Advanced Discretization Techniques Homework 5

Bruno Degli Esposti, Xingyu Xu

November 19th - November 26th, 2019

Exercise 11: A trace estimate using the Raviart-Thomas element RT_0

a) For any $i \in \{1, 2, 3\}$ and any $x \in e_j \neq e_i$, we know that the vector $x - x_i$ is parallel to the side e_j , so

$$\frac{|e_i|}{2|K|}(x-x_i)\cdot\nu(x)=0$$

by the definition of normal $\nu(x)$. Otherwise, if $x \in e_i$, we get that $(x - x_i) \cdot \nu(x) = h_i$, where h_i is the height of the triangle K with respect to the base e_i . It then follows by the formula for the area of a triangle that

$$\frac{|e_i|}{2|K|}(x-x_i) \cdot \nu(x) = \frac{1}{|K|} \frac{|e_i| h_i}{2} = 1,$$

as was required. This proves that $\tau_i(x) \cdot \nu(x) = \chi_{e_i}(x)$ for all $x \in \partial K$. Moving on to the second part of the proof, $\dim(\mathrm{RT}_0(K)) = 1(1+2) = 3$, so we only need to prove that the functions τ_i are linearly independent. For this purpose, let $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ be such that $\alpha_1 \tau_1(x) + \alpha_2 \tau_2(x) + \alpha_3 \tau_3(x) = 0$. If we now take the scalar product with respect to $\nu(x)$, we get that

$$0 = \alpha_1 \tau_1(x) \cdot \nu(x) + \alpha_2 \tau_2(x) \cdot \nu(x) + \alpha_3 \tau_3(x) \cdot \nu(x)$$

= $\alpha_1 \chi_{e_1}(x) + \alpha_2 \chi_{e_2}(x) + \alpha_3 \chi_{e_3}(x)$.

By evaluating this identity in $x \in e_i$, we can conclude that $\alpha_i = 0$ for all $i \in \{1, 2, 3\}$. Hence $\{\tau_1, \tau_2, \tau_3\}$ forms a basis of $RT_0(K)$.

b) We can get the required estimate by using the formula $\tau_i(x) \cdot \nu(x) = \chi_{e_i}(x)$ of point a), the divergence theorem and the Cauchy-Schwarz inequality:

$$\begin{aligned} \|u\|_{0,e_{i}}^{2} &= \int_{e_{i}} u(x)^{2} d\sigma = \int_{\partial K} u(x)^{2} \chi_{e_{i}}(x) d\sigma \\ &= \int_{\partial K} u(x)^{2} \tau_{i}(x) \cdot \nu(x) d\sigma = \int_{K} \nabla \cdot (u(x)^{2} \tau_{i}(x)) dx \\ &= \int_{K} 2u(x) \nabla u(x) \cdot \tau_{i}(x) dx + \int_{K} u(x)^{2} \nabla \cdot \tau_{i}(x) dx \\ &\leq 2\|u\|_{0,K} \|\nabla u\|_{0,K} \|\tau_{i}\|_{L^{\infty}} + \|\nabla \cdot \tau_{i}\|_{L^{\infty}(K)} \|u\|_{0,K}^{2}. \end{aligned}$$

c) The constant h is equal to the diameter of K. Therefore

$$\|\tau_i\|_{L^{\infty}(K)} = \operatorname*{ess\,sup}_{x \in \partial K} \left\{ \frac{|e_i|}{2|K|} \|x - x_i\| \right\} \le \frac{h}{2|K|} h \le \frac{c}{2}.$$

Since K is a subset of \mathbb{R}^2 , we have that $\nabla \cdot x = 2$. Hence

$$\|\nabla \cdot \tau_i\|_{L^{\infty}(K)} = \operatorname*{ess\,sup}_{x \in \partial K} \left\{ \frac{|e_i|}{2|K|} |\nabla \cdot (x - x_i)| \right\} = \frac{|e_i|}{2|K|} 2 \le \frac{h}{|K|} \le \frac{c}{h}.$$

d) By the inequalities we have proved in points b) and c), we have that

$$\|u\|_{0,e_i}^2 \le \frac{c}{h} \|u\|_{0,K}^2 + c \|u\|_{0,K} \|\nabla u\|_{0,K}.$$

Then, since c and h are both positive constants,

$$||u||_{0,e_i}^2 \le \frac{c}{h} ||u||_{0,K}^2 + 2c ||u||_{0,K} ||\nabla u||_{0,K} + ch ||\nabla u||_{0,K}^2$$
$$= \left((c^{1/2}h^{-1/2} ||u||_{0,K} + c^{1/2}h^{1/2} ||\nabla u||_{0,K} \right)^2.$$

The result follows by taking the square root on both sides and making the choice $C = c^{1/2}$. \square

Exercise 12: Poisson's problem with RT_0 - \mathcal{L}_0^0

Let $\lambda_1(x), \lambda_2(x), \lambda_3(x)$ be the barycentric coordinate maps for the triangle K, so that for each $x \in \mathbb{R}^2$ we have that

$$x = \sum_{i=1}^{3} \lambda_i(x) x_i$$
 and $\sum_{i=1}^{3} \lambda_i(x) = 1$.

We begin by proving the identity given as a hint. Let \hat{K} be the reference triangle in \mathbb{R}^2 , as defined in Chapter 2 of [K,A]. For any $i, j \in \{1, 2, 3\}$, let $F : \hat{K} \to K$ be an affine and bijective mapping such that $F(1,0) = x_i$ and, if $j \neq i$, $F(0,1) = x_j$. By the change of variables formula, it follows that

$$\int_{K} \lambda_{i}(\mathbf{x}) \lambda_{j}(\mathbf{x}) d\mathbf{x} = \int_{\hat{K}} \lambda_{i}(F(x,y)) \lambda_{j}(F(x,y)) |\det(dF(x,y))| dx dy.$$

By the choice of F, and the fact that $\lambda_i \circ F$ is still an affine map, it's easy to see that $\lambda_i(F(x,y)) = x$ and, if $j \neq i$, $\lambda_j(F(x,y)) = y$. Moreover, dF is a constant matrix such that $|\det(dF)| = 2|K|$. If i = j, we get that

$$\int_{K} \lambda_{i}(\mathbf{x}) \lambda_{j}(\mathbf{x}) d\mathbf{x} = 2 |K| \int_{\hat{K}} x^{2} dx dy = 2 |K| \int_{0}^{1} \int_{0}^{1-x} x^{2} dy dx$$
$$= 2 |K| \int_{0}^{1} x^{2} - x^{3} dx = 2 |K| \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{|K|}{12} (1 + \delta_{ij}),$$

as was required. If $i \neq j$, we still get that

$$\int_{K} \lambda_{i}(\mathbf{x}) \lambda_{j}(\mathbf{x}) d\mathbf{x} = 2 |K| \int_{\hat{K}} xy \, dx dy = 2 |K| \int_{0}^{1} \int_{0}^{1-x} xy \, dy \, dx$$

$$= 2 |K| \int_{0}^{1} \frac{1}{2} x (1-x)^{2} \, dx = |K| \int_{0}^{1} x - 2x^{2} + x^{3} \, dx$$

$$= |K| \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) = |K| \left(\frac{6-8+3}{12} \right) = \frac{|K|}{12} (1+\delta_{ij}),$$

so the identity in the hint has been proved for all $i, j \in \{1, 2, 3\}$. Moving on to the central part of the proof,

$$(\tau_{h,e_i}, \tau_{h,e_j})_K = \int_K \left\langle \tau_{h,e_i}(x), \tau_{h,e_j}(x) \right\rangle dx$$
$$= \int_K \sigma_i \sigma_j \frac{|e_i| |e_j|}{4 |K|^2} \left\langle x - x_i, x - x_j \right\rangle dx.$$

Let c be the constant in the last integral. We can introduce barycentric coordinates to get that

$$\int_{K} c \langle x - x_{i}, x - x_{j} \rangle dx = c \int_{K} \left\langle \sum_{s=1}^{3} \lambda_{s}(x)(x_{s} - x_{i}), \sum_{r=1}^{3} \lambda_{r}(x)(x_{r} - x_{j}) \right\rangle dx$$

$$= c \sum_{s,r=1}^{3} \left\langle x_{s} - x_{i}, x_{r} - x_{j} \right\rangle \int_{K} \lambda_{s}(x) \lambda_{r}(x) dx$$

$$= c \sum_{s,r=1}^{3} \left\langle x_{s} - x_{i}, x_{r} - x_{j} \right\rangle \frac{|K|}{12} (1 + \delta_{sr}).$$

Let x_c be the barycenter of K. Then we can further simplify the sum:

$$\begin{split} (\tau_{h,e_i},\tau_{h,e_j})_K &= \frac{c\,|K|}{12} \left(\sum_{s,r=1}^3 \langle x_s - x_i, x_r - x_j \rangle + \sum_{s=1}^3 \langle x_s - x_i, x_s - x_j \rangle \right) \\ &= \frac{c\,|K|}{12} \left(\left\langle \sum_{s=1}^3 (x_s - x_i), \sum_{r=1}^3 (x_r - x_j) \right\rangle + \sum_{s=1}^3 \langle x_s - x_i, x_s - x_j \rangle \right) \\ &= \frac{c\,|K|}{12} \left(9\,\langle x_c - x_i, x_c - x_j \rangle + \sum_{s=1}^3 \langle x_s - x_i, x_s - x_j \rangle \right) \\ &= \sigma_i \sigma_j \frac{|e_i|\,|e_j|}{48\,|K|} \left(9\,\langle x_c - x_i, x_c - x_j \rangle + \sum_{s=1}^3 \langle x_s - x_i, x_s - x_j \rangle \right). \end{split}$$

As for the last part of the proof, we compute that

$$(v_{h,K}, \nabla \cdot \tau_{h,e_i})_K = \int_K v_{h,K}(x) \, \nabla \cdot \tau_{h,e_i}(x) \, dx = \int_K \sigma_i \frac{|e_i|}{2|K|} \nabla \cdot (x - x_i) \, dx$$
$$= \int_K \sigma_i \frac{|e_i|}{2|K|} 2 \, dx = \sigma_i \frac{|e_i|}{|K|} \int_K 1 \, dx = \sigma_i |e_i| \, . \quad \Box$$