Introduction to Latent Profile Analysis $Adam\ Garber$

Norwegian University of Science and Technology - A Course in Mplus Automation $\mbox{May 31, 2021}$

Figure. Gaussian mixture models. Data simulated from a 2-class model.

Lab preparation

Change starting location to folder 22-LPA

<pre>source("rep_functions.R")</pre>
<pre>change_here(glue("{project_location}/22-LPA"))</pre>
here()
[1] "/Users/agarber/github/NTNU-workshop/22-LPA"
Data source:
1. The first example closely follows the vignette used to demonstrate the tidyLPA package (Rosenberg, 2019): See detailed documentation of this model here
This model utilizes the PISA data collected in the U.S. in 2015. To learn more about this data see here.
To access the 2015 US PISA data in R use the following code: $devtools::install_github("jrosen48/pisaUSA15 library(pisaUSA15) open_codebook()$
2. The second examples utilizes 4 test score measures from the public-use dataset, The Longitudinal Survey of American Youth (LSAY): See documentation here
Load packages
<pre>library(naniar) library(tidyverse) library(haven) library(glue) library(MplusAutomation) library(here) library(janitor) library(gt) library(tidyLPA)</pre>
Load data
pisa <- pisaUSA15
Latent Profile Analysis

Figure. Picture adapted from tutorial (Rosenberg, 2019).

- model 1 Class-invariant / Diagonal: Equal variances, and covariances fixed to 0
- $\operatorname{\mathsf{model}}$ 2 Class-varying / Diagonal: Free variances and covariances fixed to 0
- model 3 Class-invariant / Non-Diagonal: Equal variances and equal covariances
- model 4 Free variances, and equal covariances
- model 5 Equal variances, and free covariances
- model 6 Class Varying / Non-Diagonal: Free variances and free covariances

Example 1: PISA dataset from the tidyLPA package

Enumerate using estimate_profiles():

- Estimate models with classes K = 1:3
- Model has 4 continuous indicators
- Default variance-covariance specifications (model 1)
- Add line scale() %>% to center indicator means

Plot 3-class model

Note: single imputation is used in this example as plot_profiles() requires complete cases

```
pisa[1:200,] %>%
    select(broad_interest, enjoyment, instrumental_mot, self_efficacy) %>%
    single_imputation() %>%
    estimate_profiles(3, package = "MplusAutomation") %>%
    plot_profiles(sd=FALSE)
```


Plot densities for classes k = 1:4

```
pisa[1:500, c("broad_interest","enjoyment")] %>%
  single_imputation() %>%
  estimate_profiles(1:4, package = "MplusAutomation") %>%
  plot_density()
```


Example 2: Math, Science, Physics, and Biology measures (LSAY).

Read in data

lsay_data <- read_csv("https://garberadamc.github.io/project-site/data/lsay_lab10.2_lpa.csv")</pre>

Run a quick enumeration

```
lpa_k14 <- lapply(1:4, function(k) {
    lpa_enum <- mplusObject(

    TITLE = glue("Class {k}"),

    VARIABLE = glue(
    "usevar = mth_scor-bio_scor;
    classes = c({k}); "),

ANALYSIS =</pre>
```

Plot 3-class profile

```
lsay_data[1:500,5:8] %>%
    single_imputation() %>%
    estimate_profiles(1:4, package = "MplusAutomation") %>%
    plot_profiles(sd=FALSE)
```


Figure. Here we see ordered solutions.

Compare model fit.

Title	Parameters	LL	BIC	aBIC	BLRT_PValue	T11_VLMR_PValue
Class 1	8	-46288.29	92640.89	92615.47	NA	NA
Class 2	13	-43352.36	86809.23	86767.93	0	0
Class 3	18	-42126.11	84396.93	84339.74	0	0
Class 4	23	-41433.72	83052.37	82979.29	0	0

References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Miller, J. D., Hoffer, T., Suchner, R., Brown, K., & Nelson, C. (1992). LSAY codebook. Northern Illinois University.

Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2017). Regression and mediation analysis using Mplus. Los Angeles, CA: Muthén & Muthén.

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

Rosenberg, J. M., van Lissa, C. J., Beymer, P. N., Anderson, D. J., Schell, M. J. & Schmidt, J. A. (2019). tidyLPA: Easily carry out Latent Profile Analysis (LPA) using open-source or commercial software [R package]. https://data-edu.github.io/tidyLPA/

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686