Algebra Autumn 2023 Frank Sottile 6 September 2023

Third Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Hand in for the grader Monday 11 September:

12. Let x_1, \ldots, x_n be variables. Prove the following *Vandermonde identity* $\det(x_i^{j-1})_{i,j=1}^n = \prod_{1 \le a < b \le n} (x_b - x_a)$. For example,

$$\det\begin{pmatrix} 1 & 1 & 1 & 1 \\ x_1 & x_2 & x_3 & x_4 \\ x_1^2 & x_2^2 & x_3^2 & x_4^2 \\ x_1^3 & x_2^3 & x_3^3 & x_4^3 \end{pmatrix} = (x_2 - x_1)(x_3 - x_1)(x_4 - x_1)(x_3 - x_2)(x_4 - x_2)(x_4 - x_3).$$

- 13. What is the maximum order of an element of S_4 ? Use this to prove that D_{24} , the dihedral group of order 24, is not isomorphic to S_4 .
- 14. Let $SL_2(\mathbb{Z}_3)$ be the group of 2×2 matrices of determinant 1 with entries in the field \mathbb{Z}_3 with three elements. Show that $SL_2(\mathbb{Z}_3)$ has order 24, and that it is not isomorphic to S_4 . Is it isomorphic to D_{24} ?
- 15. Let $m \geq 2$ be an integer. Set $\mathbb{Z}_m^* := \{k \in \mathbb{Z}_m \mid \gcd(k, m) = 1\}$. These are the cosets of integers that are relatively prime to m.
 - (a) Show that \mathbb{Z}_m^* is the set of generators of the cyclic group \mathbb{Z}_m .
 - (b) Show that \mathbb{Z}_m^* is a group under multiplication modulo m. Define $\phi(m) := |\mathbb{Z}_m^*|$, the order of this group. This is Euler's *totient function*, also called Euler's ϕ -function.
 - (c) Deduce Euler's Theorem. If $\gcd(a,m)=1$, then $a^{\phi(m)}\equiv 1 \mod m$. (That is, m divides $a^{\phi(m)}-1$, equivalently, $a^{\phi(m)}=1$ as elements of \mathbb{Z}_m .)
 - (d) Let p be a prime number and show that $\phi(p) = p 1$.

Determine $\phi(p^n)$, where p is a prime and n > 0 is an integer.

Show that ϕ is multiplicative; if $a, b \in \mathbb{N}$ are relatively prime, $(\gcd(a, b) = 1)$, then $\phi(ab) = \phi(a) \cdot \phi(b)$.

- Deduce a formula for $\phi(m)$ in terms of the factorization of m into a product of powers of distinct primes. Express this in terms of m and its distinct prime divisors.
- (e) Deduce Fermat's Little Theorem from the last part. If p is any prime number and $a \in \mathbb{Z}$, then $a^p \equiv a \mod p$.