CSCE 5013-002

Deadline: Tuesday December 17, 2019

Where: In the class (Before the class begin)

Submit by email to thile@uark.edu

with email title Homework 3 - DL

Total point: 100 points

Submission contains 2 parts

Part 1 is hard copy with:

- Equations for backpropagation
- Compare the forward output from your GRU_Cell.py (o1) and the o2
- Compare the backward output from your GRU_Cell.py (dx1, dhlast1) and the (dx2, dhlast2)

Part 2 is submission via email

Email title: Homework 3 – DL

Folder name: StudentName ID

+ GRU_Cell.py

1 Introduction

In part one of this assignment you will make a recurrent neural network, specifically you will replicate a portion of the torch.nn.GRUCell interface. GRUs are used for a number of tasks such as Optical Character Recognition and Speech Recognition on spectograms using transcripts of the dialog. This homework is to develop your basic understanding of Backpropagating through a GRUCell, which can potentially be used for GRU networks to grasp the concept of Backpropagation through time (BPTT).

2 GRU: Gated Recurrent Unit

You will be implementing the forward pass and backward pass for a GRUCell using python and numpy in this assignment, analogous to the Pytorch equivalent nn.GRUCell. The equations for a GRU cell looks like the following:

$$z_t = \sigma(W_{zh}h_{t-1} + W_{zx}x_t) \tag{1}$$

$$r_t = \sigma(W_{rh}h_{t-1} + W_{rx}x_t) \tag{2}$$

$$\tilde{h}_t = tanh(W_h(r_t \otimes h_{t-1}) + W_x x_t) \tag{3}$$

$$h_t = (1 - z_t) \otimes h_{t-1} + z_t \otimes \tilde{h}_t \tag{4}$$

Where x_t is the input vector at time t, and h_t the output. There are other possible implementations, you need to follow the equations for the forward pass as shown above. If you do not, you might end up with a working GRU and zero points on autolab. Do not modify the init method, if you do, it might result in lost points.

Similar to previous assignments, you will be implementing a Python class, GRU_Cell, found in gru.py. Specifically, you will be implementing the forward and the backward methods.

2.1 GRU Cell Forward (30 Points)

In this section, you will implement the forward method of the GRU_Cell. This method takes 2 inputs: the observation at the current time-step, x_t , and the hidden state at the previous time-step h_{t-1} .

Use Equations 1-4 to implement the forward method, and return the value of h_t .

Hint: Store all relevant intermediary values in the forward pass.

2.2 GRU Cell Backward (70 Points)

The backward method of the GRU_Cell, is the most time-consuming task of this homework.

This method takes as input delta, and must calculate the gradients wrt the parameters and returns the derivative wrt the inputs, x_t and h_t , to the cell.

The partial derivative input you are given, **delta**, is the summation of the derivative of the loss wrt the *input* of the next layer x(l+1,t) and the derivative of the loss wrt the input hidden-state at the next time-step h(l,t+1).

Using these partials, you will need to compute the partial derivative of the loss wrt each of the six weight matrices (see Equations 1-4), and the partial derivative of the loss wrt the input x_t , and the hidden state h_t .

Specifically, there are eight gradients that need to be computed:

- 1. $\frac{\partial L}{\partial W_{\text{max}}}$, stored in self.dWrx
- 2. $\frac{\partial L}{\partial W_{nh}}$, stored in self.dWrh
- 3. $\frac{\partial L}{\partial W_{xx}}$, stored in self.dWzx
- 4. $\frac{\partial L}{\partial W_{zh}}$, stored in self.dWzh
- 5. $\frac{\partial L}{\partial W_x}$, stored in self.dWx
- 6. $\frac{\partial L}{\partial W_h}$, stored in self.dWh
- 7. $\frac{\partial L}{\partial x_t}$, returned by the method
- 8. $\frac{\partial L}{\partial h_t}$, returned by the method

You will need to derive the formulae for the back-propagation in order to complete this section of the assignment.