# Computational Quantum Physics Series 1.

Prof. Juan Carrasquilla Alvarez

Responsible TA: Brandon Barton, bbarton@ethz.ch

Exercise class in HCI J7.

## Exercise 1. Bitwise Operations and the Transverse Field Ising Model

In this exercise we will get familiar with the way the states in a Fock space can be represented by integers using their decomposition into bits. We will see how we can use this representation to facilitate operations and decompose the Hilbert space into symmetry sectors of a given Hamiltonian. We will use this in the context of the transverse field Ising model. The transverse field Ising chain with open boundary conditions is defined by the following Hamiltonian

$$\hat{H} = \hat{H}_{\text{Ising}} + \hat{H}_{\text{transv}} = J \sum_{i=1}^{N-1} \hat{\sigma}_i^z \hat{\sigma}_{i+1}^z - h^x \sum_{i=1}^N \hat{\sigma}_i^x$$
 (1)

where we replaced the spin operators  $\hat{S}_i^{\mu} = \frac{\hbar}{2} \hat{\sigma}_i^{\mu}$ ,  $\mu = x, y, z$  with the Pauli matrices  $\hat{\sigma}^{\mu}$  and set  $\hbar = 1$ . As the dimension of the Hilbert space grows exponentially in the number of sites on the chain we will only be able to tackle small problems. The symmetries of the Hamiltonian however allow us to simplify the problem: By organizing the basis states so that elements corresponding to the same symmetry sector are grouped together, the Hamiltonian becomes block diagonal. We can then solve the eigenvalue problem for the blocks independent of each other.

## Part 1

As a warm up, let us contemplate on the size of the Fock (sub-)spaces for different particles. Suppose a geometry of N sites. What is the size of the Fock space for:

- 1. Bosons
- 2. Spinless Fermions
- 3. Spinful Fermions
- 4. Spin- $\frac{1}{2}$ 's

Assume that we are dealing with spinless fermions, and that  $\hat{H}$  commutes with the number operator  $\hat{n} = \sum_i \hat{n}_i$ , i.e.  $[\hat{H}, \hat{n}] = 0$ .

- 5. What are the dimensions of the invariant subspaces, labeled by the filling  $n = \frac{1}{N} \sum_{i} \hat{n}_{i}$ ?
- 6. Same as for 5., but this time we consider spinful fermions, i.e. the number operator on site  $i, \hat{n}_i$ , becomes  $\hat{n}_i = \hat{n}_{i\uparrow} + \hat{n}_{i\downarrow}$ . Since we are dealing with spinful fermions, be aware that every site can host one of the following states:  $|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle$

Assume that we are dealing with a chain of spin-  $\frac{1}{2}$  's, and assume that  $\hat{H}$  commutes with the total magnetization  $m=\frac{1}{N}\sum_i \hat{\sigma}_i^z$ .

7. What are the dimensions of the invariant subspaces, labeled by the magnetization m?

### Part 2

We will now restrict ourselves to spin- $\frac{1}{2}$  's (meaning that we are only considering strings where exactly 1 spin- $\frac{1}{2}$  resides at each site), and we will represent each basis state as an integer via its bit representation. For instance, working on 4 sites, the state  $|\uparrow\uparrow\downarrow\uparrow\rangle$  will be thought of as  $|1101\rangle$ , which corresponds to the bit representation of the integer 13. Using the bitwise operators in python depicted in Table (1), implement functions to do the following operations on a state:

- 1. Shift all the spins cyclically to the right
- 2. Shift all the spins cyclically to the left
- 3. Count all the upspins in your state
- 4. Return the spin of a state at site j
- 5. Flip the spin at site j
- 6. Flip all the spins in the state
- 7. We will now use this method the check question 7. of part 1. Assume a system of spin  $-\frac{1}{2}$  's with N=10. Using the the integers  $0,1,\ldots,1023$  as the basis of the Hilbert space (via their bit representation), divide the Hilbert space into the different magnetization sectors. Check that the sizes of the sectors match the analytical result obtained in part 1.

| &      | AND                  |
|--------|----------------------|
|        | OR                   |
| $\sim$ | XOR                  |
| >>     | Zero fill left shift |
| <<     | Signed right shift   |
| $\sim$ | NOT                  |

Table 1: Bitwise operations in python

### Part 3

1. In the transverse field Ising model, the parity symmetry is defined as  $\hat{P} = \prod_i \sigma_i^x$ . Show that it commutes with the Hamiltonian.

For a system with periodic boundary conditions we can also exploit translational symmetries. Such a translation is represented by the operator T or a multiple of it. T is thereby defined as

$$T | s_1, s_2, \dots, s_N \rangle = | s_N, s_1, \dots, s_{N-1} \rangle$$

The eigenvalues of the translation operator are the N-th roots of unity  $z_k = \exp\left(i\frac{2\pi k}{N}\right)$  with  $k = 0, \ldots, N-1$ . The shift operator commutes with the Hamiltonian. It can therefore be

decomposed into different  $p_k = 2\pi k/N$  momentum subspaces. This means constructing cycles of states which are connected by T:

$$|\psi_n\rangle = T^n|\phi\rangle \quad n \in \{1, 2, \dots, N-1\}.$$

This cycle is spanned by the eigenstates of T with momentum  $p_k$ :

$$|\chi_k\rangle = \frac{1}{\sqrt{N_\phi}} \sum_{\nu=0}^{N-1} \left(e^{-ip_k}T\right)^{\nu} |\phi\rangle \quad k = 0, 1, \dots, N-1$$

If the dimension of the cycle does not equal the number of lattice sites N, k is changed according to  $k = 0, N/D, \dots, (D-1)N/D$  with D being the dimension of the cycle.

- 2. Consider a system with N = 4 lattice sites. Find the momentum states  $|\chi_k\rangle$  with momenta  $p_k \in \{0, \pi/2, \pi, 3\pi/2, 2\pi\}$ , by constructing the translation cycles for each basis state.
- 3. How should we choose the normalization constant  $N_{\phi}$  of the states  $|\chi_k\rangle$ ? If it helps, consider explicitly the case of N = 4 lattice sites.
- 4. Express the Hamiltonian of the transverse field Ising model in this new basis, i.e. calculate

$$\langle \chi'_{k'} | H_{\text{Ising}} | \chi_k \rangle,$$
  
 $\langle \chi'_{k'} | H_{\text{transv}} | \chi_k \rangle.$ 

We've now done some analytical work on the TFI that will facilitate the task of exact diagonalization. Let us do some numerical preparatory work to exactly diagonalize the model by using what was introduced in part 2 of the exercise. Let's consider again the translation operator  $\hat{T}$  which commutes with  $\hat{H}$ . For every state (bitstring)  $|s\rangle$ , define its orbits  $O(|s\rangle) = \operatorname{set} \hat{T}^n |s\rangle$ , e.g. as the set of all possible bitstrings that can be constructed out of  $|s\rangle$  by applying  $\hat{T}$  arbitrarily many times. This defines an equivalence relation: all the bitstrings split into non-interseting orbits (equivalence classes)  $O_1, O_2, \ldots, O_m$ . To each orbit, one can assign a representative, which in principle can be any state of the orbit. Note that the momentum states  $|\chi_k\rangle$  as constructed above only contain states from the same orbit.

- 5. Implement a function that creates as an output an array containing exactly one representative of each orbit. Choose as the representative of each orbit the state corresponding to the lowest integer (via the bitstring representation).
- 6. Lastly, create a function that takes the output of the function created in (5.) and checks which orbits are compatible with the creation of a momentum eigenstate with momentum  $P_n$ . Remember that e.g. the orbit created by the state  $|\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\rangle$  is only compatible with the momenta  $P_0 = \frac{2\pi}{8}0 = 0$  and  $P_2 = \frac{2\pi}{8}4 = \pi$ , because translating the state twice must bring it back to itself, meaning that  $\exp(-iP_n 2)$  must be equal to 1.