Lecture 23

Aakash Jog

Thursday $15^{\rm th}$ January, 2015

Contents

1	Gravitation			2
	1.1	Kepler's Second Law		2
	1.2	Newton's Law of Gravitation		2

1 Gravitation

1.1 Kepler's Second Law

$$d\overrightarrow{A} = \frac{1}{2}\overrightarrow{r} \times d\overrightarrow{r}$$

$$\therefore \frac{d\overrightarrow{A}}{dt} = \frac{1}{2}\overrightarrow{r} \times \frac{d\overrightarrow{r}}{dt}$$

$$= \frac{1}{2}\overrightarrow{r} \times \overrightarrow{v}$$

$$= \frac{\overrightarrow{L}}{2m}$$

1.2 Newton's Law of Gravitation

$$F = G \frac{m_1 m_2}{r^2}$$

$$\overrightarrow{F} = \frac{c}{r^2} \hat{r}$$

$$= \frac{c}{x^2 + y^2 + z^2} \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right)$$

$$= \frac{c}{(x^2 + y^2 + z^2)^{3/2}} (x, y, z)$$

$$\therefore \operatorname{curl} \left(\overrightarrow{F} \right) = 0$$

Therefore, \overrightarrow{F} is conservative.

$$\overrightarrow{F} = -\overrightarrow{\nabla}U$$

$$\frac{\partial U}{\partial x} = -\frac{cx}{(x^2 + y^2 + z^2)^{3/2}}$$

$$\frac{\partial U}{\partial y} = -\frac{cy}{(x^2 + y^2 + z^2)^{3/2}}$$

$$\frac{\partial U}{\partial z} = -\frac{cz}{(x^2 + y^2 + z^2)^{3/2}}$$

Therefore,

$$U = \frac{c}{r} + d$$

Considering the potential to be zero at $r = \infty$,

$$U = \frac{c}{r}$$
$$= -G\frac{m_1 m_2}{r}$$