

Московский авиационный институт (национальный исследовательский университет) Институт №8 «Компьютерные науки и прикладная математика» Кафедра №806 «Вычислительная математика и программирование»

Выпускная квалификационная работа бакалавра на тему:

Разработка веб-приложения для решения задач смешано-целочисленного линейного программирования

Студент группы М8О-401Б-21: Знай Артемий Олегович

Научный руководитель: доктор технических наук, доцент, профессор 806 кафедры

МАИ В.А.Судаков

Москва – 2025

Цель и задачи работы

Цель – разработка веб-приложения, которое упростит процесс решения задач MILP для конечных пользователей.

Задачи:

- создать интуитивно понятный интерфейс для ввода линейных целевых функций и ограничений
- обеспечить возможность загрузки параметров задач из файла
- исполнять и сохранять задачи на сервере
- просматривать итоговое решение и анализ чувствительности
- определить алгоритмы обмена данными между клиентом и сервером

Актуальность

Актуальность темы определяется потребностью повышения эффективности управленческих решений в условиях усложнения бизнес-процессов и жесткой конкуренции.

Задачи смешано-целочисленного линейного программирования (MILP) являются ключевыми для оптимизации распределения ресурсов и планирования производства, а разработка веб-приложения для их решения объединяет современные алгоритмы оптимизации с удобным, доступным интерфейсом, что позволяет автоматизировать процесс поиска оптимальных решений.

Математическая постановка задачи

Модель MILP-задачи:

minimize (или maximize)
$$f(x) = c_1x_1 + c_2x_2 + ... + c_nx_n$$

subject to
$$\sum_{j=1}^n a_{ij} x_j(\bigcirc_i) b_i, \qquad i=1,2,\ldots,m$$

$$x_i \in \mathbb{Z}, \quad i \in I \subseteq \{1,\ldots,n\}$$

$$x_j \in \mathbb{R}, \quad j \in \{1,\ldots,n\} \setminus I$$

Структура данных

Архитектура проекта

Ввод задачи

Загрузка файла

Процесс решения

Результат решения

Анализ чувствительности

Название	Значение ③	Islack ②	uslack ③	dual ③
Ограничение 1	40	inf	0.0	0.0
Ограничение 2	81	inf	0.0	30

Результат

Разработано веб-приложение, которое позволяет пользователям с удобным и интуитивно понятным интерфейсом загружать условия MILP-задачи в виде Excel-файлов или вводить их вручную, выбирать нужный решатель и получать оптимальное решение задачи с анализом чувствительности. Вся информация о задачах сохраняется в базе данных. Поддержана возможность решения тяжелых задач.

ИСТОЧНИКИ

- Немхаузер Г. Л., Уолси М. Л. Integer and Combinatorial Optimization. // John Wiley
 & Sons, 1999. 784 с.
- Flask Documentation. URL: https://flask.palletsprojects.com/ (дата обращения 12.01.2025).
- Pyomo Python Optimization Modeling Objects. URL: https://www.pyomo.org/ (дата обращения 12.01.2025).

QR-код репозитория

