A Survey on Type Theory and Logic

By Tora Ozawa

Why Study Logic/Type Theory?

- Proof assistants/automated theorem proving
- Programming language design
- Compilers and domain specific languages
- Ties with mathematics
- Pedagogical bridge

Formal Systems and "Objectivity" of math

- Mathematics is built on consistent axioms
- Examples:
 - Euclid's postulates
 - Gödel's Theorems
 - ZFC

Classical vs Constructive Logic

- Propositional/First Order Logic
 - Propositions, predicates, quantification
 - Used to formalize modern mathematics
- $\frac{A(y)}{A(y)}^{1} \frac{\overline{\forall x B(x)}^{2}}{B(y)}^{2} \\
 \frac{A(y) \wedge B(y)}{\overline{\forall y (A(y) \wedge B(y))}^{2}}^{2} \\
 \overline{\forall x B(x) \rightarrow \forall y (A(y) \wedge B(y))}^{2}^{2} \\
 \overline{\forall x A(x) \rightarrow (\forall x B(x) \rightarrow \forall y (A(y) \wedge B(y)))}^{1}$

- Constructive Logic
 - Not as canonical
 - Law of Excluded Middle/Double negation

$$\forall P, P \lor \neg P$$

The "Classic" Example

Prove that there exists rational a^b , for irrational a and b

- Consider $\sqrt{2}^{\sqrt{2}}$
 - If it is rational, then we are done
 - If it is not rational, then consider this number to the $\sqrt{2}$ power
- Have we actually found such a number?

Brouwer's Fixed Point theorem

- Every continuous function $f: B^2 \to B^2$ has a fixed point, i.e. f(x) = x for some x.
- Implies law of excluded middle
- "Earth Theorem"
- "Map theorem"

Functions and Computability

- Mathematical functions are just abstractions:
 - Pairs of input(s) and output(s)
 - $f: \mathbb{R} \to \mathbb{R}$
 - $f(x) = x^2$
 - $h: \mathbb{R} \to \mathbb{R}$
 - h(x) = 1 if P = NP, 0 if $P \neq NP$
 - Functions are computable without "choice" or LEM

"Usefulness"

- Is it the case that all nonconstructive proofs/ results are useless?
- Existence of Nash equilibrium, algebraic topology
- "The Topological Structure of Asynchronous Computation" by Maurice Herlihy and Nir Shavit

	Α	В
C	(1,1)	(2,3)
D	(4,1)	(2,2)

What is Type Theory?

- Again no "canonical" type theory
- Generally "constructive"
- Homotopy Type Theory
 - Ideas align with Category Theory
- A formal language

Judgements

- 4 kinds
 - Type A is well defined in a context:
 - $\Gamma \vdash A$ type
 - a is an "element" of type A:
 - $\Gamma \vdash a : A$
 - Judgemental equalities:
 - $\Gamma \vdash A \doteq B$ type
 - $\Gamma \vdash a \doteq b : A$

Curry Howard Correspondence

Types	Logic	Sets	Homotopy
\overline{A}	proposition	set	space
a:A	proof	element	point
B(x)	predicate	family of sets	fibration
b(x):B(x)	conditional proof	family of elements	section
0,1	⊥,⊤	\emptyset , $\{\emptyset\}$	Ø,*
A + B	$A \lor B$	disjoint union	coproduct
$A \times B$	$A \wedge B$	set of pairs	product space
$A \rightarrow B$	$A \Rightarrow B$	set of functions	function space
$\sum_{(x:A)} B(x)$	$\exists_{x:A}B(x)$	disjoint sum	total space
$\prod_{(x:A)} B(x)$	$\forall_{x:A}B(x)$	product	space of sections
Id_A	equality =	$\{(x,x)\mid x\in A\}$	path space A^I

Table 1: Comparing points of view on type-theoretic operations

Basic Types/Rules

Product Type

$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash b : B}{\Gamma \vdash (a,b) : A \times B}$$

$$\frac{\Gamma \vdash x : A \times B}{\Gamma \vdash pr_2(x) : B} \quad \frac{\Gamma \vdash x : A \times B}{\Gamma \vdash pr_1(x) : A}$$

Basic Types/Rules

Implication Type

$$\frac{\Gamma \vdash a : A \vdash b : B}{\Gamma \vdash \lambda(a : A).b : A \to B}$$

$$\frac{\Gamma \vdash f : A \to B \qquad \Gamma \vdash a : A}{\Gamma \vdash f(a) : B}$$

Basic Types/Rules

Pi Type

$$\frac{\Gamma \vdash x : A \vdash b : B(x)}{\Gamma \vdash \lambda(x : A).b : \prod_{x : A} B(x)}$$

$$\frac{\Gamma \vdash f : \prod_{x:A} B(x) \qquad \Gamma \vdash a : A}{\Gamma \vdash f(a) : B(x)}$$

A Formal Proof

$$x: A \times B \vdash pr_2(x): B \qquad x: A \times B \vdash pr_1(x): A$$

$$x: A \times B \vdash (pr_2(x), pr_1(x)): B \times A$$

$$\lambda(x: A \times B).(pr_2(x), pr_1(x)): \prod_{x: A \times B} B \times A$$

Inductive Types

Booleans

⊢ bool type

true: bool

false: bool

 $\Gamma, x : \text{bool} \vdash D(x) \text{ type}$

 $\Gamma \vdash a : D(\text{true})$

 $\Gamma \vdash b : D(\text{false})$

 $\Gamma, x : \text{bool} \vdash \text{ind}_{bool}(a, b, x) : D(x) \text{ type}$

Example

"Not" function

```
\Gamma, x : \operatorname{bool} \vdash \operatorname{bool}(x) \text{ type}
\Gamma \vdash \operatorname{false} : \operatorname{bool}(\operatorname{true})
\Gamma \vdash \operatorname{true} : \operatorname{bool}(\operatorname{false})
\overline{\Gamma, x : \operatorname{bool} \vdash \operatorname{ind}_{bool}(\operatorname{false}, \operatorname{true}, x) : \operatorname{bool}(x) \text{ type}}
\Gamma \vdash \lambda(x : \operatorname{bool}).\operatorname{ind}_{bool}(\operatorname{false}, \operatorname{true}, x) : \operatorname{bool} \rightarrow \operatorname{bool}(x) \text{ type}
```

Universes and Homotopy Type Theory

- Turns out more machinery is needed
 - Does 0 = 1?
- Universes: Types with "types as terms"
 - No more interpretation into sets
 - Streamlined category theory
- Interpretation of types as spaces

