Fundamentos de Data Science I - Projeto Final

June 14, 2018

0.1 Previsão de Sobrevivência do Titanic

Vamos analisar o conjunto de dado que contém informações e dados demográficos de 891 dentre os 2.224 passageiros e tripulação a bordo do Titanic e tentar descobrir o motivo de alguns grupos de pessoas serem mais propensas a sobreviver do que outras. Para fazer isso, iremos seguir os seguintes passos:

- Análise e exploração dos dados
- Brainstorm
- Wrangle(Limpar, preparar e arrumar os dados)
- Visualizar, reportar e demonstrar nossas descobertas

0.2 1. Importando bibliotecas essencias

- Pandas: Utilizada para transformar os dados contidos no csv em um dataframe de fácil manipulação
- Numpy: Utilizada para facilitar nosso esforço na análise dos dados
- Seaborn e Matplotlib : Utilizada para construir, customizar e mostrar os gráficos da análise feita

```
In [616]: #Importing the pandas library, responsable to manipulate and tranform the data conta
import pandas as pd
    #Importing the numpy library, responsible to smooth our effort in analyze the data
import numpy as np
    #Importing the matplotlib and seaborn libraries, responsable to show the graphs abou
import seaborn as sns
import matplotlib.pyplot as plt

%matplotlib inline
```

0.3 2. Carregando os dados e verificando o seu conteúdo

Pandas é muito útil para carregar e trabalhar com os dados contidos no arquivo csv. Aqui estamos carregando os dados contidos em um csv para uma estrutura do Panda chamada dataframe do Panda de fácil manipulação e também carregando uma parte dos dados para verificar seu conteúdo.

Out[617]:	Passen	gerId	Survived	Pclass	\						
0		1	0	3							
1		2	1	1							
2		3	1	3							
3		4	1	1							
4		5	0	3							
							Name	Sex	٨٣٥	SibSp	\
0				Drow	ad Mac	Orron E			Age	5105P	`
		3.6			nd, Mr.			male	22.0	1	
1	Cuming	s, Mrs.	John Brad	lley (Fl	orence E	griggs	Th	female	38.0	1	
2				Hei	kkinen,	Miss.	Laina	female	26.0	0	
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)							female	35.0	1	
4	Allen, Mr. William Henry							male	35.0	0	
	Parch		Ticket	; Fa:	re Cabir	ı Embar	ked				
0	0		A/5 21171				S				
1	0		PC 17599				C				
2		STOM / O	2. 3101282				S				
		DION/ U									
3			113803				S				
4	0		373450	8.05	00 NaN	I	S				

0.4 3. Verificando algumas estatísticas

- Total de passageiros é de 891 no total
- A taxa de sobrevivência foi em torno de 38%
- Por volta de 75% dos passageiros viajaram sozinhos
- A média de idade é perto de 30 anos
- A média da tarifa paga foi em torno de 32

In [618]: passengers.describe()

Out[618]:		PassengerId	Survived	Pclass	Age	SibSp	\
	count	891.000000	891.000000	891.000000	714.000000	891.000000	
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	
	std	257.353842	0.486592	0.836071	14.526497	1.102743	
	min	1.000000	0.000000	1.000000	0.420000	0.000000	
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	
	max	891.000000	1.000000	3.000000	80.000000	8.000000	
		Parch	Fare				
	count	891.000000	891.000000				
	mean	0.381594	32.204208				
	std	0.806057	49.693429				
	min	0.000000	0.000000				
	25%	0.000000	7.910400				
	50%	0.00000	14.454200				

75% 0.000000 31.000000 max 6.000000 512.329200

0.5 4. Formulando a pergunta

Após conhecer e entender a estrutura dos nossos dados, assim como os seus valores, a dúvida que mais se acentua é :

Quais features(colunas) tem uma correlação com o fator sobrevivência?

Como em todo o desastre, preferências de sobrevivência são dadas moralmente para mulheres, crianças, idosos e familias, porém também sabemos que pessoas de alto poder aquisitivo podem ter sido beneficiadas.

Então vamos analisar e descobrir se os fatores como *Taxa*(*FareGroup*), *Classe do Ticket*(*Pclass*), *Genêro*(*Sex*), *Família*/*Sozinho*(*FamilySize*) afetaram o fator sobrevivência também no desastre do Titanic.

As perguntas seram as seguintes:

- O fator classe ou fator taxa da passagem tiveram relação com o fator sobrevivência? Pessoas com poder aquisitivo maior tinham propensão a sobreviver mais que pessoas com poder aquisitivo menor?
- O fator ser passageiro único ou viajar em família teve relação com o fator sobrevivência?
 Famílias tiveram mais chances de sobreviver do que pessoas viajando sozinha? E o tamanho da família interferia nessa correlação?
- O fator genêro teve relação com o fator sobrevivência? Mulheres tiveram mais propensão a sobreviver do que os homens?

0.6 5. Classificando as colunas do dataframe

Dados categóricos

São dados que servem de label de um grupo de items ou indivíduos. Dados categóricos possuem a seguinte subdivisão: * **Ordinal:** São dados que não ordem ou algum tipo de ranking de classificação associado. * **Nominal:** São dados que possuem um ranking de classificação associado.

Dados Quantitativos

São dados na qual podemos operar matematicamente em cima deles para obter insights úteis. Dados quantitativos possuem a seguinte subdivisão: * **Discreto:** São dados que podem ser subdivididos cada vez mais em menores unidades. * **Contínuo:** São dados que não podem ser subdividios em menores unidades.

Nossa classificação das colunas é a seguinte:

Dados categóricos

• Ordinal: Pclass

• Nominal: Survived, Sex, and Embarked

Dados Quantitativos

Discreto: SibSp, ParchContínuo: Age, Fare

0.7 6. Verificando a qualidades dos dados

Realizaremos uma pré-análise para descobrir se existem colunas com dados faltantes, nulos ou vazio.

Podemos verificar que as colunas Age, Cabin and Embarked possuem 177, 687 e 2 dados nulos respectivamentos.

```
In [619]: print(passengers.isnull().sum())
          print(passengers.info())
          print("Duplicated - {}".format(passengers.duplicated().sum()))
PassengerId
                 0
Survived
                 0
Pclass
                 0
Name
                 0
Sex
                 0
               177
Age
SibSp
                 0
Parch
                 0
Ticket
                 0
Fare
                 0
Cabin
               687
Embarked
                 2
dtype: int64
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId
               891 non-null int64
Survived
               891 non-null int64
Pclass
               891 non-null int64
Name
               891 non-null object
Sex
               891 non-null object
               714 non-null float64
Age
SibSp
               891 non-null int64
Parch
               891 non-null int64
Ticket
               891 non-null object
Fare
               891 non-null float64
Cabin
               204 non-null object
Embarked
               889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
Duplicated - 0
```

0.8 7. Estratégia para as colunas com dados faltantes

0.8.1 7.1 Dados Quantitativos

Iremos complementar as colunas com dados faltantes utilizando a mediana pra cada Title e transformar o tipo da coluna pra inteiro, que é a representação adequada para a coluna. Os seguintes passos serão executados: 1. Criaremos uma coluna chamada Title para nos ajudar a calcular a idade referente ao título que a pessoa possui no nome 2. Calcularemos a mediana da idade pra cada título 3. Preencheremos os valores nulos com a mediana da idade referente ao título que a pessoa possui

```
In [620]: passengers["Title"] = passengers.Name.str.extract('([A-Za-z]+)\.', expand=False)
                              = passengers.groupby('Title')['Age'].median()
          for title in passengers.Title.unique():
              median = ages[title]
              passengers.loc[(passengers.Age.isnull()) & (passengers.Title == title), "Age"] = 1
          passengers.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 13 columns):
PassengerId
               891 non-null int64
Survived
               891 non-null int64
Pclass
               891 non-null int64
               891 non-null object
Name
Sex
               891 non-null object
Age
               891 non-null float64
SibSp
               891 non-null int64
Parch
               891 non-null int64
               891 non-null object
Ticket
               891 non-null float64
Fare
               204 non-null object
Cabin
               889 non-null object
Embarked
               891 non-null object
dtypes: float64(2), int64(5), object(6)
memory usage: 90.6+ KB
```

0.9 7.2 Dados Qualitativos

Iremos completar as colunas com os dados faltantes utilizando a moda da distribuição. A coluna cabine possui vários valores nulos e como já temos a classe do ticket não irá nos atrapalhar na análise, então iremos dropar essa coluna.

```
Out[621]: PassengerId
                           0
           Survived
                           0
           Pclass
                           0
                           0
           Name
           Sex
                           0
           Age
                           0
           SibSp
                           0
           Parch
                           0
           Ticket
                           0
           Fare
                           0
           Embarked
                           0
           Title
                           0
           dtype: int64
```

0.10 8. Criando novas colunas

Criaremos colunas novas afim de facilitar a análise dos dados

- 1. FamilySize Irá representar a quantidade de pessoas de uma família na qual essa pessoa pertence. Se o valor for 1, indica que essa pessoa viajou sozinha.
- 2. AgeGroup Categorização das Idades.
- 3. FareGroup Categorização das Tarifas em 4 faixas

0.11 9. Visualização Features x Sobrevivência

Primeiro construímos uma função que passado o nome da feature, ela gera um gráfico relacionado a feature Survived

ax.legend(["Not Survived", "Survived"]);

0.12 9.1 Gráfico Pclass x Survived

No gráfico vemos que a 1ž classe foi a única com taxa de sobrevivência maior do que a de não sobrevivência comparada as outras classes(2ž,3ž) e que na 3ž classe a discrepância entre mortos e sobreviventes foi bem alta comparada as outras classes(1ž,2ž), com muito mais mortos do que sobreviventes.

A tendência de sobrevivência é maior em pessoas da 1ž mas no caso das outras classes(2ž,3ž) principalmente na 3ž, a tendência é de não sobrevivência

0.13 9.2 Gráfico Sex x Survived

No gráfico vemos que a taxa de sobrevivência de mulheres foi maior do que a de não sobrevivência comparada a taxa dos homens.

A tendência de sobrevivência é maior nas mulheres do que nos homens.

In [625]: generate_graph("Sex")

0.14 9.3 Gráfico FamilySize x Survived

Temos uma categorização da quantidade de familiares: * Single - (1) * Normal - (2 - 4) * Large - (5 - 11)

No gráfico vemos famílias de tamanho normal, de 2 até 4 integrantes foi a única com taxa de sobrevivência maior do que a de não sobrevivência comparada com as outras categorias.

A tendência de sobrevivência é maior em famílias de tamanho normal, do que em famílias grandes ou até mesmo se a pessoa estivesse viajando sozinha.

In [626]: generate_graph("FamilySize")

0.15 9.4 Gráfico FareGroup x Survived e Fare x Survived

Temos uma categorização dos valores da Tarifa pagas: * Cheap - (0 - 128.082) * Normal - (128.083 - 256.165) * Expensive - (256.166 - 384.247) * Very Expensive - (384.248 - 512.329)

No gráfico vemos que a tarifa mais barata foi a única que teve a taxa de não sobrevivência maior do que de sobrevivência e com uma discrepância muito alta comparada com as outras tarifas.

A tendência de sobrevivência é maior em pessoas que obtiveram taxas entre Normal e Carissimas(Normal - Very Expensive) comparadas as taxas mais baratas(Cheap).

0.16 9.4 Gráfico AgeGroup x Survived e Age x Survived

No gráfico vemos que a faixa etária de (0 - 15) foi a única que teve mais sobreviventes do que mortos e que na faixa de (15 - 30) a discrepância entre mortos e sobreviventes foi bem alta comparada as outras faixas, com muito mais mortos do que sobreviventes.

A tendência de sobrevivência é maior em pessoas de 0 até 15 anos mas no caso das outras faixas etárias principalmente de 15 até 30, a tendência é de não sobrevivência

0.17 10 - Lista de sites, livros, fóruns, postagens de blogs, repositórios do GitHub.

O arquivo links.txt contido no diretório, contém a listagem dos sites que utilizei como base e ajuda para realizar esse projeto