2022 考研高等代数重点题目汇总

微信公众号: 数学考研李扬

2021年12月5日

目录

1	多项	式	2
	1.1	不随数域的扩大而改变	2
	1.2	整数根问题	2
	1.3	互素问题	2
	1.4	余数定理的应用	3
	1.5	多项式根的有限性	3
	1.6	重因式与导数的应用	4
	1.7	有理系数多项式的可约性讨论	4
2	行列		5
	2.1	大拆分法	5
	2.2	小拆分法	6
	2.3	升阶法(加边法)	6
	2.4	相邻行作差法	7
	2.5	递推公式法	8
	2.6	范德蒙行列式的应用	8
	2.7	打洞原理的应用	9
	_		
3			10
	3.1	· · · · · · · · · · · · · · · · · · ·	10
	3.2	····	10
	3.3		11
	3.4		12
	3.5		12
	3.6		13
	3.7	非齐次线性方程组线性无关解的个数	14
	3.8	极大线性无关组的求法	14
	3.9	矩阵方程与线性方程组之间的转化	15
	3.10	对角占优	15
	3.11	直和证明	16
	3.12	维数公式	16
	3.13	覆盖定理	17
	↓ □ <u>n</u> ↓		
4	矩阵		17
	4.1	70 70 E// = 70 V(1) 42 4 · · · · · · · · · · · · · · · · ·	17
	4.2	, , -,	18
	4.3		18
	4.4	利用分块矩阵求逆矩阵	19

	4.5	分块矩阵初等变换的应用(打洞原理)	19
	4.6	等价标准形求解矩阵方程	20
	4.7	矩阵方程与矩阵的秩	20
	4.8	矩阵的迹与幂零矩阵	21
	4.0	尼件的过一番令尼件 · · · · · · · · · · · · · · · · · · ·	21
5	矩阵	的进一步讨论——相似与合同	22
	5.1	实对称矩阵正交相似于对角矩阵	22
	5.2	二次型的取值范围	24
	5.3	特征值在二次型中的应用	25
	5.4	利用特征值证明矩阵正定	25
	5.5	矩阵相似中的数学归纳法	25
	5.6	矩阵合同中的数学归纳法(打洞原理)	26
	5.7	二次型的惯性定理与符号差	27
	5.8	可对角化的证明	27
	5.9	可交换与同时对角化	28
	0.0	幂等矩阵	29
		相似与合同的综合应用	30
		矩阵方程 $AX - XB = O$	31
		矩阵分解	32
		<i>c</i>	33
	5.14	最小多项式与矩阵多项式生成的线性空间	55
6	线性	变换	33
6	线性 6.1		33
6			
6	6.1	核与值域的"任意性"	33
6	6.1 6.2	核与值域的"任意性"	33 34
6	6.1 6.2 6.3	核与值域的"任意性"	33 34 34
6	6.1 6.2 6.3 6.4	核与值域的"任意性"	33 34 34 35
6	6.1 6.2 6.3 6.4 6.5	核与值域的"任意性"	33 34 34 35 36
	6.1 6.2 6.3 6.4 6.5	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭)	33 34 34 35 36
	6.1 6.2 6.3 6.4 6.5 6.6	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭)	33 34 34 35 36 36
	6.1 6.2 6.3 6.4 6.5 6.6	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭)	33 34 34 35 36 36
	6.1 6.2 6.3 6.4 6.5 6.6 λー集 7.1	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭)	33 34 34 35 36 36 39
	6.1 6.2 6.3 6.4 6.5 6.6 λ-\$ 7.1 7.2	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭) E阵 判断矩阵是否相似 求矩阵的若尔当标准形与过渡矩阵	33 34 34 35 36 36 39 40
	6.1 6.2 6.3 6.4 6.5 6.6 λ-\$ 7.1 7.2 7.3	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭)	33 34 34 35 36 36 39 40 41
7	6.1 6.2 6.3 6.4 6.5 6.6 $\lambda - 5$ 7.1 7.2 7.3 7.4 7.5	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭) E阵 判断矩阵是否相似 求矩阵的若尔当标准形与过渡矩阵 特征多项式等于多项式的应用 平方根问题 矩阵 n 次方的计算	33 34 34 35 36 39 39 40 41 42 42
	6.1 6.2 6.3 6.4 6.5 6.6 λ 一知 7.1 7.2 7.3 7.4 7.5	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭) E阵 判断矩阵是否相似 求矩阵的若尔当标准形与过渡矩阵 特征多项式等于多项式的应用 平方根问题 矩阵 n 次方的计算	33 34 34 35 36 39 39 40 41 42 42 42
7	6.1 6.2 6.3 6.4 6.5 6.6 λ - 知 7.1 7.2 7.3 7.4 7.5 欧氏 8.1	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭) E阵 判断矩阵是否相似 求矩阵的若尔当标准形与过渡矩阵 特征多项式等于多项式的应用 平方根问题 矩阵 n 次方的计算 空间 施密特正交化求标准正交基	33 34 34 35 36 39 40 41 42 42 44 44
7	6.1 6.2 6.3 6.4 6.5 6.6 λ 一知 7.1 7.2 7.3 7.4 7.5 欧氏 8.1 8.2	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭) E阵 判断矩阵是否相似 求矩阵的若尔当标准形与过渡矩阵 特征多项式等于多项式的应用 平方根问题 矩阵 n 次方的计算 空间 施密特正交化求标准正交基 正交变换之镜面反射	33 34 34 35 36 39 39 40 41 42 42 42 44 44
7	6.1 6.2 6.3 6.4 6.5 6.6 λ - 知 7.1 7.2 7.3 7.4 7.5 欧氏 8.1 8.2 8.3	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭)	33 34 35 36 39 40 41 42 42 44 44 45
7	6.1 6.2 6.3 6.4 6.5 6.6 λ 一知 7.1 7.2 7.3 7.4 7.5 欧氏 8.1 8.2	核与值域的"任意性" 线性映射与基本矩阵的应用 矩阵空间上的线性变换 矩阵可交换与同时上三角化 求解不变子空间 不变子空间的直和分解(分水岭) E阵 判断矩阵是否相似 求矩阵的若尔当标准形与过渡矩阵 特征多项式等于多项式的应用 平方根问题 矩阵 n 次方的计算 空间 施密特正交化求标准正交基 正交变换之镜面反射	33 34 34 35 36 39 39 40 41 42 42 42 44 44

1. 多项式

1.1 不随数域的扩大而改变

例题 1. 已知 f(x) 是 $\mathbb Q$ 上的 n 次不可约多项式,且非零复数 α 满足 $f(\alpha) = f(-\alpha) = 0$,证明: f(x) 的 每个根的相反数仍旧是 f(x) 的根.

解答. 设 $f(x) = a_n x^n + \dots + a_1 x + a_0$, 其中 $a_i \in \mathbb{Q}$ $(i = 0, 1, \dots, n)$, 且 $a_n \neq 0$, 记

$$g(x) = f(-x) = (-1)^n a_n x^n + \dots + (-1)a_1 x + a_0.$$

显然 $g(x) \in \mathbb{Q}[x]$, 另外由于 $f(\alpha) = f(-\alpha) = g(\alpha) = 0$, 所以 f(x) 与 g(x) 作为复数域上的两个多项式不互素(有公因式 $x-\alpha$), 而根据互素性不随数域的扩大而改变, 所以 f(x), g(x) 作为有理数域上的两个多项式也不互素, 再结合 f(x) 在有理数域上不可约可知 $f(x) \mid g(x)$. 而显然 $\partial(f(x)) = \partial(g(x)) = n$, 于是存在非零常数 k 使得 g(x) = kf(x). 现在设 x_0 是 f(x) 的任一复数根, 即 $f(x_0) = 0$, 那么

$$f(-x_0) = g(x_0) = kf(x_0) = 0.$$

这说明 $-x_0$ 也是 f(x) 的根.

1.2 整数根问题

例题 2. 设 f(x) 是一个整系数多项式,如果存在正整数 m 满足 $m \nmid f(0), m \nmid f(1), \cdots, m \nmid f(m-1),则 f 没有整数根,特别地,如果 <math>f(x)$ 是首 1 的,则 f(x) 也没有有理根.

解答. 设 $f(x) = a_n x^n + \dots + a_1 x + a_0$, 则对于任意整数 k, 由整数的带余除法知, 存在 a, b 使得 k = am + b, 其中 $b \neq 0, 1, \dots, m-1$ 中的一个整数, 从而由二项式定理知道

$$f(k) = f(am + b) = a_n(am + b)^n + \dots + a_1(am + b) + a_0 = Km + f(b).$$

其中 K 是一个整数, 由于 $m \mid Km, m \nmid f(b)$, 所以 $m \nmid f(k)$, 从而 $f(k) \neq 0$, 所以 f 没有整数根.

1.3 互素问题

例题 3. 如果 f(x), g(x) 是次数大于零的互素多项式,则存在唯一的 u(x), v(x) 使得 u(x)f(x)+v(x)g(x)=1,其中 $\partial(u(x))<\partial(g(x))$, $\partial(v(x))<\partial(f(x))$.

解答. 由于 f(x), g(x) 互素, 所以存在 a(x), b(x) 使得

$$a(x)f(x) + b(x)g(x) = 1.$$

这意味着 a(x), g(x) 互素, 现在让 a(x), g(x) 作带余除法, 设

$$a(x) = q(x)g(x) + u(x).$$

那么 $u(x) \neq 0$, 且 $\partial(u(x)) < \partial(g(x))$, 从而 (q(x)g(x) + u(x))f(x) + b(x)g(x) = 1, 即

$$u(x)f(x) + (b(x) + q(x)f(x))g(x) = 1.$$

现在令 b(x) + q(x)f(x) = v(x), 则

$$u(x)f(x) + v(x)g(x) = 1.$$

下证 $\partial(v(x)) < \partial(f(x))$: 如果 $\partial(v(x)) \ge \partial(f(x))$, 结合 $\partial(u(x)) < \partial(g(x))$ 可知 $\partial(v(x)g(x)) > \partial(u(x)f(x))$, 从而有

$$0 = \partial(1) = \partial(u(x)f(x) + v(x)g(x)) = \partial(v(x)g(x)) \neq 0.$$

这显然矛盾, 所以 $\partial(v(x)) < \partial(f(x))$.

最后证唯一性: 设还存在 $u_1(x), v_1(x)$ 满足

$$u_1(x)f(x) + v_1(x)g(x) = 1.$$

其中 $\partial(u_1(x)) < \partial(g(x)), \ \partial(v_1(x)) < \partial(f(x)).$ 那么就有 $(u(x) - u_1(x))f(x) + (v(x) - v_1(x))g(x) = 0$, 即

$$(u(x) - u_1(x))f(x) = (v_1(x) - v(x))g(x).$$

由于 f(x), g(x) 互素, 所以 $f(x) \mid (v_1(x) - v(x))$, 而 $\partial(v(x))$, $\partial(v_1(x)) < \partial(f(x))$, 所以只能是 $v_1(x) - v(x) = 0$, 即 $v_1(x) = v(x)$, 同理, 也有 $u_1(x) = u(x)$.

余数定理的应用 1.4

例题 4. 已知 $(x^2+x+1) \mid f_1(x^3)+xf_2(x^3)$,则 $(x-1) \mid f_1(x)$ 且 $(x-1) \mid f_2(x)$.

解答. 由于 $(x^2 + x + 1) \mid f_1(x^3) + x f_2(x^3)$, 所以 $x^2 + x + 1$ 的两个根 ω, ω^2 都是 $f_1(x^3) + x f_2(x^3)$ 的根, 其中 $\omega^3 = 1, \omega^2 = \overline{\omega}$, 从而

$$\begin{cases} f_1(\omega^3) + \omega f_2(\omega^3) = f_1(1) + \omega f_2(1) = 0, \\ f_1(\omega^6) + \omega^2 f_2(\omega^6) = f_1(1) + \omega^2 f_2(1) = 0. \end{cases}$$

解上述方程组可得 $f_1(1) = f_2(1) = 0$, 即 $(x-1) \mid f_1(x), (x-1) \mid f_2(x)$

1.5 多项式根的有限性

例题 5. 设 f(x) 是实数域上的 $n (n \ge 1)$ 次多项式, 且

$$f(k) = \frac{k}{k+1}, \ k = 0, 1, 2, \dots, n.$$

- (1) 求 f(x) 的首项系数;
- (2) 计算 f(n+1) 和 f(-1).

解答. (1) 首先记多项式 F(x) = (x+1)f(x) - x, 则 $\partial(F(x)) = n+1$, 且由已知可得

$$F(k) = 0, k = 0, 1, 2, \dots, n$$

于是

$$F(k) = 0, k = 0, 1, 2, \dots, n.$$

$$F(x) = (x+1)f(x) - x = cx(x-1)(x-2)\cdots(x-n).$$
(1)

解得

$$f(x) = \frac{cx(x-1)(x-2)\cdots(x-n) + x}{x+1}.$$

由于 f(x) 为多项式, 从而 $x+1 \mid [cx(x-1)(x-2)\cdots(x-n)+x]$, 且

$$c(-1)(-2)(-3)\cdots(-n-1)-1=0$$

解得 $c = \frac{(-1)^{n+1}}{(n+1)!}$, 此即 f(x) 的首项系数.

(2) 由(1) 可知

$$f(n+1) = \frac{\frac{(-1)^{n+1}}{(n+1)!}(n+1)! + (n+1)}{n+2} = \frac{n+1+(-1)^{n+1}}{n+2}.$$

另外(1)式两边关于 x 求导可得

$$f(x) + (x+1)f'(x) - 1 = \frac{(-1)^{n+1}}{(n+1)!}x(x-1)(x-2)\cdots(x-n)\left(\frac{1}{x} + \frac{1}{x-1} + \frac{1}{x-2} + \cdots + \frac{1}{x-n}\right).$$

将 x = -1 代入上式可得

$$f(-1) = -\frac{1}{2} - \frac{1}{3} - \dots - \frac{1}{n+1}.$$

1.6 重因式与导数的应用

例题 6. 证明 $f(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ 没有重根.

解答. 由于
$$f'(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!}$$
, 所以 $f(x) - f'(x) = \frac{x^n}{n!}$, 于是

$$(f(x), f'(x)) = (f(x), f(x) - f'(x)) = (f(x), \frac{x^n}{n!}) = (f(x), x^n) = x^k.$$

其中 k 是小于等于 n 的非负整数, 由于 0 显然不是 f(x) 的根, 所以只能是 k=0, 即 (f(x),f'(x))=1, 这说 明 f(x) 没有重根.

1.7 有理系数多项式的可约性讨论

例题 7. 已知 a_1, a_2, \dots, a_n 是互异的整数,证明:

- (1) $f(x) = (x a_1)(x a_2) \cdots (x a_n) 1$ 在有理数域上不可约;
- (2) n 是奇数时, $g(x) = (x a_1)(x a_2) \cdots (x a_n) + 1$ 在有理数上不可约;
- (3) n 是偶数时比较繁琐: 可以证明 n=2 或 4 时, $g(x)=(x-a_1)(x-a_2)\cdots(x-a_n)+1$ 在有理数上可能可约, 但 $n\geq 6$ 时, g(x) 在有理数域上一定不可约;
 - (4) $h(x) = (x a_1)^2 (x a_2)^2 \cdots (x a_n)^2 + 1$ 在有理数域上不可约.

解答. (1) 假设 f(x) 在有理数域上可约,则存在次数小于 n 的整系数多项式 $f_1(x), f_2(x)$ 使得 $f(x) = f_1(x)f_2(x)$,把 $f_2(x)$,把 $f_3(x)$

$$f_1(a_i)f_2(a_i) = -1 \ (i = 1, 2, \cdots, n).$$

由于 $f_1(x)$, $f_2(x)$ 是整系数多项式, 所以 $f_1(a_i)$, $f_2(a_i)$ 都是整数, 从而只能是 $f_1(a_i) = 1$ 且 $f_2(a_i) = -1$ 或者 $f_1(a_i) = -1$ 且 $f_2(a_i) = 1$, 总之, 都是 $f_1(a_i) + f_2(a_i) = 0$, 即 $F(x) = f_1(x) + f_2(x)$ 有 n 个零点, 而同时 $\partial(F(x)) < n$, 所以只能是 F(x) = 0, 即 $f_1(x) = -f_2(x)$, 从而 $f(x) = -f_2(x)^2$, 这与 f(x) 的首项系数 1 是矛盾的.

- (2) 同 (1) 完全相同的方法, 可以证明: 如果 $g(x) = (x a_1)(x a_2) \cdots (x a_n) + 1$ 在有理数域上可约, 那么 g(x) 一定可以分解成一个整系数多项式 $g_1(x)$ 的平方, 从而要求 n 必须是偶数.
 - (3) 当 n=2 或 4 时, f(x) 在有理数域上可能可约, 例如

$$f(x) = (x-1)(x+1) + 1 = x^2;$$

$$f(x) = (x-1)x(x+1)(x+2) + 1 = (x^2+x)(x^2+x-2) + 1 = (x^2-x-1)^2.$$

当 $n \ge 6$ 时,由 (2) 可知,如果 f(x) 可约,则一定存在 g(x) 使得 $f(x) = g^2(x)$,从而 $f(x) \ge 0$. 那我们的思想是找到一个 f(x) < 0 的点,从而得到矛盾.具体方法如下:首先不妨设 $a_1 > a_2 > \cdots > a_n$,则对任意的 $i = 2, 3, \cdots$,有 $a_1 - a_i \ge i - 1$.于是 $n \ge 6$ 时,有

$$f\left(a_{1} - \frac{1}{2}\right) = -\frac{1}{2}\left(a_{1} - a_{2} - \frac{1}{2}\right)\left(a_{1} - a_{3} - \frac{1}{2}\right)\cdots\left(a_{1} - a_{n} - \frac{1}{2}\right) + 1$$

$$\leq -\frac{1}{2}\left(1 - \frac{1}{2}\right)\left(2 - \frac{1}{2}\right)\cdots\left(n - 1 - \frac{1}{2}\right) + 1$$

$$= -\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{3}{2}\cdots\frac{2n - 3}{2} + 1$$

$$\leq -\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{5}{2}\cdot\frac{7}{2}\cdot\frac{9}{2} + 1$$

$$= -\frac{15\times63}{64} + 1 < 0.$$

(4) 如果 h(x) 在有理数域上可约为 $h(x) = h_1(x)h_2(x)$, 其中 $h_1(x),h_2(x)$ 都是首 1 的整系数多项式. 则可以得到 $h_1(x) - h_2(x)$ 有 n 个零点 a_1, a_2, \cdots, a_n , 需要注意的是: h(x) 无有理根, 所以 $h_1(x)$ 与 $h_2(x)$ 都无有理根, 那就说明对 i = 1, 2 有 $h_i(a_1), h_i(a_2), \cdots, h_i(a_n)$ 是同号的(都为 1 或者都为 -1), 可以假设它们都为 1, 接下来用次数分情况考虑:

(i) 如果 $h_1(x), h_2(x)$ 都是 n 次的, 则可以得到 $h_1(x) = h_2(x)$, 从而 $h(x) = h_1^2(x)$, 并且注意到 $h_1(x) - 1$ 是以 a_1, \dots, a_n 为根的首 1 多项式, 所以就得到

$$h_1(x) = (x - a_1)(x - a_2) \cdots (x - a_n) + 1.$$

从而 $h(x) = h_1^2(x)$ 就等价于

$$(x-a_1)^2(x-a_2)^2 \cdots (x-a_n)^2 + 1 = [(x-a_1)(x-a_2)\cdots(x-a_n) + 1]^2$$
$$= (x-a_1)^2(x-a_2)^2 \cdots (x-a_n)^2 + 2(x-a_1)(x-a_2)\cdots(x-a_n) + 1.$$

这等价于 $2(x-a_1)(x-a_2)\cdots(x-a_n)=0$, 矛盾.

(ii) 如果 $h_1(x)$ 与 $h_2(x)$ 中有一个次数小于 n, 不妨设为 $h_1(x)$, 利用 $h_1(x) - 1$ 有 n 个零点可以得到 $h_1(x) = 1$, 矛盾.

2. 行列式

2.1 大拆分法

例题 8. 计算行列式

$$\begin{vmatrix} x_1 - m & x_2 & \cdots & x_n \\ x_1 & x_2 - m & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1 & x_2 & \cdots & x_n - m \end{vmatrix}$$

解答. 由于

由于
$$\begin{vmatrix}
x_1 - m & x_2 & \cdots & x_n \\
x_1 & x_2 - m & \cdots & x_n \\
\vdots & \vdots & & \vdots \\
x_1 & x_2 & \cdots & x_n - m
\end{vmatrix}_{n \times n} = \begin{vmatrix}
x_1 - m & x_2 + 0 & \cdots & x_n + 0 \\
x_1 + 0 & x_2 - m & \cdots & x_n + 0 \\
\vdots & \vdots & & \vdots \\
x_1 + 0 & x_2 + 0 & \cdots & x_n - m
\end{vmatrix}_{n \times n}$$

现根据行列式的性质将上述行列式拆分为 2^n 个行列式之和, 其中每个行列式的第 i ($i=1,2,\cdots,n$) 行要么为 (x_i,x_i,\cdots,x_i) , 要么为 $(0,\cdots,0,-m,0,\cdots,0)$, 将这 2^n 个行列式分为如下三类:

- (i) 至少有两行(设为 i, j ($i \neq j$) 行)的元素分别取 (x_i, x_i, \dots, x_i), (x_j, x_j, \dots, x_j), 由于每个行列式至少有两行元素成比例, 所以此类行列式均为零, 其和自然也为零.
- (ii) 有且仅有一行(设为第 i ($i=1,2,\cdots,n$) 行)元素取的是 (x_i,x_i,\cdots,x_i), 此类行列式共有 n 个, 并且根据第 i 列展开, 可知

$$\sum_{i=1}^{n} \begin{vmatrix} -m & & & & & & & \\ & \ddots & & & & & \\ & & -m & & & \\ & & x_{i} & x_{i} & \cdots & x_{i} & \cdots & x_{i} & x_{i} \\ & & & -m & & \\ & & & & -m \end{vmatrix} = \sum_{i=1}^{n} (-1)^{i+i} x_{i} \begin{vmatrix} -m & & & & \\ & -m & & & \\ & & & \ddots & \\ & & & -m \end{vmatrix} = (-m)^{n-1} \sum_{i=1}^{n} x_{i}.$$

(iii) 每一行均取形如 $(0, \dots, 0, -m, 0, \dots, 0)$ 这样的元素, 此类行列式仅有一个, 即

$$\begin{vmatrix}
-m & & \\
-m & & \\
& \ddots & \\
& -m
\end{vmatrix} = (-m)^n.$$

于是

$$\begin{vmatrix} x_1 - m & x_2 & \cdots & x_n \\ x_1 & x_2 - m & \cdots & x_n \\ \vdots & \vdots & & \vdots \\ x_1 & x_2 & \cdots & x_n - m \end{vmatrix}_{n \times n} = (-m)^n + (-m)^{n-1} \sum_{i=1}^n x_i.$$

2.2 小拆分法

例题 9. 计算 n 阶行列式

$$D_n = \begin{vmatrix} x & a & \cdots & a \\ -a & x & \cdots & a \\ \vdots & \vdots & & \vdots \\ -a & -a & \cdots & x \end{vmatrix}.$$

解答. 当 a=0 时, 显然有 $D_n=x^n$. 当 $a\neq 0$ 时, 将 D_n 按照第一列拆为两个行列式, 有

$$D_{n} = \begin{vmatrix} x+a & a & a & \cdots & a & a \\ 0 & x & a & \cdots & a & a \\ 0 & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & -a & -a & \cdots & x & a \\ 0 & -a & -a & \cdots & -a & x \end{vmatrix} + \begin{vmatrix} -a & a & a & \cdots & a & a \\ -a & x & a & \cdots & a & a \\ -a & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a & -a & -a & x & \cdots & a & a \\ -a & -a & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a & -2a & x-a & \cdots & 0 & 0 \\ -a & -2a & x-a & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a & -2a & -2a & \cdots & x-a & 0 \\ -a & -2a & -2a & \cdots & -2a & x-a \end{vmatrix}$$

$$= (x+a)D_{n-1} - a(x-a)^{n-1}.$$

那么根据对称性, 还有 $D_n = (x - a)D_{n-1} + a(x + a)^{n-1}$, 进而

$$\begin{cases} (x-a)D_n = (x-a)(x+a)D_{n-1} - a(x-a)^n; \\ (x+a)D_n = (x-a)(x+a)D_{n-1} + a(x+a)^n. \end{cases}$$

上述两式相减可得

$$D_n = \frac{(x+a)^n + (x-a)^n}{2}.$$

显然上式对 a=0 也成立.

2.3 升阶法(加边法)

例题 10. 计算行列式

$$D_n = \begin{vmatrix} a_1 + x_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 + x_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3 + x_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n + x_n \end{vmatrix}.$$

解答. 利用升阶法, 有

$$D_n = \begin{vmatrix} 1 & a_1 & a_2 & a_3 & \cdots & a_n \\ 0 & a_1 + x_1 & a_2 & a_3 & \cdots & a_n \\ 0 & a_1 & a_2 + x_2 & a_3 & \cdots & a_n \\ 0 & a_1 & a_2 & a_3 + x_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_1 & a_2 & a_3 & \cdots & a_n + x_n \end{vmatrix} = \begin{vmatrix} 1 & a_1 & a_2 & a_3 & \cdots & a_n \\ -1 & x_1 & 0 & 0 & \cdots & 0 \\ -1 & 0 & x_2 & 0 & \cdots & 0 \\ -1 & 0 & 0 & x_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -1 & 0 & 0 & 0 & \cdots & x_n \end{vmatrix}.$$

当 $x_1x_2\cdots x_n\neq 0$ 时,依次将上述行列式的第 i $(i=2,3,\cdots,n+1)$ 列的 $\frac{1}{x_{i-1}}$ 倍加到第一列,就有

$$D_n = \begin{vmatrix} 1 + \sum_{i=1}^n \frac{a_i}{x_i} & a_1 & a_2 & a_3 & \cdots & a_n \\ 0 & x_1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & x_2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & x_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & x_n \end{vmatrix} = \left(1 + \sum_{i=1}^n \frac{a_i}{x_i}\right) \prod_{j=1}^n x_j = \prod_{j=1}^n x_j + \sum_{i=1}^n \left(a_i \prod_{j \neq i} x_j\right).$$

而根据行列式的运算规则可知 D_n 是关于 x_1,x_2,\cdots,x_n 的多项式, 而上式右端也为 x_1,x_2,\cdots,x_n 的多项式, 它们在 $x_1x_2\cdots x_n\neq 0$ 的时候相等, 自然在 $x_1x_2\cdots x_n=0$ 的时候也相等. 即对任意的 x_1,x_2,\cdots,x_n , 均有

$$D_n = \prod_{j=1}^n x_j + \sum_{i=1}^n \left(a_i \prod_{j \neq i} x_j \right).$$

2.4 相邻行作差法

例题 11. 计算n 级行列式

子列式
$$\begin{vmatrix}
1 & 2 & \cdots & n-1 & n \\
2 & 3 & \cdots & n & 1 \\
3 & 4 & \cdots & 1 & 2 \\
\vdots & \vdots & & \vdots & \vdots \\
n & 1 & \cdots & n-2 & n-1
\end{vmatrix} = (-1)^{\frac{(n-1)n}{2}} \frac{n^{n-1}(n+1)}{2}.$$

解答. 从最后一行开始, 上一行的 -1 依次加到下一行, 得到

$$\begin{vmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \\ 3 & 4 & \cdots & 1 & 2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ n & 1 & \cdots & n-2 & n-1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & \cdots & n-1 & n \\ 1 & 1 & \cdots & 1 & 1-n \\ 1 & 1 & \cdots & 1 & 1-n \\ 1 & 1 & \cdots & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & \cdots & n-2 & n-1 \\ 1 & 0 & \cdots & 0 & -n \\ 1 & 0 & \cdots & -n & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & -n & \cdots & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 + \frac{1}{n} + \cdots + \frac{n-1}{n} & 1 & \cdots & n-2 & n-1 \\ 0 & 0 & \cdots & 0 & -n \\ 0 & 0 & \cdots & -n & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -n & \cdots & 0 & 0 \end{vmatrix}$$

$$= \left(1 + \frac{1}{2}(n-1)\right) \begin{vmatrix} 0 & \cdots & 0 & -n \\ 0 & \cdots & -n & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -n & \cdots & 0 & 0 \end{vmatrix} = \frac{n+1}{2}(-1)^{\frac{(n-1)(n-2)}{2}}(-n)^{n-1}$$

$$= (-1)^{\frac{(n-1)n}{2}} \frac{n^{n-1}(n+1)}{2}.$$

2.5递推公式法

例题 12. 计算n 阶行列式

$$D_n = \begin{vmatrix} \sqrt{5} & 1 \\ 1 & \sqrt{5} & 1 \\ & 1 & \ddots & \ddots \\ & & \ddots & \sqrt{5} & 1 \\ & & & 1 & \sqrt{5} \end{vmatrix}.$$

解答. 将 D_n 按照第一列展开, 可知

$$D_n = \sqrt{5}D_{n-1} - D_{n-2}. (2)$$

设方程 $x^2 - \sqrt{5}x + 1 = 0$ 的两个根为

$$\alpha = \frac{\sqrt{5}-1}{2}, \ \beta = \frac{\sqrt{5}+1}{2}.$$

则由韦达定理可知 $\alpha + \beta = \sqrt{5}$, $\alpha\beta = 1$, 所以 (2) 式等价于

$$D_n = (\alpha + \beta)D_{n-1} - \alpha\beta D_{n-2}.$$

变形就有

$$D_n - \alpha D_{n-1} = \beta (D_{n-1} - \alpha D_{n-2}), \tag{3}$$

$$D_n - \beta D_{n-1} = \alpha (D_{n-1} - \beta D_{n-2}). \tag{4}$$

注意到
$$D_1 = \sqrt{5} = \alpha + \beta$$
, $D_2 = \begin{vmatrix} \sqrt{5} & 1 \\ 1 & \sqrt{5} \end{vmatrix} = 5 - 1 = (\alpha + \beta)^2 - \alpha\beta = \alpha^2 + \alpha\beta + \beta^2$, 于是

$$D_2 - \alpha D_1 = \beta^2, \ D_2 - \beta D_1 = \alpha^2$$

从而结合(3),(4)式可知

$$D_2 - \alpha D_1 = \beta^2, \ D_2 - \beta D_1 = \alpha^2.$$
可知
$$D_n - \alpha D_{n-1} = \beta(D_{n-1} - \alpha D_{n-2}) = \dots = \beta^{n-2}(D_2 - \alpha D_1) = \beta^n; \tag{5}$$

$$D_n - \beta D_{n-1} = \alpha (D_{n-1} - \beta D_{n-2}) = \dots = \alpha^{n-2} (D_2 - \beta D_1) = \alpha^n.$$
 (6)

那么 (5) 式乘以 β 与 (6) 式乘以 α 相减可得

$$D_n = \frac{\beta^{n+1} - \alpha^{n+1}}{\beta - \alpha} = \left(\frac{\sqrt{5} + 1}{2}\right)^{n+1} - \left(\frac{\sqrt{5} - 1}{2}\right)^{n+1}.$$

范德蒙行列式的应用 2.6

例题 13. 已知 $n \ge 2$, 计算行列式

$$D_n = \begin{vmatrix} a + x_1 & a + x_2 & \cdots & a + x_n \\ a + x_1^2 & a + x_2^2 & \cdots & a + x_n^2 \\ \vdots & \vdots & & \vdots \\ a + x_1^n & a + x_2^n & \cdots & a + x_n^n \end{vmatrix}.$$

解答. 利用加边法与拆分法, 结合范德蒙行列式有

$$D_n = \begin{vmatrix} 1 & a & a & \cdots & a \\ 0 & a + x_1 & a + x_2 & \cdots & a + x_n \\ 0 & a + x_1^2 & a + x_2^2 & \cdots & a + x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & a + x_1^n & a + x_2^n & \cdots & a + x_n^n \end{vmatrix} = \begin{vmatrix} \frac{1}{1} & a & a & \cdots & a \\ -1 & x_1 & x_2 & \cdots & x_n \\ -1 & x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & x_1^n & x_2^n & \cdots & x_n \end{vmatrix} + \begin{vmatrix} 1 + a & a & a & \cdots & a \\ 0 & x_1 & x_2 & \cdots & x_n \\ 1 & x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix} + \begin{vmatrix} 1 + a & a & a & \cdots & a \\ 0 & x_1 & x_2 & \cdots & x_n \\ 0 & x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix}$$

$$= -a \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & x_1 & x_2 & \cdots & x_n \\ 1 & x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix} + (1 + a) \begin{vmatrix} x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ x_1^n & x_2^n & \cdots & x_n^n \end{vmatrix}$$

$$= -a \prod_{k=1}^n (x_k - 1) \prod_{1 \le j < i \le n} (x_i - x_j) + (1 + a) \prod_{k=1}^n x_k \prod_{1 \le j < i \le n} (x_i - x_j)$$

$$= \left[(1 + a) \prod_{k=1}^n x_k - a \prod_{k=1}^n (x_k - 1) \right] \prod_{1 \le j < i \le n} (x_i^2 - x_j^2).$$

打洞原理的应用 2.7

例题 14. 解答如下问题:

(1) 设矩阵 $A = A_{m \times n}$, $B = B_{n \times m}$ ($m \le n$), 证明:

$$|\lambda E_n - BA| = \lambda^{n-m} |\lambda E_m - AB|.$$

(2) 设矩阵

$$|\lambda E_n - BA| = \lambda^{n-m} |\lambda E_m - AB|.$$

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

其中 $n \geq 2$, 且 $\sum_{i=1}^{n} a_i = 1$, $\sum_{i=1}^{n} a_i^2 = n$, 令 B = A'A - E, 求 B 的全部特征值及 B 的行列式 |B|.

解答. (1) 一方面, 由于

$$\begin{pmatrix} E_m & A \\ B & \lambda E_n \end{pmatrix} \begin{pmatrix} E_m & -A \\ O & E_n \end{pmatrix} = \begin{pmatrix} E_m & O \\ B & \lambda E_n - BA \end{pmatrix}.$$

上式两端取行列式可得

$$\begin{vmatrix} E_m & A \\ B & \lambda E_n \end{vmatrix} = \begin{vmatrix} E_m & O \\ B & \lambda E_n - BA \end{vmatrix} = |\lambda E_n - BA|. \tag{7}$$

另一方面, 当 $\lambda \neq 0$ 时, 有 λE_n 可逆, 此时由于

$$\begin{pmatrix} E_m & A \\ B & \lambda E_n \end{pmatrix} \begin{pmatrix} E_m & O \\ -\frac{1}{\lambda}B & E_n \end{pmatrix} = \begin{pmatrix} E_m - \frac{1}{\lambda}AB & A \\ O & \lambda E_n \end{pmatrix}.$$

上式两端取行列式可得

$$\begin{vmatrix} E_m & A \\ B & \lambda E_n \end{vmatrix} = \begin{vmatrix} E_m - \frac{1}{\lambda}AB & A \\ O & \lambda E_n \end{vmatrix} = \lambda^n |E_m - \frac{1}{\lambda}AB| = \lambda^{n-m} |\lambda E_m - AB|.$$
 (8)

于是当 $\lambda \neq 0$ 时,结合(7)式与(8)式左边相等就有右边相等,即

$$|\lambda E_n - BA| = \lambda^{n-m} |\lambda E_m - AB|.$$

上式两端可看成关于 λ 的多项式在 $\lambda \neq 0$ 时恒等, 由多项式的性质可知上式对于 $\lambda = 0$ 也成立.

(2) 首先由已知可得

$$AA' = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} a_1 & 1 \\ a_2 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n a_i^2 & \sum_{i=1}^n a_i \\ \sum_{i=1}^n a_i & n \end{pmatrix} = \begin{pmatrix} n & 1 \\ 1 & n \end{pmatrix}.$$

所以结合(1)可知

$$|\lambda E_n - A'A| = \lambda^{n-2} |\lambda E_2 - AA'| = \lambda^{n-2} \begin{vmatrix} \lambda - n & -1 \\ -1 & \lambda - n \end{vmatrix}$$
$$= \lambda^{n-2} [(\lambda - n)^2 - 1] = \lambda^{n-2} (\lambda - n + 1)(\lambda - n - 1).$$

于是 A'A 的全部特征值为 $0,0,\cdots,0,n-1,n+1$, 其中 0 为 n-2 重. 进而 B=A'A-E 的全部特征值为

$$-1, -1, \cdots, -1, n-2, n$$
.

其中-1为n-2重,并且

$$|B| = (-1)^{n-2}n(n-2)$$
.

3. 向量组、线性方程组及线性空间

3.1 线性表出

例题 15. 已知 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关, 且 $\alpha_1,\alpha_2,\cdots,\alpha_n,\beta$ 线性相关, 则 β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表出.

解答. 由于 $\alpha_1,\alpha_2,\cdots,\alpha_n,\beta$ 线性相关,则存在不全为零的常数 $k_1,k_2,\cdots,k_n,k_{n+1}$ 使得

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n + k_{n+1}\beta = 0.$$

如果 $k_{n+1}=0$, 则 $k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0$, 由于 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关, 所以 $k_1=k_2=\cdots=k_n=0$, 这与假设矛盾. 所以 $k_{n+1}\neq 0$, 于是有

$$\beta = -\frac{1}{k_{n+1}}(k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n).$$

即 β 可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表出.

3.2 放在一起

例题 16. 设向量组 $I: \alpha_1, \alpha_2, \cdots, \alpha_r$ 与向量组 $II: \beta_1, \beta_2, \cdots, \beta_s$ 有相同的秩, 且向量组 I 可由向量组 II 线性表出, 证明向量组 I 与向量组 II 等价.

解答. 首先记向量组 $III: \alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s$,由于向量组 I 可由向量组 II 线性表出,所以向量组 II 与向量组 III 等价,进而它们的秩也相同,现在设向量组 I, II, III 的秩均为 t, 且 $\alpha_{k_1}, \dots, \alpha_{k_t}$ 是向量组 I 的一个极大线性无关组,则其也是向量组 III 中的 t 个线性无关的向量,又由于向量组 III 的秩为 t, 所以任取 $\beta_i \in III$,都有 $\alpha_{k_1}, \dots, \alpha_{k_t}, \beta_i$ 线性相关,这说明每个 β_i ($i = 1, 2, \dots, s$) 均可由 $\alpha_{k_1}, \dots, \alpha_{k_t}$ 线性表出,从而也可由 $\alpha_1, \dots, \alpha_r$ 线性表出,即向量组 II 可由向量组 I 线性表出,所以向量组 I 与向量组 II 等价.

3.3 方程组同解与矩阵的秩

例题 17. 设 A, B 分别为 $s \times n$ 与 $n \times m$ 阶矩阵. 解答如下问题:

- (1) 证明: r(AB) = r(B) 当且仅当 ABX = 0 的解都是 BX = 0 的解;
- (2) 设 C 为 $m \times r$ 矩阵, 证明若 r(AB) = r(B), 则 r(ABC) = r(BC);
- (3) 设 D 为 n 阶实方阵, D' 表示 D 的转置, 证明

$$r(DD') = r(D'D) = r(D).$$

并举例说明当 D 为 n 阶复方阵时, 结论不成立.

解答. (1) 充分性. 首先注意到 BX = 0 的解均为 ABX = 0 的解, 那么若 ABX = 0 的解都是 BX = 0的解,则 ABX = 0 与 BX = 0 同解,进而它们基础解系所含向量个数相同,即 m - r(AB) = m - r(B),也就 是 r(AB) = r(B).

必要性. 若 r(AB) = r(B), 则方程组 BX = 0 与 ABX = 0 的基础解系当中所含向量个数相同, 而明显 BX = 0 的解都是 ABX = 0 的解, 那么 BX = 0 的基础解系也是 ABX = 0 的基础解系, 所以 ABX = 0 的 解都是 BX = 0 的解.

- (2) 由于 r(AB) = r(B), 由 (1) 可知 ABX = 0 的解都是 BX = 0 的解, 于是对任意的 r 维列向量 X, 若 ABCX = AB(CX) = 0, 则必有 BCX = B(CX) = 0, 而若 BCX = 0, 显然有 ABCX = 0, 即方程组 ABCX = 0 与 BCX = 0 同解, 进而它们基础解系所含向量个数相同, 所以 r(ABC) = r(BC).
- (3) 考虑实系数线性方程组 DX = 0 与 D'DX = 0, 显然 DX = 0 的解均为 D'DX = 0 的解, 反之, 若 D'DX = 0, 则有

$$X'D'DX = (DX)'(DX) = |DX|^2 = 0.$$

从而 DX = 0, 所以 DX = 0 与 D'DX = 0 同解, 它们基础解系所含向量个数相同, 于是

$$r(D'D) = r(D).$$

进而还有 r(DD') = r((D')'D') = r(D') = r(D), 即

$$r(DD') = r(D'D) = r(D).$$

当 D 为 n 阶复方阵时, 结论不一定成立, 例如

$$D = \left(\begin{array}{cc} 1 & 1 \\ \mathbf{i} & \mathbf{i} \end{array}\right).$$

此时 r(D) = 1, 而

$$D = \begin{pmatrix} 1 & 1 \\ i & i \end{pmatrix}.$$

$$D'D = \begin{pmatrix} 1 & i \\ 1 & i \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & i \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

所以 $r(D'D) = 0 \neq r(D)$.

例题 18. 设 A 为 n 阶复方阵, 证明: 对任意的正整数 $N, M \geq n$, 总有 $\mathrm{rank}\,(A^N) = \mathrm{rank}\,(A^M)$.

解答. 当 A 可逆时, 结论显然成立. 当 A 不可逆时, 有

$$n-1 \ge r(A) \ge r(A^2) \ge \dots \ge r(A^n) \ge r(A^{n+1}) \ge 0.$$

所以必存在正整数 k $(1 \le k \le n)$ 使得 $r(A^k) = r(A^{k+1})$, 于是方程组 $A^k X = 0$ 与 $A^{k+1} X = 0$ 基础解系所含 向量个数相同, 而明显 $A^kX=0$ 的解均为 $A^{k+1}X=0$ 的解, 于是这两个方程组同解. 进而若

$$A^{k+2}X = A^{k+1}(AX) = 0.$$

则有

$$A^k(AX) = A^{k+1}X = 0.$$

而当 $A^{k+1}X = 0$ 时, 显然有 $A^{k+2}X = 0$, 这说明方程组 $A^{k+1}X = 0$ 与 $A^{k+2}X = 0$ 同解, 于是基础解系所含 向量个数相同, 即有 $r(A^{k+1}) = r(A^{k+2})$. 以此类推可知

$$r(A^k) = r(A^{k+1}) = r(A^{k+2}) = \cdots$$

特别地, 对任意的正整数 $N, M \ge n$, 总有 $r(A^N) = r(A^M)$.

3.4 讨论线性方程组解的情况

例题 19 (中国石油大学, 2021). 讨论 a, b 为何值时, 线性方程组

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0; \\ x_2 + 2x_3 + 2x_4 = 1; \\ -x_2 + (a - 3)x_3 - 2x_4 = b; \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1. \end{cases}$$

有唯一解, 无解, 无穷多解? 当有无穷多解时, 求出通解.

解答. 对方程组的增广矩阵作初等行变换, 化为阶梯形, 有

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 3 & 2 & 1 & a & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 0 & -1 & -2 & a - 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & -1 & -1 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a - 1 & 0 & b + 1 \\ 0 & 0 & 0 & a - 1 & 0 \end{pmatrix}$$

由此可知:

(i) 当 $a \neq 1$ 时, 方程组有唯一解, 且解为

$$\begin{cases} x_1 = \frac{-a+b+2}{a-1}; \\ x_2 = \frac{a-2b-3}{a-1}; \\ x_3 = \frac{b+1}{a-1}; \\ x_4 = 0. \end{cases}$$

- (ii) 当 a = 1, $b \neq -1$ 时, 方程组无解.
 - (iii) 当 a=1, b=-1 时, 方程组有无穷多解, 且通解为

$$\begin{cases} x_1 = x_3 + x_4 - 1; \\ x_2 = -2x_3 - 2x_4 + 1. \end{cases}$$

其中 x3, x4 为自由未知量.

3.5 由基础解系求线性方程组

例题 20. 已知向量组

$$\alpha_1 = (1, 3, -2, 2, 0)', \ \alpha_2 = (1, -3, 2, 0, 4)', \ \alpha_3 = (3, 3, -2, 4, 4)'.$$

记 $M = L(\alpha_1, \alpha_2, \alpha_3)$ 为 $\alpha_1, \alpha_2, \alpha_3$ 生成的子空间.

- (1) 求一个以 M 为解空间的齐次线性方程组 (I);
- (2) 求一个导出组为 (I), 有一个特解为 $\alpha_0 = (1, -3, 3, 0, 0)'$ 的非齐次线性方程组 (II).

解答. 首先记 $A=(\alpha_1,\alpha_2,\alpha_3)$, 对 A' 进行初等行变换, 化为阶梯形, 有

$$A' = \begin{pmatrix} 1 & 3 & -2 & 2 & 0 \\ 1 & -3 & 2 & 0 & 4 \\ 3 & 3 & -2 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & -2 & 2 & 0 \\ 0 & -6 & 4 & -2 & 4 \\ 0 & -6 & 4 & -2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

由此可知 r(A) = 2, 而明显 α_1, α_2 线性无关, 所以 α_1, α_2 为 M 的一组基. 另外, 根据上述阶梯形可知方程组 A'X = 0 的基础解系为

$$\eta_1 = (0, 2, 3, 0, 0)', \ \eta_2 = (-3, -1, 0, 3, 0)', \ \eta_3 = (-6, 2, 0, 0, 3)'.$$

13

记 $B = (\eta_1, \eta_2, \eta_3)$, 则有 A'B = O, 从而 B'A = O, 这说明 A 的列向量 $\alpha_1, \alpha_2, \alpha_3$ 均为方程组 B'X = 0 的解,而明显 r(B) = 3, 所以方程组 B'X = 0 的基础解系当中含有 5 - 3 = 2 个向量,而 α_1, α_2 线性无关,所以它们构成 B'X = 0 的基础解系,也就是说方程组 (I): B'X = 0,即

(I)
$$\begin{cases} 2x_2 + 3x_3 = 0; \\ -3x_1 - x_2 + 3x_4 = 0; \\ -6x_1 + 2x_2 + 3x_5 = 0. \end{cases}$$

的解空间为M.

(2)
$$\stackrel{\text{def}}{=} x_1 = 1$$
, $x_2 = -3$, $x_3 = 3$, $x_4 = x_5 = 0$ $\stackrel{\text{def}}{=} 1$, $\stackrel{\text{def}}{=} 1$

$$2x_2 + 3x_3 = 3$$
; $-3x_1 - x_2 + 3x_4 = 0$; $-6x_1 + 2x_2 + 3x_5 = -12$.

于是方程组

(II)
$$\begin{cases} 2x_2 + 3x_3 = 3; \\ -3x_1 - x_2 + 3x_4 = 0; \\ -6x_1 + 2x_2 + 3x_5 = -12. \end{cases}$$

的导出组为 (I), 同时以 $\alpha_0 = (1, -3, 3, 0, 0)'$ 为特解.

3.6 一个特殊的高次线性方程组

例题 21. 证明方程组

$$\begin{cases} x_1 + x_2 + \dots + x_n = 0; \\ x_1^2 + x_2^2 + \dots + x_n^2 = 0; \\ \vdots \\ x_1^n + x_2^n + \dots + x_n^n = 0. \end{cases}$$

在复数域上只有零解.

解答. 方法一(牛顿公式). 由于 $s_1=s_2=\cdots=s_n=0$, 从而由牛顿公式可知 $\sigma_1=\sigma_2=\cdots=\sigma_n=0$, 再由韦达定理可知 x_1,x_2,\cdots,x_n 是方程 $x^n=0$ 的根, 进而 $x_1=x_2=\cdots=x_n=0$.

方法二(反证法). 假设方程组存在非零解, 不妨设非零的是 x_1, x_2, \cdots, x_l , 于是方程组等价于

$$\begin{cases} x_1 + x_2 + \dots + x_l = 0; \\ x_1^2 + x_2^2 + \dots + x_l^2 = 0; \\ \vdots \\ x_1^n + x_2^n + \dots + x_l^n = 0. \end{cases}$$

现在再分类,设 x_1, x_2, \dots, x_l 这些非零的数中,互异的只有 s 个,设为 y_1, y_2, \dots, y_s ,并假设等于 y_i 的有 k_i 个($i=1,2,\dots,s$),其中 $k_i>0$ 且 $k_1+k_2+\dots+k_s=l$.这时候方程组就等价于

$$\begin{cases} y_1 k_1 + y_2 k_2 + \dots + y_s k_s = 0; \\ y_1^2 k_1 + y_2^2 k_2 + \dots + y_s^2 k_s = 0; \\ \vdots \\ y_1^n k_1 + y_2^n k_2 + \dots + y_s^n k_s = 0. \end{cases}$$

于是取出前s个方程,就有

$$\begin{cases} y_1k_1 + y_2k_2 + \dots + y_sk_s = 0; \\ y_1^2k_1 + y_2^2k_2 + \dots + y_s^2k_s = 0; \\ \vdots \\ y_1^sk_1 + y_2^sk_2 + \dots + y_s^sk_s = 0. \end{cases}$$

把上面的方程组看成是关于 k_1, k_2, \cdots, k_s 的齐次线性方程组, 我们知道系数矩阵的行列式是

$$\begin{vmatrix} y_1 & y_2 & \cdots & y_s \\ y_1^2 & y_2^2 & \cdots & y_s^2 \\ \vdots & \vdots & & \vdots \\ y_1^s & y_2^s & \cdots & y_s^s \end{vmatrix} = y_1 y_2 \cdots y_s \prod_{1 \le j < i \le s} (y_i - y_j) \ne 0.$$

于是方程组只有零解 $k_1 = k_2 = \cdots = k_s = 0$, 这与假设矛盾.

非齐次线性方程组线性无关解的个数 3.7

例题 22. 设 $A \rightarrow s \times n$ 矩阵, 且 r(A) = r, 证明非齐次线性方程组 AX = b 至多存在 n - r + 1 个线性无 关的解向量.

解答. 首先设 η_0 为方程组 AX = b 的一个特解, $\eta_1, \eta_2, \cdots, \eta_{n-r}$ 为导出组 AX = 0 的一个基础解系, 则 $\eta_0, \eta_0 + \eta_1, \eta_0 + \eta_2, \dots, \eta_0 + \eta_{n-r}$ 为 AX = b 的 n - r + 1 个解, 下面说明它们线性无关: 若

$$k_0\eta_0 + k_1(\eta_0 + \eta_1) + k_2(\eta_0 + \eta_2) + \dots + k_{n-r}(\eta_0 + \eta_{n-r}) = 0.$$

则

$$(k_0 + k_1 + \dots + k_{n-r})\eta_0 + k_1\eta_1 + k_2\eta_2 + \dots + k_{n-r}\eta_{n-r} = 0.$$
(9)

上述等式两边同时被 A 作用可得

三式两边同时被
$$A$$
 作用可得 $0=(k_0+k_1+\dots+k_{n-r})A\eta_0+k_1A\eta_1+k_2A\eta_2+\dots+k_{n-r}A\eta_{n-r}=(k_0+k_1+\dots+k_{n-r})b.$ $\neq 0$,所以 $k_0+k_1+\dots+k_{n-r}=0.$

由于 $b \neq 0$, 所以

$$k_0 + k_1 + \dots + k_{n-r} = 0.$$

将其代入到 (9) 式, 结合 $\eta_1, \eta_2, \dots, \eta_{n-r}$ 线性无关可得 $k_1 = k_2 = \dots = k_{n-r} = 0$, 进而也有 $k_0 = 0$, 这说明 $\eta_0, \eta_0 + \eta_1, \eta_0 + \eta_2, \dots, \eta_0 + \eta_{n-r}$ 是 AX = b 的 n - r + 1 个线性无关的解向量.

另外, 对 AX = b 的任意 n-r+2 个解向量 $\alpha_1, \alpha_2, \cdots, \alpha_{n-r+2}$, 那么 $\alpha_2 - \alpha_1, \alpha_3 - \alpha_1, \cdots, \alpha_{n-r+2} - \alpha_1$ 这 n-r+1 个向量均是导出组 AX=0 的解, 进而它们可以被 $\eta_1,\eta_2,\cdots,\eta_{n-r}$ 这 n-r 个向量线性表出, 由 于 n-r+1>n-r, 所以向量组 $\alpha_2-\alpha_1,\alpha_3-\alpha_1,\cdots,\alpha_{n-r+2}-\alpha_1$ 线性相关, 进而易知 $\alpha_1,\alpha_2,\cdots,\alpha_{n-r+2}$ 线性相关.

综上可知,
$$AX = b$$
 至多存在 $n - r + 1$ 个线性无关的解向量.

极大线性无关组的求法 3.8

例题 23. 给定四维向量组

$$\alpha_1=(1,2,-1,1),\ \alpha_2=(1,3,-1,2),\ \alpha_3=(2,5,0,5),\alpha_4=(1,2,1,3),\ \alpha_5=(5,12,1,13).$$

试求出其所有的极大线性无关组.

解答. 首先记 $A = (\alpha'_1, \alpha'_2, \alpha'_3, \alpha'_4, \alpha'_5)$, 对 A 进行初等行变换, 有

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 & 5 \\ 2 & 3 & 5 & 2 & 12 \\ -1 & -1 & 0 & 1 & 1 \\ 1 & 2 & 5 & 3 & 13 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 2 & 2 & 6 \\ 0 & 1 & 3 & 2 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 2 & 2 & 6 \\ 0 & 0 & 2 & 2 & 6 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 2 & 2 & 6 \\ 0 & 0 & 2 & 2 & 6 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 3 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = B$$

选定 B 的前三行, 明显取 B 的 1,2,3; 1,2,4; 1,2,5; 1,3,4; 1,3,5 或 1,4,5 列得到的三阶子式均非零, 所以

$$\alpha_1, \alpha_2, \alpha_3; \ \alpha_1, \alpha_2, \alpha_4; \ \alpha_1, \alpha_2, \alpha_5, \ \alpha_1, \alpha_3, \alpha_4; \ \alpha_1, \alpha_3, \alpha_5, \ \alpha_1, \alpha_4, \alpha_5 \tag{10}$$

均原向量组的极大线性无关组. 而若取 B 的 2,3,4;2,3,5;2,4,5 或 3,4,5 列, 得到的三阶子式均为零, 所以对 应的 $\alpha_2,\alpha_3,\alpha_4;$ $\alpha_2,\alpha_3,\alpha_5,$ $\alpha_2,\alpha_4,\alpha_5;$ $\alpha_3,\alpha_4,\alpha_5$ 均不构成原向量组的极大线性无关组. 即 (10) 式所列出的 6 个向量组为原向量组的所有极大线性无关组.

矩阵方程与线性方程组之间的转化 3.9

例题 24. 已知 A, B 分别为 $m \times n, n \times s$ 矩阵, 并且 AB = O, 则 $r(A) + r(B) \le n$.

解答. 把 B 写成列向量的形式: $B=(\beta_1,\cdots,\beta_s)$, 则 AB=O 等价于 $A\beta_i=0$ $(i=1,2,\cdots,s)$, 即 B 的 每个列向量都是 AX = 0 的解, 从而 B 的每一个列向量都可以由 AX = 0 的基础解系线性表出, 而 AX = 0的基础解系含有 n - r(A) 个向量, 所以

$$r(B) \le n - r(A)$$
.

对角占优 3.10

例题 25. 设 $A = (a_{ij})_{n \times n}$ 是一个 n 级实矩阵, 则

(1) 如果
$$|a_{ii}| > \sum_{i} |a_{ij}|$$
, 那么 $|A| \neq 0$

(1) 如果
$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$
, 那么 $|A| \neq 0$;
(2) 如果 $a_{ii} > \sum_{j \neq i} |a_{ij}|$, 那么 $|A| > 0$.

解答. (1) 反证法. 设 |A| = 0, 则线性方程组 AX = 0 有非零解, 不妨设 $X = (x_1, \dots, x_n)'$ 是一个非零 解,则 x_1,\cdots,x_n 不全为零,从而 $|x_1|,\cdots,|x_n|$ 中必有一个是最大的,不妨设 $|x_k|$ 最大,那么我们考虑方程 $a_{k1}x_1 + \cdots + a_{kn}x_n = 0$, 那么

$$-a_{kk}x_k = a_{k1}x_1 + \dots + a_{k,k-1}x_{k-1} + a_{k,k+1}x_{k+1} + \dots + a_{kn}x_n.$$

从而

$$\begin{split} |a_{kk}||x_k| &= |a_{k1}x_1 + \dots + a_{k,k-1}x_{k-1} + a_{k,k+1}x_{k+1} + \dots + a_{kn}x_n| \\ &\leq |a_{k1}||x_1| + \dots + |a_{k,k-1}||x_{k-1}| + |a_{k,k+1}||x_{k+1}| + \dots + |a_{kn}||x_n| \\ &\leq |a_{k1}||x_k| + \dots + |a_{k,k-1}||x_k| + |a_{k,k+1}||x_k| + \dots + |a_{kn}||x_k| \\ &= (|a_{k1}| + \dots + |a_{k,k-1}| + |a_{k,k+1}| + \dots + |a_{kn}|)|x_k| \\ &= \sum_{j \neq k} |a_{kj}||x_k|. \end{split}$$

即有 $|a_{kk}| \leq \sum_{j \neq k} |a_{kj}|$, 这与已知矛盾, 从而 $|A| \neq 0$.

(2) 此问方法特殊, 需要特殊记忆. 设

$$f(t) = \begin{vmatrix} a_{11} & ta_{12} & ta_{13} & \cdots & ta_{1n} \\ ta_{21} & a_{22} & ta_{23} & \cdots & ta_{2n} \\ ta_{31} & ta_{32} & a_{33} & \cdots & ta_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ ta_{n1} & ta_{n2} & ta_{n3} & \cdots & a_{nn} \end{vmatrix}.$$

则 f(t) 是关于 t 的一个多项式函数, 并且在 \mathbb{R} 上是一个连续函数, 同时我们知道 $f(0) = a_{11}a_{22}\cdots a_{nn} > 0$. 当 $t \in [0,1]$ 时, 还有

$$a_{ii} > \sum_{j \neq i} |a_{ij}| \ge \sum_{j \neq i} |ta_{ij}|.$$

由 (1) 可知 f(t) 在 [0,1] 上非零, 由连续函数的介值性定理可知 f(1) > 0, 即 |A| > 0.

直和证明 3.11

例题 26. 给定数域 P, 设 A 是数域 P 上的一个 n 级可逆方阵, A 的前 r 个行向量组成的矩阵为 B, 后 n-r 个行向量组成的矩阵为 C, n 元线性方程组 BX=0 与 CX=0 的解空间分别为 V_1,V_2 , 证明

$$P^n = V_1 \oplus V_2$$
.

解答. 先记 $W = V_1 + V_2$. 若 $\alpha \in V_1 \cap V_2$, 则 $B\alpha = C\alpha = 0$, 所以

$$A\alpha = \left(\begin{array}{c} B \\ C \end{array}\right)\alpha = 0.$$

由于 A 可逆, 知 $\alpha = 0$, 所以 $V_1 \cap V_1 = \{0\}$, 即 $W = V_1 \oplus V_2$.

最后说 $W=P^n$: 显然 r(B)=r, r(C)=n-r, 则 $\dim V_1=n-r$, $\dim V_2=n-(n-r)=r$. 所以

$$\dim W = \dim V_1 + \dim V_2 = n = \dim P^n.$$

又 $W = V_1 \oplus V_2 \subseteq P^n$, 从而 $W = P^n$, 即

$$P^n = V_1 \oplus V_2. \qquad \Box$$

维数公式 3.12

例题 27. 已知 A, B 分别是数域 P 上的 $s \times k$ 与 $k \times n$ 矩阵, X 是 $n \times 1$ 的列向量. 则所有满足 ABX = 0的 BX 构成一个线性空间 V, 且维数为 r(B) - r(AB).

解答. 显然所有满足 ABX = 0 的 BX 组成的集合 $V \in P^k$ 的一个线性子空间(对加法和数乘封闭). 接 下来说明其维数为 r(B) - r(AB):

记 $V_1 = \{X | BX = 0\}, \ V_2 = \{X | ABX = 0\}, \$ 显然 $V_1 \subseteq V_2, \$ 取 $V_1 \$ 的一组基 $\alpha_1, \ \alpha_2, \ \cdots, \ \alpha_r, \$ 扩为 $V_2 \$ 的 一组基, 设为 $\alpha_1, \dots, \alpha_r, \alpha_{r+1}, \dots, \alpha_s,$ 则 r = n - r(B), s = n - r(AB). 于是

$$V=\{BX|\ ABX=0\}=L(B\alpha_1,\cdots,B\alpha_r,B\alpha_{r+1},\cdots,B\alpha_s)=L(B\alpha_{r+1},\cdots,B\alpha_s).$$
下面证明 $B\alpha_{r+1},\cdots,B\alpha_s$ 线性无关: 若

$$k_{r+1}B\alpha_{r+1} + \dots + k_sB\alpha_s = 0.$$

则 $B(k_{r+1}\alpha_{r+1}+\cdots+k_s\alpha_s)=0$,即 $k_{r+1}\alpha_{r+1}+\cdots+k_s\alpha_s\in V_1$,从而可以由 V_1 的基 $\alpha_1,\ \alpha_2,\ \cdots,\ \alpha_r$ 线性 表出,设为

$$k_{r+1}\alpha_{r+1} + \cdots + k_s\alpha_s = k_1\alpha_1 + \cdots + k_r\alpha_r$$
.

即

$$k_1\alpha_1 + \dots + k_r\alpha_r - k_{r+1}\alpha_{r+1} - \dots - k_s\alpha_s = 0.$$

结合 $\alpha_1, \dots, \alpha_r, \alpha_{r+1}, \dots, \alpha_s$ 线性无关, 可知 $k_1 = k_2 = \dots = k_s = 0$, 所以 $B\alpha_{r+1}, \dots, B\alpha_s$ 线性无关. 从而 dim V = s - r = (n - r(AB)) - (n - r(B)) = r(B) - r(AB).

例题 28. 设 W 是实数域 \mathbb{R} 上 n 维线性空间 V 的子空间, \mathscr{A} 是 V 上的线性变换, 证明:

$$\dim W = \dim(W \cap \mathscr{A}^{-1}(0)) + \dim \mathscr{A}W.$$

解答. 首先注意到 $W \cap \mathcal{A}^{-1}(0)$ 为 W 的子空间, 设 $\dim(W \cap \mathcal{A}^{-1}(0)) = r$, $\dim W = s$, 且 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 为 $W \cap \mathscr{A}^{-1}(0)$ 的一组基,将其扩为W的一组基,记为 $\alpha_1,\cdots,\alpha_r,\alpha_{r+1},\cdots,\alpha_s$,由 $\mathscr{A}\alpha_i=0$ $(i=1,2,\cdots,r)$ 可知

$$\mathscr{A}W = L(\mathscr{A}\alpha_1, \cdots, \mathscr{A}\alpha_r, \mathscr{A}\alpha_{r+1}, \cdots, \mathscr{A}\alpha_s) = L(\mathscr{A}\alpha_{r+1}, \cdots, \mathscr{A}\alpha_s).$$

若实数 k_{r+1}, \dots, k_s 满足 $k_{r+1} \mathscr{A} \alpha_{r+1} + \dots + k_s \mathscr{A} \alpha_s = 0$, 则有

$$\mathscr{A}(k_{r+1}\alpha_{r+1} + \dots + k_s\alpha_s) = 0.$$

所以 $k_{r+1}\alpha_{r+1} + \cdots + k_s\alpha_s \in \mathcal{A}^{-1}(0) \cap W$, 进而存在实数 k_1, \cdots, k_r 使得

$$k_{r+1}\alpha_{r+1} + \cdots + k_s\alpha_s = k_1\alpha_1 + \cdots + k_r\alpha_r$$
.

即 $k_1\alpha_1 + \cdots + k_r\alpha_r - k_{r+1}\alpha_{r+1} - \cdots - k_s\alpha_s = 0$, 而 $\alpha_1, \cdots, \alpha_r, \alpha_{r+1}, \cdots, \alpha_s$ 线性无关, 所以

$$k_1 = k_2 = \dots = k_s = 0.$$

这说明 $\mathcal{A}\alpha_{r+1}, \cdots, \mathcal{A}\alpha_s$ 线性无关, 所以它们构成 $\mathcal{A}W$ 的一组基, 那么 $\dim \mathcal{A}W = s - r$, 所以

$$\dim W = \dim(W \cap \mathscr{A}^{-1}(0)) + \dim \mathscr{A}W.$$

3.13 覆盖定理

例题 29. 设 V_1, V_2, \dots, V_s 是实数域上线性空间 V 的 s 个真子空间, 证明: V 中至少有一个向量 v 不属于 V_1, V_2, \dots, V_s 中的任何一个.

解答. 数学归纳法. 当 s=1 时, 结论显然成立. 现在假设命题对 V 的 s-1 个真子空间成立, 那么对于 s 个空间 V_1,V_2,\cdots,V_s ,利用假设知存在向量 $\alpha\notin V_1\cup V_2\cup\cdots\cup V_{s-1}$,如果 $\alpha\notin V_s$,则结论已经成立. 若 $\alpha\in V_s$,由 V_s 为真子空间知存在 $\beta\notin V_s$,现在考虑向量组

$$\alpha + \beta$$
, $2\alpha + \beta$, \cdots , $s\alpha + \beta$. (11)

显然这些向量都不属于 V_s ,原因是若 $k\alpha+\beta\in V_s$,结合 $\alpha\in V_s$ 就可以得到 $\beta\in V_s$,矛盾. 同时这 s 个向量中,不可能存在两个向量同属于一个 V_i $(i=1,2,\cdots,s-1)$,原因是若 $k\alpha+\beta$ 与 $l\alpha+\beta$ $(k\neq l)$ 都属于 V_i ,则两个向量的差 $(k-l)\alpha\in V_i$,即 $\alpha\in V_i$,这与假设是矛盾的. 所以向量组 (11) 至少有一个向量(记为 $v=j\alpha+\beta$)不属于 V_1,V_2,\cdots,V_s 中的任何一个.

4. 矩阵

4.1 分块矩阵证明秩(不)等式

例题 30. 设 P 为数域, $f(x),g(x) \in P[x]$, 且 (f(x),g(x)) = 1, A 为数域 P 上的 n 阶方阵, 证明: f(A)g(A) = O 的充要条件是 r(f(A)) + r(g(A)) = n.

解答. 由于 (f(x), g(x)) = 1, 所以存在 $u(x), v(x) \in P[x]$, 使得 u(x)f(x) + v(x)g(x) = 1, 从而

$$u(A)f(A) + v(A)g(A) = E.$$

于是

$$\left(\begin{array}{cc} E & v(A) \\ O & E \end{array} \right) \left(\begin{array}{cc} f(A) & O \\ O & g(A) \end{array} \right) \left(\begin{array}{cc} E & u(A) \\ O & E \end{array} \right) = \left(\begin{array}{cc} f(A) & E \\ O & g(A) \end{array} \right).$$

而明显

$$\left(\begin{array}{cc} E & O \\ -q(A) & E \end{array}\right) \left(\begin{array}{cc} f(A) & E \\ O & q(A) \end{array}\right) \left(\begin{array}{cc} E & O \\ -f(A) & E \end{array}\right) = \left(\begin{array}{cc} O & E \\ -f(A)q(A) & O \end{array}\right).$$

上述两式说明

$$\begin{split} r(f(A)) + r(g(A)) &= r \left(\begin{array}{cc} f(A) & O \\ O & g(A) \end{array} \right) = r \left(\begin{array}{cc} f(A) & E \\ O & g(A) \end{array} \right) = r \left(\begin{array}{cc} O & E \\ -f(A)g(A) & O \end{array} \right) \\ &= r(E) + r(f(A)g(A)) = n + r(f(A)g(A)). \end{split}$$

于是 r(f(A)) + r(g(A)) = n 的充要条件为 r(f(A)g(A)) = 0, 而后者又等价于 f(A)g(A) = 0.

例题 31. 已知 A, B, C 分别是 $s \times m, m \times n, n \times k$ 的矩阵,则

$$r(ABC) \ge r(AB) + r(BC) - r(B)$$
.

解答. 对分块矩阵 $\begin{pmatrix} ABC & O \\ O & B \end{pmatrix}$ 进行广义初等变换, 有

$$\begin{pmatrix} E_s & -A \\ O & E_m \end{pmatrix} \begin{pmatrix} ABC & O \\ O & B \end{pmatrix} \begin{pmatrix} E_k & O \\ C & E_n \end{pmatrix} = \begin{pmatrix} O & -AB \\ BC & B \end{pmatrix}.$$

由于

$$r(ABC) + r(B) = r \begin{pmatrix} ABC & O \\ O & B \end{pmatrix} = r \begin{pmatrix} O & -AB \\ BC & B \end{pmatrix} \ge r(AB) + r(BC).$$

所以 $r(ABC) \ge r(AB) + r(BC) - r(B)$.

4.2 求与一个矩阵可交换的矩阵全体

例题 32. 已知矩阵

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

- (1) 求所有与 A 可交换的矩阵;
- (2) 若 $AB + E = A^2 + B$, 求 B.

解答. (1) 不妨设 $B = (b_{ij})_{3\times 3}$ 与矩阵 A 可交换, 即 AB = BA, 这等价于 (A - E)B = B(A - E), 即

$$\begin{pmatrix} & & 1 \\ & 1 & \\ 1 & & \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} \begin{pmatrix} & & 1 \\ & 1 & \\ & 1 & \\ \end{pmatrix}$$

于是

$$\begin{pmatrix} b_{31} & b_{32} & b_{33} \\ b_{21} & b_{22} & b_{23} \\ b_{11} & b_{12} & b_{13} \end{pmatrix} = \begin{pmatrix} b_{13} & b_{12} & b_{11} \\ b_{23} & b_{22} & b_{21} \\ b_{33} & b_{32} & b_{31} \end{pmatrix}.$$

由对应元素相等可得 $b_{13}=b_{31},\ b_{32}=b_{12},\ b_{33}=b_{11},\ b_{21}=b_{23},$ 即所有与 A 可交换的矩阵为

$$B = \left(\begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{21} \\ b_{13} & b_{12} & b_{11} \end{array}\right).$$

其中 $b_{11}, b_{12}, b_{13}, b_{21}, b_{22}$ 为任意常数.

(2) 由于 $AB + E = A^2 + B$, 所以

$$(A - E)B = A^2 - E = (A - E)(A + E).$$

又由于 $|A - E| = -1 \neq 0$, 所以 A - E 可逆, 进而

$$B = A + E = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

4.3 逆矩阵的分式思想

例题 33. 设 A,B 分别是 $n \times m$ 和 $m \times n$ 的矩阵, 且 $E_n - AB$ 可逆, 证明 $E_m - BA$ 也可逆, 并求它的逆.

分析, 利用幂级数展开法

$$(E_m - BA)^{-1} = \frac{E_m}{E_m - BA} = E_m + (BA) + (BA)^2 + (BA)^3 + \cdots$$

$$= E_m + B(E_n + AB + (AB)^2 + \cdots)A$$

$$= E_m + B\frac{E_n}{E_n - AB}A$$

$$= E_m + B(E_n - AB)^{-1}A.$$

解答. 耍赖法: 由于

$$(E_m + B(E_n - AB)^{-1}A)(E_m - BA)$$

$$= (E_m - BA) + B(E_n - AB)^{-1}A(E_m - BA)$$

$$= (E_m - BA) + B(E_n - AB)^{-1}(A - ABA)$$

$$= (E_m - BA) + B(E_n - AB)^{-1}(E_n - AB)A$$

$$= E_m - BA + BA = E_m.$$

所以 $E_m - BA$ 可逆, 并且 $(E_m - BA)^{-1} = E_m + B(E_n - AB)^{-1}A$.

4.4 利用分块矩阵求逆矩阵

例题 34. 设数域
$$P$$
 上的矩阵 $A=\left(egin{array}{cccc}2&0&2&0\\1&7&1&7\\2&0&-2&0\\1&6&-1&-6\end{array}\right),\; 求\; A^{-1}.$

解答. 首先记

$$B = \begin{pmatrix} 2 & 0 \\ 1 & 7 \end{pmatrix}, C = \begin{pmatrix} -2 & 0 \\ -1 & -6 \end{pmatrix}.$$

显然 B, C 可逆, 并且

$$B^{-1} = \frac{1}{14} \begin{pmatrix} 7 & 0 \\ -1 & 2 \end{pmatrix}, C^{-1} = \frac{1}{12} \begin{pmatrix} -6 & 0 \\ 1 & -2 \end{pmatrix}, A = \begin{pmatrix} B & B \\ -C & C \end{pmatrix}.$$

由于

$$\left(\begin{array}{cc} B & B \\ -C & C \end{array}\right) \left(\begin{array}{cc} E & -E \\ O & E \end{array}\right) \left(\begin{array}{cc} E & O \\ \frac{1}{2}E & E \end{array}\right) = \left(\begin{array}{cc} B & O \\ O & 2C \end{array}\right).$$

上式两端取逆便有

有
$$A^{-1} = \begin{pmatrix} B & B \\ -C & C \end{pmatrix}^{-1} = \begin{pmatrix} E & -E \\ O & E \end{pmatrix} \begin{pmatrix} E & O \\ \frac{1}{2}E & E \end{pmatrix} \begin{pmatrix} B^{-1} & O \\ O & \frac{1}{2}C^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} E & -E \\ O & E \end{pmatrix} \begin{pmatrix} B^{-1} & O \\ \frac{1}{2}B^{-1} & \frac{1}{2}C^{-1} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}B^{-1} & -\frac{1}{2}C^{-1} \\ \frac{1}{2}B^{-1} & \frac{1}{2}C^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{4} & 0 & \frac{1}{4} & 0 \\ -\frac{1}{28} & \frac{1}{14} & -\frac{1}{24} & \frac{1}{12} \\ \frac{1}{4} & 0 & -\frac{1}{4} & 0 \\ -\frac{1}{28} & \frac{1}{14} & \frac{1}{24} & -\frac{1}{12} \end{pmatrix}.$$

4.5 分块矩阵初等变换的应用(打洞原理)

例题 35. 已知n 级方阵A 的所有顺序主子式非零,证明存在n 级下三角矩阵B 使得BA 为上三角矩阵.

解答. 对级数 n 做数学归纳法. n=1 是显然的.

设命题对 n-1 级矩阵成立, 当 A 是 n 级矩阵时, 我们可以分块设 $A=\begin{pmatrix}A_1&\alpha\\\beta'&a_{nn}\end{pmatrix}$, 这样分块后, 显然 A_1 的顺序主子式都是 A 的顺序主子式, 所以非零, 可以利用归纳假设: 存在 n-1 级的下三角矩阵 B_1 使得 B_1A_1 为上三角矩阵. 同时, 由于 $|A_1|\neq 0$, 所以 A_1 可逆, 这样可以对 A 通过行变换干掉 β' , 具体为

$$\begin{pmatrix} E_{n-1} & 0 \\ -\beta' A_1^{-1} & 1 \end{pmatrix} \begin{pmatrix} A_1 & \alpha \\ \beta' & a_{nn} \end{pmatrix} = \begin{pmatrix} A_1 & \alpha \\ 0 & a_{nn} - \beta' A^{-1} \alpha \end{pmatrix}.$$

再结合 B_1A_1 为上三角, 那么

$$\begin{pmatrix} B_1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A_1 & \alpha \\ 0 & a_{nn} - \beta' A^{-1} \alpha \end{pmatrix} = \begin{pmatrix} B_1 A_1 & B_1 \alpha \\ 0 & a_{nn} - \beta' A^{-1} \alpha \end{pmatrix}$$

是一个上三角矩阵, 两次运算结合起来, 记

$$B = \begin{pmatrix} B_1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} E_{n-1} & 0 \\ -\beta' A_1^{-1} & 1 \end{pmatrix} = \begin{pmatrix} B_1 & 0 \\ -\beta' A_1^{-1} & 1 \end{pmatrix}.$$

则显然 B 是一个下三角矩阵, 使得 BA 为上三角矩阵.

4.6 等价标准形求解矩阵方程

例题 36. 已知 A 是一个秩为 r 的 $s \times n$ 矩阵, 求矩阵方程 AXA = A 的通解.

解答. 由于 r(A) = r, 所以存在可逆矩阵 P, Q 使得 $A = P\begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$ Q, 代入到 AXA = A 就有

$$P\left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right)QXP\left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right)Q=P\left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right)Q.$$

消去 P, Q 就有

$$\left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right) QXP \left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right) = \left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right).$$

现在对 QXP 分块, 设 $QXP = \begin{pmatrix} H & B \\ C & D \end{pmatrix}$, 代入上式就有

$$\left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right) \left(\begin{array}{cc} H & B \\ C & D \end{array}\right) \left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right) = \left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right).$$

化简即得

$$\begin{pmatrix} H & O \\ O & O \end{pmatrix} = \begin{pmatrix} E_r & O \\ O & O \end{pmatrix}.$$

从而得到 $H = E_r$, 而 B, C, D 可以任意取, 所以 $QXP = \begin{pmatrix} E_r & B \\ C & D \end{pmatrix}$, 解出 X 就有

$$X = Q^{-1} \left(\begin{array}{cc} E_r & B \\ C & D \end{array} \right) P^{-1}.$$

其中 B, C, D 分别是任意的 $r \times (s-r)$, $(n-r) \times r$, $(n-r) \times (s-r)$ 矩阵.

4.7 矩阵方程与矩阵的秩

例题 37. 设 A, B, C 分别为数域 P 上的 $m \times n$, $p \times q$, $m \times q$ 矩阵, 证明: 矩阵方程 AX - YB = C 有解的充要条件是

$$r\left(\begin{array}{cc}A & O\\O & B\end{array}\right) = r\left(\begin{array}{cc}A & C\\O & B\end{array}\right).$$

解答. 充分性. 不妨设 X_0 , Y_0 为 AX - YB = C 的解, 则根据矩阵的分块乘法就有

$$\begin{pmatrix} E_m & -Y_0 \\ O & E_p \end{pmatrix} \begin{pmatrix} A & O \\ O & B \end{pmatrix} \begin{pmatrix} E_n & X_0 \\ O & E_q \end{pmatrix} = \begin{pmatrix} A & AX_0 - Y_0B \\ O & B \end{pmatrix} = \begin{pmatrix} A & C \\ O & B \end{pmatrix}.$$

这说明

$$r\left(\begin{array}{cc} A & O \\ O & B \end{array}\right) = r\left(\begin{array}{cc} A & C \\ O & B \end{array}\right).$$

必要性. 首先设 r(A) = s, r(B) = t, 则

$$r \left(\begin{array}{cc} A & O \\ O & B \end{array} \right) = r \left(\begin{array}{cc} A & C \\ O & B \end{array} \right) = s + t.$$

且存在可逆矩阵 P_1, P_2, Q_1, Q_2 (其中 P_1, Q_1 分别为 m 阶, n 阶, P_2, Q_2 分别为 p 阶, q 阶), 使得

$$P_1AQ_1 = \begin{pmatrix} E_s & O \\ O & O \end{pmatrix}, P_2BQ_2 = \begin{pmatrix} E_t & O \\ O & O \end{pmatrix}$$

于是

$$\begin{pmatrix} P_1 & O \\ O & P_2 \end{pmatrix} \begin{pmatrix} A & C \\ O & B \end{pmatrix} \begin{pmatrix} Q_1 & O \\ O & Q_2 \end{pmatrix} = \begin{pmatrix} P_1 A Q_1 & P_1 C Q_2 \\ O & P_2 B Q_2 \end{pmatrix} = \begin{pmatrix} E_s & O & C_{11} & C_{12} \\ O & O & C_{21} & C_{22} \\ O & O & E_t & O \\ O & O & O & O \end{pmatrix}.$$

其中
$$P_1CQ_2 = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$
, 取 $R_1 = \begin{pmatrix} C_{11} & O \\ C_{21} & O \end{pmatrix}$, $R_2 = \begin{pmatrix} O & C_{12} \\ O & O \end{pmatrix}$, 则有

$$\begin{pmatrix}
E_{m} & -R_{1} \\
O & E_{p}
\end{pmatrix}
\begin{pmatrix}
P_{1} & O \\
O & P_{2}
\end{pmatrix}
\begin{pmatrix}
A & C \\
O & B
\end{pmatrix}
\begin{pmatrix}
Q_{1} & O \\
O & Q_{2}
\end{pmatrix}
\begin{pmatrix}
E_{n} & -R_{2} \\
O & E_{q}
\end{pmatrix}
=
\begin{pmatrix}
E_{s} & O & O & O \\
O & O & O & C_{22} \\
O & O & E_{t} & O \\
O & O & O & O
\end{pmatrix}. (12)$$

再结合

$$r\begin{pmatrix} A & C \\ O & B \end{pmatrix} = r(E_s) + r(E_t) + r(C_{22}) = s + t$$

可知 $C_{22} = O$, 于是 (12) 式右端为 $\begin{pmatrix} P_1AQ_1 & O \\ O & P_2BQ_2 \end{pmatrix}$, 解得

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} = \begin{pmatrix} P_1^{-1} & O \\ O & P_2^{-1} \end{pmatrix} \begin{pmatrix} E_m & R_1 \\ O & E_p \end{pmatrix} \begin{pmatrix} P_1 A Q_1 & O \\ O & P_2 B Q_2 \end{pmatrix} \begin{pmatrix} E_n & R_2 \\ O & E_q \end{pmatrix} \begin{pmatrix} Q_1^{-1} & O \\ O & Q_2^{-1} \end{pmatrix}.$$

化简得

$$C = A(Q_1 R_2 Q_2^{-1}) + (P_1^{-1} R_1 P_2) B.$$

即 $X = Q_1 R_2 Q_2^{-1}$, $Y = -P_1^{-1} R_1 P_2$ 为 AX - YB = C 的解.

4.8 矩阵的迹与幂零矩阵

例题 38. 设 n 阶复方阵 A, B 满足 AB - BA = A, 证明:

- (1) $A^k B B A^k = k A^k$ 对任意的正整数 k 都成立;
- (2) A 是幂零矩阵, 即存在正整数 m, 使得 $A^m = O$;
- (3) A, B 有公共的特征向量.

解答. (1) 数学归纳法. 当 k=1 时, 有 AB-BA=A. 现在设命题对正整数 k 成立, 即 $A^kB-BA^k=kA^k$, 则

$$A^{k+1}B - BA^{k+1} = A(BA^k + kA^k) - BA^{k+1} = ABA^k + kA^{k+1} - BA^{k+1}$$
$$= (BA + A)A^k + kA^{k+1} - BA^{k+1} = (k+1)A^{k+1}.$$

即命题对 k+1 也成立.

(2) 由(1) 可知

$$\operatorname{tr}(kA^k) = \operatorname{tr}(A^kB - BA^k) = \operatorname{tr}(A^kB) - \operatorname{tr}(BA^k) = 0, \ k = 1, 2, \dots, n.$$

即 $tr(A^k) = 0$ $(k = 1, 2, \dots, n)$. 现在设 A 的 n 个特征值为 λ_i $(i = 1, 2, \dots, n)$, 则

$$\operatorname{tr}(A^k) = \sum_{i=1}^n \lambda_i^k = 0, \ k = 1, 2, \dots, n.$$

若 A 的特征值不全为零, 可设 $\mu_1, \mu_2, \cdots, \mu_s$ 为 A 的全部互异非零特征值, 其重数分别为 k_1, k_2, \cdots, k_s , 由上 式可知

$$\sum_{i=1}^{s} k_i \mu_i^k = 0, \ k = 1, 2, \cdots, s.$$

将此看作关于 k_1, k_2, \cdots, k_s 的线性方程组, 其系数行列式为

$$\begin{vmatrix} \mu_1 & \mu_2 & \cdots & \mu_s \\ \mu_1^2 & \mu_2^2 & \cdots & \mu_s^2 \\ \vdots & \vdots & & \vdots \\ \mu_1^s & \mu_2^s & \cdots & \mu_s^s \end{vmatrix} = \mu_1 \mu_2 \cdots \mu_s \prod_{1 \le j < i \le s} (\mu_i - \mu_j) \ne 0.$$

故应有 $k_1 = k_2 = \cdots = k_s = 0$, 这与 k_1, k_2, \cdots, k_s 为正整数矛盾. 所以 A 的特征值均为零, 进而 λ^n 为其特 征值多项式, 由哈密顿-凯莱定理便知 $A^n = O$, 即 A 为幂零矩阵.

(3) 任取复数域上的 n 维线性空间 V, 设 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 为 V 的一组基, 定义 V 上的线性变换 \mathscr{A} , \mathscr{B} , 使 得其在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的矩阵分别为 $A, B, M \mathscr{AB} - \mathscr{BA} = \mathscr{A}, \pm 0$ 为 \mathscr{A} 的特征值, 现在考虑 \mathscr{A} 的属 于特征值 0 的特征值子空间 V_0 , 对任意的 $\alpha \in V_0$, 有 $\mathcal{A}\alpha = 0$, 进而

$$\mathscr{A}\mathscr{B}\alpha=\mathscr{B}\mathscr{A}\alpha+\mathscr{A}\alpha=0.$$

这说明 $\mathcal{B}\alpha \in V_0$, 所以 V_0 为 \mathcal{B} 的不变子空间, 而在复数域上, $\mathcal{B}V_0$ 作为 V_0 上的线性变换显然存在特征值 与特征向量, 不妨设非零向量 $\xi \in V_0$ 满足 $\mathcal{B}\xi = \mu\xi$, 而明显 $\mathcal{A}\xi = 0$, 所以 ξ 为 \mathcal{A} , \mathcal{B} 的公共的特征向量. 特 别地, 记 ξ 在基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 下的坐标为 $X \in \mathbb{C}^n$, 则 X 就是矩阵 A, B 的公共的特征向量.

5. 矩阵的进一步讨论——相似与合同 实对称矩阵正交相似于对角矩阵

例题 39. 已知 5 阶矩阵

$$A = \left(\begin{array}{ccccc} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{array}\right).$$

求正交矩阵 P, 使得 $P^{-1}AP$ 为对角阵.

解答. 首先求 A 的特征值, 由于

$$|\lambda E - A| = \begin{vmatrix} \lambda & -1 & -1 & -1 & -1 \\ -1 & \lambda & -1 & -1 & -1 \\ -1 & -1 & \lambda & -1 & -1 \end{vmatrix} = \begin{vmatrix} \lambda - 4 & -1 & -1 & -1 & -1 \\ \lambda - 4 & \lambda & -1 & -1 & -1 \\ \lambda - 4 & \lambda & -1 & -1 & -1 \\ \lambda - 4 & -1 & \lambda & -1 & -1 \\ \lambda - 4 & -1 & \lambda & -1 & -1 \\ \lambda - 4 & -1 & -1 & \lambda & -1 \\ \lambda - 4 & -$$

所以 A 的特征值为 -1 (4 重), 4 (1 重).

对于特征值 -1, 考虑方程组 (A+E)X=0, 先将 A+E 通过初等行变换化为阶梯形, 有

由此可知

$$\alpha_1 = (-1, 1, 0, 0, 0)', \ \alpha_2 = (-1, 0, 1, 0, 0)', \ \alpha_3 = (-1, 0, 0, 1, 0)', \ \alpha_4 = (-1, 0, 0, 0, 1)'$$

就是 A 的属于特征值 -1 的线性无关的特征向量, 现在将它们施密特正交化: 记

$$\begin{cases} \beta_1 = \alpha_1 = (-1, 1, 0, 0, 0)' \\ \beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \left(-\frac{1}{2}, -\frac{1}{2}, 1, 0, 0\right)' \\ \beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 = \left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 1, 0\right)' \\ \beta_4 = \alpha_4 - \frac{(\alpha_4, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_4, \beta_2)}{(\beta_2, \beta_2)} \beta_2 - \frac{(\alpha_4, \beta_3)}{(\beta_3, \beta_3)} \beta_3 = \left(-\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, 1\right)'. \end{cases}$$

再记

$$\begin{cases} \eta_1 = \frac{\beta_1}{|\beta_1|} = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0, 0\right)'; \\ \eta_2 = \frac{\beta_2}{|\beta_2|} = \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0, 0\right)'; \\ \eta_3 = \frac{\beta_3}{|\beta_3|} = \left(-\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, -\frac{1}{2\sqrt{3}}, \frac{\sqrt{3}}{2}, 0\right)'; \\ \eta_4 = \frac{\beta_4}{|\beta_4|} = \left(-\frac{1}{2\sqrt{5}}, -\frac{1}{2\sqrt{5}}, -\frac{1}{2\sqrt{5}}, -\frac{1}{2\sqrt{5}}, \frac{2}{\sqrt{5}}\right)'. \end{cases}$$

则 $\eta_1, \eta_2, \eta_3, \eta_4$ 就是 A 的属于特征值 -1 的单位正交的特征向量.

对于特征值 4, 注意到 A 的每行元素之和均为 4, 所以取 $\alpha_5=(1,1,1,1,1)'$, 便有 $A\alpha_5=4\alpha_5$, 于是

$$\eta_5 = \frac{\alpha_5}{|\alpha_5|} = \left(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)'$$

就是 A 的属于特征值 4 的单位特征向量.

现在记

$$P = (\eta_1, \eta_2, \eta_3, \eta_4, \eta_5) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} & -\frac{1}{2\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2\sqrt{5}} & \frac{1}{\sqrt{5}} \\ 0 & 0 & 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}.$$

则 P 为正交矩阵, 且

$$P^{-1}AP = \begin{pmatrix} -1 & 0 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0\\ 0 & 0 & -1 & 0 & 0\\ 0 & 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

为对角矩阵.

例题 40. 已知 A 为 4 阶实对称矩阵, 其特征值为 3,3,3,7, 且 (1,-1,-1,1)' 为特征值 7 的特征向量, 求矩阵 A.

解答. 将 (1,-1,-1,1)' 单位化,记为 $\eta_1 = \left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right)'$,则 η_1 为矩阵 A 的属于特征值 7 的单位特征向量. 于是存在第一列为 η_1 的正交矩阵 $T = (\eta_1,\eta_2,\eta_3,\eta_4)$,使得

$$T^{-1}AT = \text{diag}\{7, 3, 3, 3\}.$$

即有

$$A = T\operatorname{diag}\{7, 3, 3, 3\}T' = 7\eta_1\eta_1' + 3\eta_2\eta_2' + 3\eta_3\eta_3' + 3\eta_4\eta_4'.$$

由于 T 为正交矩阵, 所以

$$TT' = \begin{pmatrix} \eta_1 & \eta_2 & \eta_3 & \eta_4 \end{pmatrix} \begin{pmatrix} \eta_1' \\ \eta_2' \\ \eta_3' \\ \eta_4' \end{pmatrix} = \eta_1 \eta_1' + \eta_2 \eta_2' + \eta_3 \eta_3' + \eta_4 \eta_4' = E.$$

从而

$$\eta_2 \eta_2' + \eta_3 \eta_3' + \eta_4 \eta_4' = E - \eta_1 \eta_1' = E - \begin{pmatrix} \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{3}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{pmatrix}.$$

进而

$$A = 7\eta_1\eta_1' + 3(\eta_2\eta_2' + \eta_3\eta_3' + \eta_4\eta_4')$$

$$= \begin{pmatrix} \frac{7}{4} & -\frac{7}{4} & -\frac{7}{4} & \frac{7}{4} \\ -\frac{7}{4} & \frac{7}{4} & \frac{7}{4} & -\frac{7}{4} \\ -\frac{7}{4} & \frac{7}{4} & \frac{7}{4} & -\frac{7}{4} \\ \frac{7}{4} & -\frac{7}{4} & -\frac{7}{4} & \frac{7}{4} \end{pmatrix} + \begin{pmatrix} \frac{9}{4} & \frac{3}{4} & \frac{3}{4} & -\frac{3}{4} \\ \frac{3}{4} & \frac{9}{4} & -\frac{3}{4} & \frac{3}{4} \\ \frac{3}{4} & -\frac{3}{4} & \frac{9}{4} & \frac{3}{4} \\ \frac{3}{4} & -\frac{3}{4} & \frac{9}{4} & \frac{3}{4} \end{pmatrix}$$

$$= \begin{pmatrix} 4 & -1 & -1 & 1 \\ -1 & 4 & 1 & -1 \\ -1 & 1 & 4 & -1 \\ 1 & -1 & -1 & 4 \end{pmatrix}.$$

5.2 二次型的取值范围

例题 41. 设 n 级实对称矩阵 A 的全部特征值按大小顺序排列成 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, 证明:

$$\max_{X\in\mathbb{R}^n,X\neq 0}\frac{X'AX}{X'X}=\lambda_1,\ \min_{X\in\mathbb{R}^n,X\neq 0}\frac{X'AX}{X'X}=\lambda_n.$$

解答. 方法一. 由于 A 实对称, 所以存在正交矩阵 T 使得

$$A = T' \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}T.$$

 $\Leftrightarrow TX = Y = (y_1, y_2, \cdots, y_n)', \ \mathbb{N}$

$$X'AX = Y'\operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}Y = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$$

同时由于 Y'Y = (TX)'TX = X'X, 且 $X \neq 0$ 时, 有 $Y'Y = X'X = y_1^2 + y_2^2 + \dots + y_n^2 > 0$, 所以

$$\lambda_n(y_1^2 + y_2^2 + \dots + y_n^2) \le \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2 \le \lambda_1 (y_1^2 + y_2^2 + \dots + y_n^2).$$

即

$$\max_{X \in \mathbb{R}^n, X \neq 0} \frac{X'AX}{X'X} = \lambda_1, \ \min_{X \in \mathbb{R}^n, X \neq 0} \frac{X'AX}{X'X} = \lambda_n.$$

特别地, 取 $Y = \varepsilon_1$, 即 $X = T\varepsilon_1$, 有 $\frac{X'AX}{X'X} = \lambda_1$; 取 $Y = \varepsilon_n$, 即 $X = T\varepsilon_n$, 有 $\frac{X'AX}{X'X} = \lambda_n$. 方法二. 由于 λ_1 是实对称矩阵 A 的最大特征值,于是 $\lambda_1 E - A$ 是非正定的半正定矩阵,从而对任意的 $X \neq 0$,有 $X'(\lambda_1 E - A)X \geq 0$,即 $\frac{X'AX}{X'X} \leq \lambda_1$,同时, $\lambda_1 E - A$ 是非正定的半正定矩阵,所以存在非零的 X,使得 $X'(\lambda_1 E - A)X = 0$,即 $\frac{X'AX}{X'X} = \lambda_1$,这说明 $\max_{X \in \mathbb{R}^n, X \neq 0} \frac{X'AX}{X'X} = \lambda_1$.

同理, 根据
$$A - \lambda_n E$$
 是非正定的半正定矩阵, 可知 $\min_{X \in \mathbb{R}^n, X \neq 0} \frac{X'AX}{X'X} = \lambda_n$.

特征值在二次型中的应用 5.3

例题 42. 设 A 为 n 级实矩阵, 若对任何 n 维非零列向量 X, 都有 X'AX > 0, 求证 |A| > 0.

解答. 利用 |A| 等于所有特征值之积. 而对于实矩阵, 其虚特征值成对出现, 所以虚特征值之积一定为正 实数. 下面说明 A 的实特征值皆大于零:

若 A 有实特征值, 设为 λ_0 , 且对应的一个实特征向量为 $X_0 \neq 0$, 即 $AX_0 = \lambda X_0$, 此时有

$$X_0'AX_0 = \lambda_0 X_0'X_0.$$

由条件可知 $X_0'AX_0 > 0$, 而显然 $X_0'X_0 > 0$, 于是 $\lambda_0 > 0$. 综上可知 |A| > 0.

利用特征值证明矩阵正定

例题 43. 已知 A, C 为 n 级正定矩阵, 且矩阵方程 AX + XA = C 有唯一解 B, 证明 B 也是正定矩阵.

解答. 首先说明 B 为实对称矩阵: 由 AB + BA = C 及 A, C 的对称性可知 AB' + B'A = C, 即 B' 也是 AX + XA = C 的解, 再由解的唯一性可知 B = B', 因此矩阵 B 为实对称矩阵.

下证 B 的特征值都大于零: 任取 B 的实特征值 λ , 设其对应的实特征向量为 α , 即 $B\alpha = \lambda\alpha$, 于是 $\alpha'B = \lambda \alpha'$. 再由 AB + BA 的正定性可知

$$\alpha'(AB + BA)\alpha = 2\lambda\alpha'A\alpha > 0.$$

再根据 A 的正定性可知 $\alpha' A \alpha > 0$, 于是 $\lambda > 0$, 这说明 B 为正定矩阵.

5.5矩阵相似中的数学归纳法

例题 44. 证明: n 级实矩阵 A 正交相似于一个上三角矩阵的充要条件为 A 的特征值都是实数.

解答. 必要性. 显然, 设 A 正交相似于一个上三角矩阵 $B = (b_{ij})$, 则 B 的所有元素都是实数. 由于相似 的矩阵有相同的特征多项式, 所以

$$|\lambda E - A| = |\lambda E - B| = (\lambda - b_{11})(\lambda - b_{22}) \cdots (\lambda - b_{nn}).$$

这说明 A 的所有特征值为 $b_{11}, b_{22}, \cdots, b_{nn}$, 它们都是实数.

充分性. 依旧数学归纳法. n=1 是显然的. 假设命题对 n-1 级矩阵成立, 现在考虑 A 是 n 级矩阵的情 况:

由于 A 的所有特征值都是实数, 我们任取其中一个实特征值, 设为 λ_1 , 设 η_1 是 A 的属于特征值 λ_1 的单 位特征向量, 现在把 η_1 扩为 \mathbb{R}^n 的一组标准正交基, 设为 $\eta_1, \eta_2, \cdots, \eta_n$, 记 $T_1 = (\eta_1, \eta_2, \cdots, \eta_n)$, 则 T_1 是正 交矩阵, 且有

$$T_1'AT_1 = \left(\begin{array}{cc} \lambda_1 & \alpha' \\ 0 & A_{n-1} \end{array}\right).$$

显然, A_{n-1} 的特征值都是 A 的特征值,所以 A_{n-1} 的特征值都是实数,由归纳假设知道存在 n-1 级正交矩阵 T_2 使得 $T_2'A_{n-1}T_2$ 为上三角矩阵. 现在取 $T_3=\begin{pmatrix}1&0\\0&T_2\end{pmatrix}$,则 T_3 也是正交矩阵,记 $T=T_1T_3$,则 T 也是一个正交矩阵,且

$$T'AT = T_3'T_1'AT_1T_3 = \begin{pmatrix} \lambda_1 & \alpha'T_2 \\ 0 & T_2'A_{n-1}T_2 \end{pmatrix}$$

是一个上三角矩阵.

5.6 矩阵合同中的数学归纳法(打洞原理)

例题 45. 设 A 是数域 P 上的一个反称矩阵, 则 A 合同于准对角矩阵

$$\operatorname{diag}\left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \cdots, \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), 0, \cdots, 0 \right\}.$$

解答. 数学归纳法. 当 n=1 时,A=0,命题显然成立;当 n=2 时,可设 $A=\begin{pmatrix}0&a\\a&0\end{pmatrix}$,若 a=0,则结论也成立,若 $a\neq0$,则将 A 的第一行与第一节均乘以 $\frac{1}{a}$,即得 $A\simeq\begin{pmatrix}0&1\\1&0\end{pmatrix}$,所以此时命题也成立. 接下来设命题对级数小于等于 n-1 $(n\geq3)$ 的反称矩阵成立,现在考虑 n 级反称矩阵 $A=(a_{ij})$ 的情况:

(i) 若 $a_{12} \neq 0$, 则将 A 做如下分块

$$A = \left(\begin{array}{cc} A_1 & A_2 \\ -A_2' & A_4 \end{array}\right).$$

其中 $A_1 = \begin{pmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{pmatrix}$,显然 A_1 可逆, 所以取 $P = \begin{pmatrix} E_2 & A_1^{-1}A_2 \\ O & E_{n-2} \end{pmatrix}$,就有

$$P'AP = \begin{pmatrix} A_1 & O \\ O & A_4 + A_2' A_1^{-1} A_2 \end{pmatrix}.$$

根据 n=2 的情况可知矩阵 $A_1\simeq\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,而显然 $A_4+A_2'A_1^{-1}A_2$ 为 n-2 级反称矩阵,所以由归纳假设可知

$$A_4 + A_2' A_1^{-1} A_2 \simeq \operatorname{diag} \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 0, \cdots, 0 \right\}.$$

从而

$$A \simeq P'AP \simeq \operatorname{diag} \left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \cdots, \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), 0, \cdots, 0 \right\}.$$

(ii) 若 $a_{12}=0$, 但存在 $a_{1j}\neq 0$ ($3\leq j\leq n$), 此时可以将 A 的第 j 列加到第 2 列, 将第 j 行加到第 2 行, 这就将 A 通过合同的方式转化为了 (i), 于是命题也成立.

(iii) 若 $a_{11}=a_{12}=\cdots=a_{1n}=0$,那么 $A=\begin{pmatrix}0&0\\0&A_{n-1}\end{pmatrix}$,其中 A_{n-1} 为 n-1 级反称矩阵. 先取分块 初等矩阵 $Q=\begin{pmatrix}1\\E_{n-1}\end{pmatrix}$,有

$$Q'AQ = \left(\begin{array}{cc} A_{n-1} & \\ & 0 \end{array}\right).$$

而根据归纳假设可知

$$A_{n-1} \simeq \operatorname{diag} \left\{ \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \cdots, \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), 0, \cdots, 0 \right\}.$$

所以

$$A \simeq Q'AQ \simeq \operatorname{diag} \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \cdots, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 0, \cdots, 0 \right\}.$$

5.7 二次型的惯性定理与符号差

例题 46. 设 n 元二次型 f(X)=X'AX 的矩阵 A 可逆, 且 $x_{k+1}=\cdots=x_n=0$ 时, f(X)=0, 其中 $k \leq \frac{n}{2}$, 证明二次型 f(X) 的符号差 t 满足 $|t| \leq n - 2k$.

解答. 由于 A 可逆, 所以设二次型 f(X) 经过非退化线性替换 X = CY 变为

$$f(X) = f(CY) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_n^2$$

则 t = p - (n - p) = 2p - n, 则 $|t| \le n - 2k$ 等价于 $-n + 2k \le 2p - n \le n - 2k$, 即 $k \le p \le n - k$.

先取 $y_1 = \cdots = y_p = x_{k+1} = \cdots = x_n = 0$, 这是关于 x_1, \cdots, x_n 的方程组, 当方程个数 p + (n - k) < n, 即 p < k 时, 方程组有非零解, 设为 X_0 , 则 $Y_0 = C^{-1}X_0$ 非零, 即 y_{p+1}, \cdots, y_n 不全为零, 所以 $0 = f(X_0) =$ $f(CY_0) = -y_{n+1}^2 - \dots - y_n^2 < 0$, 这就得到了矛盾, 所以应有 $p \ge k$.

同理,
$$p < n - k$$
.

例题 47. 证明: 若一个 $n (n \ge 2)$ 元非零实二次型可以分解成两个实系数的一次齐次多项式的乘积, 则 它的秩等于2且符号差等于0,或者秩等于1.

解答. 不妨设二次型

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n a_i x_i \sum_{i=1}^n b_i x_i.$$

其中 a_1, a_2, \dots, a_n 与 b_1, b_2, \dots, b_n 均不全为零.

(i) 若 (a_1, a_2, \dots, a_n) 与 (b_1, b_2, \dots, b_n) 线性相关,则存在常数 $k \neq 0$, 使得 $b_i = ka_i$ $(i = 1, 2, \dots, n)$,则 此时有

$$f(x_1, x_2, \dots, x_n) = k(a_1x_1 + a_2x_2 + \dots + a_nx_n)^2$$
.

由于 a_1, a_2, \dots, a_n 不全为零, 不妨设 $a_1 \neq 0$, 那么作线性替换

$$\begin{cases} y_1 = a_1 x_1 + a_2 x_2 + \dots + a_n x_n; \\ y_i = x_i \ (i = 2, 3, \dots, n). \end{cases}$$

易知上述线性替换非退化,且在此替换下,有

$$f(x_1, x_2, \cdots, x_n) = ky_1^2.$$

易知上述线性替换非退化,且在此替换下,有
$$f(x_1,x_2,\cdots,x_n)=ky_1^2.$$
 这说明 f 的秩为 1 .
$$(ii) 若 (a_1,a_2,\cdots,a_n) 与 (b_1,b_2,\cdots,b_n) 线性无关,则矩阵 $\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$ 的秩为 2 ,从而一定存在一个二阶的非零子式,不妨设 $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \neq 0$,此时作线性替换
$$\begin{cases} a_1x_1+a_2x_2+\cdots+a_nx_n=z_1+z_2; \end{cases}$$$$

$$\begin{cases} a_1x_1 + a_2x_2 + \dots + a_nx_n = z_1 + z_2; \\ b_1x_1 + b_2x_2 + \dots + b_nx_n = z_1 - z_2; \\ x_i = z_i, \ (i = 3, 4, \dots, n). \end{cases}$$

易知上述线性替换非退化, 且在此替换下, 有

$$f(x_1, x_2, \dots, x_n) = (z_1 + z_2)(z_1 - z_2) = z_1^2 - z_2^2$$

这说明 f 的秩为 2 且符号差为 0.

5.8 可对角化的证明

例题 48. 已知矩阵

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ a_1 & b & 2 & 0 \\ a_2 & b_1 & c & 2 \end{array}\right)$$

可对角化, 问: a, a_1, a_2, b, b_1, c 满足什么条件?

解答. 显然 $|\lambda E - A| = (\lambda - 1)^2 (\lambda - 2)^2$, 所以 A 的特征值为 1 (2 重), 2 (2 重), 所以若 A 与对角矩阵相 似,则

$$r(A - E) = r(A - 2E) = 4 - 2 = 2.$$

一方面, 对 A - E 作初等变换, 有

$$A - E = \begin{pmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ a_1 & b & 1 & 0 \\ a_2 & b_1 & c & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

所以 r(A-E)=2 的充要条件是 a=0.

另一方面, 对 A - 2E 作初等变换, 有

$$A - 2E = \begin{pmatrix} -1 & 0 & 0 & 0 \\ a & -1 & 0 & 0 \\ a_1 & b & 0 & 0 \\ a_2 & b_1 & c & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & c & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

所以 r(A-2E)=2 的充要条件是 c=0.

于是若 A 与对角矩阵相似,则有 a = c = 0, 而 a_1, a_2, b, b_1 可以为任意数.

例题 49. 已知矩阵 $A \in M_n(\mathbb{C})$ 满足

$$A + A^2 + \frac{1}{2!}A^3 + \frac{1}{3!}A^4 + \dots + \frac{1}{2021!}A^{2022} = O.$$

证明: A 可对角化.

解答, 记多项式

 $f(x) = x + x^2 + \frac{x^3}{2!} + \dots + \frac{x^{2022}}{2021!} = xg(x).$ $g(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{2021}}{2021!}.$

其中

$$g(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{2021}}{2021!}$$

则 f(x) 是 A 的零化多项式, 而由例题 6 可知 g(x) 在复数域上无重根. 再结合 $g(0) \neq 0$ 可知 f(x) 在复数域上 无重根, 所以 f(x) 在复数域可以分解为互素一次因式的乘积, 进而 A 可以对角化.

可交换与同时对角化 5.9

例题 50. 设 $A \cap B$ 都是 n 阶方阵, AB = BA, 且 $A \cap B$ 有 n 个互异的特征值,证明:

- (1) 存在可逆矩阵 C, 使得 $C^{-1}AC$ 和 $C^{-1}BC$ 同时为对角阵;
- (2) 存在多项式 $f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$ 使得 f(A) = B.

解答. (1) 由于 A 有 n 个互异的特征值 $\lambda_1, \lambda_2, \dots, \lambda_n$, 所以 A 可对角化, 即存在可逆矩阵 C 使得

$$C^{-1}AC = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}.$$

而结合 AB = BA 还有

$$(C^{-1}AC)(C^{-1}BC) = (C^{-1}BC)(C^{-1}AC).$$

记 $C^{-1}BC = (\mu_{ij})$, 那么上式就说明

$$\lambda_i \mu_{ij} = \lambda_j \mu_{ij} \ (i, j = 1, 2, \cdots, n).$$

再结合 $\lambda_1, \lambda_2, \dots, \lambda_n$ 两两互异可知 $\mu_{ij} = 0 \ (i \neq j)$, 也就是说

$$C^{-1}BC = \operatorname{diag}\{\mu_{11}, \mu_{22}, \cdots, \mu_{nn}\}\$$

也为对角矩阵.

(2) 对互异的 $\lambda_1, \lambda_2, \dots, \lambda_n$ 及 (1) 中的 $\mu_{11}, \mu_{22}, \dots, \mu_{nn}$, 考虑关于 c_0, c_1, \dots, c_{n-1} 的线性方程组

$$c_0 + c_1 \lambda_i + c_2 \lambda_i^2 + \dots + c_{n-1} \lambda_i^{n-1} = \mu_{ii}, \ i = 1, 2, \dots, n.$$
(13)

其系数行列式为

$$\begin{vmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ 1 & \lambda_3 & \lambda_3^2 & \cdots & \lambda_3^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \cdots & \lambda_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i) \ne 0.$$

所以方程组(13)存在唯一解. 这说明存在唯一的多项式

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

满足 $f(\lambda_i) = \mu_{ii}$, 进而

$$C^{-1}f(A)C = f(C^{-1}AC) = \operatorname{diag}\{f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)\} = \operatorname{diag}\{\mu_{11}, \mu_{22}, \dots, \mu_{nn}\} = C^{-1}BC.$$

幂等矩阵 5.10

例题 51. 设 A_1, A_2, \dots, A_m 为 n 级方阵, 满足 $A_1 + A_2 + \dots + A_m = E_n$, 则以下三个条件等价: (1) A_1, A_2, \dots, A_m 都是幂等矩阵; (2) $r(A_1) + r(A_2) + \dots + r(A_m) = n$;

- (2) $r(A_1) + r(A_2) + \cdots + r(A_m) = n;$ (3) 对任意 $i \neq j$ $(i, j = 1, 2, \cdots, m)$ 都有 $A_i A_j = 0.$ 解答. $(1) \Rightarrow (2)$ 利用 $r(A_i) = \operatorname{tr}(A_i)$ 有

$$r(A_1) + r(A_2) + \dots + r(A_m) = \operatorname{tr}(A_1) + \operatorname{tr}(A_2) + \dots + \operatorname{tr}(A_m) = \operatorname{tr}(A_1 + A_2 + \dots + A_m) = \operatorname{tr}(E_n) = n.$$

(2)⇒(3) 考虑 $mn \times mn$ 的准对角矩阵的初等变换, 如下:

$$\begin{pmatrix} A_1 & & & & & \\ & A_2 & & & & \\ & & A_3 & & & \\ & & & \ddots & & \\ & & & A_m \end{pmatrix} \longrightarrow \begin{pmatrix} A_1 & A_2 & A_3 & \cdots & A_m \\ & A_2 & & & & \\ & & & A_3 & & \\ & & & \ddots & \\ & & & & A_m \end{pmatrix} \longrightarrow \begin{pmatrix} E & A_2 & A_3 & \cdots & A_m \\ & A_2 & A_2 & & & \\ & & & A_3 & & \\ & \vdots & & & \ddots & \\ & & & & & A_m \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} E & O & O & \cdots & O \\ A_2 & A_2 - A_2^2 & -A_2 A_3 & \cdots & -A_2 A_m \\ A_3 & -A_3 A_2 & A_3 - A_3^2 & \cdots & -A_3 A_m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_m & -A_m A_2 & -A_m A_3 & \cdots & A_m - A_m^2 \end{pmatrix} \longrightarrow \begin{pmatrix} E & O & O & \cdots & O \\ O & A_2 - A_2^2 & -A_2 A_3 & \cdots & -A_2 A_m \\ O & -A_3 A_2 & A_3 - A_3^2 & \cdots & -A_3 A_m \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ O & -A_m A_2 & -A_m A_3 & \cdots & A_m - A_m^2 \end{pmatrix}$$

于是由 $r(A_1) + r(A_2) + \cdots + r(A_m) = n$ 可得

$$\begin{pmatrix} A_2 - A_2^2 & -A_2 A_3 & \cdots & -A_2 A_m \\ -A_3 A_2 & A_3 - A_3^2 & \cdots & -A_3 A_m \\ \vdots & \vdots & \ddots & \vdots \\ -A_m A_2 & -A_m A_3 & \cdots & A_m - A_m^2 \end{pmatrix} = O.$$

这说明对任意 $i \neq j$ $(i, j = 2, 3, \dots, m)$ 都有 $A_i^2 = A_i$, 且 $A_i A_j = 0$. 现在对于 $A_1 + A_2 + \dots + A_m = E_n$ 两边 右乘 A_i ($i = 2, 3, \dots, m$) 有

$$A_1A_i + A_2A_i + \dots + A_nA_i = A_i.$$

即 $A_1A_i + A_i = A_i$, 这就说明 $A_1A_i = O$ 对任意的 $i = 2, 3, \dots, m$ 都成立, 同理也有 $A_iA_1 = O$ 对任意的 $i = 2, 3, \dots, m$ 都成立. 所以对任意 $i \neq j$ $(i, j = 1, 2, \dots, m)$ 都有 $A_i A_j = O$.

(3) ⇒(1) 直接对 $A_1 + A_2 + \cdots + A_m = E_n$ 两边右乘 $A_i \ (i = 1, 2, \cdots, m)$ 就有

$$A_1 A_i + A_2 A_i + \dots + A_m A_i = A_i^2 = A_i.$$

所以 A_1, A_2, \cdots, A_m 都是幂等矩阵.

相似与合同的综合应用 5.11

例题 52. A, B 都是 n 级正定矩阵, 则 AB 也是正定矩阵的充要条件是 AB = BA.

解答. 必要性. 若 AB 为正定矩阵, 则 AB 为实对称矩阵, 那么

$$AB = (AB)' = B'A' = BA.$$

充分性. 若 AB = BA, 则 (AB)' = AB, 所以 AB 为实对称矩阵, 另外, 由于 A 为正定矩阵, 所以存在可 逆矩阵 C, 使得 A = CC', 那么

$$AB = CC'B = CC'BCC^{-1} \sim C'BC \simeq B.$$

其中 \sim 表示相似, \simeq 表示合同, 由于 B 为正定矩阵, 所以 C'BC 也为正定矩阵, 其特征值均大于零, 进而与其 相似的矩阵 AB 的特征值也均大于零, 再结合 AB 实对称即得 AB 为正定矩阵. П

例题 53. 已知 $A \in \mathbb{R}$ 级正定矩阵, $B \in \mathbb{R}$ 级半正定矩阵, 则 $|A + B| \ge |A| + |B|$, 并且仅当 B = O 时 等号成立.

解答. 由于 A 正定, 所以 |A| > 0, $|A + B| \ge |A| + |B|$ 就等价于 $|E + A^{-1}B| \ge 1 + |A^{-1}B|$. 由于 A 正定, 所以 A^{-1} 也正定, 从而存在可逆矩阵 C 使得 $A^{-1} = CC'$, 所以

$$A^{-1}B = CC'B = CC'BCC^{-1} \sim C'BC \simeq B.$$

由 B 半正定得到 C'BC 半正定,设 C'BC 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n, \mathbb{M}$ $\lambda_i \geq 0$ $(i = 1, 2, \dots, n)$ 且 $|A^{-1}B| =$ $\lambda_1\lambda_2\cdots\lambda_n$. 由于 $A^{-1}B\sim C'BC$, 所以 $A^{-1}B$ 的特征值也是 $\lambda_1,\,\lambda_2,\,\cdots,\,\lambda_n$, 从而 $E+A^{-1}B$ 的特征值为 $1 + \lambda_1, 1 + \lambda_2, \cdots, 1 + \lambda_n,$ 故

$$|E + A^{-1}B| = (1 + \lambda_1)(1 + \lambda_2) \cdots (1 + \lambda_n) \ge 1 + \lambda_1 \lambda_2 \cdots \lambda_n = 1 + |A^{-1}B|.$$

且仅当 $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ 时等号成立, 这等价于 C'BC 为零矩阵, 也就等价于 B = O.

例题 54. 已知 A, D 分别是 n 级, m 级实方阵, B 是 $n \times m$ 的实矩阵, $\mathbb{E}\begin{pmatrix} A & B \\ B' & D \end{pmatrix}$ 是正定矩阵, 则

(1) $A, D, D - B'A^{-1}B, A - BD^{-1}B'$ 都是正定矩阵;

(2)
$$\begin{vmatrix} A & B \\ B' & D \end{vmatrix} \le |A||D|$$
, 且仅当 $B = O$ 时等号成立.

解答. (1) 由于 $\left(egin{array}{cc} A & B \\ B' & D \end{array}
ight)$ 正定,所以它的所有主子式都大于零,所以 $A,\,D$ 的顺序主子式都大于零,这 就得到 A, D 都是正定矩阵

同时,利用打洞原理可得 $\begin{pmatrix} A & O \\ O & D - B'A^{-1}B \end{pmatrix}$ 与 $\begin{pmatrix} A - BD^{-1}B' & O \\ O & D \end{pmatrix}$ 都是正定矩阵,它们的所有 主子式都大于零, 从而 $D-B'A^{-1}B$ 与 $A-BD^{-1}B'$ 的顺序主子式都大于零, 即 $D-B'A^{-1}B$, $A-BD^{-1}B'$ 也都是正定矩阵.

(2) 利用打洞原理, 我们知道

$$\begin{vmatrix} A & B \\ B' & D \end{vmatrix} = |A||D - B'A^{-1}B|.$$

 $\left| \begin{array}{cc} A & B \\ B' & D \end{array} \right| = |A||D - B'A^{-1}B|.$ 注意到 |A| > 0,所以 $\left| \begin{array}{cc} A & B \\ B' & D \end{array} \right| = |A||D - B'A^{-1}B|.$

由于 $D - B'A^{-1}B$ 是一个正定矩阵, 且 $B'A^{-1}B$ 是一个半正定矩阵, 结合例题 53, 我们有

$$|D| = |(D - B'A^{-1}B) + B'A^{-1}B| \ge |D - B'A^{-1}B| + |B'A^{-1}B| \ge |D - B'A^{-1}B|.$$

且等号成立的充要条件是 $B'A^{-1}B = O$, 这就等价于 B = O. 原因是: 如果 $B'A^{-1}B = O$, 可设 $A^{-1} = C'C$, 其中 C 是实可逆方阵, 则 (BC)'(BC) = O, 从而 r(B) = r(BC) = r((BC)'(BC)) = 0, 即 B = O.

所以, 我们就得到
$$\begin{vmatrix} A & B \\ B' & D \end{vmatrix} \le |A||D|$$
, 且仅当 $B = O$ 时等号成立.

5.12 矩阵方程 AX - XB = O

例题 55. 设 A, B 分别是复数域上的 n 级,m 级矩阵, 证明: 矩阵方程 AX = XB 只有零解的充要条件 是 A, B 没有公共的特征值.

解答. 必要性. 已知矩阵方程 AX = XB 只有零解, 若 A, B 存在公共的特征值, 设为 λ , 则 λ 也是 A, B' 的公共特征值, 设 α , β 分别为对应的特征向量, 即 $A\alpha = \lambda\alpha$, $B'\beta = \lambda\beta$, 进而 $\beta'B = \lambda\beta'$, 现在考虑矩阵 $X_0 = \alpha\beta'$, 由于 α , β 非零, 所以 $X_0 \neq O$, 同时

$$AX_0 = A\alpha\beta' = \lambda\alpha\beta' = \alpha(\lambda\beta') = \alpha\beta'B = X_0B.$$

这说明 X_0 为矩阵方程 AX = XB 的非零解, 与已知矛盾. 所以 A, B 没有公共的特征值.

充分性. 设X = C为矩阵方程AX = XB的解,即AC = CB,那么

$$A^{2}C = A(AC) = A(CB) = (AC)B = (CB)B = CB^{2}.$$

以此类推可知 $A^kC = CB^k$ $(k = 1, 2, \dots)$, 进而对任意的多项式 $g(\lambda)$, 有

$$g(A)C = Cg(B).$$

现在记 $g(\lambda)$ 为 B 的特征多项式, 那么 g(B) = O, 由上式可知

$$g(A)C = O. (14)$$

П

再记 $f(\lambda)$ 为 A 的特征多项式,由于 A, B 没有公共的特征值,所以 $f(\lambda)$, $g(\lambda)$ 在复数域上没有公共根,进而 $(f(\lambda),g(\lambda))=1$, 所以存在多项式 u(x),v(x),使得

$$u(x)f(x) + v(x)g(x) = 1.$$

将矩阵 A 代入, 结合 f(A) = O 有

$$u(A)f(A) + v(A)g(A) = v(A)g(A) = E.$$

这说明 q(A) 可逆, 于是由 (14) 式可知 C = O, 即矩阵方程 AX = XB 只有零解.

例题 56. 设数域 P 上的 m 级矩阵 A 与 n 级矩阵 B 无公共的复特征值, C 为数域 P 上的 $m \times n$ 矩阵,则矩阵方程 AX-XB=C 存在唯一解.

解答. 设 V 是数域 P 上所有 $m \times n$ 矩阵构成的线性空间, 定义 V 上的线性变换 \mathscr{A} 为

$$\mathscr{A}(X) = AX - XB, X \in V.$$

由于 A, B 无公共的特征值, 所以 AX - XB = O 只有零解, 即 \mathscr{A} 为 V 上的单射, 又由于 V 为有限维空间, 从而 \mathscr{A} 为 V 上的满射, 进一步可知 \mathscr{A} 是 V 上的同构映射. 于是, 对任意的 $C \in V$, 都存在唯一的 $X_0 \in V$, 使得 $\mathscr{A}(X_0) = C$, 即矩阵方程 AX - XB = C 存在唯一解 X_0 .

5.13 矩阵分解

例题 57. 已知 A 是一个 n 级正定矩阵, 证明: 存在正定矩阵 C 使得 $A = C^2$, 并且这里的 C 是唯一的.

解答. 由于 A 正定, 所以存在正交矩阵 T 使得

$$A = T' \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}T.$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 都是 A 的正特征值. 结合 diag $\{\lambda_1, \lambda_2, \dots, \lambda_n\} = \text{diag}\{\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n}\}^2$ 可得

$$A = T'\operatorname{diag}\{\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}\}TT'\operatorname{diag}\{\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}\}T = C^2.$$

其中 $C = T' \operatorname{diag} \{ \sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n} \} T$ 显然是一个实对称矩阵.

假设还存在正定矩阵 D 使得 $A=D^2$, 那么就有 $C^2=D^2$. 我们现在假设 $\lambda_1,\lambda_2,\cdots,\lambda_s$ 是 A 的所有互异特征值, 对应的重数分别为 r_1,r_2,\cdots,r_s . 则 $\sqrt{\lambda_1},\sqrt{\lambda_2},\cdots,\sqrt{\lambda_s}$ 就是 C,D 的公共的特征值, 且对应重数也是 r_1,r_2,\cdots,r_s . 所以存在正交矩阵 T_1,T_2 使得

$$T_1'CT_1 = T_2'DT_2 = \operatorname{diag}\{\sqrt{\lambda_1}E_{r_1}, \sqrt{\lambda_2}E_{r_2}, \cdots, \sqrt{\lambda_s}E_{r_s}\}.$$

于是

$$C = T_1 \operatorname{diag}\{\sqrt{\lambda_1} E_{r_1}, \sqrt{\lambda_2} E_{r_2}, \cdots, \sqrt{\lambda_s} E_{r_s}\} T_1', \quad D = T_2 \operatorname{diag}\{\sqrt{\lambda_1} E_{r_1}, \sqrt{\lambda_2} E_{r_2}, \cdots, \sqrt{\lambda_s} E_{r_s}\} T_2'.$$
 由 $C^2 = D^2$ 可得

$$T_1\operatorname{diag}\{\lambda_1 E_{r_1}, \lambda_2 E_{r_2}, \cdots, \lambda_s E_{r_s}\}T_1' = T_2\operatorname{diag}\{\lambda_1 E_{r_1}, \lambda_2 E_{r_2}, \cdots, \lambda_s E_{r_s}\}T_2'.$$

于是

$$T_2'T_1\operatorname{diag}\{\lambda_1E_{r_1},\lambda_2E_{r_2},\cdots,\lambda_sE_{r_s}\}=\operatorname{diag}\{\lambda_1E_{r_1},\lambda_2E_{r_2},\cdots,\lambda_sE_{r_s}\}T_2'T_1.$$

记 $T_2T_1' = (B_{ij})$, 其中 B_{ij} 为 $r_i \times r_j$ 矩阵, 则由上式可知

$$\lambda_j B_{ij} = \lambda_i B_{ij}, i, j = 1, 2, \cdots, s.$$

于是 $B_{ij} = O(i \neq j)$, 即

$$T_2'T_1 = \operatorname{diag}\{B_{11}, B_{22}, \cdots, B_{ss}\}.$$

从而 $T_2'T_1$ 与 diag $\{\sqrt{\lambda_1}E_{r_1},\sqrt{\lambda_2}E_{r_2},\cdots,\sqrt{\lambda_s}E_{r_s}\}$ 也可交换, 即

$$T_2'T_1\operatorname{diag}\{\sqrt{\lambda_1}E_{r_1},\sqrt{\lambda_2}E_{r_2},\cdots,\sqrt{\lambda_s}E_{r_s}\}=\operatorname{diag}\{\sqrt{\lambda_1}E_{r_1},\sqrt{\lambda_2}E_{r_2},\cdots,\sqrt{\lambda_s}E_{r_s}\}T_2'T_1.$$

所以

$$T_1\mathrm{diag}\{\sqrt{\lambda_1}E_{r_1},\sqrt{\lambda_2}E_{r_2},\cdots,\sqrt{\lambda_s}E_{r_s}\}T_1'=T_2\mathrm{diag}\{\sqrt{\lambda_1}E_{r_1},\sqrt{\lambda_2}E_{r_2},\cdots,\sqrt{\lambda_s}E_{r_s}\}T_2'.$$
即 $C=D$,这就说明了分解是唯一的.

例题 58. 证明: 对任-n 级实可逆矩阵 A. 都存在正交矩阵 T_1 , T_2 使得

$$A = T_1 \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}T_2.$$

其中 $\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2$ 是 A'A 的全部特征值, 且 $\lambda_i > 0$ $(i = 1, 2, \dots, n)$.

解答. 由于 A 为实可逆矩阵, 从而 A'A 为正定矩阵, 于是存在正交矩阵 T_2 使得

$$A'A = T_2' \operatorname{diag}\{\lambda_1^2, \lambda_2^2, \cdots, \lambda_n^2\}T_2.$$

即有

$$A=A'^{-1}T_2'\mathrm{diag}\{\lambda_1^2,\lambda_2^2,\cdots,\lambda_n^2\}T_2=\underline{A'^{-1}T_2'\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}}\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}T_2.$$
 记 $T_1=A'^{-1}T_2'\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\},$ 则

$$A = T_1 \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\} T_2.$$

并且

$$T_1T_1'=A'^{-1}T_2'\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}T_2A^{-1}=A'^{-1}(A'A)A^{-1}=E.$$
 所以 T_1 也为正交矩阵.

5.14 最小多项式与矩阵多项式生成的线性空间

例题 59. 设 A 是数域 P 上的一个 n 级非零矩阵. A 的最小多项式 m(x) 的次数为 r. 则集合

$$V = \{ f(A) \mid f(x) \in P[x] \}$$

关于矩阵的加法与数量乘法构成一个r 维线性空间, 并且 E, A, \dots, A^{r-1} 就是V 的一组基.

解答. 显然 V 关于矩阵的加法与数量乘积是封闭的, 所以 V 是 $M_n(P)$ 的一个线性子空间. 接下来证明 E, A, \dots, A^{r-1} 就是 V 的一组基.

(i) 假设存在不全为零的 $k_0, k_1, \cdots, k_{r-1}$ 使得

$$k_0E + k_1A + \dots + k_{r-1}A^{r-1} = O.$$

则 $g(x) = k_0 + k_1 x + \dots + k_{r-1} x^{r-1}$ 就是 A 的一个次数比 m(x) 还低的零化多项式, 这与 m(x) 为最小多项式矛盾, 所以 $k_0 = k_1 = \dots = k_{r-1} = 0$, 即 E, A, \dots, A^{r-1} 是线性无关的.

(ii) 对任意的 $f(x) \in P[x]$, 由带余除法知存在 $q(x), r(x) \in P[x]$ 使得

$$f(x) = q(x)m(x) + r(x).$$

其中 r(x) = 0 或者 $\partial(r(x)) < \partial(m(x))$, 为此, 我们设 $r(x) = b_{r-1}x^{r-1} + \cdots + b_1x + b_0$, 从而

$$f(A) = q(A)m(A) + r(A) = b_{r-1}A^{r-1} + \dots + b_1A + b_0E.$$

这就说明 V 中任意矩阵 f(A) 都可以由 E,A,\cdots,A^{r-1} 线性表出.。

综合 (i) 与 (ii), 可知 E, A, \dots, A^{r-1} 就是 V 的一组基, $\dim V = r$

6. 线性变换

6.1 核与值域的"任意性"

例题 60. 已知 V 是数域 P 上的 n 维线性空间, V_1 , V_2 是 V 的子空间, 并且满足 $\dim V_1 + \dim V_2 = n$, 则存在 V 上的线性变换 \mathscr{A} 使得 $\ker \mathscr{A} = V_1$, $\mathscr{A}V = V_2$.

解答. 设 $\alpha_1, \dots, \alpha_r$ 是 V_1 的一组基, 扩为 V 的基 $\alpha_1, \dots, \alpha_r, \alpha_{r+1}, \dots, \alpha_n$, 同时设 $\beta_{r+1}, \dots, \beta_n$ 是 V_2 的一组基. 现在定义线性变换 \mathscr{A} , 使得它在基 $\alpha_1, \dots, \alpha_r, \alpha_{r+1}, \dots, \alpha_n$ 下的象为

$$\begin{cases} \mathscr{A}\alpha_i = 0, & i = 1, 2, \cdots, r. \\ \mathscr{A}\alpha_i = \beta_i, & i = r + 1, \cdots, n \end{cases}$$

首先, 明显有

$$\mathscr{A}V = L(\mathscr{A}\alpha_1, \cdots, \mathscr{A}\alpha_r, \mathscr{A}\alpha_{r+1}, \cdots, \mathscr{A}\alpha_n) = L(\beta_{r+1}, \cdots, \beta_n) = V_2.$$

其次, 对任意的 $\alpha \in V_1$, 可设 $\alpha = k_1\alpha_1 + \cdots + k_r\alpha_r$, 则

$$\mathscr{A}\alpha = k_1 \mathscr{A}\alpha_1 + \dots + k_r \mathscr{A}\alpha_r = 0.$$

即 $\alpha \in \operatorname{Ker} \mathscr{A}$, 这就说明 $V_1 \subseteq \operatorname{Ker} \mathscr{A}$. 反之, 对任意的 $\alpha \in \operatorname{Ker} \mathscr{A}$, 不妨设 $\alpha = l_1\alpha_1 + \dots + l_r\alpha_r + l_{r+1}\alpha_{r+1} + \dots + l_n\alpha_n$, 则

$$\mathscr{A}\alpha = l_{r+1}\beta_{r+1} + \dots + l_n\beta_n = 0.$$

由 $\beta_{r+1}, \dots, \beta_n$ 线性无关知 $l_{r+1} = \dots = l_n = 0$,即 $\alpha = l_1\alpha_1 + \dots + l_r\alpha_r \in V_1$,这就说明 Ker $\mathscr{A} \subseteq V_1$. 所以

$$\operatorname{Ker} \mathscr{A} = V_1.$$

6.2 线性映射与基本矩阵的应用

例题 61. 已知 $M_n(\mathbb{C})$ 表示所有 n 级复矩阵组成的线性空间, $\sigma: M_n(\mathbb{C}) \to \mathbb{C}$ 是一个线性映射,并且满足对任意的 $A, B \in M_n(\mathbb{C})$,都有 $\sigma(AB) = \sigma(BA)$,证明存在 $\lambda \in \mathbb{C}$ 使得对任意的 $A \in M_n(\mathbb{C})$,都有 $\sigma(A) = \lambda \operatorname{tr}(A)$.

解答. 由于 σ 是一个线性映射, 所以对任意的 A, $B \in M_n(\mathbb{C})$, 有 $\sigma(AB-BA) = \sigma(AB) - \sigma(BA) = 0$, 现在取 $A = E_{ij}$, $B = E_{ji}$, 就有

$$\sigma(E_{ij}E_{ji}) - \sigma(E_{ji}E_{ij}) = \sigma(E_{ii} - E_{jj}) = \sigma(E_{ii}) - \sigma(E_{jj}) = 0.$$

所以对任意的 i, j 都有 $\sigma(E_{ii}) = \sigma(E_{ii})$, 我们设

$$\sigma(E_{11}) = \sigma(E_{22}) = \cdots = \sigma(E_{nn}) = \lambda.$$

当 $i \neq j$ 时,有

$$\sigma(E_{ij}) = \sigma(E_{ik}E_{kj}) = \sigma(E_{kj}E_{ik}) = \sigma(O) = 0.$$

再结合线性性质, 对任意的矩阵 $A = (a_{ij}) = \sum_{i,j=1}^{n} a_{ij} E_{ij}$, 有

$$\sigma(A) = \sigma\left(\sum_{i,j=1}^{n} a_{ij} E_{ij}\right) = \sum_{i,j=1}^{n} a_{ij} \sigma(E_{ij}) = \sum_{i=1}^{n} a_{ii} \sigma(E_{ii}) = \lambda \sum_{i=1}^{n} a_{ii} = \lambda \operatorname{tr}(A).$$

6.3 矩阵空间上的线性变换

例题 62. 设 $\mathfrak{sl}_2(\mathbb{R})$ 表示实数域 \mathbb{R} 上迹为零的二级矩阵的集合.

- (1) 证明 $\mathfrak{sl}_2(\mathbb{R})$ 是 \mathbb{R} 上的线性空间, 并求 $\mathfrak{sl}_2(\mathbb{R})$ 的一组基;
- (2) 对 $A \in \mathfrak{sl}_2(\mathbb{R})$, 定义映射 $\tau_A(B) = AB BA$, $B \in \mathfrak{sl}_2(\mathbb{R})$, 证明 τ_A 是 $\mathfrak{sl}_2(\mathbb{R})$ 上的线性变换.

(3) 当
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 时, 求 τ_A 的所有特征值, 特征向量及最小多项式.

解答. (1) 对任意的 $A,B\in\mathfrak{sl}_2(\mathbb{R})$, 有 $\mathrm{tr}(A)=\mathrm{tr}(B)=0$, 进而对任意的实数 $k,\ l,$ 有

$$\operatorname{tr}(kA + lB) = k\operatorname{tr}(A) + l\operatorname{tr}(B) = 0.$$

即 $kA + lB \in \mathfrak{sl}_2(\mathbb{R})$, 这说明 $\mathfrak{sl}_2(\mathbb{R})$ 为 \mathbb{R} 上的线性空间, 另外, 记

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

显然 A_1, A_2, A_3 线性无关, 且对任意 $A \in \mathfrak{sl}_2(\mathbb{R})$, 不妨设

$$A = \left(\begin{array}{cc} a & b \\ c & -a \end{array}\right).$$

有 $A = aA_1 + bA_2 + cA_3$, 所以 A_1, A_2, A_3 为 $\mathfrak{sl}_2(\mathbb{R})$ 的一组基.

(2) 任取 $B, C \in \mathfrak{sl}_2(\mathbb{R})$, 明显 $\operatorname{tr}(AB - BA) = \operatorname{tr}(AB) - \operatorname{tr}(BA) = 0$, 所以 τ_A 为 $\mathfrak{sl}_2(\mathbb{R})$ 上的变换, 且任取 $k, l \in \mathbb{R}$, 有

$$\tau_A(kB+lC) = A(kB+lC) - (kB+lC)A = k(AB-BA) + l(AC-CA) = k\tau_A(B) + l\tau_A(C).$$

即 τ_A 为 $\mathfrak{sl}_2(\mathbb{R})$ 上的线性变换.

(3) 由于

$$\begin{cases} \tau_A(A_1) = AA_1 - A_1A = -2A_2; \\ \tau_A(A_2) = AA_2 - A_2A = O; \\ \tau_A(A_3) = AA_3 - A_3A = A_1. \end{cases}$$

所以 τ_A 在 A_1, A_2, A_3 这组基下的矩阵为

$$M = \left(\begin{array}{rrr} 0 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

明显 $|\lambda E_3 - M| = \lambda^3$, 所以 τ_A 的特征值为 0, 并且解方程组 MX = 0 可得基础解系为 (0,1,0)', 所以 τ_A 的特征向量为 kA_2 , 其中 $k \neq 0$. 另外, 容易发现 $M^2 \neq O$, 所以 τ_A 的最小多项式为 λ^3 .

6.4 矩阵可交换与同时上三角化

例题 63. 已知 n 阶矩阵 A 可逆, B 幂零, 且 AB = BA, 求证 A + B 可逆.

解答. 先证明 A, B 可同时相似于上三角矩阵, 为此我们采用数学归纳法. 当 n=1 时, 结论显然成立. 现在假设两个 n-1 级的矩阵可交换, 则它们可以同时相似于一个上三角矩阵. 下面讨论两个 n 级矩阵 A, B 的情况: 设 V 是复数域上的一个 n 维线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 为 V 的一组基, 定义 V 上的两个线性变换 \mathscr{A} , \mathscr{B} , 使得它们在这组基下的矩阵分别为 A, B, 若 AB=BA, 则 $\mathscr{A}\mathscr{B}=\mathscr{B}\mathscr{A}$, 现在设 λ 为 \mathscr{A} 的一个复特征值, V_{λ} 为对应的特征子空间. 对任意的 $\alpha \in V_{\lambda}$, 有 $\mathscr{A}\alpha=\lambda\alpha$, 进而

$$\mathscr{A}(\mathscr{B}\alpha)=\mathscr{B}\mathscr{A}\alpha=\lambda\mathscr{B}\alpha.$$

这说明 $\mathcal{B}\alpha \in V_{\lambda}$, 所以 V_{λ} 为 \mathcal{B} 的不变子空间, 那么 $\mathcal{B}|V_{\lambda}$ 就是 V_{λ} 上的线性变换, 其在复数域上一定存在特征值与特征向量, 不妨设为 $\mathcal{B}|V_{\lambda}(\beta) = \mu\beta$, 其中 $\beta \in V_{\lambda}$ 是非零的特征向量, 另外 $\beta \in V_{\lambda}$ 意味着也有 $\mathcal{A}\beta = \lambda\beta$. 现在设 β 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标为 $X_1(\neq 0)$, 则对应有

$$AX_1 = \lambda X_1, \ BX_1 = \mu X_1.$$

将 X_1 扩为 \mathbb{C}^n 的一组基, 设为 X_1, X_2, \dots, X_n , 记 $P = (X_1, X_2, \dots, X_n)$, 则 P 为 n 级可逆复矩阵, 且

$$P^{-1}AP = \left(\begin{array}{cc} \lambda & * \\ 0 & A_{n-1} \end{array}\right), \quad P^{-1}BP = \left(\begin{array}{cc} \mu & * \\ 0 & B_{n-1} \end{array}\right).$$

由 AB = BA 可知 $P^{-1}APP^{-1}BP = P^{-1}BPP^{-1}AP$, 即有

$$\begin{pmatrix} \lambda & * \\ 0 & A_{n+1} \end{pmatrix} \begin{pmatrix} \mu & * \\ 0 & B_{n-1} \end{pmatrix} = \begin{pmatrix} \mu & * \\ 0 & B_{n-1} \end{pmatrix} \begin{pmatrix} \lambda & * \\ 0 & A_{n-1} \end{pmatrix}.$$

即

$$\left(\begin{array}{cc} \lambda\mu & * \\ 0 & A_{n-1}B_{n-1} \end{array}\right) = \left(\begin{array}{cc} \lambda\mu & * \\ 0 & B_{n-1}A_{n-1} \end{array}\right).$$

于是 $A_{n-1}B_{n-1}=B_{n-1}A_{n-1}$,由归纳假设可知:存在 n-1 级可逆矩阵 Q_1 ,使得 $Q_1^{-1}A_{n-1}Q_1$ 与 $Q_1^{-1}B_{n-1}Q_1$ 均为上三角矩阵,现在记 n 级可逆矩阵 $Q=\mathrm{diag}\{1,Q_1\}$,且记 C=PQ,则

$$C^{-1}AC = \begin{pmatrix} \lambda & * \\ 0 & Q_1^{-1}A_{n-1}Q_1 \end{pmatrix}, \quad C^{-1}BC = \begin{pmatrix} \mu & * \\ 0 & Q_1^{-1}B_{n-1}Q_1 \end{pmatrix}.$$

均为上三角矩阵. 由数学归纳法可知命题成立.

对于上三角矩阵 $C^{-1}AC$, $C^{-1}BC$, 其对角线元素分别为矩阵 A, B 的特征值. 由于 B 为幂零矩阵, 所以 B 的特征值均为零, 即 $C^{-1}BC$ 的对角元均为零, 那么 $C^{-1}AC + C^{-1}BC = C^{-1}(A+B)C$ 与 $C^{-1}AC$ 就是对角元完全相同的上三角矩阵, 从而

$$|A + B| = |C^{-1}(A + B)C| = |C^{-1}AC| = |A| \neq 0.$$

即 A + B 可逆.

求解不变子空间 6.5

例题 64. 设 V 是复数域上的 n 维线性空间, 而线性变换 $\mathscr A$ 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的矩阵是一个若尔当 块,设为

$$J = \begin{pmatrix} \lambda & & & \\ 1 & \ddots & & \\ & \ddots & \lambda & \\ & & 1 & \lambda \end{pmatrix}.$$

证明:

- (1) V 中包含 ε_1 的 \mathcal{A} —子空间只有 V 自身;
- (2) V 中任一非零 \mathscr{A} —子空间都包含 ε_n ;
- (3) V 不能分解成两个非平凡的 A-子空间的直和:
- (4) V 中有且仅有 n+1 个 \mathscr{A} —子空间,它们分别是 $\{0\}$, $L(\varepsilon_n)$, $L(\varepsilon_{n-1},\varepsilon_n)$, \cdots , $L(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)$.

解答. (1) 设 W 是包含 ε_1 的 \mathcal{A} —子空间, 则 $\mathcal{A}\varepsilon_1 = \lambda \varepsilon_1 + \varepsilon_2 \in W$ 得到 $\varepsilon_2 \in W$, 同理得到 $\varepsilon_3 \in W$, 递推, 有 $\varepsilon_1, \dots, \varepsilon_n \in W$, 所以 W = V.

(2) 设 U 是一个 \mathscr{A} —子空间, 取非零的 $\beta \in U$, 设 $\beta = k_s \varepsilon_s + \cdots + k_{n-1} \varepsilon_{n-1} + k_n \varepsilon_n \ (s \leq n)$, 其中 $k_s \neq 0$, 由 $\mathscr{A}\beta \in U$ 得

$$k_s(\lambda \varepsilon_s + \varepsilon_{s+1}) + \dots + k_{n-1}(\lambda \varepsilon_{n-1} + \varepsilon_n) + k_n \varepsilon_n = \lambda \beta + k_s \varepsilon_{s+1} + \dots + k_{n-1} \varepsilon_n \in U.$$

所以 $k_s \varepsilon_{s+1} + \cdots + k_{n-1} \varepsilon_n \in U$, 同样的方法, 得到 $k_s \varepsilon_{s+2} + \cdots + k_{n-2} \varepsilon_n \in U$, 递推, 得到 $k_s \varepsilon_n \in U$, 由于 $k_s \neq 0$, 所以 $\varepsilon_n \in U$, 这就证明了结论.

- (3) 利用 (2) 显然了. (4) 显然, $\{0\}$, $L(\varepsilon_n)$, $L(\varepsilon_{n-1},\varepsilon_n)$, \cdots , $L(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)$ 是 $\mathscr A$ 的 n+1 个不变子空间. 接下来证明 $\mathscr A$ 的 任意不变子空间都是它们其中的一个:

设 N 是任意 \mathscr{A} —子空间, 如果 $N = \{0\}$, 则没什么可说的. 当 $N \neq \{0\}$ 时, 设 β_1, \dots, β_s 是它的一组基, 现在假设 $\beta_i = a_{it}\varepsilon_t + a_{i,t+1}\varepsilon_{t+1} + \cdots + a_{in}\varepsilon_n \ (i=1,2,\cdots,s)$, 其中 $t \ge 1$, 且至少有一个 i 使得 $a_{it} \ne 0$.

对 $a_{it} \neq 0$, 考虑 β_i , 由 $\mathcal{A}\beta_i \in N$ 有

$$a_{it}(\lambda \varepsilon_t + \varepsilon_{t+1}) + a_{i,t+1}(\lambda \varepsilon_{t+1} + \varepsilon_{t+2}) + \dots + a_{i,n-1}(\lambda \varepsilon_{n-1} + \varepsilon_n) + a_{in}\varepsilon_n$$

=\lambda \beta_i + (a_{it}\varepsilon_{t+1} + a_{i,t+1}\varepsilon_{t+2} + \dots + a_{i,n-1}\varepsilon_n) \in N.

从而 $a_{it}\varepsilon_{t+1} + a_{i,t+1}\varepsilon_{t+2} + \cdots + a_{i,n-1}\varepsilon_n \in N$, 递推有

$$\begin{cases} a_{it}\varepsilon_{t+2} + a_{i,t+1}\varepsilon_{t+3} + \dots + a_{i,n-2}\varepsilon_n \in N, \\ \vdots \\ a_{it}\varepsilon_{n-1} + a_{i,t+1}\varepsilon_n \in N, \\ a_{it}\varepsilon_n \in N. \end{cases}$$

由于 $a_{it} \neq 0$, 由最后一个式子 $a_{it}\varepsilon_n \in N$ 得到 $\varepsilon_n \in N$, 代入到倒数第二个式子 $a_{it}\varepsilon_{n-1} + a_{i,t+1}\varepsilon_n \in N$ 就可以得到 $\varepsilon_{n-1} \in N$, 依次往上推, 最后得到 $\varepsilon_t \in N$, 这就说明 $L(\varepsilon_t, \varepsilon_{t+1}, \dots, \varepsilon_n) \subseteq N$, 而显然 $N \subseteq$ $L(\varepsilon_t, \varepsilon_{t+1}, \cdots, \varepsilon_n)$, 这就得到了 $N = L(\varepsilon_t, \varepsilon_{t+1}, \cdots, \varepsilon_n)$.

不变子空间的直和分解(分水岭) 6.6

例题 65. 设 $V = P[x]_n$, 定义 V 上的线性变换 \mathscr{A} 为

$$\mathscr{A}(f(x)) = xf'(x) - f(x), \ f(x) \in V.$$

求 $\mathscr{A}^{-1}(0)$ 与 $\mathscr{A}(V)$, 并说明 $V = \mathscr{A}^{-1}(0) \oplus \mathscr{A}(V)$.

解答. 一方面, 对任意 $f(x) \in \mathcal{A}^{-1}(0)$, 有 $\mathcal{A}(f(x)) = xf'(x) - f(x) = 0$, 这说明

$$\left(\frac{f(x)}{x}\right)' = \frac{xf'(x) - f(x)}{x^2} = 0.$$

所以 $\frac{f(x)}{x}$ 为常值函数, 设为 k, 即有 f(x) = kx, 于是

$$\mathscr{A}^{-1}(0) = L(x).$$

另一方面, 取 1, x, x^2 , \dots , x^{n-1} 为 V 的一组基, 由于

$$\begin{cases} \mathscr{A}(1) = x \cdot 0 - 1 = -1; \\ \mathscr{A}(x^k) = x \cdot kx^{k-1} - x^k = (k-1)x^k, & k = 1, 2, \dots, n-1. \end{cases}$$

于是

$$\mathscr{A}(V) = L(\mathscr{A}(1), \mathscr{A}(x), \mathscr{A}(x^2), \mathscr{A}(x^3), \cdots, \mathscr{A}(x^{n-1}))$$

= $L(-1, 0, x^2, 2x^3, \cdots, (n-1)x^n)$
= $L(1, x^2, x^3, \cdots, x^n)$.

另外, 显然也有

$$V = L(1, x, x^2, \cdots, x^n) = L(x) \oplus L(1, x^2, x^3, \cdots, x^n) = \mathscr{A}^{-1}(0) \oplus \mathscr{A}(V).$$

例题 66. 设 V 是数域 P 上的有限维线性空间, 而 \mathscr{A} 是 V 上的一个线性变换, 若 \mathscr{A} 的特征多项式 $f(\lambda)$ 在P[x]中可分解成一次因式的乘积

廷积
$$f(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}.$$

其中 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 两两互异. 证明 V 一定可分解成不变子空间的直和

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_s$$

$$V=V_1\oplus V_2\oplus \cdots \oplus V_s.$$
 其中 $V_i=\{\xi\mid (\mathscr{A}-\lambda_i\mathscr{E})^{r_i}\xi=0,\,\xi\in V\}$,其中 \mathscr{E} 表示 V 上的恒等变换. **解答**. 首先记多项式
$$f_i(\lambda)=(\lambda-\lambda_i)^{r_i},\,F_i(\lambda)=\frac{f(\lambda)}{f_i(\lambda)}=f_1(\lambda)\cdots f_{i-1}(\lambda)f_{i+1}(\lambda)\cdots f_s(\lambda),\,i=1,2,\cdots,s.$$

则

$$V_i = \{ \xi \mid (\mathscr{A} - \lambda_i \mathscr{E})^{r_i} \xi = 0, \ \xi \in V \} = \{ \xi \mid f_i(\mathscr{A}) \xi = 0, \ \xi \in V \}.$$

并且

$$f(\lambda) = f_1(\lambda) f_2(\lambda) \cdots f_s(\lambda) = F_i(\lambda) f_i(\lambda), i = 1, 2, \cdots, s.$$

另外, 结合 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 两两互异可知

$$(F_1(\lambda), F_2(\lambda), \dots, F_s(\lambda)) = 1, (F_i(\lambda), f_i(\lambda)) = 1, i = 1, 2, \dots, s.$$

于是存在 $u_i(\lambda) \in P[x]$ $(i = 1, 2, \dots, s)$, 使得

$$u_1(\lambda)F_1(\lambda) + u_2(\lambda)F_2(\lambda) + \dots + u_s(\lambda)F_s(\lambda) = 1.$$

从而

$$u_1(\mathscr{A})F_1(\mathscr{A}) + u_2(\mathscr{A})F_2(\mathscr{A}) + \dots + u_s(\mathscr{A})F_s(\mathscr{A}) = \mathscr{E}.$$

所以对任意的 $\alpha \in V$, 有

$$\alpha = u_1(\mathscr{A})F_1(\mathscr{A})\alpha + u_2(\mathscr{A})F_2(\mathscr{A})\alpha + \dots + u_s(\mathscr{A})F_s(\mathscr{A})\alpha. \tag{15}$$

由于 $f(\lambda)$ 为 Ø 的特征多项式, 所以 $f(\emptyset) = \emptyset$, 于是

$$f_i(\mathscr{A})u_i(\mathscr{A})F_i(\mathscr{A})\alpha = u_i(\mathscr{A})F_i(\mathscr{A})f_i(\mathscr{A})\alpha = u_i(\mathscr{A})f(\mathscr{A})\alpha = 0, i = 1, 2, \cdots, s.$$

即 $u_i(\mathscr{A})F_i(\mathscr{A})\alpha \in V_i \ (i=1,2,\cdots,s)$, 所以 (15) 式说明

$$V \subseteq V_1 + V_2 + \dots + V_s.$$

而 V_1, V_2, \dots, V_s 显然均为 V 的子空间, 自然也有 $V_1 + V_2 + \dots + V_s \subseteq V$, 于是

$$V = V_1 + V_2 + \dots + V_s. (16)$$

另外, 若 $\alpha_i \in V_i$ $(i = 1, 2, \dots, s)$ 满足

$$0 = \alpha_1 + \alpha_2 + \dots + \alpha_s. \tag{17}$$

由于 $f_i(x) \mid F_i(x)$ $(i \neq j)$, 所以由 $f_i(\mathscr{A})\alpha_i = 0$ 可知 $F_i(\mathscr{A})\alpha_i = 0$ $(i \neq j)$, 进而上式两端作用 $F_i(\mathscr{A})$ 便有

$$F_i(\mathscr{A})\alpha_i = 0.$$

另外, 由于 $(F_i(x), f_i(x)) = 1$, 所以存在 $a_i(x), b_i(x) \in P[x]$, 使得 $a_j(x)F_j(x) + b_j(x)f_j(x) = 1$, 从而

$$a_j(\mathscr{A})F_j(\mathscr{A}) + b_j(\mathscr{A})f_j(\mathscr{A}) = \mathscr{E}.$$

于是对于上述 α_i 就有

$$\alpha_j = a_j(\mathscr{A})F_j(\mathscr{A})\alpha_j + b_j(\mathscr{A})f_j(\mathscr{A})\alpha_j = 0, \ j = 1, 2, \cdots, s.$$

由此可知(17)式所对应的零向量分解唯一,从而(16)式对应的和为直和,即

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_s. \qquad \Box$$

例题 67. 令 \mathscr{A} 为数域 P 上的 n 维线性空间 V 的线性变换, 且满足 $\mathscr{A}^2 = \mathscr{A}$, 证明:

- (1) $\mathscr{A}^{-1}(0) = \{\alpha \mathscr{A}(\alpha) \mid \alpha \in V\};$
- (2) $V = \mathscr{A}^{-1}(0) \oplus \mathscr{A}(V);$
- (3) 如果 \mathcal{B} 是 V 的线性变换, $\mathscr{A}^{-1}(0)$ 和 $\mathscr{A}(V)$ 均为 \mathcal{B} 的不变子空间,则 $\mathscr{A}\mathcal{B}=\mathscr{B}\mathscr{A}$.

解答. (1) 显然, 对任意的 $\alpha \in V$, 都有

$$\mathcal{A}(\alpha - \mathcal{A}\alpha) = \mathcal{A}\alpha - \mathcal{A}^2\alpha = \mathcal{A}\alpha - \mathcal{A}\alpha = 0.$$

这说明 $\{\alpha - \mathcal{A}\alpha \mid \alpha \in V\} \subseteq \mathcal{A}^{-1}(0)$. 另外, 对任意的 $\alpha \in \mathcal{A}^{-1}(0)$, 有 $\mathcal{A}\alpha = 0$, 从而

$$\alpha = \alpha - \mathcal{A}\alpha \in \{\alpha - \mathcal{A}\alpha \mid \alpha \in V\}.$$

这说明 $\mathscr{A}^{-1}(0) \subseteq \{\alpha - \mathscr{A}\alpha | \alpha \in V\}$, 于是

$$\mathscr{A}^{-1}(0) = \{ \alpha - \mathscr{A}\alpha | \alpha \in V \}.$$

(2) 显然 $\mathcal{A}^{-1}(0)$ 与 $\mathcal{A}V$ 都是 V 的线性子空间, 同时对任意的 $\alpha \in V$, 都有

$$\alpha = (\alpha - \mathcal{A}\alpha) + \mathcal{A}\alpha.$$

由 (1) 可知 $\alpha - \mathcal{A}\alpha \in \mathcal{A}^{-1}(0)$, 另外显然 $\mathcal{A}\alpha \in \mathcal{A}V$, 这说明

$$V = \mathcal{A}^{-1}(0) + \mathcal{A}V.$$

与此同时, 若 $\alpha \in \mathscr{A}^{-1}(0) \cap \mathscr{A}V$, 则 $\mathscr{A}\alpha = 0$, 且存在 $\eta \in V$ 使得 $\mathscr{A}\eta = \alpha$, 于是

$$\mathscr{A}(\mathscr{A}\eta) = \begin{cases} \mathscr{A}\alpha = 0; \\ \mathscr{A}^2\eta = \mathscr{A}\eta = \alpha. \end{cases}$$

所以 $\alpha = 0$, 这说明 $\mathscr{A}^{-1}(0) \cap \mathscr{A}V = \{0\}$, 于是

$$V = \mathscr{A}^{-1}(0) \oplus \mathscr{A}V.$$

(3) 由 (2) 知对任意的 $\alpha \in V$, 有 $\alpha = (\alpha - \mathcal{A}\alpha) + \mathcal{A}\alpha$, 其中 $\alpha - \mathcal{A}\alpha \in \mathcal{A}^{-1}(0)$, $\mathcal{A}\alpha \in \mathcal{A}V$. 由于 $\mathcal{A}^{-1}(0)$ 与 $\mathcal{A}V$ 均为 \mathcal{B} —子空间, 所以 $\mathcal{B}(\alpha - \mathcal{A}\alpha) \in \mathcal{A}^{-1}(0)$, 且 $\mathcal{B}(\mathcal{A}\alpha) \in \mathcal{A}V$, 即 $\mathcal{A}\mathcal{B}(\alpha - \mathcal{A}\alpha) = 0$, 且 存在 $\beta \in V$ 使得 $\mathcal{B}\mathcal{A}\alpha = \mathcal{A}\beta$, 于是

$$\mathscr{A}\mathscr{B}\alpha = \mathscr{A}\mathscr{B}(\alpha - \mathscr{A}\alpha) + \mathscr{A}\mathscr{B}\mathscr{A}\alpha = 0 + \mathscr{A}(\mathscr{B}\mathscr{A}\alpha) = \mathscr{A}(\mathscr{A}\beta) = \mathscr{A}\beta = \mathscr{B}\mathscr{A}\alpha.$$

由 α 的任意性可知 $\mathscr{A}\mathscr{B} = \mathscr{B}\mathscr{A}$.

例题 68. 已知 🗹 是数域 P 上 n 维线性空间 V 上的线性变换, 证明 $V={\rm Im}\, {\mathscr A} \oplus {\rm Ker}\, {\mathscr A}$ 的充要条件是 $r({\mathscr A})=r({\mathscr A}^2).$

解答. 必要性. 若 $V = \operatorname{Im} \mathscr{A} \oplus \operatorname{Ker} \mathscr{A}$, 则对任意的 $\alpha \in V$, 都有分解式 $\alpha = \alpha_1 + \alpha_2$, 其中 $\alpha_1 \in \operatorname{Im} \mathscr{A}$, $\alpha_2 \in \operatorname{Ker} \mathscr{A}$, 于是存在 $\beta \in V$, 使得 $\mathscr{A}\beta = \alpha_1$, 且 $\mathscr{A}\alpha_2 = 0$, 从而

$$\mathcal{A}\alpha = \mathcal{A}\alpha_1 + \mathcal{A}\alpha_2 = \mathcal{A}(\mathcal{A}\beta) + 0 = \mathcal{A}^2\beta \in \operatorname{Im} \mathcal{A}^2.$$

由 α 的任意性可知 $\operatorname{Im} \mathscr{A} \subseteq \operatorname{Im} \mathscr{A}^2$,而显然又有 $\operatorname{Im} \mathscr{A}^2 \subseteq \operatorname{Im} \mathscr{A}$,所以 $\operatorname{Im} \mathscr{A} = \operatorname{Im} \mathscr{A}^2$,特别地,还有 $\dim \operatorname{Im} \mathscr{A} = \dim \operatorname{Im} \mathscr{A}^2$,即 $r(\mathscr{A}) = r(\mathscr{A}^2)$.

充分性. 若 $r(\mathscr{A}) = r(\mathscr{A}^2)$, 则 dim Im $\mathscr{A} = \dim \operatorname{Im} \mathscr{A}^2$, 从而根据维数公式

$$\dim\operatorname{Im}\mathscr{A}^k+\dim\operatorname{Ker}\mathscr{A}^k=n\ (k=1,2)$$

可知 dim Ker $\mathscr{A} = \dim \operatorname{Ker} \mathscr{A}^2$, 此时结合 Ker $\mathscr{A} \subseteq \operatorname{Ker} \mathscr{A}^2$ 可知

$$\operatorname{Ker} \mathscr{A} = \operatorname{Ker} \mathscr{A}^2.$$

任取 $\alpha \in \text{Im} \mathscr{A} \cap \text{Ker} \mathscr{A}$, 则存在 $\beta \in V$, 使得 $\mathscr{A}\beta = \alpha$, 且 $\mathscr{A}\alpha = 0$, 于是 $\mathscr{A}(\mathscr{A}\beta) = \mathscr{A}\alpha = 0$, 即 $\beta \in \text{Ker} \mathscr{A}^2 = \text{Ker} \mathscr{A}$, 那么 $\alpha = \mathscr{A}\beta = 0$, 这说明 $\text{Ker} \mathscr{A} \cap \text{Im} \mathscr{A} = \{0\}$, 于是 $\text{Im} \mathscr{A} + \text{Ker} \mathscr{A}$ 为直和, 由维数 公式可知

$$\dim(\operatorname{Im}\mathscr{A} \oplus \operatorname{Ker}\mathscr{A}) = \dim\operatorname{Im}\mathscr{A} + \dim\operatorname{Ker}\mathscr{A} = n = \dim V.$$

于是 $V = \operatorname{Im} \mathscr{A} \oplus \operatorname{Ker} \mathscr{A}$.

7. λ —矩阵

7.1 判断矩阵是否相似

例题 69. 证明矩阵
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & -2 \\ -1 & 1 & 3 \end{pmatrix}$$
 与矩阵 $B = \begin{pmatrix} -1 & 1 & 3 \\ 3 & 0 & -4 \\ -2 & 1 & 4 \end{pmatrix}$ 不相似.

解答. 对 $\lambda E - A 与 \lambda E - B$ 作初等变换, 化为标准形:

$$\lambda E - A = \begin{pmatrix} \lambda & -1 & -2 \\ -1 & \lambda & 2 \\ 1 & -1 & \lambda - 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & \lambda - 1 & -\lambda^2 + 3\lambda - 2 \\ 0 & \lambda - 1 & \lambda - 1 \\ 1 & -1 & \lambda - 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & \lambda - 1 \\ 0 & \lambda - 1 & -\lambda^2 + 3\lambda - 2 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & \lambda - 1 \\ 0 & 0 & -\lambda^2 + 2\lambda - 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & (\lambda - 1)^2 \end{pmatrix}.$$

$$\lambda E - B = \begin{pmatrix} \lambda + 1 & -1 & -3 \\ -3 & \lambda & 4 \\ 2 & -1 & \lambda - 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & -1 & 0 \\ \lambda^2 + \lambda - 3 & \lambda & -3\lambda + 4 \\ -\lambda + 1 & -1 & \lambda - 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & -\lambda + 1 \\ 0 & \lambda^2 + \lambda - 3 & -3\lambda + 4 \end{pmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 & -\lambda + 1 \\ 0 & \lambda^2 - 2\lambda & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda - 1 + (\lambda - 1)(\lambda^2 - 2\lambda) & 0 \\ 0 & \lambda^2 - 2\lambda & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)^3 \end{pmatrix}.$$

于是 A 的初等因子为 $\lambda - 1$, $(\lambda - 1)^2$, 而 B 的初等因子为 $(\lambda - 1)^3$, 所以 A, B 不相似.

7.2 求矩阵的若尔当标准形与过渡矩阵

例题 70. 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ 1 & 0 & -2 \end{pmatrix}$$
.

- (1) 矩阵 A 可能有怎样的若尔当标准形?
- (2) 求当 x 取何值时, A 可相似对角化?
- (3) 当 x=1 时, 求可逆矩阵 P, 满足 $P^{-1}AP=J$, J 为 A 的若尔当标准形.

解答. (1) 显然

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ -x & \lambda - 1 & 0 \\ -1 & 0 & \lambda + 2 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2).$$

所以 A 的最小多项式只可能为 $(\lambda-1)(\lambda+2)$ 或 $(\lambda-1)^2(\lambda+2)$. 那么结合最小多项式为最后一个不变因子可知:

当 $(\lambda-1)(\lambda+2)$ 为 A 的最小多项式时,A 的不变因子为 $1,\lambda-1,(\lambda-1)(\lambda+2)$,从而 A 的初等因子为 $\lambda-1,\lambda-1,\lambda+2$,于是 A 的若尔当标准形为

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

当 $(\lambda-1)^2(\lambda+2)$ 为 A 的最小多项式时,A 的不变因子为 $1,1,(\lambda-1)^2(\lambda-2)$,从而 A 的初等因子为 $(\lambda-1)^2,\lambda+2$,于是 A 的若尔当标准形为

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{array}\right).$$

(2) 由 (1) 可知, 当 $(\lambda - 1)(\lambda + 2)$ 为 A 的最小多项式时, A 可对角化, 这等价于

$$(A-E)(A+2E) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ x & 0 & 0 \\ 1 & 0 & -3 \end{array}\right) \left(\begin{array}{ccc} 3 & 0 & 0 \\ x & 3 & 0 \\ 1 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 3x & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = O.$$

即 x = 0 时, A 可对角化.

(3) 当 x = 1 时,有

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -2 \end{array}\right).$$

此时 A 的若尔当标准形为

$$J = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{array}\right).$$

若 $P^{-1}AP = J$, 则 AP = PJ, 若记 $P = (X_1, X_2, X_3)$, 则有

$$AX_1 = X_1, \ AX_2 = X_1 + X_2, \ AX_3 = -2X_3.$$

一方面, 对A-E 进行初等行变换化为阶梯形, 可得

$$A - E = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & -3 \end{array}\right) \longrightarrow \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & -3 \\ 0 & 0 & 0 \end{array}\right).$$

于是 (A-E)X=0 的一个特解为 $X_1=(0,1,0)'$, 即 $AX_1=X_1$.

对于上述 X_1 , 考虑方程组 $(A-E)X=X_1$, 此时对增广矩阵作初等行变换化为阶梯形, 就有

$$(A - E, X_1) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & -3 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

由此可知 $(A-E)X=X_1$ 的一个特解为 $X_2=\left(1,0,\frac{1}{3}\right)'$,即有 $AX_2=X_1+X_2$. 另外,对 A+2E 进行初等行变换化为阶梯形,可得

$$A + 2E = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

由此可知 (A+2E)X=0 的一个特解为 $X_3=(0,0,1)'$, 由此可知

$$P = (X_1, X_2, X_3) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & \frac{1}{3} & 1 \end{pmatrix}$$

满足 AP = PJ, 另外, 容易发现 $|P| \neq 0$, 所以此时也有 $P^{-1}AP = J$.

7.3 特征多项式等于多项式的应用

例题 71. \mathscr{A} , \mathscr{B} 是数域 P 上 n 维线性空间 V 上的线性变换, 已知 \mathscr{A} 的特征多项式等于最小多项式, 均 为 $f(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \cdots + a_{n-1} \lambda + a_n$. 则

(1) \mathscr{A} 在某一组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵为

$$A = \begin{pmatrix} 0 & & & -a_n \\ 1 & 0 & & -a_{n-1} \\ & 1 & 0 & & -a_{n-2} \\ & & \ddots & \ddots & & \vdots \\ & & 1 & 0 & -a_2 \\ & & & 1 & -a_1 \end{pmatrix};$$

(2) 对 (1) 中的 α_1 , 有 α_1 , $\mathcal{A}\alpha_1$, ..., $\mathcal{A}^{n-1}\alpha_1$ 为 V 的一组基:

$$(3)$$
 若 $\mathscr{A}\mathscr{B} = \mathscr{B}\mathscr{A}$, 则存在 $l_0, l_1, \dots, l_{n-1} \in P$, 使得 $\mathscr{B} = \sum_{j=0}^{n-1} l_j \mathscr{A}^j$, 即 $F(\mathscr{A}) = C(\mathscr{A})$.

另外考虑 $\lambda E - A$, 可以发现其第 2, 3, \cdots , n 行与第 1, 2, \cdots , n-1 列生成的 n-1 级子式为 $(-1)^{n-1}$, 从而必有 $D_{n-1}(\lambda) = 1$, 那么 $d_1(\lambda) = d_2(\lambda) = \cdots = d_{n-1}(\lambda) = 1$, 同时 $d_n(\lambda) = D_n(\lambda) = |\lambda E - A| = f(\lambda)$. 所以 A, B 有完全相同的不变因子,从而它们相似,即存在可逆矩阵 P 使得 $P^{-1}BP = A$,此时取

$$(\alpha_1, \alpha_2, \cdots, \alpha_n) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)P.$$

可知 $\alpha_1, \alpha_2, \dots, \alpha_n$ 也为 V 的一组基, 且线性变换 \mathscr{A} 在这组基下的矩阵为 $P^{-1}BP = A$.

(2) 由 (1) 可知线性变换 $\mathscr A$ 在基 $\alpha_1,\,\alpha_2,\,\cdots,\,\alpha_n$ 下的矩阵为 A, 根据 A 前 n-1 列的特殊性, 可知

$$\mathscr{A}\alpha_1 = \alpha_2, \ \mathscr{A}\alpha_2 = \alpha_3, \ \cdots, \ \mathscr{A}\alpha_{n-1} = \alpha_n.$$

从而 $\mathscr{A}\alpha_1 = \alpha_2$, $\mathscr{A}^2\alpha_1 = \alpha_3$, \cdots , $\mathscr{A}^{n-1}\alpha_1 = \alpha_n$, 即 α_1 , $\mathscr{A}\alpha_1$, \cdots , $\mathscr{A}^{n-1}\alpha_1$ 是空间 V 的一组基.

(3) 由于 $\mathscr{A}\mathscr{B} = \mathscr{B}\mathscr{A}$, 从而对任意的正整数 m 都有 $\mathscr{A}^m\mathscr{B} = \mathscr{B}\mathscr{A}^m$. 对任意 $\alpha \in V$, 根据 (2), 先设 $\alpha = \sum_{i=1}^{n-1} k_i \mathscr{A}^i \alpha_1$,同时,我们设 $\mathscr{B}\alpha_1 = \sum_{i=1}^{n-1} l_i \mathscr{A}^j \alpha_1$.于是

$$\begin{split} \mathcal{B}\alpha = & \mathcal{B}\left(\sum_{i=0}^{n-1} k_i \mathcal{A}^i \alpha_1\right) = \sum_{i=0}^{n-1} k_i \mathcal{B} \mathcal{A}^i \alpha_1 = \sum_{i=0}^{n-1} k_i \mathcal{A}^i \mathcal{B} \alpha_1 \\ = & \sum_{i=0}^{n-1} k_i \mathcal{A}^i \left(\sum_{j=0}^{n-1} l_j \mathcal{A}^j \alpha_1\right) = \sum_{j=0}^{n-1} l_j \mathcal{A}^j \left(\sum_{i=0}^{n-1} k_i \mathcal{A}^i \alpha_1\right) \\ = & \sum_{i=0}^{n-1} l_j \mathcal{A}^j \alpha. \end{split}$$

由 α 的任意性可知 $\mathscr{B} = \sum_{j=0}^{n-1} l_j \mathscr{A}^j$, 即 $F(\mathscr{A}) = C(\mathscr{A})$.

7.4 平方根问题

例题 72. 证明: $n \ge 2$ 时, $J_n(0)$ 不存在平方根.

解答. 反证法: 假设存在矩阵 B 使得 $J_n(0)=B^2$, 由于 $J_n(0)$ 是幂零矩阵, 所以 B 也是幂零矩阵, 即 B的特征值只有零. 不妨设 B 的若尔当标准形为

$$J = \operatorname{diag}\{O_s, J_{r_1}(0), J_{r_2}(0), \cdots, J_{r_t}(0)\}.$$

其中 O_s 为 $s \times s$ 的零矩阵, $s+r_1+r_2+\cdots+r_t=n,$ 且 $r_i\geq 2$ $(i=1,2,\cdots,t),$ 那么 $B^2\sim J^2=\mathrm{diag}\{O_s,J_{r_1}(0)^2,J_{r_2}(0)^2,\cdots,J_{r_t}(0)^2\}.$

$$B^2 \sim J^2 = \text{diag}\{O_s, J_{r_s}(0)^2, J_{r_s}(0)^2, \cdots, J_{r_s}(0)^2\}$$

而显然 $J_{r_i}(0)^2$ $(i=1,2,\cdots,t)$ 的秩为 r_i-2 , 所以

$$n-1 = r(J_n(0)) = r(B^2) = r(J^2) = (r_1 - 2) + (r_2 - 2) + \dots + (r_t - 2) = n - s - 2t.$$

从而 s + 2t = 1, 那么只能是 s = 1, t = 0, 而这与 $n \ge 2$ 是矛盾的, 所以 $J_n(0)$ $(n \ge 2)$ 不存在平方根.

矩阵 n 次方的计算 7.5

例题 73. 设四阶方阵

$$A = \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & 4 & 0 \end{array}\right).$$

 $\sharp A^{2020}$.

解答. 为了方便,记
$$B=\begin{pmatrix}1&2\\2&1\end{pmatrix}$$
, $C=\begin{pmatrix}4&-1\\4&0\end{pmatrix}$,则
$$A=\begin{pmatrix}B&O\\O&C\end{pmatrix}.$$

注意到
$$B=B_1-E_2$$
, 其中 $B_1=\begin{pmatrix}2&2\\2&2\end{pmatrix}$ 满足

$$B_1^2 = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 8 \\ 8 & 8 \end{pmatrix} = 4B_1.$$

以此类推可知 $B_1^k = 4^{k-1}B_1$ $(k = 1, 2, \cdots)$, 于是结合 B_1 与 $-E_2$ 可交换, 就有

$$B^{2020} = (B_1 - E_2)^{2020} = \sum_{k=0}^{2020} C_{2020}^k (-1)^{2020-k} B_1^k = \sum_{k=1}^{2020} C_{2020}^k 4^{k-1} (-1)^{2020-k} B_1 + E_2$$

$$= \frac{1}{4} \sum_{k=1}^{2020} C_{2020}^k 4^k (-1)^{2020-k} B_1 + E_2 = \frac{1}{4} \left[\sum_{k=0}^{2020} C_{2020}^k 4^k (-1)^{2020-k} - 1 \right] B_1 + E_2$$

$$= \frac{(4-1)^{2020} - 1}{4} B_1 + E_2 = \left(\begin{array}{cc} \frac{3^{2020} + 1}{2} & \frac{3^{2020} - 1}{2} \\ \frac{3^{2020} - 1}{2} & \frac{3^{2020} + 1}{2} \end{array} \right).$$

另外注意到 $C = 2E_2 + C_1$, 其中 $C_1 = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$ 满足

$$C_1^2 = \left(\begin{array}{cc} 2 & -1 \\ 4 & -2 \end{array}\right) \left(\begin{array}{cc} 2 & -1 \\ 4 & -2 \end{array}\right) = O.$$

于是 $C_1^k = O$ $(k \ge 2)$, 那么结合 C_1 与 $2E_2$ 可交换, 就有

$$C^{2020} = (2E_2 + C_1)^{2020} = 2^{2020}E_2 + 2020 \cdot 2^{2019}C_1 = \begin{pmatrix} 2021 \cdot 2^{2020} & -2020 \cdot 2^{2019} \\ 2020 \cdot 2^{2021} & -2019 \cdot 2^{2020} \end{pmatrix}.$$

所以

別
$$A^{2020} = \begin{pmatrix} B^{2020} & O \\ O & C^{2020} \end{pmatrix} = \begin{pmatrix} \frac{3^{2020} + 1}{2} & \frac{3^{2020} - 1}{2} & 0 & 0 \\ \frac{3^{2020} - 1}{2} & \frac{3^{2020} + 1}{2} & 0 & 0 \\ 0 & 0 & 2021 \cdot 2^{2020} & -2020 \cdot 2^{2019} \\ 0 & 0 & 2020 \cdot 2^{2021} & -2019 \cdot 2^{2020} \end{pmatrix}$$
.

例题 74. 已知
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

- (1) 证明: $A^n = A^{n-2} + A^2 I \ (n \ge 3)$.
- (2) $\# A^{2021}$.

解答. (1) 明显 $|\lambda I - A| = (\lambda - 1)(\lambda^2 - 1) = \lambda^3 - \lambda^2 - \lambda + 1$, 所以由哈密顿-凯莱定理可知

$$A^3 - A^2 - A + I = O. (18)$$

即 $A^3 = A^2 + A - I$, 所以当 n = 3 时结论成立, 现在假设命题对 $n = k \ (k \ge 3)$ 成立, 即

$$A^k = A^{k-2} + A^2 - I. (19)$$

则当 n = k + 1 时, 结合 (18) 式与 (19) 式就有

$$A^{k+1} = AA^k = A(A^{k-2} + A^2 - I) = A^{k-1} + A^3 - A = A^{k-1} + A^2 - I.$$

所以由数学归纳法, 有 $A^n = A^{n-2} + A^2 - I$ (n > 3).

(2) 由 1 递推可知

$$A^{2021} = A^{2019} + A^2 - I = A^{2017} + 2(A^2 - I) = \dots = A^3 + 1009(A^2 - I)$$

$$= A + 1010(A^2 - I) = \begin{pmatrix} 1 & 0 & 0 \\ 2021 & 0 & 1 \\ 2021 & 1 & 0 \end{pmatrix}.$$

8. 欧氏空间

8.1 施密特正交化求标准正交基

例题 75. 设 $\mathbb{R}^{2\times 2}$ 上的线性变换 $\mathscr{A}(X)=AX-XA,\ A\in\mathbb{R}^{2\times 2},\$ 其中 $A=\left(\begin{array}{cc}1&1\\1&2\end{array}\right).$

- (1) 证明 $(X,Y) = \operatorname{tr}(X'AY)$ 是 $\mathbb{R}^{2\times 2}$ 上的内积;
- (2) 求 Im A 在 (1) 所定义内积下的一组标准正交基.

解答. (1) 注意到 A 是一个实对称矩阵, 所以对任意的 $X, Y, Z \in \mathbb{R}^{2 \times 2}$ 及实数 k, 显然有

$$(X,Y) = \operatorname{tr}(X'AY) = \operatorname{tr}(Y'A'X) = \operatorname{tr}(Y'AX) = (Y,X).$$

$$(kX,Y) = \operatorname{tr}(kX'AY) = k\operatorname{tr}(X'AY) = k(X,Y).$$

 $(X+Y,Z)=\operatorname{tr}((X'+Y')AZ)=\operatorname{tr}(X'AZ)+\operatorname{tr}(Y'AZ)=(X,Z)+(Y,Z).$

另外, 根据 A 的顺序主子式均大于零可知 A 为正定矩阵, 所以存在 2 阶实可逆矩阵 C, 使得 A = C'C, 那么对任意 $X \in \mathbb{R}^{2 \times 2}$, 记 $Y = CX = (y_{ij})_{2 \times 2}$, 就有

$$(X,X) = \operatorname{tr}(X'AX) = \operatorname{tr}(X'C'CX) = \operatorname{tr}((CX)'(CX)) = \operatorname{tr}(Y'Y) = \sum_{i,j=1}^{2} y_{ij}^{2} \ge 0.$$

并且当 (X,X)=0 时,有 $y_{ij}=0$ (i,j=1,2),即 Y=O,再根据 C 可逆就有 X=O.

综上可知 $(X,Y) = \operatorname{tr}(X'AY)$ 是 $\mathbb{R}^{2\times 2}$ 上的内积.

(2) 取

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{21} \equiv \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

是V的一组基,此时易知

$$\mathscr{A}(E_{11}) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \mathscr{A}(E_{12}) = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}, \ \mathscr{A}(E_{21}) = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}, \ \mathscr{A}(E_{22}) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

显然 $\mathscr{A}(E_{11})$, $\mathscr{A}(E_{12})$ 线性无关, 且

$$\mathscr{A}(E_{21}) = \mathscr{A}(E_{11}) - \mathscr{A}(E_{12}), \ \mathscr{A}(E_{22}) = -\mathscr{A}(E_{11}).$$

这说明 $\mathscr{A}(E_{11}), \mathscr{A}(E_{12})$ 为 $\operatorname{Im} \mathscr{A}$ 的一组基,接下来利用施密特正交化将其变为标准正交基: 首先取

$$B_1 = \mathscr{A}(E_{11}) = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right).$$

再取

$$B_2 = \mathscr{A}(E_{12}) - \frac{(\mathscr{A}(E_{12}), B_1)}{(B_1, B_1)} B_1 = \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -3 & -4 \\ 1 & 3 \end{pmatrix}.$$

另外, 容易计算 $(B_1, B_1) = 3$, $(B_2, B_2) = \frac{5}{3}$, 所以 Im \mathscr{A} 的一组标准正交基为

$$C_1 = \frac{B_1}{\sqrt{(B_1, B_1)}} = \frac{\sqrt{3}}{3} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, C_2 = \frac{B_2}{\sqrt{(B_2, B_2)}} = \frac{\sqrt{15}}{15} \begin{pmatrix} -3 & -4 \\ 1 & 3 \end{pmatrix}.$$

8.2 正交变换之镜面反射

例题 76. 已知 \mathscr{A} 是 n 维欧氏空间 V 上的一个线性变换, 证明 \mathscr{A} 为镜面反射的充要条件是 \mathscr{A} 在 V 的任意一组标准正交基下的矩阵都形如 $E-2\delta\delta'$, 其中 δ 是 \mathbb{R}^n 中的单位向量.

45

$$\mathcal{A}\alpha = \alpha - 2(\alpha, \eta)\eta, \ \alpha \in V.$$

其中 η 是 V 中的单位向量, 将其扩为 V 的一组标准正交基, 设为 η , η_2 , ..., η_n , 由于

$$\begin{cases} \mathcal{A}\eta = \eta - 2(\eta, \eta)\eta = -\eta; \\ \mathcal{A}\eta_i = \eta_i - 2(\eta_i, \eta)\eta = \eta_i, \ i = 2, 3, \cdots, n. \end{cases}$$

所以 \mathscr{A} 在 η , η_2 , ..., η_n 这组基下的矩阵为

$$A = \begin{pmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} = E - 2E_{11} = E - 2\varepsilon_1 \varepsilon_1'.$$

其中 E_{11} 代表第一行第一列元素为 1, 其余元素为 0 的基本矩阵, $\varepsilon_1 \in \mathbb{R}^n$ 代表第一个分量为 1, 其余分量为 0 的单位向量.

于是, 对 V 的任意一组标准正交基 $\alpha_1, \alpha_2, \dots, \alpha_n$, 设 $\eta, \eta_2, \dots, \eta_n$ 到 $\alpha_1, \alpha_2, \dots, \alpha_n$ 的过渡矩阵为 T, 则 T 是一个正交矩阵, 且 \mathscr{A} 在 α_1 , α_2 , \cdots , α_n 下的矩阵为

$$B = T'AT = T'(E - 2\varepsilon_1\varepsilon_1')T = E - 2(T'\varepsilon_1)(T'\varepsilon_1)'.$$

记 $T'\varepsilon_1 = \delta$, 则 $B = E - 2\delta\delta'$, 且由于 $(\delta, \delta) = \varepsilon_1'TT'\varepsilon_1 = (\varepsilon_1, \varepsilon_1) = 1$, 所以 δ 也为 \mathbb{R}^n 中的单位向量.

充分性. 任取 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为 V 的一组标准正交基, 设 🖋 在此基下的矩阵为 $A = E - 2\delta\delta'$, 其中 δ 为 \mathbb{R}^n 中的单位向量. 由于 $\delta\delta'$ 是迹为 $\delta'\delta=1$ 的秩 1 矩阵, 从而 $\delta\delta'$ 的特征值为 1 (1 重), 0 (n-1 重), 所以 $A = E - 2\delta\delta'$ 的特征值为 -1 (1 重), 1 (n-1 重), 另外 A 还是一个实对称矩阵, 于是存在正交矩阵 T, 使得

$$T'AT \neq \begin{pmatrix} & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{pmatrix}.$$

现在设 $(\beta_1,\beta_2,\cdots,\beta_n)=(\alpha_1,\alpha_2,\cdots,\alpha_n)T,$ 则 $\beta_1,\ \beta_2,\ \cdots,\ \beta_n$ 也是 V 的一组标准正交基,且 $\mathscr A$ 在这组基下的矩阵为 T'AT, 即有 $\begin{cases} \mathscr A\beta_1=-\beta_1;\\ \mathscr A\beta_i=\beta_i,\ i=2,3,\cdots,n. \end{cases}$

$$\begin{cases} \mathscr{A}\beta_1 = -\beta_1; \\ \mathscr{A}\beta_i = \beta_i, \ i = 2, 3, \cdots, n. \end{cases}$$

于是, 对任意的 $\alpha \in V$, 不妨设 $\alpha = k_1\beta_1 + k_2\beta_2 + \cdots + k_n\beta_n$, 都有

$$\mathscr{A}\alpha = -k_1\beta_1 + k_2\beta_2 + \dots + k_n\beta_n$$
$$= k_1\beta_1 + k_2\beta_2 + \dots + k_n\beta_n - 2k_1\beta_1$$
$$= \alpha - 2(\alpha, \beta_1)\beta_1.$$

这说明 ৶ 是一个镜面反射.

对称变换之内积计算公式 8.3

例题 77. 已知 $\mathscr A$ 是 n 维欧氏空间 V 上的线性变换, $arepsilon_1, arepsilon_2, \cdots, arepsilon_n$ 是 V 的一组基, 其度量矩阵为 G, $\mathscr A$ 在这组基下的矩阵为 A. 则 $\mathscr A$ 为对称变换的充要条件是 A'G=GA.

解答. 设 $\alpha = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)X$, $\beta = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)Y$ 是 V 中任意的两个向量, 于是

$$\begin{cases} \mathscr{A}\alpha = \mathscr{A}(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)X = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)AX; \\ \mathscr{A}\beta = \mathscr{A}(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)Y = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)AY. \end{cases}$$

于是

∅ 为对称变换 ⇔
$$\forall \alpha, \beta \in V$$
 都有 (Д α, β) = $(\alpha, \mathcal{A}\beta)$
⇔ $\forall X, Y \in \mathbb{R}^n$ 都有 $(AX)'GY = X'G(AY)$
⇔ $\forall X, Y \in \mathbb{R}^n$ 都有 $X'(A'G)Y = X'(GA)Y$
⇔ $A'G = GA$.

8.4 反称变换之不变子空间

例题 78. 设 n 维欧氏空间 V 中的线性变换 σ 称为反对称的, 如果对于任意的 α , $\beta \in V$, 有

$$(\sigma(\alpha), \beta) = -(\alpha, \sigma(\beta)).$$

证明:

- (1) 若 λ 是反称线性变换 σ 的一个实特征值, 则 $\lambda = 0$.
- (2) σ 是反称线性变换的充分必要条件是 σ 在任意标准正交基下的矩阵为反称矩阵.
- (3) 如果 V_1 是反称线性变换 σ 的不变子空间, 则 V_1 的正交补 V_1^{\perp} 也是 σ 的不变子空间.

解答. (1) 若 λ 为 σ 的特征值, 设 $\alpha \in V$ 为对应的特征向量, 则有

$$\lambda(\alpha, \alpha) = (\sigma(\alpha), \alpha) = -(\alpha, \sigma(\alpha)) = -\lambda(\alpha, \alpha).$$

即 $2\lambda(\alpha,\alpha) = 0$,而 $(\alpha,\alpha) > 0$,所以 $\lambda = 0$.

(2) 任取 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 为 V 的一组标准正交基, 设 σ 在此基下的矩阵为 A. 对任意的 $\alpha, \beta \in V$, 设

$$\alpha = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)X, \ \beta = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)Y, \ X, Y \in \mathbb{R}^n.$$

那么 $\sigma(\alpha)=(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)AX,\ \sigma(\beta)=(\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n)AY,$ 于是

$$(\sigma(\alpha), \beta) = (AX)'Y = X'A'Y;$$

$$(\alpha, \sigma(\beta)) = X'(AY) = X'AY.$$

而 σ 为反称线性变换的充要条件是对任意的 $\alpha, \beta \in V$, 有 $(\sigma(\alpha), \beta) = -(\alpha, \sigma(\beta))$, 即对任意的 $X, Y \in \mathbb{R}^n$, 有 X'A'Y = -X'AY, 这又等价于 A' = -A, 即 A 为反称矩阵.

(3) 任取 $\alpha \in V_1^{\perp}$, 对任意的 $\beta \in V_1$, 由于 V_1 为 σ 的不变子空间, 所以 $\sigma(\beta) \in V_1$, 从而

$$(\sigma(\alpha), \beta) = -(\alpha, \sigma(\beta)) = 0.$$

这说明 $\sigma(\alpha) \in V_1^{\perp}$, 即 V_1^{\perp} 也是 σ 的不变子空间.

8.5 伴随

例题 79. 设 \mathcal{A} 是 n 维欧氏空间 V 上的线性变换, 求证存在唯一的变换 \mathcal{A}^* 满足

$$(\mathscr{A}(u), v) = (u, \mathscr{A}^*(v)), \ \forall u, v \in V.$$

解答. 存在性. 任取 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 是 V 的一组标准正交基, 设 \mathscr{A} 在这组基下的矩阵为 A, 取 \mathscr{A}^* 也为 V 上的线性变换, 其在 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 这组基下的矩阵为 A', 那么对任意的 $u, v \in V$, 不妨设

$$u = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)X, \ v = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)Y, \ X, Y \in \mathbb{R}^n.$$

则有

$$\mathscr{A}(u) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) AX, \ \mathscr{A}^*(v) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) A'Y.$$

那么根据内积的计算公式就有

$$(\mathscr{A}(u), v) = (AX)'Y = X'(A'Y) = (u, \mathscr{A}^*(v)).$$

唯一性. 若 V 上的变换 \mathscr{B} 也满足 $(\mathscr{A}(u), v) = (u, \mathscr{B}(v)), \forall u, v \in V$, 则有

$$(u, \mathscr{A}^*(v)) = (u, \mathscr{B}(v)), \forall u, v \in V.$$

即

$$(u, \mathscr{A}^*(v) - \mathscr{B}(v)) = 0, \ \forall u, v \in V.$$

特别地, 取 $u = \mathscr{A}^*(v) - \mathscr{B}(v)$ 可得 $\mathscr{A}^*(v) - \mathscr{B}(v) = 0$, 结合 v 的任意性可知 $\mathscr{B} = \mathscr{A}^*$.

例题 80. 设 \mathscr{A} , \mathscr{A}^* 是 n 维欧氏空间 V 上的线性变换, 且对任意 $\alpha, \beta \in V$, 总有 $(\mathscr{A}\alpha, \beta) = (\alpha, \mathscr{A}^*\beta)$, 证明: Ker $\mathscr{A} = (\operatorname{Im} \mathscr{A}^*)^{\perp}$, 且 $V = \operatorname{Ker} \mathscr{A} \oplus \operatorname{Im} \mathscr{A}^*$.

解答. 一方面, 任取 $\alpha \in \text{Ker } \mathcal{A}$, $\beta \in V$, 由己知就有

$$(\alpha, \mathscr{A}^*\beta) = (\mathscr{A}\alpha, \beta) = (0, \beta) = 0.$$

这说明 $\alpha \in (\operatorname{Im} \mathscr{A}^*)^{\perp}$, 即有 $\operatorname{Ker} \mathscr{A} \subseteq (\operatorname{Im} \mathscr{A}^*)^{\perp}$.

另一方面, 任取 $\alpha \in (\operatorname{Im} \mathscr{A}^*)^{\perp}$, 则对任意 $\beta \in V$, 有 $\mathscr{A}^*\beta \in \operatorname{Im} \mathscr{A}^*$, 从而结合已知就有

$$0 = (\alpha, \mathscr{A}^*\beta) = (\mathscr{A}\alpha, \beta).$$

特别地,取 $\beta=\mathscr{A}\alpha$,就有 $(\mathscr{A}\alpha,\mathscr{A}\alpha)=0$,于是 $\mathscr{A}\alpha=0$,即 $\alpha\in\operatorname{Ker}\mathscr{A}$,这说明 $(\operatorname{Im}\mathscr{A}^*)^\perp\subseteq\operatorname{Ker}\mathscr{A}$. 所以 $\operatorname{Ker}\mathscr{A}=(\operatorname{Im}\mathscr{A}^*)^\perp$,进而也有 $V=\operatorname{Im}\mathscr{A}^*\oplus(\operatorname{Im}\mathscr{A}^*)^\perp=\operatorname{Ker}\mathscr{A}\oplus\operatorname{Im}\mathscr{A}^*$.