TD Courbes Elliptiques 1

Damien Robert

5 janvier 2016

1 Prise en main Pari/GP

Exercice 1.1. Consulter l'aide de la fonction isprime. Le nombre $2^{2^{11}} + 1$ est-il premier?

Exercice 1.2. Le groupe $(\mathbb{Z}/42\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z})$ est-il cyclique?

Exercice 1.3. Consulter l'aide de la fonction znstar. Quelle est la structure de $(\mathbb{Z}/130\mathbb{Z})^{\times}$ en tant que groupe abélien ? Donner un système de générateurs pour ce groupe.

Exercice 1.4. 1. Quel est le degré de l'extension $\mathbb{F}_8/\mathbb{F}_2$?

2. Quelle est la structure de \mathbb{F}_8 en tant que groupe abélien ?

Exercice 1.5. L'objectif de cet exercice est de rappeler la méthode d'exponentiation binaire.

1. Étant donné un entier naturel n, rappelons que son écriture en base 2 est de la forme

$$n = \sum_{i=0}^{k} \epsilon_i 2^i$$

où $\epsilon_i \in \{0,1\}$ pour tout i. Écrire une procédure base2(n) qui renvoie la liste $(\epsilon_0,\epsilon_1,\ldots,\epsilon_k)$ des chiffres de n dans son écriture en base 2.

- 2. En déduire un algorithme d'exponentiation efficace dans un ensemble E muni d'une loi de multiplication *.
- 3. Le programmer pour $E=\mathbb{R}.$ On appellera puissance (x,n) la procédure obtenue, qui, étant donné un réel x et un entier n, renvoie x^n .
- 4. Expliquer comment, grâce à Pari/gp, le même programme peut être utilisé dans $E = \mathbb{Z}/m\mathbb{Z}$ muni de la multiplication modulo m. Tester quelques exemples.

2 Arithmétique

Exercice 2.1. Le petit théorème de Fermat affirme que, si p est un nombre premier, alors

$$\forall b \in \mathbb{Z}, \quad b^p \equiv b \pmod{p}.$$

- 1. Justifier brièvement ce théorème.
- 2. Montrer, en utilisant ce théorème, que $m=10^5+7$ n'est pas un nombre premier.
- 3. Retrouver ce résultat en utilisant la commande isprime et la commande ispseudoprime. Comparer ces deux commandes à l'aide de la documentation.

- 4. Trouver la décomposition de m en facteurs premiers à l'aide de la commande factor.
- 5. Étudier expérimentalement la réciproque du petit théorème de Fermat, i.e. si

$$\forall b \in \mathbb{Z}, \quad b^n \equiv b \pmod{n}$$

alors n est un nombre premier.

6. Un **nombre de Carmichael** est un entier n qui n'est pas premier, mais qui satisfait quand même la conclusion du petit théorème de Fermat. Dresser la liste de tous les nombres de Carmichael inférieurs à 10000 à l'aide de gp.

Exercice 2.2. Donner la liste de tous les carrés dans $\mathbb{Z}/17\mathbb{Z}$.

Exercice 2.3. On considère le polynôme

$$P(X) = X^5 + X^4 + 2X^3 - 2X^2 - 4X - 3$$

- 1. En se servant de gp, factoriser P dans $\mathbb{C}[X]$ puis dans $\mathbb{Z}[X]$.
- 2. Qu'est-ce que le discriminant d'un polynôme ? Quelles sont ses propriétés ?
- 3. Calculer à l'aide de gp le discriminant de P.
- 4. Factoriser P dans $\mathbb{F}_2[X]$, $\mathbb{F}_{11}[X]$, $\mathbb{F}_{13}[X]$, $\mathbb{F}_{23}[X]$, $\mathbb{F}_{31}[X]$, $\mathbb{F}_{37}[X]$. Que remarquez-vous?

Exercice 2.4. L'objectif de cet exercice est de pouvoir manipuler de façon pratique les corps finis et les polynômes à coefficients dans les corps finis.

Soit p un nombre premier. On note \mathbb{F}_p le corps fini à p éléments. Pour tout entier $n \geq 1$, on note \mathbb{F}_{p^n} le corps fini à p^n éléments, qui est une extension de degré n de \mathbb{F}_p . Tous ces corps sont **uniques à isomorphisme près**.

1. Montrer que \mathbb{F}_4 est isomorphe en tant que corps à

$$\mathbb{F}_2[X]/(X^2+X+1).$$

Écrire les tables d'addition et de multiplication de ce corps en s'aidant de gp.

- 2. On cherche à décrire explicitement \mathbb{F}_8 .
 - a) Soit x dans \mathbb{F}_8 \mathbb{F}_2 . Montrer que $\mathbb{F}_8 = \mathbb{F}_2[x]$.
 - b) En déduire que \mathbb{F}_8 est isomorphe en tant que corps à $\mathbb{F}_2[X]/(Q(X))$ où Q(X) est le polynôme minimal de $x \operatorname{sur} \mathbb{F}_2$. Rappelez les propriétés d'un tel polynôme.
 - c) Combien existe-t-il de polynômes de degré 3 à coefficients dans \mathbb{F}_2 ? Dressez la liste des polynômes de degré 3 à coefficients dans \mathbb{F}_2 et \mathbb{F}_2 -irréductibles en s'aidant de gp.
 - d) En déduire que \mathbb{F}_8 est isomorphe en tant que corps à

$$\mathbb{F}_2[X]/(X^3 + X + 1) = \mathbb{F}_{8,1}$$

et à

$$\mathbb{F}_2[X]/(X^3 + X^2 + 1) = \mathbb{F}_{8,2}.$$

- e) Écrire les tables d'addition et de multiplication de $\mathbb{F}_{8,1}$ et $\mathbb{F}_{8,2}$ en s'aidant de gp.
- f) Soit α une racine de X^3+X+1 . Montrer à l'aide de gp que α^2 et α^4 sont les autres racines de X^3+X+1 . Montrer également à l'aide de gp que α^3 , α^5 et α^6 sont les racines de X^3+X^2+1 .
- g) Écrire un isomorphisme explicite entre $\mathbb{F}_{8,1}$ et $\mathbb{F}_{8,2}$.
- 3. On fixe à présent un polynôme $Q(X) \in \mathbb{F}_p[X]$, irréductible de degré n.
 - a) Montrer que $\mathbb{F}_p[X]/(Q(X))$ est le corps fini de cardinal $q=p^n$, noté \mathbb{F}_q .

b) Montrer que pour tous x et y dans \mathbb{F}_q et pour tout entier naturel t,

$$(x+y)^{p^t} = x^{p^t} + y^{p^t}.$$

c) En déduire que l'application

$$\begin{array}{cccc} \operatorname{Frob}_p : \mathbb{F}_q & \to & \mathbb{F}_q \\ & x & \mapsto & x^p \end{array}$$

est un automorphisme 1 de \mathbb{F}_q , dont l'ensemble des points fixes est exactement $\mathbb{F}_p.$

d) En déduire que pour tout élément x de \mathbb{F}_q et tout entier naturel t,

$$(Q(x))^{p^t} = Q\left(x^{p^t}\right).$$

- e) En déduire également que si α est une racine de Q(X) alors les autres racines de Q(X) sont $\alpha^p, \alpha^{p^2}, \cdots, \alpha^{p^{n-1}}$.
- 4. Comment trouver un polynôme irréductible de degré n, à coefficients dans \mathbb{F}_p ?
 - a) Écrire une procédure permettant de tirer aléatoirement un polynôme de degré n à coeffcients dans \mathbb{F}_p .
 - b) Tester l'irréductibilité d'un tel polynôme de plusieurs façons.
 - c) Donner une estimation du nombre d'essais à faire par rapport à n pour que le polynôme aléatoire fourni par la procédure précédente soit \mathbb{F}_p -irréductible.
- 5. Tester sur des gros exemples tout ce qui a été vu dans cet exercice i.e. $n > 10^3$ et/ou $p > 10^{10}$, 10^{100} . Qu'en pensez-vous ?

 $^{{}^1\}mathrm{Frob}_p$ est le **morphisme de Frobenius** de \mathbb{F}_q