

Aircraft Propulsion: Review

Airbreathing Propulsion Review -1

4) same exit pressure AND must be < 1

- e.g. for compressor,

Airbreathing Propulsion Review -6

Copyright © 2018, 2019 by Jerry M. Seitzman. All rights reserved

Single-point Design/On-design Analysis

- First understand specific thrust and fuel burn/SFC performance for varying engine designs
 - changing design values:
 - BPR (β) OPR (Pr_o) FPR (Pr_f) T4
 - most other values constrained, e.g., fuel heating value (~43MJ/kg_{fuel} for standard jet fuels), and component (polytropic) efficiencies
 - changing flight conditions
 - altitude: T_a , p_a (or T_{∞} , p_{∞})
 - flight Mach # M (or flight velocity u)
 - cycle design typically focused on point where most efficient operation is desired (usually cruise)

Airbreathing Propulsion Review -7

Copyright © 2018, 2019 by Jerry M. Seitzman. All rights reserve

AE4803

Improved Engine Performance

· Generally want to increase overall efficiency

$$\eta_o = \eta_{th} n_p$$

- 1. How to improve thermal (cycle) efficiency?
- 2. How to improve propulsive efficiency?

Airbreathing Propulsion Review -8

Copyright © 2018, 2019 by Jerry M. Seitzman. All rights reserved.

Single-point Design/On-design Analysis

- Second select design point(s) to size the engine mass flow or area to produce required thrust
 - size usually set for most demanding point in terms of thrust
 - typically takeoff (or dash for fighter aircraft)
 - mass flow rate dependence on flow area also impacted by flow conditions
 - e.g., for tpg/cpg

$$\dot{m} = A \frac{p_o}{\sqrt{RT_o}} f(\gamma, M)$$

Airbreathing Propulsion Review -12

Copyright: © 2018, 2019 by Jerry M. Seltzman. All rights reserved.

Single-point Design/On-design Analysis

 So engine sizing done in terms of corrected mass flow rates

- inlet size constrained by Mach number and choking considerations
- flow areas of fan, compressors, turbines, combustor also must handle required mass flow rate within velocity/Mach number constraints

Airbreathing Propulsion Review -13

Copyright © 2018, 2019 by Jerry M. Seitzman, All rights reserved.

AE4803

Course Focus

- · The issues raised so far
 - single-point cycle design and performance were the focus of AE 4451
- So what will be the focus of this course?
 - 1. Design of jet engine components
 - 2. Off-design engine performance
 - 3. "Unconventional" cycles for hypersonic flight, increased efficiency and reduced emissions

Airbreathing Propulsion Review -14

Copyright © 2018, 2019 by Jerry M. Seitzman. All rights reserved

Design of Jet Engine Components

- Want to design efficient and "robust" engine components
 - turbomachinery: compressors, fans, turbines
 - blade geometry (e.g., angles), rpm, flowrate,...
 - combustors
 - geometry, fuel atomization, air staging and liner cooling ...
- Also want to know how these components will operate when we go an "off-design" condition

Airbreathing Propulsion Review -15

Copyright © 2018. 2019 by Jerry M. Seitzman, All rights reserved

AE4803

Unconventional Cycles

- Conventional jet engines based on Brayton cycle
 - assumes constant pressure heat addition
- Can we do better, i.e., higher η_{th} ?
 - yes!, constant volume combustion will result in less entropy rise than constant pressure for the same temperature rise

Airbreathing Propulsion Review -16

Copyright © 2018, 2019 by Jerry M. Seitzman. All rights reserved

Unconventional Cycles

- To achieve high supersonic (hypersonic) flight speeds with airbreathing engines need supersonic internal flow: scramjets
 - what are the unique design issues for scramjet engines?
- To reduce emissions and improve efficiency, electric propulsion can be helpful
 - what are the issues for using electrical energy to drive motors that turn propulsors (e.g., propellers or fans)?