Antiparasitic chemotherapy

Attila Megyeri 03.04.2019

Chemotherapeutic drugs

- antibacterial
- antifungal
- antiviral
- antiparasitic
 - antiprotozoal
 - antihelminthic
- cancer chemotherapy
- (immunopharmacology)

Chemotherapy of helminth infections

(background)

- > 2 billion (2x10⁹) people worldwide
 - roundworms nematodes
 - Ascaris lumbricoides (roundworm)
 - Necator americanus & Ancylostoma duodenale (hookworms)
 - Trichuris trichiura (whipworm)
 - Strongyloides stercoralis
 - Enterobius vermicularis (pinworm)
 - Trichinella spiralis
 - Filarias (Onchocerca volvulus, Loa Loa, Wuchereria bancrofti, Brugia malayi)
 - Dracunculus medinensis
 - flatworms
 - flukes trematodes
 - Schistosoma species, Clonorchis sinensis, Paragonimus westermani
 - tapeworms cestodes
 - Taenia saginata / Taenia solium / Diphyllobotrium latum / Hymenolepis nana / Echinococcus granulosus
- Infection with more than one type simultaneously

Chemotherapy of helminth infections

(common characteristics)

- multicellular organisms
- invasion via skin or GI tract immature forms
- characteristic tissue distribution
 - gut / liver / lung / eye / brain
- cannot complete their life cycle in the host
 - except: Strongyloides and Echinococcus
- drugs act locally or systemically
- toxicity is not only due to drugs but also to dead or dying parasites

Anthelminthic drugs

- benzimidazoles
 - mebendazole*
 - albendazole*
- diethylcarbamazine
- ivermectin
 - mixture of avermectin $B_{1a} + B_{1b}$
- pyrantel pamoate
- praziquantel
- niclosamide
- levamisol*

alternatives / rare / new

- benzimidazoles
 - triclabendazole
 - thiabendazole
- bithionol
- metrifonate
- oxamniquine
- piperazine
- doxycycline

diverse chemical structures, mechanism of action & pharmacologic properties

* approved and available for clinical use in Hungary

Chemical structures of some anthelmintic drugs

Structure of the Benzimidazoles

drug name	mechanism of action
benzimidazoles	inhibit microtubule polymerization by binding to β -tubulin / higher affinity for parasite β -tubulin
diethylcarbamazine	unclear (may impair intracellular processing and transport of certain macromolecules to the helminth plasma membrane)
ivermectin	hyperpolarization and tonic muscle paralysis by increasing ligand (glutamate, GABA) gated Cl ⁻ permeability of the nerve or muscle cell membrane
pyrantel pamoate	depolarizing neuromuscular blockade → spastic paralysis of the worm
praziquantel	increase cell membrane permeability to Ca²+ → paralysis of tapeworms/flukes / tegumental damage → immune response
niclosamide	inhibition of mitochondrial ATP synthesis
levamisole	unclear (nACh agonist, appears to act by paralysing susceptible worms which are subsequently eliminated from the intestines)

Primary drugs against nematodes

- broad spectrum
 - mebendazole
 - albendazole
 - pyrantel pamoate
 - ascariasis, hookworm, pinworm
- narrow spectrum
 - ivermectin
 - Onchocerca volvulus (onchocerciasis river blindness)
 - Strongyloides stercoralis
 - diethylcarbamazine
 - W. bancrofti; B. malayi (lymphatic filariasis); Loa loa

Primary drugs against trematodes (flukes)

praziquantel

Primary drugs against cestodes (tapeworms)

- praziquantel
- niclosamide
- albendazole
 - cysticercosis (Taenia solium (pork tapeworm) larval stage)
 - Echinococcus granulosus (hydatid disease, dog tapeworm)

Oral absorption of antihelminthic drugs

drug name	oral absorption
mebendazole	poor (oral F=0.22 – rapid first pass)
albendazole	variable (enhanced by fatty food)
pyrantel pamoate	poor
ivermectin	good – rapid
diethylcarbamazine	good – rapid
praziquantel	good
niclosamide	minimal

Mebendazole

- oral poor absorption, rapid first pass
 - fatty meal may increase
- inactive metabolites
- broad spectrum
 - ascariasis / trichuriasis / hookworm / pinworm
 - alternative for T. saginata
- minimal adverse effects with short term therapy
 - treatment duration 1-3 days
- unsafe in pregnancy
- caution in children < 2 y.o.

Albendazole

- oral absorption improved by fatty meal
 - intraluminal empty stomach
 - tissue parasite fatty meal
- albendazole sulfoxide active metabolite
- broad spectrum
 - ascariasis / trichuriasis / hookworm / pinworm
 - cysticercosis (pork tapeworm (*Taenia solium*) larval stage)
 - glucocorticoid coadministration
 - hydatid disease (E. granulosus)
 - · e.g. as adjunctive in the perioperative period
- adverse effects
 - well tolerated: GI upset / cytopenias / liver enzyme 个
 - unsafe in pregnancy and young children
 - monitor blood counts / liver enzymes
 - when used for prolonged periods (neurocysticercosis / hydatid dis)

Diethylcarbamazine

- rapid oral absorption
- urinary excretion
 - $t_{1/2}$ depends on urinary pH (shorter when acidic)
- narrow spectrum filarias
 - W. bancrofti, B. malayi, Loa loa
- adult parasites killed slowly
 - longer course (2-3 weeks)
- initially lower dose
 - allergic reactions to dying microfilariae
- mild adverse effects
 - anorexia, nausea, headache
 - problem: host response to destruction of microfilariae

Ivermectin

- rapid oral absorption
- wide distribution (but not BBB!)
- fecal excretion
- narrow spectrum
 - onchocerciasis (microfilaricidal) single dose
 - monthly / yearly repeated doses (even for 10 years)
 - strongyloidiasis two daily doses
- adverse effects
 - Mazzotti reaction dying microfilariae (fever, somnolence, rash, pruritus)
 - rare reversible eye lesions (e.g. corneal opacities)
- avoid other GABAergic drugs

Pyrantel pamoate

- poor absorption
 - mainly against luminal
 - single dose therapy
- broad spectrum
 - pinworm, ascariasis, hookworms
- rare and mild adverse reactions
 - GI: nausea, vomiting, diarrhea
 - headache
 - caution in liver dysfunction
 - transient liver enzyme ↑ observed

Praziquantel

- rapid oral absorption
- CSF levels 14-20% of plasma
- liver metabolism
 - inactive metabolites
- wide spectrum flukes and tapeworms
 - schistosomiasis (two doses)
 - taeniasis, diphyllobothriasis
 - alternative in cysticercosis
 - H. nana
- common mild and transient adverse effects
 - abdominal discomfort / drowsiness
 - indirect effects due to parasite kill, antigen release
 - fever, pruritus, urticaria, rashes, arthralgia, myalgia
 - in neurocysticercosis: meningismus, seizures
 - contraindicated in ocular cysticercosis

Niclosamide

- second line for tapeworms
- used as a single 2 g dose
- minimal absorption
 - adult worms (but not ova) are rapidly killed →
 theoretical risk of cysticercosis if viable ova released
 - no secondary inflammatory response in occult cysticercosis
- not available in the USA and Hungary

Levamisol

- clinical use
 - anthelminthic
 - excellent activity in ascariasis
 - less activity in hookworm, T. trichiura (whipworm)
 - immunomodulator (was)
 - seemed beneficial in rheumatoid arthritis (nowadays not used)
 - was used in combination with 5-FU as adjuvant in Dukes C colorectal cancer
- adverse effects
 - minor GI / headache at anthelminthic single low dose
 - agranulocytosis at prolonged high dose used for immunotherapy

Adverse effects

drug name	important adverse reactions
benzimidazoles	short term – almost free of AE , mild GI high dose – hypersensitivity, agranulocyt.
diethylcarbamazine	mild, transient – headache, nausea, dizzi. release of protein from dying microfilaria – fever, rash, cough, chest pain
ivermectin	Mazzotti reaction – fever, headache, rash, muscle pain, lymphadenitis, edema eye lesions - corneal opacities
pyrantel	rare, mild, transient – nausea, diarrhea liver enzyme elevations
praziquantel	common, mild, transient – headache, dizzin., nausea, diarrhea, liver enzyme个
niclosamide	rare, mild, transient – nausea, diarrhea avoid alcohol consumption
levamisole	vasculitis, hyperthermia, agranulocytosis

Other narrow spectrum / alternative

(rarely used)

- bithionol
 - fascioliasis (sheep liver fluke) / paragonimiasis (lung fluke)
- triclabendazole
 - fascioliasis (sheep liver fluke)
- metrifonate
 - only for Schistosoma hematobium (bilharziasis)
 - organophosphate prodrug (nonenzymatic → dichlorvos)
- oxamniquine
 - only for Schistosoma mansoni (intestinal bilharziasis)

Chemotherapy of malaria

- ≈40% of the world's population is at risk of malaria
- ≈200 300 million infections in each year
- ≈1 million deaths (445000 (2016), 446000 (2015))
 - sub-Saharan Africa
 - most in infants and children
- management is under constant review
- drug resistance is a major problem
- measures to control malaria
 - protection from mosquito bites
 - prophylaxis with antimalarial drugs
 - prompt treatment of any infection that develops
 - vector control

prompt diagnosis and effective treatment are crucial

The cause of human malaria

- mostly four species cause human malaria
 - Plasmodium falciparum
 - malignant tertian malaria
 - Plasmodium vivax
 - benign tertian malaria, persistence!
 - Plasmodium malariae
 - quartan malaria (72 hour cycle)
 - Plasmodium ovale
 - ovale tertian, rare, persistence!
 - + recently Plasmodium knowlesi
 - monkey malaria, rare, mostly uncomplicated
- complex life cycle
 - sexual (in mosquito) and asexual phase (in man)

Malaria endemic areas - 2008

transmission is area dependent, sometimes very focal

Map 2-7. Malaria-endemic countries in the Western Hemisphere.

Map 2-8. Malaria-endemic countries in the Eastern Hemisphere.

Mefloquine resistant malaria

Singnificance of resistance (2016)

Colistin resistance: a major breach in our last line of defence

In hospital practice, clinicians have been buoyed by the "Liu and colleagues" present data from China showing recent development of new antibiotics active against. that E coll from pigs at slaughter and from retail multidrug resistant Gram-negative bacilli. However, chicken and pork have high rates of plasmid-mediated or ceftolozane-tazobactam do not provide activity in E coli and K preumonine isolates from Chinese against all Gram-negative bacilli, with notable gaps - patients in hospital. These findings suggest that the in their coverage, including the notorious New Delhi links between agricultural use of colistin, collistin metallo-β-lactarnase 1-producing organisms and resistance in slaughtered animals, collistin resistance in many strains of carbapenem resistant Acinetobacter food, and colistin resistance in human beings are now polymyxin B) remain the last line of defence against connections is limitation or cessation of colistin use in \$1479.99905000034 many Gram-negative bacilli. Colletin-resistant and agriculture. This will require substantial political will and even pan-drug-resistant Gram-negative bacili have we call upon Chinese leaders to act rapidly and decisively. already been reported.12 Typically, colistin resistance. Failure to do so will create a public health problem of is due to chromosomally mediated modulation major dimensions.

recently approved antibiotics like ceftazidime-avibactam colistin resistance. The same mechanism was found baumannii. For this reason, the polymyxins (collistin and complete. One of the few solutions to uncoupling these

"plasmid-mediated colistin resistance for the first time"

"readily passed between Escherichia coli strains"

"the plasmid could be passed to Klebsiella pneumoniae and Pseudomonas aeruginosa strains"

"It therefore seems inevitable that plasmidmediated transfer of colistin resistance will seriously limit the lifespan of the polymyxins as the backbone of regimens against multiply resistant Gram-negative bacilli."

Back on TRAC

New trial launched in bid to outpace multidrug-resistant malaria By Amy Maxmen

scientists had long suspected: the prevalence mutations that protect them against drugs, so of multidrug-resistant malaria has grown. It was only a matter of time before Plasmodium Researchers found that nearly 40% of people folciparum, the parasite responsible for the with malaria in Pursat, a province at the foothills of the Cardamont Mountains in western Cambodia, could not be cured by a gold-standard treatment known as artemisininbased combination therapy (ACT)¹. The therapy formed the Trucking Resistance to Artemisinin consists of a course of pills that are taken over Collaboration, known as TRAC. The group existing treatments. Depending on the speed

On 7 January, a study confirmed what a few 2001. In general, pathogens naturally acquire malaria deaths worldwide, did just that. In 2006, news of resistance to artemisinin surfaced, and as the situation grew more dire, in 2011, an international team of researchers

hopes that triple ACT will keep malaria deaths from rising-at least until a fundamentally different and novel type of antimularial drugis ready for use. The three front-runners in the pipeline-OZ439 from Sanoti, KAE609 from Novartis and DSM265 from the US National Institutes of Health and Takeda Pharmaceuticals-might be used in combination either with each other or with some of the three consecutive days, and it cares malaria includes scientists from Mahidol University in of the drug-approval process, a combination

"On 7 January, a study confirmed what a few scientists had long suspected: the prevalence of multidrug-resistant malaria has grown. Researchers found that nearly 40% of people with malaria in Pursat, a province at the foothills of the Cardamom Mountains in western Cambodia, could not be cured by a gold-standard treatment known as artemisininbased combination therapy."

© Elsevier. Rang et al: Pharmacology 6e - www.studentconsult.com

Antimalarial drug activity in the life cycle of plasmodia

tissue schizonticides

- in liver
 - schizonts causal prophylaxis
 - hypnozoites antirelapse
- blood schizonticides
 - in red cells
- gametocytocides
 - in blood
- sporontocides
 - in mosquito

Classification: chemical structure

- 4-aminoquinolines
 - chloroquine / amodiaquine / piperaquine
- 4-methanolquinolines
 - quinine / quinidine / mefloquine
- 8-aminoquinoline
 - primaquine
- folate antagonists
 - sulfadoxine/pyrimethamine (Fansidar®)
 - proguanil
- others
 - atovaquone (see Malarone®)
 - doxyxcycline / clindamycin
 - artemisinins
 - (artesunate / artemether / dihydroartemisinin)
 - halofantrin
 - lumefantrin

Pyrimethamine

Classification: life cycle

group	drugs		liver st	ages	blood st	tages
		sporozoite	primary	hypnozoite	asexual	gametocyte
1	artemisinins	-	-	-	+	+
	chloroquine	-	-	-	+	+/-
	mefloquine	-	-	-	+	-
	quinine/quinidine	-	-	-	+	+/-
	pyrimethamine	-	-	-	+	-
	sufadoxine	-	-	-	+	-
	tetracyclines	-	-	-	+	-
2	atovaquone/proguanil	-	+	-	+	+/-
3	primaquine	-	+	+	-	+

only P. falciparum

Classification: life cycle

- tissue schizonticides primaquine, atovaquone+proguanil (Malarone®)
- blood schizonticides e.g. artemisinins, chloroquine, mefloquine, quinine
- gametocytocides primaquine, artemisinins

drugs used in chemoprophylaxis

- atovaquone+proguanil (Malarone®)
- chloroquine (only if sensitive)
- doxycycline
- mefloquine
- primaquine
 - P. vivax only
 - terminal prophylaxis

prophylaxis: before – during – after travel

Factors influencing the prophylactic drug choice

- resistance chloroquine / mefloquine
- duration of the trip
- age and medical history
- pregnancy
- drug intolerance
- economic considerations

Drugs for malaria prophylaxis

drug	adult dose	use in children	use in pregnancy
atovaquone- proguanil	250/100 mg once daily	yes (> 11 kg)	no
mefloquine	250 mg once weekly	yes (> 5 kg)	yes
doxycycline	100 mg once daily	no	no
chloroquin	500 mg once weekly	yes	yes
primaquine	30 mg once daily	yes	no

- malaria is more severe in pregnancy
- † risks of adverse outcomes

recommendation for pregnant women: do not travel to malaria endemic area

Drugs in malaria prophylaxis

drug	adverse effects	dosing freq
atovaquone-proguanil	abdominal pain, nausea, vomiting, headache	daily
chloroquine	GI disturb, headache, dizziness, blurred vision, insomnia, pruritus, psoriasis exacerb, retinopathy (in high doses)	weekly
doxycycline	nausea or vomiting, photosensitivity, vaginal yeast infections	daily
mefloquine	psychoses or seizures, other psychiatric disord, headache, insomnia, visual and GI disturb	weekly
primaquine	GI upset if empty stomach (take with food), in G6PD def. fatal hemolysis	daily

Combinations in the treatment of malaria

- earlier were not used
- more common nowadays
- parasite burden is important (A vs. B)
- short and effective course not necessarily eliminate
- combination of short and long is better

duration of administration: 3-4 days

Combinations in the treatment of malaria

artemisinin-based combination therapies (ACTs)

- artemether-lumefantrine (Coartem®, Riamet®)
- artesunate-amodiaquine (ASAQ®, Coarsucam®)
- artesunate-mefloquine
- dihydroartemisinin-piperaquine (Artekin®, Duocotecxin®)
- artesunate-sulfadoxine-pyrimethamine
- (artesunate-pyronaridine (Pyramax®))

other

- sulfadoxin-pyrimethamine (FANSIDAR®)
- atovaquone-proguanil (MALARONE®)

Half lives of ACT partner drugs

drug	half life
lumefantrine	4-5 days
amodiaquine	9-18 days
mefloquine	13-24 days
piperaquine	~28 days
pyrimethamine	4 days
sulfadoxine	4-8 days
pyronaridine	8 days

Mechanism of action of chloroquine

quinine, amodiaquine, mefloquine, lumefantrine: similar

artemisinins: cleave endoperoxide bridge in digestive vacuole → **free radicals**

atovaquone: disrupt mitochondrial electron transport (enhanced by nonmetabolized proguanil – see Malarone®)

Mechanism of action of sulfonamides/folate antagonists

$$H_2N$$
 \longrightarrow CH_2 \longrightarrow OCH_3 OCH_3 OCH_3

Trimethoprim

Pharmacokinetics of antimalarial drugs

drug	some pharmacokinetic characteristics		
chloroquine	complete oral abs; V _d ~100-1000 L/kg; long half life (month)		
amodiaquine	oral; active metabolite with long half life		
quinine	oral / i.v. ; in malaria longer half life		
quinidine	i.v.; shorter half life than quinine		
mefloquine	oral only; highly protein bound; long half life (20 days)		
primaquine	good oral absorption; rapid metabolism; half-life 3-8 hours		
sulfadoxine-pyrimethamine (Fansidar)	oral; pyrimethamine $t_{1/2}$ ~3.5 days; sulfadoxin ~ 170 hours		
atovaquone-proguanil (Malarone)	proguanil is a prodrug (but in this comb. the nonactivated form causes the synergism)		
doxycycline	oral (i.v.)		
halofantrine	oral; irregular absorption		
lumefantrine	oral; irregular absorption; comb. with artemether (Coartem)		
artemisinins	artesunate – water-soluble (po, iv, rectal); artemether – lipid-soluble; (po, im, rectal); dihydroartemisinin – water-soluble (po); short $t_{1/2}$		

Clinical use of antimalarial drugs

drug	treatment	prophylaxis	comment
chloroquine	yes	yes	only if sensitive
amodiaquine	yes	no	fixed combination with artesunate
quinine	yes	no	p.o. / i.v. <i>P falciparum</i>
quinidine	yes	no	i.v. severe <i>P falciparum</i>
mefloquine	yes	yes	P falciparum
primaquine	yes	yes only P vivax / P ovale; dormant;	
sulfadoxine- pyrimethamine (Fansidar)	yes	no	chloroquine resistant <i>P falciparum</i>
atovaquone-proguanil (Malarone)	yes	yes P falciparum	
doxycycline	yes	yes	for treatment together with quinine
halofantrine	yes	no <i>P falciparum</i>	
lumefantrine	yes	no	fixed combination with artemether
artemisinins	yes	no	p.o. combinations / i.v. artesunate severe

Adverse effects of antimalarial drugs

drug	adverse effects		
chloroquine	well tolerated; pruritus ; rash; rare hemolysis in G6PD def.		
amodiaquine	agranulocytosis / hepatotoxicity; rare (obs. in prophylaxis)		
quinine	cinchonism (tinnitus; headache; nausea; visual dist.), hypoglycemia, blackwater fever		
quinidine	similar to quinine		
mefloquine	nausea/vomiting; seizures/ psychosis (mainly when treatment)		
primaquine	well tolerated; nausea/GI pain; hemolysis in G6PD def.		
sulfadoxine-pyrimethamine (Fansidar)	well tolerated; GI symptoms, skin rash + sulfonamides		
atovaquone-proguanil (Malarone)	well tolerated; nausea/GI pain		
doxycycline	GI upset; photosensitivity; contra <8 years		
halofantrine	well tolerated; arrhytmias (QT prolongation)		
lumefantrine	well tolerated; no risk of dangerous arrhytmias		
artemisinins	generally well tolerated / neutropenia, allergy (rare)		

Primaquine induced hemolytic anemia

