Understanding and Reasoning of Humans and Agents

Tianyi Zhang

Self Introduction

• Expertises:

Education and Cognitive Science (6 years of experience, B.S., M.Ed)
 Natural and Symbolic Language Understanding and Reasoning (3 years, MSE)

Passion and Goal:

- Devise intelligent agents that emulate human understanding and reasoning (in PhD) to facilitate seamless interaction with humans (Multimodal, PhD and beyond),
 that will ultimately enhance human life, e.g. a partner and assistant for the elder.
- Future work:
 - Topic: multimodal structured knowledge acquisition and application
 - Methodology: RL and GNN

Projects Overview

- Generative Symbolic Reasoning for Itinerary Planning (plan, python generation)
 - 23 fall now, independent research, publication [4]: on working and writing
- wikHow2PDDL: Event Entity-State Tracking (robotic plan, text2pddl generation)
 - Al2, 23 spring, member & leader, publication [3]: submitted to LREC-Coling 2024
- Human-in-the-loop Event Schema Induction
 - DARPA KAIROS, 22-23, leader, publication [2]: accepted by ACL Demo 2023
- Event Extraction w/ QA Data Augmentation
 - o DARPA BETTER, 20-22, member, publication [1]: on personal webpage

1.Generative Symbolic Reasoning for Itinerary Planning – Foundation

- Human Symbolic Knowledge can be efficiently represented in Symbolic Language (e.g. Python)
- Domains of Human Learning: (Bloom, B. S., 1956, 1973)
 - Cognitive Knowledge (concepts and procedures)
 - Physical Skills (actions)
 - Affective Attitude (emotions)
- Procedures of Human Learning: (Piaget, J., 1952)
 - Inputs
 - Acquisition →
 - Structured Symbolic Knowledge
 - Application →
 - Outputs

Concept

Brain Knowledge

Python Knowledge

Class.Object

1.Generative Symbolic Reasoning for Itinerary Planning – Methodology

- Agent acquires symbolic knowledge including attraction objects and similar constraint satisfaction algorithms (e.g. job shop).
- Agent applies it to specific tasks by dynamically generating codes according to user's requirements (e.g., interests, time constraints).

1.Generative Symbolic Reasoning for Itinerary Planning – Methodology

- Knowledge Acquisition and Application Prompts:
 - Clarify the data structure, constraints and goals, a relevant task →
 - Generate code and correct it step by step →
 - Repeat 3-5 times →
 - Choose the most robust and extensible version (succinct, easy to add/remove constraints)

1.Generative Symbolic Reasoning for Itinerary Planning – Contribution

- vs. Natural Language Reasoning
 - Black-box, unfaithful, generic suggestion
- vs. Symbolic Language Reasoning
 - Simplistic, fixed to specific questions
- Our Generative Symbolic Reasoning
 - Symbolic Acquisition-Application framework is versatile
 - o Interpretable and controllable, mutable and flexible, personalized suggestion

2.wikHow2PDDL: Event Entity-State Tracking – Motivation

Importance:

 PDDL, with its pre- and post-conditions for events, is a useful tool for robot planning and human causal reasoning.

Relevant works:

- Robotics: Obtain action-state sequences to infer the underlying domain actions.
- NLP: Condition on natural language text to generate segments of a problem file.

Our work:

 Automatically convert open-domain natural language procedure (e.g. wikiHow) into domain actions.

2.wikHow2PDDL: Event Entity-State Tracking – Methodology

Approach:

- Zero-shot 3-step proximal development scaffolding
- Entity-State Inference and Translation

Intuitions:

- Abundant action descriptions in NL vs. Limited domains and actions in PDDL
- LMs' strong common sense knowledge and faithful planning of PDDL

2.wikHow2PDDL: Event Entity-State Tracking – Evaluation

Analysis:

- Entity-state inference overall is good but translation performance is poor
 (e.g. semantic equivalence of existing predicates and natural language expressions)
- Explicit inference on the entity-states benefits the parameters
- Precondition is harder to predict than effect (complex and less obvious)

	Intrinsic	Extrinsic	
Model %	action acc.	\mathbb{PF} solve	exact plan
gpt-3.5	0.2	1.0	1.0
gpt-4	15.9	33.7	4.2
gpt-4 + CoT	18.1	35.8	6.3
gold	100.0	100.0	100.0

Model %	Parameter	Precondition	Effect
gpt-4	36.7	31.1	53.0
gpt-4 + CoT	42.2	29.7	48.1

3. Human-in-the-loop Schema Induction — Motivation

Importance:

Event schema is essential for understanding complex processes (an outline in a book).

Difficulties:

Given its highly structured and complicated nature
 It's hard to generate directly by LMs and laborious for humans.

Contributions:

 Construct a schema in 4 stages from scratch, by leveraging both LM's robust commonsense knowledge and the precision of human modifications.

3. Human-in-the-loop Schema Induction — Methodology

- Divide schema generation into 4 stages and in each stage:
 - machine generates results → human corrects them → inputs to the next stage

3. Human-in-the-loop Schema Induction — Methodology

- Design prompts to foster inclusive steps:
 - Dissect a schema into 3 stages: Before, Ongoing, After
 - Summarize the common components
 - Prompt the components guided by a flowchart

3. Human-in-the-loop Schema Induction – Methodology

Before

Cause / Motivation

3. Human-in-the-loop Schema Induction — Methodology

- Node Extraction and Merging:
 - Extract nodes with SRL: (A0, V, A1) tuples +Dependency Parsing or GPT-3
 - Merge nodes with identical or equivalent semantics (VerbNet)

3. Human-in-the-loop Schema Induction – Evaluation

Analysis:

- strong commonsense knowledge of GPTs
- human improvements made on auto generations
- — the time and effort efficiency of our approach

	EVC	FOD	JOB	MED	MRG
Step Acc	11/12	7/8	10/10	10/10	12/12
Node Acc	13/15	10/10	11/12	12/12	12/14
Graph Node ED	1	0	0	0	0
Graph Edge ED	8	0	7	3	16
Grouding Success Rate	5/12	3/10	3/11	6/12	9/12
Self-reported time (min)	15	10	11	10	14

EVC: Evacuation

FOD: Ordering Food in a Restaurant JOB: Finding and Starting a New Job MED: Obtaining Medical Treatment MRG: Corporate Merger or Acquisition

Acc: Accuracy

ED: Editing Distance

4.Event Extraction w/ QA Data Augmentation – Motivation

Importance:

Event is the backbone of natural language understanding

Difficulties:

Human annotation is expensive to obtain

Other works:

- BIO sequence tagging: multiclass classification lack semantic information sharing
- QA transfer learning: transfer learning data with reduced efficiency

Our work:

QA data augmentation: efficiently train event models with abundant in-domain data

4.Event Extraction w/ QA Data Augmentation – Methodology

Approach:

- Train an AE-QG model (Bert-T5) on domain specific data (ACE)
- Augment unlabeled data (wikiNews QA)
- Human annotations + Augmented QA pairs train a QA model (RoBerta)

Text: April 7, 2014, writer Peaches Geldof was found dead in her home near Wrotham. AE input: extract answers: April 7, 2014, ... **AE output:** Peaches Geldof <sep> Wrotham <sep> **SRL input:** ["April" ... "Peaches", "Geldof"... "found", "dead"... "Wrotham", "."] **SRL output:** ["11:B-TMP"..."11:B-A1", "11: I-A1"..."[prd]","11:B-A3"..."11:I-LOC",""] **OG** input: generate question: ...writer <hl> Peaches Geldof <hl> was... prd-aware OG input: generate question: ...<hl> Peaches Geldof <hl> was # found # dead ... **QG output:** Who is killed? QA input: ...Peache... [SEP] Who is killed? **OA output:** Peaches Geldof

4.Event Extraction w/ QA Data Augmentation – Evaluation

Analysis:

- Augmented QA pairs exceed the performance of other QA transfer learning datasets.
- Augmented QA pairs + gold annotations demonstrate superior performance.

	QG Model			QA Model	
Approach	Dataset1	Num of QA pairs	Test result	Dataset2	Test result
Main	WikiNews- finetuned	8080	60.91	ACE	72.05
Test1	WikiNews	8060	47.49	ACE	70.07
Test2	SQuAD	87599	52.86	ACE	71.85
Baseline	-	_	-	ACE	70.25
Du et al	_	_	-	ACE- context	72.20
Main + Du	WikiNews- finetuned	8080	59.20	ACE- context	72.84

- 6895 QA pairs for ACE;
- 6935 QA pairs for ACE-context