# **Aim :** Implementation of Linear Regression, Logistic regression, KNN- classification.

# Linear Regression:

Linear regression is a statistical method that is used to model the relationship between a dependent variable and one or more independent variables. It is a popular technique for predictive modeling and is widely used in various fields, including:

- Machine learning
- Economics
- Finance
- Science

$$y = mx + b$$

#### Where:

- y is the dependent variable (the variable we are trying to predict).
- x is the independent variable (the variable used to make predictions).
- m is the slope of the line (the change in y for a one-unit change in x).
- b is the y-intercept (the value of y when x is 0).

In multiple linear regression, there are multiple independent variables, and the relationship between the independent variables and the dependent variable is modeled using the equation:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

Linear regression is widely used in various fields, including economics, finance, biology, and engineering, for tasks such as prediction, forecasting, and understanding the relationships between variables.

Import necessary libraries:

- numpy for numerical operations.
- pandas for data manipulation.
- · scikit-learn for machine learning algorithms.

Collab Link - <a href="https://colab.research.google.com/drive/1-k7uu8e1zihBxvGTFK-WQXg0R6ywEc2L?">https://colab.research.google.com/drive/1-k7uu8e1zihBxvGTFK-WQXg0R6ywEc2L?</a>
<a href="mailto:authuser=6#scrollTo=ZWo96q-yVqlx">authuser=6#scrollTo=ZWo96q-yVqlx</a>

# Linear Regression on video's dataset

Video link: <a href="https://www.youtube.com/watch?v=UNv0Ao6ltJ0">https://www.youtube.com/watch?v=UNv0Ao6ltJ0</a>

#### Importing Libraries

import pandas as pd #for making dataframes
import numpy as np #for arrays
import matplotlib.pyplot as plt #for plotting
%matplotlib inline

Double-click (or enter) to edit

#### Loading Dataset

df\_regression = pd.read\_csv("/content/score.csv")
print("Data imported successfully")
df\_regression.head(11)

Data imported successfully

|    | Hours | Scores |
|----|-------|--------|
| 0  | 2.5   | 21     |
| 1  | 5.1   | 47     |
| 2  | 3.2   | 27     |
| 3  | 8.5   | 75     |
| 4  | 3.5   | 30     |
| 5  | 1.5   | 20     |
| 6  | 9.2   | 88     |
| 7  | 5.5   | 60     |
| 8  | 8.3   | 81     |
| 9  | 2.7   | 25     |
| 10 | 7.7   | 85     |

#### Understanding data

df\_regression.shape

(25, 2)

```
df_regression.info()
```

df\_regression.describe()

|       | Hours     | Scores    |
|-------|-----------|-----------|
| count | 25.000000 | 25.000000 |
| mean  | 5.012000  | 51.480000 |
| std   | 2.525094  | 25.286887 |
| min   | 1.100000  | 17.000000 |
| 25%   | 2.700000  | 30.000000 |
| 50%   | 4.800000  | 47.000000 |
| 75%   | 7.400000  | 75.000000 |
| max   | 9.200000  | 95.000000 |

#### Counts NA values under entire dataframe

```
df_regression.isna().sum()
```

Hours 0 Scores 0 dtype: int64

#### • Finding Correlation of Dependent and independent variables

df\_regression.corr()

|        | Hours    | Scores   |
|--------|----------|----------|
| Hours  | 1.000000 | 0.976191 |
| Scores | 0.976191 | 1.000000 |

#### · Plotting the data to check if relationship is linear

```
df_regression.plot(x='Hours', y='Scores', style='o')
plt.title('Hours vs Percentage')
plt.xlabel('Hours Studied')
plt.ylabel('Percentage Score')
plt.show()
```





#### · Subsetting of the data

```
x_regression = df_regression.iloc[:, :-1].values #integer location 0 to -1
y_regression = df_regression.iloc[:, 1].values

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x_regression, y_regression, test_size
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()

regressor.fit(X_train, y_train)
print("Training complete.")

Training complete.
```

#### · Plotting the data

```
line = regressor.coef_*x_regression+regressor.intercept_
plt.scatter(x_regression, y_regression)
plt.plot(x_regression, line);
plt.show()
```



## • Checking the predicted values

```
print(X_test) # Testing data - In Hours
y_pred = regressor.predict(X_test) # Predicting the scores

[[1.5]
    [3.2]
    [7.4]
    [2.5]
    [5.9]]
```

```
# Comparing Actual vs Predicted
df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
```

|   | Actual | Predicted |
|---|--------|-----------|
| 0 | 20     | 16.884145 |
| 1 | 27     | 33.732261 |
| 2 | 69     | 75.357018 |
| 3 | 30     | 26.794801 |
| 4 | 62     | 60.491033 |

#### · Check the scores

regressor. score (X\_train, y\_train) # Score of our trained model

0.9515510725211552

#### Calculate Error in Model

```
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
    Mean Absolute Error: 4.183859899002982

print('r2 Score: ',metrics.r2_score (y_test, y_pred))
    r2 Score: 0.9454906892105354

x_axis = range(len(y_test))
x_axis
    range(0, 5)
```

#### • Plotting the values to visualize how well our model works.

```
plt.plot(x_axis, y_test, label='original')
plt.plot(x_axis, y_pred, label='predicted')
plt.legend()
plt.show()
```



# Linear Regression on own dataset

#### Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

#### Loading Dataset

df\_regression = pd.read\_csv("/content/Ice Cream Sales - temperatures.csv")
print("Data imported successfully")
df\_regression.head(10)

Data imported successfully

|   | Temperature | Ice Cream | Profits |
|---|-------------|-----------|---------|
| 0 | 39          |           | 13.17   |
| 1 | 40          |           | 11.88   |
| 2 | 41          |           | 18.82   |
| 3 | 42          |           | 18.65   |
| 4 | 43          |           | 17.02   |
| 5 | 43          |           | 15.88   |
| 6 | 44          |           | 19.07   |
| 7 | 44          |           | 19.57   |
| 8 | 45          |           | 21.62   |
| 9 | 45          |           | 22.34   |

#### · Understanding data

|       | Temperature | Ice Cream Profits |
|-------|-------------|-------------------|
| count | 365.000000  | 365.000000        |
| mean  | 71.980822   | 52.103616         |
| std   | 13.258510   | 15.989004         |
| min   | 39.000000   | 11.880000         |
| 25%   | 63.000000   | 40.650000         |
| 50%   | 73.000000   | 53.620000         |
| 75%   | 82.000000   | 63.630000         |
| max   | 101.000000  | 89.290000         |

#### · Counts NA values under entire dataframe

```
df_regression.isna().sum()
    Temperature     0
    Ice Cream Profits     0
```

dtype: int64

#### Finding Correlation of Dependent and independent variables

df\_regression.corr()

|                   | Temperature | Ice Cream Profits |
|-------------------|-------------|-------------------|
| Temperature       | 1.000000    | 0.988446          |
| Ice Cream Profits | 0.988446    | 1.000000          |

## • Plotting the data to check if relationship is linear

```
df_regression.plot(x='Temperature', y='Ice Cream Profits', style='o')
plt.title('Temperature vs Ice Cream Profits')
plt.xlabel('Temperature')
plt.ylabel('Ice Cream Profits')
plt.show()
```

#### Temperature vs Ice Cream Profits



#### · Subsetting of the data

```
x_regression = df_regression.iloc[:, :-1].values #integer location 0 to -1
y_regression = df_regression.iloc[:, 1].values

# Splitting the data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x_regression, y_regression, test_size
from sklearn.linear_model import LinearRegression
regressor=LinearRegression()

# Fitting the data
regressor.fit(X_train, y_train)
print("Training complete.")

Training complete.
```

#### · Plotting the data

```
# Plotting the regression line y=mx+c
line = regressor.coef_*x_regression+regressor.intercept_
# Plotting for the test data
plt.scatter(x_regression, y_regression)
plt.plot(x_regression, line);
plt.show()
```



## • Checking the predicted values

```
print(X_test) # Testing data - In Age
y_pred = regressor.predict(X_test) # Predicting the Premium
```

[[ 65] [ 80] [ 54] [ 50] [ 61] [ 92] [ 63] 85] 78] 44] 66] 68] 81] 83] 84] 76] 84] 65] 77] 68] 69] 75] 58] 84] [ 85] 80] [ 59]

```
[ 89]
[ 66]
[ 74]
[ 67]
[ 65]
[ 48]
[ 53]
[ 57]
[ 43]
[ 58]
[ 68]
[ 81]
[ 59]
[ 76]
[ 85]
[ 76]
[ 80]
[ 49]
[ 85]
[ 76]
[ 77]
[ 78]
[ 59]
[ 72]
[ 77]
[ 78]
[ 71]
[ 64]
[ 58]
[ 56]
```

```
# Comparing Actual vs Predicted
df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
df
```

|     | Actual | Predicted |
|-----|--------|-----------|
| 0   | 42.10  | 43.862528 |
| 1   | 64.45  | 61.754719 |
| 2   | 27.99  | 30.741588 |
| 3   | 27.31  | 25.970337 |
| 4   | 39.53  | 39.091277 |
|     |        |           |
| 141 | 54.36  | 54.597843 |
| 142 | 53.78  | 52.212217 |
| 143 | 44.31  | 43.862528 |
| 144 | 30.37  | 30.741588 |
| 145 | 64.22  | 67.718783 |
|     |        |           |

146 rows × 2 columns

#### Check the Premium

```
regressor.score (X_train, y_train) # Score of our trained model 0.9764169859322894
```

#### Calculate Error in Model

```
from sklearn import metrics
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
    Mean Absolute Error: 1.8876536707403655

print('r2 Score: ',metrics.r2_score (y_test, y_pred))
    r2 Score: 0.9779175387273723

x_axis = range(len(y_test))
x_axis
    range(0, 146)
```

• Plotting the values to visualize how well our model works.

```
plt.plot(x_axis, y_test, label='original')
plt.plot(x_axis, y_pred, label='predicted')
plt.legend()
plt.show()
```



# Logistic Regression on video's dataset

Video link: <a href="https://www.youtube.com/watch?v=TT\_njLsB7-0">https://www.youtube.com/watch?v=TT\_njLsB7-0</a>

Logistic regression is a statistical method commonly used in machine learning for classification problems. It is a powerful tool for predicting the probability of an event occurring, such as whether an email is spam or not, whether a customer will churn or not, or whether a loan will be repaid or not.

Logistic regression is not the same as linear regression, although they share some similarities. It is a powerful tool for classification tasks, especially when dealing with probabilities. It is interpretable, meaning you can understand the impact of each independent variable on the predicted probability.

#### Application:-

- Spam filtering: Email providers use logistic regression to classify incoming emails as spam or legitimate based on various features like sender information and keywords.
- Sentiment analysis: Analyzing text data, logistic regression can be used to classify sentiments (positive, negative, neutral) expressed in reviews, social media posts, etc.
- Targeted advertising: Based on user data, companies can leverage logistic regression to determine which users are more likely to click on an advertisement, optimizing marketing strategies.

```
#reading the dataset using pandas
df=pd.read_csv('/content/User_Data.csv')
print(df)
```

```
User ID Gender
                       Age EstimatedSalary
                                             Purchased
0
     15624510
                Male
                                      19000
1
     15810944
                 Male
                        35
                                      20000
                                                     0
2
    15668575 Female
                        26
                                      43000
                                                     0
3
    15603246 Female
                                      57000
                                                     0
                        27
4
                                                     0
     15804002
                Male
                        19
                                      76000
                  . . .
                       . . .
395 15691863 Female
                                      41000
                                                     1
                        46
396 15706071
                Male
                        51
                                      23000
                                                     1
397
    15654296 Female
                        50
                                      20000
                                                     1
398 15755018
                Male
                        36
                                      33000
                                                     0
399 15594041 Female
                                                     1
                        49
                                      36000
```

[400 rows x 5 columns]

lm.fit(x\_train,y\_train)

```
from sklearn.model_selection import train_test_split
X=df[['Age', 'EstimatedSalary']].values
Y=df[['Purchased']].values
x_train, x_test, y_train, y_test= train_test_split(X,Y, test_size=0.25, random_state=0)
from sklearn.preprocessing import StandardScaler
st_x=StandardScaler()
x_train=st_x.fit_transform(x_train)
x_test=st_x.fit_transform(x_test)

from sklearn.linear_model import LogisticRegression
lm=LogisticRegression (random state=0)
```

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConvers
 y = column\_or\_1d(y, warn=True)
 LogisticRegression

LogisticRegression
LogisticRegression(random\_state=0)

```
0.87
[[63 5]
[ 8 24]]
```

import seaborn as sn
import matplotlib.pyplot as plt
plt.figure(figsize = (5,3))
sn.heatmap(df\_cm, annot=True)



# Logistic Regression on own dataset

#reading the dataset using pandas
df=pd.read\_csv('/content/SBI.csv')
print(df)

|      | Unnamed: 0 | id        | fever_hours | age  | sex | WCC  | prevAB | sbi           | \ |
|------|------------|-----------|-------------|------|-----|------|--------|---------------|---|
| 0    | 1          | 57906     | 24.0        | 0.79 | Μ   | 3.8  | No     | UTI           |   |
| 1    | 2          | 58031     | 48.0        | 1.91 | F   | 25.3 | Yes    | UTI           |   |
| 2    | 3          | 58148     | 24.0        | 0.07 | F   | 20.0 | No     | UTI           |   |
| 3    | 4          | 58169     | 72.0        | 0.95 | Μ   | 6.0  | No     | UTI           |   |
| 4    | 5          | 58517     | 1.0         | 0.11 | F   | 15.6 | No     | UTI           |   |
|      |            |           | • • •       |      |     |      |        |               |   |
| 2343 | 2344       | 229318    | 48.0        | 1.06 | Μ   | 14.1 | No     | NotApplicable |   |
| 2344 | 2345       | 229506    | 24.0        | 3.05 | Μ   | 14.6 | No     | NotApplicable |   |
| 2345 | 2346       | 229794    | 48.0        | 1.81 | Μ   | 6.0  | No     | NotApplicable |   |
| 2346 | 2347       | 229962    | 24.0        | 1.24 | Μ   | 16.3 | Yes    | NotApplicable |   |
| 2347 | 2348       | 229985    | 24.0        | 3.56 | F   | 13.0 | No     | NotApplicable |   |
|      |            |           |             |      |     |      |        |               |   |
|      | pct        | cr        | p           |      |     |      |        |               |   |
| 0    | 0.090000   | 17.70000  | 90          |      |     |      |        |               |   |
| 1    | 4.400000   | 150.40000 | 90          |      |     |      |        |               |   |
| 2    | 0.548136   | 47.35927  | 79          |      |     |      |        |               |   |
| 3    | 0.310000   | 4.90000   | 90          |      |     |      |        |               |   |
| 4    | 0.936872   | 31.39486  | 50          |      |     |      |        |               |   |
|      | • • •      |           | •           |      |     |      |        |               |   |
| 2343 | 0.160000   | 16.70000  | 90          |      |     |      |        |               |   |

```
      2344
      1.080000
      77.500000

      2345
      0.480000
      75.300000

      2346
      20.280000
      17.300000

      2347
      0.606293
      18.181134
```

[2348 rows x 10 columns]

df.head(10)

|   | Unnamed:<br>0 | id    | fever_hours | age  | sex | WCC  | prevAB | sbi | pct      | crp        |
|---|---------------|-------|-------------|------|-----|------|--------|-----|----------|------------|
| 0 | 1             | 57906 | 24.0        | 0.79 | М   | 3.8  | No     | UTI | 0.090000 | 17.700000  |
| 1 | 2             | 58031 | 48.0        | 1.91 | F   | 25.3 | Yes    | UTI | 4.400000 | 150.400000 |
| 2 | 3             | 58148 | 24.0        | 0.07 | F   | 20.0 | No     | UTI | 0.548136 | 47.359279  |
| 3 | 4             | 58169 | 72.0        | 0.95 | М   | 6.0  | No     | UTI | 0.310000 | 4.900000   |
| 4 | 5             | 58517 | 1.0         | 0.11 | F   | 15.6 | No     | UTI | 0.936872 | 31.394860  |
| 5 | 6             | 58535 | 96.0        | 0.91 | М   | 6.2  | No     | UTI | 0.690000 | 9.000000   |
| 6 | 7             | 59139 | 48.0        | 1.56 | F   | 13.0 | No     | UTI | 2.680000 | 110.779789 |
| 7 | 8             | 59159 | 96.0        | 0.88 | F   | 26.4 | No     | UTI | 4.760000 | 163.495967 |
| 8 | 9             | 59560 | 96.0        | 0.42 | F   | 8.2  | No     | UTI | 5.050000 | 151.375166 |
| 9 | 10            | 60089 | 48.0        | 0.81 | М   | 7.5  | Yes    | UTI | 0.080000 | 9.300000   |

```
from sklearn.model_selection import train_test_split
X=df[['id', 'fever_hours', 'wcc']].values
Y=df[['prevAB']].values
x_train, x_test, y_train, y_test= train_test_split(X,Y, test_size=0.25, random_state=0)
```

```
from sklearn.preprocessing import StandardScaler
st_x=StandardScaler()
x_train=st_x.fit_transform(x_train)
x_test=st_x.fit_transform(x_test)
```

from sklearn.linear\_model import LogisticRegression
lm=LogisticRegression (random\_state=0)
lm.fit(x\_train,y\_train)

/usr/local/lib/python3.10/dist-packages/sklearn/utils/validation.py:1143: DataConvers
y = column\_or\_1d(y, warn=True)

```
v LogisticRegression
LogisticRegression(random_state=0)
```

```
y_pred=lm.predict(x_test)
print(y_pred)
```

```
'No'
     'No'
     'No'
       'No' 'No' 'No' 'No'
              'No' 'No' 'No' 'No' 'No' 'No' 'No'
'No'
     'No' 'No' 'No'
            'No'
              'No'
                 'No' 'No' 'No' 'No' 'No'
     'No' 'No' 'No'
            'No'
              'No'
                 'No' 'No' 'No' 'No' 'No'
'No'
  'No'
     'No' 'No' 'No'
            'No'
'No'
     'No' 'No' 'No' 'Yes' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No' 'No'
     'No' 'No' 'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No' 'No'
'No'
     'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No' 'Yes' 'No' 'No'
     'No'
  'No'
            'No'
     'No' 'No' 'No'
            'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No'
     'No' 'No' 'No'
'No'
            'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No'
'No'
     'No' 'No' 'No'
            'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No'
     'No' 'No' 'No'
     'No' 'No'
     'No' 'Yes' 'No' 'No' 'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No'
'No'
  'No'
'Yes' 'No' 'No' 'No' 'No' 'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No' 'No'
'No' 'No' 'No' 'No' 'No' 'Yes' 'Yes' 'No' 'No' 'Yes' 'No' 'No' 'No' 'No'
'No' 'No' 'No' 'No' 'No' 'No' 'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No'
'No'
  'No'
     'No'
     'No' 'No' 'Yes' 'No' 'No' 'No' 'Yes' 'No' 'No' 'No' 'No'
'No'
     'No'
            'No'
  'No'
     'No' 'No'
     'No' 'No' 'No'
            'No'
              'No' 'No' 'No' 'No' 'No' 'No'
     'No' 'No' 'No'
            'No'
              'No'
                 'No' 'No' 'No' 'No'
                          'No'
       'No'
         'No'
            'No'
              'No'
                 'No' 'No' 'No' 'No'
                          'No'
'No'
     'No'
                             'No'
              'No' 'No' 'No' 'No' 'No' 'No' 'No'
     'No' 'No'
         'No'
            'No'
     'No'
'No' 'No' 'No' 'No' 'No' 'No' 'Yes' 'No' 'No' 'No' 'No' 'No' 'No']
```

```
from sklearn.metrics import confusion_matrix as cm, accuracy_score
print(accuracy_score (y_test,y_pred))
df_cm=cm(y_test,y_pred)
print(df_cm)

    0.5877342419080068
    [[329   15]
       [227   16]]

import seaborn as sn
```

sn.heatmap(df\_cm, annot=True, fmt='g') #fmt="g" cause annot turns fmt= ".2g" so it doesn'

import matplotlib.pyplot as plt
plt.figure(figsize = (5,3))



# K Nearest Neighbors with Python

You've been given a classified data set from a company! They've hidden the feature column names but have given you the data and the target classes.

We'll try to use KNN to create a model that directly predicts a class for a new data point based off of the features.

Let's grab it and use it!

## Import Libraries

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
```

## Get the Data

Set index\_col=0 to use the first column as the index.

```
df = pd.read_csv("/content/fake_bills_KNN.csv")
#df.drop('margin_low',axis=1)
```

|   | is_genuine | diagonal | height_left | height_right | margin_up | length |
|---|------------|----------|-------------|--------------|-----------|--------|
| 0 | 1          | 171.81   | 104.86      | 104.95       | 2.89      | 112.83 |
| 1 | 1          | 171.46   | 103.36      | 103.66       | 2.99      | 113.09 |
| 2 | 1          | 172.69   | 104.48      | 103.50       | 2.94      | 113.16 |
| 3 | 1          | 171.36   | 103.91      | 103.94       | 3.01      | 113.51 |
| 4 | 1          | 171.73   | 104.28      | 103.46       | 3.48      | 112.54 |

## Standardize the Variables

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(df.drop('is_genuine',axis=1))

v StandardScaler
StandardScaler()
```

```
scaled_features = scaler.transform(df.drop('is_genuine',axis=1))

df_feat = pd.DataFrame(scaled_features,columns=df.columns[1:])

df_feat.head()
```

|   | diagonal  | height_left | height_right | margin_up | length    |
|---|-----------|-------------|--------------|-----------|-----------|
| 0 | -0.486540 | 2.774123    | 3.163240     | -1.128325 | 0.173651  |
| 1 | -1.633729 | -2.236535   | -0.799668    | -0.696799 | 0.471666  |
| 2 | 2.397823  | 1.504756    | -1.291191    | -0.912562 | 0.551901  |
| 3 | -1.961498 | -0.399294   | 0.060498     | -0.610494 | 0.953075  |
| 4 | -0.748754 | 0.836669    | -1.414072    | 1.417677  | -0.158750 |

# Train Test Split

from sklearn.model\_selection import train\_test\_split

# Using KNN

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)

v KNeighborsClassifier
KNeighborsClassifier(n_neighbors=1)
```

pred = knn.predict(X\_test)

## Predictions and Evaluations

Let's evaluate our KNN model!

```
from sklearn.metrics import classification_report,confusion_matrix
print(confusion_matrix(y_test,pred))
    [[143    10]
       [ 8    289]]
```

print(classification\_report(y\_test,pred))

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0                                     | 0.95<br>0.97 | 0.93<br>0.97 | 0.94<br>0.97         | 153<br>297        |
| accuracy<br>macro avg<br>weighted avg | 0.96<br>0.96 | 0.95<br>0.96 | 0.96<br>0.96<br>0.96 | 450<br>450<br>450 |

# Choosing a K Value

Let's go ahead and use the elbow method to pick a good K Value:

Text(0, 0.5, 'Error Rate')



Here we can see that that after arouns K>23 the error rate just tends to hover around 0.06-0.05 Let's retrain the model with that and check the classification report!

```
# K=1
```

```
knn = KNeighborsClassifier(n_neighbors=1)
```

```
knn.fit(X_train,y_train)
```

pred = knn.predict(X\_test)

print('WITH K=1')

print('\n')

print(confusion\_matrix(y\_test,pred))

print('\n')

print(classification\_report(y\_test,pred))

WITH K=1

[[143 10] [ 8 289]]

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.95      | 0.93   | 0.94     | 153     |
| 1            | 0.97      | 0.97   | 0.97     | 297     |
| accuracy     |           |        | 0.96     | 450     |
| macro avg    | 0.96      | 0.95   | 0.96     | 450     |
| weighted avg | 0.96      | 0.96   | 0.96     | 450     |