TEST REPORT

Reference No. : WTF18F05112858W

FCC ID 2AEOP-S639

Applicant.....: Jiangmen Xinxu Hardware Crafts Manufacturing Co.,Ltd

Address : NO.244 Qinglan Road High-new Industrial Zone, Jianghai District

Jiangmen City, Guangdong Province, China.

Manufacturer : The same as above

Address : The same as above

Product Name : MUSIC LAMP MIRROR

Model No. : \$639,\$6501,\$8506

Standards...... FCC CFR47 Part 15 Subpart C Section 15.247:2017

FCC Part 1.1307

Date of Receipt sample : 2018-05-30

Date of Test 2018-05-30 to 2018-08-02

Date of Issue : 2018-08-03

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel: +86-755-83551083 Fax: +86-755-83552400

Compiled by:

Danny Zhou / Project Engineer

anny Thou

Philo Zhong / Manager

ed by:

1 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Reference No.: WTF18F05112858W Page 3 of 56

1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe	CNAS	EMCD \ RED	-
Taiwan	(Registration No.: L3110)	NCC	-
Hong Kong		OFCA	-
Australia		RCM	-
India		WPC	-
Thailand	International Services	NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

2 Contents

			Page
1	LABO	DRATORIES INTRODUCTION	1
	1.1	TEST FACILITY	
2	CONT	TENTS	4
3	REVI	SION HISTORY	6
4	GENE	ERAL INFORMATION	7
	4.1	GENERAL DESCRIPTION OF E.U.T	
	4.2	DETAILS OF E.U.T	
_	4.3	CHANNEL LIST	
5		PMENT USED DURING TEST	
	5.1 5.2	EQUIPMENT LIST	
	5.2 5.3	MEASUREMENT UNCERTAINTY	
6		SUMMARY	
7	CONI	DUCTED EMISSION	13
•	7.1	E.U.T. OPERATION	
	7.2	EUT SETUP	
	7.3	MEASUREMENT DESCRIPTION	
_	7.4	CONDUCTED EMISSION TEST RESULT	
8		ATED SPURIOUS EMISSIONS	
	8.1	EUT OPERATION	
	8.2 8.3	TEST SETUPSPECTRUM ANALYZER SETUP	
	8.4	TEST PROCEDURE	
	8.5	CORRECTED AMPLITUDE & MARGIN CALCULATION	18
	8.6	SUMMARY OF TEST RESULTS	19
9	BAND	D EDGE MEASUREMENT	22
	9.1	Test Procedure	
	9.2 9.3	TEST SETUP TEST RESULT	
10			
10			
	10.1 10.2	TEST PROCEDURE TEST SETUP	
	10.3	TEST RESULT	
11	MAXI	IMUM PEAK OUTPUT POWER	31
	11.1	Test Procedure	
	11.2	TEST SETUP	
	11.3	TEST RESULT	
12		PING CHANNEL SEPARATION	
	12.1 12.2	TEST PROCEDURE TEST SETUP	
	12.2	TEST RESULT	
13	_	BER OF HOPPING FREQUENCY	
	13.1	TEST PROCEDURE	39
	13.2	TEST SETUP	39
	13.3	Test Result	40

Reference No.: WTF18F05112858W Page 5 of 56

14	DWE	LL TIME	41
	14.1 14.2	Test Procedure Test Setup	
	14.3	TEST RESULT	
15	ANTE	ENNA REQUIREMENT	46
16	FCC I	ID: 2AEOP-S639 RF EXPOSURE	47
	16.1 16.2	REQUIREMENTSTHE PROCEDURES / LIMIT	
	16.2	MPE CALCULATION METHOD	
17	PHOT	TOGRAPHS S639_TEST SETUP	49
	17.1 17.2	PHOTOGRAPHS S639_CONDUCTED EMISSION TEST SETUPPHOTOGRAPHS S639_RADIATED EMISSION TEST SETUP	
18	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	51
	18.1 18.2	MODEL S639- EXTERNAL VIEW	

Reference No.: WTF18F05112858W Page 6 of 56

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTF18F05112858W	2018-05-30	2018-05-30 to 2018-08-02	2018-08-03	Original	-	Valid

Reference No.: WTF18F05112858W Page 7 of 56

4 General Information

4.1 General Description of E.U.T

Product Name: MUSIC LAMP MIRROR

Model No.: \$639,\$6501,\$8506

Model Description : All models have same electric circuit only their appearance is

different. Therefore the full tests were performed on model S639

Hardware Version.....: V1.1

Software Version: V1.1

4.2 Details of E.U.T

Operation Frequency: 2402~2480MHz

Max. RF output power: -2.611dBm

Type of Modulation : GFSK, $\pi/4$ DQPSK

Antenna installation : Built-in IFA

Antenna Gain : -0.58dBi

Technical Data : DC 5V powered by adapter

4.3 Channel List

Bluetooth Classic mode

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

5 Equipment Used during Test

5.1 Equipment List

Condu	cted Emissions					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	2017-09-11	2018-09-10
2.	LISN	R&S	ENV216	100115	2017-09-11	2018-09-10
3.	Cable	Тор	TYPE16(3.5M)	-	2017-09-11	2018-09-10
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP30	100091	2018-04-29	2019-04-28
2	Broad-band Horn Antenna(1-18GHz)	SCHWARZBECK	BBHA 9120 D	667	2018-04-29	2019-04-28
3	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-29	2019-04-28
4	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	2018-04-29	2019-04-28
5	Spectrum Analyzer	R&S	FSP40	100501	2017-10-20	2018-10-19
6	Broad-band Horn Antenna(18-40GHz)	SCHWARZBECK	BBHA 9170	BBHA917065 1	2017-10-25	2018-10-24
7	Microwave Broadband Preamplifier (18-40GHz)	SCHWARZBECK	BBV 9721	100472	2017-10-25	2018-10-24
8	Cable	Тор	18-40GHz	-	2017-10-25	2018-10-24
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2018-04-29	2019-04-28
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2018-04-29	2019-04-28
3	Active Loop Antenna	Com-power	AL-130R	10160007	2018-04-17	2019-04-16
4	Amplifier	ANRITSU	MH648A	M43381	2018-04-29	2019-04-28
5	Cable	HUBER+SUHNER	CBL2	525178	2018-04-29	2019-04-28

6	Coaxial Cable (below 1GHz)	Тор	TYPE16 (13M)	-	2017-09-12	2018-09-11	
RF Co	RF Conducted Testing						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	Spectrum Analyzer	R&S	FSL6	100959	2017-09-12	2018-09-11	
2	Coaxial Cable	Тор	10Hz-30GHz	-	2017-09-12	2018-09-11	
3	Antenna Connector*	Realacc	45RSm	-	2017-09-12	2018-09-11	
4	4 DC Block Gwave GDCB-3G-N- SMA 140307001 2017-09-12 2018-09-11						
	"*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.						

5.2 Description of Support Units

Item	Equipment	Technical Data	Manufacturer	Model No.	Serial No.
1.	Adapter	Input:100- 240V~, 50- 60Hz, max 0.25A Output:DC 5V,1200mA	SHENZHEN YOUNGHOPE ELECTRONICS TECHNOLOGY Co., LTD	YHSW-050120J	

5.3 Measurement Uncertainty

Parameter	Uncertainty		
Radio Frequency	± 1 x 10 ⁻⁶		
RF Power	± 1.0 dB		
RF Power Density	± 2.2 dB		
Dadieted Churique Emissions test	± 4.56 dB (Bilog antenna 30M~1000MHz)		
Radiated Spurious Emissions test	± 4.96 dB (Horn antenna 1000M~25000MHz)		
Conducted Emissions test	± 2.66 dB (AC mains 150KHz~30MHz)		
Confidence interval: 95%. Confidence factor: k=2			

6 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207	Pass
Radiated Spurious Emissions	15.247(d) 15.205(a)	Pass
Band edge Emissions	15.209 15.247(d) 15.205(a)	Pass
Bandwidth	15.247(a)(1)	Pass
Maximum Peak Output Power	15.247(b)(1)	Pass
Frequency Separation	15.247(a)(1)	Pass
Number of Hopping Frequency	15.247(a)(1)(iii)	Pass
Dwell time	15.247(a)(1)(iii)	Pass
Antenna Requirement	15.203	Pass
RF Exposure	1.1307(b)(1)	Pass

Remark:

Pass Test item meets the requirement

Fail Test item does not meet the requirement N/A Test case does not apply to the test object

Reference No.: WTF18F05112858W Page 12 of 56

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit:

Fraguenay (MHz)	Conducted Limit (dBµV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 to 0.5	66 to 56*	56 to 46*		
0.5 to 5.0	56	46		
5.0 to 30 60 50				
*Decreases with the logarithm of the frequency.				

7.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the worst test data (GFSK modulation Low channel) were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live Line:

Neutral Line:

Reference No.: WTF18F05112858W Page 15 of 56

8 Radiated Spurious Emissions

Test Requirement FCC CFR47 Part 15 Subpart C Section 15.209 & 15.247

Test Method ANSI C63.10:2013

Test Result PASS

Measurement Distance 3m

Limit:

Frequency	Field Strer	ngth	Field Strength Limit at 3m Measurement Dis		
(MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature.....: 24.0°C

Humidity: 49.0% RH

Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the worst test data (GFSK modulation) were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Reference No.: WTF18F05112858W Page 17 of 56

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz 30MHz ~ 1GHz

Sweep Speed : Auto Sweep Speed : Auto IF Bandwidth : PK : 10kHz Detector Video Bandwidth : 10kHz Resolution Bandwidth : 100kHz Video Bandwidth : 300kHz Resolution Bandwidth : 10kHz

Above 1GHz

Sweep Speed : Auto

Detector : PK

Resolution Bandwidth : 1MHz

Video Bandwidth : 3MHz

Detector : Ave.

Resolution Bandwidth : 1MHz

Video Bandwidth : 10Hz

Reference No.: WTF18F05112858W Page 18 of 56

8.4 Test Procedure

- 1) The EUT is placed on a turntable, which is 0.8m(Below 1G) 1.5m(above 1G)above ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4) Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5) And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6) Repeat above procedures until the measurements for all frequencies are complete.
- 7) The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTF18F05112858W Page 19 of 56

8.6 Summary of Test Results

Test Frequency: 9 kHz~30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data (GFSK modulation mode) were reported.

Eroguanay Receiver		eiver Detector	Turn	RX An	RX Antenna C		Corrected	Limeit	Monein
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Low Channel								
36.89	40.78	QP	282	1.5	Н	-13.35	27.43	40.00	-12.57
36.89	42.31	QP	162	1.9	V	-13.35	28.96	40.00	-11.04
4804.00	56.17	PK	91	1.0	V	-1.06	55.11	74.00	-18.89
4804.00	43.29	Ave	91	1.0	V	-1.06	42.23	54.00	-11.77
7206.00	54.06	PK	306	1.7	Н	1.33	55.39	74.00	-18.61
7206.00	41.78	Ave	306	1.7	Н	1.33	43.11	54.00	-10.89
2341.25	45.17	PK	205	1.1	V	-13.19	31.98	74.00	-42.02
2341.25	38.48	Ave	205	1.1	V	-13.19	25.29	54.00	-28.71
2389.37	43.34	PK	277	1.6	Н	-13.14	30.20	74.00	-43.80
2389.37	38.71	Ave	277	1.6	Н	-13.14	25.57	54.00	-28.43
2488.03	44.97	PK	242	2.0	V	-13.08	31.89	74.00	-42.11
2488.03	38.87	Ave	242	2.0	V	-13.08	25.79	54.00	-28.21

			Turn table	Turn RX Antenna					
Frequency	Receiver	Detector		KX An	tenna	Corrected	Corrected Amplitude	Limit	Margin
, ,	Reading		Angle	Height	Polar	Factor			
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Middle Channel									
36.89	39.49	QP	280	1.9	Н	-13.35	26.14	40.00	-13.86
36.89	41.61	QP	66	1.9	V	-13.35	28.26	40.00	-11.74
4882.00	57.09	PK	5	1.6	V	-0.62	56.47	74.00	-17.53
4882.00	44.54	Ave	5	1.6	V	-0.62	43.92	54.00	-10.08
7323.00	53.03	PK	308	1.0	Н	2.21	55.24	74.00	-18.76
7323.00	40.97	Ave	308	1.0	Н	2.21	43.18	54.00	-10.82
2348.93	46.74	PK	277	1.0	V	-13.19	33.55	74.00	-40.45
2348.93	38.12	Ave	277	1.0	V	-13.19	24.93	54.00	-29.07
2383.75	42.86	PK	291	1.8	Н	-13.14	29.72	74.00	-44.28
2383.75	36.09	Ave	291	1.8	Н	-13.14	22.95	54.00	-31.05
2486.87	44.69	PK	26	1.8	V	-13.08	31.61	74.00	-42.39
2486.87	36.65	Ave	26	1.8	V	-13.08	23.57	54.00	-30.43

Receiver	Receiver	ceiver Datastan	Turn	RX Antenna		Corrected	Corrected	Linnis	Morgin
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel								
36.89	40.95	QP	255	1.5	Н	-13.35	27.60	40.00	-12.40
36.89	40.69	QP	140	1.9	V	-13.35	27.34	40.00	-12.66
4960.00	57.49	PK	75	1.2	V	-0.24	57.25	74.00	-16.75
4960.00	44.87	Ave	75	1.2	V	-0.24	44.63	54.00	-9.37
7440.00	52.10	PK	101	2.0	Н	2.84	54.94	74.00	-19.06
7440.00	41.44	Ave	101	2.0	Н	2.84	44.28	54.00	-9.72
2310.13	45.00	PK	77	1.7	V	-13.19	31.81	74.00	-42.19
2310.13	38.40	Ave	77	1.7	V	-13.19	25.21	54.00	-28.79
2388.23	43.97	PK	182	1.3	Н	-13.14	30.83	74.00	-43.17
2388.23	37.30	Ave	182	1.3	Н	-13.14	24.16	54.00	-29.84
2495.72	43.49	PK	302	1.1	V	-13.08	30.41	74.00	-43.59
2495.72	36.43	Ave	302	1.1	V	-13.08	23.35	54.00	-30.65

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTF18F05112858W Page 22 of 56

9 Band Edge Measurement

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated

emission limits specified in §15.209(a) (see §15.205(c)).

Test Method ANSI C63.10:2013

Test Mode...... Transmitting

9.1 Test Procedure

1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

9.2 Test Setup

Reference No.: WTF18F05112858W Page 23 of 56

9.3 Test Result

GFSK Transmitting Band edge-left side

GFSK Hopping Band edge-left side

Reference No.: WTF18F05112858W Page 24 of 56

GFSK Transmitting Band edge-right side

GFSK Hopping Band edge-right side

Reference No.: WTF18F05112858W Page 25 of 56

π /4 DQPSK Transmitting Band edge-left side

π /4 DQPSK Hopping Band edge-left side

Reference No.: WTF18F05112858W Page 26 of 56

π /4 DQPSK Transmitting Band edge-right side

π /4 DQPSK Hopping Band edge-right side

Reference No.: WTF18F05112858W Page 27 of 56

10 Bandwidth Measurement

Test Requirement FCC CFR47 Part 15 Subpart C Section 15.247

Test Method ANSI C63.10:2013

Test Mode...... Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure

1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2) Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Setup

10.3 Test Result

Modulation	Test Channel	20dB Bandwidth(MHz)	99% Bandwidth(MHz)
GFSK	Low	0.914	0.841
GFSK	Middle	0.923	0.859
GFSK	High	0.913	0.847
π/4 DQPSK	Low	1.257	1.171
л /4 DQPSK	Middle	1.218	1.170
л /4 DQPSK	High	1.226	1.172

Reference No.: WTF18F05112858W Page 28 of 56

Test result plot as follow:

GFSK Low Channel

GFSK Middle Channel

Reference No.: WTF18F05112858W Page 29 of 56

GFSK High Channel

π/4 DQPSK Low Channel

Reference No.: WTF18F05112858W Page 30 of 56

π /4 DQPSK Middle Channel

π /4 DQPSK High Channel

Reference No.: WTF18F05112858W Page 31 of 56

11 Maximum Peak Output Power

Test Requirement FCC CFR47 Part 15 Subpart C Section 15.247

Test Method : ANSI C63.10:2013

Test Limit.....: FCC CFR47 Part 15 Subpart C Section 15.247, For frequency hopping

systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping

systems in the 2400-2483.5 MHz band: 0.125 watts.

Test Mode....: Test in fixing frequency transmitting mode.

11.1 Test Procedure

1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2) Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3) Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Setup

11.3 Test Result

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	-3.626	30
GFSK	Middle	-4.131	30
GFSK	High	-4.811	30
π /4 DQPSK	Low	-2.611	30
π /4 DQPSK	Middle	-3.087	30
π /4 DQPSK	High	-3.829	30

Reference No.: WTF18F05112858W Page 32 of 56

Test result plot as follow:

GFSK Low Channel

GFSK Middle Channel

Reference No.: WTF18F05112858W Page 33 of 56

GFSK High Channel

π/4 DQPSK Low Channel

Reference No.: WTF18F05112858W Page 34 of 56

π /4 DQPSK Middle Channel

π /4 DQPSK High Channel

Reference No.: WTF18F05112858W Page 35 of 56

12 Hopping Channel Separation

Test Requirement FCC CFR47 Part 15 Subpart C Section 15.247

Test Method : ANSI C63.10:2013

Test Limit.....: FCC CFR47 Part 15 Subpart C Section 15.247, Frequency hopping

systems shall have hopping channel carrier frequencies

separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds

of the 20 dB bandwidth of the hopping channel, whichever is

greater, provided the systems operate with an output power no greater

than 125 mW.

Test Mode.....: Test in hopping transmitting operating mode.

12.1 Test Procedure

1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port

- 2) to the spectrum.
- 3) Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 4) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Setup

12.3 Test Result

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	1.000	PASS
GFSK	Middle	1.000	PASS
GFSK	High	1.000	PASS
π/4 DQPSK	Low	1.000	PASS
π /4 DQPSK	Middle	1.000	PASS
π /4 DQPSK	High	1.000	PASS

Reference No.: WTF18F05112858W Page 36 of 56

Test result plot as follow:

GFSK Low Channel

GFSK Middle Channel

Reference No.: WTF18F05112858W Page 37 of 56

GFSK High Channel

π /4 DQPSK Low Channel

Reference No.: WTF18F05112858W Page 38 of 56

π /4 DQPSK Middle Channel

π /4 DQPSK High Channel

Reference No.: WTF18F05112858W Page 39 of 56

13 Number of Hopping Frequency

Test Requirement FCC CFR47 Part 15 Subpart C Section 15.247

Test Method : ANSI C63.10:2013

Test Limit.....: FCC CFR47 Part 15 Subpart C Section 15.247. Frequency hopping

systems in the 2400-2483.5 MHz band shall use at least 15 channels

Test Mode.....: Test in hopping transmitting operating mode.

13.1 Test Procedure

1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2) Set the spectrum analyzer: RBW = 100 KHz. VBW = 300 KHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3) Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4) Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto.

13.2 Test Setup

13.3 Test Result

Test result plot as follow:

79 Channels in total GFSK

79 Channels in total Π /4 DQPSK

Reference No.: WTF18F05112858W Page 41 of 56

14 Dwell Time

Test Requirement FCC CFR47 Part 15 Subpart C Section 15.247

Test Method: ANSI C63.10:2013

Test Limit.....: FCC CFR47 Part 15 Subpart C Section 15.247. Frequency hopping

systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency

provided that a minimum of 15 channels are used.

Test Mode....: Test in hopping transmitting operating mode.

14.1 Test Procedure

1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3) Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4) Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Setup

14.3 Test Result

DH5 Packet permit maximum 1600/79/6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*0.4*79*(MkrDelta)/1000		
DH3	1600/79/4*0.4*79*(MkrDelta)/1000		
DH1	1600/79/2*0.4*79*(MkrDelta)/1000		
Remark: Mkr Delta is once pulse time.			

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.905	0.310	0.4
		Middle	2.909	0.310	0.4
		High	2.915	0.310	0.4
Pi/4DQPSK	2DH5	Low	2.906	0.311	0.4
		Middle	2.910	0.311	0.4
		High	2.903	0.311	0.4

Remark: only the worst data were recorded.

Reference No.: WTF18F05112858W Page 43 of 56

Test result plot as follow:

GFSK DH5 Low Channel

GFSK DH5 Middle Channel

Reference No.: WTF18F05112858W Page 44 of 56

GFSK DH5 High Channel

π /4 DQPSK DH5 Low Channel

Reference No.: WTF18F05112858W Page 45 of 56

π /4 DQPSK DH5 Middle Channel

π/4 DQPSK DH5 High Channel

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacture may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221.Further ,this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Subpart C Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one Built-in IFA, the gain is -0.58dBi meets the requirements of FCC Subpart C 15.203.

Reference No.: WTF18F05112858W Page 47 of 56

16 FCC ID: 2AEOP-S639 RF Exposure

Test Requirement : FCC Part 1.1307

Test Method : FCC Part2.1093 & KDB 447498 D01 General RF Exposure

Guidance v06

16.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTF18F05112858W Page 48 of 56

16.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain	Max. Peak Output	Peak Output Power (mW)	Power Density	Limit of Power
(numeric)	Power (dBm)		(mW/cm2)	Density (mW/cm2)
0.87	-2.611	0.55	0.000095	1

17 Photographs S639_Test Setup

17.1 Photographs S639_Conducted Emission Test Setup

17.2 Photographs S639_Radiated Emission Test Setup

30MHz-1GHz

Above 1GHz

18 Photographs - Constructional Details

18.1 Model S639- External View

Reference No.: WTF18F05112858W Page 52 of 56

Reference No.: WTF18F05112858W Page 53 of 56

Reference No.: WTF18F05112858W Page 54 of 56

18.2 Model S639- Internal View

Reference No.: WTF18F05112858W Page 56 of 56

====End of Report=====