Computer Science Department CS675 – Introduction to Data Science (CRN: 73453) Fall 2020

Project #1

Implement a Linear Regression algorithm (model) in Python, by using the Scikit-learn module.

The regression model should be able to predict the <u>progression of a disease</u> (diabetes in our case) by using the least-squares regression.

Get the data from **Stanford U's** Machine Learning Repository:

https://web.stanford.edu/~hastie/Papers/LARS/diabetes.data

Here is a sample of the dataset (out of 442 records):

AGE	SEX	BMI	BP	51	52	S3	54	S 5	S6	Υ
59	2	32.1	101	157	93.2	38	4	4.8598	87	151
48	1	21.6	87	183	103.2	70	3	3.8918	69	75
72	2	30.5	93	156	93.6	41	4	4.6728	85	141
24	1	25.3	84	198	131.4	40	5	4.8903	89	206
50	1	23	101	192	125.4	52	4	4.2905	80	135
23	1	22.6	89	139	64.8	61	2	4.1897	68	97
36	2	22	90	160	99.6	50	3	3.9512	82	138
66	2	26.2	114	255	185	56	4.55	4.2485	92	63
60	2	32.1	83	179	119.4	42	4	4.4773	94	110

For some background information on the data, see this seminal paper:

Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani (2004) "Least Angle Regression," Annals of Statistics (with discussion), 407-499.

https://projecteuclid.org/euclid.aos/1083178935

Load the dataset by using **NumPy's genfromtxt** function (you are allowed to use others...) https://numpy.org/devdocs/user/basics.io.genfromtxt.html

Write **Python** scripts in order to complete the following tasks along with their output. All work should be done and submitted in a single **Jupyter Notebook**.

- Predict the feature 'y' using a <u>single</u> feature of 'X' (in the entire dataset)
 Find out which feature from 'X' should be used for the best prediction of 'y'.
 Output >>:
 - Model's coefficients (slope, y-intercept)
 - The Linear Regressor Model (graph) plotting
 - The MSE (Mean Square Error)
- 2) Predict the feature 'y' using a <u>pair</u> feature of 'X' (in the entire dataset) Find out which pair feature from 'X' should be used for the best prediction of 'y'. << Output >>:
 - Catpatry:
 - Model's coefficients (slope, y-intercept)
 - The Linear Regressor Model (graph) plotting.
 - The MSE (Mean Square Error)
- 3) Predict the feature 'y' using <u>all</u> (10) features of 'X' (in the entire dataset) << Output >>: Model's coefficients & The MSE (Mean Square Error)
- 4) Compute the <u>training MSE</u> and <u>validation MSE</u> when fitting the regressor in <u>all</u> features, for the following training set sizes:

```
n_train = 20
n_train = 50
n_train = 100
n_train = 200
```