在名.	线	
李号		谷題
ঝ্য		畑
班	杯	Д Ж
级		继
料		掃
李		砂
举院	 ∮4=	

四川理工学院试卷(2018 至 2019 学年第 1 学期)

课程名称: 线性代数(A卷)

命题教师: 谢巍

适用班级: 本科 32 学时(第一轮)

考试

		20	月8年	12	月	П		共	6 火	
题号	1	1 1	111	四	五.	六	七	八	总分	评阅(统分)教师
得分										

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为 废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。

试 题

得分	评阅教师
-	

- 一、. 填空题 (每题 3 分, 共 24 分)
- 1. 矩阵 $A = (2,4,3)^T$, $B = (0,2,1)^T$, 则 A + 2B = ______;

2. 已知
$$\begin{vmatrix} x & y & z \\ 4 & 0 & 3 \\ 1 & 1 & 1 \end{vmatrix}$$
 = 1,则 $\begin{vmatrix} 2x & 2y & 2z \\ 4/3 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ = _____;

- 3. 设矩阵 $A = \begin{pmatrix} 4 & 7 \\ 1 & 2 \end{pmatrix}$, 则 $A^{-1} = \underline{\hspace{1cm}}$;
- 4. 设 A, B 为三阶方阵, |A|=2, B=-2E,则 $|A^{-1}B|=$ ______;
- 5. 设 α_1 , α_2 是齐次线性方程组Ax=0的两个解则 $A(3\alpha_1+7\alpha_2)=$ _______;

6. 非零矩阵
$$egin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{pmatrix}$$
的秩为______;

7. 已知
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}, B = \begin{pmatrix} \lambda & & \\ & 2 & \\ & & 2 \end{pmatrix}, 且 A 与 B 相似,则 $\lambda =$ ______;$$

8. 二次型 $f(x_1, x_2, x_3, x_4) = 2x_1x_2 - ax_3x_4$ 的秩为 2,则 a =______;

得分	评阅教师

- 二、选择题(每题4分,共20分)
- 1. A, B 为 n 阶方阵,则下列等式不正确的是().

(A)
$$|A^2| = |A|^2$$
 (B) $|AB| = |BA|$ (C) $(A-B)A = A^2 - BA$ (D) $(AB)^T = A^T B^T$

2.
$$A = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 \end{pmatrix}$, $MAB = \begin{pmatrix} 1 & 1 \end{pmatrix}$.

(A)
$$\mathbf{0}$$
 (B) $B = \begin{pmatrix} 1 & -1 \end{pmatrix}$ (C) $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$

- 3. 设矩阵 A 为三阶矩阵, $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$,则用 P 左乘 A ,相当于将矩阵 A ().
- (A) 第一行的 2 倍加到第 2 行 (B) 第 1 列的 2 倍加到第 2 列
- (C) 第3行的2倍加到第2行 (D) 第2列的2倍加到第1列
- 4. 设向量组 α_1 , α_2 ,…, α_s 的秩为 3,则().
 - (A) α_1 , α_2 ,…, α_s 中任意 3 个向量线性无关;
 - (B) α_1 , α_2 ,…, α_s 中无零向量;
 - (C) α_1 , α_2 ,…, α_s 中任意 4 个向量都线性相关;
 - (D) α_1 , α_2 ,…, α_s 中任意 2 个向量线性无关
- 5. 若非齐次线性方程组 Ax = b 中方程个数少于未知数个数,那么()
- (A) Ax = b 必有无穷多个解 (B) Ax = 0 必有非零解
- (C) Ax = 0 仅有零解 (D) Ax = b 一定无解

	线	
姓名		
		廏
ילוח		紅
本		母
班	揉	K
		乜
级		慫
		掃
小 争		砂
学院	後₹	

三.(6 分)计算行列式 D =	$\begin{vmatrix} a \\ a \\ c \end{vmatrix}$	bdd	с с а	d b b	的值.
	c	b	а	d	

得分	评阅教师

得分

评阅教师

四(6 分)设 $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (3,-1,2)^T$, $\alpha_3 = (2,3,\lambda)^T$,问当 λ 为何值时, α_1 , α_2 , α_3 线性相关?

得分 评阅教师		<i>/</i> .	_	- >	
		1	-3	0 /	
	五、(8 分) 矩阵 A=	2	1	0	, 求矩阵 X 满足矩阵方程
		•	•	_	

X + A = XA.

得分	评阅教师

六、(10分)设向量组

$$\alpha_1 = (1, 2, 3, 4)^T$$
, $\alpha_2 = (2, 3, 4, 5)^T$, $\alpha_3 = (3, 4, 5, 6)^T$, $\alpha_4 = (4, 5, 6, 7)^T$

该求向量组的一个极大线性无关组,并将其余向量表为该极大无关组的线性组合.

姓名	装	
		题
李忠		苓口
-41		稇
班	1	K
		乜
級		緩
		盐
小争		例
华院	級	

	0	0	1	
七、(14分)设实对称阵 A =	0	0	0	$ $,求正交矩阵 P ,使 $P^{-1}AP$
	1	0	0	

为对角阵.

得分

评阅教师

得分	评阅教师

八、 $(12 \, \mathcal{G})$ 线性方程组 Ax = b,其增广矩阵为 \overline{A} ,

$$\overline{A} = (A \vdots b)^{-{
m {\scriptsize {
m S}}}
at{\scriptsize {
m {\scriptsize {
m S}}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {
m {\scriptsize {
m S}}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {
m {\scriptsize {
m S}}}}
at{\scriptsize {
m {\scriptsize {
m S}}}}
at{\scriptsize {
m {\scriptsize {
m S}}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m S}}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m {\scriptsize {
m S}}}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m S}}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {
m {\scriptsize {
m S}}}}
at{\scriptsize {\scriptsize {
m S}}}
at{\scriptsize {\scriptsize {\scriptsize {
m S}}}}
at{\scriptsize {\scriptsize {\scriptsize {\scriptsize {
m S}}}}}
at$$

问a取何值时,线性方程组Ax = b

(1) 无解;(2)有唯一解;(3)有无穷多解,并求出其通解.

四川理工学院试卷(2018 至 2019 学年第 1 学期) 参考答案及评分标准

课程名称: 线性代数(A卷)命题教师: 谢巍

适用班级: 本科 32 学时 第一轮

2018年 12 月 日

一、填空题(每题3分,共24分)

1.
$$(2,8,5)^T$$
; 2. $\frac{2}{3}$; 3. $\begin{pmatrix} 2 & -7 \\ -1 & 4 \end{pmatrix}$; 4. -4 ; 5.0; 6.1; 7.6; 8.0;

二、选择题(每题 4 分, 共 20 分) DDCCB

三.(6 分)解:
$$D = \begin{vmatrix} a & b & c & d \\ a & d & c & b \\ c & d & a & b \\ c & b & a & d \end{vmatrix} = \begin{vmatrix} a+c & b+d & c & d \\ a+c & b+d & c & b \\ a+c & b+d & a & b \\ a+c & b+d & a & d \end{vmatrix} = 0$$
 4 分, 2 分

四 (6分) 解: 设 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$

即

$$\begin{cases} k_1 + 3k_2 + 2k_3 = 0 \\ 2k_1 - k_2 + 3k_3 = 0 & 有非零解, \\ 3k_1 + 2k_2 + \lambda k_3 = 0 \end{cases}$$
 3分

则

$$\begin{vmatrix} 1 & 3 & 2 \\ 2 & -1 & 3 \\ 3 & 2 & \lambda \end{vmatrix} = -7\lambda + 35 = 0$$
 2 分

故当 $\lambda=5$ 时, α_1 , α_2 , α_3 线性相关

1分

五、(8分)解:由
$$X + A = XA$$
,得 $X(A - E) = A, X = (A - E)^{-1}A$

3 分

$$\mathbb{X}(A-E)^{-1} = \begin{pmatrix} 0 & -3 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1/2 & 0 \\ -1/3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
3 $\%$

故
$$X = (A - E)^{-1} A =$$

$$\begin{pmatrix} 0 & 1/2 & 0 \\ -1/3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 1/2 & 0 \\ -1/3 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$2 分$$

六、(10分)

一个极大线性无关组为
$$\alpha$$
, α ,

$$\alpha_3 = -\alpha_1 + 2\alpha_2$$
, $\alpha_4 = -2\alpha_1 + 3\alpha_2$

七、(14 分)解:
$$|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda & 0 \\ -1 & 0 & \lambda \end{vmatrix} = \lambda (\lambda - 1)(\lambda + 1)$$

得特征根
$$\lambda_1=0$$
, $\lambda_2=1$, $\lambda_3=-1$ 3分

对于
$$\lambda_1 = 0$$
,由 $(0E - A)x = 0$ 得基础解系 $\alpha_1 = (0.1.0)^T$, 2分

对于
$$\lambda_2$$
=1,由 $(E-A)x=0$ 得基础解系 α_2 = $(1,0,1)^T$ 2分

对于
$$\lambda_3$$
=-1,由 $(-E-A)x=0$ 得基础解系 $\alpha_3=(-1,0,1)^T$ 2分

将
$$\alpha_1$$
, α_2 , α_3 单位化得 $\beta_1 = (0.1.0)^T$, $\beta_2 = \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^T$, $\beta_3 = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)^T$ 3 分

八、(12分)

解: (1) 当
$$a=-3$$
 时, $R(A)=2 < R(\overline{A})=3$,方程组无解; 3 分

(2) 当
$$a \neq -3$$
且 $a \neq 2$, $R(A)=R(\overline{A})=3$,方程组由唯一解; 3分

(3) 当
$$a=2$$
, $R(A)=R(\overline{A})=2<3$, 方程组有无穷多解; 3分

此时,
$$\overline{A} = (A:b)^{-\frac{5}{6}}$$
 $\square \cdots \square$ $\begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\square \begin{pmatrix} 1 & 0 & -5 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

得原方程组同解方程组 $\begin{cases} x_1 = 5x_3 \\ x_2 = 1 - 4x_3 \end{cases}$, \diamondsuit $x_3 = 0$, 得特解 $\eta_0 = \begin{pmatrix} 0,1,0 \end{pmatrix}^T$,

导出组的一般解为: $\begin{cases} x_1 = 5x_3 \\ x_2 = -4x_3 \end{cases}$, x_3 是自由未知量, x_3 取 1, 得导出组的基础解系为:

$$\xi = (5, -4, 1)^T$$
,所以,原方程组的全部的解为 $x = k\xi + \eta_0, k \in \square$. 3 分