

Aprendizagem 2023

Labs 6-7: Perceptron and Gradient Descent

Practical exercises

I. Perceptron

1. Considering the following linearly separable training data

	y 1	y 2	y 3	output
X ₁	0	0	0	-1
\mathbf{x}_2	0	2	1	+1
X 3	1	1	1	+1
X 4	1	-1	0	-1

Given the perceptron learning algorithm with a learning rate of 1 for simplicity, sign activation, and all weights initialized to one (including the bias).

- a) Considering y1 and y2, apply the algorithm until convergence. Draw the separation hyperplane.
- b) Considering all input variables, apply one epoch of the algorithm. Do weights change for an additional epoch?
- c) Identify the perceptron output for $\mathbf{x}_{new} = [0 \ 0 \ 1]^T$
- d) What happens if we replace the sign function by the step function?

$$\Theta\left(x\right) \; = \left\{ \begin{matrix} 1 & x \geq 0 \\ 0 & x < 0 \end{matrix} \right.$$

Specifically, how would you change the learning rate to get the same results?

- **2.** Show graphically, instantiating the parameters, that a perceptron:
 - a) can learn the following logical functions: NOT, AND and OR
 - b) cannot learn the logical XOR function for two inputs

II. Gradient descent learning

Considering the following training data

	У1	y 2	output
X 1	1	1	1
X 2	2	1	1
X 3	1	3	0
\mathbf{X}_4	3	3	0

3. Let us consider the following activation

$$\hat{z} = output(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-2\mathbf{w} \cdot \mathbf{x})}$$

and half sum of squared errors as the loss function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{N} (z_k - \hat{z}_k)^2 \quad \text{where } \hat{z}_k = \text{output}(\mathbf{x}_k, \mathbf{w})$$

- a) Determine the gradient descent learning rule for this unit.
- b) Compute the first gradient descent update assuming an initialization of all ones
- c) Compute the first stochastic gradient descent update assuming an initialization of all ones.

4. Let us consider the following function:

$$output(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$

and the cross-entropy loss function

$$E(\mathbf{w}) = -\log(p(\mathbf{z}|\mathbf{w})) = -\sum_{k=1}^{N} (z_k \log(\hat{z}_k) + (1 - z_k) \log(1 - \hat{z}_k))$$

- a) Determine the gradient descent learning rule for this unit
- b) Compute the first gradient descent update assuming an initialization of all ones
- c) Compute the first stochastic gradient descent update assuming an initialization of all ones

5. Let us consider the following function:

$$output(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})}$$

and half sum of squared errors as the loss function

- a) Determine the gradient descent learning rule for this unit.
- b) Compute the stochastic gradient descent update for input $\mathbf{x}_{new} = [1 \ 1]^T$, $z_{new} = 0$ initialized with $\mathbf{w} = [0 \ 1 \ 0]^T$ and learning rate $\eta = 2$
- **6.** Consider the sum squared and cross-entropy losses. Any stands out? What changes when one changes the loss function?