Relatório do EP2 de Programação Linear

Gustavo Chicato Wandeur - 7557797 Vinícius Bitencourt Matos - 8536221

17 de maio de 2015

Definições 1

Definição 1. Um **poliedro** é um conjunto $S \subseteq \mathbb{R}^n$ limitado por um número finito de restrições lineares de igualdade $(a_i^T x = b_i)$ ou desigualdade $(a_i^T x \le b_i)$ ou $a_i^T x \ge b_i$.

Definição 2. Um problema de programação linear consiste em minimizar, sobre todos os vetores $x \in \mathbb{R}^n$ que satisfazem dado conjunto de restrições lineares, uma função linear $c^T x$, sendo $\mathbf{c} \in \mathbb{R}^n$ dado. Cada restrição linear é da forma $\mathbf{a}_i^T \mathbf{x} \leq b_i$, $\mathbf{a}_i^T \mathbf{x} \geq b_i$ ou $\mathbf{a}_i^T \mathbf{x} = b_i$. O vetor \mathbf{c} é chamado vetor de custos, e a função $\mathbf{c}^T \mathbf{x}$ é chamada função objetivo ou função

de custos.

Dizemos que $x \in \mathbb{R}^n$ é um ponto viável ou solução viável se x satisfaz a todas as restrições do problema de programação linear. O conjunto de todos os pontos viáveis é chamado conjunto viável. Segue das definições que o conjunto viável de um problema de programação linear é um poliedro. Um problema é *inviável* se seu conjunto viável é vazio.

Uma solução viável x^* que minimiza a função objetivo é chamada solução ótima, e o custo correspondente $c^T x$ é chamado custo ótimo.

Definição 3. Uma restrição é dita ativa em x^* se é satisfeita no ponto x^* por igualdade.

Definição 4. Um conjunto de restrições $\{a_i^Tx \leq b_i\}_{i \in I_1} \cup \{a_i^Tx \geq b_i\}_{i \in I_2} \cup \{a_i^Tx = b_i\}_{i \in I_3}$ (onde I_1, I_2, I_3 são conjuntos de índices disjuntos) é **linearmente independente** se $\{a_i\}_{i \in I_1 \cup I_2 \cup I_3}$ for um conjunto de vetores de \mathbb{R}^n linearmente independentes, isto é, se $\sum_{k=1}^n \lambda_k a_{ik} = \mathbf{0}$ apenas se $\lambda_1 = \cdots = \lambda_n = 0$.

Definição 5. Um ponto $x^* \in \mathbb{R}^n$ é uma solução básica se todas as restrições de igualdade são ativas em x^* e, além disso, dentre todas as restrições ativas em x^* , há no mínimo n linearmente independentes.

Definição 6. Diz-se que um problema de programação linear está no formato padrão se todas as variáveis são obrigatoriamente não negativas (ou seja, há uma restrição $x_i \ge 0$ para todo i = 1, 2, ..., n) e todas as demais restrições são de igualdade (isto é, da forma $\boldsymbol{a}_{i}^{\mathrm{T}}\boldsymbol{x}=b_{i}$).

De modo compacto, podemos descrever um problema de programação linear no formato padrão como segue:

minimizar
$$c^{T}x$$

sujeito a $Ax = b$, $x \ge 0$

onde $A \in \mathbb{R}^{m \times n}$ é uma matriz cujas linhas são os vetores a_i , i = 1, ..., m, e $x \ge 0$ é interpretado componente a componente.

Qualquer problema de programação linear pode ser reescrito no formato padrão por meio do seguinte procedimento:

- Cada variável *livre* (cujo sinal não é restrito originalmente) x_j é substituída por x_j⁺-x_j⁻,
 em que x_j⁺ e x_j⁻ são variáveis novas e com restrição de serem ambas não negativas.
- Cada restrição da forma $\mathbf{a}_i^T \mathbf{x} \leq b_i$ é substituída por $\mathbf{a}_i^T \mathbf{x} + s_i = b_i$, em que a nova variável s_i (variável de folga) é não negativa. Analogamente, cada restrição da forma $\mathbf{a}_i^T \mathbf{x} \geq b_i$ é trocada por $\mathbf{a}_i^T \mathbf{x} s_i = b_i$, em que a nova variável s_i (variável de sobra) é não negativa.

Ademais, não há perda em impor que as linhas de *A* sejam linearmente independentes, uma vez que a dependência linear entre restrições nesse formato sempre leva a um dos seguintes casos:

- Há restrições redundantes, que podem ser simplesmente removidas sem alteração do problema;
- Há restrições incompatíveis, que tornam o problema inviável.

Uma vez que todo problema de programação linear pode ser expresso no formato padrão e com a matriz \boldsymbol{A} com linhas linearmente independentes, é suficiente ter um método que resolve problemas desse tipo.

2 Resultados importantes

- Consideremos o poliedro definido pelas restrições Ax = b e $x \ge 0$, em que $A \in \mathbb{R}^{m \times n}$ tem posto completo. Então, existem índices $B(1), \dots, B(m)$ tais que as colunas $A_{B(1)}, \dots, A_{B(m)}$ são linearmente independentes e $x_i = 0$ para todo $i \notin B(1), \dots, B(m)$.
- Se x é uma solução básica, então as variáveis $x_{B(1)}, \ldots, x_{B(m)}$ são chamadas variáveis básicas, as demais são chamadas variáveis não básicas.

3 Método simplex revisado

- Em cada iteração, começamos com uma base correspondente às colunas $A_{B(1)}, \ldots, A_{B(m)}$, uma solução viável básica x e a inversa B^{-1} da matriz básica.
- Calculamos primeiramente o vetor $\boldsymbol{p}^{\mathrm{T}} = \boldsymbol{c}^{\mathrm{T}}\boldsymbol{B}^{-1}$. Em seguida, calculamos os custos reduzidos $\bar{c}_j = c_j \boldsymbol{p}^{\mathrm{T}}\boldsymbol{A}_j$. Se todos forem positivos, então a solução viável básica \boldsymbol{x} é ótima, e o algoritmo é encerrado. Caso contrário, escolhemos o menor valor de j que satisfaça $\bar{c}_j < 0$.
- Calculamos $u = B^{-1}A_j$. Se nenhum componente de u for positivo, então a direção de redução de custos -u é viável para todo θ positivo. Logo o custo ótimo é $-\infty$ e o algoritmo termina.

• Caso contrário, se temos ao menos uma componente positiva de u, então

$$\theta^* = \min_{\{i=1,\dots,m \mid u_i>0\}} \frac{x_{B(i)}}{u_i}.$$

- Seja l tal que $\theta^* = \frac{x_{B(l)}}{u_l}$. Formamos uma nova base trocando a coluna $A_{B(l)}$ por A_j . Teremos então uma nova solução viável básica y com componentes $y_j = \theta^*$ e $y_{B(i)} = x_{B(i)} \theta^* u_i$, $i \neq l$.
- Montamos uma matriz na forma $[B^{-1} \mid u]$. São realizadas então operações elementares de linha, adicionando a cada uma um múltiplo da l-ésima linha, a fim de que a última coluna termine como o vetor canônico e_l . Por fim, retira-se esta última coluna, resultando na matriz B^{-1} atualizada. Retorna-se ao passo 1 e continuamos até encontrar uma condição de parada (2 ou 3).

4 O programa

4.1 Formato da entrada

O programa recebe um argumento na linha de comando, que corresponde ao nome de um arquivo de texto descrevendo o problema na seguinte ordem:

m n

Α

b

c x

4.2