基于层次分析法的旅游景点评价系统

摘要

本文主要解决如何确定评价指标、形成评价体系,为小明同学的旅游目的地进行合理的决策。

针对所要研究的问题,我们选择了**层次分析法**进行建模。首先,我们通过网络途径确定了**景色、花费、居住、饮食、交通**这 5 个评价指标,并建立了包含目标层、准则层、方案层的层次结构模型。其次,经过主观猜测和网络数据对比,我们在因素间进行两两比较,构造了方案层关于准则层以及准则层关于目标层的**判断矩阵**,并进行了**一致性检验**。6 个判断矩阵均通过一致性检验。最后,我们基于判断矩阵分别以**算术平均法、几何平均法、特征值法**计算权重并进行了简单的算术平均。最终得到的旅游景点打分为: 苏杭 0.2992、北戴河 0.2453、桂林 0.4555。

在层次分析法结果的基础之上,我们确定桂林即为最适合小明的旅游景点。

关键字: 评价 权重 层次分析法 判断矩阵 一致性检验

目录

— 、	问题重述	1
二、	问题分析	1
三、	模型假设	1
四、	符号假设	1
五、	模型简介	2
六、	模型建立	2
	6.1 建立层次结构模型	2
	6.2 构建判断矩阵	3
	6.3 一致性检验	
	6.4 权重计算	5
	6.4.1 算术平均法	5
	6.4.2 几何平均法	6
	6.4.3 特征值法	6
	6.4.4 结果平均汇总	6
七、	模型评价	8
	7.1 优点	8
	7.2 局限	8
附录	H Matlab 代码	9
附录	I Python 代码	12

一、问题重述

填好志愿后,小明同学决定出去旅游,在查阅了网上的相关资料后,他初步选择了 苏杭、北戴河和桂林作为目标景点的备选方案。

我们的目的是确定评价指标、形成评价体系,为小明同学选择最合适的方案。

二、问题分析

解决评价类问题,首先需要解决以下三个问题:

- 1. 评价问题的目标是什么?
- 2. 为了达到评价目标,有哪几种待评价的方案?
- 3. 评价进行的准则或指标是什么?
- 一般而言,前两个问题的答案是显而易见的,而第三个问题的答案则需要我们结合 **题目中的背景材料、常识**以及**网络上搜集到的参考资料**,综合筛选后得出最适合的几个 指标。

具体而言,本文的评价目标是**选择最适合小明的旅游景点**,待评价方案有**苏杭、北 戴河**以及**桂林**,评价指标则需要我们查找资料后**自行确定**。

确定评价指标后,为了比较各个方案的优劣,作出合理的抉择,我们需要得出各个 方案的优劣权重和各个指标的重要性权重。本文使用**层次分析法**。

三、模型假设

为了便于之后的建模分析,我们作出以下假设:

• 网络上搜集到的资料真实有效

四、符号假设

在此对本文使用到的一些符号作以下说明(未作说明则在文中详述):

 序号
 符号

 1
 O
 指标层对目标层的判断矩阵

 2
 C₁, C₂, C₃, C₄, C₅
 方案层对指标层的判断矩阵

 3
 CI, RI, CR
 一致性检验相关指标

 4
 ω
 权重向量

表 1 符号假设

五、模型简介

层次分析法 (The Analytic Hierarchy Process, 即 AHP) 是由美国运筹学家、匹兹堡大学教授 T.L. Saaty 于 20 世纪 70 年代创立的一种系统分析与决策的综合评价方法,是在充分研究了人类思维过程的基础上提出来的,它较合理地解决了定性问题定量化的处理过程。

AHP 的主要特点是通过建立递阶层次结构,把人类的判断转化到若因素两两之间重要度的比较上,从而把难于量化的定性判断转化为可操作的重要度的比较上面。在许多情况下,决策者可以直接使用 AHP 进行决策,极大地提高了决策的有效性、可靠性和可行性,但其本质是一种思维方式,它把复杂问题分解成多个组成因素,又将这些因素按支配关系分别形成递阶层次结构,通过两两比较的方法确定决策方案相对重要度的总排序。整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。

六、模型建立

6.1 建立层次结构模型

查找资料后,我们确定了五个评价指标:**景色、花费、居住、饮食、交通**。于是,评价问题转化为填写表 2: 计算 5 个指标相关于"最佳旅游景点"的重要性权重,计算 3 个旅游景点相关于 5 个指标的优秀权重。

	指标权重	苏杭	北戴河	桂林
景色				
花费				
居住				
饮食				
交通				

表 2 评价问题需要填写的表格

进一步,在分析了各指标之间的关系的基础上,我们建立了如图 1的递阶层次结构模型。其中,准则层由 5 个独立指标组成,方案层则包含 3 个方案。评价问题转化为分别计算方案层关于准则层,准则层关于目标层的权重,最后根据这些权重计算方案层关于目标层的权重。

图 1 递阶层次结构模型图

6.2 构建判断矩阵

表 3 重要性程度度量表

标度	含义				
1	两个因素相比,具有相同的重要性				
3	两个因素相比,一个因素比另一个因素稍微重要				
5	两个因素相比,一个因素比另一个因素明显重要				
7	两个因素相比,一个因素比另一个因素强烈重要				
9	两个因素相比,一个因素比另一个因素极端重要				
2, 4, 6, 8	以上指标的中值				
倒数	因素 A 与因素 B 为 a,则因素 B 与因素 A 为 $\frac{1}{a}$				

首先整理查找得到的资料,按照重要性程度度量表 3,对方案层的 3 个旅游景点进行关于准则层 5 个指标的两两比较,构建方案层关于准则层各指标的两两判断矩阵,共有 5 个,即 C_1, C_2, C_3, C_4, C_5 。如表 4所示。

表 4 方案层关于准则层各指标的判断矩阵

$\mathbf{C_1}$	P_1	P_2	P_3	\mathbb{C}_2	P_1	P_2	P_3	C ₃	P_1	P_2	P_3
P_1	1	2	5	P_1	1	$\frac{1}{3}$	$\frac{1}{8}$	P_1	1	1	3
P_2	$\frac{1}{2}$	1	2	P_2	3	1	$\frac{1}{3}$	P_2	1	1	3
P_3	$\frac{1}{5}$	$\frac{1}{2}$	1	P_3	8	3	1	P_3	$\frac{1}{3}$	$\frac{1}{3}$	1
		C ₄	P_1	P_2	P_3	C_5	P_1	P_2	P_3		
		P_1	1	3	4	P_1	1	1	$\frac{1}{4}$		
		P_2	$\frac{1}{3}$	1	1	P_2	1	1	$\frac{1}{4}$		
		P_3	$\frac{1}{4}$	1	1	P_3	4	4	1		

其次,根据主观猜测,构建准则层 5 个指标关于目标层的两两判断矩阵 \mathbf{O} 。如表 5 所示。

表 5 准则层关于目标层的两两判断矩阵

0	C_1	C_2	C_3	C_4	C_5
C_1	1	$\frac{1}{2}$	4	3	3
C_2	2	1	7	5	5
C_3	$\frac{1}{4}$	$\frac{1}{7}$	1	$\frac{1}{2}$	$\frac{1}{3}$
C_4	$\frac{1}{3}$	$\frac{1}{5}$	2	1	1
C_5	$\frac{1}{3}$	$\frac{1}{5}$	3	1	1

6.3 一致性检验

为了检验我们构造的判断矩阵是否接近于一致矩阵,我们需要进行一致性检验。首先,计算**一致性指标** CI 。CI 的计算公式如下:

$$CI = \frac{\lambda_{max} - n}{n - 1} \tag{1}$$

其中, λ_{max} 是方阵的最大特征值,n是方阵的维数。

表 6 CI 计算结果

C_1	C_2	C_3	C_4	C_5	O
0.0027676	0.00077081	0	0.0046014	0	0.018021

其次,查询**平均随机一致性指标**表得 n=3 时,平均随机一致性指标 RI=0.52; n=5 时,平均随机一致性指标 RI=1.12。

表7 RI 查询表

n	3	4	5	6	7	8	9	10	11	12	13	14
RI	0.52	0.89	1.12	1.26	1.36	1.41	1.46	1.49	1.52	1.54	1.56	1.58

最后,计算一致性比例CR:

$$CR = \frac{CI}{RI} \tag{2}$$

表8 CR 计算结果

C ₁	$\mathbf{C_2}$	C_3	C ₄	C ₅	О
0.0053222	0.0014823	0	0.0088488	0	0.01609

CR < 0.1,说明判断矩阵的一致性可以接受,否则则需要重新构造判断矩阵。我们的 6 个判断矩阵均通过一致性检验,可以进行后续的权重计算。

6.4 权重计算

判断矩阵已经通过了一致性检验,说明我们可以基于这些判断矩阵进行权重计算。 权重计算主要有3种方法:算术平均法、几何平均法、特征值法。

6.4.1 算术平均法

算术平均法求权重的步骤如下:

- 1. 将判断矩阵按列进行归一化
- 2. 将归一化的各列相加
- 3. 将相加后的结果向量除以方阵的维数 n

假设判断矩阵为

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{2} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

那么算术平均法求得的权重为

$$\omega_i = \frac{1}{n} \sum_{j=1}^n \frac{a_{ij}}{\sum_{k=1}^n a_{kj}}$$
 (3)

6.4.2 几何平均法

几何平均法求权重的步骤如下:

- 1. 将判断矩阵各列相乘得到一个列向量
- 2. 将结果向量的每个分量开 n 次根
- 3. 对结果向量进行归一化

假设判断矩阵为

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{2} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

那么算术平均法求得的权重为

$$\omega_{i} = \frac{\left(\prod_{j=1}^{n} a_{ij}\right)^{\frac{1}{n}}}{\sum_{k=1}^{n} \left(\prod_{j=1}^{n} a_{kj}\right)^{\frac{1}{n}}}$$
(4)

6.4.3 特征值法

特征值法求权重的步骤如下:

- 1. 求出判断矩阵的特征值及特征向量
- 2. 从中挑选最大特征值并将对应的特征向量进行归一化

6.4.4 结果平均汇总

为了保持模型的稳健性,我们将三种方法得到的权重进行汇总,并进行简单的算术平均。

表 9 目标层权重计算结果

\mathbf{C}_1	算术平均法	几何平均法	特征值法	平均值
景色	0.5949	0.5954	0.5954	0.5952
花费	0.2766	0.2764	0.2764	0.2764
居住	0.1285	0.1283	0.1283	0.1283
\mathbb{C}_2	算术平均法	几何平均法	特征值法	平均值
景色	0.0820	0.0819	0.0819	0.0820
花费	0.2364	0.2363	0.2363	0.2364
居住	0.6816	0.6817	0.6817	0.6817
\mathbb{C}_3	算术平均法	几何平均法	特征值法	平均值
景色	0.4286	0.4286	0.4286	0.4286
花费	0.4286	0.4286	0.4286	0.4286
居住	0.1429	0.1429	0.1429	0.1429
C ₄	算术平均法	几何平均法	特征值法	平均值
景色	0.6327	0.6337	0.6337	0.6334
花费	0.1924	0.1919	0.1919	0.1921
居住	0.1749	0.1744	0.1744	0.1745
C ₅	算术平均法	几何平均法	特征值法	平均值
景色	0.1667	0.1667	0.1667	0.1667
花费	0.1667	0.1667	0.1667	0.1667
居住	0.6667	0.6667	0.6667	0.6667

表 10 准则层权重计算结果

0	算术平均法	几何平均法	特征值法	平均值
景色	0.2623	0.2636	0.2636	0.2632
花费	0.4744	0.4773	0.4758	0.4758
居住	0.0545	0.0531	0.0538	0.0538
饮食	0.0985	0.0988	0.0981	0.0985
交通	0.1103	0.1072	0.1087	0.1087

综上,我们实际上已经填完了表 2。经过最后一步加权计算,我们得到了最终的旅游景点打分结果。经过对比,我们可以作出决策:权重最高(=0.4555)的**桂林**是最适合小明的旅游景点。

表 11 权重汇总表

	指标权重	苏杭	北戴河	桂林
景色	0.2632	0.5952	0.2764	0.1283
花费	0.4758	0.0820	0.2364	0.6817
居住	0.0538	0.4286	0.4286	0.1429
饮食	0.0985	0.6334	0.1921	0.1745
交通	0.1087	0.1667	0.1667	0.6667

表 12 各旅游景点最终打分

苏杭	北戴河	桂林
0.2992	0.2453	0.4555

七、模型评价

7.1 优点

- 1. 层次分析法可以处理定量和定性结合的问题
- 2. 层次分析法简洁实用
- 3. 层次分析法所需定量数据少

7.2 局限

- 1. 层次分析法只能在指定方案中进行选择,无法发掘新的方案
- 2. 评价体系过于主观,需要专家系统的支持,如果指标不合理,最后得到的结果也会不准确
- 3. 方案层不能过多, 否则能够通过一致性检验的判断矩阵难以构造

附录 H Matlab 代码

代码 1: AHPConsistencyCheck.m

```
function [pass, weights, CI, RI, CR] = AHPConsistencyCheck(A)
 % 层次分析法 (AHP) 中对判断矩阵A进行一致性检验并计算权重
 % [pass,weights,CI,RI,CR] = AHPConsistencyCheck(A)
 % pass=true表示通过一致性检验,pass=false则为未通过
 % weights:返回的权重矩阵。
% 从左到右各列分别为算术平均法、几何平均法、特征值法、平均值
 % CI,RI,CR:相关检验量
 % A:判断矩阵
   % 判断矩阵是否为方阵
   [m,n] = size(A);
   if m \sim = n
      disp("判断矩阵应为方阵,但输入为(" + num2str(m) + "," ...
         + num2str(n) + ")");
   % 一致性检验
   [X,Lambda]=eig(A); % 求特征值和特征向量
   8 寻找最大特征值及对应的特征向量
   lambda = Lambda(1,1);
   indexOFlambda = 1;
   for i=2:n
      if Lambda(i,i) > lambda
         lambda = Lambda(i,i);
         indexOFlambda = i;
      end
   end
   x = X(:,indexOFlambda);
   % 计算CI,查询RI,计算CR
   CI = (lambda - n)/(n - 1);
   RItable = [0,0,0.52,0.89,1.12,1.26,1.36,1.41,1.46,...
      1.49,1.52,1.54,1.56,1.58];
   RI=RItable(n);
   CR = CI/RI;
   % 判断是否通过一致性检验
   if CR >= 0.1
      pass = false;
      weights = [];
      return
   else
```

```
pass = true;
       end
       % 算术平均法
       % 各列归一化
       for i=1:n
          A(:,i) = A(:,i) / sum(A(:,i));
       end
       % 各列求算术平均
       origin weight = sum(A, 2);
       weights = origin weight / sum(origin weight);
       % 几何平均法
56
       % 各列求几何平均
       origin_weight = A(:,1);
       for i=2:n
          origin_weight = origin_weight .* A(:,i);
       origin weight = origin weight.^(1/n);
       % 结果向量归一化
       weights = [ weights , origin weight / sum(origin weight)];
       % 特征值法
       origin weight = x;
       weights = [ weights , origin_weight / sum(origin_weight)];
       % 平均值
       weights = [ weights , sum(weights,2) / 3];
    end
```

代码 2: drawWeights.m

```
function drawWeights(weights,labels)
% 绘制权重图
3 % weights:权重行向量或列向量
% labels:数据标签

n = length(weights);
weights = weights / sum(weights);

% facecolor = "#3691ff";
width = 0.3;
barh(weights,FaceColor=facecolor,BarWidth=width);
xlim([0,3/2*max(weights)]);
yticks(1:n)

13 yticklabels(labels);
for i=1:n
    text(weights(i)+1/100*max(weights),i,num2str(weights(i)))
```

```
end
18 end
```

代码 3: main.m

```
% 通过层次分析法选择最佳旅游地
     clear,clc
     %% 输入判断矩阵
    % 准则层对目标层
     0 = [1 \ 1/2 \ 4 \ 3 \ 3]
        2 1 7 5 5
        1/4 1/7 1 1/2 1/3
        1/3 1/5 2 1 1
        1/3 1/5 3 1 1];
     % 方案层对准则层
     C1 = [1 \ 2 \ 5; \ 1/2 \ 1 \ 2; \ 1/5 \ 1/2 \ 1];
     C2 = [1 \ 1/3 \ 1/8; \ 3 \ 1 \ 1/3; \ 8 \ 3 \ 1];
    C3 = [1 \ 1 \ 3; \ 1 \ 1 \ 3; \ 1/3 \ 1/3 \ 1];
     C4 = [1 \ 3 \ 4; \ 1/3 \ 1 \ 1; \ 1/4 \ 1 \ 1];
     C5 = [1 \ 1 \ 1/4; \ 1 \ 1 \ 1/4; \ 4 \ 4 \ 1];
     Mats = \{0,C1,C2,C3,C4,C5\};
    MatNum = size(Mats, 2);
     Weights = cell(1,MatNum);
     %% 一致性检验及权重计算
     for i=1:MatNum
        [pass,weights,CI,RI,CR] = AHPConsistencyCheck(Mats{i});
        Weights{i} = weights;
        if pass
           disp("第" + num2str(i) + "个矩阵通过一致性检验");
           disp("CI=" + num2str(CI) + " RI=" + num2str(RI) ...
              + " CR=" + num2str(CR) + "<0.1");
32
           disp("权重表为:");
           disp(weights);
        else
           disp("第" + num2str(i) + "个矩阵未通过一致性检验");
           disp("CI=" + num2str(CI) + " RI=" + num2str(RI) ...
              + "CR=" + num2str(CR) + ">=0.1");
        end
     end
```

```
42 % 权重汇总表
    weightsTable = ones(5,4);
    weightsTable(:,1) = Weights{1,1}(:,end);
    for i=2:MatNum
       weightsTable(i-1,2:end) = Weights{1,i}(:,end);
    disp("权重汇总表:");
    disp(weightsTable);
    % 计算最终打分
    grades = ones(3,1);
    for i=1:3
       grades(i,1) = weightsTable(:,1)' * weightsTable(:,i+1);
    disp("最终得分:");
    disp(grades);
    %% 可视化
    [sortedGrades, sortedLabels] = sortWeights(grades,["苏杭","北戴河","桂林"]);
    drawWeights(sortedGrades, sortedLabels);
    clear O C1 C2 C3 C4 C5 pass CI RI CR weights i MatNum
```

附录 I Python 代码

代码 4: 初始化

代码 5: AHPConsistencyCheck 函数

```
def AHPConsistencyCheck(A):
"""对判断矩阵进行一致性检验并计算权重"""
  A = A.copy()
   ## 判断是否非方阵
  m, n = A.shape
  if m != n:
     print (f"判断矩阵应为方阵。但输入矩阵为 ({m}, {n})")
     return False, None, None, None, None
  ## 一致性检验
   # 计算特征向量和特征值
  Lambdas, X = np.linalg.eig(A)
  LambdaIndex = np.argmax(Lambdas)
  Lambda, x = np.real(Lambdas[LambdaIndex]), np.real(X[:, LambdaIndex])
   # 计算CI, RI, CR
  CI = (Lambda - n) / (n - 1)
  RITable = [
     0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56,
     1.58
   ]
  RI = RITable[n - 1]
  CR = CI / RI
   # 判断是否通过一致性检验
   if CR >= 0.1:
     return False, None, CI, RI, CR
   else:
     Pass = True
   ## 算术平均法
   # 各列归一化
   for i in range(n):
     A[:, i] = A[:, i] / np.sum(A[:, i])
   # 各列求算术平均
  origin weights = np.sum(A, 1).reshape((-1, 1))
  weights = origin_weights / sum(origin_weights)
   ## 几何平均法
  # 各列求几何平均
  origin_weights = np.prod(A, 1)
  origin weights = origin weights.reshape((-1, 1))
```

```
origin_weights = origin_weights**(1 / n)
weights = np.concatenate([weights, origin_weights / sum(origin_weights)],

1)

## 特征值法
weights = np.concatenate([weights, x.reshape(-1, 1) / np.sum(x)], 1)

## 平均值
weights = np.concatenate(
[weights, np.sum(weights, 1).reshape(-1, 1) / 3], 1)
return Pass, weights, CI, RI, CR
```

代码 6: sortWeights 函数

```
def sortWeights(weights, labels):
"""从小到大排序权重和标签"""

weights = weights / sum(weights)
wl = list(zip(weights, labels))
wl.sort(key=lambda x: x[0])
sortedWeights, sortedLabels = zip(*wl)
sortedWeights = np.array(sortedWeights)
sortedLabels = list(sortedLabels)
return sortedWeights, sortedLabels
```

代码 7: drawWeights 函数

代码 8: AHP 主体

```
Mats = [0, C1, C2, C3, C4, C5]
```

```
# 一致性检验
       Weights = []
       for i in range(len(Mats)):
          Pass, weights, CI, RI, CR = AHPConsistencyCheck(Mats[i])
          Weights.append(weights)
          if Pass:
             print(f"第{i+1}个矩阵通过一致性检验")
             print(f"CI={CI:.6f} RI={RI:.2f} CR={CR:.6f}<0.1")</pre>
             print(f"权重表为:\n{weights}\n")
          else:
             print (f"第{i+1}个矩阵未通过一致性检验!!!")
             print(f"CI={CI:.6f} RI={RI:.2f} CR={CR:.6f}>=0.1\n")
15
       # 权重汇总表
       weightsTable = np.ones(shape=(5, 4))
       weightsTable[:, 0] = Weights[0][:, -1]
       for i in range(1, len(Mats)):
          weightsTable[i - 1, 1:] = Weights[i][:, -1]
       print(f"权重汇总表:\n{weightsTable}\n")
       # 最终打分计算
       grades = np.ones(3)
       for i in range(3):
          grades[i] = np.dot(weightsTable[:, 0].T, weightsTable[:, i + 1])
       print(f"最终得分:\n{grades}\n")
       # 可视化
       sortedWeights, sortedLabels = sortWeights(grades,["苏杭","北戴河","杭州"])
       drawWeights(np.round(sortedWeights, 4), sortedLabels)
```