ENCOR Study Guide

Alexander

September 3, 2024

- 1.0 Architecture (1-6)
- 2.0 Virtualization (6-9999)
- 3.0 Infrastructure
- 4.0 Network Assurance
- 5.0 Security
- 6.0 Automation

1.0 Architecture

1.1 Explain the different design principles used in an enterprise network

- 1.1.a High-level enterprise network design such as 2-tier, 3-tier, fabric, and cloud
- 1.1.b High availability techniques such as redundancy, FHRP, and SSO

1.2 Describe wireless network design principles

- 1.2.a Wireless deployment models (centralized, distributed, controller-less, controller-based, cloud, remote branch)
- 1.2.b Location services in a WLAN design
- 1.2.c Client density

1.3 Explain the working principles of the Cisco SD-WAN solution

- 1.3.a SD-WAN control and data planes elements
- 1.3.b Benefits and limitations of SD-WAN solutions

1.4 Explain the working principles of the Cisco SD-Access solution

- 1.4.a SD-Access control and data planes elements
- 1.4.b Traditional campus interoperating with SD-Access

1.5 Interpret wired and wireless QoS configurations

- 1.5.a QoS components
- 1.5.b QoS policy

1.6 Describe hardware and software switching mechanisms such as CEF, CAM, TCAM, FIB, RIB, and adjacency tables

2.0 Virtualization

2.1 Describe device virtualization technologies

- 2.1.a Hypervisor type 1 and 2
- 2.1.b Virtual machine
- 2.1.c Virtual switching

2.2 Configure and verify data path virtualization technologies

- 2.2.a VRF
- 2.2.b GRE and IPsec tunneling

2.3 Describe network virtualization concepts

- 2.3.a LISP
- 2.3.b VXLAN

3.0 Infrastructure

3.1 Layer 2

- 3.1.a Troubleshoot static and dynamic 802.1q trunking protocols
- 3.1.b Troubleshoot static and dynamic EtherChannels
- 3.1.c Configure and verify common Spanning Tree Protocols (RSTP, MST) and Spanning Tree enhancements such as root guard and BPDU guard

3.2 Layer 3

- 3.2.a Compare routing concepts of EIGRP and OSPF (advanced distance vector vs. link state, load balancing, path selection, path operations, metrics, and area types)
- 3.2.b Configure simple OSPFv2/v3 environments, including multiple normal areas, summarization, and filtering (neighbor adjacency, point-to-point, and broadcast network types, and passive-interface)
- 3.2.c Configure and verify eBGP between directly connected neighbors (best path selection algorithm and neighbor relationships)
- 3.2.d Describe policy-based routing

3.3 Wireless

- 3.3.a Describe Layer 1 concepts, such as RF power, RSSI, SNR, interference, noise, bands, channels, and wireless client devices capabilities
- 3.3.b Describe AP modes and antenna types
- 3.3.c Describe access point discovery and join process (discovery algorithms, WLC selection process)
- 3.3.d Describe the main principles and use cases for Layer 2 and Layer 3 roaming
- 3.3.e Troubleshoot WLAN configuration and wireless client connectivity issues using GUI only
- 3.3.f Describe wireless segmentation with groups, profiles, and tags

3.4 IP Services

- 3.4.a Interpret network time protocol configurations such as NTP and PTP
- 3.4.b Configure NAT/PAT
- 3.4.c Configure first hop redundancy protocols, such as HSRP, VRRP
- 3.4.d Describe multicast protocols, such as RPF check, PIM and IGMP v2/v3