

Regresi

Ledy Elsera Astrianty, S.Kom., M.Kom

Implementasi supervised learning

Capaian:

Mahasiswa dapat menjelaskan, menyiapkan, dan mengimplementasikan model regresi dengan Algoritma Regresi Linier Sederhana dan Regresi Lilier Berganda

Apa itu regresi?

ENGINESIZE CYLINDERS FUELCONSUMPTION_COMB CO2EMISSIONS 2.0 8.5 196 2.4 9.6 221 1.5 5.9 136 3.5 11.1 255 10.6 3.5 244 3.5 10.0 230 3.5 10.1 232 3.7 6 11.1 255 3.7 6 11.6 267 ? 9.2 2.4 4

x : variabel bebas

Regresi adalah proses memprediksi nilai kontinu

y : variabel tak bebas

Tipe Model Regresi

Regresi Sederhana:

- Regresi sederhana linier
- Regresi sederhana non-linier
- Contoh: memprediksi co2emission vs EngineSize dari semua mobil.

Regresi Variabel Jamak:

- Regresi variabel jamak linier
- Regreasi variabel jamak non-linier
- Contoh: meprediksi co2emission vs EngineSize dan Cylinders dari semua mobil.

Aplikasi Regresi

- Prakiraan penjualan produk
- Analisis kepuasan
- Estimasi harga
- Pendapatan pekerjaan
- dst.

Algoritma Regresi

- Linier Regression
- Polynomial Regression
- Support Vector Regression
- Decision Tree Regression
- Random Forest Regression
- LASSO Regression
- ANN Regression
- K-NN Regression
- dst.

Regresi Linier Sederhana:

Memprediksi co2emission vs EngineSize dari semua mobil

- variabel bebas (x): EngineSize
- variabel tak bebas (y): co2emission

Regresi Linier Variabel Jamak:

Memprediksi co2emission vs EngineSize dan Cylinders dari semua mobil

- variabel bebas (x): EngineSize, Cylinders, dst.
- variabel tak bebas (y): co2emission

Topologi Regresi Linier

Cara Kerja Regresi Linier

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

Cara Kerja Regresi Linier

Cara Mencari Parameter Model Terbaik

x₁ = 5.4 independent variable y= 250 actual Co2 emission of x1

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $\hat{y} = 340$ the predicted emission of x1

Error = y-
$$\hat{y}$$

= 250 - 340
= -90

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Estimasi Parameter

-	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	(2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	X ₁ 3.5	6	10.6	y 244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

$$\widehat{y} = \theta_0 + \theta_1 x_1$$

$$\theta_1 = \frac{\sum_{i=1}^{s} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{s} (x_i - \overline{x})^2}$$

$$\bar{x} = (2.0 + 2.4 + 1.5 + \dots)/9 = 3.34$$

$$\bar{y} = (196 + 221 + 136 + \dots)/9 = 256$$

$$\theta_1 = \frac{(2.0 - 3.34)(196 - 256) + (2.4 - 3.34)(221 - 256) + \dots}{(2.0 - 3.34)^2 + (2.4 - 3.34)^2 + \dots}$$

$$\theta_1 = 39$$

$$\theta_0 = \bar{y} - \theta_1 \bar{x}$$

$$\theta_0 = 256 - 39 * 3.34$$

$$\theta_0 = 125.74$$

Prediksi dengan Model Regresi Linier

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267
9	2.4	4	9.2	?

$$\hat{y} = \theta_0 + \theta_1 x_1$$

 $Co2Emission = \theta_0 + \theta_1 EngineSize$

Co2Emission = 125 + 39 EngineSize

 $Co2Emission = 125 + 39 \times 2.4$

Co2Emission = 218.6

Kelebihan Regresi Linier

- Ringan
- Tidak perlu tuning parameter
- Mudah dipahami dan diinterpretasikan

Regresi Linier Variabel Jamak (Berganda)

Contoh Regresi Linier Berganda

Efektivitas variabel-variabel bebas terhadap prediksi

 Apakah kegelisahan, kehadiran dosen, dan jenis kelamin mempunyai efek pada kinerja ujian mahasiswa?

Prediksi dampak perubahan

 Seberapa besar kenaikan/penurunan tekanan darah terhadap kenaikan/penurunan BMI dari pasien?

Prediksi Nilai Kontinu pada Regresi Linier Berganda

$$\begin{aligned} &Co2 \ Em = \theta_0 + \theta_1 Engine \ size + \theta_2 Cylinders + \ ... \\ &\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ ... + \theta_n x_n \\ &\hat{y} = \theta^T X \\ &\theta^T = [\theta_0, \theta_1, \theta_2, ...] \qquad X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ ... \end{bmatrix} \end{aligned}$$

Theta =
$$(X^TX)^{-1}X^TY$$

Figure 5: Co-efficient calculation using Normal Equation

MSE untuk menunjukkan error pada model

$$\hat{y} = \theta^T X$$
 $\hat{y}_i = 140$ the predicted emission of x_i
 $y_i = 196$ actual value of x_i
 $y_i - \hat{y}_i = 196 - 140 = 56$ residual error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

ENGI	NESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244
5	3.5	6	10.0	230
6	3.5	6	10.1	232
7	3.7	6	11.1	255
8	3.7	6	11.6	267

Estimasi Parameter Regresi Linier Berganda

Cara-cara mengestimasi parameter heta

Least Squares

- Operasi aljabar linier
- Perlu waktu yang lama untuk dataset yang besar (lebih dari 10000 baris)

Algoritma optimisasi

- Gradient Descent
- Metode yang sesuai apabila dataset sangat besar

Prediksi Menggunakan Regresi Linier Berganda

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS	0T-1125 62 14 1
)	2.0	4	8.5	196	$\theta^T = [125, 6.2, 14, \dots]$
1	2.4	4	9.6	221	$\hat{y} = 125 + 6.2x_1 + 14x_2 +$
2	1.5	4	5.9	136	1 2
3	3.5	6	11.1	255	Co2Em = 125 + 6.2EngSize + 140
1	3.5	6	10.6	244	
5	3.5	6	10.0	230	$Co2Em = 125 + 6.2 \times 2.4 + 14 \times 4$
6	3.5	6	10.1	232	
7	3.7	6	11.1	255	C-2Fm - 214.1
В	3.7	6	11.6	267	Co2Em = 214.1
9	2.4	4	9.2	?	

Thank You

