Biology Class 07

Previous Class Topic

- Types of Viruses, with focus on retroviruses and adenoviruses
- Basics of Genetic Material (**DNA/RNA structure** and gene expression)

Virus Types and Genetic Material

Adenoviruses and Retroviruses

- Adenoviruses possess a **double-stranded DNA genome**.
- Retroviruses possess an **RNA genome**, not double-stranded DNA.
- The **common cold** can be caused by adenoviruses.
- **AIDS** is caused by a retrovirus, specifically the Human Immunodeficiency Virus (HIV).

Recombinant DNA Technology

Basic Principles of DNA Structure

- DNA is universal in composition: made of phosphate, pentose sugar, and nitrogenous bases.
- The chemical structure of DNA is **identical across organisms**.
- This universality allows recombination of DNA fragments from different sources.

Creation of Recombinant DNA

- **Recombinant DNA** refers to a molecule formed by combining DNA from two different sources.
- The two main components for recombinant DNA are:
- **DNA fragment**: the segment/gene of interest.
- Vector: a DNA molecule that can carry foreign DNA into a host cell.

Definition of Vector

- In genetics, a **vector** acts as a carrier of a foreign gene.
- Common vectors include plasmids (circular DNA in bacteria) and certain viruses.

Applications of Recombinant DNA

Production of Human Proteins

- **Pharmaceutical companies** use recombinant DNA technology to produce medicines like **human growth hormone** and **insulin**.
- The gene for the target protein is isolated from human DNA and embedded into a **bacterial plasmid**.
- After insertion, bacteria express the human gene and produce the required protein, which is then extracted for medical use.

Steps in Recombinant DNA Technology

Step Description

Isolation of Desired Gene	Identify and extract the gene responsible for the required trait or product using nucleases (DNA-cutting enzymes).
2. Vector Acquisition	Use plasmids or viruses as vectors to carry the desired gene.
3. Joining of DNA	Employ ligase enzymes to join the desired gene to the vector, forming recombinant DNA.
4. Introduction into Host	Insert recombinant DNA into the host organism for expression of the product.

Restriction enzymes(a type of nuclease) cut DNA at specific sites and are used in genetic engineering.

Application: Recombinant DNA in Vaccines

Use in Vaccine Development

- Recombinant DNA technology enables the creation of **viral vector vaccines**.
- In vaccines like **Covishield** or **Sputnik V** (for COVID-19), the gene for the **viral antigen** (from COVID-19) is inserted into a vector virus.

Design of Viral Vector Vaccines

- The gene encoding the **antigen** is integrated into a harmless **adenovirus** vector, often from a non-human source (e.g., *chimpanzee adenovirus*) to avoid immune response.
- The resulting recombinant adenovirus is **attenuated** (weakened) to ensure safety.

Mechanism of Action

- The vaccine delivers only the **COVID-19 antigen gene**, not the whole virus, into the body.
- The immune system recognizes the antigen and produces **B memory cells**, conferring immunity.

Safety and Advantages

- Viral vectors are chosen for their **harmlessness to humans**.
- They ensure stimulation of immune memory without causing disease.

Gene Transfer Across Species

Genetic Engineering Possibilities

- Genes can be transferred:
- Between different species of plants
- From animals to plants
- From microorganisms to higher organisms
- Success relies on the universality of DNA's chemical structure.
- Such transfers do not always yield useful traits but are **technically possible**.

Gene Editing and Related Technologies

Definition and Purpose

- Gene editing involves adding, deleting, or replacing defective genes in the genome.
- Applications include treatment and prevention of **genetic disorders** such as:
- Sickle cell anemia
- Hemophilia
- Color blindness

Stages and Cells for Gene Editing

- Editing can occur at different biological stages:
- **Gametes** (egg/sperm): Prevents transmission to offspring.
- **Embryos**: Modifies all cells of the developing organism.
- **Somatic cells**: Corrects gene defects in specific tissues of an individual (does not transmit to next generation).

Current Regulatory Status

- Most countries permit only somatic cell gene editing.
- India is developing gene editing for treating sickle cell anemia.
- Research involving gene editing in embryos/gametes is highly restricted; South
 Africa recently allowed it experimentally.

CRISPR Technology

Overview

CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) is a natural geneediting mechanism discovered in bacteria and has been adopted as a gene-editing tool in biotechnology.

CRISPR System Components

Part Description

Guide molecule (sgRNA)	Directs the system to the specific DNA location to be edited. In CRISPR, it is single-guide RNA (sgRNA), which is double-stranded (exceptional for RNA).
Nuclease (Cas9 protein)	Acts as molecular scissors to cut DNA at the targeted site for editing.

After DNA cutting, repair allows gene addition, deletion, or replacement as desired.

Applications

- Used in gene correction for diseases like sickle cell anemia.
- Editing is most effective when applied to bone marrow cells for blood-related disorders.

Animal Cloning

Concept and Process

Step	Description
Obtain Somatic Cell	Collect a cell (e.g., skin, muscle) from the individual to be cloned. These cells have a full set (2n) of chromosomes.
2. Obtain Donor Egg	Retrieve an egg cell from a female donor. The egg contains cytoplasm and organelles but only n chromosomes.
3. Enucleation	Remove the nucleus from both the somatic cell (retain for further use) and the donor egg (discard nucleus).
4. Nuclear Transfer	Insert the somatic cell nucleus into the enucleated egg.
5. Stimulation & Embryo Formation	Stimulate the egg in the lab to initiate embryogenesis.
6. Embryo Implantation	Transfer the embryo into a surrogate uterus for gestation.

Cloning results in an organism**genetically identical**to the somatic cell donor.

Case Study: Dolly the Sheep

- **Dolly** was the first successfully cloned mammal.
- The process involved transferring the nucleus from an **udder cell** of an adult sheep into an enucleated egg from another sheep.
- The embryo was implanted into a surrogate, resulting in Dolly's birth.

Limitations and Challenges

- High failure rates; many embryos are lost before a viable clone is obtained.
- Cloned animals often suffer from diseases and have reduced lifespan.
- Human cloning is **not legal or practiced** anywhere due to technical, ethical, and safety concerns.

Uses of Cloning

- Preserving extinct or endangered species (practically limited by availability of viable DNA and the need for a close living surrogate species).
- Replicating individuals with valuable traits (e.g., high-quality wool in sheep).
- Not suitable for resurrecting long-extinct species (like dinosaurs) due to degraded DNA and lack of a birthing organism.

Mitochondrial Replacement: Three-Parent Baby Technology

Mitochondrial DNA (mtDNA) Inheritance

- Mitochondria have their own DNA (mtDNA), separate from nuclear DNA.
- Mitochondrial DNA is maternally inherited, as sperm contributes little or no mitochondria to the zygote.

Disease Transmission & Prevention

- Defects in mtDNA can cause mitochondrial diseases (e.g., Leigh's disease).
- All children of a mother with mtDNA disease will inherit the defect.

Mitochondrial Donation Process

Step Description

Select two eggs	One from the mother (with defective mtDNA), one from a healthy donor (with normal mtDNA).
2. Enucleation	Remove the nucleus from both eggs.
3. Nuclear Transfer	Transfer the mother's nucleus into the donor egg (which retains cytoplasm and mitochondria but lacks its own nucleus).
4. Fertilization	Fertilize the reconstructed egg with sperm from the father.
5. Embryo Development	Implant the embryo into a uterus for gestation.

The resulting child has nuclear DNA from both parents, mtDNA from the donor. The term*three-parent baby* is used because the donor's DNA affects only mitochondrial function and does not influence inherited traits.

Assisted Reproductive Technologies (ART)

In Vitro Fertilization (IVF)

- Involves fertilizing egg and sperm in a laboratory dish to form a zygote.
- The zygote develops into an **embryo**, which is then placed into the uterus for gestation.

Surrogacy

- A surrogate mother carries and delivers a baby for another individual or couple.
- The surrogate provides only nutritional support and does not contribute DNA.
- The birth mother is not a **biological parent**.

Legal and Social Aspects

Regulations govern ART and surrogacy practices. Commercial surrogacy (paying for surrogacy) is not legally permitted in certain regions.

Stem Cell Technology

Definition and Properties

Stem cellsare unspecialized cells capable of dividing and differentiating into various types of specialized cells.

Types of Stem Cells

Embryonic Stem Cells

- Present in the developing embryo.
- Can differentiate into all cell types of the body.

Adult Stem Cells

- Found in certain organs/tissues after birth (e.g., **bone marrow**, liver, brain).
- Produce new cells for growth and repair of specific tissues (tissue-specific).

Induced Pluripotent Stem Cells (iPSCs)

- Created artificially in the laboratory by reprogramming differentiated adult cells back to a pluripotent state.
- Can generate cells of any tissue, overcoming some ethical and technical limitations.

Applications of Stem Cells

Regenerative Medicine

- Used to repair or replace damaged tissues/organs, such as:
- **Blood**: bone marrow transplantation, treatment of leukemia.
- **Skin**: treatment of burns.
- Heart muscles, cartilage, liver, brain, pancreas (in diabetes).
- Particularly valuable for sports injuries and degenerative diseases (e.g., Alzheimer's).

Treatment Limitations & Challenges

- The **source of stem cells** is a major obstacle.
- Embryonic stem cell sourcing is highly restricted due to ethical concerns.
- Adult stem cells are limited by tissue specificity and complexity in extraction.

Description

• Using a patient's own cells reduces the risk of immune rejection.

Use in Blood Disorders

- In conditions like **leukemia**, when the patient's own stem cells are defective, donor stem cells (from bone marrow) are transplanted.
- Requires genetic matching to minimize rejection.

Biotechnology Applications (Imp. must study)

Types of Biotechnology

White Biotechnology

Grey Biotechnology

Domain

Application in aquatic organisms.
Applications in agriculture, e.g., GM crops.
Medical applications, e.g., vaccines, therapies.

Sources -

- -> Current affairs
- -> mains 365
- -> Bio Economy (weekly focus)
- -> Bio E3 policy
 - -> Biotechnology for economy, environment and employment.

Industrial applications, e.g., enzyme production.

Environmental applications, e.g., bioremediation.

Genetically Modified Organisms (GMOs) and Crops

Concept and Purpose

- A **genetically modified organism (GMO)** has its genetic material altered via genetic engineering (recombination, editing, transfer).
- GM crops are cultivated to improve:
- Yield and productivity
- Pest/Disease resistance
- Climate resilience
- Nutrient content (biofortification)

Examples of GM Crops

Example GM Crop	Trait Improved	Method/Source
BT Cotton	Pest resistance (against bollworm)	Bacterial gene insertion (toxin- producing gene)
BT Brinjal	Pest resistance	Same as BT cotton, but for brinjal; not cleared for food consumption
GM Mustard	Increased yield, potential oil sufficiency	Bacterial gene to boost production
Golden Rice	Increased vitamin A	Genetic modification for nutritional enhancement
GM Potato	Disease resistance (blight)	Genetic alteration for fungal resistance
GM Rubber	Climate resilience	Modified to withstand drought or salinity

Adoption in India

- **BT cotton** is the only GM crop approved for commercial cultivation.
- Food crops like GM brinjal and mustard face stringent regulatory checks and concerns about safety for consumption and environmental effects.

Environmental and Economic Concerns

- **Biodiversity loss** due to replacement of traditional varieties with single GM types.
- Potential disturbance to **ecosystems**, especially effects on pollinators like bees and butterflies.
- **Resource use** concerns (soil, water), and unknown long-term effects.
- Mutation and resistance in pests may reduce effectiveness over time.
- **High costs** of seeds can burden farmers, many of whom work with limited resources.

Health Concerns

- Uncertainty about long-term safety of consuming food crops with new genetic material.
- Need for extensive long-term studies before approval of GM food crops.

Regulatory Framework

Agency/Legislation	Role
Ministry of Science and Technology	Primary overseeing body
Department of Biotechnology	Specialized department for biotechnology
GEAC (Genetic Engineering Appraisal Committee)	Statutory authority for GM product approval
Environmental Protection Act, Wildlife Act, Seed Act, Plant Variety Act	Ancillary legislation affecting GM crop approval

Seed Patenting and Economic Monopoly

- Companies can use **terminal seed technology** to make seeds sterile after one generation.
- Farmers are required to purchase new seeds each season, leading to possible monopolistic practices by multinational corporations.

Hybrids vs. GMOs

Term	Definition
Hybrid	Result of crossing two varieties or species, often via grafting or breeding, without direct modification of DNA. Involves only naturally possible changes.
Genetically Modified (GM)	Direct manipulation of an organism's DNA in the lab. Transfers genetic material between unrelated species (e.g., bacteria to cotton). May involve transgenic processes.
Transgenic	Specifically refers to transferring genes between different species (e.g., bacterial gene into a plant). Under law, this is regarded as GM.