Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Курс: «Функціонально-логічне проектування»

Лабораторна робота №2

«Створення логічних схем на основі заданої таблиці істинності»

Виконав студент

Дем'янчук Тарас Миколайович

гр. ДК-12

Викладач:

Омелян А.В.

Основні теоретичні відомості

- Досконала диз'юнктивна нормальна форма (ДДНФ) ϵ диз'юнкцією мінтермів, які відповідають таким наборам аргументів, на яких функція прийма ϵ лише одиничні значення.
- Мінтермом (конституентою одиниці) називають функцію, яка приймає одиничне значення на одному з усіх можливих наборів аргументів та нульове значення при всіх інших наборах аргументів. Математичним виразом для мінтерма (або мінімального терма) є кон'юнкція п змінних або їх інверсій.
- Досконала кон'юнктивна нормальна форма (ДКНФ) є кон'юнкцією макстермів, які відповідають таким наборам аргументів, на яких функція, що розглядається приймає лише нульові значення.
- Макстермом (конституентою нуля) називають функцію, яка приймає нульове значення на одному з усіх можливих наборів аргументів та одиничне значення на всіх інших наборах аргументів. Математичним виразом для макстерма (або максимального терма) є диз'юнкція п змінних або їх інверсій.
- **Термін** «досконала» у ДДНФ та ДКНФ означає, що всі члени розкладу мають однакову розмірність (однакову кількість змінних), а термін «**нормальна форма**» що у виразах, які задають функцію, послідовно виконується не більше двох базових операції алгебри логіки без урахування операції заперечення.

Порядок виконання роботи

- 1. За таблицею істинності згідно заданого варіанту, отримати функцію алгебри логіки у вигляді:
 - досконалої диз'юнктивної нормальної форми (ДДНФ);
 - досконалої кон'юнктивної нормальної форми (ДДНФ);
 - ДДНФ інверсної функції;
 - ДКНФ інверсної функції;
- 2. Створити на основі отриманих ДДНФ та ДКНФ схеми логічних функцій у середовищі Quartus II.
- 3. Провести моделювання схем у вбудованому симуляторі Quartus II та отримати часові діаграми. Впевнитись, що схеми функціонують згідно таблиці істинності.
- 4. Перевірити правильність функціонування схеми згідно таблиці істинності використовуючи модуль налагодження. Виходи схем, отриманих на основі ДДНФ та ДКНФ, підключити до двох окремих діодів.

Хід роботи

1. За таблицею істинності згідно заданого варіанту, отримано функцію алгебри логіки у вигляді:

Варіант 4								
i	X ₄	X ₃	X_2	\mathbf{X}_1	$f(\mathbf{X}_4,\mathbf{X}_3,\mathbf{X}_2,\mathbf{X}_1)$			
0	0	0	0	0	1			
1	0	0	0	1	0			
2	0	0	1	0	1			
3	0	0	1	1	0			
4	0	1	0	0	1			
5	0	1	0	1	1			
6	0	1	1	0	1			
7	0	1	1	1	1			
8	1	0	0	0	0			
9	1	0	0	1	1			
10	1	0	1	0	0			
11	1	0	1	1	0			
12	1	1	0	0	0			
13	1	1	0	1	1			
14	1	1	1	0	0			
15	1	1	1	1	0			

Таблиця істинності 1.

1.1. досконалої диз'юнктивної нормальної форми (ДДНФ) із **Таблиці** істинності 1.:

1.2. досконалої кон'юнктивної нормальної форми (ДДНФ) із **Таблиці істинності 1.**:

$$\exists_{1} \mathsf{K} \mathsf{M} \mathscr{P}^{*} : \mathscr{G} = (\mathsf{X}_{\mathcal{Y}} \mathsf{V} \mathsf{X}_{3} \mathsf{V} \mathsf{X}_{2} \mathsf{V} \mathsf{Y}_{1}) \cdot (\mathsf{X}_{\mathcal{Y}} \mathsf{V} \mathsf{X}_{3} \mathsf{V} \mathsf{X}_{2} \mathsf{V} \mathsf{V}_{1})$$

	Варіант 4 (інверсні значення)								
i	X ₄	X ₃	X_2	X_1	$f(\mathbf{X}_4,\mathbf{X}_3,\mathbf{X}_2,\mathbf{X}_1)$				
0	0	0	0	0	0				
1	0	0	0	1	1				
2	0	0	1	0	0				
3	0	0	1	1	1				
4	0	1	0	0	0				
5	0	1	0	1	0				
6	0	1	1	0	0				
7	0	1	1	1	0				
8	1	0	0	0	1				
9	1	0	0	1	0				
10	1	0	1	0	1				
11	1	0	1	1	1				
12	1	1	0	0	1				
13	1	1	0	1	0				
14	1	1	1	0	1				
15	1	1	1	1	1				

Таблиця істинності 2.

1.3. ДДНФ інверсної функції із Таблиці істинності 2.:

$$777199$$
° $y = \overline{X_4 X_3 X_2} \times 1 \sqrt{X_4 X_3} \times 2 \times 1 \sqrt{X_4 X_5} \times 2 \times 1 \sqrt{X_5} \times 2$

1.4. ДКНФ інверсної функції із Таблиці істинності 2.:

2.1. досконалої диз'юнктивної нормальної форми (ДДНФ)

2.2. досконалої кон'юнктивної нормальної форми (ДДНФ)

3. Перевірено чи схеми функціонують згідно таблиць істинності провівши моделювання схем у вбудованому симуляторі Quartus II та отримавши часові діаграми для:

Вихід схеми	Підключено до світлодіода
досконалої диз'юнктивної нормальної форми (ДДНФ)	LEDR[1]
досконалої кон'юнктивної нормальної форми (ДДНФ)	LEDR[2]
ДДНФ інверсної функції	LEDR[3]
ДКНФ інверсної функції	LEDR[4]

4. Перевірено правильність функціонування схеми згідно таблиці істинності використовуючи модуль налагодження. Виходи схем, отриманих на основі ДДНФ та ДКНФ, підключено до двох окремих діодів.

Відповіді на контрольні запитання

1. Наведіть закони двоїстості (закони де Моргана). В чому полягає суть принципу двоїстості?

Закони двоїстості (закони де Моргана)

$$\begin{cases} \overline{x \vee y} = \overline{x} \cdot \overline{y} \\ \overline{x \cdot y} = \overline{x} \vee \overline{y} \end{cases}$$

Суть принципу двоїстості полягає в тому, що інвертований результат диз'юнкції рівний результату кон'юнкції окремо інвертованих х та у.

Суть принципу двоїстості полягає в тому, що інвертований результат кон'юнкції рівний диз'юнкції окремо інвертованих х та у.

2. Наведіть теорему розкладу Шеннона.

Будь-яку функцію можна розкласти по змінній х_р за наступною формулою:

$$f(x_n,...,x_p,...,x_1) = \overline{x}_p \cdot f(x_n,...,0,...,x_1) \vee x_p \cdot f(x_n,...,1,...,x_1)$$

3. Виконайте розклад Шеннона функції за змінними х1 та х2:

$$f(x_4, x_3, x_2, x_1) = x_3x_1 \lor x_4x_2 \lor x_4x_1$$

$$f(x_{4},x_{3},x_{2},x_{1}) = x_{3}x_{1}v \times_{4}x_{2} \vee x_{4} \times_{1} = x_{1} \cdot f(x_{4},x_{3},x_{2},1) + \overline{x}_{1} \cdot f(x_{4},x_{3},x_{2},0) =$$

$$= x_{1} \left[x_{2} f(x_{4},x_{3},1,1) + \overline{x}_{3} \cdot f(x_{4},x_{3},0,1) \right] + \overline{x}_{1} \left[x_{2} \cdot f(x_{4},x_{3},1,0) + \overline{x}_{3} \cdot f(x_{4},x_{3},0,0) \right] =$$

$$= x_{1} \left[x_{2} (x_{3}v \times_{4}v \times_{4}) + \overline{x}_{2} (x_{3}v \times_{4}) \right] + \overline{x}_{1} \left[x_{2} (x_{4}) + \overline{x}_{2} (0) \right] =$$

$$= x_{1} x_{2} (x_{3}v \times_{4}) + \overline{x}_{2} x_{3} v \times_{2} x_{4} + \overline{x}_{4} x_{2} x_{4} = x_{1} x_{2} x_{3} v \times_{1} x_{2} x_{4} v \overline{x}_{2} x_{3} v \overline{x}_{2} x_{4} v \overline{x}_{4} x_{2} x_{4} v \overline{x}_{4} x_{4} x_{4}$$

4. Що таке таблиця істинності? Скільки рядків та стовпців має містити таблиця істинності і від чого це залежить?

Таблиця істинності це таблиця яка кожному набору із п вхідних булевих значень ставить у відповідність х вихідних булевих значень. Кількість рядків у таблиці істинності залежить від кількості вхідних параметрів і може бути визначена за формулою 2ⁿ де n — кількість вхідних параметрів. Кількості стовпців відповідатиме сума із числа, що відображає кількість вхідних параметрів і числа, що відображає кількість вихідних параметрів.

5. Дайте визначення мінтерма. Наведіть приклад.

Мінтермом (конституентою одиниці) називають функцію, яка приймає одиничне значення на одному з усіх можливих наборів аргументів та нульове значення при всіх інших наборах аргументів. Математичним виразом для мінтерма (або мінімального терма) є кон'юнкція n змінних або їх інверсій.

Якщо маємо функцію $f(x_3, x_2, x_1)$ яка приймає одиничне значення при: $x_3=1$, $x_2=0$, $x_1=1$, то мінтерм буде мати вигляд: $C_1(x_3, x_2, x_1)=C_1(1, 0, 1)=x_3\overline{x_2}x_1$

6. Дайте визначення макстерма. Наведіть приклад.

Макстермом (конституентою нуля) називають функцію, яка приймає нульове значення на одному з усіх можливих наборів аргументів та одиничне значення на всіх інших наборах аргументів. Математичним виразом для макстерма (або максимального терма) є диз'юнкція п змінних або їх інверсій.

Якщо маємо функцію $f(x_3, x_2, x_1)$ яка приймає нульове значення при: x_3 =0, x_2 =0, x_1 =1, то мінтерм буде мати вигляд: $C_0(x_3, x_2, x_1)$ = $C_0(0, 0, 1)$ = $\overline{x_3} \lor \overline{x_2} \lor x_1$

- 7. Дайте визначення досконалої диз'юнктивної нормальної форми (ДДНФ). **Досконала диз'юнктивна нормальна форма (ДДНФ)** є диз'юнкцією мінтермів, які відповідають таким наборам аргументів, на яких функція приймає лише одиничні значення.
- 8. Дайте визначення досконалої кон'юнктивної нормальної форми (ДКНФ). Досконала кон'юнктивна нормальна форма (ДКНФ) є кон'юнкцією макстермів, які відповідають таким наборам аргументів, на яких функція, що розглядається приймає лише нульові значення.
- 9. Що означають у ДДНФ та ДКНФ поняття «досконала» та «нормальна».

Термін «досконала» у ДДНФ та ДКНФ означає, що всі члени розкладу мають однакову розмірність (однакову кількість змінних), а термін **«нормальна форма»** — що у виразах, які задають функцію, послідовно виконується не більше двох базових операції алгебри логіки без урахування операції заперечення.