



# Agenda



- 1. Einführung
- 2. Wiederholung BB84
- 3. Qubits und Messbasen
- 4. Zusammengesetzte Systeme
- 5. Verschränkung
- 6. Anwendung von Verschränkung
- 7. Shared Randomness
- 8. Schmidt-Darstellung
- 9. Dichtematrizen
- 10. Partielle Spur

- 11. Verschränkungsmaß
- 12. Entropie und Monogamie
- 13. Entanglement Swapping
- 14. Entanglement Distillation
- 15. CHSH-Ungleichung (klassisch)
- 16. CHSH-Ungleichung (Quantenversion)
- 17. CHSH-Ungleichung (Simulation)
- 18. Ekert-Protokoll
- 19. Sicherheit und DIQKD
- 20. Zusammenfassung

#### Quantenkryptographie

### Ein Spiel



Alice und Bob nehmen an einem Gewinnspiel teil.

- Alice und Bob werden räumlich getrennt. Sie dürfen während des Spiels nicht kommunizieren.
- Alice und Bob wird zufällig jeweils eine von zwei Aufgaben gestellt.
  - Hebe eine Hand oder hebe einen Fuß.
- Alice und Bob wählen jeweils eine aus zwei vorgegebenen Optionen aus.
  - □ Linke oder rechte Hand bzw. Fuß
  - Zufällig oder nach einer vorher abgesprochenen Strategie.
- Aus dem gezeigten Verhalten wird eine Punktzahl berechnet.
- Das Spiel hat sehr viele Runden.
- Ziel ist es, gemeinsam eine möglichst hohe Punktzahl zu erreichen.





Alice

Bob

#### Quantenkryptographie

### Aufgaben und Antworten



- Alice und Bob wird zufällig z.B. folgende Aufgaben gestellt:
  - Alice: Hebe eine deiner Hände!
  - Bob: Hebe einer deiner Füße an!
- Bemerkung: Es gibt vier Aufgabenkombinationen: (Aufgabe an Alice, Aufgabe an Bob)
  - $(A_{H}, B_{H}), (A_{H}, B_{F}), (A_{F}, B_{H}), (A_{F}, B_{F})$
- Alice und Bob wählen eine der folgenden Möglichkeiten:
  - □ Hand: rechts (+1) oder links (-1)
  - Fuß: rechts (+1) oder links (-1)

Quantenkryptographie

### Beispiel



#### Erste Runde:

- Alice soll eine Hand heben und Bob einen Fuß.
- Alice hebt die rechte Hand, Bob hebt den rechten Fuß.
- □ Punktzahl:  $(A_H, B_F) = (+1, +1) \Rightarrow (+1)*(+1) = +1$

#### Zweite Runde:

- Alice und Bob sollen beide ihre Hand heben.
- Alice und Bob heben beide die linke Hand.
- Punktzahl:  $(A_H, B_H) = (-1, -1) \Rightarrow (-1)^*(-1) = +1$

#### Quantenkryptographie





| Alice | Antwort | Bob  | Antwort | Punkte |
|-------|---------|------|---------|--------|
| Hand  | +1      | Fuß  | +1      | +1     |
| Hand  | -1      | Hand | -1      | +1     |
| Fuß   | +1      | Hand | -1      | -1     |
| Hand  | +1      | Fuß  | +1      | +1     |
| Fuß   | -1      | Hand | -1      | +1     |
| Fuß   | +1      | Fuß  | -1      | -1     |
| Hand  | +1      | Fuß  | -1      | -1     |
|       |         |      |         |        |

#### Quantenkryptographie

# Spielauswertung



- Nach dem Spiel werden die Mittelwerte gebildet
  - $A_H \cdot B_H >$ ,  $A_H \cdot B_F >$ ,  $A_F \cdot B_H >$ ,  $A_F \cdot B_F >$  und folgender Wert berechnet:

$$S = \langle A_H \cdot B_H \rangle + \langle A_H \cdot B_F \rangle + \langle A_F \cdot B_H \rangle - \langle A_F \cdot B_F \rangle$$

### Beispiel

| Alice | Antwort | Bob  | Antwort | Punkte |
|-------|---------|------|---------|--------|
| Hand  | +1      | Fuß  | +1      | +1     |
| Hand  | -1      | Hand | -1      | +1     |
| Fuß   | +1      | Hand | -1      | -1     |
| Hand  | +1      | Fuß  | +1      | +1     |
| Fuß   | -1      | Hand | -1      | +1     |
| Fuß   | +1      | Fuß  | -1      | -1     |
| Hand  | +1      | Fuß  | -1      | -1     |
|       |         |      |         |        |

$$< A_H \cdot B_H > = \frac{(+1)}{1} = 1$$
 $< A_H \cdot B_F > = \frac{(+1)+(+1)+(-1)}{3} = \frac{1}{3}$ 
 $< A_F \cdot B_H > = \frac{(-1)+(+1)}{2} = 0$ 
 $< A_F \cdot B_F > = \frac{(-1)}{1} = 1$ 
 $S = 1 + \frac{1}{3} + 0 - 1 = \frac{1}{3}$ 

#### Quantenkryptographie

# Spielziel



- Frage: Können Alice und Bob |S| > 2 erreichen?
- Randbedingungen
  - Aufgaben f
    ür Alice und Bob werden zuf
    ällig gew
    ählt.
  - Runden werden sehr oft wiederholt, sodass jede Fragekonstellation

$$(A_{H}, B_{H}), (A_{H}, B_{F}), (A_{F}, B_{H}), (A_{F}, B_{FS})$$

(ungefähr) gleich häufig vorkommt.

#### Quantenkryptographie

# Spielstrategie: Random



- Alice und Bob ihre Gliedmaßen zufällig.
  - □ In dem Fall gilt: S = 0



**Erwartungswert:** 

$$< A_H \cdot B_H > =$$

$$\frac{1}{4}(+1) + \frac{1}{4}(-1) + \frac{1}{4}(-1) + \frac{1}{4}(+1) = 0$$

#### Quantenkryptographie

# Spielstrategie: Deterministisch



- Alice und Bob sprechen sich im Vorfeld ab.
  - Es gibt 16 verschiedene (feststehende) Strategien

|       |      | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
|-------|------|----|----|----|----|----|----|----|----|
| Alice | Hand | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 |
|       | Fuß  | +1 | +1 | -1 | -1 | +1 | +1 | -1 | -1 |
| Bob   | Hand | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 |
|       | Fuß  | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 |

|       |      | R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 |
|-------|------|----|-----|-----|-----|-----|-----|-----|-----|
| Alice | Hand | +1 | -1  | +1  | -1  | +1  | -1  | +1  | -1  |
|       | Fuß  | +1 | +1  | -1  | -1  | +1  | +1  | -1  | -1  |
| Bob   | Hand | +1 | +1  | +1  | +1  | -1  | -1  | -1  | -1  |
|       | Fuß  | -1 | -1  | -1  | -1  | -1  | -1  | -1  | -1  |

#### Quantenkryptographie

# Spielstrategie: Deterministisch



- Beispiel: Alice und Bob haben sich z.B. auf Strategie R1 verständigt:
  - Haben immer die rechte Hand bzw. den rechten Fuß.

□ Gesucht: 
$$S = \langle A_H \cdot B_H \rangle + \langle A_H \cdot B_F \rangle + \langle A_F \cdot B_H \rangle - \langle A_F \cdot B_F \rangle$$



#### Erwartungswerte:

$$< A_H \cdot B_H > = 1,$$
  
 $< A_H \cdot B_F > = 1,$   
 $< A_F \cdot B_H > = 1,$   
 $< A_F \cdot B_F > = 1$ 

#### Und somit gilt:

$$S = 2$$

#### Quantenkryptographie





• Alice und Bob erhalten jenachdem  $S = \pm 2$ 

|       |      | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 |
|-------|------|----|----|----|----|----|----|----|----|
| Alice | Hand | +1 | -1 | +1 | -1 | +1 | -1 | +1 | -1 |
|       | Fuß  | +1 | +1 | -1 | -1 | +1 | +1 | -1 | -1 |
| Bob   | Hand | +1 | +1 | +1 | +1 | -1 | -1 | -1 | -1 |
|       | Fuß  | +1 | +1 | +1 | +1 | +1 | +1 | +1 | +1 |
|       | S    | +2 | -2 | +2 | -2 | -2 | -2 | +2 | +2 |

|       |      | R9 | R10 | R11 | R12 | R13 | R14 | R15 | R16 |
|-------|------|----|-----|-----|-----|-----|-----|-----|-----|
| Alice | Hand | +1 | -1  | +1  | -1  | +1  | -1  | +1  | -1  |
|       | Fuß  | +1 | +1  | -1  | -1  | +1  | +1  | -1  | -1  |
| Bob   | Hand | +1 | +1  | +1  | +1  | -1  | -1  | -1  | -1  |
|       | Fuß  | -1 | -1  | -1  | -1  | -1  | -1  | -1  | -1  |
|       | S    | +2 | +2  | -2  | -2  | -2  | +2  | -2  | +2  |

#### Quantenkryptographie





- Allgemeine Erklärung:  $A_H, A_F, B_H, B_F \in \{-1, +1\}$
- Wenn Fragekombinationen gleichhäufig sind, dann gilt:

$$S = \langle A_H \cdot B_H \rangle + \langle A_H \cdot B_F \rangle + \langle A_F \cdot B_H \rangle - \langle A_F \cdot B_F \rangle$$

$$= \langle A_H \cdot B_H + A_H \cdot B_F + A_F \cdot B_H - A_F \cdot B_F \rangle$$

$$= \langle A_H \cdot (B_H + B_F) + A_F \cdot (B_H - B_F) \rangle$$

- Wenn  $B_H = B_F$  gilt, dann ist  $S = \langle A_H \cdot (B_H + B_F) \rangle = \pm 2$
- Wenn  $B_H \neq B_F$  gilt, dann ist  $S = \langle A_F \cdot (B_H B_F) \rangle = \pm 2$

#### Quantenkryptographie

### Zusammenfassung



Alice und Bob erhalten für

$$< A_H \cdot B_H > \ + \ < A_H \cdot B_F > \ + < A_F \cdot B_H > \ - \ < A_F \cdot B_F >$$
 immer  $|S| \leq 2$ .

- Unabhängig von der zugrundeliegenden Spielstrategie.
- $|S| \le 2$  wird CHSH-Ungleichung genannt.
  - CHSH Clauser, Horne, Shimony, Holt, 1969
    - Gehört zu den sogenannten Bell-Ungleichungen.

#### Quantenkryptographie



