

Introduction to Machine Learning

CptS 437

Spring 2022
Dr. Diane J. Cook

Why study machine learning?

- Data explosion
- Computer giants working in this field
- Harvard Business Review: Sexiest job of the 21st century

What is machine learning?

• A computer program that <u>improves its performance</u> at some <u>task</u> through experience

Example - Handwriting recognition

0.0	1.0	1.0	1.0	0.0
1.0	0.0	0.0	0.0	1.0
0.0	0.0	0.0	0.0	1.0
0.0	0.0	0.0	1.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	1.0	0.0	0.0	0.0
1.0	1.0	1.0	1.0	1.0

Can this be automated?

https://webdemo.myscript.com/#/demo/write

0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0

0.0	0.0	1.0	0.0	0.0
0.0	1.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0

If (cell# mod 5) = 3 and cell value = 1.0 and All other cell values = 0.0

?

0.0	0.0	1.0	0.0	0.0
0.0	1.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0
0.0	1.0	1.0	1.0	0.0

```
If (cell# mod 5) = 3 and cell value = 1.0
and
(If (cell# = 7) and cell value = 0.0 or 1.0
and
All other cell values = 0.0)
```

0.0	0.0	0.8	0.0	0.0
0.0	0.0	0.7	0.0	0.0
0.0	0.0	0.8	0.0	0.0
0.0	0.0	0.7	0.0	0.0
0.5	0.0	0.7	0.0	0.0
0.0	0.0	0.5	0.0	0.0
0.0	0.0	0.3	0.0	0.0

Supervised Learning **Unsupervised Learning** Machine Reinforcement Learning Learning

How do we determine if learning has occurred?

Syllabus

Example (with decision tree)

- Predict whether a home is in San Francisco or New York
- Given a set of past examples

Data representation

- Features
- elevation, price per sq ft, year built, #bathrooms, #bedrooms, square feet, price
- Feature values
- Class value (label)

elevation: 50'

price: \$1777/sqft

year built: 1920

#bathrooms: 2

#bedrooms: 3

square feet: 800

price: \$1,421,600

label: New York

Induction framework

Types of inductive learning problems

- Regression
- Binary classification
- Multiclass classification
- Discovery
- Reinforcement learning

- Learning task
 - Learn to classify whether a home is in San Francisco or New York
 - Represent each home by elevation

- Learning task
 - Learn to classify whether a home is in San Francisco or New York
 - Represent each home by elevation feature

If elevation > 240' then San Francisco

- Add another dimension
 - Home is in San Francisco or New York
 - New feature: price per sq ft

If elevation > 240' then San Francisco

- Add another dimension
 - Home is in San Francisco or New York
 - New feature: price per sq ft

If elevation > 240' then San Francisco else if price >\$1777/sqft then New York

Drawing boundaries

 Visualize rule as boundaries of regions in scatterplot

If elevation > 240'
then San Francisco
else if price >\$1777/sqft
then New York

All features

• Seven dimensions

- Decision tree uses ifthen statements to form boundaries
- If elevation > x then home in San Francisco
- These statements are represented by nodes in a decision tree
- Each node splits the data into branches based on feature values

- If elevation > 240' then home in San Francisco
- This split incorrectly classifies some San Francisco homes as New York homes
- Accuracy is 63% correct
- All the green incorrect labels are false negatives

- If elevation > 0' then home in San Francisco
- If we try to capture every San Francisco home, we will include New York homes
- These will be false positives

- The best split makes the groups as homogeneous as possible
- If elevation > 92' then home in San Francisco

Even the best split does not fully separate the classes

- Solution? Add another split point
- Repeat process on subsets of data
- Recursion

 Consider distribution for each subset

 Consider distribution for each subset

- Best split varies for each subset
- Lower elevation homes
 - Best split variable is price per square foot (\$1061)
- Higher elevation homes
 - Best split variable is price of home (\$514,500)

- Additional nodes add new rule details
- This can increase the tree's accuracy

Predict class of new data point

Predict using decision tree

Predict using decision tree

Prediction accuracy

Bigger question - Prediction accuracy on new test data

Performance: loss function

- L(.,.)
- Regression
- Binary classification
- Multiclass classification
- Discovery
- Reinforcement learning

Review