АлГем

Сергей Григорян

4 октября 2024 г.

Содержание

1	Лекция 9		3
	1.1	Пучок пл-тей	4
	1.2	Связка пл-тей	5
	1.3	Приложение к задачам стереометрии	5
		1.3.1 Прямая в пр-ве	7
		1.3.2 Формула угла между прямыми	8
		1.3.3 Расстояние от точки до прямой в пр-ве	9
		1.3.4 Формула расстояния между двумя скрещ. прямыми	9
2	Лекция 10		10
	2.1	Многочлены от нескольких переменных	10
		2.1.1 Основные понятия	10
		2.1.2 Мономиальное упорядочение	12
	2.2	Алгебраические кривые	14

1 Лекция 9

Утверждение 1.1. (ДСК)

$$\pi_i \colon A_i x + B_i y + C_i z + D_i = 0$$

$$\overline{n_i} = egin{pmatrix} A_i \ B_i \ C_i \end{pmatrix}$$
 - сопутствующий вектор для π_i

 $\Pi ycm v \pi_1 \cap \pi_2 = l$

Tогда за напр. вектор прямой l можно взять вектор:

$$\overline{u} \longleftrightarrow \begin{pmatrix} \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix} & \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix} & \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix} \end{pmatrix}$$

 \mathcal{A} оказательство. a) Вектор $\overline{u} \neq \overline{o}$. По утв. из пред. лекции $\overline{n_1} / |\overline{n_2}|$

$$\begin{bmatrix} \overline{n_1} || \overline{n_2} \iff \begin{pmatrix} A_1 \\ B_1 \\ C_1 \end{pmatrix} = \lambda \begin{pmatrix} A_2 \\ B_2 \\ C_2 \end{pmatrix} \end{bmatrix}$$

b) Покажем, что $\overline{u}||\pi_i, \forall i = 1, 2$:

$$\begin{cases} \overline{u}||\pi_{i}, \forall i = 1, 2\\ A_{i}u_{1} + B_{i}u_{2} + C_{i}u_{3} \stackrel{?}{=} 0 \end{cases} \Rightarrow \overline{u}||l\\ A_{i}\begin{vmatrix} B_{1} & C_{1}\\ B_{2} & C_{2} \end{vmatrix} + B_{i}\begin{vmatrix} C_{1} & A_{1}\\ C_{2} & A_{2} \end{vmatrix} + C_{i}\begin{vmatrix} A_{1} & B_{1}\\ A_{2} & B_{2} \end{vmatrix} \stackrel{?}{=} 0\\ \begin{vmatrix} A_{i} & B_{i} & C_{i}\\ A_{1} & B_{1} & C_{1}\\ A_{2} & B_{2} & C_{2} \end{vmatrix} \stackrel{?}{=} 0\\ 0 = V(\overline{n_{i}}, \overline{n_{1}}, \overline{n_{2}}) = \begin{vmatrix} A_{i} & A_{1} & A_{2}\\ B_{i} & B_{1} & B_{2}\\ C_{i} & C_{1} & C_{2} \end{vmatrix} \cdot V(\overline{e_{1}}, \overline{e_{2}}, \overline{e_{3}}) = 0\\ \Rightarrow \begin{vmatrix} A_{i} & A_{1} & A_{2}\\ B_{i} & B_{1} & B_{2}\\ C_{i} & C_{1} & C_{2} \end{vmatrix} = 0$$

Ч. Т. Д.

Замечание. B ПДСК: $\overline{u} = [\overline{n_1}, \overline{n_2}]$

1.1 Пучок пл-тей

<u>Определение</u> **1.1. Пучком пересекающихся пл-тей** в пр-ве наз-ся мн-во пл-тей в пр-ве, проходящих через фикс. прямую.

Определение 1.2. Пучком параллельных пл-тей в пр-ве наз-ся мнво всех пл-тей в пр-ве, параллельных фикс. пл-ти.

Теорема 1.1 (Об уравнении пучка пл-тей). Пусть две различные пл-ти π_i заданы своими общими ур-ями:

$$\pi_1$$
: $f_1(x, y, z) = A_1x + B_1y + C_1z + D_1 = 0$

$$\pi_2$$
: $f_2(x, y, z) = A_2x + B_2y + C_2z + D_2 = 0$

Тогда пучок, порождённые π_1, π_2 состоит из тех, и только тех пл-тей π , коор-ты точек кот. удовл. ур-ю:

$$\alpha f_1(x, y, z) + \beta f_2(x, y, z) = 0, (\alpha^2 + \beta^2 \neq 0)$$
 (1)

Доказательство. а) Пусть пл-ть π зад-ся ур-ем 1 с $\alpha^2 + \beta^2 \neq 0$. Пусть $\pi_1 \cap \pi_2 = l$.

$$f_1(l) = f_2(l) = 0$$

 $\alpha f_1(x, y, z) + \beta f_2(x, y, z)|_l = \alpha \cdot 0 + \beta \cdot 0 = 0$

 $\Rightarrow \pi$ принадлежит пучку, порожд. π_1, π_2 . Пусть $\pi_1 || \pi_2 \Rightarrow \overline{n_1} || \overline{n_2}$.

Тогда $\overline{n_\pi}=\alpha\overline{n_1}+\beta\overline{n_2}||\overline{n_1}||\overline{n_2}\Rightarrow\pi$ принадлежит пучку, порожд. π_1,π_2

b) Пусть π принадлежит пучку, порожд. π_1 и π_2 . Покажем, что π можно задать в виде 1

Пусть $X \in \pi, X \notin \pi_1, X \notin \pi_2$:

$$\alpha = f_2(X), \beta = -f_1(X)$$

 $f_2(X)f_1(x,y,z)-f_1(X)f_2(x,y,z)=0$ - ур-е π' , проход. через точку X, т. к.: $f_2(X)f_1(X)-f_1(X)f_2(X)=0$

 π' - также принадлежит пучку, порожд. пл-тями π_1,π_2

 $\pi \equiv \pi'$, т. к. π' проходит через l и содержит т. X

1.2 Связка пл-тей

Определение 1.3. Мн-во всех пл-тей в пр-ве, проходящих через фикс. точку наз-ся связкой пл-тей, а сама эта фикс. точка наз-ся центром связки.

Как задать?

- 1) Задать центр связки
- 2) Задать 3 пл-ти в V_3 , не принадл. одному пучку.

Теорема 1.2. Пусть связка пл-тей в пр-ве задаётся набором 3-ёх пл-тей:

$$\pi_i$$
: $f_i(x, y, z) = A_i x + B_i y + C_i z + D_i = 0, i = 1, 2, 3$

пересекающихся в одной точке X.

Тогда связка состоит из тех и только тех пл-тей, коор-ты точек кот-ых удовл. ур-ю:

$$\alpha f_1(x, y, z) + \beta f_2(x, y, z) + \gamma f_3(x, y, z) = 0, (\alpha, \beta, \gamma \in \mathbb{R}, \alpha^2 + \beta^2 + \gamma^2 \neq 0)$$

Идея док-ва:

$$\begin{cases} A_1x + B_1y + C_1z = -D_1 \\ A_2x_2 + B_2y + C_2z = -D_2 \\ A_3x + B_3y + C_3z = -D_3 \end{cases}$$
 СЛУ имеет ед. решение $\stackrel{\text{T. Kрамера}}{\Longleftrightarrow} \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix} \neq 0 \iff$

$$\iff (\overline{n_1},\overline{n_2},\overline{n_3}) \neq 0 \Rightarrow (\overline{n_1},\overline{n_2},\overline{n_3})$$
 - некомпл. \Rightarrow базис в V_3

 π принадлежит связке, $\overline{n}=\alpha\overline{n_1}+\beta\overline{n_2}+\gamma\overline{n_3}$

$$lpha f_1(x,y,z) + eta f_2(x,y,z) + \gamma f_3(x,y,z) = 0$$
 верно для центра связки

 \Rightarrow это ур-е пл-ти π

1.3 Приложение к задачам стереометрии

 ${\bf \underline{3 aд a 4 a}}$ 1.1 (Формула расстояния от точки до пл-ти (ПДСК)).

$$X \to \overline{r_X}, \pi \colon (\overline{r} - \overline{r_0}, \overline{n}) = 0$$

$$p(X,\pi) = \left| pr_{\overline{n}}(\overline{X_0 X}) \right| = \left| \frac{(\overline{X_0 X}, \overline{n})}{|\overline{n}|^2} \cdot \overline{n} \right| = \left| \frac{(\overline{X_0 X}, \overline{n})}{|\overline{n}|} \right| = \frac{|(\overline{r_X} - \overline{r_0}, \overline{n})|}{|\overline{n}|}$$

2) Пусть π : Ax + By + Cz + D = 0:

$$X \underset{(O,G)}{\longleftrightarrow} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$X_0 \underset{(O,G)}{\longleftrightarrow} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix}$$

$$\overline{r_X} - \overline{r_0} \underset{G}{\longleftrightarrow} \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix}$$

$$(\overline{r_X} - \overline{r_0}, \overline{n}) = A(x - x_0) + B(y - y_0) + C(z - z_0) = Ax + By + Cz - (Ax_0 + By_0 + Cz_0) =$$

$$= Ax + By + Cz + D$$

$$\Rightarrow p(X, \pi) = \frac{|Ax + By + Cz + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Определение 1.4. Углом между пл-тями α и β наз-ся линейный угол между прямыми, кот. образ. при пересечении α и β пл-тью γ , кот. перпендикулярна прямой пересечения α , β

Задача 1.2 (Ф-ла угла между двумя пл-тями (ПДСК)).

$$\pi_i \colon A_i x + B_i y + C_i z + D_i = 0, \overline{n_i} \longleftrightarrow \begin{pmatrix} A_i \\ B_i \\ C_i \end{pmatrix}$$
$$l_i \subset \pi_i$$
$$\cos \phi = |\cos \angle (\overline{n_1}, \overline{n_2})| = \frac{|(\overline{n_1}, \overline{n_2})|}{|\overline{n_1}| |\overline{n_2}|}$$

1.3.1 Прямая в пр-ве

Прямая задаётся точкой $(X_0 \in l)$ и направл. вектором $(\overline{a}||l)$.

Точка $X \in l \iff \overline{X_0X} = \overline{a}t, t \in \mathbb{R}$:

$$\iff \overline{r} - \overline{r_0} = \overline{a}t$$

$$\iff \overline{r} = \overline{r_0} + \overline{a}t \tag{2}$$

- векторное праметрическое ур-е

ДСК:

$$\begin{cases} x = x_0 + \alpha_1 t \\ y = y_0 + \alpha_2 t \\ z = z_0 + \alpha_3 t \end{cases}$$
 (3)

- коорд-ое параметрическое ур-е

Исключаем t:

$$t = \frac{x - x_0}{\alpha_1} = \frac{y - y_0}{\alpha_2} = \frac{z - z_0}{\alpha_3} \tag{4}$$

- каноническое ур-е прямой

Если $\alpha_1 = 0$, то:

$$\begin{cases} x - x_0 = 0 \text{ (пл-ть)} \\ \frac{y - y_0}{\alpha_2} = \frac{z - z_0}{\alpha_3} \text{ (пл-ть)} \end{cases}$$

<u>Утверждение</u> 1.2. Прямая $\frac{x-x_0}{\alpha_1} = \frac{y-y_0}{\alpha_2} = \frac{z-z_0}{\alpha_3}$ лежит в пл-ти:

$$\pi : Ax + By + Cz + D = 0 \iff$$

$$\begin{cases} Ax_0 + By_0 + Cz_0 + D = 0, (1) \\ A\alpha_1 + B\alpha_2 + C\alpha_3 = 0, (2) \end{cases}$$

Доказательство. а) Пусть прямая $l \subset \pi \Rightarrow (1)$, т. к. $X_0 \in \pi$

$$\overline{a}||\pi \Rightarrow (2)$$

b) Пусть вып-ся усл. (1), (2):

$$\begin{cases} (1) \Rightarrow X_0 \in \pi \\ (2) \Rightarrow \overline{a} || \pi \end{cases} \Rightarrow l \subset \pi$$

Утверждение 1.3. Прямая l_i : $\overline{r} = \overline{r_i} + \overline{a_i}t$, i = 1, 2 лежат в одной пл-ти векторы $\overline{a_1}$, $\overline{a_2}$, $\overline{r_2} - \overline{r_1}$ - компланарны.

Доказательство. а) Необходимость очевидна

b) Достаточность: пусть такие векторы компланарны. Если $\overline{a_1}||\overline{a_2}\Rightarrow l_1,l_2\subset\pi$ (т. к. $l_1||l_2)$

Пусть $\overline{a_1}$ / $|\overline{a_2}$. Тогда построим пл-ть π , проходящую через X_1 с напр. векторами $\overline{a_1},\overline{a_2}\Rightarrow \overline{X_1X_2}$ лежит в $\pi\Rightarrow X_2\in\pi\Rightarrow l_1,l_2\subset\pi$

<u>Следствие</u> 1.1. Прямые $\overline{r}=\overline{r_i}+\overline{a_i}t, i=1,2$ лежат в одной пл-ти \Longrightarrow :

$$(\overline{a_1}, \overline{a_2}, \overline{r_2} - \overline{r_1}) = \overline{o}$$

<u>Следствие</u> 1.2. Прямые l_1 и l_2 скрещиваются \iff $(\overline{a_1},\overline{a_2},\overline{r_2}-\overline{r_1}) \neq \overline{o}$

Следствие 1.3. Прямые l_1 и l_2 пересекаются (по точке) \iff

$$\begin{cases} (\overline{a_1}, \overline{a_2}, \overline{r_2} - \overline{r_1}) = 0 \\ \overline{a_1} / |\overline{a_2} \end{cases} \iff \begin{cases} (\overline{a_1}, \overline{a_2}, \overline{r_2} - \overline{r_1}) = 0 \\ [\overline{a_1}, \overline{a_2}] \neq \overline{o} \end{cases}$$

Следствие 1.4. Прямые l_1, l_2 парамельны $\iff \overline{a_1} || \overline{a_2} \iff [\overline{a_1}, \overline{a_2}] = \overline{o}$

Следствие 1.5. Прямые l_1 и l_2 совпадают $\iff \overline{a_1}||\overline{a_2}||\overline{r_2}-\overline{r_1}$

Определение 1.5. Углом между пересекающимися прямыми l_1, l_2 назся наименьший из двух смежных углов, образ. ими

1.3.2 Формула угла между прямыми

$$l_i$$
: $\overline{r} = \overline{r_i} + \overline{a_i}t$, $i = 1, 2$

Возьмём X_3 и проведём через неё $l_1'||l_1,l_2'||l_2,$ тогда:

$$\cos \phi = \frac{|(\overline{a_1}, \overline{a_2})|}{|\overline{a_1}| \cdot |\overline{a_2}|}$$

1.3.3 Расстояние от точки до прямой в пр-ве

Задача 1.3. Есть т. X с рад.-вектором r_X и прямая l в пр-ве l : $\overline{r} = \overline{r_0} + \overline{a}t$.

Решение.

$$p(X,1) = \frac{\left| S(\overline{X_0 X}, \overline{a}) \right|}{|\overline{a}|} = \frac{\left| [\overline{r_x} - \overline{r_0}, \overline{a}] \right|}{|\overline{a}|}$$

Пример.

$$[\overline{r}, \overline{a}] = \overline{b}, \overline{a} \neq \overline{o}, \overline{b} \perp \overline{a}$$

B кач-ве упр-я, можно найти представление этой прямой в векторном парам. виде.:

$$[\overline{r_x} - \overline{r_0}, \overline{a}] = [\overline{r_x}, \overline{a}] - \overline{b}$$

1.3.4 Формула расстояния между двумя скрещ. прямыми

Задача 1.4. Дано:

$$l_i : \overline{r} = \overline{r_i} + \overline{a_i}t, t \in \mathbb{R}, \overline{a_1} / |\overline{a_2}|$$

Всегда сущ-ют π_1, π_2 :

- a) $\pi_1 || \pi_2$
- b) $l_1 \subset \pi_1, l_2 \subset \pi_2$

Тогда:

 $p(l_1,l_2)=p(\pi_1,\pi_2)=h$ - высота параллелипипеда, построенного на векторах $\overline{X_1X_2},\overline{a_1},\overline{a_2}$

$$h = \frac{|V(\overline{r_2} - \overline{r_1}, \overline{a_1}, \overline{a_2})|}{|S(\overline{a_1}, \overline{a_2})|} = \left| \frac{(\overline{r_2} - \overline{r_1}, \overline{a_1}, \overline{a_2})}{[\overline{a_1}, \overline{a_2}]} \right|$$

<u>Замечание</u>. Прямые в пр-ве пересекаются $\iff (\overline{r_2} - \overline{r_1}, \overline{a_1}, \overline{a_2}) = 0$

2 Лекция 10

2.1 Многочлены от нескольких переменных

2.1.1 Основные понятия

Определение 2.1. Многочленом (Полиномом) над \mathbb{R} с переменными x,y,z наз-ся формальное алгебраическое выр-е:

$$P(x, y, z) = \sum_{i_1, i_2, i_3} a_{i_1 i_2 i_3} x^{i_1} y^{i_2} z^{i_3}$$

Эта сумма конечна. $a_{i_1i_2i_3} \in \mathbb{R}$

При этом $a_{i_1i_2i_3}x^{i_1}y^{i_2}z^{i_3}$ - моном (или одночлен).

Все подобные слагаемые полинома приведены, то получается **несо**кратимая запись мн-на.:

$$P(x_1, x_2, \dots, x_n) = \sum_{i_1, i_2, \dots, i_n} a_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

Замечание. Пустой многочлен (мн-н без одночленов) $\equiv 0$

Может ли мн-н от n переменных с ненулевой несокр. записью быть тождественно равным нулю?

Утверждение 2.1. Мн-н $P(x_1,\ldots,x_n)$ над \mathbb{R} с ненулевой несокр. записью $\not\equiv 0$

Доказательство. МММ:

• База: n = 1

$$P(x) = a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m, a_0 \neq m$$
$$\deg P = m$$

<u>Лемма</u> **2.1.** Mн-н P(x), $\deg P = m$, не может иметь более чем m различных корней.

Доказательство. МММ:

• База: m = 1:

$$P(x) = a_0 x + a_1$$

Корень: $\alpha = -\frac{a_1}{a_0}$

• Переход: пусть для $Q(x), \deg Q = m-1$ лемма доказана. Докажем для $P(x), \deg P = m.$

От противного: пусть P имеет более чем m различных корней (в поле \mathbb{R}):

$$\alpha_1, \alpha_2, \ldots, \alpha_s; s > m$$

$$\overset{\text{По т. Besy}}{\Rightarrow} P(x) = (x-\alpha_1)Q(x),$$
где $\deg Q = m-1$

Тогда $\alpha_2, \ldots, \alpha_s$ - корни Q(x). Покажем это:

$$P(\alpha_i) = (\alpha_i - \alpha_1)Q(\alpha_i)$$

$$0 = (\alpha_i - \alpha_1)Q(\alpha_i)$$

$$\alpha_i \neq \alpha_1 \Rightarrow Q(\alpha_i) = 0$$

Такми. образом, у Q имеется более чем m-1 различных корней!!! \Rightarrow **Лемма доказана.**

Переход: пусть для мн-на $Q(x_1,\ldots,x_{n-1})$ - утв. верно. Д-ем для $P(x_1,\ldots,x_n)$:

$$P(x_1, \dots, x_n) = Q_0(x_1, \dots, x_{n-1}) \cdot x_n^0 + Q_1(x_1, \dots, x_{n-1}) \cdot x_n^1 + Q_2(x_1, \dots, x_{n-1}) \cdot x_n^2 + \dots$$

Тогда среди множителей Q_0,\dots,Q_i,\dots тоже найдётся мн-н с ненулевой несокр. записью. Пусть этот мн-н $Q_i\Rightarrow$

$$\exists a_1, \dots, a_n \in \mathbb{R} \colon Q_i(a_1, \dots, a_{n-1}) \neq 0$$

Сл-но:

$$P(a_1, \dots, a_{n-1}, x_n) = Q_0(q_1, \dots, a_{n-1})x_n^0 + Q_1(a_1, \dots, a_{n-1})x_n^1 + \dots + Q_i(a_1, \dots, a_n-1)x_n^i + \dots$$

По доказанной лемме:
$$\exists b \in \mathbb{R} \colon P(a_1, \dots, a_{n-1}, b) \neq 0$$

Утверждение 2.2. Для всякого мн-на P, отличного от нуля, его несокр. запись единственна.

Доказательство. Пусть у мн-на есть две несокр. записи:

$$P(x_1, \dots, x_n) = \sum_{i_1, i_2, \dots, i_n} a_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

$$P(x_1, \dots, x_n) = \sum_{i_1, i_2, \dots, i_n} b_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

Тогда:

$$\sum (a_{i_1i_2...i_n} - b_{i_1i_2...i_n})x_1^{i_1}\dots x_n^i \equiv 0$$
 - несокр. запись.

Сл-но, по утв. 2.1, $a_{i_1...i_n} = b_{i_1...i_n}$

2.1.2 Мономиальное упорядочение

$$x_1^{\alpha_1}\dots x_n^{\alpha_n} \leftrightarrow (\alpha_1,\dots,\alpha_n)$$
 - упоряд. набор $lpha_i \geq 0, lpha_i \in \mathbb{Z}_{\geq 0}$

Множество таких наборов:

$$\{(\alpha_1,\ldots,\alpha_n),\alpha_i\in\mathbb{Z}_{\geq 0}\}=\mathbb{Z}_{\geq 0}^n$$

Определение 2.2. Упорядочение на мн-ве мономов (им соотв. наборов) наз-ся <u>линейным</u>, если

$$\forall x^{\alpha}, x^{\beta}$$
, вып-ся одно из условий: $x^{\alpha} < x^b \lor x^{\alpha} = x^{\beta} \lor x^{\alpha} > x^{\beta}$

Обозначение.

$$x^{\alpha} = : x_1^{\alpha} x_2^{\alpha_2} \dots x_n^{\alpha_n}$$

Если $x^{\alpha} > x^{\beta}$, то $\forall x^{\gamma} \hookrightarrow x^{\alpha} x^{\gamma} > x^{\beta} x^{\gamma}$

Определение 2.3. Мономиальным упорядочением на мн-ве мономов (или на мн-ве $\mathbb{Z}_{\geq 0}$) наз-ся такое биномиальное отношение " т. ч.:

- 1) "- линейно
- 2) Всякий раз, когда $x^\alpha>x^\beta \hookrightarrow x^\alpha x^\gamma>x^\beta x^\gamma, \forall x^\gamma$ (усл. сохранение порядка)

Пример. Лексикографическое упорядочение (LEX - упоряд.)

Определение 2.4. $\alpha > \beta$ если первая коор-ты, не равная 0, положительна, т. е.:

$$\alpha = (\alpha_1, \dots, \alpha_n)$$

$$\beta = (\beta_1, \dots, \beta_n)$$

$$\alpha - \beta = (\alpha_1 - \beta_1, \dots, \alpha_n - \beta_n)$$

$$(\alpha_i - \beta_i = 0, i < k) \land \alpha_k - \beta_k \neq 0 \Rightarrow (\alpha > \beta \iff \alpha_k - \beta_k > 0)$$

Пример. Градуированное лекс-ое упоряд. $(\alpha_1, ..., \alpha_n)$ и $(\beta_1, ..., \beta_n)$.

$$|\alpha| = \sum_{i=1}^{n} \alpha_i (cmeneнь набора)$$
 $\alpha > \beta, ecnu:$

- a) $|\alpha| > |\beta|$
- b) $Ecnu |\alpha| = |\beta|, mo \alpha \geq \beta$

<u>Пример</u>. (1,3,5) > (3,4,0)

Для упорядочения мн-нов будем пользоваться **градуированным лекс. упоряд.**.

Определение 2.5. Член ax^{α} наз-ся старшим членом мн-на $P = P(x_1, \dots, x_n)$, если:

$$\forall x^{\beta} \colon x^{\alpha} > x^{\beta}$$
, причём ax^{α}, bx^{β} присутствуют в P

Утверждение 2.3. Пусть P имеет старший слен ax^{α} . Q имеет старший член bx^{β} . Тогда старший член PQ это $abx^{\alpha}x^{\beta}$

Доказательство.

$$x^{\alpha}>x^{\alpha'}, x^{\alpha'}$$
 входит в член P $x^{\beta}>x^{\beta'}, x^{\beta'}$ входит в член Q $\Rightarrow x^{\alpha}x^{\beta}>x^{\alpha'}x^{\beta'}$

Определение 2.6. Пусть $P(x_1,\ldots,x_n)$ имеет старший член ax^{α} , тогда $\deg P=|\alpha|=\sum_{i=1}^n\alpha_i$

Следствие 2.1.

$$\deg(PQ) = \deg P + \deg Q$$

Доказательство. Пусть $P \neq 0$ и $Q \neq 0$. Пусть ax^{α} - ст. член P, bx^{β} - ст. член Q:

$$abx^{\alpha}x^{\beta}$$
 - ст. член PQ

$$\deg(PQ) = |\alpha + \beta| = \sum_{i=1}^{n} (\alpha_i + \beta_i) = \sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} \beta_i = |\alpha| + |\beta| = \deg P + \deg Q$$

Следствие 2.2.

$$deg(P+Q) \le max(deg P, deg Q)$$

 $\ensuremath{\mathcal{A}\!\mathit{okaзательство}}.$ Среди мономов P+Q нет мономов, кот. нет в P и Q

Замечание.

$$deg 0 = -\infty$$

2.2 Алгебраические кривые

 V_2 , с фикс. ДСК

Определение 2.7. Алгебраическая кривая в V_2 наз-ся мн-во M, коор-ты всех точек кот-ых удовл ур-ю:

$$P(x,y)=0$$
, где P - мн-н $\not\equiv 0$

Определение 2.8. Алгебраическая п-ть в V_3 наз-ся мн-во M:

$$P(x,y,z)=0,P$$
 - ненулевой мн-н.

Пример. • Порядок 1:

$$Ax + By + C = 0$$
 - прямая

$$Ax + By + Cz + D = 0$$
 - пл-ть

Утверждение 2.4. Объединение и пересечение алг-их n-тей (кривых) является алг-ой n-тью (кривой).

Доказательство. M,N - алг-ие п-ти

$$M \colon P(x,y,z) = 0$$

$$N \colon Q(x,y,z) = 0$$

$$M \cup N \colon P(x,y,z) \cdot Q(x,y,z) = 0$$

$$M \cap N \colon P^2(x,y,z) + Q^2(x,y,z) = 0$$

Задача 2.1. Д-ть, что если M - алг-я п-ть в V_3 , а π - пл-ть : $M \cap \pi \neq \emptyset$, то $M \cap \pi$ - алг-я кривая в пл-ти π .

<u>Решение</u>. Выбрать $(O, \overline{e_1}, \overline{e_2}, \overline{e_3})$: $(\overline{e_1}, \overline{e_2})$ - напр. векторы пл-ти π и далее очев.