

FCC PART 15, SUBPART C Bay Area Cor ISEDC RSS-247, ISSUE 2, FEBRUARY 2017

TEST REPORT

For

Wi2Wi, Inc.

2107 N 1st Street, Suite 680, San Jose, CA 95131, USA

FCC ID: U9RWM828CC6 IC: 7089A-WM828CC6

Report Type:

Product Type:

Xda (m

Original Report

Wi-Fi & Bluetooth Module

Chin Ming Lui

Prepared By: Test Engineer

Report Number: R1710231-247 (DSS)

Report Date: 2018-09-17

Xiao Lin

Reviewed By: RF Lead

Bay Area Compliance Laboratories Corp.

1274 Anvilwood Avenue, Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732-9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by A2LA*, NIST, or any agency of the Federal Government.

^{*} This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*"

TABLE OF CONTENTS

1	General Description	
1.		
1.	- J	
1.	Related Submittal(s)/Grant(s)	5
1.		
1.	Measurement Uncertainty	5
1.		
1.	7 Test Facility Accreditations	6
2	System Test Configuration	
2.		
2.		
2.	<i>y</i> - <i>y</i>	
2.	1 r	
2.	11 1 1	
2.	TI T	
2.	3	
	Summary of Test Results	
	FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements	
4.	11	
4.	1	
	FCC §2.1091, §15.247(i) & ISEDC RSS-102 - RF Exposure	
5.	rr	
5.		
5.		
5.	r r r r	
	FCC §15.207 & ISEDC RSS-Gen §8.8 - AC Line Conducted Emissions	
6.	11	
6.	r	
6.		
6.	r · · · · · · · · · · · · · · · · · · ·	
6.	\mathcal{E}	
6.	1 F	
6.		
6.	J	
6.		
	FCC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions	
7.	rr	
7.	r	
7.	3 Test Procedure	24
7.		24
7.		
7.		
7.	, and the state of	
7.		
	FCC §15.247(a) (1) & ISEDC RSS-247 §5.1(a), RSS-Gen §6.6 - Emission Bandwidth	
8.	11	
8.		
8.	1 1	
8.		
8.	5 Test Results	33

9 FC	CC §15.247(b) (1) & ISEDC RSS-247 §5.1(b) -Output Power	37
9.1	Applicable Standards	
9.2	Measurement Procedure	37
9.3	Test Equipment List and Details	37
9.4	Test Environmental Conditions	
9.5	Test Results	
10 FC	CC §15.247(d) & ISEDC RSS-247 §5.5 - 100 kHz Bandwidth of Band Edges	42
10.1	Applicable Standards	42
10.2	Measurement Procedure	42
10.3	Test Equipment List and Details	42
10.4	Test Environmental Conditions	43
10.5	Test Results	
	CC §15.247(a) (1) (iii) & ISEDC RSS-247 §5.1 (d) - Dwell Time	
11.1	Applicable Standards	
11.2	Measurement Procedure	
11.3	Test Equipment List and Details	
11.4	Test Environmental Conditions	
11.5	Test Results	
	CC §15.247(a)(1)(iii) & ISEDC RSS-247 §5.1(d) - Number of Hopping Channels	
12.1	Applicable Standards	
12.2	Test Procedure	
12.3	Test Equipment List and Details	
12.4	Test Environmental Conditions	
12.5	Test Results	
	CC §15.247(a) (1) & ISEDC RSS-247 §5.1(b) - Hopping Channel Separation	
13.1	Applicable Standards	
13.2	Test Procedure	
13.3	Test Equipment List and Details	
13.4	Test Environmental Conditions	
13.5	Test Results	
	CC §15.247(d) & ISEDC RSS-247 §5.5 - Spurious Emissions at Antenna Terminals	
14.1	Applicable Standards	
14.2	Test Procedure	
14.3 14.4	Test Equipment List and Details Test Environmental Conditions	
14.4		
1	Test Results	
	opendix A – EUT Test Setup Photographspendix B – EUT External Photographs	
	opendix C – EUT Internal Photographsbpendix C – EUT Internal Photographs	
	opendix D (Normative) - A2LA Electrical Testing Certificate	
10 A)	ppenuix D (140) manyej - A2LA Electricai Testing Certificate	00

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	R1710231-247 (DSS)	Original Report	2018-09-17

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report was prepared on behalf of *Wi2Wi*, *Inc.*, and their product model: *WM828CC6*, FCC ID: U9RWM828CC6, IC: 7089A-WM828CC6 or the "EUT" as referred to in this report. The product is a Wi-Fi and Bluetooth Module.

1.2 Objective

This report is prepared on behalf of Wi2Wi, Inc., in accordance with Part 2, Subpart J, and Part 15, Subparts B and C of the Federal Communication Commission's rules and ISEDC RSS-247 Issue 2, February 2017.

The objective is to determine compliance with FCC Part 15.247 and ISEDC RSS-247 rules for Output Power, Antenna Requirements, 20 dB Bandwidth, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions, Number of Hopping Channels, Dwell Time, and Hopping Channel Separation.

1.3 Related Submittal(s)/Grant(s)

FCC Part 15, Subpart C, Equipment DTS with FCC ID: U9RWM828CC6 FCC Part 15, Subpart E, Equipment NII with FCC ID: U9RWM828CC6

1.4 Test Methodology

All measurements contained in this report were conducted in accordance with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

1.5 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Parameter	Measurement uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±0.57 dB
Power Spectral Density, conducted	±1.48dB
Unwanted Emissions, conducted	±1.57dB
All emissions, radiated	±4.0 dB
AC power line Conducted Emission	±2.0 dB
Temperature	±2 ° C
Humidity	±5 %
DC and low frequency voltages	±1.0 %
Time	±2 %
Duty Cycle	±3 %

1.6 Test Facility Registrations

BACLs test facilities that are used to perform Radiated and Conducted Emissions tests are currently recognized by the Federal Communications Commission as Accredited with NIST Designation Number US1129.

BACL's test facilities that are used to perform Radiated and Conducted Emissions tests are currently registered with Industry Canada under Registration Numbers: 3062A-1, 3062A-2, and 3062A-3.

BACL is a Chinese Taipei Bureau of Standards Metrology and Inspection (BSMI) validated Conformity Assessment Body (CAB), under Appendix B, Phase I Procedures of the APEC Mutual Recognition Arrangement (MRA). BACL's BSMI Lab Code Number is: SL2-IN-E-1002R

BACL's test facilities that are used to perform AC Line Conducted Emissions, Telecommunications Line Conducted Emissions, Radiated Emissions from 30 MHz to 1 GHz, and Radiated Emissions from 1 GHz to 6 GHz are currently recognized as Accredited in accordance with the Voluntary Control Council for Interference [VCCI] Article 15 procedures under Registration Number A-0027.

1.7 Test Facility Accreditations

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report..

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.03) to certify

- For the USA (Federal Communications Commission):
 - 1- All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4:
 - 2- All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
 - 3- All Telephone Terminal Equipment within FCC Scope C.
- For the Canada (Industry Canada):
 - 1 All Scope 1-Licence-Exempt Radio Frequency Devices;
 - 2 All Scope 2-Licensed Personal Mobile Radio Services;
 - 3 All Scope 3-Licensed General Mobile & Fixed Radio Services;
 - 4 All Scope 4-Licensed Maritime & Aviation Radio Services;
 - 5 All Scope 5-Licensed Fixed Microwave Radio Services
 - 6 All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.
- For Singapore (Info-Communications Development Authority (IDA)):
 - All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
 - 2. All Radio-Communication Equipment: All Technical Specifications for Radio-Communication Equipment Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2

- For the Hong Kong Special Administrative Region:
 - 1 All Radio Equipment, per KHCA 10XX-series Specifications;
 - 2 All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications;
 - 3 All Fixed Network Equipment, per HKCA 20XX-series Specifications.
- For Japan:
 - 1 MIC Telecommunication Business Law (Terminal Equipment):
 - All Scope A1 Terminal Equipment for the Purpose of Calls;
 - All Scope A2 Other Terminal Equipment
 - 2 Radio Law (Radio Equipment):
 - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
- For Water Coolers (ver. 3.0)

D- A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Innovation, Science and Economic development Canada ISEDC) Foreign Certification Body FCB APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;

- o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - o EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA) APEC Tel MRA -Phase I & Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA -Phase I
- Singapore: (Infocomm Media Development Authority IMDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter-
- USA:
 - o ENERGY STAR Recognized Test Laboratory US EPA
 - o Telecommunications Certification Body (TCB) US FCC;
 - o Nationally Recognized Test Laboratory (NRTL) US OSHA
- Vietnam: APEC Tel MRA -Phase I;

2 System Test Configuration

2.1 Justification

The EUT was configured for testing in accordance to ANSI C63.10-2013

The worst-case data rates are determined by measuring the peak power across all data rates.

2.2 EUT Exercise Software

The test firmware used was Marvell's 88W8887 Labtool Version 2.0.0.96 provided by *Wi2Wi*, *Inc.* The software is compliant with the standard requirements being tested against.

Modulation	Frequency (MHz)	Power Setting
	2402	Default
GFSK	2441	Default
	2480	Default
	2402	4
4-DQPSK	2441	4
	2480	4
	2402	4
8DPSK	2441	4
	2480	4

2.3 Duty Cycle Correction Factor

According to ANSI C63.10-2013 section 7.5:

Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 s (100 ms). In cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined during a 0.1 s interval. The following procedure is an example of how the average value may be determined. The average field strength may be found by measuring the peak pulse amplitude (in log equivalent units) and determining the duty cycle correction factor (in dB) associated with the pulse modulation as shown in following equation:

 $\delta(dB) = 20\log(\Delta)$

where

 δ is the duty cycle correction factor (dB)

 Δ is the duty cycle (dimensionless)

Radio Mode	On Time (ms)	Number of Pulses (N)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
GFSK	2.883	27	100	77.84	-2.176
π/4-DQPSK	2.735	27	100	73.85	-2.633
8DPSK	2.723	27	100	73.52	-2.672

Duty Cycle = [On Time (ms) * Number of Pulses (N)]/ Period (ms)

Please refer to the following plots.

GFSK Mode

 $\pi/4$ -DQPSK Mode

8DPSK Mode

2.4 Equipment Modifications

No modifications were made to the EUT.

2.5 Local Support Equipment

Manufacturer	Description	Model
Dell	Laptop	Latitude E6410

2.6 Support Equipment

Manufacturer	Description	Model
IBM ThinkPad / Lenovo	Laptop	X60
НР	Laptop	EliteBook 8460p

2.7 Interface Ports and Cabling

Cable Description	Length (m)	То	From
USB to Ethernet Bridge	< 1	Windows Laptop running Labtool (IBM)	Linux Laptop with DUT (HP)
Antenna Connector Cable	0.1	PSA	EUT

3 Summary of Test Results

Results reported relate only to the product tested.

FCC and ISEDC Rules	Description of Test	Results
FCC §15.203 ISEDC RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207 ISEDC RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
FCC §2.1091, §15.247(i) ISEDC RSS-102	RF Exposure	Compliant
FCC §2.1051, §15.247 (d) ISEDC RSS-247 §5.5	Spurious Emissions at Antenna Port	Compliant
FCC §2.1053, §15.205, §15.209, §15.247(d) ISEDC RSS-247 §5.5 ISEDC RSS-Gen §8.9, §8.10	Radiated Spurious Emissions	Compliant
FCC §15.247(a)(1) ISEDC RSS-247 §5.1 (a)	20 dB and 99% Emission Bandwidth	Compliant
FCC §15.247(b)(1) ISEDC RSS-247 §5.1(b)	Maximum Peak Output Power	Compliant
FCC §15.247(d) ISEDC RSS-247 §5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
FCC §15.247(a)(1)(iii) ISEDC RSS-247 §5.1(d)	Number of Hopping Channels	Compliant
FCC §15.247(a)(1) ISEDC RSS-247 §5.1 (b)	Hopping Channel Separation	Compliant
FCC §15.247(a)(1)(iii) ISEDC RSS-247 §5.1 (d)	Dwell Time	Compliant

FCC §15.203 & ISEDC RSS-Gen §6.8 - Antenna Requirements

Applicable Standards

According to FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC §15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

According to ISEDC RSS-Gen §6.8: Transmitter Antenna

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

4.2 **Antenna Description**

The antennas used by the EUT are Rubber-Duck, Dual-Band (2.4/5 GHz) Dipole Antenna with Integrated MHF4 IPEX Female Connector.

Antenna usage	Frequency Range (MHz)	Maximum Antenna Gain (dBi)
Wi-Fi/Bluetooth	2400-2500	2
Wi-Fi	5150-5250	3
Wi-Fi	5725-5850	3

Page 13 of 86

5 FCC §2.1091, §15.247(i) & ISEDC RSS-102 - RF Exposure

5.1 Applicable Standards

According to FCC §15.247(i), §15.407(f) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for	General F	opulation/Uncontrolled	Exposure

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)
	Limits for Ge	neral Population/Uncor	ntrolled Exposure	
0.3-1.34	614	1.63	* (100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

Before equipment certification is granted, the procedure of ISED RSS-102 must be followed concerning the exposure of humans to RF field

According to ISED RSS-102 Issue 5:

2.5.2 Exemption Limits for Routine Evaluation – RF Exposure Evaluation

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz⁶ and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 4.49/f^{0.5} W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the
 device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x 10⁻² f^{0.6834} W (adjusted for tune-up tolerance), where f is in MHz:
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

^{* =} Plane-wave equivalent power density

5.2 MPE Prediction

Predication of MPE limit at a given distance, Equation from OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R =distance to the center of radiation of the antenna

5.3 MPE Results

2.4 GHz Wi-Fi

Maximum average output power at antenna input terminal (dBm):	<u>17.29</u>
Maximum average output power at antenna input terminal (mW):	<u>53.58</u>
Prediction distance (cm):	<u>20</u>
<u>Prediction frequency (MHz):</u>	<u>2412</u>
Maximum Antenna Gain, typical (dBi):	<u>2</u>
Maximum Antenna Gain (numeric):	1.585
Power density of prediction frequency at 20.0 cm (mW/cm ²):	<u>0.0169</u>
FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm ²):	<u>1.0</u>

2.4 GHz Bluetooth/BLE:

Maximum average output power at antenna input terminal (dBm):	10.52
Maximum average output power at antenna input terminal (mW):	11.272
Prediction distance (cm):	<u>20</u>
Prediction frequency (MHz):	<u>2402</u>
Maximum Antenna Gain, typical (dBi):	<u>2</u>
Maximum Antenna Gain (numeric):	1.585
Power density of prediction frequency at 40 cm (mW/cm ²):	0.0036
FCC MPE limit for uncontrolled exposure at prediction frequency (mW/cm ²):	<u>1.0</u>

Multi Transmitter MPE Evaluation

 $0.0169/1.0+0.0036/1.0 = 0.0205 \le 1.0$

Conclusion

The device is compliant with the requirement MPE limit for uncontrolled exposure. All transceiver modules must be installed with a separation distance of no less than **20** cm from all persons.

5.4 RF exposure evaluation exemption for IC

2.4GHz Wi-Fi: 17.29+ 2 dBi = 19.29 dBm < $1.31 \times 10^{-2} f^{0.6834} = 2.684 \text{ W} = 34.3 \text{ dBm}$

2.4GHz Bluetooth/BLE: $10.52 + 2 \text{ dBi} = 12.52 \text{ dBm} < 1.31 \times 10^{-2} f^{0.6834} = 2.676 \text{ W} = 34.27 \text{ dBm}$

Multi Transmitter MPE Evaluation

0.085W(19.29 dBm) + 0.018W(12.52 dBm) = 0.103 W < 2.676 W

Conclusion

Therefore the RF exposure is not required. All transceiver modules must be installed with a separation distance of no less than **20** cm from all persons.

6 FCC §15.207 & ISEDC RSS-Gen §8.8 - AC Line Conducted Emissions

6.1 Applicable Standards

As per FCC §15.207 and ISEDC RSS-Gen §8.8 Conducted limits:

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56 Note 1	56 to 46 Note 2	
0.5-5	56	46	
5-30	60	50	

Note 1: Decreases with the logarithm of the frequency.

Note 2: A linear average detector is required

6.2 Test Setup

The measurement was performed at shield room, using the setup per ANSI C63.10-2013 measurement procedure. The specification used was FCC §15.207 and ISEDC RSS-Gen §8.8 limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The AC/DC power adapter of the EUT was connected with LISN-1 which provided 120 V / 60 Hz AC power.

6.3 Test Procedure

During the conducted emissions test, the power cord of the EUT host system was connected to the mains outlet of the LISN-1 and the power cords of support equipment were connected to LISN-2.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data were recorded in the peak detection mode, quasi-peak, and average detection mode. Quasi-Peak readings are distinguished with a "QP." Average readings are distinguished with an "Ave".

6.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Cable Loss (CL), the Attenuator Factor (Atten) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + CL + Atten$$

For example, a corrected amplitude of 46.2 dBuV = Indicated Reading (32.5 dBuV) + Cable Loss (3.7 dB) + Attenuator (10 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude – Limit

6.5 Test Setup Block Diagram

6.6 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde and Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100338	2016-02-04	2 years
Rohde and Schwarz	Impulse Limiter	ESH3-Z2	101964	2017-07-24	1 year
Solar Electronics Company	High Pass Filter	Type 7930-100	7930150203	2017-03-13	1 year
Suirong	30 ft conductive emission cable	LMR 400	-	N/R	N/A
FCC	LISN	FCC-LISN-50-25-2- 10-CISPR16	160130	2017-04-24	1 year
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

6.7 Test Environmental Conditions

Temperature:	22 °C
Relative Humidity:	43 %
ATM Pressure:	101.8 kPa

The testing was performed by Harry Zhao on 2018-01-18 in the Conducted test site.

6.8 Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC 15C and ISEDC RSS-Gen standard's</u> conducted emissions limits, with the margin reading of:

Connection: AC/DC adapter connected to 120 V/60 Hz, AC					
Margin (dB)Frequency (MHz)Conductor Mode (Live/Neutral)Range (MHz)					
-13.61	17.48884	Neutral	0.15-30		

Note: testing was performed under worst case co-location 2.4 GHz Wi-Fi and Bluetooth/BLE

6.9 Conducted Emissions Test Plots and Data

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
4.652506	29.97	Line	56	-26.03	QP
1.881541	34.82	Line	56	-21.18	QP
2.136368	35.12	Line	56	-20.88	QP
16.71966	37.32	Line	60	-22.68	QP
0.153606	43.87	Line	65.8	-21.93	QP
2.197111	34.05	Line	56	-21.95	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
4.652506	17.88	Line	46	-28.12	Ave.
1.881541	24.62	Line	46	-21.38	Ave.
2.136368	24.6	Line	46	-21.4	Ave.
16.71966	33.85	Line	50	-16.15	Ave.
0.153606	32.66	Line	55.8	-23.14	Ave.
2.197111	26.23	Line	46	-19.77	Ave.

120 V, 60 Hz – Neutral

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.150092	44.5	Neutral	65.99	-21.49	QP
17.48884	40.75	Neutral	60	-19.25	QP
0.152872	44.49	Neutral	65.84	-21.35	QP
16.72901	39.78	Neutral	60	-20.22	QP
16.41327	36.16	Neutral	60	-23.84	QP
0.171889	41.25	Neutral	64.87	-23.62	QP

Frequency (MHz)	Corrected Amplitude (dBuV)	Conductor (Line/Neutral)	Limit (dBuV)	Margin (dB)	Detector (QP/Ave.)
0.150092	31.88	Neutral	55.99	-24.12	Ave.
17.48884	36.39	Neutral	50	-13.61	Ave.
0.152872	23.47	Neutral	55.84	-32.37	Ave.
16.72901	35.27	Neutral	50	-14.73	Ave.
16.41327	30.63	Neutral	50	-19.37	Ave.
0.171889	28.26	Neutral	54.87	-26.61	Ave.

7 FCC §15.209, §15.247(d) & ISEDC RSS-247 §5.5, RSS-Gen §8.9, §8.10 - Spurious Radiated Emissions

7.1 Applicable Standards

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

As Per FCC §15.205(a) and RSS-Gen except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090 - 0.110 \\ 0.495 - 0.505 \\ 2.1735 - 2.1905 \\ 4.125 - 4.128 \\ 4.17725 - 4.17775 \\ 4.20725 - 4.20775 \\ 6.215 - 6.218 \\ 6.26775 - 6.26825 \\ 6.31175 - 6.31225 \\ 8.291 - 8.294 \\ 8.362 - 8.366 \\ 8.37625 - 8.38675 \\ 8.41425 - 8.41475 \\ 12.29 - 12.293 \\ 12.51975 - 12.52025 \\ 12.57675 - 12.57725 \\ 13.36 - 13.41 \end{array}$	16.42 - 16.423 $16.69475 - 16.69525$ $25.5 - 25.67$ $37.5 - 38.25$ $73 - 74.6$ $74.8 - 75.2$ $108 - 121.94$ $123 - 138$ $149.9 - 150.05$ $156.52475 - 156.52525$ $156.7 - 156.9$ $162.0125 - 167.17$ $167.72 - 173.2$ $240 - 285$ $322 - 335.4$ $399.9 - 410$ $608 - 614$	960 - 1240 $1300 - 1427$ $1435 - 1626.5$ $1645.5 - 1646.5$ $1660 - 1710$ $1718.8 - 1722.2$ $2200 - 2300$ $2310 - 2390$ $2483.5 - 2500$ $2690 - 2900$ $3260 - 3267$ $3.332 - 3.339$ $3 3458 - 3 358$ $3.600 - 4.400$	4. 5 - 5. 15 5. 35 - 5. 46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8 36.43 - 36.5 Above 38.6

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

As per ISEDC RSS-Gen 8.9,

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 4 or Table 5 below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

Table 4 – General Field Strength Limits for Licence-Exempt Transmitters at Frequencies Above 30 MHz

Frequency (MHz)	Field Strength (μν/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960*	500

^{*} Unless otherwise specified, for all frequencies greater than 1 GHz, the radiated emission limits for licenceexempt radio apparatus stated in applicable RSSs (including RSS-Gen) are based on measurements using a linear average detector function having a minimum resolution bandwidth of 1 MHz. If an average limit is specified for the EUT, then the peak emission shall also be measured with instrumentation properly adjusted for such factors as pulse desensitization to ensure the peak emission is less than 20 dB above the average limit.

Note: Transmitting devices are not permitted in restricted frequency bands unless stated otherwise in the specific RSS.

As per ISEDC RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

7.2 Test Setup

The radiated emissions tests were performed in the 5-meter Chamber, using the setup in accordance with ANSI C63.10-2013. The specification used was the FCC 15 Subpart C and ISEDC RSS-247 limits.

The spacing between the peripherals was 10 centimeters.

External I/O cables were draped along the edge of the test table and bundle when necessary.

7.3 Test Procedure

For the radiated emissions test, the EUT host, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations

The EUT was set 3 meter away from the testing antenna, which was varied from 1-4 meter, and the EUT was placed on a turntable, which was 0.8 meter and 1.5 meter above the ground plane for below and above 1000 MHz measurements, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

The spectrum analyzer or receiver is set as:

Below 1000 MHz:

$$RBW = 100 \text{ kHz} / VBW = 300 \text{ kHz} / Sweep = Auto$$

Above 1000 MHz:

- (1) Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto
- (2) Average: RBW = 1MHz / VBW = 1/T or 10Hz / Sweep = Auto

7.4 Corrected Amplitude and Margin Calculation

The Corrected Amplitude (CA) is calculated by adding the Antenna Factor (AF), the Cable Loss (CL), the Attenuator Factor (Atten) and subtracting the Amplifier Gain (Ga) to indicated Amplitude (Ai) reading. The basic equation is as follows:

$$CA = Ai + AF + CL + Atten - Ga$$

For example, a corrected amplitude of 40.3 dBuV/m = Indicated Reading (32.5 dBuV) + Antenna Factor (+23.5dB) + Cable Loss (3.7 dB) + Attenuator (10 dB) - Amplifier Gain (29.4 dB)

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corrected Amplitude - Limit

7.5 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Rohde and Schwarz	Receiver, EMI Test	ESCI 1166.5950K03	100338	2016-02-04	2 years
Agilent	Analyzer, Spectrum	E4440A	US45303156	2017-02-24	1 year
Sunol Sciences	System Controller	SC99V	011003-1	N/R	N/A
Sunol Sciences	Antenna, Biconi-Log	JB1	A013105-3	2015-07-11	31 Months
Agilent	Amplifier, Pre	8447D	2944A07030	2017-05-17	1 year
IW	AOBOR Hi frequency Co AX Cable	DC 1531	KPS- 1501A3960KPS	2018-01-04	1 year
-	Hi FreqCo AX Cable	-	-	Each time ¹	N/A
-	SMA cable	-	C00011	Each time ¹	N/A
Agilent	Pre-Amplifier	8449B	3147A00400	2017-06-15	1 year
Sunol Sciences	Antenna, Horn	DRH-118	A052704	2017-03-27	2 years
Wisewave	Antenna, Horn	ARH-4223-02	10555-01	2018-02-14	2 years
Vasona	Test software	V6.0 build 11	10400213	N/R	N/R

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

7.6 Test Environmental Conditions

Temperature:	23 °C
Relative Humidity:	42 %
ATM Pressure:	102.7 kPa

The 30MHz-1GHz and 1-25 GHz tests were performed by Harry Zhao and on Chin Ming Lui from 2018-01-18 to 2018-02-19 in 5m chamber 3.

7.7 Summary of Test Results

According to the data hereinafter, the EUT <u>complied with FCC Title 47, Part 15C and ISEDC RSS-247</u> standard's radiated emissions limits, and had the worst margin of:

Mode: Transmitting			
Margin (dB)	Frequency (MHz)	Polarization (Horizontal/Vertical)	Mode, Channel
-0.99	252.9968	Horizontal	Co-location

Please refer to the following table and plots for specific test result details.

7.8 Radiated Emissions Test Results

1) 30 MHz – 1 GHz Worst Case, Measured at 3 meters

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna Height (cm)	Antenna Polarity (H/V)	Turntable Azimuth (degrees)	Limit (dBµV/m)	Margin (dB)	Comment
57.8525	31.62	105	V	96	40	-8.38	QP
92.363	23.13	179	V	271	43.5	-20.37	QP
168.6253	17.03	272	V	223	43.5	-26.47	QP
242.065	44.08	133	Н	193	46	-1.92	QP
252.9968	45.01	141	Н	189	46	-0.99	QP
427.99	25.74	222	V	231	46	-20.26	QP

Note: The clock frequency of the module was configured to and is compliant at 3 MHz Note: testing was performed under worst case co-location 2.4 GHz Wi-Fi and Bluetooth/BLE

2) 1-25 GHz Measured at 3 meters

GFSK mode

Engage	S.A.	Turntable	Т	est Anten	na	Cable	Pre-	Cord.	FCC	C/ISEDC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Comments
					Low C	Channel 240	02 MHz				
2402	72.27	288	210	Н	28.944	5.76	0	106.97	-	-	PK
2402	72.23	288	210	Н	28.944	5.76	0	106.93	-	-	AV
2402	68.96	269	258	V	28.933	5.76	0	103.65	-	-	PK
2402	68.88	269	258	V	28.933	5.76	0	103.57	-	-	AV
2390	53.43	285	212	Н	28.944	5.76	36.588	51.55	74.00	-22.45	PK
2390	42.17	285	212	Н	28.944	5.76	36.588	40.29	54.00	-13.71	AV
2390	49.55	170	288	V	28.933	5.76	36.588	47.66	74.00	-26.35	PK
2390	40.26	170	288	V	28.933	5.76	36.588	38.37	54.00	-15.64	AV
4804	45.69	150	100	Н	32.543	6.911	36.361	48.78	74.00	-25.22	PK
4804	34.37	150	100	Н	32.543	6.911	36.361	37.46	54.00	-16.54	AV
4804	46.76	160	100	V	32.56	6.911	36.361	49.87	74.00	-24.13	PK
4804	35.37	160	100	V	32.56	6.911	36.361	38.48	54.00	-15.52	AV
7206	45.00	140	100	Н	36.729	12.005	36.38	57.35	74.00	-16.65	PK
7206	33.09	140	100	Н	36.729	12.005	36.38	45.44	54.00	-8.56	AV
9608	44.71	0	100	Н	37.843	13.874	36.433	59.99	74.00	-14.01	PK
9608	32.74	0	100	Н	37.843	13.874	36.433	48.02	54.00	-5.98	AV
					Middle	Channel 2	441 MHz				
2441	71.20	282	206	Н	29.148	5.76	0	106.11	-	-	PK
2441	70.94	282	206	Н	29.148	5.76	0	105.85	-	-	AV
2441	70.54	258	285	V	29.185	5.76	0	105.49	-	-	PK
2441	70.47	258	285	V	29.185	5.76	0	105.42	-	-	AV
4882	45.88	158	212	Н	32.807	6.937	36.327	49.30	74.00	-24.70	PK
4882	34.57	158	212	Н	32.807	6.937	36.327	37.99	54.00	-16.01	AV
4882	46.55	118	259	V	32.695	6.937	36.327	49.86	74.00	-24.15	PK
4882	36.39	118	259	V	32.695	6.937	36.327	39.70	54.00	-14.31	AV
7323	45.23	0	100	Н	37.056	11.967	36.401	57.85	74.00	-16.15	PK
7323	33.13	0	100	Н	37.056	11.967	36.401	45.75	54.00	-8.25	AV

					High C	hannel 248	80 MHz				
2480	68.85	57	214	Н	29.251	5.87	0	103.97	-	-	PK
2480	68.41	57	214	Н	29.251	5.87	0	103.53	-	-	AV
2480	69.29	257	275	V	29.178	5.87	0	104.34	-	1	PK
2480	69.18	257	275	V	29.178	5.87	0	104.23	-	ı	AV
2483.5	54.27	66	250	Н	29.251	5.87	36.589	52.80	74.00	-21.20	PK
2483.5	43.34	66	250	Н	29.251	5.87	36.589	41.87	54.00	-12.13	AV
2483.5	53.12	263	293	V	29.178	5.87	36.589	51.58	74.00	-22.42	PK
2483.5	42.35	263	293	V	29.178	5.87	36.589	40.81	54.00	-13.19	AV
4960	45.25	94	100	Н	32.78	7.083	36.281	48.83	74.00	-25.17	PK
4960	34.26	94	100	Н	32.78	7.083	36.281	37.84	54.00	-16.16	AV
4960	45.36	114	250	V	32.792	7.083	36.281	48.95	74.00	-25.05	PK
4960	36.15	114	250	V	32.792	7.083	36.281	39.74	54.00	-14.26	AV
7440	46.01	0	100	Н	37.073	12.011	36.405	58.69	74.00	-15.31	PK
7440	33.74	0	100	Н	37.073	12.011	36.405	46.42	54.00	-7.58	AV

$\pi/4$ -DQPSK mode

Frequency	S.A.	Turntable	1	est Anten	na	Cable	Pre-	Cord.	FCC/I	ISEDC	
(MHz)	Reading (dBμV)	Azimuth (degrees)	Height (cm)	Polarity (H/V)	Factor (dB/m)	Loss (dB)	Amp. (dB)	Reading (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Comments
				Low Cha	nnel 2402 N	⁄ИНz (pow	er setting:	4)			
2402	67.03	290	300	Н	28.944	5.76	0	101.73	-	-	PK
2402	64.29	290	300	Н	28.944	5.76	0	98.99	-	-	AV
2402	64.11	255	259	V	28.933	5.76	0	98.80	-	-	PK
2402	61.36	255	259	V	28.933	5.76	0	96.05	-	-	AV
2390	50.7	293	300	Н	28.944	5.76	36.588	48.82	74.00	-25.18	PK
2390	38.33	293	300	Н	28.944	5.76	36.588	36.45	54.00	-17.55	AV
2390	48.81	140	107	V	28.933	5.76	36.588	46.92	74.00	-27.09	PK
2390	41.12	140	107	V	28.933	5.76	36.588	39.23	54.00	-14.78	AV
4804	45.25	0	100	Н	32.543	6.911	36.361	48.34	74.00	-25.66	PK
4804	34.04	0	100	Н	32.543	6.911	36.361	37.13	54.00	-16.87	AV
4804	45.85	0	100	V	32.56	6.911	36.361	48.96	74.00	-25.04	PK
4804	34.43	0	100	V	32.56	6.911	36.361	37.54	54.00	-16.46	AV
Middle Channel 2441 MHz (power setting: 4)											
2441	66.24	282	208	Н	29.148	5.76	0	101.15	-	-	PK
2441	63.40	282	208	Н	29.148	5.76	0	98.31	-	-	AV
2441	65.07	266	276	V	29.185	5.76	0	100.02	-	-	PK
2441	62.29	266	276	V	29.185	5.76	0	97.24	-	-	AV
4882	46.22	0	100	Н	32.807	6.937	36.327	49.64	74.00	-24.36	PK
4882	34.16	0	100	Н	32.807	6.937	36.327	37.58	54.00	-16.42	AV
4882	45.18	0	100	V	32.695	6.937	36.327	48.49	74.00	-25.52	PK
4882	33.89	0	100	V	32.695	6.937	36.327	37.20	54.00	-16.81	AV
				High Cha	nnel 2480 N	MHz (pov	ver setting:	4)			
2480	65.97	59	248	Н	29.251	5.87	0	101.09	-	-	PK
2480	63.2	59	248	Н	29.251	5.87	0	98.32	-	-	AV
2480	63.99	263	281	V	29.178	5.87	0	99.04	-	-	PK
2480	61.11	263	281	V	29.178	5.87	0	96.16	-	-	AV
2483.5	57.32	55	282	Н	29.251	5.87	36.589	55.85	74.00	-18.15	PK
2483.5	39.59	55	282	Н	29.251	5.87	36.589	38.12	54.00	-15.88	AV
2483.5	48.93	291	100	V	29.178	5.87	36.589	47.39	74.00	-26.61	PK
2483.5	36.18	291	100	V	29.178	5.87	36.589	34.64	54.00	-19.36	AV
4960	44.70	0	100	Н	32.78	7.083	36.281	48.28	74.00	-25.72	PK
4960	33.59	0	100	Н	32.78	7.083	36.281	37.17	54.00	-16.83	AV
4960	45.39	0	100	V	32.792	7.083	36.281	48.98	74.00	-25.02	PK
4960	34.04	0	100	V	32.792	7.083	36.281	37.63	54.00	-16.37	AV

8DPSK mode

E	S.A.	Turntable	Т	Test Anter	ına	Cable	Pre-	Cord.	FCC/I	ISEDC	
Frequency (MHz)	Reading (dBµV)	Azimuth (degrees)		Polarity	Factor	Loss (dB)	Amp. (dB)	Reading (dBµV/m)	Limit	Margin	Comments
	(иБµ v)	(degrees)	(cm)	(H/V)	(dB/m)	. ,	, ,		(dBµV/m)	(dB)	
		1 1)2 MHz (p	ower setting:	4)	 		1
2402	68.23	278	300	Н	28.944	5.76	0	102.93	-	-	PK
2402	65.16	278	300	Н	28.944	5.76	0	99.86	-	-	AV
2402	64.79	260	300	V	28.933	5.76	0	99.48	-	-	PK
2402	61.69	260	300	V	28.933	5.76	0	96.38	-	-	AV
2390	50.2	70	300	Н	28.944	5.76	36.588	48.32	74.00	-25.68	PK
2390	36.77	70	300	Н	28.944	5.76	36.588	34.89	54.00	-19.11	AV
2390	49.61	255	300	V	28.933	5.76	36.588	47.72	74.00	-26.29	PK
2390	36.69	255	300	V	28.933	5.76	36.588	34.80	54.00	-19.21	AV
4804	46.35	0	100	Н	32.543	6.911	36.361	49.44	74.00	-24.56	PK
4804	34.44	0	100	Н	32.543	6.911	36.361	37.53	54.00	-16.47	AV
				Middle	Channel 24	141 MHz (_]	power setting	: 4)			
2441	67.81	56	258	Н	29.148	5.76	0	102.72	-	-	PK
2441	64.72	56	258	Н	29.148	5.76	0	99.63	-	-	AV
2441	63.66	251	252	V	29.185	5.76	0	98.61	-	-	PK
2441	60.32	251	252	V	29.185	5.76	0	95.27	-	-	AV
4882	45.51	0	100	Н	32.807	6.937	36.327	48.93	74.00	-25.07	PK
4882	33.83	0	100	Н	32.807	6.937	36.327	37.25	54.00	-16.75	AV
				High (Channel 248	80 MHz (p	ower setting:	4)			
2480	66.3	54	251	Н	29.251	5.87	0	101.42	-	-	PK
2480	63.17	54	251	Н	29.251	5.87	0	98.29	-	-	AV
2480	64.08	263	275	V	29.178	5.87	0	99.13	-	-	PK
2480	61.06	263	275	V	29.178	5.87	0	96.11	-	-	AV
2483.5	56.87	54	248	Н	29.251	5.87	36.589	55.40	74.00	-18.60	PK
2483.5	40.72	54	248	Н	29.251	5.87	36.589	39.25	54.00	-14.75	AV
2483.5	50.77	258	300	V	29.178	5.87	36.589	49.23	74.00	-24.77	PK
2483.5	38.3	258	300	V	29.178	5.87	36.589	36.76	54.00	-17.24	AV
4960	45.27	0	100	Н	32.78	7.083	36.281	48.85	74.00	-25.15	PK
4960	33.47	0	100	Н	32.78	7.083	36.281	37.05	54.00	-16.95	AV

Worst Case Colocation, 2.4 GHz Wi-Fi b mode (2412 MHz) and 2.4 GHz Classic Bluetooth GFSK (2402 MHz)

1-18 GHz

18-26.5 GHz

8 FCC §15.247(a) (1) & ISEDC RSS-247 §5.1(a), RSS-Gen §6.6 - Emission Bandwidth

8.1 Applicable Standards

According to FCC §15.247(a) (1) and ISEDC RSS-247 §5.1: the maximum 20 dB bandwidth of the hopping channel shall be presented.

8.2 Measurement Procedure

Span = approximately 2 to 5 times the 99% occupied bandwidth, centered on a hopping channel

RBW = 1% to 5 % of the 99% occupied bandwidth

VBW = 3RBW

Sweep = auto

Detector function = peak

Trace = max hold

8.3 Test Equipment List and Details

Manufacturer	Description	cription Model No. Serial I		Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2017-04-20	12 months
-	RF cable	-	-	Each time ¹	N/A
-	20dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

8.4 Test Environmental Conditions

Temperature:	22°C
Relative Humidity:	42 %
ATM Pressure:	102.6 KPa

The testing was performed by Chin Ming Lui on 2017-11-27 in RF site.

8.5 Test Results

Channel	Frequency (MHz)	99% OBW (kHz)	20 dB OBW (kHz)
GFSK			
Low	2402	874.5016	989.383
Middle	2441	874.5466	990.757
High	2480	871.3837	990.258
π/4-DQPSK			
Low	2402	1169.3	1293
Middle	2441	1170.5	1313
High	2480	1170.0	1313
8DPSK			
Low	2402	1176.5	1305
Middle	2441	1177.5	1306
High	2480	1178.0	1307

Please refer to the following plots for detailed test results.

GFSK

Low Channel 2402 MHz

Freq/Channel Center Freq 2.40200000 GHz Ch Freq 2.402 GHz Trig Free Occupied Bandwidth Start Freq 2.40050000 GHz Atten 10 dB Ref 20.6 dBm Stop Freq 2,40350000 GHz CF Step 300.0000000 kHz Auto Man Freq Offset 0.00000000 Hz Center 2.402 000 GHz #Res BW 30 kHz #VBW 91 kHz Signal Track Occupied Bandwidth Occ BW % Pwr x dB -20.00 dB 874.5016 kHz Transmit Freq Error × dB Bandwidth 14.355 kHz 989.383 kHz

Middle Channel 2441 MHz

High Channel 2480 MHz

$\pi/4$ -DQPSK

Low Channel 2402 MHz

Agilent Freg/Channel Center Freq 2.40200000 GHz Ch Freq 2.402 GHz Trig Free Occupied Bandwidth Start Freq 2.40050000 GHz Atten 10 dB Stop Freq 2.40350000 GHz **CF Step** 300.000000 kHz <u>Auto</u> Man Freq Offset 0.000000000 Hz Center 2.402 000 GHz #Res BW 30 kHz Span 3 MHz Sweep 3.2 ms (601 pts) #VBW 91 kHz Signal Track Occupied Bandwidth Occ BW % Pwr x dB -20.00 dB 1.1693 MHz Transmit Freq Error x dB Bandwidth Copyright 2000-2012 Agilent Technologie

Middle Channel 2441 MHz

High Channel 2480 MHz

8DPSK

Low Channel 2402 MHz

Freq/Channel Center Freq 2.40200000 GHz Ch Freq 2.402 GHz Trig Free Occupied Bandwidth Start Freq 2.40050000 GHz Atten 10 dB Stop Freq 2.40350000 GHz **CF Step** 300.000000 kHz <u>Auto</u> Man Freq Offset 0.00000000 Hz Center 2.402 000 GHz #Res BW 30 kHz

Occ BW % Pwr x dB

-20.00 dE

#VBW 91 kHz

1.1765 MHz

15.136 kHz

Occupied Bandwidth

Transmit Freq Error × dB Bandwidth

Middle Channel 2441 MHz

High Channel 2480 MHz

Signal Track

9 FCC §15.247(b) (1) & ISEDC RSS-247 §5.1(b) -Output Power

9.1 Applicable Standards

According to FCC §15.247(b) (1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

According to RSS-247 §5.4: For frequency hopping systems operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W and the e.i.r.p. shall not exceed 0.5 W if the hopset uses less than 75 hopping channels.

According to FCC §15.247(a) (1) and RSS-247 §5.1(2): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

9.2 Measurement Procedure

Trace = max hold

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured $VBW \ge RBW$ Sweep = auto Detector function = peak

9.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2017-04-20	12 months
-	RF cable	-	-	Each time ¹	N/A
-	20dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. **Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

9.4 Test Environmental Conditions

Temperature:	23 °C
Relative Humidity:	42 %
ATM Pressure:	102.9 KPa

The testing was performed by Chin Ming Lui on 2017-11-22 in RF site.

9.5 Test Results

Channel	Frequency (MHz)	Conducted Output Power (dBm)	Limit (dBm)				
	GFSK						
Low	2402	10.52	21				
Middle	2441	10.14	21				
High	2480	9.79	21				
	П/4-DQPSK						
Low	2402	4.05	21				
Middle	2441	3.81	21				
High	2480	3.36	21				
	8DPSK						
Low	2402	4.40	21				
Middle	2441	4.16	21				
High	2480	3.73	21				

Please refer to the following plots for detailed test results.

GFSK

Low Channel 2402 MHz

Middle Channel 2441 MHz

$\pi/4$ -DQPSK

Low Channel 2402 MHz

* Agilent Freq/Channel Ref 20.6 dBm #Peak Center Freq 2.40200000 GHz #Atten 10 dB Log 10 dB/ Offst 20.6 dB Start Freq 2.39950000 GHz **Stop Freq** 2.40450000 GHz **CF Step** 500.000000 kHz <u>Auto</u> Man <u>Auto</u> **Freq Offset** 0.000000000 Hz **£**(f): FTun Signal Track On Off 2.402 000 GHz Span 5 MHz Sweep 1 ms (601 pts) #Res BW 2 MHz #VBW 6 MHz Copyright 2000-2012 Agilent Technologies

Middle Channel 2441 MHz

8DPSK

Low Channel 2402 MHz

Middle Channel 2441 MHz

10 FCC §15.247(d) & ISEDC RSS-247 §5.5 - 100 kHz Bandwidth of Band Edges

10.1 Applicable Standards

According to FCC §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emissions limits specified in §15.209(a) see §15.205(c).

According to ISEDC RSS-247 §5.5.In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

10.2 Measurement Procedure

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation

RBW = 100 kHz VBW = 300 kHz Sweep = coupled Detector function = peak Trace = max hold

10.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2017-04-20	12 months
-	RF cable	-	-	Each time ¹	N/A
-	20dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

10.4 Test Environmental Conditions

Temperature:	22 °C	
Relative Humidity:	42 %	
ATM Pressure:	102.6 KPa	

The testing was performed by Chin Ming Lui on 2017-11-27 in RF site.

10.5 Test Results

Fixed channel

GFSK

Low Channel 2402 MHz

High Channel 2480 MHz

$\pi/4$ -DQPSK

Low Channel 2402 MHz

8DPSK

Low Channel 2402 MHz

Copyright 2000-2012 Agilent Technologies

Hopping mode

GFSK

Low Channel 2402 MHz

High Channel 2480 MHz

$\pi/4$ -DQPSK

Low Channel 2402 MHz

8DPSK

Low Channel 2402 MHz

11 FCC §15.247(a) (1) (iii) & ISEDC RSS-247 §5.1 (d) - Dwell Time

11.1 Applicable Standards

According to FCC §15.247(a) (1) (iii) and RSS-247 §5.1(4), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

11.2 Measurement Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

 $RBW \le$ channel spacing and where possible RBW should be set >> 1/T, where T is the expected dwell time per channel

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

11.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2018-02-26	1 year
-	RF cable	-	-	Each time ¹	N/A
-	20dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. **Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

11.4 Test Environmental Conditions

Temperature:	22 °C
Relative Humidity:	42 %
ATM Pressure:	102.5 KPa

The testing was performed by Chin Ming Lui on 2018-04-26 in RF site.

11.5 Test Results

Channel	Pulse Width (ms)	Number of Hops in the Period Specified in the Requirements	Average Time of Occupancy (s)	Limit (sec)	Results		
	GFSK,DH1						
Low	0.370	320	0.1184	0.4	compliant		
Middle	0.440	320	0.1408	0.4	compliant		
High	0.520	320	0.1664	0.4	compliant		
	•	GFSK	,DH3		•		
Low	1.627	180	0.29286	0.4	compliant		
Middle	1.627	180	0.29286	0.4	compliant		
High	1.627	160	0.26032	0.4	compliant		
		GFSK	,DH5				
Low	2.86	112	0.32032	0.4	compliant		
Middle	2.88	96	0.27648	0.4	compliant		
High	2.86	100	0.286	0.4	compliant		
	1	Π/4-DQP	SK,DH1				
Low	0.375	330	0.12375	0.4	compliant		
Middle	0.375	330	0.12375	0.4	compliant		
High	0.375	320	0.120	0.4	compliant		
	•	Π/4-DQP	SK,DH3		•		
Low	1.627	190	0.30913	0.4	compliant		
Middle	1.627	180	0.29286	0.4	compliant		
High	1.627	180	0.29286	0.4	compliant		
		Π/4-DQP	SK,DH5		•		
Low	2.88	94	0.27072	0.4	compliant		
Middle	2.88	84	0.24192	0.4	compliant		
High	2.88	114	0.32832	0.4	compliant		
	•	8DPSk	K,DH1		·		
Low	0.440	320	0.1408	0.4	compliant		
Middle	0.375	320	0.120	0.4	compliant		
High	0.375	320	0.120	0.4	compliant		
		8DPSk	X,DH3				
Low	1.627	190	0.30913	0.4	compliant		
Middle	1.627	170	0.27659	0.4	compliant		
High	1.627	180	0.29286	0.4	compliant		
		8DPSk	K,DH5				
Low	2.88	90	0.2592	0.4	compliant		
Middle	2.86	94	0.26884	0.4	compliant		
High	2.86	104	0.29744	0.4	compliant		

Res BW 100 kHz

Please refer to the following plots for detailed test results.

GFSK, DH1 Pulse Width

Low Channel 2402 MHz

* Agilent Freq/Channel 370 p -3.26 dB Center Freq 2.40200000 GHz Ref 21.6 dBm #Atten 10 dB Start Freq 2.40200000 GHz Stop Freq 2.40200000 GHz **CF Step** 100.000000 kHz <u>Auto</u> Man Freq Offset 0.000000000 Hz Signal Track Span 0 Hz Sweep 3 ms (601 pts)

#VBW 300 kHz

Copyright 2000-2010 Agilent Technologies

Middle Channel 2441 MHz

GFSK, DH1 Number of Pulses within a Specified Time

Low Channel 2402 MHz

* Agilent Freq/Channel Ref 21.6 dBm #Peak Center Freq 2.40200000 GHz #Atten 10 dB Start Freq 2.40200000 GHz Stop Freq 2.40200000 GHz CF Step 100.0000000 kHz Auto Man Freq Offset 0.000000000 Hz Signal Track Center 2.402 000 GHz Res BW 100 kHz Span 0 Hz Sweep 3.16 s (601 pts) #VBW 300 kHz Copyright 2000-2010 Agilent Technologies

Middle Channel 2441 MHz

es BW 100 kHz

GFSK, DH3 Pulse Width

Low Channel 2402 MHz

#VBW 300 kHz

Span 0 Hz Sweep 8 ms (601 pts)

Middle Channel 2441 MHz

GFSK, DH3 Number of Pulses within a Specified Time

Low Channel 2402 MHz

* Agilent Freq/Channel Ref 21.6 dBm #Peak Center Freq 2.40200000 GHz #Atten 10 dB Start Freq 2.40200000 GHz Stop Freq 2.40200000 GHz CF Step 100.0000000 kHz Auto Man Freq Offset 0.00000000 Hz Signal Track Center 2.402 000 GHz Res BW 100 kHz Span 0 Hz Sweep 3.16 s (601 pts) #VBW 300 kHz Copyright 2000-2010 Agilent Technologies

Middle Channel 2441 MHz

GFSK, DH5 Pulse Width

Low Channel 2402 MHz

Copyright 2000-2010 Agilent Technologies

Middle Channel 2441 MHz

enter 2.402 000 GHz

es BW 100 kHz

GFSK, DH5 Number of Pulses within a Specified Time

Low Channel 2402 MHz

#VBW 300 kHz

Sweep 15.8 s (601 pts)

Middle Channel 2441 MHz

High Channel 2480 MHz

Signal Track

π/4-DQPSK, DH1 Pulse Width

Low Channel 2402 MHz

Copyright 2000-2010 Agilent Technologies

Middle Channel 2441 MHz

$\pi/4$ -DQPSK, DH1 Number of Pulses within a Specified Time

Low Channel 2402 MHz Middle Channel 2441 MHz

$\pi/4$ -DQPSK, DH3 Pulse Width

Low Channel 2402 MHz

* Agilent Freq/Channel Center Freq 2.40200000 GHz #Atten 10 dB Start Freq 2.40200000 GHz Stop Freq 2.40200000 GHz **CF Step** 100.000000 kHz <u>Auto</u> Man Freq Offset 0.00000000 Hz £(f): f>50k Signal Track 2,402 000 GHz Span 0 Hz Sweep 8 ms (601 pts) Res BW 100 kHz #VBW 300 kHz

Copyright 2000-2010 Agilent Technologie

Middle Channel 2441 MHz

$\pi/4$ -DQPSK, DH3 Number of Pulses within a Specified Time

Low Channel 2402 MHz

LOW CHAINICI 2402 MITIZ

Middle Channel 2441 MHz

π/4-DQPSK, DH5 Pulse Width

Low Channel 2402 MHz

Middle Channel 2441 MHz

$\pi/4$ -DQPSK, DH5 Number of Pulses within a Specified Time

Low Channel 2402 MHz

Middle Channel 2441 MHz

8DPSK, DH1 Pulse Width

Low Channel 2402 MHz

* Agilent Freq/Channel 440 **µ**s 0.93 dB Center Freq 2.40200000 GHz Ref 21.6 dBm #Atten 10 dB Start Freq 2.40200000 GHz Stop Freq 2.40200000 GHz CF Step 100.000000 kHz Auto Man Freq Offset 0.00000000 Hz Signal Track f>50k Center 2.402 000 GHz Res BW 100 kHz Span 0 Hz Sweep 3 ms (601 pts) #VBW 300 kHz Copyright 2000-2010 Agilent Technologies

Middle Channel 2441 MHz

8DPSK, DH1 Number of Pulses within a Specified Time

Low Channel 2402 MHz

Middle Channel 2441 MHz

8DPSK, DH3 Pulse Width

Low Channel 2402 MHz

#VBW 300 kHz

Middle Channel 2441 MHz

.402 000 GHz

Copyright 2000-2010 Agilent Technologies

8DPSK, DH3 Number of Pulses within a Specified Time

Low Channel 2402 MHz

Sweep 3.16 s (601 pts)

Middle Channel 2441 MHz

8DPSK, DH5 Pulse Width

Low Channel 2402 MHz

Middle Channel 2441 MHz

8DPSK, DH5 Number of Pulses within a Specified Time

Low Channel 2402 MHz

🔆 Agilent Freq/Channel Center Freq 2.40200000 GHz Start Freq 2.40200000 GHz **Stop Freq** 2.40200000 GHz **CF Step** 100.000000 kHz <u>Auto</u> Man Freq Offset 0.000000000 Hz Signal Track

Middle Channel 2441 MHz

12 FCC §15.247(a)(1)(iii) & ISEDC RSS-247 §5.1(d) - Number of Hopping Channels

12.1 Applicable Standards

According to FCC §15.247(a) (1) (iii) and RSS-247 §5.1(4): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

12.2 Test Procedure

Span = the frequency band of operation

RBW < 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller

 $VBW \geq RBW$

Sweep = auto

Detector function = peak

Trace = max hold

12.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2018-02-26	1 year
-	RF cable	-	-	Each time ¹	N/A
-	20dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

12.4 Test Environmental Conditions

Temperature:	23 °C
Relative Humidity:	42 %
ATM Pressure:	102.5 KPa

The testing was performed by Chin Ming Lui on 2018-05-03 in RF site.

12.5 Test Results

Total 79 channels; please refer to the plots hereinafter.

GFSK40 Channels between 2400 to 2441.5 MHz

39 Channels between 2441.5 to 2483.5 MHz

$\pi/4$ -DQPSK

40 Channels between 2400 to 2441.5 MHz

39 Channels between 2441.5 to 2483.5 MHz

8DPSK

40 Channels between 2400 to 2441.5 MHz

39 Channels between 2441.5 to 2483.5 MHz

13 FCC §15.247(a) (1) & ISEDC RSS-247 §5.1(b) - Hopping Channel Separation

13.1 Applicable Standards

According to FCC §15.247(a) (1) and RSS-247 §5.1(2): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

13.2 Test Procedure

Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) $\approx 30\%$ of the channel spacing, adjust as necessary to best identify the center of each individual channel

Video (or Average) Bandwidth (VBW) ≥RBW Sweep = auto Detector function = peak Trace = max hold

13.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4440A	US45303156	2018-02-26	1 year
-	RF cable	-	-	Each time ¹	N/A
-	20dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing.

Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

13.4 Test Environmental Conditions

Temperature:	23 °C
Relative Humidity:	42 %
ATM Pressure:	102.5KPa

The testing was performed by Chin Ming Lui on 2018-05-02 in RF site.

13.5 Test Results

Channel	Frequency (MHz)	Channel Separation (kHz)	Limit > 2/3 20 dB OBW (kHz)
		GFSK	
Low	2402	1000	583.0011
Middle	2441	992	583.0311
High	2480	1000	580.9225
		π/4-DQPSK	
Low	2402	1000	779.5333
Middle	2441	1000	780.3333
High	2480	1000	780.0000
		8DPSK	
Low	2402	992	784.3333
Middle	2441	1000	785.0000
High	2480	1167	785.3333

Please refer to following plots.

GFSK

Low Channel 2402 MHz

Middle Channel 2441 MHz

High Channel 2480 MHz

$\pi/4$ -DQPSK

Low Channel 2402 MHz

Middle Channel 2441 MHz

High Channel 2480 MHz

8DPSK

Low Channel 2402 MHz

Middle Channel 2441 MHz

High Channel 2480 MHz

14 FCC §15.247(d) & ISEDC RSS-247 §5.5 - Spurious Emissions at Antenna Terminals

14.1 Applicable Standards

For FCC §15.247(d) in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

As per ISEDC RSS-247 §5.5, in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

14.2 Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

14.3 Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Interval
Agilent	Analyzer, Spectrum	E4446A	US44300386	2017-04-20	12 months
-	RF cable	-	-	Each time ¹	N/A
-	20dB attenuator	-	-	Each time ¹	N/A

Note¹: cable and attenuator included in the test set-up will be checked each time before testing. **Statement of Traceability: BACL Corp.** attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

14.4 Test Environmental Conditions

Temperature:	23° C
Relative Humidity:	42 %
ATM Pressure:	102.5 KPa

The testing was performed by Chin Ming Lui on 2017-11-27 in RF site.

14.5 Test Results

Please refer to following plots.

GFSK

Low Channel 30 MHz – 3 GHz

Middle Channel 30 MHz - 3 GHz

Middle Channel 3 GHz – 26 GHz

High Channel 30 MHz – 3 GHz

High Channel 3 GHz – 26 GHz

$\pi/4$ -DQPSK

Low Channel 30 MHz – 3 GHz

Low Channel 3 GHz – 26 GHz

Middle Channel 30 MHz – 3 GHz

Middle Channel 3 GHz – 26 GHz

High Channel 30 MHz – 3 GHz

High Channel 3 GHz – 26 GHz

8DPSK

Low Channel 30 MHz – 3 GHz

Low Channel 3 GHz – 26 GHz

Middle Channel 30 MHz – 3 GHz

Middle Channel 3 GHz – 26 GHz

High Channel 30 MHz – 3 GHz

High Channel 3 GHz – 26 GHz

Wi2Wi, Inc.	FCC ID: U9RWM828CC6, IC: 7089A-WM828CC6	
15 Appendix A – EUT Test Setup Photographs		
Please refer to the attachment		

16 Appendix B – EUT External Photogra	anhs
Please refer to the attachment	ириз

Wi2Wi, Inc. 17 Appendix C – EUT Internal	FCC ID: U9RWM828CC6, IC: 7089A-WM828CC
Please refer to the attachment	1 notographs
rease refer to the attachment	

18 Appendix D (Normative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This laboratory also meets A2LA R222

- Specific Requirements EPA ENERGY STAR Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 2rd day of October 2018.

President and CEO For the Accreditation Council Certificate Number 3297.02 Valid to September 30, 2020

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

--- END OF REPORT ---