ESERCIZIO n.4

Una macchina motrice opera in modo irreversibile tra due sorgenti a temperatura costante T_c = 1200 °C e T_F = 20 °C. La potenza termica ceduta dal serbatoio termico superiore è pari a Q_c = 100 kW, mentre il rendimento di secondo principio della macchina è 0.5. Calcolare la potenza meccanica prodotta dalla macchina. **[40 kW]**

DEFINIZIONI

$$\dot{L} = \frac{L}{t} [W]$$
 $\dot{Q} = \frac{Q}{t} [W]$ (Potenza = Energia / tempo)

$$\eta_{\textit{reale}} = \frac{L}{Q} = \frac{m \cdot l}{m \cdot q} = \frac{\dot{m} \cdot l}{\dot{m} \cdot q} = \frac{\dot{L}}{\dot{Q}} \qquad \eta_{\textit{ideale}} = 1 - \frac{T_F}{T_C}$$

Il rendimento di secondo principio è il rapporto fra il rendimento della macchina reale e il rendimento della corrispondente macchina reversibile operante fra serbatoi a T costante

$$\eta_{IIp} = Rendimento di secondo principio = \frac{\eta_{reale}}{\eta_{ideale}}$$

DATI

$$T_C = 1200 \,{}^{\circ}C = 1473 \, K$$

$$T_F = 20 \,{}^{\circ}C = 293 \, K$$

$$\dot{Q}_{C} = 100 \, kW = 10^{5} \, W$$

$$\eta_{IIp} = 0.5$$

$$L=?[W]$$

SOLUZIONE

Macchina reale

(operante fra serbatoi a T cost ma irreversibile)

Macchina ideale (reversibile e operante fra serbatoi a T cost) MACCHINA DI CARNOT

$$\dot{L}_{ideale} = \eta_{ideale} \cdot \dot{Q}_C = 0.8 \cdot 10^5 W = 80 \cdot 10^3 W = 80 kW$$

$$\eta_{reale} = \eta_{IIp} \cdot \eta_{ideale} = 0, 5 \cdot 0, 8 = 0, 4$$

$$\dot{L}_{reale} = \eta_{reale} \cdot \dot{Q}_{C} = 10^{5} W \cdot 0.4 = 40 \cdot 10^{3} W = 40 kW$$

ESERCIZIO n.5

Una macchina motrice reversibile utilizza una sorgente termica superiore alla temperatura costante di T_c = 400 °C e come sorgente termica inferiore una massa m = 2000 kg di acqua allo stato liquido che viene riscaldata dalla temperatura iniziale T_{iniz} 15°C alla temperatura finale T_{fin} 45°C.

Nelle ipotesi che: (a) l'acqua si comporti come un liquido ideale e (b) le due sorgenti termiche scambino calore esclusivamente con la macchina, calcolare il lavoro L che si ottiene dalla macchina (in unità S.I.), il rendimento termodinamico η_1 e il rendimento di confronto η_c con un'uguale macchina che operi fra 2 sorgenti isoterme a temperature T_c = 400 °C e T_e = 15 °C

[307 MJ, 0.55, 0.96]

DEFINIZIONI

$$\eta_{reale} = \frac{L}{Q}$$
 $\eta_{ideale} = 1 - \frac{T_F}{T_C}$

 $\eta_c = Rendimento di confronto = \frac{\eta_1}{\eta_2}$

$$\Delta S_{liquido ideale} = mc_V \ln(\frac{T_{fin}}{T_{iniz}})$$

DATI

$$T_{C} = 400 \,^{\circ}C = 673 \, K$$

 $T_{iniz} = 15 \,^{\circ}C = 288 \, K \rightarrow T_{fin} = 45 \,^{\circ}C = 318 \, K$
 $T_{F} = 15 \, \dot{Q}_{C} = 100 \, kW = 10^{5} \, W$
 $\eta_{IIp} = 0.5 \quad c_{Vacqua} = 4186 \, \frac{J}{kg \cdot K}$

Macchina ideale

$$L=?[J]$$
 $\eta_1=?$ $\eta_C=?$

SOLUZIONE

Macchina

(reversibile ma non operante fra serbatoi a T cost)

$$Q_F = mc_V(T_{fin} - T_{iniz}) = 2000 \, Kg \cdot 4186 \, \frac{J}{kg \cdot K} \cdot (45 - 15) \, K = 251,16 \cdot 10^6 \, J$$

$$\begin{cases} Q_C = L + Q_F & \text{Bilancio energia} \\ -\frac{Q_C}{T_C} + m c_V \ln(\frac{T_{fin}}{T_{iniz}}) = S_Q + S_{IRR} = 0 & \text{Bilancio entropia} \end{cases}$$

$$\begin{cases}
Q_C = T_C m c_V \ln\left(\frac{T_{fin}}{T_{iniz}}\right) = 673 K \cdot 2000 kg \cdot 4186 \frac{J}{kg \cdot K} \cdot \ln\left(\frac{318 K}{288 K}\right) = 558,31 \cdot 10^6 J \\
L = Q_C - Q_F = (558,31 - 251,16) \cdot 10^6 J = 307,15 \cdot 10^6 J
\end{cases}$$

$$\eta_{1} = \eta_{reale} = \frac{L}{Q} = \frac{307,15 \cdot 10^{6} J}{558,31 \cdot 10^{6} J} \approx 0,55 \qquad \eta_{2} = \eta_{ideale} = 1 - \frac{T_{F}}{T_{C}} = 1 - \frac{288 K}{673 K} = 0,572$$

$$\eta_{C} = \frac{\eta_{1}}{\eta_{2}} = \frac{0,55}{0,572} \approx 0,96$$

ESERCIZIO n.6

Una macchina termodinamica ciclica operatrice interagisce con 2 sorgenti a temperatura costante T_c = 30 °C e T_F = -20 °C cedendo Q_C = 1200 kJ alla sorgente superiore. Se l'efficienza frigorifera della macchina è COP_F = 4 determinare:

- la quantità di lavoro assorbita dalla macchina
- il lavoro minimo teorico assorbibile L_{ideale} da una macchina che opera tra le medesime sorgenti.

[240 kJ, 189 kJ]

DEFINIZIONI

$$COP_F = \frac{Q_F}{L}$$
 (Coefficiente di prestazione)

$$COP_{REV} = \frac{T_C}{T_C - T_F}$$
 (In condizioni ideali)

DATI

$$T_C = 30 \,^{\circ}C = 303 \, K$$

 $T_E = -20 \,^{\circ}C = 253 \, K$

$$Q_C = 1200 \, kJ = 1.2 \cdot 10^6 \, J$$

COP_F=4 (Implica l'irreversibilità della macchina)

$$L=?[J]$$
 $L_{ideale}=?[J]$

SOLUZIONE

$$Q_{F} + L = Q_{C}$$

$$Q_{F} = COP_{F} \cdot L$$

$$4L + L = 5L = Q_{C}$$

$$L = \frac{Q_{C}}{5} = \frac{1.2 \cdot 10^{6} J}{5} = 240 \cdot 10^{3} J$$

$$Q_F = Q_C - L = (1200 - 240) \cdot 10^3 J = 960 \cdot 10^3 J$$

Passando dal caso reale a quello ideale, dovrò scegliere (tra ${\bf Q}_{\rm c}$ e ${\bf Q}_{\rm F}$) un valore di riferimento che rimarrà invariato, mentre il secondo potrà variare. Il bilancio dell'entropia invece subirà inevitabilmente una variazione e così anche il lavoro assorbito dalla macchina.

$FISSO Q_E = 960 \cdot 10^3 J$

T₌ = 253 K

$$COP_{REV} = \frac{253}{303 - 253} = 5,06$$

$$L_{ideale} = \frac{Q_F}{COP_{REV}} = \frac{960 \cdot 10^3 J}{5,06} = 189,72 \cdot 10^3 J$$

$$Q_C = Q_F + L_{ideale} = (960 + 189,72) \cdot 10^3 J \simeq 1,15 \cdot 10^6 J$$

FISSO
$$Q_{C} = 1.2 \cdot 10^{6} J$$

$$COP_{REV} = \frac{253}{303 - 253} = 5,06$$

$$L_{ideale} = \frac{Q_F}{COP_{REV}} = \frac{Q_C - L_{ideale}}{COP_{REV}} = \frac{Q_C}{COP_{REV}} - \frac{L_{ideale}}{COP_{REV}}$$

$$L_{ideale} (1 + \frac{1}{COP_{REV}}) = \frac{Q_C}{COP_{REV}}$$

$$Q_C = 1 \qquad O$$

$$L_{ideale} = \frac{Q_C}{COP_{REV}} \cdot \frac{1}{\left(1 + \frac{1}{COP_{REV}}\right)} = \frac{Q}{COP_{REV} + 1}$$

$$L_{idadla} = 198 \cdot 10^3 J$$