

# Cluster Analysis —Partitioning Methods—

徐华

清华大学 计算机系 智能技术与系统国家重点实验室 xuhua@tsinghua.edu.cn

#### **Cluster Analysis**



- What is Cluster Analysis?
- **Types of Data in Cluster Analysis**
- A Categorization of Major Clustering Methods
- Partitioning Methods
- Hierarchical Methods
- Density-Based Methods
- Grid-Based Methods
- Model-Based Clustering Methods
- **Outlier Analysis**
- <sub>2</sub> Summary



#### **Partitioning Algorithms: Basic Concept**



- Partitioning method: Construct a partition of a database D of n objects into a set of k clusters
- Given a *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
  - Global optimal: exhaustively enumerate all partitions
  - ◆ Heuristic methods: k-means and k-medoids (K-中心点)algorithms
  - <u>k-means</u> (MacQueen' 67): Each cluster is represented by the center of the cluster
  - ♦ <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw' 87): Each cluster is represented by one of the objects in the cluster

3



#### The K-Means Clustering Method



- Given into *k* nonempty subsets
  - Compute seed k, the k-means algorithm is implemented in four steps:
  - Partition objects points as the centroids of the clusters of the current partition (the centroid is the center, i.e., mean point, of the cluster)
  - Assign each object to the cluster with the nearest seed point
  - Go back to Step 2, stop when no more new assignment





#### Comments on the K-Means Method



- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations(迭代). Normally, k, t << n.
  - Comparing: PAM: O(k(n-k)²), CLARA: O(ks² + k(n-k))
- <u>Comment:</u> Often terminates at a *local optimum*. The *global optimum* may be found using techniques such as: *deterministic annealing* (模拟退火) and *genetic algorithms* (遗传算法)
- Weakness
  - Applicable only when mean is defined, then what about categorical data?
  - ♦ Need to specify *k*, the *number* of clusters, in advance
  - Unable to handle noisy data and outliers
  - Not suitable to discover clusters with non-convex shapes



#### The K-Medoids Clustering Method



- The k-means algorithm is sensitive to outliers!
  - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.



7



#### The K-Medoids Clustering Method (K中心聚类)



- Find representative objects, called medoids, in clusters
- PAM (Partitioning Around Medoids, 1987)
  - starts from an initial set of medoids and iteratively replaces one of the medoids by one
    of the non-medoids if it improves the total distance of the resulting clustering
  - ◆ PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)



## PAM (Partitioning Around Medoids) (1987)



- PAM (Kaufman and Rousseeuw, 1987), built in Splus
- Use real object to represent the cluster
  - 1. Select *k* representative objects arbitrarily
  - 2. For each pair of non-selected object h and selected object i, calculate the total swapping cost  $TC_{ih}$
  - 3. For each pair of *i* and *h*,
    - a. If  $TC_{ih} < 0$ , i is replaced by h
    - b. Then assign each non-selected object to the most similar representative object
  - 4. repeat steps 2-3 until there is no change

# PAM Clustering: Total swapping cost $TC_{ih} = \sum_{j} C_{jih}$









 $C_{jih} = d(j, t) - d(j, i)$ 





 $C_{jih} = d(j, h) - d(j, t)$ 



### What is the problem with PAM?



- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- PAM works efficiently for small data sets but does not scale well for large data sets.
  - ◆ O(k(n-k)²) for each iteration
     where n is # of data, k is # of clusters
- → Sampling based method, CLARA(Clustering LARge Applications) and CLARANS

12

#### **CLARA (Clustering Large Applications) (1990)**



- CLARA (Kaufmann and Rousseeuw in 1990)
  - Built in statistical analysis packages
- It draws *multiple samples* of the data set, applies *PAM* on each sample, and gives the best clustering as the output
- Strength: deals with larger data sets than PAM
- Weakness:
  - Efficiency depends on the sample size
  - ◆ A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

13



