Lecture 11 : The Basic Numerical Quantities Associated to a Continuous *X*

In this lecture we will introduce four basic numerical quantities associated to a continuous random variable X. You will be asked to calculate these (and the cdf of X) given f(x) on the midterms and the final.

These quantities are

- 11 The *p*-th percentile $\eta(P)$.
- **2** The α -th critical value X_{α} .
- 3 The expected value E(X) or μ .
- 4 The variance V(X) or σ^2 .

I will compute all these for $\cup (a, b)$ the linear distribution and $\cup (a, b)$.

Percentiles and Critical Values of Continuous Random Variables

Percentiles

Let P be a number between 0 and 1. The 100p-th percentile, denoted $\eta(P)$, of a continuous random variable X is the unique number satisfying

$$P(X \le \eta(P)) = P \tag{\sharp}$$

or

$$F(\eta(P)) = P \tag{\sharp\sharp}$$

So if you know F you can find $\eta(P)$. Roughly

$$\eta(P) = F^{-1}(P)$$

The geometric interpretation of $\eta(P)$ is very important

The geometric interpretation of (#)

 $\eta(P)$ is the number such that the vertical line $x = \eta(P)$ cuts off area P to the left under the graph of f(x). (this is the picture above)

Special Case The median $\widetilde{\mu}$

The median $\widetilde{\mu}$ is the unique number so that

$$P(X \le \widetilde{\mu}) = \frac{1}{2}$$

or $F(\widetilde{\mu}) = \frac{1}{2}$

so the median is the 50-th percentile.

The picture

Since the total area is 1, the area to the right of the vertical line $x = \widetilde{\mu}$ also $\frac{1}{2}$. So $x = \widetilde{\mu}$ bisects the area.

Critical Values

Roughly speaking if you switch left to right in the definition of percentile you get the definition of the critical value. Critical values play a key role in the formulas for <u>confidence intervals</u> (later).

Definition

Let α be a real number between 0 and 1. Then the α -th critical value, denoted x_{α} , is the unique number satisfying

$$P(X \ge x_{\alpha}) = \alpha \tag{b}$$

Let's rewrite (b) in terms of F. We have

$$P(X \ge x_{\alpha}) = 1 - P(X \le x_{\alpha})$$
$$= 1 - F(x_{\alpha})$$

So (b) becomes

$$1 - F(x_{\alpha}) = \alpha$$

$$F(x_{\alpha}) = 1 - \alpha$$

$$x_{\alpha} = F^{-1}(1 - \alpha)$$
 (bb)

What about the geometric interpretation?

The geometric interpretation