

Faculty of Computer Science

Kontrollierte Experimente

Einordnung

Lernziele

- Gute Hypothesen aufstellen können
- Experiment mit hoher interner oder hoher externer Validität entwerfen können

Definition

- Systematische Studie
- Ein oder mehrere Faktoren werden variiert
- Alles andere konstant halten
- Ergebnis der systematischen Variation wird beobachtet

Experimentelle Phasen

Variablen

Unabhängige Variablen

- Absichtlich, systematisch variiert durch Versuchsleiter
- Faktor, Prädiktor (-variable)
- Alternativen, Level, Stufen, Treatment
- Beispiele:
 - Programmierparadigma
 - Sprache
 - Workload

Abhängige Variable

- Ergebnis eines Experiments
- Hängen ab von Variation der unabhängigen Variablen
- Beobachtet
- Beispiele:
 - Performance
 - Programmverständnis
 - Produktivität von Entwicklern

Latente Variablen

- Konstrukt
- Nicht direkt beobachtbar

- Beispiele
 - Programmverständnis
 - Intelligenz
 - Performance

Operationalisierung

- Operationen definieren, mit denen man Variablen messen kann
- Darf gesundem Menschenverstand nicht widersprechen

Aufgabe

- Operationale Definitionen für folgende Variablen
 - Performance
 - Programmverständnis
 - Intelligenz
 - Wartbarkeit

Hypothesen

- Erwartungen über Ergebnisse
- Erwartungen müssen begründet sein in Theorie oder Praxis
- Hypothesen müssen einfach und klar formuliert sein
- Hypothesen müssen überprüfbar sein
- Falsifizierbarkeit

Hypothese-Negativbeispiel

- Schlechte Kommentare sind schlecht für Programmverständnis
- Gute Kommentare sind gut für Programmverständnis

Besser

- Kommentare, die jedes Statement von Quelltext beschreiben, haben keinen Einfluss auf Antwortzeit beim Verstehen von Quelltext
- Kommentare, die falsche Informationen über Quelltext enthalten, verlangsamen Programmverständnis
- Kommentare, die den Zweck von Statements beschreiben, beschleunigen Programmverständnis

Wozu Hypothesen?

- Steuerungsfunktion
- Verhindert Fishing for Results
- Verbindung zwischen Theorie und Empirie
 - Abgeleitet aus Theorie
 - Überprüft mit Empirie

Aufgabe

- Stellen Sie je eine Hypothese zu folgenden Forschungsfragen auf:
 - Erhöht Objektorientierung die Produktivität von Entwicklern?
 - Ist Java besser als C++?
 - Welchen Einfluss hat Programmiererfahrung auf Entwicklungszeit?
- Die Hypothese muss überprüfbar sein, begründet sein; die Variablen müssen operationalisiert sein
- = Beispiel für Prüfungsfrage

Design

Validität

 Wird das gemessen was gemessen werden soll?

Interne Validität

 Maß, in dem Wert der abhängigen Variablen auf Variation der unabhängigen Variablen zurückgeführt werden kann

Externe Validität

- Maß, in dem Ergebnisse aus einem Experiment auf andere Umstände (Probanden, Material,...) übertragen werden kann
- = Verallgemeinerbarkeit

Hausaufgabe

Recherchieren Sie andere Validitätsarten

Gefahren/Bedrohungen

• Störvariablen:

- Beeinflussen abhängige Variable zusätzlich zu unabhängiger Variablen
- Lerneffekte
- Hawthorne-Effekt
- Messinstrumente
- Selektion

— ...

Aufgabe

- Messen von Programmverständnis: Welche Störvariablen gibt es?
- Wie könnte man diese Störvariablen kontrollieren?

Störvariablen

- Es gibt viele Störvariablen
- Sorgfältig identifizieren und kontrollieren
 - Randomisierung
 - Matching/Parallelisierung/Balancing
 - Störvariable als unabhängige Variable definieren
 - Störvariable konstant halten
 - Nachträgliche Analyse

Randomisierung

- Zufallszahlengenerator
- Münze werfen
- Würfeln
- ...
- Probleme:
 - Gruppen müssen groß genug sein
 - 5 pro Gruppe zu wenig, 10 scheint akzeptabel

Matching/Parallelisierung/Balancing

Proband	Wert
P5	65
P9	56
Р3	42
P4	34
P10	24
P6	23
P7	21
P8	16
P2	12
P1	5

Gruppe A	Gruppe B
65	56
34	42
24	23
16	21
12	6

odd-even-even-odd/ ABBA

Matching/Parallelisierung/Balancing

- Nachteil gegenüber Randomisierung:
 - Störvariable muss gemessen werden
 - Programmiererfahrung?
 - Intelligenz?

Parameter als unabhängige Variable definieren

- Wird systematisch vom Versuchsleiter variiert
- Störvariable wird operationalisiert
- Programmiererfahrung:
 - Viel/wenig Erfahrung
 - Viel/wenig Motivation
 - Java/C

Rechenbeispiel

- 23 Störvariablen, jede mit 2 Stufen
 - = 8 388 608 mögliche Kombinationen
- Wie viele Probanden sind nötig, um jede Kombination abzudecken?
 - min. 10 Probanden pro Gruppe
 - 83 886 080 (ganz Deutschland)

Konstant halten

- Nur ein Level einer Störvariable
- Programmierfahrung
 - Nur Bachelor-Studenten
 - Nur Programmierexperten
- Intelligenz
 - Nur Studenten mit bestimmter Note

Nachträgliche Analyse

- Variable wird während des Experiments gemessen
- Einfluss einer Variablen wird nach dem Experiment analysiert
- Probleme:
 - Kann zeigen, dass Ergebnisse unbrauchbar sind

Hausaufgabe

- Entwerfen Sie ein Experiment mit hoher interner Validität
- Entwerfen Sie ein Experiment mit hoher externer Validität

Verhältnis von Interner und Externer Validität

- Beide verlangen verschiedene Dinge
 - Intern: alles kontrollieren
 - Extern: allgemeines Setting
- Und jetzt?
 - Erst interne Validität maximieren
 - Dann schrittweise externe Validität erhöhen

Reliabilität

Genauigkeit der Messinstrumente

Objektivität

- Durchführung eines Experiments darf nicht von Person der Versuchsleiter abhängen
- Dasselbe Experiment, durchgeführt von anderen Versuchsleitern, soll dasselbe Ergebnis liefern

