1 公式

1.1 向量的模

设
$$\vec{a} = (x, y, z)$$
,则 $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

设 α, β, γ 是向量 \vec{a} 与坐标轴的夹角,则 \vec{a} 的方向余弦分别为 $\cos\alpha = \frac{x}{\vec{a}}, \cos\beta = \frac{y}{\vec{a}}, \cos\gamma = \frac{z}{\vec{a}}$

1.2 向量的线性运算

- 1, $\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z)$
- $2, \ \lambda \vec{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$

1.3 向量的数量积

- $1, \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta,$ 其中 θ 是两个向量的夹角
- $2, \vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$
- 3、两个向量垂直,即 $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$

1.4 向量的向量积

- 1、向量积的值: $|\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|sin\theta$, 其中 θ 是两个向量的夹角
- 2、向量积的方向: \vec{c} 同时垂直于 \vec{a} 和 \vec{b}
- 3、行列式表示: $\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$, 其中 $\vec{i}, \vec{j}, \vec{k}$ 是向量积在三个坐

标轴上的分量

4、两个向量平行,即 $\vec{a}//\vec{b} \Leftrightarrow \vec{a} \times \vec{b} = 0 \Leftrightarrow \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$

1.5 向量的混合积

1.
$$(\vec{a}\vec{b}\vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

$$2$$
、 \vec{a} , \vec{b} , \vec{c} 共面 \Leftrightarrow $(\vec{a}\vec{b}\vec{c}) = 0$