Цифровые системы передачи информации на основе сигнала с ортогональным частотным разнесением каналов (OFDM)

Лекция 1

Лектор: Янситов Константин Константинович

План лекции

- Сигнальные созвездия
- Мультиплексирование каналов
 - TDM
 - FDM
 - CDM

Общая структура систем передачи информации

Беспроводные системы

- Мобильная связь
 - 4G
 - LTE
- WiFi
 - 802.11
- Цифровое вещание
 - DVB
 - DAB
 - DRM
 - DTMB
 - РАВИС

DIGITAL radio mondiale

Сигнальные созвездия

Название созвездия	Изображение	N _{Constelleation}	N _{bit per point}
BPSK	0 1	2	1
QPSK	01 11 11 10	4	2
16-QAM	0000 0100 1100 1000 0 0 0 0 0 0 0 0 0 0	16	

 $N_{\text{bit per point}} = \log_2 N_{Constelleation}$

N_{bit per point} — количество бит, с помощью которых можно закодировать IQ-точку в выбранном созвездии, или же количество бит, которые можно передать одной точкой созвездия

 $N_{Constelleation}$ — количество всех точек созвездия

Квадратурный модулятор

Квадратурный демодулятор

$$s(t) = I(t)\cos(\omega_0 t + \varphi_0) + Q(t)\sin(\omega_0 t + \varphi_0)$$

Необходимые тригонометрический формулы:

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta))$$
$$\cos(\alpha)\cos(\beta) = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$$
$$\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

Квадратурный демодулятор

$$s(t)\cos(\omega_{0}t + \varphi_{0}) = \\ [I(t)\cos(\omega_{0}t + \varphi_{0}) + Q(t)\sin(\omega_{0}t + \varphi_{0})]\cos(\omega_{0}t + \varphi_{0}) = \\ = I(t)\cos(\omega_{0}t + \varphi_{0})\cos(\omega_{0}t + \varphi_{0}) + Q(t)\sin(\omega_{0}t + \varphi_{0})\cos(\omega_{0}t + \varphi_{0}) = \\ = I(t)\frac{1}{2}[\cos(\omega_{0}t + \varphi_{0} - (\omega_{0}t + \varphi_{0})) + \cos(\omega_{0}t + \varphi_{0} + (\omega_{0}t + \varphi_{0}))] + \\ + Q(t)[\sin(\omega_{0}t + \varphi_{0} - (\omega_{0}t + \varphi_{0})) + \sin(\omega_{0}t + \varphi_{0} + (\omega_{0}t + \varphi_{0}))] = \\ = I(t)\frac{1}{2}[\cos(0) + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[\sin(0) + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = LPF(Low\ Pass\ Filter) = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[0 + \sin(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] = \\ = I(t)\frac{1}{2}[1 + \cos(2\omega_{0}t + 2\varphi_{0})] + Q(t)\frac{1}{2}[1 +$$

Сигнальные созвездия

Двоичная фазовая манипуляция BPSK — binary phase-shift keying

Координаты		
Последовательность бит	Координаты в IQ	
0	(-1; 0)	
1	(1;0)	

Сигнальные созвездия

Квадратурная фазовая манипуляция QPSK - quadrature phase-shift keying

Координаты			
Последовательность бит	Координаты в IQ		
00	(-1; -1)		
01	(-1; 1)		
10	(1; -1)		
11	(1; 1)		

Сигнальные созвездия

Квадратурная модуляция 16 QAM - Quadrature Amplitude Modulation

Координаты		
Последовательность бит	Координаты в IQ	
0000	(-3; 3)	
0001	(-3; 1)	
0010	(-3; -3)	
0011	(-3; -1)	
0100	(-1; 3)	
0101	(-1; 1)	
0110	(-1; -3)	
0111	(-1; -1)	
1000	(3; 3)	
1001	(3; 1)	
1010	(3; -3)	
1011	(3; -1)	
1100	(1; 3)	
1101	(1; 1)	
1110	(1;-3)	
1111	(1;-1)	

Сигнальные созвездия и помехи Отображение Грея

- Канальное, или помехоустойчивое кодированиедекодирование применяется для обеспечения большей надежности передачи
- При использовании помехоустойчивого кодирования скорость передачи уменьшается за счет передачи избыточных символов, позволяющих исправлять ошибки, возникающие в канале
- Вообще говоря, в системе передачи информации операции кодирования-декодирования источника и/или помехоустойчивого кодирования-декодирования могут отсутствовать
- Качество системы передачи дискретных сообщений характеризуется вероятностью ошибки:

$$P_e = \Pr[\widehat{m} \neq m]$$

- Корректирующие коды:
 k (информационных символов) -> n (n > k)
 n-k проверочные (избыточные символы)
- Избыточность, корректирующая способность, относительная скорость кода R = k/n
- Энергетический выигрыш кода сравнение отношения энергии, приходящейся на один бит, к спектральной плотности мощности шума E₆/N₀ d в системах с кодированием и без

Выходы демодуляторов. Жёсткий выход

На вход подаётся точка из IQ-пространства, на выход — конкретная битовая последовательность

Выходы демодуляторов. Жёсткий выход

Выходы демодуляторов. Жёсткий выход

$$\overrightarrow{t_1} = \overrightarrow{r} - \overrightarrow{c_1}$$

Выходы демодуляторов. Мягкий выход

Демодулятор не решает, какая конкретная битовая конструкция была принята. Он выдаёт некоторую метрику того, что с вероятностью p(z|s1) принятое сообщение – s1 и с вероятностью p(z|s2) – s2

Выходы демодуляторов. Мягкий выход

В таком сценарии декодер допускает, что принятая точка может бы не ближайшей к точке созвездия

Выходы демодуляторов. Мягкий выход. Максимум правдоподобия

Одной из возможных метрик оценки вероятности присуждения биту «0» или 1 — расчёт логарифма отношения правдоподобия — log-likelihood ratio (LLR)

$$L_i = \ln \left(\frac{P(b_i = 0|y)}{P(b_i = 1|y)} \right)$$

Где $P(b_i = 0|y)$ - вероятность того, что в принятом сигнале y был передан бит «0» $P(b_i = 1|y)$ - вероятность того, что в принятом сигнале y был передан бит «1»

Выходы демодуляторов. Мягкий выход. Максимум правдоподобия

В случае с аддитивным шумом LLR можно записать в следующем виде:

$$L_{i} = \ln \frac{\sum_{x \in \chi_{i}^{(0)}} e^{-\frac{|r - s_{0,i}|^{2}}{\sigma^{2}}}}{\sum_{x \in \chi_{i}^{(1)}} e^{-\frac{|r - s_{1,i}|^{2}}{\sigma^{2}}}}$$

Где i — номер бита в последовательности

 σ – дисперсия случайного процесса (аддитивного гауссовского шума)

r – комплексные координаты принятой точки созвездия

 $s_{1,i}$ и $s_{0,i}$ - комплексные координаты заданного созвездия (словарь), отвечающие тому, что i-ый бит равен «1» и «0» соответственно

 $x \in \chi_i^{(1)}$ и $x \in \chi_i^{(0)}$ – подмножество точек созвездия отвечающие требованию того, что i-ый бит представляет «1» или «0», соответственно

Выходы демодуляторов. Мягкий выход. Максимум правдоподобия

Рассмотрим пример.

Пусть i = 0

$$\vec{r} = x + jy$$

$$L_{1} = \ln \frac{\sum_{x \in \chi_{1}^{(0)}} e^{-\frac{|r - s_{0,1}|^{2}}{\sigma^{2}}}}{\sum_{x \in \chi_{1}^{(1)}} e^{-\frac{|r - s_{1,1}|^{2}}{\sigma^{2}}}}$$

Если $L_1>0$, значит первый бит в последовательности с большей вероятностью равен «0»

Если $L_1 < 0$, значит первый бит в последовательности с большей вероятностью равен «1»

Чем больше значение модуля L_1 , тем больше «надежность» значения бита В случае $L_1=0$, события равновероятны

Выходы демодуляторов. Мягкий выход. Максимум правдоподобия

Рассмотрим пример.

Пусть i = 0

$$\vec{r} = x + jy$$

$$L_{2} = \ln \frac{\sum_{x \in \chi_{2}^{(0)}} e^{-\frac{|r - s_{0,2}|^{2}}{\sigma^{2}}}}{\sum_{x \in \chi_{2}^{(1)}} e^{-\frac{|r - s_{1,2}|^{2}}{\sigma^{2}}}}$$

Если $L_2>0$, значит второй бит в последовательности с большей вероятностью равен «0»

Если $L_2 < 0$, значит второй бит в последовательности с большей вероятностью равен «1»

В случае $L_2=0$, события равновероятны

Выходы демодуляторов. Мягкий выход. Максимум правдоподобия

Demapper Algorithms

1. Optimal Soft Demapper

- Мультиплексирование (англ. multiplexing, muxing)— это объединение нескольких потоков данных в один. Процедуру объединения потоков между собой в системах связи обычно осуществляет устройство, называемое «планировщик» (Scheduler)
- Мультиплексирование сигналов объединение нескольких каналов связи в один общий канал, с заданной пропускной способностью.

- TDM Time Division Multiplexing
- FDM Frequency Division Multiplexing
- WDM Wave Division Multiplexing
- CDM Code Division Multiplexing
- OFDM Orthogonal Frequency Division Multiplexing
- SDM Space Division Multiplexing

Множественный доступ

- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- WDMA Wave Division Multiple Access
- CDMA Code Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SDMA Space Division Multiple Access

TDM – Time Division Multiplexing – мультиплексирование с разделением каналов по времени.

TDM – Time Division Multiplexing – мультиплексирование с разделением каналов по времени.

Для решения проблемы межканальной интерференции между отправкой сообщений вводится защитный интервал

Мультиплексирование том

FDM — Frequency-Division Multiplexing — мультиплексирование с разделением по частоте

FDM — Frequency-Division Multiplexing — мультиплексирование с разделением по частоте

Мультиплексирование сом

CDM – Code-Division Multiplexing – кодовое разделение каналов

Мультиплексирование cdm

Мультиплексирование сом

Мультиплексирование сом

Тип данных 1

• Передаваемое сообщение в битах: 00

- «0 бит» = 1В

• Данные в вольтах: 1 1

- «1 бит» = -1В

• Сигнал расширения спектра в вольтах: 1111

	Первая ячейка	Вторая ячейка
Spreading code	1111	1111
data	1	1
Перемножение	1111	1111

Сообщение	1111111
-----------	---------

Тип данных 2

• Передаваемое сообщение в битах : 10

- «0 бит» = 1В

• Данные в вольтах: -1 1

- «1 бит» = -1В

• Сигнал расширения спектра в вольтах : 1 -1 1 -1

	Первый бит	Второй бит
Spreading code	1 -1 1 -1	1 -1 1 -1
data	-1	1
Перемножение	-1 1-1 1	1 -1 1 -1

Сообщение -1 1-1 1-1 1-1

Тип данных 3

• Передаваемое сообщение в битах: 11

- «0 бит» = 1В

• Данные в вольтах: -1 -1

- «1 бит» = -1В

• Сигнал расширения спектра в вольтах : 1 1-1-1

	Первый бит	Второй бит
Spreading code	1 1-1-1	1 1-1-1
data	-1	-1
Перемножение	-1 -1 1 1	-1 -1 1 1

Сообщение	-1 -1 1 1 -1 -1 1 1
-----------	---------------------

Суммарный сигнал

Данные 1		1	1	1	1	1	1	1	1
Импульс									
Данные 2		-1	1	-1	1	1	-1	1	-1
Импульс									
Данные 3	•	-1	-1	1	1	-1	-1	1	1
Импульс									
Σ	•	-1	1	1	3	1	-1	3	1

Суммарный сигнал

Приём тип данных 1

Сигнал	-1	1	1	3	1	-1	3	1
Сигнал								
расширяющего	1	1	1	1	1	1	1	1
спектра								
Перемножение	-1	1	1	3	1	-1	3	1
Сумма и норма	$\frac{(-1+1+1+3)}{4} = \frac{4}{4} = 1$				$\frac{(1-1+3+1)}{4} = \frac{4}{4} = 1$			
Биты	0			0				

«0 бит» = 1B «1 бит» = -1B

Приём тип данных 1

Сигнал	-1	1	1	3	1	-1	3	1
Сигнал								
расширяющего	1	1	1	1	1	1	1	1
спектра								
Перемножение	-1	1	1	3	1	-1	3	1
Сумма и норма	$\frac{(-1+1+1+3)}{4} = \frac{4}{4} = 1$				$\frac{(1-1+3+1)}{4} = \frac{4}{4} = 1$			
Биты	0				0			

Исходные биты: 00

«0 бит» = 1В «1 бит» = -1В

Приём тип данных 2

Сигнал	-1	1	1	3	1	-1	3	1
Сигнал								
расширяющего	1	-1	1	-1	1	-1	1	-1
спектра								
Перемножение	-1	-1	1	-3	1	1	3	-1
Сумма и норма	$\frac{(-1-1+1-3)}{4} = \frac{-4}{4} = -1$				$1 \qquad \frac{(1+1+3-1)}{4} = \frac{4}{4} = 1$			
Биты	1			0				

«0 бит» = 1В «1 бит» = -1В

Приём тип данных 2

Сигнал	-1	1	1	3	1	-1	3	1
Сигнал								
расширяющего	1	-1	1	-1	1	-1	1	-1
спектра								
Перемножение	-1	-1	1	-3	1	1	3	-1
Сумма и норма	$\frac{(-1-1+1-3)}{4} = \frac{-4}{4} = -1$				$\frac{(1+1+3-1)}{4} = \frac{4}{4} = 1$			
Биты	1			0				

Исходные биты: 10

«0 бит» = 1В «1 бит» = -1В

Приём тип данных 3

Сигнал	-1	-3	1	-1	1	-1	3	1	
Сигнал									
расширяющего	1	1	-1	-1	1	1	-1	-1	
спектра									
Перемножение									
Сумма и норма	()				Сумма и норма ()				
	4				$\overline{4}$				
Биты		()		0				

«0 бит» = 1B «1 бит» = -1B

Мультиплексирование огом

OFDM — Orthogonal Frequency Division Multiplexing — мультиплексирование с ортогональным частотным разделением

