Máquinas

Prof^a Jerusa Marchi

Departamento de Informática e Estatística Universidade Federal de Santa Catarina e-mail: jerusa@inf.ufsc.br

- unidade de Controle Finito
- fita
- cabeçote de leitura/escrita

- Ao contrário dos demais tipos de autômatos, MT não são um modelo a ser suplantado
- Ainda que este modelo seja fortalecido (multifitas, acesso aleatório), todos os melhoramentos mostram-se equivalentes, em poder computacional, às MT

- Operações da Unidade de Controle
 - 1. Levar a unidade de controle para um novo estado
 - 2.(a) Gravar um símbolo na célula apontada pelo cabeçote, substituindo algum símbolo lá encontrado ou não
 - (b) Mover o cabeçote de leitura/escrita para apontar para uma célula à direita ou à esquerda na fita em relação a posição corrente

- Quanto a fita:
 - infinita à direita
 - delimitada à esquerda pelo símbolo >
 - a cadeia de entrada é gravada logo a direita do símbolo ⊳ e o restante da fita é preenchido com espaços em branco (denotados por □)
- Quanto ao cabeçote de leitura/escrita
 - por convenção, sempre que o cabeçote for posicionado sobre o símbolo delimintador de fita, ele é movido automaticamente para a direita
 - são usados os símbolos \rightarrow e \leftarrow para denotar o movimento do cabeçote para a direita e para a esquerda, respectivamente
 - ullet os símbolos o e \leftarrow não fazem parte de nenhum alfabeto

Uma Máquina de Turing (MT) é uma quíntupla:

$$M = (K, \Sigma, \delta, s, H)$$

Onde:

- K = conjunto finito de estados
- Σ = alfabeto de entrada $\cup \{ \sqcup, \rhd \}$
- s =estado inicial ($s \in K$)
- $H = \text{conjunto de estados de parada } (H \subseteq K)$
- $\delta: (K-H) \times \Sigma$ para $(K \times (\Sigma \cup \{\leftarrow, \rightarrow\}))$, tal que
 - 1. para todos os $q \in K H$, se $\delta(q, \triangleright) = (p, b)$ então $b = \rightarrow$
 - 2. para todos os $q \in K-H$ e $a \in \Sigma$, se $\delta(q,a)=(p,b)$ então $b \neq \rhd$

- Se $q \in K H$, $a \in \Sigma$ e $\delta(q, a) = (p, b)$, então M, quando no estado q e tendo lido o símbolo a, transitará para o estado p e,
 - 1. se b for um símbolo contido em Σ , M irá substituir na fita o símbolo corrente a pelo símbolo b ou,
 - 2. se b for um dos símbolos \to ou \leftarrow , M moverá sua cabeça na direção convencionada para o símbolo b
- lacktriangle M pára quando atingir algum dos estados de parada.

Exemplo

- $M = (K, \Sigma, \delta, s, \{h\})$ onde:
 - $K = \{q_0, q_1, h\}$

 - $s = \{q_0\}$
 - $oldsymbol{\wp}$ δ :

\overline{q}	σ	$\delta(q,\sigma)$
$\overline{q_0}$	\overline{a}	(q_1,\sqcup)
q_0	Ш	(h,\sqcup)
q_0	\triangleright	(q_0, \rightarrow)
q_1	a	(q_0, a)
q_1	Ц	$ (q_0, \rightarrow) $
q_1	\triangleright	(q_1, \rightarrow)

Configuração

uma configuração é definida como um membro de

$$K \times \rhd \Sigma^{\star} \times (\Sigma^{\star}(\Sigma - \{\sqcup\}) \cup \{\varepsilon\})$$

$$[q, \varepsilon, \rhd aaaa]$$

- $m{\omega}$ ϵ é a parte da sentença de entrada já processada
- > aaaa é a parte da sentença ainda não processada
- Para simplificar adota-se a notação $[q, \triangleright \underline{a}aaa]$, indicando que o cabeçote encontra-se sob o símbolo sublinhado

Computação:

Sejam duas configurações de uma Máquina de Turing MT, $[q_1, w_1a_1u_1]$ e $[q_2, w_2a_2u_2]$ onde $a_1, a_2 \in \Sigma$. Então

$$[q_1, w_1\underline{a_1}u_1] \vdash [q_2, w2\underline{a_2}u_2]$$

sse para algum $b \in \Sigma \cup \{\rightarrow, \leftarrow\}$, $\delta(q_1, a_1) = (q_2, b)$ e também

1.
$$b \in \Sigma$$
, $w_1 = w_2$, $u_1 = u_2$ e $a_2 = b$, ou

2.
$$b = \leftarrow, w_1 = w_2 a_2$$
 e

(a)
$$u_2 = a_1 u_1$$
, se $a_1 \neq \sqcup$ ou $u_1 \neq \varepsilon$, ou

(b)
$$u_2 = \varepsilon$$
, se $a_1 = \sqcup$ e $u_1 = \varepsilon$, ou ainda

3.
$$b = \rightarrow$$
, $w_2 = w_1 a_1$ e

(a)
$$u_1 = a_2 u_2$$
, ou

(b)
$$u_1=u_2=\varepsilon$$
, e $a_2=\sqcup$

- Para transformar uma máquina de Turing em um mecanismo reconhecedor de Linguagens, é necessário alterar minimamente a sua definição, para que, ao terminar de computar a entrada a máquina finalize sua execução em um de dois estados:
 - aceitação
 - rejeição
- $m Dutra consideração útil é permitir que a máquina escreva símbolos na fita que não pertençam ao alfabeto <math>\Sigma$

Uma Máquina de Turing (MT) é uma séptupla:

$$M = (K, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

Onde:

- K = conjunto finito de estados
- Σ = alfabeto de entrada $\cup \{ \triangleright \}$
- Γ = alfabeto da fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$
- q_0 = estado inicial $(q_0 \in K)$
- q_{accept} = conjunto de estados de parada que aceitam a entrada $(q_{accept} \in K)$
- q_{reject} = conjunto de estados de parada que rejeitam a entrada $(q_{reject} \in K)$
- $\delta: K \times \Gamma$ para $(K \times \Gamma \cup \{\leftarrow, \rightarrow\})$

- ${\color{red} \blacktriangleright}$ Uma máquina de Turing MT decide uma linguagem $L\in\Sigma^{\star},$ se para qualquer cadeia $w\in\Sigma^{\star}$
 - MT aceita w, se $w \in L$
 - MT rejeita w, se $w \notin L$
- Uma linguagem L é Turing Reconhecível se alguma MT a reconhece (L é chamada Recursivamente enumerável).
- Uma linguagem L é Turing Decidível se alguma MT a decide (L é dita Recursiva).