Diptej Saner USC ID 2133531420

Multimedia Systems Assignment 1

Q.1

• Assuming the 30hz frame rate as field rate i.e. each frame consisting of odd/even lines.

1080i resolution: 1920 x 540

30hz: 1920 x 540 x 30

5 min: 1920 x 540 x 30 x 5 x 60

The color subsampling scheme being used is 4:2:0 which means that effectively each pixel is 12 bits.

Therefore, total bits = $1920 \times 540 \times 30 \times 5 \times 60 \times 12$ In MB, $1920 \times 540 \times 30 \times 5 \times 60 \times 12 \times (1/8) \times (1/1024) \times (1/1024) = 13348.39$ MB

• If we re-quantize each chrominance signal to 6 bits then effectively we will have 11 bits/pixel.

For example, if we consider 4 pixels in 2 x 2 grid, each pixel will have 8 bits for Y and one pixel will have 6 bits for U and 6 bits for V. Total bits = $8 \times 4 + 6 + 6 = 44$ bits for 4 pixels i.e. 11 bits for 1 pixel

Total storage with re-quantization = $1920 \times 540 \times 30 \times 5 \times 60 \times 11 \times (1/8) \times (1/1024) \times (1/1024) = 12236.02 \text{ MB}$

Compression ratio needed to store this video in a 256MB flash drive = 12236.02/256 = 47.8

Q.2

•

4	33	34	33	32	33	32	8
31	5	33	32	32	31	7	34
31	35	5	31	30	9	33	33
30	34	32	28	8	27	32	33
31	33	32	7	3	29	30	31
32	33	7	31	32	3	32	32
32	9	31	31	29	31	5	32
6	34	32	32	31	33	33	6

• Down sampled values of the above region using specific sampling:

4	34	32	32
31	5	30	33
31	32	3	30
32	31	29	5

A better way would be to take an average of a specific size (2x2) grid for down sampling.

Size of the quantized image:
400 x 400 x 6 x (1/8) x (1/1024) = 117.2 KB

Q.3

Speed of car = 36 km/h = 10 m/sec
Rotations per sec = distance travelled in 1 sec / circumference of tire i.e. 10 / (3.14 * 0.4244) = 7.5 rotations/sec

The car is being recorded in 8 fps which is below the Nyquist rate and will cause temporal aliasing.

7.5 rotations/sec = 7.5 * 360 = 2700 degrees/sec

Therefore, every frame will record a rotation of 2700/8 = 337.5 degrees If we assume the white mark at 0 degree position then the 1^{st} frame will record the wheel at 337.5 degree position. Hence, a difference of 337.5 degrees will exist between each frame.

The perceived rotation will therefore be 360 - 337.5 = 22.5 degrees per frame in opposite direction i.e. (22.5/360) * 8 = 0.5 rotations/sec

• The highest speed of car should have 4 rotations of tires per sec to be perceived correctly when recording at 8 fps.

That is, 4 * 3.14 * 0.4244 = 5.33 m/s = 19.19 km/h