

DATENBLATT

Sach Nr.: T60404-N4646-X950

25293

300 mA - Differenz-Stromsensor für 5V-Versorgungsspannung

Für die elektronische Strommessung: DC, AC, Impuls..., mit galvanischer Trennung zwischen dem Primärkreis (Starkstromkreis) und dem Sekundärkreis (elektronischer Kreis)

Datum: 26.11.2008

von

Kunde: **Typenelement** Kd. Sach Nr.:

Seite **Anwendungen**

Typenbeschreibung Stromsensor nach dem Kompensationsprinzip mit

- magnetischer Sonde
- Leiterplattenmontage Gehäuse und Werkstoffe ULgelistet
- **Eigenschaften** sehr gute Meßgenauigkeit
- geringe Temperaturabhängigkeit und Langzeitdrift der Offsetspannung
- sehr kleine Hysterese der Offsetspannung
- kurze Ansprechzeit
- weiter Frequenzbereich
- kompakte Bauform
- reduzierter Offsetrippel

Für den anwendungstypischen stationären Einsatz im Industriebereich wie:

Solaranlagen

Elektrische Daten - Kennwerte

I _{PN}	Primärnennstrom, effektiv (Differenzstrom)	0,3	Α
V_{out}	Ausgangsspannung @ I _P	$V_{Ref} \pm (0.74*I_P/I_{PN})$	V
$V_{out}(0)^*$	Ausgangsspannung @ I _P =0, T _A =25°C	V _{Ref} ± 0,025	V
V _{out} (Error)	Im Fehlerfall (Stromsensor) wird V _{out} < 0,5V geschaltet	<0,5	V
V_{Ref}	Referenzspannung (intern)	$2,5 \pm 0,005$	V
	Referenzspannung (externern im Funktionsbereich)	$2,5 \pm 0,100$	V
V _{Ref} (Teststrom)**)	Referenzspannung (extern)	01	V
V _{out} (Teststrom)**)	Ausgangsspannung @ V _{Ref} = 01V	$V_{out}(0) + 0.250 \pm 0.060$	V
K_N	Übersetzungsverhältnis	(1):1000	

^{*)} Beim Einschalten und nach einem "Teststrom" wird der Stromsensor durch einen ca. 110ms dauernden internen Wechselstrom abmagnnetisiert. In dieser Zeit wird der Ausgang auf V_{out}< 0,5V geschaltet.

Meßgenauigkeit - Dynamisches Verhalten

		min.	typ.	max.	Einheit
I _{P,max}	Maximaler Meßbereich (Differenzstrom)	±0,85			Α
Χ	Genauigkeit @ I _{PN} , T _A = 25°C			1,5	%
ϵ_{L}	Linearität			1	%
V_{out} - V_{Ref}	Offsetspannung @ I _P =0, T _A = 25°C			±25	mV
$\Delta V_o / \Delta T$	Temperaturdrift von V _{out} @ I _P =0, T _A = -4085°C		0,1		mV/°C
t_r	Ansprechzeit @ 90% von I _{PN}		35		μs
f	Frequenzbereich	DC10			kHz

Allgemeine Daten

		min.	typ.	max.	Einheit
T_A	Umgebungstemperatur	-40		+85	°C
Ts	Lagertemperaturbereich	-40		+85	°C
m	Masse		35		g
Vc	Versorgungsspannung	4,75	5	5,25	V
Ic	Versorgungsstrom im Leerlauf		16		mA

Datum	Name	Index	Änderung
		81	

Hrg KB-E	Bearb: Le		KB-PM IA: KRe.	freig.: prs.
editor	designer		check	released

^{**)}Wird V_{Bef} extern auf 0...1V gesetzt, wird ein interner Teststrom generiert.

DATENBLATT

Sach Nr.: T60404-N4646-X950

K-Nr.:

25293

25.8

19,2

3,5-0,5

300 mA – Differenz-Stromsensor für 5V-Versorgungsspannung

Für die elektronische Strommessung: DC, AC, Impuls..., mit galvanischer Trennung zwischen dem Primärkreis (Starkstromkreis) und dem Sekundärkreis (elektronischer Kreis)

Datum: 26.11.2008

Kunde: Typenelement

Kd. Sach Nr.:

Seite 2 von

Anschlüsse:

Maßbild (mm):

ZAN

F DC

41,35±0,25

Toleranz der Stiftabstände ±0,2mm (Tolerances grid distance)

DC = Date Code F = Factory

0,7x0,6

8,8

Beschriftung:

1...4: 0,7*0,6 mm

2

Anschlußschema

Weitere Vorschriften

Kurze Luft- und Kriechstrecken (< 1mm) wegen der metallischen Abschirmung!

Die Temperatur der Primärleiter sollte 100°C nicht überschreiten. Weitere ergänzende Angaben sind auf Anfrage erhältlich. Dieses Datenblatt stellt keine Garantieerklärung nach BGB §443 dar.

Hrg KB-E	Bearb: Le		KB-PM IA: KRe.	freig.: prs.
editor	designer		check	released

Ergänzende Angaben zum Datenblatt

Sach Nr.: T60404-N4646-X950

K-Nr.: 25293

Kunde:

300mA-Differenz-Stromsensor für 5V-Versorgungsspannung

Kd. Sach Nr.:

Datum: 26.11.2008

Für die elektronische Strommessung: DC, AC, Impuls...,

mit galvanischer Trennung zwischen dem Primärkreis (Starkstromkreis)

und dem Sekundärkreis (elektronischer Kreis)

Seite 1 von 2

Elektrische Daten (ermittelt durch Typprüfung)

Typenelement

		in. ty	p. n	nax. Ei	nheit
V_{Ctot}	maximale Versorgungsspannung (ohne Fkt.)		. 6	5	٧
I_{C}	Versorgungsstrom mit Primärstrom	16mA +I _p *	$K_N + V_{out}/R_L$		mA
I _{out,SC}	Kurzschlussausgangsstrom	±2	20		mA
$\Delta X_{Ti}/\Delta T$	Temperaturdrift von X@ T _A = -40 +85 °C		4	-00	ppm/K
Rs	Sekundärspulenwiderstand @ T _A =85°C		8	80	Ω
$R_{i,Ref}$	Innenwiderstand des Referenzeingangs	47	70		Ω
R_{i} , (V_{out})	Ausgangsimpedanz von V _{out}	47	70		Ω
R_L	Externe Belastbarkeit von Vout	10	00		$k\Omega$
C_L	Kapazitive Belastung von Vout	keine Begrenzung		zung	pF
$\Delta X_{Ti}/\Delta T$	Temperaturdrift von X@ T _A = -40 +85 °C		4	00	ppm/K
$\Delta V_0 = \Delta (V_{out} - V_{Ref})$	Summe aller Offsetdriften beinhaltend:	16	5 2	25	mV
V_{0t}	Langzeitdrift von V ₀	12	2		mV
V_{0T}	Temperaturdrift von V ₀ @ T _A = -40+85°C	10)		mV
$\Delta V_0/\Delta V_C$	Versorgungsspannungsdurchgriff auf V ₀	7,	5		mV/V
$V_{ m 0H}$ $V_{ m 0H,\ Demag}$	Hysterese von V _{out} (als Folge eines Primärstroms von 100 Restspannung nach Abmagnetisierungszyklus	00 x I _{PN}) 75		75 2	mV mV
V _{oss}	Offsetripple (ohne externen Filter)		1	20	mV
V _{oss}	Offsetripple (mit einpoligem 20 kHz- Filter)	3	5 5	50	mV
V _{oss}	Offsetripple (mit einpoligem 1 kHz- Filter)	10) 1	5	mV
	Mechanische Beanspruchung in Anlehnung an M3209 Einstellwerte: 10 – 2000 Hz, 1 min/Dekade, 2 Std.	9/3	1	,5g	

<u>Prüfung</u> (Messungen nach Temperaturangleich der Prüflinge an Raumtemperatur.)

$V_{out}(I_P=I_{PN})$ (V)	M3011/6: Ausgangsspannung vs. Referenz (I _P =0,4A, 40-80Hz)	0,9721,002	V
V_{out} - V_{Ref} (I _P =0) (V)	M3226: Offsetspannung	$\pm 0,025$	V
$V_{out}(Teststrom)$ (V)	Ausgangsspannung @ V _{Pof} = 0V	0.250+ 0.060	V

Weitere Vorschriften

Stromrichtung: Eine positive Ausgangsspannung erscheint am Anschluß V_{out} , wenn der Primärstrom in Pfeilrichtung fließt.

Gehäuse und Spulenkörperwerkstoff UL-gelistet: Brennbarkeitsklasse 94V-0.

Schutzart nach IEC529: IP50.

Datum	Index	Änderung					
	81						
			ſ	1	1	1	

Ergänzende Angaben zum **Datenblatt**

Sach Nr.: T60404-N4646-X950

300mA-Differenz-Stromsensor für 5V-Versorgungsspannung

Datum: 26.11.2008

Für die elektronische Strommessung: DC, AC, Impuls..., mit galvanischer Trennung zwischen dem Primärkreis (Starkstromkreis)

und dem Sekundärkreis (elektronischer Kreis)

Kunde: Kd. Sach Nr.: Seite 2 2 von Typenelement

Erläuterung einiger in den Tabellen verwendeter Größen (alphabetisch)

Ansprechzeit (beschreibt das dynamische Verhalten im spezifizierten Messbereich), gemessen als t_r :

Verzögerungszeit bei I_P = 0,9 I_{PN} zwischen einem eingespeisten Rechteckstrom und der dazugehörigen

Ausgangsspannung Vout(IP).

Verzögerungszeit (beschreibt das dynamische Verhalten bei schnellem Stromanstieg z.B. bei $\Delta t (I_{Pmax})$:

Kurzschlussstromerfassung), gemessen zwischen I_{Pmax} und der dazugehörigen Ausgangsspannung V_{out}(I_{Pmax})bei

einem Stromanstieg des Primärstroms von di₁/dt ≥ 100 A/µs.

V₀: Nullpunktabweichung von der Nenn-Referenzspannung $V_{ref} = 2,5V$.

 $V_0 = V_{out}(0) - 2.5V$

Nullpunktabweichung von Vo nach Übersteuerung mit Gleichstrom des 1000-fachen Nennwerts. V_{0H} :

Nullpunktabweichung von Vo nach Übersteuerung mit Gleichstrom des 1000-fachen Nennwerts und anschließendem V_{0H, Demag}:

Abmagnetisierungszyklus.

Langzeitdrift von Vo nach 100 Temperaturwechseln im Bereich von -40 bis 85 °C. V_{0t}:

X: In der Ausgangsprüfung zugelassener Messfehler bei Raumtemperatur, definiert durch

$$X = 100 \cdot \left| \frac{V_{out}(I_{PN}) - V_{out}(0)}{0.625V} - 1 \right| \%$$

Linearitätsfehler definiert durch ϵ_{L} :

$$\varepsilon_{L} = 100 \cdot \left| \frac{I_{P}}{I_{PN}} - \frac{V_{out}(I_{P}) - V_{out}(0)}{V_{out}(I_{PN}) - V_{out}(0)} \right| \%$$

Diese "Ergänzenden Angaben zum Datenblatt" stellen keine Garantieerklärung nach BGB \$443 dar.