Non-classical correlations in the language of Bayesian game theory

This title would literally make sense by the end!

Presentation by: Jabir

Institute: National Institute of Science Education and Research

Course: 9th semester thesis project

Supervised by: Prof. Sudhakar Panda, Prof. Andreas Winter, and Dr. Giannicola

Scarpa

Table of contents

My initial motivation

The general framework

Quantum formalism

Demonstrating Bell violation and Tsirelson's bound with CHSH game in Bayesian game-theoretic language

Conclusion

output.tex 1 💵 36

Table of contents (Back up slides)

Games!

What is a game?

What is Aumann's concept then?

Games with incomplete information

How would we bring in Aumann's concept here?

Correlations

output.tex 2 📭 36

My initial motivation

References for now and future

- The main reference until now (more work in progress):
 - Vincenzo Auletta, Diodato Ferraioli, Ashutosh Rai, Giannicola Scarpa, and Andreas Winter. Belief-invariant and quantum equilibria in games of incomplete information. Theoretical Computer Science, 895:151–177, dec 2021.
- An eye to keep on exploring profound implications in foundational physics (for the future):
 - Sayantan Choudhury, Sudhakar Panda, and Rajeev Singh. Bell violation in the sky. The European Physical Journal C, 77(2):1–181, 2017.

4 36 output.tex

n-player Bayesian game

- \odot A set of players: $[n] := \{1, 2, ..., n\}$
- ⊚ Action set for each player $i \in [n]$: A_i
 - Action profile $A = \times_i A_i$
- \odot Type set for each player: T_i
 - Type profile $T = \times_i T_i$
 - A joint distribution over type profiles P(t), where $t \in T$
- ⊚ Utility function for each player $i, v_i : A \times T \to \mathbb{R}$
- - Set of inputs it takes from player i: R_i
 - Set of outputs it gives to player i: S_i
 - The resulting correlation $Q(s \mid r)$, where $s \in S$ and $r \in R$

output.tex 5 📭 36

n-player Bayesian game > The easy depiction of the entire game!

n-player Bayesian game >_ The easy depiction

Communication equilibrium: If $\forall i \in [n], \forall t_i \in T_i$

$$\sum_{t_{-i},s,\lambda} P(t_{-i} \mid t_i) \Lambda(\lambda) Q(s \mid f(t,\lambda)) v_i(t,g(t,s,\lambda)) \ge$$

$$\sum_{t_i,s,\lambda} P(t_{-i} \mid t_i) \Lambda(\lambda) Q(s \mid f_i'(t_i,\lambda_i) f_{-i}(t_{-i},\lambda_{-i})) v_i(t,g_i'(t_i,s_i,\lambda_i) g_{-i}(t_{-i},s_{-i}\lambda_{-i}))$$

output.tex 7 📭 36

Quantum formalism

- Adviser assigns a finite-dimensional Hilbert space \mathcal{H}_i for each player $i \in [n]$
 - They can be any finite-level quantum system (a **qudit** register)
- \odot Implements a state ρ on the joint Hilbert space $\mathcal{H} := \bigotimes_i \mathcal{H}_i := \mathcal{H}_1 \otimes \mathcal{H}_2 \cdots \otimes \mathcal{H}_n$.
 - i.e., $\rho \in \mathcal{D}(\mathcal{H})$
- \odot Sends the assigned qudit register (\mathcal{H}_i) to each player $i \in [n]$ privately.
- Players then perform generalized measurement (POVM) $\{M_{a_i}^{t_i}\}_{a_i}$, to obtain the measurement outcome a_i , which would be their advice.
- ⊙ The correlation formed will be then $Q(a \mid t) = \text{Tr} \left(\rho(M_{a_1}^{t_1} \otimes M_{a_2}^{t_2} \otimes \cdots \otimes M_{a_n}^{t_n}) \right)$

8 36 output.tex

Quantum framework >_ The easy depiction

The canonical correlation formed:

$$Q(a \mid t) = \operatorname{Tr}\left(\rho(M_{a_1}^{t_1} \otimes M_{a_2}^{t_2} \otimes \cdots \otimes M_{a_n}^{t_n})\right)$$

output.tex 9 💵 36

Quantum correlation > Why non-signalling?

$$\sum_{s_{J} \in S_{J}} \bigotimes_{j \in J} M_{s_{j}}^{r_{j}} = \bigotimes_{j \in J} \sum_{s_{j}} M_{s_{j}}^{r_{j}} = \bigotimes_{j \in J} \mathbb{I}. \text{ So,}$$

$$\sum_{s_{J} \in S_{J}} q \left(s_{I}, s_{J} \mid r_{I}, r_{J} \right) = \sum_{s_{J} \in S_{J}} \operatorname{Tr} \rho \left(\bigotimes_{i \in I} M_{s_{i}}^{r_{i}} \otimes \bigotimes_{j \in J} M_{s_{j}}^{r_{j}} \right)$$

$$= \operatorname{Tr} \rho \left(\bigotimes_{i \in I} M_{s_{i}}^{r_{i}} \otimes \bigotimes_{j \in J} \mathbb{I} \right)$$

$$= \sum_{s_{J} \in S_{J}} \operatorname{Tr} \rho \left(\bigotimes_{i \in I} M_{s_{i}}^{r_{i}} \otimes \bigotimes_{j \in J} M_{s_{j}}^{r_{j}} \right)$$

$$= \sum_{s_{J} \in S_{J}} q \left(s_{I}, s_{J} \mid r_{I}, r_{J}' \right),$$

output.tex 10 📭 36

Demonstrating Bell violation and Tsirelson's bound with CHSH game in Bayesian game-theoretic language

The CHSH game

Objective:

$$LOC(S \mid R) \subset Q(S \mid R) \subset BINV(S \mid R)$$

The CHSH game

⊚
$$N = \{1, 2\}, T_i = \{0, 1\}, A_i = \{0, 1\}, P(t) = \frac{1}{4} \ \forall t \in T$$

• the utility function is described as:

$$v_{i=1,2}(t_1t_2, a_1a_2) = \begin{cases} 0 & \text{if } t_1 \cdot t_2 \neq a_1 \oplus a_2 \\ 1 & \text{if } t_1 \cdot t_2 = a_1 \oplus a_2 \end{cases}$$

spread it out:

	a t		01	10	11
$V_a^t = $	00	(1, 1)	(1, 1)	(1, 1)	(0,0)
	01	(0,0)	(0,0)	(0,0)	(1, 1)
	10	(0,0)	(0,0)	(0,0)	(1, 1)
	11	(1, 1) (0, 0) (0, 0) (1, 1)	(1, 1)	(1, 1)	(0,0)

12 36

The CHSH game > The strategy set

⊚
$$N = \{1, 2\}, T_i = \{0, 1\}, A_i = \{0, 1\}, P(t) = \frac{1}{4} \ \forall t \in T$$

o spread it out:

	a t	00	01	10	11
$V_a^t =$	00	(1, 1)	(1, 1)	(1, 1)	(0,0)
	01	(0,0)	(0,0)	(0,0)	(1, 1)
	10	(0,0)	(0,0)	(0,0)	(1, 1)
	11	(1,1) $(0,0)$ $(0,0)$ $(1,1)$	(1, 1)	(1, 1)	(0,0)

The strategy set of this "Bayesian game" is then:

$$A_i^{T_i} = \{g_i^1 : x \mapsto 0, g_i^2 : x \mapsto x, g_i^3 : x \mapsto x \oplus 1, g_i^4 : x \mapsto 1\}$$

13 36

The CHSH game >_ Nash equilibira

o payoff tensor:

	t a	00	01	10	11
$V_a^t =$	00	(1, 1)	(1, 1)	(1, 1)	(0,0)
	01	(0,0)	(0,0)	(0,0)	(1, 1)
	10	(0,0)	(0,0)	(0,0)	(1, 1)
	11	(1, 1) (0, 0) (0, 0) (1, 1)	(1, 1)	(1, 1)	(0,0)

The strategy set of this "Bayesian game" is then:

$$A_i^{T_i} = \{g_i^1 \,:\, x \mapsto 0, g_i^2 \,:\, x \mapsto x, g_i^3 \,:\, x \mapsto x \oplus 1, g_i^4 \,:\, x \mapsto 1\}$$

The Nash equlibria of this game are:

$$(g_1^1g_2^1), (g_1^1, g_2^2), (g_1^2, g_2^1), (g_1^2, g_2^3), (g_1^3, g_2^2), (g_1^3, g_2^4), (g_1^4, g_2^3), (g_1^4, g_2^4)$$

output.tex 14 💵 36

The CHSH game >_ Nash equilibira

o payoff tensor:

	t a	00	01	10	11
$V_a^t = $	00	(1, 1)	(1, 1)	(1, 1)	(0,0)
	01	(0,0)	(0,0)	(0,0)	(1, 1)
	10	(0,0)	(0,0)	(0,0)	(1, 1)
	11	(1, 1)	(1, 1)	(1, 1) (0, 0) (0, 0) (1, 1)	(0,0)

 The Nash equilibria of this game are(all are product distribution(deterministic), not a Local correlation!):

$$(g_1^1g_2^1), (g_1^1, g_2^2), (g_1^2, g_2^1), (g_1^2, g_2^3), (g_1^3, g_2^2), (g_1^3, g_2^4), (g_1^4, g_2^3), (g_1^4, g_2^4)$$

- \odot All gives the payoff profile (3/4, 3/4):
 - Although the number is correct, conceptually, this doesn't define the actual classical bound! (when it comes to conflicting interest games)

output.tex 15 💵 36

The CHSH game > Aumann's correlated equilibria

o payoff tensor:

- The convex hull of Nash equilibria forms a specific class of correlated equilibria.
- © Convex combination by maximal distribution:

$$Q(a \mid t) = \frac{1}{8} \delta_{a_1, g_1^1(t_1)} \delta_{a_1, g_2^1(t_2)} + \frac{1}{8} \delta_{a_1, g_1^1(t_1)} \delta_{a_1, g_2^2(t_2)} + \frac{1}{8} \delta_{a_1, g_1^2(t_1)} \delta_{a_1, g_2^1(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^2(t_1)} \delta_{a_1, g_2^3(t_2)} + \frac{1}{8} \delta_{a_1, g_1^3(t_1)} \delta_{a_1, g_2^2(t_2)} + \frac{1}{8} \delta_{a_1, g_1^3(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^3(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^3(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^3(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^3(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

$$+ \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)} + \frac{1}{8} \delta_{a_1, g_1^4(t_1)} \delta_{a_1, g_2^4(t_2)}$$

The CHSH game > Aumann's correlated equilibria

o payoff tensor:

spreading out the conditional probability distribution:

$$Q(a \mid t) = \begin{array}{|c|c|c|c|c|c|c|}\hline & t & 00 & 01 & 10 & 11\\\hline & & 00 & 3/8 & 3/8 & 3/8 & 1/8\\\hline & 01 & 1/8 & 1/8 & 1/8 & 3/8\\\hline & 10 & 1/8 & 1/8 & 1/8 & 3/8\\\hline & 11 & 3/8 & 3/8 & 3/8 & 1/8\\\hline \end{array}$$

output.tex 17 📭 36

The CHSH game _ Aumann's correlated equilibria

- This is the Local correlation!
- Conceptually, when speaking about Aumann's correlated advice of functions (strategies) in bayesian games, this is it!

0

 \odot Of course, the maximum payoff profile we get with this correlation is (3/4, 3/4)

output.tex 18 📭 36

Quantum correlated equilibrium > Non-local correlation

$$N = \{1, 2\}, T_i = \{0, 1\}, A_i = \{0, 1\}, P(t) = \frac{1}{4} \ \forall t \in T$$

Consider the quantum strategy (ρ , M^{t_1} , M^{t_2})

- $oldsymbol{\circ} \rho = |\phi^+\rangle\langle\phi^+| \text{ where } |\phi^+\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$
- O POVMs:

$$\begin{split} M_{a_1}^0 &= |\phi_{a_1}(\theta_1^0)\rangle \langle \phi_{a_1}(\theta_1^0)|, \quad M_{a_1}^1 &= |\phi_{a_1}(\theta_1^1)\rangle \langle \phi_{a_1}(\theta_1^1)| \\ M_{a_2}^0 &= |\phi_{a_2}(\theta_2^0)\rangle \langle \phi_{a_2}(\theta_2^0)|, \quad M_{a_2}^1 &= |\phi_{a_2}(\theta_2^1)\rangle \langle \phi_{a_2}(\theta_2^1)| \end{split}$$

where $\{|\phi_0(\theta_i^{t_i})\rangle = \cos\theta_i^{t_i}|0\rangle + \sin\theta_i^{t_i}|1\rangle$, $|\phi_1(\theta_i^{t_i})\rangle = -\sin\theta_i^{t_i}|0\rangle + \cos\theta_i^{t_i}|1\rangle$.

output.tex

The CHSH game > Non-local correlation

o payoff tensor:

$V_a^t =$	a t	00	01	10	11
	00	(1, 1)	(1, 1)	(1, 1)	(0,0)
	01	(0,0)	(0,0)	(0,0)	(1, 1)
	10	(0,0)	(0,0)	(0,0)	(1, 1)
	11	(1, 1)	(1, 1)	(1,1) (0,0) (0,0) (1,1)	(0, 0)

0

output.tex 20 💵 36

The CHSH game > Non-local correlation

$$Q(a \mid t) = \begin{array}{|c|c|c|c|c|c|c|c|}\hline & t & 00 & 01 & 10 & 11 \\\hline & 00 & \frac{1}{2}\cos^2(\theta_1^0 - \theta_2^0) & \frac{1}{2}\cos^2(\theta_1^0 - \theta_2^1) & \frac{1}{2}\cos^2(\theta_1^1 - \theta_2^0) & \frac{1}{2}\cos^2(\theta_1^1 - \theta_2^1) \\\hline & 01 & \frac{1}{2}\sin^2(\theta_1^0 - \theta_2^0) & \frac{1}{2}\sin^2(\theta_1^0 - \theta_2^1) & \frac{1}{2}\sin^2(\theta_1^1 - \theta_2^0) & \frac{1}{2}\sin^2(\theta_1^1 - \theta_2^1) \\\hline & 10 & \frac{1}{2}\sin^2(\theta_1^0 - \theta_2^0) & \frac{1}{2}\sin^2(\theta_1^0 - \theta_2^1) & \frac{1}{2}\sin^2(\theta_1^1 - \theta_2^0) & \frac{1}{2}\sin^2(\theta_1^1 - \theta_2^1) \\\hline & 11 & \frac{1}{2}\cos^2(\theta_1^0 - \theta_2^0) & \frac{1}{2}\cos^2(\theta_1^0 - \theta_2^1) & \frac{1}{2}\cos^2(\theta_1^1 - \theta_2^0) & \frac{1}{2}\cos^2(\theta_1^1 - \theta_2^1) \\\hline & (5) \end{array}$$

$$|\theta_1^0 - \theta_2^0| = |\theta_1^0 - \theta_2^1| = |\theta_1^1 - \theta_2^0| = \frac{\pi}{2} - |\theta_1^1 - \theta_2^1| \tag{6}$$

solution that gives maximum $(\theta_1^0, \theta_1^1) = (0, \frac{\pi}{4})$ and $(\theta_2^0, \theta_2^1) = (\frac{\pi}{8}, -\frac{\pi}{8})$

21 36

The CHSH game > Non-local correlation

6

$$Q(a \mid t) = \frac{1}{2} \begin{bmatrix} \cos^2 \frac{\pi}{8} & \cos^2 \frac{\pi}{8} & \cos^2 \frac{\pi}{8} & \sin^2 \frac{\pi}{8} \\ \sin^2 \frac{\pi}{8} & \sin^2 \frac{\pi}{8} & \sin^2 \frac{\pi}{8} & \cos^2 \frac{\pi}{8} \\ \sin^2 \frac{\pi}{8} & \sin^2 \frac{\pi}{8} & \sin^2 \frac{\pi}{8} & \cos^2 \frac{\pi}{8} \\ \cos^2 \frac{\pi}{8} & \cos^2 \frac{\pi}{8} & \cos^2 \frac{\pi}{8} & \sin^2 \frac{\pi}{8} \end{bmatrix}$$

0

	a t	00	01	10	11
$O(a \mid t) =$	00	0.43	0.43	0.43	0.07
$Q(a \mid t) =$	01	0.07	0.07	0.07	0.43
	10	0.07	0.07	0.07	0.43
	11	0.43	0.43	0.43	0.07

And the maximum payoff profile is: (0.85, 0.85)

output.tex 22 💵 36

The CHSH game >_ Super Quantum correlation

The CHSH game can be won with an average payoff profile (1,1) with the following non-signaling strategy:

$$Q(a \mid t) = \begin{array}{c|ccccc} & t & 00 & 01 & 10 & 11 \\ \hline 00 & 0.5 & 0.5 & 0.5 & 0 \\ 01 & 0 & 0 & 0 & 0.5 \\ 10 & 0 & 0 & 0 & 0.5 \\ 11 & 0.5 & 0.5 & 0.5 & 0 \end{array}$$
(9)

This correlation can only be achieved if the types are communicated to the advisor.

output.tex 23 📭 36

Conclusion

- We had a brief look at the general framework for games with incomplete information and quantum formalism.
- We saw a comprehensive demonstration of Bell violation and Tsirelson's bound using the popular CHSH game, but speaking in the language of Bayesian game theory and Aumman's concept.
- Although the CHSH game is simple and already well analyzed, my attempt was to propose a unique conceptual and comprehensive methodology for approaching any sophisticated games with incomplete information of conflicting interest.

output.tex 24 💵 36

Conclusion > Ideas and quests!

A new idea!

- o Games of complete information apparently have no actual quantum advantage.
- However Games of incomplete information can be somehow converted to games of complete information (induced normal form and agent normal form).
- What are the games with complete information that is actually in its induced or agent normal form of a game with incomplete information that must have a quantum advantage of non-local correlation?

A quest on focus:

Quantum advantage of separable states in conflicting interest games?

A quest on exploring(perhaps for the future):

• What will be the implication of the framework we are studying here for foundational physics experiments?

output.tex 25 💵 36

Thank You!

Games!

What is a game?

What is a game?

- An abstract object that has a finite number of "players."
- Each player has a set of "actions" to take.
- A player will have a "consequence." But what does that consequence depend on?
 - 1. The action that the player decides to take.
 - 2. The actions the "rest of the players" take.

Example:

```
(stay, stay) \implies (mad, mad)

(stay, cross) \implies (mad, happy)

(cross, stay) \implies (happy, mad)

(cross, cross) \implies (crash, crash)
```


output.tex 27 📭 36

Games!

What is Aumann's concept then?

What is this thing about Aumann's concept then?

An adviser comes in...

- Of course, to advise the players
 - · on what actions to take.
- But advice each players privately
 - For the betterment of all of them.
- Of course, then every player's actions will be correlated since they are listening to the same advisor.
 - So the advisor implements the advice in a way that any player disobeying the advice faces a bad consequence (**Aummann's correlated equilibrium!**).

Example:

```
Half of the time, advises:
(stay, cross) ⇒ (mad, happy)
Half of the time, advises:
(cross, stay) ⇒ (happy, mad)
```


output.tex 28 📭 36

Games!

Games with incomplete information

Games with incomplete information

What is this "incomplete information"?

- ⊙ Now, each player may have a "type".
- The consequence to a player now depends on:
 - the **type** of the player as well.
 - the types of other players as well.
- But a player does not know what type of players they are facing. But however, they
 may have a belief about other players' types (the incomplete information).

output.tex 29 💵 36

How would we bring in Aumann's concept here?

Would this be right?

output.tex 30 📭 36

How would we bring in Aumann's concept here?

Or this?

output.tex 31 📭 36

Correlations

So what is a "correlation" here?

- ⊙ Say Player 1 is "blue," and Player 2 is "red."
- O Players can be of types: {driver, walker}
- Players actions to choose: {stay, cross}

	a t			w d	WW
$Q(a \mid t) =$	S S	0	0	0	0
$Q(a \mid i) =$	s s c c s	1/2	0 1/2 1/2	1/2 1/2	0
	C S	1/2	1/2	1/2	0
		0	0	0	1

output.tex 32 💵 36

Correlations > Marginals

- Something that a player can learn about the other player's types
 - by observing the advice they receive multiple times on repeated events

$$Q(a \mid t) = \begin{array}{|c|c|c|c|c|c|c|c|}\hline t & d & d & w & w & d & w & w \\\hline S & S & 0 & 0 & 0 & 0 \\\hline S & C & 1/2 & 1/2 & 1/2 & 0 \\\hline C & S & 1/2 & 1/2 & 1/2 & 0 \\\hline C & C & 0 & 0 & 0 & 1 \\\hline \end{array}$$

$$Q(a_1 \mid t_1 \mathbf{d}) = \begin{array}{c|cccc} a_1 \backslash t_1 & \mathbf{d} & \mathbf{w} \\ \hline \mathbf{S} & 1/2 & 1/2 & , & Q(a_1 \mid t_1 \mathbf{w}) = \begin{array}{c|cccc} a_1 \backslash t_1 & \mathbf{d} & \mathbf{w} \\ \hline \mathbf{S} & 1/2 & 1/2 & & \end{array}$$

33 36

Correlations >_ Marginals

Signalling!

output.te

Correlations >_ Marginals

Non-signalling!

output.te

Correlations > Non-signalling (aka belief invariant) correlation

General:

For a subset $I \subset [n]$, let $R_I = \times_{i \in I} R_i$ and $S_I = \times_{i \in I} S_i$, a correlation $Q(s \mid r)$ is belief invariant if for all subsets $I \subset [n]$ and $I = [n] \setminus I$.

$$\sum_{s_{J} \in S_{J}} Q\left(s_{I}, s_{J} \mid r_{I}, r_{J}\right) = \sum_{s_{J} \in S_{J}} Q\left(s_{I}, s_{J} \mid r_{I}, r_{J}'\right) \ \, \forall s_{I} \in S_{I}, r_{I} \in R_{I}, r_{J}, r_{J}' \in R_{J}$$

36 36 output.tex