113 學年度學科能力測驗 數學 B 考科選擇(填) 題答案

題號	答案	題號		答案	題號	答案
1	4	13	13-1	_	18	4
2	1		13-2	1	19	/
3	2	14	14-1	2	20	
4	4		14-2	7		
5	3		15-1	3		
6	1	15	15-2	_		
7	3		15-3	6		
8	1,2,5	16	16-1	4		
9	2,5		16-2	3		
10	1,3,4	17	17-1	7		
11	1,4,5		17-2	6		
12	1,4					

※答案「/」者,表示該題為非選擇題。

113 學年度學科能力測驗數學 B 考科 非選擇題滿分參考答案與評分原則

113 學科能力測驗數學 B 考科的非選擇題共有 2 題,其中第 19 題為 4 分;第 20 題為 8 分,總計 12 分。非選擇題主要評量考生是否能夠清楚表達推理論證過程,答題時應將推理或解題過程說明清楚,且得到正確答案,方可得到滿分。如果計算錯誤,則酌給部分分數。如果只有答案對,但觀念錯誤,或過程不合理,則無法得到分數。

數學科非選擇題的解法通常不只一種,在此提供多數考生可能採用的解法以供各界參考,詳細評分原則說明與部分學生作答情形,請參閱本中心將於 4 月 15 日出刊的第 342 期《選才電子報》。

113 學年度學科能力測驗數學 B 考科非選擇題各題的參考答案說明如下:

第 19 題

一、滿分參考答案:

策略一:利用 ΔBCD 的面積= $\frac{1}{2} \times \overline{BC} \times \overline{DP}$ 。

【法一】

設P為 \overline{BC} 的中點。因為 $\overline{DP} = \sqrt{9^2 - 4^2} = \sqrt{65}$,

得
$$\Delta BCD$$
的面積= $\frac{1}{2} \times 8 \times \sqrt{65} = 4\sqrt{65}$ 。

策略二:利用三角形面積= $\frac{1}{2}ab\sin C$ 。

【法二】

因為
$$\sin \angle DBC = \sqrt{1 - (\frac{4}{9})^2} = \frac{\sqrt{65}}{9}$$
,得 ΔBCD 的面積= $\frac{1}{2} \times 9 \times 8 \times \frac{\sqrt{65}}{9} = 4\sqrt{65}$ 。

【法三】

因為
$$\cos \angle BDC = \frac{9^2 + 9^2 - 8^2}{2 \times 9 \times 9} = \frac{49}{81}$$
,得 $\sin \angle BDC = \sqrt{1 - (\frac{49}{81})^2} = \frac{8\sqrt{65}}{81}$ 。

因此 ΔBCD 的面積= $\frac{1}{2} \times 9 \times 9 \times \frac{8\sqrt{65}}{81} = 4\sqrt{65}$ 。

策略三:利用三角形面積= $\sqrt{s\times(s-a)\times(s-b)\times(s-c)}$ 。

【法四】

$$\Leftrightarrow s = \frac{9+9+8}{2} = 13$$
,得 ΔBCD 的面積= $\sqrt{13 \times (13-9) \times (13-9) \times (13-8)} = 4\sqrt{65}$ 。

二、評分原則:

- 1.可採策略一,利用 ΔBCD 的底邊及推得其對應的高,求出 ΔBCD 的面積,且有正確的解題過程。
- 2.可採策略二,利用 ΔBCD 的任意兩邊長及推得該兩邊長夾角的正弦值,求出 ΔBCD 的面積,且有正確的解題過程。
- 3.可採策略三,利用 ΔBCD 的三邊長及面積公式,求出 ΔBCD 的面積,且有正確的解題過程。

第 20 題

一、滿分參考答案:

※求 *AD* 的長度:

設P為 \overline{BC} 的中點,由 $\overline{AD} \perp \overline{BC}$ 且 $\overline{DP} \perp \overline{BC}$,得 $\overline{AP} \perp \overline{BC}$,故 $\overline{AB} = \overline{AC}$ 。 由題意知 $\angle BAC$ 為直角,所以 ΔABC 為等腰直角三角形,得 $\overline{AB} = \overline{AC} = 4\sqrt{2}$ 。 故 $\overline{AD} = \sqrt{9^2 - (4\sqrt{2})^2} = 7$ 。

(亦可設
$$\overline{AD}=x$$
、 $\overline{AB}=y$ 、 $\overline{AC}=z$,由畢氏定理得
$$\begin{cases} x^2+y^2=9^2\\ x^2+z^2=9^2\\ y^2+z^2=8^2 \end{cases}$$

推得
$$y = z = 4\sqrt{2}$$
 ,故 $\overline{AD} = x = \sqrt{9^2 - (4\sqrt{2})^2} = 7$ 。)

※求四面體 ABCD 的體積:

四面體
$$ABCD$$
 的體積= $\frac{1}{3} \times \left(\frac{1}{2} \times 4\sqrt{2} \times 4\sqrt{2} \times 7\right) = \frac{112}{3}$ 。

%求頂點A到底面 ΔBCD 高度的方法:

《以下列出三種求出頂點A到底面 ΔBCD 高度的方法》

【法一】利用四面體 ABCD 的體積

頂點 A 到底面 ΔBCD 的高度 =
$$\frac{\frac{112}{3}}{\frac{1}{3} \times 4\sqrt{65}} = \frac{28}{\sqrt{65}} = \frac{28}{65}\sqrt{65}$$
 。

【法二】利用 $\triangle APD$ 面積

設頂點A在平面BCD的投影點為Q。因為 $\overline{AD} \perp \overline{BC}$ 且 $\overline{DP} \perp \overline{BC}$,

故
$$Q$$
必定落在 \overline{DP} 。又 \overline{DP} = $\sqrt{65}$, \overline{AP} = 4, \overline{AD} = 7,且 $\angle DAP$ 為直角,

所以頂點A到底面
$$\Delta BCD$$
的高度 = $\frac{\frac{1}{2} \times 4 \times 7}{\frac{1}{2} \times \sqrt{65}} = \frac{28}{\sqrt{65}} = \frac{28}{65} \sqrt{65}$ 。

【法三】架空間坐標系,並利用點到平面方程式的距離公式

架空間坐標系,例如:設A為原點,且 \overrightarrow{AC} 、 \overrightarrow{AB} 、 \overrightarrow{AD} 分別為+x、+y、+z方向,得 $C(4\sqrt{2},0,0),B(0,4\sqrt{2},0),D(0,0,7)$ 。

故平面
$$BCD$$
的方程式為 $\frac{x}{4\sqrt{2}} + \frac{y}{4\sqrt{2}} + \frac{z}{7} = 1$,化簡得 $7x + 7y + 4\sqrt{2}z = 28\sqrt{2}$ 。

(亦可求平面 BCD 的法向量為

$$\overrightarrow{BD} \times \overrightarrow{BC} = (0, -4\sqrt{2}, 7) \times (4\sqrt{2}, -4\sqrt{2}, 0) = (28\sqrt{2}, 28\sqrt{2}, 32) = 4\sqrt{2}(7, 7, 4\sqrt{2})$$
 。
故平面 BCD 的方程式為 $7x + 7y + 4\sqrt{2}z = 28\sqrt{2}$ 。)

所以頂點
$$A$$
 到底面 ΔBCD 的高度 = $\frac{28\sqrt{2}}{\sqrt{7^2 + 7^2 + (4\sqrt{2})^2}} = \frac{28}{65}\sqrt{65}$ 。

二、評分原則:

- 1.根據題意,能求出 \overline{AD} 長度與四面體 ABCD 的體積,且有正確的解題過程。
- 2.可利用不同方法求出頂點 A到底面 ΔBCD 的高度:例如可利用四面體 ABCD的體積;或利用 ΔAPD 的面積;或透過架設空間坐標系,利用空間中的點到平面的距離公式,且有正確的解題過程。