

Examiners: Dr. Mohammed Marey Offering Dept.: Scientific Computing Academic year: 1st term 2017-2018

Duration: 3 hours

Answer the following four questions:

The total marks: 90 (+ 10 Bonus)

1st Question Discrete Math marks: 25

A. Three boxes are presented to you. One contains gold, the other two are empty.

Each box has imprinted on it a clue as to its contents; the clues are:

Box 1 "The gold is not here", Box 2 "The gold is not here", Box 3 "The gold is in Box 2" Only one message is true; the other two are false. Which box has the gold?

- B. Show that $p \leftrightarrow q$ and $(p \land q) \lor (\neg p \land \neg q)$ are logically equivalent by a truth table and by developing a series of logically equivalences.
- C. Let P(m,n) ::="m divides n," where the domain for both variables consists of all positive integers. Determine the truth values of each of these statements.
 - a) P(4, 5)

- b) P(2, 4)
- c) \forall m \forall n P(m,n)

- d) $\exists m \ \forall n \ P(m,n)$
- e) $\exists n \ \forall m \ P(m,n)$
- f) $\forall n P(1,n)$
- D. Prove using direct proof that if m + n and n + p are even integers, then m + p is even, where m, n, and p are integers.
- E. Let P (n) be the statement that a postage of n cents can be formed using just 4-cent stamps and 7-cent stamps. The parts of this exercise outline a strong induction proof that P(n) is true for $n \ge 18$.

2nd Question Discrete Math marks: 25

- A. Find the integer a such that $a \equiv -12 \pmod{20}$, where $20 \leq a \leq 80$.
- B. Find each of these values.
 - a. GCD (140,228).

- b. LCM (140,228).
- c. $(-133 \mod 23 + 261 \mod 23) \mod 23$.
- C. Let R_1 and R_2 be relations on a set A represented by $M_{R_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and

 $M_{R_2} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$ Find the matrices that represent R1 \cup R2, R1 \cap R2, R2 \circ R1, R1 \bigoplus R2,

 R_1^{-1} , symmetric, reflexive, and transitive closures of R_1 .

- D. Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if a + d = b + c. Show that R is an equivalence relation.
- E. What are the equivalent classes of the following relations:

$$R_1 = \{(a, b): a \equiv b \pmod{4}, a, b \in \{-20, -19, -18, \dots, 18, 19, 20\}\}.$$

- A. Given the matrix $A = \begin{bmatrix} 5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & \mathbf{0} \end{bmatrix}$, find the following:
 - a. Base for the row space of A.
 - b. Base of the column space of A.
 - c. Spanning set for the null space of the matrix A.
 - d. What is the dimension of Row A, Col A, and Nul A.
- B. Using row reduction find the determinant of A where $A = \begin{bmatrix} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ -1 & 2 & 8 & 5 \\ 3 & 1 & -2 & 3 \end{bmatrix}$.
- C. Let $v_1 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$ and $H=\text{span}\{v_1, v_2, v_3\}$.
 - i- Write the linearly dependence relation of v_1 , v_2 , and v_3 .
 - ii- Show that span $\{v_1, v_2, v_3\}$ =span $\{v_2, v_3\}$.
- D. Find the inverse of A where $A = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 3 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

- A. Given the matrix $A = \begin{bmatrix} 5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$, find the following:
 - a. Characteristic equation and Eigenvalues of A.
 - b. Bases of eigenspaces corresponding to each eigen value of A.
 - c. The matrices D and P such that $A = PDP^{-1}$.
 - d. A^{50} .
- B. Find the parametric form of the general solution of the linear system whose

augmented matrix [A b] =
$$\begin{bmatrix} 1 & 0 & -5 & 0 & -8 & 3 \\ 0 & 1 & 4 & -1 & 0 & 6 \\ 0 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- C. Find the value(s) of h for which the vectors $\begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -6 \\ 4 \\ 3 \end{bmatrix}$, and $\begin{bmatrix} 9 \\ h \\ 3 \end{bmatrix}$ are linearly dependent.
- D. Show that the subset of all symmetric matrices $S_{3\times3}$ is a subspace of the set of all matrices $M_{3\times3}$.