	,				280					285			
Val	Leu	Asp	Ile	Phe	Pro	Ile	Asp	Asp	Val	Phe	Leu	Gly	Met	Cys	Leu
	290					295					300				,
Glu	Leu	Glu	G1y	Leu	Lys	Pro	Ala	Ser	His	Ser	Gly	Ile	Arg	Thr	Ser
305					310					315					320
Gly	Val	Arg	Ala	Pro	Ser	Gln	His	Leu	Ser	Ser	Phe	Asp	Pro	Cys	Phe
				325					330					335	
Tyr	Arg	Asp	Leu	Leu	Leu	Val	His	Arg	Phe	Leu	Pro	Tyr	Glu	Met	Leu
			340					345					350		
Leu	Met	Trp	Asp	Ala	Leu	Asn	Gln	Pro	Asn	Leu	Thr		G1y	Asn	Gln
		355					360					365			
Thr	Gln	Ile	Tyr												
	370														

Sequence No.: 26 Sequence length: 615

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma Cell line: ET-1080 Clone name: HP00442

Sequence description

ATGACGGGGC	TAGCACTGCT	CTACTCCGGG	GTCTTCGTGG	CCTTCTGGGC	CTGCGCGCTG	60
GCCGTGGGAG	TCTGCTACAC	CATTTTTGAT	TTGGGCTTCC	GCTTTGATGT	GGCATGGTTC	120
CTGACGGAGA	CTTCGCCCTT	CATGTGGTCC	AACCTGGGCA	TTGGCCTAGC	TATCTCCCTG	180
TCTGTGGTTG	GGGCAGCCTG	GGGCATCTAT	ATTACCGGCT	CCTCCATCAT	TGGTGGAGGA	240
GTGAAGGCCC	CCAGGATCAA	GACCAAGAAC	CTGGTCAGCA	TCATCTTCTG	TGAGGCTGTG	300
GCCATCTACG	GCATCATCAT	GGCAATTGTC	ATTAGCAACA	TGGCTGAGCC	TTTCÀGTGCC	360
ACAGACCCCA	AGGCCATCGG	CCATCGGAAC	TACCATGCAG	GCTACTCCAT	GTTTGGGGCT	420
GGCCTCACCG	TAGGCCTGTC	TAACCTCTTC	TGTGGAGTCT	GCGTGGGCAT	CGTGGGCAGT	480
GGGGCTGCCC	TGGCCGATGC	TCAGAACCCC	AGCCTCTTTG	TAAAGATTCT	CATCGTGGAG	540
ATCTTTGGCA	GCGCCATTGG	CCTCTTTGGG	GTCATCGTCG	CAATTCTTCA	GACCTCCAGA	600
GTGAAGATGG	GTGAC					615

Sequence No.: 27

Sequence length: 1113

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Leukocyte Clone name: HP00804 Sequence description

ATG:	CCCATG	AAAAGAGTTT	TTTGGTGTCT	GGGGACAACT	ATCCTCCCCC	CAACCCTGGA		60
TAT	cccccc	GGCCCCAGCC	AČCCATGCCC	CCCTATGCTC	AGCCTCCCTA	CCCTGGGGCC	:	120
CCT	TACCCAC	AGCCCCCTTT	CCAGCCCTCC	CCCTACGGTC	AGCCAGGGTA	CCCCCATGGC		180
CCC	AGCCCCT	ACCCCCAAGG	GGGCTACCCA	CAGGGTCCCT	ACCCCCAAGG	GGGCTACCCA	;	240
				•		GGGCTACCCC	-	300

CAGGGGCCAT	ATCCCCAGAG	CCCCTTCCCC	CCCAACCCCT	ATGGACAGCC	ACAGGTCTTC	360
CCAGGACAAG	ACCCTGACTC	ACCCCAGCAT	GGAAACTACC	AGGAGGAGGG	TCCCCCATCC	420
TACTATGACA	ACCAGGACTT	CCCTGCCACC	AACTGGGATG	ACAAGAGCAT	CCGACAGGCC	480
		AGTGCTGACC				540
		GGAGGTGAAG				600
		CTTCATCTCT				660
		CCTTGTTGCA				720
		CTTCTACAAC				780
		CGTCGTCATC				840
		GGTGAGCATG				900
		CCTGGAGATC				960
		CACCCAGCTG				1020
		TGCGCTGAAC				1080
·		CCGCGCCAAG				1113

Sequence No.: 28
Sequence length: 537

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP01098 Sequence description

ATGCTGTCTC	TAGACTTTTT	GGACGATGTG	CGGCGGATGA	ACAAGCGGCA	GCTCTATTAT	60
CAAGTCCTAA	ATTTTGGAAT	GATTGTCTCA	TCGGCACTAA	TGATCTGGAA	GGGGTTAATG	120
GTAATAACTG	GAAGTGAAAG	TCCGATTGTA	GTGGTGCTCA	GTGGCAGCAT	GGAACCTGCA	180
TTTCATAGAG	GAGATCTTCT	CTTTCTAACA	AATCGAGTTG	AAGATCCCAT	ACGAGTGGGA	240
GAAATTGTTG	TTTTTAGGAT	AGAAGGAAGA	GAGATTCCTA	TAGTTCACCG	AGTCTTGAAG	300
		GCATATCAAG				360
		ACAAGGACAA			•	420
		TTATATTGGA				480
		CTTTTTGCTG				537

Sequence No.: 29

Sequence length: 1041

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver Clone name: HP01148 Sequence description

ATGGCTCTGC	TATTCTCCTT	GATCCTTGCC	ATTTGCACCA	GACCTGGATT	CCTAGCGTCT	60
CCATCTGGAG	TGCGGCTGGT	GGGGGGCCTC	CACCGCTGTG	AAGGGCGGGT	GGAGGTGGAA	120
CAGAAAGGCC	AGTGGGGCAC	CGTGTGTGAT	GACGGCTGGG	ACATTAAGGA	CGTGGCTGTG	180
TTGTGCCGGG	AGCTGGGCTG	TGGAGCTGCC	AGCGGAACCC	CTAGTGGTAT	TTTGTATGAG	240
CCACCAGCAG	AAAAAGAGCA	AAAGGTCCTC	ATCCAATCAG	TCAGTTGCAC	AGGAACAGAA	300
GATACATTGG	CTCAGTGTGA	GCAAGAAGAA	GTTTATGATT	GTTCACATGA	AGAAGATGCT	360
GGGGCATCGT	GTGAGAACCC	AGAGAGCTCT	TTCTCCCCAG	TCCCAGAGGG	TGTCAGGCTG	420
GCTGACGGCC	CTGGGCATTG	CAAGGGACGC	GTGGAAGTGA	AGCACCAGAA	CCAGTGGTAT	480
ACCGTGTGCC	AGACAGGCTG	GAGCCTCCGG	GCCGCAAAGG	TGGTGTGCCG	GCAGCTGGGA	540
TGTGGGAGGG	CTGTACTGAC	TCAAAAACGC	TGCAACAAGC	ATGCCTATGG	CCGAAAACCC	600
ATCTGGCTGA	GCCAGATGTC	ATGCTCAGGA	CGAGAAGCAA	CCCTTCAGGA	TTGCCCTTCT	660
GGGCCTTGGG	GGAAGAACAC	CTGCAACCAT	GATGAAGACA	CGTGGGTCGA	ATGTGAAGAT	720
CCCTTTGACT	TGAGACTAGT	AGGAGGAGAC	AACCTCTGCT	CTGGGCGACT	GGAGGTGCTG	780
CACAAGGGCG	TATGGGGCTC	TGTCTGTGAT	GACAACTGGG	GAGAAAAGGA	GGACCAGGTG	840
GTATGCAAGC	AACTGGGCTG	TGGGAAGTCC	CTCTCTCCCT	CCTTCAGAGA	CCGGAAATGC	900
TATEGCCCTE	GGGTTGGCCG	CATCTGGCTG	GATAATGTTC	GTTGCTCAGG	GGAGGAGCAG	960
TCCCTGGAGC	AGTGCCAGCA	CAGATTTTGG	GGGTTTCACG	ACTGCACCCA	CCAGGAAGAT	1020
GTGGCTGTCA	TCTGCTCAGG	A				1041

Sequence No.: 30

Sequence length: 1662

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver Clone name: HP01293 Sequence description

ATGCCCACCG	TGGATGACAT	TCTGGAGCAG	GTTGGGGAGT	CTGGCTGGTT	CCAGAAGCAA	60
GCCTTCCTCA	TCTTATGCCT	GCTGTCGGCT	GCCTTTGCGC	CCATCTGTGT	GGGCATCGTC	120
TTCCTGGGTT	TCACACCTGA	CCACCACTGC	CAGAGTCCTG	GGGTGGCTGA	GCTGAGCCAG	180
CGCTGTGGCT	GGAGCCCTGC	GGAGGAGCTG	AACTATACAG	TGCCAGGCCT	eeeecccece	240
GGCGAGGCCT	TCCTTGGCCA	GTGCAGGCGC	TATGAAGTGG	ACTGGAACCA	GAGCGCCCTC	300

AGCTGTGTAG	ACCCCCTGGC	TAGCCTGGCC	ACCAACAGGA	GCCACCTGCC	GCTGGGTCCC	360
TGCCAGGATG	GCTGGGTGTA	TGACACGCCC	GGCTCTTCCA	TCGTCACTGA	GTTCAACCTG	420
GTGTGTGCTG	ACTCCTGGAA	GCTGGACCTC	TTTCAGTCCT	GTTTGAATGC	GGGCTTCTTC	480
TTTGGCTCTC	TCGGTGTTGG	CTACTTTGCA	GACAGGTTTG	GCCGTAAGCT	GTGTCTCCTG	540
GGAACTGTGC	TGGTCAACGC	GGTGTCGGGC	GTGCTCATGG	CCTTCTCGCC	CAACTACATG	600
TCCATGCTGC	TCTTCCGCCT	GCTGCAGGGC	CTGGTCAGCA	AGGGCAACTG	GATGGCTGGC	660
TACACCCTAA	TCACAGAATT	TGTTGGCTCG	GGCTCCAGAA	GAACGGTGGC	GATCATGTAC	720
CAGATGGCCT	TCACGGTGGG	GCTGGTGGCG	CTTACCGGGC	TGGCCTACGC	CCTGCCTCAC	780
TEGCECTEGC	TGCAGCTGGC	AGTCTCCCTG	CCCACCTTCC	TCTTCCTGCT	CTACTACTGG	840
TGTGTGCCGG	AGTCCCCTCG	GTGGCTGTTA	TCACAAAAA	GAAACACTGA	AGCAATAAAG	900
ATAATGGACC	ACATCGCTCA	AAAGAATGGG	AAGTTGCCTC	CTGCTGATTT	AAAGATGCTT	960
TCCCTCGAAG	AGGATGTCAC	CGAAAAGCTG	AGCCCTTCAT	TTGCAGACCT	GTTCCGCACG	1020
CCGCGCCTGA	GGAAGCGCAC	CTTCATCCTG	ATGTACCTGT	GGTTCACGGA	CTCTGTGCTC	1080
TATCAGGGGC	TCATCCTGCA	CATGGGCGCC	ACCAGCGGGA	ACCTCTACCT	GGATTTCCTT	1140
TACTCCGCTC	TGGTCGAAAT	CCCGGGGGCC	TTCATAGCCC	TCATCACCAT	TGACCGCGTG	1200
GGCCGCATCT	ACCCCATGGC	CGTGTCAAAT	TTGTTGGCGG	GGGCAGCCTG	CCTCGTCATG	1260
ATTTTTATCT	CACCTGACCT	GCACTGGTTA	AACATCATAA	TCATGTGTGT	TGGCCGAATG	1320
GGAATCACCA	TTGCAATACA	AATGATCTGC	CTGGTGAATG	CTGAGCTGTA	CCCCACATTC	1380
GTCAGGAACC	TCGGAGTGAT	GGTGTGTTCC	TCCCTGTGTG	ACATAGGTGG	GATAATCACC	1440
CCCTTCATAG	TCTTCAGGCT	GAGGGAGGTC	TGGCAAGCCT	TGCCCCTCAT	TTTGTTTGCG	1500
GTGTTGGGCC	TGCTTGCCGC	GGGAGTGACG	CTACTTCTTC	CAGAGACCAA	GGGGGTCGCT	1560
TTGCCAGAGA	CCATGAAGGA	CGCCGAGAAC	CTTGGGAGAA	AAGCAAAGCC	CAAAGAAAAC	1620
ACGATTTACC	TTAAGGTCCA	AACCTCAGAA	CCCTCGGGCA	CC		1662

Sequence No.: 31

Sequence length: 1050

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10013 Sequence description

ATGGCTGTGT TTG	TCGTGCT	CCTGGCGTTG	GTGGCGGGTG	TTTTGGGGAA	CGAGTTTAGT	60
ATATTAAAAT CAC	CAGGGTC	TGTTGTTTTC	CGAAATGGAA	ATTGGCCTAT	ACCAGGAGAG	120
CGGATCCCAG ACG	TGGCTGC	ATTGTCCATG	GGCTTCTCTG	TGAAAGAAGA	CCTTTCTTGG	180
CCAGGACTCG CAG	TGGGTAA	CCTGTTTCAT	CGTCCTCGGG	CTACCGTCAT	GGTGATGGTG	240
AAGGGAGTGA ACA	AACTGGC	TCTACCCCCA	GGCAGTGTCA	TTTCGTACCC	TTTGGAGAAT	300
GCAGTTCCTT TTA	GTCTTGA	CAGTGTTGCA	AATTCCATTC	ACTCCTTATT	TTCTGAGGAA	360

ACTCCTGTTG	TTTTGCAGTT	GGCTCCCAGT	GAGGAAAGAG	TGTATATGGT	AGGGAAGGCA	420
AACTCAGTGT	TTGAAGACCT	TTCAGTCACC	TTGCGCCAGC	TCCGTAATCG	CCTGTTTCAA	480
GAAAACTCTG	TTCTCAGTTC	ACTCCCCCTC	AATTCTCTGA	GTAGGAACAA	TGAAGTTGAC	540
				CAAGCTTGCT		600
AAGCATCTAG	CCAAGGATCA	TTCTCCTGAT	TTATATTCAC	TGGAGCTGGC	AGGTTTGGAT	660
				GAGATGCTTC		720
				TTTATGGTGG		780
GTAGAGTTAG	TCACTGTCAA	GTCATTTGAC	ACCTCCCTCA	TTAGGAAGAC	AAGGACTATC	840
CTTGAGGCAA	AACAAGCGAA	GAACCCAGCA	AGTCCCTATA	ACCTTGCATA	TAAGTATAAT	900
TTTGAATATT	CCGTGGTTTT	CAACATGGTA	CTTTGGATAA	TGATCGCCTT	GGCCTTGGCT	960
GTGATTATCA	CCTCTTACAA	TATTTGGAAC	ATGGATCCTG	GATATGATAG	CATCATTTAT	1020
AGGATGACAA	ACCAGAAGAT	TCGAATGGAT				1050

Sequence No.: 32 Sequence length: 627

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10034
Sequence description

ATGGTGTCCT	CTCCCTGCAC	GCAGGCAAGC	TCACGGACTT	GCTCCCGTAT	CCTGGGACTG	60
AGCCTTGGGA	CTGCAGCCCT	GTTTGCTGCT	GGGGCCAACG	TGGCACTCCT	CCTTCCTAAC	120
TGGGATGTCA	CCTACCTGTT	GAGGGGCCTC	CTTGGCAGGC	ATGCCATGCT	GGGAACTGGG	180
CTCTGGGGAG	GAGGCCTCAT	GGTACTCACT	GCAGCTATCC	TCATCTCCTT	GATGGGCTGG	240
AGATACGGCT	GCTTCAGTAA	GAGTGGGCTC	TGTCGAAGCG	TGCTTACTGC	TCTGTTGTCA	300
GGTGGCCTGG	CTTTACTTGG	AGCCCTGATT	TGCTTTGTCA	CTTCTGGAGT	TGCTCTGAAA	360
				AGACACAAGC		420
				ATGACCGTTC		480
				TGTCCCTCTT		540
				ATGTCATCAA		600
• • • • • • • • • • • • • • • • • • • •	GCAGCCTCTG					627

Sequence No.: 33 Sequence length: 489

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10050 Sequence description

ATGGCGGCTG	GGCTGTTTGG	TTTGAGCGCT	CGCCGTCTTT	TGGCGGCAGC	GGCGACGCGA	60
GGGCTCCCGG	CCGCCCGCGT	CCGCTGGGAA	TCTAGCTTCT	CCAGGACTGT	GGTCGCCCCG	120
TCCGCTGTGG	CGGGAAAGCG	GCCCCAGAA	CCGACCACAC	CGTGGCAAGA	GGACCCAGAA	180
CCCGAGGACG	AAAACTTGTA	TGAGAAGAAC	CCAGACTCCC	ATGGTTATGA	CAAGGACCCC	240
GTTTTGGACG	TCTGGAACAT	GCGACTTGTC	TTCTTCTTTG	GCGTCTCCAT	CATCCTGGTC	300
CTTGGCAGCA	CCTTTGTGGC	CTATCTGCCT	GACTACAGGT	GCACAGGGTG	TCCAAGAGCG	360
TGGGATGGGA	TGAAAGAGTG	GTCCCGCCGC	GAAGCTGAGA	GGCTTGTGAA	ATACCGAGAG	420
GCCAATGGCC	TTCCCATCAT	GGAATCCAAC	TGCTTCGACC	CCAGCAAGAT	CCAGCTGCCA	480
GAGGATGAG		,				489

Sequence No.: 34
Sequence length: 276

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10071 Sequence description

ATGACGAAAT	TAGCGCAGTG	$\mathbf{GCTTTGGGGA}$	CTAGCGATCC	TGGGCTCCAC	CTGGGTGGCC	60
CTGACCACGG	GAGCCTTGGG	CCTGGAGCTG	CCCTTGTCCT	GCCAGGAAGT	CCTGTGGCCA	120
CTGCCCGCCT	ACTTGCTGGT	GTCCGCCGGC	TGCTATGCCC	TGGGCACTGT	GGGCTATCGT	180
GTGGCCACTT	TTCATGACTG	CGAGGACGCC	GCACGCGAGC	TGCAGAGCCA	GATACAGGAG	240
GCCCGAGCCG	ACTTAGCCCG	CAGGGGGCTG	CGCTTC			276

Sequence No.: 35
Sequence length: 516

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma Cell line: U937 Clone name: HP10076 Sequence description

ATGGAATATT	TGGCTCATCC	CAGTACACTC	GGCTTGGCTG	TTGGAGTTGC	TTGTGGCATG	60
TGCCTGGGCT	GGAGCCTTCG	AGTATGCTTT	GGGATGCTCC	CCAAAAGCAA	GACGAGCAAG	120
ACACACACAG	ATACTGAAAG	TGAAGCAAGC	ATCTTGGGAG	ACAGCGGGGA	GTACAAGATG	180
ATTCTTGTGG	TTCGAAATGA	CTTAAAGATG	GGAAAAGGGA	AAGTGGCTGC	CCAGTGCTCT	240
CATGCTGCTG	TTTCAGCCTA	CAAGCAGATT	CAAAGAAGAA	ATCCTGAAAT	GCTCAAACAA	300
TGGGAATACT	GTGGCCAGCC	CAAGGTGGTG	GTCAAAGCTC	CTGATGAAGA	AACCCTGATT	360
GCATTATTGG	CCCATGCAAA	AATGCTGGGA	CTGACTGTAA	GTTTAATTCA	AGATGCTGGA	420
CGTACTCAGA	TTGCACCAGG	CTCTCAAACT	GTCCTAGGGA	TTGGGCCAGG	ACCAGCAGAC	480
CTAATTGACA	AAGTCACTGG	TCACCTAAAA	CTTTAC			516

Sequence No.: 36

Sequence length: 447

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence description

ATGATGACCA	AACATAAAAA	GTGTTTTATA	ATTGTTGGTG	TTTTAATAAC	AACTAATATT	60
ATTACTCTGA	TAGTTAAACT	AACTCGAGAT	TCTCAGAGTT	TATGCCCCTA	TGATTGGATT	120
GGTTTCCAAA	ACAAATGCTA	TTATTTCTCT	AAAGAAGAAG	GAGATTGGAA	TTCAAGTAAA	180
TACAACTGTT	CCACTCAACA	TGCCGACCTA	ACTATAATTG	ACAACATAGA	AGAAATGAAT	240
TTTCTTAGGC	GGTATAAATG	CAGTTCTGAT	CACTGGATTG	GACTGAAGAT	GGCAAAAAAT	300
CGAACAGGAC	AATGGGTAGA	TGGAGCTACA	TTTACCAAAT	CGTTTGGCAT	GAGAGGGAGT	360
GAAGGATGTG	CCTACCTCAG	CGATGATGGT	GCAGCAACAG	CTAGATGTTA	CACCGAAAGA	420
AAATGGATTT	GCAGGAAAAG	AATACAC				447

Sequence No.: 37 Sequence length: 564 Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stonach cancer

Clone name: HP10122 Sequence description

ATGAGCACTA	TGTTCGCGGA	CACTCTCCTC	ATCGTTTTTA	TCTCTGTGTG	CACGGCTCTG	60
	GCATAACCTG					120
GCAGAAGTGG	AAAAACAGAG	TAAAAAATTG	GAAAAGAAGA	AGGAAACAAT	AACAGAGTCA	180
GCTGGTCGAC	AACAGAAAAA	GAAAATAGAG	AGACAAGAAG	AGAAACTGAA	GAATAACAAC	240
AGAGATCTAT	CAATGGTTCG	AATGAAATCC	ATGTTTGCTA	TTGGCTTTTG	TTTTACTGCC	300
CTAATGGGAA	TGTTCAATTC	CATATTTGAT	GGTAGAGTGG	TGGCAAAGCT	TCCTTTTACC	360
CCTCTTTCTT	ACATCCAAGG	ACTGTCTCAT	CGAAATCTGC	TGGGAGATGA	CACCACAGAC	420
TGTTCCTTCA	TTTTCCTGTA	TATTCTCTGT	ACTATGTCGA	TTCGACAGAA	CATTCAGAAG	480
ATTCTCGGCC	TTGCCCCTTC	ACGAGCCGCC	ACCAAGCAGG	CAGGTGGATT	TCTTGGCCCA	540
CCACCTCCTT	CTGGGAAGTT	CTCT		•		564

Sequence No.: 38

Sequence length: 645

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma
Cell line: U937
Clone name: HP10136
Sequence description

ATGGTGTTGC TAAC	AATGAT CGCCCGAGTG	GCGGACGGGC	TCCCGCTGGC	CGCCTCGATG	60
CAGGAGGACG AACAG	GTCTGG CCGGGACCTT	CAACAGTATC	AGAGTCAGGC	TAAGCAACTC	120
TTTCGAAAGT TGAA	TGAACA GTCCCCTACC	AGATGTACCT	TGGAAGCAGG	AGCCATGACT	180
TTTCACTACA TTAT	TGAGCA GGGGGTGTGT	TATTTGGTTT	TATGTGAAGC	TGCCTTCCCT	240
AAGAAGTTGG CTTT	TGCCTA CCTAGAAGAT	TTGCACTCAG	AATTTGATGA	ACAGCATGGA	300
AAGAAGGTGC CCAC	TGTGTC CCGACCCTAT	TCCTTTATTG	AATTTGATAC	TTTCATTCAG	360
AAAACCAAGA AGCT	CTACAT TGACAGTCGT	GCTCGAAGAA	ATCTAGGCTC	CATCAACACT	420
GAATTGCAAG ATGT	GCAGAG GATCATGGTG	GCCAATATTG	AAGAAGTGTT	ACAACGAGGA	480
GAAGCACTCT CAGC	ATTGGA TTCAAAGGCT	AACAATTTGT	CCAGTCTGTC	CAAGAAATAC	540

5.	126	•	•	
CGCCAGGATG CGAAGTACTT GAACATGCGT	TCCACTTATG	CCAAACTTGC	AGCAGTAGCT	600
GTATTTTCA TCATGTTAAT AGTGTATGTC				645
	•			
Sequence No.: 39				
Sequence length: 336				
Sequence type: Nucleic acid				
Strandedness: Double		•		-
Topology: Linear	•		-	
Sequence kind: cDNA to mRNA				
Original source:				
Organism species: Homo sapiens				
Cell kind: Stomach cancer		•		
Clone name: HP10175				
Sequence description				*
ATGCAGGACA CTGGCTCAGT AGTGCCTTTG	CATTGGTTTG	GCTTTGGCTA	CGCAGCACTG	60
GTTGCTTCTG GTGGGATCAT TGGCTATGTA	AAAGCAGGCA	GCGTGCCGTC	CCTGGCTGCA	120
GGGCTGCTCT TTGGCAGTCT AGCCGGCCTG	GGTGCTTACC	AGCTGTCTCA	GGATCCAAGG	180
AACGTTTGGG TTTTCCTAGC TACATCTGGT	ACCTTGGCTG	GCATTATGGG	AATGAGGTTC	240
TACCACTCTG GAAAATTCAT GCCTGCAGGT	TTAATTGCAG	GTGCCAGTTT	GCTGATGGTC	300
GCCAAAGTTG GAGTTAGTAT GTTCAACAGA	CCCCAT			336
•				
Sequence No.: 40				*
Sequence length: 342				
Sequence type: Nucleic acid				
Strandedness: Double	•			
Topology: Linear				
Sequence kind: cDNA to mRNA				
Original source:				
Organism species: Homo sapiens				
Cell kind: Epidermoid carcinom	9.			
Cell line: KB	٠.,	•		
Clone name: HP10179				
Sequence description			.•	•
•	•			
ATGGAGAAGC CCCTCTTCCC ATTAGTGCCT				60
CTGGTTGTTT CTGGTGGGAT CGTTGGCTAT	CTAAAAACAC	GCAGCGTGCC	GTCCCTGGCT	120
GCAGGGCTGC TCTTCGGCAG TCTAGCCGGC	CTGGGTGCTT	ACCAGCTGTA	TCAGGATCCA	180
AGGAACGTTT GGGGTTTCCT AGCCGCTACA	CTGGGTGCTT TCTGTTACTT	ACCAGCTGTA TTGTTGGTGT	TCAGGATCCA TATGGGAATG	180 240
- "	CTGGGTGCTT TCTGTTACTT	ACCAGCTGTA TTGTTGGTGT	TCAGGATCCA TATGGGAATG	
AGGAACGTTT GGGGTTTCCT AGCCGCTACA	CTGGGTGCTT TCTGTTACTT GTAGGTTTAA	ACCAGCTGTA TTGTTGGTGT TTGCAGGTGC	TCAGGATCCA TATGGGAATG	240

Sequence No.: 41 Sequence length: 981

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10196
Sequence description

ATGGCGGCGG CGGCGGCGG	C GGCTGCAGCT	ACGAACGGGA	CCGGAGGAAG	CAGCGGGATG	60
GAGGTGGATG CAGCAGTAG	T CCCCAGCGTG	ATGGCCTGCG	GAGTGACTGG	GAGTGTTTCC	120
GTCGCTCTCC ATCCCCTTG	T CATTCTCAAC	ATCTCAGACC	ACTGGATCCG	CATGCGCTCC	180
CAGGAGGGG GGCCTGTGC	A GGTGATTGGG	GCTCTGATTG	GCAAGCAGGA	GGGCCGAAAT	240
ATCGAGGTGA TGAACTCCT	T TGAGCTGCTG	TCCCACACCG	TGGAAGAGAA	GATTATCATT	300
GACAAGGAAT ATTATTACA	C CAAGGAGGAG	CAGTTTAAAC	AGGTGTTCAA	GGAGCTGGAG	360
TTTCTGGGTT GGTATACCA	C AGGGGGGCCA	CCTGACCCCT	CGGACATCCA	CGTCCATAAG	420
CAGGTGTGTG AGATCATCG	A GAGCCCCCTC	TTTCTGAAGT	TGAACCCTAT	GACCAAGCAC	480
ACAGATCTTC CTGTCAGCG	T TTTTGAGTCT	GTCATTGATA	TAATCAATGG	AGAGGCCACA	540
ATGCTGTTTG CTGAGCTGA	C CTACACTCTG	GCCACAGAGG	AAGCGGAACG	CATTGGTGTA	600
GACCACGTAG CCCGAATGA	C AGCAACAGGC	AGTGGAGAGA	ACTCCACTGT	GGCTGAACAC	660
CTGATAGCAC AGCACAGCG	C CATCAAGATG	CTGCACAGCC	GCGTCAAGCT	CATCTTGGAG	720
TACGTCAAGG CCTCTGAAG	C GGGAGAGGTC	CCCTTTAATC	ATGAGATCCT	GCGGGAGGCC	780
TATGCTCTGT GTCACTGTC	T CCCGGTGCTC	AGCACAGACA	AGTTCAAGAC	AGATTTTTAT	840
GATCAATGCA ACGACGTGG	G GCTCATGGCC	TACCTCGGCA	CCATCÀCCAA	AACGTGCAAC	900
ACCATGAACC AGTTTGTGA	A CAAGTTCAAT	GTCCTCTACG	ACCGACAAGG	CATCGGCAGG	960
AGAATGCGCG GGCTCTTTT	T C			,	981

Sequence No.: 42

Sequence length: 1119

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10235
Sequence description

			-			
ATGACCCTAT	GTGCCATGCT	GCCCCTGCTG	TTATTCACCT	ACCTCAACTC	CTTCCTGCAT	. 60
CAGAGGATCC	CCCAGTCCGT	ACGGATCCTG	GGCAGCCTGG	TGGCCATCCT	GCTGGTGTTT	120
CTGATCACTG	CCATCCTGGT	GAAGGTGCAG	CTGGATGCTC	TGCCCTTCTT	TGTCATCACC	180
ATGATCAAGA	TCGTGCTCAT	TAATTCATTT	GGTGCCATCC	TGCAGGGCAG	CCTGTTTGGT	240
CTGGCTGGCC	TTCTGCCTGC	CAGCTACACG	GCCCCCATCA	TGAGTGGCCA	GGGCCTAGCA	300
GGCTTCTTTG	CCTCCGTGGC	CATGATCTGC	GCTATTGCCA	GTGGCTCGGA	GCTATCAGAA	360
AGTGCCTTCG	GCTACTTTAT	CACAGCCTGT	GCTGTTATCA	TTTTGACCAT	CATCTGTTAC /	420
CTGGGCCTGC	CCCGCCTGGA	ATTCTACCGC	TACTACCAGC	AGCTCAAGCT	TGAAGGACCC	480
GGGGAGCAGG	AGACCAAGTT	GGACCTCATT	AGCAAAGGAG	AGGAGCCAAG	AGCAGGCAAA	540
GAGGAATCTG	GAGTTTCAGT	CTCCAACTCT	CAGCCCACCA	ATGAAAGCCA	CTCTATCAAA	600
GCCATCCTGA	AAAATATCTC	AGTCCTGGCT	TTCTCTGTCT	GCTTCATCTT	CACTATCACC	660
ATTGGGATGT	TTCCAGCCGT	GACTGTTGAG	GTCAAGTCCA	GCATCGCAGG	CAGCAGCACC	720
TGGGAACGTT	ACTTCATTCC	TGTGTCCTGT	TTCTTGACTT	TCAATATCTT	TGACTGGTTG	780
GGCCGGAGCC	TCACAGCTGT	ATTCATGTGG	CCTGGGAAGG	ACAGCCGCTG	GCTGCCAAGC	840
CTGGTGCTGG	CCCGCCTGGT	GTTTGTGCCA	CTGCTGCTGC	TGTGCAACAT	TAAGCCCCGC	900
CGCTACCTGA	CTGTGGTCTT	CGAGCACGAT	GCCTGGTTCA	TCTTCTTCAT	GGCTGCCTTT	960
GCCTTCTCCA	ACGGCTACCT	CGCCAGCCTC	TGCATGTGCT	TCGGGCCCAA	GAAAGTGAAG	1020
CCAGCTGAGG	CAGAGACCGC	AGGAGCCATC	ATGGCCTTCT	TCCTGTGTCT	GGGTCTGGCA	1080
CTGGGGGCTG	TTTTCTCCTT	CCTGTTCCGG	GCAATTGTG	•		1119
	CAGAGGATCC CTGATCACTG ATGATCAAGA CTGGCTGGCC GGCTTCTTTG AGTGCCTTCG CTGGGCCTGC GGGGAGCAGG GAGGAATCTG GCCATCCTGA ATTGGGATGT TGGGAACGTT GGCGGGGCCC CTGGTGCTGG CGCTACCTGA GCCTTCTCCA CCAGCTGAGG	CAGAGGATCC CCCAGTCCGT CTGATCACTG CCATCCTGGT ATGATCAAGA TCGTGCTCAT CTGGCTGGCC TTCTGCCTGC GGCTTCTTTG CCTCCGTGGC AGTGCCTTCG GCTACTTTAT CTGGGCTGC CCCGCCTGGA GGGGAGCAGG AGACCAAGTT GAGGAATCTG GAGTTTCAGT GCCATCCTGA AAAATATCTC ATTGGGATGT TTCCAGCCGT TGGGAACGTT ACTTCATTCC GCCGGAGCC TCACAGCTGT CTGGTGCTGG CCCGGCTGGT CGCTACCTGA ACGGCTACCT GCCTTCTCCA ACGGCTACCT CCAGCTGAGG CAGAGACCGC	CAGAGGATCC CCCAGTCCGT ACGGATCCTG CTGATCACTG CCATCCTGGT GAAGGTGCAG ATGATCAAGA TCGTGCTCAT TAATTCATTT CTGGCTGGCC TTCTGCCTGC CAGCTACACG GGCTTCTTTG CCTCGTGGC CATGATCTGC AGTGCCTTCG GCTACTTTAT CACAGCCTGT CTGGGCAGC AGACCAAGTT GGACCTCATT GAGGAATCTG GAGTTCAGT CTCCAACTCT GCCATCCTGA AAAATATCTC AGTCCTGGCT ATTGGGATGT TCCAGCCGT GACTGTTGAG TGGGAACGTT ACTTCATTCC TGTGTCCTGT GCCGGGAGCC TCACAGCTGT ATTCATTGG CTGGTGCTGG CCCGGCTGGT GTTTGTGCCA CGCTACCTGA ACGGCTGTT CGAGCACGAT GCCTTCTCCA ACGGCTACCT CGCCAGCCTC CCAGCTGAGG CAGAGACCGC AGGAGCCATC	CAGAGGATCC CCCAGTCCGT ACGGATCCTG GGCAGCCTGG CTGATCACTG CCATCCTGGT GAAGGTGCAG CTGGATGCTC ATGATCAAGA TCGTGCTCAT TAATTCATTT GGTGCCATCC CTGGCTGGCC TTCTGCCTGC CAGCTACACG GCCCCCATCA GGCTTCTTTG CCTCGCTGC CATGATCTGC GCTATTGCCA AGTGCCTTCG GCTACTTTAT CACAGCCTGT GCTGTTATCA CTGGGCTGC CCCGCCTGGA ATTCTACCGC TACTACCAGC GGGGAGCAGG AGACCAAGTT GGACCTCATT AGCAAAGGAG GAGGAATCTG GAGTTTCAGT CTCCAACTCT CAGCCCACCA ATTGGGATGT TTCCAGCCGT GACTGTTGAG GTCAAGTCCA TGGGAACGTT ACTTCATTCC TGTGTCCTGT TTCTTGACTT GGCCGGAGCC TCACAGCTGT ATTCATGTGG CCTGGGAAGG CTGGTGCTGG CCCGGCTGGT GTTTGTGCCA CTGCTGCTC CGCTACCTGA ACGGCTACCT CGAGCACGAT GCCTGGTTCA GCCTTCTCCA ACGGCTACCT CGCCAGCCTC TGCATGTGCT CCAGCTGAGG CAGAGACCGC AGGAGCCATC ATGGCCTTCT	CAGAGGATCC CCCAGTCCGT ACGGATCCTG GGCAGCCTGG TGGCCATCCT CTGATCACTG CCATCCTGGT GAAGGTGCAG CTGGATGCTC TGCCCTTCTT ATGATCAAGA TCGTGCTCAT TAATTCATTT GGTGCCATCC TGCAGGGCAG CTGGCTGGCC TTCTGCCTGC CAGCTACACG GCCCCCATCA TGAGTGCCA GGCTTCTTTG CCTCCGTGC CATGATCTGC GCTATTGCCA GTGGCTCGGA AGTGCCTTCG GCTACTTAT CACAGCCTGT GCTGTTATCA TTTTGACCAT CTGGGCCTGC CCCGCCTGGA ATTCTACCGC TACTACCAGC AGCTCAAGCT GGGGAGCAGG AGACCAAGTT GGACCTCATT AGCAAAGGAG AGGAGCCAAG GCCATCCTGA AAAATATCTC AGTCCTGGCT TTCTCTGTCT GCTTCATCTT ATTGGGATGT TTCCAGCCGT GACTGTTGAG GTCAAGTCCA GCATCGCAGG TGGGAACGTT ACTTCATTCC TGTGTCCTG TTCTTGACTT TCAAATATCTT GGCCGGAGCC CCCGGCTGGT GTTTGTGCCA CTGCTGCT TCCAACTCT CTGGTGCTGG CCCGGCTGGT GTTTGTGCCA CTGCTGCTC TGTGCAACAC CCCTTCCTCA ACGGCTACCT CGAGCACGAT GCCTGCTTCA TCTTCTTCAT GCCTTCCCA ACGGCTACCT CGCCAGCCTC TGCATGTCC TCCTGCCCAA CCCAGCTGAGG CAGAGACCGC AGGAGCCATC TCCTGTCTT TCCGGGCCCAA CCCAGCTGAGG CAGAGACCGC AGGAGCCATC ATGCCTTCT TCCGGGCCCAA	ATGATCAGA TCGTGCTCAT TAATTCATTT GGTGCCATCC TGCAGGCAG CCTGTTTGGT CTGGCTGGCC TTCTGCCTGC CAGCTACACG GCCCCCATCA TGAGTGGCCA GGGCCTAGCA GGCTTCTTTG CCTCCGTGGC CATGATCTGC GCTGTTACCA TTTTGACCAT CATCTGTTAC AGTGCCTTCG GCTACTTAT CACAGCCTGT GCTGTTATCA TTTTGACCAT CATCTGTTAC CTGGGCCTGC CCCGCCTGGA ATTCTACCGC TACTACCAGC AGCTCAAGCT TGAAGGACCC GGGGAGCAGG AGACCAAGTT GGACCTCATT AGCAAAGGAG AGGAGCCAAG ACCAGGCAAA GAGGAATCTG GAGTTTCAGT CTCCAACTCT CAGCCCACCA ATGAAAGCCA CTCTATCAAA GCCATCCTGA AAAATATCTC AGTCCTGGCT TTCTCTGTCT GCTTCATCTT CACTATCACC TGGGAACGTT ACTTCATTCC TGTGTCCTGT TTCTTGACTT TCAATATCTT TGACTGGTTG GGCCGGAGCC TCACAGCTGT ATTCATGTG CCTGGGAAGG ACAGCCGCGC CTGGTGCTGG CCCGGCTGGT GTTTGTGCCA CTGCTGCTC TGTGCAACAT TAAGCCCCGC CGCTACCTGA CTGTGGTCTT CGAGCACGAT GCCTGGTTCA TCTTCTTCAT GGCTGCCTTT GCCTTCTCCA ACGGCTACCT CGCCAGCCTC TGCATGTCT TCGGGCCCAA GAAAGTGAAG CCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCATGTCT TCCTGTCT GGCTGCCAAGC CCGCTACCTGA CTGTGGTCTT CGAGCACGAT TCCTGTGTCT TCCTGTCT TCGGGCCCAA GAAAGTGAAG CCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCATGTCT TCCTGTCT GGGTCCCAAGC CCCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCCTTCT TCCTGTCT GGGTCCCAAG CCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCCCTTC TCCTGTGTCT GGGTCTGCAACAT TAAGCCCCGC CCCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCCTTCT TCCTGTCT GGGTCCCAAG CCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCCCTTCT TCCTGTGTCT GGGTCTGCAACAT TAAGCCCCGC CCCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCCCTTCT TCCTGTCT GGGTCCCAAG CCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGGCCTTCT TCCTGTCT GGGTCTGCAACAT TAAGCCCCGC CCCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGCCTTCT TCCTGTCT GGGTCCTATT CCAGCTGAGG CAGAGACCCC AGGAGCCATC ATGGCCTTCT TCCTGTCT GGGTCTGCAACAT TAAGCCCCGC CCCAGCTGAGG CAGAGACCACC AGGAGCCATC ATGGCCTTCT TCCTGTCT GGGTCTGCAACAT TAAGCCCCGC CCCAGCTGAG CAGAGACCAC AGGAGCCATC ATGGCCTTCT TCCTGTGTCT GGGTCTGCAACAT TAAGCCCCGC CCCAGCTGAGG CAGAGACCACC AGGAGCCATC ATGGCCTTCT TCCTGTGTCT GGGTCTGCT GGGTCTGCAACTCT TCCTGTGTCT GGGTCTTCT TCCTGTGTCT GGGTCTTCT TCCTGTGTCT GGGTCTTCT TCCTGTGTCT GGGTCTTCT TCCTGTGTCT TCCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTC

Sequence No.: 43
Sequence length: 549

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10297 Sequence description

ATGAAGCTCT	TATCTTTGGT	GGCTGTGGTC	GGGTGTTTGC	TGGTGCCCCC	AGCTGAAGCC	60
AACAAGAGTT	CTGAAGATAT	CCGGTGCAAA	TGCATCTGTC	CACCTTATAG	AAACATCAGT	120
GGGCACATTT	ACAACCAGAA	TGTATCCCAG	AAGGACTGCA	ACTGCCTGCA	CGTGGTGGAG	180
CCCATGCCAG	TGCCTGGCCA	TGACGTGGAG	GCCTACTGCC	TGCTGTGCGA	GTGCAGGTAC	240
GAGGAGCGCA	GCACCACCAC	CATCAAGGTC	ATCATTGTCA	TCTACCTGTC	CGTGGTGGGT	300
GCCCTGTTGC	TCTACATGGC	CTTCCTGATG	CTGGTGGACC	CTCTGATCCG	AAAGCCGGAT	360
GCATACACTG	AGCAACTGCA	CAATGAGGAG	GAGAATGAGG	ATGCTCGCTC	TATGGCAGCA	420
GCTGCTGCAT	CCCTCGGGGG	ACCCCGAGCA	AACACAGTCC	TGGAGCGTGT	GGAAGGTGCC	480
CAGCAGCGGT	GGAAGCTGCA	GGTGCAGGAG	CAGCGGAAGA	CAGTCTTCGA	TCGGCACAAG	540
ATGCTCAGC						549

PCT/JP97/04056

Sequence No.: 44
Sequence length: 348

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10299 Sequence description

ATGGCCAGTA	CAGTGGTAGC	AGTTGGACTG	ACCATTGCTG	CTGCAGGATT	TGCAGGCCGT	60
TACGTTTTGC	AAGCCATGAA	GCATATGGAG	CCTCAAGTAA	AACAAGTTTT	TCAAAGCCTA	120
CCAAAATCTG	CCTTCAGTGG	TGGCTATTAT	AGAGGTGGGT	TTGAACCCAA	AATGACAAAA	180
CGGGAAGCA	GCATTAATAC	TAGGTGTAAG	CCCTACTGCC	AATAAAGGGA	AAATAAGAGA	240
GCTCATCGAC	GAATTATGCT	TTTAAATCAT	CCTGACAAAG	GAGGATCTCC	TTATATAGCA	300
GCCAAAATCA	ATGAAGCTAA	AGATTTACTA	GAAGGTCAAG	CTAAAAA		348

Sequence No.: 45

Sequence length: 456

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10301 Sequence description

ATGGCTGTCC	TCTCTAAGGA	ATATGGTTTT	GTGCTTCTAA	CTGGTGCTGC	CAGCTTTATA	60
ATGGTGGCCC	ACCTAGCCAT	CAATGTTTCC	AAGGCCCGCA	AGAAGTACAA	AGTGGAGTAT	120
CCTATCATGT	ACAGCACGGA	CCCTGAAAAT	GGGCACATCT	TCAACTGCAT	TCAGCGAGCC	180
CACCAGAACA	CGTTGGAAGT	GTATCCTCCC	TTCTTATTTT	TTCTAGCTGT	TGGAGGTGTT	240
TACCACCCCC	GTATAGCTTC	TGGCCTGGGC	TTGGCCTGGA	TTGTTGGACG	AGTTCTTTAT	300
GCTTATGGCT	ATTACACGGG	AGAACCCAGC	AAGCGTAGTC	GAGGAGCCCT	GGGGTCCATC	360
GCCCTCCTGG	GCTTGGTGGG	CACAACTGTG	TGCTCTGCTT	TCCAGCATCT	TGGTTGGGTT	420
AAAAGTGGCT	TGGGCAGTGG	ACCCAAATGC	TGCCAT			456

Sequence No.: 46

Sequence length: 1677

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver Clone name: HP10302 Sequence description

ATGGCCCCCA	CGCTGCAACA	GGCGTACCGG	AGGCGCTGGT	GGATGGCCTG	CACGGCTGTG	60
CTGGAGAACC	TCTTCTTCTC	TGCTGTACTC	CTGGGCTGGG	GCTCCCTGTT	GATCATTCTG	120
AAGAACGAGG	GCTTCTATTC	CAGCACGTGC	CCAGCTGAGA	GCAGCACCAA	CACCACCCAG	180
GATGAGCAGC	GCAGGTGGCC	AGGCTGTGAC	CAGCAGGACG	AGATGCTCAA	CCTGGGCTTC	240
ACCATTGGTT	CCTTCGTGCT	CAGCGCCACC	ACCCTGCCAC	TGGGGATCCT	CATGGACCGC	300
TTTGGCCCCC	GACCCGTGCG	GCTGGTTGGC	AGTGCCTGCT	TCACTGCGTC	CTGCACCCTC	360
ATGGCCCTGG	CCTCCCGGGA	CGTGGAAGCT	CTGTCTCCGT	TGATATTCCT	GGCGCTGTCC	420
CTGAATGGCT	TTGGTGGCAT	CTGCCTAACG	TTCACTTCAC	TCACGCTGCC	CAACATGTTT	480
GGGAACCTGC	GCTCCACGTT	AATGGCCCTC	ATGATTGGCT	CTTACGCCTC	TTCTGCCATT	540
ACGTTCCCAG	GAATCAAGCT	GATCTACGAT	GCCGGTGTGG	CCTTCGTGGT	CATCATGTTC	600
ACCTGGTCTG	GCCTGGCCTG	CCTTATCTTT	CŢGAACTGCA	CCCTCAACTG	GCCCATCGAA	660
GCCTTTCCTG	CCCCTGAGGA	AGTCAATTAC	ACGAAGAAGA	TCAAGCTGAG	TGGGCTGGCC	720
CTGGACCACA	AGGTGACAGG	TGACCTCTTC	TACACCCATG	TGACCACCAT	GGGCCAGAGG	780
CTCAGCCAGA	AGGCCCCCAG	CCTGGAGGAC	GGTTCGGATG	CCTTCATGTC	ACCCCAGGAT	840
GTTCGGGGCA	CCTCAGAAAA	CCTTCCTGAG	AGGTCTGTCC	CCTTACGCAA	GAGCCTCTGC	900
TCCCCCACTT	TCCTGTGGAG	CCTCCTCACC	ATGGGCATGA	CCCAGCTGCG	GATCATCTTC	960
TACATGGCTG	CTGTGAACAA	GATGCTGGAG	TACCTTGTGA	CTGGTGGCCA	GGAGCATGAG	1020
ACAAATGAAC	AGCAACAAAA	GGTGGCAGAG	ACAGTTGGGT	TCTACTCCTC	CGTCTTCGGG	1080
GCCATGCAGC	TGTTGTGCCT	TCTCACCTGC	CCCCTCATTG	GCTACATCAT	GGACTGGCGG	1140
ATCAAGGACT	GCGTGGACGC	CCCAACTCAG	GGCACTGTCC	TCGGAGATGC	CAGGGACGGG	1200
GTTGCTACCA	AATCCATCAG	ACCACGCTAC	TGCAAGATCC	AAAAGCTCAC	CAATGCCATC	1260
AGTGCCTTCA	CCCTGACCAA	CCTGCTGCTT	GTGGGTTTTG	GCATCACCTG	TCTCATCAAC	1320
AACTTACACC	TCCAGTTTGT	GACCTTTGTC	CTGCACACCA	TTGTTCGAGG	TTTCTTCCAC	1380
		TGCTGCAGTG				1440
GGCCTGCAGT	CCCTCATCAG	TGCTGTGTTC	GCCTTGCTTC	AGCAGCCACT	TTTCATGGCG	1500
		AGAGCCCTTC				1560
		TTCCTACCTC				1620
TACGCCGCCA	ATGGGATGGG	CCCACTGAAG	GTGCTTAGCG	GCTCTGAGGT	GACCGCA	1677

Sequence No.: 47 Sequence length: 990 Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS Clone name: HP10304 Sequence description

ATGGAGGGCG	CTCCACCGGG	GTCGCTCGCC	CTCCGGCTCC	TGCTGTTCGT	GGCGCTACCC	60
GCCTCCGGCT	GGCTGACGAC	GGGCGCCCC	GAGCCGCCGC	CGCTGTCCGG	AGCCCCACAG	120
GACGGCATCA	GAATTAATGT	AACTACACTG	AAAGATGATG	GGGACATATC	TAAACAGCAG	180
GTTGTTCTTA	ACATAACCTA	TGAGAGTGGA	CAGGTGTATG	TAAATGACTT	ACCTGTAAAT	240
AGTGGTGTAA	CCCGAATAAG	CTGTCAGACT	TTGATAGTGA	AGAATGAAAA	TCTTGAAAAT	300
TTGGAGGAAA	AAGAATATTT	TGGAATTGTC	AGTGTAAGGA	TTTTAGTTCA	TGAGTGGCCT	360
ATGACATCTG	GTTCCAGTTT	GCAACTAATT	GTCATTCAAG	AAGAGGTAGT	AGAGATTGAT	420
GGAAAACAAG	TTCAGCAAAA	GGATGTCACT	GAAATTGATA	TTTTAGTTAA	GAACCGGGGA	480
GTACTCAGAC	ATTCAAACTA	TACCCTCCCT	TTGGAAGAAA	GCATGCTCTA	CTCTATTTCT	540
CGAGACAGTG	ACATTTTATT	TACCCTTCCT	AACCTCTCCA	AAAAAGAAAG	TGTTAGTTCA	600
CTGCAAACCA	CTAGCCAGTA	TCTTATCAGG	AATGTGGAAA	CCACTGTAGA	TGAAGATGTT	660
TTACCTGGCA	AGTTACCTGA	AACTCCTCTC	AGAGCAGAGC	CGCCATCTTC	ATATAAGGTA	720
ATGTGTCAGT	GGATGGAAAA	GTTTAGAAAA	GATCTGTGTA	GGTTCTGGAG	CAACGTTTTC	780
CCAGTATTCT	TTCAGTTTTT	GAACATCATG	GTGGTTGGAA	TTACAGGAGC	AGCTGTGGTA	840
ATAACCATCT	TAAAGGTGTT	TTTCCCAGTT	TCTGAATACA	AAGGAATTCT	TCAGTTGGAT	900
AAAGTGGACG	TCATACCTGT	GACAGCTATC	AACTTATATC	CAGATGGTCC	AGAGAAAAGA	960
GCTGAAAACC	TTGAAGATAA	AACATGTATT				990

Sequence No.: 48

Sequence length: 324

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS
Clone name: HP10305
Sequence description

PCT/JP97/04056

WO 98/21328

132

GCTGGGACAG	CTGCAATTGG	TTATCTAGCT	TACAAAAGAT	TTTATGTTAA	AGATCATCGA	120
AATAAAGCTA	TGATAAACCT	TCACATCCAG	AAAGACAACC	CCAAGATAGT	ACATGCTTTT	180
GACATGGAGG	ATTTGGGAGA	TAAAGCTGTG	TACTGCCGTT	GTTGGAGGTC	CAAAAAGTTC	240
CCATTCTGTG	ATGGGGCTCA	CACAAAACAT	AACGAAGAGA	CTGGAGACAA	TGTGGGCCCT	300
CTGATCATCA	AGAAAAAAGA	AACT			,	324

Sequence No.: 49
Sequence length: 303

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Osterosarcoma

Cell line: U-2 OS Clone name: HP10306 Sequence description

ATGAACCTGG	AGCGAGTGTC	CAATGAGGAG	AAATTGAACC	TGTGCCGGAA	GTACTACCTG	60
GGGGGGTTTG	CTTTCCTGCC	TTTTCTCTGG	TTGGTCAACA	TCTTCTGGTT	CTTCCGAGAG	120
GCCTTCCTTG	TCCCAGCCTA	CACAGAACAG	AGCCAAATCA	AAGGCTATGT	CTGGCGCTCA	180
GCTGTGGGCT	TCCTCTTCTG	GGTGATAGTG	CTCACCTCCT	GGATCACCAT	CTTCCAGATC	240
TACCGGCCCC	GCTGGGGTGC	CCTTGGGGAC	TACCTCTCCT	TCACCATACC	CCTGGGCACC	300
CCC					•	303

Sequence No.: 50

Sequence length: 1116

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear.

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10328 Sequence description

ATGAAGTATC	TCCGGCACCG	GCGGCCCAAT	GCCACCCTCA	TTCTGGCCAT	CGGCGCTTTC	60
ACCCTCCTCC	TCTTCAGTCT	GCTAGTGTCA.	CCACCCACCT	GCAAGGTCCA	GGAGCAGCCA	120
CCCCCCATCC	CCGAGGCCCT	GCCTGCCC	ACTCCACCCA	CCCGCCCAGC	CCCGGCCCCG	180

TGCCATGCCA	ACACCTCTAT	GGTCACCCAC	CCGGACTTCG	CCACGCAGCC	GCAGCACGTT	240
CAGAACTTCC	TCCTGTACAG	ACACTGCCGC	CACTTTCCCC	TGCTGCAGGA	CGTGCCCCCC	300
TCTAAGTGCG	CGCAGCCGGT	CTTCCTGCTG	CTGGTGATCA	AGTCCTCCCC	TAGCAACTAT	360
GTGCGCCGCG	AGCTGCTGCG	GCGCACGTGG	GGCCGCGAGC	GCAAGGTACG	GGGTTTGCAG	420
CTGCGCCTCC	TCTTCCTGGT	GGGCACAGCC	TCCAACCCGC	ACGAGGCCCG	CAAGGTCAAC	480
CGGCTGCTGG	AGCTGGAGGC	ACAGACTCAC	GGAGACATCC	TGCAGTGGGA	CTTCCACGAC	540
TCCTTCTTCA	ACCTCACGCT	CAAGCAGGTC	CTGTTCTTAC	AGTGGCAGGA	GACAAGGTGC	600
GCCAACGCCA	GCTTCGTGCT	CAACGGGGAT	GATGACGTCT	TTGCACACAC	AGACAACATG	660
GTCTTCTACC	TGCAGGACCA	TGACCCTGGC	CGCCACCTCT	TCGTGGGGCA	ACTGATCCAA	720
AACGTGGGCC	CCATCCGGGC	TTTTTGGAGC	AAGTACTATG	TGCCAGAGGT	GGTGACTCAG	780
AATGAGCGGT	ACCCACCCTA	TTGTGGGGGT	GGTGGCTTCT	TGCTGTCCCG	CTTCACGGCC	840
GCTGCCCTGC	GCCGTGCTGC	CCATGTCTTG	GACATCTTCC	CCATTGATGA	TGTCTTCCTG	900
GGTATGTGTC	TGGAGCTTGA	GGGACTGAAG	CCTGCCTCCC	ACAGCGGCAT	CCGCACGTCT	960
GGCGTGCGGG	CTCCATCGCA	ACACCTGTCC	TCCTTTGACC	CCTGCTTCTA	CCGAGACCTG	1020
CTGCTGGTGC	ACCGCTTCCT	ACCTTATGAG	ATGCTGCTCA	TGTGGGATGC	GCTGAACCAG	1080
CCCAACCTCA	CCTGCGGCAA	TCAGACACAG	ATCTAC			1116

Sequence No.: 51

Sequence length: 986

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma Cell line: HT-1080

Clone name: HP00442 Sequence characteristics

Code representing characteristics: CDS

Existence site: 82.. 699 Characterization method: E

Sequence description

AGACTGCGGG ACGGACGGT	TG GACGCTGGG	A CGCGTTTGTA	GCTCCGGCCC CG	CCGTTCCG 60
ACCCCGCCG CCGTCGCCG	CC C ATG ACG	GGG CTA GCA	CTG CTC TAC T	CC GGG 111
	Met Thr	Gly Leu Ala	Leu Leu Tyr S	er Gly
	1 .	5		10
GTC TTC GTG GCC TTC	TGG GCC TGC	GCG CTG GCC	GTG GGA GTC T	GC TAC 159
Val Phe Val Ala Phe	Trp Ala Cys	Ala Leu Ala	Val Gly Val C	ys T y r
. 15		20	•	25
ACC ATT TTT GAT TTG	GGC TTC CGC	TTT GAT GTG	GCA TGG TTC C	TG ACG 207
Thr Ile Phe Asp Leu	Gly Phe Arg	Phe Asp Val	Ala Trp Phe L	eu Thr

			30					35					40			
GAG	ACT	TCG	ccc	TTC	ATG	TGG	TCC	AAC	CTG	GGC	ATT	GGC	CTA	GCT	ATC	255
G1u	Thr	Ser	Pro	Phe	Met	Trp	Ser	Asn	Leu	G1y	Ile	Gly	Leu	Ala	Ile	
		45					50					55				
TCC	CTG	TCT	GTG	GTT	GGG	GCA	GCC	TGG	GGC	ATC	TAT	ATT	ACC	GGC	TCC	303
Ser	Leu	Ser	Val	Val	Gly	Ala	Ala	Trp	Gly	Ile	Tyr	Ile	Thr	Gly	Ser	
	60					65					70					
TCC	ATC	ATT	GGT	GGA	GGA	GTG	AAG	GCC	CCC	AGG	ATC	AAG	ACC	AAG	AAC	351
Ser	Ile	Ile	Gly	Gly	Gly	Val	Lys	Ala	Pro	Arg	Ile	Lys	Thr	Lys	Asn	
75					80					85					90	
					TTC											399
Leu	Val	Ser	Ile	Ile	Phe	Cys	Glu	Ala	Val	Ala	Ile	Tyr	Gly	Ile	Ile	
				95					100					105		
					AGC											447
Met	Ala	Ile	Val	Ile	Ser	Asn	Met	Ala	Glu	Pro	Phe	Ser	Ala	Thr	Asp	
			110					115					120			
					CAT											495
Pro	Lys	Ala	Ile	Gly	His	Arg		Tyr	His	Ala	Gly		Ser	Met	Phe	
		125					130					135				
					GTA											543
Gly	Ala	Gly	Leu	Thr	Val		Leu	Ser	Asn	Leu		Cys	Gly	Val	Cys	
	140			٠		145					150					
					AGT											591
Val	Gly	Ile	Va1	Gly	Ser	Gly	Ala	Ala	Leu		Asp	ATA	Gin	Asn		
155					160					165					170	
					ATT											639
Ser	Leu	Phe	Val		Ile	Leu	Ile	Val		Ile	Phe	GLA	Ser		IIe	
				175					180					185		ćoz
															AAG	687
Gly	Leu	Phe		Val	Ile	Val	Ala	11e	Leu	GIN	rnr	ser	Arg 200		ràs	
		240	190	A 777.C A 5	70 A FF 4	~ TY /~ TY				TCCC	T CA(- th	200			730
			TAG	AIGA	TAT (2167		3 G G(3000	1600	ı Ca	, 1				,,,,
Met	Gly	_														
man	▲ ጥጥ ጥ	205	የረጥር!	் மர்	ייר כי	rccc.	ACAG	r ince	ZAGC'	тстс	TCC	ርጥጥል(3CC '	rTTC/	AGAGGC	790
															CACTGC	850
															AGCTGC	910
															AAACTT	970
			TCCC				- Othi					*	4			986

Sequence No.: 52
Sequence length: 1824
Sequence type: Nucleic acid

Strandedness: Double
Topology: Linear
Sequence kind: cDNA to mRNA
Original source:

Organism species: Homo sapiens

Cell kind: Leukocyte
Clone name: HP00804
Sequence characteristics

Code representing characteristics: CDS

Existence site: 133.. 1248 Characterization method: E

Sequence description

GGC	CAG	CTG A	AGCG(CCG	CC GA	AGCGC	GTG	c GG(FTGC	GGGC	GCA:	rcgg(CCA !	TCAC	CGC	CGCG	60
GCCG	CGCA	AGC (GACA	ACCG	tg CO	STAC	CGCC	TG	CGGC	GCCC	GGC	CACC	GGG (GCGG	ACC	GCG	120
GAAC	CCGA	AGG (C A	rg T(CC CA	AT GA	A A	G A	ST T	TT T	rg g:	rg T	CT G	GG G	AC	AAC	17 1
			Me	et Se	er Hi	is G	lu Ly	rs Se	er P	he L	eu Va	al S	er G	ly A	sp	Asn	
				1				5				;	10				
										GGG							219
Tyr	Pro	Pro	Pro	Asn	Pro	Gly	Tyr	Pro	Gly	Gly	Pro	Gln	Pro	Pro	Me	ŧt	
	15					20					25						
										GCC							267
Pro	Pro	Tyr	Ala	Gln	Pro	Pro	Tyr	Pro	Gly	Ala	Pro	Tyr	Pro	Gln	Pr	0	
30					35					40						5	
										GGG							315
Pro	Phe	Gln	Pro	Ser	Pro	Tyr	Gly	Gln	Pro	Gly	Tyr	Pro	His	Gly	Pr	0	
				50					55					60			
AGC	CCC	TAC	CCC	CAA	GGG	GGC	TAC	CCA	CAG	GGT	CCC.	TAC	CCC	CAA	GG	:G	363
Ser	Pro	Tyr	Pro	Gln	Gly	Gly	Tyr	Pro	Gln	Gly	Pro	Tyr	Pro	Gln	G]	. y	
			65					70					75				
GGC	TAC	CCA	CAG	GGC	CCC	TAC	CCA	CAA	GAG	GGC	TAC	CCA	CAG	GGC	CC	C	411
Gly	Tyr	Pro	Gln	Gly	Pro	Tyr	Pro	Gln	Glu	G1y	Tyr	Pro	Gln	G1y	Pı	0	
		80		•			85					90					
TAC	CCC	CAA	GGG	GGC	TAC	CCC	CAG	GGG	CCA	TAT	CCC	CAG	AGC	CCC	T	rc	459
Tyr	Pro	Gln	Gly	Gly	Tyr	Pro	Gln	Gly	Pro	Tyr	Pro	Gln	Ser	Pro	Pł	1e	
	95					100					105						
ccc	CCC	AAC	CCC	TAT	GGA	CAG	.CCA	CAG	GTC	TTC	CCA	GGA	CAA	GAC	CC	T	507
Pro	Pro	Asn	Pro	Tyr	Gly	Gln	Pro	Gln	Val	Phe	Pro	Gly	Gln	Asp	Pı	0	
110					115					120					12	25	
GAC	TCA	CCC	CAG	CAT	GGA	AAC	TAC	CAG	GAG	GAG	GGT	CCC	CCA	TCC	T.	C	555
Asp	Ser	Pro	Gln	His	Gly	Asn	Tyr	Gln	G1u	Glu	Gly	Pro	Pro	Ser	Ty	T,	
-				130					135					140			
TAT	GAC	AAC	CAG	GAC	TTC	CCT	ecc	ACC	AAC	TGG	GAT	GAC	AAG	AGC	A'l	rc	603
Tyr	Asp	Asn	Gln	Asp	Phe	Pro	Ala	Thr	Asn	Trp	Asp.	Asp	Lys	Ser	IJ	e	
- , -				•						-			•				

							•									
			145					150					155			
CGA	CAG	GCC	TTC	ATC	CGC	AAG	GTG	TTC	CTA	GTG	CTG	ACC	TTG	CAG	CTG	651
Arg	Gln	Ala	Phe	Ile	Arg	Lys	Val	Phe	Leu	Val	Leu	Thr	Leu	Gln	Leu	
		160					165					170				
TCG	GTG	ACC	CTG	TCC	ACG	GTG	TCT	GTG	TTC	ACT	TTT	GTT	GCG	GAG	GTG	699
Ser	Val	Thr	Leu	Ser	Thr	Val	Ser	Val	Phe	Thr	Phe	Val	Ala	Glu	Val	
	175					180					185					
AAG	GGC	TTT	GTC	CGG	GAG	AAT	GTC	TGG	ACC	TAC	TAT	GTC	TCC	TAT	GCT	` 747
Lys	Gly	Phe	Val	Arg	Glu	Asn	Val	Trp	Thr	Tyr	Tyr	Val	Ser	Tyr	Ala	
190					195					200					205	
GTC	TTC	TTC	ATC	TCT	CTC	ATC	GTC	CTC	AGC	TGT	TGT	GGG	GAC	TTC	CGG	795
Va1	Phe	Phe	Ile	Ser	Leu	Ile	Val	Leu	Ser	Cys	Cys	Gly	Asp	Phe	Arg	
				210					215					220		
						CTT										843
Arg	Lys	His	Pro	Trp	Asn	Leu	Val	Ala	Leu	Ser	Val	Leu	Thr	Ala	Ser	
			225					230					235			
						ATG										891
Leu	Ser	Tyr	Met	Val	Gly	Met	Ile	Ala	Ser	Phe	Tyr	Asn	Thr	Glu	Ala	
		240					245					250				
						ATC										939
Val	Ile	Met	Ala	Val	Gly	Ile	Thr	Thr	Ala	Val		Phe	Thr	Val	Val	
	255					260					265					
						CGC										987
	Phe	Ser	Met	Gln		Arg	Tyr	Asp	Phe		Ser	Cys	Met	GTÀ		
270					275			mm.c	4 ma	280	~~~	A 777473	omo	ma a	285	2025
						GTG										1035
Leu	Leu	VAL	Ser		Val	Val	Leu	Pne		Pne	AIB	TTe	Leu	300	IIe	
				290	A M.C.	OMC.		A TIC	295	m a C	ccc	mc A	CTC.		CCT	1083
						CTG										1002
Pne	TTE	Arg		Arg	TTE	Leu	GIU	310	VAI	TYL	MIN	Ser	315	GLY	ALA	
CTC	CTC	mm/>	305	Tr.C.	ጥጥር	CTC	CCA		GAC	ACC	CAG	CTG		CTG	CCC	1131
						Leu										1131
Leu	rea	320	IIIL	Cys	rne	Deu	325		лэр	****	GIII	330	Deu	Deu	OLJ	
A A C	AAC		CTG	TCC	CTG	AGC			GAG	TAT	стс		GCT	GCG	CTG	1179
						Ser										
ASH	335	GIM	Deu	002	200	340			-	-)-	345					
AAC		TAC	ACA	GAC	ATC	ATC	AAC	ATC	TTC	CTG		ATC	CTC	ACC	ATC	1227
						Ile										
350		- , ~		P	355					360	,				365	
	GGC	CGC	GCC	AAG		TAG	CCGA	SCT (CCAG		CT G	rgcc				1270
		Arg														
~	3	6		370												
CGC	CAG	STG (GCAC		GG C	CTGG	ACCC:	r GC	CCT	GCA	CGG	CAGTO	SCC A	AGCTO	STACTT	1330

CCCCTCTCTC	TTGTCCCCAG	GCACAGCCTA	GGGAAAAGGA	TGCCTCTCTC	CAACCCTCCT	1390
GTATGTACAC	TGCAGATACT	TCCATTTGGA	CCCGCTGTGG	CCACAGCATG	GCCCCTTTAG	1450
TCCTCCCGCC	CCCGCCAAGG	GGCACCAAGG	CCACGTTTCC	GTGCCACCTC	CTGTCTACTC	1510
ATTGTTGCAT	GAGCCCTGTC	TGCCAGCCCA	CCCCAGGGAC	TGGGGGCAGC	ACCAGGTCCC	1570
GGGGAGAGGG	ATTGAGCCAA	GAGGTGAGGG	TGCACGTCTT	CCCTCCTGTC	CCAGCTCCCC	1630
AGCCTGGCGT	AGAGCACCCC	TCCCCTCCCC	CCCACCCCCC	TGGAGTGCTG	CCCTCTGGGG	1690
ACATGCGGAG	TGGGGGTCTT	ATCCCTGTGC	TGAGCCCTGA	GGGCAGAGAG	GATGGCATGT	1750
TTCAGGGGAG	GGGGAAGCCT	TCCTCTCAAT	TTGTTGTCAG	TGAAATTCCA	ATAAATGGGA	1810
TTTGCTCTCT	GCCT					1824
	-					

Sequence No.: 53

Sequence length: 1076

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP01098
Sequence characteristics

Code representing characteristics: CDS

Existence site: 62.. 601 Characterization method: E

Sequence description

AGTTCCGCCC GCTGGTCATC GCGCCCTTTC CCCTGCCGGT GTCCTGCTCG CCGTCCCCGC												
C ATG CTG TCT C	TA GAC TTT T	IG GAC GAT G	IG CGG CGG ATG A	AAC AAG CGG 109								
Met Leu Ser L	eu Asp Phe Le	eu Asp Asp Va	al Arg Arg Met A	Asn Lys Arg								
1	5	· ;	10	15								
CAG CTC TAT TAT	CAA GTC CTA	AAT TTT GGA	ATG ATT GTC TCA	TCG GCA 157								
Gln Leu Tyr Tyr	Gln Val Leu	Asn Phe Gly	Met Ile Val Ser	Ser Ala								
20)	25	30)								
CTA ATG ATC TGG	AAG GGG TTA	ATG GTA ATA	ACT GGA AGT GAA	AGT CCG 205								
Leu Met Ile Trp	Lys Gly Leu	Met Val Ile	Thr Gly Ser Glu	Ser Pro								
35		40	45									
ATT GTA GTG GTG	CTC AGT GGC	AGC ATG GAA	CCT GCA TTT CAT	AGA GGA 253								
Ile Val Val Val	Leu Ser Gly	Ser Met Glu	Pro Ala Phe His	Arg Gly								
50	55		. 60									
GAT CTT CTC TTT	CTA ACA AAT	CGA GTT GAA	GAT CCC ATA CGA	A GTG GGA 301								
Asp Leu Leu Phe	Leu Thr Asn	Arg Val Glu	Asp Pro Ile Arg	y Val Gly								
65	70	•	75	80								
GAA ATT GTT GTT	TTT AGG ATA	GAA GGA AGA	GAG ATT CCT ATA	A GTT CAC 349								

Glu	Ile	Val	Val	Phe	Arg	Ile	Glu	Gly	Arg	G1u	Ile	Pro	Ile	Val	His	
				85					90					95		
CGA	GTC	TTG	AAG	ATT	CAT	GAA	AAG	CAA	AAT	GGG	CAT	ATC	AAG	TTT	TTG	397
Arg	Va1	Leu	Lys	Ile	His	Glu	Lys	Gln	Asn	Gly	His	Ile	Lys	Phe	Leu	
			100					105		•			110			
ACC	AAA	GGA	GAT	AAT	AAT	GCG	GTT	GAT	GAC	CGA	GGC	CTC	TAT	AAA	CAA	445
Thr	Lys	Gly	Asp	Asn	Asn	Ala	Val	qaA	Asp	Arg	Gly	Leu	Tyr	Lys	Gln	
		115					120					125				
GGA	CAA	CAT	TGG	CTA	GAG	AAA	AAA	GAT	GTT	GTG	GGG	AGA	GCC	AGG	GGA	493
G1y	Gln	His	Trp	Leu	Glu	Lys	Lys	Asp	Val	Val	Gly	Arg	Ala	Arg	Gly	
	130					135					140					
TTT	GTT	CCT	TAT	ATT	GGA	ATT	GTG	ACG	ATC	CTC	ATG	AAT	GAC	TAT	CCT	543
Phe	Va1	Pro	Tyr	Ile	Gly	Ile	Val	Thr	Ile	Leu	Met	Asn	Asp	Tyr	Pro	
145					150		<u>.</u>	,		155		•			160	
AAA	TTT	AAG	TAT	GCA	GTT	CTC	TTT	TTG	CTG	GGT	TTA	TTC	GTG	CTG	GTT	589
Lys	Phe	Lys	Tyr	Ala	Val	Leu	Phe	Leu	Leu	Gly	Leu	Phe	Val	Leu	Val	
				165					170					175		
CAT	CGT	GAG	TA	AGAA	GCC :	rgcc'	TTGC	rg T:	CCT	GGA	A GA	r				630
His	Arg	Glu														
GCĆ	ATAG'	rtt :	TCGT:	TACT	GG A	rgtt:	rgga(TAC	GATAC	CTGG	TCT	GTGA:	rtg (GTGG/	AATGGA	690
GAA	CACAC	CGT (GTTG(STGC:	TT C	rggg:	ragc <i>i</i>	A CTO	GTT:	rgca	TTAC	STTTA	ATG 1	TTTC	CATGCC	750
AGA	STTTC	STG :	rggg	CGGG	CG CA	ATGT	CAC	ACA	AGAG'	rgca	CTC	SAGG(GA (CTTT	CAGTCA	810
CAG	SATT!	rca :	TAAT:	rgtc.	AT TO	STCA	CACT	TC.	AAAT'	TTTT	GTA	CATC	AGT (GAAT'	TTTTTT	870
ATA:	AATT	AAG (GTTGA	AGCC	AA A	CCC	CCAG:	r GT:	rtgta	ATTT	TGA	AGCC	AAG (CTTC	ACTTCT	930
AAA	TGC	CTA (CAGA	GACT'	rg ta	AAAT	GAAA	A TG	CAGC	rctg	CAC	GAGT	rtg /	AAAC	CGTCAT	990
ACC:	CCT:	TCT A	ATTA	GGAA'	rg g	CATA'	TACTO	AG(STGG	CGT	AAG'	rctt/	AAC 1	TTCT	TTAAAA	1050
TTA	ATA	AAA (GACT	TTGC.	AC A	TTGA	3									1076

Sequence No.: 54

Sequence length: 1591

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver Clone name: HP01148 Sequence characteristics

Code representing characteristics: CDS

Existence site: 102.. 1145 Characterization method: E

Sequence description

						•											
GTCC	CTCC	TC T	'TAAC	ATAC	T TG	CAGO	TAAA	ACT	[AAA]	TTAT	GCT	CTT	GG C	ACC	CCT	rc	60
TAGO	CTTA	AA 3	TTCA	GCTC	A TO	ACCI	TCAC	CTO	CCTI	CGT	C A	rg go	T CI	G C	TA T	rc	116
											Me	et Al	la Le	eu Le	eu Pl	ae	
				•								1				5 .	
TCC	TTG	ATC	CTT	GCC	ATT	TGC	ACC	AGA	CCT	GGA	TTC	CTA	GCG	TCT	CCA		164
Ser	Leu	Ile	Leu	Ala	Ile	Суs	Thr	Arg	Pro	Gly	Phe	Leu	Ala	Ser	Pro		
				10					15					20			
			CGG														212
Ser	Gly	Val	Arg	Leu	Val	Gly	G1 y	Leu	His	Arg	Cys	Glu	Gly	Arg	Val		
			25		•			30					35				
			CAG														260
Glu	Val	Glu	Gln	Lys	Gly	Gln	Trp	Gly	Thr	Va1	Cys		Asp	Gly	Trp		
		40					45					50					
			GAC														308
Asp	Ile	ГÀЗ	Asp	Va1	Ala	Val	Leu	Cys	Arg	Glu		Gly	Cys	Gly	Ala		
	55		•			60					65						256
			ACC														356
Ala	Ser	Gly	Thr	Pro		Gly	Ile	Leu	Tyr		Pro	Pro	ALA	Glu			
70					75					80					85		404
			GTC														404
Glu	Gln	Lys	Val		TTE	Gin	ser	Val		Cys	Int	GIA	Int	100	авр		
			CAG	90	C.4.C	~ ^ ^	CAA	CAA	95	ጥለጥ	CAT	ምርም	ጥ ር ል		CAA		452
			Gln														452
THE	Leu	ALB	105	Cys	GIU	GIII	GIG	110	V L L		пор	0,0	115	,			
C 4 4	САТ	CCT	GGG	GCA	TCG	ፐር ፑ	CAG		CCA	GAG	AGC	тст		TCC	CCA		500
			Gly														
GIU	veħ	120	GLJ	11111		٠,٠	125					130					
ርምር	CCA		GGT	GTC	AGG	CTG		GAC	GGC	CCT	GGG		TGC	AAG	GGA		548
			Gly														
Val	135	024	02)		6	140		1 -			145		•	•	-		
cec		GAA	GTG	AAG	CAC		AAC	CAG	TGG	TAT	ACC	GTG	TGC	CAG	ACA		596
			Val														
150	,				155				-	160			•		165		
	TGG	AGC	CTC	CGG	GCC	GCA	AAG	GTG	GTG	TGC	CGG	CAG	CTG	GGA	TGT		644
			Leu														,
,	•			170			_		175					180			
GGG	AGG	GCT	GTA	CTG	ACT	CAA	AAA	CGC	TGC	AAC	AAG	CAT	GCC	TAT	GGC		692
			Val														
-	•		185					190					195				
CGA	AAA	CCC	ATC	TGG	CTG	AGC	CAG	ATG	TCA	TGC	TCA	GGA	CGA	GAA	GCA		740
			Ile														

		200					205					210				
ACC	CTT		GAT	TGC	CCT	TCT	GGG	CCT	TGG	GGG	AAG	AAC	ACC	TGC	AAC	788
														Cys		
	215	•	•	-		220	-		_	-	225					
CAT		GAA	GAC	ACG	TGG	GTC	GAA	TGT	GAA	GAT	CCC	TTT	GAC	TTG	AGA	836
														Leu		
230	•		-		235				٠.	240			•		245	
CTA	GTA	GGA	GGA	GAC	AAC	CTC	TGC	TCT	GGG	CGA	CTG	GAG	GTG	CTG	CAC	884
Leu	Va1	Gly	G1.y	Asp	Asn	Leu	Cys	Ser	Gly	Arg	Leu	Glu	Val	Leu	His	
				250					255					260		
AAG	GGC	GTA	TGG	GGC	TCT	GTC	TGT	GAT	GAC	AAC	TGG	GGA	GAA	AAG	GAG	932
Lys	Gly	Val	Trp	Gly	Ser	Va1	Cys	Asp	Asp	Asn	Trp	Gly	Glu	Lys	Glu	
			265					270					275			
														TCT		980
Asp	Gln	Val	Va1	Cys	Lys	${\tt Gln}$	Leu	Gly	Cys	Gly	Lys	Ser	Leu	Ser	Pro	
		280					285		,			290				
														ATC	•	1028
Ser	Phe	Arg	Asp	Arg	Lys	Cys	Tyr	Gly	Pro	Gly	Val	Gly	Arg	Ile	Trp	
	295		•			300					305					
														CAG		1076
Leu	Asp	Asn	Val	Arg	Cys	Ser	Gly	Glu	Glu	Gln	Ser	Leu	Glu	Gln		
310					315					320					325	
														GAT		1124
Gln	His	Arg	Phe	Trp	Gly	Phe	His	Asp		Thr	His	Gln	Glu	Asp	Val	
				330					335					340		
				TCA		TAG:	ratc(CTG (STGT'	rgct'	IG A	CCTG	SCC			1170
Ala	Val	Ile	_	Ser	Gly											
			345								===		00m	0.484	- m - A - MI	r 1230
															CTCAT	
															GGCT' TGAG'	
															TTGA	
															CACT	
															AGGTC	
															TGAA.	
	TACT.	AAT	CTAT	GTGT	GC A	AUA:	TIMA	n GG	BALG.	nnno	MA1	SAM	GGA I	non!	· · GAM	1591
G																1.031.

Sequence No.: 55

Sequence length: 1888

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP01293
Sequence characteristics

Code representing characteristics: CDS

Existence site: 90.. 1754 Characterization method: E

Sequence description

CCTI	TTCA	AA G	ATCT	C T G#	G GG	SAGAC	ATTO	G CAC	CTG	CCA	CŤG	CAGC	CA (SAGC	AGGTC	r 60
						AGCC										113
								Met	Pro	Thr	Val	Asp	Asp	Ile	Leu	
							:	1				5				
GAG	CAG	GTT	GGG	GAG	TCT	GGC	TGG	TTC	CAG	AAG	CAA	GCC	TTC	CTC	ATC	161
Glu	Gln	Va1	Gly	Glu	Ser	Gly	Trp	Phe	Gln	Lys	Gln	Ala	Phe	Leu	Ile	
	10					15					20					
TTA	TGC	CTG	CTG	TCG	GCT	GCC	TTT	GCG	CCC	ATC	TGT	GTG	GGC	ATC	GTC	209
Leu	Cys	Leu	Leu	Ser	Ala	Ala	Phe	Ala	Pro	Ile	Cys	Val	Gly	Ile	Val	
25					30					35					40	
TTC	CTG	GGT	TTC	ACA	CCT	GAC	CAC	CAC	TGC	CAG	AGT	CCT	GGG	GTG	GCT	257
Phe	Leu	G1y	Phe	Thr	Pro	Asp	His	His	Cys	Gln	Ser	Pro	Gly	Val	Ala	
				45					50					55	•	
GAG	CTG	AGC	CAG	CGC	TGT	GGC	TGG	AGC	CCT	GCG	GAG	GAG	CTG	AAC	TAT	305
Glu	Leu	Ser	Gln	Arg	Cys	Gly	Trp	Ser	Pro	Ala	Glu	Glu	Leu	Asn	Tyr	,
			60					65		-			70			
ACA	GTG	CCA	GGC	CTG	GGG	ccc	GCG	GGC	GAG	GCC	TTC	CTT	GGC	CAG	TGC	. 353
Thr	Va1	Pro	Gly	Leu	Gly	Pro	Ala	Gly	Glu	Ala	Phe	Leu	Gly	Gln	Cys	
		75					80					85				
AGG	CGC	TAT	GAA	GTG	GAC	TGG	AAC	CAG	AGC	GCC	CTC	AGC	TGT	GTA	GAC	401
Arg	Arg	Tyr	Glu	Val	Asp	Trp	Asn	Gln	Ser	Ala	Leu	Ser	Cys	Val	Asp	
	90					95					100					
CCC	CTG	GCT	AGC	CTG	GCC	ACC	AAC	AGG	AGC	CAC	CTG	CCG	CTG	GGT	CCC	449
Pro	Leu	Ala	Śer	Leu	Ala	Thr	Asn	Arg	Ser	His	Leu	Pro	Leu	Gly	Pro	
105					110					115					120	
TGC	CAG	GAT	GGC	TGG	GTG	TAT	GAC	ACG	CCC	GGC	TCT	TCC	ATC	GTC	ACT	497
Cys	Gln	Asp	G1y	Trp	Val	Tyr	Asp	Thr	Pro	Gly	Ser	Ser	Ile	Val	Thr	
				125					130					135	•	
GAG	TTC	AAC	CTG	GTG	TGT	GCT	GAC	TCC	TGG	AAG	CTG	GAC	CTC	TTT	CAG	545
Glu	Phe	Asn	Leu	Val	Cys	Ala	Asp	Ser	Trp	Lys	Leu	Asp	Leu	Phe	Gln	
			140					145					150			
TCC	TGT	TTG	AAT	GCG	GGC	TTC	TTC	TTT	GGC	TCT	CTC	GGT	GTT	GGC	TAC	593
						Phe										
	-	155					160					165				

TTT	GCA	GAC	AGG	TTT	GGC	CGT	AAG	CTG	TGT	CTC	CTG	GGA	ACT	GTG	CTG	641
Phe	Ala	Asp	Arg	Phe	Gly	Arg	Lys	Leu	Cys	Leu	Leu	Gly	Thr	Val	Leu	
	170					175					180					
GTC	AAC	GCG	GTG	TCG	GGC	GTG	CTC	ATG	GCC	TTC	TCG	ccc	AAC	TAC	ATG	689
Val	Asn	Ala	Va1	Ser	Gly	Val	Leu	Met	Ala	Phe	Ser	Pro	Asn	Tyr	Met	
185					190					195					200	
TCC	ATG	CTG	CTC	TTC	CGC	CTG	CTG	CAG	GGC	CTG	GTC	AGC	AAG	GGC	AAC	737
Ser	Met	Leu	Leu	Phe	Arg	Leu	Leu	G1n	Gly	Leu	Val	Ser	Lys	Gly	Asn	
				205					210					215		
			GGC													785
Trp	Met	Ala	Gly	Tyr	Thr	Leu	Ile	Thr	G1u	Phe	Val	Gly	Ser	Gly	Ser	
•			220			•		225				•	230			
			GTG													833
Arg	Arg	Thr	Val	Ala	Ile	Met		Gln	Met	Ala	Phe		Val	Gly	Leu	
		235					240					245			omo	001
			ACC													- 881
Val		Leu	Thr	Gly	Leu		Tyr	ALA	Leu	Pro		Trp	Arg	Trp	ren	
	250					255		mmo	omo	mma	260	Cm2	m A C	TAC	TCC	929
			GTC													929
	Leu	ALA	Val	Ser		Pro	Int	Pne	Leu .	275	rea	ren	ıyı	Tyr	280	
265		000	GAG	maa	270	ccc	mcc.	CTC	ጥ ም ል		CAA	444	ACA	AAC		977
			Glu													3/1
Cys	VET	PIG	GIU	285	FLO	nrg	LLP	rea	290	Der	GLII	<i>L</i> Jy 3.	6	295		
CAA	CCA	ልሞል	AAG		ATC	GAC	CAC	ATC:		CAA	AAG	ААТ	GGG		TTG	1025
			Lys													
GIU	VIG	116	300		1100	пор		305			-,-		310	_,_		
CCT	CCT	GCT	GAT	TTA	AAG	ATG	CTT	TCC	CTC	GAA	GAG	GAT	GTC	ACC	GAA	1073
			Asp													
		315	•		•		320					325	,			
AAG	CTG		CCT	TCA	TTT	GCA	GAC	CTG	TTC	CGC	ACG	CCG	CGC	CTG	AGG	1121
			Pro													•
	330					335					340					•
AAG	CGC	ACC	TTC	ATC	CTG	ATG	TAC	CTG	TGG	TTC	ACG	GAC	TCT	GTG	CTC	1169
Lys	Arg	Thr	Phe	Ile	Leu	Met	Tyr	Leu	Trp	Phe	Thr	Asp	Ser	Val	Leu	
345					350					355					360	
TAT	CAG	GGG	CTC	ATC	CTG	CAC	ATG	GGC	GCC	ACC	AGC	GGG	AAC	CTC	TAC	. 1217
Tyr	Gln	Gly	Leu	Ile	Leu	His	Met	Gly	Ala	Thr	Ser	Gly	Asn	Leu	Tyr	
				365					370					375		
			CTT													1265
Leu	Asp	Phe	Leu	Tyr	Ser	Ala	Leu	Val	Glu	Ile	Pro	Gly	Ala	Phe	Ile	
			380					385					390			
			ACC													1313
Ala	Leu	Ile	Thr	Ile	Asp	Arg	Va1	Gly	Arg	Ile	Tyr	Pro	Met	Ala	Val	

							400									
		395					400					405				
	AAT															1361
Ser	Asn	Leu	Leu	Ala	Gly	Ala	Ala	Cys	Leu	Val		Ile	Phe	Ile	Ser	
	410					415					420					
	GAC															1409
Pro	Asp	Leu	His	Trp	Leu	Asn	Ile	Ile	Ile	Met	Cys	Val	Gly	Arg	Met	
425					430					435					440	
GGA	ATC	ACC	ATT	GCA	ATA	CAA	ATG	ATC	TGC	CTG	GTG	TAA	GCT	GAG	CTG	1457
G1y	Ile	Thr	Ile	A1a	Ile	Gln	Met	Ile	Cys	Leu	Val	Asn	Ala	Glu	Leu	
				445					450					455		
TAC	CCC	ACA	TTC	GTC	AGG	AAC	CTC	GGA	GTG	ATG	GTG	TGT	TCC	TCC	CTG	1505
Tyr	Pro	Thr	Phe	Va1	Arg	Asn	Leu	Gly	Val	Met	Va1	Cys	Ser	Ser	Leu	•
			460					465					470			
TGT	GAC	ATA	GGT	GGG	ATA	ATC	ACC	ccc	TTC	ATA	GTC	TTC	AGG	CTG	AGG	1553
Cys	Asp	Ile	G1y	Gly	Ile	Ile	Thr	Pro	Phe	Ile	Val	Phe	Arg	Leu	Arg	
		475					480					485				
GAG	GTC	TGG	CAA	GCC	TTG	CCC	CTC	ATT	TTG	TTT	GCG	GTG	TTG	GGC	CTG	1601
G1u	Va1	Trp	Gln	Ala	Leu	Pro	Leu	Ile	Leu	Phe	Ala	Val	Leu	Gly	Leu	
	490	_				495					500					
CTT	GCC	GCG	GGA	GTG	ACG	CTA	CTT	CTT	CCA	GAG	ACC	AAG	GGG	GTC	GCT	1649
Leu	Ala	Ala	Gly	Val	Thr	Leu	Leu	Leu	Pro	Glu	Thr	Lys	Gly	Val	Ala	
505					510					515					520	
TTG	CCA	GAG	ACC	ATG	AAG	GAC	GCC	GAG	AAC	CTT	GGG	AGA	AAA	GCA	AAG	1697
Leu	Pro	Glu	Thr	Met	Lys	Asp	Ala	Glu	Asn	Leu	Gly	Arg	Lys	Ala	Lys	
				525					530					535		
CCC	AAA	GAA	AAC	ACG	ATT	TAC	CTT	AAG	GTC	CAA	ACC	TCA	GAA	CCC	TCG	1745
Pro	Lys	Glu	Asn	Thr	Ile	Tyr	Leu	Lys	Val	Gln	Thr	Ser	Glu	Pro	Ser	
	,		540			-		545					550			
GGC	ACC	TGA	GAGA	GAT (GTTT:	rgcgo	SC GA	ATGT	GTG	r TGO	GAGG	SATG	AAGA	ATGG!	/G	1800
	Thr														•	
ጥጥል	ፕ ርርፕ(CTG (CAGÁ	AATT	CC TA	AGAC	CCT	r cac	CTTC:	CTG	TAT:	CTT	CT (CATAC	CTTGCC	1860
	CCCC															1888
IAC		MALE.			1.											

Sequence No.: 56

Sequence length: 2033

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma Cell line: KB

Clone name: HP10013
Sequence characteristics

Code representing characteristics: CDS

Existence site: 97.. 1149 Characterization method: E

	GAGT	CCGA	GC (CGTC	ACCI	C CI	CAC	CTGC	GGC	TGT	CCC	CGT	TCCC	CC C	GGCC	CCGTTC	60
	CGTG	TCGC	cc (CGCAG	TGC	C CC	GCCG	CCGC	GGC	ACC	ATG	GCT	GTG	TTT	GTC	GTG	114
											Met	Ala	Val	Phe	Val	Val	
				•							1				5		
				TTG													162
•	Leu	Leu	Ala	Leu	Val	Ala	Ģ1 y	Val	Leu	Gly	Asn	G1u	Phe	Ser	Ile	Leu	
				10					15					20			
				GGG													210
	Lys	Ser	Pro	Gly	Ser	Val	Val	Phe	Arg	Asn	Gly	Asn	Trp	Pro	Ile	Pro	
			25					30					35				
				ATC													258
	Gly	Glu	Arg	Ĭle	Pro	Asp		Ala	Ala	Leu	Ser		Gly	Phe	Ser	Val	
		40					45					50				0.4 m	200
				CTT													306
	-	Glu	Asp	Leu	Ser		Pro	GIA	ren	ATA		GTA	Asn	Leu	Pne	70	
	55					60		000	4 m/2	O MO	65	004	CTC.	440			354
				GCT													334
	Arg	Pro	Arg	Ala		Val	met	VAI	met	80	гуѕ	GIY	VAI	HSII	ъуs 85	Lea	
				CCA	75		0.00	A 7777	BCC		CCT	ሙሙር	CAC	ልልጥ		ርጥሞ	402
				Pro													702
	Ala	Leu	Pro		GTA	ser	AHT	TIE	95	Tyr	FIG	Leu	GIU	100	MIG	762	
	00m	mmm.	4 C M	90 CTT	CAC	ልሮሞ	CTT	CCA.		ጥርር	ΑΤΤ	CAC	TCC		արար	тст	450
				Leu													,,,,
	PIO	rne	105	rea	nsp	Ser	Val	110	11311	DCL			115	200			
	CAC	CAA		CCT	CTT	GTT	ттс		TTG	GCT	ccc	AGT		GAA	AGA	GTG	498
				Pro													
	GIU	120					125					130					
	тат		GTA	GGG	AAG	GCA	AAC	TCA	GTG	TTT	GAA	GAC	CTT	TCA	GTC	ACC	546
				Gly													
	135		V		-,-	140					145	-				150	
		CGC	CAG	CTC	CGT	AAT	CGC	CTG	TTT	CAA	GAA	AAC	TCT	GTT	CTC	AGT	594
				Leu													
		3			155		_			160					165		
	TCA	CTC	CCC	CTC	AAT	TCT	CTG	AGT	AGG	AAC	AAT	GAA	GTT	GAC	CTG	CTC	642
				Leu													

170 175 1	.80
TTT CTT TCT GAA CTG CAA GTG CTA CAT GAT ATT TCA AGC T	
Phe Leu Ser Glu Leu Gln Val Leu His Asp Ile Ser Ser L	
185 190 195	
CGT CAT AAG CAT CTA GCC AAG GAT CAT TCT CCT GAT TTA T	AT TCA CTG 738
Arg His Lys His Leu Ala Lys Asp His Ser Pro Asp Leu T	
200 205 210	
GAG CTG GCA GGT TTG GAT GAA ATT GGG AAG CGT TAT GGG G	SAA GAC TCT 786
Glu Leu Ala Gly Leu Asp Glu Ile Gly Lys Arg Tyr Gly G	
215 220 225	230
GAA CAA TTC AGA GAT GCT TCT AAG ATC CTT GTT GAC GCT C	TG CAA AAG 834
Glu Gln Phe Arg Asp Ala Ser Lys Ile Leu Val Asp Ala L	
235 240	245
TTT GCA GAT GAC ATG TAC AGT CTT TAT GGT GGG AAT GCA G	STG GTA GAG 882
Phe Ala Asp Asp Met Tyr Ser Leu Tyr Gly Gly Asn Ala V	Val Val Glu
250 255 2	260
TTA GTC ACT GTC AAG TCA TTT GAC ACC TCC CTC ATT AGG A	AAG ACA AGG 930
Leu Val Thr Val Lys Ser Phe Asp Thr Ser Leu Ile Arg I	ys Thr Arg
265 270 275	* .
ACT ATC CTT GAG GCA AAA CAA GCG AAG AAC CCA GCA AGT C	
Thr Ile Leu Glu Ala Lys Gln Ala Lys Asn Pro Ala Ser P	Pro Tyr Asn
280 285 290	
CTT GCA TAT AAG TAT AAT TTT GAA TAT TCC GTG GTT TTC A	
Leu Ala Tyr Lys Tyr Asn Phe Glu Tyr Ser Val Val Phe A	
295 300 305	310
CTT TGG ATA ATG ATC GCC TTG GCC TTG GCT GTG ATT ATC A	
Leu Trp Ile Met Ile Ala Leu Ala Leu Ala Val Ile Ile T	
315 320	325 FAT AGG ATG 1122
AAT ATT TGG AAC ATG GAT CCT GGA TAT GAT AGC ATC ATT	
Asn Ile Trp Asn Met Asp Pro Gly Tyr Asp Ser Ile Ile T	iyi Aig Mec 340
330	
ACA AAC CAG AAG ATT CGA ATG GAT TGAATGTTAC CTGTGCCAGA	a AllA 1170
Thr Asn Gln Lys Ile Arg Met Asp 345 350	•
345 350 GAAAAGGGGG TTGGAAATTG GCTGTTTTGT TAAAATATAT CTTTTAGTG	GT GCTTTAAAGT 1230
AGATAGTATA CTTTACATTT ATAAAAAAA ATCAAATTTT GTTCTTTAT	
CTGTGATGTT TTTCTAGAGT GAATTATAGT ATTGACGTGA ATCCCACTG	
CCATAATATG CTTGAATATT ATGATATAGC CATTTAATAA CATTGATTT	
ATGAATTTGG AAATATGCAC TGAAAGAAAT GTAAAACATT TAGAATAGG	
AAAAAAGTGC ACTGAATTTA TTAGACAAAC TTACGAATGC TTAACTTCT	
AGGTGAAAAT CATATTTGGG CTATTGTATA CTATGAACAA TTTGTAAAT	
ATGTAAATAA CTCTGAAACA AGAGAAAAGG TTTTTAACTT AGAGTAGCO	
ATGTGCTTAT ATAATCGCTT AGTTTTGGAA CTGTATCTGA GTAACAGAG	
TTTAACCCTC TTCTGCAAGT TTGTTGACCT ACATGGGCTA ATATGGATA	

ACATTGATCT AAGAAGAAAC	TAGCCTTGTG	GAGTATATAG	ATGCTTTTCA	TTATACACAC	1830
AAAAATCCCT GAGGGACATT	TTGAGGCATG	AATATAAAAC	ATTTTTATTT	CAGTAACTTT	1890
TCCCCCTGTG TAAGTTACTA	TGGTTTGTGG	TACAACTTCA	TTCTATAGAA	TATTAAGTGG	1950
AAGTGGGTGA ATTCTACTTT	TTATGTTGGA	GTGGACCAAT	GTCTATCAAG	AGTGACAAAT	2010
AAAGTTAATG ATGATTCCAA	AAC		•		2033

Sequence No.: 57 Sequence length: 911

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma Cell line: HT-1080

Clone name: HP10034
Sequence characteristics

Code representing characteristics: CDS

Existence site: 176.. 805 Characterization method: E

ACGC	CTG	GT (ACC	CTAC	G TA	TATA	CAGA	A GCC	CTCC	CTGG	CCC	ссто	GA A	AAGAG	STCCT	G 60
GAAA	GACA	AAC (CTTC	AGGT	CC AC	CCC:	CGGA	CTO	GAG	SAGT	GGAG	ccc	CAC :	rctg/	AGAC	3 120
CAGC	CTT	rct (CAG	TTC:	rg To	CTCT	CCA	r TC	GAT:	TTOT	GAC	ACCAC	GAT (GCAGG	ATG	178
		•								•					Met	
															1	
GTG	TCC	TCT	CCC	TGC	ACG	CAG	GCA	AGC	TCA	CGG	ACT	TGC	TCC	CGT	ATC	226
Va1	Ser	Ser	Pro	Cys	Thr	Gln	Ala	Ser	Ser	Arg	Thr	Cys	Ser	Arg	Ile	
			5					10					15			
CTG	GGA	CTG	AGC	CTT	GGG	ACT	GCA	GCC	CTG	TTT	GCT	GCT	GGG	GCC	AAC	274
Leu	Gly	Leu	Ser	Leu	Gly	Thr	Ala	Ala	Leu	Phe	Ala	Ala	Gly	Ala	Asn	•
		20					25					30				
GTG	GCA	CTC	CTC	CTT	CCT	AAC	TGG	GAT	GTC	ACC	TAC	CTG	TTG	AGG	GGC	322
Val	Ala	Leu	Leu	Leu	Pro	Asn	Trp	Asp	Val	Thr	Tyr	Leu	Leu	Arg	Gly	
	35					40					45					
CTC	CTT	GGC	AGG	CAT	GCC	ATG	CTG	GGA	ACT	GGG	CTC	TGG	GGA	GGA	GGC	370
Leu	Leu	Gly	Arg	His	Ala	Met	Leu	Gly	Thr	Gly	Leu	Trp	Gly	Gly	Gly	
50					55					60					65	
CTC	ATG	GTA	CTC	ACT	GCA	GCT	ATC	CTC	ATC	TCC	TTG	ATG	GGC	TGG	AGA	418
Leu	Met	Val	Leu	Thr	Ala	Ala	Ile	Leu	Ile	Ser	Leu	Met	Gly	Trp	Arg	

				70					75					80		
TAC	GGC	TGC	TTC	AGT	AAG	AGT	GGG	CTC	TGT	CGA	AGC	GTG	CTT	ACT	GCT	466
Tyr	G1y	Cys	Phe	Ser	Lys	Ser	Gly	Leu	Cys	Arg	Ser	Val	Leu	Thr	Ala	
			85					90					95		•	
CTG	TTG	TCA	GGT	GGC	CTG	GCT	TTA	CTT	GGA	GCC	CTG	ATT	TGC	TTT	GTC	514
Leu	Leu	Ser	Gly	Gly	Leu	Ala	Leu	Leu	Gly	A1a	Leu	Ile	Суз	Phe	Va1	
		100					105					110			,	
ACT	TCT	GGA	GTT	GCT	CTG	AAA	GAT	.GGT	CCT	TTT	TGC	ATG	TTT	GAT	GTT	562
Thr	Ser	G1y	Va1	Ala	Leu	Lys	Asp	Gly	Pro	Phe	Cys	Met	Phe	Asp	Val	
	115					120					125					
TCA	TCC	TTC	AAT	CAG	ACA	CAA	GCT	TGG	AAA	TAT	GGT	TAC	CCA	TTC	AAA	610
Ser	Ser	Phe	Asn	Gln	Thr	Gln	Ala	Trp	Lys	Tyr	Gly	Tyr	Pro	Phe	Lys	
130					135					140					145	
GAC	CTG	CAT	AGT	AGG	AAT	ŢĄŢ	CTG	TAT	GAČ	CGT	TCG	CTC	TGG	AAC	TCC	658
Asp	Leu	His	Ser	Arg	Asn	Tyr	Leu	Tyr	Asp	Arg	Ser	Leu	Trp	Asn	Ser	
				150					155					160		
GTC	TGC	CTG	GAG	CCC	TCT	GCA	GCT	GTT	GTC	TGG	CAC	GTG	TCC	CTC	TTC	706
Va1	Cys	Leu	G1u	Pro	Ser	Ala	Ala	Val	Val	Trp	His	Val	Ser	Leu	Phe	
			165					170					175			
TCC	GCC	CTT	CTG	TGC	ATC	AGC	CTG	CTC	CAG	CTT	CTC	CTG	GTG	GTC	GTT	754
Ser	Ala	Leu	Leu	Cys	Ile	Ser	Leu	Leu	Gln	Leu	Leu	Leu	Val	Va1	Val	
		180					185	•				190				
CAT	GTC	ATC	AAC	AGC	CTC	CTG	GGC	CTT	TTC	TGC	AGC	CTC	TGC	GAG	AAG	802
His	Va1	Ile	Asn	Ser	Leu	Leu	Gly	Leu	Phe	Cys	Ser	Leu	Cys	Glu	Lys	
	195					200					205					
TGA	CAGG	C AG	AACC!	TTCA	CTT	CAAC	GCA 7	rggg:	rgtt:	T AT	CATC	ATCG	CTO	TCT	rgaa	860
TCC	rttc	FAC A	AAGG	AGTG	G TA	ACGA	ATTA:	r AA	ACAA	ACTT	CCCC	CTTT	AGG 3	ľ		911

Sequence No.: 58
Sequence length: 601

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080 Clone name: HP10050 Sequence characteristics

Code representing characteristics: CDS

Existence site: 10.. 501 Characterization method: E

Sequence description

CCAT	CTG														rr TTG	
		Me	et Al	la Al	la Gl	y Le	eu Pl	ie G	Ly L	eu Se	er Al	la A	rg A	rg L	eu Leu	
			1				5					LO				
GCG	GCA	GCG	GCG	ACG	CGA	GGG	CTC	CCG	GCC	GCC	CGC	GTC	CGC	TGG	GAA	99
Ala	Ala	Ala	Ala	Thr	Arg	Gly	Leu	Pro	Ala	Ala	Arg	Val	Arg	Trp	Glu	*
15					20					25					30	
														GGA		147
Ser	Ser	Phe	Ser	Arg	Thr	Val	Val	Ala	Pro	Ser	Ala	Val	Ala	Gly	Lys	
				35					40					45		
														CCC		195
Arg	Pro	Pro	Glu	Pro	Thr	Thr	Pro	Trp	Gln	Glu	Asp	Pro	Glu	Pro	Glu	
			- 50					55					60			
														GAC		243
Asp	Glu	Asn	Leu	Tyr	Glu	Lys	Asn	Pro	Asp	Ser	His	Gly	Tyr	Asp	Lys	
		65					70					75				
														TTT		291
Asp	Pro	Val	Leu	Asp	Val	Trp	Asn	Met	Arg	Leu	Val	Phe	Phe	Phe	Gly	
	80					85					90					
														CTG		339
Val	Ser	Ile	Ile	Leu		Leu	Gly	Ser	Thr		Val	Ala	Tyr	Leu		
95					100					105					110	
														AAA		387
Asp	Tyr	Arg	Cys	Thr	Gly	Cys	Pro	Arg		Trp	Asp	Gly	Met	Lys	Glu	
				115			•		120					125		
														GCC		435
Trp	Ser	Arg	Arg	Glu	Ala	Glu	Arg	Leu	Val	Lys	Tyr	Arg		Ala	Asn	
			130					135					140			
														ATC		483
Gly	Leu	Pro	Ile	Met	Glu	Ser	Asn	Cys	Phe	Asp	Pro		Lys	Ile	Gln	
		145					150					155				
CTG	CCA	GAG	GAT	GAG	TGA	CCAG	TTG	CTAA	GTGG	GG C	TCAA	GAAG	C AC			530
Leu	Pro	Glu	Asp	Glu												
	160															 .
CGC	CTTC	CCC .	ACCC	CCTG	CC T	GCCA	TTCT	G AC	CTCT	TCTC	AGA	GCAC	CTA .	ATTA	AAGGGG	
CTG	AAAC	TCT	C													601

Sequence No.: 59

Sequence length: 394

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA

Original source:
Organism species: Homo sapiens
Cell kind: Stomach cancer
Clone name: HP10071

Sequence characteristics
Code representing characteristics: CDS
Existence site: 47.. 325
Characterization method: E

Sequence description

AACATCCCCC CCCCCCGGGG AAGGGGAGAC GTGGGGTAGA GTGACC ATG ACG AAA

Met Thr Lys														55		
													1			
TTA	GCG	CAG	TGG	CTT	TGG	GGA	CTA	GCG	ATC	CTG	GGC	TCC	ACC	TGG	GTG	103
Leu	Ala	Gln	Trp	Leu	Trp	Gly	Leu	Ala	Ile	Leu	Gly	Ser	Thr	Trp	Val	
	5					10					15					•
GCC	CTG	ACC	ACG	GGA	GCC	TTG	GGC	CTG	GAG	CTG	CCC	TTG	TCC	TGC	CAG	151
Ala	Leu	Thr	Thr	Gly	Ala	Leu	G1y	Leu	Glu	Leu	Pro	Leu	Ser	Cys	Gln	
20					25					30					35	
GAA	GTC	CTG	TGG	CCA	CTG	ccc	GCC	TAC	TTG	CTG	GTG	TCC	GCC	GGC	TGC	199
Glu	Val	Leu	Trp	Pro	Leu	Pro	Ala	Tyr	Leu	Leu	Val	Ser	Ala	Gly	Cys	
				40					45					50		,
TAT	GCC	CTG	GGC	ACT	GTG	GGC	TAT	CGT	GTG	GCC	ACT	TTT	CAT	GAC	TGC	247
Tyr	Ala	Leu	Gly	Thr	Val	Gly	Tyr	Arg	Val	Ala	Thr	Phe	His	Asp	Cys	
•			55					60					65			
GAG	GAC	GCC	GCA	CGC	GAG	CTG	CAG	AGC	CAG	ATA	CAG	GAG	GCC	CGA	GCC	295
Glu	Asp	Ala	Ala	Arg	G1u	Leu	Gln	Ser	Gln	Ile	Gln	Glu	Ala	Arg	Ala	
	•	70		_			75					80				
GAC	TTA	GCC	CGC	AGG	GGG	CTG	CGC	TTC	TGA	CAGC	CTA A	ACCC	CATT			340
Asp Leu Ala Arg Arg Gly Leu Arg Phe 85 90																
CCT	GTGC	GGA (CAGC	CCTT	CC T	CCCA!	rttc	CA!	TAA	AGAG	CCAC	STTT	ATT :	TTCT		394

Sequence No.: 60

Sequence length: 732

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma

Cell line: U937 Clone name: HP10076 Sequence characteristics

Code representing characteristics: CDS

Existence site: 82.. 600 Characterization method: E

AGAAACGTGT TCGCTGCCCA GAAGAAGGGA AGGCGCGAG											GAGG	AAAC	GA (GTA(TGTAG	60
			ATC													111
AIGC	COIC	JOH I	11100	,,,,,,,				Tyr						_		
						1		-,-		5					10	•
ccc	TTG.	CCT	GTT	GGA	СТТ		TGT	GGC	ATG	_	CTG	GGC	TGG	AGC		159
			Val													
01,				15			-,-	,	20				•	25		
CGA	GTA	TGC	TTT	GGG	ATG	CTC	CCC	AAA	AGC	AAG	ACG	AGC	AAG	ACA	CAC	207
			Phe													٠
Ū		•	30	-				35					40			
ACA	GAT	ACT	GAA	AGT	GAA	GCA	AGC	ATC	TTG	GGA	GAC	AGC	GGG	GAG	TAC	255
Thr	Asp	Thr	Glu	Ser	Glu	Ala	Ser	Ile	Leu	Gly	Asp	Ser	Gly	${\tt Glu}$	Tyr	
		45	•	•			50					. 55				
AAG	ATG	TTA	CTT	GTG	GTT	CGA	AAT	GAC	TTA	AAG	ATG	GGA	AAA	GGG	AAA	303
Lys	Met	Ile	Leu	Val	Val	Arg	Asn	Asp	Leu	Lys	Met	G1y	Lys	Gly	Lys	
	60					65					70					
GTG	GCT	GCC	CAG	TGC	TCT	CAT	GCT	GCT	GTT	TCA	GCC	TAC	AAG	CAG	ATT	351
Val	Ala	Ala	Gln	Cys	Ser	His	Ala	Ala	Val	Ser	Ala	Tyr	Lys	Gln	Ile	
75					80					85					, 90	
			AAT													399
Gln	Arg	Arg	Asn	Pro	Glu	Met	Leu	Lys	Gln	Trp	Glu	Tyr	Cys		Gln	
				95					100					105		
			GTG													447
Pro	Lys	Val	Va1	Val	Lys	Ala	Pro		Glu	Glu	Thr	Leu		Ala	Leu	
			110					115					120		~	
			GCA													495
Leu	Ala		Ala	Lys	Met	Leu		Leu	Thr	Val	Ser		TTE	GID	Asp	
		125					130					135	0.m.4	000	4 mm	543
			ACT													343
Ala	-	Arg	Thr	GIn	H		Pro	GTA	ser	GIR		AHT	Leu	GIA	TIE	
	140					145	A 0000	~.~		C TC	150	CCT	CAC	CTA	A A A	591
			CCA													391
	Pro	GIA	Pro	ALB		Leu	TTE	Asp	гÀг	165	IME	GLY	OTS	Leu	Lys 170	
155	m	m			160	ጥ ል ጥ ሶ	۸.	A (7.1.4.4			ል ጥር ል 4	CAAC	ጥርጥ			640
		TAG	GTGG.	ACT	TGA	IAIG	nc A	ACAA		1 (()	ar on	JANU	191			040
Leu	Tyr													•		

Sequence No.: 61 Sequence length: 697 Sequence type: Nucleic acid Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTCGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GGA GAT TGG GIY Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA ASN Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT 11c Asp Asn Ile Glu Umet Asn Phe Leu Arg Arg Tyr Lys Cys Ser TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GAA GAA AGT TTT CTT AGG CGG TAT AAA TGC AGT TIL Asp Asn Ile Glu Umet Asn Phe Leu Arg Arg Tyr Lys Cys Ser TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GAG AGA GAG GAG TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GAG AGG CTG ACA CTG AAA AACT CTGA CTGGA CTG AAG AAT AAA TGC AGT GAG ATT TTT CTT AGG CGG TAT AAA TGC AGT TTT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT TTT GAC AGC TGG ATT GGA CTG AAG ATG GCA AAA AAA AAT CGA ACA GAG AGA GGA CAG CGA CTA ACA CAT ATA TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAA CTGA ACA CGA CAA	TTGAAGCCTG TCAGATTCTA ACAACAAAAG CTGAATTTCT TCACC	CAACT TAAATGTTCT 70
Sequence length: 697 Sequence type: Nucleic acid Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCACAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA 22: TTT ATA ACTA GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA 22: TTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG GG TAT AAA TGC AGT 41: ASp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 46:	TGAGATGAAA ATAAAACCTA TTCCCATGTT CT	·
Sequence length: 697 Sequence type: Nucleic acid Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCACAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA 22: TTT ATA ACTA GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA 22: TTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG GG TAT AAA TGC AGT 41: ASp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 46:		•
Sequence length: 697 Sequence type: Nucleic acid Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCACAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA 22: TTT ATA ACTA GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA 22: TTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG GG TAT AAA TGC AGT 41: ASp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 46:		
Sequence type: Nucleic acid Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA CAGAGTTTCT GCAAGACATG ACACAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACA CAAA AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GGT ATA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 GGT TC CAA AAC AAA AAC AAC TGT TCC ACT CAA CAA CAA ACA ACT ACT ACT AGT AAA CTA ACT ACT GT TTC ATT TC TCT AAA GAA GAA GAA GAA TGG GJy Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Glu Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAC CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA AAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAA ATG GAA GGA AAA AAT CGA ACA GGA CAA	Sequence No.: 61	•
Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAAGG CTGATTAAAA GAAGCACGGT ATC ATC ACC AAA CAT AAA AAG TCT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GGT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT 11e Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 466	Sequence length: 697	
Topology: Linear Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGGGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AAATCAAAAGC CTGATTAAAA GAAGCACGGT ATC ATC ACC AAA CAT AAA AAG TCT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTC ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAG GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA ASn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG ATT TTT CTT AGG CGG TAT AAA TGC AGT TILe Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA	Sequence type: Nucleic acid	
Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGGGTTTCT GCAAGACATG ACAACAAGCT GCTAGCAGAA AAATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACG AAAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAG GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG ATT TTT CTT AGG CGG TAT AAA TGC AGT 11e Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA	Strandedness: Double	
Original source: Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGGT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGGT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCAGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACA AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCG AAA AAT CGA ACA GGA CAA	Topology: Linear	
Organism species: Homo sapiens Cell kind: Lymphoma Cell line: U937 Clone name: HPl0085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGGT GTGCTGTAAA AACAAGAGTA ACATTTTAA ATTAAAGTTA AATAAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGGT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 - TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GAA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA ACT AAA TAC AAC TGT TCC ACT CAC CAC CAC CAC CTA ACT ATA ASn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC ACT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GAA GAA	Sequence kind: cDNA to mRNA	•
Cell kind: Lymphoma Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATTAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA 121 AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TC CAA AAC AAA TGC TAT TAT TCT CTC AAA GAA GAA GAA GAA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAC CAC CAC CAC CTA ACT ATA ASn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC ACT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCG AAA AAT CGA ACA GGA CAA	Original source:	
Cell line: U937 Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA 120 AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT 11e Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA	Organism species: Homo sapiens	
Clone name: HP10085 Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA 121 AAATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA 223 THE 11e Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAC CAT CAC CGC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT 11e Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA	Cell kind: Lymphoma	
Sequence characteristics Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAAGC CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GAG GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAT CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT 11e Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA	Cell line: U937	•
Code representing characteristics: CDS Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAG GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Gly Asp Trp 45 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAC CAAC CA	Clone name: HP10085	•
Existence site: 151 600 Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 - TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA	Sequence characteristics	
Characterization method: E Sequence description TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GAA GA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT 11e Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA	Code representing characteristics: CDS	
TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTAT ATTAAAGTTA AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1 5 TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10 15 20 GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT 11e Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCG AAA AAT CGA ACA GGA CAA	Existence site: 151 600	
TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACATTTTTAT ATTAAAGTTA AATAAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1	Characterization method: E	
AATCAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1	Sequence description	
AATCAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACAAAGCT GCTAGCAGAA AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1		
AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA CAT AAA AAG TGT Met Met Thr Lys His Lys Lys Cys 1	TATACCTCTA GTTTGGAGCT GTGCTGTAAA AACAAGAGTA ACAT	TTTTAT ATTAAAGTTA 6
Met Met Thr Lys His Lys Lys Cys 1	AATAAAGTTA CAACTTTGAA GAGAGTTTCT GCAAGACATG ACACA	AAAGCT GCTAGCAGAA 12
TTT ATA ATT GTT GGT GGT GTT TTA ATA ACA ACT AAT ATT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10	AATCAAAACG CTGATTAAAA GAAGCACGGT ATG ATG ACC AAA	CAT AAA AAG TGT 17
TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT ATT ACT CTG ATA Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile 10	Met Met Thr Lys	His Lys Lys Cys
Phe Ile Ile Val Leu Ile Thr Thr Asn Ile Ile Thr Leu Ile Thr Leu Ile Thr Leu Ile Ile Leu Ile Ile <td>1</td> <td>5 -</td>	1	5 -
10	TTT ATA ATT GTT GGT GTT TTA ATA ACA ACT AAT ATT	ATT ACT CTG ATA 22:
GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC TAT GAT TGG ATT Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 465	Phe Ile Ile Val Gly Val Leu Ile Thr Thr Asn Ile	lle Thr Leu Ile
Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro Tyr Asp Trp Ile 25 30 35 40 GGT TTC CAA AAA GAA TTC TTC TTC AAA GAA GGA GAT TGG 316 Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Glu Gly Asp Trp AAT TCA AAG TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA 360 ASn Ser Lys Tyr Asn Cys Ser TT GL AGC GGC GAC CTA ACT ATA ATA AGC AGC TAT AAA TGC AGC TAT AAA TGC AG	10 15 20	
25	GTT AAA CTA ACT CGA GAT TCT CAG AGT TTA TGC CCC :	PAT GAT TGG ATT 27
GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA GAA GGA GAT TGG Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp	Val Lys Leu Thr Arg Asp Ser Gln Ser Leu Cys Pro	Tyr Asp Trp Ile
Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu Glu Gly Asp Trp 45 50 55 AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 465	25 30 35	40
AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA ASn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 465	GGT TTC CAA AAC AAA TGC TAT TAT TTC TCT AAA GAA	GAA GGA GAT TGG 31:
AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC GAC CTA ACT ATA Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 465	Gly Phe Gln Asn Lys Cys Tyr Tyr Phe Ser Lys Glu	Glu Gly Asp Trp
Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala Asp Leu Thr Ile 60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 463	45 50	55
60 65 70 ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 465	AAT TCA AGT AAA TAC AAC TGT TCC ACT CAA CAT GCC	GAC CTA ACT ATA 36
ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG TAT AAA TGC AGT Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 465	Asn Ser Ser Lys Tyr Asn Cys Ser Thr Gln His Ala	Asp Leu Thr Ile
Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 462	60 65	70
Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg Tyr Lys Cys Ser 75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 462	ATT GAC AAC ATA GAA GAA ATG AAT TTT CTT AGG CGG	TAT AAA TGC AGT 41
75 80 85 TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT CGA ACA GGA CAA 463	Ile Asp Asn Ile Glu Glu Met Asn Phe Leu Arg Arg	Tyr Lys Cys Ser
		•
	TCT GAT CAC TGG ATT GGA CTG AAG ATG GCA AAA AAT	CGA ACA GGA CAA 46
per web mrs iih ire era ree ras mer wra nas men me im era era	Ser Asp His Trp Ile Gly Leu Lys Met Ala Lys Asn	Arg Thr Gly Gln

WO 98/21328 PCT/JP97/04056

90 95	100
TGG GTA GAT GGA GCT ACA TTT ACC AAA TCG TTT	GGC ATG AGA GGG AGT 510
Trp Val Asp Gly Ala Thr Phe Thr Lys Ser Phe	Gly Met Arg Gly Ser
105 110 115	120
GAA GGA TGT GCC TAC CTC AGC GAT GAT GGT GCA	GCA ACA GCT AGA TGT 558
Glu Gly Cys Ala Tyr Leu Ser Asp Asp Gly Ala	Ala Thr Ala Arg Cys
125 130	135
TAC ACC GAA AGA AAA TGG ATT TGC AGG AAA AGA	ATA CAC TAA 600
Tyr Thr Glu Arg Lys Trp Ile Cys Arg Lys Arg	Ile His
140 145	
GTTAATGTCT AAGATAATGG GGAAAATAGA AAATAACATT	ATTAAGTGTA AAACCAGCAA 660
AGTACTTTTT TAATTAAACA AAGTTCGAGT TTTGTAC	. 697
Sequence No.: 62	
Sequence length: 1186	
Sequence type: Nucleic acid	
Strandedness: Double	
Topology: Linear	
Sequence kind: cDNA to mRNA	
Original source:	
Organism species: Homo sapiens	
Cell kind: Stomach cancer	
Clone name: HP10122	
Sequence characteristics	
Code representing characteristics: CDS	
Existence site: 139 705	
Characterization method: E	
Sequence description	
AAGTGCGATC TTCGCGCTGT CAGAGTTGGT CTGTTACTCG	GTGGTGGCG AGTCTACGGA 60
AGCCGTTTC GCTTCACTTT TCCTGGCTGT AGAGCGCTTT	
CAGAGACGAA GGTGCGAG ATG AGC ACT ATG TTC GCG	· ·
Met Ser Thr Met Phe Ala	
1 5	10
GTT TTT ATC TCT GTG TGC ACG GCT CTG CTC GCA	
Val Phe Ile Ser Val Cys Thr Ala Leu Leu Ala	
15 20	25
GTC CTG GTT TAC AGG ACA GAC AAG TAC AAG AGA	•
Val Leu Val Tyr Arg Thr Asp Lys Tyr Lys Arg	
30 35	40
GAA AAA CAG AGT AAA AAA TTG GAA AAG AAG AAG	GAA ACA ATA ACA GAG 315
Glu Lys Gln Ser Lys Lys Leu Glu Lys Lys Lys	
45 50	55

														GAG		363
Ser	Ala	Gly	Arg	${\tt Gln}$	Gln	Lys	Lys	Lys	Ile	G1u	Arg	Gln	Glu	Glu	Lys	
60					65					70					75	
														TCC		411
Leu	Lys	Asn	Asn	Asn	Arg	Asp	Leu	Ser	Met	Val	Arg	Met	Lys	Ser	Met	
				80					85					90		
														AAT		459
Phe	Ala	Ile	Gly	Phe	Cys	Phe	Thr	Ala	Leu	Met	G1 y	Met	Phe	Asn	Ser	
			95					100					105			•
														CTT		507
Ile	Phe	Asp	Gly	Arg	Val	Val	Ala	Lys	Leu	Pro	Phe	Thr	Pro	Leu	Ser	
		110					115					120		•		
TAC	ATC	CAA	GGA	CTG	TCT	CAT	CGA	AAT	CTG	CTG	GGA	GAT	GAC	ACC	ACA	555
Tyr	Ile	Gln	Gly	Leu	Ser	His	Arg	Asn	Leu	Leu	G1y	Asp	Asp	Thr	Thr	
	125					130					135					
GAC	TGT	TCC	TTC	ATT	TTC	CTG	TAT	ATT	CTC	TGT	ACT	ATG	TCG	ATT	CGA	603
Asp	Cys	Ser	Phe	Ile	Phe	Leu	Tyr	Ile	Leu	Cys	Thr	Met	Ser	Ile	Arg	
140					145			•		150					155	
														GCC		651
Gln	Asn	Ile	Gln	Lys	Ile	Leu	Gly	Leu	Ala	Pro	Ser	Arg	Ala	Ala	Thr	•
				160					165		•			170		
														AAG		699
Lys	Gln	Ala	Gly	Gly	Phe	Leu	Gly	Pro	Pro	Pro	Pro	Ser	Gly	Lys	Phe	
			175					180					185			
TCT	TGA	ACTC	AAG A	AACT	CTTT	AT T	TTCT	ATCA:	r TC	rttc:	TAGA	CAC	ACAC	A.		750
Ser							•		•							
												•				
															SCCTCT	810
															AGCCAG	870
				•											TTAGTT	930
				•											TACAT	990
															CTGTCT	1050
															TTTGTT	1110
TTG	TTGT	TGT '	TTTT'	TTTT	CA A	GCCA	AATA(CAT	GACA!	TAAG	ATC	ATA	AAG .	AGGC	CAAATT	1170
का सामा	ACCT	CTT I	ጥተለጥ	CT												1186

Sequence No.: 63

Sequence length: 1409

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Lymphoma Cell line: U937 Clone name: HP10136

Sequence characteristics

Code representing characteristics: CDS

Existence site: 82.. 729
Characterization method: E
Sequence description

											0000			2000	CTCTT	60
															AGTGTT CTC	60 111
GGAT	CCCI	GT F	GTTI	GIGE	LA G						Met				_	***
						1	VAL	Leu	Dea	5	rie L	116	ZŽILU	211 6	10	
ccc	CAC	ccc	CTC	CCG	CTG	•	GCC	TCG	ATG		GAG	GAC	GAA	CAG		159
			Leu													
Ala	rsb	GLY	Deu	15	204		*****	501	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		P		25		
GGC	CGG	GAC	CTT		CAG	TAT	CAG	AGT	CAG	GCT	AAG	CAA	CTC	TTT	CGA	207
Gly	Arg	Asp	Leu	Gln	Gln	Tyr	Gln	Ser	Gln	Ala	Lys	Gln	Leu	Phe	Arg	
-	_	_	30					35					40			
AAG	TTG	AAT	GAA	CAG	TCC	CCT	ACC	AGA	TGT	ACC	TTG	GAA	GCA	GGA	GCC	255
Lys	Leu	asa	Glu	Gln	Ser	Pro	Thr	Arg	Cys	Thr	Leu	Glu	Ala	Gly	Ala	
		45					50					55				
			CAC													303
Met	Thr	Phe	His	Tyr	Ile	Ile	Glu	Gln	Gly	Val	Cys	Tyr	Leu	Val	Leu	
	60					65					70					
			GCC													351
Cys	Glu	Ala	Ala	Phe	Pro	Lys	Lys	Leu	Ala		Ala	Tyr	Leu	Glu		
75		•			80					85					90	
			GAA													399
Leu	His	Ser	Glu		Asp	Glu	Gln	His		Lys	Lys	Val	Pro		Val	
				95			~		100	4 Cm	mmc.	4 mm	~~~	105	400	447
			TAT													447
Ser	Arg	Pro	Tyr	Ser	Phe	TTE	GIU		Asp	Inr	rne	TTE	120	Lys	IIII	
		omo.	110 TAC	A 0000	CAC	ACT	COT	115	CCA	ACA	ልልጥ	СТА		ጥርር	ልሞሮ	495
			Tyr													433
Lys	гÀг		ıyı	116	Asp	Ser	130	ALA	мg	urg	поп	135	OLY	SEL	TIC	
***	ACT	125	TTG	CAA	CAT	GTG.		ACC	ATC	ATG	CTC		ААТ	АТТ	GAA	543
			Leu													
Чап	140	GIU	Den	GIII	дзр	145	GLA	*** 5	220		150				020	
CA A		ጥጥ ል	CAA	CGA	GGA		GCA	СТС	TCA	GCA		GAT	TCA	AAG	GCT	591
			Gln													
155	101	2,04	J.M	*** 5	160					165	_	•			170	

AAC	TAA	TTG	TCC	AGT	CTG	TCC	AAG	AAA	TAC	CGC	CAG	GAT	GCG	AAG	TAC		639
Asn	Asn	Leu	Ser	Ser	Leu	Ser	Lys	Lys	Tyr	Arg	Gln	Asp	Ala	Lys	Tyr		
				175					180					185			
TTG	AAC	ATG	CGT	TCC	ACT	TAT	GCC	AAA	CTT	GCA	GCA	GTA	GCT	GTA	TTT	•	687
Leu	Asn	Met	Arg	Ser	Thr	Tyr	Ala	Lys	Leu	Ala	Ala	Va1	Ala	Val	Phe		
,			190					195					200				
TTC	ATC	ATG	TTA	ATA	GTG	TAT	GTC	CGA	TTC	TGG	TGG	CTG	TGA	A.			730
Phe	Ile	Met	Leu	Ile	Va1	Tyr	Val	Arg	Phe	Trp	Trp	Leu					
		205					210					215					
ATAA	TGA	ATA	CAGT	CACT	GG TA	AAGGG	GAGA	A CC	TAGA	ACCC	AGT	AGGT	GTA	TATT	TTCA	GG	790
AAAC	TGA	GCT	CACA	GAGA'	rg T	STAT!	TAGA	A TC	CAAG'	TGGA	ACT'	rctg(CCT	CTAA	AGAC	CT	850
TGCA	AGA	AAA	GAGA:	TGCC	CT G	AAAA'	TGAA!	A GG	TTGC	ACCT	CAT	TAA'	TGA	AGCT:	TAAC	CC	910
TATO	TAG	AAA	GTCT	CTTT	CG G	GGC7	AGAG	CT	TTCT	CTGG	GTG	CCAA	GCC .	ATATA	TATA	TA	970
GGGA	ATA	GTA	GATT	GTTA	AT T	TÇGT'	TTTT:	r cc	CTCC	CAGT	GCA'	rt tt	AAA	AACA	GCAC	TG 1	.030
GCTC	GGG	CAT	TCTC	ATTC:	TC T	GATG	GAGC	C AT	CAAT	GAGA	TTT	AACT	TAG	TCAA	CCTG	TG 1	.090
CTAG	CAA	CAT	TCTG	AAAT'	rc c	TTCA	AAGA/	A GG	CAGT	CCTT	TGG	SAAG	GTG	TTTT:	rt T T	TT 1	.150
TTTT	TTT:	TTT	TŢTG	ACTC'	TA A'	TCAA	CATT	CT	TTTG'	TTGG	TGA	CATT	TGT	GATT'	rtca:	GT 1	210
AATO	TGA	GTT	TTTG	atgg(CC T	TTTA	AACA	A GA	CTCC	AGTA	TGT	GAAG	GTT .	AATTO	CTG	TG 1	.270
CTCC	ACA	GAT	CTTG:	TCTA:	TT G	GCCC	CTGTA	A GA	AAGT'	TAAC	CTT	rg tt (GTT	TTCC	rttt.	AT 1	.330
AAT	TGC:	TTA	TTGC	ACAA:	TT G	CTTT	AGGG:	r aa	GTGA	ATTA	TAT'	ľAAG.	ATG	CCTT	SAAA	TT 1	.390
ATAG	CAC'	TCC	TTGA:	TAA	G-				•							1.	409

Sequence No.: 64

Sequence length: 974

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10175 Sequence characteristics

Code representing characteristics: CDS

Existence site: 174.. 512 Characterization method: E

Sequence description

AGAGCCGCTC CCCTCTCCT	C GCCCGCCAC	CGGGACGGAG	AGCGCCCGCC	GCTGCATTTC	60
CGGCGACACC TCGCAGTCA	T TCCTGCGGCT	TGCGCGCCCT	TGTAGACAGC	CGGGGCCTTC	120
GTGAGACCGG TGCAGGCCT	G GGGTAGTCTC	CTGTCTGGAC	AGAGAAGAGA	AAA ATG	176
				Met	

CAG	GAC	ACT	GGC	TCA	GTA	GTG	CCT	TTG	CAT	TGG	TTT	GGĊ	TTT	GGC	TAC	224
Gln	Asp	Thr	Gly	Ser	Va1	Va1	Pro	Leu	His	Trp	Phe	Gly	Phe	Gly	Tyr	
			5					10					. 15			
GCA	GCA	CTG	GTT	GCT	TCT	GGT	GGG	ATC	ATT	GGC	TAT	GTA	AAA	GCA	GGC	272
Ala	Ala	Leu	Val	Ala	Ser	Gly	Gly	Ile	Ile	Gly	Tyr	Val	Lys	Ala	Gly	
		20					25					30				
AGC	GTG	CCG	TCC	CTG	GCT	GCA	GGG	CTG	CTC	TTT	GGC	AGT	CTA	GCC	GGC	320
Ser	Val	Pro	Ser	Leu	Ala	Ala	Gly	Leu	Leu	Phe	Gly	Ser	Leu	Ala	Gly	
	35					40					45		•			
CTG	GGT	GCT	TAC	CAG	CTG	TCT	CAG	GAT	CCA	AGG	AAC	GTT	TGG	GTT	TTC	368
Leu	Gly	Ala	Tyr	Gln	Leu	Ser	Gln	Asp	Pro	Arg	Asn	Val	Trp	Val	Phe	
50					55					60					65	
			TCT													416
Leu	Ala	Thr	Ser	G1y	Thr	Ļeu	Ala	Gly	Ile	Met	Gly	Met	Arg	Phe	Tyr	
				70					75					80		
			AAA													464
His	Ser	Gly	Lys	Phe	Met	Pro	Ala	Gly	Leu	Ile	Ala	Gly	Ala	Ser	Leu	
			85					90					95			
			GCC													509
Leu	Met	Val	Ala	Lys	Val	Gly	Val	Ser	Met	Phe	Asn	Arg	Pro	His		
		100					105					110				
			C AT	•												560
															CATTT	
															ACAAA(
					•										TGATT	
															AAATG:	
															TGAAAA	
															ACTGA	
TTT	GAAA	TTA	TGTT.	AAGT	GA A	ATAT(CAAT	G TA	AATA	AAGT	TTA	CTAT	AAA	TAAT		974

Sequence No.: 65

Sequence length: 925

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10179 Sequence characteristics

Code representing characteristics: CDS

Existence site: 122.. 466
Characterization method: E
Sequence description

AATCGCGTTT CCGGAGAGAC CTGGCTGCTG TGTCCCGCGG CTTGCGCTC	CC GTAGTGGACT 60
CCGCGGGCCT TCGGCAGATG CAGGCCTGGG GTAGTCTCCT TTCTGGACT	TG AGAAGAGAAG 120
ATG GAG AAG CCC CTC TTC CCA TTA GTG CCT TTG CAT TGG T	TTT GGC TTT 168
Met Glu Lys Pro Leu Phe Pro Leu Val Pro Leu His Trp F	Phe Gly Phe
1 5 10	15
GGC TAC ACA GCA CTG GTT GTT TCT GGT GGG ATC GTT GGC T	TAT GTA AAA 216
Gly Tyr Thr Ala Leu Val Val Ser Gly Gly Ile Val Gly T	Tyr Val Lys
20 25	30
ACA GGC AGC GTG CCG TCC CTG GCA GCA GGG CTG CTC TTC G	GC AGT CTA 264
Thr Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe G	Sly Ser Leu
35 40 45	
GCC GGC CTG GGT GCT TAC CAG CTG TAT CAG GAT CCT AGG A	AAC GTT TGG 312
Ala Gly Leu Gly Ala Tyr Gln Leu Tyr Gln Asp Pro Arg A	Asn Val Trp
50 55 60	
GGT TTC CTA GCC GCT ACA TCT GTT ACT TTT GTT GGT GTT A	ATG GGA ATA 360
Gly Phe Leu Ala Ala Thr Ser Val Thr Phe Val Gly Val P	let Gly Met
65 70 75	80
AGA TCC TAC TAT GGA AAA TTC ATG CCT GTA GGT TTA A	· · · · · · · · · · · · · · · · · · ·
Arg Ser Tyr Tyr Gly Lys Phe Met Pro Val Gly Leu I	lle Ala Gly
85 90	95
GCC AGT TTG CTG ATG GCC GCC AAA GTT GGA GTT CGT ATG T	
Ala Ser Leu Leu Met Ala Ala Lys Val Gly Val Arg Met I	Leu Met Thr
	110
TCT GAT TAGCAGAAGT CATGTTCGCA GCTTGGACTC ATGAAGGATT A	AAAAATCT 510
Ser Asp	
GCATCTTCCA CTATTTTCAA TGTATTAAGA GAAATAAGTG CAGCATTTT) ·
TTTTACCTAA AAAAAAAAA ACACCAAATT TGGCGGAGGG GTGGAAAAT	•
ATTATAACCC TACAGAGGTG GTGAGCATGT AACATGAGCT TATTGAGAC	
TCGATTCTTG TATATTGATT TTATCTCTTT CTGTATCTAT AGGTAAATC	
ATGTTAGGTG TTGACATTGA GAACCCTGAA ACCCCATTCC CTGCTCAGA	
AAAAAAAATC TCTTGAGAGA TTTAGAATAT CTTTTCTTTT	
TGACTTTGAA ATTATGTTAA GTGAAATATC AATGAAAATA AAGTTTACT	TA TAAAT 925

Sequence No.: 66

Sequence length: 1115

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma
Cell line: HT-1080
Clone name: HP10196

Sequence characteristics

Code representing characteristics: CDS

Existence site: 10.. 993 Characterization method: E Sequence description

GCGGGGAAA ATG GCG GCG GCG GCG GCG GCT GCA GCT ACG AAC GGG ACC Met Ala Ala Ala Ala Ala Ala Ala Ala Thr Asn Gly Thr 1 GGA GGA AGC AGC GGG ATG GAG GTG GAT GCA GCA GTA GTC CCC AGC GTG 99 Gly Gly Ser Ser Gly Met Glu Val Asp Ala Ala Val Val Pro Ser Val 30 15 ATG GCC TGC GGA GTG ACT GGG AGT GTT TCC GTC GCT CTC CAT CCC CTT 147 Met Ala Cys Gly Val Thr Gly Ser Val Ser Val Ala Leu His Pro Leu 40 GTC ATT CTC AAC ATC TCA GAC CAC TGG ATC CGC ATG CGC TCC CAG GAG 195 Val Ile Leu Asn Ile Ser Asp His Trp Ile Arg Met Arg Ser Gln Glu GGG CGG CCT GTG CAG GTG ATT GGG GCT CTG ATT GGC AAG CAG GAC GGC 243 Gly Arg Pro Val Gln Val Ile Gly Ala Leu Ile Gly Lys Gln Glu Gly 70 CGA AAT ATC GAG GTG ATG AAC TCC TTT GAG CTG CTG TCC CAC ACC GTG 291 Arg Asn Ile Glu Val Met Asn Ser Phe Glu Leu Leu Ser His Thr Val GAA GAG AAG ATT ATC ATT GAC AAG GAA TAT TAT TAC ACC AAG GAG GAG 339 Glu Glu Lys Ile Ile Ile Asp Lys Glu Tyr Tyr Tyr Thr Lys Glu Glu 105 100 95 CAG TTT AAA CAG GTG TTC AAG GAG CTG GAG TTT CTG GGT TGG TAT ACC 387 Gln Phe Lys Gln Val Phe Lys Glu Leu Glu Phe Leu Gly Trp Tyr Thr 120 115 ACA GGG GGG CCA CCT GAC CCC TCG GAC ATC CAC GTC CAT AAG CAG GTG 435 Thr Gly Gly Pro Pro Asp Pro Ser Asp Ile His Val His Lys Gln Val 140 130 TGT GAG ATC ATC GAG AGC CCC CTC TTT CTG AAG TTG AAC CCT ATG ACC 483 Cys Glu Ile Ile Glu Ser Pro Leu Phe Leu Lys Leu Asn Pro Met Thr 155 145 AAG CAC ACA GAT CTT CCT GTC AGC GTT TTT GAG TCT GTC ATT GAT ATA 531 Lys His Thr Asp Leu Pro Val Ser Val Phe Glu Ser Val Ile Asp Ile

	160					165					170					
ATC	AAT	GGA	GAG	GCC	ACA	ATG	CTG	TTT	GCT	GAG	CTG	ACC	TAC	ĄCT	CTG	579
Ile	Asn	Gly	Glu	Ala	Thr	Met	Leu	Phe	Ala	Glu	Leu	Thr	Tyr	Thr	Leu	
175					180					185					190	
GCC	ACA	GAG	GAA	GCG	GAA	CGC	ATT	GGT	GTA	GAC	CAC	GTA	GCC	CGA	ATG	627
Ala	Thr	G1u	Glu	Ala	Glu	Arg	Ile	Gly	Val	Asp	His	Val	Ala	Arg	Met	
				195					200					205		
ACA	GCA	ACA	GGÇ	AGT	GGA	GAG	AAC	TCC	ACT	GTG	GCT	GAA	CAC	CTG	ATA	675
Thr	Ala	Thr	Gly	Ser	Gly	Glu	Asn	Ser	Thr	Va1	Ala	Glu	His	Leu	Ile	
			210			,		215					220			
GCA	CAG	CAC	AGC	GCC	ATC	AAG	ATG	CTG	CAC	AGC	CGC	GTC	AAG	CTC	ATC	723
Ala	Gln	His	Ser	Ala	Ile	Lys	Met	Leu	His	Ser	Arg	Val	Lys	Leu	Ile	
		225					230					235				
TTG	GAG	TAC	GTC	AAG	GCC	ŢCT	GAA	GCG	GGA	GAG	GTC	CCC	TTT	AAT	CAT	771
Leu	Glu	Tyr	Val	Lys	Ala	Ser	Glu	Ala	Gly	Glu	Val	Pro	Phe	Asn	His	
	240					245					250					
GAG	ATC	CTG	CGG	GAG	GCC	TAT	GCT	CTG	TGT	CAC	TGT	CTC	CCG	GTG	CTC	819
Glu	Ile	Leu	Arg	Glu	Ala	Tyr	Ala	Leu	Cys	His	Cys	Leu	Pro	Val	Leu	
255					260					265					270	
AGC	ACA	GAC	AAG	TTC	AAG	ACA	GAT	TTT	TAT	GAT	CAA	TGC	AAC	GAC	GTG	867
Ser	Thr	Asp	Lys	Phe	Lys	Thr	Asp	Phe	Tyr	Asp	Gln	Cys	Asn	Asp	Val	
				275					280					285		
GGG	CTC	ATG	GCC	TAC	CTC	GGC	ACC	ATC	ACC	AAA	ACG	TGC	AAC	ACC	ATG	915
Gly	Leu	Met	Ala	Tyr	Leu	Gly	Thr	Ile	Thr	Lys	Thr	Cys	Asn	Thr	Met	
			290					295					300			
AAC	CAG	TTT	GTG	AAC	AAG	TTC	AAT	GTC	CTC	TAC	GAC	CGA	CAA	GGC	ATC	963
Asn	Gln	Phe	Val	Asn	Lys	Phe	Asn	Val	Leu	Tyr	Asp	Arg	${\tt Gln}$	Gly	Ile	
		305					310		•			315				
GGC	AGG	AGA	ATG	CGC	GGG	CTC	TTT	TTC	TGA:	rgago	G T					1000
Gly	Arg	Arg	Met	Arg	Gly	Leu	Phe	Phe		,						
-	320					325		•								
ACT:	TGAA	GGG (CTGA:	TGGA	CA G	GGT(CAGG	C AAC	TAT	CCCA	AAG	GGA(GG (CACTA	ACACTT	1060
CCT	rĠAG/	AGA A	AACC	ACTG!	TC A	TTAA	raaa ₁	A GG	GAG	CAGC	CCC	rgag(CAC	CCCT	3	1115

Sequence No.: 67

Sequence length: 1721

Sequence type: Nucleic acid

Strandedness: Double Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080
Clone name: HP10235
Sequence characteristics
Code representing characteristics: CDS

Existence site: 6.. 1127 Characterization method: E

														•		
ATGT	C A	rg ac	C CI	TA TO	T GO	C A	rs ci	rg co	cc ci	rg C	rg Ti	T A	C A	CC TA	AC CTC	50
	. Me	t Ti	ır Le	eu Cy	rs Al	a Me	et Le	eu Pr	co Le	eu Le	eu Le	eu Pl	ae Th	ar Ty	yr Leu	
		1				5				1	LO				15	
AAC	TCC	TTC	CTG	CAT	CAG	AGG	ATC	CCC	CAG	TCC	GTA	CGG	ATC	CTG	GGC	98
Asn	Ser	Phe	Leu	His	Gln	Arg	Ile	Pro	${\tt Gln}$	Ser	Val	Arg	Ile	Leu	Gly	
				20					25					30		
AGC	CTG	GTG	GCC	ATC	CTG	CTG	GTG	TTT	CTG	ATC	ACT	GCC	ATC	CTG	GTG	146
Ser	Leu	Va1	Ala	Ile	Leu	Leu	Val	Phe	Leu	Ile	Thr	Ala	Ile	Leu	Val	
			35	•	•			40			•		45			
AAG	GTG	CAG	CTG	GAT	GCT	CTG	ccc	TTC	TTT	GTC	ATC	ACC	ATG	ATC	AAG	194
Lys	Val	Gln	Leu	Asp	Ala	Leu	Pro	Phe	Phe	Val	Ile	Thr	Met	Ile	Lys	
		50					55					60				
ATC	GTG	CTC	ATT	AAT	TCA	TTT	GGT	GCC	ATC	CTG	CAG	GGC	AGC	CTG	TTT	242
Ile	Va1	Leu	Ile	Asn	Ser	Phe	Gly	Ala	Ile	Leu	Gln	Gly	Ser	Leu	Phe	
	65					70					75					
GGT	CTG	GCT	GGC	CTT	CTG	CCT	GCC	AGC	TAC	ACG	GCC	CCC	ATC	ATG	AGT	290
Gly	Leu	Ala	Gly	Leu	Leu	Pro	Ala	Ser	Tyr	Thr	Ala	Pro	Ile	Met	Ser	•
80			•		85					90					95	
GGC	CAG	GGC	CTA	GCA	GGC	TTC	TTT	GCC	TCC	GTG	GCC	ATG	ATC	TGC	GCT	338
G1v	Gln	Gly	Leu	Ala	Gly	Phe	Phe	Ala	Ser	Val	Ala	Met	Ile	Суs	Ala	
		•		100					105					110		
ATŤ	GCC	AGT	GGC	TCG	GAG	CTA	TCA	GAA	AGT	GCC	TTC	GGC	TAC	TTT	ATC	386
											Phe	•				
			115					120					125			
ACA	GCC	TGT	GCT	GTT	ATC	ATT	TTG	ACC	ATC	ATC	TGT	TAC	CTG	GGC	CTG	434
Thr	Ala	Суз	Ala	Val	Ile	Ile	Leu	Thr	Ile	Ile	Cys	Tyr	Leu	Gly	Leu	
		130					135					140				
CCC	CGC	CTG	GAA	TTC	TAC	CGC	TAC	TAC	CAG	CAG	CTC	AAG	CTT	GAA	GGA ~	482
Pro	Arg	Leu	Glu	Phe	Tyr	Arg	Tyr	Tyr	Gln	Gln	Leu	Lys	Leu	Glu	Gly	
	145					150					155					
ccc		GAG	CAG	GAG	ACC	AAG	TTG	GAC	CTC	ATT	AGC	AAA	GGA	GAG	GAG	530
											Ser					
160	3				165	-		-		170	•				175	
	AGA	GCA	GGC	AAA	GAG	GAA	TCT	GGA	GTT	TCA	GTC	TCC	AAC	TCT	CAG	578
											Val					
			7	180				•	185					190		

							•									
ccc	ACC	AAT	GAA	AGC	CAC	TCT	ATC	AAA	GCC	ATC	CTG	AAA	AAT	ATC	TCA	626
Pro	Thr	Asn	Glu	Ser	His	Ser	Ile	Lys	Ala	Ile	Leu	Lýs	Asn	Ile	Ser	
			195					200					205			
GTC	CTG	GCT	TTC	TCT	GTC	TGC	TTC	ATC	TTC	ACT	ATC	ACC	ATT	GGG	ATG	674
Val	Leu	Ala	Phe	Ser	Val	Cys	Phe	Ile	Phe	Thr	Ile	Thr	Ile	Gly	Met	
		210					215					220				
			GTG													722
Phe	Pro	Ala	Val	Thr	Va1		Va1	Lys	Ser	Ser		Ala	Gly	Ser	Ser	
	225		•			230					235				. :	
			CGT													770
	Trp	Glu	Arg	Tyr		Ile	Pro	Val	Ser		Phe	Leu	Thr	Phe		
240					245			0.00		250		mm.c	A M/O	mcc.	255	010
			TGG													818
Ile	Phe	Asp	Trp		GIĀ	Arg	Ser	ren		ALB.	VAI	rne	met		PIO	
		540	AGC	260	moo.	C#C	CC.4	466	265	CTC	CEC	CCC	ccc	270	CTC	866
			Ser													000
era	ьуs	Asp	275	ALG	trb	Leu	rio	280	Dea	Val	neu	ALG	285	Deu	*41	
ውሞም	OTC	CCA	CTG	CTG	CTG	СТС	ፕሮር		ATT	AAG	CCC	CGC		TAC	CTG	914
			Leu													
THE	741	290	ДСС	400	204		295			-,-		300		_,_		
ACT	GTG		TTC	GAG	CAC	GAT		TGG	TTC	ATC	TTC		ATG	GCT	GCC	962
			Phe													
	305			•		310		_			315					
TTT	GCC	TTC	TCC	AAC	GGC	TAC	CTC	GCC	AGC	CTC	TGC	ATG	TGC	TTC	GGG	1010
Phe	Ala	Phe	Ser	Asn	Gly	Tyr	Leu	Ala	Ser	Leu	Cys	Met	Cys	Phe	Gly	
320					325					330					335	
			GTG	•												1058
Pro	Lys	Lys	Val	Lys	Pro	Ala	Glu	Ala	Glu	Thr	Ala	G1y	Ala	Ile	Met	
				340					345					350		
															TTC	1106
Ala	Phe	Phe	Leu	Cys	Leu	Gly	Leu	Ala	Leu	Gly	Ala	Val		Ser	Phe	
			355					360					365			
			GCA			TGA	CAAA	GGA '	TGGA	CAGA	AG G	ACTG	C			1150
Leu	Phe	_	Ala	Ile	Val											
		370					2020		~~~~	amaa	CAC		~ A III. 4	CCTC	A C 77 C C	T 1210
															AGTGG GGATC	
															GCTC	
															CTCTG	
															STCTC	
															GGTG	
															CTGCG	
															TACCC	
~~~			~~~		~											

WO 98/21328 PCT/JP97/04056

162

TCATGCACCC	TGTACAGTTG	CCACGTTACT	GCCTTTTTTA	AAAATATATT	TGACAGAAAC	1690
CAGGTGCCTT	CAGAGGCTCT	CTGATTTAAA	T			1721

Sequence No.: 68

Sequence length: 1504

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10297

Sequence characteristics

Code representing characteristics: CDS

Existence site: 63.. 614
Characterization method: E

CTTT	TGC	GC	TGCA	GCGG	GC T	TGTA	GGTG	T CC	GGCI	TTGC	TGG	CCCA	GCA	AGCC	TGATA	A	60
GC A	TG A	AAG	CTC	TTA	TCT	TTG	GTG	GCT	GTG	GTC	GGG	TGT	TTG	CTG	GTG		107
M	let i	Lys	Leu	Leu	Ser	Leu	Val	Ala	<b>Val</b>	Val	Gly	Cys	Leu	Leu	Val		
	1				5					10					15		
CCC	CCA	GCT	GAA	GCC	AAC	AAG	AGI	TCT	GAA	GAT	ATC	CGG	TGC	AAA	TGC		155
Pro	Pro	Ala	Glu	Ala	. Asn	Lys	Ser	Ser	Glu	Asp	Ile	Arg	, Cys	Lys	Cys		
				20	1				25	;				30	)		
ATC	TGT	CCA	CCT	TAT	AGA	AAC	ATC	: AGT	GGG	CAC	ATT	TAC	: AAC	CAG	AAT		203
Ile	Cys	Pro	Pro	Tyr	Arg	Asn	Ile	Ser	Gly	His	Ile	Tyr	Asn	Gln	Asn		
			35					40					45				
GTA	TCC	CAG	AAG	GAC	TGC	AAC	TGC	CTG	CAC	GTG	GTG	GAG	ccc	ATG	CCA		251
Val	Ser	Gln	Lys	Asp	Cys	Asn	Cys	Leu	His	. Val	Val	Glu	ı Pro	Met	Pro		
		50					55	5				60	)				
GTG	CCT	GGC	CAT	GAC	GTG	GAG	GCC	TAC	TGC	CTG	CTG	TGC	GAG	TGC	AGG		299
Vaļ	Pro	Gly	His	Asp	Val	Glu	Ala	Tyr	Cys	Leu	Leu	Cys	Glu	Cys	Arg		
	65					70	)				75	,		•			
TAC	GAG	GAG	CGC	AGC	ACC	ACC	ACC	ATC	AAG	GTC	ATC	TTA :	GTC	ATC	TAC		347
Tyr	Glu	Glu	Arg	Ser	Thr	Thr	Thr	Ile	Lys	Val	. Ile	Ile	Val	Ile	Tyr		
80					85	,				90	)				95		
CTG	TCC	GTG	GTG	GGT	GCC	CTG	TTG	CTC	TAC	: ATG	GCC	TTC	CTG	ATG	CTG		395
Leu	Ser	Val	Val	Gly	Ala	Leu	Lev	. Leu	Tyr	Met	Ala	Phe	Leu	Met	Leu		
				100	)				105	i				110	•		
GTG	GAC	CCT	CTG	ATC	CGA	AAG	CCG	GAT	GCA	TAC	ACT	GAG	CAA	CTG	CAC		443
Val	Asp	Pro	Leu	Ile	Arg	Lys	Pro	Asp	Ala	Tyr	Thr	G1u	Gln	Leu	His		

115	120 125	
AAT GAG GAG GAG AAT GAG GAT GCT	CGC TCT ATG GCA GCA GCT GCT GCA	491
Asn Glu Glu Glu Asn Glu Asp Ala	Arg Ser Met Ala Ala Ala Ala Ala	
130 135	140	
TCC CTC GGG GGA CCC CGA GCA AAC	ACA GTC CTG GAG CGT GTG GAA GGT	539
Ser Leu Gly Gly Pro Arg Ala Asn	Thr Val Leu Glu Arg Val Glu Gly	
145 150	155	
GCC CAG CAG CGG TGG AAG CTG CAG	GTG CAG GAG CAG CGG AAG ACA GTC	587
Ala Gln Gln Arg Trp Lys Leu Gln	Val Gln Glu Gln Arg Lys Thr Val	
160 . 165	170 175	
TTC GAT CGG CAC AAG ATG CTC AGC	TAGATGGGCT GGTGTGGTTG GGTCAAGGC	640
Phe Asp Arg His Lys Met Leu Ser	•	
180		
CCCAACACCA TGGCTGCCAG CTTCCAGGC	T GGACAAAGCA GGGGGCTACT TCTCCCTTCC	700
CTCGGTTCCA GTCTTCCCTT TAAAAGCCT	G TGGCATTTTT CCTCCTTCTC CCTAACTTTA	760
GAAATGTTGT ACTTGGCTAT TTTGATTAG	G GAAGAGGGAT GTGGTCTCTG ATCTCTGTTG	820
TCTTCTTGGG TCTTTGGGGT TGAAGGGAG	G GGGAAGGCAG GCCAGAAGGG AATGGAGACA	880
TTCGAGGCGG CCTCAGGAGT GGATGCGAT	C TGTCTCCCT GGCTCCACTC TTGCCGCCTT	940
CCAGCTCTGA GTCTTGGGAA TGTTGTTAC	C CTTGGAAGAT AAAGCTGGGT CTTCAGGAAC	1000
TCAGTGTCTG GGAGGAAAGC ATGGCCCAG	C ATTCAGCATG TGTTCCTTTC TGCAGTGGTT 1	1060
CTTATCACCA CCTCCCTCCC AGCCCCAGC	G CCTCAGCCCC AGCCCCAGCT CCAGCCCTGA	1120
GGACAGCTCT GATGGGAGAG CTGGGCCCC	C TGAGCCCACT GGGTCTTCAG GGTGCACTGG	1180
AAGCTGGTGT TCGCTGTCCC CTGTGCACT	T CTCGCACTGG GGCATGGAGT GCCCATGCAT	1240
ACTCTGCTGC CGGTCCCCTC ACCTGCACT	T GAGGGGTCTG GGCAGTCCCT CCTCTCCCCA	1300
GTGTCCACAG TCACTGAGCC AGACGGTCG	G TTGGAACATG AGACTCGAGG CTGAGCGTGG	1360
ATCTGAACAC CACAGCCCCT GTACTTGGG	T TGCCTCTTGT CCCTGAACTT CGTTGTACCA	1420
GTGCATGGAG AGAAAATTTT GTCCTCTTG	T CTTAGAGTTG TGTGTAAATC AAGGAAGCCA	1480
TCATTAAATT GTTTTATTTC TCTC	. · J	1504

Sequence No.: 69

Sequence length: 532

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10299 Sequence characteristics

Code representing characteristics: CDS

Existence site: 93.. 443 Characterization method: E

## Sequence description

GCTC	CTCTC	GT .	AAAG	CGT	C A	GTG	rtggc	CGC	CGGC	CTCT	GAG	CTGG	SAT (	GAGC	CGTGCT	. 60	)
CCCG	GTG	AA (	GCAA	GGA	SC C	CAGC	CGGAG	CC	ATG	GCC	AGT	ACA	GTG	GTA	GCA	113	ļ
									Met	Ala	Ser	Thr	Va1	Val	Ala		
									1	,			5				
GTT	GGA	CTG	ACC	ATT	GCT	GCT	GCA	GGA	TTT	GCA	GGC	CGT	TAC	GTT	TTG	161	
Val	Gly	Leu	Thr	Ile	Ala	Ala	Ala	G1y	Phe	Ala	Gly	Arg	Tyr	Va1	Leu		
		10					15					20					
CAA	GCC	ATG	AAG	CAT	ATG	GAG	CCT	CAA	GTA	AAA	CAA	GTT	TTT	CAA	AGC	209	)
Gln	Ala	Met	Lys	His	Met	Glu	Pro	Gln	Val	Lys	Gln	Val	Phe	Gln	Ser		
	25					30					35						
CTA	CCA	AAA	TCT	GCC	TTC	AGT	GGT	GGC	TAT	TAT	AGA	GGT	GGG	TTT	GAA	257	٢
Leu	Pro	Lys	Ser	Ala.	Phe	Ser	Gly	Gly	Tyr	Tyr	Arg	Gly	Gly	Phe	Glu		
40	.1				45					50					55		
CCC	AAA	ATG	ACA	AAA	CGG	GAA	GCA	GCA	TTA	ATA	CTA	GGT	GTA	AGC	CCT	305	į
Pro	Lys	Met	Thr	Lys	Arg	Glu	Ala	Ala	Leu	Ile	Leu	Gly	Val	Ser	Pro		
				60					65	•				70		•	
ACT	GCC	AAT	AAA	GGG	AAA	ATA	AGA	GAT	GCT	CAT	CGA	CGA	ATT	ATG	CTT	353	ļ
Thr	Ala	Asn	Lys	Gly	Lys	Ile	Arg	Asp	Ala	His	Arg	Arg	Ile	Met	Leu		
			75					80					85				
TTA	AAT	CAT	CCT	GAC	AAA	GGA	GGA	TCT	CCT	TAT	ATA	GCA	GCC	AAA	ATC	401	
Leu	Asn	His	Pro	Asp	Lys	Gly	G1y	Ser	Pro	Tyr	Ile	Ala	Ala	Lys	Ile		
	,	90					95	•				100					
AAT	GAA	GCT	AAA	GAT	TTA	CTA	GAA	GGT	CAA	GCT	AAA	AAA	TGA	AGTA	TA	450	ì
Asn	Glu	Ala	Lys	Asp	Leu	Leu	Glu	Gly	Gln	Ala	Lys	Lys			•		
	105					110					115						
GTA:	TGAT	GAA	TTTT	AAGT'	rc G	TATT	AGTT1	TA 1	TAT	ATGA	GTA	CTAAC	GTT !	TTTA	AATAA	510	ì
ልልሞ(	CCT	CAG	AGCT	ACAA'	<b>ኮ</b> ጥ ሞ	ľ										532	ŀ

Sequence No.: 70

Sequence length: 662

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10301 Sequence characteristics Code representing characteristics: CDS
Existence site: 92.. 550
Characterization method: E
Sequence description

TCTAGCCCCG CCCCAGGCGA GGGCGCCGCA CCCACACCGC GCTGCGCAGT TTTGTTCTGC	60
TCCAGCTGTT CGAAGGTGAT CCAGACGCAA G ATG GCT GTC CTC TCT AAG GAA	112
Met Ala Val Leu Ser Lys Glu	
1 5	
TAT GGT TTT GTG CTT CTA ACT GGT GCC AGC TTT ATA ATG GTG GCC	160
Tyr Gly Phe Val Leu Leu Thr Gly Ala Ala Ser Phe Ile Met Val Ala	
10 15 20	
CAC CTA GCC ATC AAT GTT TCC AAG GCC CGC AAG AAG TAC AAA GTG GAG	208
His Leu Ala Ile Asn Val Ser Lys Ala Arg Lys Lys Tyr Lys Val Glu	
25 30 35	
TAT CCT ATC ATG TAC AGC ACG GAC CCT GAA AAT GGG CAC ATC TTC AAC	256
Tyr Pro Ile Met Tyr Ser Thr Asp Pro Glu Asn Gly His Ile Phe Asn	
40 45 50 55	
TGC ATT CAG CGA GCC CAC CAG AAC ACG TTG GAA GTG TAT CCT CCC TTC	304
Cys Ile Gln Arg Ala His Gln Asn Thr Leu Glu Val Tyr Pro Pro Phe	
60 65 70	
TTA TTT TTT CTA GCT GTT GGA GGT GTT TAC CAC CCG CGT ATA GCT TCT	352
Leu Phe Phe Leu Ala Val Gly Gly Val Tyr His Pro Arg Ile Ala Ser	
75 80 85	
GGC CTG GGC TTG GCC TGG ATT GTT GGA CGA GTT CTT TAT GCT TAT GGC	400
Gly Leu Gly Leu Ala Trp Ile Val Gly Arg Val Leu Tyr Ala Tyr Gly	
90 95 100	
TAT TAC ACG GGA GAA CCC AGC AAG CGT AGT CGA GGA GCC CTG GGG TCC	448
Tyr Tyr Thr Gly Glu Pro Ser Lys Arg Ser Arg Gly Ala Leu Gly Ser	
105 110 115	
ATC GCC CTC CTG GGC TTG GTG GGC ACA ACT GTG TGC TCT GCT TTC CAG	496
Ile Ala Leu Leu Gly Leu Val Gly Thr Thr Val Cys Ser Ala Phe Gln	
120 125 130 135	
CAT CTT GGT TGG GTT AAA AGT GGC TTG GGC AGT GGA CCC AAA TGC TGC	544
His Leu Gly Trp Val Lys Ser Gly Leu Gly Ser Gly Pro Lys Cys	
140 145 150	
CAT TAAAGAATTA TAGGGGTTTA AAAACTCTCA TTCATTTTAA ATG	590
His	
ACTTACCTTT ATTTCCAGTT ACATTTTTT TCTAAATATA ATAAAAACTT ACCTGGCATC	650
AGCCTCATAC CT	662

Sequence length: 2373

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver
Clone name: HP10302
Sequence characteristics

Code representing characteristics: CDS

Existence site: 134.. 1813 Characterization method: E

GAAG	ACCO	CA C	CGCC	GGC	SC G	GCTC	AGGG	C TG	GGCC	CACG	GGA	CTCC	GGA	CGCG	CCGCG	GA 60
AAGC	GTT	CG (	CTCCC	GGA	GG C	GTCC	GCAG	C TG	CTGG	CTGC	TCA	TTTG	CCG	GTGA	CCGGA	AG 120
GCTC	CCCC	CC A	AGC A	TG (	GCC	CCC	ACG	CTG	CAA	CAG	GCG	TAC	CGG	AGG	CGC	169
			ŀ	iet /	Ala	Pro	Thr	Leu	Gln	Gln	Ala	Tyr	Arg	Arg	Arg	
				1				5					10			
TGG	TGG	ATG	GCC	TGC	ACG	GCT	GTG	CTG	GAG	AAC	CTC	TTC	TTC	TCT	GCT	217
Trp	Trp	Met	Ala	Cys	Thr	Ala	Val	Leu	Glu	Asp	Leu	. Phe	Phe	Ser	Ala	
		15					20					25				
															GGC	265
Val	Leu	Leu	Gly	Trp	Gly	Ser	Leu	Leu	Ile	Ile	Leu	Lys	Asn	Glu	Gly	
	30					35					40					
															CAG	313
Phe	Tyr	Ser	Ser	Thr	Cys	Pro	Ala	Glu	Ser			Asn	Thr	Thr	Gln	
45		٠,			50					55					60	
															CTC	361
Asp	Glu	Gln	Arg	Arg	Trp	Pro	Gly	Cys	Asp	Gln	Gln	ı Asp	Glu		Leu	
				65			•		70					75		
	,														CTG	409
Asn	Leu	G1y	Phe	Thr	Ile	Gly	Ser	Phe	Val	Leu	Ser	Ala	Thr	Thr	Leu	
			80					85					90			
															CTG	457
Pro	Leu	Gly	Ile	Leu	Met	Asp	Arg	Phe	G1y	Pro	Arg	, Pro	Val	Arg	Leu	
		95					100					105				
															GCC	505
Val	Gly	Ser	Ala	Cys	Phe	Thr	Ala	Ser	CAS	Thr	Leu	ı Met	. Ala	Leu	Ala	
	110					115					120					
															TCC	553
Ser	Arg	Asp	Val	Glu	Ala	Leu	Ser	Pro	Lev	ı Ile	Phe	e Lev	. Ala	Leu	Ser	
125					130					135	i				140	

CTG	AAT	GGC	TTT	GGT	GGC	ATC	TGC	CTA	ACG	TTC	ACT	TCA	CTC	ACG	CTG	601
Leu	Asn	Gly	Phe	G1y	Gly	Ile	Cys	Leu	Thr	Phe	Thr	Ser	Leu	Thr	Leu	
				145					150					155		
	AAC															649
Pro	Asn	Met	Phe	Gly	Asn	Leu	Arg	Ser	Thr	Leu	Met	Ala	Leu	Met	Ile	
			160					165					170		•	
	TCT															697
Gly	Ser	Tyr	Ala	Ser	Ser	Ala		Thr	Phe	Pro	Gly		Lys	Leu	Ile	
		175					180				<b>m</b> m.o	185	maa	mam		74.5
	GAT															745
Tyr	Asp	Ala	Gly	Val	Ala		Val	Val	TTE	wec		inr	TEP	Ser	GIY	
	190 GCC	maa	omm.	A M/C	mm**	195	A A C	TOC	ACC	CTC	200	ሞሮር	ccc	ልሞሮ	CAA	793
	Ala															7,55
	AIB	Cys	ren	TTE	210	neu.	Aou	U) S	****	215	115,1	P			220	
205	TTT	CCT	GCC	ССТ		GAA	GTC	ААТ	TAC		AAG	AAG	ATC	AAG		841
	Phe															
******				225					230		•	•		235		
AGT	GGG	CTG	GCC		GAC	CAC	AAG	GTG	ACA	GGT	GAC	CTC	TTC	TAC	ACC	889
	Gly															
			240					245		•			250		•	
CAT	GTG	ACC	ACC	ATG	GGC	CAG	AGG	CTC	AGC	CAG	AAG	GCC	CCC	AGC	CTG	937
His	Val	Thr	Thr	Met	G1y	Gln	Arg	Leu	Ser	G1n	Lys	Ala	Pro	Ser	Leu	
٠		255					260					265				
	GAC															985
Glu	Asp	G1y	Ser	Asp	Ala		Met	Ser	Pro	Gln		Val	Arg	Gly	Thr	
	270					275					280				ma a	1022
	GAA															1033
	Glu	Asn	Leu	Pro		Arg	Ser	ABT	Pro		Arg	гае	zer	rea	300	•
285	CCC	A CIM	mmo	~m~	290	ACC	<del>ር</del> ሞር	ር የ	ACC	295	ccc	ATC	ACC	CAG		1081
	Pro															
per	FIG	1111	rne	305	r.p	001		200	310					315		
ccc	ATC	ATC	<b>ም</b> ፓር		ATG	GCT	GCT	GTG		AAG	ATG	CTG	GAG	TAC	CTT	` 1129
	Ile															
6			320	-,-				325		-			330			
GTG	ACT	GGT	GGC	CAG	GAG	CAT	GAG	ACA	AAT	GAA	CAG	CAA	CAA	AAG	GTG	1177
	Thr															
		335					340					345				
GCA	GAG	ACA	GTT	GGG	TTC	TAC	TCC	TCC	GTC	TTC	GGG	GCC	ATG	CAG	CTG	1225
Ala	Glu	Thr	Val	Gly	Phe	Tyr	Ser	Ser	Val	Phe	Gly	Ala	Met	Gln	Leu	
	350					355					360					
	TGC															1273
Leu	Cys	Leu	Leu	Thr	Cys	Pro	Leu	Ile	Gly	Tyr	Ile	Met	Asp	Trp	Arg	

365			•		370					375					380	
	AAG	GAC	TGC	GTG	GAC	GCC	CCA	ACT	CAG	GGC	ACT	GTC	CTC	GGA	GAT	1321
														Gly		
		•	•	385	-				390					395		
GCC	AGG	GAC	GGG	GTT	GCT	ACC	AAA	TCC	ATC	AGA	CCA	CGC	TAC	TGC	AAG	1369
														Cys		
		•	400				_	405					410			
ATC	CAA	AAG	CTC	ACC	AAT	GCC	ATC	AGT	GCC	TTC	ACC	CTG	ACC	AAC	CTG	1417
Ile	Gln	Lys	Leu	Thr	Asn	Ala	Ile	Ser	Ala	Phe	Thr	Leu	Thr	Asn	Leu	
		415		,			420					425				
CTG	CTT	GTG	GGT	TTT	GGC	ATC	ACC	TGT	CTC	ATC	AAC	AAC	TTA	CAC	CTC	1465
Leu	Leu	Va1	Gly	Phe	Gly	Ile	Thr	Cys	Leu	Ile	Asn	Asn	Leu	His	Leu	
	430					435					440					
														TTC		1513
Gln	Phe	Val	Thr	Phe	Va1	Leu	His	Thr	Ile	Val	Arg	Gly	Phe	Phe	His	
445					450					455					460	
														CAC		1561
Ser	Ala	Cys	Gly	Ser	Leu	Tyr	Ala	Ala	Val	Phe	Pro	Ser	Asn	His	Phe	
				465					470					475		
														GCC		1609
Gly	Thr	Leu	Thr	G1y	Leu	G1n	Ser		Ile	Ser	Ala	Val		Ala	Leu	,
			480					485					490			
														GGA		1657
Leu	Gln			Leu	Phe	Met		Met	Val	GTÀ	Pro		Lys	Gly	GIU	
		495					500	0.00		mme	mc.	505	CTC	CCA		1705
														GGA		1703
Pro		Trp	Val	Asn	Leu		Leu	Leu	rea	rne	520	reu	Leu	Gly	rne	
	510		maa	m . c	OTIC	515	TP A TP	<b>ም</b> ለር	CCT	ccc		ርሞሮ	CAG	CAG	GAG	1753
														Gln		2.55
		Pro	261	TAT	530	rne	LyL	191	мg	535	т. Б	Deu	0111	014	540	
525		ccc	ልልጥ	ccc		ഭേദ	CCA	CTG	AAG		СТТ	AGC	GGC	TCT		1801
														Ser		
ıyı	Ala	Ala	Ven	545	1100			200	550				,	555		
CTC	ACC	GCA	TAG		СТС	AGAC	CAAG	GG A		GATG	A.					1840
	Thr															
CAG	GCAA	TCA	AGGC	CTGA	GC A	ACCA	AAAG	G AG	TGCC	CCAT	ATG	GCTT	TTC '	TACC	TGTAAC	1900
															TGTAAA	1960
															CCATTG	2020
															AGGAGA	2080
CCA	.GGGT	GCC	TCTT	ATCT	CC T	TCTA	GCGG	т ст	GCCT	CCTG	GTA	CCTC	TTG (	GGGG	GATCGG	2140
CAA	ACAG	GCT	ACCC	CTGA	GG T	CCCA	TGTG	C CA	TGAG	TGTG	CAC	ACAT	GCA	TGTG	TCTGTG	2200
															GGTGCC	2260

PCT/JP97/04056

169

AGCTGTGTCC TGGGTTAGGG GTTGGGGGTC GGCCCCTTCC AGGGCCAGGA GGGCAGG CCTCTCTGGT GCTGCTGCTT GCAAGTCTTA GAGGAAATAA AAAGGGAAGT GAG	2320 2373
Sequence No.: 72 Sequence length: 1316 Sequence type: Nucleic acid Strandedness: Double Topology: Linear	,
Sequence kind: cDNA to mRNA Original source: Organism species: Homo sapiens Cell kind: Osterosarcoma Cell line: U-2 OS	·
Clone name: HP10304 Sequence characteristics Code representing characteristics: CDS Existence site: 11 1003	
Characterization method: E Sequence description	
GTTGTCCAAG ATG GAG GGC GCT CCA CCG GGG TCG CTC GCC CTC CGG CTC  Met Glu Gly Ala Pro Pro Gly Ser Leu Ala Leu Arg Leu  1 5 10	
CTG CTG TTC GTG GCG CTA CCC GCC TCC GGC TGG CTG ACG ACG GGC GC Leu Leu Phe Val Ala Leu Pro Ala Ser Gly Trp Leu Thr Thr Gly Al	
CCC GAG CCG CCG CTG TCC GGA GCC CCA CAG GAC GGC ATC AGA AT Pro Glu Pro Pro Pro Leu Ser Gly Ala Pro Gln Asp Gly Ile Arg II	
AAT GTA ACT ACA CTG AAA GAT GAT GGG GAC ATA TCT AAA CAG CAG GT Asn Val Thr Thr Leu Lys Asp Asp Gly Asp Ile Ser Lys Gln Gln Va	rT 193
GTT CTT AAC ATA ACC TAT GAG AGT GGA CAG GTG TAT GTA AAT GAC TT Val Leu Asn Ile Thr Tyr Glu Ser Gly Gln Val Tyr Val Asn Asp Le 65 70 75	
CCT GTA AAT AGT GGT GTA ACC CGA ATA AGC TGT CAG ACT TTG ATA GT Pro Val Asn Ser Gly Val Thr Arg Ile Ser Cys Gln Thr Leu Ile Va	
80 85 90	
	rT 337

Val Ser Val Arg Ile Leu Val His Glu Trp Pro Met Thr Ser Gly Ser

WO 98/21328 PCT/JP97/04056

110					115					120				•	125	
AGT	TTG	CAA	CTA	ATT	GTC	ATT	CAA	GAA	GAG	GŢA	GTA	GAG	ATT	GAT	GGA	433
			Leu													
				130					135					140		
AAA	CAA	GTT	CAG	CAA	AAG	GAT	GTC	ACT	GAA	ATT	GAT	ATT	TTA	GTT	AAG	481
Lys	Gln	Va1	Gln	G1n	Lys	Asp	Va1	Thr	Glu	Ile	Asp	Ile	Leu	Val	Lys	
			145					150					155			
AAC	CGG	GGA	GTA	CTC	AGA	CAT	TCA	AAC	TAT	ACC	CTC	CCT	TTG	GAA	GAA	529
Asn	Arg	Gly	Val	Leu	Arg	His	Ser	Asn	Tyr	Thr	Leu	Pro	Leu	Glu	Glu	
		160					165					170				
AGC	ATG	CTC	TAC	TCT	ATT	TCT	CGA	GAC	AGT	GAC	ATT	TTA	TTT	ACC	CTT	577
Ser	Met	Leu	Tyr	Ser	Ile	Ser	Arg	Asp	Ser	Asp	Ile	Leu	Phe	Thr	Leu	
	175					180			•		185					
CCT	AAC	CTC	TCC	AAA	AAA	GAA	AGT	GTT	AGT	TCA	CTG	CAA	ACC	ACT	AGC	625
Pro	Asn	Leu	Ser	Lys	Lys	Glu	Ser	Val	Ser	Ser	Leu	Gln	Thr	Thr	Ser	
190					195					200					205	
CAG	TAT	CTT	ATC	AGG	AAT	GTG	GAA	ACC	ACT	GTA	GAT	GAA	GAT	GTT	TTA	673
Gln	Tyr	Leu	Ile	Arg	Asn	Va1	Glu	Thr	Thr	Val	Asp	Glu	Asp	Val	Leu	
				210					215					220		
CCT	GGC	AAG	TTA	CCT	GAA	ACT	CCT	CTC	AGA	GCA	GAG	CCG	CCA	TCT	TCA	721
Pro	Gly	Lys	Leu	Pro	Glu	Thr	Pro	Leu	Arg	Ala	Glu	Pro	Pro	Ser	Ser	
			225					230					235			
TAT	AAG	GTA	ATG	TGT	CAG	TGG	ATG	GAA	AAG	TTT	AGA	AAA	GAT	CTG	TGT	769
Tyr	Lys	Val	Met	Cys	Gln	Trp	Met	Glu	Lys	Phe	Arg	Lys	Asp	Leu	Суз	
		240					245					250				
AGG	TTC	TGG	AGC	AAC	GTT	TTC	CCA	GTA	TTC	TTT	CAG	TTT	TTG	AAC	ATC	817
Arg	Phe	Trp	Ser	Asn	Va1	Phe	Pro	Val	Phe	Phe	Gln	Phe	Leu	Asn	Ile	
	255					260					265					
ATG	GTG	GTT	GGA	ATT	ACA	GGA	GCA	GCT	GTG	GTA	ATA	ACC	ATC	TTA	AAG	865
Met	Val	Val	Gly	Ile	Thr	Gly	Ala	Ala	Val	Val	Ile	Thr	Ile	Leu	Lys	
270					275			-		280					285	
			CCA													913
Val	Phe	Phe	Pro	Val	Ser	Glu	Tyr	Lys	Gly	Ile	Leu	Gln	Leu	Asp	Lys	
				290					295					300		
			ATA													961
Val	Asp	Val	Ile	Pro	Val	Thr	Ala		Asn	Leu	Tyr	Pro	_	Gly	Pro	
			305					310					315			
			GCT				•						TAAA	ACGO	CA	1010
Glu	Lys	Arg	Ala	Glu	Asn	Leu		Asp	Lys	Thr	Cys	Ile				
		320					325					330				
															TTAATT	1070
															ACTGC	1130
															GCAGT	1190
ccci	CATC	cc 1	rcta A	TCCC	A GO	CACTI	TGGG	ACC	CCAA	TCC	.ദദേദ	GGAT	'CA C	CACC	TCAGA	1250

TCAA		AT C	CTGC	CAAC	A TG	GTGA	VAACC	CTC	TCT	CTAC	TAA	AAA.	AT A	AAAA	AAGTTA	1310 1316
Seau	ence	No.	: 73	3												
_			gth:		3											
_			e: N			cid										
			: Do													
			near													
•			ıd: c		to n	ıRNA										
_			ırce			•										
_					Ното	SA)	piens	5		•			•			
	_		Ost			-					,					
Ce	11 1	ine	· υ-2	2 os				-		•						
C1	one	name	: HI	21030	)5											
Sequ	ence	cha	ract	eris	tics	3										
-							erist	ics	CDS	3						
			site													
Ch	arac	teri	zati	ion n	netho	od: I	3				,					
Sequ	ence	des	crip	otion	1,										•	
	CGGA	GT (	ነርር <b>ም</b> ር		PA (**	0 & C C C	יררייו			0 mm A	Office		200 (	2000	CCAAC	60
CCG1													CC A	rg ac	ST CTG	118
CCG1													CC A	rg A0 et Se		118
	TTGA	GC 1	rceci	PATCO	CT AG	TGC/	ACACG	e cc	rtgca	AAGC	GAC	SGCG	CC A'	rg Ad et Se 1	GT CTG er Leu	118
ACT	TTG#	AGT	rcgg1 TCC	AGC	CT AG	CGA	ACACO GTT	GAA	TGC/	ATC	GACG GCA	GCA	CC A' M GTT	TG ACC	GT CTG er Leu ATT	118
ACT	TTGA TCC Ser	AGT	rcgg1 TCC	AGC	CT AG	CGA Arg	ACACG	GAA	TGC/	ATC	GACO GCA Ala	GCA	CC A' M GTT	TG ACC	GT CTG er Leu ATT	118
ACT Thr	TCC Ser 5	AGT Ser	TCC Ser	AGC Ser	GTA Val	CGA Arg	GTT Val	GAA Glu	TGC/ TGG Trp	ATC	GCA Ala 15	GCA Ala	CC A. Mc GTT Val	rG ACC Thr	GT CTG er Leu ATT Ile	118 166
ACT Thr GCT	TCC Ser 5 GCT	AGT Ser GGG	TCC Ser	AGC Ser GCT	GTA Val GCA	CGA Arg 10	GTT Val	GAA Glu TAT	TGG Trp	ATC Ile	GCA Ala 15	GCA Ala	MG A' MGA	TG ACC Thr	GT CTG er Leu ATT Ile TAT	118
ACT Thr GCT Ala	TCC Ser 5 GCT	AGT Ser GGG	TCC Ser	AGC Ser GCT	GTA Val GCA Ala	CGA Arg 10	GTT Val	GAA Glu TAT	TGG Trp	ATC Ile GCT Ala	GCA Ala 15	GCA Ala	MG A' MGA	TG ACC Thr	GT CTG er Leu ATT Ile TAT Tyr	118 166
ACT Thr GCT Ala 20	TCC Ser 5 GCT Ala	AGT Ser GGG Gly	TCC Ser ACA Thr	AGC Ser GCT Ala	GTA Val GCA Ala 25	CGA Arg 10 ATT	GTT Val GGT Gly	GAA Glu TAT Tyr	TGG Trp CTA Leu	ATC Ile GCT Ala 30	GCA Ala 15 TAC Tyr	GCA Ala AAA Lys	GTT Val AGA	TG AC  1  ACC  Thr  TTT  Phe	ATT Ile TAT Tyr 35	118 166 214
ACT Thr GCT Ala 20 GTT	TCC Ser 5 GCT Ala	AGT Ser GGG Gly	TCC Ser ACA Thr	AGC Ser GCT Ala	GTA Val GCA Ala 25	CGA Arg 10 ATT Ile	GTT Val GGT GLy GCT	GAA Glu TAT Tyr	TGG Trp CTA Leu	ATC Ile GCT Ala 30 AAC	GCA Ala 15 TAC Tyr	GCA Ala AAA Lys	GTT Val AGA Arg	TG AG  ACC  Thr  TTT  Phe  CAG	ATT Ile TAT Tyr 35	118 166
ACT Thr GCT Ala 20 GTT	TCC Ser 5 GCT Ala	AGT Ser GGG Gly	TCC Ser ACA Thr	AGC Ser GCT Ala CGA	GTA Val GCA Ala 25	CGA Arg 10 ATT Ile	GTT Val GGT Gly	GAA Glu TAT Tyr	TGG Trp CTA Leu ATA	ATC Ile GCT Ala 30 AAC	GCA Ala 15 TAC Tyr	GCA Ala AAA Lys	GTT Val AGA Arg	TG AG  ACC Thr  TTT Phe  CAG Gln	ATT Ile TAT Tyr 35	118 166 214
ACT Thr GCT Ala 20 GTT Val	TCC Ser 5 GCT Ala AAA Lys	AGT Ser GGG Gly GAT Asp	TCC Ser ACA Thr CAT	AGC Ser GCT Ala CGA Arg	GTA Val GCA Ala 25 AAT Asn	CGA Arg 10 ATT Ile AAA Lys	GTT Val GGT Gly GCT Ala	GAA Glu TAT Tyr ATG Met	TGG Trp CTA Leu ATA Ile 45	ATC Ile GCT Ala 30 AAC Asn	GCA Ala 15 TAC Tyr CTT Leu	GCA Ala AAA Lys CAC	GTT Val AGA Arg	TG AG  ACC Thr  TTT Phe  CAG Gln 50	ATT Ile TAT Tyr 35 AAA Lys	118 166 214 262
ACT Thr GCT Ala 20 GTT Val	TCC Ser 5 GCT Ala AAA Lys	AGT Ser GGG Gly GAT Asp	TCC Ser ACA Thr CAT His	AGC Ser GCT Ala CGA Arg 40	GTA Val GCA Ala 25 AAT Asn	CGA Arg 10 ATT Ile AAA Lys	GTT Val GGT Gly GCT Ala	GAA Glu TAT Tyr ATG Met	TGG Trp CTA Leu ATA Ile 45 GAC	ATC Ile GCT Ala 30 AAC Asn ATG	GCA Ala 15 TAC Tyr CTT Leu GAG	GCA Ala AAA Lys CAC His	GTT Val AGA Arg ATC Ile	TG AC et Se 1 ACC Thr TTT Phe CAG Gln 50 GGA	ATT Ile TAT Tyr 35 AAA Lys	118 166 214
ACT Thr GCT Ala 20 GTT Val	TCC Ser 5 GCT Ala AAA Lys	AGT Ser GGG Gly GAT Asp	TCC Ser ACA Thr CAT His	AGC Ser GCT Ala CGA Arg 40	GTA Val GCA Ala 25 AAT Asn	CGA Arg 10 ATT Ile AAA Lys	GTT Val GGT Gly GCT Ala	GAA Glu TAT Tyr ATG Met	TGG Trp CTA Leu ATA Ile 45 GAC	ATC Ile GCT Ala 30 AAC Asn ATG	GCA Ala 15 TAC Tyr CTT Leu GAG	GCA Ala AAA Lys CAC His	GTT Val AGA Arg ATC Ile	TG AC et Se 1 ACC Thr TTT Phe CAG Gln 50 GGA	ATT Ile TAT Tyr 35 AAA Lys	118 166 214 262
ACT Thr GCT Ala 20 GTT Val GAC Asp	TCC Ser 5 GCT Ala AAA Lys AAC	AGT Ser GGG Gly GAT Asp CCC	TCC Ser ACA Thr CAT His AAG Lys	AGC Ser GCT Ala CGA Arg 40 ATA Ile	GTA Val GCA Ala 25 AAT Asn GTA Val	CGA Arg 10 ATT 11e AAA Lys	GTT Val GGT GLY GCT Ala GCT Ala	GAA Glu TAT Tyr ATG Met TTT Phe	TGG Trp CTA Leu ATA Ile 45 GAC Asp	ATC Ile GCT Ala 30 AAC Asn ATG Met	GACO GCA Ala 15 TAC Tyr CTT Leu GAG Glu	GCA Ala AAA Lys CAC His	GTT Val AGA Arg ATC Ile TTG Leu 65	TG AC  THE  TTT  Phe  CAG  Gln  GGA  Gly	ATT Ile TAT Tyr 35 AAA Lys GAT Asp	118 166 214 262 310
ACT Thr GCT Ala 20 GTT Val GAC Asp	TCC Ser 5 GCT Ala AAA Lys AAC Asn	AGT Ser GGG Gly GAT Asp CCC Pro	TCC Ser ACA Thr CAT His AAG Lys 55	AGC Ser GCT Ala CGA Arg 40 ATA Ile	GTA Val GCA Ala 25 AAT Asn GTA Val	CGA Arg 10 ATT 11e AAA Lys CAT His	GTT Val GGT Gly GCT Ala GCT Ala	GAA Glu TAT Tyr ATG Met TTT Phe 60	TGG Trp CTA Leu ATA Ile 45 GAC Asp	ATC Ile GCT Ala 30 AAC Asn ATG Met	GACO GCA Ala 15 TAC Tyr CTT Leu GAG Glu AAG	GCA Ala AAA Lys CAC His GAT Asp	GTT Val AGA Arg ATC Ile TTG Leu 65	TG AC  at Set Set Set Set Set Set Set Set Set Se	ATT Ile TAT Tyr 35 AAA Lys GAT Asp	118 166 214 262
ACT Thr GCT Ala 20 GTT Val GAC Asp	TCC Ser 5 GCT Ala AAA Lys AAC Asn	AGT Ser GGG Gly GAT Asp CCC Pro	TCC Ser ACA Thr CAT His AAG Lys 55	AGC Ser GCT Ala CGA Arg 40 ATA Ile	GTA Val GCA Ala 25 AAT Asn GTA Val	CGA Arg 10 ATT 11e AAA Lys CAT His	GTT Val GGT Gly GCT Ala GCT Ala TGG	GAA Glu TAT Tyr ATG Met TTT Phe 60	TGG Trp CTA Leu ATA Ile 45 GAC Asp	ATC Ile GCT Ala 30 AAC Asn ATG Met	GACO GCA Ala 15 TAC Tyr CTT Leu GAG Glu AAG	GCA Ala AAA Lys CAC His GAT Asp	GTT Val AGA Arg ATC Ile TTG Leu 65	TG AC  at Set Set Set Set Set Set Set Set Set Se	ATT Ile TAT Tyr 35 AAA Lys GAT Asp	118 166 214 262 310
ACT Thr GCT Ala 20 GTT Val GAC Asp	TCC Ser 5 GCT Ala Lys AAC ASD	AGT Ser GGG Gly GAT Asp CCC Pro GTG Val 70	TCC Ser ACA Thr CAT His AAG Lys 55 TAC	AGC Ser GCT Ala CGA Arg 40 ATA Ile TGC Cys	GTA Val GCA Ala 25 AAT Asn GTA Val CGT Arg	CGA Arg 10 ATT Ile AAA Lys CAT His	GTT Val GGT Gly GCT Ala GCT Ala TGG Trp 75	GAA Glu TAT Tyr ATG Met TTT Phe 60 AGG	TGG Trp CTA Leu ATA Ile 45 GAC Asp TCC Ser	ATC Ile GCT Ala 30 AAC Asn ATG Met Lys	GACO GCA Ala 15 TAC Tyr CTT Leu GAG Glu AAG Lys	GCA Ala AAA Lys CAC His GAT Asp TTC Phe 80	GTT Val AGA Arg ATC Ile TTG Leu 65 CCA	TE ACC Thr TTT Phe CAG Gln 50 GGA Gly TTC Phe	ATT Ile  TAT Tyr 35 AAA Lys GAT Asp TGT Cys	118 166 214 262 310
ACT Thr GCT Ala 20 GTT Val GAC Asp AAA Lys	TCC Ser 5 GCT Ala AAA Lys AAC Asn GCT Ala	AGT Ser GGG Gly GAT Asp CCC Pro GTG Val 70 GCT	TCC Ser ACA Thr CAT His AAG Lys 55 TAC Tyr	AGC Ser GCT Ala CGA Arg 40 ATA Ile TGC Cys	GTA Val GCA Ala 25 AAT Asn GTA Val CGT Arg	CGA Arg 10 ATT 11e AAA Lys CAT His Cys CAT	GTT Val GGT Gly GCT Ala GCT Ala TGG	GAA Glu TAT Tyr ATG Met TTT Phe 60 AGG Arg	TGG Trp CTA Leu ATA Ile 45 GAC Asp TCC Ser	ATC Ile GCT Ala 30 AAC Asn ATG Met AAA Lys	GACG GCA Ala 15 TAC Tyr CTT Leu GAG Glu AAG Lys	GCA Ala AAA Lys CAC His GAT Asp TTC Phe 80 GAC	GTT Val AGA Arg ATC Ile TTG Leu 65 CCA Pro	TG AC  at Set Set Set Set Set Set Set Set Set Se	ATT Ile TAT Tyr 35 AAA Lys GAT Asp TGT Cys	118 166 214 262 310

CCT CTG ATC AAG AAA AAA GAA ACT TAAATGGACA CTTTTGA

Pro Leu Ile Ile Lys Lys Lys Glu Thr 100 105	
TGCTGCAAAT CAGCTTGTCG TGAAGTTACC TGATTGTTTA	ATTAGAATGA CTACCACCTC 51
TGTCTGATTC ACCTTCGCTG GATTCTAAAT GTGGTATATT	
TTATGGCATT TGTCTTGTTG AAACATCGTG GTGCACATTT	
AAAAAGGAAA AACCAACCTC ATGGCCTGTG GGTTATTTTG	
TTTAAAATAC TGACATATAG AGTTGTACCT TATATAGAAT	
ACATATTAAA TTATTCTCAA AATTATGTAT TTGCAGATTG	
AAATTACCAT CTTTTCATAT TGACCTGGAA ACTAAATAGG	
TTTCTTAATA CAATCTAGGA AAG	89:
IIICIIAAIA CAATOIAGGA AAG	
Sequence No.: 74	
Sequence length: 690	
Sequence type: Nucleic acid	
Strandedness: Double	
Topology: Linear	
Sequence kind: cDNA to mRNA	
Original source:	
Organism species: Homo sapiens	
Cell kind: Osterosarcoma	
Cell line: U-2 OS	
Clone name: HP10306	
Sequence characteristics	·
Code representing characteristics: CDS	•
Existence site: 230 535	
Characterization method: E	
Sequence description	
TAACAGCGCA TGCGTGCAGT GTTGCCTCGC CCAAAGAAGA	
TGGGGCGTCT CGCGCAAACG TCCATAACTG AAAGTAGCTA	
GTGAGCTCTC CTGGGGCGTG GTTGTTCGTG ATCCTTGCAT	
TTGGGTCTTG CCCCGCAGAC CCTTGGGACG ACCCGGCCCC	AGCGCAGCT ATG AAC CTG 238
	Met Asn Leu
•	. 1
GAG CGA GTG TCC AAT GAG GAG AAA TTG AAC CTG	TGC CGG AAG TAC TAC 286
Glu Arg Val Ser Asn Glu Glu Lys Leu Asn Leu	Cys Arg Lys Tyr Tyr
5 10	15
CTG GGG GGG TTT GCT TTC CTG CCT TTT CTC TGG	TTG GTC AAC ATC TTC 334
Leu Gly Gly Phe Ala Phe Leu Pro Phe Leu Trp	Leu Val Asn Ile Phe
20 25 30	35
TGG TTC TTC CGA GAG GCC TTC CTT GTC CCA GCC	TAC ACA GAA CAG AGC 382
Trp Phe Phe Arg Glu Ala Phe Leu Val Pro Ala	Tyr Thr Glu Gln Ser
40 45	50

WO 98/21328 PCT/JP97/04056

173	
CAA ATC AAA GGC TAT GTC TGG CGC TCA GCT GTG GGC TTC CTC TTC TGG	430
Gln Ile Lys Gly Tyr Val Trp Arg Ser Ala Val Gly Phe Leu Phe Trp 60 65	
55 60 65  GTG ATA GTG CTC ACC TCC TGG ATC ACC ATC TTC CAG ATC TAC CGG CCC	478
	470
Val Ile Val Leu Thr Ser Trp Ile Thr Ile Phe Gln Ile Tyr Arg Pro 70 75 80	
CGC TGG GGT GCC CTT GGG GAC TAC CTC TCC TTC ACC ATA CCC CTG GGC	526
Arg Trp Gly Ala Leu Gly Asp Tyr Leu Ser Phe Thr Ile Pro Leu Gly	
85 90 95	
ACC CCC TGACAACTTC TGCACATACT GGGGCCCTGC TTATTCTCCC AGGACAGG	580
Thr Pro	
100	,
CTCCTTAAAG CAGAGGAGCC TGTCCTGGGA GCCCCTTCTC AAACTCCTAA GACTTGTTTT	640
CATGTCCCAC GTTCTCTGCT GACATCCCCC AATAAAGGAC CCTAACTTTC	690
Sequence No.: 75	
Sequence length: 2186	
Sequence type: Nucleic acid	
Strandedness: Double	
Topology: Linear	
Sequence kind: cDNA to mRNA	
Original source:	
Organism species: Homo sapiens	
Cell kind: Epidermoid carcinoma	
Cell line: KB	
Clone name: HP10328	
Sequence characteristics Code representing characteristics: CDS	
Existence site: 118 1236	
Characterization method: E	
Sequence description	
sequence description	
ACTCTTTCTT CGGCTCGCGA GCTGAGAGGA GCAGGTAGAG GGGCAGAGGC GGGACTGTCG	60
TCTGGGGGAG CCGCCCAGGA GGCTCCTCAG GCCGACCCCA GACCCTGGCT GGCCAGG	117
ATG AAG TAT CTC CGG CAC CGG CGC CCC AAT GCC ACC CTC ATT CTG GCC	165
Met Lys Tyr Leu Arg His Arg Arg Pro Asn Ala Thr Leu Ile Leu Ala	
1 5 10 15	
ATC GGC GCT TTC ACC CTC CTC CTC TTC AGT CTG CTA GTG TCA CCA CCC	213
Ile Gly Ala Phe Thr Leu Leu Phe Ser Leu Leu Val Ser Pro Pro	
20 25 30	
ACC TGC AAG GTC CAG GAG CAG CCA CCG GCG ATC CCC GAG GCC CTG GCC	261
Thr Cys Lys Val Gln Glu Gln Pro Pro Ala Ile Pro Glu Ala Leu Ala	
35 40 45	

TGG	CCC	ACT	CCA	ccc	ACC	CGC	CCA	GCC	CCG	GCC	CCG	TGC	CAT	GCC	AAC .	309
Trp	Pro	Thr	Pro	Pro	Thr	Arg	Pro	Ala	Pro	Ala	Pro	Cys	His	Ala	Asn	
	50					55					60					
ACC	TCT	ATG	GTC	ACC	CAC	CCG	GAC	TTC	GCC	ACG	CAG	CCG	CAG	CAC	GTT	357
Thr	Ser	Met	Val	Thr	His	Pro	Asp	Phe	Ala	Thr	Gln	Pro	Gln	His	Val	
65					70					75					80	
CAG	AAC	TTC	CTC	CTG	TAC	AGA	CAC	TGC	CGC	CAC	TTT	ccc	CTG	CTG	CAG	405
Gln	Asn	Phe	Leu	Leu	Tyr	Arg	His	Cys	Arg	His	Phe	Pro	Leu	Leu	G1n	
				85					·90					95		
						TGC										453
Asp	Val	Pro	Pro	Ser	Lys	Cys	Ala	Gln	Pro	Val	Phe	Leu		Leu	Val	
			100					105					110			
						AAC										501
Ile	Lys		Ser	Pro	Ser	Asn		Val	Arg	Arg	GIU		Leu	Arg	Arg	
	<b></b>	115			000		120	000	CCM	BB BB C	CAC	125	000	CTC	C TO C	540
						AAG										549
Thr	_	GIY	Arg	GIU	wrg	Lys 135	ATT	HL R	GIY	reu	140	Leu	ALE	Leu	Dea	
mmc	130	CTC	ccc	A.C.A	ecc	TCC	A A C	cce	CAC	CAC		cec	AAG	GTC	AAC	597
						Ser										33.
145	Deu	VAL	GLy	1111	150	DCI	11311	110		155	1114		23,0	,	160	
	CTG	CTG	GAG	CTG		GCA	CAG	ACT	CAC		GAC	ATC	CTG	CAG		645
						Ala									•	
6				165					170	•	•			175	-	
GAC	TTC	CAC	GAC	TCC	TTC	TTC	AAC	CTC	ACG	CTC	AAG	CAG	GTC	CTG	TTC	693
						Phe										
_			180					185					190			
TTA	CAG	TGG	CAG	GAG	ACA	AGG	TGC	GCC	AAC	GCC	AGC	TTC	GTG	CTC	AAC	741
Leu	Gln	Trp	Gln	G1u	Thr	Arg	Cys	Ala	Asn	Ala	Ser	Phe	Val	Leu	Asn	
		195					200					205				
						GCA										789
G1y	Asp	Asp	Asp	Val	Phe	Ala	His	Thr	Asp	Asn	Met	Val	Phe	Tyr	Leu	
	210					215					220					
						CGC										837
	Asp	His	Asp	Pro		Arg	His	Leu	Phe		Gly	Gln	Leu	Ile	•	
225					230					235					240	
						GCT										885
Asn	Val	Gly	Pro		Arg	Ala	Phe	Trp		Lys	Tyr	Tyr	VAI		GIu	
		. :		245			m		250		mo m	000	000	255	000	000
						CGG										933
VAL	VAL	Inr		ASD	GIU	Arg	ıyr	265	rro	rar	Cys	GIA	270	GTA	оту	
mm^	· mm.c	CTC	260 TCC	ccc	<b>ም</b>	ACG	GCC		CCC	CTG	רפר	ርርጥ		ecc	САТ	981
TTC						The										JU1

		275					280					285				
GTC	TTG	GAC	ATC	TTC	CCC	ATT	GAT	GAT	GTC	TTC	CTG	GGT	ATG	TGT	CTG	1029
Val	Leu	Asp	Ile	Phe	Pro	Ile	Asp	Asp	Val	Phe	Leu	Gly	Met	Cys	Leu	-
	290					295					300				•	
GAG	ÇTT	GAG	GGA	CTG	AAG	CCT	GCC	TCC	CAC	AGC	GGC	ATC	CGC	ACG	TCT	1077
Glu	Leu	Glu	Ġly	Leu	Lys	Pro	Ala	Ser	His	Ser	Gly.	Ile	Arg	Thr	Ser	
305					310					315					320	
GGC	GTG	CGG	GCT	CCA	TCG	CAA	CAC	CTG	TCC	TCC	TTT	GAC	CCC	TGC	TTC	1125
Gly	Va1	Arg	Ala	Pro	Ser	Gln	His	Leu	Ser	Ser	Phe	Asp	Pro	Cys	Phe	
				325					330					335		
TAC	CGA	GAC	CTG	CTG	CTG	GTG	CAC	CGC	TTC	CTA	CCT	TAT	GAG	ATG	CTG	1173
Tyr	Arg	Asp	Leu	Leu	Leu	Val	His	Arg	Phe	Leu	Pro	Tyr	Glu	Met	Leu	
			340					345					350			
CTC	ATG	TGG	GAT	GCG	CTG	AAC	CAG	CCC	AAC	CTC	ACC	TGC	GGC	AAT	CAG	1221
Leu	Met	Trp	Asp	Ala	Leu	Asn	Gln	Pro	Asn	Leu	Thr	Cys	G1y	Asn	Gln	
		-355			,		360					365		•		
ACA	CAG	ATC	TAC	TGA	STCA	GCA !	TCAG	GTC(	CC CA	AGCC:	rctgo	GC:	TCCT	3		1270
Thr	Gln	Ile	Tyr													
	370								•							
															rgagca	1330
															AACTCC	1390
															GAGGA	1450
															CTAGA	1510
															CTCACC	1570
															SCTCCG	1630
															AAATAT	1690
															AACTCA	1750
GAA	GGTT(	GGG	GGGA'	TACC	AG A	GAGG	TGGT	G GA	ATAG(	GACC	GCC	CCT	CCT	TACT	rgtggg	1810
_															GAAAGT	1870
															CCCAAG	1930
AAT	TCAG.	AGA .	ACAG	CACT	GG G	GCTG	GAAT	G AT	CTTT	AATG	GGC	CCAA	GGC	CAAC	AGGCAT	1990
															TCACCC	2050
AGT	ATGT	TTT .	ACAG.	ATTA	CG G	GGGG.	ACCG	G GT	GAGC	CAGT	GAC	CCCC	TGC .	AGCC	CCCAGC	2110
TTC	AGGC	CTC	AGTG	TCTG	CC A	GTCA	AGCT	T CA	CAGG	CATT	GTG	ATGG	GGC .	AGCC'	TTGGGG	2170
A A T	A 477 A	A A T	TTTTC.	TC.												2186

## Claims

- 1. A protein containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25.
- A DNA encoding any of the proteins as described in Claim 1.
- 3. A cDNA containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50.
- 4. A cDNA as described in Claim 3 which comprises any of the base sequences represented by Sequence No. 51 to Sequence No. 75.
- 5. A transformed eukaryotic cell capable of expressing any of DNAs as described in Claim 2 to 4 and producing a protein as described in Claim 1.



Fig. 1



Fig. 2

401





<del>8</del>







 $_{\rm H}$ Aqxobyop;c; $_{\rm C}$ A\ $_{\rm H}$ Aqxoby; $_{\rm J}$ ;c; $_{\rm C}$ A





-	9 spleen	10 Thymus	Prostate	12 Testis	13 Ovary	14 Small intestine	15 Large intestine	16 Peripheral blood	leukocyte
	0	10	11	12	13	14	15	16	
			ď			6 Skeletal muscle		<b>ω</b> .	
	1 Heart	Brain	3 Placenta	4 Lung	5 Liver	Skeleta	7 Kidney	8 Pancreas	
	Н	8	က	4	ស	9	<u>r-</u>	œ	



Amino acid Residue Number





ig. 10



Amino acid Residue Number



Amino acid Residue Number



151



ig. 14

HP10122



Amino acid Residue Number

201



Amino acid Residue Number



Ηλατοδμορτατελ\Ηλατοδμτητατελ



 ${\tt H} \lambda {\tt q} {\tt xobyoptc} {\tt t} \lambda {\tt t} \lambda {\tt q} {\tt xobyt} {\tt t} {\tt t} {\tt c} \lambda {\tt t}$ 



Amino acid Residue Number



Amino acid Residue Number



151



Fig. 22



 ${\tt H} \lambda {\tt q} {\tt xobyoptc} {\tt r} {\tt f} \lambda {\tt h} {\tt q} {\tt xobyr} {\tt f} {\tt r} {\tt c} {\tt r} {\tt f} \lambda$ 

Fig. 23







25/28



 $_{\rm H}$ Aqıobyopçeç $_{\rm L}$ Aqıobyr $_{\rm L}$ Yqı





 ${\tt H} \lambda {\tt q} {\tt xobyoptc} {\tt f} {\tt L} {\tt A} {\tt q} {\tt xoby} {\tt f} {\tt f} {\tt c} {\tt f} {\tt A}$ 





ηλακοδμορτατελ\ηλακοδμτητατελ



 $_{\rm H} \lambda {\tt q} {\tt rob} {\tt yop} {\tt rof} {\tt L} {\tt h} {\tt A} {\tt q} {\tt rob} {\tt y} {\tt r} {\tt f} {\tt ro} {\tt L}$ 

## **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/21328 C12N 15/12, C07K 14/705, C12N 5/10, (43) International Publication Date: 22 May 1998 (22.05.98) 15/57, 9/48, 9/14, 15/55 (81) Designated States: AU, CA, JP, MX, US, European patent (21) International Application Number: PCT/JP97/04056 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). (22) International Filing Date: 7 November 1997 (07.11.97) (30) Priority Data: Published 13 November 1996 (13.11.96) JР 8/301429 With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of (71) Applicants (for all designated States except US): SAGAMI amendments. [JP/JP]; 4-1, CHEMICAL RESEARCH CENTER Nishi-Ohnuma 4-chome, Sagamihara-shi, Kanagawa 229 (IP). PROTEGENE INC. [JP/IP]; 2-20-3, Naka-cho, (88) Date of publication of the international search report: 20 August 1998 (20.08.98) Meguro-ku, Tokyo 153 (JP). (72) Inventors; and (75) Inventors/Applicants (for US only): KATO, Seishi [JP/JP]; 3-46-50, Wakamatsu, Sagamihara-shi, Kanagawa 229 (JP). SEKINE, Shingo [IP/IP]; 4-4-1, Nishi-Ohnuma, Sagamihara-shi, Kanagawa 229 (JP). YAMAGUCHI, Tomoko [JP/IP]; 5-13-11, Takasago, Katsushika-ku, Tokyo 125 (JP). KOBAYASHI, Midori [JP/IP]; 647-2, Chougo, Fujisawa-shi, Kanagawa 252 (JP). (74) Agents: AOYAMA, Tamotsu et al.; Aoyama & Partners, IMP Building, 3-7, Shiromi 1-chome, Chuo-ku, Osaka-shi, Osaka 540 (JP).

(54) Title: HUMAN PROTEINS HAVING TRANSMEMBRANE DOMAINS AND DNAS ENCODING THESE PROTEINS

#### (57) Abstract

Proteins containing any of the amino acid sequences represented by Sequence No. 1 to Sequence No. 2 or by Sequence No. 4 to Sequence No. 25 and DNAs encoding said proteins exemplified by cDNAs containing any of the base sequences represented by Sequence No. 26 to Sequence No. 50. Said proteins can be provided by expressing cDNAs encoding human proteins having transmembrane domains and recombinants of these human cDNAs.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI .	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	, TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
ВG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	· MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger .	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	ŞG	Singapore		
l				•			•

# INTERNATIONAL SEARCH REPORT

Interna al Application No PCT/JP 97/04056

A. CLASSIF IPC 6	C12N15/12 C07K14/705 C12N5/1 C12N9/14 C12N15/55	0 C12N15/57	C12N9/48		
According to	International Patent Classification (IPC) or to both national classific	sation and IPC	,		
B. FIELDS	<u> </u>				
Minimum do	cumentation searched (classification system followed by classificati C12N C07K	ion symbols)			
Documentati	ion searched other than minimum documentation to the extent that s	such documents are included in the fie	lds searched		
Electronic de	ata base consulted during the international search (name of data ba	use and, where practical, search terms	s used)		
C. DOCUME	NTS CONSIDERED TO BE RELEVANT		· · · · · · · · · · · · · · · · · · ·		
Category *	Citation of document, with indication, where appropriate, of the ref	evant passages	Relevant to claim No.		
<b>Y</b> .	JOURNAL OF MOLECULAR BIOLOGY, vol. 157, no. 1, 5 May 1982, pages 105-132, XP000609692 KYTE J ET AL: "A SIMPLE METHOD DISPLAYING THE HYDROPATHIC CHARA PROTEIN" cited in the application see abstract	FOR CTER OF A	1-5		
Y	SCIENCE, vol. 272, 10 May 1996, pages 872-877, XP002031517 FENG Y ET AL: "HIV-1 ENTER COFA FUNCTIONAL CDNA CLONING OF A SEVEN-TRANSMEMBRANE G PROTEIN-CO RECEPTOR" cited in the application see the whole document		1-5		
X Furth	er documents are listed in the continuation of box C.	Patent family members are	Hated in annex.		
* Special cat	tegories of cited documents :				
"A" docume conside "E" earlier de filing de "L" documer which i citation "O" docume	nt defining the general state of the art which is not ered to be of particular relevance locument but published on or after the international attent which may throw doubts on priority claim(s) or is cited to establish the publication date of another or or other special reason (as specified) on the referring to an oral disclosure, use, exhibition or	<ul> <li>T' later document published after the or priority date and not in conflicited to understand the principle invention</li> <li>"X' document of particular relevance cannot be considered novel or involve an inventive step when</li> <li>"Y' document of particular relevance cannot be considered to involve document is combined with one</li> </ul>	ct with the application but a critical way anderlying the a critical critic		
other n "P" docume later th	neans wit published prior to the international filling date but an the priority date claimed	ments, such combination being obvious to a person skilled in the art.  *&* document member of the same patent family			
Date of the a	actual completion of the international search	Date of mailing of the international search report			
	2 March 1998	0 3, 07, 98			
Name and n	nailing address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer			
ł	Fax: (+31-70) 340-3016	ESPEN, J			

Form PCT/ISA/210 (second sheet) (July 1992)

# INTERNATIONAL SEARCH REPORT

intern. al Application No PCT/JP 97/04056

(0	A DOMINENTO CONSTRUCTOR	PCT/JP 97/04056
(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Ÿ	J BIOL CHEM, APR 12 1996, 271 (15) P8549-52, UNITED STATES, XP002058790 HOLLOWAY MP ET AL: "A hydrophobic domain of Ca2+-modulating cyclophilin ligand modulates calcium influx signaling in T lymphocytes." see abstract	1-5
<b>Y</b>	BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS., vol. 168, 1990, ORLANDO, FL US, pages 574-579, XP002058791 APPERSON M ET AL: "A yeast protein, homologous to the proteolipid of the chromaffin granule proton-ATPase, is important for cell growth" see figure 2	1-5
P,X	EMHUM1 Database entry HSD052 Accession number D89052; 07 Dec 1996 NISHIGORI H ET AL: 'Cloning and chromosomal localization of the gene encoding a protein homologous to the yeast protein PPA1, an proton-ATPase-like protein' XP002058792 see sequence	1-5
		i.
.		

1

# INTERNATIONAL SEARCH REPORT

Int utional application No.

PCT/JP 97/04056

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.:     because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see continuation-sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report
covers only those claims for which fees were paid, specifically claims Nos.:
No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-5 in part (subject 1. on next sheet)
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

## FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 26 and 51 and protein relating to SEQ ID No 1  $\,$ 

2. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 27 and 52 and protein relating to SEQ ID No 2  $\,$ 

3. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 28 and 53 and protein relating to SEQ ID No 3  $\,$ 

4. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 29 and 54 and protein relating to SEQ ID No 4  $\,$ 

5. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 30 and 55 and protein relating to SEQ ID No 5  $\,$ 

6. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 31 and 56 and protein relating to SEQ ID No 6  $\,$ 

7. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 32 and 57 and protein relating to SEQ ID No 7  $\,$ 

8. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 33 and 58 and protein relating to SEQ ID No 8  $\,$ 

9% Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 34 and 59 and protein relating to SEQ ID No 9

10. Claims: Claims 1-5 in part

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

DNAs relating to SEQ ID No 35 and 60 and protein relating to SEQ ID No 10  $\,$ 

11. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 36 and 61 and protein relating to SEQ ID No 11  $\,$ 

12. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 37 and 62 and protein relating to SEQ ID No 12  $\,$ 

13. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 38 and 63 and protein relating to SEO ID No 13  $\,$ 

14. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 39 and 64 and protein relating to SEQ ID No 14  $\,$ 

16. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 41 and 66 and protein relating to SEQ ID No 16  $\,$ 

17. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 42 and 67 and protein relating to SEQ ID No 17

18. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 43 and 68 and protein relating to SEQ ID No 18  $\,$ 

19. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 44 and 69 and protein relating to SEQ ID No 19  $^{\circ}$ 

20. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 45 and 70 and protein relating to SEQ ID No 20

### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

21. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 46 and 71 and protein relating to SEQ ID No 21  $\,$ 

22. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 47 and 72 and protein relating to SEQ ID No 22  $\,$ 

23. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 48 and 73 and protein relating to SEQ ID No 23

24. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 49 and 74 and protein relating to SEQ ID No 24  $\,$ 

25. Claims: Claims 1-5 in part

DNAs relating to SEQ ID No 50 and 75 and protein relating to SEQ ID No 25  $\,$