

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA KATEDRA ZA RAČUNARSKU TEHNIKU I RAČUNARSKE KOMUNIKACIJE

Naziv predmeta:

Osnovi Algoritama i Struktura DSP 2

Projektni zadatak 1

Profesor: Željko Lukač

Student: Mario Perić, RA 14/2015

Novi Sad, Mart 2018.

Izveštaj

Zadatak 1):

U ovom delu zadatka napisane su funkcije **calculateShelvingCoeff** i **calculatePeekCoeff** koje računaju koeficijente all-pass filtera prvog, odnosno drugog reda, po sledećim formulama:

$$A_{1}(z) = \frac{\alpha - z^{-1}}{1 - \alpha z^{-1}}$$

$$A_{2}(z) = \frac{\alpha - \beta(1 + \alpha)z^{-1} + z^{-2}}{1 - \beta(1 + \alpha)z^{-1} + \alpha z^{-2}}$$

Slika 1 - Formule za izračunavanje koeficijenata

Kako se koeficijenti A1 i B1 nalaze na opsegu [-2, 2), na njihivim položajima čuvaće se polovina njihove vrednosti, tako da će raspored u memoriji izgledati ovako:

А	.0	A1	В0	B1	- Koeficijenti filtra prvog reda				
A	.0	A1/2	A2	B0	B1/2	B2	Koeficijenti filtra drugog reda		

Slika 2 - Izgled koeficijenata u nizu

Zadatak 2):

Za potrebe ovog zadatka napisana je funkcija **shelvingLP**, koja za računanje koristi **first_order_iir**. Impulsni odzivi na filter sa karakteristikom α = **0.3**, sa koeficijentima **K= 8192** (0.25) i **K = 24576** (0.75) dat je na grafiku ispod.

Slika 3 – Impulsni odziv, shelvingLP (α = 0.3, K= 8192)

Slika 4 – Impulsni odziv, shelvingLP (α = 0.3, K= 24576)

Zadatak 3):

Za potrebe ovog zadatka napisana je funkcija **shelvingHP**, koja za računanje koristi **first_order_iir**. Impulsni odzivi na filter sa karakteristikom α = -0.3, sa koeficijentima **K= 8192** (0.25) i **K = 24576** (0.75) dat je na grafiku ispod.

Slika 5 – Impulsni odziv, shelvingHP (α = -0.3, K= 8192)

Slika 6 - Impulsni odziv, shelvingHP ($\alpha = -0.3$, K= 24576)

Zadatak 4):

Za potrebe ovog zadatka napisana je funkcija **shelvingPeek**, koja za računanje koristi **second_order_iir**. Impulsni odzivi na filter sa karakteristikom $\alpha = 0.7$, $\beta = 0$, sa koeficijentima **K= 8192** (0.25) i **K = 24576** (0.75) dat je na grafiku ispod.

Slika 7 – Impulsni odziv, **shelvingPeek** (α = 0.7, β = 0, K= 8192)

Slika 8 – Impulsni odziv, **shelvingPeek** ($\alpha = 0.7$, $\beta = 0$, K= 24576)

Zadatak 5):

Ovaj zadatak predstavlja proširenje i uniju prethodna 4 zadatka. Pre obrade signala računaju se koeficijenti α i β za svaki od delova ekvilajzera, izračunati tako da odgovaraju frekvencijama koje su date u tabeli.

Band 0 f _c	Band 1 f ₀	Band 1 Δf	Band 2 f ₀	Band 2 Δf	Band 3 f _c
140 Hz	390 Hz	200 Hz	2935 Hz	1905 Hz	5500 Hz

Tabela 1 - Vrednosti frekvencija

$$\alpha = \frac{1 - \sin(w)}{\cos(w)}, \beta = \cos(w)$$

Slika 9 – Formula za izračunavanje koeficijenata α i β

Slika 10 - Izlaz sistema na impulsni odziv

Slika 11 - Ulazni signal u dati sistem (multiton)

Slika 12 - Izaz sistema na multiton signal za različite vrednosti parametara k u sve 4 faze

Zadatak 6):

Za potrebe ovog zadatka uveden je niz koeficijenata k, koji sadrži 4 elementa. Svaki od elemenata predstavlja k za jednu od 4 faze iz prethodnog zadatka. Vrednost ovih koeficijenata može da se menja pritiskom na tastere **SW1** i **SW2**, za čije potrebe je napisana funkcija **getKey**. Trenutno stanje ispisuje se nakon svake promene na displej u vidu 2 karaktera. Prvi karakter predstavlja indeks broja k koji se trenutno prikazuje i menja (0-3), a drugi predstavlja vrednost karaktera k. Ako se uzme da je ovaj karakter X, tada k ima vrednost (32767 X / 3277, odnosno 0.X). Za potrebe ispisa realizovana je funkcija **printNewValue**.