Physik	# 1	Mechanik	Physik	# 2	Mechanik	Physik	# 3	Mechanik	Physik	# 4	Mechanik
	Beschleunigung –	Weg		Beschleunigung –	Kraft		Haftreibung			Gleitreibung	
Physik	# 5	Mechanik	Physik	# 6	Mechanik	Physik	# 7	Mechanik	Physik	# 8	Mechanik
На	aftreibung – Schiefe	e Ebene		Leistung			Wirkungsgrad	d		Radialbeschleuni	gung
DI -:	// 0	M	DI di	// 10	M	DI '	" 11	N. A. I	DI VI	W 10	M) :1
Physik	# 9	Mechanik	Physik	# 10	Mechanik	Physik	# 11	Mechanik	Physik	# 12	Mechanik
	Arbeit			potentielle Ene	rgie		kinteische Ener	gie		Kreisfrequen:	Z
Physik	# 13	Mechanik	Physik	# 14	Mechanik	Physik	# 15	Mechanik	Physik	# 16	Mechanik
Kreisfrequenz Hook'sche Feder			ł	narmonische Schwi Beschleunigui	ingung: ng		harmonische Schwir Geschwindigke			harmonische Schwi Auslenkung	

$egin{array}{c} egin{array}{c} egin{array}{c} eta_G \ eta_N \end{array} \end{array}$	Gleitreibungskonstante	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$			$x = \frac{1}{2} \cdot a \cdot t^2$ $[\mathbf{m} = \frac{\mathbf{m}}{\mathbf{s}^2} \cdot \mathbf{s}^2]$		$F = m \cdot a$ $[N = kg \cdot \frac{m}{s^2}]$
# 8	Antwort	# 7	Antwort	<u># 6</u>	Antwort	<u># 5</u>	Antwort
	$a = \frac{v^2}{r}$ $\left[\frac{m}{s^2} = \frac{\frac{m^2}{s^2}}{m}\right]$		$\eta = \frac{P_{out}}{P_{in}}$		$P = F \cdot v$ $\left[W = N \cdot \frac{m}{s} \right]$ $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$		$\mu_H = \tan \alpha$
# 12	Antwort	# 11	Antwort	<u># 10</u>	Antwort	<u># 9</u>	Antwort
T: Kreis	$\omega = \frac{2\pi}{T}$ $\left[s^{-1} = \frac{\text{rad}}{s}\right]$ isfrequenz (Umlaufzeit)		$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$ $\left[J = kg \cdot \frac{m^2}{s^2} \right]$		$E_{pot} = m \cdot g \cdot h$ $\left[J = kg \cdot \frac{m}{s^2} \cdot m \right]$ $= kg \frac{m^2}{s^2}$		$W = F \cdot s$ $\begin{bmatrix} J = N \cdot m \\ = kg \frac{m}{s^2} \cdot m \\ = kg \frac{m^2}{s^2} \end{bmatrix}$
<u># 16</u>	Antwort	# 15	Antwort	<u># 14</u>	Antwort	<u># 13</u>	Antwort
	$y(t) = y_0 \cdot \sin \omega t$		$v(t) = \omega \cdot y_0 \cdot \cos \omega t$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m}\right]$		$= -\omega^2 \cdot y_0 \cdot \sin \omega t = -\omega^2 \cdot y(t)$ $= s^{-2} \cdot m$	D: Federl	$\omega = \sqrt{\frac{D}{m}}$ $\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$ konstante

2

Antwort

1

Antwort

4

Antwort

3

Antwort

Physik	# 17	Mechanik	Physik	# 18	Mechanik	Physik	# 19	Mechanik	Physik	# 20	Mechanik
potentielle Energie Hook'sche Feder			Kraft Hook'sche Feder			Inelastischer Stoß			Elastischer Stoß		
Physik	# 21	Mechanik	Physik	# 22	Mechanik	Physik	# 23	Mechanik	Physik	# 24	Mechanik
	Drehimpuls		Kinetis	che Energie Dre	ehbewegung		Impuls		Kre	eisfrequenz Fade	npendel
Physik	# 25	Mechanik	Physik	# 26	Mechanik	Physik	# 27	Mechanik	Physik	# 28	Mechanik
	Trägheitsmoment St Stabende	ab um	Trä	gheitsmoment S Schwerpunk	Stab um t	Trägl	neitsmoment Vol	llzylinder	Trägl	neitsmoment Ho	hlzylinder
Physik	# 29	Mechanik	Physik	# 30	Mechanik	Physik	# 31	Mechanik	Physik	# 32	Mechanik
	Transformation Geschwindigkeit Winkelgeschwindig	5 —	Tì	ägheitsmoment	Kugel	Trä	gheitsmoment S Stabende	tab um		Leistung Transla	ation

# 20	Antwort	# 19	Antwort	# 18	Antwort	# 17	Antwort
	$\frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$ $\frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$		$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$		$F = D \cdot x$ $\left[N = \frac{N}{m} \cdot m \right]$		$W = \frac{1}{2} \cdot D \cdot x^2 = E_{pot}$ $\left[J = \frac{N}{m} m^2 \right]$ $= \frac{kg \frac{m}{s^2}}{m} \cdot m^2$ $= kg \frac{m^2}{s^2}$
# 24	Antwort	# 23	Antwort	# 22	Antwort	<u># 21</u>	Antwort
	$\omega = \sqrt{\frac{g}{l}}$ $^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}$ $= \sqrt{s^{-2}} = s^{-1}$		$p = m \cdot v$ $\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}}\right]$		$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^{2}$ $\left[J = \text{kg m}^{2} \cdot \text{s}^{-2} \right]$ $= \text{kg} \frac{\text{m}^{2}}{\text{s}^{2}}$	1	$L = \vartheta \cdot \omega$ $\left[\text{N m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$ $\text{kg} \frac{\text{m}}{\text{s}^2} \text{m s} = \text{kg} \frac{\text{m}^2}{\text{s}}$ $\text{kg} \frac{\text{m}^2}{\text{s}} = \text{kg} \frac{\text{m}^2}{\text{s}}$
<u># 28</u>	Antwort	# 27	Antwort	<u># 26</u>	Antwort	# 25	Antwort
	$\vartheta = m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$	r: Durchm	$\vartheta = \frac{1}{2} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ nesser des Zylinders	l: Länge	$\vartheta = \frac{1}{12} \cdot m \cdot l^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$ des homogenen Stabes	l: Länge o	$\vartheta = rac{1}{3} \cdot m \cdot l^2$ $\left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{kg} \cdot \mathrm{m}^2 \right]$ des homogenen Stabes
# 32	Antwort	# 31	Antwort	<u># 30</u>	Antwort	<u># 29</u>	Antwort
[w]	$P = F \cdot v = M \cdot \omega$ $V = N \cdot \frac{m}{s} = Nm \cdot s^{-1}$ $\frac{d}{ds} = kg \frac{m}{s^2} \cdot \frac{m}{s}$		$\vartheta = \frac{1}{3} \cdot m \cdot L^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$\vartheta = \frac{2}{5} \cdot m \cdot r^2$ $\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$		$v = r \cdot \omega$ $\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1} \right]$

Physik	# 33	Mechanik	Physik	# 34	Mechanik	Physik	# 35	Mechanik	Physik	# 36	Mechanik
	Drehmoment		Krei	sfrequenz Drehso	chwingung	Rückste	ellmoment Dreh	$\operatorname{schwingung}$	P	räzessionsfreq	uenz
Physik	# 37	Mechanik	Physik	# 38	Mechanik	Physik	# 39	Mechanik	Physik	# 40	Mechanik
	Satz von Steine			Gravitationkons			${f Gravitations pote}$			Energie Grav	
Physik	# 41	Mechanik	Physik	# 42	Mechanik	Physik	# 43	Mechanik	Physik	# 44	Mechanik
	Gravitationfeldst	ärke		Gravitationski	raft	Erhalt	ungssätze der k Physik	dassischen		Corioliskraf	t
Physik	# 45	Mechanik	Physik	# 46	Mechanik	Physik	# 47	Mechanik	Nutzungshinwe	is # 48	Lizenz
	Keplersche Gese	tze		Planet auf Kreis	bahn	Gebur	ndener und ung Zustand	ebundener	Hinweise zur Nutzung dies Karteilernkarten: Die Karten wurden von allen Beteiligten nach bestem Wissen Gewissen erstellt, für Fehlerfreil und Klausurgelingen kann abe keine Garantie gegeben werder		

# 36	Antwort	# 35	Antwort	# 34	Antwort	# 33	Antwort		
	$\omega_p = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_r}$ $\left[s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{\text{kg m}^2 \cdot s^{-1}} \right]$		$M=-D_{arphi}\cdotarphi$ $[\mathrm{Nm}=\mathrm{Nm}?]$ Forsionsfederkonstante Verdrillungswinkel		$\omega = \sqrt{\frac{D}{\vartheta}}$ $\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\text{kg m}^2}}\right]$		$M = F \cdot r$ $\left[\text{Nm} = \text{N} \cdot \text{m} \right]$		
# 40	Antwort	# 39	Antwort	# 38	Antwort	<u># 37</u>	Antwort		
	$E_{\text{pot}} = -\frac{\gamma \cdot m_1 \cdot m_2}{r}$ $\left[J = \frac{\frac{N \text{ m}^2}{\text{kg}^2} \cdot \text{kg} \cdot \text{kg}}{\text{m}} \right]$ $= \text{Nm}$		$\begin{split} \varphi &= -\frac{\gamma \cdot m}{r} \\ \left[\frac{m^2}{s^2} &= \frac{\frac{N m^2}{kg^2} \cdot kg}{m} \\ &= N \frac{m}{kg} = kg \frac{m}{s^2} \frac{m}{kg} \right] \end{split}$		$\gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$	ϑ	$\vartheta = m \cdot a^2 + \vartheta_{\mathrm{SP}}$ $\left[\mathrm{kg} \ \mathrm{m}^2 = \mathrm{m}^2 \cdot \mathrm{kg} + \mathrm{kg} \ \mathrm{m}^2 \right]$ Trägheitsmoment durch Schwerpunkt Trägheitsmoment durch neue Achse, $\parallel \mathrm{zur} \ \mathrm{Achse} \ \mathrm{von} \ \vartheta_{\mathrm{SP}}$ Abstand der beiden Achsen		
# 44	Antwort	# 43	Antwort	# 42	Antwort	<u># 41</u>	Antwort		
v_{\perp} : C	$F_{\rm C} = m \cdot a_{\rm c} = 2 \cdot m \cdot v_{\perp} \cdot \omega$ $\left[N = {\rm kg} \cdot \frac{{\rm m}}{{\rm s}^2} = {\rm kg} \cdot \frac{{\rm m}}{{\rm s}} \cdot {\rm s}^{-1} \right]$ Coriolisbeschleunigung Geschwindigkeit des Körpers, rel. um rotierenden Bezugssystem Vinkelgeschwindigkeit Bezugssystem				$F_G = -\gamma \cdot \frac{m_1 m_2}{r^2}$ $\left[N = \frac{\text{N m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right]$	m M :	$g = -\frac{\gamma \cdot M}{r^2}$ $\left[\frac{m}{s^2} = \frac{\frac{N m^2}{kg^2} \cdot kg}{m^2} - \frac{N}{kg} = \frac{kg \frac{m}{s^2}}{kg}\right]$ Planetenmasse		
# 48	Antwort	# 47	Antwort	# 46	Antwort	# 45	Antwort		
Moritz https://g this file. you can If we r	"THE BEER-WARE LICENSE": Moritz Augsburger (and others, see https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in return.		$E_{\rm kin}+E_{\rm pot}=\frac{1}{2}m_2v^2-\gamma\frac{m_1m_2}{r}$ ungebunder Zustand, m_2 kann sich beliebig weit von m_1 entfernen gebunder Zustand	$r_{ m p}$: $T_{ m p}$: $m_{ m s}$:	$\frac{r_p^3}{T_p^2} = \gamma \frac{m_s}{4\pi^2} = const.$ Radius Planetenbahn Umlaufzeit Planet Masse der Sonne	 Planeten auf Ellipsen mit Sonne im gemeir samen Brennpunkt Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: ΔA/Δt = const Umlaufzeit T_{1,2}, große Halbachse a_{1,2} zwei Planeten: T²/T²/2 = a³/a³/2 			