High-Dimensional Econometrics Computer Session 1: Using ML Tools for Inference

Jérémy L'Hour jeremy.l.hour@ensae.fr

February 19, 2019

1. Orthogonal Score for the ATET (Examen 2018)

We observe an iid sample of the random vector $W_i = (Y_i^{obs}, D_i, X_i')'$ for i = 1, ..., n. Y_i^{obs} is the outcome variable which value depends on whether the unit i is treated or not. If unit i is treated $(D_i = 1)$, then $Y_i^{obs} = Y_{1i}$. If unit i is not treated $(D_i = 0)$, then $Y_i^{obs} = Y_{0i}$. X_i is a vector of covariates of dimension p > 1 which includes an intercept. The index i is dropped when unnecessary. The quantity of interest is the Average Treatment on the Treated defined as:

$$\tau_0 = \mathbb{E}\left[Y_1 - Y_0 | D = 1\right]. \tag{ATET}$$

Define $\pi = \mathbb{P}(D=1)$ and the propensity score $p(X) = \mathbb{P}(D=1|X)$. We make the following two assumptions. The Conditional Independence Assumption:

$$Y_0 \perp \!\!\!\perp D|X,$$
 (CIA)

and the Common Support Assumption:

$$0 < p(X) < 1.$$
 (CommonSup)

Assume the propensity score is given by a Logit, i.e. $p(X) = \exp(X'\beta_0)/(1 + \exp(X'\beta_0))$.

1. (a) Define:

$$m(W_i, \tau, \beta) = (D_i - \exp(X'\beta)(1 - D_i))Y_i^{obs} - D_i\tau.$$

Verify that $\mathbb{E}m(W_i, \tau_0, \beta_0) = 0$.

- (b) Propose an estimator of the propensity score \hat{p} . Suggest an estimator $\hat{\tau}$ of τ_0 .
- (c) What is the problem with this estimator in high-dimension?
- 2. Assume that the outcome under no treatment is given by $Y_0 = X^{\top} \gamma_0 + \varepsilon$ with $\varepsilon \perp \!\!\! \perp X$ and $\mathbb{E}\varepsilon = 0$.
 - (a) Show that $\mathbb{E}[DX(Y_0 X'\gamma_0)] = 0$.
 - (b) Suggest an orthogonal moment condition ψ . Prove that it is orthogonal.

2. Post-Selection Inference: Simulation Study

All the necessary files can be found at https://github.com/jlhourENSAE/hdmetrics.

Consider the data-generating process contained in the file DataSim.R. The outcome equation is linear and given by: $Y_i = D_i \tau_0 + X_i^T \beta_0 + \varepsilon_i$, where $\tau_0 = .5$, $\varepsilon_i \perp \!\!\! \perp X_i$, and $\varepsilon_i \sim \mathcal{N}(0, 1)$. The treatment equation follows a Probit model, $D_i | X_i \sim \text{Probit}\left(X_i^T \delta_0\right)$. The covariates are simulated as $X_i \sim \mathcal{N}(0, \Sigma)$, where each entry of the variance-covariance matrix is set as follows: $\Sigma_{j,k} = .5^{|j-k|}$. Every other element of X_i is replaced by 1 if $X_{i,j} > 0$ and 0 otherwise. The most interesting part of the DGP is the form of the coefficients δ_0 and β_0 :

$$\beta_{0j} = \begin{cases} \rho_d(-1)^j/j^2, \ j < p/2 \\ 0, \text{ elsewhere} \end{cases}, \ \delta_{0j} = \begin{cases} \rho_y(-1)^j/j^2, \ j < p/2 \\ \rho_y(-1)^{j+1}/(p-j+1)^2, \text{ elsewhere} \end{cases}$$

We are interested in comparing the performance of the naive and the double selection procedures when estimating τ_0 . The file LassoFISTA.R contains a function to compute the Lasso solution.

- 1. Comment the form of the coefficients β_0 and δ_0 . What do you think will happen with the naive selection procedure?
- 2. The code DoubleML_SimExo.R contains the code for the naive selection procedure. Try and understand the code. Run it. What do you observe?
- 3. Write the code for the double selection procedure without sample-splitting under "METHOD 2". Optional: write the code to compute standard error.

4.	Write the code for the double selection procedure with sample-splitting under "METH	HOD
	3"	

 $5.\,$ Run the simulation. What are your conclusions?