Wednesday **23** wk 17 • 113-252

20 T	W T F S S	
3.	global state & snapshot recording algorithms	
9	· System model & definition	
10	· smapshot algorithms for FIFO channels	
11	. middle ware	
12	· distributed objects and RMI	
24.	termination detection.	
3	· termination aletection using distributed snapshots.	
4	· a spanning-tree based termination aletection algorithm	hm.
	distributed mutual exclusion algorithms:	
6	· lamport's algorithm	
	· ricart-agarwala's algorithm.	
	· sughal's dynamic information	
	· Structure algorithm	
	o quorum-based mutual exclusion algorithm.	

APRIL

24 Thursday 114-251 • WK 17

· mackawa's algorithm

•

10 6. deadlock detection in distributed systems

mitchell and merrit's algorithm for single resource model.

12

AS.

17. Consensus & agreement algorithm

2 • problem definition

(synchronous or asynchronous)

4

agreement in (message passing) synchronous

system with pailures

· agreement in asynchronous message passing systems

1

+ RPC, google protobule

+ logical clocks, vector clocks, generalized clocks

+ totally ordered multicase

+ mutual exclusion, leader election algorithms

	COOLER EC COM	TROL?	3.8.2020	
T		W	APRIL Priday 25	
+ deadlock old	tection / preve	ntion alge	orithms	her case.
+ consensus	algorithm, pa	xos (posse	ply raft)	
+ consistency, read your	eventual cons	istency, m	nonotonic rea	eds, —
12 + failure mo	des, types of	failures		
+ distributed	transactions,	2 phase cor	nmd, 3 ph	ase
+ CAP theore	<u>m</u>			
+ apache HD	FS, MapReduce			
+ google Big	Table			
	gnamo DB			
+ kaj ka				
TEXTBOOKS				
1. distributed con Systems. (2	opoting principl	es, algorith	ms, and	
2. alistributed sy		gorithmic	approach C	2007)
)14

3.8.2050

10 | 11 | 12 17 | 18 | 19 | 20 24 | 25 | 26 | 27

Saturday 116-249 • WK 17

APRIL

3. distributed computing principles and applications. (2004) 10 4. distributed systems - concepts and design. 11 5. advanced concepts in operating systems. 12

2014