

Rodrigue VAN BRANDE

Dylan GONZALEZ

1er septembre 2015

TABLE DES MATIÈRES 2

Table des matières

1	Las		que descriptive
	1.1		ique descriptive en 1D
	1.2	Statist	ique descriptive en 2D
		1.2.1	Covariance
		1.2.2	Le coefficient de corrélation
		1.2.3	Les droites de régression
		1.2.4	Variances résiduelles
2	La 1	théorie	des probabilités
	2.1	Proba	bilités
		2.1.1	Axiomes de la théorie des probabilités
		2.1.2	Probabilité indépendance
		2.1.3	Probabilité conditionnelle et indépendance
		2.1.4	Probabilité conditionnelle inverse et indépendant
		2.1.5	Formule de Bayes
	2.2	Variab	oles aléatoires
		2.2.1	Valeurs typiques
		2.2.2	Distribution d'une fonction monotone d'une variable aléatoire $G(V)$
		2.2.3	Distribution de la somme de deux variables aléatoires $V+W$
		2.2.4	Distribution du produit de deux variables aléatoires V.W
		2.2.5	Distribution de la somme des espérances $E(V+W)$
		2.2.6	Distribution du produit des espérances $E(V,W)$
		2.2.7	Variance d'une variable aléatoire $D^2(aV+b)$
		2.2.8	Variance de la somme de deux variables aléatoires $D^2(V+W)$
	2.3		eles aléatoires particulières
	2.5	2.3.1	Schéma de relation entre les variables aléatoires
		2.3.1 $2.3.2$	Variable binomiale $\mathcal{B}(n,p)$
		$\frac{2.3.2}{2.3.3}$	Variable de Poisson \mathcal{P}_{λ}
		2.3.4	Variable exponentielle négative 25
		2.3.4 $2.3.5$	Variable Normale $\mathcal{N}(\mu, \sigma)$
			Variable Whi 2
		2.3.6	Variable Khi ²
		2.3.7	Variable Student t_n
	0.4	2.3.8	Variable Snedecor $\mathcal{F}_{(m,n)}$
	2.4		èmes fondamentaux
		2.4.1	Inégalité de Bienaymé-Tchebycheff
		2.4.2	Théorème de Bernouilli ou loi des grands nombres
		2.4.3	Théorème Central-Limite
		2.4.4	Théorème de De Moivre
	т "	C.	
3			e statistique 30
	3.1	Les va	
	3.2		outions échantillonnées
		3.2.1	Distribution échantillonnées de la moyenne \bar{X}
		3.2.2	Distribution échantillonnées de la variance S^2
	_	3.2.3	Distribution échantillonnées d'une fonction de \bar{X} et s^2
	3.3		
	3.4		alles de confiance et tests d'hypothèses $\ldots \ldots \ldots \ldots \ldots \ldots 33$
		3.4.1	Comparaison des moyennes de deux populations normales de deux écart-type σ connu . 33
		3.4.2	Comparaison des moyennes de deux populations normales de même écart-type σ inconnu $$
		3.4.3	Comparaison des moyennes de deux populations quelconques

TABLE DES MATIÈRES 3

4	Autres	36
	4.1 Tableau du formulaire	. 36
	4.2 Densité et répartition	. 36
	4.3 Distributions	. 37

1 La statistique descriptive

1.1 Statistique descriptive en 1D

1.2 Statistique descriptive en 2D

1.2.1 Covariance

La covariance $|m_{11}| \leq s_1 s_2$

La covariance est le moment d'ordre (1,1):

$$m_{11} = \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (x_i - \bar{x}) (y_j - \bar{y})$$

$$0 \le \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} \underbrace{(u(x_i - \bar{x}) + (y_j - \bar{y}))^2}_{\text{car toujours } \ge 0}$$

$$\le \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (u^2 (x_i - \bar{x})^2 + 2u(x_i - \bar{x})(y_j - \bar{y}) + (y_j - \bar{y})^2)$$

$$\le u^2 s_1^2 + 2u \ m_{11} + s_2^2$$

Équation du second degré, on calcule son Δ :

$$\Delta \le 0$$

$$(2m_{11})^4 - 4s_1^2 s_2^2 \le 0$$

$$m_{11}^2 - s_1^2 s_2^2 \le 0$$

$$m_{11}^2 \le s_1^2 s_2^2$$

$$|m_{11}| \le s_1 s_2$$

La covariance maximale $|m_{11}| = s_1 s_2$

La valeur absolue de la covariance est maximale si elle vaut $|m_{11}| = s_1 s_2$. Si les points observés se trouvent sur une droite non parallèle aux axes ax + by + c = 0, on a $ax_i + by_i + c = 0$. On multiplie par $\frac{n_{ij}}{n}$ et on somme sur ij.

$$0 = \sum_{i=1}^{p} \sum_{j=1}^{q} \frac{n_{ij}}{n} (ax_i + by_j + c)$$

$$= a \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} x_i + b \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} y_j + c \frac{1}{n} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij}$$

$$= a\bar{x} + b\bar{y} + c$$

On soustrait $ax_i + by_j + c = 0$ par $a\bar{x} + b\bar{y} + c = 0$.

$$= a(x_i - \bar{x}) + b(y_i + \bar{y})$$

On utilise $u_0 = \frac{a}{b}$

$$= u_0 b(x_i - \bar{x}) + b \frac{a}{u_0} (y_j - \bar{y})$$

= $u_0(x_i - \bar{x}) + (y_j - \bar{y})$

L'équation a la même forme que α , du coup...

$$0 = \Delta$$

$$= m_{11}^2 - s_1^2 s_2^2$$

$$m_{11}^2 = s_1^2 s_2^2$$

$$|m_{11}| = s_1 s_2$$

1.2.2 Le coefficient de corrélation

$$r = \frac{m_{11}}{s_1 s_2}$$

Propriétés

- 1. r sans dimensions;
- 2. r' = r;
- 3. $-1 \le r \le 1$;
- 4. |r|=1 ssi les points observés se trouvent sur une droite non parallèle aux axes.

Représentation de la droite de régression en fonction du coefficient de corrélation

- $-\sin|r|=1$, il y a une relation fonctionnelle linéaire entre X et Y;
- $-\sin r = 0$, Y est indépendante de X : la covariance est nulle et la droite de régression est horizontale;
- la liaison entre X et Y est d'autant plus intime que $|\mathbf{r}|$ est voisin de 1, et d'autant plus faible que $|\mathbf{r}|$ est voisin de 0.

1.2.3 Les droites de régression

La droite de régression de y en x est la droite qui minimise la somme des carrés des écarts des points observés à cette droite, les écarts étant pris parall'element à l'axe y. C'est donc la droite d'équation y = ax + b qui minimise la quantité.

$$g(a,b) = \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} (y_j - a \ x_i - b)^2$$

Dérivée par rapport à a:

Dérivée par rapport à b :

On a obtenu ces deux réponses :

$$\begin{cases} \sum_{i=1}^{p} \sum_{j=1}^{q} n_{ij} x_i y_j &= a \sum_{i=1}^{p} n_{i.} x_i^2 + b \sum_{i=1}^{p} n_{i.} x_i & (1) \\ n \bar{y} &= a \ n \ \bar{x} + b \ n & (2) \end{cases}$$

On soustrait le (1) par le double du (2):

$$\bar{x}.(2): \qquad n\bar{y}\bar{x} = an\bar{x}^2 + bn\bar{x}$$

$$(1) - \bar{x}.(2): \left(\sum_{i=1}^p \sum_{j=1}^q n_{ij}x_iy_j\right) - (n\bar{y}\bar{x}) = \left(a\sum_{i=1}^p n_{i.}x_i^2 + b\sum_{i=1}^p n_{i.}x_i\right) - \left(an\bar{x}^2 + bn\bar{x}\right)$$

$$\vdots$$

Pour obtenir à la fin :

$$a = \frac{m_{11}}{s_1^2}$$
 et $b = \bar{y} - \frac{m_{11}}{s_1^2}\bar{x}$

On remplace dans une droite:

$$y = ax + b$$

$$y = \frac{m_{11}}{s_1^2}x + \bar{y} - \frac{m_{11}}{s_1^2}\bar{x}$$

Pour obtenir la droite de regression de y en x:

$$y = \frac{m_{11}}{s_1^2} (x - \bar{x}) + \bar{y}$$

Le raisonnement est symétrique pour le cas de la régression de x en y:

$$x = \frac{m_{11}}{s_2^2} (y - \bar{y}) + \bar{x}$$

1.2.4 Variances résiduelles

La variance résiduelle de y en x est :

$$s_{21}^2 = s_2^2 (1 - r^2)$$

Propriété et interprétation

- $-s_{21}^2 = 0$ ssi $r = \pm 1$ ssi tous les points observés sont sur une droite;
- $-s_{21}^{21} = s_2^2$ ssi r = 0 ssi les droites de régression sont parallèles aux axes; $-s_2^2r^2$ représente une certaine proportion de s_2^2 , d'autant plus grande que la dépendance linéaire entre xet y est forte : on peut donc la considérer comme la part de la variance de y qui est expliquée par le lien linéaire entre x et y, tandis que la variance résiduelle s_{21}^2 est la part de la variance de y qui n'est pas expliquée par ce lien linéaire (d'où son nom).

Démonstration

Nous partons de la variance de y en x:

$$\begin{split} s_{21}^2 &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} \left(y_i - a x_i - b \right)^2 \\ &\text{valeur minimum de } g(\mathbf{a}, \mathbf{b}) \\ \hline \left[a = \frac{m_{11}}{s_1^2} \right] \text{ et } \left[b = \bar{y} - \frac{m_{11}}{s_1^2} \bar{x} \right] \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} \left(y_i - \frac{m_{11}}{s_1^2} x_i - \bar{y} + \frac{m_{11}}{s_1^2} \bar{x} \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} \left((y_i - \bar{y}) - \frac{m_{11}}{s_1^2} (x_i - \bar{x}) \right)^2 \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} (y_i - \bar{y})^2 - 2 \frac{m_{11}}{s_1^2} (x_i - \bar{x}) (y_i - \bar{y}) + \frac{m_{11^2}}{s_1^4} (x_i - \bar{x})^2 \\ &= \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^n n_{ij} (y_i - \bar{y})^2 - 2 \frac{m_{11}}{s_1^2} \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q + \frac{m_{11^2}}{s_1^4} \frac{1}{n} \sum_{i=1}^p \sum_{i=1}^q n_{ij} (x_i - \bar{x})^2 \\ &= s_2^2 - 2 \frac{m_{11}}{s_1^2} + \frac{m_{11^2}}{s_1^2} \\ &= s_2^2 - 2 \frac{m_{11}^2}{s_1^2} + \frac{m_{11^2}}{s_1^2} \\ &= s_2^2 - \frac{m_{11}^2}{s_1^2} \\ &= s_2^2 - \frac{m_{11}^2}{s_1^2} \end{split}$$

On utilise le coefficient de corrélation $r = \frac{m_{11}}{s_1 s_2}$, donc $\frac{m_{11}}{s_1} = r s_2$:

$$s_2^2 - \frac{m_{11}^2}{s_1^2} = s_2^2 - (rs_2)^2$$
$$= s_2^2 (1 - r^2)$$

$$s_{21}^2 = s_2^2 (1 - r^2)$$

La variance résiduelle de x en y est similaire :

$$s_{12}^2 = s_1^2(1 - r^2)$$

2 La théorie des probabilités

2.1 Probabilités

2.1.1 Axiomes de la théorie des probabilités

$$\begin{cases}
P(E) &= 1 \\
P(A) &\geq 0 & \forall A \subset E \\
A \cap B &= \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)
\end{cases}$$

2.1.2 Probabilité indépendance

Si A et B sont indépendants alors

- -A et \bar{B} sont indépendants;
- $-\bar{A}$ et \bar{B} sont indépendants;
- $-\bar{A}$ et B sont indépendants.

2.1.3 Probabilité conditionnelle et indépendance

Probabilité conditionnelle de A sous la condition B ("sachant B"):

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Si A est indépendant de
$$B$$
 :
$$\begin{cases} P(A\cap B) &= P(A)P(B) \\ P(A|B) &= P(A) \\ P(B|A) &= P(B) \end{cases}$$

Une des propriétés des 3 suffit.

Démonstration

La probabilité conditionnelle respecte les axiomes de la théorie des probabilités

$$P(E|A) = \frac{P(E \cap A)}{P(A)} = \frac{P(A)}{P(A)} = 1$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \ge 0$$

$$X \cap Y \neq \emptyset \Rightarrow P(X \cup Y|A)$$

$$\frac{P((X \cup Y) \cap A)}{P(A)}$$

$$\frac{P((X \cap A) \cup (Y \cap A))}{P(A)}$$

$$\frac{P(X \cap A) + P(Y \cap A)}{P(A)}$$

$$\frac{P(X|A)P(A) + P(Y|A)P(A)}{P(A)}$$

$$\frac{P(X|A) + P(Y|A)}{P(A)}$$

2.1.4 Probabilité conditionnelle inverse et indépendant

$$P(A|B) = P(A|\bar{B})$$

Démonstration

$$\begin{array}{ccc} P(A|B) & = & P(A|\bar{B}) \\ \frac{P(A \cap B)}{P(B)} & = & \frac{P(A \cap \bar{B})}{P(\bar{B})} \\ \frac{P(A)P(B)}{P(B)} & = & \frac{P(A)P(\bar{B})}{P(\bar{B})} \\ P(A) & = & P(A) \end{array}$$

2.1.5 Formule de Bayes

Cette formule est utilisée dans le cas où un évènement B peut survenir à cause d'évènement A_i incompatibles. Par exemple : une pièce défectueuse fabriquée par plusieurs machines différentes.

$$B = (A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_m \cap B)$$

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(A_m \cap B)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_m)P(A_m)$$

$$P(A_k|B) = \frac{A_k \cap B}{P(B)} = \frac{P(B|A_k)P(A_k)}{\sum_{j=1}^{m} P(B|A_j)P(A_j)}$$

2.2 Variables aléatoires

2.2.1 Valeurs typiques

Aux distributions/densités marginales et conditionnelles, on peut associer les valeurs typiques :

Moyenne marginale μ_1	$=\sum_{i}p_{i.}x_{i}$	$= \int_{-\infty}^{\infty} x f_1$
Variance marginale σ_1^2	$=\sum_{i}^{t}p_{i.}(x_{i}-\mu_{1})^{2}$	$= \int_{-\infty}^{\infty} (x - \mu_1)^2 f_1$
Moyenne conditionnelle	$\mu_{1/j} = \sum_{i} p_{i/j} x_i$	$\mu_{1/y_0} = \int_{-\infty}^{\infty} x f(x - \mu_1)^2 f_1$
Variance conditionnelle	$\sigma_{1/j}^2 = \sum_{i}^{3} p_{i/j} (x_i - \mu_{1/j})^2$	$\sigma_{1/j}^2 = \int_{-\infty}^{\infty} (x - \mu_{1/y_0})^2 f(x/y_0)$

2.2.2 Distribution d'une fonction monotone d'une variable aléatoire G(V)

$$W = G(V)$$

Cas discret

$$F_W(x) = P(W \le x)$$

$$= P(G(V) \le x)$$

$$= P(V \le G^{-1}(x))$$

$$= F_V(G^{-1}(x))$$

Cas continu

2.2.3 Distribution de la somme de deux variables aléatoires V+W

$$Z = V + W$$

Cas discret

$$\begin{split} F_Z(x) &= \sum_i \sum_j p_{ij} \\ &= \sum_i \sum_j P(V \leq v_i, W \leq w_i) \quad \text{tel que } v_i + w_i \leq x \end{split}$$

Cas continu

$$F_{Z}(x) = P(Z \le x)$$

$$F_{V+W}(x) = P(V \le \xi, W \le \eta) \qquad \text{tel que } v_i + w_i \le x$$

$$= \iint_{\xi + \eta \le x} f_{(V,W)}(\xi, \eta) \ d\xi \ d\eta$$

$$\begin{cases} \xi = u \\ \eta = v - u \end{cases}$$
On remplace par
$$\begin{cases} \int \frac{\delta \xi}{\delta u} \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} \frac{\delta \eta}{\delta v} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} = 1.1 - 0.(-1) = 1$$

$$= \iint_{v \le x} f_{(V,W)}(u, v - u) |1| \ du \ dv$$

$$= \int_{-\infty}^{\infty} dv \int_{-\infty}^{+\infty} f_{(V,W)}(u, v - u) \ du$$

$$f_{Z}(x) = \frac{\delta F_{Z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{(V,W)}(u, x - u) \ du$$

ou si indépendant

$$f_Z(x) = \frac{\delta F_z(x)}{\delta x} = \int_{-\infty}^{+\infty} f_V(u) \cdot f_W(x - u) \ du$$

2.2.4 Distribution du produit de deux variables aléatoires V.W

$$Z = V.W$$

Cas continu

$$\begin{split} F_{Z}(x) &= P(Z \leq x) \\ F_{V:W}(x) &= P(V \leq \xi, W \leq \eta) & \text{tel que } v_i + w_i \leq x \\ &= \iint\limits_{\xi, \eta \leq x} f_{(V,W)}(\xi, \eta) \; d\xi \; d\eta \\ & \begin{cases} \xi &= u \\ \eta &= \frac{v}{u} \end{cases} \\ J &= \begin{pmatrix} \frac{\delta \xi}{\delta u} & \frac{\delta \xi}{\delta v} \\ \frac{\delta \eta}{\delta u} & \frac{\delta \eta}{\delta v} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{u^2} & \frac{1}{u} \end{pmatrix} = 1 \cdot \frac{1}{u} - 0 \cdot \frac{-1}{u^2} = \frac{1}{u} \\ &= \iint\limits_{v \leq x} f_{(V,W)}\left(u, \frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| \; du \; dv \\ &= \int\limits_{-\infty}^{+\infty} dv \int\limits_{-\infty}^{+\infty} f_{(V,W)}\left(u, \frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| \; du \\ & f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int\limits_{-\infty}^{+\infty} f_{(V,W)}\left(u, \frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| \; du \end{split}$$

ou si indépendant

$$f_{Z}(x) = \frac{\delta F_{z}(x)}{\delta x} = \int_{-\infty}^{+\infty} f_{V}(u) \cdot f_{W}\left(\frac{x}{u}\right) \cdot \left|\frac{1}{u}\right| du$$

2.2.5 Distribution de la somme des espérances E(V+W)

$$E(V+W) = E(V) + E(W)$$

Demonstration

Example Stration
$$E(Z) = \int_{-\infty}^{\infty} x \, f_{(V+W)}(x) \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, f_{(V,W)}(u,x-u) \, du \, dv$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \, f_{(V,W)}(u,x-u) \, du \, dv$$

$$2.2.3 \text{ page } 13$$
On remplace par
$$\begin{cases} u = \xi \\ x = \xi - \eta \end{cases}$$

$$J = \begin{pmatrix} \frac{\delta u}{\delta \xi} & \frac{\delta u}{\delta \eta} \\ \frac{\delta x}{\delta \xi} & \frac{\delta x}{\delta \eta} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = 1. - 1 - 0.1 = -1$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\xi + \eta) \, f_{(V,W)}(\xi,\eta) \, |-1| \, d\xi \, d\eta$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \xi \, f_{(V,W)}(\xi,\eta) \, d\xi \, d\eta + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \eta \, f_{(V,W)}(\xi,\eta) \, d\xi \, d\eta$$

$$= \int_{-\infty}^{\infty} \xi \, f_{V}(\xi) \, d\xi + \int_{-\infty}^{\infty} \eta \, f_{W}(\eta) \, d\eta$$

$$= E(V) + E(W)$$

2.2.6 Distribution du produit des espérances E(V.W)

$$E(V.W) = E(V).E(W)$$

Demonstration

Uniquement pour des variables indépendantes

$$E(Z) = \int_{-\infty}^{\infty} x \ f_{(V,W)}(x) \ dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \ f_{V}(u) f_{w}\left(\frac{x}{u}\right) \left|\frac{1}{u}\right| \ du \ dv$$

$$2.2.4 \text{ page } 14$$
On remplace par
$$\begin{cases} u = \xi \\ x = \xi \eta \end{cases}$$

$$J = \begin{pmatrix} \frac{\delta u}{\delta \xi} & \frac{\delta u}{\delta \eta} \\ \frac{\delta x}{\delta \xi} & \frac{\delta x}{\delta \eta} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \eta & \xi \end{pmatrix} = 1.\xi - 0.\eta = \xi$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\xi \eta) \ f_{(V,W)}(\xi, \eta) \left|\frac{1}{u}\right| \ |\xi| \ d\xi \ d\eta$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\xi \eta) \ f_{(V,W)}(\xi, \eta) \ d\xi \ d\eta$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\xi \eta) \ f_{(V,W)}(\xi, \eta) \ d\xi \ d\eta$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \xi \ f_{V}(\xi) f_{W}(\eta) \ d\xi \ d\eta \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \eta \ f_{(V,W)}(\xi, \eta) \ d\xi \ d\eta$$

$$= \int_{-\infty}^{\infty} \xi \ f_{V}(\xi) \ d\xi \int_{-\infty}^{\infty} \eta \ f_{W}(\eta) \ d\eta$$

$$= E(V).E(W)$$

2.2.7 Variance d'une variable aléatoire $D^2(aV + b)$

$$D^2(aV+b) = a^2D^2(V)$$

Démonstration

D'après la propriété 2.2.1 page 11 :
$$\sigma_V^2=D^2(V)=\int_{-\infty}^\infty (x-\mu)^2 f_V(x) dx=E\left((x-\mu)^2\right)$$

$$D^2(W)=D^2(aV+b)$$

$$=E\left((W-(a\mu+b))^2\right)$$

$$=E\left((aV+b-a\mu-b)^2\right)$$

$$=E\left(a^2(V-\mu)^2\right)$$

$$=a^2D^2(V)$$

2.2.8 Variance de la somme de deux variables aléatoires $D^2(V+W)$

$$D^{2}(V+W) = D^{2}(V) + D^{2}(W) + 2\mu_{11}$$

Démonstration

D'après la propriété 2.2.1 page 11 :
$$\sigma_V^2 = D^2(V) = \int_{-\infty}^{\infty} (x-\mu)^2 f_V(x) dx = E\left((x-\mu)^2\right)$$

$$D^{2}(Z) = D^{2}(V + W)$$

$$= E ((Z - (\mu_{V} + \mu_{W}))^{2})$$

$$= E (((V + W) - (\mu_{V} + \mu_{W}))^{2})$$

$$= E (((V - \mu_{V}) + (W - \mu_{W}))^{2})$$

$$= E ((V - \mu_{V})^{2}) + E ((V - \mu_{W})^{2}) + 2E ((V - \mu_{V})(W - \mu_{W}))$$

$$= D^{2}(V) + D^{2}(W) + 2\mu_{11}$$

2.3 Variables aléatoires particulières

2.3.1 Schéma de relation entre les variables aléatoires

Schéma de relation entre les différentes variables aléatoires

2.3.2 Variable binomiale $\mathcal{B}(n,p)$

Une variable binomiale est une expérience avec n répétitions. On veut savoir le nombre k de fois qu'un évènement A, de probabilité p, se produit :

$$P(V = k) = \begin{pmatrix} n \\ k \end{pmatrix} \qquad p(\text{obtenir } k \text{ fois } A) \quad p(n - k \text{ fois ne pas obtenir } A)$$

$$= \begin{pmatrix} n \\ k \end{pmatrix} \qquad p^k \qquad (1 - p)^{n - k}$$

$$= \frac{n!}{k!(n - k)!} \quad p^k \qquad (1 - p)^{n - k}$$

La variable V est appelée variable binomiale de paramètre p et d'exposant n et est notée B(n,p). C'est la somme de n de variable indicatrices.

Calcul de la moyenne E(B(n, p))

$$\mu = \sum_{k=0}^{n} x_i p_i$$

$$= \sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} \frac{n!}{(k-1)!(n-k)!} p^k (1-p)^{n-k}$$

On remplace k-1 par l:

$$= \sum_{l=0}^{n-1} \frac{n(n-1)!}{l!(n-l-1)!} p^{l+1} (1-p)^{n-l-1}$$

$$= np \sum_{l=0}^{n-1} \binom{n-1}{l} p^{l} (1-p)^{n-l-1}$$

$$= np (p+(1-p))^{n-1}$$

$$= np$$

Calcul de la variance $D^2(B(n, p))$

Calcul de la fonction génératrice $\psi(t)$

$$\psi_x(t) = E(e^{tx})$$

$$\psi(t) = \sum_{k=0}^n e^{tk} \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} (e^t p)^k (1-p)^{n-k}$$

$$= ((1-p) + e^t p)^n$$

$$= (pe^t + (1-p))^n$$

Calcul de la moyenne E(B(n,p)) via la fonction génératrice $\psi(t)$

$$\begin{aligned} \psi_x(t) &= (pe^t + (1-p))^n \\ E(X) &= \frac{\delta}{\delta t} \psi_x(t) \mid_{t=0} \\ &= \frac{\delta}{\delta t} (pe^t + (1-p))^n \mid_{t=0} \\ &= n(pe^t + (1-p))^{n-1} pe^t \mid_{t=0} \\ &= n(p+1-p)^{n-1} p \end{aligned}$$

Calcul de la variance $D^2(B(n,p))$ via la fonction génératrice $\psi(t)$ Calcul de la stabilité

2.3.3 Variable de Poisson \mathcal{P}_{λ}

Une variable de poisson est uniquement une binomiale dont la répétition n est "grand" ($n \ge 30$) et que la probabilité p est "petit" ($p \le 0, 1$).

$$\begin{split} P(V=k) &= \begin{pmatrix} n \\ k \end{pmatrix} \\ &= \frac{n!}{k!(n-k)!} \\ &= \frac{1}{k!}n(n-1)(n-2)\dots(n-k-1) \qquad p^k(1-p)^{n-k} \\ &= \frac{1}{k!}n^k\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\dots\left(1-\frac{k-1}{n}\right) \quad p^k(1-p)^{n-k} \\ &= \frac{1}{k!}n^k\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\dots\left(1-\frac{k-1}{n}\right) \quad \frac{p^k\left(1-p\right)^n}{(1-p)^k} \\ &= \frac{1}{k!}n^k\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\dots\left(1-\frac{k-1}{n}\right) \quad \frac{p^k\left(1-\frac{np}{n}\right)^n}{(1-p)^k} \end{split}$$

Sous une autre forme:

$$P(V=k) = \frac{n^k p^k}{k!} \quad \left(1 - \frac{np}{n}\right)^n \quad \frac{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\dots\left(1 - \frac{k-1}{n}\right)}{(1-p)^k}$$
$$= \frac{(np)^k}{k!} \qquad e^{-\lambda} \qquad \frac{\left(1 - \frac{1}{n}\right)\left(1 - \frac{2}{n}\right)\dots\left(1 - \frac{k-1}{n}\right)}{(1-p)^k}$$

Et donc quand $n \to \infty$:

$$P(V = k) \stackrel{n \to \infty}{=} \frac{\lambda^k}{k!} e^{-\lambda} \frac{(1-1)(1-1)\dots(1-1)}{(1-p)^k}$$
$$P(V = k) \stackrel{n \to \infty}{=} \frac{\lambda^k}{k!} e^{-\lambda} = P_{\lambda}$$

Calcul de la moyenne $E(P_{\lambda})$

$$\mu = \sum_{k=0}^{\infty} x_i p_i$$

$$= \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda}$$

$$= \sum_{k=0}^{\infty} \frac{\lambda^{k-1} \lambda}{(k-1)!} e^{-\lambda}$$

$$= \lambda e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

$$= \lambda e^{-\lambda} e^{\lambda}$$

$$= \lambda$$

Calcul de la variance $D^2(P_{\lambda})$

$$\sigma^2 = \sum_{k=0}^{\infty} x_i^2 p_i - \mu^2$$
$$= \sum_{k=0}^{\infty} k^2 \frac{\lambda^k}{k!} e^{-\lambda} - \mu^2$$

On remplace k^2 par k(k-1) + k

$$\begin{split} &= \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} + \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} - \mu^2 \\ &= \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^k}{k!} e^{-\lambda} + \mu - \mu^2 \\ &= \sum_{k=0}^{\infty} k(k-1) \frac{\lambda^{k-2} \lambda^2}{k(k-1)(k-2)!} e^{-\lambda} + \mu - \mu^2 \\ &= \lambda^2 e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \mu - \mu^2 \\ &= \lambda^2 e^{-\lambda} e^{\lambda} + \mu - \mu^2 \\ &= \lambda^2 + \lambda - \lambda^2 \\ &= \lambda \end{split}$$

Calcul de la fonction génératrice $\psi(t)$

$$(t) = \sum_{k=0}^{\infty} e^{tk} e^{-\lambda} \frac{\lambda^k}{k!}$$
$$= e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^t)^k}{k!}$$
$$= e^{-\lambda} e^{\lambda e^t}$$
$$= e^{\lambda (e^t - 1)}$$

Calcul de la stabilité

$$\psi_{1+2}(t) = \psi_1(t)\psi_2(t)$$

$$= e^{\lambda_1(e^t - 1)}e^{\lambda_2(e^t - 1)}$$

$$= e^{\lambda_1(e^t - 1)(\lambda_1 + \lambda_2)}$$

La variable est bien stable.

2.3.4 Variable exponentielle négative

2.3.5 Variable Normale $\mathcal{N}(\mu, \sigma)$

Propriété d'opposé

Soit $\bar{X_1}$ et $\bar{X_2}$ deux variables normales. Si $\bar{X_2}$ est l'opposé de $\bar{X_1}$ ($\bar{X_2}=$ - $\bar{X_1}$) alors

$$\overline{\bar{X}_1 \sim N(\mu_1, \sigma)} \text{ et } \bar{X}_2 \sim N(-\mu_2, \sigma)$$

Propriété d'addition

Soit $N(\mu_1, \sigma_1)$ et $N(\mu_2, \sigma_2)$ deux variables normales indépendantes et $\psi_1(t)$ et $\psi_2(t)$ leurs fonctions génératrices.

$$\psi(t) = \psi_1(t).\psi_2(t)$$

$$= e^{\mu_1 + t + \sigma_1^2 t^2 / 2}.e^{\mu_2 + t + \sigma_2^2 t^2 \frac{1}{2}}$$

$$= e^{(\mu_1 + \mu_2)t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2}$$

On obtient bien une fonction génératrice d'une normale de paramètres $(\mu_1 + \mu_2)$ et $\sqrt{\sigma_1^2 + \sigma_2^2}$.

$$N(\mu_1, \sigma_1) + N(\mu_2, \sigma_2) = N\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$$

- 2.3.6 Variable Khi²
- 2.3.7 Variable Student t_n
- 2.3.8 Variable Snedecor $\mathcal{F}_{(m,n)}$

2.4 Théorèmes fondamentaux

2.4.1 Inégalité de Bienaymé-Tchebycheff

La proportion d'individus s'écartant de la moyenne d'une distribution de plus k fois l'écart-type (σ) ne dépasse jamais $\frac{1}{k^2}$:

$$\boxed{\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)}$$

Démonstration

Cas continu

$$\sigma_{2} = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

$$= \int_{-\infty}^{\mu - k\sigma} (x - \mu)^{2} f(x) dx + \int_{\mu - k\sigma}^{\mu + k\sigma} (x - \mu)^{2} f(x) dx + \int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x) dx + \int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x) dx$$

$$x \le \mu - k\sigma \atop (x - \mu)^{2} \ge (k\sigma)^{2}$$

$$\sigma^{2} \ge \int_{-\infty}^{\mu - k\sigma} (k\sigma)^{2} f(x) dx + \int_{\mu + k\sigma}^{\infty} (k\sigma)^{2} f(x) dx$$

$$\ge (k\sigma)^{2} \int_{-\infty}^{\mu - k\sigma} f(x) dx + (k\sigma)^{2} \int_{\mu + k\sigma}^{\infty} f(x) dx$$

$$\frac{1}{k^{2}} \ge P(|V - \mu| \ge k\sigma)$$

$$\ge P(|V - \mu| \ge k\sigma) + P(|V - \mu| \ge k\sigma)$$

$$\frac{1}{k^{2}} \ge P(|V - \mu| \ge k\sigma)$$

Cas discret

$$\sigma^{2} = \sum_{i} p_{i}(x_{i} - \mu)^{2}$$

$$= \sum_{i;x_{i} \leq \mu - k\sigma} p(x_{i} - \mu)^{2} + \sum_{i;\mu - k\sigma < x_{i} < \mu + k\sigma} p(x_{i} - \mu)^{2} + \sum_{i;\mu + k\sigma \leq x_{i}} p(x_{i} - \mu)^{2}$$

$$\sigma^{2} \geq \sum_{i;x_{i} \leq \mu - k\sigma} p(x_{i} - \mu)^{2} + \sum_{i;\mu + k\sigma \leq x_{i}} p(x_{i} - \mu)^{2}$$

$$\geq k^{2}\sigma^{2} \sum_{i;x_{i} \leq \mu - k\sigma} p_{i} + \sum_{i;\mu + k\sigma \leq x_{i}} p_{i}$$

$$\frac{1}{k^{2}} \geq \sum_{i;x_{i} \leq \mu - k\sigma} p_{i} + \sum_{i;\mu + k\sigma \leq x_{i}} p_{i}$$

$$\geq P(V \leq \mu - k\sigma) + P(V \geq \mu + k\sigma)$$

$$\geq P(V - \mu \leq -k\sigma) + P(V - \mu \geq k\sigma)$$

$$\geq P(|V - \mu| \geq k\sigma) + P(|V - \mu| \geq k\sigma)$$

$$\boxed{\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)}$$

2.4.2 Théorème de Bernouilli ou loi des grands nombres

Lors de n répétitions d'une expérience aléatoire, la fréquence relative $\frac{F}{n}$ d'un évènement tend vers sa probabilité p d'exister lorsque $n \to \infty$

$$\boxed{\frac{p(1-p)}{n\epsilon^2} \ge P\left(\left|\frac{F}{n} - p\right| \ge \epsilon\right) \stackrel{n \to \infty}{\to} 0}$$

Démonstration

On part avec le théorème de Bienaymé-Tchebycheff

$$\frac{1}{k^2} \ge P(|V - \mu| \ge k\sigma)$$

Et on considère une binomiale V = B(n, p)

$$\frac{1}{k^2} \ge P\left(|B(n,p) - np| \ge k\sqrt{np(1-p)}\right)$$

$$\ge P\left(\frac{|B(n,p) - np|}{n} \ge \frac{k\sqrt{np(1-p)}}{n}\right)$$

$$\ge P\left(\left|\frac{B(n,p)}{n} - p\right| \ge k\sqrt{\frac{np(1-p)}{n^2}}\right)$$

$$\ge P\left(\left|\frac{B(n,p)}{n} - p\right| \ge k\sqrt{\frac{p(1-p)}{n}}\right)$$

On pose
$$k\sqrt{\frac{p(1-p)}{n}} = \epsilon$$
 et $B(n,p) = F$

$$\begin{cases} k\sqrt{\frac{p(1-p)}{n}} &= \epsilon \\ k &= \epsilon \frac{\sqrt{n}}{\sqrt{p(1-p)}} \\ k^2 &= \frac{\epsilon^2 n}{p(1-p)} \\ \frac{1}{k^2} &= \frac{p(1-p)}{\epsilon^2 n} \end{cases}$$

$$\left| \frac{p(1-p)}{n\epsilon^2} \ge P\left(\left| \frac{F}{n} - p \right| \ge \epsilon \right) \stackrel{n \to \infty}{\to} 0$$

2.4.3 Théorème Central-Limite

Ce théorème stipule que si V est une somme de n variables aléatoires (quelconques) indépendantes

$$V = X_1$$
 , X_2 , X_3 , ... , X_n

alors sa variable réduite $\frac{V-\mu}{\sigma}$ tend vers une gausienne N(0,1) lorsque $n\to\infty.$

$$\boxed{\frac{V - E(V)}{D(V)} = \frac{V - \mu}{\sigma} \stackrel{n \to \infty}{\to} N(0, 1)}$$

Démonstration

On pose d'abord les calculs de l'espérance et de l'écart-type de la somme de variable aléatoire V, pour un de ses éléments V_i , pour la somme de variable centrée W et pour un de ses éléments W_i :

$$\begin{cases}
V = \sum_{i=1}^{n} V_{i} & (1) \\
E(V_{i}) = \widehat{\mu} & (2) \\
D(V_{i}) = \widehat{\sigma} & (3) \\
E(V) = \sum_{i=1}^{n} E(V_{i}) \\
= n\widehat{\mu} & (4)
\end{cases}$$

$$= \sum_{i=1}^{n} (V_{i} - \widehat{\mu}) \\
= V - E(V) & (7)
\end{cases}$$

$$= V - E(V) & (7)$$

$$= V - E(V) & (7)$$

$$= V - E(V_{i}) - n\widehat{\mu} \\
= F(V_{i}) - n\widehat{\mu} \\
= F(V_{i}$$

On commence avec la fonction génératrice des moments $\psi_V(t) = E(e^{tV})$

$$\psi_{Z}(t) = E\left(e^{tZ}\right)$$

$$= E\left(e^{\left(t\frac{V-\mu}{\sigma}\right)}\right)$$

$$= E\left(e^{\left(\frac{t}{\sigma}(V-\mu)\right)}\right)$$

$$\begin{cases} V-\mu &=& \sum_{i=1}^n V_i - \mu & \text{car propriété } (1) \\ &=& \sum_{i=1}^n V_i - E(V) & \text{car propriété } (4) \\ &=& \sum_{i=1}^n V_i - E\left(\sum_{i=1}^n V_i\right) & \text{car propriété } (1) \\ &=& \sum_{i=1}^n V_i - \sum_{i=1}^n E\left(V_i\right) \\ &=& \sum_{i=1}^n V_i - \sum_{i=1}^n \hat{\mu} & \text{car propriété } (2) \\ &=& \sum_{i=1}^n V_i - \hat{\mu} \end{cases}$$

$$=E\left(e^{\left(\frac{t}{\sigma}\sum_{i=1}^n (V_i-\hat{\mu})\right)}\right)$$

$$=E\left(e^{\left(\frac{t}{\sigma}\sum_{i=1}^n (W_i)\right)}\right)$$

$$=E\left(e^{\left(\frac{t}{\sigma}\sum_{i=1}^n (W_i)\right)}\right)$$
 car propriété (6)
$$e^{\left(\frac{t}{\sigma}\sum_{i=1}^n (W_i)\right)}\right)$$

$$=E\left(e^{tV} + W\right)$$

$$=E\left(e^{tV} + W\right)$$

$$=E\left(e^{tV} + W\right)$$

$$=E\left(e^{tV}\right)$$

Propriété :
$$Z = V + W(\text{indépendant})$$

$$\begin{cases}
\psi_Z = E(e^{tZ}) \\
= E(e^{t(V+W)}) \\
= E(e^{tV}e^{tW}) \\
= E(e^{tV})E(e^{tW}) \\
= \psi_V \psi_W
\end{cases}$$

$$= \psi_{W_1} \left(\frac{t}{\sigma}\right) \psi_{W_2} \left(\frac{t}{\sigma}\right) \dots \psi_{W_n} \left(\frac{t}{\sigma}\right)$$

$$= \left(\psi_{W_i} \left(\frac{t}{\sigma}\right)\right)^n$$

$$\psi_Z(t) = E\left(e^{tZ}\right) = \left(\psi_{W_i} \left(\frac{t}{\sigma}\right)\right)^n$$

Maintenant nous développons $\psi_{W_i}(t)$ par le théorème de Taylor :

$$\begin{cases} f(x) &= \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + R_{n}(x) \\ &= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f^{(2)}(a)}{2!} (x-a)^{2} + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^{n} + R_{n}(x) \end{cases}$$

$$\begin{bmatrix} D^{2}(W_{i}) &= E(W_{i}^{2}) - E^{2}(W_{i}) \\ E(W_{i}^{2}) &= D^{2}(W_{i}) + E^{2}(W_{i}) \\ &= \widehat{\sigma}^{2} + 0^{2} \end{cases}$$

$$\begin{cases} \psi_{W_{i}}(t) &= 1 + E(W_{i})t + E(W_{i}^{2})\frac{t^{2}}{2} + R(t^{3}) \\ &= 1 + 0t + \widehat{\sigma}^{2}\frac{t^{2}}{2} + R(t^{3}) \end{cases} \text{ car propriété (8) et (9)}$$

$$Z = \frac{W}{\sqrt{n}\widehat{\sigma}} = \frac{V - \mu}{\sigma} \xrightarrow{n \to \infty} N(0, 1)$$

$$\lim_{n \to \infty} \psi_Z(t) = \lim_{n \to \infty} \left(\psi_{W_i} \left(\frac{t}{\sqrt{n}\widehat{\sigma}} \right)^n \right)$$

$$= \lim_{n \to \infty} \left(1 + \frac{t^2}{2n} + R(t^3) \right)^n$$

$$= \lim_{n \to \infty} \left(1 + \frac{t^2}{2n} \right)^n$$

$$= e^{\frac{t^2}{2}}$$

On a donc une allure d'une fonction génératrice d'une N(0,1)

$$\psi_Z(t) \stackrel{n \to \infty}{\to} N(0,1)$$

2.4.4 Théorème de De Moivre

C'est un cas particulier du théorème Central-Limite puisqu'une binomiale est bien une somme de variables quelconques de mêmes distributions (à savoir, des variables indicatrices). La variable binomiale est asymptotiquement normale lorsque $\to \infty$.

$$\boxed{\frac{B(n,p)-np}{\sqrt{np(1-p)}} \stackrel{n \to \infty}{\to} N(0,1)}$$

Démonstration

On part donc avec le théorème de Central-Limite :

$$\frac{V - E(V)}{D(V)} = \frac{V - \mu}{\sigma} \stackrel{n \to \infty}{\to} N(0, 1)$$

Et on considère une binomiale V = B(n, p).

$$\frac{B(n,p) - np}{\sqrt{np(1-p)}} \stackrel{n \to \infty}{\longrightarrow} N(0,1)$$

3 L'inférence statistique

3.1 Les valeurs

Échantillon de la normale $\frac{n_1S_1^2}{\sigma^2}$

Variance de l'échantillon S_1^2

Variance théorique de l'ensemble de la population σ^2

3.2 Distributions échantillonnées

3.2.1 Distribution échantillonnées de la moyenne \bar{X}

Supposons que la distribution de la population ait une moyenne μ et un écart-type σ . Il en est donc de même pour les distributions échantillonnées de X_1, X_2, \ldots, X_n et il résulte alors des propriétés de l'espérance mathématique que :

$$E(\bar{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$\frac{1}{n}\sum_{i=1}^{n}E(X_{i})$$

$$\frac{1}{n}\sum_{i=1}^{n}\mu$$

et il résulte des propriétés de la variance que :

$$D^{2}(\bar{X}) = D^{2}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$D^{2}(aV+b) = a^{2}D^{2}(V) \qquad 2.2.7 \text{ page } 17$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}D^{2}(X_{i})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma$$

$$= \frac{\sigma^{2}}{n}$$

3.2.2 Distribution échantillonnées de la variance S^2

$$E(S^{2}) = E\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(X_{i}^{2}) + 2E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\bar{X}\right) + \frac{1}{n}\sum_{i=1}^{n}E(\bar{X}^{2})$$

3.2.3 Distribution échantillonnées d'une fonction de \bar{X} et s^2

Il résulte de ce qui précède que lorsque la population a une distribution normale, la variable

$$\sqrt{n-1}\frac{\bar{X}-\mu}{S} \sim t_{(n-1)}$$

Démonstration

La définition d'une chi carré $\chi^2_{(n-1)}$ est une somme de normale au carré $\sum_{i=1}^{n-1} (N_i(0,1))^2$.

Or on a vu que $\chi^2_{(n-1)} = \frac{nS^2}{\sigma^2}$, donc

$$\chi_{(n-1)}^{2} = \sum_{i=1}^{n-1} (N_{i}(0,1))^{2}$$

$$\frac{nS^{2}}{\sigma^{2}} = \sum_{i=1}^{n-1} \left(\frac{N_{i}(0,\sigma)}{\sigma}\right)^{2}$$

$$\frac{nS^{2}}{\sigma^{2}} = \sum_{i=1}^{n-1} \frac{(N_{i}(0,\sigma))^{2}}{\sigma^{2}}$$

$$nS^{2} = \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}$$

$$nS^{2} \frac{1}{n-1} = \frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}$$

$$\left(\frac{nS^{2}}{n-1}\right)^{\frac{-1}{2}} = \left(\frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}\right)^{\frac{-1}{2}}$$

$$\frac{1}{\sqrt{\frac{nS^{2}}{n-1}}} = \frac{1}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}}}$$

$$\frac{N(0,\sigma)}{S\sqrt{\frac{n}{n-1}}} = \frac{N(0,\sigma)}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n-1} (N_{i}(0,\sigma))^{2}}}$$

$$\frac{N(0,\sigma)}{S\sqrt{\frac{n}{n-1}}} = t_{(n-1)}$$

On obtient bien une student $t_{(n-1)}$ à n-1 degrés de liberté (2.3.7 page 23). On va donc remplacer la normale $N(0,\sigma)$ dans l'équation par :

$$\begin{cases} \bar{X} & \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right) \\ \frac{\bar{X} - \mu}{1} & \sim N(0, \sigma) \\ \sqrt{n} \left(\bar{X} - \mu\right) & \sim N(0, \sigma) \end{cases}$$

$$t_{(n-1)} = \frac{N(0, \sigma)}{S\sqrt{\frac{n}{n-1}}} = \frac{\sqrt{n} \left(\bar{X} - \mu\right)}{S\sqrt{\frac{n}{n-1}}} = \frac{\bar{X} - \mu}{S\frac{1}{\sqrt{n-1}}} = \sqrt{n-1} \frac{\bar{X} - \mu}{S}$$

$$t_{(n-1)} = \sqrt{n-1} \frac{\bar{X} - \mu}{S}$$

3.3 Test d'hypothèse

Erreur de première espèce est de rejeter une hypothèse alors qu'elle est vraie. Le risque α de commettre cette erreur est ϵ :

Erreur de seconde espèce est d'accepter une hypothèse alors qu'elle est fausse. Si on accepte une moyenne μ_0 alors qu'elle vaut en réalité μ_1 , alors le risque de commettre cette erreur est

$$\beta = P\left(\mu_0 - u_{\beta/2} \frac{\sigma}{\sqrt{n}} \le \bar{X} \le \mu_0 + u_{\beta/2} \frac{\sigma}{\sqrt{n}}\right)$$

$$\begin{cases}
où \bar{X} \sim N\left(\mu_1, \frac{\sigma}{\sqrt{n}}\right) \Rightarrow \frac{\bar{X} - \mu_1}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1) \\
= P\left(\mu_0 - u_{\beta/2} \frac{\sigma}{\sqrt{n}} \le N(0, 1) \frac{\sigma}{\sqrt{n}} + \mu_1 \le \mu_0 + u_{\beta/2} \frac{\sigma}{\sqrt{n}}\right) \\
= P\left(\frac{\mu_0 - \mu_1}{\sigma} \sqrt{n} - u_{\beta/2} \le N(0, 1) \le \frac{\mu_0 - \mu_1}{\sigma} \sqrt{n} + u_{\beta/2}\right)
\end{cases}$$

Puissance d'un test est la valeur $1 - \beta$, c'est à dire la probabilité de rejeter l'hypothèse alors qu'elle est fausse.

3.4 Intervalles de confiance et tests d'hypothèses

3.4.1 Comparaison des moyennes de deux populations normales de deux écart-type σ connu

On commence avec deux moyennes des deux populations :

$$\bar{X}_1 \sim N\left(\mu_1, \frac{\sigma_1}{\sqrt{n_1}}\right)$$

$$\bar{X}_2 \sim N\left(\mu_2, \frac{\sigma_2}{\sqrt{n_2}}\right)$$

Maintenant nous devons faire une soustraction de deux normales $\bar{X}_1 - \bar{X}_2$, pour faire cela nous prenons l'opposé d'une normale et nous les additionnons $\bar{X}_1 + (-\bar{X}_2)$ grace à la propriété d'opposé d'une normale 2.3.5 page 23 et la propriété d'addition 2.3.5 page 23.

$$\bar{X}_1 + (-\bar{X}_2) \sim N \left(\mu_1 - \mu_2, \sqrt{\left(\frac{\sigma_1}{\sqrt{n_1}}\right)^2 + \left(\frac{\sigma_2}{\sqrt{n_2}}\right)^2}\right)$$

$$\sim N \left(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

Ces deux variables étant indépendantes, on en déduit que

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

A tout $\epsilon > 0$, on peut donc associé un nombre tel que

$$P\left(-u_{\epsilon/2} \le T \le u_{\epsilon/2}\right) = 1 - \epsilon$$

d'où on peut donc déduire un intervalle de confiance pour $\mu_1 - \mu_2$. D'autre part on rejettera l'hypothèse $\mu_1 = \mu_2$ si

$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > u_{\epsilon/2}$$

3.4.2 Comparaison des moyennes de deux populations normales de même écart-type σ inconnu

On commence avec deux moyennes des deux populations :

$$\bar{X}_1 \sim N\left(\mu_1, \frac{\sigma}{\sqrt{n_1}}\right)$$

$$\bar{X}_2 \sim N\left(\mu_2, \frac{\sigma}{\sqrt{n_2}}\right)$$

Maintenant nous devons faire une soustraction de deux normales $\bar{X}_1 - \bar{X}_2$, pour faire cela nous prenons l'opposé d'une normale et nous les additionnons $\bar{X}_1 + (-\bar{X}_2)$ grace à la propriété d'opposé d'une normale 2.3.5 page 23 et la propriété d'addition 2.3.5 page 23.

$$\bar{X}_1 + (-\bar{X}_2) \sim N \left(\mu_1 - \mu_2, \sqrt{\left(\frac{\sigma}{\sqrt{n_1}}\right)^2 + \left(\frac{\sigma}{\sqrt{n_2}}\right)^2}\right)$$

$$\sim N \left(\mu_1 - \mu_2, \sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}\right)$$

$$\sim N \left(\mu_1 - \mu_2, \sigma\sqrt{\frac{n_1 + n_2}{n_1 n_2}}\right)$$

et avec un $\chi^2_{(n_1-1+n_2-1)}$ où n= nombre de degré de libertés

$$\frac{n_1 s_1^2 + n_2 s_2^2}{\frac{\sigma^2}{\sigma}} \sim \chi_{(n_1 + n_2 - 2)}^2$$

$$\frac{1}{\sigma} \sqrt{n_1 s_1^2 + n_2 s_2^2} \sim \sqrt{\chi_{(n_1 + n_2 - 2)}^2}$$

Ces deux variables étant indépendantes, on en déduit que

$$T = \underbrace{\frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sigma \sqrt{\frac{n_1 + n_2}{n_1 n_2}}}}_{\sim N(0, 1)} \underbrace{\frac{1}{\underbrace{\frac{1}{\sigma} \sqrt{\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}}}}_{\sim \chi^2_{n_1 - 1 + n_2 - 1}}$$

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1 + n_2}{n_1 n_2}} \sqrt{\frac{n_1 S_1^2 + n_2 S_2^2}{n_1 + n_2 - 2}}} \sim t_{n_1 - 1 + n_2 - 1}$$

A tout $\epsilon > 0$, on peut donc associer un nombre tel que

$$P\left(-t_{\epsilon/2} \le T \le t_{\epsilon/2}\right) = 1 - \epsilon$$

d'où on peut donc déduire un intervalle de confiance pour $\mu_1 - \mu_2$. D'autre part on rejettera l'hypothèse $\mu_1 = \mu_2$ si

$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{n_1 + n_2}{n_1 n_2}} \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}} > t_{\epsilon/2}$$

3.4.3 Comparaison des moyennes de deux populations quelconques

Si n_1 et n_2 sont suffisamment grands (au moins 20), alors $\bar{X}_1 - \bar{X}_2$ a une distribution approximativement normale :

$$\bar{X}_1 - \bar{X}_2 \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}\right)$$

où on remplace σ_1 et σ_2 par s_1 et s_2 lorsqu'ils sont inconnus. On rejette alors l'hypothèse $\mu_1=\mu_2$ lorsque

$$\frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} > u_{\epsilon/2}$$

4 Autres

4.1 Tableau du formulaire

	μ	σ^2	$\psi(t)$
$\mathcal{B}(n,p)$	np	np(1-p)	$(pe^t + q)^n$
\mathcal{P}_{λ}	λ	λ	$e^{\lambda(e^t-1)}$
$\operatorname{Exp}_{\lambda}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$
$\operatorname{Indicatrice}(p)$	p	p(1-p)	$1 + p(e^t - 1)$
Uniforme $[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{1}{t} \frac{e^{tb} - e^{ta}}{b - a}$
$\mathcal{N}(\mu, \sigma)$	μ	σ^2	$e^{\mu t + (\sigma^2 t^2)/2}$
$\chi^2_{(n)}$	n	2n	$(1-2t)^{-n/2}$
t_n	0 n > 1	$\frac{n}{n-2}$ $n>2$	aucun
$\mathcal{F}_{(m,n)}$	$\frac{n}{n-2}$ $n>2$	$\frac{2n^2(n+m-2)}{m(n-2^2(m-4))} \qquad n > 2$	aucun

Tableau dans le formulaire disponible à l'examen écrit (en rouge à connaître)

4.2 Densité et répartition

	Fonction de densité $f(x)$	Fonction de répartition $F(x)$
$\mathcal{B}(n,p)$	P[B(n,p)=k]	$\sum_{k=0}^{x} P[B(n,p) = k]$
\mathcal{P}_{λ}	$P[\mathcal{P}_{\lambda} = k] = \frac{\lambda^k}{k!} e^{-\lambda}$	$\sum_{k=0}^{x} P[\mathcal{P}_{\lambda} = k]$
$\operatorname{Exp}_{\lambda}$	$\begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$
$\boxed{ \text{Indicatrice}(p) }$	$V_A \Rightarrow \begin{cases} P(V_A = 1) = p \\ P(V_A = 0) = 1 - p \end{cases}$	$\begin{cases} 0 & x < 0 \\ 1 - p & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$
Uniforme[a,b]	$\begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & sinon \end{cases}$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x < b \\ 1 & x \ge b \end{cases}$
$\mathcal{N}(\mu, \sigma)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{(u-\mu)^2}{2\sigma^2}} du$
$\chi^2_{(n)}$	$ \frac{\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\left\{\frac{1}{\sqrt{2\pi}}e^{\frac{x^2}{2}} x > 0\\ 0 x \le 0\right\}} $	$\frac{1}{\sqrt{2\pi}} \int_0^x e^{\frac{x^2}{2}} du$
t_n	Densité indépendante de σ	
$\mathcal{F}_{(m,n)}$	Densité indépendante de σ	

4.3 Distributions

