2 2 A	0 "
รหสนกศกษา	Section

Basic Python Programming

100 คะแหน

File Header (กรณีไม่เขียน Header จะเสียคะแนน 5%)

#	!/usr/bin/env python3
#	ชื่อ (ไม่ต้องใส่นามสกุล)
#	รหัสนศ
#	Sec00x

คำชี้แจง: ให้ถือว่า input ที่เข้ามาจะอยู่ใน Range ที่โจทย์กำหนดเสมอ (ไม่ต้องพยายามแก้ปัญหา input ที่อยู่นอก Range ดังกล่าว)

1) **15 คะแนน** (m1p1_6xxxxxxxx.py) [Attachment] ให้เขียนฟังก์ชัน is_right_triangle(a, b, c) <u>เพื่อคืน ค่า</u>ผลลัพธ์การตรวจสอบว่า สามเหลี่ยมที่มีความยาวด้านระบุด้วย<u>จำนวนเต็มบวก</u> a b และ c เป็นสามเหลี่ยมมุมฉาก หรือไม่ ด้วยทฤษฎีของพีทาโกรัส โดยถ้าเป็นสามเหลี่ยมมุมฉากฟังก์ชันจะคืนค่า Boolean **True** และหากไม่เป็น สามเหลี่ยมมุมฉากฟังก์ชันจะคืนค่า Boolean **False** ทั้งนี้ความยาวด้าน a b และ c จะสามารถสร้างเป็นสามเหลี่ยม ได้เสมอ

Function Call	Output
<pre>is_right_triangle(3, 4, 5)</pre>	True
<pre>is_right_triangle(5, 3, 4)</pre>	True
is_right_triangle(5, 12, 13)	True
is_right_triangle(5, 13, 13)	False

2) **15 คะแนน (m1p2_6xxxxxxxx.py) [Attachment]** โดยปกติแล้วรหัสประจำตัวนักศึกษาในดินแดนล้านนาจะยาว 9 - 15 หลักแตกต่างกันไปตามการกำหนดของแต่ละสถานศึกษา แต่ไม่ว่าความยาวจะเป็นเท่าไร สองหลักแรกจะ เป็นปีที่เข้าศึกษา และสามหลักท้ายจะเป็นเลขสายรหัสเสมอ

ให้เขียนฟังก์ชัน transform_id(int_id) เพื่อ<u>คืนค่า String</u> ผลลัพธ์การแปลงจากรหัสนักศึกษา int_id (จำนวนเต็มบวกระหว่าง 9 - 15 หลัก) ให้อยู่ในรูปเลขสายรหัส (3 หลักสุดท้าย) ตามด้วย '-' และ ปีที่เข้า (2 หลัก แรก)

<u>Input</u>	<u>Output</u>
650241555	555-65
62345678911	911-62
I III allo IV	I AT THE VERSION

3) **15 คะแนน** (m1p3_6xxxxxxxx.py) **[Attachment]** ให้เขียนฟังก์ชัน count_4n5(n) เพื่อคืนค่าผลลัพธ์การนับ จำนวนตั้งแต่ 1 ถึงจำนวนเต็มบวก n (n > 1) ที่มี<u>ทั้ง 4 และ 5</u> อยู่ในหลักใด ๆ เช่นในช่วง 1 - 45 จะมีแค่ 45 ที่ตรง ตามข้อกำหนดนี้

<u>Input</u>	<u>Output</u>		
45	1		
99	2		

۰								
รหสเ	นกเ	ศกษา	١	 	 	 	 	

Section.....

4) **15 คะแนน** (m1p4_6xxxxxxxx.py) [Attachment] ให้เขียนฟังก์ชันที่มีการทำงานแบบ Destructive ชื่อ log2_list(*list_a*) เพื่อแทนที่แต่ละสมาชิกใน *list_a* ด้วยจำนวนจริงแทนค่า Log ฐาน 2 ของสมาชิกนั้น ๆ ทั้งนี้ *list_a* จะไม่เป็น List ว่าง และแต่ละสมาชิกจะเป็นจำนวนจริงบวกเสมอ โดยคำตอบที่ถูกจะต้องอยู่ภายใน epsilon=0.001

Hint: ฟังก์ชันจะไม่มีการคืนค่า

<u>Input</u>	<u>Output</u>		
Γ1. 2. 4 1	[0.0.1.0.2.0]		

[1, 2, 4]	[0.0, 1.0, 2.0]
[0.25, 0.5]	[-2.0, -1.0]

5) **20 คะแนน** (m1p5_6xxxxxxxx.py) [Attachment] ให้เขียนฟังก์ชัน reverse_cap(*list_a*) เพื่อ<u>คืนค่า</u> List ผลลัพธ์การแปลงแต่ละสมาชิกของ *list_a* (ที่ไม่เป็น List ว่าง) ให้อยู่ในรูป reverse capitalized กล่าวคือให้มีอักษร ตัวแรกเป็นตัวพิมพ์เล็ก และ ตัวที่เหลือเป็นตัวพิมพ์ใหญ่ โดยสมาชิกของ *list_a* จะเป็น String ที่ไม่เป็น String ว่าง และประกอบด้วยตัวอักษรในภาษาอังกฤษ (A-Z และ a-z) เท่านั้น

Hint: ฟังก์ชันทำงานแบบ Non-destructive

<u>Output</u>

['I', 'bought', 'two', 'bananas']	['i', 'bOUGHT', 'tWO', 'bANANAS']
['a', 'man', 'and', 'a', 'dog']	['a', 'mAN', 'aND', 'a', 'dOG']

6) **20 คะแนน** (m1p5_6xxxxxxxxx.py) [Attachment] ให้เขียนฟังก์ชัน harmonic_mean(*list_a*) เพื่อ<u>คืนค่า</u> List ผลลัพธ์การคำนวณค่าเฉลี่ยฮาร์มอนิกของสมาชิกใน *list_a* โดยที่ *list_a* ไม่เป็น List ว่างสมาชิกของ *list_a* เป็น จำนวนจริงที่ไม่เป็น 0 ทั้งนี้คำตอบที่ถูกจะต้องอยู่ภายใน epsilon=0.001

ค่าเฉลี่ยฮาร์มอนิก (Harmonic Mean หรือ H.M.) ของทุกจำนวนใน $list_a = [x_1, x_2, x_3, ..., x_n]$ คำนวณได้จาก สูตร

$$H.M. = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}$$

Hint: ฟังก์ชันทำงานแบบ Non-destructive

<u>Input</u> <u>Output</u>

mpat		Julius	
[1, 2, 2, 2]	Chiang Wa	1.6 IVEISILY	
[3, 3, 6]		3.6	