Connectivity in graphs

Social Networks Analysis and Graph Algorithms

Prof. Carlos "ChaTo" Castillo — https://chato.cl/teach

Contents

- Sparsity
- Paths and distances
- Connected components

Sources

- Albert László Barabási: Network Science. Cambridge University Press, 2016 (chapter 1).
- Filippo Menczer, Santo Fortunato, and Clayton A. Davis. A First Course in Network Science. Cambridge University Press, 2020 (chapter 2).
- URLs cited in the footer of specific slides

Sparsity

Real networks are sparse

• Theoretically $L_{\max} = {N \choose 2} = \frac{N(N-1)}{2}$

• Most real networks are sparse, i.e., $L \ll L_{\rm max}$

L is the number of links in the network, N is the number of nodes on it

How sparse are some networks?

Network	[V]	E	Max E
Zachary's Karate Club	34	78	561
Game of Thrones	84	216	3496
US companies ownership	1351	6721	911K
Marvel comics	6K	167K	17M

Example: protein interaction network

(N=2K, L=3K)

Example: dolphins

(N=62, L=318)

Why are networks sparse?

- Different mechanisms, think about it from the node perspective:
 - How many items could the node be connected to
 - Would it be realistic to connect to a large fraction of them?
- In social networks, Dunbar's number (\approx 150)

Example: actual friends in Twitter vs people you follow in Twitter

Paths and distances

Paths: sequences of edges

- The destination of each edge is the origin of the next edge
 - In directed graphs, paths follow the direction of the edges
- The length of the path is the number of edges on it
 - Example: path in orange has length 5

Distance

- If two nodes i, j are in the same connected component:
 - the distance between i and j, denoted by d_{ij} is the length of the shortest path between them
- If they are not in the same connected component, the distance is by definition infinite (∞)

Diameter

- The diameter of a network is the maximum distance between two nodes on it, d_{max}
- The **effective diameter** (or effective-90% diameter) is a number d such that 90% of the pairs of nodes (i,j) are at a distance smaller than d
- The average distance is <d>, and is measured only for nodes that are in the same connected component

Connected components

Connectedness

- If a path exists between two nodes i, j: those nodes are part of the same connected component
- A connected graph has only one connected component
- A singleton is a connected component with only one node

Connected graphs

A disconnected graph has an adjacency matrix that can be arranged in block diagonal form

Connectedness in directed graphs

- A directed graph is strongly connected if it has only one connected component
- A directed graph is weakly connected if, when seen as undirected, has only one connected component

Connectedness example (directed)

Undirected

- Is not connected
- Has 3 connected components
- One of the connected components is a singleton

Connectedness example (directed)

- Is not strongly connected
- Is not weakly connected
- Has 3 connected components

Summary

Things to remember

- Sparse vs dense graph
- Distance, diameter, effective diameter
 - In directed and undirected graphs
- Connected components
 - In directed and undirected graphs

Practice on your own

- ullet Measure the sparsity of a graph $L/L_{
 m max}$
- Compute the distance between two nodes
- Compute the diameter of a graph
- Identify connected components