

Reaction-Diffusion Dynamics with Fractional Brownian Motion

Motivation

Mean-square-displasment (MSD) for normal diffusion: $\delta r^2(t)=2dDt$

MSD for anomalous diffusion: $\delta r^2(t) \propto t^{lpha}$

Motivation

Mean-square-displasment (MSD) for normal diffusion: $\delta r^2(t)=2dDt$

MSD for anomalous diffusion: $\delta r^2(t) \propto t^{lpha}$

Outline

1. Enzymatic Kinetics with Normal Diffusion

2. Fractional Brownian Motion

3. Anomalous Reaction Kinetics

Erban-Chapman Bi-molecular Reaction

Bi-molecular mechanism:
$$S + E \xrightarrow{k_+} ES$$

Reaction-diffusion equation:
$$\frac{\partial \rho_t(r)}{\partial t} = -\underbrace{\left(\frac{\partial}{\partial_r} + \frac{2}{r}\right) j_t(r)}_{\text{diffusion}} - \underbrace{\frac{\mathrm{H}(\sigma) \lambda_+ \rho_t(r)}{D}}_{\text{reaction}}$$

 $\rho_t(r)$ - the distribution of substrates with distance r away from the enzyme.

$$\mathrm{H}(\sigma)$$
 - the Heaviside step function, $j_t(r) = -D \frac{\partial \rho_t(r)}{\partial r}$ - the flux ,

 $D=D_{
m S}+D_{
m E}$ - the sum of diffusion constants of substrates and enzymes

 σ - reaction distance

Erban-Chapman Bi-molecular Reaction

The stationary distribution $\rho^s(r)$ for a single enzyme and constant concentration of substrates at infinity: $\rho_t(r \to \infty) = c_{\rm S}$

Solution for reaction kinetics:

$$\frac{dc_{\rm ES}}{dt} = -\int_{\partial V} j^s(\sigma) da \qquad \kappa = \sqrt{\lambda_+/D}$$

$$= c_{\rm S} c_{\rm E} 4\pi D\sigma \left(1 - \frac{1}{\sigma\kappa} \tanh \sigma\kappa\right)$$

$$= k_+$$

reaction limited by diffusion: $k_{+} = 4\pi D\sigma$

reactions limited by microscopic reaction rate: $k_{+} = \frac{4\pi\sigma^{3}\lambda_{+}}{3}$

Enzymatic Reactions

Michaelis-Menten mechanism:

$$S + E \xrightarrow{k_+} ES \xrightarrow{k_c} P + E$$

$$\frac{dc_{S}(t)}{dt} = k_{-}c_{ES}(t) - k_{+}c_{E}(t)c_{S}(t),$$

$$\frac{dc_{ES}(t)}{dt} = -k_{c}c_{ES}(t) - k_{-}c_{ES}(t) + k_{+}c_{E}(t)c_{S}(t),$$

$$\frac{dc_{P}(t)}{dt} = k_{c}c_{ES}(t),$$

$$\frac{dc_{E}(t)}{dt} = k_{c}c_{ES}(t) + k_{-}c_{ES}(t) - k_{-}c_{E}(t)c_{S}(t),$$

A closed solution with the quasi-steady state approximation $(dc_{ES}/dt = 0)$ for $c_{S}(t)$:

$$c_{S}(t) = K_{M} W_{0} \left(\frac{c_{S_{0}}}{K_{M}} \exp \left[\frac{-v_{max}t + c_{S_{0}}}{K_{M}} \right] \right),$$

$$c_{ES}(t) = \frac{c_{E_{0}}c_{S}(t)}{K_{M} + c_{S}(t)} \{ 1 - \exp \left(-\left[K_{M} + c_{S}(t)k_{+} \right] \right) \},$$

$$c_{E}(t) = c_{E_{0}} - c_{ES}(t),$$

$$c_{P}(t) = c_{S_{0}} - c_{S}(t) + c_{ES}(t),$$

with $K_M = \frac{k_- + k_c}{k_+}$, $v_{max} = k_c c_{E_0}$ and W(z) the Lambert W function with $z = W(z)e^{W(z)}, z \in \mathbb{C}$.

Simulation Model

Two Reactions:

$$S + E \xrightarrow{k_{+}} ES$$
 , $P + E \xrightarrow{k_{c}} ES$ with microscopic rates: λ_{+} , λ_{-} , λ_{c}

parameters

Units of length : σ ; Units of time: $\Gamma = \sigma^2/6D$

Length of simulation box with periodic boundary conditions: $L=8\sigma$

Initial concentration of reactants: $c_{S_0}=5/128\sigma^3$, $c_{E_0}=1/512\sigma^3$, $c_{P_0}=0$, $c_{ES_0}=0$

Enzyme position: center of simulations box substrates positions: uniformly distributed

Diffusion constant for substrate: $D = 1\sigma^2/\Gamma$

Time step: $\Delta t = 0.05/6\Gamma$

Length of trajectory: $M = 2^{14}$

constants

Number of simulations per scenario: N > 2000

Observables

Number of substrates, enzymes, product, reactions forward:

$$N_S(t)$$
 , $N_E(t)$, $N_P(t)$, $N_{react}(t)$

Radial distribution function of substrates around enzymes:

$$g_{S,E}(|\mathbf{r}|;t) = \frac{1}{N_S(t)N_E(t)}V\sum_{ij}\langle\delta(\mathbf{R}_{Si}(t) - \mathbf{R}_{Ej}(t) - \mathbf{r})\rangle$$

$$g_{S,E}(r;t) = \frac{VdN_S(t)}{N_S(t)N_E(t)4\pi r^2 dr}$$

Macroscopic reaction rate forward:

$$k_{+}^{count}(t) = \frac{d\langle N_{react}(t)\rangle}{dt} \frac{1}{Vc_{S}(t)c_{E}(t)} = \frac{1}{Vc_{S}(t)c_{E}(t)} \lim_{\tau \to 0} \frac{\Delta N_{react}}{\tau}$$

One-Way Reaction

$$S + E \xrightarrow{k_+} ES \xrightarrow{k_c} P + E$$

Scenarios:

One-way "diffusion-limited" reaction:

$$\lambda_{+} = 3.0/\Gamma, \, \lambda_{-} = 0, \, \lambda_{c} = 3.0/\Gamma$$

One-Way Reaction

$$S + E \xrightarrow{k_+} ES \xrightarrow{k_c} P + E$$

Influence of diffusion on reaction rate: $0.1/\Gamma \le \lambda_+ \le 3.0/\Gamma$, $\lambda_c = 1.0/\Gamma$, $\lambda_- = 0$.

Michaelis-Menten Mechanism

Scenarios:
$$S + E \xrightarrow{k_+} ES \xrightarrow{k_c} P + E$$

One-way "enzyme blocking" reaction:

$$\lambda_{+} = 1/\Gamma, \quad \lambda_{-} = 0/\Gamma, \lambda_{c} = 0.1/\Gamma.$$

$$k_{+}^{count} = (1.67 \pm 0.02)\sigma^3/\Gamma$$

transparent

The "enzyme blocking" Michaelis-Menten:

$$\lambda_{+} = 1/\Gamma, \quad \lambda_{-} = 1/\Gamma, \lambda_{c} = 0.1/\Gamma$$

$$k_{+}^{count}\,=\,(4.39\pm0.02)\sigma^3/\Gamma$$

2. Fractional Brownian Motion

$$- \alpha$$
=0.42

$$\alpha = 0.42$$
 $\alpha = 1.00$

Normal Diffusion

Central Limit Theorem:

$$Y = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} X_j$$

$$\rho(y)dy = P(y < Y < y + dy)$$

Here, X_j independent and identically distributed

(i.i.d.) random variable with $\langle X_j \rangle = 0$ and $\langle X_j^2 \rangle = \sigma^2$

Assumption: i.i.d. random variables, $-J(r,t) = \nabla c(r,t)$ and continuity equation $\partial_t c(r,t) + \nabla c(r,t) = 0$

Fractional Brownian Motion and Fractional Gaussian Noise

Fractional Brownian motion is a stochastic process. It is fully specified by its mean : $\langle B_t \rangle = 0$

and covariance function: $\operatorname{Cov}[B_t^{\alpha}, B_s^{\alpha}] = \frac{\sigma^2}{2}[t^{\alpha} - 2(s-t)^{\alpha} + s^{\alpha}]$ for t < s

Power-law behavior of MSD: $\langle (B_t^{\alpha} - B_s^{\alpha})^2 \rangle = (s - t)^{\alpha} \sigma^2$

Fractional Gaussian noise is a relate stationary stochastic process: $B_t^{\alpha} = \sum_{n=0}^k X_{t_n}^{\alpha}$ with $t_n = t_0 + n\Delta t$

Its mean: $\langle X_t^{\alpha} \rangle = 0$

Its auto-covariace function: $Cov[X_0^{\alpha}, X_n^{\alpha}] = \frac{\Delta t^{\alpha} \sigma^2}{2} [(n-1)^{\alpha} - 2n^{\alpha} + (n+1)^{\alpha}]$

Connection to the physical world: $\sigma^2 = 2dK_{\alpha}$

Here, $K_{\alpha} > 0$ is the generalized diffusion coefficient of physical dimension cm²/sec^{α}.

Davis-Harte Algorithm

1. Compute the auto-covariance function R_n^{ξ} of a periodic stochastic process ξ_n :

$$R_n^{\xi} = \begin{cases} K_{\alpha} \Delta t^{\alpha} \left[(n-1)^{\alpha} - 2n^{\alpha} + (n+1)^{\alpha} \right] & \text{for } 0 \le n \le M \\ R_{2M-n}^{\xi} & \text{for } M \le n \le 2M \end{cases}$$

$$(1.52)$$

2. Transform the auto-covariance function via FFT. The result is called the spectral density of the stochastic process ξ_n :

$$S_k^{\xi} = \text{FFT}(R_n^{\xi}; k) \tag{1.53}$$

3. Calculate $\tilde{\xi}_k$ the Fourier transform of the stochastic process ξ_n :

$$\tilde{\xi}_{k} = \begin{cases}
\sqrt{2S_{k}^{\xi}M}(\eta_{k}) & \text{for } k = 0 \\
\sqrt{S_{k}^{\xi}M}(\eta_{k} + i\eta_{k}) & \text{for } 0 \leq k \leq M \\
\sqrt{2S_{k}^{\xi}M}(\eta_{k}) & \text{for } k = M \\
\tilde{\xi}_{2M-k}^{*} & \text{for } M \leq k \leq 2M
\end{cases}$$
(1.54)

- $\{*\}$ denotes the complex conjugate, η_k is a random Gaussian variable with zero mean and variance 1 $[\eta_k \sim \mathcal{N}(0,1)]$.
- 4. Perform the inverse Fourier transform on $\tilde{\xi}_k$ and use the first half of the resulting stochastic process ξ_n :

$$\xi_n = \frac{1}{\sqrt{2M}} \text{FFT}^{-1}(\tilde{\xi}_k; n) \quad \text{for} \quad 0 \le n \le N$$
 (1.55)

5. perform the cumulative sum on the increments:

$$B_n^{\alpha} = \sum_{j=0}^{n} \xi_j \qquad \text{for } 0 \le n \le M$$
 (1.56)

Idea: Artificial modification of the power spectrum of a Wiener process to obtain the power spectrum of fractional Brownian noise.

Wiener-Khinchin theorem:

A wide-sense-stationary random process has a spectral decomposition given by the power spectrum of that process.

Power spectrum density:

$$S(\omega) = \int_{-\infty}^{\infty} \text{Cov}[X_t, X_0] \exp[-2\pi i \omega t] dt$$

Algorithm Accuracy

Mean Square Displacement:

Non-Gaussian parameter:

$$NGP(t) = \frac{d\delta r^4(t)}{(d+2)[\delta r^2(t)]} - 1$$

Algorithm Performance

Algorithmic scaling of computational time with the trajectory length:

Davis-Harte algorithm implemented in RevReaDDy

3. Anomalous Reaction Kinetics

Scenarios:
$$S + E \xrightarrow{k_+} ES \xrightarrow{k_c} P + E$$

Michaelis-Menten with normal diffusion:

$$\lambda_{+} = 1/\Gamma, \quad \lambda_{-} = 1/\Gamma, \lambda_{c} = 0.1/\Gamma, \quad \alpha = 1.0$$

transparent

Michaelis-Menten with fBm:

$$\lambda_{+} = 1$$
 , $\lambda_{-} = 1/\Gamma, \lambda_{c} = 0.1/\Gamma, \alpha = 0.5$

3. Fractional Reaction Kinetics

Time-dependent reaction rate: $k(t) = k_0 t^{-h}$ for $0 \le h \le 1$ and $t \ge 1$,

Here, h is fractional kinetics exponent.

Theory for percolation cluster

$$h = 1 - \frac{3\alpha}{2}$$
 for $0 < \alpha < 2/3$
 $h = 0$ for $2/3 < \alpha < 1$

Thank You For Your Attention