Using the Transformer

RoBERTa (Liu et al., 2019)

Learning goals

- Understand the improvements over BERT
- Dynamic Masking

IMPROVEMENTS IN PRE-TRAINING

Short summary:

- Change of the MASKing strategy
 - → BERT masks the sequences once before pre-training
 - → RoBERTa uses dynamic MASKing
 - ⇒ RoBERTa sees the same sequence MASKed differently
- RoBERTa does not use the additional NSP objective during pre-training
- Authors claim that BERT is seriously "undertrained"
 - 160 GB of pre-training resources instead of 13 GB
 - Pre-training is performed with larger batch sizes (8k)

DYNAMIC VS. STATIC MASKING

Static Masking (BERT):

- Apply MASKing procedure to pre-training corpus once
- (additional for BERT: Modify the corpus for NSP)
- Train for approximately 40 epochs

Dynamic Masking (RoBERTa):

- Duplicate the training corpus ten times
- Apply MASKing procedure to each duplicate of the pre-training corpus
- Train for 40 epochs
- Model sees each training instance in ten different "versions" (each version four times) during pre-training

DYNAMIC VS. STATIC MASKING

Masking	SQuAD 2.0	MNLI-m	SST-2						
reference	76.3	84.3	92.8						
Our reimplementation:									
static	78.3	84.3	92.5						
dynamic	78.7	84.0	92.9						

Table 1: Comparison between static and dynamic masking for BERT_{BASE}. We report F1 for SQuAD and accuracy for MNLI-m and SST-2. Reported results are medians over 5 random initializations (seeds). Reference results are from Yang et al. (2019).

Source: Liu et al. (2019)

NO NSP

- Described as important part of the pre-training process in BERT
- Liu et al. report that it hurts performance
- → Especially for QNLI, MNLI, and SQuAD 1.1
 - Conduct experiments in multiple settings:
 - SEGMENT-PAIR+NSP
 - SENTENCE-PAIR+NSP
 - FULL-SENTENCES
 - DOC-SENTENCES

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE						
Our reimplementation (with NSP loss):										
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2						
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0						
Our reimplementation (without NSP loss):										
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8						
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6						
BERT _{BASE}	88.5/76.3	84.3	92.8	64.3						
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1						
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7						

Table 2: Development set results for base models pretrained over BOOKCORPUS and WIKIPEDIA. All models are trained for 1M steps with a batch size of 256 sequences. We report F1 for SQuAD and accuracy for MNLI-m, SST-2 and RACE. Reported results are medians over five random initializations (seeds). Results for BERT_{BASE} and XLNet_{BASE} are from Yang et al. (2019).

Source: Liu et al. (2019)

Note: XLNet: see next Chapter.

CHANGES IN PRE-TRAINING

bsz	steps	lr	ppl	MNLI-m	SST-2	
256	1M	1e-4	3.99	84.7	92.7	
2K	125K	7e-4	3.68	85.2	92.9	
8K	31K	1e-3	3.77	84.6	92.8	

Table 3: Perplexity on held-out training data (*ppl*) and development set accuracy for base models trained over BOOKCORPUS and WIKIPEDIA with varying batch sizes (*bsz*). We tune the learning rate (*lr*) for each setting. Models make the same number of passes over the data (epochs) and have the same computational cost.

Source: Liu et al. (2019)

CHANGES IN PRE-TRAINING

Model	data	data bsz step		SQuAD (v1.1/2.0)	MNLI-m	SST-2	
RoBERTa							
with BOOKS + WIKI	16GB	8K	100K	93.6/87.3	89.0	95.3	
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6	
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1	
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4	
BERT _{LARGE} with BOOKS + WIKI XLNet _{LARGE}	13GB	256	1M	90.9/81.8	86.6	93.7	
with BOOKS + WIKI	13GB	256	1M	94.0/87.8	88.4	94.4	
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6	

Table 4: Development set results for RoBERTa as we pretrain over more data ($16GB \rightarrow 160GB$ of text) and pretrain for longer ($100K \rightarrow 300K \rightarrow 500K$ steps). Each row accumulates improvements from the rows above. RoBERTa matches the architecture and training objective of BERT_{LARGE}. Results for BERT_{LARGE} and XLNet_{LARGE} are from Devlin et al. (2019) and Yang et al. (2019), respectively. Complete results on all GLUE tasks can be found in the Appendix.

Source: Liu et al. (2019)

Note: XLNet: see next Chapter.

ROBERTA LIU ET AL., 2019

Architectural differences:

- Architecture (layers, heads, embedding size) identical to BERT
- 50k token BPE vocabulary instead of 30k
- Model size differs (due to the larger embedding matrix) $\Rightarrow \sim 125 \text{M}$ (360M) for the BASE (LARGE) variant

Performance differences:

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-

Source: Liu et al. (2019)

Note: Liu et al. (2019) report the accuracy for QQP while Devlin et al. (2018) report the F1 score (cf. results displayed in chapter 6.2.3); XLNet: see next Chapter.