Permit Number 73394

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS DATA

Emission	Source	Air Contaminant	Emissio	n Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
ENG-1	Superior 8G825 800 bhp Refrigeration	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	3.53 5.29 1.76 0.12 <0.01 0.03	15.45 23.18 7.73 0.53 0.02 0.13
ENG-2	Superior 8G825 800 bhp Refrigeration	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	3.53 5.29 1.76 0.12 <0.01 0.03	15.45 23.18 7.73 0.53 0.02 0.13
ENG-3	Superior 6G825 500 bhp Compressor Engine	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	2.20 3.31 1.10 0.08 <0.01 0.02	9.66 14.48 4.83 0.33 0.01 0.08
ENG-4	Superior 6G825 500 bhp Compressor Engine	NO_x CO VOC PM_{10} SO_2 Formaldehyde	2.20 3.31 1.10 0.08 <0.01 0.02	9.66 14.48 4.83 0.33 0.01 0.08

ENG-7	Waukesha L7042G	NO _x	3.03	13.27
	687 bhp Compressor Engine	CO	4.54	19.90
		VOC	1.51	6.63
		PM_{10}	0.09	0.40
		SO ₂	< 0.01	0.01
		Formaldehyde	0.02	0.10
		,		
ENG-8A	Waukesha L7042G	NO _x	3.03	13.27
	687 bhp	CO	4.54	19.90
	33. 3. p	VOC	1.51	6.63
		PM_{10}	<0.01	0.01
		SO ₂	0.09	0.40
		Formaldehyde	0.02	0.10
		i omaluenyue	0.02	0.10
ENG-9	Superior 8G825	NO _x	2.94	12.88
LIVO 3	667 bhp Fuel Gas	CO	4.41	19.32
	Compression	VOC	1.47	6.44
	Compression		0.10	
		PM ₁₀		0.44
		SO ₂	<0.01	0.01
		Formaldehyde	0.03	0.11
ENG-17	Cooper Bessemer GMV-10	NO _x	43.65	191.19
2.10 2.	1,100 bhp Compressor	CO	19.40	84.98
	Engine	VOC	2.43	10.62
	Liigine	PM ₁₀	0.48	2.12
		SO ₂	0.40	0.03
			0.55	2.42
		Formaldehyde	0.55	2.42
ENG-18	Cooper Bessemer GMV-10	NO _x	43.65	191.19
2.10 10	1,100 bhp Compressor	CO	19.40	84.98
	Engine	VOC	2.43	10.62
	Engine	PM ₁₀	0.48	2.12
		SO ₂	0.40	0.03
		Formaldehyde	0.55	2.42
ENG-19	Clark HBAT-10	NO _x	91.71	401.70
	2,600 bhp Compressor	CO	57.32	251.06
	Engine	VOC	5.73	25.11
	<u> </u>			

		PM ₁₀ SO ₂ Formaldehyde	0.97 0.01 1.10	4.23 0.05 4.84
ENG-20	Clark HBAT-10 2,600 bhp Compressor Engine	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	91.71 57.32 5.73 0.97 0.01 1.10	401.70 251.06 25.11 4.23 0.05 4.84
ENG-21	Clark HBAT-10 2,600 bhp Compressor Engine	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	91.71 57.32 5.73 0.97 0.01 1.10	401.70 251.06 25.11 4.23 0.05 4.84
ENG-22	Clark HBAT-10 2,600 bhp Compressor Engine	NO_x CO VOC PM_{10} SO_2 Formaldehyde	91.71 57.32 5.73 0.97 0.01 1.10	401.70 251.06 25.11 4.23 0.05 4.84
ENG-23	Clark HBAT-10 2,600 bhp Compressor Engine	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	91.71 57.32 5.73 0.97 0.01 1.10	401.70 251.06 25.11 4.23 0.05 4.84
ENG-24	Ingersoll Rand PVG-8 370 bhp Generator Engine	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	17.95 4.08 0.82 0.06 <0.01 0.06	78.60 17.86 3.57 0.26 0.01 0.27

ENG-25	Ingersoll Rand PVG-8	NO _x	17.95	78.60
	370 bhp Generator Engine	CO	4.08	17.86
	or a sinp demonator Engine	VOC	0.82	3.57
		PM_{10}	0.06	0.26
		SO ₂	<0.01	0.01
		Formaldehyde	0.06	0.01
		Torrialderiyde	0.00	0.27
ENG-26	Ingersoll Rand PVG-8	NO _x	17.95	78.60
	370 bhp Generator Engine	CO	4.08	17.86
		VOC	0.82	3.57
		PM_{10}	0.06	0.26
		SO ₂	< 0.01	0.01
		Formaldehyde	0.06	0.27
ENG-27	Ingersoll Rand PVG-8	NO _x	17.95	78.60
2.10 2.	370 bhp Generator Engine	CO	4.08	17.86
	or o stip Generator Engine	VOC	0.82	3.57
		PM ₁₀	0.06	0.26
		SO ₂	<0.01	0.20
		Formaldehyde	0.06	0.01
		Formaluenyue	0.00	0.27
ENG-28	Ingersoll Rand PVG-8	NO _x	17.95	78.60
	370 bhp Generator Engine	CO	4.08	17.86
		VOC	0.82	3.57
		PM_{10}	0.06	0.26
		SO ₂	< 0.01	0.01
		Formaldehyde	0.06	0.27
		,		
ENG-31	Superior 8G825	NO _x	2.94	12.88
FIAO-2T	•	CO	2.94 4.41	19.32
	667 bhp Compressor Engine			
		VOC	1.47	6.44
		PM ₁₀	0.10	0.44
		SO ₂	<0.01	0.01
		Formaldehyde	0.03	0.11
ENG-32	Superior 8G825	NO _x	2.94	12.88
ENG-32	Superior 00025			
ENG-32	•	CO	4.41	19.32
ENG-32	667 bhp Compressor Engine		4.41 1.47	19.32 6.44

		SO ₂ Formaldehyde	<0.01 0.03	0.01 0.11
ENG-33	Superior 8G825 667 bhp Compressor Engine	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	2.94 4.41 1.47 0.10 <0.01 0.03	12.88 19.32 6.44 0.44 0.01 0.11
ENG-34	Superior 6G510 400 bhp (pre-controlled)	NO_x CO VOC PM_{10} SO_2 Formaldehyde	8.82 8.82 0.88 0.07 <0.01 0.07	38.63 38.63 3.86 0.30 0.01 0.31
ENG-34	Superior 6G510 400 bhp (controlled)	NO_x CO VOC PM_{10} SO_2 Formaldehyde	1.76 2.65 0.88 0.07 <0.01 0.02	7.73 11.59 3.86 0.30 0.01 0.08
ENG-35	Superior 6G510 400 bhp (pre-controlled)	NO_x CO VOC PM_{10} SO_2 Formaldehyde	8.82 8.82 0.88 0.07 <0.01 0.07	38.63 38.63 3.86 0.30 0.01 0.31
ENG-35	Superior 6G510 400 bhp (controlled)	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	1.76 2.65 0.88 0.07 <0.01 0.02	7.73 11.59 3.86 0.30 0.01 0.08
ENG-38B	Superior 8G5825	NO _x	3.53	15.45

	400 bhp	CO VOC PM ₁₀ SO ₂ Formaldehyde	5.29 1.76 0.12 <0.01 0.03	23.18 7.73 0.53 0.02 0.13
ENG-39	Waukesha L7042G 687 bhp	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	3.03 4.54 1.51 0.09 <0.01 0.02	13.27 19.90 6.63 0.40 0.01 0.10
ENG-40	Waukesha L7042G 687 bhp	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	3.03 4.54 1.51 0.09 <0.01 0.02	13.27 19.90 6.63 0.40 0.01 0.10
ENG-41B	Waukesha L7042G 818 bhp	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	3.61 5.41 1.35 0.11 <0.01 0.03	15.80 23.70 5.92 0.50 0.02 0.13
ENG-42	Caterpillar G-3408 425 bhp	NO _x CO VOC PM ₁₀ SO ₂ Formaldehyde	1.87 2.81 0.94 0.03 <0.01 0.17	8.21 12.31 4.10 0.14 0.01 0.75
ENG-43	Catepillar C15 DITA 475 bhp	NO_x CO VOC PM_{10} SO_2	3.53 2.54 0.30 0.34 0.97	2.65 1.91 0.23 0.25 0.73

-		Formaldehyde	0.56	0.42
TK-1201	Pressure Drain/Separator Tank 17,640 gallon (pre)	VOC	12.17	53.32
TK-1201	Pressure Drain/Separator Tank 17,640 gallon (post)	VOC	0.05	0.23
TK-1202	South Slop Oil Tank 5076 gallon (pre)	VOC	1.15	5.03
TK-1202	South Slop Oil Tank 5076 gallon (post)	VOC	0.17	0.73
TK-1203	North Slop Oil Tank 5,076 gallons (pre)	VOC	1.31	5.75
TK-1203	North Slop Oil Tank 5,076 gallons (post)	VOC	0.17	0.73
TK-1204	North Gravity Drain Tank 6,391 gallons	VOC	<0.01	<0.01
TK-1205	South Gravity Drain Tank 6,391 gallons	VOC	<0.01	<0.01
TK-1206	Oil Skimmer Tank 7,669 gallons	VOC	<0.01	<0.01
L-1	Condensate Truck Loading	VOC	0.64	2.78
L-2	Skim Tank Load out	VOC	0.08	<0.01

L-3	Methanol Loading	VOC	4.51	0.16
FLR-Load	Flare-Load	NO _x CO VOC	1.08 4.31 11.13	0.13 0.53 1.14
FUG	Plant Fugitives (pre-monitoring)	VOC H₂S	14.59 0.04	63.92 0.19
FUG	Plant Fugitives (post-monitoring)	VOC H₂S	7.40 0.02	32.41 0.09

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}

PM₁₀ - particulate matter equal to or less than 10 microns in diameter

CO - carbon monoxide H₂S - hydrogen sulfide

- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

24 Hrs/day 7 Days/week 52 Weeks/year or 8,760 Hrs/year

** Compliance with annual emission limits is based on a rolling 12-month period.

Dated: <u>August 10, 2010</u>