INFORMATWKA

WPISUJE ZDAJĄCY		
NUMER UCZ	ZNIA	
EGZAMIN MATU	RALNY Z INFORMATYKI	
POZIOM ROZSZERZON Część I	Y	
ARKUSZ EGZAMINACY	JNY PROJEKTU INFORMATURA	
D _{ATA} : 26 marca 2019 R. Czas pracy: 60 MINUT Liczba punktów do uzyskan	IA: 15	
WPISUJE ZDAJĄCY	WYBRANE:	
	(środowisko)	
	(kompilator)	

(program użytkowy)

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków lub języka programowania, który wybrałaś/eś na egzamin.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Zadanie 1. Cecha podzielności liczb (0-6)

Zadanie polega na badaniu podzielności liczb naturalnych (n > 0) przez 7, 11 lub 13. Cecha podzielności przez 7, 11 lub 13 oparta jest na równości 7 * 11 * 13 = 1001. Aby sprawdzić, czy liczba jest podzielna przez 7, 11 lub 13, grupujemy cyfry danej liczby n po trzy od końca i każdą taką grupę oznaczamy, poczynając od pierwszej z prawej, przez n_1 , n_2 , n_3 , ..., n_k , gdzie $k=\lceil d/3 \rceil$ a d to liczba cyfr liczby n.

Dana liczba n dzieli się przez 7, 11 lub 13 jeśli suma s wyznaczona jako $s = n_1 - n_2 + n_3 - ... - n_k$, dla parzystego k, lub $s = n_1 - n_2 + n_3 - ... + n_k$, dla nieparzystego k, jest podzielna przez 7, 11 lub 13.

Użyty zapis [x] oznacza zaokrąglenie do najbliższej liczby całkowitej w górę, np. dla x = 2,4 zapis [2,4] równy jest 3, a dla x = 5 zapis [5] równy jest 5.

Przykład:

n = 22133645

s = 645 - 133 + 22 = 534.

Ponieważ 534 nie dzieli się ani przez 7, ani przez 11, ani przez 13, zatem n nie dzieli się przez 7, 11 lub 13.

Zadanie 1.1. (0-1)

Przeanalizuj powyższy opis oraz przykłady i uzupełnij tabelę.

Wprowadzona liczba <i>n</i>	Wartość wyznaczonej sumy s	Czy liczba <i>n</i> jest podzielna przez 7?	Czy liczba n jest podzielna przez 11?	Czy liczba n jest podzielna przez 13?
22133645	s = 645 - 133 + 22 = 534	NIE	NIE	NIE
20449				
1343342				

Miejsce na obliczenia

Zadanie 1.2. (0-3)

W wybranej przez siebie notacji (lista kroków lub wybrany przez Ciebie język programowania) zapisz algorytm zgodny z poniższą specyfikacją, **wykorzystujący opisaną wyżej metodę** sprawdzania, czy liczna *n* jest podzielna przez 7, 11 lub 13.

W zapisie algorytmu możesz korzystać tylko z następujących operacji arytmetycznych: dodawania, odejmowania, mnożenia oraz dzielenia całkowitego (div) i obliczania reszty z dzielenia (mod). Załóż, że typ całkowity obsługuje dowolnie duże liczby naturalne.

Specyfikacja:

Dane: Dowolnie duża liczba naturalna n > 0.

Wynik: Komunikat zawierający trzy słowa *TAK* lub *NIE*, oddzielone znakami odstępu. Pierwsze słowo informuje, czy liczba *n* jest podzielna przez 7, drugie słowo informuje, czy liczba *n* jest podzielna przez 11, trzecie informuje, czy liczba *n* jest podzielna przez 13.

Algorytm

Wypełnia egzaminator	Nr zadania	1.1.	1.2.
	Maks. liczba pkt	1	3
egzanimator	Uzyskana liczba pkt		

Zadanie 1.3. (0-2)

Sprawdźmy, czy cechy podzielności liczby naturalnej n (n > 0) przez 7, 11 lub 13 powielają się dla odwróconej liczby n.

Liczba odwrócona n to liczba powstała z zapisu liczby n od końca. Dla liczby n=12345, jej postać odwrócona to 54321.

Wprowadzona liczba <i>n</i>	Odwrócona liczba <i>n</i>	Wartość wyznaczonej sumy s	Czy odwrócona liczba n jest podzielna przez 7?	Czy odwrócona liczba n jest podzielna przez 11?	Czy odwrócona liczba n jest podzielna przez 13?
22133645	54633122	s = 122 - 633 + 54 = -457	NIE	NIE	NIE

W wybranej przez siebie notacji (lista kroków lub wybrany przez Ciebie język programowania) zapisz algorytm zgodny z poniższą specyfikacją, który zwraca odwróconą liczbę naturalną n > 0. Załóż, że typ całkowity obsługuje dowolnie duże liczby naturalne.

Specyfikacja:

Dane: Dowolnie duża liczba naturalna n > 0.

Wynik: Odwrócona liczba n.

Algorytm

Strona 4 z 10

Zadanie 2. Oceń prawdziwość poniższych zdań (0-3)

Zadanie 2.1. (0-1)

	P/F
Wyrażenie arytmetyczne ((8-2)/3+(1+4)*2)/6 zapisane w postaci ONP (odwrotna notacja polska) to 82-3/14+2*+6/=	
ONP (odwrotna notacja polska) to infiksowa notacja zapisu wyrażeń arytmetycznych, gdzie dopuszcza się stosowanie nawiasów.	
Po obliczeniu wartość wyrażenia 82-3/14+2*+6/= zapisanego w postaci ONP wynosi 90.	
ONP (odwrotna notacja polska) to postfiksowa notacja zapisu wyrażeń arytmetycznych, gdzie operatory umieszczane są po argumentach.	

Zadanie 2.2. (0-1)

Dla adresu sieciowego hosta 67.120.70.93 z prefiksem /21:

	P/F
prawidłowa maska sieciowa wynosi 255.255.25.0.	
adres sieci wynosi 67.120.64.0.	
adres rozgłoszeniowy wynosi 67.120.70.255.	
liczba dostępnych hostów w tej sieci wynosi 2048.	

Zadanie 2.3. (0-1)

Licencja na oprogramowanie freeware:

	P/F
wymusza wyświetlanie reklam w czasie pracy.	
pozwala nieodpłatnie wykorzystywane programów, jednak zabrania czerpania korzyści finansowych z ich dystrybucji przez osoby trzecie.	
umożliwia darmowe rozprowadzanie aplikacji bez ujawnienia kodu źródłowego.	
nie ogranicza możliwości ani nie narzuca konieczności pobierania opłat za wytworzone produkty.	

Waynalmia	Nr zadania	1.3.	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt	2	1	1	1
egzaminator	Uzyskana liczba pkt				

Zadanie 3. Liczba Smitha (0-6)

Liczba Smitha to liczba naturalna (większa od 1) niebędąca liczbą pierwszą (liczba złożona), której suma cyfr (w systemie dziesiętnym) jest równa sumie cyfr wszystkich liczb występujących w jej rozkładzie na czynniki pierwsze. Na przykład 202 jest liczbą Smitha, ponieważ

$$2+0+2=4$$
,

a po rozkładzie na czynniki pierwsze 202 = 2 · 101, a więc suma cyfr wynosi

$$2 + 1 + 0 + 1 = 4$$
.

Zadanie 3.1. (0-1)

Sprawdź, czy liczby 58, 122, 958 są liczbami Smitha. Wpisz odpowiednio P, jeśli dana liczba jest liczbą Smitha, albo F, jeśli nią nie jest.

	P/F
58	
122	
958	

Miejsce na obliczenia.		

Zadanie 3.2. (0-1)

Uzupełnij funkcję suma_cyfr(n) zwracającą sumę cyfr liczby w jej zapisie dziesiętnym.

Specyfikacja:

Dane: liczba całkowita n (n > 0)

Wynik: suma cyfr liczby n w zapisie dziesiętnym

Przykład:

Dane: n = 5432 *Wynik: suma* = 14

Funkcja **suma_cyfr**(*n*):

```
1. s = 0;
```

3. zwróć s

Zadanie 3.3. (0-2)

a) Uzupełnij procedurę **rozkład(n**), która dla liczby całkowitej n (n > 1) wypisuje wszystkie czynniki pierwsze występujące w rozkładzie.

Specyfikacja:

Dane: liczba całkowita n (n > 1)

Wynik: wszystkie czynniki pierwsze liczby n

Przykłady:

Dane:
$$n = 24$$
, Wynik: 2, 2, 2, 3.
Dane: $n = 19$, Wynik: 19.

Procedura **rozkład**(*n*):

```
1. dzielnik \leftarrow 2
```

Warmalmia	Nr zadania	3.1.	3.2.	3.3.a
Wypełnia egzaminator	Maks. liczba pkt	1	1	1
egzaiiiiiator	Uzyskana liczba pkt			

b) Zmodyfikuj procedurę **rozkład(***n***)** w taki sposób, by zamiast wypisywać czynniki pierwsze występujące w rozkładzie liczby *n*, zwracała sumę ich cyfr.

Miejsce na funkcję.

Zadanie 3.4. (0-1)

Uzupełnij funkcję **pierwsza**(n), która dla liczby całkowitej n (n > 1) sprawdza, czy liczba jest pierwsza czy złożona.

Specyfikacja:

Dane: liczba całkowita n (n > 1)

Wynik: prawda, jeśli liczba jest pierwsza lub falsz, jeśli liczba nie jest pierwsza.

Przykłady:

Dane:
$$n = 11$$
, Wynik: 1
Dane $n = 24$, Wynik: 0

Funkcja **pierwsza**(*n*):

Zadanie 3.5. (0-1)

W wybranej przez siebie notacji (lista kroków, wybrany przez Ciebie język programowania) napisz algorytm wykorzystujący funkcje z powyższych zadań sprawdzający, czy liczba n jest liczbą Smitha.

Specyfikacja:

Dane: liczba naturalna n (n > 1).

Wynik: prawda, jeśli liczba jest liczbą Smitha lub falsz, jeśli liczba nie jest liczbą

Smitha.

Miejsce na algorytm.

Wypełnia egzaminator	Nr zadania	3.3.b	3.4.	3.5.
	Maks. liczba pkt	1	1	1
	Uzyskana liczba pkt			

BRUDNOPIS (nie podlega ocenie)