

Tetrahedralization

- Polyhedron Decomposition

Junhui DENG

deng@tsinghua.edu.cn

3D Triangulation

- ❖ A general triangulation of a geometric domain is
 - a partition into simplices that meet only at shared faces
 - 1) The geometric domain may be a point set, a polygon, or a polyhedron
 - 2) The simplex in \mathbb{Z}^2 is a triangle, while in \mathbb{Z}^3 a tetrahedron
- ❖ 3D Triangulation = Tetrahedralization
- ❖ The decomposition of a polyhedron into a set of non-overlapping tetrahedra, if exists,
 - is called a tetrahedralization

Number of Tetrahedra

❖We've seen that

every triangulation of a simple n-gon (without holes)

consists of n - 2 triangles

❖ Given an n-vertex polyhedron,

is the number of tetrahedra

an invariant

A cube can be triangulated into 5 or 6 non-overlapping tetrahedra

of all its tetrahedralizations (if exist)?

Uncertainty!