4.4 Linear programming duality

Write the dual of the following linear program

min
$$2x_2 + x_3 - 3x_4$$

$$x_1 - x_2 + 2x_4 \ge 2$$

$$2x_2 + x_3 = 4$$

$$2x_1 - x_3 + x_4 \le 1$$

$$x_1 \ge 0 \quad x_2 \ge 0$$

$$x_3, x_4 \text{ unrestricted}$$

4.5 Dual of the transportation problem

A company owns m production factories, and produces goods for n warehouses. Depot $i, i \in \{1, ..., m\}$, has a production capacity of b_i units, while the warehouse $j, j \in \{1, ..., n\}$, requires d_j units. Let c_{ij} bet the unit transportation cost from factory i to warehouse j.

Consider the problem of determining a transportation plan that minimized the total cost, satisfying the warehouse demands and the production limits. Let x_{ij} be the quantity of product transported from i to j. We consider the following formulation

$$(\mathbf{P_1}) \quad \min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\ - \sum_{j=1}^{n} x_{ij} \ge -b_i \quad i \in \{1, \dots, m\} \\ \sum_{i=1}^{m} x_{ij} \ge d_j \qquad j \in \{1, \dots, n\} \\ x_{ij} \ge 0 \qquad i \in \{1, \dots, m\} \quad j \in \{1, \dots, n\}$$

Assume, without loss of generality, that the total production capacity satisfies $\sum_{j=1}^n d_j = \sum_{i=1}^m b_i$. Indeed, if $\sum_{j=1}^n d_j < \sum_{i=1}^m b_i$, we can introduce a dummy warehouse (n+1) with zero transportation costs, with demand $\sum_{j=1}^n d_j - \sum_{i=1}^m b_i$.

Determine the linear programming dual of P_1 , providing an economical interpretation.

4.6 Complementary slackness

Given the problem

$$(\mathbf{P_2}) \qquad \max \quad 2x_1 + x_2 \\ x_1 + 2x_2 \le 14 \\ 2x_1 - x_2 \le 10 \\ x_1 - x_2 \le 3 \\ x_1, x_2 \ge 0$$

- a) write its dual
- b) show that $\underline{\bar{x}} = (\frac{20}{3}, \frac{11}{3})$ is a feasible solution
- c) show that $\underline{\bar{x}}$ is also an optimal solution, by means of the complementary slackness theorem
- d) determine an optimal solution to its dual.

SOLUTION

4.4 Linear programming duality

The dual reads

4.5 Dual of the transportation problem

Let u_i, v_j be the dual variables of the two classes of constraints. Since for each column of the the constraint matrix of the primal problem only two entries are nonzero, taking value -1 and +1 for, respectively, rows corresponding to the fist and second class of constraints, the dual reads

(**D**₁)
$$\max - \sum_{i=1}^{m} b_i u_i + \sum_{j=1}^{n} d_j v_j$$

 $v_j - u_i \le c_{ij} \qquad i \in \{1, \dots, m\} \quad j \in \{1, \dots, n\}$
 $u_i \ge 0, v_j \ge 0 \qquad i \in \{1, \dots, m\} \quad j \in \{1, \dots, n\}$

Economical interpretation. We suppose that the production company (company A) hires a logistics company to handle the transportation business (company B). This company buys all the products from the different factories, paying a unit cost of u_i Euro for factory i. Then, it sells the products to the warehouses at a unit cost of v_j Euro, per warehouse j. The objective of company B amounts to maximizing the profit, i.e.,

$$\max - \sum_{i=1}^{m} b_i u_i + \sum_{j=1}^{n} d_j v_j$$

Company B has to decide the prices u_i, v_j such that it is not cheaper, for company A, to handle the transportation business without involving B. Suppose that, for a pair i, j, the prices are such that $v_j - u_i > c_{ij}$. In such case, company A would prefer to transport the product by itself, being cheaper than hiring company B. Therefore, for each pair i, j, the prices must satisfy the condition $v_j - u_i \le c_{ij}$.

4.6 Complementary slackness

a) The dual reads

$$(\mathbf{D_2}) \quad \min \quad 14y_1 + 10y_2 + 3y_3$$

$$y_1 + 2y_2 + y_3 \ge 2$$

$$2y_1 - y_2 - y_3 \ge 1$$

$$y_1, y_2, y_3 \ge 0$$

- b) $\underline{\bar{x}} = (\frac{20}{3}, \frac{11}{3})$ is feasible, as it satisfies the constrains of (P_2) .
- c-d) By the complementary slackness theorem, if $\underline{x} = (x_1, x_2)$ is feasible for the primal and $\overline{y} = (y_1, y_2, y_3)$ is feasible for the dual, and they satisfy

$$y_i(a_i^T \underline{x} - b_i) = 0$$
 $\forall i$
 $(c_j - y^T A_j) x_j = 0$ $\forall j$

then they are optimal for the respective problems. The complementary slackness conditions for the problem at hand read

$$y_1(x_1 + 2x_2 - 14) = 0$$
$$y_2(2x_1 - x_2 - 10) = 0$$
$$y_3(x_1 - x_2 - 3) = 0$$

$$x_1(y_1 + 2y_2 + y_3 - 2) = 0$$
$$x_2(2y_1 - y_2 - y_3 - 1) = 0$$

We obtain \underline{y} , by substituting for \underline{x} . Since $\underline{x} = (\frac{20}{3}, \frac{11}{3})$ satisfies as equations the first and third constraints, but not the second one, we deduce $y_2 = 0$. Since $x_1 > 0$ and $x_2 > 0$, we obtain

$$y_1 + 2y_2 + y_3 - 2 = 0$$
$$2y_1 - y_2 - y_3 - 1 = 0$$
$$y_2 = 0$$

By solving the system, we obtain $\underline{\bar{y}} = (1, 0, 1)$, which satisfies the dual constraints of D_2 . Since $\underline{\bar{x}}$ is primal feasible and $\underline{\bar{y}}$ is dual feasible, the primal/dual pair $(\underline{\bar{x}}, \underline{\bar{y}})$ satisfies the complementary slackness constraints and, therefore, \bar{x} is an optimal solution to the primal and \bar{y} is an optimal solution to the dual.

To double check, verify that the two solutions have the same objective function value in the respective problems, i.e., verify that $\underline{c}^T \underline{x} = \underline{y}^T \underline{b}$.