

Prims Algorithm

- Prim's Algorithm use Greedy approach to find the minimum spanning tree.
- We start with any node and start creating a MST
- In Prim's Algorithm we grow the spanning tree from a starting position until n-1 edges are formed (or n nodes are covered)

Not included MST
$$= \{0, 2, 3, 4, 5, 6\}$$
 $A = \{1\}$

Not included MST $= \frac{3}{2}$ Included in MST $= \frac{3}{2}$ $= \frac{3}{2}$ $= \frac{3}{2}$ $= \frac{3}{2}$ Options? $= \frac{3}{2}$

 $1 \rightarrow 2 = 20 \times 1 \rightarrow 6 = 6$

Not included MST $= \{0, 2, 3, 4, 5, 6\}$ $= \{1\}$ $= \{0, 2, 3, 4, 5\}$ $= \{1, 6\}$

MST: Graph G

MST: Graph G

Not included MST 7 Included in MST $V = \{0, 2, 3, 4, 5, 6\}$ $A = \{1\}$ $V = \{0, 2, 3, 4, 5\}$ $A = \{1, 6\}$ $V = \{0, 2, 3, 4\}$ $A = \{1, 5, 6\}$

7 Included in MST Not included MST

options:

$$1 \rightarrow 2 = 20 \times 5 \rightarrow 0 = 17 \times 5 \rightarrow 4 = 15$$

-> Not included MST > Included in MST $V = \{0, 2, 3\}$ $A = \{1, 4, 5, 6\}$

$$1 \rightarrow 2 = 20 \times 4 \rightarrow 3 = 12$$

18

5

-> Not included MST

options:

> Included in MST

MST: Graph G

MST:

> Not included MST = 50, 2, 3, 4, 5, 63 $A = \{1\}$ $= \{0, 2, 3, 4, 5\}$ $A = \{1, 6\}$ $= \{0, 2, 3, 4, 5\}$ $= \{1, 6, 5, 6\}$ $= \{0, 2, 3, 4\}$ $= \{1, 4, 5, 6\}$ $= \{0, 2, 3\}$ $= \{1, 4, 5, 6\}$ $= \{0, 2, 3\}$ $= \{1, 4, 5, 6\}$ $= \{1, 2, 3, 4, 5, 6\}$ $= \{1, 2, 3, 4, 5, 6\}$

Options

Graph G
$$0 \rightarrow 5 = 17 \times 0 \rightarrow 4 = 13 \times 0 \rightarrow 2 = 8$$

