MATH403: Introduction to Abstract Algebra

Michael Li

Symmetry and Counting

Consider the example of coloring the 6 vertices of a hexagon, 3 black and 3 white. There are $\binom{6}{3} = 20$ possibilities However, in reality we would count designs that can be obtained from rotation the same design

- Furthermore, designs that are equivalent under rotation are nonequivalent to other design types
- Similar concept can be extended to D_6

Two designs A, B are equivalent under a group G of permutations of arrangements if $\exists \phi \in G$ such that $\phi(A) = B$

- This means that the two designs are in the same orbit of G
- It follows that the number of nonequivalent designs under G is the number of orbits of designs under G

Burnside's Theorem

Few notations to mention. If G is a group of permutations on a set S and $i \in S$

- $\operatorname{stab}_G(i) = \{ \phi \in G \mid \phi(i) = i \}$
- $\operatorname{orb}_G(i) = \{ \phi(i) \mid \phi \in G \}$

Fixed: for any G of permutations on set S and $\phi \in G$, fix $(\phi) = \{i \in S \mid \phi(i) = i\}$. Elements fixed by ϕ

Burnside's Theorem: If G is a finite group of permutations on set S, then the number of orbits of S under G is $\frac{1}{|G|}\sum_{i=1}^{n} |\operatorname{fix}(\phi)|$

• Proof: let n denotes the number of pairs of (ϕ, i) where $\phi(i) = i$. There are 2 ways to count these pairs

$$n = \sum_{\phi \in G} |\operatorname{fix}(\phi)|$$
$$n = \sum_{\phi \in G} |\operatorname{stab}_{G}(i)|$$

$$n = \sum_{i \in S} |\operatorname{stab}_G(i)|$$

From Exercise 7.43 (orbits of S partition S), if s, t are in the same orbit of G, then $\operatorname{orb}_G(s) = \operatorname{orb}_G(t)$. Thus from Orbit-Stabilizer Theorem, $|\operatorname{stab}_G(s)| = |G|/|\operatorname{orb}_G(s)| = |G|/|\operatorname{orb}_G(t)| = |\operatorname{stab}_G(t)|$

Choosing
$$s \in S$$
 and summing over $\operatorname{orb}_G(s)$, we get $\sum_{t \in \operatorname{orb}_G(s)} |\operatorname{stab}_G(t)| = |\operatorname{orb}_G(s)| |\operatorname{stab}_G(s)| = |G|$

Finally summing over elements of G, one orbit at a time, we get

$$\sum_{\phi \in G} |\operatorname{fix}(\phi)| = \sum_{i \in S} |\operatorname{stab}(i)| = |G| * (\text{number of orbits})$$

Examples:

- Hexagon vertex coloring, 3 black, 3 white, under rotation
 - Identity fix 20 designs
 - Rotation by 60 degrees fixes 0 designs
 - Rotation by 120 degrees fixes 2 designs
 - Rotation by 180 degrees fixes 0 designs
 - Rotation by 240 degrees fixes 2 designs

- Rotation by 300 degrees fixes 0 designs

Thus from Burnside's Theorem, we have that number of orbits is $\frac{1}{6}(20+0+2+0+2+0)=4$ number of orbits

• Hexagon vertex coloring, 3 black, 3 white, under D_6

Note: two arrangements are equivalent if they are in the same orbit under D_6

- Identity fix 20 designs
- Rotation of order 2 (180 degrees) fixes 0 designs
- Rotation of order 3 (120 or 240 degrees) fixes 2 designs
- Rotation of order 6 (60 or 300 degrees) fixes 0 designs
- Reflection across diagonal (3 of these) fixes 4 designs
- Reflection across side bisector (3 of these) fixes 0 designs

Thus from Burnside's Theorem, we have number of orbits is $\frac{1}{12}(1*20+1*0+2*2+2*0+3*4+3*0)=3$ number of orbits

• 3 coloring (R, W, B) of edges of a tetrahedron

There are $3^6 = 729$ total colorings, ignoring equivalence

Colorings are considered equivalent under rotation so we have a group of 12 rotations and is isomorphic to A_4

- Identity fixes $3^6 = 729$ designs
- (abc) (there are 4*3*2/3=8 of these) fixes 3^2 designs
- -(ab)(cd) (there are 4*3*2*1/(2*2*2) = 3 of these) fixes 3^4 designs

Thus from Burnside's Theorem, we have number of orbits is $\frac{1}{12}(1*3^6+8*3^2+3*3^4)=87$ number of orbits

Group Actions

Group Action: Homomorphism γ from G to sym(S)

- image of g under of γ is denoted γ_g
- $x,y \in S$ are viewed as equivalent under action of G if and only if $\gamma_g(x) = y$ for some $g \in G$
- When γ is one to one, elements of G may be regarded as permutations on S
- When γ is not one to one, elements of G can still be regarded as permutations on S, but there distinct elements $g, h \in G$ such that $\gamma_g, \gamma)h$ induce the same permutations on S

$$\forall x \in S, \gamma_g(x) = \gamma_h(x)$$

Intro to Rings

Ring: a set R with 2 binary operations (a + b, ab) such that $\forall a, b, c \in R$:

- 1. a + b = b + a
- 2. (a+b)+c=a+(b+c)
- 3. Exists an additive identity 0 such that $\forall a \in R, a+0=a$
- 4. For each $a \in R$, exists an additive inverse -a such that a + (-a) = 0
- 5. a(bc) = (ab)c
- 6. a(b+c) = ab + ac and (b+c)a = ba + ca

UPSHOT: ring is an Abelian group under addition with associative multiplication that distributes over addition

- Commutative ring: ring with commutative multiplication. Doesn't have to hold
- Unity: nonzero element in ring that is an identity under mulitplication. Doesn't have to exist
- Unit: element in R with a multiplicative inverse. Doesn't have to exist

Examples:

- \mathbb{Z} under ordinary $+, \times$ is a commutative ring with unity 1
 - Units of \mathbb{Z} are 1, -1
- \mathbb{Z}_n under $+, \times \pmod{n}$ is a commutative ring with unity 1

- Units are U(n)
- $\mathbb{Z}[x]$ polynomials under function $+, \times$ is a commutative ring with unity f(x) = 1
- $M_2(\mathbb{Z})$ is a noncommutative ring with unity $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $2\mathbb{Z}$ under ordinary $+, \times$ is a commutative ring without unity
- Let R_1, \ldots, R_n be rings, then $R_1 \oplus \cdots \oplus R_n = \{(a_1, \ldots, a_n) \mid a_i \in R_i\}$ is a ring under componentwise addition and multiplication called the **direct sum** of R_1, \ldots, R_n

Properties of Rings

Theorem 12.1 Rules of Multiplication:

- 1. a0 = 0a = 0
 - Proof: $0 + a0 = a0 = a(0 + 0) = a0 + a0 \implies a0 = 0$. Similarly, 0a = 0
- 2. a(-b) = (-a)b = -(ab)
 - Proof: a(-b) + ab = a(-b+b) = a0 = 0. Adding both sides by -(ab) yields a(-b) = -(ab). Similarly, (-a)b = -(ab)
- 3. (-a)(-b) = ab
 - Proof: applying 2., we get (-a)(-b) = -((-a)b) = -(-(ab)) = ab
- 4. a(b-c) = ab ac and (b-c)a = ba ca
 - Proof: by distributing and applying 2., we get a(b-c) = a(b+(-c)) = ab + a(-c) = ab ac

If R has unity element of 1, we can claim that

- 5. (-1)a = -a
- Proof: applying 2., we get (-1)a = -(1a) = -a
- 6. (-1)(-1) = 1
- Proof: applying 2., we get (-1)(-1) = -(-1) = 1

Theorem 12.2: If a ring has a unity, it is unique. If a ring element has a multiplicative inverse, it is unique

• Proof: Let e_1, e_2 be distinct unities of R. Then $e_1e_2 = e_1$ and $e_1e_2 = e_2 \implies e_1 = e_2$

Let b, c both be multiplicative inverses of a. Then $ab = ac = e \implies b = c$. Similar for right multiplicative inverse

Note: cannot always say that

- $ab = ac \implies b = c$ since multiplicative cancellation is not guaranteed
- $a^2 = a \implies a = 0, 1$ since multiplicative identity is not guaranteed

Subrings

Subring: subset S of R such that S is a ring itself under operations of R

Thereom 12.3: Subring Test - S is a subring if it is closed under subtraction and multiplication $(a, b \in S \implies a - b, ab \in S)$

ullet Proof: since R is commutative and S is closed under subtraction, by One-Step Subgroup Test, S is an Abelian group under addition

Furthermore, multiplication in R is associative and distributes over addition. Thus this must also be true for S

Finally, multiplication is closed under S, so it must be a binary operation

Examples:

- $\{0\}$ and R are subrings of ring R
- $\{0, 2, 4\}$ subring of \mathbb{Z}_6
 - Note that 1 is the unity in Z_6 but 4 is the unity in $\{0,2,4\}$
- For positive integer n, we have $n\mathbb{Z}$ is a subring of \mathbb{Z}
- $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is a subring under \mathbb{C}

• $\left\{\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a,b \in \mathbb{Z} \right\}$ is a subring of $M_2(\mathbb{Z})$

Integral Domains

Zero Divisor: nonzero element a of a commutative ring R such that there is a nonzero $b \in R$ with ab = 0

Integral Domain: commutative ring with unity and no zero divisors

• Product is ab = 0 only when a = 0 or b = 0

Examples

- Ring of integers is an integral domain
- Ring of Gaussian integers $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ is an integral domain
- Ring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ is an integral domain
- Ring $\mathbb{Z}[x]$ of polynomials with integer coefficients is an integral domain
- Ring \mathbb{Z}_p of integers modulo prime p is an integral domain
- Ring \mathbb{Z}_n of integers modulo n, not prime, is NOT an integral domain
- Ring $M_2(\mathbb{Z})$ is NOT an integral domain
- $\mathbb{Z} \oplus \mathbb{Z}$ is NOT an integral domain

Theorem 13.1: let a, b, c belong to an integral domain. If $a \neq 0$ and ab = ac, then b = c

• Proof: from $ab = ac \implies a(b-c) = 0$. Since $a \neq 0$ and R is an integral domain, we must have $b-c=0 \implies b=c$

Fields

Field: commutative ring with unity where every nonzero element is a unit

- Every field is an integral domain since for $a \neq 0, ab = 0 \implies b = a^{-1}0 = 0$
- ab^{-1} can be treated as a divided by b
- Field can be thought of as an algebraic system closed under $+, -, \times, \div$

Theorem 13.2: Finite integral domain is a field

• Proof: let D be a finite integral domain with unity 1 and let $a \in D$ be nonzero. We show a is a unit If a = 1, then $a = a^{-1} = 1$ done

Otherwise $a \neq 1$, so we have a, a^2, a^3, \ldots Since D is finite, we must have integers i, j with i > j such that $a^i = a^j$

Then we have $a^{i-j} = 1$. Since $a \neq 1 \implies a^{-1} = a^{i-j-1}$

Corollary: Z_p is a Field

• Proof: Z_p clearly has unity, so from Theorem 13.2, we just need to show Z_p has no zero divisors Take $a, b \in Z_p$ and ab = 0. Then ab = pk, but by Euclid's Lemma, either $p \mid a$ or $p \mid b$, but under Z_p , these are 0

Examples:

- $\mathbb{Z}_3[i] = \{a + bi \mid a, b \in \mathbb{Z}_3\} = \{0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i\}$ is a field
- $Q[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in Q\}$ is a field

Clearly it's a ring. Inverses have the form $\frac{1}{a+b\sqrt{2}}=\frac{a-b\sqrt{2}}{a+b\sqrt{2}}$

Characteristic of a Ring

Characteristic of Ring: least postiive integer n such that $\forall x \in R, nx = 0$. If no integer exists, R has characteristic 0

Examples

- \mathbb{Z} has characteristic 0
- \mathbb{Z}_n has characteristic n
- $\mathbb{Z}_2[x]$ has characteristic 2, even though it is an infinite ring

Theorem 13.3: Let R be a ring with unity 1. If 1 has infinite order under addition, R has characteristic 0. Otherwise R has characteristic n

- Proof: If 1 has infinite order, then no positive integer n exists such that $n \cdot 1 = 0 \implies R$ has characteristic 0
 - If 1 has additive order n, then $n \cdot 1 = 0 \implies n$ is the least postiive integer with this property

For any $x \in R$, we have $n \cdot x = 1x + 1x + \dots + 1x = (1 + 1 + \dots + 1)x = (n \cdot 1)x = 0x = 0$. Thus R has characteristic n

Theorem 13.4: characteristic of an integral domain is 0 or prime

• Proof: from Theorem 13.3, it suffices to show that if the additive order of 1 is finite, it must be prime

Suppose 1 has order n and that n = st, then for $1 \le s, t \le n$, we have $0 = n \cdot 1 = (st) \cdot 1 = (s \cdot 1)(t \cdot 1)$

Thus $s \cdot 1 = 0$ or $t \cdot 1 = 0$. Since n is the least positive integer with property $n \cdot 1 = 0$, either s = n or t = n. Thus n is prime

Nilpotent: $a \in R$ is **nilpotent** if there exists an positive n such that $a^n = 0$

Idempotent: $a \in R$ is **idempotent** if $a^2 = a$

Ideals and Factor Rings

Ideal: A subring A of ring R such that $\forall r \in R, a \in A$, both $ra, ar \in A$

• So the subring A absorbs elements from R: $rA \subseteq A$ and $Ar \subseteq A$

Theorem 14.1: A nonempty subset A of ring R is an ideal of R if

- 1. $a, b \in A \implies a b \in A$
- 2. $ra, ar \in A$ when $a \in A, r \in R$

Examples:

- $\{0\}$, R are both ideals of R
- nZ is an ideal of Z
- Let R be a commutative ring with unity and $a \in R$. The set $\langle a \rangle = \{ra \mid r \in R\}$ is the **principal ideal generated by** a
 - Commutativity is necessary
- Let A denote the subset of all polynomials with constant term 0. Then A is ideal of $\mathbb{R}[x]$ and $A = \langle x \rangle = \{a_1x + \cdots + a_nx^n\}$
- Let R be a commutative ring with unity and $a_1, \ldots, a_n \in R$. Then $I = \langle a_1, \ldots a_n \rangle = \{r_1 a_1 + \cdots + r_n a_n \mid r_i \in R\}$ is the ideal generated by a_1, \ldots, a_n
- Take $I \subseteq Z[x]$. I contains polynomials with an even constant term. Then I is ideal and $I = \langle x, 2 \rangle = \{(a_n x^{n-1} + \dots + a_1)x + 2k\}$
- Let R be a ring of all real-valued functions and $S \subseteq R$ with all differentiable functions. Then S is a subring of R but NOT ideal.

We can take s differentiable and r not-differentiable. Then sr could be NOT differentiable

Factor Rings

Take ring R and ideal A of R. Since R is a group under addition and $A \subseteq R$, we can create the factor group $R/A = \{r+A \mid r \in R\}$. Question is if we can form a ring of this group of cosets

- Addition properties are already taken care of
- Multiplicative properties requires A be ideal

Theorem 14.2: let R be a ring and A be a subring of R. The sets of cosets is a ring under (s + A) + (t + A) = s + t + A and (s + A)(t + A) = st + A if and only if A is an ideal of R

- Proof: We know that cosets form a group under addition so we need to show that multiplication is well defined if and only if A is an ideal of R
 - Suppose A is an ideal of R and let s + A = s' + A and t + A = t' + A. We show that st + A = s't' + A

By definnition we have that s = s' + a and t = t' + b for $a, b \in A$

Thus we have st = (s' + a)(t' + b) = s't' + at' + s'b + ab

Adding A to both sides we get

st + A = s't' + A since A absorbs at', s'b, ab

- On the other hand, suppose A is a subring but NOT ideal. Then there exists $a \in A, r \in R$ such that $ar \notin A$ or $ra \notin A$

Consider
$$a + A = 0 + A$$
 and $r + A$

Clearly
$$(a+A)(r+A) = ar + A$$

But
$$(0+A)(r+A) = A \neq ar + A$$

Thus multiplication is not well defined under multiplication when A is NOT ideal

Final steps involve showing multiplication is associative and multiplication distributes over addition

Examples:

•
$$Z/4Z = \{0+4Z, 1+4Z, 2+4Z, 3+4Z\}$$

$$(2+4Z) + (3+4Z) = 1+4Z$$

$$(2+4Z) \cdot (3+4Z) = 2+4Z$$

• Let
$$R = \{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \mid a_i \in Z \}$$
 and let I be a subset of R with even entries

Clearly I is an ideal of R. Also by analysis, we see that R/I has size 16

$$\begin{bmatrix} 7 & 8 \\ 4 & -4 \end{bmatrix} + I = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + I$$

• Consider $R = Z[i]/\langle 2-i \rangle$ that has elements of the form $a+bi+\langle 2-i \rangle$

Since
$$2 - i + \langle 2 - i \rangle = 0 + \langle 2 - i \rangle$$
, we have $2 - i \equiv 0 \implies 2 = i$

So
$$3 + 4i + \langle 2 - i \rangle = 11 + \langle 2 - i \rangle$$

We can reduce this further since $2 = i \implies 4 = -1 \implies 5 = 0$

So
$$3 + 4i + \langle 2 - i \rangle = 11 + \langle 2 - i \rangle = 1\langle 2 - i \rangle$$

• Consider $\mathbb{R}/\langle x^2 + 1 \rangle = \{g(x) + \langle x^2 + 1 \rangle \mid g(x) \in \mathbb{R}[x]\} = \{ax + b + \langle x^2 + 1 \rangle \mid a, b \in \mathbb{R}\}$

Last part of the equality comes from writing $g(x) = q(x)(x^2 + 1) + r(x)$. In particular, either r(x) = 0 or it has degree less than $2 \implies r(x) = ax + b$

Furthermore we have that $x^2 + 1 = 0 \implies x^2 = -1$ so for multiplication we have

$$(x+3+\langle x^2+1\rangle)\cdot (2x+5+\langle x^2+1\rangle) = 2x^2+11x+15+\langle x^2+1\rangle = 11x+13\langle x^2+1\rangle$$

Prime and Maximal Ideals

Prime Ideal: proper ideal A of R such that $a, b \in R$ and $ab \in A \implies a \in A$ or $b \in A$

Maximal Ideal: proper ideal A of R such that when B is an ideal of R and $A \subseteq B \subseteq R$, then B = A or B = R

• So only the only ideal that properly contains a maximal ideal is the entire ring itself

Examples:

- Let n be an integer other than 1. Then in the ring of integers, nZ is prime if and only if n is prime
- Ideal $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{R}[x]$

Assume A is deal of $\mathbb{R}[x]$ and properly contains $\langle x^2 + 1 \rangle$

TODO FINISH THIS

• Ideal $\langle x^2 + 1 \rangle$ is NOT prime in $\mathbb{Z}_2[x]$ since it contains $(x+1)^2 = x^2 + 1$ but doesn't contain x+1

Theorem 14.3: Let R be a commutative ring with unity and A be an ideal of R. Then R/A is an integral domain if and only if A is prime

• Proof:

 \implies Suppose R/A is an integral domain and $ab \in A$. Then $(a+A) \cdot (b+A) = ab + A = A \implies ab$ is the zero element in ring R/A

So either a + A = A or b + A = A, which means that either $a \in A$ or $b \in A$. Thus A is prime

 \Leftarrow Observe that R/A is a commutative ring with unity for any proper ideal A. We show when A is prime, then R/A has no zero divisors

Suppose that A is prime and (a+A)(b+A)=0+A=A. Then $ab\in A$ and $a\in A$ or $b\in A$

Thus either a + A or b + A is the zero coset in R/A

Theorem 14.4: Let R be a commutative ring with unity and A be an ideal of R. Then R/A is a field if and only if A is maximal **TODO DO PROOF**

Examples:

• Ideal $\langle x \rangle$ is prime ideal in Z[x] but is not a maximal ideal in Z[x]

$$\langle x \rangle = \{ f(x) \in Z[x] \mid f(0) = 0 \}$$

Thus
$$g(x)h(x) \in \langle x \rangle \implies g(0)h(0) = 0 \implies g(0) = 0$$
 or $h(0) = 0$

Not maximal because $\langle x \rangle \subset \langle x,2 \rangle \subset Z[x]$