中国科学技术大学

2018-2019学年第一学期期末试卷

考试科目	时间序列分析	得分	
所在系	姓名	学号	
考试时间	: 2019年1月3日上午9:45—	11:45; 使用简单计算器	

- 一. (26分) 填空题(每题2分,答案请写在答题纸上):
 - **1** 时间序列 x_t 是白噪声序列,则 $\gamma(t,s)=$

 - **3** 设*AR*(p)模型

4 设{ X_t , $t = 0, \pm 1, \pm 2, \ldots$ } 是满足MA(q)模型

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \dots + \theta_a \epsilon_{t-a}, \quad \epsilon_t \sim WN(0, \sigma^2)$$

的序列,则已知 X_t, X_{t-1}, \ldots 时, X_{t+l} 的最佳线性预测 $\hat{X}(t+l)(l \ge 1)$ 的均方误差是

- 5 若 Y_t 满足 ∇_{12} $\nabla Y_t = \epsilon_t \theta \epsilon_{t-1} \Theta \epsilon_{t-12} + \theta \Theta \epsilon_{t-13}$,该模型为一个季节周期为______的乘法季节模型,记为SARIMA (0,1,1) \mathbf{x} (0,1,1)_12
- 6 如果模型中存在信息影响不对称现象,即好消息和坏消息对波动有不同影响. 这种情况一般采用______EGARCH_模型和_____TGARCH_模型.

- 9 设随机变量U与V不相关且方程相等为 σ^2 ,且二阶矩存在. 令 $X_t = U\cos(\omega t) + V\sin(\omega t), t \in T$,则序列 $\{X_t, t \in T\}$ 的自相关函数 $\rho(s,t) =$
- 二. (24分)简单计算题(每题8分,答案请写在答题纸上)
 - 1 对ARIMA(p,d,q)模型, 确定p,d,q, 并求出 $E\Delta Y_t$ 和 $Var(\Delta Y_t)$.

$$Y_t = 10 + 1.5Y_{t-1} - 0.5Y_{t-2} + \epsilon_t - 0.5\epsilon_{t-1}, \quad \epsilon_t \sim WN(0, 1).$$

- **2** 对ARMA(1,1)序列 $X_t = 0.5X_{t-1} + \epsilon_t 0.25\epsilon_{t-1}, \epsilon_t \sim WN(0, \sigma^2)$, 求解它的自相关系数 $\rho_k, k \geq 2$ 的递推式.
- 3 对任意一个MA(1)序列,

$$X_t = \epsilon_t + \theta \epsilon_{t-1}, \quad \epsilon_t \sim WN(0, \sigma^2),$$

求证它的1阶自相关系数满足 $-1/2 < \rho_1 < 1/2$

- 三. (50分) 计算题(每题答案请写在答题纸上):
 - 1. 考虑如下的时间序列模型ARMA(2,1)

$$(1 - B + 0.5B^2)X_t = (1 + 0.4B)\epsilon_t, \ \epsilon_t \sim WN(0, \sigma^2),$$

- (1) 判断ARMA(2,1)模型的平稳性和可逆性.
- (2) 如果是平稳的, 计算线性过程 $X_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j}$ 的系数 ψ_1, ψ_2, ψ_3 . **1.4,1.9, 2.6**
- (3) 如果是可逆的, 请写出该过程的逆转形式. n=1 1
- 2. 考虑一GARCH(1,1)模型,

n=2 -1.4 $n>=3 (-0.4)^n-(-0.4)^(n-1)+0.5*(-0.4)^(n-2)$

$$y_t = \sqrt{h_t} \epsilon_t, \epsilon_t \sim IID \ N(0, 1),$$

 $h_t = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta_1 h_{t-1}, \quad \alpha_0, \alpha_1, \beta_1 \ge 0, \alpha_1 + \beta_1 < 1.$

(1) 验证y_t²为ARMA(1,1)模型,

$$y_t^2 = \alpha_0 + (\alpha_1 + \beta_1)y_{t-1}^2 + u_t - \beta_1 u_{t-1}, \quad u_t = y_t^2 - h_t.$$

- (2) 计算 y_t^2 的均值和自协方差函数 γ_k .
- 3. 设 X_t 为一ARMA(1,1)序列

$$X_t = \phi_1 X_{t-1} + \epsilon_t + \theta_1 \epsilon_{t-1}, \quad \epsilon_t \sim WN(0, \sigma^2).$$

 $\diamondsuit Y_t = \frac{1}{2}(X_t + X_{t-1}),$

- (1) 基于 X_{t-1} , X_t 对 Y_{t+1} 做最佳线性预测, 给出表达式, 并计算均方误差.
- (2) 求 Y_t 的谱密度.