Condensé de la MPSI Mathématiques

Ewen Le Bihan MPSI – Daudet

Contents

1	Processus de démonstration					
	1.1	Processus élémentaires				
		1.1.1 Quantification universelle \forall				
		1.1.2 Quantification existentielle \exists				
		1.1.3 Quantification existentielle unique $\exists !$				
		1.1.4 Implication $P \implies Q$				
		1.1.5 Équivalence $P \iff Q \dots \dots$				
		1.1.6 Inclusion $E \subset F$				
		1.1.7 Égalité ensembliste				
		1.1.8 Égalité entre applications				
	1.2	Processus de démonstration				
		1.2.1 Récurrence				
		1.2.2 Contraposée				
		1.2.3 l'Absurde				
		1.2.4 Disjonction des cas				
		1.2.5 Analyse-Synthèse				
2	Dá.	rivation 4				
4	2.1	Nombre dérivé en un point				
	$\frac{2.1}{2.2}$	Nombre derive en un point \dots 4 Dérivée de f \dots 4				
	2.3	Dérivée usuelles				
	$\frac{2.3}{2.4}$	Dérivées de composées				
	2.4	Derivees de composees				
3	Trig	gonométrie 5				
	3.1	Cercle trigonométrique ou unité $\mathcal C$				
	3.2	Congruence $\cdot \equiv \cdot [\cdot]$				
		3.2.1 Propriétés				
	3.3	cos, sin, tan, cotan				
		3.3.1 Théorème de Pythagore				
		3.3.2 Théorème de Thalès				
		3.3.3 Propriétés				
		3.3.4 Limite de $\frac{\sin}{id}$ en 0				
	3.4	acos, asin, atan				
	3.5	Équations trigonométriques				
	3.6	Amplitude C & déphasage ϕ				
	3.7	Identités remarquables				
	т.					
4	4.1	rique 7 Table de vérité				
	4.1	Connecteurs $\land \lor \neg$, relations $\Longrightarrow \longleftrightarrow \ldots \qquad \qquad$				
	4.3	Égalité sémantique				
	4.4	Propriétés des connecteurs $\land \lor \lnot$				
	4.5	Quantification existentielle unique $\exists !$				
	4.6	Négation ¬				
	4.0	4.6.1 Négation de quantificateurs \exists , \forall				
		4.6.2 Négation de connecteurs ou lois de De Morgan				
		4.6.3 Identités				
	4.7	Formules				
	1.1	Tormuics				
5	Équ	nations différentielles 9				
	5.1	Recherche de la solution particulière y_p				
		5.1.1 Forme du second membre				
		5.1.2 Second membre nul				
	5.2	Premier ordre $y' + ay$				
	5.3	Second ordre $ay'' + by' + cy$				
	5.4	Problème de Cauchy				

1 Processus de démonstration

1.1 Processus élémentaires

1.1.1 Quantification universelle \forall

Soit $a \in E$

1.1.2 Quantification existentielle \exists

Posons $a = \ldots \in E$

1.1.3 Quantification existentielle unique \exists !

Existence cf. 1.1.2

Unicité Posons $b \in E$. Démonstration de b = a

1.1.4 Implication $P \implies Q$

Supposons P(a). Montrons Q(a)

1.1.5 Équivalence $P \iff Q$

Procédons par double implication.

 \implies : Démonstration de $P \implies Q$

 $\Leftarrow=: D\'{e}monstration de P \Leftarrow= Q$

1.1.6 Inclusion $E \subset F$

 $D\acute{e}montrer \ \forall x \in \mathbb{E}, x \in E \implies x \in F.$

1.1.7 Égalité ensembliste

Procédons par double inclusion.

 \subset : Démonstration de $E \subset F$

 \supset : Démonstration de $E\supset F$

1.1.8 Égalité entre applications

 $D\acute{e}montrer \ \forall x \in E, \ f(x) = g(x)$

1.2 Processus de démonstration

On commence chaque démonstration utilisant un de ces processus par « Procédons par nom du processus »

1.2.1 Récurrence

Pour montrer une propriété vraie dans $E \subseteq \mathbb{N}$

Initialisation Démontrer la propriété au premier rang

Hérédité Démontrer $\forall n \in E, P(n) \implies P(n+1)$

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout $n \in E$.

1.2.2 Contraposée

Pour montrer $P \implies Q$ quand l'implication directe est trop compliquée $D\acute{e}montrer \neg Q \implies \neg P$

1.2.3 l'Absurde

```
\begin{array}{c} Pour\ montrer\ P\\ \text{Supposons}\ \neg P\\ \vdots\\ \text{On obtient une contradiction.}\\ \text{On a donc}\ P \end{array}
```

1.2.4 Disjonction des cas

```
      1er cas: ...

      2ème cas: ...

      :

      n-ième cas: ...

      Conclusion ...
```

1.2.5 Analyse-Synthèse

Pour trouver les solutions d'une équation, inéquation, ...

Analyse Soit $a \in E$. Supposons P(a). Réduire le nombre de candidats possibles pour a

Synthèse Testons nos candidats

Conclusion Les solutions sont ...

2 Dérivation

Attention aux hypothèses!

2.1 Nombre dérivé en un point

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

2.2 Dérivée de f

$$f' = \begin{cases} I \to \mathbb{R} \\ a \mapsto f'(a) \end{cases}$$

2.3 Dérivée usuelles

•
$$\forall n \in \mathbb{N}, \quad (\mathrm{id}^n)' = n\mathrm{id}^{n-1}$$

•
$$\forall n \in \mathbb{N}, \quad \sqrt[n]{\prime} = \frac{1}{n \sqrt[n]{\prime}}$$

•
$$\ln' = \frac{1}{id}$$

•
$$\exp' = \exp$$

•
$$(a^{\mathrm{id}})' = x \mapsto \ln(a)a^x$$

•
$$\sin' = \cos$$

•
$$\cos' = -\sin$$

•
$$\tan' = \frac{1}{\cos^2} = 1 + \tan^2$$

•
$$sh' = ch$$

•
$$ch' = sh$$

•
$$th' = \frac{1}{ch^2} = 1 + th^2$$

•
$$a\cos' = \frac{-1}{\sqrt{1-id^2}}$$

•
$$a\sin' = \frac{1}{\sqrt{1-id^2}}$$

• atan' =
$$\frac{1}{1+\mathrm{id}^2}$$

2.4 Dérivées de composées

$$\bullet \ \ \forall (\lambda,\mu) \in \mathbb{R}^2, \quad (\lambda u + \mu v)' = \lambda u' + \mu v'$$

•
$$(uv)' = u'v + v'u$$

$$\bullet \quad (\frac{1}{v})' = \frac{-v'}{v^2}$$

•
$$(\frac{u}{v})' = \frac{u'v - v'u}{v^2}$$

•
$$(u \circ v)' = v' \cdot (u' \circ v)$$

•
$$(u^{-1})' = \frac{1}{u' \circ u^{-1}}$$

3 Trigonométrie

3.1 Cercle trigonométrique ou unité $\mathcal C$

Cercle de centre (0; 0) et de rayon 1.

$$C = \{(x; y) \in \mathbb{R}^2, x^2 + y^2 = 1\} = \{(\cos x; \sin x), x \in \mathbb{R}\}\$$

3.2 Congruence $\cdot \equiv \cdot [\cdot]$

$$a \equiv b \ [t] \iff \exists k \in \mathbb{Z}, \ a = b + kt$$

3.2.1 Propriétés

•
$$\forall a, b, c, d \in \mathbb{R}, \begin{cases} a \equiv b \ [t] \\ c \equiv d \ [t] \end{cases} \implies a + c \equiv c + d \ [t]$$

•
$$\forall a, b, \lambda \in \mathbb{R}, \ a \equiv b \ [t] \implies \lambda a \equiv \lambda b \ [\lambda t] \ \text{et} \ \begin{cases} \lambda a \equiv \lambda b \ [t] \\ \lambda \in \mathbb{Z} \end{cases}$$

• $\cdot \equiv \cdot [\cdot]$ est une relation d'équivalence

3.3 cos, sin, tan, cotan

3.3.1 Théorème de Pythagore

$$\cos^2 + \sin^2 = 1$$

3.3.2 Théorème de Thalès

$$\tan = \frac{\sin}{\cos}$$
 $\cot = \frac{\cos}{\sin}$

Ce qui permet de trouver \mathcal{D}_{tan} et \mathcal{D}_{cotan}

3.3.3 Propriétés

	périodicité	positif sur 1	parité	domaine de définition
cos	2π	$\left[-rac{\pi}{2},rac{\pi}{2} ight]$	paire	\mathbb{R}
\sin	2π	$[0,\pi]$	impaire	\mathbb{R}
tan	π	$[0, \frac{\pi}{2}[$	impaire	$\bigcup_{k\in\mathbb{Z}}]-\tfrac{\pi}{2}+k\pi,\tfrac{\pi}{2}+k\pi[$
cotan	π	$]0,\tfrac{\pi}{2}]\cup[-\tfrac{\pi}{2},\pi[$	impaire	$\bigcup_{k\in\mathbb{Z}}]k\pi,\pi+k\pi[$

Table 1: Propriétés des quatres fonctions trigonométriques

3.3.4 Limite de $\frac{\sin}{id}$ en 0

$$\frac{\sin x}{x} \xrightarrow[x \to 0]{} 1$$

3.4 acos, asin, atan

$$\begin{cases} \forall x \in [-1,1], & \exists ! y \in [0,\pi], \ \cos y = x \\ \forall x \in [-1,1], & \exists ! y \in [-\frac{\pi}{2},\frac{\pi}{2}], \ \sin y = x \\ \forall x \in \mathbb{R}, & \exists ! y \in]-\frac{\pi}{2},\frac{\pi}{2}[, \ \tan y = x \end{cases}$$

3.5 Équations trigonométriques

$$\begin{cases} \cos x = a &\iff \begin{cases} a \in \{ \cos a + 2k\pi, \ k \in \mathbb{Z} \} \cup \{ \cos a + 2k\pi, \ k \in \mathbb{Z} \} &\text{si } a \in [-1, 1] \\ \emptyset &\text{sinon} \end{cases} \\ \sin x = a &\iff \begin{cases} a \in \{ \sin a + 2k\pi, \ k \in \mathbb{Z} \} \cup \{ \pi - \sin a + 2k\pi, \ k \in \mathbb{Z} \} &\text{si } a \in [-1, 1] \\ \emptyset &\text{sinon} \end{cases} \\ \tan x = a &\iff a \in \{ \cot a + k\pi, k \in \mathbb{Z} \} \end{cases}$$

3.6 Amplitude C & déphasage ϕ

$$\forall A, B \in \mathbb{R}, \ \exists C, \phi \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ A\cos x + B\sin x = C\cos(x - \phi)$$

6

$$\begin{cases} C > 0 \implies & C \text{ est l'amplitude} \\ & \phi \text{ est le déphasage} \end{cases}$$

3.7 Identités remarquables

- $\forall x \in [-1, 1], \ a\cos x + a\sin x = \frac{\pi}{2}$
- $\forall x \in \mathbb{R}^*$, $atan x + atan <math>\frac{1}{x} = \frac{\pi}{2}$

4 Logique

4.1 Table de vérité

Variable 1		Variable n	Formule
v		v	
÷ :	(2^n lignes)		
f	• • •	f	

Table 2: Table de vérité pour une formule à n variables

4.2 Connecteurs $\land \lor \neg$, relations $\implies \iff$

P	Q	$P \wedge Q$	$P\vee Q$	$P \implies Q$	$P \iff Q$
v	v	v	v	v	v
v	f	f	v	f	f
f	v	f	v	v	f
f	f	f	f	v	v

Table 3: Table de vérité pour \land , \lor , \Longrightarrow et \Longleftrightarrow

$$\begin{array}{c|c}
P & \neg P \\
\hline
v & f \\
f & v
\end{array}$$

Table 4: Table de vérité pour \neg

4.3 Égalité sémantique

 $(P=Q) \iff P$ a la même table de vérité que Q

4.4 Propriétés des connecteurs $\land \lor \neg$

 $Pour \lor et \land$

Idempotence $P \stackrel{\wedge}{\vee} P = P$

Commutativité $P \stackrel{\wedge}{\vee} Q = Q \stackrel{\wedge}{\vee} P$

Associativité $P \stackrel{\wedge}{\vee} (Q \stackrel{\wedge}{\vee} R) = (P \stackrel{\wedge}{\vee} Q) \stackrel{\wedge}{\vee} R$

Distributivités $P \overset{\vee}{\wedge} (Q \overset{\wedge}{\vee} R) = (P \overset{\wedge}{\vee} Q) \overset{\vee}{\wedge} (P \overset{\wedge}{\vee} R)$

 $Pour \, \neg$

Involutivité $\neg \neg P = P$

4.5 Quantification existentielle unique \exists !

$$[\exists! x \in E, \ P(x)] = \underbrace{[\exists x \in E, \ P(x)}_{\text{existence}} \land \underbrace{\forall \gamma_1, \gamma_2 \in E, \ P(\gamma_1) \land P(\gamma_2) \implies \gamma_1 = \gamma_2}_{\text{unicit\'e}}]$$

- 4.6 Négation \neg
- 4.6.1 Négation de quantificateurs \exists , \forall

$$\neg(\exists x \in E, \ P(x)) = \forall x \in E, \ \neg P(x)$$

4.6.2 Négation de connecteurs ou lois de De Morgan

$$\neg (P \overset{\vee}{\wedge} Q) = \neg P \overset{\wedge}{\vee} \neg Q$$

- 4.6.3 Identités
 - $P \wedge \neg P = f$
 - $P \vee \neg P = v$
- 4.7 Formules
 - $P \implies Q = \neg P \lor Q$
 - $[\forall x \in \emptyset, P(x)] = v$
 - $[\exists x \in \emptyset, P(x)] = f$

5 Équations différentielles

5.1 Recherche de la solution particulière y_p

- 1. Identifier la forme du second membre
- 2. Exprimer y_p avec des constantes inconnues
- 3. Développer $y' + ay = \dots$ avec $y = y_p$
- 4. Trouver les constantes inconnues
- 5. Exprimer y_p

5.1.1 Forme du second membre

- Combinaisaon linéaire at + b
- Constante k²
- Polynôme du second degré $at^2 + bt + c$
- Exponentielle $ke^{\gamma t}$
- "Trigonométrique" $\alpha \cos(\omega t) + \beta \sin(\omega t)$

5.1.2 Second membre nul

Second membre =
$$0 \implies \begin{cases} \text{\'equation dite homog\`ene} \\ y_p = t \mapsto 0 \end{cases}$$

5.2 Premier ordre y' + ay

$$\{t \mapsto ke^{-at} + y_p(t), \ k \in \mathbb{R}\}$$

5.3 Second ordre ay'' + by' + cy

Équation caractéristique $ar^2 + br + c$

$$\begin{array}{c|cccc} \Delta > 0 & \Delta = 0 & \Delta < 0 \\ \hline Ae^{r_1t} + Be^{r_2t} & (At + B)e^{r_0t} & e^{\operatorname{Re}(r_1)t}(A\cos(\operatorname{Im}(r_1)t) + B\sin(\operatorname{Im}(r_1)t)) \end{array}$$

Table 5: Forme des solutions d'une équadiff homogène du second ordre selon le signe de Δ

Forme des solutions selon Δ

Ensemble des solutions

$$\{t \mapsto \text{forme des solutions}, (A, B) \in \mathbb{R}^2\}$$

5.4 Problème de Cauchy

$$\begin{cases} y' + ay = k \\ y'(b) = c \end{cases}$$
 (premier ordre)
$$\begin{cases} ay'' + by' + cy = k \\ y''(\alpha) = \beta \end{cases}$$
 (second ordre)
$$\begin{cases} y' + ay = k \\ y''(\alpha) = \delta \end{cases}$$

- 1. Résoudre l'équadiff
- 2. Résoudre l'équation ou le système en remplaçant y par la forme des solutions

²Ici l'expression de y_p devient évidente: $y_p = t \mapsto \frac{k}{a}$