Table with common mathematical and statistical formulas

Some common mathematical results

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$e^{x} = \lim_{n \to \infty} (1 + \frac{x}{n})^{n}$$

$$\sum_{k=0}^{n-1} ar^{k} = a \frac{1-r^{n}}{1-r} \quad \text{if } r \neq 1$$

$$\sum_{k=0}^{\infty} ar^{k} = \frac{a}{1-r} \quad \text{if } |r| < 1$$

$$(x+y)^{n} = \sum_{k=0}^{n} {n \choose k} x^{k} y^{n-k}$$

Moment generating functions for some common distributions

Distribution	Abbreviation	Moment generating function
Bernoulli	Be(p)	$q + pe^t$
Binomial	Bin(n,p)	$[q+pe^t]^n$
Poisson	Po(m)	$e^{m(e^{\overline{t}}-1)}$
Uniform	U(a,b)	$\frac{e^{tb}-e^{ta}}{t(b-a)}$
Exponential	Exp(a)	$\frac{1}{1-at}$ for $t < 1/a$
Gamma	$\Gamma(p,a)$	$\frac{1}{(1-at)^p}$ for $t<1/a$
Laplace	L(a)	$\frac{1}{1-at} \text{ for } t < 1/a$ $\frac{1}{(1-at)^p} \text{ for } t < 1/a$ $\frac{1}{1-a^2t^2} \text{ for } t < 1/a$ $e^{t\mu+\sigma^2t^2/2}$
Normal	$N(\mu, \sigma^2)$	$e^{t\mu+\sigma^2t^2/2}$

Some statistical results

$$Y|X=x\sim N\left[\mu_y+
ho\frac{\sigma_y}{\sigma_x}(x-\mu_x),\sigma_y^2(1-\rho^2)\right]$$
 if Y and X are jointly normal.