

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2002-059707

(43)Date of publication of application : 26.02.2002

(51)Int.CI. B60C 9/20
B29D 30/70
B60C 9/00
B60C 9/18
B60C 9/22
// B29L 30:00

(21)Application number : 2000-251962

(71)Applicant : BRIDGESTONE CORP

(22)Date of filing : 23.08.2000

(72)Inventor : NAKAMURA TSUTOMU

(54) PNEUMATIC TIRE AND MANUFACTURING METHOD FOR PNEUMATIC TIRE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve steering stability and other performance by making the count number of cords proper by combining two kinds of the cords.

SOLUTION: One layer of a spiral belt 26 formed by spirally winding and extending the cords along the circumferential direction of a tread 22 is buried on the outer peripheral side of a ply material 12 in a rubber material forming the tread 22 in an annulus ring shape. The spiral belt 26 is constituted by combining two kinds of the cords made of a steel cord 26A and a reinforcing material cord 26B respectively having characteristics, that initial tensile resistance is more than 50 cN/pieces. These two kinds of the cords are alternately, with equal intervals and continuously arranged on the tread 22 so that they are clamped with each other from one end to the other end in the cross direction of the tread 22.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-59707

(P2002-59707A)

(43)公開日 平成14年2月26日 (2002.2.26)

(51)Int.Cl.

識別記号

F I

マーク (参考)

B 6 0 C 9/20

B 6 0 C 9/20

F 4 F 2 1 2

B 2 9 D 30/70

B 2 9 D 30/70

B 6 0 C 9/00

B 6 0 C 9/00

A

9/18

9/18

H

J

審査請求 未請求 請求項の数 6 OL (全 9 頁) 最終頁に続く

(21)出願番号

特願2000-251982(P2000-251982)

(22)出願日

平成12年8月23日 (2000.8.23)

(71)出願人 000005278

株式会社ブリヂストン

東京都中央区京橋1丁目10番1号

(72)発明者 中村 勉

東京都小平市小川東町3-1-1

(74)代理人 100101269

弁理士 飯塚 道夫

Fターム (参考) 4F212 AH20 VA02 VC02 VC14 VC22
VD07 VD18 VD19

(54)【発明の名称】 空気入りタイヤ及び空気入りタイヤの製造方法

(57)【要約】

【課題】 二種類のコードの組合せによりコードの打込み本数を適切な本数として、操縦安定性やその他の性能を向上する。

【解決手段】 レッド22を円環状に形成するゴム材内であってブライ材12の外周側に、レッド22の周方向に沿ってコードが螺旋状に巻き回されて伸びることで形成される一層のスパイラルベルト26が、埋設される。スパイラルベルト26は、初期引張り抵抗度を50cN/本以上とする特性をそれぞれ有したスチールコード26Aと補強材コード26Bから成る二種類のコードの組合せで構成される。レッド22の幅方向の一端から他端まで相互に挟まれるように交互にかつ等間隔で連続的に、これら二種類のコードがレッド22に配置される。

【特許請求の範囲】

【請求項1】環状に形成されるトレッドの周方向に沿ってスパイラルベルトが延びている空気入りタイヤであって、

初期引張り抵抗度を50cN/本以上とする特性をそれぞれ有したスチールコードと補強材コードとから成る二種類のコードの組合せで構成されるスパイラルベルトが、少なくとも一層設けられたことを特徴とする空気入りタイヤ。

【請求項2】補強材コードが樹脂材料或いはグラスにより形成されたことを特徴とする請求項1記載の空気入りタイヤ。

【請求項3】二種類のコードをトレッドの幅方向の一端から他端まで連続的に配置したことを特徴とする請求項1或いは請求項2記載の空気入りタイヤ。

【請求項4】二種類のコードの内の方のコードを巻き付け途中の任意の地点で巻き付けを中断すると共に、任意の地点で巻き付けを再開して、この一方のコードを中抜き構造としたことを特徴とする請求項1から請求項3の何れかに記載の空気入りタイヤ。

【請求項5】二種類のコードの内の方のコードの巻き付け開始地点及び巻き付け終了地点を任意に設定して、この一方のコードを外抜き構造としたことを特徴とする請求項1から請求項4の何れかに記載の空気入りタイヤ。

【請求項6】コードを巻き付ける巻き付け機に2条巻タイプのヘッドを設け、

次に、この巻き付け機によつて、各々1~5本のスチールコード及び補強材コードをトレッドの幅方向の一端から他端に向かって同時に巻き付けて、スパイラルベルトをトレッドに配置したことを特徴とする空気入りタイヤの製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、操縦安定性を向上した空気入りタイヤ及びこのようなタイヤを製造する為の空気入りタイヤの製造方法に係り、特に自動二輪車用のフロントタイヤとリアタイヤ及びその製造方法として好適なものである。

【0002】

【従来の技術】従来の自動二輪車等の車両用タイヤであるフロントタイヤ及びリアタイヤの内ブライ材の外周側にコードを巻き付けることで形成されるスパイラルベルトを有した構造は、一般的にそのベルトは一種類のコードで形成されている。具体的には、スチールコードのみで構成されたスパイラルベルト、或いは樹脂材料等による補強材コードのみで構成されたスパイラルベルトが一般に知られている。

【0003】但し、スチールコードのみで構成されたスパイラルベルトでは剛性が高くなりすぎ、この剛性が高

くなりすぎる結果として乗り心地性や耐スリップ性を高く保つことが困難となっていた。この為、スチールコードの巻き回される回数である打込み本数を減らすという対策で、適切な剛性を得るようにしていた。一方、補強材コードのみで構成されたスパイラルベルトでは、剛性感が不足する為、シミー運動の振幅が大きくなり易く、高速時の高速安定性を高く保ち難くなると共にハンドリングの軽快性・応答性を保ち難く、またコーナーでのグリップを高く保ち難くなり、この結果として操縦安定性を十分に確保できない虞を有していた。

【0004】

【発明が解決しようとする課題】しかし、スチールコードのみで構成されたスパイラルベルトにおいて単にコードの打込み本数が減らされた場合、空気圧に対する破壊強度の低下、耐パンク性の低下及び、断面方向の曲げ剛性の低下により繰り返し屈曲に対するトレッドゴムとブライ材の耐疲労性の低下という弊害が、生じる。一方、補強材コードのみによるスパイラルベルトでは、操縦安定性の低下を防止する為に、このコードを積層して打込み本数を増やすことや他の部材を追加するようしているが、コードの打込み本数を必要以上に増やしたりするとタイヤの軽量化が困難となると共に、積層に伴うせん断剛性の低下によりグリップが低下する等の欠点があった。

【0005】本発明は上記事実を考慮し、二種類のコードの組合せによりコードの打込み本数を適切な本数として、操縦安定性やその他の性能を向上させ得る空気入りタイヤ及び空気入りタイヤの製造方法を提供することが目的である。

【0006】

【課題を解決するための手段】請求項1による空気入りタイヤは、環状に形成されるトレッドの周方向に沿ってスパイラルベルトが延びている空気入りタイヤであって、初期引張り抵抗度を50cN/本以上とする特性をそれぞれ有したスチールコードと補強材コードとから成る二種類のコードの組合せで構成されるスパイラルベルトが、少なくとも一層設けられたことを特徴とする。

【0007】請求項1に係る空気入りタイヤの作用を以下に説明する。本請求項は、環状に形成されるトレッドの周方向に沿ってスパイラルベルトが延びている空気入りタイヤに用いられる。さらに、このスパイラルベルトは、初期引張り抵抗度を50cN/本以上とする特性をそれぞれ有したスチールコードと補強材コードとから成る二種類のコードの組合せで構成されており、空気入りタイヤにこのようなスパイラルベルトが少なくとも一層設けられた構造とされている。

【0008】従って、この空気入りタイヤでは、圧縮剛性の高いスチールコードの特性と、圧縮剛性が低いものの引張り強度が高い補強材コードの特性と、を有効に組み合わせて活用することができ、この結果として、トレ

ッドのねじり剛性の確保、断面方向の曲げ剛性の確保、ベルト材としてのタガ強度の確保及び、補強効果の確保をバランス良く達成できる。

【0009】さらにこれにより、ハンドルシミー性の向上、高速安定性の向上（ウォブルの振幅小化・収まりの向上）、ハンドリングの軽快性・旋回力の向上、コーナーアグリップ限界と滑りコントロール性の向上等をすることができるだけでなく、空気圧充填時の安全性・耐パンク性を高く保つことを容易に出来る。以上より、上記のようなスチールコードと補強材コードとから成る二種類のコードの組合せのスパイラルベルトにより、適切な剛性を得つつコードの打込み本数を適切な本数にでき、操縦安定性やその他の性能を向上させることが可能となつた。

【0010】請求項2に係る空気入りタイヤの作用を以下に説明する。本請求項では請求項1と同様の構成を有して同様に作用するが、さらに、補強材コードが樹脂材料或いはグラスにより形成されるという構成を有している。つまり、初期引張り抵抗度を50cN/本以上とする特性を有した材料から補強材コードの材料を選択でき、樹脂材料としては例えば、芳香族ポリアミドであるアラミドナイロン（KEV）、PEN、PET、レーヨン、脂肪族ポリアミドであるナイロン等の中より選ぶことができる。

【0011】請求項3に係る空気入りタイヤの作用を以下に説明する。本請求項では請求項1及び請求項2と同様の構成を有して同様に作用するが、さらに、二種類のコードをトレッドの幅方向の一端から他端まで連続的に配置するという構成を有している。つまり、本請求項によれば、トレッドの一端から他端まで連続的に二種類のコードを配置することで、トレッドの剛性がより均一になり耐久性・操縦安定性等の性能が一層向上するようになる。

【0012】請求項4に係る空気入りタイヤの作用を以下に説明する。本請求項では請求項1から請求項3と同様の構成を有して同様に作用するが、さらに、二種類のコードの内的一方のコードを巻き付け途中の任意の地点で巻き付けを中断すると共に、任意の地点で巻き付けを再開して、この一方のコードを中抜き構造とされるという構成を有している。つまり、本請求項によれば中抜き構造とすることで、トレッドの剛性配分を任意に調整可能に出来るので、特に剛性の弱い箇所にのみ重点的に二種類のコードを配置することが可能となる。

【0013】請求項5に係る空気入りタイヤの作用を以下に説明する。本請求項では請求項1から請求項4と同様の構成を有して同様に作用するが、さらに、二種類のコードの内的一方のコードの巻き付け開始地点及び巻き付け終了地点を任意に設定して、この一方のコードを外抜き構造とされるという構成を有している。つまり、本請求項によれば外抜き構造とすることで、請求項4と同

様にトレッドの剛性配分を任意に調整可能に出来るようになる。

【0014】請求項6による空気入りタイヤの製造方法は、コードを巻き付ける巻き付け機に2条巻タイプのヘッドを設け、次に、この巻き付け機によつて、各々1～5本のスチールコード及び補強材コードをトレッドの幅方向の一端から他端に向かって同時に巻き付けて、スパイラルベルトをトレッドに配置したことを特徴とする。

【0015】請求項6に係る空気入りタイヤの製造方法の作用を以下に説明する。本請求項では、2条巻タイプのヘッドを有する巻き付け機を採用することで、最適な割合の本数である各々1～5本のスチールコードと補強材コードとを同時に巻き付けて、スパイラルベルトを形成できるようになる。従つて、この巻き付け機を採用することにより、トレッドの幅方向の一端から他端に向かつて同時に二種類のベルトであるスチールコードと補強材コードとを常に相互に挟まるように交互にかつ等間隔で、一気に巻き付けてトレッドに配置することが可能となる。この結果として、空気入りタイヤの生産性が向上すると共に、均等に二種類のコードを配置することができてトレッドの剛性が均一になり、空気入りタイヤの耐久性や操縦安定性等の性能が向上するようになる。

【0016】
【発明の実施の形態】本発明の第1の実施の形態に係る空気入りタイヤを図1に基づき説明する。図1は、本実施の形態に係る空気入りタイヤ10の例として二輪車用タイヤを示し、この空気入りタイヤ10の骨格をプライ材12が構成する。このプライ材12は、ポリエステル等のコードをこの空気入りタイヤ10の赤道面CLに対して20～90°の角度で交差する方向にそれぞれ配列した複数層の部材により、形成されている。

【0017】このプライ材12の両端部近傍には、それぞれリング状にスチールワイヤーが巻かれて束ねられた一对のビードコア14が配置されており、これら一对のビードコア14にそれぞれプライ材12の両端部が巻き付けられている。さらに、このビードコア14の上部のプライ材12間の隙間には、硬質ゴム製で先細り形状に形成されたビードフィラー16がそれぞれ埋設されている。以上より、プライ材12が一对のビードコア14を繋ぐように配置されることになり、この空気入りタイヤ10の頂部となるクラウン部18を貫通するようにこのプライ材12が配置されている。

【0018】そして、このクラウン部18には、ゴム材により円環状に形成されて路面に接地する外皮であるトレッド22が配置されており、溝により区画された陸部を有するトレッドパターンがこのトレッド22に設けられている。また、ビードコア14とクラウン部18との間を繋ぐ部分である空気入りタイヤ10のサイドウォール24内にもプライ材12が配置されており、この空気入りタイヤ10の最内層を示すインナーライナー

が形成している。

【0019】一方、図1に示すように、図1の紙面と垂直に延びてトレッド22を円環状に形成するゴム材内であってプライ材12の外周側には、トレッド22の周方向に沿ってコードが螺旋状に巻き回されて延びることで形成される一層のスパイラルベルト26が、埋設されている。

【0020】このスパイラルベルト26は、初期引張り抵抗度を50cN/本以上とする特性をそれぞれ有したスチールコード26Aと補強材コード26Bとから成る二種類のコードの組合せで構成されており、図1に示すように、トレッド22の幅方向の一端から他端まで相互に挟まれるように交互にかつ等間隔で連続的に、これら二種類のコードがトレッド22に配置されている。尚、ここで補強材コード26Bを構成する材料としては、芳香族ポリアミドであるアラミドナイロン(KEV)、PEN、PET、グラス、レーヨン、脂肪族ポリアミドであるナイロン等の材質の中より選ぶことができる。

【0021】次に、本実施の形態に係る空気入りタイヤ10の作用を以下に説明する。従来の自動二輪車用のフロントタイヤ及びリアタイヤは、スパイラルベルトを有するものの、スチールコードと補強材コードの二種類のコードを同時に巻き付けたスパイラルベルトを有するものはなかった。これに対して本実施の形態では、円環状に形成されるトレッド22の周方向に沿って螺旋状に巻き回されて延びているベルト層であるスパイラルベルト26が、初期引張り抵抗度を50cN/本以上とする特性をそれぞれ有したスチールコード26Aと補強材コード26Bとから成る二種類のコードの組合せで構成されている。

【0022】さらに、これら二種類のコードがトレッド22の幅方向の一端から他端まで連続的に配置されることで、このスパイラルベルト26によるベルト層が、空気入りタイヤ10に一層設けられる形となっている。従って、この空気入りタイヤ10では、圧縮剛性及び引張り強度がそれぞれ高いスチールコード26Aの特性と、圧縮剛性が低いものの引張り強度が高い補強材コード26Bの特性と、を有効に組み合わせて活用することができ、この結果として、トレッド22のねじり剛性の確保、断面方向の曲げ剛性の確保、ベルト材としてのタガ強度の確保及び、補強効果の確保をバランス良く達成できる。

【0023】さらにこれにより、ハンドルシミー性の向上、高速安定性の向上(ウォブルの振幅小化・収まりの向上)、ハンドリングの軽快性・旋回力の向上、コーナーグリップ限界と滑りコントロール性の向上をすることができるだけでなく、空気圧充填時の安全性・耐パンク性を高く保つことを容易に出来る。以上より、上記のようなスチールコード26Aと補強材コード26Bとから成る二種類のコードの組合せのスパイラルベルト26に

より、適切な剛性を得つつコードの打込み本数を適切な本数にでき、操縦安定性やその他の性能を向上させることができとなった。

【0024】他方、本実施の形態では、トレッド22の一端から他端まで連続的に二種類のコードが配置されているので、トレッド22の剛性がより均一になり耐久性・操縦安定性等の性能が一層向上するようになる。

【0025】また、本実施の形態では、図1に示すようにスチールコード26Aと補強材コード26Bとから成る二種類のコードが一本毎交互に組合されているが、図2に示す本実施の形態の第1の変形例のように二本のスチールコード26Aと一本の補強材コード26Bとが交互に組合されたものでも良く、また、図3に示す本実施の形態の第2の変形例のように一本のスチールコード26Aと二本の補強材コード26Bとが交互に組合されたものでも良い。

【0026】次に、本発明の第2の実施の形態に係る空気入りタイヤを図に基づき説明する。尚、第1の実施の形態で説明した部材と同一の部材には同一の符号を付して、重複した説明を省略する。第1の実施の形態のスパイラルベルト26の替わりに、図4に示す本実施の形態に係る空気入りタイヤ10のスパイラルベルト26は、二種類のコードの内の一方のコードである補強材コード26Bを巻き付け途中の任意の地点で巻き付けを中断すると共に、任意の地点で巻き付けを再開して、この補強材コード26Bを中抜き構造とした。つまり、本実施の形態によれば、トレッド22の剛性配分を任意に調整可能に出来るので、特に剛性の弱い箇所にのみ重点的に二種類のコードを配置することが可能となる。

【0027】次に、本発明の第3の実施の形態に係る空気入りタイヤを図に基づき説明する。尚、第1の実施の形態で説明した部材と同一の部材には同一の符号を付して、重複した説明を省略する。第1の実施の形態のスパイラルベルト26の替わりに、図5に示す本実施の形態に係る空気入りタイヤ10のスパイラルベルト26は、二種類のコードの内の一方のコードである補強材コード26Bの巻き付け開始地点及び巻き付け終了地点を任意に設定して、この補強材コード26Bを外抜き構造とした。つまり、本実施の形態によっても、第2の実施の形態と同様にトレッド22の剛性配分を任意に調整可能に出来るようになる。

【0028】次に、本発明の実施の形態に係る空気入りタイヤの製造方法を図6及び図7に基づき説明する。尚、第1の実施の形態で説明した部材と同一の部材には同一の符号を付して、重複した説明を省略する。まず、図6に示すように、巻き付け機30に2条巻タイプのヘッド32を設け、このヘッド32の一対のローラ34に二本づつのコードが巻き掛けられるような構造とする。

【0029】次に、この巻き付け機30によって、図6及び図7に示すように、各々二本のスチールコード26

A及び補強材コード26Bをトレッド22の幅方向の一端から他端に向かって同時にプライ材12の外周面に巻き付けて、スパイラルベルト26を完成する。そしてこの後、ゴム材をこれらの外周側に配置して加硫することで、トレッド22にこのスパイラルベルト26が埋設された空気入りタイヤ10が完成される。

【0030】つまり本実施の形態では、2条巻きタイプのヘッド32を有する巻き付け機30を採用することで、最適な割合の本数である各々1~5本の内の各々2本のスチールコード26Aと補強材コード26Bとを同時に巻き付けて、スパイラルベルト26を形成できるようになる。

【0031】従って、この巻き付け機30を採用することにより、トレッド22の幅方向の一端から他端に向かつて同時に二種類のベルトであるスチールコード26Aと補強材コード26Bを常に相互に挟まれるように交互にかつ等間隔で、一気に巻き付けてトレッド22に配置することが可能となる。この結果として、空気入りタイヤ10の生産性が向上すると共に、均等に二種類のコードを配置することができてトレッド22の剛性が均一になり、空気入りタイヤ10の耐久性や操縦安定性等の性能が向上するようになる。

【0032】次に、本実施の形態で説明した空気入りタイヤの実施例と従来例に係るタイヤとを比較して試験を*

*行った結果を、以下の表1及び表2の基づきに説明する。つまり、表1及び表2に示す従来例1は、アラミドナイロン製の補強材コードにより構成されたスパイラルベルトを有したラジアルタイヤであり、表1及び表2に示す従来例2は、スチール製のスチールコードにより構成されたスパイラルベルトを有したラジアルタイヤである。

【0033】これに対して表1及び表2に示す実施例1は、図1に示す第1の実施の形態のスチールコード26Aとアラミドナイロン製の補強材コード26Bとから成る二種類のコードの組合せで構成されたスパイラルベルト26を有したラジアルタイヤであり、表2に示す実施例2は、図4に示す第2の実施の形態のスチールコード26Aとアラミドナイロン製の補強材コード26Bとから成る二種類のコードの組合せで構成されたスパイラルベルト26を有したラジアルタイヤである。

【0034】そして、これらの各タイヤに水圧破壊圧の試験を行うと共に、各タイヤをリアタイヤとして車両に装着して走行試験を行い、下記の表1の結果が得られた。尚この際、フロントタイヤとしては、ケブラー製のクロスベルトを有したラジアルタイヤを使用し、また、実施例2のタイヤの試験は行われなかった。

【0035】

【表1】

	従来例1	従来例2	実施例1
水圧破壊圧 (kPa)	250	150	250
高速安定性	100	120	120
軽快性・応答性	100	120	120
コーナーグリップ	100	110	120
乗り心地	100	80	90

【0036】つまり、これらの試験により表1に示すように実施例1は従来例1を基準として、水圧破壊圧が同等であり乗り心地の得点が若干低いだけで、各評価項目とも得点が高く、また、従来例2に対して実施例1は各評価項目とも同等以上の値となっていた。一方、これらの各タイヤに水圧破壊圧の試験を行うと共に、各タイヤ

40 をフロントタイヤとして車両に装着して走行試験を行い、下記の表2の結果が得られた。尚この際、リアタイヤとしては、ケブラー製の周方向ベルトを有したラジアルタイヤを使用した。

【0037】

【表2】

	従来例 1	従来例 2	実施例 1	実施例 2
水圧破壊圧 (KPa)	250	150	250	220
高速安定性	100	110	120	115
シミー	100	110	105	120
軽快性	100	120	120	115
コーナーグリップ	100	110	120	120
乗り心地	100	80	90	100

【0038】つまり、これらの試験により表2に示すように実施例1は従来例1を基準として、水圧破壊圧が同等であり乗り心地が若干得点が低いだけで、各評価項目とも得点が高く、また、従来例2に対して実施例1はシミーが若干低いものの他の各評価項目とも同等以上の値となっていた。また、実施例2は従来例1を基準として、水圧破壊圧が問題の無い範囲で低いものの、他の評価項目は同等以上であり、また、従来例2に対して実施例1は軽快性の得点が若干低いものの他の各評価項目とも同等以上の値となっていた。尚、水圧破壊圧の単位はKPaであり、他の各評価項目欄の値は従来例1の値を100としたときの指標であり、数値が大きい程それぞれ評価が良いことになる。

【0039】上記の表1の結果として、操縦安定性やその他の性能とともに実施例1及び実施例2は従来例1、2*30

材質	構造	初期引張り抵抗度
ナイロン66	1400d/2	94.6 cN/本
PET(通常品)	1670d/2	120 cN/本
PEN	1670d/2	331 cN/本
レーヨン	1840d/2	221 cN/本
アラミド	1670d/2	736 cN/本
スチール	L1501×5	3300 cN/本

【0041】尚、上記の実施の形態において、スチールコード及び補強材コードを巻き付ける際、各々1本または2本としたが、スチールコード及び補強材コードの本数はこれらの実施の形態に限定されず、例えばスチールコード及び補強材コードを各々1~5本としても良い。

【0042】

【発明の効果】本発明の空気入りタイヤ及び空気入りタイヤの製造方法は上記構成としたので、二種類のコードの組合せによりコードの打込み本数を適切な本数として、操縦安定性やその他の性能を向上できるという優れた効果を有する。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態に係る空気入りタイ

*より全体的に評価が高かった。この為、従来例のタイヤよりも実施例のタイヤの方が、優れていることが判明した。ここで、走行試験の際に用いられたフロントタイヤのサイズは120/70ZR17であり、リアタイヤのサイズは190/50ZR17であり、フロントタイヤのリムのサイズはMT3.50×17であり、リアタイヤのリムのサイズはMT6.00×17であり、フロントタイヤ及びリアタイヤのタイヤ空気圧はそれぞれ250KPaであった。また、テスト車としてYAMAHAのR1を採用した。

【0040】ここで、上記の実施の形態において挙げられたコードの初期引張り抵抗度の具体的データ(代表値)を以下に示す。但し以下のデータは例示であり、以下の数値に限定されるものではない。

初期引張り抵抗度
94.6 cN/本
120 cN/本
331 cN/本
221 cN/本
736 cN/本
3300 cN/本

ヤを示す断面図である。

【図2】本発明の第1の実施の形態を変形した第1の変形例に係る空気入りタイヤを示す断面図である。

【図3】本発明の第1の実施の形態を変形した第2の変形例に係る空気入りタイヤを示す断面図である。

【図4】本発明の第2の実施の形態に係る空気入りタイヤを示す断面図である。

【図5】本発明の第3の実施の形態に係る空気入りタイヤを示す断面図である。

【図6】本発明の実施の形態に係る空気入りタイヤの製造方法を説明する断面図である。

【図7】本発明の実施の形態に係る空気入りタイヤの製造方法を説明するコードをプライ材の巻き付けた状態の

50

11

12

斜視図である。

【符号の説明】

10 空気入りタイヤ

22 トレッド

* 26 スパイラルベルト

26A スチールコード

26B 捕強材コード

*

【図1】

【図2】

【図3】

【図4】

【図7】

【図5】

【図6】

フロントページの続き

(51)Int.Cl.
B60C 9/22

識別記号

F I
B60C 9/22

テーマコード(参考)

B
C
D
G

// B29L 30:00

B29L 30:00