TD 2 : problème d'optimisation et convexité

Exercice 1. Soient $p^1=(p_1^1,p_2^1)$, $p^2=(p_1^2,p_2^2)$, ..., $p^n=(p_1^n,p_2^n)$ n points dans \mathbb{R}^2 . Le but de cet exercice est de trouver le point qui minimise la somme des distances au carré à tous les points p^i : ainsi, pour tout $x=(x_1,x_2)$ nous définissons la fonctionnelle suivante:

$$J(x) = \sum_{i=1}^{n} ||x - p^{i}||^{2}.$$

- 1. Calculer $\frac{\partial J}{\partial x_1}(x)$ et $\frac{\partial J}{\partial x_2}(x)$, et en déduire que J admet un unique point critique x^* sur \mathbb{R}^2 à déterminer. Comment s'appelle ce point en termes géométriques?
- 2. Montrer que x^* est un minimiseur local de J.
- 3. Expliquer pourquoi x^* est aussi l'unique minimiseur global de J.

Exercice 2. Régression linéaire simple Soit $(x_i, y_i)_{i=1}^n$ un n-uplet de points dans \mathbb{R}^2 , avec $n \ge 2$. On suppose qu'au moins deux points x_i sont distincts. La régression linéaire simple consiste à trouver un relation affine $y = \alpha x + \beta$ qui s'adapte au mieux aux observations, ce qui s'obtient en minimisant la fonctionnelle suivante dans \mathbb{R}^2 : $J(\alpha, \beta) = \sum_{i=1}^n (\alpha x_i + \beta - y_i)^2$

- 1. Montrer que cette fonctionnelle admet un minimiseur global unique et le calculer.
- Écrire une fonction RegressionLineaire(x,y) qui calcule cette solution à partir de vecteurs x, y donnant les coordonnées des points. La fonction doit renvoyer deux variables alpha et beta correspondant aux coefficients calculés. Tester cette fonction pour

```
x = np.random.rand(100)

y = -5 + 12*x + np.random.randn(100)
```

et afficher sur le même graphique les points et la droite de régression.

Exercice 3. Modèle linéaire Soient $(x_i, y_i)_{i=1}^n$ un n-uplet de points de \mathbb{R}^2 . Nous cherchons à trouver une relation entre les variables x_i et y_i . On considère le modèle

$$f(x) = \sum_{j=0}^{k} \beta_j w_j(x),$$

où les w_j sont des fonctions de $\mathbb R$ dans $\mathbb R$ et les β_j sont des coefficients. On cherche les coefficients β_j qui s'adaptent le mieux au modèle $y_i = f(x_i)$ pour $i = 1, \dots, n$ en minimisant

$$J(\beta_0, \dots, \beta_k) = \sum_{i=1}^n \left(\sum_{j=0}^k \beta_j w_j(x_i) - y_i \right)^2.$$

On supposera que $n \ge k + 1$.

1

1. Montrer que l'on peut écrire

$$J(\beta) = ||M\beta - y||^2,$$

où
$$\beta=(\beta_0,\cdots,\beta_k)^T,$$
 $y=(y_1,\cdots,y_n)^T,$ et M est une matrice à définir.

- 2. Montrer que le vecteur β des coefficients optimaux satisfait $M^T M \beta = M^T y$.
- 3. Montrer que si M est de rang maximal alors la solution est unique.
- 4. On considère le cas de la régression polynomiale : $w_j(x) = x^j$. Écrire une fonction Regression-Polynomiale(x,y,k) qui calcule cette solution à partir de vecteurs x, y donnant les coordonnées des points, et de l'ordre k. La fonction doit renvoyer un vecteur beta dans \mathbb{R}^{k+1} correspondant aux coefficients calculés. Tester cette fonction pour

```
x = np.random.rand(100)

y = -5 + 12*x - 3*x**2 + np.random.randn(100)

k = 3
```

et afficher sur le même graphique les points et la courbe de régression.