+ Capítulo 7

Entrada/Salida

Figure 7.1 Generic Model of an I/O Module

Dispositivos externos

- Proporciona un medio de intercambio de datos entre el entorno externo y la computadora.
- Conecta a la computadora mediante un enlace a un módulo de E / S
 - intercambiar información de control, estado y datos entre el módulo de E / S y el dispositivo externo
- Periférico
 - Dispositivo externo conectado a un módulo de
 E / S Control | ↑ Status ↑ Data bits

Categorias:

- Legible para humanos
 - Adecuado para comunicarse con el usuario de la computadora.
 - Terminales de visualización de video (VDTs), impresoras
- Legible por máquina
 - Adecuado para la comunicación con equipos.
 - Discos magnéticos y sistemas de cinta, sensores y actuadores.
- Comunicación
 - Adecuado para comunicarse con dispositivos remotos
 - terminal u otra computadora

Figure 7.2 Block Diagram of an External Device

Las funciones principales de un módulo de E / S se incluyen en las siguientes categorías:

Control and timing

• Coordina el flujo de tráfico entre recursos internos y dispositivos externos.

Processor communication

 Implica la decodificación de comandos, datos, informes de estado, reconocimiento de direcciones (READ SECTOR, WRITE SECTOR, BUSY, READY, etc)

Device communication

• Implica comandos, información de estado y datos

Data buffering

• Realiza la operación de almacenamiento en búfer necesaria para equilibrar las velocidades del dispositivo y la memoria

Error detection

• Detecta e informa errores de transmisión (atascos de papel, pista dañada, etc).

Figure 7.3 Block Diagram of an I/O Module

+ Técnicas para las operaciones de E / S:

- Programmed I/O
 - Los datos se intercambian entre el procesador y el módulo de E / S.
 - El procesador ejecuta un programa que le da control directo de la ope de E / S
 - Cuando el procesador emite un comando, debe esperar hasta que finalice la operación de E / S
 - Si el procesador es más rápido que el módulo de E / S, es un desperdicio de tiempo de procesador
- Interrupt-driven I/O
 - El procesador emite un comando de E / S, continúa ejecutando otras instrucciones y es interrumpido por el módulo de E / S cuando este último ha completado su trabajo
- Direct memory access (DMA)

■ El módulo de E / S y la memoria principal intercambian datos directamente sin la participación del procesador

,	aor processador	No Interrupts	Use of Interrupts
	I/O-to-memory transfer through processor	Programmed I/O	Interrupt-driven I/O
	Direct I/O-to-memory transfer		Direct memory access (DMA)

Comandos de E / S

Hay cuatro tipos de comandos de E / S que un módulo de E / S puede recibir cuando un procesador los direcciona::

1) Control

- Usado para activar un periférico y decirle qué hacer.

2) Test

 utilizado para probar diversas condiciones de estado asociadas con un módulo de E / S y sus periféricos

3) Read

- hace que el módulo de E / S obtenga un elemento de datos del periférico y lo coloque en un búfer interno

4) Write

 hace que el módulo de E / S tome un elemento de datos del bus de datos y, posteriormente, transmita ese elemento de datos al periférico

Figure 7.4 Three Techniques for Input of a Block of Data

Mapeo de E / S

■ Memory mapped I/O

- Los dispositivos y la memoria comparten un espacio de direcciones.
- La lectura E / S se parece a la lectura / escritura de memoria
- No hay comandos especiales para E / S
 - Gran selección de comandos de acceso a memoria disponibles

■ Isolated I/O

- Espacios de direcciones separados
- Necesita lineas de selección de I / O o de memoria
- Comandos especiales para E / S
 - Conjunto limitado

Figure 7.5 Memory-Mapped and Isolated I/O

Interrupt-Driven I/O

El problema con la E / S programada es que el procesador tiene que esperar mucho tiempo para que el módulo de E / S esté listo para la recepción o transmisión de datos

Una alternativa es que el procesador emita un comando de E / S a un módulo y luego realice otro trabajo útil

El módulo de E / S interrumpirá el procesador para solicitar el servicio cuando esté listo para intercambiar datos con el procesador

El procesador ejecuta la transferencia de datos y reanuda su procesamiento anterior.

Figure 7.6 Simple Interrupt Processing

Figure 7.7 Changes in Memory and Registers for an Interrupt

Evolución de la función de E / S

- 1. La CPU controla directamente un dispositivo periférico.
- 2. Se agrega un controlador o módulo de E / S. La CPU utiliza la E / S programada sin interrupciones.
- 3. Se utiliza la misma configuración que en el paso 2, pero ahora se emplean las interrupciones. La CPU no necesita perder tiempo esperando a que se realice una operación de E / S, lo que aumenta la eficiencia.

- 4. El módulo de E / S tiene acceso directo a la memoria a través de DMA. Ahora puede mover un bloque de datos hacia o desde la memoria sin involucrar a la CPU, excepto al principio y al final de la transferencia.
- 5. El módulo de E / S se ha mejorado para convertirse en un procesador en si, con un conjunto de instrucciones especializadas adaptadas para E / S
- 6. El módulo de E / S tiene una memoria local propia y, de hecho, es un computador en si mismo. Con esta arquitectura, se puede controlar un gran conjunto de dispositivos de E / S con una participación mínima de la CPU.

Thunderbolt

- La tecnología de conexión periférica más reciente y más rápida estará disponible para uso general
- Desarrollado por Intel con la colaboración de Apple.
- La tecnología combina datos, video, audio y energía en una única conexión de alta velocidad para periféricos como discos duros, matrices RAID, cajas de captura de video e interfaces de red

InfiniBand

- Especificación de E / S dirigida al mercado de servidores de gama alta.
- La primera versión fue lanzada a principios de 2001
- Basado en la serie de mainframes IBM zEnterprise
- El estándar describe una arquitectura y especificaciones para el flujo de datos entre procesadores y dispositivos inteligentes de E / S
- Se ha convertido en una interfaz popular para redes de área de almacenamiento y otras configuraciones de almacenamiento grandes
- Permite la conexión de servidores, almacenamiento remoto y otros dispositivos de red en una estructura central de conmutadores y enlaces
- La arquitectura basada en conmutadores puede conectar hasta 64,000 servidores, sistemas de almacenamiento y dispositivos de red

⁺ Resumen

Capítulo 7

- Dispositivos Externos
 - teclado/monitor
 - Unidad de disco
- modulos E/S
 - Función
 - Estructura
- E/S Programada
- Acceso Directo a Memoria
 - Problemas de E/S programada y con Interupciones
 - función de DMA

Input/Output

- Interrupt-driven I/O
- Canales y procesadores E/S s
 - Evolución de la función de E / S
 - Thunderbolt
 - InfiniBand