

Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control

> Cálculo Numérico semestre 2019-1

Proyecto 1

Fecha: 10 de julio de 2019

Instruciones

- ▶ El proyecto se puede realizarse en forma individual o en parejas. Además se debe entregar un reporte en extenso que contenga: portada y los elementos descritos en el documento Pautas_Reporte.pdf
- ▶ Fecha de entrega (en físico y sin prorroga): 30/07/2019

Preguntas

1. Considere la estructura en armadura que se muestra en la figura, en ella se observan seis articulaciones y nueve miembros. Si las fuerzas de interés a determinar son las que actúan hacia el centro y a lo largo de cada miembro, ¿ cuál es el valor de las nueve fuerzas, si todos los ángulos agudos en la estructura son de 45°, además cada barra vertical y horizontal tiene una longitud de 1.0 metro?

Figura 1: Estructura

Nota: Aplicar los métodos: PA=LU, de Jacobi, Gauss-Seidel y SOR para resolver el problema planteado.

(Valor 5.0 Pts.)

2. Para determinar el grado del polinomio que interpola una data ajustando por mínimos cuadrados, se recurre a la ecuación

$$\sigma^2 = \frac{\sum_{i=1}^{N} e_i^2}{N - n - 1}.$$

Donde σ es la varianza, n es el grado del polinomio, N el número de datos que se ajustan y $e_i^2 = (y_i - \hat{y}_i)^2$ son las desviaciones de los puntos. Se empieza con un polinomio de grado uno, se calcula su varianza y se reserva. Luego se repite el procedimiento para un polinomio de grado 2, y así sucesivamente mientras haya un decremento de la varianza. Se elige el polinomio de varianza mínima y de menor grado. Aplicando este criterio,

a) ¿ cuál es el polinomio de menor grado que mejor ajusta la data dada a continuación ?

x	0.05	0.11	0.15	0.31	0.46	0.52	0.70	0.74	0.82	0.98	1.17
y	0.956	0.890	0.832	0.717	0.571	0.539	0.378	0.370	0.306	0.242	0.104

b) En una sola gráfica representar los puntos de la data y el polinomio de menor grado encontrado en el literal anterior.

(Valor 5.0 Pts.)

3. La velocidad v de un cohete Saturno V en vuelo vertical cerca de la superficie de la tierra se puede aproximar por la ecuacin

$$v = u \ln \left(\frac{M_0}{M_0 - ct} \right) - gt,$$

donde

 $u=2510 \mathrm{\ m/s}=\mathrm{velocidad}$ de escape del cohete, $M_0=2.8\times 10^6 \mathrm{\ kg}=\mathrm{masa}$ del cohete en el despegue,

 $c = 13.3 \times 10^3 \text{ kg/s} = \text{tasa de consumo de combustible},$

 $g = 9.81 \text{ m/s}^2 = \text{aceleración de la gravedad},$

t = tiempo (en segundos) medido desde el despegue.

Escriba un programa en Octave o Python el cual utilice los métodos: Bisección, Secante, Newton y Punto fijo, para determinar el momento en que el cohete alcanza la velocidad del sonido (335 m/s). El programa también debe generar un reporte de texto plano, para cada método, según la siguiente tabla:

		Bisección	Secante	Newton	Punto fijo
k	x_k	$ f(x_k) $	$ f(x_k) $	$ f(x_k) $	$ f(x_k) $
0	x_0	$ f(x_0) $	$ f(x_0) $	$ f(x_0) $	$ f(x_0) $
1	x_1	$ f(x_1) $	$ f(x_1) $	$ f(x_1) $	$ f(x_1) $
:	:	:	:	:	:

donde

 x_k : es la aproximación de la solución en la k-sima iteración,

f(x): función definida por usted para resolver el problema.

Para cada método emplee el criterio de parada

$$|f(x_k)| < 10^{-8}$$
.

Además, en el reporte en extenso se debe indicar:

- intervalo [a,b] escogido para bisección.
- puntos iniciales para secante.

- punto inicial para Newton;
- función de iteración de punto fijo y punto inicial usado.

En una sola gráfica representar el comportamiento de los métodos, esto es, representar la tabla reportada por el programa, $|f(x_k)| \& k$.

Comente los resultados obtenidos.

(Valor 5.0 Pts.)

4. Resolver el siguiente sistema de ecuaciones no lineales por el método de Newton, probando con diferentes puntos iniciales, mínimo tres, y usando como criterio de para una tolerancia de 10^{-7} .

$$\begin{cases} exp(x_1) - sen(x_2)cos(x_3) + 2x_4 - 2x_5^2 &= 0\\ sen(x_1) + x_2 + cos(x_3) - x_5 &= 0\\ sen(x_1) + x_3 + x_4 + ln(x_5) - 1 &= 0\\ x_1x_3 + x_2 + x_4 - x_5 &= 0\\ 2x_1^2 - x_3 + x_4^2 - x_5^2 &= 0 \end{cases}$$

(Valor 5.0 Pts.)