Table 1: List of growth model equations, error distributions, and parameters

Equation						
		Deterministic		Stochastic	Error Distribution	Parameters
Mean	$y_t =$	\overline{y}	+	ϵ_t	$\epsilon_t \sim N(0, \sigma^2)$	$\{\overline{y},\sigma\}$
Linear Change Model	$y_t =$	$\beta_0 + \beta_1 (\text{time})_t$	+	ϵ_t	$\epsilon_t \sim N(0, \sigma^2)$	$\{eta_0,eta_1,\sigma\}$
"Fixed-Effects" Model (see notes)	$y_{ti} =$	$\beta_0 + \beta_1 (\text{time})_{ti} + \delta_i$	+	ϵ_t	$\epsilon_t \sim N(0, \sigma^2)$	$\{\beta_0, \beta_1, \delta_i, \sigma\}$
Random Intercepts Model	$y_{ti} =$	$\gamma_{00} + \gamma_{10} (\text{time})_{ti}$	+	$ ho_{0i} + \epsilon_{ti}$	$\epsilon_{ti} \sim N(0, \sigma^2)$ $\rho_{0i} \sim N(0, \tau_{00})$	$\{\gamma_{00},\gamma_{10}, au_{00},\sigma\}$
Random Slopes Model	$y_{ti} =$	$\gamma_{00} + \gamma_{10} (\text{time})_{ti}$	+	$ \rho_{1i}(\text{time})_t + \epsilon_{ti} $	$\epsilon_{ti} \sim N(0, \sigma^2)$ $\rho_{1i} \sim N(0, \tau_{11})$	$\{\gamma_{00},\gamma_{10},\tau_{11},\sigma\}$
Random Intercepts and Slopes Model	$y_{ti} =$	$\gamma_{00} + \gamma_{10} ({ m time})_{ti}$	+	$ \rho_{0i} + \rho_{1i} (\text{time})_t + \epsilon_{ti} $	$\epsilon_{ti} \sim N(0, \sigma^2)$ $\rho \sim MVN \left(0, \begin{bmatrix} \tau_{00} & \\ \tau_{10} & \tau_{11} \end{bmatrix} \right)$	$\{\gamma_{00},\gamma_{10}, au_{00}, au_{11}, au_{10},\sigma\}$
Latent Class Growth Analysis (LCGA) Model (see notes)	$y_{ti c=k} =$	$\gamma_{0k} + \gamma_{1k} (\text{time})_{ti}$	+	$\epsilon_{ti}, \pi_{i(c=k)}$	$\epsilon_{ti} \sim N(0, \sigma^2)$ $\pi_{i(c=k)} \sim \frac{\exp\{\eta_{ci}\}}{\sum_{k=1}^{K} \exp\{\eta_{ik}\}}$	$\{\sigma\}$ and $\{\gamma_{0k},\gamma_{1k},\pi_{i(c=k)}\}$ for each k
Growth Mixture Model	$y_{ti c=k} =$	$\gamma_{0k} + \gamma_{1k} (\text{time})_{ti}$	+	$ \rho_{0i} + \rho_{1i}(\text{time})_t + \epsilon_{ti}, \pi_{i(c=k)} $	$\epsilon_{ti} \sim N(0, \sigma^2)$ $\rho \sim MVN\left(0, \begin{bmatrix} \tau_{00} \\ \tau_{10} \\ \tau_{10} \end{bmatrix} \right)$ $\pi_{i(c=k)} \sim \frac{\exp\{\eta_{ci}\}}{\sum_{k=1}^{K} \exp\{\eta_{ik}\}}$	$ \begin{cases} \sigma \} \text{ and } \\ \{\gamma_{0k}, \gamma_{1k}, \tau_{00}, \tau_{11}, \tau_{01}, \pi_{i(c=k)} \} \\ \text{for each } k \end{cases} $

Notes: The "Fixed-Effects" Model refers to the econometric description of a model that accounts for variation across higher-level entities by including an indicator for N-1 entities represented in the equation by δ_i (therefore, δ_i has N-1 parameters); it does not refer to the "fixed" portion (i.e., deterministic component) of the growth models above. In the Latent Class Growth Analysis Model and Growth Mixture Model, η_{ik} represents the log-odds of membership in class k being drawn using the convention that η_{iK} , the log-odds of the reference category K, equal 0.