VE320 – Summer 2021

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 8 The pn Junction Diode

Outline

8.1 pn junction current

- 8.2 Generation-recombination currents
- 8.3 High-injection levels
- 8.4 A few more points on pn junctions (not in the textbook)

8.0 The logic behind the way to derive current

8.0 The logic behind the way to derive current

Assumptions of an ideal PN junction

- 1. The abrupt depletion layer approximation applies. The space charge regions have abrupt boundaries, and the semiconductor is neutral outside of the n=Neexpress P=Nien depletion region.
- 2. The Maxwell–Boltzmann approximation applies to carrier statistics.
- 3. The concepts of low injection and complete ionization apply. $N_a = N_b N_b = P_b$
- 4a. The total current is a constant throughout the entire pn structure.
- 4b. The individual electron and hole currents are continuous functions through the Ip(x) continuous In(x) pn structure.
- 4c. The individual electron and hole currents are constant throughout the depletion region. no loss of electrons & holas

in the depletion ho recombination

