Pushdown Automata

Definition

Informal: PDA is a ϵ -NFA with a stack

Formal: A PDA is a 7-tuple

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

where

• Q: a finite set of states

• Σ : a finite set of input symbols

• Γ : a finite stack alphabet

• δ : the transition function

• q_0 : the start state

ullet Z_0 : the start symbol in stack

• *F* : the set of accepting states

考虑 PDA 的迁移函数 δ , 其接受三个参数 (q,a,X) , 其中

1.q 是 Q 中的状态

2. a 是 Σ 中的符号或是 ϵ

3. $X \in \Gamma$ 中的符号

其输出为有序对 (p,γ) 的集合,其中 p 是一个新状态,而 γ 是一个 stack symbol 的 string,用于**取代** X ,当 $\gamma=\epsilon$,表示弹出 X ,而当 $\gamma=X$ 则不变,若 $\gamma=YZ$,则将 X 替换为 Z ,再将 Y 压入。

需注意 δ 的输出是一个集合,即 PDA 可以从中选出一个对

PDA 也可以像 FA 一样使用图表示, 其中

- 节点代表 PDA 的 states
- 两个圈的节点表示接收状态
- 一条标号为 $a, X/\alpha$ 的从 q 到 p 的边表示 $(p, \alpha) \in \delta(q, a, X)$

Instantaneous Descriptions

不同于 FA,描述状态机的运行的只有状态,PDA 的运行包括了状态与栈的内容,故 定义 Instantaneous Description 为一个 3-tuple (q,w,γ)

- q是一个状态
- w 是余下的输入
- γ是栈的内容

PDA 的 ID 可以完全表示其运行时某一个时刻的格局。

为了描述 ID 随着 PDA 的运行而发生的转换,定义 \vdash 。若 $\delta(q,a,X)$ 包含 (p,α) ,则对于任意 $w\in \Sigma^*, \beta\in \Gamma^*$ 有

$$(q, aw, X\beta) \vdash (p, w, \alpha\beta)$$

显然,余下的输入和栈中剩余的部分不影响 ID 的转换

⊢表示 PDA 的一步动作,可以定义 ⊢*表示 0 步或多步动作

Basis. $I \vdash^{*} I$ for any ID I

Induction. If $I \vdash^* K, K \vdash J$, then $I \vdash^* J$

对于 ID 的 transition,有

If $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ is a PDA, and $(q,x,\alpha)\vdash^* (p,y,\beta)$, then for any strings $w\in\Sigma^*$ and $\gamma\in\Gamma^*$, it is also true that

$$(q,xw,\alpha\gamma)\vdash^* (p,yw,\beta\gamma)$$

Proof. 对 ID 的转换步数归纳。由于 PDA 未读入的输入不会影响其行为,故在输入后添加后缀 w 不会改变其行为。同样的,在原本的转换中,没有用到 α 以外的内容,故在栈底加入 γ 也不会改变其行为

同样的,有

If $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ is a PDA, and

$$(q, xw, \alpha) \vdash^* (p, yw, \beta)$$

then $(q,x,\alpha) \vdash^* (p,y,\beta)$

需要注意的是未读入的输入不会对 PDA 产生影响,故可以将其共同的后缀去除,但是不能将栈共同的后缀去除,考虑转换前栈中为 $\alpha\gamma$,转换后为 $\beta\gamma$,在转换的过程中可能弹出了 γ 中的符号,然后之后又将其压入,若将 γ 去除则转换不能成立

添加或删除输入串的后缀不影响转换,但只能添加栈底内容而不能删除

The Language of a PDA

有两种方式可以让一个 PDA 接受输入

• acceptance by final state: 当输入结束时,PDA 状态停止在接收状态

• acceptance by empty stack: 当输入结束时, PDA 栈空

可以得出这两种方式是等价的,即给定一个语言 L ,存在一个 PDA 以 acceptance by final state 的方式定义 L ,也存在一个 PDA 以 acceptance by empty stack 的方式定义 L 。但对于同一个 PDA 而言,以两种方式定义的语言一般是不同的

Acceptance by Final State

设 PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$,则 language accepted by P by final state 定义为

$$L(P) = \{w : (q_0, w, Z_0) \vdash^* (q, \epsilon, \alpha)\}, q \in F$$

即在输入结束后, PDA 到达接收状态, 而此时栈中可以是任意内容

Acceptance by Empty Stack

设 PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$,则 language accepted by P by empty stack 定义为

$$N(P) = \{w : (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon)\}$$

即输入结束后栈清空则视为接受, PDA 此时可以处于任意状态

From Empty Stack to Final State

事实上, L(P), N(P) 定义的语言集合是相同的, 即 CFL。

If $L=N(P_N)$ for some PDA $P_N=(Q,\Sigma,\Gamma,\delta_N,q_0,Z_0,F)$, then there is a PDA P_F such that $L=L(P_F)$

Proof.

引入一个新的符号 $X_0 \notin \Gamma$, X_0 是 P_F 的开始符号,其思想在于当 P_F 栈中仅有 X_0 时,可以得知对于相同的输入, P_N 会清空其栈,即接受该输入。

同样需要引入一个新的开始符号 p_0 ,用于将 Z_0 压入栈中,在此之后 P_F 将模拟 P_N 的运行,直至栈顶为 X_0 ,此时代表 P_N 对于同样的输入清空了栈,即接受该输入。引入一个新的状态 p_f 用于在栈顶为 X_0 且输入结束时转移到该状态。 p_f 是 P_F 的唯一接受状态

 P_F 的精确定义为

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

其中 δ_F 的定义为

- $\delta_F(p_0,\epsilon,X_0)=\{(q_0,Z_0X_0)\}$,即开始时 P_F 将 Z_0 压入栈中,同时转移到 P_N 的开始状态
- 对于所有 $q\in Q, a\in \Sigma, a=\epsilon, Y\in \Gamma$,有 $\delta_N(q,a,Y)\subseteq \delta_F(q,a,Y)$,即 P_F 模拟 P_N 的运行
- 对于所有 $q \in Q$,有 $(p_f, \epsilon) \in \delta_F(q, \epsilon, X_0)$

只需证明

$$w \in L(P_F) \iff w \in N(P_N)$$

(⇐): 已知 $(q_0,w,Z_0) \vdash_{P_N}^* (q,\epsilon,\epsilon)$,则可以在栈底插入符号 X_0 ,即

$$(q_0,w,Z_0X_0) \vdash_{P_N}^* (q,\epsilon,X_0)$$

而由于 P_F 模拟了所有 P_N 的运行, 故有

$$(q_0,w,Z_0X_0) \vdash_{P_{\scriptscriptstyle E}}^* (q,\epsilon,X_0)$$

根据 δ_F 有

$$(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F}^* (q, \epsilon, X_0) \vdash_{P_F} (p_f, \epsilon, \epsilon)$$

即
$$(p_0,w,X_0)dash_{P_F}^*(p_f,\epsilon,\epsilon)$$
,可得 $w\in L(P_F)$

(⇒): 显然,对于 P_F ,其第一步转换必然是 $(p_0,\epsilon,X_0)\vdash (q_0,Z_0X_0)$,因为这是开始状态唯一的转换函数,且若其接受 string,其最后一步转换必然是 $(q,\epsilon,X_0)\vdash (p_f,\epsilon)$,因为 p_f 是唯一的接受状态,且所有输出包含 p_f 的转换函数其输入都要求栈中仅有 X_0 ,而显然 X_0 仅会出现在栈底

这样任意接受 w 的转换都有如下形式

$$(p_0, w, X_0) \vdash_{P_F} (q_0, w, Z_0 X_0) \vdash_{P_F}^* (q, \epsilon, X_0) \vdash_{P_F} (p_f, \epsilon, \epsilon)$$

且除去开始的一步和结尾的一步,中间的转换都是 P_N 的转换,且转换过程中 X_0 都在栈的底部(X_0 若出现在栈顶则下一步运行就会结束)。故可将 X_0 去掉,得到

$$(q_0,w,Z_0) \vdash_{P_{\lambda_1}}^* (q,\epsilon,\epsilon)$$

即 $w \in N(P_N)$

From Final State to Empty State

If $L=L(P_F)$ for some PDA $P_F=(Q,\Sigma,\Gamma,\delta_F,q_0,Z_0,F)$, then there is a PDA P_N such that $L=N(P_N)$

Proof. 基本思想同样是用 P_N 去模拟 P_F 的运行,每当 P_F 接受输入, P_N 便将栈清空,接受同样的输入。

为了防止在 P_F 运行过程中还未接受就将栈清空使得 P_N 提前接受,引入新的符号 $X_0 \notin \Gamma$,在开始时压入栈,这样无论如何模拟 P_F 的运行都不会清空栈,直至其到达接受状态,再将栈中的剩余符号连同 X_0 一起弹出

 P_N 的精确定义为

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, F)$$

其中 δ_N 的定义为

- $\delta_N(p_0,\epsilon,X_0)=\{(q_0,Z_0X_0)\}$, 开始时 P_N 将 Z_0 压入栈中,转到 P_F 的开始状态
- 对于所有 $q\in Q, a\in \Sigma, a=\epsilon, Y\in \Gamma$,有 $\delta_F(q,a,Y)\subseteq \delta_N(q,a,Y)$,即 P_N 模拟 P_F 的运行
- 对于所有 $q \in F, Y \in \Gamma, Y = X_0$ 有 $(p, \epsilon) \in \delta_N(q, \epsilon, Y)$,即当 P_F 接受输入时, P_N 开始将自己的栈清空,不再消耗输入
- 对于所有的 $Y \in \Gamma, Y = X_0$ 有 $\delta_N(p, \epsilon, Y) = \{(p, \epsilon)\}$,即当进入状态 p 后, P_N 将栈中所有的符号弹出直至栈为空,然后接受该输入

只需证明

$$w \in N(P_N) \iff w \in L(P_F)$$

(\Leftarrow): 已知 (q_0,w,Z_0) $\vdash_{P_F}^* (q,\epsilon,\alpha), q\in F$,显然每一步 P_F 的转换都是 P_N 的转换,且可以将 X_0 插入栈底,故有

$$(q_0, w, Z_0X_0) \vdash_{P_N}^* (q, \epsilon, \alpha X_0)$$

则根据 δ_N 的定义有

$$(p_0,w,X_0) \vdash_{P_N} (q_0,w,Z_0X_0) \vdash_{P_N}^* (q,\epsilon,\alpha X_0) \vdash_{P_N}^* (p,\epsilon,\epsilon)$$

于是有 $w \in N(P_N)$

(⇒): 考虑 P_N 清空其栈的唯一条件是进入状态 p , 因为 X_0 在栈底,且 P_F 的 栈符号集 Γ 中没有 X_0 。而 P_N 进入状态 p 的条件是 P_F 达到某个接受状态 q , 而根据 δ_N 的定义, P_N 的第一个动作一定是 $(p_0,w,X_0)\vdash (g_0,w,Z_0X_0)$

故任意接受 w 的转换都有如下的形式

$$(p_0,w,X_0) \mathrel{\vdash}_{P_N} (q_0,w,Z_0X_0) \mathrel{\vdash}_{P_N}^* (q,\epsilon,\alpha X_0) \mathrel{\vdash}_{P_N}^* (p,\epsilon,\epsilon)$$

而所有 (q_0,w,Z_0X_0) $\vdash_{P_N}^* (q,\epsilon,\alpha X_0)$ 之间的转换都是 P_F 的转换,故 P_F 也可以有同样的转换,且栈中没有符号 X_0 (因为 X_0 在栈底且不会被 P_F 的转换影响),即

$$(q_0,w,Z_0)dash_{P_F}^*(q,\epsilon,lpha),q\in F$$

即 $w \in L(P_F)$

Equivalence of PDA and CFG

正如 CFG 一样,PDA 定义的语言正好是 CFL(无论是 acceptance by empty stack 还是 acceptance by final state),这说明 PDA 和 CFG 表达能力是等价的

From Grammars to Pushdown Automata

基本思路为,给出一个 CFG,可以构造一个 PDA 模拟其最左推导过程。而最左推导的每一步是由最左句型来完全表示的。

任何非 terminal string 的最左句型都可以写为 $xA\alpha$,其中 A 是最左的 variable。 称 $A\alpha$ 为句型的 **tail** ,对于一个仅包含 terminal 的最左句型,其 tail 为 ϵ

使用 PDA 模拟最左推导的思路在于令最左句型 $xA\alpha$ 的 tail $A\alpha$ 出现在栈中,而 x 是已经消耗的输入,考虑输入字符串 w=xy, y 为剩余的输入,则 PDA 的 ID $(q,y,A\alpha)$ 可以代表最左句型 $xA\alpha$ 。假设下一步用于展开 A 的产生式为 $A\to\beta$,则 PDA 的动作是用 β 替换栈顶的 A, ID 转换为 $(q,y,\beta\alpha)$,该 PDA 中只有一个状态 q,而现在的 ID 可能不能代表一个最左句型,因为 β 可能有 terminal 作为前缀,因此需要消耗输入,同时从栈中移除对应的 terminal,直至有一个 variable 出现在了栈顶

若最终成功模拟了最左推导,则所有的 variable 都被展开,所有的 terminal 都与输入中的 symbol 匹配,最终栈为空,接受该输入

令 G = (V, T, P, S) 为 CFG ,则可以构造 PDA P ,有 L(G) = N(P)

$$P = (\{q\}, T, V \cup T, \delta, q, S, F)$$

其中 δ 的定义为

• 对于每个 variable A

$$\delta(q,\epsilon,A) = \{(q,\beta): A \to \beta \in P\}$$

对于每个 terminal a

$$\delta(q,a,a) = \{(q,\epsilon)\}$$

按照上述方法构造出的 PDA P ,有 L(G)=N(P)

Proof.

$$w \in N(P) \iff w \in L(G)$$

 (\Leftarrow) : 如果 $w \in L(G)$,则存在一个最左推导序列

$$S = \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_n = w$$

则有 (q,w,S) $\vdash_P^* (q,y_i,\alpha_i)$,其中 (q,y_i,α_i) 代表了最左句型 γ_i ($\gamma_i=x_i\alpha_i,w=x_iy_i$),其证明基于对 i 的归纳

Basis. 当 i=1 时,有 $\gamma_1=S, x_1=\epsilon, y_1=w$,显然有 $(q,w,S)\vdash^*(q,w,S)$

Induction. 假设 (q,w,S) $\vdash^* (q,y_i,\alpha_i)$,由于 α_i 是 tail,其第一个 symbol 是某个 variable A ,在最左推导 $\gamma_i \Rightarrow \gamma_{i+1}$ 中,使用 A 的一个产生式 $A \to \beta$ 将其展开,而根据 PDA 的构造过程,可以使用 β 替代栈顶的 A ,然后利用输入中的 terminal 将栈中的 terminal 弹出,直到栈顶为下一个 variable,达到 (q,y_{i+1},α_{i+1}) ,即 (q,w,S) $\vdash^* (q,y_{i+1},\alpha_{i+1})$

当 i=n 时, $\alpha_n=\epsilon$,于是有 $(q,w,S)\vdash^* (q,\epsilon,\epsilon)$,P 接受 w

(⇒): 需要证明: 当 P 进行一系列操作后,将栈顶的 variable A 弹出,同时没有涉及到 A 以下的栈内容(称其**净效应**为弹出 A),则 A 可以推导出在此过程中消耗的所有输入,即

$$(q, x, A) \vdash_{P}^{*} (q, \epsilon, \epsilon) \Rightarrow A \stackrel{*}{\underset{G}{\Rightarrow}} x$$

证明将基于 P 操作的步数

Basis. 只有一步操作,则唯一的可能是 $A \to \epsilon \in P$,则根据 δ 的定义,有 $(q,\epsilon,A) \vdash (q,\epsilon,\epsilon)$,即 $x=\epsilon$,显然 $A \Rightarrow x$

Induction. 考虑 P 操作了 n 步,则第一步一定是用 A 的某个产生式体替换了 栈顶的 A ,假设用来替换的产生式是 $A \to Y_1Y_2 \dots Y_k$

则接下来的 n-1 步一定是从输入中消耗了 x ,并且其净效应为逐个弹出 $Y_1,Y_2\ldots$,则可以将 x 分为 $x_1x_2\ldots x_k$,其中 x_i 代表了从弹出 Y_{i-1} 到弹出 Y_i 之间消耗的输入(即栈顶从 Y_i 变为 Y_{i+1}) ,则对于所有 i 有

$$(q, x_i x_{i+1} \dots x_k, Y_i) \vdash^* (q, x_{i+1} \dots x_k, \epsilon)$$

由于这其中操作步数都不会超过 n-1 ,根据 I. H. 有 $Y_i \stackrel{*}{\Rightarrow} x_i$

于是有推导

$$A\Rightarrow Y_1Y_2\ldots Y_k\overset{*}{\Rightarrow}x_1Y_2\ldots Y_k\overset{*}{\Rightarrow}\cdots\overset{*}{\Rightarrow}x_1x_2\ldots x_k=x$$

即 $A\stackrel{*}{\Rightarrow}x$

令 A=S, x=w ,由于 $w\in N(P)$,有 $(q,w,S)\vdash^*(q,\epsilon,\epsilon)$,则根据上述结论,有 $S\stackrel{*}{\Rightarrow}w$,即 $w\in L(G)$

From PDA to Grammars

对任意 PDA P 都存在一个 CFG G 使得 L(G) = N(P)

基本思想是文法中的 variable 代表了 PDA 运行中的一个 event,即 variable [pXq] 代表了

- 净效应为从栈中弹出 X , 即弹出 X 的过程不涉及 X 以下的栈内容
- 当 X 从栈中被弹出的同时,状态也从开始的 p 转换到了 q

而这个 variable 产生的 string 即是在 event 中被消耗的输入

更为详细的构造为, 令 $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ 为 PDA , 则构造

$$G = (V, \Sigma, R, S)$$

其中 V 包含

- 特殊的开始符号 S
- 其余符号都形如 $[pXq], p, q \in Q, X \in \Gamma$

对于G中的产生式

- 对所有状态 p , G 中有产生式 $S \to [q_0 Z_0 p]$, 即 $[q_0 Z_0 p]$ 产生的 string w 可以 将 Z_0 从栈中弹出,同时状态转移到 p , 即 (q_0, w, Z_0) $\vdash^* (p, \epsilon, \epsilon)$ 。即 S 将产生所有能让 PDA 清空其栈的 string
- 若 $(r,Y_1Y_2\dots Y_k)\in \delta(q,a,X)$,其中 $a\in \Sigma$ or $a=\epsilon,k=0,1,\dots$,则对于任意状态 $r_1,r_2,\dots r_k$,有产生式

$$[qXr_k]
ightarrow a[rY_1r_1][r_1Y_2r_2]\dots [r_{k-1}Y_kr_k]$$

即从栈中弹出 X 的方法可以是读入 a 后逐个弹出 $Y_1,Y_2,\ldots Y_k$,而期间的状态转换可以是任意状态。若 k=0 ,则为 $[qXr]\to a$

可以证明 $[qXp] \stackrel{*}{\Rightarrow} w \iff (q,w,X) \vdash^{*} (p,\epsilon,\epsilon)$

Proof.

(⇐): 已知 $(q,w,X) \vdash^* (p,\epsilon,\epsilon)$,则基于 PDA 的行动数归纳

Basis. 行动一步,则 $(p,\epsilon)\in\delta(q,w,X)$,而 w 为一个 symbol 或是 ϵ 。根据上述产生式的构造规则,有 $[qXp]\to w$,故 $[qXp]\Rightarrow w$

Induction. 考虑操作了 n 步,则其形式类似

$$(q, w, X) \vdash (r_0, x, Y_1 Y_2 \dots Y_k) \vdash^* (p, \epsilon, \epsilon)$$

其中 $w = ax, a \in \Sigma$ or $a = \epsilon$

故 $(r, Y_1 Y_2 \dots Y_k) \in \delta(q, a, X)$,根据产生式构造规则,有

$$[qXr_k] o a[r_0Y_1r_1][r_1Y_2r_2]\dots[r_{k-1}Y_kr_k]$$

其中 $r_k = p$ 而其余 $r_1, r_2, \ldots, r_{k-1}$ 可以为任意状态

对任意 i , r_i 是在 Y_i 被弹出时转换到的状态,可以令 $x=w_1w_2\dots w_k$, 其中 w_i 为从 Y_{i-1} 弹出到 Y_i 弹出期间消耗的输入,则有 (r_{i-1},w_i,Y_i) $\vdash^* (r_i,\epsilon,\epsilon)$ 。由于这些转换都不可能有 n 步,则根据 I. H. 有 $[r_{i-1}Yr_i] \overset{*}{\Rightarrow} w_i$

故有

$$[qXr_k] \Rightarrow a [r_0Y_1r_1] [r_1Y_1r_2] \cdots [r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow} aw_1 [r_1Y_2r_2] [r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \Rightarrow aw_1w_2 [r_2Y_3r_3] \cdots [r_{k-1}Y_kr_k] \Rightarrow \cdots aw_1u_2 \cdots w_k = w$$

(⇒): 证明基于对推导步数的归纳

Basis. 仅有一步推导,则一定有产生式 [qXp] o w ,而根据构造规则,能产生这样的产生式一定说明 $(p,\epsilon) \in \delta(q,a,X)$,其中 a=w ,则有 $(q,w,X) \vdash^* (p,\epsilon,\epsilon)$

Induction. 考虑 $[qXp] \stackrel{*}{\Rightarrow} w$ 推导用了 n 步,则其形式形如

$$[qXr_k] \Rightarrow a[r_0Y_1r_1][r_1Y_2r_2]\dots[r_{k-1}Y_kr_k] \stackrel{*}{\Rightarrow} w$$

其中 $r_k=p$,而产生这样的产生式,根据构造规则,一定说明 $(r_0,Y_1Y_2\dots Y_k)\in \delta(q,a,X)$

则可以将 w 写作 $aw_1w_2 \dots w_k$, 满足 $[r_{i-1}Yr_i] \stackrel{*}{\Rightarrow} w_i$, 由于这些推导步数都不会超过 n 步,则根据 I. H. 有

$$(r_{i-1}, w_i, Y_i) \vdash^* (r_i, \epsilon, \epsilon)$$

由于可以在输入后和栈底添上任意符号串,即

$$(r_{i-1}, w_i w_{i+1} \dots w_k, Y_i Y_{i+1} \dots Y_k) \vdash^* (r_i, w_{i+1} \dots w_k, Y_{i+1} \dots Y_k)$$

即可得

$$(q, aw_1w_2 \dots w_k, X) \vdash (r_0, w_1w_2 \dots w_k, Y_1Y_2 \dots Y_k)$$
 $\vdash^* (r_2, w_2 \dots w_k, Y_2 \dots Y_k)$
 $\vdash^* \dots$
 $\vdash^* (r_k, \epsilon, \epsilon)$

由于 $r_k = p$, 我们得到了 $(q, w, X) \vdash^* (p, \epsilon, \epsilon)$

则根据上述结论

$$S\stackrel{*}{\Rightarrow} w\iff \exists p\in Q, [q_0Z_0p]\stackrel{*}{\Rightarrow} w\iff (q_0,w,Z_0)\vdash^* (p,\epsilon,\epsilon)\iff w\in N(P)$$

Deterministic Pushdown Automata

PDA 默认即是 Nondeterministic 的,而实际上 deterministic 的 PDA 也有重要的作用

Definition

一个 PDA $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ 是 DPDA (Deterministic PDA) 当且仅当满足

- 对于任何 $q \in Q, a \in \Sigma, a = \epsilon, X \in \Gamma$, $\delta(q, a, X)$ 只有一个元素
- 若对 $a \in \Sigma$ 有 $\delta(q, a, X)$ 非空,则 $\delta(q, \epsilon, X)$ 一定是空的

Regular language and DPDA

DPDA 接受的语言集合在正则语言和 CFL 之间,首先可以证明所有的正则语言都可以被 DPDA 接受

如果 L 是正则语言,则存在 DPDA P 使得 L=L(P)

Proof. 显然,只需要利用 DPDA 中 DFA 的部分即可

令 DFA $A=(Q,\Sigma,\delta_A,q_0,F)$, 则可以构造一个 DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$$

对于所有满足 $\delta(q,a)=p$ 的 $p,q\in Q$,令 $\delta_P(q,a,Z_0)=\{(p,Z_0)\}$ 即可显然 $(q_0,w,Z_0)\vdash^*(p,\epsilon,Z_0)\iff\delta_A(q_0,w)=p$,证明基于 w 的长度归纳即可

Prefix Property: 在一个 language 中,没有两个不同的字符串满足其中一个是另一个的前缀

则有定理:对某个 DPDA P 来说如果语言 L=N(P) 当且仅当 L 有 prefix property 并且存在 DPDA P' 满足 L=L(P')

故可以看出正则语言可以由 acceptance by final state 的 DPDA 描述,但不一定能由 acceptance by empty stack 的 DPDA 描述,即对于 DPDA 来说 L(P) 的描述能力是强于 N(P) 的,两者并不等价,事实上,N(P) 的描述能力甚至弱于正则,如 $L=\{0\}^*$

DPDA and Context-Free Language

虽然 DPDA 能接受形如 $\{wcw^R\}$ 这样的非正则的语言,但是也存在 CFL L 满足不存在 DPDA P 使得 L=L(P) ,如 $\{ww^R\}$,当读完 w 的时候栈已清空,没有信息用于识别后续的 w^R

故对于 DPDA 来说,L(P) 识别的语言集合是正则语言的超集,CFL 的子集

DPDA and Ambiguous Grammars

如果对 DPDA P 有 L=N(P) ,那么这个语言存在一个无歧义的文法 如果对 DPDA P 有 L=L(P) ,那么这个语言存在一个无歧义的文法 上述定理的证明可以见课本 P.255-256