Modelação e Computação Científica

1º semestre, 2020-2021 MIEC

27 de outubro de 2020

PESQUISA CONFORMACIONAL

Pesquisa conformacional (ou análise conformacional)

A busca de **conformações** de moléculas por análise da variação da energia do sistema devida à rotação em torno de ligações simples denomina-se de **pesquisa conformacional**.

Conformação: arranjo tridimensional de átomos como resultado de torsões em torno de ligações simples (ligações sigma).

Os diferentes arranjos tridimensionais para uma mesma molécula devida a torsões em torno de ligações simples tomam o nome de **confórmeros**.

Não confundir **conformação** com **configuração** (por exemplo, devida a arranjos tridimensionais em ligações duplas ou carbonos quirais). O mesmo acontece com **confórmero** e **estereoisómero**.

Conformações e configurações

conformações

estas estruturas podem ser convertidas umas nas outras sem quebra de ligações covalentes (e.g. através da rotação em torno de ligações sigma)

VS.

configurações

estas estruturas só podem ser convertidas umas nas outras através da quebra de ligações covalentes

Butano vs. But-2-eno (CCCC vs. CC=CC)

Rotação:

em torno de uma ligação simples ~7.5 kcal/mol

em torno de uma ligação dupla ~50 kcal/mol

Barreiras

À temperatura ambiente, a conversão de conformações é relativamente rápida até valores de barreiras de energia de 10 kcal/mol. A partir deste valor, a conversão começa a ser lenta e já deverá ser possível identificar confórmeros distintos por RMN. Valores acima de 25 kcal/mol tornam as conversões de conformações demasiado lentas.

A rotação em torno de uma ligação diz-se livre quando os confórmeros não são distinguíveis por RMN (a barreira de energia para torsão em torno de uma ligação é baixa).

Pesquisa conformacional (etano)

Confórmeros Eclipsados

Confórmeros Alternados

Conformações eclipsada e alternada do etano CH₃-CH₃

instabilização da conformação eclipsada

Repulsão de Pauli entre orbitais ligantes $\sigma(C-H)$

estabilização da conformação alternada

Hiperconjugação entre orbitais ligante $\sigma(C-H)$ e anti-ligante $\sigma*(C-H)$

Conformações eclipsada e alternada do etano

Adicionar restrição antes de optimizar

Extensões -> Mec. Molecular -> Restrições Tipo = Ângulo de Torção; Valor = 0.00

Conformações eclipsada e alternada do etano

Bond Centric Manipulation Tool

Left Mouse: Click and drag to rotate the view.

Middle Mouse: Click and drag to zoom in or out.

Right Mouse: Click and drag to move the view.

Double-Click: Reset the view.

Left Click & Drag on a Bond to set the Manipulation Plane: Left Click & Drag one of the Atoms in the Bond to change the angle Right Click & Drag one of the Atoms in the Bond to change the length

Conformações eclipsada e alternada do etano

Adicionar restrição antes de optimizar

Extensões -> Mec. Molecular -> Restrições Tipo = Ângulo de Torção; Valor = 0.00

-19.8 kJ/mol (MMFF94)

-6.4 kJ/mol (MMFF94)

Minimizar a energia com o Open Babel (optimização de geometrias)

obminimize

```
Usage: obminimize [options] <filename>
           description:
options:
         set convergence criteria (default=1e-6)
 -c crit
        use conjugate gradients algorithm (default)
 -cg
 -sd
        use steepest descent algorithm
           use Newton2Num linesearch (default=Simple)
 -newton
 -ff ffid select a forcefield:
GAFF General Amber Force Field (GAFF).
Ghemical Ghemical force field.
MMFF94 MMFF94 force field.
MMFF94s MMFF94s force field.
UFF
     Universal Force Field.
```

Otimização da geometria

Otimização da geometria

Algoritmos

Zig-zag

Steepest descent a technique for minimising a function $F(\mathbf{x})$ by finding the gradient of the function ∇F and $\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n \nabla F(\mathbf{x}_n)$. For system of linear equations define F by using the least square

$$F(\mathbf{x}) = \|A\mathbf{x} - \mathbf{b}\|^2$$
. so $\nabla F(\mathbf{x}) = 2A^T(A\mathbf{x} - \mathbf{b})$. and $\mathbf{x}_{n+1} = \mathbf{x}_n - \gamma_n 2A^T(A\mathbf{x} - \mathbf{b})$. Effectively this point moved in the direction of the residual $\mathbf{b} - A\mathbf{x}$

Conjugate gradient method requires A to be symmetric and positive definite. Its similar to gradient descent but uses the concept of conjugate vector. Two vectors are said to be conjugate in $\mathbf{u}^T A \mathbf{v} = \mathbf{0}$ an each step is moved in a direction conjugate to the all previous step. This direction is found from the residual and the director of the previous steps.

A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

Normalmente, CG é mais robusto que SD próximo do mínimo. Algumas vezes, combina-se SD + CG. CG pode ser muito mais demorado quando longe do mínimo.

Otimização da geometria

Otimização da geometria

Beta-D-Glucose

Pesquisa conformacional (butano)

Tensões moleculares: definições

Tensão: Um qualquer fator que faz aumentar a energia potencial de uma molécula, tais como:

- Tensão Torsional associada a configurações eclipsadas em torno de uma ligação simples.
- Tensão Estérica associada a átomos que se encontrem espacialmente muito próximos. Acontece quando a distância interatómica é inferior à soma das raios de van der Waals desses átomos.
- Tensão Angular associada a ângulos de ligação que não reflitam os valores ideais.
- Tensão Anelar associada a estruturas cíclicas e devido a um dos exemplos anteriores.

Ciclo-hexano: conformação em cadeira

Conformação muito estável Ângulos próximos dos de um tetraedro

Conformação Alternada

Ciclo-hexano: conformação em barco

Conformação Eclipsada

Conformação pouco estável

Ciclo-hexano: conformação em barco torcido

Exercícios com o Open Babel e com o Avogadro

Ciclo-hexano – estrutura planar

Ciclo-hexano – estrutura barco

Ciclo-hexano – estrutura cadeira

Ciclo-hexano – estrutura meia-cadeira

Ciclo-hexano – estrutura barco torcido

Análises das estruturas Análise das componentes energéticas

Analise das componentes energeticas

Energia de tensão

Conformação energeticamente mais estável

Mínimo local vs. mínimo global

Energias relativas

87 (planar)

cadeira (mínimo global) cadeira (mínimo global)

Energias relativas

ΔE (kJ/mol)

Calculado

Estimativa experimental¹

(MMFF94s/MMFF94)

27/28

28.9

UFF = conformação de barco??

24/25

UFF = 158

22.7