Mathematics for AI - Problem Sheet 2 Solutions

Question 1 [15%]

a) Three components of a probability space [6]

The three components that define a probability space are:[^1]

Sample Space (\Omega): The set of all possible outcomes. For two dice: $\Omega = \{(1,1), (1,2), (1,3), ..., (6,6)\}$ Total of 36 possible outcomes

Event Space (F): The collection of all possible events (subsets of the sample space) For example: "both dice show even numbers" = $\{(2,2), (2,4), (2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6)\}$

Probability Measure (P): A function that assigns probabilities to events For fair dice: P(each outcome) = 1/36 P must satisfy: $0 \le P(A) \le 1$ for any event A, and $P(\Omega) = 1$

b) Unfair dice [2]

If the dice are not fair, only the **probability measure** changes. The sample space and event space remain the same, but P(each outcome) is no longer 1/36. Some outcomes become more likely than others.

c) Summing dice values [3]

When we sum the dice values, the sample space changes to:

New sample space: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

The event space now consists of subsets of these sums

Probabilities are no longer uniform: P(sum = 7) = 6/36 = 1/6, but P(sum = 2) = 1/36

d) Thousand dice [4]

With 1000 dice, the probability distribution of the sum would approach a **normal distribution** due to the Central Limit Theorem.[^2]

Expected value: $E(sum) = 1000 \times 3.5 = 3500$

The distribution becomes bell-shaped and symmetric around 3500

Most values cluster near the mean, with very low probability of extreme values

This happens because we're adding many independent random variables

Question 2 [15%]

Setup: 4 red, 3 blue, 1 green ball (8 total). **With replacement** initially.

a) P(BG) [3]

 $P(BG) = P(Blue first) \times P(Green second)$

$$= (3/8) \times (1/8) = 3/64$$

b) P(G) [3]

P(G) = P(Green on first draw OR Green on second draw)

$$= P(G_1) + P(G_2) - P(G_1 \cap G_2)$$

$$= (1/8) + (1/8) - (1/8 \times 1/8)$$

$$= 1/8 + 1/8 - 1/64 = 8/64 + 8/64 - 1/64 = 15/64$$

c) $P(R_2|B_1)$ [3]

Since we replace the ball, the second draw is independent of the first.

$$P(R_2|B_1) = P(R_2) = 4/8 = 1/2$$

d) Without replacement [6]

i) P(BG) [2] $P(BG) = P(Blue first) \times P(Green second | Blue first) = (3/8) \times (1/7) = 3/56$

ii) P(G) [2]
$$P(G) = P(G_1) + P(G_2|not G_1) = (1/8) + (7/8) \times (1/7) = 1/8 + 1/8 = 1/4$$

iii) $P(R_2|B_1)$ [2] $P(R_2|B_1) = 4/7$ (since after removing a blue ball, 7 balls remain, 4 of which are red)

Question 3 [15%]

Given:

P(STEM) = 0.3, so P(non-STEM) = 0.7

P(Pass|STEM) = 0.8

P(Pass|non-STEM) = 0.6

Find: P(STEM|Pass)

Using Bayes' theorem:

 $P(STEM|Pass) = P(Pass|STEM) \times P(STEM) / P(Pass)$

First, find P(Pass): P(Pass) = P(Pass|STEM) \times P(STEM) + P(Pass|non-STEM) \times P(non-STEM) = $0.8 \times 0.3 + 0.6 \times 0.7 = 0.24 + 0.42 = 0.66$

Therefore: $P(STEM|Pass) = (0.8 \times 0.3) / 0.66 = 0.24 / 0.66 = 4/11 \approx 0.364$

Answer: 36.4%

Question 4 [15%]

Given: Average of 2 calls every 5 minutes, Poisson distribution

Find: Minimum agents needed so calls are on hold $\leq 1\%$ of time

For a Poisson distribution with $\lambda = 2:[^3]$

We need $P(X > n) \le 0.01$, where n is the number of agents available and X is the number of calls arriving.

Poisson Probability Calculations

For a Poisson distribution with parameter $\lambda = 2$:

Individual probability formula:

$$P(X=k) = \frac{e^{-2} \cdot 2^k}{k!}$$

Where $e^{(-2)} \approx 0.1353$

Individual probabilities:

$$P(X = 0) = (0.1353 \times 2^0) / 0! = 0.1353$$

$$P(X = 1) = (0.1353 \times 2^1) / 1! = 0.2706$$

$$P(X = 2) = (0.1353 \times 2^2) / 2! = 0.2706$$

$$P(X = 3) = (0.1353 \times 2^3) / 3! = 0.1804$$

$$P(X = 4) = (0.1353 \times 2^4) / 4! = 0.0902$$

$$P(X = 5) = (0.1353 \times 2^5) / 5! = 0.0361$$

$$P(X = 6) = (0.1353 \times 2^6) / 6! = 0.0120$$

${\bf Cumulative\ probabilities:}$

$$P(X \le 4) = 0.1353 + 0.2706 + 0.2706 + 0.1804 + 0.0902 = 0.9471$$

$$P(X \le 5) = 0.9471 + 0.0361 = 0.9832$$

$$P(X \le 6) = 0.9832 + 0.0120 = 0.9952$$

Analysis

We need $P(X > n) \le 0.01$:

With 6 agents:
$$P(X > 6) = 1 - P(X \le 6) = 1 - 0.9952 = 0.0048$$

With 5 agents:
$$P(X > 5) = 1 - P(X \le 5) = 1 - 0.9832 = 0.0168$$

Since P(X > 6) = 0.0048 < 0.01, we need enough agents to handle up to 6 calls without anyone being placed on hold.

Answer: 7 agents are needed

Question 5 [10%]

descriptive statistics, covariance and sample and population sizes[^4]

Data: [11, 31], [8, 16], [5, 21], [9, 34], [12, 14], [13, 17]

a) Covariance calculation [8]

First, find the means:

$$\bar{x} = \frac{11+8+5+9+12+13}{6} = \frac{58}{6} = 9.67$$

$$\bar{y} = \frac{31 + 16 + 21 + 34 + 14 + 17}{6} = \frac{133}{6} = 22.17$$

Sample covariance formula: $s_{xy} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})$

$\overline{x_i}$	y_i	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$	
11	31	1.33	8.83	11.74	
8	16	-1.67	-6.17	10.30	
5	21	-4.67	-1.17	5.46	
9	34	-0.67	11.83	-7.93	
12	14	2.33	-8.17	-19.04	
13	17	3.33	-5.17	-17.22	

$$Sum = 11.74 + 10.30 + 5.46 - 7.93 - 19.04 - 17.22 = -16.69$$

$$s_{xy} = \frac{-16.69}{5} = -3.34$$

b) Population vs Sample [2]

If this was the whole population, we would use the population covariance formula with denominator n instead of n-1:

$$\sigma_{xy}=\frac{-16.69}{6}=-2.78$$

The difference is we divide by n rather than n-1 for population covariance.

Question 6 [15%]

Given: $X \sim Uniform(0,1)$, $Y = e^x$

a) CDF of Y [6]

For $Y = e^x$ where $X \sim Uniform(0,1)$:

Range of Y: $[e^0, e^1] = [1, e]$

For $y \in [1, e]$: $F_Y(y) = P(Y \le y) = P(e^x \le y) = P(X \le \ln(y)) = \ln(y)$

(since $X \sim \text{Uniform}(0,1)$, so $F_X(x) = x$ for $x \in [0,1]$)

Therefore:

$$F_Y(y) = \begin{cases} 0 & \text{if } y < 1 \\ \ln(y) & \text{if } 1 \leq y \leq e \\ 1 & \text{if } y > e \end{cases}$$

b) PDF of Y [4]

Using the transformation method for continuous random variables:

$$f_Y(y) = f_X(x(y)) \left| \frac{dx}{dy} \right|$$

Where:

$$\begin{split} y &= e^x \Rightarrow x = \ln(y) \\ \frac{dx}{dy} &= \frac{d}{dy}[\ln(y)] = \frac{1}{y} \\ f_X(x) &= 1 \text{ for } x \in [0,1] \end{split}$$

Therefore:

$$f_Y(y) = f_X(\ln(y)) \left| \frac{1}{y} \right| = 1 \cdot \frac{1}{y} = \frac{1}{y}$$

for $y \in [1, e]$, and 0 otherwise.

c) E(Y) [^5]

Using the definition of expected value for continuous random variables:

$$E(Y) = \int_1^e y \cdot \frac{1}{y} dy = \int_1^e 1 dy = [y]_1^e = e - 1$$

Answer: $E(Y) = e - 1 \approx 1.718$

Question 7 [15%]

Using info learnt from Zedstatistics website [4]

Data: 1.647, 1.695, 1.703, 1.727, 1.784, 1.651, 1.764, 1.723

a) Hypotheses [4]

Ho: $\mu = 1.75$ (filament meets industry standard)

 H_1 : $\mu \neq 1.75$ (filament does not meet industry standard)

b) P-value analysis [6]

Sample statistics:

$$n = 8$$

$$\bar{x} = \frac{1.647 + 1.695 + 1.703 + 1.727 + 1.784 + 1.651 + 1.764 + 1.723}{8} = 1.712$$

s = 0.048 (sample standard deviation)

Test statistic:
$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{1.712 - 1.75}{0.048/\sqrt{8}} = \frac{-0.038}{0.017} = -2.24$$

With df = 7 and α = 0.05 (two-tailed), critical value $\approx \pm 2.365$

Since |t| = 2.24 < 2.365, we **fail to reject Ho**.

The p-value $\approx 0.06 > 0.05$, so the filament should be **approved**.

c) Type of test [2]

This is a **two-tailed test** because we're testing whether the diameter differs from 1.75mm (either too high or too low).

d) Type I and II Errors [2]

Type I Error: Rejecting good filament (saying it's defective when it's actually fine)

Consequence: Wasted materials and production costs

Type II Error: Accepting bad filament (saying it's fine when it's actually defective)

Consequence: Poor quality products reach customers, reputation damage

e) Reducing error risk [1]

Increase sample size - taking more measurements would reduce the standard error and make the test more reliable.

REFERENCES:

[^1] Bath University. (2024). Course Materials. Retrieved from

https://engage.bath.ac.uk/learn/mod/page/view.php?id=289625&forceview=1

[^2] Ross, S. M. (2017). A First Course in Probability (10th ed.). Pearson. Chapter 8: Limit Theorems.

[^3] Ross, S. M. (2017). *A First Course in Probability* (10th ed.). Pearson. Chapter 4.7: The Poisson Random Variable.

[^4] Zed Statistics. (2024). Covariance and Descriptive Statistics [Video series]. YouTube. https://www.youtube.com/@zedstatistics

[^5] Ross, S. M. (2017). *A First Course in Probability* (10th ed.). Pearson. Chapter 5 Continuous Random Variables

Some formatting by copilot inside visual studio code.