

Using Satellite Data in GIS

Michael Soracco NOAA Affiliate for NOAA CoastWatch College Park, MD

https://coastwatch.noaa.gov coastwatch.info@noaa.gov

Versioning: 20210429, Soracco 20210401, Soracco 2020, Soracco 2019, Soracco

This Training

- Component of the NOAA CoastWatch Satellite Training Course
- Comprised of 3 modules: Data, Tools, Exercise(s)
- Uses ESRI ArcMap, but techniques work with QGIS and other GIS software
- Updated from CoastWatch Satellite GIS training originally given in 2000 for avenue-based ArcView 3.1

A few notes on ArcMap for NOAA Users

- The exercises and screenshots were created using ArcGIS 10.7
- The current version of ArcMap is 10.8.1
- The EDC has been updated and will install with any version of ArcMap 10.4+
- ArcMap 10.8.1 is the final release of ArcMap and all future development will go into ArcGIS Pro. ArcMap 10.8.1 will continue to be supported until 2026 via the normal Esri support cycle. If you are unsure of which product to choose, consider ArcGIS Pro.
- ESRI support for ArcMap 10.8.1

ESRI support for ArcMap 10.8.1

Product Life Cycle

Product Lifecycle Policy

Product: ArcGIS Desktop 10.8.1

Release Date: July 28, 2020

Support status: General Availability

		General Availability Jul 2020 - Feb 2022	Extended Support Mar 2022 - Feb 2024	Mature Support Mar 2024 - Feb 2026	Retired March 01, 2026
	Request Case	~	~	~	
Technical Support –	Phone and Chat	~	~	~	
	Online support resources	~	~	~	~
	Software updates and patches	~	~		
Software Support –	Software hotfixes	~	~		
	New environment certification	~			

This slide has no audio

Note for Software Hotfixes: For details about hotfix policies, please refer to the Developer Technologies section in the Esri Product Lifecycle Support Policy document.

Using Satellite Data in GIS: Exercise

Michael Soracco NOAA Affiliate for NOAA CoastWatch College Park, MD

https://coastwatch.noaa.gov coastwatch.info@noaa.gov

Versioning: 2020, Soracco, ArcMap 10.7

Exercise Background

Patterned after Python Exercise:
 "Extract data along turtle track" ---

https://coastwatch.gitbook.io/satellite-course/tutorials/python-tutorial/4.-extract-data-along-a-turtle-track

- Uses import of NetCDF, CSV
- Builds upon "ArcGIS Tutorial" and TurtleWatch Zone --

https://coastwatch.gitbook.io/satellite-course/tutorials/arcgis-tutorial

- Identifies 0 to 360 and
 - -180 to 180 longitude issues

Multi-year turtle track atop single SST image

ArcGIS: Extract data along a turtle track

- Scenario: A juvenile loggerhead sea turtle (ARGOS ID 25317) provided positional data over a period of three years
- Research Question: Does this sea turtles' behavior correspond to oceanographic surface parameters such as sea surface temperature? Does the turtle remain within the TurtleWatch Area (17.5° to 18.5°C)?
- Conditions:
 - Date range: May 2005 2008 (1232 days)
 - Distance travelled: 19,491 km
 - Tracking Duty Cycle:
 - 6 hours on , 48 hours off

Strategy

There are often several pathways to achieve the same results using GIS.

Strategy

- Perform matchup of turtle locations with parameters
 - Import Turtle CSV:
 - https://oceanwatch.pifsc.noaa.gov/files/25317_05.dat
 - Convert to Feature Layer / Shapefile
- Obtain SST satellite data for geographic coverage and period of study
- Outputs:
- 1. Overview map example day of parameter and turtle tracks
- 2. Map output showing turtle locations and parameter values
- 3. Graph of parameter value for each turtle location vs Time
- 4. Export Movie showing Turtle, Parameter, TurtleWatch Zone

- Allows a quick look at the data types and extents we'll be working with
- For the Overview Map, only the turtle track CSV file is required.
- Displaying a parameter (i.e. SST) is optional, but the map should be labeled that the SST data is from a single day.
- Use 0->360 data for this Overview Map
- As a general rule-of-thumb, load raster data first as ArcMap will use the coordinate system of the raster data

- Obtain SST data from <u>https://oceanwatch.pifsc.n</u> oaa.gov/
 - in 0-360
 - a SINGLE date between the start/end of the turtle track – i.e. October 10, 2006
 - ERDDAP Link

- Obtain Turtle Track
 - Data <u>Link</u>

```
"mean_lon", "mean_lat", "year", "month", "day" 176.619432886108, 32.6787283689241, 2005, 5, 4 176.783786497336, 32.755450905856, 2005, 5, 5 177.086094792196, 32.8703371644739, 2005, 5, 6 177.523857440759, 32.8593957701299, 2005, 5, 7 178.058144591188, 32.6740108044364, 2005, 5, 8 178.477225321586, 32.4596669014395, 2005, 5, 9 178.739279086398, 32.3402034409515, 2005, 5, 10 178.959668448728, 32.2630123770382, 2005, 5, 11 179.19299156409, 32.1452863228285, 2005, 5, 12
```

https://oceanwatch.pifsc.noaa.gov/files/25317 05.dat

- Open ArcMap to Blank Map
- Drag-and-Drop the NetCDF file onto the View

• SST data is 0-360

- Add XY Data to import Turtle Track using one of these methods
 - Add Data Icon, Iocate CSV, right-mouse Add X-Y
 - File->Add Data->Display X-Y Data
- Set the X and Y Fields

- Obtain Turtle Track
 - Data <u>Link</u>
 - Save As: 25317_05.dat.csv

https://oceanwatch.pifsc.noaa.gov/files/25317_05.dat

- Tailor the Map
- Options:
 - Title
 - Color symbology to SST
 - Turtle track icon/color
 - Basemap / Labels
 - Map properties (Legend, scale, North arrow, graticules)

- Label the Layout View
- Save the map as an image file
- We now have an overview of the 3+ year Turtle track

https://coastwatch.noaa.gov

Overview Map -- Observations

- Data is displayed across the Dateline
- Loading X-Y Data created a table for display only (not queryable/selectable)
- Drag-and-drop worked well for the single NetCDF image and subsequent data matched the coordinate system of the raster layer.
- Given the extent of the track spatially and temporally, that could result in a lot of data...

Strategy Adjustments

- Reduce study area to:
 - Feature of interest
 - ~15 months or (37% of total track time)
 - Geographic area
 - Lat: 31-42 deg N
 - Long360: 189 to 200 deg
 - Long180: -171 to -160 deg

https://coastwatch.noaa.gov

Work in -180 to 180

Data Preparation -- Turtle Data

- Turtle CSV: https://oceanwatch.pifsc.noaa.gov/files/25317_05.dat
- No metadata
- One X-Y pair per day
- Satellite tracking so we'll assume WGS84 Ellipsoid / Datum

Data Preparation – Turtle Data (cont.)

- Headers: "mean_lon", "mean_lat", "year", "month", "day"
 - Save As .csv; load into a spreadsheet or use 'more' in Linux to see file contents

					/	1			
mean lon	mean lat year	month	dav		mean_lon	mean_lat year	month	day	
–	<i>- '</i>		uay		247.0782	107 22.70993	2008	6	9
176.6194329	32.67873	2005	5	4	247.0520	168 22.74948	2008	6	8
176.7837865	32.75545	2005	5	5				•	_
177.0860948	22 07024	2005	_	6	247.1459	359 22.75972	2008	6	10
177.0000946	32.67034	2005	5	6	247.0483	884 22.83755	2008	6	7
177.5238574	32.8594	2005	5	7				6	
					247.2265	195 22.85263	2008	6	11

- Other observations about the CSV
 - Temporal Range: May 4, 2005 September 18, 2008
 - Spatial Range:
 - Latitude: 22.70 to 43.86;
 - Longitude: 175.86 to 249.28 (175.86E to 110.72W)
 - Longitudes 0 to 360 degrees. [Most GIS can handle 0-360 but not with all tools]
 - Separate fields for Year, Month, Day. No times.

Data Preparation: Input data modification

- Modify the dat/CSV file. Combine the Year, Month, Day to a single field.
 For this exercise using ArcMap, the following conventions are preferred:
 - A coverage or shapefile identifies dates in a date field with this format: yyyy-mm-dd.
 - A geodatabase formats the date as datetime yyyy-mm-dd hh:mm:ss AM or PM
- Use a spreadsheet and create a Date column with '=DATE(C2,D2,E2)' to convert into a date and re-format to custom yyyy-mm-dd
- Use a spreadsheet and create a mean_lon180 column with '=A1-360'
- Reorder columns: Date, mean_lon180, mean_lat, etc. Save as CSV

Action: Use a spreadsheet and modify the CSV file:

Add mean_lon180

Add Date

Δ	Α	В	С	D	E	F	G	Н	I	J
1	Date	mean_lon180	mean_lat	mean_lon	mean_lat	year	month	day	Date	mean_lon180
2	2005-05-04	-183.3805671	32.67873	176.6194329	32.67873	2005	5	4	2005-05-04	-183.3805671
3	2005-05-05	-183.2162135	32.75545	176.7837865	32.75545	2005	5	5	2005-05-05	-183.2162135
4	2005-05-06	-182.9139052	32.87034	177.0860948	32.87034	2005	5	6	2005-05-06	-182.9139052
5	2005-05-07	-182.4761426	32.8594	177.5238574	32.8594	2005	5	7	2005-05-07	-182.4761426
6	2005 05 00	101 0/1055/	22 67/01	170 0501///6	22 67/01	2005	5	0	2005 05 00	101 0/1055/

Obtain Satellite Data

- SST
 - Require values of each parameter
 - Source of turtle data is mean lat/long, can a turtle travel more than 1km or 5km in a day?
 - Temporal period is daily, multiyear
 - NOAA Blended SST a good candidate
- Use either EDC, ERDDAP, THREDDS, OpenDAP to obtain a NetCDF dataset with daily time 'slices'.
- Note if using 0 to 360 or -180 to 180; Choose to match other data
- The following slides show multiple means to obtain the data

Obtain Satellite Data

ERDDAP:

- 0-360: goes-poes-1d-ghrsst-RAN_360_turtle2005-2007.nc
 - <a href="https://oceanwatch.pifsc.noaa.gov/erddap/griddap/goes-poes-1d-ghrsst-RAN.nc?analysed_sst[(2005-12-20T12:00:00Z):1:(2007-04-07T12:00:00Z)][(31):1:(42)][(188):1:(201)]
- -180 to 180: noaacwBLENDEDsstDaily_180_turtle2005-2007.nc
 - https://coastwatch.noaa.gov/erddap/griddap/noaacwBLENDEDsstDaily.nc?analysed_sst[(2005-12-20T12:00:00Z):1:(2007-04-07T12:00:00Z)][(31):1:(42)][(-171):1:(-160)]
 - THREDDS (Aggregated View):
 - https://coastwatch.noaa.gov/thredds/ncss/BlendedSST5kmNightAggGHRSSTSTARLoM?var=analysed_sst&north=42&west=-171&east=-160&south=31&disableProjSubset=on&horizStride=1&time_start=2005-12-20T12%3A00%3A00Z&time_end=2007-04-07T12%3A00%3A00Z&timeStride=1&accept=netcdf

Obtain Satellite Data -- THREDDS

- THREDDS (Aggregated View)
 - NCSubsetService
 - Generates URL in addition to fetching data

https://coastwatch.noaa.gov/thredds/ncss/BlendedSST5kmNightAggGHRSSTSTARL oM?var=analysed_sst&north=42&west=-171&east=-160&south=31&disableProjSubset=on&horizStride=1&time_start=2005-12-20T12%3A00%3A00Z&time_end=2007-04-07T12%3A00%3A00Z&timeStride=1&accept=netcdf

Obtain Satellite Data

• EDC

- Graphical interface to define extent, time, variables
- Automatically loads into GIS

Obtain Satellite Data

• EDC

 Can load the track and only pull the raster values for each point/time

Loading Satellite Data

- Open ArcMap to Blank Map
- Open ArcToolBox
- Use Multidimension Tools:
 - Make NetCDF Raster Layer
- Set the Input netCDF file
 - noaacwBLENDEDsstDaily_180_turtle2005-2007.nc
- Confirm Variable, X, and Y Dimensions
- Add time as a Dimension Value

Loading Satellite Data -- Layer Properties - General / Extent

- Rename:
 - Layer:
 - Sea Surface Temperature (NOAA)
 - Description
 - Credit
- Confirm Extent

Loading Satellite Data -- Layer Properties -- Symbology

 Reset the Stretch type to Minimum-Maximum

 Reset the High/Low Values to 280-305

Select a color ramp of choice

Loading Satellite Data -- Layer Properties -- NetCDF

Verify the NetCDF settings

Loading Satellite Data -- Layer Properties -- Time

- Enable Time on the Layer
- Set the Time Dimension to 'time'
- Set the Step Interval to '1'
 - You may need to revisit this as ArcMap will rest the value when Calculating range
- Set the Time Zone to UTC
- Click 'Apply' and verify values
- Click 'OK'

Display Satellite Data

Enable Time Slider

- Click the 'Play' Arrow
 - The images should change as the dates advance
 - The color scale range should remain the same for each time step

Time Slider

- Controls time for all layers in map (Enable/Disable) and Tools
- If layers do not display, check:
 - Time Zone
 - Step Interval
 - Time Window
- Exports movie

Loading Data: CSV file

- Use the CSV file:
 - 25317_05_dat_DATE_LON180.csv
- Choose a method to import the CSV file
 - Add XY Data, or
 - Create Feature Class from X-Y Table
- Export as Shapefile [Feature Class will do this automatically]

Loading Data: CSV file Add XY Data

- 1. Open ArcMap
- 2. Open a Blank Map
- 3. Select file->Add Data->Add XY Data

Loading Data: CSV file Add XY Data

- Set the table to your CSV file
- 2. Set the X,Y Fields
- Edit and Set the Coordinate System [Global Coordinate System -> WGS1984]
- 4. Click OK

lon180 may be your X Field

Loading Data: CSV file Add XY Data

- An Object-ID warning may appear
- 2. Click OK
- 3. If the warning appeared, Export the data and re-add the layer to Map

Loading Data: CSV file Add XY Data

- By default, the View will show -180 to 180, splitting the data at the 'dateline'
- When we adjusted the longitudes (subtracting 360), the East longitudes become 'westernized' as values less than -180. Depending on how the data are loaded and assigned projection, they can display across the dateline.

Loading Data: CSV file

- Open the Catalog
- Navigate to the CSV file and right-click
- Select Create Feature Class
- Populate the Input Fields, Coordinate System, and Output shapefile location
- A notification may suggest adding an ObjectID

Create Feature Class From XY Table

Loading Data: CSV file

Create Feature Class

 Set/Confirm the Coordinate system

 Select Global Coordinate System

Select WGS1984

Loading Data: CSV file

 Verify the Coordinate System under the Source tab

https://coastwatch.noaa.gov

Feature Layer Workflow

- The entire Turtle Track is loaded
- Reduce/filter track to only dates between 12/20/2005 and 4/07/2007
- Perform spatial-temporal sampling with the new Track and SST layer
- Select events from the results to reduce the results to the track points and corresponding SST by date
- Export data, Add as layer
- Proceed

Filter the Feature Layer

 Open 'Select by Attributes'

 Use Date in the SELECT statement to

 Other selection methods could achieve the same results

"Date" >= date '2005-12-20 00:00:00' AND "Date" <= date '2007-04-07 00:00:00'

Save the Selection as a Layer

- Right-mouse click on the feature layer
- Follow the Selection menu to 'Create Layer From Selected Features'
- When prompted, accept 'Add this layer to map'

Enable Time on the Selection Layer

- Open Layer Properties
- Check the 'Enable time on this layer' box
- Set Time Step Interval to 1 Days
- Set Time Zone to UTC
- Click Apply and Calculate
- Reset Time Step Interval to '1' and 'Days'

https://coastwatch.noaa.gov

Click OK

Extracting data from the Raster Layer by using the Feature Layer

• ArcGIS:

- https://desktop.arcgis.com/en/a rcmap/10.3/tools/spatialanalyst-toolbox/an-overview-ofthe-extraction-tools.htm
- ArcToolbox->Spatial Analyst Tools->Extraction > Sample

• QGIS:

- https://docs.qgis.org/3.10/en/do cs/user_manual/processing_alg s/qgis/rasteranalysis.html#sam ple-raster-values
- Processing->Toolbox-> Raster analysis > Sample raster values algorithm

Extracting data using the Sample Tool

- By default, the tool will operate for all points on a single 'slice' of the Raster cube.
- Resulting table is a single layer raster extraction for December 20,2005 for all points (Dec 2005 to April 2007).

https://coastwatch.noaa.gov

Extracting data using the Sample Tool

 Tool performs multidimensional extraction retrieving values for all slices

 Resulting table has raster values for each point for each time slice

Extracting data using the Sample Tool

 Our result requires selecting the records from the results table to build a layer with the appropriate x,y,t between the point and raster layer

Using the Selected Feature Layer for Sampling

- The selected feature layer contains 474 points.
- The SST layer contains 474 raster layers; one for each day.
- Most geoprocessing tools will work with time (which in ArcMap is managed by the Time Slider), but not always how we would expect.
- The Sample tool will obtain an SST value for each point on each day. [474 points * 474 days = 224676 records]

Perform the Sampling

- Open the ArcToolBox
- Find Spatial Analyst Tools->Extraction->Sample
- Double-click to activate Sample tool

Perform the Sampling

 Set the input raster and location source fields

Set a name for the output table

 Sampling tool has a checkbox to enable using multidimensions

By default (multidimensional unchecked), the tool will work on the current date selected in the Time Slider

Perform the Sampling

- Right-mouse and open the data table on the turtlesamples table
- Note the layout of the table
 - Multiple entries per date
 - Analysed_sst column added
 - Rowid prefixed to the table
 - 224,676 records total

٦	Rowid	TURTLE2005-2007	X	Y	ANALYSED_SST	TIME
7	1	0	-170.563514	35.386402	289.16	12/20/2005
I	2	1	-170.420929	35.180685	289.39	12/20/2005
]	3	2	-170.275334	35.005874	289.52	12/20/2005
]	4	3	-170.065114	34.895738	289.61	12/20/2005
J	5	4	-169.801612	34.811369	289.76	12/20/2005
Ì	6	5	-169.517574	34.6447	290.11	12/20/2005
Ì	7	6	-169.240426	34.402489	290.44	12/20/2005
Ì	8	7	-168.988636	34.17868	290.63	12/20/2005
Ì	9	8	-168.740027	34.006809	290.74	12/20/2005
Ì	10	9	-168.484304	33.855427	290.81	12/20/2005
Ì	11	10	-168.229963	33.704795	290.98	12/20/2005
Ì	12	11	-168.00598	33.567442	291.16	12/20/2005
Ì	13	12	-167.827647	33.45093	291.12	12/20/2005
Ì	14	13	-167.665197	33.325988	291.03	12/20/2005
ĺ	15	14	-167.518611	33.14283	291.02	12/20/2005
ĺ	16	15	-167.393592	32.922825	291.05	12/20/2005
1	17	16	-167.263742	32.732147	291.16	12/20/2005
Ì	18	17	-167.118637	32.573252	291.26	12/20/2005
Ì	19	18	-166.968249	32.420312	291.4	12/20/2005
Ì	20	19	-166.818379	32.268085	291.5	12/20/2005
Ì	21	20	-166.684849	32.137928	291.61	12/20/2005
ĺ	22	21	-166.581626	32.048744	291.69	12/20/2005
j	23	22	-166.494297	31.988446	291.69	12/20/2005
ĺ	24	23	-166.429122	31.956778	291.65	12/20/2005
ĺ	25	24	-166.367899	31.945366	291.67	12/20/2005
1	26	25	-166.23245	31.962584	291.56	12/20/2005
1	27	26	-166.040152	32.020436	291.47	12/20/2005
j	28	27	-165.874184	32.087047	291.41	12/20/2005
•		1 > >1	(0 out of	224676 Selec	ted)	

Filter the Sampling Results

- Select by Attribute
- Design an algorithm to grab every 475th row.
 - MOD(OBJECTID+2n-x, n) = 0
 - n is the every nth record
 - x is the objectid to start from
- MOD("Rowid"+949,475)=0
 - Note, Rowid may be OBJECT_ID depending on how data was added

Filter the Sampling Results

- Our results have 474 records
- The 2nd column shows the sequential order of points in the track
- The Time column matches the Date range we expect.
- This selection must be exported and then displayed to aid in our final outputs.
- Add the new table to the map

Display the Sampling Results

- Display the selected results
- Enable Time (Layer Properties)

- Rename samples layer
- Modify Icon
- Remove Turtle2005-2007 layer and table
- Enable Time Slider

Output 2: Map output showing turtle locations and parameter values

- Disable Time (on slider)
- Open Layer Properties on Turtle layer
- Assign color ramp and classification – 25 levels (Quantities to analysed_sst)
- Turn off raster visibility
- Turn on Basemap

Output 3: Graph of parameter value for each turtle location vs Time

- Open the SamplesTurtleTrackT ble
- Rename the ANALYSED_S column to Temperature(K)
- Select 'Create Graph'

Output 3: Graph of parameter value for each turtle location vs Time

https://coastwatch.noaa.gov

- Select the Graph type: Vertical Line
- Set the Y and X axes
 - Temperature(K) vs Time
- Continue with the Wizard to finalize your chart.

Output 3: Graph of parameter value for each turtle location vs Time

https://www.fisheries.noaa.gov/resource/map/turtlewatch

TurtleWatch Zone:

- 1. Most loggerhead turtles stay in water colder than 65.5°F (about 18.5°C). When the 65.5°F temperature contour is drawn on a map of the current sea surface temperature conditions, it delineates the current southern boundary of the loggerhead's preferred habitat. Over 50% of recorded loggerhead interactions occurred in waters between this southern 65.5°F boundary and the 63.5°F temperature contour to the north.
- 2. Converting F to K: 290.65 291.65 K

- Copy and Paste SST raster layer
- Rename and Open SST raster Layer Properties

- Steps:
 - Add TurtleWatch Zone
 - 2. Export Movie

Time Slider – Check Settings

- If layers do not display, check:
 - Time Zone
 - Step Interval
 - Time Window
- When the Feature data were added, the time defaulted to MM/DD/YYYY 00:00 AM, so the time window must be set to allow display of both the Raster and Points Layers

- Save your work!
- Use the Time Slider to save the movie
- Select a codec

Other considerations

- Time: Consider adding a default time to the Turtle Points
- Units: Kelvin is not usually easily related to when communicating temperature. Use the appropriate units to communicate your results. The Map Algebra->Raster Calculator or Math->Minus tools can be used to convert the Raster data to either degrees Celsius or Farenheit.
- Sampling: Often, tools can accept multiple raster layers to sample. If you have a few raster datasets, try loading each time slice as a separate layer. You could also do this with multiple parameters.

End of Exercise

https://coastwatch.noaa.gov coastwatch.info@noaa.gov

Extra Slides on the EDC Tool

EDC Track Line Format

Track Line Format

- A track line file must be a commaseparated text file. Each line in the text file contains a new point along the track line. Each point can have its own time extent. Each line can have the following fields, in this order:
- 1.Latitude in decimal degrees
- 2.Longitude in decimal degrees
- 3.Altitude in meters (can be 0 if not using altitude)
- 4.Start Time the beginning of the time range for data to be selected (optional)
- 5.Stop Time the end of the time range for data to be selected (**optional**)

• Here is an example of a track line file:

```
27.8036,-119.8914,0,2013-03-15T14:40Z,2013-13-15T14:40Z
28.7866,-117.9850,0,2012-03-15T14:40Z,2012-13-15T14:40Z
36.3951,-123.6461,0,2011-03-15T14:40Z,2011-13-15T14:40Z
35.2628,-125.9477,0,2010-03-15T14:40Z,2010-13-15T14:40Z
33.2628,-124.3501,0,2009-03-15T14:40Z,2009-13-15T14:40Z
```

Spreadsheet

- Convert 0-360 to -180 to 180 (=if(B2>=180,B2-360,B2))
- Convert Year, Month, Day columns to single date (=Date(B3,B4,B5))
- Set Date format to custom (yyyy-mm-ddT12:00Z) (=TEXT(A1,"mm/dd/yyyy") =CONCATENATE(F2,\$J\$2)

https://oceanwatch.pifsc.noaa.gov/erddap/griddap/goes-poes-1d-ghrsst-RAN.html

