Advanced Probabilistic Machine Learning and Applications

Alessandro Lonardi and Caterina De Bacco

November 23, 2021

Tutorial 6: Bethe approximation and BP

Exercise 1: graph coloring problem (part I)

Coloring is a classical problem of graph theory. Given a (unweighted, undirected) graph G(V, E), a coloring $M \subseteq V$ is an assignment of labels, called colors, to the vertices of a graph such that no two adjacent vertices share the same color.

- (i) Write a probability distribution for the coloring problem.
- (ii) Consider a "soft" constraint instead which relaxes the "hard" one and write the corresponding interaction function of the factor node.
 - *Hint:* the soft constraint allows two neighboring nodes to have the same color, but penalized this a lot.
- (iii) Draw a factor graph corresponding to it.

Exercise 2: representing models using factor graphs

Write **both** the following problems (i) in terms of a probability distribution and (ii) in terms of a graphical model by drawing an example of the corresponding factor graph.

(a) p-spin model

One model that is commonly studied in physics is the so-called Ising 3-spin model. The Hamiltonian of this model is written as

$$H(\mathbf{s}) = -\sum_{(ijk)\in E} J_{ijk} s_i s_j s_k - \sum_{i=1}^N h_i s_i$$
(1)

where E is a given set of (unordered) triplets $i \neq j \neq k$, J_{ijk} is the interaction strength for the triplet $(ijk) \in E$, and h_i is a magnetic field on spin i. The spins are Ising, which in physics means $s_i \in \{+1, -1\}$.

(b) Independent set problem

Independent set is a problem defined and studied in combinatorics and graph theory. Given a (unweighted, undirected) graph G(V, E), an independent set $S \subseteq V$ is defined as a subset of nodes such that if $i \in S$ then for all $j \in \partial i$ we have $j \notin S$. In other words in for all $(ij) \in E$ only i or j can belong to the independent set.

For example, suppose we have the following graph:

Moreover, for problem (b):

- (iii) Write a probability distribution that is uniform over all independent sets on a given graph.
- (iv) Write a probability distribution that gives a larger weight to larger independent sets, where the size of an independent set is simply |S|.