Problem 2 (10 credits)

HW2

Danny Moncada (monca016) February 24, 2020

```
suppressWarnings(suppressPackageStartupMessages({
  library(TSA)
  library(forecast)
  library(ggplot2)
  library(dplyr)
}))
```

Characteristic Polynomials

Question 1

Assume Y_t is the following stochastic process such as

$$Y_t = 2.2 \cdot Y_{t-1} - 1.57 \cdot Y_{t-2} + 0.36 \cdot Y_{t-3} + e_t$$

where $e_i \sim N(0,1)$ i.i.d

a) (1 credit)

First, let's determine whether the process is stationary or not by computing the roots of the characteristic polynomial.

Hints:

• use polyroot() function

Please pick the smallest root as x_1 and the larger root as x_3 :

```
## [1] "Based on the stochastic process equation, we rewrite it as 1 - 2.2 + 1.57 - 0.36."
"Does this mean that the largest root is 2.2? That's the assumption I'm making."
```

"Based on the stochastic process equation, we rewrite it as 1 - 2.2 + 1.57 - 0.36."

[1] "Does this mean that the largest root is 2.2? That's the assumption I'm making." polyroot(c(1, -2.2, 1.57, -0.36))

```
## [1] 1.111111-0i 1.250000+0i 2.000000-0i
```

```
x_1 <- 2.0
x_2 <- 1.25
x_3 <- 1.11
```

(please include only the numerical answer above not the computation. An acceptable format for your answer is such as $x_1 < 5$)

b) (1 credit)

Based on your answer above conclude whether the process is stationary or not:

```
stationary <- TRUE # type a boolean: TRUE or FALSE
```

c) (2 credits)

Please generate N = 100 sample paths of length T = 100 for this stochastic process.

- Please save the results into a data.frame df2c where:
 - column df2c\$Y has the values of the process
 - column df2c\$id has the id of the sample path
 - column df2c\$t has the time

```
## Y id t
## 1 -3.0438630 1 1
## 2 -4.5287222 1 2
## 3 -5.0575687 1 3
## 4 -3.7126110 1 4
## 5 -2.5849935 1 5
## 6 -0.3763685 1 6
```

d) (1 credit)

Please plot the sample paths that you generated in the previous question

• Please save your plot into variable pld

Hints:

- use ggplot and take advantage of the long format of the data
- please don't change the color (keep the lines black) but do put alpha=0.05 into your geom_line to make sample paths somewhat transparent.
- do not use geom_points just geom_line is fine
- As you will see from your plot:
 - the fainter the line the less likely the stochastic process would reach this spot

Don't know how to automatically pick scale for object of type ts. Defaulting to continuous.

Question 2 (5 credits)

Repeat a) - d) in Question 1 for the following stochastic process Y_t :

$$Y_t = 2.4 \cdot Y_{t-1} - 1.55 \cdot Y_{t-2} + 0.3 \cdot Y_{t-3} + e_t$$

where $e_i \sim N(0,1)$ i.i.d

Compared with Question 1, we expect to see significant difference in the stationarity from the plot, although the coefficients are very close.

a)

First, let's determine whether the process is stationary or not by computing the roots of the characteristic polynomial.

Hints:

• use polyroot() function

Please pick the smallest root as x_1 and the larger root as x_3 :

```
"Based on the stochastic process equation, we rewrite it as 1 - 2.4 + 1.55 - 0.3."
```

[1] "Based on the stochastic process equation, we rewrite it as 1 - 2.4 + 1.55 - 0.3." polyroot(c(1, -2.4, 1.55, -0.3))

[1] 0.6666667+0i 2.0000000-0i 2.5000000+0i

```
x<sub>1</sub> <- 2.5
x<sub>2</sub> <- 2.0
x<sub>3</sub> <- 0.66
```

(please include only the numerical answer above not the computation. An acceptable format for your answer is such as $x_1 < 5$)

b)

Based on your answer above conclude whether the process is stationary or not:

```
stationary <- FALSE # type a boolean: TRUE or FALSE
```

c)

Please generate N=100 sample paths of length T=20 for this stochastic process.

- Please save the results into a data.frame df2c where:
 - column df2c\$Y has the values of the process
 - column df2c\$id has the id of the sample path
 - column df2c\$t has the time

```
set.seed(42) # Please do not change the seed

N <- 100L
T <- 20L

Y = c()
for(i in 1:T){

    x <- numeric(100)
    x[1] = x[2] = x[3] = rnorm(1)
    for(i in 4: length(x)) {
        x[i] <- 2.4*x[i-1] - 1.55*x[i-2] + 0.3*x[i-3] + rnorm(1)
        }
    Y = append(Y, x)
}

df2c <- data.frame(Y = Y, id = rep(1:N, each = T), t = rep(1:T, N))
head(df2c)</pre>
```

```
## Y id t
## 1 1.370958 1 1
## 2 1.370958 1 2
## 3 1.370958 1 3
## 4 1.011904 1 4
## 5 1.078000 1 5
## 6 2.062899 1 6
```

d)

Please plot the sample paths that you generated in the previous question. You should see the effect of the roots of the polynomial on the sample paths of the process.

• Please save your plot into variable pld

Hints:

- $\bullet\,$ use ${\tt ggplot}$ and take advantage of the long format of the data
- do not use geom_points just geom_line is fine

```
p1d <- ggplot(data = df2c, aes(x = t, y = Y)) + geom_line(alpha = 0.5) + ggtitle("Non Stationary Process: Y_t = 2.4*Y_{t-1} - 1.55*Y_{t-2} + 0.3*Y_{t-3} + e_t") p1d
```


