${\rm IS~summary} \\ {\rm Summary~of~the~Intelligent~Systems~course~lectures~at~FRI}$

ib8548

 $January\ 20,\ 2023$

Contents

1	Nat	ure inspired computing	4
	1.1	Template of an evolutionary program	4
	1.2	Key terms	4
	1.3	Gene representation	4
	1.4	Linear crossover	4
		1.4.1 Example	5
	1.5	Gray coding of binary numbers	5
	1.6	Lamarckian mutation	6
	1.7	Gaussian mutation	6
	1.8	Selection	6
		1.8.1 Proportional (roulette wheel) selection	6
		1.8.2 Tournament selection	6
	1.9	Stochastic universal sampling (SUS)	6
	1.10	Niche specialization	7
	1.11	Stopping criteria	7
		Parameters of genetic algorithms	7
	1.13	Pros and cons of GA $\ldots \ldots \ldots \ldots \ldots$	7
0	ъ	1 1. 11.	0
2		dictive modelling	8
	$\frac{2.1}{2.2}$	Learning	8
		Notation	
	2.3	Goals of learning	8
	$\frac{2.4}{2.5}$	Prediction	8
		Inference	8
	2.6	Parametric methods	9
	2.7	Non-parametric methods	9
	2.8	Types of learning	9
		2.8.1 Supervised learning	9
		2.8.2 Unsupervised learning	9
		2.8.3 Semi-supervised learning	9
		2.8.4 Self-supervised learning	10
	2.0	2.8.5 Weakly-supervised data	10
	2.9	Criteria of success for machine learning	10
	2.10	No free lunch theorem	10
3	Bias	s, variance and predictive models	11
4	Feat	cure selection	12
5	Ense	emble methods	13
6	Ker	nel methods	14
7		ral networks	15

8	Inference and explanation	16
9	Natural language processing	17
10	Reinforcement learning	18

1 Nature inspired computing

1.1 Template of an evolutionary program

- 1. Generate a population of agents (objects, data structures)
- 2. Repeat:
 - 2.1 Compute fitness of the agents
 - 2.2 Select candidates for the reproduction (using fitness)
 - 2.3 Create new agents by combining the candidates
 - 2.4 Replace old agents with new ones
 - 2.5 Stop if satisfied

1.2 Key terms

- Individual any possible solution
- Population a group of all individuals
- Search space all possible solutions to the problem
- Chromosome a blueprint for an individual
- Trait a possible aspect (features) of an individual
- Allele possible settings of a trait
- Locus the position of a gene on the Chromosome
- Genome a collection of all chromosomes for an individual

1.3 Gene representation

- Bit vectors
- Numeric vectors
- Strings
- Permutations
- Trees (representing functions, expressions, programs)

1.4 Linear crossover

Let $\mathbf{x} = (x_1, \dots, x_N)$ and $\mathbf{y} = (y_1, \dots, y_N)$. Select α in (0, 1). The result of the crossover is $\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}$

1.4.1 Example

$$\alpha = 0.75$$
 $A = (5, 1, 2, 10)$
 $B = (2, 8, 4, 5)$

Crossover:

$$(\alpha * A_1 + (\alpha - 1) * B_1, \dots, \alpha * A_4 + (\alpha - 1) * B_4) =$$

$$= (0.75 * 5 + 0.25 * 2, \dots, 0.75 * 10 + 0.25 * 5) =$$

$$= (3.75 + 0.5, 0.75 + 2, 1.5 + 1, 7.5 + 1.25) =$$

$$= (4.25, 2.75, 2.5, 8.75)$$

We can also choose a different α for each position. For example, using $\alpha=(0.5,0.25,0.75,0.5)$ would result in (3.5,6.25,2.5,7.5).

1.5 Gray coding of binary numbers

Each number differs from the previous by **one bit**.

Binary	Gray
0000	0000
0001	0001
0010	0011
0011	0010
0100	0110
0101	0101
0110	0100
0111	1100
1001	1101
1010	1111
1011	1110
1100	1010
1101	1011
1110	1011
1111	1000

Constructing a n-bit Gray code recursively (example for n = 2):

• Create a (n-1) bit list: 0, 1

• Reflect: **1**, **0**

• Prefix old entries with 0: **00**, **01**

• Prefix new entries with 1: 11, 10

 \bullet Concatenate: $\mathbf{00}, \mathbf{01}, \mathbf{11}, \mathbf{10}$

1.6 Lamarckian mutation

• Searches for the locally best mutation

1.7 Gaussian mutation

Selects a position in the vector of floats and mutates it by adding a Gaussian error

1.8 Selection

- Proportional
- Rank proportional
- Tournament
- Single Tournament
- Stochastic universal sampling

1.8.1 Proportional (roulette wheel) selection

Each individual gets a share on the "wheel" depending on its fitness. Fitter individuals get bigger shares.

1.8.2 Tournament selection

- 1. Set $\mathbf{t} = \text{size}$ of the tournament, $\mathbf{p} = \text{probability}$ of a choice
- 2. Randomly sample t agents from the tournament population
- 3. With probability p select the best agent
- 4. With probability p(1-p) select the second best agent
- 5. With probability $p(1-p)^2$ select the third best agent
- 6. ...

The **n-th** fittest agent is therefore selected with the probability of $\mathbf{p}(\mathbf{1}-\mathbf{p})^{(\mathbf{n-1})}$

1.9 Stochastic universal sampling (SUS)

- Unbiased
- \bullet Selecting N agents with combined fitness of F
- Randomly chosen first position $r \in [0, \frac{F}{N}]$
- The positions $r+i*\frac{F}{N}; i\in {0,1,\ldots,N-1}$ determine the chosen agents

1.10 Niche specialization

• Punish too similar agents

1.11 Stopping criteria

- Number of generations
- Progress
- Availability of computational resources
- ...

1.12 Parameters of genetic algorithms

- Encoding
- Length of the Strings
- Size of the pupolation (from 20–50 to a few thousand)
- Selection method
- \bullet Probability of performing a crossover (usually high $\sim 0.9)$
- Probability of performing a mutation (usually low below 0.1)
- Termination criteria (usually a number of generations or a target fitness)

1.13 Pros and cons of GA

Pros:

- Low time and memory **requirements** compared to searching a very large feature space
- A solution can be found without any explicit analytical work

Cons:

- \bullet Randomized and therefore not optimal
- Can get stuck on local maxima
- We have to figure out how to represent candidates with the available methods (e.g. as a bit string)

2 Predictive modelling

2.1 Learning

Acquiring new, modifying and/or reinforcing existing:

- \bullet Knowledge
- Behaviors
- Skills
- Values
- Preferences

Statistical learning deals with finding a predictive function based on the data.

2.2 Notation

$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$
$$Y = f(X) + \varepsilon$$
$$Y_i = f(X_i) + \varepsilon$$

 ε — measurement errors, its mean is 0 and it is independent from X.

2.3 Goals of learning

- Prediction
- Inference

2.4 Prediction

• If we have a good estimate for f, we can make accurate predictions for Y based on a new value of X.

2.5 Inference

- Finding out the relationship between Y and X.
- Sometimes more important than prediction (for example in medicine)

2.6 Parametric methods

- \bullet We estimate f by estimating the set of parameters
- 1. Come up with a model based on assumptions about the form of f, e.g. a linear model:

$$f(\mathbf{X_i} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip})$$

- More complicated and flexible models for f are often more realistic
- 2. Use the training data to fit the model (estimate f) e.g. the least squares method in the case of linear models

2.7 Non-parametric methods

 \bullet They do not make assumptions about the funct. form of f. They fit a wider range of possible shapes, but require a large number of observations compared to parametric methods.

2.8 Types of learning

- Supervised
- Unsupervised
- Semi-Supervised
- Self-Supervised
- Weakly-supervised

2.8.1 Supervised learning

Both the predictors (X_i) and the response (Y_i) are given.

2.8.2 Unsupervised learning

We don't know Y — we are looking for similarities between attributes (X).

2.8.3 Semi-supervised learning

Only a small sample of labelled instances is observed, but a large set of instances is unlabelled.

- A supervised model is used to label unlabelled instances
- The most reliable predictions are then added to the training set for the next iteration of supervised learning

2.8.4 Self-supervised learning

- A mixture of supervised and unsupervised learning
- Learns from unlabelled data
- The labels are obtained from related properties of the data

Examples:

- in NLP: predicting hidden words in a sentence based on the remaining words
- in video processing: predicting past or future frames from the observed ones

2.8.5 Weakly-supervised data

Using imprecise or noisy sources to supervise labelling large amounts of training data, then performing supervised learning.

Example: using a smart electricity meter to estimate household occupancy

2.9 Criteria of success for machine learning

How to select the best model? Most popular criterions:

• For **regression**: mean squared error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - f'(x_i))^2$$

• For classification: classification accuracy (CA)

$$CA = \frac{1}{n} \sum_{i=1}^{n} I(y_i = y_i')$$

2.10 No free lunch theorem

If no information about f(X) is provided:

- No classifier is better than some other in the general case
- No classifier is better than random in the general case

3 Bias, variance and predictive models

4 Feature selection

5 Ensemble methods

6 Kernel methods

7 Neural networks

8 Inference and explanation

9 Natural language processing

10 Reinforcement learning