DEPARTMENT OF MATHEMATICS

Indian Institute of Technology Guwahati

MA101: Mathematics I, July - November, 2014

Tutorial Sheet: LA - 4

- 1. For all invertible matrices A and B of the same size, show that adj(AB) = adj(B)adj(A). (The result is also true for non-invertible matrices, but the proof is beyond the present scope of this course.)
- 2. If A is an $n \times n$ matrix then prove that $\det(\operatorname{adj}(A)) = (\det A)^{n-1}$.
- 3. Let A and B be two matrices, where rank(A) = r. Show that
 - (a) if AB is defined then $rank(AB) \le min\{rank(A), rank(B)\};$
 - (b) there exist invertible matrices T, S such that

$$TAS = \left[\begin{array}{cc} I_r & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{array} \right];$$

- (c) there exist matrices $P_{m\times r}$, $Q_{r\times n}$ such that A=PQ; (This is known as Rank-Factorization Theorem)
- (d) A can be expressed as a sum of r rank one matrices;
- (e) r = 1 if and only if $A = \mathbf{u}\mathbf{v}^t$ for some $\mathbf{u}(\neq \mathbf{0}) \in \mathbb{R}^m$ and $\mathbf{v} \neq \mathbf{0} \in \mathbb{R}^n$;
- (f) if A + B is defined then $rank(A + B) \le rank(A) + rank(B)$.
- 4. Let $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 6 & 4 & 8 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$. Determine all $\mathbf{b} \in \mathbb{R}^3$ for which the system $A\mathbf{x} = \mathbf{b}$ is consistent.
- 5. Let A be an $n \times n$ matrix. Find the eigenvalues of A 3I in terms of the eigenvalues of A. Also, show that their corresponding eigenspaces are equal.
- 6. Let $A = [a_{ij}]$ be an $n \times n$ matrix and let $k \in \mathbb{R}$. Suppose that $\sum_{j=1}^{n} a_{ij} = k$ for i = 1, 2, ..., n. Prove that k is an eigenvalue of A. Also, find an eigenvector of A corresponding to the eigenvalue k.
- 7. Find all real values of a, b, c, d, e, f for which the matrix $\begin{bmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{bmatrix}$ is diagonalizable.
- 8. Let A be a 6×6 matrix with characteristic polynomial $p(\lambda) = (1 + \lambda)(1 \lambda)^2(2 \lambda)^3$.
 - (a) Prove that it is not possible to find three linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathbb{R}^6 such that $A\mathbf{v}_1 = \mathbf{v}_1, A\mathbf{v}_2 = \mathbf{v}_2$ and $A\mathbf{v}_3 = \mathbf{v}_3$.
 - (b) If A is diagonalizable, find the dimensions of the eigenspaces E_{-1}, E_1 and E_2 ?
- 9. Let A and B be two $n \times n$ matrices satisfying AB = BA and let B have n distinct eigenvalues. Show that the matrix A is diagonalizable.