

大学物理-综合实验 | 数据处理报告

姓名 卜一楠

学号 PB22071444

班级 22 级少院 01 班

日期 2023 年 10 月 7 日晚

医学物理实验

1 实验目的

- 1. 了解实验中使用的温度传感器的工作原理,测量温度传感器电压与温度的关系,求出温度传感器的灵敏度和相关系数。
- 2. 校正组装数字式温度表,并通过实验测量其线性度。
- 3. 用组装数字式温度表测量人体各部位温度。

2 实验原理

实验中采用 LM35 集成电压型温度传感器,其输出的是与温度对应的电压 $(10mV/^{\circ}C)$,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。输出电压的温度系数 $K=10mV/^{\circ}C$ 。利用下式可以计算出被测的温度 $T(^{\circ}C)$:

$$U_0 = KT = (10mV/^{\circ})t$$

即:

$$T = \frac{U_0}{K}$$

LM35 温度传感器的电路符号见图,U₀ 为输出端:

Figure 1: LM35 温度传感器的电路符号

实验测量时只要直接测量其输出端电压 U_0 ,即可知待测量的温度。

3 实验仪器

高准确度控温恒温加热系统,直流稳压电源,数字电压表,Pt100 温度传感器,电压型集成温度传感器 LM35 及可调放大器,标准数字体温表,实验接插线.

4 实验步骤

1. 测量温度传感器的输出特性

- 1. 按实验要求组装电路,将 Pt100 铂电阻和待测试的热敏电阻传感器探头插入加热井,开启控温仪开关。
- 2. 从 $30.0^{\circ}C$ 开始,每隔 $10.0^{\circ}C$ 记录一次温度传感器输出,到 $80.0^{\circ}C$ 为止。
- 3. 处理测量数据,作图拟合求出温度传感器的灵敏度和相关系数。

2. 制作数字式电子温度表并定标, 计算其线性度

- 1. 将电路改为放大电路, 使组装电路得到 $10mV/^{\circ}C$ 的输出。
- 2. 用数字体温计作为标准温度表,对控温仪进行 37.0°C 校准。
- 3. 校准 LM35 温度传感器。
- 4. 从 $35.0^{\circ}C$ 到 $42.0^{\circ}C$,每隔 $1.0^{\circ}C$ 设置控温仪温度,测量组装数字式电子温度计和标准温度计的温度。
- 5. 计算线性度。
- 6. 使用组装的数字式电子温度计进行人体温度测量。

5 测量记录

原始数据记录见"附件:原始数据".

Table 1: LM35 温度传感器的输出特性数据记录

温度	30	40	50	60	70	80
电压 (V)	0.285	0.390	0.490	0.591	0.695	0.792

Table 2: 组装温度计特性数据

控温仪温度	35.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0
组装温度计温度	34.9	36.1	37.0	38.0	39.0	40.1	41.2	42.1
标准温度计温度	35.0	36.0	37.0	38.1	39.0	40.1	41.1	42.1

测量人体温度中,实验者分别测量了手心和额头的温度。手心温度为 $33.3^{\circ}C$,额头温度为 $33.1^{\circ}C$.

6 分析与讨论

6.1 数据处理

Figure 2: t-U 拟合曲线

y = a + b*x方程 2 绘图 电压(V) 不加权 权重 -0.01751 ± 0.00278 截距 0.01015 ± 4.83187E-5 残差平方和 1.63429E-5 0.99995 Pearson's r 0.99991 R平方(COD) 0.99989 调整后R平方

Figure 3: t-U 拟合结果

由拟合结果, 灵敏度约为 10.15mV/°C.

18016 5. 组表面及刊刊正数版								
控温仪温度	35.0	36.0	37.0	38.0	39.0	40.0	41.0	42.0
组装温度计温度	34.9	36.1	37.0	38.0	39.0	40.1	41.2	42.1
标准温度计温度	35.0	36.0	37.0	38.1	39.0	40.1	41.1	42.1
ΔT	0.1	0.1	0	0.1	0	0	0.1	0

Table 3: 组装温度计特性数据

由上表可见, $\Delta Y_{max} = \Delta T_{max} = 0.1^{\circ}C, Y = 7.0^{\circ}C$ 。线性度

$$\delta = \frac{\Delta Y_{max}}{Y} \times 100\% \approx 1.43\%$$

测量人体温度数据,手心为 $33.3^{\circ}C$,额头温度为 $33.1^{\circ}C$,和实际人体温度较为接近。 人体不同部位温度有差距,与血液循环、新陈代谢有关。

6.2 误差分析

LM35 温度传感器输出特性实验中,实验者发现第一个数据偏差较大。分析可能原因为调节控温仪温度时,控温仪温度并没有完全稳定至 $30^{\circ}C$,导致测量电压值偏小。同样温度为 $70^{\circ}C$ 时,测得电压值偏高。分析原因为控温仪未完全稳定,读数时温度偏高。从而导致实验 拟合数据较 $10.0mV/^{\circ}C$ 略高。

组装数字式电子温度表的实验中,测得在人体体温范围内,线性度较小,所得结果与实际温度偏差较小,组装温度计可以用于人体实际温度测量。

7 思考题

实验者未完成进阶实验,无思考题。

参考文献

大学物理实验讲义, 医学物理实验.

附件

原始数据