Kokkos Tutorial

H. Carter Edwards ¹, Christian R. Trott ¹, Jeff Amelang ²

¹Sandia National Laboratories

 2 Google

Supercomputing'16, November 13, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2016-8015 C

SOFTWARE FOR LAB

Remote Desktop Software:

- Download NoMachine now for best performance from www.nomachine.com/download
- Alternatively you may use a VNC client or the provided browser-based VNC option

SSH Access Software (optional):

- PuTTy for Windows can be downloaded from www.putty.org
- Alternatively you may use a provided browser-based SSH option

CONNECTION INSTRUCTIONS

- Navigate to nvlabs.qwiklab.com
- Login or create a new account
- Select the Instructor-Led Hands-on Labs Class
- Find the lab called Kokkos, ..., select it, click Select, and finally click Start
- After a short wait, lab instance Connection information will be shown
- Please ask Lab Assistants for help!

Kokkos Tutorial

H. Carter Edwards ¹, Christian R. Trott ¹, Jeff Amelang ²

¹Sandia National Laboratories

²Google

Supercomputing'16, November 13, 2016

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2016-8015 C

Knowledge of C++: class constructors, member variables, member functions, member operators, template arguments

Using NVIDIA's NVLABS

- Kokkos pre installed in \${HOME}/kokkos
- Exercises pre installed in \${HOME}/SC2016

Using your own \${HOME}

- ► Git
- ▶ GCC 4.8.4 (or newer) *OR* Intel 14 (or newer) *OR* Clang 3.5.2 (or newer)
- ► CUDA nvcc 7.5 (or newer) AND NVIDIA compute capability 3.0 (or newer)
- clone github.com/kokkos/kokkos into \${HOME}/kokkos
- clone github.com/kokkos/kokkos-tutorials/SC2016 into \${HOME}/SC2016 makefiles look for \${HOME}/kokkos

Understand Kokkos Programming Model Abstractions

- What, how and why of performance portability
- Productivity and hope for future-proofing

Part One:

- Simple data parallel computations
- Deciding where code is run and where data is placed

Part Two:

- Managing data access pattens for performance portability
- Thread safety and thread scalability
- Thread-teams for maximizing parallelism

- ► High performance computers are increasingly **heterogenous** *MPI-only is no longer sufficient*.
- For portability: OpenMP, OpenACC, ... or Kokkos.
- Only Kokkos obtains performant memory access patterns via architecture-aware arrays and work mapping.
 i.e., not just portable, performance portable.
- With Kokkos, simple things stay simple (parallel-for, etc.). i.e., it's no more difficult than OpenMP.
- Advanced performance-optimizing patterns are simpler with Kokkos than with native versions.
 - i.e., you're not missing out on advanced features.

Target audience:

- Wants to use GPUs (and perhaps other accelerators)
- Is familiar with data parallelism
- Has taken "cuda programming 101"
- Familiar with NVIDIA GPU architecture at a high level Aware that coalesced memory access is important
- Some familiarity with OpenMP
- Wants CUDA to be easier
- Would like portability, if it doesn't hurt performance

Target machine:

Important Point: Performance Portability

Important Point

There's a difference between *portability* and *performance portability*.

Example: implementations may target particular architectures and may not be *thread scalable*.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Important Point

There's a difference between *portability* and *performance portability*.

Example: implementations may target particular architectures and may not be *thread scalable*.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Goal: write one implementation which:

- compiles and runs on multiple architectures,
- obtains performant memory access patterns across architectures,
- can leverage architecture-specific features where possible.

Important Point

There's a difference between *portability* and *performance portability*.

Example: implementations may target particular architectures and may not be *thread scalable*.

(e.g., locks on CPU won't scale to 100,000 threads on GPU)

Goal: write one implementation which:

- compiles and runs on multiple architectures,
- obtains performant memory access patterns across architectures,
- can leverage architecture-specific features where possible.

Kokkos: performance portability across manycore architectures.

Concepts for threaded data parallelism

Learning objectives:

- ► Terminology of pattern, policy, and body.
- The data layout problem.

Concepts: Patterns, Policies, and Bodies

```
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

Terminology:

- ▶ **Pattern**: structure of the computations for, reduction, scan, task-graph, ...
- ► Execution Policy: how computations are executed static scheduling, dynamic scheduling, thread teams, ...
- Computational Body: code which performs each unit of work; e.g., the loop body
- ⇒ The **pattern** and **policy** drive the computational **body**.

What if we want to **thread** the loop?

```
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

What if we want to **thread** the loop?

```
#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

(Change the execution policy from "serial" to "parallel.")

What if we want to **thread** the loop?

```
#pragma omp parallel for
for (element = 0; element < numElements; ++element) {
  total = 0;
  for (qp = 0; qp < numQPs; ++qp) {
    total += dot(left[element][qp], right[element][qp]);
  }
  elementValues[element] = total;
}</pre>
```

(Change the execution policy from "serial" to "parallel.")

OpenMP is simple for parallelizing loops on multi-core CPUs, but what if we then want to do this on **other architectures**?

Intel MIC and NVIDIA GPU and AMD Fusion and ...

Option 1: OpenMP 4.0

```
#pragma omp target data map(...)
#pragma omp teams num_teams(...) num_threads(...) private(...)
#pragma omp distribute

for (element = 0; element < numElements; ++element) {
   total = 0

#pragma omp parallel for
   for (qp = 0; qp < numQPs; ++qp)
        total += dot(left[element][qp], right[element][qp]);
   elementValues[element] = total;
}</pre>
```

Option 1: OpenMP 4.0

```
#pragma omp target data map(...)
#pragma omp teams num_teams(...) num_threads(...)
#pragma omp distribute

for (element = 0; element < numElements; ++element) {
   total = 0

#pragma omp parallel for
   for (qp = 0; qp < numQPs; ++qp)
        total += dot(left[element][qp], right[element][qp]);
   elementValues[element] = total;
}</pre>
```

Option 2: OpenACC

```
#pragma acc parallel copy(...) num_gangs(...) vector_length(...)
#pragma acc loop gang vector

for (element = 0; element < numElements; ++element) {
   total = 0;
   for (qp = 0; qp < numQPs; ++qp)
      total += dot(left[element][qp], right[element][qp]);
   elementValues[element] = total;
}</pre>
```

A standard thread parallel programming model may give you portable parallel execution if it is supported on the target architecture.

But what about performance?

A standard thread parallel programming model may give you portable parallel execution if it is supported on the target architecture.

But what about performance?

Performance depends upon the computation's **memory access pattern**.

Problem: memory access pattern

Memory access pattern problem: CPU data layout reduces GPU performance by more than 10X.

Memory access pattern problem: CPU data layout reduces GPU performance by more than 10X.

Important Point

For performance, the memory access pattern *must* depend on the architecture.

How does Kokkos address performance portability?

Kokkos is a *productive*, *portable*, *performant*, shared-memory programming model.

- ▶ is a C++ **library**, not a new language or language extension.
- supports clear, concise, thread-scalable parallel patterns.
- ▶ lets you write algorithms once and run on **many architectures** e.g. multi-core CPU, Nvidia GPGPU, Xeon Phi, ...
- minimizes the amount of architecture-specific implementation details users must know.
- solves the data layout problem by using multi-dimensional arrays with architecture-dependent layouts

Data parallel patterns

Learning objectives:

- ▶ How computational bodies are passed to the Kokkos runtime.
- How work is mapped to cores.
- The difference between parallel_for and parallel_reduce.
- Start parallelizing a simple example.

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
  atomForces[atomIndex] = calculateForce(...data...);
}</pre>
```

Kokkos maps work to cores

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
  atomForces[atomIndex] = calculateForce(...data...);
}</pre>
```

Kokkos maps work to cores

- each iteration of a computational body is a unit of work.
- an iteration index identifies a particular unit of work.
- an iteration range identifies a total amount of work.

Data parallel patterns and work

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
  atomForces[atomIndex] = calculateForce(...data...);
}</pre>
```

Kokkos maps work to cores

- each iteration of a computational body is a unit of work.
- an iteration index identifies a particular unit of work.
- an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an **iteration range** and **computational body** (kernel) to Kokkos, Kokkos maps iteration indices to cores and then runs the computational body on those cores.

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As **functors** or *function objects*, a common pattern in C++.

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As **functors** or *function objects*, a common pattern in C++.

Quick review, a **functor** is a function with data. Example:

```
struct ParallelFunctor {
    ...
    void operator()( a work assignment ) const {
        /* ... computational body ... */
    ...
};
```

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

```
ParallelFunctor functor;
Kokkos::parallel_for(numberOfIterations, functor);
```

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

```
ParallelFunctor functor;
Kokkos::parallel_for(numberOfIterations, functor);
```

and work items are assigned to functors one-by-one:

```
struct Functor {
  void operator()(const size_t index) const {...}
}
```

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

```
ParallelFunctor functor;
Kokkos::parallel_for(numberOfIterations, functor);
```

and work items are assigned to functors one-by-one:

```
struct Functor {
  void operator()(const size_t index) const {...}
}
```

Warning: concurrency and order

Concurrency and ordering of parallel iterations is *not* guaranteed by the Kokkos runtime.

How is data passed to computational bodies?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
   atomForces[atomIndex] = calculateForce(...data...);
}

struct AtomForceFunctor {
   ...
   void operator()(const size_t atomIndex) const {
      atomForces[atomIndex] = calculateForce(...data...);
   }
   ...
}</pre>
```

How is data passed to computational bodies?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex) {
   atomForces[atomIndex] = calculateForce(...data...);
}

struct AtomForceFunctor {
   ...
   void operator()(const size_t atomIndex) const {
     atomForces[atomIndex] = calculateForce(...data...);
   }
   ...
}</pre>
```

How does the body access the data?

Important concept

A parallel functor body must have access to all the data it needs through the functor's **data members**.

Using Kokkos for data parallel patterns (5)

Putting it all together: the complete functor:

```
struct AtomForceFunctor {
   ForceType _atomForces;
   AtomDataType _atomData;
   void operator()(const size_t atomIndex) const {
    _atomForces[atomIndex] = calculateForce(_atomData);
   }
}
```

Putting it all together: the complete functor:

```
struct AtomForceFunctor {
  ForceType _atomForces;
  AtomDataType _atomData;
  void operator()(const size_t atomIndex) const {
    _atomForces[atomIndex] = calculateForce(_atomData);
  }
}
```

Q/ How would we reproduce serial execution with this functor?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
   atomForces[atomIndex] = calculateForce(data);
}</pre>
```

Putting it all together: the complete functor:

```
struct AtomForceFunctor {
   ForceType _atomForces;
   AtomDataType _atomData;
   void operator()(const size_t atomIndex) const {
     _atomForces[atomIndex] = calculateForce(_atomData);
   }
}
```

Q/ How would we reproduce serial execution with this functor?

```
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
   atomForces[atomIndex] = calculateForce(data);
}</pre>
```

```
AtomForceFunctor functor(atomForces, data);
for (atomIndex = 0; atomIndex < numberOfAtoms; ++atomIndex){
  functor(atomIndex);
}</pre>
```

The complete picture (using functors):

1. Defining the functor (operator+data):

```
struct AtomForceFunctor {
   ForceType _atomForces;
   AtomDataType _atomData;

AtomForceFunctor(atomForces, data) :
   _atomForces(atomForces) _atomData(data) {}

void operator()(const size_t atomIndex) const {
   _atomForces[atomIndex] = calculateForce(_atomData);
   }
}
```

2. Executing in parallel with Kokkos pattern:

```
AtomForceFunctor functor(atomForces, data);
Kokkos::parallel_for(numberOfAtoms, functor);
```

Using Kokkos for data parallel patterns (7)

Functors are verbose \Rightarrow C++11 Lambdas are concise

```
atomForces already exists
data already exists
Kokkos::parallel_for(numberOfAtoms,
    [=] (const size_t atomIndex) {
    atomForces[atomIndex] = calculateForce(data);
}
);
```

Using Kokkos for data parallel patterns (7)

Functors are verbose \Rightarrow C++11 Lambdas are concise

```
atomForces already exists
data already exists
Kokkos::parallel_for(numberOfAtoms,
    [=] (const size_t atomIndex) {
    atomForces[atomIndex] = calculateForce(data);
}
);
```

A lambda is not *magic*, it is the compiler **auto-generating** a **functor** for you.

Functors are verbose \Rightarrow C++11 Lambdas are concise

```
atomForces already exists
data already exists
Kokkos::parallel_for(numberOfAtoms,
    [=] (const size_t atomIndex) {
    atomForces[atomIndex] = calculateForce(data);
}
);
```

A lambda is not *magic*, it is the compiler **auto-generating** a **functor** for you.

Warning: Lambda capture and C++ containers

For portability (e.g., to GPU) a lambda must capture by value [=]. Don't capture containers (e.g., std::vector) by value because this copies the container's entire contents.

How does this compare to OpenMP?

```
for (size_t i = 0; i < N; ++i) {
    /* loop body */
}
```

```
#pragma omp parallel for
for (size_t i = 0; i < N; ++i) {
   /* loop body */
}</pre>
```

```
parallel_for(N, [=] (const size_t i) {
  /* loop body */
});
```

Important concept

Simple Kokkos usage is **no more conceptually difficult** than OpenMP, the annotations just go in different places.

$$y = \int_{lower}^{upper} function(x) dx$$

$$y = \int_{lower}^{upper} function(x) dx$$


```
double totalIntegral = 0;
for (size_t i = 0; i < numberOfIntervals; ++i) {
  const double x =
    lower + (i/numberOfIntervals) * (upper - lower);
  const double thisIntervalsContribution = function(x);
  totalIntegral += thisIntervalsContribution;
}
totalIntegral *= dx;</pre>
```

$$y = \int_{lower}^{upper} function(x) dx$$


```
double totalIntegral = 0;
for (size_t i = 0; i < numberOfIntervals; ++i) {
  const double x =
    lower + (i/numberOfIntervals) * (upper - lower);
  const double thisIntervalsContribution = function(x);
  totalIntegral += thisIntervalsContribution;
}
totalIntegral *= dx;</pre>
```

How would we parallelize it?

$$y = \int_{lower}^{upper} function(x) dx$$

How would we parallelize it?

An (incorrect) attempt:

```
double totalIntegral = 0;
Kokkos::parallel_for(numberOfIntervals,
   [=] (const size_t index) {
   const double x =
    lower + (index/numberOfIntervals) * (upper - lower);
   totalIntegral += function(x);},
  );
totalIntegral *= dx;
```

First problem: compiler error; cannot increment totalIntegral (lambdas capture by value and are treated as const!)

An (incorrect) solution to the (incorrect) attempt:

```
double totalIntegral = 0;
double * totalIntegralPointer = &totalIntegral;
Kokkos::parallel_for(numberOfIntervals,
   [=] (const size_t index) {
    const double x =
       lower + (index/numberOfIntervals) * (upper - lower);
   *totalIntegralPointer += function(x);},
   );
totalIntegral *= dx;
```

An (incorrect) solution to the (incorrect) attempt:

```
double totalIntegral = 0;
double * totalIntegralPointer = &totalIntegral;
Kokkos::parallel_for(numberOfIntervals,
   [=] (const size_t index) {
    const double x =
       lower + (index/numberOfIntervals) * (upper - lower);
    *totalIntegralPointer += function(x);},
   );
totalIntegral *= dx;
```

Second problem: race condition

step	thread 0	thread 1
0	load	
1	increment	load
2	write	increment
3		write

Scalar integration (3)

Root problem: we're using the **wrong pattern**, *for* instead of *reduction*

Scalar integration (3)

Root problem: we're using the **wrong pattern**, *for* instead of *reduction*

Important concept: Reduction

Reductions combine the results contributed by parallel work.

Root problem: we're using the **wrong pattern**, *for* instead of *reduction*

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with **OpenMP**?

```
double finalReducedValue = 0;
#pragma omp parallel for reduction(+:finalReducedValue)
for (size_t i = 0; i < N; ++i) {
  finalReducedValue += ...
}</pre>
```

Root problem: we're using the **wrong pattern**, for instead of reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

```
How would we do this with OpenMP?
double finalReducedValue = 0;
#pragma omp parallel for reduction(+:finalReducedValue)
for (size_t i = 0; i < N; ++i) {
   finalReducedValue += ...
}</pre>
```

How will we do this with **Kokkos**?

```
double finalReducedValue = 0;
parallel_reduce(N, functor, finalReducedValue);
```

Example: Scalar integration

```
double totalIntegral = 0;
#pragma omp parallel for reduction(+:totalIntegral)
for (size_t i = 0; i < numberOfIntervals; ++i) {
   totalIntegral += function(...);
}</pre>
```

```
double totalIntegral = 0;
parallel_reduce(numberOfIntervals,
   [=] (const size_t i, double & valueToUpdate) {
    valueToUpdate += function(...);
},
totalIntegral);
```

- ► The operator takes **two arguments**: a work index and a value to update.
- ► The second argument is a **thread-private value** that is made and used by Kokkos; it is not the final reduced value.

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Scalar integration (5)

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = $\alpha + \frac{\beta * N}{P}$

- $ightharpoonup \alpha = dispatch overhead$
- $\triangleright \beta = time for a unit of work$
- N = number of units of work
- ightharpoonup P = available concurrency

Warning: Parallelism is NOT free

Dispatching (launching) parallel work has non-negligible cost.

Simplistic data-parallel performance model: Time = $\alpha + \frac{\beta * N}{P}$

- $ightharpoonup \alpha = {\sf dispatch overhead}$
- $\triangleright \beta = time for a unit of work$
- N = number of units of work
- ightharpoonup P = available concurrency

Speedup =
$$P \div \left(1 + \frac{\alpha * P}{\beta * N}\right)$$

- ▶ Should have $\alpha * P \ll \beta * N$
- ightharpoonup All runtimes strive to minimize launch overhead lpha
- Find more parallelism to increase N
- ▶ Merge (fuse) parallel operations to increase β

Scalar integration (6)

Results: illustrates simple speedup model = $P \div \left(1 + \frac{\alpha * P}{\beta * N}\right)$

Kokkos speedup over serial: Scalar Integration

Exercise: Inner product $\langle y, A * x \rangle$

Details:

- \triangleright y is Nx1, A is NxM, x is Mx1
- ▶ We'll use this exercise throughout the tutorial

The **first step** in using Kokkos is to include, initialize, and finalize:

```
#include <Kokkos_Core.hpp>
int main(int argc, char** argv) {
   /* ... do any necessary setup (e.g., initialize MPI) ... */
   Kokkos::initialize(argc, argv);
   /* ... do computations ... */
   Kokkos::finalize();
   return 0;
}
```

(Optional) Command-line arguments:

kokkos-threads=INT	total number of threads
kokkos-threads=INI	(or threads within NUMA region)
kokkos-numa=INT	number of NUMA regions
kokkos-device=INT	device (GPU) ID to use

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product $\langle y, A * x \rangle$

Details:

Location: ~/SC2016/Exercises/01/

- ► Look for comments labeled with "EXERCISE"
- Need to include, initialize, and finalize Kokkos library
- Parallelize loops with parallel_for or parallel_reduce
- Use lambdas instead of functors for computational bodies.
- For now, this will only use the CPU.

Compiling for CPU

```
cd ~/SC2016/Exercises/01/Begin
# gcc using OpenMP (default) and Serial back-ends
make -j [KOKKOS_DEVICES=OpenMP, Serial]
```

Running on CPU with OpenMP back-end

```
# Set OpenMP affinity
export OMP_NUM_THREADS=8
export GOMP_CPU_AFFINITY=0-8
# Print example command line options:
./01_Exercise.host -h
# Run with defaults on CPU
./01_Exercise.host
# Run larger problem
./01_Exercise.host -S 26
```

Things to try:

- Vary number of threads
- Vary problem size
- ▶ Vary number of rows (-N ...)

Advanced features we haven't covered

- Customized reduction type and operator
- Exclusive and inclusive prefix scan with the parallel_scan pattern.
- Using tag dispatch interface to allow non-trivial functors to have multiple "operator()" functions.
- ▶ **NEW**: Directed acyclic graph (DAG) of tasks pattern.
- Concurrently executing parallel kernels on CPU and GPU (experimental).
- ▶ Hierarchical parallelism with **team policies**, covered later.

- ► **Simple** usage is similar to OpenMP, advanced features are also straightforward
- Three common data-parallel patterns are parallel_for, parallel_reduce, and parallel_scan.
- A parallel computation is characterized by its pattern, policy, and body.
- User provides computational bodies as functors or lambdas which handle a single work item.

Views

Learning objectives:

- ▶ Motivation behind the View abstraction.
- ► Key View concepts and template parameters.
- ► The View life cycle.

Example: running daxpy on the GPU:

```
Lambda
```

```
double * x = new double[N]; // also y
parallel_for(N, [=] (const size_t i) {
   y[i] = a * x[i] + y[i];
});
```

```
Functor
```

```
struct Functor {
  double *_x, *_y, a;
  void operator()(const size_t i) {
    _y[i] = _a * _x[i] + _y[i];
  }
};
```

Example: running daxpy on the GPU:

```
double * x = new double[N]; // also y
parallel_for(N, [=] (const size_t i) {
   y[i] = a * x[i] + y[i];
 }):
```

```
struct Functor {
 double *_x, *_y, a;
 void operator()(const size_t i) {
   _y[i] = _a * _x[i] + _y[i];
```

Problem: x and y reside in CPU memory.

Example: running daxpy on the GPU:

```
double * x = new double[N]; // also y
parallel_for(N, [=] (const size_t i) {
   y[i] = a * x[i] + y[i];
 }):
```

```
struct Functor {
 double *_x, *_y, a;
 void operator()(const size_t i) {
   _y[i] = _a * _x[i] + _y[i];
```

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays) which can be communicated to an accelerator (GPU).

⇒ Views

View abstraction

- ► A *lightweight* C++ class with a pointer to array data and a little meta-data,
- ▶ that is *templated* on the data type (and other things).

High-level example of Views for daxpy using lambda:

```
View < double *, ...> x(...), y(...);
...populate x, y...

parallel_for(N, [=] (const size_t i) {
    // Views x and y are captured by value (copy)
    y(i) = a * x(i) + y(i);
});
```

View abstraction

- ► A *lightweight* C++ class with a pointer to array data and a little meta-data,
- ▶ that is *templated* on the data type (and other things).

High-level example of Views for daxpy using lambda:

```
View < double *, ...> x(...), y(...);
...populate x, y...

parallel_for(N, [=] (const size_t i) {
    // Views x and y are captured by value (copy)
    y(i) = a * x(i) + y(i);
});
```

Important point

Views are like pointers, so copy them when passing.

View overview:

- ► **Multi-dimensional array** of 0 or more dimensions scalar (0), vector (1), matrix (2), etc.
- ▶ Number of dimensions (rank) is fixed at compile-time.
- Arrays are rectangular, not ragged.
- ➤ **Sizes of dimensions** set at compile-time or runtime. e.g., 2x20, 50x50, etc.

View overview:

- ► **Multi-dimensional array** of 0 or more dimensions scalar (0), vector (1), matrix (2), etc.
- ▶ Number of dimensions (rank) is fixed at compile-time.
- Arrays are rectangular, not ragged.
- ➤ **Sizes of dimensions** set at compile-time or runtime. e.g., 2x20, 50x50, etc.

Example:

```
View < double *** > data("label", NO, N1, N2); 3 run, 0 compile
View < double ** [N2] > data("label", NO, N1); 2 run, 1 compile
View < double * [N1] [N2] > data("label", NO); 1 run, 2 compile
View < double [NO] [N1] [N2] > data("label"); 0 run, 3 compile
```

Note: runtime-sized dimensions must come first.

View life cycle:

- Allocations only happen when explicitly specified. i.e., there are no hidden allocations.
- Copy construction and assignment are shallow (like pointers). so, you pass Views by value, not by reference
- ▶ Reference counting is used for **automatic deallocation**.
- They behave like shared_ptr

View life cycle:

- Allocations only happen when explicitly specified. i.e., there are no hidden allocations.
- Copy construction and assignment are shallow (like pointers). so, you pass Views by value, not by reference
- ▶ Reference counting is used for **automatic deallocation**.
- ▶ They behave like shared_ptr

Example:

```
View < double *> a("a", N0), b("b", N0);
a = b;
View < double *> c(b);
a(0) = 1;
b(0) = 2;
c(0) = 3;
print a(0)
What gets printed?
```

View life cycle:

- Allocations only happen when explicitly specified. i.e., there are no hidden allocations.
- Copy construction and assignment are shallow (like pointers). so, you pass Views by value, not by reference
- ▶ Reference counting is used for **automatic deallocation**.
- ▶ They behave like shared_ptr

Example:

```
View < double *> a("a", N0), b("b", N0);
a = b;
View < double *> c(b);
a(0) = 1;
b(0) = 2;
c(0) = 3;
print a(0)
What gets printed?
3.0
```

Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

- Location: ~/SC2016/Exercises/02/
- Assignment: Change data storage from arrays to Views.
- Compile and run on CPU, and then on GPU with UVM

```
make -j KOKKOS_DEVICES=OpenMP # CPU-only using OpenMP
make -j KOKKOS_DEVICES=Cuda \
   KOKKOS_CUDA_OPTIONS=force_uvm,enable_lambda
# Run exercise
./02_Exercise.host -S 26
./02_Exercise.cuda -S 26
# Note the warnings, set appropriate environment variables
```

- ▶ Vary problem size: -S #
- Vary number of rows: -N #
- Vary repeats: -nrepeat #
- Compare performance of CPU vs GPU

Advanced features we haven't covered

- ▶ Memory space in which view's data resides; covered next.
- deep_copy view's data; covered later.
 Note: Kokkos never hides a deep_copy of data.
- Layout of multidimensional array; covered later.
- Memory traits; covered later.
- Subview: Generating a view that is a "slice" of other multidimensional array view; will not be covered today.

Execution and Memory Spaces

Learning objectives:

- Heterogeneous nodes and the space abstractions.
- How to control where parallel bodies are run, execution space.
- How to control where view data resides, memory space.
- How to avoid illegal memory accesses and manage data movement.
- ▶ The need for Kokkos::initialize and finalize.
- Where to use Kokkos annotation macros for portability.

Thought experiment: Consider this code:

Thought experiment: Consider this code:

- ▶ Where will section 1 be run? CPU? GPU?
- Where will section 2 be run? CPU? GPU?
- How do I control where code is executed?

Thought experiment: Consider this code:

- ▶ Where will section 1 be run? CPU? GPU?
- Where will section 2 be run? CPU? GPU?
- ▶ How do I **control** where code is executed?

⇒ Execution spaces

Execution Space

a homogeneous set of cores and an execution mechanism (i.e., "place to run code")

Execution spaces: Serial, Threads, OpenMP, Cuda, ...

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                      [=] (const size_t somethingIndex) {
                        const double y = ...;
                       // do something interesting
```

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                      [=] (const size_t somethingIndex) {
                        const double y = ...;
                       // do something interesting
```

- Where will Host code be run? CPU? GPU?
 - ⇒ Always in the **host process**

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                     [=] (const size_t somethingIndex) {
                       const double y = ...;
                       // do something interesting
```

- Where will Host code be run? CPU? GPU?
 - ⇒ Always in the **host process**
- ▶ Where will Parallel code be run? CPU? GPU?
 - ⇒ The default execution space

```
MPI_Reduce(...);
FILE * file = fopen(...);
runANormalFunction(...data...);
Kokkos::parallel_for(numberOfSomethings,
                      [=] (const size_t somethingIndex) {
                        const double y = ...;
                       // do something interesting
```

- Where will Host code be run? CPU? GPU?
 - ⇒ Always in the **host process**
- ▶ Where will Parallel code be run? CPU? GPU?
 - ⇒ The default execution space
- ▶ How do I **control** where the Parallel body is executed? Changing the default execution space (at compilation), or specifying an execution space in the policy.

Changing the parallel execution space:

```
parallel_for(
   RangePolicy < ExecutionSpace > (0, numberOfIntervals),
   [=] (const size_t i) {
        /* ... body ... */
   });
```

```
parallel_for(
  numberOfIntervals, // == RangePolicy <> (0, numberOfIntervals)
[=] (const size_t i) {
    /* ... body ... */
});
```

Changing the parallel execution space:

```
parallel_for(
  RangePolicy < ExecutionSpace > (0, numberOfIntervals),
  [=] (const size_t i) {
    /* ... body ... */
  });
```

```
parallel_for(
  numberOfIntervals, // == RangePolicy <> (0, numberOfIntervals)
  [=] (const size_t i) {
    /* ... body ... */
  });
```

Requirements for enabling execution spaces:

- ► Kokkos must be **compiled** with the execution spaces enabled.
- Execution spaces must be initialized (and finalized).
- ► **Functions** must be marked with a **macro** for non-CPU spaces.
- Lambdas must be marked with a macro for non-CPU spaces.

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS_INLINE_FUNCTION macro

```
struct ParallelFunctor {
   KOKKOS_INLINE_FUNCTION
   double helperFunction(const size_t s) const {...}
   KOKKOS_INLINE_FUNCTION
   void operator()(const size_t index) const {
      helperFunction(index);
   }
}
// Where kokkos defines:
#define KOKKOS_INLINE_FUNCTION inline
#define KOKKOS_INLINE_FUNCTION inline __device__ __host__ /* #if CPU+Cuda */
```

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro

```
struct ParallelFunctor {
   KOKKOS_INLINE_FUNCTION
   double helperFunction(const size_t s) const {...}
   KOKKOS_INLINE_FUNCTION
   void operator()(const size_t index) const {
      helperFunction(index);
   }
}
// Where kokkos defines:
#define KOKKOS_INLINE_FUNCTION inline
#define KOKKOS_INLINE_FUNCTION inline --device-- --host-- /* #if CPU+Cuda */
```

Lambda annotation with KOKKOS_LAMBDA macro (requires CUDA 7.5)

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
   },
   sum);
```

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
sum);
```

Question: Where is the data stored? GPU memory? CPU memory? Both?

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
   },
   sum);
```

Question: Where is the data stored? GPU memory? CPU memory? Both?

```
View < double *> data("data", size);
for (size_t i = 0; i < size; ++i) {
   data(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
   RangePolicy < SomeExampleExecutionSpace > (0, size),
   KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
   },
   sum);
```

Question: Where is the data stored? GPU memory? CPU memory? Both?

⇒ Memory Spaces

Memory space:

explicitly-manageable memory resource (i.e., "place to put data")

Every view stores its data in a **memory space** set at compile time.

Every view stores its data in a **memory space** set at compile time.

View<double***, Memory Space> data(...);

Every view stores its data in a **memory space** set at compile time.

- View<double***, Memory Space> data(...);
- Available memory spaces:

HostSpace, CudaSpace, CudaUVMSpace, ... more

Every view stores its data in a **memory space** set at compile time.

- View<double***, Memory Space> data(...);
- Available memory spaces: HostSpace, CudaSpace, CudaUVMSpace, ... more
- ► Each **execution space** has a default memory space, which is used if **Space** provided is actually an execution space

Every view stores its data in a memory space set at compile time.

- View<double***, Memory Space> data(...);
- Available memory spaces: HostSpace, CudaSpace, CudaUVMSpace, ... more
- ► Each **execution space** has a default memory space, which is used if **Space** provided is actually an execution space
- ▶ If no Space is provided, the view's data resides in the **default** memory space of the **default execution space**.

Example: HostSpace

Example: HostSpace

View < double **, HostSpace > hostView (... constructor arguments...);

CPU

RAM

metadata

data

RAM

Example: CudaSpace

Anatomy of a kernel launch:

- 1. User declares views, allocating.
- User instantiates a functor with views.
- 3. User launches parallel_something:

 - Kernel is run.
 - Copy of functor on the device is released.

```
dev(i) = ...;
                                           }):
Functor is copied to the device.
```

Note: **no deep copies** of array data are performed; views are like pointers.

View < int *, Cuda > dev (...

parallel_for(N,

[=] (int i) {

Example: one view

```
View < int*, Cuda > dev;
parallel_for(N,
    [=] (int i) {
      dev(i) = ...;
});
```


Example: two views

```
View < int *, Cuda > dev;
View < int *, Host > host;
parallel_for(N,
    [=] (int i) {
    dev(i) = ...;
    host(i) = ...;
});
```


Example: two views

```
View < int*, Cuda > dev;
View < int*, Host > host;
parallel_for(N,
    [=] (int i) {
    dev(i) = ...;
    host(i) = ...;
});
```


(failed) Attempt 1: View lives in CudaSpace

```
View < double *, CudaSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index);
},
    sum);
```

(failed) Attempt 1: View lives in CudaSpace

```
View < double *, Cuda Space > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file... fault
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
     valueToUpdate += array(index);
    },
    sum);
```

(failed) Attempt 2: View lives in HostSpace

```
View < double *, HostSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index);
    },
    sum);
```

(failed) Attempt 2: View lives in HostSpace

```
View < double *, HostSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index); illegal access
    },
    sum);
```

(failed) Attempt 2: View lives in HostSpace

```
View < double *, HostSpace > array("array", size);
for (size_t i = 0; i < size; ++i) {
    array(i) = ...read from file...
}

double sum = 0;
Kokkos::parallel_reduce(
    RangePolicy < Cuda > (0, size),
    KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += array(index); illegal access
    },
    sum);
```

What's the solution?

- CudaUVMSpace
- CudaHostPinnedSpace (skipping)
- Mirroring

Execution and Memory spaces (5)

CudaUVMSpace

```
CPU
                          GPU
RAM
                                            RAM
       array metadata
 rray data
CPU
                          GPU
RAM
                                            RAM
                            array metadata
       array metadata
 array data
                                      larray data
```

Cuda runtime automatically handles data movement, at a **performance hit**.

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different memory spaces.

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different memory spaces.

Mirroring schematic

```
typedef Kokkos::View<double**, Space> ViewType;
ViewType view(...);
ViewType::HostMirror hostView =
   Kokkos::create_mirror_view(view);
```


Mirroring pattern

1. **Create** a view's array in some memory space.

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a *mirror* of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
   Kokkos::create_mirror_view(view);
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a *mirror* of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

3. Populate hostView on the host (from file, etc.).

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a *mirror* of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

- 3. **Populate hostView** on the host (from file, etc.).
- 4. **Deep copy** hostView's array to view's array.

```
Kokkos::deep_copy(view, hostView);
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a *mirror* of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

- 3. **Populate hostView** on the host (from file, etc.).
- Deep copy hostView's array to view's array.
 Kokkos::deep_copy(view, hostView);
- 5. **Launch** a kernel processing the view's array.

```
Kokkos::parallel_for(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (...) { use and change view });
```

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view(...);
```

2. **Create** hostView, a *mirror* of the view's array residing in the host memory space.

```
ViewType::HostMirror hostView =
  Kokkos::create_mirror_view(view);
```

- 3. **Populate hostView** on the host (from file, etc.).
- 4. Deep copy hostView's array to view's array. Kokkos::deep_copy(view, hostView);
- 5. Launch a kernel processing the view's array.

```
Kokkos::parallel_for(
RangePolicy < Space > (0, size),
KOKKOS_LAMBDA (...) { use and change view });
```

If needed, deep copy the view's updated array back to the hostView's array to write file, etc.

```
Kokkos::deep_copy(hostView, view);
```

What if the View is in HostSpace too? Does it make a copy?

```
typedef Kokkos::View<double*, Space> ViewType;
ViewType view("test", 10);
ViewType::HostMirror hostView =
   Kokkos::create_mirror_view(view);
```

- create_mirror_view allocates data only if the host process cannot access view's data, otherwise hostView references the same data.
- create_mirror always allocates data.
- ▶ Reminder: Kokkos *never* performs a **hidden deep copy**.

Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

Details:

- Location: ~/SC2016/Exercises/03/
- Add HostMirror Views and deep copy
- Make sure you use the correct view in initialization and Kernel

```
# Compile for CPU
make -j KOKKOS_DEVICES=OpenMP
# Compile for GPU (we do not need UVM anymore)
make -j KOKKOS_DEVICES=Cuda
# Run on GPU
./03_Exercise.cuda -S 26
```

Things to try:

- Vary problem size and number of rows (-S ...; -N ...)
- Change number of repeats (-nrepeat ...)
- Compare behavior of CPU vs GPU

- Data is stored in Views that are "pointers" to multi-dimensional arrays residing in memory spaces.
- Views abstract away platform-dependent allocation, (automatic) deallocation, and access.
- ▶ Heterogenous nodes have one or more memory spaces.
- Mirroring is used for performant access to views in host and device memory.
- ▶ Heterogenous nodes have one or more **execution spaces**.
- You control where parallel code is run by a template parameter on the execution policy, or by compile-time selection of the default execution space.

Managing memory access patterns for performance portability

Learning objectives:

- ▶ How the View's Layout parameter controls data layout.
- How memory access patterns result from Kokkos mapping parallel work indices and layout of multidimensional array data
- Why memory access patterns and layouts have such a performance impact (caching and coalescing).
- See a concrete example of the performance of various memory configurations.

Example: inner product (0)

```
Kokkos::parallel_reduce(
  RangePolicy < Execution Space > (0, N),
  KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {
    double thisRowsSum = 0:
    for (size_t entry = 0; entry < M; ++entry) {</pre>
      thisRowsSum += A(row, entry) * x(entry);
    valueToUpdate += y(row) * thisRowsSum;
  }, result);
```

Example: inner product (0)

```
Kokkos::parallel_reduce(
  RangePolicy < Execution Space > (0, N),
  KOKKOS_LAMBDA (const size_t row, double & valueToUpdate) {
    double thisRowsSum = 0:
    for (size_t entry = 0; entry < M; ++entry) {
      thisRowsSum += A(row, entry) * x(entry);
    valueToUpdate += y(row) * thisRowsSum;
  }, result);
```

Driving question: How should A be laid out in memory?

Example: inner product (1)

Layout is the mapping of multi-index to memory:

Important concept: Layout

Every View has a multidimensional array Layout set at compile-time.

```
View < double ***, Layout, Space > name(...);
```

Important concept: Layout

Every View has a multidimensional array Layout set at compile-time.

```
View<double***, Layout, Space> name(...);
```

- Most-common layouts are LayoutLeft and LayoutRight. LayoutLeft: left-most index is stride 1. LayoutRight: right-most index is stride 1.
- ▶ If no layout specified, default for that memory space is used.

 LayoutLeft for CudaSpace, LayoutRight for HostSpace.
- Layouts are extensible: ~50 lines
- Advanced layouts: LayoutStride, LayoutTiled, ...

Details:

- Location: ~/SC2016/Exercises/04/
- ► Replace ''N'' in parallel dispatch with RangePolicy<ExecSpace>
- Add MemSpace to all Views and Layout to A
- Experiment with the combinations of ExecSpace, Layout to view performance

Things to try:

- Vary problem size and number of rows (-S ...; -N ...)
- Change number of repeats (-nrepeat ...)
- Compare behavior of CPU vs GPU
- Compare using UVM vs not using UVM on GPUs
- ► Check what happens if MemSpace and ExecSpace do not match.

Exercise #4: Inner Product, Flat Parallelism

<y|Ax> Exercise 04 (Layout)

Why?

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

- CPU threads are independent.
 - i.e., threads may execute at any rate.

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

- ► **CPU** threads are independent.
 - i.e., threads may execute at any rate.
- ▶ **GPU** threads are synchronized in groups (of 32).
 - i.e., threads in groups must execute instructions together.

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

- ► **CPU** threads are independent.
 - i.e., threads may execute at any rate.
- ▶ **GPU** threads are synchronized in groups (of 32).
 - i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads before any thread can move on.

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

Question: once a thread reads d, does it need to wait?

- ► **CPU** threads are independent.
 - i.e., threads may execute at any rate.
- ▶ GPU threads are synchronized in groups (of 32).
 - i.e., threads in groups must execute instructions together.

In particular, all threads in a group (warp) must finished their loads before any thread can move on.

So, **how many cache lines** must be fetched before threads can move on?

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

For performance, accesses to views in HostSpace must be **cached**, while access to views in CudaSpace must be **coalesced**.

Caching: if thread t's current access is at position i, thread t's next access should be at position i+1.

Coalescing: if thread t's current access is at position i, thread t+1's current access should be at position i+1.

For performance, accesses to views in HostSpace must be **cached**, while access to views in CudaSpace must be **coalesced**.

Coalescing: if thread t's current access is at position i, thread t+1's current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace *greatly* reduces performance (more than 10X)

For performance, accesses to views in HostSpace must be **cached**, while access to views in CudaSpace must be **coalesced**.

Caching: if thread t's current access is at position i, thread t's next access should be at position i+1.

Coalescing: if thread t's current access is at position i, thread t+1's current access should be at position i+1.

Warning

Uncoalesced access in CudaSpace *greatly* reduces performance (more than 10X)

Note: uncoalesced *read-only, random* access in CudaSpace is okay through Kokkos const RandomAccess views (more later).

Consider the array summation example:

```
View < double *, Space > data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
    sum);
```

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Consider the array summation example:

```
View < double *, Space > data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
    sum);
```

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

```
Contiguous: Strided: 0, 1, 2, ..., N/P 0, N/P, 2*N/P, ...
```

Consider the array summation example:

```
View < double *, Space > data("data", size);
...populate data...

double sum = 0;
Kokkos::parallel_reduce(
  RangePolicy < Space > (0, size),
  KOKKOS_LAMBDA (const size_t index, double & valueToUpdate) {
    valueToUpdate += data(index);
},
    sum);
```

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

```
Contiguous: Strided:

0, 1, 2, ..., N/P 0, N/P, 2*N/P, ...

CPU GPU
```

Why?

Iterating for the execution space:

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

As users we don't control how indices are mapped to threads, so how do we achieve good memory access?

Iterating for the execution space:

```
operator()(const size_t index, double & valueToUpdate) {
  const double d = _data(index);
  valueToUpdate += d;
}
```

As users we don't control how indices are mapped to threads, so how do we achieve good memory access?

Important point

Kokkos maps indices to cores in **contiguous chunks** on CPU execution spaces, and **strided** for Cuda.

Rule of Thumb

Kokkos index mapping and default layouts provide efficient access if **iteration indices** correspond to the **first index** of array.

Example:

```
View < double ***, ...> view (...);
...
Kokkos::parallel_for( ... ,
    KOKKOS_LAMBDA (const size_t workIndex) {
        ...
    view (..., ..., workIndex ) = ...;
    view (..., workIndex, ...) = ...;
    view (workIndex, ...) = ...;
});
...
```

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *optimally for the architecture*.

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *optimally for the architecture*.

Analysis: row-major (LayoutRight)

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *optimally for the architecture*.

Analysis: row-major (LayoutRight)

- HostSpace: cached (good)
- ► CudaSpace: uncoalesced (bad)

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *optimally for the architecture*.

Analysis: column-major (LayoutLeft)

Performant memory access is achieved by Kokkos mapping parallel work indices **and** multidimensional array layout *optimally for the architecture*.

Analysis: column-major (LayoutLeft)

- HostSpace: uncached (bad)
- ► CudaSpace: coalesced (good)

Analysis: Kokkos architecture-dependent

```
View < double **, ExecutionSpace > A(N, M);
parallel_for(RangePolicy < ExecutionSpace > (0, N),
    ... thisRowsSum += A(j, i) * x(i);
```


- ► HostSpace: cached (good)
- CudaSpace: coalesced (good)

Example: inner product (5)

Memory Access Pattern Summary

- Every View has a Layout set at compile-time through a template parameter.
- LayoutRight and LayoutLeft are most common.
- Views in HostSpace default to LayoutRight and Views in CudaSpace default to LayoutLeft.
- Layouts are extensible and flexible.
- For performance, memory access patterns must result in caching on a CPU and coalescing on a GPU.
- Kokkos maps parallel work indices and multidimensional array layout for performance portable memory access patterns.
- ► There is **nothing in** OpenMP, OpenACC, or OpenCL to manage layouts.
 - ⇒ You'll need multiple versions of code or pay the performance penalty.

Thread safety and atomic operations

Learning objectives:

- Understand that coordination techniques for low-count CPU threading are not scalable.
- Understand how atomics can parallelize the scatter-add pattern.
- Gain performance intuition for atomics on the CPU and GPU, for different data types and contention rates.

Histogram kernel:

```
parallel_for(N, KOKKOS_LAMBDA(const size_t index) {
   const Something value = ...;
   const size_t bucketIndex = computeBucketIndex(value);
   ++_histogram(bucketIndex);
});
```


http://www.farmaceuticas.com.br/tag/graficos/

Histogram kernel:

```
parallel_for(N, KOKKOS_LAMBDA(const size_t index) {
   const Something value = ...;
   const size_t bucketIndex = computeBucketIndex(value);
   ++_histogram(bucketIndex);
});
```

Problem: Multiple threads may try to write to the same location.

http://www.farmaceuticas.com.br/tag/graficos/

Histogram kernel:

```
parallel_for(N, KOKKOS_LAMBDA(const size_t index) {
   const Something value = ...;
   const size_t bucketIndex = computeBucketIndex(value);
   ++_histogram(bucketIndex);
});
```

Problem: Multiple threads may try to write to the same location.

Solution strategies:

- ► Locks: not feasible on GPU
- Thread-private copies: not thread-scalable
- Atomics

http://www.farmaceuticas.com.br/tag/graficos/

Atomics: the portable and thread-scalable solution

```
parallel_for(N, KOKKOS_LAMBDA(const size_t index) {
   const Something value = ...;
   const int bucketIndex = computeBucketIndex(value);
   Kokkos::atomic_add(&_histogram(bucketIndex), 1);
});
```


Atomics: the portable and thread-scalable solution

```
parallel_for(N, KOKKOS_LAMBDA(const size_t index) {
   const Something value = ...;
   const int bucketIndex = computeBucketIndex(value);
   Kokkos::atomic_add(&_histogram(bucketIndex), 1);
});
```

Atomics are the only scalable solution to thread safety.

Atomics: the portable and thread-scalable solution

```
parallel_for(N, KOKKOS_LAMBDA(const size_t index) {
   const Something value = ...;
   const int bucketIndex = computeBucketIndex(value);
   Kokkos::atomic_add(&_histogram(bucketIndex), 1);
});
```

- Atomics are the only scalable solution to thread safety.
- Locks or data replication are strongly discouraged.

How expensive are atomics?

Thought experiment: scalar integration

How expensive are atomics?

Thought experiment: scalar integration

Idea: what if we instead do this with parallel_for and atomics?

```
operator()(const unsigned int intervalIndex) const {
  const double contribution = function(...);
  Kokkos::atomic_add(&globalSum, contribution);
}
```

How much of a performance penalty is incurred?

Performance of atomics (1)

Two costs: (independent) work and coordination.

Experimental setup

```
operator()(const unsigned int index) const {
  Kokkos::atomic_add(&globalSums[index % atomicStride], 1);
}
```

- This is the most extreme case: all coordination and no work.
- Contention is captured by the atomicStride.

```
atomicStride \rightarrow 1 \Rightarrow Scalar integration (bad) atomicStride \rightarrow large \Rightarrow Independent (good)
```

Performance of atomics (2)

Atomics performance: 1 million adds, no work per kernel

Performance of atomics (2)

Atomics performance: 1 million adds, no work per kernel

Performance of atomics (3)

Atomics performance: 1 million adds, some work per kernel

Performance of atomics (4)

Atomics performance: 1 million adds, lots of work per kernel

Atomics on arbitrary types:

- ► Atomic operations work if the corresponding operator exists, i.e., atomic_add works on any data type with "+".
- Atomic exchange works on any data type.

```
// Assign *dest to val, return former value of *dest
template < typename T>
T atomic_exchange(T * dest, T val);
// If *dest == comp then assign *dest to val
// Return true if succeeds.
template < typename T>
bool atomic_compare_exchange_strong(T * dest, T comp, T val);
```

Slight detour: View memory traits:

- Beyond a Layout and Space, Views can have memory traits.
- Memory traits either provide convenience or allow for certain hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic memory trait:

```
View < double ** , Layout , Space ,
    MemoryTraits < Atomic > > forces(...);
```

Slight detour: View memory traits:

- ▶ Beyond a Layout and Space, Views can have memory traits.
- Memory traits either provide convenience or allow for certain hardware-specific optimizations to be performed.

Example: If all accesses to a View will be atomic, use the Atomic memory trait:

```
View < double ***, Layout, Space,
    MemoryTraits < Atomic >> forces(...);
```

Many memory traits exist or are experimental, including Read, Write, ReadWrite, ReadOnce (non-temporal), Contiguous, and RandomAccess.

Example: RandomAccess memory trait:

On **GPUs**, there is a special pathway for fast **read-only**, **random** access, originally designed for textures.

Example: RandomAccess memory trait:

On **GPUs**, there is a special pathway for fast **read-only**, **random** access, originally designed for textures.

How to access texture memory via CUDA:

```
cudaResourceDesc resDesc;
memset(&resDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypeLinear;
resDesc.res.linear.devPtr = buffer;
resDesc.res.linear.desc.f = cudaChannelFormatKindFloat;
resDesc.res.linear.desc.x = 32; // bits per channel
resDesc.res.linear.sizeInBytes = N*sizeof(float);

cudaTextureDesc texDesc;
memset(&texDesc, 0, sizeof(texDesc));
texDesc.readMode = cudaReadModeElementType;

cudaTextureObject_t tex=0;
cudaCreateTextureObject(&tex, &resDesc, &texDesc, NULL);
```

Example: RandomAccess memory trait:

On **GPUs**, there is a special pathway for fast **read-only**, **random** access, originally designed for textures.

How to access texture memory via CUDA:

```
cudaResourceDesc resDesc:
memset(&resDesc, 0, sizeof(resDesc)):
resDesc.resType = cudaResourceTypeLinear;
resDesc.res.linear.devPtr = buffer:
resDesc.res.linear.desc.f = cudaChannelFormatKindFloat;
resDesc.res.linear.desc.x = 32; // bits per channel
resDesc.res.linear.sizeInBytes = N*sizeof(float);
cudaTextureDesc texDesc:
memset(&texDesc, 0, sizeof(texDesc));
texDesc.readMode = cudaReadModeElementType:
cudaTextureObject_t tex=0;
cudaCreateTextureObject(&tex, &resDesc, &texDesc, NULL);
How to access texture memory via Kokkos:
View < const double ***, Layout, Space,
     MemoryTraits<RandomAccess> > name(...);
```

- Atomics are the only thread-scalable solution to thread safety.
 - Locks or data replication are not portable or scalable
- Atomic performance depends on ratio of independent work and atomic operations.
 - ▶ With more work, there is a lower performance penalty, because of increased opportunity to interleave work and atomic.
- ► The Atomic memory trait can be used to make all accesses to a view atomic.
- ▶ The cost of atomics can be negligible:
 - ▶ CPU ideal: contiguous access, integer types
 - ▶ **GPU** ideal: scattered access, 32-bit types
- Many programs with the scatter-add pattern can be thread-scalably parallelized using atomics without much modification.

Hierarchical parallelism

Finding and exploiting more parallelism in your computations.

Learning objectives:

- Similarities and differences between outer and inner levels of parallelism
- Thread teams (league of teams of threads)
- Performance improvement with well-coordinated teams

```
Kokkos::parallel_reduce(N,
  KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
    double thisRowsSum = 0:
    for (int col = 0; col < M; ++col) {
      thisRowsSum += A(row, col) * x(col);
    valueToUpdate += y(row) * thisRowsSum;
 }, result);
                                              thread 0
                                         thread
```

```
Kokkos::parallel_reduce(N,
  KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
    double thisRowsSum = 0;
    for (int col = 0; col < M; ++col) {
        thisRowsSum += A(row,col) * x(col);
    }
    valueToUpdate += y(row) * thisRowsSum;
}, result);</pre>
```

Problem: What if we don't have enough rows to saturate the GPU?


```
Kokkos::parallel_reduce(N,
  KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
    double thisRowsSum = 0;
    for (int col = 0; col < M; ++col) {
        thisRowsSum += A(row,col) * x(col);
    }
    valueToUpdate += y(row) * thisRowsSum;
}, result);</pre>
```

Problem: What if we don't have enough rows to saturate the GPU?

Solutions?


```
Kokkos::parallel_reduce(N,
  KOKKOS_LAMBDA (const int row, double & valueToUpdate) {
    double thisRowsSum = 0;
    for (int col = 0; col < M; ++col) {
        thisRowsSum += A(row,col) * x(col);
    }
    valueToUpdate += y(row) * thisRowsSum;
}, result);</pre>
```

Problem: What if we don't have enough rows to saturate the GPU?

Solutions?

- Atomics
- Thread teams

Atomics kernel:

```
Kokkos::parallel_for(N,
  KOKKOS_LAMBDA (const size_t index) {
    const int row = extractRow(index);
    const int col = extractCol(index);
    atomic_add(&result, A(row,col) * x(col));
});
```


Atomics kernel:

```
Kokkos::parallel_for(N,
  KOKKOS_LAMBDA (const size_t index) {
    const int row = extractRow(index);
    const int col = extractCol(index);
    atomic_add(&result, A(row,col) * x(col));
});
```

Problem: Poor performance

Example: inner product (2)

Doing each individual row with atomics is like doing scalar integration with atomics.

Instead, you could envision doing a large number of parallel_reduce kernels.

```
for each row
  Functor functor(row, ...);
  parallel_reduce(M, functor);
}
```

Doing each individual row with atomics is like doing scalar integration with atomics.

Instead, you could envision doing a large number of parallel_reduce kernels.

```
for each row
  Functor functor(row, ...);
  parallel_reduce(M, functor);
}
```

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit hierarchical parallelism with **thread teams**.

Important concept: Thread team

A collection of threads which are guaranteed to be executing **concurrently** and **can synchronize**.

Important concept: Thread team

A collection of threads which are guaranteed to be executing **concurrently** and **can synchronize**.

High-level strategy:

- 1. Do **one parallel launch** of N teams of M threads.
- 2. Each thread performs one entry in the row.
- 3. The threads within teams perform a reduction.
- 4. The thread teams **perform a reduction**.

The final hierarchical parallel kernel:

```
parallel_reduce(
 team_policy(N, Kokkos::AUTO),
  KOKKOS_LAMBDA (member_type & teamMember, double & update) {
    int row = teamMember.league_rank();
    double thisRowsSum = 0:
    parallel_reduce(TeamThreadRange(teamMember, M),
      [=] (int col, double & innerUpdate) {
        innerUpdate += A(row, col) * x(col);
      }, thisRowsSum);
    if (teamMember.team rank() == 0) {
      update += v(row) * thisRowsSum:
 }. result):
```

Using teams is changing the execution policy.

"Flat parallelism" uses RangePolicy:

We specify a total amount of work.

```
// total work = N
parallel_for(
   RangePolicy < ExecutionSpace > (0,N), functor);
```

Using teams is changing the execution policy.

"Flat parallelism" uses RangePolicy:

We specify a total amount of work.

```
// total work = N
parallel_for(
   RangePolicy < Execution Space > (0, N), functor);
```

"Hierarchical parallelism" uses TeamPolicy:

We specify a *team size* and a *number of teams*.

```
// total work = numberOfTeams * teamSize
parallel_for(
   TeamPolicy < ExecutionSpace > (numberOfTeams, teamSize), functor)
```

When using teams, functor operators receive a team member.

```
typedef typename TeamPolicy < ExecSpace > :: member_type member_type;

void operator()(const member_type & teamMember) {
    // Which team am I on?
    const unsigned int leagueRank = teamMember.league_rank();
    // Which thread am I on this team?
    const unsigned int teamRank = teamMember.team_rank();
}
```

When using teams, functor operators receive a team member.

```
typedef typename TeamPolicy < ExecSpace > :: member_type member_type;

void operator()(const member_type & teamMember) {
    // Which team am I on?
    const unsigned int leagueRank = teamMember.league_rank();
    // Which thread am I on this team?
    const unsigned int teamRank = teamMember.team_rank();
}
```

Warning

There may be more (or fewer) team members than pieces of your algorithm's work per team

TeamThreadRange (0)

First attempt at exercise:

```
operator() (member_type & teamMember ) {
  const size_t row = teamMember.league_rank();
  const size_t col = teamMember.team_rank();
  atomic_add(&result,y(row) * A(row,col) * x(entry));
}
```

TeamThreadRange (0)

First attempt at exercise:

```
operator() (member_type & teamMember ) {
  const size_t row = teamMember.league_rank();
  const size_t col = teamMember.team_rank();
  atomic_add(&result,y(row) * A(row,col) * x(entry));
}
```

- When team size ≠ number of columns, how are units of work mapped to team's member threads? Is the mapping architecture-dependent?
- atomic_add performs badly under high contention, how can team's member threads performantly cooperate for a nested reduction?

```
operator() (member_type & teamMember, double & update) {
  const int row = teamMember.league_rank();
  double thisRowsSum;
    ''do a reduction''(''over M columns'',
       [=] (const int col) {
            thisRowsSum += A(row,col) * x(col);
       });
  if (teamMember.team_rank() == 0) {
            update += (row) * thisRowsSum;
      }
}
```

```
operator() (member_type & teamMember, double & update) {
  const int row = teamMember.league_rank();
  double thisRowsSum;
  ''do a reduction''(''over M columns''),
  [=] (const int col) {
    thisRowsSum += A(row,col) * x(col);
  });
  if (teamMember.team_rank() == 0) {
    update += (row) * thisRowsSum;
  }
}
```

If this were a parallel execution,

we'd use Kokkos::parallel_reduce.

```
operator() (member_type & teamMember, double & update) {
  const int row = teamMember.league_rank();
  double thisRowsSum;
  ''do a reduction''(''over M columns'',
    [=] (const int col) {
      thisRowsSum += A(row,col) * x(col);
    });
  if (teamMember.team_rank() == 0) {
      update += (row) * thisRowsSum;
  }
}
```

If this were a parallel execution, we'd use Kokkos::parallel_reduce.

Key idea: this *is* a parallel execution.

```
operator() (member_type & teamMember, double & update) {
  const int row = teamMember.league_rank();
  double thisRowsSum;
  ''do a reduction''(''over M columns'',
    [=] (const int col) {
        thisRowsSum += A(row,col) * x(col);
     });
  if (teamMember.team_rank() == 0) {
        update += (row) * thisRowsSum;
    }
}
```

If this were a parallel execution,
 we'd use Kokkos::parallel_reduce.

Key idea: this *is* a parallel execution.

⇒ Nested parallel patterns

TeamThreadRange:

```
operator() (const member_type & teamMember, double & update ) {
  const int row = teamMember.league_rank();
  double thisRowsSum;
  parallel_reduce(TeamThreadRange(teamMember, M),
       [=] (const int col, double & thisRowsPartialSum ) {
       thisRowsPartialSum += A(row, col) * x(col);
     }, thisRowsSum );
  if (teamMember.team_rank() == 0) {
     update += y(row) * thisRowsSum;
  }
}
```

TeamThreadRange:

```
operator() (const member_type & teamMember, double & update ) {
  const int row = teamMember.league_rank();
  double thisRowsSum;
  parallel_reduce(TeamThreadRange(teamMember, M),
       [=] (const int col, double & thisRowsPartialSum ) {
       thisRowsPartialSum += A(row, col) * x(col);
    }, thisRowsSum );
  if (teamMember.team_rank() == 0) {
      update += y(row) * thisRowsSum;
  }
}
```

- The mapping of work indices to threads is architecture-dependent.
- ► The amount of work given to the TeamThreadRange need not be a multiple of the team_size.
- Intra-team reduction handled by Kokkos.

Anatomy of nested parallelism:

```
parallel_outer(
  TeamPolicy < ExecutionSpace > (numberOfTeams, teamSize),
  KOKKOS_LAMBDA (const member_type & teamMember[, ...]) {
    /* beginning of outer body */
    parallel_inner(
        TeamThreadRange(teamMember, thisTeamsRangeSize),
        [=] (const unsigned int indexWithinBatch[, ...]) {
          /* inner body */
        }[, ...]);
    /* end of outer body */
}[, ...]);
```

- parallel_outer and parallel_inner may be any combination of for, reduce, or scan.
- ► The inner lambda may capture by reference, but capture-by-value is recommended.
- ▶ The policy of the inner lambda is always a TeamThreadRange.
- ► TeamThreadRange cannot be nested.

In practice, you can let Kokkos decide:

```
parallel_something(
   TeamPolicy < ExecutionSpace > (numberOfTeams, Kokkos::AUTO),
   /* functor */);
```

In practice, you can let Kokkos decide:

```
parallel_something(
  TeamPolicy < ExecutionSpace > (numberOfTeams, Kokkos::AUTO),
  /* functor */);
```

NVIDIA GPU:

- Special hardware available for coordination within a team.
- Within a team 32 threads (warp) execute "lock step."
- Maximum team size: 1024; Recommended team size: 256

In practice, you can let Kokkos decide:

```
parallel_something(
   TeamPolicy < ExecutionSpace > (numberOfTeams, Kokkos:: AUTO),
   /* functor */);
```

NVIDIA GPU:

- Special hardware available for coordination within a team.
- Within a team 32 threads (warp) execute "lock step."
- Maximum team size: 1024; Recommended team size: 256

Intel Xeon Phi:

- Recommended team size: # hyperthreads per core
- Hyperthreads share entire cache hierarchy a well-coordinated team avoids cache-thrashing

Exercise #5: Inner Product, Hierarchical Parallelism

Details:

- Location: ~/SC2016/Exercises/05/
- Replace RangePolicy<Space> with TeamPolicy<Space>
- ▶ Use AUTO for team size
- Make the inner loop a parallel_reduce with TeamThreadRange policy
- Experiment with the combinations of Layout, Space, N to view performance
- ▶ Hint: what should the layout of A be?

Things to try:

- Vary problem size and number of rows (-S ...; -N ...)
- ► Compare behaviour with Exercise 4 for very non-square matrices
- Compare behavior of CPU vs GPU

Exercise #4: Inner Product, Flat Parallelism

Reminder: Exercise 4 results (flat parallelism) <ylAx> Exercise 04 (Layout)

Exercise #5: Inner Product, Hierarchical Parallelism

New: Exercise 5 results (hierarchical parallelism) <ylAx> Exercise 05 (Layouts/Teams)

Exposing Vector Level Parallelism

- Optional third level in the hierarchy: ThreadVectorRange
 - Can be used for parallel_for, parallel_reduce, or parallel_scan.
- Maps to vectorizable loop on CPUs or (sub-)warp level parallelism on GPUs.
- Enabled with a runtime vector length argument to TeamPolicy
- ► There is no explicit access to a vector lane ID.
- ▶ Depending on the backend the full global parallel region has active vector lanes.

Anatomy of nested parallelism:

```
parallel_outer(
 TeamPolicy<>(numberOfTeams, teamSize, vectorLength),
  KOKKOS_LAMBDA (const member_type & teamMember [, ...]) {
    /* beginning of outer body */
   parallel_middle(
      TeamThreadRange(teamMember, thisTeamsRangeSize),
      [=] (const int indexWithinBatch[, ...]) {
        /* begin middle body */
        parallel_inner(
           ThreadVectorRange(teamMember, thisVectorRangeSize),
           [=] (const int indexVectorRange[, ...]) {
            /* inner body */
          }[, ....);
       /* end middle body */
     }[, ...]);
  /* end of outer body */
 }[, ...]);
```

```
int totalSum = 0;
parallel_reduce(RangePolicy<>(0, numberOfThreads),
   KOKKOS_LAMBDA (size_t& index, int& partialSum) {
    int thisThreadsSum = 0;
   for (int i = 0; i < 10; ++i) {
        ++thisThreadsSum;
   }
   partialSum += thisThreadsSum;
}, totalSum);</pre>
```

```
int totalSum = 0;
parallel_reduce(RangePolicy<>(0, numberOfThreads),
   KOKKOS_LAMBDA (size_t& index, int& partialSum) {
    int thisThreadsSum = 0;
    for (int i = 0; i < 10; ++i) {
        ++thisThreadsSum;
    }
    partialSum += thisThreadsSum;
}, totalSum);</pre>
totalSum = numberOfThreads * 10
```

```
int totalSum = 0;
parallel_reduce(TeamPolicy<>(numberOfTeams, team_size),
   KOKKOS_LAMBDA (member_type& teamMember, int& partialSum) {
   int thisThreadsSum = 0;
   for (int i = 0; i < 10; ++i) {
        ++thisThreadsSum;
   }
   partialSum += thisThreadsSum;
}, totalSum);</pre>
```

```
int totalSum = 0;
parallel_reduce(TeamPolicy<>(numberOfTeams, team_size),
   KOKKOS_LAMBDA (member_type& teamMember, int& partialSum) {
   int thisThreadsSum = 0;
   for (int i = 0; i < 10; ++i) {
        ++thisThreadsSum;
   }
   partialSum += thisThreadsSum;
}, totalSum);</pre>
```

totalSum = numberOfTeams * team_size * 10

```
int totalSum = 0:
parallel_reduce(TeamPolicy <> (numberOfTeams, team_size),
  KOKKOS_LAMBDA (member_type& teamMember, int& partialSum) {
    int thisTeamsSum = 0:
    parallel_reduce(TeamThreadRange(teamMember, team_size),
      [=] (const int index, int& thisTeamsPartialSum) {
      int thisThreadsSum = 0:
      for (int i = 0; i < 10; ++i) {
        ++thisThreadsSum:
      thisTeamsPartialSum += thisThreadsSum;
    }, thisTeamsSum);
    partialSum += thisTeamsSum;
}, totalSum);
```

totalSum = numberOfTeams * team_size * team_size * 10

The single pattern can be used to restrict execution

- Like parallel patterns it takes a policy, a lambda, and optionally a broadcast argument.
- Two policies: PerTeam and PerThread.
- Equivalent to OpenMP single directive with nowait

```
// Restrict to once per thread
single(PerThread(teamMember), [&] () {
    // code
});

// Restrict to once per team with broadcast
int broadcastedValue = 0;
single(PerTeam(teamMember), [&] (int& broadcastedValue_local) {
    broadcastedValue_local = special value assigned by one;
}, broadcastedValue);
// Now everyone has the special value
```

The previous example was extended with an outer loop over "Elements" to expose a third natural layer of parallelism.

Details:

- Location: ~/SC2016/Exercises/06/
- Use the single policy instead of checking team rank
- Parallelize all three loop levels.

Things to try:

- ▶ Vary problem size and number of rows (-S ...; -N ...)
- ► Compare behaviour with Exercise 5 for very non-square matrices
- Compare behavior of CPU vs GPU

Exercise 06 (Three Level Parallelism)

Xeon Phi KNL 68c; Dual Haswell 2x16c; NVIDIA K80 (single device); NVIDIA GeForce Titan X Pascal

Exercise 06 (Three Level Parallelism)

Xeon Phi KNL 68c; Dual Haswell 2x16c; NVIDIA K80 (single device); NVIDIA GeForce Titan X Pascal

Exercise 06 (Three Level Parallelism)

Xeon Phi KNL 68c; Dual Haswell 2x16c; NVIDIA K80 (single device); NVIDIA GeForce Titan X Pascal

- ► **Hierarchical work** can be parallelized via hierarchical parallelism.
- Hierarchical parallelism is leveraged using thread teams launched with a TeamPolicy.
- Team "worksets" are processed by a team in nested parallel_for (or reduce or scan) calls with a TeamThreadRange and ThreadVectorRange policy.
- Execution can be restricted to a subset of the team with the single pattern using either a PerTeam or PerThread policy.
- ► Teams can be used to **reduce contention** for global resources even in "flat" algorithms.

Scratch memory

Learning objectives:

- Understand concept of team and thread private scratch pads
- Understand how scratch memory can reduce global memory accesses
- Recognize when to use scratch memory
- Understand how to use scratch memory and when barriers are necessary

Two Levels of Scratch Space

- Level 0 is limited in size but fast.
- ► Level 1 allows larger allocations but is equivalent to High Bandwidth Memory in latency and bandwidth.

Team or Thread private memory

- Typically used for per work-item temporary storage.
- Advantage over pre allocated memory is aggregate size scales with number of threads, not number of work-items.

Manually Managed Cache

- Explicitly cache frequently used data.
- Exposes hardware specific on-core scratch space (e.g. NVIDIA GPU Shared Memory).

Two Levels of Scratch Space

- Level 0 is limited in size but fast.
- ► Level 1 allows larger allocations but is equivalent to High Bandwidth Memory in latency and bandwidth.

Team or Thread private memory

- Typically used for per work-item temporary storage.
- Advantage over pre allocated memory is aggregate size scales with number of threads, not number of work-items.

Manually Managed Cache

- Explicitly cache frequently used data.
- Exposes hardware specific on-core scratch space (e.g. NVIDIA GPU Shared Memory).

Now: Discuss Manually Managed Cache Usecase.

One slice of contractDataFieldScalar:


```
for (qp = 0; qp < numberOfQPs; ++qp) {
  total = 0;
  for (i = 0; i < vectorSize; ++i) {
    total += A(qp, i) * B(i);
  }
  result(qp) = total;
}</pre>
```

contractDataFieldScalar:


```
for (element = 0; element < numberOfElements; ++element) {
  for (qp = 0; qp < numberOfQPs; ++qp) {
    total = 0;
    for (i = 0; i < vectorSize; ++i) {
       total += A(element, qp, i) * B(element, i);
    }
    result(element, qp) = total;
}</pre>
```

```
for (element = 0; element < numberOfElements; ++element) {
  for (qp = 0; qp < numberOfQPs; ++qp) (
    total = 0;
  for (i = 0; i < vectorSize; ++i) {
    total ++ Acelseent, qp, i) + B(element, i);
  }
  result(element, qp) = total;
}
</pre>
```


Parallelization approaches:

▶ Each thread handles an element.

Threads: numberOfElements

```
for (element = 0; element < numberOfElements; ++element) {
   for (qp = 0; qp < numberOfOps; ++qp) {
      total = 0;
      for (i = 0; i < vectorSize; ++i) {
            total += &(element, qp, i) + B(element, i);
      }
      result(element, qp) = total;
   }
}</pre>
```


Parallelization approaches:

Each thread handles an element.

Threads: numberOfElements

Each thread handles a qp.

Threads: numberOfElements * numberOfQPs

```
for (element = 0; element < numberOfElements; ++element) {
  for (qp = 0; qp < numberOfQPs; ++qp) {
    total = 0;
    for (i = 0; i < vectorSize; ++i) {
        total += &celement, qp, i) + &celement, i);
    }
    result(element, qp) = total;
}
</pre>
```


Parallelization approaches:

Each thread handles an element.

Threads: numberOfElements

Each thread handles a qp.

Threads: numberOfElements * numberOfQPs

Each thread handles an i.

Threads: numElements * numQPs * vectorSize Requires a parallel_reduce.

```
for (element = 0; element < numberOfElements; ++element) {
  for (qp = 0; qp < numberOfGPs; ++qp) {
    total = 0;
    for (i = 0; i < vectorSize; ++i) {
        total += &(element, qp, 1) + B(element, i);
    }
    result(element, qp) = total;
}
</pre>
```


Parallelization approaches:

▶ Each thread handles an element.

Threads: numberOfElements

Each thread handles a qp.

Threads: numberOfElements * numberOfQPs

► Each thread handles an i.

Threads: numElements * numQPs * vectorSize Requires a parallel_reduce.

```
for (element = 0; element < numberOfElements; ++element) {
  for (qp = 0; qp < numberOfElements; ++element) {
    total = 0;
    for (i = 0; i < vectorSize; ++i) {
        total += &celement, qp, i) + &celement, i);
    }
    result(element, qp) = total;
}
</pre>
```


Flat kernel: Each thread handles a quadrature point

```
operator()(int index) {
  int element = extractElementFromIndex(index);
  int qp = extractQPFromIndex(index);
  double total = 0;
  for (int i = 0; i < vectorSize; ++i) {
    total += A(element, qp, i) * B(element, i);
  }
  result(element, qp) = total;
}</pre>
```

```
for (element = 0; element < numberOfElements; ++element) {
  for (qp = 0; qp < numberOfQPs; ++qp) {
    total = 0;
    for (i = 0; i < vectorSize; ++i) {
      total += &celement, qp, i) + &celement, i);
    }
  result(element, qp) = total;
}
</pre>
```


Teams kernel: Each team handles an element

```
operator()(member_type teamMember) {
  int element = teamMember.league_rank();
  parallel_for(
    TeamThreadRange(teamMember, numberOfQPs),
    [=] (int qp) {
      double total = 0;
      for (int i = 0; i < vectorSize; ++i) {
         total += A(element, qp, i) * B(element, i);
      }
      result(element, qp) = total;
    });
}</pre>
```

```
for (element = 0; element < numberOfElements; ++element) {
  for (qp = 0; qp < numberOfGPs; ++qp) {
    total = 0;
    for (i = 0; i < vectorSize; ++i) {
      total + # (element, qp, i) + B(element, i);
    }
  result(element, qp) = total;
}
}</pre>
```


Teams kernel: Each team handles an element

```
operator()(member_type teamMember) {
  int element = teamMember.league_rank();
  parallel_for(
    TeamThreadRange(teamMember, numberOfQPs),
    [=] (int qp) {
      double total = 0;
      for (int i = 0; i < vectorSize; ++i) {
         total += A(element, qp, i) * B(element, i);
      }
      result(element, qp) = total;
    });
}</pre>
No real advantage (yet)
```

Scratch memory (0)

Each team has access to a "scratch pad".

Scratch memory (scratch pad) as manual cache:

- Accessing data in (level 0) scratch memory is (usually) much faster than global memory.
- ► **GPUs** have separate, dedicated, small, low-latency scratch memories (*NOT* subject to coalescing requirements).
- ► **CPUs** don't have special hardware, but programming with scratch memory results in cache-aware memory access patterns.
- ▶ Roughly, it's like a *user-managed* L1 cache.

Scratch memory (scratch pad) as manual cache:

- Accessing data in (level 0) scratch memory is (usually) much faster than global memory.
- ► **GPUs** have separate, dedicated, small, low-latency scratch memories (*NOT* subject to coalescing requirements).
- ► **CPUs** don't have special hardware, but programming with scratch memory results in cache-aware memory access patterns.
- ▶ Roughly, it's like a *user-managed* L1 cache.

Important concept

When members of a team read the same data multiple times, it's better to load the data into scratch memory and read from there.

Scratch memory for temporary per work-item storage:

- Scenario: Algorithm requires temporary workspace of size W.
- Without scratch memory: pre-allocate space for N work-items of size N x W.
- ▶ With scratch memory: Kokkos pre-allocates space for each Team or Thread of size T × W.
- PerThread and PerTeam scratch can be used concurrently.
- ▶ Level 0 and Level 1 scratch memory can be used concurrently.

Scratch memory for temporary per work-item storage:

- Scenario: Algorithm requires temporary workspace of size W.
- Without scratch memory: pre-allocate space for N work-items of size N x W.
- ► With scratch memory: Kokkos pre-allocates space for each Team or Thread of size T x W.
- ▶ PerThread and PerTeam scratch can be used concurrently.
- ▶ Level 0 and Level 1 scratch memory can be used concurrently.

Important concept

If an algorithm requires temporary workspace for each work-item, then use Kokkos's scratch memory.

Scratch memory (3)

To use scratch memory, you need to:

- 1. **Tell Kokkos how much** scratch memory you'll need.
- 2. Make scratch memory views inside your kernels.

To use scratch memory, you need to:

- 1. **Tell Kokkos how much** scratch memory you'll need.
- 2. Make scratch memory views inside your kernels.

```
TeamPolicy < ExecutionSpace > policy (numberOfTeams, teamSize);
// Define a scratch memory view type
typedef View < double *, Execution Space::scratch_memory_space
                    ,MemoryUnmanaged> ScratchPadView;
// Compute how much scratch memory (in bytes) is needed
size_t bytes = ScratchPadView::shmem_size(vectorSize);
// Tell the policy how much scratch memory is needed
int level = 0;
parallel_for(policy.set_scratch_size(level, PerTeam(bytes)),
  KOKKOS_LAMBDA (const member_type& teamMember) {
    // Create a view from the pre-existing scratch memory
    ScratchPadView scratch(teamMember.team_scratch(0),
                           vectorSize):
});
```

Kernel outline for teams with scratch memory:

```
operator()(member_type teamMember) {
 ScratchPadView scratch(teamMember.team_scratch(0),
                         vectorSize);
  // TODO: load slice of B into scratch
 parallel_for(
   TeamThreadRange(teamMember, numberOfQPs),
    [=] (int qp) {
      double total = 0:
      for (int i = 0; i < vectorSize; ++i) {
        total += A(element, qp, i) * scratch(i);
     result(element, qp) = total;
   }):
```

One thread loads it all?

```
if (teamMember.team_rank() == 0) {
  for (int i = 0; i < vectorSize; ++i) {
    scratch(i) = B(element, i);
  }
}</pre>
```


One thread loads it all?
Serial

```
if (teamMember.team_rank() == 0) {
  for (int i = 0; i < vectorSize; ++i) {
    scratch(i) = B(element, i);
  }
}</pre>
```

► Each thread loads one entry?

```
scratch(team_rank) = B(element, team_rank);
```


One thread loads it all?
Serial

```
if (teamMember.team_rank() == 0) {
  for (int i = 0; i < vectorSize; ++i) {
    scratch(i) = B(element, i);
  }
}</pre>
```

► Each thread loads one entry? teamSize ≠ vectorSize

```
scratch(team_rank) = B(element, team_rank);
```

▶ TeamThreadRange

```
parallel_for(
  TeamThreadRange(teamMember, vectorSize),
  [=] (int i) {
    scratch(i) = B(element, i);
});
```

One thread loads it all?
Serial

```
if (teamMember.team_rank() == 0) {
  for (int i = 0; i < vectorSize; ++i) {
    scratch(i) = B(element, i);
  }
}</pre>
```

► Each thread loads one entry? teamSize ≠ vectorSize

```
scratch(team_rank) = B(element, team_rank);
```

▶ TeamThreadRange

```
parallel_for(
  TeamThreadRange(teamMember, vectorSize),
  [=] (int i) {
    scratch(i) = B(element, i);
});
```

(incomplete) Kernel for teams with scratch memory:

```
operator()(member_type teamMember) {
 ScratchPadView scratch(...);
 parallel_for(TeamThreadRange(teamMember, vectorSize),
    [=] (int. i) {
      scratch(i) = B(element, i);
   }):
 // TODO: fix a problem at this location
  parallel_for(TeamThreadRange(teamMember, numberOfQPs),
    [=] (int qp) {
      double total = 0:
      for (int i = 0; i < vectorSize; ++i) {
        total += A(element, qp, i) * scratch(i);
     result(element, qp) = total;
   });
```

(incomplete) Kernel for teams with scratch memory:

```
operator()(member_type teamMember) {
 ScratchPadView scratch(...);
 parallel_for(TeamThreadRange(teamMember, vectorSize),
    Γ=1 (int i) {
      scratch(i) = B(element, i);
   }):
 // TODO: fix a problem at this location
 parallel_for(TeamThreadRange(teamMember, numberOfQPs),
    [=] (int qp) {
      double total = 0:
      for (int i = 0; i < vectorSize; ++i) {
        total += A(element, qp, i) * scratch(i);
     result(element, qp) = total;
   });
```

Problem: threads may start to use scratch before all threads are done loading.

Kernel for teams with scratch memory:

```
operator()(member_type teamMember) {
  ScratchPadView scratch(...);
  parallel_for(TeamThreadRange(teamMember, vectorSize),
    [=] (int i) {
      scratch(i) = B(element, i);
   }):
  teamMember.team_barrier();
  parallel_for(TeamThreadRange(teamMember, numberOfQPs),
    \lceil = \rceil (int ap) {
      double total = 0:
      for (int i = 0; i < vectorSize; ++i) {</pre>
        total += A(element, qp, i) * scratch(i);
      result(element, qp) = total;
   }):
```

Use Scratch Memory to explicitly cache the x-vector for each element.

Details:

- Location: ~/SC2016/Exercises/07/
- Use the single policy instead of checking team rank
- Parallelize all three loop levels.

Things to try:

- Vary problem size and number of rows (-S ...; -N ...)
- Compare behaviour with Exercise 6
- Compare behavior of CPU vs GPU

Exercise 07 (Scratch Memory)

Exercise 07 (Scratch Memory)

Xeon Phi KNL 68c; Dual Haswell 2x16c; NVIDIA K80 (single device); NVIDIA GeForce Titan X Pascal

Exercise 07 (Scratch Memory)

Xeon Phi KNL 68c; Dual Haswell 2x16c; NVIDIA K80 (single device); NVIDIA GeForce Titan X Pascal

Scratch Memory: API Details

Allocating scratch in different levels:

```
int level = 1; // valid values 0,1
policy.set_scratch_size(level,PerTeam(bytes));
```

Allocating scratch in different levels:

```
int level = 1; // valid values 0,1
policy.set_scratch_size(level,PerTeam(bytes));
```

Using PerThread, PerTeam or both:

Allocating scratch in different levels:

```
int level = 1; // valid values 0,1
policy.set_scratch_size(level,PerTeam(bytes));
```

Using PerThread, PerTeam or both:

Using both levels of scratch:

Note: set_scratch_size() returns a new policy instance, it doesn't modify the existing one.

- ► **Scratch Memory** can be use with the TeamPolicy to provide thread or team **private** memory.
- Usecase: per work-item temporary storage or manual caching.
- Scratch memory exposes on-chip user managed caches (e.g. on NVIDIA GPUs)
- The size must be determined before launching a kernel.
- ► Two levels are available: large/slow and small/fast.

- ► High performance computers are increasingly **heterogenous** *MPI-only is no longer sufficient*.
- For portability: OpenMP, OpenACC, ... or Kokkos.
- Only Kokkos obtains performant memory access patterns via architecture-aware arrays and work mapping. i.e., not just portable, performance portable.
- With Kokkos, simple things stay simple (parallel-for, etc.). i.e., it's no more difficult than OpenMP.
- Advanced performance-optimizing patterns are simpler with Kokkos than with native versions.
 - i.e., you're not missing out on advanced features.