Énoncé 3 : algèbre relationnelle

guillaume.postic@univ-evry.fr

Exercice 1

	1. Oui	
+-		+
	NomC	
+-		+
	Jean	
	Paul	
	Vincent	
+-		+

Dans le modèle relationnel, il n'y a pas de doublon dans l'extension de la relation (l'extension est l'ensemble des uplets). Ici, Jean et Paul n'apparaissent donc qu'une seule fois. Le SQL ne respecte pas complètement le modèle relationnel : dans une requête SQL équivalente, Jean et Paul apparaîtraient deux fois chacun.

- 3. Non : union possible seulement si les deux relations ont les mêmes attributs. En SQL, le nombre d'attributs est la seule condition (leurs domaines de définition peuvent être différents).
- 4. Non : même raison que pour l'union.

Note: dans le SGBD MySQL, **INTERSECT** n'existe pas. Il faut passer par un **INNER JOIN** sur toutes les colonnes.

5. Oui. Le fournisseur Cima n'est pas présent dans la table Prix.

+----+
| NomF |
+----+
| Abounayan |
| Preblocs |
| Samaco |
+----+

6. Non (voir 3 et 4). Dans MySQL, MINUS n'existe pas : il faut utiliser NOT IN.

7. Oui +----+ | NomF | +----+

| Cima | +----+

8. Oui : produit cartésien

NomF	AdresseF N	-++ omF NomP Couts -+
Abounayan	92190 Meudon	Abounayan sable 300
Cima	75010 Paris	Abounayan sable 300
Preblocs	92230 Gennevilliers	Abounayan sable 300
Samaco	75116 Paris	Abounayan sable 300
Abounayan	92190 Meudon	Abounayan briques 1500
Cima	75010 Paris	Abounayan briques 1500
Preblocs	92230 Gennevilliers	Abounayan briques 1500
Samaco	75116 Paris	Abounayan briques 1500
Abounayan	92190 Meudon	Abounayan parpaing 1150
Cima	75010 Paris	Abounayan parpaing 1150
Preblocs	92230 Gennevilliers	Abounayan parpaing 1150
Samaco	75116 Paris	Abounayan parpaing 1150
Abounayan	92190 Meudon	Preblocs tuiles 1150
Cima	75010 Paris	Preblocs tuiles 1150
Preblocs	92230 Gennevilliers	Preblocs tuiles 1150
Samaco	75116 Paris	Preblocs tuiles 1150
Abounayan	92190 Meudon	Preblocs parpaing 1200
Cima	75010 Paris	Preblocs parpaing 1200
Preblocs	92230 Gennevilliers	Preblocs parpaing 1200
Samaco	75116 Paris	Preblocs parpaing 1200
Abounayan	92190 Meudon	Samaco parpaing 1150
Cima	75010 Paris	Samaco parpaing 1150
Preblocs	92230 Gennevilliers	Samaco parpaing 1150

	Samaco		75116	Paris		Samaco		parpaing		1150	
	Abounayan		92190	Meudon		Samaco		ciment		125	
-	Cima		75010	Paris		Samaco		ciment		125	
-	Preblocs		92230	Gennevilliers		Samaco		ciment		125	
	Samaco		75116	Paris	l	Samaco		ciment		125	l
-	Abounayan		92190	Meudon		Samaco		briques		1200	
-	Cima		75010	Paris		Samaco		briques		1200	
-	Preblocs		92230	Gennevilliers		Samaco		briques		1200	
	Samaco		75116	Paris	l	Samaco		briques		1200	l
+		+-			۱-		 		+-		+

9. Oui

- 10. Non : aucune colonne pour faire la jointure (différence avec SQL)
- 11. Oui : jointure sur colonne NomF

NomF	AdresseF Nor	+++ mF
Abounayan	92190 Meudon	Abounayan sable 300
Abounayan	92190 Meudon	Abounayan briques 1500
Abounayan	92190 Meudon	Abounayan parpaing 1150
Preblocs	92230 Gennevilliers	Preblocs tuiles 1150
Preblocs	92230 Gennevilliers	Preblocs parpaing 1200
Samaco	75116 Paris	Samaco parpaing 1150
Samaco	75116 Paris	Samaco
Samaco	75116 Paris	Samaco briques 1200
+	+	++

12. Oui : comme 11 mais seuls les attributs de Fournisseurs sont gardés.

+	+-			-+			
NomF		Ad	dresseF				
+	-+-			-+			
Abounayan		92190	Meudon				
Preblocs		92230	${\tt Gennevilliers}$				
Samaco	-	75116	Paris				
+	-+-			-+			

13. Oui

+		-+	-+	-+-		+
	NumCom	NomC	NomP	-	Qte	
+		-+	-+	-+-		+
	1	Jean	briques	-	5	
	2	Jean	ciment	-	10	
_		_	1	_		_

14. Oui

+	-+	-+	+	+	+	-++
NomC	AdresseC	Solde	NumCom	NomC	NomP	Qte
+	-+	-+	+	+	+	-++
Jean	75006 Paris	-12000	1	Jean	briques	5
Jean	75006 Paris	-12000	2	Jean	ciment	10
Paul	75003 Paris	0	3	Paul	briques	3
Paul	75003 Paris	0	4	Paul	parpaing	9
Vincent	94200 Ivry	3000	5	Vincent	parpaing	7
+	-+	-+	+	+	+	-++

15. Oui

+-		+-			+-		-+
•	NomC	•			•		•
+-		+-			+-		-+
	Jean		75006	Paris		-12000	
	Paul		75003	Paris		0	
	Vincent		94200	Ivry		3000	
+-		.+-			.+-		-+

16. Oui

+-		- +
	NomP	
+-		-+
	briques	
	ciment	I
+-		- +

17. Oui

	NumCom		NomC	I	NomP	1	Qte		NomF		NomP	Ī	Couts
-	1		Jean	I	briques	1	5		Abounayan Samaco			Ī	1500
•	1	İ	Jean	İ	briques	İ	5	İ	Samaco	İ	briques	İ	1200

18. Oui

19. Oui

+-		•	NomF	•		•
+-		•		•		•
	briques		Abounayan		1500	
	ciment		Samaco		125	
	briques		Samaco		1200	
+-		+-		+-		+

2. Formuler les requêtes suivantes en langage algébrique et en SQL :

```
Quels sont les noms des produits commandés par Jean?
/*1*/
SELECT NomP FROM Commandes WHERE NomC = 'Jean'
\pi_{\text{NomP}} (\sigma_{\text{NomC} = 'Jean'} (Commandes))
Quels sont les noms des fournisseurs qui fournissent les produits qui figurent dans
les commandes de Paul?
/*2*/
SELECT p.NomF
FROM Commandes c
JOIN Prix p
ON c.NomP = p.NomP
WHERE c.NomC = 'Paul'
\pi_{NomF} ( Prix \bowtie \sigma_{NomC = `Paul'} (Commandes))
Quelle est l'adresse des fournisseurs qui fournissent des parpaings à un coût
strictement inférieur à 1200 ?
/*3*/
SELECT f.AdresseF
FROM Prix p
JOIN Fournisseurs f
ON p.NomF = f.NomF
WHERE p.NomP = 'parpaing'
AND p.Couts < 1200
\pi_{\text{AdresseF}} ( Fournisseurs \bowtie \sigma_{\text{NomP} = \text{`parpaing'} \land \text{Couts} < 1200} (Prix))
```

Quels sont les noms et adresses des clients et des fournisseurs tels que le produit commandé lors d'une commande soit des briques ?

```
/*4*/
SELECT c.NomC, k.AdresseC, p.NomF, f.AdresseF
FROM Commandes c
JOIN Clients k
ON c.NomC = k.NomC
JOIN Prix p
ON c.NomP = p.NomP
JOIN Fournisseurs f
ON p.NomF = f.NomF
WHERE c.NomP = 'briques'
/* implicit inner join */
SELECT c.NomC, k.AdresseC, p.NomF, f.AdresseF
FROM Commandes c, Clients k, Prix p, Fournisseurs f
WHERE c.NomP = 'briques'
AND c.NomC = k.NomC
AND c.NomP = p.NomP
AND p.NomF = f.NomF
\pi_{AdresseF, NomC, AdresseC, NomF} (Fournisseurs \bowtie \sigma_{NomP = \text{'briques'}} (Prix \bowtie (Commandes \bowtie Clients)))
```

Exercice 2

1. Formuler les requêtes suivantes en langage algébrique et en SQL :

```
(a) Intervenants de la pièce "L'avare" ? 
SELECT i.Intervenant 
FROM Intervenants i 
WHERE i.Titre = 'L avare'; 
\pi_{\text{Intervenant}} (\sigma_{\text{Titre}} = 'L avare' (Intervenants))
```

```
(b) Intervenants qui n'interviennent pas dans la pièce "L'avare"?
SELECT i.Intervenant
FROM Intervenants i
WHERE i.Intervenant NOT IN
       (SELECT Intervenant
       FROM Intervenants
       WHERE Titre = 'L avare');
\pi_{Intervenant} (Intervenants – (\sigma_{Titre = 'L avare'} (Intervenants)))
(c) Intervenants qui sont présents au moins dans un spectacle chaque semaine
pendant la saison?
SELECT i.Intervenant,
          COUNT(DISTINCT s.Semaine) AS compte,
          GROUP_CONCAT(DISTINCT s.Semaine) /* facultatif */
FROM Intervenants i
JOIN Spectacles s
ON i.Titre = s.Titre
GROUP BY i.Intervenant
HAVING compte = 4
\pi_{\text{Intervenant}} \left( \sigma_{\text{Semaine} = 4} \left( \prod_{\text{Intervenant}} g_{\text{count(Semaine)}} \left( \text{Intervenants} \bowtie \text{Spectacles} \right) \right) \right)
g: opérateur d'agrégation
```

L'algèbre relationnelle est basée sur la théorie des ensembles. Par définition, il n'y a pas de doublon dans un ensemble : tous les éléments de l'ensemble sont uniques. Le langage SQL ne respecte pas complètement le modèle relationnel, puisqu'il autorise plusieurs *tuples* identiques (sauf lorsqu'une contrainte d'unicité est explicitement appliquée dans le schéma, avec **UNIQUE**). D'où l'existence de la commande **DISTINCT** pour les requêtes.

```
Solution alternative sans DISTINCT, mais avec GROUP BY sur deux colonnes:
SELECT table1.Intervenant, COUNT(table1.Intervenant) AS compte
FROM (
  SELECT i.Intervenant, s.Semaine, COUNT(s.Semaine)
  FROM Intervenants i
  JOIN Spectacles s
  ON i.Titre = s.Titre
  GROUP BY i.Intervenant, s.Semaine
) table1
GROUP BY Intervenant
HAVING compte = 4
(d) Noms des salles libres au moins une semaine dans la saison?
SELECT p.Salle, COUNT(DISTINCT p.Semaine)
FROM Places p
GROUP BY p.Salle
HAVING COUNT(DISTINCT p.Semaine) < 4;</pre>
\pi_{\text{Salle}} \left( \sigma_{\text{Semaine} < 4} \left( \text{Salle} g_{\text{count}(\text{Semaine})} \text{ Places} \right) \right)
```

<u>IMPORTANT</u>: les opérations d'agrégation ne font pas partie de l'algèbre relationnelle telle qu'elle a été initialement définie par Edgar F. Codd: elles ont été ajoutées dans une version étendue (voir *Database system concepts* de Silberschatz., Korth et Sudarshan, 2002).

(e) A quelle date (semaine et jour) reste-t-il des places pour aller voir l'intervenant Dupont (et accessoirement dans quel titre) ?

```
SELECT i.Intervenant, s.Titre, s.Semaine, p.Jour, p.Disponibilite
FROM Places p
JOIN Spectacles s
ON p.Semaine = s.Semaine
AND p.Salle = s.Salle
JOIN Intervenants i
ON i.Titre = s.Titre
WHERE i.Intervenant = 'Paul' /* Choisir ici l'intervenant */
AND p.Disponibilite > 0
```

```
/* implicit inner join */
SELECT i.Intervenant, s.Titre, s.Semaine, p.Jour,
p.Disponibilite
FROM Places p, Spectacles s, Intervenants i
WHERE p.Semaine = s.Semaine
AND p.Salle = s.Salle
AND i.Titre = s.Titre
AND i.Intervenant = 'Paul' /* Choisir ici l'intervenant */
AND p.Disponibilite > 0
\pi_{\mathrm{Interv,\,Titre,\,Semaine,\,Jour,\,Dispo}}\left(\,\left(\,\,Spectacles\bowtie\sigma_{\mathrm{Intervenant}\,=\,\,\,^{\circ}\mathrm{Paul}}\cdot\left(\,\,Intervenants\,\,\right)\,\right)\bowtie\sigma_{\mathrm{Dispo}\,>\,0}\left(\,\,Places\,\,\right)\,\right)
(f) Intervenants qui interviennent dans toutes les salles au cours de la saison ?
SELECT i.Intervenant, COUNT(DISTINCT s.Salle)
FROM Intervenants i
JOIN Spectacles s
ON i.Titre = s.Titre
GROUP BY i.Intervenant
HAVING COUNT(DISTINCT s.Salle) = 3
\pi_{\text{Intervenant}} \left( \sigma_{\text{Salle = 3}} \left( \text{Intervenant} \boldsymbol{g}_{\text{count}(\text{Salle})} \left( \text{Intervenants} \bowtie \text{Spectacles} \right) \right) \right)
```

2. Les représentations (séances) pour lesquelles personne n'a fait de réservation.