大话成像之

数字成像系统 32讲

空域去噪与频域去噪

Ming Yan

imaging algorithm engineer

噪声类型:

- 1. 高斯噪声 (高斯+possion)
- 2. 椒盐噪声

3.FPN

空域降噪的定义:

$$i_{denoised}(x) = \frac{1}{\sum_{\text{all pixels } x'} w(x, x')} \sum_{\text{all pixels } x'} i_{noisy}(x') \cdot w(x, x')$$

思想核心:平均(加权)一些相似的像素,去得到噪声更小的像素值。

大部分空域降噪解决的问题都是:怎么计算两个像素的相似性权重。

根据此可以分为三类算法:

- (a) 局部的线性算法: 高斯降噪
- (b) 局部的非线性算法:中值滤波、双边滤波(有些人将其单独列为:)
- (c) 非局部算法;

高斯降噪: (和像素值无关和距离有关)

$$i_{denoised}(x) = \frac{1}{\sum_{\text{all pixels } x'} w(x, x')} \sum_{\text{all pixels } x'} i_{noisy}(x') \cdot w(x, x')$$

$$w(x,x') = \exp\left(-\frac{\left|\left|x'-x\right|\right|^2}{2\sigma^2}\right)$$

sigma=0.5;

0.0000

3	6	9
15	18	20
21	35	0

0.0113	0.0030	0.0113		
0.0838	0.6193	0.0838		
0.0113	0.0838	0.0113		
sigma=0.3 ;				
0.0000	0.0038	0.0000		
0.0038	0 9847	0 0038		

0.0038

0.0000

0.0113 0.0838 0.0113

双边滤波:

spatial distance distance of intensities
$$w(x,x') = \exp\left(-\frac{||x'-x||^2}{2\sigma^2}\right) \cdot \exp\left(-\frac{||i_{noisy}(x')-i(x')||^2}{2\sigma_i^2}\right)$$

3	6	9
15	18	20
21	35	0

sigma=0.5;

0.0113 0.0838 0.0113 0.0838 0.6193 0.0838 0.0113 0.0838 0.0113

sigma_i=0.8;

exp(- (3-18)^2 ./(2*) ./(2*sigma_i^2))

大边缘保留住了,但是小细节被抹平了,因此双 边滤波有时在学术上都是属于smooth 领域。

非局部算法:

$$w(x,x') = \exp\left(-\frac{\left|\left|W\left(i_{noisy},x'\right) - W\left(i_{noisy},x\right)\right|\right|^{2}}{2\sigma^{2}}\right)$$

思想:根据图像块的相似性来计算像素的相似性权重。

注: 非局部并不是指的图像块加权求和,而是指的是求得权重时采用图像块。

13	15	100	80	30
6	3	6	9	8
8	15	18	20	23
13	21	35	0	22
3	3	3	3	21

w=- exp((3-13)^2+(15-6)^2+(100-9)^2+(6-15)^2+(3-18)^2+(6-20)^2+(8-21)^2+(15-35)^2+(18-0)^2))./(2*sigma^2)

频域降噪:

傅里叶降噪;

小波降噪;

DCT 降噪;

思想核心:利用信号在空间上的连续性,将图像信号变换到频率域,在频率域将信号和噪声分开,进而对信号降噪。

小波降噪:

结论: 在小波域, 噪声的小波系数相对较小。

所以经常采用将较小的小波系 数丢掉的方法降噪, 因此小波 降噪经常成为小波收缩。

软收缩

$$T_{\text{soft}}(y) = \begin{cases} 0, & |y| < T \\ \text{sgn}(y)(|y| - T), & |y| \geqslant T \end{cases}$$

硬收缩

$$T_{\text{hard}}(y) = \begin{cases} 0, & |y| < T \\ y, & |y| \geqslant T \end{cases}$$

BM3D:

THANKS

本课程由 Ming Yan 提供

大话成像之 数字成像系统 32 讲

内容目录

- 1. 数字成像系统介绍
- 2. CMOS image sensor基础
- 3. 光学基础
- 4. 颜色科学基础
- 5. ISP 信号处理基础
- 6. 3A概述
- 7. 黑电平与线性化
- 8. Green Imbalance
- 9. 坏点消除
- 10. Vignetting与Color shading
- 11. SNR 与Raw Denoise
- 12. Dynamic Range与Tone Mapping
- 13. MTF与Demosaic
- 14. 色彩空间与色彩重建
- 15. Color Correction Matrix与3D LUT
- 16. Gamma与对比度增强
- 17. Sharpening

- 18. Color Space Conversion
- 19. 空域去噪
- 20. 时域去噪
- 21. Color Aberrance Correction and Depurple
- 22. ISP 的统计信息
- 23. 自动曝光
- 24. 自动白平衡
- 25. 自动对焦
- 26. 闪光灯
- 27. HDR
- 28. Exif 和DNG
- 29. Encoder
- 30. 图像防抖
- 31. 图像质量评价工具与方法
- 32. 画质调优

