

Whole-farm nutrient mass balances: A tool for advancing dairy sustainability

Lexi Valachovic, Olivia Godber

Nutrient Management Spear Program

What is the nutrient mass balance tool?

Whole-farm nutrient evaluation tool that aids in the management and monitoring of nutrient status and nutrient use efficiency on

dairy farms over time

- Helps farms optimally allocate
 nutrients and increase profitability
- Focus on N, P and K for now
- Developed with NYS Dairy

What do we gain from this tool?

- Potential economic and environmental opportunities
- Increased productivity
- Decreased cost of production

What we provide to the farmers:

- An "opportunity table" that shows farm key performance indicators (KPIs) and "thresholds"
- Used to identify opportunities for continuous improvement
- Benchmarks for farmers to compare their balance to **feasible limits and peers**
- Data to show consumers that they are dedicated to sustainable practices

	Indicator to predict likelihood of exceeding feasible balances	Example Farm 2020			High risk of exceeding the feasible balances if		
	reasible balances	N	P	K	N	P P	K
1	Balance per acre (lbs/acre)	120	9	32	> 105	> 12	> 37
2	Balance per cwt milk (lbs/hundredweight milk)	0.90	0.06	0.24	> 0.88	> 0.11	> 0.30
3	Milk per cow (lbs/cow/year)		26,607		-	< 20,000*	-
4	Animal density (animal units/acre)		1.04		-	> 1.00	-
5	Whole-farm nutrient use efficiency (%)	43	63	47	< 44	< 51	< 39
6	Purchased feed (lbs/acre)	174	22	57	> 121	> 20	> 38
7	Feed (tons dry matter/animal unit)		6.9		-	3.5 to 7.5	-
8	Feed use efficiency (milk, %)	21	25	12	< 20	< 25	< 11
9	Homegrown feed (% dry matter)		69		-	< 65	-
10	Homegrown forage (%)		69		-	-	-
11	Homegrown grain (%)		0		-	-	-
12	Homegrown nutrients (% dry matter)	48	55	68	< 50	< 50	-
13	Crude protein (CP) and P in all feed (%)	15	0.34	1.26	> 17	> 0.40	-
14	CP and P in purchased feed (%)	25	0.49	1.30	> 30	> 0.60	-
15	CP in homegrown feed (%)	10.2			< 11.8	-	-
16	Fertilizer (lbs/acre)	32	1	3	> 39	> 6	> 38
17	Crop exports (lbs/acre)	1	0	1	0	0	0
18	Manure exports (lbs/acre)	11	1	5	0	0	0
19	Overall crop yield (tons dry matter/acre)		5.0				
20	Acres receiving manure (%)		82				

Key lessons learned:

No one size fits all solution!

Progress made in New York!

Dairy farms participating in these assessments between 2005 and 2019:

- Produced over 50% more milk per acre
- 36% improvement in P use efficiency
- Fed diets with an improved N efficiency
- Actively engaged in identifying more opportunities for improvement
- Of the feed fed to the animals on the farms, almost 70%
 was homegrown feed → Reduces feed imports → avoid
 the carbon footprint of transportation
- Improved soil health, crop production and climate resiliency with use of manure, and reduce fertilizer use
- Implemented practices that **promote biodiversity** on the farm-base through crop rotation and field management
- Creating a circular economy!

Questions?

- Can the same thresholds be implemented across the US?
- Should some be permitted to lose more nutrients to the environment than others?
- How can we market these data to consumers to increase confidence in the dairy industry?

