Rachunek prawdopodobieństwa 2R 2023 lista 1: Definicja warunkowej wartości oczekiwanej

- 1. Rzucamy 8 razy kostką sześcienną. Niech X oznacza sumę wyrzuconych oczek, a Y sumę oczek w pierwszych trzech rzutach. Znajdź $\mathbb{E}[X|Y]$.
- 2. Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na zbiorze $\{1, 2, ..., n\}$. Oblicz

$$\mathbb{E}\left[\min\{X,Y\}|Y\right].$$

- 3. Niech $\Omega=[0,1]$ i niech $\mathbb P$ będzie miarą Lebesgue'a na [0,1]. Znajdź $\mathbb E[f|\mathcal G]$, jeżeli $f(x)=x^3$ i $\mathcal G=\sigma\{[0,1/4),[1/3,1]\}$.
- 4. Niech (X,Y) będzie dwuwymiarowym wektorem losowym z gęstością $g\colon \mathbb{R}^2 \to \mathbb{R}_+$ i niech $g_Y(y) = \int_{\mathbb{R}} g(x,y) dx$ będzie gęstością zmiennej losowej Y. Pokaż, że dla dowolnej funkcji borelowskiej h na \mathbb{R} zachodzi

$$\mathbb{E}[h(X)|Y] = \int_{\mathbb{R}} h(x)g_{X|Y}(x,Y)dx,$$

gdzie

$$g_{X|Y}(x,y) = \left\{ egin{array}{ll} rac{g(x,y)}{g_Y(y)} & ext{ jeżeli } g_Y(y)
eq 0 \\ 0 & ext{ jeżeli } g_Y(y) = 0 \end{array}
ight. .$$

- 5. Wektor losowy (X,Y) ma gęstość $g(x,y)=x^3e^{-x(y+1)}/2\mathbb{1}_{\{x>0,y>0\}}$. Wyznacz $\mathbb{E}[Y|X]$.
- **6**. Podaj przykład zmiennych losowych *X* i *Y*, które nie są niezależne dla których zachodzi

$$\mathbb{E}[X|Y] = \mathbb{E}[X].$$

7. Niech $\mathbb P$ oraz $\mathbb Q$ będą prawdopodobieństwami na $(\Omega,\mathcal F)$. Załóżmy, że $\mathbb Q$ ma gęstość $\mathbb Z$ względem $\mathbb P$, czyli $\mathbb Q(A)=\int_A \mathbb Z d\mathbb P$ dla $A\in\mathcal F$. Rozważmy zmienną losową $X\colon (\Omega,\mathcal F)\to (\mathbb R,\mathcal Bor(\mathbb R))$ oraz jej rozkłady $\mu_{\mathbb P}$ oraz $\mu_{\mathbb Q}$ względem $\mathbb P$ oraz $\mathbb Q$ odpowiednio. Dokładniej

$$\mu_{\mathbb{P}}(\cdot) = \mathbb{P}[X \in \cdot], \quad \mu_{\mathbb{Q}}(\cdot) = \mathbb{Q}[X \in \cdot].$$

Pokaż, że $\mu_{\mathbb{P}} \gg \mu_{\mathbb{Q}}$ oraz $\mathbb{E}[Z|X] = \frac{\mathrm{d}\mu_{\mathbb{Q}}}{\mathrm{d}\mu_{\mathbb{P}}}(X)$.

8. Niech $\mathcal G$ będzie pod σ -ciałem $\mathcal F$. Załóżmy że zmienna losowa X spełnia

$$\mathbb{E}[e^{itX}|\mathcal{G}] = \mathbb{E}[e^{itX}]$$

dla każdego $t \in \mathbb{R}$. Pokaż, że X jest niezależna od \mathcal{G} .