Type Soundness in an Intensional Dependent Type Theory with Type-in-Type, Recursion and Data

February 12, 2021

1 Examples

```
logical unsoundness:
        \mathsf{fun}\, f: (x.x)\,.\, x: \star.f\, x
                                                                         : \Pi x : \star .x
some constructs
while logically unsound, the language is extremely expressive. Conventional
data is representable:
         data Unit. where \{tt. \rightarrow Unit\}
        data \mathbb{B}. where \{true. \to \mathbb{B} \mid false. \to \mathbb{B}\}
        data \mathbb{N}. where \{z. \to \mathbb{N} \mid suc \, x : \mathbb{N}. \to \mathbb{N}\}
        data abstraction allows some self-reference
        0 \coloneqq z
        1 \coloneqq suc\,z
        \begin{split} \operatorname{data} \operatorname{Vec} A: \star, n: \mathbb{N}. \text{ where } \left\{ \begin{array}{c} \operatorname{nil} A: \star. & \to \operatorname{Vec} A \ 0 \\ \operatorname{cons} A: \star, n: \mathbb{N}, -: A, -: \operatorname{Vec} A \ n. & \to \operatorname{Vec} A \ (\operatorname{suc} n) \end{array} \right\} \\ \operatorname{rep}_{\mathbb{B}} \coloneqq \operatorname{fun} f: (n.\operatorname{Vec} \mathbb{B} \ n) . n: \mathbb{N}. \operatorname{Case}_{n': \mathbb{N} \to \operatorname{Vec} \mathbb{B} \ n'} \ n \ \text{of} \ \{z \Rightarrow \operatorname{nil} \mathbb{B} \ | \ \operatorname{suc} x \Rightarrow \operatorname{cons} \mathbb{B} \ x \ true \ (f \ x) \} \end{split} 
\Pi n : \mathbb{N}.Vec \,\mathbb{B}\,n
        data IdA: \star, a_1: A, a_2: A. where \{reflA: \star, a: A. \rightarrow IdAaa\}
        a_1 =_A a_2 := IdA, a_1, a_2
        subst \coloneqq \lambda A.\lambda a_1.\lambda a_2.\lambda pr.\mathsf{Case}_{-:Id\ A,a_1,a_2.\to \Pi C:(A\to\star).C\ a_1\to C\ a_2}\ pr\ \mathsf{of}\ \{refl\ A:\star,a:A\Rightarrow \lambda C.\lambda x:C\ a.\ x\}\\ subst:\Pi A:\star.\Pi a_1:A.\Pi a_2:A.a_1=_A\ a_2\to \Pi C:(A\to\star).C\ a_1\to C\ a_2
        data \perp . where \{\}
```

$$\begin{split} \neg A &\coloneqq \Pi A : \star ... A \to \bot \\ \neg 1 &=_{\mathbb{N}} 0 \text{ is provable (in a non trivial way):} \\ dec &\coloneqq \lambda n. \mathsf{Case}_{-:\mathbb{N}.\to\star} pr \, \mathsf{ofof} \, \{z \Rightarrow \bot \mid suc - \Rightarrow Unit\} \\ &\lambda pr. subst \, \mathbb{N} \, 1 \, 0 \, pr \, dec \, tt \\ &: \neg 1 &=_{\mathbb{N}} 0 \end{split}$$
 Several larger examples are workable in prototype implementation

2 Properties

2.1 Contexts

2.1.1 Sub-Contexts are well formed

The following rules are admissible:

$$\frac{\Gamma, \Gamma' \vdash}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M \Rrightarrow M' : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M \Rrightarrow_* M' : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M \equiv M' : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash M \equiv M' : \sigma}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash \overline{M} : \Delta}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash \overline{M} : \Delta}{\Gamma \vdash}$$

$$\frac{\Gamma, \Gamma' \vdash \overline{M} : \overline{M} : \Delta}{\Gamma \vdash}$$

by mutual induction on the derivations.

2.1.2 Context weakening

For any derivation of $\Gamma \vdash \sigma : \star$, the following rules are admissible:

$$\begin{split} \frac{\Gamma, \Gamma' \vdash}{\Gamma, x : \sigma, \Gamma' \vdash} \\ \frac{\Gamma, \Gamma' \vdash M : \tau}{\Gamma, x : \sigma, \Gamma' \vdash M : \tau} \\ \frac{\Gamma, \Gamma' \vdash M \Rightarrow M' : \sigma}{\Gamma, x : \sigma, \Gamma' \vdash M \Rightarrow M' : \sigma} \\ \frac{\Gamma, \Gamma' \vdash M \Rightarrow M' : \sigma}{\Gamma, x : \sigma, \Gamma' \vdash M \Rightarrow_* M' : \sigma} \\ \frac{\Gamma, \Gamma' \vdash M \Rightarrow_* M' : \sigma}{\Gamma, x : \sigma, \Gamma' \vdash M \equiv M' : \tau} \\ \frac{\Gamma, \Gamma' \vdash M \equiv M' : \tau}{\Gamma, x : \sigma, \Gamma' \vdash M \equiv M' : \tau} \\ \frac{\Gamma, \Gamma' \vdash \Delta : \overline{*}}{\Gamma, x : \sigma, \Gamma' \vdash \overline{M} : \Delta} \\ \frac{\Gamma, \Gamma' \vdash \overline{M} : \Delta}{\Gamma, x : \sigma, \Gamma' \vdash \overline{M} \Rightarrow \overline{M'} : \Delta} \\ \frac{\Gamma, \Gamma' \vdash \overline{M} \Rightarrow \overline{M'} : \Delta}{\Gamma, x : \sigma, \Gamma' \vdash \overline{M} \Rightarrow \overline{M'} : \Delta} \\ \end{split}$$

by mutual induction on the derivations.

2.1.3 \Rightarrow is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M \Rrightarrow M : \sigma} \Rrightarrow \text{-refl}$$

$$\frac{\Gamma \vdash \overline{M} : \Delta}{\Gamma \vdash \overline{M} \Rrightarrow \overline{M} : \Delta} \Rrightarrow \text{-refl'}$$

by induction

2.1.4 \equiv is reflexive

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash M \equiv M : \sigma} \equiv \text{-refl}$$

by $\Rightarrow *-refl$

2.1.5 Context substitution

For any derivation of $\Gamma \vdash N : \tau$ the following rules are admissible:

$$\frac{\Gamma,x:\tau,\Gamma'\vdash}{\Gamma,\Gamma'[x\coloneqq N]\vdash}$$

$$\frac{\Gamma,x:\tau,\Gamma'\vdash M:\sigma}{\Gamma,\Gamma'[x\coloneqq N]\vdash M[x\coloneqq N]:\sigma[x\coloneqq N]}$$

$$\frac{\Gamma,x:\tau,\Gamma'\vdash M\Rightarrow M':\sigma}{\Gamma,\Gamma'[x\coloneqq N]\vdash M[x\coloneqq N]\Rightarrow M'[x\coloneqq N]:\sigma[x\coloneqq N]}$$

$$\frac{\Gamma,x:\tau,\Gamma'\vdash M\Rightarrow_*M':\sigma}{\Gamma,\Gamma'[x\coloneqq N]\vdash M[x\coloneqq N]\Rightarrow_*M'[x\coloneqq N]:\sigma}$$

$$\frac{\Gamma,x:\tau,\Gamma'\vdash M\Rightarrow_*M':\sigma}{\Gamma,\Gamma'[x\coloneqq N]\vdash M[x\coloneqq N]\Rightarrow_*M'[x\coloneqq N]:\sigma}$$

$$\frac{\Gamma,x:\tau,\Gamma'\vdash M\equiv M':\sigma}{\Gamma,\Gamma'[x\coloneqq N]\vdash M[x\coloneqq N]\equiv M'[x\coloneqq N]:\sigma[x\coloneqq N]}$$

$$\frac{\Gamma,x:\tau,\Gamma'\vdash \Delta:\overline{\pi}}{\Gamma,\Gamma'[x\coloneqq N]\vdash \overline{M}[x\coloneqq N]:\overline{\pi}}$$

$$\frac{\Gamma,x:\tau,\Gamma'\vdash \overline{M}:\Delta}{\Gamma,\Gamma'[x\coloneqq N]\vdash \overline{M}[x\coloneqq N]:\Delta[x\coloneqq N]}$$

$$\frac{\Gamma,x:\tau,\overline{M}\Rightarrow \overline{M'}:\Delta}{\Gamma,\Gamma'[x\coloneqq N]\vdash \overline{M}[x\coloneqq N]\Rightarrow \overline{M'}[x\coloneqq N]:\Delta[x\coloneqq N]}$$

by mutual induction on the derivations. Specifically, at every usage of x from the var rule in the original derivation, replace the usage of the var rule with the derivation of $\Gamma \vdash N : \tau$ weakened to the context of $\Gamma, \Gamma'[x \coloneqq N] \vdash N : \tau$, and apply appropriate reflexivity when needed.

2.2 Computation

2.2.1 \Rightarrow preserves type of source

The following rules are admissible:

$$\frac{\Gamma \vdash N \Rrightarrow N' : \tau}{\Gamma \vdash N : \tau}$$

$$\frac{\Gamma \vdash \overline{N} \Rrightarrow \overline{N'} : \Delta}{\Gamma \vdash \overline{N} : \Delta}$$

by mutual induction

$2.2.2 \Rightarrow \text{substitution}$

The following rule is admissible:

$$\frac{\Gamma, \Delta, \Gamma' \vdash \overline{M} \Rrightarrow \overline{M'} : \Theta \quad \Gamma \vdash \overline{N} \Rrightarrow \overline{N'} : \Delta}{\Gamma, \Gamma' \left[\Delta \coloneqq \overline{N}\right] \vdash \overline{M} \left[\Delta \coloneqq \overline{N}\right] \Rrightarrow \overline{M'} \left[\Delta \coloneqq \overline{N'}\right] : \Theta \left[\Delta \coloneqq \overline{N}\right]}$$

by induction on the \Rightarrow derivations with the corollary Corollary, the following rule is admissible:

$$\frac{\Gamma, x : \sigma, \Gamma' \vdash M \Rrightarrow M' : \tau \quad \Gamma \vdash N \Rrightarrow N' : \sigma}{\Gamma, \Gamma' \left[x \coloneqq N \right] \vdash M \left[x \coloneqq N \right] \Rrightarrow M' \left[x \coloneqq N' \right] : \tau \left[x \coloneqq N \right]}$$

$2.2.3 \Rightarrow \text{is confluent}$

if $\Gamma \vdash M \Rightarrow N : \sigma$ and $\Gamma \vdash M \Rightarrow N' : \sigma$ then there exists P such that $\Gamma \vdash N \Rightarrow P : \sigma$ and $\Gamma \vdash N' \Rightarrow P : \sigma$

and $\Gamma \vdash \overline{M} \Rrightarrow \overline{N} : \Delta$ and $\Gamma \vdash \overline{M} \Rrightarrow \overline{N'} : \Delta$ then there exists \overline{P} such that $\Gamma \vdash \overline{N} \Rrightarrow \overline{P} : \Delta$ and $\Gamma \vdash \overline{N'} \Rrightarrow \overline{P} : \Delta$

by mutual induction on all possible pairs of reductions (abusing notation by suppressing Γ, σ, Δ that are constant throughout)

- Π -E- \Rightarrow and Π - \Rightarrow
 - -M is $(\operatorname{fun} f:(x.\tau).x:\sigma.B)$ A
 - -N is $(\operatorname{fun} f:(x.\tau).x:\sigma.B')$ A', $B \Rightarrow B'$, $A \Rightarrow A'$
 - -N' is $B''[x := A'', f := (\operatorname{fun} f : (x \cdot \tau) \cdot x : \sigma \cdot B'')]$, $B \Rightarrow B''$, $A \Rightarrow A''$
 - $-B \Rightarrow B_v, A \Rightarrow A_v$ by I.H
 - (fun $f:(x.\tau).x:\sigma.B$) $A \Rightarrow B_v[x := A_v, f := (\text{fun } f:(x.\tau).x:\sigma.B_v)]$ by repeated \Rightarrow substitution
- D-E- \Rightarrow and D- \Rightarrow
 - $-M \text{ is } \mathsf{Case}_{x:D\,\overline{y}.\sigma}\left(d\,\overline{A}\right) \text{ of } \left\{\overline{d_i\overline{x}_i\Rightarrow B_i\,|}\right\}$
 - $-N \text{ is } \mathsf{Case}_{x:D\,\overline{y}.\sigma}\left(d\,\overline{A'}\right) \text{ of } \left\{\overline{d_i\overline{x}_i\Rightarrow B'_i|}\right\},\,\overline{A} \Rrightarrow \overline{A'},\, \forall i.\, B_i \Rrightarrow B'_i$
 - $-\ N' \text{ is } B''\left[\overline{x}\coloneqq\overline{A''}\right],\ \overline{A} \Rrightarrow \overline{A''},\ B \Rrightarrow B'',\ d\overline{x} \Rightarrow B \in_i \left\{\overline{d_i\overline{x}_i \Rightarrow B_i\,|}\right\}$
 - $-B \Rightarrow B_v, \overline{A} \Rightarrow \overline{A_v}$ by I.H
 - $\mathsf{Case}_{x:D\,\overline{y}.\sigma}\left(d\,\overline{A}\right)$ of $\left\{\overline{d_i\overline{x}_i\Rightarrow B_i\,|}\right\} \ \Rightarrow \ B_v\left[\overline{x}\coloneqq\overline{A_v}\right]$ by repeated \Rightarrow substitution
- all other reductions match, and follow immediately from induction, or are symmetric to already presented cases

$2.3 \Rightarrow_*$

2.3.1 \Rightarrow_* is transitive

The following rule is admissible:

$$\frac{\Gamma \vdash M \Rrightarrow_* M' : \sigma \quad \Gamma \vdash M' \Rrightarrow_* M'' : \sigma}{\Gamma \vdash M \Rrightarrow_* M' : \sigma} \Rrightarrow *\text{-trans}$$

by induction

2.3.2 \Rightarrow preserves type in source

The following rules are admissible:

$$\frac{\Gamma \vdash N \Rrightarrow N' : \tau}{\Gamma \vdash N' : \tau}$$

$$\frac{\Gamma \vdash \overline{N} \Rrightarrow \overline{N'} : \Delta}{\Gamma \vdash \overline{N'} : \Delta}$$

By induction on the \Rightarrow derivation with the help of the substitution lemma.

- Π-⇒
 - $-M'[x := N', f := (\operatorname{\mathsf{fun}} f : (x.\tau) . x : \sigma.M')] : \tau[x := N]$ by the substitution lemma used on the inductive hypotheses
- D-⇒
 - $-O'\left[\overline{x}\coloneqq\overline{N'}\right]:\sigma\left[x\coloneqq d\overline{x}_i,\overline{y}\coloneqq\overline{N}\right]$ by the substitution lemma used on the inductive hypotheses
- all other cases are trivial

2.3.3 \Rightarrow_* preserves type

The following rule is admissible:

$$\frac{\Gamma \vdash M \Rightarrow_* M' : \sigma}{\Gamma \vdash M : \sigma}$$

by induction

$$\frac{\Gamma \vdash M \Rrightarrow_* M' : \sigma}{\Gamma \vdash M' : \sigma}$$

by induction

2.3.4 \Rightarrow_* is confluent

if $\Gamma \vdash M \Rightarrow_* N : \sigma$ and $\Gamma \vdash M \Rightarrow_* N' : \sigma$ then there exists P such that $\Gamma \vdash N \Rightarrow_* P : \sigma$ and $\Gamma \vdash N' \Rightarrow_* P : \sigma$

Follows from \Rightarrow *-trans and the confluence of \Rightarrow using standard techniques

$2.3.5 \equiv is symmetric$

The following rule is admissible:

$$\frac{\Gamma \vdash M \equiv N : \sigma}{\Gamma \vdash N \equiv M : \sigma} \equiv \text{-sym}$$

trivial

$2.3.6 \equiv \text{is transitive}$

$$\frac{\Gamma \vdash M \equiv N : \sigma \qquad \Gamma \vdash N \equiv P : \sigma}{\Gamma \vdash M \equiv P : \sigma} \equiv \text{-trans}$$

by the confluence of \Rightarrow_*

$2.3.7 \equiv preserves type$

The following rules are admissible:

$$\frac{\Gamma \vdash M \equiv M' : \sigma}{\Gamma \vdash M : \sigma}$$

$$\frac{\Gamma \vdash M \equiv M' : \sigma}{\Gamma \vdash M' : \sigma}$$

by the def of \Rightarrow_*

2.3.8 Regularity

The following rule is admissible:

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \sigma : \star}$$

by induction with \equiv -preservation for the Conv case

2.3.9 \rightsquigarrow implies \Rightarrow

The following rules are admissible:

$$\frac{\Gamma \vdash M : \sigma \quad M \leadsto M'}{\Gamma \vdash M \Rrightarrow M' : \sigma}$$

$$\frac{\Gamma \vdash \overline{M} : \Delta \quad \overline{M} \leadsto \overline{M'}}{\Gamma \vdash \overline{M} \Rrightarrow \overline{M'}' : \Delta}$$

by induction on \rightsquigarrow

$2.3.10 \rightarrow \text{preserves type}$

For any derivations of $\Gamma \vdash M : \sigma, M \leadsto M'$,

$$\Gamma \vdash M' : \sigma$$

since \rightsquigarrow implies \Rightarrow and \Rightarrow preserves types

2.4 Type constructors

2.4.1 Type constructors are stable

- if $\Gamma \vdash * \Rightarrow M : \sigma$ then M is *
- if $\Gamma \vdash * \Rightarrow_* M : \sigma$ then M is *
- if $\Gamma \vdash \Pi x : \sigma . \tau \Rightarrow M : \sigma$ then M is $\Pi x : \sigma' . \tau'$ for some σ', τ'
- if $\Gamma \vdash \Pi x : \sigma \cdot \tau \Rightarrow_* M : \sigma$ then M is $\Pi x : \sigma' \cdot \tau'$ for some σ', τ'
- if $\Gamma \vdash D\overline{M} \Rrightarrow M : \sigma$ then M is $D\overline{M'}$ for some $\overline{M'}$
- if $\Gamma \vdash D \overline{M} \Rightarrow_* M : \sigma$ then M is $D \overline{M'}$ for some $\overline{M'}$

by induction on the respective relations

2.4.2 Type constructors definitionally unique

There is no derivation of

- $\Gamma \vdash * \equiv \Pi x : \sigma \cdot \tau : \sigma'$ for any $\Gamma, \sigma, \tau, \sigma'$
- $\Gamma \vdash * \equiv D\overline{M} : \sigma' \text{ for any } \Gamma, \overline{M}, \sigma'$
- $\Gamma \vdash \Pi x : \sigma.\tau \equiv D\overline{M} : \sigma'$ for any $\Gamma, \sigma, \tau, \overline{M}, \sigma'$
- $\Gamma \vdash D \overline{M} \equiv D' \overline{N} : \sigma'$, $D \neq D'$ for any $\Gamma, \overline{M}, \overline{N}, \sigma'$

from \equiv -Def and constructor stability

2.5 Canonical forms

If $\Xi \vdash v : \sigma$ then

- if σ is \star then v is \star , $\Pi x : \sigma . \tau$ or $D \overline{M}$
- if σ is $\Pi x:\sigma'.\tau$ for some $\sigma',\,\tau$ then v is fun $f:(x.\tau').x:\sigma''.P'$ for some $\tau',\,\sigma'',\,P'$
- if σ is $D \overline{M}$ for some \overline{M} then v is $d_k \overline{v}$ for some data $D \Delta$ where $\left\{ \overline{d_i \Theta_i \to D\overline{M}_i} \, | \, \right\} \in \Xi$ and $d_k \Theta_k \to D\overline{M}_k \in \overline{d_i \Theta_i \to D\overline{M}_i} \, |$

By induction on the typing derivation

- Conv,
 - if σ is \star then eventually, it was typed with type-in-type, Π-F, D-F, or D-F'. It could not have been typed by Π-I or D-I since constructors are definitionally unique
 - if σ is Πx : σ' . τ then eventually, it was typed with Π -I. it could not have been typed b type-in-type, Π -F, D-F, D-F', or D-I since constructors are definitionally unique
 - if σ is $D\overline{M}$ then eventually, it was typed with D-I. it could not have been typed b type-in-type, Π-F, D-F', or Π-I since constructors are definitionally unique
 - can never eventually type with Π -E, or D-E, since those cannot type values in the empty ctx
- type-in-type, $\Xi \vdash v : \sigma$ is $\Xi \vdash \star : \star$
- Π -F, $\Xi \vdash v : \sigma$ is $\Xi \vdash \Pi x : \sigma \cdot \tau : \star$
- D-F, $\Xi \vdash v : \sigma \text{ is } \Xi \vdash D \overline{M} : \star$
- D-F', $\Xi \vdash v : \sigma \text{ is } \Xi \vdash D \overline{M} : \star$
- Π -I, $\Xi \vdash v : \sigma$ is $\Xi \vdash \text{fun } f : (x.\tau) . x : \sigma.M : \Pi x : \sigma.\tau$
- D-I, $\Xi \vdash v : \sigma$ is $d\overline{N} : D\overline{M}'$ for some \overline{M}'
- no other typing rules are applicable

2.6 Progress

- $\Xi \vdash M : \sigma$ implies that M is a value or there exists N such that $M \leadsto N$ and $\Xi \vdash \overline{M} : \Delta$ implies that \overline{M} is a list of values or there exists \overline{N} such that $\overline{M} \leadsto \overline{N}$ By mutual induction on the typing derivation and list typing derivation Explicitly:
 - M is typed by the conversion rule, then by **induction**, M is a value or there exists N such that $M \leadsto N$
 - M cannot be typed by the variable rule in the empty context
 - M is typed by type-in-type. M is \star , a value
 - M is typed by Π -F. M is $\Pi x : \sigma.\tau$, a value
 - M is typed by Π -I. M is fun $f:(x.\tau).x:\sigma.M'$, a value

- M is typed by Π-E. M is PN then there exist some σ, τ for Ξ ⊢ P: Πx: σ.τ and Ξ ⊢ N: σ. By induction (on the P branch of the derivation) P is a value or there exists P' such that P → P'. By induction (on the N branch of the derivation) N is a value or there exists N' such that N → N'
 - if P is a value then by **canonical forms**, P isfun $f:(x.\tau).x:\sigma.P'$
 - * if N is a value then the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')$ $N \leadsto P'[x:=N,f:=\operatorname{fun} f:(x.\tau).x:\sigma.M]$
 - * otherwise there exists N' such that $N \leadsto N'$, and the one step reduction is $(\operatorname{fun} f:(x.\tau).x:\sigma.P')\ N \leadsto (\operatorname{fun} f:(x.\tau).x:\sigma.P')\ N'$
 - otherwise, there exists P' such that $P \leadsto P'$ and the one step reduction is $P N \leadsto P' N$
- M is typed by D-F'. M is $D\overline{N}$, a value
- M is typed by D-F. M is $D\overline{N}$, a value
- M is typed by D-I. By **induction** on lists
- M is typed by D-E. M is $\mathsf{Case}_{x:D\,\overline{y}.\sigma}\,N$ of $\left\{\overline{d_i\overline{x}_i\Rightarrow O_i\,|}\right\}$ By induction (on the N branch of the derivation) N is a value or there exists N' such that $N\leadsto N'$
 - if N is a value, by **canonical forms** N is $d_k \, \overline{v}$. from the typing derivation we know that there is a d_k clause in the case expression. The 1 step reduction is $\mathsf{Case}_{x:D\,\overline{y}.\sigma} \, (d_k\,\overline{v})$ of $\left\{\overline{d_i\overline{x}_i} \Rightarrow O_i\,\middle|\,\right\} \leadsto O_k\,[\overline{x} \coloneqq \overline{v}]$
 - $\text{ otherwise, the one step reduction is } \mathsf{Case}_{x:D\;\overline{y}.\sigma} \; N \text{ of } \left\{ \overline{d_i \overline{x}_i} \Rightarrow O_i \, | \, \right\} \leadsto \\ \mathsf{Case}_{x:D\;\overline{y}.\sigma} \; N' \text{ of } \left\{ \overline{d_i \overline{x}_i} \Rightarrow O_i \, | \, \right\}$
- \overline{M} is typed by Δ -Trm-Emp. \overline{M} is \Diamond a degenerate value
- \overline{M} is typed by Δ -Trm-+.
 - $-\overline{M}$ is a list of values
 - $-\overline{M}$ is $\overline{v}, N, \overline{N'}$. By induction

2.7 Type Soundness

For any well typed term in an empty context, no sequence of small step reductions will cause result in a computation to "get stuck". Either a final value will be reached or further reductions can be taken. This follows by iterating the progress and preservation lemmas.

3 Conjectured properties

telescope regularity

$$\frac{\Gamma \vdash \overline{M} : \varDelta}{\Gamma \vdash \varDelta : \overline{\star}}$$

4 Non-Properties

- decidable type checking
- normalization/logical soundness

5 Differences from implementation

differences from Agda development

- In Agda presentation only handles functions, without data syntax
- In Agda the parallel reduction relation does not track the original typing judgment, though this should be equivalent
- Only proved the function part of the canonical forms lemma
- As here, standard properties are

differences from prototype

- bidirectional, type annotations are not always needed on functions or data
- top-level definitions of functions and data
 - top-level recursion function recursion is supported
 - top-level data references are supported
 - mutual recursion is allowed much more than in this presentation
- data constructors use re-use function application parameters rather then having a list of sub-terms
- aside from establishing that a term has a type, type annotations are not relevant for definitional equality in the prototype

6 Proof improvements

- abstract types subtly break the canonical forms lemma
- Clarify what unsoundness means
- proof outline at the top of document

- correct spelling
- better function notation
- meta syntax to quantify over contextual judgments
- \bullet meta syntax to quantify over \Rrightarrow judgments
- clean up syntax
 - move to the more modern (a:M)-> N, instead of pi
 - clean up the case matching a bit
- make at terms represented by Latin characters, reserving the geek letters for other constructs
- $\bullet\,$ enumerate the syntactic abbreviations
- Single (or double args) instead of the messy arg list notation