Geburtstagsparadox

Leonardo Maglanoc, Julia Spindler, Ronald Skorobogat

TUM

July 18, 2020

Einleitung

Lösungsansatz

Genauigkeit

Performanz

Ausblick

Einleitung

Lösungsansatz

Genauigkeit

Performanz

Einleitung

$$P = 1 - \left(\underbrace{\frac{n}{n} \cdot \frac{n-1}{n} \cdot \dots \cdot \frac{n-k+1}{n}}_{k-\text{mal}}\right) = 1 - \frac{n!}{n^k \cdot (n-k)!}$$
$$k \ge \frac{1 + \sqrt{1 + 8n \cdot \ln 2}}{2}$$

Näherungsverfahren für: $\sqrt{1+8n\cdot \ln 2}$

Verlauf der Geburtstagsfunktion

Einleitung

Lösungsansatz

Genauigkeit

Performanz

Lookup-Tabelle

- LUT speichert 2¹⁷ Float-Werte
- 1. Hälfte: $i \in \left[0 \cdots 2^{16} 1\right] \implies \sqrt{1 + 8 \cdot \ln(2) \cdot i}$
- Parameter kann direkt als Index verwendet werden
- Index i gibt den genauen Wert unter der Formel mit i als Eingabe

2. Tabellenhälfte mit exponentiellen Abständen

$$\mathsf{table}[\mathsf{i}] = \sqrt{(8 \cdot \mathit{In}(2) \cdot 2^{16}) + \mathit{k}^{\mathit{i}}}$$

$$\mathit{i} = \mathsf{log}_{\mathit{k}}(\mathit{m}) = \left| \frac{\mathsf{Exponent} - 127}{\mathsf{log}_{\mathit{2}}(\mathit{k})} + \mathsf{log}_{\mathit{k}}(\mathsf{Mantisse}) \right|$$

Heron-Verfahren

$$x_{n+1} = \frac{1}{2} \cdot \left(x_n + \frac{q}{x_n} \right)$$

q: die 1. Approximation

Reihendarstellung

- Taylorreihe nähert über Ableitungen die
 Wurzelfunktion an
- Näherung nur in einem Bereich möglich
- Gewählter Bereich: [0.25, 2.25]

Umsetzung mit größeren Zahlen

- Verkleinern jeder Zahl auf den Bereich durch Division mit Quadrat einer Zweierpotenz
- Finden dieses Bereichs durch binäre Suche
- Zahl unter der Wurzel liegt letztendlich zwischen 0.5 und 2

Beispielrechnung

$$x = 489$$

Intervall: $]2^7, 2^9]$

Zugeordnete Zweierpotenz: $\sqrt{2^8} = 2^4$

$$x' = \frac{489}{24^2} \approx 1.91$$

Nach Taylorreihe:
$$\sqrt{\frac{489}{2^{4^2}}} = \frac{\sqrt{489}}{2^4}$$

Rahmenprogramm

- -s Option Kein_Argument
- -t Option Kein_Argument
- -b Option Anzahl_von_Iterationen
- -h Option Kein_Argument

Ausführungsbeispiel:

.../team120/Implementierung\$./main -b 100

Einleitung

Lösungsansatz

Genauigkeit

Performanz

Genauigkeit

Eingabe	Abweichung Tabelle	Abweichung Reihe	Abweichung Asm
2	0.0000153%	-0.0003815%	0.0000153%
33	-0.0000153%	0.0009689%	-0.0000153%
73	0.0000153%	0.0000153%	0.0000153%
365	0%	0.0043488%	0%
737474	-0.0000153%	-0.0000153%	-0.0000153%
9898989	-0.0000153%	-0.0001450%	0%
9898242989	-0.0000153%	-0.0002060%	0%
532578665767	0%	-0.0024109%	0%
$2^{64} - 1$	0%	0%	0%

Durchschnittliche Genauigkeit: >99.95%

Genauigkeit der Reihenimplementierung

Einleitung

Lösungsansatz

Genauigkeit

Performanz

Performanz

Performanz auf Rechner mit CPU Intel Celeron T3500 @ 2.10GHz, Ubuntu 20.04, Linux-Kernel 5.4.0

Performanzergebnisse im Wertebereich $[2^{16}, 2^{64} - 1]$

Performanzergebnisse im Wertebereich $\left[0,2^{16}-1\right]$

Einleitung

Lösungsansatz

Genauigkeit

Performanz

Ausblick

Ausblick

- LUT-Methode: Optimierung der Heron-Berechnungen
- Reihen-Methode: Einteilung des Eingabeparameters in mehr Bereiche
- eher sinnlos standardisierte (Mathe-)Funktionen selber zu implementieren