# Отчёт

На основе нескольких статей, основная из которых — статья <u>Qognitive</u> о квантовой модели предсказания биржевого поведения, было решено разработать аналогичный подход. Несколько слов об этом исследовании:

Авторы в прошлом году разработали новый тип квантовой нейросети, особенно хорошо подходящий для задач определенного типа. Они в общих чертах описали его работу, а также сами задачи, которые решали. Одна из них — биржевая аналитика. Естественно, авторы сделали из этого также коммерческий продукт, поэтому информации было дано очень мало. Изза этого значительную часть работы пришлось выполнить самостоятельно или с опорой на другие исследования. Также из-за этого потребовалось опробовать несколько методик, помимо основной, о которой будет упомянуто позже.

Суть задачи в том, чтобы научиться предсказывать динамику акций по биржевым и новостным параметрам (на основе статей <u>FinBERT</u>), **что не было реализовано у авторов оригинальной статьи**. Поэтому, прежде всего, следует описать, какие сырые данные были собраны для обучения.

# Часть 1. Сбор и предварительная обработка данных

Были собраны биржевые данные с Мосбиржи. Мною был выделен пул из порядка 1500 топовых российских компаний. Для них были собраны дневные параметры на момент закрытия торгов за последние 5 лет. (На самом деле это даже многовато, так как считается, что связи, которые нас интересуют, меняются на среднесрочной перспективе, т.е. порядка 1-3 лет).

Включенные параметры:

- Цена закрытия акции
- Объём торгов
- Рыночная капитализация
- Выручка к рыночной капитализации
- Индекс Мосбиржи за день (глобальный параметр, позволяющий в дальнейшем устранить шумы)

Также были собраны новостные параметры.

Источниками послужили несколько новостных финансовых сайтов, точнее: Lenta.ru, РБК и «Коммерсантъ».

Был применен первичный фильтр по финансовым меткам.

Оказалось, что у РБК и «Коммерсанта» есть отличные выжимки самого важного из статьи, которые поддавались парсингу, например:

"Австралийская TIG решила продать угольный бизнес в России", "TIG заключила юридически обязывающее соглашение о продаже добывающей компании «Берингпромуголь», управляющей компании «Берингуголинвест» и «Северной Тихоокеанской угольной компании», которая занимается геологоразведкой. Сумма сделки составила \$49 млн."

Такие новости и их заголовки мной сразу отправлялись в классификационную модель Яндекса, которая возвращала нормированные показатели:

Общий новостной сентимент и оценка положительности информации в категориях:
 макроэкономика России, монетарная политика, геополитика, нефтегазовый сектор,
 фискальная политика.

Количество таких новостей составляло около 10 в день, и они носили преимущественно глобальный характер.

Также использовался сайт Lenta.ru, где публиковались либо очень длинные тексты статей, либо короткие заголовки, освещавшие более узкие экономические темы; их количество достигало около 30 в день. Поэтому для их обработки использовалась LLM Gemini, откуда были получены те же самые параметры. Затем эти параметры были нормализованы и аккуратно объединены (простое сложение в данном случае неприменимо).

Видно, что новости — это глобальные признаки, не зависящие от конкретной акции. Поэтому, чтобы их связать, я спарсил описания компаний по их тикерам, а затем пропустил через эмбеддинг-модель с выходом в 3 измерения. Это решило проблему связи новостных признаков с отдельными акциями, а также просто дало акциям некоторую связь между собой.



# **Часть 2. Первоначальные подходы и переход к авторской методике**

В первый раз я неверно понял авторов, и, открыв статью, на которую они ссылаются, применил стандартный метод биржевых предсказаний, который практически не дал результатов.

Мой подход заключался в следующем: Я решил не использовать временные данные, чтобы не усложнять модель и не искать слишком очевидные корреляции. Поэтому были взяты данные не для отдельных компаний, а параметры 5 стандартных биржевых индексов + упомянутые новости. Затем из этих параметров были вычислены различные временные деривативы (желательно не дублирующие друг друга), вроде средневзвешенной волатильности каждого

индекса за неделю, различные Z-усреднения за разные промежутки времени. Ожидалось, что это позволит модели сориентироваться в общебиржевой обстановке, не засоряя параметры

временными рядами. Но результата это почти не дало: классические нейросети были беспомощны, вероятно, из-за очень малого количества параметров. На порядок более сложные классические и квантовые модели дали минимальный результат, который соответствовал, как будет ясно позже, окололинейным связям.

Типичные результаты первой модели:

```
--- Результаты оценки (CNN-GRU) ---
MSE NN: 118.9892
RMSE NN: 10.9082
MAE NN: 8.4029
```

R<sup>2</sup> NN (vs Mean): 0.0340

---



## Теперь рассмотрим авторский подход:

Представим себе, что можно единовременно смотреть все дневные показатели на бирже. Ясно,

что все эти данные можно попробовать связать между собой простейшим линейным способом: можно сделать стандартную линейную регрессию по всему набору этих параметров, предсказывая **доходность** каждой акции.

В данном случае к этому добавляются также новостные параметры.

Имеется вектор Y, состоящий из доходностей всех акций за день, и матрица X со всеми данными, кроме эмбеддингов (по ним нет смысла проводить регрессию), которые были предварительно кросс-секционно нормализованы и пересчитаны в более удобные параметры. Затем проводится OLS-регрессия (по сути, МНК), из которой получаются остатки доходности, не объясняемые линейной компонентой. Теперь это будет наш целевой параметр.

Это было сделано по следующим причинам:

- Я планировал воспользоваться преимуществами квантовой нейросети и найти именно нелинейные сложные зависимости.
- Теперь я могу подавать на вход нейросетям только глобальные параметры + параметры отдельной акции, так как их линейные связи уже очищены и контекст других акций не так важен. Это радикально снижает количество параметров, соответственно, появляется возможность обучить более глубокую модель.
- На рынке уже есть фонды с огромными моделями, причем модели этих игроков содержат в миллионы раз больше параметров, с данными, которые мне даже недоступны. Но чаще всего они считают что-то около линейной регрессии. Поэтому, отсекая линейные части, появляется возможность получить преимущество перед существующими фондами, что и создает возможность для извлечения прибыли на рынке. Кроме того, такие фонды занимаются выравниванием курса на эту линейную компоненту (проще говоря, арбитражем), косвенную информацию о котором мы получаем и действительно исключаем.

## Теперь о самих моделях.

Классическая модель, с которой сравнивались авторы, практически не дала результатов. Сколько-нибудь значимые результаты были получены только начиная с архитектуры:

```
CNN_OUT_CHANNELS = 32
CNN_KERNEL_SIZE = 3
GRU_HIDDEN_SIZE = 64
GRU_NUM_LAYERS = 1
MLP_HIDDEN_SIZE = 32
```

что привело к R<sup>2</sup> ≈ 0.2.



Мои попытки воспроизвести этот результат не увенчались полным успехом (был получен R² ≈ 0.086), поэтому, возможно, в оригинальном исследовании имела место утечка данных. Однако воспроизводимый результат для этой модели также демонстрирует определенную эффективность.

# В любом случае, это:

- доказывает, что связи в этой очищенной модели действительно есть, и можно получать стабильные положительные результаты (которых, конечно, все еще недостаточно, чтобы "переиграть биржу");
- этот более сложный подход начал учитывать связи между днями (GRU). Хотя этого хотелось избежать, так как ищется другая зависимость, это все еще не временные ряды в прямом смысле, так как дата как параметр нигде не подавалась.





# Часть 3. Квантовая модель по концепции авторов

Авторы представили концепцию квантовой модели, работающей следующим образом:

Имеется вектор с данными Х и целевой параметр Ү.

Также имеется некоторый гамильтониан ошибки, зависящий от Х и Ү.

Также задается состояние φ(n, P1), где n — число кубитов в системе, а P1 — набор некоторых параметров.

## Шаг 1.

Фиксируется H(X, Y=none) и считается Error(P1) = <φ| H(X) |φ>. Теперь просто проводится оптимизация по P1, уменьшая ошибку — так находится так называемое "базовое состояние φ". То есть, исходя из наших данных, создается состояние, которое должно максимально точно описывать КОНКРЕТНЫЕ параметры.

#### Шаг 2.

Ясно, что пока этот гамильтониан ничего на самом деле не значит, и необходимо минимум его ошибки при конкретных данных свести к тому, что было что-то предсказано. Теперь задаются предсказания — это некоторые операторы для каждого параметра и для целевого значения. Пусть это некоторые A  $x_i$  и A  $y_i$  т.е. предсказание  $x_i = \langle \phi | A x_i | \phi \rangle$ .

Тогда классический гамильтониан ошибки будет иметь вид:

$$\sum_{k} (\hat{A}_k - \mathbf{x}_{t,k} \cdot I)^2$$

Соответственно, чтобы его натренировать, необходимо изменять A\_x<sub>i</sub> и A\_y, которые некоторым образом параметризованы. Это делается градиентным спуском. Получается, что второй шаг — это тренировка по второй группе параметров P2, которая снова уменьшает <ф| H(P) |ф>. После спуска изменяются P2 (которые и являются весами модели), P1 же каждый раз находятся заново.

Затем алгоритм повторяется по всему датасету.

#### Предсказание:

Чтобы сделать предсказание, нужно в точности повторить первый шаг: найти базовое состояние, а затем просто посчитать <φ| А\_у |φ>, который, как было определено ранее, является предсказанием величины у при поданном X.

## Реализация.

Основной вопрос — как параметризовать эти самые операторы (матрицы размера 2<sup>n</sup>), при условии, что операторы должны быть эрмитовыми.

Конечно, это можно сделать через какую-то композицию эрмитовых операторов с параметризованными коэффициентами, но это не то, что естественно переводится в реальную квантовую схему. Поэтому я решил, что нужно строить оператор как некоторую квантовую схему. Так как она состоит из унитарных гейтов, то проще всего сделать из нее что-то эрмитово: U† В U = Âk. Где U — параметризованная квантовая схема, а В — простой эрмитов оператор (в моем случае это была просто диагональная матрица с различными числами для получения различных собственных чисел).

Таким образом, модель была действительно правдоподобно параметризована через квантовую цепочку, но платой за это стало то, что больше 2/3 всех гейтов не параметризуются, а выполняют "подгоночную функцию".

Все это я решил реализовать на знакомом мне и, как показалось, подходящем фреймворке PennyLane.

И квантовое состояние φ, и параметризованные U я сделал как цепочки pennylane.templates.layers.StronglyEntanglingLayers.



Просто с разным количеством слоев: от количества слоев ф зависит дискретизация полученного "слепка" входных параметров, от количества слоев U зависит глубина модели.

Гамильтонианы я реализовал через встроенный класс гамильтониана, спуски реализовал стандартным методом adjoint.

## Оценка количества параметров:

При 19 фичах, 5 кубитах, layers=3 получается 19x5x3x3 — порядка 1000 параметров.

При первом же обучении я столкнулся с проблемой — схемы при пяти кубитах хорошо считаются и на СРU, переход на GPU не дает никакого прироста, даже увеличивает время из-за накладных расходов. Но эта пятикубитная схема запускается огромное число раз, из-за этого время обучения становится огромным. Я научился параллелить процесс на СРU на число ядер, и на 24 ядрах смог получить результаты в районе 6 часов на эпоху при минимальном количестве слоев. Ясно, что проблема не в какой-то огромной сложности этой модели, а в ее (недостаточной) оптимизации. Я долгое время пытался оптимизировать эту схему, переписав большую часть кода на РуТогсh, а также перейдя на ускоренное разложение гамильтониана на матрицы Паули, что позволило добиться трехкратного ускорения до 2 часов на эпоху.

## Варианты решения, которые я вижу:

- Запуск модели на каком-то огромном числе CPU, что, насколько я знаю, вполне реально и стоит сравнимо с арендой GPU-кластера, но найти такую конфигурацию мне не удалось.
- При увеличении числа кубитов и запуске на GPU скорость обучения не особо меняется, так как вступает в силу ускорение GPU. В таком случае затрачиваемые мощности будут вполне приемлемы.
- Переписывание модели на другой фреймворк с оптимизацией под GPU.

Также я пробовал уменьшать в разы число данных (в 10 раз).



Но, как видно, результатов это совсем не дало.

Несмотря на это, я несколько раз потренировал эту модель (порядка 5 эпох) и убедился в том, что модель на этих данных уже после первой эпохи достигает train loss порядка 0.1, который затем продолжает опускаться, вместе с метрикой MSE.



К сожалению, больше ничего из этой модели получить я не успел из-за временных ограничений.

# Часть 4. Альтернативная квантовая модель

Тогда я решил реализовать третью, более простую квантовую модель для задачи нелинейного поиска.

Модель также состояла из слоев pennylane.templates.layers.StronglyEntanglingLayers. Их число я варьировал от 1-2, чтобы не допустить переобучения уже на первых порах.

Число кубитов я изначально выставлял в соответствии с числом параметров, но такая модель тренировалась слишком долго даже на GPU (долго, чтобы успеть с ней поработать, хотя это абсолютно ожидаемое время для такой модели).

Тогда я сделал сжатие состояния до 5 кубитов (2^5 > 18), что, конечно, уменьшало разрешающую способность модели, но это вполне соответствовало задаче поиска нелинейности, интерпретируя это как первый сжимающий слой. Также я это компенсировал увеличением числа слоев до 3-6.

Здесь я уже получил первые адекватные результаты.

Для 6 слоёв и 3 эпох:



# Для 6 слоёв и 8 эпох:





Для 4 слоёв и 6 эпох:



Здесь видно, что модель действительно учится предсказывать экстремальные значения даже при малом числе слоев (хоть и хуже).

# Интерпретация данных:

Проблема с интерпретацией результатов: модель сложно оценить из-за биржевой специфики и специфики целевого параметра. Даже если бы предсказывалась чистая доходность, то результат MSE=0.8 мог бы считаться отличным, так как в большинстве случаев он находится внутри рыночных колебаний, но при этом видит паттерн, следуя которому получается прибыльная стратегия. То же самое справедливо и в моем случае. Более того, предсказывается мной не просто доходность, а именно нелинейная компонента — компонента "недооцененности актива" стандартными алгоритмами. Если бы я оценивал эффективность полученной модели, то делал бы это следующими способами:

- как авторы, попытался бы вычесть из результатов классической модели квантовые предсказания и показал бы явные нелинейные связи;
- построил бы обобщенную финансовую стратегию на основе получаемых индексов, а затем прогнал бы её по историческим данным;
- ввёл бы более сложную метрику потенциальной прибыли для предсказанных значений;
- усреднял бы предсказания по некоторым группам компаний и связывал бы их доход с недооцененностью похожего по структуре фонда — это простейший способ применения такой модели.

Для меня результатом стала эффективность снижения train loss в квантовой модели по сравнению с классикой, а также наблюдение сложных нелинейных и вневременных компонент, которые не обнаруживались на классике.

Что не удалось реализовать (из-за нехватки времени):

- Собрать отчетные данные компаний с их доходностями (как у авторов). Это могло бы сильно улучшить предсказания, но для этого потребовалось бы искать эти отчетности для каждой отдельной компании.
- Провести полноценное обучение моделей.

# Материалы:

- Код для сбора датасета находится в папке news\_parser.
  - Подпапка dataset2version содержит парсинг биржевых данных, обработку, слияние с новостным датасетом, эмбеддинг, финальный регрессионный фильтр.
  - Новостной анализ находится в папке analysis.
- В папке QCML есть разделы для всех моделей. Сама архитектура моделей описана в файлах qcml\_model.py и quantum\_model.py.