Üzleti Elemzések Módszertana 9. Előadás: Ajánló rendszerek

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 2.félév

Bevezetés

Mollaboratív szűrők

Bevezetés

2 Kollaboratív szűrők

Hosszú farok eloszlás

A webes vásárlás elterjedése előtt az volt a jellemző, hogy kevés termék generálta a forgalom legnagyobb hányadát. Mivel az üzlethelyiségben a férőhely limitált volt, a kevesek által keresett termékek nem kaptak helyet a polcon.

Az internetes kereskedelem elterjedése helyet adott az ún. *niche*, vagyis szűk csoportok számára népszerű termékeknek, amelyek specifikus felhasználásukkal vonzzák be a célközönséget

Ajánló rendszerek

Olyan technikák vagy rendszerek, amelyek valamilyen terméket, szolgáltatást vagy entitást kötnek össze más termékekkel, javaslatokkal vagy entitásokkal a rendelkezésükre álló információ alapján.

Az ajánló rendszerek célja objektumok közötti leképezések felderítése, mint:

- Filmek
- Termékek
- Könyvek
- Média

Ajánlat előállításának szintjei

A rendszer célja, hogy ajánlásokat tegyen a rendelkezésre álló információ alapján.

Különböző rendszertípusoknak különböző igénye van az adatok forrásával, milyenségével és rendelkezésre állásával szemben.

A rendszereket lehetséges célnak megfelelően optimalizálni a népszerűség vagy személyre szabottságnak megfelelően.

Ajánlatok személyre szabottsága

Egy ajánló rendszer által adott ajánlat a személyre szabottól a népszerűig terjedhet.

A személyre szabott ajánlatok a felhasználó egyedi igényét célozzák, és ezért több felhasználási adatot igényelnek.

A népszerűségen alapuló ajánlatoknak nincs szüksége felhasználási adatokra, de nem képes az egyén ízlésének megfelelő ajánlatot előállítani.

A predikciós probléma

Adott egy m felhasználóból és n termékből álló X mátrix. $X\left[u,i\right]$ azt jelöli, hogy u felhasználó hogyan értékelte i terméket.

A feladat megbecsülni a mátrix hiányzó értékeit a termékekről és felhasználókról rendelkezésre álló információ alapján.

Ez a mátrix leggyakrabban egy ritka mátrix: nagyon sok az ismeretlen érték.

	i_1	i_2	i_3	i_4	i_5	i_6
u_1	4	?	3	?	5	?
u_2	?	2	?	?	4	1
u_3	?	?	1	?	2	5
u_4	?	?	3	?	?	1
u_5	1	4	?	?	2	5
u_6	5	?	2	1	?	4
u_7	?	2	3	?	4	5

A rangsorolási probléma

A rangsorolási probléma a predikciós problémának egy intuitívabb megfogalmazása.

Ha adott n elem halmaza, a rangsorolás célja megkülönböztetni a leginkább javasolható k elemet, amit ajánlhat a felhasználónak valamilyen rendezési kritérium alapján.

A predikciós probléma gyakran rangsorolási problémához vezet vissza.

Bevezetés

Mollaboratív szűrők

Kollaboratív szűrők

Kollaboratív szűrő

Olyan ajánló rendszer, amely a közösség által adott értékelésekből, felhasználási metrikákból állít össze javaslatokat.

Két típusa létezik:

- Felhasználó alapú: Az adott felhasználónak a hozzá hasonló felhasználók preferenciái alapján ajánl termékeket.
- Termék alapú: Olyan elemeket ajánl a felhasználónak, amelyek hasonlóak az általa preferált elemekhez.

Termék alapú kollaboratív szűrő eljárása

A példában a cél u_1 felhasználó értékelésének megbecsülése az AV filmhez. Ehhez tartozóan az eljárás először kiszámítja az AV film hasonlóságát az összes többivel, majd ezeket rangsorolja és a leghasonlóbb elemek értékelései alapján megadja annak becsült értékelését.

Két egyed hasonlóságának kiszámítása

Elemek hasonlósága

$$sim(i_1, i_2) = \frac{\sum_{u} (nr_{i_1, u} \cdot nr_{i_2, u})}{\sqrt{\sum_{u} nr_{i_1, u}^2} \cdot \sqrt{\sum_{u} nr_{i_1, u}^2}}$$

Ahol:

- ullet $r_{i,u}$: u felhasználó értékelése i elemre
- ullet $ar{r}_u$: u felhasználó átlagos értékelése
- $nr_{i,u} = r_{i,u} \bar{r}_u$: Normalizálási tényező

Felhasználók hasonlósága

$$sim(u_1, u_2) = \frac{\sum_{i} (nr_{i,u_1} \cdot nr_{i,u_2})}{\sqrt{\sum_{i} (nr_{i,u_1})^2} \cdot \sqrt{\sum_{i} (nr_{i,u_2})^2}}$$

Ahol:

- $r_{i,u}$: u felhasználó értékelése i elemre
- ullet $ar{r}_u$: az u felhasználó átlagos értékelése
- $nr_{i,u}=r_{i,u}-\bar{r}_u$: az értékelések normalizálása, a felhasználó átlagától való eltérés

Hasonlóság kiszámítása minden mintaegyedre

Az ajánlásokhoz érdemes a hasonlóságokat előzetesen kiszámolni, hogy csökkentse a teljes rendszer erőforrásigényét. Ehhez tartozóan a hasonlósági mátrix létrehozásának algoritmusa:

Algoritmus 1: Termék-termék kollaboratív szűrő

Példa: hasonlósági tábla összeállítása

Adott az alábbi értékelési mátrix 6 filmmel és 6 felhasználóval. A cél megbecsülni a táblázat hiányzó értékeit. Első lépésben el kell menteni, melyik filmeket látták még azok a felhasználók, amelyek egy adott filmet megnéztek:

MIB:

[ST, B, SS, LM, AV]

ST:

[MIB, B, SS, LM, AV]

B:

[MIB, ST, SS, LM, AV]

SS:

[MIB, ST, B, LM, AV]

LM:

[MIB,ST,SS,B,AV]

AV:

[MIB, ST, B, SS, LM]

		The second second		The second second	ЧУВСТВА	-
Név	MIB	ST	AV	В	SS	LM
Sara	2.20	0.20	?	-0.80	-0.80	-0.80
Jesper	0.60	-0.40	0.60	?	-0.40	-0.40
Therese	2.33	-0.67	2.33	-0.67	-1.67	-1.67
Helle	0.40	2.40	0.40	?	-1.60	-1.60
Pietro	-0.33	-0.33	-0.33	-1.33	0.67	1.67
Ekaterina	-1.33	-0.33	-1.33	0.33	1.67	1.67

Normalizált értékelési tábla

Az értékelési tábla és az adott felhasználó értékelései szerint felírható a normalizált értékelési tábla. A pozitív értékelések az adott felhasználó átlagos értékelésénél jobbnak számítanak, míg a negatívak rosszabbnak.

	MEN IN BLACK	STOR TOEK	AGE VENTURA	BRAVEHEART	разум — чувства	1 L
Név	MIB	ST	AV	В	SS	LM
Sara	2.20	0.20	?	-0.80	-0.80	-0.80
Jesper	0.60	-0.40	0.60	?	-0.40	-0.40
Therese	2.33	-0.67	2.33	-0.67	-1.67	-1.67
Helle	0.40	2.40	0.40	?	-1.60	-1.60
Pietro	-0.33	-0.33	-0.33	-1.33	0.67	1.67
Ekaterina	-1.33	-0.33	-1.33	-0.33	1.67	1.67

Korreláció számítása

A normalizált értékelésekre korrelációs együtthatót számítva előáll a normalizált termék-termék korrelációs mátrixot. Az 1 érték jelenti a tökéletes hasonlóságot, -1 érték a tökéletes különbözőséget, 0 pedig a közömbös kapcsolatot.

	PIER IN BLACK	STOR TOEK	AGE VENTURA	BRAVEHEART	РАЗУМ ЧУВСТВА	Q Q Go
Név	MIB	ST	AV	В	SS	LM
MIB	1	0.63	1	-0.21	0.88	-0.83
ST	0.63	1	0.35	-0.47	-0.64	-0.62
AV	1	0.35	1	0.01	-0.89	-0.83
В	-0.21	-0.47	0.01	1	-0.23	-0.32
SS	0.88	-0.64	-0.89	-0.23	1	0.96
LM	-0.83	-0.62	-0.83	-0.32	0.96	1