

THƯ VIỆN NUMPY & CH KHOA MACHINE LEARNING

A N

Nội dung môn học

- Cơ bản ngôn ngữ lập trình Python
- Numpy và Machine Learning
- Tương tác Cơ sở dữ liệu
- Co bản HTML, CSS, JavaScript
- Flask framework
- Kiến thức bổ sung

NUMPY

BACH KHOA

Nội dung

- Mảng đa chiều
- Hàm tiện ích trong NumPy
- Array-Oriented Programming with Arrays
- Xuất nhập File
- Đại số tuyến tính
- Số ngẫu nhiên

Numpy là gì?

- NumPy (Numerical Python), là một thư viện tính toán quan trọng nhất trong Python.
- NumPy thiết kế đối tương mảng (array objects) cho việc trao đổi dữ liệu giữa các hàm một cách thuận tiện. Vì vậy NumPy được sử dụng hầu hết tại các gói (packages) tính toán trong lĩnh vực khoa học dữ liệu.
- NumPy cung cấp C API nên giúp cho Python trở thành ngôn ngữ năng động và có khả năng kế thừa được các thư viện có sẵn như C/C++ hay Fortran

Tính năng quan trọng của NumPy

- Tăng tốc toán tử tính toán với vector như làm sạch dữ liệu, tập con hóa, lọc, phép biến đổi,...
- Cung cấp các thuật toán phổ biến như sắp xếp, hợp nhất mảng, toán tử tập hợp (set operations)
- Thống kê và tổng hợp dữ liệu
- Hợp nhất các dữ liệu không đồng nhất
- Biểu diễn logic có điều kiện dưới dạng mảng thay vì sử dụng vòng lặp và lệnh điều kiện
- Thao tác dữ liệu theo nhóm (tập hợp, biến đổi, hàm ứng dụng)

Tốc độ xử lý của NumPy

- Gấp 10 đến 100 lần so với Python thuần túy.
- Ví dụ:

Vì sao?

```
struct _longobject {
    long ob_refcnt;
    PyTypeObject *ob_type;
    size_t ob_size;
    long ob_digit[1];
};
```


Mảng có kiểu dữ liệu cố định trong Python

```
import array
L = list(range(10))
A = array.array('i', L)
print(A)
# array('i', [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```


ndarray

 NumPy cho phép thực hiện các phép toán trên mảng tương tự như các phép toán trên số thực

```
import numpy as np
 data = np.random.rand(2,3)
 data
 ✓ 0.5s
array([[0.11172141, 0.90852808, 0.3276298],
       [0.96448868, 0.54006314, 0.50445723]])
 data * 10
 ✓ 0.4s
array([[1.11721406, 9.08528077, 3.27629804],
       [9.64488677, 5.40063142, 5.04457226]])
 data + data
 ✓ 0.3s
array([[0.22344281, 1.81705615, 0.65525961],
       [1.92897735, 1.08012628, 1.00891445]])
```


ndarray trong NumPy

Kích thước và kiểu dữ liệu của ndarray

```
data.ndim

v 0.3s

data.dtype

v 0.3s

dtype('float64')
```


Khởi tạo mảng

- Tạo từ Python list
 - Sử dụng phương thức array
 để chuyển mảng trong
 Python qua mảng trong
 NumPy

```
np.array([1, 4, 2, 5, 3])
 ✓ 0.4s
array([1, 4, 2, 5, 3])
 np.arrav([3.14, 4, 2, 3])
 ✓ 0.3s
array([3.14, 4. , 2. , 3. ])
 np.array([1, 2, 3, 4], dtype='float32')

√ 0.4s

array([1., 2., 3., 4.], dtype=float32)
 np.array([range(i,i+3) for i in [2,4,6]])
 ✓ 0.4s
array([[2, 3, 4],
      [4, 5, 6],
       [6, 7, 8]])
```


Khởi tạo mảng

 Từ các hàm được xây dựng sẵn trong NumPy

```
np.zeros(10, dtype=int)
 ✓ 0.3s
array([0, 0, 0, 0, 0, 0, 0, 0, 0])
 np.ones((2, 4))
 ✓ 0.5s
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.]
 np.full((3, 5), 3.14)

√ 0.4s
```

array([[3.14, 3.14, 3.14, 3.14, 3.14],

[3.14, 3.14, 3.14, 3.14, 3.14].

[3.14, 3.14, 3.14, 3.14, 3.14]]

Khởi tạo mảng

Hàm	Mô tả	
array	Chuyển dữ liệu kiểu list, tuple, array, trong Python qua mảng ndarray trong NumPy	
asarray	Chuyển input sang ndarray, nhưng không copy nếu input đã là ndarray	
arange	Giống hàm range nhưng trả về một mảng ndarray thay vì list trong Python	
ones, ones_like	Tạo mảng tất cả các phần tử đều bằng 1 với shape và dtype cho trước; ones_like tạo ra một mảng khác có các phần tử đều bằng 1 có kích thước giống shape và dtype của 1 mảng cho trước	
zeros, zeros_like	Giống ones và ones_like nhưng tất cả phần tử đều bằng 0	
empty, empty_like	Tạo một mảng mới bằng cách cấp phát vùng nhớ mới, nhưng giá trị của mảng phụ thuộc vào vùng nhớ	
full, full_like	Tạo 1 mảng với shape và dtype cho trước với tất cả giá trị đểu gán bằng giá trị chỉ định trước; full_like tạo một mảng khác với kích thước giống share và dtype của mảng cho trước	
eye, identity	Tạo 1 ma trận đơn vị NxN (1 trên đường chéo chính và 0 ở những vị trí còn lại)	

Các kiểu dữ liệu chuẩn trong NumPy

Туре	Type code	Description
int8, uint8	i1, u1	Signed and unsigned 8-bit (1 byte) integer types
int16, uint16	i2, u2	Signed and unsigned 16-bit integer types
int32, uint32	i4, u4	Signed and unsigned 32-bit integer types
int64, uint64	i8, u8	Signed and unsigned 64-bit integer types
float16	f2	Half-precision floating point
float32	f4 or f	Standard single-precision floating point; compatible with C float
float64	f8 or d	Standard double-precision floating point; compatible with C double and Python float object
float128	f16 or g	Extended-precision floating point
complex64, complex128, complex256	c8, c16, c32	Complex numbers represented by two 32, 64, or 128 floats, respectively
bool	?	Boolean type storing True and False values
object	0	Python object type; a value can be any Python object
string_	S	Fixed-length ASCII string type (1 byte per character); for example, to create a string dtype with length 10, use 'S10'
unicode_	U	Fixed-length Unicode type (number of bytes platform specific); same specification semantics as string_(e.g., 'U10')

Toán tử số học

 NumPy cung cấp các toán tử để thực hiện các phép tính trên mảng mà không cần sử dụng các lệnh vòng lặp. Người dùng NumPy gọi là vector hóa (vectorization).

```
import numpy as np
arr = np.array([[1., 2., 3.], [4., 5., 6.]])
print(arr)
print(arr*arr)
print(arr-arr)
print(1/arr)
print(arr**0.5)
print(arr*arr)

arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])
print(arr>arr2)
```


Broadcasting

np.ones((3,3)) + np.arange(3)

np.arange(3).reshape((3, 1)) + np.arange(3)

Thao tác trong mảng NumPy

 Thao tác với các phần tử hay các tập con trong mảng của NumPy như thao tác với list của Python

```
import numpy as np
arr = np.arange(10)
print(arr)
print(arr[5])
print(arr[5:-1])
```

```
[0 1 2 3 4 5 6 7 8 9]
5
[5 6 7 8]
```


Chỉ mục trong mảng NumPy

Chỉ mục với slice

Chỉ mục Boolean

 Có thể dùng mảng Boolean để tạo mảng con cho 1 mảng khác nếu như có cùng chiều dài như nhau

```
import numpy as np
names = np.array(['Bob', 'Jo
e', 'Will', 'Bob', 'Will', '
Joe', 'Joe'])
data = np.random.randn(7, 4)
print(names)
print(data)
print(data)
print(data[names=='Bob'])
```

```
['Bob' 'Joe' 'Will' 'Bob' 'Will' 'Joe' 'Joe']
[[ 0.61351579 -0.72588671    1.52101198    0.70002282]
[ 0.27705541    0.87402548 -2.05059442    1.41110013]
[ 0.89114229 -0.39914808    1.23431688 -1.32219814]
[ 0.51798234    1.63610317 -0.62185666 -0.26285829]
[-1.04915382    0.19132779 -0.71809904 -0.40998428]
[ 0.75578892    0.08066942 -1.02714665 -0.08947798]
[ -0.37626032    0.13307081 -0.2355532    -1.01127001]]
[ True False False True False False False]
[[ 0.61351579 -0.72588671    1.52101198    0.70002282]
[ 0.51798234    1.63610317 -0.62185666 -0.26285829]]
```


Chỉ mục Boolean

- Hãy cho biết kết quả của các lệnh sau:
 - a)
 print(data[names == 'Bob', 2:])
 - b) print(data[names == 'Bob', 3])
 - c) data[data < 0] = 0
 print(data)</pre>

Fancy Indexing

• NumPy cho phép tạo 1 mảng con theo chỉ mục cho trước

Fancy Indexing

• Hãy cho biết kết quả đoạn lệnh sau:

```
arr = np.arange(32).reshape((8, 4))
print(arr[[1, 5, 7, 2], [0, 3, 1, 2]])
print(arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]])
```

• Hai lệnh print khác nhau chỗ nào?

Ma trận chuyển vị

```
import numpy as np
arr = np.arange(15).reshape((3, 5))
print(arr)
print(arr.T)
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
 [10 11 12 13 14]]
[[ 0 5 10]
 [1 6 11]
   2 7 12]
   3 8 13]
                                                np.transpose(a)
      9 14]]
                                    (2, 3)
                                                   (3, 2)
```


Ma trận chuyển vị

• Đối với mảng nhiều chiều, ta cũng có thể chuyển vị mảng như sau:

```
import numpy as np

arr = np.arange(16).reshape((2, 2, 4))
print(arr)
print(arr.transpose((1, 0, 2)))
```

```
[[[ 0 1 2 3]
  [ 4 5 6 7]]
  [[ 8 9 10 11]
  [12 13 14 15]]]
[[[ 0 1 2 3]
  [ 8 9 10 11]]
  [[ 4 5 6 7]
  [12 13 14 15]]]
```


Hoán đổi trục ma trận

```
import numpy as np

arr = np.arange(16).reshape((2, 2, 4))
print(arr)
print(arr.swapaxes(1, 2))
```

```
[[ 8 9 10 11]
[12 13 14 15]]]
  9 13]
 [11 15]]]
```


Hàm tiện ích trong NumPy

logical not

 Hàm tính toán 1 ngôi

	<u> </u>	
Function	Description	
abs, fabs	Compute the absolute value element-wise for integer, floating-point, or complex values	
sqrt	Compute the square root of each element (equivalent to arr ** 0.5)	
square	Compute the square of each element (equivalent to arr ** 2)	
exp	Compute the exponent ex of each element	
log, log10, log2, log1p	Natural logarithm (base e), log base 10, log base 2, and log(1 + x), respectively	
sign	Compute the sign of each element: 1 (positive), 0 (zero), or -1 (negative)	
ceil	Compute the ceiling of each element (i.e., the smallest integer greater than or equal to that number)	
floor	Compute the floor of each element (i.e., the largest integer less than or equal to each element)	
rint	Round elements to the nearest integer, preserving the dtype	
modf	Return fractional and integral parts of array as a separate array	
isnan	Return boolean array indicating whether each value is NaN (Not a Number)	
isfinite, isinf	Return boolean array indicating whether each element is finite (non-inf, non-NaN) or infinite, respectively	
cos, cosh, sin,	Regular and hyperbolic trigonometric functions	ļ
sinh, tan, tanh		
arccos, arccosh,	Inverse trigonometric functions	
arcsin, arcsinh,		
arctan, arctanh	29	

Compute truth value of not x element-wise (equivalent to ~arr).

Ví dụ:

Hàm tiện ích trong NumPy

Các hàm tính toán 2 ngôi

Function	Description
add	Add corresponding elements in arrays
subtract	Subtract elements in second array from first array
multiply	Multiply array elements
divide, floor_divide	Divide or floor divide (truncating the remainder)
power	Raise elements in first array to powers indicated in second array
maximum, fmax	Element-wise maximum; fmax ignores NaN
minimum, fmin	Element-wise minimum; fmin ignores NaN
mod	Element-wise modulus (remainder of division)
copysign	Copy sign of values in second argument to values in first argument
<pre>greater, greater_equal, less, less_equal, equal, not_equal</pre>	Perform element-wise comparison, yielding boolean array (equivalent to infix operators $>$, $>=$, $<$, $<=$, $==$, $!=$)
logical_and,	Compute element-wise truth value of logical operation (equivalent to infix operators
logical_or, logical_xor	& , ^)

Ví dụ:

```
import numpy as np
arr1 = np.arange(10) / 2
arr2 = np.arange(10) / 3 + 1
print(arr1)
print(arr2)
print(np.greater(arr1, arr2))

# [0. 0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5]
# [1. 1.33333333 3.66666667 2. 2.3333333 2.66666667 3. 3.3333333 3.66666667 4. ]
# [False False False False False False False True True]
```

200

400

Image plot of $\sqrt{x^2 + y^2}$ for a grid of values

Array-Oriented Programming with Arrays

 NumPy cho phép thể hiện nhiều tác vụ xử lý dữ liệu với mảng ngắn gọn mà không cần viết vòng lặp

```
import numpy as np
import matplotlib.pyplot as plt

points = np.arange(-5, 5, 0.01)
xs, ys = np.meshgrid(points, points)

z = np.sqrt(xs ** 2 + ys ** 2)
plt.imshow(z, cmap = plt.cm.gray)
plt.colorbar()
plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
plt.show()
```


Điều kiện logic được biểu diễn bởi mảng

- NumPy có các hàm tiện ích khi có các điều kiện logic được biểu diễn bởi mảng
- Cho:

```
xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
cond = np.array([True, False, True, True, False])
```

Để lựa chọn phần tử, thay vì

```
result = [(x if c else y) for x, y, c in zip(xarr, yarr, cond)]
```

Ta có thể sử dụng hàm where
 result = np.where(cond, xarr, yarr)

Các hàm toán học, thống kê

• NumPy có rất nhiều hàm liên quan đến thống kê

Method	Description
sum	Sum of all the elements in the array or along an axis; zero-length arrays have sum 0
mean	Arithmetic mean; zero-length arrays have NaN mean
std, var	Standard deviation and variance, respectively, with optional degrees of freedom adjustment (default denominator $\ensuremath{n}\xspace$)
min, max	Minimum and maximum
argmin, argmax	Indices of minimum and maximum elements, respectively
CUMSUM	Cumulative sum of elements starting from 0
cumprod	Cumulative product of elements starting from 1

```
arr = np.random.randn(2, 3)
print(arr)
print(arr.mean())
```

```
[[-0.21050017 -0.47941506 -0.29274799]
[-0.60584632 -1.53666652 0.43055528]]
-0.4491034630493929
```


Mång Boolean

• Có thể sử dụng sum như 1 cách để đếm các giá trị True trong 1 mảng boolean

```
arr = np.random.randn(100)
print((arr > 0).sum())
```

• Có 2 hàm tiện dụng là any() và all() tương ứng với phép or và add

```
bools = np.array([False, False, True, False])
print(bools.any())  # True
print(bools.all())  # False
```


Sắp xếp

Sắp xếp mảng 1 chiều

```
arr = np.random.randn(6)
print(arr)
arr.sort()
print(arr)
```

```
[-1.17996359 -0.38383318 0.40114662 -0.36551224 -0.35595998 0.92213374]
[-1.17996359 -0.38383318 -0.36551224 -0.35595998 0.40114662 0.92213374]
```


Sắp xếp

Sắp xếp mảng nhiều chiều

```
arr = np.random.randn(2,3)
print(arr)
arr.sort(1)
print(arr)
```

```
[[ 1.82029148 -1.28506997 -0.18056308]
 [ 0.77680604 1.32806397 -0.80290937]]
 [[-1.28506997 -0.18056308 1.82029148]
 [-0.80290937 0.77680604 1.32806397]]
```


Toán tử liên quan đến tập hợp

• Hàm unique(): tạo tập sắp xếp tăng dần

```
names = np.array(['Bob', 'Alice', 'Peter', 'Alice', 'Bob'])
print(np.unique(names)) # ['Alice' 'Bob' 'Peter']

ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])
print(np.unique(ints)) # [1 2 3 4]
```


Toán tử liên quan đến tập hợp

Method	Description
unique(x)	Compute the sorted, unique elements in $ imes$
<pre>intersect1d(x, y)</pre>	Compute the sorted, common elements in \times and y
union1d(x, y)	Compute the sorted union of elements
in1d(x, y)	Compute a boolean array indicating whether each element of \boldsymbol{x} is contained in \boldsymbol{y}
<pre>setdiff1d(x, y)</pre>	Set difference, elements in \times that are not in y
<pre>setxor1d(x, y)</pre>	Set symmetric differences; elements that are in either of the arrays, but not both

Nhập/ xuất mảng bằng File

• Ta có thể lưu 1 mảng vào File

```
arr = np.arange(10)
np.save('some_array', arr)
```

Sau đó load mảng từ file

```
arr1 = np.load('some_array.npy')
print(arr1)
```


Nhập/ xuất mảng bằng File

• Ta có thể lưu nhiều mảng vào file .npz

```
arr1 = np.arange(10)
arr2 = np.arange(5)
np.savez('array_archive.npz', a=arr1, b=arr2)
```

```
np.savez_compressed('arrays_compressed.npz', a=arr, b=arr)
```

Load mång từ file

```
arrz = np.load('array_archive.npz')
print(arrz['b'])
```


Đại số tuyến tính

 NumPy cung cấp cho chúng ta nhiều hàm để tính toán trong lĩnh vực đại số tuyến tính như, nhân ma trận, phân rã ma trận, tính định thức,...

Đại số tuyến tính

Function	Description
diag	Return the diagonal (or off-diagonal) elements of a square matrix as a 1D array, or convert a 1D array into a square matrix with zeros on the off-diagonal
dot	Matrix multiplication
trace	Compute the sum of the diagonal elements
det	Compute the matrix determinant
eig	Compute the eigenvalues and eigenvectors of a square matrix
inv	Compute the inverse of a square matrix
pinv	Compute the Moore-Penrose pseudo-inverse of a matrix
qr	Compute the QR decomposition
svd	Compute the singular value decomposition (SVD)
solve	Solve the linear system $Ax = b$ for x, where A is a square matrix
lstsq	Compute the least-squares solution to $Ax = b$

Ví dụ:

```
import numpy as np
from numpy.linalg import inv, qr
X = np.random.randn(2, 2)
mat = X.T.dot(X)
print(mat)
print(inv(mat))
print(mat.dot(inv(mat)))
[[ 0.26721072 -0.15919219]
 [-0.15919219 2.46121607]]
[[3.89235119 0.25175843]
 [0.25175843 0.42258703]]
[[ 1.00000000e+00 -2.58814336e-18]
 [-1.09420189e-16 1.00000000e+00]]
```


Số ngẫu nhiên

Các hàm liên quan

Function	Description	
seed	Seed the random number generator	
permutation	Return a random permutation of a sequence, or return a permuted range	
shuffle	Randomly permute a sequence in-place	
rand	Draw samples from a uniform distribution	
randint	Draw random integers from a given low-to-high range	
randn	Draw samples from a normal distribution with mean 0 and standard deviation 1 (MATLAB-like interface)	
binomial	Draw samples from a binomial distribution	
normal	Draw samples from a normal (Gaussian) distribution	
beta	Draw samples from a beta distribution	
chisquare	Draw samples from a chi-square distribution	
gamma	Draw samples from a gamma distribution	
uniform	Draw samples from a uniform [0, 1) distribution	ô

Ví dụ 1: Random Walks

 Sinh ngẫu nhiên bước đi bắt đầu tại 0, bước tới trước 1 hoặc bước lui -1

```
import random
import matplotlib.pyplot as plt
position = 0
walk = [position]
steps = 1000
for i in range(steps):
    step = 1 if random.randint(0, 1) else -1
    position += step
    walk.append(position)
plt.plot(walk[:100])
plt.show()
```


Random Walks với NumPy

```
import numpy as np

nsteps = 1000
draws = np.random.randint(0, 2, size=nsteps)
steps = np.where(draws > 0, 1, -1)
walk = steps.cumsum()

print(walk.min())
print(walk.max())

print((np.abs(walk) >= 10).argmax())
```


Mô phỏng nhiều Random Walks

```
import numpy as np
nwalks = 5000
nsteps = 1000
draws = np.random.randint(0, 2, size=(nwalks, nsteps)) #0 or 1
steps = np.where(draws > 0, 1, -1)
walks = steps.cumsum(1)
hits30 = (np.abs(walks) >= 2).any(1)
print(hits30.sum()) # Number that hit 30 or -30
crossing times = (np.abs(walks[hits30]) >= 2).argmax(1)
print(crossing_times.mean())
```


Ví dụ 2: Độ lệch chuẩn & Phương sai

• Ref: Standard Deviation and Variance (mathsisfun.com)

```
np.random.seed(15)
arr = np.random.randint(low=0, high=100, size=10)
print(arr.mean())  # 42.2
print(arr.std())  # 30.261526729495987
```

```
arr = np.random.normal(loc=42, scale=30, size=10)
```


Ví du 3: Image process

```
import numpy as np
from PIL import Image

im = np.array(Image.open('cat.jpg').convert('L'))
print(type(im))

gr_im = Image.fromarray(im).save('gr_cat.png')
```


Tổng kết

- Mảng đa chiều
- Hàm tiện ích trong NumPy
- Array-Oriented Programming with Arrays
- Xuất nhập File
- Đại số tuyến tính
- Số ngẫu nhiên

Tài liệu tham khảo

- Jake VanderPlas, Python Data Science Handbook, O'Reilly Media, Inc., 548 pages, 2016.
- Peter Bruce, Andrew Bruce, Practical Statistics for Data Scientists: 50 Essential Concepts - 1st Edition, O'Reilly Media; 1st edition, 90 pages, 2017
- Andreas C. Müller, Sarah Guido, Introduction to Machine Learning with Python:
 A Guide for Data Scientists 1st Edition, 392 pages, 2016
- Lillian Pierson, Data Science For Dummies 2nd Edition, John Wiley & Sons Inc., 385 pages, 2017.
- David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Statistics for Business and Economics, South-Western College Pub., 880 pages, 2010.
- Các nguồn internet khác.