Probabilistic Robotics Course

EKF SLAM [Application]

Dominik Schlegel

schlegel@diag.uniroma1.it

Deptartment of Computer Control and Management Engineering Sapienza University of Rome

Outline

- Scenario
- Controls
- Observations
- Non-Linear Systems and Gaussian Noise
- Extended Kalman Filter SLAM

Scenario

Orazio moves on a 2D plane

- Is controlled by translational and rotational velocities
- Senses a set of uniquely distinguishable landmarks through a "2D landmark sensor"
- •The location of the landmarks in the world is **not** known

Approaching the problem

We want to develop a KF based algorithm to track the position of Orazio as it moves (localization) and, at the same time, the position of the observed landmarks (mapping).

The inputs of our algorithms will be

- velocity measurements
- landmark measurements

We have no prior knowledge of the map.

EKF: Domains

Predict: incorporate new control

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Correct: incorporate new measurement

$$\mu_{z} = \mathbf{h}(\mu_{t|t-1})$$

$$\mathbf{C}_{t} = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mu_{t|t-1}}$$

$$\mathbf{K}_{t} = \mathbf{\Sigma}_{t|t-1} \mathbf{C}_{t}^{T} \left(\mathbf{\Sigma}_{z} + \mathbf{C}_{t} \mathbf{\Sigma}_{t|t-1} \mathbf{C}_{t}^{T} \right)^{-1}$$

$$\mu_{t|t} = \mu_{t|t-1} + \mathbf{K} \left(\mathbf{z}_{t} + \mu_{z} \right)$$

$$\mathbf{\Sigma}_{t|t} = (\mathbf{I} - \mathbf{K}_{t} \mathbf{C}_{t}) \mathbf{\Sigma}_{t|t-1}$$

Domains robot state

Define

Pefine
$$\mathbf{x}_t^r = \left(\begin{array}{c} x_t \\ y_t \\ \theta_t \end{array} \right) \in \Re^3$$

poses mapped to 3D vectors

$$\mathbf{x}_t^{[n]} = \left(\begin{array}{c} x_t^{[n]} \\ y_t^{[n]} \end{array} \right) \in \Re^2$$

space of controls (inputs)

$$\mathbf{u}_t = \left(\begin{array}{c} u_t^1 \\ u_t^2 \end{array}\right) \in \Re^2$$

space of observations (measurements)

$$\mathbf{z}_t^{[m]} = \begin{pmatrix} x_t^{[m]} \\ y_t^{[m]} \end{pmatrix} \in \Re^2$$

$$m=1..M$$

EKF: Functions

Predict: incorporate new control

$$egin{array}{lll} \mu_{t|t-1} &= \left(\mathbf{f}(\mu_{t-1|t-1}, \mathbf{u}_{t-1})\right) \ \mathbf{A}_t &= \left. \left. rac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mu_{t-1|t-1}} \ \mathbf{B}_t &= \left. \left. rac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_{t-1}} \ \mathbf{\Sigma}_{t|t-1} &= \left. \mathbf{A}_t \mathbf{\Sigma}_{t-1|t-1} \mathbf{A}_t^T + \mathbf{B}_t \mathbf{\Sigma}_u \mathbf{B}_t^T
ight. \end{array}$$

Correct: incorporate new measurement

$$\mu_{z} = \mathbf{h}(\mu_{t|t-1})$$

$$\mathbf{C}_{t} = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mu_{t|t-1}}$$

$$\mathbf{K}_{t} = \mathbf{\Sigma}_{t|t-1} \mathbf{C}_{t}^{T} \left(\mathbf{\Sigma}_{z} + \mathbf{C}_{t} \mathbf{\Sigma}_{t|t-1} \mathbf{C}_{t}^{T}\right)^{-1}$$

$$\mu_{t|t} = \mu_{t|t-1} + \mathbf{K}_{t} \left(\mathbf{z}_{t} - \mu_{z}\right)$$

$$\mathbf{\Sigma}_{t|t} = (\mathbf{I} - \mathbf{K}_{t} \mathbf{C}_{t}) \mathbf{\Sigma}_{t|t-1}$$

Transition Function

Measurement Function

Noise considerations

Are our functions modeling reality 100%?

Control Noise

We assume the control inputs are effected by a zero-mean Gaussian noise resulting from the sum of two aspects:

- ulleta constant noise σ_v
- velocity dependent terms whose standard deviation grows with the speed (i.d.)
 - ullet translational noise $\sigma_{u_t^1}$
 - •rotational noise $\sigma_{u_t^2}$

$$\mathbf{n}_{u,t} \sim \mathcal{N}(\mathbf{n}_{u,t}; \mathbf{0}, \underbrace{\begin{pmatrix} \sigma_v^2 + \sigma_{u_t^1}^2 & 0 \\ 0 & \sigma_v^2 + \sigma_{u_t^2}^2 \end{pmatrix}}_{\Sigma_w})$$

Measurement Noise

We assume it is zero mean and constant

$$\mathbf{n}_z \sim \mathcal{N}(\mathbf{n}_z; \mathbf{0}, \underbrace{\begin{pmatrix} \sigma_z^2 & 0 \\ 0 & \sigma_z^2 \end{pmatrix}})$$

EKF: Jacobians

Predict: incorporate new control

$$\mu_{t|t-1} = \mathbf{f}(\mu_{t-1|t-1}, \mathbf{u}_{t-1})$$

$$\mathbf{A}_{t} = \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mu_{t-1|t-1}}$$

$$\mathbf{B}_{t} = \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_{t-1}}$$

$$\mathbf{\Sigma}_{t|t-1} = \mathbf{A}_{t} \mathbf{\Sigma}_{t-1|t-1} \mathbf{A}_{t}^{T} + \mathbf{B}_{t} \mathbf{\Sigma}_{u} \mathbf{B}_{t}^{T}$$

Correct: incorporate new measurement

$$\mu_{z} = \mathbf{h}(\mu_{t|t-1})$$

$$\mathbf{C}_{t} = \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mu_{t|t-1}}$$

$$\mathbf{K}_{t} = \mathbf{\Sigma}_{t|t-1} \mathbf{C}_{t}^{T} \left(\mathbf{\Sigma}_{z} + \mathbf{C}_{t} \mathbf{\Sigma}_{t|t-1} \mathbf{C}_{t}^{T} \right)^{-1}$$

$$\mu_{t|t} = \mu_{t|t-1} + \mathbf{K}_{t} \left(\mathbf{z}_{t} - \mu_{z} \right)$$

$$\mathbf{\Sigma}_{t|t} = (\mathbf{I} - \mathbf{K}_{t} \mathbf{C}_{t}) \mathbf{\Sigma}_{t|t-1}$$

Jacobian 1: State

$$\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) = \begin{pmatrix} x_{t-1} + u_{t-1}^{1} \cdot \cos(\theta_{t-1}) \\ y_{t-1} + u_{t-1}^{1} \cdot \sin(\theta_{t-1}) \\ \theta_{t-1} + u_{t-1}^{2} \\ \mathbf{x}_{t-1}^{[1]} \\ \mathbf{x}_{t-1}^{[2]} \\ \vdots \\ \mathbf{x}_{t-1}^{[N]} \end{pmatrix}$$

$$\mathbf{A}_t = \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^r} & \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[1]}} & \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[2]}} & \cdots & \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^N} \end{pmatrix}$$

Jacobian 2: Controls

$$\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) = \begin{pmatrix} x_{t-1} + u_{t-1}^{1} \cdot \cos(\theta_{t-1}) \\ y_{t-1} + u_{t-1}^{1} \cdot \sin(\theta_{t-1}) \\ \theta_{t-1} + u_{t-1}^{2} \\ \mathbf{x}_{t-1}^{[1]} \\ \mathbf{x}_{t-1}^{[2]} \\ \vdots \\ \mathbf{x}_{t-1}^{[N]} \end{pmatrix}$$

$$\mathbf{B}_t = \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{u}} = \begin{pmatrix} \cos(\theta_{t-1}) & 0 \\ \sin(\theta_{t-1}) & 0 \\ 0 & 1 \\ \hline 0 & 0 \\ \hline \vdots & \vdots \\ 0 & 0 \end{pmatrix} \qquad \begin{array}{c} \text{pose block} \\ \text{landmark block 1} \\ \hline & \text{landmark block N} \\ \end{array}$$

Jacobian 3: Measurements

For the measurement function, we need to derive w.r.t **all** state variables

Prediction of the nth landmark observation:

$$\mathbf{h}^{[n]}(\mathbf{x}_t) = \mathbf{R}_t^T (\mathbf{x}_t^{[n]} - \mathbf{t}_t)$$

The nth measurement Jacobian will have a block structure

$$\mathbf{C}_t^{[n]} = \frac{\partial \mathbf{h}^{[n]}(\cdot)}{\partial \mathbf{x}_t} = \begin{pmatrix} \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_t^r} & \mathbf{0} & \cdots & \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_t^{[n]}} & \cdots & \mathbf{0} \end{pmatrix}$$
pose block

Jacobian 3: Measurements

We need to calculate the derivatives only for the non zero blocks

$$\mathbf{h}^{[n]}(\mathbf{x}_t) = \mathbf{R}_t^T(\mathbf{x}_t^{[n]} - \mathbf{t}_t)$$

$$\frac{\partial \mathbf{h}^{[n]}(\cdot)}{\partial \mathbf{x}_{t}^{r}} = \begin{pmatrix} -\mathbf{R}_{t}^{T} & \frac{\partial \mathbf{R}_{t}^{T}}{\partial \theta_{t}} \left(\mathbf{x}_{t}^{[n]} - \mathbf{t}_{t} \right) \end{pmatrix} \qquad \frac{\partial \mathbf{h}^{[n]}(\cdot)}{\partial \mathbf{x}_{t}^{[n]}} = \mathbf{R}_{t}^{T}$$

$$\mathbf{C}_{t}^{[n]} = \frac{\partial \mathbf{h}^{[n]}(\cdot)}{\partial \mathbf{x}_{t}} = \begin{pmatrix} \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_{t}^{r}} & \mathbf{0} & \cdots & \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_{t}^{[n]}} & \cdots & \mathbf{0} \end{pmatrix}$$

$$\mathbf{pose block} \qquad \mathbf{landmark block}$$

Data Association

The observation z_t will originate from a subset of landmarks in the state.

The order of these observations does not necessarily match the order of the landmarks in the state.

Let j(m) be the index of the landmark that generates the mth observation block.

Data Association

For now we assume to know the assignment j.

With this assignment we can build a prediction based on M measured landmarks, and its Jacobian!

$$\mathbf{h}(\mathbf{x}_t) = \begin{pmatrix} \mathbf{h}^{[j(1)]} \\ \mathbf{h}^{[j(2)]} \\ \vdots \\ \mathbf{h}^{[j(M)]} \end{pmatrix} \qquad \mathbf{C}_t = \frac{\partial \mathbf{h}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial \mathbf{h}^{[j(1)]}}{\partial \mathbf{x}} \\ \frac{\partial \mathbf{h}^{[j(2)]}}{\partial \mathbf{x}} \\ \vdots \\ \frac{\partial \mathbf{h}^{[j(M)]}}{\partial \mathbf{x}} \end{pmatrix}$$

Hands On!

g2o Wrapper

Load your V-REP acquired dataset

```
[land, pose, transition, obs] = loadG2o('my_dataset.g2o');
```

This call returns an array of objects with the fields:

```
land =

1x25 struct array containing the fields:
    id
    x_pose
    y_pose
```

```
pose =

1x137 struct array containing the fields:
    id
    x
    y
    theta
```

```
transition =
  1x136 struct array containing the fields:
  id_from    id_to    v
```

```
obs =
  1x136 struct array containing the fields:
  pose_id
  observation
```

g2o Wrapper

Load your V-REP acquired dataset

```
[land, pose, transition, obs] = loadG2o('my_dataset.g2o');
```

This call returns an array of objects with the fields:

This time we don't know the landmarks!

```
pose =
  1x137 struct array containing the fields:
  id
    x
    y
    theta
```

```
obs =
  1x136 struct array containing the fields:
  pose_id
  observation
```

EKF SLAM

```
#load your own dataset dataset, without landmarks (first entry remains empty)
[ , poses, transitions, observations] = loadG2o("../datasets/dataset point.g2o");
#set initial pose at the origin - we don't know the map and neither our location
mu = [0: #x coordinate]
      0: #v coordinate
      0]; #orientation theta (yaw angle)
#initialize covariance: high value means high uncertainty
sigma = eve(3):
#bookkeeping: to and from mapping between robot pose (x,y, theta) and landmark indices (i)
#all mappings are initialized with invalid value -1 (meaning that the index is not mapped)
#since we do not know how many landmarks we will observe, we allocate a large enough buffer
id_to_state_map = ones(10000, 1)*-1;
state to id map \sqrt{} ones(10000, 1)*-1:
#simulation cycle: for the number of transitions recorded in the dataset
for t = 1:length(transitions)
  #obtain current transition
  transition = transitions(t):
  #obtain current observation
  observation = observations(t);
  #EKF predict
  [mu, sigma] = prediction(mu, sigma, transition);
  #EKF correct
  [mu, sigma, id to state map, state to id map] = correction(mu,
                                                              id to state map.
                                                              state to id map)
```

Populating the Map

Time: t

current mean

$$\mu_t = \left(\begin{array}{c} x_t^r \\ y_t^r \\ \theta_t^r \end{array}\right)$$

$$id_to_state_map = (-1 -1 ... -1 state_to_id_map = (-1 -1 ... -1 ... -1$$

Populating the Map

Time: t+1

current mean

Position 9

$$id_to_state_map = \begin{pmatrix} -1 & \dots & 1 & -1 & 2 & \dots & -1 \end{pmatrix}$$
 $state_to_id_map = \begin{pmatrix} 7 & 9 & -1 & \dots & -1 \end{pmatrix}$

Populating the Map

ld: 1

Time: t+2

current mean

$$\mu_{t+2} = \begin{pmatrix} x_{t+2}^r \\ y_{t+2}^r \\ \theta_{t+2}^r \\ \mathbf{x}_{t+2}^{[7]} \\ \mathbf{x}_{t+2}^{[9]} \\ \mathbf{x}_{t+2}^{[1]} \end{pmatrix}$$

$$id_to_state_map = \begin{pmatrix} 3 & \dots & 1 & -1 & 2 & \dots & -1 \end{pmatrix}$$

 $state_to_id_map = \begin{pmatrix} 7 & 9 & 1 & \dots & -1 \end{pmatrix}$

Two cases may arise:

- I have already seen the current landmark
- •The current one is a new landmark

example:

```
Time: t+3 current observations : { 7, 9, 2}
```

```
id_to_state_map = \begin{pmatrix} 3 & -1 & \dots & 1 & -1 & 2 & \dots & -1 \end{pmatrix}state_to_id_map = \begin{pmatrix} 7 & 9 & 1 & \dots & -1 & \end{pmatrix}
```

Two cases may arise:

- I have already seen the current landmark
- •The current one is a new landmark

Trick

First correct with the reobserved landmarks, then add the new ones

example:

First consider only the reobserved landmarks

Time: t+3

observations: { 7, 9, _ }

current landmark: 7

$$\mathbf{C}_t^{[n]} = \frac{\partial \mathbf{h}^{[n]}(\cdot)}{\partial \mathbf{x}_t} = \begin{pmatrix} \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_t^r} & \mathbf{0} & \cdots & \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_t^{[n]}} & \cdots & \mathbf{0} \end{pmatrix}$$

I need to know what is the position of landmark 7 in the mu vector

$$id_to_state_map = \begin{pmatrix} 3 & -1 & \dots & 1 & -1 & 2 & \dots & -1 \end{pmatrix}$$
$$state_to_id_map = \begin{pmatrix} 7 & 9 & 1 & \dots & -1 \end{pmatrix}$$

First consider only the reobserved landmarks

```
Time: t+3
```

observations: { 7, 9, _ }

current landmark: 7

$$\mathbf{C}_t^{[n]} = \frac{\partial \mathbf{h}^{[n]}(\cdot)}{\partial \mathbf{x}_t} = \begin{pmatrix} \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_t^r} & \mathbf{0} & \cdots & \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}_t^{[n]}} & \cdots & \mathbf{0} \end{pmatrix}$$

It's the first landmark we have seen

$$id_to_state_map = (3 -1 ... 1 -1 2 ... -1)$$

 $state_to_id_map = (7 9 1 ... -1)$

Same reasoning holds for landmark 9

Correct/Update the filter with the reobserved landmarks, then add the new landmark 2

 $\mu_{t+3} = \begin{pmatrix} x_{t+3}^r \\ y_{t+3}^r \\ \theta_{t+3}^r \\ \mathbf{x}_{t+3}^{[7]} \\ \mathbf{x}_{t+3}^{[9]} \\ \mathbf{x}_{t+3}^{[1]} \\ \mathbf{x}_{t+3}^{[2]} \end{pmatrix} \quad \boldsymbol{\Sigma}_{t+3} = \begin{pmatrix} \boldsymbol{\Sigma}_{t+3} \\ \boldsymbol{\Sigma}_{t+3} \end{pmatrix}$

Add initial mean and

$$oldsymbol{\Sigma}_{t+3} = egin{pmatrix} oldsymbol{\Sigma}_{t+3} \ oldsymbol{\Sigma}_{t+3} \end{pmatrix}$$

$$id_to_state_map = \begin{pmatrix} 3 & -1 & \dots & 1 & -1 & 2 & \dots & -1 \end{pmatrix}$$
$$state_to_id_map = \begin{pmatrix} 7 & 9 & 1 & \dots & -1 \end{pmatrix}$$

Correct/Update the filter with the reobserved landmarks, then add the **new** landmark 2

$$\mu_{t+3} = \begin{pmatrix} x_{t+3}^r \\ y_{t+3}^r \\ \theta_{t+3}^r \\ \mathbf{x}_{t+3}^{[7]} \\ \mathbf{x}_{t+3}^{[9]} \\ \mathbf{x}_{t+3}^{[1]} \\ \mathbf{x}_{t+3}^{[2]} \end{pmatrix} \quad \mathbf{\Sigma}_{t+3} = \begin{pmatrix} \mathbf{\Sigma}_{t+3} \\ \mathbf{\Sigma}_{t+3} \end{pmatrix}$$
 se_map = $\begin{pmatrix} 3 & 4 & \dots & 1 & -1 & 2 & \dots & -1 \end{pmatrix}$

$$id_to_state_map = \begin{pmatrix} 3 & 4 & \dots & 1 & -1 & 2 & \dots & -1 \\ state_to_id_map = \begin{pmatrix} 7 & 9 & 1 & 2 & \dots & -1 \end{pmatrix}$$

Update vectors