Amendments to the Claims

1 (Currently Amended). A compound of formula (I)

$$\begin{array}{c|c}
O \\
O \\
N \\
CO_2P_2
\end{array}$$

$$\begin{array}{c}
A \\
L \\
B \\
(I),
\end{array}$$

or a therapeutically acceptable salt or prodrug thereof, wherein

A is selected from the group consisting of

wherein the dotted line is either absent or is a single bond;

B is selected from the group consisting of hydrogen, alkyl, aryl, \underline{and} arylalkyl;

D is selected from the group consisting of

$$R_2$$
 R_3
 R_3
 R_4
 R_5
 R_7
 R_7
 R_8
 R_8

wherein Z is selected from the group consisting of alkoxy, alkyl, amino, cyano, nitro, CO₂P₁, SO₃H, PO(OH)₂, CH₂PO(OH)₂, CHFPO(OH)₂, CF₂(PO(OH)₂, <u>and</u> C(=NH)NH₂; and the following 5-membered heterocycles:

wherein P₁ and P₂ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl and (cycloalkyl)alkyl;

 R_1 , R_2 , R_3 , R_4 and R_5 are independently selected from the group consisting of hydrogen, alkoxy, alkyl, aryl, arylalkyl, cyano, halo, haloalkoxy, haloalkyl, heterocycle, heterocyclealkyl, hydroxy, hydroxyalkyl, nitro, NR_AR_B , $NR_AR_BC(O)$, $NR_AR_BC(O)$ alkyl and $NR_AR_BC(O)$ alkenyl, wherein R_A and R_B are independently selected from the group consisting of hydrogen, alkyl, alkoxycarbonyl, alkylsulfonyl, aryl, arylalkylcarbonyl, arylcarbonyl, arylsulfonyl and (R_CR_DN) carbonyl wherein R_C and R_D are independently selected from the group consisting of hydrogen, alkyl, aryl, and arylalkyl, or R_A and R_B taken together with the nitrogen to which they are attached form a ring selected from the group consisting of pyrrolidine, piperidine, morpholine, homopiperidine and piperazine;

L is selected from the group consisting of

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;$

 $\hbox{-(CH$_2$)_m$X$_1$(CH$_2$)_nCH(R$_8$)C(R$_{9A}$)(R$_{9B}$)X_2$(CH$_2$)_p$EC(O)N(R$_{10}$)CH(CO$_2$R$_{11}$)(CH$_2$)_qX_3-;}$

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-;$

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3(CH_2)_qX_4-;$ and

- $(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pE(CH_2)_qX_3$ -, wherein each group is drawn with the left end attached to A and the right end attached to B;

m, n, p and q are independently between 0-4;

 R_8 is selected from the group consisting of hydrogen, hydroxy, NR_AR_B and (NR_AR_B) alkyl;

 R_{9A} and R_{9B} are independently selected from the group consisting of hydrogen, alkyl, hydroxyalkyl and R_ER_F Nalkyl, wherein R_E and R_F are independently selected from the group consisting of hydrogen, alkyl, alkoxycarbonyl and alkanoyl, or R_{9A} and R_{9B} taken together are oxo;

R₁₀ is selected from the group consisting of hydrogen, alkyl, alkanoyl and alkoxycarbonyl;

R₁₁ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, arylalkyl, cycloalkyl, and (cycloalkyl)alkyl;

E is selected from the group consisting of aryl and cycloalkyl;

 X_1 , X_2 , X_3 , and X_4 are independently absent or are independently selected from the group consisting of NR_G, O, S, S(O) and S(O)₂, wherein R_G is selected from the group consisting of hydrogen, alkyl, alkanoyl and alkoxycarbonyl; and

 W_1 , W_2 , W_3 and W_4 are independently selected from the group consisting of CH[,] <u>and</u> CH₂, N, NH and O.

2 (Currently Amended). The compound according to claim 1 of formula (II)

$$\begin{array}{c|c} R_1 & CO_2P_1 \\ \hline R_2 & 0 \\ \hline R_3 & CO_2P_2 \\ \hline \\ A & CO_$$

or a therapeutically acceptable salt or prodrug ther \underline{e} of wherein A, B, L, P₁, P₂, R₁, R₂, and R₃ are defined in Claim 1.

3 (Currently Amended). The compound according to claim 2, wherein A is selected from the group consisting of

$$\begin{bmatrix}
R_4 & \downarrow \downarrow \\
R_5 & \downarrow \\
R_5 & \downarrow \\
R_6 & \downarrow \\
R_7 & \downarrow \\
R_8 & \downarrow \\
R_8 & \downarrow \\
R_8 & \downarrow \\
R_8 & \downarrow \\
R_9 & \downarrow \\$$

 R_1 , R_2 , R_3 , R_4 and R_5 are independently selected from the group consisting of hydrogen, alkoxy, alkyl, cyano, halo, haloalkoxy, haloalkyl, hydroxy, hydroxyalkyl, nitro, NR_AR_B , $NR_AR_BC(O)$, $NR_AR_BC(O)$ alkyl and $NR_AR_BC(O)$ alkenyl;

 R_{10} is selected from the group consisting of hydrogen and alkyl; and R_{11} is independently selected from the group consisting of hydrogen, alkyl and arylalkyl.

- 4 (Original). The compound according to claim 2, wherein L is
- $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-.$
- 5 (Original). The compound according to claim 2, wherein L is
- -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pC(O)N(R₁₀)CH(CO₂R₁₁)(CH₂)_qX₃-; and R₈ is NR_AR_B.
- 6 (Original). The compound according to claim 2, wherein L is
- -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pC(O)N(R₁₀)CH(CO₂R₁₁)(CH₂)_qX₃-; R₈ is NR_AR_B; and R_{9A} and R_{9B} together are oxo.
- 7 (Original). The compound according to claim 2, wherein L is
- -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B}))X₂(CH₂)_pC(O)N(R₁₀)CH(CO₂R₁₁)(CH₂)_qX₃-; R₈ is NR_AR_B; R_{9A} and R_{9B} together are oxo; and X₂ is NR_C.

8 (Previously Presented). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;\\$

 R_8 is NR_AR_B ;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C; and

B is aryl.

9 (Previously Presented). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-$

 R_8 is NR_AR_B ;

R_{9A} and R_{9B} together are oxo;

 X_2 is NR_C ;

B is aryl; and

A is

$$R_4$$
 R_5

10 (Original). The compound according to claim 9, which is

N-[5-({N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino}]-3-ethylphenylalanyl}amino)pentanoyl]-L-tyrosine.

11 (Original). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;\\$

 R_8 is NR_AR_B ;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C; and

B is hydrogen.

12 (Original). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-$

R₈ is NR_AR_B;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

B is hydrogen; and

A is

$$R_4$$
 R_5

13 (Original). The compound according to claim 12, which is N-[5-({N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-ethylphenylalanyl}amino)pentanoyl]-L-norleucine.

14 (Original). The compound according to claim 2, wherein

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pEC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-.$

15 (Original). The compound according to claim 2, wherein L is

-(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pEC(O)N(R₁₀)CH(CO₂R₁₁)(CH₂)_qX₃-; and R₈ is NR_AR_B.

16 (Original). The compound according to claim 2, wherein

-(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pEC(O)N(R₁₀)CH(CO₂R₁₁)(CH₂)_qX₃-; R₈ is NR_AR_B; and R_{9A} and R_{9B} together are oxo.

17 (Original). The compound according to claim 2, wherein

-(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pEC(O)N(R₁₀)CH(CO₂R₁₁)(CH₂)_qX₃-; R₈ is NR_AR_B; R_{9A} and R_{9B} together are oxo; and X₂ is NR_C.

18 (Original). The compound according to claim 2, wherein L is

-(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pEC(O)N(R₁₀)CH(CO₂R₁₁)(CH₂)_qX₃-; R₈ is NR_AR_B;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C; and

B is hydrogen.

19 (Original). The compound according to claim 2, wherein L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pEC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;$

R₈ is NR_AR_B; R_{9A} and R_{9B} together are oxo;

 X_2 is NR_C ;

B is hydrogen; and

E is cycloalkyl.

20 (Original). The compound according to claim 2, wherein L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pEC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;\\$

 R_8 is NR_AR_B ;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

B is hydrogen;

E is cycloalkyl; and

A is

21 (Original). The compound according to claim 20, which is

N-{[4-({[N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-(2-

hydroxyethyl)phenylalanyl]amino}methyl)cyclohexyl]carbonyl}-L-norleucine.

22 (Original). The compound according to claim 2, wherein

L is

 $-(CH_2)_m X_1(CH_2)_n CH(R_8) C(R_{9A})(R_{9B}) X_2(CH_2)_p C(O) N(R_{10}) CH(CO_2 R_{11}) (CH_2)_q X_3 -$

R₈ is NR_AR_B;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

X₃ is S; and

B is alkyl.

23 (Original). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-$

 R_8 is NR_AR_B ;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

 X_3 is S;

B is alkyl; and

A is

24 (Original). The compound according to claim 23, selected from the group consisting of

N-{5-[(N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-

ethylphenylalanyl)amino|pentanoyl}-L-methionine;

methyl N-{5-[(N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-

ethylphenylalanyl)amino]pentanoyl}-L-methioninate;

N-{5-[(*N*-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-ethylphenylalanyl)amino]pentanoyl}-*S*-ethyl-L-homocysteine;

N-{5-[(*N*-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-isopropylphenylalanyl)amino]pentanoyl}-L-methionine;

N-{5-[(N-acetyl-4-[(carboxycarbonyl)(2-carboxy-5-chlorophenyl)amino]-3-ethylphenylalanyl)amino]pentanoyl}-L-methionine; and

N-(5-{[N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-(2-hydroxyethyl)phenylalanyl]amino} pentanoyl)-L-methionine.

25 (Original). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;$

 R_8 is NR_AR_B ;

 $R_{9\text{A}}$ and $R_{9\text{B}}$ together are oxo;

X₂ is NR_C;

X₃ is S; and

B is aryl.

26 (Original). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;$

 R_8 is NR_AR_B ;

 R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

 X_3 is S;

B is aryl; and

A is

27 (Original). The compound according to claim 26, which is

N-{5-[(N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-ethylphenylalanyl)amino]pentanoyl}-S-benzyl-L-cysteine.

28 (Original). The compound according to claim 2, wherein

L is

 $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B}))X_2(CH_2)_pC(O)N(R_{10})CH(CO_2R_{11})(CH_2)_qX_3-;$

 R_8 is NR_AR_B ;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

 X_3 is S;

B is alkyl; and

A is

- 29 (Original). The compound according to claim 28, which is *N*-(5-{[3-(4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-1-naphthyl)-*N*-(methoxycarbonyl)alanyl]amino}pentanoyl)-L-methionine.
- 30 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3$ -.
- 31 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; and R₈ is NR_AR_B.
- 32 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3$ -; R₈ is NR_AR_B; and R_{9A} and R_{9B} together are oxo.
- 33 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$; R_8 is NR_AR_B ; R_{9A} and R_{9B} together are oxo; and X_2 is NR_C .
- 34 (Original). The compound according to claim 2, wherein L is - $(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3$ -; R₈ is NR_AR_B; R_{9A} and R_{9B} together are oxo; X₂ is NR_C; and X₃ is O.
- 35 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; R₈ is NR_AR_B; R_{9A} and R_{9B} together are oxo; X₂ is NR_C; X₃ is O; and B is aryl.

36 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$;

R₈ is NR_AR_{B:}

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

 X_3 is O;

B is aryl; and

A is

37 (Original). The compound according to claim 36, selected from the group consisting of

methyl 2-[4-({*N*-[(allyloxy)carbonyl]-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-L-phenylalanyl}amino)butoxy]-6-hydroxybenzoate;

methyl 2-{4-[(*N*-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-ethylphenylalanyl)amino]butoxy}-6-hydroxybenzoate;

methyl 4-{4-[(*N*-acetyl-4-amino-3-ethylphenylalanyl)amino]butoxy}-2-hydroxy-1,1'-biphenyl-3-carboxylate;

2-[4-({N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-ethylphenylalanyl}amino)butoxy]-6-hydroxybenzoic acid;

methyl 6-{4-[(N-acetyl-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-ethylphenylalanyl)amino]butoxy}-3-bromo-2-hydroxybenzoate;

methyl 2-(4-{[4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalanyl]amino}butoxy)-6-hydroxy-4-pentylbenzoate;

methyl 2-(4-{[4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalanyl]amino}butoxy)-6-hydroxy-4-methoxybenzoate;

methyl 3-(4-{[4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalanyl]amino}butoxy)-5-hydroxy-1,1'-biphenyl-4-carboxylate;

methyl 2-(4-{[4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalanyl]amino}butoxy)-6-hydroxy-4-methylbenzoate;

methyl 2-(4-{[4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalanyl]amino}butoxy)-4-chloro-6-hydroxybenzoate;

methyl 2-(4-{[4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalanyl]amino}butoxy)-6-hydroxybenzoate;

4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-{4-[2-(aminocarbonyl)-3-hydroxyphenoxy]butyl}-*N*-(methoxycarbonyl)-L-phenylalaninamide;

methyl 3-(4-{[4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalanyl]amino}butoxy)-1-hydroxy-2-naphthoate;

4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(4-{3-hydroxy-2-[(methylamino)carbonyl]phenoxy}butyl)-*N*-(methoxycarbonyl)-L-phenylalaninamide;

4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(4-{2-[(ethylamino)carbonyl]-3-hydroxyphenoxy}butyl)-*N*-(methoxycarbonyl)-L-phenylalaninamide;

N-{4-[2-(acetylamino)-3-hydroxyphenoxy]butyl}-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(methoxycarbonyl)-L-phenylalaninamide; and

4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-*N*-(4-{2-[(dimethylamino)carbonyl]-3-hydroxyphenoxy}butyl)-*N*-(methoxycarbonyl)-L-phenylalaninamide.

38 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_m X_1(CH_2)_n CH(R_8) C(R_{9A})(R_{9B}) X_2(CH_2)_p X_3$ -;

R₈ is NR_AR_{B:}

R_{9A} and R_{9B} together are oxo;

 X_2 is NR_C ;

 X_3 is O;

B is aryl; and

A is

$$R_4$$
 R_5

39 (Original). The compound according to claim 38, selected from the group consisting of methyl 2-[(5-{[*N*-acetyl-3-(4-amino-1-naphthyl)-L-alanyl]amino}pentyl)oxy]-6-hydroxy-4-methylbenzoate; and

3-({5-[(N-acetyl-3-{4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-1-naphthyl}-L-alanyl)amino]pentyl}oxy)-2-naphthoic acid.

40 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$; and R_8 is hydrogen.

41 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3$ -; R₈ is hydrogen; and R_{9A} and R_{9B} together are oxo.

42 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$;

R₈ is hydrogen;

 R_{9A} and R_{9B} together are oxo; and

X₂ is NR_C.

43 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$;

R₈ is hydrogen;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C; and

 X_3 is O.

44 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$;

R₈ is hydrogen;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

X₃ is O; and

B is aryl.

45 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$;

R₈ is hydrogen;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

 X_3 is O; and

B is aryl; and

A is

$$R_4$$
 R_5

46 (Original). The compound according to claim 45, which is

methyl 2-(4-{[3-(4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-3-ethylphenyl)propanoyl]amino}butoxy)-6-hydroxybenzoate.

47 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$;

R₈ is hydrogen;

R_{9A} and R_{9B} together are oxo;

X₂ is NR_C;

 X_3 is O;

B is aryl; and

A is

48 (Original). The compound according to claim 47, which is 2-((carboxycarbonyl){4-[3-({4-[3-hydroxy-2-(methoxycarbonyl)phenoxy]butyl}amino)-3-oxopropyl]-[(carboxycarbonyl)(2-carboxyphenyl)amino]-1-naphthyl}amino)benzoic acid.

49 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; R₈ is hydrogen; and R_{9A} is alkyl.

50 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; R₈ is hydrogen; R_{9A} is alkyl; and X₂ is NR_C.

51 (Orignial). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; R₈ is hydrogen; R_{9A} is alkyl; X₂ is NR_C; and

52 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$; R₈ is hydrogen; R_{9A} is alkyl;

X₂ is NR_C; X₃ is O; and B is aryl.

 X_3 is O.

53 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; R₈ is hydrogen; R_{9A} is alkyl; X₂ is NR_C;

X₃ is O; B is aryl; and

- 54 (Original). The compound according to claim 53, which is methyl 2-(4-{[3-(4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-1-naphthyl)-1-methylpropyl]amino}butoxy)-6-hydroxybenzoate.
- 55 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; R₈ is hydrogen; and R_{9A} and R_{9B} are both hydrogen.
- 56 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-; R₈ is hydrogen; R_{9A} and R_{9B} are both hydrogen; and X₂ is NR_C.
- 57 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3$ -; R₈ is hydrogen; R_{9A} and R_{9B} are both hydrogen; X₂ is NR_C; and X₃ is O.
- 58 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3-$; R_8 is hydrogen; R_{9A} and R_{9B} are both hydrogen; X_2 is NR_C ; X_3 is O; and B is aryl.
- (Original). The compound according to claim 2, wherein
 L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃-;
 R₈ is hydrogen;
 R_{9A} and R_{9B} are both hydrogen;
 X₂ is NR_C;

X₃ is O; B is aryl; and

A is

60 (Original). The compound according to claim 59, which is methyl 2-(4-{[3-(4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-1-naphthyl)propyl]amino}butoxy)-6-hydroxybenzoate.

- 61 (Original). The compound according to claim 2, wherein
 L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃(CH₂)_qX₄-.
- 62 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3(CH_2)_qX_4-$; and R_8 is NR_AR_B .
- 63 (Original). The compound according to claim 2, wherein L is -(CH₂)_mX₁(CH₂)_nCH(R₈)C(R_{9A})(R_{9B})X₂(CH₂)_pX₃(CH₂)_qX₄-; R₈ is NR_AR_B; and R_{9A} and R_{9B} together are oxo.
- 64 (Original). The compound according to claim 2, wherein L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3(CH_2)_qX_4-$; R_8 is NR_AR_B ; R_{9A} and R_{9B} together are oxo; and X_2 is NR_C .
- 65 (Original). The compound according to claim 2, wherein $L \text{ is -}(CH_2)_m X_1(CH_2)_n CH(R_8) C(R_{9A})(R_{9B}) X_2(CH_2)_p X_3(CH_2)_q X_4\text{-};$ $R_8 \text{ is NR}_A R_B;$ $R_{9A} \text{ and } R_{9B} \text{ together are oxo};$ $X_2 \text{ is NR}_C; \text{ and }$ $X_3 \text{ is O}.$
- 66 (Original). The compound according to claim 2, wherein $L \text{ is -}(CH_2)_m X_1 (CH_2)_n CH(R_8) C(R_{9A}) (R_{9B}) X_2 (CH_2)_p X_3 (CH_2)_q X_4\text{-}; \\ R_8 \text{ is NR}_A R_B;$

R_{9A} and R_{9B} together are oxo;

 X_2 is NR_C ;

 X_3 is O; and

 X_4 is O.

67 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3(CH_2)_qX_4-$;

R₈ is NR_AR_B;

R_{9A} and R_{9B} together are oxo;

 X_2 is NR_C ;

 X_3 is O;

X₄ is O; and

B is aryl.

68 (Original). The compound according to claim 2, wherein

L is $-(CH_2)_mX_1(CH_2)_nCH(R_8)C(R_{9A})(R_{9B})X_2(CH_2)_pX_3(CH_2)_qX_4-$;

R₈ is NR_AR_B;

R_{9A} and R_{9B} together are oxo;

 X_2 is NR_C ;

 X_3 is O;

 X_4 is O;

B is aryl; and

A is

$$R_4$$
 R_5

69 (Original). The compound according to claim 68, which is

methyl 2-{2-[2-({*N*-[(allyloxy)carbonyl]-4-[(carboxycarbonyl)(2-carboxyphenyl)amino]-L-phenylalanyl}amino)ethoxy]ethoxy}-6-hydroxybenzoate;

- 70 (Original). A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 in combination with a pharmaceutically acceptable carrier.
- 71 (Previously Presented). A method of treating diabetes by selectively inhibiting protein tyrosine phosphatase 1B comprising administering a therapeutically effective amount of a compound of claim 1.
- 72 (Previously Presented). A method of treating diabetes caused by overexpressed or altered protein tyrosine phosphatase 1B comprising administering a therapeutically effective amount of a compound of claim 1.

- 73 (Canceled).
- 74 (Canceled).
- 75 (Canceled).

RESPONSE

All claimed limitations related to heterocyclic compounds have now been removed from the claims. A typographical error has been corrected in claim 2. Applicants respectfully maintain that claims 1-72 are now in condition for allowance.

ACTION REQUESTED

For the forgoing reasons, Applicants submit that Claims 1-72 are in condition for allowance. To that end, the examiner is invited to contact the undersigned to schedule an Examiner Interview to discuss any matter.

Respectfully submitted, Liu, et al.

ABBOTT LABORATORIES Customer Number 23492

Telephone: (847) 935-7956 Facsimile: (847) 938-2623 Johanna M. Corbin Registration No. 51,582

Attorney for Applicants