Functional Blocks: Addition

- Binary addition used frequently
- Addition Development:
 - Half-Adder (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - *Carry-Look-Ahead Adder* (CLA), a hierarchical structure to improve performance.

Functional Block: Half-Adder

A 2-input, 1-bit width binary adder that performs the following computations:

- A half adder adds two bits to produce a two-bit sum
- The sum is expressed as a sum bit, S and a carry bit, C
- The half adder can be specified as a truth table for S and $C \Rightarrow$

X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic Simplification: Half-Adder

- The K-Map for S, C is:
- This is a pretty trivial map! By inspection:

$$S = XY' + X'Y = X \oplus Y$$

$$S = (X+Y) (X'+Y')$$

Recall that S' = X'Y' + XY

and

$$C = XY$$
 $C = ((XY)')'$

• These equations lead to several implementations.

Five Implementations: Half-Adder

• We can derive following sets of equations for a half-adder:

- (a), (b), and (e) are SOP, POS, and XOR implementations for S.
- In (c), the C function is used as a term in the AND-NOR implementation of S, and in (d), the C' function is used in a POS term for S.

Implementations: Half-Adder

The most common half adder implementation is:
(e)

$$S = X \oplus Y$$
$$C = XY$$

• A NAND only implementation is:

$$S = (X+Y) C'$$

$$C = ((XY)')'$$

Functional Block: Full-Adder

- A full adder is similar to a half adder, but includes a carry-in bit from lower stages. Like the half-adder, it computes a sum bit, S and a carry bit, C.
 - For a carry-in (Z) of
 0, it is the same as
 the half-adder:
 - For a carry- in(Z) of 1:

Z	0	0	0	0
X	0	0	1	1
<u>+Y</u>	+0	+1	<u>+0</u>	+1
C S	0 0	0 1	0 1	10
Z	1	1	1	1
X	0	0	1	1
<u>+Y</u>	+0	+1	+0	+1

CS 01 10 10

Logic Optimization: Full-Adder

• Full-Adder Truth Table:

• Full-Adder K-Map:

X	<u>Y</u>	Z	\mathbf{C}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Equations: Full-Adder c

• From the K-Map, we get:

$$S = XY'Z' + X'YZ' + X'Y'Z + XYZ$$

$$C = XY + XZ + YZ$$

• The S function is the three-bit XOR function (Odd Function):

$$S = X \oplus Y \oplus Z$$

• The Carry bit C is 1 if both X and Y are 1 (the sum is 2), or if the sum (X ⊕ Y) is 1 and a carryin (Z) occurs. Thus C can be re-written as:

$$C = XY + (X \oplus Y) Z$$

- The term $X \cdot Y$ is carry generate (G).
- The term $X \oplus Y$ is *carry propagate* (*P*).

Implementation: Full Adder

- Full Adder Schematic
- Here X, Y, and Z, and C
 (from the previous pages)
 are A, B, C_i and C_o,
 respectively. Also,

G = generate and P = propagate.

• Note: This is really a combination of a 3-bit odd function (for S)) and Carry logic (for C_o):

(G = Generate) OR (P = Propagate AND
$$C_i$$
 = Carry Ini)+1
 C_o = G + P · C_i

Binary Adders

- To add multiple operands, we "bundle" logical signals together into vectors and use functional blocks that operate on the vectors
- Example: 4-bit ripple carry adder: Adds input vectors A(3:0) and B(3:0) to get a sum vector S(3:0)
- Note: carry out of cell i becomes carry in of cell i + 1

Description	Subscript 3 2 1 0	Name
Carry In	0110	C_{i}
Augend	1011	A_{i}
Addend	0011	$\mathbf{B}_{\mathbf{i}}$
Sum	1110	S_{i}
Carry out	0011	C_{i+1}

4-bit Ripple-Carry Binary Adder

• A 4-bit Ripple Carry Adder made from four 1-bit Full Adders:

Binary Adder/Subtractor

Fig. 3-31 Adder-Subtractor Circuit