IN4MATX 133: User Interface Software

Lecture: AJAX, Fetch, & Promises

Goals for this Lecture

By the end of this lecture, you should be able to...

- Explain how programs access web resources and common ways they respond
- Implement a fetch request to get a resource from a web API
- Use promises to make an asynchronous request

Web APIs

- Many web services and data sources allow you to use HTTP (web) requests to access their data
- This is done by providing a web API.
- https://developer.twitter.com/

Web APIs

Application Programming Interface

- The interface we can use to interact with an application through programming
- An interface is just a defined set of functions

Web APIs

Using the internet

URI

Uniform Resource Indicator

- All URLs are URIs, but URLs also specify "access mechanism"
 - http://,file://
- URIs will return a <u>resource</u>
 - Could be a webpage, image file etc.
 - Could also just be data

URI

Uniform Resource Indicator

- http://www.domain.com/users => returns a list of users
 - The list of users is the *resource*
- Can have sub-resources
- http://www.domain.com/users/shawna
 - Returns a specific user

URI format

- Base URI:
 - How every API request for that API starts
 - https://api.twitter.com/
- Endpoint
 - Specific resources which can be accessed via that api
 - 1.1/search/tweets.json
 - 1.1/status/filter.json

Endpoints often contain an API version number

https://developer.twitter.com/en/products/tweets.html

URI queries

- Key/value pairs which follow the URI
 - Parameters for the resource, may specify exactly what to return or what format it should be in
 - ?key=value&key=value
- https://api.twitter.com/1.1/search/tweets.json?q=UCI&language=english

"query", in Twitter this means what text or hashtag to search for

HTTP verbs

- HTTP requests include a target resource and a verb (method) specifying what to do with it
 - GET: return a representation of the current state of the resource
 - POST: add a new resource (e.g., a record, an entry)
 - PUT: update an existing resource to a new state
 - PATCH: update a portion of the resource's state
 - DELETE: remove the resource
 - OPTIONS: return a set of methods that can be performed on the resource

HTTP responses

- Responses will include a status code (whether it worked as expected) and a body (the actual response)
 - 200:OK
 - 201: Created (for POST)
 - 400: Bad request (something is wrong with your URI)
 - 403: Forbidden (some access or authentication issue)
 - 404: Not found (resource does not exist)
 - 500: Internal server error (generic server-side error)

Putting it all together

- HTTP GET https://api.twitter.com/1.1/search/tweets.json?q=UCI&lang=en
 - Use the "get" verb to access English-language tweets which mention UCI
 - We expect/hope for status code 200 (OK)
 - Then we access the body

Escaping characters

- Some characters, like the hash (#) are reserved in URLs
 - Linking to IDs within pages
- We need to encode the character to search for a hashtag on Twitter
- HTTP GET https://api.twitter.com/1.1/search/tweets.json?q=%23UCI &lang=en

Character	From Windows-1252	From UTF-8
space	%20	%20
!	%21	%21
"	%22	%22
#	%23	%23
\$	%24	%24
%	%25	%25

So how do we make a web request?

Asynchronous JavaScript and XML

XML

Extensible Markup Language

- A generalized syntax for semantically defining structured content
- HTML is XML with defined tags

Plain text

Belgian Waffles "Two of our famous Belgian Waffles with plenty of real maple syrup" \$5.95 650 calories Strawberry Belgian Waffles "Light Belgian waffles covered with strawberries and whipped cream" \$7.95 900 calories Berry-Berry Belgian Waffles "Light Belgian waffles covered with an assortment of fresh berries and whipped cream" \$8.95 900 calories French Toast "Thick slices made from our homemade sourdough bread" \$4.50 600 calories Homestyle Breakfast "Two eggs, bacon or sausage, toast, and our ever-popular hash browns" \$6.95 950 calories

XML

```
<bre>dreakfast menu>
  <food>
    <name>Belgian Waffles
   <price>$5.95</price>
    <description>
     Two of our famous Belgian Waffles with plenty of real maple syrup
    </description>
   <calories>650</calories>
  </food>
  <food>
    <name>Strawberry Belgian Waffles
    <price>$7.95</price>
    <description>
     Light Belgian waffles covered with strawberries and whipped cream
    </description>
    <calories>900</calories>
  </food>
  <food>
   <name>Berry-Berry Belgian Waffles
    <price>$8.95</price>
    <description>
     Light Belgian waffles covered with an assortment of fresh berries and
whipped cream
    </description>
    <calories>900</calories>
  </food>
  <food>
    <name>French Toast</name>
   <price>$4.50</price>
    <description>
     Thick slices made from our homemade sourdough bread
    </description>
    <calories>600</calories>
  </food>
  <food>
    <name>Homestyle Breakfast</name>
   <price>$6.95</price>
   <description>
     Two eggs, bacon or sausage, toast, and our ever-popular hash browns
    </description>
    <calories>950</calories>
  </food>
</breakfast menu>
```

XML

```
<bre>breakfast menu>
  <food>
   <name>Belgian Waffles
   <price>$5.95</price>
   <description>
     Two of our famous Belgian Waffles with plenty of real maple syrup
   </description>
   <calories>650</calories>
  </food>
  <food>
   <name>Strawberry Belgian Waffles
   <price>$7.95</price>
   <description>
     Light Belgian waffles covered with strawberries and whipped cream
   </description>
   <calories>900</calories>
 </food>
  <food>
   <name>Berry-Berry Belgian Waffles
   <price>$8.95</price>
   <description>
     Light Belgian waffles covered with an assortment of fresh berries and
whipped cream
   </description>
   <calories>900</calories>
 </food>
  <food>
   <name>French Toast
   <price>$4.50</price>
   <description>
     Thick slices made from our homemade sourdough bread
   </description>
   <calories>600</calories>
  </food>
  <food>
   <name>Homestyle Breakfast
   <price>$6.95</price>
   <description>
     Two eggs, bacon or sausage, toast, and our ever-popular hash browns
   </description>
   <calories>950</calories>
 </food>
</breakfast menu>
```

JSON

```
"breakfast menu": {
    "food": [
      "name": "Belgian Waffles",
      "price": "$5.95",
      "description": "Two of our famous Belgian Waffles with plenty of real maple
syrup",
      "calories": "650"
      "name": "Strawberry Belgian Waffles",
      "price": "$7.95",
      "description": "Light Belgian waffles covered with strawberries and whipped
cream"
      "calories": "900"
      "name": "Berry-Berry Belgian Waffles",
      "price": "$8.95",
      "description": "Light Belgian waffles covered with an assortment of fresh
berries and whipped cream",
      "calories": "900"
      "name": "French Toast",
      "price": "$4.50",
      "description": "Thick slices made from our homemade sourdough bread",
      "calories": "600"
      "name": "Homestyle Breakfast",
      "price": "$6.95",
      "description": "Two eggs, bacon or sausage, toast, and our ever-popular hash
browns",
      "calories": "950"
```

XML vs. JSON

- XML and JSON represent the same data
- JSON is more concise
 - Less data to move around on the web
- JSON is easier to read
 - Close tags in XML are redundant
- JSON has taken over as the typical format of web requests

Asynchronous JavaScript and XIVII

Sending an AJAX request

XMLHttpRequest

 AJAX requests are built into a browser-provided object called XMLHTTPRequest var xhttp = new XMLHttpRequest(); xhttp.onreadystatechange = function() { if (xhttp.readyState == 4 && xhttp.status == 200)// Action to be performed when the document is read; var xml = xhttp.responseXML; var movie = xml.getElementsByTagName("track"); //... xhttp.open("GET", "filename", true); xhttp.send();

XMLHttpRequest

AJAX requests are built into a browser-provided object called XMLHTTPRequest xhttp = new XMLHttpRequest(); xhttp. readystatechange = function() { if (xh = eadyState == 4 && xhttp.status == 100)// Action to be performed when the doment is read; var xml = xht responseXML; var movie = xml.getE #sByTagName("track"); //... xhttp.oper GET", "filename", true); xhttreend();

Fetch

- A new-ish, modern method for submitting XMLHttpRequests
- Included in most browsers (but not IE)

Using fetch

- fetch ('some-url') defaults to a GET request
- fetch can optionally take a second options argument (as a dictionary)
 - method: what method to use (e.g., POST, PUT, DELETE)
 - headers: specify content type format, etc. (more on headers in the next week)
 - body: what you want to send for a POST/PUT request

Using fetch

```
• For a GET request
fetch('some-url');
• For a POST request
fetch('some-url', {
  method:'POST',
  headers: {'Content-Type': 'application/json'},
  body: JSON.stringify(data-to-send)
});
```

Same-origin policy

- Many browsers will not permit AJAX requests to a different server.
 This helps prevent malicious scripts from accessing data in the DOM
 - A non-browser proxy server running locally can communicate with a different server
 - The browser can communicate with the proxy server

Same-origin policy

- Two browser tabs: A bank app open in one, an evil app in the other
 - Both run JavaScript scripts written by their source
- The origin is what HTML page opened the JavaScript file
 - So each tab is a separate origin
- Without the same-origin policy, the evil app could read, edit, etc. your bank information
 - Different tabs, but both running with the same JavaScript engine

Same-origin policy

- So instead, the bank app can only talk to the bank server, and the evil app can only talk to the evil server
- Two exceptions:
 - An app can always communicate with other apps in the same domain (e.g., localhost apps can communicate with any other localhost apps)
 - A server can designate that it will accept connections from sources with a particular origin (or any origin)
 - You can disable this in your browser, but probably shouldn't

Servers on localhost

Localhost: "this computer"

Live server: localhost:8080

Browser implements same-origin policy to protect the other data you have open in the browser

Twitter proxy: localhost:7890

No same-origin policy restrictions, can communicate with Twitter

A local web server

- Install live-server package globally
 - npm install -g live-server
- Running it
 - cd path/to/project
 - live-server .
- Will open up your webpage at http://localhost:8080

Asynchronous JavaScript and XML

JSON

Asynchronous requests

- Ajax requests are asynchronous, so they happen simultaneously with the rest of the code
- After the request is sent, the next line of code is executed without waiting for the request to finish

Asynchronous requests

- It's uncertain how long it'll take the request to complete
- Handling requests asynchronously allows a person to continue interacting with your page
 - The request is not blocking their interface interactions
 - It's a bad experience when a person tries to navigate your webpage, but can't

Promises

- Because fetch() is asynchronous, the method returns a Promise
- Promises act as a "placeholder" for the data that will eventually be received from the AJAX request

```
//fetch() returns a Promise
var thePromise = fetch(url);
```

Promises

• We use the .then() method to specify a callback function to be executed when the promise is fulfilled (when the asynchronous request is finished)

```
//what to do when we get the response
function successCallback(response) {
   console.log(response);
                              Callback will be passed the request response
//when fulfilled, execute the callback function
//(which will be passed the fetched data)
var promise = fetch(url);
promise.then(successCallback, rejectCallback);
                                    Optional parameter
//more common to use anonymous variables/callbacks:
fetch (url).then (function (response)
   console.log(response);
} );
```

fetch() responses

- The parameter passed to the .then() callback is the response, not the data we're looking for
- The fetch() API provides a method .json() that we can use to extract the data from the response
 - But this method is *also* asynchronous and returns a promise!

Chaining promises

• The .then() method itself returns a Promise containing the value (data) returned by the callback method

```
    This allows you to chain callback functions together,

  doing one after another (but after the Promise is fulfilled)
function makeString(data) {
    return data.join(", "); //a value to put in Promise
function makeUpper(string) {
    return string.toUpperCase(); //a value to put in Promise
var promiseA = getData(); When completed, promiseA => json data
var promiseB = promiseA.then(makeString); promiseB => comma-separated string
var promiseC = promiseB.then(makeUpper);
                                                     promiseC => uppercase string
promiseC.then(function(data) {
    console.log(data);
                            Data is an uppercase,
                            comma-separated string
```

Chaining promises

• The .then() method itself returns a Promise containing the value (data) returned by the callback method

```
    This allows you to chain callback functions together,

  doing one after another (but after the Promise is fulfilled)
function makeString(data) {
   return data.join(", "); //a value to put in Promise
function makeUpper(string) {
   return string.toUpperCase(); //a value to put in Promise
//more common to use anonymous variables and chain functions
getData()
   .then (makeString)
   .then (makeUpper)
   .then(function(d) { console.log(d); };
```

Multiple promises (sequential)

 The .then() function will also handle promises returned by previous callbacks, allowing for sequential async calls

```
getData (fooSrc)
  .then (function (fooData) {
    var modifiedFoo = modify(fooData)
    return modifiedFoo;
  .then (function (modifiedFoo) {
    //do something with modifiedFoo
    var barPromise = getData(barSrc);
    return barPromise;
  .then (function (barData) {
    //do something with barData
```

Extracting fetch() data

To actually download JSON data...

```
fetch(url)
   .then(function(response) {
      var dataPromise = response.json();
      return dataPromise;
   })
   .then(function(data) {
      //do something with data
   });
```

Catching errors

• We can use the .catch() function to specify a callback that will occur if the promise is rejected (an error occurs).

Multiple promises (concurrent)

 Because Promises are just commands to do something, we can wait for all of them to be done var foo = fetch(fooUrl); var bar = fetch(barUrl); //a promise for when all commands ready Promise.all(foo, bar) .then(function(fooRes, barRes) { //do something both both responses, e.g., return Promise.all(fooRes.json(), barRes.json()); .then (function (fooData, barData) { //now have both data sets!

Socrative Quiz!

Enter your UCI Email when prompted name!!! e.g.,

xxxxx@uci.edu

https://api.socrative.com/rc/CvereT

Goals for this Lecture

By the end of this lecture, you should be able to...

- Explain how programs access web resources and common ways they respond
- Implement a fetch request to get a resource from a web API
- Use promises to make an asynchronous request