Amplifier Transistors NPN Silicon

2N5088 2N5089

MAXIMUM RATINGS

Rating	Symbol	2N508 8	2N508 9	Unit
Collector-Emitter Voltage	V _{CEO}	30	25	Vdc
Collector-Base Voltage	V _{CBO}	35	30	Vdc
Emitter-Base Voltage	V _{EBO}	3.0		Vdc
Collector Current — Continuous	IC	50		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.5 12		Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-55 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}^{(1)}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{\theta JC}$	83.3	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS		'			
Collector-Emitter Breakdown Voltage ⁽²⁾ (I _C = 1.0 mAdc, I _B = 0)	2N5088 2N5089	V(BR)CEO	30 25	_ _	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	2N5088 2N5089	V(BR)CBO	35 30	_ _	Vdc
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0) (V _{CB} = 15 Vdc, I _E = 0)	2N5088 2N5089	ICBO	_ _ _	50 50	nAdc
Emitter Cutoff Current $(V_{EB(off)} = 3.0 \text{ Vdc}, I_{C} = 0)$ $(V_{EB(off)} = 4.5 \text{ Vdc}, I_{C} = 0)$		l _{EBO}	_	50 100	nAdc

- 1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board. 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

2N5088 2N5089

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS		-		-	
DC Current Gain (I _C = 100 μAdc, V _{CE} = 5.0 Vdc)	2N5088 2N5089	hFE	300 400	900 1200	_
(I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc)	2N5088 2N5089		350 450	_ _	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})^{(2)}$	2N5088 2N5089		300 400	_ _	
Collector-Emitter Saturation Voltage (IC = 10 mAdc, IB = 1.0 mAdc)		V _{CE(sat)}	1	0.5	Vdc
Base-Emitter On Voltage (I _C = 10 mAdc, V _{CE} = 5.0 Vdc) ⁽²⁾		V _{BE(on)}	ı	0.8	Vdc
SMALL-SIGNAL CHARACTERISTICS				-	
Current-Gain — Bandwidth Product (IC = 500 μ Adc, VCE = 5.0 Vdc, f = 20 MHz)		fT	50	_	MHz
Collector–Base Capacitance (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)		C _{cb}	_	4.0	pF
Emitter–Base Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{eb}	_	10	pF
Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)	2N5088 2N5089	h _{fe}	350 450	1400 1800	_
Noise Figure (IC = 100 μ Adc, VCE = 5.0 Vdc, RS = 1.0 k Ω , f = 1.0 kHz)	2N5088 2N5089	NF	_ _	3.0 2.0	dB

^{2.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%.

Figure 1. Transistor Noise Model

NOISE CHARACTERISTICS

 $(V_{CE} = 5.0 \text{ Vdc}, T_{A} = 25^{\circ}\text{C})$

NOISE VOLTAGE

30 BANDWIDTH = 1.0 Hz 20 $R_S \approx 0$ en, NOISE VOLTAGE (nV) f = 10 Hz 10 100 Hz 7.0 10 kHz 100 kHz 3.0 0.02 0.01 0.05 0.1 0.2 0.5 2.0 5.0 10 IC, COLLECTOR CURRENT (mA)

Figure 2. Effects of Frequency

Figure 3. Effects of Collector Current

Figure 4. Noise Current

Figure 5. Wideband Noise Figure

Figure 6. Total Noise Voltage

Figure 7. Noise Figure

2N5088 2N5089

Figure 8. DC Current Gain

Figure 9. "On" Voltages

Figure 11. Capacitance

Figure 10. Temperature Coefficients

Figure 12. Current-Gain — Bandwidth Product

PACKAGE DIMENSIONS

Text

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.022	0.41	0.55
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р	_	0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

STYLE 1: PIN 1. EMITTER

2. BASE 3. COLLECTOR

2N5088 2N5089

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and a manufacture of the part. Motorola and a registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design=NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

