# Fazang: A Reverse-mode Automatic differentiation tool in Fortran

User's Guide (Version 0.0.1)

Yi Zhang

Copyright 2022, Yi Zhang

February 5, 2022

## Contents

| Chapter 1. Introduct                                                                                     | tion | 3                               |
|----------------------------------------------------------------------------------------------------------|------|---------------------------------|
| Chapter 2. Quick St                                                                                      | art  | 4                               |
| Chapter 3. Use Faza 1. Constructors 2. Assignment 3. Gradient 4. Nested AD envi 5. Jacobian 6. Functions |      | 6<br>6<br>6<br>6<br>7<br>8<br>9 |
| Chapter 4. Design 1. tape data struct 2. vari type 3. var type 4. Nested tape                            | ture | 10<br>10<br>10<br>11<br>12      |
| Chapter 5. Add operation functions                                                                       |      | 13                              |
| Appendix A. Fazang Functions                                                                             |      | 16                              |
| Appendix. Bibliography                                                                                   |      | 17                              |

## Introduction

Fazang is a reverse-mode automatic differentiation (AD) tool. The project is heavily influenced by Stan/Math [1], a project the author is also involved in. Fazang is intended to support general scientific computing in Fortran beyond Bayesian inference and Markove Chain Monte Carlo that Stan/Math is designed for.

User should be aware that the project is at early stage and still under development. For any questions, suggestions, and contributions, please visit the project at https://github.com/yizhang-yiz/fazang.

## **Quick Start**

Currently Fazang has been tested on Linux and MacOS platform, with Fortran compiler Intel Fortran 19.0.1+ and GNU Fortran 11.2.0+.

After downloading Fazang, user can use meson to build the library.

```
git clone git@github.com:yizhang-yiz/fazang.git
cd fazang && mkdir build && cd build
meson compile
```

This generates a shared library at build/src/. User needs to link this library when building an application. This can be done in meson by setting

```
executable('app_name', files('path/to/app_file.F90'), dependencies : fazang_dep)
```

Fazang provides a user-facing derived type var. This is the type for the dependent and independent variables of which the adjoint (derivative) will be calculated.

For example, consider the log of the Gaussian distribution density with mean  $\mu$  and standard deviation  $\sigma$ 

$$f(\mu, \sigma) = \log \left( \frac{1}{\sigma \sqrt{2\pi}} \exp \left( -\frac{1}{2} \left( \frac{y - \mu}{\sigma} \right)^2 \right) \right)$$
 (1)

The following programe calculates  $\frac{df}{d\mu}$  and  $\frac{df}{d\sigma}$  at  $y=1.3, \mu=0.5, \text{ and } \sigma=1.2.$ 

```
program log_demo
    use fazang ! load Fazang library

implicit none

real(rk) :: y
    type(var) :: f, sigma, mu

! data
    y = 1.3d0

! independent variables
    mu = var(0.5d0)
    sigma = var(1.2d0)

! dependent
    f = var(-0.5d0 * log(2 * pi))
```

```
f = f - log(sigma)
f = f - 0.5d0 * ((y - mu) / sigma) ** 2.d0;

! use grad() to calculate df/d(mu) and df/d(sigma). Each var's
! derivative (also called adjoint) can be access through var%adj().

call f%grad()
write(*, *) "df/d(mu): ", mu%adj()
write(*, *) "df/d(sigma): ", sigma%adj()
end program log_demo
```

## Use Fazang

Fazang uses var type to record numerical and gradient operations. The type supports three functions

- var%val(): returns value
- var%adj(): returns derivative, henceforth referred as adjoint.
- var%grad(): takes gradient operation with respect to the current var variable.

#### 1. Constructors

var can be constructed using overloaded var interface.

## 2. Assignment

var can be assigned from consistent var and real(real64).

### 3. Gradient

Consider a variable z calculated by the composition of a series of operations

$$z = f_1(z_1), \quad z_1 = f_2(z_2), \quad \dots, \quad z_{n-1} = f_n(z_n).$$

For  $z_i, i = 1, ..., n$  we refer  $dz/dz_i$  as the adjoint of  $z_i$ , denoted by  $z_i^{\text{adj}}$ . The chain rule says the adjoints can be calculated recursively [2],

$$z^{\mathrm{adj}} = 1$$
,  $z_1^{\mathrm{adj}} = z^{\mathrm{adj}} \frac{df_1}{dz_1}$ , ...,  $z_i^{\mathrm{adj}} = z_{i-1}^{\mathrm{adj}} \frac{df_i}{dz_i}$ .

We often refer each  $(f_i, z_i)$  pair as a *node*, and  $z_i$  the *operand* of operation  $f_i$ . The above recursion through the nodes requires a way to store and visit the *callstack* of nodes. It is embodied in Fazang by the var%grad() function. When z%grad() is called, z's adjoint is

set to 1, and every other var variable is transversed with its adjoint updated. In order to calculate the adjoint with respect to another variable, user must call set\_zero\_all\_adj() first to reset all adjoints to zero.

An alternative to invoke gradient calculation is to define the dependent as a function and feed it to Fazang's gradient function. Take Eq.(1) for example, we can first define the function for  $f(\mu, \sigma)$ .

```
module func
  use fazang ! load Fazang library
  implicit none

real(rk), parameter :: y = 1.3d0

contains
  type(var) function f(x)
    type(var), intent(in) :: x(:)
    type(var) :: mu, sigma
    mu = x(1)
    sigma = x(2)
    f = -0.5d0 * log(2 * pi) - log(sigma) - 0.5d0 * ((y - mu) / sigma) ** 2.d0;
  end function f

end module func
```

Then we can supply function f as a procedure argument.

```
program log_demo2
    use iso_c_binding
    use fazang
    use func

implicit none

real(real64) :: fx(3), x(2)
    x = [0.5d0, 1.2d0]

fx = gradient(f, x)
    write(*, *) "f(x): ", fx(1)
    write(*, *) "df/d(x(1)): ", fx(2)
    write(*, *) "df/d(x(2)): ", fx(3)
end program log_demo2
```

The output of gradient(f, x) is an array of size 1 + size(x), with first component being the function value, and the rest the partial derivatives.

Note that the above approach of using gradient function does not involve explicitly setting up var variables. Fazang achieves this by using a *nested* AD envionment.

#### 4. Nested AD envionment

Let us take a look of the internals of Fazang's gradient function. The dependent\_function interface requires f to follow the above example's signature, and x is the real64 array of

5. JACOBIAN

independent variables. We then create the var version of x and introduct it to f. The evaluation result is saved in f\_var variable. The adjoints are obtained by calling f\_var%grad(). Unlike what we have seen, the above process happens within a pairing begin\_nested() and end nested() calls.

```
function gradient(f, x) result (f_df)
  procedure(dependent_function) :: f
  real(real64), intent(in) :: x(:)
  real(real64) :: f_df(1 + size(x))
  type(var) :: x_var(size(x)), f_var

  call begin_nested()

  x_var = var(x)
  f_var = f(x_var)
  f_df(1) = f_var%val()
  call f_var%grad()
  f_df(2:(1+size(x))) = x_var%adj()

  call end_nested()
  end function gradient
```

When we use these two functions, all the var variables created in between are "temporary", in the sense that the values and adjoints of these variables are no longer available after call end\_nested(). User can use this function pair to construct a local gradient evaluation procedure.

## 5. Jacobian

Similar to gradient, using the same nested technique Fazang provides a jacobian function that calculates the Jacobian matrix of f, a multivariate function  $f: \mathbb{R}^m \to \mathbb{R}^n$  for an input array x of dimension m.

```
function jacobian(f, n, x) result (f_df)
```

The input function must follow the interface

```
abstract interface
  function jac_dependent_function (x, n) result (fx)
   import :: var
   integer, intent(in) :: n
   type(var), intent(in) :: x(:)
   type(var) :: fx(n)
  end function jac_dependent_function
end interface
```

where n is the output dimension. Like gradient, the output  $f_{df}$  has dimension  $n \times (m+1)$ , with the first column being the function results and the rest columns the adjoints.

## 6. Functions

Numeric functions supported by Fazang are listed in Appendix A. All unary and binary functions are elemental. The binary functions allow mixed argument types, namely, either argument can be real64 type while the other the var type.

## Design

The core of any reverse-mode automatic differentiation is the data structure to store and visit the callstack. Fazang achieves this through two derived types, tape and vari.

## 1. tape data structure

A tape is an int32 array emulating a stack, with an integer marker head pointing to the head to the current stack top.

```
type :: tape
     integer(ik) :: head = 1
     integer(ik), allocatable :: storage(:)
! . . .
```

Each time a new AD node is created, space in storage is allotted to store the node's

- value  $f_i(z_i)$ , adjoint  $z_{i-1}^{\text{adj}}$ ,
- number of var operands of  $f_i$ ,
- The var operands' index in the same tape array,
- number of real64 operands of  $f_i$ ,
- The real64 operands' value.

Since a node's value, adjoint, and data operands are real64, they are first converted to int32 using transfer function before stored in the tape array, so that each such a value occupies two storage entries. After each allotation, the head is moved to point to the next empty slot in the array after saving its current value to a vari type variable for future retrieval.

### 2. vari type

The vari type is simply a proxy of a node's storage location in the tape

```
type :: vari
 integer(ik) :: i = 0
 procedure(chain_op), pass, pointer :: chain
contains
   1....
```

where i is the index to the beginning of a node's storage, and the chain procedure encodes the node's operation  $f_i$ . chain follows an interface that describes the chain rule operation

3. VAR TYPE 11

```
abstract interface
   subroutine chain_op(this)
   import :: vari
   class(vari), intent(in) :: this
   end subroutine chain_op
end interface
```

An alternative to integer index is to a pointer to the according enry in the tape array. However, we will need to expand the storage when it is filled up, and Fazang does this by doubling the storage size and use move\_alloc to restore the original values. Since there is no guarantee that move\_alloc will keep the original memory, a pointer to the original address would be corrupted.

As a Fazang program steps forward, a series of vari variables are generated, with their values calculated and stored. This is called a *forward pass*. The generated vari variables in the forward pass are stored in array varis. Each entry in varis is a dependent (operation output) of one or more previous entries.

## 3. var type

The user-facing var type serves as proxy to vari. Each var stores the index of a vari in the varis array.

```
type :: var
   integer(int32) :: vi
contains
   procedure :: val
   procedure :: adj
   procedure :: grad
   procedure :: set_chain
end type var
```

After the forward pass, when adjoints are desired, we call **grad** or **gradient** procedure. This initiates a *backward pass*, in which the **varis** array is transversed backward so that each **vari**'s **chain** procedure is called to update the operand adjoints.

```
subroutine grad(this)
  class(var), intent(in) :: this
  integer i
  call callstack % varis (this%vi) % init_dependent()
  do i = callstack % head - 1, 1, -1
      call callstack % varis(i) % chain()
  end do
end subroutine grad
```

Here callstack is the module variable that encapsulate tape and varis arrays.

## 4. Nested tape

Fazang use begin\_nested() and end\_nested() to record and terminate a nested tape. With call begin\_nested() Fazang records the current tape and varis array head. When end\_nested() is called, the storage between the recorded head and current head are wiped, and the head is moved back to the recorded location. Multiple levels of nested envionment are supported this way.

## Add operation functions

Adding an operation  $f_i$  involves creating functions for forward pass and backward pass. Let us first use  $\log$  function as a simple example.

First, we create a log v function for the forward pass.

```
impure elemental function log_v(v) result(s)
  type(var), intent(in) :: v
  type(var) :: s
  s = var(log(v%val()), [v])
  call s%set_chain(chain_log)
end function log_v
```

The function generates a new var variable s using a special constructor var(value, array of operands) which stores the value as well as the single operand v's index (in the tape storage array). It also points s's chain to a dedicated procedure chain\_log.

```
subroutine chain_log(this)
  class(vari), intent(in) :: this
  real(rk) :: new_adj(1), val(1)
  new_adj = this%operand_adj()
  val = this%operand_val()
  new_adj(1) = new_adj(1) + this%adj() / val(1)
  call this%set_operand_adj(new_adj)
end subroutine chain_log
```

To understand this function, recall the recursion in Section 3, assume the log operation is node i, then  $f_i = \log(\dot{j})$  and  $z_i$  is the operand v, and the new var s would be  $z_{i-1}$ . During the backward pass when the node is visited, chain\_log first retrieves current  $(z_i, z_i^{\text{adj}})$  using operand\_val() and operand\_adj(), then updates  $z_i^{\text{adj}}$  with an additional

$$z_{i-1}^{\text{adj}} \frac{df_i}{dz_i} = z_{i-1}^{\text{adj}} \frac{d \log(z_i)}{dz_i} = \frac{z_{i-1}^{\text{adj}}}{z_i}.$$

Adding a binary operation  $f_i(z_i^{(1)}, z_i^2)$  is slightly more complex, as we will need to address possibly different scenarios when  $z_i^{(1)}$  and  $z_i^{(2)}$  are either var or real64. Let us use overloaded division operator(/) as an example.

With

$$f_i(z_i^{(1)}, z_i^2) = z_i^{(1)}/z_i^{(2)}$$

we need to account for

• both  $z_i^{(1)}$  and  $z_i^2$  are var's

- $z_i^{(1)}$  is var,  $z_i^2$  is real64,  $z_i^{(1)}$  is real64,  $z_i^2$  is var,

For the first scenario, we create

```
impure elemental function div_vv(v1, v2) result(s)
 type(var), intent(in) :: v1, v2
 type(var) :: s
 s = var(v1%val() / v2%val(), [v1, v2])
 call s%set_chain(chain_div_vv)
end function div_vv
```

Similar to the log example, we create a new s with both operands stored. In the corresponding chain procedure, we need update the adjoints of both v1 and v2.

```
subroutine chain_div_vv(this)
 class(vari), intent(in) :: this
 real(rk) :: new_adj(2), val(2)
 new_adj = this%operand_adj()
 val = this%operand_val()
 new_adj(1) = new_adj(1) + this%adj()/val(2)
 new adj(2) = new adj(2) - this%val() * this%adj()/val(2)
 call this%set_operand_adj(new_adj)
end subroutine chain_div_vv
```

For the second scenario, we create

```
impure elemental function div_vd(v, d) result(s)
 type(var), intent(in) :: v
 real(rk), intent(in) :: d
 type(var) :: s
 s = var(v\%val() / d, [v], [d])
  call s%set_chain(chain_div_vd)
end function div_vd
```

Again we create a new var s. But this time we use another constructor var(value, var operands, data operands) to store value, var operand v, and real64 operand d. In the corresponding backward pass chain procedure, not only we need retrieve var operand v but also data operand d, as the new adjoint of  $z_i^{(1)}$  is

$$z_i^{(1)\text{new adj}} = z_i^{(1)\text{old adj}} + z_{i-1}^{\text{adj}} \frac{df_i}{dz_i^{(1)}} = z_i^{(1)\text{old adj}} + z_{i-1}^{\text{adj}} \frac{1}{dz_i^{(2)}}$$

So with v as  $z_i^{(1)}$  and d as  $z_i^{(2)}$  we have

```
subroutine chain_div_vd(this)
 class(vari), intent(in) :: this
 real(rk) d(1), new_adj(1)
 new_adj = this%operand_adj()
```

```
d = this%data_operand()
new_adj(1) = new_adj(1) + this%adj() / d(1)
call this%set_operand_adj(new_adj)
end subroutine chain_div_vd
```

The third scenario is treated similarly.

## APPENDIX A

# Fazang Functions

| Function       | Argument(s)       | Operation                                 |
|----------------|-------------------|-------------------------------------------|
| sin            | scalar or array   | same as intrinsic                         |
| cos            | scalar or array   | same as intrinsic                         |
| tan            | scalar or array   | same as intrinsic                         |
| asin           | scalar or array   | same as intrinsic                         |
| acos           | scalar or array   | same as intrinsic                         |
| atan           | scalar or array   | same as intrinsic                         |
| log            | scalar or array   | same as intrinsic                         |
| exp            | scalar or array   | same as intrinsic                         |
| squrt          | scalar or array   | same as intrinsic                         |
| erf            | scalar or array   | same as intrinsic                         |
| erfc           | scalar or array   | same as intrinsic                         |
| square         | scalar or array   | For input $x$ , calculate $x**2$          |
| inv            | scalar or array   | For input x, calculate 1/x                |
| inv_square     | scalar or array   | For input $x$ , calculate $1/x**2$        |
| inv_sqrt       | scalar or array   | For input x, calculate 1/sqrt(x)          |
| logit          | scalar or array   | For input $x$ , calculate $log(x/(1-x))$  |
| inv_logit      | scalar or array   | For input $x$ , calculate $1/(1+exp(-x))$ |
| operator (+)   | scalars or arrays | same as intrinsic                         |
| operator (-)   | scalars or arrays | same as intrinsic                         |
| operator $(*)$ | scalars or arrays | same as intrinsic                         |
| operator (/)   | scalars or arrays | same as intrinsic                         |
| operator (**)  | scalars           | same as intrinsic                         |
| sum            | 1D array          | same as intrinsic                         |
| dot_product    | 1D arrays         | same as intrinsic                         |
| log_sum_exp    | 1D array          | For input x, calculate log(sum(exp((x)))) |
| matmul         | 2D arrays         | same as intrinsic                         |

## **Bibliography**

- [1] Bob Carpenter, Matthew D. Hoffman, Marcus A. Brubaker, Daniel Lee, Peter Li, and Michael J. Betancourt. The Stan math library: Reverse-mode automatic differentiation in C++. arXiv 1509.07164., 2015. https://mc-stan.org/users/interfaces/math.
- [2] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Second Edition. Society for Industrial and Applied Mathematic, Philadelphia, PA, second edition edition, September 2008.