

20180932: WIECLAW Manon L3: TD B / Com G8 TE605-DE (08/03/2021) A001

Ne rien inscrire dans ce cadre

Prénom Mamom.

Nom WIECLAW

Promotion 2023

Groupe EOA

Promotion: L3

Module VHDL

TE605

Devoir Ecrit Horaire: 14h00-15h45

Examen sur table

Sujet rédigé par : ILKI (Didier MEIER)

Supports autorisés :

Calculatrice autorisée: non

Documents autorisés: non

Traducteur électronique: non

Dictionnaire: non

Consigne:

Merci de restituer : le sujet avec votre copie quadrillée

Rappel:

- Tous les appareils électroniques (téléphones portables, ordinateurs, tablettes, montres connectées, accès à internet ...) doivent être éteints et rangés.
- Il est interdit de communiquer.
- Toute fraude ou tentative de fraude fera l'objet d'un rapport de la part du surveillant et sera sanctionnée par la note zéro, assortie d'une convocation devant le conseil de discipline. Aucune contestation ne sera possible. Tous les documents et supports utilisés frauduleusement devront être remis au surveillant.
- Aucune sortie de la salle d'examen ne sera autorisée avant la moitié de la durée de l'épreuve.

	And the second second second second
	Ne rien inscrire dans ce cadre
	Ne rien inscrire dans ce cadre

TE605 - VHDL - DE 08/03/2021

3. On souhaite décrire en VHDL le fonctionnement « hardware » du bloc suivant :

Le bloc fonctionnel réalise un multiplexeur 2 vers 1 synchrone. Son fonctionnement est le suivant :

- A chaque front descendant de l'horloge clock :
 - o si l'entrée Sel_in est égale à '0' : la sortie S_out est égale A_in + 1 (addition)
 - o si l'entrée Sel_in est égale à '1' : la sortie S_out est égale B_ in 1 (soustraction)

Pour la synthèse VHDL, les types de signaux utilisés sont STD_LOGIC et STD_LOGIC_VECTOR.

3.1.1. Complétez alors la description ci-dessous de l'entité.

entity ma_fonction is

);

end ma_fonction;

3.1.2. Complétez l'architecture nommée ma_fonction_arch de l'entité ma_fonction permettant de décrire puis synthétiser ce bloc fonctionnel.

architecture ma_fonction_arch of ma_fonction is

VHDL

+2

Page 9 sur 10

D. Meier

begin

-- début de la description de l'architecture

myprocess: process (clack)

begin

when (clack' event and clock = `O') then

if (sel-in = `O') then

my-S-out = A-in+1;

else

my-S-out = B-in-1;

end if;

end process;

S-out = my-Sout;

end ma_fonction_arch;

VHDL

Page 10 sur 10

D. Meier

Réservé à la correction :

+3,5

NOM:	WIECLAW	
PRENOM:	Makan	

VHDL

Introduction:

Le devoir surveillé de programmation VHDL se décompose en trois parties distinctes et indépendantes :

- 1. Questions de cours (7 points)
- 2. Analyses de synthèses en VHDL (7 points)
- 3. Réalisation d'une synthèse en VHDL (6 points)

Vos réponses aux différentes questions sont à indiquer directement sur l'énoncé. L'ensemble du feuillet est à remettre obligatoirement au surveillant à la fin de l'examen.

La durée impartie à la réalisation de ce devoir surveillé est de 1h45min.

Bon travail!

1. Questions de cours

1.1. Que signifie l'acronyme VHDL?

VHDL significe VHSIC Handware Description Language.

VHSIC = very high speed integrated arcuit.

1.2. Quelles sont les 5 unités de base permettant de décrire la structure du langage VHDL ?

Les 5 unités sont:

- 1 des bibliothèques
- 2) Les unités de conception VHDL (entité, anchitecture, package...)
- 3 des unités d'instruction VHDL (séquentielles et concurentielles)
- @ Le support de l'information (variable, signaux...)
- 3 Le typage des objets. (std-logic-vector...)

1.3. L'entité « entity » permet-elle de décrire la vue externe ou interne d'une description matérielle ?

2'entité permet de décrire la vue externe.

TOIS

41

1.4. L'architecture « architecture » permet-elle de décrire la vue externe ou interne d'une description matérielle ?

L'architecture permet de décrire la vue interne.

195

VHDL

Page 2 sur 10

D. Meier

2.1.1. L'automate est-il initialisé (reset) de manière synchrone ou asynchrone (justifiez votre réponse) ?

2' automate est initialisé de manière as ynchrone car il n'est pas encapsulé dans la condition (clock'event and clock :'0').

2.1.2. L'évolution de l'automate s'effectue-t-elle sur front montant ou descendant de l'horloge d'entrée (clock) ?

dé l'horloge: clock = 'o'.

2.1.3. A l'aide d'un schéma, décrivez l'automate du code ci-dessus en respectant le codage binaire des états et en faisant apparaître les transitions entre états, les entrées et les sorties.

VHDL

Page 7 sur 10

D. Meier

Réservé à la correction :

13,8

2.1.4. Complétez, à l'aide du code précédent, le chronogramme suivant pour les sorties var_out et states en fonction des évolutions des différentes entrées.

2.2. On considère les extraits de codes VHDL du tableau suivant. Indiquez les fonctions logiques décrites par ces extraits (soyez précis dans vos descriptions).

Tous les signaux utilisés sont de types STD_LOGIC ou STD_LOGIC_VECTOR.

Extraits de codes VHDL	Fonctions logiques décrites ?
Myprocname1: process (clock, reset, preset)	Représente une basaule D
Begin if (preset = '1') then	
Qout <= '1';	wec un preset et synch
elsif (reset = '1') then	synch
Qout <= '0';	un reset asynchrone.
elsif (clock'event and clock = '1') then Qout <= Din;	um reset asymptotics.
end if;	0 1.2
End process ;	fu-t'!
Myprocname2 : process (Ain, Bin) Begin	c'est un comparateur
if (Bin < Ain) then	C est will configuration
gre <= '1'; equ <='0'; low <= '0';	asynchrone entre deux
elsif (Bin = Ain) then	asymmone entre all
gre <= '0'; equ <='1'; low <= '0';	- 0
else gre <= '0'; equ <='0'; low <= '1';	enties.
end if:	EVVVIII.
End process ;	
Myprocname3 : process (clock, reset)	
Begin	C'est un compteur
If (reset = '1') then Cntout <= "0000";	
elsif (clock'event and clock = '1') then	synchrone our 4 bits modulo 13
If (Cntout = "1100") then	35)1.6111.671.6
Cntout <= "0000";	ower un reset asynchrone,
else Cntout <= Cntout + 1;	,
end if;	compteur actif sur front
end if;	com quant and from
End process ;	montant.
Myprocname4 : process (clock)	c'est un inverseur
Begin if (clock'event and clock = '1') then	
Sout <= not Sout;	synchrone, sur front
end if:	, ,
=0-=0.0	montant.

+21

+0,5

+95

VHDL

Page 8 sur 10

D. Meier

Réservé à la correction :

F2.9

1.5. Pourquoi peut-on dire « au sein d'une architecture, tout est process ! »?

des process sont les éléments calculatoire de base au simulateur. Il y a les process explicités avec le mot de "process" et ceux implicites qui sont les instructions concurrentielles. Donc du point de vue de l'exécution tout est process.

~ oh ...

41

1.6. Quelles sont les principales différences entre un signal et une variable ?

Une variable est affectée post-compilation alors que les signaix doivent attendre la fin de l'exécution de quai? pour que la valeur dans eurs pilate leur soi affectée.

TU,\$

Namme de privisirie...

VHDL

Page 3 sur 10

D. Meier

Réservé à la correction :

11,3

1.7. Le langage VHDL permet-il d'effectuer des descriptions de schémas hiérarchiques ? Si oui, décrivez-en le principe.

Oui il permet d'effectuer des descriptions de schémas hiérarchique.

on déclare plusieurs composants qui seront tous reliés entre eux par des signaux. Il y aura un composant "principal" qui possèdera les entrées et sorties nécessaires aux composants internes.

1.8. Les corps des fonctions et les procédures contiennent-ils des instructions séquentielles ou concurrentielles ?

Les corps des fonctions et des pracess contienment des instructions séquentielles.

1.9. En VHDL, à quoi correspond le driver d'un signal ? Donnez un exemple de sa composition.

Le driver d'un signal ou pilote est la mémoire du signal, c'est un couple état-hune:

	0			
41,5		Ons	10ns	20ns
) (-	-1.1	`0'	`1'	`0'

VHDL

Page 4 sur 10

D. Meier

Réservé à la correction :

1.10. Décrivez, de manière synthétique, le principe de fonctionnement d'une simulation en VHDL (penser à la « roue temporelle »).

Une simulation VHDL fonctionne selon le principe d'une roue temporelle:

- 1 Tous les évènements non mûns présents dans les pilotes sont classés par ordre croissant des dates futures.
- 2) Le temps est avancé jusqu'au premier événement non mûr de la liste et va être supprimé de celle-ci. On affecte au signal la valeur présente dans le pilote.
 - 3) Cette affectation va déclencher un processus qui va affecter de nouvelles valeurs dans les pilotes des autres signaux ce qui va contribuer à une nouvelle liste.

On revient ensuite au 1.

VHDL

Page 5 sur 10

D. Meier

tı.

2. Analyses de synthèses en VHDL

2.1. On considère le code VHDL suivant représentant un automate :

```
library IEEE;
   use IEEE.STD_LOGIC_1164.ALL;
   use IEEE.STD_LOGIC_UNSIGNED.ALL;
  entity DS_Auto_1 is
    Port ( reset : in STD_LOGIC;
             clock : in STD_LOGIC;
             var_in : in STD_LOGIC;
             states : out STD_LOGIC_VECTOR (2 downto 0);
             var_out : out STD_LOGIC);
  end DS_Auto_1;
  architecture my_auto_arch of DS_Auto_1 is
             signal my_actual_state : STD_LOGIC_VECTOR (2 downto 0) := "000";
            signal my_next_state : STD_LOGIC_VECTOR (2 downto 0) := "000";
  begin
            my_state_evolution_process : process (reset, clock)
            begin
                       if (reset = '1') then
                                 my_actual state <= "111":
                       elsif (clock'event and clock = '0') then
                                 my_actual_state <= my_next_state;
                       end if:
            end process;
            my_state_calulation_process : process (my_actual_state, var_in)
            begin
                      case (my_actual_state) is
                                when "000" =>
                                           if (var_in = '0') then my_next_state <= "111";
                                           else my_next_state <= "001";
                                           end if;
                                when "001" =>
                                           my_next_state <= "010";
                                when "010" =>
                                           if (var_in = '0') then my_next_state <= "001";
                                           else my_next_state <= "011";
                                           end if;
                                when "011" =>
                                          my_next_state <= "100";
                                when "100" =>
                                          if (var_in = '1') then my_next_state <= "101";
                                          else my_next_state <= "011";
                                          end if;
                                when "101" =>
                                          my_next_state <= "110";
                                when "110" =>
                                          if (var_in = '1') then my_next_state <= "111";
                                          else my_next_state <= "101";
                                          end if;
                                when others =>
                                          my_next_state <= "000";
                     end case:
          end process;
          var_out <= '1' when (my_actual_state(1 downto 0) = "00") else '0';
          states <= my_actual_state;
end my_auto_arch;
```

VHDL

Page 6 sur 10

D. Meier

