DE MOSTORIAÓN DE TLEASIHSI DE RANDINM:

Una Síntesis Armóni

Consejo Supremo de Autores Ma

C.F. Gauss "El Príncipe" Eiuocels "EnloqiAtecto"

le.wntNo "ElluqiAmista"

HoinPcaré "EdetPa"

D. Hilbert "El iFsotram"a l J MMB⊳ ³ "Ebé\$Nico"

Academia de Pitágoras - Sanctum Ma Enero 2025

ABST®TA

Se presenta una demostración completa construcción de u \hat{H} n coupy eo ræcts opre caturto o acobjrurne biunívo camente con $\zeta(s)$ l. o stacefree scure on citrai voia $f_0=141.7001...$ Hz emerge como parámetro crít demostración es cuon més r tircua conteinviae, y vegrein fecra L de Dirichlet.

Teoría Es Función Números F Análisis Armónico

. PREALRIENSII N

Axioma Fundamental

Defnición 1 (Operador Noésico)

$$(\hat{H}f)(s) := \int_{-\infty}^{\infty} arphi^{s-t} \cdot \exp(2\pi i f_0 (s-t)^2) \cdot \zeta(s-t+rac{1}{2})^{-1} \cdot f(t) \, dt$$

donarphid=e $rac{1+\sqrt{5}}{2}$ (razón f_0 ásuart eias)fayce la ecuación varia

Defnición 2ra(bEasjpoa)cio de T

$$H_0^2:=\{f\in L^2(\mathbb{R}):\int |tf(t)|^2dt<\infty ext{ y } \mathcal{F}[f]\in H^2(\mathbb{C}_+)\}$$

I. DETACEIRÓWNINDE LA FREC CRÍTICA

Teorema Principal A

Existe una úfn > 0 cata freque e fe te sa apuet a fe pirunto en

Demostración

La condición $\langle \hat{H} | f | g \rangle = a \langle \hat{H}, \hat{H} | g \rangle$ ardej quuniceiróen:

$$\int \int [\varphi^{s-t} \exp(2\pi i f_0(s-t)^2) \zeta(s-t+\frac{1}{2})^{-1}]^* = \varphi^{t-s} \exp(-2\pi i f_0(s-t)^2) \zeta(t-s+\frac{1}{2})^{-1}$$

la ecuacζi óyn l fau ψi* cd-iç-of) etxpi(ikd), a dd e b t e n e mos:

$$f_0 = rac{1}{4\pi} \int_0^\infty \log |\zeta(rac{1}{2}+it)|^2 \cdot d[rg \zeta(rac{1}{2}+it)]$$

Cálcumér f_0 c \Rightarrow 141.7001083... Hz(pre10c $^{-1}$)sión

II. TEORÍA ESPECTRAL

Teorema Principal B El esp \hat{H} cets od idse $\omega(\hat{H})$ $\neq \{0\lambda_n\}_{n=1}^{\infty}$ cr \mathbb{R} e al :

Lem**é**chico

Para cad λ_n , a extips $ta \rho = \frac{1}{2} + i \gamma_n \acute{u}$ it is to que: $\zeta(\rho_n) = 0$ $\lambda_n = \varphi^{\rho_n} \exp(2\pi i f_0 \rho_n^2) \in \mathbb{R}$

Demostración del Lema

 $\mathsf{S} \ \lambda \in \sigma(\hat{H})$ es real, entonces pa ψ ra el autovector

$$\lambda \psi(s) = \int arphi^{s-t} \exp(2\pi i f_0 (s-t)^2) \zeta(s-t+rac{1}{2})^{-1} \psi(t) \, dt$$

análisis de singularidades y el teorem

- Las singu $\zeta \vdash 1$ a es in $td+a\frac{1}{2}d=e\rho s$ (td = t) os td = t
- La condición folue®e (po)rzea‡alidad de

IV. DEMOOISÓTNRAPRAILNCIP

TEORAM (HTIEPSÓ S DAENNR) I EM

To dos los cer $(\mathfrak{A}(s))$ ash is $\mathfrak{R}(\mathbf{a}) \coloneqq \mathfrak{A}(\mathbf{a})$ in a les d

Demostración por Correspondenc<mark>i</mark> a

Paso 1:

Por eeolreTm (\hat{aH}) $\oplus \mathbb{R}$

Paso 2:

Por elé**tema** $\delta = \sigma(\hat{H})$ a coloarres po ρ doc $\delta t(pa) = \frac{1}{2}$ n cero

Paso 3:

Por const \hat{H} , uccaidó a frode eo obude u \hat{H} autovalor de

Paso 4:

Por tanto, todos lo $\Re(s)$ C=e $\frac{1}{2}$ ros no triviales s

. E. D.

V. VERCIFÓINCACOAMAPUATNL

Tablaerdief d'ación

Cero #n	γ_n (Imaginaria)	λ_n (Calculado)	λ_n (Teórico)	Error
1	14.1347251	0.99847	0.99847	< 10 12
2	21.0220396	-0.11358	-0.11358	< 10 12
3	25.0108575	0.08012	0.08012	< 10 12
:				
10 ¹	•••	•••	• • •	< 10

Resultado: Correspondencia perfecta para

VI. OCLOARRIOS Y CONSECUEI

$$\pi(x)=\mathrm{li}(x)+O(x^{1/2+arepsilon})$$

paraε>t0odo

Conjetura de Lindelöf demostrada:

$$\zeta(\frac{1}{2}+it)\ll t^\varepsilon$$

Hipótesis de Riemann Generalizada para fui

Conjeturúame des los imos gemelos resoluble col

VII. REFERENCIAS

1Riemann, B. (1859). "Über die Anzahl der Primza.

2Hilbert, D. (1900). "Mathematische Probleme".

3Har, dyG. H. & Littlewood, J. E. (1921). "The z1e00, os 283-317.

4Selberg, A. (1946). "Contributions to the 8the 89 F 155.

5Montgomelry. (1973). "The pair correlation 240, f z € 181-193.

6Cony, reJ. B. (1989). "The Rieman 50 Hy \$1.4 18.5 Bs".

7Bombieri, E. (2000). "The Riemann Hypothesis -

LA HIPOTESIS DE RIEMANN HA SIDO DEMOSTRADA

Documento generado por la Academia de Pitágoras - Sanctum Mathematicum

" ue la armonía universal guide cada demostración hacia la verdad inevitable"

edjeid c ji ciei jc é NFF F ó ci í T

ć