Resolução de Exercícios Cálculo 2

Lázaro José Rodrigues Júnior

December 26, 2019

1 Lista I

1.1 Substituição Trigonométrica

$$1) \int \frac{dx}{x^2 \sqrt{4 - x^2}}$$

Colocando o 4 em evidência;

$$\int \frac{dx}{x^2 \sqrt{4(1-(\frac{x}{2})^2)}}$$

Seja $\frac{x}{2} = \sin t$, $x = 2\sin t$, $dx = 2\cos t dt$;

$$\int \frac{2\cos t \ dt}{(2\sin t)^2 \sqrt{4(1-\sin^2 t)}}$$

 $Como 1 - \sin^2 t = \cos^2 t;$

$$\int \frac{2\cos t \ dt}{4\sin^2 t \ 2\cos t}$$

Simplificando;

$$\frac{1}{4} \int \csc^2 t \ dt$$

Integrando;

$$-\frac{1}{4}\cot t + c$$

Como $\frac{x}{2} = \sin t$:

Como precisamos encontrar a cotangente ($\frac{cateto\ adjantece}{cateto\ oposto}$), precisamos encontrar o y, e pelo teorema de pitágoras: $2^2=x^2+y^2$, isolando o y: $y=\sqrt{4-x^2}$.

Logo a resposta final é:

$$-\frac{\sqrt{4-x^2}}{4x} + c$$

$$2) \int \frac{dx}{x\sqrt{x^2+4}}$$

Colocando o 4 em evidência;

$$\int \frac{dx}{x\sqrt{4((\frac{x}{2})^2+1)}}$$

Seja $\frac{x}{2} = \tan t$, $x = 2 \tan t$, $dx = 2 \sec^2 t dt$;

$$\int \frac{2\sec^2 t \ dt}{2\tan t \sqrt{4(\tan^2 t + 1)}}$$

 $Como \tan^2 t + 1 = \sec^2 t;$

$$\int \frac{2\sec^2 t \ dt}{2\tan t \ 2\sec t}$$

Simplificando; $\frac{1}{2}\int\frac{\sec t}{\tan t}=\frac{1}{2}\int\frac{\frac{1}{\cos t}}{\frac{\sin t}{\cos t}}=\frac{1}{2}\int\frac{1}{\sin t}=$

$$\frac{1}{2} \int \csc t$$

Integrando;

$$-\ln(\csc t + \cot t) + c$$

Como $\frac{x}{2} = \tan t$:

Como precisamos encontrar a cotangente ($\frac{cateto\ adjantece}{cateto\ oposto}$) e a cosecante ($\frac{hipotenusa}{cateto\ oposto}$), precisamos encontrar o y, e pelo teorema de Pitágoras: $y^2=x^2+2^2$, isolando o y: $y=\sqrt{x^2+4}$.

Logo a resposta final é:

$$-\ln(\frac{\sqrt{x^2+4}}{x} + \frac{2}{x}) + c$$

$$3) \int \frac{dx}{x\sqrt{25 - x^2}}$$

Colocando o 25 em evidência;

$$\int \frac{dx}{x\sqrt{25(1-(\frac{x}{5})^2)}}$$

Seja $\frac{x}{5} = \sin t$, $x = 5 \sin t$, $dx = 5 \cos t dt$;

$$\int \frac{5\cos t \ dt}{(5\sin t)\sqrt{25(1-\sin^2 t)}}$$

 $Como 1 - \sin^2 t = \cos^2 t;$

$$\int \frac{5\cos t \ dt}{5\sin t \ 5\cos t}$$

Simplificando;

$$\frac{1}{5} \int \csc t \ dt$$

Integrando;

$$-\frac{1}{5}\ln(\csc t + \cot t) + c$$

Como $\frac{x}{5} = \sin t$:

Como precisamos encontrar a cosecante $(\frac{hipotenusa}{cateto\ oposto})$ e a cotangente $(\frac{cateto\ adjantece}{cateto\ oposto}),$ precisamos encontrar o y, e pelo teorema de Pitágoras: $5^2=x^2+y^2,$ isolando o y: $y=\sqrt{25-x^2}.$ Logo a resposta final é:

$$-\frac{1}{5}\ln(\frac{5}{x} + \frac{\sqrt{25 - x^2}}{x}) + c$$