

Amendments to the Claims: This listing of claims will replace all prior versions, and listings, of claims in the application

Listing of Claims:

1.-40. (Cancelled)

41. (Currently Amended) An error correction method for receiving q-bit data having convolutional-encoded bits and unencoded bits as a trellis-encoded signal and for decoding the trellis-encoded signal according to a predetermined algorithm represented by a state transition diagram, the convolutional-encoded bits being obtained by convolutional-encoding lower t bits of an input p-bit data (where $p \geq 2$, $q > p$, and $p > t \geq 1$) by a convolutional-encoder having s delay elements and the unencoded bits being upper $(p-t)$ bits of the input p-bit data,

wherein the state transition diagram has branches for respective transitions from 2^s internal states at time i to 2^s internal states at time $(i+1)$, and each of 2^s internal states at time i has a transition to two different internal states at time $i+1$,

the error correction method comprising the steps of:

converting the received trellis-encoded signal ~~having 2^s internal states~~ into a signal having a format related to a signal encoded by a convolutional encoder having $2^{(s+1)}$ internal states; and decoding the converted signal using the state transition diagram having 2^s internal states.

42. (Currently Amended) An error correction circuit for receiving q-bit data having convolutional-encoded bits and unencoded bits as a trellis-encoded signal and for decoding the trellis-encoded signal according to a predetermined algorithm represented by a state transition diagram, the convolutional-encoded bits being obtained by convolutional-encoding lower t bits of an input p-bit data (where $p \geq 2$, $q > p$, and $p > t \geq 1$) by a convolutional-encoder having s delay elements and the unencoded bits being upper $(p-t)$ bits of the input p-bit data,

wherein the state transition diagram has branches for respective transitions from 2^s internal states at time i to 2^s internal states at time $(i+1)$, and each of 2^s internal states at time i has a transition to two different internal states at time $i+1$,

the error correction circuit comprising:

means for converting the received trellis-encoded signal ~~having 2^s internal states~~ into a signal having a format related to a signal encoded by a convolutional encoder having $2^{(s+1)}$ internal states; and

means for decoding the converted signal using the state transition diagram having 2^s internal states.