(součet celkem 1000 bodů)

Jméno a příjmení:

Podpis:

- 1. Množina všech řešení rovnice  $x+1-\sqrt{x+3}=0$  v oboru reálných čísel je
  - a)  $\{-1\}$

b) {1}

(30)

- 6

c) {2}

- d)  $\{-1,2\}$
- e)  $\{-2, 1\}$
- 2. Rovnice kružnice se středem S = [1, -2] a poloměrem r = 2 je
  - a)  $x^2 + 2x + y^2 4y + 1 = 0$
- b)  $x^2 + 2x + y^2 4y + 2 = 0$



- c)  $x^2 + 2x + y^2 4y + 3 = 0$
- d)  $x^2 2x + y^2 + 4y + 1 = 0$



- e)  $x^2 2x + y^2 + 4y + 3 = 0$
- 3. Vyjádřete y z rovnice  $x = \frac{3-y}{2+y}$ .

- b)  $y = \frac{3-2x}{x+1}$ d)  $y = \frac{3x-2}{x-1}$



- 4. Máme 24 lahví vody o objemu 0,75 litru. Kdyby voda byla v lahvích o objemu 2 litry, kolik lahví by bylo naplněno?
  - a) 6

b) 8

(30)- 6

c) 9

d) 10

- e) 12
- 5. Množina všech řešení nerovnice  $\left|\frac{2x-3}{4}\right| < 1$  je
  - a)  $(-\infty, \frac{7}{2})$

b)  $\left(-\frac{1}{2}, \frac{7}{2}\right)$  d)  $\left(\frac{1}{2}, \frac{7}{2}\right)$ 

(30)- 6

c)  $\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{7}{2}, \infty\right)$ e) (-1,7)

- 6. Mezi čísly a, b, c, d, e, f platí nerovnosti: a > e, b < f, a > b, d < c, b > d. Který z následujících vztahů může platit?
  - a) e = f

b) a = d

(40)- 8

c) d = f

vztahů.

- d) Může platit kterýkoli z předchozích vztahů.
- e) Nemůže platit ani jeden z předchozích
- 7. Obor hodnot funkce  $f: y = 3\cos(2x) + 1, x \in \mathbf{R}$ , je
  - a)  $\langle -5, 7 \rangle$

b)  $\langle -2, 4 \rangle$ 

(40)- 8

c) (-1, 1)

d)  $\langle -1, 3 \rangle$ 

- e)  $\langle 0, 2 \rangle$
- 8. V trojúhelníku ABC známe úhly  $\gamma = 90^{\circ}$  a  $\beta = 25^{\circ}$  a délku strany c = |AB| = 4. Délka strany b = |AC|jе
  - a)  $0.25 \sin 25^{\circ}$

b)  $0.25\cos 25^{\circ}$ 

(40)

c)  $4\sin 25^{\circ}$ 

- d)  $4\cos 25^{\circ}$
- e) žádná z předchozích odpovědí není správná

- 8

- 9. Množina všech řešení nerovnice (x+1)(3x-2) > 0 je
  - a) (-1, 2/3)

b) (-2/3,1)



c)  $(-\infty, -1) \cup (2/3, \infty)$ 

d)  $(-\infty, -2/3) \cup (1, \infty)$ 

- 8

- e) žádná z předchozích odpovědí není správná
- 10. Množina všech řešení nerovnice  $\log_3(2x-3)<2$ je
  - a)  $(-\infty, 11/2)$

b) (3/2, 11/2)

(40)

c) (3/2,6)

d)  $(-\infty, 6)$ 

| l1. | Je dána funkce $f(x) = x^2 - x$ . Pak $f(t+1) + f(t-1) =$                                                                                                                                                |                                                                                                                                                        |            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | a) $2t^2 + 2$                                                                                                                                                                                            | b) $2t^2 - 2t$                                                                                                                                         | (50)       |
|     | c) $2t^2 - 2t + 2$<br>e) $t^2 - 2t$                                                                                                                                                                      | d) $t^2 - 2t + 2$                                                                                                                                      | - 10       |
| 12. | Určete všechny hodnoty $a$ , pro které jsou přímky $p: ax - y + 2 = 0$ a $q: 6x + (a - 5)y - 7 = 0$ kolmé.                                                                                               |                                                                                                                                                        |            |
|     | a) $a = -1$                                                                                                                                                                                              | b) $a \in \{-1, 1\}$                                                                                                                                   | (50)       |
|     | c) $a \in \{-2, -3\}$<br>e) $a \in \{2, 3\}$                                                                                                                                                             | d) $a = 2$                                                                                                                                             | - 10       |
| 13. | Odečteme-li totéž číslo od čísel $8, -8, 40,$ dostaneme první tři členy geometrické posloupnosti. Určete pátý člen této posloupnosti.                                                                    |                                                                                                                                                        |            |
|     | a) 248                                                                                                                                                                                                   | b) 324                                                                                                                                                 | (50)       |
|     | c) -456<br>e) -972                                                                                                                                                                                       | d) 639                                                                                                                                                 | - 10       |
|     | Ve třídě je 12 chlapců a 15 dívek. Kolika způsoby z nich můžeme vybrat trojici složenou z jednoho chlapce a dvou dívek? (Na pořadí výběru nezáleží.)                                                     |                                                                                                                                                        |            |
|     | a) $12 \cdot 15^2$                                                                                                                                                                                       | b) 12 · 15 · 14                                                                                                                                        | $\bigcirc$ |
|     | c) $12 \cdot {15 \choose 2}$                                                                                                                                                                             | d) $\binom{12}{1} + \binom{15}{2}$                                                                                                                     | - 10       |
|     | e) $\binom{27}{3}$                                                                                                                                                                                       |                                                                                                                                                        |            |
|     | Koule má poloměr $R$ a válec má poloměr podstavy $r=3R$ . Jaká je výška válce, je-li jeho objem rover jedné čtvtině objemu koule?                                                                        |                                                                                                                                                        |            |
|     | a) $9R/4$                                                                                                                                                                                                | b) $9/(4R)$                                                                                                                                            | (50)       |
|     | c) $27/(4R)$<br>e) $R/27$                                                                                                                                                                                | d) $2R/27$                                                                                                                                             | - 10       |
|     | Máše a Dáše je dohromady 52 let. Máše je třikrát tolik let, jako bylo Dáše, když bylo Máše dvakrát tolik jako je Dáše dnes. Kolik let je Máše?                                                           |                                                                                                                                                        |            |
|     | a) 34                                                                                                                                                                                                    | b) 36                                                                                                                                                  | (80)       |
|     | c) 38<br>e) 42                                                                                                                                                                                           | d) 40                                                                                                                                                  | - 16       |
|     | Řešením rovnice $\cos^2 x - 5\sin x + 5 = 0$ v oboru reálných čísel jsou právě ta $x \in \mathbf{R}$ , pro která platí ( $k$ je celé číslo)                                                              |                                                                                                                                                        |            |
|     | a) $x = \frac{\pi}{6} + 2k\pi$                                                                                                                                                                           | b) $x = \frac{\pi}{4} + 2k\pi$                                                                                                                         | (80)       |
|     | c) $x = \frac{\pi}{3} + 2k\pi$                                                                                                                                                                           | b) $x = \frac{\pi}{4} + 2k\pi$<br>d) $x = \frac{\pi}{2} + 2k\pi$                                                                                       | - 16       |
|     | e) $x = \pi + k\pi$                                                                                                                                                                                      | 2                                                                                                                                                      |            |
|     | V krabici jsou předměty různých vlastností. Víme, že všechny kovové předměty jsou šedé a všechny šede předměty mají tvar válce. Jaký závěr ohledně předmětů v krabici z těchto informací můžeme vyvodit? |                                                                                                                                                        |            |
|     | a) Všechny kovové předměty mají tvar válce.                                                                                                                                                              | b) Všechny válce jsou kovové.                                                                                                                          | (80)       |
|     | <ul> <li>c) Žádný kovový předmět nemá tvar válce.</li> <li>e) Žádné z předchozích tvrzení z uvedených předpokladů neplyne.</li> </ul>                                                                    | d) Žádný válec není kovový.                                                                                                                            | - 16       |
| 19. | Operace $\ominus$ je definována jako $a\ominus b=ab+3b.$ Určete $x,$ víme-li, že $2\ominus(x\ominus 3)=30.$                                                                                              |                                                                                                                                                        |            |
|     | a) -2                                                                                                                                                                                                    | b) -1                                                                                                                                                  | (80)       |
|     | c) 0<br>e) 2                                                                                                                                                                                             | d) 1                                                                                                                                                   | - 16       |
| 20. | počtu melounů. Melouny v prvním stánku maj                                                                                                                                                               | otlivých stáncích je po řadě 25, 20 a 55 procent cel<br>í průměrnou hmotnost 5 kg. Průměrná hmotnost<br>nů ve druhém a třetím stánku jsou v poměru 3 : | t všecl    |

je průměrná hmotnost melounů ve druhém stánku?

a) 3,9 kg

b) 4,2 kg

c) 4,5 kg

e) 5,1 kg

d) 4,8 kg