浙江工业大学 2012 - 2013 学年第二学期 概率论与数理统计试卷

姓名:	学号:	班级:	任课教师:
一. 填空	之题 (每空 2 分,共 22 分	分)	
	$P(A \cup B) = 2P(A),$	$P(AB) = \frac{1}{2}P(A),$	P(A) > 0,则 $P(A B) =$
	、2 个红球,2 个蓝球,3 3 的概率为。	3个黄球中任取 2	个,其中黄球的数目比红球
3. 设		= 0.5,则 $P(1 <$	$X<2)=$ \circ
4. 设	b连续型随机变量 X 的	为密度函数为 $f(x)$	$) = e^{-x^2 + 2x + c}$,则 $EX =$
_	o		
		$\rho(X,Y) = -0.5$,则 $E(2X + Y) =$,
	$E EX = 2, EX^2 = 6,$	则由切比雪夫不	等式, $P(0 < X < 4) \ge$
9		$P(240 < X_1 + X_2 +$	E / N , $E X_1 = 3$, $Var(X_1) = \cdots + X_{100} < 360) \approx$
8. 设	$\xi \ X \sim N(\mu, 2^2), \ X_1, X_2$	2, X ₃ , X ₄ 是其样本	·, 令
	U = 0	$C\frac{(X_1-\mu)^2+(X_1-\mu)^2}{(X_3-X_4)^2}$	$(2 - \mu)^2$

服从 F-分布,则其自由度为_____,常数 $C = _____$ 。

二. 选择题 (每题 3 分, 共 18 分)

- 1. 随机事件 A 表示 "甲和乙都获得优秀",随机事件 B 表示 "甲和乙都没有获得优秀",则 \bar{A} \bar{B} 表示 ()。
 - A) 甲获得优秀, 乙没有获得优秀
 - B) 甲没有获得优秀, 乙获得优秀
 - C) 甲和乙有且仅有一个获得优秀
 - D) 甲和乙至少有一个获得优秀
- 2. 下列性质和"X,Y 不相关"不等价的是()。
 - A) Var(X + Y) = Var(X Y)
 - B) E(X-1)(Y-1) = E(X-1)(Y-1)
 - C) Var(X + 2Y) = Var(X 2Y)
 - D) X, Y 相互独立
- 3. 设 X_1, X_2, X_3, \cdots 是独立同分布随机变量序列, $X_1 \sim U(-2, 6)$,则下列说法正确的是(____)。
 - A) $\forall \epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1 + X_2 + \dots + X_n) 2| > \epsilon) = 0$
 - B) $\forall \epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1 + X_2 + \dots + X_n) 2| > \epsilon) = 1$
 - C) $\forall \epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1 + X_2 + \dots + X_n) 4| > \epsilon) = 0$
 - D) $\forall \epsilon > 0$, $\lim_{n \to \infty} P(|\frac{1}{n}(X_1 + X_2 + \dots + X_n) 4| > \epsilon) = 1$
- 4. 设总体 $X \sim N(\mu, \sigma_0^2)$, 其中 μ 未知, σ_0^2 已知, X_1, X_2, X_3 是其样本,则下列不为统计量的是 ()。
 - A) $X_1^2 + X_2X_3$
- B) $X_1 + E(X_2)$
- C) $(X_1 + X_2)^2$
- D) $(X_1 X_2)^2 \sigma_0^2$
- 5. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 是其样本, $\overline{X} = \frac{1}{n}(X_1 + X_2 + \cdots + X_n)$ 是样本均值, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ 是样本方差,那么 μ 的置信水平为 1α 的置信区间为 ()。
 - A) $(\overline{X} \frac{S}{\sqrt{n}}t_{\alpha}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha}(n-1))$
 - A) $(\overline{X} \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1))$
 - A) $(\overline{X} \frac{\sigma}{\sqrt{n}}t_{\alpha}(n-1), \overline{X} + \frac{\sigma}{\sqrt{n}}t_{\alpha}(n-1))$
 - A) $(\overline{X} \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{\sigma}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1))$

三. 计算题 (共60分)

- 1. $(12 \, \mathcal{G})$ 设 A, B, C, D, E, F 是单位圆内接正六边形的顶点,从中任取三个顶点,令 X 为所得三角形的面积。
 - 1) $Rightharpoonup P(X = \frac{\sqrt{3}}{4});$
 - 2) 求 X 的分布表;
 - 3) 计算 X 的期望;
 - 4) 计算 X 的方差。

2. (12 分) 设连续型随机变量 X 的密度函数为

$$f(x) = \begin{cases} Cx(1-x), & 0 < x < 1 \\ 0, & \sharp : \Xi \end{cases}$$

- 1) 验证常数 C = 6;
- 2) 求分布函数 F(x);
- 3) 求 $Y = (2X 1)^2$ 的密度函数。

3.(14分)设二维连续型随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} Cx(1-y), & 0 < x, y < 1 \\ 0, & \sharp \Xi \end{cases}$$

- 1)验证常数C=4;
- 2) 求 X,Y 的边缘概率函数,并判断独立性;
- 3) 计算 P(X < Y)。

4. (12分)设总体 X 的分布表为

X	0	2	3
р	$1-\theta$	$\theta - \theta^2$	θ^2

其中 $0 < \theta < 1$, X 的一组观察值为 2, 2, 0, 3, 0, 求 θ 的矩估计值和极大似然估计值。

5. $(10\, eta)$ 已知一种机器生产螺丝的长度服从正态分布 $N(20,\sigma^2)$ (单位: cm),现抽取某台机器生产的螺丝 16 件,测量其长度,得样本均值 $\overline{x}=21.2$ cm,样本标准差 s=2.4 cm。取显著水平 $\alpha=0.05$,问该机器工作是否正常?($t_{0.05}(15)=1.7531, t_{0.025}(15)=2.1315, t_{0.05}(16)=1.7459, t_{0.025}(16)=2.1199$)