期末模拟练习题 9

一、单项选择题

1. 直线
$$l$$
: $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z-3}{1}$ 与平面 π : $x-y+2z+4=0$ 的夹角为【 】.

A.
$$\pi$$
; B. $\frac{\pi}{6}$; C. $\frac{\pi}{3}$; D. $\frac{\pi}{2}$.

2. 设有直线
$$l$$
:
$$\begin{cases} x+3y+2z+1=0\\ 2x-y-10z+3=0 \end{cases}$$
及平面 π : $4x-2y+z-2=0$,则【 】.

A. $l//\pi$; B. l在 π 上; C. $l \perp \pi$; D. l与 π 斜交.

3. 函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0; \\ 0, x^2 + y^2 = 0. \end{cases}$$
 在点 $(0,0)$ 处

- A. 不连续但是偏导数存在; B. 不连续且偏导数不存在; C. 连续但是偏导数不存在; D. 连续且偏导数存在。

4. 级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} (1 - \cos \frac{\lambda}{n})$$

A. 发散 ; B. 条件收敛; C. 绝对收敛; D. 收敛性与λ的取值有关。

5. 设
$$f(x)$$
 是周期为 2 的函数,且 $f(x) = \begin{cases} 2, -1 < x \le 0, \\ x^3, 0 < x \le 1 \end{cases}$ 则 $f(x)$ 的 Fourier 级数

1. 在 x = -1 处

A. 发散; B. 收敛于 2; C. 收敛于 1; D. 收敛于 $\frac{3}{2}$.

1. 设
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} 都是单位向量,且 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$,则 \overrightarrow{a} · \overrightarrow{b} + \overrightarrow{b} · \overrightarrow{c} + \overrightarrow{c} + \overrightarrow{a} =______.

3. 函数 $z = x^2 - xy + y^2$ 在点 (1,1) 处沿梯度方向的方向导数为______

4. 设
$$f \in C^{(1)}$$
, $u = f(x - y, y - z, z - x)$, 则 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \underline{\hspace{1cm}}$.

5. 交换积分次序
$$\int_0^2 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy =$$
_______.

三、计算二重积分
$$I = \iint\limits_{D} \sqrt{x} dx dy$$
, 其中 D 为 $x^2 + y^2 \le x$ 。

四、计算曲线积分
$$I = \oint_L \frac{xdy - ydx}{4x^2 + v^2}$$
, 其中 L 为 $(x-1)^2 + y^2 = R^2(R > 1)$ 的逆时针方向.

五、计算曲面积分 $I = \iint_{\Sigma} x dy dz + y dz dx + z dx dy$, 其中 Σ 为介于 z = 1, z = 5 之间的柱面

 $x^2 + y^2 = 1$ 的外侧。

六、将函数 $f(x) = \frac{2x+1}{x^2+x-2}$ 展开成 x-2 的幂级数,并指出它的收敛区间.

七、求由曲面 $z = a + \sqrt{a^2 - x^2 - y^2}$ 与 $z = \sqrt{x^2 + y^2}$ 所围成的均匀立体对 z 轴的转动惯量。

八、求函数 f(x,y,z) = xyz 在条件 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (x > 0, y > 0, z > 0) 下的最大值。