Emergency Exit detection for the visually impaired people

- 자율지능 IOT 팀 프로젝트 최종 발표 -

20520052 이도현 20520053 이새롬

1. Introduction (1/2)

- Motivation
 - ☐ Blind People can't identify the sign
 - □ Additionally, in workplace there are various obstacles that looks similar with the sign.
 - doorplate, nameplate, and signboard.
 - □ It has been an important issues for safety!
 - Escape method is unsuitable for blind people.

1. Introduction (2/2)

■ Purpose

- □ Propose effective emergency exit detection system for blind people.
 - Aims at helping visually impaired people with navigating unfamiliar environments in realtime.

2. Method (1/2)

■ Process

- □ Emergency Exit detection
 - Transfer Learning based on the pretrained model
 - Mobilenet_V2 ¹
 - ► Pre-trained on ImageNet
 - □ Classes referring the emergency exit should be added.
 - ► Emergency exits are classified by street sign according to the case of Real example
 - □ Re-trained with custom dataset
 - ► Indoor Sign Dataset(ISD) ²
 - ► Indoor object detection dataset ³

¹ M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. -C. Chen, "MobileNetV2: Inverted Residuals and Linear Bottlenecks," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510-4520.
2 Almeida, J. L., Flores, F. C., Roecker, M. N., Braga, M. A., & Costa, Y. M. (2019). An Indoor Sign Dataset (ISD): An Overview and Baseline Evaluation. In VISIGRAPP (4: VISAPP) (pp. 505-512).

³ Adhikari, B., Peltomaki, J., Puura, J., & Huttunen, H. (2018, November). Faster bounding box annotation for object detection in indoor scenes. In 2018 7th European Workshop on Visual Information Processing (EUVIP) (pp. 1-6). IEEE.

2. Method (2/2)

■ Process (continue)

□ Sequence diagram

Figure 1. Sequence diagram of project

3. Experiment Design (1/5)

■ Experimental Object and Progress: 66%

- Step 1
- **Binary Classification**
- 1. Emergency sign
- 2. Others
- Step 2

Multiple Classification

- 1. Emergency sign
- Exit
- Direction
- 2. Others

Multiple Classification

- 1. Emergency sign
- Exit
- Direction
 - Left
 - Right
 - Bidirectional
- 2. Others

3. Experiment Design (2/5)

■ Dataset

- ☐ Main issue: Imbalanced dataset
 - The number of samples for the class including others is much more than those of emergency sign.
 - □ The class consists of various signs such as accessibility, wi-fi, non-smoking, man-bathroom, woman-bathroom, Warnings
 - ☐ However, the classes about emergency signs would be smaller following the objective steps.

7

Figure 2. The composition of the classes

3. Experiment Design (3/5)

■ Dataset [Step 1]

```
□Size [Class 1: Emergency, 2: Non-Emergency]
```

- Train: $100[\rangle 600]$, 590
- Vali: 47, 36
- Test: 10, 10

□ Data Preprocessing

- Transform: Non-Cropping
 - □ Scaling: 1/255
 - □ Resizing: (224, 224)
 - ☐ Horizontal flip, vertical flip

3. Experiment Design (4/5)

■ Dataset [Step 2]

- □Size [Class 1: Exit_Arrow, 2: Exit_Here, 3:Non-Exit]
 - Train: $65[\rangle 1002]$, $35[\rangle 1002]$, 590
 - Vali: 25, 12, 36
 - Test: 37, 13, 324

□ Data Preprocessing

- Transform: Non-Cropping
 - □ Scaling: 1/255
 - □ Resizing: (224, 224)
 - ☐ Horizontal flip, vertical flip
 - □Brightness range: [0.7, 1.3]

Figure 3. The comparison between the Emergency signs

The parts of Emergency signs look similar each other

3. Experiment Design (5/5)

■ Setting

- □ Batch size: 64
- □Epoch: 20
- □ Metric: AUROC
- □ Early Stopping: If val_loss kept increasing more than 3 epochs, Stop
 - Monitor: Val_Loss
 - Patience: 3
 - Mode: min

4. Result (1/4)

- Scores

 □ Train/Validation
 - Step 1Loss kept decreasingAUROC kept increasing
 - Step 2

 □ Loss kept increasing

 □ AUROC kept decreasing

4. Result (2/4)

- Scores

 □ Test
 - Step 1
 - □ AUROC: 0.95
 - Step 2
 - □ AUROC: 0.9538
 - ▶ Parameters: Sklearn package, average='macro', multi_class='ovo'
 - ► Macro: calculate metric for each label >> find unweighted mean
 - ▶ Ovo: One-vs-One, Computes the average AUC of all possible pairwise combinations of classes

		•	•
Predict	True Emerg	gency Non	-Emergency
Emergency		10	0
Non-Emergen	су	1	9
True Predict	Exit_Arrow	Exit_Here	Non-Exit
Exit Arrow	43	3	1
LXII_AIIOW	73	3	'
Exit Here	4	14	0

10

12

310

4. Result (3/4)

- ■Inference [Step 1]
 - □ Images: 11 images collected manually
 - □ Inference time: generally, 140–150ms
 - ☐ The Sings are recognized well enough to be satisfied.

(a) Emergency [00:48~00:54]

(b) Non-Emergency [00:41~00:42] Figure 5. Inference examples of Step 1.

4. Result (4/4)

■Inference [Step 2]

- □ Inference time: generally, 140–150ms
- □ It takes more time to recognize the signs correctly in the case of images with backgrounds like ceiling, wall, windows.

(b) Exit_Here [01:01~01:02]

(a) Exit_Arrow [00:18~00:39]

Figure 6. Inference examples of Step 2.

5. Discussion

- Application
 - ☐ High learnability: easy to use
 - □ Low Usability: Difficult to detect specific sign among signs
- Future work
 - □ Considering directionality of emergency signals for route notification.
 - More datasets are needed.
 - □ Choosing a target device.

QnA