FONCTIONS TRIGONOMÉTRIQUES

1. RAPPELS

Dans toute la suite, le plan est muni d'un repère orthonormé $(O; \overrightarrow{OI}, \overrightarrow{OJ})$.

On oriente le **cercle trigonométrique** (cercle de centre *O* et de rayon 1) dans le **sens direct** (sens inverse des aiguilles d'une montre).

DÉFINITION

Soit *N* un point du cercle trigonométrique et *x* une mesure en radians de l'angle $(\overrightarrow{OI}, \overrightarrow{ON})$.

On appelle **cosinus** de x, noté $\cos x$ l'abscisse du point N.

On appelle **sinus** de x, noté $\sin x$ l'ordonnée du point N.

REMARQUE

Pour tout réel *x* :

- $-1 \leqslant \cos x \leqslant 1$
- $-1 \leqslant \sin x \leqslant 1$

• $(\cos x)^2 + (\sin x)^2 = 1$ (d'après le théorème de Pythagore).

QUELQUES VALEURS DE SINUS ET DE COSINUS

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

THÉORÈME

Soit a un réel fixé.

Les solutions de l'équation cos(x) = cos(a) sont les réels de la forme :

$$a + 2k\pi$$
 ou $-a + 2k\pi$ où k décrit \mathbb{Z}

Les solutions de l'équation $\sin(x) = \sin(a)$ sont les réels de la forme :

$$a + 2k\pi$$
 ou $\pi - a + 2k\pi$ où k décrit \mathbb{Z}

EXEMPLE

Soit l'équation $\sin(x) = \frac{1}{2}$.

Comme $\sin \frac{\pi}{6} = \frac{1}{2}$, l'équation peut s'écrire $\sin (x) = \sin \frac{\pi}{6}$.

D'après le théorème précédent, l'ensemble des solutions est :

$$S = \left\{ \frac{\pi}{6} + 2k\pi, \frac{5\pi}{6} + 2k\pi | k \in \mathbb{Z} \right\}.$$

2. FONCTIONS SINUS ET COSINUS

DÉFINITION

La fonction, définie sur \mathbb{R} , qui à tout réel x associe son cosinus : $x \mapsto \cos(x)$ est appelée **fonction cosinus**.

La fonction, définie sur \mathbb{R} , qui à tout réel x associe son sinus : $x \mapsto \sin(x)$ est appelée **fonction sinus**.

FORMULES DE BASE

Pour tout réel x :

- $\cos(x+2\pi) = \cos(x)$
- $\sin(x+2\pi) = \sin(x).$

On dit que les fonctions sinus et cosinus sont **périodiques** de période 2π .

- cos(-x) = cos(x) (la fonction cosinus est paire)
- $\sin(-x) = -\sin(x)$ (la fonction sinus est impaire)
- $\cos(x+\pi) = -\cos(x)$
- $\sin(x + \pi) = -\sin(x)$
- $\cos\left(x + \frac{\pi}{2}\right) = -\sin\left(x\right)$
- $\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$.

REMARQUE

A partir des formules de base on peut montrer d'autres formules; par exemple :

$$\cos\left(\frac{\pi}{2} - x\right) = \cos\left(-x + \frac{\pi}{2}\right) = -\sin\left(-x\right) = \sin\left(x\right)$$

$$\sin\left(\frac{\pi}{2} - x\right) = \sin\left(-x + \frac{\pi}{2}\right) = \cos\left(-x\right) = \cos\left(x\right)$$

etc.

FORMULES D'ADDITION

Pour tous réels a et b:

- $\cos(a+b) = \cos(a)\cos(b) \sin(a)\sin(b)$
- $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$

REMARQUE

En remplaçant b par -b et en utilisant la parité des fonctions sinus et cosinus on obtient les formules de soustraction :

- $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$
- $\sin(a-b) = \sin(a)\cos(b) \cos(a)\sin(b)$

PROPRIÉTÉ (FORMULES DE DUPLICATION)

Pour tout réel *a* :

- $\cos(2a) = \cos^2(a) \sin^2(a) = 2\cos^2(a) 1 = 1 2\sin^2(a)$
- $\sin(2a) = 2\sin(a)\cos(a)$.

REMARQUES

- On démontre ces formules en posant b = a dans les formules d'addition et en utilisant $\sin^2(a) + \cos^2(a) = 1$.
- Rappel: $\sin^2(a)$ et $\cos^2(a)$ sont des écritures simplifiées pour $(\sin(a))^2$ et $(\cos(a))^2$.

3. ETUDE DES FONCTIONS SINUS ET COSINUS

THÉORÈME

Les fonctions sinus et cosinus sont **dérivables** sur $\mathbb R$ et leurs dérivées sont :

$$\sin' = \cos$$

$$\cos' = -\sin$$

PROPRIÉTÉS

Soient a et b deux réels quelconques. Les fonctions f et g définies sur $\mathbb R$ par :

- $f: x \mapsto \sin(ax + b)$
- $g: x \mapsto \cos(ax+b)$

sont dérivables sur \mathbb{R} et :

- $f'(x) = a\cos(ax + b)$
- $g'(x) = -a\sin(ax+b)$

Plus généralement, si u est une fonction dérivable sur un intervalle I et f et g définies sur I par :

- $f: x \mapsto \sin(u(x))$
- $g: x \mapsto \cos(u(x))$

alors f et g sont dérivables sur I et :

- $f'(x) = u'(x) \times \cos(u(x))$
- $g'(x) = -u'(x) \times \sin(u(x))$

REMARQUE

C'est un cas particulier du $\,$ théorème de dérivation de fonctions composées $\, {\ensuremath{\it ce}} \,$.

LIMITES

Les fonctions sinus et cosinus **ne possèdent pas de limite quand** $x \to \pm \infty$ Par contre on démontre le résultat suivant :

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

REMARQUE

Cette dernière limite peut s'obtenir en utilisant la définition du nombre dérivé de la fonction sinus pour x = 0 (voir fiche méthode Calculer une limite à l'aide du nombre dérivé α).

Les fonctions sinus et cosinus étant périodiques, il suffit de les étudier sur un intervalle d'amplitude 2π , par exemple $[-\pi;\pi]$.

Pour obtenir la courbe complète, on effectue ensuite des translations de vecteurs $\pm 2\pi \vec{i}$.

FONCTION SINUS

x	$-\pi$		$-\frac{\pi}{2}$		$\frac{\pi}{2}$		π
$f'(x) = \cos(x)$		-	0	+	0	-	
$f(x) = \sin(x)$	0		`-1		, 1		0

Tableau de variation de la fonction sinus

Représentation graphique de la fonction sinus

FONCTION COSINUS

x	$-\pi$		0		π
$f'(x) = -\sin x$		+	0	_	0
$f(x) = \cos x$	-1		→ 1		-1

Tableau de variation de la fonction cosinus

Représentation graphique de la fonction cosinus

REMARQUE

La relation $\sin\left(x + \frac{\pi}{2}\right) = \cos\left(x\right)$ montre que la courbe de la fonction sinus se déduit de la courbe de la fonction cosinus par une translation de vecteur $\frac{\pi}{2}\vec{i}$.

Position relative des deux courbes