Übungsblatt 6

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

- **Aufgabe 1.** a) Sei $M \subset N^n$ eine m-dimensionale Untermannigfaltigkeit. Zeigen Sie, dass $TM \subset TN$ eine Untermannigfaltigkeit ist. (Hinweis: Konstruieren Sie angepasste Karten für $TM \subset TN$ aus den angepassten Karten für $M \subset N$.)
 - b) Sei N eine glatte Mannigfaltigkeit und $F: N \to \mathbb{R}$ glatt und $0 \in \mathbb{R}$ ein regulärer Wert von F. Fassen Sie das Differential $dF: TN \to T\mathbb{R}$ als glatte Abbildung $dF: TN \to \mathbb{R}^2$ auf und zeigen Sie, dass $(0,0) \in \mathbb{R}^2$ ein regulärer Wert von dF ist. Zeigen Sie, dass das Tangentialbündel der Untermannigfaltigkeit $M = F^{-1}(0) \subset N$ gegeben ist durch die Untermannigfaltigkeit

$$TM = (dF)^{-1}(0,0) \subset TN.$$

c) Sei $S^n\subset\mathbb{R}^{n+1}$ die Sphäre. Zeigen Sie, dass das Tangentialbündel $TS^n\subset T\mathbb{R}^{n+1}\cong\mathbb{R}^{n+1}\times\mathbb{R}^{n+1}$ gegeben ist durch

$$TS^n \cong \{(p, v) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} | \|p\|^2 = 1, \sum_{i=1}^{n+1} p^i v^i = 0\}.$$

Aufgabe 2. Sei $M = \mathbb{R}^{2n}$ mit Koordinaten $q^1, \ldots, q^n, p^1, \ldots, p^n$ und sei $f \in C^{\infty}(\mathbb{R}^{2n})$. Das Hamiltonsche Vektorfeld $X_f \in \Gamma(TM)$ zu f ist gegeben durch

$$X_f = \sum_{i=1}^n \frac{\partial f}{\partial q^i} \frac{\partial}{\partial p^i} - \frac{\partial f}{\partial p^i} \frac{\partial}{\partial q^i}.$$

Die Poisson-Klammer von $f,g\in C^\infty(\mathbb{R}^{2n})$ ist die glatte Funktion $\{f,g\}\in C^\infty(\mathbb{R}^{2n})$ gegeben durch

$$\{f,g\} = X_f(g).$$

Zeigen Sie:

- a) $\{f,g\} = -\{g,f\}$, insbesondere $\{f,f\} = 0$ für alle $f,g \in C^{\infty}(\mathbb{R}^{2n})$.
- b) $\{f,gh\} = h\{f,g\} + g\{f,h\}$ für alle $f,g,h \in C^{\infty}(\mathbb{R}^{2n})$.
- c) $X_{\{f,g\}} = [X_f, X_g]$ für alle $f, g \in C^{\infty}(\mathbb{R}^{2n})$.
- d) $\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0 \text{ für alle } f,g,h\in C^{\infty}(\mathbb{R}^{2n}) \text{ (Jacobi-Identit"at)}.$

Aufgabe 3. Seien M,N glatte Mannigfaltigkeiten und $F:M\to N$ eine glatte Abbildung. Zwei Vektorfelder $X\in\Gamma(TM)$ und $Y\in\Gamma(TN)$ heißen F-verwandt, geschrieben $X\sim_F Y$ falls für alle $p\in M$

$$dF_p(X_p) = Y_{F(p)}$$

gilt (d.h. $dF(X)(f) = Y(f) \circ F$ für alle $f \in C^{\infty}(N)$). Seien nun $X_1, X_2 \in \Gamma(TM), Y_1, Y_2 \in \Gamma(TN)$ mit $X_i \sim_F Y_i, i = 1, 2$. Zeigen Sie:

$$[X_1, X_2] \sim_F [Y_1, Y_2].$$

Aufgabe 4. Sei M eine glatte Mannigfaltigkeit, $p \in M$.

- a) Sei $v \in T_pM$. Zeigen Sie, dass ein Vektorfeld $X \in \Gamma(TM)$ existiert mit $X_p = v$. (Hinweis: Wählen Sie eine Karte um p und benutzen Sie eine geeignete Hutfunktion.)
- b) Sei $f \in C^{\infty}(M)$. Die zweite Ableitung von f im Punkt p ist die Bilinearform $d^2 f_p : T_p M \times T_p M \to \mathbb{R}$ gegeben durch

$$d^2 f_p(v, w) := X(Y(f))(p), \quad v, w \in T_p M,$$

wobei $X,Y \in \Gamma(TM)$ beliebige Vektorfelder sind mit X(p) = v,Y(p) = w. Unter welcher Bedingung an df_p ist d^2f_p wohldefiniert, also unabhängig von der Wahl der Vektorfelder X,Y?

Aufgabe 5. (Bonusaufgabe) Ziel dieser Aufgabe ist es zu zeigen, dass jede kompakte Mannigfaltigkeit diffeomorph zu einer Untermannigfaltigkeit von \mathbb{R}^m ist, für m groß genug. Sei M^n eine glatte kompakte Mannigfaltigkeit und sei $\{(U_\alpha, \phi_\alpha = (x_\alpha^1, \dots, x_\alpha^n)) \mid \alpha = 1, \dots, N\}$ ein endlicher Atlas für M. Wir wählen offene Mengen $V_\alpha \subset \bar{V}_\alpha \subset U_\alpha$, sodass $M = \bigcup_\alpha V_\alpha$ und glatte Funktionen h_α mit Träger in U_α , sodass $h_\alpha \equiv 1$ auf \bar{V}_α . Betrachten Sie nun die glatte Abbildung

$$F: M \to \mathbb{R}^{N(n+1)} \cong \mathbb{R}^N \times \mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n$$

$$F(p) = (h_1(p), \dots, h_N(p), h_1(p)\phi_1(p), h_2(p)\phi_2(p), \dots, h_N(p)\phi_N(p))$$

$$= (h_1(p), \dots, h_N(p), h_1(p)x_1^1(p), \dots, h_1(p)x_1^n(p), h_2(p)x_2^1(p), \dots, h_N(p)x_N^n(p)).$$

Dabei definieren wir $h_{\alpha}\phi_{\alpha}(p)=0$, falls $p\notin U_{\alpha}$ (siehe Korollar 1.51). Zeigen Sie:

- a) F ist injektiv. (Benutzen Sie, dass zu jedem $p \in M$ ein α existiert mit $h_{\alpha}(p) = 1$ und dass die Karten injektiv sind.)
- b) F ist eine Immersion. (Benutzen Sie, dass die Karten Diffeomorphismen sind). Folgern Sie, dass F eine Einbettung ist.

Aufgabe 6. (Bonusaufgabe) Sei V ein reeller Vektorraum. Eine Lie-Klammer auf V ist eine schiefsymmetrische bilineare Abbildung $[\cdot,\cdot]:V\times V\to V$, die die Jacobi-Identität erfüllt:

$$[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0, \quad \forall u, v, w \in V$$

Das Paar $(V, [\cdot, \cdot])$ heißt dann eine Lie-Algebra.

- a) Zeigen Sie, dass (\mathbb{R}^3, \times) eine Lie-Algebra ist $(\times$ bezeichnet das Kreuzprodukt).
- b) Betrachten Sie \mathbb{R}^3 mit Koordinaten x,y,z und seien die Vektorfelder $X,Y,Z\in\Gamma(T\mathbb{R}^3)$ gegeben durch

$$X(x,y,z)=y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y},\quad Y(x,y,z)=z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z},\quad Z(x,y,z)=x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}.$$

Zeigen Sie, dass der Untervektorraum $V=\mathrm{span}(X,Y,Z)\subset \Gamma(T\mathbb{R}^3)$ eine Lie-Unteralgebra ist, d.h. für Vektorfelder $X_1,X_2\in V$ gilt $[X_1,X_2]\in V$

c) Seien $(U, [\cdot, \cdot]_U)$, $(W, [\cdot, \cdot]_W)$ Lie-Algebren. Eine lineare Abbildung $A: U \to W$ heißt Lie-Algebren-Homomorphismus, falls $[A(u_1), A(u_2)]_W = A([u_1, u_2]_U)$ gilt, für alle $u_1, u_2 \in U$. Konstruieren Sie einen Lie-Algebren-Isomorphismus $(\mathbb{R}^3, \times) \to (V, [\cdot, \cdot])$ (Notation wie in Teil a),b)).

Abgabe Donnerstag, 26.05.2016 in der Vorlesung.