Prof. Maurizio Dècina

APPUNTI SULLE COMUNICAZIONI SICURE

LARGE NUMBERS

Potenze di 2	2^{10}	→	$\sim 10^3$	
	2^{16}	>	~ 6,55	10^{4}
	2^{32}	>	~ 4,3	10 ⁹
	2^{48}	>	~ 2,8	10^{14}
	2^{56}	>	~ 7,2	10^{16}
	2^{64}	>	~ 1,8	10^{19}
	2^{100}	>	~ 1,3	10^{30}
	2^{128}	>	~ 3,4	10^{38}
	2^{200}	>	~ 1,6	10^{60}
	2^{256}	>	~ 1,2	10^{77}
	2^{512}	>	~ 1,3	10^{154}
	2^{750}	>	~ 5,9	10^{225}
	2^{1024}	>	~ 1,8	10^{308}

$$\frac{\text{\# Cifre Esp. Binario}}{\log_2 10} = \text{\# Cifre Esp. Decimale } [\log_2 10 \cong 3,33]$$

Secondi	1 h	3,6	10^3		
	1 g	8,64	10^{4}		
	1 mese	~ 2,6	10^{6}		
	1 anno	~ 3,15	10^{7}		
	10 anni	~ 3,15	10^{8}		
	100 anni	~ 3,15	10 ⁹		
	1000 anni	~ 3,15	10^{10}		

Servono metà combinazioni in media per risolvere

Esempio Chiave da 56 bit combinazioni = $2^{56} \cong 7.2 \times 10^{16}$ $7.2 \times 10^{16} \times 10^{-9} = \sim 7.2 \times 10^{7} \sim 2$ anni per provarle tutte 10^{-9} s per combinazione

1 ns per combinazione [>1.000 MIPS in multiprocessing]

LARGE NUMBERS

• Probabilità di venire ucciso in un in (negli U.S., per anno)	1 su 5.600	mobilistico (2 ⁻¹²)
• Età della Terra	10 ⁹	(2 ³⁰) anni
• Età dell'Universo	10^{10}	(2 ³⁴) anni
Se l'Universo è Chiuso • Vita totale dell'Universo, durata	10^{11} 10^{18}	(2 ³⁷) anni (2 ⁶¹) secondi
Se l'Universo è aperto • Tempo affinché tutta la materia si li a temperatura zero	quidi 10 ⁶⁵ 10 ⁷²	(2 ²¹⁶) anni (2 ²⁴⁰) secondi
• Numero di atomi della Terra	10 ⁵¹	(2^{170})
Numero di atomi nella Galassia nell'Universo	$10^{67} \\ 10^{77}$	(2^{223}) (2^{265})
• Volume dell'Universo	10^{84}	$(2^{280}) \text{ cm}^3$

n oggetti diversi \rightarrow presi a gruppi di k

PERMUTAZIONI (k = n)

n!

DISPOSIZIONI

$$\frac{n!}{(n-k)!}$$

DISPOSIZIONI CON RIPETIZIONE

1

COMBINAZIONI

$$\binom{n}{k}$$

COMBINAZIONI CON RIPETIZIONE

$$\binom{n+k-1}{k}$$

 $n = 1, 2 \dots$ $k = 1, 2 \dots$

FORMULA DI STIRLING

$$n! \simeq \sqrt{(2\pi}n) \left(\frac{n}{e}\right)^n$$

 $n \text{ intero } > 0, \text{ per } n \gg 1$

ASPETTI DELLA SICUREZZA

RISERVATEZZA • SEGRETEZZA {DEI MESSAGGI CONFIDENZIALITA'

• IDENTIFICAZIONE {AUTENTICAZIONE

MACCHINE DEGLI INTERLOCUTORI}

PERSONE

• INTEGRITA' **{AUTENTICAZIONE DEI MESSAGGI**

• FIRMA {DEI MESSAGGI {FIRMA DI PERSONE

• CERTIFICATO {DI IDENTITA' DI PERSONE

 NON RIPUDIO {DELLE TRANSAZIONI

• ANONIMITA' **{DELLE TRANSAZIONI**

• DISPONIBILITA' {DEL SERVIZIO} {(DENIAL OF SERVICE ATTACK)

 AFFIDABILITA' {DEL SERVIZIO

 AUTORIZZAZIONE {A INTERLOCUTORI IDENTIFICATI}

NUMERI INTERI

• Dato m intero positivo, m > 0, l'espressione

'm divide n'

ove $n \ge 1$ intero, $n \ge 0$, significa che

'n è divisibile per m'

in modo perfetto, cioè senza resto:

$$\frac{n}{m} = k \text{ intero} \qquad k \ge 0$$

$$m > 0$$

e si scrive

 $m \setminus n$

Quindi *n* è multiplo di *m*:

n = km, per qualche intero k.

- Esiste solo un multiplo di m=0, cioè zero stesso. Cioè 0 non 'divide' alcun numero, ovvero nessun intero è divisibile per 0.
- Dato a intero positivo, a > 0, questi è un numero 'primo' soltanto se 1 e a dividono a stesso, cioè se a è divisibile soltanto per 1 e per a stesso

$$\frac{a}{1} = a$$
 se queste sono le sole divisioni senza resto, allora $a \in \text{primo}$ $a = p$ $p > 0$.

per
$$a = 0$$
 $\left\{ \frac{0}{1} = 0 \right\}$ $\frac{0}{0}$ = indefinito

 $p_i \Rightarrow 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, ...$

i = 1, 2, 3, ...

I numeri primi sono infiniti

• Tutti gli altri numeri interi sono 'composti'

$$m = \prod_{k=1}^{n} p_k, \quad p_1 \le p_2 \le p_3 \dots \le p_n, \quad m > 0$$

 p_k numeri primi - Teorema fondamentale dell'Aritmetica - ovvero

$$m = \prod_{i=1}^{n} p_i^{ei}, \quad 1 \le i \le n, \quad m > 0, \quad e_i > 0$$

Ad es: $91 = 7 \times 13$

$$20 = 2^2 \cdot 5$$

• Il massimo comun divisore (\equiv mcd) di due numeri interi m e n è l'intero più grande che li divide entrambi

 $mcd(m,n) = max \{k \mid k \mid m \in k \mid n\}$

l'espressione

k divide m (o m è divisibile per k)

 $k \mid m \equiv k > 0$ e m = qkper un certo intero q

Ad es: mcd(12, 18) = 6

• Due numeri positivi *m* e *n* interi sono 'primi tra loro' se

mcd(n,m) = 1

e si scrive

 $n \perp m$ o $m \perp n$

inoltre:

mcd(0, n) = n

mcd(0, 0) = indefinito

ARITMETICA MODULARE

Dato $a \leq 0$, intero

e m > 0, intero

 $a \mod m = r$

significa che

 $a - \lfloor \frac{a}{m} \rfloor \ m = r$

e cioè che

a = k m + r

 $k = \lfloor \frac{a}{m} \rfloor$

 $a = \lfloor \frac{a}{m} \rfloor \ m + r$

con

 $0 \le r \le m-1$

sempre $r \ge 0$ i residui di a modulo m

sono sempre ≥ 0 .

Ad esempio:

$$3 \mod 7 = 3$$

$$(k = 0)$$
 $a = 3, m = 7$

$$7 \mod 3 = 1$$

$$(k = 2)$$
 $a = 7, m = 3$

$$-1 \mod 7 = 6$$

$$(k = -1)$$
 $-1 = k7 + 6, k = -1$

$$-2 \mod 3 = 1$$

$$(k = -1)$$
 $-2 = k + 1, k = -1$

$$2 \mod 3 = 2$$

$$(k = 0)$$

$$9 \mod 5 = 4$$

$$(k = 1)$$

 $(a \mod 0 = a, \text{ per definizione})$ (0 $\mod m = 0, \text{ per definizione})$

EXCLUSIVE OR

- $0 \oplus 0 = 0$
- $0 \oplus 1 = 1$
- $1 \oplus 0 = 1$
- $1 \oplus 1 = 0$
- $(0+0) \mod 2 = 0 \to 0 \mod 2 = 0$
- $(0+1) \mod 2 = 1 \rightarrow 1 \mod 2 = 1$
- $(1+0) \bmod 2 = 1 \rightarrow 1 \bmod 2 = 1$
- $(1+1) \bmod 2 = 0 \rightarrow 2 \bmod 2 = 0$

Si dice inoltre che b è congruente con $a \mod m$

$$b \equiv a \pmod{m}$$

se b e a hanno lo stesso resto quando divisi per m,

$$b, a, \geq 0$$

e cioè detti

$$\begin{cases} a = k_1 m + r_1 \\ b = k_2 m + r_2 \end{cases}$$

a e b sono congruenti modm se e solo se

$$r_1 = r_2 = r$$

 $b \mod m = a \mod m = r$

$$(b - a) \bmod m = 0$$

e cioè (b-a) è 'DIVISIBILE' (perfettamente divisibile) per m (resto = 0).

Ad esempio:

$$13 \mod 3 = 1$$

$$22 \mod 3 = 1$$

$$22 \equiv 13 \pmod{3}$$

Si dice anche che l'operazione

$$a \bmod m = r$$
.

 $a \mod m = r$, ove $r \ge il$ residuo di a,

è la riduzione modulare di a, modulo m.

L'insieme dei numeri interi

$$0, 1, 2, 3, \dots m-1$$

è l'insieme completo dei residui, modulo m.

Pag. 009 Prof. Maurizio Dècina

L'insieme

$$\begin{aligned} &\mathcal{Z}_m \left(m>0; |\mathcal{Z}_m|=m\right) \\ &r_i \in \mathcal{Z}_m, \, r_i=0,1,2,...,m-1 \end{aligned}$$

è lo spazio dell' 'aritmetica modulo' *m*. Valgono tutte le proprietà dell'aritmetica

$$(a \pm b) \bmod m \equiv [(a \bmod m) \pm (b \bmod m)] \bmod m$$
$$(a \times b) \bmod m \equiv [(a \bmod m) \times (b \bmod m)] \bmod m$$
$$[a \times (b + c)] \bmod m \equiv \{[(a \times b) \bmod m] + [(a \ c) \bmod m]\} \bmod m$$

POTENZE DI NUMERI MODULO m

 $a^x \mod m$

Esempio

 $a^4 \mod m$

 \rightarrow $(a \times a \times a \times a) \mod m$

oppure

 $\rightarrow [(a \times a) \bmod m]^2 \bmod m$

 $3^4 \bmod 2 \rightarrow 81 \bmod 2 = 1$

oppure

 $\rightarrow (9 \mod 2)^2 \mod 2 = (1)^2 \mod 2 = 1.$

 $a^x \mod m = b$

dato x e a trovare b in \mathcal{Z}_m .

LOGARITMO DISCRETO

$$3^x \bmod 17 = 15$$

dato a, m e b trovare x.

per tentativi, in questo caso

$$x = 6$$

$$3^6 = 729$$

$$729 \cdot \text{mod} 17 = 15$$

infatti

$$729 = \left\lfloor \frac{729}{17} \right\rfloor \times 17 + 15 =$$

$$= 42 \times 17 + 15 = \qquad (k = 42)$$

$$714 + 15$$

Purtroppo non tutti i logaritmi discreti hanno soluzioni

Ad esempio:

$$3^x \mod 13 = 7$$

non ha soluzione.

Trovare l'intero x, $x \ge 0$

tale che

 $a^x \mod m = b$

assegnato con a e b interi

positivi

cioè

$$a^x = km + r$$

$$k \geqslant 0$$
 intero

$$\log_a^{\mathrm{D}} a^x = x = \log_a (km + r)$$

$$k \geqslant 0$$
 intero

$$x \triangleq \log_a^{\mathrm{D}} b$$

$$a^x \equiv b \pmod{m}$$

Logaritmi discreti \log^{D}

x si dice logaritmo discreto

$$a^x \mod m = b$$
 assegnato b

Trovare x tale che

$$a^x \equiv b \pmod{m}$$
.

$$3^x \mod 17 = 15$$

$$\begin{cases} a = 3 \\ b = 15 \\ m = 17 \end{cases}$$

 \rightarrow allora x = 6 infatti:

$$3^6 \mod 17 = 15$$
 $729 \mod 17 =$

$$= 729 - \lfloor \frac{729}{17} \rfloor \cdot 17 =$$

$$= 729 - 714 = 15.$$

ALGORITMO DI EUCLIDE

Calcolo ricorsivo

$$mcd(n, m) = mcd(m, n)$$

dato

$$0 \le m < n$$

si calcola con la ricorrenza

$$\begin{cases} * \mod(0, n) = n \\ * \mod(m, n) = \end{cases} \begin{cases} n > 0 \\ \mod(0, 0) = \text{indefinito} \end{cases}$$

$$\mod(n \mod m, m) \qquad (m > 0)$$

Ad esempio

$$mcd (12, 18) =$$
 $mcd (18 mod 12, 12) = mcd (6, 12) =$
 $mcd (12 mod 6, 6) = mcd (0, 6) = 6$

Due numeri sono primi tra loro se

$$mcd(n, m) = 1$$

 $n \perp m ; m \perp n$

NUMERI INVERSI

Dato n > 0 intero, l'inverso è il numero (in generale non intero) m tale che

$$m=\frac{1}{n}$$
.

Ad esempio:

$$n = 4; \ m = \frac{1}{4} ,$$

cioè m è tale che

$$n \times m = 1$$
.

Nell'aritmetica modulo m (m>0), lo spazio dei residui \mathcal{Z}_m , l'operazione di inversione è definita analogamente Dato

 $a \mod m$ $a \ge 0$

trovare l'intero positivo x>0 tale che

$$(x \cdot a) \mod m = 1$$

che si può scrivere come

$$a^{-1} \equiv x \pmod{m}$$

 a^{-1} congruente con $x \mod m$.

L'equazione

 a^{-1} congruente con $x \mod m$

ha una sola soluzione se e solo se

a e m

sono primi relativi

Se m è primo m = pallora ogni numero da 1 a m-1 è primo relativo con med ha esattamente un inverso corrispondente

Due numeri sono primi tra loro

mè primo di n

 $m \perp n \equiv m, n \text{ sono interi}$

e mcd (m, n) = 1

Ad esempio:

$$m = 3 = p$$

a = 7 = primo, è certo che $a \perp m$

allora esiste a^{-1}

$$a^{-1} = 1$$

infatti

$$(a^{-1} \cdot a) \mod m =$$

$$= (1 \times 7) \mod 3 = 1$$

$$\begin{cases} a = 7 \\ a^{-1} = 1 \end{cases}$$

NUMERI PRIMI

Dato

il numero dei numeri primi < m

è

$$\Pi\left(m\right) \rightarrow \frac{m}{l_n(m)}$$

Esempio:

$$m = 2^{256} = 1,1 \cdot 10^{77}$$

 $\Pi(2^{256}) \cong \frac{1,1 \cdot 10^{77}}{l_n(1,1 \cdot 10^{77})} \cong \frac{1,1 \cdot 10^{77}}{177,4} \cong 6,2 \cdot 10^{74}$

A giugno 1999 il numero primo più grande scoperto era:

$$2^{6,972.593} - 1$$

www.utm.edu/research/prime

corrispondente a un numero decimale con 2.098.960 cifre,

numero primo di Marsenne della forma $2^p - 1$ con p numero primo.

Breve storia della scoperta dei numeri primi più grandi:

1588 Cataldi
$$2^{17} - 1$$

1772 Eulero
$$2^{31} - 1$$

1951 Ferrier
$$\frac{2^{148}+1}{17}$$
 (44 cifre decimali)

Non tutti i numeri di Marsenne sono primi.

Fermat e poi 1876 - Test di Lucas, per verificare se il numero è primo.

In generale \mathcal{Z}_m l'insieme di tutti i residui $(0 \div m - 1)$, m > 0, comprende numeri interi composti e numeri primi

$$|\mathcal{Z}_m| = m.$$

L'insieme ridotto

$$\mathcal{Z}_{m}^{*} \in \mathcal{Z}_{m}$$

comprende residui che sono numeri primi

$$p_i, \ 1 \le i \le \varphi(m), \qquad p_i \perp m$$

e cioè la cardinalità

$$\mid \mathcal{Z}_{m}^{*} \mid = \varphi(m)$$

dell'insieme 'ridotto' dei residui modulo m è uguale alla funzione fi di Eulero (Funzione 'Toziente')

Si sa che:

• se
$$m = p$$
, cioè è primo, allora

$$\varphi(p) = p - 1$$

e cioè comprende tutti i residui tranne lo 0, infatti

$$mcd(0, p) = p.$$

• se $m = p \times q$, ove e p e q sono primi

allora

$$\varphi(p \times q) = (p-1)(q-1).$$

più in generale se

Ad esempio:

$$m = 60; \quad 60 = 2^{2} \cdot 3 \cdot 5$$

$$\varphi(60) = (2^{2} - 2^{1})(3 - 1)(5 - 1) =$$

$$= 2 \times 2 \times 4 = 16$$

$$98 = 2 \times 7^{2}$$

$$\varphi(98) = (2 - 1)(7^{2} - 7) = 42$$

$$p_{1} = 2, l_{1} = 2$$

$$p_{2} = 3, l_{2} = 1$$

$$p_{3} = 5, l_{3} = 1$$

PICCOLO TEOREMA DI FERMAT

Dato m > 0 intero e primo m = p, se a non è multiplo di p allora

(1)
$$a^{p-1} \equiv 1 \pmod{p}, \quad a \perp p;$$

e cioè anche
$$\rightarrow$$
 $a^p \equiv a \pmod{p}, \quad a \perp p;$

dalla (1) si ha

$$a^{p-1} \bmod p = 1 = 1 \bmod p$$

e quindi
$$(a \cdot a^{p-2}) \bmod p = 1$$

$$a^{p-2} \equiv a^{-l} \pmod{p}$$

e cioè
$$a^{-1} = a^{p-2} \bmod p.$$

TEOREMA DI LAGRANGE

afferma che in \mathbb{Z}_m^* gli elementi $a \perp m$ elevati a $\varphi(m)$ danno 1:

Dato m > 0 e $a \perp m$,

m qualsiasi intero, se:
$$a \perp m$$
, allora $\rightarrow a^{\varphi(m)} \equiv 1 \pmod{m}$

cioè
$$a^{\varphi(m)} \operatorname{mod} m = 1 = 1 \operatorname{mod} m$$

quindi
$$a^{-1} = a^{\varphi(m)-1} \mod m, \ a \perp m$$

$$a \in \mathcal{Z}_m^*$$

detta anche espressione di Eulero.

• Ad esempio:

$$m = 3 = p$$

 $a = 7$ primo $7 \perp 3, a \perp p$
 $a^{-1} = a^{p-2} \mod p = 7 \mod 3 = 1 \mod 3$
 $(1 \times 7) \mod 3 = 1.$

infatti

• Ad esempio:

$$m = 15$$

 $a = 7$
 $a = 7$
 $a = 7$
 $a^{-1} = 7^7 \mod 15 = 13 \mod 15$
 $a^{-1} = 7^7 \mod 15 = 13 \mod 15$
 $a^{-1} = 823543$
 $a^{-1} = 13$
 $a = a^{-1} = 13$
 $a = 7$
 $a = 13$
 $a = 7$
 $a = 15$
 $a = 15$

infatti

$$(13 \times 7) \mod 15 = 91 \mod 15 = 1.$$

• Esempio:

$$\begin{cases} m = 26 = 2 \times 13 & 26 \pm 7 \\ a = 7 & \varphi(26) = 1 \times 12 = 12 \end{cases}$$

$$a^{-1} = 7^{11} \mod 26 = 15$$

$$7^{11} = 1.977.326.743$$

$$\lfloor \frac{7^{11}}{26} \rfloor = 76.051.028$$

$$76.051.028 \times 26 = 1.977.326.728$$

$$\Delta = 15$$

Verifica:

$$(7 \times 15) \mod 26 = 105 \mod 26 = 1$$

 $105 - 4 \times 26 = 1$.

• Esempio:

$$\begin{cases} m = 75 & 75 = 3 \times 5^{2} \\ a = 28 & 28 = 2^{2} \times 7 \end{cases}$$

$$a^{-1} = 28^{39} \mod 75 =$$

$$\varphi(75) = 2 \cdot (5^{2} - 5) = 2 \cdot (25 - 5) = 40$$

$$\begin{cases} \left\lfloor \frac{28^{39}}{75} \right\rfloor \text{ non c'è modo di controllare,} \\ \text{col calcolatore 55 cifre decimali} \end{cases}$$

$$a^{-1} = 67$$

$$(67 \times 28) \mod 75 = 1$$

$$1876 \mod 75 = 1$$

 $(infatti: 25 \times 75 = 1875)$

 75 ± 28

Metodo di Euclide Esteso solo se

$$\begin{split} r_0 &= m \\ r_1 &= a \\ a &< m \\ m &> a \\ r_0 &> r_1. \end{split}$$

ALGORITMO DI EUCLIDE ESTESO

EUCLIDEAN ALGORITHM

• \mathcal{Z}_m è un anello per ogni intero positivo m se $a \in \mathcal{Z}_m$ ha un a^{-1} moltiplicatore inverso; se, e solo se

$$mcd(a, m) = 1;$$

inoltre, il numero di interi positivi minori di m e primi relativi a m è $\varphi(m)$.

• L'insieme dei residui modulo m che sono primi relativi a $m \in \mathcal{Z}_m^*$. Ogni elemento di \mathcal{Z}_m^* ha un moltiplicatore inverso (anche lui in \mathcal{Z}_m^*).

$$a \in \mathcal{Z}_m$$
 ha un a^{-1} .

Due numeri r_0 e r_1 positivi,

$$r_0 > r_1$$

$$\begin{cases} r_0 = q_1 r_1 + r_2 & 0 < r_2 < r_1 \\ r_1 = q_2 r_2 + r_3 & 0 < r_3 < r_2 \\ \vdots \\ r_{\text{max-1}} = q_{\text{max}} r_{\text{max}} \end{cases}$$

allora

$$\label{eq:mcd} \begin{split} \operatorname{mcd}\left(r_0,\,r_1\right) &= \operatorname{mcd}\left(r_1,\,r_2\right) \ldots \\ &= \operatorname{mcd}\left(r_{\operatorname{max-1}},\,r_{\operatorname{max}}\right) \\ &= r_{\operatorname{max}} \end{split}$$

Si può usare l'ALGORITMO ESTESO

$$\begin{cases} se & a < m \\ ha un & a^{-1} modulo m \end{cases}$$

comincio con

$$r_0 = m$$
$$r_1 = a$$

tuttavia - NON calcola b^{-1}

Numeri $t_0, t_1, ..., t_{\text{max}}$

con i q_j definiti come sopra

$$t_0 = 0$$

 $t_1 = 1$
 $t_j = (t_{j-1} - q_{j-1}t_{j-1}) \mod r_0$

per $j \geqslant 2$

si ha

$$r_j \equiv t_j \, r_1 \, (\bmod r_0) \qquad \qquad 0 \le j \le \max$$

ove q_j e r_j sono definiti dall'algoritmo e t_j come detto

Allora, se

$$\operatorname{mcd}(r_0, r_1) = 1$$

si ha

$$t_{\text{max}} = r_1^{-1} \, \text{mod} r_0$$

Allora si calcola la sequenza

$$t_0, t_1, ..., t_{\text{max}}$$

insieme a

$$q_1, q_2, ..., q_{\text{max}}$$

$$r_1, r_2, ..., r_{\text{max}}$$

algoritmo di Euclide

Per controllo deve essere

$$t_i \cdot r_1 \equiv r_i \; (\bmod r_0)$$

per

$$0 \le i \le \max$$

$$t_0 \cdot a \equiv m \; (\bmod m)$$

$$r_0 = m$$

$$0 \equiv 0$$

$$t_1 \cdot a \equiv a$$

$$r_1 = a$$

$$a \equiv a$$

$$t_2 \cdot a \equiv r_2 \, (\bmod r_0)$$

ESEMPIO

$$\begin{cases} m = 75 \\ a = 28 \end{cases} \qquad 75 = 2 \times 28 + 19 \\ r_0 = q_1 r_1 + r_2 \end{cases}$$

$$28 = 1 \times 19 + 9$$

$$r_1 = q_2 r_2 + r_3 \qquad q_1 = 2$$

$$r_2 = 19 \qquad 19 = 2 \times 9 + 1 \qquad q_3 = 2$$

$$r_3 = 9 \qquad r_2 = q_3 r_3 + r_4 \qquad q_4 = 9$$

$$r_4 = 1 \qquad 9 = 9 \times 1$$

$$r_3 = q_4 r_4 \qquad q_4 = 9$$

$$t_1 = 1$$

$$t_2 = t_0 - q_1 t_1 = 0 - 2 \times 1 = -2 \mod 75 = 73$$

$$t_3 = t_1 - q_2 t_2 = 1 + 1 \times 2 = 3$$

$$t_4 = t_2 - q_3 t_3 = -2 - 2 \times 3 = -8 \mod 75 = 67$$

$$a^{-1} = t_{\max} \rightarrow \qquad a^{-1} = t_4 = 67$$

per verifica

ESEMPIO

$$\begin{cases} m = 26 \\ a = 7 \end{cases} \qquad 26 = 3 \times 7 + 5 \\ r_0 = q_1 r_1 + r_2 \end{cases} \qquad q_1 = 3$$

$$r_0 = 26 \qquad r_1 = 7 \qquad q_2 r_2 + r_3 \qquad q_2 = 1$$

$$r_2 = 5 \qquad r_3 = 2 \qquad r_3 = q_3 r_3 + r_4 \qquad q_4 = 2$$

$$r_4 = 1 \qquad t_0 = 0$$

$$t_1 = 1 \qquad t_2 = t_0 - q_1 t_1 = 0 - 3 \times 1 = -3, \quad -3 \equiv 23$$

$$t_3 = t_1 - q_2 t_2 = 1 + 1 \times 3 = 4$$

$$t_4 = t_2 - q_3 t_3 = -3 - 2 \times 4 = -11, \quad -11 \equiv 15$$

 $a^{-1} \equiv 15.$

per verifica

$$\begin{cases} \bullet \ t_2 \cdot r_1 = r_2 \bmod 26 \\ 23 \times 7 = 5 \bmod 26 \\ \bullet \ t_3 \cdot r_1 = r_3 \bmod 2 \\ 4 \times 7 = 2 \bmod 26 \\ \bullet \ t_4 \cdot r_1 = r_4 \bmod 26 \\ 15 \times 7 = 1 \bmod 26 \end{cases}$$

Algoritmo esteso di Euclide

Complessità $0 (l_n m)$

il numero medio di divisioni è

$$0,843 \ l_n(m) + 1,47$$

(Knuth)

ELEMENTI GENERATORI

Se m=p è primo allora \mathcal{Z}_p^* è un gruppo di ordine p-1

p > 0

$$|\mathcal{Z}_p^*| = p - 1.$$

Se p è primo c'è un elemento

$$\alpha \in \mathcal{Z}_p^*$$
 $\alpha < p$

che è di *ordine* (p-1):

$$\alpha^{p-1} \equiv 1$$
 $\operatorname{cioè} \alpha^{p-1} \operatorname{mod} p = 1,$

 α è detto elemento primitivo (o generatore) modulo p

$$\beta \in \mathcal{Z}_p^*$$

$$\beta \perp p$$

$$\operatorname{mcd}(\beta, p) = 1$$

può essere scritto come

$$\beta > 0$$

$$\beta = \alpha^i$$

$$0 \le i \le p-2$$

Il numero di elementi primitivi modulo p è

$$\varphi(p-1)$$

AD ESEMPIO

$$\beta = \alpha^{i}$$

$$\alpha = 2$$

$$\beta = \alpha^{i}$$

$$0 \le i \le p-2$$

$$\beta = 1, 2, 3, 4$$

$$\beta > 0$$

$$2^{0} \mod 5 = 1$$

$$2^{1} \mod 5 = 2$$

$$2^{2} \mod 5 = 4$$

$$2^{3} \mod 5 = 3$$

$$2^{4} \mod 5 = 1$$

$$2^{5} \mod 5 = 2$$

$$2^{6} \mod 5 = 4$$

$$2^{7} \mod 5 = 3$$

$$2^{8} \mod 5 = 1$$

$$2^{9} \mod 5 = 2$$

$$2^{10} \mod 5 = 4$$

$$2^{11} \mod 5 = 3$$

$$2^{4} \mod 5 = 1$$

$$2^{9} \mod 5 = 2$$

$$2^{10} \mod 5 = 4$$

$$2^{11} \mod 5 = 3$$

$$2^{4} = 16 \mod 5 = 1$$

ecc.

quanti α ci sono?

Infatti per

$$p = 5$$

 $\alpha = 3$

$$3^{0} = 1 \mod 5 = 1$$

$$3^{1} = 3 \mod 5 = 3$$

$$3^{2} = 9 \mod 5 = 4$$

$$3^{3} = 27 \mod 5 = 2$$

$$3^{4} = 81 \mod 5 = 1$$

$$3^{5} = 243 \mod 5 = 3$$

$$3^{6} = 729 \mod 5 = 4$$

$$3^{7} = 2187 \mod 5 = 2$$

 $3^4 = 81 \mod 5 = 1$ anche $\alpha = 3$ è di ordine p - 1

QUANTI ELEMENTI PRIMITIVI CI SONO?

 $\varphi (p - 1)$.

Se

allora si calcola

$$(p-1) = \prod_{i=1}^{n} q_i = q_1 q_2...q_n$$

primi

 $\alpha^{\frac{p-1}{q_i}} \operatorname{mod} p$

$$\begin{cases} se \neq 1 \\ se = 1 \end{cases}$$

OK allora α NON è primitivo

Ad esempio

$$\alpha = 3$$

$$p = 5$$

$$p-1 = 4 = 2 \times 2$$

$$3^{\frac{4}{2}} \mod p$$

$$9 \mod 5 = 4$$

OK

Ad esempio

$$p = 11$$

 $\alpha = 3$

$$p - 1 = 10 = 2 \times 5$$

 $3^{\frac{11-1}{2}} \mod 11 = 1$: NO $\alpha \neq 3$.

CRITTOGRAFIA CLASSICA

Cifratura Ciphering
Decifratura Deciphering

Crittografare Cifrare
Decrittografare Decifrare

Crittosistemi Crittografia Crittoanalisi Crittologia

Canali sicuri

Comunicazioni sicure

Principals Alice & Bob

Opponent Oscar

Crittosistema a chiave

'Segreta' ovvero

'Privata'

Protocolli di Sicurezza

CRITTOSISTEMA A CHIAVE 'SEGRETA'

'Insecure' Communication Channel

P Plaintext Testo in chiaro

C Ciphertext Testo cifrato

TEXT*

testo alfabetico (tipicamente 26 lettere inglesi senza punteggiatura e cifre decimali, ecc.)

$$C = E_K(P)$$
 Algoritmo di cifratura

$$P = D_K(C) = D_K[E_K(P)]$$
 Algoritmo di decifratura

$$K = KEY$$
 Chiave della cifratura

^{*} A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 insieme dei numeri interi da 0 a 25

CRITTOSISTEMA

Un CRITTOSISTEMA è una quintupla

$$(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$$

• \mathcal{P} insieme dei testi in chiaro,

$$P \in \mathcal{P}$$

• C insieme dei testi cifrati,

$$C \in C$$

• \mathcal{K} è lo 'spazio delle chiavi', insieme delle possibili chiavi di cifratura,

$$K \in \mathcal{K}$$

• Per ogni $K \in \mathcal{K}$, c'è una regola di cifratura

$$E_{\mathrm{K}} \subset \mathcal{E}$$

e la corrispondente regola di decifratura

$$D_{\mathrm{K}} \in \mathcal{D}$$

• Per ogni testo in chiaro $P \in \mathcal{P}, \ E_{\mathbf{K}} \, \mathbf{e} \, D_{\mathbf{K}}$ sono funzioni tali che

$$D_{K}[E_{K}(P)] = P$$
, per ogni $P \in \mathcal{P}$.

Il sistema funziona così:

- 1) C'è un modo sicuro con cui Alice e Bob scelgono una 'chiave segreta' a caso
- 2) Alice vuole mandare un testo in chiaro P composto dalla sequenza di testi

$$P = P_1 P_2 P_3 ... P_n,$$
 per $n \ge 1$
e per $P_i \in \mathcal{P}$
 $1 \le i \le n$

Alice calcola

$$C_i = E_k(P_i), 1 \le i \le n$$

e manda la sequenza di testi

$$C = C_1 C_2 C_3 ... C_n$$

 $E_{\rm k}$ deve essere una funzione 'iniettiva' cioè deve essere: $E_{\rm k}(P_1) \neq E_{\rm k}(P_2)$ se risulta $P_1 \neq P_2$ Se $\mathcal{P} \equiv \mathcal{C}$ allora le $E_{\rm k}$ sono PERMUTAZIONI

Pag. 035 Prof. Maurizio Dècina

CIFRARIO A SCORRIMENTO

Siano

per

$$\mathcal{P} = \mathcal{C} = \mathcal{K} = \mathcal{Z}_{26}$$

 $0 \le K \le 25$ definire!

SHIFT CIPHER

$$P, C \in \mathcal{Z}_{26} \begin{cases} E_K(P) = (P+K) \mod 26 \\ D_K(C) = (C-K) \mod 26 \end{cases}$$

26 lettere dell'alfabeto inglese

$$D_K(E_K(P)) = P$$
 per ogni $P \in \mathcal{Z}_{26}$

per K = 3

CAESAR CIPHER (cifrario di Giulio Cesare)

 $A \div Z$

chiave

$$0 \le K \le 25$$

per K = 11

aggiungiamo 11 e riduciamo modulo 26

$$\begin{cases} (22+11) \mod 26 = 7\\ 33 \mod 26 = 7\\ (7-11) \mod 26 = 22 \end{cases}$$

$$-4 \mod 26 = 22$$

 $-4 = K26 + 22$

K = -1

Per rompere il cifrario 'shift' a scorrimento basta esaminare tutte le chiavi,

sono 26

in media mi bastano 26/2 prove per trovare la chiave giusta.

$$26/2 = 13 \text{ prove}$$

è lo schema più 'stupido' possibile per la cifratura dei testi.

CIFRARIO A SOSTITUZIONE

SUBSTITUTION CIPHER

*
$$\mathcal{P} \equiv \mathcal{C} \equiv \mathcal{Z}_{26}$$

* $\mathcal{K} \equiv$ tutte le permutazioni di 0, 1 ... 25

26 simboli (caratteri alfabetici)

per ogni permutazione $\pi \in \mathcal{K}$

$$E_{\pi}(P) = \pi(P)$$

$$D_{\pi}(C) = \pi^{-1}(C)$$

 $|\mathcal{K}| = 26!$

ove π^{-1} è la permutazione inversa di π

esempio
$$\rightarrow$$
 a b c \boxed{d} e f ...

permutazione \rightarrow X N Y A H P ...

sostituzione lettere
$$\longrightarrow E_{\pi}(a) \equiv X, E_{\pi}(b) \equiv N, \dots, E_{\pi}(d) \equiv A$$

STIRLING

$$m! \simeq \sqrt{2\pi m} \left(\frac{m}{e}\right)^m$$
per $m \gg 1$

ABCDEF

d I r y v o

$$\rightarrow$$
 $D_{\pi}(A) = d$, $D_{\pi}(B) = l$, etc.

$$26! \cong 4 \cdot 10^{26}$$
 # medio tentativi $\cong 2 \cdot 10^{26}$

$$1000 \text{ anni } \cong 3.5 \cdot 10^{10} \text{ sec}$$

$$10^{-9}$$
 sec per tentativo $2 \cdot 10^{17} \rightarrow$ un trilione di anni

CIFRARIO AFFINE

AFFINE CIPHER

*
$$\mathcal{P} \equiv \mathcal{C} \equiv \mathcal{Z}_{26}$$

*
$$\mathcal{K} = \{(a,b) \in \mathcal{Z}_{26}^* \cdot \mathcal{Z}_{26} : \text{mcd}(a,26) = 1\}$$

$$K \in \mathcal{K}$$

$$K = (a, b); a, b > 0$$

Kè una coppia di numeri positivi

$$K = (a, b) \in \mathcal{K}$$

si definisce la seguente regola di cifratura

$$C = E_k(P) = (aP + b) \bmod 26$$

e decifratura

$$P = D_k(C) = [a^{-1}(C-b)] \mod 26,$$

essendo

$$P, C \in \mathbb{Z}_{26}$$
 e $a \perp 26$

infatti

$$C \equiv (aP + b) \pmod{26}$$

$$aP \equiv (C - b) \pmod{26}$$

$$a^{-1}(aP) \equiv [a^{-1}(C-b)] \pmod{26}$$

ma

$$a^{-1}(aP) \equiv (a^{-1}a) P \equiv 1 \cdot P = P$$

quindi

$$P \equiv [a^{-1}(C-b)] \pmod{26}$$

così che

$$D_{k}(C) = [a^{-1}(C-b)] \mod 26.$$

Residui tutti

$$Z_{26}$$
 0, 1, 2,,25 (sono 26)

Primi con 26

$$mcd(a, 26) = 1$$

sono $\varphi(26) = 12$

$$m = 26 = 2 \times 13$$

$$\varphi(m) = (2-1) \cdot (13-1) = 12$$

Il numero delle chiavi nel cifrario affine è

$$m \cdot \varphi(m)$$

$$26 \times 12 = 312$$

poche!

ESEMPIO

$$m = \prod_{i=1}^{n} p_i^{e_i} \quad e_i > 0; 1 \quad \le i \le n$$

$$\varphi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1})$$

$$mcd(7,26) = 1$$

$$a=7$$
 e $m=26$
$$\begin{array}{c} a \perp 26 \\ 7 \perp 26 \end{array}$$

$$k = (7, 3)$$

$$a^{-1} = a^{\varphi(m)-1} \bmod m$$

$$x = 7^{-1} \bmod 26$$

$$x = 7^{11} \mod{26}$$

 $a \cdot x \equiv 1 \pmod{26}$
 $7^{11} = 1.977.326.743$

76.051.028 × 26

1.977.326.743

$$x = a^{-1} = 15$$

x = 15

infatti

$$7 \times 15 = 105 \equiv 1 \pmod{26}$$

$$mcd(7,3) = 1$$

$$= mcd (1,3)$$

$$mcd (3 mod 1,1) = mcd (0,1) = 1$$

cvd

ESEMPIO

$$K = (7,3)$$

$$7^{-1} \mod 26 = 15$$

$$E_{k}(P) = (7 \times P + 3) \mod 26$$

$$D_{k}(C) = [15 (C - 3)]$$

$$= (15C - 45) \mod 26 =$$

$$= (15C - 45) \mod 26 =$$

$$= (15C - 19) \mod 26$$

$$h , o , t$$

$$\psi \qquad \psi \qquad \psi$$

$$P = 7 , 14 , 19$$

$$(7 \times 7 + 3) \mod 26 = 52 \mod 26 = 0$$

 $(7 \times 14 + 3) \mod 26 = 101 \mod 26 = 23$
 $(7 \times 19 + 3) \mod 26 = 136 \mod 26 = 6$

$$C = 0 , 23 , 6$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A , X , G$$

$$11 \times 26 = 286$$

$$[15 (6-3)] \mod 26 = 45 \mod 26 = 19.$$

IL CIFRARIO DI VIGENÈRE

POLIALFABETICO

(Blaise de Vigenère)

Shift Substitution Affine

monoalfabetici

VIGENÈRE CIPHER

n è intero positivo

$$\mathcal{P} \equiv \mathcal{C} \equiv \mathcal{K} \equiv (\mathcal{Z}_{26})^n$$

Per una chiave (PAROLA CHIAVE – Keyword) lunga *n*

$$K = (k_1, k_2...k_n)$$

si definisce:

$$E_k(P_1, P_2...P_n) = (P_1 + k_1, P_2 + k_2...P_n + k_n) \mod 26$$

e

$$D_{k}(C_{1}, C_{2}... C_{n}) = (C_{1}-k_{1}, C_{2}-k_{2}... C_{n}-k_{n})$$

mod26

operazioni in \mathcal{Z}_{26} .

Esempio n = 6 k = CIPHE

 $k = \text{CIPHER} \equiv 2, 8, 15, 7, 4, 17$

Parola chiave lunga n

Plaintext

THIS CRYPTOSYSTEM IS NOT SECURE

Α	0
В	1
Ď	$\frac{2}{3}$
Ĕ	4
F	5
G	6 7
i'	8
ABCDUFGT_JKLMZOPQR%FUVXX	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
K I	10 11
М	12
N	13
D	14 15
Q	16
Ŕ	17
Ş	18
ΰ	20
V	$\overline{21}$
W	22
Λ	23

```
19 7 8 18 2 17
2 8 15 7 4 17
21 15 23 25 6 8
24 15 19 14 18 24
2 8 15 7 4 17
0 23 8 21 22 15
18 19 4 12 8 18
2 8 15 7 4 17
20 1 19 19 12 9
13 14 19 18 4 2
2 8 15 7 4 17
15 22 8 25 8 19
20 17 4
2 8 15
22 25 19
```

of possible keywords $26^n \cong$ per n = 6 $26^6 \cong 3.1 \times 10^8$ per n = 26 $26^{26} \cong 6.1 \times 10^{36}$

n = 6 parola chiave

 $k \equiv 2, 8, 15, 7, 4, 17$

CIPHER

VPXZGIAXIVWPUBTTMJPWIZITWZT

Nel cifrario di Vigenère con una parola chiave di *n* lettere Ogni carattere alfabetico

Ad esempio
$$T \equiv 19$$

Keyword $P A S$
 $15 0 18$

può diventare a seconda della sua posizione nel messaggio

$$19+15 = 34 \mod 26 = 8 \rightarrow 1$$

 $19+0 = 19 \mod 26 = 19 \rightarrow T$
 $19+18 = 37 \mod 26 = 11 \rightarrow L$

$$T \stackrel{|}{\underset{L}{\longrightarrow}} T$$
 secondo 'P A S'

cifrario Polialfabetico.

CIFRARIO A PERMUTAZIONE

* n è intero positivo n>0

$$\mathcal{P} \equiv C \equiv (\mathcal{Z}_{26})^n$$

K consiste in tutte le permutazioni di $\{1, 2, 3, ...n\}$ (sono n!)

per $K = \Pi$ una permutazione si definisce:

$$E_{k}(P_{1}, P_{2}...P_{n}) = [P_{\Pi(1)}, P_{\Pi(2)}...P_{\Pi(n)}]$$

e

$$D_{k}(C_{1}, C_{2}... C_{n}) = [C_{\Pi^{-1}(1)}, C_{\Pi^{-1}(2)}... C_{\Pi^{-1}(n)}]$$

essendo Π^{-1} la permutazione inversa di Π .

→ Usiamo un esempio alfabetico

Ad esempio

$$n = 6$$
 $1 | 2 | 3 | 4 | 5 | 6$
 $\Pi \rightarrow$ $3 | 5 | 1 | 6 | 4 | 2$

Testo

$$\Pi \rightarrow \frac{\text{SHESELLSSEASHELLSAND...}}{\frac{1\ 2\ 3\ 4\ 5\ 6}{3\ 5\ 1\ 6\ 4\ 2}} = \frac{1\ 2\ 3\ 4\ 5\ 6}{3\ 5\ 1\ 6\ 4\ 2}$$

EESLSH SALSESLSHALE

la complessità è

abbiamo visto che

$$26! \cong 4 \times 10^{26}$$

Anche questo è Polialfabetico a differenza di quello a sostituzione che è Monoalfabetico

Prof. Maurizio Dècina

CIFRARIO A CATENA

STREAM CIPHER

* Finora BLOCK CIPHER

$$C = C_1 C_2 ... C_i ... = E_k(P_1) E_k(P_2) ... E_k(P_i) ...$$

Cifrari a Blocco

Catena di chiavi (Keystream)

$$\begin{split} \mathcal{Z} &\equiv (Z_1, Z_2, ..., Z_i ...) & i \to \infty \\ C &= C_1 \, C_2 ... \, C_i \, ... = E_{Z_1}(P_1) \, E_{Z_2}(P_2) \, ... \, E_{Z_i}(P_i) \, ... \end{split}$$

Funziona così

K è la 'chiave' $\in \mathcal{K}$

STREAM CIPHER

La 'generica chiave' Z_i è generata con una funzione della 'chiave' e dei testi chiari precedenti, (i-1) testi.

Elemento Keystream

$$Z_{i} = f_{i}(K, \underbrace{P_{1}, P_{2}, ..., P_{i-1}}_{(i-1) \text{ testi}}) \qquad 1 \le i \le \infty$$

la chiave dipende dal passato testo in chiaro e poi è usata per cifrare

$$Z_i \rightarrow E_{Z_i}(P_i) = C_i$$

poi

$$Z_{i+1} \rightarrow C_{i+1}$$
.

Block cipher = Stream cipher

se

$$Z_i = K, \quad \forall_i$$

Esempio

Testo in chiaro a Stream P_1, P_2, P_3, P_4

Calcolo

$$Z_1 = f_1(K) \equiv K$$

e trovo

$$C_1 = E_{Z_1}(P_1)$$

poi calcolo

$$Z_2 = K + P_1$$

e trovo

$$C_2 = E_{Z_2}(P_2)$$

Poi calcolo ancora

$$Z_3 = K + P_1 + P_2$$
, etc.

In ricezione

$$Z_1 = K$$

calcolo

$$P_1 = D_{Z_1}(C_1)$$

poi calcolo

$$Z_2 = K + P_1$$

e verifico

$$P_2 = D_{Z_2}(C_2)$$

in sequenza, etc.

Prof. Maurizio Dècina

Pag. 044

CIFRARIO A CATENA

STREAM CIPHER

 $\big\{\ \mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{Z}, \mathcal{F}, \mathcal{E}, \mathcal{D}\ \big\}$ Settupla

> • $P \in \mathcal{P}$ testi in chiaro

• $C \in C$ testi cifrati

• $K \in \mathcal{K}$ spazio delle possibili chiavi

alfabeto della catena di chiavi (keystream) • $Z \in \mathcal{Z}$

• $\mathcal{F} \equiv (f_1, f_2...)$ è il generatore della catena di chiavi

ove
$$f_i$$
, $i \ge 1$

è tale che

$$\mathcal{K} \times \mathcal{P}^{i-1} \Rightarrow \mathcal{Z}$$

Per ogni $Z_i \in \mathcal{Z}$ c'è una regola di cifratura

$$E_{\mathbf{Z}_i} \in \mathcal{E}, \quad i \geqslant 1$$

e di decifratura

$$D_{Z_i} \in \mathcal{D}$$
.

 $E_{\mathbf{Z}_i}$ è tale che

$$\mathcal{P} \Rightarrow C$$

 $\mathbf{D}_{\mathbf{Z}_i}$ è tale che

$$C \Rightarrow \mathcal{P}$$

in modo tale che

$$D_{Z_i}[E_{Z_i}(P)] = P$$

per ogni $P \in \mathcal{P}$.

Il cifrario a blocco è un caso particolare di quello a catena quando

$$Z_i = K$$
 per tutti gli $i \ge 1$

Pag. 045 Prof. Maurizio Dècina

Un cifrario a catena si dice

SINCRONO

se la catena di chiavi (Keystream) è indipendente dal testo in chiaro *P* e cioè se il keystream è generato

$$Z_i = f_i(K, i) i \geqslant 1$$

solo a partire dalla chiave K e dall'indice (i) dello stream.

K è il 'SEED' seme della catena.

Un cifrario a catena si dice

PERIODICO

di Periodo = d

per d > 0

se

$$Z_{i+d} = Z_i$$

 $i \geqslant 1$.

Il cifrario di Vigenère è periodico di periodo n (Parola chiave – keyword)

la

$$K = (K_1, K_2, ..., K_n)$$

e si ha

$$Z_i = K_i$$

 $1 \le i \le n$

e poi la catena si ripete periodicamente.

I Cifrari a catena spesso si applicano su alfabeti binari

$$\mathcal{P} = \mathcal{C} = \mathcal{Z} = Z_2$$

si ha

$$E_{Z_i}(P_i) = (P_i + Z_i) \bmod 2$$

$$D_{Z_i}(C_i) = (C_i + Z_i) \bmod 2 \qquad i \geqslant 1.$$

ESEMPIO

Ad esempio usiamo la regola

$$Z_{i+4} = (Z_i + Z_{i+1}) \bmod 2$$

con vettore di Inizializzazione

si ha

$$\begin{vmatrix} Z_1 & Z_2 & Z_3 & Z_4 & Z_5 & Z_6 & Z_7 & Z_8 & Z_9 & Z_{10} & Z_{11} & Z_{12} \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ i & = 1, 2, 3, 4, 5, 6, 7, 8, \end{vmatrix}$$

quindi se devo cifrare il testo binario esadecimale

	Α	7	В	F	F	1	1	4	0
_	1010	0111	1011	1111	1111	0001	0001	0100	0000
$P \oplus \overline{}$	Α	7	В	F	F	1	1	4	0
Z	1000	1001	1010						
	0010	1110	0001						
$Z^{\oplus -}$	2	Е	1						
$Z^{\oplus -}$	1000	1001	1010						
	1010	0111	1011						
P	A	7	В						

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Prof. Maurizio Dècina

METODO DI CIFRATURA A CATENA

ONE TIME PAD

A Catena uso chiavi binarie K_i per codificare un testo binario

La lunghezza è *n* bit

Ad esempio, nel GSM

ONE TIME PAD

$$2^{114} \cong 2.2 \times 10^{35}$$

tre condizioni per il cifrario "perfetto" OTP

- 1 chiave lunga come il testo
- 2 chiave "perfettamente" casuale
- 3 chiave usata una sola volta

CRITTOANALISI DI TESTI CIFRATI

Il principio di Kerckhoff dice che Oscar conosce sempre il tipo di algoritmo di cifratura e deve soltanto cercare la chiave per decifrare.

- → Tipi di Attacchi al Criptosistema
- (1) Solo Testo Cifrato Oscar ha solo una stringa di C_i
- (2) Testo In Chiaro Noto Oscar ha una stringa P_i e la corrispondente stringa C_i
- (3) Testo In Chiaro Scelto Oscar ha accesso temporaneo al CIFRATORE quindi sceglie una stringa P_i^* e la codifica C_i^*
- (4) Testo Cifrato Scelto Oscar ha accesso temporaneo al DECIFRATORE quindi sceglie una stringa C_i^{**} e ottiene la stringa P_i^{**} .
- (1) è l'attacco più debole Basta fare ricorso alle proprietà statistiche del testo (lingua scritta)

ATTACCO SUL 'SOLO TESTO CIFRATO'

```
Frequenza lettere inglesi singole
                                                conoscenza a priori
                    digrammi
                                                della statistica
                    trigrammi
                                                del messaggio
      lettera
                                                       monogrammi
                                              p
0,127
       Ε
                                         \Rightarrow 0.12
0,091
      T, A, O, I, N, S, H, R
                                         \Rightarrow 0.06 \le p \le 0.09
                                         \Rightarrow 0.04
       D, L
       C, U, M, W, F, G, Y, P, B
                                         \Rightarrow 0.015 \le p \le 0.028
      V, K, J, X, Q, Z
                                         \Rightarrow 0.01
                                                       digrammi
       TH
       HE
       IN
       ER
       AN
       RE
       ED, ecc.
                                                      trigrammi
       THE
       ING
       AND
       HER
       ERE
       ENT
       THA, ecc.
```

Ad esempio

ATTACCO AL CIFRARIO AFFINE

Ricevo un testo di 57 caratteri

con le seguenti occorrenze di monogramma

Si ipotizza

$$R \rightarrow e$$

 $D \rightarrow t$

prendo una coppia

$$E_{K}(4) = 17$$

 $E_{K}(19) = 3$ ipotesi

$$e = 4$$

 $t = 19$
 $R = 17$
 $D = 3$

ma (cifrario affine)

$$E_{\mathrm{K}}\left(P\right)\equiv aP+\mathrm{b}$$

sempre modulo 26

$$\begin{cases} 4 \cdot a + b \equiv 17 \\ 19 \cdot a + b \equiv 3 \end{cases}$$

$$\begin{cases} a = 6 \\ b = 19 \end{cases}$$

mod(6, 26) = 2

ma

$$mcd(a, 26) = 2 > 1$$

allora errato!

Riprovo

$$R \rightarrow e \\ K \rightarrow t$$

questo porta

$$a = 3$$

 $b = 5$ LEGAL KEY mcd (3, 26) = 1.

Allora scegliamo

$$K = (3,5)$$

e decrittiamo

$$D_{K}(C) = 9C - 19$$

57 ch

Ad esempio

$$K = 3.5$$

$$a^{-1} = 9$$

$$D_{K}(C) = a^{-1}(C - b)$$

$$a^{-1} = 9$$

$$P = 9C - 9 \cdot b =$$

$$= 9C - 45 \mod 26 =$$

$$= 9C - 19$$

$$\underline{P = 9 \times 5 - 19 = 0}$$

$$A = 0$$

$$C = 3P + 5$$

$$C = (3P + 5) \bmod 26$$

$$a = 3$$

$$b = 5$$

$$a^{-1} = 3^{11} \mod 26$$

$$\lfloor \frac{177.147}{26} \rfloor =$$

$$= 6813$$

$$6813 \times 26$$

$$\frac{177.138}{9}$$

DIGITAL ENCRYPTION ALGORITHM DES

TRASPOSIZIONI

SOSTITUZIONI

DES

$$\frac{2^{56}}{2} = 2^{55}$$
 numero medio di tentativi per decifrare complessità d'attacco $2^{55} \cong 10^{16}$ se per ogni tentativo $10ns$ $10^{-8}s$ servono per decrittare $\sim 10^8 s$ $10^8 s \cong 3$ anni e 2 mesi

p = permutazione

re = rotate left sulla chiave divisa in due blocchi da 28 bit rotazioni di 1 o 2 bit secondo la sequenza

16 ITERAZIONI \rightarrow 1 1 2 2 2 2 2 2 1 2 2 2 2 2 1 = 28 \rightarrow BEGIN AGAIN

p/c = permutazione e concentrazione che da 56 bit genera chiave di stadio a 48 bit

p/e = permutazione e espansione che da 32 bit genera codice a 48 bit

OGNI ITERAZIONE

 $1 \le i \le 16$

BLOCCO S

 $6 \times 8 = 48$

8 BLOCCHI 6 × 4

 $4 \times 8 = 32$

ITERAZIONE

$$\frac{\int_{0}^{1} x}{L_{0} R_{0}} p_{1}$$

$$\frac{L_{1} R_{1}}{L_{2} R_{2}}$$

$$\vdots$$

$$\frac{L_{16} R_{16}}{R_{16} L_{16}} p_{1}^{-1}$$

0 initial permutation p_1 on plain text x

$$x_0 = p_1(x) = L_0 R_0$$

primi 32 bit di x_0 L_0 ultimi 32 bit di x_0 R_0

2 16 iterazioni

$$1 \le i \le 16$$

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$$

 $K_i = K_1, K_2 \dots K_{16}$ chiavi di 48 bit calcolate in funzione della chiave K di 56 bit Ogni K_i è una permutazione selezionata di K

inverse permutation p_1^{-1} 8

si prende $L_{16} R_{16}$

e si scambia

 $R_{16}L_{16}$ $y = p_1^{-1}(R_{16}L_{16})$ poi si fa:

Passo 2

calcola $E(A) \oplus J$

e spilla il risultato a 48 bit in otto stringhe da 6 bit

$$B \equiv B_1 \ B_2 \ B_3 \ B_4 \ B_5 \ B_6 \ B_7 \ B_8$$
$$A \rightarrow E(A) \rightarrow \bigoplus \leftarrow J$$
$$\qquad \qquad \downarrow 48$$

Passo 2

calcola

$$E(A) \oplus J$$

e spilla il risultato a 48 bit in otto stringhe da 6 bit

$$B \equiv B_1 \ B_2 \ B_3 \ B_4 \ B_5 \ B_6 \ B_7 \ B_8$$

Ogni S₁

$$(1 \le i \le 8)$$

ha una matrice 4 × 16 con elementi compresi tra 0 e 15

$$B_{j} = b_{1} \ b_{2} \ b_{3} \ b_{4} \ b_{5} \ b_{6}$$

$$S_{j}(B_{j})$$

$$row bits - r \qquad 0 \le r \le 3$$

$$b_{2} \ b_{3} \ b_{4} \ b_{5}$$

$$column bits - c \qquad 0 \le c \le 15$$

$$entry \ S_{j}(B_{j}) = S_{j}(r,c) = c_{1} \ c_{2} \ c_{3} \ c_{4}$$

$$scritto in binario a 4 BIT = C_{j} \quad C_{j} = S_{j}(r,c) = S_{j}(B_{j})$$

$$1 \le j \le 8$$

S – BOX

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0																	Γ
1	0	(12)	4	13	15	5	10	9	2	3	6	8	11	1	7	14	Γ
2			1	0													
3																	
																	Γ

Ogni riga è una permutazione di 16 valori 8 S – box 8 tabelle di 64 possibili uscite

S1 BOX

 $1 \div 32$ 32 BIT permutazione P_3

 p_3

= CALCOLO DELLE CHIAVI $K_1 \div K_{16}$ KEY SCHEDULE 64 BIT = K = 56 BIT - CHIAVE + 8 PARITY CHECK

64 BIT 8 PARITY 56 KEY

Key Schedule

Dati K 64 BIT buttare i parity-check 0 permutare con la permutazione p_2

$$p_2(K) = C_0 D_0$$

 C_0 – primi 28 bit di $p_2(K)$

 $D_{\rm o}$ – ultimi 28 bit di $p_2(K)$

Calcolare per $1 \le i \le 16$ 2

$$\begin{cases} C_i = LS_i(C_{i-1}) \\ D_i = LS_i(D_{i-1}) \end{cases}$$

e quindi

$$-K_i = p/c (C_i, D_i)$$

ove

 LS_i è uno shift a sinistra di 1 o 2 bit dipendente da i

- p/cpermutazione fissa

- 5 2
- 6 2
- 7 2
- 8 2
- 9 1 10 2
- 11 2
- 12 2
- 13 2 14 --- 2
- 15 2
- (16) 1

7 × 8 56 BIT

entrano 56 BIT escono 48 BIT

 6×8 perdo 8 BIT

dei 56 bit di K

					K	1					
10 3	51	34	60	49	17	33	57	2	9	19	42 41
22											29
61	21	38	63	15	20	45	14	13	62	55	31

$$12 \times 4 = 48 \text{ BIT}$$
ROUND 1
$$K_{16}$$

Decrittazione

 \rightarrow si usa C come input le chiavi in ordine inverso

$$K_{16}, K_{15}, \ldots, K_1$$

l'uscita è P.

EXTENDED DES

DES è usato per crittografare i PIN degli ATM è usato nelle CHIPS per autenticare transazioni tra Clearig Houses Interbank Payment System

(1)	E C B	Electronic CodeBook
(3)	C F B	Cipher FeedBack mode
(2)	C B C	Cipher Block Chaining mode
(4)	O F B	Output FeedBack mode

ECB

ENCRYPT

ENCRYPT

CBC

64 BIT Initialization Vector IV

$$C_0 = IV$$

$$\left\{ \, C_i = E_{\mathbf{k}} = (C_{i\text{-}1} \oplus P_i) \,, \qquad 1 \geq i, \qquad i = 1, \, 2, \, \ldots \, n \, \right.$$

$$i = 1 \ 2 \quad n$$

CFB

$$C_0 = IV$$

Keystream element Z_i

$$\begin{cases} Z_i \equiv E_k(C_{i-1}), & i \geq 1, & i = 1, 2, \dots n \\ C_i \equiv P_i \oplus Z_i, & i \geq 1, & i = 1, 2, \dots n \end{cases}$$

$$i \geq 1$$
,

$$i = 1, 2, ... n$$

$$C_i \equiv P_i \oplus Z_i ,$$

$$i \geq 1$$
,

$$i=1,2,\dots n$$

DECRYPT

DECRYPT

$$\begin{array}{ll} P_i &= C_{i\text{-}1} \oplus \mathrm{D}_k \left(C_i \right) & i \geq 1 \\ C_0 &= \mathrm{IV} \end{array} \qquad i = 1, 2, \dots n$$

$$\begin{array}{ll} P_i &= E_k \left(C_{i-1} \right) \oplus C_i & i \geq 1 \\ C_0 &= \mathrm{IV} \end{array} \qquad i = 1, 2, \dots n$$

OUTPUT FEEDBACK MODE

$$\begin{cases} Z_i = E_k (Z_{i-1}) & i = 1, 2, \dots n \\ \text{per } i = 1, & Z_0 = \text{IV} \\ C_i = P_i \oplus Z_i & \end{cases}$$

$$\begin{cases} P_i = E_k(Z_{i-1}) \oplus C_i & i = 1, 2, \dots n \\ Z_0 = IV \end{cases}$$

DES / INTEGRITÁ DEL MESSAGGIO A CHIAVE SEGRETA

Message Authentication Code

MAC

Senza segretezza

1 $\overline{\text{Bob}}$ → (P, MAC) → $\overline{\text{Alice}}$ controlla

Bob usa $MAC = E_k(P) \quad E_k(P) = MAC$

one-time-DES OK!

Alice si convince che il testo in chiaro P è 'integro' e non è stato modificato da Oscar

troppe coppie 'P' \leftrightarrow 'C'

per Oscar

2 Bob usa ora una CBC-DES

Initialization Vector $IV \equiv tutti 0$

Bob ha $P_1, P_2, \dots P_n$

e calcola $C_1, C_2, \dots C_n$

con chiave K e modalità CBC

 $MAC = C_n$

Bob manda $\{(P_1, P_2, \dots P_n), MAC\}$

 $MAC = C_n$

Riceve $(P_1, P_2, \dots P_n)$

costruisce

Alice verifica

 $C_i = E_k(P_i) \qquad C_1, C_2, \dots C_n$

e verifica $C_n = \text{MAC ricevuto}$

Oscar/Trudy non può produrre il MAC perché non conosce

la chiave segreta K di Alice e Bob.

Se Trudy intercetta $P_1, P_2, \dots P_n + MAC$

se combina un P_i ($1 \le i \le n$) non sa combinare il MAC

e Bob se ne accorge.

MAC / AUTENTICAZIONE DEI MESSAGGI CON SEGRETEZZA

Alice e Bob hanno due chiavi segrete K_1 e K_2 Alice usa K_1 per produrre MAC da $P_1, P_2, \dots P_n$ poi dice che MAC calcolato

$$MAC = C_n = E_{k1} (P_n) = P_{n+1}$$

$$C_n = MAC = P_{n+1}$$

Alice manda poi

$$E_{k2}(P_1, P_2, \dots P_n, P_{n+1})$$

Bob usa K_2 e trova

$$P_1 \div P_n \in P_{n+1}$$

usa K_1 per trovare $C_n = MAC$:

$$P_{n+1} = C_n = E_{k1}(P_n)$$

check OK!

Alice può anche scambiare l'ordine delle chiavi K_1 e K_2

DES IN CASCATA

DOPPIA CON DUE DIVERSE CHIAVI K1 e K2

soggetta a Meet-in-the-Middle

TRIPLA CON DUE CHIAVI

Meet-in-the-Middle Attack

Modalità ECB

$$C_i = E_{k2} [E_{k1} (P_i)]$$

$$D_{k2}(C_i) = E_{k1} (P_i)$$

Meet-in-the-Middle Attack

$$R_i = E_i(P_i)$$

per tutti i 2^{56} valori di i

e costruisco una tabella ascendente per i valori di R_i

$$S_j = D_j(C_j)$$

per tutti i 2⁵⁶valori di *j*

e costruisco una tabella ascendente per i valori di R_j

Cerco l'equivalenza in coppie i-j di chiavi $\begin{cases} i = K_1 \\ j = K_2 \end{cases}$

$$D_i(C_i) = E_i(P_i)$$

4 Controllo se

dati
$$P_1, P_2 \rightarrow C_1, C_2$$

$$E_{j} [E_{i} (P_{2})]$$
 è equivalente a C_{2}

se lo è prova per tutte le coppie chiaro-cifrato tale attacco richiede

$$2 \times 2^{56}$$

operazioni di codifica decodifica

e 2⁶⁰ BYTE di memoria per le due tabelle

A tre in cascata

(TRIPLE DES)

Il Bancomat usa questo

può essere

$$K_1 = K_2 = K$$

e dà compatibilità con SINGLE STAGE DES

PUBLIC KEY CRYPTOGRAPHY

I sistemi a chiave segreta o privata (simmetrica)

Alice e Bob scelgono segretamente la chiave K e quindi

 E_k e D_k

 D_k è lo stesso di E_k o molto semplicemente derivabile da E_k .

Alice e Bob si scambiano l'informazione sulla chiave K da usare, prima della comunicazione, sul <u>canale sicuro</u>.

 \Rightarrow Avendo esposto E_k trovare D_k è possibile e quindi rende il sistema poco sicuro.

I sistemi a chiave pubblica (asimmetrica) sono basati sul fatto di ideare crittosistemi ove è <u>computazionalmente</u> impossibile determinare D_k dato E_k . Allora E_k è disponibile al PUBBLICO IN UN ELENCO (DIRECTORY)

Alice usa E_k e Bob è l'unico che può decrittare perchè conosce D_k .

CRYPTOSYSTEM

DIFFIE e HELLMAN (1976)

RIVEST (1977)

SHAMIR

ADLEMAN

RSA

Basato sulla difficoltà di fattorizzare numeri interi molto grandi (100 – 200 – 300 cifre decimali)

ElGamal

è basato sulla difficoltà di trovare logaritmi discreti

Sistema a chiave pubblica

Oscar osserva il testo C^* cifrato Prova a codificare ogni possibile testo in chiaro Pusando la chiave pubblica E_k , P_1 , P_2 , ... finché trova

$$C^* = E_k(P^*)$$

cioè decifra C^* in P^* .

La sicurezza computazionale di questi crittosistemi va verificata!

Si pensi a questo sistema come una

(Scappatoia) TRAPDOOR (one-way function)

Funzione unidirezionale con porta di uscita dalla trappola

L'algoritmo E_k di Bob deve essere facile da calcolare. Calcolare l'inversa D_k deve essere HARD per chiunque tranne Bob.

EASY TO COMPUTE Proprietà ONE–WAY
HARD TO INVERT senso unico)

Non esiste oggi prova di esistenza di funzioni a senso unico.

ALGORITMO RSA

$$m = p \times q$$
 primi > 0

$$\mathcal{P} = C = \mathcal{Z}_{m}$$

$$\mathcal{K} = \{(m, p, q, a, b) : m = pq; p, q \text{ primi}$$
 ab $\equiv 1 \text{ [mod}\varphi(m)]\}$ interi $a, b > 0$ e $b \perp \varphi(m)$

Per
$$K = (m, p, q, a, b)$$

$$E_k(P) = P^b \mod m$$

$$D_k(C) = C^a \mod m$$

$$P, C \in \mathbb{Z}_m$$

$$m \in b \longrightarrow \text{PUBLIC}$$

$$p, q, a \longrightarrow \text{SECRET}$$

TRAP DOOR $m = p \cdot q$ e quindi $\varphi(m) = (p-1)(q-1)$

calcola a noti $b \in m$ essendo $b \perp \varphi(m)$.

ESEMPIO

Bob sceglie
$$\begin{cases} p=3\\ q=11 \end{cases} & \text{numeri primi} \\ m=3 \text{ x } 11=33\\ \varphi(m)=2 \times 10=20=2^2 \times 5 \end{cases}$$
* SCELGO
$$b=7 \text{ (primo con 2 e 5)} \qquad b \perp \varphi(m)\\ \text{mcd } (7,20)=1 \end{cases}$$
allora devo codificare con b
Bob trova
$$b^{-1} \Rightarrow a\\ b^{-1} = a = b^{\varphi(20)-1} \text{mod} 20 =\\ \varphi(20) = \varphi(\varphi(m))=8\\ b^{-1} = a = 7^7 \text{mod} 20=3 \end{cases}$$

$$\lfloor \frac{823543}{20} \rfloor = 41177$$

$$823540 \quad b^{-1}=3 \qquad a=3 \qquad \text{chiave segreta}\\ 3 \times 7=21 \rightarrow 21 \text{ mod} 20=1 \qquad \text{di Bob}$$
BOB PUBBLICA
$$m=33\\ b=7$$

$$quindi chiunque può mandare$$

$$C = P^7 \bmod 33$$

SOLO BOB DECODIFICA

$$P = C^3 \bmod 33$$

Alice manda, per esempio, la lettera $S \rightarrow 19$

$$P = 19$$

$$P^{7} = 19^{7} = \lfloor \frac{893871739}{20} \rfloor = 27087022 \times 33$$

$$= 893871726$$

messaggio di Alice

$$C = 13$$

Bob decodifica usando

$$a = 3$$

$$13^{3} = \lfloor \frac{2197}{33} \rfloor = 66 \times 33$$

$$\overline{2178}$$

$$19 \rightarrow S$$

Prof. Maurizio Dècina

RSA

Bob • genera due primi grandi (200 cifre decimali almeno)

• calcola
$$m = p \times q$$
 e $\varphi(m) = (p-1)(q-1)$

• sceglie a caso b

$$0 < b < \varphi(m)$$

• in modo che sia

$$mcd[b, \varphi(m)] = 1$$

• calcola

$$a = b^{-1} \mod \varphi(m)$$

con l'algoritmo di Euclide esteso

• pubblica

$$m e b$$
.

ATTACCO del crittoanalista

Ha $m \rightarrow$ fattorizzazione in numeri primi;

Quanti primi ci sono tra 0 e *m*?

$$\Pi(\mathbf{m}) \to \frac{m}{l_n m}$$

$$\frac{10^{200}}{460} \cong 10^{197}$$
 sono tanti!

$$\begin{cases} m = 10^{200} \\ l_n m \cong 460,5 \end{cases}$$

La fattorizzazione in DUE primi

molto difficile da calcolare

$$p e q$$
 a 150 cifre decimali

$$m = p \times q$$
 a 300 cifre decimali

 $p, q \equiv 80$ cifre $m \equiv 160$ cifre troppo piccoli

$$2^{512} \cong 1,3 \cdot 10^{154}$$

$$2^{1024} \cong 1,7 \cdot 10^{308}$$

$$2048 \text{ BIT RSA} = \text{OK}$$

ALTRO ESEMPIO CRITTOSISTEMA RSA

Bob sceglie

$$\begin{cases} p = 101 \\ q = 113 \end{cases}$$

$$m = 11413$$

$$\varphi(m) = 100 \times 112 = 11200$$

$$11200 = 2^{6} \cdot 5^{2} \cdot 7$$

posso scegliere b primo relativo a ϕ (m), cioè b non deve essere divisibile per 2, 5 o 7.

 $b \perp \varphi(m)$

Verifica

$$mcd [\varphi(n), b] = 1$$

Bob sceglie

$$b = 3533$$

quindi

$$b^{-1} = 6597 \mod 11200$$

e quindi la chiave segreta di Bob è

$$a = 6597 = b^{-1}$$

$$\left\{
 \begin{array}{l}
 m = 11413 \\
 b = 3533.
 \end{array}
 \right.$$

Alice manda

$$9726^{3533}$$
 mod $11413 = 5761$

 $9726 \equiv P$ 5761 = C

Bob riceve e calcola

calcola

$$5761^{6597}$$
 mod $11413 = 9726$.

SICUREZZA

$$E_k(P) = P^b \mod m$$
 funzione a senso unico

Bob ha una TRAPDOOR $m = p \cdot q$

e quindi $\varphi(m) = (p-1)(q-1)$ e calcola "a" il decrittore $a = b^{-1} \mod[\varphi(m)]$

$$\varphi(m) = (p-1)(q-1)$$

Controlliamo che E e D siano operazioni inverse.

$$a \equiv b^{-1} \pmod{(m)}$$

$$a b \equiv 1 \pmod{(m)}$$

$$a b = t \varphi(m) + 1, \quad b \perp \varphi(m)$$

cioè 0 < P < m

è primo con m $P \perp m$

t intero ≥ 1

per ogni $P \in \mathbb{Z}_{\mathrm{m}}^*$

si ha $(P^b)^a \equiv [P^{t_{\varphi}(m)+1}] \pmod{m}$

 $\equiv [(P^{\varphi(m)})^t P] (\bmod m)$

 $\equiv [1^t P] (\text{mod} m)$

 $\equiv P(\text{mod}m).$

Teorema di Lagrange: se $P \in \mathbb{Z}_{m}^{*}$

allora $P^{\varphi(m)} \mod m = 1$

SCHEMI DI FIRMA DIGITALE

Firma convenzionale

Firma elettronica

Messaggio M

Firma → Algoritmo di firma

SIG

A = SIG(M)

É SEGRETO

 $M \parallel A$ vengono spediti

al destinatario "separatamente"

la verifica è elettronica

Verifica → Algoritmo di verifica

VER

É PUBBLI*C*O

 $VER (M||A) = \longrightarrow TRUE$ $\Rightarrow FALSE$

tutti possono esattamente verificare.

La copia elettronica è come l'originale per evitare di essere riusata (reply attack) deve contenere un TIMESTAMP, cioè la data, l'ora, ad esempio.

Pag. 082 Prof. Maurizio Dècina

SCHEMA DI FIRMA

Algoritmo di firma

SEGRETO

$$P$$
, SIG (P)

$$A = SIG(P)$$

Spedisco

$$P \parallel A$$

Algoritmo di verifica

PUBBLICO

$$VER(P, A) = \begin{cases} TRUE \\ FALSE \end{cases}$$

se la firma è vera o falsa

DEFINIZIONE

Lo schema di firma è una quintupla

$$(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$$

 $\mathcal{P} = \text{insieme finito dei messaggi} \qquad P \in \mathcal{P}$

 $I \subset I$

• \mathcal{A} = insieme finito delle firme

 $A \in \mathcal{A}$

• \mathcal{K} = insieme finito delle chiavi

 $K \in \mathcal{K}$

Keyspace

Per ogni $K \in \mathcal{K}$ c'è un algoritmo di firma

$$SIG_K \in S$$

ed un corrispondente algoritmo di verifica

$$VER_K \in \mathcal{V}$$

Ogni

$$SIG_K$$
 comporta $\mathcal{P} \longrightarrow \mathcal{A}$

Ogni

$$VER_K \quad comporta \quad \mathcal{P} \, \times \, \mathcal{A} \, \longrightarrow \, \{vero, \, falso\}$$

Sono funzioni tali che per ogni messaggio $P \in \mathcal{P}$ e per ogni firma $A \in \mathcal{A}$

$$VER_{K}(P, A) = \begin{cases} vero & se A = SIG_{K}(P) \\ falso & se A \neq SIG_{K}(P) \end{cases}$$

SCHEMA DI FIRMA RSA

Sia $m = p \cdot q$, $p \in q$ primi

 $\mathcal{P} \equiv \mathcal{A} \equiv \mathcal{Z}_m$

 $\mathcal{K}, \equiv \{(m, p, q, a, b) : m = p \cdot q; p, q \text{ primi } \}$

 $a \ b \equiv 1 \ [\text{mod}\varphi(m)]\}, \ b \perp \varphi(m)$ a, b > 0

I valori m e b sono pubblici,

e p, q e a sono segreti.

Per k = m, p, q, a, b

(segreta) $SIG_K(P) = P^a \mod m = A$ decifratura RSA

e

(pubblica) $VER_K(P, A) = true \leftrightarrow$

vero se

 $P \equiv A^{b} \pmod{m}$ cifratura RSA

 $(P, A \in \mathbb{Z}_m)$

FIRMA RSA

Quindi Bob firma il messaggio *P*

con la regola RSA di decrittaggio $D_{\rm K}$

$$D_{\rm K} = {\rm SIG}_{\rm K}$$
 è segreto (a segreto: $a = b^{-1}$)

La verifica usa RSA crittaggio $E_{\rm K}$

Chiunque può verificare la firma dato che $E_{\rm K}$ è PUBBLICA. (m e b pubblici)

SEGRETARE TESTO E FIRMA

Alice vuole combinare FIRMA e TESTO CIFRATO con un RSA

Dato un testo in chiaro P Alice calcola la sua firma

(segreta)

$$A = SIG_{ALICE}(P)$$

poi Alice cifra il tutto con m e b

(pubblica)

$$E_{\text{BOB}}(P, A) = Z$$

{ è la decodifica di RSA con a e m

FIRMARE PRIMA DI CRITTOGRAFARE!

{ è la codifica di RSA.

Alice quindi spedisce

 \longrightarrow Z va a Bob

Prima Bob

(segreta)

 $D_{\mathrm{BOB}}\left(Z\right)$

ottiene

P e A

Poi Bob fa

(pubblica)

$$VER_{ALICE}(P, A) = true$$

che succede se Alice prima crittografa e poi firma?

Alice calcola

$$C = E_{ROB}(P)$$

$$A = SIG_{ALICE}[E_{BOB}(P)]$$

$$A = SIG_{ALICE}(C)$$

e manda (A, C).

Bob riceve $A \in C$

calcola

$$P = D_{BOB}(C)$$

poi

$$VER_{ALICE}(C, A) = true$$

Ma Oscar ottiene A e C e li blocca

ora fa così, rimpiazza A con la sua

$$A' = SIG_{OSCAR}[E_{BOB}(P)]$$
 (segreta)

e manda (A', C) a Bob

Bob decritta $P = D_{BOB}(C)$

e verifica $VER_{OSCAR}(C, A') = true$ (pubblica)

e crede che il messaggio lo ha mandato Oscar

PLEASE

SIGNING BEFORE ENCRYPTING!

Oppure

FUNZIONI HASH

$$P \to MD$$

$$\downarrow$$

$$SIG(MD)$$

 $P \parallel SIG[H(P)]$ nudo P, SIG(MP)

METODO DI FIRMA

PUBLIC KEY

ElGamal

DSA Digital Signature Algorithm

RSA-Fattorizzazione numeri primi DSA-Calcolo dei logaritmi discreti

- messaggio 160 BIT
- firma da 320 BIT

Sia p primo tale che il problema di trovare i logaritmi discreti in \mathcal{Z}_p^* sia intrattabile.

Sia $\alpha \in \mathcal{Z}_p^*$ un elemento primitivo

Sia $\mathcal{P} = \mathcal{Z}_p^*, \ \mathcal{A} = \mathcal{Z}_p^* \times \mathcal{Z}_{p-1}$

e sia

 $\mathcal{K} = \{(p, \alpha, a, \beta) \text{ tale che } \beta \equiv \alpha^a(\text{mod}p)\}$

• p, α e β PUBBLICI

• a SEGRETO

 $a = \log_{\alpha}^{D} \beta$

Allora per $\mathcal{K} = (p, \alpha, a, \beta)$ e per un numero segreto k

 $k \in \mathcal{Z}_{p-1}^*$ casuale (da usare one time)

 $k \perp (p-1)$, sia:

DSA

DIGITAL SIGNATURE ALGORITHM

Digital Signature Algorithm usa ElGamal

messaggio P lungo 160 BIT

 $p, \alpha e \beta$ pubblici a segreto

scelgo k casuale $\in \mathcal{Z}_{p-1}^*$ segreto

 $SIG_K(P, k) = (\gamma, \delta)$

ove $\gamma = \alpha^k \text{mod} p$ k segreto

 $\delta = (P - a\gamma)k^{-1} \mod(p - 1)$ k segreto, a segreto

VER $(P, \gamma, \delta) = \beta^{\gamma} \gamma^{\delta} \equiv \alpha^{P}(\text{mod}p)$

Richiede

una firma DSA (γ, δ) di 320 BIT.

Allora per messaggi lunghi si fa così

P – lunghezza arbitraria

'digest' del messaggio

Firma

To hash = tagliare (la carne) in dadini

uguali

Problema con le firme

perché è facile cancellare o variare l'ordine.

INTEGRITÀ

DSA

al Signature Al	gorithm usa ElGa	mal Public Key System	
messaggio con	rto di 160 BIT	<i>P</i> – 160 BIT	
usa una Firma da 320 BIT		(γ, δ) 320 BIT	
		$SIG_{K}(P, k) = (\gamma, \delta)$	
aggi corti	FUNZIONE	E HASH PUBBLI <i>C</i> A	
messaggio P		P – lunghezza arbitraria	
compute			
message DIGEST $z = h(P)$		160 BIT	
then apply			
SIGNATURE		A = SIG(z) 320 BIT	
		A = SIG(z) 320 BIT 160 × 2 = 320 BIT	
di γ	$e \delta \equiv SIG(z)^k$		 PUBBLI <i>C</i> A
di γ	$e \delta \equiv SIG(z)^{k}$ FUNZIONE HAS:	$160 \times 2 = 320 \text{ BIT}$	 PUBBLI <i>C</i> A
$\frac{\mathrm{di}}{z = h(P)} \mathbf{F}$	$e \delta \equiv SIG(z)^{k}$ FUNZIONE HAS:	$160 \times 2 = 320 \text{ BIT}$ H UNIDIREZIONALE	 PUBBLI <i>C</i> A
$\frac{di}{z = h(P)}$ vuole formare	$e \delta \equiv SIG(z)^{k}$ FUNZIONE HAS:	$160 \times 2 = 320 \text{ BIT}$ H UNIDIREZIONALE	 PUBBLI <i>C</i> A
di γ $z = h(P) \text{F}$ vuole formare costruisce	$e \delta \equiv SIG(z)^{k}$ FUNZIONE HAS:	$160 \times 2 = 320 \text{ BIT}$ H UNIDIREZIONALE P $z = h(P)$	 PUBBLI <i>C</i> A
di γ $z = h(P)$ F vuole formare costruisce poi calcola	$e \delta \equiv SIG(z)^{k}$ FUNZIONE HAS:	$160 \times 2 = 320 \text{ BIT}$ H UNIDIREZIONALE P $z = h(P)$ $A = \text{SIG}_{k}(z)$	PUBBLI <i>C</i> A
	messaggio co usa una Firma aggi corti messaggio P compute message DIG	messaggio corto di 160 BIT usa una Firma da 320 BIT aggi corti FUNZIONE messaggio P compute message DIGEST $z = h(P)$	$SIG_K(P, k) = (\gamma, \delta)$ aggi corti FUNZIONE HASH PUBBLICA messaggio P P – lunghezza arbitraria compute message DIGEST $z = h(P)$ 160 BIT

Una funzione hash

$$z = h(P)$$

è unidirezionale se dato un message digest z

è impossibile calcolare P tale che

$$h(P) = z$$

messaggio P

Bob vuole firmare il messaggio P

calcola

 $\mathbf{0}$ z = h(P) message digest

 \mathbf{Q} $A = SIG_k(z)$ la firma segreta

 \bullet manda $P \in A$

 $P \parallel A$

Alice

calcola

e poi

ad es. cifrato RSA

PUBBLICHE $\begin{cases} y = h(x) & \text{HASH} \\ b, m & \text{RSA} \end{cases}$

ATTACCO DI OSCAR

alle funzioni hash

intercetta $P \parallel A$ valido di Bob

$$A = SIG_{BOB}[h(P)]$$

poi calcola z = h(P) PUBBLICA

e cerca $P' \neq P$

tale che h(P') = h(P).

Allora Oscar manda (P', A) è valido firmato da Bob!

è una FALSIFICAZIONE.

h deve soddisfare la proprietà detta SENZA COLLISIONI (collision free) Dato P trovare P'

h è debolmente senza collisioni se è computazionalmente intrattabile il calcolo di $P' \neq P$ tale che h(P') = h(P).

ALTRO ATTACCO

Oscar trova due messaggi $P' \in P$

 $P' \neq P$

tali che h(P') = h(P)

Oscar manda P a Bob e lo convince a firmare

Bob lo firma

calcola Z = h(P)

lo firma $A_{\text{BOB}} = \text{SIG}_{\text{BOB}}(Z)$

riceve P, A_{BOB}

successivamente

Oscar manda P', A_{BOB} è valida!

e falsifica la firma di Bob.

Una funzione hash è fortemente senza collisioni se è computazionalmente intrattabile trovare due messaggi

tali che
$$P \in P'$$

$$P \neq P'$$

$$h(P) = h(P').$$

Trovare $P \in P'$ tali che.

Infine

Una funzione hash è unidirezionale (one-way) se dato un digest di messaggio z è computazionalmente impossibile trovare un messaggio P tale che h(P) = z.

Message digest (P = 512 BIT FISSI)

- MD4 64 BIT hash function
- MD5 128 BIT

Message digest ($P < 2^{64}$ BIT)

SHA 160 BIT Secure Hash Algorithm.

LEGGE ITALIANA

DISTRIBUZIONE DELLE CHIAVI

- I sistemi a chiave pubblica non richiedono canali sicuri per scambiare chiavi segrete come nei sistemi a chiave privata
- I sistemi pubblici sono lenti. RSA rispetto a DES.
- Per cifrare messaggi lunghi bisogna usare chiavi private, quindi bisogna trovare dei metodi per lo scambio delle chiavi segrete

TRUSTED AUTHORITY

TA Trusted Authority

n Utenti

- Verifica l'identità dell'utente
- Sceglie e trasmette chiavi agli utenti

PASSIVO (Oscar)

SPIA

- spia i messaggi

ATTIVO (Oscar = Trudy)

INTRUSO

- altera i messaggi
- conserva i messaggi per uso futuro
- si maschera, al posto di un certo utente

si traveste: è un impostore

- Obiettivi dell'intruso
 - imbrogliare A e B facendogli accettare una "chiave" falsa (vecchia chiave o chiave inventata da Trudy)
 - imbrogliare A e B facendogli credere che hanno scambiato una chiave tra loro, mentre non l'hanno fatto.
- Obiettivo della distribuzione delle chiavi o dell'accordo sulle chiavi è che alla fine del protocollo *A* e *B* possiedano la stessa chiave *K*.

PREDISTRIBUZIONE DELLE CHIAVI

Per ogni coppia di utenti U e V

n Utenti

il TA sceglie una chiave a caso

$$K_{u,v} = K_{v,u}$$

e la manda su un canale sicuro

solo n canali sicuri, e non $\binom{n}{2}$ tra tutti gli utenti

TA genera e trasmette

 $\frac{n(n-1)}{2} = \binom{n}{2}$ chiavi e dà ogni chiave ad un'unica coppia di utenti U, V.

Ogni utente

$$U \longrightarrow K_{u,v}$$

$$K_{u,k}$$

$$K_{u,h}$$

ha (n-1) chiavi

È complicato.

DISTRIBUZIONE ON LINE DELLE CHIAVI DA PARTE DEL TA

TA è un Key Distribution Center KDC

KDC ha n chiavi segrete, una per ciascuno degli utenti della rete K_u chiave segreta dell'utente u

U vuole parlare con V e chiede una chiave di sessione

KDC manda a U e V la chiave di sessione cifrata K_u e K_v

KERBEROS

oppure l'altro schema è

PROTOCOLLO D'ACCORDO SULLE CHIAVI

Diffie-Hellman
Merkle

DISTRIBUITA: senza TA.

KERBEROS KDC

KERBEROS è basato su sistemi a chiave privata

• Ogni utente ha una chiave segreta

DES con TA (KERBEROS)

$$U \longrightarrow K_u$$

$$V \longrightarrow K_{\nu}$$

DES - CBC MODE

e usa DES per segretezza

ID (U) informazione pubblica di identificazione dell'utente U (Nome/Cognome/Indirizzo/Nascita/Luogo/E-mail/Telefono)

TA

T – Timestamp

L – Lifetime

genera Session Key K valida nell'intervallo

$$(T \div T + L)$$
.

- lacktriangledown U chiede a TA di avere una chiave di sessione K per l'utente V
- $\mathbf{2}$ TA sceglie K a caso con T e L
- **3** TA calcola

•
$$m_1 = E_{K_{IJ}}(K, ID(V), T, L)$$

•
$$m_2 = E_{K_V}(K, ID(U), T, L)$$

 \leftarrow ticket per V

e manda

$$m_1$$
 e m_2 a U

 $\mathbf{4}$ U usa la decrittazione

$$D_{K_u}(m_1) = K, ID(V), T, L$$

e calcola

•
$$m_3 = E_{\mathbf{K}}[\mathrm{ID}(U), T]$$

e lo manda a V insieme al Ticket per V ricevuto da TA : m_2 .

 \bullet V usa

$$D_{K_{\nu}}(m_2) = K, ID(U), T, L$$

poi calcola

$$D_{\rm K}(m_3) = T, {\rm ID}(U)$$

Verifica che i due valori di T coincidono e che i due valori di $\mathrm{ID}(U)$ coincidono,

e calcola

$$\bullet \ m_4 = E_{\rm K}(T+1)$$

e lo manda a U.

$$D_{K}(m_{4}) = T + 1$$
e verifica
$$T + 1.$$

SYNCHRONIZED CLOCK (or quasi synchronized)

T, L

TO AVOID REPLAY ATTACK

Key Transmission Secrecy $m_1 \& m_2$ forniscono segretezza

nella trasmissione di *K*

Key Confirmation $m_3 \& m_4$ forniscono riscontro

della ricezione delle chiavi

SCAMBIO DELLE CHIAVI DI DIFFIE & HELLMAN

KEY AGREEMENT PROTOCOL

Complessità di calcolo dei logaritmi discreti

 $\mathbf{0}$ U sceglie a_u a caso

$$0 \le a_u \le p - 2$$

2 U calcola

$$b_u = \alpha^{a_u} \bmod p$$

e lo manda a V

3 V sceglie a_v a caso

$$0 \le a_v \le p-2$$

V calcola

$$b_v = \alpha^{a_v} \bmod p$$

e lo manda a U

 $\boldsymbol{6}$ *U* calcola

$$K = (\alpha^{a_V})^{a_U} \operatorname{mod} p$$

V calcola

$$K = (\alpha^{a_u})^{a_v} \bmod p$$

 $\begin{cases} p \in \alpha \\ \text{noti, numeri primi} \\ \text{con } \frac{p-1}{2} \text{ primo:} \\ \alpha \text{ elemento} \\ \text{primitivo di } \mathcal{Z}_{p^*} \end{cases}$

p è numero primo

 α è elemento primitivo di \mathcal{Z}_n

Valori noti, pubblicamente

U e V alla fine hanno calcolato la chiave di sessione

$$K = \alpha^{a_u a_v} \operatorname{mod} p.$$

PROTOCOLLO DI ACCORDO SULLE CHIAVI AUTENTICATO

Authenticated Key Agreement Protocol

Per lo scambio delle chiavi D&H è quindi necessario che $\,U\,$ e $\,V\,$ siano sicuri della loro identità

IDENTIFICAZIONE

si usano p, α e i certificati rilasciati dalla TA.

Ogni utente U ha uno schema di firma elettronica

SIG_u segreto

ad esempio a_u

 VER_u

pubblico

 $b_u = \alpha^{a_u}$

mod p

TA ha il suo

 SIG_{TA}

e

 VER_{TA}

pubblico

Ogni utente ha un certificato

 $C(U) = \{ID(U); VER_u; SIG_{TA} [ID(U); VER_u]\}$

ID(U) è ID di U.

SIMPLIFIED STATION-TO-STATION PROTOCOL

1 U sceglie a_u , $0 \le a_u \le p-2$ **2** U calcola $\alpha^{a_u} \bmod p$

e lo manda a V

8 V sceglie $a_v \quad 0 \le a_v \le p-2$

4 V calcola $\alpha^{a_v} \mod p$ poi calcola $K = (\alpha^{a_u})^{a_v} \mod p$

 $y_v = SIG_v(a^{a_v}, a^{a_u})$

6 V manda $\{C(V), \alpha^{a_V}, y_V\}$ a U

 $\boldsymbol{6}$ U calcola

 $K = (\alpha^{a_{\nu}})^{a_{u}} \bmod p$

verifica y_{ν} usando VER_{ν}

C(V) usando VER_{TA}

 $U \text{ calcola} \qquad y_v = \text{SIG}_u(a^{a_u}, a^{a_v})$

e manda $\{C(U), y_u\}$ a V

 $oldsymbol{v}$ V verifica y_u usando VER $_u$ e C(U) usando VER $_{TA}$

 p, α VER_{v} VER_{u} VER_{TA} PUBBLICI

 $\frac{\text{SIG}_v \ a_v}{\text{SIG}_u \ a_u}$ $\frac{\text{SIG}_u \ a_u}{\text{SEGRETI}}$

L'uso dei certificati evita "impostori"

$$K = \alpha^{a_v \, a_u} \, \mathrm{mod} p$$

SCHEMI DI IDENTIFICAZIONE

(Autenticazione dell'identità di una persona)

CODICI DI AUTENTICAZIONE

(Autenticare l'integrità di un messaggio e la provenienza)

cioè – non alterato

- è stato originato dal presunto trasmettore

SCHEMI DI IDENTIFICAZIONE

Obiettivi

• Come fa Bob a sapere se è veramente Alice?

Alice vuole provare che è Alice, ma evitare che, così facendo, consenta di essere 'impersonata' da Bob più tardi.

AUTORIZZARE: dare il permesso di un'azione a qualcuno già identificato

Semplice metodo da realizzare su

SMART CARD

Carta con un chip che fa operazioni aritmetiche

Piccola memoria

Poca potenza di calcolo

Poichè OSCAR può rubare la card, occorre anche un PIN

SISTEMA BASATO SU CRITTOSISTEMI A CHIAVE PRIVATA (DES)

SFIDA E RISPOSTA

Challenge-and-Response

Richiede una chiave segreta condivisa

$$K$$
 $E_{\rm k}$

Esempio

$$C = E_k(P) = P^{101379} \mod 167653$$

 $K_s(b, m)$ $K_s = (101379, 167653)$

Challenge-and-Response con chiave segreta

P è un numero casuale a 64 BIT

es.
$$P = 77835$$

 $b = 101379$
 $m = 167653$
 $K_s = (b, m)$

calcola

Bob manda Pe calcola $E_{K_s}(P) = P^b \mod m$ es. se $K_s = (b, m) = (101379, 167653)$ Bob calcola $x = E_{K_s}(P) = 100369$ riceve PRisposta = x'Alice manda x' = 100369

 $E_{K_s}(P) = 100369$ Bob confronta se x = x'è Alice

SCHEMA DI IDENTIFICAZIONE DI SCHNORR

C'è la TA che fa così

1 p è primo grande (il problema di trovare il logaritmo discreto è intrattabile)

2
$$q$$
 è un divisore primo grande di p $0 < q < p-1, q \in \mathcal{Z}_p^*$

3 $\alpha \in \mathcal{Z}_p^*$ primitivo elemento generatore

4 un parametro
$$t$$
 tale che $q > 2^t$ ad esempio $t = 40$

5 TA decide

$$SIG_{TA}$$

e

$$VER_{TA}$$

6 TA decide

$$h(p)$$
 hash function

$$p, q, \alpha \in VER_{TA} \in h(p)$$
 PUBBLICI

CERTIFICAZIONE

- **1** TA vede Alice e passaporto, crea una stringa ID(Alice) con le sue informazioni di identità
- Alice sceglie $0 \le a \le q-1$ e calcola

 $v = \alpha^{-a} \bmod p$

e dà v al TA.

1 Il TA genera la firma

 $s = SIG_{TA}[ID(A), v]$

e dà ad Alice il CERTIFICATO

C (Alice) = [ID(Alice), v, s]

 $\begin{cases} p, q, \alpha \\ \text{PUBBLICI} \\ a \\ \text{SEGRETO} \\ \text{di Alice} \end{cases}$

PROVA DELL'IDENTITÀ

 \bullet Alice sceglie un numero k

$$0 \le k \le q - 1$$

e calcola

$$\begin{array}{ccc} \gamma &= \alpha^k \, \mathrm{mod} p \\ & \text{Alice manda a Bob} & C \, (\text{Alice}) = [\mathrm{ID}(\text{Alice}), \, v, \, s] \\ & \text{e} & \gamma \end{array}$$

$$\begin{cases} p, q, \alpha \\ VER_{TA} \\ e h(p) \\ PUBBLICI \end{cases}$$

3 Bob verifica la firma del TA

$$VER_{TA}[ID(Alice), v, s] = true$$

 \bullet Bob sceglie r e lo manda ad Alice

numero casuale a t BIT

$$1 \le r \le 2^t$$

6 Alice calcola

$$y = (k + ar) \bmod q$$

e lo manda

6 Bob verifica che

$$\gamma \equiv \alpha^y v^r \, (\bmod p).$$

Infatti

$$\alpha^{y}v^{r} \equiv \alpha^{k+ar}v^{r} \pmod{p}$$

$$\equiv \alpha^{k+ar}\alpha^{-ar} \pmod{p}$$

$$\equiv \alpha^{k} \pmod{p}$$

$$\equiv \gamma \pmod{p}$$

ESEMPIO

$$p=88667$$
 $p\perp q$ $q=1031$ $t=10$ $\alpha=70322$ è primitivo in \mathcal{Z}_p^* di ordine 1031 $\alpha^{1031}\equiv 1 \pmod{p}$ ALICE SEGRETO $a=755$ allora $v=\alpha^{-a} \mod p=$ $=70322^{1031-755} \mod 88667=$ $=13136$

Alice ora sceglie k = 543

$$\gamma = \alpha^k \mod p$$

= $70322^{543} \mod 88667 =$
= 84109

Bob sceglie

$$r = 1000 < 2^{10}$$

Alice calcola

$$y = (k+ar) \mod q$$

= $(543 + 755 + 1000) \mod 1031 =$
= 851

Bob calcola che

$$\gamma = \alpha^y v^r \pmod{p}.$$

84109 = 70322⁸⁵¹13136¹⁰⁰⁰(mod88667)