```
import matplotlib
    print("matplotlib version: {}".format(matplotlib.__version__))
    import numpy as np
   print("NumPy version: {}".format(np.__version__))
   import scipy as sp
   print("SciPy version: {}".format(sp.__version__))
   print("IPython version: {}".format(IPython.__version__))
   import sklearn
   print("scikit-learn version: {}".format(sklearn.__version__))
Out[8]:
    Python version: 3.5.2 | Continuum Analytics, Inc. | (default,
    Jul 2 2016, 17:53:06)
   [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
   pandas version: 0.20.1
   matplotlib version: 2.0.1
   NumPv version: 1.12.1
   SciPy version: 0.19.0
   IPython version: 5.1.0
   scikit-learn version: 0.19
```

While it is not important to match these versions exactly, you should have a version of scikit-learn that is as least as recent as the one we used.

Now that we have everything set up, let's dive into our first application of machine learning.

This book assumes that you have version 0.18 or later of scikitlearn. The model_selection module was added in 0.18, and if you use an earlier version of scikit-learn, you will need to adjust the imports from this module.

A First Application: Classifying Iris Species

In this section, we will go through a simple machine learning application and create our first model. In the process, we will introduce some core concepts and terms.

Let's assume that a hobby botanist is interested in distinguishing the species of some iris flowers that she has found. She has collected some measurements associated with each iris: the length and width of the petals and the length and width of the sepals, all measured in centimeters (see Figure 1-2).

She also has the measurements of some irises that have been previously identified by an expert botanist as belonging to the species setosa, versicolor, or virginica. For these measurements, she can be certain of which species each iris belongs to. Let's assume that these are the only species our hobby botanist will encounter in the wild.

Our goal is to build a machine learning model that can learn from the measurements of these irises whose species is known, so that we can predict the species for a new iris.

Figure 1-2. Parts of the iris flower

Because we have measurements for which we know the correct species of iris, this is a supervised learning problem. In this problem, we want to predict one of several options (the species of iris). This is an example of a classification problem. The possible outputs (different species of irises) are called classes. Every iris in the dataset belongs to one of three classes, so this problem is a three-class classification problem.

The desired output for a single data point (an iris) is the species of this flower. For a particular data point, the species it belongs to is called its label.

Meet the Data

The data we will use for this example is the Iris dataset, a classical dataset in machine learning and statistics. It is included in scikit-learn in the datasets module. We can load it by calling the load_iris function:

In[9]:

```
from sklearn.datasets import load_iris
iris_dataset = load_iris()
```

The iris object that is returned by load_iris is a Bunch object, which is very similar to a dictionary. It contains keys and values:

In[10]:

```
print("Keys of iris_dataset: \n{}".format(iris_dataset.keys()))
Out[10]:
   Keys of iris_dataset:
   dict_keys(['target_names', 'feature_names', 'DESCR', 'data', 'target'])
```

The value of the key DESCR is a short description of the dataset. We show the beginning of the description here (feel free to look up the rest yourself):

In[11]:

```
print(iris_dataset['DESCR'][:193] + "\n...")
Out[11]:
   Iris Plants Database
   Notes
   Data Set Characteristics:
       :Number of Instances: 150 (50 in each of three classes)
       :Number of Attributes: 4 numeric, predictive att
```

The value of the key target_names is an array of strings, containing the species of flower that we want to predict:

In[12]:

```
print("Target names: {}".format(iris_dataset['target_names']))
Out[12]:
   Target names: ['setosa' 'versicolor' 'virginica']
```

The value of feature_names is a list of strings, giving the description of each feature:

In[13]:

```
print("Feature names: \n{}".format(iris_dataset['feature_names']))
Out[13]:
    Feature names:
    ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
     'petal width (cm)']
```

The data itself is contained in the target and data fields, data contains the numeric measurements of sepal length, sepal width, petal length, and petal width in a NumPy array:

In[14]:

```
print("Type of data: {}".format(type(iris_dataset['data'])))
Out[14]:
   Type of data: <class 'numpy.ndarray'>
```

The rows in the data array correspond to flowers, while the columns represent the four measurements that were taken for each flower:

In[15]:

```
print("Shape of data: {}".format(iris_dataset['data'].shape))
Out[15]:
   Shape of data: (150, 4)
```

We see that the array contains measurements for 150 different flowers. Remember that the individual items are called samples in machine learning, and their properties are called *features*. The *shape* of the data array is the number of samples multiplied by the number of features. This is a convention in scikit-learn, and your data will always be assumed to be in this shape. Here are the feature values for the first five samples:

In[16]:

```
print("First five rows of data:\n{}".format(iris_dataset['data'][:5]))
Out[16]:
    First five rows of data:
    [[ 5.1 3.5 1.4 0.2]
     [ 4.9 3. 1.4 0.2]
[ 4.7 3.2 1.3 0.2]
     [ 4.6 3.1 1.5 0.2]
     [5. 3.6 1.4 0.2]]
```

From this data, we can see that all of the first five flowers have a petal width of 0.2 cm and that the first flower has the longest sepal, at 5.1 cm.

The target array contains the species of each of the flowers that were measured, also as a NumPy array:

```
In[17]:
  print("Type of target: {}".format(type(iris_dataset['target'])))
Out[17]:
  Type of target: <class 'numpy.ndarray'>
target is a one-dimensional array, with one entry per flower:
In[18]:
  print("Shape of target: {}".format(iris_dataset['target'].shape))
Out[18]:
  Shape of target: (150,)
The species are encoded as integers from 0 to 2:
In[19]:
  print("Target:\n{}".format(iris_dataset['target']))
Out[19]:
  2 2]
```

The meanings of the numbers are given by the iris['target_names'] array: 0 means setosa, 1 means versicolor, and 2 means virginica.

Measuring Success: Training and Testing Data

We want to build a machine learning model from this data that can predict the species of iris for a new set of measurements. But before we can apply our model to new measurements, we need to know whether it actually works—that is, whether we should trust its predictions.

Unfortunately, we cannot use the data we used to build the model to evaluate it. This is because our model can always simply remember the whole training set, and will therefore always predict the correct label for any point in the training set. This "remembering" does not indicate to us whether our model will generalize well (in other words, whether it will also perform well on new data).

To assess the model's performance, we show it new data (data that it hasn't seen before) for which we have labels. This is usually done by splitting the labeled data we have collected (here, our 150 flower measurements) into two parts. One part of the data is used to build our machine learning model, and is called the training data or training set. The rest of the data will be used to assess how well the model works; this is called the test data, test set, or hold-out set.

scikit-learn contains a function that shuffles the dataset and splits it for you: the train_test_split function. This function extracts 75% of the rows in the data as the training set, together with the corresponding labels for this data. The remaining 25% of the data, together with the remaining labels, is declared as the test set. Deciding how much data you want to put into the training and the test set respectively is somewhat arbitrary, but using a test set containing 25% of the data is a good rule of thumb.

In scikit-learn, data is usually denoted with a capital X, while labels are denoted by a lowercase y. This is inspired by the standard formulation f(x)=y in mathematics, where x is the input to a function and y is the output. Following more conventions from mathematics, we use a capital X because the data is a two-dimensional array (a matrix) and a lowercase y because the target is a one-dimensional array (a vector).

Let's call train_test_split on our data and assign the outputs using this nomenclature:

In[20]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
    iris_dataset['data'], iris_dataset['target'], random_state=0)
```

Before making the split, the train_test_split function shuffles the dataset using a pseudorandom number generator. If we just took the last 25% of the data as a test set, all the data points would have the label 2, as the data points are sorted by the label (see the output for iris['target'] shown earlier). Using a test set containing only one of the three classes would not tell us much about how well our model generalizes, so we shuffle our data to make sure the test data contains data from all classes.

To make sure that we will get the same output if we run the same function several times, we provide the pseudorandom number generator with a fixed seed using the random_state parameter. This will make the outcome deterministic, so this line will always have the same outcome. We will always fix the random_state in this way when using randomized procedures in this book.

The output of the train_test_split function is X_train, X_test, y_train, and y_test, which are all NumPy arrays. X_train contains 75% of the rows of the dataset, and X_test contains the remaining 25%:

In[21]:

```
print("X_train shape: {}".format(X_train.shape))
    print("y_train shape: {}".format(y_train.shape))
Out[21]:
   X_train shape: (112, 4)
   y_train shape: (112,)
In[22]:
    print("X_test shape: {}".format(X_test.shape))
   print("y_test shape: {}".format(y_test.shape))
Out[22]:
   X_test shape: (38, 4)
   y_test shape: (38,)
```

First Things First: Look at Your Data

Before building a machine learning model it is often a good idea to inspect the data, to see if the task is easily solvable without machine learning, or if the desired information might not be contained in the data.

Additionally, inspecting your data is a good way to find abnormalities and peculiarities. Maybe some of your irises were measured using inches and not centimeters, for example. In the real world, inconsistencies in the data and unexpected measurements are very common.

One of the best ways to inspect data is to visualize it. One way to do this is by using a scatter plot. A scatter plot of the data puts one feature along the x-axis and another along the y-axis, and draws a dot for each data point. Unfortunately, computer screens have only two dimensions, which allows us to plot only two (or maybe three) features at a time. It is difficult to plot datasets with more than three features this way. One way around this problem is to do a pair plot, which looks at all possible pairs of features. If you have a small number of features, such as the four we have here, this is quite reasonable. You should keep in mind, however, that a pair plot does not show the interaction of all of features at once, so some interesting aspects of the data may not be revealed when visualizing it this way.

Figure 1-3 is a pair plot of the features in the training set. The data points are colored according to the species the iris belongs to. To create the plot, we first convert the NumPy array into a pandas DataFrame. pandas has a function to create pair plots called scatter_matrix. The diagonal of this matrix is filled with histograms of each feature:

In[23]:

```
\# create dataframe from data in X_{\_}train
# label the columns using the strings in iris_dataset.feature_names
iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)
\# create a scatter matrix from the dataframe, color by y\_train
alpha=.8, cmap=mglearn.cm3)
```


Figure 1-3. Pair plot of the Iris dataset, colored by class label

From the plots, we can see that the three classes seem to be relatively well separated using the sepal and petal measurements. This means that a machine learning model will likely be able to learn to separate them.

Building Your First Model: k-Nearest Neighbors

Now we can start building the actual machine learning model. There are many classification algorithms in scikit-learn that we could use. Here we will use a k-nearest neighbors classifier, which is easy to understand. Building this model only consists of storing the training set. To make a prediction for a new data point, the algorithm finds the point in the training set that is closest to the new point. Then it assigns the label of this training point to the new data point.

The k in k-nearest neighbors signifies that instead of using only the closest neighbor to the new data point, we can consider any fixed number k of neighbors in the training (for example, the closest three or five neighbors). Then, we can make a prediction using the majority class among these neighbors. We will go into more detail about this in Chapter 2; for now, we'll use only a single neighbor.

All machine learning models in scikit-learn are implemented in their own classes, which are called Estimator classes. The k-nearest neighbors classification algorithm is implemented in the KNeighborsClassifier class in the neighbors module. Before we can use the model, we need to instantiate the class into an object. This is when we will set any parameters of the model. The most important parameter of KNeighbor sClassifier is the number of neighbors, which we will set to 1:

In[24]:

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
```

The knn object encapsulates the algorithm that will be used to build the model from the training data, as well the algorithm to make predictions on new data points. It will also hold the information that the algorithm has extracted from the training data. In the case of KNeighborsClassifier, it will just store the training set.

To build the model on the training set, we call the fit method of the knn object, which takes as arguments the NumPy array X_train containing the training data and the NumPy array y_train of the corresponding training labels:

In[25]:

```
knn.fit(X_train, y_train)
Out[25]:
    KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
               metric_params=None, n_jobs=1, n_neighbors=1, p=2,
               weights='uniform')
```

The fit method returns the knn object itself (and modifies it in place), so we get a string representation of our classifier. The representation shows us which parameters were used in creating the model. Nearly all of them are the default values, but you can also find n_neighbors=1, which is the parameter that we passed. Most models in scikit-learn have many parameters, but the majority of them are either speed optimizations or for very special use cases. You don't have to worry about the other parameters shown in this representation. Printing a scikit-learn model can yield very long strings, but don't be intimidated by these. We will cover all the important parameters in Chapter 2. In the remainder of this book, we will not show the output of fit because it doesn't contain any new information.

Making Predictions

We can now make predictions using this model on new data for which we might not know the correct labels. Imagine we found an iris in the wild with a sepal length of 5 cm, a sepal width of 2.9 cm, a petal length of 1 cm, and a petal width of 0.2 cm. What species of iris would this be? We can put this data into a NumPy array, again by calculating the shape—that is, the number of samples (1) multiplied by the number of features (4):

In[26]:

```
X_{\text{new}} = \text{np.array}([[5, 2.9, 1, 0.2]])
    print("X_new.shape: {}".format(X_new.shape))
Out[26]:
    X new.shape: (1, 4)
```

Note that we made the measurements of this single flower into a row in a twodimensional NumPy array, as scikit-learn always expects two-dimensional arrays for the data.

To make a prediction, we call the predict method of the knn object:

In[27]:

```
prediction = knn.predict(X_new)
    print("Prediction: {}".format(prediction))
   print("Predicted target name: {}".format(
           iris_dataset['target_names'][prediction]))
Out[27]:
    Prediction: [0]
   Predicted target name: ['setosa']
```

Our model predicts that this new iris belongs to the class 0, meaning its species is setosa. But how do we know whether we can trust our model? We don't know the correct species of this sample, which is the whole point of building the model!

Evaluating the Model

This is where the test set that we created earlier comes in. This data was not used to build the model, but we do know what the correct species is for each iris in the test

Therefore, we can make a prediction for each iris in the test data and compare it against its label (the known species). We can measure how well the model works by computing the accuracy, which is the fraction of flowers for which the right species was predicted:

```
In[28]:
```

```
y_pred = knn.predict(X_test)
   print("Test set predictions:\n {}".format(y_pred))
Out[28]:
   Test set predictions:
    [2 1 0 2 0 2 0 1 1 1 2 1 1 1 1 0 1 1 0 0 2 1 0 0 2 0 0 1 1 0 2 1 0 2 2 1 0 2]
In[29]:
   print("Test set score: {:.2f}".format(np.mean(y_pred == y_test)))
Out[29]:
   Test set score: 0.97
```

We can also use the score method of the knn object, which will compute the test set accuracy for us:

```
In[30]:
```

```
print("Test set score: {:.2f}".format(knn.score(X_test, y_test)))
Out[30]:
   Test set score: 0.97
```

For this model, the test set accuracy is about 0.97, which means we made the right prediction for 97% of the irises in the test set. Under some mathematical assumptions, this means that we can expect our model to be correct 97% of the time for new irises. For our hobby botanist application, this high level of accuracy means that our model may be trustworthy enough to use. In later chapters we will discuss how we can improve performance, and what caveats there are in tuning a model.

Summary and Outlook

Let's summarize what we learned in this chapter. We started with a brief introduction to machine learning and its applications, then discussed the distinction between supervised and unsupervised learning and gave an overview of the tools we'll be