Chapter 9

Securing Dedicated Systems

Episode 9.01

Episode Embedded Systems

title:

Objective: 2.6 Explain the security implications of embedded and

specialized systems.

Embedded Systems

- Embedded, specialized, mobile
- Fixed hardware
 - Example: iPhone
- Specialized use
- Fixed, specialized operating system (OS)

- Raspberry Pi
 - System on chip (SoC)
 - CPU, RAM, storage
 - Specialized OS (Raspberry Pi OS)
- Industrial controls system (ICS)
 - Controls manufacturing or utility systems
 - Runs real-time operating system (RTOS)

- Supervisory control and data acquisition (SCADA)
 - Designed for remote large-scale, distributed processes
- Internet of Things (IoT)
 - Small computing devices
 - OS, CPU, RAM, storage, Internet connection

- Medical systems
- In-vehicle computing systems
- Unmanned Aerial Vehicle (UAV)
 - AKA drone
- Smart meter

Smart Meter

- Surveillance systems
 - Storage
 - Motion detection
 - Infrared
 - Sound-based
 - Smart locks
- Voice over IP (VoIP)
 - Sends voice calls over a network
- Mobile systems
 - Embedded devices that are mobile

Quick Review

- Embedded systems have fixed hardware and operating systems and are designed for a specialized use
- Embedded systems include Raspberry Pis, Arduinos, ICSes, SCADA systems, IoT, medical systems, in-vehicle computers, drones, smart meters, surveillance systems, VoIP, and mobile devices

Episode 9.02

Episode Industrial Control System (ICS)

title:

Objective: 2.6 Explain the security implications of embedded and

specialized systems.

Programmable Logic Controller (PLC)

- Industrial Control System (ICS) device
 - Sensors
 - Valves
 - Robots, actuators
- Has an IP address
- Vendors
 - Siemens
 - Allen-Bradley
- Security implications
 - Firmware updates

Real Time Operating System (RTOS)

- Used with PLCs
- Examples
 - RTLinux
 - VxWorks
- Security implications
 - Firmware updates
 - Network isolation

Supervisory Control and Data Acquisition

- SCADA
- Collection of Industrial Control System (ICS) devices focused on specific tasks
 - Manufacturing, water, oil pipelines, power grid
- Can be dispersed over a wide area network

Quick Review

- SCADA consists of an Industrial Control System (ICS) environment
- PLCs are embedded devices with RTOSes that control physical devices
- When used over a WAN, SCADA connects using RTUs

Episode 9.03

Episode Internet of Things (IoT) Devices

title:

Objective: 2.6 Explain the security implications of embedded and

specialized systems.

Internet of Things (IoT)

- Computing device connected to the Internet
- May have an embedded Web server
- Security implications
 - Update firmware
 - Change default credentials
 - Network isolation

IoT Devices

- Smart light bulbs
- Medical devices
- Video surveillance systems

Modern Vehicle Security

- Connectivity
 - Bluetooth
 - Cellular
 - Wi-Fi hotspot
- Security implications
 - Systems can be hacked
- Vehicle key fobs
 - Firmware can be vulnerable
 - Might have to replace or update compromised key fob

Zigbee Network Protocol

- Smart home wireless networking
- Uses 128-bit AES encryption
- Does not use TCP/IP
- Interconnects smart home IoT devices
 - Smart locks, HVAC, smart lights
- Security implications
 - Update firmware
 - Change default settings
 - Harden connected devices
 - Network isolation

Quick Review

- IoT devices are computing devices (including embedded devices) that can connect to the Internet
- Change default settings and apply firmware updates to IoT devices
- Zigbee is a local network smart home automation solution

Episode 9.04

Episode Connecting to Dedicated and

title: Mobile Systems

Objective: 2.6 Explain the security implications of embedded and specialized

systems.

3.5 Given a scenario, implement secure mobile solutions.

Mobile Device Wireless Communication

- Global Positioning System (GPS)
 - Uses satellites
- Infrared
 - Legacy
 - Line-of-sight
- Cellular
 - Phone calls
 - SMS text/multimedia
- Wi-Fi
- Bluetooth
- Near field communication (NFC)

Global Positioning System (GPS)

- Satellite navigation system for objects on Earth
- Point-to-multipoint
- GPS receivers use triangulation to determine exact longitude and latitude position
- Security implications
 - Disable when not needed

4th Generation (4G) Cellular

- Uses radio frequencies
 - Narrow-band
 - Small range
 - Broadband
 - Wide range
 - Multiple transmissions at the same time (baseband sends one signal)
- Cell coverage is ~ 10 km (6.2 miles)
- Security implications
 - Firmware over-the-air (OTA) updates

5th Generation (5G) Cellular

- High data speeds
 - Up to 10 Gbps
- · Cells are smaller than with 4G
 - Up to 2km (1.2 miles)
- Base stations use Fibre connections
- Requires 5G capable devices

Wi-Fi Direct

- Peer-to-peer Wi-Fi
 - Not Apple devices
- Does not use a wireless router
- No Internet connectivity

Mobile Device Tethering

- Share Internet connection
- Wireless
 - Wi-Fi hotspot
- Wired
 - USB tethering
 - USB on-the-go (OTG)
 - Attachment with USB ports

Quick Review

- GPS uses satellites and triangulation to pinpoint the location of objects on Earth
- 5G is the fifth-generation cellular network standard supporting up to 10 Gbps
- Wi-Fi Direct is a peer-to-peer Wi-Fi network
- Mobile device tethering shares the mobile device Internet connection via USB or Wi-Fi

Episode 9.05

Episode Security Constraints for

title: Dedicated Systems

Objective: 2.6 Explain the security implications of embedded and specialized

systems.

3.5 Given a scenario, implement secure mobile solutions.

Mobile Device Constraints

- CPU
 - Limited power
 - Lightweight cryptography
 - Elliptic Curve Cryptography (ECC) uses a small crypto key size
- Battery
 - Limited power duration
- Limited transmission range
- Limited device access
 - Rooting (Android)
 - Jailbreaking (Apple)

Device Constraints

- Unable to patch firmware
 - Embedded devices
 - IoT devices
- Unable to change defaults or authentication settings
- Mitigation
 - Replace device
 - VLAN device isolation

Quick Review

- Mobile devices have limited computer power, memory, and storage
- Lightweight cryptography such as ECC is used on mobile devices
- Some embedded devices cannot be patched, but can be isolated on the network

Episode 9.06

Episode Mobile Device Deployment and

title: Hardening

Objective: 3.5 Given a scenario, implement secure mobile

solutions.

Mobile Device Provisioning

- Bring your own device (BYOD)
 - Usually, IT department applies centralized policy
- Choose your own device (CYOD)
 - Company offers a range of devices to choose from
- Corporate-owned personally enabled (COPE)
 - Personal and business use
 - Corporate and personal device partitions (containers) for remote wipe

SIM Card Signature Fine Manage ColorNot

Subscriber Identity Module (SIM) Cards

- Authenticates device to carrier network
- Contains
 - Carrier subscription data
 - SIM card serial number
 - Phone contacts (if not in the cloud)
- Carrier unlock
 - Reuse device on a different carrier network
 - Check carrier unlock requirements

Mobile Device Hardening

- Reduce the attack surface
- Management at scale
 - Mobile device management (MDM)
 - Mobile application management (MAM)
 - Sideloading
 - Geofencing
 - SE Android
 - Unified endpoint management (UEM)

Mobile Device Hardening

- Authentication
 - Password
 - PIN
 - Facial recognition
 - Screen lock
- Full device encryption

Mobile Device Hardening

- Micro SD Hardware Security Module (HSM)
 - Cryptographic operations
 - Encryption
 - Decryption
 - Digital signatures
 - Generating hashes

Android Smartphone Security Settings

Quick Review

- There are various organizational mobile device deployment models such as BYOD, CYOD, and COPE
- SIM cards authenticate devices to use a carrier cellular network
- MDM systems facilitate device security at scale

