⑩日本国特許庁(JP)

①特許出顧公開

⑫公開特許公報(A)

昭63-166745

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和63年(1988)7月9日

C 04 B 33/30 F 26 B 3/347 6512-4G 7380-3L

審査請求 未請求 発明の数 1 (全4頁)

公発明の名称

ハニカム構造体の誘電乾燥法

到特 顧 昭61-309278

20出 顧 昭61(1986)12月27日

⑫発 明 者

水 谷

黝

愛知県名古屋市南区沙田町1丁目12番地

⑩出 願 人 日本碍子株式会社

愛知県名古屋市瑞穂区須田町2番56号

⑩代 理 人 弁理士 杉村 暁秀

外1名

明 細 18

- 1.発明の名称 ハニカム構造体の誘電乾燥法
- 2.特許請求の範囲

 - 2. 前記上板が孔明板より構成されるとともに、 アルミニウム、網、アルミニウム合金、網合 金およびグラファイトよりなるグループから 選ばれた少なくとも1つの材料で構成される 特許請求の範囲第1項記載のハニカム構造体 の様質乾燥法。
 - 3. 前記上板の面積を変えることにより、乾燥

後のハニカム構造体の形状を制御する特許 求の範囲第1項記載のハニカム構造体の誘電 乾燥法。

・3.発明の詳細な説明

(産業上の利用分野)

本発明はハニカム構造体の誘電乾燥法に関する ものである。

(従来の技術)

しかしながら上述した誘電乾燥法によってハニ カム構造体を乾燥すると、ハニカム構造体を退過 する電気力線の密度が均一とならない欠点があった。これを解決するために本願人は特公昭60-37382 号公報において、ハニカム構造体開口下端面が接 する部分を含む一定領域をそれ以外の外周部分よ り再電率の高い孔明板した乾燥受台を提案している。

(発明が解決しようとする問題点)

また、ハニカム構造体上部で乾燥がおくれ、上部に水分の多い領域が出来ると、誘電乾燥にひき 続いて通風乾燥や焼成を行なう場合、水分の多い 領域だけ収縮が大きくなりクラックが発生しやす くなる欠点もあった。

このため、ハニカム構造体各部が乾燥おくれを 生じることなく均等に誘電乾燥できる技術開発が 要望されている。

本発明の目的は上述の不具合を解抗して寸法精 度の良いハニカム構造体を得る誘電乾燥法を提供 しよとするものである。

(問題点を解決するための手段)

本発明のハニカム構造体の誘電乾燥法は、ハニカム構造体の閉口下端面が接する部分を含む一定領域をそれ以外の外間部分より導電率の高い孔明板とした乾燥受台上にハニカム構造体を軟置し、ハニカム構造体の関口上端面上方とにより乾燥法において、ハニカム構造体の閉口上端面にハニカム構造体の夢電率より運電を軟置して乾燥を行なうことを特徴とするものである。

3

(作用)

上述した構成において、従来の乾燥受台によるハニカム構造体下部の電気力線密度の均一化を図るとともに、その閉口上端面に敷置した上板によりハニカム構造体上部の電気力線密度の均一化を建成できるため、ハニカム構造体各部の寸法精度が同等に行なわれハニカム構造体各部の寸法精度が同上すると共に均一な水分分布が達成でき、クラック発生もなくなる。

また、上板の面積を変えることにより電気力線の密度を任意に変えることができるため、乾燥後のハニカム構造体の水分分布を任意に制御可能で、その結果その形状を制御することが可能となる。すなわち寸法精度の良く、セラミックハニカム構造体が乾燥できる。

(実施例)

第1図は本発明のハニカム構造体の誘電乾燥法の一実施例を説明するための斜視図である。第1図において、ハニカム構造体1を受台2に設けられた孔明板3上に載置するとともに、各ハニカム

推治体1の閉口上端面上に上板としての孔明板4 を設置している。この孔明板4は、その導電率が ハニカム構造体1の基電率より高く、好ましくは 非磁性のアルミニウム、銅、アルミニウム合金、 組合金およびグラファイトよりなるグループから 選ばれた少なくとも1つの材料で作製されると好 道である。また、この孔明板4としては、その面 積を変えた数種類のものを準備し、望ましい形状 を得るのに好適なものをその中から選んで使用し ている。すなわち、上板としての孔明板4の面積 を変えることにより、ハニカム構造体の閉口上端 面および下端面の寸法差をその構造体の大きさに よって異なるが数==程度に制御することができる。 また、受台2はハニカム構造体の端面形状より所 定の寸法だけ広らした形状に受台1をくり抜いて 孔5を設け、その上面に受台2の材質より導電率 の高い材質でかつハニカム構造体関口端面面積よ り所定の比率で大きい面積を有する孔明板3を受 台1にはめこんで構成される。

第2図は本発明の誘電乾燥法を実施するのに好

遺な乾燥装置の一実施例を示す線図である。 本実 施例では、誘電乾燥装置11とハニカム構造体を完 全に乾燥するために設けた遺風乾燥装置12とを誘 電乾燥用コンベア13および遠風乾燥用コンベア14 によって連続化した乾燥装置を示している。誘電 乾燥装置11は、誘電乾燥用コンベア13と、ハニカ ム構造体の開口端面に対して平行となるようにそ の閉口上端面上方および下端面下方に殺けた電極 15-1, 15-2と、乾燥により発生した水蒸気が電極 15-1, 15-2等に結露しないよう熱風を適風するた めの熱風通風口16とより構成されている。また、 道風乾燥装置12は、誘電乾燥したのちハニカム構 造体が乾燥後砥石によって切断できるように、あ るいは焼成しても収縮の不均一によりクラックを 発生させないように完全乾燥するために、熱風循 **瓊用ダクト17より例えば温度80℃~150 ℃、風速** 0.3 ~2.0m/secの熱風がハニカム構造体の質通孔 を通風するよう構成している。

以下、実際の例について説明する。

7

十 2 4	根 社 数 数	⊢						<u> </u>	
- ~	更 福	10 数三	林	糖	中來等	第十	0, (下部)	0, (上部)	0,-0,
29	뚾	8	782=94	8.2	0.5	2.5	118.5	118.6	+ 0.1
		8	782=94	3.0	9.0	7.2	118.3	118.8	+ 0.5
က	孔明	2	æ	2.5	9.0	3.1	118.4	118.5	+ 0.1
7	孔明	8	其ちゃう	2.6	9.6	3.2	118.3	118.5	+ 0.2
'n	光明	8	783:54	2.7	0.5	3.0	118.4	118.6	+ 0.2
+	九頭	š	782.54	2.5	0.5	2.5	118.6	118.7	+ 0.1
~	孔頭	120	782:54	2.5	3.	4.0	118.7	118.5	- 0.2
000	\prod	\prod		2.6	1.5	14.0	118.4	119.4	?
8.2 0	1	\prod		8. 0.	1.5	12.0	.118.3	119.3	1:0

実施例

高さ150mm、直径120mmでコージェライトからなるセラミックハニカム構造体を準備し、第1表に示す種々の形状、面積、材質を有する上板を使用して誘電乾燥を実施して、本発明の試料性1~7を得た。ここで、面積とは関口端面の面積に対する割合を示し、端面と同じ面積の場合は100%と記している。また、同じセラミックハニカム構造体を上板を使用しないで同様な誘電乾燥を研究60-373882号に示す方法で実施して、比較例の試料に8,9を得た。

得られた乾燥後の各試料に対して、中央部の水分量を高さ方向に上部、中央部、下部と測定するとともに、下端部および上端部の閉口端面の直径 D.およびDaを測定した。結果を第1表に示す。

8

第1表から明らかなように、本発明の試料 http://www.com/wishing.com/wishi

また、第1表試料 № 5~7の結果から、上板の面積を変えることにより、その関口上端部および下端部の直径の差が変化しており、乾燥後のハニカム構造体の形状を制御することができることがわかった。

(発明の効果)

以上詳細に説明したところから明らかなように、本発明のハニカム構造体の誘電乾燥法によれば、所定の孔明板からなる乾燥受台上に載置したハニカム構造体の閉口上端面上に所定の上板を載置して誘電乾燥することにより、ハニカム構造体を得ることができ、その結果、寸法精度

の良いハニカム構造体を得ることができる。

また、上板の面積を変えることにより水分分布 を制御することが可能となり、その結果乾燥後の ハニカム構造体の形状を制御することも可能とな る。

4. 図面の簡単な説明

第1図は本発明のハニカム構造体の誘電乾燥法 の一実施例を説明するための斜視図、

第2図は本発明の誘電乾燥法を実施するのに好 適な乾燥装置の一実施例を示す線図、

第3図は水分量の変化を示すグラフである。

1…ハニカム構造体

2 … 受台

3, 4…孔明板

5 …孔

11…誘電乾燥装置

12…通風乾燥装置

13…誘電乾燥用コンベア

14…通風乾燥用コンペア

15-1, 15-2…電極

16…熟風通風口

17… 熱風循環用ダクト

第1図

第2 図

1 1

第3 图

