第一章 应力状态(与应变状态)

塑性力学基本假设:

- 1. 材料连续、均匀。
- 2. 静水应力只引起弹性的体积变形、不影响塑性剪切变形 (岩土、软金属不适用)。
- 3. 温度不高时忽略流变(蠕变、松弛...)效应,应变率不高时忽略应变率效应。

一点的应力状态:

- 1. 指一点附近的受力情况,即过该点的所有微截面上的应力大小和方向(应力矢量)。
- 2. 注意到任意截面的应力矢量可以用三个特殊微分面上的9个应力分量(6个独立)来表征。

应力张量:

将一点的三个特殊微分面上的9个应力分量按一定顺序排成3×3的矩阵,即为应力张量,每个元素的第一个下标表示应力作用面、第二个下标表示应力作用方向、值表示应力大小。

应力张量的不变量:

1. 主应力三次方程的二次项、一次项、常数项的系数 I_1 、 I_2 、 I_3 只取决于点的应力状态,而与坐标系的选择无关,称这三个系数为应力张量的三个不变量。

主应力、主方向、主平面:

- **1.** 过一点的所有微截面中,一定存在三个正交的微截面,它们所对的应力矢量与截面法向重合(截面的剪应力为零、只剩正应力),这样三个正交的应力矢量称为**主应力**。
- 2. 这样三个正交的微截面的法向称为主方向。
- 3. 这样三个正交的微截面称为主平面。

(主)应力空间:

- **1.** 以 6 个独立的应力分量为基建立一个六维超空间,此空间中的一点对应于物体内某点的应力状态,该空间称为应力空间。
- **2.** 以 3 个应力主方向为基建立坐标系,则该三维空间中的一点对应于物体内某点的应力状态,该空间称为(主)应力空间。
- 3. 注意到(主)应力空间既非几何空间、又非物理空间,只是为描述各点的应力状态而引入的一个三维空间。
- 4. 注意到在主应力空间中,应力张量退化成应力矢量(应力状态矢)。

L直线、π平面:

- 1. 在主应力空间中,一条通过原点及第 I 象限、且与三个应力主轴夹角相等的直线称为 L 直线,该直线上各点代表应力状态的球量部分(应力球张量、静水应力、均匀应力状态),与弹性体积变形有关。
- 2. 在主应力空间中,一个通过原点、且与静水轴(L 直线)垂直的平面即为**π平面**,该平面 上各点代表应力状态的**偏量**部分(应力偏张量、纯剪应力状态),与塑性剪切变形有关。

八面体应力:

- 1. 在主应力空间内,过任一点(代表某物理点的应力状态)作一个特殊的微截面,该微截面的法向与三个应力主轴夹角相等;每个象限作一个,则形成一个封闭的正八面体,这8个微截面上的应力称**八面体应力**。
- **2.** 八面体(8 个微截面上的)正应力 $\sigma_{oct} = \sigma_m$,表征应力状态的球量部分,与弹性体积变形有关。
- **3.** 八面体(8 个微截面上的)剪应力 $\tau_{oct} = \frac{1}{3} \sqrt{(\sigma_x \sigma_y)^2 + \dots + 6(\tau_{xy}^2 + \dots)}$,表征应力状态的偏量部分,与弹性及塑性剪切变形有关。

应力强度:

- **1.** 在传统塑性力学中,塑性变形(及屈服)只与应力状态的偏量部分有关,于是可以用一个八面体剪应力 τ_{oct} 代替 6 个应力分量作为塑性参数,为便于计算,将 τ_{oct} 乘上 $3/\sqrt{2}$,即为**应力强度** σ_{ic} .
- **2.** 应力强度 σ_i将 6 个应力分量(5 个独立的应力偏量)化作只有一个参数的"等效"单轴应力状态,故又称相当应力、广义应力、有效应力。

$\sigma_i - \tau_{oct} - \rho - J_2$ 的关系

应力强度	$\sigma_i = \frac{1}{\sqrt{2}} \sqrt{(\sigma_x - \sigma_y)^2 + \dots + 6(\tau_{xy}^2 + \dots)}$
八面体剪应力	$\tau_{oct} = \frac{1}{3} \sqrt{(\sigma_x - \sigma_y)^2 + \dots + 6(\tau_{xy}^2 + \dots)}$
π平面应力偏矢半径	$\rho = \frac{1}{\sqrt{3}} \sqrt{(\sigma_x - \sigma_y)^2 + \dots + 6(\tau_{xy}^2 + \dots)}$
应力偏量第二不变量	$\sqrt{J_2} = \frac{1}{\sqrt{6}} \sqrt{(\sigma_x - \sigma_y)^2 + \dots + 6(\tau_{xy}^2 + \dots)}$

Lode 参数、Lode 角

1. 背景: Tresca 屈服准则(最大剪应力判据)未考虑中间主应力 σ_2 对剪切屈服的影响,于 是,Lode 便在 σ_1 、 σ_3 一定的情况下,改变 σ_2 的取值,以研究中间主应力对屈服的影响:

$$\sigma_2 = \left[\frac{1}{2} (\sigma_1 + \sigma_3) + \frac{1}{2} (\sigma_1 - \sigma_3) \cdot \mu_\sigma \right], \quad -1 \le \mu_\sigma \le 1$$

2. Lode 参数: 由上式反推, $\mu_{\sigma} = \frac{2\sigma_2 - (\sigma_1 + \sigma_3)}{\sigma_1 - \sigma_3}$, 或 $\mu_{\sigma} = \sqrt{3} \cdot \tan(\theta_{\sigma})$.

3. Lode 角: 应力状态矢在 π 平面的投影 ρ 与 x 轴的夹角, $\theta_{\sigma} = \frac{1}{\sqrt{3}} \cdot \arctan(\mu_{\sigma})$.

主坐标系的旋转、x-y-L 坐标系

- **1.** 将应力主轴 $σ_1$ 、 $σ_2$ 、 $σ_3$ 向 π 平面投影,得线性相关的三个偏应力轴 S_1 、 S_2 、 S_3 ; 在 π 平面上,取 S_2 为 y 轴,其垂直方向为 x 轴;在 π 平面外,取静水轴 L 为第三轴,则得正交坐标系 x-y-L (由 $σ_1$ - $σ_2$ - $σ_3$ 坐标系旋转而得)。
- **2.** 传统塑性力学只关心应力偏量(π 平面上的应力状态),即只需要用到 x-y 坐标系,比如 Lode 角正是应力偏矢与 x 轴的夹角。

应力路径、加载历史:

- **1.** 随着荷载的改变,物体内各点的应力状态不断变化,在应力空间中,相应的应力点也在不断改变其位置,在这个过程中,应力点在应力空间中描绘出的轨迹即为**应力路径**。
- 2. 以往的应力路径中,凡引起塑性变形的(加载的)部分,称为加载历史。

应变 / 应变增量、应变强度 / 应变增量强度

1. 应变的微分≠应变增量:

$$d(\varepsilon_{ij}) \neq d\varepsilon_{ij} = \frac{1}{2}(du_{i,j} + du_{j,i})$$

前者从初始位置算起、后者从瞬时位置算起,应变增量的积分 $\int d\varepsilon_{ij}$ 无物理意义,除非应变主轴方向保持不变。

2. 应变强度的全微分≠应变增量强度:

$$d(\varepsilon_i) = \frac{\partial \varepsilon_i}{\partial \varepsilon_{kn}} d\varepsilon_{kn}, \quad d\varepsilon_i = \sqrt{\frac{2}{3}} \cdot \sqrt{d\varepsilon_{kn}} d\varepsilon_{kn}$$

3. 塑性应变增量强度:

$$\mathrm{d}\varepsilon_{i}^{p} = \sqrt{\frac{2}{3}} \cdot \sqrt{\mathrm{d}\varepsilon_{kn}^{p}\mathrm{d}\varepsilon_{kn}^{p}}$$

塑性应变增量强度 $\mathrm{d}\varepsilon_i^p$ 沿应变路径的积分 $\int \mathrm{d}\varepsilon_i^p$ 无物理意义,只是一个畸变参数,可以度量畸变程度、反映硬化程度。

第二章 屈服条件(初始屈服面、加载面、加卸载准则)

屈服:

• 材料点产生新的不可恢复(塑性)变形。

初始屈服条件、初始屈服函数、初始屈服面、初始屈服曲线:

- 1. 材料点开始出现塑性变形时其应力状态应满足的条件, 称为初始屈服条件(简称屈服条件)。
- **2.** 材料点的屈服与 6 个独立的应力分量有关,故可将初始屈服条件表示成这 6 个应力分量的函数,即**初始屈服函数**:

$$f(\sigma_x, \sigma_y, \sigma_z, \tau_{xy}, \tau_{yz}, \tau_{zx}) = 0, \quad \exists \vec{k} \ f(\sigma_{ij}) = 0$$

忽略各向异性时,初始屈服函数与坐标轴方向无关,可简化为3个主应力分量、或3个应力张量不变量的函数:

$$f(\sigma_1, \sigma_2, \sigma_3) = 0, \quad \vec{x} \quad f(I_1, I_2, I_3) = 0$$

忽略静水应力对屈服的影响时,可简化为2个应力偏量不变量的函数:

$$f(J_2, J_3) = 0$$
, since $J_1 = 0$

- 3. 初始屈服函数在由 6 个应力分量组成的应力空间内为一个六维超曲面,称为初始屈服面; 忽略各向异性时,初始屈服函数在主应力空间内成为一个三维曲面,即初始屈服面,它 是弹性阶段的界限,应力点落在面内则为初始弹性状态、落在面上则为塑性状态; (或定义为,在应力空间中,从原点出发的所有应力路径上的屈服应力状态点连成的曲面)
- **4.** 忽略静水应力对屈服的影响时,屈服函数只和应力偏量有关,屈服条件沿静水轴不会发生变化,所以将屈服曲面投影到π平面上必然得到唯一的一条曲线,即π平面上的**初始屈服曲线**。

π平面上的初始屈服曲线 C 的特性:

- 1. 不会通过原点,一定将原点包围在内部;
- 2. 外凸性(材料点只有一次初始屈服,由原点向外做的直线与 C 只能相交一次):
- 3. 忽略各向异性,则曲线对称于 S_1 、 S_2 、 S_3 轴;
- 4. 忽略包辛格效应,则曲线对称于原点;
 - →屈服曲线分成相同的 12 部分,试验时可只做 Lode 角 0~30° 范围即可。

静水应力对屈服的影响(岩土等颗粒摩擦材料):

- 1. 随着静水压力的增加,**剪切屈服**越来越难发生,屈服曲面呈锥形、向第一象限放射;
- 2. 静水压力超过一定水平,亦能引起不可恢复(塑性)变形,即发生**体积屈服**, 考虑了体积屈服的屈服条件:帽盖模型、剑桥模型、HS 模型...

Tresca、Mises 屈服条件——传统(金属)塑性力学

	Tresca 条件	Mises 条件	
判断方法	最大剪应力 达到一定数值时,材料 开始进入塑性	应力强度 达到一定数值时,材料开始进入塑性; 物理解释:剪切变形比能达到阈值时	
单轴试验 屈服判据	$\frac{\sigma_1 - \sigma_3}{2} = \frac{\sigma_s - 0}{2} ($ 内接于 Mises 圆) $\frac{1}{\sqrt{2}} \sqrt{(\sigma_x - \sigma_y)^2 + \dots + 6(\tau_{xy}^2 + \dots)} = \frac{1}{\sqrt{2}} \sqrt{2} \sqrt{2}$		
纯剪试验 屈服判据	$\frac{\sigma_1 - \sigma_3}{2} = \tau_s \text{ (外切于 Mises 圆)}$	$\frac{1}{\sqrt{2}}\sqrt{(\sigma_x-\sigma_y)^2+\cdots+6(\tau_{xy}^2+\cdots)}=\frac{1}{\sqrt{2}}\sqrt{6\cdot\tau_s^2}$	
优点	事先知道主应力次序时,计算简单	考虑了中间主应力对屈服的影响; 屈服曲线光滑、克服奇异性、便于数学处理;	
缺点	未考虑中间主应力对屈服的影响; 三个不等式造成数学上的不便; 角点不光滑,具有奇异性;		
	未考虑静水应力对屈服的影响(屈服面开口、未考虑体积屈服),对岩土材料不太适用		

Mohr-Coulomb、Drucker-Prager 屈服条件——岩土塑性力学 1

	M-C 条件	D-P 条件	
	材料点最危险微截面上剪应力τn达到阈值时,该		
判断方法	点开始进入屈服;	圆锥形屈服面,内切于 M-C 六棱锥;	
	剪应力阈值与正应力 σ_n 正相关;		
背景	广义 Tresca 的一个特例	广义 Mises 的一个特例(内切 Tresca)	
	(考虑内摩擦的 Tresca)	(考虑静水应力对屈服的影响)	
屈服判据 1	$\tau_{n} = c + \sigma_{n} \cdot \tan(\varphi)$		
屈服判据 2	$f = \frac{1}{2}(\sigma_1 - \sigma_3) - \frac{1}{2}(\sigma_1 + \sigma_3) \cdot \sin \varphi - c \cdot \cos \varphi = 0$	$f = \alpha \cdot I_1 + \sqrt{J_2} + k = 0$	
	考虑了静水应力对剪切屈服的影响		
优点		考虑中间主应力对剪切屈服的影响;	
		屈服曲面光滑、非奇异、便于计算;	
缺点	未考虑中间主应力对剪切屈服的影响;		
	锥顶和棱线上的导数方向不定、形成奇异性;		
	屈服曲面开口,未能反映岩土材料在高静水压力下的体积屈服		

广义 Tresca、广义 Mises 屈服条件——岩土塑性力学 1'

- **1.** 在 Tresca 条件中加入静水应力的影响,形成各种正六棱锥形屈服面;或采用不同的 Tresca 六边形定义方式,形成非正六棱锥形(比如 M-C)屈服面,即为**广义 Tresca**。
- **2.** 将 M-C 六棱锥修圆,比如取 M-C 内切圆锥即得 Drucker-Prager 屈服面,此外还可取 M-C 三棱外接圆锥、交接圆锥、以及其他各种广义 Tresca 六棱锥的拟合圆锥。

帽盖模型、剑桥模型、HS 模型——岩土塑性力学 2

- **1.** Mohr-Coulomb 等广义 Tresca 模型、及 Drucker-Prager 等广义 Mises 模型,虽考虑了静水压力对剪切屈服的影响,但未能反映岩土材料在高静水压力下的体积屈服。
- 2. 在广义 Tresca 或广义 Mises (常取 M-C 或 D-P) 上加一个"帽盖",形成封闭的屈服曲面,即为**帽盖模型**;它考虑了体积屈服和硬化,亦考虑了剪切屈服,但一般不考虑剪切硬化,注意到,该模型得到了岩土试验的广泛支持。

后继屈服条件、后继屈服函数、后继屈服面、后继屈服曲线

(硬化条件) (硬化函数/加载函数) (硬化面/加载面) (硬化曲线/加载曲线)

- **1.** 用于判断材料点在发生初始屈服后的某一时刻,是处于后继弹性状态、还是塑性状态的准则,称为**硬化条件、**或后继屈服条件;
- **2.** 后继屈服条件可表示为一点的瞬时应力状态及加载路径(塑性变形的大小和历史)的函数,即**硬化函数**、或**加载函数**、或**后继屈服函数**:

$$f(\sigma_{ij}, K) = 0$$

K 为反映加载路径(塑性变形的大小和历史)的参数,称**硬化参数**。

- 3. 在主应力空间内,后继屈服函数是以 K 为参数的一簇曲面,称为**后继屈服曲面、**或**硬化面、或加载面**,每一个受力瞬时所对的后继屈服面代表后继弹性阶段的界限。
- **4.** 忽略静水应力对屈服的影响时,对于给定的加载时刻(加载路径已经确定),屈服函数只和应力偏量有关,屈服条件沿静水轴不会发生变化,此时将屈服曲面投影到 π 平面上必然得到唯一的一条曲线。于是,**后继屈服曲面**在 π 平面上的投影称为**后继屈服曲线**。

硬化法则

• 确定屈服条件随塑性变形的变化(确定后继屈服面的位置)。

单一曲线硬化假设、等向硬化模型、运动硬化模型、组合模型

1. 在加载符合依留辛**简单加载**条件(各应力分量按固定比例增加、v=0.5、 $\sigma_{i=A*\epsilon_{i}}$)时,硬化函数可以用应力强度 σ_{i} 和应变强度 ϵ_{i} 的确定性函数关系来表示,即**单一曲线硬化假设**:

$$f(\sigma_{ij}, K) = 0 \implies \sigma_i = \Phi(\varepsilon_i)$$

此假设采用了应力强度 σ_i代替 6 个应力分量,有 Mises 屈服条件的影子。

在单一曲线硬化假设下,这种确定性函数关系是材料特性,和应力状态无关,可以通过简单应力状态试验来确定,比如在单轴拉伸试验中:

$$\sigma = \Phi(\varepsilon)$$
 since $\sigma_i = \sigma$, $\varepsilon_i = \varepsilon$

优缺点:单一曲线假设要求应力路径是单调的,适用于全量理论(简单加载),对于复杂加载(非简单加载),部分材料点会发生卸载,单一曲线假设要靠单轴单调加载试验确定硬化函数、显然不能适应弹性卸载的情况。

2. 假设经过初始屈服后的屈服面(硬化面)保持形状、中心位置不变,只是随着塑性变形的 发展而单调、均匀地向外膨胀(加载历史只会单调地改变 π 平面上屈服曲线到原点的距 离,而不会改变初始屈服函数的形式),即**等向硬化模型**:

$$f(\sigma_{ij}, K) = 0 \implies f = f^*(\sigma_{ij}) - K(k) = 0$$

若初始屈服条件选的是 Mises 条件(后继屈服也必为 Mises 表达式),等向硬化模型为:

$$\sigma_{i} = K(k)$$
, since Mises: $f^{*}(\sigma_{ii}) = \sigma_{i}$

随着塑性变形的发展(加载历史的产生), K(k)按照一定函数关系单调递增, 两套理论:

理论 1: 假设硬化程度 K(k)只是总塑性功 W_p 的函数 ,而与应变路径的形式无关,所以可由简单应力路径(如单拉)确定硬化函数 F:

$$\sigma_{i} = F(W_{p}),$$
 单轴: $\sigma = F(\cdots)$

理论 2: 假设硬化程度 K(k)是畸变参数的函数:

$$\sigma_{i} = H(\int d\varepsilon_{i}^{p})$$

可以通过单轴试验确定硬化函数 H:

$$\sigma = \Phi(\varepsilon) \implies H' = \frac{E\Phi'}{E - \Phi'}$$

优缺点:可用于增量理论、可适应复杂加载,容易进行数学处理;但在试验中塑性变形本身表现出一定的各向异性(甚是对初始各向同性材料),且由于包辛格效应,一个方向的硬化会伴随着另一个方向的软化(而不是等量的硬化),所以假设硬化面能保持初始屈服面的对称性、保持中心位置不变是不符合实际的。

3. 假设材料点在塑性变形的方向被硬化时,在相反的方向被等量地软化,这样,在随着塑性 变形的发展,屈服面的大小和形状都不变,只是整体在应力空间中作平移,此即**运动硬** 化模型,是考虑包辛格效应的简化模型。

优缺点:可以在一定程度上反映包辛格效应。

4. 将运动硬化模型与等向硬化模型结合起来,使屈服面的形状、大小、位置均随塑性变形的 发展而变化,即**组合硬化模型**。

优缺点:可以更好地反映材料的包辛格效应、更符合试验结果;但太过复杂,不便于应用。

加、卸载准则

- 1. 在复杂加载情况下(采用增量法),当材料点在某一瞬时已经处于屈服状态时,对 6 个应力分量施加 6 个微小增量,针对这个应力增量发生的过程,判断材料点是继续发展塑性(硬化)、还是发生弹性卸载的准则,称为加、卸载准则。
- 2. 操作方式:
 - ① 判断当前材料点是否处于屈服状态(若没屈服,谈何加卸载!):

$$f(\sigma_{ij}, K) = 0$$

② 若①=YES, 判断应力增量(6个分量增量)是顺着还是逆着屈服面外法向:

(加载)
$$d\mathbf{\sigma} \cdot d\mathbf{n} > 0$$
: $\frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij} = \frac{\partial f}{\partial \sigma_x} d\sigma_x + \dots + 2 \cdot \frac{\partial f}{\partial \tau_{xy}} d\tau_{xy} + \dots > 0$

卸载,上式<0;中性变载(不继续硬化,还在原本屈服面上),上式=0.为便于求全微分(涉及偏导),两种常用屈服函数宜采用如下形式:

Tresca:
$$f = [(\sigma_1 - \sigma_2)^2 - k^2] \cdot [(\sigma_2 - \sigma_3)^2 - k^2] \cdot [(\sigma_3 - \sigma_1)^2 - k^2]$$

Mises:
$$f = (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 - 2k^2$$

第三章 塑性本构关系(全量理论、增量理论/流动法则)

塑性理论的基本框架:

	全量理论	增量理论	
平衡方程 (3个)	$\sigma_{ij,j} + F_i = 0 (3)$	$d\sigma_{ij,j} + dF_i = 0 (3)$	
几何方程 (6个)	$\varepsilon_{ij} = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right) \tag{6}$	$d\varepsilon_{ij} = \frac{1}{2} \left(du_{i,j} + du_{j,i} \right) (6)$	
本构方程(6个)	$egin{aligned} arepsilon_{ ext{ii}} &= rac{1-2 u}{E} \sigma_{ ext{ii}} & ext{(1)} \ & e_{ ext{ij}} &= rac{3}{2} \cdot rac{arepsilon_{ ext{i}}}{\sigma_{ ext{i}}} \cdot S_{ ext{ij}} & ext{(5)} \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $	$\begin{split} \mathrm{d}\varepsilon_{ij} &= \frac{1}{2G} \mathrm{d}S_{ij} + \mathrm{d}\lambda \cdot S_{ij} + \frac{1 - 2\nu}{3E} \cdot \mathrm{d}\sigma_{kk} \cdot \delta_{ij} \ (6) \end{split}$ 其中 $\mathrm{d}\lambda = \frac{3}{2} \cdot \frac{\mathrm{d}\varepsilon_{i}^{p}}{\sigma_{i}} = \frac{3}{2H'} \cdot \frac{\mathrm{d}\sigma_{i}}{\sigma_{i}} (硬化条件)$ 对初始弹性、卸载、中性变载, $\mathrm{d}\lambda = 0$	
边界条件 (两类)	$\sigma_{ij} \cdot l_j = p_i^- (在S_{\sigma} \perp)$ $u_i = u_i^- \qquad (在S_u \perp)$	$\mathrm{d}\sigma_{ij}\cdot l_{j} = \mathrm{d}p_{i}^{-}$ (在 S_{σ} 上) $\mathrm{d}u_{i} = \mathrm{d}u_{i}^{-}$ (在 S_{u} 上)	

塑性本构的内容:

- 1. (初始) 屈服条件: 判断材料是否开始进入塑性 (确定初始屈服面的位置)。
- **2. 硬化法则:** 确定屈服条件随塑性变形的变化(确定后继屈服面的位置),即应力应变定量 关系(增量理论需将此定量关系代入定性的流动法则,才能得到本构关系)。
- 3. 流动法则:确定塑性流动(塑性变形增量)方向和"大小"——即应力应变定性关系:
 - ① 方向关系: 应力应变(或其增量) 主轴之间的关系、确定塑性流动方向;
 - ② 分配关系: 各塑性应变(增量)分量与相应应力偏量分量成比例。
- 4. 加、卸载准则:判断已经屈服的材料点是继续塑性加载(硬化)还是弹性卸载。

简单加载定律、全量型本构理论:

- 1. 依留辛简单加载定律(充分性已得证,必要性并不严格)
 - ① 荷载按固定比例增长(保证内部应力分量按固定比例增加)——**必要性强** 注意到,此即要求 Lode 参数为常数。
 - ② 材料不可压缩(塑性原本就不可压缩,这里主要说弹性,即 v=0.5)——必要性不强
 - ③ 应力强度 σ_i 和应变强度 ε_i 之间符合幂函数关系(即 $\sigma_{i=A}*\varepsilon_i^m$)——必要性不强
- 2. 全量理论 (形变理论):

建立在应变全量和应力全量之间的关系之上的本构模型称为**全量理论**。

核心: 在小变形、且简单加载情况下, 应变偏量全量与应力偏量全量近似成比例。 操作方式(依据三条假设):

$$\begin{cases} arepsilon_{ii} = (1-2
u)/E \cdot \sigma_{ii} & ext{假设1: 体积变形为弹性} \ e_{ij} = \psi \cdot S_{ij} = 3arepsilon_{i}/2\sigma_{i} \cdot S_{ij} & ext{假设2: 应变偏量与应力偏量成比例,且主轴重合} \ \sigma_{i} = oldsymbol{\Phi}(arepsilon_{i}) & ext{假设3: 单一曲线硬化假设} \end{cases}$$

卸载定律:

1. 卸载定律:

对屈服的材料点施加一个荷载改变量 ΔP 使之(弹性)卸载,则卸载后的应力(应变)等于卸载前的应力(应变)减去 ΔP 按弹性作用算得的应力(应变)改变量。

2. 前提条件:

- ① 简单卸载, Lode 参数 (或 Lode 角) 在卸载过程中保持不变, 各点应力按比例减少;
- ② 卸载不引起第二次塑性变形,即不会因应力变号而达到新的屈服、不涉及包辛格;

3. 推论:

全部外荷载卸除后,不仅会留下残余变形、还会留下残余应力。

全量理论、增量理论的比较

- 1. 在小变形、且简单加载的情况下,两理论等价(简单加载时增量公式积分即得全量公式),可以认为全量理论是增量理论在简单加载情况下的一个特例。
- 2. 全量理论便于手算,增量理论复杂、一般需借助计算机。
- 3. 增量理论考虑了塑性变形对加载路径的依赖性,可用于复杂加载。
- 4. 中性变载不产生塑性应变,增量理论通过强制 dλ=0 体现之,增量理论则无法做到。
- **5.** 增量理论在中性区(加载区和卸载区之间)自动退化为弹性关系,保证连续性,全量则不行。

增量理论(流动理论)、流动法则

- 1. 建立在应变增量和应力全量(及应力增量)之间的关系之上的理论,称为增量理论。
- 2. 根据应力确定塑性应变增量的方向和"大小"的规则, 称为流动法则。

Levy-Mises 流动法则、P-R 流动法则、由塑性势理论导出的流动法则:

	Levy-Mises	P-R	塑性势流动法则	Drucker 公设
塑性应变增量	应变增量主轴与应力全	塑性 应变增量主轴与应力全	塑性 应变增量方向与塑性势	同左,取 g=f
方向	量主轴重合	量主轴重合	g的梯度方向一致	(塑性势函数=屈服函数)
塑性应变增量"大小"	$\mathrm{d}\varepsilon_{ij} = \mathrm{d}\lambda \cdot S_{ij} \ (\mathrm{d}\lambda \ge 0)$	$\mathrm{d}\varepsilon_{ij}^{\mathrm{p}} = \mathrm{d}\lambda \cdot S_{ij} \ (\mathrm{d}\lambda \ge 0)$	$d\varepsilon_{ij}^{p} = d\lambda \cdot \frac{\partial g}{\partial \sigma_{ij}} (d\lambda \ge 0)$	$d\varepsilon_{ij}^{P} = d\lambda \cdot \frac{\partial f}{\partial \sigma_{ij}} (d\lambda \ge 0)$
区别与联系	不考虑弹性变形,是 P-R 流动法则应用于理想刚 塑性体时的 特例 。	区分弹、塑性应变增量,是 关联流动法则(Drucker 公 设)将屈服准则取为 Mises 条件时的 特例 。 注意到 Drucker 公设本身是 塑性势流动法则的特例。	起初由弹性力学中弹性势 U 的概念推广到塑性而得到, 塑性势 g 与应力状态及加载 历史有关,经过适当的 <mark>构造</mark> 可以导出任何一种流动法则 (太不讲理了!)	是塑性势流动法则的 特例 (假设稳定材料的塑性势 g 等于屈服函数 f)
历(duan)史(zi)	Levy 提出后无人问津,40 年后 Mises 又提出了一次	考虑弹性变形,将只适用于 刚塑形体的 Levy-Mises 流动 法则推广到弹塑性体	由 Mises 提出,但未指出塑性势 g 的确定方法	由 Drucker 提出,特别地, 采用 Mises 屈服函数时,便 导出了 P-R 流动法则

由流动法则、硬化法则导出塑性本构

- 流动法则确定了应力应变定性关系(塑性应变增量的方向和"大小"),再通过**硬化法则**确定比例系数 dλ,便可以直接从流动法则导出塑性本构。
- 1. 理想弹塑性材料的塑性本构 (P_{87})
- 2. 理想刚塑性材料... (P89)
- 3. 弹塑性硬化材料... (P90)

塑性本构
$$\begin{cases} \mathrm{d}\varepsilon_{ij} = \frac{1}{2G} \mathrm{d}S_{ij} + \mathrm{d}\lambda \cdot S_{ij} + \frac{1-2\nu}{3E} \cdot \mathrm{d}\sigma_{kk} \cdot \delta_{ij} & (流动法则) \\ \mathrm{d}\lambda = \frac{3}{2} \cdot \frac{\mathrm{d}\varepsilon_{i}^{p}}{\sigma_{i}} = \frac{3}{2H'} \cdot \frac{\mathrm{d}\sigma_{i}}{\sigma_{i}} & (硬化法则) \end{cases}$$

稳定材料、Drucker 公设、关联流动法则

- 1. 对材料做单轴拉伸试验,考查任一加载过程(加载意味着已经处于屈服状态),如果都有 Δσ*Δε>0,即附加应力在应变增量上总是做正功,则称这种材料为**稳定材料**或**硬化材料**; 反之,若存在一个加载过程使 Δσ*Δε<0,即附加应力在应变增量上做负功,则说明材料 发生软化,称这种材料为**不稳定材料**或**软化材料**(σ-ε 曲线有下降段)。
- 2. Drucker 将单轴单调加载(位移加载)试验推广到复杂的应力路径,提出**稳定材料塑性功不可逆公设**(附加应力所做的塑性功非负),即 **Drucker 公设**:

$$\Delta \sigma_{ij} \cdot d\varepsilon_{ij}^{p} = (\sigma_{ij} - \sigma_{ij}^{0}) \cdot d\varepsilon_{ij}^{p} > 0$$

- 3. Drucker 公设推论:
 - ① 屈服面的外凸性;
 - ② 塑性应变增量的法向性;
- 4. 根据 Drucker 公设,塑性应变增量方向与屈服面外法向(梯度方向)一致:

$$\mathrm{d}\varepsilon_{ij}^{\mathrm{p}} = \mathrm{d}\lambda \cdot \frac{\partial f}{\partial \sigma_{ii}} \ (\mathrm{d}\lambda \geq 0)$$

又根据塑性势理论,塑性应变增量方向与塑性势面梯度方向一致:

$$\mathrm{d}\mathcal{E}_{ij}^{p} = \mathrm{d}\lambda \cdot \frac{\partial g}{\partial \sigma_{ii}} \ (\mathrm{d}\lambda \ge 0)$$

可见,Drucker 公设对应于在塑性势理论中将塑性势函数 g 取为屈服函数 f 的情况,即 f=g,此时塑性势面与屈服面重合,塑性应变增量方向与屈服面正交,称为<mark>与屈服条件相关</mark>联的流动法则,简称**关联流动法则**或正交流动法则。

一般地,若抛开屈服函数 f 另取塑性势函数 g,即 $g \neq f$,则称**非关联流动法则。**对于金属等稳定材料,关联流动法则与试验符合的很好。

注意到, 当采用 Mises 屈服条件时, 得到的关联流动法则就是 P-R 流动法则。

第四章 弹塑性弯曲和扭转(计算题)

梁的纯弯曲 (理想弹塑性、无硬化)

1. 弹塑性截面抗力 Mep:

$$M_{ep} = \int_{y_b}^{y_t} \sigma(y) \cdot y \cdot b(y) \cdot dy = \frac{\sigma_s}{y_s} \cdot I_e + \sigma_s \cdot S_p, \quad \text{where } I_e = \int_{Ae} y^2 \cdot dA, \quad S_p = \int_{Ap} y \cdot dA$$

弹性极限弯矩 Me: 取 ys=min{ymax1, ymax2}

塑性极限弯矩 M_p : 取 $y_s=0$

2. 梁的挠度、曲率:

对理想弹塑性材料,塑性区可以发生无限的塑性流动,故梁的挠度、曲率完全由弹性区 决定:

$$\frac{1}{\rho} \approx y$$
", $y'' = \frac{M_e}{EI_e} = \frac{\sigma_s}{E \cdot y_s}$

从塑性状态卸载时,按弹性卸载定理(第三章),应力、应变、挠度等于卸载前的应力、 应变、挠度减去将卸载量按弹性作用在梁上时所产生的应力、应变、挠度(类似杆系力学中 的弹性叠加原理)。

梁的横向弯曲:

1. 对于细长梁,可<mark>忽略</mark>横向挤压应力 σ_{y} 、截面剪应力 τ_{xy} ,这样,横向弯曲可沿用纯弯曲的公式,只是弯矩会沿梁的轴线变化(弯矩图):

$$M_{ep}(x) = \int_{y_b}^{y_t} \sigma(y, x) \cdot y b(y) \cdot dy = \frac{\sigma_s}{y_e} \cdot I_e + \sigma_s \cdot S_p$$

圆杆的弹塑性扭转:

1. 应力应变状态:

除 γ zθ 外, 其余 5 个应变分量全为零:

$$\gamma_{z\theta} = \frac{z\alpha \cdot r}{z} = \alpha \cdot r, \quad \text{where } \alpha = \text{$\not$$$$$$$$$$$$$$$$$$$$$$$$$} \alpha \cdot r, \quad \text{where } \alpha = \text{$\not$$$$$$$$$$$$$$$$$$$$$$$$$$$}$$

除 τ₂₀ 外, 其余 5 个应力分量全为零;

2. 弹塑性扭矩计算

太复杂了, 祈祷不考这个吧。

非圆截面杆的塑性极限扭矩

• 斜率 k、体积 V、塑性极限扭矩 T_p=2V

其他计算题考点 (课后习题都有覆盖)

- 1. 写点的应力状态 $(3\times3$ 矩阵),如薄壁圆管拉、扭、内压 (2×6) 。
- 2. 判断是否屈服,Tresca、Mises。
- 3. 判断加卸载, 先判断是否屈服(否则谈何加卸载)、再判断应力全微分大于等于小于零。
- 4. 增量全量计算...

第九章 岩土的屈服条件和本构关系

岩土塑性力学的特点:

- **1. 体积变形不只是弹性的**。传统塑性力学认为体积变形是弹性的,卸去静水应力后可以完全恢复,而对于岩土材料,不仅静水应力能引起显著的不可恢复(塑性)变形、应考虑静水应力对剪切屈服的而且偏应力也会引起塑性变形(剪胀性)。
- 1'. **需考虑体积屈服**。传统塑性力学只考虑剪切屈服,采用开口的单一屈服面;岩土塑性力学需同时考虑剪切屈服和体积屈服,所以是封闭的双屈服面(甚至是多重屈服面)。
- **2. 静水应力影响剪切屈服**。随着围压(静水压力)的增加,剪切屈服越来越难发生,屈服 曲面呈锥形、向第一象限放射,静水应力对剪切屈服的影响不可忽略。
- **3. 需处理不稳定材料的软化段**。传统塑性力学只在 Drucker 公设下处理稳定材料,而岩土材料往往不符合 Drucker 公设、必须处理软化段。
- **4. 应考虑非关联流动法**。金属材料(稳定材料)的试验结果与关联流动法则(Drucker 公设)符合的很好;但岩土材料的试验结果则偏离关联流动理论。遗憾的是,目前**很难做到有根据地选取塑性势函数g**,目非关联会导致弹塑性矩阵不对称,求解工作量大为增加。
- **5. 弹、塑性耦合**。在传统塑性理论中,材料的弹性系数与塑性应变无关,弹塑性不耦合。岩土塑性力学有时需要考虑弹性系数随塑性变形的发展而变化的**弹、塑性耦合**现象。
- 6. 拉压单边效应。岩土材料的抗拉强度远低于抗压强度。

岩土的屈服条件:

- 1. 剪切屈服和偏应力、及静水应力有关, 屈服面为锥形。
- 2. 体积屈服和偏应力、及静水应力有关, 屈服面为帽盖形。
- 3. 屈服曲线的性质:
 - ① 封闭: ② 由原点向外做的射线与屈服曲线只能相交一次(初始屈服只有一次):
 - ③ 对称性:关于 S_1 、 S_2 、 S_3 对称,但关于原点不对称(拉压单边效应)。
- 4. 软化阶段:

屈服面不断收缩,收缩到最终破坏面时,进入无限的塑性流动状态,此时的破坏面称残余破坏面。

典型的岩土屈服条件(第二章已详细述及):

- **1.** Mohr-Coulomb 条件(一种广义的 Tresca 条件); Drucker-Prager 条件(一种广义的 Mises 条件,把 M-C 修圆)。
- **2.** 广义 Tresca 条件;

广义 Mises 条件 (把广义 Tresca 修圆)。

3. 帽盖模型、剑桥模型、HS 模型:

考虑体积屈服