Scilab Textbook Companion for Antenna and Wave Propogation by U. A. Bakshi and A. V. Bakshi¹

Created by
Shyam.c
B.E
Electronics Engineering
Sri Venkateswara College Of Engineering
College Teacher
None
Cross-Checked by
Chaya

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Antenna and Wave Propogation

Author: U. A. Bakshi and A. V. Bakshi

Publisher: Technical Publications, Pune

Edition: 1

Year: 2011

ISBN: 978-93-5038-016-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	Antenna Fundamentals	5
3	Loop and Helical Antenna	26
4	Antenna Arrays	29
6	Aperture and Lens Antenna	37
7	Propagation of Radio Waves	39

List of Scilab Codes

Exa 2.1	Etheta calculation
Exa 2.2	Directive gain calculation
Exa 2.3	Radiation Resistance calculation
Exa 2.4	Rms current calculation
Exa 2.5	Effective aperture calculation
Exa 2.6	Aperture area calculation
Exa 2.7	Transmitted power calculation
Exa 2.8	Noise temperature calculation
Exa 2.9	Average power calculation
Exa 2.10	Average power calculation
Exa 2.11	power calculation
Exa 2.12	Power calculation
Exa 2.13	power calculation
Exa 2.14	Dipole length calculation
Exa 2.15	Current calculation
Exa 2.16	power calculation
Exa 2.17	Directivity calculation
Exa 2.18	efield calculation
Exa 2.19	power calculation
Exa 2.20	Radiation resistance calculation
Exa 2.21	Directive gain calculation
Exa 2.22	Radiation efficiency calculation
Exa 2.23	Efield calculation
Exa 2.24	Efield calculation
Exa 2.25	Radiation efficiency calculation
Exa 2.26	Radiation efficiency calculation
Exa 2.27	Voltage calculation
Exa 2.28	Dipole length calculation

Exa 2.29	effective aperture calculation	17
Exa 2.30	Noise power calculation	17
Exa 2.31	Tuning factor calculation	18
Exa 2.32	Antenna gain calculation	18
Exa 2.33	Dipole length calculation	19
Exa 2.34	Directive gain calculation	19
Exa 2.35	power calculation	20
Exa 2.36	power calculation	20
Exa 2.37	Gain calculation	20
Exa 2.38	Bandwidth calculation	21
Exa 2.39	Directive gain calculation	21
Exa 2.40	Radiated power calculation	22
Exa 2.41	Average power calculation	22
Exa 2.42	Radiation Power calculation	23
Exa 2.43	Directive gain calculation	23
Exa 2.44	Radiation efficiency calculation	24
Exa 2.45	Effective aperture calculation	24
Exa 2.46	FBR ratio calculation	24
Exa 2.47	Radiation resistance calculation	25
Exa 3.1	Directive gain calculation	26
Exa 3.2	HPBW calculation	26
Exa 3.3	Radiation resistance calculation	27
Exa 3.4	Radiation Resisitance calculation	27
Exa 4.1	HPBW calculation	29
Exa 4.2	BWFN calculation	29
Exa 4.3	Maxima Minima calculation	30
Exa 4.4	Radiation Pattern calculation	30
Exa 4.5	Null Calculation	31
Exa 4.6	Lobe calculation	32
Exa 4.7	BWFN calculation	32
Exa 4.8	Dmin calculation	33
Exa 4.9	Gain calculation	33
Exa 4.10	BWFN calculation	34
Exa 4.11	Directivity calculation	34
Exa 4.12	Effective Aperture calculation	35
Exa 4.13	Directive Gain Calculation	35
Exa 4.14	Directivity calculation	36
Exa 6.1	Directive gain calculation	37

Exa 6.2	Effective aperture calculation	38
Exa 7.1	frequency calculation	39
Exa 7.2	Usable frequency calculation	39
Exa 7.3	Critical frequency calculation	40
Exa 7.4	Skip distance calculation	40
Exa 7.5	Efield calculation	40
Exa 7.6	Transmission height calculation	41
Exa 7.7	Nmax calculation	41
Exa 7.8	Critical freq calculation	42
Exa 7.9	Electron Density calculation	42
Exa 7.10	Frequency calculation	42
Exa 7.11	Critical freq calculation	43
Exa 7.12	Usable freq calculation	43
Exa 7.13	virtual height calculation	43
Exa 7.14	LOS calculation	44
Exa 7.15	critical freq calculation	44
Exa 7.16	critical freq calculation	44
Exa 7.17	usable freq calculation	45
Exa 7.18	Range calculation	45

Chapter 2

Antenna Fundamentals

Scilab code Exa 2.1 Etheta calculation

Scilab code Exa 2.2 Directive gain calculation

```
1 //chapter 2
2 //formula etta=Prad/Prad+Ploss=Rrad/Rrad+Rloss
3 printf("\n");
```

```
4 Rrad=72;
5 printf("radiation resistance is %dohm", Rrad);
6 Rloss=8;
7 ettar=72/(72+8);
8 printf("\nthe Loss resistance is %dohm", Rloss);
9 Gpmax=30;
10 printf("\nthe power gain of antenna is %d", Gpmax);
11 Gdmax=Gpmax/ettar;
12 Gdmax1=10 *log10(Gdmax); //in db
13 printf("\nthe Directivity gain is %g", Gdmax);
14 printf("\nthe Directivity gain in db is given by %edb", Gdmax1);
```

Scilab code Exa 2.3 Radiation Resistance calculation

```
1 //chapter 2
2 //Rrad=80*pi^2*(dl/lambda)^2
3 printf("\n");
4 dl=0.1;
5 printf("the elemental length is given by %g",dl);
6 Rrad=80*(%pi)^2*(0.1)^2;
7 printf("\nthe radiation resistance is %gohm",Rrad);
```

Scilab code Exa 2.4 Rms current calculation

```
1 //chapter 2
2 //Prad=80*(pi)^2*(dl/lambda)*(Irms)^2;
3 printf("\n");
4 frequency=100*10^6;
5 lamda=(3*10^8)/(100*10^6);//lamda=c/f;
6 printf("the wavelength is %dm",lamda);
7 Prad=100;
8 printf("\nthe Radiated power is %dW",Prad);
```

```
9 dl=0.01;
10 printf("\nthe elemental length is %gm",dl);
11 Irms2=(3/0.01)^2*100/(80*(%pi)^2);
12 Irms=sqrt(Irms2);
13 printf("\nthe Irms current is %gA",Irms)
```

Scilab code Exa 2.5 Effective aperture calculation

```
1 //chapter 2
2 //Pavg=0.5*|E|^2/etta0, Prmax=2*10^-6W, Aem=Prmax/Pavg
3 printf("\n");
4 E=50*10^-3;
5 Etta0=120*(%pi);
6 printf("the electric field is %eV/m",E);
7 Pavg=0.5*(50*10^-3)^2/(120*(%pi));
8 printf("\nthe average power is %gW", Pavg);
9 Aem=(2*10^-6)/(3.315*10^-6);
10 printf("\nthe maximum effective aperture area is %gm^2", Aem);
```

Scilab code Exa 2.6 Aperture area calculation

```
1 //chapter 2
2 //Pavg=0.5*|E|^2/etta0, Prmax=2*10^-6W, Aem=Prmax/Pavg
3 printf("\n");
4 E=50*10^-3;
5 Etta0=120*(%pi);
6 printf("the electric field is %eV/m",E);
7 Pavg=0.5*(50*10^-3)^2/(120*(%pi));
8 printf("\nthe average power is %gW", Pavg);
9 Aem=(2*10^-6)/(3.315*10^-6);
10 printf("\nthe maximum effective aperture area is %gm^2", Aem);
```

Scilab code Exa 2.7 Transmitted power calculation

Scilab code Exa 2.8 Noise temperature calculation

```
1 //chapter 2
2 //T0=290k,room temperature
3 printf("\n");
4 F=1.2882;
5 printf("given F is given by %g",F);
6 Te=(1.2882-1)*290;//Te=(F-1)T0
7 printf("\neffective noise temperature is %gK",Te);
```

Scilab code Exa 2.9 Average power calculation

```
1 //chapter 2
2 //Etheta=60 \text{Im/r} * (\cos(\text{pi}/2\cos(\text{theta}))/\sin(\text{theta}));
```

```
3 //theta=90
4 //Pavg=Rrad*Irms^2;
5 //Irms=Im/sqrt(2)
6 printf("\n");
7 Im=100*10^-3;
8 r=100
9 Etheta=(60*10^-3);
10 H=(60*10^-3)/(120*(%pi));
11 Pavg=73*(10^-1/sqrt(2))^2;//Rrad=73ohm for half wave dipole
12 printf("the average power is %gW", Pavg);
```

Scilab code Exa 2.10 Average power calculation

```
1 //chapter 2
2 //Rrad=36.5ohm
3 //Irms=Im/sqrt(2)
4 printf("\n");
5 Im=1.22; //on applying Kvl
6 Pavg=36.5*(1.122/sqrt(2))^2;
7 printf("the average power is %gW", Pavg);
```

Scilab code Exa 2.11 power calculation

```
1 //chapter 2
2 //Hphi=Im*dl*sin(theta)/(2*lamda*r);
3 //for Hertzian Dipole
4 printf("\n");
5 Hphi=5*10^-6;
6 lamda=1;//assume
7 dl=0.04;
8 Im=(5*10^-6)*2*(2*10^3)/(0.04);
9 Irms=Im/(sqrt(2));
```

```
10 Prad=80*(%pi)^2*(0.04)^2*(Irms)^2;
11 printf("the radiated Power is %gW", Prad);
```

Scilab code Exa 2.12 Power calculation

```
1 //chapter 2
2 //For Half wave Dipole
3 //Hphi=Im/(2*pi*r)*cos(pi/2*cos(theta)/sin(theta))
4 //Rrad=73 ohm
5 Hphi=5*10^-6;
6 r=2*10^3;
7 Im=(5*10^-6)*(4*(%pi)*10^3);
8 Prad=73*(Im/sqrt(2))^2;
9 printf("the radiated power is %gW", Prad);
```

Scilab code Exa 2.13 power calculation

```
1 //chapter 2
2 //For quarter wave monopole
3 //Rrad=36.5 ohm
4 Im=20*(%pi)*10^-3; //from previous problem
5 Prad=36.5*((20*(%pi)*10^-3)/sqrt(2))^2;
6 printf("the radiated power is %gW", Prad);
```

Scilab code Exa 2.14 Dipole length calculation

```
1 //chapter 2
2 //lamda=velocity/frequency
3 printf("\n");
4 frequency=50*10^6;
```

Scilab code Exa 2.15 Current calculation

```
1 //chapter 2
2 //Etheta=60*Im*cos(pi/2*cos(theta)/sin(theta))/r
3 printf("\n");
4 r=500*10^3;
5 Etheta=10*10^-6;
6 Im=Etheta*r/60;
7 printf("the current through the dipole is %gA",Im);
```

Scilab code Exa 2.16 power calculation

```
1 //chapter 2
2 //for half wave dipole
3 Pavg=0.5*73*0.0833; //Rrad*Irms^2; Rrad=73 ohm
4 printf("the radiated power is %gW", Pavg);
```

Scilab code Exa 2.17 Directivity calculation

```
1  //chapter 2
2  //efficiency=Prad/Pinput
3  //efficiency=0.95,Umax=0.5W/sr,D=Umax/[Prad/4*pi];
4  //part (i)
5  printf("\n");
6  Pinput=0.4;
```

```
7  n=0.95;
8  Umax=0.5;
9  Prad=n*Pinput;
10  printf("the radiated power is %gW", Prad);
11  D=0.5/(0.38/(4*(%pi)));
12  printf("\nthe directivity is %g",D);
13  //part(ii)
14  Prad=0.3;
15  D=0.5/(0.3/(4*(%pi)));
16  printf("\nthe directivity is%g",D);
```

Scilab code Exa 2.18 efield calculation

```
1 / chapter 2
2 //for half wave dipole
3 //on applying kvl
4 printf("\n");
5 \text{ Im} = 0.0768;
6 Rrad=73;
7 r=10^4;
8 Prad=0.5*Rrad*Im^2;//Rrad=73 for half wave dipole
9 printf("the radiated power is %gW", Prad);
10 Gd=1.6405//on taking antilog of Gd(in db)
11 E4=Prad/(4*(\%pi)*r^2);
12 E3=1.6405*E4;
13 E2=E3*240*(\%pi);
14 printf("\n\%g",E2);
15 E=sqrt(E2);
16 printf("\nthe field value is \%gV/m",E);
```

Scilab code Exa 2.19 power calculation

```
1 / chapter 2
```

```
2 //frequency=100 MHz
3 printf("\n");
4 frequency=100*10^6;
5 lamda=3*10^8/frequency;
6 leng=lamda/2;
7 printf("the length of antenna is %gm",leng);
8 Rrad=73;
9 Im=25;
10 Prad=Rrad*0.5*Im^2;
11 printf("\nthe power radiated is %gW",Prad);
```

Scilab code Exa 2.20 Radiation resistance calculation

```
1 //chapter 2
2 printf("\n");
3 Im=15;
4 Prad=6*10^3;
5 Rrad=Prad/(Im/sqrt(2))^2;
6 printf("the radiation resistance is %gohm", Rrad);
```

Scilab code Exa 2.21 Directive gain calculation

```
1 //chapter 2
2 //Gpmax=n*Gdmax
3 //N=Rrad/Rrad+Rloss
4 printf("\n");
5 Rrad=72;
6 Rloss=8;
7 n=Rrad/(Rrad+Rloss);
8 printf("the radiation efficiency is given by %g",n);
9 Gpmax=15.8489; // antilog (Gpmax/10); Gpmax=12db
10 Gdmax=Gpmax/n;
11 Gdmaxdb=10*log10(Gdmax);
```

```
printf("\nthe directive gain is %g",Gdmax);
printf("\nthe directive gain in db is %g",Gdmaxdb);
```

Scilab code Exa 2.22 Radiation efficiency calculation

```
//chapter 2
printf("\n");
dl=1/40;
Im=125;
Rloss=1;
Rrad=80*(%pi)^2*(dl)^2;
printf("the Radiation resistance is %gohm", Rrad);
Irms=Im/sqrt(2);
Prad=Rrad*(Irms)^2;
printf("\nthe Power radiated is %gW", Prad);
n=Rrad/(Rrad+Rloss);
printf("\nthe radiation efficiency is %g",n);
```

Scilab code Exa 2.23 Efield calculation

```
1 //chapter 2
2 //|E|^2=sqrt(60*Gd*Prad)/r;
3 printf("\n");
4 r=10^4;
5 Gd=3.1622//antilog(5db/10)
6 Prad=20*10^3;
7 E=sqrt(60*Gd*Prad)/r;
8 printf("the Electric field value is %gV/m",E);
```

Scilab code Exa 2.24 Efield calculation

```
1 //chapter 2
2 //Gd=antilog(12db/10)
3 printf("\n");
4 Gd=15.85;
5 Prad=5*10^3;
6 r=3*10^3;
7 E=sqrt(60*Gd*Prad)/r;
8 printf("the electric field is %gV/m",E);
```

Scilab code Exa 2.25 Radiation efficiency calculation

```
1 / chapter 2
2 / R = 1 * sqrt (pi * F * Uo * Sigma) / Sigma * 2 * pi * r
3 printf("\n");
4 L=2;
5 r=1*10^-3;
6 f=2*10^6;
7 u=4*(\%pi)*10^-7;
8 \text{ sig}=5.7*10^6;
9 R=sqrt((%pi)*2*10^6*4*(%pi)*10^-7/(5.7*10^6))*L/(2*(
      %pi)*10^-3);
10 printf("the resistance of hertzian dipole is %gohm",
      R);
11 dl = 2
12 frequency=2*10^6;
13 lamda=3*10^8/(frequency);
14 Rrad=80*(%pi)^2*(dl/lamda)^2;
15 n=Rrad/(Rrad+R);
16 printf("\nthe radiation efficiency is %gohm",n);
```

Scilab code Exa 2.26 Radiation efficiency calculation

```
1 / chapter 2
```

```
2 //half wave dipole
3 printf("\n");
4 dl=1/15; //assume lamda=1;
5 Rloss=1.5;
6 Rrad=80*(%pi)^2*(1/15)^2;
7 n=Rrad/(Rrad+Rloss);
8 printf("the radiation efficiency is %g",n);
```

Scilab code Exa 2.27 Voltage calculation

```
1 //chapter 2
2 //Leff=Voc/E
3 printf("\n");
4 Leff=8;
5 E=0.01;
6 Voc=Leff*E;
7 printf("the voltage induced is %gV", Voc);
```

Scilab code Exa 2.28 Dipole length calculation

```
//chapter 2
//Antenna Bandwidth=Operating Frequency/Q;
printf("\n");
Q=30;
f=10*10^6;
f0=f*Q;
c=3*10^8;
lamda=c/f0;
leng=lamda/2;
printf("the length of the half wave dipole is %gm", leng);
```

Scilab code Exa 2.29 effective aperture calculation

```
1 / chapter 2
2 //part a
3 printf("\n");
4 c=3*10^8;
5 f = 10^9;
6 lamda=c/f;
7 printf("the wavelength is %gm", lamda);
8 //part b
9 dl=3*10^-2;
10 Rrad=80*(%pi)^2*(dl/lamda)^2;
11 printf("\nthe radiation resistance is %gohm", Rrad);
12 //part c
13 Gdmax=1.5//Gd=1.5 sin^2(theta), where theta=90 for
      short dipole
14 n = 0.6;
15 Gp=n*Gdmax;
16 printf("\nthe antenna gain is given by %g", Gp);
17 //part d
18 Ae=1.5*(lamda)^2/(4*(\%pi));
19 printf("\nthe effective aperture is \%gm^2", Ae);
```

Scilab code Exa 2.30 Noise power calculation

```
1 //chapter 2
2 //P=k(Ta+Tr)B
3 printf("\n");
4 Ta=15;
5 Tr=20;
6 b=4*10^6;
7 //part a
```

```
8 k=1.38*10^-23;
9 Pb=k*(Ta+Tr);
10 printf("the power per unit bandwidth is %gW/hz",Pb);
11 //part b
12 P=Pb*b;
13 printf("\nthe available noise power is %gW",P);
```

Scilab code Exa 2.31 Tuning factor calculation

```
1 //chapter 2
2 //Q=Fo/delf;
3 printf("\n");
4 f0=30*10^6;
5 f=600*10^3;
6 Q=f0/f;
7 printf("the tuning factor Q is %d",Q);
```

Scilab code Exa 2.32 Antenna gain calculation

```
1 //chapter 2
2 //part a
3 printf("\n");
4 c=3*10^8;
5 frequency=20*10^9;
6 lamda=c/frequency;
7 printf("the wavelength is %gm",lamda);
8 //part b
9 //Ae=G*(lamda)^2/4*pi
10 r=0.61;
11 Aep=(%pi)*r^2;
12 printf("\nthe effective physical aperture is %gm^2", Aep);
13 Ae=0.55*Aep;
```

```
14 Ga=(Ae*4*(%pi))/(lamda)^2;
15 Gdb=10*log10(Ga);
16 printf("\nthe antenna gain is %g",Ga);
17 printf("\nthe antenna gain in db is %gdb",Gdb);
```

Scilab code Exa 2.33 Dipole length calculation

```
1 //chapter 2
2 printf("\n");
3 f=30*10^6;
4 c=3*10^8;
5 lamda=c/f;
6 leng=lamda/2;
7 printf("the length of half wave dipole is %dm",leng);
;
```

Scilab code Exa 2.34 Directive gain calculation

```
//chapter 2
printf("\n");
Rrad=72;
Rloss=8;
Gp=16;
n=Rrad/(Rrad+Rloss);
printf("the radiation efficiency is %g",n);
Gp=16;
Gd=Gp/n;
Gddb=10*log10(Gd);
printf("\nthe directive gain is %g",Gd);
printf("\nthe directive gain in db is %gdb",Gddb);
```

Scilab code Exa 2.35 power calculation

```
1 //chapter 2
2 printf("\n");
3 Gt=1.5;
4 Gr=1.5;
5 d=10;
6 Pt=15;
7 f=10^9;
8 c=3*10^8;
9 lamda=c/f;
10 Pr=Pt*Gt*Gr*(lamda/(4*(%pi)*d))^2;
11 printf("the radiated power is %gW",Pr);
```

Scilab code Exa 2.36 power calculation

```
//chapter 2
printf("\n");
f=2*10^9;
c=3*10^8;
lamda=c/f;
printf("the wavelngth is %gm",lamda);
//part b
Pr=10^-12;
Gt=200;
Gr=200;
d=3*10^6;
Pt=((4*(%pi)*d)/lamda)^2*(Pr/(Gt*Gr));
printf("\nthe transmitted power is %gW",Pt);
```

Scilab code Exa 2.37 Gain calculation

```
1 / chapter 2
```

```
2 //part a
3 printf("\n");
4 c=3*10^8;
5 f=100*10^6;
6 lamda=c/f;
7 printf("the wavelength is %dm",lamda);
8 //part b
9 Gt=15.8489//antilog(12/10)
10 Pt=10^-1;
11 Pr=10^-9;
12 d=384.4*10^6;//238857*1609.35
13 Gr=(((4*(%pi)*d)/lamda)^2*Pr)/(Pt*Gt);
14 printf("\nthe gain of receiver is %g",Gr);
15 Grdb=10*log10(Gr);
16 printf("\nthe gain of receiver in db is %gdb",Grdb);
```

Scilab code Exa 2.38 Bandwidth calculation

```
1 //chapter 2
2 printf("\n");
3 Q=15;
4 lamda=1;
5 c=3*10^8;
6 f0=c/lamda;
7 Bw=f0/Q;
8 printf("the bandwidth of antenna is %eHz", Bw);
```

Scilab code Exa 2.39 Directive gain calculation

```
1 //chapter 2
2 //Aemax=Gdmax*lamda^2/4*pi;
3 printf("\n");
4 Aemax=0.13;//assume lamda=1 for half wave dipole
```

Scilab code Exa 2.40 Radiated power calculation

```
1 //chapter 2
2 printf("\n");
3 Rloss=1;
4 Ra=73;
5 Im=14.166*10^-3;//on applying kvl
6 Prad=(Im/sqrt(2))^2*(Rloss+Ra);
7 printf("the radiated power is %gW", Prad);
```

Scilab code Exa 2.41 Average power calculation

```
1 //chapter 2
2 //Etheta=n0Im/2pir*cos(pi/2 cos(theta)/sin(theta))
3 printf("\n");
4 Pin=100;
5 n=0.5;
6 r=500;
7 Prad=n*Pin;
8 printf("the radiated power is %gW", Prad);
9 Rrad=73; // for half wave dipole
10 Im=sqrt((2*Prad)/Rrad);
11 n0=120*(%pi);
12 Etheta=(cos((%pi/2)*cos(%pi/3))/sin(%pi/3))*n0*(Im /(2*(%pi)*r));
13 printf("\nthe electric field is given by %gV/m", Etheta);
```

```
14 Pavg=(0.5*(Etheta)^2)/(n0);
15 printf("\nthe average power is %gW", Pavg);
```

Scilab code Exa 2.42 Radiation Power calculation

```
1 //chapter 2
2 //may june 2008
3 printf("\n");
4 Pt=15
5 Aet=2.5;
6 Aer=0.5;
7 d=15*10^3;
8 f=5*10^9;
9 c=3*10^8;
10 lamda=c/f;
11 Pr=(Pt*Aet*Aer)/((d)^2*(lamda)^2);
12 printf("the radiated power is %gW",Pr);
```

Scilab code Exa 2.43 Directive gain calculation

```
//chapter 2
//may june 2009
printf("\n");
n=10;
d=0.25;
lamda=1;//assume
Gdmax=4*((n*d)/lamda);
printf("\nthe maximum directive gain is %g",Gdmax);
Gdmaxdb=10*log10(Gdmax);
printf("\nthe maximum directive gain in db is %gdb",
Gdmaxdb);
```

Scilab code Exa 2.44 Radiation efficiency calculation

```
1 //chapter 2
2 //nov-dec 2012
3 printf("\n");
4 Rrad=65;
5 Rloss=10;
6 n=Rrad/(Rrad+Rloss);
7 printf("the radiation efficiency is %g",n);
```

Scilab code Exa 2.45 Effective aperture calculation

```
1 //chapter 2
2 //may june 2013
3 //Aem=Gdmax*lamda^2/4*pi;
4 printf("\n");
5 Gdmax=1.5;//for half wave dipole
6 f=10^9;
7 c=3*10^8;
8 lamda=c/f;
9 Aem=(Gdmax*(lamda)^2)/(4*(%pi));
printf("the effective aperture is %gm^2", Aem);
```

Scilab code Exa 2.46 FBR ratio calculation

```
1 //chapter 2
2 printf("\n");
3 Pdes=3*10^3;
4 Popp=500;
```

```
5 FBR=Pdes/Popp;
6 printf("the front to back ratio is %d",FBR);
```

Scilab code Exa 2.47 Radiation resistance calculation

```
1 //chapter 2
2 printf("\n");
3 dl=1/50;
4 Rr=80*(%pi)^2*(dl)^2;
5 printf("the radiation resistance is %gohm", Rr);
```

Chapter 3

Loop and Helical Antenna

Scilab code Exa 3.1 Directive gain calculation

```
1 //chapter 3
2 //tan(alpha)=s/c;
3 //helical antenna Gdmax=15NSC^2/lamda^3
4 printf("\n");
5 c=1;
6 n=20;
7 lamda=1;
8 s=tan(0.2093)*1;//12*pi/180 radians
9 Gdmax=(15*n*s*(c)^2)/(lamda)^3;
10 printf("the directive gain is %g",Gdmax);
```

Scilab code Exa 3.2 HPBW calculation

```
1 //chapter 3
2 //helical antenna
3 //part a
4 printf("\n");
5 c=3*10^8;
```

```
6 f=3*10^9;
7 lamda=c/f;
8 printf("the wavelength is %gm",lamda);
9 //part b
10 n=20;
11 s=0.03;
12 c=0.1;
13 Gdmax=(15*20*0.3*(0.1)^2)/(0.1)^3;
14 printf("\nthe directive gain is %g",Gdmax);
15 //part c
16 HPBW=sqrt((0.1)^3/(20*0.03))*520;
17 printf("\nthe half power beamwidth is %gdegree",HPBW);
```

Scilab code Exa 3.3 Radiation resistance calculation

```
1 //chapter 3
2 //loop antenna
3 printf("\n");
4 r=10;
5 lamda=100;
6 A=(%pi)*r^2;
7 Rr=31200*(A/lamda^2)^2;
8 printf("the radiation resistance is %gohm", Rr);
```

Scilab code Exa 3.4 Radiation Resisitance calculation

```
1 //chapter 3
2 //loop antenna
3 printf("\n");
4 l=1;
5 b=1;
6 A=1*b;
```

```
7 lamda=100;
8 Rrad=31200*(A/lamda^2);
9 printf("the radiation resistance is %gohm", Rrad);
```

Chapter 4

Antenna Arrays

Scilab code Exa 4.1 HPBW calculation

```
//chaptr 4
//D=2(L/lamda)
//broadside array
printf("\n");
L=1;
Lamda=1;//assume
BWFN=2 *180/(%pi);//2/(L/lamda)
printf("the Beam Width First Null is %gdegree",BWFN);
HPBW=BWFN/2;
printf("\nthe half power beam width is %gdegree",
HPBW);
```

Scilab code Exa 4.2 BWFN calculation

```
1 //chapter 4
2 //end fire array
3 //D=4(L/lamda)
```

```
4  //BWFN=2sqrt(2m/(L/lamda))
5  printf("\n");
6  lamda=1;
7  D=36;
8  L=D/4;
9  m=1;
10  BWFN=114.6*sqrt(2*m/L);
11  printf("The Beam Width First Null is %gdegree",BWFN)
;
```

Scilab code Exa 4.3 Maxima Minima calculation

```
1 //chapter 4
2 //2 element array
3 //part a
4 printf("\n");
5 max1=acos(0);
6 max2=acos(1);
7 max3=acos(-1);
8 printf("the positions of maxima are %g,%d,%g radians ",max1,max2,max3);
9 //part b
10 //minima
11 min1=acos(0.5);
12 min2=acos(0.5);
13 printf("\nthe positions of minima are %g,%g radians",min1,min2);
```

Scilab code Exa 4.4 Radiation Pattern calculation

```
1 //chapter 4
2 //2 element array
```

```
//introduces warning at scanf statement but output
    is displayed
printf("\n");
max1=acos(1);
printf("the only position of maximum radiation is %d
    radians",max1);
min1=acos(-1);
printf("\nthe position of minimum radiation pattern
    is %g radians",min1);
phi=180;//assume phi=180 degree;
Et=2*cos(((%pi/4)*cos(phi))-(%pi/4));
disp(Et);
printf("Hence as the radiation pattern suggest that
    antenna is unidirectional antenna");
```

Scilab code Exa 4.5 Null Calculation

```
//chapter 4
//broadside array
//part a
printf("\n");
n=8;
m1=1;
d=0.5;
lamda=1;
ph1=acos((m1*lamda)/(n*d));
m2=2;
ph2=acos((m2*lamda)/(n*d));
m3=3;
ph3=acos((m3*lamda)/(n*d));
printf("the direction of nulls are");
printf("\n%g %g %g radians",ph1,ph2,ph3);
```

Scilab code Exa 4.6 Lobe calculation

```
//chapter 4
//from previous problems values
//broadside array
printf("\n");
m1=1;
n=8;
d=0.5;
lamda=1;
ph1=acos(lamda*(2*m1+1)/(2*n*d));
m2=2;
ph2=acos(lamda*(2*m2+1)/(2*n*d));
m3=3;
ph3=acos(lamda*(2*m3+1)/(2*n*d));
printf("the minor lobes values are");
printf("\n%g %g %g",ph1,ph2,ph3);
```

Scilab code Exa 4.7 BWFN calculation

```
//chapter 4
//broadside array
printf("\n");

n=4;
lamda=0.1
d=0.5
i=0.25
Rrad=73;
//part a
Prad=n*(i^2*Rrad);
printf("the radiated power is %gW",Prad);
//part b
L=n*d;
printf("\nthe length is %dm",L);
BWFN=2*lamda/L;
```

Scilab code Exa 4.8 Dmin calculation

```
1 //chapter 2
2 //broadside array
3 printf("\n");
4 Gdmax=5.01108; //antilog[7/10]
5 n=10;
6 lamda=1;
7 d=Gdmax/(20*lamda);
8 printf("the minimum distance between array is %gm",d
);
```

Scilab code Exa 4.9 Gain calculation

```
//chapter 4
//broadside array
printf("\n");

n=8;
d=0.25;
lamda=1;
//part a
Gdmax=(2*n*d)/lamda;
Gdmaxdb=10*log10(Gdmax);
printf("In Case of Broadside array")
printf("\nthe directive gain is %g",Gdmax);
printf("\nthe directive gain in db is %gdb",Gdmaxdb);
;
```

```
// part b
// end fire array
Gdmax1=(4*n*d)/lamda;
Gdmaxdb1=10*log10(Gdmax1);
printf("\nIn case of End fire array");
printf("\nthe directive gain is %g",Gdmax1);
printf("\nthe directive gain in db is %gdb",Gdmaxdb1);
);
```

Scilab code Exa 4.10 BWFN calculation

```
//chapter 4
//broadside array
printf("\n");
Gdmax=15;
L=Gdmax/2;
printf("the length is %gm",L);
//endfire array
L1=Gdmax/4;
printf("\nthe length is %gm",L1);
BWFN=114.6*sqrt(2/L1);
printf("\nthe BWFN is %g degree",BWFN);
```

Scilab code Exa 4.11 Directivity calculation

```
1 //chapter 4
2 //Hansen-Woodyard end fire array
3 printf("\n");
4 n=10;
5 d=0.25;
6 L=n*d;
7 D=1.789*4*L;
8 Ddb=10*log10(D);
```

```
9 printf("the directivity is %g",D);
10 printf("\nthe directivity in db is %gdb",Ddb);
```

Scilab code Exa 4.12 Effective Aperture calculation

```
1 //chapter 4
2 //end fire array
3 \text{ printf}(" \ ");
4 n = 16;
5 d=0.25;
6 L=(n-1)*d;
7 m = 1;
8 // part a
9 HPBW=57.3*sqrt((2*m)/L);
10 printf("the HPBW is %g degree", HPBW);
11 //part b
12 D=4*L;
13 Ddb=10*log10(D);
14 printf("\nthe directivity is %d",D);
15 printf("\nthe directivity in db is %gdb", Ddb);
16 // part c
17 A=4*(\%pi)/D;
18 printf("\nthe beam solid angle is %gsr", A);
19 //part d
20 \quad lamda=1;
21 Ae=D*lamda^2/(4*(%pi));
22 printf("\nthe effective aperture is \%gm^2", Ae);
```

Scilab code Exa 4.13 Directive Gain Calculation

```
1 //chapter 4
2 //end fire array
3 printf("\n");
```

```
4 n=10;
5 d=0.25;
6 lamda=1;//assume
7 Gdmax=4*n*d;
8 Gdmaxdb=10*log10(Gdmax);
9 printf("the directive gian is %d",Gdmax);
10 printf("\nthe directive gain in db is %ddb",Gdmaxdb);
;
```

Scilab code Exa 4.14 Directivity calculation

```
1 //chapter 4
2 //may june 2013
3 n=50;
4 d=0.5;
5 lamda=1;//assume
6 L=n*d;
7 D=2*(L/lamda);
8 printf("the directivity is %g",D);
```

Chapter 6

Aperture and Lens Antenna

Scilab code Exa 6.1 Directive gain calculation

```
1 //chapter 6
2 //horn antenna
3 printf("\n");
4 Ae=10;
5 \text{ del} = 0.2;
6 p=Ae^2/(8*del);
7 del1=0.375;
8 Thetae=2*atan((Ae/(2*p)))*180/(%pi);//flare angle
9 Thetah=2*acos(p/(p+del1))*180/(%pi);
10 Ah=2*p*tan(((Thetah*(%pi)/180)/2));
11 printf(" the length is %gm",p);
12 printf("\n the angle ThetaE is %g degree", Thetae);
13 printf("\n the angle ThetaH is %g degree", Thetah);
14 printf("\n the H plane aperture is \%g", Ah);
15 HPBWH=67/Ah;
16 HPBWE=56/Ae;
17 Ddb=10*log10((7.5*Ae*Ah));
18 printf("\n the HPBWE is %g degree", HPBWE);
19 printf("\n the HPBWH is %g degree", HPBWH);
20 printf("\n the Directive gain in db is %gdb", Ddb);
```

Scilab code Exa 6.2 Effective aperture calculation

```
//chapter 6
//may june 2009
//parabolic reflector antenna
printf("\n");
BWFN=10;
f=3*10^9;
c=3*10^8;
lamda=c/f;
d=140*lamda/(BWFN);
printf("the diameter d is %gm",d);
//For circular parabolidal antenna
Ae=((%pi)*(d^2))/4;
printf("\nthe effective aperture is %gm^2",Ae);
```

Chapter 7

Propagation of Radio Waves

Scilab code Exa 7.1 frequency calculation

```
1 //chapter 7
2 printf("\n");
3 fcr=11*10^6;
4 D=1000;
5 h=400;
6 fmuf=fcr*sqrt(1+(D/(2*h))^2);
7 printf("the maximum stable frequency is %gHz",fmuf);
```

Scilab code Exa 7.2 Usable frequency calculation

```
//chapter 7
printf("\n");

Nmax=10^11;
phi=(%pi)/9;
fcr=sqrt(81*Nmax);
printf("the critical frequency is %gHz",fcr);
fmuf=fcr*sec(phi);
printf("\nthe maximum usable frequency is %gHz",fmuf);
```

Scilab code Exa 7.3 Critical frequency calculation

```
1 //chapter 7
2 printf("\n");
3 D=2000;
4 h=200;
5 fmuf=30.6*10^6;
6 fcr=fmuf/sqrt(1+(D/(2*h))^2);
7 printf("the critical frequency is %gHz",fcr);
```

Scilab code Exa 7.4 Skip distance calculation

```
1 //chapter 7
2 printf("\n");
3 n=0.9;
4 fmuf=10*10^6;
5 f=10*10^6;
6 h=400*10^3;
7 Nmax=(1-n^2)*f^2/81;
8 printf("the Nmax value is %g /m^3",Nmax);
9 fcr=sqrt(81*Nmax);
10 printf("\n the critical frequency is %gHz",fcr);
11 Dskip=2*h*sqrt((fmuf/fcr)^2-1);
12 printf("\n the skip distance is %gm",Dskip);
```

Scilab code Exa 7.5 Efield calculation

```
1 //chapter 7
2 printf("\n");
```

```
3 ht=150;
4 hr=2;
5 Is=9;
6 d=40*10^3;
7 f=1.2*10^6;
8 c=3*10^8;
9 lamda=c/f;
10 printf("the wavelength is %dm",lamda);
11 E=120*(%pi)*ht*hr*Is/(lamda*d);
12 printf("\nthe electric field is %gV/m",E);
```

Scilab code Exa 7.6 Transmission height calculation

Scilab code Exa 7.7 Nmax calculation

```
1 //chapter 7
2 printf("\n");
3 fcre=2.5*10^6;
4 fcrf=8.5*10^6;
5 Nmaxe=(fcre)^2/81;
6 Nmaxf=(fcrf)^2/81;
7 printf("the Nmax for e layer is %g /m^3", Nmaxe);
8 printf("\n the Nmax for f layer is %g /m^3", Nmaxf);
```

Scilab code Exa 7.8 Critical freq calculation

```
1 //chapter7
2 printf("\n");
3 Nmaxf1=2.5;
4 Nmaxf2=3.5;
5 Nmaxf3=1.5; //10^6*10^-6=1;
6 fcr1=sqrt(81*Nmaxf1);
7 fcr2=sqrt(81*Nmaxf2);
8 fcr3=sqrt(81*Nmaxf3);
9 printf("the critical frequencies are");
10 printf("\n %gHz %gHz %gHz", fcr1, fcr2, fcr3);
```

Scilab code Exa 7.9 Electron Density calculation

```
1 //chapter7
2 printf("\n");
3 fcr1=4.5*10^6;
4 fcr2=1.5*10^6;
5 Nmax1=(fcr1/9)^2';
6 Nmax2=(fcr2/9)^2;
7 printf("the Nmax values are");
8 printf("\n %gm^3 %gm^3",Nmax1,Nmax2);
9 Nmax=Nmax1-Nmax2;
10 printf("\n the change in electron density is %gm^3",Nmax);
```

Scilab code Exa 7.10 Frequency calculation

```
1 //chapter 7
2 //the power is 10^6 and not 10^-6 as in book
3 printf("\n");
4 n=0.5;
```

```
5 N=400*10^6;
6 f=sqrt((81*N)/(1-n^2));
7 printf("the frequency is %eHz",f);
```

Scilab code Exa 7.11 Critical freq calculation

```
1 //chapter 7
2 printf("\n");
3 D=1500;
4 h=250;
5 fmuf=37.95*10^6;
6 fcr=fmuf/sqrt(1+(D/(2*h))^2);
7 printf("the critical frequency is %eHz",fcr);
```

Scilab code Exa 7.12 Usable freq calculation

```
1 //chapter 7
2 printf("\n");
3 D=2500;
4 h=200;
5 fcr=5*10^6;
6 fmuf=fcr*sqrt(1+(D/(2*h))^2);
7 printf("the maximum usable frequency is %gHz",fmuf);
```

Scilab code Exa 7.13 virtual height calculation

```
1 //chapter 7
2 printf("\n");
3 T=5*10^-3;
4 c=3*10^8;
```

```
5 h=c*(T/2);
6 printf("the virtual height is given by %gm",h);
```

Scilab code Exa 7.14 LOS calculation

```
1 //chapter 7
2 printf("\n");
3 ht=40;
4 hr=25;
5 f=90*10^6;
6 p=35;
7 LOS=4.12*(sqrt(ht)+sqrt(hr));
8 printf("the line of sight distance is %gm",LOS);
```

Scilab code Exa 7.15 critical freq calculation

```
1 //chapter 7
2 printf("\n");
3 Nmax=1.26*10^12;
4 fcr=sqrt(81*Nmax);
5 printf("the critical frequency is %gHz",fcr);
```

Scilab code Exa 7.16 critical freq calculation

```
1 //chapter 7
2 //may june 2008
3 printf("\n");
4 Nmax=1.24*10^12;
5 fcr=sqrt(81*Nmax);
6 printf("the critical frequency is %gHz",fcr);
```

Scilab code Exa 7.17 usable freq calculation

```
1 //chapter 7
2 printf("\n");
3 fcr=6*10^6;
4 D=200*10^3;
5 h=200*10^3;
6 fmuf=fcr*sqrt(1+(D/(2*h))^2);
7 printf("the maximum usable frequency is %gHz",fmuf);
```

Scilab code Exa 7.18 Range calculation

```
1 //chapter 7
2 printf("\n");
3 ht=100;
4 hr=50;
5 d=1.4142*(sqrt(ht)+sqrt(hr));
6 printf("the maximum range is %gmiles",d);
```