BÀI GIẢNG TOÁN CAO CẤP

TRỊ RIÊNG – VÉC TƠ RIÊNG – CHÉO HÓA MA TRẬN

NỘI DUNG

- Trị riêng, véc-tơ riêng của toán tử tuyến tính
- Trị riêng, véc-tơ riêng của ma trận vuông
- Chéo hóa ma trận
- Chéo hóa trực giao ma trận

I. TRỊ RIÊNG – VÉC TƠ RIÊNG CỦA TOÁN TỬ TUYẾN TÍNH

Định nghĩa Cho V là một KGVT và toán tử tuyến tính $T:V\to V$. Số thực λ được gọi giá trị riêng của T nếu tồn tại $x\in V$ (nhưng $x\neq\theta$) sao cho $T(x)=\lambda x$.

Khi đó x gọi là véc-tơ riêng của T ứng với λ .

Lưu ý: $T(\theta) = \lambda \cdot \theta$, với mọi số thực λ .

Ví dụ: Cho toán tử tuyến tính $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (2x + 2y, 4x)$. Ta thấy $T(1, -2) = (-2, 4) = -2 \cdot (1, -2)$. Như vậy $\lambda = -2$ là một giá trị riêng của T và x = (1, -2) là một vectơ riêng của T ứng với $\lambda = -2$.

Mệnh đề: Cho V là một KGVT. Cho $T:V\to V$ là một toán tử tuyến tính có giá trị riêng λ . Khi đó,

- Nếu u_1, u_2 là các vectơ riêng của T ứng với λ thì $u_1 + u_2$ và ku_1 (với mọi số thực $k \neq 0$) cũng là các vectơ riêng của T ứng với λ .
- Gọi P_{λ} là tập hợp gồm các vectơ riêng của T ứng với λ và vectơ không θ . Ta có P_{λ} là một không gian con của V.
- Giả sử V có một cơ sở là B = {v₁, v₂, ··· , v_n} và gọi A là ma trận của T
 đối với cơ sở B. Ta có A[x]_B = λ[x]_B, với x ∈ P_λ bất kỳ.

Nói một cách khác, để tìm các vectơ riêng x của T ứng với λ , ta giải hệ $(A - \lambda I) \cdot [x]_B = [\theta]$, ở đây I là ma trận đơn vị cùng cấp với A.

II. TRỊ RIÊNG - VÉCTƠ RIÊNG CỦA MA TRẬN VUÔNG

Ta chú ý rằng mỗi phần tử x của \mathbb{R}^n có dạng $x=(x_1,x_2,\cdots,x_n)$ và vectơ không của \mathbb{R}^n là $\theta=(0,0,\cdots,0)$.

Định nghĩa: Cho A là một ma trận vuông cấp $n \ge 1$. Số thực λ được gọi là một giá trị riêng của A nếu tồn tại một vecto $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ (nhưng $x \ne \theta$) thỏa mãn

$$A[x] = \lambda[x].$$

Khi đó, vectơ x được gọi là một vectơ riêng của A ứng với giá trị riêng λ .

Ví dụ: Cho ma trận
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}$$
. Xét vectơ $x = (1, -1)$.

Ta thấy
$$A[x] = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1 \cdot [x].$$

Do đó, $\lambda = 1$ là một giá trị riêng của A và x là một vectơ riêng của A ứng với $\lambda = 1$.

• Lưu ý: Nếu λ là một giá trị riêng của $A = [a_{ij}]_{n \times n}$ thì vectơ riêng $x = (x_1, x_2, \dots, x_n)$ ứng với λ có các tọa độ thành phần thỏa mãn hệ phương trình tuyến tính

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Phương trình đặc trưng

Từ $A[x] = \lambda[x]$ suy ra

$$(A - \lambda . I)[x] = [\theta],$$

ở đây, I là ma trận đơn vị cùng cấp với A. Muốn có nghiệm x không tầm thường thì

$$\det(A - \lambda I) = 0,$$

phương trình trên được gọi là phương trình đặc trưng của A

Một số tính chất

- \star Nếu u là vectơ riêng của A ứng với giá trị riêng λ thì ku (với $k \in \mathbb{R} \setminus \{0\}$) cũng là vectơ riêng của A ứng với λ .
- \star Nếu u, v là các vectơ riêng của A ứng với giá trị riêng λ thì u + v cũng là vectơ riêng của A ứng với λ .

Cách tìm trị riêng và véctơ riêng

Bước 1. Giải phương trình đặc trưng $\det(A - \lambda I) = 0$ được các nghiệm λ_k . Cụ thể, nếu $A = [a_{ij}]_{n \times n}$ thì ta giải phương trình

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} = 0.$$

Bước 2: Với mỗi λ_k , giải hệ phương trình $(A - \lambda_k I)[x] = [\theta]$ được vectơ riêng x (khác θ) ứng với λ_k . Cụ thể, với $x = (x_1, x_2, \dots, x_n)$, ta giải hệ

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

để tìm ra x_1, \dots, x_n . Sau đó, kết luận về x.

VD 1. Tìm tất cả các trị riêng (tắt là TR) và vectơ riêng (tắt là VTR) tương ứng của ma trận

$$A = \left(\begin{array}{cc} 3 & 1 \\ & \\ 2 & 4 \end{array}\right).$$

Giải. Xét PTĐT
$$\begin{vmatrix} 3-\lambda & 1 \\ 2 & 4-\lambda \end{vmatrix} = \lambda^2 - 7\lambda + 10 = 0 \Leftrightarrow \lambda_1 = 2; \ \lambda_2 = 5.$$

+) Với $\lambda_1 = 2$, xét PT $(A - \lambda_1 I)[x] = [\theta]$ với $x = (x_1, x_2) \in \mathbb{R}^2$, tức là PT

$$\begin{pmatrix} 3-2 & 1 \\ 2 & 4-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 + x_2 = 0 \\ 2x_1 + 2x_2 = 0 \end{cases} \Leftrightarrow x_1 = -x_2.$$

Suy ra tập các VTR ứng với TR λ_1 là $\{x = t(1, -1) : t \neq 0\}$.

+) Với $\lambda_2 = 5$, xét PT $(A - \lambda_1 I)x = 0$ với $x = (x_1, x_2) \in \mathbb{R}^2$, tức là PT

$$\begin{pmatrix} 3-5 & 1 \\ 2 & 4-5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \Leftrightarrow \begin{cases} -2x_1 + x_2 = 0 \\ 2x_1 - x_2 = 0 \end{cases} \Leftrightarrow x_2 = 2x_1.$$

Vậy tập các VTR ứng với TR λ_2 là $\{x = t(1, 2) : t \neq 0\}$.

VD 2. Tìm TR và các VTR tương ứng của ma trận

$$A = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

Kết quả.

• PTĐT:
$$\begin{vmatrix} 3 - \lambda & -2 & 0 \\ -2 & 3 - \lambda & 0 \\ 0 & 0 & 5 - \lambda \end{vmatrix} = 0 \Leftrightarrow (\lambda - 1)(\lambda - 5)^2 = 0 \Leftrightarrow \lambda_1 = 1; \ \lambda_2 = 5.$$

• $\lambda_1 = 1$, VTR $x = (x_1, x_2, x_3)$ có các tọa độ thỏa mãn hệ

$$\begin{pmatrix} 3 - \lambda_1 & -2 & 0 \\ -2 & 3 - \lambda_1 & 0 \\ 0 & 0 & 5 - \lambda_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 2x_1 - 2x_2 = 0 \\ -2x_1 + 2x_2 = 0 \\ 4x_3 = 0 \end{cases}$$

Giải hệ, ta tìm được x = t(1, 1, 0) với $t \neq 0$.

• $\lambda_2 = 5 \rightarrow x = t(1, -1, 0) + s(0, 0, 1) \text{ v\'oi } t^2 + s^2 \neq 0.$

VD 3. Tìm TR, VTR tương ứng của
$$A=\begin{pmatrix} 1 & 4 & 6 \\ -3 & -7 & -7 \\ 4 & 8 & 7 \end{pmatrix}$$

Kết quả.

• PTĐT
$$\Leftrightarrow (\lambda + 1)^2(\lambda - 3) = 0 \Leftrightarrow \lambda_1 = -1; \lambda_2 = 3.$$

•
$$\lambda_1 = -1 \rightarrow x = t(-2, 1, 0), \quad t \neq 0.$$

•
$$\lambda_2 = 3 \rightarrow x = t(1, -1, 1), \quad t \neq 0.$$

Lưu ý: Cho toán tử tuyến tính $T: V \to V$. Giả sử V có một cơ sở là $B = \{v_1, v_2, \cdots, v_n\}$ và A là ma trận của T đối với cơ sở B. Khi đó các giá trị riêng và các vectơ riêng tương ứng của A và T là giống nhau.

- ★ Quy trình tìm các giá trị riêng và vectơ riêng của T là:
- 1) Từ V, chọn một cơ sở dễ tìm nhất nếu cần phải tìm, ký hiệu nó bởi B.
- 2) Xác định ma trận A của T đối với cơ sở B.
- 3) Tìm các giá trị riêng và vectơ riêng tương ứng của A.

VD 4. Cho toán tử tuyến tính $T:\mathbb{R}^2\to\mathbb{R}^2$ có ma trận đối với cơ sở chính tắc trong \mathbb{R}^2 được cho bởi

$$A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}.$$

Xác định các giá trị riêng và các vectơ riêng tương ứng của T.

Giải: Ta chỉ cần các giá trị riêng và vectơ riêng tương ứng của A.

Phương trình đặc trưng
$$\begin{vmatrix} 1-\lambda & 0 \\ -1 & 2-\lambda \end{vmatrix} = 0 \Leftrightarrow \lambda = 1, \lambda = 2.$$

Với
$$\lambda = 1$$
, giải hệ $\begin{pmatrix} 1 - \lambda & 0 \\ -1 & 2 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow -x + y = 0 \Leftrightarrow$

(x, y) = (t, t), với $t \in \mathbb{R}$. Vậy các vectơ riêng có dạng t(1, 1), với $t \neq 0$.

Với
$$\lambda = 2$$
, giải hệ $\begin{pmatrix} 1 - \lambda & 0 \\ -1 & 2 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow x = 0$ (với mọi y) \Leftrightarrow

(x,y)=(0,t), với $t\in\mathbb{R}$. Vậy các vectơ riêng có dạng t(0,1), với $t\neq 0$.

VD 5. Tìm TR, VTR của $T: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (2x + 2y, 4x)$.

Giải: Tìm ma trận chính tắc A của T (hay ma trận của T đối với cơ sở chính tắc trong \mathbb{R}^2). Ta có T(1,0)=(2,4) và T(0,1)=(2,0). Suy ra

$$A = \begin{pmatrix} 2 & 2 \\ 4 & 0 \end{pmatrix}.$$

A có các giá trị riêng là $\lambda = -2$, $\lambda = 4$.

Với $\lambda = -2$, các vectơ riêng có dạng t(1, -2) với $t \neq 0$.

Với $\lambda = 4$, các vectơ riêng có dạng t(1, 1) với $t \neq 0$.

VD 6. Tìm TR và các VTR tương ứng của toán tử tuyến tính

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x_1, x_2, x_3) \mapsto (x_1 + x_3, x_2, x_1 + x_3).$$

$$\mathit{K\'et}$$
 quả. Ma trận chính tắc A của T là $A=\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Tìm được $\lambda_1 = 1$, $\lambda_2 = 0$, $\lambda_3 = 2$.

- Với $\lambda_1 = 1$ tìm được $x = t(0, 1, 0), t \in \mathbb{R} \setminus \{0\}$.
- Với $\lambda_2 = 0$ tìm được $x = s(-1, 0, 1), s \in \mathbb{R} \setminus \{0\}$.
- Với $\lambda_3 = 2$ tìm được $x = k(1, 0, 1), k \in \mathbb{R} \setminus \{0\}$.

VD 7. Tìm TR và các VTR tương ứng của toán tử tuyến tính

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $(x_1, x_2, x_3) \mapsto (5x_1, -5x_1 + 3x_2 - 5x_3, -3x_1 - 2x_2)$.

Kết quả. Ma trận chính tắc
$$A$$
 của T là $A=\begin{pmatrix}5&0&0\\-5&3&-5\\-3&-2&0\end{pmatrix}$.

Tìm được $\lambda_1 = -2$, $\lambda_2 = 5$ (bội 2).

- Với $\lambda_1 = -2$ tìm được $x = t(0, 1, 1), t \in \mathbb{R} \setminus \{0\}$.
- Với $\lambda_2 = 5$ tìm được $x = s(0, -5, 2), s \in \mathbb{R} \setminus \{0\}$.

VD 8. Tìm TR và các VTR tương ứng của toán tử tuyến tính

$$T: P_2(x) \to P_2(x)$$

 $a + bx + cx^2 \mapsto (3a - 2b) + (-2a + 3b)x + (5c)x^2.$

$$K\acute{e}t$$
 quả. Ma trận chính tắc A của T là $A=\begin{pmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.

Tìm được $\lambda_1 = 1$, $\lambda_2 = 5$ (bội 2).

- Với $\lambda_1 = 1$ tìm được p = t(1 + x), $t \in \mathbb{R} \setminus \{0\}$.
- Với $\lambda_2 = 5$ tìm được $p = s(-1 + x) + k(x^2)$, $(s, k) \in \mathbb{R}^2 \setminus \{(0, 0)\}$.

III. CHÉO HÓA MA TRẬN

Đặt vấn đề

 $Giả sử T: V \rightarrow V$ là một toán tử tuyến tính.

 \Rightarrow ma trận A của T phụ thuộc vào cơ sở chọn trong V.

Hỏi : có cơ sở nào của V sao cho A có dạng đơn giản (dạng chéo) không?

Ta biết rằng:

 $n\acute{e}u~A~v\grave{a}~A'~l\grave{a}~hai~ma~tr\^{a}n~c\mathring{u}a~T~thì~A'~=~P^{-1}AP$

(với P là ma trận chuyển cơ sở thích hợp)

Như vậy bài toán trở thành:

Có tồn tại ma trận khả nghịch P sao cho $P^{-1}AP$ có dạng chéo không?

- ⇒ cần xem xét hai vấn đề:
- 1. A cần thỏa mãn điều kiện gì để có thể đưa được về dạng chéo?
- 2. ma trận P xác định như thế nào?

MA TRẬN CHÉO HÓA ĐƯỢC

Cho $A \in Mat(n)$, nếu có P sao cho $P^{-1}AP = A'$ là ma trận chéo thì

- A chéo hóa được
 P làm chéo hóa A.

Định lý (Điều kiện chéo hóa ma trận)

 $A \in Mat(n)$ chéo hóa được $\Leftrightarrow A$ có n VTR độc lập tuyến tính.

Định lý:

Nếu ma trận A vuông cấp n có n trị riêng khác nhau thì A chéo hóa được.

QUI TRÌNH CHÉO HÓA MA TRẬN

Bước 1. Tìm các giá trị riêng của A.

Bước 2. Tìm n VTR độc lập tt: p_1, p_2, \ldots, p_n của A.

Bước β. Lập ma trận β có các cột lần lượt là $ρ_1$, $ρ_2$, ..., $ρ_n$.

Bước 4. Ma trận $A' = P^{-1}AP$ chính là ma trận chéo.

Chú ý

Đường chéo của A' là $\lambda_1, \lambda_2, \ldots, \lambda_n$ (là các TR tương ứng với các VTR p_1, p_2, \ldots, p_n).

VD 9. Chéo hóa ma trận
$$A = \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}$$
.

Giải: Phương trình đặc trưng $\begin{vmatrix} 2-\lambda & 0 \\ 4 & 3-\lambda \end{vmatrix} = 0 \Leftrightarrow \lambda = 2, \lambda = 3.$

Với $\lambda = 2$, các vectơ riêng có dạng t(1, -4), với $t \in \mathbb{R}$. Cho t = 1, ta chọn được $p_1 = (1, -4)$.

Với $\lambda = 3$, các vectơ riêng có dạng t(0,1), với $t \in \mathbb{R}$. Cho t = 1, ta chọn được $p_2 = (0,1)$.

Ta thấy $\{p_1, p_2\}$ là ĐLTT, Suy ra A chéo hóa được.

Ma trận
$$P$$
 gây chéo A có dạng $P=\begin{pmatrix}1&0\\-4&1\end{pmatrix}$. Khi đó $P^{-1}AP=\begin{pmatrix}2&0\\0&3\end{pmatrix}$.

VD 10. Chéo hóa ma trận

$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Giải. PTĐT:
$$\begin{vmatrix} 1 - \lambda & -1 & 0 \\ -1 & 1 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (1 - \lambda)^2 (2 - \lambda) - (2 - \lambda) = -\lambda (2 - \lambda)^2 = 0.$$

Tìm được $\lambda_1 = 0$, $\lambda_2 = 2$.

- Với TR $\lambda = 0$, các vectơ riêng có dạng t(1, 1, 0), với $t \in \mathbb{R}$. Cho t = 1, ta tìm được 1 VTR $p_1 = (1, 1, 0)$.
- Với TR $\lambda = 2$, các vectơ riêng có dạng $c_1(1, -1, 0) + c_2(0, 0, 1)$, với $c_1, c_2 \in \mathbb{R}$. Cho $c_1 = 1$, $c_2 = 0$ và $c_1 = 0$, $c_2 = 1$, ta chọn được 2 VTR ĐLTT: $p_2 = (1, -1, 0)$, $p_3 = (0, 0, 1)$.

Hệ $\{p_1, p_2, p_3\}$ ĐLTT, vậy A chéo hóa được và ma trận gây chéo

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{và} \quad P^{-1}AP = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

VD 11. (SV tự làm) Chéo hóa ma trận

$$A = \begin{pmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{pmatrix}.$$

VD 12. Chéo hóa ma trận

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 4 \end{bmatrix}.$$

Giải. Phương trình đặc trưng:

$$\begin{vmatrix} 2-\lambda & -1 \\ 1 & 4-\lambda \end{vmatrix} = (2-\lambda)(4-\lambda) + 1 = (\lambda-3)^2 = 0 \Leftrightarrow \lambda = 3.$$

Do đó, A có trị riêng duy nhất $\lambda=3$, véc-tơ riêng ứng với trị riêng $\lambda=3$

là nghiệm của
$$(A - 3I)x = 0$$
, nghĩa là
$$\begin{cases} -x_1 - x_2 = 0 \\ x_1 + x_2 = 0. \end{cases}$$

Nghiệm của hệ ở dạng x = m(1, -1) ($m \in \mathbb{R}$). Nếu lấy u là một vectơ riêng của A thì u = t(1, -1). Do đó, ta không thể tìm được hai vectơ riêng của A để tạo thành hệ ĐLTT.

Vậy A KHÔNG chéo hóa được.

IV. CHÉO HÓA TRỰC GIAO MA TRẬN

Đặt vấn đề

Giả sử V là KGVT n chiều có tích vô hướng (KG Euclid)

 $T: V \rightarrow V$ là toán tử tuyến tính.

Hãy tìm một cơ sở trực giao để trong đó ma trận của **T** có dạng đường chéo?

Ma trận trực giao

$$P \in Mat(n)$$
 gọi là trực giao nếu $P^TP = I_n$.

VD:
$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Nhận xét

- P trực giao ⇔ các véc-tơ cột (hàng) của nó lập thành hệ trực chuẩn.
- P trực giao thì khả nghịch và $P^{-1} = P^{T}$.

Trị riêng và véc-tơ riêng của ma trận đối xứng A

Cho $A \in Mat(n)$. Nếu $A = A^T$ thì ta nói rằng A là ma trận đối xứng.

Ví dụ: Các ma trận
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$ là các ma trận đối

xứng.

Chú ý rằng không gian Euclid \mathbb{R}^n có tích vô hướng thông thường là $\langle u, v \rangle = x_1y_1 + x_2y_2 + \cdots + x_ny_n$, với $u = (x_1, x_2, \cdots, x_n)$ và $v = (y_1, y_2, \cdots, y_n)$.

Chúng ta ta công nhận các kết quả sau:

- Hai VTR ứng với 2 TR khác nhau của ma trận đối xứng **A** luôn trực giao nhau.
- Ma trận đối xứng **A** ∈ **Mat(n)** sẽ có **n** TR thực (đơn hoặc bội) và **n** VTR trực chuẩn tương ứng.

Định nghĩa

Cho $A \in Mat(n)$. Nếu có P trực giao sao cho $P^{-1}AP = A'$ (chéo) thì

- A chéo hóa trực giao được P làm chéo hóa trực giao A

Ta cần giải quyết 2 vấn đề:

- \bullet tìm điều kiện để ma trận vuông A chéo hóa trực giao được
- \bullet xác định ma trận P làm chéo hóa trực giao ma trận A.

Định lý

Ma trận vuông A cấp **n** chéo hóa trực giao được khi và chỉ khi A đối xứng.

Quy trình chéo hóa trực giao các ma trận đối xứng

Bước 1. Giải PTĐT, tìm 1 cơ sở cho mỗi không gian riêng của A.

Bντός 2. Áp dụng Gram-Smidt vào mỗi cơ sở đó \rightarrow cơ sở trực chuẩn.

 $B u \acute{o} c$ 3. Lập ma trận P có các cột là các véc-tơ cơ sở trực chuẩn ở trên.

Khi đó $A' = P^{-1}AP$ là ma trận đường chéo.

VD 13. Chéo hóa trực giao các ma trận

$$A = \left(\begin{array}{cc} 1 & 2 \\ & \\ 2 & 4 \end{array}\right).$$

Giải: Ta thấy A là ma trận đối xứng nên A chéo hóa trực giao được.

A có các giá trị riêng là $\lambda = 0, \lambda = 5$.

Với
$$\lambda = 0$$
, ta nhận được
$$\begin{cases} x + 2y = 0 \\ 2x + 4y = 0 \end{cases} \Leftrightarrow x + 2y = 0. \text{ Do đó các vecto}$$
riêng có dang $t(-2,1)$ với $t \in \mathbb{R}$. Chon $p_1 = (-2,1)$.

riêng có dạng t(−2, 1) với $t \in \mathbb{R}$. Chọn $p_1 = (-2, 1)$.

Suy ra
$$u_1 = \frac{p_1}{\|p_1\|} = \left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$
.

Với $\lambda = 5$, ta nhận được -4x + 2y = 0, 2x - y = 0, và giải hệ này thì thu được dạng của các vectơ riêng là t(1,2) với $t \in \mathbb{R}$. Chọn $p_2 = (1,2)$.

Suy ra
$$u_2 = \frac{p_2}{\|p_2\|} = \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$
. Khi đó $P = ([u_1] \ [u_2])$ và $P^{-1}AP = \begin{pmatrix} 0 & 0 \\ 0 & 5 \end{pmatrix}$.

VD 14. Chéo hóa trực giao ma trận

$$A = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}.$$

 $Hu\acute{o}ng\ d\tilde{a}n.\ \det(A-\lambda I)=0 \Leftrightarrow \lambda_1=-2, \lambda_2=4\ (b\^{o}i\ 2).$

- Với
$$\lambda_1 = -2$$
 giải được $x_1 + 2x_2 = 0$, $x_2 - x_3 = 0$ hay $x = t(-2, 1, 1)$. Cho

$$t = 1$$
, ta chọn được $p_1 = (-2, 1, 1)$. Suy ra $u_1 = \frac{p_1}{\|p_1\|} = \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$.

- Với
$$\lambda_2 = 4$$
 giải được $2x_1 - x_2 - x_3 = 0 \Rightarrow x = m(1, 0, 2) + n(0, 1, -1)$.

$$\Rightarrow$$
 cơ sở của KGR là $S = \{p_2 = (1, 0, 2), p_3 = (0, 1, -1)\}.$

Trực chuẩn hóa
$$S \to S' = \left\{ u_2 = \left(\frac{1}{\sqrt{5}}, 0, \frac{2}{\sqrt{5}} \right), u_3 = \left(\frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}}, -\frac{1}{\sqrt{30}} \right) \right\}.$$

Khi đó
$$P = ([u_1] \ [u_2] \ [u_3])$$
 và $A' = P^{-1}AP = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ là MT

chéo.

VD 15. Chéo hóa trực giao ma trận

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

 $K\acute{e}t$ quả. $\det(A - \lambda I) = 0 \Leftrightarrow \lambda_1 = 0, \lambda_2 = 3.$

- Với $\lambda_1 = 0$ giải được $x_1 = x_2 = x_3$.
- Với $\lambda_2 = 3$ giải được $x_1 + x_2 + x_3 = 0$.

Từ đó SV tự tìm được ma trận trực giao P.