伊藤『ルベーグ積分入門』ノート

katatoshi

2018年4月23日

伊藤『ルベーグ積分入門』 [1] を読んでいてつまずいた点などをまとめる(随時追加). 記号・記法はできるだけテキストに合わせてある.

1 §3 の集合函数 Ψ の加法性

 $\S 3$ 例 3 において,集合函数 Ψ が加法的であることが容易には分からなかったのでその 辺りの証明をまとめる.

 \mathbf{R}^N の区間全体の集合 \mathfrak{I}_N と有界な区間全体の集合 \mathfrak{J}_N を次のように定義する.

$$\mathfrak{I}_{N} = \{ (a_{1}, b_{1}] \times \dots \times (a_{N}, b_{N}]; -\infty \leq a_{\nu} < b_{\nu} \leq +\infty \},$$

$$\mathfrak{J}_{N} = \{ (a_{1}, b_{1}] \times \dots \times (a_{N}, b_{N}]; -\infty < a_{\nu} < b_{\nu} < +\infty \}.$$

ただし $-\infty \le a_{\nu} < +\infty$ に対して $(a_{\nu}, +\infty] = (a_{\nu}, +\infty)$ とする.

命題 1 $I=(a_1,b_1]\times\cdots\times(a_N,b_N]\in\mathfrak{I}_N,\ I_1,I_2\in\mathfrak{I}_N,\ I_1,I_2\neq\varnothing,\ I_1\cap I_2=\varnothing,$ $(b_1,\cdots,b_N)\in I_2$ とする.このとき $I=I_1+I_2$ であるための必要十分条件は

$$I_1 = (a_1, b_1] \times \dots (a_{\nu_0}, c] \times \dots \times (a_N, b_N],$$

$$I_2 = (a_1, b_1] \times \dots (c, b_{\nu_0}] \times \dots \times (a_N, b_N]$$

となるような ν_0 と $a_{\nu_0} < c < b_{\nu_0}$ が存在することである. ¹

証明 十分条件は簡単なので省略する.

必要条件を示す. $(b_1, \dots, b_N) \in I_2$ より $I_2 = (c_1, b_1] \times \dots \times (c_N, b_N]$ $(a_{\nu} < b_{\nu})$ とかける. $I_1 \neq \emptyset$ であるから $a_{\nu} < c_{\nu}$ であるような ν が少なくとも 1 つ存在するが,逆にそのような ν は唯一つである. 実際, $a_{\nu_1} < c_{\nu_1}$, $a_{\nu_2} < c_{\nu_2}$ $(\nu_1 < \nu_2)$ とすると $a_{\nu_i} < c_{\nu_1}$

¹ 互いに素な集合 $I_1,\,I_2,\,I_1\cap I_2=\varnothing$ に対して I_1+I_2 で I_1 と I_2 の非交和を表す.

 $y_{\nu_i} < c_{\nu_i} \ (i=1,2)$ であるような $y_{\nu_i} \ (i=1,2)$ がとれる。 $z_i = (x_1, \cdots, y_{\nu_i}^{\nu_i}, \cdots, x_N)$ $(c_{\nu} < x_{\nu} < b_{\nu})$ とすると $z_i \in I$, $z_i \not\in I_2$ であるから $z_i \in I \setminus I_2 = I_1$ である。 $I_1 = (s_1,t_1] \times \cdots \times (s_N,t_N]$ $(a_{\nu} \leq s_{\nu} < t_{\nu} \leq b_{\nu})$ とすると $z_i \in I_1$ であるから $s_{\nu} < x_{\nu} \leq t_{\nu}$ である。そこで $z = (x_1, \cdots, t_{\nu_1}, \cdots, t_{\nu_2}, \cdots, x_N)$ とすると $z \in I_1$ である。一方で $c_{\nu} < t_{\nu}$ であるから $z \in I_2$ である。これは $I_1 \cap I_2 = \emptyset$ に矛盾する。したがって $a_{\nu_0} < c_{\nu_0}$ とすると $c_{\nu} = a_{\nu} \ (\nu \neq \nu_0)$ であるから $I_2 = (a_1,b_1] \times \ldots (c_{\nu_0},b_{\nu_0}] \times \cdots \times (a_N,b_N]$ である。よって $I_1 = I \setminus I_2$ より $I_1 = (a_1,b_1] \times \ldots (a_{\nu_0},c_{\nu_0}] \times \cdots \times (a_N,b_N]$ である。

 $f_{\nu}: \mathbf{R} \to \mathbf{R} \ (\nu = 1, \cdots, N)$ を定数函数でない単調増加函数とする. 集合函数 $\Phi: \mathfrak{J}_N \to \mathbf{R}, \ \Psi: \mathfrak{I}_N \to \mathbf{R}$ を次のように定義する. $J = (a_1, b_1] \times \cdots \times (a_N, b_N] \in \mathfrak{J}_N$ に対して

$$\Phi(J) = \prod_{\nu=1}^{N} (f_{\nu}(b_{\nu}) - f_{\nu}(a_{\nu}))$$

と定義し、 $I \in \mathfrak{I}_N$ に対して

$$\Psi(I) = \sup \{ \Phi(J); J \in \mathfrak{J}_N, J \subset I \}$$

と定義する.

命題 2 Φ , Ψ について以下の性質が成り立つ.

- (1) $J \in \mathfrak{J}_N$ $\varphi \in \mathfrak{U}$ $\Phi(J) = \Psi(J)$.
- (2) $I_1, I_2 \in \mathfrak{I}_N, I_1 \subset I_2 \text{ tif } \Psi(I_1) \leq \Psi(I_2).$
- (3) $J, J_1, J_2 \in \mathfrak{J}_N, J_1 \cap J_2 = \emptyset, J = J_1 + J_2$ ならば $\Phi(J) = \Phi(J_1) + \Phi(J_2)$.

証明 (1) $J = (a_1, b_1] \times \cdots \times (a_N, b_N]$ とする. $J' = (a'_1, b'_1] \times \cdots \times (a'_N, b'_N] \in \mathfrak{J}_N$, $J' \subset J$ とすると $a_{\nu} \leq a'_{\nu} < b'_{\nu} \leq b_{\nu}$ であり f_{ν} は単調増加であるから $f_{\nu}(a_{\nu}) \leq f_{\nu}(a'_{\nu}) \leq f_{\nu}(b'_{\nu})$ である. よって

$$\Phi(J') = \prod_{\nu=1}^{N} (f_{\nu}(b'_{\nu}) - f_{\nu}(a'_{\nu}))$$

$$\leq \prod_{\nu=1}^{N} (f_{\nu}(b_{\nu}) - f_{\nu}(a_{\nu}))$$

$$= \Phi(J)$$

であるから

$$\Phi(J) = \max\{\Phi(J'); J' \in \mathfrak{J}_N, J' \subset J\}$$
$$= \sup\{\Phi(J'); J' \in \mathfrak{J}_N, J' \subset J\}$$
$$= \Psi(J).$$

(2) $\{\Phi(J); J \in \mathfrak{J}_N, J \subset I_1\} \subset \{\Phi(J); J \in \mathfrak{J}_N, J \subset I_2\}$ であるから

$$\Psi(I_1) = \sup \{ \Phi(J); J \in \mathfrak{J}_N, J \subset I_1 \}$$

$$\leq \sup \{ \Phi(J); J \in \mathfrak{J}_N, J \subset I_2 \}$$

$$= \Psi(I_2).$$

(3) $J = (a_1, b_1] \times \cdots \times (a_N, b_N]$ とし, $(b_1, \cdots, b_N) \in J_2$ とする $((b_1, \cdots, b_N) \in J_1$ なら J_1 と J_2 の名前を付け替えればよい). 命題 1 より

$$I_1 = (a_1, b_1] \times \dots (a_{\nu_0}, c] \times \dots \times (a_N, b_N],$$

$$I_2 = (a_1, b_1] \times \dots (c, b_{\nu_0}] \times \dots \times (a_N, b_N]$$

となるような ν_0 と $a_{\nu_0} < c < b_{\nu_0}$ が存在する. よって

$$\Phi(J) = \prod_{\nu=1}^{N} (f_{\nu}(b_{\nu}) - f_{\nu}(a_{\nu}))$$

$$= \prod_{\nu\neq\nu_{0}} (f_{\nu}(b_{\nu}) - f_{\nu}(a_{\nu}))(f_{\nu_{0}}(b_{\nu_{0}}) - f_{\nu_{0}}(a_{\nu_{0}}))$$

$$= \prod_{\nu\neq\nu_{0}} (f_{\nu}(b_{\nu}) - f_{\nu}(a_{\nu}))((f_{\nu_{0}}(c) - f_{\nu_{0}}(a_{\nu_{0}})) + (f_{\nu_{0}}(b_{\nu_{0}}) - f_{\nu_{0}}(c)))$$

$$= \prod_{\nu\neq\nu_{0}} (f_{\nu}(b_{\nu}) - f_{\nu}(a_{\nu}))(f_{\nu_{0}}(c) - f_{\nu_{0}}(a_{\nu_{0}})) + \prod_{\nu\neq\nu_{0}} (f_{\nu}(b_{\nu}) - f_{\nu}(a_{\nu}))(f_{\nu_{0}}(b_{\nu_{0}}) - f_{\nu_{0}}(c))$$

$$= \Phi(J_{1}) + \Phi(J_{2}).$$

補題 1 \mathcal{C} , \mathfrak{T} を集合族とし, $f: \mathcal{C} \to \mathbf{R}$, $g: \mathfrak{T} \to \mathbf{R}$ とするとき

$$\sup\{f(S); S \in \mathfrak{S}\} + \sup\{g(T); T \in \mathfrak{T}\} = \sup\{f(S) + f(T); S \in \mathfrak{S}, T \in \mathfrak{T}\}.$$

証明 $\alpha = \sup\{f(S); S \in \mathfrak{S}\}, \ \beta = \sup\{g(T); T \in \mathfrak{T}\}, \ \gamma = \sup\{f(S) + f(T); S \in \mathfrak{S}, T \in \mathfrak{T}\}\$ とする. 任意の $S \in \mathfrak{S}, T \in \mathfrak{T}$ に対して $f(S) \leq \alpha, g(T) \leq \beta$ であるから $f(S) + g(T) \leq \alpha + \beta$ である. よって $\gamma \leq \alpha + \beta$. 逆に、任意の $S \in \mathfrak{S}, T \in \mathfrak{T}$ に対して $f(S) + g(T) \leq \gamma$ であるから $\alpha \leq \gamma - g(T)$ である. よって $\beta \leq \gamma - \alpha$ 、すなわち $\alpha + \beta \leq \gamma$.

命題 3 $I, I_1, I_2 \in \mathfrak{I}_N, I_1 \cap I_2 = \emptyset, I = I_1 + I_2$ ならば

$$\Psi(I) = \Psi(I_1) + \Psi(I_2)$$

である. すなわち Ψ は加法的である.

証明 まず $\Psi(I) \leq \Psi(I_1) + \Psi(I_2)$ であることを示す。 $J \in \mathfrak{J}_N, \ J \subset I$ とし $J_i = J \cap I_i$ (i=1,2) とする。このとき $J = J_1 + J_2$ である。実際, $x \in J$ ならば $x \in I = I_1 + I_2$ であるから $x \in I_1$ または $x \in I_2$ である。したがって $x \in J \cap I_1 = J_1$ または $x \in J_2 = J \cap I_2 = J_2$ である。よって $J \subset J_1 + J_2$.逆に $x \in J_1 + J_2$ ならば $x \in J_1 \subset J$ または $x \in J_2 \subset J$ であるから $J_1 + J_2 \subset J$. $J_i \in \mathfrak{J}_N, \ J_i \subset I_i$ であるから $\Psi(I_i)$ の定義より $\Phi(J_i) \leq \Psi(I_i)$ である。したがって命題 2 (3) より

$$\Phi(J) = \Phi(J_1) + \Phi(J_2) \le \Psi(I_1) + \Psi(I_2)$$

である. よって $\Psi(I_1) + \Psi(I_2)$ は $\{\Phi(J); J \in \mathfrak{J}_N, J \subset I\}$ の上界であるから

$$\Psi(I) = \sup \{ \Phi(J); J \in \mathfrak{J}_N, J \subset I \} \le \Psi(I_1) + \Psi(I_2).$$

次に $\Psi(I_1) + \Psi(I_2) \leqq \Psi(I)$ であることを示す。 $J_i = (c_{i1}, d_{i1}] \times \cdots \times (c_{iN}, d_{iN}] \in \mathfrak{J}_N,$ $J_i \subset I_i \ (i=1,2)$ とする。 $c_{\nu} = \min\{c_{1\nu}, c_{2\nu}\}, \ d_{\nu} = \max\{d_{1\nu}, d_{2\nu}\}, \ J = (c_1, d_1] \times \cdots \times (c_N, d_N]$ とすると $J \subset I$ である。 実際, $I = (a_1, b_1] \times \cdots \times (a_N, b_N]$ とすると $J_i \subset I$ であるから $a_{\nu} \leqq c_{i\nu} < d_{i\nu} \leqq b_{\nu}$ である。よって $a_{\nu} \leqq c_{\nu} < d_{\nu} \leqq b_{\nu}$ である。よって命題 $2 \ (2)$ より $\Psi(J) \leqq \Psi(I)$ であり, $J \in \mathfrak{J}_N$ であるから命題 $2 \ (1)$ より $\Phi(J) \leqq \Psi(I)$ である. $K_i = J \cap I_i$ とすると $K_i \in \mathfrak{J}_N, J_i \subset K_i, J = K_1 + K_2$ であるから命題 2 より

$$\Phi(J_1) + \Phi(J_2) \le \Phi(K_1) + \Phi(K_2) = \Phi(J)$$

である. したがって $\Psi(I)$ は $\{\Phi(J_1)+\Phi(J_2); J_i\in\mathfrak{J}_N, J_i\subset I_i\}$ の上界であるから

$$\sup\{\Phi(J_1) + \Phi(J_2); J_i \in \mathfrak{J}_N, J_i \subset I_i\} \leq \Psi(I)$$

である. よって補題1より

$$\Psi(I_1) + \Psi(I_2) = \sup \{ \Phi(J_1); J_1 \in \mathfrak{J}_N, J_1 \subset I_1 \} + \sup \{ \Phi(J_2); J_2 \in \mathfrak{J}_N, J_2 \subset I_2 \}
= \sup \{ \Phi(J_1) + \Phi(J_2); J_i \in \mathfrak{J}_N, J_i \subset I_i \}
\leq \Psi(I).$$

参考文献

[1] 伊藤清三郎『ルベーグ積分入門』裳華房, 1963.