

## Merkblatt Analysis: Extrempunkte bestimmen

### 1. Was sind Extrempunkte?

Extrempunkte sind Hochpunkte, Tiefpunkte oder Sattelpunkte einer Funktion. Sie geben die Stellen an, an denen eine Funktion ihr Maximum oder Minimum (lokal oder global) erreicht.

## 2. Vorgehen zur Extrempunktbestimmung

- 1. Funktion ableiten: Bestimme die 1. Ableitung f'(x).
- 2. Notwendige Bedingung: Setze f'(x) = 0 und löse nach x (kritische Punkte).
- 3. 2. Ableitung: Bestimme die 2. Ableitung f''(x).
- 4. Hinreichende Bedingung: Untersuche die kritischen Punkte mit f''(x):
  - $f''(x_0) > 0 \Rightarrow \text{Tiefpunkt}$
  - $f''(x_0) < 0 \Rightarrow \text{Hochpunkt}$
  - $f''(x_0) = 0 \Rightarrow$  weitere Untersuchung nötig (z.B. 3. Ableitung oder Vorzeichenwechsel von f'(x))
- 5. Funktionswerte berechnen: Setze die x-Werte in f(x) ein, um die y-Werte der Extrempunkte zu erhalten.

#### 3. Sattelpunkt

Ein Sattelpunkt liegt vor, wenn  $f'(x_0) = 0$  und  $f''(x_0) = 0$ , aber f'(x) wechselt an  $x_0$  das Vorzeichen (z.B. Wendepunkt mit waagrechter Tangente).

#### 4. Beispiel 1: Schritt-für-Schritt – Extrempunkte einer kubischen Funktion

Gegeben: 
$$f(x) = x^3 - 3x^2 + 2$$

Schritt 1: 1. Ableitung bilden

$$f'(x) = 3x^2 - 6x$$

Schritt 2: Notwendige Bedingung - Nullstellen der 1. Ableitung

$$3x^2 - 6x = 0 \Rightarrow x_1 = 0, \ x_2 = 2$$

Schritt 3: 2. Ableitung bilden

$$f''(x) = 6x - 6$$

Schritt 4: Hinreichende Bedingung prüfen

$$f''(0) = -6 < 0 \Rightarrow \text{Hochpunkt bei } x = 0$$

$$f''(2) = 6 > 0 \Rightarrow \text{Tiefpunkt bei } x = 2$$

Schritt 5: Funktionswerte berechnen

$$f(0) = 2, f(2) = -2$$

**Ergebnis:** Hochpunkt (0|2), Tiefpunkt (2|-2)



# 5. Beispiel 2: Schritt-für-Schritt – Sattelpunkt

Gegeben:  $q(x) = x^3$ 

Schritt 1: 1. Ableitung

$$g'(x) = 3x^2$$

Schritt 2: Notwendige Bedingung

$$g'(x) = 0 \Rightarrow x_0 = 0$$

Schritt 3: 2. Ableitung

$$g''(x) = 6x, g''(0) = 0$$

Schritt 4: Vorzeichenwechsel prüfen

g'(x) wechselt an x=0 das Vorzeichen (von negativ zu positiv), daher Sattelpunkt bei x=0

$$g(0) = 0$$

**Ergebnis:** Sattelpunkt (0|0)

# 6. Übersicht: Vorgehen in Kurzform

- 1. Ableitung  $\rightarrow$  Nullstellen  $\rightarrow$  Kandidaten
- 2. Ableitung  $\rightarrow$  Vorzeichen prüfen
- Funktionswerte berechnen
- Sattelpunkt:  $f'(x_0) = 0$ ,  $f''(x_0) = 0$ , aber kein Extremum

#### 7. Tipps und Hinweise

- Bei  $f''(x_0) = 0$  immer weiter prüfen (z.B. 3. Ableitung oder Monotonieverhalten).
- Bei Anwendungen: Randwerte nicht vergessen (z.B. Definitionsbereich beachten)!
- Skizze hilft beim Verständnis.

### 8. Übungsaufgabe

Bestimme alle Extrempunkte und Sattelpunkte der Funktion  $h(x) = x^4 - 4x^2$  Schritt für Schritt.