Corso di Laurea in Informatica Algebra. a.a. 2023-24. Canale 1. Compito a casa del 10/11/2023

Esercizio 1. Consideriamo \mathbb{Z} , $n \in \mathbb{N}$, $n \geq 2$ ed il sottogruppo $n\mathbb{Z}$. Spiegare perché il gruppo quoziente $\mathbb{Z}/n\mathbb{Z}$ è ben definito ed isomorfo (di fatto, uguale) a \mathbb{Z}_n .

Esercizio 2. Sia G il gruppo affine della retta affine numerica \mathbb{R} : **per definizione** $G = \{f_{a,c}, a \in \mathbb{R} \setminus \{0\}, c \in \mathbb{R}\}$ con $f_{a,c}(x) = ax + c$ e prodotto in G uguale alla composizione di applicazioni. Dopo aver verificato che G è effettivamente un sottogruppo del gruppo di tutte le bigezioni di \mathbb{R} e che non è commutativo, dimostrare che il sottoinsieme delle traslazioni $T = \{f_{1,c}, c \in \mathbb{R}\}$ è un sottogruppo normale e che G/T è isomorfo al gruppo $(\mathbb{R} \setminus \{0\}, \cdot)$.

Suggerimento: definire un opportuno omomorfismo surgettivo $G \to \mathbb{R} \setminus \{0\}$ ed applicare il teorema fondamentale di omomorfismo fra gruppi.....

Esercizio 3. Determinare il gruppo degli automorfismi del gruppo ciclico $(\mathbb{Z}_n,+)$. (Suggerimento: basta determinare gli omomorfismi di \mathbb{Z}_n in sé stesso che sono suriettivi; osserviamo anche che un omomorfismo di \mathbb{Z}_n is sé stesso è determinato dall'immagine di [1]...).

Esercizio 4. Sia (G,\cdot) un gruppo. Il Centro di G è l'insieme

$$Z(G) := \{ z \in G \mid z \cdot q = q \cdot z \ \forall q \in G \}$$

Consideriamo l'applicazione $\Phi: G \to \operatorname{Aut}(G)$ che associa a $x \in G$ l'automorfismo γ_x . Abbiamo incontrato questa applicazione nell'Esercizio 8 del compito dell'8/11/23.

- Verificare che $Z(G) = \text{Ker}\Phi$
- cosa deduciamo da questa informazione ?
- Cosa ci dice questo risultato sul sottogruppo ${\rm Im}\Phi$ degli automorfismi interni?

Esercizi di ripasso.

- 1. Svolgere l'esercizio 2.12 alla fine del Capitolo 2 in Campanella.
- 2. Svolgere l'esercizio 3 p. 83 in Piacentini-Cattaneo.
- 3. Risolvere, se possibile, il sistema

$$\begin{cases} 3x \equiv 9 \bmod 21 \\ 2x \equiv 3 \bmod 5 \end{cases}$$

4. Calcolare le ultime due cifre di 81^{82} .