The maintenance of sex

How to overcome to twofold cost?

 Rapid demographic advantage versus slow evolutionary cost of asexuality

How to overcome to twofold cost?

 Rapid demographic advantage versus slow evolutionary cost of asexuality

How to overcome to twofold cost?

 Rapid demographic advantage versus slow evolutionary cost of asexuality

Fecundity
$$f(k) \propto (1-s)^k$$
 Number of deleterious mutations Effect of single mutation

$$\frac{f_{A}(k_{A})}{f_{S}(k_{S})} < \frac{1}{2} \iff (1-s)^{k_{A}-k_{S}} < \frac{1}{2}$$

condition for maintenance of sex due to deleterious mutations

Number of females 1000 800 Sexuals Asexuals 400 200 5 10 15 20 25 30 Generation

How to overcome to twofold cost?

 Rapid demographic advantage versus slow evolutionary cost of asexuality

Fecundity
$$f(k) \propto (1-s)^k$$
 Number of deleterious mutations Effect of single mutation

$$\frac{f_{A}(k_{A})}{f_{S}(k_{S})} < \frac{1}{2} \iff (1-s)^{k_{A}-k_{S}} < \frac{1}{2}$$

condition for maintenance of sex due to deleterious mutations

How to overcome to twofold cost?

 Rapid demographic advantage versus slow evolutionary cost of asexuality

Assuming an asexual is initially equivalent to a sexual, deleterious mutations must accumulate impossibly fast or have unrealistically large fitness effects for sexuality to be maintained.

 Epistasis = non-additive fitness effects among loci

- Epistasis = non-additive fitness effects among loci
- Allows for an abrupt decrease in fitness with number of deleterious mutations

- Epistasis = non-additive fitness effects among loci
- Allows for an abrupt decrease in fitness with number of deleterious mutations

- Epistasis = non-additive fitness effects among loci
- Allows for an abrupt decrease in fitness with number of deleterious mutations

- Works if sexual population already quite loaded with mutations
- See exercise sheet 5

• Environment favours specific allelic associations

• Environment favours specific allelic associations

- Environment favours specific allelic associations
- The environment fluctuates in time, favouring different associations at different times

- Environment favours specific allelic associations
- The environment fluctuates in time, favouring different associations at different times
- Asexuals should lose out as the allelic associations of an asexual lineage are fixed

Fluctuating epistasis Example

- Population with two types of habitats, each favouring a specific combination of alleles.
- Combination changes at each generation with probability *p*.
- Start with a population of sexuals. Introduce asexuals through mutation.

Fluctuating epistasis Example

- Population with two types of habitats, each favouring a specific combination of alleles.
- Combination changes at each generation with probability *p*.
- Start with a population of sexuals. Introduce asexuals through mutation.

Fluctuating epistasis Example

- Population with two types of habitats, each favouring a specific combination of alleles.
- Combination changes at each generation with probability *p*.
- Start with a population of sexuals. Introduce asexuals through mutation.

Fluctuating epistasis But...

- Environmental and genetic assumptions seem unrealistic.
- Allowing for refugia makes it much more difficult to maintain sexual reproduction:

Coevolution of host and parasites.

- Coevolution of host and parasites.
- Lock and key system where parasites can only target host with matching genotype.

- Coevolution of host and parasites.
- Lock and key system where parasites can only target host with matching genotype.
- Selection on parasites to match dominant host, selection on host to evade dominant parasite.
- Creates fluctuating epistasis in host.

Red queen dynamics

Red queen dynamics

Red queen dynamics can trigger fluctuating epistasis, favouring sexual reproduction.

But...

But...

Summary

- Maintenance of sex is not straightforward: rapid demographic advantage versus slow evolutionary cost of asexuality.
- Strong epistasis can mitigate demographic advantage as fitness decreases rapidly with new mutations.
- Fluctuating epistasis also disadvantages asexuals who cannot easily create novel allelic combinations.
- Ecological interactions can lead to red queen dynamics and fluctuating epistasis, favouring sexual reproduction.
- But existing models do not fully answer the question.

