Titre

Access the slides

https://shorturl.at/flHOY

Mesh Deformation

Introduction to the problem

Mesh Deformation

Step by step animation of a triangle mesh bending

Mesh Deformation

Highlight of bad triangle quality

2 solutions

Global remeshing

Local remeshing

Global remeshing

Bad mesh -> good mesh

Local remeshing

Bad mesh -> find bad elements (highlight on image) -> good mesh

Dynamic Local Remeshing for Elastoplastic Simulation

Martin Wicke Daniel Ritchie Bryan M. Klingner* Sebastian Burke Jonathan R. Shewchuk James F. O'Brien University of California, Berkeley and *Graphwalking Associates

Dynamic Local Remeshing for Elastoplastic Simulation

- Local remeshing solution
- Hill climbing method
- Iterative passes

2D vs 3D meshes

2D vs 3D meshes

Hill climbing

Hill climbing

Hill climbing - Local optimum

Quality measure

Image of highlighted bad elements on mesh from slide before

$$6\sqrt{2}Vrac{\ell_{harm}}{\ell_{rms}^4}$$

Quality measure

Image of tetrahedron to highlight lengths

$$Z_{harm} = \frac{n}{\sum_{i=1}^{n} \frac{1}{e_i}}, e \in E$$

Quality measure

Image of tetrahedron to highlight lengths

$$\mathcal{E}_{rms} = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n}}, e \in E$$

Iterative passes

Flowchart going bad elements -> topo pass -> contra pass -> insert pass -> smoothing pass

Topological pass

Show different types of flips

Contraction pass

Show tet and contract each

Insertion pass

Flowchart dig hole -> add point -> fill cavity

Smoothing pass

Discuss smoothing

World and material space

My Implementation

- 2D and 3D
- World mesh

$$6\sqrt{2}Vrac{\ell_{harm}}{\ell_{rms}^4}$$

$$6\sqrt{2}V \frac{\ell_{harm}}{\ell_{rms}^4} \longrightarrow 4\sqrt{3}A \frac{1}{\sum_{i=1}^3 l_i^2}$$

$$4\sqrt{3}A \frac{1}{\sum_{i=1}^{3} l_i^2}$$

Image of triangle losing quality

Topological pass

Show edge flip

Contraction pass

Show triangle and contract each edge

Insertion pass

Flowchart dig hole -> add point -> fill cavity

Smoothing pass

Show point going to center of hexagon

Dirichlet energy

$$E_{dirichlet}(t) = ||\mathcal{J}_t||^2 + ||\mathcal{J}_t^{-1}||^2 - 6$$

Show tet losing quality

Topological pass

Edge and face removal algorithms

Insertion pass

Digging cavity

Explain galaxy approach (center of chebyshev)

Insertion pass

Filling cavity and second topological pass

Smoothing pass

Reuse center of chebyshev

World and material space

Flowchart illustrating remeshing validity check with material space

Experiments

- 2D
 - Stretch
 - Compress
- 3D
 - Spin
 - Stretch

Experiments

- 2D
 - Stretch
 - Compress
- 3D
 - o Spin
 - Stretch

Animation of experiment

2D Compress

Animation of experiment

Results

Experiments

- 2D
 - Stretch
 - Compress
 - Find optimal quality threshold
- 3D
 - o Spin
 - Stretch

3D Spin

Show animation of experiment

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

3D Spin

- Timestep angle
- Severity of deformation
- World mesh influence

3D Spin

- Timestep angle
- Severity of deformation
- World mesh influence

3D Spin

- Timestep angle
- Severity of deformation
- World mesh influence

3D Spin

- Timestep angle
- Severity of deformation
- World mesh influence

3D Spin

- Timestep angle
- Severity of deformation
- World mesh influence

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

Rotation = 360°

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

No world mesh With world mesh Minimal quality

- Optimal quality
- Timestep angle
- Severity of deformation
- World mesh influence

Show animation of experiment

- Quality experiment
- Stretch experiment
- Length experiment

3D Stretch

Quality experiment

- Stretch experiment
- Length experiment

- Quality experiment
- Stretch experiment
- Length experiment

- Quality experiment
- Stretch experiment
- Length experiment

- Quality experiment
- Stretch experiment
- Length experiment

Limitations

- Performances
- Bigger deformations

Conclusion

- Local remeshing
- Hill climbing method with successive passes
- Material and world spaces
- Experimented through stretching, spinning (and compression)