Effects of Early Forming Massive Stars

Sean C. Lewis

December 27, 2022

Early Forming Massive Stars

Disruption of gas collapse, star formation, and cluster assembly

blah blah

Early Forming Massive Stars

Disruption of gas collapse, star formation, and cluster assembly

blah blah

la dee dah

Torch

Stars from gas

- Couples N-body, stellar evolution, and feedback in AMUSE with self-gravitating magnetized gas in MHD code FLASH.
- Resolved dynamics of stars and gas; study star cluster formation within collapsing GMCs.
- Form stars from sink particles which each have a randomized star mass list sampled from the Kroupa (2001) IMF.

2 / 14

A Controlled Experiment

Lewis et al. in prep

Lewis et al. in prep

Effects on Gas

Effects on Gas Accretion and Star Formation

Effects on Star Clustering, Cluster Assembly

Effects of Early Forming Massive Stars

- Significantly disrupt the natal gas structure, resulting in fast evacuation from the star forming region.
- The star formation rate is suppressed, reducing the total mass of stars formed.
- Early forming massive stars stifle the hierarchical assembly process of massive star clusters, instead promoting the formation of spatially separate and energetically unbound subclusters.

The Problem with Initial Conditions

- Self consistent galactic scale simulations with resolution down to sub-tenth parsec scales and include Nbody individual stellar dynamics and individual stellar feedback all at once? A little tough.
- Creating our own isolated clouds from scratch? "Creative liberties..."

Clouds from Galactic Simulations

GMC identification [Li, H. et al. 2020]

From AREPO to FLASH

Try CIC Mapping?

Cloud from raw AREPO data represented using SPH kernels

Cloud-in-cell mapping onto AMR FLASH grid

Voronoi Mesh to AMR Grid

0.4 0.2 z (kpc) 0.0 -0.2-0.4-0.4-0.20.0 0.2 0.4 y (kpc)

Figure: Voronoi mesh from 20 points

Figure: AMR grid from 20 points

VorAMR: Logic path

2a. Convert mesh to particles and construct refined AMR grid

2b. Construct KDtree with field values assigned to leaf nodes

VorAMR: The Big Wins

- Significantly expands Torch's horizon and moves Torch to "completion".
- Opens wide avenue of collaboration; code bases do not have to be exclusive!
- More accurate visualizations (no more estimating Voronoi meshes as SPH kernels in yt).

Thank You!

_

Questions?

