CSCI 113 (Spring 2021)

Memory Heirarchy Simulation Programming (40 pts) due: 05/04 (T)

Write a simulation program for tracing memory operations described below. Please use either C or C++ for coding.

Hardware description:

- Memory hierarchy consists of higher-level (cache) and lower-level (main memory) modules, and we consider only data cache and data memory;
- Cache is 2way-set-associative, total cache data size is 16 words, one word per block, and the replacement policy used is LRU (Least Recently Used); Each cache block has 3 fields, i.e., valid bit, tag and data;
- When write_hit and write_miss, cache uses WB and no-write-allocate policies, respectively;
- Main memory size is 128 words and there are 128 memory blocks (1 word per block);
- Physical address is 7 bits wide and it points a block (a word) in the memory (0th block ~ 127th block); Physical address is divided into index and tag fileds;
- For the sake of simplicity, register file contains only 8 registers (\$s0~\$s7).

Input and output:

- Input is given as an object file (see attached), which consists of a series of MIPS load/store machine instructions;
- After executing each instruction, your program should display either "hit" or "miss" message; At the end of executing all the instructions in the object file, your program should display (in binary) the final contents of register file, cache and main memory.

Submission:

- Source code (.c or .cpp file); Please include a good global documentation and function head documentations in your source code (before compilation).
- Runtime output, e.g., a typescript file or screenshot (png, jpg or pdf); Output should be readable.

Details will be discussed in class and lab.

Initialization

Initially, all cache entries are empty and their valid bits are 0's;

Initialize registers (\$s0~\$s7) in the register file with value 0's;

Initialize memory contents with the following data:

 $mem[block_address] \leftarrow block_address + 5$; e.g., $mem[0] \leftarrow 5$, ... $mem[127] \leftarrow 132$

Testing instruction sequence:

you have to use the followng series of MIPS machine codes to submit output.

MIPS Assembly code			MIPS M	MIPS Machine code			
lw	\$s1,	4(\$zero)	100011	00000	10001	000000000000100	
lw	\$s2,	16(\$zero)	100011	00000	10010	000000000010000	
lw	\$s3,	32(\$zero)	100011	00000	10011	000000000100000	
lw	\$s4,	20(\$zero)	100011	00000	10100	000000000010100	
sw	\$s1,	80(\$zero)	101011	00000	10001	000000001010000	
sw	\$s2,	68(\$zero)	101011	00000	10010	000000001000100	
sw	\$s3,	76(\$zero)	101011	00000	10011	000000001001100	
sw	\$s4,	224 (\$zero)	101011	00000	10100	000000011100000	
lw	\$s1,	36(\$zero)	100011	00000	10001	000000000100100	
lw	\$s2,	44(\$zero)	100011	00000	10010	000000000101100	
lw	\$s3,	16(\$zero)	100011	00000	10011	000000000010000	
	\$s4,	172(\$zero)	100011	00000	10100	000000010101100	
	\$s1,	20(\$zero)	101011	00000	10001	000000000010100	
	\$s2,	24(\$zero)	101011	00000	10010	000000000011000	
		36(\$zero)	101011	00000	10011	000000000100100	
		68(\$zero)	101011	00000	10100	000000001000100	
	\$s1,	36(\$zero)	100011	00000	10001	000000000100100	
		44 (\$zero)	100011	00000	10010	000000000101100	
	\$s3,	16(\$zero)	100011	00000	10011	000000000010000	
	\$s4,		100011	00000	10100	000000010101100	
	\$s1,	96(\$zero)	101011	00000	10001	000000001100000	
	\$s2,	84 (\$zero)	101011	00000	10010	000000001010100	
	\$s3,	92(\$zero)	101011	00000	10011	000000001011100	
sw	\$s4,	240(\$zero)	101011	00000	10100	000000011110000	

^{*} Macnie code file is placed in the Canvas.