

SÍLABO INSTALACIONES SANITARIAS

ÁREA CURRICULAR: TECNOLOGÍA

CICLO: VII SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09009607030

II. CRÉDITOS : 03

III. REQUISITOS : 09026506050 Mecânica de Fluidos I

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso de Instalaciones Sanitarias es un curso teórico - práctico. El propósito del curso es brindar al estudiante los conocimientos necesarios para el diseño de las instalaciones sanitarias interiores de agua y desagüe de una edificación.

El curso se desarrolla mediante las siguientes unidades de aprendizaje: I. Introducción. II. Sistema de agua fría. III. Sistema de agua caliente y sistema de agua contra incendios. IV. Sistema de desagüe.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Castillo, L. (2010). Instalaciones Sanitarias para Edificaciones: Diseño. Perú, Macro Perú
- Foster, V. (2008). *Condominial Water and Sewerage Systems*. USA: Water and Sanition Program, World Bank.
- Norma S-200. Instalaciones Sanitarias para Edificaciones
- Pita, L. (2005). Diseño de Instalaciones Sanitarias. Perú

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: INTRODUCCIÓN

OBJETIVOS DE APRENDIZAJE:

 Conocer la metodología de cálculo de los datos básicos de diseño de los componentes del sistema de agua.

PRIMERA SEMANA

Primera sesión

Instalación sanitaria interior. Norma nacional que la rige.

Segunda sesión

Alternativas de diseño para el abastecimiento de agua a una edificación.

SEGUNDA SEMANA

Primera sesión

El método directo. El método Indirecto y sus variantes. El método mixto.

Segunda sesión

Fuentes de suministro de agua. Conexiones domiciliarias de agua y desagüe.

TERCERA SEMANA

Primera sesión.

Requisitos de los proyectos de instalaciones sanitarias interiores como parte integrante del expediente de licencia de construcción en una edificación.

Segunda sesión

Aspectos que se deben seguir en el diseño de instalaciones sanitarias.

UNIDAD II: SISTEMA DE AGUA FRÍA

OBJETIVOS DE APRENDIZAJE:

• Estudiar los procedimientos de diseño, que comprende desde conocer las características de los materiales, procesos constructivos y controles de calidad de la línea de conducción e impulsión.

CUARTA SEMANA

Primera sesión

Práctica Calificada 1 - Número mínimo de aparatos sanitarios. Diferencias entre el reglamento actual y la norma anterior.

Segunda sesión

Dotación de agua en edificaciones. Comparación de las normas nacionales en cuanto a dotación con otras en el mundo.

QUINTA SEMANA

Primera sesión

Diseño espacial y funcional de un baño. Tipos de baños.

Segunda sesión

Diseño y disposición de un baño, dotación y número mínimo de aparatos sanitarios.

SEXTA SEMANA

Primera sesión

Diseño de estructuras de almacenamiento. Cisternas y tanques elevados.

Segunda sesión

Práctica Calificada 2 - Diseño de cisternas y tanques elevados.

SÉPTIMA SEMANA

Primera sesión

Sistema indirecto. Factores a tener en cuenta. Procedimiento de cálculo.

Segunda sesión

Ejemplo de aplicación: Sistema indirecto.

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Primera sesión

Cálculo de las redes interiores de distribución de agua. Métodos de cálculo.

Segunda sesión

Consumo simultáneo máximo probable. Método basado en el cálculo de probabilidades.

DÉCIMA SEMANA

Primera sesión

Procedimiento para calcular los alimentadores de agua de un sistema indirecto de arriba hacia abajo.

Segunda sesión

Continuación con los procedimientos para calcular los alimentadores de agua.

UNIDAD III: SISTEMA DE AGUA CALIENTE Y SISTEMA DE AGUA CONTRA INCENDIOS

OBJETIVOS DE APRENDIZAJE:

- Comprender la importancia del diseño de las principales líneas que abastece agua caliente a una edificación.
- Entender los criterios generales del diseño y evaluación de una red de distribución de agua contra incendio contemplando la reglamentación vigente.

UNDÉCIMA SEMANA

Primera sesión:

Agua caliente. Usos y distribución de agua caliente. Equipos de producción.

Segunda sesión

Trabajo académico N° 1: Diseño de un sistema de distribución de agua fría.

DUODÉCIMA SEMANA

Primera sesión:

Práctica Calificada 3 - Presentación de videos técnicos relativos al saneamiento.

Segunda sesión

Niveles de atención de defensa civil, sistema típicos para combatir incendios, criterios de diseños.

UNIDAD IV. SISTEMA DE DESAGÜE

OBJETIVOS DE APRENDIZAJE

 Entender los criterios generales del diseño y evaluación de una red de desagüe contemplando la reglamentación vigente

DECIMOTERCERA SEMANA

Primera sesión

Desagüe y ventilación. Criterios a tomar en cuenta. Instalaciones dentro y fuera de los baños.

Segunda sesión

Trazo dentro de un baño.

DECIMOCUARTA SEMANA

Primera sesión

Criterios de diseño para la recolección y evacuación de aguas residuales, normas.

Segunda sesión

Diseño para la recolección y evacuación de aguas residuales.

DECIMOQUINTA SEMANA

Primera sesión

Práctica Calificada 4 - Repaso de teoría.

Segunda sesión

Seminario de casos prácticos y típicos.

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y los alumnos, ecran, proyector de multimedia y una impresora.

Materiales: Programas varios, aplicaciones multimedia.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (2*PE+EP+EF)/4

PE = ((P1+P2+P3+P4-MN)/3 + W1)/2

PF = Promedio final

EP = Examen parcial

EF = Examen Final

PE = Promedio de evaluaciones

P1,...P4= Prácticas calificadas

MN = Menor nota de prácticas

W1 = Trabajo 1

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Aplicar conocimientos de matemáticas, ciencia, tecnología e ingeniería	K
(b)	Diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	R
(c)	Diseñar sistemas, componentes o procesos de acuerdo a las necesidades requeridas restricciones económicas, ambientales, sociales, políticas, éticas, de salubridad y seguridad	
(d)	Trabajar adecuadamente en un equipo multidisciplinario.	R
(e)	Identificar, formular y resolver problemas de ingeniería	K
(f)	Comprensión de lo que es la responsabilidad ética y profesional.	R
(g)	Comunicarse, con su entorno, en forma efectiva.	R
(h)	Entender el impacto que tienen las soluciones de la ingeniería civil, dentro de un contex global, económico, ambiental y social.	R
(i)	Aprender a aprender, actualizándose y capacitándose a lo largo de su vida.	R
(j)	Tener conocimiento de los principales problemas contemporáneos de la carrera de ingeniería civil	
(k)	Usar técnicas y herramientas modernas necesarias en la práctica de la ingeniería civil y ramas afines	K

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:	Teoría	Práctica	Laboratorio	
-,	2	2	0	

b) Sesiones por semana: Dos sesiones.

c) **Duración**: 4 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Juan Manuel Oblitas Santa María

XV. FECHA

La Molina, marzo de 2017.