Logical Agents: Propositional Logic

Chapter 7

Outline

Topics:

- Knowledge-based agents
- Example domain: The Wumpus World
- · Logic in general
 - models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability
- Inference rules and theorem proving
 - forward chaining
 - · backward chaining
 - resolution

Knowledge bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system).
 - Declarative: Sentences express assertions about the domain
- Knowledge base operations:
 - Tell it what it needs to know
 - Ask (itself?) what to do query
 - Answers should follow from the contents of the KB

Knowledge bases

Agents can be viewed:

- at the knowledge level
 - i.e., what they know, regardless of how implemented
- at the implementation level (also called the symbol level)
 - i.e., data structures and algorithms that manipulate them

Compare: abstract data type vs. data structure used to implement an ADT.

A simple knowledge-based agent

A simple knowledge-based agent

In the most general case, the agent must be able to:

- Represent states, actions, etc.
- Incorporate new percepts
- Update internal representations of the world
- Deduce hidden/implicit properties of the world
- Deduce appropriate actions

The Wumpus World

4	SS SSS S Stench		Breeze	PIT
3	V	Breeze \$5 \$555 \$ Stench \$ \(\cdot \) Gold \(\cdot \)	PIT	Breeze
2	SS SSS S Stench S		Breeze /	
1	START	Breeze /	PIT	Breeze
	1	2	3	4

Wumpus World PEAS description

Performance measure: gold: +1000; death: -1000; -1 per step; -10 for using the arrow

Environment:

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot Sensors: Breeze, Glitter, Smell, Bump, Scream

Observable: ??

Observable: No – only *local* perception

Deterministic: ??

Observable: No – only *local* perception

Deterministic: Yes - outcomes exactly specified

Episodic: ??

Observable: No – only *local* perception

Deterministic: Yes - outcomes exactly specified

Episodic: No – sequential at the level of actions

Static: ??

Observable: No – only *local* perception

Deterministic: Yes – outcomes exactly specified

Episodic: No – sequential at the level of actions

Static: Yes – Wumpus and pits do not move

Discrete: ??

Observable: No – only *local* perception

Deterministic: Yes – outcomes exactly specified

Episodic: No – sequential at the level of actions

Static: Yes – Wumpus and pits do not move

Discrete: Yes

Single-agent: ??

Observable: No – only *local* perception

Deterministic: Yes – outcomes exactly specified

Episodic: No – sequential at the level of actions

Static: Yes – Wumpus and pits do not move

Discrete: Yes

Single-agent: Yes – Wumpus is essentially a natural feature

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]

Percept:

[Stench: No, Breeze: Yes, Glitter: No, Bump: No, Scream: No]

Percept:

[Stench: No, Breeze: Yes, Glitter: No, Bump: No, Scream: No]

Percept:

[Stench: Yes, Breeze: No, Glitter: No, Bump: No, Scream: No]

Percept:

[Stench: Yes, Breeze: No, Glitter: No, Bump: No, Scream: No]

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]

Percept:

[Stench: No, Breeze: No, Glitter: No, Bump: No, Scream: No]

Percept:

[Stench: Yes, Breeze: Yes, Glitter: Yes, Bump: No, Scream: No]

Breeze in (1,2) and (2,1)
 ⇒ no safe actions

- Breeze in (1,2) and (2,1)
 ⇒ no safe actions
- If pits are uniformly distributed, (2,2) is more likely to have a pit than (1,3)+(3,1)

• Smell in (1,1) \Rightarrow cannot safely move

- Smell in (1,1)
 - \Rightarrow cannot safely move
- Can use a strategy of coercion:
 - shoot straight ahead
 - wumpus was there ⇒ dead ⇒ safe
 - $\bullet \ \ \text{wumpus wasn't there} \Rightarrow \mathsf{safe} \\$

Logic in the Wumpus World

- As the agent moves and carries out sensing actions, it performs logical reasoning.
 - E.g.: "If (1,3) or (2,2) contains a pit and (2,2) doesn't contain a pit then (1,3) must contain a pit".
- We'll use logic to represent information about the wumpus world, and to reason about this world.

Logic in general

- A logic is a formal language for representing information such that conclusions can be drawn
- The syntax defines the sentences in the language
- The semantics define the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., in the language of arithmetic
 - $x + 2 \ge y$ is a sentence; x2 + y > is not a sentence
 - $x + 2 \ge y$ is true iff the number x + 2 is not less than y
 - $x + 2 \ge y$ is true in a world where x = 7, y = 1
 - $x + 2 \ge y$ is false in a world where x = 0, y = 6

Semantics: Entailment

- Entailment means that one thing follows from another: $KB \models \alpha$
- Knowledge base KB entails sentence α if and only if:
 - α is true in all worlds where KB is true
 - Or: if KB is true then α must be true.
- E.g., the KB containing "the Canucks won" entails "either the Canucks won or the Leafs won"
- E.g., x + y = 4 entails 4 = x + y
- Entailment is a relationship between sentences (i.e., syntax) that is based on semantics
- Note: Brains (arguably) process syntax (of some sort).

Semantics: Models

- Logicians typically think in terms of models, which are complete descriptions of a world, with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α
- Thus $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$
- E.g. KB = Canucks won and Leafs won $\alpha = \text{Canucks won}$

Aside: Semantics

- Logic texts usually distinguish:
 - an interpretation, which is some possible world or complete state of affairs, from
 - a model, which is an interpretation that makes a specific sentence or set of sentences true.
- The text uses model in both senses (so don't be confused if you've seen the terms interpretation/model from earlier courses).
 - And if you haven't, ignore this slide!
- We'll use the text's terminology.

Entailment in the Wumpus World

Consider the situation where the agent detects nothing in [1,1], moves right, detects a breeze in [2,1]

• Consider possible models for just the ?'s, assuming only pits

- With no information:
 - 3 Boolean choices \Rightarrow 8 possible models

Wumpus Models

Consider possible arrangements of pits in [1,2], [2,2], and [3,1], along with observations:

Wumpus Models

Models of the KB:

• *KB* = wumpus-world rules + observations

Wumpus Models

- *KB* = wumpus-world rules + observations
- $\alpha_1 =$ "[1,2] is safe", $KB \models \alpha_1$, proved by *model checking*

Wumpus Models: Another Example

• *KB* = wumpus-world rules + observations

Wumpus Models: Another Example

- *KB* = wumpus-world rules + observations
- $\alpha_2 =$ "[2,2] is safe", $KB \not\models \alpha_2$

Inference

In the case of propositional logic, we can use entailment to derive conclusions by enumerating models.

- This is the usual method of computing truth tables
- I.e. can use entailment to do inference.
- In first order logic we generally can't enumerate all models (since there may be infinitely many of them and they may have an infinite domain).
- An *inference procedure* is a (syntactic) procedure for deriving some formulas from others.

Inference

- Inference is a procedure for computing entailments.
- $\mathit{KB} \vdash \alpha = \text{sentence } \alpha \text{ can be derived from } \mathit{KB} \text{ by the inference procedure}$
- Entailment says what things are implicitly true in a KB.
- Inference is used to *compute* things that are implicitly true.

Inference

- Inference is a procedure for computing entailments.
- $\mathit{KB} \vdash \alpha = \text{sentence } \alpha \text{ can be derived from } \mathit{KB} \text{ by the inference procedure}$
- Entailment says what things are implicitly true in a KB.
- Inference is used to *compute* things that are implicitly true.

Desiderata:

- *Soundness*: An inference procedure is sound if whenever $KB \vdash \alpha$, it is also true that $KB \models \alpha$.
- *Completeness*: An inference procedure is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash \alpha$.

Propositional Logic: Syntax

- Propositional logic is a simple logic illustrates basic ideas
- We first specify the proposition symbols or (atomic) sentences: P₁, P₂ etc.
- Then we define the language: If S_1 and S_2 are sentences then:
 - $\neg S_1$ is a sentence (*negation*)
 - $S_1 \wedge S_2$ is a sentence (*conjunction*)
 - $S_1 \vee S_2$ is a sentence (*disjunction*)
 - $S_1 \Rightarrow S_2$ is a sentence (*implication*)
 - $S_1 \equiv S_2$ is a sentence (*biconditional*)

Propositional Logic: Semantics

- Each model assigns true or false to each proposition symbol
- E.g.: $P_{1,2} \leftarrow true$, $P_{2,2} \leftarrow true$, $P_{3,1} \leftarrow false$ (With these symbols, 8 possible models, can be enumerated.)
- Rules for evaluating truth with respect to a model *m*:

$$\neg S$$
 is true iff S is false $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true $S_1 \equiv S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

• Simple recursive process evaluates an arbitrary sentence, e.g., $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$

Truth Tables for Connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in [i,j].
- Let $B_{i,j}$ be true if there is a breeze in [i,j].
- Information from sensors: $\neg P_{1,1}$, $\neg B_{1,1}$, $B_{2,1}$
- Also know: "pits cause breezes in adjacent squares"

Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in [i,j].
- Let $B_{i,j}$ be true if there is a breeze in [i,j].
- Information from sensors: $\neg P_{1,1}$, $\neg B_{1,1}$, $B_{2,1}$
- "A square is breezy if and only if there is an adjacent pit"

$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1}) B_{2,1} \equiv (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

- Note: $B_{1,1}$ has no "internal structure" think of it as a string.
- So must write one formula for each square.

Wumpus World Sentences

- Let $P_{i,j}$ be true if there is a pit in [i,j].
- Let $B_{i,j}$ be true if there is a breeze in [i,j].
- Information from sensors: $\neg P_{1,1}$, $\neg B_{1,1}$, $B_{2,1}$
- "A square is breezy if and only if there is an adjacent pit"

$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1}) B_{2,1} \equiv (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

- Note: $B_{1,1}$ has no "internal structure" think of it as a string.
- So must write one formula for each square.
- Using logic can conclude $\neg P_{1,2}$ and $\neg P_{2,1}$ from $\neg B_{1,1}$.
- Note, if you wrote the above as:

$$B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})$$

(I.e. "A breeze implies a pit in an adjacent square") you could not derive $\neg P_{1,2}$ and $\neg P_{2,1}$ from $\neg B_{1,1}$.

Crucial to express all information

Wumpus World KB

For the part of the Wumpus world we're looking at, let

$$KB = \{R_1, R_2, R_3, R_4, R_5\}$$

where

$$R_1$$
 is $\neg P_{1,1}$
 R_2 is $B_{1,1} \equiv (P_{1,2} \lor P_{2,1})$
 R_3 is $B_{2,1} \equiv (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 R_4 is $\neg B_{1,1}$
 R_5 is $B_{2,1}$

Truth Tables for Inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R ₁	R_2	R ₃	R ₄	R ₅	KB
f	f	f	f	f	f	f	t	t	t	t	f	f
f	f	f	f	f	f	t	t	t	f	t	f	f
:	:	:	:	:	:	:	:	:	:	:	:	
f	t	f	f	f	f	f	t	t	f	t	t	f
f	t	f	f	f	f	t	t	t	t	t	t	<u>t</u>
f	t	f	f	f	t	f	t	t	t	t	t	<u>t</u>
f	t	f	f	f	t	t	t	t	t	t	t	<u>t</u>
f	t	f	f	t	f	f	t	f	f	t	t	f
:	:	:	:	:			:	:	:	:		
t	t	t	t	t	t	t	f	t	t	f	t	f

- Enumerate rows (different assignments to symbols),
- For $KB \models \alpha$, if KB is true in row, check that α is too

Inference by Enumeration

Function TT-Entails?(KB, α) returns true or false inputs: KB, the knowledge base, a sentence in propositional logic α the query, a sentence in propositional logic symbols \leftarrow a list of the proposition symbols in KB and α return TT-Check-All(KB, α , symbols, [])

Inference by Enumeration

```
Function TT-Check-All(KB, \alpha, symbols, model) returns true or false if Empty?(symbols) then if PL-True?(KB, model) then return PL-True?(\alpha, model) else return true else do P \leftarrow \textit{First}(\text{symbols}); \ \text{rest} \leftarrow \textit{Rest}(\text{symbols}) \\ \text{return TT-Check-All}(KB, <math>\alpha, rest, model \cup \{P = \text{true}\}) and TT-Check-All(KB, \alpha, rest, model \cup \{P = \text{false}\})
```

- Depth-first enumeration of all models
 - · Hence, sound and complete
- Algorithm is $O(2^n)$ for *n* symbols; problem is *co-NP-complete*

Other Means of Computing Logical Inference

- We'll briefly consider other means of computing entailments:
 - · Resolution theorem proving
 - Specialised rule-based approaches
- But first, some more terminology

Logical Equivalence

- Two sentences are *logically equivalent* iff true in same models: $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$
- The following should be familiar:

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$$

$$(\alpha \vee \beta) \equiv (\beta \vee \alpha)$$

$$((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma))$$

$$((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma))$$

$$\neg(\neg \alpha) \equiv \alpha$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$$

$$(\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta)$$

$$(\alpha \equiv \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha))$$

$$\neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta)$$

$$\neg(\alpha \wedge \beta) \equiv (\neg \alpha \wedge \neg \beta)$$

$$(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$$

$$(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$$

• A sentence is *valid* if it is true in *all* models,

e.g.,
$$A \vee \neg A$$
, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$

• A sentence is *valid* if it is true in *all* models, e.g., $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

• Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

- A sentence is *valid* if it is true in *all* models, e.g., $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model e.g., $A \lor B$, C

- A sentence is *valid* if it is true in *all* models, e.g., $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model e.g., $A \lor B$, C
- A sentence is *unsatisfiable* if it is true in *no* models e.g., $A \land \neg A$

- A sentence is *valid* if it is true in *all* models, e.g., $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model e.g., $A \lor B$, C
- A sentence is *unsatisfiable* if it is true in *no* models e.g., $A \land \neg A$
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 - I.e., prove α by *reductio ad absurdum*

- A sentence is *valid* if it is true in *all* models, e.g., $A \vee \neg A$, $A \Rightarrow A$, $(A \wedge (A \Rightarrow B)) \Rightarrow B$
- Validity is connected to inference via the *Deduction Theorem*: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid
- A sentence is *satisfiable* if it is true in *some* model e.g., $A \lor B$, C
- A sentence is *unsatisfiable* if it is true in *no* models e.g., $A \land \neg A$
- Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
 - ullet I.e., prove lpha by *reductio ad absurdum*
- What often proves better for determining $KB \models \alpha$ is to show that $KB \land \neg \alpha$ is unsatisfiable.

General Propositional Inference: Resolution

Resolution is a rule of inference defined for *Conjunctive Normal Form* (CNF)

- CNF: conjunction of disjunctions of literals
- A clause is a disjunctions of literals.
- E.g., $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$.
 - Write as: $(A \lor \neg B)$, $(B \lor \neg C \lor \neg D)$

Resolution

Resolution inference rule:

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \ \lor \ m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n}$$
 where ℓ_i and m_i are complementary literals. (I.e. $\ell_i \equiv \neg m_i$.)

• E.g.,
$$\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}$$

Resolution

Resolution inference rule:

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \vee m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n}$$

where ℓ_i and m_j are complementary literals. (I.e. $\ell_i \equiv \neg m_j$.)

• E.g.,
$$\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}$$

- If you can derive the "empty clause" from a set of clauses C, then C is unsatisfiable.
 - E.g. $\{A, \neg A \lor B, \neg B\}$ is unsatisfiable.

Resolution

Resolution inference rule:

$$\frac{\ell_1 \vee \dots \vee \ell_k, \quad m_1 \vee \dots \vee m_n}{\ell_1 \vee \dots \vee \ell_{i-1} \vee \ell_{i+1} \vee \dots \vee \ell_k \quad \vee \quad m_1 \vee \dots \vee m_{j-1} \vee m_{j+1} \vee \dots \vee m_n}$$
where ℓ_i and m_i are complementary literals. (1.5. $\ell_i = -m_i$)

where ℓ_i and m_j are complementary literals. (I.e. $\ell_i \equiv \neg m_j$.)

• E.g.,
$$\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}$$

- If you can derive the "empty clause" from a set of clauses C, then C is unsatisfiable.
 - E.g. $\{A, \neg A \lor B, \neg B\}$ is unsatisfiable.
- Resolution is sound and complete for propositional logic
- I.e. $KB \models \alpha$ iff $KB \land \neg \alpha$ is unsatisfiable iff the empty clause can be obtained from $KB \land \neg \alpha$ by resolution

Using resolution to compute entailments

To show whether $KB \models \alpha$, show instead that $KB \land \neg \alpha$ is unsatisfiable:

- **1** Convert $KB \wedge \neg \alpha$ into conjunctive normal form.
- **2** Use resolution to determine whether $KB \wedge \neg \alpha$ is unsatisfiable.
- **3** If so then $KB \models \alpha$; otherwise $KB \not\models \alpha$.

E.g.: $B_{1,1} \equiv (P_{1,2} \vee P_{2,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1})$$

① Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1})$$

- 1 Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2 Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1})$$

- ① Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2 Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- 3 Move \neg inwards using de Morgan's rules and double-negation: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1})$$

- ① Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2 Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- **3** Move ¬ inwards using de Morgan's rules and double-negation: $(¬B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((¬P_{1,2} \land ¬P_{2,1}) \lor B_{1,1})$
- 4 Apply distributivity law (\vee over \wedge) and flatten: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

E.g.:
$$B_{1,1} \equiv (P_{1,2} \vee P_{2,1})$$

- ① Eliminate \equiv , replacing $\alpha \equiv \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
- 2 Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
- **3** Move ¬ inwards using de Morgan's rules and double-negation: $(¬B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((¬P_{1,2} \land ¬P_{2,1}) \lor B_{1,1})$
- 4 Apply distributivity law (\vee over \wedge) and flatten: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

For resolution, then write as

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}), (\neg P_{1,2} \lor B_{1,1}), (\neg P_{2,1} \lor B_{1,1})$$

Resolution Algorithm

```
Function PL-Resolution(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
       \alpha, the query, a sentence in propositional logic
  clauses \leftarrow the set of clauses in CNF(KB \land \neg \alpha)
  loop do
     if clauses contains the empty clause then return true
     if C_i, C_i are resolvable clauses where
             PL-Resolve(C_i, C_i) \notin clauses
       then clauses \leftarrow clauses \cup PL-Resolve(C_i, C_i)
       else return false
```

Note that the algorithm in the text is buggy

Resolution Example

- E.g.: $KB = (B_{1,1} \equiv (P_{1,2} \vee P_{2,1})) \wedge \neg B_{1,1},$ $\alpha = \neg P_{1,2}$
- Show $KB \models \alpha$ by showing that $KB \land \neg \alpha$ is unsatisfiable:

Resolution: Continued

There is a great deal that can be done to improve the basic algorithm:

- Unit resolution: propagate unit clauses (e.g. $\neg B_{1,1}$) as much as possible.
 - Note that this correspoinds to the minimum remaining values heuristic in constraint satisfaction!
- Eliminate tautologies
- Eliminate redundant clauses
- Eliminate clauses with literal \(\ell \) where the complement of \(\ell \)
 doesn't appear elsewhere.
- Set of support: Do resolutions on clauses with ancestor in $\neg \alpha$.
 - I.e. keep a focus on the goal.

Specialised Inference: Rule-Based Reasoning

- We consider a very useful, restricted case: Horn Form
 - KB = conjunction of Horn clauses
- Horn clause =
 - proposition symbol; or
 - A rule of the form: (conjunction of symbols) ⇒ symbol
- E.g., C, $(B \Rightarrow A)$, $(C \land D \Rightarrow B)$ Not: $(\neg B \Rightarrow A)$, $(B \lor A)$
- Use Horn clauses to derive individual facts (or atoms), not arbitrary formulas.

Horn clauses

Technically a Horn clause is a *clause* or disjunction of literals, with *at most* one positive literal.

- I.e. of form $A_0 \vee \neg A_1 \vee \cdots \vee \neg A_n$ or $\neg A_1 \vee \cdots \vee \neg A_n$
- These can be written: $A_1 \wedge \cdots \wedge A_n \Rightarrow A_0$ or $A_1 \wedge \cdots \wedge A_n \Rightarrow \bot$
- We won't bother with rules of the form $A_1 \wedge \cdots \wedge A_n \Rightarrow \bot$
 - Rules of this form are called *integrity constraints*.
 - They don't allow new facts to be derived, but rather rule out certain combinations of facts.

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

- Can be used with forward chaining or backward chaining.
- Forward chaining: Iteratively add new derived facts

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

- Can be used with forward chaining or backward chaining.
- Forward chaining: Iteratively add new derived facts
- Backward chaining: From a query, work backwards through the rules to known facts.

$$\frac{\alpha_1, \dots, \alpha_n, \qquad \alpha_1 \wedge \dots \wedge \alpha_n \Rightarrow \beta}{\beta}$$

- Can be used with forward chaining or backward chaining.
- Forward chaining: Iteratively add new derived facts
- Backward chaining: From a query, work backwards through the rules to known facts.
- These algorithms are very natural; forward chaining runs in linear time

Example

```
KB:
```

```
P \Rightarrow Q,
L \land M \Rightarrow P,
B \land L \Rightarrow M,
A \land P \Rightarrow L,
A \land B \Rightarrow L,
A,
B
```

Forward chaining

Idea:

- Fire any rule whose premises are satisfied in the KB,
- Add its conclusion to the KB, until query is found

Forward chaining algorithm

Procedure:

```
C := \{\}; repeat  choose \ r \in A \ such \ that \\ r \ is \ `b_1 \wedge \cdots \wedge b_m \Rightarrow h' \\ b_i \in C \ for \ all \ i, \ and \\ h 
ot C := <math>C \cup \{h\}
```

until no more choices

```
KB:

P \Rightarrow Q,

L \land M \Rightarrow P,

B \land L \Rightarrow M,

A \land P \Rightarrow L,

A \land B \Rightarrow L,

A,

B
```

```
KB:

P \Rightarrow Q,

L \land M \Rightarrow P,

B \land L \Rightarrow M,

A \land P \Rightarrow L,

A \land B \Rightarrow L,

A,

B
```

Query Q:

• From A and B, conclude L

```
KB:
```

```
P \Rightarrow Q,

L \land M \Rightarrow P,

B \land L \Rightarrow M,

A \land P \Rightarrow L,

A \land B \Rightarrow L,

A,

B
```

- From A and B, conclude L
- From L and B, conclude M

```
KB:
```

```
P \Rightarrow Q,
L \land M \Rightarrow P,
B \land L \Rightarrow M,
A \land P \Rightarrow L,
A \land B \Rightarrow L,
A,
B
```

- From A and B, conclude L
- From L and B, conclude M
- From L and M, conclude P

```
KB:
```

```
P \Rightarrow Q,

L \land M \Rightarrow P,

B \land L \Rightarrow M,

A \land P \Rightarrow L,

A \land B \Rightarrow L,

A,

B
```

- From A and B, conclude L
- From L and B, conclude M
- From L and M, conclude P
- From P conclude Q

Backward chaining

- We won't develop an algorithm for backward chaining, but will just consider it informally.
- Idea with backward chaining:
 Start from query q and work backwards.
- To prove q by BC:
 - check if q is known already;
 - ullet otherwise prove (by BC) all premises of some rule concluding q
- Avoid loops: Check if new subgoal is already on the goal stack
- Avoid repeated work: Check if new subgoal
 - 1 has already been proved true, or
 - 2 has already failed

KB:

$$\begin{array}{lll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$$

KB:

$$\begin{array}{lll} P \Rightarrow Q, & L \wedge M \Rightarrow P, & B \wedge L \Rightarrow M, & A \wedge P \Rightarrow L, \\ A \wedge B \Rightarrow L, & A, & B \end{array}$$

Query Q:

• Establish *P* as a subgoal.

KB:

$$P\Rightarrow Q, \quad L\wedge M\Rightarrow P, \quad B\wedge L\Rightarrow M, \quad A\wedge P\Rightarrow L, \\ A\wedge B\Rightarrow L, \quad A, \quad B$$

- Establish P as a subgoal.
- Can prove P by proving L and M

KB:

$$P\Rightarrow Q, \quad L\wedge M\Rightarrow P, \quad B\wedge L\Rightarrow M, \quad A\wedge P\Rightarrow L, \quad A\wedge B\Rightarrow L, \quad A, \quad B$$

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove M if we can prove B and L

KB:

$$P \Rightarrow Q$$
, $L \land M \Rightarrow P$, $B \land L \Rightarrow M$, $A \land P \Rightarrow L$, $A \land B \Rightarrow L$, A , B

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove M if we can prove B and L
 - B is known to be true

KB:

$$P \Rightarrow Q$$
, $L \land M \Rightarrow P$, $B \land L \Rightarrow M$, $A \land P \Rightarrow L$, $A \land B \Rightarrow L$, A , B

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove M if we can prove B and L
 - B is known to be true
 - L can be proven by proving A and B.

KB:

$$P\Rightarrow Q$$
, $L\wedge M\Rightarrow P$, $B\wedge L\Rightarrow M$, $A\wedge P\Rightarrow L$, $A\wedge B\Rightarrow L$, A , B

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove M if we can prove B and L
 - B is known to be true
 - L can be proven by proving A and B.
 - A and B are known to be true

KB:

$$P\Rightarrow Q$$
, $L\wedge M\Rightarrow P$, $B\wedge L\Rightarrow M$, $A\wedge P\Rightarrow L$, $A\wedge B\Rightarrow L$, A , B

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove M if we can prove B and L
 - B is known to be true
 - L can be proven by proving A and B.
 - A and B are known to be true
- For *L*:
 - L can be proven by proving A and B.
 - A and B are known to be true

KB:

$$P \Rightarrow Q$$
, $L \land M \Rightarrow P$, $B \land L \Rightarrow M$, $A \land P \Rightarrow L$, $A \land B \Rightarrow L$, A , B

- Establish P as a subgoal.
- Can prove P by proving L and M
- For *M*:
 - Can prove M if we can prove B and L
 - B is known to be true
 - L can be proven by proving A and B.
 - A and B are known to be true
- For *L*:
 - L can be proven by proving A and B.
 - A and B are known to be true
- L and M are true, thus P is true, thus Q is true

Forward vs. backward chaining

- FC is data-driven, cf. automatic, unconscious processing,
 - E.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
 - Good for reactive agents

Forward vs. backward chaining

- FC is data-driven, cf. automatic, unconscious processing,
 - E.g., object recognition, routine decisions
 - May do lots of work that is irrelevant to the goal
 - · Good for reactive agents
- BC is goal-driven, appropriate for problem-solving,
 - E.g., Where are my keys? How do I get a job?
 - Complexity of BC can be *much less* than linear in size of KB
 - Can also sometimes be exponential in size of KB
 - Good for question-answering and explanation

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - *inference*: deriving sentences from other sentences
 - *soundness*: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences

Summary (Continued)

- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Resolution is complete for propositional logic.
- Forward, backward chaining are complete for Horn clauses.
- Forward chaining is linear-time for Horn clauses.
- Propositional logic lacks expressive power