

- ▶ In this sorting algorithm, buckets are created to put elements into them.
- ► Then we apply some sorting algorithm (insertion sort) to sort the elements in each bucket
- Finally take out and join them to sorted array

Bucket Sort

- Assumption: input elements are uniformly distributed over [0, 1]
- n inputs dropped into n equal-sized subintervals of [0, 1].

0.78 | 0.17 | 0.39 | 0.26 | 0.72 | 0.94 | 0.21 | 0.12 | 0.23 | 0.68

Consider total no. of elements are n=10. So we create 10 buckets.

Bucket array looks like

Now insert the values from the original array into the bucket array according to:

$$bucket[n*arr[i]]$$

Where n = 10 then

If arr[i] = 0.78, then this value will be sorted on

bucket[10*0.78] that would be 10*0.78=7.8 take digit before decimal (NOTE do not round off)

0.78	0.17	0.39	0.26	0.72	0.94	0.21	0.12	0.23	0.68
↑									

0.78 | 0.17 | 0.39 | 0.26 | 0.72 | 0.94 | 0.21 | 0.12 | 0.23 | 0.68

0.78 0.17 0.39 0.26 0.72 0.94 0.21 0.12 0.23 0.68

0				
1	\rightarrow	0.17		
2	\rightarrow	0.26		
3	\rightarrow	0.39		
4				
5				
6				
7	\rightarrow	0.78	\rightarrow	0.72
8				
9				

0.78 0.17 0.39 0.26 0.72 0.94 0.21 0.12 0.23 0.68

0				
1	\rightarrow	0.17		
2	\rightarrow	0.26		
3	\rightarrow	0.39		
4				
5				
6				
7	\rightarrow	0.78	\rightarrow	0.72
8				
9	\rightarrow	0.94		
	l			

0.78 0.17 0.39 0.26 0.72 0.94 0.21 0.12 0.23 0.68

0.78 | 0.17 | 0.39 | 0.26 | 0.72 | 0.94 | 0.21 | 0.12 | 0.23 | 0.68

now a[i] = 0.39 will sort in the bucket of 1

Now sort each bucket individually using insertion sort we get

Now, concatenate each bucket in the array, or you may use a link list for that.

Lab-Task-11: write a code for Bucket Sort.