Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2015 (Prof. Dr. M. Diehl) Mikroklausur 2 am 10.6.2015

Übun	gsgruppe: 1 Lukas Klar	2 Johanna Becker	3 Louis Findling	4 Stephan Christian
Name:		Matrikelı	nummer:	Punkte: /
rechn				e dürfen Extrapapier für Zwische unkt, falsche -1/3 Punkt, keine od
	$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, C =$			mit den Matrizen
	(a) $\lambda^2 + 2\lambda + 3$	(b) $\lambda^2 - 5\lambda - 2$	(c) $\lambda^2 - 4\lambda + 5$	$(d) \qquad \lambda^2 + 3\lambda - 10$
2.	2. Ein LTI-System wird durch die E/A-Differentialgleichung $2\ddot{y}+6\dot{y}+8y=27\ddot{u}$ beschrieben. Wie lautet das charakteristische Polynom $p_A(\lambda)$?			
	(a) $2\lambda^2 - 6\lambda - 8$	b)	(c) $\lambda^2 + 3\lambda + 4$	$(d) \qquad \lambda^2 - 6\lambda + 2$
3.	Bestimmen Sie die Polstellen des Systems, das durch folgende E/A-Differentialgleichung beschrieben wird: $3\ddot{y} - 15\dot{y} + 18y = 4\dot{u} - 5u$.			
	(a) (2,3)	(b) (6,9)	(c) $(-6, -9)$	(d) $(-2, -3)$
4.	Welches der folgenden vier Systeme beschreibt NICHT das gleiche Eingangs- Ausgangsverhalten wie $\ddot{y}+5y=u$?			
	(a)		(b) \square $10uy = 2u^2 - 2\ddot{y}u$	
		$\begin{bmatrix} 0 \\ 1 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$	$(\mathbf{d}) \dot{x} = \begin{bmatrix} 0 & 5 \\ -1 & 0 \end{bmatrix} x + \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$	$\begin{bmatrix} -2\\0 \end{bmatrix} u, y = \begin{bmatrix} 0 & \frac{1}{2} \end{bmatrix} x$
5.	Ein System hat die Sprungantwort $h(t) = 1 + e^{-t}$ (für $t \ge 0$, und $h(t) = 0$ sonst). Was ist seine Impulsantwort $g(t)$ (für $t \ge 0$)?			
	(a)		(c)	
6.	Welches der folgenden vier Systeme ist nicht BIBO stabil? Jedes System ist durch seine Sprungantwort $h(t)$ beschrieben.			
	(a)	(b) $(1+t)^{-2}$	(c)	
7.	Welche Sprungantwort $h(t)$ $(t \ge 0)$ hat das System $0.5\ddot{y} = u^2$?			
	(a)	(b) $2t^2e^{-t}$	(c) 2t ²	(d)t ²
8.	Welche Impulsantwort $g(t)$ $(t \ge 0)$ hat das System $T\dot{y} + y = u$ mit konstantem $T > 0$?			
	(a) $\frac{1}{T}e^{-t/T}$	(b)	(c) $1 - e^{-t/T}$	
9.	Welches der folgenden E/A-Systeme ist nicht BIBO stabil ?			
	(a) $\ddot{y} + \dot{y} + y = \ddot{u} + u$	(b)	(c)	$(\mathbf{d}) \qquad \dot{y} + y = \dot{u}$