COMP 472 [or COMP 6721] Template for the Reports

(essentially, this is the LNCS template)

First Author¹, Second Author², Third Author³, and Fourth Author⁴

- ¹ ID-number1 your@email1.com
- ² ID-number2 your@email2.com
- 3 ID-number3 your@email3.com
- 4 ID-number4 your@email4.com

1 Heuristics

We defined 2 heuristics used by the Best-First Search and A* algorithms. They are as follows:

$$h_1(s) = \left| \frac{N_1^{(s)}}{5} \right| \tag{1}$$

$$h_2(s) = N_1^{(s)} (2)$$

where s denotes the current state and $N_1^{(s)}$ denotes the number of black dots in state s. Both heuristics count the number of black dots to estimate the cost of the cheapest path to the goal state.

In h_1 , we make the simplifying assumption that any move can flip up to 5 arbitrary nodes. Under this assumption, the cheapest path to reach the goal would simply be to flip 5 black dots at each step until all dots are white. This heuristic is intuitive since any move by the player must flip 5 dots, but it fails to discriminate between states whose number of black dots have the same quotient when divided by 5.

For example, consider arbitrary states $s_1 = 111110000$ and $s_2 = 100000000$ represented in string form. Then both $h_1(s_1) = 1$ and $h_2(s_2) = 1$, even though s_2 is a more desirable state by number of black dots alone.

The main strength of h_1 is that it is an admissible heuristic. This is true because h_1 assumes any move flips $min(5, N_1^{(s)})$ black dots and 0 white dots, whereas in reality a move would flip $at \ most \ 5$ black dots, with the remaining dots flipped being white. In addition, h_1 is clearly a consistent heuristic, which makes the A* algorithm optimal under h_1 [?] (For peter norvig's book)

 h_2 , on the other hand, simply counts the number of black dots on the board. This heuristic fixes the problem h_1 had in discriminating between states that were clearly different. Going back to our example, $h_2(s_1) = 5$ whereas $h_2(s_2) = 1$.

However, h_2 is not an admissible heuristic, since it over-estimates the cost to reach the goal in at least 1 case, namely when the only 5 black dots on the board are arranged in a cross shape. Here, $h_2(s) = 5$ when the true cost is 1.

Both heuristics suffer from the fact that the composition of the board is never taken into account. That is, they both rely solely on the number of black dots to estimate the cost function. On the other hand, both h_1 and h_2 are extremely simple heuristics to calculate, making them intuitive and their evaluations fast.

2 Difficulties

(This section might repeat what is said in kabir's section, specifically recursive vs iterative)

Difficulties arose in the first implementation of algorithm A*. We initally decided to implement both algorithms recursively to combat the memory limitations of the iterative DFS. However, we needed a way to keep a running count of the number of nodes visited to date instead of only during the current call stack.

Passing in a path_length variable to every call to recursive_a_star() and checking whether it hits a limit would only count the depth of a search down a given branch. Therefore, we ended up defining a simple Counter class that would be passed into every call to recursive_a_star() and count the number of calls. Using the Counter would avoid the counter resetting at the completion of each recursive call stack.

However, we soon realized that such an approach (without a closed list) would make the algorithm unable to distinguish between new and recurrent states, causing loops or repeated visits to certain states. It was ultimately decided that an iterative algorithm would perform much better, since the closed list is only limited by a constant max_l , whereas the in the DFS case, the closed list grew exponentially due to the branching factor. (Not sure if matteo's explaining this in his part)

3 Analysis and Experiments

We compare the results and performance of both heuristics for the iterative algorithm on our predefined test cases.

For our first test case, both heuristics perform identically, searching the same 4 nodes and reaching the same solution of 2 moves. Furthermore, we know from the properties of h_1 that this solution is optimal.

For our second case, only h_2 manages to find a solution while visiting less than $max_l = 100$ nodes. This is likely due to the fact that h_1 does not actively try to reduce the number of black dots when searching. This, coupled with the larger number of states a 3x3 board presents (as opposed to the 2x2) meant that the h_1 implementation spent much of its time visiting many irrelevant nodes.

Our final test case shows this with a grid size of 4x4 as well. h_1 fails to find a solution under the maximum number of nodes while h_2 is successful. Again, h_1 visits too many nodes that don't lead to a more favorable position. To illustrate this idea further, throughout the search path, h_2 never visits a state s with $g(s) > g(s_0)$, where s_0 denotes the starting state. h_1 , on the other hand, unable to discriminate easily between nodes, visits many states with $g(s) = g(s_0)$. (See appendix A)

In order to analyse time and memory usage, we set an unlimited number of nodes to visit in our search. This ensures that we can accurately compare both heuristics by examining their asymptotic performance (i.e., letting the algorithms solve each grid).

The results are as follows:

Table 1. A* runtimes and memory usage with h_1

Puzzle size	Max nodes	Runtime	Average memory used
2x2	∞	~ 0.03 seconds	15.0MiB
3x3	∞	$\sim 1.4 \text{ seconds}$	17.5MiB
4x4	∞	~ 10.4 seconds	18.7MiB

Table 2. A* runtimes and memory usage with h_2

Puzzle size	Max nodes	Runtime	Average memory used
2x2	∞	~ 0.06 seconds	13.5MiB
3x3	∞	~ 0.6 seconds	17.2MiB
4x4	∞	~ 0.6 seconds	17.3MiB

We can see again that h_1 takes significantly more time than h_2 to solve more complicated grids, with the memory usage being modest across all implementations. Again, detailed memory charts can be found in Appendix B.

(Maybe there should be a paragraph comparing all 3 algos?)

4 Appendices

4.1 Appendix A

```
2 0 2 1010010111001010
3 1 2 0010100101001010
3 2 1 0001100001001010
3 2 1 0010000110000010
3 2 1 001010010000100
3 1 2 0100000111001010
3 2 1 0100000101000110
3 2 1 0100000110000100
3 2 1 0100100100000010
3 1 2 0110110111001010
3 2 1 011001010000010
4 2 2 0110111110111000
4 3 1 0111000010000100
4 2 2 0111000011001010
4 3 1 0111100000000010
4 3 1 100000000010100
4 3 1 1000000010001011
4 3 1 1000000100000010
4 3 1 1000001000101000
4 2 2 1000001001100110
4 3 1 1000001001000001
4 3 1 1000001010000011
```

Fig. 1. Search path output of A* under h_1 on 4x4 test case. The third number represents the value of g(s)

```
8 0 8 1010010111001010
7 1 6 0010100101001010
6 2 4 0010000110000010
6 3 3 0001000010000010
6 2 4 0010100100000100
6 3 3 000110000000100
7 2 5 0001100001001010
7 1 6 0100000111001010
6 2 4 0100000110000100
6 3 3 0100000100001000
6 2 4 0100100100000010
6 3 3 1000000100000010
7 2 5 0100000101000110
7 1 6 1010010110000100
7 2 5 1000001010100100
7 3 4 1000001000101000
7 3 4 1000011001000000
7 2 5 1001010010000100
7 3 4 1001000001100000
7 3 4 100101000001000
7 2 5 1010000101100000
7 2 5 1010010100001000
7 1 6 1010110100000010
7 2 5 0110010100000010
7 3 4 0100001000100010
7 4 3 010000001010000
7 3 4 0101010000000010
7 2 5 1000101000100010
7 3 4 1000100001010000
7 2 5 1001110000000010
7 4 3 1100100000000000
5 5 0 000000000000000
```

Fig. 2. Search path output of A* under h_2 on 4x4 test case. The third number represents the value of g(s)

- 6 COMP 472 [or COMP 6721] F. Author et al.
- 4.2 Appendix B

Fig. 3. Memory usage of A* under h_1

Fig. 4. Memory usage of A* under h_2