

Правильные семейства функций и порождаемые ими квазигруппы Комбинаторные и алгебраические свойства

Содержание доклада

- 1. Мотивация и основные определения
- 2. Правильные семейства функций
- 3. Эквивалентные определения правильности
- 4. Свойства правильных семейств

Содержание

- 1 Мотивация и основные определения
- 2 Правильные семейства функций
- 3 Эквивалентные определения правильности
- Овойства правильных семейств

«Обычная» криптография

В криптографии широко используются различные алгебраические структуры:

- \blacksquare поля: \mathbb{F}_q ;
- **в** коммутативные группы: \mathbb{F}_q^* , $\mathbb{E}(\mathbb{F}_q)$;
- **в** кольца (коммутативные, ассоциативные, с единицей): \mathbb{Z} , \mathbb{Z}_n ;
- **к**оды (векторные подпространства над конечными полями), решетки¹, ...

¹Bernstein, Buchmann и Dahmen, Post-quantum cruptography,

«Необычная» криптография

При этом в исследовательской литературе предлагаются к рассмотрению и более «экзотические» структуры, например:

- модули более общего вида²;
- **некоммутативные** группы и алгебры (например, группы кос, алгебры матриц, алгебра кватернионов и так далее)³;
- **неассоциативные структуры**: квазигруппы, квазигрупповые кольца и т.д 4 .

Именно на последние мы и посмотрим чуть подробнее.

²Нечаев, «Конечные квазифробениусовы модули, приложения к кодам и линейным рекуррентам».

³Myasnikov, Shpilrain и Ushakov, Non-commutative cryptography and complexity of group-theoretic problems; Молдовян, Молдовян и Молдовян, «Новая концепция разработки постквантовых алгоритмов цифровой подписи на некоммутативных алгебрах»; Романьков, Алгебраическая криптология: монография.

⁴Markov, Mikhalev и Nechaev, «Nonassociative Algebraic Structures in Cryptography and Coding»; Артамонов, «Квазигрунцындиних приложения»; Глухов, «О применениях квазигрупп в криптографии».

Используемые обозначения

Q	квазигруппа с операцией о				
k	размер множества $Q, k = Q $, значность логики				
\mathbb{E}_k	множество $\{0,\ldots,k-1\}$ (обычно предполагаем $\mathbb{E}_k=\mathbb{Z}_k$)				
F	семейство (набор) функций $F=(f_1,\ldots,f_n),$				
	$F \colon Q^n \to Q^n$				
f_i	$\emph{i-}$ я функция семейства \emph{F}				
n	размер семейства				
Func(Q)	множество функций $f\colon Q o Q$				
Perm(Q)	множество подстановок (биекций) на Q				

Еще немного об обозначениях

Примеры/определения

Как правило, НЕ мои.

Утверждения

Тоже не мои.

Леммы-теоремы-утверждения

Мои.

Квазигруппа

Квазигруппа

Множество Q с заданной на нём бинарной операцией $\circ: Q \times Q \to Q$, со следующим свойством: для любых $a, b \in Q$ существуют единственные $x, y \in Q$, такие что:

$$a \circ x = b,$$
 $y \circ a = b.$

Другими словами, операции **левого** L_a и **правого** R_a умножения (сдвиги)

$$L_a: Q \to Q, L_a(x) = a \circ x, R_a: Q \to Q, R_a(y) = y \circ a,$$

являются биекциями на Q.

По сути = группа без ассоциативности и единицы, но **с сокращением** как слева, так и справа.

Квазигруппа

Квазигруппа

Множество Q с заданной на нём бинарной операцией $\circ: Q \times Q \to Q$, со следующим свойством: для любых $a, b \in Q$ существуют единственные $x, y \in Q$, такие что:

$$a \circ x = b,$$
 $y \circ a = b.$

Другими словами, операции **левого** L_a и **правого** R_a умножения (сдвиги)

$$L_a: Q \to Q, L_a(x) = a \circ x, R_a: Q \to Q, R_a(y) = y \circ a,$$

являются биекциями на Q.

По сути = группа без ассоциативности и единицы, но **с сокращением** как слева, так и справа.

Квазигруппа

Квазигруппа

Множество Q с заданной на нём бинарной операцией $\circ: Q \times Q \to Q$, со следующим свойством: для любых $a, b \in Q$ существуют единственные $x, y \in Q$, такие что:

$$a \circ x = b,$$
 $y \circ a = b.$

Другими словами, операции **левого** L_a и **правого** R_a умножения (сдвиги)

$$L_a: Q \to Q, L_a(x) = a \circ x, R_a: Q \to Q, R_a(y) = y \circ a,$$

являются биекциями на Q.

По сути = группа без ассоциативности и единицы, но с сокращением как слева, так и справа.

Несколько примеров

- Q любая группа, например $Q = \mathbb{Z}_k$, $\circ = +$; $Q = \mathbb{Z}_k$, $\circ = -$ (не группа, т.к. $a (b c) \neq (a b) c$);
- (G,\cdot) группа, π , σ , τ подстановки на G, тогда можно рассмотреть изотоп

$$x \circ y = \tau(\pi(x) \cdot \sigma(y)).$$

Несколько примеров

- Q любая группа, например $Q = \mathbb{Z}_k$, $\circ = +$; $Q = \mathbb{Z}_k$, $\circ = -$ (не группа, т.к. $a (b c) \neq (a b) c$);
- (G,\cdot) группа, π , σ , τ подстановки на G, тогда можно рассмотреть **изотоп**:

$$x \circ y = \tau(\pi(x) \cdot \sigma(y)).$$

Латинский квадрат

- Квадратная таблица размера $k \times k$, заполнена элементами множества $\{0, \dots, k-1\}$, каждое элемент появляется **только один раз** в каждом столбце и каждой строке таблицы⁵.
- Таблица умножения квазигруппы $Q = \{q_1, \dots, q_k\}$ (на пересечении i-й строки и j-го столбца пишем $(q_i \circ q_j) \in Q)$ является латинским квадратом.

	1	2	3	4
	0	3	4	2
2	3	4	0	1
99	4	1	2	0
	2	0	1	3

⁵Denes и Keedwell. Latin squares and their applications.

Латинский квадрат

- Квадратная таблица размера $k \times k$, заполнена элементами множества $\{0, \dots, k-1\}$, каждое элемент появляется **только один раз** в каждом столбце и каждой строке таблицы⁵.
- Таблица умножения квазигруппы $Q = \{q_1, \dots, q_k\}$ (на пересечении i-й строки и j-го столбца пишем $(q_i \circ q_j) \in Q)$ является латинским квадратом.

$$\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 3 & 4 & 2 \\ 2 & 3 & 4 & 0 & 1 \\ 3 & 4 & 1 & 2 & 0 \\ 4 & 2 & 0 & 1 & 3 \end{bmatrix}$$

⁵Denes и Keedwell, Latin squares and their applications.

Пример: Е-преобразование

Пусть $x_1, \ldots, x_k, \ell \in Q$. Определим⁶ преобразование E_ℓ :

$$E_{\ell}(x_1 \dots x_k) = y_1 \dots y_k,$$

$$y_1 = \ell \circ x_1, \ y_{i+1} = y_i \circ x_{i+1}.$$

 $^{^6}$ Markovski и Bakeva, «Quasigroup string processing: Part 4».

Пример: Е-преобразование

Пусть $x_1, \ldots, x_k, \ell \in Q$. Определим⁶ преобразование E_ℓ :

$$E_{\ell}(x_1 \dots x_k) = y_1 \dots y_k,$$

$$y_1 = \ell \circ x_1, \ y_{i+1} = y_i \circ x_{i+1}.$$

 $^{^6}$ Markovski и Bakeva, «Quasigroup string processing: Part 4».

Пример: итерации Е-преобразований

- Пусть на Q задано несколько структур квазигруппы: \circ_1, \ldots, \circ_n .
- Можем ввести кратное E-преобразование:

$$E_{\ell_1,\ldots,\ell_n}(x) = E_{\ell_1}(\ldots(E_{\ell_n}(x))\ldots),$$

- Kаждое E_{ℓ_i} использует свою операцию \circ_i .
- \blacksquare Чтобы «отменить», нужно применить D, но в обратном порядке:

$$D_{\ell_1,\ldots,\ell_n}(y) = D_{\ell_n}\left(\ldots\left(D_{\ell_1}(y)\right)\ldots\right).$$

Пример: итерации Е-преобразований

- Пусть на Q задано несколько структур квазигруппы: \circ_1, \ldots, \circ_n .
- Можем ввести кратное *E*-преобразование:

$$E_{\ell_1,\ldots,\ell_n}(x) = E_{\ell_1}(\ldots(E_{\ell_n}(x))\ldots),$$

- Kаждое E_{ℓ_i} использует свою операцию \circ_i .
- Чтобы «отменить», нужно применить D, но в обратном порядке:

$$D_{\ell_1,\ldots,\ell_n}(y) = D_{\ell_n}\left(\ldots\left(D_{\ell_1}(y)\right)\ldots\right).$$

$Pаботы^7$.

- Для любых $\alpha = (a_1, \dots, a_m)$ и (c_1, \dots, c_k) уравнение $E_{\alpha}(x_1 \dots x_k) = c_1 \dots c_k$ имеет единственное решение (в силу обратимости E_{α}).
- Отооражение $E_a: Q \to Q$ задает марковскую цепь: если $X_1 \dots X_n$ случаиные независимые величины, распределенные на Q, то распределение вероятностей знаков $Y_1 \dots Y_n = E_a(X_1 \dots X_n)$ задаются матрицей переходных вероятностей (распределение Y_m зависит от распределения Y_{m-1} и не зависит от Y_{m-2}, \dots, Y_1).
- Распределение Y_i сходится к равновероятному (для достаточно большого n, по свойству марковских цепей).
- **Е**сли применяем кратное E-преобразование с кратностью ℓ , то распределение подстрок длины ℓ вида $Y_iY_{i+1}...Y_{i+\ell-1}$ сходится к равновероятному (для достаточно большого n).

⁷Bakeva и Dimitrova, «Some probabilistic properties of quasigroup processed strings useful for cryptanalysis»; Markovski, Gligoroski и Bakeva, «Quasigroup String Processing: Part 1»; Markovski и Bakeva, «Quasigroup string processing: Part 4».

$Pаботы^7$.

- Для любых $\alpha = (a_1, \ldots, a_m)$ и (c_1, \ldots, c_k) уравнение $E_{\alpha}(x_1 \ldots x_k) = c_1 \ldots c_k$ имеет единственное решение (в силу обратимости E_{α}).
- Отображение $E_a: Q \to Q$ задает марковскую цепь: если $X_1 \dots X_n$ случайные независимые величины, распределенные на Q, то распределение вероятностей знаков $Y_1 \dots Y_n = E_a(X_1 \dots X_n)$ задаются матрицей переходных вероятностей (распределение Y_m зависит от распределения Y_{m-1} и не зависит от Y_{m-2}, \dots, Y_1).
- Распределение Y_i сходится к равновероятному (для достаточно большого n, по свойству марковских цепей).
- Если применяем кратное E-преобразование с кратностью ℓ , то распределение подстрок длины ℓ вида $Y_iY_{i+1}\dots Y_{i+\ell-1}$ сходится к равновероятному (для достаточно большого n).

⁷Bakeva и Dimitrova, «Some probabilistic properties of quasigroup processed strings useful for cryptanalysis»; Markovski, Gligoroski и Bakeva, «Quasigroup String Processing: Part 1»; Markovski и Bakeva, «Quasigroup string processing: Part 4».

$Работы^7$.

- Для любых $\alpha = (a_1, \dots, a_m)$ и (c_1, \dots, c_k) уравнение $E_{\alpha}(x_1 \dots x_k) = c_1 \dots c_k$ имеет единственное решение (в силу обратимости E_{α}).
- Отображение $E_a: Q \to Q$ задает марковскую цепь: если $X_1 \dots X_n$ случайные независимые величины, распределенные на Q, то распределение вероятностей знаков $Y_1 \dots Y_n = E_a(X_1 \dots X_n)$ задаются матрицей переходных вероятностей (распределение Y_m зависит от распределения Y_{m-1} и не зависит от Y_{m-2}, \dots, Y_1).
- Распределение Y_i сходится к равновероятному (для достаточно большого n, по свойству марковских цепей).
- **В** Если применяем кратное E-преобразование с кратностью ℓ , то распределение подстрок длины ℓ вида $Y_iY_{i+1}\dots Y_{i+\ell-1}$ сходится к равновероятному (для достаточно большого n).

⁷Bakeva и Dimitrova, «Some probabilistic properties of quasigroup processed strings useful for cryptanalysis»; Markovski, Gligoroski и Bakeva, «Quasigroup String Processing: Part 1»; Markovski и Bakeva, «Quasigroup string processing: Part 4».

$Работы^7$.

- Для любых $\alpha = (a_1, \ldots, a_m)$ и (c_1, \ldots, c_k) уравнение $E_{\alpha}(x_1 \ldots x_k) = c_1 \ldots c_k$ имеет единственное решение (в силу обратимости E_{α}).
- Отображение $E_a: Q \to Q$ задает марковскую цепь: если $X_1 \dots X_n$ случайные независимые величины, распределенные на Q, то распределение вероятностей знаков $Y_1 \dots Y_n = E_a(X_1 \dots X_n)$ задаются матрицей переходных вероятностей (распределение Y_m зависит от распределения Y_{m-1} и не зависит от Y_{m-2}, \dots, Y_1).
- Распределение Y_i сходится к равновероятному (для достаточно большого n, по свойству марковских цепей).
- **Е**сли применяем кратное E-преобразование с кратностью ℓ , то распределение подстрок длины ℓ вида $Y_iY_{i+1}...Y_{i+\ell-1}$ сходится к равновероятному (для достаточно большого n).

⁷Bakeva и Dimitrova, «Some probabilistic properties of quasigroup processed strings useful for cryptanalysis»; Markovski, Gligoroski и Bakeva, «Quasigroup String Processing: Part 1»; Markovski и Bakeva, «Quasigroup string processing: Part 4».

Механизмы

- ГПСЧ на основе итерации E-преобразований⁸.
- Блочный шифр $INRU^9$, E-преобразование используется в качестве нелинейного элемента.
- «Односторонняя функция» ¹⁰ и основанные на ней хеш-функции:

$$R(a_1 \ldots a_n) = E_{a_1} \left(\ldots E_{a_n} (a_1 \ldots a_n) \ldots \right).$$

⁸Dimitrova и Markovski, «On quasigroup pseudo random sequence generator»; Markovski, Gligoroski и Kocarev, «Unbiased random sequences from quasigroup string transformations».

⁹Tiwari и др., «INRU: A Quasigroup Based Lightweight Block Cipher».

¹⁰Gligoroski, Markovski и Kocarev, «Edon-R, An Infinite Family of Cryptographic Hash Functions.»; Gligoroski и др., «Cryptographic hash function Edon-R'»; Gligoroski, «On a family of minimal candidate one-way functions and one-way permutations.»: Gligoroski и Knapskog, «Edon-R (256,384,512)—an efficient implementation of Edon-R family of cryptographic hash all functions».

Основная идея: использовать в качестве нелинейного компонента примитива некоторое квазигрупповое преобразование.

- Низкоресурсная (легковесная/lightweight) хеш-функция GAGE и AEAD-алгоритм InGAGE (см. http://gageingage.org/, также¹¹).
- \blacksquare Поточный шифр Edon 80^{12} .
- Хэш-функция NaSHA¹³.

 $^{^{11}{\}rm Gligoroski},\ On\ the\ S\mbox{-}box\ in\ GAGE\ and\ InGAGE;\ Gligoroski\ и\ др.,\ «GAGE\ and\ InGAGE».}$

¹²Gligoroski, Markovski u Knapskog, «The stream cipher Edon80».

¹³Mileva и Markovski, «Quasigroup String Transformations and Hash Function Design: A Case Study: The NaSHA Hash Fu**nctakt из**

- Aсимметричные криптопримитивы аналоги пост-квантовых схем multivariate $cryptography^{14}$.
- Основная идея: подобрать такое нелинейное преобразование \mathcal{P} , что вычисление \mathcal{P} и \mathcal{P}^{-1} сделать «легко», а затем «скрыть» структуру \mathcal{P} , взяв обратимые линейные преобразования \mathcal{S} и \mathcal{T} и рассмотрев композицию $\mathcal{F}(x) = \mathcal{S}\left(\mathcal{P}\left(\mathcal{T}(x)\right)\right)$.
- В работах 15 предлагалось рассматривать в качестве нелинейной компоненты \mathcal{P} композицию E-преобразований.
- В работах¹⁶ предлагаемая система и её модификации были успешно атакованы (решение задачи MinRank с помощью базисов Грёбнера).

¹⁴Wolf и Preneel, Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations.

¹⁵Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups», «Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups»; Gligoroski и др., «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme».

¹⁶Faugère и др., «A polynomial-time key-recovery attack on MQQ cryptosystems»; Mohamed и др., «Algebraic attack on the work of the public key cryptosystem».

- Aсимметричные криптопримитивы аналоги пост-квантовых схем multivariate $cryptography^{14}$.
- Основная идея: подобрать такое нелинейное преобразование \mathcal{P} , что вычисление \mathcal{P} и \mathcal{P}^{-1} сделать «легко», а затем «скрыть» структуру \mathcal{P} , взяв обратимые линейные преобразования \mathcal{S} и \mathcal{T} и рассмотрев композицию $\mathcal{F}(x) = \mathcal{S}\left(\mathcal{P}\left(\mathcal{T}(x)\right)\right)$.
- В работах 15 предлагалось рассматривать в качестве нелинейной компоненты \mathcal{P} композицию E-преобразований.
- В работах¹⁶ предлагаемая система и её модификации были успешно атакованы (решение задачи MinRank с помощью базисов Грёбнера).

¹⁴Wolf и Preneel, Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations.

¹⁵Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups», «Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups»; Gligoroski и др., «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme».

¹⁶Faugère и др., «A polynomial-time key-recovery attack on MQQ cryptosystems»; Mohamed и др., «Algebraic attack on that the public key cryptosystem».

- Aсимметричные криптопримитивы аналоги пост-квантовых схем multivariate $crvptographv^{14}$.
- Основная идея: подобрать такое нелинейное преобразование \mathcal{P} , что вычисление \mathcal{P} и \mathcal{P}^{-1} сделать «легко», а затем «скрыть» структуру \mathcal{P} , взяв обратимые линейные преобразования \mathcal{S} и \mathcal{T} и рассмотрев композицию $\mathcal{F}(x) = \mathcal{S}\left(\mathcal{P}\left(\mathcal{T}(x)\right)\right)$.
- В работах 15 предлагалось рассматривать в качестве нелинейной компоненты ${\cal P}$ композицию Е-преобразований.

¹⁴Wolf in Preneel, Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations.

¹⁵Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups», «Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups»; Gligoroski и др., «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme».

¹⁶ Faugère и др., «A polynomial-time key-recovery attack on MQQ cryptosystems»; Mohamed и др., «Algebraic attack on thankswitch

- Aсимметричные криптопримитивы аналоги пост-квантовых схем multivariate cryptography 14 .
- Основная идея: подобрать такое нелинейное преобразование \mathcal{P} , что вычисление \mathcal{P} и \mathcal{P}^{-1} сделать «легко», а затем «скрыть» структуру \mathcal{P} , взяв обратимые линейные преобразования \mathcal{S} и \mathcal{T} и рассмотрев композицию $\mathcal{F}(x) = \mathcal{S}\left(\mathcal{P}\left(\mathcal{T}(x)\right)\right)$.
- В работах 15 предлагалось рассматривать в качестве нелинейной компоненты \mathcal{P} композицию E-преобразований.
- В работах¹⁶ предлагаемая система и её модификации были успешно атакованы (решение задачи MinRank с помощью базисов Грёбнера).

¹⁴Wolf и Preneel, Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations.

¹⁵Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups», «Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups»; Gligoroski и др., «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme».

¹⁶ Faugère и др., «A polynomial-time key-recovery attack on MQQ cryptosystems»; Mohamed и др., «Algebraic attack on the MQQ и public key cryptosystem».

- Схемы аналоги протокола Диффи-Хеллмана выработки общего ключа¹⁷, гомоморфное шифрование 18 : используются ППС/ПЛС-группоиды, луповые кольца над медиальными квазигруппами (изотопы абелевых групп с коммутирующими автоморфизмами).

¹⁷Барышников и Катышев. «Использование неассоциативных структур для построения алгоритмов открытого распределения ключей»: Катышев, Марков и Нечаев, «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей».

¹⁸Gribov. Zolotykh и Mikhalev. «A construction of algebraic cryptosystem over the quasigroup ring»; Грибов, «Гомоморфность некоторых криптографических систем на основе неассоциативных структур»; Марков, Михалёв и Кислицын, «Неассоциативные структуры в гомоморфной криптографии».

²⁰Shcherbacov. Elements of Quasiqroup Theory and Applications; Артамонов, «Квазигруппы и их приложения»; Глухомкомпания

- Схемы аналоги протокола Диффи-Хеллмана выработки общего ключа¹⁷, гомоморфное шифрование 18 : используются ППС/ПЛС-группоиды, луповые кольца над медиальными квазигруппами (изотопы абелевых групп с коммутирующими автоморфизмами).
- Приложения в теории кодирования 19...

¹⁷Барышников и Катышев. «Использование неассоциативных структур для построения алгоритмов открытого распределения ключей»: Катышев, Марков и Нечаев, «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей».

¹⁸Gribov. Zolotykh и Mikhalev. «A construction of algebraic cryptosystem over the quasigroup ring»; Грибов, «Гомоморфность некоторых криптографических систем на основе неассоциативных структур»; Марков, Михалёв и Кислицын, «Неассоциативные структуры в гомоморфной криптографии».

¹⁹Couselo и др., «Loop codes»; Markov, Mikhalev и Nechaev, «Nonassociative Algebraic Structures in Cryptography and Coding»; Гонсалес и др., «Групповые колы и их неассоциативные обобщения», «Рекурсивные МЛР-колы и рекурсивно лифференцируемые квазигруппы»: Марков и др., «Квазигруппы и кольца в колировании и построении криптосхем».

- Схемы аналоги протокола Диффи-Хеллмана выработки общего ключа¹⁷, гомоморфное шифрование¹⁸: используются ППС/ПЛС-группоиды, луповые кольца над медиальными квазигруппами (изотопы абелевых групп с коммутирующими автоморфизмами).
- Приложения в теории кодирования¹⁹...
- \blacksquare и многое другое²⁰.

¹⁷Барышников и Катышев, «Использование неассоциативных структур для построения алгоритмов открытого распределения ключей»; Катышев, Марков и Нечаев, «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей».

¹⁸ Gribov, Zolotykh и Mikhalev, «A construction of algebraic cryptosystem over the quasigroup ring»; Грибов, «Гомоморфность некоторых криптографических систем на основе неассоциативных структур»; Марков, Михалёв и Кислицын, «Неассоциативные структуры в гомоморфной криптографии».

¹⁹Couselo и др., «Loop codes»; Markov, Mikhalev и Nechaev, «Nonassociative Algebraic Structures in Cryptography and Coding»; Гонсалес и др., «Групповые коды и их неассоциативные обобщения», «Рекурсивные МДР-коды и рекурсивно дифференцируемые квазигруппы»; Марков и др., «Квазигруппы и кольца в кодировании и построении криптосхем».

 $^{^{20}}$ Shcherbacov, Elements of Quasigroup Theory and Applications; Артамонов, «Квазигруппы и их приложения»; Глуховко облани применениях квазигрупп в криптографии».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера $|Q| \times |Q|$; это много.
- \blacksquare Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого класса 21
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)²².
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой 23 , модульное вычитание 24).
- Функциональное задание квазигруппы: поговорим о нём подробнее.

июнь 2025 г.

²¹Chen, Knapskog u Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski u Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

²²Gligoroski и др., «Стуртодгарніс hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

²³ Марков, Михалёв и Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

²⁴Snášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера $|Q| \times |Q|$; это много.
- \blacksquare Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого класса 21 .
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)²².
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой 23 , модульное вычитание 24).
- Функциональное задание квазигруппы: поговорим о нём подробнее.

²¹Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

²²Gligoroski и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

²³ Марков, Михалёв и Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

²⁴Snášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера $|Q| \times |Q|$; это много.
- \blacksquare Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого класса 21 .
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)²².
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой 23 , модульное вычитание 24).
- Функциональное задание квазигруппы: поговорим о нём подробнее.

²¹Chen, Knapskog и Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski и Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

 $^{^{22}}$ Gligoroski и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

²³ Марков, Михалёв и Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

²⁴Snášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера $|Q| \times |Q|$; это много.
- \blacksquare Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого класса 21 .
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)²².
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой 23 , модульное вычитание 24).
- Функциональное задание квазигруппы: поговорим о нём подробнее.

июнь 2025 г.

²¹Chen, Knapskog u Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski u Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

 $^{^{22}}$ Gligoroski и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

 $^{^{23}}$ Марков, Михалёв и Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

 $^{^{24}}$ Snášel и др., «Hash functions based on large quasigroups».

- В общем случае квазигруппа над множеством Q задается таблицей умножения размера $|Q| \times |Q|$; это много.
- \blacksquare Случайная генерация (поиск + отсев) квазигрупп из некоторого узкого класса 21 .
- Итеративное построение из более «маленьких» (конструкции наподобие прямых произведений)²².
- Изотопы некоторых «хорошо изученных» групп (например, изотоп группы точек эллиптической кривой 23 , модульное вычитание 24).
- Функциональное задание квазигруппы: поговорим о нём подробнее.

июнь 2025 г.

²¹Chen, Knapskog u Gligoroski, «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity»; Gligoroski, Markovski u Knapskog, «A public key block cipher based on multivariate quadratic quasigroups».

 $^{^{22}}$ Gligoroski и др., «Cryptographic hash function Edon-R'»; Грибов, «Алгебраические неассоциативные структуры и их приложения в криптографии».

 $^{^{23}}$ Марков, Михалёв и Нечаев, «Неассоциативные алгебраические структуры в криптографии и кодировании».

²⁴Snášel и др., «Hash functions based on large quasigroups».

Функциональное задание квазигруппы

Можно перейти от табличного задания операции к функциональному²⁵:

$$x \circ y = z \leftrightarrow z_i = f_i(x_1, \dots, x_n, y_1, \dots, y_n).$$

- Рассмотрим для простоты случай $Q = \{0,1\}^n$: хотим задать структуру квазигруппы на Q с помощью семейства булевых функций.
- Какие условия надо наложить на функции f_i , чтобы операция $x \circ y$ задавала структуру квазигруппы на Q?

Функциональное задание квазигруппы

Можно перейти от табличного задания операции к функциональному²⁵:

$$x \circ y = z \leftrightarrow z_i = f_i(x_1, \dots, x_n, y_1, \dots, y_n).$$

- Рассмотрим для простоты случай $Q = \{0,1\}^n$: хотим задать структуру квазигруппы на Q с помощью семейства булевых функций.
- Какие условия надо наложить на функции f_i , чтобы операция $x \circ y$ задавала структуру квазигруппы на Q?

Функциональное задание квазигруппы

Можно перейти от табличного задания операции к функциональному²⁵:

$$x \circ y = z \leftrightarrow z_i = f_i(x_1, \dots, x_n, y_1, \dots, y_n).$$

- Рассмотрим для простоты случай $Q = \{0,1\}^n$: хотим задать структуру квазигруппы на Q с помощью семейства булевых функций.
- Какие условия надо наложить на функции f_i , чтобы операция $x \circ y$ задавала структуру квазигруппы на Q?

Содержание

- 1 Мотивация и основные определения
- 2 Правильные семейства функций
- 3 Эквивалентные определения правильности
- Овойства правильных семейств

Правильные семейства булевых функций

Правильное семейство

Семейство булевых функций $f_i \colon \mathbb{E}_2^n \to \mathbb{E}_2^n$ называется правильным, если для любых двух наборов $x \neq y$ найдется такая координата i, что $x_i \neq y_i$, но $f_i(x) = f_i(y)$ (см. a).

^аНосов, «Критерий регулярности булевского неавтономного автомата с разделенным входом», «Построение классов латинских квадратов в булевой базе данных».

Правильные семейства можно задавать не только над \mathbb{E}_2^n , но над логикой любой значности k^{26} , над произвольными группами²⁷; над прямыми произведениями других квазигрупп²⁸ и даже d-квазигрупп²⁹.

 $^{^{26}}$ Носов, «Построение параметрического семейства латинских квадратов в векторной базе данных».

²⁷Носов и Панкратьев, «Латинские квадраты над абелевыми группами»

²⁸Galatenko, Nosov и Pankratiev, «Latin squares over quasigroups».

²⁹Плаксина, «Построение параметрического семейства многомерных латинских квадратов:

Правильные семейства булевых функций

Правильное семейство

Семейство булевых функций $f_i \colon \mathbb{E}_2^n \to \mathbb{E}_2^n$ называется правильным, если для любых двух наборов $x \neq y$ найдется такая координата i, что $x_i \neq y_i$, но $f_i(x) = f_i(y)$ (см. a).

^аНосов, «Критерий регулярности булевского неавтономного автомата с разделенным входом», «Построение классов латинских квадратов в булевой базе данных».

Правильные семейства можно задавать не только над \mathbb{E}_2^n , но над логикой любой значности k^{26} , над произвольными группами²⁷; над прямыми произведениями других квазигрупп²⁸ и даже d-квазигрупп²⁹.

 $^{^{26}}$ Носов, «Построение параметрического семейства латинских квадратов в векторной базе данных».

 $^{^{27}}$ Носов и Панкратьев, «Латинские квадраты над абелевыми группами».

 $^{^{28} {\}rm Galatenko},$ Nosov и Pankratiev, «Latin squares over quasigroups».

 $^{^{29}\}Pi$ лаксина, «Построение параметрического семейства многомерных латинских квадратов».

Правильные семейства и квазигруппы

Семейство булевых функций $F = (f_1, \dots, f_n)$ является правильным тогда и только тогда, когда отображение вида

$$(x,y) \rightarrow z = x \oplus y \oplus F(\pi_1(x_1,y_1),\ldots,\pi_n(x_n,y_n))$$

задает квазигрупповую операцию **при любом выборе** внутренних функций π_1, \ldots, π_n .

Существенная (не)зависимость

Из определения правильности следует, что f_i не зависит существенно от x_i .

Правильные семейства и квазигруппы

Семейство булевых функций $F = (f_1, \dots, f_n)$ является правильным тогда и только тогда, когда отображение вида

$$(x,y) \rightarrow z = x \oplus y \oplus F(\pi_1(x_1,y_1),\ldots,\pi_n(x_n,y_n))$$

задает квазигрупповую операцию **при любом выборе** внутренних функций π_1, \ldots, π_n .

Существенная (не)зависимость

Из определения правильности следует, что f_i не зависит существенно от x_i .

Константные семейства

 $f_i \equiv const_i$ является правильным.

Треугольные семейства

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{bmatrix} = \begin{bmatrix} const \\ f_2(x_1) \\ f_3(x_1, x_2) \\ \vdots \\ f_n(x_1, \dots, x_{n-1}) \end{bmatrix}$$

является правильным a .

^аНосов и Панкратьев, «Латинские квадраты над абелевыми группами».

Константные семейства

 $f_i \equiv const_i$ является правильным.

Треугольные семейства

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_n \end{bmatrix} = \begin{bmatrix} const \\ f_2(x_1) \\ f_3(x_1, x_2) \\ \vdots \\ f_n(x_1, \dots, x_{n-1}) \end{bmatrix}$$

является правильным a .

 $[^]a$ Носов и Панкратьев, «Латинские квадраты над абелевыми группами».

Ортогональные функции

Две функции $f,g:\mathbb{E}^n_k\to\mathbb{E}_k$ будем называть **ортогональными**, если для любого $x\in\mathbb{E}^n_k$ выполняется хотя бы одно из двух равенств: f(x)=0 или g(x)=0.

Семейство ортогональных функций

Пусть $F = (f_1, \ldots, f_n)$ — семейство попарно ортогональных функций, и f_i не зависит существенно от x_i . Тогда F является правильным^a.

$$f_1 = \bar{x}_2 x_3 \cdots x_{n-1} x_n,$$

$$f_2 = \bar{x}_3 x_4 \cdots x_n x_1,$$

$$\vdots$$

$$\vdots$$

$$f_n = \bar{x}_1 x_2 \cdots x_{n-2} x_{n-1}$$

^аНосов и Панкратьев, «О функциональном задании латинских квадратов».

Ортогональные функции

Две функции $f,g:\mathbb{E}^n_k\to\mathbb{E}_k$ будем называть **ортогональными**, если для любого $x\in\mathbb{E}^n_k$ выполняется хотя бы одно из двух равенств: f(x)=0 или g(x)=0.

Семейство ортогональных функций

Пусть $F = (f_1, \ldots, f_n)$ — семейство попарно ортогональных функций, и f_i не зависит существенно от x_i . Тогда F является правильным^a.

$$f_1 = \bar{x}_2 x_3 \cdots x_{n-1} x_n,$$

$$f_2 = \bar{x}_3 x_4 \cdots x_n x_1,$$

$$\vdots$$

$$f_n = \bar{x}_1 x_2 \cdots x_{n-2} x_{n-1}$$

июнь 2025 г.

^аНосов и Панкратьев, «О функциональном задании латинских квадратов».

Класс квадратичных семейств

Семейство F вида 1 является правильным для любого $n \ge 1$:

$$\begin{bmatrix} 0 \\ x_1 \\ x_1 \oplus x_2 \\ \vdots \\ x_1 \oplus x_2 \oplus \ldots \oplus x_{n-1} \end{bmatrix} \bigoplus \begin{bmatrix} \bigoplus_{i < j, i, j \neq 1}^n x_i x_j \\ \bigoplus_{i < j, i, j \neq 2}^n x_i x_j \\ \bigoplus_{i < j, i, j \neq 3}^n x_i x_j \\ \vdots \\ \bigoplus_{i < j, i, j \neq n}^n x_i x_j \end{bmatrix}. \tag{1}$$

²⁹Царегородцев, «О свойствах правильных семейств булевых функций».

Преобразование сдвига

Для любого $\alpha = (a_1, \dots, a_n) \in Q^n$ определим преобразование сдвига^a:

$$x \in Q^n \to L_\alpha(x) = (a_1 \circ x_1, \dots, a_n \circ x_n),$$

 $x \in Q^n \to R_\alpha(x) = (x_1 \circ a_1, \dots, x_n \circ a_n).$

Если $F: Q^n \to Q^n$ правильное, то $T_{\alpha}(F(T_{\beta}(x)))$ также правильное, где $T \in \{L, R\}$, $\alpha, \beta \in Q^n$.

^аНосов и Панкратьев, «О функциональном задании латинских квадратов».

Преобразование сдвига

Для любого $\alpha = (a_1, \dots, a_n) \in Q^n$ определим преобразование сдвига^a:

$$x \in Q^n \to L_\alpha(x) = (a_1 \circ x_1, \dots, a_n \circ x_n),$$

 $x \in Q^n \to R_\alpha(x) = (x_1 \circ a_1, \dots, x_n \circ a_n).$

Если $F: Q^n \to Q^n$ правильное, то $T_{\alpha}(F(T_{\beta}(x)))$ также правильное, где $T \in \{L, R\}$, $\alpha, \beta \in Q^n$.

^аНосов и Панкратьев, «О функциональном задании латинских квадратов».

Преобразование перекодировки

Для любого набора $\Psi = (\psi_1, \dots, \psi_n) \in Func(Q)^n$ определим преобразование перекодировки:

$$x \in Q^n \to \Psi(x) = (\psi_1(x_1), \dots, \psi_n(x_n)).$$

Пусть $\Phi \in Func(Q)^n$, $\Psi \in Perm(Q)^n$. Если $F(x) = (f_1(x), \dots, f_n(x))$ правильное, то $\Phi(F(\Psi(x)))$ также правильное.

Если $\Phi, \Psi \in Perm(Q)^n$, то подобные преобразования будем называть преобразованиями перекодировки.

Замечание

Сдвиги являются частными случаями преобразования перекодировки.

Преобразование перекодировки

Для любого набора $\Psi = (\psi_1, \dots, \psi_n) \in Func(Q)^n$ определим преобразование перекодировки:

$$x \in Q^n \to \Psi(x) = (\psi_1(x_1), \dots, \psi_n(x_n)).$$

Пусть $\Phi \in Func(Q)^n$, $\Psi \in Perm(Q)^n$. Если $F(x) = (f_1(x), \dots, f_n(x))$ правильное, то $\Phi(F(\Psi(x)))$ также правильное.

Если $\Phi, \Psi \in Perm(Q)^n$, то подобные преобразования будем называть преобразованиями перекодировки.

Замечание

Сдвиги являются частными случаями преобразования перекодировки.

Преобразование перекодировки

Для любого набора $\Psi = (\psi_1, \dots, \psi_n) \in Func(Q)^n$ определим преобразование перекодировки:

$$x \in Q^n \to \Psi(x) = (\psi_1(x_1), \dots, \psi_n(x_n)).$$

Пусть $\Phi \in Func(Q)^n$, $\Psi \in Perm(Q)^n$. Если $F(x) = (f_1(x), \dots, f_n(x))$ правильное, то $\Phi(F(\Psi(x)))$ также правильное.

Если $\Phi, \Psi \in Perm(Q)^n$, то подобные преобразования будем называть преобразованиями перекодировки.

Замечание

Сдвиги являются частными случаями преобразования перекодировки.

Согласованная перенумерация

Пусть $\sigma \in Perm(n)$, определим преобразование согласованной перенумерации:

$$F \to \sigma(F),$$

 $f_i(x_1, \dots, x_n) \to f_{\sigma(i)}(x_{\sigma(1)}, \dots, x_{\sigma(n)}).$

Если F(x) — правильное, то $\sigma(F)$ также правильное^a.

^аНосов и Панкратьев. «О функциональном задании датинских квадратов».

Согласованная перенумерация

Пусть $\sigma \in Perm(n)$, определим преобразование согласованной перенумерации:

$$F \to \sigma(F),$$

$$f_i(x_1, \dots, x_n) \to f_{\sigma(i)}(x_{\sigma(1)}, \dots, x_{\sigma(n)}).$$

Если F(x) — правильное, то $\sigma(F)$ также правильное^a.

^аНосов и Панкратьев. «О функциональном задании датинских квадратов».

Проекция

Подставим значение $a \in Q$ вместо переменной x_i и исключим функцию $f_i, 1 \le i \le n$.

$$F'(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = \Pi_a^i(F) = \begin{bmatrix} f_1(x_1, \dots, x_{i-1}, a, x_{i+1}, \dots, x_n) \\ \vdots \\ f_{i-1}(x_1, \dots, x_{i-1}, a, x_{i+1}, \dots, x_n) \\ f_{i+1}(x_1, \dots, x_{i-1}, a, x_{i+1}, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_{i-1}, a, x_{i+1}, \dots, x_n) \end{bmatrix}.$$

Полученное семейство является правильным.

множества всех правильных семейств, заданных на Q^n :

$$\{(\Phi,\Psi)\in Perm(Q^n)\mid \Phi(F(\Psi(x)))$$
 правильно для любого правильного $F\colon Q^n\to Q^n\}.$

- lacksquare Тогда Φ и Ψ должны быть изометриями Q^n (в метрике Хэмминга).
- $\mathbb{E}^n_k, |Q|=k$ это перенумерации и перекодировки
- Оба этих класса преобразований сохраняют правильность (перенумерации должны быть согласованы).

множества всех правильных семейств, заданных на Q^n :

$$\{(\Phi,\Psi)\in Perm(Q^n)\mid \Phi(F(\Psi(x)))$$
 правильно для любого правильного $F\colon Q^n\to Q^n\}.$

- Тогда Φ и Ψ должны быть изометриями Q^n (в метрике Хэмминга).
- \blacksquare Изометрии $\mathbb{E}^n_k, |Q|=k$ это перенумерации и перекодировки.
- Оба этих класса преобразований сохраняют правильность (перенумерации должны быть согласованы).

множества всех правильных семейств, заданных на Q^n :

$$\{(\Phi, \Psi) \in Perm(Q^n) \mid \Phi(F(\Psi(x)))$$
 правильно для любого правильного $F \colon Q^n \to Q^n\}.$

- Тогда Φ и Ψ должны быть изометриями Q^n (в метрике Хэмминга).
- lacksquare Изометрии $\mathbb{E}^n_k, \, |Q|=k$ это перенумерации и перекодировки.
- Оба этих класса преобразований сохраняют правильность (перенумерации должны быть согласованы).

множества всех правильных семейств, заданных на Q^n :

$$\{(\Phi,\Psi)\in Perm(Q^n)\mid \Phi(F(\Psi(x)))$$
 правильно для любого правильного $F\colon Q^n\to Q^n\}.$

- Тогда Φ и Ψ должны быть изометриями Q^n (в метрике Хэмминга).
- lacksquare Изометрии $\mathbb{E}^n_k,\,|Q|=k$ это перенумерации и перекодировки.
- Оба этих класса преобразований сохраняют правильность (перенумерации должны быть согласованы).

Стабилизатор правильных семейств

Пусть семейства $\mathcal{G}(\mathbf{x})$ вида $\mathcal{G}(\mathbf{x}) = \Phi(\mathcal{F}(\Psi(\mathbf{x})))$ являются правильным для всех правильных семейств \mathcal{F} , заданных на \mathbb{E}^n_k , Φ и Ψ — биекции множества \mathbb{E}^n_k . Тогда Φ и Ψ имеют вид

$$\Phi = \sigma \circ A, \Psi = \sigma \circ B,$$

где использованы следующие обозначения:

 $\sigma \in \mathcal{S}_n$: перенумерация координат вектора,

 $A, B \in (\mathcal{S}_{\mathbb{E}_k})^n$: перекодировки вектора.

Открытые вопросы-1

- Построение достаточно широких классов правильных семейств с «хорошими» свойствами, в том числе и для логик большей значности k>2?
- Есть отношение эквивалентности на множестве правильных семейств, как быстро строить представителей?
- Можно ли поставить классам эквивалентности во взаимно-однозначное соответствие какие-то геометрические объекты, группы симметрий которых соответствуют согласованным перенумерациям и перекодировкам (для логик значности k > 2)?

Открытые вопросы-1

- Построение достаточно широких классов правильных семейств с «хорошими» свойствами, в том числе и для логик большей значности k > 2?
- Есть отношение эквивалентности на множестве правильных семейств, как быстро строить представителей?
- Можно ли поставить классам эквивалентности во взаимно-однозначное соответствие какие-то геометрические объекты, группы симметрий которых соответствуют согласованным перенумерациям и перекодировкам (для логик значности k > 2)?

Открытые вопросы-1

- Построение достаточно широких классов правильных семейств с «хорошими» свойствами, в том числе и для логик большей значности k>2?
- Есть отношение эквивалентности на множестве правильных семейств, как быстро строить представителей?
- Можно ли поставить классам эквивалентности во взаимно-однозначное соответствие какие-то геометрические объекты, группы симметрий которых соответствуют согласованным перенумерациям и перекодировкам (для логик значности k > 2)?

Содержание

- 1 Мотивация и основные определения
- Правильные семейства функций
- 3 Эквивалентные определения правильности
- Овойства правильных семейств

Одностоковые ориентации (USO)

$\overline{\mathbf{By}}$ лев куб \mathbf{B}_n

- вершины: $V = \{\alpha \in \mathbb{E}_2^n\};$
- ребра: $\{\alpha, \beta\} \in E \Leftrightarrow \rho(\alpha, \beta) = 1$ (расстояние Хэмминга).

Ориентация с единственным стоком USC

Ориентация с единственным стоком^a (unique sink orientation, USO) куба \mathbf{B}_n — ориентированный граф, построенный по \mathbf{B}_n со следующим характеристическим свойством: в каждом подкубе \mathbf{B}_n существует единственный сток.

^aSzabó и Welzl. «Unique sink orientations of cubes».

Одностоковые ориентации (USO)

\mathbf{B} улев куб \mathbf{B}_n

- вершины: $V = \{\alpha \in \mathbb{E}_2^n\};$
- **р**ебра: $\{\alpha, \beta\} \in E \Leftrightarrow \rho(\alpha, \beta) = 1$ (расстояние Хэмминга).

Ориентация с единственным стоком USO

Ориентация с единственным стоком^a (unique sink orientation, USO) куба \mathbf{B}_n — ориентированный граф, построенный по \mathbf{B}_n со следующим характеристическим свойством: в каждом подкубе \mathbf{B}_n существует единственный сток.

^aSzabó и Welzl. «Unique sink orientations of cubes».

USO: один пример

Рис. 1: Одностоковая ориентация трехмерного булева куба ${\bf B}_3$

Пусть F — семейство булевых функций.

Γ раф семейства $\Gamma(F)$

- Вершины: $V = \{\alpha \in \mathbb{E}_2^n\}.$
- Пусть $\alpha \neq \beta$, $\rho(\alpha, \beta) = 1$, $\alpha_i \neq \beta_i$, добавим ориентированное ребро $(\beta, \alpha) \in E$ тогда и только тогда, когда $f_i(\alpha) = \alpha_i$.

$$f_i(\alpha) = \alpha_i$$

$$\alpha$$

$$\beta$$

Пусть F — семейство булевых функций.

Γ раф семейства $\Gamma(F)$

- Вершины: $V = \{\alpha \in \mathbb{E}_2^n\}.$
- Пусть $\alpha \neq \beta$, $\rho(\alpha, \beta) = 1$, $\alpha_i \neq \beta_i$, добавим ориентированное ребро $(\beta, \alpha) \in E$ тогда и только тогда, когда $f_i(\alpha) = \alpha_i$.

$$f_i(\alpha) = \alpha_i$$

$$\alpha$$

$$\beta$$

Неподвижные точки графа $\Gamma(F)$

$$f_i(\alpha) = \alpha_i$$

$$\alpha \qquad \beta$$

- Чему в терминах графа $\Gamma(F)$ соответствует неподвижная точка α отображения $x \to F(x)$?
- $f_i(\alpha) = \alpha_i$ для всех $1 \leq i \leq n$.
- \blacksquare Следовательно, α сток в $\Gamma(F)$.
- lacksquare Ориентации подкубов в $\Gamma(F)$ задаются проекциями F' семейства F.

Неподвижные точки графа $\Gamma(F)$

$$f_i(\alpha) = \alpha_i$$

$$\alpha$$

$$\beta$$

- Чему в терминах графа $\Gamma(F)$ соответствует неподвижная точка α отображения $x \to F(x)$?
- $f_i(\alpha) = \alpha_i$ для всех $1 \le i \le n$.
- \blacksquare Следовательно, α сток в $\Gamma(F)$.
- lacksquare Ориентации подкубов в $\Gamma(F)$ задаются проекциями F' семейства F.

Неподвижные точки графа $\Gamma(F)$

$$f_i(\alpha) = \alpha_i$$

$$\alpha \qquad \beta$$

- Чему в терминах графа $\Gamma(F)$ соответствует неподвижная точка α отображения $x \to F(x)$?
- $f_i(\alpha) = \alpha_i$ для всех $1 \le i \le n$.
- \blacksquare Следовательно, α сток в $\Gamma(F)$.
- lacksquare Ориентации подкубов в $\Gamma(F)$ задаются проекциями F' семейства F.

Неподвижные точки графа $\Gamma(F)$

$$f_i(\alpha) = \alpha_i$$

$$\alpha \qquad \beta$$

- Чему в терминах графа $\Gamma(F)$ соответствует неподвижная точка α отображения $x \to F(x)$?
- $f_i(\alpha) = \alpha_i$ для всех $1 \le i \le n$.
- Следовательно, α сток в $\Gamma(F)$.
- lacksquare Ориентации подкубов в $\Gamma(F)$ задаются проекциями F' семейства F.

USO и правильность: два описания одного объекта

Взаимно-однозначное соответствие

Граф $\Gamma(F)$ семейства булевых функций F является одностоковой ориентацией тогда и только тогда, когда F — правильное семейство a .

- Существует взаимно-однозначное соответствие между «алгебраическим» и «геометрическим» описаниями.
- Это позволяет переводить результаты с одного «языка» на другой.
- Некоторые примеры переноса: вероятностный алгоритм порождения правильных семейств с помощью процедуры МСМС³⁰, оценка на число булевых правильных семейств³¹, новые классы правильных семейств.

^аЦарегородцев, «О взаимно однозначном соответствии между правильными семействами булевых функций и рёберными ориентациями булевых кубов»; Царегородцев, «О соответствии между правильными семействами и реберными ориентациями булевых кубов».

 $^{^{10}}$ Schurr, «Unique sink orientations of cubes»; Галатенко и др., «Порождение правильных семейств функций».

¹Царегородцев, «О свойствах правильных семейств булевых функций».

USO и правильность: два описания одного объекта

Взаимно-однозначное соответствие

Граф $\Gamma(F)$ семейства булевых функций F является одностоковой ориентацией тогда и только тогда, когда F — правильное семейство a .

- Существует взаимно-однозначное соответствие между «алгебраическим» и «геометрическим» описаниями.
- Это позволяет переводить результаты с одного «языка» на другой.
- Некоторые примеры переноса: вероятностный алгоритм порождения правильных семейств с помощью процедуры МСМС³⁰, оценка на число булевых правильных семейств³¹, новые классы правильных семейств.

^аЦарегородцев, «О взаимно однозначном соответствии между правильными семействами булевых функций и рёберными ориентациями булевых кубов»; Царегородцев, «О соответствии между правильными семействами и реберными ориентациями булевых кубов».

 $^{^{30}}$ Schurr, «Unique sink orientations of cubes»; Галатенко и др., «Порождение правильных семейств функций».

 $^{^{31}}$ Царегородцев, «О свойствах правильных семейств булевых функций».

Рекурсивная ориентация

Рекурсивно одностоковая ориентация булева n-мерного куба \mathbb{E}_n задается следующим характеристическим свойством: найдется такое направление i, вдоль которой все ребра ориентированы в одном направлении, и ориентация на каждом из подкубов $x_i = 0$ и $x_i = 1$ размерности (n-1) также является рекурсивно одностоковой (recursively combed cube orientation^a).

^aGao, Gartner и Lamperski, «A new combinatorial property of geometric unique sink orientations».

Рекурсивно треугольное семейство

Семейство $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ со свойством: существует i, такое что $f_i \equiv const_i$, и $\Pi^i_a(F)$ рекурсивно треугольны для всех $a \in \mathbb{E}_k$.

Рекурсивная ориентация

Рекурсивно одностоковая ориентация булева n-мерного куба \mathbb{E}_n задается следующим характеристическим свойством: найдется такое направление i, вдоль которой все ребра ориентированы в одном направлении, и ориентация на каждом из подкубов $x_i = 0$ и $x_i = 1$ размерности (n-1) также является рекурсивно одностоковой (recursively combed cube orientation^a).

^aGao, Gartner и Lamperski, «A new combinatorial property of geometric unique sink orientations».

Рекурсивно треугольное семейство

Семейство $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ со свойством: существует i, такое что $f_i \equiv const_i$, и $\Pi^i_a(F)$ рекурсивно треугольны для всех $a \in \mathbb{E}_k$.

Замечание

Рекурсивно треугольные семейства более общее понятие, чем треугольные: треугольные семейства являются такими рекурсивно треугольными, что каждая из проекций $\Pi_i^a(F)$ постоянна вдоль одного и того же направления j.

Теорема

Рекурсивно треугольные семейства являются правильными.

Замечание

Рекурсивно треугольные семейства более общее понятие, чем треугольные: треугольные семейства являются такими рекурсивно треугольными, что каждая из проекций $\Pi_i^a(F)$ постоянна вдоль одного и того же направления j.

Теорема

Рекурсивно треугольные семейства являются правильными.

Пусть T(n) ($\Delta(n)$) — число **булевых** правильных (треугольных) семейств размера n.

Оценка на число булевых правильных семейств

$$n^{A \cdot 2^n} \le T(n) \le n^{B \cdot 2^n},$$

где A, B — некоторые положительные константы^a.

^aMatousek, «The Number Of Unique-Sink Orientations of the Hypercube»

Булевых треугольных семейств экспоненциально мало

$$\frac{\Delta(n)}{T(n)} = o\left(\frac{1}{n^{D \cdot 2^n}}\right)$$
 при $n \to \infty$,

для некоторого $D>0^a$. Таким образом, почти все булевы правильные семейства не являются треугольными.

^аЦарегородцев, «О свойствах правильных семейств булевых функций».

Пусть T(n) ($\Delta(n)$) — число **булевых** правильных (треугольных) семейств размера n.

Оценка на число булевых правильных семейств

$$n^{A \cdot 2^n} \le T(n) \le n^{B \cdot 2^n},$$

где A, B — некоторые положительные константы^a.

 a Matousek, «The Number Of Unique-Sink Orientations of the Hypercube».

Булевых треугольных семейств экспоненциально мало

$$\frac{\Delta(n)}{T(n)} = o\left(\frac{1}{n^{D \cdot 2^n}}\right)$$
 при $n \to \infty$,

для некоторого $D>0^a$. Таким образом, почти все булевы правильные семейства не являются треугольными.

^аЦарегородцев, «О свойствах правильных семейств булевых функций».

Пусть T(n) ($\Delta(n)$) — число **булевых** правильных (треугольных) семейств размера n.

Оценка на число булевых правильных семейств

$$n^{A \cdot 2^n} \le T(n) \le n^{B \cdot 2^n},$$

где A, B — некоторые положительные константы^a.

 a Matousek, «The Number Of Unique-Sink Orientations of the Hypercube».

Булевых треугольных семейств экспоненциально мало

$$\frac{\Delta(n)}{T(n)} = o\left(\frac{1}{n^{D \cdot 2^n}}\right)$$
 при $n \to \infty$,

для некоторого $D>0^a$. Таким образом, почти все булевы правильные семейства не являются треугольными.

 $[^]a$ Царегородцев, «О свойствах правильных семейств булевых функций».

Рекуррентное соотношение

Число рекурсивно треугольных семейств

Пусть $\Delta^{\mathsf{rec}}(n)$ — число рекурсивно треугольных семейств размера n над k-значной логикой. Тогда выполняется равенство:

$$\Delta^{\mathsf{rec}}(n) = \sum_{j=1}^{n} (-1)^{j+1} \cdot k^{j} \cdot \binom{n}{j} \Delta^{\mathsf{rec}}(n-j)^{k^{j}}.$$

Замечание

Доля булевых рекурсивно треугольных семейств размера n в классе всех булевых правильных семейств размера n стремится к 0 при $n \to \infty$.

Рекуррентное соотношение

Число рекурсивно треугольных семейств

Пусть $\Delta^{\mathsf{rec}}(n)$ — число рекурсивно треугольных семейств размера n над k-значной логикой. Тогда выполняется равенство:

$$\Delta^{\mathsf{rec}}(n) = \sum_{j=1}^{n} (-1)^{j+1} \cdot k^{j} \cdot \binom{n}{j} \Delta^{\mathsf{rec}}(n-j)^{k^{j}}.$$

Замечание

Доля булевых рекурсивно треугольных семейств размера n в классе всех булевых правильных семейств размера n стремится к 0 при $n \to \infty$.

- В общем случае проверка правильности является сложной задачей: если семейство задано в форме КНФ, то задача проверки правильности соNP-полна³².
- В определенных случаях задача проверки правильности может быть упрощена, в частности, за счет вида графа существенной зависимости³³.
- Алгоритм проверки правильности булева семейства требует порядка $\Theta(4^n)$ операций вычисления правильного семейства на двоичном наборе x (проверка по определению правильности).
- Предложена адаптация алгоритма³⁴ со сложностью $\Theta(3^n)$, проверяющего, что ориентация $\Gamma(F)$, задаваемая семейством F, является одностоковой.
- Алгоритм опирается на еще одно характеристическое свойство правильных семейств: булево семейство правильно тогда и только тогда, когда каждая его проекция не является самодвойственным отображением.

 $^{^{32}}$ Носов, «Критерий регулярности булевского неавтономного автомата с разделенным входом».

³³Рыков, «О правильных семействах функций, используемых для задания латинских квадратов»

¹⁴Bosshard и Gärtner, «Pseudo unique sink orientations».

- В общем случае проверка правильности является сложной задачей: если семейство задано в форме КНФ, то задача проверки правильности соNP-полна³².
- В определенных случаях задача проверки правильности может быть упрощена, в частности, за счет вида графа существенной зависимости³³.
- Алгоритм проверки правильности булева семейства требует порядка $\Theta(4^n)$ операций вычисления правильного семейства на двоичном наборе x (проверка по определению правильности).
- Предложена адаптация алгоритма³⁴ со сложностью $\Theta(3^n)$, проверяющего, что ориентация $\Gamma(F)$, задаваемая семейством F, является одностоковой.
- Алгоритм опирается на еще одно характеристическое свойство правильных семейств: булево семейство правильно тогда и только тогда, когда каждая его проекция не является самодвойственным отображением.

 $^{^{32}}$ Носов, «Критерий регулярности булевского неавтономного автомата с разделенным входом».

 $^{^{33}}$ Рыков, «О правильных семействах функций, используемых для задания латинских квадратов».

³⁴Bosshard и Gärtner, «Pseudo unique sink orientations».

- В общем случае проверка правильности является сложной задачей: если семейство задано в форме КНФ, то задача проверки правильности соNP-полна³².
- В определенных случаях задача проверки правильности может быть упрощена, в частности, за счет вида графа существенной зависимости³³.
- Алгоритм проверки правильности булева семейства требует порядка $\Theta(4^n)$ операций вычисления правильного семейства на двоичном наборе x (проверка по определению правильности).
- Предложена адаптация алгоритма³⁴ со сложностью $\Theta(3^n)$, проверяющего, что ориентация $\Gamma(F)$, задаваемая семейством F, является одностоковой.
- Алгоритм опирается на еще одно характеристическое свойство правильных семейств: булево семейство правильно тогда и только тогда, когда каждая его проекция не является самодвойственным отображением.

 $^{^{32}}$ Носов, «Критерий регулярности булевского неавтономного автомата с разделенным входом».

 $^{^{33}}$ Рыков, «О правильных семействах функций, используемых для задания латинских квадратов».

³⁴Bosshard и Gärtner, «Pseudo unique sink orientations».

- В общем случае проверка правильности является сложной задачей: если семейство задано в форме КНФ, то задача проверки правильности соNP-полна³².
- В определенных случаях задача проверки правильности может быть упрощена, в частности, за счет вида графа существенной зависимости³³.
- Алгоритм проверки правильности булева семейства требует порядка $\Theta(4^n)$ операций вычисления правильного семейства на двоичном наборе x (проверка по определению правильности).
- Предложена адаптация алгоритма³⁴ со сложностью $\Theta(3^n)$, проверяющего, что ориентация $\Gamma(F)$, задаваемая семейством F, является одностоковой.
- Алгоритм опирается на еще одно характеристическое свойство правильных семейств: булево семейство правильно тогда и только тогда, когда каждая его проекция не является самодвойственным отображением.

 $^{^{32}}$ Носов, «Критерий регулярности булевского неавтономного автомата с разделенным входом».

 $^{^{33}}$ Рыков, «О правильных семействах функций, используемых для задания латинских квадратов».

³⁴Bosshard и Gärtner, «Pseudo unique sink orientations».

- В общем случае проверка правильности является сложной задачей: если семейство задано в форме КНФ, то задача проверки правильности соNP-полна³².
- В определенных случаях задача проверки правильности может быть упрощена, в частности, за счет вида графа существенной зависимости³³.
- Алгоритм проверки правильности булева семейства требует порядка $\Theta(4^n)$ операций вычисления правильного семейства на двоичном наборе x (проверка по определению правильности).
- Предложена адаптация алгоритма³⁴ со сложностью $\Theta(3^n)$, проверяющего, что ориентация $\Gamma(F)$, задаваемая семейством F, является одностоковой.
- Алгоритм опирается на еще одно характеристическое свойство правильных семейств: булево семейство правильно тогда и только тогда, когда каждая его проекция не является самодвойственным отображением.

 $^{^{32}}$ Носов, «Критерий регулярности булевского неавтономного автомата с разделенным входом».

 $^{^{33}}$ Рыков, «О правильных семействах функций, используемых для задания латинских квадратов».

 $^{^{34}}$ Bosshard и Gärtner, «Pseudo unique sink orientations».

Неподвижные точки правильного семейства

Булев случай

Булево семейство F является правильным тогда и только тогда, когда семейство F и каждая из его проекций имеет единственную неподвижную точку.

Общий случай

Семейство $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ является правильным тогда и только тогда, когда для любой перекодировки F все её проекции имеют единственную неподвижную точку.

В булевом случае свойство единственности неподвижной точки дает ещё одно характеристическое свойство правильных семейств, которое изучалось в контексте математической биологии (в частности, при изучении экспрессии генов³⁵).

³⁵Richard, «Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks»; Ruet, «Asynchronous Boolean networks and hereditarily bijective maps», «Local cycles and dynamical properties of Boolean networks»; Thomas, «Regulatory networks seen as asynchronous automata: a logical description».

Неподвижные точки правильного семейства

Булев случай

Булево семейство F является правильным тогда и только тогда, когда семейство F и каждая из его проекций имеет единственную неподвижную точку.

Общий случай

Семейство $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ является правильным тогда и только тогда, когда для любой перекодировки F все её проекции имеют единственную неподвижную точку.

В булевом случае свойство единственности неподвижной точки дает ещё одно характеристическое свойство правильных семейств, которое изучалось в контексте математической биологии (в частности, при изучении экспрессии генов³⁵).

³⁵Richard, «Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks»; Ruet, «Asynchronous Boolean networks and hereditarily bijective maps», «Local cycles and dynamical properties of Boolean networks»; Thomas, «Regulatory networks seen as asynchronous automata: a logical description».

Неподвижные точки правильного семейства

Булев случай

Булево семейство F является правильным тогда и только тогда, когда семейство F и каждая из его проекций имеет единственную неподвижную точку.

Общий случай

Семейство $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ является правильным тогда и только тогда, когда для любой перекодировки F все её проекции имеют единственную неподвижную точку.

В булевом случае свойство единственности неподвижной точки дает ещё одно характеристическое свойство правильных семейств, которое изучалось в контексте математической биологии (в частности, при изучении экспрессии генов³⁵).

³⁵Richard, «Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks»; Ruet, «Asynchronous Boolean networks and hereditarily bijective maps», «Local cycles and dynamical properties of Boolean networks»; Thomas, «Regulatory networks seen as asynchronous automata: a logical description».

Булевы сети с наследственно единственной неподвижной точкой

HUFP-сеть (сеть с наследственно единственной неподвижной точкой, hereditarily unique fixed point network) — булево семейство F со следующим свойством: F и все его проекции имеют единственную неподвижную точку (как отображения $\mathbb{E}_2^n \to \mathbb{E}_2^n$).

Правильные семейства \leftrightarrow HUFP-сети

Булево семейство F является правильным $\Leftrightarrow F$ задает HUFP-сеть

Соответствие между булевыми правильными семействами и HUFP-сетями позволяет перенести (и обобщить) часть результатов, полученных в контексте изучения динамики таких сетей, на правильные семейства.

Булевы сети с наследственно единственной неподвижной точкой

HUFP-сеть (сеть с наследственно единственной неподвижной точкой, hereditarily unique fixed point network) — булево семейство F со следующим свойством: F и все его проекции имеют единственную неподвижную точку (как отображения $\mathbb{E}_2^n \to \mathbb{E}_2^n$).

Правильные семейства \leftrightarrow HUFP-сети

Булево семейство F является правильным $\Leftrightarrow F$ задает HUFP-сеть.

Соответствие между булевыми правильными семействами и HUFP-сетями позволяет перенести (и обобщить) часть результатов, полученных в контексте изучения динамики таких сетей, на правильные семейства.

Булевы сети с наследственно единственной неподвижной точкой

HUFP-сеть (сеть с наследственно единственной неподвижной точкой, hereditarily unique fixed point network) — булево семейство F со следующим свойством: F и все его проекции имеют единственную неподвижную точку (как отображения $\mathbb{E}_2^n \to \mathbb{E}_2^n$).

Правильные семейства \leftrightarrow HUFP-сети

Булево семейство F является правильным $\Leftrightarrow F$ задает HUFP-сеть.

Соответствие между булевыми правильными семействами и HUFP-сетями позволяет перенести (и обобщить) часть результатов, полученных в контексте изучения динамики таких сетей, на правильные семейства.

Γ Глобальный граф взаимодействий G(F)

- \blacksquare Вершины: $V = \{1, \ldots, n\}.$
- Ребра: $i \to j$ тогда и только тогда, когда f_i существенно зависит от x_i .
- \blacksquare Эквивалентно: «дискретная» частная производная f_j по x_i не равна тождественно нулю.

Ациклические глобальные графы

Если G(F) — ациклический, то F — HUPF-сеть a .

Эквивалентно: если F — булево треугольное семейство, то F правильно.

^aRobert, «Iterations sur des ensembles finis et automates cellulaires contractants»

Γ лобальный граф взаимодействий G(F)

- \blacksquare Вершины: $V = \{1, \dots, n\}.$
- Peбра: $i \to j$ тогда и только тогда, когда f_i существенно зависит от x_i .
- \blacksquare Эквивалентно: «дискретная» частная производная f_j по x_i не равна тождественно нулю.

Ациклические глобальные графы

Если G(F) — ациклический, то F — HUPF-сеть a .

 Θ квивалентно: если F — булево треугольное семейство, то F правильно.

^aRobert, «Iterations sur des ensembles finis et automates cellulaires contractants».

Глобальный граф взаимодействий G(F)

- \blacksquare Вершины: $V = \{1, \dots, n\}.$
- Ребра: $i \to j$ тогда и только тогда, когда f_j существенно зависит от x_i .
- \blacksquare Эквивалентно: «дискретная» частная производная f_j по x_i не равна тождественно нулю.

Ациклические глобальные графы

Если G(F) — ациклический, то F — HUPF-сеть a .

Эквивалентно: если F — булево треугольное семейство, то F правильно.

^aRobert, «Iterations sur des ensembles finis et automates cellulaires contractants».

Локальный граф взаимодействий $G(F,\alpha)$

- \blacksquare Вершины: $V = \{1, \ldots, n\}.$
- Ребра: $i \to j$ тогда и только тогда, когда f_j существенно зависит от x_i «локально» в точке a:

$$f_j(\alpha_1,\ldots,\alpha_i,\ldots,\alpha_n) \neq f_j(\alpha_1,\ldots,\alpha_i \oplus 1,\ldots,\alpha_n).$$

Ациклические локальные графы

Пусть $G(F,\alpha)$ — ациклический для каждой точки $\alpha \in \mathbb{E}_2^n$, тогда F — HUFP-сеть a .

²Shih w Dong «A combinatorial analogue of the Jacobian problem in automata networks»

Локальный граф взаимодействий $G(F,\alpha)$

- \blacksquare Вершины: $V = \{1, \ldots, n\}.$
- Ребра: $i \to j$ тогда и только тогда, когда f_j существенно зависит от x_i «локально» в точке a:

$$f_j(\alpha_1,\ldots,\alpha_i,\ldots,\alpha_n)\neq f_j(\alpha_1,\ldots,\alpha_i\oplus 1,\ldots,\alpha_n).$$

Ациклические локальные графы

Пусть $G(F,\alpha)$ — ациклический для каждой точки $\alpha\in\mathbb{E}_2^n$, тогда F — $\mathsf{HUFP}\text{-}\mathsf{cetb}^a$.

^aShih и Dong, «A combinatorial analogue of the Jacobian problem in automata networks».

Локально треугольные семейства

 $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ локально треугольно, если $G(F, \alpha)$ ацикличен для каждой точки $\alpha \in \mathbb{E}^n_k$, где локальная зависимость f от x_i в точке α определяется неравенством:

$$\exists b \colon f(\alpha_1, \dots, \alpha_i, \dots, \alpha_n) \neq f(\alpha_1, \dots, b, \dots, \alpha_n).$$

Теорема

Локально треугольные семейства являются правильными (в логиках любой значности).

Теорема

Всякое рекурсивно треугольное семейство является локально треугольным.

Локально треугольные семейства

 $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ локально треугольно, если $G(F, \alpha)$ ацикличен для каждой точки $\alpha \in \mathbb{E}^n_k$, где локальная зависимость f от x_i в точке α определяется неравенством:

$$\exists b \colon f(\alpha_1, \dots, \alpha_i, \dots, \alpha_n) \neq f(\alpha_1, \dots, b, \dots, \alpha_n).$$

Теорема

Локально треугольные семейства являются правильными (в логиках любой значности).

Теорема

Всякое рекурсивно треугольное семейство является локально треугольным.

Локально треугольные семейства

 $F: \mathbb{E}^n_k \to \mathbb{E}^n_k$ локально треугольно, если $G(F, \alpha)$ ацикличен для каждой точки $\alpha \in \mathbb{E}^n_k$, где локальная зависимость f от x_i в точке α определяется неравенством:

$$\exists b \colon f(\alpha_1, \dots, \alpha_i, \dots, \alpha_n) \neq f(\alpha_1, \dots, b, \dots, \alpha_n).$$

Теорема

Локально треугольные семейства являются правильными (в логиках любой значности).

Теорема

Всякое рекурсивно треугольное семейство является локально треугольным.

Пусть F — семейство размера n.

Теорема

Если для любого $t, 1 \le t \le n$ существует не более $2^t - 1$ наборов α , таких что $G(F, \alpha)$ имеет цикл длины не более чем t, то F является HUPF-сетью.

- Непонятно, является ли это условие критерием
- Интуитивная интерпретация / «перевод» на язык правильных семейств общего вида пока что отсутствуют.

Пусть F — семейство размера n.

Теорема

Если для любого $t, 1 \le t \le n$ существует не более $2^t - 1$ наборов α , таких что $G(F, \alpha)$ имеет цикл длины не более чем t, то F является HUPF-сетью.

- Непонятно, является ли это условие критерием.
- Интуитивная интерпретация / «перевод» на язык правильных семейств общего вида пока что отсутствуют.

Кликовое представление правильных семейств

- Правильные семейства находятся во взаимно-однозначном соответствии с кликами некоторым образом построенного графа («обобщенный граф Келлера»).
- Для k=2 перенос из теории USO-ориентаций³⁶, для k>2 авторское обобщение.
- lacksquare Обобщенный граф Келлера G(k,n): $V=\mathbb{E}^n_{k^2},$

$$\{v,w\} \in E \leftrightarrow \exists i, \ 1 \leq i \leq n \colon v_i \equiv w_i \ \mathrm{mod} \ k, \ v_i \neq w_i.$$

Графы примечательны тем, что в случае k=2 некоторым образом кодируют неэквивалентные замощения пространства гиперкубами³⁷.

Соответствие между семействами и кликами

Каждой клике на k^n вершинах в графе G(k,n) можно поставить в биективное соответствие некоторое правильное семейство \mathcal{F}_n размера n на \mathbb{E}^n_k .

 $^{^{36}}$ Borzechowski, Doolittle и Weber, «A Universal Construction for Unique Sink Orientations».

³⁷Mathew, Östergård и Popa, «Enumerating cube tilings»; Sikirić, Itoh и Poyarkov, «Cube packings, second moment and hotesaktiva

Ещё одна альтернативная характеризация

Существует ещё несколько альтернативных характеризаций правильных семейств.

■ (Не)ортогональность аффинных пространств, построенных по правильным семействам.

- Больше эквивалентных определений правильных семейств для логик значности k>2.
- В чем «глубинная» причина того, что некоторые эквивалентности «работают» только в случае k=2 и «ломаются» при переходе к k>2?
- Дальнейший перенос и обобщение результатов, полученных в рамках исследований HUFP-сетей и одностоковых ориентаций.

- Больше эквивалентных определений правильных семейств для логик значности k>2.
- В чем «глубинная» причина того, что некоторые эквивалентности «работают» только в случае k=2 и «ломаются» при переходе к k>2?
- Дальнейший перенос и обобщение результатов, полученных в рамках исследований HUFP-сетей и одностоковых ориентаций.

- Больше эквивалентных определений правильных семейств для логик значности k>2.
- В чем «глубинная» причина того, что некоторые эквивалентности «работают» только в случае k=2 и «ломаются» при переходе к k>2?
- Дальнейший перенос и обобщение результатов, полученных в рамках исследований HUFP-сетей и одностоковых ориентаций.

Содержание

- Мотивация и основные определения
- 2 Правильные семейства функций
- 3 Эквивалентные определения правильности
- Овойства правильных семейств

Пусть $F = (f_1, \dots, f_n)$ — правильное, тогда отображение вида

$$(x,y) \rightarrow z = x \oplus y \oplus f(\pi_1(x_1,y_1),\ldots,\pi_n(x_n,y_n))$$

задает квазигрупповую операцию **при любом выборе** π_1, \ldots, π_n .

- Сколько может получиться **различных** квазигрупп при разных π_1, \ldots, π_n ?
- Плохой пример: если все $f_i \equiv const_i$, то смена π_i ничего не даст.
- Оказывается, что количество порождаемых квазигрупп одним правильным семейством F зависит от мощности образа этого семейства³⁸.

Связь мощности образа и количества порождаемых квазигрупп

Пусть $F \colon \mathbb{E}^n_k \to \mathbb{E}^n_k$ — правильное семейство, M — мощность образа отображения $x \to F(x)$. Тогда число различных квазигрупп, порождаемых указанной конструкцией, не менее чем M^{k^2} .

³⁸Галатенко и др., «О порождении *п-*квазигрупп с помощью правильных семейств функций».

Пусть $F = (f_1, \dots, f_n)$ — правильное, тогда отображение вида

$$(x,y) \rightarrow z = x \oplus y \oplus f(\pi_1(x_1,y_1),\ldots,\pi_n(x_n,y_n))$$

задает квазигрупповую операцию **при любом выборе** π_1, \ldots, π_n .

- **С**колько может получиться **различных** квазигрупп при разных π_1, \ldots, π_n ?
- Плохой пример: если все $f_i \equiv const_i$, то смена π_i ничего не даст.
- Оказывается, что количество порождаемых квазигрупп одним правильным семейством F зависит от мощности образа этого семейства³⁸.

Связь мощности образа и количества порождаемых квазигрупп

Пусть $F \colon \mathbb{E}^n_k \to \mathbb{E}^n_k$ — правильное семейство, M — мощность образа отображения $x \to F(x)$. Тогда число различных квазигрупп, порождаемых указанной конструкцией, не менее чем M^{k^2} .

 $^{^{38}}$ Галатенко и др., «О порождении n-квазигрупп с помощью правильных семейств функций».

Пусть $F = (f_1, \ldots, f_n)$ — правильное, тогда отображение вида

$$(x,y) \rightarrow z = x \oplus y \oplus f(\pi_1(x_1,y_1),\ldots,\pi_n(x_n,y_n))$$

задает квазигрупповую операцию **при любом выборе** π_1, \dots, π_n .

- **С**колько может получиться **различных** квазигрупп при разных π_1, \ldots, π_n ?
- \blacksquare Плохой пример: если все $f_i \equiv const_i$, то смена π_i ничего не даст.
- Оказывается, что количество порождаемых квазигрупп одним правильным семейством F зависит от мошности образа этого семейства³⁸.

Связь мощности образа и количества порождаемых квазигрупп

Пусть $F \colon \mathbb{E}^n_k \to \mathbb{E}^n_k$ — правильное семейство, M — мощность образа отображения $x \to F(x)$. Тогда число различных квазигрупп, порождаемых указанной конструкцией, не менее чем M^{k^2} .

июнь 2025 г.

 $^{^{38}}$ Галатенко и др., «О порождении n-квазигрупп с помощью правильных семейств функций».

Пусть $F = (f_1, \dots, f_n)$ — правильное, тогда отображение вида

$$(x,y) \rightarrow z = x \oplus y \oplus f(\pi_1(x_1,y_1),\ldots,\pi_n(x_n,y_n))$$

задает квазигрупповую операцию **при любом выборе** π_1, \dots, π_n .

- **С**колько может получиться **различных** квазигрупп при разных π_1, \ldots, π_n ?
- Плохой пример: если все $f_i \equiv const_i$, то смена π_i ничего не даст.
- Оказывается, что количество порождаемых квазигрупп одним правильным семейством F зависит от мощности образа этого семейства³⁸.

Связь мощности образа и количества порождаемых квазигрупп

Пусть $F \colon \mathbb{E}^n_k \to \mathbb{E}^n_k$ — правильное семейство, M — мощность образа отображения $x \to F(x)$. Тогда число различных квазигрупп, порождаемых указанной конструкцией, не менее чем M^{k^2} .

июнь 2025 г.

³⁸Галатенко и др., «О порождении п-квазигрупп с помощью правильных семейств функций».

Ограниченность мощности образа

Число значений, принимаемых правильным семейством порядка n в k-значной логике, не превосходит k^{n-1} (см. a).

Мощность образа квадратичного семейства

Семейство

$$\begin{bmatrix} 0 \\ x_1 \\ \vdots \\ x_1 \oplus x_2 \oplus \ldots \oplus x_{n-1} \end{bmatrix} \bigoplus \begin{bmatrix} \bigoplus_{i < j, i, j \neq 1}^n x_i x_j \\ \bigoplus_{i < j, i, j \neq 2}^n x_i x_j \\ \vdots \\ \bigoplus_{i < j, i, j \neq n}^n x_i x_j \end{bmatrix}$$

имеет максимальную мощность образа 2^{n-1} .

(2)

 $[^]a$ Галатенко и др., «О порождении n-квазигрупп с помощью правильных семейств функций».

$$\begin{bmatrix} f_1(x_1, \dots, x_n) \\ f_2(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{bmatrix} = \begin{bmatrix} \overline{x}_2 \cdot x_3 \\ \overline{x}_3 \cdot x_4 \\ \vdots \\ \overline{x}_1 \cdot x_2 \end{bmatrix}.$$

$$(3)$$

Правильность семейства

Семейство (3) является правильным

Мощность образа семейства

Мощность образа семейства (3) равна Lucas $_n$ (n-е число Люка)

$$Lucas_n = Lucas_{n-1} + Lucas_{n-2}$$
, $Lucas_0 = 2$, $Lucas_1 = 1$.

$$\begin{bmatrix} f_1(x_1, \dots, x_n) \\ f_2(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{bmatrix} = \begin{bmatrix} \overline{x}_2 \cdot x_3 \\ \overline{x}_3 \cdot x_4 \\ \vdots \\ \overline{x}_1 \cdot x_2 \end{bmatrix}.$$

$$(3)$$

Правильность семейства

Семейство (3) является правильным.

Мощность образа семейства

Мощность образа семейства (3) равна Lucas $_n$ (n-е число Люка)

$$Lucas_n = Lucas_{n-1} + Lucas_{n-2}$$
, $Lucas_0 = 2$, $Lucas_1 = 1$

$$\begin{bmatrix}
f_1(x_1, \dots, x_n) \\
f_2(x_1, \dots, x_n) \\
\vdots \\
f_n(x_1, \dots, x_n)
\end{bmatrix} = \begin{bmatrix}
\overline{x}_2 \cdot x_3 \\
\overline{x}_3 \cdot x_4 \\
\vdots \\
\overline{x}_1 \cdot x_2
\end{bmatrix}.$$
(3)

Правильность семейства

Семейство (3) является правильным.

Мощность образа семейства

Мощность образа семейства (3) равна Lucas $_n$ (n-е число Люка):

$$\mathsf{Lucas}_n = \mathsf{Lucas}_{n-1} + \mathsf{Lucas}_{n-2}, \quad \mathsf{Lucas}_0 = 2, \mathsf{Lucas}_1 = 1.$$

Подстановки, порождаемые правильными семействами

Пусть $F\colon Q^n\to Q^n$ — правильное, (Q,\circ) — квазигруппа. Тогда отображение

$$\sigma_F(x) \colon x \to x \circ F(x), \quad \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \to \begin{bmatrix} x_1 \circ f_1(x_1, \dots, x_n) \\ \vdots \\ x_n \circ f_n(x_1, \dots, x_n) \end{bmatrix}$$

является подстановкой: $\sigma_F \in Perm(Q^n)$.

Пусть $F: Q^n \to Q^n$ — правильное. Рассмотрим $\sigma_F^{-1} \in Perm(Q^n)$.

Обратимость «правильных подстановок»

Если (Q,+) — группа (т.е., операция + ассоциативна), то семейство $G\colon Q^n\to Q^n,$ определенное равенством

$$G(x) = (-x) + \sigma_F^{-1}(x)$$

также является правильным.

Т.е., если F — правильное, то существует правильное семейство G со свойством

$$\sigma_F^{-1}(x) = \sigma_G(x).$$

Таким образом, множество «правильных подстановок» замкнуто относительно взятия обратного элемента (в случае, когда Q — группа).

Пусть $F: \mathbb{Q}^n \to \mathbb{Q}^n$ — правильное. Рассмотрим $\sigma_F^{-1} \in Perm(\mathbb{Q}^n)$.

Обратимость «правильных подстановок»

Если (Q,+) — группа (т.е., операция + ассоциативна), то семейство $G\colon Q^n\to Q^n,$ определенное равенством

$$G(x) = (-x) + \sigma_F^{-1}(x)$$

также является правильным.

T.e., если F- правильное, то существует правильное семейство G со свойством

$$\sigma_F^{-1}(x) = \sigma_G(x).$$

Таким образом, множество «правильных подстановок» замкнуто относительно взятия обратного элемента (в случае, когда Q — группа).

Пусть $F: \mathbb{Q}^n \to \mathbb{Q}^n$ — правильное. Рассмотрим $\sigma_F^{-1} \in Perm(\mathbb{Q}^n)$.

Обратимость «правильных подстановок»

Если (Q, +) — группа (т.е., операция + ассоциативна), то семейство $G: Q^n \to Q^n$, определенное равенством

$$G(x) = (-x) + \sigma_F^{-1}(x)$$

также является правильным.

T.e., если F- правильное, то существует правильное семейство G со свойством

$$\sigma_F^{-1}(x) = \sigma_G(x).$$

Таким образом, множество «правильных подстановок» замкнуто относительно взятия обратного элемента (в случае, когда Q — группа).

Незамкнутость относительно композиций

Множество «правильных подстановок» $\mathcal{S}^{\mathsf{prop}}$ не является подгруппой $Perm(Q^n)$.

Транзитивность действия

Замыкание $\mathcal{S}^{\mathsf{prop}}$ действует транзитивно на Q^n (любой элемент из Q^n можно перевести в любой другой с помощью композиции некоторого количества σ_F).

Булев случай

В случае $Q = \mathbb{E}_2$ известно^a, что замыкание σ_F порождает все множество подстановок $Perm(\mathbb{E}_2^n)$.

^aSchurr, «Unique sink orientations of cubes».

Незамкнутость относительно композиций

Множество «правильных подстановок» $\mathcal{S}^{\mathsf{prop}}$ не является подгруппой $Perm(Q^n)$.

Транзитивность действия

Замыкание S^{prop} действует транзитивно на Q^n (любой элемент из Q^n можно перевести в любой другой с помощью композиции некоторого количества σ_F).

Булев случай

В случае $Q = \mathbb{E}_2$ известно^a, что замыкание σ_F порождает все множество подстановок $Perm(\mathbb{E}_2^n)$.

^aSchurr. «Unique sink orientations of cubes».

Незамкнутость относительно композиций

Множество «правильных подстановок» $\mathcal{S}^{\mathsf{prop}}$ не является подгруппой $Perm(Q^n)$.

Транзитивность действия

Замыкание S^{prop} действует транзитивно на Q^n (любой элемент из Q^n можно перевести в любой другой с помощью композиции некоторого количества σ_F).

Булев случай

В случае $Q=\mathbb{E}_2$ известно^a, что замыкание σ_F порождает все множество подстановок $Perm(\mathbb{E}_2^n)$.

^aSchurr, «Unique sink orientations of cubes».

Пусть F — правильное семейство булевых функций.

Четность числа элементов в прообразе

Для любого $\alpha \in \{0,1\}^n$ число решений уравнения $F(x) = \alpha$ всегда четно.

${f K}$ оличество неподвижных точек σ_F

У подстановки $\sigma_F(x) = x \oplus F(x)$ чётное число неподвижных точек.

Пусть F — правильное семейство булевых функций.

Четность числа элементов в прообразе

Для любого $\alpha \in \{0,1\}^n$ число решений уравнения $F(x) = \alpha$ всегда четно.

Количество неподвижных точек σ_F

У подстановки $\sigma_F(x) = x \oplus F(x)$ чётное число неподвижных точек.

Об индексах ассоциативности

Ассоциативные тройки

Тройка (a,b,c) элементов квазигруппы Q называется ассоциативной, если

$$(a \circ b) \circ c = a \circ (b \circ c).$$

Число таких троек называется индексом ассоциативности квазигруппы Q.

- С точки зрения некоторых криптосистем желательно, чтобы таких троек было как можно меньше.
- Имеется множество результатов, в которых оценивается минимальное число таких троек в квазигруппах порядка k.
- Имеются результаты о том, сколько в среднем таких троек в квазигруппе, где усреднение берется по всем изотопам.

Один способ задания квазигруппы

Пусть \mathcal{F} , \mathcal{G} — два правильных семейства функций размера n над группой $(G^n, +)$. Для $\mathbf{x}, \mathbf{y} \in G^n$ зададим операцию \circ следующим образом:

$$\mathbf{x} \circ \mathbf{y} = \mathbf{x} + \mathcal{F}(\mathbf{x}) + \mathbf{y} + \mathcal{G}(\mathbf{y}).$$

Об индексах ассоциативности

- Операция о является квазигрупповой.
- Индексы ассоциативности квазигрупп, построенных по паре $(\mathcal{F}, \mathcal{G})$ и по паре $(\mathcal{G}, \mathcal{F})$, совпадают.
- Для $G = \mathbb{Z}_2$ индексы ассоциативности квазигрупп, построенных по паре $(\mathcal{F}, \mathcal{G})$ и по паре $(\mathcal{F} \oplus \alpha, \mathcal{G} \oplus \alpha)$, совпадают.
- Для $G = \mathbb{Z}_2$ количество ассоциативных троек в квазигруппе, построенной по паре правильных булевых семейств $(\mathcal{F}, \mathcal{G})$, четно.

- Пока что очень мало понятно про то, каковы алгебраические свойства квазигрупп, порождаемых правильными семействами (в частности, каковы свойства подстановок σ_F).
- Хотелось бы, чтобы по виду правильного семейства можно было определять алгебраические свойства квазигруппы: наличие/отсутствие подквазигрупп, полиномиальная полнота, индекс ассоциативности и т.д...
- Пока что очень мало понятно про подстановки, порождаемые правильными семействами, в случае логики k>2.

- Пока что очень мало понятно про то, каковы алгебраические свойства квазигрупп, порождаемых правильными семействами (в частности, каковы свойства подстановок σ_F).
- Хотелось бы, чтобы по виду правильного семейства можно было определять алгебраические свойства квазигруппы: наличие/отсутствие подквазигрупп, полиномиальная полнота, индекс ассоциативности и т.д...
- Пока что очень мало понятно про подстановки, порождаемые правильными семействами, в случае логики k>2.

- Пока что очень мало понятно про то, каковы алгебраические свойства квазигрупп, порождаемых правильными семействами (в частности, каковы свойства подстановок σ_F).
- Хотелось бы, чтобы по виду правильного семейства можно было определять алгебраические свойства квазигруппы: наличие/отсутствие подквазигрупп, полиномиальная полнота, индекс ассоциативности и т.д...
- Пока что очень мало понятно про подстановки, порождаемые правильными семействами, в случае логики k>2.

- Правильные семейства функций могут быть описаны несколькими эквивалентными способами.
- Различные способы описания дают возможность переноса результатов из смежных областей на «язык» правильных семейств; некоторые результаты допускают обобщения на правильные семейства над логиками произвольной значности.
- Правильные семейства могут задавать структуру квазигруппы; квазигруппы, в свою очередь, могут использоваться для построения различных криптографических примитивов.
- Многие важные с точки зрения криптографии свойства получаемых примитивов зависят от используемой квазигруппы; в этом контексте полезно изучать свойства квазигрупп, порождаемых правильными семействами.

- Правильные семейства функций могут быть описаны несколькими эквивалентными способами.
- Различные способы описания дают возможность переноса результатов из смежных областей на «язык» правильных семейств; некоторые результаты допускают обобщения на правильные семейства над логиками произвольной значности.
- Правильные семейства могут задавать структуру квазигруппы; квазигруппы, в свою очередь, могут использоваться для построения различных криптографических примитивов.
- Многие важные с точки зрения криптографии свойства получаемых примитивов зависят от используемой квазигруппы; в этом контексте полезно изучать свойства квазигрупп, порождаемых правильными семействами.

- Правильные семейства функций могут быть описаны несколькими эквивалентными способами.
- Различные способы описания дают возможность переноса результатов из смежных областей на «язык» правильных семейств; некоторые результаты допускают обобщения на правильные семейства над логиками произвольной значности.
- Правильные семейства могут задавать структуру квазигруппы; квазигруппы, в свою очередь, могут использоваться для построения различных криптографических примитивов.
- Многие важные с точки зрения криптографии свойства получаемых примитивов зависят от используемой квазигруппы; в этом контексте полезно изучать свойства квазигрупп, порождаемых правильными семействами.

- Правильные семейства функций могут быть описаны несколькими эквивалентными способами.
- Различные способы описания дают возможность переноса результатов из смежных областей на «язык» правильных семейств; некоторые результаты допускают обобщения на правильные семейства над логиками произвольной значности.
- Правильные семейства могут задавать структуру квазигруппы; квазигруппы, в свою очередь, могут использоваться для построения различных криптографических примитивов.
- Многие важные с точки зрения криптографии свойства получаемых примитивов зависят от используемой квазигруппы; в этом контексте полезно изучать свойства квазигрупп, порождаемых правильными семействами.

Публикации автора (личные)

- «О соответствии между правильными семействами и реберными ориентациями булевых кубов», Интеллектуальные системы. Теория и приложения, 24:1 (2020), 97–100.
- «О взаимно однозначном соответствии между правильными семействами булевых функций и рёберными ориентациями булевых кубов», ПДМ, 2020, 48, 16–21 (2020).
- «О свойствах правильных семейств булевых функций», Дискрет. матем., 33:1 (2021), 91–102.
- "Format-preserving encryption: a survey", Матем. вопр. криптогр., 13:2 (2022), 133–153.
- «Об одном квазигрупповом алгоритме шифрования, сохраняющего формат», ПДМ. Приложение, 2023, 16, 102–104.
- «Об индексе ассоциативности конечных квазигрупп», Интеллектуальные системы. Теория и приложения, 28:3 (2024), 80–101.

Публикации автора (в соавторстве)

- A. V. Galatenko, V. A. Nosov, A. E. Pankratiev, K. D. Tsaregorodtsev, "Proper families of functions and their applications", Матем. вопр. криптогр., 14:2 (2023), 43–58.
- А. В. Галатенко, В. А. Носов, А. Е. Панкратьев, К. Д. Царегородцев, «О порождении п-квазигрупп с помощью правильных семейств функций», Дискрет. матем., 35:1 (2023), 35–53.
- A. V. Galatenko, A. E. Pankratiev, K. D. Tsaregorodtsev, "A Criterion of Properness for a Family of Functions", Journal of Mathematical Sciences, 284:4 (2024), 451–459.

Спасибо за внимание!

ПРАКТИВ

- info@rutoken.ru
- www.rutoken.ru www.aktiv-company.ru
- +7 495 925-77-90

Список литературы I

- Bakeva, Verica и Vesna Dimitrova. «Some probabilistic properties of quasigroup processed strings useful for cryptanalysis». Англ. В: ICT Innovations 2010: Second International Conference, ICT Innovations 2010, Ohrid Macedonia, September 12-15, 2010. Revised Selected Papers 2. Springer. 2011, c. 61—70.
- Bernstein, Daniel J., Johannes Buchmann и Erik Dahmen. *Post-quantum cryptography*. Springer Berlin, Heidelberg, 2009. DOI: https://doi.org/10.1007/978-3-540-88702-7.
- Borzechowski, M., J. Doolittle и S. Weber. «A Universal Construction for Unique Sink Orientations». Англ. В: arXiv preprint arXiv:2211.06072 (2022).
- Bosshard, Vitor и Bernd Gärtner. «Pseudo unique sink orientations». B: arXiv preprint arXiv:1704.08481 (2017).
- Chen, Yanling, Svein Johan Knapskog и Danilo Gligoroski. «Multivariate quadratic quasigroups (MQQs): Construction, bounds and complexity». В: Submitted to ISIT 2010 (2010), с. 14.

Список литературы II

- Couselo, E. и др. «Loop codes». Англ. B: Discrete Mathematics and Applications 14.2 (2004), c. 163—172.
- Denes, J. и A. Keedwell. Latin squares and their applications. Англ. Под ред. Elsevier Science. 2nd edition. Burlington, 2015.
- Dimitrova, V. и J Markovski. «On quasigroup pseudo random sequence generator». Ahfji. B: Proceedings of the 1st Balkan Conference in Informatics, Thessaloniki. 2004.
- Faugère, Jean-Charles и др. «A polynomial-time key-recovery attack on MQQ cryptosystems». B: IACR International Workshop on Public Key Cryptography. Springer. 2015, c. 150—174.
- Galatenko, A. V., V. A. Nosov и A. E. Pankratiev. «Latin squares over quasigroups». Англ. В: Lobachevskii Journal of Mathematics 41.2 (2020), с. 194—203.
- Gao, Y., B. Gartner u J. Lamperski. «A new combinatorial property of geometric unique sink orientations». Англ. В: arXiv preprint arXiv:2008.08992 (2020).

Список литературы III

- Gligoroski, D., S. Markovski и S. J. Knapskog. «The stream cipher Edon80». Англ. В: New stream cipher designs. Springer, 2008, с. 152—169.
- Gligoroski, D., S. Markovski и L. Kocarev. «Edon-R, An Infinite Family of Cryptographic Hash Functions.». Англ. В: International Journal of Security and Networks 8.3 (2009), с. 293—300.
- Gligoroski, D. и др. «Cryptographic hash function Edon-R'». Англ. В: 2009 Proceedings of the 1st International Workshop on Security and Communication Networks. IEEE. 2009, с. 1—9.
- Gligoroski, Danilo. «On a family of minimal candidate one-way functions and one-way permutations.». Англ. В: *Int. J. Netw. Secur.* 8.3 (2009), с. 211—220.
- Gligoroski, Danilo. On the S-box in GAGE and InGAGE. Англ. http://gageingage.org/upload/LWC2019NISTWorkshop.pdf. 2019.

Список литературы IV

- Gligoroski, Danilo u Svein Johan Knapskog. «Edon-R (256.384.512)—an efficient implementation of Edon-R family of cryptographic hash functions». Ahpj. B: Commentationes Mathematicae Universitatis Carolinae 49.2 (2008), c. 219—239.
- Gligoroski, Danilo, Smile Markovski u Svein Johan Knapskog. «A public key block cipher based on multivariate quadratic quasigroups». B: arXiv preprint arXiv:0808.0247 (2008).
 - .«Multivariate quadratic trapdoor functions based on multivariate quadratic quasigroups». B: Proceedings of the American Conference on Applied Mathematics. 2008, c. 44-49.
- Gligoroski, Danilo и др. «GAGE and InGAGE». Англ. В: A Submission to the NIST Lightweight Cryptography Standardization Process (2019).
- Gligoroski, Danilo и др. «MQQ-SIG: An ultra-fast and provably CMA resistant digital signature scheme». B: International Conference on Trusted Systems. Springer. 2011. c. 184—203.

Список литературы V

- Gribov, Aleksei Viktorovich, Pavel Andreevich Zolotykh u Aleksandr Vasil'evich Mikhalev. «A construction of algebraic cryptosystem over the quasigroup ring». B: Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography] 1.4 (2010), c. 23—32.
- Markov, V. T., A. V. Mikhalev и A. A. Nechaev. «Nonassociative Algebraic Structures in Cryptography and Coding». Англ. В: Journal of Mathematical Sciences 245.2 (2020).
- Markovski, S, D. Gligoroski и V. Bakeva. «Quasigroup String Processing: Part 1». Англ. В: Proc. of Maked. Academ. of Sci. and Arts for Math. And Tect. Sci. XX (1999), c. 157—162.
- Markovski, Smile и Verica Bakeva. «Quasigroup string processing: Part 4». Англ. В: Contributions, Section of Natural, Mathematical and Biotechnical Sciences 27.1-2 (2017).

Список литературы VI

- Markovski, Smile, Danilo Gligoroski и Ljupco Kocarev. «Unbiased random sequences from quasigroup string transformations». Англ. В: International workshop on fast software encryption. Springer. 2005, с. 163—180.
- Mathew, K Ashik, Patric RJ Östergård и Alexandru Popa. «Enumerating cube tilings». В: Discrete & Computational Geometry 50.4 (2013), с. 1112—1122.
- Matousek, J. «The Number Of Unique-Sink Orientations of the Hypercube». Англ. В: Combinatorica 26 (февр. 2006), с. 91—99.
- Mileva, Aleksandra и Smile Markovski. «Quasigroup String Transformations and Hash Function Design: A Case Study: The NaSHA Hash Function». В: International Conference on ICT Innovations. Springer. 2009, с. 367—376.
- Mohamed, Mohamed Saied Emam и др. «Algebraic attack on the MQQ public key cryptosystem». B: Cryptology and Network Security: 8th International Conference, CANS 2009, Kanazawa, Japan, December 12-14, 2009. Proceedings 8. Springer. 2009, c. 392—401.

Список литературы VII

- Myasnikov, Alexei, Vladimir Shpilrain и Alexander Ushakov. Non-commutative cryptography and complexity of group-theoretic problems. American Mathematical Soc., 2011.
- Richard, A. «Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks». Ahfil. B: Theoretical Computer Science 583 (2015), c. 1—26.
- Robert, François. «Iterations sur des ensembles finis et automates cellulaires contractants». Op. B: Linear Algebra and its applications 29 (1980), c. 393—412.
- Ruet, P. «Asynchronous Boolean networks and hereditarily bijective maps». Ahpl. B: Natural Computing 14 (2015), c. 545—553.
- Ruet, P. «Local cycles and dynamical properties of Boolean networks». Ahpj. B: Mathematical Structures in Computer Science 26.4 (2016), c. 702—718.
- Schurr, I. «Unique sink orientations of cubes». Англ. Дис. . . док. ETH Zurich, 2004.
- Shcherbacov, V. Elements of Quasigroup Theory and Applications. Англ. Chapman и Hall/CRC, 2017.

Список литературы VIII

- Shih, M.-H. и J.-L. Dong. «A combinatorial analogue of the Jacobian problem in automata networks». Англ. В: Advances in Applied Mathematics 34.1 (2005), с. 30—46.
- Sikirić, M. D., Y. Itoh и A. Poyarkov. «Cube packings, second moment and holes». Англ. В: European Journal of Combinatorics 28.3 (2007), с. 715—725.
- Snášel, Václav и др. «Hash functions based on large quasigroups». Англ. В: Computational Science—ICCS 2009: 9th International Conference Baton Rouge, LA, USA, May 25-27, 2009 Proceedings, Part I 9. Springer. 2009, c. 521—529.
- Szabó, Т. и Е. Welzl. «Unique sink orientations of cubes». Англ. В: Proceedings 42nd IEEE Symposium on Foundations of Computer Science. IEEE. 2001, с. 547—555.
- Thomas, R. «Regulatory networks seen as asynchronous automata: a logical description». Англ. В: Journal of theoretical biology 153.1 (1991), с. 1—23.
- Tiwari, Sharwan K и др. «INRU: A Quasigroup Based Lightweight Block Cipher». Англ. В: arXiv preprint arXiv:2112.07411 (2021).

Список литературы IX

- Wolf, Christopher и Bart Preneel. Taxonomy of Public Key Schemes based on the problem of Multivariate Quadratic equations. Cryptology ePrint Archive, Paper 2005/077. https://eprint.iacr.org/2005/077. 2005. URL: https://eprint.iacr.org/2005/077.
- **а** Артамонов, В. А. «Квазигруппы и их приложения». В: Чебышевский сборник 19.2 (66) (2018), с. 111—122.
- Барышников, Андрей Владимирович и Сергей Юрьевич Катышев. «Использование неассоциативных структур для построения алгоритмов открытого распределения ключей». В: Математические вопросы криптографии 9.4 (2018), с. 5—30.
- Галатенко, А.В. и др. «О порождении *п*-квазигрупп с помощью правильных семейств функций». В: Дискретная математика 35.1 (2023), с. 35—53.

Список литературы Х

- Галатенко, Алексей Владимирович и др. «Порождение правильных семейств функций». В: Интеллектуальные системы. Теория и приложения 25.4 (2021), с. 100—103.
- **Г**лухов, М.М. «О применениях квазигрупп в криптографии». В: *Прикладная дискретная математика* 2 (2) (2008), с. 28—32.
- **Г**онсалес, С. и др. «Групповые коды и их неассоциативные обобщения». В: *Дискретная математика* 16.1 (2004), с. 146—156.
- .«Рекурсивные МДР-коды и рекурсивно дифференцируемые квазигруппы». В: Дискретная математика 10.2 (1998), с. 3—29.
- Грибов, А. В. «Алгебраические неассоциативные структуры и их приложения в криптографии». Дис. . . . док. Московский государственный университет им. М. В. Ломоносова, 2015.

Список литературы XI

- Грибов, Алексей Викторович. «Гомоморфность некоторых криптографических систем на основе неассоциативных структур». В: Фундаментальная и прикладная математика 20.1 (2015), с. 135—143.
- Катышев, Сергей Юрьевич, Виктор Тимофеевич Марков и Александр Александрович Нечаев. «Использование неассоциативных группоидов для реализации процедуры открытого распределения ключей». В: Дискретная математика 26.3 (2014), с. 45—64.
- Марков, В. Т. и др. «Квазигруппы и кольца в кодировании и построении криптосхем». В: Прикладная дискретная математика 4 (2012).
- Марков, В. Т., А. В. Михалёв и А. А. Нечаев. «Неассоциативные алгебраические структуры в криптографии и кодировании». В: Фундаментальная и прикладная математика 21.4 (2016), с. 99—124.

Список литературы XII

- Марков, Виктор, Александр Васильевич Михалёв и Евгений Сергеевич Кислицын. «Неассоциативные структуры в гомоморфной криптографии». В: Фундаментальная и прикладная математика 23.2 (2020), с. 209—215.
- Молдовян, Дмитрий Николаевич, Александр Андреевич Молдовян и Николай Андреевич Молдовян. «Новая концепция разработки постквантовых алгоритмов цифровой подписи на некоммутативных алгебрах». В: Вопросы кибербезопасности 1 (47) (2022), с. 18—25.
- Нечаев, Александр Александрович. «Конечные квазифробениусовы модули, приложения к кодам и линейным рекуррентам». В: Фундаментальная и прикладная математика 1.1 (1995), с. 229—254.
 - Носов, В. А. «Критерий регулярности булевского неавтономного автомата с разделенным входом». В: Интеллектуальные системы. Теория и приложения 3.3-4 (1998), с. 269—280.

Список литературы XIII

- Носов, В. А. «Построение классов латинских квадратов в булевой базе данных». В: Интеллектуальные системы. Теория и приложения 4.3-4 (1999), с. 307—320. ISSN: 2075-9460: 2411-4448.
 - .«Построение параметрического семейства латинских квадратов в векторной базе данных». В: Интеллектуальные системы. Теория и приложения 8.1-4 (2006), c. 517—529. ISSN: 2075-9460: 2411-4448.
- Носов, В. А. и А. Е. Панкратьев. «Латинские квадраты над абелевыми группами». В: Фундаментальная и прикладная математика 12.3 (2006), с. 65—71.
 - .«О функциональном задании латинских квадратов». В: Интеллектуальные системы. Теория и приложения 12.1-4 (2008), с. 317—332. ISSN: 2075-9460: 2411-4448.
- Плаксина, И. А. «Построение параметрического семейства многомерных латинских квадратов». В: Интеллектуальные системы. Теория и приложения 18.2 (2014), c. 323-330.

Список литературы XIV

- Романьков, Виталий Анатольевич. *Алгебраическая криптология: монография*. ОмГУ им. Ф. М. Достоевского, 2020.
- Рыков, Д.О. «О правильных семействах функций, используемых для задания латинских квадратов». В: Интеллектуальные системы. Теория и приложения 18.1 (2014), с. 141—152.
- Царегородцев, К. Д. «О взаимно однозначном соответствии между правильными семействами булевых функций и рёберными ориентациями булевых кубов». В: Прикладная дискретная математика 48 (2020), с. 16—21. (Scopus, WoS).
- Царегородцев, К.Д. «О свойствах правильных семейств булевых функций». В: Дискретная математика 33.1 (2021), с. 91—102.
 - .«О соответствии между правильными семействами и реберными ориентациями булевых кубов». В: *Интеллектуальные системы. Теория и приложения* 24.1 (2020), с. 97—100.

