CS612 Assignment Hints

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

January 26, 2010

Assingment 1:
Problem 1:
True. Consider the process of the proof for the Stable Matching Problem Algorithm. w will never dump m .
Problem 2:
True. If (m, w) doesn't belong to S , m and w will hook up.
Problem 3:
You can use the analysis method like the one in the ppt.
Problem 5:
Analyze the cost like the one in the ppt, adding a redundant cost.
Problem 6:
It dosen't hold. Consider the case that it only consists of $MULTIPUSH$ operation.

Assignment 2
Problem 1:
Give a reduction from $2SAT$ to $PATH$.
Problem 2:
Give a reduction from $CLIQUE$. $CLIQUE$ is equivalent to $Independent$ - Set .
Problem 3:
Give a reduction from $Subset - Sum$.
Problem 4:
Give a reduction from $Subset - Sum$.
Problem 5:
Give a reduction from $3SAT$. Each instance of $Half-3SAT$ will consist of many redundant clauses.
Problem 6:
Give a reduction from $Directed-Hamilton-Cycle$. Each instance will consist of 3 times of nodes of $Directed-Hamilton-Cycle$.

I	Problem 7:
(Give a reduction form $3SAT$.
I	Assignment 3
I	Problem 1:
	Compare the value of the median of the two database and combine half ne two database.
I	Problem 2:
I	Replace the combine process using the condition $a_i > 2a_j$.
I	Problem 3:
S	Search a path from root to a leaf, such that the label can decrease.
I	Problem 4:
	Divide the graph into two graphs by a line. Construct a "zigzag" path livision.