

Content

- Goals and Impact
- **Data Understanding and Preparation**
- Feature Engineering and Selection
- Modeling
- **Evaluation and Deployment**

What are we trying to achieve? Why do we care?

- Goal: predict game outcomes (win/loss) for 2018 "March Madness" tournament play
 - Use historical data and machine learning approach to make informed predictions
- No one has ever made a perfect bracket*
 - Record for streak for correct picks in men's is 39 games (2017)
 - No verified brackets that have been perfect in the Sweet 16
- We will predict pairwise matchups
 - All possible games in 2018 tourney

Data Understanding and Preparation

- Data used from Kaggle competition includes:
 - City locations, 1998-2017 tournament results, 1998-2018 regular season results, 1998-2018 tournament seeds
- Additional data used:
 - Brought in our own league information from NCAA
- Focus on detailed results from regular season/tourney each unit is a matchup
 - Contain game-level statistics from game played; merge with team-level info (seeds, league competitiveness)
- For prediction:
 - Most of the fields will be generated using feature engineering based on input above
 - Can't use game-level stats because games haven't been played, so use historical data and other metrics to represent relative strength of team to predict outcome

Feature Engineering and Selection

Win Probability

- Engineered feature from regular season
- Reflects a team's annual performance relative to its league
 - Field goals attempted / made
 - Free throws attempted / made
 - **Blocks**
 - Rebounds
 - **Assists**
 - Steals
 - 2 point goals
 - 3 point goals
 - Point Opportunities Developed
 - Opportunity Conversion Rate

League Bin Difference

- Difference in strength of leagues that each team belongs to
- Reflects the competitiveness of the opponents in games that generated win prob

Seed Difference Percentage

- Difference in seed between teams
- Relative to the values of each seed

$$\blacksquare$$
 1 vs. 2 = (2-1) / (1+2) = 1/3

Modeling - Two-Stage

Generate 'win probabilities'

Use regular season statistics for each team in each season to predict game outcomes

Gaussian Naive Bayes

Use the predicted probabilities as 'win probability' features

Predict Tournament Outcomes using Logistic Regression

- Win probability
- League bin difference
- Seed difference percentage

Evaluation

Evaluation with Cross validation:

Optimal model v.s. Baseline model

Metrics	Optimal model	Baseline model
Log Loss	0.442	0.457
Accuracy	0.782	0.781
F1 measure	0.782	0.781

ROC Curve

Deployment

#	∆1w	Team Name	Kernel	Team Members	Score @	Entries	Last
14	4	Courtney Carlsen			0.431160	1	1mo
15	^ 2	Akila Wajirasena			0.431223	2	1mo
16	▼ 1	GaneshN		7	0.431822	2	1mo
17	^ 2	Scottfree Analytics			0.432179	2	1mo
18	^ 7	Vignesh Shankar		•	0.433053	2	1mo

• Prediction:

- Win likelihood of every potential matchup in the 2018 NCAA Division I Women's Basketball Tournament
- Competitively against other teams in the Kaggle competition with 0.43159 Log Loss score on test data (#16/505)

• Extension and Support:

o Encouraged by our performance and plan to test this model in future years as well

