Partiel 2023/2024

Mercredi 8 novembre 2023, 10h45-12h15 (1h30)
Documents et internet non autorisés
Ce sujet vise à sonder votre niveau en topologie
Faites ce que vous pouvez, et ne vous en faites pas
Il n'est pas nécessaire de tout traiter pour avoir 20/20

Exercice 1 (Connexité). Cet excercice sur la connexité comprend deux questions déconnectées l'une de l'autre.

- 1. Démontrez que \mathbb{R} et \mathbb{R}^n ($n \ge 2$) ne sont pas homéomorphes. Le raisonnement s'étend-il à la non-homéomorphie de \mathbb{R}^m et \mathbb{R}^n quand $n \ne m, m, n \ge 2$? Justifiez votre réponse.
- 2. Montrer que si $f: \mathbb{R} \to \mathbb{R}$ est dérivable et si I est un intervalle non-vide alors f'(I) est un intervalle. Indication : utiliser le taux d'accroissement défini comme $(x,y) \in I^2 \cap \{x < y\} \mapsto \frac{f(x) f(y)}{x y}$.

Exercice 2 (Compacité locale). Soit X un espace topologique séparé, localement (quasi-)compact : pour tout $x \in X$, il existe un ouvert O et un quasi-compact K tels que $x \in O \subset K$.

- 1. Montrer que si (K_n) est une suite décroissante pour l'inclusion de quasi-compacts non-vides alors $\cap_n K_n \neq \emptyset$.
- 2. En déduire que si $(O_n)_n$ est une suite d'ouverts denses, alors $\cap_n O_n$ est dense.
- 3. Le résultat de la question précédente est-il plus fort ou moins fort que ceux du même type vus en cours?

Exercice 3 (Espaces réguliers et espaces normaux). Soit *X* un espace topologique. On rapelle que *X* est...

- *régulier* lorsque les singletons sont fermés et pour tout $x \in X$ et tout fermé F tels que $x \notin F$, il existe des ouverts O_x et O_F disjoints tels que $x \in O_x$ et $F \subset O_F$.
- *normal* lorsque les singletons sont fermés et pour tous fermés F_1 et F_2 disjoints, il existe des ouverts disjoints O_1 et O_2 tels que $F_1 \subset O_1$ et $F_2 \subset O_2$.
- 1. Démontrer que si *X* est normal, alors il est régulier.
- 2. Démontrer que si *X* est séparé et quasi-compact, alors il est normal .
- 3. Démontrer que si *X* est métrisable, alors il est normal (indication : utiliser des boules).
- 4. Démontrer que si X est régulier, alors pour tout $x \in X$, et tout ouvert O tel que $x \in O$, il existe un ouvert U tel que $x \in U$ et $\overline{U} \subset O$, en d'autres termes, les voisinages fermés forment une base de voisinages.
- 5. En déduire que si X est régulier et à base dénombrable alors pour tous fermés disjoints A et B, il existe deux suites d'ouverts (V_n^A) et (V_n^B) telles que $A \subset \bigcup_n V_n^A$ et $B \subset \bigcup_n V_n^B$, et pour tout n, $\overline{V_n^A} \cap B = \emptyset$ et $\overline{V_n^B} \cap A = \emptyset$.
- 6. En déduire que si *X* est régulier et à base dénombrable alors il est normal.

Exercice 4 (Théorème de métrisabilité d'Urysohn).

Le but de cet exercice est de démontrer que tout espace topologique régulier et à base dénombrable est métrisable. On tient pour acquis le résultat final de l'exercice 3 : tout espace régulier et à base dénombrable est normal. Les notions d'espace régulier et d'espace normal sont précisées dans l'exercice 3.

- 1. Rappeler pourquoi si X est normal alors pour tous ouverts U et V tels que $\overline{U} \subset V$, il existe $f: X \to [0,1]$ continue telle que f=1 sur U et f=0 sur V^c .
- 2. Supposons que *X* est normal et à base dénombrable.
 Soit ℬ une base dénombrable de la topologie de *X*, et ℒ := {(*U*, *V*) ∈ ℬ × ℬ : *U* ⊂ *V*}.
 Pour tout *S* = (*U*, *V*), soit *f_S* l'application fournie par la question précédente pour *U* et *V*.
 Montrer que l'application *f* : *X* → [0,1] ^ℒ définie par *f*(*x*) = (*S* ∈ ℒ ↦ *f_S*(*x*) ∈ [0,1]) est continue et injective.

3. Conclure.

Exercice 5 (Topologie semi-ouverte). Soit $X = \mathbb{R}$ muni de la topologie engendrée par tous les [a, b) avec a < b.

- 1. Montrer que la topologie de *X* est strictement plus fine que la topologie usuelle.
- 2. Montrer que *X* est séparé.
- 3. Montrer que les intervalles [a, b] avec a < b forment une base de la topologie de X.
- 4. En déduire que *X* est séparable.
- 5. Montrer que *X* n'est pas à base dénombrable.
- 6. En déduire que *X* n'est pas métrisable.
- 7. Montrer que X est à base dénombrable de voisinages.
- 8. Montrer que $1/n \rightarrow 0$ tandis que $-1/n \not\rightarrow 0$.
- 9. Montrer que les compacts de X sont des ensembles au plus dénombrables. Indication : utiliser le recouvrement par les ouverts $(-\infty, x-1/n)$ et $[x, +\infty)$, $x \in \mathbb{R}$.
- 10. En déduire que *X* n'est pas localement compact.

Exercice 6 (Complétude). Soit (X, d) un espace métrique, et soit \mathcal{K} l'ensemble des compacts sur cet espace métrique. Pour une partie compacte $K \in \mathcal{K}$, on note

$$d_K : x \in X \mapsto d(x, K) := \inf\{d(x, y), y \in K\}.$$

On munit alors \mathcal{K} de la distance $\delta: (A, B) \in \mathcal{K}^2 \mapsto \|d_A - d_B\|_{\infty}$.

- 1. Vérifier que δ est bien définie, et qu'il s'agit bien d'une distance. Pour $K \in \mathcal{K}$ et $\varepsilon > 0$, soit $V_{\varepsilon}(K) = d_K^{-1}([0, \varepsilon]) \subset X$.
- 2. Montrer que pour $A, B \in \mathcal{K}$ et $\varepsilon > 0$, $\delta(A, B) \le \varepsilon \Longleftrightarrow A \subset V_{\varepsilon}(B)$ et $B \subset V_{\varepsilon}(A)$. On veut désormais montrer que si (X, d) est complet, alors (\mathcal{K}, δ) l'est aussi. On se donne une suite de Cauchy (A_n) à valeurs dans \mathcal{K} , et on note $A := \{x \in X, \exists x_k \in A_k, x_k \longrightarrow x\}$.
- 3. Soit $\varepsilon > 0$. Montrer que $A \subset V_{\varepsilon}(A_n)$ pour n assez grand.
- 4. Montrer l'inclusion réciproque. On pourra considérer $n = k_1 < k_2 < \dots$ tels que $\delta(A_p, A_q) \leq \frac{\varepsilon}{2^j}$ pour $p, q \geq k_j$, et montrer que $A_n \subset V_{\varepsilon}(A)$.
- 5. Conclure.
- 6. En déduire que (X, d) est complet si et seulement si (\mathcal{K}, δ) l'est.

-000-

Triangle de Penrose