The journey to magnetic monopoles

Idk what I'm doing pls send help

Angular quantities

The number of radians traveled in a circle is calculated by d/r where d is the distance traveled along the circle and r is radius.

This has units m/m, or 1.

Angular acceleration thus has units 1/s^2.

Torque

Torque is r x F, or the distance from the pivot crossed with the force.

The units here are mN.

Define "moment of inertia" I such that T = Ia where T is torque and a is angular acceleration.

I must have units kgm², so we can define I as mr².

Gauss's laws:

Electric

Magnetic

$$\int \vec{B} \cdot \vec{A} = 0$$

Faraday's law

When the magnet is moving, we can have a change in magnetic flux, but as soon as motion stops, flux returns to 0.

Two more fields

When magnets are close to objects that emit a magnetic field, these can induce currents within the material.

How much is caused internally?

By the external field?

M field

Magnetization.

How much is internal.

The density of the magnetic moments in the object. (Aka, total magnetic moment divided by volume.)

H field

Magnetic field strength.

The stuff that isn't internal is external...

$$B = M(H + M)$$

$$B = H$$

Emergent properties

Phenomena simulated as "particles."

Phonons.

Dirac chains

There are H sinks and M sinks at the colored regions.

This causes these "isolated" regions of north and south poles.

Gauss's law?

Time to make some edits!

Units	Equation
cgs units ^[7]	$ abla \cdot {f B} = 4\pi ho_{ m m}$
SI units (weber convention)[8]	$ abla \cdot \mathbf{B} = ho_{\mathrm{m}}$
SI units (ampere-meter convention)[9]	$ abla \cdot {f B} = \mu_0 ho_{ m m}$