FMI, Computer Science, Master Advanced Logic for Computer Science

Seminar 2

(S2.1) Let \mathcal{L} be a first-order language. Prove that for any formulas φ , ψ of \mathcal{L} and any variable $x \notin FV(\varphi)$,

$$\forall x(\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \forall x\psi \tag{1}$$

$$\exists x (\varphi \lor \psi) \quad \exists x \psi \tag{2}$$

$$\varphi \ \ \exists x \varphi$$
 (3)

$$\forall x(\varphi \to \psi) \quad \exists \quad \varphi \to \forall x\psi \tag{4}$$

$$\exists x(\psi \to \varphi) \quad \exists \quad \forall x\psi \to \varphi.$$
 (5)

Proof. Let \mathcal{A} be an \mathcal{L} -structure and $e: V \to A$. We prove (1):

```
\mathcal{A} \vDash (\forall x (\varphi \land \psi))[e] \iff \text{for all } a \in A, \ \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}]
\iff \text{for all } a \in A, \ (\mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ and } \mathcal{A} \vDash \psi[e_{x \leftarrow a}])
\iff \text{for all } a \in A, \ (\mathcal{A} \vDash \varphi[e] \text{ and } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]) \text{ (by P. 1.26.(ii))}
\iff \mathcal{A} \vDash \varphi[e] \text{ and for all } a \in A, \ \mathcal{A} \vDash \psi[e_{x \leftarrow a}]
\iff \mathcal{A} \vDash \varphi[e] \text{ and } \mathcal{A} \vDash \forall x \psi[e]
\iff \mathcal{A} \vDash (\varphi \land \forall x \psi)[e].
```

We prove (2):

$$\mathcal{A} \vDash (\exists x (\varphi \lor \psi))[e] \iff \text{ there exists } a \in A \text{ such that } \mathcal{A} \vDash (\varphi \lor \psi)[e_{x \leftarrow a}]$$

$$\iff \text{ there exists } a \in A \text{ such that } \left(\mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ or } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]\right)$$

$$\iff \text{ there exists } a \in A \text{ such that } \left(\mathcal{A} \vDash \varphi[e] \text{ or } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]\right) \text{ (by P. 1.26.(ii))}$$

$$\iff \mathcal{A} \vDash \varphi[e] \text{ or there exists } a \in A \text{ such that } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]$$

$$\iff \mathcal{A} \vDash \varphi[e] \text{ or } \mathcal{A} \vDash \exists x \psi[e]$$

$$\iff \mathcal{A} \vDash (\varphi \lor \exists x \psi)[e].$$

We prove (3):

$$\mathcal{A} \vDash \exists x \varphi[e] \iff \text{there exists } a \in A \text{ such that } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \iff \text{there exists } a \in A \text{ such that } \mathcal{A} \vDash \varphi[e] \text{ (by P. 1.26.(ii))} \iff \mathcal{A} \vDash \varphi[e].$$

We prove (4):

$$\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e] \iff \text{for all } a \in A, \ \mathcal{A} \vDash (\varphi \to \psi)[e_{x \leftarrow a}] \\
\iff \text{for all } a \in A, \ (\mathcal{A} \nvDash \varphi[e_{x \leftarrow a}] \text{ or } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]) \\
\iff \text{for all } a \in A, \ (\mathcal{A} \nvDash \varphi[e] \text{ or } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]) \text{ (by P. 1.26.(ii))} \\
\iff \mathcal{A} \nvDash \varphi[e] \text{ or for all } a \in A, \ \mathcal{A} \vDash \psi[e_{x \leftarrow a}] \\
\iff \mathcal{A} \nvDash \varphi[e] \text{ or } \mathcal{A} \vDash \forall x \psi[e] \\
\iff \mathcal{A} \vDash (\varphi \to \forall x \psi)[e].$$
We prove (5):
$$\mathcal{A} \vDash \exists x(\psi \to \varphi)[e] \iff \text{there exists } a \in A \text{ such that } \mathcal{A} \vDash (\psi \to \varphi)[e_{x \leftarrow a}] \\
\iff \text{there exists } a \in A \text{ such that } (\mathcal{A} \nvDash \psi[e_{x \leftarrow a}] \text{ or } \mathcal{A} \vDash \varphi[e_{x \leftarrow a}]) \\
\iff \text{there exists } a \in A \text{ such that } (\mathcal{A} \nvDash \psi[e_{x \leftarrow a}] \text{ or } \mathcal{A} \vDash \varphi[e]) \\
\iff \text{(it is not true that for all } a \in A \text{ we have that } \mathcal{A} \vDash \psi[e_{x \leftarrow a}]) \\
\Rightarrow \mathcal{A} \vDash \varphi[e] \\
\iff \mathcal{A} \nvDash \forall x \psi[e] \text{ or } \mathcal{A} \vDash \varphi[e] \\
\iff \mathcal{A} \vDash (\forall x \psi \to \varphi)[e].$$

(S2.2) Let \mathcal{L} be a first-order language that contains

- two unary relation symbols R, S and two binary relation symbols P, Q;
- a unary function symbol f and a binary function symbol g;
- two constant symbols c, d.

Find prenex normal forms for the following formulas of \mathcal{L} :

$$\varphi_{1} = \forall x (f(x) = c) \land \neg \forall z (g(y, z) = d)$$

$$\varphi_{2} = \forall y (\forall x P(x, y) \rightarrow \exists z Q(x, z))$$

$$\varphi_{3} = \exists x \forall y P(x, y) \lor \neg \exists y (S(y) \rightarrow \forall z R(z))$$

$$\varphi_{4} = \exists z (\exists x Q(x, z) \lor \exists x R(x)) \rightarrow \neg (\neg \exists x R(x) \land \forall x \exists z Q(z, x))$$

Proof.

$$\forall x (f(x) = c) \land \neg \forall z (g(y, z) = d) \quad \exists \quad \forall x (f(x) = c \land \exists z \neg (g(y, z) = d))$$

$$\exists \quad \forall x \exists z (f(x) = c \land \neg (g(y, z) = d))$$

$$\forall y (\forall x P(x, y) \rightarrow \exists z Q(x, z)) \quad \exists \quad \forall y \exists z (\forall x P(x, y) \rightarrow Q(x, z))$$

$$\exists \quad \forall y \exists z (\forall u P(u, y) \rightarrow Q(x, z))$$

$$\exists \quad \forall y \exists z \exists u (P(u, y) \rightarrow Q(x, z)).$$

$$\exists x \forall y P(x,y) \lor \neg \exists y (S(y) \to \forall z R(z)) \quad \exists x \left(\forall y P(x,y) \lor \neg \exists y \forall z (S(y) \to R(z)) \right)$$

$$\exists x \left(\forall y P(x,y) \lor \forall y \exists z \neg (S(y) \to R(z)) \right)$$

$$\exists x \left(\forall u P(x,u) \lor \forall y \exists z \neg (S(y) \to R(z)) \right)$$

$$\exists x \forall u \forall y \exists z \left(P(x,u) \lor \neg (S(y) \to R(z)) \right)$$

$$\exists z (\exists x Q(x,z) \lor \exists x R(x) \right) \to \neg (\neg \exists x R(x) \land \forall x \exists z Q(z,x)) \quad \exists$$

$$\exists z \exists x (Q(x,z) \lor R(x)) \to (\neg \neg \exists x R(x) \lor \neg \forall x \exists z Q(z,x)) \quad \exists$$

$$\exists z \exists x (Q(x,z) \lor R(x)) \to (\exists x R(x) \lor \exists x \forall z \neg Q(z,x)) \quad \exists$$

$$\exists z \exists x (Q(x,z) \lor R(x)) \to \exists x (R(x) \lor \forall z \neg Q(z,x)) \quad \exists$$

$$\exists z \exists x (Q(x,z) \lor R(x)) \to \exists x \forall z (R(x) \lor \neg Q(z,x)) \quad \exists$$

$$\exists z \exists x (Q(x,z) \lor R(x)) \to \exists x \forall z (R(u) \lor \neg Q(v,u)) \quad \exists$$

$$\forall z \forall x \exists u \forall v ((Q(x,z) \lor R(x)) \to \exists u \forall v (R(u) \lor \neg Q(v,u)))$$

(S2.3) Axiomatize the following classes of graphs:

- (i) complete graphs;
- (ii) graphs with at least one path of length 3;
- (iii) graphs with at least one cycle of length 3;
- (iv) graphs with the property that any vertex has exactly one incident edge.

Proof. We use the notations from the lectures. We take $\mathcal{L}_{Graf} = (\dot{E})$. Graph theory is Th((IREFL), (SIM)). We denote by \mathcal{K} the class of graphs that will be axiomatized.

(i) We add the sentence

$$\varphi_1 := \forall x \forall y (\neg (x = y) \to \dot{E}(x, y)).$$

Then $\mathcal{K} = Mod(Th((IREFL), (SIM), \varphi_1)).$

(ii) We add the sentence

$$\varphi_2 := \exists v_1 \exists v_2 \exists v_3 \exists v_4 \left(\bigwedge_{1 \leq i < j \leq 4} \neg (v_i = v_j) \land \dot{E}(v_1, v_2) \land \dot{E}(v_2, v_3) \land \dot{E}(v_3, v_4) \right).$$

Then $K = Mod(Th((IREFL), (SIM), \varphi_2)).$

(iii) We add the sentence

$$\varphi_3 := \exists v_1 \exists v_2 \exists v_3 \left(\bigwedge_{1 \leq i < j \leq 3} \neg (v_i = v_j) \land \dot{E}(v_1, v_2) \land \dot{E}(v_2, v_3) \land \dot{E}(v_3, v_1) \right).$$

Then $\mathcal{K} = Mod(Th((IREFL), (SIM), \varphi_3)).$

(iv) We add the sentence

$$\varphi_4 := \forall x \exists y \dot{E}(x, y) \land \forall x \forall y \forall z (\dot{E}(x, y) \land \dot{E}(x, z) \to y = z).$$

Then $\mathcal{K} = Mod(Th((IREFL), (SIM), \varphi_4)).$

(S2.4) Let \mathcal{L} be a first-order language, φ, ψ be formulas and x be a variable. Prove that:

- (i) $\vDash \varphi$ implies $\vDash \forall x \varphi$;
- (ii) $\vDash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \forall x\psi)$.

Proof. (i) Assume that $\vDash \varphi$. We have to prove that $\vDash \forall x \varphi$, that is, for any \mathcal{L} -structure \mathcal{A} and any \mathcal{A} -assignment $e: V \to A$, we have that $\mathcal{A} \vDash (\forall x \varphi)[e]$. Let \mathcal{A} be an \mathcal{L} -structure and $e: V \to A$. We get that $\mathcal{A} \vDash (\forall x \varphi)[e]$ iff for all $a \in A$, $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$. But this is true, taking into account the fact that $\vDash \varphi$, hence $\mathcal{A} \vDash \varphi[e']$, with $e' := e_{x \leftarrow a}$.

(ii) Let \mathcal{A} be an \mathcal{L} -structure and $e: V \to A$ be an \mathcal{A} -assignment. We have to prove that

$$\mathcal{A} \vDash (\forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi))[e].$$

We assume that

(*)
$$\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e]$$

and we wish to get that

$$\mathcal{A} \vDash (\forall x \varphi \to \forall x \psi))[e].$$

Suppose that

$$(**) \quad \mathcal{A} \vDash (\forall x \varphi)[e].$$

We have to prove that $A \vDash (\forall x \psi))[e]$.

Let $a \in A$. Applying (*), we get that $\mathcal{A} \vDash (\varphi \to \psi)[e_{x \leftarrow a}]$, and, by (**), we have that $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$. From $\mathcal{A} \vDash (\varphi \to \psi)[e_{x \leftarrow a}]$ and $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$, it follows that $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$. Thus, $\mathcal{A} \vDash (\forall x \psi)[e]$.