Applied Mathematics - Assignment 3

Adam Menne – 24942901 Stellenbosch University

Last edited on 14th September 2022

Contents

1	Problem 1	2
2	Problem 2	4
3	Problem 3	5
4	Problem 4	6

```
(a), (b), (c)
```

```
function euler(f, u0, tspan, h)
n = abs(-(tspan...)) / h
collect(
begin
u0 += h * f(u0); u0
end
for t in tspan[1]:n
)
end
```

Listing 1: Euler's Method

```
function f!(u)
du1 = 4*u[1] + 2*u[2]
du2 = 3*u[1] + 3*u[2]
return [du1, du2]
end
```

Listing 2: The differential equation

```
euler(f, [10.0; -5.0], (0.0, 0.5) 0.01)
```

Listing 3: Calling the function

Figure 1: Comparison of numeric to analytic solutions

(d)

The Dormand-Prince method, which I believe is the default used by the ode45 solver, offered substantially improved accuracy over the Euler method, even though its abilities were stunted by using a fixed step-size. However, it is not as performant as the Tsitouras method used in the other problems in this assignment

(a)

x represents the prey, and y the predator.

(b)

Figure 2: Lotka-Volterra predator-prey model over $10~{
m years}$

(c)

The populations are first equal at 0.93 days.

The extrema of the prey are 0.178 and 1.99, and the predators 0.0782 and 1.58.

(a)

Figure 3: SIR model over 4 weeks

(b)

(i)

235.14

(ii)

35.78

(a)

With the substitution $y=x\prime$, we may describe the Van der Pol oscillator with the first-order system:

$$x' = y$$
$$y' = \mu(1 - x^2)y - x$$

(b)

Figure 4: Solution to the Van der Pol oscillator

(c)

Figure 5: Phase plot of the Van der Pol oscillator

A static export of the notebook containing all analysis and figures is available at ${\tt https://adammenne.github.io/applied_mathematics_244/assignment_3/notebook.}$ ${\tt html.}$

With full source code available at https://github.com/AdamMenne/applied_mathematics_244/tree/master/assignment_3