С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [2, 1, 3], [0, 1, 4], [5, 3, 0].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mbox{k}\mbox{Гц})$ применяются четыре ступени преобразования частот. Полоса частот $0\div 4~\mbox{k}\mbox{Гц}$ в одном из каналов аппаратуры преобразуется в линейный спектр с помощью несущих частот $f_{\mbox{\scriptsize Hi}}$, имеющих следующие номинальные значения :

I ступень : $f_{\text{ні}} = 20 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

II ступень : $f_{\rm Hi}$ =96 кГц , выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 516 \text{ к} \Gamma \mu$, выделяется нижняя боковая,

IV ступень : $f_{\text{ні}} = 564 \ \text{к} \Gamma \text{ц}$, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала, а также определить его виртуальную частоту.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 12-24 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 84-96 к Γ ц, используемая боковая – нижняя. Во второй ступени преобразования выделяется верхняя боковая в диапазоне частот 360-372 к Γ ц.

Вариант №2

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [-1, 1, -3], [3, 2, 3], [1, 4, -3].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mathrm{kTu})$ применяются четыре ступени преобразования частот. На вход одного из каналов подается сигнал с частотой $1~\mathrm{kTu}$, который затем преобразуется в линейный спектр с помощью несущих частот f_{hi} , имеющих следующие номинальные значения :

I ступень : $f_{\text{ні}} = 12 \ \text{к} \Gamma \text{ц}$, выделяется верхняя боковая,

II ступень : $f_{\text{ні}}$ =84 кГц , выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 252 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

IV ступень : $f_{\text{ні}} = 564 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить частоту сигнала, а также значение виртуальной несущей частоты.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 20-36 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 72-88 к Γ ц, используемая боковая – верхняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот 420-436 к Γ ц.

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [2, 2, 1], [1, 0, 4], [1, 3, 2].

При формировании спектра группового сигнала 60-канальной аппаратуры уплотнения симметричного кабеля ($312-552~\mathrm{k}\Gamma\mathrm{u}$) применяются три ступени преобразования частот. Полоса частот $0\div4~\mathrm{k}\Gamma\mathrm{u}$ в одном из каналов аппаратуры преобразуется с помощью несущих частот f_{hi} , имеющих следующие номинальные значения :

I ступень : $f_{\text{ні}}$ =16 кГц , выделяется верхняя боковая,

II ступень : $f_{\text{ні}} = 108 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 348 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 120-144 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 60-84 к Γ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот 312-336 к Γ ц

.-----

Вариант №4

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [1, 2, 4], [2, 3, 2], [1, 1, -2]

При формировании спектра группового сигнала 60-канальной аппаратуры уплотнения симметричного кабеля применяются три ступени преобразования частот. На вход одного из каналов подается сигнал с частотой $800~\Gamma$ ц, который затем преобразуется с помощью несущих частот $f_{\rm hi}$, имеющих следующие номинальные значения :

I ступень : $f_{\text{нi}} = 200 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

II ступень : $f_{\text{ні}}$ =288 к Γ ц , выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 468 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая.

На выходе каждой ступени преобразования определить частоту сигнала.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $252-260~\rm k\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $372-380~\rm k\Gamma$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $12-20~\rm k\Gamma$ ц

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [4, -2, -1], [3, 2, 5], [1, 0, 0]

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 12 канальных сигналов (0-4 к Γ ц) с помощью 12 несущих колебаний с разными частотами преобразуются в полосу частот 8140-8188 к Γ ц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (60-108 к Γ ц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени верхней боковой полосы частот, а во второй ступени – нижней боковой.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $312-360~\rm k\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $512-560~\rm k\Gamma$ ц, используемая боковая – нижняя. Во второй ступени преобразования выделяется верхняя боковая в диапазоне частот $800-848~\rm k\Gamma$ ц

Вариант №6

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [5, -2, 1], [-3, 2, 4], [-2, 0, 5]

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mbox{к}\Gamma\mbox{ц})$ применяются четыре ступени преобразования частот. Полоса частот $0\div 4~\mbox{k}\Gamma\mbox{ц}$ в одном из каналов аппаратуры преобразуется в линейный спектр с помощью несущих частот $f_{\mbox{\tiny H}i}$, имеющих следующие номинальные значения :

I ступень : $f_{Hi} = 16 \text{ к} \Gamma_{II}$, выделяется верхняя боковая,

II ступень : $f_{\text{ні}} = 120 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая,

III ступень : $f_{\text{ні}}$ =444 к Γ ц , выделяется верхняя боковая,

IV ступень : $f_{Hi} = 564 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала, а также определить его виртуальную частоту.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $4-8~\mathrm{k}\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $136-140~\mathrm{k}\Gamma$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $8-12~\mathrm{k}\Gamma$ ц.

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [1, -1, 1], [2, -2, 2], [6, 1, 2]

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 12 канальных сигналов (0-4 к Γ ц) с помощью 12 несущих колебаний с разными частотами преобразуются в полосу частот 8252-8300 к Γ ц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (360-408 к Γ ц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени нижней боковой полосы частот, и во второй ступени – нижней боковой.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 60-64 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 212-216 к Γ ц, используемая боковая – нижняя. Во второй ступени преобразования выделяется верхняя боковая в диапазоне частот 320-324 к Γ ц

.....

Вариант №8

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [4, -3, 5], [1, -2, 2], [0, 1, 2]

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mathrm{kTu})$ применяются четыре ступени преобразования частот. На вход одного из каналов подается сигнал с частотой 500 Tu , который затем преобразуется в линейный спектр с помощью несущих частот f_{Hi} , имеющих следующие номинальные значения :

I ступень : $f_{\rm Hi}$ =20 к Γ ц , выделяется верхняя боковая,

II ступень : $f_{\text{ні}}$ =84 к Γ ц , выделяется нижняя боковая,

III ступень : $f_{\mbox{\tiny HI}}$ =396 к Γ ц , выделяется верхняя боковая,

IV ступень : $f_{\mbox{\tiny H\,{\sc i}}}$ =564 кГц , выделяется нижняя боковая,

На выходе каждой ступени преобразования определить частоту сигнала, а также значение виртуальной несущей частоты.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $200-248~\mathrm{k\Gamma}$ ц. В первой ступени преобразования сигнал переносится в полосу частот $48-96~\mathrm{k\Gamma}$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $1000-1048~\mathrm{k\Gamma}$ ц.

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [7, -4, 1], [-1, -1, -1], [-8, 3, -2]

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 4 канальных сигналов (0-4 к Γ ц) с помощью 4 несущих колебаний с разными частотами преобразуются в полосу частот 910-926 к Γ ц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (72-88 к Γ ц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени верхней боковой полосы частот, а во второй ступени – нижней боковой

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $396-444~\mathrm{k}\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $552-600~\mathrm{k}\Gamma$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $300-348~\mathrm{k}\Gamma$ ц

Вариант №10

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [2, -4, -4], [0, -1, -2], [-5, 3, -4]

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 2 канальных сигналов (0 – 4 к Γ ц) с помощью 2 несущих колебаний с разными частотами преобразуются в полосу частот 800-810 к Γ ц, межканальный интервал составляет 2 к Γ ц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (20-30 к Γ ц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени верхней боковой полосы частот, а во второй ступени – нижней боковой.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $360-408~\rm k\Gamma ц$. В первой ступени преобразования сигнал переносится в полосу частот $612-660~\rm k\Gamma ц$, используемая боковая – верхняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $12-60~\rm k\Gamma ц$.

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [1, -1], e_2 = [1, -2].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mbox{k}\Gamma\mbox{ц})$ применяются три ступени преобразования частот. Полоса частот $0\div 4~\mbox{k}\Gamma\mbox{ц}$ в одном из каналов аппаратуры преобразуется в линейный спектр с помощью несущих частот $f_{\mbox{\scriptsize Hi}}$, имеющих следующие номинальные значения :

I ступень : $f_{\rm Hi}$ =96 кГц, выделяется нижняя боковая,

II ступень : $f_{\rm hi}$ =468 кГц , выделяется нижняя боковая,

III ступень : $f_{\rm Hi}$ =564 к Γ ц, выделяется нижняя боковая.

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала, а также определить его виртуальную частоту.

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 3 канальных сигналов (0-4 к Γ ц) с помощью 3 несущих колебаний с разными частотами преобразуются в полосу частот 88-102 к Γ ц, межканальный интервал составляет 1 к Γ ц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (300-314 к Γ ц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени нижней боковой полосы частот, а во второй ступени – верхней боковой.

Вариант №12

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [-2, -1], e_2 = [3, 2].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mathrm{k}\Gamma_{\mathrm{U}})$ применяются три ступени преобразования частот. Полоса частот $0\div4~\mathrm{k}\Gamma_{\mathrm{U}}$ в одном из каналов аппаратуры преобразуется в линейный спектр с помощью несущих частот $f_{\mathrm{H}i}$, имеющих следующие номинальные значения :

I ступень : $f_{\text{нi}}$ =72 кГц , выделяется нижняя боковая,

II ступень : $f_{\rm ni}$ =612 кГц , выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 564 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая.

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала, а также определить его виртуальную частоту.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $512-572~\mathrm{k}\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $12-72~\mathrm{k}\Gamma$ ц, используемая боковая – нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $512-572~\mathrm{k}\Gamma$ ц.

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [-3, 2], e_2 = [2, -2].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля ($12-252~\mathrm{k}\Gamma\mathrm{u}$) применяются три ступени преобразования частот. На вход одного из каналов подается сигнал с частотой $2~\mathrm{k}\Gamma\mathrm{u}$, который затем преобразуется в линейный спектр с помощью несущих частот f_{hi} , имеющих следующие номинальные значения :

I ступень : $f_{\rm Hi}$ =64 кГц, выделяется нижняя боковая,

II ступень : $f_{\text{ні}} = 516 \text{ к} \Gamma \mu$, выделяется нижняя боковая,

III ступень : $f_{\text{ні}}$ =564 кГц , выделяется нижняя боковая.

На выходе каждой ступени преобразования определить частоту сигнала, а также значение виртуальной несущей частоты.

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 3 канальных сигналов ($4-8~\rm k\Gamma \mu$) с помощью 3 несущих колебаний с разными частотами преобразуются в полосу частот $100-118~\rm k\Gamma \mu$, межканальный интервал составляет $3~\rm k\Gamma \mu$. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала ($60-78~\rm k\Gamma \mu$). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени верхней боковой полосы частот, а во второй ступени — нижней боковой.

Вариант №14

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [4, 1], e_2 = [-1, 1].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mbox{k}\Gamma\mbox{ц})$ применяются четыре ступени преобразования частот. Полоса частот $0\div 4~\mbox{k}\Gamma\mbox{ц}$ в одном из каналов аппаратуры преобразуется в линейный спектр с помощью несущих частот $f_{\mbox{\scriptsize Hi}}$, имеющих следующие номинальные значения :

I ступень : $f_{\text{нi}} = 200 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

II ступень : $f_{\text{ні}}$ =272 кГц , выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 420 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая,

IV ступень : $f_{\rm Hi}$ =564 кГц, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала, а также определить его виртуальную частоту.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 60-68 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 20-28 к Γ ц, используемая боковая – нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот 72-80 к Γ ц

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [3, -2], e_2 = [-3, -1].

При формировании спектра группового сигнала 60-канальной аппаратуры уплотнения симметричного кабеля ($312-552~\mbox{к}\Gamma\mbox{ц}$) применяются три ступени преобразования частот. Полоса частот $0\div 4~\mbox{k}\Gamma\mbox{ц}$ в одном из каналов аппаратуры преобразуется с помощью несущих частот $f_{\mbox{\scriptsize Hi}}$, имеющих следующие номинальные значения :

I ступень : $f_{\rm Hi}$ =20 к Γ ц , выделяется верхняя боковая,

II ступень : $f_{\text{ні}} = 120 \text{ к} \Gamma \mu$, выделяется нижняя боковая,

III ступень : f_{ні} =444 кГц, выделяется верхняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $444-452~\mathrm{k\Gamma}$ ц. В первой ступени преобразования сигнал переносится в полосу частот $600-608~\mathrm{k\Gamma}$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $812-820~\mathrm{k\Gamma}$ ц

Вариант №16

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [5, 7], e_2 = [10, -3].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mathrm{kTu})$ применяются четыре ступени преобразования частот. На вход одного из каналов подается сигнал с частотой 500 Tu , который затем преобразуется в линейный спектр с помощью несущих частот f_{Hi} , имеющих следующие номинальные значения :

I ступень : $f_{\text{ні}}$ =20 кГц , выделяется верхняя боковая,

II ступень : $f_{\text{нi}}$ =84 к Γ ц , выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 396 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

IV ступень : $f_{\text{H{\sc i}}}$ =564 к Γ ц , выделяется нижняя боковая,

На выходе каждой ступени преобразования определить частоту сигнала, а также значение виртуальной несущей частоты.

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 2 канальных сигналов (32-36 кГц) с помощью 2 несущих колебаний с разными частотами преобразуются в полосу частот 12-24 кГц, межканальный интервал составляет 4 кГц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (500-512 кГц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой и второй ступенях нижней боковой полосы частот.

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [-6, -2], e_2 = [3, -8].

При формировании спектра группового сигнала 60-канальной аппаратуры уплотнения симметричного кабеля применяются две ступени преобразования частот. На вход одного из каналов подается сигнал с частотой $1500~\Gamma$ ц, который затем преобразуется с помощью несущих частот $f_{\rm hi}$, имеющих следующие номинальные значения :

I ступень : $f_{\text{ні}}$ =100 кГц , выделяется нижняя боковая,

II ступень : $f_{\text{ні}} = 612 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая.

На выходе каждой ступени преобразования определить частоту сигнала.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $312-552~\mathrm{k}\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $800-1040~\mathrm{k}\Gamma$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $12-252~\mathrm{k}\Gamma$ ц

Вариант №18

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [9, 0], e_2 = [-3, -2].

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 6 канальных сигналов (2-6 к Γ ц) с помощью 6 несущих колебаний с разными частотами преобразуются в полосу частот 900-934 к Γ ц, межканальный интервал составляет 2 к Γ ц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (12-46 к Γ ц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой и второй ступенях нижней боковой полосы частот.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $720-800~\rm k\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $60-140~\rm k\Gamma$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $120-200~\rm k\Gamma$ ц.

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [-6, -11], e_2 = [-15, 3].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mbox{к}\Gamma\mbox{ц})$ применяются четыре ступени преобразования частот. Полоса частот $0\div 4~\mbox{к}\Gamma\mbox{ц}$ в одном из каналов аппаратуры преобразуется в линейный спектр с помощью несущих частот $f_{\mbox{\scriptsize Hi}}$, имеющих следующие номинальные значения :

I ступень : $f_{HI} = 12 \text{ к}\Gamma_{II}$, выделяется верхняя боковая,

II ступень : $f_{Hi} = 108 \text{ к} \Gamma \mu$, выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 300 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

IV ступень : $f_{\rm Hi}$ =564 кГц, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала, а также определить его виртуальную частоту.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 32-36 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 196-200 к Γ ц, используемая боковая — верхняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот 360-364 к Γ ц.

Вариант №20

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [9, -9], e_2 = [21, 84].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mathrm{kTu})$ применяются четыре ступени преобразования частот. На вход одного из каналов подается сигнал с частотой 3 кГц, который затем преобразуется в линейный спектр с помощью несущих частот f_{hi} , имеющих следующие номинальные значения :

I ступень : $f_{\text{ні}} = 20 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

II ступень : $f_{\text{ні}} = 96 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 468 \text{ к} \Gamma \text{ц}$, выделяется нижняя боковая,

IV ступень : $f_{\rm Hi}$ =564 кГц, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить частоту сигнала, а также значение виртуальной несущей частоты.

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 2 канальных сигналов ($40-48~\mathrm{k}\Gamma\mathrm{u}$) с помощью 2 несущих колебаний с разными частотами преобразуются в полосу частот $3-20~\mathrm{k}\Gamma\mathrm{u}$, межканальный интервал составляет $1~\mathrm{k}\Gamma\mathrm{u}$. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала ($120-137~\mathrm{k}\Gamma\mathrm{u}$). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой и второй ступенях нижней боковой полосы частот.

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [11, -1, -2], [0, 4, 3], [0, 6, 4.5]

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 4 канальных сигналов ($20-60~\rm k\Gamma \mu$) с помощью 4 несущих колебаний с разными частотами преобразуются в полосу частот $800-960~\rm k\Gamma \mu$. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала ($80-240~\rm k\Gamma \mu$). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени верхней боковой полосы частот, а во второй ступени – нижней боковой

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $120-180~\rm k\Gamma ц$. В первой ступени преобразования сигнал переносится в полосу частот $440-500~\rm k\Gamma ц$, используемая боковая — верхняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот $800-860~\rm k\Gamma ц$

•

Вариант №22

С помощью определителя Грамма выяснить, являются ли линейно независимыми векторы [0, -21, 1], [-6, 0, 1], [-3, 7, 0]

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mathrm{kTu})$ применяются четыре ступени преобразования частот. Полоса частот $0 \div 4~\mathrm{kTu}$ в одном из каналов аппаратуры преобразуется в линейный спектр с помощью несущих частот f_{Hi} , имеющих следующие номинальные значения:

I ступень : $f_{\text{ні}}$ =200 кГц , выделяется верхняя боковая,

II ступень : $f_{\rm HI}$ =308 к Γ ц , выделяется нижняя боковая,

III ступень : $f_{\text{ні}}$ =468 к Γ ц , выделяется нижняя боковая,

IV ступень : $f_{\rm Hi}$ =564 кГц, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала, а также определить его виртуальную частоту.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 12-32 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 100-120 к Γ ц, используемая боковая — верхняя. Во второй ступени преобразования выделяется верхняя боковая в диапазоне частот 400-420 к Γ ц.

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [19, -3], e_2 = [7, 4].

При формировании спектра группового сигнала 60-канальной аппаратуры уплотнения симметричного кабеля ($312-552~\mbox{к}\Gamma\mbox{ц}$) применяются три ступени преобразования частот. Полоса частот $0\div 4~\mbox{k}\Gamma\mbox{ц}$ в одном из каналов аппаратуры преобразуется с помощью несущих частот $f_{\mbox{\scriptsize Hi}}$, имеющих следующие номинальные значения :

I ступень : $f_{\text{нi}}$ =200 кГц , выделяется верхняя боковая,

II ступень : $f_{\text{ні}} = 264 \text{ к} \Gamma \mu$, выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 396 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

На выходе каждой ступени преобразования определить нижнюю и верхнюю граничные частоты заданного канала.

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 3 канальных сигналов ($32-40~\rm k\Gamma \mu$) с помощью 3 несущих колебаний с разными частотами преобразуются в полосу частот $16-48~\rm k\Gamma \mu$, межканальный интервал составляет $4~\rm k\Gamma \mu$. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала ($300-332~\rm k\Gamma \mu$). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой и второй ступенях нижней боковой полосы частот.

.-----

Вариант №24

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [13, 4], e_2 = [6, 5].

Групповой сигнал формируется двумя ступенями преобразования. В первой ступени преобразования спектры 6 канальных сигналов (0-4 к Γ ц) с помощью 6 несущих колебаний с разными частотами преобразуются в полосу частот 720-744 к Γ ц. Во второй ступени преобразования с помощью соответствующей несущей частоты формируется спектр группового сигнала (84-108 к Γ ц). Определить номинальные значения несущих частот в первой и второй ступенях преобразования при использовании в первой ступени верхней боковой полосы частот, а во второй ступени – нижней боковой

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот $200-236~\rm k\Gamma$ ц. В первой ступени преобразования сигнал переносится в полосу частот $320-356~\rm k\Gamma$ ц, используемая боковая — нижняя. Во второй ступени преобразования выделяется верхняя боковая в диапазоне частот $400-436~\rm k\Gamma$ ц

Определить векторы b_1 и b_2 , ортогональные векторам e_1 и e_2 , соответственно. e_1 = [81, 3], e_2 = [54, 18].

При формировании линейного спектра 60-канальной аппаратуры уплотнения симметричного кабеля $(12-252~\mathrm{kTu})$ применяются четыре ступени преобразования частот. На вход одного из каналов подается сигнал с частотой $2~\mathrm{kTu}$, который затем преобразуется в линейный спектр с помощью несущих частот f_{hi} , имеющих следующие номинальные значения :

I ступень : f_{Hi} =20 кГц, выделяется верхняя боковая,

II ступень : $f_{\rm Hi} = 108 \ {\rm kFu}$, выделяется нижняя боковая,

III ступень : $f_{\text{ні}} = 300 \text{ к} \Gamma \text{ц}$, выделяется верхняя боковая,

IV ступень : $f_{\rm Hi}$ =564 кГц, выделяется нижняя боковая,

На выходе каждой ступени преобразования определить частоту сигнала, а также значение виртуальной несущей частоты.

Определить значения несущих частот в первой и второй ступенях преобразования. Исходный сигнал имеет полосу частот 8-16 к Γ ц. В первой ступени преобразования сигнал переносится в полосу частот 80-88 к Γ ц, используемая боковая – верхняя. Во второй ступени преобразования выделяется нижняя боковая в диапазоне частот 520-528 к Γ ц.