Summary Plots(Run #13450) 0: Strip and cluster multiplicities

Summary Plots(Run #13450) 2: Strip and cluster ADC distributions and correlations $\times 10^3$ $\times 10^3$ $\times 10^3$ 972.8 10 ADC cl20sum (U/X stri30 2U/X max str3 max sample Max strip 400sum (U/X strip1) 10F 10F × 10³ Std Dev Max strip 100sum (V/Y strip1)5ADC cl20sum (V/Y stri30 2 V/Y max st 3 max sample 2 10 $\times 10^3$ 1060 Std Dev x 605.6 Std Dev x ₹20 10 AD 20 Ster sum (U.3)0 2x strip max3ample (U/A

Summary Plots(Run #13450) 3: Tracking statistics $\times 10^6$ 10⁵ € Entries 352882 Entries 10⁵ Mean 1.008 Mean 4.421 Mean 2.36 Std Dev 0.09905 0.15 Std Dev 0.6756 Std Dev 5.072 10⁴ 10^{4} 10³ 0.1 10³ 10² 0.05 10 10^{2} 10 20 30 track chi2/ndr 8×10³ Best track ×10³ Entries 350437 Entries 350437 0.07766 Mean Mean -0.08046 0.2714 Std Dev Std Dev 0.07572 200 0.5 -0.5-0.5-0.2 -0.2 0.2 _{y(m)} **Q**₆**5**_{rack X(z=0)}**1**_m 0 Best 0ac2Y(z=0), m 0 0 Best track $\times 10^3$ $\times 10^3$ dx/dz Entries 350437 Entries 0.03899 -0.01593 Mean Mean Std Dev 0.07953 Std Dev 0.02648 0.2 -0.2-0.050.05 track dy 0.1 0.05 0.2st track dx0z 4 -0.05dy. 02. 1 0

Summary Plots(Run #13450) 4: Tracking residuals (inclusive)
All hits 0.15 ×10⁶ <u>×10</u>⁻³ ×10⁻³ Track u/x incl. residuals (m) Track u/x incl. residuals (m) 0.1 0.05 3 _1 0 1 2 Track u/x incl. residuals (m) 4 layer 2 6 module All hits ×10⁶ Track v/y incl. residuals (m) Track v/y incl. residuals (m) 0.15 0.1 0.05 2 _1 0 2 3 4 layer 6

module

Summary Plots(Run #13450) 5: Tracking residuals (exclusive)
All hits 60×10³ ×10⁻³ ×10⁻³ Track u/x excl. residuals (m) Track u/x excl. residuals (m) 330.2 / 17 40 20 2 6 0 1 2 Track u/x excl. residuals (m) 3 4 layer 4 0 2 module All hits ×10⁻³ ×10⁻³ ×10³ Track v/y excl. residuals (m) Track v/y excl. residuals (m) 60 40 20

3

4 layer

2

0

2

6

module

-2

0 1 2 Track v/y excl. residuals (m)

Summary Plots(Run #13450) 14: Layer 0 efficiencies track-based efficiency vs x, y track-based efficiency vs x (m), averaged over y track-based efficiency vs y (m), averaged over x Ê Entries ^ԿՆՈՆՈՆՈՆՈՒՎ 30 0.02856 -0.01989 Std Dev 0.3679 Std Dev 0.09865 20 20 10 10 -0.5 0.2 -0.2 0.5 -0.1 0.1 0.1 -0.5-0.10 0 -0.20 x(m) x vs y of hits on good tracks (m) <u>×10</u>³ $\times 10^3$ ×10³ Œ, Layer 0 Average Layer 0 Average 60 Efficiency = (88.91 \pm 0.05) % Efficiency = (88.91 \pm 0.05) % 0.5 N. did hit = 292907 N. did hit = 292907 N. should hit = 329448 N. should hit = 329448 10 40 5 20 -0.5 -0.50 0.5 -0.2 -0.10 0.1 0.2 -0.2-0.10.1 x(m) y(m)

track-based efficiency vs x, y track-based efficiency vs x (m), averaged over y track-based efficiency vs y (m), averaged over x efficiency 30 Ê Entries Entries 30 Mean 0.03163 Mean -0.01871 Std Dev 0.3919 Std Dev 0.1044 20 20 10 10 -0.5 _0.2 -0.1 0.1 -0.1 0.1 -0.50.5 -0.2 0 0 y(m) y(m) x vs y of hits on good tracks (m) <u>×10</u>³ $\times 10^3$ ×10³ Œ, Layer 1 Average Layer 1 Average 60 Efficiency = (81.04 \pm 0.07) % Efficiency = (81.04 \pm 0.07) % 0.5 N. did hit = 271764 N. did hit = 271764 10 N. should hit = 335352 N. should hit = 335352 40 5 20 -0.5 -0.50.5 -0.2 0.1 0 -0.10 -0.2-0.10.1 x(m) y(m) y(m)

Summary Plots(Run #13450) 15: Layer 1 efficiencies

track-based efficiency vs x, y track-based efficiency vs x (m), averaged over y track-based efficiency vs y (m), averaged over x Œ, Entries 2109 Entries 30 Նու իստովետվ 0.04843 -0.01784 0.5 0.4074 Std Dev 0.1102 20 20 10 10 -0.1 -0.50.5 -0.2 0.1 -0.2-0.10.1 0 0 0 x(m) x vs y of hits on good tracks (m) <u>×10</u>³ $\times 10^3$ ×10³ Ē Layer 2 Average Layer 2 Average Efficiency = (90.78 \pm 0.05) % Efficiency = (90.78 \pm 0.05) % 0.5 N. did hit = 295963 N. did hit = 295963 10 N. should hit = 326009 N. should hit = 326009 40 0 5 20 -0.5 0.5 0.1 0.2 -0.50 -0.2 -0.10 -0.2-0.10.1 x(m) y(m)

Summary Plots(Run #13450) 16: Layer 2 efficiencies

track-based efficiency vs x, y track-based efficiency vs x (m), averaged over y track-based efficiency vs y (m), averaged over x Ê Entries Entries 30 0.03257 -0.01596 Std Dev 0.3974 Std Dev 0.1117 20 10 10 -0.1 -0.2 -0.50.5 -0.2 0.1 -0.10.1 0 0 x(m) x vs y of hits on good tracks (m) $\times 10^3$ <u>×10</u>³ ×10³ Œ, Layer 3 Average Layer 3 Average Efficiency = (89.17 \pm 0.05) % Efficiency = (89.17 \pm 0.05) % 10 0.5 N. did hit = 285510 N. did hit = 285510 N. should hit = 320177 N. should hit = 320177 40-₋ 5 20 -0.5-0.50.5 0.2 0 -0.2 -0.10 0.1 -0.2-0.10.1 x(m) y(m)

Summary Plots(Run #13450) 17: Layer 3 efficiencies

Summary Plots(Run #13450) 18: Layer 4 efficiencies track-based efficiency vs x, y track-based efficiency vs x (m), averaged over y track-based efficiency vs y (m), averaged over x Ē Entries Entries 30 0.09459 -0.01362 Std Dev 0.5415 Std Dev 0.1587 0.5 20 20 10 10 -0.50.5 -0.2 0.2 -0.2 0.2 -0.50 0 10×10³ x vs y of hits on good tracks (m) $\times 10^3$ ×10³ Layer 4 Average Layer 4 Average 40 Efficiency = (92.88 \pm 0.05) % Efficiency = (92.88 \pm 0.05) % N. did hit = 300708 N. did hit = 300708 0.5 N. should hit = 323775 N. should hit = 323775 30 20 10 -0.5 -0.50.5 -0.2 0.2 0 0 0.2 -0.2x(m) y(m) y(m)

Summary Plots(Run #13450) 19: Module average efficiencies

