

Branches

P. Bernardi, R. Ferrero Politecnico di Torino

Dipartimento di Automatica e Informatica (DAUIN)

Torino - Italy

This work is licensed under the Creative Commons (CC BY-SA) License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Unconditional branch

 There are four instructions for unconditional branch:

```
branch
B <label>
```

- branch indirect with link
 BLX <Rn>
- BL and BLX save the return address (i.e., the address of the next instruction) in LR (r14) and they are used to call subroutines.

Branch range

- In the B instruction, the opcode is 8 bit and the immediate value is 24 bit.
- Since addresses are halfword-aligned, the immediate value specifies bit 24-1 of the relative address.
- The 25th is for the sign; so the relative address can be $\pm 2^{24}$ byte = ± 16 MB.
- BX can jump to any 32-bit value = 4 GB.

MOV for unconditional branch

- B and BX change the value of PC.
- Similarly, a jump can be implemented by changing the value of PC with MOV and LDR:
 - LDR <Rd>, =<label>
 MOV PC, <Rd>
 - LDR PC, =<label>
- MOV and LDR force the last bit of PC to 0.
- MOV instead of BX is discouraged: the assembler generates a warning.

Conditional branch: B?? and BX??

??	Flags	Meaning	??	Flags	Meaning
EQ	Z = 1	equal	NE	Z = 0	not equal
CS HS	C = 1	unsigned ≥	CC LO	C = 0	unsigned <
MI	N = 1	negative	PL	N = 0	positive or 0
VS	V = 1	overflow	VC	V = 0	no overflow
НІ	C = 1 & Z = 0	unsigned >	LS	C =0 & Z = 1	unsigned ≤
GE	$N \ge V$	signed ≥	LT	$N \neq V$	signed <
GT	Z =0 or N = V	signed >	LE	$Z = 1$ or $N \neq V$	signed ≤

Example: do you pass the exam?

```
; r0 contains the score of the exam
        CMP r0, #18
        BEQ refuse
        BLO reject
        BHI accept
                 ; study more
refuse
reject ...
                 ; study much more
                 ; go on holiday
accept
```

For loop

The pseudocode of the for loop is

For loop: naive implementation

```
MOV r0, #0
loop CMP r0, #N
        BHS exit
                ; do something
        ADD r0, r0, #1
        B loop
exit
```

For loop: optimization

```
MOV r0, N

loop ... ; do something

SUBS r0, r0, #1

BNE loop

exit
```

Do-While loop

The pseudocode

```
do {
                 //do something
    \} while (r0 != N);
can be implemented as:
                 ; do something
loop
      CMP rO, #N
test
        BNE loop
```