

Machine Learning: Yoshinari Fujinuma University of Colorado Boulder

Slides adapted from Chenhao Tan, Jordan Boyd-Graber

Logistics

Project proposal guideline will be released today

Learning Objectives

- Recurrent Neural Network
- Convolutional Neural Network

Recurrent Neural Networks (RNNs)

Outline

Recurrent Neural Networks (RNNs)

Convolutional Neural Network

Motivation

- We used bag-of-words features for spam classification
- ...but what should we do when we want to distinguish "cats like dogs" vs. "dogs like cats"?

Sequential information

"My words fly up, my thoughts remain below: Words without thoughts never to heaven go."

-Hamlet

Sequential information "My words fly up, my thoughts remain below: Words without thoughts never to heaven go."

-Hamlet

- language
- activity history

Sequential information

"My words fly up, my thoughts remain below: Words without thoughts never to heaven go."

—Hamlet

- language
- activity history

Above sentence can be regarded as a sequence $x = (x_1, ..., x_T)$, starting from left $(x_0 = \text{"My"})$ to right $(x_T = \text{"go"})$. e.g.,

 $m{x}$ "My words fly up, my thoughts remain below" $= (m{x}_{\mathsf{My}}, \dots, m{x}_{\mathsf{below}})$

Recurrent Neural Networks

Sharing parameters along a sequence At time t, the hidden representation h_t is given as

$$h_t = f(x_t, h_{t-1})$$

i.e., h_t is dependent on the hidden representation at the previous step t.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks

In (vanilla) RNN, there are following training parameters

- parameter matrix on recurrent input W_{rec}
- parameter matrix on input W_{in}
- bias vector brec and bin

$$h_t = f(x_t, h_{t-1})$$

where

$$f(x_t, h_{t-1}) = g(W_{\mathsf{in}}x_t + b_{\mathsf{in}} + W_{\mathsf{rec}}h_{t-1} + b_{\mathsf{rec}})$$

and g is a non-linear activation function

Recurrent Neural Networks

RNNs can be unrolled over time, good at capturing long-term dependencies.

E.g., open and closed brackets in C++ programming "if (condition) {...}".

https://colah.github.io/posts/2015-08-Understanding-LSTMs/How to train this?

"Back propagation over time" and helps capture long-term dependencies

Problem with (vanilla) RNN:

Vanishing gradient [Pascanu et al., 2013], hard to capture extremely long-term dependencies

Problem with (vanilla) RNN:

Vanishing gradient [Pascanu et al., 2013], hard to capture extremely long-term dependencies

One hack: have "gates" to help remember/forget parameters

- $i_t \in \mathbb{R}^n$: input gate at time t
- $f_t \in \mathbb{R}^n$: forget gate at time t
- $o_t \in \mathbb{R}^n$: output gate at time t

Problem with (vanilla) RNN:

Vanishing gradient [Pascanu et al., 2013], hard to capture extremely long-term dependencies

One hack: have "gates" to help remember/forget parameters

- $i_t \in \mathbb{R}^n$: input gate at time t
- $f_t \in \mathbb{R}^n$: forget gate at time t
- $o_t \in \mathbb{R}^n$: output gate at time t

Intuitively, "gates" are vectors that controls the amount of inputs that can go through e.g., if we have a forget gate f at time t as $f_t = (0, 0, 0, 0.1, 0)$, then $f_t \odot (1, 2, 3, 4, 5) = (0, 0, 0, 0.4, 0)$

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$\tilde{C}_{t} = tanh(W_{C} \cdot [h_{t-1}, x_{t}] + b_{C})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$h_{t} = o_{t} \odot tanh(C_{t})$$

Pros and Cons of RNNs

- Pros
 - Can handle inputs with arbitrary length
- Cons
 - Slow due to going through one input after another
 - o (and this is why Transformers [Vaswani et al., 2017] are popular these days)

Outline

Recurrent Neural Networks (RNNs)

Convolutional Neural Network

Spatial information

https://www.reddit.com/r/aww/comments/6ip2la/before_and_after_she_was_told_she_was_a_good_girl/

Convolutional Layers

Sharing parameters across patches

input image or input feature map

output feature maps

$$a_{i'j'} = \sum_{i=1}^{k} \sum_{j=1}^{k} w_{ij} x_{ij}$$

- Number of filters
- Filter shape
- Stride size

https://github.com/davidstutz/latex-resources/blob/master/tikz-convolutional-layer/convolutional-layer.tex

CNN

- Convolutional layer: extracting features, trainable parameters
- Pooling layer: downsampling, no parameters involved
- Full-connected layer: for optimizing on the objective function

E.g., convolutional layer with 4 filters, max pooling, and a fully-connected layer) input image (10*10) 4@6*6 4@3*3 5*1

Wrap up

Neural Network architecture

- Recurrent Neural Networks
- Convolutional Neural Networks

References

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks. In *Proceedings of the 30th International Conference on Machine Learning*, pages 1310–1318, 2013. URL http://proceedings.mlr.press/v28/pascanu13.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *CoRR*, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.