МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ

по дисциплине «Нереляционные БД»

Тема: Аналитика пользователей продуктовых интернет магазинов

	Еськов А.
	Ришко С.
Студенты гр. 5382	 Нуреев Н.
Преподаватель	 Заславский М.М.

индивидуальное домашнее задание

Студенты Еськов А, Ришко С, Нуреев Р.		
Группа 5382		
Тема проекта: Аналитика пользователей продуктовых интернет магазинов		
Исходные данные:		
Разработать приложение для анализа и просмотра статистики интернетмагазинов.		
Содержание пояснительной записки:		
«Введение», «Качественные требования к решению», «Сценарии		
использования», «Модель данных», «Разработанное приложение»,		
«Публикация продукта», «Выводы», «Выводы».		
Предполагаемый объем пояснительной записки:		
Не менее 15 страниц.		
Дата выдачи задания: 05.09.2018		
Дата сдачи реферата: 26.12.2018		
Дата защиты реферата: 26.12.2018		
Еськов А. Ришко С.		
Студент Нуреев Н.		
Преподаватель Заславский М.М.		

АННОТАЦИЯ

В индивидуальном домашнем задании изучается нереляционная база данных MongoDB на примере разработки приложения для статистики и аналитики интернет-магазинов.

SUMMARY

In an individual homework, MongoDB non-relational database is studied using the example of developing an application for statistics and analytics of online stores.

Оглавление

1.	Введение	6
1.1.	Актуальность решаемой проблемы	6
1.2.	Постановка задачи	6
1.3.	Предлагаемое решение	6
2.	Требования к решению	6
3.	Сценарии использования	6
3.1. предс	Описание решения задач пользователем хранения, анализа, ставления, импорта, экспорта данных.	6
4.	Модель данных	7
4.1.	Пример документа	7
4.2.	Аналог модели данных для SQL СУБД	9
4.3 Pa	асчёт памяти	10
5.	Разработанное приложение	10
5.1.	Краткое описание	10
5.2.	Использованные технологии	11
5.3.	Ссылки на приложение	11
6.	Выводы	11
6.1.	Достигнутые результаты	11
6.2.	Недостатки и пути для улучшения полученного решения	12
7.	Приложения	12
7.1.	Документация по сборке и развертыванию приложения	12
7.2.	Инструкция для пользователя	12
7 3	Снимки экрана припожения	14

1. Введение

1.1. Актуальность решаемой проблемы.

Решаемая проблема – просмотр детальной статистики по периодам, просмотр заказов, пользователей и отзывов интернет-магазинов.

1.2. Постановка задачи

Необходимо разработать web-приложение, позволяющее отслеживать поведение пользователей в интернет-магазине.

Основные функции:

- Просмотр статистики по периодам
- Просмотр активных пользователей
- Просмотр заказов
- Импорт и экспорт данных

1.3. Предлагаемое решение

Предлагается разработать продукт с использованием MongoDB и Node.js в качестве веб-сервера.

2. Требования к решению

Приложение имеет форму входа для администраторов магазинов, удобный и понятный интерфейс, высокую скорость загрузки данных.

3. Сценарии использования

3.1. Описание решения задач пользователем хранения, анализа, представления, импорта, экспорта данных.

Хранение:

В БД будут храниться следующие данные:

- Информация о магазинах
- Товары, сгруппированные по магазинам
- Информация о сессиях по каждому магазину
- Информация о пользователях по каждому магазину

Анализ:

Запрос на добавление нового юзера (первый визит на сайт):

```
db.library.insertOne({_id:1,session_start:"01.09.2018
15:35",session_end:"01.09.2018 16:12",uid:"u12345",targets:[...]})
```

Вычисление расходов для каждой потребности для всех месяцев:

```
db.library.find({session_start: {$gte: ISODate("2018-04-
29T00:00:00.000Z"),$lt: ISODate("2018-05-
01T00:00:00.000Z")}).count()
```

Запрос на добавление новой сессии:

```
db.library.update( { key: "JKsdqHJ213"}, { $push: { "sessions":
    {_SESSION-INFO_} }}); INSERT INTO sessions (session_id, uid,
    start, stop) VALUES(2137, 'u728913DHSas', '01.09.2018 15:35',
    '01.09.2018 16:12');
```

4. Модель данных

4.1. Пример документа

```
"key": "JKsdqHJ213",
"admin": {
        "login": "admin",
        "pass": "admin"
"name": "Shop",
"text": "Классный магазин",
"offers": [{
        "_id": 1,
"name": "Ірhone",
"cat": "Телефоны",
        "price": 99000,
        "text": "Супер классный телефоны"
}],
"url": "/page?id=13", "name": "Home"
}],
"sessions": [{
        "session id": "7hkjsahdasd23",
        "uid": "uShjo1238",
        "session_start": "27.08.2018 15:35",
        "session_end": "27.08.2018 16:03",
        "targets": [{
                        "type": "Измение корзины",
"date": "27.08.2018 15:55",
                        "offers": [{
                                "$ref": "offers",
                                "$id": 13,
                                "$db": "shops"
                        },{
                                "$ref": "offers",
                                "$id": 9,
                                "$db": "shops"
                        },{
                                "$ref": "offers",
                                "$id": 22,
                                "$db": "shops"
                        },]
                },
                        "type": "Просмотр страницы",
                        "date": "27.08.2018 15:48",
                        "page": {
                                "$ref": "pages",
```

4.2. Аналог модели данных для SQL СУБД — графическое представление данных и сравнение с моделью данных для NoSQL БД.

Если сравнить с моделью данных для NoSQL СУБД, можно заметить, что у SQL СУБД модель лучше нормализована.

Рис 2. Модель данных для SQL СУБД

Анализ:

Запрос на добавление нового юзера (первый визит на сайт):

```
INSERT INTO users (uid, shop_key) VALUES('u728913DHSas',
'Keh91y9ASDH');
INSERT INTO sessions (session_id, uid, start, stop) VALUES(2137,
'u728913DHSas', '01.09.2018 15:35', '01.09.2018 16:12');
```

Запрос на количества клиентов в конкретный день:

```
SELECT COUNT(*) FROM sessions WHERE user_id IN (
SELECT uid FROM users WHERE shop_key = 'JEO1o3kls21';
) AND start BETWEEN 2018-04-29 AND 2018-05-01
```

Запрос на добавление новой сессии:

```
db.library.update( { key: "JKsdqHJ213"}, { $push: { "sessions":
    {_SESSION-INFO_} }} ); INSERT INTO sessions (session_id, uid,
    start, stop) VALUES(2137, 'u728913DHSas', '01.09.2018 15:35',
    '01.09.2018 16:12');
```

4.3 Расчёт памяти

Хранение данных будет занимать:

- 1. В MongoDB будет занимать M * P * N + M * P * K
- 2. В реляционных базах данных будет занимать M * N + M * P * K

В MongoDB - 474000 байт

В реляционных базах данных - 481000 байт

Пусть кол-во магазинов N, кол-во всех юзеров - M, P - среднее кол-во визитов. Тогда запрос на поиск всех визитов юзера в конкретный магазин будет занимать O(MNP), в реляционных БД нужно будет делать два join'а, в следствие чего мы проиграем в производительности.

5. Разработанное приложение

5.1. Краткое описание

Результатом разработки приложения на клиентской стороне стало SPA(Single Page Application), состоящее из 5 страниц:

1. Страница авторизации Страница для авторизации администратора интерне-магазина. 2. Главная страница с основной информацией;

На данной странице отображается основная информация о магазине

3. Страница агрегированной статистики;

На этой странице отображаются данные о посещении сайта, среднем чеке, количестве покупок, конверсии за за выбранный период

4. Страница пользователей;

На странице можно увидеть, когда и какой пользователь совершил заказ, а также детали заказа.

5. Страница заказов;

На странице можно увидеть, кем, когда и какой товар был куплен

6. Страница отзывов включает в себя отзывы о текущем магазине, есть возможность включать и выключать их отображение.

5.2.Использованные технологии

Использованные технологии:

- MongoDB документоориентированная СУБД;
- Express.js каркас веб-приложений, работающий поверх Node.js;
- jQuery Java-script фреймворк для взаимодействия с HTML документом.
- Node.js JavaScript платформа для серверной разработки.

5.3.Ссылки на приложение

Исходный код приложения и инструкция по установке находится по ссылке:

https://github.com/moevm/nosql2018-grocery_store_analysis

6. Выводы

6.1.Достигнутые результаты

Достигнутые результаты:

- Приложение разработано меньше, чем за 80 часов;
- Приложение достаточно динамичное и быстрое;
- Приложение решает минимальные нужды пользователя.

6.2. Недостатки и пути для улучшения полученного решения

В рамках курса "Нереляционные БД" приложение можно считать хорошо разработанным, но в рамках будущего продукта существует ряд недостатков:

• Технический долг

Причина: отсутствие опыта в выбранных технологиях.

Решение: потребуется около 16 часов для рефакторинга, оптимизации запросов и улучшения юзабилити приложения.

• Недостаточный функционал для продукта

Текущее состояние приложение можно оценивать, как прототип продукта, т.к. функционала для желаемого отслеживания денежного потока недостаточно.

Причина: недостаточное время для разработки и отсутствие опыта у разработчика.

Решение: продолжать разработку продукта.

7. Приложения

7.1.Документация по сборке и развертыванию приложения

Инструкция по сборке и запуску:

- 1. Скачать проект из репозитория;
- 2. Перейти в корневую папку проекта и в терминале ввести: npm install;
- 3. Запустить сервер MongoDB: mongod;
- 4. Запустить Node-сервер: node server.js;
- 5. Перейти в браузере по адресу: http://localhost:8080.

7.2.Инструкция для пользователя

Вход

При входе на сайт отображается форма для входа. Пользователь должен ввести свои данные(логин,пароль), чтобы получить доступ к ресурсу. На странице входа можно импортировать данные по своему магазину

Главная страница

После входа пользователь попадает на главную страницу, на которой отображается основная информация о пользователях интернетмагазина. Переключение между вкладками осуществляется с помощью кнопок бокового меню.

Отчеты

Во вкладке "Отчеты" отображается расширенная статистика (посещаемость, конверсия, выручка) с графиками за выбранный период времени.

Пользователи

Во вкладке "Пользователи" отображается информация о каждом клиенте и его покупках. При клике на ID клиента отображается более подробная информация о нем.

Заказы

Во вкладке "Заказы" отображается таблица с информацией о поступивших заказах.

Отзывы

Во вкладке "Отзывы" отображаются отзывы об интернет-магазине, оставленные клиентами.

7.3. Снимки экрана приложения

Рис 6. Форма входа

Рис 7. Главная страница

Рис 8. Отчеты

Рис 9. Пользователи

Рис 10. Заказы