Importing libraries and dataset and explore rows

```
In [19]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

In [20]: heart=pd.read_csv("D:\\Career\\Unified_Mentor_Intenship\\Heart Disease data\\He
heart.head(5)

Out[20]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

Checking The Shape of the Dataset

```
In [21]: print('The number of rows in the dataset ',heart.shape[0])
print('The number of columns in the dataset ',heart.shape[1])
```

The number of rows in the dataset 1025
The number of columns in the dataset 14

The detailing of the dataset

```
In [22]: heart.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1025 entries, 0 to 1024
         Data columns (total 14 columns):
           #
               Column
                         Non-Null Count Dtype
           0
               age
                         1025 non-null
                                          int64
                         1025 non-null
           1
               sex
                                          int64
           2
               ср
                         1025 non-null
                                          int64
           3
               trestbps
                        1025 non-null
                                          int64
           4
               chol
                         1025 non-null
                                          int64
           5
               fbs
                         1025 non-null
                                          int64
           6
               restecg
                         1025 non-null
                                          int64
           7
                         1025 non-null
               thalach
                                          int64
           8
                         1025 non-null
                                          int64
               exang
           9
               oldpeak
                         1025 non-null
                                          float64
           10
               slope
                         1025 non-null
                                          int64
                         1025 non-null
           11
               ca
                                          int64
           12
               thal
                         1025 non-null
                                          int64
           13
              target
                         1025 non-null
                                          int64
         dtypes: float64(1), int64(13)
         memory usage: 112.2 KB
```

This indicates there is no null values present in the dataset

Checking duplicates in the data

```
In [23]: heart.duplicated().sum()
Out[23]: 723
```

As this data has no uniqe id identifying different patient, so there will be possiblity for duplicates in this data with different patients. So Keeping all duplicates for further analysis

Get overall Statistics of the dataset

```
In [24]: heart.describe(include='all')
```

\sim		$\Gamma \cap A \cap$	
U	ut.	1 24	
_	٠	L — 1 J	

	age	sex	ср	trestbps	chol	fbs	restecg
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000
1							>

Draw Correlation Matrix

Heart Disease count (Presence or no Presence)?

Name: count, dtype: int64

This indicates heart disease presence is higher than individuals with no heart disease

Which sex has the most heart disease (Male or Female)?

```
In [28]: sns.countplot(x='sex',data=heart,hue='target')
   plt.legend(labels=['No-Disease','Disease'])
```

Out[28]: <matplotlib.legend.Legend at 0x1db572ff910>

It is clearly indicates that male (sex value 1) have higer presence of heart disease comapre to female (sex value 0)

Check Age Distribution in the Dataset

In [29]: sns.histplot(heart['age'],bins=20)
 plt.show()

Check Chest Pain Type

Chest pain type (4 values)

0:typical angina

1:atypical angina

2:non-anginal pain

3:asymptomatic

Chest Pain Distribution as per Target Variable

```
In [31]: sns.countplot(x='cp',data=heart,hue='target')
   plt.legend(labels=['No-Disease','Disease'])
   plt.show()
```


Fasting Blood Sugar Distribution According to the Target Variable

```
In [32]: sns.countplot(x='fbs',data=heart,hue='target')
    plt.legend(labels=['No-Disease','Disease'])
    plt.show()
```


Check Resting Blood Pressure Distribution

```
In [33]: sns.histplot(heart['trestbps'])
```

Out[33]: <Axes: xlabel='trestbps', ylabel='Count'>

Comparing Resting Blood Pressure with Sex

```
In [37]: f=sns.FacetGrid(heart,hue='sex',aspect=4)
f.map(sns.kdeplot,'trestbps',fill=True)
plt.legend(labels=['Male','Female'])
```

d:\files\Anaconda\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The
figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[37]: <matplotlib.legend.Legend at 0x1db572c6850>

Distribution of Serum Cholesterol

```
In [38]: sns.histplot(heart['chol'])
```

Out[38]: <Axes: xlabel='chol', ylabel='Count'>

In []: