Electronic Systems Plant

P.O. Box 296 Azusa, California 91702-0296 CAGE/Facility Ident: 70143

AE-26156/10B 27 August 1998

Superseding AE-26156/10A 7 July 1998

PROCESS SPECIFICATION

EOS/AMSU-A2, SYSTEM COMPREHENSIVE AND LIMITED PERFORMANCE TESTS TEST PROCEDURE

TABLE OF CONTENTS

Paragraph		Page
1.	SCOPE	1
1.1	Scope	
1.2	Procedure sequence	1
2.	APPLICABLE DOCUMENTS	3
2.1	Government documents	3
2.2	Non government documents	3
2.2.1	TRW documents	3
2.2.2	Aerojet documents	3
3.	REQUIREMENTS	5
3.1	General test requirements	5
3.1.1	Equipment	5
3.2	Materials	5
3.3	Required procedures and operations	5
3.3.1	Integration and test preliminary conditions	5
3.3.1.1	Limited performance test (LPT)	5
3.1.1.2	Comprehensive performance test (CPT)	5
3.3.1.3	Integration and test facilities	5
3.3.1.4	Environment	5
3.3.1.5	Subsystem testing/inspection	5
3.3.1.6	Electrostatic discharge (ESD) certification	
3.3.1.7	CPT/LPT preparation checklist	 8
3.3.2	Grounding interface test	10
3.3.3	Operational power interface test	10
3.3.3.1	Quiet power bus interface tests	11
3.3.3.1.1	Quiet power bus operational power test	11
3.3.3.1.2	Quiet power bus operational power test (LPT only).	17
3.3.3.1.3	Quiet power bus turn on transient test	10
3.3.3.2	Noisy power bus interface tests	22
3.3.3.2.1	Noisy power bus operational power test	23
3.3.3.2.2	Noisy power bus turn on transient test	20
3.3.3.3	Survival heater power bus interface tests	32
3.3.4	Passive analog interface test	32
3.3.5	Command and data handling bus interface test	3/1
3.3.5.1	Formal qualification test of the EOS/AMSU-A2 firmware (protoflight model 1st CPT only	34
3.3.5.2	Instrument commanding test	34
3.3.5.3	Science and Engineering Data Verification	37
3.3.5.3.1	Full scan mode	37
3.3.5.3.2	Warm cal mode	38
3.3.5.3.3	Cold cal mode	38
3.3.5.3.4	Nadir mode	42
3.3.5.3.5	Noisy bus current measurement during warm cal, cold cal, and Nadir mode	41
3.3.5.4	1553 Bus interface test	41 13
3.3.6	Test point interface test	43
3.3.6.1	8 second sync pulse test point verification	45
3.3.6.2	Integrate/Hold and dump test point verification	
3.3.6.3	Radiometer channel analog output test point verification	43
3.3.6.4	GSE-1 mode verification.	45 AA
3.3.6.5	GSE-2 mode verification.	40 17
3.3.6.6	GSE-3 mode verification.	۲۴۹۱ م
		······································

FINAL CPT

AE-26156/10

S.O. 509734/OPER. 0580/STEP C

S/N 202/A2

P/N 1356006-1

Report 11336 November 1998

Integrated Advanced Microwave Sounding Unit-A (AMSU-A)

Performance Verification Reports

Final Comprehensive Performance Test Report

P/N: 1356006-1, S/N: 202/A2

Contract No. NAS 5-32314 CDRL 208

Submitted to:

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771

Submitted by:

Aerojet 1100 West Hollyvale Street Azusa, California 91702

TABLE OF CONTENTS (CONT)

Paragraph		Page
3.3.6.7	GSE-4 mode verification	48
3.3.6.8	GSE-5 mode verification	49
3.3.6.9	GSE-7 mode verification	50
3.3.7	Radiometer functional performance test	50
3.3.7.1	Relative radiometer NEAT measurements	50
3.3.8	Channel Identification Test	52
4.	QUALITY ASSURANCE PROVISIONS	59
4.1	Responsibility for inspection	59
4.1.1	Test facilities	59
4.1.2	Electrostatic device (ESD) handling	59
4.2	Monitoring procedures	59
4.2.1	Test equipment.	59
4.2.2	Software	59
4.3	Monitoring procedures for materials	59
4.4	Certification	59
4.5	Test methods	59
4.5.1	Accept-reject criteria	59
4.5.2	General	59
4.5.2.1	Acceptance test reports	60
4.5.2.1.1	Format	60
4.5.2.1.2	Test data	60
5.	NOTES	61
5.1	Intended use	61
5.2	Abbreviations and acronyms	61
10.	APPENDIX A - TEST DATA SHEETS	A-1
	FIGURES	
Figure	***************************************	Page
1	Sequence of EOS/AMSU-A2 CPT/LPT Testing	1
2	Special Test Equipment (STE)(1356655)	
3	STE Front Power Supply Panel Layout	9
4	STE Rear Power Supply Panel Layout	
5	STE Rear Test Panel Layout	9
6	STE Rear Interface Panel Layout	10
7	Setup for Grounding Interface Test	11
8	Setup for Quiet Bus Operational Power Tests	
9	FOS/AMSU-A2 STE Main Screen	14
10	EOS/AMSU-A2 STE Monitor Only Screen	15
11	EOS/AMSU-A2 STE Commands Screen	
12	Test Setup of Unit Connected to STE	18
13	Typical Ouiet Bus Turn On Transient	23
14	Setup for Noisy Bus Operational Power Tests	24
15	Typical Noisy Power Bus Current Waveform	28
16	Typical Worst Case Noisy Power Bus Turn On Transient Waveforms	33
17	FOS/AMSU-A2 STE Unpowered Thermistors Screen	34
18	Configuration for 1553 Interface Test Setup	4

FIGURES (CONT)

Figure		Page
19	Typical 1553 Bus Waveform (Instrument Response)	44
20	Typical Rise-Time Measurement	45
21	Integrate/Hold, Dump, and Analog Out Test Point Signals	46
22	Relative NE∆T Test Setup	52
23	Typical Screen Display Following a Functional Test	51
24	Science Data Screen	54
25	Radiometric Data Screen	54
26	Channel Identification Set-Up	55
	TABLES	
Table		Page
I	Required Test Equipment	6
II	AMSU-A2 Performance Tests	7
Ш	EOS/AMSU-A2 Instrument Commands	35
	TEST DATA SHEETS	
TDS		Page
1	Grounding Interface Test	A-2
2	Quiet Power Bus Operational Power Test	A-8
3	Quiet Power Bus Operational Power Test (LPT)	A-9
4	Quiet Power Bus Turn On Transient Test	A-10
5	Noisy Power Bus Operational Power Test	A-11
6	Noisy Power Bus Turn On Transient Test	A-12
7	Passive Analog Interface Test	A-13
8	Instrument Commanding Test	A-14
9	Science and Engineering Data Test (Full Scan Mode)	A-15
10	Science and Engineering Data Test (Warm Cal Mode)	A-18
11	Science and Engineering Data Test (Cold Cal Mode)	A-20
12	Science and Engineering Data Test (Nadir Mode)	A-25
13	1553 Bus Interface Test	A-27
14	Test Point Interface Test (8 Second Sync Pulse TP)	A-28
15	Test Point Interface Test (Integrate/Hold and Dump TPs)	A-29
16	Test Point Interface Test (Radiometer Channel Analog Output TPs)	A-30
17	Test Point Interface Test (GSE Modes)	A-31
18	Radiometer Functional Performance Test (Relative NEAT Measurements*)	A-32
19	Channel Identification Test	A-33

1. SCOPE

- 1.1 Scope. This process specification establishes the requirements for the Comprehensive Performance Test (CPT) and Limited Performance Test (LPT) of the Earth Observing System Advanced Microwave Sounding Unit A2 (EOS/AMSU-A2), referred to as the unit. The unit is defined on Drawing 1356006.
- 1.2 Procedure sequence. The sequence of CPT/LPT testing is shown in Figure 1. At the discretion of the test engineer the order of tests may be changed.

Figure 1. Sequence of EOS/AMSU-A2 CPT/LPT Testing

This page intentionally left blank.

2. APPLICABLE DOCUMENTS

2.1 Government documents. The following documents form a part of this specification to the extent specified herein. The latest issue is applicable.

SPECIFICATIONS

NASA (Goddard Space Flight Center (GSFC))

S-480-80	Performance and Operation Specification for the EOS/ METSAT Integrated Programs AMSU-A Instrument (POS)
S-480-79	Performance Assurance Requirements for the EOS/METSAT Integrated Programs AMSU-A Instrument (PAR)
422-11-12-01	General Interface Requirements Document for EOS Common Spacecraft /Instruments EOS PM Project (GIRD)
422-12-12-02	Unique Instrument Interface Document for the Advanced Microwave Sounding Unit (AMSU-A) EOS PM Project (UIID)

STANDARDS

MIL-STD-45662 Calibration Systems Requirements

(Copies of government documents should be obtained as indicated in the Department of Defense Index of Specifications and Standards).

2.2 Non government documents. The following documents form a part of this specification to the extent specified herein. The latest issue is applicable.

2.2.1 TRW documents

SPECIFICATIONS

D24845	Interface Control Document for Advanced Microwave Sounding Unit - A2 (ICD)

D25093 Instrument Interface Database for the AMSU-A2

(Copies of TRW documents may be obtained from TRW Inc.).

2.2.2 Aerojet documents

AE-26156/8

STANDARDS

STD-2454	Requirements for Electrostatic Discharge Control	
SPECIFICATIONS		
AE-26002/2	AMSU-A2 Antenna Drive Subsystem Test Procedure	

AE-26357 AMSU-A Transportation and Handling Procedure

EOS/AMSU-A2 Subsystem Integration Procedure

AE-26156/10B 27 Aug 98

SPECIFICATIONS - Cont

	AE-26600	EOS/AMSU-A Firmware Test Procedures
REPOR	TS	
	10353	EOS/AMSU-A Contamination Control Plan
	10443	EOS/AMSU-A Software User's Guide (STE Software)
	10458	EOS/AMSU-A Firmware Requirements
	10974	EOS/AMSU-A Firmware Test Report
DRAWI	NGS	
	1356006	EOS/AMSU-A2 Assembly
	1356648	Cable Assembly FOS Lat Test
	1356655	Console Assembly, METSAT and EOS STE
	1338427	Cover, ESD Shielded Bag
	SK1358702	9 Pin Breakout Box
	SK1358704	25 Pin Breakout Box
	SK1358705	37 Pin Breakout Box
	SK1360106	On/Off Switch

(Copies of Aerojet documents may be obtained from Gencorp Aerojet, Azusa Operations, CAGE 70143, P.O. Box 296, Azusa, California, 91702-0296).

3. REQUIREMENTS

3.1 General test requirements

3.1.1 Equipment. All measurements shall be made using the test equipment or its equivalent as specified in Table I. Equivalent test equipment shall be approved by Systems Engineering and Quality Assurance. Test equipment and gauges required to perform examinations and tests shall be controlled by a calibration system as specified in MIL-STD-45662.

All inspection, measurement and test equipment used shall be currently calibrated to certified standards. The date of last calibration and calibration due date shall be displayed on each item of equipment subject to calibration and recorded at the time of test performance as specified in detailed procedures.

- 3.2 Materials. Not applicable.
- 3.3 Required procedures and operations. The unit shall be subjected to the tests shown in Figure 1 and Table II.
- 3.3.1 Integration and test preliminary conditions.
- 3.3.1.1 Limited performance test (LPT). The Limited Performance Test shall consist of the test procedures in the LPT column of Table II.
- 3.1.1.2 Comprehensive performance test (CPT). Three types of Comprehensive Performance Testing are shown in Table II. The first and final CPTs are the same except for paragraph 3.3.5.1 which is performed during the first protoflight unit CPT. The first CPT is performed prior to the start of environmental testing. Sub CPTs are intermediate comprehensive performance tests performed during environmental testing. The final CPT is performed after the completion of environmental testing. Table II shows the required tests for each CPT.
- 3.3.1.3 Integration and test facilities. Unless otherwise specified, all testing and inspection of the EOS/AMSU-A2 shall be conducted at Aerojet, Azusa Operations, Azusa, California.
- **3.3.1.4** Environment. Unless otherwise specified all testing and inspection operations shall be performed under the following laboratory ambient conditions:
 - a. Handling in accordance with AE-26357
 - b. Contamination control in accordance with Report 10353
 - c. Temperature: $+23 \pm 10$ degrees Celsius
 - d. Pressure: 610 to 810 torr
 - e. Humidity: $50 \pm 20\%$ (no condensation)
 - f. The instrument shall be placed in its protective bag (1338427) when not in use.
- 3.3.1.5 Integration testing/inspection. Prior to the start of CPT/LPT testing, the unit should be in the final system configuration as determined by the successful completion of the subsystem integration procedure, AE-26156/8.
- 3.3.1.6 Electrostatic discharge (ESD) certification. Certification for handling ESD sensitive equipment in accordance with STD-2454 is required for all personnel working on the EOS/AMSU-A2 instrument.

Table I. Required Test Equipment

Item	Qty	Equipment	Manufacturer	Model No,
1	1	9-Pin Breakout Box	Aerojet	SK1358702-1/2536-3743
2	1	25-Pin Breakout Box	Aerojet	SK1358704-1/2536-3746
3	1	37-Pin Breakout Box	Aerojet	SK1358705-1/2536-3745
4	1	AMSU-A Special Test Equipment (STE)	Aerojet	1356655-1
5	1	STE Interface Cable J1 (W31)	Aerojet	1356648-1
6	1	STE Interface Cable J2 (W32)	Aerojet	1356648-2
7	1	STE Interface Cable J3 (W33)	Aerojet	1356648-3
8	1	STE Interface Cable J4 (W34)	Aerojet	1356648-4
9	1	Cold Target	Aerojet	T-1291000-1
10	1	Digital Multimeter	Fluke/Tektronix	77/DMM916
11	1	Spectrum Analyzer	Hewlett-Packard	8566B/8590L
12	1	Plotter	Hewlett-Packard	7475A
13	1	Digital Multimeter	Hewlett-Packard	34401A
14	1	Digital Oscilloscope	Tektronix	TDS386/2221A
15	1	Dynamic Signal Analyzer	Hewlett-Packard	3562A/3563
16	1	Current Probe	Tektronics	AM503
17	1	Frequency Counter	Hewlett-Packard	5316A
18	1	Function Generator	Hewlett-Packard	3325A/B
19	1	Power Supply	Power Designs	3650-S
20	1	Oxygen Monitor	Bio Systems	3100
21	2	Cryo Protective Gloves	Lab Safety Supply	5932L
22	1	Protective Face Mask	Sellstrom	124-390\380
23	1	Cold Target Support	Aerojet	T-1291001-1
24	1	On/Off Switch	Aerojet	SK1360106
25	1	Power Supply	Hewlett-Packard	HP-6205B
26	1	Liquid Nitrogen Container	Cole Parmer	NO3726-20
27	1	Protective Apron	Lab Safety Supply	8A-7549-3
28	1	Sweep Oscillator	Hewlett-Packard	8350 Series
29	1	Plug-In	Hewlett-Packard	83570A
30	1	Plug-In	Hewlett-Packard	83572C

Table II. AMSU-A2 Performance Tests

Paragraph	Description	1 st CPT	LPT	Sub CPT	Final CPT
3.3.2	Grounding Interface Test	Х	Х	X	Х
3.3.3	Operational Power Interface Test				
3.3.3.1	Quiet Power Bus			3 .	
3.3.3.1.1	Quiet Power Bus Operational Power Test	х		X	X
3.3.3.1.2	Quiet Power Bus Operational Power Test (LPT Only)		х		
3.3.3.1.3	Quiet Power Bus Turn On Transient Test	X			X
3.3.3.2	Noisy Power Bus	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		e day sa S	
3.3.3.2.1	Noisy Power Bus Operational Power Test	х		X	X
3.3.3.2.2	Noisy Power Bus Turn On Transient Test	Х			X
3.3.3.3	Survival Heater Power Bus Interface Test				X
3.3.4	Passive Analog Interface Test	Х	X	X	X
3.3.5	Command & Telemetry Bus Interface Test				
3.3.5.1	FQT of the EOS/AMSU-A1 Firmware (PFM Only)	X			
3.3.5.2	Instrument Commanding Verification	х	Х	X	X
3.3.5.3	Science and Engineering Data Verification	х	Х	Х	X
3.3.5.4	1553 Bus Interface Test	х			х
3.3.6	Test Point Interface Test				
3.3.6.1	8 Second Sync Pulse Verification	х		X	X
3.3.6.2	Integrate/Hold & Dump Signal Verification	Х		X	х
3.3.6.3	Radiometer Channel Analog Output Verification	х		X	Х
3.3.6.4	GSE-1 Mode Verification	Х			х
3.3.6.5	GSE-2 Mode Verification	X			х
3.3.6.6	GSE-3 Mode Verification	X			x
3.3.6.7	GSE-4 Mode Verification	X			х
3.3.6.8	GSE-5 Mode Verification	х			X
3.3.6.9	GSE-7 Mode Verification	X			X
3.3.7	Radiometer Functional Performance Test	:	·		
3.3.7.1	Relative Radiometer NE∆T Measurements	х	X	X	X
3.3.8	Channel Identification Test				X

3.3.1.7 CPT/LPT preparation checklist. Prior to starting the integration, perform the following procedures.

- 1. Visually inspect the instrument. Check for physical damage and cleanliness.
- 2. Verify proper installation of the ESD protective mat and wriststraps. Refer to STD-2454 for ESD protection instructions.
- 3. Verify that each connector of the spacecraft interface has a connector saver installed.
- 4. Obtain the required test equipment listed in Table I. Verify that the test equipment requiring calibration is currently calibrated.
- 5. Verify operation of the Special Test Equipment (STE) shown in Figure 2 by itself. Make sure that the current limits on the two power supplies that interface to the instrument are set correctly. The Q supply should be set to 3 amps and the N/S supply should be set to 1.5 amps. Refer to Figure 3 for the STE power supply panel layout. Figures 4 through 6 show other panels on the STE that will be referenced later in this procedure.
- 6. Verify that all of the required procedures and drawings listed in 2.2.2 are available for reference.

Figure 2. Special Test Equipment (STE)(1356655)

Figure 3. STE Front Power Supply Panel Layout

Figure 4. STE Rear Power Supply Panel Layout

Figure 5. STE Rear Test Panel Layout

Figure 6. STE Rear Interface Panel Layout

3.3.2 Grounding interface test. This test provides the verification of the unit grounding requirements found in the following documents:

UIID Waiver 5 (12)

GIRD Sections 5.3 and 6.2.2 (except section 5.3.5.2)

POS Section 4.4.1

ICD Section 5.3

To verify these requirements, perform the following procedures.

- 1. Configure the unit as shown in Figure 7. Verify that connectors J1, J2, J3 and J4 have connector savers installed. Connect a 25 Pin breakout box at J1. Connect a 37 Pin breakout box at J2. Connect a 9 pin breakout box at J3. Connect a 37 pin breakout box at J4.
- 2. Measure and record continuity or isolation between the points as specified on Test Data Sheet (TDS) 1.
- 3. Remove the breakout boxes from J2 and J3 ensuring that the connector savers remain in place.
- 3.3.3 Operational power interface test. This test provides the verification of the operational power interface requirements found in the following documents:

UIID - Section 3.3 and waivers 5(3), 5(7), 5(9), and 5(11)

GIRD - Sections 5.1.2 and 5.2

POS - None

ICD - Sections 5.1.2 and 5.2

Figure 7. Setup for Grounding Interface Test

Operational power is delivered to the unit through spacecraft interface connector J1 as follows:

- a. Quiet power bus (3.3.3.1)
- b. Noisy power bus (3.3.3.2)
- c. Survival heater power bus (3.3.3.3)
- 3.3.3.1 Quiet power bus interface tests. The quiet bus is active immediately upon the introduction of spacecraft power to the bus. There is no internal control within the unit. The quiet power bus shall be verified by performing the following tests:
 - 1. Quiet power bus operational power test (3.3.3.1.1)
 - 2. Quiet power bus operational power test (LPT only) (3.3.3.1.2)
 - 3. Quiet power bus turn on transient test (3.3.3.1.3)
- 3.3.3.1.1 Quiet power bus operational power test. The Quiet Power Bus operational power shall be verified at combinations of three voltages (+27, +29, and +31 volts). The operational power test will be conducted for the unit in full scan mode as follows:
 - 1. With the STE main power off and the STE power panel turned off (main power, Q/Main, N/Pulse, and S/Analog switches as shown in Figure 3 in the off position), connect the instrument as shown in Figure 8. This setup assumes a dc impedance from the spacecraft supplied power through fuse and cabling to the unit on the order of 0.3 ohms.
 - 2. Breakout boxes at J1 and J4 should still be connected to the unit from paragraph 3.3.2 testing.
 - 3. Connect the STE to the instrument using the following STE interface cables:
 - a. STE interface cable J1 (1356648-1)

- b. STE interface cable J2 (1356648-2)
- c. STE interface cable J3 (1356648-3)
- 4. Connect STE interface cable J1 from EOS J1 found on the STE power panel shown in Figure 4 to the 25 pin breakout box. Connect the remaining end of the 25 pin breakout box to J1 of the instrument.
- 5. Connect STE interface cable J2 from EOS J2 found on the STE test panel shown in Figure 5 to J2 on the unit.
- 6. Connect STE interface cable J3 from EOS A&B J5 found on the STE interface panel shown in Figure 6 to J3 on the unit.
- 7. Before turning on the power to the unit, verify that switches 1, 2, 14, and 15 of the 25 pin breakout box are in the open position.
- 8. Disconnect the external power supply (PS1) from the 25 pin breakout box. Turn on the external supply and using a multimeter, adjust its output to 27 ± 0.10 volts. Turn off the external supply and reconnect the supply as shown in Figure 8.
- 9. Turn the STE main power switch on (refer to Figures 2 and 3 (computer should be on, STE power panel should be off)). From the A2 directory and at the "\$" prompt, enter the command to the STE "RUN E2". The EOS/AMSU-A2 software program should be running as evidenced by the STE screen shown in Figure 9.
- 10. Turn the STE power supply panel main power switch on (refer to Figure 3).
- 11. Turn the external power supplies (PS1 and PS2) on. Place ON/OFF switch assembly to the ON position. With a multimeter, adjust the Quiet Bus voltage (PS1) at the breakout box to 27 ± 0.10 volts (between J1-1 and J1-3).
- 12. Turn the STE power supply panel N/Pulse switch on (refer to Figure 3). With a multimeter adjust the Noisy Bus voltage at the breakout box to 29 ± 0.10 volts (between J1-5 and J1-7).
- Go to the Commands screen on the STE. From the main screen shown in Figure 9, enter the STE command "[2] MONITOR ONLY". The screen should now be as shown in Figure 10. Enter the STE command "[14] COMMANDS". The screen should now be as shown in Figure 11.
- 14. Enter the STE command "[10] ANTENNA FULL SCAN MODE". Wait 18 seconds before issuing the next command.
- 15. Enter the STE command "[9] SCANNER A2 POWER". The unit should now be scanning in warm cal mode.
- 16. Look at the Quiet Bus voltage. If necessary, using the multimeter adjust the external supply (PS1) to 27 ±0.10 volts. Record the voltage on TDS 2.
- 17. Observe the Quiet Bus current waveform on the dynamic signal analyzer. Configure the dynamic signal analyzer as follows:
 - a. Select MEAS MODE
 - (1) Select TIME CAPTURE

CAUTION! Observe proper terminal colors when conecting jumper leads. Some breakout boxes are wired to terminal colors opposite to what is indicated in this figure.

Figure 8. Setup for Quiet Bus Operational Power Tests

- (2) Select CAPTURE SELECT.
- (3) Select CAPTURE LENGTH. Enter 1.0 and select RECORD

b. Select FREQ

- (1) Select FREQ SPAN. Enter 100.0 and select HZ.
- (2) Select E SMPL then select OFF.

EOS/AMSU-A2 WHAT TYPE OF TEST?	
[2] MONITOR ONLY	[13] FUNCTIONAL TEST
[3] WARM PATH CALIBRATION	[14] S/C TARGET TEST
[4] CYCLE 1 CALIBRATION	[15] ARCHIVE
[5] CYCLE 2 CALIBRATION	[16] INIT AZONIX
[6] CYCLE 3 CALIBRATION	
[7] SPECIAL CYCLE CALIBRATION	[10] SELF TEST
[8] DISK/TAPE PLAYBACK	[11] ID NUMBER XX
[9] ERROR MESSAGES	
	OFF [] POWER
SELECT BUTTON	[1] RETURN

Figure 9. EOS/AMSU-A2 STE Main Screen

EOS A2 - XX OB.A2] E2. [5] SCIENCE DATA ELEMENT [6] CONTROL/STATUS ELEMENT [7] ENGINEERINGELEMENT 00	29-SEP-97 14:44:25 SCAN NUMBER 0000 00					
[8] DELTA T BLOCK MONI	ITOR DATA SELECT					
[9] CALIBRATION TEST EQUIPMENT ERROR MESSAGES [15]						
[10] SCIENCE DATA						
[11] INSTRUMENT STATUS						
[12] UNPOWERED THERMISTORS						
[13] ENGINEERING DATA						
[14] COMMANDS						
POWER ON CHECKSUM IN SCREEN ONLY [2] PRIN SELECT BUTTON	U1147					

Figure 10. EOS/AMSU-A2 STE Monitor Only Screen

[6] CONTROL/STATUS ELI		9-SEP-97 14:44:25 SCAN N 000 00 00	UMBER			
COMMANDS						
[9] SCANNER A2 POWER	= OFF	COLD CAL POSITION	1	YES	[14]	
[10] ANTENNA FULL SCAN M	ODE = NO		2	NO	[15]	
[11] WARM CAL	= NO		3	NO	[16]	
[12] COLD CAL	= NO	COLD CAL POSITION	4	NO	[17]	
[13] NADIR	= NO	RESET C&DH PROCES	SOR		[18]	
		GSE MODE			[19]	
ENGR OK POWER ON CHECKSUM IN CALC SA28 SA29 SCREEN ONLY [2] PRINT [3] FULL [1] RETURN SELECT BUTTON						

Figure 11. EOS/AMSU-A2 STE Commands Screen

- (3) Select TIME LENGTH. Enter 8.0 and select SEC.
- c. Select SELECT MEAS
 - (1) Select POWER SPEC
 - (2) Select CH1 ACTIVE
- d. Select WINDOW
 - (1) Select HANN
- e. Select SOURCE
 - (1) Select SOURCE OFF
- f. Select AVG
 - (1) Select AVG then OFF
 - (2) Select TIM AV then OFF
- g. Select RANGE
 - (1) Select AUT 1 UP&DWN
- h. Select INPUT COUPLE

- (1) Select CH1 DC
- (2) Select CH 1 Ground
- i. Select SELECT TRIG
 - (1) Select TRIG LEVEL. Enter 1.5. Select V
 - (2) Select ARM AU
 - (3) Select EXT
 - (4) Select SLOPE +
- j. Select TRIG DELAY
 - (1) Enter 0.0. Select SEC
- k. Select COORD
 - (1) Select REAL
- l. Select VIEW INPUT
 - (1) Select TIME BUFF
- m. Select SCALE
 - (1) Select X Fixd Scale. Enter 0.0, 8.0. Select SEC
 - (2) Select Y Fixd Scale. Enter -10.0, 70.0. Select Mv
- n. Select UNITS
 - (1) Select HZ (sec)

NOTE

Prior to collecting any current data, the current meter and DSA have to be "zeroed out"; zero current reference has to be established on the DSA.

- 18. Perform zero reference on the current meter and DSA.
 - a. Remove the current probe from the circuit, close the probe, and depress the PROBE DEGAUSS AUTO BALANCE button on the current probe amplifier; wait for the red light to go out. Reattach current probe to circuit as shown in Figure 8.
 - b. Depress "Start Capture" on the DSA.
 - c. With the "capture in process", adjust the "output DC level" control on the current amplifier to indicate zero current on the DSA.
 - d. Position the current probe to its original location in accordance with Figure 8.

The instrument is now ready to capture and plot 8.0 seconds of data.

- 19. Start the DSA signal capture by depressing START CAPTURE. Ensure Relay Board is 'ON'.
- 20. Obtain a record of the Quiet Bus current waveform. On the Relay Board, turn the switch OFF.
- 21. Determine Average Power by the following: Observe the current waveform on the DSA. Using the Y markers, place the lower horizontal bar on the 0.0 ma line and the upper bar on the current trace, adjusting the bar to the middle of the signal. This measures the average current over the 8.0 second span. Multiply this value by the current scale factor (20 ma/mV) which yields Average Quiet Bus Current. Record on TDS 2. Record the PS-1 measured Quiet Bus Voltage on TDS 2. Multiply Voltage times the Current for the calculated Average Power. Record on TDS 2.
- 22. Determine Peak Power by the following: Observe the current wave form taken above. Sweep the x marker across the current wave form stopping on each narrow spike to see which has the highest amplitude. Upon finding the largest one, leave the x marker indicating the Peak Current Amplitude. Record this on TDS 2. Make a plot of this screen and attach it to TDS 2. Record the PS-1 measured Quiet Bus Voltage on TDS 2. Multiply the Voltage times the Peak current to obtain the Calculated Peak Power. Record this on TDS 2.
- With the multimeter, adjust the external power supply PS1 to 29 ± 0.10 Vdc as measured between J1-1 (high) and J1-3 (low). Record this voltage on TDS 2.
- 24. Repeat steps 19 through 22.
- With the multimeter, adjust the external power supply PS1 to 31 ± 0.10 Vdc as measured between J1-1 (high) and J1-3 (low). Record this voltage on TDS 2.
- 26. Repeat steps 19 through 22.

3.3.3.1.2 Quiet power bus operational power test (LPT only).

- 1. Configure the unit as shown in Figure 12.
- 2. Breakout box at J1 should still be connected to the unit from the grounding interface testing of paragraph 3.3.2.
- 3. Connect the STE to the instrument using the following STE interface cables:
 - a. STE interface cable J1 (1356648-1)
 - b. STE interface cable J2 (1356648-2)
 - c. STE interface cable J3 (1356648-3)
- 4. Connect STE interface cable J1 from EOS J1 found on the STE power panel shown in Figure 4 to the remaining end of the 25 pin breakout box connected to J1 on the unit.
- 5. Connect STE interface cable J2 from EOS J2 found on the STE test panel shown in Figure 5 to J2 on the unit.
- 6. Connect STE interface cable J5 from EOS A&B J1 found on the STE interface panel shown in Figure 6 to J3 on the unit.

Figure 12. Test Setup of Unit Connected to STE

- 7. Turn the STE main power switch on (refer to Figures 2 and 3 (computer should be on, STE power panel should be off)). From the A2 directory and at the "\$" prompt, enter the command to the STE "RUN E2". The EOS/AMSU-A2 software program should be running as evidenced by the STE screen shown in Figure 9.
- 8. Turn the STE power supply panel main power switch on (refer to Figure 3).
- 9. Turn the STE power supply panel Q/Main switch on (refer to Figure 3). With a multimeter adjust the Quiet Bus voltage at the breakout box to 29 ± 0.10 volts (between J1-1 and J1-3).
- 10. Turn the STE power supply panel N/Pulse switch on (refer to Figure 3). With a multimeter adjust the Noisy Bus voltage at the breakout box to 29 ± 0.10 volts (between J1-5 and J1-7).
- 11. Go to the Commands screen on the STE. From the main screen shown in Figure 9, enter the STE command "[2] MONITOR ONLY". The screen should now be as shown in Figure 10. Enter the STE command "[4] COMMANDS". The screen should now be as shown in Figure 11.
- 12. Enter the STE command "[10] ANTENNA FULL SCAN MODE". Wait 18 seconds before issuing the next command.
- 13. Enter the STE command "[9] SCANNER A2 POWER".
- 14. Look at the Quiet Bus voltage. If necessary, using the multimeter adjust the external supply to 29 ± 0.10 volts. Record the voltage and current on TDS 3. The current is read directly from the Q/Main power supply panel meter.
- 15. Compute the operating power in watts on TDS 3 using the equation provided on TDS 3.
- 16. Turn the STE power supply panel N/Pulse switch off (refer to Figure 3).
- 17. Turn the STE power supply panel Q/Main switch off (refer to Figure 3).
- 18. Turn the STE power supply panel main power switch off (refer to Figure 3).

19. Leave the setup intact for paragraph 3.3.4 testing.

3.3.3.1.3 Quiet power bus turn on transient test. The Quiet Power Bus turn on transient shall be verified at +31 volts as follows:

- 1. The setup should be intact from paragraph 3.3.3.1.1 testing.
- 2. Verify the external power supply (PSI) is adjusted to 31 ± 0.1 Vdc then make appropriate adjustments.
- 3. Configure the Dynamic Signal Analyzer (DSA) as follows:
 - a. Select MEAS MODE
 - (1) Select TIME CAPTURE
 - (2) Select CAPTURE SELECT
 - (3) Select CAPTURE LENGTH. Enter 80.0. Select msec
 - b. Select FREQ
 - (1) Select FREQ SPAN. Enter 100.0. Select KHz
 - (2) Select E SMPL OFF
 - (3) Select TIME LENGTH. Enter 80.0. Select MSEC
 - c. Select SELECT MEAS
 - (1) Select POWER SPEC
 - (2) Select CH1 ACTIVE
 - d. Select WINDOW
 - (1) Select HANN
 - e. Select SOURCE
 - (1) Select SOURCE OFF
 - f. Select AVG
 - (1) Select AVG OFF
 - (2) Select TIM AV OFF
 - g. Select RANGE
 - (1) Select CHAN 1 RANGE. Enter 1. Select V
 - h. Select INPUT COUPLE
 - (1) Select CH1 DC

- (2) Select CH 1 GROUND
- i. Select INPUT TRIG
 - (1) Select TRIG LEVEL. Enter 100. Select MV
 - (2) Select ARM AU
 - (3) Select CHAN 1 INPUT
 - (4) Select SLOPE +
- j. Select TRIG DELAY
 - (1) Enter 0.0. Select SEC
- k. Select COORD
 - (1) Select REAL
- l. Select VIEW INPUT
 - (1) Select TIME BUFF
- m. Select SCALE
 - (1) Select X FIXD SCALE. Enter 0.0, 80.0. Select MSEC
 - (2) Select Y FIXD SCALE. Enter 0, 480. Select MV
- n. Select UNITS
 - (1) Select HZ (SEC)

NOTE

Prior to collecting any current data, the current meter and DSA have to be "zeroed out"; zero current reference has to be established on the DSA.

- 4. Perform zero reference on the current meter and DSA.
 - a. Remove the current probe from the circuit and close the probe. Place the probe in a magnetic benign location.
 - b. Depress START CAPTURE on the DSA.
 - c. With the "capture in process", adjust the OUTPUT DC LEVEL control on the current amplifier to indicate zero current on the DSA.
 - Position the current probe to it's original location in accordance with Figure 8.
- 5. Adjust PS2 for +28 Vdc.

- 6. Start the DSA signal capture by depressing START CAPTURE, wait for the DSA message "waiting for trigger" before proceeding.
- 7. On the Relay Board, turn the switch ON and obtain a record of the Quiet Bus Turn on current waveform. On the Relay Board, turn the switch OFF. Adjust the display time base and voltage sensitivity to allow for adequate current and pulse duration measurements. Plot the obtained waveform and attach a hard copy of the scan to TDS 4.
- 8. Measure the Turn On pulse width; record this value on TDS 4. See Figure 13 (A and B).
- 9. Compute the peak current as follows:

Multiply the maximum Ya value by the current/div as selected on the current amplifier. As an example: if the current amplifier is set up to display 200 ma/10 mV per division, and the maximum Ya value = 276mV, then

$$276 \text{ mV} \times (200 \text{ ma}/10 \text{ mV}) = 5520 \text{ ma} = 5.52 \text{ amps}$$

Record this value on TDS 4.

10. The 1st derivative of the current waveform must be calculated. Compute the dI/dT as follows:

The most probable location of the greatest current demand is during the first positive transition after voltage application. If this is the case, expand that segment of the display and measure the greatest voltage transition in the smallest time transition. The change in voltage times the current/div as selected on the current amplifier produces the change in current. Next divide this change in current by the change in time (in microseconds). This value is dI/dT. Example:

Change in voltage 144 mV

Change in time (microseconds) 19.5 µs

Current/div on current amp 200 ma/ 10mV

 $144 \text{ mV} \text{ x} (200 \text{ ma}/10 \text{ mV}) / 19.5 \mu \text{s} = 147.7 \text{ ma per } \mu \text{s}$

- Record the computed value on TDS 4.
- With the multimeter, adjust the external power supply PS1 to 29 ± 0.10 Vdc as measured between J1-1 (high) and J1-3 (low).
- 13. Repeat steps 3 through 11.
- With the multimeter, adjust the external power supply PS1 to 27 ± 0.10 Vdc as measured between J1-1 (high) and J1-3 (low).
- 15. Repeat steps 3 through 11.
- 16. Turn the STE power supply panel N/PULSE switch OFF (refer to Figure 3).
- 17. Turn the STE power supply panel main power switch OFF (refer to Figure 3.).
- 3.3.2 Noisy power bus interface tests. The noisy bus is not active upon the introduction of spacecraft power to the bus. The A2 scan drive relay must be turned on before the noisy bus is active within the unit. The noisy bus shall be verified by performing the following tests:

B. Typical Quiet Bus Turn On Expanded

Figure 13. Typical Quiet Bus Turn On Transient

- 1. Noisy power bus operational power test (3.3.3.2.1)
- 2. Noisy power bus turn on transient test (3.3.3.2.2)
- 3.3.3.2.1 Noisy power bus operational power test. The Noisy Power Bus operational power shall be verified at combinations of three voltages (+27, +29, and +31 volts). The operational power test will be conducted for the unit in full scan mode as follows:
 - 1. With the STE main power off and the STE power panel turned off (main power, Q/Main, N/Pulse, and S/Analog switches as shown in Figure 3 in the off position), connect the instrument as shown in Figure 14. This setup assumes a dc impedance from the spacecraft supplied power through fuse and cabling to the unit on the order of 0.3 ohms.
 - 2. Before turning on the power to the unit, verify that switches 5, 6, 18, and 19 of the 25 pin breakout box are in the open position.
 - Disconnect the external power supply (PS1) from the 25 pin breakout box. Turn on the external supply (PS1) and using a multimeter, adjust its output to 27 ± 0.10 volts. Turn off the external supply and reconnect the supply as shown in Figure 14.
 - 4. Turn the STE main power switch on (refer to Figures 2 and 3 (computer should be on, STE power panel should be off)). From the A2 directory and at the "\$" prompt, enter the command to the STE "RUN E2". The EOS/AMSU-A2 software program should be running as evidenced by the STE screen shown in Figure 9.
 - 5. Turn the STE power supply panel main power switch on (refer to Figure 3).
 - 6. Turn the STE power supply panel Q/Main switch on (refer to Figure 3). With a multimeter adjust the Quiet Bus voltage at the breakout box to 29 ± 0.10 volts (between J1-1 and J1-3).
 - 7. Turn the external power supplies (PS1 and PS2) on. Place ON/OFF switch assembly in the ON position. With a multimeter adjust the Noisy Bus voltage (PS1) at the breakout box to 27 ± 0.10 volts (between J1-5 and J1-7).
 - 8. Go to the Commands screen on the STE. From the main screen shown in Figure 9, enter the STE command "[2] MONITOR ONLY". The screen should now be as shown in Figure 10. Enter the STE command "[14] COMMANDS". The screen should now be as shown in Figure 11.
 - Enter the STE command "[10] ANTENNA FULL SCAN MODE". Wait 18 seconds before issuing the next command.
 - 10. Enter the STE command "[9] SCANNER A2 POWER". The unit should now be scanning in full scan mode.
 - 11. Look at the Noisy Bus voltage. If necessary, using the multimeter adjust the external supply to 27 ± 0.10 volts. Record the voltage on TDS 5.
 - 12. Observe the Noisy Bus current waveform on the dynamic signal analyzer. Configure the dynamic signal analyzer as follows:
 - a. Select MEAS MODE
 - (1) Select TIME CAPTURE
 - (2) Select CAPTURE SELECT

CAUTION! Observe proper terminal colors when conecting jumper leads. Some breakout boxes are wired to terminal colors opposite to what is indicated in this figure.

Figure 14. Setup for Noisy Bus Operational Power Tests

(3) Select CAPTURE LENGTH. Enter 1.0. Select RECORD

b. Select FREQ

- (1) Select FREQ SPAN. Enter 100.0. Select Hz
- (2) Select E SMPL OFF
- (3) Select TIME LENGTH. Enter 8.0. Select SEC

Select SELECT MEAS C. Select POWER SPEC (1) (2) Select CH1 ACTIVE d. Select WINDOW Select HANN (1) Select SOURCE e. (1) Select SOURCE OFF Select AVG f. Select AVG OFF (1) (2) Select TIM AV OFF Select RANGE g. Select AUT 1 UP&DWN (1) Select INPUT COUPLE h. (1) Select CH1 DC (2) Select CH 1 GROUND i. Select SELECT TRIG Select TRIG LEVEL. Enter 1.5. Select V (1) Select ARM AU (2) (3) Select EXT Select SLOPE + (4) Select TRIG DELAY j. Enter 0.0. Select SEC (1) k. Select COORD Select REAL (1) Select VIEW INPUT 1.

(1)

m.

Select SCALE

Select TIME BUFF

- (1) Select X FIXD SCALE. Enter 0.0, 8.0. Select SEC
- (2) Select Y FIXD SCALE. Enter -10.0, 70.0. Select MV
- n. Select UNITS
 - (1) Select HZ (SEC)

NOTE

Prior to collecting any current data, the current meter and DSA have to be "zeroed out"; zero current reference has to be established on the DSA.

- 13. Perform zero reference on the current meter and DSA.
 - a. Remove the current probe from the circuit and close the probe. Place the probe in a magnetic benign location.
 - b. Depress START CAPTURE on the DSA.
 - c. With the "capture in process", adjust the OUTPUT DC LEVEL control on the current amplifier to indicate zero current on the DSA.
 - d. Position the current probe to it's original location in accordance with Figure 14.

The instrument is now ready to capture and plot 8.0 seconds of data.

- 14. Start the DSA signal capture by depressing START CAPTURE.
- 15. Obtain a record of the Noisy Bus current waveform. On the Relay Board, turn the switch OFF. Using the Y markers, mark the maximum current amplitude as indicated in Figure 15. Plot the obtained waveform and attach a hard copy of the scan to TDS 5.
- 16. Examine the expanded waveform to find the peak current over the entire 8.0 second scan. Record the peak current on TDS 5.
- 17. Calculate the Average Noisy Bus current as follows:
 - a. Select VIEW INPUT
 - (1) Select TIME RECORD

NOTE

The display shows the first 8 seconds of data and the heading changes to read "Cap Tim Rec".

- b. Select MATH
 - (1) Select NEXT
 - (2) Select INTGRT

Figure 15. Typical Noisy Power Bus Current Waveform

NOTE

The display changes to present an integrated value of the current waveform.

- c. Select X. Move the X marker to the maximum right of the display. The Y value is indicative of the integrated current value over the entire 8 second period. Plot this waveform and attach a hard copy of the scan to TDS 5.
- d. Multiply the maximum Y value by the current/div as selected on the current amplifier, then divide by 8 seconds to acquire an average current/second value. As an example: if the current amplifier is set up to display 200 ma/10 mV per division, and the maximum Y value = 32.4 mV, then

[32.4 mV x (200 ma/10 mV)]/8 sec = 81 ma/sec

Record this value on TDS 5.

- Compute the operating peak and average power in watts from the measured values in steps 16 and 17 above. Record the computed values on TDS 5. Compute noisy bus current during the integrate/hold dump (I/H,D) time period. (Refer to Figure 15). Record the data on TDS 5.
- With the multimeter, adjust the external power supply PS1 to 29 ± 0.10 Vdc as measured between J1-5 (high) and J1-7 (low). Record this voltage on TDS 5.
- 20. Repeat steps 12 through 18.
- With the multimeter, adjust the external power supply PS1 to 31 ± 0.10 Vdc as measured between J1-5 (high) and J1-7 (low). Record this voltage on TDS 5.
- 22. Repeat steps 12 through 18.
- 3.3.3.2.2 Noisy power bus turn on transient test. The Noisy Power Bus turn on transient shall be verified at +31, +29, and +27 volts as follows:
 - 1. The setup should be intact from paragraph 3.3.3.2.1 testing.
 - Verify the external power supply (PSI) is adjusted to 31 ± 0.1 Vdc (if not, then make appropriate adjustments) and the unit is in Warm Cal position.
 - 3. Configure the Dynamic Signal Analyzer (DSA) as follows:
 - a. Select MEAS MODE
 - (1) Select TIME CAPTURE
 - (2) Select CAPTURE SELECT
 - (3) Select CAPTURE LENGTH. Enter 80.0. Select msec
 - b. Select FREO
 - (1) Select FREQ SPAN. Enter 100.0. Select KHz
 - (2) Select E SMPL OFF

Select TIME LENGTH. Enter 8.0. Select MSEC (3) Select SELECT MEAS c. (1) Select POWER SPEC Select CH1 ACTIVE (2) Select WINDOW d. Select HANN (1) Select SOURCE e. Select SOURCE OFF (1) Select AVG f. (1) Select AVG OFF Select TIM AV OFF (2) Select RANGE g. Select CHAN 1 RANGE. Enter 1. Select V (1) Select INPUT COUPLE h. Select CH1 DC (1) Select CH 1 GROUND (2) Select INPUT TRIG i. Select TRIG LEVEL. Enter 100. Select MV (1) Select ARM AU (2) (3) Select CHAN 1 INPUT Select SLOPE + (4) Select TRIG DELAY j. Enter 0.0. Select SEC (1) Select COORD k. Select REAL (1) Select VIEW INPUT l.

Select TIME BUFF

(1)

- m. Select SCALE
 - (1) Select X FIXD SCALE. Enter 0.0, 80.0. Select MSEC
 - (2) Select Y FIXD SCALE. Enter 0, 800.0. Select MV
- n. Select UNITS
 - (1) Select HZ (SEC)

NOTE

Prior to collecting any current data, the current meter and DSA have to be "zeroed out"; zero current reference has to be established on the DSA.

- 4. Perform zero reference on the current meter and DSA.
 - a. Remove the current probe from the circuit and close the probe. Place the probe in a magnetic benign location.
 - b. Depress START CAPTURE on the DSA.
 - c. With the "capture in process", adjust the OUTPUT DC LEVEL control on the current amplifier to indicate zero current on the DSA.
 - d. Position the current probe to it's original location in accordance with Figure 14.
- 5. Adjust PS2 for +28 Vdc.
- Start the DSA signal capture by depressing START CAPTURE, wait for the DSA message "waiting for trigger" before proceeding.
- On the Relay Board, turn the switch ON and obtain a record of the Noisy Bus Turn on current waveform. On the Relay Board, turn the switch OFF. Adjust the display time base and voltage sensitivity to allow for adequate current and pulse duration measurements. Plot the obtained waveform and attach a hard copy of the scan to TDS 6.
- 8. Measure the Turn On pulse width; record this value on TDS 6 (see Figure 16).
- 9. Compute the peak current as follows:

Multiply the maximum Y value by the current/div as selected on the current amplifier. As an example: if the current amplifier is set up to display 200 ma/10 mV per division, and the maximum Y value = 276mV, then

276 mV x (200 ma/10 mV) = 5520 ma = 5.52 amps

Record this value on TDS 6.

10. The 1st derivative of the current waveform must be calculated. Compute the dI/dT as follows:

The most probable location of the greatest current demand is during the first positive transition after voltage application. If this is the case, expand that segment of the display and measure the greatest voltage transition in the smallest time transition. The change in voltage times the current/

div as selected on the current amplifier produces the change in current. Next divide this change in current by the change in time (in microseconds). This value is dI/dT. Example:

Change in voltage 144 mV

Change in time (microseconds) 19.5 µs

Current/div on current amp 200 ma/10 mV

144~mV x (200 ma/10 mV) / 19.5 $\mu s = 147.7$ ma per μs

- 11. Record the computed value on TDS 6.
- 12. With the multimeter, adjust the external power supply PS1 to 29 ± 0.10 Vdc as measured between J1-5 (high) and J1-7 (low).
- 13. Repeat steps 3 through 11.
- 14. With the multimeter, adjust the external power supply PS1 to 27 ± 0.10 Vdc as measured between J1-5 (high) and J1-7 (low).
- 15. Repeat steps 3 through 11.
- 16. Turn the STE power supply panel Q/MAIN switch OFF (refer to Figure 3).
- 17. Turn the STE power supply panel main power switch OFF (refer to Figure 3.).
- 3.3.3.3 Survival heater power bus interface tests. The operational characteristics of the redundant survival buses A and B shall be verified during ambient thermal cycle testing using test procedure AE-26151/9. For final CPT, attach data sheet from Survival Heater test to this data package.
- 3.3.4 Passive analog interface test. This test provides the verification of the passive analog telemetry requirements found in the following documents:

UIID None

GIRD Sections 4.5.2, 4.5.3, and 6.3

POS Section 4.6.3.6 (8)

ICD Sections 4.5 and 6.3

Passive analog telemetry signals are output from the unit through the spacecraft interface connector J2. To verify these signals, perform the following procedures:

- 1. The unit should be configured as shown in Figure 12. Turn the STE main power switch on (computer should be on, STE power panel should be off. From the A2 directory and at the "\$" prompt, enter the command to the STE "RUN E2". The EOS/AMSU-A2 software program should be running as evidenced by the STE screen shown in Figure 9.
- 2. Enter the STE command "[2] MONITOR ONLY". The screen should now be as shown in Figure 10.
- 3. Enter the STE command "[12] UNPOWERED THERMISTORS". The screen should now be as shown in Figure 17.

Figure 16. Typical Worst Case Noisy Power Bus Turn On Transient Waveforms

EOS A2 - XX OB.	A2] E2.		29-SEP-97	14:44:25	SCAN NUM	IBER
[5] SCIENCE DATA	ELEMENT	0000				
[6] CONTROL/STATUS	ELEMENT	00				
[7] ENGINEERINGELEME	ENT 00					
	UNPOWER	ED THE	RMISTORS			
NO	DATA	A		TE	MP C	
1 A2 SCA	N MOTOR TE	MPERAT	URE	23	5.50	
2 A2 RF 5	SHELF TEMPE	RATURE	#1	20	0.00	
3 A2 WA	RM LOAD TEN	IPERAT	JRE	20).30	
4 A2 RF S	SHELF TEMPE	RATURE	#2	20	0.05	
POWER ON CH	ECKSUM IN		CALC	SA28		SA29
SCREEN O	NLY [2] PRIN	NT [3]	FULL	[1] RETURN	
SELECT BUTTON	•	_	. <u>.</u>			

Figure 17. EOS/AMSU-A2 STE Unpowered Thermistors Screen

4. The thermistor data should update every 8 seconds. Enter STE command "[2]" to print the screen. Enter the data on TDS 7 and attach the printout to TDS 7.

3.3.5 Command and data handling bus interface test

- 3.3.5.1 Formal qualification test of the EOS/AMSU-A2 firmware (protoflight model 1st CPT only. On 3/21/97, an initial Formal Qualification Test (FQT) of the EOS AMSU-A firmware was conducted using Test Procedure AE-26600 (CDRL 415). The results of that test were documented in Report 10974 (CDRL 217). As stated in that report, a final FQT would be performed as a part of the initial instrument CPT for the EOS protoflight models A1 and A2 to validate the firmware requirements (Report 10458, CDRL 306-2b) which could not be validated during the initial FQT. The purpose of this test is to perform that validation by repeating Test Procedure AE-26600 and conducting additional system level testing with the unit connected to the Special Test Equipment (STE). At the conclusion of paragraph 3.3.5 testing, the firmware will be validated. Perform Test Procedure AE-26600 with the following clarifications:
 - Paragraph 4.1 Load bonded Software the last half of the paragraph beginning with "The tape labeled N7 ..." to the end of the paragraph should be ignored because the unit configuration uses flight CCAs.
 - 2 Paragraph 4.2 Configure the test environment Replace this paragraph with the instructions provided in paragraph 3.3.5.2 steps 1 through 9 of this procedure.
 - 3. Paragraph 4.4.4 c thru l. These tests are replaced by section 3.3.5.3 of this procedure.
- 3.3.5.2 Instrument commanding test. This test provides the verification of the instrument commanding capability. Each of the commands shown in Table III with the exception of [19] GSE Modes will be sent to the unit and verified that it was received and carried out by the unit. GSE Modes will be verified during test point interface testing (paragraph 3.3.6). Perform the following procedures.
 - 1. Configure the unit as shown in Figure 12. If the unit is already configured, skip to step 7.

Table III. EOS/AMSU-A2 Instrument Commands

STE Command Screen Number	STE Command	Instrument Status
[9]	Scanner A2 Power	ON/OFF
[10]	Antenna Full Scan Mode	YES / NO
[11]	Antenna Warm Cal Mode	YES / NO
[12]	Antenna Cold Cal Mode	YES / NO
[13]	Antenna Nadir Mode	YES / NO
[14]	Cold Cal Position 1	YES / NO
[15]	Cold Cal Position 2	YES / NO
[16]	Cold Cal Position 3	YES / NO
[17]	Cold Cal Position 4	YES / NO
[18]	Reset C&DH Processor	Resets1553 firmware
[19]	GSE Modes	YES / NO

- 2. Connect a 25 pin breakout box to J1 of the instrument.
- 3. Connect the STE to the instrument using the following STE interface cables:
 - a. STE interface cable J1 (1356648-1)
 - b. STE interface cable J2 (1356648-2)
 - c. STE interface cable J3 (1356648-3)
- 4. Connect STE interface cable J1 from EOS J1 found on the STE power panel shown in Figure 4 to the remaining end of the 25 pin breakout box connected to J1 on the unit.
- 5. Connect STE interface cable J2 from EOS J2 found on the STE test panel shown in Figure 5 to J2 on the unit.
- 6. Connect STE interface cable J3 from EOS A&B J1 found on the STE interface panel shown in Figure 6 to J3 on the unit.
- 7. Turn the STE main power switch on (refer to Figures 2 and 3 (computer should be on, STE power panel should be off)). From the A2 directory and at the "\$" prompt, enter the command to the STE "RUN E2". The EOS/AMSU-A2 software program should be running as evidenced by the STE screen shown in Figure 9.

- 8. Turn the STE power supply panel Q/Main switch on (refer to Figure 3). With a multimeter adjust the Quiet Bus voltage at the breakout box to 29 ± 0.10 volts (between J1-1 and J1-3).
- 9. Turn the STE power supply panel N/Pulse switch on (refer to Figure 3). With a multimeter adjust the Noisy Bus voltage at the breakout box to 29 ± 0.10 volts (between J1-5 and J1-7).
- 10. Go to the Commands screen on the STE. From the main screen shown in Figure 9, enter the STE command "[2] MONITOR ONLY". The screen should now be as shown in Figure 10. Enter the STE command "[14] COMMANDS". The screen should now be as shown in Figure 11.
- 11. The instrument commands shown in Table III are now ready to be tested.
- 12. Enter the STE command "[9] SCANNER A2 POWER". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO(OFF) to YES(ON)). The scan motor should now be scanning. Record the status on TDS 8.
- 13. Enter the STE command "[10] ANTENNA FULL SCAN MODE". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES). Record the status on TDS 8.
- 14. Enter the STE command "[9] SCANNER A2 POWER". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from YES(ON) to NO(OFF)). The scan motor should stop scanning. Record the status on TDS 8.
- 15. Enter the STE command "[9] SCANNER A2 POWER". Look at the commands screen to see that the command was received by the instrument (the state of the command should go from NO(OFF) to YES(ON)). The motor should now be scanning. Record the status on TDS 8.
- 16. Enter the STE command "[11] ANTENNA WARM CAL MODE". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES and the state of ANTENNA IN FULL SCAN MODE should go from YES to NO). The motor should have moved to the warm calibration position. Record the status on TDS 8.
- 17. Enter the STE command "[13] ANTENNA NADIR MODE". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES and the state of ANTENNA WARM CAL MODE should go from YES to NO). The motor should have moved to the nadir position. Record the status on TDS 8.
- 18. Enter the STE command "[12] ANTENNA COLD CAL MODE". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES and the state of ANTENNA NADIR MODE should go from YES to NO). The motor should have moved to the cold calibration 1 position (LSB=0, MSB=0). Record the status on TDS 8.
- 19. Enter the STE command "[17] COLD CAL POSITION 4". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES. Also, the state of ANTENNA COLD CAL MODE should stay YES). The motor should have moved slightly to the cold calibration 4 position. Record the status on TDS 8.
- 20. Enter the STE command "[16] COLD CAL POSITION 3". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES. Also, the state of ANTENNA COLD CAL MODE should stay YES). The motor should have moved slightly to the cold calibration 3 position. Record the status on TDS 8.
- 21. Enter the STE command "[15] COLD CAL POSITION 2". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES. Also, the

- state of ANTENNA COLD CAL MODE should stay YES). The motor should have moved slightly to the cold calibration 2 position. Record the status on TDS 8.
- 22. Enter the STE command "[14] COLD CAL POSITION 1". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES. Also, the state of ANTENNA COLD CAL MODE should stay YES). The motor should have moved slightly to the cold calibration 1 position. Record the status on TDS 8.
- 23. Enter the STE command "[18] RESET C&DH PROCESSOR". Look at the bottom of the commands screen to see that SA28 resets and starts counting from 1. Record the status on TDS 8.
- 24. Leave the unit powered and the setup intact for paragraph 3.3.5.3 testing.
- 3.3.5.3 Science and Engineering Data Verification. The engineering data in the engineering packet is also found embedded in the science data packet. The STE does a comparison between the data in the engineering packet and the same data located in the science data packet. If there is total agreement between the two data sets then a message "ENGR OK" appears at the bottom of the STE screen. Because of the fact that the two packets agree with respect to engineering data, this test validates both science and engineering data by verifying the data in the science data packet for each of the following instrument modes (look at engineering data, also unpowered thermistors prior to starting these modes):
 - 1. Full Scan Mode (3.3.5.3.1)
 - 2. Warm Cal Mode (3.3.5.3.2)
 - 3. Cold Cal Mode (3.3.5.3.3)
 - 4. Nadir Mode (3.3.5.3.4)
- 3.3.5.3.1 Full scan mode. The full scan mode science and engineering data is verified as follows:
 - From the STE command screen shown in Figure 11, enter the STE command "[10] ANTENNA FULL SCAN MODE". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES). Record the status on TDS 9.
 - Look to see that "ENGR OK" message is displayed in bottom left corner of screen. Record the status on TDS 9.
 - Look to see that the unit is operating in full scan mode. Enter the observed result on TDS 9.
 - 4. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 9.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (use data from procedure AE-26002/2 TDS 6 for required position data for warm cal position) (pages 1 and 2 of printout)
 - f. Radiometer scene data (pages 1 and 2 of printout)

- g. PRT temperature data (elements 262 300, page 2 of printout)
- h. Status (page 3 of printout)
- i. Engineering data (page 3 of printout)
- 5. Attach the printout to TDS 9.

3.3.5.3.2 Warm cal mode. The warm cal mode science and engineering data is verified as follows:

- From the STE command screen shown in Figure 11, enter the STE command "[11] WARM CAL MODE".
 Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES). Record the status on TDS 10.
- 2. Look to see that "ENGR OK" message is displayed in bottom left corner of screen. Record the status on TDS 10.
- Look to see that the unit reflectors have moved to warm cal position. Enter the observed result on TDS 10.
- 4. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 10.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (use data from procedure AE-26002/2 TDS 6 for required position data for warm cal position) (pages 1 and 2 of printout)
 - f. Radiometer scene data (pages 1 and 2 of printout)
 - g. PRT temperature data (elements 262 300, page 2 of printout)
 - h. Status (page 3 of printout)
 - i. Engineering data (page 3 of printout)
- 5. Attach the printout to TDS 10.

3.3.5.3.3 Cold cal mode. The cold cal mode science and engineering data is verified as follows:

- 1. From the STE command screen shown in Figure 11, enter the STE command "[12] COLD CAL MODE". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES). Record the status on TDS 11.
- Look to see that "ENGR OK" message is displayed in bottom left corner of screen. Record the status on TDS 11.
- 3. Look to see that the unit reflectors have moved to cold cal position 1. Enter the observed result on TDS 11.

- 4. From the STE command screen shown in Figure 11, enter the STE command "[10] ANTENNA FULL SCAN MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).
- 5. Enter the STE command [3] to obtain a full printout. Review the following data and record the result on TDS 11 (sheet 4):

Element	Description	Channel
254	Cold Cal Data 1	CH 1
256	Cold Cal Data 1	CH 2
258	Cold Cal Data 2	CH 1
260	Cold Cal Data 2	CH 2

- From the STE command screen shown in Figure 11, enter the STE command "[12] ANTENNA COLD CAL MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).
- 7. Enter the STE command [3] to obtain a full printout. Review the following data and record the results on TDS 11.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (element 5 and 6, page 1 of printout)
 - d. Instrument mode/status (element 7 and 8, page 1 of printout)
 - e. Reflector positions (use data from procedure AE-26002/2 TDS 2 for required position data for cold cal position 1) (page 1 and 2 of printout)
 - f. Radiometric scene data (pages 1 and 2 of printout)
 - g. PRT temperature data (elements 262 300, page 2 of printout)
 - h. Status (page 3 of printout)
 - i. Engineering data (page 3 of the printout)
- 8. Attach the printout to TDS 11.
- From the STE command screen shown in Figure 11, enter the STE command "[15] COLD CAL POSITION
 Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES). Record status on TDS 11.
- 10. Look to see that "ENGR OK" message is displayed in the bottom left corner of screen. Record status on TDS 11.
- 11. Look to see that the unit reflector has moved to cold cal position 2. Enter the results on TDS 11.

- 12. From the STE command screen shown in Figure 11, enter the STE command "[10] ANTENNA FULL SCAN MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).
- 13. Enter the STE command [3] to obtain a full printout. Review the following data and record the result on TDS 11 (sheet 4):

Element	Description	Channel
254	Cold Cal Data 1	CH 1
256	Cold Cal Data 1	CH 2
258	Cold Cal Data 2	CH 1
260	Cold Cal Data 2	CH 2

- 14. From the STE command screen shown in Figure 11, enter the STE command "[12] ANTENNA COLD CAL MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).
- 15. Look to see that the unit reflector has moved to cold cal position 2.
- 16. Enter the STE command [3] to obtain a full printout. Review the following data and record the results on TDS 11.
 - a. Instrument mode/status (element 7 and 8, page 1 of printout)
 - b. Status (page 3 of printout)
 - c. Reflector positions (use data from procedure AE-26002/2 TDS 2 for required position data for cold cal position 1) (page 1 and 2 of printout)
- 17. Attach the printout to TDS 11.
- 18. From the STE command screen shown in Figure 11, enter the STE command "[16] COLD CAL POSITION 3". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES). Record status on TDS 11.
- 19. Look to see that "ENGR OK" message is displayed in the bottom left corner of screen. Record status on TDS 11.
- 20. Look to see that the unit reflector has moved to cold cal position 3. Enter the results on TDS 11.
- 21. From the STE command screen shown in Figure 11, enter the STE command "[10] ANTENNA FULL SCAN MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).
- 22. Enter the STE command [3] to obtain a full printout. Review the following data and record the result on TDS 11 (sheet 4):

Element	ement Description	
254	Cold Cal Data 1	CH 1
256	Cold Cal Data 1	CH 2
258	Cold Cal Data 2	CH 1
260	Cold Cal Data 2	CH 2

- 23. From the STE command screen shown in Figure 11, enter the STE command "[12] ANTENNA COLD CAL MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).
- 24. Look to see that the unit reflector has moved to cold cal position 3.
- 25. Enter the STE command [3] to obtain a full printout. Review the following data and record the results on TDS 11.
 - a. Instrument mode/status (element 7 and 8, page 1 of printout)
 - b. Status (page 3 of printout)
 - c. Reflector positions (use data from procedure AE-26002/2 TDS 2 for required position data for cold cal position 1) (page 1 and 2 of printout)
- 26. Attach the printout to TDS 11.
- 27. From the STE command screen shown in Figure 11, enter the STE command "[17] COLD CAL POSITION4". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES). Record status on TDS 11.
- 28. Look to see that "ENGR OK" message is displayed in the bottom left corner of screen. Record status on TDS 11.
- 29. Look to see that the unit reflector has moved to cold cal position 4. Enter the results on TDS 11.
- 30. From the STE command screen shown in Figure 11, enter the STE command "[10] ANTENNA FULL SCAN MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).
- 31. Enter the STE command [3] to obtain a full printout. Review the following data and record the result on TDS 11 (sheet 4):

Element	Description	Channel
254	Cold Cal Data 1	CH 1
256	Cold Cal Data 1	CH 2
258	Cold Cal Data 2	CH 1
260	Cold Cal Data 2	CH 2

32. From the STE command screen shown in Figure 11, enter the STE command "[12] ANTENNA COLD CAL MODE". Look at the command screen to see that the command was received by the instrument (the state of the command should go from NO to YES).

- 33. Look to see that the unit reflector has moved to cold cal position 4.
- 34. Enter the STE command [3] to obtain a full printout. Review the following data and record the results on TDS 11.
 - a. Instrument mode/status (element 7 and 8, page 1 of printout)
 - b. Status (page 3 of printout)
 - c. Reflector positions (use data from procedure AE-26002/2 TDS 2 for required position data for cold cal position 1) (page 1 and 2 of printout)
- 35. Attach the printout to TDS 11.

3.3.5.3.4 Nadir mode. The nadir mode science and engineering data is verified as follows:

- 1. From the STE command screen shown in Figure 11, enter the STE command "[13] NADIR MODE". Look at the commands screen to see that the command was received by the instrument (the state of that command should go from NO to YES). Record the status on TDS 12.
- 2. Look to see that "ENGR OK" message is displayed in bottom left corner of screen. Record the status on TDS 12.
- 3. Look to see that the unit reflectors have moved to nadir position. Enter the observed result on TDS 12.
- 4. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 12.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (use data from procedure AE-26002/2 TDS 6 for nadir required position data) (pages 1 and 2 of printout).
 - f. Radiometer scene data (pages 1 and 2 of printout)
 - g. PRT temperature data (elements 262 300, page 2 of printout)
 - h. Status (page 3 of printout)
 - i. Engineering data (page 3 of printout)
- 5. Attach the printout to TDS 12.
- 6. Leave the setup powered and intact for paragraph 3.3.6 testing.

3.3.5.3.5 Noisy bus current measurement during warm cal, cold cal, and Nadir mode.

1. Place instrument in warm cal by repeating paragraph 3.3.5.3.2 step 1.

- 2. Record noisy bus current from STE noisy bus power supply display on TDS 10.
- 3. Command scanner to "OFF" and record current.
- Command scanner "ON".
- 5. Place instrument in cold cal by repeating paragraph 3.3.5.3.3 step 1. Repeat step 2 of this paragraph.
- 6. Place instrument in Nadir by repeating paragraph 3.3.5.3.4 step1. Repeat step 2 of this paragraph.
- 3.3.5.4 1553 Bus interface test. The 1553 bus interface shall be verified by observing its operation during full-scan operation. The interface test shall be accomplished by the following steps:
 - 1. Configure the unit as shown in Figure 18.
 - 2. Ensure all switches are closed on the 9-pin breakout box.

NOTE

Scope and printer must be isolated from AC ground.

- 3. Connect oscilloscope to J3-1 (HI) and J3-2 (LO) to measure 1553 interface A data. A representative waveform is shown in Figure 19. Set the vertical to 5 volts, horizontal to 5 μs, and dc coupling to TRIG CH 1. Print hard copy and attach to TDS 13.
- 4. Using the vertical and horizontal bars, measure the amplitude and rise-time of the instrument response. Records these on TDS 19. Figure 20 shows a typical rise-time measurement.
- 5. Repeat steps 3 and 4 for interface B. Attach and record data on TDS 13. Connect to J3-4 (HI) and J3-5 (LO).
- 3.3.6 Test point interface test. The purpose of this test is twofold:
 - 1. Verify the following test point signals:
 - a. 8 second sync pulse test point (3.3.6.1)
 - b. Integrate/hold and dump test points (3.3.6.2)
 - c. Channel 1 and 2 analog output test points (3.3.6.3)
 - 2. Verify the following GSE mode operations:
 - a. GSE-1 mode (3.3.6.4)
 - b. GSE-2 mode (3.3.6.5)
 - c. GSE-3 mode (3.3.6.6)
 - d. GSE-4 mode (3.3.6.7)

Other Cables not shown.

Figure 18. Configuration for 1553 Interface Test Setup

Figure 19. Typical 1553 Bus Waveform (Instrument Response)

Figure 20. Typical Rise-Time Measurement

- e. GSE-5 mode (3.3.6.8)
- f. GSE-7 mode (3.3.6.9)

The test point interface connector (J4) is not used during spacecraft configuration and is covered with a cover plate when the unit is operating in the flight configuration. The above test points and GSE modes are used only by Aerojet during test and evaluation of instrument performance and do not meet any system level requirements.

3.3.6.1 8 second sync pulse test point verification. Perform the following procedures.

- 1. Connect channel 1 of the oscilloscope to pins J4-2 (High) and J4-21 (Low).
- 2. Plot the oscilloscope display and record the information indicated on TDS 14. Attach the plot to TDS 14.

3.3.6.2 Integrate/Hold and dump test point verification. Perform the following procedures.

- 1. Connect channel 1 of the oscilloscope to pins J4-6 (High) and J4-5 (Low).
- 2. Connect channel 2 of the oscilloscope to pins J4-23 (High) and J4-5 (Low).
- 3. Set the scope to trigger internally on channel 1. Optimize time and amplitude for best resolution. The desired display should look similar to the top two traces shown in Figure 21.
- 4. Plot the oscilloscope display and record the information indicated on TDS 15. Attach the plot to TDS 15.

3.3.6.3 Radiometer channel analog output test point verification. Perform the following procedures.

Connect channel 1 of the oscilloscope to pins J4-8 (High) and J4-26 (Low). For RADIOMETRIC CHAN1, optimize time and amplitude for best resolution. The desired display should look similar to the bottom trace shown in Figure 21.

Figure 21. Integrate/Hold, Dump, and Analog Out Test Point Signals

- 2. Plot the oscilloscope display and record the information indicated on TDS 16. Label the plot Channel 1 and attach the plot to TDS 16.
- Connect channel 1 of the oscilloscope to pins J4-9 (High) and J4-26 (Low). For RADIOMETRIC CHAN2, optimize time and amplitude for best resolution. The desired display should look similar to the bottom trace shown in Figure 21.
- 4. Plot the oscilloscope display and record the information indicated on TDS 16. Label the plot Channel 2 and attach the plot to TDS 16.
- 3.3.6.4 GSE-1 mode verification. This test mode positions the reflectors at beam position 6 for 10 integration periods, then to the cold calibration position for 10 integration periods, and finally to the warm cal position for 10 integration periods. This process is then repeated. To verify this mode, perform the following procedures. Look at engineering data, also unpowered thermistors prior to starting these modes.

AE-26156/10B 27 Aug 98

- 1. Enter a "1" on the mode switch located on the front of the STE test panel (refer to Figure 2 for test panel location).
- 2. From the STE command screen shown in Figure 11, enter the STE command "[19] GSE MODE".
- 3. Wait 18 seconds, and look to see that the unit is performing the scan pattern described. Enter the observed result on TDS 17.
- 4. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 17.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (1st 10 at beam position 6, 2nd 10 at cold cal position, 3rd 10 at warm cal position, ignore cold cal and warm cal positions on the printout) (pages 1 and 2 of printout)
 - f. Radiometer scene data (pages 1 and 2 of printout)
 - g. PRT temperature data (elements 262 300, page 2 of printout)
 - h. Status (page 3 of printout)
 - i. Engineering data (page 3 of printout)
- 5. Attach the printout to TDS 17. There is no pass/fail criteria.
- 3.3.6.5 GSE-2 mode verification. This test mode positions the reflectors at beam position 1 for 30 integration periods. This process is then repeated. To verify this mode, perform the following procedures.
 - 1. Enter a "2" on the mode switch located on the front of the STE test panel.
 - 2. Wait 18 seconds, and look to see that the unit is performing the scan pattern described. Enter the observed result on TDS 17.
 - 3. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 17.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (30 positions at beam position 1, ignore cold cal and warm cal positions on the printout) (pages 1 and 2 of printout)
 - f. Radiometer scene data (pages 1 and 2 of printout)

- g. PRT temperature data (elements 262 300, page 2 of printout)
- h. Status (page 3 of printout)
- i. Engineering data (page 3 of printout)
- 4. Attach the printout to TDS 17. There is no pass/fail criteria.
- **3.3.6.6** GSE-3 mode verification. This test mode positions the reflectors at each beam position for 30 integration periods incrementing the beam position to the next beam position each 8 seconds. This process is then repeated. To verify this mode, perform the following procedures.
 - 1. Enter a "3" on the mode switch located on the front of the STE test panel.
 - Wait 18 seconds, and look to see that the unit is performing the scan pattern described. Enter the observed result on TDS 17.
 - 3. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 17.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (30 positions at beam position when printout obtained, ignore cold cal and warm cal positions on the printout) (pages 1 and 2 of printout)
 - f. Radiometer scene data (pages 1 and 2 of printout)
 - g. PRT temperature data (elements 262 300, page 2 of printout)
 - h. Status (page 3 of printout)
 - i. Engineering data (page 3 of printout)
 - 4. Attach the printout to TDS 17. There is no pass/fail criteria.
- **3.3.6.7** GSE-4 mode verification. This test mode positions the reflectors at beam position 30 for 30 integration periods. This process is then repeated. To verify this mode, perform the following procedures.
 - 1. Enter a "4" on the mode switch located on the front of the STE test panel.
 - Wait 18 seconds, and look to see that the unit is performing the scan pattern described. Enter the observed result on TDS 17.
 - 3. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 17.
 - a. Packet ID (elements 1 and 2, page 1 of printout)

- b. Packet length (elements 3 and 4, page 1 of printout)
- c. Unit serial number (elements 5 and 6, page 1 of printout)
- d. Instrument mode/status (elements 7 and 8, page 1 of printout)
- e. Reflector positions (30 positions at beam position 30, ignore cold cal and warm cal positions on the printout) (pages 1 and 2 of printout)
- f. Radiometer scene data (pages 1 and 2 of printout)
- g. PRT temperature data (elements 262 300, page 2 of printout)
- h. Status (page 3 of printout)
- i. Engineering data (page 3 of printout)
- 4. Attach the printout to TDS 17. There is no pass/fail criteria.
- 3.3.6.8 GSE-5 mode verification. This test mode positions the reflectors at beam position 6 for 39 integration periods. This process is then repeated. To verify this mode, perform the following procedures.
 - 1. Enter a "5" on the mode switch located on the front of the STE test panel.
 - Wait 18 seconds, and look to see that the unit is performing the scan pattern described. Enter the observed result on TDS 17.
 - 3. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 17.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (30 positions at beam position 6, ignore cold cal and warm cal positions on the printout) (pages 1 and 2 of printout)
 - f. Radiometer scene data (pages 1 and 2 of printout)
 - g. PRT temperature data (elements 262 300, page 2 of printout)
 - h. Status (page 3 of printout)
 - i. Engineering data (page 3 of printout)
 - 4. Attach the printout to TDS 17. There is no pass/fail criteria.
- **3.3.6.9** GSE-7 mode verification. This test mode is used in conjunction with GSE-3 mode to pause the reflector at the current beam position for 30 integration periods. This process is then repeated. To verify this mode, perform the following procedures.

- 1. Enter a "7" on the mode switch located on the front of the STE test panel.
- 2. Wait 18 seconds, and look to see that the unit is performing the scan pattern described. Enter the observed result on TDS 17.
- 3. Enter the STE command "[3]" to obtain a full printout. Review the following data and record the results on TDS 17.
 - a. Packet ID (elements 1 and 2, page 1 of printout)
 - b. Packet length (elements 3 and 4, page 1 of printout)
 - c. Unit serial number (elements 5 and 6, page 1 of printout)
 - d. Instrument mode/status (elements 7 and 8, page 1 of printout)
 - e. Reflector positions (30 positions at current beam position, ignore cold cal and warm cal positions on the printout) (pages 1 and 2 of printout)
 - f. Radiometer scene data (pages 1 and 2 of printout)
 - g. PRT temperature data (elements 262 300, page 2 of printout)
 - h. Status (page 3 of printout)
 - i. Engineering data (page 3 of printout)
- 4. Attach the printout to TDS 17. There is no pass/fail criteria.
- 3.3.7 Radiometer functional performance test. The purpose of this test is to verify the radiometric performance of the AMSU-A2 instrument at the system level. This test consists of:
 - 1. Relative radiometer NEΔT measurements (3.3.7.1)
- 3.3.7.1 Relative radiometer NEAT measurements. The purpose of this test is to perform a preliminary evaluation of the radiometer NEAT at the system level. Since the STE is not in the thermal vacuum configuration, no temperature readings from the cold load are available. To compute the NEAT for this test, the temperature used for the cold load temperature shall be 80 K.

The data obtained from this test are considered as relative NEAT and are to be used as a diagnostic tool to verify proper operation of each radiometer channel from antenna input to the spacecraft interface. The equation to determine relative NEAT is as follows:

$$NE\Delta T = \frac{\left[SD*\left(T_h - T_c\right)\right]}{M - N}$$

where

SD = Standard deviation of 120 radiometric samples looking at the warm load

 T_h = Physical temperature of the warm load (300 K)

 T_c = Physical temperature of the cold target (80 K)

M = Average of the radiometric readings in counts viewing the warm load (120 samples)

N = Average of the radiometric readings in counts viewing the cold target (30 samples)

Perform the following procedures:

WARNING

The use of liquid nitrogen in a confined poorly ventilated area can cause asphyxiation and death due to lack of oxygen (oxygen concentration below 20 percent). Accidental contact with liquid nitrogen will cause severe frostbite to the eyes or skin. When handling liquid nitrogen, personnel shall observe the following safety precautions:

- a. Ensure that the work area is well ventilated to prevent excessive gas buildup.
- b. To protect your eyes always wear a face shield or safety goggles (safety glasses without side shields do not provide adequate protection).
- c. To protect exposed skin always wear an apron when pouring LN₂ and whenever exposed to LN₂, always wear a lab coat, gloves made for cryogenic work, cuffless trousers (worn outside the boots or shoes), and safety shoes.
- d. Do not fill target fuller then 1.0 inch from the top. Fill target at the floor level, away from unit.
- e. Do not move filled target without cover in place.
- 1. The unit should still be powered and configured as shown in Figure 12.
- After the unit is stabilized (minimum of 30 minutes required), fill the cold target with liquid nitrogen and position it as shown in Figure 22.
- From the STE command screen shown in Figure 11, enter the STE command "[11] WARM CAL MODE".
- 4. Enter the STE command "[1] RETURN" twice to return to the EOS/AMSU-A2 STE main screen shown in Figure 9.
- 5. From the main screen, enter the STE command "[13] FUNCTIONAL TEST".
- No additional operator input is needed as the computer will automatically display the results. There is typically a 40 second delay after executing a functional test before the results are displayed. A typical screen is shown in Figure 23.
- 7. Obtain a screen printout by issuing the STE command "[2]".
- 8. Repeat steps 5 through 7 four more times obtaining four additional screen printouts. Average the NEΔT readings from the five printouts for each channel and enter those averages on TDS 18. Attach the printouts to TDS 18.
- 9. Remove the cold load and associated hardware.
- 10. Turn the STE power supply panel N/Pulse switch off (refer to Figure 3).

Figure 22. Relative NEΔT Test Setup

СН	WARM TEMP.	WARM COUNTS	COLD COUNTS	GAIN	DELTA-T
1	297.45	16558.0	13752.0	0.069	0.623
2	297.44	16317.0	13108.0	0.061	0.556
<u> </u>					

Figure 23. Typical Screen Display Following a Functional Test

- 11. Turn the STE power supply panel Q/Main switch off (refer to Figure 3).
- 12. Turn the STE power supply panel main power switch off (refer to Figure 3).
- 3.3.8 Channel identification test. The purpose of the channel identification test is to verify the proper final configuration/assembly of each radiometer channel from antenna input to the spacecraft interface.
 - 1. Configure the unit and test equipment as shown in Figure 12

NOTE

Use of the 25-pin breakout box is optional for this test.

- 2. Connect the STE to instrument using the following STE interface cables.
 - a. STE interface cable J1 (1356648-1)
 - b. STE interface cable J2 (1356648-2)
 - c. STE interface cable J3 (1356648-3)
- 3. Turn the STE main power switch ON. From the A2 directory, and at the "\$" prompt, enter the command to the STE "RUN E2." The A2 software program should be running as evidenced by the STE screen shown in Figure 9.
- 4. Turn the STE power supply panel main power switch ON (refer to Figure 3).
- 5. Turn the STE power supply panel Q/Main switch ON (refer to Figure 3).
- 6. Turn the STE power supply panel N/Pulse switch ON (refer to Figure 3).
- 7. From the main screen shown in Figure 9, enter the STE command [2] "MONITOR ONLY." The screen should now be as shown in Figure 10. Enter the STE command "[14] COMMANDS." The screen should now be as shown in Figure 11.
- 8. Enter the STE command "SCANNER POWER." Wait 18 seconds before issuing the next command.
- 9. Enter the STE command "ANTENNA COLD CAL." Wait 18 seconds before issuing the next command. The reflector should scan to the cold calibration beam position.
- 10. Enter the STE command "[1] RETURN" to return to the monitor only screen shown in Figure 10.
- 11. Enter the STE command "[10] SCIENCE DATA." The STE should now display the science data screen shown in Figure 24. From this screen enter the STE command "[9] BEAM POSITION NN-ALL CHANNELS."
- 12. The STE then prompts "ENTER BEAM POSITION NO (1 TO 30)." Enter "30" to show the radiometric counts data for channels 1 and 2. The STE should now display the radiometric data screen shown in Figure 25 except with a different set of count data.
- 13. Allow the instrument to stabilize for approximately 20 minutes. Enter the STE command "[2]" to obtain a screen only printout.

14. Configure the unit and test equipment as shown in Figure 26. Turn ON the sweeper and allow to warm up approximately 10 minutes. Make sure that the RF power is OFF during sweeper warm up.

CAUTION

Extreme care must be used when turning on RF power. When RF power is first applied the gain horn should be approximately three to four feet from the unit. The RF power setting should be no greater than -20 dBm.

- 15. Set the sweeper frequency to $23.8 \pm .01$ GHz and set the RF power level to -20 dBm. Position the gain horn three to four feet from the instrument so that the antenna and gain horn are approximately aligned. Rotate the gain horn, if needed, to the vertical polarization position.
- 16. Turn ON the RF power making sure the power level is set to -20 dBm. Allow the multiplier to warm up approximately five minutes.
- 17. At the STE screen, compare the radiometric data counts of channel 1 to the counts printed out at step 13. Enter the STE command "[2]" to obtain a screen only printout.
- 18. From the printouts obtained in steps 13 and 17 verify that the radiometric data counts for channel 1 have increased significantly, approximately 10,000 or more, and that the other channels data counts have remained relatively unchanged, less than 300 counts.\
- 19. Record the count differences on TDS 19 of channel 1 from the printouts obtained in steps 13 and 17 and attach printouts to TDS 19.
- 20. Repeat steps 15 through 19 for the frequencies and polarizations listed on TDS 19.
- 21. After both channels have been identified, turn OFF the RF power. Return the reflector to the warm cal position.
- 22. Turn the STE Q/Main and N/Pulse switches to OFF
- 23. Turn the STE power supply panel main power switch OFF.

EOS A2	-02 E2 COLD CAL MODE 5-JUN-98 09:36:59 SCAN NUMBER 34
[5]	SCIENCE DATA ELEMENT 0000
[6]	CONTROL/STATUS ELEMENT 00
[7]	ENGINEERING ELEMENT 00
[8]	DATA STREAM (64 VALUES)
[9]	BEAM POSITION NN - ALL CHANNELS
[10]	CHANNEL NN - ALL BEAM POSITIONS
[11]	WARM CALIBRATE
[12]	COLD CALIBRATE
[13]	REFLECTOR POSITIONS
[14]	TEMPERATURE DATA (16 VALUES)
ENGR O	K POWER ON CHECKSUM IN 15A1 SA28 34SA29 47
	SCREEN ONLY [2] PRINT [3] FULL [1] RETURN
SELECT	BUTTON 2

Figure 24. Science Data Screen

EOS	A2-XX E2.EXE	;;4	4-MAR-98	14:53:41	SCAN NUMBER	
[5]	SCIENCE I	DATA	ELEMENT 0	000		
[6]	CONTROL	/STATUS	ELEMENT	00		
[7]	ENGINEER	RING	ELEMENT	00		
			RADIOME	TRIC DATA		
			BEAM PO	OSITION 1		
			СН	DATA		
			1	16,275		
			2	16,189		
[21]	UP	[2	2] DOWN			
	POWER	OFF	CHECKS	JM IN CAL	C SA28 0 SA29	0
SELE	SCR CT BUTTON 2	EEN ONLY	[2] PRI	NT [3]FULL	[1] RETURN	

Figure 25. Radiometric Data Screen

Figure 26. Channel Identification Set Up

This page intentionally left blank.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 Responsibility for inspection. Aerojet Quality Assurance shall inspect in accordance with the requirements of this test procedure, S-480-80 and S-480-79. Quality Control shall verify all test set-ups prior to start of test. Bonded software shall be used for all tests and shall be obtained from Quality Control. Quality Control shall review all test data for conformance to success criteria. The test data shall include test limits. For tests that satisfy requirements from S-480-80 on protoflight and flight units, customer representatives shall be invited to monitor tests and shall be invited to review the data and show approval on the test data sheets.
- 4.1.1 Test facilities. Unless otherwise specified, the examinations and tests described herein shall be conducted at Aerojet, Azusa Operations, Azusa, California.
- 4.1.2 Electrostatic device (ESD) handling. All electronic hardware shall be handled in accordance with Aerojet Standard STD-2454.
- 4.2 Monitoring procedures. All tests in this procedure shall be monitored by Quality Control.
- 4.2.1 Test equipment. Test equipment calibration procedures shall comply with the requirements of MIL-STD-45662.
- 4.2.2 Software. Bonded software shall be used at all times.
- 4.3 Monitoring procedures for materials. Not applicable.
- 4.4 Certification. Certification for handling ESD sensitive equipment is required for all personnel working on the assembly and test of the AMSU-A instrument.

4.5 Test methods

4.5.1 Accept-reject criteria. The accept-reject criteria for each examination or test shall be as specified in the data sheets included in each phase of the applicable test procedure. The test results shall be recorded on the data sheets to demonstrate compliance with the applicable specification requirements. Methods of analysis shall be appropriate for the parameters being inspected. It shall be the responsibility of Aerojet to review the test data and determine conformance of the unit under test to the performance requirements contained in S-480-80 and this specification.

In the event of a failure during any phase of this test procedure, the test activity shall record the required information on the Test Anomaly Record and alert the design assurance and quality engineers. Except for failures which only represent a limited out-of-tolerance condition for a particular parameter and are not expected to interfere with the balance of the testing and which are non-destructive, the testing must be stopped until a complete description of the observed anomaly failure is documented and a Failure Analysis Strategy (FAS) is formulated, documented, and implemented to preclude loss of information or evidence that may facilitate determining the failure cause. The full set of data from the referenced tests are required in order to formulate a plan of action. The cognizant reliability engineer, quality assurance engineer, and the system or responsible test engineer shall jointly develop the FAS which must be approved by Design Assurance and Quality Assurance. Analysis and reporting shall be performed in accordance with Aerojet procedures.

4.5.2 General. Separate test reports shall be prepared in accordance with 4.5.2.1.1 for each series which has successfully completed testing. This report shall include all data sheets associated with the tests on the unit plus the data reduction and analysis of specific parameters required by each applicable test procedure specification obtained from screen printouts and plots, oscilloscope photographs, or magnetic recordings. During tests in which a CRT screen is to be printed or plotted and retained as a data sheet, the following annotation shall be applied:

Test/Systems Engineer:	
Quality Control:	(Signature)
Customer Representative:	(Signature)
(Flight hardware only)	(Signature)
Date:	
Test Paragraph No.:	
Subassembly/Assembly Serial No.	

The report shall also include a certification statement. A complete copy of the report shall be included in the shop order package.

4.5.2.1 Acceptance test reports

- 4.5.2.1.1 Format. The acceptance test report shall be prepared and shall include, as a minimum, the following:
 - a. Title page
 - b. Summary
 - c. Requirements satisfied (if any)
 - d. Discrepancy reports (if any)
 - e. Test data
- 4.5.2.1.2 Test data. The test data included in the report shall be that which was obtained during performance of the tests specified herein and recorded on the Test Data Sheet(s) (TDS) (see Appendix A) and on printouts and plots.

5. NOTES

5.1 Intended use. The intended use of this process specification is to establish the requirements for the comprehensive and limited performance testing of the Advanced Microwave Sounding Unit - A1 System.

5.2 Abbreviations and acronyms

AMSU Advanced Microwave Sounding Unit

BW Bandwidth

C Celsius CAL Calibration

CCA Circuit Card Assembly

CH Channel

CPT Comprehensive Performance Test

DMM Digital Multimeter
DRB Decade Resistor Box
DVM Digital Voltmeter

ESD Electrostatic Discharge

F Fail

FAS Failure Analysis Strategy

GND Ground

GPIB General Purpose Interface Bus GSFC Goddard Space Flight Center

HP Hewlett-Packard

HTR Heater

I/O Input/Output

IF Intermediate Frequency

K Degrees Kelvin

LO Local Oscillator

LPT Limited Performance Test

max Maximum MUX Multiplexer

NF Noise Figure

P Pass

P/N Part Number

PRT Platinum Resistance Transducer

RF Radio Frequency

RTN Return

S/N Serial Number

STE Special Test Equipment

AE-26156/10B 27 Aug 98

TAR Test Anomaly Record
TDS Test Data Sheet
TLM Telemetry

APPENDIX A

TEST DATA SHEETS

10. APPENDIX A

10.1 Scope. This appendix contains the test data sheets for all tests and inspections listed in section 3.

TDS		Page
1	Grounding Interface Test	A-2
2	Oujet Power Bus Operational Power Test	
3	Oniet Power Rus Operational Power Test (LPT)	
4	Quiet Power Rus Turn On Transient Test	A-10
5	Noisy Power Rus Operational Power Test	A-11
6	Maior Bower Pue Turn On Transient Test	
7	Passive Analog Interface Test	A-13
8	Instrument Commanding Test	
9	Science and Engineering Data Test (Full Scan Mode)	A-13
10	Science and Engineering Data Test (Warm Cal Mode)	A-18
11	Science and Engineering Data Test (Cold Cal Mode)	A-20
12	Science and Engineering Data Test (Nadir Mode)	A-23
13	1553 Bus Interface Test	
14	Test Point Interface Test (8 Second Sync Pulse TP)	A-28
15	Test Point Interface Test (Integrate/Hold and Dump TPs)	A-29
16	Test Point Interface Test (Radiometer Channel Analog Output 1Ps)	A-30
17	Test Point Interface Test (GSE Modes)	
18	Radiometer Functional Performance Test (Relative NEΔT Measurements*)	A-32
19	Channel Identification Test	A-33

TEST DATA SHEET NO. 1 (Sheet 1 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

		acecraft Interface		
From Chassis	Pin Description	Required Resistance	Measured Value	
Ground to		(Ohms)	(Ohms)	Pass/Fai
J1-1	+29V QUIET PWR BUS	> 1M	(+	1 433/1 (4)
J1-2	+29V QUIET PWR BUS	> 1M		
J1-3	29V QUIET BUS RTN	> 1M		
J1-4	29V QUIET BUS RTN	> 1M		
J1-5	+29V NOISY PWR BUS	> 1M		
J1-6	+29V NOISY PWR BUS	> 1M		
J1-7	29V NOISY BUS RTN	> 1M		
J1-8	29V NOISY BUS RTN	> 1M		
J1-9	SURVIVAL PWR BUS A	> 1M		
J1-10	SURVIVAL BUS A RTN	> 1M		
J1-11	SURVIVAL PWR BUS A	> 1M		
J1-12	SURVIVAL BUS A RTN	> 1M		
J1-13	CHASSIS GROUND	<1		
J1-14	+29V QUIET PWR BUS	> 1M		
J1-15	+29V QUIET PWR BUS	> 1M		
J1-16	29V QUIET BUS RTN	> 1M		
J1-17	29V QUIET BUS RTN	> 1M	··	
J1-18	+29V NOISY PWR BUS	> 1M		
J1-19	+29V NOISY PWR BUS	> 1M		
J1-20	29V NOISY BUS RTN	> 1M		
J1-21	29V NOISY BUS RTN	> 1M		
J1-22	SURVIVAL PWR BUS B	> 1M		
J1-23	SURVIVAL BUS B RTN	> 1M		
J1-24	SURVIVAL PWR BUS B	> 1M		
J1-25	SURVIVAL BUS B RTN	> 1M		

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1 st CPT Final CPT		Shop Order:	S/N: LPT	
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 1 (Sheet 2 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

		ecraft Interface Required Resistance	Measured Value	
From Chassis Ground to	Pin Description	(Ohms)	(Ohms)	Pass/Fail
J2-1	A2 MOTOR TEMP HI	> 1M		
J2-2	A2 MOTOR TEMP LO	> 1M		
J2-3	A2 RECEIVER TEMP 1 HI	> 1M		
J2-4	A2 RECEIVER TEMP 1 LO	> 1M		
J2-5	A2 WARM LOAD TEMP HI	> 1M	<u> </u>	
J2-6	A2 WARM LOAD TEMP LO	> 1M		
J2-7	No Connection	> 1M		
J2-8	No Connection	> 1M		
J2-9	No Connection	> 1M		
J2-10	No Connection	> 1M		
J2-11	No Connection	> 1M		ļ
J2-12	No Connection	> 1M		<u> </u>
J2-13	No Connection	> 1M		
J2-14	No Connection	> 1 M		
J2-15	No Connection	> 1M		
J2-16	No Connection	> 1M		<u> </u>
J2-17	No Connection	> 1M		
J2-18	No Connection	> 1M		
J2- 19	No Connection	> 1M	 	
J2-20	No Connection	> 1M		
J2-21	No Connection	> 1M		
J2-22	A2 RECEIVER TEMP 2 HI	> 1M		
J2-23	A2 RECEIVER TEMP 2 LO	> 1M		
J2-24	No Connection	> 1M		
J2-25	No Connection	> 1M		
J2-26	No Connection	> 1M		
J2-27	No Connection	> 1 M		
J2-28	No Connection	> 1M		—
J2-29	No Connection	> 1M		
J2-30	No Connection	> 1M		
J2-31	No Connection	> 1M		
J2-32	No Connection	> 1M		
J2-33	No Connection	> 1M > 1M		1
J2-34	No Connection	> 1M		
J2-35	No Connection	> 1M		
J2-36	No Connection	> 1M		
J2-37	No Connection		N:	
S/AMSU-A2 S rcle Test: 1 st (J 51-1-1 1 1			
		Test S	Systems Engineer	Date
stomer Represen	ntative Date	Ougli	ty Control	Date

TEST DATA SHEET NO. 1 (Sheet 3 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

	J3 of Spaceci	raft Interface		
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value	
J3-1	1553 INTERFACE DATA A HI	> 100K	(Ohms)	Pass/Fai
J3-2	1553 INTERFACE DATA A LO	> 100K		
J3-3	No Connection	> 100K		
J3-4	1553 INTERFACE DATA B LO	> 100K		
J3-5	1553 INTERFACE DATA B HI	> 100K		
J3-6	1553 INTERFACE DATA A SHIELD	<1		
J3-7	No Connection	> 1M		
J3-8	No Connection			
J3-9	1553 INTERFACE DATA B SHIELD	> 1M < 1	<u></u>	

EOS/AMSU-A2 System I Circle Test: 1st CPT	P/N 1356006 Final CPT	Shop Order:Sub CPT	S/N: LPT	
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 1 (Sheet 4 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

	J4 of Space	cecraft Interface		
From Chassis Ground to	Pin Description	Required Resistance (Ohms)	Measured Value (Ohms)	Pass/Fail
J4-1	CHASSIS GROUND	< 1		
J4-2	8 SECOND SYNC PULSE TP	> 100K		
J4-3	No Connection	> 1M		
J4-4	No Connection	> 1M		
J4-5	I/H & DUMP RTN (2/3)	<1		
J4-6	DUMP COMMAND TP	> 100K		
J4-7	No Connection	> 1M		
J4-8	CH I ANALOG OUT TP	> 100K		
J4-9	CH 2 ANALOG OUT TP	> 100K		
J4-10	No Connection	> 1M		
J4-11	No Connection	> 1M		
J4-12	No Connection	> 1M		
J4-13	No Connection	> 1M		
J4-14	No Connection	> 1M		
J4-15	No Connection	> 1M		
J4-16	No Connection	> 1M		
J4-17	GSE COMMAND LSB	> 5K		
J4-18	GSE COMMAND MSB-1	> 5K		
J4-19	No Connection	> 1M		
J4-20	1.248 MHz CLOCK TP	> 100K		
J4-21	1.248 MHz CLOCK RTN (1)	< 1		
J4-22	No Connection	> 1M	ļ	
J4-23	I/H COMMAND TP	> 100K		
J4-24	No Connection	> 1M		
J4-25	No Connection	> 1M		
J4-26	ANALOG OUT RTN (2/3)	<1		
J4-27	No Connection	> 1M		
J4-28	No Connection	> 1M		
J4-29	No Connection	> 1M	 	
J4-30	No Connection	> 1M	 	
J4-31	No Connection	> 1M	 	ļ
J4-32	No Connection	> 1M		
J4-33	No Connection	> 1M		
J4-34	No Connection	> 1M		
J4-35	GSE COMMAND REN (1)	> 5K		
J4-36	GSE COMMAND RTN (1)	<1 > 1M		
J4-37	No Connection	> 1M		
OS/AMSU-A2 Strole Test: 1st	System P/N 1356006 Shop Orde CPT Final CPT Sub CPT	r:		
		Test Sys	tems Engineer	Date
stomer Represe	ntative Date	Quality (Control	Date

TEST DATA SHEET NO. 1 (Sheet 5 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

			Required	Measured Value	
Source	Destination	Source Pin Description	Resistance (Ohms)	(Ohms)	Pass/Fail
J1-1	J1-2	+29V QUIET PWR BUS	<1		
J1-1	J1-14	+29V QUIET PWR BUS	<1		
J1-1	J1-15	+29V QUIET PWR BUS	<1		
J1-3	J1-4	29V QUIET BUS RTN	<1		
J1-3	J1-16	29V QUIET BUS RTN	<1		-
J1-3	J1-17	29V QUIET BUS RTN	<1		
J1-5	J1-6	+29V NOISY PWR BUS	<1		
J1-5	J1-18	+29V NOISY PWR BUS	<1		
J1-5	J1-19	+29V NOISY PWR BUS	<1		
J1-7	J1-8	29V NOISY BUS RTN	<1		
J1-7	J1-20	29V NOISY BUS RTN	<1		
J1-7	J1-21	29V NOISY BUS RTN	<1		
J1-9	J1-11	SURVIVAL PWR BUS A	<1		
J1-10	J1-12	SURVIVAL BUS A RTN	<1		
J1-22	J1-24	SURVIVAL PWR BUS B	<1		
J1-23	J1-25	SURVIVAL BUS B RTN	<1		
J1-1	J1-5	+29V QUIET PWR BUS	> 1M		
J1-1	J1-7	+29V QUIET PWR BUS	> 1M		-
J1-1	J1-9	+29V QUIET PWR BUS	> 1 M		
J1-1	J1-10	+29V QUIET PWR BUS	> 1M		
J1-1	J1-22	+29V QUIET PWR BUS	> 1M		
J1-1	J1-23	+29V QUIET PWR BUS	> 1M		
J1-3	J1-5	29V QUIET BUS RTN	> 1M		
J1-3	J1-7	29V QUIET BUS RTN	> 1M		
J1-3	J1-9	29V OUIET BUS RTN	> 1M		

EOS/AMSU-A2 System F Circle Test: 1 st CPT	P/N 1356006 Final CPT	Shop Order:Sub CPT	S/N: LPT	
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 1 (Sheet 6 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

			Required	Measured Value	
Source	Destination	Source Pin Description	Resistance (Ohms)	(Ohms)	Pass/Fail
J1-3	J1-10	29V QUIET BUS RTN	> 1M		
J1-3	J1-22	29V QUIET BUS RTN	> 1M		
J1-3	J1-23	29V QUIET BUS RTN	> 1M		
J1-5	J1-9	+29V NOISY PWR BUS	> 1M		
J1-5	J1-10	+29V NOISY PWR BUS	> 1M		
J1-5	J1-22	+29V NOISY PWR BUS	> 1M		
J1-5	J1-23	+29V NOISY PWR BUS	> 1M		
J1-7	J1-9	29V NOISY BUS RTN	> 1M		
J1-7	J1-10	29V NOISY BUS RTN	> 1M		
J1-7	J1-22	29V NOISY BUS RTN	> 1M		
J1-7	J1-23	29V NOISY BUS RTN	> 1M		
J1-9	J1-22	SURVIVAL PWR BUS A	> 1M		
J1-9	J1-23	SURVIVAL PWR BUS A	> 1M		
J1-10	J1-22	SURVIVAL BUS A RTN	> 1M		
J1-10	J1-23	SURVIVAL BUS A RTN	> 1M		
J1-13	J1 OUTER	CHASSIS GROUND	< 1		
	SHELL				
J1-13	J2 OUTER	CHASSIS GROUND	< 1		
	SHELL				
J1-13	J3 OUTER	CHASSIS GROUND	< 1		
	SHELL				
J1-13	J4 OUTER	CHASSIS GROUND	< 1		
	SHELL			· · · · · · · · · · · · · · · · · · ·	
J3-1	J3-5	1553 INTERFACE DATA A HI	>100K		
J3-1	J3-4	1553 INTERFACE DATA A HI	>100K		
J3-2	J3-5	1553 INTERFACE DATA A LO	>100K		
J3-2	J3-4	1553 INTERFACE DATA A LO	>100K		

EOS/AMSU-A2 System P/N 13560 Circle Test: 1 st CPT Final Cl			
		Test Systems Engineer	Date
Customer Representative D	ate	Quality Control	Date

TEST DATA SHEET NO. 2

Quiet Power Bus Operational Power Test (Paragraph 3.3.3.1.1)

Required Quiet Bus Voltage QBV (Volts)	Measured QBV (Volts)	Maximum Peak Quiet Bus Current QBI (Amps)	Required Power (Watts)	Calculated Peak Power (QBV x QBI) (Watts)	Pass/Fail
26.90 - 27.10			<u>≤</u> 31		
28.90 - 29.10			<u>≤</u> 31		†
30.90 - 31.10			<u>≤</u> 31		

Required Quiet Bus Voltage QBV (Volts)	Measured QBV (Volts)	Average Quiet Bus Current QBI (Amps)	Required Power (Watts)	Calculated Average Power (QBV x QBI) (Watts)	Pass/Fail
26.90 - 27.10			≤25		-
28.90 - 29.10			≤25		
30.90 - 31.10			≤25		

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT Final CPT	Shop Order:	S/N:	
		Test Systems Engineer	Date
Customer Representative Date		Quality Control	Date

TEST DATA SHEET NO. 3 Quiet Power Bus Operational Power Test (LPT) (Paragraph 3.3.3.1.2)

Required Quiet Bus Voltage QBV (Volts)	Measured QBV (Volts)	Average Quiet Bus Current QBI (Amps)	Required Power (Watts)	Calculated Average Power (QBV x QBI) (Watts)	Pass/Fail
28.90 - 29.10		_	<25		

TEST DATA SHEET NO. 4

Quiet Power Bus Turn On Transient Test (Paragraph 3.3.3.1.3)

+31 Volts

Parameter	Measured/Calculated	Required	Pass/Fail
Peak Current	Amps	<8.3 Amps	
Pulse Width	ms	<150 ms	
Rate of Change(slope): dI/dT	ma/μs	<640 mA/μs	

+29 Volts

Parameter	Measured/Calculated	Required	Pass/Fail
Peak Current	Amps	<8.3 Amps	
Pulse Width	ms	<150 ms	
Rate of Change(slope): dI/dT	ma/µs	<640 mA/μs	

+27 Volts

Parameter	Measured/Calculated	Required	Pass/Fail
Peak Current	Amps	<8.3 Amps	
Pulse Width	ms	<150 ms	
Rate of Change(slope): dI/dT	ma/μs	<640 mA/µs	

EOS/AMSU-A2 System P/N 135600 Circle Test: 1 st CPT Final CP	•	S/N:	
		Test Systems Engineer	Date
Customer Representative Da	te	Quality Control	Date

TEST DATA SHEET NO. 5

Noisy Power Bus Operational Power Test (Paragraph 3.3.3.2.1)

Required Noisy Bus Voltage NBV	Measured NBV (Volts)	Required Peak Current	Maximum Peak Noisy Bus Current NBI	Required Peak Power	Calculated Peak Power (NBV x NBI)	Pass/Fail
(Volts)	(* 0163)	(Amps)	(Amps)	(Watts)	(Watts)	
26.90 - 27.10		≤1.2		≤40		
28.90 - 29.10		≤1.2		≤40		
30.90 - 31.10		≤1.2		<u>≤</u> 40		

Required	Measured NBV	Average	Required	Calculated Average	
Noisy Bus Voltage	(Volts)	Noisy Bus Current	Average	Power	Pass/Fail
NBV		NBI	Power	(NBV x NBI)	
(Volts)		(Amps)	(Watts)	(Watts)	
26.90 - 27.10			<u><</u> 6		
28.90 - 29.10			<u>≤</u> 6		
30.90 - 31.10			<u>≤</u> 6		

Required Noisy Bus Voltage (NBV) (Volts)	Measured NBV (Volts)	Bus Current During the I/H,D.Period	Pass/Fail
26.95 - 27.05		ma * ma **	Not Applicable
28.75 - 29.05		ma * ma **	Not Applicable
3095 - 31.05		ma * ma **	Not Applicable

*	Between	Beams
*	Between	Beams

** Between Cal Tests

EOS/AMSU-A2 System Proceeding Circle Test: 1st CPT	N 1356006 Final CPT	Shop Order:	S/N:	
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 6
Noisy Power Bus Turn On Transient Test (Paragraph 3.3.3.2.2)

. 71	T 7 - 1	
- 1	Vol	ΙC

Parameter	Measured/Calculated	Required	Pass/Fail
Peak Current	Amps	<9.6 Amps	
Pulse Width	ms	<100 ms	
Rate of Change(slope): dI/dT	ma/μs	<846 mA/us	-

+29 Volts

Parameter	Measured/Calculated	Required	Pass/Fail
Peak Current	Amps	<9.6 Amps	
Pulse Width	ms	<100 ms	
Rate of Change(slope): dI/dT	ma/μs	<846 mA/us	

+27 Volts

Parameter	Measured/Calculated	Required	Pass/Fail
Peak Current	Amps	<9.6 Amps	
Pulse Width	ms	<100 ms	
Rate of Change(slope): dI/dT	ma/μs	<846 mA/μs	

EOS/AMSU-A2 System P/N Circle Test: 1 st CPT F	1356006 inal CPT	Shop Order: S/N: _		
		Test Syste	ms Engineer Date	
Customer Representative	Date	Quality Co	ontrol Date	

TEST DATA SHEET NO. 7 Passive Analog Interface Test (Paragraph 3.3.4)

Number	Thermistor	Required Temperature (°Celsius)	Measured Temperature (Celsius)	Pass/Fail
1	A2 SCAN MOTOR	*±5		
2	A2 RF SHELF # 1	*±5		
3	A2 WARM LOAD	* ± 5		
4	A2 RF SHELF # 2	* ± 5		

^{*} The measured temperature of the unit environment.

	Test Systems Engineer	Date
EOS/AMSU-A2 System P/N 1356006 Shop Order: Circle Test: 1 st CPT Final CPT Sub CPT	LPT	

TEST DATA SHEET NO. 8 Instrument Commanding Test (Paragraph 3.3.5.2)

Step	Instrument Status	(Y)es / (N)o
12	Is A2 motor scanning?	
13	Full Scan Mode command received?	1
14	Did A2 motor stop scanning?	†
15	Is A2 motor scanning?	
16	Reflector positioned looking at warm loads?	
17	Reflector positioned looking at nadir?	
18	Reflector positioned looking at cold cal 1?	
19	Reflector positioned looking at cold cal 4?	
20	Reflector positioned looking at cold cal 3?	
21	Reflector positioned looking at cold cal 2?	
22	Reflector positioned looking at cold cal 1?	
23	Did C&DH processor reset?	1

Yes = Pass No = Fail

OS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT Final Cl			
		Test Systems Engineer	Date
Customer Representative D	ate	Quality Control	Date

TEST DATA SHEET NO. 9 (sheet 1 of 3)

Science and Engineering Data Test (Full Scan Mode) (Paragraph 3.3.5.3.1)

Step	Instrument Status	(Y)es / (N)o
1	Full Scan Mode command received?	
2	ENGR OK message seen?	
3	Unit running in full scan mode?	

Yes = Pass No = Fail

Step	Element	Description	Measured Value (Binary)	Required Value (Binary)	(P)ass/(F)ail
4a	1-2	Packet ID		0000100100100010	
4b	3-4	Packet Length		0000000101011101	
4c	5-6	Unit Serial Number		0000010000000000	
4d	7-8	Instrument Mode/ Status		1000100000000010	

	RADIOMETER SCENE DATA						
Step	Description	Required Counts	(P)ass/(F)ail				
4f	Review All Scene Data	12500-20500					

	PRT TEMPERATURE DATA					
Step Element Description Required (P)ass/(F)						
4g	4g 262-298 Review All PRT Data		10-40 degrees C			
4g	200 T 200 D 5 2004 26217					

	STATUS						
Step	Description	Status*	Required Status	(P)ass/(F)ail			
	Antenna in Full Scan Mode		YES				
ſ	Antenna in Warm Cal Mode		NO				
ſ	Antenna in Cold Cal Mode		NO				
4h	Antenna in Nadir Mode		NO				
Γ	Cold Cal Position LSB		ZERO				
Ī	Cold Cal Position MSB		ZERO				
Ī	A2 Scanner Power		ON				
Ī	ADC Latchup Flag		ONE				

^{*} Rewriting printout data on this data sheet is optional.

COS/AMSU-A2 System P/N Circle Test: 1 st CPT	1 1356006 Final CPT	Shop Order:Sub CPT	S/N: LPT	
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 9 (sheet 2 of 3) Science and Engineering Data Test (Full Scan Mode) (Paragraph 3.3.5.3.1)

BP	Flance	A2 REFLECTOR PO		
Br	Element	Position (*)	Required (**) +/- 5	(P)ass/
1	12	(*)		(F)ail
2	20			
3	28			
4	36			
5	44			
6	52			
7	60			
8	68			
9	76			
10	84			
11	92			
12	100			
13	108		 	
14	116			
15	124			
16	132			
17	140			
18	148			
19	156			
20	164			
21	172	**		
22	180			
23	188		 	
24	196			
25	204			·
26	212	· · · · · · · · · · · · · · · · · · ·		
27	220			
28	228			
29	236			
30	244			
CC	252			
WC	304			
*	Actual counts from	printout. Rewriting co	unts on this data sheet is option	al.
**	Required counts fro	m AE26002/2 TDS 6	+/- 5 counts	
•••				
SU-A2 Sys Test: 1 st	stem P/N 1356006 CPT Final CPT	Shop Order: Sub CPT		
			Test Systems Engineer	Dat

TEST DATA SHEET NO. 9 (sheet 3 of 3) Science and Engineering Data Test (Full Scan Mode) (Paragraph 3.3.5.3.1)

ENGINEERING DATA							
Step	Description	Measured	Required	(P)ass/(F)ail			
	Signal Processor (+5 VDC)		+4 to +6 volts				
	Signal Processor (+15 VDC)		+14 to +16 volts				
	Signal Processor (-15 VDC)		-14 to -16 volts				
-	Scan Drive (+5 VDC)		+4 to +6 volts				
4i	Scan Drive (+15 VDC)		+14 to +16 volts				
-	Scan Drive (-15 VDC)		-14 to -16 volts				
	Mixer/IF Amplifier (+10 VDC)		+9 to +11 volts				
-	LO Channel 1		+9 to +11 volts				
Ī	LO Channel 2		+9 to +11 volts				
f	Quiet Bus Current		≤ 1 Amps				
	Noisy Bus Current		≤ 150 milliamps				

^{*} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N Circle Test: 1 st CPT		Shop Order:Sub CPT		
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 10 (Sheet 1 of 2) Science and Engineering Data Test (Warm Cal Mode) (Paragraph 3.3.5.3.2)

Step	Instrument Status	(Y)es / (N)o
1	Warm Cal Mode command received?	
2	ENGR OK message seen?	
3	Reflector positioned at warm load?	

Yes = Pass No = Fail

Step	Element	Description	Measured Value* (Binary)	Required Value (Binary)	(P)ass/(F)ail
4a	1-2	Packet ID		0000100100100001	···
4b	3-4	Packet Length		0000000101000101	
4c	5-6	Unit Serial Number		0000010000000000	
4d	7-8	Instrument Mode/ Status		1000100000000100	

RADIOMETER SCENE DATA					
Step	Description	Required Counts	(P)ass/(F)ail		
4f	Review All Scene Data	12500-20500			

	PRT TEMPERATURE DATA						
Step	Element	Description	Required	(P)ass/(F)ail			
4g	262-298	Review All PRT Data	10-40 degrees C	, , , , , , , , ,			
4g	300	Temperature Sensor Reference	23244-26317 counts				

STATUS					
Step	Description	Status*	Required Status	(P)ass/(F)ail	
L	Antenna in Full Scan Mode		NO		
	Antenna in Warm Cal Mode		YES		
[Antenna in Cold Cal Mode	· · · · · · · · · · · · · · · · · · ·	NO		
4h	Antenna in Nadir Mode		NO		
	Cold Cal Position LSB		ZERO		
	Cold Cal Position MSB		ZERO		
	A2 Scanner Power		ON		
	ADC Latchup Flag		ONE		

^{*} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N Circle Test: 1 st CPT	1 1356006 Final CPT	Shop Order: Sub CPT		
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 10 (sheet 2 of 2) Science and Engineering Data Test (Warm Cal Mode) (Paragraph 3.3.5.3.2)

A2 REFLECTOR POSITIONS (Step 4e)

Be	eam	1 021010	n Range	1	Require	d (**) +/-	J Counts	(P)ass/
	itions		(*)					(F)ail
1-	-30							
* Acti	ual range (min to max) of co			nly beam	positions	1-30).	
Rev	vriting cour	nts on this data she	eet is option	nal.				
** Rea	uired coun	ts from AE26002/	/2 TDS 6 +/	- 5 counts	for Warm	n Cal Posi	tion	
							- -	
			ENGIN	NEERING				
Step		Description		Meas	ured		Required	(P)ass/(F)ai
		al Processor (+5 V					to +6 volts	
-	Signa	l Processor (+15	VDC)		<u>-</u>		to +16 volts	
	Signa	al Processor (-15	VDC)	<u> </u>			to -16 volts	<u></u>
Ī		can Drive (+5 VD					to +6 volts	<u></u>
4i		an Drive (+15 VI		ļ			to +16 volts	
		an Drive (-15 VD		1			to -16 volts	
	Mixer/	IF Amplifier (+10) VDC)				o +11 volts	-
		LO Channel 1		 			o +11 volts	
		LO Channel 2					o +11 volts	
		Quiet Bus Curren					1 Amps	
Noisy Bus Current						215	0 milliamps	1
*** R		Noisy Bus Currer		is optional		1 2 13	<u> </u>	
*** R	ewriting pr	intout data on this	s data sheet					ss/Fail
*** R		intout data on this	s data sheet	is optional				ss/Fail
	ewriting pr	intout data on this	s data sheet				Pa	ss/Fail
W	Instrumer	intout data on this It Mode	s data sheet				Pa: Not A	applicable
W	Rewriting pr	intout data on this It Mode	s data sheet				Pa: Not A Not A	applicable applicable
W	Instrumer	intout data on this at Mode canner ON	s data sheet				Pa: Not A Not A	applicable
W	Instrumer Varm Cal Sc	intout data on this at Mode canner ON	s data sheet				Pa: Not A Not A	applicable applicable
W	Instrumer Varm Cal Sc	intout data on this at Mode canner ON	s data sheet				Pa: Not A Not A	applicable applicable
W	Instrumer Varm Cal Sc	intout data on this at Mode canner ON	s data sheet				Pa: Not A Not A	applicable applicable
W	Instrumer Varm Cal Sc Cold Cal Sc Nadir Scar	intout data on this at Mode canner ON anner ON	Noi	isy Bus Cu	rrent (ma)	Pa: Not A Not A	applicable applicable
W C	Instrumer Varm Cal Sc Cold Cal Sc Nadir Scar	intout data on this at Mode canner ON anner ON	Noi	isy Bus Cu	rrent (ma)	Pa: Not A Not A	applicable applicable
W C	Instrumer Varm Cal Sc Cold Cal Sc Nadir Scar	intout data on this at Mode canner ON anner ON	Noi	isy Bus Cu	rrent (ma)	Pa: Not A Not A	applicable applicable
W C	Instrumer Varm Cal Sc Cold Cal Sc Nadir Scar	intout data on this at Mode canner ON anner ON	Noi	isy Bus Cu	rrent (ma)	Pa: Not A Not A	applicable applicable
W C	Instrumer Varm Cal Sc Cold Cal Sc Nadir Scar	intout data on this at Mode canner ON anner ON	Noi	isy Bus Cu	rrent (ma	S/N:	Pa: Not A Not A	applicable applicable
MSU-A e Test:	Instrumer Varm Cal Sc Cold Cal Sc Nadir Scar	intout data on this at Mode canner ON anner ON P/N 1356006 Final CPT	Noi	isy Bus Cu	LP	S/N:	Pa: Not A Not A Not A	Applicable Applicable Applicable

TEST DATA SHEET NO. 11 (Sheet 1 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

Step	Instrument Status	(Y)es / (N)o
1	Cold Cal Mode command received?	
2	ENGR OK message seen?	
3	Reflector positioned at cold cal position 1?	
9	Cold Cal Position 2 command received?	
10	ENGR OK message seen?	
11	Reflector positioned at cold cal position 2?	
18	Cold Cal Position 3 command received?	
19	ENGR OK message seen?	
20	Reflector positioned at cold cal position 3?	
27	Cold Cal Position 4 command received?	<u> </u>
28	ENGR OK message seen?	
29	Reflector positioned at cold cal position 4?	

Yes = Pass No = Fail

Step	Element	Description	Measured Value* (Binary)	Required Value (Binary)	(P)ass/(F)ail
7a	1-2	Packet ID		0000100100100001	· · · · · · · · · · · · · · · · · · ·
7b	3-4	Packet Length		0000000101000101	
7c	5-6	Unit Serial Number		00000100000000000	
7d	7-8	Instrument Mode/ Status		1000100000001000	
16a	7-8	Instrument Mode/ Status		1000100000101000	
25a	7-8	Instrument Mode/ Status		1000100001001000	
34a	7-8	Instrument Mode/ Status		1000100001101000	

RADIOMETER SCENE DATA						
Step	Description	Required Counts	(P)ass/(F)ail			
7 f	Review All Scene Data	12500-20500				

	PRT TEMPERATURE DATA						
Step	Element	Description	Required	(P)ass/(F)ail			
7g	262-298	Review All PRT Data	10-40 degrees C				
7g	300	Temperature Sensor Reference	23244-26317 counts				

^{*} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N Circle Test: 1st CPT	1356006 Final CPT	Shop Order:Sub CPT		
			Test Systems Engineer	Date
Customer Representative	Date		Quality Control	Date

TEST DATA SHEET NO. 11 (sheet 2 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

		STATUS		
Step	Description	Status*	Required Status	(P)ass/(F)ail
	Antenna in Full Scan Mode		NO	
t	Antenna in Warm Cal Mode		NO	
f	Antenna in Cold Cal Mode		YES	
7h	Antenna in Nadir Mode		NO	
· -	Cold Cal Position LSB		ZERO	
İ	Cold Cal Position MSB		ZERO	
f	A2 Scanner Power		ON	
ŀ	ADC Latchup Flag		ONE	
16b	Cold Cal Position LSB		ONE	
100	Cold Cal Position MSB		ZERO	
25b	Cold Cal Position LSB		ZERO	
	Cold Cal Position MSB		ONE	
34b	Cold Cal Position LSB		ONE	
J.J	Cold Cal Position MSB		ONE	

^{*} Rewriting printout data on this data sheet is optional.

OS/AMSU-A2 System P/N 1356 Circle Test: 1 st CPT Fina	Order: S/N T LPT	:	
	= -	De De	
	Test Sy	stems Engineer Da	ate

TEST DATA SHEET NO. 11 (sheet 3 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

~·	A2 REFLECTOR	POSITIONS (Step 7e)	
Beam	Position Range*	Required** +/- 5 counts	(P)ass/
Positions			(F)ail
1-30			
		ntout (Only beam positions 1-30).	
	ts on this data sheet is optional.		
** Required count	s from AE26002/2 TDS 6 +/- 5	counts for Cold Cal Position #1	
			-
···-		POSITIONS (Step 16c)	
Beam	Position Range*	Required** +/- 5 counts	(P)ass/
Positions	· · · · · · · · · · · · · · · · · · ·		(F)ail
1-30			
		tout (Only beam positions 1-30).	
	ts on this data sheet is optional.		
** Required count	s from AE26002/2 TDS 6 +/- 5	counts for Cold Cal Position #2	
		POSITIONS (Step 25c)	
Danm I	Docition Donnet		(75)
Beam	Position Range*	Required** +/- 5 counts	(P)ass/
Positions	Fosition Range*	Required** +/- 5 counts	(P)ass/ (F)ail
Positions 1-30			
Positions 1-30 * Actual range (r	nin to max) of counts from prin	Required** +/- 5 counts tout (Only beam positions 1-30).	
Positions 1-30 * Actual range (r. Rewriting count	nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30).	
Positions 1-30 * Actual range (r. Rewriting count	nin to max) of counts from prints on this data sheet is optional.		
Positions 1-30 * Actual range (r. Rewriting count	nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30).	
Positions 1-30 * Actual range (r. Rewriting count	nin to max) of counts from prin ts on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3	
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts	nin to max) of counts from prin ts on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c)	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam	nin to max) of counts from prin ts on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions	nin to max) of counts from prin ts on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c)	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR 1 Position Range*	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (n.	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR 1 Position Range*	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c)	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30).	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR 1 Position Range*	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30).	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30).	(P)ass/
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30).	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30).	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30).	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional.	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30).	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (n. Rewriting counts ** Required counts	nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (n. Rewriting counts ** Required counts ** Required counts	nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (n. Rewriting counts ** Required counts ** Required counts	nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (r. Rewriting counts Rewriting counts	nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail
Positions 1-30 * Actual range (r. Rewriting counts ** Required counts Beam Positions 1-30 * Actual range (n. Rewriting counts ** Required counts ** Required counts	nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5 A2 REFLECTOR Position Range* nin to max) of counts from prints on this data sheet is optional. S from AE26002/2 TDS 6 +/- 5	tout (Only beam positions 1-30). counts for Cold Cal Position #3 POSITIONS (Step 34c) Required** +/- 5 counts tout (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail

TEST DATA SHEET NO. 11 (sheet 4 of 5)
Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

	Actual Beam Count* n printout (Only beam position County)	Required** Beam Count (± 5 counts)	(P)ass/ (F)ail
Cold Cal 1 Actual count from			(F)ail
Actual count from			
* Required count fr			
	$\frac{1}{100}$ om AE26002/2 TDS 6 ± 5 coun	nts for Cold Cal 1	<u> </u>
	A DEET ECTION N	POSITION (St. 12)	
	A2 REFLECTOR P		(D)/
Beam	Actual Beam Count*	Required** Beam Count	(P)ass/ (F)ail
Positions		(± 5 counts)	(F)an
Cold Cal 2	a mintant (Only bases a sixing (Cold Col 2)	
	n printout (Only beam position (from AE26002/2 TDS 6 +/- 5 co		
Required counts I	10H1 AE20002/2 1D3 0 +/- 3 C0	Julius 101 Cold Cal 2	
	A2 REFLECTOR P	POSITION (Step 22)	
Beam	Actual Beam Count*	Required** Beam Count	(P)ass/
Positions		(± 5 counts)	(F)ail
Cold Cal 3			· · · · · · · · · · · · · · · · · · ·
	n printout (Only beam position (Cold Cal 3).	
	from AE26002/2 TDS 6 +/- 5 cc		
Beam	A2 REFLECTOR P Actual Beam Count*	POSITION (Step 31) Required** Beam Count	(P)ass/
Positions		(± 5 counts)	(F)ail
Cold Cal 4		Cold Col 4)	
	n printout (Only beam position (from AE26002/2 TDS 6 +/- 5 co		
Required counts I	TOTAL AEZOOUZIZ TOS 6 +/- 3 CC	Julio 101 Cold Cal 4	
		001	
		LFI	
ISU-A2 System P/N Test: 1 st CPT	Final CPT Sub CPT		
	Final CP1 Sub CP1		
	Final CP1 Sub CPT	Test Systems Engineer	Date

TEST DATA SHEET NO. 11 (sheet 5 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

Description Signal Processor (+5 VDC) Signal Processor (+15 VDC) Signal Processor (-15 VDC)	Measured	Required +4 to +6 volts +14 to +16 volts	(P)ass/(F)ail
Signal Processor (+15 VDC)			
		17110 17010	
		-14 to -16 volts	
Scan Drive (+5 VDC)		+4 to +6 volts	
			· · · · · · · · · · · · · · · · · · ·
Scan Drive (-15 VDC)			
Mixer/IF Amplifier (+10 VDC)		+9 to +11 volts	
LO Channel 1		+9 to +11 volts	
LO Channel 2		+9 to +11 volts	
Quiet Bus Current		≤ 1 Amps	
Noisy Bus Current		≤ 150 milliamps	
	Scan Drive (+15 VDC) Scan Drive (-15 VDC) Mixer/IF Amplifier (+10 VDC) LO Channel 1 LO Channel 2 Quiet Bus Current	Scan Drive (+15 VDC) Scan Drive (-15 VDC) Mixer/IF Amplifier (+10 VDC) LO Channel 1 LO Channel 2 Quiet Bus Current	Scan Drive (+15 VDC) +14 to +16 volts Scan Drive (-15 VDC) -14 to -16 volts Mixer/IF Amplifier (+10 VDC) +9 to +11 volts LO Channel 1 +9 to +11 volts LO Channel 2 +9 to +11 volts Quiet Bus Current ≤ 1 Amps

DS/AMSU-A2 System P/N 1356006	Shop Order:	S/N:	
Circle Test: 1st CPT Final CP	T Sub CPT	LPT	
		Test Systems Engineer	Date
Customer Representative Da	te	Quality Control	Date

TEST DATA SHEET NO. 12 (Sheet 1 of 2)

Science and Engineering Data Test (Nadir Mode) (Paragraph 3.3.5.3.4)

Step	Instrument Status	(Y)es / (N)o
1	Nadir Mode command received?	
2	ENGR OK message seen?	
3	Reflector positioned at nadir position?	

Yes = Pass No = Fail

Step	Element	Description	Measured Value* (Binary)	Required Value (Binary)	(P)ass/(F)ail
4a	1-2	Packet ID		0000100100100001	
4b	3-4	Packet Length		0000000101000101	
4c	5-6	Unit Serial Number		00000100000000000	
4d	7-8	Instrument Mode/ Status		1000100000010000	

RADIOMETER SCENE DATA					
Step	Description	Required Counts	(P)ass/(F)ail		
4f	Review All Scene Data	12500-20500			

PRT TEMPERATURE DATA					
Step	Element	Description	Required	(P)ass/(F)ail	
4g	262-298	Review All PRT Data	10-40 degrees C		
4g	300	Temperature Sensor Reference	23244-26317 counts		

		STATUS		
Step	Description	Status*	Required Status	(P)ass/(F)ail
	Antenna in Full Scan Mode		NO	
Ī	Antenna in Warm Cal Mode		NO	
Ī	Antenna in Cold Cal Mode		NO	
4h	Antenna in Nadir Mode		YES	
ļ	Cold Cal Position LSB		ZERO	
ı	Cold Cal Position MSB		ZERO	
Ī	A2 Scanner Power		ON	
Ī	ADC Latchup Flag		ONE	

* Rewriting printout data on this data sheet is optional.				
OS/AMSU-A1 System P/N 1356008	Shop Order:	S/N:		

Circle Test: 1st CPT Final CPT Sub CPT LPT Test Systems Engineer Date

Customer Representative Date Quality Control Date

TEST DATA SHEET NO. 12 (sheet 2 of 2) Science and Engineering Data Test (Nadir Mode) (Paragraph 3.3.5.3.4)

		Α	2 REFLECTO	R POSITIONS	(Step 4	e)	
1	sitions		ion Range*			+/- 5 counts	(P)ass/ (F)ail
	-30						(1)411
Re	writing count	ts on this data s	sheet is option	rintout (Only beal). 5 counts for "tr	-	•	
			ENGIN	EERING DATA	<u> </u>		W
Step		Description	<u> </u>	Measured**		Required	(P)ass/(F)ail
	Signa	Processor (+5	VDC)	1.10404100		+4 to +6 volts	(1)433/(1)411
1		Processor (+1:			·	+14 to +16 volts	
		Processor (-15		***************************************		-14 to -16 volts	
		n Drive (+5 V		· · · · · · · · · · · · · · · · · · ·		+4 to +6 volts	
4i	Scar	n Drive (+15 V	DC)			+14 to +16 volts	
[Sca	n Drive (-15 V	DC)			-14 to -16 volts	
	Mixer/II	F Amplifier (+	10 VDC)			+9 to +11 volts	
		LO Channel 1				+9 to +11 volts	
		LO Channel 2				+9 to +11 volts	
		Quiet Bus Curre				≤ 1 Amps	
	N	Ioisy Bus Curre	ent			≤ 150 milliamps	
*** R	ewriting prin	ntout data on th	is data sheet is	optional.			
	ewriting prin	ntout data on th		optional.	S/N	:	

TEST DATA SHEET NO. 13 1553 Bus Interface Test (Paragraph 3.3.5.4)

ATTACH BUS A WAVE	FORM	
BUS A AMPLITUDE : 18.0 - 27.0 Vp-p BUS A RISE TIME : 100 - 300 nsec	Pass/Fail	
ATTACH BUS B WAVE	FORM	
BUS B AMPLITUDE: 18.0 - 27.0 Vp-p BUS B RISE TIME: 100 - 300 nsec EOS/AMSU-A2 System P/N 1356006 Shop Order: Circle Test: 1st CPT Final CPT Sub CPT	Pass/Fail	
	Test Systems Engineer	Date
Customer Representative Date	Quality Control	Date

TEST DATA SHEET NO. 14 Test Point Interface Test (8 Second Sync Pulse TP) (Paragraph 3.3.6.1)

	A	8 SECOND SYNC PULS		
	Step Parameter 2 Pulse Leng		E TEST POINT Required (P)ass / (8 seconds +/- 10%	F)ail
			2 3000 ilds 17- 10 /0	J
OS/AMSU Circle Te	U-A2 System P/N 135600 est: 1 st CPT Final C	6 Shop Order: CPT Sub CPT		
Customer	Representative I	Date	Test Systems Engineer Quality Control	Date Date

TEST DATA SHEET NO. 15 Test Point Interface Test (Integrate/Hold and Dump TPs) (Paragraph 3.3.6.2)

	Г]
					E/HOLD AND DUM					
ſ			INTE	GRA	TE/HOLD SIGNAL	TI	EST POINT			
	Ste	P	Parameter		Measured		Required		(P)ass / (F)ai	i
	4		Time Measured (A)*		millisecond	ls	158 ±5ms			_]
i l	4		Time Measured (B)*		millisecond	İs	38 -46 ms			
	4		Time Measured (A&B)	k	millisecond	İs	200 ±5ms			
_	1	-		DU	MP SIGNAL TEST	PC	DINT			_
		Step	Parameter	Ī	Measured		Required	(P)ass / (F)ail	
i		4	Time Measured	1	ms		9-15 ms		Z \ \ Z	
		,	(D)*				·- -			
EOS/Al Circl	MSU e Te		Refer to Figure 18 for Very stem P/N 1356006	Sh	op Order:		S/N:			
							Test Systems Engi	inee	r D	ate
Custo	mer	Repres	entative Date		_		Quality Control			ate

TEST DATA SHEET NO. 16

Test Point Interface Test (Radiometer Channel Analog Output TPs) (Paragraph 3.3.6.3)

						····		
		RAI	DIOMETER CI Attach Photo	HANNEL ANA			VTS	
	L							
ľ		RAD	IOMETER CH	IANNEI ANA	I OG OUTDU	T TEST DOIN	TC	
	Channel	Integration Time Measured	Integration Time Required	Hold Time Measured	Hold Time Required	Dump Time Measured	Dump Time Required	(P)ass / (F)ail
-	1	(E)*	(ms)	(F)*	(ms)	(D)*	(ms)	
	2	ms ms	158 ±5ms 158 ±5ms	ms ms	29-35 29-35	ms	9-15 9-15	
L			or Waveform De		29-33	ms	9-13	
EOS, Ci	/AMSU-A2 rcle Test:	System P/N 13.1st CPT Fi		oop Order: b CPT	····	S/N:		
					Tes	Systems Engir	neer	Date
Cu	stomer Repr	esentative	Date	-	Qua	lity Control		Date

TEST DATA SHEET NO. 17 Test Point Interface Test (GSE Modes) (Paragraphs 3.3.6.4 - 3.3.6.9)

r							٦
-				ODES	5	7	-
-	1		3 DCED1	4 /ED2 (VE			-
ŀ		MODE OF	DOEK V	Liv: (IE	3/140)	T	1
 		DATA RE	VIEW	ED? (YE	S/NO)	1	-
Printout data		<i>D</i>	, <u>, , , , , , , , , , , , , , , , , , </u>	<u>DD. (12</u>	T		1
Packet ID							1
Packet Length							1
Unit Serial Number							1
Instrument Mode/Status							
Reflector Positions							1
Radiometer Scene Data]
PRT Temperature Data							
Engineering Data							
EOS/AMSU-A2 System P/N 1356006 Circle Test: 1 st CPT Final CPT	Shop Ord	er:		S/N:			
			Ī	Test Syster	ns Enginee	er	Date
Customer Representative Date			ō	Quality Co	ntrol		Date

Customer Representative

TEST DATA SHEET NO. 18

Radiometer Functional Performance Test (Relative NEAT Measurements*) (Paragraph 3.3.7.1)

	RELATIVE NEAT M	EASUREMENTS		7
Channel	Average NE∆T	Required**		1
Number	for 5 Data Sets	NEAT	Pass/Fail	
	(K)	(K)		
1		0.30		
P = Pass F = Fail		0.30		
** For reference o				

Quality Control

Date

Date

TEST DATA SHEET NO. 19

Channel Identification Test (Paragraph 3.3.8)

Channel Number	Sweeper Frequency Setting (GHz)	Polarization (H/V)	Radiometric Data (Δ Counts)	Channel Verified (Yes/No)
1	23.8	V		
2	31.4	V		
S/AMSU-A2 System P/N Circle Test: 1 st CPT	N 1356006 Shop Final CPT Sub C	Order: LP	S/N:	
S/AMSU-A2 System P/N Circle Test: 1 st CPT	N 1356006 Shop Final CPT Sub C	PT LP	S/N:T	Date

DOCUMENT APPROVAL SHEET

TITLE	DOCUMENT NO.			
Process Specification	AE-26156/10	В		
EOS/AMSU-A2, System Comprehen	nsive and Limited P	erformance Tests	27 August 19	98
Test Procedure				
INPUT FROM: DATE	CDRL:	SPECIFICATION ENGINEER:		DATE
A. Nieto	409			
CHECKED BY:	DATE	JOB NUMBER:		DATE
APPROVED SIGNATURES			DEPT. NO.	DATE
70 TROVED CLOTO THE LEG				
		_		
	.//			1 / /
Product Team Leader (A. Nieto)	10/1	-e/C	8341	9/3/50
Troduct roum Loader (/ ii riisis)	0//			17'
		1		9/3/50
Technical Director/PMO (R. Hau	erwaas) RV	Haucrevous_	4001	19/7/98
	1			/ /
		L		
		1		19/14/60
Configuration Management (J. C	avanaugh) / 🔼	Citarque	8361	1, 1110
, ,	7	()		
		tb 4000		
Approved as Final per customer' (ECN CAMSU-1888)	s letter dated 3 S	eptember 1998		
(ECN CAMSU-1000)				
			ļ	
By my signature, I certify the above document ha	as been reviewed by me a	nd concurs with the technical		
requirements related to my area of responsibility			<u> </u>	
RELEASE (Data Center) FINAL				
(Lunda 9-14-	ad			
(xunda 1-14-	78			
_				

TEST DATA SHEET 1 TAPE IDENTIFICATION (Paragraph 4.1)

ENTER TAPE LOADED:	
E2.EXE;29	<i>,</i>

Circle Software being validated: Al

Customer Representative (Flight Hardware Only)

Engineer_

Shop Order No.: 509734

OPER 0586

Date: September 10, 1998

TEST DATA SHEET 2 LOW-RATE SCIENCE DATA ACQUISITION FULL SCAN MODE (Paragraph 4.3)

Test Case 1	Expected Results Table Used	Fail	Pass
	III. A1 Raw Input Data Stream Values	N/A	
	IV. A2 Raw Input Data Stream Values		X
	V. Al Temperature Sensor Limits	N/A	
	VI. A2 Temperature Sensor Limits		X
	VII. A1 Engineering Data	N/A	
	VIII. A2 Engineering Data		X
	XI. Reflector Positions A1-1	N/A	
	XII. Reflector Positions A1-2	N/A	
	XIII. Reflector Positions A2		X

NOTE: Place "N/A" for those tests not being tested.

0PER 0586

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

COMMENTS:	
Circle Software being validated:	A1 (A2)
Customer Representative	Engineer al lionus
(Flight Hardware Only)	Quality Assurance QC (17947/8) Quality Assurance Santos
Shop Order No.: 509734	Date: September 10, 1998

2

TEST DATA SHEET 3 LOW-RATE SCIENCE DATA ACQUISITION WARM CAL MODE (Paragraph 4.4)

Test	Expected Results Table Used	Fail	Pass
Case 2	III. A1 Raw Input Data Stream Values	N/A	
	IV. A2 Raw Input Data Stream Values	27/4	X
	V. A1 Temperature Sensor Limits	N/A	$ _{\mathbf{X}}$
	VI. A2 Temperature Sensor Limits	N/A	^
	VII. A1 Engineering Data	IN/A	$ _{\mathbf{X}}$
	VIII. A2 Engineering Data XI Reflector Positions A1-1	N/A	1
	XI. Reflector Positions A1-1 XII. Reflector Positions A1-2	N/A	
	- -		X
	XIII. Reflector Positions A2		X

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

COMMENTS:	
Circle Software being validated: A1 (A2)	00 1:
Customer Representative (Flight Hardware Only)	Engineer Al Cisneros (189)
•	Quality Assurance M. Santos

Shop Order No.: 509734

010x 0586

Date: September 10, 1998

TEST DATA SHEET 4 LOW-RATE SCIENCE DATA ACQUISITION COLD CAL MODE (Paragraph 4.5)

Test	Expected Results Table Used	Fail	Pass
Case 3	III. A1 Raw Input Data Stream Values	N/A	
	IV. A2 Raw Input Data Stream Values		X
	V. A1 Temperature Sensor Limits	N/A	
	VI. A2 Temperature Sensor Limits		X
	VII. A1 Engineering Data	N/A	
	VIII. A2 Engineering Data		X
	XI. Reflector Positions A1-1	N/A	
	XII. Reflector Positions A1-2	N/A	
	XIII. Reflector Positions A2		X

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

Also passed Cold Cal Positions 1 through 4 tests.

Customer Representative Engineer Engineer Al Cisneros Quality Assurance Quality Assurance Quality Assurance

Shop Order No.: 509734

Date: September 10, 1998

TEST DATA SHEET 5 LOW-RATE SCIENCE DATA ACQUISITION NADIR MODE (Paragraph 4.6)

Test	Expected Results Table Used	Fail	Pass
Case 4	III. A1 Raw Input Data Stream Values	N/A	
cuse .	IV. A2 Raw Input Data Stream Values	l,	X
	V. A1 Temperature Sensor Limits	N/A	
	VI. A2 Temperature Sensor Limits		X
	VII. A1 Engineering Data	N/A	
	VIII. A2 Engineering Data		X
	XI. Reflector Positions A1-1	N/A	
	XII. Reflector Positions A1-2	N/A	
	XIII. Reflector Positions A2		X

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

	-	

Circle Software being validated: A1 (A2)

Customer Representative (Flight Hardware Only)

Engineer_

Quality Assurance

Shop Order No.: 509734

Date: September 10, 1998

UPOK 0584

TEST DATA SHEET 6 UNPOWERED TEMPERATURES (Paragraph 4.7)

Test	Expected Results Table Used	Fail	Pass
Case 5	IX. A1 Passive Analog Temperature Data X. A2 Passive Analog Temperature Data	N/A	x

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

COMMENTS:		
	_	

Circle Software being validated: A1 (A2)

Customer Representative

(Flight Hardware Only)

Engineer_

Quality Assurance

Al Cislier

Shop Order No.: 509734

OPER 0584

Date: September 10, 1998

TEST DATA SHEET 7 ERROR LIMITS (Paragraph 4.8)

Test	Expected Results Table Used	Fail	Pass
Case 6	NONE		•

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

COMMENTS:
Where able to change limits. Got errors messages as outlined. Therefore passed.

Customer Representative
(Flight Hardware Only)

Quality Assurance

(A2)

Engineer

Al Cisneros

QC

1/26

Shop Order No.: 509734 Date: September 14, 1998

0 POR 0584

TEST DATA SHEET 8 PLAYBACK (Paragraph 4.9)

Test	Expected Results Table Used	Fail	Pass
Case 7	V. A1 Temperature Sensor Limits VI. A2 Temperature Sensor Limits	N/A	X

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

COMMENTS:					
	 		 		
	 		 		

Circle Software being validated: A1 (A2)

Customer Representative Engineer

Quality Assuran

Shop Order No.: 509734 Date: September 14, 1998

OPER OSTO

(Flight Hardware Only)

TEST DATA SHEET 9 ENGINEERING DATA FROM TAPE (Paragraph 4.10)

Test Expected Results Table Used	Fail	Pass
Case 8 VII. A1 Engineering Data VIII. A2 Engineering Data	N/A	X

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

COMMENTS:			

Circle Software being validated: Al

Customer Representative (Flight Hardware Only)

Engineer_

Quality Assurance

Shop Order No.: 509734

Date: September 14, 1998

0 PER 0586

TEST DATA SHEET 10 NEΔT/CTE (Paragraph 4.11)

Test	Expected Results Table Used	Fail	Pass
Case 9	V. A1 Temperature Sensor Limits VI. A2 Temperature Sensor Limits VII. A1 Engineering Data VIII. A2 Engineering Data	N/A N/A	x x

NOTE: Place "N/A" for those tests not being tested.

NOTE: If discrepancy is found between the actual results and the expected results, attach the printout with the discrepancy circled or use comments area below to describe discrepancy.

COMMENTS:

Formal test 9.1 passed using tables VI & VIII, "Pre-test 9.1" and "Formal 9.1" printouts matched. Formal test 9.2 passed.

Formal test 9.3 passed, "Pre-test 9.3" and "Formal 9.3" printouts matched.

Formal test 9.3 passed, "Pre-test 9.3" and "Formal 9.3" printouts matched.

Circle Software being validated: A1

Customer Representative (Flight Hardware Only)

Engineer

Quality Assurance

Shop Order No.: 509734

0 PCR 0586

Date: September 14, 1998

TEST DATA SHEET NO. 1 (Sheet 1 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

		cecraft Interface	Measured Value	
From Chassis	Pin Description	Required Resistance	1	Pass/Fai
Ground to		(Ohms)	(Ohms)	PASS
J1-1	+29V QUIET PWR BUS	> 1M	>IMa	1 ASS
J1-2	+29V QUIET PWR BUS	> 1M	> Ma	
J1-3	29V QUIET BUS RTN	> 1M	> IMa	
J1-4	29V QUIET BUS RTN	> 1M	<u> </u>	
J1-5	+29V NOISY PWR BUS	> 1M	ļ	
J1-6	+29V NOISY PWR BUS	> 1M		
J1-7	29V NOISY BUS RTN	> 1M		
J1-8	29V NOISY BUS RTN	> 1M		
J1-9	SURVIVAL PWR BUS A	> 1M		
J1-10	SURVIVAL BUS A RTN	> 1M		
J1-11	SURVIVAL PWR BUS A	> 1M	<u> </u>	
J1-12	SURVIVAL BUS A RTN	> 1M	>1M~	
J1-13	CHASSIS GROUND	<1	0.132	
J1-14	+29V QUIET PWR BUS	> 1M	>1Msc	
J1-15	+29V QUIET PWR BUS	> 1M		
J1-16	29V QUIET BUS RTN	> 1M		
J1-17	29V QUIET BUS RTN	> 1M		
J 1-18	+29V NOISY PWR BUS	> 1M		
J1-19	+29V NOISY PWR BUS	> 1M		
J1-20	29V NOISY BUS RTN	> 1M	<u> </u>	<u> </u>
J1-21	29V NOISY BUS RTN	> 1M		
J1-22	SURVIVAL PWR BUS B	> 1M		
J1-23	SURVIVAL BUS B RTN	> 1M		
J1-24	SURVIVAL PWR BUS B	> 1M	*	<u> </u>
J1-25	SURVIVAL BUS B RTN	> 1M	>1M~	PASS

EOS/AMSU-A2 System P/N 1356006 Shop Order: 50 Circle Test: 1st CPT Final CPT Sub CPT		
9/24/98	Test System 25 ngineer JUL 1 7 1998 Ovality Control Date Date	- -
Customer Representative Date	Quality Control Date	

TEST DATA SHEET NO. 1 (Sheet 2 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

		ecraft Interface	237-1	
From Chassis	Pin Description	Required Resistance	Measured Value	Deer/Fe
Ground to	- 3	(Ohms)	(Ohms)	Pass/Fa
J2-1	A2 MOTOR TEMP HI	> 1M	> /W	PASS
J2-2	A2 MOTOR TEMP LO	> 1M		}
J2-3	A2 RECEIVER TEMP 1 HI	> 1M		
J2-4	A2 RECEIVER TEMP 1 LO	> 1M		
J2-5	A2 WARM LOAD TEMP HI	> 1M		
J2-6	A2 WARM LOAD TEMP LO	> 1M		
J2-7	No Connection	> 1M		
J2-8	No Connection	> 1M		
J2-9	No Connection	> 1M		
J2-10	No Connection	> 1M		
J2-11	No Connection	> 1M		
J2-12	No Connection	> 1M		
J2-13	No Connection	> 1M		
J2-14	No Connection	> 1M		
J2-15	No Connection	> 1M		
J2-16	No Connection	> 1M		
J2-17	No Connection	> 1M		
J2-18	No Connection	> 1M		
J2-19	No Connection	> 1M		
J2-20	No Connection	> 1M		
J2-21	No Connection	> 1M		
J2-22	A2 RECEIVER TEMP 2 HI	> 1M		
J2-23	A2 RECEIVER TEMP 2 LO	> 1M		
J2-24	No Connection	> 1M		
J2-25	No Connection	> 1M	<u> </u>	
J2-26	No Connection	> 1M		
J2-27	No Connection	> 1M		
J2-28	No Connection	> 1M	- '	
J2-29	No Connection	> 1M		
J2-30	No Connection	> 1M		
J2-31	No Connection	> 1M		
J2-32	No Connection	> 1M		1
J2-33	No Connection	> 1M		
J2-34	No Connection	> 1M		
J2-35	No Connection	> 1M		
J2-36	No Connection	> 1M		V V
J2-37	No Connection	> 1M	>1Ms.	PAS.

EOS/AMSU-A2 System P/N 1356006 Shop Order: 509734

Circle Test: 1st CPT Final CPT Sub CPT 1

Test Systems Engineer JUL 17 1998

Quality Control

Date

Date

Date

Customer Representative

Date

LPT __

TEST DATA SHEET NO. 1 (Sheet 3 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

-	J3 of Spacect	raft Interface		
From Chassis	Pin Description	Required Resistance	Measured Value	
Ground to		(Ohms)	(Ohms)	Pass/Fail
J3-1	1553 INTERFACE DATA A HI	> 100K	>100K	PASS
Ј3-2	1553 INTERFACE DATA A LO	> 100K	>100K	
J3-3	No Connection	> 1M	> IM	
J3-4	1553 INTERFACE DATA B LO	> 100K 1/6		<u> </u>
J3-5	1553 INTERFACE DATA B HI		NG) >100K	
J3-6	1553 INTERFACE DATA A SHIELD	<1	6.74 B. A.	
J3-7	No Connection	> 1M	'>IM	
J3-8	No Connection	> 1M	>1M	
J3-9	1553 INTERFACE DATA B SHIELD	<1	0.422	1249

EOS/AMSU-A2 System P/N 1356006 Shop Order:	509734 S/N: 202 LPT	
Circle Test: 1" CPT Final CPT Sub CPT		
	252	7-16-98
9/24/18	Test Systems Engineer	JUL Pate 19
Customer Representative Date	Quality Control	Date

TEST DATA SHEET NO. 1 (Sheet 4 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

		cecraft Interface		
From Chassis	Pin Description	Required Resistance	Measured Value	Dees/Gei
Ground to	i es e	(Ohms)	(Ohms)	Pass/Fai
J4-1	CHASSIS GROUND	<1	0.222	PATS
J4-2	8 SECOND SYNC PULSE TP	> 100K	>100Km	
J4-3	No Connection	> 1M	>\M	
J4-4	No Connection	>1M	> IM	
J4-5	I/H & DUMP RTN (2/3)	<1	٥٠3٦٨	
J4-6	DUMP COMMAND TP	> 100K	>100K	
J4-7	No Connection	> 1M	> IM	
J4-8	CH 1 ANALOG OUT TP	> 100K	>100K	
J4-9	CH 2 ANALOG OUT TP	> 100K	>100K	
J4-10	No Connection	> 1M	>IM	
J4-11	No Connection	> 1M	> IM	
J4-12	No Connection	> 1M	>1M	
J4-13	No Connection	> 1M	>IM	
J4-14	No Connection	> 1M	>IM	
J4-15	No Connection	> 1M) > IM	
J4-16	No Connection	> 1M	>IM	
J4-17	GSE COMMAND LSB	> 5K	>5Ka	
J4-18	GSE COMMAND MSB-1	> 5K	9.9K	
J4-19	No Connection	> 1M	> IM	
J4-20	1.248 MHz CLOCK TP	> 100K	>100K	
J4-21	1.248 MHz CLOCK RTN (1)	<1	0.372	
J4-22	No Connection	> 1M	>IM	
J4-23	I/H COMMAND TP	> 100K	>100K	
J4-24	No Connection	> 1M	>IM	
J4-25	No Connection	> 1M	>IM	
J4-26	ANALOG OUT RTN (2/3)	< 1	0.32	
J4-27	No Connection	> 1M	>1M	
J4-28	No Connection	> 1M	- 1	
J4-29	No Connection	> 1M		
J4-30	No Connection	> 1M		
J4-31	No Connection	> 1M		
J4-31 J4-32	No Connection	> 1M	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
J4-32 J4-33	No Connection	> 1M	>1M	\bot
J4-34	No Connection	> 1M	1	
J4-34 J4-35	GSE COMMAND MSB	> 5K	9.98K	
J4-35	GSE COMMAND RTN (1)	<1	0.372	<u> </u>
J4-30 J4-37	No Connection	> 1M	>\M	PAS

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT Final CPT LPT_ Sub CPT ____ Test Systems Fire need UL 17 1998 ate Quality Control Date Date

Customer Representative

SERET 66 OF _____

TEST DATA SHEET NO. 1 (Sheet 5 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

	-	·	Required	Measured Value	v
Source	Destination	Source Pin Description	Resistance (Ohms)	(Ohms)	Pass/Fail &
J1-1	J1-2	+29V QUIET PWR BUS	<1	0.52	PASS
J1-1	J1-14	+29V QUIET PWR BUS	<1	0.37~	
J1-1	J1-15	+29V QUIET PWR BUS	<1	0.372	
J1-3	J1-4	29V QUIET BUS RTN	<1	0.332	
J1-3	J1-16	29V QUIET BUS RTN	<1	0.352	
J1-3	J1-17	29V QUIET BUS RTN	<1	0.32r	
J1-5	J1-6	+29V NOISY PWR BUS	<1	0.342	
J1-5	J1-18	+29V NOISY PWR BUS	<1	0.342	
J1-5	J1-19	+29V NOISY PWR BUS	<1	0.391	
J1-7	J1-8	29V NOISY BUS RTN	<1	0.35r	
J1-7	J1-20	29V NOISY BUS RTN	<1	0.312	
J1-7	J1-21	29V NOISY BUS RTN	<1	0.342	
J1-9	J1-11	SURVIVAL PWR BUS A	<1	0.30m	
J1-10	J1-12	SURVIVAL BUS A RTN	<1	0.312	
J1-22	J1-24	SURVIVAL PWR BUS B	<1	0.272	
J1-23	J1-25	SURVIVAL BUS B RTN	<1	0.372	
J1-1	J1-5	+29V QUIET PWR BUS	> 1M	>1Ma	
J1-1	J1-7	+29V QUIET PWR BUS	> 1M	\	
J1-1	J1-9	+29V QUIET PWR BUS	> 1M		
J1-1	J1-10	+29V QUIET PWR BUS	> 1M		
J1-1	J1-22	+29V QUIET PWR BUS	> 1M		
J1-1	J1-23	+29V QUIET PWR BUS	> 1M		
J1-3	J1-5	29V QUIET BUS RTN	> 1M		

29V QUIET BUS RTN

29V QUIET BUS RTN

EOS/AMSU-A2 System P/N 1356006 S Circle Test: 1st CPT Final CPT Su

Shop Order: <u>529734</u> S/N: <u>202</u> Sub CPT ____ LPT ___

> 1M

> 1M

Q/24/98

Customer Representative Date

J1-7

J1-9

J1-3

J1-3

Test Systems Engineer JUL 1 7 1998

Quality Control Date

Date

>IM

TEST DATA SHEET NO. 1 (Sheet 6 of 6) Grounding Interface Test (Paragraph 3.3.2, Step 2)

Source	Destination	Source Pin Description	Required Resistance (Ohrns)	Measured Value (Ohms)	Pass/Fail
J1-3	J1-10	29V QUIET BUS RTN	> 1M	>1Mr	PASS
J1-3	J1-22	29V QUIET BUS RTN	> 1M		
J1-3	J1-23	29V QUIET BUS RTN	> 1M		
J1-5	J1-9	+29V NOISY PWR BUS	> 1M		
J1-5	J1-10	+29V NOISY PWR BUS	> 1M		
J1-5	J1-22	+29V NOISY PWR BUS	> 1M		
J1-5	J1-23	+29V NOISY PWR BUS	> 1M		
J1-7	J1-9	29V NOISY BUS RTN	> 1M		
J1-7	J1-10	29V NOISY BUS RTN	> 1M		
J1-7	J1-22	29V NOISY BUS RTN	> 1M		
J1-7	J1-23	29V NOISY BUS RTN	> 1M		
J1-9	J1-22	SURVIVAL PWR BUS A	> 1M		
J1-9	J1-23	SURVIVAL PWR BUS A	> 1M		
J1-10	J1-22	SURVIVAL BUS A RTN	> 1M	V	
J1-10	J1-23	SURVIVAL BUS A RTN	> 1M	>IMA	
J1-13	J1 OUTER SHELL	CHASSIS GROUND	<1	0.16x	
J1-13	J2 OUTER SHELL	CHASSIS GROUND	< 1	0.40s	1
J1-13	J3 OUTER SHELL	CHASSIS GROUND	< 1	0.33 sc	
J1-13	J4 OUTER SHELL	CHASSIS GROUND	< 1	0.275	
J3-1	J3-5	1553 INTERFACE DATA A HI	>100K	7100K	
J3-1	J3-4	1553 INTERFACE DATA A HI	>100K	ļ	+-+
J3-2	J3-5	1553 INTERFACE DATA A LO	>100K	 	1 x
J3-2	J3-4	1553 INTERFACE DATA A LO	>100K	>100K	PASS

EOS/AMSU-A2 System P/N 1356006 Shop Order: 509734 S/N: 202

Circle Test: 1st CPT Final CPT Sub CPT LPT

Test Systems Engineer JUL 17 Date

V2 Quality Control Date

TEST DATA SHEET NO. 2

Quiet Power Bus Operational Power Test (Paragraph 3.3.3.1.1)

Required Quiet Bus Voltage QBV (Volts)	Measured QBV (Volts)	Maximum Peak Quiet Bus Current QBI (Amps)	Required Power (Watts)	Calculated Peak Power (QBV x QBI) (Watts)	Pass/Fail
26.95 - 27.051	27.07	667.4mA	≤31	18.07W	PASS
28.95 29.951	28.030		≤31	18.33W	PASS
30.950-31.951	29.0V		≤31	18.71W	PASS

Required Quiet Bus Voltage QBV	Measured QBV (Volts)	Average Quiet Bus Current QBI (Amps)	Required Power (Watts)	Calculated Average Power (QBV x QBI) (Watts)	Pass/Fail
(Yolts) 26.950 27.951	27.07V	634mA	≤25	17.16 W	PASS
28.95 - 29.051	28.030	4.6	<u><</u> 25	17.32 W	PASS
30.95°- 31.95 (29.0V	612.8 m.A	⊴ 25	17.17 W	PASS

Shop Order: <u>509734</u> Sub CPT _____ S/N: 202 EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT Final CPT

Test Systems Engineer 17 1998 Date

Quality Control

Date

Customer Representative

Date

SHEET 70 OF ECR NO. 1826

TEST DATA SHEET NO. 4 Quiet Power Bus Turn On Transient Test (Paragraph 3.3.3.1.3)

+31 Volts

	. 1			T = 7		7
Demonstrat	Meas	ured/Calculated	Required	Pass/	Fail_	_
Parameter	11 1590	9.50 Amps	<8.3 Amps	P	F_	
Peak Current	19:5-3	77.	-150	1	P	-}+
Pulse Width	6	3.964.7 ms		E		7
Rate of Change(slope): dI/dT	1 7	$93.52 \text{ ma/}\mu\text{s}$	<640 mA/μs	└		
20000 07 0 0 0 0 0						_

XTAR 3AB

+29 Volts

				D (F.3)	ĺ
Parameter	Measured/Calc	ulated	Required	Pass/Fail	
	8.66	Amps	<8.3 Amps	E	*
Peak Current	(470	ms	<150 ms	$\overline{}$	1
Pulse Width	67.49		<640 mA/μs	F	12:
Rate of Change(slope): dI/dT	918.41	ma/µs	2040 111 115		1/-

+27 Volts

	Measured/Calculated	Required	Pass/Fail
Parameter	8.13 Amps	<8.3 Amps	
Peak Current	6,05 ms	<150 ms	P
Pulse Width Rate of Change(slope): dI/dT	894.27 ma/µs	<640 mA/μs	F
Rate of Change(stope). dru 1			-

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT Final CPT Shop Order: <u>509734</u>

S/N: 202

Test Systems Engineer

Date

Customer Representative

Date

Quality Control

Date

10 1 000 = 1 ma) SCALE PARTOR

VIE SOUR O

TEST DATA SHEET NO. 5 Noisy Power Bus Operational Power Test (Paragraph 3.3.3.2.1)

Required Noisy Bus Voltage NBV (Volts)	Measured NBV (Volts)	Required Peak Current (Amps)	Maximum Peak Noisy Bus Current NBI (Amps)	Required Peak Power (Watts)	Calculated Peak Power (NBV x NBI) (Watts)	Pass/Fail
26.9 \$Q 27. 951	27.01V	≤1.2	1.07 A	≤40	12890W	P
28.95 29.05	29.02	≤1.2	1.04 A	<u>≤</u> 40	30.18W	7
30.95° 31.951	31.00	≤1.2	.996 A	≤40	30,882	P

Required Noisy Bus Voltage	Measured NBV (Volts)	Average Noisy Bus Current NBI	Required Average Power	Calculated Average Power (NBV x NBI)	Pass/Fail
NBV (Volts)		(Amps)	(Watts)	(Watts)	P
26.98 - 27.05 I 28.98 - 29.05 I	27.01V 29.02V	.1.03 A	<u>≤</u> 6 <u>≤</u> 6	3.25W	B
30.98 - 31.051	31.00	125 A	<u><</u> 6	3.88 W	<u> </u>

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT Final CPT

P/N 1356006 Shop Order: 509734
Final CPT Sub CPT _____

Test Systems Engineer

Customer Representative

Quality Control

SCALE FACTOR

N BUSS 27V AZ EDS S/NZLOZ

倒水

ω . Sec BUF 0 MIH 1 1 0. 0 T X d X ≺ 3 C 10. 0i< 707 70.07 Real >

∆Y=49.84m\

Y=375.757µ

3,3,2.2. / 1/4m

NBUSS 31V AZERS S/NZOZ

SCALL FACTOR

SCALE FREDE

N AUSS 28V

TEST DATA SHEET NO. 5 Noisy Power Bus Operational Power Test (Paragraph 3.3.3.2.1)

Required Noisy Bus Voltage NBV (Volts)	Measured NBV (Volts)	Required Peak Current (Amps)	Maximum Peak Noisy Bus Current NBI (Amps)	Required Peak Power (Watts)	Calculated Peak Power (NBV x NBI) (Watts)	Pass/Fail
26.90 - 27.10		≤1.2		<u><</u> 40		
28.90 - 29.10		≤1.2		<u><</u> 40		
30 .9 0 - 31.10		≤1.2		≤40		

Required Noisy Bus Voltage NBV (Volts)	Measured NBV (Volts)	Average Noisy Bus Current NBI (Amps)	Required Average Power (Watts)	Power (NBV x NBI) (Watts)	Pass/Fail
26.90 - 27.10			<u>≤</u> 6		
28.90 - 29.10			<u>≤</u> 6		
30.90 - 31.10					<u> </u>

Required Noisy Bus Voltage NBV (Volts)	Measured NBV (Volts)	Bus Current During the I/H, D. Period	Pass/Fail
26.75 - 27.05	27.01	10 Ma *	Not Applicable
28.75 - 29.05	29.02	60 Max	Not Applicable
30.7531.05	31.0.	10 ma &	Not Applicable
Jo.19 . 01.00			

* between beauts

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT Final CPT

Shop Order: <u>509734</u> S/N: _____

S/N: 202

9/24/98

Customer Representative

Date

Test Systems Engineer

Quality Control

7A Date 989 08 05

Date

TEST DATA SHEET NO. 6

Noisy Power Bus Turn On Transient Test (Paragraph 3.3.3.2.2)

+31 Volts

		3.4	ulated	Required	Pass/Fail	1
1	Parameter	Measured/Calc	mateu			1
ı	Peak Current	14.74	Amps	<9.6 Amps		*
ŀ		130	ms	<100 ms	F	j
ı	Pulse Width			49.46 A /u.c	F] •
ı	Rate of Change(slope): dI/dT	1610	ma/µs	<846 mA/μs		J

KTAR 3193

+29 Volts

Parameter	Measured/Calculated	Required	Pass/Fail
	/3.38 Amps	<9.6 Amps	F
Peak Current Pulse Width	/32 ms	<100 ms	<i>I</i> =
Rate of Change(slope): dI/dT	1365.34 ma/µs	<846 mA/μs	F

+27 Volts

Parameter	Measured/Calculated	d	Required	Pass/Fail
Peak Current		mps	<9.6 Amps	I E
Pulse Width	125	ms	<100 ms	F
Rate of Change(slope): dI/dT	1351 m	a/μs	<846 mA/μs	<u> </u>

EOS/AMSU-A2 System P/N 1356006

Shop Order: 509734

Circle Test: 1st CPT

Test Systems Engineer

Date

*

Customer Representative

Date

Quality Control

Date

SCALE FACTOR
18MV=200Ma

TEST DATA SHEET NO. 7 Passive Analog Interface Test (Paragraph 3.3.4)

Number	Thermistor	Required Temperature (°Celsius)	Measured Temperature (Celsius)	Pass/Fail
1	A2 SCAN MOTOR	*±5	22.69	PASS
2	A2 RF SHELF # 1	*±5	22.97	
3	A2 WARM LOAD	*±5	23.08	<u> </u>
4	A2 RF SHELF # 2	*±5	23.14	PASS

^{*} The measured temperature of the unit environment.

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1 st CPT Final CPT	Shop Order: <u>509734</u> Sub CPT	1 7	7/w las
		Ken Share	1/16/98
		Test Systems Engineer	Date
9/24/98		<u> </u>	7 1998
Customer Representative Date		Quality Control	Date
Customer Vehreschaute Date			

16-JUL-98 18:48:521 SCAN NU		
18:48:		
0000	00	00
NO MODE ELEMENT	ELEMENT	ELEMENT
EOS A2-04 E2.EXE;26 NO MODE [5] SCIENCE DATA ELEMENT 0000	[6] CONTROL/STATUS ELEMENT	7 ENGINEERING
EOS]	. 9]	1 7

TEMP C	2222 2322 2322 000 000 000 000
UNPOWERED THERMISTORS DATA	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE WARM LOAD TEMPERATURE RF SHELF TEMPERATURE #2
NO	ಆ ಬಒ4

SELECT BUTTON 2 ENGR FAIL POWER

OFF CHECKSUM IN 9ELA CALC 9ELA SA28 1496 SA29 1496 SCREEN ONLY [2] PRINT [3] FULL

TEST DATA SHEET NO. 8 Instrument Commanding Test (Paragraph 3.3.5.2)

4.8 (2C)	s)		
478	Step	Instrument Status	(Y)es / (N)o
	7 12	Full Scan Mode command received?	<u> </u>
	13	Is A2 motor scanning?	<u> </u>
. ` `	14	Did A2 motor stop scanning?	<u> </u>
	15	Is A2 motor scanning?	Y
-	16	Reflector positioned looking at warm loads?	<u> </u>
- - · ·	17	Reflector positioned looking at nadir?	<u> </u>
-	18	Reflector positioned looking at cold cal 1?	Υ
	19	Reflector positioned looking at cold cal 4?	<u> </u>
	20	Reflector positioned looking at cold cal 3?	4
	21	Reflector positioned looking at cold cal 2?	<u> </u>
	22	Reflector positioned looking at cold cal 1?	Ψ
	23	Did C&DH processor reset?	1 4

Yes = Pass No = Fail

EOS/AMSU-A2 System P/N 1356006 Shop Order: SO9734 S/N: 202

Circle Test: 1st CPT Final CPT Sub CPT LPT

Test Systems Engineer JUL 17 Date

Customer Representative Date

Customer Representative Date

TEST DATA SHEET NO. 9 (sheet 1 of 3) Science and Engineering Data Test (Full Scan Mode) (Paragraph 3.3.5.3.1)

Step	Instrument Status	(Y)es / (N)o
1	Full Scan Mode command received?	<u> </u>
2	ENGR OK message seen?	Υ
3	Unit running in full scan mode?	Y

Yes = Pass No = Fail

Step	Element	Description	Measured Value (Binary)	Required Value (Binary)	(P)ass/(F)ail
4a	1-2	Packet ID		0000100100100010	Ρ
4b	3-4	Packet Length		0000000101011101	Р
	5-6	Unit Serial Number		0000010000000000	P
4c 4d	7-8	Instrument Mode/ Status		1000100000000010	P

RADIOMETER SCENE DATA					
Step -	Description	Required Counts	(P)ass/(F)ail		
4f	Review All Scene Data	12500-20500	P		

PRT TEMPERATURE DATA					
Step	Element	Description	Required	(P)ass/(F)ail	
4g	262-298	Review All PRT Data	10-40 degrees C	P	
4g	300	Temperature Sensor Reference	23244-26317 counts	P	

STATUS				
Step	Description	Status	Required Status	(P)ass/(F)ail
- Dtop	Antenna in Full Scan Mode		YES	_ P
t	Antenna in Warm Cal Mode		NO	
ŀ	Antenna in Cold Cal Mode		NO	
4h	Antenna in Nadir Mode		NO	
	Cold Cal Position LSB		ZERO	
	Cold Cal Position MSB		ZERO	
	A2 Scanner Power		ON	P
ŀ	ADC Latchup Flag		ONE	D

^{*} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N 1356006 Shop Order: 50973	84 s/n: 202
Circle Test: 1st CPT Final CPT Sub CPT	LPT
	Ken home 7/16/98
	Test Systems Engineer Date
9/24/98	761 30L 17 1998
Customer Representative Date	Quality Control Date

TEST DATA SHEET NO. 9 (sheet 2 of 3) Science and Engineering Data Test (Full Scan Mode) (Paragraph 3.3.5.3.1)

P	Element	A2 REFLECTOR POS Position	Required (**) +/- 5	(P)ass/ (F)ail
		(*)		(F)au
1	12		9035	
2	20		7783	$\frac{B}{B}$
_3	28		7731	
4	36		7580	<u> </u>
-5	44		7428	<u>P</u>
-6	52		7276	P
.7	60		7125	<u>P</u>
-8	68		6973	P
9 -	76		6821	P
10	84		6670	P
11	92		6518	<u> </u>
12	100		6366	P
13	108		6215	P
14	116		6063	P
15	124		5911	P
16	132		5760	
-17	140		5608	P
18	148		5456	P
19	156		5305	<u>P</u>
20	164		5153	2
21	172		5001	Р
22	180		4850	P
23	188		4698	P
24	196		4546	P
25	204		4395	Р
26	212		4243	P
27	220		4091	<u> </u>
28	228		3940	 - - - - - - - - - - - - -
29	236		3788	P
30	244		3636	
cc	252		2043	D
wc	204		counts on this data sheet is opt	I F

EOS/AMSU-A2 System P/N 1356006 Shop Order: 509734 S/N: 202

Circle Test: 1st CPT Final CPT Sub CPT LPT

Test Systems Engineer JUL 1 7 1938

Customer Representative Date

Quality Control

Quality Control

Date

TEST DATA SHEET NO. 9 (sheet 3 of 3) Science and Engineering Data Test (Full Scan Mode) (Paragraph 3.3.5.3.1)

		EERING DATA Measured	Required	(P)ass/(F)ail
Step	Description	Measureu	+4 to +6 volts	D
	Signal Processor (+5 VDC)			
<u></u> ⊢	Signal Processor (+15 VDC)		+14 to +16 volts	
	Signal Processor (-15 VDC)		-14 to -16 volts	<u> </u>
<u> </u>	Signal Processor (-13 V2-0)		+4 to +6 volts	P
L	Scan Drive (+5 VDC)		+14 to +16 volts	P
4i	Scan Drive (+15 VDC)		-14 to -16 volts	D
	Scan Drive (-15 VDC)			D
	Mixer/IF Amplifier (+10 VDC)		+9 to +11 volts	<u> </u>
	LO Channel 1		+9 to +11 volts	<u> </u>
L			+9 to +11 volts	P
L	LO Channel 2		≤ 1 Amps	. P
Γ	Quiet Bus Current	ļ	< 150 milliamps	D

^{*} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N 1356006 Shop Order: 50 Circle Test: 1st CPT Final CPT Sub CPT	9734 SN: 202 - LPT - 7/16/98
Customer Representative Date	Test Systems Engineer JUL 17 Date (si) Quality Control Date

21:40:
16-JUL-98 21:40:
FULL SCAN MODE ELEMENT 0000
EOS A2-04 E2.EXE;26
EOS A2

00	00
ELEMENT	ELEMENT
CONTROL/STATUS) ENGINEERING
_	_
9	7
[6] (

VES [14]	_	NO [15]	NO [16]	NO [17]	[18]	[19]	83 SA29 83 [1] RETURN	
NDS TO THE COLUMN 1	ON COLD CAL PUSTITUM 1 =	COLD CAL POSITION 2 =	COLD CAL POSITION 3 =	COLD CAL POSITION 4 =	RESET C&DH PROCESSOR	GSE MODE	N B5D7 CALC B5D7 SA28 PRINT [3] FULL	
	ER =	JULL SCAN MODE = YES	ANTENNA IN WARM CAL POSIT = NO	COLD CAL POSIT = NO	1 13 1 ANTENNA IN NADIR POSITION = NO		ON CHECKSUM IN SCREEN ONLY [2]	
	[9] SCANNER A2 POW		[11] ANTENNA IN V	ANTENNA IN	[12] ANTENNA IN N		ENGR OK POWER	SELECT BUTTON 3

- 1		റവാ	- 0001 1440 0000	NO(\circ			4.01010		4477 00000	43394 173264 10867 1086	വവനന	COMM	തതന	
PAGE		OK CH 1	-		CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE	20K CH 1 CH 2	OK 1 CH 1 21	8888 8886	21 CHK 3	22 4 4	CHH CHH CHH CHH CHH CHH CHH CHH CHH CHH	007 UHH UHH UHH UHH UHH UHH UHH UHH UHH UH	2	00 28 CH CH 21	o o
21:40:30	⊱	POSITION 7 ZND LOC BP 17 (POSITION 8 2ND LO	BP 18	POSITION 9 2ND LO BP 19	POSITION 0 ZND LC BP 20	POSITION 1 2ND LC BP 21	POSITION 2 ZND LC BP 22	POSITION 23 2ND LO A BP 23	POSITION 4 2ND LO BP 24	POSITION 25 2ND LO A BP 25	POSITION 26 2ND LO A BP 26	POSITION 27 2ND L A BP 27	POSITION 28 2ND L A BP 28	POSITION 29 2ND L
6-JUL-98	DES	REFLECTOR REFL POS 1 SCENE DATA	REFLECTOR REFL POS 1	CENE DAT	REFLECTOR REFL POS 1 SCENE DATA	REFLECTOR REFL POS 2 SCENE DATA	REFLECTOR REFL POS 2 SCENE DATA	REFLECTOR REFL POS 2 SCENE DATA	REFLECTOR REFL POS S	REFLECTOR REFL POS 2 SCENE DATA	REFLECTOR REFL POS SCENE DATA	REFLECTOR REFL POS SCENE DAT	REFLECTOR REFL POS SCENE DAT	REFLECTOR REFL POS SCENE DAT	REFLECTOR REFL POS
т	ELEMENT	138 140 142	니니다 4444				ietelete	ÄÄÄÄÄ	स्तित्तन	नंतन्त	70000 00000 00400	10000	10000	10000	100
SCIENCE DATA	VALUE	000100 010001 000000	101110	000000000000000000000000000000000000000	1732 1732	7777	777	772	446	1777	17123 17123 17123 1733 1733 1733 1733 17	$\alpha \alpha $	1700°	1700c	- 600 - 600 - 600
SCI		•	000) HC	7									0	-
_04 E2.EXE;26	DESCRIPTION	PACKET ID	ERIAL	INSTRUMENT MODE/STATUS	REFLECTOR POSITION 1 REFL POS 1 2ND LOOK SCENE DATA BP 1 CH	TOR POSITION POS 2 2ND LO DATA BP 2	REFLECTOR POSITION 3 REFL POS 3 2ND LOOK SCENE DATA BP 3 CH	REFLECTOR POSITION 4 REFL POS 4 2ND LOOK SCENE DATA BP 4 CH	REFLECTOR POSITION 5 REFL POS 5 2ND LOOK SCENE DATA BP 5 CH	CTOR POSITION POS 6 2ND LC DATA BP 6	REFLECTOR POSITION 7 REFL POS 7 2ND LOOK SCENE DATA BP 7 CH	EFLECTOR POSITION EFL POS 8 2ND LO CENE DATA BP 8	REFLECTOR POSITION 9 REFL POS 9 2ND LOOK SCENE DATA BP 9 CH	REFLECTOR POSITION 10 REFL POS 10 2ND LOOK SCENE DATA BP 10 CH	TOR POSITION OS 11 2ND L
EOS A2	ELEMENT	H00								~~~~		ണ്ഡയറ	✓4.00	0040	800

7	VALUE	11 11 11111111111111111111111111111111	
98 21:40:30 PAGE	DESCRIPTION	ECTOR POSITION 30 POS 30 2ND LOOK E DATA BP 30 CH 1 ECTOR COLD CAL POS COLD CAL 2ND LOOK CAL DATA 1 CH 2 CAL DATA 2 CH 1 CAL DATA 2 CH 2 ECTOR WARM CAL POS WARM CAL 2ND LOOK CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2	TEMPERATURE DEG C 22.445 22.71 22.71 23.86 22.71 22.758 22.758 22.77 70 22.77 70 22.95 22.95 22.95 22.95
A 16-JUL-	ELEMENT	238 SCENE 244 REFLEC 244 REFLEC 246 SCENE 248 SCENE 2550 REFLEC 2550 COLD C 2550 REFLEC 3004 WARM 312 WARM 6	V A L L L L L L L L L L L L L L L L L L
A2_04 E2.EXE;26 SCIENCE DATA	NT DESCRIPTION VALUE	SCENE DATA BP 11 CH .1 17332 REFLECTOR POSITION 12 6364 REFL POS 12 2ND LOOK CH 2 17303 REFLECTOR POSITION 13 6212 REFL POS 13 2ND LOOK 62216 SCENE DATA BP 13 CH 2 17331 REFLECTOR POSITION 14 6065 REFL POS 14 2ND LOOK 6065 REFLECTOR POSITION 14 CH 2 17313 REFLECTOR POSITION 14 CH 2 17313 REFLECTOR POSITION 15 6909 REFL POS 15 2ND LOOK 5912 REFL POS 15 2ND LOOK 5912 REFL POS 15 2ND LOOK 5912 REFL POS 15 2ND LOOK 5912 REFL POS 15 2ND LOOK 5912 REFL POS 16 2ND LOOK 5757 REFL POS 16 2ND LOOK 5757 REFL POS 16 2ND LOOK 5757 REFL POS 16 2ND LOOK 5757	SCAN MOTOR FEED HORN RY MIXER/IF AMPLIFIER CHANNEL 1 MIXER/IF AMPLIFIER CHANNEL 2 LOCAL OSCILLATOR CHANNEL 1 LOCAL OSCILLATOR CHANNEL 1 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR CHANNEL 1 LOCAL OSCILLATOR CHANNEL 1 LOCAL OSCILLATOR CHANNEL 1 LOCAL OSCILLATOR CHANNEL 1 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR CHANNEL 2 LOCAL OSCILLATOR A WARM LOAD 3 WARM LOAD 4 WARM LOAD 5 WARM LOAD 5 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 1 TEMP SENSOR REFERENCE VOLTAGE
EOS	FII.FMENT	11111111111111111111111111111111111111	ELELELE E E E E E E E E E E E E E E E E

ю										
PAGE										
21:40:30						ស្ន				
16-JUL-98				DEG C	2222 2222 0224	MA / VOLTS	000	44n 000	9000	4.00
& STATUS 1		YES NO NO ZEERO ONO ONO	DATA			VALUE	2128 1826 1860	2066 2066 2006	21587 212687 21265	3399 7753
MODE		• • • • • • • • • • • • • • • • • • •	FNGINEERING		7 7		77. 17.	101. 10.0)
EOS A2_04 E2.EXE;26	DESCRIPTION	ANTENNA IN FULL SCAN MODE ANTENNA IN WARM CAL MODE ANTENNA IN COLD CAL MODE ANTENNA IN NADIR MODE COLD CAL POSITION LSB COLD CAL POSITION MSB A2 SCANNER POWER	ADC LATCHUP FLAG	DESCRIPTION	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE #1 WARM LOAD TEMPERATURE RF SHELF TEMPERATURE #2		SIGNAL PROCESSOR	ANTENNA DRIVE	MIXER/IF AMPLIFIER	LO CHANNEL 2 OUIET BUS CURRENT NOISY BUS CURRENT

4					
PAGE	X00000	00000	000	X00000 00	00
40:30	D D D D D D D D D D D	44444 600.	50.	3 3 3 3 3 4 3 7	525
21:	NO 6000 6100 6110	000 000 000 000 000 000 000 000 000 00	625 626	N 0000 0000 000 0000 0000 0000 0000 00	554 556
6-JUL-98	X00000	200000	200	¥000000000	00
16-	00000	90000000	4.0.0 0.00	Ди и и ии Бигоин4 фифи 0000000000000000000000000000000000	38.0
AZONIX DATA	Хооооо ОООООО .HQW4RJ	იიიიიი 011111 0264101	-100	NUNUNUNUNUNU OW1000001111 -2004004	542 542
A2	•			Ω	
EOS A2_04 E2.EXE;26	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD VARIABLE TARGET SHROUD FIXED TARGET N2 VARIABLE TARGET N2 HEATER N2 FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER SASEPLATE HEATER N2 BASEPLATE HEATER BASEPLATE FLOW METER	ADJUNCT RADIATORS

Was probued on 7/16/98 ("")

TEST DATA SHEET NO. 10 (sheet 2 of 2) Science and Engineering Data Test (Warm Cal Mode) (Paragraph 3.3.5.3.2)

		A2 REFL	ECTOR PC	SITIONS (Ste	p 4e)		
B	eam	Position Ran	nge	Required	(**) +/- :	counts	(P)ass/
	itions	(*)					(F)ail
1	-30					1.20)	
Act	ual range (min to max) of counts i	from printou	it (Only beam)	positions	1- <i>30)</i> .	
Rev	vriting cour	nts on this data sheet is	optional.	veta for Warm	Cal Posit	ion	
* Rec	uired coun	s from AE26002/2 TD	3 0 +/- 3 00	ditts for waiti	Cai I Osic		
							•
			NGINEER	ING DATA			
tep		Description		Measured	R	equired	(P)ass/(F)ail
icp	Sign	al Processor (+5 VDC)				+6 volts	
		l Processor (+15 VDC				+16 volts	
		al Processor (-15 VDC)				o -16 volts	
		can Drive (+5 VDC)				o +6 volts	
4 i	Sc	an Drive (+15 VDC)				0 +16 volts	
		can Drive (-15 VDC)			1	o -16 volts x+11 volts	
	Mixer	IF Amplifier (+10 VD)	C)		·	+11 voits	
Ī	LO Channel 1					+11 volts	
	l	LO Channel 2	I		しっキブル	7 711 7033	
						1 Amns	1
*** F	Rewriting p	Quiet Bus Current Noisy Bus Current rintout data on this data	a sheet is opt	tional.	_ ≤	1 Amps) milliamps	
***]	Rewriting p	Quiet Bus Current Noisy Bus Current			<u>≤</u> ≤150) milliamps	
*** I	Rewriting p	Quiet Bus Current Noisy Bus Current rintout data on this data		tional. us Current (ma	<u>≤</u> ≤150) milliamps	ss/Fail
	Instrume	Quiet Bus Current Noisy Bus Current rintout data on this data	Noisy B	us Current (ma	<u>≤</u> ≤150) milliamps Pa	ss/Fail Applicable
	Instrume	Quiet Bus Current Noisy Bus Current rintout data on this data nt Mode Geanner ON		us Current (ma	<u>≤</u> ≤150) milliamps Pa Not A	
,	Instrume Warm Cal S Cold Cal S Nadir Sca	Quiet Bus Current Noisy Bus Current rintout data on this data nt Mode scanner ON canner ON	Noisy B	us Current (ma	<u>≤</u> ≤150) milliamps Pa Not A	Applicable
⋆ (Instrume Warm Cal S Cold Cal S Nadir Sca Performe	Quiet Bus Current Noisy Bus Current rintout data on this data Int Mode Scanner ON Canner ON Can	Noisy Br	us Current (ma	≤ ≤ 150	Pa Not A Not A	Applicable Applicable

TEST DATA SHEET NO. 10 (Sheet 1 of 2) Science and Engineering Data Test (Warm Cal Mode) (Paragraph 3.3.5.3.2)

	· Cartan	(Y)es / (N)o
Step	Instrument Status	(1)037 (11/0
1	Warm Cal Mode command received?	
2 -	ENGR OK message seen?	<u> </u>
-3	Reflector positioned at warm load?	<u> </u>

Yes = Pass No = Fail

			3.7 3.7 1. 1.37 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Required Value	(P)ass/(F)ail
Step	Element	Description	Measured Value* (Binary)	(Binary)	(2)=======
 .		Packet ID		0000100100100001	P
4a	1-2			0000000101000101	P
4b-	3-4	Packet Length		0000010000000000	Р
4c-	5-6	Unit Serial Number		1000100000000100	Р
4d	7-8	Instrument Mode/ Status		100010000000000	

	RADIOMETE	R SCENE DATA	
Step	Description	Required Counts	(P)ass/(F)ail
	Review All Scene Data	12500-20500	P
4f	-Kealen Will occup Dam	<u> </u>	

	(6 2 5		EDATA	
Star 1	Element		Required	(P)ass/(F)ail
Step	262-298		10-40 degrees C	P
4g 4g	300	Temperature Sensor Reference	23244-26317 counts	P

		STATUS		
Cto-	Description	Status*	Required Status	(P)ass/(F)ail
Step	Antenna in Full Scan Mode		NO	P
Ļ	Antenna in Fun Scali Wode		YES	P
L	Antenna in Warm Cal Mode		NO	P
L	Antenna in Cold Cal Mode		NO	P
4h	Antenna in Nadir Mode			
1	Cold Cal Position LSB		ZERO	
ţ	Cold Cal Position MSB		ZERO	<u> </u>
	A2 Scanner Power		ON	<u> </u>
ŀ	ADC Latchup Flag		ONE	<u> </u>

* Rewriting printout data on this data sheet is optional. (c.) ** Except for element 276 > 40°C.2

EOS/AMSU-A2 System P/N 1356006

Shop Order: <u>509734</u> LPT

S/N: 202

Circle Test: 1st CPT Final CPT

Sub CPT

Test Systems Engineer

Customer Representative

Quality Control

Date

TEST DATA SHEET NO. 10 (sheet 2 of 2) Science and Engineering Data Test (Warm Cal Mode) (Paragraph 3.3.5.3.2)

Beam	Position Range	POSITIONS (Step 4e) Required (**) +/- 5 counts	(P)ass/ (F)ail
Positions 1-30	()	14028	P
Actual range (min	on this data sheet is optional.	out (Only beam positions 1-30).	

	ENGIN	EERING DATA		
Star I	Description	Measured	Required	(P)ass/(F)ail
Step	Signal Processor (+5 VDC)		+4 to +6 volts	P
⊢	Signal Processor (+15 VDC)		+14 to +16 volts	P
	Signal Processor (-15 VDC)		-14 to -16 volts	P
- }	Scan Drive (+5 VDC)		+4 to +6 volts	P
F	Scan Drive (+3 VDC)		+14 to +16 volts	P
4i	Scan Drive (+15 VDC)		-14 to -16 volts	P
	Mixer/IF Amplifier (+10 VDC)		+9 to +11 volts	P
	LO Channel 1		+9 to +11 volts	P
			+9 to +11 volts	P
-	LO Channel 2		< 1 Amps	P
	Quiet Bus Current Noisy Bus Current		≤ 150 milliamps	P

^{***} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N 1356006	Shop Order <u>569734</u>	LPT N: 202	-
Circle Test: 1 st CPT Final CPT	Sub CPT		one 7/16/98
Customer Representative Date	· ·	Test Systems Engine	Date JUL 1 7 1998 Date

WARM CAL MODE ELEMENT 0000 ELEMENT 00	8 22:00:2		
4 E2.EXE;26 WARM CAL MODE ENCE DATA ELEMENT 0000 TROL/STATUS ELEMENT 00	16-JUL-98		
4 E2.EXE;26 WARM CAL ENCE DATA ELEMENT TROL/STATUS ELEMENT	MODE 0000	00	00
4 E2.EXE;26 ENCE DATA TROL/STATUS	WARM CAL ELEMENT	ELEMENT	ELEMENT
	4 E2.EXE;26 ENCE DATA	[6] CONTROL/STATUS	CA LENGTINEERING
	EOS [5	9]	_
EOS [5			

			COMMAN	COMMANDS		7000	7 7 7
[6]	SCANNER A2	A2 POWER =	NO	COLD CAL PO	= T NOTITSO	1 23	1 FT 1 COI
	1 10 ANTENNA	IN	= NO	COLD CAL POSITION 2	OSITION 2 =	NO	[15]
	11 ANTENNA IN	NI	= YES	COLD CAL POSITION 3	OSITION 3 =	NO	[16]
[12]	12 ANTENNA IN		= NO	COLD CAL POSITION 4	OSITION 4 =	NO	[17]
[13]	[13] ANTENNA IN		= NO	RESET CADH PROCESSOR	PROCESSOR		[18]
·				GSE MODE			[19]
ENGR OK	K POWER		KSUM IN	ON CHECKSUM IN FAB CALC FAB SCREEN ONLY [2] PRINT [3] FULL	FA8 SA28] FULL	233 SA29 230 [1] RETURN	TURN STORY
SELEC	SELECT BUTTON 3		•	ı		·	

н	VALUE	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
26 PAGE	7	ON CH 17 ON CH 17 ON CH 18 ON CH 19 ON CH
22:00:	ESCRIPTION	R POSITIO TA BP 17 TA BP 18 R POSITIC TA BP 18 R POSITIC TA BP 27
6-JUL-98	Ω	REFLECTOR REFL POS SCENE DAT REFL POS SCENE DAT REFL POS SCENE DAT REFL POS SCENE DAT REFL POS SCENE DAT REFL POS SCENE DAT REFLECTOR REFL POS SCENE DAT REFLECTOR REFL POS SCENE DAT REFLECTOR
7A 1	ELEMENT	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
IENCE DATA	VALUE	00000000000000000000000000000000000000
SC		
E2.EXE;26	DESCRIPTION	GTH L NUMBER NODE/ST POSITION POSITI
A2_04	_	PACKET ID PACKET LEN UNIT SERIA INSTRUMENT REFLECTOR
EOS	ELEMENT	HHHHHUUUUUUWWWWWWWWWWWWWWWWWWWWWWWWWWW

7	VALUE	111111 22144111 2200447 220042 4460000 0000000 西西 西西		
-98 22:00:26 PAGE	DESCRIPTION	CTOR POSITION 30 POS 30 2ND LOOK DATA BP 30 CH 1 CTOR COLD CAL POS COLD CAL 2ND LOOK CAL DATA 1 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 1 CH 2 CAL DATA 1 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2	TEMPERATURE DEG C	22222222222222222222222222222222222222
16-JUL	ELEMENT	238 SCENE 240 REFLEC 246 SCENE 246 SCENE 248 SCENE 2550 REFLEC 2554 COLD C 2556 COLD C 2560 REFLEC 304 WARM 312 WARM	VALUE	11111111111111111111111111111111111111
SCIENCE DATA	N VALUE	1 CH ·1 172653 ON 12 14029 LOOK 1 17263 ON 13 17265 ON 13 17265 ON 14 17267 ON 14 17267 ON 14 17267 ON 14 17267 ON 15 17267 ON 15 17267 ON 15 17267 ON 15 17267 ON 16 17267	Z.	LIFIER CHANNEL 1 ATOR CHANNEL 1 ATOR CHANNEL 1 CE ST AMP ASSEMBLY NTER
A2_04 E2.EXE;26	T DESCRIPTION	CENE DATA BP 1 EFLECTOR POSITI EFL POS 12 2ND CENE DATA BP 1 EFLECTOR POSITI EFL POS 13 2ND CENE DATA BP 1 EFLECTOR POSITI EFL POS 14 2ND CERL POS 14 2ND CERL POS 15 2ND CERL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND	NT DESCRIPTION	SCAN MOTOR REED HORN MIXER/IF AMPI MIXER/IF AMPI LOCAL OSCILLI LOCAL OSCILLI 1553 INTERFA SUB REFLECTOI DC/DC CONVER REFLECTOI NARM LOAD 3 WARM LOAD 3 WARM LOAD 3 WARM LOAD 4 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5
EOS	ELEMENT	11111111111111111111111111111111111111	ELEMENT	4408044080440804408044080

m
PAGE
22:00:26
16-JUL-98
MODE & STATUS
E2.EXE;26
A2_04
EOS

DESCRIPTION

FULL SCAN M	CAL MOD	ENNA IN COLD CAL MOD	SNNA IN NADIR M	CAL POSITION LS	CAL POSITION MS	SCANNER	LATCHU
ANTE	ANTE	ANTE	ANTE	1,10,	COLL	A2.	ADC

NO YES NO NO ZERO ZERO ON ON

ENGINEERING DATA

DEG C	0000 0000 0004	VALUE MA / VOLTS	45	21860 -15.07 22113 4.94 22041 14.99	1 H-	604
DESCRIPTION	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE #1 WARM LOAD TEMPERATURE RF SHELF TEMPERATURE #2		10	ANTENNA DRIVE +15 VDC +15 VDC +15 VDC	000	5

:26 PAGE 4	DEG 20.00 23.00 24.00	45.00 447.00 448.00 49.00	50.00	33.00 31.00 31.00 2.00 37.00	55.00 57.00
98 22:00	NO 66007. 6110	6618 6210 6210 6210	625 626	ეს სე დემემე 11 დემემე 11 დემემე	იი გან ტან
16-JUL-9	11111 0000 0000 0000 0000 0000 0000	000000	4.rv.a 200	Ди и и иг Дигоинаеме р хооооооооооооооо	. 80 . 00
AZONIX DATA	ХФФФФФ ОООООО НОМ4П\	000000 0111110 026400	100	<u>გ</u> ოოოოთოთ	니 4.4
EOS A2_04 E2.EXE;26	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD VARIABLE TARGET SHROUD VARIABLE TARGET N2 VARIABLE TARGET N2 HEATER N2 FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER N2 RASEPLATE N2	BASEPLATE FLOW METER ADJUNCT RADIATORS

TEST DATA SHEET NO. 11 (Sheet 1 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

		(Y)es / (N)o
Step	Instrument Status	(1)es/(11)0
1	Cold Cal Mode command received?	<u> </u>
2	ENGR OK message seen?	<u> </u>
3	Reflector positioned at cold cal position 1?	Υ
8	Cold Cal Position 2 command received?	<u> </u>
9	ENGR OK message seen?	<u> </u>
10	Reflector positioned at cold cal position 2?	<u> </u>
16	Cold Cal Position 3 command received?	<u> </u>
17	ENGR OK message seen?	<u> </u>
18	Reflector positioned at cold cal position 3?	Υ
24	Cold Cal Position 4 command received?	Y
25	ENGR OK message seen?	ΤΥ
26	Reflector positioned at cold cal position 4?	TY

Yes = Pass No = Fail

<u> </u>	F1	Description	Measured Value*	Required Value	(P)ass/(F)ail
Step	Element	Description	(Binary)	(Binary)	
6a	1-2	Packet ID		0000100100100001	<u> </u>
6b	3-4	Packet Length		0000000101000101	₹
	5-6	Unit Serial Number		0000010000000000	<u>P</u>
6c	7-8	Instrument Mode/ Status		1000100000001000	<u>P</u>
6d	7-8	Instrument Mode/ Status		1000100000101000	P
14a	7-8	Instrument Mode/ Status		1000100001001000	P
22a 30a	7-8	Instrument Mode/ Status		1000100001101000	P

	RADIOMETE	R SCENE DATA	
Step	Description	Required Counts	(P)ass/(F)ail
Step	Review All Scene Data	12500-20500	P

PRT TEMPERATURE DATA

Step Element Description Required (P)ass/(F)ail

6g 262-298** Review All PRT Data 10-40 degrees C

6g 300 Temperature Sensor Reference 23244-26317 counts

EOS/AMSU-A2 System P/N 1356006 Shop Order: 509734 S/N: 202

Circle Lesty 1st CPT Final CPT Sub CPT LPT

LPT

LPT

Customer Representative Date Quality Control Date Test Systems Engineer Date

^{*} Rewriting printout data on this data sheet is optional.

^{**} Except for element 276 > 40°C.

TEST DATA SHEET NO. 11 (sheet 2 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

		STATUS		
Sten	Description	Status*	Required Status	(P)ass/(F)ail
Step	Antenna in Full Scan Mode		NO	<u> </u>
-	Antenna in Warm Cal Mode		NO	
ŀ	Antenna in Cold Cal Mode		YES	
6h	Antenna in Nadir Mode		NO	
011	Cold Cal Position LSB		ZERO	
<u> </u>	Cold Cal Position MSB		ZERO	
<u> </u>	A2 Scanner Power		ON	<u> </u>
ŀ	ADC Latchup Flag		ONE	P
145	Cold Cal Position LSB		ONE	<u> </u>
14b	Cold Cal Position MSB		ZERO	P
-001	Cold Cal Position LSB		ZERO	P
22b	Cold Cal Position MSB		ONE	P
	Cold Cal Position LSB		ONE	P
30ъ	Cold Cal Position MSB		ONE	<u> </u>

^{*} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N 1356006 Shop Order: 509734 S/N: 202

Circle Test: 1" CPT Final CPT Sub CPT LPT

Test Systems Engineer Date

Customer Representative Date

Quality Control Date

TEST DATA SHEET NO. 11 (sheet 3 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

	A2 REFLECTOR PO	OSITIONS (Step Se) Step	
Beam	Position Range*	Required** +/- 5 counts	(P)ass/ (F)ail
Positions 1-30	2046	2043	P
Actual range (II	nin to max) of counts from printo	ut (Only beam positions 1-30).	
Descriting count	e on this data sheet is optional.		
* Required counts	from AE26002/2 TDS 6 +/- 5 co	ounts for Cold Cal Position #1	
	A2 REFLECTOR PO	OSITIONS (Step 14c)	
Beam	Position Range*	Required** +/- 5 counts	(P)ass/
Positions	_		(F)ail
1.20	2116	2119	
Actual range (r	nin to max) of counts from printo	ut (Only beam positions 1-30).	
Deveriting coun	te on this data sheet is optional.		
* Required count	s from AE26002/2 TDS 6 +/- 5 cc	ounts for Cold Cai Position #2	
	A2 DEFT ECTOR PO	OSITIONS (Step 22c)	
	Position Range*	Required** +/- 5 counts	(P)ass/
Beam Positions	rosidon Kango	7	(F)ail
FUCILIANC 1			
1-30 Actual range (2\98 min to max) of counts from printo tts on this data sheet is optional.		P
1-30 Actual range (min to max) of counts from printo		P
1-30 ' Actual range (min to max) of counts from printo ts on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 c	ounts for Cold Cal Position #3	P
1-30 Actual range (Rewriting count Required count	min to max) of counts from printo the son this data sheet is optional. Is from AE26002/2 TDS 6 +/- 5 c	ounts for Cold Cal Position #3 OSITIONS (Step 30c)	(P)ass/
1-30 Actual range (I Rewriting count Required count	min to max) of counts from printo ts on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 c	ounts for Cold Cal Position #3	(F)ail
1-30 Actual range (I Rewriting count ** Required count Beam Positions	min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c A2 REFLECTOR P Position Range*	OSITIONS (Step 30c) Required** +/- 5 counts	
1-30 Actual range (I Rewriting count ** Required count Beam Positions	min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c A2 REFLECTOR P Position Range*	OSITIONS (Step 30c) Required** +/- 5 counts	(F)ail
1-30 Actual range (range (range) Rewriting count Required count Beam Positions 1-30 Actual range (range)	min to max) of counts from printo ts on this data sheet is optional. s from AE26002/2 TDS 6 +/- 5 c A2 REFLECTOR P Position Range* 2349 min to max) of counts from printo this on this data sheet is optional.	OSITIONS (Step 30c) Required** +/- 5 counts 2346 out (Only beam positions 1-30).	(F)ail
Beam Positions 1-30 Beam Positions 1-30	min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c A2 REFLECTOR P Position Range*	OSITIONS (Step 30c) Required** +/- 5 counts 2346 out (Only beam positions 1-30).	(F)ail
1-30 * Actual range (range (range)) ** Required count ** Required count Beam Positions 1-30 * Actual range (range) Rewriting count ** Required count	min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c A2 REFLECTOR P Position Range* 2 3 4 9 min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c	OSITIONS (Step 30c) Required** +/- 5 counts 2346 out (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail
1-30 * Actual range (In Rewriting count ** Required count Beam Positions 1-30 * Actual range (In Rewriting count)	min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c A2 REFLECTOR P Position Range* 2 3 4 9 min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c	OSITIONS (Step 30c) Required** +/- 5 counts 2346 out (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail P
1-30 * Actual range (range (range)) ** Required count ** Required count Beam Positions 1-30 * Actual range (range) Rewriting count ** Required count ** Required count	min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c A2 REFLECTOR P Position Range* 2 3 4 9 min to max) of counts from printo its on this data sheet is optional. Its from AE26002/2 TDS 6 +/- 5 c	OSITIONS (Step 30c) Required** +/- 5 counts 2346 out (Only beam positions 1-30). counts for Cold Cal Position #4	(F)ail P

TEST DATA SHEET NO. 11 (sheet 4 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

		((218)	A
	A2 REFLECTOR POS	SITION (Step 66) 4a Brit	-in 6-5-98
Beam	Actual Beam Count*	Required** Beam Count	(P)ass/
Positions	• • • • • • • • • • • • • • • • • • • •	(±5 counts)	(F)ail
Cold Cal 1	2042	2043	P
* Actual count from	m printout (Only beam position Col	d Cal 1).	
** Required count f	from AE26002/2 TDS 6 ± 5 counts:	for Cold Cal 1	
		$\left(\epsilon\right)$	80
	A2 REFLECTOR POS	SITION (Step Se) 110 2 4.	Mil 6-5-34
Beam	Actual Beam Count*	Required** Bearn Count	(P)ass/
Positions		(± 5 counts)	(F)ail
Cold Cal 2	2114	2119	P
* Actual count from the Required counts	m printout (Only beam position Col from AE26002/2 TDS 6 +/- 5 coun	ld Cal 2). ats for Cold Cal 2	
	A2 REFLECTOR POS	SITION (Step SE) 19a 2	CON C-5-0X
	Actual Beam Count*	Required** Beam Count	(P)ass/
Beam Positions	Actual Deals Count	(± 5 counts)	(F)ail
	2195	2195	P
Cold Cal 3 * Actual count fro	m printout (Only beam position Co	<u> </u>	·
	A2 REFLECTOR PO	SITION (Step 6e) 27a	18) - W. Mills-5-1
Beam	Actual Beam Count*	Required** Beam Count	(P)ass/
Positions		(± 5 counts)	(F)ail
Cold Cal 4	2346	2346	L_Y
* Actual count fro	om printout (Only beam position Co from AE26002/2 TDS 6 +/- 5 cour	ld Cal 4). hts for Cold Cal 4	
AMSU-A2 System P/cle Test: 1st CPT	N 1356006 Shop Order: <u>50</u> Final CPT Sub CPT	9734 S/N: <u>202</u> LPT	_1 1
stomer Representative	9 /24/98 Date	Test Systems Engineer Ouality Control	7/16/98 Date JUL 17 1998 Date

TEST DATA SHEET NO. 11 (sheet 5 of 5) Science and Engineering Data Test (Cold Cal Mode) (Paragraph 3.3.5.3.3)

	ENGIN	EERING DATA		
S T	Description	Measured	Required	(P)ass/(F)ail
Step	Signal Processor (+5 VDC)		+4 to +6 volts	<u> </u>
	Signal Processor (+5 VDC)		+14 to +16 volts	P
F	Signal Processor (+15 VDC)		-14 to -16 volts	<u> P</u>
	Scan Drive (+5 VDC)		+4 to +6 volts	Ρ
,.	Scan Drive (+15 VDC)		+14 to +16 volts	Ρ
6i	Scan Drive (+13 VDC) Scan Drive (-15 VDC)		-14 to -16 volts	P
- F	Mixer/IF Amplifier (+10 VDC)		+9 to +11 volts	P
- F	LO Channel 1		+9 to +11 volts	P
-	LO Channel 2		+9 to +11 volts	P
	Quiet Bus Current		≤ 1 Amps	P
-	Noisy Bus Current		≤ 150 milliamps	Ρ

^{*} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1" CPT Final CPT	Shop Order: 509734 S/N: 202 Sub CPT LPT
alulla.	Test Systems Engineer JUL 17 1988
Customer Representative Date	Quality Control (VL) Date

16-JUL-98 22:12:402 SCAN NUMBER 482			MANDS CAL POSTTION 1 = YES [14]	I C NOTHERDOOF FEE		COLD CAL POSITION 3 = NO [16]	COLD CAL POSITION 4 = NO [17]	RESET C&DH PROCESSOR [18]	GSE MODE [19]	ON CHECKSUM IN D469 CALC D469 SA28 325 SA29 325 SCREEN ONLY [2] PRINT [3] FULL [1] RETURN	
26 FULL SCAN MODE ELEMENT 0000	JS ELEMENT 00	ELEMENT, 00	COMMANDS		FULL SCAN MODE = YES	WARM CAL POSIT = NO	COLD CAL POSIT = NO	NADIR POSITION = NO		ON CHECKSUM]	
EOS A2-04 E2.EXE;26 FULL SCAN MODE [5] SCIENCE DATA ELEMENT 0000	[6] CONTROL/STATUS	[7] ENGINEERING		[9] SCANNER AZ	[10] ANTENNA IN F		Z			ENGR OK POWER	

₽	\Box	2000	,027 1440 ,045	,000	$\omega c \cdot \iota$	てしはしにっじっ	NOWL -	4.01.01		44CC RR2C	4477	4239 17263 17266 17272	0000	തെവവ	
16-JUL-98 22:12:48 PAGE	ELEMENT DESCRIPTION	REFLECTOR POSITION CREFL POS 17 2ND LC SCENE DATA BP 17	REFLECTOR POSITION 18 REFL POS 18 2ND LOOK	SCENE DAIA BE IO REFLECTOR POSITION THEFT FOR 19 2ND IC	6 KEFL FOS 13 ZND DV 8 SCENE DATA BP 19 0	2 REFLECTOR POSITION 4 REFL POS 20 2ND LC 6 SCENE DATA BP 20 8	0 REFLECTOR POSITION 2 REFL POS 21 2ND LC 4 SCENE DATA BP 21	REFLECTOR POSITION O REFL POS 22 2ND LOS SCENE DATA BP 22	REFLECTOR POSITION 23 REFL POS 23 2ND LOOK CENE DATA BP 23 CH	REFLECTOR POSITION 24 SCENE DATA BP 24 CH	REFLECTOR POSITION 25 14 REFL POS 25 2ND LOOK 16 SCENE DATA BP 25 CH	210 REFLECTOR POSITION 26 212 REFL POS 26 2ND LOOK 214 SCENE DATA BP 26 CH 1	18 REFLECTOR POSITION 2 20 REFL POS 27 2ND LOOK 22 SCENE DATA BP 27 CH 24 CH	26 REFLECTOR POSITION 20 28 REFL POS 28 2ND LOOK 30 SCENE DATA BP 28 CH	34 REFLECTOR POSITION 29 36 REFL POS 29 2ND LOOK
CIENCE DATA	VALUE	0000100 0010001 00000000	ററ	0001000 000000 803	ηΨι	17288	1777	17.77 17.77 17.77	1 H	17222	172		1 Hr 17887 17887	1 17 17 17 17 17 17 17 17 17 17 17 17 17 1	1 9 9 1
EOS A2_04 E2.EXE;26 SC	ELEMENT DESCRIPTION	1 PACKET ID 2	UNIT SERIAL NUMBER	INSTRUMENT MODE/STA	REFL FOS 1 2ND LOOK SCENE DATA BP 1 CH	REFLECTOR POSITION 2 REFL POS 2 2ND LOOK SCENE DATA BP 2 CH	REFLECTOR POSITION 3 REFL POS 3 2ND LOOK SCENE DATA BP 3 CH	REFLECTOR POSITION REFL POS 4 2ND LC SCENE DATA BP 4	REFLECTOR POSITION REFL POS 5 2ND LC SCENE DATA BP 5	REFLECTOR POSITION REFL POS 6 2ND LO	REFLECTOR POSITION REFL POS 7 2ND LO SCENE DATA BP 7	EFLECT EFL PC CENE I	REFLECTOR POSITION S REFL POS 9 2ND L S SCENE DATA BP 9	2 REFLECTOR POSITION 4 REFL POS 10 2ND L 6 SCENE DATA BP 10	8 0 REFLECTOR POSITION 2 REFL POS 11 2ND L

2	VALUE	11 11 11111111111111111111111111111111		
L-98 22:12:48 PAGE	DESCRIPTION	NE DATA BP 29 CH 2 CH 2 CH 2 CH 30 CH 30 LOOK L DATA BP 30 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH	TEMPERATURE DEG C	222222222222222222222222222222222222
16-JUL	ELEMENT	238 SCENE 2442 REFLEC 2444 SCENE 2446 SCENE 2552 REFLEC 2554 COLD 0 2566 COLD 0 306 REFLEC 307 REFLEC 308 WARM 0	VALUE	11111111111122222222222222222222222222
SCIENCE DATA	VALUE	CH :1 17271 CH 2 17266 CH 2 17266 CH 2 17270 CH 2 17271 CH 2 17274 CH 2 17274 CH 2 17274 CH 2 17274 CH 2 17274 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267 CH 2 17267		IER CHANNEL 1 R CHANNEL 1 R CHANNEL 1 R CHANNEL 1 R CHANNEL 2 R SEMBLY R
A2_04 E2.EXE;26	T DESCRIPTION	SCENE DATA BP 11 REFLECTOR POSITION REFL POS 12 2ND LO SCENE DATA BP 12 REFLECTOR POSITION REFL POS 13 2ND LO SCENE DATA BP 13 REFLECTOR POSITION REFL POS 14 2ND LO SCENE DATA BP 14 REFLECTOR POSITION REFL POS 15 2ND LO SCENE DATA BP 15 REFLECTOR POSITION REFL POS 15 2ND LO SCENE DATA BP 15 REFLECTOR POSITION REFL POS 16 2ND LO SCENE DATA BP 15 REFLECTOR POSITION REFL POS 16 2ND LO SCENE DATA BP 15	NT DESCRIPTION	SCAN MOTOR FEED HORN RF MUX MIXER/IF AMPLIFIER CHANIXER/IF AMPLIFIER CHANICOCAL OSCILLATOR CHANICOCAL OSCILLATOR CHANICOCAL OSCILLATOR CHANICOCAL CONVERTER RF SHELF CONVERTER WARM LOAD 2 WARM LOAD 2 WARM LOAD 3 WARM LOAD 3 WARM LOAD 5 WARM LOAD 1
EOS	ELEMENT	11111111111111111111111111111111111111	ELEMENT	UUUUUUUUUUUUUUUUUUUUU 0000CCCCCCCCCCCCC

т								
PAGE								
22:12:48					TS			
86			ט		VOLTS			
16-JUL-98			DEG (0000 0000 0004	MA /	0,00	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	601 100.064 88.094 88.094
	YES NO NO NO ZERO ZERO ON ON	Ą			VALUE	208 183	12/4- 0000 1886	21688 21274 213887 13419 17890
STATUS		DATA						
면 장		ING						
MODE	•	ENGINEERING						2000
	<u>ц</u>	ENGI				+ + 115 75		0000 11111 1 + + +
26	MODDE MODDE BB BB BB BB BB BB BB BB BB BB BB BB BB		_	ス に 第 第 第 2 8 4 7 8	ь.			
E2.EXE;26	CRIPTION ULL SCAN MODE ARM CAL MODE OLD CAL MODE ADIR MODE ITION LSB ITION MSB OWER		CRIPTION	TEMPERATURE MPERATURE #1 EMPERATURE MPERATURE #2	CRIPTION	n:		I E R NT NT
E2.	CRIF OLL OLD ADIR ITIC OWER		SCRI	TEMPI APERA APERA	SCRI	3SSOR	VE	PLIFIER 1 2 URRENT URRENT
04	HUP POSS HUP		DES	OR TOTAL	DES	PROCE	DRIV	NEL AM
A2	NNA NNA NNA CAL CAL			MOT HELF LOP		AL I	INNA	HANN HANN HANN T BI
EOS	ANTENNA IN FULL SCA ANTENNA IN WARM CAL ANTENNA IN COLD CAL ANTENNA IN NADIR MC COLD CAL POSITION I COLD CAL POSITION I COLD CAL POSITION I AZ SCANNER POWER ADC LATCHUP FLAG			SCAN MOTOR TER RF SHELF TEMP WARM LOAD TEM RF SHELF TEMP		SIGNAL	ANTENNA	MIXER/IF AMPL LO CHANNEL 1 LO CHANNEL 2 OUIET BUS CUR NOISY BUS CUR

·		

EOS A2_04 E2.EXE;26 AZONIX DATA	DATA	16-JUL-98	22:12:	48 PAGE	4
PRT TEMPERATURES VARIABLE TARGET	ХФФФФ ОООООО 1122410	DEG 14.00 15.00 17.00 18.00	NN 060000000000000000000000000000000000	D 22 22 22 22 22 22 22 22 22 22 22 22 22	
FIXED TARGET	00000000000000000000000000000000000000	0000000	75000 750000 750000 750000 750000 75	44444 900 09 000 000 000	
BASEPLATE		400 000	625 625	50.00	
THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD VARIABLE TARGET SHROUD VARIABLE TARGET N2 VARIABLE TARGET N2	0001000 000100 010000 0100000000000000	32500 X 32.00 X 30.00	ითითი 0001#30 გფაგა∙	3 31.000 2.000 2.000 2.000	
FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER N2 BASEPLATE N2 BASEPLATE FLOW METER	00444	0000	511 513	37.00	
ADJUNCT RADIATORS	549 542	38.00	554 556	55.00	

503			YES [14]	[15]	[16]	[17]	[18]	[19]	346 SA29 346 [1] RETURN	
16-JUL-98 22:15:272 SCAN NUMBER			YES	NO	NO	ON			346 SA2 [1] F	
SCAN			11	II	н	11	~		8	
15:272			DS COLD CAL POSITION 1	COLD CAL POSITION 2	COLD CAL POSITION 3	COLD CAL POSITION 4	RESET C&DH PROCESSOR		ON CHECKSUM IN 40FB CALC 40FB SA28 SCREEN ONLY [2] PRINT [3] FULL	
22:			POSI	POSI	POSI	POSI	H PR		3 4 0 F	
JL-98			CAL	CAL	CAL	D CAL	ET C&I	GSE MODE	B CALC	
16-JL			COMMANDS ON COLI	COLI	COLI	COL	RES]	GSE	IN 40F	
			COMIN	N ON	N ON	YES	NO		SUM [i
MODE 0000	00	00			= LI	≡ LI	ON =		HECK	
EOS A2-04 E2.EXE;26 COLD CAL MODE [5] SCIENCE DATA ELEMENT 0000	ELEMENT	ELEMENT	11	FULL SCAN MODE	WARM CAL POSIT	COLD CAL POSIT	NADIR POSITION		N OREEN O	
26 COJ ELI	S ELI		POWER =		ARM C	OLD C	ADIR		Ou.)
EXE;	TATU	NG.							oz.	\mathcal{C}
4 E2 : ENCE I	6] CONTROL/STATUS	7] ENGINEERING	CCANNER A2	10 1 ANTENNA IN	11 1 ANTENNA	12] ANTENNA	12 JANTENNE IN		POWER	SELECT BUTTON 3
A2-04 SCI	CON	ENG	ָל ט			NA (NA L	.	OK	3CT B
EOS [5]	[9]	[7]	0	, ,	1 1	1 1 1 1	1 12	7	ENGR OK	SEL

ナルナ

H	ר	11 11 11 11 11 11 11 11 11 11 11 11 11
PAGE		CHH 20 CHH 21 CH 2
22:15:28	SCRIPTION	POSITION POS
16-JUL-98	T DE	REFLECTOR REFL POS SCENE DAS SCENE DAS
	ELEMEN	$\frac{1}{4}$
IENCE DATA	VALUE	00000000000000000000000000000000000000
SCI		
,26	PTION	
E2.EXE	DESCRI	ID ILENGT INITIAL INIT
A2_04	Ľ	ACKET ACKET ACKET ACKET ACKET ACKET ACKET ACCENE
EOS	ELEMENT	11111110000000000000000000000000000000

7	VALUE	11 22027 220022 284466 6644683 600000000000000000000000000000000000	
:28 PAGE	NO	29 CH 2 10N 30 D LOOK 30 CAL POS CH 2 CAL POS CH 2 CAL POS CH 2 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 4 CH 3 CH	URE DEG C C C C C C C C C C C C C C C C C C C
.98 22:15	DESCRIPTI	DATA BP COSTT OS 30 2N 2N 2N 2N 2N 2N 2N 2N 2N 2N 2N 2N 2N	TEMPERATURE 2222 2222 2223 223333333333333333
16-JUL-	ELEMENT	238 SCENE 244 REFLEC 244 SCENE 246 SCENE 2550 REFLEC 2554 COLD C 2556 COLD C 2560 REFLEC 304 WARM C 312 WARM C	VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 1188 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11883 VALUE 11893 VALUE 1
NCE DATA	VALUE EI	11 11 11 11 11 11 11 11 11 11 11 11 11	NNEL 1 EL 1 EL 2 EL 2 LY VOLTAGE
SCIENCE	N(1 CH ·1 CN 12 ON 12 CON 12 CH 2 CH 2 CH 1 CON 13 CH 2 ON 14 CH 2 CON 14 CH 2 CON 15 CON 15 CON 15 CON 15 CON 15 CON 15 CON 16 CO	R CHANCHANN CHANN CHANN
E2.EXE;26	DESCRIPTION	ATA BP 1 OR POSITI S 12 2ND ATA BP 1 OR POSITI OR POSITI S 14 2ND ATA BP 1 TOR POSITI S 15 2ND ATA BP 1 TOR POSITI TOR POSITI S 15 2ND ATA BP 1 A 2ND A 2ND A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 3 A 2 A 4 A 2 A 5 A 2 A 5 A 2 A 6 A 2 A 7 A	DESCRIE OTOR OTOR OTOR IF AMPI IS AMPI
A2_04	ΞNΞ		TENT TO THE TENT T
EOS	FI.EMENT	408024080240802408	ELEMANDE STATE STA

PAGE								
22:15:28					TS			
16-JUL-98			DEG C	0000 0000 0004	MA / VOLTS	0,00	4 44 9 9 9 0	
& STATUS	NO NO YES NO ZERO CERO ON	DATA			VALUE	212	1001 1000 1001	21162 21168 211268 13388 13388 5988
MODE &	• Ю Опе	ENGINEERING				101	0 101	- T 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EOS A2_04 E2.EXE;26	ANTENNA IN FULL SCAN MODE ANTENNA IN WARM CAL MODE ANTENNA IN COLD CAL MODE ANTENNA IN NADIR MODE COLD CAL POSITION LSB COLD CAL POSITION MSB A2 SCANNER POWER ADC LATCHUP FLAG		DESCRIPTION	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE #1 WARM LOAD TEMPERATURE RF SHELF TEMPERATURE #2	DESCRIPTION	SIGNAL PROCESSOR	ANTENNA DRIVE	MIXER/IF AMPLIFIER LO CHANNEL 1 LO CHANNEL 2 OUIET BUS CURRENT NOTSY BUS CURRENT

MIXER/IF AMPLIFIER
LO CHANNEL 1
LO CHANNEL 2
OUIET BUS CURRENT
NOISY BUS CURRENT

• •

 $^{\circ}$

4,						
8 PAGE	6 Б 10.00 10.00 10.000 10.000 10.000	98.700	0.00	西 田 田 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7.00	5.00
2:15:2	йийий	ববববব	ŊΩ	Дк к	М	വവ
8 22	00000000000000000000000000000000000000	6210 6210 6210 6221	625 626	NUUUNN NUUUNN 000190 0009090	511 513	554 556
16-JUL-98	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	0000000	900	32.00 30.00 30.00 5.00 34.00	0000 0000	38.00
AZONIX DATA	ХФФФФФ ОООООО 112m4n	00000000000000000000000000000000000000	400	NUUNUUN 0000HWO 4517ANUV	0444	549 542
EOS A2_04 E2.EXE;26 A	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD VARIABLE TARGET SHROUD VARIABLE TARGET N2 HEATER N2 HEATER N2 FIXED TARGET N2	FARIABLE TARGET FLOW METER VASEPLATE HEATER N2 BASEPLATE N2 BASEPLATE FLOW METER	ADJUNCT RADIATORS

N NUMBER 687	NO [14] YES [15] NO [16] NO [17] [18] [19] 530 SA29 530
16-JUL-98 22:40:002 SCAN NUMBER	COMMANDS COLD CAL POSITION 1 = CAL POSIT = NO COLD CAL POSITION 2 = CAL POSIT = NO COLD CAL POSITION 3 = CAL POSIT = NO COLD CAL POSITION 4 = POSITION = NO RESET C&DH PROCESSOR GSE MODE ON CHECKSUM IN E9F0 CALC E9F0 SA28 SCREEN ONLY [2] PRINT [3] FULL
26 FULL SCAN MODE ELEMENT 0000 S ELEMENT 00 ELEMENT 00	POWER = COM FULL SCAN MODE = YES WARM CAL POSIT = NO COLD CAL POSIT = NO NADIR POSITION = NO ON CHECKSUM SCREEN ONLY [2
EOS A2-04 E2.EXE;26 FULL SCAN MODE [5] SCIENCE DATA ELEMENT 0000 [6] CONTROL/STATUS ELEMENT 00 [7] ENGINEERING ELEMENT 00	[9] SCANNER A2 POWER = [10] ANTENNA IN FULL SC. [11] ANTENNA IN WARM CA [12] ANTENNA IN COLD CA [13] ANTENNA IN NADIR P ENGR OK POWER SCLECT BUTTON 3

1	VALUE	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
PAGE		は
22:40:03	SCRIPTION	POSITION LB BP 17 POSITION LB BP 18 POSITION LD BP 19 POSITION LD BP 21 POSITION LD BP 21 POSITION LD BP 23 POSITION LD BP 23 POSITION LD BP 23 POSITION LD BP 24 POSITION LD BP 25 LD LC A BP 25 A BP 26 A BP 26 A BP 26 A BP 26 A BP 27 A BP 28 A BP
16-JUL-98	VT DE	REFLECTOR REFLECTOR
	ELEMENT	$\begin{array}{c} LILL \\ LILLL \\ LILLL \\ LILLL \\ LILLL \\ LILLL \\ LILLL \\ LILLLL \\ LILLLL \\ LILLLLL \\ LILLLL \\ LILLLLL \\ LILLLLL \\ LILLLLLLLLLLLLLLL \\ \mathsf{LILLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL$
CIENCE DATA	VALUE	. 12 12 12 12 12 12 12 12 12 12 12 12 12
A2_04 E2.EXE;26 S	NT DESCRIPTION	ACKET ID ACKET LENGTH NIT SERIAL NU NSTRUMENT MOD EFLIECTOR POSI EFLI POS 1 2 CENE DATA BP CERLE POS 3 2 CENE DATA BP CERLE POS 3 2 CERLE POS 3 2 CERLE POS 4 2 CERLE POS 5 2 CERLE POS 6 5 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 7 8 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 6 6 CERLE POS 7 8 CERLE POS 8 CERLE POS 8 CERLE POS 8 CERLE POS 9 CERLE POS 8
EOS	ELEMENT	11114140000000000000000000000000000000

2	VALUE	11 11 111111111 778877 808877 808877 80887 80888 80888 840888 84088888		
L-98 22:40:03 PAGE	DESCRIPTION	NE DATA BP 29 CH 1 LECTOR POSITION 30 L POS 30 2ND LOOK NE DATA BP 30 CH 2 LIECTOR COLD CAL POS LIECTOR CAL 2ND LOOK LD CAL DATA 1 CH 2 LD CAL DATA 2 CH 2 LECTOR WARM CAL POS LL WARM CAL 2ND LOOK LWARM C	TEMPERATURE DEG C	22222222222222222222222222222222222222
16-JUL	ELEMENT	238 SCENE 2442 REFLEC 2444 SCENE 246 SCENE 2552 REFLEC 2554 COLD C 2560 REFLEC 302 REFLEC 304 WARM C 312 WARM C	VALUE	11111111111111111111111111111111111111
SCIENCE DATA	VALUE	CH 1 17242 CH 2 172592 CH 2 63674 CH 1 17240 CH 2 17258 CH 2 17258 CH 2 17243 CH 2 17264 CH 2 17264 CH 2 17264 CH 2 17264 CH 2 17264 CH 2 17268 CH 1 17268 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271 CH 2 17271		R CHANNEL 1 CHANNEL 1 CHANNEL 1 CHANNEL 2 ASSEMBLY RENCE VOLTAGE
A2_04 E2.EXE;26	T DESCRIPTION	REFLECTOR POSITION REFLECTOR POSITION REFL POS 12 2ND LO SCENE DATA BP 12 REFL POS 13 2ND LO SCENE DATA BP 13 REFLECTOR POSITION REFL POS 14 2ND LO SCENE DATA BP 14 REFL POS 15 2ND LO SCENE DATA BP 15 REFLECTOR POSITION REFL POS 15 2ND LO SCENE DATA BP 15 SCENE DATA BP 15 SCENE DATA BP 15 SCENE DATA BP 15 SCENE DATA BP 15 SCENE DATA BP 15 SCENE DATA BP 15	NT DESCRIPTION	SCAN MOTOR FEED HORN RF MUX MIXER/IF AMPLIFIE LOCAL OSCILLATOR LOCAL OSCILLATOR LOCAL OSCILLATOR 1553 INTERFACE SUB REFLECTOR DC/DC CONVERTER RF SHELF NARM LOAD 2 WARM LOAD 2 WARM LOAD 3 WARM LOAD 3 WARM LOAD 3 WARM LOAD 4 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5
EOS	ELEMENT	4080040800408004080040	ELEMENT	UUUUUUUUUUUUUUUUUUUUU QQQQCCCCCCCCCCCCC

PAGE								
22:40:03					TS			
16-JUL-98			DEG C	0000 0000 0004	MA / VOLTS	0,00	1 44 144 000	61100.000 61100.000 6100.000 6400000
STATUS	YES NO NO NO CERO ON ON	DATA			VALUE	184 184	122 000 040	216881 21278 21378 13464 17464
MODE &	MODE ODE ODE	ENGINEERING		1 2		77. 121	101 101 101	112 410 410 411
EOS A2_04 E2.EXE;26	ANTENNA IN FULL SCAN MODE ANTENNA IN WARM CAL MODE ANTENNA IN COLD CAL MODE ANTENNA IN NADIR MODE COLD CAL POSITION LSB COLD CAL POSITION MSB COLD CAL POSITION MSB AZ SCANNER POWER ADC LATCHUP FLAG		DESCRIPTION	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE #1 WARM LOAD TEMPERATURE RF SHELF TEMPERATURE #2	DESCRIPTION	SIGNAL PROCESSOR	ANTENNA DRIVE	MIXER/IF AMPLIFIER LO CHANNEL 1 LO CHANNEL 2 QUIET BUS CURRENT NOISY BUS CURRENT

٠,,

 $^{\circ}$

4					
0:03 PAGE	DDEG 220.00 23.00 23.00 24.00	444 447.00 447.00 9.00 0.00	50.00	DEG K 33.00 31.00 6.00 2.00 34.00	55.00 57.00
22:4	00000000000000000000000000000000000000	6118 6219 6221 6221	625 626	00000000000000000000000000000000000000	ம்ம்
16-JUL-98	DEG 114.00 117.00 117.00 100 100	0000000	900 900	ДК К К ДИГОО Т ДОСТОВ Т ДОСТ ДОСТОВ Т ДОСТОВ Т ДОСТОВ Т ДОСТОВ Т ДОСТОВ Т ДОСТОВ Т ДОСТОВ Т	0.00
AZONIX DATA	N000000 000000 1106400	0000000 011111 02641000	10101	<u>Ջ</u> ռստտտտտու Օա400004 - Ա ռստան	१८ क र्ष
EOS A2_04 E2.EXE;26 A5	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD VARIABLE TARGET SHROUD VARIABLE TARGET N2 HEATER N2 FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER VARIABLE TARGET FLOW METER	BASEPLATE NZ BASEPLATE FLOW METER ADJUNCT RADIATORS

CAN NUMBER 720	NO [14] YES [15] NO [16] NO [17] [18] [19] S63 SA29 563
16-JUL-98 22:44:232 SCAN NUMBER	COMMANDS COMMANDS COLD CAL POSITION 1 = CAL POSITION 2 = CAL POSITION 2 = CAL POSITION 3 = CAL POSITION 3 = CAL POSITION 4
;26 COLD CAL MODE ELEMENT 0000 US ELEMENT 00 ELEMENT 00	POWER FULL WARM COLD NADIR
EOS A2-04 E2.EXE;26 [5] SCIENCE DATA [6] CONTROL/STATUS [7] ENGINEERING	[9] SCANNER A2 POWER [10] ANTENNA IN FULL S [11] ANTENNA IN WARM C [12] ANTENNA IN COLD C [13] ANTENNA IN NADIR ENGR OK POWER S

H	\supset		4
16-JUL-98 22:44	TION	138 REFLECTOR POSITION 17 1440 REFL POS 17 1461 REFLECTOR POSITION 18 1468 REFL POS 18 150 REFLECTOR POSITION 19 1564 REFLECTOR POSITION 19 1565 REFLECTOR POSITION 19 1565 REFLECTOR POSITION 20 1665 REFLECTOR POSITION 20 1665 REFLECTOR POSITION 20 1666 REFLECTOR POSITION 20 1666 REFLECTOR POSITION 20 1667 REFLECTOR POSITION 20 1668 REFLECTOR POSITION 20 1668 REFLECTOR POSITION 20 1669 REFLECTOR POSITION 20 1669 REFLECTOR POSITION 20 1660 REFLECTOR P	36 KEFL FOS 29 ZND LOO
SCIENCE DATA	VALUE	. 000000000000000000000000000000000000	~
EOS A2_04 E2.EXE;26 S	ELEMENT DESCRIPTION	KET ID KET LENGTH T SERIAL NUMBER TRUMENT MODE/STAT LECTOR POSITION L POS 1 2ND LOO NE DATA BP 2 CLECTOR POSITION L POS 3 2ND LOO NE DATA BP 3 CLECTOR POSITION L POS 4 2ND LOO NE DATA BP 5 CLECTOR POSITION L POS 5 2ND LOO NE DATA BP 6 CLECTOR POSITION CLECTOR POSIT	Z REFL POS 11 2ND LOC

7	VALUE 172238 172238 172233 17242 17242 17242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
-JUL-98 22:44:26 PAGE	SCENE DATA BP 29 CH 1 REFLECTOR POSITION 30 REFL POS 30 2ND LOOK SCENE DATA BP 30 CH 1 REFL COLD CAL DOOK COLD CAL DATA 1 CH 2 COLD CAL DATA 2 CH 2 REFLECTOR WARM CAL POS CH 2 REFLECTOR WARM CAL POS CH 2 REFL WARM CAL 2ND LOOK WARM CAL DATA 1 CH 2 WARM CAL DATA 2 CH 2 REFL WARM CAL 2 CH 2 WARM CAL DATA 1 CH 2 WARM CAL DATA 2 CH 2 WARM CAL DATA 2 CH 2	VALUE TEMPERATURE DEG C 181395 181397 22.94 18671 223.76 24.73 19332 25.57 25.
NCE DATA 16	VALUE ELEMENT 17237 238 S. 172560 2440 172540 2444 R. 172540 2246 S. 172540 2256 R. 172540 R. 172550 R. 172560 R. 17260 AGE	
A2_04 E2.EXE;26 SCIENCE	SCENE DATA BP 11 CH 2 REFLECTOR POSITION 12 REFL POS 12 2ND LOOK SCENE DATA BP 12 CH 2 REFL POS 13 2ND LOOK SCENE DATA BP 13 CH 2 REFL POS 13 2ND LOOK SCENE DATA BP 13 CH 2 REFLECTOR POSITION 14 REFL POS 14 2ND LOOK SCENE DATA BP 14 CH 2 REFLECTOR POSITION 15 REFLECTOR POSITION 15 REFLECTOR POSITION 15 REFLECTOR POSITION 15 REFLECTOR POSITION 15 REFLECTOR POSITION 15 REFLECTOR POSITION 16 REFL	SCAN MOTOR FEED HORN MIXER/IF AMPLIFIER CHAN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR CHANN LOCAL OSCILLATOR WARM LOCAL SASEMB
EOS	HANDER REPORT OF THE PROPERTY	ELEM 22662 220202020202020202020202020202020

•

PAGE								
22:44:26					TS			
16-JUL-98			DEG C	0000 0000 0004	MA / VOLTS			6 10 .05 10 .05 10 .05 94 .72
& STATUS	NO NO YES ONE CERO ONE ONE	NG DATA			VALUE	22190 21840	22102 22102 22020 2108	22150 2212276 231390 4888 4848
MODE		ENGINEERING						1100 ADQU 1100 1+++
EOS A2_04 E2.EXE;26	DESCRIPTION ANTENNA IN FULL SCAN MODE ANTENNA IN WARM CAL MODE ANTENNA IN COLD CAL MODE COLD CAL POSITION LSB COLD CAL POSITION MSB A2 SCANNER POWER ADC LATCHUP FLAG	EN	DESCRIPTION	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE #1 WARM LOAD TEMPERATURE PF SHELF TEMPERATURE	DESCRIPTION		ANTENNA DRIVE ++	MIXER/IF AMPLIFIER + LO CHANNEL 1 LO CHANNEL 2 COUIET BUS CURRENT NOISY BUS CURRENT

က

EOS A2_04 E2.EXE;26 AZONI	AZONIX DATA	16-JUL-98	22:44:2	6 PAGE	4
PRT TEMPERATURES VARIABLE TARGET FIXED TARGET	ХФФФФФФ ООООООН- ИХМ4ПФИ	ДЧТЧЧ БЧТЧЧЧ БЧТОР Б ООООООООООООООООООООООООООООО	7 PHO0001	ДОЧИМ4 00000 00000	
BASEPLATE	14444444444444444444444444444444444444	2400400 2000000	0000 00 10000 00 0010 00 10444 00	27.00 .00 .00 .00 .00 .00 .00	
THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD VARIABLE TARGET SHROUD FIXED TARGET N2 VARIABLE TARGET N2 HEATER N2	70000000 00000000 7000000	DEG K 32.00 30.00 5.00	50000000000000000000000000000000000000	DEG K 33.00 8.00 31.00 2.00	
FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER N2 BASEPLATE N2 BASEPLATE FLOW METER	ocaca	.0000	511 513	4.00 37.00	
ADJUNCT RADIATORS	543 542	38.00	554 556	55.00	

N NUMBER 782	NO [14] NO [15] YES [16] NO [17] [18] [19] [1] RETURN	
16-JUL-98 22:52:402 SCAN NUMBER	COMMANDS COMMANDS COLD CAL POSITION 1 = CAL POSIT = NO COLD CAL POSITION 3 = CAL POSIT = NO COLD CAL POSITION 4 = CAL POSITION 5 CAL POSITION 6 CAL POSITION 7 EOS A2-04 E2.EXE;26 FULL SCAN MODE [5] SCIENCE DATA ELEMENT 0000 [6] CONTROL/STATUS ELEMENT 00 [7] ENGINEERING ELEMENT 00	COI [9] SCANNER A2 POWER = [10] ANTENNA IN FULL SCAN MODE = YES [11] ANTENNA IN WARM CAL POSIT = NO [12] ANTENNA IN COLD CAL POSIT = NO [13] ANTENNA IN NADIR POSITION = NO ENGR OK POWER SELECT BUTTON 3

~	ח	OOM	/2001 7440 0000	Δm	ഠഠനഥ	722	OOM	444 772 882 722	44672	4477	4477 WW00	4238 17233 17233 17531	2000	ののなる	77
PAGE		H	•	H0	H0						_		7	л П	•
В		O			0			FOOT COOK	NOON NATE		CERCE CERCE	LOOK CHE CHE CHE CHE CHE CHE CHE CHE CHE CHE	ON LOOK 7 CH	ON CLOOK CHEC	ON Z
52:4	TION	TION ND L	ĬZ		TION ND L	ITION 2ND L P 20	ITION 2ND L	ITION 2ND 1 P 22	ITION 2ND L(P 23	ITION 2ND L P 24	ITION 2ND L P 25	LT PN	ITI 2ND P 2	ITI 2ND P 2	ITI 2ND
22:	CRIP	POSI 7 2	POSI	Ш	POSI 192 A BP	POSI A BI	POSJ 21 A BI	POS A B	POS A B	POS 24 B	POS 25 A B	POS 26 A B	R POS 27 TA B	2 POS 28 3 B	29 29
98	DES	CTOR POS 1 DATA	CTOR POS 1	DAT	CTOR POS 1 DAT	CTOR POS : DAT	CTOR POS DAT	CTOR POS DAT	CTOR POS DAT	CTOR POS DAT	CTOR POS DAT	CTOR POS DAT	CTO	ECTOR POS E DAT	ECTOR POS
-JUL-		EFLECEFIL I	EFLE(EFL]	ENE	EFLE EFL CENE	EFLE EFL CENE	EFLE EFL CENE	EFLE	EFLE EFL CENE	EFLE SCENE	REFLE REFL SCENE	REFLE REFL SCENE	REFLE REFL SCENE	REFLE SCENE	REFL! REFL
16.	ELEMENT	도로이	民民	ഗ	現成の		0044 RR0	080075 RKN	#080 XXX	74.080 XXX	2014100	0004W	00004	wwor	140
~	ELE	444 844	444	14- 150	igner.	99999 1444 1444	0000 11111	-HHH-	00000 1HHHr	70000C	70000	0000c	10000	10000	100
DATA	LUE	\circ HO	000	\circ	16,6,16,17	110000111	henere is	J. 00 (1)		30101010	م الم أسادة	/00/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2	മെയവ	1000	വവഗ
SCIENCE	VA	001 100 000	100	000	, L	ا ا ا ا ا ا	-1-1-1-1	45 45 45 46				_	4 refr		⊣
SCI		•	000											0	
				ATUS	\circ	\circ	O		0	. ~		EWKE Co	ION OF		ON CH
56	TION		MBER	DE/STA	TION ND L	TION ND L	TION ND L	TION ND L	ITION ZND L	ITION 2ND L P	ITION ZND L	ITION 2ND I P 8	ITIOI 2ND P	ITION ZND L(P 10	ITI
EXE;	CRIP	ID		MO	POSI 1 BF	POSI 2 2 2 BP	POSI 3 2	POSI 4 22	POS 5 B	POS 6 B	POS 7	POS 8 A B	POS 9 B	POS A B	POS 11
E2.	DESCR		闰	MENT	TOR OS DATA	TOR DATA	TOR SOS DATA	CTOR POS ,	FLECTOR FL POS ENE DATA	CTOR DOS	CTOR	CTOR POS DATA	CTOR POS DATA	CTOR POS 1 DATA	CTOR POS 1
0.04		PACKET	UNIT S	INSTRUMENT	REFLEC REFL P SCENE	1 1 1 1 1		REFLEC REFL F SCENE	REFLEC REFL B SCENE		FEE	EFLE EFL CENE	REFLE REFL SCENE	REFLE REFL SCENE	REFLE(REFL
A2	INE	P. C.									民民の				
EOS	ELEMENT	H00	ሳ 4ጥ/	91-0	1114 1208	221H	2222 4080	დოლი 240	4444 0446	4.RRR 30.04	90000 9000	000C 408C	7777	<u>ထိထိထိ</u> ထိ	ಹ್ಮಾನ

2	VALUE	11 11 1111111122 2778 111 1111111122 27886777 17277777777777777777777777777777777	
-98 22:52:48 PAGE	DESCRIPTION	NE DATA BP 29 CH 1 LECTOR POSITION 30 L POS 30 2ND LOOK NE DATA BP 30 CH 1 LCCLOR COLD CAL POS CH 2 L COLD CAL 2ND LOOK D CAL DATA 1 CH 2 LD CAL DATA 2 CH 2 LD CAL DATA 2 CH 2 LD CAL DATA 2 CH 2 LD CAL DATA 1 CH 2 LD CAL DATA 1 CH 2 LMARM CAL 2ND LOOK IN CAL DATA 1 CH 2 LMARM CAL 2ND LOOK IN CAL DATA 1 CH 2 LMARM CAL 2ND LOOK IN CAL DATA 1 CH 2 LMARM CAL 2ND LOOK LM CAL DATA 1 CH 2 LM CAL DATA 2 CH 2	TEMPERATURE DEG C 23.00 23.00 23.00 25.72 25.72 25.36 25.36 25.36 23.37 24.89 23.38 27 23.38 27 23.38 23.36 23.32
.A 16-JUL	ELEMENT	22222222222222222222222222222222222222	VALUE NO. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SCIENCE DATA	VALUE	CH 1 17234 CH 2 17249 LOOK 6366 CH 1 17249 CH 2 17249 CH 2 17249 CH 2 17249 I OOK CH 1 17233 CH 2 17254 I OOK CH 2 17254 I OOK CH 2 17254 I OOK CH 2 17254 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256 I OOK CH 2 17256	TION IFIER CHANNEL 1 ATOR CHANNEL 1 ATOR CHANNEL 2 ATOR CHANNEL 2 SE TER AMP ASSEMBLY AMP ASSEMBLY ATER
A2_04 E2.EXE;26	r DESCRIPTION	CENE DATA BP 11 EFLECTOR POSITION EFL POS 12 2ND 1 CENE DATA BP 12 EFL POS 13 2ND 1 CENE DATA BP 13 CENE DATA BP 13 CELLECTOR POSITION EFL POS 14 2ND 1 CEFLECTOR POSITION CEFLECTOR	SCAN MOTOR FEED HORN RY MIXER/IF AMPI MIXER/IF AMPI LOCAL OSCILLL ISS INTERFACE SUB REFLECTOR COCYDC CONVER: RY SHELF DETECTOR/PRE WARM LOAD 2 WARM LOAD 3 WARM LOAD 4 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 7 WARM LOAD 7 WARM LOAD 7 WARM LOAD 5 WARM LOAD 7 WARM LOAD 7 WARM LOAD 7 WARM LOAD 7
EOS	FI.EMENT	4080040800408004080040	ELEMENT STATE STAT

PAGE
22:52:48
16-JUL-98
MODE & STATUS
E2.EXE;26
A2_04
EOS

സ

DESCRIPTION

INA IN FULL SCAN M	IN COLD CAL MODE	CAL	CAL POSITION MS	CANNER POWE	LATCHUP FLA
ANTER	ANTER	COLD	COLD	A2 S(, כוע

YES NO NO SERO ONE ONE ONE

ENGINEERING DATA

DEG C	2000 2000 2000 2004	VALUE MA / VOLTS	4.	21863 -15.07 22044 4.94 21985 14.99	1 1 1 1	618
	五 #1 #2			-15 VDC +15 VDC +15 VDC	000	.
DESCRIPTION	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE # WARM LOAD TEMPERATURE RF SHELF TEMPERATURE #	DESCRIPTION	SIGNAL PROCESSOR	ANTENNA DRIVE	MIXER/IF AMPLIFIER LO CHANNEL 1	LO CHANNEL 2 OUIET BUS CURRENT NOISY BUS CURRENT

4						
PAGE	n · · · · ·	00000	000	00000 X00000	00.7	5.00
:52:48	000000 430110E	44444 20/80	50	ж В ж В ж В ж	37	വവ
8 22	N 6007 6109 6110	80018 80008 90008 90008	625 626	1000 1000 1000 1000 1000 1000 1000 100	ਜ਼ਰ	554 556
16-JUL-9	DEG 114.00 117.00 117.00	000000	4.N.A	37200 37200 30.000 30.000	00000	38.00
AZONIX DATA	ХФФФФФ ОООООО 11024707	24444		064000	0000000 000111 040004	542 542
EOS A2_04 E2.EXE;26 A	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	THERMOCOUPLE TEMPERATURES FIXED TARGET SHROUD VARIABLE TARGET SHROUD FIXED TARGET N2 VARIABLE TARGET N2	HEATER N2 FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER N2 BASEPLATE N2 BASEPLATE FLOW METER	ADJUNCT RADIATORS

N NUMBER 851	NO [14] NO [15] YES [16] NO [17] [18] [19] [19]
SCA	1 = 2 = 2 = 3 = = 2 SA28
23:01:512 SCAN NUMBER	POSITION POSITION POSITION OH PROCES
16-JUL-98	DS COLD CAL COLD CAL COLD CAL COLD CAL RESET C&I GSE MODE PRINT [
16-J1	ANDS COLD COLD COLD RESET GSE M
ODE 00 00	COMMA CO
L 0000	MODE OSIT FION CHEC
COLD CAL MODE ELEMENT 0000 ELEMENT 00	<u>م</u> ک
	POWE FULL WARM COLL
DATA DATA STAT	R A2 A IN A IN A IN A IN
EOS A2-04 E2.EXE;26 [5] SCIENCE DATA [6] CONTROL/STATUS [7] ENGINEERING	9] SCANNER A2 POWER 10] ANTENNA IN FULL 8 11] ANTENNA IN WARM 12] ANTENNA IN COLD 13] ANTENNA IN NADIR SNGR OK POWER SELECT BUTTON 3
A2-(] SC.]] COD	
EOS 5 6	[9] [10] [11] [12] [13] ENGR O]

Н	VALUE	11
16-JUL-98 23:01:53 PAGE :	ELEMENT DESCRIPTION	REFLECTOR POSITION 17 REFL POS 17 2ND LOOK SCENE DATA BP 17 CH 2 REFL POS 18 2ND LOOK SCENE DATA BP 18 CH 1 REFL POS 19 2ND LOOK SCENE DATA BP 19 CH 1 REFL POS 20 2ND LOOK SCENE DATA BP 19 CH 1 REFL POS 20 2ND LOOK SCENE DATA BP 20 CH 2 REFL POS 21 2ND LOOK SCENE DATA BP 20 CH 2 REFL POS 21 2ND LOOK SCENE DATA BP 21 CH 2 REFL POS 22 2ND LOOK SCENE DATA BP 22 CH 2 REFL POS 23 2ND LOOK SCENE DATA BP 23 CH 1 REFLECTOR POSITION 24 REFLECTOR POSITION 24 REFLECTOR POSITION 24 REFLECTOR POSITION 25 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 26 REFLECTOR POSITION 27 REFLECTOR POSITION 27 REFLECTOR POSITION 27 REFLECTOR POSITION 27 REFLECTOR POSITION 26 REFLECTOR POSITION 27 REFLECTOR POSITION 27 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 28 REFLECTOR POSITION 29 REFLECTOR POSITION 20 REFLECTOR POSITION 20 REFLECTOR POSITION 20 REFLECTOR POSITIO
SCIENCE DATA	VALUE ELI	
A2_04 E2.EXE;26	T DESCRIPTION	ACKET LENGTH NIT SERIAL NUMB NIT SERIAL NUMB NSTRUMENT MODE/ SCENE DATA BP SEFLECTOR POSITI SCENE DATA BP SCENE DATA BP
EOS	ELEMENT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7	ALU	11 11 22 22 22 22 22 23 24 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27		
:01:53 PAGE	TION	ME 29 CH 1 MITTION 30 ZND LOOK 1 MA 2 CH 1 A 2 CH 2 CH 1 CH 1 CH 2	TEMPERATURE DEG C	22222222222222222222222222222222222222
6-JUL-98 23	r DESCRIP	REFLECTOR POSIT REFL POS 30 2N SCENE DATA BP SCENE DATA BP SCELD CAL DATA 1 COLD CAL DATA 1 COLD CAL DATA 2 COLD CAL DATA 2 REFLECTOR WARM REFL WARM CAL DATA 3 WARM CAL DATA 3	VALUE TEMPE	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATA 1	VALUE ELEMENT	72226 221998 221998 7721998 7721998 7721998 771998 772	∇V	аннанана поменения поменения поменения поменения поменения поменения поменения поменения поменения поменения п Поменения поменения поме
SCIENCE	ON V	CH • 1 LOOK CH 2 CH 0.1 CH 2 CH	NO.	FIER CHANNEL 1 FOR CHANNEL 1 FOR CHANNEL 2 F
4 E2.EXE;26	DESCRIPTIO	DATA BP TOO TO THE POST TOO TO THE POST TOO TO TO TO TO TO TO TO TO TO TO TO T	DESCRIPTI	SCAN MOTOR REED HORN RIXER/IF AMPLIF MIXER/IF AMPLIF LOCAL OSCILLATO LOCAL OSCILLATO LOCAL OSCILLATO LOCAL OSCILLATO LOCAL OSCILLATO LOCAL OSCILLATO LOCAL OSCILLATO LOCAL OSCILLATO LOCAL OSCILLATO NARM LOAD 2 WARM LOAD 3 WARM LOAD 3 WARM LOAD 4 WARM LOAD 4 WARM LOAD 5 WARM LOAD 5 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6 WARM LOAD 6
EOS A2_0	ELEMENT		ELEMENT	2000000000000000000000000000000000000

STATUS
NO NO YES
•
ENGINEERING DATA
VALUE
000
1000
7000H

m

4						
53 PAGE	225 225 225 232 232 24 200 00 00	445.00 446.00 448.00 9.00	50.00	DEG 33.00 31.00 2.00	37.00	55.00
23:01:	66660 66660 66660 66660 66660 66660 66660 66660 66660 66660 66660 66660 666000 666000 66600 66600 66600 66000 60000 6000	666118 666118 666118	625 626	0001130 0001130 000131	511 513	554 556
16-JUL-98	DE 115.00 K 12.00 K 100.00 K 100.00	000000	4.rv.a	3 32 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0000	38.00
AZONIX DATA	000000 000010 00430110	00000000000000000000000000000000000000	$\Box GGG$	MUNUNN MUNUNN MUNUNN MUNUNNNNNNNNNNNNNN	ooddd -	549 542
EOS A2_04 E2.EXE;26 A	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	ENERGY ENTH ENTH ENTH ENTH ENTH ENTH ENTH ENTH	FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER N2 BASEPLATE N2 BASEPLATE FLOW METER	ADJUNCT RADIATORS

N NUMBER 931	NO [14] NO [15] NO [16] YES [17] [18] [19] 774 SA29 [1] RETURN
16-JUL-98 23:12:322 SCAN NUMBER	COMMANDS COLD CAL POSITION 1 = CAL POSIT = NO COLD CAL POSITION 2 = CAL POSIT = NO COLD CAL POSITION 4 = CAL POSITION = NO COLD CAL POSITION 4 = CAL POSITION 2 = CAL POSITION 2 = CAL POSITION 4 = CAL POSITION 4 = CAL POSITION 4 = COLD CAL
EOS A2-04 E2.EXE;26 FULL SCAN MODE [5] SCIENCE DATA ELEMENT 0000 [6] CONTROL/STATUS ELEMENT 00 [7] ENGINEERING ELEMENT 00	INNER A2 POWER ENNA IN FULL TENNA IN WARM TENNA IN COLD TENNA IN NADIR POWER
EOS A2-04 E2.EX] [5] SCIENCE DATI [6] CONTROL/STA' [7] ENGINEERING	[9] SCANNER AZ [10] ANTENNA II [11] ANTENNA II [12] ANTENNA II [13] ANTENNA II ENGR OK POWER

	· ·	

г-1	_	560 560 720	J CH1(1700 1440 1700	るみに	つつじゅい	RIGICAGI	7200	4477	4477	44CC	. ~~ ~~ ~1 ~ 1	423 1721 1721 155 155	$\alpha \alpha $	מסממו	
, 16-JUL-98 23:12:35 PAGE	ELEMENT DESCRIPTION	REFLECTOR POSITION 17	SCENE DATA BP 1/	S REFLECTOR POSITION IS B REFL POS 18 2ND LOOK	SCENE DATA BY IS	4 REFLECTOR POSITION 6 REFL POS 19 2ND LC 8 SCENE DATA BP 19	2 REFLECTOR POSITION 20 4 REFL POS 20 2ND LOOK 6 SCENE DATA BP 20 CH	0 REFLECTOR POSITION 21 2 REFL POS 21 2ND LOOK 4 SCENE DATA BP 21 CH	REFLECTOR POSITION 22 0 REFL POS 22 2ND LOOK 2 SCENE DATA BP 22 CH	REFLECTOR POSITION 23 REFL POS 23 2ND LOOK CONE DATA BP 23 CH	REFLECTOR POSITION 24 REFL POS 24 2ND LOOK S SCENE DATA BP 24 CH	REFLECTOR POSITION 25 14 REFL POS 25 2ND LOOK 16 SCENE DATA BP 25 CH		18 REFLECTOR POSITION 2' 20 REFL POS 27 2ND LOOK 22 SCENE DATA BP 27 CH 24 CH	26 REFLECTOR POSITION 28 28 REFL POS 28 2ND LOOK 30 SCENE DATA BP 28 CH	34 REFLECTOR POSITION 36 REFL POS 29 2ND I
SCIENCE DATA	VALUE	000100		0000010	1000100	1 1722	17788	1 1 777	2 172	2 1/2 1 74 1 172	2 172 727 1 172	2 172 171 171 172 172 173 173 173 173 173 173 173 173 173 173		7 1 68	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7/17
EOS A2_04 E2.EXE;26	ELEMENT DESCRIPTION	1 PACKET ID	3 PACKET LENGTH	4 5 UNIT SERIAL NUMBER	7 INSTRUMENT MODE/STATUS	REFLECTOR POSITION REFL POS 1 2ND LC SCENE DATA BP 1	REFLECTOR POSITION REFL POS 2 2ND LC SCENE DATA BP 2	REFLECTOR POSITION REFL POS 3 2ND LC	REFLECTOR POSITION REFL POS 4 2ND LC	REFLECTOR POSITION REFL POS 5 2ND LO	REFLECTOR POSITION REFL POS 6 2ND L	REFLECTOR POSITION REFL POS 7 2ND L	TOR POS	REFLECTOR POSITION REFL POS 9 2ND I SCENE DATA BP 9	REFLECTOR POSITION TREFL POS 10 2ND I SCENE DATA BP 10	REFLECTOR POSITION REFL POS 11 2ND I

2:35 PAGE 10N 29 CH 29 CH 20 CH 30 CH 20 CH 20 CH 20 CH 21 CH 21 CH 22 CH 23 CH 24 CH 25 CH 26 CH 26 CH 27 CH 28 C	,
B 23:12 DESCRIPTI ATA BP 2 S 30 2NI STA 2NI S 30 2NI S 3	
16-JUL- 16-JUL- 18 SCENE 20 SC	202
CE DATA	VOLTAGE
SCIE CH '1 CH '2 DN '12 LOOK '1 LOOK '1 SCH '1 CH '2 ON '14 CH '2 ON '14 CH '2 ON '15 ON '16 CH '2 ON '16 CH '1 ON '16 CH '1 ON '16 CH '1 ON '16 CH '1 ON '16 CH '1 ON '16 CHANN CHAN CHANN CH	FERENCE
DESCRIPTION DESCRIPTION DESCRIPTION DOSITY TOR POSITY SON 13 2NI TOR POSITY SON 14 2NI TOR POSITY SON 15 2NI DATA BP TOR POSITY OS 15 2NI DATA BP TOR POSITY OS 15 2NI DATA BP TOR POSITY OS 15 2NI DATA BP TOR POSITY OS 15 2NI	LOAD 1 SENSOR RE
ELEMENT 94 SCENE I 96 REFLECT 100 SCENE I 100 SCENE I 100 SCENE I 110 SCENE I 1110 SCENE I 1120 REFLECT 1130 REFLECT 1130 REFLECT 1130 REFLECT 1130 REFLECT 1130 REFLECT 1130 REFLECT 1130 REFLECT 120 REFLECT 13	000

PAGE								
23:12:35					ຮູ			
16-JUL-98			DEG C	0000 0000 00004	MA / VOLTS	من	4 44 9 9 9 0	0110 0110 01000 0000 0000 0000 0000 00
& STATUS 1	YES NO NO ONE ONE ONE	3 DATA			VALUE	184	222 2010 2001	211021 2212089 2212089 13416 17564
MODE &	•	ENGINEERING				101	0 101	12 ADC ADC ++10 ADC ++10 ADC ++10 ADC
EOS A2_04 E2.EXE;26	DESCRIPTION ANTENNA IN FULL SCAN MODE ANTENNA IN WARM CAL MODE ANTENNA IN COLD CAL MODE COLD CAL POSITION LSB COLD CAL POSITION MSB A2 SCANNER POWER ADC LATCHUP FLAG	\(\text{\tint{\text{\tint{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\texi}\text{\texi}\text{\text{\texit{\tex{\texi}\text{\text{\text{\text{\texi}\text{\texi}\texit{\ti	DESCRIPTION	SCAN MOTOR TEMPERATURE RF SHELF TEMPERATURE #1 WARM LOAD TEMPERATURE	SCRIPTION	CESSOR	- ANTENNA DRIVE + +	MIXER/IF AMPLIFIER LO CHANNEL 1 LO CHANNEL 2 COLIET BUS CURRENT NOISY BUS CURRENT

സ

4						
35 PAGE	DDEG 221.00 232.00 4.00 00	445.00 446.00 47.00 48.00	50.00 27.00	DDEG 3 3 3 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37.00	55.00
23:12:3	666660 666600 110987	66010 66210 662108 671098	625 625	000HWO 000HWO 000HWO	511 513	554 556
16-JUL-98	114 114 117 117 117 117 117 117 117 117	000000°	4.rv.a 200	32.00 37.00 30.00 1.000	,0000 ,0000	38.00
AZONIX DATA	N 000000 112640	000000 011111 02641	$\neg \alpha \alpha$	Z W W W W W W W W W W W W W W W W W W W	00111	549 542
EOS A2_04 E2.EXE;26 P	PRT TEMPERATURES VARIABLE TARGET	FIXED TARGET	BASEPLATE	E TEMPE HROUD T SHROU Z T N2	FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER N2 BASEPLATE N2 BASEPLATE FLOW METER	ADJUNCT RADIATORS

N NUMBER 960			NO [14]	NO [15]	NO [16]	YES [17]	[18]	[19]	803 SA29 803 [1] RETURN	
3:16:232 SCA			SITION 1 =	SITION 2 =	SITION 3 =	COLD CAL POSITION 4 =	PROCESSOR		3636 SA28] FULL	
16-JUL-98 23:16:232 SCAN NUMBER			MANDS COLD CAL POSITION	COLD CAL POSITION 2	COLD CAL POSITION 3	COLD CAL PC	RESET C&DH PROCESSOR	GSE MODE	IN 8636 CALC E	
26 COLD CAL MODE ELEMENT 0000	S ELEMENT 00	ELEMENT 00	COMMANDS ON COLI	CAN MODE	ARM CAL POSIT = NO	OLD CAL POSIT = YES	ADIR POSITION = NO		ON CHECKSUM IN 8636 CALC 8636 SA28 SCREEN ONLY [2] PRINT [3] FULL	
EOS A2-04 E2.EXE;26 [5] SCIENCE DATA	[6] CONTROL/STATUS	[7] ENGINEERING	אך כא תחינוניהים	[9] SCANNER AZ FONER -	LO JANIBANA IN COLL COLL COLL COLL	1 1 J ANTENNA IN COLD CAL POSIT	1 12 1 ANTENNA IN NADIR POSITION		ENGR OK POWER	SELECT BUTTON 3

⊣		234 234		227 200 140 140				7722				2234 2234 2234 224 224 224 200 14				
PAGE			٦٥,		400	H()				۳. یا۔ دادر				HHX7	27 8 77 77	27 9
0	17	0		\circ		O	U	zĭ	Ζ̈́́́	ΖĂ	ΖĤ	ON 25 LOOK 5 CH	NO ON O	0 7 LO 1.000	ZII ®	ON
:16:2	PTION	ITION	, i	LTTON 2ND L	ri F	ZND L ZND L P 19	ITION 2ND L	ZND SP 21	ITI 2ND P 2	SITIO 2ND BP 23	SITIO 2ND BP 24	SITIC 2ND BP 25	SITIC 2ND BP 2	SITI 2ND BP 2	SITI 2ND BP 2	SITI 2ND
23	SCRI	$_{17}^{\text{pos}}$	A B	18 18 1	n (POS 19 A B	R POS	R POS 21 TA B	PO 22	R POS	R POS TA 1	OR POS	R PO 26 IA	R PO	R PO	OR PO S 29
- 98	DE	CTO	DA	CTO	UA	ECTOR POS E DAT	POS	CTO POS DA	ECTO POS E DA	LECTO L POS NE DA	LECTO TE POS NE DA	LECTO L POS NE DA	LECTO L POS NE DA	LECTO L POS NE DA	FLECTO FL POS ENE DA	LECTC L POS
S-JUL	ر ا	REFLE REFL	CEN	REFLE REFL	CE CE	REFLE REFL SCENI	REFLE REFL SCENE	REFLE REFL SCENE	REFL REFL SCEN	REFL REFL SCEN	REFI REFI SCEN	REFI REFI SCEN	REFI SCEN	REFI SCEN	REF REF SCE	REF REF
16	ELEMENT				~ ^1	കശന	11111 1000 10490	1111 1720 1750	11111 1808 1808 11111	00804 008800 11111	1444 2000 7468	00000 00000 00490	00000 01111 00047	72224 14224 14204	00804 00000 00000	222 333 44.0
DATA	LUE		\sim	\sim	\neg		アマソワ					22344 23445 23495 1249	^1 ~^ ~^ ^ 1	אמאמאני	טריוניונענ	ACCION 1
IENCE	VA.	0001	0000	0000	00011101		- CACAT -	r . c a c a r			H H	1 12 27 1			· - · · · · · · · · · · · · · ·	7
SCI		•	000	000	2 70	, -1 (7 7			_	
				_,	ľŪ	O		COCH COCH COCH COCH COCH COCH COCH COCH	N LOOK HAXEI		ΖÀ	ON CH OLOOK 7 CH	ZH.	O CO		ON FOO FOO
56	NOIL			UMBER	DE/STA	ITION 2ND L P 1	ITIO ZND	ITI 2ND P	ITION 2ND LC	ITION ZND L	ZND	ITI ZNU	ITI 2ND P	SITIC 2ND BP 9	SITIC 2ND BP 1(SITI(2ND
EXE;	CRI		LENGTH	Z	WO	POS 1 B	POS 2	POS 3	POS 4	POS.	86	٥.	δ	0,6	000	R PO
E2.	DES			SERIAL	STRUMENT	TOR POS DATA	OCO	CTOR POS DATA	CIC		CTOR DOS	CTOF POS	FLECTOR E	CTOR POS DATA	ECTOI POS DA	ECTOR POS
A2_04	r	ACKET	PACKET	UNIT	INSTRU	REFLECT REFL PO			EFIL EFIL EN	REFLEC REFL B	REFLEC	REFLECTOR F REFL POS 7 SCENE DATA	REFLE REFLE	REFLEC REFL J SCENE	REFLECTOR REFL POS 1 SCENE DATA	REFLE(REFL]
EOS	THEMENT.	1 P										ທູດໝູດທູ ກ່ວສູດທູ		27 24 24 8	2004π	0000 0000

7	ALU	ロロ ロロ アレムなアト 対ななななな 対で44444 44000000000000000000000000000000	
98 23:16:29 PAGE	TION	NE DATA BP 29 CH 1 LECTOR POSITION 30 L POS 30 2ND LOOK NE DATA BP 30 CH 1 LCTOR COLD CAL POS L COLD CAL 2ND LOOK D CAL DATA 1 CH 2 D CAL DATA 2 CH 2 LECTOR WARM CAL POS L WARM CAL 2ND LOOK M CAL DATA 1 CH 2 M CAL DATA 2 CH 2 M CAL DATA 2 CH 2 M CAL DATA 2 CH 2 M CAL DATA 2 CH 2 M CAL DATA 2 CH 2	TEMPERATURE DEG C 23.19 24.06 25.95.98 25.98 25.98 28.11 28.15 28.
16-JUL	ELEMENT	238 SCENE 242 REFLE 244 REFLE 246 SCENE 254 SCENE 255 REFLE 255 COLD 256 COLD 302 REFLE 304 REFLE 306 WARM 312 WARM	VALUE OF STATE OF STA
A2_04 E2.EXE;26 SCIENCE DATA	ENT DESCRIPTION VALUE	SCENE DATA BP 11 CH .1 17219 REFLECTOR POSITION 12 2349 REFLECTOR POSITION 13 2349 REFLECTOR POSITION 13 2349 REFLECTOR POSITION 14 2349 REFLECTOR POSITION 14 2349 REFLECTOR POSITION 14 2349 REFLECTOR POSITION 14 2349 REFLECTOR POSITION 14 2349 REFLECTOR POSITION 14 2349 REFLECTOR POSITION 15 2349 REFLECTOR POSITION 15 2349 REFLECTOR POSITION 15 2349 REFLECTOR POSITION 15 2349 REFLECTOR POSITION 15 2349 REFLECTOR POSITION 15 2349 REFLECTOR POSITION 15 2349 REFLECTOR POSITION 16 2349 REFLECTOR POSITION 16 2349 REFLECTOR POSITION 16 2349 REFLECTOR POSITION 16 2349 REFLECTOR POSITION 16 2349	ELEMENT DESCRIPTION 262 SCAN MOTOR 264 FEED HORN 266 MIXER IF AMPLIFIER CHANNEL 1 270 LOCAL OSCILLATOR CHANNEL 1 274 LOCAL OSCILLATOR CHANNEL 1 274 LOCAL OSCILLATOR CHANNEL 2 274 LOCAL OSCILLATOR CHANNEL 2 275 LOCAL OSCILLATOR CHANNEL 2 276 SCOTILLATOR CHANNEL 2 277 LOCAL OSCILLATOR CHANNEL 2 278 LOCAL OSCILLATOR CHANNEL 2 278 LOCAL OSCILLATOR CHANNEL 2 280 MIXER LOAD CONVERTER 281 MARM LOAD CENTER MARM LOAD 3 292 WARM LOAD 3 294 WARM LOAD 4 296 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5 WARM LOAD 6 WARM LOAD 1 TEMP SENSOR REFERENCE VOLTAGE
EOS	E1.EMENT	11111111111111111111111111111111111111	田 ひろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろろ

PAGE								
23:16:29					ស្ត			
16-JUL-98			DEG C	444 0444	MA / VOLTS			6 10 10 10 10 10 10 10 10 10 10 10 10 10 1
& STATUS	E E COOONE	DATA			VALUE	22164	22093 22093 22093	2160 21160 211276 13591 3371 3321
MODE &	· El	ENGINEERING						-15 VDC +10 VDC +10 VDC
E2.EXE;26	DESCRIPTION N FULL SCAN MODE N WARM CAL MODE N COLD CAL MODE N NADIR MODE POSITION LSB POSITION MSB ROWER IUP FLAG	Ħ	DESCRIPTION	R TEMPERATURE TEMPERATURE #1 TEMPERATURE TEMPERATURE #2	DESCRIPTION			AMPLIFIER L 1 L 2 CURRENT CURRENT
EOS A2_04	ANTENNA IN FU ANTENNA IN WANTENNA IN CO ANTENNA IN CO COLD CAL POS COLD CAL POS COLD CAL POS COLD CAL POS COLD CAL POS A2 SCANNER POS ADC LATCHUP		DES	SCAN MOTOR T RF SHELF TEN WARM LOAD TE RF SHELF TEN		SIGNAL PROCESSOR	ANTENNA DRIVE	MIXER/IF AMI LO CHANNEL 1 LO CHANNEL 2 QUIET BUS CU

 ϵ

•

TEST DATA SHEET NO. 12 (Sheet 1 of 2) Science and Engineering Data Test (Nadir Mode) (Paragraph 3.3.5.3.4)

		72 (27)
Step	Instrument Status	(Y)es / (N)o
1	Nadir Mode command received?	Y
2	ENGR OK message seen?	Ι Υ
3	Reflector positioned at nadir position?	

Yes = Pass No = Fail

Con-	Element	Description	Measured Value*	Required Value	(P)ass/(F)ail
Step		E. Description	(Binary)	(Binary)	
4:	1.0	Packet ID		0000100100100001	P
4a	1-2	Packet Length		0000000101000101	ρ
4b	3-4	Unit Serial Number		00000100000000000	P
4c	5-6			1000100000010000	P
l 4d	7-8	Instrument Mode/ Status		1000200	

RADIOMETER SCENE DATA					
Step	Description	Required Counts	(P)ass/(F)ail		
Af	Review All Scene Data	12500-20500	P		

(22) 26-4-98

		PRT TEMPERATURE	E DATA	
<u> </u>		Description	Required	(P)ass/(F)ail
Step	Element	2	10-40 degrees C	P
4g	262-298**			
4g	300	Temperature Sensor Reference	23244-26317 counts	<u> </u>

		STATUS		
Stop	Description	Status*	Required Status	(P)ass/(F)ail
Step	Antenna in Full Scan Mode		NO	P
ŀ	Antenna in Warm Cal Mode		NO	
F	Antenna in Cold Cal Mode		NO	
4h	Antenna in Nadir Mode		YES	
	Cold Cal Position LSB		ZERO	
-	Cold Cal Position MSB		ZERO	
	A2 Scanner Power		ON	4
ŀ	ADC Latchup Flag		ONE	<u> P</u>

* Rewriting printout data on this data sheet is optional.

** Except for element 276 >40°C.

EOS/AMSU-A1 System P/N 1356008

Shop Order: <u>509734</u>

S/N: 202

Test Systems Engineer JUL

Circle Test: 1st CPT

Final CPT

Sub CPT ___

\,\\

LPT.

9/24/98

Quality Control

Date

Customer Representative

Date

SHEET 86 OF ____

TEST DATA SHEET NO. 12 (sheet 2 of 2) Science and Engineering Data Test (Nadir Mode) (Paragraph 3.3.5.3.4)

	A2 REFLECTOR PC	SITIONS (Step 4e)	
Beam	Position Range*	Required** +/- 5 counts	(P)ass/ (F)ail
Positions	2838	5836	P
1-30	5838		
* Actual range (m	in to max) of counts from printou	it (Only beam positions 1-30).	
1.1	on this data sheet is ODDODAL.		
** Required counts	from AE26002/2 TDS 6 +/- 5 co	unts for "true" nadir position.	

	ENGIN	EERING DATA		
See I	Description	Measured***	Required	(P)ass/(F)ail
Step	Signal Processor (+5 VDC)		+4 to +6 volts	<u> </u>
ļ_	Signal Processor (+5 VDC)		+14 to +16 volts	P
L	Signal Processor (+15 VDC)		-14 to -16 volts	P
-	Signal Processor (-15 VDC)		D	
	Scan Drive (+5 VDC)		+4 to +6 volts +14 to +16 volts	D
4i	Scan Drive (+15 VDC)			D
- T	Scan Drive (-15 VDC)		-14 to -16 volts	
ŀ	Mixer/IF Amplifier (+10 VDC)		+9 to +11 volts	2
- 1	LO Channel 1		+9 to +11 volts	Ψ
ļ.			+9 to +11 volts	P
1	LO Channel 2		< 1 Amps	P
1	Quiet Bus Current		< 150 milliamps	P
	Noisy Bus Current		≥ 130 mmampo	

^{***} Rewriting printout data on this data sheet is optional.

EOS/AMSU-A2 System P/N 1356006 Shop Order: 509 Circle Test: 1" CPT Final CPT Sub CPT	734 sn: 202 LPT
Circle Test. 1 Cr 1 Time of	Test Systems Engineer 7/17/98 Test Systems Engineer 7A Date 10
Customer Representative Date	Quality Control Date

23:51:112 SCAN NUMBER 1221			YES [14]	NO [15]	NO [16]	NO [17]	[18]	[19]	1064 SA29 1064 [1] RETURN	
12 SC			 -	2 =	μ ω	4 4 ===================================	SSOR		SA28 L	
23:51:1			DS COLD CAL POSITION 1	COLD CAL POSITION 2	COLD CAL POSITION 3	COLD CAL POSITION 4	RESET C&DH PROCESSOR		ON CHECKSUM IN 64D3 CALC 64D3 SA28 SCREEN ONLY [2] PRINT [3] FULL	
16-JUL-98			CAL P	CAL P	CAL P	CAL P	т сарн	GSE MODE	CALC TT [3	
16-JU			ANDS COLD	COLD	COLD	COLL	RESE	GSE	N 64D	
			COMMANDS ON COL	N ON	N ON	NO	YES		SUM I	•
O000	00	ŏ			SIT =	SIT =	= NOI		CHECK	
NADIR MODE ELEMENT 0000	ELEMENT	ELEMENT.	II	SCAN M	CAL PO	CAL PO	IR POSITION = YES		ON	
			DOWER	FIII.L	WARM	COLD	NADIR			
EOS A2-04 E2.EXE;26 [5] SCIENCE DATA	[6] CONTROL/STATUS	7] ENGINEERING	= BOWER =	ANTENNE TO FILL, SCAN MODE	1) ANTENNA IN WARM CAL POSIT	12 1 ANTENNA IN COLD CAL POSIT	12 J ANTENNA IN NADI		POWER	TON 3
2-04 SCIENC	CONTR(ENGIN			ANTE	ANTE	ANTE			SELECT BUTTON 3
EOS A	[6]	[7]		ر بر ا در در		77]	7	ENGR OK	SELE	

ᆏ	Ĺ	mmdi	583 583 583	HO	സവയ	ישרוניוני	יוריוניוני	728		7788	m m 01 01	$mm \cap m$	5838 17218 17218	ഗഗയ	ထထ
PAGE		r-1(77	77		- HZ		то Но				~	77 77 77	9 9
ι L	-	\circ)	. Q		ON 2 LOOK 1 CH	ON LOOK CH	ΖĂ	ZĤ	껃니	Noor Noor	ON 27 LOOK 7 CH	NO S	ON [00]
:51:1	PTION	ITION 2ND L P 17	NOITI I CINC	P. 1	ITION 2ND L	ITI 2ND P 2	ITI 2ND P 2	SITIO 2ND BP 22	SITIO 2ND BP 23	SITIO 2ND BP 24	SITIO 2ND BP 25	SITIC 2ND BP 26	ITI 2ND P 2	SITI 2ND BP 2	SITI 2ND
23	SCRI	POS 17 17 B) H A L	R POS 19 TA B	R POS	R POS 21 TA B	R POS	R POS	R POS 24 TA 1	R PO TA	R PO TA	R PO	OR PO S 28 ATA	OR PO S 29
96-7	DE	ECTOR POS E DAT	ECTOR	Ω	ECTOR POS E DAT	CTO POS DA	ECTO POS E DA	ECTO POS E DA	CTO POS DA	ECTO POS IE DA	LECTO L POS NE DA	LECTO L POS NE DA	LECTO L POS NE DA	LECTC L POS NE DA	LECTC L POS
6-JUL	H	REFLI SCENI	EFL	CEN	REFL REFL SCEN	REFLE REFL SCENE	REFLI REFL SCENI	REFL REFL SCENI	REFLE REFL SCENE	REFL SCEN	REFI SCEN	REFI SCEI	REF SCE	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	REF
F	ELEMENT	1138 140 200	144. 144. 140.	111 700 700	144680	1444 0000 0440 0440	11111 0777 0470	1444 0887 7080	#9800 08860 1HHHF	14440 2000 14080	70000 0000 00400	2222 2111 2024 0024	70000 11000 10004	0080°	722 722 746 740
ICE DATA	VALUE	000000000000000000000000000000000000000	$\alpha \alpha \alpha$	0000	1,758 1,758	7007 7008 7000 7000	72885	7007	70007	7007	100001C	vimmoir	1 220838 17220	മെയവ	a co
CIENCE		000	0000	200	>	7 40	v ⊢(7 A	N 40	N H	N 40	N 40	N 40	_	٧
ഗ			~	STATUS	0	C)	. Q	\sim		ΖĂ	ZÀ	ZJ	ON ON O TOOK	ON CH LOOK OCH OCH OCH OCH OCH OCH OCH OCH OCH OCH	ON 11
;26	PTION		UMBER	DE/	ITION ZND L	ITION 2ND L	SITION 2ND L 3P 3	SITION 2ND L BP 4	SITION 2ND L BP 5	ITI 2ND P	ITI 2ND P	ITI 2ND P	ITI 2ND P	SITI 2ND BP 1	SITI
EXE.	SCRI		LENGIH RIAL N	(IT MO)	R POS TA B	R POS TA B	R POS TA B	Q 41	⁷ 50	040 Y	P0	ဝို့	R POS)R POS 3 10 1TA 1	OR PO
E2	DE		缸	RUMEN	OTTO DAG	OTTO POS DA	OCTO		SFLECTOR SFL POS CENE DATA	ECTOR DE DATA	O_{P4}		ECTOR POS TE DAT	FLECTOR FL POS ENE DATA	EG.
A2_04	Ę-	- PACKE	PACKET UNIT S	INSTRUMENT	REFLEC REFL SCENE	REFLE(REFL SCENE	REFLEC REFL SCENE	REFLEC REFL J SCENE	шшО	REFLE SCENE		REFLE REFL SCENE	REFLE REFL SCENE	REFI SCETI	REFI REFI
EOS	ET.EMENT	77							4444 0046	.4rvvr .8004	၇ဝစစ္စပ ဎၑၺၺ	9000 14080	747 8	α α α α α α α α α α α α α	808 808

2	VALUE	11 11 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13		
L-98 23:51:15 PAGE	DESCRIPTION	E DATA BP 29 CH 1 ECTOR POSITION 30 POS 30 2ND LOOK E DATA BP 30 CH 1 ECTOR COLD CAL POS COLD CAL 2ND LOOK CAL DATA 1 CH 2 CAL DATA 2 CH 1 CAL DATA 2 CH 1 CAL DATA 2 CH 1 CAL DATA 2 CH 2 CAL DATA 2 CH 1 CAL DATA 2 CH 2 I CAL DATA 1 CH 2 CAL DATA 2 CH 2 I CAL DATA 2 CH 2 CAL DATA 2 CH 2 I CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2 CAL DATA 2 CH 2	TEMPERATURE DEG C 23.25 24.19 25.29 25.29 26.17 26.17 28.29 26.07 23.73 23.73 23.73 23.79	
16-JUL	ELEMENT	238 SCENE 244 REFLEC 244 REFLEC 246 SCENE 2550 REFLEC 2554 COLD C 2556 COLD C 2558 COLD C 304 WARM C 312 WARM C	V A LILL TO THE PROPERTY OF TH	500
SCIENCE DATA	VALUE	CH 1 17214 ON 12 5838 LOOK 1 17214 CH 2 17284 ON 13 5838 LOOK 2 17214 SCH 2 17214 ON 14 5838 LOOK 1 17212 ON 15 5838 CH 2 17212 ON 15 5838 CH 2 17212 ON 15 5838 CH 2 17218	CHA CHA CHANN HANN HANN SEME	ENCE VOLTAGE
A2_04 E2.EXE;26	T DESCRIPTION	CENE DATA BP 11 EFLECTOR POSITIC EFL POS 12 2ND CENE DATA BP 11 EFLECTOR POSITIC EFL POS 13 2ND CENE DATA BP 11 EFLECTOR POSITIC EFL POS 14 2ND CEFL POS 14 2ND CEFL POS 14 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 15 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND CEFL POS 16 2ND	SCAN MOTOR FEED HORN MIXER/IF AMPLIFI MIXER/IF AMPLIFI LOCAL OSCILLATOR LOCAL OSCILLATOR LOCAL OSCILLATOR LOCAL OSCILLATOR LOCAL OSCILLATOR SUB REFLECTOR DC/DC CONVERTER DC/DC CONVERTER DC/DC CONVERTER MARM LOAD 2 WARM LOAD 3 WARM LOAD 3 WARM LOAD 3 WARM LOAD 3 WARM LOAD 5 WARM LOAD 5 WARM LOAD 5	WARM LOAD 1 TEMP SENSOR REFERENCE
EOS	ELEMENT	40800468004680046800446	Д ФФФФ	S

PAGE								
23:51:15					TS			
- 98			บ	0004	/ VOLTS	വവന	- 4のの	4n0000
16-JUL-98			DEG	2222	MA,	452	1 444 0 0	601 100 100 100 100 100 100 100
STATUS	NO NO NO YES ZERSO ON ON	DATA			VALUE	22182 21843	22110 22110 220112 2040 2040	2212221 2212248 134684 51696 15086
MODE &	•	ENGINEERING DATA						
9	MODE MODE MODE SE SE SE	ËŇ		RE H 1 # 1 # 2	:		1 + + 	0000 11111 1 + + +
E2.EXE;26	NNA IN FULL SCAN M NNA IN WARM CAL MC NNA IN COLD CAL MC NNA IN NADIR MODE NNA IN NADIR MODE CAL POSITION LSB CAL POSITION MSB CAL POSITION MSB		DESCRIPTION	OR TEMPERATURE #1 TEMPERATURE D TEMPERATURE	DESCRIPTION	ESSOR	VE	AMPLIFIER L 1 L 2 CURRENT CURRENT
A2_04	CSC.		DE	MOTE CONTRACT	į	SIGNAL PROCESSOR	ANTENNA DRIVE	ANNE ANNE BUS BUS
EOS	ANTENNA ANTENNA ANTENNA COLD CAI COLD CAI A2 SCANI ADC LAT			SCAN 1 RF SHI WARM 1	1	SIGNA	ANTEN	MIXER LO CH OUIET

 \sim

EOS A2_04 E2.EXE;26 AZONIX DATA	OATA	16-JUL-98	23:51:1	LS PAGE	4
PRT TEMPERATURES VARIABLE TARGET 60 60 60	.12E43	ω	000000 000000 01000001	DDEG 20.00 22.00 23.00 4.00	
60 61 61 61 61 61 61 61	011111 026420	00000	00000 00000 00000	445.00 447.00 447.00 48.00	
61 BASEPLATE 62	122 233 24	4.NA	625 626	50.00	
PLE TEMPERATURES	\circ	rh C	Om	္ပ်	
SHROUD GET SHROUD NZ GET NZ	2000	2000c	08300 00010 00010	31.000 20.000 20.000	
HEATER NZ FIXED TARGET FLOW METER VARIABLE TARGET FLOW METER BASEPLATE HEATER NZ BASEPLATE NZ BASEPLATE FLOW METER	4001112 4001124	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	511 513	37.00	
ADJUNCT RADIATORS	54. 54.2	38.00 10.00	554 556	55.00 57.00	

TEST DATA SHEET NO. 13 1553 Bus Interface Test (Paragraph 3.3.5.4)

ATTACH BUS A WAV	EFORM	
BUS A AMPLITUDE	Pass/Fail	
ATTACH BUS B WAVE	EFORM -	
BUS B AMPLITUDE 2/V : 18.0 - 27.0 Vp-p BUS B RISE TIME 750 : 100 - 300 nsec EOS/AMSU-A2 System P/N 1356006 Shop Order: 509 73 5 Circle Test: 1st CPT Final CPT Sub CPT	Pass/Fail S/N: 202 M. Jain Test Systems Engineer Quality Control Date	- 48

SHEET & OF_ ECR NO. 1826

TEST DATA SHEET NO. 14 Test Point Interface Test (8 Second Sync Pulse TP) (Paragraph 3.3.6.1)

8 SECOND SYNC PULSE TEST POINT

Attach Photograph or Plot Here or to Back of TDS

		0.01	ECOND SYNC PULSE	TEST POINT	
			Measured	Required	(P)ass / (F)ail
	Step	Parameter		8 seconds +/- 10%	P
	2	Pulse Length	o seconds	3_5_volts	
_		Amplitude	YOUZ	3 3 1010	

NOT REDURED

(2. M. Noil (218)

6-5-97

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT (Final CP) Shop Order: 509734 Sub CPT _____

S/N: 202

9/24/98

Test Systems Engineer

Quality Control

JUL 1 7^{Date}

Customer Representative

Date

Date

TEST DATA SHEET NO. 15 Test Point Interface Test (Integrate/Hold and Dump TPs) (Paragraph 3.3.6.2)

INTEGRATE/HOLD AND DUMP TEST POINTS

Attach Photograph or Plot Here or to Back of TDS

	THE CD AT	E/HOLD SIGNAL TES	T POINT	
		Measured	Required	(P)ass / (F)ail
Step	Parameter Time Measured (A)*	milliseconds	158 ±5ms	158m38
4	Time Measured (B)*	milliseconds	38 -46 ms	45M3 P
4	Time Measured (A&B)*	milliseconds	200 ±5ms	202m3 P
4	Amplitude	volts	4-6-volts	

		DUMP SIGNAL	TEST	POINT	
Step	Parameter	Measured		Required -	(P)ass / (F)ail
4	Time Measured (D)*	12 MS	ms	9-15 ms	P
1	Amplitude		volts	4-6 volts	

* Refer to Figure 18 for Waveform Definition

* NOT REQUIRED

Z.M. Meel 6-5-98

EOS/AMSU A2 System P/N 1356006

Shop Order: 509734 Sub CPT_____

SN. 202

9/24/98

129/78

Date

Test Systems Engineer

Per Da

Quality Scontrol

JUL 17 1998

LW

TEST DATA SHEET NO. 16 Test Point Interface Test (Radiometer Channel Analog Output TPs) (Paragraph 3.3.6.3)

RADIOMETER CHANNEL ANALOG OUTPUT TEST POINTS

Attach Photographs or Plots Here or to Back of TDS

··-	DAD	IOMETER CH	ANNEL ANA	LOG OUTPU	T TEST POIN	TS	
Channel	Integration Time Measured	Integration Time Required (ms)	Hold Time Measured (F)*	Hold Time Required (ms)	Dump Time Measured D (P)*	Dump Time Required (ms)	(P)ass / (F)ail
1	(E)*	158 ±5ms	34 ms	29-35	12 ms	9-15	P
2	158 ms	158 ±5ms	3 4 ms	29-35	/2 ms	9-15	P

^{*} Refer to Figure 18 for Waveform Definition

EOS/AMSU-A2 System P/N 1356006 Circle Test: 1st CPT (Final CP

Shop Order: 509 73 \(\frac{7}{2} \)

Date

Test Systems Engineer

Quality Control

Date

SHEE	T	OF
ECB	NO.	

TEST DATA SHEET NO. 18

Radiometer Functional Performance Test (Relative NEAT Measurements*) (Paragraph 3.3.7.1)

	RELATIVE NEAT N	ÆASUREMENTS	
Channel Number	Average NEAT for 5 Data Sets (K)	Required** NEΔT (K)	Pass/Fail
1	0,204	0.30	2
2	0.219	0.30	Ý

P=Pass F=Fail

Shop Order: <u>509734</u> EOS/AMSU-A2 System P/N 1356006 Sub CPT_ Circle Test: 1st CPT Final CPT Test Systems Engineer JUL 1 7 1998 Date Quality Control Date Customer Representative

r = rass r = rau * Baseline data for acceptance tests. Use 1st CPT data along with specification value for pass/fail criteria

^{**} For reference only

p 3,3.71 46d 156/10.

11:03:59

DELTA T

0.187

GAIN 0.073 COLD COUNTS 14293.0 14207.0 A2 FUNCTIONAL TEST RESULTS 17-JUL-98 WARM COUNTS 17241.0 17254.0 WARM TEMP 295.91 295.91

[2] PRINT SCREEN

3] PRINT RAW DATA

[4] PRINT HISTOGRAM

RETURN [1

SELECT BUTTON 2

	DELTA T	0.224 0.216
11:01:11	GAIN	0.074
	COLD COUNTS	14307.0 14221.0
A2 FONCTIONAL TEST RESULTS 17-JUL-98	WARM COUNTS COLD COUNTS	17243.0
FUNCTIONAL	WARM TEMP	295.97
A2 E2.EXE;	CH	чо

[3] PRINT RAW DATA [2] PRINT SCREEN

[4] PRINT HISTOGRAM

SELECT BUTTON 2

RETURN [1]

	DELTA T	0.210
10:57:59	GAIN	0.075
	COLD COUNTS	14357.0 14268.0
A2 FUNCTIONAL TEST RESULTS 17-JUL-98	WARM COUNTS	17247.0 17261.0
FUNCTIONAL	WARM TEMP	296.01 296.01
A2 E2.EXE;	CH	77

[4] PRINT HISTOGRAM

[3] PRINT RAW DATA [2] PRINT SCREEN

SELECT BUTTON 2

RETURN [1]

	DELTA T	0.189
11:06:07	GAIN	0.073
	OLD COUNTS	14294.0 14209.0
A2 F. CTIONAL TEST RESULTS E2.EXE:26	WARM COUNTS COLD COUNTS	17240.0 17252.0
F. CTIONAL	WARM TEMP	295.86 295.86
A2 E2.EXE;	CHO	HC

[4] PRINT HISTOGRAM [3] PRINT RAW DATA [2] PRINT SCREEN RETURN [1]

SELECT BUTTON 2

P 3,3,7.1 TD5#18.

	DELTA T	0.211 0.213
11:08:15	GAIN	0.074
	COLD COUNTS	14320.0 14245.0
A2 FUNCTIONAL TEST RESULTS (E:26	WARM COUNTS	17240.0
FUNCTIONAL	WARM TEMP	295.82 295.82
A2 F	CH	77

[2] PRINT SCREEN [3] PRI

[3] PRINT RAW DATA

[4] PRINT HISTOGRAM

RETURN [1]

SELECT BUTTON 2

ADD L. Palmoda 7-27-58 236) 7-28-98

TEST DATA SHEET 19

Channel Identification Test (Paragraph 3.3.8)

ECN 1888

Channel Number	Sweeper Freq. Setting (GHz)	Polarization (H/V)	Radiometric Data (\Delta Counts)	Channel Verified (Yes/No)
1	23.8	V	4819	YES
2	31.4	V	3952	YES

EOS/AMSU-A2 System P/N	1356006	Shop Order: <u>509739</u>	S/N: 202
Circle Test: 1st CPT	Final CPT	Sub CPT	LPT
Customer Representative	<u>n/38/9k</u> Date	Test Systems Engineer Quality Control	$\frac{7-30-98}{\text{Date}}$ Date $\frac{7/30/98}{\text{Date}}$

00 ELEMENT 6] CONTROL/STATUS

ELEMENT [7] ENGINEERING

00

PRE CHANNEL I'D TEST RADIOMETRIC DATA

BEAM POSITION 30

[22] DOWN

ON CHECKSUM IN 7395 CALC 7395 SA28 SCREEN ONLY [2] PRINT [3] FULL

SELECT BUTTON 2 ENGR OK POWER

[21] UP

22 SA29 22 [1] RETURN

OPER; OSBO STEP C 421603:0/5

37

```
EOS A2-04 E2.EXE;26 COLD CAL MODE [ 5 ] SCIENCE DATA ELEMENT 0000
```

00 ELEMENT CONTROL/STATUS

ELEMENT [7] ENGINEERING

00

してもり RADIOMETRIC DATA

BEAM POSITION 30

[21] UP

[22] DOWN

POWER ENGR OK SELECT BUTTON 2

ON CHECKSUM IN 9D11 CALC 9D11 SA28 SCREEN ONLY [2] PRINT [3] FULL

38 SA29 38 [1] RETURN

s/0: 509734

OPER: OSBO STEP C

```
EOS A2-04 E2.EXE;26 COLD CAL MODE [ 5 ] SCIENCE DATA ELEMENT 0000
```

00 ELEMENT 6] CONTROL/STATUS

ELEMENT [7] ENGINEERING

00

RADIOMETRIC DATA CHRN Z

BEAM POSITION 30

[21] UP

[22] DOWN

SELECT BUTTON 2 POWER ENGR OK

ON CHECKSUM IN 6BD5 CALC 6BD5 SA28 SCREEN ONLY [2] PRINT [3] FULL

62 SA29 62 [1] RETURN

5/0: 509734

OPER: 0580 STEP C

00 ELEMENT [6] CONTROL/STATUS

EOS A2-04 E2.EXE;26 COLD CAL MODE [5] SCIENCE DATA ELEMENT 0000

ELEMENT [7] ENGINEERING

00

POST CHRNNEL IN TEST RADIOMETRIC DATA

BEAM POSITION 30

[21] UP

[22] DOWN

POWER ENGR OK

SELECT BUTTON 2

71 SA29 71 [1] RETURN ON CHECKSUM IN 6E44 CALC 6E44 SA28 SCREEN ONLY [2] PRINT [3] FULL

OPER :0580 STEP C 5/0: 509734

DATE:

June 11, 1998

TO:

POES PROJECT CCB HEMBERS/REVIEWERS

FROM:

POES PROJECT CONFIGURATION MANAGEMENT OFFICE

SUBJECT:

POES PROJECT REVIEW SHEET FOR CCR R120

COGNIZANT ENGINEER: S. KRINCHANSEY

CCR TITLE: POS ANSU-A2 PMI UNIVER

RESPONSES ARE REQUIRED BY: JUNE 19, 1998

Review the attached CCR. Indicate your recommendation for approval, approval with changes, or disapproval.

Raturn this form and CCR to the CM office by the above due date. If you cannot respond by the due date, notify the CM office of your anticipated date of completion. After all responses are received, the cognizant engineer will review and consolidate the responses. Once the responses have been reconciled, the CCR will be submitted to the designated approving signator or a CCB meeting will be scheduled for CCB Chairparson disposition.

RECOMMENDATIONS:

APPROVE WITH	CH	ANGES DISAPPROVE
COMMENTS/CHANGES		
• 0		
CTOURTIPE: Mark Down	_	DATE /020-98
SIGNATURE: Manh Doming REVIEWERS: This CCR is being routine.	ite	d to all reviewers at the same
REVIEWERS: This CCR is being rou	ite	d to all reviewers at the same
REVIEWERS: This CCR is being routine. X DEPUTY PROJECT MANAGER/A. ATARBARZIN	ite	d to all reviewers at the same
REVIEWERS: This CCR is being routine. X DEPUTY PROJECT MANAGER/A, ASARBARZIN OBSERVATORY MANAGER/M. TAREVOLI	ite	d to all reviewers at the same
REVIEWERS: This CCR is being routime. I DEPUTY PROJECT MANAGER/A, ATARBARZIN OBSERVATORY MANAGER/M. TAREVOLI STREEMS MANAGER/D. COOLIDGE	ite	d to all reviewers at the same contract offices/s. MARSHALL FINANCIAL MANAGES/J. LIU
REVIEWERS: This CCR is being routine. I DEPUTY PROJECT MANAGER/A, ATARBARIN OBSERVATORY MANAGER/H. TABEVOLI SYSTEMS MANAGER/D. COOLIDGE X PLIGHT ASSURANCE MANAGER/N. DAMEY	ite	d to all reviewers at the same contract offices/s. MARSHALL FINANCIAL MANAGES/J. LIU DATA OFFRATIONS MGR/K. HALTERMAN
REVIEWERS: This CCR is being routine. I DEPUTY PROJECT MANAGER/A, ASARBARZIN OBSERVATORY MANAGER/H. TABEVOLI SYSTEMS MANAGER/D. COOLIDGE X PLIGHT ASSURANCE MANAGER/N. DAMEY INSTRUMENT SYSTEMS MGR/M. SRUMPIZED	ite X	d to all reviewers at the same contract officer/s. Marshall financial Manager/J. LIU data offications mgr/k. Malterman schedule Manager/M. Majerovici Resource analyst/R. McCaskill
REVIEWERS: This CCR is being routine. **IDEPUTY PROJECT MANAGER/A, ATAREARZIN **OBSERVATORY MANAGER/H. TASEVOLI **SYSTEMS MANAGER/D. COOLIDGE ***YEIGHT ASSURANCE MANAGER/W. DAWRY **INSTRUMENT SYSTEMS MGR/M. SRUMPIZED ***INSTRUMENT SYSTEMS MGR/D. CROSSY	ite X	d to all reviewers at the same contract offices/s. Marshall Financial Manages/J. LIU DATA OFFRATIONS MGR/R. MALTERMAN SCHEDULE MANAGES/N. MAJEROVICE
REVIEWERS: This CCR is being routine. X DEPUTY PROJECT MANAGER/A, ATAREARZIN OBSERVATORY MANAGER/H. TASEVOLI SYSTEMS MANAGER/D. COOLIDGE X PLIGHT ASSURANCE MANAGER/N. DANEY INSTRUMENT SYSTEMS MGR/M. SRUMPIELD X INSTRUMENT SYSTEMS MGR/D. CROSSY DEPUTY PROJECT MANAGER RESOURCES/	ite X	contract officer/s. Marshall Financial Manager/J. Liu DATA OFFRATIONS MGR/R. MALTERMAN SCHEDULE MANAGER/N. MAJEROVICE RESOURCE ANALYST/R. MCCASKILL RESOURCE ANALYST/M. RICH
REVIEWERS: This CCR is being routine. X DEPUTY PROJECT MANAGER/A, ATARBARZIN OBSERVATORY MANAGER/H. TABEVOLI SYSTEMS MANAGER/D. COOLIDGE X PLIGHT ASSURANCE MANAGER/N. DANEY INSTRUMENT SYSTEMS MGR/M. SRUMPIELD X INSTRUMENT SYSTEMS MGR/D. CROSSY DEPUTY PROJECT MANAGER RESOURCES/ D. PENNINGTOR	ite X	CONTRACT OFFICER/S. MARSHALL FINANCIAL MANAGER/J. LIU DATA OFFRATIONS MGR/K. MALTERMAN SCHEDULE MANAGER/N. MAJEROVICE RESOURCE ANALYST/R. MCCASKILL RESOURCE ANALYST/R. RICH NOAA/J. O MEAL/P. GREEN/P. KIK/D. FLANAGAN/J. PARKER
REVIEWERS: This CCR is being routine. X DEPUTY PROJECT MANAGER/A, ATAREARZIN OBSERVATORY MANAGER/H. TASEVOLI SYSTEMS MANAGER/D. COOLIDGE X PLIGHT ASSURANCE MANAGER/N. DANEY INSTRUMENT SYSTEMS MGR/M. SRUMPIELD X INSTRUMENT SYSTEMS MGR/D. CROSSY DEPUTY PROJECT MANAGER RESOURCES/	X	CONTRACT OFFICER/S. MARSHALL FINANCIAL MANAGER/J. LIU DATA OFFRATIONS MGR/K. HALTERMAN SCHEDULE MANAGER/N. HAJEROVICE RESOURCE ANALYST/R. HCCASKILL RESOURCE ANALYST/M. RICH NOAA/J. O MEAL/P. GREEN/P. KIK/D.

PAGE 8

CONTRACT SPECIALIST/K. MEXTON

GSFC 422-12-12-02

CHANGE RECORD PAGE

DOCUMENT TITLE: Unique Instrument Interface Document (UIID) for the EOS Advanced Microwave Sounding Unit (AMSU-A) Instrument, EOS PM Project

DOCUMENT	DATE:	June	19	93

DOCUMENT	DATE: Jun	e 1993	
ISSUE	DATE	PAGES AFFECTED	DESCRIPTION
Initial Release	4/16/91	All	Initial Release (Doc. Number 422-25-05) for Phase C/D RFP for
			AMSU-A
Original	6/93	All	This Release (Doc. Number 422-12-12-02) is the Baselined Contract- ual version and super- sedes the previous version and reflects the change from the use of a GIIS (General Instrument Interface Specification) to a GIRD (General Interface Requirements Document), dated June, 1993, which will be used for the EOS common spacecraft procurement.
CH-01	1/94	iii, iv, 2-1, 5-2	CCR# 422-12-12-002
REVISION A	6/94	ALL	CCR# 422-12-12-007
CH-01	9/94	iii, iv, 5-5	CCR# 422-12-12-009
CH-02	7/96	and page 5-6 was added	
CH-03	11/96	iii, iv, 2-1, 3-2, 3-4, 3-5, 3-6, 3-7, 5-6	CCR# 422-12-12-011
CH-04	03/97	iii, iv, 3+2, 3-5, 5-7	CCR# 422-12-12-012
CH-05	11/97	iii, iv, vi, 5-7, 5-8	CCR# 422-12-12-013
CH-06	03/98	iii, iv, 5-2	CCR# 422-12-12-014
CH-07	10/98	iii, iv, vi,5-7 5-8	CCR# 422-12-12-015
CH-08	10/98	iii, iv, 5-9	CCR# 422-12-12-019

ESS 423-CH-05 (4/92)

REVISION A

iii

JUNE 1994

GSFC 422-12-12-02

DOCUMENT TITLE: Unique Instrument Interface Document (UIID) for the EOS Advanced Microwave Sounding Unit (AMSU-A) Instrument, EOS PM Project

RELEASE DAT	re: June 199	3 LIST OF AFF	ECTED PAGES		•
Page No.	Revision	Page No.	Revision	Page No.	Revision
Cover Page					
	REVISION A				
Title Page	REVISION A				
Signatures	CH-08				•
<u> </u>	CE-08				
<u>iv</u>	REVISION A				
v Vi	CH-07				
1-1	REVISION A				
2-1	CH-03				
3-1	REVISION A				
3-2	CH-04				
	REVISION A				
3-3	CH-03				
3-4	CH-03				
3-5	CH-03				
3-6	CH-03				
3-7	REVISION A				
4-1	REVISION A				
5-1	CH-06				
5-2	REVISION A				
5-3	REVISION A				
5-4					
5-5	CH-03				
5-6					<u> </u>
5-7	CH-07				
5-8	CH-07		!		
5-9	CH-08				
A-1	REVISION A				
A-2	REVISION A				
			ļ		
					
			<u> </u>		
					
AS 450-CH-04 (4/92)			L	L	<u> </u>

REVISION A iv JUNE 1994

GSFC 422-12-12-02

32. The instrument shall meet the EMC/EMI requirments defined in 10.11.1 through 10.11.8 (GIRD para 10.11)/The AMSU-A2 instrument EMC/EMI charecteristics for CE03, RE02, RE01 are instrument in the attachments to POES Project CCR# 8120 Waiver)/ Ref. CCR#422-12-12-019

CH-08

REVISION A 5-9 JUNE 1994

National Aeronautics and Space Administration	Report Documer	ntation Pa	ge	
. Report No.	Government Accession No.	3.	Recipient's Catalog No	
Title and Subtitle		5.	Report Date	
Integrated Advanced	Microwave Sounding Uni	it-A _	November	1998
(AMSU-A), Performa	nce Verification Report	6.	Performing Organization	n Code
. Author(s)		8.	Performing Organization	n Report No.
			11336	
R. Platt		10). Work Unit No.	
. Performing Organization Nam	e and Address			
Aeroje		17	. Contract or Grant No.	
1100 V		NAS 5		
Azusa,	1;	3. Type of Report and Pe	eriod Covered	
12. Sponsoring Agency Name and Address NASA Goddard Space Flight Center		<u>_</u>	Final	
		14. Sponsoring Agency Code		
	belt, Maryland 20771			
	-			
words) This is the Performan	nce Verification Report, Fi 6-1-IT, S/N 202, for the Inte	nal Compre egrated Ad	ehensive Perform vanced Microwav	ance Test ve Sounding
words) This is the Performar Report, P/N 1356006	nce Verification Report, Fi 3-1-IT, S/N 202, for the Inte	nal Compre egrated Ad	vanced Microwav	ance Test ve Sounding
Report, P/N 1356006 Unit-A (AMSU-A).	nce Verification Report, Fig 6-1-IT, S/N 202, for the Inter- Author(s))	egrated Ad	vanced Microwav	e Sounding
This is the Performar Report, P/N 1356006 Unit-A (AMSU-A).	nce Verification Report, Fi 3-1-IT, S/N 202, for the Inte Author(s))	egrated Ad	vanced Microway	e Sounding

PREPARATION OF THE REPORT DOCUMENTATION PAGE

The last page of a report facing the third cover is the Report Documentation Page, RDP. Information presented on this page is used in announcing and cataloging reports as well as preparing the cover and title page. Thus, it is important that the information be correct. Instructions for filing in each block of the form are as follows:

- Block 1. Report No. NASA report series number, if preassigned.
- Block 2. Government Accession No. Leave blank.
- Block 3. Recipient's Catalog No.. Reserved for use by each report recipient.
- Block 4. <u>Title and Subtitle</u>. Typed in caps and lower case with dash or period separating subtitle from title.
- Block 5. Report Date. Approximate month and year the report will be published.
- Block 6. Performing Organization Code . Leave blank.
- Block 7. <u>Authors.</u> Provide full names exactly as they are to appear on the title page. If applicable, the word editor should follow a name.
- Block 8. <u>Performing Organization Report No.</u> NASA installation report control number and, if desired, the non-NASA performing organization report control number.
- Block 9. <u>Performing Organization Name and Address.</u> Provide affiliation (NASA program office, NASA installation, or contractor name) of authors.
- Block 10. <u>Work Unit No.</u> Provide Research and Technology Objectives and Plants (RTOP) number.
- Block 11. Contract or Grant No. Provide when applicable.
- Block 12. <u>Sponsoring Agency Name and Address.</u> National Aeronautics and Space Administration, Washington, D.C. 20546-0001. If contractor report, add NASA installation or HQ program office.
- Block 13. <u>Type of Report and Period Covered</u>. NASA formal report series; for Contractor Report also list type (interim, final) and period covered when applicable.
- Block 14. Sponsoring Agency Code. Leave blank.
- Block 15. Supplementary Notes. Information not included

- elsewhere: affiliation of authors if additional space is required for Block 9, notice of work sponsored by another agency, monitor of contract, information about supplements (file, data tapes, etc.) meeting site and date for presented papers, journal to which an article has been submitted, note of a report made from a thesis, appendix by author other than shown in Block 7.
- Block 16. <u>Abstract.</u> The abstract should be informative rather than descriptive and should state the objectives of the investigation, the methods employed (e.g., simulation, experiment, or remote sensing), the results obtained, and the conclusions reached.
- Block 17. Key Words. Identifying words or phrases to be used in cataloging the report.
- Block 18. <u>Distribution</u> <u>Statement.</u> Indicate whether report is available to public or not. If not to be controlled, use "Unclassified-Unlimited." If controlled availability is required, list the category approved on the Document Availability Authorization Form (see NHB 2200.2, Form FF427). Also specify subject category (see "Table of Contents" in a current issue of STAR) in which report is to be distributed.
- Block 19. <u>Security Classification (of the report).</u> Self-explanatory.
- Block 20. <u>Security Classification (of this page).</u> Self-explanatory.
- Block 21. No. of <u>Pages</u>. Count front matter pages beginning with iii, text pages including internal blank pages, and the RDP, but not the title page or the back of the title page.
- Block 22. <u>Price Code</u>. If Block 18 shows "Unclassified-Unlimited," provide the NTIS price code (see "NTIS Price Schedules" in a current issue of STAR) and at the bottom of the form add either "For sale by the National Technical Information Service, Springfield, VA 22161-2171" or "For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402-0001," whichever is appropriate.

REPORT DOC	Ó 070	Form proved MB No. 4-0188			
Public reporting burden fothis collection of inform gathering andmaintaining thedata needed, and collection of information, including suggestiofur Davis Highway, Suite 1204, Arlington, VA 2220	nation is estimatedo average 1 hour per resp ompleting andreviewing thecoRectioninforma reducing this burdento Washington Headqua 2-4302, and to the Office of Management and	onse including the ion. Send common rters Service:Dire I Budget, Paperw	timefor reviewing instruct ents regardingthis burden- ctorate for Information Op ork Reduction Project (07	tionssearching existing data sources, estimate or any other aspect of this verationand Reports, 1215 Jefferso 04-0188). Washington, DC 20503.	
AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPOR	RT TYPE AND DAT	ES COVERED	
4. TITLE AND SUBTITLE Integrated Advanced Mic (AMSU-A), Performance		5. FUNDING NUMBERS NAS 5-32314			
6. AUTHOR(S) R. Platt					
7. PERFORMING ORGANIZATION Aerojet 1100 W. Hollyv Azusa, CA 917		PERFORMING OR REPORT NUMBER 11336 November			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) NASA Goddard Space Flight Center Greenbelt, Maryland 20771			10. SPONSORING/MONITORING AGENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION/AVAILABILITY	STATEMENT	121	DISTRIBUTION	CODE	
13. ABSTRACT (Maximum 200 words) This is the Performance Verification Report, Final Comprehensive Performance Test Report, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).					
14. SUBJECT TERMS				15. NUMBER OF PAGES	
EOS Microwave System				16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	OF ABST	CLASSIFICATION RACT Classified	20. LIMITATION OF ABSTRACT SAR	

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filing in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only(Leave blank)

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g., 1 Jan 88). Must cite at least the year.

Block 3. <u>Type of Report and Dates Covered</u> State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g., 10 Jun 87 - 30 Jun 88).

Block 4. <u>Title and Subtitle</u> A title is taken from the part of the report that provides the most meaningful and complete information. When a report iprepared in more than one volume report the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. <u>Funding Numbers</u> To include contract and grant numbers; may include program element number(s), project number(s), tasksnumber(s), andwork unit number(s). Use the following labels:

 C
 Contract
 PR
 Project

 G
 Grant
 TA
 Task

 PE
 Program
 WU
 Work Unit

 Element
 Accession No.

Block 6. <u>Author(s)</u> Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of thereport. If editor or compiler, this should follow the name(s).

Block 7. <u>Performing Organization Name(s) and Address(es).</u> Self-explanatory.

Block 8. <u>Performing Organization Report Number.</u> Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. <u>Sponsoring/Monitoring Agency Name(s) and Address(es)</u> Self-explanatory.

Block 10. Sponsoring/MonitoringAgency Reports Number (if known)

Block 11. <u>SupplementaryNotes.</u> Enter informationnot included elsewhere such as: Prepared in cooperation with ...; Trans. of ...; To be published in ... When a report is revised, include a statementwhether the new report supersedes or supplements the older report.

Block 12.a <u>Distribution/Availability Statement.</u>Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g., NOFORN, REL, ITAR).

DOD - See DoDD 5230.24 Distribution Statement on Technical Documents

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12.b Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

Block 13. <u>Abstract.</u> Include a brief *Maximum 200 words* factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms.</u> Keywords or phases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. <u>Price Code.</u> Enter appropriate price codeNT/S only).

Block 17 - 19. <u>Security Classifications</u>. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. <u>Limitation of Abstract.</u>This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

DOCUMENT APPROVAL SHEET

TITLE			DOCUMENT NO.	
Performance Verification Report			Report 11336	`
Final Comprehensive Performance	Test Report		November 19	
			MOACHIDEL 19	190
INPUT FROM: DATE	CDRL:	SPECIFICATION ENGINEER:		DATE
R. Platt	208	N/A		
CHECKED BY:	DATE	JOB NUMBER:		DATE
N/A				DAIL
APPROVED SIGNATURES		N/A	DERT NO	TOATE
ALL KOVED GIGNATURES			DEPT. NO.	DATE
	P. R. Rut	2_1	l]
Product Team Leader (P. Patel) _	V. K. Vall	e (11/12/20
	0, ,	<u> </u>	8341	11/17/98
2 1 Faci as (D. Dlatt) 1	Pleat If R	Note		1-100
Systems Engineer (R. Platt)	MAN 10 P		8341	11/17/98
	, <i>O</i>		0041	
Design Assurance (E. Lorenz)	Charen			11/18/98
			8331	1,11,27,12
	Dhit	/		
Quality Assurance (R. Taylor)	"C'M (ay	·la	7004	11-18-98
	/	,	7831	11-18-98
Technical Director/PMO (R. Haue	anyone) RD/	Houerwas		11/19/98
reclinical Director/i WO (IX. Flade	il Waas)		4001	777.7.0
	\cap /	^		
Released:	1 - 1			11/19/95
Configuration Management (J. Ca	avanaugh)	- according	8361	1,1,.110
	\mathcal{O}	\cup	0001	
	-			
By my signature, I certify the above document has requirements related to my area of responsibility.	; been reviewed by me and	d concurs with the technical		
TINIAL				
(Data Center) FINAL				
Please return this sheet and the reproducible n	master to Jim Kirk (Bldg. 1	1/Dept. 8631), ext. 2081.		
· · · · · · · · · · · · · · · · · · ·	(3	··		