Class XI: Mathematics

Chapter 5

Complex Numbers & Quadratic Equations

Chapter Notes

Top Definitions

- 1. A number of the form a + ib, where a and b are real numbers, is said to be a complex number.
- 2. In complex number z = a + ib, a is the real part, denoted by Re z and b is the imaginary part denoted by Im z of the complex number z.
- $3\sqrt{-1}$ = i is called the iota the complex number.
- 4. For any non zero complex number z = a + ib ($a \neq 0$, $b \neq 0$), there exists
- a complex number $\frac{a}{a^2 + b^2} + i \frac{-b}{a^2 + b^2}$, denoted by $\frac{1}{z}$ or z^{-1} , called the

multiplicative inverse of z such that (a + ib) $\left(\frac{a^2}{a^2+b^2}+i\frac{-b}{a^2+b^2}\right)=1+i0=1$.

- 5. Modulus of a complex number z = a+ib, denoted by |z|, is defined to be the non negative real number $\sqrt{a^2 + b^2}$, i.e $|z| = \sqrt{a^2 + b^2}$
- 6. Conjugate of a complex number z = a + ib, denoted as \overline{z} , is the complex number a ib.
- 7. $z=r(\cos\theta + i\sin\theta)$ is the polar form of the complex number z=a+ib.

here $r=\sqrt{a^2+b^2}$ is called the modulus of z and $\theta=\,tan^{-1}\!\left(\frac{b}{a}\right)\!$ is called the

argument or amplitude of z, denoted by arg z.

8. The value of θ such that $-\pi < \theta \leq \pi$, called principal argument of z.

PRACTICE GURU ACADEMY

9 The plane having a complex number assigned to each of its points is called the complex plane or the Argand plane.

10.Fundamental Theorem of Algebra states that "A polynomial equation of degree n has n roots."

Top Concepts

1. Addition of two complex numbers: If $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers then, the sum

$$z_1 + z_2 = (a + c) + i(b + d).$$

- 2. Sum of two complex numbers is also a complex number. this is known as the closure property.
- 3. The addition of complex numbers satisfy the following properties:
- i. Addition of complex numbers satisfies the commutative law. For any two complex numbers z_1 and z_2 , $z_1 + z_2 = z_2 + z_1$.
- ii. Addition of complex numbers satisfies associative law for any three complex numbers z_1 , z_2 , z_3 , $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$.
- iii. There exists a complex number 0 + i0 or 0, called the additive identity or the zero complex number, such that, for every complex number z, z + 0 = 0 + z = z.
- iv. To every complex number z = a + ib, there exists another complex number -z = -a + i(-b) called the additive inverse of z. z+(-z)=(-z)+z=0
- 4 **Difference of two complex numbers:** Given any two complex numbers If $z_1 = a + ib$ and $z_2 = c + id$ the difference $z_1 z_2$ is given by

$$z_1 - z_2 = z_1 + (-z_2) = (a - c) + i(b - d).$$

5 **Multiplication of two complex numbers** Let $z_1 = a + ib$ and $z_2 = c + id$ be any two complex numbers. Then, the product $z_1 z_2$ is defined as follows:

$$z_1 z_2 = (ac - bd) + i(ad + bc)$$

D-27

2

- 6. **Properties of multiplication of complex numbers**: Product of two complex numbers is a complex number, the product z_1 z_2 is a complex number for all complex numbers z_1 and z_2 .
- i. Product of complex numbers is commutative i.e for any two complex numbers z_1 and z_2 ,

$$z_1 z_2 = z_2 z_1$$

ii. Product of complex numbers is associative law For any three complex numbers z_1 , z_2 , z_3 ,

$$(z_1 z_2) z_3 = z_1 (z_2 z_3)$$

- iii. There exists the complex number 1 + i0 (denoted as 1), called the multiplicative identity such that z.1 = z for every complex number z.
- iv. For every non- zero complex number z=a+ib or a+bi ($a\neq 0$, $b\neq 0$), there is a complex number $\frac{a}{a^2+b^2}+i\frac{-b}{a^2+b^2}$, called the multiplicative inverse of z such that

$$z \times \frac{1}{z} = 1$$

- v. The distributive law: For any three complex numbers z_1 , z_2 , z_3 ,
 - a. $z_1(z_2 + z_3) = z_1.z_2 + z_1.z_3$
 - b. $(z_1 + z_2) z_3 = z_1.z_3 + z_2.z_3$
- **7.Division of two complex numbers** Given any two complex numbers $z_1 =$
- a + ib and z_2 = c + id z_1 and z_2 , where $z_2 \neq 0$, the quotient $\frac{z_1}{z_2}$ is defined by

$$\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2} = \frac{ac + bd}{c^2 + d^2} + i \frac{bc - ad}{c^2 + d^2}$$

8. Identities for the complex numbers

i. $(z_1 + z_2)^2 = z_1^2 + z_2^2 = 2z_1 \cdot z_2$, for all complex numbers z_1 and z_2 .

ii
$$(z_1 - z_2)^2 = z_1^2 - 2z_1z_2 + z_2^2$$

iii.
$$(z_1 + z_2)^3 = z_1^3 + 3z_1^2z_2 + 3z_1^2z_2^2 + z_2^3$$

iv
$$(z_1 - z_2)^3 = z_1^3 = 3z_1^2z_2 + 3z_1z_2^3 - z_2^3$$

$$v z_1^2 - z_2^2 = (z_1 + z_2) (z_1 - z_2)$$

4

9. Properties of modulus and conjugate of complex numbers

For any two complex numbers z_1 and z_2 ,

i.
$$|z_1 z_2| = |z_1||z_2|$$

ii.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 provided $|z_2| \neq 0$

iii.
$$\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$$

iv.
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$

v.
$$\left(\frac{\overline{z_1}}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$$
 provided $z_2 \neq 0$

10. For any integer k, $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -1$

i. $\sqrt{a} \times \sqrt{b} \neq \sqrt{ab}$ when a<0and b<0.

11. The polar form of the complex number z = x + iy is $r (\cos \theta + i \sin \theta)$, where r is the modulus of z and θ is known as the argument of z.

12.For a quadratic equation $ax^2 + bx + c = 0$ with real coefficient a, b, c and $a \neq 0$.

If discriminant D = b^2 - $4ac \geq 0$ then the equation has two real roots given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{or } x = \frac{-b}{2a}$$

13. Roots of the quadratic equation $ax^2 + bx + c = 0$, where a, b, $c \in R$, a \neq

0, when discriminant b^2 -4ac < 0, are imaginary given by

$$x = \frac{-b \pm \sqrt{4ac - b^2i}}{2a}$$
. Complex roots occurs in pairs.

- 14. A polynomial equation of n degree has n roots. These n roots could be real or complex.
- 15. Complex numbers are represented in Argand plane with x axis being real and y axis imaginary

16. Representation of complex number z=x+iy in Argand Plane

17. Argument θ of the complex number z can take any value in the interval $[0, 2\pi)$. Different orientations of z are as follows

