CS2001--Data Structures Fall 2021

(06-09-2021)

Muhammad Husnain
National University of Computer and Emerging
Sciences

General Overview

What is Hardware, Software, Programming, Operating System etc.

How to write software with the help of procedural and object-oriented programming.

How to organize information/data, usually in memory, so that it can be used efficiently.

How to analyze the performance of algorithms to evaluate their suitability for solving complex problems?

Some Rules

- Raise your hand before asking any question (for physical classroom)
 - Wait for the permission
- Never ever miss a class
 - No retakes (except for Final Exam*)
- Never ever "sleep" in the class
 - You might miss a class participation ☺
- Never use mobile phone in the class
 - Violators will be penalized (Drinks and/or Snacks) ☺
- Above all, whatever you do, please do not disturb others

^{*} Conditional: as per university policy

Grading Criteria (Tentative)

 Assignments/ Quizzes 	20%	
 Midterm Examination 1 	15%	
 Midterm Examination 2 	15%	
Project	05%	
 Final Examination 	45%	

Dishonesty and Plagiarism

- Any kind of cheating will be considered serious offense
- All parties involve in cheating will get minus (-) 50% marks
 - Exams, quizzes, assignments, projects
- Habitual cases will be awarded "F"

Assignments and Quizes

- A number of assignments and quizzes will be taken
- Quizzes will always be pre-announced

What is a Data Structure?

- In a general sense, any representation that is used for storing information is a data structure
 - Example: integers, structures, classes, arrays, etc.
- More typically, a data structure provides a way for organizing a collection of data items
 - Storing, accessing and modifying data items
- Most data structures have associated algorithms to perform operations on data
 - Search, insert, remove etc.

Costs and Benefits

- Each data structure requires
 - Space for storing data items
 - Time to perform each basic operation
 - Programming efforts
- Cost of a data structure
 - Time and space resources it consumes
- Choice of data structure depends on many factors
 - Type of data
 - Frequency with which various data operations are applied
- Hard to define data structure that performs better in all situations
 - Time and space tradeoff

Some Example Data Structures

Data structure = representation and operations associated with a data type

Tree

Data Structure Applications

Arrays

- Consecutive memory locations
- lists (one dimensional arrays)
- matrices (two dimensional arrays)
- database applications
- to implement other data structures, such as heaps, queues, stacks, etc.

Stacks

expression evaluation and syntax parsing

Queues

- Task scheduling
- Helpful in BFS in trees
- First in first out management

Data Structure Applications

- Trees
 - efficient searching of data (Binary search tree)
 - manipulate hierarchical data
- Linked lists
 - can be used to implement several other common abstract data structures, such as
 - > stacks
 - > queues
 - > trees etc

Classification of Data Structures

Linear

- Data values are arranged in linear/sequential fashion
- E.g., Arrays, Linked lists, stacks and queues

Non-Linear

- Data values are not arranged in sequential order
- E.g., Graphs, and Trees etc.

Homogenous

- Same data values are stored or grouped together.
- Such as Arrays

Non-Homogenous

- Data values of different types are grouped together
- E.g., structures and classes in C++ can group multiple types of data together

Common Operations on Data Structures

Some commonly used operations performed on data structures are:

- **Inserting:** adding new data items to the structure.
- Deleting: removing data items from a data structure.
- **Searching:** finding specific item in a data structure.
- **Traversing:** accessing each record in the structure exactly once for processing. Also know as visiting.
- Sorting: arranging data item in a data structure into specific order.
- Merging (not so frequent): combining contents of two similar data structures into one.

What is an Algorithm?

- In mathematics and computer science, an algorithm is a step-bystep procedure for solving a problem
 - expressed as a finite list of well-defined instructions
 - requiring a finite amount of time
 - on a finite amount of data
- Algorithms are used for
 - calculation
 - data processing, and
 - Solving complex problem
- In simple words
 - an algorithm is a step-by-step procedure for calculations and operations

Course Objective

- Introduce the basic concepts of data structures, and use them efficiently in algorithms for solving various problems using C/C++
- What should you expect in this course?
 - A lot of thinking
 - Extensive programming
- What should you learn by the end of this course
 - Ability to understand common programming problems and design and implement efficient data structures to solve them

Why should we study this course?

- Well, because it is the core CS course
- Any other reason to study this course?
 - We want to make a successful career after graduation
 - The most common programming interview questions are
 - ➤ Linked lists
 - ➤ Strings
 - ➤ Binary Trees
 - > Arrays
 - Queues
- Any other?
 - Obliviously it will boost your programming logic.

Source: http://maxnoy.com/interviews.html

Course Content

Simple and abstract data types

First Session

- Arrays
- Searching and sorting techniques
- Linked Lists
- Stacks
- Queues

Trees

Final

- Heap
- Hashing
- Graphs

Motivational Example

- A cellular company provides contacts and related services to its 40 million users
- Due to new security enforcements, the company wants to prevent issuing of multiple contacts to the same user
- Method of Detecting Multiple Contacts
 - Before issuing a new contact to a user:
 - First search the id of the user in the existing contacts database
 - In case of a failure → issue a new contact to the user
 - In case of a success → do not issue a new contact to the user

Example: Linear Array Data Structure (1)

NIC#	Name	Address
6584495-9	Muhammad Faheem	House No 3 Gulshan Bahar Sec 16
1748425-5	Naeem Alam	A-11 Shams Plaza Block-B N.Nazimabad
0889679-1	Arslan Akhtar	H No 152 Bostang Colony
3419668-1	Zain Ahmed	Sharfabad Street Gulshan Karachi
3445864-3	Sumair Farooq	Post Office Tayyar, Multan
6395653-4	Ali Affan	H.No. 425, Sector F-11/4, Islamabad
8224641-1	Syed Faraz	Sharfabad Street Gulshan, Faisalabad

- Linear Array (with 40 million entries)
 - Three arrays (NIC, Name, Address)
 - One array of structures (struct)
 - One array of class's objects

Example: Linear Array Data Structure (2)

- Any disadvantage of the linear array data structure?
- How to improve?

Example: Improved Data Structure

- Create a dictionary like data structure
 - Group similar records together
 - Similarity in terms of first digit of NIC number
 - Add a dictionary entry for each distinct digit (0 9)
- Example: 3419668-1, 3445864-3, 1748425-5.
 - 3 and 1 are dictionary entries
- Existing contacts are searched in two steps
 - 1. Search the dictionary entry (i.e., group searching)
 - 2. Search contact within the group (i.e., with the same NIC digit)
- How much improvement w.r.t. linear array?

Example: Dictionary Data Structure (1)

NIC#	Name	Address
6584495-9	Muhammad Faheem	House No 3 Gulshan Bahar Sec 16
1748425-5	Naeem Alam	A-11 Shams Plaza Block-B N.Nazimabad
0889679-1	Arslan Akhtar	H No 152 Bostang Colony
3419668-1	Zain Ahmed	Sharfabad Street Gulshan Karachi
3445864-3	Sumair Farooq	Post Office Tayyar, Multan
6395653-4	Ali Affan	H.No. 425, Sector F-11/4, Islamabad
8224641-1	Syed Faraz	Sharfabad Street Gulshan, Faisalabad

1-Introduction

Example: Dictionary Data Structure (2)

- Another possibility
 - Maintain pointers with structures (or records)
 - Non-NULL pointer indicates presence of next record

	NIC#	Name	Address
	6584495-9	Muhammad Faheem	House No 3 Gulshan Bahar Sec 16
3	1748425-5	Naeem Alam	A-11 Shams Plaza Block-B N.Nazimabad
	0889679-1	Arslan Akhtar	H No 152 Bostang Colony
6	3419668-1	Zain Ahmed	Sharfabad Street Gulshan Karachi
	3445864-3	Sumair Farooq	Post Office Tayyar, Multan
	6395653-4	Ali Affan	H.No. 425, Sector F-11/4, Islamabad
	8224641-1	Syed Faraz	Sharfabad Street Gulshan, Faisalabad

Any Question So Far?

