Quantum Computing

- Lectures 13 and 14 (June 25-26, 2025)
- Today:
 - Quantum Fourier Transformation
 - Phase Estimation

Quantum Fourier Transformation

$$\mathbf{QFT_N}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i j k}{N}} |k\rangle$$

Quantum Fourier

Transformation

Quantum Fourier Transformation

$$\mathbf{QFT_N}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i j k}{N}} |k\rangle$$

Quantum Fourier Transformation

$$\mathbf{QFT_N}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i j k}{N}} |k\rangle$$

Quantum Fourier Transformation

$$\mathbf{QFT_N}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i j k}{N}} |k\rangle$$

$$\mathbf{QFT_{N}}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i j k}{N}} |k\rangle$$

$$\mathbf{QFT}$$

$$\mathbf{QFT_N^{\dagger}}: |j\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{-\frac{2\pi i j k}{N}} |k\rangle$$
Inverse QFT

$$\mathbf{QFT_N^{\dagger}QFT_N} = I$$

• Inverse Quantum Fourier Transformation

$$\mathbf{QFT_N^{\dagger}}:|j
angle \mapsto rac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{-rac{2\pi ijk}{N}} |k
angle$$
Inverse QFT

Another way to understand inverse QFT:

$$|j\rangle$$
 \longrightarrow $\left(\frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{\frac{2\pi ijk}{N}}|k\rangle\right)$ \longrightarrow $|j\rangle$

• Inverse Quantum Fourier Transformation

$$\mathbf{QFT}_{\mathbf{N}}^{\dagger}: \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i \mathbf{j} k}{N}} |k\rangle \mapsto |\mathbf{j}\rangle$$

Inverse QFT

• Extract *j* from the phases!

• Inverse Quantum Fourier Transformation

$$\mathbf{QFT}_{n}^{\dagger} : \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k \left(\frac{\mathbf{j}}{2^{n}}\right)} |k\rangle \mapsto |\mathbf{j}\rangle$$
Inverse QFT

- Extract *j* from the phases!
- Let $N = 2^n, j \in \{0, 1, 2, ..., 2^n 1\}$
- How can we relate $\frac{j}{2^n}$ to $|j\rangle$?

Inverse Quantum Fourier Transformation

$$\mathbf{QFT}_{n}^{\dagger} : \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k \left(\frac{\mathbf{j}}{2^{n}}\right)} |k\rangle \mapsto |\mathbf{j}\rangle$$
Inverse QFT

- Extract *j* from the phases!
- Let $N = 2^n, j \in \{0, 1, 2, ..., 2^n 1\}$
- How can we relate $\frac{j}{2^n}$ to $|j\rangle$?
- Observation: $j = j_1 \cdot 2^{n-1} + j_2 \cdot 2^{n-2} + \dots + j_{n-1} \cdot 2^1 + j_n \cdot 1$

Inverse Quantum Fourier Transformation

$$\mathbf{QFT}_{n}^{\dagger} : \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k \left(\frac{\mathbf{j}}{2^{n}}\right)} |k\rangle \mapsto |\mathbf{j}\rangle$$
Inverse QFT

- Extract *j* from the phases!
- Let $N = 2^n, j \in \{0, 1, 2, ..., 2^n 1\}$
- How can we relate $\frac{j}{2^n}$ to $|j\rangle$?
- Observation: $\frac{j}{2^n} = j_1 \cdot 2^{-1} + j_2 \cdot 2^{-2} + \dots + j_{n-1} \cdot 2^{-(n-1)} + j_n \cdot 2^{-n}$

Inverse Quantum Fourier Transformation

$$\mathbf{QFT}_{n}^{\dagger} : \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k \left(\frac{\mathbf{j}}{2^{n}}\right)} |k\rangle \mapsto |\mathbf{j}\rangle$$

Inverse QFT

•
$$\frac{j}{2^n} = j_1 \cdot 2^{-1} + j_2 \cdot 2^{-2} + \dots + j_{n-1} \cdot 2^{-(n-1)} + j_n \cdot 2^{-n}$$

• Fact: $e^{2\pi i k \left(a + \frac{j}{2^n}\right)} = e^{2\pi i k \left(\frac{j}{2^n}\right)}$ for any integer $a \ge 1$ (always mod 1 on the exponent)

Inverse Quantum Fourier Transformation

$$\mathbf{QFT}_{n}^{\dagger}: \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k \left(\frac{\mathbf{j}}{2^{n}}\right)} |k\rangle \mapsto |\mathbf{j}\rangle$$

Inverse QFT

•
$$\frac{j}{2^n} = j_1 \cdot 2^{-1} + j_2 \cdot 2^{-2} + \dots + j_{n-1} \cdot 2^{-(n-1)} + j_n \cdot 2^{-n}$$

- Fact: $e^{2\pi i k \left(a + \frac{j}{2^n}\right)} = e^{2\pi i k \left(\frac{j}{2^n}\right)}$ for any integer $a \ge 1$ (always mod 1 on the exponent)
- Let $0.j_1j_2j_3...j_l = j_1 \cdot 2^{-1} + j_2 \cdot 2^{-2} + \cdots + j_{l-1} \cdot 2^{-(l-1)} + j_l \cdot 2^{-l}$
- Fact: $(0.j_1j_2j_3...j_l) \cdot 2^m = 0.j_{m+1}...j_{l-m}$

• These notations give us an alternative way to understand (Inverse) QFT...

$$\mathbf{QFT}_{n}:|j\rangle\mapsto\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ik(\mathbf{0}.j_{1}j_{2}...j_{n})}|k\rangle \qquad \qquad \mathbf{QFT}_{n}^{\dagger}:\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ik(\mathbf{0}.j_{1}j_{2}...j_{n})}|k\rangle\mapsto|j\rangle$$

$$\mathbf{QFT} \qquad \qquad \qquad \mathbf{Inverse}\;\mathbf{QFT}$$

• These notations give us an alternative way to understand (Inverse) QFT...

$$\mathbf{QFT}_{n}:|j\rangle\mapsto\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ik(\mathbf{0}.j_{1}j_{2}...j_{n})}|k\rangle \qquad \qquad \mathbf{QFT}_{n}^{\dagger}:\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ik(\mathbf{0}.j_{1}j_{2}...j_{n})}|k\rangle\mapsto|j\rangle$$

$$\mathbf{QFT} \qquad \qquad \qquad \mathbf{Inverse}\;\mathbf{QFT}$$

Claim: (Leave as an exercise tomorrow...)

$$\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k(\mathbf{0}.j_{1}j_{2}...j_{n})} |k\rangle = \frac{1}{\sqrt{2^{n}}} \begin{pmatrix} |0\rangle + e^{2\pi i(\mathbf{0}.j_{n})}|1\rangle \\ \otimes |0\rangle + e^{2\pi i(\mathbf{0}.j_{n-1}j_{n})}|1\rangle \\ \otimes |0\rangle + e^{2\pi i(\mathbf{0}.j_{n-2}j_{n-1}j_{n})}|1\rangle \\ \vdots \\ \otimes |0\rangle + e^{2\pi i(\mathbf{0}.j_{1}j_{2}j_{3}...j_{n})}|1\rangle \end{pmatrix}$$

• These notations give us an alternative way to understand (Inverse) QFT...

$$\mathbf{QFT}_{n}:|j\rangle\mapsto\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ik(\mathbf{0}.j_{1}j_{2}...j_{n})}|k\rangle \qquad \qquad \mathbf{QFT}_{n}^{\dagger}:\frac{1}{\sqrt{2^{n}}}\sum_{k=0}^{2^{n}-1}e^{2\pi ik(\mathbf{0}.j_{1}j_{2}...j_{n})}|k\rangle\mapsto|j\rangle$$

$$\mathbf{QFT} \qquad \qquad \qquad \mathbf{Inverse}\;\mathbf{QFT}$$

Applications: Phase Estimation

- Let U be a unitary and $|u\rangle$ be an eigenvector of U, i.e., $U|u\rangle = \lambda |u\rangle$, $\lambda \in \mathbb{C}$
- By the normalized condition: $|\lambda|=1\Rightarrow \pmb{\lambda}=\pmb{e^{2\pi i \varphi}}$ for some $\pmb{\varphi}\in[0,1)$ (Quick question: Why?)
- $U|u\rangle = e^{2\pi i \varphi}|u\rangle$
- By the notation introduced before: $U|u\rangle = e^{2\pi i \varphi}|u\rangle = e^{2\pi i (0.\varphi_1 \varphi_2 \varphi_3...)}|u\rangle$

- Let U be a unitary and $|u\rangle$ be an eigenvector of U, i.e., $U|u\rangle = \lambda |u\rangle$, $\lambda \in \mathbb{C}$
- By the normalized condition: $|\lambda|=1\Rightarrow \pmb{\lambda}=\pmb{e^{2\pi i \varphi}}$ for some $\pmb{\varphi}\in[0,1)$
- $U|u\rangle = e^{2\pi i \varphi}|u\rangle$
- By the notation introduced before: $U|u\rangle = e^{2\pi i \varphi}|u\rangle = e^{2\pi i (0.\varphi_1 \varphi_2 \varphi_3...)}|u\rangle$
- Goal of Phase Estimation: Compute or Estimate $oldsymbol{arphi}=0$. $arphi_1arphi_2arphi_3$...

• What does estimation mean? Compute ${m \phi}'=0$. $\varphi_1\varphi_2\varphi_3\ldots\varphi_n$ so that $|{m \phi}-{m \phi}'|$ is small

Phase estimation via inverse QFT

$$\mathbf{QFT}_{n}^{\dagger}: \frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.j_{1}j_{2}...j_{n})} |k\rangle \mapsto |j\rangle$$

Inverse QFT

• For
$$U|u\rangle=e^{2\pi i\varphi}|u\rangle=e^{2\pi i(0.\varphi_1\varphi_2\varphi_3...)}|u\rangle$$
, if we have:
$$\frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^{n-1}}e^{2\pi ik(0.\varphi_1\varphi_2\varphi_3...)}|k\rangle$$
• Then what is $\mathbf{QFT}_n^\dagger\left(\frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^{n-1}}e^{2\pi ik(0.\varphi_1\varphi_2\varphi_3...)}|k\rangle\right)$?

- Phase estimation via inverse QFT
- For $U|u\rangle=e^{2\pi i\varphi}|u\rangle=e^{2\pi i(0.\varphi_1\varphi_2\varphi_3...)}|u\rangle$, suppose that we have: $\frac{1}{\sqrt{2^n}}\sum_{k=0}^\infty e^{2\pi ik(0.\varphi_1\varphi_2\varphi_3...)}|k\rangle$
- Then what is $\mathbf{QFT}_n^{\dagger} \left(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.\boldsymbol{\varphi}_1 \boldsymbol{\varphi}_2 \boldsymbol{\varphi}_3 \dots)} |k\rangle \right)$?
- Case 1: $\varphi = 0$. $\varphi_1 \varphi_2 \dots \varphi_t$ where $t \leq n$

$$\mathbf{QFT}_{n}^{\dagger} \left(\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.\boldsymbol{\varphi}_{1}\boldsymbol{\varphi}_{2}...\boldsymbol{\varphi}_{t})} |k\rangle \right) \mapsto |\boldsymbol{\varphi}_{1}\boldsymbol{\varphi}_{2}...\boldsymbol{\varphi}_{t}\boldsymbol{\varphi}_{t+1}...\boldsymbol{\varphi}_{n}\rangle$$

By Inverse QFT $(\varphi_{t+1} \dots \varphi_n = 0 \dots 0)$

- Phase estimation via inverse QFT
- For $U|u\rangle=e^{2\pi i\varphi}|u\rangle=e^{2\pi i(0.\varphi_1\varphi_2\varphi_3...)}|u\rangle$, suppose that we have: $\frac{1}{\sqrt{2^n}}\sum_{k=0}^{\infty}e^{2\pi ik(0.\varphi_1\varphi_2\varphi_3...)}|k\rangle$
- Then what is $\mathbf{QFT}_n^{\dagger} \left(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.\boldsymbol{\varphi}_1 \boldsymbol{\varphi}_2 \boldsymbol{\varphi}_3 \dots)} |k\rangle \right)$?
- Case 2: $\varphi=0$. $\varphi_1\varphi_2\ldots\varphi_t$ where t>n or $t\to\infty$

$$\mathbf{QFT}_{n}^{\dagger} \left(\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.\boldsymbol{\varphi}_{1}\boldsymbol{\varphi}_{2}...\boldsymbol{\varphi}_{t})} |k\rangle \right) \mapsto |\boldsymbol{\varphi}'\rangle = |\boldsymbol{\varphi}'_{1} ... \boldsymbol{\varphi}'_{n}\rangle$$

By Inverse QFT

- Phase estimation via inverse QFT
- For $U|u\rangle=e^{2\pi i\varphi}|u\rangle=e^{2\pi i(0.\varphi_1\varphi_2\varphi_3...)}|u\rangle$, suppose that we have: $\frac{1}{\sqrt{2^n}}\sum_{k=0}^\infty e^{2\pi ik(0.\varphi_1\varphi_2\varphi_3...)}|k\rangle$
- Then what is $\mathbf{QFT}_n^{\dagger} \left(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.\boldsymbol{\varphi_1} \boldsymbol{\varphi_2} \boldsymbol{\varphi_3}...)} |k\rangle \right)$?
- Case 2: $\varphi=0$. $\varphi_1\varphi_2\ldots\varphi_t$ where t>n or $t\to\infty$

$$\mathbf{QFT}_{n}^{\dagger} \left(\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.\boldsymbol{\varphi}_{1}\boldsymbol{\varphi}_{2}...\boldsymbol{\varphi}_{t})} |k\rangle \right) \mapsto |\boldsymbol{\varphi}'\rangle = |\boldsymbol{\varphi}'_{1} ... \boldsymbol{\varphi}'_{n}\rangle$$

By Inverse QFT

Theorem (informal):

$$\Pr[|\varphi - \varphi'| \le 2^{-n+2}] \ge \frac{1}{2},$$

which means that φ' gives a good estimation of φ .

- Phase estimation via inverse QFT
- For $U|u\rangle = e^{2\pi i \varphi}|u\rangle = e^{2\pi i (0.\varphi_1 \varphi_2 \varphi_3...)}|u\rangle$.
- Suppose that we have: $\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k (0.\phi_1 \phi_2 \phi_3 \dots)} |k\rangle$
- Then what is $\mathbf{QFT}_n^{\dagger} \left(\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k (\mathbf{0}.\boldsymbol{\varphi}_1 \boldsymbol{\varphi}_2 \boldsymbol{\varphi}_3 \dots)} |k\rangle \right)$?
- Answer: $\mathbf{QFT}_n^{\dagger}\left(\frac{1}{\sqrt{2^n}}\sum_{k=0}^{2^n-1}e^{2\pi ik(\mathbf{0}.\boldsymbol{\varphi}_1\boldsymbol{\varphi}_2\boldsymbol{\varphi}_3...)}|k\rangle\right)\mapsto |\boldsymbol{\varphi}'\rangle$, where $\boldsymbol{\varphi}'$ is a good estimation of $\boldsymbol{\varphi}$

• inverse QFT for phase estimation

$$\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k (0.\varphi_1 \varphi_2 \varphi_3 \dots)} |k\rangle \qquad QFT_n^{\dagger} \qquad |\varphi'\rangle \qquad \qquad \varphi'$$

inverse QFT for phase estimation

$$\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k (\mathbf{0}.\varphi_1 \varphi_2 \varphi_3 \dots)} |k\rangle \qquad \mathbf{QFT}_n^{\dagger} \qquad |\varphi'\rangle \qquad \boldsymbol{\varphi}$$

How can we generate this state if we have the unitary and the eigenvector:

Given
$$U$$
 and $|u\rangle$, generate
$$\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k \varphi} |k\rangle$$

(Leave as an exercise tomorrow)

- Suppose that we have a function f with a period $r < 2^L$.
- Namely, there exists a minimal r > 0 such that f(x + r) = f(x)
- Goal: Find r

- Suppose that we have a function f with a period $r < 2^L$.
- Namely, there exists a minimal r > 0 such that f(x + r) = f(x)
- Goal: Find *r*

• Suppose we have the following state: (Let n be a large enough integer, e.g., $n \approx L + 2$)

$$\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle |f(x)\rangle$$

- Suppose that we have a function f with a period $r < 2^L$.
- Namely, there exists a minimal r > 0 such that f(x + r) = f(x)
- Goal: Find r
- Suppose we have the following state: (Let n be a large enough integer, e.g., $n \approx L + 2$)

$$\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n-1}} |x\rangle |f(x)\rangle$$

• We should have $\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n-1}} |x\rangle |f(x)\rangle = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} (...)$

- Suppose that we have a function f with a period $r < 2^L$.
- Namely, there exists a minimal r > 0 such that f(x + r) = f(x)
- Goal: Find r
- Suppose we have the following state: (Let n be a large enough integer)

$$\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle |f(x)\rangle$$

• We should have $\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n}-1} |x\rangle |f(x)\rangle = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} (...)$

We need a good basis to express this "periodic state"...

- Suppose that we have a function f with a period r
 - ...and $f(x_1) \neq f(x_2)$ for any distinct $x_1, x_2 \in \{0, ..., r-1\}$.
- We define the following Fourier basis $\{|\hat{f}(0)\rangle, |\hat{f}(1)\rangle, ..., |\hat{f}(r-1)\rangle\}$, where:

$$|\hat{f}(l)\rangle = \frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-2\pi i \cdot l \cdot (\frac{x}{r})} |f(x)\rangle$$

- Suppose that we have a function f with a period r
 - ...and $f(x_1) \neq f(x_2)$ for any distinct $x_1, x_2 \in \{0, ..., r-1\}$.
- We define the following Fourier basis $\{|\hat{f}(0)\rangle, |\hat{f}(1)\rangle, ..., |\hat{f}(r-1)\rangle\}$, where:

$$|\hat{f}(l)\rangle = \frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-2\pi i \cdot l \cdot (\frac{x}{r})} |f(x)\rangle$$

Some insights: By this definition, $|\hat{f}(l_1)\rangle$ is always orthogonal to $|\hat{f}(l_2)\rangle$ if $l_1\neq l_2$

- Suppose that we have a function f with a period r
 - ...and $f(x_1) \neq f(x_2)$ for any distinct $x_1, x_2 \in \{0, ..., r-1\}$.
- We define the following Fourier basis $\{|\hat{f}(0)\rangle, |\hat{f}(1)\rangle, ..., |\hat{f}(r-1)\rangle\}$, where:

$$|\hat{f}(l)\rangle = \frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-2\pi i \cdot l \cdot (\frac{x}{r})} |f(x)\rangle$$

Then we also have:

$$|f(x)\rangle = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} e^{2\pi i \cdot x \cdot (\frac{l}{r})} |\hat{f}(l)\rangle$$

- Exercise (tomorrow):
 - Prove the states defined above constitute an orthonormal basis.
 - Prove the second equality.

- Suppose that we have a function f with a period r
 - ...and $f(x_1) \neq f(x_2)$ for any distinct $x_1, x_2 \in \{0, ..., r-1\}$.
- We define the following Fourier basis $\{|\hat{f}(0)\rangle, |\hat{f}(1)\rangle, \dots, |\hat{f}(r-1)\rangle\}$, where: $|\hat{f}(l)\rangle = \frac{1}{\sqrt{r}}\sum_{l=0}^{\infty}e^{-2\pi i\cdot l\cdot(\frac{x}{r})}|f(x)\rangle$
- And we also have: $|f(x)\rangle = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} e^{2\pi i \cdot x \cdot (\frac{l}{r})} |\hat{f}(l)\rangle$
- Continue the calculation and apply inverse QFT: $\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n-1}} |x\rangle |f(x)\rangle = \dots = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} \left| \left(\frac{l}{r}\right)' \right\rangle |\hat{f}(l)\rangle$

- Suppose that we have a function f with a period r
 - ...and $f(x_1) \neq f(x_2)$ for any distinct $x_1, x_2 \in \{0, ..., r-1\}$.
- We define the following Fourier basis $\{|\hat{f}(0)\rangle, |\hat{f}(1)\rangle, \dots, |\hat{f}(r-1)\rangle\}$, where: $|\hat{f}(l)\rangle = \frac{1}{\sqrt{r}}\sum_{l=0}^{\infty}e^{-2\pi i\cdot l\cdot(\frac{x}{r})}|f(x)\rangle$
- And we also have: $|f(x)\rangle = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} e^{2\pi i \cdot x \cdot (\frac{l}{r})} |\hat{f}(l)\rangle$
- Continue the calculation and apply inverse QFT: $\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle |f(x)\rangle = \dots = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} \left| \left(\frac{l}{r}\right)' \right\rangle |\hat{f}(l)\rangle$
- Measure the first n-qubit system gives us a good estimation of $\binom{l}{r}$
- Apply many times, we get $\left\{ \left(\frac{l_1}{r}\right)', \left(\frac{l_2}{r}\right)', \dots \right\}$, which allows us to recover r

Exercise

• (1) Prove this equality:

his equality:
$$\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k (0.j_1 j_2 \dots j_n)} |k\rangle = \frac{1}{\sqrt{2^n}} \begin{pmatrix} (|0\rangle + e^{2\pi i (0.j_n)}|1\rangle) \\ \otimes (|0\rangle + e^{2\pi i (0.j_{n-1} j_n)}|1\rangle) \\ \otimes (|0\rangle + e^{2\pi i (0.j_{n-2} j_{n-1} j_n)}|1\rangle) \\ \vdots \\ \otimes (|0\rangle + e^{2\pi i (0.j_1 j_2 j_3 \dots j_n)}|1\rangle) \end{pmatrix}$$

• (2) Given \boldsymbol{U} and $|u\rangle$ where $\boldsymbol{U}|u\rangle=e^{2\pi i k \boldsymbol{\varphi}}|u\rangle$, generate

$$\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k \varphi} |k\rangle$$

- (3) Prove $|\hat{f}(l)\rangle = \frac{1}{\sqrt{r}}\sum_{x=0}^{r-1}e^{-2\pi i\cdot l\cdot(\frac{x}{r})}|f(x)\rangle$ forms a basis, and $|f(x)\rangle = \frac{1}{\sqrt{r}}\sum_{l=0}^{r-1}e^{2\pi i\cdot x\cdot(\frac{l}{r})}|\hat{f}(l)\rangle$
 - where *r* is the period of *f*
 - Suppose that $f(x_1) \neq f(x_2)$ for distinct $x_1, x_2 \in \{0, ..., r-1\}$
- (4) How can we create the state $\frac{1}{\sqrt{2^n}}\sum_{x=0}^{2^n-1}|x\rangle|f(x)\rangle$ if we have U_f ?

Exercise

• (1) Prove this equality:

Prove this equality:
$$\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2\pi i k(0.j_{1}j_{2}...j_{n})} |k\rangle = \frac{1}{\sqrt{2^{n}}} \begin{pmatrix} (|0\rangle + e^{2\pi i(0.j_{n})}|1\rangle) \\ \otimes (|0\rangle + e^{2\pi i(0.j_{n-1}j_{n})}|1\rangle) \\ \otimes (|0\rangle + e^{2\pi i(0.j_{n-2}j_{n-1}j_{n})}|1\rangle) \end{pmatrix} = \frac{1}{\sqrt{2^{n}}} \begin{pmatrix} \sum_{k_{i}=0}^{1} e^{2\pi i k_{i}(0.j_{n-i+1}...j_{n})} |k_{i}\rangle \end{pmatrix}$$

• (2) Given U and $|u\rangle$ where $U|u\rangle = e^{2\pi i k \varphi} |u\rangle$. Suppose that $\varphi = 0$. $\varphi_1 \varphi_2 \dots \varphi_n$. Generate

$$\frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^{n-1}} e^{2\pi i k \varphi} |k\rangle \qquad \text{(Hint: Use (1) and controlled } \boldsymbol{U}^{2^j}\text{)}$$

- (3) Prove $|\hat{f}(l)\rangle = \frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-2\pi i \cdot l \cdot (\frac{x}{r})} |f(x)\rangle$ forms a basis, and $|f(x)\rangle = \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} e^{2\pi i \cdot x \cdot (\frac{l}{r})} |\hat{f}(l)\rangle$
 - where r is the period of f (Hint: $\sum_{l=0}^{r-1} e^{2\pi i \cdot l \cdot (\frac{a-b}{r})} = r$ if $a = b \pmod{r}$; Otherwise, = 0)
 - Suppose that $f(x_1) \neq f(x_2)$ for distinct $x_1, x_2 \in \{0, ..., r-1\}$
- (4) How can we create the state $\frac{1}{\sqrt{2^n}}\sum_{x=0}^{2^n-1}|x\rangle|f(x)\rangle$ if we have U_f ?

Summary of QFT and inverse QFT

• Circuit for QFT (and similarly, inverse QFT)

Summary of Phase estimation

Summary of Period Finding

Next Week

- Order finding and Factoring
- Shor's algorithm

Reference

- **[NC00]:** Chapter 5
- **[KLM07]:** Chapter 7