ELEC 4700 Assignment-2 Finite Difference Method

Due: Sunday, Feb. 25, 2018 11:59PM

Laplace's equation by FD can be used to solve electrostatic potential problems $\nabla^2 V = 0$, or current flow problems in inhomogeneous solids $\nabla (\sigma_{x,y} \nabla V) = 0$. Either case can be modeled as an orthogonal resistor network with resistors of value 1 or $\frac{1}{\sigma}$. The conception of the problem as an orthogonal 2-D mesh of resistors is very useful for setting up the boundary conditions (BC) and the interface conditions where two regions have different σ .

Figure 1: Rectangular region with isolated conducting sides

- 1. Use the Finite Difference Method (I strongly suggest you use the matrix form of the problem GV = F) to solve for the electrostatic potential in the rectangular region $L \times W$ shown in Figure 1 using $\nabla^2 V = 0$. In this exercise we'll experiment to see how accurate our model is.
 - (a) Solve the simple case where $V = V_0$ at x = 0 and V = 0 at x = L. Note that in this case the top/bottom BC are not fixed. You could use $\frac{dV}{dy} = 0$ for the BC or treat this as a 1-D case.
 - (b) Solve the case where $V = V_0$ at x = 0, x = L and V = 0 at y = 0, y = W. Compare the solution of a bunch of mesh sizes to the analytical series solution:

$$V(x,y) = \frac{4V_0}{\pi} \sum_{n=1,3.5...}^{\infty} \frac{1}{n} \frac{\cosh\left(\frac{n\pi x}{a}\right)}{\cosh\left(\frac{n\pi b}{a}\right)} \sin\left(\frac{n\pi y}{a}\right)$$

A typical plot is given in Figure 2.

Draw some conclusions about meshing. (Hint: does the solution approach the analytical solution?). Note that both solutions have some explicit error. It is useful to plot a "movie" of the analytical series solution as it converges to the "real" solution. How do you know/decide when to stop the analytical series? Griffiths "Intro to Electrodynamics 3e" contains a derivation of the analytical solution in Example 3.4. Comment on the advantages and disadvantages of the numerical versus analytical solution.

Figure 2: Typical potential plot for case where ends are at same potential and sides at same potential.

Note: For plots use a ratio of 3/2 for L/W.

Include in Report

a) 2-D plot of V(x) b) Matching surface plots of V(x,y). Only include one plot for each. Conclusions on meshing and comments on numerical vs analytical

- 2. Use the Finite Difference Method to solve for the current flow in the rectangular region $L \times W$ shown in Figure 3 using $\nabla (\sigma_{x,y} \nabla V) = 0$. To model the boxes as highly resistive we will use a low $\sigma_{x,y}$ inside the boxes. Note that $\sigma_{x,y}$ needs to remain finite. Start with $\sigma = 1$ outside the boxes and $\sigma = 10^{-2}$ inside. In this exercise we'll experiment to see how the current flow is affected by the "bottle-neck".
 - (a) Calculate the current flow at the two contacts. Generate plots of $\sigma(x,y)$, V(x,y), $\vec{E_x}$, $\vec{E_y}$, $\vec{J}(x,y)$
 - (b) Investigate mesh density.
 - (c) Investigate narrowing of "bottle-neck".
 - (d) Investigate varying the σ of the box.

Include in Report

- a) Current , plots: $\sigma(x,y),\,V(x,y),\,\vec{E}(x,y),\,\vec{J}(x,y)$ b) Graph of current vs mesh size
- c) Graph or table of current vs various bottle-necks. d) Graph of current vs σ .

Figure 3: Rectangular region with isolated conducting sides and "bottle-neck".