

Computer-Aided Segmentation of Gastrointestinal Structures

6.8300: Advances in Computer Vision

Srikaran Boya, Joseph Kajon, Zeki Yan

Introduction

Problem Statement

- Millions are diagnosed with GI cancer each year
- Treatment requires precise radiation therapy planning

Current Process

- Manual segmentation of MRI scans
- Labor-intensive & Prone to errors

Small intestine

Proposed Solution

Objective

 Develop a deep learning model to automate segmentation of stomach and intestines from MRI scans

Impact

- Expedite treatment
- Reduce errors
- Improve patient outcomes

In figure above, the pink area is tumor, red area is stomach, and other lines are radiation dose levels

Related work

U-Net Type Neural Networks

 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015.

DeepLabv3+

- Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation, 2017.
- Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation, 2018.

R-CNNs

- Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, 2014.
- Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn, 2018.

Multi-Task Learning

- Wenjia Bai and Dinggang Shen. Self-supervised learning for cardiac mr image segmentation by anatomical position prediction. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019, Cham, 2019. Springer
- Rich Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

Dataset

Dataset:

- UW-Madison GI Tract Image Segmentation repository: Kaggle competition
 - 85 cases (patients)
 - MRI scans on different days (normally 3-5 days)
 - Different slices each day
- Segmentation and class information

Red mask represents small bowel, green mask represents large bowel, and blue mask represents stomach

Data Preprocessing

Extract metadata from scans (day, case, slice) Converting RLE encoding to masks Train (65%), Val (15%), Test (20%) split **Created COCO annotations** Developed DataLoader and DataGenerator modules


```
"categories": [
"name": "small_bowel"
 "name": "large bowel"
 "name": "stomach"
"file_name": "case123/case123_day20/scans/slice_0066_266_266_1.50_1.50.png",
 "height": 266
"file_name": "case123/case123_day20/scans/slice_0067_266_266_1.50_1.50.png",
```

Methodology

• Simple U-Net (Baseline)

 This model serves as baseline, with a simple and symmetric encoder-decoder architecture

• Efficient Net:

 Efficient Net is used as an encoder in the U-Net architecture. It leverages pretrained weights on imagenet dataset

DeepLabv3v+:

 Leveraging a powerful backbone ResNeXt101_32x8d for segmentation

Mask R-CNN:

 Integrate a R-CNN framework with an additional mask prediction branch

Multi-Task Learning U-Net:

Simultaneous semantic segmentation and positional regression with shared encoder

U-Net Architecture

Mask R-CNN Architecture

Multi-Task Learning Architecture

U-Net Type Models

Massachusetts Institute of Technology

DeepLabv3+

Mask R-CNN

Mask R-CNN framework for instance segmentation

Mask R-CNN Head Architecture

Performance on Microsoft COCO dataset compared to FCIS model

Multi-Task Learning U-Net

Multi-Task Backpropagation of four tasks with the same inputs

Evaluation Metrics

Dice Loss

- Measures overlap between predicted and true segmentation masks
- Lower is better

$$C = \frac{2 \times |M_1 \cap M_2|}{|M_1| + |M_2|}$$

$$L_{\text{Dice}} = 1 - C$$

Model Performance

- Metrics are calculated based on test (20%) dataset
- Model training on Google Colab platform with A100 GPU

Mask R-CNN is overall the best model (high score and balanced in three organs)

Result Visualization

Red: Small Bowel; Green: Large Bowel; Blue: Stomach

Error Analysis

Conclusion & Future Work

- Out of the 5 models, the simple baseline model performed well with respect to the dice loss metric
- While advanced models and multi-task learning did not consistently outperform the baseline, some showed notable improvements in specific metrics, leading to slight enhancements in test set performance for certain classes

References

- 1. Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation, 2017.
- 2. Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation, 2018.
- 3. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, 2014.
- 4. Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn, 2018.
- 5. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence Zitnick. Microsoft coco: Common objects in context.In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision ECCV 2014, pages 740–755, Cham, 2014. Springer International Publishing.
- 6. Jelena Novosel, Prashanth Viswanath, and Bruno Arsenali. Boosting semantic segmentation with multi-task self-supervised learning for autonomous driving applications. In Proc. of NeurIPS-Workshops, volume 3, 2019.
- 7. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015.
- 8. Wenjia Bai and Dinggang Shen. Self-supervised learning for cardiac mr image segmentation by anatomical position prediction. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2019, Cham, 2019. Springer
- 9. Rich Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.
- 10. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. leee, 2009.
- 11. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015.

Any Questions? Email us!

Srikaran Boya srikaran@mit.edu

Joseph Kajon kajon145@mit.edu

Zeki Yan zikaiyan@mit.edu

Appendix

Model Results on Metrics

Table 1. Model results

Model	DiceLoss	IoU-S	IoU-LB	IoU-SB
Simple U-Net	0.125	0.506	0.578	0.259
Efficient Net	0.295	0.728	0.733	0.000
DeepLabv3+	0.337	0.609	0.606	0.372
Mask R-CNN	0.246	0.654	0.611	0.530
Multi-task U-Net	0.194	0.180	0.314	0.355