WEB3CLUBS FOUNDATION LIMITED

Course Instructor: DR. Cyprian Omukhwaya Sakwa

PHONE: +254723584205 Email: cypriansakwa@gmail.com

Foundational Mathematics for Web3 Builders

Lecture 5
April 30,2024

1.12 Computing Modular Inverses Using Fermat's Little Theorem

Corollary 15

If p is prime and $p \nmid a$, then a^{p-2} is the multiplicative inverse of a. That is, $a^{-1} \equiv a^{p-2} \bmod p$

Notice that this congruence is true because if we multiply a^{p-2} by a we get the statement of Fermat's little theorem that the product is equal to 1 modulo p.

Example 54

Compute the inverse of 7 modulo 23.

Solution

The inverse of 7 modulo 23 is $7^{21} \mod 23$ which we compute by fast powering algorithm as below.

Solution (conti...)

$$7^{1}=7$$
 $7^{2}=3$
 $7^{4}=9$
 $7^{8}=12$
 $7^{16}=6$

Thus $7^{21}=7^{16+4+1}$
 $=7^{16}\times 7^{4}\times 7^{1}$

 $=6\times9\times7$

= 10

Compute the inverse of $12^{-1} \mod 19$.

Solution

$$12^{-1} \mod 19 = 12^{17} \mod 19$$

Using fast powering algorithm we get

$$12^1 = 12$$

$$12^2 = 11$$

$$12^4 = 7$$

$$12^8 = 11$$

$$12^{16} = 7$$

Thus,
$$12^{17} = 12^{16+1}$$

$$=12^{16} \times 12^1$$

$$= 7 \times 12 = 8$$

Therefore, $12^{-1} \mod 19 = 8 \mod 19$

Compute the inverse of 7814 modulo 17449

Solution

The workings are left for the leaner to show. $7814^{-1} \mod 17449 = 7814^{17447} \mod 17449 = 1284$

1.13 Fermat's Primality Test

To test whether p is prime, pick a random integers a not divisible by p and see whether the congruence $a^{p-1} \equiv 1 \bmod p$ holds. If it fails hold for a value of a, then p is composite. The random a chosen should be in the interval 1 < a < p - 1. It is unlikely that this congruence will hold for a random a if p is composite.

If any random a holds $a^{n-1} \equiv 1 \mod n$ when n is composite then such a is known as a Fermat liar. In this case n is called Fermat pseudoprime to base a. In this case, if we pick another random a which gives $a^{n-1} \not\equiv 1 \mod n$ then such a is known as a Fermat witness for the compositeness of n.

Let us use Fermat's Primality Test to test whether 7 is prime.

Since 1 < a < n, the values of a can be 2, 3, 4, 5, 6. So let's check for the these numbers.

$$2^6 \equiv 1 \mod 7$$

$$3^6 \equiv 1 \mod 7$$

$$4^6 \equiv 1 \mod 7$$

$$5^6 \equiv 1 \mod 7$$

$$6^6 \equiv 1 \mod 7$$

So 7 is prime since every a has confirmed.

Determine whether 221 is prime.

Since 1 < a < 220, let us take a = 38.

 $38^{220} \equiv \mod 221$, since Fermat's statement has been upheld, either 221 is prime, or 38 is a Fermat liar, so we take another a, say 24 and check again

$$24^{220} \equiv 81 \not\equiv \mod 221$$

So 221 is composite and 38 was indeed a Fermat liar. Here, 24 is a Fermat witness for the compositeness of 221.

Exercise 5

- a) Show that the following algorithm will compute the value of $a^k \pmod{m}$. It is a more efficient way to do successive squaring, well-suited for implementation on a computer.
 - (1) Set b = 1
 - (2) Loop while $k \geq 1$
 - (3) If k is odd, set $b = a \cdot b \pmod{m}$
 - (4) Set $a = a^2 \pmod{m}$.
 - (5) Set k = k/2 (round down if k is odd)
 - (6) End of Loop
 - (7) Return the value of b (which equals $a^k \pmod{m}$)
- b) Implement the above algorithm on a computer.
- c) Use your program to compute the following quantities:
 - (i) $2^{1000} \pmod{2379}$ (ii) $567^{1234} \pmod{4321}$
 - (iii) $47^{258008} \pmod{1315171}$

Exercise (conti...)

- d) Compute $7^{7386} \pmod{7387}$ by the method of successive squaring. Is 7387 prime?
- e) Compute $7^{7392} \pmod{7393}$ by the method of successive squaring. Is 7393 prime?
- f) Write a program to check if a number n is composite or probably prime as follows. Choose 10 random numbers a_1, a_2, \cdots, a_{10} between 2 and n-1 and compute $a_i^{n-1} \bmod n$ for each a_i . If $a_i^{n-1} \not\equiv 1 (\bmod n)$ for any a_i , return the message "n is composite." If $a_i^{n-1} \equiv 1 (\bmod n)$ for all the a_i 's, return the message "n is probably prime.
- g) Compute $2^{9990} \pmod{9991}$ by successive squaring and use your answer to say whether you believe that 9991 is prime.

1.14 Euler's Theorem

Theorem 16 (Euler's Theorem)

Let $m \in \mathbb{Z}$ and a be an integer relatively prime to m. Then

$$a^{\phi(m)} \equiv 1 \mod m$$

Example 59

Find the last digit of 27^{71} .

Solution

To find the last digit of 27^{71} we reduce $27^{71} \mod 10 = 7^{71} \mod 10$.

Since gcd(7,10) = 1, we use Euler's Theorem.

Thus, $7^{\phi(10)} \equiv 1 \mod 10$ or $7^4 \equiv 1 \mod 10$.

By division algorithm, $71 = 4 \cdot 17 + 3$.

Thus $7^{71} \mod 10 = 7^3 \mod 10$

$$= 343 \mod 10 = 3$$

Therefore, last digit of 27^{71} is 3.

Find the last digit of 55^{29} .

Solution

To find the last digit of 55^{29} we reduce $55^{29} \bmod 10$

We want to use Euler's Theorem but $\gcd(55,10)=5$ so we can't use it directly. So first, $55=5\cdot 11$.

Thus, $55^{29} = 5^{29} \times 11^{29}$.

Since gcd(11, 10) = 1, we have that $11^{\phi(10)} = 1 \mod 10$ or $11^4 =$

 $1 \mod 10$. Since $29 = 4 \cdot 7 + 1$, we have that $11^{29} = 11^1 = 11$.

Thus, $5^{29} \times 11^{29} = 5^{29} \times 11 \mod 10$

Let us use the fast powering algorithm to solve $5^{29} \mod 10$.

$$5^1 = 5$$

$$5^4 = 5$$

$$5^{16} = 5$$

$$5^2 = 5$$

$$5^8 = 5$$

$$5^{29} = 5^{16} \times 5^8 \times 5^4 \times 5^1 = 5$$

Thus $5^{29} \times 11 \mod 10 = 5 \times 11 = 55 \mod 10$.

The last digit is 5.

Find the last two digits of 1111^{71023} .

Solution

To find the last two digits of 1111^{71023} we reduce 1111^{71023} mod

 $100 = 11^{71023} \mod 100$. Since $\gcd(11, 100) = 1$, we use Euler's

Theorem. Here, $\phi(100) = \frac{1}{2} \times \frac{4}{5} \times 100 = 40$

Thus, $11^{\phi(100)} \equiv 1 \mod 100$ or $11^{40} \equiv 1 \mod 100$.

By division algorithm, $71023 = 40 \cdot 1775 + 23$.

Thus $11^{71023} \mod 100 = 11^{23} \mod 100$. Thus:

$$11^1 = 11$$

$$11^8 = 81$$

$$11^8 = 81$$
 $11^{23} = 11^{16} \times 11^4 \times 11^2 \times 11^1$

$$11^2 = 21$$

$$11^2 = 21 11^{16} = 61$$

$$= 61 \times 41 \times 21 \times 11$$

$$11^4 = 41$$

$$=577731$$

Therefore, last two digits of 1111^{71023} is 31.

Find the last three digits of 17^{20001} .

Solution

To find the last three digits of 17^{20001} we reduce $17^{20001} \mod 1000$.

Since $\gcd(17,1000)=1$, we use Euler's Theorem. Here, $\phi(1000)=$

$$\frac{1}{2} \times \frac{4}{5} \times 1000 = 400$$

Thus, $17^{\phi(1000)} \equiv 1 \mod 1000$ or $17^{400} \equiv 1 \mod 1000$.

By division algorithm, $20001 = 400 \cdot 50 + 1$.

Thus $17^{20001} \mod 1000 = 17^1 \mod 1000 = 17$.

Therefore, last three digits of 17^{20001} is 017.

Find remainder of 524^{9999} on division by 23.

Solution

Fist reduce $524^{9999} \mod 23 = 18^{9999} \mod 23$.

Since gcd(18, 23) = 1, we use Euler's Theorem. Here, $\phi(23) = 22$.

Thus, $18^{\phi(23)} \equiv 1 \mod 23$ or $18^{22} \equiv 1 \mod 23$.

By division algorithm, $9999 = 22 \cdot 454 + 11$.

Thus $18^{9999} \mod 23 = 18^{11} \mod 23$.

Using fast powering algorithm,

$$18^1 = 18$$
 $18^4 = 4$

$$18^4 = 4$$

$$18^{11} = 18^8 \times 18^2 \times 18^1$$

$$18^2 = 2$$
 $18^8 = 16$

$$18^8 = 16$$

$$= 16 \times 2 \times 18 = 1$$

The remainder is 1.

Find remainder of 17^{2028} on division by 20.

Solution

We reduce $17^{2028} \mod 20$. Since $\gcd(17,20) = 1$, we use Euler's

Theorem. Here, $\phi(20) = \frac{1}{2} \times \frac{4}{5} \times 20 = 8$.

Thus, $17^{\phi(20)} \equiv 1 \mod 20$ or $17^8 \equiv 1 \mod 20$.

By division algorithm, $2028 = 8 \cdot 253 + 4$.

Thus $17^{2028} \mod 20 = 17^4 \mod 20$.

Using fast powering algorithm,

$$17^1 = 17$$

$$17^2 = 9$$

$$17^4 = 1$$

The remainder is 1.

1.15 Using Euler's Theorem to Compute Inverses

Multiplying $a^{\phi(m)} \equiv 1 \mod m$ by a^{-1} we get $a^{-1}a^{\phi(m)} \equiv a^{-1} \mod m$ or $a^{\phi(m)-1} \equiv a^{-1} \mod m$. Thus $a^{-1} \mod m$ is given by $a^{\phi(m)-1} \mod m$.

Example 65

Use Euler's Theorem to compute $12^{-1} \mod 19$

Solution

Since, $\gcd(12,19)=1$, we have $12^{-1}=12^{\phi(19)-1} \bmod 19=12^{17} \bmod 19$. By fast powering algorithm we get

$$12^{1} = 12$$
 $12^{4} = 7$ $12^{16} = 7$ $12^{17} = 12^{16} \times 12^{1}$ $12^{2} = 11$ $12^{8} = 11$ $12^{16} = 7$ $12^{16} \times 12^{1}$ $12^{16} = 7 \times 12 \mod 19 = 8$

Therefore, $12^{-1} \mod 19 = 8 \mod 19$

Exercise 6

a) Write a program to compute $\phi(n)$, the value of Euler's phi function. You should compute $\phi(n)$ by using a factorization of n into primes, not by finding all the a's between 1 and n that are relatively prime to n.