Math Logic: Assignment 5

Nov 28, 2022

Attention: To get full credits, you *must provide explanations to your answers*! You will get at most 1/3 of the points if you only present the final results.

- 1. (6pt) In sentential logic, prove that
 - (3pt) $(A \wedge B) \vee (\neg A \vee \neg B)$ is provable;
 - (3pt) $(A \wedge B) \vee (\neg A \wedge \neg B)$ is not provable. (Hint: remember the soundness and completeness theorems)
- 2. (6pt) Translate the following sentences into wffs in First-Order Logic:
 - (3pt) There is no such a set that every set is its member. (∀ denotes for every set, ∃ denotes there exists a set, ∈ denotes "is a member of").
 - (3pt) Every farmer who owns a donkey needs hay, and every farmer who owns a donkey beats it. (F x denotes x is a farmer; D x denotes x is a donkey; O x y denotes x owns y; H x denotes x needs hay; B x y denotes x beats y.)
- 3. (6pt) List the variables occurring free in the following wffs (where Q and R are 1-ary predicate symbols; P is a 2-ary predicate symbol; f is a 2-ary function symbol)
 - (2pt) $\forall y \ (P \ x \ y \rightarrow \forall x \ P \ x \ y);$
 - (2pt) $\forall x (Q y \rightarrow \exists y P x z)$;
 - (2pt) $(\neg \exists y R (f y z)) \land (\forall x \forall y R (f y z))$
- 4. (10pt) Let $\mathfrak{N}=(\mathbb{N},+,\times,0,1,<)$. Let s be an assignment for \mathfrak{N} such that $s(v_n)=2n$. Are the following statement true or not? Give explanations to your answers (Hint: remember that assignments can only affect free occurrences of variables).
 - $(2pt) \models_{\mathfrak{N}} \exists v_0, v_0 \dotplus v_0 \doteq v_1[s];$
 - $(2pt) \models_{\mathfrak{N}} \exists v_0, v_0 \dot{\times} v_0 \dot{=} v_1[s];$
 - $(2pt) \models_{\mathfrak{N}} \forall v_0 \exists v_1 \ v_0 \doteq v_1[s];$
 - $(2pt) \models_{\mathfrak{N}} \forall v_0 \forall v_1 \ v_0 \dotplus \dot{1} \dot{<} v_1 \rightarrow \exists v_2 \ v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s];$
 - (2pt) $\models_{\mathfrak{N}} \forall v_0 \forall v_1 \ v_0 \dot{<} v_2 \land v_2 \dot{<} v_1[s];$
- 5. (3pt) Prove that if x does not occur free in α , then for any structure $\mathfrak A$ and assignment $s:V\to |\mathfrak A|$,

$$\models_{\mathfrak{A}} (\alpha \to \forall x \ \alpha)[s].$$

(Hint: remember the lemmas about occurrences of free variables.)

6. (4pt) A monoid is a set M with an element $e \in M$ and a binary operator (function) $\circ : M \times M \to M$ (we write \circ in infix form, i.e., $a \circ b$ denotes $\circ (a, b)$) that satisfies the following properties

- e is an identity element: for any $a \in M$, $e \circ a = a \circ e = a$;
- \circ is associative: for any $a, b, c \in M$, $(a \circ b) \circ c = a \circ (b \circ c)$.

For example, the set $\mathbb N$ with e=0 and $\circ=+$ is a monoid. For another example, the set $\mathbb N$ with e=1 and $\circ=*$ is also a monoid.

Let \mathbb{L} be a language containing $\stackrel{.}{=}$, a constant \dot{e} , a 2-ary function symbol $\stackrel{.}{\circ}$. Write down a sentence σ such that for any structure \mathfrak{A} , $|\mathfrak{A}|$ is a monoid with $\dot{e}^{\mathfrak{A}}$ as identity and $\stackrel{.}{\circ}^{\mathfrak{A}}$ as the associative operator iff $\models_{\mathfrak{A}} \sigma$.