데이터 마이닝 최종발표

고객 보험 가입 예측

[4조]김용현 권락원 정의연 윤유정 박서연

INDEX

- 01 프로젝트 개요
- 02 변수 설명
- 03 전처리
- 04 모델 선정
- 05 성능 확인
- 06 결론

주제 선정

목표 효율적인 판촉을 위해 자동차 보험에 가입 가능성이 있는 고객 선별

활용 데이터

고객의 특성, 과거 보험 내역, 사고 여부, 판매 채널 경로 등등

Data Source: https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction

Data Mining을 활용하여 보험 가입여부 분류, 예측

프로젝트 개요 변수 설명 전처리 모델 선정 성능 확인 결 론

데이터 파악

data_A = pd,read_csv("train,csv")
data_A

	id	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage	Annual_Premium	Policy_Sales_Channel
0	1	Male	44	1	28.0	0	> 2 Years	Yes	40454.0	26.0
1	2	Male	76	1	3.0	0	1-2 Year	No	33536.0	26.0
2	3	Male	47	1	28.0	0	> 2 Years	Yes	38294.0	26.0
3	4	Male	21	1	11.0	1	< 1 Year	No	28619.0	152.0
4	5	Female	29	1	41.0	1	< 1 Year	No	27496.0	152.0
381104	381105	Male	74	1	26.0	1	1-2 Year	No	30170.0	26.0
381105	381108	Male	30	1	37.0	1	< 1 Year	No	40016.0	152.0
381106	381107	Male	21	1	30.0	1	< 1 Year	No	35118.0	160.0
381107	381108	Female	68	1	14.0	0	> 2 Years	Yes	44617.0	124.0
381108	381109	Male	46	1	29.0	0	1-2 Year	No	41777.0	26.0

381109 rows × 12 columns

Data Set: 12 columns, 381,109 records

변수 파악

Age of Customer
The total amount of annual premiums paid
Number of Days, Customer has been associated with the company(보험 가입 기간)
Male or Female
0: 면허 미보유, 1: 면허 보유
Unique code for the region of the customer
0: 가입한 차량 보험이 없음, 1: 가입한 차량 보험이 있음
Age of the Vehicle
0: 차량 사고가 발생한 적이 없음, 1: 차량 사고가 발생한 적이 있음
Anonymized Code for the channel of outreaching to the customer ie. Different Agents, Over Mail, Over Phone, In Person, etc.
0: 가입가능성 없음, 1: 가입가능성 있음

3개의 Numerical Data

7개의 Categorical Data

Target Data

수치형 데이터 파악 Annual_Premium Annual_Premium Response count 2630.0 0 56372 2630.0 1 8505 2 6098.0 0 7670.0 8739.0 70289 489663.0 70290 495106.0 70291 508073.0 0 70292 540165.0 100000 200000 300000 70293 540165.0 Annual_Premium

수치형 데이터 파악 Vintage Vintage Response count 0.0035 0.0030 0.0025 0.0020 ... 0.0015 -0.0010 0.0005 0.0000 Vintage

범주형 데이터 파악 **Driving_License** Gender Response = 0 Response = 1 Response = 1 350000 175000 300000 150000 250000 125000 200000 100000 150000 75000 100000 50000 50000 25000 0 0 Female Male Male Female Driving_License Driving_License Gender Gender Driving_License Response Response count Gender count Female 0 156835 41 Female 18185 0 333628 2 Male 0 177564 46869 28525 3 Male

범주형 데이터 파악

	Region_Code	Response	count
0	0.0	0	1847
1	0.0	1	174
2	1.0	0	899
3	1.0	1	109
4	2.0	0	3751
101	50.0	1	642
102	51.0	0	155
103	51.0	1	28
104	52.0	0	234
105	52.0	1	33

범주형 데이터 파악

Previous_Insured

	Previously_Insured	Response	count
0	0	0	159929
1	0	1	46552
2	1	0	174470
3	1	1	158

Vehicle_Age

	Vehicle_Age	Response	count
0	1-2 Year	0	165510
1	1-2 Year	1	34806
2	< 1 Year	0	157584
3	< 1 Year	1	7202
4	> 2 Years	0	11305
5	> 2 Years	1	4702

프로젝트 개요 변수 설명 전처리 모델 선정 성능 확인 결 론

범주형 데이터 파악

Vehicle_Damage

	Vehicle_Damage	Response	count
0	No	0	187714
1	No	1	982
2	Yes	0	146685
3	Yes	1	45728

Policy_Sales_Channel

	Policy_Sales_Channel	Response	count
0	1.0	0	1039
1	1.0	1	35
2	2.0	0	3
3	2.0	1	1
4	3.0	0	364
269	159.0	1	1
270	160.0	0	21304
271	160.0	1	475
272	163.0	0	2013
273	163.0	1	880

변수 변환

```
# 범주형 변수 중 str형식으로 되어있는 변수 0,1,2로 변경
# 범주형 변수: Gender, Driving_License, Region_Code, Previously_Insured, V
# Gender: Male-1, Female-0
data_A.loc[data_A["Gender"] == "Female", "Gender"] = 0
data_A.loc[data_A["Gender"] == "Male", "Gender"] = 1
# Vehicle_Age: <1-0, 1-2:1, >2:2
data_A.loc[data_A["Vehicle_Age"] == "< 1 Year", "Vehicle_Age"] = 0
data_A.loc[data_A["Vehicle_Age"] == "1-2 Year", "Vehicle_Age"] = 1
data_A.loc[data_A["Vehicle_Age"] == "> 2 Years", "Vehicle_Age"] = 2
# Vehicle_Damage: Yes-1, No-1
data_A.loc[data_A["Vehicle_Damage"] == "No", "Vehicle_Damage"] = 0
data_A.loc[data_A["Vehicle_Damage"] == "Yes", "Vehicle_Damage"] = 1
```

범주형 변수들에 숫자 값 부여

프로젝트 개요 변수 설명 전처리 모델 선정 성능 확인 결 론

MinMax scaler

```
from sklearn.preprocessing import MinMaxScaler
data_B = data_A
data_B['Age'] = (data_B['Age']-data_B['Age'].min())/(data_B['Age'].max()-data_B['Age'].min())
data_B['Annual_Premium'] = (data_B['Annual_Premium']-data_B['Annual_Premium'].min())/(data_B['Annual_Premium'].max()-data_B['Annual_Premium'].max()-data_B['Vintage'].min())
```

변수들의 단위가 달라 영향이 존재 MinMax Scaler를 이용하여 해결

전처리 전·후 비교

	id	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage	Annual_Premium	Policy_Sales_Channel	Vintage
0	1	Male	44	1	28.0	0	> 2 Years	Yes	40454.0	26.0	217
1	2	Male	76	1	3.0	0	1-2 Year	No	33538.0	26.0	183
2	3	Male	47	1	28.0	0	> 2 Years	Yes	38294.0	26.0	27
3	4	Male	21	1	11.0	1	< 1 Year	No	28819.0	152.0	203
4	5	Female	29	1	41.0	1	< 1 Year	No	27498.0	152.0	39

	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage	Annual_Premium	Policy_Sales_Channel	Vintage
0	1	0.369231	1	28.0	0	2	1	0.070368	26.0	0.716263
1	1	0.861538	1	3.0	0	1	0	0.057498	26.0	0.598616
2	1	0.415385	1	28.0	0	2	1	0.066347	26.0	0.058824
3	1	0.015385	1	11.0	1	0	0	0.048348	152.0	0.667820
4	0	0.138462	1	41.0	1	0	0	0.046259	152.0	0.100346

데이터 분리 및 Over Sampling

트레이님, 테스트 데이터 분리 X_train, X_test, y_train, y_test = train_test_split(data_B, res, test_size=0.3, random_state=0) X_train, X_val, y_train, y_val = train_test_split(data_B, res, test_size=0.2/0.7, random_state=0)

Smote 凶플림 // 모델설정(ratio 비율설정, Kind 是异位 설정) smote_nc = SMOTENC([0, 2, 3, 4, 5, 6, 8], random_state=0) X_resampled, y_resampled = smote_nc.fit_resample(X_train,list(y_train))

X_resampled

	Gender	Age	Driving_License	Region_Code	Previously_Insured	Vehicle_Age	Vehicle_Damage	Annual_Premium	Policy_Sales_Channel
0	0	0.076923	1	50.0	1	0	0	0.071106	152.0
1	0	0.600000	1	28.0	0	2	1	0.000000	158.0
2	1	0.784615	1	46.0	0	1	1	0.069060	11.0
3	0	0.046154	1	11.0	1	0	0	0.058925	152.0
4	0	0.046154	1	2.0	1	0	0	0.053913	152.0
477767	1	0.509545	1	46.0	0	1	1	0.070452	26.0
477768	1	0.239825	1	28.0	0	1	1	0.076413	26.0
477769	1	0.430769	1	28.0	0	1	1	0.072406	26.0
477770	0	0.225870	1	28.0	0	1	1	0.065035	26.0
477771	1	0.422980	1	28.0	0	1	1	0.054870	26.0
									•

정확한 학습을 위해 **SMOTENC** 기법 적용 Target 비율을 1:1로 조정

프로젝트 개요 변수 설명 전처리 모델 선정 성능 확인 결 론

Parameter

precision recall f1-score support 0.82 0.98 0.7095513 0.290.88 0.4413376 0.73108889 accuracy 0.63 0,63 0.79108889 macro avg 0.89 0.770.73108889 |weighted avg

Grid search 기법을 통해 최적의 Parameter 설정

max_depth: 70

min_samples_leaf: 8

min_samples_split: 40

n_estimators: 100

	precision	recall t	1-score	support
0 1	0,96 0,31	0,77 0,76	0,85 0,45	95513 13376
accuracy macro avg weighted avg	0,64 0,88	0,77 0,77	0,77 0,65 0,80	108889 108889 108889

Adaboost Ensemble

Confusion Matrix

[[82632 12881] [7450 5926]]

Classificat	tion Report			
	precision	recall	f1-score	support
0 1	0.92 0.32	0.87 0.44	0.89 0.37	95513 13376
accuracy macro avg weighted avg	0.62 0.84	0.65 0.81	0.81 0.63 0.83	108889 108889 108889

Adaboost

adaptive + boosting

간단한 약분류기들이 상호보완 하도록
단계적(순차적)으로 학습, 가중치 할당
예측의 정확도에 따라 가중치 변화

Bagging Ensemble

Confusion Matrix

[[64522_30991] [=1259_12117]]

Classification Report							
	precision	recall	f1-score	support			
0 1	0.98 0.28	0.68 0.91	0.80 0.43	95513 13376			
accuracy macro avg weighted avg	0.63 0.89	0.79 0.70	0.70 0.61 0.75	108889 108889 108889			

Bagging

bootstrap + aggregating 학습용 데이터셋을 변화시켜 각각의 베이스 모델들을 만드는 기법

불안정한 모델들의 안정성 개선가능

Bayes

Confusion Matrix

[[69293 26220] [5147 8229]]

Classification Report							
	precision	recall	f1-score	support			
0 1	0.93 0.24	0.73 0.62	0.82 0.34	95513 13376			
accuracy macro avg weighted avg	0.58 0.85	0.67 0.71	0.71 0.58 0.76	108889 108889 108889			

Bayes 베이즈 정리에 기반한 통계적 분류 가장 단순한 지도 중 하나.

Feature끼리 서로 독립이라는 조건필요

KNN

Confusion Matrix

[[79665 15848] [6797 6579]]

Classification Report							
	precision	recall	f1-score	support			
0 1	0.92 0.29	0.83 0.49	0.88 0.37	95513 13376			
accuracy macro avg weighted avg	0.61 0.84	0.66 0.79	0.79 0.62 0.81	108889 108889 108889			

kNN

새로운 데이터와 기존 데이터들간 거리를 측정 가까운 데이터들의 종류가 무엇인지 확인하여 새로운 데이터의 종류를 판 별하는 알고리즘

모든 데이터를 비교하므로 데이터가 많으면 처리시간 상당

Lightgbm

Confusion Matrix

[[74377 21136] [3507 9869]]

Classification Report							
	precision	recall	f1-score	support			
0 1	0.95 0.32	0.78 0.74	0.86 0.44	95513 13376			
accuracy macro avg weighted avg	0.64 0.88	0.76 0.77	0.77 0.65 0.81	108889 108889 108889			

Light GBM Light GBM은 다른 알고리즘과 다르게 Tree가 수직적으로 확장 즉, Light GBM은 leaf-wise 인 반면 다른 알고리즘은 level-wise 확장하기 위해서 max delta loss를 가진 leaf 를 선택, 동일한 leaf를 확장할 때, leaf-wise 알고리즘은 level-wise 알고리즘보다 더 많은 loss, 손실을 줄일 수 있음

Logistic Regression

Confusion Matrix

[[56307 39206] [295 13081]]

Classification Report							
	precision	recall	f1-score	support			
0 1	0.99 0.25	0.59 0.98	0.74 0.40	95513 13376			
accuracy macro avg weighted avg	0.62 0.90	0.78 0.64	0.64 0.57 0.70	1 08889 1 08889 1 08889			

Logistic Regression
Linear regression을 dependent
variable Y가 categorical variable인
경우로 확장한 것

가중치의 해석이 어려움

Random Forest

Confusion Matrix

[[67238 28275] [1636 11740]]

Classification Report								
	precision	recall	f1-score	support				
0 1	0.98 0.29	0.70 0.88	0.82 0.44	95513 13376				
accuracy macro avg weighted avg	0.63 0.89	0.79 0.73	0.73 0.63 0.77	1 08889 1 08889 1 08889				

Random Forest 결정 트리를 기반으로 여러 개의 결정트리 classifier를 생성 각자의 방식으로 sampling 하여 개별적으로 학습

훈련데이터에 과적합되는 경향이 있음

기대수익 = (E * A) * x - Ec

예측값 : E

실제값 : A

수익 : *x*

비용: c

(비용은 1로 가정)

최종 분류 결과

: # 랜덤포레스트 모델링(criterion:분류기준,n_estimators:나무 생성 수,min_samples_split:,max_features:최대 고려 특성 수,oob_score:정확도)

RF = RandomForestClassifier(criterion = 'entropy',n_estimators=100,min_samples_split=40,min_samples_leaf=8,max_features=4,max_depth=70,ran RF.fit(X_resampled, y_resampled)

4

RandomForestClassifier(criterion='entropy', max_depth=70, max_features=4, min_samples_leaf=8, min_samples_split=40, random_state=0)

y_pred_RF = RF.predict(X_test)

Test data [[79392 20849] [3960 10132]]		precision	recall	f1-score	support
	0 1	0.95 0.33	0.79 0.72	0.86 0.45	100241 14092
accurac macro av weighted av	g	0.64 0.88	0.76 0.78	0.78 0.66 0.81	114333 114333 114333

Grid search를 이용하여 찾은 parameter를 설정한 분류 결과, 모델중 가장 높은 성능을 보임

최종결론

최종목표:기대수익 및 Recall 최대화

Parameter 수정을 통한 최적화

'Random Forest' 모델을 채택

THANK YOU