Fg tot $(4-16) T(n) = T(\pm 10/40) + n$ $\therefore Q = 1, b = \pm 10/4, F(n) = n$ $\Rightarrow n^{(68n)} = n^{(6916+1)} = n^{0} = 1, \text{ honce } 3^{n} \text{ case, } (n^{(6916)} = 1) < (F(n) = n)$ $\text{af } (n/16) = \pm n/40 < (\pm 1/40) n = \text{of } (n), \text{ for } c = \pm 1/40.$ Consequently, by case S, the solution of the recurrence is $T(n) = \Theta(n)$

4-10) T(n) =16T(n/4) + n^2 $a = 16, b = 4, F(n) = n^2$ $\Rightarrow n^{\log_2 q} = n^{\log_2 16} = n^2, \text{ hence } 2^{n/2} \text{ case, } (n^{\log_2 q} = n^2) == (f(n) = n^2)$ Hence, the fight assymptotic bound include $T(n) = O(n^2 \cdot \log n)$

4-1d) $T(n) = 4 + T(n/8) + n^2$ a = 7, b = 8, $f(n) = n^2$ $\Rightarrow n^{(0)} = n^{(0)}$

$$4-2a$$
) Binary Search: array passed by parker
$$T(n) = T(n/2) + O(1)$$

$$a=1$$
, $b=2$, $F(n)=1$
 $\Rightarrow n^{\log_{n} n} = n^{\log_{n} n} = n^{n} = 1$, hence 2^{d} case, $\left(n^{\log_{n} n} = 1\right) = = \left(F(n) = 1\right)$
Consequently, by case 2 , the solution for weathers is $T(M) = O(n^{\log_{n} n} \cdot \log_{n} M)$
 $= O(1 \cdot \log_{n} M) = O(\log_{n} M)$

Binary Search: array passed by copying online array (N)

$$T(n) = T(n/z) + O(N)$$
 $a=4$, $b=2$, $F(n) = N$
 $\log N$
 $\log N$

log_N. N Honce, solving the recommons relation we get that

T(M) = (N · log N)

Binary Search: copying subrange from array that might be accessed

$$T(n) = T(n/2) + \Theta(n/2)$$

$$\left(\frac{1}{2}\right)^{\log_2 N} = N^{\log(\frac{1}{2})} = N^{(\log 1 - \log_2 2)}$$

= N^{-1}