4.3: Logarithmic Functions

Supplementary Notes

The logarithmic function

$$f(x) = \log_a x \qquad (a > 0, a \neq 1)$$

is defined as the inverse of the exponential function $f^{-1}(x) = a^x$, where a is a real number. Below are the graphs of f both for 0 < a < 1 and a > 1.

The graph of f has the following properties

• domain: $(0, \infty)$

• range: $(-\infty, \infty)$

• x-intercept: 1

• vertical asymptote: x = 0 (y-axis)

• $\left\{ \begin{array}{ll} \text{increasing} & \text{if } a > 1 \\ \text{decreasing} & \text{if } 0 < a < 1 \end{array} \right.$

Important examples of logarithmic functions:

• The logarithmic function with base 10, $f(x) = \log_{10} x$, is written without the base, $f(x) = \log x$.

• The logarithmic function with base $e \approx 2.72$, $f(x) = \log_e x$, is called the *natural logarithmic* function and is written $f(x) = \ln x$.

1

Exercises

1. Select ALL of the correct equations for the given graph

- A. $y = -\log_a(-x), a > 1$
- B. None of these
- C. $y = \log_a(x), 0 < a < 1$
- D. $y = -\log_a(x), 0 < a < 1$
- E. $y = \log_a(-x), 0 < a < 1$