Práctica Dirigida 2 Análisis y Modelamiento Numérico I B

Jimenez Chacon Joel Vásquez Levano Diego López Flores Royer Amed Parishuaña Ortega Jorge Luis Lique Lamas Alexander Leonardo

2021-1

May 5, 2021

PD2 Problema 1

Determine el Landau de las funciones siguentes:

- a) $\frac{1}{n^2}$
- **▶** b) *cos*(*n*)
- ightharpoonup c) $sin(\frac{x}{n})$
- ightharpoonup d) $\sqrt{n+1} \sqrt{n}$

Solución Sabemos por teoría realizada en clase que en la notacion Landau existen 2 maneras de comparar sucesiones dichas son "Big oh" y "little oh",sin embargo nuestro profesor aclaró que para comparar 2 sucesiones es mas utilizada "Big oh", segun lo anterior pasamos a la resolucion de los items. **Definicion**

Sean $\{x_n\}$ y $\{y_n\}$ succesiones de números reales. Diremos que $\{x_n\}$ es "Big Oh" de $\{y_n\}$ y escribiremos $\{x_n\}=O(\{x_n\})$ si existen C y n_0 tales que

$$|x_n| \leq C|y_n|, \forall_n \geq n_0$$

Podemos mandar $|y_n|$ a dividir , tendríamos $\frac{|x_n|}{|y_n|} \le C$ y tendriamos a C como cota superior.

En el problema debemos encontrar una funcion Y_n con la cual comparar luego hallar la constante C y n_0 .

Item a
$$x_n = \frac{1}{n^2}$$
 ahora sea $y_n = \frac{1}{n}$

$$\frac{x_n}{y_n} = \frac{\frac{1}{n^2}}{\frac{1}{n}} = \frac{1}{n} \le 1 \Rightarrow C = 1$$

nos podemos dar cuenta que para se cumple para n>0 por lo tanto podemos decir que $n_0=0$, finalmente siguiendo la notación de Landau tendríamos:

$$\frac{1}{n^2} = O\left(\frac{1}{n}\right) \text{ con } C = 1 \text{ y } n_0 = 0.$$

Item B

$$X_n = cos(n)$$
 ahora sea $y_n = \frac{1}{cos(n)}$

$$\frac{x_n}{y_n} = \frac{\frac{\cos(n)}{1}}{\frac{1}{\cos(n)}} = \cos(n)^2 \le C \Rightarrow C = 1$$

nos podemos dar cuenta que para se cumple para n>0 por lo tanto podemos decir que $n_0=0$, finalmente siguiendo la notacion de Landau tendríamos:

$$cos(n) = O\left(\frac{1}{cos(n)}\right) con C = 1 y n_0 = 0.$$

Item C
$$x_n = \operatorname{sen}\left(\frac{x}{n}\right) \text{ ahora sea } y_n = \frac{1}{\operatorname{sen}\left(\frac{x}{n}\right)}.$$

$$\frac{x_n}{y_n} = \frac{\operatorname{sen}\left(\frac{x}{n}\right)}{\frac{1}{\operatorname{sen}\left(\frac{x}{n}\right)}} = \operatorname{sen}\left(\frac{x}{n}\right)^2 \le \operatorname{sen}(x)^2 \le 1 \Rightarrow C = 1$$

nos podemos dar cuenta que para se cumple para n>0 por lo tanto podemos decir que $n_0=0$, finalmente siguiendo la notación de Landau tendríamos:

$$sen\left(\frac{x}{n}\right) = O\left(\frac{1}{sen\left(\frac{x}{n}\right)}\right) con C = 1 y n_0 = 0.$$

Item D
$$x_n = \sqrt{n+1} - \sqrt{n} \text{ ahora sea } y_n = \sqrt{(n+1)}^2 - \sqrt{n}^2$$

$$\frac{x_n}{y_n} = \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{(n+1)}^2 - \sqrt{n}^2} = \frac{\sqrt{n+1} - \sqrt{n}}{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

$$\frac{1}{\sqrt{n+1} + \sqrt{n}} \le \frac{1}{\sqrt{n}} \le \frac{1}{n} \le 1 \Rightarrow C = 1$$

nos podemos dar cuenta que para se cumple para n>1 por lo tanto podemos decir que $n_0=1$, finalmente siguiendo la notacion de Landau tendríamos:

$$\sqrt{(n+1)} - \sqrt{n} = O(\sqrt{(n+1)}^2 - \sqrt{n}^2) = O(1) \text{ con } C = 1 \text{ y } n_0 = 1.$$

Un fabricante de bombillas gana 0.3 dolares por cada bombilla que sale de la fábrica, pero pierde 0.4 dolares por cada una que sale defectuosa. Un día en el que fabrico 2100 bombillas obtuvo un beneficio de 484.4 dolares. Determine el número de bombillas buenas y defectuosas según el requerimiento siguiente:

a) Modele el problema:

Sea x_1 y x_2 el numero de bombillas no defectuosas y defectuosas respectivamente.

Tenemos las dos ecuaciones:

$$x_1 + x_2 = 2100$$

 $0.3x_1 + 0.4x_2 = 484.4$
 $Ax = b$

 \Rightarrow

$$\begin{pmatrix} 1 & 1 \\ 0.3 & -0.4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2100 \\ 484.4 \end{pmatrix} \rightarrow A^{-1} = \begin{pmatrix} 4/7 & 10/7 \\ 3/7 & -10/7 \end{pmatrix}$$

Tenemos que $x_1 = 892$ y $x_2 = 208$

b)Calcular la norma matricial de A

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

$$= \max(|1| + |1|, |0.3| + |-0.4|)$$

$$= \max(2, 0.7)$$

$$||A||_{\infty} = 2$$

c) Determine el numero de condicionamiento de A

$$||A||_{\infty} = 2$$

 $||A^{-1}||_{\infty} = 2$
 $k(A) = ||A^{-1}||||A||$
 $k(A) = 4$

d) Indique si el problema esta bien o mal condicionado Podemos decir que esta mal condicionado dado que nuestro k(A) es mayor a 1.

La edad de Manuel es el doble de la edad de su hija Ana. Hace diez años, la suma de las edades de ambos era igual a la edad actual de Manuel. Determine la edad de ambos según el requerimiento siguiente.

- a) Modele el problema.
- ▶ b) Determine la norma matricial de $A y A^{-1}$.
- c) Determine el condicionamiento de A.
- d) Resolver el sistema usando el método de Gauss-Jordan.

1. Modelamiento tenemos la edad del padre como x y este es el doble de la edad de la hija.

$$x = 2y$$

adicionalmente hace 10 años la suma de ambos es:

$$x - 10 + 2y - 10 = x$$

si lo llevamos a una matriz llamada A

$$A = \begin{pmatrix} 1 & -2 \\ 0 & 2 \end{pmatrix}$$

2. Calcular la norma de A e A^{-1} primero calculamos la inversa de la matrix A. al ser una matrix de 2x2 la inversa esta dada por A^{-1}

$$A^{-1} = \begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & \frac{1}{2} \end{pmatrix}$$

ahora la norma de
$$A$$
 y A^{-1} usando $||A||_\infty=\max_{1\leq i\leq n}\ \sum_{j=1}^n|a_{ij}|$
$$||A||_\infty:$$

$$1\ era\ fila: |1|+|-2|=3$$

$$2 \ da \ fila: |0|+|2|=2$$
 $||A^{-1}||_{\infty}:$ $1 \ era \ fila: |1|+|1|=2$ $2 \ da \ fila: |0|+|rac{1}{2}|=rac{1}{2}$

Entonces ||A|| y $||A^{-1}||$ son 3 y 2 respectivamente.

3. Nos piden el número de condicionamiento es: $||A||^*||A^{-1}||=3^*2=6$ como el número de condicionamiento es mayor a 1 entonces el problema esta mal condicionado.

4. Aplicando Gauss Jordan: usamos la matriz aumentada

$$\begin{pmatrix}
1 & -2 & | & 0 \\
0 & 2 & | & 20
\end{pmatrix}$$

sumamos la F2 ala F1:

$$\begin{pmatrix}
1 & 0 & | & 20 \\
0 & 2 & | & 20
\end{pmatrix}$$

a la F2 le multiplicamos $\frac{1}{2}$

$$\begin{pmatrix}
1 & 0 & | & 20 \\
0 & 1 & | & 10
\end{pmatrix}$$

entonces la edad del padre es 20 y la la hija 10.

Calcular el numero de condición de cada matriz para N = 8,12,14

$$\begin{pmatrix} 2 & -1 & 0 & & & 0 \\ -1 & 2 & -1 & 0 & & & \\ 0 & -1 & \dots & \dots & & & \\ & & \dots & \dots & -1 & 0 \\ & & & -1 & 2 & -1 \\ 0 & & & 0 & -1 & 2 \end{pmatrix}_{NXN}$$

Tenemos la expresión para el numero de condición:

$$k(A) = ||A|| \, ||A^{-1}||$$

$$= ||A|| \, ||det(A)^{-1}Adj(A)||$$

$$= det(A)^{-1}||A|| \, ||Adj(A)||$$

Podemos notar la expresión recursiva para la matriz:

$$A_{n} = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 \\ 0 & -1 & & & & \\ 0 & 0 & & A_{n-2} & & \\ 0 & 0 & & & & \end{pmatrix}_{n \times n} A_{2} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} A_{1} = (2)$$

Podemos apreciar el calculo del determinante: $det(A_1) = 2 \ det(A_2) = 3$:

$$det(A_n) = 2(det(A_{n-1})) - (-1)(-1)(det(A_{n-2}))$$

= 2(det(A_{n-1})) - det(A_{n-2})

Se puede notar que:

$$det(A_n) = n + 1$$

Al ser una matriz simetrica se cumple Adj(A) = Cof(A)

Al ser una matriz por bloques triangular Inferior, y la matriz bloque central una matriz cuadrada triangular inferior, definiendo $det(A_0) = 1$ se tiene para $i \geq j$:

$$c_{ij} = (-1)^{i+j} (det(A_{j-1})) (det(A_{n-i})) (-1)^{n-1-(n-i+j-1)}$$

= $det(A_{j-1}) det(A_{n-i})$

Como $Adj(A_n) = Cof(A_n)$ por la simetria sea un elemento de $Adj(A_n)$: $a_{ij}^* = c_{ij}, \ c_{ij} = det(A_{j-1})det(A_{n-i}), \ i \geq j$ y que $det(A_n) = n+1$ Se usara la norma: $||Adj(A_n)||_{\infty} = max_{1 \leq i \leq n} \ \sum_{j=1}^n |a_{ij}^*|$ Como todos los $a_{ii}^* > 0$

$$\begin{split} \sum_{j=1}^{n} a_{ij}^{*} &= \sum_{j=1}^{i-1} det(A_{j-1}) det(A_{n-i}) + \sum_{k=1}^{n-i} det(A_{i-1}) det(A_{k-1}) \\ &+ det(A_{i-1}) det(A_{n-i}) \\ &= \sum_{j=1}^{i-1} (j)(n-i+1) + \sum_{j=1}^{n-i} (i)(k) + i(n-i+1) \\ &= (n-i+1)(i)(i-1)/2 + i(n-i)(n-i+1)/2 + i(n-i+1) \\ &= (n-i+1)(i)(n+1)/2 \end{split}$$

Para n par, podemos maximizar con i = n/2

$$||Adj(A_n)|| = (n/2 + 1)(n)(n + 1)/4$$

Es evidente que con la matriz:

$$\begin{pmatrix} 2 & -1 & 0 & & & 0 \\ -1 & 2 & -1 & 0 & & & \\ 0 & -1 & \dots & \dots & & & \\ & & \dots & \dots & -1 & 0 \\ & & & -1 & 2 & -1 \\ 0 & & & 0 & -1 & 2 \end{pmatrix}_{NXN}$$

$$||A_{g}||_{\infty} = 4$$

Finalmente el numero de condicionamiento sera:

$$egin{aligned} k(A_n) &= \det(A_n)^{-1} ||A_n|| ||A_n^{-1}|| \ &= rac{(4)(n)(n+1)(n/2+1)}{(n+1)4} \ k(A_n) &= n(n/2+1) \quad \textit{Para n Par} \end{aligned}$$

Finalmente para N = 8, 12, 14 tenemos:

$$k(A_n) = n(n/2+1)$$

$$k(A_8) = 8(5) = 40$$

 $k(A_{12}) = 12(7) = 84$
 $k(A_{14}) = 14(8) = 112$

PD2 Problema 13

Calcular el numero de condición de cada matriz para N = 8,12,14 Definimos la matriz A_n para evitar usar fracciones.

$$B_n = \frac{1}{3}A_n = \frac{1}{3} \begin{pmatrix} 16 & -8 & 0 & & & & 0 \\ -8 & 14 & -8 & 1 & & & & \\ 0 & -8 & 16 & -8 & & & & \\ & 1 & -8 & 14 & -8 & 1 & & 0 \\ & & & & \ddots & & & 0 \\ 0 & & & 0 & & & & \end{pmatrix}_{NXN}$$

Tenemos la expresión para el numero de condición:

$$k(B) = ||B|| ||B^{-1}||$$

$$= ||1/3A||||3A^{-1}||$$

$$= det(A)^{-1}||A|| ||Adj(A)||$$

Notar que :

$$||A||_{\infty} = 32$$

Para N par podemos definir la matriz por recursión:

$$A_{n} = \begin{pmatrix} 16 & -8 & 0 & 0 \\ -8 & & & & \\ 0 & & A_{n-1}^{*} & & \\ 0 & & & & \\ \end{pmatrix} \quad A_{n-1}^{*} = \begin{pmatrix} 14 & -8 & 1 & 0 \\ -8 & & & \\ 1 & & & A_{n-2} & \\ 0 & & & & \\ \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} 16 & -8 \\ -8 & 14 \end{pmatrix} \quad A_{3}^{*} = \begin{pmatrix} 14 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 16 \end{pmatrix}$$

Calculando determinante se obtiene las expresiónes recursivas:

$$det(A_n) = 16det(A_{n-1}^*) - 64det(A_{n-2})$$

$$det(A_{n-1}^*) = 14det(A_{n-2}) + 112det(A_{n-4}) - 64det(A_{n-3}^*)$$

$$det(A_2) = 160$$

$$det(A_3^*) = 1456$$

Podemos calcular la determinante para los N pares:

$$det(A_2) = 160$$

$$det(A_4) = 13056$$

$$det(A_6) = 884736$$

$$det(A_8) = 54853632$$

$$det(A_{10}) = 3227516928$$

$$det(A_{12}) = 183458856960$$

$$det(A_{14}) = 10175851266048$$

Calculando norma de Adjuntas N = 8:

$$Adj(A_8) = \begin{pmatrix} 6967296 & 7077888 & 6045696 & 5013504 & 3981312 & 2949120 & 1916928 & 884736 \\ 7077888 & 14155776 & 12091392 & 10027008 & 7962624 & 5898240 & 3833856 & 1769472 \\ 6045696 & 12091392 & 16994304 & 15040512 & 11943936 & 8847360 & 5750784 & 2654208 \\ 5013504 & 10027008 & 15040512 & 20054016 & 15925248 & 11796480 & 7667712 & 3538944 \\ 3981312 & 7962624 & 11943936 & 15925248 & 18763776 & 14745600 & 9584640 & 4423680 \\ 2949120 & 5898240 & 8847360 & 11796480 & 14745600 & 17694720 & 11501568 & 5308416 & > 78741504 \\ 1916928 & 3833856 & 5750784 & 7667712 & 9584640 & 11501568 & 12275712 & 6193152 \\ 884736 & 1769472 & 2654208 & 3538944 & 4423680 & 5308416 & 6193152 & 7077888 \end{pmatrix} = > 31850496$$

Finalmente tenemos

$$||Adj(A_8)||_{\infty} = 89063424$$

Calculando norma de Adjuntas N=12:

1	24376246272	25820135424	23441965056	21063794688	18685624320	16307453952	13929283584	11551113216	9172942848	6794772480	4416602112	2038431744	١
1	25820135424	51640270848	46883930112	42127589376	37371248640	32614907904	27858567168	23102226432	18345885696	13589544960	8833204224	4076863488	l
l	23441965056	46883930112	66503835648	63191384064	56056872960	48922361856	41787850752	34653339648	27518828544	20384317440	13249806336	6115295232	l
İ	21063794688	42127589376	63191384064	84255178752	74742497280	65229815808	55717134336	46204452864	36691771392	27179089920	17666408448	8153726976	I
ı	18685624320	37371248640	56056872960	74742497280	89606062080	81537269760	69646417920	57755566080	45864714240	33973862400	22083010560	10192158720	l
	16307453952	32614907904	48922361856	65229815808	81537269760	97844723712	83575701504	69306679296	55037657088	40768634880	26499612672	12230590464	l
ı	13929283584	27858567168	41787850752	55717134336	69646417920	83575701504	93682925568	80857792512	64210599936	47563407360	30916214784	14269022208	l
ı	11551113216	23102226432	34653339648	46204452864	57755566080	69306679296	80857792512	92408905728	73383542784	54358179840	35332816896	16307453952	l
l	9172942848	18345885696	27518828544	36691771392	45864714240	55037657088	64210599936	73383542784	78734426112	61152952320	39749419008	18345885696	l
l	6794772480	13589544960	20384317440	27179089920	33973862400	40768634880	47563407360	54358179840	61152952320	67947724800	44166021120	20384317440	l
1	4416602112	8833204224	13249806336	17666408448	22083010560	26499612672	30916214784	35332816896	39749419008	44166021120	44760563712	22422749184	I
1	2038431744	4076863488	6115295232	8153726976	10192158720	12230590464	14269022208	16307453952	18345885696	20384317440	22422749184	24461180928	l

Finalmente tenemos

$$||Adj(A_{12})||_{\infty} = 629875408896$$

Calculando norma de Adjuntas N = 14:

/ 1369826131968	1467670855680	1353518678016	1239366500352	1125214322688	1011062145024	896909967360	782757789696	668605612032	554453434368	440301256704	326149079040	211996901376	97844723712 \
1467670855680	2935341711360	2707037356032	2478733000704	2250428645376	2022124290048	1793819934720	1565515579392	1337211224064	1108906868736	880602513408	652298158080	423993802752	195689447424
1353518678016	2707037356032	3848559132672	3718099501056	3375642968064	3033186435072	2690729902080	2348273369088	2005816836096	1663360303104	1320903770112	978447237120	635990704128	293534171136
1239366500352	2478733000704	3718099501056	4957466001408	4500857290752	4044248580096	3587639869440	3131031158784	2674422448128	2217813737472	1761205026816	1304596316160	847987605504	391378894848
1125214322688	2250428645376	3375642968064	4500857290752	5414074712064	5055310725120	4484549836800	3913788948480	3343028060160	2772267171840	2201506283520	1630745395200	1059984506880	489223618560
1011062145024	2022124290048	3033186435072	4044248580096	5055310725120	6066372870144	5381459804160	4696546738176	4011633672192	3326720606208	2641807540224	1956894474240	1271981408256	587068342272
896909967360	1793819934720	2690729902080	3587639869440	4484549836800	5381459804160	6066372870144	5479304527872	4680239284224	3881174040576	3082108796928	2283043553280	1483978309632	684913065984
782757789696	1565515579392	2348273369088	3131031158784	3913788948480	4696546738176	5479304527872	6262062317568	5348844896256	4435627474944	3522410053632	2609192632320	1695975211008	782757789696
668605612032	1337211224064	2005816836096	2674422448128	3343028060160	4011633672192	4680239284224	5348844896256	5805453606912	4990080909312	3962711310336	2935341711360	1907972112384	880602513408
554453434368	1108906868736	1663360303104	2217813737472	2772267171840	3326720606208	3881174040576	4435627474944	4990080909312	5544534343680	4403012567040	3261490790400	2119969013760	978447237120
440301256704	880602513408	1320903770112	1761205026816	2201506283520	2641807540224	3082108796928	3522410053632	3962711310336	4403012567040	4631316922368	3587639869440	2331965915136	1076291960832
326149079040	652298158080	978447237120	1304596316160	1630745395200	1956894474240	2283043553280	2609192632320	2935341711360	3261490790400	3587639869440	3913788948480	2543962816512	1174136684544
211996901376	423993802752	635990704128	847987605504	1059984506880	1271981408256	1483978309632	1695975211008	1907972112384	2119969013760	2331965915136	2543962816512	2543962816512	1271981408256
97844723712	195689447424	293534171136	391378894848	489223618560	587068342272	684913065984	782757789696	880602513408	978447237120	1076291960832	1174136684544	1271981408256	1369826131968

 $^{45106417631232}_{46476243763200}$ Finalmente tenemos $||Adj(A_{14})||_{\infty}=46574088486912$

Calculo final del numero de condición:

$$\kappa(B_8) = ||A_8|| ||adj(A_8)||/det(A_8)$$
= 32 * 89063424/54853632
= 51.957

$$\kappa(B_{12}) = ||A_{12}||||adj(A_{12})||/det(A_{12})$$
= 32 * 629875408896/183458856960
= 109.867

$$\kappa(B_{14}) = ||A_{14}||||adj(A_{14})||/det(A_{14})$$

$$= 32 * 46574088486912/10175851266048$$

$$= 146.462$$