TD nº 4 - Unité Arithmétique et Logique (UAL)

1 Introduction

L'unité arithmétique et logique (UAL) est un composant central dans un microprocesseur. Elle est responsable d'effectuer des opérations arithmétiques et logiques telles que l'addition, la soustraction, le ET logique et le OU logique. Nous allons étudier dans ce TD/TP une UAL simple sur 4 bits (figure 1).

FIGURE 1 – Schéma de l'UAL

L'UAL réalise des opérations sur une ou deux opérandes (X et Y représentées avec 4 bits chacune sur la figure). L'opération à effectuer est codée à l'aide des trois bits S_0 , S_1 et S_2 . Lorsque l'opération n'attend qu'une opérande, les bits de la variable Y sont ignorés.

Le résultat de l'opération est représenté par les 4 bits R_0 , R_1 , R_2 et R_3 . La retenue sortante de l'additionneur (RS) sert à détecter les cas de débordement de capacité.

2 Description

Le cœur de l'UAL est une cascade d'additionneurs (Full-Adder, FA). Cependant, on ajoutera des circuits particuliers avant les entrées des modules FA. Ces circuits sont :

LogiquE (LE) : effectue des opérations logiques entre les opérandes x_i et y_i . Les opérations logiques à effectuer sont sélectionnées par les sélecteurs S_0 , S_1 , S_2 . Dans ce cas, l'opération est effectivement réalisée dans le bloc LE, et le bit de résultat traverse le FA sans être modifié;

ArithmétiquE (**AE**) : ce module effectue une opération arithmétique à l'aide des *full adders*. Pour cela, l'opérande y_i peut être modifié avant de traverser le FA. Par exemple, si l'opération sélectionnée par le sélecteur S_0 , S_1 , S_2 est la soustraction alors AE réalise un complément à 1.

Par définition, l'UAL effectue plusieurs opérations logiques et arithmétiques et pour pouvoir exécuter une opération particulière on utilisera le sélectionneur d'opération S qui est un bus sur 3 bits. La figure 2 donne le codage des opérations à réaliser en fonction de S_0 , S_1 et S_2 .

2.1 Description détaillée de l'UAL

Sur la figure 2, la colonne SL montre les valeurs que le circuit LE_i doit générer en fonction des différentes opérations, la colonne SA montre les valeurs du circuit AE_i en fonction des différentes opérations, et la colonne C_0 les valeurs de CE.

Le signal S_2 détermine si l'opération à effectuer est une opération logique ou arithmétique : si $S_2 = 1$, alors on effectue une opération arithmétique et si $S_2 = 0$ alors une opération logique est effectuée. Les signaux S_1

S_2	S_1	S_0	Nom	Opération	SL(LE)	SA(AE)	$C_0(CE)$
0	0	0	Pass	X	X	0	0
0	0	1	AND	$X \wedge Y$	$X \wedge Y$	0	0
0	1	0	OR	$X \vee Y$	$X \vee Y$	0	0
0	1	1	NOT	\overline{X}	\overline{X}	0	0
1	0	0	Addition	X + Y	X	Y	0
1	0	1	Soustraction	X - Y	X	\overline{Y}	1
1	1	0	Incrémentation	X+1	X	0	1
1	1	1	Décrémentation	X-1	X	1	0

FIGURE 2 – Opérations de l'UAL

et S_0 sélectionnent une des quatre opérations arithmétiques ou logiques. Notre UAL réalise donc 8 opérations différentes.

Voici quelques exemples pour montrer le fonctionnement de notre UAL :

- Pour l'opération Pass la valeur de X est passée sans modification;
- Pour l'opération AND, SL devra être égal à $x_i \wedge y_i$. Évidemment, les signaux A et C_0 seront mis à zéro pour ne pas modifier le résultat final par l'additionneur. Dans ce cas, l'additionneur (FA) n'est utilisé que pour faire passer le résultat de SL vers la sortie R;
- Pour la soustraction, on va effectuer une addition x + (-y). Pour changer y en (-y), il faut effectuer les compléments de bits et ajouter 1. SA_i recevra dans ce cas le complément du signal y_i et on mettra C_0 à 1 (retenue initiale, qui permet d'ajouter 1);
- Pour incrémenter x, on va mettre les SA_i à 0 et ajouter 1 en mettant C_0 à 1;
- Pour décrémenter x, on ajoute (-1). En complément à deux, (-1) est représenté par une suite de 1: on mettra tous les y_i à 1 et C_0 à 0.
 - 1 Donnez les tables de vérité de LE, AE et CE (attention LE utilise cinq variables en entrée).
- 2 Donnez les expressions logiques (éventuellement simplifiées) de LE, AE et CE.
- 3 Réalisez le circuit de l'UAL sur ordinateur (p.ex. l'application web https://circuitverse.org ou le logiciel tkgate).