Показано, что процесс аномального переноса вещества в пористой среде моделируется дифференциальными уравнениями с дробной производной. Поставлена и численно решена задача переноса вещества в двухзонной пористой среде, состоящей из макро- и микропор. Определены профили изменения концентраций взвешенных частиц в макропоре и микропоре. Оценено влияние порядка производной по координате и времени, т.е. фрактальной размерности среды, на характеристики переноса вещества в обеих зонах.

В данный работе изучается процесс аномального переноса веществ в неоднородный, двухзонной среде, где происходит массообмен между зонами. В зоне с неподвижной жидкостью процесс переноса описывается кинетическим уравнением, где в отличие от других известных работ, учитывается аномальность В зоне подвижной cжидкостью используется конвективно-диффузионное уравнение с учетом аномальности диффузионного процесса. Поставлена и численно решена задача переноса веществ в одномерной полубесконечной среде. Оценено аномальности диффузионного переноса и влияние массопереноса в зоне с неподвижной жидкостью на характеристики переноса.

Постановка задачи. Среда состоит из двух зон: мобильной, т.е. пористая среда, где жидкость мобильна, и неподвижной, где жидкость неподвижна, но происходит диффузионный перенос вещества.

Уравнения переноса вещества имеют вид

$$\theta_{m} \frac{\partial c_{m}}{\partial t} + \gamma \theta_{im} \frac{\partial^{\alpha} c_{im}}{\partial t^{\alpha}} = \theta_{m} D_{m} \frac{\partial^{\beta} c_{m}}{\partial x^{\beta}} - v_{m} \theta_{m} \frac{\partial c_{m}}{\partial x},$$

$$\gamma \theta_{im} \frac{\partial^{\alpha} c_{im}}{\partial t^{\alpha}} = \omega (c_m - c_{im}),$$

(2)

где θ_m , θ_{im} — пористости, c_m , c_{im} — объемные концентрации вещества, $v_{\scriptscriptstyle M}$ — осредненная скорость движения раствора,

 γ — коэффициент переноса массы, $[\gamma] = T^{\alpha-1}$, $[\omega] = T^{-1}$, индекс m относится мобильной, а im — неподвижной зоне с жидкостью.

Начальные и граничные условия имеют вид:

$$c_m(0, x) = 0,$$
 $c_{im}(0, x) = 0,$ (3)
$$c_m(t, 0) = c_0, c_m(t, \infty) = 0.$$
 (4)

Порядки дробных производных α и β изменяются в следующем диапозоне: $0 < \alpha \le 1, \ 1 < \beta \le 2.$

Переведенный численный анализ показывает, что аномальность процесса значительно влияет на характеристики переноса вещества в обеих зонах среды, т.е. как в микро -, так и в макропоре. Аномальность переноса характеризуется порядком производной в диффузионном члене уравнения переноса и уравнения кинетики массообмена.