Computer Security Foundations Week 13: Network Security Threats and Countermeasures

Bernardo Portela

L.EIC - 24

Classes of Intruders - Cyber Criminals

- Individuals or members of an organized crime group, with the goal of financial reward
- Activities include, but not limited to
 - Identity theft
 - Theft of financial credentials
 - Corporate espionage
 - Data theft
 - Data ransoming

- Information exchanged in underground forums to trade tips/data and coordinate attacks
- Anonymous networks (Tor et. al.) are very good for this

Classes of Intruders - State-Sponsored Organizations

- Groups of hackers sponsored by governments to conduct espionage or sabotage activities
- A.k.a Advanced Persistent Threats
- Covert nature
- Persistence over extended periods

 Widespread nature and scope by a wide range of countries (China, Russia, USA, UK, and intelligence allies)

Classes of Intruders - Activists

- Individuals motivated by social or political causes
 - Working as insiders
 - Members of a larger group
- Also known as hacktivists
- Skill level often not high
- Goal is to promote and publicize their cause, typically through:
 - Website defacement.
 - Denial-of-service attacks
 - Theft and distribution of data, resulting in negative publicity or compromise of their targets

Classes of Intruders - Others

- Hackers with motivations other than previously listed
- Include classic hackers/crackers
- Motivated by technical challenge or peer-group esteem and reputation
- Many responsible for discover new vulnerabilities

- Given the wide availability of toolkits, there is a pool of "hobby hackers" exploring system/network security challenges
 - That's you guys!

intruder Skill Levels

- Apprentice
- Journeyman
- Master

Intruder Skill Levels

Apprentice

- Hackers with minimal technical skill, who primarily use existing attack toolkits
- They likely comprise the largest number of attackers, including many criminal/activist attackers
- Given their use of existing known tools, these attackers are the easiest to defend against
- Also known as "script-kiddies" from plug-and-play usage
- Journeyman
- Master

Intruder Skill Levels

Apprentice

Journeyman

- Hackers with sufficient technical skills to modify and extend attack toolkits to use newly discovered, or purchased, vulnerabilities
- They may be able to locate new vulnerabilities to exploit that are similar to some already known
- Adapt tools for use by others
- These hackers are found in all intruder classes

Master

Intruder Skill Levels

- Apprentice
- Journeyman
- Master
 - Attackers with high-level technical skills capable of discovering brand new categories of vulnerabilities
 - Write new powerful attack toolkits
 - Some of the better known classical hackers are at this level
 - Some are employed by state-sponsored organizations
 - Defending against these attacks is of the highest difficulty

Examples of Intrusion

- Remote root compromise
- Web server defacement
- Guessing/cracking passwords
- Copying databases containing credit card numbers
- Viewing sensitive data without authorization
- Running a packet sniffer
- Distributing a pirated software
- Using an unsecured AP to access internal network
- Impersonating an executive to get information
- Using an unattended workstation

- A form of attack on the availability of services
- Is often done in a distributed fashion (DDoS)
- Resource categories that can be attacked:
- Network bandwidth
- System resources

Application resources

- A form of attack on availability of services
- Is often done in a distributed fashion (DDoS)
- Resource categories that can be attacked:
- Network bandwidth

- Relates to the capacity of the network links connecting a server to the Internet
- For most organizations, this is their connection to their ISP
- System resources
- Application resources

- A form of attack on availability of services
- Is often done in a distributed fashion (DDoS)
- Resource categories that can be attacked:
- Network bandwidth
- System resources

- Aims to overload or crash the network handling software
- Consume resources in the system (e.g. buffers for arriving) packets, tables of open connections)
- Application resources

Denial-of-Service

- A form of attack on availability of services
- Is often done in a distributed fashion (DDoS)
- Resource categories that can be attacked:
- Network bandwidth
- System resources
- Application resources
 - Propose several requests to a server within the target system
 - Each request consumes significant resources, limiting the server response ability

The goal of the attack is to **overwhelm** the capacity of the network connection to the victim organization

• E.g. Internet Control Message Protocol echo request packets

The goal of the attack is to **overwhelm** the capacity of the network connection to the victim organization

- E.g. Internet Control Message Protocol echo request packets
- Traffic can be handled by higher capacity links on the path, but packets are **discarded** as capacity increases
- Network performance is noticeably affected
- Source of the attack is clearly identified
 - ... unless a spoofed address is used
 - Zombie servers are very useful!

A network of computers infected with malicious software (a.k.a. malware) that allows them to be controlled by an attacker (zombies)

- Botnets are used to commit a variety of cybercrimes
 - Spam; Scams; Hacks; DDoS

Botnets

A network of computers infected with malicious software (a.k.a. malware) that allows them to be controlled by an attacker (zombies)

- Botnets are used to commit a variety of cybercrimes
 - Spam; Scams; Hacks; DDoS

Attack-as-a-Service

- Command and Control servers (C&C) are responsible for commanding infected computers
- Allows the attacker (bot-herder) to put the botnet to use
- Services of botnets can be provided to paying customers
 - The larger the botnet, the more powerful the cybercrime
 - More computational power; more messages can be sent in parallel

Not rocket science

UPD Flood Attack

- Hacker sends UDP packets to a random port
- Generates illegitimate UDP packets
- Causes system to tie up resources sending back packets

Not rocket science

UPD Flood Attack

- Hacker sends UDP packets to a random port
- Generates illegitimate UDP packets
- Causes system to tie up resources sending back packets

Common tool for the job: diagnostic echo service (measure RTTs)

- Respond with UDP packet back to the source
- If service is not running, packet is discarded. ICMP destination unreachable packet returned to the sender
- Achieved its goal of occupying capacity on the link to the server!

- Attacker sends packets to a known service on the intermediary with a *spoofed* source address on the actual victim
- Intermediary responds to the victim
- "Reflects" the attack off the intermediary (reflector)

Goal: To generate enough volumes of packets to flood the link to the target system without alerting the intermediary

- Requirement: Source address spoofing (easy)
- Echo service (port 07) sends back whatever it receives
- CharGen is a character generation service
 - Used for debugging (of course...)
- Huge amounts of data form an endless loop!

- Requirement: Source address spoofing (easy)
- Requirement: Access to a server within the network
- Server broadcasts echo "from Alice" to the whole network
- Alice is blasted by echo messages from a bunch of machines

- Attacker sends SYN with spoofed source
 - Source does not exist, will not reply
- Server replies with SYN-ACK
 - and after time out, sends another, and another...
- Eventually, connection request is assumed to fail
- Until that happens, these occupy table space
- Rinse and repeat

- DNS requests with spoofed src IP address as the target
- Exploit DNS to convert small request to much larger response
 - Argument "ANY" produces large responses
 - 60 byte request can lead to a 512-4000 byte response
- Requests to multiple connected servers, flooding the target

Countermeasures

- DoS attacks cannot be prevented entirely
- High traffic volumes may be legitimate
- 1. Attack prevention and preemption
- Attack detection and filtering
- Attack source traceback and identification
- 4. Attack reaction

- DoS attacks cannot be prevented entirely
- High traffic volumes may be legitimate
- 1. Attack prevention and preemption
 - Before the attack occurs
 - Enforce policies for resource consumption
 - Provide backup resources available on demand
- Attack detection and filtering
- Attack source traceback and identification
- 4. Attack reaction

Countermeasures

- DoS attacks cannot be prevented entirely
- High traffic volumes may be legitimate
- 1. Attack prevention and preemption
- 2. Attack detection and filtering
 - During the attack
 - Look for suspicious patterns of behavior
 - Filter packets likely to be part of the attack
- Attack source traceback and identification
- 4. Attack reaction

- DoS attacks cannot be prevented entirely
- High traffic volumes may be legitimate
- 1. Attack prevention and preemption
- 2. Attack detection and filtering
- Attack source traceback and identification.
 - During/after the attack
 - Identify sources of attack
 - Prepare whitelists/blacklists
- 4. Attack reaction

- DoS attacks cannot be prevented entirely
- High traffic volumes may be legitimate
- 1. Attack prevention and preemption
- 2. Attack detection and filtering
- Attack source traceback and identification.
- 4. Attack reaction

- After the attack
- Eliminate effects of the attack
- I.e. cleanup the system

- Goal is to deny resources
- Getting servers offline; or imposing delays

- Goal is to deny resources
- Getting servers offline; or imposing delays
- Multiple flavours of attacks
 - Flooding ping
 - Echo-Chargen
 - Smurf Attack
 - SYN Spoofing
 - DNS amplification

- Goal is to deny resources
- Getting servers offline; or imposing delays
- Multiple flavours of attacks
 - Flooding ping
 - Echo-Chargen
 - Smurf Attack
 - SYN Spoofing
 - DNS amplification
- Methodologies to bolster attack effectiveness
 - **Botnets**
 - Reflection attacks

- Goal is to deny resources
- Getting servers offline; or imposing delays
- Multiple flavours of attacks
 - Flooding ping
 - Echo-Chargen
 - Smurf Attack
 - SYN Spoofing
 - DNS amplification
- Methodologies to bolster attack effectiveness
 - **Botnets**
 - Reflection attacks
- Countermeasures entail a multitude of good practices:
 - Good access policies
 - Active monitoring for attacks
 - Mechanisms for traceback and identification.
 - Blocking attacks and recovering systems

Firewalls •000000000000

Firewalls

- Firewall decides what goes in and out of an internal network
- Access control for the network
- At a multitude of granularity levels

Firewalls

A firewall is like a **secretary**

- To meet with an executive:

- 1. Contact the secretary
- 2. Secretary will assess if the meeting is important
- 3. Many requests are filtered according to relevance metrics
- If you want to meet the chair of CS department...
 - Secretary will do some filtering
- If you want to meet the President
 - Secretary will do a lot of filtering

Managing what comes and and goes out

Firewalls

A firewall is like a **secretary**

- To meet with an executive:
 - 1. Contact the secretary
 - 2. Secretary will assess if the meeting is important
 - 3. Many requests are filtered according to relevance metrics
- If you want to meet the chair of CS department...
 - Secretary will do some filtering
- If you want to meet the President
 - Secretary will do a lot of filtering

Criteria under which "meetings can be scheduled"

- Filtering done according to an access policy
- Types of traffic
- Address ranges and protocols
- Applications and content types

Capabilities and Limits

Firewalls 0000000000000

Capabilities

- Defines a single choke point
- Provides a location for monitoring security events
- Convenient platform for several internet functions that are not security related (e.g. NAT)
- Can serve the platform for IPSec (tunnel mode)

Capabilities and Limits

Firewalls 0000000000000

Capabilities

- Defines a single choke point
- Provides a location for monitoring security events
- Convenient platform for several internet functions that are not security related (e.g. NAT)
- Can serve the platform for IPSec (tunnel mode)

Limitations

- Cannot protect against attacks bypassing the firewall
- May not protect fully against internal threats
- Laptop, PDA, or portable storage device may be infected outside corporate network, and then used internally
- Improperly secured wireless LAN can be accessed outside the organization

Firewalls 0000000000000

- Operates at the network layer
- Observes IP packets and assesses their importance
- Why can this be incompatible with IPSec?

Firewalls 000000000000000

Configured via Access Control Lists (ACLs)

Action	Source IP	Dest IP	Source Port	Dest Port	Protocol	Flag Bits
Allow	Inside	Outside	Any	80	HTTP	Any
Allow	Outside	Inside	80	>1023	HTTP	ACK
Deny	All	All	All	All	All	All

- Traffic is restricted to web browsing:
- Accept all outgoing HTTP traffic to port 80
- Accept all incoming HTTP ACK replies
- Reject everything else

Firewalls 00000 000000000

Advantages

- Speed
- Simplicity
- Transparent to users

Firewalls

Advantages

Classifying Intruders

- Speed
- Simplicity
- Transparent to users

Disadvantages

- No concept of state
- Vulnerable to attacks on TCP/IP bugs
- Cannot see TCP connections
- Unknowing of application data and context

Firewalls

- Adds state to the packet filter
- Operates at the transport layer
- Remembers TCP connections (e.g. flag bits)
- Can even remember UDP packets (e.g. DNS requests)

Firewalls 00000000000000

Advantages

- Can do everything a packet filter can
- Keeps track on ongoing connections
- Relies on protocol logic to detect misbehaviors

Firewalls 0000000000000000

Advantages

Classifying Intruders

- Can do everything a packet filter can
- Keeps track on ongoing connections
- Relies on protocol logic to detect misbehaviors

Disadvantages

- Cannot see application data
 - Lacks internal application logic
 - Cannot accurately detect deviations from expected behavior
- Slower than packet filtering

Application Proxy

Firewalls 00000000000000

- A proxy is something that acts on your behalf
- Application proxy looks at incoming application data
- Verifies that data is safe before allowing passage

Firewalls

a.k.a. Application-Level Gateway

Additional security layer

- For every supported application protocol
 - SMTP, POP3, HTTP, SSH, ...
 - Create a new packet before sending to the lower layers
 - Validation done at the data granularity
 - Spoofing packet implies convincing proxy to accept

Application Proxy

a.k.a. Application-Level Gateway

Additional security layer

- For every supported application protocol
 - SMTP, POP3, HTTP, SSH, ...
 - Create a new packet before sending to the lower layers
 - Validation done at the data granularity
 - Spoofing packet implies convincing proxy to accept
- Large amount of processing per connection
- Can enforce application-specific policies
- Highly configurable

Firewalls

Advantages

- Complete view of connections and application data
 - Can capture nuanced behavior
 - E.g. disable specific features, or specify execution criteria
- Filter bad data at application layer
 - Prevents software-level errors and vulnerability exploitation
 - E.g. macros allowing for SQL injection or buffer overflow

Application Proxy

Firewalls

Advantages

- Complete view of connections and application data
 - Can capture nuanced behavior
 - E.g. disable specific features, or specify execution criteria
- Filter bad data at application layer
 - Prevents software-level errors and vulnerability exploitation
 - E.g. macros allowing for SQL injection or buffer overflow

Disadvantages

- Performance takes a toll yet another security layer
- Each application must have the associated proxy code

Firewall Policies

Permissive

Classifying Intruders

Allow by default; block some

- Easy to make mistakes
- Mistakes can lead to security breaches
- Exploits can be covert, i.e. not obvious that they are occurring

Restrictive

Block by default; allow some

- Much more secure
- Mistakes can lead to availability problems
- Exploits depend on the security requirements and specifications

Firewall Policies

Firewalls

Permissive

Allow by default; block some

- Easy to make mistakes
- Mistakes can lead to security breaches
- Exploits can be covert, i.e. not obvious that they are occurring

Examples:

- IRC (messaging)
- Telnet
- SNMP (routing)
- Echo

Restrictive

Block by default; allow some

- Much more secure
- Mistakes can lead to availability problems
- Exploits depend on the security requirements and specifications

Examples:

- HTTP
- POP3
- SMTP (mail)
- SSH

- Allow from internal network to Internet.
 - HTTP, FTP, HTTPS, SSH, DNS
- Allow reply packets

- Allow from anywhere to Mail server
 - TCP port 25 (SMTP) only
- Allow from Mail server to Internet.
 - SMTP, DNS
- Allow from inside to Mail server
 - SMTP. POP3
- Block everything else

Firewalls

0000000000000

- Firewalls monitor all traffic in a network
 - They can allow by default, and block some: permissive
 - They can block by default, and allow some: restrictive

Firewalls 000000000000000

- Firewalls monitor all traffic in a network
 - They can allow by default, and block some: permissive
 - They can block by default, and allow some: restrictive
- Multiple types of firewalls
- Packet filter

- Stateless; lightweight
- Coarse-grained control of traffic
- Stateful packet filter
 - Slightly more demanding
 - Can use protocol logic to understand if a certain set of interactions makes sense, or if it reflect malicious intent
- Application proxy
 - Quite more intrusive
 - Can use application logic to reason over payload contents

Requirements for an IDS:

Availability

- Run continuously
- Provide graceful degradation of service

Requirements for an IDS:

Availability

- Run continuously
- Provide graceful degradation of service
- Security
 - Be fault tolerant
 - Resist subversion

Intrusion Detection System

Requirements for an IDS:

- Availability
 - Run continuously
 - Provide graceful degradation of service
- Security
 - Be fault tolerant
 - Resist subversion
- Performance
 - Impose a minimal overhead on a system
 - Scale to monitor large number of systems

Intrusion Detection System

Requirements for an IDS:

- Availability
 - Run continuously
 - Provide graceful degradation of service
- Security
 - Be fault tolerant
 - Resist subversion
- Performance
 - Impose a minimal overhead on a system
 - Scale to monitor large number of systems
- Adaptability
 - Configured according to system security policies
 - Adapt to changes in systems/users/attack patterns
 - Allow dynamic reconfiguration

- Monitor activities on hosts for
 - Known attacks; Suspicious behavior
- Designed to detect attacks such as
 - Buffer overflow; Escalation of privilege
- Can detect both external and internal intrusions
- Little or no view of network activities

Network-Based IDS

- Monitor activity at selected points of the network for known attacks
- Examines network transport and application level protocols
- Designed to detect attacks such as:
 - Denial-of-service; network probes; malformed packets
- Some overlap with firewall
- Little to no view of host-based attacks.

Signature Detection

- Set of known malicious data patterns or attack rules
- Also known as misuse detection.
- Only identifies known attacks for which it has patterns or rules

IDS Methodologies

Signature Detection

- Set of known malicious data patterns or attack rules
- Also known as misuse detection
- Only identifies known attacks for which it has patterns or rules

Anomaly Detection

- Involves the collection of data relating to the behavior of legitimate users over a period of time
- Observed behavior is analysed to determine whether it matches a legitimate user or an intruder
- Pattern recognition and machine learning approaches

- Failed login attempts may suggest a password cracking attack
- IDS sets rule N failed login attempts in M seconds as an attack signature. Listens for messages and looks for signatures
- A pattern identified as a signature triggers a warning
- A lot of specificity involved:
 - Administrator knows what attack triggered the system
 - Allows for timely responses...
 - Or a verification for false alarms

- Suppose IDS warns whenever N or more failed logins occur in M seconds
 - Define N and M to reduce false alarms.
 - Do this based on "normal" behavior
 - But normal behavior can be neither easy to define
 - Nor static on the system lifecycle

Signature Detection Minutia

- Suppose IDS warns whenever N or more failed logins occur in M seconds
 - Define N and M to reduce false alarms
 - Do this based on "normal" behavior
 - But normal behavior can be neither easy to define
 - Nor static on the system lifecycle

Adversary - An arms race

- An oblivious adversary can get caught
- But, knowing the signature, he can try N-1 logins every M seconds
- Signature detection slows adversary, but doesn't stop it

Advantages

- Simple
- Detects common, known threats
- Accurate identification of attacks upon detection
- Efficient (if we have a reasonable number of signatures)

Advantages

Classifying Intruders

- Simple
- Detects common, known threats
- Accurate identification of attacks upon detection
- Efficient (if we have a reasonable number of signatures)

Disadvantages

- Signature files must be kept up to date
- Number of signatures may become very large
- Can only detect known attacks
- Unexpected variations on known attacks may avoid detection

How can we measure the normal behavior of a system?

- Must measure during representative behavior
- Cannot be measured during an attack
- Normal is the statistical mean
- Must also allow for variance to know what is abnormal

Detection of "Anomalies"

How can we measure the normal behavior of a system?

- Must measure during representative behavior
- Cannot be measured during an attack
- Normal is the statistical mean
- Must also allow for variance to know what is abnormal
- On top of fancy modelling techniques:
 - Bayesian statistics
 - Linear discriminant analysis
 - Quadratic discriminant analysis

Constant evolution

- A static intrusion system places a huge burden on the admin
- But evolving IDS makes it possible to the attacker to manipulate the behavior and slowly convince IDS of an abnormal pattern
- Slow and steady can win the race

Anomaly Detection Issues

Constant evolution

- A static intrusion system places a huge burden on the admin
- But evolving IDS makes it possible to the attacker to manipulate the behavior and slowly convince IDS of an abnormal pattern
- Slow and steady can win the race

Types of IDS feedback

- Example: monitor failed login attempts
 - Burst of failures can occur an attack?
 - ... or an admin that forgot his password?
- False positives (FP) attack flagged when none is occurring
- False negatives (FN) attack flagged as adequate behavior

Base-Rate Fallacy

- Base-rate fallacy probability of some conditional event is assessed without considering the "base rate" of that event
- Suppose an IDS is 99% accurate, 1% of FP/FN
- IDS generates 1,000,100 log entries
- Only 100 correspond to actual malicious events
- Because of the success rate, of the 100 malicious events, 99 will be detected as malicious = 1 **FN**
- Nevertheless, of the 1,000,000 benign events, 10,000 will be mistakenly identified as malicious = 10,000 FP
- Out of all 10,099 expected alarms, 10,000 are false alarms, roughly 99% of all flagged attacks

- Intrusion detection systems complement firewalls
- Firewalls are the first line of defense
- IDSs monitor and detect more complex attacks

- Intrusion detection systems complement firewalls
- Firewalls are the first line of defense
- IDSs monitor and detect more complex attacks
- Host-based IDS:

- Monitors the host for potential attacks
- No context of network activity
- Network-based IDS:
 - Monitors network activity
 - No context of application logic

- Intrusion detection systems complement firewalls
- Firewalls are the first line of defense
- IDSs monitor and detect more complex attacks
- Host-based IDS:

- Monitors the host for potential attacks
- No context of network activity
- Network-based IDS:
 - Monitors network activity
 - No context of application logic
- Signature-based detection
 - Detects behavior given certain well-established patterns
 - Can evolve over time; requires expert design
- Anomaly-based detection
 - Develops a model for what constitutes "expected behavior"
 - Ideally automatic; can be very challenging to validate

🗟 Key Takeaways 🗟

- Intrusion detection systems complement firewalls
- Firewalls are the first line of defense
- IDSs monitor and detect more complex attacks
- Host-based IDS:
 - Monitors the host for potential attacks
 - No context of network activity
- Network-based IDS:
 - Monitors network activity
 - No context of application logic
- Signature-based detection
 - Detects behavior given certain well-established patterns
 - Can evolve over time; requires expert design
- Anomaly-based detection
 - Develops a model for what constitutes "expected behavior"
 - Ideally automatic; can be very challenging to validate
- IDSs require very low false positive rates base rate fallacy

Computer Security Foundations Week 13: Network Security Threats and Countermeasures

Bernardo Portela

L.EIC - 24