TED (10)-1002

(REVISION-2010)

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY—OCTOBER, 2010

TECHNICAL MATHEMATICS-I

(Common-Except DCP and CABM)

[Time: 3 hours

(Maximum marks: 100)

PART-A

(Answer all questions. Each question carries 2 marks.)

Marks

I (a) Find the values of a, b, c and d, given that:

$$\begin{bmatrix} 2a & a+3b \\ 5-c & d \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ 7 & 0 \end{bmatrix}$$

- (b) Evaluate $\begin{vmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{vmatrix}$
- (c) If ${}^{n}c_{12} = {}^{n}c_{13}$, what is the value of n?
- (d) Prove that $\tan A + \cot A = 2 \csc 2A$.
- (e) Find the angle of inclination of the line joining the points (5, 3) and (-8, 3).

 $(5 \times 2 = 10)$

PART—B

(Answer any five questions. Each question carries 6 marks.)

II (a) If
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, find

AB and BA and show that AB ‡ BA.

(b) Solve the following equations using Cramer's rule:

$$2x + 3y - z = 5$$

$$x - 2y + 3z = 6$$

$$3x - y + 2z = 7.$$

(c) Obtain the coefficient of x^{12} in the expansion of : $\left(x^2 - \frac{1}{x^2}\right)^{10}$

Marks

- (d) Prove that $\sin^2 A \cos^2 A = 2 \sin^2 A 1 = 1 2 \cos^2 A$.
- (e) If Sin A = $\frac{4}{5}$ and Sin B = $\frac{12}{13}$, A and B are acute angles, find Cos (A B).
- (f) Prove that $Sin(A + B) Sin(A B) = Sin^2 A Sin^2 B$.
- (g) Express the equation 3x + 4y 12 = 0 in (i) Slope-intercept form and (ii) intercept form. Hence find the slope and the intercepts made on the axes.

 $(5 \times 6 = 30)$

PART-C

(Answer four full questions. Each question carries 15 marks.)

III (a) If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, find $A^2 - 3A + 5I$.

(b) Express the matrix $\begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & 6 \\ 3 & 2 & 7 \end{bmatrix}$ as the sum of a symmetric and skew-

(c) Solve the following system of equations using the inverse of the coefficient matrix:

$$3x - 2y + 3z = 4$$
$$2x + y - z = 2$$

$$4x - 3y + 2z = 3.$$

IV (a) If
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$, verify that $(A + B)^T = A^T + B^T$.

(b) Solve for x if
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & x & 4 \\ 3 & 4 & 5 \end{vmatrix} = 0.$$

(c) If
$$P = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 4 & 1 \\ 6 & 5 \end{bmatrix}$, verify that $(PQ)^{-1} = Q^{-1} P^{-1}$.

- (a) Find the middle terms in the expansion of $\left(x^2 + \frac{2}{x}\right)'$
 - (b) Expand $(3x + 2y)^5$. 6
 - (c) Show that Sin 60° Cos 30° Cos 60° Sin 30° = $\frac{1}{2}$. 5

			Mark
VI	(a)	Find the constant term in the expansion of $\left(x^3 + \frac{3}{x^2}\right)^{15}$.	5
		Evaluate $\tan^2 60^\circ + 3 \tan^2 45^\circ$.	4
	(c)	If $\sin \theta = -\frac{4}{5}$, θ is in the 3rd quadrant, find all other trigonometric	
		functions of θ .	6
VII	(a)	Prove that $\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta = 4 \cos \theta \cos 2\theta \sin 4 \theta$.	6
		Prove that 2 $\tan 10^\circ + \tan 40^\circ = \tan 50^\circ$.	5
	(c)	In any triangle ABC, prove that $a^2 + bc = b^2 + c^2$, if $A = 60^\circ$.	D ₄
		OR	
VIII	(a)	Prove that Cos 20° Cos 40° Cos 80° = $\frac{1}{8}$.	. 5
		If $A + B = 45^{\circ}$, show that $(1 + \tan A) (1 + \tan B) = 2$.	4
		State and prove Sine rule.	6
IX	(a)	Solve the triangle with $a = 2$ cm, $b = 3$ cm and $c = 4$ cm.	5
		Find the acute angle between the lines $2x-y+3=0$ and $3x-3y+4=0$.	5
		If A $(1, -1)$, B $(-2, 1)$ and C $(3, 5)$ are the vertices of a triangle, then find the equation of the median through B.	5
		OR	
X	(a)	Using Napier's formula, find the values of the angles A and B in \triangle ABC, if	
4		$a - 3 \text{ cm}, b = 8 \text{ cm and } C = 30^{\circ}$.	5
+5	(b)	Find the angles of the triangle having vertices $(3, 2)$, $(5, -4)$ and $(1, -2)$.	5
	(c)	Show that the three lines are concurrent:	
		5x + 2y - 4 = 0	
		2x + 5y + 11 = 0 and	
		3x - 4y - 18 = 0.	5
4.			