Packet Switching: queueing delay, loss

queuing and loss:

- If arrival rate (in bits) to link exceeds transmission rate of link for a period of time:
 - packets will queue, wait to be transmitted on link
 - packets can be dropped (lost) if memory (buffer) fills up

How do loss and delay

OCCUr? packets *queue* in router buffers

- packet arrival rate to link (temporarily) exceeds output link capacity
- packets queue, wait for turn

free (available) buffers: arriving packets dropped (loss) if no free buffers

Four sources of packet delay

 $d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} +$

d_{proc}: nodarprocessing

- check bit errors
- determine output link
- typically < msec

d_{queue}: queueing delay

- time waiting at output link for transmission
- depends on congestion level of router

Four sources of packet delay

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} +$$

d_{trans}: transmession delay:

- L: packet length (bits)
- R: link bandwidth (bps)

•
$$d_{trans} = L/R$$
 d_{trans}
 d_{trans}
 d_{trans}
 d_{prop}
 d_{p

different

 d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed in medium (~2x10⁸ m/sec)

•
$$d_{\text{prop}} = d/s$$

Caravan analogy

- cars "propagate" at 100 km/hr
- toll booth takes 12 sec to service car (bit transmission time)
- car~bit; caravan ~ packet
- Q:How long until caravan is lined up before 2nd toll booth?

- time to "push" entire caravan through toll booth onto highway = 12*10 = 120 sec
- time for last car to propagate from 1st to 2nd toll both:
 100km/(100km/hr)= 1 hr
- A:62 minutes

Caravan analogy (more)

- suppose cars now "propagate" at 1000 km/hr
- and suppose toll booth now takes one min to service a car
- Q:Will cars arrive to 2nd booth before all cars serviced at first booth?
 - A: Yes! after 6 min, 1st car arrives at second booth; three cars still at 1st booth.

Queueing delay (revisited)

- R:link bandwidth (bps)
- L:packet length (bits)
- a: average packet arrival rate

- ❖ La/R ~ 0: avg. queueing delay small
- ❖ La/R > 1: avg. queueing delay large
- ❖ La/R > 1: more "work" arriving
 than can be serviced, average delay infinite!

I a/R -> 1