Topološke lastnosti so logični principi v topoloških modelih

Luna Strah 19. 5. 2025

Univerza v Ljubljani, Fakulteta za matematiko in fiziko

Topološke lastnosti so logični principi v topoloških modelih

Luna Strah 19. 5. 2025

Univerza v Ljubljani, Fakulteta za matematiko in fiziko

Heytingovo vrednotene množice

Definicija

Heytingovo vrednotena množica ali tip A je množica A skupaj s preslikavo $[\![-=_A-]\!]:A\times A\to \mathcal{O}X$, tako da za vse a, b, in $c\in A$ velja

$$\label{eq:abar} \begin{bmatrix} a =_A b \end{bmatrix} \subseteq \begin{bmatrix} b =_A a \end{bmatrix} \text{ in}$$

$$\label{eq:abar} \begin{bmatrix} a =_A b \end{bmatrix} \cap \begin{bmatrix} b =_A c \end{bmatrix} \subseteq \begin{bmatrix} a =_A c \end{bmatrix}.$$

Razpon ||a|| je [a=a].

Relacije in operacije

Definicija

Naj bodo A_1, \dots, A_n, B tipi.

Relacija R na $A_1 \times \cdots \times A_n$ je preslikava $A_1 \times \cdots \times A_n \to \mathcal{O}X$, ki za vse $a_i \in A_i$ zadošča pogojema

$$\label{eq:continuous} \begin{split} \llbracket a_1 = a_1' \rrbracket \cap \cdots \cap \llbracket a_n = a_n' \rrbracket \cap R(a_1,...,a_n) \subseteq R(a_1',...,a_n') \text{ in } \\ R(a_1,...,a_n) \subseteq \lVert a_1 \rVert \cap \cdots \cap \lVert a_n \rVert \,. \end{split}$$

Relacije in operacije

Definicija

Naj bodo A_1, \dots, A_n, B tipi.

Operacija $f:A_1\times\cdots\times A_n\leadsto B$ je preslikava $A_1\times\cdots\times A_n\to B$, ki za vse $a_i\in A_i$ zadošča pogojema

$$\begin{split} [\![a_1 = a_1']\!] \cap \cdots \cap [\![a_n = a_n']\!] \subseteq [\![f(a_1,...,a_n) = f(a_1',...,a_n')]\!] \text{ in } \\ f(a_1,...,a_n) \subseteq |\![a_1|\!] \cap \cdots \cap |\![a_n|\!] \,. \end{split}$$

Dve operaciji $f,g:A_1\times\cdots\times A_n\leadsto B$ sta enaki, ko za vse $a_i\in A_i$ velja

$$[\![f(a_1,...,a_n)=g(a_1,...,a_n)]\!]=\|a_1\|\cap\cdots\cap\|a_n\|\,.$$

Morfizmi

Definicija

Morfizem $f:A \hookrightarrow B$ med tipoma A in B je relacija med A in B, za katero za vse $a \in A$ in $b,b' \in B$ velja

$$f(a,b)\cap f(a,b')\subseteq \llbracket b=_Bb'\rrbracket$$

$$\lVert a\rVert\subseteq\bigcup_{b\in B}f(a,b)$$

Logika odprtih množic

$$\begin{split} & \llbracket \top \rrbracket \coloneqq X \\ & \llbracket \bot \rrbracket \coloneqq \varnothing \\ & \llbracket \varphi \wedge \psi \rrbracket \coloneqq \llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \\ & \llbracket \varphi \vee \psi \rrbracket \coloneqq \llbracket \varphi \rrbracket \cup \llbracket \psi \rrbracket \\ & \llbracket \varphi \Rightarrow \psi \rrbracket \coloneqq \operatorname{int} (\llbracket \varphi \rrbracket \cup \llbracket \varphi \rrbracket^c) \\ & \llbracket \forall x : A. \ \varphi(x) \rrbracket \coloneqq \operatorname{int} \bigcap_{a \in A} \llbracket \|a\| \Rightarrow \varphi(a) \rrbracket \\ & \llbracket \exists x : A. \ \varphi(x) \rrbracket \coloneqq \bigcup_{a \in A} \llbracket \|a\| \wedge \varphi(a) \rrbracket \\ & \llbracket \tau = \sigma \rrbracket \coloneqq \llbracket \llbracket \tau \rrbracket_A = \llbracket \sigma \rrbracket_A \rrbracket \\ & \llbracket R(\tau) \rrbracket \coloneqq R (\llbracket \tau \rrbracket_A), \text{ za relacijo } R \text{ na } A \text{ in } \tau : A \end{split}$$

Objekti

 ${\cal A}$ množica, ${\cal T}$ topološki prostor

$$T_X \coloneqq \{f: \mathcal{C}(U,T) \mid U \in \mathcal{O}(X)\}$$

Nad realnimi števili je torej $\mathrm{id}:\mathbb{R}\to\mathbb{R}$ Dedekindovo realno število.

Izbira

Definicija

Princip $AC_{\Sigma}(A, B)$ pravi, da za vsako celovito relacijo $R: A \times B \to \Sigma$ obstaja funkcija izbire.

$$\begin{split} \mathsf{AC}_\Sigma(A) &:= \forall B. \ \mathsf{AC}_\Sigma(A,B) \\ \mathsf{AC}_\Sigma &:= \forall A. \ \mathsf{AC}_\Sigma(A) \\ \mathsf{CC}_\Sigma &:= \forall B. \ \mathsf{AC}_\Sigma(\mathbb{N},B) \\ \mathsf{CC}_\Sigma^\vee &:= \mathsf{AC}_\Sigma(\mathbb{N},2) \end{split}$$

Izrek ([Sim24])

Nad X velja $AC(\underline{A})$ in $\forall B.\ \underline{A} \hookrightarrow B \cong \underline{A \leadsto B}$ natanko tedaj, ko ima vsaka A-indeksirana družina pokritij X skupno pofinitev.

Definicija

Prostor je *P-prostor*, ko je števen presek odprtih množic odprt.

Trditev

Če je X P-prostor, ima vsaka števna družina pokritij X skupno pofinitev.

Posledica

Nad P-prostori velja CC.

Nad prostorom [0,1] s topologijo $\{[0,a) \mid a \in [0,1]\} \cup [0,1]$ ima vsaka družina pokritij skupno pofinitev, a ta ni P-prostor.

Trditev Če je prostor $X T_1$ in ima vsaka števna družina pokritij X

skupno pofinitev, je P-prostor.

Posledica Nad lokalno povezanimi T_1 prostori je CC ekvivalentna CC $^{\vee}$.

Nad prostori Aleksandova velja $AC(\underline{A})$ za vse množice A.

Trditev

Če je X diskreten prostor, nad njem velja AC.

Izrek

V topoloških modelih je AC ekvivalenten LEM.

Dedekindova konstrukcija

Definicija (Dedekindova konstrukcija)

Par $(L,U)\in\mathcal{P}(\mathbb{Q})\times\mathcal{P}(\mathbb{Q})$ je Dedekindov rez, ko velja

- 1. L je naseljena, dolnja, in navzgor odprta
- 2. U je naseljena, gornja, in navzdol odprta
- 3. za vsaka $p,q:\mathbb{Q}$ velja $p\in L \land q\in U \Rightarrow p < q$
- 4. za vsaka p < q velja $p \in L \lor q \in U$

Principi

$$\begin{split} \mathsf{LPO} &:= \forall \alpha : 2^{\mathbb{N}}. \ \alpha = 0 \lor \alpha \# 0 \\ \mathsf{WLPO} &:= \forall \alpha : 2^{\mathbb{N}}. \ \alpha = 0 \lor \alpha \neq 0 \\ \mathsf{ALPO} &:= \forall x : \mathbb{R}_{\mathbb{D}}. \ x = 0 \lor x \# 0 \\ \mathsf{AWLPO} &:= \forall x : \mathbb{R}_{\mathbb{D}}. \ x = 0 \lor x \neq 0 \\ \mathsf{KS} &:= \forall p : \Omega. \ \exists \alpha : 2^{\mathbb{N}}. \ p \Leftrightarrow \alpha \# 0 \\ \mathsf{AKS} &:= \forall p : \Omega. \ \exists x : \mathbb{R}_{\mathbb{D}}. \ p \Leftrightarrow x \# 0 \\ \mathsf{MP} &:= \forall \alpha : 2^{\mathbb{N}}. \ \neg (\alpha = 0) \Rightarrow \alpha \# 0 \\ \mathsf{AMP} &:= \forall x : \mathbb{R}_{\mathbb{D}}. \ \neg (x = 0) \Rightarrow x \# 0 \end{split}$$

Nad X drži ALPO natanko tedaj, ko so ničelne množice funkcij $U \to \mathbb{R}$ odprte.

Trditev

Če je X lokalno T_6 , nad njem drži AKS.

Trditev

Če nad X obstaja funkcija izbire za AKS, je lokalno T_6 .

Definicija

Prostor je realno nepovezan, ko je za vsako funkcijo $f: X \to \mathbb{R}$ množica cl $\{t \in X \mid f(t) > 0\}$ odprta.

Trditev

Nad X velja AWLPO natanko tedaj, ko je vsak odprt podprostor X realno nepovezana.

Definicija

Prostor X je skoraj P-prostor, ko je za vsak $f:X\to\mathbb{R}$ množica $[\![f>0]\!]$ regularna.

Trditev

Nad X velja AMP natanko tedaj, ko je vsaka odprta

podmnožica X skoraj P-prostor.

Izrek

 $Velja \text{ AMP} \land \text{AWLPO} \Rightarrow \text{ALPO}.$

Izrok

Izrek

skoraj P-prostor in realno nepovezan.

Ničelne množice $f: X \to \mathbb{R}$ so odprte natanko tedaj, ko je X

Nad lokalno povezanim prostorom velja LPO.

Trditev (??)

Če nad 2-števnim prostorom velja LPO, je lokalno povezan.

