

# Document image binarization based on topographic analysis using a water flow model

Pattern Recognition, vol. 35, no. 1, Jan. 2002 In-Kwon Kim, Dong-Wook Jung, Rae-Hong Park

School of Electrical Engineering and Computer Science Kyungpook National Univ.



# **Algorithm**

# Local thresholding based on a water flow model

Image surface 3-D terrain

Water flows down to the lower regions and fills valleys

Thresholding process by the amount of filled water for character extraction

# **Abstract**

- Local adaptive thresholding method
  - Based on water flow model
  - Image surface; 3-D terrain
- Water flow model
  - Pouring water onto the terrain surface
  - Flowing and filling valleys
  - Thresholding by the amount of filled water for character extraction

# 1. Introduction

- Segmentation algorithms
  - Based on discontinuity or similarity of gray values
    - Discontinuity: Abrupt changes in gray level (Edge detection)
    - Similarity: Thresholding, region growing, region splitting and merging
  - Watershed algorithms
    - Behavior of water; flowing down to lower regions
    - Dividing regions based on the minima that water approaches

# 2. Proposed local thresholding

- The proposed method
  - Enhancement process
    - Extracting the local characteristic of an input gray level image by simulating the behavior of rainfall
    - A lot of ponds on the terrain
    - Merging water filled ponds with one segment or extinguishing small ponds
    - Applying the labeling process to the generated ponds
    - Calculating the average water level of each pond

# Thresholding process

- Thresholding the amount of filled water
- Reflecting the local characteristics of an original terrain
- Otsu's algorithm, a nonparametric and unsupervised automatic threshold selection method

#### Otsu's method

Selecting the optimal threshold k\* maximizing the variance

$$\sigma_b^2 = a_1 a_2 (m_1 - m_2)^2 \tag{1}$$

where  $m_1, m_2$ ; means of segment1 and 2 ratio  $a_i$ ; area of segment j to the total area

# Water flow model



#### Water flow model

```
for all pixels (x,y)
begin
  set the current point (m,n) to (x,y)
  until f(m,n) is the minimum
  begin
     set (u,v) to (0,0)
     for all neighboring pixels (m+i,n+j), -s \le i, j \le s
        if f(m+i,n+j) < f(m+u,n+v) then set (u,v) to (i,j)
     set the current point (m,n) to (m+u,n+v)
  end
  increase f(m,n) by one unit
end
```

Fig. 2 Algorithm of the proposed water flow model.

# Computational cost

$$NM\left[(2s+1)^2D+w\right] \tag{2}$$

# An example of the search process



Fig. 3 Searching process of the lowest gray level (s=2).

# Binarization based on a water flow model

Synthetic images

$$S_1(x, y) = Aabs \left[ \left( -\frac{r^2}{U} + B \right) \cos \left( \frac{r^2}{V} \right) \right]$$
 (3)

$$S_2(x, y) = A \left( -\frac{r^2}{U} + B + C \cos\left(\frac{r^2}{V}\right) \right) \tag{4}$$

where U,V constants (terrain characteristics)

$$r^2 = x^2 + y^2$$
, (0,0) top left

A, B, C constants between 0 and 255 (I = 256)

# Synthetic images



Fig. 4 Synthetic images for binarization.

(a) Synthetic image 1 (S<sub>1</sub>), (b) synthetic image 2 (S<sub>2</sub>).

# Profiles along the diagonal direction



Fig. 5 Profiles of the original terrain and water filled terrain of synthetic images S<sub>1</sub> and S<sub>2</sub> (w=10). (a) S<sub>1</sub>, (b) S<sub>2</sub>.

Final results of the proposed thresholding method



Fig. 6 Binarization results.

(a) w=1 (k\*=8, $S_1$ ), (b) w=5 (k\*=18, $S_1$ ), (c) w=140 (k\*=140, $S_1$ ),

(d) w=1 (k\*=4, $S_2$ ), (e) w=5 (k\*=11, $S_2$ ), (f) w=125 (k\*=122, $S_2$ ).

# 3. Simulation results and discussions

# ◆ Experiments



Fig. 7 Real test images for binarization. (a) T1, (b) T2, (c) T3.

# Profiles of the test images

50

0

(c)

100

150

Position (200, y)



200

250

Fig. 8 Profiles of the original terrain and water filled terrain of test images T1, T2, T3.

250

200

#### 1st exprerimental results



Fig. 9 Binarization results of Fig. 7(a).

- (a) Histogram, (b) Otsu's method, (c) Nakagawa and Rosenfield's method,
- (d) Niblack's mehod, (e) Liu and Srihari's method, (f) proposed method.

# 2<sup>nd</sup> exprerimental results



Fig. 10 Binarization results of Fig. 7(b).

- (a) Histogram, (b) Otsu's method, (c) Nakagawa and Rosenfield's method,
- (d) Niblack's mehod, (e) Liu and Srihari's method, (f) proposed method.

#### 3<sup>rd</sup> exprerimental results



Fig. 11 Binarization results of Fig. 7(c).

- (a) Histogram, (b) Otsu's method, (c) Nakagawa and Rosenfield's method,
- (d) Niblack's mehod, (e) Liu and Srihari's method, (f) proposed method.

#### Visual criteria

- Evaluation process: Blind test
- Broken text (5): Existence of undesirable gaps in text, Small gaps are given high scores
- Blurring of text (5): Low rate of blurring is desirable
- Loss of complete text (5): A large number of losses are not desirable
- Noise in background area (5): A small number of false objects is desirable

# Performance comparison of various segmentation

Table 1 Scores for quantitative performance comparison of each binarization method<sup>a</sup>

| Test image  | Metho            |       |       |       |                |
|-------------|------------------|-------|-------|-------|----------------|
|             | $\overline{M}_1$ | $M_2$ | $M_3$ | $M_4$ | M <sub>5</sub> |
| T 1         | 14               | 14    | 15    | 14    | 17             |
| $T_2$       | 14               | 14    | 15    | 12    | 16             |
| $T_3$       | 14               | 15    | 16    | 14    | 16             |
| $T_4$       | 15               | 16    | 16    | 17    | 18             |
| $T_5$       | 19               | 19    | 17    | 19    | 19             |
| $T_6$       | 15               | 15    | 16    | 14    | 15             |
| $T_7$       | 15               | 15    | 16    | 16    | 17             |
| $T_8$       | 19               | 19    | 18    | 20    | 20             |
| $T_9$       | 17               | 17    | 17    | 17    | 18             |
| $T_{10}$    | 14               | 15    | 16    | 14    | 16             |
| Total score | 156              | 159   | 162   | 157   | 172            |

 $<sup>^{</sup>a}M_{1}$ : Otsu's method,  $M_{2}$ : Nakagawa and Rosenfeld's method,  $M_{3}$ : Niblack's method with postprocessing,  $M_{4}$ : Liu and Srihari's method,  $M_{5}$ : proposed method.

# Character extraction

Character extraction from Fig. 9



Fig. 12 Character extraction results from Fig. 9 (c), (d), (e), (f).

# Character extraction from Fig. 10



Fig. 13 Character extraction results from Fig. 10 (b), (c), (d), (e), (f).

# Character extraction from Fig. 11

1881 OF BOLIC 12 68 1980 DESTINATION OF THE PARTY OF THE THE OF MEDICAL PROPERTY. des de width of the l olles ibe w 8i8 of ibe odes the wildth of the l in conjunction with in conjunction with l la conjungtion citie 7 oims life some functio oums the same functio oums the same fanctio reserves memory ade reserves memory of 8 reserves memory add issumption of offset 0 1 issumption of offset 0 ( issumption of offset O. ( (a) (b) (c)

The contraction with a series memory add reserves memory add reserves memory add reserved to the contraction of the contraction

Fig. 14 Character extraction results from Fig. 11 (b), (c), (d), (e), (f).

#### Performance comparison of character extraction

Table 2 Character extraction rate for binarized document images obtained by each binarization method (%)<sup>a</sup>

| Test image   | Meth             |       |       |       |     |
|--------------|------------------|-------|-------|-------|-----|
|              | $\overline{M}_1$ | $M_2$ | $M_3$ | $M_4$ | M 5 |
| T 1          | _                | 67    | 70    | 66    | 86  |
| $T_2$        | 39               | 43    | 51    | 19    | 64  |
| $T_3$        | 62               | 65    | 93    | 44    | 89  |
| $T_4$        | 87               | 89    | 86    | 85    | 90  |
| $T_5$        | 84               | 86    | 86    | 83    | 85  |
| $T_6$        | 33               | 35    | 63    | 11    | 70  |
| $T_{7}$      | 76               | 76    | 77    | 69    | 85  |
| $T_8$        | 97               | 97    | 92    | 98    | 98  |
| $T_9$        | 91               | 87    | 82    | 74    | 88  |
| T 10         | 36               | 38    | 77    | 21    | 37  |
| Average rate | 67               | 68    | 78    | 57    | 79  |

<sup>\*</sup>M<sub>1</sub>: Otsu's method, M<sub>2</sub>: Nakagawa and Rosenfeld's method, M<sub>3</sub>: Niblack's method with postprocessing, M<sub>4</sub>: Liu and Srihari's method, M<sub>5</sub>: proposed method.

# 4. Conclusions

- Water flow approach to thresholding
  - Physical property of water
    - Deep valleys are filled with dropped water
    - Smooth plain regions keep up dry
  - Effective especially local or uneven illuminations
- ◆ Further research
  - Selection of the optimal amount of water