PSALTer results panel

$$S = \iiint \left(\rho \, \varphi + h^{\alpha\beta} \, \mathcal{T}_{\alpha\beta} + \frac{1}{2} \, \alpha_{2} \, \partial_{\alpha} \varphi \, \partial^{\alpha} \varphi + \frac{1}{8} \, \alpha_{1} \, \left(24 \, (1 + \varphi) \, \partial_{\alpha} \partial^{\alpha} \varphi - 8 \, \partial_{\alpha} h^{\beta}_{\beta} \, \partial^{\alpha} \varphi + 8 \, \partial^{\alpha} \varphi \, \partial_{\beta} h^{\beta} - 4 \, \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} + 4 \, \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} - \partial_{\beta} h^{}_{\chi} \, \partial^{\beta} h^{\alpha}_{\alpha} + 2 \, \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\chi} h^{\lambda}_{} - 2 \, \partial_{\beta} h_{\alpha\chi} \, \partial^{\chi} h^{\alpha\beta} + \partial_{\chi} h_{\alpha\beta} \, \partial^{\chi} h^{\alpha\beta} \right) + \\ \alpha_{1} + \left(-4 \, \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} \, \partial^{\beta} \partial^{\alpha} \varphi - 8 \, \partial_{\beta} \partial_{\alpha} \varphi \, \partial^{\beta} \partial^{\alpha} \varphi + 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\alpha} h^{\chi}_{} + 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\chi}_{} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} - 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial^{\chi} h_{\alpha\beta} + 4 \, \partial^{\alpha} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\lambda}_{} + 4 \, \partial^{\beta} \partial^{\alpha} \varphi \, \partial_{\chi} \partial_{\beta} h^{\lambda}_{\alpha} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\alpha}_{\beta} \, \partial_{\delta} \partial_{\beta} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\alpha} h^{\beta}_{\beta} + 4 \, \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\beta}_{\beta} + \partial_{\beta} \partial_{\alpha} h^{\lambda}_{\beta} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\chi} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\lambda} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial_{\lambda} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\delta} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\lambda} h^{\lambda}_{\beta} - 2 \, \partial^{\chi} \partial_{\beta} h^{\alpha}_{\alpha} \, \partial_{\delta} \partial^{\lambda} h^{\phantom{\lambda$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
^{0⁺} T [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$	1
1- _Γ - _α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta}$	3
Total expected gauge generators:		4

Massive spectrum

(No particles)

Massless spectrum

Massless particle

Pole residue: $\frac{p^2}{\alpha_1} > 0$ Polarisations: 2

Massless particle

Pole residue: $\frac{1+8p^2}{6\alpha_1+\alpha_2} > 0$ Polarisations: 1

Unitarity conditions

 $\alpha_{.} > 0 \&\& \alpha_{.} > -6 \alpha_{.}$