Inducció

1 El principi d'inducció

Si $X \subset \mathbb{N}$ compleix les següents condicions:

- 1. $0 \in \mathbb{N}$.
- 2. Per a cada $n \in \mathbb{N}$, si $n \in X$, llavors $n + 1 \in X$.

Llavors $X = \mathbb{N}$.

Aquest principi no cal que sigui demostrat perquè forma part de l'axiomàtica dels nombres naturals.

2 Demostració per inducció

Es vol demostrar que tots els nombres naturals tenen una certa propietat P. Per a demostrar-ho cal demostrar que 0 té la propietat i que si n té la propietat, llavors n+1 també la té.

Esquema

Es vol demostrar que $\forall n \in \mathbb{N}$ P(n). Es mostra:

- 1. P(0). (Cas inicial, cas base).
- 2. $\forall n \in \mathbb{N} \ (P(n) \to P(n+1))$. (Cas inductiu).

Per demostrar (2) es considera $n \in \mathbb{N}$, es suposa P(n) i es demostra P(n+1). La hipòtesi P(n) s'anomena hipòtesi inductiva.

2.0.1 Exemples

Proposició 2.1. Per qualsevol $n \in \mathbb{N}$, $0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$.

Demostració. 1. Es comprova que $0 = \frac{0(0+1)}{2}$. Per tant P(0). (Cas inicial).

2. Es suposa que $0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$, es vol demostrar que $1 + 2 + \dots + n + (n+1) = \frac{(n+1)(n+2)}{2}$.

$$0+1+2+\cdots+n+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{(n+1)(n+2)}{2}$$

Proposició 2.2. Per a cada $n \in \mathbb{N}$, $7^n - 3^n$ és múltiple de 4.

Demostració. Cas inicial: $7^0 - 3^0 = 0$. 0 és múltiple de 4.

Cas inductiu: Es suposa que 7^n-3^n és múltiple de 4. Llavors existeix un $k\in\mathbb{N}$ tal que $7^n-3^n=4k$. Es considera $7^{n+1}-3^{n+1}$.

$$7^{n+1} - 3^{n+1} = (4+3)7^n - 3 \cdot 3^n = 4 \cdot 7^n + 3(7^n - 3^n) = 4 \cdot 7^n + 3(4k) = 4(7^n - 3k)$$

Per tant, $7^n - 3^n$ és múltiple de 4 per qualsevol $n \in \mathbb{N}$.

2.1 Inducció a partir d'un nombre determinat

També es pot demostrar que tots els naturals compleixen una propietat P a partir d'un $n_0 \in \mathbb{N}$ concret.

- Es vol demostrar que $\forall n \in \mathbb{N}$, si $n \geq n_0$, llavors P(n). (Si $n_0 = 0$, és el cas general). Cal mostrar que:
 - 1. $P(n_0)$. (Cas inicial).
 - 2. Si $n \in \mathbb{N}$ i $n \geq n_0$ i P(n), llavors P(n+1).

2.1.1 Exemples

Proposició 2.3. $\forall n \in \mathbb{N} \quad 1 + 3 + \dots + (2n - 1) = n^2$.

Demostració. Cas inicial: Es pren n = 1 com a cas inicial. $1 = 1^2$.

Cas inductiu: Es suposa
$$1+3+\cdots+(2n-1)=n^2$$
. Llavors $1+3+\cdots+(2n-1)+(2(n+1)-1)=n^2+(2n+1)=(n+1)^2$.

3 Inducció completa

És un mètode més potent que la inducció natural, no obstant, no és necessari fer-lo servir sempre ja que hi ha vegades en que és més senzill fer servir la inducció natural i resulta més elegant. ("No cal matar mosques amb bales de canó".

Es vol demostrar que tots els nombres naturals tenen la propietat P.

- 1. Es demostra P(0). (També es pot modificar el nombre inicial).
- 2. Es suposa que tots els nombres fins a n compleixen la propietat i es demostra P(n+1). (La hipòtesi inductiva dóna més informació $P(0), P(1), P(2), \ldots, P(n-1), P(n)$).

3.0.1 Exemples

Proposició 3.1. Tot $n \geq 2$ i $n \in \mathbb{N}$ és producte de nombres primers.

Demostració. Cas inicial: 2 és producte de primers, ja que 2 és primer.

Cas inductiu: Es suposa que tots els nombres de 2 fins a n són producte de primers. Es vol demostrar que llavors n+1 també ho és. Es consideren dos casos:

• Cas 1: Si n+1 és primer, ell mateix és primer i ja està demostrat.

• Cas 2: Si n+1 no és primer. Llavors existeixen $m, k \in \mathbb{N}$ tals que $m, k \neq n+1$ i n+1=mk. Es veu que $m \leq n$ i $k \leq n$. Els dos nombres són anteriors a n+1 i més grans que 2, per tant, són producte de primers (degut a la hipòtesi inductiva). Per tant els podem escriure $m = p_1 p_2 \cdots p_r$ i $k = q_1 q_2 \cdots q_s$ on els p_i i q_j són primers. Per tant $n = p_1 p_2 \cdots p_r q_1 q_2 \cdots q_s$ és producte de primers.

3.1 Formulació alternativa

Hi ha una formulació del principi d'inducció completa alternativa i equivalent. Per demostrar que tots els naturals tenen una propietat P és suficient demostrar que:

• Si tot nombre menor que n té P, llavors P(n).

Es basa en que l'ordre dels nombres naturals és un bon ordre. (Tot conjunt no buit de nombres naturals té un element mínim).