· 상각성 은 '청수'의 얼굴이라, 라이란 각5를 설탕 값으로 받고 '기~1'사이의 對於量 가지는 청수이라.

상당수 학생들이 삼각함수를 하다보면 삼각비와 삼각함수의 차이를 모르는 경우가 많습니다.

02. 삼각함수의 공식 TOTAL MAP

사용되는 공식이 상당히 많아서 여기서는 4개의 영역으로 나눈 후에 각각의 공식들에 대해서 알아보겠습니다.

$$\sin \theta = \frac{y}{r}$$
 이고 역수 $\csc \theta = \frac{r}{y}$ $\cos \theta = \frac{x}{r}$ 이고 역수 $\sec \theta = \frac{r}{x}$ $\tan \theta = \frac{y}{x}$ 이고 역수 $\cot \theta = \frac{x}{y}$

· 해당 윗을 간위된(번리를이 된) 이라고 생각하면, 5/n 모든 모의 정라 원이 완나는 정의 보라돌이고 (05 모든 모의 물병라 원이 완나는 경의 고라돌이다.

공식04 삼각함수의 기본공식

다음에 나오는 것이 삼각함수의 기본 공식으로 언급되는 것인데 세가지가 주로 사용됩니다.

1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\left(\frac{\sin \theta}{\cos \theta} \right) = \frac{\sin \theta}{\cos \theta}$ $\left(\frac{\cos \theta}{\cos \theta} \right) = \frac{\sin \theta}{\cos \theta}$

계산 과정에 $tan\theta$ 가 $sin\theta$, $cos\theta$ 함께 사용될 때

2) $\sin^2\theta + \cos^2\theta = 1$ 가이 어느 가이 아는 대화한, $\cos(\theta - \theta - \theta) = \cos(\theta - \theta - \theta) = \cos(\theta - \theta - \theta)$ 가이 가 아니 아는 대화한, $\cos(\theta - \theta - \theta) = \cos(\theta - \theta - \theta) = \cos(\theta - \theta - \theta)$ 계산 과정에 제일 많이 사용되는 공식입니다. $\cos(\theta - \theta - \theta) = \cos(\theta - \theta - \theta) = \cos(\theta - \theta - \theta)$ 광범위하게 사용되는데 특히 $\sin(\theta - \theta - \theta)$ 여행 형태로 나와서 합과 곱을 이용하는 문제에서는 생략되어 있기 때문에 받드시 미리 써두는 것이 효과 정입니다.

3) $1 + \tan^2 \theta = \sec^2 \theta$ 자주는 사용되지 않으나 간혹 난이도 있는 문제에서 사용됨

공식06 덧셈정리, 2배각, 반각 공식

덧셈정리

$$\frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)} = \sin\alpha\cos\beta + \cos\alpha\sin\beta \frac{(신코코신)}{\sin(\alpha - \beta)}$$
$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta \left(\beta + \beta\right)$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
 (코코마신신)
$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$
 (위 성에서 어난자 바뀌)

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
 (일마단탄분의 탄불탄)

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta} \left(\beta | \sin\beta| \cot\beta + \beta \right)$$

2배각

 β 대신 α 로대입

$$sin(2\alpha) = 2sin\alpha cos\alpha$$
(니사이코)

$$cos(2\alpha) = cos^2 \alpha - sin^2 \alpha$$
 (코제곱 마싸제곱)
= $2cos^2 \alpha - 1$
= $1 - 2sin^2 \alpha$

$$\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$$

반각공식

2배각 공식의 변형

$$\alpha$$
 대신 $\frac{\alpha}{2}$ 로대입

$$\sin^2\left(\frac{\alpha}{2}\right) = \frac{1 - \cos\alpha}{2}$$

$$\cos^2\left(\frac{\alpha}{2}\right) = \frac{1 + \cos\alpha}{2}$$

$$\tan^2\left(\frac{\alpha}{2}\right) = \frac{1-\cos\alpha}{1+\cos\alpha}$$

공식07 삼각함수의 합성

각이 같은 1차로된 사인과 코사인의 결합을 했어 사인과 코사인이 혼합된 주로 최대, 최소, 주기를 구하는데 사용하게 됩니다.

둘 중에 하나만 사용할 줄 알면 되는데 주로 처음 사용한 합성 공식이 편리 합니다.

공식08 삼각형의 넓이

양변과 사잇각을 알 때

$$S = \frac{1}{2}ab\sin C$$

내접원의 반지름을 알 때

$$S = \frac{1}{2}(a+b+c)r$$

외접원의 반지름을 알 때

$$S = rac{a\,b\,c}{4R}$$
 (사인법칙을 이용함 $\sin C = rac{c}{2R}$)

세변의 길이를 알 때 (헤론의 공식)

$$S = \sqrt{s(s-a)(s-b)(s-c)} \left(s = \frac{a+b+c}{2} \right)$$

세좌표를 알 때

$$S = \frac{1}{2} \left| \begin{array}{c} x_1 \; x_2 \; x_3 \; x_1 \\ y_1 \; y_2 \; y_3 \; y_1 \end{array} \right| = \frac{1}{2} \left| \left(x_1 y_2 + x_2 y_3 + x_3 y_1 \right) - \left(x_2 y_1 + x_3 y_2 + x_1 y_3 \right) \right|$$

공식09 사인법칙, 코사인법칙

사인법칙과 코사인법칙은 삼각형에서 세변과 세각의 크기를 모두 구하고자 할 때 종종 사용하게 되는데...

내각의합 2π , 사인법칙, 코사인법칙이 혼합하여 주로 구하는 경우가 종종 있어서 모든 공식을 외우고 있어야 합니다.

사인법칙

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

코사인 제1법칙 (양변과 사이각을 알 때)

$$c = a cos B + b cos A$$

코사인 제2법칙 (양변과 사잇각을 알 때)

$$c^2 = a^2 + b^2 - 2ab\cos C$$

코사인 제2법칙 변형 (세변의 길이를 알 때)

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$