4. Data Representation

There are 10 types of people in this world, those who understand binary and those who don't.

Outline

- Radix Number Systems
 - Decimal (base 10) Number System
 - Binary (base 2) Number System
 - Octal (base 8), Hexadecimal (base 16)
 - Conversions
- Fixed-Point Number System
 - Range, Precision
- Negative Numbers
 - Sign and Magnitude
 - Two's Complement

Decimal (Base 10) Number System

- The **radix** or **base** of a positional number system defines the digits that can be used.
- Our "usual" system of numbers is called the **decimal** number system. It is based on the digits 0, 1, ..., 9, and is known as **base 10**.

Decimal (base 10) representation of number "147"

Place values

1 4 7

Note how the exponents increase as we move left from the right-most digit.

Decimal (Base 10) Number System

- The **radix** or **base** of a positional number system defines the digits that can be used.
- Our "usual" system of numbers is called the **decimal** number system. It is based on the digits 0, 1, ..., 9, and is known as **base 10**.

Place values

Decimal (base 10) representation of number "147"						
100's	10's	1's				
1×100	- 4×10 -	+ 7×1				
1×10 ²	4×10 ¹	7×10 ⁰				
1	4	7				

Note how the exponents increase as we move left from the right-most digit.

Binary (Base 2) Number System

- The binary number system (also known as base 2) uses two digits: 0 or 1.
- The 0's and 1's are known as BInary digiTs or bits.
- The bases most used in computers are base 2 (binary), base 8 (octal), and base 16 (hexadecimal).

Note how the powers of two increase as we move left from the right-most digit.

Binary (Base 2) Number System

- The binary number system (also known as base 2) uses two digits: 0 or 1.
- The 0's and 1's are known as **BI**nary digi**T**s or bits.
- The bases most used in computers are base 2 (binary), base 8 (octal), and base 16 (hexadecimal).

Binary (base 2) number "10010011 ₂ " = 147 ₁₀									
Place values	128's	64's	32's	16's	8's	4's	2's	1's	
+ + + + + + +									
1×2^{7} 0×2^{6} 0×2^{5} 1×2^{4} 0×2^{3} 0×2^{2} 1×2^{2}								1×2 ⁰	
	1	0	0	1	0	0	1	1	

Note how the powers of two increase as we move left from the right-most digit.

Converting from Binary to Decimal

Converting from Binary to Decimal

Example: convert 83.375₁₀ to binary.

Convert integer part first using the **remainder method**:

Example: convert 83.375₁₀ to binary.

Convert integer part first using the **remainder method**:

83÷2=41	remainder 1	
41÷2=20	remainder 1	Rea
20÷2=10	remainder <mark>0</mark>	nd b
10÷2=5	remainder <mark>0</mark>	ack
5÷2= 2	remainder 1	war
2÷2= 1	remainder <mark>0</mark>	ds
1÷2= 0	remainder 1	

Place values

Conversion

Double check the answer							
64's	32's	16's	8's	4's	2's	1's	
1×64	0×32	1×16	0×8	0× 4	1×2	1×1	
1×2 ⁶	0×2 ⁵	1×2 ⁴	0×2^3	0×2 ²	1×2 ¹	1×20	

Example: convert 83.375₁₀ to binary.

Then convert fractional part using the **multiplication method**:

Example: convert 83.375₁₀ to binary.

Then convert fractional part using the multiplication method:

$$0.375 \times 2 = 0.75$$
 print 0
 $0.750 \times 2 = 1.50$ print 1
 $0.500 \times 2 = 1.00$ print 1

Once the fractional part is 0, the process is complete.

Double check the answer					
$\frac{1}{2}$'s	$\frac{1}{4}$'s	$\frac{1}{8}$'s			
$0 \times \frac{1}{2}$	$1 \times \frac{1}{4}$	$1 \times \frac{1}{8}$			
0× <mark>2</mark> -1	1×2 ⁻²	1×2 ⁻³			

Exercise

• Convert 25.125₁₀ to binary

Exercise

• Convert 25.125₁₀ to binary

• Answer:

$$25.125_{10} = 11001.001_2$$

Example

• Consider converting 0.91₁₀ to binary:

$$0.91 \times 2 = 1.82$$

$$0.82 \times 2 = 1.64$$

$$0.64 \times 2 = 1.28$$

$$0.28 \times 2 = 0.56$$

$$0.56 \times 2 = 1.12$$

$$0.12 \times 2 = 0.24$$

$$0.24 \times 2 = 0.48$$

$$0.48 \times 2 = 0.96$$

$$0.96 \times 2 = 1.92$$

• • •

• The process of repeated multiplication is going on a bit!

Exact Representation

- Exact conversions between decimal and binary are not always possible
- And not necessary, if the conversion implies an accuracy not present in the original decimal data

$$0.91_{10} \rightarrow 0.111010001..._{2}$$

$$10^{-2} = \frac{1}{100}$$

$$2^{-9} = \frac{1}{512}$$

- Usually, we stop when we have obtained a comparable degree of accuracy with the original number
- Having decided to stop, you will need to round your answer

Rounding Binary Numbers

Consider our example of $0.91_{10} = 0.111010001...$

- Rounding to three places of accuracy will yield 0.111₂.
- When you are rounding to N places you look at the (N+1)th place:
 - If it contains a 0, you do nothing (round down).
 - If it contains a 1, you add 1 to the Nth position (round up).
- Rounding to four places of accuracy will yield 0.1111₂.
- In this case there is a 1 in the fifth place, so we need to add 1 to the fourth.
- Rounding to two places of accuracy...

Binary Addition

- Just like with decimal addition, we add numbers digit by digit, starting from the right.
- In binary system, 1+1=10.

carry

• Example:

Rounding Binary Numbers: Example

How would you round 0.01111₂ to four places?

- First look at the fifth position, which contains a 1
- So you add 1 to the fourth position. Essentially, computing the sum $0.0111_2+0.0001_2$
- The final result is 0.1000₂
- Note: it is important to write down the trailing zeros as they indicate the value is accurate to the nearest $\frac{1}{2^4}$
- Simply writing 0.1_2 would imply an accuracy only to the nearest $\frac{1}{2}$

Why do Computers Speak O's and 1's?

- In electronic computers, values of 1's and 0's are represented by voltage levels.
- It is easier to make hardware components (using e.g. transistors) which can distinguish between and operate on two values than multiple values.
- Using two well separated signals, i.e. high and low voltages, there is less chance of error in the interpretation of the voltage.

Other Frequently Used Bases

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)	
0	0000	0	0	
1	0001	1	1	
2	0010	2	2	
3	0011	3	3	
4	0100	4	4	
5	0101	5	5	
6	0110	6	6	
7	0111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	Α	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	

Converting from Decimal to Octal

- The digits used in octal (base 8) system are 0,1, ..., 7
- Use remainder method to convert decimal number to octal

$$83_{10} = 8?$$

Converting from Decimal to Octal

- The digits used in octal (base 8) system are 0,1, ..., 7
- Use remainder method to convert decimal number to octal

$$1 \div 8 = 0$$

remainder 3

remainder 2

remainder 1

Read backwards

Converting from Decimal to Octal (Using Binary Base)

• The digits used in octal (base 8) system are 0,1, ..., 7.

$$0_8$$
 1_8 2_8 3_8 4_8 5_8 6_8 7_8 000_2 001_2 010_2 011_2 100_2 101_2 110_2 111_2

To convert from decimal to octal:

- Using remainder method directly (shown before), or
- First convert from decimal to binary, and then group the bits into threes, starting from right hand side and pad to the left with 0's where necessary

Converting from Decimal to Octal

Example:

83₁₀ in binary is: 1010011₂

Converting from Decimal to Octal

Example:

```
83<sub>10</sub> in binary is: 1010011<sub>2</sub>
```

Group into threes starting from the right hand side:

1

010

011

Pad to the left with 0's:

001

010

011

Translate each group of three bits to an octal digit:

1

2

3

The final answer is:

$$83_{10} = 1010011_2 = 123_8$$

Converting from Decimal to Hexadecimal

• The digits used in hexadecimal (base 16) system are 0, 1, ..., 9, A, B, C, D, E, F

```
0 1 2 3 4 5 6 7
0000 0001 0010 0011 0100 0101 0110 0111
8 9 A B C D E F
```

1000 1001 1010 1011 1100 1101 1110 1111

To convert from decimal to hexadecimal

- Using remainder method directly, or
- First convert from decimal to binary, and then group the bits into fours,
 starting from right hand side and pad to the left with 0's where necessary

Converting from Decimal to Hexadecimal

Example:

83₁₀ in binary is: 1010011₂

Converting from Decimal to Hexadecimal

Example:

```
83<sub>10</sub> in binary is: 1010011<sub>2</sub>
```

Group into fours starting from the right hand side:

101 0011

Pad to the left with 0's:

0101 0011

Translate each group of four bits to a hex digit:

5

The final answer is:

$$83_{10} = 1010011_2 = 53_{16}$$

Fixed-point Numbers

 A simple and easy way to express fractional numbers, using a fixed number of digits, with a fixed position of the point

• Examples:

- Decimal system: 0.1_{10} , 4.6_{10} , 8.9_{10} , ... (two digit one place of accuracy decimal numbers)
- Binary system: 0.11₂, 1.10₂, 0.01₂, ... (three digit two places of accuracy binary numbers)
- Integers are also fixed-point numbers.
 - The position of the decimal point: 8., 74., 163.
 - There are also implied 0's to the left: 008., 074., 163. (three digits integers)

Range and Precision

- Fixed-point representation has two characteristics:
 - Range: from the minimum number possible to the maximum number possible
 - Precision: difference between two adjacent numbers

- Decimal Example:
 - Consider again the numbers: 0.1, 4.6, 8.9, ... (two digits one place of accuracy decimal numbers)

- Range is from 0.0 to 9.9, denoted: [0.0, 9.9]
- **Precision** is 0.1

Trade-off Between Range and Precision

Using our decimal system example:

- With the decimal point at the far right, the range is [00, 99] and the precision is 1
- With the decimal point at the far left, the range is [.00, .99] and the precision is .01
- Either way, there are only 10^2 (=100) different decimal numbers from 00 to 99, or from .00 to .99
- Thus it is only possible to represent 100 different items, however we apportion range and precision

Negative Numbers

- How do we cope with negative numbers in computer?
- To keep things small and simple, let us assume that we have 8 bits to represent an integer
- If we are only interested in non-negative numbers, we can represent the integers from 0 to 255 (2^8 =256 different numbers)

Sign and Magnitude

- If we need to consider negative numbers, it would make sense to divide the patterns evenly between the positive and negative numbers *i.e.* 128 patterns for positive numbers and 128 patterns for negative numbers
- 7 bits can give 2⁷ =128 patterns
- We can use one bit (usually leftmost) to represent the sign: "0" for positive numbers and "1" for negative numbers. This bit is called **sign bit**
- Use the rest to represent the magnitude (sign and magnitude representation)

Example, 8-bit:

$$00001101 \rightarrow +13$$

Sign and Magnitude

The range of numbers in sign and magnitude for an *n* bit word is:

$$-(2^{n-1}-1)$$
 to $+(2^{n-1}-1)$

For example, for an 8 bit word:

$$0111111111 \rightarrow +127$$
 $111111111 \rightarrow -127$

Sign and Magnitude

Unfortunately, there is a problem with this idea, as we need to represent zero, which means we cannot distribute the remaining 255 patterns. We could choose to have two patterns for zero, *i.e.* -0 and +0 as follows

```
000000000 \rightarrow +0
```


 An alternative scheme to sign and magnitude for representing negative numbers is two's complement

• For an 8 bit word, the positive integers from 0 to 127 are represented in the same way as in sign and magnitude

```
00000000 \rightarrow 0
```

$$00000001 \rightarrow 1$$

$$00000010 \rightarrow 2$$

• • •

 $011111111 \rightarrow 127$

The negative numbers:

```
10000000 \rightarrow -128 (the smallest)
```

 $10000001 \rightarrow -127$ (one step closer toward 0)

 $10000010 \rightarrow -126$ (two steps closer toward 0)

• • •

 $111111110 \rightarrow -2$

 $111111111 \rightarrow -1$

• Note that in the same way as for sign and magnitude, the left most digit is the **sign bit**: it is 0 for positive numbers and 1 for negative numbers. This makes it easy to determine whether a number is positive or negative

Increase toward zero

- A simple way to interpret two's complement is to view the place value at the leftmost bit as a power of two with negative magnitude, and at the other bits are positive powers of two.
- For an 8-bit representation:

-27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20
-128	64	32	16	8	4	2	1

- $00100011_2 = (1\times32)+(1\times2)+(1\times1) = 35_{10}$
- $10100011_2 = (1 \times -128) + (1 \times 32) + (1 \times 2) + (1 \times 1) = -128_{10} + 35_{10} = -93_{10}$

• An important advantage of two's complement representation is that it ensures that the addition of a number with its negative under binary addition yields zero.

$$00000010 \rightarrow 2$$

$$11111110 \rightarrow -2$$

$$100000000$$

 Where the leftmost 1 is carried out or discarded because we only have 8 bits, leaving us with the two's complement representation of zero as expected.

- Convert decimal numbers to two's complement
- Have to consider how many bits we are given, and fill it up
- If the number is positive:
 - 1) Ordinary binary conversion
 - 2) Filling up the left bits with zeros
- Example: to store the integer +14 in 8 bit register

$$14 \rightarrow 1110 \rightarrow 00001110$$

- If the number is negative:
- 1) Carry out a standard binary conversion of the magnitude;
- 2) Fill up the spaces with zeros;
- 3) Invert all the bits (0 becomes 1, and 1 becomes 0)
- 4) Finally, add 1
- Example: to store the integer -12 in 8 bit register

- If the number is negative:
- 1) Carry out a standard binary conversion of the magnitude;
- 2) Fill up the spaces with zeros;
- 3) Invert all the bits (0 becomes 1, and 1 becomes 0)
- 4) Finally, add 1
- Example: to store the integer -12 in 8 bit register
- 1) $12 \rightarrow 1100$
- 2) $1100 \rightarrow 00001100$
- 3) $00001100 \rightarrow 11110011$
- 4) 11110011 + 1 = 11110100

Double check: $(1 \times -(2^7)) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^2) = -128 + 64 + 32 + 16 + 4 = -12$

Complementary Addition

• Exercise: using an 8-bit register to store

Complementary Addition

• Exercise: using an 8-bit register to store

$$5_{10}$$
 00000101
 -9_{10} +11110111
 5_{10} - 9_{10} 11111100

Double check

$$(1 \times -(2^7)) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2)$$

= -128+64+32+16+8+4 = -128+124 = -4

