Convolutional Neural Networks **CS-477 Computer Vision**

Dr. Mohsin Kamal

Associate Professor dr.mohsinkamal@seecs.edu.pk

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Pakistan

- 1 Introduction
- 2 Convolutional Neural Network

- 1 Introduction
- 2 Convolutional Neural Network

- A convolutional neural network (CNN) is a type of artificial neural network used primarily for image recognition and processing, due to its ability to recognize patterns in images.
- FNN could not scale up to image and video processing tasks.
- CNN specifically tailored for image and video processing tasks.

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places:

- They can be compressed!
- What about training a lot of such "small" detectors and each detector must "move around".

- 1 Introduction
- 2 Convolutional Neural Network

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

Architecture of CNN

A typical CNN has 4 layers

- Input layer
- Convolution layer
- Pooling layer
- Fully connected layer

Architecture of CNN

Input layer

- Example input a 28 pixel by 28 pixel grayscale image
- Unlike FNN, we do not "flatten" the input to a 1D vector
 - Input is presented to network in 2D as 28 x 28 matrix

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

0.0			.oui.iou
1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	

-1	1	-1	
-1	1	-1	Filter
-1	1	-1	

Each filter detects a small pattern (3 x 3).

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product

3

-1

Filter 1

1	-1	-1
-1	1	-1
-1	-1	1

6 x 6 image

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Filter 1

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

6 x 6 image

1	-1
1	-1
1	-1
	1 1 1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Convolution in RGB

An RGB image is of the form

Convolution in RGB

0	0	0	0	0	0	-	0	0	0	0	0	0	-		0	0	0	0	0	0					
0	156	155	156	158	158	****	0	167	16	5 16	7 169	169			0	163	162	163	165	165					
0	153	154	157	159	159		0	164	16	16	8 170	170	***		0	160	161	164	166	166	40				
0	149	151	155	158	159		0	160	16:	2 16	6 169	170	100		0	156	158	162	165	166					
0	146	146	149	153	158	***	0	156	15	5 15	9 163	168		1 [0	155	155	158	162	167					
0	145	143	143	148	158		0	155	15	3 15	3 158	168			0	154	152	152	157	167	-				
	-		-	-	-				-	-	-	-	***	1 [-		***						
	Input	-1	nnel	#1 (Red)			Inpu	t Cha	o		Green)			Input		nnel	_	Blue)					
										10	0						0	-	1						
		0	1	-1					1	-1	-1	-					0	1	0						
		0	1	-1					1	-1	-1						0	-1	0						
	Ke	0	1	-1	‡1			K	1	-1	-1					Ke	0	-1	0	‡3			Outp	ut	
	Ke	0	1	-1	‡1			K	1	-1	-1					Ke	0	-1	0	‡3		-25	Outp	ut	
	Ke	0 rnel	1	-1	‡1	+		К	1 erne	-1	-1 -1 annel				+	Ke	0 1 ernel	-1 Char	0 1 nnel #		-25		Outp	ut	Н
	Ke	0 rnel	1 Chan	-1	‡1	+		К	1 erne	-1 0	-1 -1 annel				+	Ke	0 1 ernel	-1 Char	0 1 nnel #		-25		Outp	ut	
	Ke	0 rnel	1 Chan	-1	‡ 1	+		к	1 erne	-1 0	-1 -1 annel				+	Ke	0 1 ernel	-1 Char	0 1 nnel ‡				Outp	ut	***

Convolution vs. Fully Connected NN

Fullyconnected

Convolution vs. Fully Connected NN

Convolution vs. Fully Connected NN

- In convolutional neural networks (CNNs), pooling is a down-sampling operation commonly used to reduce the spatial dimensions of the input volume.
- The most common type of pooling is called max pooling and average pooling.

	1	-1	-1	
	-1	1	-1	Filter
	-1	-1	1	
3	-1		-3	-1
				\times
-3	1		0	-3
2		7	_	
-3	-3		0	1
3	-2		-2	-1
- /	_	1	-)	

(-:	1	_1	_1
-1	1	-1	
-1	1	-1	Filter 2
-1	1	-1	

-1

Why pooling

- Subsampling pixels will not change the object
- We can subsample the pixels to make image smaller
- fewer parameters to characterize the image bird

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

6 x 6 image

New image but smaller

2 x 2 image

Each filter is a channel

The whole CNN

The whole CNN

Flattening

CNN in Keras

CNN in Keras

CNN in Keras

