1

(1.1.1.5)

(1.1.6.1)

Matrix Analysis

G V V Sharma*

CONTENTS

Definitions

is defined as

 $|\mathbf{M}| = |\mathbf{A} \ \mathbf{B}|$

1	Dellilli	UOIIS	
	1.1 1.2	2×1 vectors	$\begin{vmatrix} 1 \\ 2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \qquad (1.1.1.6)$
	1.3 1.4 1.5 1.6	Eigenvalues and Eigenvectors Determinants Rank of a Matrix Inverse of a Matrix	2 1.1.2. The value of the cross product of two vectors is given by (1.1.1.5). 3 1.1.3. The area of the triangle with vertices A, B, C is given by the absolute value of
2	Linear 2.1 2.2	Two Dimensions	$\frac{3}{3} \qquad \frac{1}{2} \mathbf{A} - \mathbf{B} \mathbf{A} - \mathbf{C} \qquad (1.1.3.1)$ 4 1.1.4. The transpose of A is defined as
3	Quadr 3.1 3.2 3.3 3.4 3.5	Conic Sections	6 $\mathbf{A}^{\top} = \begin{pmatrix} a_1 & a_2 \end{pmatrix}$ (1.1.4.1) 6 1.1.5. The <i>inner product</i> or <i>dot product</i> is defined as 9 $\mathbf{A}^{\top}\mathbf{B} \equiv \mathbf{A} \cdot \mathbf{B}$ (1.1.5.1) 12 $= \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1b_1 + a_2b_2$ (1.1.5.2)
	_		(1.1.5.2)

Abstract—This manual provides an introduction to vectors and their properties, based on the question papers, 1.1.6. norm of A is defined as year 2020, from Class 10 and 12, CBSE; JEE and JNTU.

$||A|| \equiv |\overrightarrow{A}|$

 $= \sqrt[]{\mathbf{A}^{\top}\mathbf{A}} = \sqrt{a_1^2 + a_2^2}$ (1.1.6.2)

1 DEFINITIONS

1.1 2×1 vectors

1.1.1. Let

 $\mathbf{A} \equiv \overrightarrow{A} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ (1.1.1.1)

$$\equiv a_1 \stackrel{\overrightarrow{i}}{i} + a_2 \stackrel{\rightarrow}{j}, \qquad (1.1.1.2)$$

$$\mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \tag{1.1.1.3}$$

be 2×1 vectors. Then, the determinant of the 2×2 matrix

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \end{pmatrix} \tag{1.1.1.4}$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Thus,

$$\|\lambda \mathbf{A}\| \equiv \left|\lambda \overrightarrow{A}\right| \tag{1.1.6.3}$$

$$= |\lambda| \|\mathbf{A}\| \tag{1.1.6.4}$$

 $\|\mathbf{A} - \mathbf{B}\|$ (1.1.7.1)

1.1.8. Let x be equidistant from the points A and B. Then

$$(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \mathbf{x} = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2}$$
 (1.1.8.1)

Solution:

$$\|\mathbf{x} - \mathbf{A}\| = \|\mathbf{A} - \mathbf{B}\| \qquad (1.1.8.2)$$

$$\implies \|\mathbf{x} - \mathbf{A}\|^2 = \|\mathbf{x} - \mathbf{B}\|^2 \qquad (1.1.8.3)$$

(1.2.1.3)

(1.2.3.1)

which can be expressed as

1.2 3×1 vectors

$$(\mathbf{x} - \mathbf{A})^{\top} (\mathbf{x} - \mathbf{A}) = (\mathbf{x} - \mathbf{B})^{\top} (\mathbf{x} - \mathbf{B})$$

$$\implies \|\mathbf{x}\|^{2} - 2\mathbf{x}^{\top}\mathbf{A} + \|\mathbf{A}\|^{2}$$

$$= \|\mathbf{x}\|^{2} - 2\mathbf{x}^{\top}\mathbf{B} + \|\mathbf{B}\|^{2} \quad (1.1.8.4)$$

1.2.1. Let

$$\mathbf{A} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \equiv a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{j}, \quad (1.2.1.1)$$

which can be simplified to obtain (1.1.8.1).

1.1.9. If x lies on the x-axis and is equidistant from the points A and B,

 $\mathbf{B} = \begin{pmatrix} b_1 \\ b_2 \\ b \end{pmatrix},$ (1.2.1.2)

$$\mathbf{x} = x\mathbf{e}_1 \tag{1.1.9.1}$$

and

where

$$x = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2(\mathbf{A} - \mathbf{B})^{\mathsf{T}} \mathbf{e}_1}$$

(1.1.9.2) 1.2.2. The cross product or vector product of \mathbf{A}, \mathbf{B} is defined as

 $\mathbf{A}_{ij} = \begin{pmatrix} a_i \\ a_j \end{pmatrix}, \mathbf{B}_{ij} = \begin{pmatrix} b_i \\ b_j \end{pmatrix},$

Solution: From (1.1.8.1).

$$x (\mathbf{A} - \mathbf{B})^{\top} \mathbf{e}_1 = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2}$$
 (1.1.9.3)

 $\mathbf{A} imes \mathbf{B} = \left(egin{array}{ccc} \mathbf{A}_{23} & \mathbf{B}_{23} \ \mathbf{A}_{31} & \mathbf{B}_{31} \ \mathbf{A}_{32} & \mathbf{B}_{33} \end{array}
ight)$ (1.2.2.1)

yielding (1.1.9.2).

1.1.10. The angle between two vectors is given by

1.2.3. Verify that

$$\theta = \cos^{-1} \frac{\mathbf{A}^{\top} \mathbf{B}}{\|A\| \|B\|}$$
 (1.1.10.1)

(1.1.10.1) $A \wedge B = B \wedge A$ 1.2.4. The area of a triangle is given by

 $\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$

1.1.11. If two vectors are orthogonal (perpendicular),

$$\mathbf{A}^{\mathsf{T}}\mathbf{B} = 0 \tag{1.1.11.1}$$

 $\frac{1}{2} \| \mathbf{A} \times \mathbf{B} \|$ (1.2.4.1)

1.1.12. The *direction vector* of the line joining two points A, B is given by

$$\mathbf{m} = \mathbf{A} - \mathbf{B} \tag{1.1.12.1}$$

1.3 Eigenvalues and Eigenvectors

1.1.13. The unit vector in the direction of m is defined as

1.3.1. The eigenvalue λ and the eigenvector x for a matrix A are defined as,

$$\frac{\mathbf{m}}{\|\mathbf{m}\|}\tag{1.1.13.1}$$

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ (1.3.1.1)

1.1.14. If the direction vector of a line is expressed as

$$\mathbf{m} = \begin{pmatrix} 1 \\ m \end{pmatrix}, \tag{1.1.14.1}$$

$$f(\lambda) = |\lambda \mathbf{I} - \mathbf{A}| = 0 \tag{1.3.2.1}$$

the m is defined to be the slope of the line.

The above equation is known as the characteristic equation.

1.3.3. According to the Cayley-Hamilton theorem,

1.1.15. The *normal vector* to m is defined by

$$f(\lambda) = 0 \implies f(\mathbf{A}) = 0$$
 (1.3.3.1)

 $\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0$ (1.1.15.1)

1.3.4. The trace of a square matrix is defined to be the sum of the diagonal elements.

1.1.16. The point P that divides the line segment ABin the ratio k:1 is given by

$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{N} a_{ii}.$$
 (1.3.4.1)

$$\mathbf{P} = \frac{k\mathbf{B} + \mathbf{A}}{k+1} \tag{1.1.16.1}$$

where a_{ii} is the *i*th diagonal element of the matrix A.

1.1.17. The standard basis vectors are defined as

1.3.5. The trace of a matrix is equal to the sum of the eigenvalues

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathbf{e}_2 \qquad = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad (1.1.17.1) \qquad \qquad \operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{N} \lambda_i \qquad (1.3.5.1)$$

1.4 Determinants

1.4.1. Let

2.1.1. The equation of a line is given by

$$\mathbf{n}^{\top}\mathbf{x} = c \tag{2.1.1.1}$$

be a 3×3 matrix. Then,

 $\left| \mathbf{A} \right| = a_1 \begin{pmatrix} b_2 & c_2 \\ b_3 & c_3 \end{pmatrix} - a_2 \begin{pmatrix} b_1 & c_1 \\ b_3 & c_3 \end{pmatrix}$

where n is the normal vector of the line.

2.1.2. The equation of a line with normal vector n and passing through a point A is given by

2 LINEAR FORMS

$$\mathbf{n}^{\top} \left(\mathbf{x} - \mathbf{A} \right) = 0 \tag{2.1.2.1}$$

 $+a_3\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$. (1.4.1.2) 2.1.3. The parametric equation of a line is given by

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{2.1.3.1}$$

where m is the direction vector of the line and equal to the determinant of A. A is any point on the line.

(1.4.1.1)

2.1.4. The distance from a point P to the line in (2.1.1.1) is given by

$$d = \frac{\left|\mathbf{n}^{\top}\mathbf{P} - c\right|}{\|\mathbf{n}\|} \tag{2.1.4.1}$$

Solution: Without loss of generality, let A be the foot of the perpendicular from P to the line in (2.1.3.1). The equation of the normal to (2.1.1.1) can then be expressed as

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{n} \tag{2.1.4.2}$$

$$\implies \mathbf{P} - \mathbf{A} = \lambda \mathbf{n} \tag{2.1.4.3}$$

 \therefore P lies on (2.1.4.2). From the above, the desired distance can be expressed as

$$d = \|\mathbf{P} - \mathbf{A}\| = |\lambda| \|\mathbf{n}\| \qquad (2.1.4.4)$$

From (2.1.4.3),

$$\mathbf{n}^{\top} (\mathbf{P} - \mathbf{A}) = \lambda \mathbf{n}^{\top} \mathbf{n} = \lambda \|\mathbf{n}\|^{2}$$
 (2.1.4.5)

$$\implies |\lambda| = \frac{\left|\mathbf{n}^{\top} \left(\mathbf{P} - \mathbf{A}\right)\right|}{\left\|\mathbf{n}\right\|^{2}} \qquad (2.1.4.6)$$

Substituting the above in (2.1.4.4) and using the fact that

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} = c \tag{2.1.4.7}$$

from (2.1.1.1), yields (2.1.4.1).

(1.6.1.2) 2.1.5. The distance from the origin to the line in (2.1.1.1) is given by

$$d = \frac{|c|}{\|\mathbf{n}\|} \tag{2.1.5.1}$$

1.4.2. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of a matrix A. Then, the product of the eigenvalues is

 $\mathbf{A} = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}.$

$$\left| \mathbf{A} \right| = \prod_{i=1}^{n} \lambda_i \tag{1.4.2.1}$$

1.4.3.

$$\left| \mathbf{AB} \right| = \left| \mathbf{A} \right| \left| \mathbf{B} \right| \tag{1.4.3.1}$$

1.4.4. If A be an $n \times n$ matrix,

$$\left| k\mathbf{A} \right| = k^n \left| \mathbf{A} \right| \tag{1.4.4.1}$$

1.5 Rank of a Matrix

- 1.5.1. The rank of a matrix is defined as the number of linearly independent rows. This is also known as the row rank.
- 1.5.2. Row rank = Column rank.
- 1.5.3. The rank of a matrix is obtained as the number of nonzero rows obtained after row reduction.
- 1.5.4. An $n \times n$ matrix is invertible if and only if its rank is n.

1.6 Inverse of a Matrix

1.6.1. For a 2×2 matrix

$$\mathbf{A} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}, \tag{1.6.1.1}$$

the inverse is given by

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix}, \qquad (1.6.1.2)^{2.14}$$

1.6.2. For higher order matrices, the inverse should be calculated using row operations.

2.1.6. The distance between the parallel lines

$$\mathbf{n}^{\top} \mathbf{x} = c_1 \mathbf{n}^{\top} \mathbf{x} = c_2$$
 (2.1.6.1)

is given by

$$d = \frac{|c_1 - c_2|}{\|\mathbf{n}\|} \tag{2.1.6.2}$$

2.1.7. The equation of the line perpendicular to (2.1.1.1) and passing through the point P is given by

$$\mathbf{m}^{\top} \left(\mathbf{x} - \mathbf{P} \right) = 0 \tag{2.1.7.1}$$

2.1.8. The foot of the perpendicular from P to the line in (2.1.1.1) is given by

$$\begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix}^{\top} \mathbf{x} = \begin{pmatrix} \mathbf{m}^{\top} \mathbf{P} \\ c \end{pmatrix}$$
 (2.1.8.1)

Solution: From (2.1.1.1) and (2.1.2.1) the foot of the perpendicular satisfies the equations

$$\mathbf{n}^{\top}\mathbf{x} = c \tag{2.1.8.2}$$

$$\mathbf{m}^{\mathsf{T}} \left(\mathbf{x} - \mathbf{P} \right) = 0 \tag{2.1.8.3}$$

where m is the direction vector of the given line. Combining the above into a matrix equation results in (2.1.8.1).

- 2.2 Three Dimensions
- 2.2.1. The area of a triangle with vertices A, B, C is

$$\frac{1}{2} \| (\mathbf{A} - \mathbf{B}) \times (\mathbf{A} - \mathbf{C}) \| \qquad (2.2.1.1)$$

2.2.2. Points A, B, C are on a line if

$$\operatorname{rank} \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \end{pmatrix} = 1 \tag{2.2.2.1}$$

2.2.3. Points A, B, C, D form a paralelogram if

$$\operatorname{rank}\begin{pmatrix}\mathbf{A}\\\mathbf{B}\\\mathbf{C}\\\mathbf{D}\end{pmatrix} = 1, \operatorname{rank}\begin{pmatrix}\mathbf{A}\\\mathbf{B}\\\mathbf{C}\\\mathbf{C}\end{pmatrix} = 2 \quad (2.2.3.1) \quad (2.1.6.1) \text{ is given by } (2.1.6.2).$$

- 2.2.4. The equation of a line is given by (2.1.3.1)
- 2.2.5. The equation of a plane is given by (2.1.1.1)
- 2.2.6. The distance from the origin to the line in (2.1.1.1) is given by (2.1.5.1)

2.2.7. The distance from a point P to the line in (2.1.3.1) is given by

$$d = \|\mathbf{A} - \mathbf{P}\|^2 - \frac{\left\{\mathbf{m}^{\top} (\mathbf{A} - \mathbf{P})\right\}^2}{\|\mathbf{m}\|^2}$$
 (2.2.7.1)

Solution:

$$d(\lambda) = \|\mathbf{A} + \lambda \mathbf{m} - \mathbf{P}\| \qquad (2.2.7.2)$$

$$\implies d^2(\lambda) = \|\mathbf{A} + \lambda \mathbf{m} - \mathbf{P}\|^2 \quad (2.2.7.3)$$

which can be simplified to obtain

$$d^{2}(\lambda) = \lambda^{2} \|\mathbf{m}\|^{2} + 2\lambda \mathbf{m}^{\top} (\mathbf{A} - \mathbf{P}) + \|\mathbf{A} - \mathbf{P}\|^{2} \quad (2.2.7.4)$$

which is of the form

$$d^{2}(\lambda) = a\lambda^{2} + 2b\lambda + c \qquad (2.2.7.5)$$

$$= a\left\{ \left(\lambda + \frac{b}{a}\right)^{2} + \left[\frac{c}{a} - \left(\frac{b}{a}\right)^{2}\right] \right\} \qquad (2.2.7.6)$$

with

$$a = \|\mathbf{m}\|^2, b = \mathbf{m}^{\top} (\mathbf{A} - \mathbf{P}), c = \|\mathbf{A} - \mathbf{P}\|^2$$
(2.2.7.7)

which can be expressed as From the above, $d^{2}(\lambda)$ is smallest when upon substituting from (2.2.7.7)

$$\lambda + \frac{b}{2a} = 0 \implies \lambda = -\frac{b}{2a} \qquad (2.2.7.8)$$

$$= -\frac{\mathbf{m}^{\top} \left(\mathbf{A} - \mathbf{P} \right)}{\left\| \mathbf{m} \right\|^{2}} \tag{2.2.7.9}$$

and consequently,

$$d_{\min}(\lambda) = a \left(\frac{c}{a} - \left(\frac{b}{a}\right)^2\right) \qquad (2.2.7.10)$$
$$= c - \frac{b^2}{a} \qquad (2.2.7.11)$$

yielding (2.2.7.1) after substituting from (2.2.7.7).

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{2.2.9.1}$$

contains the line

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{2.2.9.2}$$

if

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0 \tag{2.2.9.3}$$

Solution: Any point on the line (2.2.9.2) should also satisfy (2.2.9.1). Hence,

$$\mathbf{n}^{\top} (\mathbf{A} + \lambda \mathbf{m}) = \mathbf{n}^{\top} \mathbf{A} = c \qquad (2.2.9.4)$$

which can be simplified to obtain (2.2.9.3)

2.2.10. The foot of the perpendicular from a point P to the plane

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{2.2.10.1}$$

is given by

Solution: The equation of the line perpendicular to the given plane and passing through P is

$$\mathbf{x} = \mathbf{P} + \lambda \mathbf{n} \tag{2.2.10.2}$$

From (2.2.13.1), the intersection of the above line with the given plane is

$$\mathbf{x} = \mathbf{P} + \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{P}}{\|\mathbf{n}\|^2} \mathbf{n}$$
 (2.2.10.3)

2.2.11. The image of a point P with respect to the plane

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{2.2.11.1}$$

is given by

$$\mathbf{R} = \mathbf{P} + 2 \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{P}}{\|\mathbf{n}\|^2}$$
 (2.2.11.2)

Solution: Let R be the desired image. Then, subtituting the expression for the foot of the perpendicular from P to the given plane using 2.2.14. The foot of the perpendicular from the point P

$$\frac{\mathbf{P} + \mathbf{R}}{2} = \mathbf{P} + \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{P}}{\|\mathbf{n}\|^2}$$
 (2.2.11.3)

2.2.12. Let a plane pass through the points A, B and be perpendicular to the plane

$$\mathbf{n}^{\top}\mathbf{x} = c \tag{2.2.12.1}$$

Then the equation of this plane is given by

$$\mathbf{p}^{\mathsf{T}}\mathbf{x} = 1 \tag{2.2.12.2}$$

where

$$\mathbf{p} = \begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{n} \end{pmatrix}^{-\top} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad (2.2.12.3)$$

Solution: From the given information,

$$\mathbf{p}^{\mathsf{T}}\mathbf{A} = d \tag{2.2.12.4}$$

$$\mathbf{p}^{\mathsf{T}}\mathbf{B} = d \tag{2.2.12.5}$$

$$\mathbf{p}^{\mathsf{T}}\mathbf{n} = 0 \tag{2.2.12.6}$$

: the normal vectors to the two planes will also be perpendicular. The system of equations in (2.2.12.6) can be expressed as the matrix equation

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{n} \end{pmatrix}^{\mathsf{T}} \mathbf{p} = d \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad (2.2.12.7)$$

which yields (2.2.12.3) upon normalising with

2.2.13. The intersection of the line represented by (2.1.3.1) with the plane represented by (2.1.1.1)is given by

$$\mathbf{x} = \mathbf{A} + \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{A}}{\mathbf{n}^{\mathsf{T}} \mathbf{m}} \mathbf{m}$$
 (2.2.13.1)

Solution: From (2.1.3.1) and (2.1.1.1),

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \quad (2.2.13.2)$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = c \tag{2.2.13.3}$$

$$\implies \mathbf{n}^{\top} (\mathbf{A} + \lambda \mathbf{m}) = c \tag{2.2.13.4}$$

which can be simplified to obtain

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{n}^{\mathsf{T}}\mathbf{m} = c \tag{2.2.13.5}$$

$$\implies \lambda = \frac{c - \mathbf{n}^{\mathsf{T}} \mathbf{A}}{\mathbf{n}^{\mathsf{T}} \mathbf{m}} \qquad (2.2.13.6)$$

Substituting the above in (2.2.13.4) yields (2.2.13.1).

to the line represented by (2.1.3.1) is given by

$$\mathbf{x} = \mathbf{A} + \frac{\mathbf{m}^{\top} (\mathbf{P} - \mathbf{A})}{\|\mathbf{m}\|^2} \mathbf{m}$$
 (2.2.14.1)

Solution: Let the equation of the line be

$$\mathbf{x} = \mathbf{A} + \lambda \mathbf{m} \tag{2.2.14.2}$$

The equation of the plane perpendicular to the given line passing through P is given by

$$\mathbf{m}^{\top} \left(\mathbf{x} - \mathbf{P} \right) = 0 \tag{2.2.14.3}$$

$$\implies \mathbf{m}^{\top} \mathbf{x} = \mathbf{m}^{\top} \mathbf{P} \tag{2.2.14.4}$$

The desired foot of the perpendicular is the intersection of (2.2.14.2) with (2.2.14.3) which can be obtained from (2.2.13.1) as (2.2.14.1)

2.2.15. The foot of the perpendicular from a point P2.2.18. (Affine Transformation) Let A, C, be opposite to a plane is Q. The equation of the plane is given by

$$(\mathbf{P} - \mathbf{Q})^{\top} (\mathbf{x} - \mathbf{Q}) = 0 \qquad (2.2.15.1)$$

Solution: The normal vector to the plane is given by

$$\mathbf{n} = \mathbf{P} - \mathbf{Q} \tag{2.2.15.2}$$

Hence, the equation of the plane is (2.2.15.1). 2.2.16. Let A, B, C be points on a plane. The equation of the plane is then given by

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}^{\top} \mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{2.2.16.1}$$

Solution: Let the equation of the plane be

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = 1 \tag{2.2.16.2}$$

Then

$$\mathbf{n}^{\mathsf{T}}\mathbf{A} = 1 \tag{2.2.16.3}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{B} = 1 \tag{2.2.16.4}$$

$$\mathbf{n}^{\mathsf{T}}\mathbf{C} = 1 \tag{2.2.16.5}$$

which can be combined to obtain (2.2.16.1). 2.2.17. (Parallelogram Law) Let A, B, D be three vertices of a parallelogram. Then the vertex C is given by

$$\mathbf{C} = \mathbf{B} + \mathbf{C} - \mathbf{A} \tag{2.2.17.1}$$

Solution: Shifting **A** to the origin, we obtain a parallelogram with corresponding vertices

$$0, B - A, D - A$$
 (2.2.17.2)

The fourth vertex of this parallelogram is then obtained as

$$(B - A) + (D - A) = D + B - 2A$$
(2.2.17.3)

Shifting the origin to A, the fourth vertex is obtained as

$$C = D + B - 2A + A$$
 (2.2.17.4)

$$= D + B - A (2.2.17.5)$$

vertices of a square. The other two points can be obtained as

$$\mathbf{B} = \frac{\|\mathbf{A} - \mathbf{C}\|}{\sqrt{2}} \mathbf{P} \mathbf{e}_1 + \mathbf{A} \qquad (2.2.18.1)$$

$$\mathbf{D} = \frac{\|\mathbf{A} - \mathbf{C}\|}{\sqrt{2}} \mathbf{P} \mathbf{e}_2 + \mathbf{A} \qquad (2.2.18.2)$$

$$\mathbf{P} = \begin{pmatrix} \cos\left(\theta - \frac{\pi}{4}\right) & \sin\left(\theta - \frac{\pi}{4}\right) \\ \sin\left(\theta - \frac{\pi}{4}\right) & \cos\left(\theta - \frac{\pi}{4}\right) \end{pmatrix} (2.2.18.3)$$

$$\cos \theta = \frac{(\mathbf{C} - \mathbf{A})^{\top} \mathbf{e}_{1}}{\|\mathbf{A} - \mathbf{C}\| \|\mathbf{e}_{1}\|}$$
 (2.2.18.4)

3 QUADRATIC FORMS

- 3.1 Conic Sections
- 3.1.1. Let P be a point such that the ratio of its distance from a fixed point F and the distance (d) from a fixed line $L: \mathbf{n}^{\top} \mathbf{x} = c$ is constant, given by

$$\frac{\|\mathbf{P} - \mathbf{F}\|}{d} = e \tag{3.1.1.1}$$

The locus of P such is known as a conic section. The line L is known as the directrix and the point F is the focus. e is defined to be the eccentricity of the conic.

- a) For e = 1, the conic is a parabola
- b) For e < 1, the conic is an ellipse
- c) For e > 1, the conic is a hyperbola
- (2.2.17.1) 3.1.2. The equation of a conic with directrix $\mathbf{n}^{\top}\mathbf{x} =$ c, eccentricity e and focus F is given by

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0 \tag{3.1.2.1}$$

where

$$\mathbf{V} = \|\mathbf{n}\|^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^\top, \tag{3.1.2.2}$$

$$\mathbf{u} = ce^2 \mathbf{n} - \|\mathbf{n}\|^2 \mathbf{F}, \tag{3.1.2.3}$$

$$f = \|\mathbf{n}\|^2 \|\mathbf{F}\|^2 - c^2 e^2$$
 (3.1.2.4)

Solution: From (3.1.1.1) and (2.1.4.1), for any point x on the conic,

$$\|\mathbf{x} - \mathbf{F}\|^2 = e^2 \frac{\left(\mathbf{n}^\top \mathbf{x} - c\right)^2}{\|\mathbf{n}\|^2}$$
(3.1.2.5)

$$\implies \|\mathbf{n}\|^{2} (\mathbf{x} - \mathbf{F})^{\top} (\mathbf{x} - \mathbf{F}) = e^{2} (\mathbf{n}^{\top} \mathbf{x} - c)^{2}$$
(3.1.2.6)

yielding

$$\|\mathbf{n}\|^{2} \left(\mathbf{x}^{\top}\mathbf{x} - 2\mathbf{F}^{\top}\mathbf{x} + \|\mathbf{F}\|^{2}\right)$$

$$= e^{2} \left(c^{2} + \left(\mathbf{n}^{\top}\mathbf{x}\right)^{2} - 2c\mathbf{n}^{\top}\mathbf{x}\right)$$

$$= e^{2} \left(c^{2} + \left(\mathbf{x}^{\top}\mathbf{n}\mathbf{n}^{\top}\mathbf{x}\right) - 2c\mathbf{n}^{\top}\mathbf{x}\right) \quad (3.1.2.7)$$

which can be expressed as (3.1.2.1) after simplification.

- 3.1.3. (3.1.2.1) represents
 - a) a pair of straight lines if

$$\begin{vmatrix} \mathbf{V} & \mathbf{u} \\ \mathbf{u}^{\mathsf{T}} & f \end{vmatrix} = 0, \quad |\mathbf{V}| < 0 \tag{3.1.3.1}$$

else, it represents

- b) a parabola for $|\mathbf{V}| = 0$,
- c) ellipse for $|\mathbf{V}| > 0$ and
- d) hyperbola for $|\mathbf{V}| < 0$.

3.2 Conic Parameters

3.2.1. The conic in (3.1.2.1) can be expressed in standard form (centre/vertex at the origin, major axis - x axis) as

$$\mathbf{y}^{\mathsf{T}} \mathbf{D} \mathbf{y} = \mathbf{u}^{\mathsf{T}} \mathbf{V}^{-1} \mathbf{u} - f \quad |V| \neq 0 \quad (3.2.1.1)$$
$$\mathbf{v}^{\mathsf{T}} \mathbf{D} \mathbf{v} = -2n \mathbf{e}_{1}^{\mathsf{T}} \mathbf{v} \qquad |V| = 0 \quad (3.2.1.2)$$

where

 $\mathbf{P}^{\top}\mathbf{V}\mathbf{P} = \mathbf{D}. \quad \text{(Eigenvalue Decomposition)}$ (3.2.1.3)

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix},\tag{3.2.1.4}$$

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \quad \mathbf{P}^{\top} = \mathbf{P}^{-1}, (3.2.1.5)$$

$$\eta = \mathbf{u}^{\mathsf{T}} \mathbf{p}_1 \tag{3.2.1.6}$$

$$\mathbf{e}_1 = \begin{pmatrix} 1\\0 \end{pmatrix} \tag{3.2.1.7}$$

Solution: Using

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c}$$
 (Affine Transformation) (3.2.1.8)

(3.1.2.1) can be expressed as

$$(\mathbf{P}\mathbf{y} + \mathbf{c})^{T} \mathbf{V} (\mathbf{P}\mathbf{y} + \mathbf{c}) + 2\mathbf{u}^{T} (\mathbf{P}\mathbf{y} + \mathbf{c}) + f$$

$$= 0, \quad (3.2.1.9)$$

yielding

$$\mathbf{y}^{T}\mathbf{P}^{T}\mathbf{V}\mathbf{P}\mathbf{y} + 2\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{P}\mathbf{y}$$
$$+\mathbf{c}^{T}\mathbf{V}\mathbf{c} + 2\mathbf{u}^{T}\mathbf{c} + f = 0 \quad (3.2.1.10)$$

From (3.2.1.10) and (3.2.1.3),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right)^{T}\mathbf{P}\mathbf{y}$$
$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \quad (3.2.1.11)$$

When V^{-1} exists,

$$Vc + u = 0$$
, or, $c = -V^{-1}u$, (3.2.1.12)

and substituting (3.2.1.12) in (3.2.1.11) yields (3.2.1.1). When |V| = 0, $\lambda_1 = 0$ and

$$\mathbf{V}\mathbf{p}_1 = 0, \mathbf{V}\mathbf{p}_2 = \lambda_2\mathbf{p}_2. \tag{3.2.1.13}$$

where $\mathbf{p}_1, \mathbf{p}_2$ are the eigenvectors of \mathbf{V} such that (3.2.1.3)

$$\mathbf{P} = \begin{pmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{pmatrix}, \tag{3.2.1.14}$$

Substituting (3.2.1.14) in (3.2.1.11),

$$\mathbf{y}^{T}\mathbf{D}\mathbf{y} + 2\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\left(\mathbf{p}_{1} \quad \mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{1}\left(\mathbf{c}^{T}\mathbf{V} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0$$

$$\implies \mathbf{y}^{T}\mathbf{D}\mathbf{y}$$

$$+ 2\left(\mathbf{u}^{T}\mathbf{p}_{1} \quad \left(\lambda_{2}\mathbf{c}^{T} + \mathbf{u}^{T}\right)\mathbf{p}_{2}\right)\mathbf{y}$$

$$+ \mathbf{c}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) + \mathbf{u}^{T}\mathbf{c} + f = 0 \text{ from (3.2.1.13)}$$

$$\implies \lambda_2 y_2^2 + 2 \left(\mathbf{u}^T \mathbf{p}_1 \right) y_1 + 2 y_2 \left(\lambda_2 \mathbf{c} + \mathbf{u} \right)^T \mathbf{p}_2$$
$$+ \mathbf{c}^T \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^T \mathbf{c} + f = 0$$

which is the equation of a parabola. Thus, (3.2.1.15) can be expressed as (3.2.1.2) by choosing

$$\eta = \mathbf{u}^T \mathbf{p}_1 \tag{3.2.1.15}$$

and c in (3.2.1.11) such that

$$\mathbf{P}^{T}\left(\mathbf{V}\mathbf{c} + \mathbf{u}\right) = \eta \begin{pmatrix} 1\\0 \end{pmatrix} \quad (3.2.1.16)$$

$$\mathbf{c}^{T} \left(\mathbf{V} \mathbf{c} + \mathbf{u} \right) + \mathbf{u}^{T} \mathbf{c} + f = 0$$
 (3.2.1.17)

Multiplying (3.2.1.16) by P yields

$$(\mathbf{Vc} + \mathbf{u}) = \eta \mathbf{p}_1, \tag{3.2.1.18}$$

which, upon substituting in (3.2.1.17) results in

$$\eta \mathbf{c}^T \mathbf{p}_1 + \mathbf{u}^T \mathbf{c} + f = 0$$
 (3.2.1.19) 3.2.6

(3.2.1.18) and (3.2.1.19) can be clubbed together to obtain (3.2.2.2).

3.2.2. The centre/vertex of the conic is given by

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} \qquad |V| \neq 0$$

$$(3.2.2.1)$$

$$\begin{pmatrix} \mathbf{u}^{\top} + \eta \mathbf{p}_{1}^{\top} \\ \mathbf{V} \end{pmatrix} \mathbf{c} = \begin{pmatrix} -f \\ \eta \mathbf{p}_{1} - \mathbf{u} \end{pmatrix} \quad |V| = 0$$

$$(3.2.2.2)$$

Solution: From (3.2.1.8),

$$\mathbf{y} = \mathbf{P}^{\top} \left(\mathbf{x} - \mathbf{c} \right) \tag{3.2.2.3}$$

For the standard conic, y = 0 is the centre/vertex and in (3.2.2.3),

$$\mathbf{y} = \mathbf{0} \implies \mathbf{x} = \mathbf{c} \tag{3.2.2.4}$$

3.2.3. The focal length of the parabola in (3.2.1.2) is given by

$$\left|\frac{2\eta}{\lambda_2}\right| \tag{3.2.3.1}$$

where λ_2 is the nonzero eigenvalue of V and η is defined in (3.2.1.6).

3.2.4. For $|V| \neq 0$, the lengths of the semi-major and semi-minor axes of the conic in (3.1.2.1) are given by

$$\sqrt{\frac{\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_{1}}}, \sqrt{\frac{\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_{2}}}. \quad \text{(ellipse)}$$
(3.2.4.1)

$$\sqrt{\frac{\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f}{\lambda_1}}, \sqrt{\frac{f - \mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u}}{\lambda_2}}, \quad \text{(hyperbola)}$$

Solution: For

$$|\mathbf{V}| > 0$$
, or, $\lambda_1 > 0, \lambda_2 > 0$ (3.2.4.3)

and (3.2.1.1) becomes

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 = \mathbf{u}^\top \mathbf{V}^{-1} \mathbf{u} - f$$
 (3.2.4.4)

yielding (3.2.4.1). Similarly, (3.2.4.2) can be obtained for

$$|\mathbf{V}| < 0$$
, or, $\lambda_1 > 0, \lambda_2 < 0$ (3.2.4.5)

3.2.5. The equation of the minor and major axes are respectively given by

$$\mathbf{p}_i^{\top}(\mathbf{x} - \mathbf{c}) = 0, i = 1, 2 \tag{3.2.5.1}$$

(3.2.1.19) 3.2.6. The eccentricity, directrices and foci of (3.1.2.1) are given by (3.2.6.1) - (3.2.6.4) **Solution:** From (3.1.2.2),

$$\mathbf{V}^{\top}\mathbf{V} = (\|\mathbf{n}\|^{2}\mathbf{I} - e^{2}\mathbf{n}\mathbf{n}^{\top})^{\top}$$

$$(\|\mathbf{n}\|^{2}\mathbf{I} - e^{2}\mathbf{n}\mathbf{n}^{\top})$$

$$\Rightarrow \mathbf{V}^{2} = \|\mathbf{n}\|^{4}\mathbf{I} + e^{4}\mathbf{n}\mathbf{n}^{\top}\mathbf{n}\mathbf{n}^{\top}$$

$$-2e^{2}\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top}$$

$$= \|\mathbf{n}\|^{4}\mathbf{I} + e^{4}\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top} - 2e^{2}\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top}$$

$$= \|\mathbf{n}\|^{4}\mathbf{I} + e^{2}(e^{2} - 2)\|\mathbf{n}\|^{2}\mathbf{n}\mathbf{n}^{\top}$$

$$= \|\mathbf{n}\|^{4}\mathbf{I} + (e^{2} - 2)\|\mathbf{n}\|^{2}(\|\mathbf{n}\|^{2}\mathbf{I} - \mathbf{V})$$

$$(3.2.6.5)$$

which can be expressed as

$$\mathbf{V}^{2} + (e^{2} - 2) \|\mathbf{n}\|^{2} \mathbf{V} - (e^{2} - 1) \|\mathbf{n}\|^{4} \mathbf{I} = 0$$
(3.2.6.6)

Using the Cayley-Hamilton theorem, (3.2.6.6) results in the characteristic equation,

$$\lambda^{2} - (2 - e^{2}) \|\mathbf{n}\|^{2} \lambda + (1 - e^{2}) \|\mathbf{n}\|^{4} = 0$$
(3.2.6.7)

which can be expressed as

$$\left(\frac{\lambda}{\|\mathbf{n}\|^2}\right)^2 - \left(2 - e^2\right) \left(\frac{\lambda}{\|\mathbf{n}\|^2}\right) + \left(1 - e^2\right) = 0 \quad (3.2.6.8)$$

$$\implies \frac{\lambda}{\|\mathbf{n}\|^2} = 1 - e^2, 1 \quad (3.2.6.9)$$

or,
$$\lambda_2 = \|\mathbf{n}\|^2$$
, $\lambda_1 = (1 - e^2) \lambda_2$ (3.2.6.10)

From (3.2.6.10), the eccentricity of (3.1.2.1) is given by (3.2.6.1). Multiplying both sides of (3.1.2.2) by \mathbf{n} ,

$$\mathbf{V}\mathbf{n} = \|\mathbf{n}\|^2 \,\mathbf{n} - e^2 \mathbf{n} \mathbf{n}^{\mathsf{T}} \mathbf{n} \qquad (3.2.6.11)$$

$$= \|\mathbf{n}\|^2 \left(1 - e^2\right) \mathbf{n} \tag{3.2.6.12}$$

$$= \lambda_1 \mathbf{n} \tag{3.2.6.13}$$

from (3.2.6.10) Thus, λ_1 is the corresponding eigenvalue for n. From (3.2.1.5), (3.2.6.10) and (3.2.6.13),

$$\mathbf{n} = \|\mathbf{n}\|\,\mathbf{p}_1 = \sqrt{\lambda_2}\mathbf{p}_1 \tag{3.2.6.14}$$

From (3.1.2.3) and (3.2.6.10),

$$\mathbf{F} = \frac{ce^{2}\mathbf{n} - \mathbf{u}}{\lambda_{2}}$$
(3.2.6.15)

$$\Rightarrow \|\mathbf{F}\|^{2} = \frac{(ce^{2}\mathbf{n} - \mathbf{u})^{\top} (ce^{2}\mathbf{n} - \mathbf{u})}{\lambda_{2}^{2}}$$
(3.2.6.16)

$$\Rightarrow \lambda_{2}^{2} \|\mathbf{F}\|^{2} = c^{2}e^{4}\lambda_{2} - 2ce^{2}\mathbf{u}^{\top}\mathbf{n} + \|\mathbf{u}\|^{2}$$
(3.2.6.17)

Also, (3.1.2.4) can be expressed as

$$\lambda_2 \|\mathbf{F}\|^2 = f + c^2 e^2$$
 (3.2.6.18)

From (3.2.6.17) and (3.2.6.18),

$$c^{2}e^{4}\lambda_{2} - 2ce^{2}\mathbf{u}^{\top}\mathbf{n} + \|\mathbf{u}\|^{2} = \lambda_{2} (f + c^{2}e^{2})$$
(3.2.6.19)

$$\implies \lambda_2 e^2 \left(e^2 - 1 \right) c^2 - 2ce^2 \mathbf{u}^{\mathsf{T}} \mathbf{n}$$
$$+ \|\mathbf{u}\|^2 - \lambda_2 f = 0 \quad (3.2.6.20)$$

yielding (3.2.6.4).

3.3 Tangent and Normal

3.3.1. The points of intersection of the line

$$L: \mathbf{x} = \mathbf{q} + \mu \mathbf{m} \quad \mu \in \mathbb{R}$$
 (3.3.1.1)

with the conic section in (3.1.2.1) are given by

$$\mathbf{x}_i = \mathbf{q} + \mu_i \mathbf{m} \tag{3.3.1.2}$$

where

$$\mu_{i} = \frac{1}{\mathbf{m}^{T} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right.$$

$$\pm \sqrt{\left[\mathbf{m}^{T} \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) \right]^{2} - \left(\mathbf{q}^{T} \mathbf{V} \mathbf{q} + 2\mathbf{u}^{T} \mathbf{q} + f \right) \left(\mathbf{m}^{T} \mathbf{V} \mathbf{m} \right)} \right)$$
(3.3.1.3)

Solution: Substituting (3.3.1.1) in (3.1.2.1),

$$(\mathbf{q} + \mu \mathbf{m})^{T} \mathbf{V} (\mathbf{q} + \mu \mathbf{m})$$

$$(3.3.1.4)$$

$$+2\mathbf{u}^{T} (\mathbf{q} + \mu \mathbf{m}) + f = 0$$

$$(3.3.1.5)$$

$$\implies \mu^{2} \mathbf{m}^{T} \mathbf{V} \mathbf{m} + 2\mu \mathbf{m}^{T} (\mathbf{V} \mathbf{q} + \mathbf{u})$$

$$(3.3.1.6)$$

$$+\mathbf{q}^{T} \mathbf{V} \mathbf{q} + 2\mathbf{u}^{T} \mathbf{q} + f = 0$$

$$(3.3.1.7)$$

Solving the above quadratic in (3.3.1.7) yields (3.3.1.3).

- 3.3.2. (*Latus Rectum*) The latus rectum of a conic section is the chord that passes through the focus, is perpendicular to the major axis and has both endpoints on the curve.
- 3.3.3. The latus rectum is parallel to the directrix.
- 3.3.4. The equation of the latus rectum is given by

$$\mathbf{n}^{\top} (\mathbf{x} - \mathbf{F}) = 0 \tag{3.3.4.1}$$

or,
$$\mathbf{x} = \mathbf{F} + \mu \mathbf{m}$$
 (3.3.4.2)

where F is the focus and m is the normal to the directrix, i.e.

$$\mathbf{m}^{\mathsf{T}}\mathbf{n} = 0 \tag{3.3.4.3}$$

3.3.5. The affine transform preserves the norm. This implies that the length of any chord of a conic is invariant to translation and/or rotation. **Solution:** Let From (3.2.1.8),

$$\mathbf{x}_i = \mathbf{P}\mathbf{y}_i + \mathbf{c} \tag{3.3.5.1}$$

$$e = \sqrt{1 - \frac{\lambda_1}{\lambda_2}} \tag{3.2.6.1}$$

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{p}_1, \tag{3.2.6.2}$$

$$c = \begin{cases} \frac{e\mathbf{u}^{\top}\mathbf{n} \pm \sqrt{e^{2}(\mathbf{u}^{\top}\mathbf{n})^{2} - \lambda_{2}(e^{2} - 1)(\|\mathbf{u}\|^{2} - \lambda_{2}f)}}{\lambda_{2}e(e^{2} - 1)} & e \neq 1\\ \frac{\|\mathbf{u}\|^{2} - \lambda_{2}f}{2e^{2}\mathbf{u}^{\top}\mathbf{n}} & e = 1 \end{cases}$$
(3.2.6.3)

$$\mathbf{F} = \frac{ce^2\mathbf{n} - \mathbf{u}}{\lambda_2} \tag{3.2.6.4}$$

be any two points on the conic. Then the distance between the points is given by

$$\|\mathbf{x}_1 - \mathbf{x}_2\| = \|\mathbf{P}\mathbf{y}_1 - \mathbf{y}_2\|$$

$$\implies \|\mathbf{x}_1 - \mathbf{x}_2\|^2 = (\mathbf{y}_1 - \mathbf{y}_2)^{\mathsf{T}} \mathbf{P}^{\mathsf{T}} \mathbf{P} (\mathbf{y}_1 - \mathbf{y}_2)$$
(3.3.5.3)

$$= \|\mathbf{y}_1 - \mathbf{y}_2\|^2 \qquad (3.3.5.4)$$

since

$$\mathbf{P}^{\mathsf{T}}\mathbf{P} = \mathbf{I} \tag{3.3.5.5}$$

3.3.6. The length of the latus rectum is given by **Solution:**

From (3.3.1.2) and (3.3.1.3), substituting q = F, the end points of the latus rectum on the conic section can be obtained. Thus, the distance between these points is given by

$$\|\mathbf{x}_1 - \mathbf{x}_2\| = |\mu_1 - \mu_2| \|\mathbf{m}\|$$
 (3.3.6.1)

which can be used to obtain the length of the latus rectum as

$$\frac{2\sqrt{\left[\mathbf{m}^{T}\left(\mathbf{V}\mathbf{F}+\mathbf{u}\right)\right]^{2}-\left(\mathbf{F}^{T}\mathbf{V}\mathbf{F}+2\mathbf{u}^{T}\mathbf{F}+f\right)\left(\mathbf{m}^{T}\mathbf{V}\mathbf{m}\right)}}{\mathbf{m}^{T}\mathbf{V}\mathbf{m}}\parallel\mathbf{m}\parallel$$
(3.3.6.2)

a) From (3.3.5.4), we may consider the standard ellipse/hyperbola given by (3.2.1.1) as

$$\mathbf{y}^{\mathsf{T}}\mathbf{D}\mathbf{y} = -f, \mathbf{V} = \mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix},$$

$$f = -1, \mathbf{u} = 0, \mathbf{p}_1 = \mathbf{e}_1, \mathbf{p}_2 = \mathbf{e}_2 \quad (3.3.6.3)$$

for computing the length of the latus rectum in (3.3.6.2). Note that $\mathbf{p}_1, \mathbf{p}_2$ are the eigenvectors and $\mathbf{e}_1, \mathbf{e}_2$ are the standard basis vectors. Substituting from (3.3.6.3) in (3.2.6.2), the parameters of the directrix are obtained as

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{e}_1, \tag{3.3.6.4}$$

$$c = \pm \frac{1}{e\sqrt{e^2 - 1}} \tag{3.3.6.5}$$

and the focus is

$$e = \sqrt{1 - \frac{\lambda_1}{\lambda_2}} \tag{3.3.6.6}$$

$$\mathbf{F} = \frac{e}{\sqrt{\lambda_2}\sqrt{e^2 - 1}}\mathbf{e}_1$$
 (3.3.6.7)

From (3.3.6.4),

$$\mathbf{m} = \mathbf{e}_1$$
 (3.3.6.8)

Substituting the above in (3.3.6.2) along with (3.3.6.6) and (3.3.6.7),

the length of the latus rectum for an ellipse and hyperbola is obtained from (3.3.6.2) as

$$\frac{2\sqrt{\left[\mathbf{m}^{T}\left(\mathbf{V}\mathbf{F}+\mathbf{u}\right)\right]^{2}-\left(\mathbf{F}^{T}\mathbf{V}\mathbf{F}+2\mathbf{u}^{T}\mathbf{F}+f\right)\left(\mathbf{m}^{T}\mathbf{V}\mathbf{m}\right)}}{\mathbf{m}^{T}\mathbf{V}\mathbf{m}}\parallel\mathbf{m}\parallel$$
(3.3.6.9)

Solution: For simplicity, we consider the standard ellipse given by

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} = 1,$$
(3.3.6.10)

where
$$\mathbf{V} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \mathbf{u} = 0, f = -1,$$
(3.3.6.11)

From (3.3.6.11) and (3.2.6.4), the distance between the foci can be expressed as

$$\|\mathbf{F}_1 - \mathbf{F}_2\| = e^2 \left| \frac{c_1 - c_2}{\lambda_2} \right| \|\mathbf{n}\|$$
 (3.3.6.12)

where c_1, c_2 are the scalar parameters of the directrices. The distances between the directrices is given by

$$\frac{|c_1 - c_2|}{\|\mathbf{n}\|} \tag{3.3.6.13}$$

Thus, substituting the above in (3.3.6.12),

$$, \frac{\|\mathbf{F}_{1} - \mathbf{F}_{2}\|}{|c_{1} - c_{2}|} \|n\| = e^{2} \frac{\|\mathbf{n}\|^{2}}{|\lambda_{2}|}$$
 (3.3.6.14)
$$= \frac{6}{12} = \frac{1}{2},$$
 (3.3.6.15)

based on the given information. For the standard ellipse,

$$\mathbf{p}_1 = \mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{3.3.6.16}$$

$$\implies \mathbf{n} = \sqrt{\lambda_2} \mathbf{e}_1, \qquad (3.3.6.17)$$

or,
$$\mathbf{m} = \sqrt{\lambda_2} \mathbf{e}_2$$
, (3.3.6.18)

Hence, substituting in (3.3.6.14) and using (3.2.6.2)

$$e^2 \frac{\|\mathbf{n}\|^2}{\lambda_2} = \frac{1}{2} \tag{3.3.6.19}$$

$$\implies e^2 = \frac{1}{2} \tag{3.3.6.20}$$

Substituting u = 0 in (3.2.6.2) and (3.2.6.4) and simplifying using (3.2.6.1),

$$c = \pm \frac{1}{e} \sqrt{\frac{\lambda_1}{\lambda_2}} \tag{3.3.6.21}$$

$$\mathbf{F} = \pm \frac{e}{\sqrt{\lambda_1}} \mathbf{p}_1 \tag{3.3.6.22}$$

For the standard ellipse, m, orthogonal to n is also an eigenvector, such that

$$Vm = \lambda_1 m (3.3.6.23)_{3.3.9}$$

$$\implies$$
 $\mathbf{m} = \sqrt{\lambda_1} \mathbf{e}_2$ (3.3.6.24)

Thus,

$$\mathbf{m}^{\mathsf{T}}\mathbf{V}\mathbf{m} = \lambda_1^{\ 2} \tag{3.3.6.25}$$

$$\mathbf{m}^{\mathsf{T}}\mathbf{V}\mathbf{F} = 0 \tag{3.3.6.26}$$

$$\mathbf{F}^{\mathsf{T}}\mathbf{V}\mathbf{F} = e^2, \tag{3.3.6.27}$$

From (3.3.6.2), the length of the latus rectum is given by

$$\frac{2\sqrt{\left[\mathbf{m}^{T}\left(\mathbf{V}\mathbf{F}+\mathbf{u}\right)\right]^{2}-\left(\mathbf{F}^{T}\mathbf{V}\mathbf{F}+2\mathbf{u}^{T}\mathbf{F}+f\right)\left(\mathbf{m}^{T}\mathbf{V}\mathbf{m}\right)}}{\mathbf{m}^{T}\mathbf{V}\mathbf{m}}\parallel\mathbf{m}\parallel$$
(3.3.6.28)

Substituting (3.3.6.27) in the above, the desired length can be expressed as,

3.3.7. If L in (3.3.1.1) touches (3.1.2.1) at exactly one point q,

$$\mathbf{m}^T \left(\mathbf{V} \mathbf{q} + \mathbf{u} \right) = 0 \tag{3.3.7.1}$$

Solution: In this case, (3.3.1.7) has exactly one root. Hence, in (3.3.1.3)

$$\left[\mathbf{m}^{T}\left(\mathbf{V}\mathbf{q}+\mathbf{u}\right)\right]^{2}-\left(\mathbf{m}^{T}\mathbf{V}\mathbf{m}\right)$$
Substituting (3.3.9.5) in (3.3.9.2) yields
$$\left(\mathbf{q}^{T}\mathbf{V}\mathbf{q}+2\mathbf{u}^{T}\mathbf{q}+f\right)=0 \quad (3.3.7.2)_{3.3.10}.$$
 If V is not invertible, given the normal vector

 \because q is the point of contact, q satisfies (3.1.2.1) and

$$\mathbf{q}^T \mathbf{V} \mathbf{q} + 2\mathbf{u}^T \mathbf{q} + f = 0 \tag{3.3.7.3}$$

Substituting (3.3.7.3) in (3.3.7.2) and simplifying, we obtain (3.3.7.1).

3.3.8. Given the point of contact q, the equation of a tangent to (3.1.2.1) is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^T \mathbf{x} + \mathbf{u}^T \mathbf{q} + f = 0 \qquad (3.3.8.1)$$

Solution: The normal vector is obtained from (3.3.7.1) and (2.1.1.1) as

$$\mathbf{n} = \mathbf{V}\mathbf{q} + \mathbf{u} \tag{3.3.8.2}$$

From (3.3.8.2) and (2.1.2.1), the equation of the tangent is

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{T} (\mathbf{x} - \mathbf{q}) = 0$$

$$(3.3.8.3)$$

$$\implies (\mathbf{V}\mathbf{q} + \mathbf{u})^{T} \mathbf{x} - \mathbf{q}^{T} \mathbf{V} \mathbf{q} - \mathbf{u}^{T} \mathbf{q} = 0$$

$$(3.3.8.4)$$

which, upon substituting from (3.3.7.3) and simplifying yields (3.3.1.1).

(3.3.6.23) 3.3.9. If V⁻¹ exists, given the normal vector n, the tangent points of contact to (3.1.2.1) are given

$$\mathbf{q}_{i} = \mathbf{V}^{-1} \left(\kappa_{i} \mathbf{n} - \mathbf{u} \right), i = 1, 2$$
where $\kappa_{i} = \pm \sqrt{\frac{\mathbf{u}^{T} \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^{T} \mathbf{V}^{-1} \mathbf{n}}}$
(3.3.9.1)

Solution: From (3.3.8.2),

$$\mathbf{q} = \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}), \quad \kappa \in \mathbb{R}$$
 (3.3.9.2)

Substituting (3.3.9.2) in (3.3.7.3),

$$(\kappa \mathbf{n} - \mathbf{u})^T \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u})$$

+ $2\mathbf{u}^T \mathbf{V}^{-1} (\kappa \mathbf{n} - \mathbf{u}) + f = 0$ (3.3.9.3)

$$\implies \kappa^2 \mathbf{n}^T \mathbf{V}^{-1} \mathbf{n} - \mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} + f = 0$$
(3.3.9.4)

or,
$$\kappa = \pm \sqrt{\frac{\mathbf{u}^T \mathbf{V}^{-1} \mathbf{u} - f}{\mathbf{n}^T \mathbf{V}^{-1} \mathbf{n}}}$$
 (3.3.9.5)

Substituting (3.3.9.5) in (3.3.9.2) yields (3.3.9.1).

n, the point of contact to (3.1.2.1) is given by the matrix equation

$$\begin{pmatrix} \mathbf{u}^{\top} + \kappa \mathbf{n}^{\top} \\ \mathbf{V} \end{pmatrix} \mathbf{q} = \begin{pmatrix} -f \\ \kappa \mathbf{n} - \mathbf{u} \end{pmatrix}$$
(3.3.10.1)

where
$$\kappa = \frac{\mathbf{p}_1^T \mathbf{u}}{\mathbf{p}_1^T \mathbf{n}}, \quad \mathbf{V} \mathbf{p}_1 = 0$$
 (3.3.10.2)

Solution: If V is non-invertible, it has a zero eigenvalue. If the corresponding eigenvector is \mathbf{p}_1 , then,

$$\mathbf{V}\mathbf{p}_1 = 0 \tag{3.3.10.3}$$

From (3.3.8.2),

$$\kappa \mathbf{n} = \mathbf{V}\mathbf{q} + \mathbf{u}, \quad \kappa \in \mathbb{R} \quad (3.3.10.4)$$

$$\implies \kappa \mathbf{p}_1^T \mathbf{n} = \mathbf{p}_1^T \mathbf{V} \mathbf{q} + \mathbf{p}_1^T \mathbf{u} \quad (3.3.10.5)$$
or, $\kappa \mathbf{p}_1^T \mathbf{n} = \mathbf{p}_1^T \mathbf{u}, \quad :: \mathbf{p}_1^T \mathbf{V} = 0,$

$$(3.3.10.6)$$

$$(\text{from } (3.3.10.3)) \quad (3.3.10.7)$$

yielding κ in (3.3.10.2). From (3.3.10.4),

$$\kappa \mathbf{q}^{T} \mathbf{n} = \mathbf{q}^{T} \mathbf{V} \mathbf{q} + \mathbf{q}^{T} \mathbf{u} \quad (3.3.10.8)$$

$$\implies \kappa \mathbf{q}^{T} \mathbf{n} = -f - \mathbf{q}^{T} \mathbf{u} \quad \text{from (3.3.7.3)},$$

$$(3.3.10.9)$$

or,
$$(\kappa \mathbf{n} + \mathbf{u})^{\mathsf{T}} \mathbf{q} = -f$$
 (3.3.10.10)

(3.3.10.4) can be expressed as

$$\mathbf{Vq} = \kappa \mathbf{n} - \mathbf{u}.\tag{3.3.10.11}$$

(3.3.10.10) and (3.3.10.11) clubbed together result in (3.3.10.1).

- 3.4 Pair of Straight Lines
- 3.4.1. When (3.1.2.1) is a hyperbola, its asymptotes are defined as the pair of intersecting straight lines

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + \mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} = 0, \quad |\mathbf{V}| < 0$$
(3.4.1.1)

Solution: From (??)

3.4.2. (3.4.1.1) can be expressed as the lines

$$(\sqrt{|\lambda_1|} \pm \sqrt{|\lambda_2|}) \mathbf{P}^{\top} (\mathbf{x} - \mathbf{c}) = 0$$
 (3.4.2.1) 3.5 Intersection of Conics

Solution: Reducing (3.4.1.1) to standard form ^{3.5.1}. Let the intersection of the conics using the affine transformation yields

$$\lambda_1 y_1^2 - (-\lambda_2) y_1^2 = 0 (3.4.2.2)$$

From (3.4.1.1), the equation of the asymptotes for (3.4.2.2) is

$$\left(\sqrt{|\lambda_1|} \pm \sqrt{|\lambda_2|}\right) \mathbf{y} = 0 \tag{3.4.2.3}$$

from which (3.4.2.1) is obtained using (3.2.1.8).

3.4.3. The angle between the asymptotes is then given by using the inner product

$$\cos \theta = \frac{|\lambda_1| - |\lambda_2|}{|\lambda_1| + |\lambda_2|}$$
 (3.4.3.1)

3.4.4. The normal vectors of the lines in (3.4.2.1) are

$$\mathbf{n}_{1} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ \sqrt{|\lambda_{2}|} \end{pmatrix}$$

$$\mathbf{n}_{2} = \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_{1}|} \\ -\sqrt{|\lambda_{2}|} \end{pmatrix}$$
(3.4.4.1)

The angle between the asymptotes is given by

$$\cos \theta = \frac{\mathbf{n_1}^\top \mathbf{n_2}}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|}$$
 (3.4.4.2)

The orthogonal matrix P preserves the norm, i.e.

$$\|\mathbf{n_1}\| = \left\| \mathbf{P} \begin{pmatrix} \sqrt{|\lambda_1|} \\ \sqrt{|\lambda_2|} \end{pmatrix} \right\|$$

$$= \left\| \begin{pmatrix} \sqrt{|\lambda_1|} \\ \sqrt{|\lambda_2|} \end{pmatrix} \right\| = \sqrt{|\lambda_1| + |\lambda_2|} = \|\mathbf{n_2}\|$$

$$(3.4.4.4)$$

It is easy to verify that

$$\mathbf{n_1}^{\mathsf{T}} \mathbf{n_2} = |\lambda_1| - |\lambda_2| \tag{3.4.4.5}$$

Thus, the angle between the asymptotes is obtained from (3.4.4.2) as (3.4.3.1).

3.4.5. Another hyperbola with the same asymptotes as (3.4.2.1) can be obtained from (3.1.2.1) and (3.4.1.1) as

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{V}^{-1}\mathbf{u} - f = 0$$
(3.4.5.1)

$$\mathbf{x}^{\top} \mathbf{V}_i \mathbf{x} + 2\mathbf{u}_i^{\top} \mathbf{x} + f_i = 0, \quad i = 1, 2$$
(3.5.1.1)

be

$$\mathbf{x}^{\top} (\mathbf{V}_1 + \mu \mathbf{V}_2) \mathbf{x} + 2 (\mathbf{u}_1 + \mu \mathbf{u}_2)^{\top} \mathbf{x} + f_1 + \mu f_2 = 0 \quad (3.5.1.2)$$

From (3.1.3.1), the above equation will represent a pair of straight lines if and only if

$$\begin{vmatrix} \mathbf{V}_1 + \mu \mathbf{V}_2 & \mathbf{u}_1 + \mu \mathbf{u}_2 \\ (\mathbf{u}_1 + \mu \mathbf{u}_2)^\top & f \end{vmatrix} \neq 0 \quad (3.5.1.3)$$

which can be expressed as

$$\begin{vmatrix} \mathbf{V}_1 + \mu \mathbf{V}_2 & \mathbf{u}_1 + \mu \mathbf{u}_2 \\ (\mathbf{u}_1 + \mu \mathbf{u}_2)^\top & f \end{vmatrix} \neq 0 \quad (3.5.1.4)$$