Часть 1. Элементы комбинаторики

	часть 1. Элементы комоинаторики						
Исходное (ые)	Все ли элементы	Возможен	Различны	Используемое	Формула для		
множество (а)	исходного	ли повтор	ли	комбинаторно	вычисления числа		
	множества		комбинаци	е понятие	комбинаций		
	используются в		и {a; b} и				
	комбинации		{b; a}				
Все элементы	Да	Нет	Да	Перестановка	$P_n = n!$		
конечного <i>n</i> -			(порядок				
элементного			следования				
множества			элементов				
различны			важен)				
Все элементы	Не всегда.	Нет	Да	Размещение	$A_n^k = \frac{n!}{(n-k)!}$		
конечного п-	Выбирают к		(порядок		$A_n - \frac{1}{(n-k)!}$		
элементного	элементов из п		следования				
множества	$(k \le n)$		элементов				
различны			важен)				
Все элементы	Не всегда.	Нет	Нет	Сочетание	$C_n^k = \frac{n!}{k! (n-k)!}$		
конечного <i>n</i> -	Выбирают к		(порядок		$c_n - \frac{1}{k!(n-k)!}$		
элементного	элементов из п		следования				
множества	$(k \le n)$		элементов				
различны			не важен)				
Среди элементов	Да	Да	Да	Перестановка	$P_n(k_1; k_2; \dots; k_m)$		
конечного n-			(порядок	c	$= \frac{n!}{k_1! k_2! \dots k_m!}$		
элементного			следования	повторениями	$-\frac{1}{k_1! k_2! \dots k_m!}$		
множества есть			элементов				
одинаковые			важен)				
$(k_1 \text{сорта} 1,$							
k ₂ сорта 2,,							
k_m сорта m :							
$k_1 + k_2 + \cdots + k_m$							
= n)							
Имеется п видов	Выбирают к	Да	Да	Размещение			
элементов, число	элементов.		(порядок	c	$\hat{A}_n^k = n^k$		
элементов каждого			следования	повторениями			
вида достаточно			элементов				
велико (может			важен)				
быть неизвестно)							
Имеется п видов	Выбирают k	Да	Нет	Сочетание			
элементов, число	элементов.		(порядок	c	$\hat{C}_n^k = C_{n+k-1}^k$		
элементов каждого			следования	повторениями	n = n + k - 1		
вида достаточно			элементов				
велико (может			не важен)				
быть неизвестно)			ĺ				
· -,	L		<u> </u>	<u> </u>	I .		

Правило суммы. Если объект A можно выбрать m способами, объект B-k способами (не такими, как A), то выбор «A или B» можно провести (m+k) способами.

Правило произведения. Если объект A можно выбрать m способами, после каждого такого выбора объект B-k способами (не такими, как A), то выбор «A и B» можно провести $(m \cdot k)$ способами.

Для произвольных чисел а и b и любого натурального п справедлива формула:

$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^k a^{n-k} b^k + \dots + C_n^n b^n$$

Задачи для самостоятельного решения:

- 1. Сколькими способами можно составить букет из 5 цветов, если в наличии есть цветы трех цветов?
- 2. Сколько различных слов, состоящих из трех букв, можно образовать из слова БУРАН?
- 3. Каким числом способов можно сдать 4 зачета в 8 дней, если сдавать в 1 день 1 зачет?
- 4. Каким числом способов можно выбрать из 10 различных книг 3 книги?
- 5. В общежитии проживает 50 студентов 2 курса. Ежедневно для дежурства из этой группы выделяются два человека. Можно ли составить расписание дежурств на год вперёд так, чтобы никакая пара студентов не дежурила дважды?
- 6. Сколько различных четырехзначных чисел можно составить из цифр 0, 2, 3, если цифры могут повторяться?
- 7. Шесть ящиков с разными видами материалов доставляются на пять этажей. Сколько вариантов распределений ящиков по этажам возможно? В скольких вариантах на второй этаж будет доставлен только один вид материала?
- 8. В соревнованиях участвует 18 команд, разыгрывая золотую, серебряную и бронзовую награды. Сколько вариантов итогов соревнований возможно?
- 9. Сколько различных чисел можно получить, переставляя цифры 2, 5, 7, 9?
- 10. Записать комплексное число $(2+i)^6$ в алгебраической форме.
- 11. В группе 30 человек. Сколькими способами можно выбрать старосту и профорга?
- 12. На железнодорожной станции имеется 6 светофоров. Сколько может быть дано различных сигналов, если каждый светофор имеет три состояния: красный, жёлтый, зеленый?
- 13. Сколькими способами 4 одинаковых предмета можно разложить по 5 разным ящикам?
- 14. Сколькими способами можно разложить 12 одинаковых монет по пяти различным кошелькам так, чтобы ни один кошелек не остался пустым?
- 15. Сколько существует костей домино?
- 16. В магазине имеются ножи, вилки и ложки. Требуется составить подарочный набор из шести предметов. Сколько различных наборов можно составить?
- 17. Во взводе 3 сержанта и 30 солдат. Сколькими способами можно выделить одного сержанта и трех солдат для патрулирования?
- 18. Буквы азбуки Морзе представляют собой набор точек и тире. Сколько букв в азбуке Морзе, если одна буква содержит не более 4 знаков?
- 19. Четыре автора должны написать книгу из 17 глав, причем первый и третий по 5 глав, второй 4, четвертый 3 главы. Сколько способов распределения написания глав существует?
- 20. Сколько различных букв можно получить, переставляя буквы в словах: а) зебра, б) баран, в) водород, г) абракадабра?

Ответы. 1.1. 21. 1.2. 60. 1.3. 1680. 1.4. 120. 1.5. Можно. 1.6. 54. 1.7. 5^6 ; $6 \cdot 4^5$. 1.8. 4896. 1.9. 24. 1.10. -117+44i. 1.11. 870. 1.12. 729. 1.13. 70. 1.14. 330. 1.15. 28. 1.17. 4060 1.18.30 1.19. 171531360 1.20. a) 120, б) 60, в) 420, г) 83160.

Часть 2. Классическое и геометрическое определение вероятности.

Классическое определение	Геометрическое определение		
Опыт производится один раз. Число его	Опыт производится один раз. Число его		
исходов конечно, исходы равновозможны.	исходов бесконечно, исходы равновозможны.		
$P(A) = \frac{m}{n}$ m - число благоприятных исходов	$P(A) = \frac{mesA}{mes\Omega}, mes = \begin{bmatrix} l, R_1 \\ S, R_2 \\ V, R_3 \end{bmatrix}$		
n — общее число равновозможных исходов	[,,113		

Задача о выборе (гипергеометрическое распределение).

Пусть имеется N предметов, среди которых M одного сорта, остальные — другого сорта. Выбирают k предметов. Какова вероятность, что среди выбранных l предметов будет из исходных M? Это задача для случая классического определения вероятности, то есть $P(A) = \frac{m}{n}$. Количество благоприятных исходов (1 нужного сорта, остальные k-l другого) определяется через понятие сочетаний и принципа умножения, т.е. $m = C_M^l \cdot C_{N-M}^{k-l}$. Всего исходов в описанном опыте $n = C_N^k$. Таким образом,

$$P(A) = \frac{m}{n} = \frac{C_M^l \cdot C_{N-M}^{k-l}}{C_N^k}.$$

Задачи для самостоятельного решения:

- 21. Кубик, все грани которого окрашены, распиливают на 27 частей. Найти вероятность, что случайно выбранная часть имеет: 1) одну окрашенную грань; 2) две окрашенных грани; 3) ни одной окрашенной грани.
- 22. В картотеке из 80 фотороботов содержится фоторобот преступника. Случайно отбирают 5 фотороботов. Какова вероятность, что среди них фоторобот разыскиваемого преступника?
- 23. Абонент забыл последние две цифры телефонного номера, помня, что они разные. Какова вероятность, что с первого раза он наберет нужный номер?
- 24. В состав ученого совета избрали 21 человека, среди них 4 студента. Какова вероятность избрать председателем и секретарём или только секретарём совета студентов, если будут избираться из числа членов совета жребием?
- 25. Десять книг случайным образом расставляют на книжной полке. Какова вероятность, что 3 конкретные книги окажутся рядом?
- 26. На шести карточках написано по одной букве M, O, C, K, B, А. После перемешивания карточки последовательно выкладывают. Какова вероятность получить «МОСКВА»?
- 27. В партии из 13 деталей имеется 8 стандартных. Наудачу отобраны 7 деталей. Найдите вероятность того, что среди отобранных деталей: ровно 5 стандартных; ровно 5 нестандартных
- 28. В партии из 10 деталей имеется 6 стандартных. Наудачу отобраны 4 детали. Найдите вероятность того, что среди отобранных деталей ровно 3 нестандартных.
- 29. В группе учатся 13 юношей и 9 девушек. Для дежурства случайным образом отобраны три студента. Найдите вероятность того, что все дежурные окажутся юношами.
- 30. В ящике 3 белых и 4 черных шаров. Найдите вероятность того, что из двух вынутых наудачу шаров оба будут белыми. Вынутый шар в урну не возвращается.
- 31. Колода карт произвольным образом делится на две стопы по 26 карт в каждой. Какова вероятность того, что в каждой стопе окажется по два туза?
- 32. Какова вероятность того, что в январе наугад выбранного года окажется пять воскресений?
- 33. На отрезок AB длины 240 наудачу поставлена точка x. Найдите вероятность того, что меньший из отрезков Ax и xB имеет длину большую, чем 48.
- 34. На плоскости начерчены две концентрические окружности, радиусы которых 20 и 100 соответственно. Найдите вероятность того, что точка, брошенная наудачу в большой круг, попадет также и в кольцо, образованное построенными окружностями.

- 35. Внутрь круга радиуса 50 наудачу брошена точка. Какова вероятность того, что точка окажется внутри вписанного в круг правильного треугольника
- 36. В квадрат с вершинами в точках (-1; -1), (-1; 1), (1; 1), (1; -1) наудачу поставлена точка (x; y). Какова вероятность того, что координаты этой точки удовлетворяют условию $y > x^3$?
- 37. В квадрат со стороной 1 вписан равнобедренный треугольник так, что его основание совпадает со стороной квадрата. В квадрат случайным образом бросается точка. Найдите вероятность того, что точка не попадет в треугольник.
- 38. Какова вероятность того, что корни квадратного уравнения $x^2 + 2bx + c = 0$ вещественные числа, если b и c равномерно распределены в интервалах |b| < 4, |c| < 4?
- 39. В прямоугольник с вершинами в точках (0; 0), (0; 1), (2; 1), (2; 0) наудачу поставлена точка (x; y). Какова вероятность того, что координаты этой точки удовлетворяют условию $y \le x$?
- 40. В куб со стороной 10 наудачу бросается точка. Найдите вероятность того, что эта точка попадет во вписанный в куб шар.
- 41. В прямоугольник с вершинами в точках (0; 0), (0; 1), (2; 1), (2; 0) наудачу поставлена точка (x; y). Какова вероятность того, что координаты этой точки удовлетворяют условию $y \le \frac{x^2}{4}$?
- 20.1) 2/9 2) 4/9 3) 1/27
- 21.1/16
- 22.1/90
- 23.0,38
- 24.1/15
- 25.1/720
- 26.0,117
- 27.0,114
- 28.0,186
- 29.1/7
- 30. $1,2 \cdot 10^{-14}$
- 31.3/7
- 32.96/240
- 33.. 0,96
- $34..\,\frac{3\sqrt{3}}{4\pi}$
- 35.. 0,5
- 36.. 0,5
- 37.. 0,83
- 38.. 0,75
- 39.1/3