Stat 88: Probability and Statistics in Data Science

https://xkcd.com/1282/

Lecture 5: 2/1/2022

Symmetry in Sampling, Bayes' Rule, Random variables

Sections 2.2, 2.3, 2.4, 3.2

Shobhana M. Stoyanov

Agenda

- § 2.2: Symmetries in sampling & counting
- § 2.3: Bayes' rule
- § 2.4: Use and interpretation of Bayes' rule
- § 3.2: Random variables: intro

Review: Product rule and counting

- Recall the product rule for counting: if there are sequences constructed in n stages, with k_i options at each stage, then the total number of sequences is $k_1 \times k_2 \times \cdots \times k_n$
- Count the number of outcomes for each stage and multiply them. (Recall the tree diagrams, and how we count outcomes.)
- Deal 5 cards from a deck. Number of possible sequences?

$$\frac{52.51.50.49.48}{471} = \frac{52!}{47!}$$

• Number of outcomes from rolling three 6-sided dice?

$$6.6.6 = 6^3$$

• 10 students, choose 2 for committee (to be the president and secretary respectively). Number of possible committees?

$$357. \quad (10.9) - 45 = \frac{10!}{8!} \cdot \frac{1}{2!}$$

Example

• The English language has 26 letters. 5 letters are chosen with replacement. What is the chance that the *middle* three letters are all *different*, and the *first* and *last* are the *same* as each other, and also the *same* as one of the three middle letters.

Probabilities of dealing cards:

- Deal 2 cards from top of the deck.
 - How many possible sequences of 2 cards?
 - What is the chance that the second card is red? $\frac{2c}{52}$ (no info about 19th (ard))

52.51

- P(5th card from top is red) = $\frac{26}{52}$ = $\frac{1}{2}$
- 21st card and 35th cards are red = $P(R_{21} \cap R_{35})$ = (write it using conditional prob)

$$P(R_{21}) P(R_{35} | R_{21}) = \frac{26}{59} \cdot \frac{25}{51}$$

• P(7th card is a queen) $=\frac{4}{52}$

•
$$P(B_{52} | R_{21}R_{35}) = \frac{2b}{50}$$

 $P(A|B) = P(A \cap B \cap C)$

Counting permutations & combinations

- Recall # of ways to rearrange n things, taking them 1 at a time is n!
- If we have only $k \leq n$ spots to fill, then $n \cdot (n-1) \cdot ... \cdot (n-(k-1))$
- # of perm. of n things taken k at a time. When a der ma Hers
- If we don't care about order, then we are counting subsets, and this number is denoted by $\binom{n}{k}$, which we get by dividing: $n \cdot (n-1) \cdot \dots$

14 spots

number is denoted by
$$\binom{n}{k}$$
, which we get by dividing: $n \cdot (n-1) \cdot \dots \cdot (n-(k-1))$ by $k!$

- Note: $\binom{n}{n} = 1$, $\binom{n}{0} = 1$
- · Prob. of "Full house" = P(triple & pair)

Section 2.3: Bayes' Rule:

 I have two containers: a jar and a box. Each container has five balls: The jar has three red balls and two green balls, and the box has one red and four green balls.

is paint

 Say I pick one of the containers at random, and then pick a ball at random. What is the chance that I picked the box, if I ended with a red ball?

Jars and boxes

$$P(R) = (\frac{1}{5})(\frac{1}{2}) + (\frac{3}{5})(\frac{1}{2})$$

$$= \frac{1+3}{10} = \frac{4}{10} = \frac{2}{5}$$

$$(B|R) = (\frac{1}{5})(\frac{1}{2}) = (\frac{1}{4})(\frac{1}{2})$$

$$P(B|R) = \frac{1}{2} = 4$$

Prior and Posterior probabilities

• The **prior** probability of drawing the box = 0.5 (before we knew anything about the balls drawn)

• The **posterior** probability of drawing the box = 0.25 (this is after we *updated* our probability, *given* the information about which ball was drawn)

Computing Posterior Probabilities: Bayes' Rule

• We want the *posterior* probability. That is, the conditional prob for the first stage *A*, *given* the second stage *B*.

• Division rule (for conditional probability) =
$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$

• Using the multiplication rule on $P(A \cap B)$, we get:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A)} = \frac{P(B|A)I(A)}{P(B|A)P(A)} + \frac{P(B|A)P(A)}{P(B|A)P(A)}$$
tten down by Rey Thomas Bayes in the 18th century

Rule first written down by Rev. Thomas Bayes in the 18th century.
Helps us compute posterior probability, given prior prob. And
likelihoods (which are conditional probabilities for the second
stage given the first, which are generally easier to compute.)

Exercise 2.6.9

A factory has two widget-producing machines. Machine I produces 80% of the factory's widgets and Machine II produces the rest. Of the widgets produced by Machine I, 95% are of acceptable quality. Machine II is less reliable - only 85% of its widgets are acceptable.

Suppose you pick a widget at random from those produced at the factory.

- a) Find the chance that the widget is acceptable, given that it is produced by Machine I. (likelihood) $P(A \mid M_2)$
- b) Find the chance that the widget is produced by Machine I, given that it is acceptable. (posterior)

$$P(A|M_1) = 0.95$$
, $P(A|M_2) = 0.85$

$$P(M_1 \mid A) = \frac{P(A \cap M_1)}{P(A)}$$

$$P(A \cap M_1) = P(A \mid M_1) P(M_1) = (0.8)(0.95)$$

$$P(A \mid M_1) = P(A^C \mid M_1) P(M_1)$$

$$P(M_2) = P(A^C \mid M_2) P(M_2)$$

$$P(A \mid M_2) = P(A^C \mid M_2) P(M_2)$$

$$P(A^C \mid M_2) P(A^C \mid M_2) P(M_2)$$

$$P(A^C \mid M_2) P(M_2) = P(A^C \mid M_2) P(M_2)$$

$$P(A^C \mid M_2) P(M_2)$$

$$P(A^C \mid M_2) P(M_2)$$

$$P(A^C \mid M_2) P(M_2)$$

$$P(A^C \mid M_2) P(M_2)$$

$$P(M, A) = \frac{P(A \cap M_1)}{P(A)} = \frac{(0.8)(0.95)}{(0.8)(0.95) + (0.4)(0.85)}$$

Example: Binge drinking & Alcohol related accidents

(This example is from the text *Intro Stats* by De Veaux, Velleman, and Bock)

For men, binge drinking is defined as having 5 or more drinks in a row and for women as having 4 or more drinks in a row. (The difference is because of the average difference in weight.)

According to a study by the Harvard School of Public Health (H.Wechsler, G. W. Dow dall, A. Davenport, and W. Dejong, "Binge Drinking on Campus: Results of a National Study"):

- 44% of college students engage in binge drinking, 37% drink moderately, and 19% abstain entirely. (*priors*)
- Another study, published in American journal of Health Behavior, finds that amon g binge drinkers aged 21 to 34, 17% have been involved in an alcohol-related automobile accident, while among nonbingers of the same age, only 9% have been involved in such accidents. (likelihoods)
- Given that a student has been in a car crash, what is the chance that they were a binge drinker? (posterior)

Example: Binge drinking & Alcohol related accidents

 Make a tree diagram. What are we given? What do we want to compute?

2.4: Use and interpretation of Bayes' rule

- Harvard study: 60 physicians, students, and house officers at the Harvard Medical school were asked the following question:
- "If a test to detect a disease whose prevalence is 1/1,000, has a false
 positive rate of 5 per cent, what is the chance that a person found to
 have a positive result actually has the disease, assuming that you know
 nothing about the person's symptoms or signs?"
- *Prevalence* aka *Base Rate* = fraction of population that has disease.
- False positive rate: fraction of positive results among people who don't have the disease
- Positive result: test is positive

• What is your guess - without any computations?