Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado

Bibliografía

Métodos de volúmenes finitos para la ecuación de advección en 1D

Grupo 9: Carlos Meneses y Ramón Nartallo

Universidad Complutense de Madrid University of Warwick

21 de junio de 2021

Introducción

Introducción

Resumen:

- En esta presentación estudiamos varios esquemas de volúmenes finitos para la ecuación de advección en una dimensión haciendo énfasis en la ecuación lineal para desarrollar teoría numérica.
- Mostramos resultados numéricos aplicando estos métodos.
- Presentamos un mallado esférico refinable para la implementación de estos métodos en varias dimensiones.

Advección

Introducción

¿Que es advección?

- Advección es el movimiento o transporte de una sustancia, como masa, o una cantidad, como calor en un líquido.
- En sistemas cerrados, estas cantidades se conservan y están modelizados por un ley de conservación.
- La ecuación de advección esta dada por,

$$\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{f}(\mathbf{u}) = \mathbf{0} \tag{1}$$

donde u el vector de estados y f el vector de flujo.

Métodos de volúmenes finitos

Introducción

Filosofía

- Para derivar un método de volúmenes finitos, el primer paso es la discretización del espacio en volúmenes o células.
- Si consideramos un volumen V_i , entonces la idea es calcular un valor medio de la solución, $U_i(t)$, que sea constante en V_i .
- Calculamos un valor medio

$$U_i(t) = \frac{1}{|V_i|} \int_{V_i} \mathsf{u}(\mathsf{x}, t) \ d\mathsf{x} \tag{2}$$

Métodos de volúmenes finitos

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en

Resultados Numéricos y Ejemplos

Mallado esférico

Bibliografía

Derivación

Integramos la ecuación dx y aplicamos el teorema de la divergencia

$$\int_{V_i} \frac{\partial \mathbf{u}}{\partial t} \ d\mathbf{x} + \int_{V_i} \nabla \cdot \mathbf{f}(\mathbf{u}) \ d\mathbf{x} = 0$$
 (3)

$$|V_i|\frac{dU_i}{dt}(t) + \int_{V_i} \nabla \cdot f(\mathbf{u}) \ d\mathbf{x} = 0$$
 (4)

$$|V_i|\frac{dU_i}{dt}(t) + \oint_{\Sigma} f(u) \cdot n \ dS = 0$$
 (5)

$$\frac{dU_i}{dt}(t) + \frac{1}{|V_i|} \oint_{S} f(u) \cdot n \ dS = 0$$
 (6)

 S_i es la frontera de V_i . n es el normal hacia fuera del volúmen.

Métodos de volúmenes finitos

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos Fiemplos

Mallado

Ribliograf

Derivación...

- Usando algún tipo de interpolación, se reconstruye el valor del flujo en el borde S_i .
- El método final dependerá no solo de la malla, sino también de la forma de interpolación elegida.

Método en una dimensión

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallad esférico

Bibliografí

Problema en 1D

• En una dimensión el problema que nos ocupa es

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0 & x \in \mathbb{R} \quad t \geqslant 0 \\ u(x,0) = u_0(x) & x \in \mathbb{R} \end{cases}$$
 (P)

donde $f \in C^1(\mathbb{R}, \mathbb{R})$.

- Los volúmenes en este caso son intervalos centrados en un punto x_i .
- Cada volumen es de la forma $V_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$ con $|V_i| = h_i = x_{i+\frac{1}{2}} x_{i-\frac{1}{2}}$.
- El borde está constituido por dos punto aislados, $S_i = \{x_{i-1/2}\} \cup \{x_{i+1/2}\} \ \forall i \in \mathbb{Z}.$

Método en una dimensión

Introducción

En este caso la integral del flujo queda,

$$\frac{1}{|V_i|} \oint\limits_{S_i} \mathsf{f}(\mathsf{u}) \cdot \mathsf{n} \ dS = \frac{1}{h_i} \left[f(u(x_{i+\frac{1}{2}},t)) - f(u(x_{i-\frac{1}{2}},t)) \right]$$

$$=\frac{1}{h_i}\left[f_{i+\frac{1}{2}}-f_{i-\frac{1}{2}}\right] \tag{8}$$

donde $f_{i\pm\frac{1}{2}} = f(u(x_{i\pm\frac{1}{2}}, t)).$

• El método en una dimensión queda,

$$\frac{du_i}{dt} + \frac{1}{h_i} \left[f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}} \right] = 0 \ \forall i \in \mathbb{Z}, \ t > 0.$$
 (9)

• Reconstruimos el flujo en el borde para estimar $f_{j\pm\frac{1}{2}}$.

(7)

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallad esférico

ibliografía

Solución clásica

Sean $f \in C^1(\mathbb{R})$ y $u_0 \in C^1(\mathbb{R})$. Una solución clásica al problema anterior es una función $u \in C^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R})$ tal que

$$\begin{cases}
 u_t(x,t) + f'(u(x,t)) u_x(x,t) = 0, & \forall x \in \mathbb{R}, \forall t \in \mathbb{R}_+ \\
 u(x,0) = u_0(0), & \forall x \in \mathbb{R}
\end{cases}$$
(10)

Durante clase vimos que en el caso lineal $(f(u) = cu, \text{ con } c \in \mathbb{R})$ hay existencia y unicidad porque si $u_0 \in C^1(\mathbb{R})$ entonces $u(x,t) = u_0(x-ct)$ es solución clásica.

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

ibliografía

Solución débil

Sea $f \in C^1(\mathbb{R}, \mathbb{R})$ y $u_0 \in L^{\infty}(\mathbb{R})$. Una solución débil al problema anterior es una función $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}_+^*, \mathbb{R})$ tal que

$$\int_{0}^{\infty} \int_{\mathbb{R}} u(x,t) \partial_{t} \phi(x,t) \, dx dt + \int_{0}^{\infty} \int_{\mathbb{R}} f\left(u(x,t)\right) \, \partial_{x} \phi(x,t) \, dx dt + \int_{\mathbb{R}} u_{0}(x) \phi(x,0) \, dx = 0, \ \forall \phi \in C_{c}^{1}(\mathbb{R} \times \mathbb{R}_{+}, \mathbb{R}) \quad (11)$$

El [Eym+19] refiere la existencia de solución débil al problema. Se pierde la unicidad excepto en el caso lineal.

Soluciones clásicas, débiles v entrópicas débiles

Solución entrópica débil

Sea $f \in C^1(\mathbb{R})$ y $u_0 \in L^{\infty}(\mathbb{R})$; una solución entrópica al problema es una función $u \in L^{\infty}(\mathbb{R} \times \mathbb{R}^*_{+}, \mathbb{R})$ tal que

$$\begin{split} \int_{\mathbb{R}} \int_{\mathbb{R}_{+}} \eta \left(u(x,t) \right) \phi_{t}(x,t) \, dt dx \\ + \int_{\mathbb{R}} \int_{\mathbb{R}_{+}} \varphi \left(u(x,t) \right) \phi_{x}(x,t) \, dt dx \\ + \int_{\mathbb{R}} \eta \left(u(x,0) \right) \phi(x,0) \, dx \geqslant 0, \end{split}$$

 $\forall \phi \in C_c^1(\mathbb{R} \times \mathbb{R}_+, \mathbb{R}_+), \ \forall \eta \in C^1(\mathbb{R}) \text{ función convexa}$

$$\forall \varphi \in C^1(\mathbb{R}) \text{ tal que } \varphi' = \eta' f'. \quad (12)$$

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultado Numéricos Ejemplos

Mallad

Bibliograf

En este sentido, el [Eym+19, p. 124] refiere el siguiente teorema citando la demostración de diversas fuentes.

Teorema

Sea $f \in C^1(\mathbb{R}), \ u_0 \in L^{\infty}(\mathbb{R}),$ entonces existe una única solución entrópica al problema.

Análisis de esquemas explícitos en 1D

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos Ejemplos

Malla esféric

Bibliografía

Mallado en 1D

Usamos un mallado uniforme tanto en espacio como en tiempo. Llamaremos mallado a un conjunto $\mathcal{T}_{h,k}$ cuyos valores espaciales son la sucesión

$$\left(x_{i+1/2}
ight)_{i\in\mathbb{Z}}$$
 creciente, tal que $x_{i+1/2}-x_{i-1/2}=h>0,\ orall i\in\mathbb{Z}.$

- Los valores temporales son $t_n = nk, n \in \mathbb{N}$
- Los volúmenes son $V_i = (x_{i-1/2}, x_{i+1/2}), \ \forall i \in \mathbb{Z}$

Esquema explícito

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Numérico Ejemplos Mallado

Mallado esférico

ibliograf

Vamos a usar un esquema basado en

$$\frac{dU_i}{dt} + \frac{1}{h} \left[f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}} \right] = 0$$
 (13)

• Discretizamos en tiempo usando la discretización "forward",

$$\frac{U_i^{n+1} + U_i^n}{k} + \frac{1}{h} \left[f_{i+\frac{1}{2}}^n - f_{i-\frac{1}{2}}^n \right] = 0$$
 (14)

La forma explícita queda,

$$\begin{cases} U_i^{n+1} = U_i^n - \frac{k}{h} \left[f_{i+\frac{1}{2}}^n - f_{i-\frac{1}{2}}^n \right] & \forall i \in \mathbb{Z}, \ \forall n \in \mathbb{N}_0 \\ U_i^0 = \int_{V_i} u_0(x) \, dx & \forall i \in \mathbb{Z} \end{cases}$$

Aproximación del flujo

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos Ejemplos

Mallado esférico

ibliografía

• Usamos F para referirnos a la aproximación numérica, $F^n_{i\pm\frac{1}{2}}\approx f^n_{i\pm\frac{1}{2}}=f(u(x_{i\pm\frac{1}{2}},t_n)$

- Asumamos que $F_{i+\frac{1}{2}}^n$ se puede aproximar por los dos puntos a cada lado U_i^n , U_{i+1}^n
- Definimos la función de conservación $\mathcal{F}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

$$F_{i+\frac{1}{2}}^{n} = \mathcal{F}(U_{i}^{n}, U_{i+1}^{n}) \tag{16}$$

 Para que la aproximación sea "buena", imponemos la condición de consistencia

$$\mathcal{F}(c,c) = f(c) \quad \forall c \in \mathbb{R}$$
 (17)

Esquema Upwind

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducciór

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallac esféric

Bibliografí

La idea es que

$$F_{i\pm\frac{1}{2}}^{n} \approx f(u(x_{i\pm\frac{1}{2}}, nk))$$
 (18)

pero no tenemos una aproximación de $u(x_{i\pm\frac{1}{2}},nk)$ porque es el borde de dos volúmenes donde la aproximación es constante pero diferente. Tenemos que elegir uno.

- Recordemos que la solución en un instante se mueve con velocidad f'(u).
- Si la velocidad en $x_{i+\frac{1}{2}}$ es positiva entonces la dirección a la derecha (hacia V_{i+1}) se llama downwind y la dirección a la izquierda (hacia V_i) se llama upwind y viceversa.

Cogemos el valor en el volumen upwind.

Esquema Upwind

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

Ribliografía

Método Upwind

$$\begin{cases}
U_i^{n+1} &= \begin{cases}
U_i^n - \frac{k}{h} [f(U_i^n) - f(U_{i-1}^n)] & \text{si } f'(u) \geqslant 0 \\
U_i^n - \frac{k}{h} [f(U_{i+1}^n) - f(U_i^n)] & \text{si } f'(u) < 0
\end{cases}, \\
\forall n \in \mathbb{N}, \forall i \in \mathbb{Z}$$

$$U_i^0 &= \frac{1}{h} \int_{V_i} u_0(x), \\
\forall i \in \mathbb{Z}
\end{cases}$$

$$(19)$$

El problema lineal

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos Ejemplos

Bibliografía

Para estudiar estabilidad y convergencia, planteamos el problema lineal

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0 \quad x \in \mathbb{R}, \quad t \in [0, T].$$

$$u(x, 0) = u_0(x) \qquad x \in \mathbb{R}$$
(PLin)

con $a \in \mathbb{R}$ constante y $u_0 \in L^{\infty}(\mathbb{R})$.

- Ya notamos que $u(x,t) = u_0(x-at)$ casi todo $(x,t) \in \mathbb{R} \times \mathbb{R}_+$ es la única solución
- El principio del máximo se cumple en el sentido de que u no supera nunca la cota esencial de u₀. Usamos este principio del máximo como nuestra noción de estabilidad.

Estabilidad L^{∞} y CFL para el Upwind (PLin)

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallac esféric

Bibliografía

Estabilidad y CFL

Sea $u_0 \in L^{\infty}(\mathbb{R})$. Tomemos el mallado $\mathcal{T}_{h,k}$ verificando la condición $|a| \leq h/k$ (CFL). Calculamos la solución aproximada al problema lineal con el Upwind. Entonces,

$$|U_i^0|<\|u_0\|_{L^\infty}\,, orall i\in\mathbb{Z}$$
 y además

$$|u_{h,k}| \leqslant ||u_0||_{L^{\infty}}, \forall x \in \mathbb{R} \text{ y } \forall t \in \mathbb{R}^*_+$$
 (20)

D: Tomando a > 0 y siguiendo el esquema *upwind*,

$$U_{i}^{n+1} = U_{i}^{n} - \frac{k}{h} \left[aU_{i}^{n} - aU_{i-1}^{n} \right] = U_{i}^{n} \left(1 - a\frac{k}{h} \right) + a\frac{k}{h} U_{i-1}^{n} \forall i \in \mathbb{Z}$$
(21)

Usando la condición CFL, $0 \le 1 - ak/h \le 1$, $ak/h \le 1$ y su suma es 1. Tenemos una combinación convexa. Una sencilla inducción basta para completar la demostración.

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallac esféric

Bibliografí

Convergencia débil-*

Sea $(u_n)_{n\in\mathbb{N}}\subset L^\infty(\mathbb{R}\times\mathbb{R}_+^*)$. La sucesión $(u_n)_{n\in\mathbb{N}}$ converge a $u\in L^\infty(\mathbb{R}\times\mathbb{R}_+^*)$ débilmente-* (o converge en la topología débil-*), si

$$\int_{\mathbb{R}_+} \int_{\mathbb{R}} (u_n(x,t) - u(x,t))\phi(x,t) \, dx \, dt \to 0$$
 (22)

cuando $n \to \infty$, $\forall \phi \in L^1(\mathbb{R} \times \mathbb{R}_+^*)$

Teorema de convergencia

Sea $u_0 \in L^\infty(\mathbb{R})$. Tomemos el mallado verificando $|a| \leqslant (1-\xi)h/k$ con $\xi \in (0,1)$. Sea $u_{h,k}$ la solución aproximada usando el Upwind del problema lineal y sea u la solución débil (única). Cuando $(h,k) \to 0$, $u_{h,k}$ converge débilmente-* a u.

Grupo 9: Carlos Meneses : Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos Fiemplos

Mallado

Bibliografía

Para demostrar el teorema necesitamos otros resultados.

Corolario del Teorema de Banach-Alaoglu-Bourbaki [Bre10]

Sea $(u_n)_{n\in\mathbb{N}}\subset L^\infty(\Omega)$ acotada. Entonces, existe una subsucesión de $(u_n)_{n\in\mathbb{N}}$ y una función $u\in L^\infty(\Omega)$ tal que la subsucesión converge a u débilmente-*.

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

bliografía

Estimador de variación acotada

Tomemos $\mathcal{T}_{h,k}$ verificando $|a| \leqslant (1-\xi)h/k$ con $\xi \in (0,1)$. Sea $\{U_i^n: i \in \mathbb{Z}; n \in \mathbb{N}_0\}$ solución numérica según el Upwind de (PLin). Sean $R, T \in \mathbb{R}_+^*$ tales que h < R, k < T. Sea $i_0, i_1 \in \mathbb{Z}, N \in \mathbb{N}$ tales que

$$-R \in \left[x_{i_0 - \frac{1}{2}}, x_{i_0 + \frac{1}{2}} \right] \tag{23}$$

$$R \in \left[x_{i_1 - \frac{1}{2}}, x_{i_1 + \frac{1}{2}} \right] \tag{24}$$

$$T \in (Nk, (N+1)k] \tag{25}$$

Entonces existe $C \in \mathbb{R}_+^*$ que sólo depende de R, T, u_0 , a y ξ , tal que i_1 N

$$\sum_{i=i_0}^{i_1} \sum_{n=0}^{N} k |U_i^n - U_{i-1}^n| \le Ch^{-\frac{1}{2}}$$
 (26)

Análisis de esquemas explícitos en

Solo damos una idea de la demostración:

- Usamos principio del máximo para decir que la sucesión (solución numérica) esta acotada.
- Aplicamos el corolario para decir que existe una subsucesión convergente.
- Multiplicamos por la función test e integramos el esquema por partes.
- Tratamos la derivada en tiempo y en espacio como partes separadas y usando el estimador de variación acotada y la regularidad de la función test, pasamos al limite
- Vemos que el límite de la subsucesión es la solución débil.
- Aplicamos la unicidad de la solución débil para obtener que toda la sucesión converge débilmente-* a la solución débil.

Método Lax-Friedrichs

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducciór

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallad esféric

Bibliografí

Consideramos otro esquema explícito. Usamos las siguientes aproximaciones de las derivadas,

$$\frac{\partial u}{\partial t} \approx \frac{u(x, t+k) - \frac{1}{2}(u(x+h, t) + u(x-h, t))}{k}$$
 (27)

$$\frac{\partial f(u)}{\partial x} \approx \frac{f(u(x+h,t)) - f(u(x-h,t))}{2h} \tag{28}$$

Entonces el método queda,

$$U_i^{n+1} = \frac{1}{2} (U_{i+1}^n + U_{i-1}^n) - \frac{k}{2h} (f(U_{i+1}^n) - f(U_{i-1}^n))$$
 (29)

Podemos demostrar estabilidad igualmente al método Upwind con una combinación convexa. La condición CFL queda igual.

<u>Método Lax-Friedrichs - CFL inversa</u>

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallac esféric

Bibliografía

El método LF nos da una condición interesante. Por Taylor, se puede ver que estamos aproximando la dervidad en tiempo por,

$$\frac{\partial u}{\partial t} \approx \frac{u(x, t+k) - u(x, t) - h^2(\frac{\partial^2 u}{\partial x^2}(\mu, t))}{k}$$
 (30)

Donde $\mu \in [t-h, t+h]$. Por lo tanto, esta expresión solo converge a la derivada en tiempo si,

$$\frac{h^2}{k} \left(\frac{\partial^2 u}{\partial x^2} (\mu, t) \right) \underset{h, k \to 0}{\longrightarrow} 0 \tag{31}$$

Para que este término converja a 0, queremos un paso de tiempo k tal que $k \ge h^2$ cuando $k, h \to 0$ por lo tanto, cogemos un valor de k del mismo orden de h. Esto se introduce como la condición CFL inversa en [Eym+19, p. 190]

Métodos de flujo monótono

Análisis de esquemas explícitos en

Los esquemas de flujo monótono forman una subclase importante de métodos para flujos generales pero cumpliendo cierta condición de monotonía

Definition

Un esquema con función de conservación $\mathcal{F}:\mathbb{R}^2 \to \mathbb{R}$ se llama esquema de flujo monótono para el problema de transporte (P) si dado $f \in C^1(\mathbb{R})$ y $u_0 \in L^{\infty}(\mathbb{R} \times \mathbb{R})$ con acotas

 $U_m \leq u_0 \leq U_M$ casi todo punto, se cumple

- \bullet \mathcal{F} es localmente Lipschitz de $\mathbb{R}^2 \to \mathbb{R}$.
- $2 \mathcal{F}(s,s) = f(s) \forall s \in [U_m, U_M].$
- **3** (a, b) → $\mathcal{F}(a, b)$ desde $[U_m, U_M]^2$ hasta \mathbb{R} es no-decreciente con respeto a la primera variable y no-creciente con respeto a la segunda variable.

Métodos de flujo monótono

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

Bibliografía

Unos ejemplos de un esquema de flujo monótono son los *flujos* separados

$$f(s) = f_1(s) + f_2(s)$$
 (32)

donde f_1 , $f_2 \in C^1(\mathbb{R})$ y $f_1' \geqslant 0$, $f_2' \leqslant 0$, entonces la función,

$$\mathcal{F}(a,b) = f_1(a) + f_2(b)$$
 (33)

Estos esquemas son siempre de flujo monótono. Los métodos Upwind y LF son de este tipo

Estabilidad de métodos de flujo monótono

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

bliografí

Los esquemas monótonos son estables bajo una condición CFL que solo depende de las constantes de Lipschitz del flujo

Estabilidad de métodos de flujo monótono

Consideramos un mallado $\mathcal{T}_{h,k}$ y sea k>0. Sea $u_{h,k}$ la solución aproximada obtenida para un esquema de flujo monótono. Sean g_1 , g_2 las constantes de Lipschitz de \mathcal{F} en $[U_m,U_M]^2$ con respeto a sus dos variables. Bajo la condición CFL

$$k \leqslant \frac{h}{g_1 + g_2} \tag{34}$$

la solución aproximada cumple,

$$U_m \leqslant u_{h,k}(x,t) \leqslant U_M \quad \forall x \in \mathbb{R}, t \in \mathbb{R}_+$$
 (35)

Estabilidad de métodos de flujo monótono

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducció

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

D'1-1' (*

Bibliografía

Solo damos una idea de la demostración:

- Escribimos el esquema como una combinación de $U_{i-1}^n, U_i^n, U_{i+1}^n$
- Usando los tres partes de la definición de monotonía acotamos los coeficientes de Uⁿ_{i-1}, Uⁿ_i, Uⁿ_{i+1}
- Comprobamos que la combinación es convexa y por tanto aplicamos inducción

Método de Lax-Wendroff

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

Bibliografía

El esquema Lax-Wendroff tiene la siguente forma,

$$U_i^{n+1} = U_i^n - \frac{k}{2h} \left[f(U_{i+1}^n) - f(U_{i-1}^n) \right] + \frac{k^2}{2h^2} \left[f'\left(\frac{U_i^n + U_{i+1}^n}{2}\right) \cdot \right]$$

$$- f'\left(\frac{U_{i}^{n} + U_{i-1}^{n}}{2}\right) \cdot \left(f(U_{i}^{n}) - f(U_{i-1}^{n})\right)$$
 (36)

Para el caso lineal, el método queda,

$$U_i^{n+1} = U_i^n - \frac{ak}{2h} [U_{i+1}^n - U_{i-1}^n] + \frac{a^2k^2}{2h^2} [U_{i+1}^n - 2U_i^n + U_{i-1}^n]$$

(37)

Método de Lax-Wendroff

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos Ejemplos

Mallado esférico

Ribliografía

Se puede demostrar *estabilidad de von Neumann* para el caso lineal si consideramos que nuestra aproximación en cada punto tiene la forma,

$$U_i^n = \psi^n e^{iKx_i} \tag{38}$$

donde $i^2=-1$. Obtenemos la condición (CFL) $\frac{k}{h}\leqslant \frac{1}{|a|}.$

Variantes de Lax-Wendroff

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos Ejemplos

Mallado esférico

Bibliografía

Para evitar el calculo de la derivada, consideramos dos variantes multipaso de LW,

Esquema Richtmyer

$$U_{i+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}(U_{i+1}^n + U_i^n) - \frac{k}{2h}(f(U_{i+1}^n) - f(U_i^n))$$
(39)

$$U_{i-\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}(U_i^n + U_{i-1}^n) - \frac{k}{2h}(f(U_i^n) - f(U_{i-1}^n))$$
(40)

$$U_i^{n+1} = U_i^n - \frac{k}{h} \left[f(U_{i+\frac{1}{2}}^{n+\frac{1}{2}}) - f(U_{i-\frac{1}{2}}^{n+\frac{1}{2}}) \right]$$
(41)

Variantes de Lax-Wendroff

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

ibliografía

Esquema Forward-Backward McCormack

$$U_i^* = U_i^n - \frac{k}{h} (f(U_{i+1}^n) - f(U_i^n)) \tag{42}$$

$$U_i^{n+1} = \frac{1}{2}(U_i^n + U_i^*) - \frac{k}{2h}(f(U_i^*) - f(U_{i-1}^*))$$
 (43)

Esquema Backward-Forward McCormack

$$U_i^* = U_i^n - \frac{k}{h} (f(U_i^n) - f(U_{i-1}^n))$$
(44)

$$U_i^{n+1} = \frac{1}{2}(U_i^n + U_i^*) - \frac{k}{2h}(f(U_{i+1}^*) - f(U_i^*)) \tag{45}$$

Resultados numéricos

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducciór

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

esférico

Sibliografía

Transporte lineal

Ecuación:
$$\begin{cases} \frac{\partial u}{\partial t} + 7 \frac{\partial u}{\partial x} = 0 & x \in (0,1) \quad t \in (0,1) \\ u(x,0) = \sin(x) & x \in (0,1) \end{cases}$$
 (46)

Solución exacta:
$$u(x,t) = \sin(x-7t)$$
 (47)

Orden de convergencia:

- Upwind: 1.
- Lax-Fiedrichs: 1.
- Richtmyer: 2.

Resultados numéricos

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

esférico

ibliografí

Ecuación de Burgers no viscosa

Ecuación:
$$\begin{cases} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0 & x \in (0,1) \quad t \in (0,10) \\ u(x,0) = 2x + 1 & x \in (0,1) \end{cases}$$
(48)

Solución exacta:
$$u(x,t) = \frac{2x+1}{2t+1}$$
 (49)

Orden de convergencia:

- Upwind: 1.
- Lax-Fiedrichs: 1.
- Richtmyer: 2.

Ejemplos

Resultados Numéricos y Eiemplos

Animaciones de soluciones con choques

Lista de reproducción de Youtube:

https://www.youtube.com/playlist?list= PLXhFGfjdT6WK6j7njosild4ldxc15tycl

Repositorio de código y métodos

Github:

https://github.com/rnartallo/volumenesefinitos

Mallado esférico

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

Bibliografi

- Se basa en el algoritmo de [Gir97].
- Comenzamos con un icosaedro inscrito en una esfera. Son 12 puntos y 20 triángulos equiláteros.
- Por 1 triángulo obtenemos 4 dividiendo cada borde a la mitad.

Mallado esférico

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

Bibliografía

(e) Iteración 2

(d) Iteración 1

(f) Iteración 3

Mallado esférico

Grupo 9: Carlos Meneses y Ramón Nartallo

Introducción

Soluciones clásicas, débiles y entrópicas débiles

Análisis de esquemas explícitos en 1D

Resultados Numéricos y Ejemplos

Mallado esférico

Bibliografía

(g) Icosaedro

(h) Iteración 4

Bibliografía I

Bibliografía

Francis X. Giraldo. «Lagrange–Galerkin Methods on Spherical Geodesic Grids». En: JOURNAL OF COMPUTATIONAL PHYSICS 136, 197-213 (1997), págs. 203-207.

Jérôme Droniou. «A beginner's course in finite volume approximation of scalar conservation laws».

En: (2008). URL: https:

//users.monash.edu.au/~jdroniou/jaca_ summer_school/poly_jaca_droniou.cr.pdf.

Bibliografía II

Bibliografía

Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York, NY:

Springer New York, 2010. ISBN:

978-0-387-70913-0. DOI:

10.1007/978-0-387-70914-7. URL:

http://link.springer.com/10.1007/978-0-

387-70914-7

Robert Eymard y col. Finite Volume Methods. HAL Id · hal-02100732 2019 ISBN 9780444503503