>> IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL <<

COMPARATIVE FREE-VIBRATION AND PUSHOVER ANALYSIS OF A MDOF STRUCTURE: ELASTIC VS INELASTIC RESPONSE USING OPENSEES

WRITTEN BY SALAR DELAVAR GHASHGHAEI (QASHQAI)

FREE-VIBRATION ANALYSIS

VISCOUSLY DAMPED FREE VIBRATION

$$m\ddot{u} + c\dot{u} + ku = 0$$

$$\ddot{u} + 2\zeta \omega_n \dot{u} + \omega_n^2 u = 0$$

$$\omega_n = \sqrt{k/m}$$
 $\zeta = \frac{c}{2m\omega_n} = \frac{c}{c_{cr}}$ $\omega_D = \omega_n \sqrt{1 - \zeta^2}$

$$u(t) = e^{-\zeta \omega_n t} \left[u(0) \cos \omega_D t + \frac{\dot{u}(0) + \zeta \omega_n u(0)}{\omega_D} \sin \omega_D t \right]$$

Decay of Motion

$$\delta = \ln \frac{u_i}{u_{i+1}} = 2\pi \, \zeta$$
 (approximate relation)

$$\delta = \ln \frac{u_i}{u_{i+1}} = \frac{2\pi \, \zeta}{\sqrt{1-\zeta^2}}$$
 (EXACT RELATION)

EXACT AND APPROXIMATE RELATIONS BETWEEN LOGARITHMIC DECREMENT AND DAMPING RATIO

PUSHOVER ANALYSIS

Node Displacements vs Time for Elastic Structure

Node Displacements vs Time for Inelastic Structure

