WAKISSHA JOINT MOCK EXAMINATIONS

MARKING GUIDE

Uganda Advanced Certificate of Education

PHYSICS P510/2

July/August 2024

The incident ray, reflected ray and the normal at the point of incidence all 1(a)(i) lie in the same plane.

- The angle of incidence is equal to the angle of reflection.

(ii)

Reflection takes place at the two surfaces S1 and S2. The reflection at the first surface at the point N leads to image I1.

The transmitted light is reflected at the silvered surface at point N₁. It undergoes partial reflection and refraction at N2. The refracted light appears to originate from I2 and this leads to formation of image I2. The successive internal reflections and refractions lead to formation of other images.

b)(i)

Action of mirror A

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

$$= \frac{1}{20} - \frac{1}{30}$$
V= 60cm

Action of mirror B

$$U = -10cm, f = 15cm$$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u}$$

$$= \frac{-1}{15} + \frac{1}{10}$$

$$V = 30 \text{ cm}$$

$$\begin{vmatrix}
M = m_A \times m_B \\
= \frac{60}{30} \times \frac{30}{10} \\
= 6
\end{vmatrix}$$

$\int \frac{1}{f_e} = \frac{1}{u_e} + \frac{1}{v_e} \implies \frac{1}{4.0} = \frac{1}{u_e} - \frac{1}{25} \implies u_e = 3.45cm$	
$\left \frac{1}{f} \right = \frac{1}{u_e} + \frac{1}{v_e} \Rightarrow \frac{1}{4.0} = \frac{1}{u_e} = \frac{25}{4.0}$	-
3.45 = 9.45 cm	
Separation of lenses = $v_0 + u_c = 6.0 + 3.45 = 9.45$ cm	
There is no chiminally about	
There is no spherical aberration. Relatively cheaper since only one face of the objective needs grinding.	02
Relatively cheaper since only one face of the	02
Has high resolving power	
Forms brighter images. Any two TOTAL = 20 MARKS	
3(a)(i) A transverse wave is a wave in which the particles vibrate perpendicular	
3(a)(i) A transverse wave is a wave in which the parties	01
to the direction of propagation of the wave	١٠١
A longitudinal wave is a wave in which the particles vibrate along the	
A longitudinal wave is a wave in which the parties	01
direction of propagation of the wave.	"
(b) $y = 0.02\sin 2\pi (\text{ft } 3t - 0.02x) \text{ compare with}$	
$y = a \sin 2\pi \left(ft - \frac{x}{\lambda} \right)$ $y = 0.02 \sin 2\Pi (3t - 0.02x)$	
$y = a \sin 2\pi \left(\frac{\pi - \lambda}{\lambda} \right)$ $y = 0.02 \sin 2\pi \left(3t - 0.02x \right)$	02
y = 0.02 Sm2[1 (5**	
$y = a \sin 2\Pi \left(\theta - \frac{x}{x} \right)$	
$y = a\sin 2 \prod \left(ft - \frac{x}{\lambda} \right)$	
$ft = 3t \Rightarrow f = 3Hz$	
$H = 3t \rightarrow 1 - 3HZ$	
$\frac{x}{x} = 0.02 \text{ r} \Rightarrow \lambda = 50m$	_
$\frac{x}{\lambda} = 0.02 x \Rightarrow \lambda = 50m$	
$v = f\lambda$	02
$= 3 \times 50 = 150 \text{ms}^{-1}$	02
$\Delta Q = \frac{2\pi\Delta x}{\lambda} = \frac{2\pi}{50} \times 25 = \pi \text{ radians or } 180^{\circ}$	
	02
$=\pi$ radians OR 180°	02
When two ways of moods, and f	
When two waves of nearly equal frequencies and similar amplitudes are	
sounded together, they superpose. When they meet in phase, constructive	
interference takes place and a found sound is heard. When it	03
pridate, destructive intellectice takes higher and coff	
A periodic rise and fall in intensity (or loudness) of sound is beautiful.	
is called beats.	
An instrument of standard frequency is sounded together with an instrument to be tuned.	-
instrument to be tuned.	
The frequency of the instrument to be tuned is then	
The frequency of the instrument to be tuned is then adjusted until beats are heard.	03
When the beats reduce to zero, the instrument is then turned.	
Speed of car = 30ms ⁻¹	
그 1986년 - 그리고 그렇게 되었다고 있다고 있는 사람들은 사람들이 가장 없는 사람들이 되었다.	
	3 1 10

	A CONTROL OF THE PROPERTY OF T	
	Wave length of sound received by the stationary observer $\lambda_a = V U_a$	T
	Apparent frequency $f_a = \frac{V}{\lambda_a} = \left(\frac{V}{V - U_a}\right) f$	- Constitution
	$f_0 = \frac{330 \times 280}{330 - 30} = 308 \text{ Hz}$	60
(ii)	Wave length received by the observer	1
	$\lambda_0 = \frac{V - U_0}{C}$	
	Apparent velocity $v_a = V + U_o$	63
	Apparent frequency $f_a = \lambda_a = \frac{V_a}{\lambda_a} = \left(\frac{V + U_0}{V - U_s}\right) f$	0.00
	$f_a = \left(\frac{330 + 30}{330 - 30}\right) \times 280$	
	= 336Hz	-
	TOTAL = 20 MARKS	-
(a)	Huygen's principle states that every point on a wave front may be regarded as a source of secondary wavelets and the new wave front is the envelope of the secondary wavelets.	61
	1 te	
	incident wave front	
	air i Si	ď
b(i)	material 1 1 Reflected wavefront	
	n't	
	Consider a plane wave front of light AB which is about to cross from air	5
	into a material. Let C and V be the velocities of light in air and material respectively.	
	If a wave particle at B takes time, t to move to B, then the distance BB =	
	ct In the same time, a wave particle at A moves to A^{\dagger} a distance $AA^{\dagger} = Vt$ From triangles ABB ¹ and AB ¹ A ¹	04
	sin i BB^{1}/AB^{1} BB^{1} ct c	
	$\frac{\sin i}{\sin r} = \frac{BB^1 / AB^1}{AA^1 / AB^1} = \frac{BB^1}{AA^1} = \frac{ct}{vt} = \frac{c}{v}$	
	But $\frac{c}{v} = n \Rightarrow v = \frac{c}{n}$	
(ii)	Let fo and f be the frequencies of light in vacuum and in the medium	
	respectively.	
1	Then $f = f_0 \Rightarrow \frac{v}{\lambda} = \frac{c}{\lambda_0}$	103
	$\frac{\lambda_0}{\lambda} = \frac{c}{v} = n$ $\Rightarrow \lambda = \frac{\lambda_0}{n} = \frac{600}{1.5}$	
	$\Rightarrow \lambda = \frac{\lambda_0}{\lambda_0} = \frac{600}{\lambda_0}$	10 A
	n 1.5 400nm	
		art.

(c)(i) Plane polarized light is one whose electric vect or varies only one plant	0]
Plane polarized light is one whose electron of the light ray. perpendicular to the direction of the light ray.	1
perpendicular to the direction	- 12 - 12
Light polarued	1 1
(ii)	l K
AIR V	4
glass (morting)	
A narrow beam of unpolarised light is directed onto a medium and the reflected light is viewed through a polaroid. Starting with a small angle reflected light is viewed through a polaroid about an axis through its plane. The	of
I and to refered about all data unough and	04
cincidence is gradually increased where by at each angle	
lineidence, the polaroid is rotated. At one angle of incidence, the rotated	d
light gets cut off, from the observer as the polaroid is rotated. At this	٩
point, the reflected light is completely plane polarised	
(d) $\frac{n_g}{n_L} = \tan i_\rho \Rightarrow \frac{1.52}{1.33} = \tan i_\rho : i_\rho = 48.8^\circ$	
$\int_{\eta}^{8} = \tan i_{\rho} \Rightarrow \frac{1}{1.33} = \tan i_{\rho} \therefore i_{\rho} = 48.8$	04
1	- 1
$\Rightarrow r_p = 90 - 48.8 = 41.2^0$	i
(e) The test slide is placed in contact with a standard flat slide to form an air	the state of the s
wedge. Monochromatic light is directed almost normally onto the wedge) [
and interference pattern formed are viewed from above.	03
If regular fringes parallel to the line of contact is observed, the test slid is	S
flat.	1 2
Any areas showing irregular patterns correspond to the areas on the	
surface that are not flat.	i
TOTAL 20 MARKS	第17年
a)(i) Magnetic flux density is the force experienced by a conductor of length	01
Im carrying a current of 1A placed perpendicular to the magnetic field.	
OR	
Magnetic flux density is the force experienced by a charge of 1C moving	
with velocity 1ms ⁻¹ at right angles to the magnetic field.	
La transfer de la constante de	
The tesla is the magnetic flux density when the force on a conductor 1m long placed perpendicular to the magnetic fall.	
	01
is 1N. is 1N.	
Q.	
The state of the s	
τ	
1 12	1 1
1 d bP2	
I_1 I_2 I_2 I_2	04
Consider two parallel conductors A and B above, carrying currents of I ₁ and I ₂ respectively. The magnetic flux density due to current I ₂	5
and Is respectively conductors A and B about	8
and I ₂ respectively. The magnetic flux density due to current I ₁ at P ₂ is B ₁	1 17
due to current I	- - -
- Cattern II of D	

	$= \frac{N_0 I_1}{2 \prod d}$	
	The force acting per meter length on wire B is $F_1 = B_1I_2 = \frac{N_0I_1I_2}{2\prod d}$	*
	Similarly the magnetic flux density due to current I_2 at P_1 is $B_2 = \frac{N_0 I_2}{2 \prod d}$	
	The force per metre length on wire A	
	$F_2 = B_2 I_1 = \frac{N_0 I_2 I_1}{2 \prod d}$	The second second
	Force per metre length between A and b	
	$F = F_1 = F_2 = \frac{N_0 I_1 I_2}{2 \prod d}$	
(c)(i)	$B = \frac{N_0 NI}{2\pi}$	01
	2r	
(ii)	Number of turns of the coil $N = \frac{8.0}{2 \Pi r} = \frac{8.0}{2 \Pi \times 0.05}$	04
	Magnetic flux density at the centre of the coil	
	$B = \frac{NoNI}{2\prod r} = \frac{4.0\prod X10^{-7}X2X8.0}{2X0.05X2\prod X0.05}$	
	$= 6.40 \times 10^{-4} \text{T}$	
(d)	The apparatus is arranged as shown above. The search coil is placed in the magnetic meridian such that the pointer of the magnetometer reads zero.	05
	switch K is closed and the pointer readings θ_1 , θ_2 are noted. The average deflection is calculated from $\theta = \frac{\theta_1 + \theta_2}{2}$. If B _H and B _c are the earth's	
	magnetic flux density and the magnetic flux density of the coil due to	
	current respectively, then $\frac{B_c}{B_H} = \tan \theta$	
(e)	Induced emf E= BLV = B _v LV But B _v = B _R sin 40 ⁰ \Rightarrow E = B _R sin 40 ⁰ LV	04
	$B_{R} = \frac{E}{LV \sin 40^{0}} = \frac{6.0X10^{-3}}{20X250 \sin 40^{0}}$ $= 1.87X10^{-6} \text{ T}$	
	TOTAL 20 MARKS	Jan 65

	$= \frac{0.04 \times 9.81 \times 0.05}{0.3^2 \times 0.6^2}$
	= 0.606 ms ⁻¹
(d)	Induced e.m.f E = 2 INBA sin 2 Iff
	Maximum e.m.f E ₀ =2 Π f NBA
	Maximum induced e.m.f thus increases with increase in
	frequency or angular velocity
	Number of turns of the coil.
	Area of the coil.
	Magnetic flux density

7(a)(i)	Peak value is the maximum value of the alternating current.	01
	Root mean square value is the value of steady/ direct current which dissipates heat in a given resistor at the same rate as the alternating current.	01
b)	I=Iosin zlift	
	Instantaneous power dissipated $P = I^2R$ $P = I_0^2 \sin^2 2 \prod ftR$ $\langle P \rangle < I_0^2 R \sin^2 2 \prod ft \rangle$ $= I_0^2 R \angle \sin^2 2 \prod ft \rangle$	04
	But $< \sin^2 2 \prod ft > = \frac{1}{2}$ $< P > = \frac{1}{2} I_0^2 R$ Let Irms be the steady current that dissipates heat in the resistor at the same rate as the a.c then $< P > = I^2 \text{rms } R$	
	$I^{2}\text{rms } R = \frac{1}{2}I_{0}^{2}R$ $I^{2}\text{rms} = \frac{I_{0}^{2}}{2}$ $I_{\text{rms}} = \frac{I_{0}}{\sqrt{2}}$	
	Vrms = 20V, f= 80Hz, L = 0.6H Irms = $\frac{V_{rms}}{X_L} = \frac{V_{rms}}{2 \prod fL} = \frac{20}{2X3.14X80X0.6}$	0.

= 0.066A

property and the same	buth lights dimly and gradually increases	
(d)(i)	When the switch K is closed, the bulb lights dimly and gradually increases to full brightness. When it is switched off, the bulb dims and gradually goes off.	
	When the switch is closed, a large back e.m.f is induced, in the coil which when the switch is closed, a large back e.m.f is induced, in the coil which opposes the flow of current in the circuit, very little current flows through opposes the flow of current in the circuit, very little current flows through the bulb hence dim light. The rate of change of current reduces gradually and the back e.m.f reduces to zero. leading to maximum current and the bulb lights to full brightness, to zero. leading to maximum current and the bulb lights to full brightness. When the switch is opened, the decaying magnetic field in the coil induces an e.m.f in the circuit which tends to reinforce the decaying current. The glow of the bulb reduces gradually and goes off.	
e)	pointer &	1
Cı	Fixed from rod to coil. The iron rods get	
aw by	agnetized in the same sense and repel. The movable iron rod is pushed vay and as it moves, the pointer rotates over the scale until it is stopped the restoring torque of the hair spring. The deflecting torque is oportional to the force of repulsion which is proportional to the average ware of the current. Hence the deflection $\theta \propto \angle I^2 >$	
Ele	TOTAL = 20 MARKS ectric field intensity is the force acting on 1C of positive charge at a int in an electric field.	200
	ectric potential is the work done to transfer IC of positive charge from inity to a point against the electrostatic field.	
The	the pin, there is high charge density thus high electric field intensity. The air around the pin gets ionized, ions of opposite charge to that on the are attracted and neutralize some of the charge on the pin and the ctroscope. The electroscope thus discharges gradually.	

The free end of the wire is moved over the surface of the The divergence of the leaf remains the same as the wire is moved from the divergence of the leaf remains the same as the wire is moved from the divergence of the leaf remains the same as the wire is moved from the divergence of the conductor. The potential is constant over the pear shaped charged conductor.	
When a neutral metal body is brought near a charged material opposite charge is induced on the near side of the metal and change similarities of the body on the far side. Since opposite charges are now closer to each other the attraction force between the material and the body is greater that the repulsion force. Hence the metal body is attracted.	in 0
9(a)(i) Capacitance is the ratio of the magnitude of charge on either plate of the capacitor to the potential difference across its plates.	0
$V = \frac{q}{4\Pi \mathcal{E}\Gamma} \Rightarrow \mathcal{E} = \frac{q}{4\Pi rv} = \frac{8.0X10^{-10}}{4\Pi X0.11X60}$	0:
$= 9.65 \times 10^{-12} \text{Fm}^{-1}$	
A and B are Capacitor Plates.	04
Plate B is charged and the divergence of the leaf of the electroscope is noted. Plate A is then displaced upwards to reduce the area of overlap of the plates. The divergence of the leaf of the electroscope is seen to increase since $C = \frac{q}{v}$, capacitance has reduced. ie	
$\begin{array}{c c} C \propto A. \\ \hline (c) & C = \frac{\mathcal{E}_0 A}{I} \end{array}$	
$C = \frac{C_0 A}{d}$	3
$Q = CV = \frac{\mathcal{E}_0 AV}{d} = \frac{8.85X10^{-12}X2X10^{-4}X10,000}{5X10^{-3}}$ $= 3.54X10^{-9} C$	03
(d) From $V = \frac{q}{c}$, $C_1 = \varepsilon_r C$ $C_2 = C$	
$\Rightarrow V_1 = \frac{q}{\varepsilon c} \text{ and } V_2 = \frac{q}{c}$	To be supported as
Charge in pd = $V_2 - V_1 = \Rightarrow V_1 = \frac{q}{c} - \frac{q}{\varepsilon_r c} = \frac{q}{C} \left(1 - \frac{1}{\varepsilon_r} \right)$ Fractional observables	03
The change in pd = $\frac{V_2 - V_1}{V_1} = \frac{q}{q} \left(1 - 1 \right) = \varepsilon c$	
$= \varepsilon_r \left(1 - \frac{1}{\varepsilon_r}\right) = \varepsilon_r - 1$ $c \left(\frac{1 - \varepsilon_r}{\varepsilon_r}\right) \frac{X - \varepsilon_r}{q}$	

(e)(i)	Relative permittivity is the ratio of permittivity of the material to	01
	permittivity of free space.	
(e)(ii)		
	C -K1 01	
	- Kn	
	<u> </u>	-
	A capacitor with air between the plates is connected as above. Switch K ₁	
	is closed and after a short time it is opened. K ₂ is closed and the first	
	deflection θ_0 of B _{C1} is noted. K ₂ is opened. The test dielectric is placed	05
	between the plates and k_1 is closed. After a short time K_1 is opened and K_2 is closed. The first deflection θ of B_{C1} is noted. Relative permittivity ε_r is	1
	found from $\varepsilon_r = \frac{\theta}{\theta_0}$	
THE ST	TOTALÆ 20 MARKS	17
10(a)(i)	Resistance of a conductor is the opposition to flow of current through a	01
	conductor.	
ii)		
ii)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and	
ii)	Length: Increase in length leads to a longer path for electrons. This leads	
ii)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance.	
ii)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration	
ii)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and	
ii)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance.	
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$ $= 100 \Omega$ $= 100 \Omega$	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$	1 1/2
b)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$ $= 100 \Omega$ $= 700 \Omega$ Current supplied by the battery	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$ $= 100 \Omega$ $= 700 \Omega$ Current supplied by the battery	1 1/2
	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$ $= 100 \Omega$ $= 700 \Omega$	1 1/2
b)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega = 100 + 600 = 700 \Omega$ Current supplied by the battery $I = \frac{V}{Rr} = \frac{10}{700} = 0.0143A$ P.d across parallel combination = P.d across the bulb	1 1/2
b)	Length: Increase in length leads to a longer path for electrons. This leads to more collisions with the material ions. This reduces the current and hence increase resistance. Temperature: Increase in temperature increases the amplitude of vibration of the ions. This increases the rate of collision between the electrons and the ions. This reduces the amount of current flowing implying a higher resistance. Effective resistance $Rp = \frac{300X150}{300+150} = 100 \Omega$ $= 100 \Omega$ $= 100 + 600$ $= 700 \Omega$ Current supplied by the battery $I = \frac{V}{Rr} = \frac{10}{700} = 0.0143A$	1 1/2

At balance the galvanometer shows no deflection

P.d across R₁ = P.d across L₁ and

P.d across R₂ = P.d across L₂

Current through R1 = current through R2

And current through L₁ = current through L₂

$$\Rightarrow I_1R_1 = I_2KL_1....(1)$$

$$I_2R_2 = I_2KL_2$$
(2)

K is the resistance per cm of the slide wire

$$\frac{R_1}{R_2} = \frac{L_1}{L_2}$$

(ii) R₁ must be chosen such that the balance point is near the middle of the wire AB.

After determining the balance length L₁ and L₂, R₁ and R₂ should be interchanged in order to get the average values of the balance lengths.

The resistance wire AB should not be scrapped by the Jockey. This is to avoid spoiling the uniformity of the wire. (Any two)

$$R = \frac{pL}{A} = \frac{9.0 \times 10^{-6} \times 1}{1.5 \times 10^{-6}} = 6.0\Omega$$

With K_1 open T

With K_1 open, p.d across $AJ = E_y = 1.2 \text{ V}$

		STATE OF THE PARTY	
	$Pd/cm = \frac{1.2Vcm^{-1}}{75}$		
	$I_D = \frac{2}{6+R} \Rightarrow \rho.d/cm = I_DR/cm = \frac{2}{6+R} X \frac{6}{100} = \frac{12}{(6+R)100}$		
	$\Rightarrow \frac{12}{(6+R)100} = \frac{1.2}{75} \Rightarrow R = \left(\frac{12X75}{120}\right) - 6.0$ $R = 1.5\Omega$		04
(ii)	Let the balance Length be L		
	With K ₁ closed, $I = \frac{E}{R+r} = \frac{1.2}{5+1} = 0.2A$ V= $IR = 0.2 \times 5 = IV$		02
	$p.d/cm = \frac{2}{100} V_{cm}^{-1}$		
	p.d across L = $\frac{2L}{100}$	3	
	$\frac{2L}{100} = 1 \Rightarrow L = \frac{100X1}{2} = 50.0cm$		
	-TOTAL = 20 MARKS - 2	Sir	

END