MTP 290-Practice Problems Numerical Integration

- 1. Evaluate the integral $\int_0^4 (x^2 + \cos x) dx$ by using midpoint formula and composite midpoint rule with n=5.
- 2. Use Trapezoidal rule with n = 8 to estimate

$$\int_{1}^{5} \sqrt{1 + x^2} \ dx.$$

3. The following points were found empirically.

- 1			l .		l	3.3	l
	у	3.2	2.7	2.9	3.5	4.1	5.2

Use composite Trapezoidal rule to evaluate $\int_{2.1}^{3.6} y \ dx$.

- 4. Approximate the integral of $f(x)=x^3$ on the interval [1,2] by using composite trapezoidal method
 - (a) with four sub intervals,
 - (b) with eight sub intervals, (Which approximation is much closer to the correct answer)
 - (c) Compute the true error in both the cases.
- 5. Use Simpson rule to evaluate
 - (a) $\int_0^{\pi/3} \cos^2 x \, dx$.
 - (b) Use your answer to part (a) to deduce an approximate value of integral $\int_0^{\pi/3} \sin^2 x \ dx$.
- 6. Use Simpson's rule with 5 ordinates to find an approximate value for the integral

$$\int_4^6 \frac{1}{3 - \sqrt{x}} \ dx.$$

- 7. Approximate the integral of $f(x)=x^3$ on the interval [1,2] by using composite Simpson's method
 - (a) with four sub intervals,
 - (b) with eight sub intervals, (Which approximation is much closer to the correct answer)
 - (c) Compute the true error in both the cases.
- 8. Using Trapezoidal Rule and Simpson's rule with n=4 to approximate the value of the following integral and compute the true errors and approximation errors

$$\int_0^2 e^{x^2} dx.$$

1

9. Evaluate the following integral by using one point Gauss quadrature and compute the true error.

$$\int_0^{\pi/2} x \sin x \, dx$$

10. Redo Problem 5 by using two point Gauss quadrature formula.