Bài 1 : Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho AM > MB. Vẽ các vector

$$\overrightarrow{MA} + \overrightarrow{MB}$$
 và $\overrightarrow{MA} - \overrightarrow{MB}$
Lời giải:

- Trên đoạn MA, lấy điểm C sao cho

$$\overrightarrow{AC} = \overrightarrow{MB}$$

Khi đó
$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MA} + \overrightarrow{AC}$$

Theo quy tắc ba điểm, ta có: $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{MC}$ (Vì MA > MB nên C thuộc đoạn AM).

- Ta có:

$$\overrightarrow{MA} - \overrightarrow{MB} = \overrightarrow{MA} + (-\overrightarrow{MB})$$

$$= \overrightarrow{MA} + \overrightarrow{BM} = \overrightarrow{BM} + \overrightarrow{MA} \text{ (Tính giao hoán)}$$

$$= \overrightarrow{BA} \text{ (Quy tắc ba điểm)}$$

Bài 2 : Cho hình bình hành ABCD và điểm M tùy ý. Chứng minh rằng

$$\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$$

Lời giải:

Vì ABCD là hình bình hành nên

$$\overrightarrow{BA} = -\overrightarrow{DC} \Longrightarrow \overrightarrow{BA} + \overrightarrow{DC} = \overrightarrow{0}$$

Ta có:
$$\overrightarrow{MA} + \overrightarrow{MC} = (\overrightarrow{MB} + \overrightarrow{BA}) + (\overrightarrow{MD} + \overrightarrow{DC})$$

$$= \overrightarrow{MB} + \overrightarrow{MD} + \overrightarrow{BA} + \overrightarrow{DC}$$

$$= \overrightarrow{MB} + \overrightarrow{MD} (\operatorname{dpcm})$$

Bài 3 : Chứng minh rằng đối với tứ giác ABCD bất kỳ ta luôn có:

a,
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0}$$
; b, $\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{CB} - \overrightarrow{CD}$
Lời giải:

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = (\overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{CD} + \overrightarrow{DA})$$
$$= \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0} (\operatorname{dpcm})$$

b) Ta có:

*
$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{DA} = \overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{DB} (1)$$

*
$$\overrightarrow{CB} - \overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{CD} = \overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{DB} (2)$$

Từ (1) và (2) suy ra:

$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{CB} - \overrightarrow{CD}$$
 (dpcm)

Bài 4 : Cho tam giác ABC. Bên ngoài của tam giác vẽ các hình bình hành: ABIJ, BCPQ, CARS. Chứng minh rằng

$$\overrightarrow{RJ} + \overrightarrow{IQ} + \overrightarrow{PS} = \overrightarrow{0}$$

Lời giải:

Ta có:

$$\overrightarrow{AJ} = \overrightarrow{BI} = -\overrightarrow{IB}$$
 (ABIJ là hình bình hành)

$$\overrightarrow{CS} = -\overrightarrow{RA}$$
 (CARS là hình bình hành)

$$\overrightarrow{PC} = -\overrightarrow{BQ}$$
 (BCPQ là hình bình hành)

Do đó:

$$\overrightarrow{RJ} + \overrightarrow{IQ} + \overrightarrow{PS}$$

$$= (\overrightarrow{RA} + \overrightarrow{AJ}) + (\overrightarrow{IB} + \overrightarrow{BQ}) + (\overrightarrow{PC} + \overrightarrow{CS})$$

$$= (\overrightarrow{RA} + -\overrightarrow{IB}) + (\overrightarrow{IB} + -\overrightarrow{PC}) + (\overrightarrow{PC} + -\overrightarrow{RA})$$

$$= (\overrightarrow{IB} + -\overrightarrow{IB}) + (\overrightarrow{PC} + -\overrightarrow{PC}) + (\overrightarrow{RA} + -\overrightarrow{RA})$$

$$= \vec{0} \text{ (dpcm)}$$

Bài 5 : Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vectơ

$$\overrightarrow{AB} + \overrightarrow{BC}$$
 và $\overrightarrow{AB} - \overrightarrow{BC}$
Lời giải:

Ta có:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Suy ra:
$$|\overrightarrow{AB} + \overrightarrow{BC}| = AC = a$$

Vẽ
$$\overrightarrow{AD} = \overrightarrow{BC}$$
, khi đó $\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{DB}$.
Gọi I là giao điểm của AC và BD.

Dễ thấy ABCD là hình thoi nên I là trung điểm BD và vuông tại I.

$$BI = AB \cdot \sin A = a \cdot \sin 60^{\circ} = \frac{a\sqrt{3}}{2}.$$

$$\Rightarrow BD = 2BI = a\sqrt{3}$$
.

$$V \hat{a} y \left| \overrightarrow{AB} - \overrightarrow{BC} \right| = a \sqrt{3}.$$

Bài 6 : Cho hình bình hành ABCD có tâm O. Chứng minh rằng:

a)
$$\overrightarrow{CO} - \overrightarrow{OB} = \overrightarrow{BA}$$

b)
$$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{DB}$$

c)
$$\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{OA} - \overrightarrow{OB}$$
;
Lời giải:

d)
$$\overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0}$$

(Áp dụng qui tắc tính tổng, hiệu của hai vectơ để biến đổi đến đpcm)

a)

$$\overrightarrow{CO} - \overrightarrow{OB} = \overrightarrow{CO} + \overrightarrow{OD} = \overrightarrow{CD} = \overrightarrow{BA}$$

b)

$$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AB} + (-\overrightarrow{BC}) = \overrightarrow{AB} + \overrightarrow{DA}$$

$$= \overrightarrow{DA} + \overrightarrow{AB} = \overrightarrow{DB}$$

c)

$$\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{BA}$$
 (qui tắc 3 điểm)

$$\overrightarrow{OD} - \overrightarrow{OC} = \overrightarrow{CD}$$
 (qui tắc 3 điểm)

Mà
$$\overrightarrow{BA} = \overrightarrow{CD}$$
 do đó:

$$\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{OD} - \overrightarrow{OC}$$

d)

$$\overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{BA} + \overrightarrow{DC} = = \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{0}$$

Bài 7 : Cho vectơ a, b là hai vectơ khác vectơ 0. Khi nào có đẳng thức

Cho \vec{a}, \vec{b} là hai vector khác $\vec{0}$.

Khi nào có đẳng thức:

a,
$$|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$$
;

b,
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
.

Lời giải:

a, Đặt
$$\overline{a} = \overline{AB}$$
 và $\overline{b} = \overline{BC}$

Giả sử \vec{a} và \vec{b} cùng hướng thì A,B,C thẳng hàng, ta có:

$$\begin{cases} \vec{a} + \vec{b} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \implies |\vec{a} + \vec{b}| = AC \ (1) \\ |\vec{a}| + |\vec{b}| = AB + AC = AC \implies |\vec{a}| + |\vec{b}| = AC \ (2) \end{cases}$$

$$T\dot{\mathbf{u}}(1)\,\mathbf{v}\dot{\mathbf{a}}(2)\,\mathbf{suy}\,\mathbf{ra}\,\left|\vec{a}+\vec{b}\right|=\left|\vec{a}\right|+\left|\vec{b}\right|$$

Vậy $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$ khi \vec{a} và \vec{b} là hai vector cùng hướng

b, Đặt
$$\vec{a} = \overrightarrow{AB}$$
 và $\vec{b} = \overrightarrow{BC}$

Giả sử ΔABC vuông tại B, ta có:

$$\vec{a} + \vec{b} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{BD}$$

(D là đỉnh thứ tư của hình chữ nhật ABCD)

$$\vec{a} - \vec{b} = \overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AB} + (-\overrightarrow{BC})$$

Gọi C' là điểm đối xứng của C qua B, ta có:

$$\vec{a} - \vec{b} = \overrightarrow{AB} + \overrightarrow{BC'} = \overrightarrow{BD'}$$

(D là đỉnh thứ tư của hình chữ nhật ABCD)

Do đó:

$$\bullet \quad \left| \vec{a} + \vec{b} \right| = \overrightarrow{BD}$$

$$\bullet \quad \left| \vec{a} - \vec{b} \right| = \overline{BD'}$$

Mà BD = BD' nên
$$\left| \vec{a} + \vec{b} \right| = \left| \vec{a} - \vec{b} \right|$$

Vậy
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
 khi \vec{a} vuông góc với \vec{b} .

Bài 8 : So sánh độ dài, phương và hướng của hai vectơ a và b.

Cho $|\vec{a} + \vec{b}| = 0$. So sánh độ dài, phương và hướng của hai vector \vec{a}, \vec{b} .

Lời giải:

Vì
$$|\vec{a} + \vec{b}| = 0 \text{ nên } \vec{a} + \vec{b} = \vec{0} = \vec{a} = -\vec{b}$$

Vậy hai vectơ a và b là hai vector cùng phương, có cùng độ lớn và ngược chiều nhau. (đpcm)

Bài 9: Chứng minh rằng

$$\overrightarrow{AB} = \overrightarrow{CD}$$

khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Lời giải:

- Chiều thuận: Nếu

$$\overrightarrow{AB} = \overrightarrow{CD}$$

=> AB // CD và AB = CD

- => ABCD là hình bình hành. Khi đó AD và BC có trung điểm trùng nhau.
- Chiều nghịch: Nếu trung điểm AD và BC trùng nhau => tứ giác ABCD là hình bình hành

Do đó:

$$\overrightarrow{AB} = \overrightarrow{CD}$$

Bài 10 : Cho ba lực

$$\overrightarrow{F_1} = \overrightarrow{MA}, \quad \overrightarrow{F_2} = \overrightarrow{MB}, \quad \overrightarrow{F_3} = \overrightarrow{BC}$$

cùng tác động vào một vật tại điểm M và vật đứng yên. Cho biết cường độ của hai lực F_1 , F_2 đều là 100N và $\angle AMB = 60_{\circ}$. Tìm cường độ và hướng của lực F_3 .

Lời giải:

Xét ΔAMB ta có: MA = MB = 100N và ∠AMB = 60₀ nên ΔAMB đều.

Vậy đường cao MH =
$$\frac{MA\sqrt{3}}{2}$$
 = $50\sqrt{3}$ (N).

Vì $\overrightarrow{F_3}$ là lực tổng hợp của $\overrightarrow{F_1}$ và $\overrightarrow{F_2}$ nên:

$$\overrightarrow{F_3} = \overrightarrow{MC} \text{ v\'oi } \overrightarrow{MC} = \overrightarrow{MA} + \overrightarrow{MB}.$$

Suy ra $\overrightarrow{F_3}$ có cường độ bằng MC và $\overrightarrow{F_3}$ có hướng là

tia phân giác trong của \widehat{AMB} . Vì AMBC là hình thoi nên MC = 2MH.

Do đó: MC = $100\sqrt[3]{3}$ (N)

Vậy F₃ 100∛3 (N) và có hướng là tia phân giác của ∠AMB