SLUČAJNE SPREMENLJIVKE

•
$$E(X) = \sum kP(X = k)$$
 ali $E(X) = \int xg_X(x)dx$.

•
$$D(X) = E(X^2) - E(X)^2$$

•
$$\sigma(X) = \sqrt{D(X)}$$

•
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

•
$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)\sigma(Y)}$$

Diskretne porazdelitve

Indikatorska I(p)

I zavzame vrednost 1 z verietnostio p in 0 sicer.

•
$$P(I=1) = p, P(I=0) = 1 - p$$

•
$$E(I) = p$$

•
$$D(I) = p(1-p)$$

Binomska $X \sim \text{Bin}(n, p)$

Pri vsaki ponovitvi poskusa ima izid A verjetnost p. X je število pojavitev izida A v n ponovitvah poskusa.

•
$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} = \text{dbinom}(k, n, p)$$

$$\bullet \ E(X) = np$$

$$D(X) = np(1-p)$$

Geometrijska $X \sim \mathbf{G}(p)$

Pri vsaki ponovitvi poskusa ima izid A verjetnost p. X je število ponovitev poskusa do (vključno) prve pojavitve izida A.

•
$$P(X = k) = (1 - p)^{k-1}p = dgeom(k - 1, p)$$

•
$$E(X) = \frac{1}{p}$$

•
$$D(X) = \frac{1-p}{p^2}$$

Negativna binomska $X \sim \text{NegBin}(k, p)$ 2.2 Eksponentna $X \sim \text{Exp}(\lambda)$

Pri vsaki ponovitvi poskusa ima izid A verjetnost p. X je V povprečju imamo na časovno enoto λ ponovitev dogodka število ponovitev poskusa do (vključno) k-te pojavitve izida A. X je čas med dvema zaporednima dogodkoma.

•
$$P(X = n) = \binom{n-1}{k-1} p^k (1-p)^{n-k} =$$

= dnbinom $(n - k, k, p)$

•
$$E(X) = \frac{k}{p}$$

•
$$D(X) = \frac{k(1-p)}{p^2}$$

Hipergeometrijska $X \sim \mathbf{H}(R, B, n)$

V posodi imamo R rdečih in B belih kroglic. Iz posode izvlečemo n kroglic. X je število rdečih kroglic v izboru.

•
$$P(X = k) = \frac{\binom{R}{k}\binom{B}{n-k}}{\binom{R+B}{n}} = \text{dhyper}(k, R, B, n)$$

•
$$E(X) = \frac{nR}{R+B}$$

•
$$D(X) = \frac{nRB(R+B-n)}{(R+B)^2(R+B-1)}$$

1.6 Poissonova $X \sim \mathbf{P}(\lambda)$

V povprečju imamo na nekem intervalu λ ponovitev dogodka A. X je število ponovitev dogodka A na tem intervalu (če interval spremenimo, moramo ustrezno popraviti tudi λ).

•
$$P(X = k) = \frac{\lambda^k}{k!} \exp(-\lambda) = \operatorname{dpois}(k, \lambda)$$

•
$$E(X) = \lambda$$

•
$$D(X) = \lambda$$

Zvezne porazdelitve

Enakomerna

•
$$Z_X = [a, b]$$

•
$$g_X(x) = \frac{1}{(b-a)}$$

•
$$E(X) = \frac{a+b}{2}$$

•
$$Z_X = [0, \infty)$$

•
$$g_X(x) = \lambda \exp(-\lambda x)$$

•
$$P_X(x) = 1 - \exp(-\lambda x) = \exp(x, \lambda)$$

•
$$E(X) = \frac{1}{\lambda}$$

•
$$D(X) = \frac{1}{\lambda^2}$$

2.3 Normalna $X \sim N(\mu, \sigma)$

•
$$Z_X = \mathbb{R}$$

•
$$g_X = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

•
$$E(X) = \mu$$

$$\bullet \ D(X) = \sigma^2$$

•
$$P_X(x) = \operatorname{pnorm}(x, \mu, \sigma)$$

Centralni limitni izrek

Binomska porazdelitev

$$X \sim \text{Bin}(n, p) \dot{\sim} \text{N}\left(np, \sqrt{np(1-p)}\right)$$

3.2 Vsota

$$X_i$$
 neodvisne, $E(X_i) = \mu$, $\sigma(X_i) = \sigma$, $S_n = X_1 + \ldots + X_n$.
$$S_n \sim N(n\mu, \sigma\sqrt{n})$$

3.2.1 Povprečje

$$X_i$$
 neodvisne, $E(X_i) = \mu$, $\sigma(X_i) = \sigma$, $\overline{X} = \frac{X_1 + \dots + X_n}{n}$.

$$\overline{X} \dot{\sim} N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$