Comprol Unit

Instruction Cycle:

An instruction cycle is the complete process of fetching, decoding and executing the instruction.

[Control Unit]

steps (Instruction Cycle)

-) PC gives the address to fetch an instruction from the memory.
- 2.) Once setched, the instruction opcode is
- 3.) This identifies, if there are any operands to be fetched from memory.
- 4.) The operand address is calculated.
 - 5) Operands are fetched from the memory.
- (.) Now the data operation is performed on the operands, and a result is
- 7.) If the gregult has to be stored in register, the instruction ends here.
- If the destination is memory, then first the destination address has to be calculated.
- a.) The overall is then stored in the memory. 10) How the current instruction has been executed.
- 11.) Side by side PC is incremented to calculate
- address of the next instruction.
- 12.) The above instruction cycle then repeats for further instructions.

Micro-operations & Control Signals

- A program is a set of instructions
- -> An instruction, requires a set of small operations called Micro-operations.
- -> A micro-operations is a finite activity performed by the processor in one clock cycle. One clock-cycle is also called as one T-state (Transition state).
- -> One Micro-Operation requires one T-state.
- -> Several Independent Micro-operations in the

same Testate. -> Control unit generates control signals to

Mi	one-way TI: MAR & PC TI: MAR & PC
	TI: MAR EPC
Ya Ir	1114K
7	2: MDR < Memory (Instr) T2: PC & PC+1 T2: MDR = MDR
	3: IR + MDR T3: IR + MPR
1.	PC & PC+1
	Examples Immediate Addressing mode Examples Immediate MOV R1, 25H; {R1 register gets the immediate rature 25H T1: MAR - PC T1: MAR - PC
	Examples Immediate
•	PI 25H; RI register gets
1)	MOV 121 value 2311
	TI: MAR & PC MAR & memory (Impr)
	T1: MAR < PC T2: MDR < memory (Instr)
	72: MPR
	T3: IR = MDR PC+1
	T3: R = PC+1 PC = PC+1 T4: R1 = 25H (IR) // R1 gets value 25H T4: R1 = 25H (IR) // from IR.
	11. RI = 25H ((K) / from 1R.
	79.
	Register Addressing mode Register Addressing mode Nov R1, R2; // R1 gets the date from R2
	Addressing Mode 1 to from RZ
2)	Register 11 Rigets the date
~)	22 N R1, R2;
	MOV
	TI: MAR EPC
	72: MDR < memory (9nstr)
	in - MDR
	TI: IR = MDR
	pc < pc+1

TY: RI < RZ

3) Direct Addressing mode RI gets data from memory mov RI, [2000H); location 2000H

> TI: MAR + PC T2: MER & memory (2wtr)

T3: IR & MDR pct pct1

TY: MARE IR (2000H)

TS: MDR < Memory ([2000M))

T6 : RI & MDR

Indirect Addressing mode!

Mov R1, [R2); SR1 gets data from memory

location pointed by R2.

TI: MAR < PC

T2: MDR < Memory (Int)

T3: IR < MDR PCE PCt1

MAR < R2

MOR - Menory (CR2) TS:

T6: RI & MOR