Splayovanie 1

- splay strom je binárny vyhľadávací strom
- operácia splay(x) nájde vrchol x a vybuble ho nahor do koreňa
- bublanie prebieha špeciálnym spôsobom:
 - nech y je otec a z starý otec vrcholu x
 - a) prípad "cik": ak x nemá starého otca (y je koreň), zrotujeme x
 - -b) prípad "cik-cik": ak xaj ysú obaja ľaví synovia, alebo obaja praví synovia, zrotujeme najskôr y, potom x
 - c) prípad "cik-cak": ak x je ľavý syn a y pravý syn (alebo naopak), dvakrát zrotujeme x

Jednoduchá analýza $\mathbf{2}$

- budeme analyzovať iba operáciu splay
- \bullet pre jednoduchosť budeme predpokladať, že kľúče sú $1,\dots,n,$ splayujeme kľúče, ktoré sú v strome
- nech size s_x je počet vrcholov v podstrome x
- nech rank $r_x = |\log s_x|$
- **Invariant:** každý vrchol bude mať na účte našetrených r_x \$
- pár postrehov:
 - rotácia vrcholu x s otcom y mení iba r_x a r_y ostatné ranky sa nemenia
 - rank x po rotácii je rovnaký ako rank otca pred rotáciou: $r'_x = r_y$
 - listy majú $s_x = 1$, teda $r_x = 0$; rank otca je vždy \geq rank syna
 - maximálny rank má koreň; $r_{\text{root}} = \lfloor \log s_{\text{root}} \rfloor = \lfloor \log n \rfloor$
 - aký je súčet všetkých rankov, tzn. koľko majú našetrené všetky vrcholy dokopy?

 - najmenej, ak je strom perfektne vyvážený, je to $\sum_{k=1}^{\lfloor \log n \rfloor} (n/2^k) \cdot k = \Theta(n)$ najviac, ak je strom maximálne nevyvážený s hĺbkou n, je to $\sum_{k=1}^{n} \lfloor \log k \rfloor \geq \sum_{k=n/2}^{n} \lfloor \log k \rfloor \geq n$ $(n/2)|\log(n/2)| = \Theta(n\log n)$
 - ak má vrchol rank r, má pod sebou $\geq 2^r$ vrcholov
 - ak majú dvaja bratia rank r, ich otec musí mať rank $\geq r+1$ (lebo je pod ním $\geq 2^{r+1}$ vrcholov)
 - ak má otec a syn rank r, potom druhý syn musí mať rank < r (inak dostaneme spor s predchádzajúcim tvrdením)
- intuícia 1:
 - uvažujme cestu od vrcholu x ku koreňu
 - keďže $r_x \in \{0, \ldots, |\log n|\}$, rank sa na tejto ceste môže zvýšiť len $\log n$ -krát
 - ak sa v jednom kroku splayovania rank zvýši, zaplatíme ho z peňazí na splayovanie
 - ak je rank rovnaký, prístup je pomalší, ale ukážeme, že vrcholy majú našetrené dosť na to, aby tento krok zaplatili – z hladiska amortizovanej analýzy je teda tento krok zadarmo
- intuícia 2:

- nech y, z sú otec a starý otec vrcholu x; nech α, β sú podstromy pod x a δ, γ podstromy pod y, z
- ak $r_z>r_x$, tak δ,γ sú zhruba aspoň také veľké ako α,β , takže sme pri hľadaní vylúčili podstatnú časť kľúčov
- (v skutočnosti je toto tvrdenie nepresné a nemusí platiť kvôli | · |; ale platí, že ak sa rank na ceste zvýši aspoň o 2, vylúčili sme aspoň konštantný zlomok kľúčov)
- naopak, ak $r_z = r_x$, znamená to, že podstromy δ, γ sú malé v porovnaní s α, β , t.j. väčšina vrcholov je pod x
- avšak v tomto prípade sa vyváženosť stromu zlepší, pretože celé α, β budú po rotáciach vyššie; teda väčšina prvkov pod x bude mať menšiu hĺbku
- Veta o prístupe: Na operáciu splay(x) stačí $3(r_{root}-r_x)+1\$$, pričom zachováme invariant
- $\bullet\,$ označme r_x' rank vrcholu x po jednom kroku splayovania (po jednej dvojitej rotácií, resp. po poslednej jednoduchej rotácií)
- Lema: Na každý cik-cik/cik-cak prípad stačí $3(r'_x r_x)$ \$, na posledný prípad cik $(r'_x r_x) + 1$ \$.
- z lemy priamo vyplýva veta o prístupe, pretože keď sčítame všetky kroky splay(x), dostávame teleskopickú sumu $3(r_x^{\text{posledn\acute{y}}} r_x^{\text{predposledn\acute{y}}} + r_x^{\text{predposledn\acute{y}}} \cdots + r_x''' r_x'' + r_x'' r_x' + r_x'' r_x) + 1 =$ $3(r_x^{\rm posledn\acute{y}}-r_x)+1,$ pričom $r_x^{\rm posledn\acute{y}}=r_{\rm root}$ je rank celého stromu
- \bullet analyzujme jednotlivé prípady; nech x je prvok, ktorý splayujeme, y a z sú otec a starý otec; r_x, r_y, r_z sú ich ranky pred rotáciami a r_x', r_y', r_z' sú ranky po rotáciach (zvyšné ranky sa nezmenia)
- prípad "cik":
 - pred rotáciou máme našetrených: $r_x + r_y$ (+zvyšné ranky)\$
 - po rotácii potrebujeme mať: $r'_x + r'_y$ (+zvyšné ranky, ale tie sa nezmenili)\$
 - takže na udržanie invariantu potrebujeme $(r'_x + r'_y) (r_x + r_y)$ mincí + aspoň 1 mincu na zaplatenie rotácií
 - platí: $r_x' = r_y$ (rank po = rank otca pred) a $r_x' \le r_y'$ (rank syna nie je väčší ako rank otca)
 - teda potrebných $(r'_x + r'_y) (r_x + r_y) + 1 = r'_y r_x + 1 \le (r'_x r_x) + 1$
- prípad "cik-cik"; analyzujme zvlášť prípad $r_x = r_z$ a $r_x < r_z$:
- a) ak $r_x = r_z$, tak $r_x = r_y = r_z = r'_x = r$
 - čiže na tento krok máme pridelených $3(r'_x-r_x)=0$ tento krok by mal byť v zmysle amortizovanej zložitosti zadarmo (všetko platíme z už našetrených peňazí)
 - pozri obr.: po prvej rotácií má x aj y rank r (x sa nezmenil a y je koreň nášho podstromu, teda má rank $r_z = r$)
 - po druhej rotácii sa rank z nezmení a $r'_x = r_z = r$, teda $r'_z < r'_x$,
 - -z toho ale vyplýva, že pred rotáciami sme mali3r\$, po rotáciach nám stačí $\leq 3r-1$
 - čiže prechod cez x, y, z a cik-cik rotácie zaplatí vrchol z a invariant ostane zachovaný
- b) ak $r_x < r_z$,

 - pred rot.: $r_x + r_y + r_z$ \$, po rot.: $r_x' + r_y' + r_z'$ \$, teda potrebujeme $(r_x' + r_y' + r_z') (r_x + r_y + r_z) + 1$ \$ platí: $r_x' = r_z$ (koreň pred a po), $r_x' \ge r_y'$, $r_x' \ge r_z'$ a $r_x \le r_y$ (syn \le otec) odtiaľ $(r_x' + r_y' + r_z') (r_x + r_y + r_z) + 1 = (r_y' r_x) + (r_z' r_y) + 1 \le (r_x' r_x) + (r_x' r_x) + 1$

 - keďže $r_x < r_z = r_x' \Rightarrow r_x' r_x \ge 1$, čiže $2(r_x' r_x) + 1 \le 3(r_x' r_x)$ na tento krok máme pridelených $3(r_x' r_x)\$$; $(r_x' r_x) \ge 1\$$ použijeme na zaplatenie operácií; $2(r'_x - r_x)$ na dorovnanie nasporených peňazí, aby sme zachovali invariant

• prípad "cik-cak": D.Ú.

3 Všeobecná analýza

- každému vrcholu x priradíme váhu $w_x \in \mathbb{R}^+$
- nech size s_x je súčet váh všetkých vrcholov v podstrome x
- nech rank $r_x = \log s_x$
- Invariant: každý vrchol bude mať na účte našetrených r_x \$; inými slovami potenciál $\Phi = \sum r_x$
- Veta o prístupe: Operácia splay(x) má amortizovanú zložitosť $3(r_{\text{root}}-r_x)+1$ (pre ľubovoľnú voľbu váh)
- inými slovami, ak $W = \sum w_x$ je celková váha stromu, potom zložitosť splay(x) je $3(\log W \log w_x$) + 1 = $O(1 + \log(W/w_x))$
- Lema: Každý cik-cik/cik-cak prípad má amortizovanú zložitosť $3(r'_x-r_x)$, posledný prípad cik má zložitosť $3(r'_x - r_x) + 1$
- ullet amortizovaná zložitosť a je skutočná zložitosť t (2 rotácie) + rozdiel potenciálov $\Delta\Phi$
- prípad "cik-cik":
 - $-a = t + \Delta \Phi = 2 + (r'_x + r'_y + r'_z) (r_x + r_y + r_z) = 2 + r'_y + r'_z r_x r_y \le 2 + r'_x + r'_z 2r_x r_x + r'_z = \log s_x + \log s'_z \le 2 \log[(s_x + s'_z)/2] \le 2 \log(s'_x/2) = 2r'_x 2 \text{teda } r'_z \le 2r'_x r_x 2, \text{ dosadíme vyššie:}$

 - $-a \le 2 + r'_x + (2r'_x r_x 2) 2r_x = 3(r'_x r_x)$
- prípad "cik-cak":
 - $-a = 2 + r'_y + r'_z r_x r_y \le 2 + r'_y + r'_z 2r_x$ $-r'_y + r'_z = \log s'_y + \log s'_z \le 2r'_x 2$ $-a \le 2 + 2r'_x 2 2r_x = 2(r'_x r_x)$

• prípad "cik": prenechávame čitateľovi

Dôsledky 4

- Vyváženosť: pre $w_x = 1$ dostávame $r_{\text{root}} = \log n$, takže amortizovaná zložitosť je $O(\log n)$
- Statická optimálnosť, alias Veta o entropii: nech $f_x \ge 1$ je frekvencia, s ktorou splayujeme x, m je celkový počet operácií, $p_x = f_x/m$; potom zložitosť m operácií je $O(m + \sum f_x \log(m/f_x)) =$ $O(m+m\sum p_x\log(1/p_x))$; teda splay(x) má amortizovanú zložitosť $O(1+\log(1/p_x))$
 - hodnota $H = p_x \log(1/p_x)$ je entropia pravdepodobnostného rozdelenia
 - z teorie informácie vyplýva, že ak poznáme f_x , že najlepší statický strom dosahuje zložitosť zhruba mH – splay strom dosahuje konštantný násobok bez znalosti f_x
 - dôkaz: zvoľme $w_x = f_x$, potom $r_{\text{root}} = \log m$ a $r_x = \log f_x$, dosadíme do vety o prístupe
 - z tejto vety vyplýva veta o statickom prste
- Veta o statickom prste: zvoľme si prst vrchol p; amortizovaná zložitosť splay(x) je $O(\log(2+|x-p|))$, kde |x-p| je vzdialenosť (počet prvkov) medzi x a p

 - inými slovami, ak často pristupujeme k prvkom blízko p, prístup je rýchly dôkaz: zvoľme $w_x=1/(x-p+1)^2;$ $s_{\rm root}<2\sum_{k=1}^\infty 1/k^2=\pi^2/6=O(1),$ dosadíme do vety
- Veta o pracovnej množine: nech $t_i(x)$ je počet rôznych prvkov (vrátane x), ktoré sme splayovali odkedy sme naposledy vysplayovali x pred časom i; potom splay(x) trvá O(1 + $\log t_i(x_i)$) amortizovane

- inými slovami, ak stále pristupujeme iba k malej "pracovnej" množine prvkov, čas je logaritmický od veľkosti pracovnej množiny
- dôkaz: váhy budeme meniť; v čase i zvoľme $w_x = 1/t_i(x)^2$ potom $s_{\text{root}} = \sum_{k=1}^{\infty} 1/k^2 = \pi^2/6$, čiže splay (x_i) trvá $O(1 + \log(O(1)/t_i(x_i)^{-2})) = O(1 + \log(O(1)/t_i(x_i)^{-2}))$
- treba ešte overiť, že sme s meniacimi sa váhami nepodvádzali; ako sa zmenia váhy?
- všetkým prvkom, ktoré sme splayovali od posledného splay (x_i) sa $t_i(y)$ zvýši o 1; vrcholom, ktorých sme sa odv
tedy nedotkli sa váha nezmení a prvok x_i bude mať váhu 1
- inými slovami, ak je $t_i(x_i) = k$, potom $t_{i+1}(y)$ sa zmení takto: $k \to 1, 1 \to 2, 2 \to 1$ $3, \ldots k-1 \rightarrow k$
- teda w_{x_i} vzrastie o < 1 a ostatné váhy klesnú alebo ostanú nezmenené
- $\text{ teda } \Delta \Phi < 1$
- z tejto vety vyplýva statická optimálnosť

5 Ďalšie vlastnosti splay stromov

- Veta o skenovaní: ak pristupujeme postupne k prvkom $1, 2, 3, \ldots, n$, celkový čas je O(n)
- Veta o dynamickom prste: prístup ku x_i trvá $O(\log(2 + |x_i x_{i-1}|))$
 - teda prístup blízko predošlému prvku je rýchly
 - z tejto vety vyplýva veta o skenovaní aj veta o statickom prste
 - dôkaz je veľmi ťažký
- Hypotéza o obojsmernej fronte: ak splay strom používame ako deque, teda vkladáme a vyberáme prvky iba zo začiatku alebo konca, čas bude O(m) (amortizovane)
 - najlepší dokázaný odhad je $O(m\alpha(m))$
- Hypotéza o split strome:
 - split strom je dátová štruktúra, ktorá podporuje operácie make (x_1,\ldots,x_n) vytvorenie stromu a split(x) – vráti x a rozdelí strom na 2 split stromy s prvkami < x a > x
 - existuje algoritmus, kde make a $n \times \text{split}$ trvá O(n); predpokladá sa, že splay strom dosahuje rovnakú zložitosť
 - zatiaľ najlepší dokázaný odhad je $O(n\alpha(n))$
- Zjednotená hypotéza: zovšeobecňuje vlastnosť pracovnej množiny a dynamického prsta: ak sme nedávno pristupovali k prvku, ktorý je blízko, prístup bude rýchly: $O(\log \min_{y} |t_i(y)| + |x_i|)$ y|+2|) amortizovane
- Hypotéza o dynamickej optimálnosti: splay strom je len konštantný násobok od najlepšieho možného BST algoritmu, ktorý pozná celú postupnosť prístupov dopredu