5.5 Complex Eigenvalus and Eigenvectors

- When characteristic equation: $\det(A-\lambda I)=0$ does not return Real valued eigenvalues
- . If $\lambda_1 = a + bi$, a complex number, and specific eigenvector $\begin{bmatrix} c_1 di \\ e \end{bmatrix}$
- . Then, for the conjugate of λ , \rightarrow λ_2 , $\lambda_2=a$ -bi with associated eigenvecton $\begin{bmatrix} c-di \\ e \end{bmatrix}$
 - These two vectors are linearly independent
- . For specific $V_1 = \begin{bmatrix} c di \\ e \end{bmatrix}$, the rook parts are $\begin{bmatrix} c \\ e \end{bmatrix}$ and imaginary $\begin{bmatrix} -d \\ 0 \end{bmatrix}$
- Theorem 9: Let A be a 2×2 matrix with $\lambda_1=\alpha-bi$ ($b\neq0$) and associated eigenvector $V_1\in\mathbb{C}^2$. Then,
 - A = PCP'' where $P = [Real \ V \ Imaginer \ V]$ and $C = [b \ a]$

Example of finding implex eigenvourors

Example: Find the eigenvectors given that $\lambda_1 = -1 + 2i$, $\lambda_2 = -1 - 2i$.

$$A = \begin{bmatrix} -2 & 1 \\ 5 & 0 \end{bmatrix}$$

 $A = \begin{bmatrix} -2 & -1 \\ 5 & 0 \end{bmatrix}$ must east 0 when (multiplies by factor)
by

$$\frac{1}{2} A - \lambda_{1} I = \begin{bmatrix} -2 - (-1+2i) & -1 \\ 5 & -(-1+2i) \end{bmatrix} = \begin{bmatrix} -1+2i & -1 \\ 5 & 1-2i \end{bmatrix}$$

$$\begin{bmatrix} -1+2i & -1 \\ 5 & 1-2i \end{bmatrix}$$
, we can

choose that
$$V_1 = \begin{bmatrix} 1 \\ (-1+2i) \end{bmatrix}$$
 or $\begin{bmatrix} 1 \\ -1 \end{bmatrix} + i \begin{bmatrix} 0 \\ 2 \end{bmatrix}$