Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. 18. (Cancelled)
- 19. (Original) A control apparatus for a multi-cylinder internal combustion engine including a plurality of cylinders, the control apparatus comprising a controller that reduces a variation among the plurality of cylinders on the basis of an operation angle of an intake valve of each of the cylinders.
- 20. (Original) A control apparatus according to claim 19, wherein the controller reduces a variation in an air-fuel ratio among the plurality of cylinders on the basis of the operation angle of the intake valve of each of the cylinders.
- 21. (Original) A control apparatus according to claim 20, wherein the controller reduces a variation in the air-fuel ratio among the plurality of cylinders by correcting a fuel injection quantity on the basis of the operation angle of the intake valve.
- 22. (Original) A control apparatus according to claim 21, wherein an amount of correction of the fuel injection quantity is increased as the operation angle of the intake valve is decreased.
- 23. (Original) A control apparatus according to claim 21, wherein the controller: calculates a fuel injection quantity correction coefficient for reducing the variation in the air-fuel ratio when the variation in the air-fuel ratio among the cylinders is detected;

calculates a relationship between the calculated fuel injection quantity correction coefficient and the operation angle of the intake valve obtained upon calculation of the fuel injection quantity correction coefficient; and

updates the fuel injection quantity correction coefficient when the operation angle of the intake valve is changed on the basis of the changed operation angle and the calculated relationship.

- 24. (Original) A control apparatus according to claim 23, wherein the fuel injection quantity correction coefficient changes relative to the operation angle of the intake valve such that an amount of correction of the fuel injection quantity is increased as the operation angle is decreased.
 - 25. 34. (Cancelled)
- 35. (Original) A method of controlling a multi-cylinder internal combustion engine including a plurality of cylinders, comprising reducing a variation among the plurality of cylinders on the basis of an operation angle of an intake valve of each of the plurality of cylinders.
 - 36. 37. (Cancelled)
- 38. (New) A method according to claim 35, wherein the variation among the plurality of cylinders that is reduced is a variation in an air-fuel ratio among the plurality of cylinders.
- 39. (New) A method according to claim 38, wherein the variation in the air-fuel ratio among the plurality of cylinders is reduced by correcting a fuel injection quantity on the basis of the operation angle of the intake valve.
- 40. (New) A method according to claim 39, wherein an amount of correction of the fuel injection quantity is increased as the operation angle of the intake valve is decreased.
- 41. (New) A method according to claim 39, including the steps of:

 calculating a fuel injection quantity correction coefficient for reducing the variation in the air-fuel ratio when the variation in the air-fuel ratio among the cylinders is detected;

calculating a relationship between the calculated fuel injection quantity correction coefficient and the operation angle of the intake valve obtained upon calculation of the fuel injection quantity correction coefficient; and

updating the fuel injection quantity correction coefficient when the operation angle of the intake valve is changed on the basis of the changed operation angle and the calculated relationship.

- 42. (New) A method according to claim 41, wherein the fuel injection quantity correction coefficient changes relative to the operation angle of the intake valve such that an amount of correction of the fuel injection quantity is increased as the operation angle is decreased.
- 43. (New) A control apparatus for a multi-cylinder internal combustion engine including a plurality of cylinders, the control apparatus comprising a controller that reduces a variation among the plurality of cylinders on the basis of an operation angle of an intake valve of each of the cylinders by:

calculating a correction coefficient for reducing the variation among the plurality of cylinders when the variation is detected;

calculating a relationship between the calculated correction coefficient and the operation angle of the intake valve obtained upon calculation of the correction coefficient; and

updating the correction coefficient when the operation angle of the intake valve is changed on the basis of the changed operation angle and the calculated relationship.

44. (New) A control apparatus according to claim 43, wherein the controller reduces a variation in an air-fuel ratio among the plurality of cylinders on the basis of the operation angle of the intake valve of each of the cylinders.

- 45. (New) A control apparatus according to claim 44, wherein an amount of change of the correction coefficient is increased as the operation angle of the intake valve is decreased.
- 46. (New) A method of controlling a multi-cylinder internal combustion engine including a plurality of cylinders, so as to reduce a variation among the plurality of cylinders on the basis of an operation angle of an intake valve of each of the cylinders, the method comprising the steps of:

calculating a correction coefficient for reducing the variation among the plurality of cylinders when the variation is detected;

calculating a relationship between the calculated correction coefficient and the operation angle of the intake valve obtained upon calculation of the correction coefficient; and

updating the correction coefficient when the operation angle of the intake valve is changed on the basis of the changed operation angle and the calculated relationship.

- 47. (New) A method according to claim 46, wherein the method reduces a variation in an air-fuel ratio among the plurality of cylinders on the basis of the operation angle of the intake valve of each of the cylinders.
- 48. (New) A method according to claim 47, wherein an amount of change of the correction coefficient is increased as the operation angle of the intake valve is decreased.