U-Net

Shalin Mehta, CZ Biohub Anna Kreshuk, EMBL

DL@MBL 2024

U-net – the baseline for image transforms

U-net – the baseline for image transforms

U-net – the baseline for image transforms

image transforms

image transforms

image transforms

Shift equivariance

Invariance Equivariance 'cat' 'cat'

Unpacking the boxes:

- Convolutions
- Activation
- Downsampling /Upsampling

Convolutional layer

Image transforms, parametrized by a matrix of weights (usually 3x3)

Convolutional layer

Image transforms, parametrized by a matrix of weights (usually 3x3)

•

N channels

Parameters of convolution

https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html

Multi-channel output

Multi-channel input

Activation functions

Update feature-maps element-wise

Network architecture

Why are these different size?

Network architecture

What if they were all the same?

Network architecture

What if they were all the same?

If they are all convolutional, **no context**

Upsampling

stride = 1

stride = 2

Building an encoder

Building a decoder

image

Image-to-image

Forward pass

Backpropagation

Image transforms: convolutions and pooling layers

Multi-scale representation

Multi-scale representation

Other things to consider

• Data

- Normalization
- Completeness of annotation
- Sampling of patches
- Batch-size

Loss

- Regression (denoising, translation): Mean square error, mean absolute error
- Segmentation: Cross-entropy between classes

Training protocol

- Learning rate
- Augmentations
- End-to-end vs pre-training + fine-tuning

Go build your own U-Net!