Multivariate Verteilungen

Literatur: Fahrmeir, Hammerle und Tutz: Multivariate statistische Verfahren. De Gruyter, 1996., Kap 2, Anhang A11

Wir betrachten Zufalls-Vektoren ${\bf X}$ mit der mehrdimensionale Dichteund Verteilungsfunktion:

$$f: \mathbb{R}^n \to \mathbb{R}$$

 $F: \mathbb{R}^n \to \mathbb{R}$

Die Kovarianzmatrix von ${f X}$ wird mit $V({f X})={f \Sigma}$ bezeichnet

Spektralzerlegung der Kovarianzmatrix Σ

$$\Sigma = PLP^T$$
 und $\Sigma^{-1} = PL^{-1}P^T$,

P: die orthogonale Matrix der orthonormalen Eigenvektoren ist, L: $\mathsf{Diag}(\lambda_1,\ldots,\lambda_p)$ die Diagonalmatrix der Eigenwerte.

$$c^2 = (\mathbf{X} - \mu)^\mathsf{T} \mathbf{P} \mathbf{L}^{-1/2} \mathbf{L}^{-1/2} \mathbf{P}^\mathsf{T} (\mathbf{X} - \mu) = \mathbf{Y}^\mathsf{T} \mathbf{L}^{-1} \mathbf{Y} = \sum_{i=1}^p \frac{\mathbf{y}_i^2}{\lambda_i},$$

$$\mathbf{Y} = P^T(\mathbf{X} - \mu).$$

Die Gleichung $\sum_{i=1}^p \frac{y_i^2}{\lambda_i} = c^2$ ist eine Ellipsoidengleichung mit den Hauptachsenlängen $\sqrt{\lambda_i}c$

$$\mathbf{Y} = (\mathbf{v}_1^T(\mathbf{X} - \mu), \dots, \mathbf{v}_p^T(\mathbf{X} - \mu)),$$

sind Projektionen von $\mathbf{X} - \mu$ auf die Eigenvektoren v_1, \dots, v_p .

Sphärische und Elliptische Verteilungen

Verallgemeinerung von eindimensionalen Dichten durch Rotation um Zentrum x_0 :

f sei symmetrisch um 0

$$f(\mathbf{x}) = \mathbf{const} \cdot \mathbf{g}(\sqrt{\mathbf{x}^\mathsf{T}\mathbf{x}})$$

Verallgemeinerung auf elliptische Verteilungen:

$$f(\mathbf{x}) = |\mathbf{\Sigma}|^{-\frac{1}{2}} (\mathbf{g}(\mathbf{x} - \mu)' \mathbf{\Sigma}^{-1} \mathbf{g}(\mathbf{x} - \mu)) \cdot \mathbf{const}$$

Kurven gleicher Dichte sind Ellipsen.

Dichte der multivariaten Normalverteilung

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{\mathbf{p}/2} \mid \mathbf{\Sigma} \mid^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\},$$

 $\mu^T = (\mu_1, \dots, \mu_p) = E(\mathbf{X}^T)$ Erwartungswert.

Σ: Kovarianzmatrix

Höhenlinien der Normalverteilung:

$$(\mathbf{x} - \mu)^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) = \mathbf{c}^{2},$$

Normalverteilungsdichte I

Normalverteilungsdichte II

Einige Eigenschaften

- Gilt $\mathbf{X} \sim \mathbf{N_p}(\mu, \mathbf{\Sigma})$, dann ist $\mathbf{Y} = A\mathbf{X} + \mathbf{b}$ mit $(q \times p)$ -Matrix A und $(q \times 1)$ -Vektor \mathbf{b} wiederum normalverteilt mit $\mathbf{Y} \sim N_q(A\mu + b, A\Sigma A^T)$.
- Gilt $\mathbf{X} \sim \mathbf{N_p}(\mu, \mathbf{\Sigma})$, dann ist $\mathbf{Y} = \mathbf{\Sigma}^{-1/2}(\mathbf{x} \mu)$ standardnormalverteilt, d.h. $\mathbf{Y} \sim N_p(\mathbf{0}, I)$. Die quadratische Form $(\mathbf{X} \mu)^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{X} \mu)$ ist damit χ^2 -verteilt, $(\mathbf{X} \mu)^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{X} \mu) \sim \chi^2(\mathbf{p})$.

Einige Eigenschaften

• Sei $\mathbf{X} \sim \mathbf{N}(\mu, \mathbf{\Sigma})$ partitioniert in $\mathbf{X}^{\mathsf{T}} = (\mathbf{X}_1^{\mathsf{T}}, \mathbf{X}_2^{\mathsf{T}})$ mit zugehörigen Partitionen

$$\begin{array}{rcl} \boldsymbol{\mu}^T & = & (\boldsymbol{\mu}_1^T, \boldsymbol{\mu}_2^T), \\ \boldsymbol{\Sigma} & = & \left(\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array} \right). \end{array}$$

Dann gilt für die bedingte Verteilung

$$X_2 \mid X_1 \sim N(\mu_{2.1}, \Sigma_{2.1}),$$

wobei

$$\mu_{2.1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1),$$

$$\Sigma_{2.1} = \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}.$$

Wishart-Verteilung

Seien $x_1, \ldots, x_m \sim N_p(\mathbf{0}, \Sigma)$ und unabhängig. Man betrachtet die $(p \times p)$ -Matrix $M = \sum_{i=1}^m x_i x_i^T = \mathbf{X}^\mathsf{T} \mathbf{X}$, wobei

$$\mathbf{X} = \left(\begin{array}{c} x_1^T \\ \vdots \\ x_m^T. \end{array}\right)$$

Die $(p \times p)$ -Matrix $M = \sum\limits_{i=1}^m x_i x_i^T$ besitzt eine Wishart-Verteilung mit den Parametern Σ und $m, M \sim W_p(\Sigma, m)$. Die Standardform der Verteilung liegt vor, wenn $\Sigma = I$ gilt. Gilt

 $M = \sum_{i=1}^{m} x_i x_i^T \sim W(\Sigma, m)$, erhält man für

$$\Sigma^{-1/2} M \Sigma^{-1/2} = \sum_{i=1}^{m} (\Sigma^{-1/2} x_i) (\Sigma^{-1/2} x_i)^T \sim W_p(I, m).$$

SSP-Matrix

X besitzt die Form einer Datenmatrix mit m unabhängigen Wiederholungen einer p-dimensionalen normalverteilten Größe. M ist daher die SSP-Matrix (Matrix of sums of squares and products). Sei $x_i^T = (x_{i1}, \ldots, x_{im})$, dann gilt

$$\mathbf{X} = \begin{pmatrix} x_1^T \\ \vdots \\ x_m^T \end{pmatrix} = [\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(m)}],$$

wobei $x_{(i)}^T = (x_{1j}, \dots, x_{mj})$ zur Komponente j gehört.

SSP-Matrix II

Man erhält

$$M = (m_{ij}) = \mathbf{X}^{\mathsf{T}} \mathbf{X} = \begin{pmatrix} x_{(1)}^{\mathsf{T}} \\ \vdots \\ x_{(p)}^{\mathsf{T}} \end{pmatrix} [\mathbf{x}_{(1)}, \dots, \mathbf{x}_{(p)}]$$

$$= \begin{pmatrix} x_{(1)}^{\mathsf{T}} x_{(1)} & x_{(1)}^{\mathsf{T}} x_{(2)} & \dots & x_{(1)}^{\mathsf{T}} x_{(p)} \\ x_{(2)}^{\mathsf{T}} x_{(1)} & & & & \\ \vdots & & & & & \\ x_{(p)}^{\mathsf{T}} x_{(1)} & & & & x_{(p)}^{\mathsf{T}} x_{(p)} \end{pmatrix}$$

mit

$$x_{(j)}^T x_{(j)} = \sum_{i=1}^m x_{ij}^2.$$

 $x_{(j)}^T x_{(s)} = \sum_{i=1}^m x_{ij} x_{is}.$

Eigenschaften

1. Sei

$$M \sim W(\Sigma, m) \implies E(M) = m\Sigma$$

- 2. Für p=1 gilt $M=\sum_{i=1}^m x_i^2$, wobei $x_i\sim N(0,\sigma^2)$, so dass $M/\sigma^2=\sum_{i=1}^m (x_i/\sigma)^2$ eine $\chi^2(m)$ -Verteilung besitzt. Die Wishart-Verteilung $W_1(\sigma^2,m)$ ist somit äquivalent zur $\sigma^2\chi^2(m)$ -Verteilung.
- 3. Gelte $M = X^TX \sim W_p(\Sigma, m)$ und B sei $(p \times q)$ -Matrix, dann gilt mit Y = XB

$$B^TMB = B^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{B} = \boldsymbol{Y}^T \, \boldsymbol{Y} \sim \boldsymbol{W_q} (\boldsymbol{B}^T \boldsymbol{\Sigma} \boldsymbol{B}, \boldsymbol{m}).$$

4. Als Spezialfall von (3) ergibt sich die Verteilung von quadratischen Formen. Gilt $M \sim W_p(\Sigma, m)$ und a ist fester Vektor mit $a^T \Sigma a \neq 0$, dann gilt

$$\frac{a^T Ma}{a^T \Sigma a} \sim \chi^2(m) = W_1(a^T \Sigma a, m).$$

5. Gilt $M_1 \sim W_\rho(\Sigma, m_1), \ M_2 \sim W_\rho(\Sigma, m_2)$ und M_1 und M_2 sind unabhängig, dann gilt

$$M_1 + M_2 \sim W_p(\Sigma, m_1 + m_2).$$

Hotellings T²-Verteilung

Bestimmung:

Sei $d \sim N_p(0, I)$ und $M \sim W_p(I, m)$ und d und M seien unabhängig, dann folgt

$$md^TM^{-1}d \sim T^2(p,m)$$

Hotellings T^2 -Verteilung, wobei p die Dimension des Vektors unabhängiger Normalverteilungen ist und m die Anzahl der Komponenten der Wishart-Verteilung.

Allgemeiner seien x und M unabhängig mit $x \sim N_p(\mu, \Sigma)$, $M \sim W_p(\Sigma, m)$, dann erhält man

$$m(x-\mu)^T M^{-1}(x-\mu) \sim T^2(p,m)$$
.

Weitere Eigenschaften und Anwendungen

- 1. T^2 und t-Verteilung Die $T^2(1, m)$ -Verteilung entspricht dem Quadrat der t(m)-Verteilung und damit der F(1, m)-Verteilung.
- T² und F-Verteilung Genereller gilt eine Äquivalenz zwischen der T²-Verteilung und der F-Verteilung in der Form

$$T^2(p,m) = {(mp)/(m-p+1)}F(p,m-p+1)$$
.

bzw.

$$F(p,s) = \frac{s}{s+p-1} T^2(p,s+p-1)$$

3. Verteilung der empirischen Mahalanobis–Distanz zwischen \bar{x} und μ . Aus (2) folgt wegen

$$(n-1)(\bar{x}-\mu)^T S^{-1}(\bar{x}-\mu) \sim T^2(p,n-1)$$

 $\frac{n-p}{p}(\bar{x}-\mu)^T S^{-1}(\bar{x}-\mu) \sim F(p,n-p)$.

Wilks ****

Wilks Λ -Verteilung erhält man aus zwei unabhängigen Wishart-verteilten Größen $A \sim W_p(I, m), \ B \sim W_p(I, n), \ m \geq p$. Die Größe

$$\Lambda = \frac{|A|}{|A+B|} \sim \Lambda(p, m, n)$$

folgt der Wilks–Verteilung $\Lambda(p,m,n)$ mit Parametern p,m,n. Durch Erweitern mit $\mid A\mid^{-1}$ folgt wegen $\mid AB\mid=\mid A\mid\mid B\mid$ für Λ die Darstellung $\Lambda=\mid I+A^{-1}B\mid^{-1}$.

Eigenschaften

- 1. Für den eindimensionalen Spezialfall $A \sim \chi^2(1), \ B \sim \chi^2(1)$ ergibt sich die Beta-Verteilung $\Lambda(1,1,1) = B(0.5,0.5)$.
- 2. Für p = 1 besitzt A eine $\chi^2(m)$ -Verteilung und B eine $\chi^2(n)$ -Verteilung, so dass

$$\Lambda(1, m, n) = B(m/2, n/2).$$

- **3.** Die Verteilungen $\Lambda(p, m, n)$ und $\Lambda(n, m + n p, p)$ sind identisch.
- Die Verteilung von Λ(p, m, n) ist identisch mit der Verteilung des Produkts

$$u_1 \cdot \ldots \cdot u_n$$
,

wobei
$$u_i \sim B((m+i-p)/2, p/2), i = 1, ..., n.$$

5. Die Verteilung von $\Lambda(p, m, 1)$ ist äquivalent zu B((m+1-p)/2, p/2).

Diskrete Multivariate Verteilungen

- Multinomialverteilung
- Multivariate Hypergeometrische Verteilung
 Diese Verteilung entspricht der Verallgemeinerung des SZiehen ohne
 Zurücklegen". Gezogen werden n aus N Objekten, die in K Klassen
 zerfallen. Es sind jeweils N₁,..., N_K Objekte vorhanden. Die
 Wahrscheinlichkeitsfunktion ist

$$P(X_1 = n_1, \dots, X_K = n_K) = \frac{\prod_{k=1}^K \binom{N_k}{n_k}}{\binom{N}{n}} \quad \text{für } \sum n_k = n$$