

planetmath.org

Math for the people, by the people.

proof of Hartman-Grobman theorem

Canonical name ProofOfHartmanGrobmanTheorem

Date of creation 2013-03-22 14:25:29 Last modified on 2013-03-22 14:25:29

Owner Koro (127) Last modified by Koro (127)

Numerical id 7

Author Koro (127)

Entry type Proof

Classification msc 37C25

Lemma 1. Let $A: E \to E$ be an hyperbolic isomorphism, and let φ and ψ be ε -Lipschitz maps from E to itself such that $\varphi(0) = \psi(0) = 0$. If ε is sufficiently small, then $A + \varphi$ and $A + \psi$ are topologically conjugate.

Since A is hyperbolic, we have $E = E^s \oplus E^u$ and there is $\lambda < 1$ (possibly changing the norm of E by an equivalent box-type one), called the skewness of A, such that

$$||A|_{E^s}|| < \lambda, \quad ||A^{-1}|_{E^u}|| < \lambda$$

and

$$||x|| = \max\{||x_s||, ||x_u||\}.$$

Let us denote by $(\tilde{E}, \|\cdot\|_0)$ the Banach space of all bounded, continuous maps from E to itself, with the norm of the supremum induced by the norm of E. The operator A induces a linear operator $\tilde{A}: \tilde{E} \to \tilde{E}$ defined by $(\tilde{A}u)(x) = A(u(x))$, which is also hyperbolic. In fact, letting \tilde{E}^i be the set of all maps $u: \tilde{E} \to \tilde{E}$ whose range is contained in E^i (for i = s, u) we have that $\tilde{E} = \tilde{E}^s \oplus \tilde{E}^u$ is a hyperbolic splitting for \tilde{A} with the same skewness as A

From now on we denote the projection of x to E^i by x_i , and the restriction $A|_{E_i}: E^i \to E^i$ by A_i (i = s, u).

We will try to find a conjugation of the form I + u where $u \in \tilde{E}$.

Proposition 1. There exists $\varepsilon > 0$ such that if φ and ψ are ε -Lipschitz, then there is a unique $u \in \tilde{E}$ such that

$$(I+u)(A+\varphi) = (A+\psi)(I+u).$$

Proof. We want to find u such that

$$A + \varphi + u(A + \varphi) = A + Au + \psi(I + u)$$

which is the same as

$$\varphi + u(A + \varphi) = Au + \psi(I + u).$$

This can be rewriten as

$$u_u = A_u^{-1}(u_u(A + \varphi) + \varphi_u - \psi_u(I + u))$$

$$u_s = (A_s u_s + \psi_s(I + u) - \varphi_s)(A + \varphi)^{-1}$$

where we use the fact that by the Lipschitz inverse mapping theorem, if $\text{Lip}(\varphi) < 1/\lambda \le ||A^{-1}||^{-1}$ (where λ is the skewness of A) then $A + \varphi$ is invertible with Lipschitz inverse.

Now define $\Gamma: \tilde{E} \to \tilde{E}$ by

$$\Gamma_s(u) = (A_s u_s + \psi_s(I+u) - \varphi_s)(A+\varphi)^{-1}$$

$$\Gamma_u(u) = A_u^{-1}(u_u(A+\varphi) + \varphi_u - \psi_u(I+u))$$

We assert that, if ε is small, Γ is a contraction. In fact,

$$\|\Gamma_{s}(u) - \Gamma_{s}(v)\|_{0} = \|(A_{s}(u_{s} - v_{s}) + \psi_{s}(I + u) - \psi_{s}(I + v))(A + \varphi)^{-1}\|_{0}$$

$$\leq \|\tilde{A}_{s}\| \cdot \|(u_{s} - v_{s})(A + \varphi)^{-1}\|_{0} + \|(\psi_{s}(I + u) - \psi_{s}(I + v))(A + \varphi)^{-1}\|_{0}$$

$$\leq \lambda \|u_{s} - v_{s}\|_{0} + \varepsilon \|u - v\|_{0}$$

$$\leq (\lambda + \varepsilon)\|u - v\|_{0}$$

and

$$\|\Gamma_{u}(u) - \Gamma_{u}(v)\|_{0} = \|A_{u}^{-1}(u_{u}(A+\varphi) - v_{u}(A+\varphi) - \psi_{u}(I+u) + \psi_{u}(I+v))\|_{0}$$

$$\leq \|\tilde{A}_{u}^{-1}\| \cdot (\|u_{u}(A+\varphi) - v_{u}(A+\varphi)\|_{0} + \|\psi_{u}(I+u) - \psi_{u}(I+v)\|_{0})$$

$$\leq \lambda (\|u_{u} - v_{u}\|_{0} + \varepsilon \|u - v\|_{0})$$

$$\leq \lambda (1+\varepsilon)\|u - v\|_{0}.$$

Thus, if $\varepsilon < \varepsilon_0 \doteq \min\{\lambda, (1-\lambda)/\lambda\}$, Γ has Lipschitz constant smaller than 1, so it is a contraction. Hence u exists and is unique.

Proposition 2. The map u from the previous proposition is a homeomorphism.

Proof. Using the previous proposition with φ and ψ switched, we get a unique $v \in \tilde{E}$ such that

$$(I+v)(A+\psi) = (A+\varphi)(I+v).$$

It follows that

$$(I+v)(I+u)(A+\varphi) = (I+v)(A+\psi)(I+u) = (A+\varphi)(I+v)(I+u).$$
(1)

Also, the previous proposition with $\varphi = \psi$ implies that that there is a unique $w \in \tilde{E}$ such that

$$(I+w)(A+\varphi) = (A+\varphi)(I+w),$$

which obviously is w = 0. But since (I + v)(I + u) = I + (u + v + uv) and $u + v + uv \in \tilde{E}$, (??) implies that w = u + v + uv is a solution of the above equation, so that u + v + uv = 0 and (I + v)(I + u) = I. In a similar way, we see that (I + u)(I + v) = I. Hence I + u is invertible, with continuous inverse.

The two previous propositions prove the lemma.

Proposition 3. If U is an open neighborhood of 0 and $f: U \to E$ is a C^{∞} map with f(0) = 0, then for every $\varepsilon > 0$ there is $\delta > 0$ such that $\varphi \doteq f - Df(0)$ is ε -Lipschitz in the ball $B(0, \delta)$.

Proof. This is a direct consequence of the mean value inequality and the fact that $D\varphi$ is continuous and $D\varphi(0) = 0$.

Proposition 4. There is a constant k such that if $\varphi \colon \overline{B}(0,r) \to E$ is an ε -Lipschitz map, then there is a $k\varepsilon$ -Lipschitz map $\tilde{\varphi} \colon E \to E$ which coincides with φ in B(0,r/2).

Proof. Let $\eta: \mathbb{R} \to \mathbb{R}$ be a \mathcal{C}^{∞} bump function: an infinitely differentiable map such that $\eta(x) = 1$ for x < 1/2 and $\eta(x) = 0$ for x > 1, with derivative bounded by M and $|\eta(x)|| \leq 1$ for all $x \in \mathbb{R}$. Now define $\tilde{\varphi}(x) = \varphi(x)\eta(||x||/r)$ (when $\varphi(x)$ is not defined, we assume that it is zero). If x and y are both in B(0,r) then we have

$$\begin{split} \|\tilde{\varphi}(x) - \tilde{\varphi}(y)\| &= \left\| \varphi(x) \eta(\|x\|/r) - \varphi(y) \eta(\|y\|/r) \right\| \\ &\leq \left\| (\varphi(x) - \varphi(y)) \eta(\|x\|/r) \right\| + \left\| \varphi(y) (\eta(\|x\|/r) - \eta(\|y\|/r)) \right\| \\ &\leq \varepsilon \|x - y\| + \|\varphi(y) - \varphi(0)\| \cdot \left\| \eta(\|x\|/r) - \eta(\|y\|/r) \right\| \\ &\leq \varepsilon \|x - y\| + \varepsilon \|y\| (M\|x - y\|/r) \\ &\leq (M+1)\varepsilon \|x - y\|; \end{split}$$

if x is in B(0,r) and y is not, then

$$\|\tilde{\varphi}(x) - \tilde{\varphi}(y)\| = \|\tilde{\varphi}(x) - \tilde{\varphi}(y^*)\|,$$

where y^* is defined as $x + \tau(y - x)$ with

$$\tau = \sup\{t : x + t(y - x) \in E \setminus B(0, r)\}\$$

This is true because $\tilde{\varphi}(y^*) = 0$. Also, $||x - y^*|| = \tau ||x - y|| \le ||x - y||$; hence

$$\|\tilde{\varphi}(x) - \tilde{\varphi}(y)\| = \|\tilde{\varphi}(x) - \tilde{\varphi}(y^*)\| \le (M+1)\varepsilon \|x - y^*\| \le (M+1)\varepsilon \|x - y\|.$$

Finally, if both x and y are outside B(0,r), then $\|\tilde{\varphi}(x) - \tilde{\varphi}(y)\| = 0 \le (M+1)\|x-y\|$. Letting k = M+1 we get the desired result. \square

Proof of the theorem. Taking the particular $\psi = 0$ in the lemma, we observe that there is $\varepsilon > 0$ such that for any ε -Lipschitz map φ , Df(0) is conjugate to $\varphi + Df(0)$. Choose δ such that f - Df(0) is ε/k -Lipschitz in $B(0, 2\delta)$. Let $\tilde{\varphi}$ be the ε -Lipschitz extension of f - Df(0) to $B(0, \delta)$ obtained from the previous proposition. We have that $Df(0) + \tilde{\varphi}$ is conjugate to Df(0). But for $x \in B(0, \delta)$ we have $Df(0) + \tilde{\varphi} = f$, so that f is locally conjugate to Df(0).