

Third Place in AICAS 2024 Challenge: From LLMs Compression to Deployment on ARM CPUs

Ziqiang Chen, Renhuang Huang, Xuedian Hu

Zhejiang Lab & Ant Group

2024 IEEE International Conference on Artificial Intelligence Circuits and Systems

Give the most likely words that follow "I woke up, got dressed, and made a ..."

The most likely words that follow "I woke up, got dressed, and made a" depend on the context and the speaker's preferences.

However, here are some possibilities:

- "cup of coffee"
- "quick breakfast"
- "smoothie"
- "sandwich"
- . "list of things to do"
- "phone call"
- "cup of tea"
- "plan for the day"
- "mental note"
- "mess in the kitchen"
- · "bowl of cereal"
- "plate of bacon and eggs"

- "to-do list"
- "pot of oatmeal"
- "bunch of pancakes"
- "scrambled eggs"
- "cup of hot chocolate"
- "glass of orange juice"
- "toast with jam"
- "protein shake"
- "plate of bacon and eggs"

Again, the exact words that follow "I woke up, got dressed, and made a" can vary depending on the speaker's habits, mood, and circumstances.

What are large language models(LLMs)?

Outline

- Introduction to LLMs
- Model Compression
- Low-bit Quantization
- Kernel Optimization
- Results
- Conclusion And Future Work

Transformer-based LLMs have revolutionized NLP!

Bigger is Better!

Al training runs, estimated computing resources used

Floating-point operations, selected systems, by type, log scale

Sources: "Compute trends across three eras of machine learning", by J. Sevilla et al., arXiv, 2022; Our World in Data

Prefill phase & Decode phase

Model Compression

TABLE II

COMPARISON OF PRUNING METHODS ON PIQA. IN SHORTGPT-N, 'N'
REFERS TO THE NUMBER OF PRUNED BLOCK LAYERS.

Method	Memory (MB)	PIQA
Dense(F16)	3503	0.733
SliceGPT(15%)	2999	0.659
SliceGPT(25%)	2625	0.611
ShortGPT-2	3300	0.712
ShortGPT-4	3000	0.691

Fig. 2. Left: SliceGPT - Making LLMs Leaner, Right: ShortGPT - Making LLMs Shorter.

Model Compression

TABLE I SETUP OF REMOVED LAYERS FOR QWEN-1.8B AND COMPARISON OF STRATEGIES FOR LAYER REMOVAL ON PIQA.

Method	Removed Layers	PIQA	
RM [13]	7,9,8,10	0.6630	
BI [8]	20,21,22,11	0.6512	
LogRM (ours)	10,11,9,12	0.6908	

$$RM = \left| \left| \frac{f(x)}{x + f(x)} \right| \right| \tag{3}$$

$$RM = \|\frac{f(x)}{x + f(x)}\|$$

$$BI = 1 - \frac{\mathbf{X}_{i}^{T} \mathbf{X}_{i+1}}{\|\mathbf{X}_{i}\|_{2} \|\mathbf{X}_{i+1}\|_{2}}$$
(4)

$$||\mathbf{X}_{i}||_{2}||\mathbf{X}_{i+1}||_{2}$$

$$LogRM = abs(log(\frac{||\frac{f(x)}{x+f(x)}||}{1-||\frac{f(x)}{x+f(x)}||}))$$
(5)

Low-bit Quantization

TABLE III
COMPARISON OF K-QUANTS METHODS ON QWEN-1.8B

Method	Memory (MB)	PIQA
Dense(FP16)	3420.0	0.7312
Q2_K	791.9	0.6502
Q4_0	1040.0	0.7144
Q4_K_M	1150.0	0.7198
Q8_0	1820.0	0.7265

Fig. 3. Block Quantized Formats

Kernel Optimization

Fig. 4. ARM CPU Flame Graph

Kernel Optimization

Fig. 5. To avoid pseudo-scalar operations, rearrange parameters in the weight matrix.

Sources: "Large Language Models on CPUs", by Dibakar Gope, David Mansell, lan Bratt, PCCC23

Results

Our experimental setup utilized an ARM CPU (Yitian 710) supplied by the event organizers, which boasted a 8-core CPU, 30GB of memory, and 50GB of disk space. Meanwhile, in compliance with the competition's specifications, we validated our optimization method using the Qwen-1.8B [4].

TABLE V LLM prefill throughput outperforms PyTorch-based solution by up to 4.38x under Short5-Q8_0+RW.

Model	PIQA	RSS	VMS	Prefill	Decode	Score
Short2-Q4_0	0.7084	1180	1276	121.69	49.65	60.05
Short2-Q8_0	0.7255	1970	2064	140.93	52.01	67.86
Short4-Q4_0	0.6823	1132	1227	134.34	52.66	47.29
Short4-Q8_0	0.7160	1835	1930	163.67	55.47	64.62
Short5-Q8_0	0.7187	1775	1849	175.55	56.18	66.74
Short5-Q8_0+RW	0.7188	2756	2871	380.61	64.05	70.66

$$Score = Acc \cdot 0.30 + RSS \cdot 0.15 + VMS \cdot 0.15 + Pre \cdot 0.15 + Dec \cdot 0.25$$

$$(6)$$

Fig. 6. Performance of different model sparsification and quantization methods. The increase in memory space resulting from the rearrangement of the weight matrix is traded for enhanced prefill throughput, denoted as **+RW**

Conclusion And Future Work

- CPUs serve as a practical platform for running LLMs inference.
- We demonstrated the performance advantage over the open-source solution on ARM CPUs.
- Future work to optimize batched inference on ARM CPUs.