Introduction to summary statistics: The sample mean and median

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Mean vote percentage

import numpy as np
np.mean(dem_share_PA)

45.476417910447765

$$mean = ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$

Outliers

 Data points whose value is far greater or less than most of the rest of the data

2008 Utah election results

¹ Data retrieved from Data.gov (https://www.data.gov/)

2008 Utah election results

¹ Data retrieved from Data.gov (https://www.data.gov/)

The median

• The middle value of a data set

2008 Utah election results

¹ Data retrieved from Data.gov (https://www.data.gov/)

Computing the median

np.median(dem_share_UT)

22.46999999999999

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Percentiles, outliers, and box plots

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

¹ Data retrieved from Data.gov (https://www.data.gov/)

Computing percentiles

```
np.percentile(df_swing['dem_share'], [25, 50, 75])
```

```
array([ 37.3025, 43.185 , 49.925 ])
```


¹ Data retrieved from Data.gov (https://www.data.gov/)

Generating a box plot

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Variance and standard deviation

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

¹ Data retrieved from Data.gov (https://www.data.gov/)

Variance

- The mean squared distance of the data from their mean
- Informally, a measure of the spread of data

2008 Florida election results

¹ Data retrieved from Data.gov (https://www.data.gov/)

2008 Florida election results

$$variance = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^2$$

¹ Data retrieved from Data.gov (https://www.data.gov/)

Computing the variance

np.var(dem_share_FL)

147.44278618846064

Computing the standard deviation

np.std(dem_share_FL)

12.142602117687158

np.sqrt(np.var(dem_share_FL))

12.142602117687158

2008 Florida election results

¹ Data retrieved from Data.gov (https://www.data.gov/)

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

Covariance and the Pearson correlation coefficient

STATISTICAL THINKING IN PYTHON (PART 1)

Justin Bois

Lecturer at the California Institute of Technology

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

Generating a scatter plot

Covariance

• A measure of how two quantities vary together

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

¹ Data retrieved from Data.gov (https://www.data.gov/)

$$covariance = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})$$

¹ Data retrieved from Data.gov (https://www.data.gov/)

Pearson correlation coefficient

$$\rho = \text{Pearson correlation} = \frac{\text{covariance}}{(\text{std of x})(\text{std of y})}$$

$$= \frac{\text{variability due to codependence}}{\text{independant variability}}$$

Pearson correlation coefficient examples

Let's practice!

STATISTICAL THINKING IN PYTHON (PART 1)

