Fine-tuning LLMs with Synthetic Data

Pu Yang School of Mathematical Sciences, Peking University

2024.10.30

Table of contents

- Introduction
- Technical 1: Multiple-step
 - RFT + Multiple-step
 - DPO + Multiple-step
- Technical 2: Iterative Learning
- Summary

- Introduction
- Technical 1: Multiple-step
 - RFT + Multiple-step
 - DPO + Multiple-step
- Technical 2: Iterative Learning
- Summary

Introduction: Learning from Synthetic Data

- What is synthetic data?
 - Data generated by models rather than humans
- Why synthetic data?
 - SFT data is expensive, while synthetic data is much cheaper
 - SFT data is hard to make models outperform human (like imitation learning), while synthetic data allows models to explore
- How to learning form synthetic data? Two main question:
 - ► How to generate synthetic data? e.g. Teacher-student, self-explore
 - How to use synthetic data for training?

Generate via Self-explore: Rejection Sampling Fine-Tuning (RFT)

 LLMs are tasked to self-generated positive data for rejection sampling fine-tuning (RFT).

Given a generative policy π and a binary reward function $r(y, \hat{y}) \to \{0, 1\}$ which verifies if a new generation \hat{y} is correct or not, A positive dataset $\mathcal{D}_{\pi}^+ = \{(x, +y)\}$ where +y is positive generated from $\pi(\cdot \mid x)$.

Then, we apply the next token prediction loss on $\mathcal{D}_{\pi_{\mathrm{sft}}}^+$

$$\max \mathbb{E}_{(\boldsymbol{x}, +\boldsymbol{y}) \sim \mathcal{D}_{\text{sft}}^{+}} [p(+\boldsymbol{y} \mid \boldsymbol{x})]$$
 (1)

• e.g., code generation, where *r* is a Python interpreter.

Generate via Self-explore: Direct Preference Optimization (DPO)

 LLMs are tasked to self-generated positive and negative data - which can together form a pairwise dataset for preference optimization, e.g. DPO.

A pairwise dataset $\mathcal{D}_{\pi}^{\pm}=\{(x,+y,-y)\}$ where -y is negative generated from $\pi(\cdot\mid x)$.

Then we apply DPO loss on \mathcal{D}_{π}^{\pm}

$$\min_{\pi} \mathcal{L}_{\text{DPO}}(\pi) := \mathbb{E}_{(\boldsymbol{x}, +\boldsymbol{y}, -\boldsymbol{y}) \sim \mathcal{D}_{\text{sft}}^{\pm}} \left[\sigma \left(\beta \log \frac{\pi(+\boldsymbol{y} \mid \boldsymbol{x})}{\pi_{\text{sft}}(+\boldsymbol{y} \mid \boldsymbol{x})} - \beta \log \frac{\pi(-\boldsymbol{y} \mid \boldsymbol{x})}{\pi_{\text{stt}}(-\boldsymbol{y} \mid \boldsymbol{x})} \right) \right] \tag{2}$$

In general, performance: DPO > RFT > SFT > ICL

6/28

Relation to Data Augmentation (DA)

- Traditional DA techniques aim at expanding the training dataset in a somewhat mechanical manner, e.g.
 - paraphrasing
 - back-translation
- Generating synthetic data with LLMs serves as an advanced DA method, which
 focuses on the generation of novel, context-rich training data tailored to specific
 domains and skills.

- Introduction
- Technical 1: Multiple-step
 - RFT + Multiple-step
 - DPO + Multiple-step
- 3 Technical 2: Iterative Learning
- Summary

RFT + Multiple-step¹

2024-05-22

Improve Mathematical Reasoning in Language Models by Automated Process Supervision

Liangchen Luo 1 °, Yinxiao Liu 1 °, Rosanne Liu 1 , Samrat Phatale 1 , Harsh Lara 1 , Yunxuan Li 2 , Lei Shu 1 , Yun Zhu 1 , Lei Meng 2 , Jiao Sun 2 and Abhinav Rastogi 1

 $^1{\rm Google}$ DeepMind, $^2{\rm Google}$

¹ Liangchen Luo et al. "Improve Mathematical Reasoning in Language Models by Automated Process Supervision". In: arXiv preprint arXiv:2406.06592 (2024).

An Example

- Node: A state of partial chain-of-thought solution $(x, y_{1:i-1})$
- ullet Edge: An action, i.e., a reasoning step $oldsymbol{y}_i$
- Transition: Simply concate

Algorithm: Omega Process Reward Model (PRM)

Build positive training examples via Monte Carlo Tree Search (MCTS)

- (a) Monte Carlo estimation of a prefix solution.

(b) Error locating using binary search.

(c) Three stages in an iteration of the MCTS process.

Algorithm: OmegaPRM

• Training with the positive training examples

$$\max \mathbb{E}_{(\boldsymbol{x},\mathsf{Tree}) \sim \mathcal{D}_{\mathrm{MCTS}}} \left[p(+\boldsymbol{y}_i \mid \boldsymbol{x}, +\boldsymbol{y}_{1:i-1}) \right] \tag{3}$$

DPO + Multiple-step²

RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold

Amrith Setlur¹, Saurabh Garg¹, Xinyang (Young) Geng², Naman Garg³, Virginia Smith¹ and Aviral Kumar²

¹Carnegie Mellon University, ²Google DeepMind, ³MultiOn

² Amrith Setlur et al. "RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold". In: arXiv preprint arXiv:2406.14532 (2024).

Overview

Figure 1: definitions for positive and negative synthetic data and how they are fed to SFT, RFT and step-level RL algorithms.

Positive Data Improves Coverage, But Amplifies Spurious Correlations

- Under base LLM, RFT data sampled from $\pi_{\rm sft}$, has higher likelihood than SFT data.
- RFT data with a single self-generated correct solution per problem outperforms SFT data of the same size.
- However, continuing to scale RFT data leads to test error saturation, or even worse test error (Contrary to the scaling law). Why? Incorrect/Irrelevant steps are not detected by our verifier.

Negative Synthetic Data Enables Per-Step Credit Assignment

- Reasoning steps: The trace y_i consists of several intermediate steps, $y_i = [y_{i,1}, \cdots, y_{i,L}].$
- We formalize the notion of per-step credit using value functions from RL

$$Q_{\tilde{\pi}}(\underbrace{\boldsymbol{x}, \hat{\boldsymbol{y}}_{1:i-1}}_{\text{state}}; \underbrace{\hat{\boldsymbol{y}}_{i}}_{\text{action}}) = \underbrace{\mathbb{E}_{\boldsymbol{y}_{i+1:L}^{\text{new}} \sim \tilde{\pi}(\cdot | \boldsymbol{x}, \hat{\boldsymbol{y}}_{1:i})} \left[r\left(\left[\hat{\boldsymbol{y}}_{1:i}, \boldsymbol{y}_{i+1:L}^{\text{new}} \right], \boldsymbol{y} \right) \right]}_{\text{expected future reward under new actions (i.e., steps) sampled by policy } \tilde{\pi}} \tag{4}$$

- State: Problem x and previous reasoning steps $\hat{y}_{1:i-1}$
- Action: Current reasoning step \hat{y}_i
- Advantage of a given step \hat{y}_i :

$$A_{\tilde{\pi}}(\mathbf{x}, \hat{\mathbf{y}}_{1:i-1}; \hat{\mathbf{y}}_i) = Q_{\tilde{\pi}}(\mathbf{x}, \hat{\mathbf{y}}_{1:i-1}; \hat{\mathbf{y}}_i) - Q_{\tilde{\pi}}(\mathbf{x}, \hat{\mathbf{y}}_{1:i-2}; \hat{\mathbf{y}}_{i-1}).$$
 (5)

It is the gap between the Q-value of a state-action pair and the value function of the state.

Illustration of Advantage Estimation from Negative Data on a Didactic Example

Equivalence of Advantage-weighted RL and DPO with Per-Step Pairs

Callback:

$$\min_{\pi} \mathcal{L}_{\mathrm{DPO}}(\pi) := \mathbb{E}_{(\boldsymbol{x}, +\boldsymbol{y}, -\boldsymbol{y}) \sim \mathcal{D}_{\mathrm{sft}}^{\pm}} \left[\sigma \left(\beta \log \frac{\pi(+\boldsymbol{y} \mid \boldsymbol{x})}{\pi_{\mathrm{sft}}(+\boldsymbol{y} \mid \boldsymbol{x})} - \beta \log \frac{\pi(-\boldsymbol{y} \mid \boldsymbol{x})}{\pi_{\mathrm{stt}}(-\boldsymbol{y} \mid \boldsymbol{x})} \right) \right]$$

• We have the following theorem:

Theorem 6.1 (Equivalence of advantage-weighted RL and DPO with per-step pairs). The optimal policy from Equation 1 with $\mathcal{D}_{\pi_{sft}}^{\pm}$ given by $(x,[y_{1:i},+y_{i+1}],[y_{1:i},-y_{i+1}])$ where the positive and negative traces share prefix $y_{1:i} \sim \pi_{sft}$, and $-y_{i+1} \sim \pi_{sft}(\cdot|x,y_{1:i})$, $+y_{i+1} \sim \sigma(A_{\bar{\pi}}(x,y_{1:i};\cdot) - A_{\bar{\pi}}(x,y_{1:i};-y_{i+1}))$, is identical to the optima of the advantage-weighted RL objective:

$$\max_{\pi} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{syn}}(\boldsymbol{x}), \boldsymbol{y} \sim \pi_{\text{sft}}(\cdot | \boldsymbol{x})} \left[\sum_{i=1}^{L} \log \pi(\boldsymbol{y}_{i} | \boldsymbol{x}, \boldsymbol{y}_{0:i-1}) \cdot \exp \left(A_{\tilde{\pi}}(\boldsymbol{x}, \boldsymbol{y}_{0:i-1}; \boldsymbol{y}_{i}) / \beta \right) \right]. \tag{4}$$

Per-step DPO Algorithm

Algorithm 1 Per-step DPO (Part 1: Practical version for most experiments; Parts 1 + 2: Complete version)

```
Require: Synthetic dataset: \mathcal{D}_{syn}, SFT policy finetuned on \mathcal{D}_{syn}: \pi_{sft}, sampling policy \tilde{\pi}.

 Initialize per-step DPO dataset D<sup>±</sup><sub>π-tt</sub> ← {}.

 2: for (x, y) \in \mathcal{D}_{\text{syn}} \cup \mathcal{D}_{\pi_{\text{eff}}}^+ do
           # Part 1: Identify critical steps in incorrect responses
 3:
           Sample multiple incorrect answers -\hat{y} \sim \pi_{\rm sft}(\cdot \mid x), and collect them in set \mathcal{C}(x).
 4:
           for -\hat{y} := [-\hat{y}_1, \dots, -\hat{y}_L] \in \mathcal{C}(x) do
 5:
                 Compute the Monte Carlo estimate for Q_{\tilde{\pi}}(x, -\hat{y}_{1:i-1}; -\hat{y}_i) for each step -\hat{y}_i.
 6:
 7:
                 If -\hat{y}_c is the first step with least Q_{\tilde{\pi}}(x, -\hat{y}_{1:i-1}; -\hat{y}_i), then \mathcal{D}_{\pi_{\text{oft}}}^{\pm} \leftarrow \mathcal{D}_{\pi_{\text{oft}}}^{\pm} \cup \{(x, y, -\hat{y}_{1:c})\}.
           end for
 8.
           # Part 2: Identify spurious steps in correct responses
 9:
           Sample multiple correct answers +\hat{y} \sim \pi_{\rm sft}(\cdot \mid x), and collect them in set \mathcal{C}'(x).
10:
           for +\hat{y} := [+\hat{y}_1, \dots, +\hat{y}_L] \in C'(x) do
11:
12:
                 Compute the Monte Carlo estimate for Q_{\tilde{\pi}}(x, +\hat{y}_{1:i-1}; +\hat{y}_i) for each step +\hat{y}_i.
                 If +\hat{y}_c is the first step with least Q_{\tilde{x}}(x, +\hat{y}_{1:i-1}; +\hat{y}_i), then \mathcal{D}_{\pi_{\text{eff}}}^{\pm} \leftarrow \mathcal{D}_{\pi_{\text{off}}}^{\pm} \cup \{(x, y, +\hat{y}_{1:c})\}.
13:
           end for
14:
15: end for
16: Optimize DPO loss in Equation (1) on \mathcal{D}_{\pi_{\text{off}}}^{\pm} with \pi_{\text{sft}} as the reference policy.
```

Results

Per-step DPO > RFT > SFT

Ablation: Number of Steps

- When the number of steps is small, multi-step reasoning is treated as one step.
- When the number of steps is large, the Monte Carlo estimation may not be accurate.

Example: Advantage Estimatation

Advantage Estimates Computed Over a Positive Model Generated Sample

Question:

Betty wants a new wallet which costs \$100. Betty has only half of the money she needs. Her parents give her \$15 for that purpose, and her grandparents twice as much as her parents. How much more money does Betty need?

Positive response with identified spurious step:

Betty's parents gave her 15, so her grandparents gave her 2 * 15 = «15*2=30»30. In total, Betty received 30 + 15 = «30+15=45»45. The total amount of money Betty needs is 100 * 2 = «100*2=200»200. Betty needs 100 / 2 = `200*2=200»200.

<100/2=50>50 in total. Betty still needs to save 50 - 45 = <50-45=5>5. The answer is 5

- Introduction
- Technical 1: Multiple-step
 - RFT + Multiple-step
 - DPO + Multiple-step
- Technical 2: Iterative Learning
- Summary

DPO + Multiple-Step + MCTS³

Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning

Yuxi Xie^{1*} Anirudh Goyal Wenyue Zheng¹ Min-Yen Kan¹
Timothy Lillicrap² Kenji Kawaguchi¹ Michael Shieh¹

¹ National University of Singapore

² Google DeepMind

Overview

• Use action values Q estimated by MCTS to assign the preferences

Main Results

- Offline setting can fail with high probability if the sampling policy differs too much from the current policy.
- we can indeed avoid this failure case in the online setting.

- Introduction
- Technical 1: Multiple-step
 - RFT + Multiple-step
 - DPO + Multiple-step
- Technical 2: Iterative Learning
- Summary

Summary: Exploitation and Exploration

We talk about how to learn from synthetic data.

- Explore more efficiently
- Make full use of synthetic data

