Governo Federal

Ministério da Educação

Universidade Federal do Maranhão

A Universidade que Cresce com Inovação e Inclusão Social

Busca em Profundidade

Estrutura de Dados II

Busca em profundidade (DFS)

- A busca em profundidade, do inglês depth-first search (DFS), é um algoritmo para caminhar no grafo.
- A estratégia é buscar o mais profundo no grafo sempre que possível.
- As arestas são exploradas a partir do vértice v mais recentemente descoberto que ainda possui arestas não exploradas saindo dele.
- Quando todas as arestas adjacentes a v tiverem sido exploradas a busca anda para trás para explorar vértices que saem do vértice do qual v foi descoberto.
- O algoritmo é a base para muitos outros algoritmos importantes, tais como verificação de grafos acíclicos, ordenação topológica e componentes fortemente conectados.

Busca em profundidade (DFS)

- Para acompanhar o progresso do algoritmo cada vértice é colorido de branco, cinza ou preto.
- Todos os vértices são inicializados branco.
- Quando um vértice é descoberto pela primeira vez ele torna-se cinza, e é tornado preto quando sua lista de adjacentes tenha sido completamente examinada.
- d[v]: tempo de descoberta
- f[v]: tempo de término do exame da lista de adjacentes de v.
- Estes registros são inteiros entre 1 e 2V pois existe um evento de descoberta e um evento de término para cada um dos V vértices.

Funcionamento

16/03/2016

Estrutura de Dados II

prof. João Dallyson DEINF/UFMA

Busca em profundidade (DFS)

Algoritmo: versão não recursivo

Busca-em-Profundidade (n, Adj, r)	
1	para $u \leftarrow 1$ até n faça
2	cor[u] ← branco
3	$cor[r] \leftarrow cinza$
4	$P \leftarrow \text{Cria-Pilha}(r)$
5	enquanto P não estiver vazia faça
6	$u \leftarrow \text{Copia-Topo-da-Pilha}(P)$
7	$v \leftarrow \text{Próximo}(Adj[u])$
8	se $v \neq NIL$
9	então se $cor[v]$ = branco
10	então $cor[v] \leftarrow cinza$
11	Coloca-na-Pilha (v, P)
12	senão <i>cor[u]</i> ← preto
13	Tira-da-Pilha (P)
14	devolva cor[1n]

Busca em profundidade (DFS)

```
DFS(V, E)
for each u \in V
     do color[u] \leftarrow WHITE
time \leftarrow 0
for each u \in V
     do if color[u] = WHITE
            then DFS-VISIT(u)
DFS-VISIT(u)
color[u] \leftarrow GRAY \qquad \triangleright discover u
time \leftarrow time +1
d[u] \leftarrow time
for each v \in Adj[u] \triangleright explore (u, v)
     do if color[v] = WHITE
           then DFS-VISIT(v)
color[u] \leftarrow BLACK
time \leftarrow time +1
f[u] \leftarrow time
                              \triangleright finish u
```


P A B C F

P A B C

P A B C E D

P A B C E

16/03/2016

16/03/2016

Ρ

Propriedades da DFS

Subgrafo predecessor forma uma floresta

- Cada árvore dessa floresta mostra as componentes conectadas do grafo
- Os tempos de descoberta e de termino tem estrutura de parêntesis
 - Nós estão aninhados por quantidade de arestas de chegada a cada um
 - A história de descobertas e termino irá gerar uma expressão bem formada, no sentido de que os parênteses serão aninhados de modo apropriado

Estrutura de Dados II

Propriedades – teorema do parênteses

Propriedades

Classificação de Arestas:

- Arestas de árvore:
 - A aresta (u,v) é uma aresta de árvore se v foi descoberto primeiro pela exploração da aresta (u,v)
- Arestas de retorno
 - São as arestas (u,v) que conectam um vertice u a um ancestral v em uma árvore primeiro na profundidade. Autoloops são considerados arestas de retorno
- Arestas de Avanço
 - não pertencem à árvore de busca em profundidade mas conectam um vértice a um descendente que pertence à árvore de busca em profundidade.
- Arestas Cruzadas
 - podem conectar vértices na mesma árvore de busca em profundidade, ou em duas árvores diferentes.

Classificação de Arestas

- Pode ser classificada pela cor do vértice que é alcançado pela primeira vez:
 - Branco indica uma aresta de árvore.
 - Cinza indica uma aresta de retorno.
 - Preto indica uma aresta de avanço quando
 - u é descoberto antes de v ou uma aresta de cruzamento caso contrário.

Teste para Verificar se Grafo é Acíclico

- A busca em profundidade pode ser usada para verificar se um grafo é acíclico ou contém um ou mais ciclos.
- Se uma aresta de retorno é encontrada durante a busca em profundidade em G, então o grafo tem ciclo.
- Um grafo direcionado G é acíclico se e somente se a busca em profundidade em G não apresentar arestas de retorno.

Comparação DFS x BFS

- DFS requer menos memória que BFS
 - Não precisa carregar todos os ponteiros para os filhos em cada nível
- DFS e melhor que BFS:
 - Dependo do problema a resolver
 - BFS visita cada nível um por vez. Se conhecemos o que estamos buscando e sabemos que está em baixa profundidade, a BFS é melhor. Se a solução é a máxima profundidade DFS é melhor.

- A Ordenação Topológica de um grafo orientado acíclico G = (V, E) é uma ordenação linear de todos os seus vértices tal que se G contém uma aresta (u, v) então u aparece antes de v.
- Uma ordenação topológica de um grafo fornece a ordem em que as atividades devem ser processadas
- A ordem topológica de um grafo pode ser vista como uma ordenação de seus vértices ao longo de uma linha horizontal dado que todas as arestas direcionadas vão da esquerda para a direita

Os grafos orientados acíclicos são usados para indicar **precedências** entre eventos. Uma aresta direcionada num grafo orientado acíclico indica que a atividade *u* deve ser realizada antes da *v*.

Aplicação do algoritmo de Busca em Profundidade

Aplicação do algoritmo de Busca em Profundidade para a marcação dos tempos de descoberta e término em cada vértice de um trecho do exemplo anterior:

Aplicação do algoritmo de Busca em Profundidade

O grafo com ordenação topológica apresenta seus vértices organizados da esquerda para a direita, em ordem de tempo de término decrescente.

Algoritmo de Ordenação Topológica

O algoritmo simples a seguir ordena topologicamente um grafo acíclico orientado utilizando o algoritmo de Busca em Profundidade:

OrdenacaoTopologica(G)

- 1 Chamar BuscaEmProfundidade(G) para calcular o tempo de término t[v] para cada vértice v
- 2 A medida que cada vértice é terminado, inserir o vértice à frente de uma lista ligada
- 3 Retornar a lista ligada de vértices Fim

Pode ter duas ou mais ordenações topológica:

- -7, 5, 3, 1, 8, 2, 9, 1
- -3, 5, 7, 8, 1, 1, 9, 2

Custo

 O Custo O(V + E), uma vez que a busca em profundidade tem complexidade de tempo O(V + E) e o custo para inserir cada um dos V vértices na frente da lista linear encadeada custa O(1).

Aplicações de Ordenação Topológica

- Representar pré-requisitos de cursos
- Detectar deadlocks
- Pipeline das tarefas de computação
- Avaliar fórmula em planilha

Exercício

22.3-2

Mostre como a busca em profundidade funciona sobre o grafo da Figura 22.6. Suponha que o loop for das linhas 5 a 7 do procedimento DFS considere os vértices em ordem alfabética, e suponha que cada lista de adjacências esteja em ordem alfabética. Mostre os tempos de descoberta e término para cada vértice, e mostre também a classificação de cada aresta.

22.3-3

Mostre a estrutura de parênteses da busca em profundidade apresentada na Figura 22.4.

Exercício

22.4-1

Mostre a ordenação de vértices produzida por TOPOLOGICAL-SORT quando ele é executado sobre o gao na Figura 22.8, sob a hipótese do Exercício 22.3-2.

Referencias

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e Prática. Editora Campus, 2002
- Ziviani, N. Projeto de Algoritmos Com Implementações em Pascal e C, Cengage Learning, 2004.
- Notas de aula. Prof. Rafael Fernandes DAI/IFMA
- http://www.facom.ufu.br/~madriana/EBD/Didatic
 a.pdf