Applied differential equations

TW244 - Lecture 03

First-order DEs: Direction fields

Prof Nick Hale - 2020

Qualitative analysis of the behaviour to some DEs, without solving the DE!

2.1 Solution curves without a solution Direction fields

x1 x2 x

Consider the first-order DE,
$$\frac{dy}{dx} = f(x, y)$$
.

- Evaluate f(x, y) at a bunch of (x, y) points
- Draw a little arrow at each (x, y) to represent the direction $\frac{dy}{dx}$
- Collection of arrows forms the DE's direction field
- Gives some indication of the behaviour of the family of solutions curves in the xy-plane without solving the DE.

Direction fields: Example dy/dx = x - y

The solution curves follow the arrows!

Direction fields: Example dy/dx = x - y

Isoclines can help you plot the direction field.

Direction fields: Example

Some more examples (from the textbook):

(a) direction field for dy/dx = 0.2xy

(b) some solution curves in the family $y = ce^{0.1x^2}$

Exercise: Verify that $y = ce^{0.1x^2}$ is a family of solutions to $\frac{dy}{dx} = 0.2xy$.

2.1 Solution curves without a solution Direction fields: Example

For more complicated examples, software can be used (see CA01).

Autonomous first-order DEs

2.1 Solution curves without a solution Autonomous first-order DEs

An <u>autonomous equation</u> is one in which the independent variable does not appear explicitly, i.e., a DE of the form

$$\frac{dy}{dx} = f(y)$$

(Remember, we're interested in functions y = y(x) that satisfy this DE.)

Examples:

$$\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = 1 + y^2 \leftarrow \text{autonomous, } \frac{dy}{dx} = f(y)$$

$$\frac{\frac{dy}{dx}}{\frac{dy}{dx}} = 0.2xy \leftarrow \text{not autonomous, } \frac{dy}{dx} = f(x, y)$$

2.1 Solution curves without a solution Critical points (also known as "stationary" or "equilibrium" points)

An <u>critical point</u> of an autonomous DE is any $c \in \mathbb{R}$ for which f(c) = 0.

If
$$y(x) = c$$
 then $\frac{dy}{dx} = 0 = f(y)$, so $y = c$ satisfies the DE.

We call this an equilibrium solution. (Why?)

Example:

DE Critical points:

$$f(y)$$

$$\frac{dy}{dx} = y^2 - 3y \quad \leftarrow \text{ autonomous}$$

$$y^2 - 3y = 0$$

$$y(y - 3) = 0$$

$$\therefore y = 0 \text{ or } y = 3$$

We can now continue our qualitative analysis..

2.1 Solution curves without a solution Increasing or decreasing?

We can tell when a non-constant solution y = y(x) is increasing or decreasing by looking at the sign of f. In particular

- $\blacksquare f(y) > 0 \implies \frac{dy}{dx} > 0 \implies y(x)$ is strictly increasing
- $\blacksquare f(y) < 0 \implies \frac{dy}{dx} < 0 \implies y(x)$ is strictly decreasing

For the example $f(y) = y^2 - 3y$ we have

 \therefore y increases when y < 0 or y > 3 (critical points!) y decreases when 0 < y < 3

2.1 Solution curves without a solution Concavity

9 2 2 fly

We just looked at the sign of f(y). Now let's look at the sign of $\frac{df}{dx}$.

$$\blacksquare \frac{df}{dx} > 0 \implies \frac{d^2y}{dx^2} > 0 \implies y \text{ is concave up}$$

For the example $f(y) = y^2 - 3y$ we have

∴ y is concave up when
$$0 < y < \frac{3}{2}$$
 or $y > 3$ y is concave down when $y < 0$ or $\frac{3}{2} < y < 3$

2.1 Solution curves without a solution Putting it all together

For the DE $\frac{dy}{dx} = y^2 - 3y$, we can put all we've established in one picture:

2.1 Solution curves without a solution Putting it all together

For the DE $\frac{dy}{dx} = y^2 - 3y$, we can put all we've established in one picture:

2.1 Solution curves without a solution Classifying critical solutions

Asymptotically stable: Solution curves tend to y = c on both sides as $x \to \infty$.

Asymptotically unstable: Solution curves tend away y = c on both sides as $x \to \infty$.

Asymptotically semi-stable: Tend to y = c on one side and away on the other side.

Exercise: Classify the equilibrium solutions of the DE $\frac{dy}{dx} = y^2 - 3y$.