Math 1400 Calculus for Social and Life Sciences I Name:
You have 10 minutes to complete this quiz. This quiz is worth a total of 10 points. Please write clearly and neatly and make sure to show your work unless otherwise specified. Correct answers with no supporting work may receive reduced/no credit.
1. (10 points) A cylindrical can of soda contains 355 milliliters, which is 355 cm ³ . Find the dimensions (height and radius) that minimize the amount of material needed to make the can. A cylinder is a prism with a circular base. Therefore the volume is the area of the circular base (πr^2) times the height The surface area of the curved part of a cylinder can be found by multiplying the perimeter of the circular base ($2\pi r$) by the height.
(a) (1 point) What are you trying to minimize?
(b) (2 points) Draw a picture, then write a formula for the total surface area of the can.
(c) (1 points) Write a formula for the volume of the can.
(d) (2 points) Rewrite your formula for the surface area as a function of only the radius.
(e) (3 points) Find the radius that maximizes the surface area. For this problem, you may take it for granted that the critical point you find is actually the maximum.

(f) (1 point) What is the height of the can?

Math 1400 Calculus for Social and Life Sciences I Name:Quiz 5
You have 10 minutes to complete this quiz. This quiz is worth a total of 10 points. Please write clearly and neatly and make sure to show your work unless otherwise specified. Correct answers with no supporting work may receive reduced/no credit.
1. (10 points) A cylindrical can of soda contains 12 fluid oz, which is about 21.6 in ³ . Find the dimension (height and radius) that minimize the amount of material needed to make the can. A cylinder is prism with a circular base. Therefore the volume is the area of the circular base (πr^2) times the height The surface area of the curved part of a cylinder can be found by multiplying the perimeter of the circular base ($2\pi r$) by the height.
(a) (1 point) What are you trying to minimize?
(b) (2 points) Draw a picture, then write a formula for the total surface area of the can.
(c) (1 points) Write a formula for the volume of the can.
(d) (2 points) Rewrite your formula for the surface area as a function of only the radius.
(e) (3 points) Find the radius that maximizes the surface area. For this problem, you may take it for granted that the critical point you find is actually the maximum.

(f) (1 point) What is the height of the can?