Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

Циклический код

Циклический код — это линейный код, такой, что для любого кодового слова

$$(a_0, a_1 \dots, a_{n-1})$$

слово $(a_{n-1}, a_0 \dots, a_{n-2})$ также является кодовым.

Циклический код — это подмножество C кольца $\mathbb{F}[x]/(x^n-1)$, такое, что

- $f_1, f_2 \in C \implies \forall \alpha, \beta \in \mathbb{F} \quad \alpha f_1 + \beta f_2 \in C$
- $f \in C \implies x \cdot f \in C$

Примитивный элемент

Рассмотрим поле \mathbb{F}_q , где $q=p^m$, p простое.

Известно, что множество $\mathbb{F}_q \setminus \{0\}$ образует циклическую группу по умножению.

Каждый образующий элемент этой группы (порядок которого равен (q-1)) называется *примитивным элементом поля*.

Иными словами, примитивный элемент — это такой $\lambda \in \mathbb{F}_q$, что $\{1,\lambda,\lambda^2,\dots,\lambda^{q-2}\}=\mathbb{F}_q\setminus\{0\}.$

Граница Боуза—Чоудхури—Хоквингема

Teopeма. (A.Hocquenghem'1959, R.C. Bose and D.K. Ray-Chaudhuri'1960)

Пусть λ — примитивный элемент \mathbb{F}_q .

Пусть порождающий многочлен g кода $C \subseteq \mathbb{F}_q^n$ таков, что в \mathbb{F}_q среди его корней есть (различные) числа вида $\lambda^b, \lambda^{b+1}, \dots, \lambda^{b+\delta-2}$

Тогда $d(C) \geq \delta$.

Граница Боуза—Чоудхури—Хоквингема

Проблема:

• Если применять теорему «в лоб», то невозможно доказать, что кодовое расстояние больше мощности кодового алфавита, даже если это и так.

Решение:

• Код рассмотрим как подмножество в \mathbb{F}_p^n , но при применении границы БЧХ погрузим поле \mathbb{F}_p в \mathbb{F}_{p^m} .

Факты о полях

• При любом простом p и любом m поле \mathbb{F}_p можно вложить как подполе в \mathbb{F}_{p^m} .

Обычно поле \mathbb{F}_p — это поле вычетов \mathbb{F}_p , а \mathbb{F}_{p^m} строится как множество многочленов с коэффициентами из \mathbb{Z}_p , которые складываются и умножаются по модулю некоторого многочлена степени m, неприводимого над \mathbb{Z}_p .

Тогда вложение \mathbb{F}_p в \mathbb{F}_{p^m} очевидно: элементам \mathbb{F}_p соответствуют многочлены степени ≤ 0 .

Факты о полях

• Элементам \mathbb{F}_{p^m} можно сопоставить вектора из \mathbb{F}_p^m , так, что сумме элементов \mathbb{F}_{p^m} соответствует сумма векторов в \mathbb{F}_p^m .

Раз \mathbb{F}_{p^m} — многочлены с коэффициентами из \mathbb{F}_p степени $\leq m$, то каждому элементу \mathbb{F}_{p^m} сопоставим вектор коэффициентов многочлена.

Пусть p простое.

Рассмотрим циклический код $C \subseteq \mathbb{F}_p[x]/(x^n-1)$ с порождающим многочленом g.

Коэффициенты g берутся из \mathbb{F}_p , но их можно считать одновременно элементами \mathbb{F}_p^m .

Рассмотрим код $\tilde{C} \subseteq \mathbb{F}_{p^m}[x]/(x^n-1)$, порождённый многочленом g (если считать, что $g \in \mathbb{F}_{p^m}[x]/(x^n-1)$).

Можно в том же духе считать, что $C \subseteq \tilde{C}$.

Коэффициенты g берутся из \mathbb{F}_p , но их можно считать одновременно элементами \mathbb{F}_p^m .

$$\tilde{\mathcal{C}} \subseteq \mathbb{F}_{p^m}[x]/(x^n-1)$$
 порождён g .

Пусть λ — примитивный элемент \mathbb{F}_{p^m} , и

$$g(\lambda^b) = \dots = g(\lambda^{b+\delta-2}) = 0$$

Тогда граница БЧХ гласит: $d(\tilde{C}) \geq \delta$.

Так как $C \subseteq \tilde{C}$, то и $d(C) \geq \delta$.

- Подбираем $g \in \mathbb{F}_{p^m}[x]/(x^n-1)$ с коэффициентами из \mathbb{F}_p , так, чтобы в \mathbb{F}_{p^m} было выполнено $g(\lambda^b) = \dots = g(\lambda^{b+\delta-2}) = 0$ и $g|(x^n-1)$.
- На основе g строим циклический код в $\mathbb{F}_p[x]/(x^n-1)$, для которого, по построению, выполнено $d(C) \geq \delta$.

Вопросы:

- Существует ли вообще такой g?
- Как оценить dim C?

Минимальный многочлен

Хорошие новости (без доказательства):

Для любого $\alpha \in \mathbb{F}_{p^m} \setminus \{0\}$ существует многочлен $f \in \mathbb{F}_{p^m}[x] \setminus \{0\}$ с коэффициентами из \mathbb{F}_p , для которого $f(\alpha) = 0$.

Если взять такой f минимальной степени, то

- f неприводим над \mathbb{F}_p ,
- $\deg f \leq m$,
- $f \mid (x^{p^m-1}-1)$.

Такой f называется минимальным многочленом элемента lpha.

Следствия из хороших новостей:

- Если $n=p^m-1$, то существует g, такой, что $g(\lambda^b)=\dots=g(\lambda^{b+\delta-2})=0$ и $g|(x^n-1)$, причём $\deg g \leq (\delta-1)m$.
- Такой g можно взять как

$$LCM(f_{\lambda b}, \dots, f_{\lambda b+\delta-2})$$

где $f_{\lambda^b}, \dots, f_{\lambda^{b+\delta-2}}$ — минимальные многочлены соответствующих элементов.

Окончательный способ построения кода:

- Берём $n\coloneqq p^m-1$ и $g\coloneqq \mathrm{LCM}\big(f_{\lambda^b},...,f_{\lambda^{b+\delta-2}}\big)$ где $f_{\lambda^b},...,f_{\lambda^{b+\delta-2}}$ минимальные многочлены соответствующих элементов в \mathbb{F}_p^m .
- Строим циклический код в \mathbb{F}_p , используя g в качестве порождающего многочлена наименьшей возможной степени

Получаем код с параметрами $[p^m-1,k,d]_p$, где

- $k = n \deg g \ge n (\delta 1)m$
- $d > \delta$

Задача восстановления синхронизации

Пусть по каналу передаются слова ... a, b, c ...

$$a_1 a_2 \dots a_n b_1 b_2 \dots b_n c_1 c_2 \dots c_n \dots$$

Если в канале выпадают символы, может произойти ошибка синхронизации:

$$a_{i+1}a_{i+2} \dots a_n b_1 b_2 \dots b_n c_1 c_2 \dots c_n \dots$$

и есть шанс неправильно разбить принятую последовательность на слова:

$$a_{i+1} \dots a_n b_1 \dots b_i \mid b_{i+1} \dots b_n c_1 \dots c_i \mid c_{i+1} \dots$$

Если при этом такие слова окажутся кодовыми, то мы далеко не сразу обнаружим ошибку!

Задача восстановления синхронизации

При потере синхронизации имеем разбиение:

$$a_{i+1} \dots a_n b_1 \dots b_i \mid b_{i+1} \dots b_n c_1 \dots c_i \mid c_{i+1} \dots$$

Циклические коды очень плохие с точки зрения восстановления синхронизации: если $\boldsymbol{a} \in \mathcal{C}$ и в канал передавалось $\boldsymbol{a} = \boldsymbol{a} = \boldsymbol{a} = \boldsymbol{a}$...

то при потере синхронизации мы обнаружим ошибку только в самом конце приёма.

Свобода от запятой

Пусть по каналу передаются слова ... a, b, c ...

$$a_1 a_2 \dots a_n b_1 b_2 \dots b_n c_1 c_2 \dots c_n \dots$$

Если при приёме слова $m{b}$ «запоздать» на i тактов, то мы примем слово

$$b_{i+1} \dots b_n c_1 \dots c_i$$

а если «забежать вперёд» на i тактов, примем

$$a_{n-i+1} \dots a_n b_1 \dots b_{n-i}$$

Код обладает *свободой от запятой степени r*, если для любых кодовых слов a, b, c и любого $i \le r$ коду не принадлежат слова $b_{i+1} \dots b_n c_1 \dots c_i$ и $a_{n-i+1} \dots a_n b_1 \dots b_{n-i}$.

Свобода от запятой

Код обладает *свободой от запятой степени r*, если для любых кодовых слов a, b, c и любого $i \le r$ коду не принадлежат слова $b_{i+1} \dots b_n c_1 \dots c_i$ и $a_{n-i+1} \dots a_n b_1 \dots b_{n-i}$.

Если $r \ge \frac{n}{2}$, то считаем, что $r = \infty$, а код называется *кодом без* запятой.

Если $r < \infty$, то при приёме можно (перебором) исправить синхросдвиг на $\leq \frac{r}{2}$ символов.

Если $r = \infty$, то может быть исправлен любой синхросдвиг.

Свобода от запятой

Код обладает *свободой от запятой степени r*, если для любых кодовых слов a, b, c и любого $i \le r$ коду не принадлежат слова $b_{i+1} \dots b_n c_1 \dots c_i$ и $a_{n-i+1} \dots a_n b_1 \dots b_{n-i}$.

- Циклические коды не годятся
- Зато смежные классы циклических кодов вполне!

Смежные классы линейных кодов

Пусть $C \subseteq \mathbb{F}^n$ — линейный код.

Его смежный класс — это множество вида

$$C + a \coloneqq \{c + a \mid c \in C\}$$

Заметьте: при $a \notin C$ такой код не линейный!

Для циклического кода с порождающим многочленом g смежный класс имеет вид

$$\{f \cdot g + s \mid f \in \mathbb{F}[x]/(x^n - 1)\}$$

для некоторого $s \in \mathbb{F}[x]/(x^n-1)$.

Для циклического кода с порождающим многочленом g смежный класс имеет вид

$$\{f \cdot g + s \mid f \in \mathbb{F}[x]/(x^n - 1)\}$$

для некоторого $s \in \mathbb{F}[x]/(x^n-1)$.

Теорема.

При $s\equiv 1$ степень свободы от запятой смежного класса циклического кода равна

$$\deg g - 1$$

при $n \ge 2 \deg g$, и равна ∞ при $n < 2 \deg g$. (Подробно обоснуем только нижнюю оценку.)

Пусть передавались слова $a, b \in C$.

Если при приёме слова $oldsymbol{a}$ произошло запаздывание на i тактов, то будет принято слово, которому отвечает многочлен

$$x^{-i}\cdot (f_a-t_1)+x^{n-i}\cdot t_2,$$

где t_1 и t_2 — многочлены, образованные i первыми координатами слов ${\pmb a}$ и ${\pmb b}$ соответственно, а $f_{\pmb a}$ — многочлен, отвечающий слову ${\pmb a}$.

В кольце
$$\mathbb{F}[x]/(x^n-1)$$
 имеем $x^{-i}\cdot (f_a-t_1)+x^{n-i}\cdot t_2=x^{n-i}\cdot (f_a-t_1+t_2)$

Аналогично, если при приёме слова $m{b}$ произошло «забегание вперёд», то будет принято слово $x^i \cdot f_{\pmb{b}} + (t_3 - t_4)$, где t_3 и t_4 — многочлены, образованные i старшими разрядами слова $m{a}$ и i младшими разрядами $m{b}$ соответственно. При этом $\deg t_1$, $\deg t_2$, $\deg t_3$, $\deg t_4 < i$

Итак, в случае рассинхронизации принятое слово будет иметь вид

$$x^{n-i} \cdot (\tilde{f} + \Delta)$$
 или $x^i \cdot \tilde{f} + \Delta$,

где $\tilde{f} \in C$ и $\deg \Delta < i$.

Нужно, чтобы $x^{n-i} \cdot (\tilde{f} + \Delta) \notin C$ и $x^i \cdot \tilde{f} + \Delta \notin C$ при $0 < i \le r$.

Пусть C — смежный класс ц.к. вида

$$\{f \cdot g + 1 \mid f \in \mathbb{F}[x]/(x^n - 1)\}$$

Нужно, чтобы для любых f_1, f_2, Δ, i , таких, что $\deg \Delta < i$ и $0 < i \le r$ в кольце $\mathbb{F}[x]/(x^n-1)$ было выполнено

$$f_1 \cdot g + 1 \neq x^{n-i} \cdot (f_2 \cdot g + 1 + \Delta)$$

$$f_1 \cdot g + 1 \neq x^i \cdot (f_2 \cdot g + 1) + \Delta$$

Это равносильно тому, что для любых f , Δ , i

$$f \cdot g \neq x^i + \Delta - 1$$

Пусть C — смежный класс ц.к. вида

$$\{f \cdot g + 1 \mid f \in \mathbb{F}[x]/(x^n - 1)\}$$

Нужно, чтобы для любых f , Δ , i , таких, что $\deg \Delta < i$ и $0 < i \le r$ в кольце $\mathbb{F}[x]/(x^n-1)$ было выполнено

$$f \cdot g \neq x^i + \Delta - 1$$

Имеем $x^i + \Delta - 1 \not\equiv 0$ при любом i > 0.

Т.к. $\deg(x^i + \Delta - 1) = i \le r$, то достаточно, чтобы $\deg g > r$.

Это и требовалось доказать.

Циклическое представление кодов Хемминга

Пусть λ — примитивный элемент поля \mathbb{F}_{2}^{m} .

Пусть g — минимальный многочлен для λ , и $C \subset \mathbb{F}_2^{2^{m}-1}$ — код, порождённый g.

Любой кодовый многочлен $f \in C$ имеет корень, равный λ . Поэтому кодовые вектора (c_0, \dots, c_{2^m-2}) удовлетворяют соотношению $c_0 + c_1\lambda + c_2\lambda^2 + \dots + c_{2^m-2}\lambda^{2^m-2} = 0$

Циклическое представление кодов Хемминга

Кодовые вектора (c_0,\dots,c_{2^m-2}) удовлетворяют соотношению $c_0+c_1\lambda+c_2\lambda^2+\dots+c_{2^m-2}\lambda^{2^m-2}=0$

Так как $\{\lambda^0,\lambda^1,\dots,\lambda^{2^m-2}\}=\mathbb{F}_{2^m}\setminus\{0\}$, и так как каждому элементу \mathbb{F}_{2^m} отвечает вектор из \mathbb{F}_2^m , то проверочная матрица кода равна

$$(v_{\lambda^0}, v_{\lambda^1}, \dots, v_{\lambda^2} m_{-2}) \in \mathbb{F}_2^{m \times (2^m - 1)}$$

где v_{λ^i} — вектор, отвечающий λ^i .

Столбцы матрицы — все ненулевые вектора \mathbb{F}_2^m .

Циклическое представление кодов Хемминга

Утверждение.

Двоичный код Хемминга с параметрами $[2^m-1,2^m-1-m,3]$ эквивалентен циклическому коду, порождённому минимальным многочленом примитивного элемента \mathbb{F}_{2^m} .

Коды Голея

М. Голей (М. J. E. Golay) предложил два кода, позже было замечено, что они циклические:

- [23,12,7]-код с порождающим многочленом $1+x+x^5+x^6+x^7+x^9+x^{11}$
- $[11,6,5]_3$ -код с порождающим многочленом $2+x^2+2x^3+x^4+x^5$

Расширенные коды Голея:

- [23,12,7]-код \rightarrow [24,12,8]-код
- $[11,6,5]_3$ -код \rightarrow $[12,6,6]_3$ -код

Граница Хемминга (сферической упаковки).

Для любого $(n,M,d)_q$ -кода имеем

$$M \le \frac{q^n}{\left|S_{\lfloor (d-1)/2\rfloor}(\mathbf{0})\right|}$$

Для любого линейного $[n,k,d]_q$ -кода $\left|S_{\lfloor (d-1)/2\rfloor}(\mathbf{0})\right| \leq q^{n-k}$

Коды, достигающие эту границу, — совершенные.

$$|S_{|(d-1)/2|}(\mathbf{0})| = q^{n-k}$$

Утверждение.

Коды Голея и Хемминга — совершенные.

Доказательство:

- Для [23,12,7]-кода Голея: $\sum_{i=0}^{3} {23 \choose i} = 2^{23-12}$
- Для $[11,6,5]_3$ -кода Голея: $\sum_{i=0}^2 \binom{n}{i} \cdot 2^i = 3^{11-6}$
- Для двоичных кодов Хемминга проверяли ранее. Теперь проверим в общем случае.

Проверочная матрица q-ичного кода Хемминга содержит все линейно независимые столбцы высоты m.

Получается
$$\left[n = \frac{q^{m_{-1}}}{q_{-1}}, k = n - m, 3\right]_q$$
-код.

Проверяем соотношение
$$\left|S_{\lfloor (d-1)/2\rfloor}(\mathbf{0})\right| = q^{n-k}$$
: $|S_1(\mathbf{0})| = 1 + n(q-1) = q^m = q^{n-k}$

Тривиальные совершенные коды

• $(n,1,n)_q$ -код (состоит из одного слова)

• $(n,2,n)_2$ -код (пара слов-антиподов) при нечётных n

Теорема. (В. А. Зиновьев, В. К. Леонтьев '1972, А. Tietäväinen '1973, J. H. van Lint '1971, M. R. Best '1983, Y. Hong '1983, V. Pless '1968) — *Б/д.*

- Нетривиальных совершенных кодов с расстоянием > 7 не существует.
- Единственным с точностью до эквивалентности совершенным кодом с расстоянием 7 является [23,12,7]-код Голея.
- Любой нетривиальный код над алфавитом мощности $q=p^m$ с расстоянием ≤ 5 либо эквивалентен $[11,6,5]_3$ -коду Голея, либо имеет те же длину, число слов и кодовое расстояние, что и $\left[\frac{q^{t-1}}{q-1},\frac{q^{t-1}}{q-1}-t,3\right]_a$ -код Хемминга.

Следствие теоремы:

Для любого совершенного кода над \mathbb{F}_q существует линейный код с той же длиной слов, числом слов и кодовым расстоянием.

Нерешённая проблема:

Существуют ли совершенные коды над алфавитами мощности $\neq p^m$?

Теорема. (Ю. Л. Васильев '1962, обобщения: J. Schonheim '1968, B. Lindstrom '1969)

Для любого $q = p^m$ существуют совершенные коды с расстоянием 3, не эквивалентные линейным кодам.

Докажем только для случая q=2:

При любом m существует нелинейный $(2^m-1,2^{2^m-m-1},3)$ -код.

Лемма. (Конструкция Васильева)

Пусть $C',C''\subseteq \mathbb{F}_2^n$ — коды с расстояниями d' и d'', причём d' нечётно. Положим $\pi(\boldsymbol{a})\coloneqq \sum_i a_i$.

Для произвольного $\gamma: C'' \to \mathbb{F}_2$ рассмотрим код $C \coloneqq \{ (\boldsymbol{c}' \mid \boldsymbol{c}' + \boldsymbol{c}'' \mid \pi(\boldsymbol{c}') + \gamma(\boldsymbol{c}'')), \text{где } \boldsymbol{c}' \in C', \boldsymbol{c}'' \in C'' \}$

Тогда C является $(2n+1,|C'|\cdot|C''|,d)$ -кодом, где $d\geq \min\{2d'+1,d''\}$

Доказательство:

Нетривиальна только оценка d(C). (Похоже на конструкцию Плоткина.)

Доказательство леммы Васильева

Возьмём пару различных слов кода \mathcal{C} :

$$\mathbf{a} = (\mathbf{c}' \mid \mathbf{c}' + \mathbf{c}'' \mid \pi(\mathbf{c}') + \gamma(\mathbf{c}''))$$

$$\hat{\mathbf{a}} = (\hat{\mathbf{c}}' \mid \hat{\mathbf{c}}' + \hat{\mathbf{c}}'' \mid \pi(\hat{\mathbf{c}}') + \gamma(\hat{\mathbf{c}}''))$$

Рассматриваем случаи:

•
$$c' \neq \hat{c}'$$
 и $c'' = \hat{c}''$.
Если $d(c', \hat{c}') = d'$, то $\pi(c') \neq \pi(\hat{c}')$ и следовательно $d(\pmb{a}, \hat{\pmb{a}}) = 2d' + 1$.
Если $d(c', \hat{c}') > d'$, то $d(\pmb{a}, \hat{\pmb{a}}) > 2d'$.

Доказательство леммы Васильева

Возьмём пару различных слов кода \mathcal{C} :

$$\mathbf{a} = (\mathbf{c}' \mid \mathbf{c}' + \mathbf{c}'' \mid \pi(\mathbf{c}') + \gamma(\mathbf{c}''))$$
$$\hat{\mathbf{a}} = (\hat{\mathbf{c}}' \mid \hat{\mathbf{c}}' + \hat{\mathbf{c}}'' \mid \pi(\hat{\mathbf{c}}') + \gamma(\hat{\mathbf{c}}''))$$

Рассматриваем случаи:

• $c' = \hat{c}'$ и $c'' \neq \hat{c}''$. Тогда, очевидно, $d(\pmb{a}, \hat{\pmb{a}}) \geq d(c'', \hat{c}'') \geq d''$.

Доказательство леммы Васильева

$$\mathbf{a} = (\mathbf{c}' \mid \mathbf{c}' + \mathbf{c}'' \mid \pi(\mathbf{c}') + \gamma(\mathbf{c}''))$$

$$\mathbf{\hat{a}} = (\mathbf{\hat{c}}' \mid \mathbf{\hat{c}}' + \mathbf{\hat{c}}'' \mid \pi(\mathbf{\hat{c}}') + \gamma(\mathbf{\hat{c}}''))$$

Остался случай $c' \neq \hat{c}'$ и $c'' \neq \hat{c}''$:

Пусть $m{c}'$ и $\hat{m{c}}'$ отличаются на множестве позиций D_1 , а $m{c}''$ и $\hat{m{c}}''$ отличаются на множестве позиций D_2 .

Тогда $m{c}' + m{c}''$ и $m{\hat{c}}' + m{\hat{c}}''$ отличаются по крайней мере на множестве $D_2 \setminus D_1$.

Следовательно

$$d(a, \hat{a}) \ge |D_1| + |D_2 \setminus D_1| \ge |D_2| \ge d''$$

Теорема Васильева

Следствие из леммы Васильева.

Пусть $C'' \subseteq \mathbb{F}_2^n$ — код с расстоянием 3.

Для произвольного отображения $\gamma: C'' \to \mathbb{F}_2$ код $\{(c' \mid c' + c'' \mid \pi(c') + \gamma(c'')), \text{где } c' \in \mathbb{F}_2^n, c'' \in C''\}$

является $(2n+1,2^n\cdot |C''|,3)$ -кодом.

Доказательство: применяем Лемму с $C' \coloneqq \mathbb{F}_2^n$.

Замечание: если отображения γ и $(\gamma + 1)$ нелинейны, то получаемый код не эквивалентен никакому линейному.

Теорема Васильева

Следствие из леммы Васильева.

Если существует (n, M, 3)-код, то существует $(2n + 1, 2^n \cdot M, 3)$ -код, не эквивалентный никакому линейному.

Теорема.

Для любого $m \ge 2$ существует совершенный $(2^m-1,2^{2^m-m-1},3)$ -код, не эквивалентный никакому линейному.

Доказательство:

Заметим, что при каждом $m \geq 2$ есть $\left(2^{m-1}-1,2^{2^{m-1}-m},3\right)$ -код Хемминга, и применим Следствие с $n\coloneqq 2^{m-1}-1$ и $M\coloneqq 2^{2^{m-1}-m}$.

Линейные коды не всегда лучшие

Теорема. (F. P. Preparata '1968, J.-M. Goethals and S. L. Snover '1972)

- Для $\forall m \geq 2$ существует $(4^m, 2^{4^m-4m}, 6)$ -код.
- Любой линейный код длины 4^m с расстоянием 6 имеет меньшую мощность.

Коды с параметрами $(4^m, 2^{4^m-4m}, 6)$ называют кодами Препараты.