Dynamics, inverses, determinants

September 12th, 2024

Here are some key ideas from sections 8.5 and 8.6.

• For the given system

$$c_{t+1} = 0c_t + 0a_t + 0.3r_t$$

$$a_{t+1} = 0.072c_t + 0.8a_t + 0.88r_t$$

$$r_{t+1} = 0c_t + 0.19a_t + 0r_t$$

The corresponding Leslie diagram is

•	The	matrix has 1s along the diagonal and 0s everywhere else.
	Any matrix multiplied by t	the identity matrix is itself! Mathematically,

- If A is a square matrix and AB = BA = I, then B is the ______ of A. If A has an inverse, we say it is **nonsingular**. Otherwise, it is singular.
- The **determinant** of a 2×2 matrix is
- ullet If A is an $n \times n$ matrix, then A is invertible if and only if
- The inverse of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is $A^{-1} = \underline{\hspace{2cm}}$.

Problem 1: (Stewart & Day 8.6) Are $A = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$ inverses of each other?

My Attempt: | Solution:

Problem 2: (Stewart & Day 8.6) For the following matrices, calculate the inverse or explain why it's not possible to do so.

a) $\begin{bmatrix} 7 & 9 \\ 5 & 6 \end{bmatrix}$;

b) $\begin{bmatrix} 14 & 6 \\ 7 & 3 \end{bmatrix}$;

c) $\begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$.

My Attempt:

Solution:

Problem 3: (Stewart & Day 8.6) Find the inverse of $\begin{bmatrix} x^2 & 2x \\ x^3 & x \end{bmatrix}$.

My Attempt:

Solution:

Problem 4: (Stewart & Day 8.6) Use the determinant to decide when $\begin{bmatrix} x & x+x^2 \\ 3x & 0 \end{bmatrix}$ is invertible.

My Attempt:

Solution:

My Attempt:	Solution:
Problem 6: (Stewart & Day 8.6) Verify that $\det(AB)$	$=\det A\det B$ for arbitrary 2×2 matrices.
My Attempt:	Solution:
Problem 7. (Stargart & Day 8.6) Shary that for any any	rbitrary nonsingular matrix A , its inverse A^{-1} is unique. Hint:
Show that if there are two inverses, they must be equal.	ioniary norsingular matrix A, its inverse A — is unique. Time.
My Attempt:	Solution:
-	
Challenge Problem: (Stewart & Day 8.4) Suppose t	hat A is an $n \times n$ diagonal matrix with entries d_{ii} . Show that
A^{-1} is an $n \times n$ diagonal matrix with entries $1/d_{ii}$.	0