# Deep Water GPU Deep Learning for H2O

Arno Candel, PhD
Chief Architect, Physicist & Hacker, H2O.ai
@ArnoCandel

The Open Tour, Dallas, TX
Oct 26 2016



### **Overview**

## Computer Science (CS)

Artificial Intelligence (A.I.)

Machine Learning (ML)

Deep Learning (DL)

hot hot hot hot





### A Simple Deep Learning Model: Artificial Neural Network



nodes: neuron activations (real numbers) — represent features

arrows: connecting weights (real numbers) — learned during training

: non-linearity  $x \rightarrow f(x)$  — adds model complexity





### Brief History of A.I., ML and DL

## A step back: A.I. was coined over 60 years ago



John McCarthy
Princeton, Bell Labs, Dartmouth, later: MIT, Stanford

1955: "A proposal for the Dartmouth summer research project on Artificial Intelligence"

with Marvin Minsky (MIT), Claude Shannon (Bell Labs) and Nathaniel Rochester (IBM)

http://www.asiapacific-mathnews.com/04/0403/0015 0020.pdf





### 1955 proposal for the Dartmouth summer research project on A.I.

"We propose that a 2-month, 10-man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning and any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for one summer."



### **Step 1: Great Algorithms + Fast Computers**

## "No computer will ever beat me at playing chess."



1997: Playing Chess (IBM Deep Blue beats Kasparov)

Computer Science
30 custom CPUs, 60 billion moves in 3 mins

http://nautil.us/issue/18/genius/why-the-chess-computer-deep-blue-played-like-a-human



### **Step 2: More Data + Real-Time Processing**

### "It takes a human to drive a car!"



2005: Self-driving Cars
DARPA Grand Challenge, 132 miles
(won by Stanford A.I. lab\*)

Sensors & Computer Science video, radar, laser, GPS, 7 Pentium computers

http://cs.stanford.edu/group/roadrunner/old/presskit.html

\*A.I. lab was established by McCarthy et al. in the early '60s





### **Step 3: Big Data + In-Memory Clusters**

## "Computers can't answer arbitrary questions!"



2011: Jeopardy (IBM Watson)

## **In-Memory Analytics/ML**

4 TB of data (incl. wikipedia), 90 servers, 16 TB RAM, Hadoop, 6 million logic rules

https://www.youtube.com/watch?v=P18EdAKuC1U

https://en.wikipedia.org/wiki/Watson\_(computer)

Note: IBM Watson received the question in electronic written form, and was often able to press the answer button faster than the competing humans.



### **Step 4: Deep Learning**

## "Computers don't understand our language!"



2014: Google (acquired Quest Visual)

## **Deep Learning**

Convolutional and Recurrent Neural Networks, with training data from users

- Translate between 103 languages by typing
- Instant camera translation: Use your camera to translate text instantly in 29 languages
- Camera Mode: Take pictures of text for higher-quality translations in 37 languages
- Conversation Mode: Two-way instant speech translation in 32 languages
- Handwriting: Draw characters instead of using the keyboard in 93 languages





### **Step 5: Augmented Deep Learning**

## "Go is too complex for computers to master!"





2014: Atari Games (DeepMind) trained from raw pixel values, no human rules

## **Deep Learning**

+ reinforcement learning, tree search, Monte Carlo, GPUs, playing against itself, ...

2016: AlphaGo (Google DeepMind)

Go board has approx.





### **Things are Changing Quickly**



Yesterday: Small Data (<GB)

Data + Skills

H<sub>2</sub>o.ai are good for business

Today: Big Data (TeraBytes, ExaBytes)

Data + Machine Learning

ARE the business

### Why Deep Learning?

## Deep Learning is in the Center of This Revolution

- conceptually simple
- solves many problems
- benefits from big data
- super-human results



### Why Deep Learning?

### **However:**

- hard to interpret but solutions exist
- lots of architectural choices require lucky PhDs, open-source helps
- lots of hyper-parameters AutoML can do the tuning for you
- slow to train on big data dedicated hardware helps (GPU clusters)
- rapidly changing landscape Deep Water unifies open-source APIs





### **H2O pioneered Easy-To-Use Open Source Deep Learning**







### **H2O pioneered Easy-To-Use Open Source Deep Learning**



**Gradient Boosting Machine** 

Generalized Linear Modeling

H<sub>2</sub>O.ai

All algorithms are distributed and scalable



### **H2O Deep Learning Is Widely Used**

The usage of Hadoop/Big Data tools grew to 39%, up from 29% in 2015 (and 17% in 2014), driven by Apache Spark, MLlib (Spark Machine Learning Library) and H2O.

See also

- KDnuggets interview with Spark Creator Matei Zaharia
- KDnuggets interview with Arno Candel, H2O.ai on How to Quick Start Deep Learning with H2O

http://www.kdnuggets.com



### Deep Water opens the Floodgates for state-of-the-art Deep Learning

## H2O Deep Learning: simple multi-layer networks, CPUs

1-5 layers
MBs/GBs of data







Limited to business analytics, statistical models (CSV data)



## **H2O Deep Water:** arbitrary networks, CPUs or GPUs

1-1000 layers GBs/TBs of data









Large networks for big data

(e.g. image 1000x1000x3 -> 3m inputs per observation)



### **Deep Water: Best Open-Source Deep Learning**

### **Enterprise Deep Learning for Business Transformation**

Deep Water: THE open-source Deep

Learning Platform

H2O integrates the top open-source DL tools



**Native GPU support** 



is up to 100x faster than



**Enterprise Ready** 

New Big Data Use Cases (previously impossible or difficult in H2O)

Easy to train, compare and deploy, interactive and scalable, from Flow, R, Python, Spark/Scala, Java, REST

Image - social media, manufacturing, healthcare, ...

**Video** - UX/UI, security, automotive, social media, ...

Sound - automotive, security, call centers, healthcare, ...

**Text** - NLP, sentiment, security, finance, fraud, ...

**Time Series** - security, IoT, finance, e-commerce, ...





### **Deep Water Architecture**



### Step 1: Leverage Research Community Code, Data and Models

### World's best Image Classifier (Google + Microsoft, Aug 2016)





https://research.googleblog.com/2016/08/improving-inception-and-image.html



### open-source implementation

```
stem_2_lx1 = Conv(data=concat1, num_filter=num_4_1,
   stem_2_7x1 = Conv(data=stem_2_1x1, num_filter=num_4)
                      suffix=' conv 2')
   stem_2_lx7 = Conv(data=stem_2_7x1, num_filter=num_4
                      suffix=' conv 3')
   stem 2 3x3 = Conv(data=stem 2 1x7, num filter=num 4
   concat2 = nx.syn.Concat(*[sten 1 3x3, stem 2 3x3], :
   pool2 = mx.sym.Pooling(data=concat2, kernel=(3, 3),
                           mane=('%s %s pool2' % ('max',
   stem 3 3x3 = Conv(data=concat2, num filter=num 5 1,
                      suffix=' conv l', withRelu=Palse)
   concat3 = nx.syn.Concat(*[pool2, stem 3 3x3], name=
   bnl = nm.syn.BatchNorm(data=concat3, name=('%s bnl'
   act1 = mm.sym.Activation(data=bn1, act type='relu',
   return act1
def InceptionResnetV2A(data,
                      num 1 1,
                      num 2 1, num 2 2,
                      num 3 1, num 3 2, num 3 3,
                      proj,
                      scaleResidual=True):
   import manet as no
   init - data
   al = Conv[data=data, num filter=num 1 1, name=('%s /
   a2 = Conv(data=data, num filter=num 2 1, name=('%s /
   a2 = Conv(data=a2, num filter=num 2 2, kernel=(3, 3)
   a3 = Conv(data=data, num filter=num 3 1, name=('%s
   a3 = Conv(data=a3, num filter=num 3 2, kernel=(3, 3
   a3 = Conv(data=a3, num filter=num 3 3, kernel=(3, 3
```



### **Step 2: Train Models with Familiar APIs**







Status of Deep Learning Model: user, 116.1 MB, predicting C2, 3-class classification, 5,632 training samples, mini-ba



tch size 16

H2ODeepWaterEstimator : Deep Water

Model Key: DeepWater model python 1477179782032 5



### **Step 3: Model Comparison and Rapid Deployment**

### **Pretrained Image Classifier - Standalone Scoring Server Deployed in Seconds**



**Steam**Compare Models

## http://deepwater.h2o.ai/classy-demo/



### **Scoring Server**

**Build smarter applications and data products** 





### **High-Performance Multi-GPU Training with Caffe**

### **Training on a 16-GPU EC2 instance with Caffe**

https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-16-gpus/

| Instance Name | GPU Count | vCPU Count | Memory  | Parallel Processing Cores | GPU Memory | Network Performance |
|---------------|-----------|------------|---------|---------------------------|------------|---------------------|
| p2.xlarge     | 1         | 4          | 61 GIB  | 2,495                     | 12 GIB     | High                |
| p2.8xlerge    | 8         | 32         | 488 GiB | 19,988                    | 96 GiB     | 10 Gigabit          |
| p2.16xlarge   | 16        | 64         | 732 GIB | 39,936                    | 192 GIB    | 20 Glgabit          |



#### Caffe launched from Java:

java -cp target/dependency/\*:target/classes deepwater.examples.ImageNet

### **H2O** integration is in progress



| MVICIA-SMI 367.48 Driver Version: 367.48 |                   |                                                                              |     |                |  |  |  |  |
|------------------------------------------|-------------------|------------------------------------------------------------------------------|-----|----------------|--|--|--|--|
|                                          |                   | Bus-Id Disp.A   Volatile Uncorn. ECC  <br>Nemcry-usage   Seu-Util Compute M. |     |                |  |  |  |  |
| 0 Tesla K90                              | 01                | 0080:00:0F.0 OFF  <br>3246NIB / 13439NIB                                     | 55% | 0<br>Default   |  |  |  |  |
| 1 Testa KBB<br>N/A 52C PB                |                   | 2759N1E / 33439M1B                                                           | 71X | B  <br>Default |  |  |  |  |
| 2 Tesla KB0<br>N/A 69C P8                |                   | eece;ee:11.6 Off  <br>2861N18 / 11439M18                                     | 58% | 0  <br>Default |  |  |  |  |
| 3 Tesla KB9<br>N/A 63C P8                | 0n<br>147w / 149W | 0000 00 12.6 Off  <br>2750NLD / 13439NLD                                     | 92% | 0  <br>Default |  |  |  |  |
| 4 Testa K90<br>N/A 63C P8                |                   | ######################################                                       | 89% | 0  <br>Default |  |  |  |  |
| 5 Tesla KBB<br>N/A 58C PB                |                   | eece.ee.14.6 Off  <br>2756N18 / 13439M18                                     | 99% | 0  <br>Default |  |  |  |  |
| 6 Tesla KB0<br>N/A 69C P0                |                   | 0000:00:15.0 Off  <br>2001MLD / 11439MLD                                     | BSM | 0  <br>Default |  |  |  |  |
| 7 Tesla KBB<br>N/A 59C PB                |                   | 275WN18 / 13439M18                                                           | 92% | e  <br>pefault |  |  |  |  |
| 8 Tesla KB0<br>N/A 67C P8                |                   | 9080:00:17.0 Off  <br>2903NLB / 13439NLB                                     | 92% | 0  <br>Default |  |  |  |  |
| 9 Teels K90<br>N/A 57C P8                |                   | 2750NLB / 11439MLB                                                           | 23% | 0  <br>Default |  |  |  |  |
| 10 Tenla KB0<br>N/A 68C PR               |                   | eece:ee:15.6 Off  <br>2801NIB / 33459MIB                                     | 97% | 6  <br>Default |  |  |  |  |
| 11 Tesla KOO<br>N/A cec P8               |                   | 2750NLB / 13439MLB                                                           | 97% | 0  <br>Default |  |  |  |  |
| 12 Tesla KNR<br>N/A 68C PB               |                   | 2852NIE / 11439NIB                                                           | 76X | g  <br>Default |  |  |  |  |
| 13 Tesla K80<br>N/A nec Pe               |                   | eeee:ee:10.6 Off  <br>275enis / 13479nis                                     | 97X | 0  <br>Default |  |  |  |  |
| 14 Tesla K99<br>N/A 69C P8               |                   | 0000:00:1D.G OFF  <br>2801NIB / 13439MIB                                     | B5% | 0  <br>Default |  |  |  |  |
| 15 Tesla K88<br>N/A 63C P8               |                   | 0000:00:1E.E DFF  <br>2750N1E / 13439MLB                                     | 97% | 0  <br>Default |  |  |  |  |

## Caffe

All 16 GPUs are busy training



#### Outlook

## Roadmap for Deep Water (Q4 2016):



Finish TensorFlow integration (C++/Python/Java): Package Python on the backend to create trainable graphs



Finish Caffe integration (pure C++/Java):
Optimized Multi-GPU training (NVIDIA NCCL)



Add multi-GPU support for mxnet



Add more capabilities to H2O Deep Water: Text/NLP, Time Series, LSTM, AutoEncoder, Feature Extraction, Input/Output shape mapping, etc.





### Learn more about Deep Water & GPU Backends

## **Breakout Tracks on Deep Water & GPU Backends**



11:05-11:30 Dmitry Larko — Credit Card Default Prediction



2:40-3:00 Fabrizio Milo — TensorFlow internals, Wide & Deep models



3:00-4:00 Arno Candel — Hands-On Workshop with Image Classification, Credit Card Default Prediction, Benchmarking and Hyper-Parameter Search in Flow, Python and R





### **Deep Water Live Demo**

## **Live Demo**

