"THE REAL PLANTAGE OF THE STATE OF THE STATE

WHAT IS CLAIMED IS:

1. A compound having the general formula:

in which R is a benzyl, 2-thienylmethyl, or cyanomethyl group; R' is selected from the group consisting of H, physiologically acceptable salts or metal, ester groups, ammonium cations, -- $CHR_2OCO(CH_2)_nCH_3$, -- $CHR_2OCO(CH_3)_3$, acylthiomethyl, acyloxy-alpha-benzyl, deltabutyrolactonyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, β -morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl, in which R_2 is selected from the group consisting of S, O, SO, SO₂ and CH_2 ; and Z is a donor fluorescent moiety.

2. The compound of claim 1, wherein the donor fluorescent moiety is selected from the group consisting of:

 $\begin{array}{c} R_3 \stackrel{O}{\longrightarrow} \\ \\ R_3 \stackrel{O}{\longrightarrow} \\ \end{array}$

R₃ SO₃ SO₃ (V)

$$R_3$$
 CO_2R_3
 F
 (VI)

$$R_3$$
 S
 S
 CO_2R'
 $(VIII)$

$$R_3$$
 X
 CO_2R'
 CO_2R'

31

TU

The compound of claim 2, wherein the linker is selected from the group consisting of 3. a direct bond to a heteroatom in the fluorescent moiety, --O(CH₂)_n--, --S(CH₂)_n--, -/- $NR_2(CH_2)_{n--}$, $--N^{\dagger}R_2$ (CH₂)_n, $--OCONR_2(CH_2)_{n--}$, $--O_2C(CH_2)_{n--}$, $--SCSNR_2(CH_2)_{n--}$ / -- $SCSO(CH_2)_n$ --, -- $S(CH_2)_nCONR_2(CH_2)_m$, -- $S(CH_2)_nNR_2CO(CH_2)_m$, and

in which R₂, n and m are as previously defined; and m is an integer from 0 to 4.

4. The compound of claim 1, wherein the compound has the structure:

5. A method for detecting the presence of β -lactamase activity in a sample, comprising: contacting the sample with at least one compound of general formula I:

in which R is a benzyl, 2-thienylmethyl, or cyanomethyl group, or a quencher; R' is selected from the group consisting of H, physiologically acceptable salts or metal, ester groups, ammonium cations, --CHR2OCO(CH2)nCH3, --CHR2OCOC(CH3)3, acylthiomethyl, acyloxydéltabutyrolactonyl, alpha-benzyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, β-morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl, in which R2 is selected from the group consisting of H and lower alkyl; A is selected from the group consisting of S, O, SO, SO₂ and CH₂; and Z is a donor fluorescent moiety.

- 6. The method of claim 5, wherein said sample has a β -lactamase reporter gene.
- 7. The method of claim 6, wherein said β -lactamase reporter gene is in a mammalian cell.
- 8. The method of claim 5, wherein samples having β -lactamase activity are separated from samples having no β -lactamase activity by fluorescent-activated cell sorting.
- 9. The method of claim 5, wherein the β -lactamase activity results from a β -lactamase enzyme that was prepared by mutagenesis of another β -lactamase enzyme.
- 10. The method of claim 5, wherein said compound is a membrane permeant derivative.
- 11. The method of claim 5, wherein the donor fluorescent moiety is selected from the group consisting of:

(II) (III) R_3 SO₃ O₃S SO₃ (IV) ÇO₂R₃ off destricting the last that the form the first off off off of the temperature of the first that the first tha MeQ R_3 R_3 (VI) (VII) Br CO₂R' (VIII) (IX) O R_3 - X ΝΉ CO₂R' CI (X) (XI) 34

The method of claim 11, wherein the linker is selected from the group consisting of a 12. direct bond to a heteroatom in the fluorescent moiety, --O(CH₂)_n--, --S(CH₂)_n--, --NR₂(QH₂)_n- $-, --N^{+}R_{2} (CH_{2})_{n}, --OCONR_{2} (CH_{2})_{n} --, --O_{2}C(CH_{2})_{n} --, --SCSNR_{2} (CH_{2})_{n} --, --SCSO(CH_{2})_{n} --,$ $S(CH_2)_nCONR_2(CH_2)_m$, -- $S(CH_2)_nNR_2CO(CH_2)_m$, and

$$-s$$
 $N(CH_2)m$
 O

in which R₂, n and m are as previously defined; and m is an integer from 0 to 4.

13. The method of claim 5, wherein the compound has the structure:

- A method for determining whether a compound of claim 1 is a substrate for a β-14. lactamase enzyme, comprising: contacting said compound with a sample containing said βlactamase enzyme; exciting at the wavelength for the said compound when cleaved; and measuring fluorescence.
- The method of claim 14, wherein said compound is a membrane permeant derivative. 15.
- The method of claim 14, wherein said β-lactamase enzyme has been prepared by 16. mutagenesis of another β -lactamase enzyme.