Lay's

Presented by

preetha

Here is where your presentation begins

CONTENT

01

Our History

Ideas shapes the course of history

03

Our Clients

Everyone is not our customer.

02

Advertisement

If it doesn't sell, it isn't creative.

04

Hypothesis testing

Every explanation is after all an Hypothesis

OUR HISTORY

Advertisement

It is one of the first snacks which was advertised on Television back in **1944** and has been one of the most famous salty snacks for 75 years.

Spanish Tomato Tango

It is intensely sweet and tangy tomato flavor.

Lay's Chile Limon

We could place these in the medium-spicy section.

Lay's Classic Salted

Definitely a classic that is crunchy with balanced salt levels

Lay's India's Magic Masala

These are spicy and not meant for people with a low chili tolerance

Lay's American Style Cream & Onion

This flavor is for all cheese lovers!. The aroma and taste are dominant on the cheese flavor

Our clients

- Youth is the main target customer for Lay's.
- The major base of its consumer are of age between 12-28.
- The youth brand ambassador advertising the brand carries the young imagery forward.

Hypothesi s testing

Testing

Chi- Square test for association between age group and their purchase

X – Age group

Y - Amount they Purchasing

H0 – Null hypothesis

H1 – Alternate hypothesis

Testing

Chi- Square test for association between Different brands and their

Choice

X - Different brands

Y - what they choosing

H0 – Null hypothesis

H1 – Alternate hypothesis

Testing

import pandas as pd
from scipy import stats
from statsmodels.stats.proportion import proportions_ztest
lays=pd.read_excel("C:/Users/Admin/Documents/Lays.xlsx")
table=pd.crosstab(lays.Ages,lays.Percentage)
stats.chi2_contingency(table)


```
punuus us pu
        from scipy import<u>stats</u>
        from statsmodels.stats.proportion import proportions ztest
        lays=pd.read excel("C:/Users/Admin/Documents/Lays.xlsx")
        table=pd.crosstab(lays.Ages,lays.Percentage)
        stats.chi2 contingency(table)
(88.000000000000003,
0.2530780339541394.
array([[0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909],
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909],
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.090909091,
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.090909091,
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909],
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909],
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909],
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909]
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909]
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.09090909],
       [0.18181818, 0.18181818, 0.09090909, 0.09090909, 0.09090909,
        0.09090909, 0.09090909, 0.09090909, 0.0909090911))
```

