Algebraic Topology - MATH0023

Based on lectures by Prof FEA Johnson

Notes taken by Imran Radzi

Notes based on the Autumn 2021 Algebraic Topology lectures by Prof FEA Johnson.

Contents

1 Simplicial complexes

1

1 Simplicial complexes

Definition. A simplicial complex X is a pair (V_X, \mathcal{S}_X) where V_X denotes the vertex set of X and \mathcal{S}_X is the set of finite, non-empty subsetse of V_X satisfying

- 1. $\forall v \in V_X$, then $\{v\} \in \mathcal{S}_X$
- 2. If $\sigma \in \mathcal{S}_X$, $\tau \subset \sigma$, $\tau \neq \emptyset$, then $\tau \in \mathcal{S}_X$.

 S_X is called the set of *simplices* of X.

Examples.

A standard 1-simplex, denoted by Δ^1 is simply the line segment (or usually denoted by I).

$$V_{\Delta^1} = \{0, 1\}$$

$$\mathcal{S}_{\Delta^1} = \{\{0\}, \{1\}, \{0, 1\}\}$$

A standard 2-simplex, denoted by Δ^2 is the equilateral triangle.

$$V_{\Delta^2} = \{0,1,2\}$$

$$\mathcal{S}_{\Delta^2} = \{\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$$

In general, the standard n-simplex Δ^n , is $\Delta^n = (V_{\Delta^n}, \mathcal{S}_{\Delta^n})$ where

$$V_{\Delta^n} = \{0, 1, \dots, n\}$$

$$S_{\Delta^n} = \{\alpha : \alpha \subset \{0, \dots, n\}, \alpha \neq \emptyset\}$$