Mikrotik in real life, full scale and low budget ISP

wima.sy@gmail.com

additional presentation

How do the youngest country in the world ISPs run their bussiness more efficient, and more reliable with Mikrotik

about me

- Working in ISP industries since 1994
- Currently working as consultant engineer for asia pacific oceania countries company & organization

Definition

- Real life
 - Not in simulation, or lab scale
 - In bussiness, operational, still operational
- Full Scale
 - Have ASN, buy transit, peering
 - Connect to IX
- Low Budget
 - Is low budget

Disclaimer

- This presentation will not talk in depth about BGP, OSPF & Traffic Engineering
- I just share simple example, and how to do it with Mikrotik
- It is real case, some IP/AS is fake, for security

Before

- Cisco 7200 VXR
 - Border Router
 - BGP Peering to Transit Provider
 - BGP Peering to Local IXP
 - Customer Access Router
- IBM e Series
 - FreeBSD / Quagga
 - BGP Peering to Local IXP
 - BGP Peering to IP Transit Customer
- Problem
 - Expensive Router
 - Difficult to Maintain

Reason to Upgrade

- Efficiency
- Performance
- Maintenance
- Cost
- Growth

After

- CCR 1036-8 Transit
 - OSPF
 - BGP Peering to Transit Provider
- CCR 1036-8 IXP
 - OSPF
 - BGP Peering to IXP
- CCR 1036-12 Core
 - OSPF
 - BGP Route collector
- CCR 1009 Access
 - Static Routing, VLAN, Trunk
 - Management Router
- RB750 OOB
 - VPN

Physical Network Diagram

Pre-config

- Turn off unused service features
 - Web,telnet,ftp,etc

Winbox / SSH only available from Remote Access

IΡ

Change default port

Turn off unused packages features

Disable features/packages

Check For Updates	Enable	Disab	ole (Jninstall	Unschedule	Downgrade	Check Installation	Find
Vame	∠ Vers	ion	Build	Time				
🗃 routeros-tile	6.32	.2	Sep	/17/2015	15:20:53			
advanced tools	6.32	.2	Sep	/17/2015	15:20:53			
🗗 dhcp	6.32	.2	Sep	/17/2015	15:20:53			
台 hotspot	6,32	.2	Sep	/17/2015	15:20:53			
∄ ipv6	6.32	.2	Sep	/17/2015	15:20:53			
∄ mpls	6.32	.2	Sep	/17/2015	15:20:53			
∃ ppp	6.32	.2	Sep	/17/2015	15:20:53			
☐ routing	6.32	2.2	Sep	/17/2015	15:20:53			
	6.32	.2	Sep	/17/2015	15:20:53			
⊜ system	6.32	2	Sep	/17/2015	15:20:53			
分 wireless-cm2	6.32	.2	Sep	/17/2015	15:20:53			
₱ wireless-fp	6.32	2	Sep	/17/2015	15:20:53			

Neighbour discovery

Disable interface

- Disable MNDP on interface to IXP/Transit, some of them will handle this as a threat
- Some IX/Transit require you to turn off Proxy ARP,ICMP redirects,Directed broadcast,IEEE802
 Spanning Tree,Interior routing protocol broadcast,Mac layer broadcast
- Read peering agreement

- Disable unused physical interface
- Device name
- User / Password
 - Proper credentials
- NTP Client
 - Make sure your router time is synchronized
- Latest stable OS
- Disable LCD / Minimal information

OSPF between devices for IGP

- for infrastructure
- loopback interface, for adjacency, not only router id

iBGP between devices

- TR CR IXP
- Loopback interface peering
- For carry prefixes across backbone

iBGP instance

Advertise Networks

Loopback peering

Loopback interface as source

Checking

eBGP between peer / other AS

- Peering
- Advertise your prefixes
- Filtering
 - In Filter -> how we send the traffic
 - Out filter -> how they will send the traffic
 - Standard regexp
 - Use template for filter
 - Organize filter using jump
- Traffic engineering, routing policy, follow BGP BCP

Peering

- Use your AS, peering IP, peer AS
- Prepare your in/out filter

Advertise your prefix

Announce your aggregate from registry

- Use blackhole type route for pull-up route
- Put on core router, not border

Announce your aggregate, for internet stability

Routing Filters

- In Filter -> how we send the traffic -> our routing table
- Out filter -> how they will send the traffic -> their route to our AS
- Template
 - In Filter
 - Discard prefix from other peering AS
 - Accept prefix from peering AS
 - Discard our own prefixes
 - Discard RFC5735 prefixes
 - Discard prefix longer than 24
 - Out Filter
 - Allow only our prefixes to be announce
 - Use jump for organize your rule
- Regexp
 - . any single character
 - ^ start of the as-path
 - \$ end of the as-path
 - _ matches comma, space, start and end of as-path

.	- × ×					
#	Chain	Prefix	Prefix Length	BGP AS Path	Action	Jump Targe
:::	Discard prefix from	n other peering AS		1		
0	IIX1-in			17451	discard	
1	IIX1-in			_38060	discard	
2	IIX1-in			56258	discard	
:::	Accept prefix from	peering AS		_		
3	IIX1-in			^7597	accept	
:::	Discard our own p	orefixes		_		
_	IIX1-in				jump	Our-Discard
:::	Discard RFC5735	prefixes				
5	IIX1-in				jump	RFC5735
:::	Discard prefix long	gerthan 24				
6	IIX1-in	0.0.0.0/25	25-32		discard	
7	IIX1-in				discard	
:::	Allow only our pre	fixes to be announce	;			
8	IIX1-out				jump	Our-Allow
9	IIX1-out				discard	
10	Our-Allow	192.168.40.0/21	21-24		accept	
11	Our-Allow				retum	
12	Our-Discard	192.168.40.0/21	21-24		discard	
13	Our-Discard				retum	
14	RFC5735	0.0.0.0/8	8-32		discard	
15	RFC5735	10.0.0.0/8	8-32		discard	
16	RFC5735	127.0.0.0/8	8-32		discard	
17	RFC5735	169.254.0.0/16	16-32		discard	
18	RFC5735	192.0.0.0/24	24-32		discard	
19	RFC5735	192.0.2.0/24	24-32		discard	
20	RFC5735	192.88.99.0/24	24-32		discard	
21	RFC5735	192.18.0.0/15	15-32		discard	
22	RFC5735	198.51.100.0/24			discard	
23	RFC5735	203.0.113.0/24	24-32		discard	
24	RFC5735	224.0.0.0/4	4-32		discard	
25	RFC5735	255.255.255.255			discard	
26	RFC5735	230.200.200.200			return	
27	def-discard	0.0.0.0/0			discard	
28	def-discard				retum	

Traffic Engineering, Policy Routing

- BGP Attribute
 - http://wiki.mikrotik.com/wiki/Manual:BGP_Best_Path_Selection_Algorithm
- Routing scenario, multihomed
 - Redudancy
 - Load sharing
 - Local traffic goes to and from local peer

References

- NANOG / APNIC BGP Tutorial
- BGP Filtering with Router OS 2013 MUM Croatia by W. Maia
- Routing Security 2011 MUM Hungary by W. Maia
- BGP and OSPF Implementations 2011 MUM Hungary by D. Burgess

Access Router

- Plain Static Routing for customer
- Bandwidht Manager
- Controlled by Management Server

Remote Access Server (RB750)

- Secure VPN PPTP/L2TP
- OOB Connection from other ISP

Bandwidht Manager

- Strategy
 - Mark packet came from AC router for Upload
 - Mark packet came from TR/IX router for Download
 - Done at Core Router
- International / Local Simple Queue / Queue
 Tree
- You can use transparent traffic limiter
 - http://wiki.mikrotik.com/wiki/TransparentTrafficShaper

- Bridge / Routing Configuration
- International / Local Management
 - Routing List, ref: http://mikrotik.co.id/artikel_lihat.php?id=23
 - Custom Scripting -> export routing from bgp router

Transparent

- Create Bridge Interface
- Marking, check packet flow diagram

Management Server

- Don't touch my router
- Simple Mikrotik ROS API Call
- Automatic IP / VLAN / BW Allocation
- Automatic client activation / cut-off

Screenshot

Transit Router

IX Router

Maintenance

ROS upgrade strategy

- Use stable/current only
 - RouterOS current release 6.XX
 - RouterOS bugfix release 6.XX.Y
- Read Changelog
 - Upgrade wisely
- Improving system stability

Config backup

Simple script

Documentation

- Everything
- Log / Syslog ex: syslog-ng

additional presentation

How do the youngest country in the world ISPs run their bussiness more efficient, and more reliable with Mikrotik

History of iNet Timor

- 1999 Referendum for Freedom
- 2000 Telstra start cellular telephone
- 2003 Timor Telecom : Voice (GSM/PSTN)
 Telstra iNet : Data Internet
 (ADSL/Dialup/Wireless)

Before Mikrotik

Network scale

- 30Mbps Upstream
- One main hub
- Dialup / ADSL Services
- 3 Wireless BTS around Dili
- VSAT Backbone
- 20 Client

Using well known product

- Cisco Router
- Cisco Switch
- Nortel/Paradyne DSLAM
- Avaya / Cisco / Breezecom
- Cisco 800 / 2500 CP Router
- Airlive CPE

Past

Problem

- Power line quality are bad, devices easy to damage
- Time to deliver replacement devices
 - From HQ (2 weeks)
 - From order to deliver, 15 day minimum
- High down time
- Expensive, almost impossible to have spare
- High cost CPE

Mikrotik

- 2006 2007
 - RB230, RB132, RB133, RB532 (RouterOS v2) as Wireless Infrastructure
- 2008
 - RB1000 (RouterOS v3), as experimental access router
- 2009
 - RB750 as CPE router, replace Cisco 700,800,2500
- 2010
 - RB1100 as Edge Router Cisco replacement
 - ✓ BGP/OSPF (One default route only, One Full Routing Table)
 - RB1100 as Bandwidht Manager
 - ✓ HTB, good but complicated
 - ✓ Simple Filter Rule
 - RB1100 As Distribution Router
 - ✓ Plain static routing
- 2013
 - Next step with CCR1036
 - ✓ Using Simple Queue as RouterOS 6, lot easier than HTB and faster

After Mikrotik

Network scale

- 150Mbps Upstream
 - VSAT & Fiber Multihoming
- Wireless & GPON Services
- 16 Wireless BTS around Dili, 5 remote BTS
- > 400 Client

Expansion

- 3G/4G LTE Access Point (Canceled 2013)
- GPON FTTH, Mikrotik ONT/ONU only
- Solar Powered remote BTS
 - 100W Solar panel + Battery
 - GSM remote switch
 - RB750UP / hEX POE Lite for controller
 - RB433, RB911, Metal

The Dude

CCR1036

400 client simple queues ?

No Problem, we did that

39		1500k	2M
29		1M	1M
57		256k	256k
41	■ Covec Compound	2M	2M
24		1M	1M
109	Covec Group	3M	3M
1	■ Covec House1	768k	768k
44	Covec House2	768k	768k
111	Covec Office1	2M	2M
22	Covec Office2	2M	2M
60		384k	384k
55		768k	768k
16		2M	2M
95		512k	512k
2	≜ EDTL	768k	768k
18		5M	5M
15	BK ANZ	1M	1M
93	BK Airport	1M	1M
43	BK Dili Port	1M	1M
101	■ Discovery Hotel	2M	2M
98	≘ ETT	4M	4M
92	■ Gloria Jeans	2M	2M
9	Sakib House	1M	1M
82		1M	1M
83	且 Eugenia Compound	384k	384k
70	且 Femanda House	768k	768k
58	且 Fundasaun Mahein	1M	1M
4	☐ GFA-Lahane	512k	512k
79	⊕ GMP-TL Group	3M	3M

Result

- Reducing Expenses
 - Reducing capex
 - Reducing customer cost
- Fast to deliver, Fast to replace, Low down time
 - We have cold spare devices
 - If we dont, we can get it less than 12 hours
- Easy to operate and maintain
 - Winbox easy to use
- Open lot of possibilities,
 - Exploit all of technology available on ROS

Last Update

iNet start using O3b

- Medium orbit Satellite, not geo stationer
- 360 minutes contact per satellite
- 300ms latency, not 500ms anymore
- Required two autotracking dish
- Using Mikrotik to do VRRP

Last..

- Don't be affraid to use RouterOS on your ISP
- Don't be embarassed if you already use ROS
- Router OS have complete features for ISP

Thank You