SD 204 Linear Model

François Portier, Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Outline

Statistical hypothesis Test

Table of Contents

Statistical hypothesis Test
Definition
Linear regression test

General principle

Context

- We observe X_1, \ldots, X_n from a common distribution \mathcal{P}
- We are interested in $\theta \in \Theta$, a parameter of \mathcal{P}

Goal

To decide whether an assumption on θ is likely (or not)

$$\mathcal{H}_0 = \{\theta \in \Theta_0\}$$

against some alternative

$$\mathcal{H}_1 = \{\theta \in \Theta_1\}$$

Call \mathcal{H}_0 the null hypothesis, \mathcal{H}_1 : the alternative

General principle

Means

Determine a test statistic $T(X_1, \ldots, X_n)$ and a region R such that if

$$T(X_1,\ldots,X_n)\in R \implies \text{we reject } \mathcal{H}_0$$

In other words the observed data discriminates between H_0 and H_1

Hypothesis testing for "heads or tails"

When flipping a coin the model is a Bernoulli distribution with parameter p, $\mathcal{B}(p)$.

Is the coin fair?

$$\mathcal{H}_0 = \{ p = 0.5 \}$$
 against $\mathcal{H}_1 = \{ p \neq 0.5 \}$

Is the coin possibly unfair?

$$\mathcal{H}_0 = \{0.45 \leqslant p \leqslant 0.55\}$$
 against $\mathcal{H}_1 = \{p \notin [0.45, 0.55]\}$

Do we reject or do we accept?

In most practical situations, \mathcal{H}_0 is simple, i.e., $\Theta_0 = \{\theta_0\}$

and $\Theta_1 = \Theta \backslash \Theta_0$ is large

(\mathcal{H}_0 is often an hypothesis on which we care particularly, e.g., something acknowledged to be true, easy to formulate)

We only reject \mathcal{H}_0

If \mathcal{H}_0 is not rejected we cannot conclude \mathcal{H}_0 is true because \mathcal{H}_1 is too general

 $e.g., \{p \in [0, 0.5[\cup]0.5, 1]\}$ can not be rejected!

2 types of error

	\mathcal{H}_0	\mathcal{H}_1
\mathcal{H}_0 is not rejected	Correct	Wrong (False negative)
\mathcal{H}_0 is rejected	Wrong (False positive)	Correct

- ► Type I : probability of a wrong reject $\mathbb{P}(T(X_1,\ldots,X_n) \in R \mid \mathcal{H}_0)$
- ► Type II : probability of wrong non-reject $\mathbb{P}(T(X_1,\dots,X_n)\notin R\mid \mathcal{H}_1)$

Significance level and power

Significance level α if

$$\limsup_{n \to +\infty} \mathbb{P}(T(X_1, \dots, X_n) \in R \mid \mathcal{H}_0) \leq \alpha$$

(We speak of 95%-test when α is 0.05%)

Consistency

A test statistics (given by $T(X_1,\ldots,X_n)$ and a region R) is said to be α -consistent if the significant level is α and if the power goes to one, i.e.,

$$\lim_{n \to +\infty} \sup \mathbb{P}(T(X_1, \dots, X_n) \in R \mid \mathcal{H}_0) \leqslant \alpha$$

$$\lim_{n\to\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_1)=1$$

Test statistic and reject region

Goal : to build a α -consistent test

- (1) Define the test statistic $T(X_1,\ldots,X_n)$ and the level α you wish
- (2) Do some maths to determine a reject region R that achieves a significance level $\boldsymbol{\alpha}$
- (3) Prove the consistency
- (4) Rule decision : reject whenever $T_n(X_1, \dots, X_n) \in R$

Famous tests

- ▶ Test of the equality of the mean for 1 sample
- ► Test of the equality of the means between 2 samples
- Chi-square test for the variance
- Chi-square test of independence
- Regression coefficient non-effects test

Examples: "heads or tails"

- Model : $\Theta = [0,1]$, $\mathbb{P}_{\theta} = \mathcal{B}(\theta)$
- Observe (X_1, \ldots, X_n) i.i.d. from this model
- Null hypothesis $\mathcal{H}_0: \{\theta = 0.5\}$
- ▶ Define $T_n(X_1, ..., X_n) = \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i 0.5)$
- ► Critical region for T_n ? Gaussian quantile : Show that $\lim_{n\to\infty} \mathbb{P}(T_n \in [-1.96, 1.96] \mid \mathcal{H}_0) \to 0.95$
- ▶ Take $R =]-\infty, -1.96[\cup]1.96, +\infty[$

Exo:

Specify the procedure for an arbitrary significance level α

Example : Gaussian mean

- Model : $\Theta = \mathbb{R}$, $\mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$
- Observe (X_1, \ldots, X_n) i.i.d. from this model
- Null hypothesis : \mathcal{H}_0 : $\{\theta = 0\}$
- ▶ Under \mathcal{H}_0 , $T_n(X_1,\ldots,X_n) = \frac{1}{\sqrt{n}} \sum_i X_i \sim \mathcal{N}(0,1)$
- Critical region for T_n ? Gaussian quantile : $\mathbb{P}(T_n \in [-1.96, 1.96] \mid \mathcal{H}_0) = 0.95$
- ► Take $R =]-\infty, -1.96[\cup]1.96, +\infty[.$
- Numerical example : If $T_n=1.5$, we do not reject \mathcal{H}_0 at level 95%

Test of no-effect: Gaussian case

Gaussian Model
$$y_i = \theta_0^\star + \sum_{k=1}^p \theta_k^\star x_{i,k} + \varepsilon_i$$

$$x_i^\top = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1} \text{ (deterministic)}$$

$$\varepsilon_i \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2), \text{ for } i = 1, \dots, n$$

Theorem

Let
$$X = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times (p+1)}$$
 of full rank, and $\hat{\sigma}^2 = \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2/(n - (p+1))$, then
$$\hat{T}_j = \frac{\hat{\theta}_j - \theta_j^*}{\hat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

where \mathcal{T}_{n-p} est une loi dite de Student (de degré n-(p+1))

Test of no-effect: Gaussian case

Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_i^* = 0$$

equivalently, $\Theta_0 = \{\theta \in \mathbb{R}^p : \theta_i = 0\}$

Under \mathcal{H}_0 , we know the value of \hat{T}_j :

$$T_j := \frac{\hat{\theta}_j}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

Choosing $R = [-t_{1-\alpha/2}, t_{1-\alpha/2}]^c$ with $t_{1-\alpha/2}$ the $1 - \alpha/2$ -quantile of $\mathcal{T}_{n-(p+1)}$), we decide to reject \mathcal{H}_0 whenever

$$|\hat{T}_j| > t_{1-\alpha/2}$$

Test of no-effect: Random-design case

Random design Model
$$y_i = \theta_0^\star + \sum_{k=1}^p \theta_k^\star \mathbf{x}_{i,k} + \varepsilon_i$$

$$\mathbf{x}_i^\top = (1,\mathbf{x}_{i,1},\ldots,\mathbf{x}_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_i,\mathbf{x}_i) \overset{i.i.d}{\sim} (\varepsilon,\mathbf{x}), \text{ for } i=1,\ldots,n$$

$$\mathbb{E}(\varepsilon|\mathbf{x}) = 0, \operatorname{Var}(\epsilon|\mathbf{x}) = \sigma^2$$

Theorem

If $var(\mathbf{x})$ has full rank, then

$$\hat{T}_j = \frac{\hat{\theta}_j - \theta_j^*}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1)$$

Test of no-effect: Random design case

Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_j^* = 0$$

equivalently, $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_i = 0 \}$

Under \mathcal{H}_0 , we know the value of \hat{T}_i :

$$T_j := \frac{\hat{\theta}_j}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \xrightarrow{\mathsf{d}} \mathcal{N}(0,1)$$

Choosing $R=[-z_{1-\alpha/2},z_{1-\alpha/2}]^c$ with $z_{1-\alpha/2}$ the $1-\alpha/2$ -quantile of $\mathcal{N}(0,1)$), we decide to reject \mathcal{H}_0 whenever

$$|\hat{T}_j| > z_{1-\alpha/2}$$

Link between IC and test

Reminder (Gaussian model):

$$IC_{\alpha} := \left[\hat{\theta}_j - t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^{\top}X)_{j,j}^{-1}}, \hat{\theta}_j + t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^{\top}X)_{j,j}^{-1}} \right]$$

is a CI at level α for θ_i^* . Stating " $0 \in IC_{\alpha}$ " means

$$|\hat{\theta}_j| \leqslant t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\hat{\theta}_j|}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \leqslant t_{1-\alpha/2}$$

It is equivalent to accepting the hypothesis $\theta_j^* = 0$ at level α . The smallest α such that $0 \in IC_{\alpha}$ is called the *p*-value.

Rem: Taking α close to zero IC_{α} covers the full space, hence one can find (by continuity) an α achieving equality in the aforementioned equations.

Table of Contents

Statistical hypothesis Test

ROC Curve
Presentation
Examples

Medical context

- A group of patients $i=1,\ldots,n$ is followed for disease screening.
- For each individual, the test relies on a random variable $X_i \in \mathbb{R}$ and a threshold $q \in \mathbb{R}$

as soon as $X_i>q$ the test is **positive** o.w. the test is **negative**

Set of possible configura	ations
---------------------------	--------

	Normal H_0	Sick H_1
negative	true negative	false negative
positive	false positive	true positive

Sensitivity - Specificity

- ullet Assumption : Normal individuals have the same c.d.f. F
- Assumption : Sick individual have the same c.d.f G

Definition

- Sensitivity : Se(q) = 1 G(q) (1- type 2^{nde} error)
- Specificity : Sp(q) = F(q) (1- type 1^{re} error)

ROC curve

Definition

The ROC curve is the curve described by $(1 - \operatorname{Sp}(q), \operatorname{Se}(q))$, when $q \in \mathbb{R}$. Hence, it is the function $[0,1] \to [0,1]$ $\operatorname{ROC}(t) = 1 - G(F^-(1-t))$

where
$$F^{-}(1-t) = \inf\{x \in \mathbb{R} : F(x) \ge 1-t\}.$$

ROC curves for bi-normal case

- ▶ F and G are Gaussian with parameter μ_0, σ_0 and μ_1, σ_1 , respectively.
- Here $\mu_0 = 0$, $\sigma_0 = \sigma_1 = 1$, and μ_1 varies

Estimation—application

ROC curve estimation

- Maximum likelihood
- Non-parametric
- Bayesian with latent variables
- Estimation of the area under the ROC curve (AUC)

Application

- ► To compare different statistic tests
- ► To compare different (supervised) learning algorithm
- ► To compare variable selection methods (*e.g.*,Lasso, OMP, etc.)

nb : ROC = Receiver Operating Characteristic