STATISTICS IS THE GRAMMAR OF SCIENCE

PROBABILITY AND STATISTICS

LECTURE - 13

RANDOM VARIABLES

DISCRETE RANDOM VARIABLE

PREPARED BY
HAZBER SAMSON
FAST NUCES ISLAMABAD

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

RANDOM VARIABLE A random variable is a variable whose value is detetumined by the outcome of a random experiment. (OR)

A random variable is a real valued function that associates areal mumber with each element in the sample Space.

Random variables are denoted by capital letters X, Y, Z etc and their values are denoted by small letters x, 58 otc.

Exp: 2 × denete the Number of Keads when a crein istessed trucce. Here S = { H H5 HT7 TH, TT }. Lo × can take the values. X = 0,1,2 Lo × asseriates a real number with each element in SampleSpare Sox is Random Variable. There are two types of Random variables.

- ODiscrete Random Variables.
- @ continuous Rundom Variables.

DISCRETE RANDOM VARIABLE.

A random wariable that assumes countable values is called discrete random variable (DRV)

- Exps D Number of Houses in alblock
 - 1 Number of Fish caught on a fishing top.
 - 3 Number of Students in a class.

CONTINUOUS RANDOM UAPIABLE.

A random udisable that can assume any value contained in one as more intervals is called CRV.

- Eaps O The Height up Person:
 - @ Temperature at aplace.
 - 3 meight of a Person.

PROBABILITY DISTRIBUTIONS

A Probability distribution sines the Probability of each passible value of the variable.

DISCRETE PROBABILITY DISTRIBUTIONS

The Prickability distribution of a discrete random variable lists all the passible values that the random variable can assume and their corresponding Prababilities dimply A table as farmula which consists all the values of a DRV with their respective Probabilities is known as Discrete Brabability distribution.

Let $x_1, x_2, ..., x_n$ be the values of a discrete random variable X' and $P(X=x_1)$, $P(X=x_2)$, $-..., P(X=x_n)$ are the prababilities of the values than the fallowing table is known as Prakability distribution of $P(X=x_n)$.

×	PLX=X)
x,	P(x=x1)
χ _Σ	Plx=x2)
X3	P(K=K3)
3	ì
Хn	P(K=xn)

Note that

- ① P(x=x) >> 0
- $\Theta \leq P(x=x)=1$
- 3 P(x=x)=fex) in DRV.
- (1) Prebability distis also known as Podbability Mass Function at DIS crete Prob. Distribution.

EXAMPLES OF DISCRETE PROBABILITY DISTRIBUTIONS

EXAMPLED Find the hubability distribution of the Number of duts appeared when a die coralled once.

SOLUTION when a die is relled once than

S= {1,2,3,4,5,63

Let X'denate the Number of dats appeared when a die is valled once.

×	P(x=x)
1	1/6
2	46
3	46
4	46
5	46
6	46 46

which is the Reprived Postsdistribution of x. clearly & P(x=x) = 1

EXAMPLED Find the Probability distribution of the Number of Keads abtained when two fair wins are tossed once.

SOLUTION when Two coins are tassed once.

S= {HH, HTTH,TT3

Let X denote the Number of Klads appeared.

X	P(x=x)
0	Yy
1	2/4
2	44

which is the Presability distribution abx.
clearly & P(k=x)=1

EXAMPLE 3 Find the Probability distribution of Sum of duts appeared when two dice are thrown once.

SOLUTION when two dice are thrown once than

S= {(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,3), (2,5), (3,6), (3,1), (3,2), (3,2), (3,3), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6) (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}

Let'x denote the Sum of diets appeared when two direare throwen once.

×	P(x=x)
2_	Y36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/26
11	2/36
12	436

which is the Recuired Brebalkility distribution of X. clearly $\leq P(x=x)=1$

EXAMPLE 9 A conmittee of 3 persons is elected from 3 keysand 4 crips. Construct a Probability distribution for the Number of Bays on the conmittee.

SOLUTION Here Bays=3, Curls=4, Select=3.

Tatal=7

Let X'denote the Number of Boy's selected faccommittee.

X	PIX=X)
0	3cox4c3 = 4/35
1	$\frac{7c_3}{3c_1 \times 4c_2} = 13/35$
2	$\frac{3c_{1}x^{4}c_{1}}{7c_{3}} = 12/35$
3	$\frac{7c_{3}}{3c_{3}\times 4c_{0}} = \frac{12}{35}$

Michis the Recurred Brubulility Distribution afx. clearly EBU=x)=1

EXAMPLES The Prub utility Mass function of sendom wariable'x is given by P(x=x) = cx², ful x=0,1,2,3,4. The find.

(a) the walke of c.

(b) P(x>2) (c) P(x & 3) (d) P(1<x<4) (e) P(0 & x & 2).

SOLUTION.

X	Plx=x)	PIX=x)
0	0	o
1	c	1/30
2	4c	4/30
3	9c	9/30
4	16C	16/30

$$=\frac{9}{30}+\frac{16}{30}=\frac{25}{30}=\frac{5}{4}$$

THE CUMULATIVE DISTRIBUTION FUNCTION

In many problems, we may be interested to know the probability that the walne of random variable X is less than a equal to some real number x. In this case we are looking at remulative Probabilities is farany random variable X, we may look at P(X ≤ 6) for any real number b.

DEFINITION The distribution Frenction Fara Random Variable X evaluated at b is denoted by F(b) and is given by

F(b) = P(X ≤ b)

Note that distribution Function is also called the cumulative distribution Function.

PROPERTIES OF DISTRIBUTION FUNCTION

Every distribution function must sectisfy four Properties given below

- D lim F(n)=0 n→-0
- 1 lim F(x)= 1
- 3 The distribution function is a Non-decreasing function. ie if a < b. F(a) < F(b)
- The distribution function is Right. Hand contimous ie lim f(x.ph) = f(x)

DISTRIBUTION FUNCTION FOR DISCRETE PANDOM VAINBLE

If 'x' is a discrete landom Variable. then

where pix; is the probability function.

Finding Probabilities using CDF.

EXAMPLES

EXAMPLED Find distribution function when two coins are tossed once.

SOLUTION HERE S= EHH HOTHIT]

let'x denote Number of Neads.

× 0	fex)=Pax) 1/4 2/4 4/4	F(x) 1/4 3/4 1
	1	-

EXAMPLE-D find the Distribution Function of the member of duts appeared when a fair die is rulled one.

SOLUTION Here S= {1,2,3,4,5,6}

Let X'denote the dots appeared.

×	P(x)	F(x)
1	42	1/6
2	116	2/6
3	1/6.	3/4
ч	1/6	316 416
2	1/6	576
6	46	6/6

EXAMPLE-3 Find the Distribution Function of sum of dots appeared, when two dict are thrown once.

SOLUTION Here S= {(41),(42),---, (6,6)}

Let'x denote Sum of dots appeared.

X	P(x)	FW
2	1/36	436
3	2/36	3/36
4	3/36	6/36
5	4/36	10/36
6	5/36	15/36
7	6/36	21/36
8	5/36	26/36
9	4/36	30/36
10	3/36	33/36
1/	2/36	35/36
12_	436	34/36

EXAMPLE-9 Forddiscrete Random variable'x the cumulative distribution function F(x) is given as

X	, the	2	3	4	5
FLY	0.2	032	0.67	0.9	- 1

Find the Pratabilities using CDF

(c)
$$P(x < 4) = P(x < 3) = F(3) = 0.67$$
.

EXAMPLES The cremulative Probabilities for a Random variable x' are sinen in the following table, use table to find

		1
×	FIX	(a) PLX <5)
0	0.0388	(b) P(x>3)
3	0.1756	(4) P(3 < x < 7)
2.	0.4049	(9 r(3 5 x 5 1)
3	0.6477	(d) P(x=7)
4 5	0.3298	.,
2	0-9327	(e) P(x>8)
6	0.9781	
7	0.9941	SOLUTION
ન્ન	0.9987	1 = P(+ (=) = F(=) = 922 =
9	0.9998	(a) P(x≤5) = f(5) = 0.9327
10	1	(b) P(x ≥3) = 1- P(3) = 1-0.6477 = 0.3523
1.8		(3) 1 - (3) = 1 - 0.64++= 0.3523