A

Linear ALgebra.

Alec Zabel-Mena

June 30, 2021

Chapter 1

Vector Spaces and Modules.

1.1 Definitions and Examples

Definition. We call a nonemty set V a **vector space** over a field F, if given a binary operation $+: V \times V \to V$ called **vector addition** and an operation $\cdot: F \times V \to V$ called **scalar multiplication**, we have that (V, +) forms an abelian group, and for all $v, w \in V$ and $\alpha, \beta \in F$:

$$[label=(0)]$$

- 1. $\alpha(v+w) = \alpha v + \alpha w$.
- 2. $(\alpha + \beta)v = \alpha v + \beta v$.
- 3. $\alpha(\beta v) = (\alpha \beta)v$.
- 4. 1v = v, where 1 as the identity element of F under its multiplication.

Lemma 1.1.1. Let V be a vector space over a field F. Then the operation $\cdot : F \times V \to V$ of scalar multiplication as a group homomorphism of V into V.

Proof. Taking $\cdot : F \times V \to V$ by $(\alpha, v) \to \alpha v$, restrict \cdot to V, i.e. consider $\cdot|_V : V \to V$ by $v \to \alpha v$ for $\alpha \in F$. By (1) of the scalar multiplication rules, we get that $\cdot|_V$ as a homomorphism; which makes \cdot a homomorphism.

Example 1.1. [label=(0)]

- 1. Let F be a field and $F \subseteq K$ a field extension of F. Then K as a vector space over F with + the usual addition of K and \cdot the multiplication of K restricted to F by the first part, i.e. the product $\cdot : v \to \alpha v$ with $\alpha \in F$.
- 2. Let F be a field and consider F^n the set of ordered n-tuples of elements of F, for some $n \in \mathbb{Z}^+$. Take $+: (v, w) \to v + w$ by $(v_1, \ldots, v_n) + (w_1, \ldots, w_n) = (v_1 + w_1, \ldots, v_n + w_n)$, where $v = (v_1, \ldots, v_n), w = (w_1, \ldots, w_n) \in F^n$, and $\cdot: (\alpha, v) \to \alpha v$ by $\alpha(v_1, \ldots, v_n) = (\alpha v_1, \ldots, \alpha v_n)$. Then F^n as a vector space over F.

- 3. Let F be any field and let F[x] be the polynomial field over F. Take + to be polynomial addition, and \cdot the multiplication of a constant in F by a polynomial in F[x]. Then F[x] as a vector space over F.
- 4. LEt F[x] be the polynomial field over a field F and consider the set $P_n = \{f \in Fx : \deg f < n\}$. Then P_n as a subset of F[x] forms a vector space over F under the same operations + and \cdot (that last example motivates the following definition).

Definition. LEt V be a vector space over a field F. We say a subset $W \subseteq V$ as a **subspace** of V if W as also a vector space over F.

Lemma 1.1.2. Let V be a vector space over a field F, and let $W \subseteq V$ be a subspace of V. Then for all $w_1, w_2 \in W$ and $\alpha, \beta \in F$, $\alpha w_1 + \beta w_2 \in W$.

Proof. Since W as a vector space we have that $\alpha w_1, \beta w_2 \in W$; then by closure of vector addition, $\alpha w_1 + \beta w_2 \in W$.

Definition. Let U and V be vector spaces over a filed F. We call a mapping $T:U\to V$ a **homomorphism** of U into V if:

[label=(0)]
$$T(u_1 + u_2) = T(u_1) + T(u_2)$$
. $T(\alpha u_1) = \alpha T(u_1)$.

for all $u_1, u_2 \in U$ and $\alpha \in F$. If T as 1-1 from U onto V, then we call T an **isomorphism** and we say U as **ismorphic** to V and write $U \simeq V$. We define the **kernal** of T to be $\ker T = \{u \in U : T(u) = 0\}$. We call the set of all homomorphism of U into V hom(U, V).

Example 1.2. Let F be a field and consider the vector spaces F^n and P_n defined in examples (2) and (4). Then $P_n \simeq F^n$. Take the map $a_0 + a_1x + \cdots + a_nx^{n-1} \to (a_0, \ldots, a_{n-1})$, which defines an isomorphism.

Lemma 1.1.3. If V as a vector space over a field F, then for all $\alpha \in F$ and $v \in V$: $\lceil label = (0) \rceil \alpha 0 = 0.0v = 0.(-\alpha)v = -(\alpha v)$. $\alpha v = 0$ and $v \neq 0$ implies $\alpha = 0$.

- **3.** Proof. [label=(0)] $\alpha 0 = \alpha (0+0) = \alpha 0 + \alpha 0$, hence $\alpha 0 = 0$.
- **2.** 0v = (0+0)v = 0v + 0v, hence 0v = 0.
- 3. He have 0 = 0v, that as $0 = (\alpha + (-\alpha))v = \alpha v + (-\alpha)v$. Adding both sided by $-(\alpha v)$ we get the desired result.
- 4. If $\alpha \neq 0$ and $v \neq 0$, then $0 = \alpha^{-1}0 = \alpha^{-1}(\alpha v) = 1v = v$ which makes v = 0, which cannot happen. So $\alpha = 0$.

Lemma 1.1.4. Let V be a vector space over a field F and let $W \subseteq V$ be a subspace of V. Then V/W as a vector space over F where for $v_1 + W, v_2 + W \in V/W$ and $\alpha \in F$ we have: $\lceil label = (0) \rceil (v_1 + W) + (v_2 + W) = (v_1 + v_2 + W)$. $(v_1 + W) = \alpha v_1 + W$.

2. Proof. Since V as an abelian group, and W a subgroup of V under +, we get that V/W as the quotient group of V over W; which as abelian since W as abelian.

Suppose now that for $v, v' \in V$ that v + W = v' + W, then for $\alpha \in F$ we have $\alpha(v + W) = \alpha(v' + W)$, and by hypotheses, we have $v - v' \in W$. Now since W as a subspace, $\alpha(v - v') \in W$ as well, so $\alpha v + W = \alpha v' + W$, so the product as well defined.

Now consider $v, v' \in W$ and $\alpha, \beta \in F$. By our product we have that $\alpha(v+w+W) = \alpha(v+w) + W = (\alpha v + \alpha w) + W = (\alpha v + W) + (\alpha v' + W)$, $(\alpha + \beta)(v+W) = (\alpha + \beta)v + W = (\alpha v + \beta v) + W = \alpha(v+W) + \beta(v+W)$, $\alpha(\beta v+W) = \alpha\beta v + W = (\alpha\beta)v + W$, and finally, 1(v+w) = 1v + W = v + W. Therefore V/W as a vector space over F.

Definition. Let V be a vector space over F and let $W \subseteq V$ be a subspace of V. We call the vector space formed by taking the quotient group of V over W, V/W the **quotient space** of V over W.

Theorem 1.1.5 (The First Homomorphism Theorem for Vector Spaces). If $T: U \to V$ as a homomorphism of U onto V, and $W = \ker T$, then $V \simeq U/W$. If U as a vector space and $W \subseteq U$ as a subspace of U, then there as a homomorphism of U onto U/W.

Proof. By the fundamental theorem of homomorphisms, we have that, as groups, $V \simeq U/W$. That there as a homomorphism from U onto U/W follows immediately.

Definition. Let V bhe a vector space over a field F and let $\{U_i\}_{i=1}^n$ be a collection of subspaces of V. We call V the **internal direct sum** of $\{U_i\}$ if every element of V can be written uniquely as a vector sum of elements of each U_i for $1 \le i \le n$; That as for $v \in V$, $v = u_1 + \cdots + u_n$ as unique where $u_i \in U_i$.

Lemma 1.1.6. Let $\{V_i\}_{i=1}^n$ be a collection of vector spaces over a field F and let $V = \prod_{i=1}^n V_i$ and define $+: V \times V \to V$ by $(v_1, \ldots, v_n) + (v'_1, \ldots, v'_n) = (v_1 + v'_1, \ldots, v_n + v'_n)$ and define $\cdot: F \times V \to V$ by $\alpha(v_1, \ldots, v_n) = (\alpha v_1, \ldots, \alpha v_n)$. Then V as a vector space over F.

Proof. Since V_i as a vector space for all $1 \leq i \leq n$, they are all abelian groups, hence V as closed under +, and inherits associativity, as well as commutativity. Now letting $0 = (0_1, \ldots, 0_n)$, where 0_i as the identity of V_i , we get for any $v \in V$ that v + 0 = o + v = v, so 0 as the identity. Likewise for any $v \in V$, $-v = (-v_1, \ldots, -v_n)$ serves as the inverse for v. So (V, +) forms an abelian group.

Now by the axioms of scalar multiplication on each of the V_i , let $v = (v_1, \ldots, v_n), w = (w_1, \ldots, w_n) \in V$ and $\alpha, \beta \in F$. We get $\alpha(v + w) = \alpha(v_1 + w_1, \ldots, v_n + w_n) = (\alpha(v_1 + w_1), \ldots, \alpha(v_n + w_n)) = (\alpha v_1 + \alpha w_1, \ldots, \alpha v_n + \alpha w_n) = (\alpha v_1, \ldots, \alpha v_n) + (\alpha w_1, \ldots, \alpha w_n) = \alpha v + \alpha w$. We also get $(\alpha + \beta)v = ((\alpha + \beta)v_1, \ldots, (\alpha + \beta)v_n) = (\alpha v_1 + \beta v_1, \ldots, \alpha v_n + \beta v_n) = (\alpha v_1, \ldots, \alpha v_n) + (\beta v_1, \ldots, \beta v_n) = \alpha v + \beta v$. Through similar calculation, we get that $\alpha(\beta v) = (\alpha \beta)v$ and 1v = v; which makes V into a vector space.

Definition. Let $\{V_i\}_{i=1}^n$ be a collection of vector spaces over a field F and let $V = \prod_{i=1}^n V_i$ and define $+: V \times V \to V$ by $(v_1, \ldots, v_n) + (v'_1, \ldots, v'_n) = (v_1 + v'_1, \ldots, v_n + v'_n)$ and define $\cdot: F \times V \to V$ by $\alpha(v_1, \ldots, v_n) = (\alpha v_1, \ldots, \alpha v_n)$. We call V, as a vector space over F the **external direct sum** of $\{V_i\}$ and write $V = V_1 \oplus \cdots \oplus V_n$, or $V = \bigoplus_{i=1}^n V_i$.

Theorem 1.1.7. Let V be a vector space and let $\{U_i\}_{i=1}^n$ be a collection of subspaces of V. If V is the internal direct sum of $\{U_i\}$ then V is isomorphic to the external direct sum of $\{U_i\}$; that is: $V \simeq \bigoplus_{i=1}^n U_i$.

Proof. Let $v \in V$. By hypothesis $v = u_1 + \cdots + u_n$ with $u_i \in U_i$ for $1 \leq i \leq n$, and it is a unique representation of v. Define then, the map $T: V \to \bigoplus_{i=1}^n U_i$ by the map $v = v = u_1 + \cdots + u_n \to (u_1, \ldots, u_n)$. Since v has a unique representation by definition, T is well defined; moreover it is 1 - 1, as $(u_1, \ldots, u_n) = (w_1, \ldots w_n)$ implies $u_i = w_i$ for all $1 \leq i \leq n$, hence $u_1 + \cdots + u_n = w_1 + \cdots + w_n$, and since this sum is unique, they both represent a vector $v \in V$. That T is onto follows directly from definition.

Finally, let $v, w \in V$, then $v = u_1 + \dots + u_n$ and $w = w_1 + \dots + w_n$. Hence $T(v + w) = T(u_1 + w_1 + \dots + u_n + w_n) = (u_1 + w_1, \dots, u_n + w_n) = (u_1, \dots, u_n) + (w_1, \dots, w_n) = T(v) + T(w)$. Similarly, $T(\alpha v) = (v)$.

Remark. That V is the internal direct sum of $\{U_i\}$ and that $V \simeq U_1 \oplus \cdots \oplus U_n$ by the above theorem permits us to write $V = U_1 \oplus \cdots \oplus U_n$, or $V = \bigoplus_{i=1}^n U_i$.

1.2 Linear Independence and Bases.

Definition. If V is a vector space over a field F and ive $v_1, \ldots, v_n \in V$, then we call any element $v \in V$ of the form $v = \alpha_1 v_1 + \cdots + \alpha_n v_n$ for $\alpha_1, \ldots, \alpha_n \in F$ a **linear comination** of v_1, \ldots, v_n over F.

Definition. Let V be a vector space. We call the set of all linear combinations of finite sets of elements of a nonempty subset $S \subseteq V$ the **linear span** of S; and we write span S.

Lemma 1.2.1. If V is a vector space, and $S \subseteq V$ is nonempty, then span S is a subspace of V.

Proof. Since span S is the set of all linear combinations of finite sets of elements of S, it is clear that span $S \subseteq V$. Now let $v, w \in \text{span } S$, then $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$ and $w = \mu_1 w_1 + \cdots + \mu_m w_m$; where $\lambda_i, \mu_j \in F$ and $v_i, w_j \in S$ for $1 \le i \le n$ and $1 \le j \le m$. Now consider $\alpha, \beta \in F$, then $\alpha v + \beta w = \alpha(\lambda_1 v_1 + \cdots + \lambda_n v_n) + \beta(\mu_1 w_1 + \cdots + \mu_m w_m) = (\alpha \lambda_1) v_1 + \cdots + (\alpha \lambda_n) v_n + (\beta \mu_1) w_1 + \cdots + (\beta \mu_m) w_m$ which is a linear combination of the finite set $\{v_1, \ldots, v_n, w_1, \ldots, w_m\}$ of elements of S. Therefore $\alpha v + \beta w \in \text{span } S$.

Lemma 1.2.2. *If* $S, T \subseteq V$, *then:*

 $[label=(0)]S \subseteq T \ implies \ {\rm span}\ S \subseteq {\rm span}\ T. \ {\rm span}\ (S \cup T) = {\rm span}\ S + {\rm span}\ T. \ {\rm span}\ ({\rm span}\ S) = {\rm span}\ S.$

2. Proof. [label=(0)]

Let $v \in \operatorname{span} S$, then $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$, with $v_1, \ldots, v_n \in S$. Since $S \subseteq T$, $v_1, \ldots, v_n \in T$, hence $v \in \operatorname{span} T$.

- 2. Let $v \in \text{span}(S \cup T)$, then $v = \lambda_1 v_1 + \dots + \lambda_n v_n + \mu_1 w_1 + \dots + \mu_m w_m = (\lambda_1 v_1 + \dots + \lambda_n v_n) + (\mu_1 w_1 + \dots + \mu_m w_m)$, where $v_i \in S$ and $w_j \in T$. Then $v \in \text{span}(S + \text{span}(T))$. Now for $v \in \text{span}(S + \text{span}(T))$, where $v_i \in S$ and $v_j \in T$. Then $v \in \text{span}(S + \text{span}(T))$ is a linear combination of the finite set $\{u_1, \dots, u_n, w_1, \dots, w_n\}$ of elements of $S \cup T$, hence $v \in \text{span}(S \cup T)$.
- 3. Clearly span $S \in \text{span (span } S)$. Suppose then that $v \in \text{span (span } S)$. Then $v =_1 v_1 + \cdots + \alpha_n v_n$ where $v_i = \beta_{i1} v_{i1} + \cdots + \beta_{im} v_{im}$ where $v_{ij} \in S$. Hence $v = ((\alpha_1 \beta_{11}) v_{11} + \cdots + (\alpha_1 \beta_{1m}) v_{1m}) + \cdots + (\alpha_n \beta_{n1}) v_{n1} + \cdots + (\alpha_n \beta_{nm}) v_{nm}$. Therefore span(span S) $\subseteq \text{span } S$.

Definition. We call a vector space V over a field F finite dimensional over F of there is a finite subset $S \subseteq V$ whose linear span is V; that is span S = V.

Example 1.3. F^n is finite dimensional. Let $S = \{(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1)\}$. Then span $S = F^n$.

Definition. Let V be a vector space over a field F. We say that a set of $\{v_1, \ldots, v_n\}$ of elements of V linearly dependent over F if there exist $\lambda_1, \ldots, \lambda_n \in F$, not all 0 such that $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$. We call $\{v_1, \ldots, v_n\}$ linearly independent over F if it is not linearly dependent over F; that is $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ implies $\lambda_1 = \cdots = \lambda_{n=0}$.

Example 1.4. [label=(0)]

- 1. In F^3 , the vectors (1,0,0), (0,1,0), (0,0,1) are linearly independent, where as (1,1,0), (0,1,3), (0,1,3) are linearly dependent.
- 2. Consider the set \mathbb{C} of complex numbets as a vector space over \mathbb{R} . The vectors 1, i are linearly independent over \mathbb{R} since $i \notin \mathbb{R}$. However, 1, i is not linearly independent over \mathbb{C} , as $i^2 + 1 = 0$ by definition; where $\lambda_1 = i$ and $\lambda_2 = 1$.

Lemma 1.2.3. If $v_1, \ldots, v_n \in V$ are linearly independent, then every element in span $\{v_1, \ldots, v_n\}$ can be represented unquiely as a linear combination of v_1, \ldots, v_n .

Proof. Let $v \in \text{span}\{v_1, \dots, v_n\}$ such that $v = \lambda_1 v_1 + \dots + \lambda_n v_n$ and $v = \mu_1 v_1 + \dots + \mu_n v_n$. Then $\lambda_1 v_1 + \dots + \lambda_n v_n = \mu_1 v_1 + \dots + \mu_n v_n$, then $(\lambda_1 - \mu_1)v_1 + \dots + (\lambda_n - \mu_n)v_n$. By linear independence, this implies that $\lambda_i - \mu_i = 0$, for all $1 \le i \le n$. Therefore v is uniquely represented.

Theorem 1.2.4. If $v_1, \ldots, v_n \in V$, then they are linearly independent, or v_k is a linear combination of v_1, \ldots, v_{k-1} for $1 \le k \le n$.

Proof. If v_1, \ldots, v_n are linearly independent, then we are done. Now suppose that they are linearly dependent, then $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ for $\lambda_1, \ldots, \lambda_n$ not all 0. Let k be the largest such integer for which $\lambda_k \neq 0$, and $\lambda_i = 0$ for all k < i. Then $\lambda_1 v_1 + \cdots + \lambda_n v_n = \lambda_1 v_1 + \cdots + \lambda_k v_k$ where $\lambda_1, \ldots, \lambda_k$ are not all 0 for $1 \leq i \leq k$. Then we have that $v_k = (\lambda_k^{-1} \lambda_1) v_1 + \cdots + (\lambda_k^{-1} \lambda_{k-1}) v_{k-1}$ which is a linear combination of v_1, \ldots, v_{k-1} .

Corollary. If $v_1, \ldots, v_n \in V$ have W as a linear span, and if v_1, \ldots, v_k are linearly independent, then there is a linearly independent subset of $\{v_1, \ldots, v_n\}$ of the form $\{v_1, \ldots, v_k, v_{i_1}, \ldots, v_{i_r}\}$ which span W.

Proof. If v_1, \ldots, v_n are linearly independent, then we are done. If not, let j be the smallest such integer for which v_j is a linear combination of its predecessors. Since v_1, \ldots, v_k are linearly independent, we get k < j. then consider the set $S = \{v_1, \ldots, v_n\} \setminus v_j = \{v_1, \ldots, v_k, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\}$ which has n-1 elements. Clearly, span $S \subseteq W$.

Now let $w \in W$, then $w = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Since v_j is a linear combination of v_1, \ldots, v_{j-1} , we get that $w = \lambda'_1 v_1 + \cdots + \lambda'_k v_k + \cdots + \lambda'_{j-1} v_{j-1} + \lambda_{j+1} v_{j+1} + \cdots + \lambda_n v_n$ which makes $W \subseteq \operatorname{span} S$.

Now if we proceed by removing all voctors which are linear combinations of their predecessors, we get a set $\{v_1, \ldots, v_k, v_{i_1}, \ldots, v_{i_r}\}$ with span S; by the preceding argument, we get again that $W \subseteq \operatorname{span} S$.

Corollary. If V is a finite dimensional vector space, then there is a finite set of linearly independent vectors $\{v_1, \ldots, v_n\}$ such that span $\{v_1, \ldots, v_n\} = V$.

Proof. By definition, since V is finite dimensional, there is a finite set of vectors $\{u_1, \ldots, u_m\}$ with linear span V. Then by the previous corollary, there is a subset $\{v_1, \ldots, v_n\}$ of linearly independent vectors whose span is also V.

Definition. We call a subset S of a vector space V a basis if S consists of linearly independent vectors, and span S = V.

What the above corollary states, is that if V is a finite dimensional vector space, and u_1, \ldots, u_m (not necessarily independent), span V, then u_1, \ldots, u_m contain a basis of V.

Example 1.5. A basis need not be finite. Consider the polynomial field F[x], the set $\{1, x, x^2, \ldots, x_n, \ldots\}$ forms a basis of F[x]. However, the set $\{1, x, x^2, \ldots, x^n\}$ span the subspace P_n of F[x].

Lemma 1.2.5. If V is a finite dimensional vector space, then $V \simeq F^n$ for some $n \in \mathbb{Z}^+$.

Proof. By lemma 1.2.3 and the above corollary, any $v \in V$ is the unique combination of basis elements v_1, \ldots, v_n ; that is $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$. Now take the map $v \to (\lambda_1, \ldots, \lambda_n)$ is well defined, 1-1 by linear independence and onto. Hence $V \simeq F^n$.

Remark. In fact if $\{v_1, \ldots, v_n\}$ is a basis for V, then $|\{v_1, \ldots, v_n\}| = n$.

Lemma 1.2.6. If $v_1, \ldots, v_n \in V$ forms a basis, and $w_1, \ldots, w_m \in V$ are linearly independent, then $m \leq n$. Moreover, the set $\{v_1, \ldots, v_n\}$ is maximally linearly independent.

Proof. For any arbitrary vector $v \in V$, v is a linear combination of v_1, \ldots, v_n by lemma 1.2.3, hence $\{v_1, \ldots, v_v\}$ is linearly dependent. This makes $\{v_1, \ldots, v_n\}$ maximally independent.

Now $w_m \in V$ is a linear combination of v_1, \ldots, v_n ; moreover they span V by theorem 1.2.4, therefore, by the previous corollary there is a subset $\{w_m, v_{i_1}, \ldots, v_{i_k}\}$ with $k \leq n-1$ which is a basis of V.

Repeating by taking $w_{m-1}, w_m, \ldots, v_{i_k}$; we get, eventually, a basis $\{w_{m-1}, w_m, \ldots, v_{j_1}, dots, v_{j_s}\}$, with $s \leq n-1$. Repeating then of the vectors w_2, \ldots, w_{m-2} , we get a basis $\{w_2, \ldots, w_{m-1}, \ldots, v_{\alpha}\}$. Since w_1, \ldots, w_m are linearly independent, w_1 is not a linear combination of the others, hence the basis contains some v. Now the basis above has m-1 w_i 's, at the cost of one $v \in V$, hence $m-1 \leq n-1$; thus $m \leq n$.

Corollary. Any two bases have the same number of elements.

Proof. Let $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ be bases with n and m elements respectively. Since they are both linearly independent, by above we get $m \le n$ and $n \le m$. Therefore m = n.

Corollary. $F^n \simeq F^m$ if and only if n = m.

Proof. F^n has the basis $\{(1,0,\ldots,0)_n,\ldots,(0,0,\ldots,1)_n\}$ and F^m has basis $\{(1,0,\ldots,0)_m,\ldots,(0,0,\ldots,1)_m\}$, and any isomorphism must map a basis to a basis.

Corollary. If V is finite dimensional over F, with $V \simeq F^n$ for some unque n, then any basis in V has exactly n elements.

Definition. If V is a finite dimensional vector space over a field F, with a basis $\{v_1, \ldots, v_n\}$ of n elements, we call the n dimension of V over F and write $\dim_F V = n$ or $\dim V = n$.

Example 1.6. [label=(0)]

- 1. $\dim F^n = n$.
- 2. $\dim_F P_n = n$, and $\dim F[x] = \infty$ (since F[x]) is infinite dimensional.
- 3. $\dim_{\mathbb{R}} \mathbb{C} = 2$.

Corollary. If V and U are finite dimensional vector spaces over a field F, with $\dim_F V = \dim_F U$, then $V \simeq U$.

Proof. $V \simeq F^n$ and $F^n \simeq U$. By transitivity, we get $V \simeq U$.

Lemma 1.2.7. If V is a finite dimensional vector space over F and of $u_1, \ldots, u_m \in V$ are linearly independent, then there exis $u_{m+1}, \ldots, u_{m+r} \in V$ such that $\{u_1, \ldots, u_m, u_{m+1}, u_{m+r}\}$ is a basis of V.

Proof. By finite dimensionality, there is a basis v_1, \ldots, v_n of V, which span V. Hene span $\{u_1, \ldots, u_m, v_1, \ldots, v_n\} = V$, therefore by theorem 1.2.4 there is a subset $\{u_1, \ldots, u_m, v_{i_1}, \ldots, v_{i_r}\}$ which is a basis of V. Now just map $v_{i_j} \to u_{m+j}$ for each $1 \le j \le r$.

Remark. This gives us a method for constructing bases of vector spaces.

Lemma 1.2.8. If V is finite dimensional, and if W is a subspace of V, then W is also finite dimensional. Moreoverm dim $W \leq \dim V$ and dim $V/W = \dim V - \dim W$.

Proof. If dim V=n, then any set of n+1 vectors in V is linearly dependent, by maximality, hence so is any set of n+1 vectors in W. Then there exists a maximal set of linearly independent elements in W, w_1, \ldots, w_m , with $m \leq n$. If $w \in W$, then w_1, \ldots, w_m, w are linearly dependent with $\lambda_1 w_1 + \cdots + \lambda_m w_m + \lambda w = 0$. Now $\lambda \neq 0$, for that would imply w_1, \ldots, w_n, w linearly independent. Hence $w = \mu_1 w_1 + \cdots + \mu_m w_m$ where $\mu_i = \lambda^{-1} \lambda_i$. Thus we get $w \in \text{span } \{w_1, \ldots, w_m\}$, i.e. $W = \text{span } \{w_1, \ldots, w_m\}$, thus w_1, \ldots, w_m form a basis of W. Therefore $m = \dim W \leq \dim V = n$.

Now take $V \to V/W$ by $v_1, \ldots, v_r \to v'_1, \ldots, v'_r$. By lemma 1.2.7, if $\{w_1, \ldots, w_m\}$ form a basis of W, then there exist v_{m+1}, \ldots, v_{m+r} such that $\{w_1, \ldots, w_m, v_{m+1}, v_{m+r}\}$ form a basis for V. That is, for any $v \in V$, $v = \lambda_1 w_1 + \cdots + \lambda_m w_m + \mu_1 v_1 + \cdots + \mu_r v_r$. Then we get that $v' = \mu_1 v'_1 + \cdots + \mu_r v'_r$, hence span $\{v'_1, \ldots, v'_r\} = V/W$. Now if $\gamma_1 v'_1 + \cdots + \gamma_r v'_r = 0$, then $\gamma_1 v'_1 + \cdots + \gamma_r v_r \in W$, making $\gamma_1 v'_1 + \cdots + \gamma_r v_r = \lambda_1 w_1 + \cdots + \lambda_m v_m$. By linear independence, $\gamma_i, \lambda_j = 0$ for all $1 \le i \le r$ and $1 \le j \le m$. This V/M has a basis of $r = \dim V - \dim W$ elements. Therefore $\dim V/W = \dim V - \dim W$.

Corollary. If U and W are finite dimensional subspaces of a vector space V, then U + W is finite dimensional, and $\dim(A + B) = \dim A + \dim B - \dim_A \cap B$.

Proof. We have $U+W/W\simeq U/U\cap W$. Hence we get that $\dim U+W/W=\dim (U+W)-\dim W=\dim U/U\cap W=\dim U-\dim U\cap W$. Then $\dim (U+W)=\dim W=\dim U-\dim U=0$.

1.3 Dual Spaces.

Lemma 1.3.1. Let V and W be vector spaces over a field F. Then hom(V, W) is a vector space over F.

Proof. First, let $T, L \in \text{hom}(V, W)$, and $\alpha, \beta \in F$. Then $T + L(\alpha v + \beta u) = \alpha T(v) + \beta T(u) + \alpha L(v) + \beta L(u) = \alpha (T+L) + \beta (T+L)$, so $T+L \in \text{hom}(V, W)$. Since + is just function addition, it is associative. Likewise, the zero map $0: V \to W$ by $v \to 0$ and the map $-T: V \to W$ by $v \to -v$ define the identity of hom(V, W) and the inverse of T respectively. This makes (hom(V, W), +) into a group. Now by the properties of homomorphisms, we also see that $\alpha(T+L) = \alpha T + \alpha L$, $(\alpha + \beta)T = \alpha T + \beta T$, $\alpha(\beta T) = (\alpha \beta)T$ and T(1v) = 1T(v). This makes hom(V, W) a vector space.

Lemma 1.3.2. If $S, T \in \text{hom}(V, W)$ such that $S(v_i) = T(v_i)$ for all v_i in a basis $\{v_1, \ldots, v_n\}$ of V, then S = T.

Proof. Since $\{v_1, \ldots, v_n\}$ is a basis of V, we have for every $v \in V$, $v = \lambda_1 v_1 + \cdots + \lambda_n + v_n$ for unique $\lambda_1, \ldots, \lambda_n \in F$. Then we get $S(v) = \lambda_1 S(v_1) + \cdots + \lambda_n + S(v_n) = \lambda_1 T(v_1) + \cdots + \lambda_n + T(v_n) = T(v)$. Thus S(v) = T(v) for all $v \in V$.

Theorem 1.3.3. If V and W are vector spaces with $\dim V = m$ and $\dim W = n$, then $\dim \hom(V, W) = mn$.

Proof. Let $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_n\}$ be bases for V and W, respectively. Then for any $v \in V$, $v = \lambda_1 v_1 + \cdots + \lambda_m v_m$ for unique $\lambda_1, \ldots, \lambda_n \in F$. Now let $T_{ij} \in \text{hom}(V, W)$ be

defined such that $T_{ij}(v_i) = 0$ for $i \neq j$ and $T_{ij}(v) = \lambda_i w_j$; for $1 \leq i \leq m$ and $1 \leq j \leq n$. We see there are mn possible such T_{ij} . Now let $S \in \text{hom}(V, W)$, then $S(v_i) \in W$, hence $S = \mu_{11} w_1 + \cdots + \mu_n w_{1n}$ for unique $\mu_{11}, \ldots, \mu_{1n} \in F$. Then $S(v_i) = \mu_{i1} w_1 + \cdots + \mu_{in} w_n$ for unique $\mu_{i1}, \ldots, \mu_{in} \in F$. Now let $S_0 = \mu_{11} T_{11} + \cdots + \mu_{1n} T_{1n} + \cdots + \mu_{m1} T_{m1} + \cdots + \mu_{mn} T_{mn}$. Then $S_0(v_k) = (\mu_{11} T_{11} + \cdots + \mu_{1n} T_{1n} + \cdots + \mu_{mn} T_{mn})(v_k) = \mu_{11} T_{11}(v_k) + \cdots + \mu_{1n} T_{1n}(v_k) + \cdots + \mu_{m1} T_{m1}(v_k) + \cdots + \mu_{mn} T_{mn}(v_k)$. Since $T_{ij}(v_k) = 0$ for $i \neq k$ we get $S_0(v_k) = \alpha_{k1} w_1 + \cdots + \alpha_{kn} w_n$. So $S_0(v_k) = S(v_k)$ for the basis $\{v_1, \ldots, v_m\}$ of V; this makes $S_0 = S$.

Now since $S = S_0$ is arbitrary, and subsequentially a linear combination of the T_{ij} , we get that span $\{T_{11}, \ldots, T_{1n}, \ldots, T_{m1}, \ldots, T_{mn}\} = \text{hom}(V, W)$. Now suppose for $\beta_{11}, \ldots, \beta_{1n}, \ldots, \beta_{m1}, \ldots, \beta_{mn} \in F$ that $\beta_{11}T_{11} + \cdots + \beta_{1n}T_{1n} + \cdots + \beta_{m1}T_{m1} + \cdots + \beta_{mn}T_{mn} = 0$. Then we get that $(\beta_{11}T_{11} + \cdots + \beta_{1n}T_{1n} + \cdots + \beta_{m1}T_{m1} + \cdots + \beta_{mn}T_{mn})(v_k) = \beta_{k_1}w_1 + \cdots + \beta_{k_n}w_n = 0$. Since $\{w_1, \ldots, w_n\}$ is a basis of W, this makes $\beta_{kj} = 0$ for all $1 \leq n$. Thus $\{T_{11}, \ldots, T_{1n}, \ldots, T_{m1}, \ldots, T_{mn} \text{ linearly independent, and hence a basis of hom}(V, W)$. Therefore, dim hom(V, W) = mn.

Corollary. dim hom $(V, V) = m^2$.

Corollary. dim hom(V, F) = m.

Definition. Let V be a vector space over a field F. We call the vector space hom(V, F) the **dual space** of V and denote it dual V. We call elements of dual V linear functionals on V into F.

If V is an infinite dimensional vector space, the dual V is very big and of no interest. In these cases, we use properties of other possible structures of dual V to find a restricted subspace. If V is finite dimensional, then dual V is finite and always defined.

Lemma 1.3.4. If V is a finite dimensional vector space, and $v \neq 0 \in V$, then there is a linear functional $\hat{v} \in \text{dual } V$ such that $\hat{v}(v) \neq 0$.

Proof. Let $\{v_1, \ldots, v_n\}$ be a bases of V and let $\hat{v}_i \in \text{dual } V$ be defined by $\hat{v}_i(v_j) = 0$ whenever $i \neq j$ and $\hat{v}_i(v_j) = 1$ otherwise. Then if $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$, $\hat{v}_i(v) = \lambda_i$. Then $\{\hat{v}_i, \ldots, \hat{v}_n\}$ forms a basis of dual V. Now if $v \neq 0 \in V$. by lemma 1.2.7, we get a basis $v_1 = v, v_2, \ldots, v_n$. Thence there is a linear functional $\hat{v}_1(v_1) = \hat{v}_1(v) = 1$.

Definition. Let V be a finite dimensional vector space with basis $\{v_1, \ldots, v_n\}$. We define the **dual basis** of $\{v_1, \ldots, v_n\}$ to be a basis of linear functionals $\{\hat{v}_1, \ldots, \hat{v}_n\}$ of dual V such that $\hat{v}_i(v_j) = 0$ wheberver $i \neq j$ and $\hat{v}_i(v_i) = 1$ otherwise.

Lemma 1.3.5. If V is a finite dimensional vector space, and $T \in \text{dual } V$ such that T(v) is fixed, then the map $\psi : v \to T_v$, where $T_v(T) = T(v)$ defines an isomorphism of V onto dual(dual V).

Proof. Let $v_0 \in V$. Let $T \in \text{dual } V$ be a linear functional such that $T(v_0)$ is fixed. Then $T(v_0)$ defines a linear functional of dual V into F. Let T_{v_0} : dual $V \to F$ be defined by $T_{v_0}(T) = T(v_0)$, for any $T \in \text{dual } V$. Notice that for $T, L \in \text{dual } V$ and $\alpha, \beta \in F$, we have $T_{v_0}(\alpha T + \beta L) = \alpha T(v_0) + \beta L(v_0) = \alpha T_{v_0}(T) + \beta T_{v_0}(L)$, which makes $T_{v_0} \in \text{dual}(\text{dual } V)$.

Now given any $v \in V$, we can associate it with a $T_v \in \text{dual}(\text{dual }V)$. Now define $\psi : V \to \text{dual}(\text{dual }V)$ by $\psi : v \to T_v$. Then for $v, w \in V$ and $\alpha, \beta \in F$ we have $T_{\alpha v + \beta w}(T) = \alpha T(v) + \beta T(w) = \alpha T_v(T) + \beta T_w(T)$, so ψ is a homomorphism of V onto dual(dual V); ψ is onto by definition.

Now let $v \in \ker \psi$. So $\psi(v) = 0$; that means $t_v(T) = T(v) = 0$ for all $T \in \operatorname{dual} V$. However, by lemma 1.3.3, there must be a $T \in \operatorname{dual} V$ for which $T(v) \neq 0$ when $v \neq 0$. Therefore, if $v \in \ker T$, it must be that v = 0, that is $\ker T = (0)$. Thus ψ is 1 - 1, which makes it an isomorphism.

Definition. Let W be a subspace of a vector space V. We denote the **annihilator** of W to be $A(W) = \{T \in \text{dual } V : T(v) = 0\}$.

Example 1.7. [label=(0)]

- 1. Let $W_1, W_2 \subseteq V$ be subspaces of a finite dimensional vector space. Let $T \in A(W_1+W_2)$. Then T(w)=0 for $w \in W_1+W_2$, hence $w=w_1+w_2$ where $w_i \in W_i$ for $1 \leq i \leq 2$. So we get $T(w_1)+T(w_2)=0$ which makes either both $T(w_1), T(w_2)=0$ or inverses of each other. IN either case, $T(w_1)+T(w_2)\in A(W_1)+A(W_2)$ or $T(w_1)+T(w_2)\in A(W_1)\cap A(W_2)\subseteq A(W_1)+A(W_2)$. So $A(W_1+W_2)\subseteq A(W_1)+A(W_2)$. On the other hand we have $A(W_1), A(W_2)\subseteq A(W_1+W_2)$, hence $A(W_1)+A(W_2)\subseteq A(W_1+W_2)$. Hence we have $A(W_1+W_2)=A(W_1)+A(W_2)$.
- 2. Similarly, if $T \in A(W_1 \cap W_2)$, then T(w) = 0 for $w \in W_1 \cap W_2$, making $T(w) \in A(W_1) \cap A(W_2)$. By similar reasoning to before, we also get that $A(W_1) \cap A(W_2) \subseteq A(W_1 \cap W_2)$. So we get $A(W_1 \cap W_2) = A(W_1) \cap A(W_2)$

Let $\tilde{T} \in \text{dual } W$ such that $\tilde{T}(w) = T(w)$ for any $w \in W$; where $T \in \text{dual } V$. Now define the map $\psi : \text{dual } V \to \text{dual } W$ by $\psi : T \to \tilde{T}$. Then we see that $A(W) = \ker \psi$, which makes it a subspace.

Lemma 1.3.6. If $S \subseteq V$ is a subset of a finite dimensional vector space, then $A(S) \subseteq A(\operatorname{span} S)$.

Proof. Since $S \subseteq \operatorname{span} S$, it is clear that $A(S) \subseteq A(\operatorname{span} S)$. Now let $v \in \operatorname{span} S$. Then $v = \lambda_1 v_1 + \dots + \lambda_n v_n$ where $v_1, \dots, v_n \in S$. Let $\psi : \operatorname{dual} V \to \operatorname{dual} S$ by $T \to \tilde{T}$ where $\tilde{T}(s) = T(s)$ for all $s \in S$. Then $\psi(v) = \lambda_1 \psi(v_1) + \dots + \lambda_n \psi(v_n) = \psi(v) = \lambda_1 T(v_1) + \dots + \lambda_n T(v_n)$. Since $\ker \psi = A(S)$, and $T(v_i) = 0$ for all $v_i \in S$ for $1 \le i \le n$, we get $\psi(v) = 0$ hence $v \in A(S)$; which puts $A(\operatorname{span} S) \subseteq A(S)$.

Theorem 1.3.7 (The Second Homomorphism Theorem for Vector Spaces). If V is a finite dimensional vector space, and $W \subseteq V$ is a subspace of V, then dual $W \simeq \operatorname{dual} V/A(W)$, and $\operatorname{dim} A(W) = \operatorname{dim} V - \operatorname{dim} W$.

Proof. Consider again the map ψ : dual $V \to \text{dual } W$ by $T \to \tilde{T}$, where $\tilde{T}(w) = T(w)$ for all $w \in W$; and recalling above that $A(W) = \ker T$.

Let $h \in \text{dual } W$. By lemma 1.2.7, if $\{w_1, \ldots, w_m\}$ is a basis of W, then there is a basis $\{w_1, \ldots, w_m, v_1, \ldots, v_r\}$; hence $\dim V = r + m$. Let W_1 be a subspace of V such that $Span\{v_1, \ldots, v_r\} = W_1$. Then $V = W \oplus W_1$. Now if $h \in \text{dual } W$, let $f \in \text{dual } V$ be defined

by f(v) = w where $v = w + w_1 \in W \oplus W_1$. By definition, we have that $f \in \text{dual } V$ and f = h. So $\psi(f) = h$ making ψ onto. Since $A(W) = \ker \psi$, by the first homomorphism theorem for vector spaces, we get $\text{dual } W \simeq \text{dual } V/A(W)$.

Moreover, we get $\dim \operatorname{dual} W = \dim \operatorname{dual} V/A(W) = \dim \operatorname{dual} V - \dim A(W)$, and since $\dim \operatorname{dual} V = \dim V$ and $\dim \operatorname{dual} W = \dim W$; we get $\dim A(W) = \dim V - \dim W$.

Corollary. A(A(W)) = W.

Proof. Notice that $A(A(W)) \subseteq \text{dual}(\text{dual } V)$. Clearly, $W \subseteq A(A(W))$, for if $\psi(w) = T_w$ by $T_w(f) = f(w)$ and $T_w = 0$ for all $f \in A(W)$. Now by above we get $\dim A(A(W)) = \dim \text{dual } V - \dim A(W) = \dim V - (\dim V - \dim W) = \dim W$. This makes $W \simeq A(A(W))$; and since $W \subseteq A(A(W))$, we get W = A(A(W)).

Theorem 1.3.8. The system of homogeneous linear equations:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

 \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n = 0$ (1.1)

where $a_{ij} \in F$ is of rank r, then there are n-r linearly independent solutions in F^n .

Proof. Consider the system described by equation 1.1, with $a_{ij} \in F$ for $1 \le i \le m$ and $1 \le j \le n$. Let U be a subspace of m vectors generated by $\{(a_{11}, \ldots, a_{1n}), \ldots, (a_{m1}, \ldots, a_{mn})\}$. Consider the basis $\{(1, 0, \ldots, 0), \ldots, (0, 0, \ldots, 1)\}$ of F^n and let $\{\hat{v}_1, \ldots, \hat{v}_n\}$ be its dual basis. Then $T \in \text{dual } F^n$ has the form $T = x_1\hat{v}_1 + \cdots + x_n\hat{v}_n$, with $x_i \in F$. for $1 \le i \le n$.

Now for $(a_{11}, \ldots, a_{1n}) \in U$, $T(a_{11}, \ldots, a_{1n}) = (x_1\hat{v}_1 + \cdots + x_n\hat{v}_n)(a_{11}, \ldots, a_{1n}) = a_{11}x_1 + \cdots + a_{1n}x_n$, since $\hat{v}_i(v_j) = 0$ for $i \neq j$. Conversely, every solution (x_1, \ldots, x_n) gives an element of the form $x_1\hat{v}_1 + \cdots + x_n\hat{v}_n$ in A(U). Therefore, the number of linearly independent solutions of equation 1.1 is dim $A(U) = \dim V - \dim U = n - r$.

Corollary. If n > m, then there is a solution (x_1, \ldots, x_n) where not all x_i is 0.

1.4 Inner Product Spaces.

Definition. We define a vector space V over \mathbb{C} to be an **inner product space** if there exists a binary operation $\langle , \rangle : V \times V \to \mathbb{C}$ such that for all $v, u, w \in V$ and $\alpha, beta \in \mathbb{C}$:

- (1) $\langle u, v \rangle = \overline{\langle v, u \rangle}$.
- (2) $\langle u, u \rangle \ge 0$ and $\langle u, u \rangle = 0$ if and only if u = 0.
- (3) $\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$.
- **Example 1.8.** (1) In \mathbb{C}^n , let $u = (\alpha_1, \dots, \alpha_n)$ and $v = (\beta_1, \dots, \beta_n)$ and define $\langle u, v \rangle = \sum_{i=1}^n \alpha_i \overline{\beta_i}$. Notice that $\sum \alpha_i \overline{\beta_i} = \sum_{i=1}^n \overline{\beta_i} \alpha_i = \overline{\sum \overline{\alpha_i} \beta_i}$; so $\langle u, v \rangle = \overline{\langle v, u \rangle}$. We also have that $\langle u, u \rangle \geq 0$ and is 0 only when u = 0. Moreover, if $w = (\gamma_1, \dots, \gamma_i)$ and $\alpha, \beta \in \mathbb{C}$, then $\langle \alpha u + \beta v, w \rangle = \sum (\alpha \alpha_i + \beta \beta_i) \overline{\gamma_i} = \alpha \sum \alpha_i \overline{\gamma_i} + \beta \sum \beta_i \overline{\gamma_i} = \alpha \langle u, w \rangle + \beta \langle v, w \rangle$. So \langle , \rangle defines an inner product over \mathbb{C}^n .

(2) Let $\mathbb{C}^{[0,1]}$ be the set of all complex valued functions continous on the domain [0,1]. If $f,g\in\mathbb{C}^{[0,1]}$, define $\langle f,g\rangle=\int_0^1 f(t)\overline{g(t)}\,dt$. Then \langle ,\rangle defines an inner product over $\mathbb{C}^{[0,1]}$. Let $f,g,h\in\mathbb{C}^{[0,1]}$ and $\alpha,\beta\in\mathbb{C}$. We have then that $\langle f,g\rangle=\int f\overline{g}=\int \overline{fg}=\int \overline{fg}=g$ $\overline{fg}=g$ $\overline{$

Definition. Let V be an inner product space over \mathbb{C} . The **norm** of $v \in V$ is the map $\|\cdot\|: V \to \mathbb{R}$ by $\|v\| = \sqrt{\langle v, v \rangle}$.

Lemma 1.4.1. If V is an inner product space, with $u, v \in V$ and $\alpha, \beta \in \mathbb{C}$, then $\langle \alpha u + \beta v, \alpha u + \beta v \rangle = \alpha \overline{\alpha} \langle u, u \rangle + \alpha \overline{\beta} \langle u, v \rangle + \overline{\alpha} \beta \langle v, u \rangle + \beta \overline{\beta} \langle v, v \rangle$.

Proof. Take (3) on the inner product $\langle \alpha u + \beta v, \alpha u + \beta v \rangle$ to get: $\langle \alpha u + \beta v, \alpha u + \beta v \rangle = \alpha \langle u, \alpha u + \beta v \rangle + \beta \langle v, \alpha u + \beta v \rangle = \alpha \overline{\langle \alpha u + \beta v, u \rangle} + \beta \overline{\langle \alpha u + \beta v, v \rangle} = \alpha \overline{\alpha} \langle u, u \rangle + \alpha \overline{\beta} \langle u, v \rangle + \overline{\alpha} \beta \langle v, u \rangle + \beta \overline{\beta} \langle v, v \rangle.$

Corollary. $\|\alpha u\| = |\alpha| \|u\|$.

Proof. We have $||\alpha u||^2 = \langle \alpha u, \alpha u \rangle = \alpha \overline{\alpha} \langle u, u \rangle$. Since $\alpha \overline{\alpha} = |\alpha|^2$ we have $||\alpha u|| = |\alpha|^2 ||u||^2$ which gives us the result.

Lemma 1.4.2. If $a, b \in \mathbb{R}$ such that a > 0 and $a\lambda^2 + 2b\lambda + c \ge 0$ for all $\lambda \in \mathbb{R}$, then $b^2 \le ac$.

Proof. We complete the squares. $a\lambda^2 + 2b\lambda + c = \frac{1}{a}(a\lambda + b)^2 + (c - \frac{b^2}{a}) \ge 0$. Choosing $\lambda = -\frac{b}{a}$, we get $c - \frac{b^2}{a} \ge 0$.

Theorem 1.4.3 (The Cauchy-Schwarz Inequality). If V is an inner product space over \mathbb{C} with $u, v \in V$, then $|\langle u, v \rangle| \leq ||u|| ||v||$.

Proof. If $\langle u, v \rangle \in V = \mathbb{R}$, and $u \neq 0$, then for any $\lambda \in \mathbb{R}$, $\langle u\lambda + v, u\lambda + v \rangle = \lambda^2 \langle u, u, \rangle + 2\lambda \langle u, v \rangle + \langle v, v \rangle \geq 0$. Letting $a = \langle u, u \rangle$, $b = \langle u, v \rangle$ and $c = \langle v, v \rangle$ we get $a\lambda^2 + 2b\lambda + c \geq 0$. By the above lemma, then $b^2 \leq ac$; i.e. $|\langle u, v \rangle|^2 \leq ||u||^2 ||v||^2$.

Now take $\alpha = \langle u, u \rangle \in V \neq \mathbb{R}$. Then $\alpha \neq 0$. Now we observe that $\langle \frac{u}{\alpha}, v \rangle = \frac{1}{\alpha} \langle u, v \rangle = \frac{1}{\langle u, v \rangle} \langle u, v \rangle = 1$; so $\langle \frac{u}{\alpha}, v \rangle \in \mathbb{R}$. Then by above, we have $1 = |\langle \frac{u}{\alpha}, v \rangle| \leq ||\frac{u}{\alpha}||||v|| = \frac{1}{|\alpha|}||u||||v||$, that is $1 \leq \frac{||u||||v||}{|\alpha|}$; giving the desired result.

Example 1.9. (1) Let $V = \mathbb{C}^n$ and $\underline{\langle u, v \rangle} = \sum_{i=1}^n \alpha_i, \overline{\beta_i}$ with $u = (\alpha_1, \dots, \alpha_n)$ and $v = (\beta_1, \dots, \beta_n)$. Then we have $|\sum \alpha_i \overline{\beta_i}| \leq \sum |\alpha_i|^2 \sum |\beta_i|^2$.

(2) If $V = \mathbb{C}^{[0,1]}$ with $\langle f, g \rangle = \int_0^1 f(t) \overline{g(t)} dt$, then we have $|\int_0^1 f \overline{g}| \leq \int_0^1 |f|^2 \int_0^1 |g|^2$.

Definition. If V is an inner product space, we say that $u, v \in V$ are **orthogonal** (or that u is **orthogonal** to v) if $\langle u, v \rangle = 0$.

Example 1.10. If u is orthogonal to v, the jn $\langle u, v \rangle = \overline{\langle v, u \rangle} = \overline{0} = 0$, making v orthogonal to u.

Definition. If V is an inner product space, and $W \subseteq V$ is a subsapce of V we call the **orthogonal complement** of W the space $W^{\perp} = \{x \in V : \langle x, w \rangle = 0, \text{ for all } w \in W\}.$

Lemma 1.4.4. W^{\perp} is a subspace of V.

Proof. Clearly $W^{\perp} \subseteq V$. Moreover, let $a, b \in W^{\perp}$ and $\alpha, \beta \in \mathbb{C}$, then $\langle \alpha a + b, w \rangle = \alpha \langle a, w \rangle + \beta \langle b, w \rangle = 0$, so $\alpha a + \beta b \in W^{\perp}$.

Example 1.11. Note that $W \cap W^{\perp} = \{x \in V : \langle x, w \rangle = 0\}$. If $w \in W^{\perp}$, then $\langle w, w \rangle = 0$ making w = 0, hence $W \cap W^{\perp} = 0$.

Definition. We call a set of vectors $\{v_i\}_{i\in\mathbb{Z}^+}$ of an inner product space V orthonormal if:

- (1) $\langle v_i, v_i \rangle = 1$.
- (2) $\langle v_i, v_j \rangle = 0$ whenever $i \neq j$.

Lemma 1.4.5. If $\{v_i\}$ are a set of orthonormal vectors of V, then $\{v_i\}$ is also linearly independent. Moreover, if $\{v_i\}$ is finite and $w = \alpha_1 v_1 + \cdots + \alpha_n v_n$, then $\alpha_i = \langle w, v_i \rangle$ for each $1 \leq i \leq n$.

Proof. Suppose that $\alpha_1 v_1 + \cdots + \alpha_n v_n + \cdots = 0$, then $\langle \alpha_1 v_1 + \cdots + \alpha_n v_n + \ldots, v_i \rangle = \alpha_1 \langle v_1, v_i \rangle + \cdots + \alpha_n \langle v_n, v_i \rangle + \cdots = 0$. Since $\{v_i\}$ is orthonormall, we get that $\alpha_i = 0$ for each i, implying linear independence. Now if $\{v_i\}_{i=1}^n$ is finite, letting $w = \alpha_1 v_1 + \cdots + \alpha_n v_n$; by above we get that $\langle w, v_i \rangle = \alpha_i$ by orthonormality.

Lemma 1.4.6. If $\{v_1, \ldots, v_n\}$ are orthonormal in V, and $w \in V$, then $u = w - \langle w, v_1 \rangle v_1 - \cdots - \langle w, v_n \rangle v_n$ is orthogonal to each v_i for $1 \le i \le n$.

Proof. $\langle u, v_i \rangle = \langle w - \langle w, v_1 \rangle v_1 - \dots \langle w, v_n \rangle v_n, v_i \rangle = \langle w, v_i \rangle - \langle w, v_i \rangle \langle v_1, v_i \rangle + \dots + \langle w, v_n \rangle \langle v_n, v_i \rangle = 0$, making u orthogonal to v_i .

Theorem 1.4.7 (The Gram-Schmidt Orthogonalization Theorem). Let V be a finite dimensional inner product space. Then V has an orthonormal set as a basis.

Proof. Let dim V=n and let $\{v_1,\ldots,v_n\}$ be a basis of V. Take w_1,\ldots,w_n as follows: $v_1|w_1, w_2 \in \operatorname{span}\{w_1,v_2\}$ and $w_3 \in \operatorname{span}\{w_1,w_2,v_3\}$; in general take $w_i \in \operatorname{span}\{w_1,\ldots,w_{i-1},v_i\}$. Let $v_1 = \|v_1\|w_1$, then $\langle w_1,w_1\rangle = \langle \frac{v_1}{\|v_1\|},\frac{v_1}{\|v_1\|}\rangle = \frac{1}{\|v_1\|^2}\langle v_1,v_1\rangle = 1$; hence $\|w_1\| = 1$. Now consider $\langle \alpha w_1 + v_2,w_1\rangle = 0$. Then $\alpha \langle w_1,w_1\rangle + \langle v_2,w_1\rangle = 0$; since $\|w_1\| = 1$, then $\alpha = -\langle v_2,w_1\rangle$. Now let $u_2 = -\langle v_2,w_1\rangle w_1 + v_2$. u_2 is orthogonal to w_1 by lemma 1.4.6 and since v_1 and v_2 are linearly independent, so must w_1 and v_2 . So $u_2 \neq 0$. Now let $\|u_2\|w_2 = u_2$. We have then by above that, $\{w_1,w_2\}$ is orthonormal. Continuing along, suppose then that $\{w_1,\ldots,w_i\}$ are orthonormal, where $\|u_i\|w_i = u_i$, and where $u_i = -\langle v_i,w_1\rangle - \cdots -\langle v_i,w_{i-1}\rangle w_i + v_i$. Take $u_{i+1} = -\langle v_{i+1},w_1\rangle - \cdots -\langle v_{i+1},w_i\rangle + v_{i+1}$. By the above and lemma 1.4.5, w_1,\ldots,w_i,v_{i+1} are linearly independent, so $u_{i+1}\neq 0$. Putting $\|u_{i+1}\|w_i = u_i$, clearly $\langle w_{i+1},w_{i+1}\rangle = 1$. We also have, by the construction, that $\langle u_{i+1},w_1\rangle = \cdots = \langle u_{i+1},w_i\rangle = 0$. So $w_1,\ldots w_n$ are orthonormal.

Constructin $\{w_1, \ldots, w_n\}$ from the basis $\{v_1, \ldots, v_n\}$ this way gives an orthonormal set of n linearly independent vectors; i.e. a basis.

Corollary (Bessel's Inequality). For all $v \in V$:

$$\sum_{i=1}^{m} |\langle w_i, v \rangle|^2 \le ||v||^2. \tag{1.2}$$

Example 1.12. Let $V = \mathbb{R}_3[x]$ be the real field of all polynomials of deg < 3. Define for $p(x), q(x) \in \mathbb{R}_3[x]$

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx$$
.

Now consider the basis $\{1, x, x^2\}$ of $\mathbb{R}_3[x]$. Take $w_1 = \frac{1}{\|1\|} = \frac{1}{\sqrt{\int_1^1 dx}} = \frac{1}{\sqrt{2}}$. Take $u_2 = -\langle x, w_1 \rangle w_1 + x = -\frac{\langle x, w_1 \rangle}{\sqrt{2}} + x = x \neq 0$. Now take $w_2 = \frac{u_2}{\|u_2\|} = \frac{x}{\sqrt{\int_{-1}^1 x^2 dx}} = \frac{\sqrt{3}}{2}x$. Taking $u_3 = -\langle x^2, w_1 \rangle w_1 - \langle x^2, w_2 \rangle w_2 + x^2 = -\frac{1}{3} + x^2 \neq 0$; so taking $\frac{u_2}{\|u_3\|} = \frac{-\frac{1}{3} + x^2}{\sqrt{\int_{-1}^1 (-\frac{1}{3} + x^2) dx}} = \frac{\sqrt{10}}{4}(-1 + 3x^2)$, we get the orthonormal basis $\{x, -\frac{1}{3} + x^2, \frac{\sqrt{10}}{4}(-1 + 3x^2)\}$.

Theorem 1.4.8. If V is a finite dimensional inner product space, and if $W \subseteq V$ is a subspace of V, then $V = W \oplus W^{\perp}$.

Proof. Since $W \subseteq V$ is a subsapace of V, W inherits the inner product of V (restrict \langle , \rangle to $W \times W$); similarly, W^{\perp} also inherits the inner product. By the Gram-Schmidt orthogonalization theorem, there is an orthonormal set of vectors $\{w_1, \ldots, w_r\}$ which is a basis of W. Now if $v \in V$, by lemma 1.4.6 take $v_0 = v - \langle v, w_1 \rangle - \cdots - \langle v, w_r \rangle w_r$ and $\langle v_0, w_i \rangle = 0$ for each $1 \leq i \leq r$. Then $v = v_0 + \langle v, w_1 \rangle + \cdots + \langle v, w_r \rangle w_r \in W + W^{\perp}$. Since $W \cap W^{\perp} = 0$, we get $V = W \oplus W^{\perp}$.

Corollary. $(W^{\perp})^{\perp} = W$.

Proof. If $w \in W$, then for any $u \in W$, $\langle u, w \rangle = 0$, hence $W \subseteq (W^{\perp})^{\perp}$. Now $V = W^{\perp} \oplus (W^{\perp})^{\perp}$ and we have dim $W = \dim(W^{\perp})^{\perp}$, which gives us $W = (W^{\perp})^{\perp}$.

1.5 Modules.

Definition. Let R be a ring. We say a nonempty set M is a **left module** over R (or a **left** R-**module**) if there are operations $+: M \times M \to M$ and $\cdot: R \times M \to M$ such that (M, +) is an abelian group, and for any $r, s \in R$ and $a, b \in M$:

- (1) r(a+b) = ra + rb.
- (2) r(sa) = (rs)a.
- (3) (r+s)a = ra + sa.

Similarly, we call M a **right module** (or **right** R-**module**) over R if (a+b)r = ar + br, (as)r = a(sr), and a(r+s) = ar + as. We call M **unital** if R has a unit element, and 1m = m for all $m \in M$.

1.5. MODULES. 17

We focus on left modules.

Example 1.13. (1) All vector spaces are unital left modules over any field F.

- (2) Let G be a group together with an arbitrary operation + and define an action \cdot : $\mathbb{Z} \times G \to G$ by $(n,a) \to na \in G$. Then the properties of exponents in groups gives r(a+b) = ra + rb, r(sa) = (rs)a, and (r+s)a = ra + sa. This makes every group a left \mathbb{Z} -module.
- (3) Let R be a ring, and let M be a left ideal of R. Take $r, m \to rm$. Since M is an ideal, $rm \in M$, and by the multiplicative associative, and distributive laws, M is a left R-module.
- (4) Any ring R is a left (and right) module over itself.
- (5) Let R be a ring, and (λ) a left ideal of R. Consider the quotient ring $R/(\lambda)$. define + by $(a + \lambda) + (b + \lambda) = (a + b) + \lambda$ and $r(a + \lambda) = ra + \lambda$. Clearly these operations are well defined, and $(R/(\lambda), +)$ forms a group; moreover, $(a + \lambda) + (b + \lambda) = (a + b) + \lambda = (b + \lambda) + (a + \lambda)$, so $R/(\lambda)$ is abelian under +. Now notice that $r(a+b+\lambda) = r(a+b) + \lambda = ra + rb + \lambda = (ra+) + (rb+) = r(a+\lambda) + r(b+\lambda)$, $r(sa+\lambda) = rsa + \lambda = rs(a+\lambda)$, and $(r+s)(a+\lambda) = (r+s)a + \lambda = ra + rs + \lambda = r(a+\lambda) + s(a+\lambda)$. This makes $R/(\lambda)$ a left R-module. We call this module the **left quotient module** of R by (λ) .

Definition. Let M be an R-module (left or right) and $A \subseteq M$, we call A a **submodule** of M is $A \leq M$ and whenever $r \in R$ and $a \in A$, $ra \in A$, or $ar \in A$.

Definition. If M is an R-module with a collection of submodules $\{M_i\}_{i=1}^s$. We call M the **direct sum** of $\{M_i\}$ if for every $m \in M$, there are uniquely determined $m_i \in M_i$ for $1 \le i \le s$, such that $m = m_1 + \cdots + m_s$. We write $M = M_1 \oplus \cdots \oplus M_s$, or $M = \bigoplus_{i=1}^s M_i$.

Definition. An R-module is **cyclic** if there exists $m_0 \in M$ such that $m = rm_0$ (or $m = m_0 r$) for all $m \in M$ and some $r \in R$.

Definition. We say an R-module is **finitely generated** if there exists $a_1, \ldots, a_n \in M$ such that for every $m \in M$, $m = r_1 a_1 +_n a_n$ (or $m = a_1 r_1 + \cdots + a_n r_n$) for $r_1, \ldots, r_n \in R$. We call $\{a_i\}_{i=1}^n$ the **generating set**; and we call it a **minimal generating set** if $\{a_i\}\setminus a_j$ does not generate M, for $1 \leq i, j \leq n$. We call the size of a minimal generating set the **rank** of M and denote it rank M.

Most of the definitions are stated for both left and right R-modules. However, we consider the following theorems only for left R-modules.

Theorem 1.5.1 (The Fundamental Theorem on Finite Modules). Let R be a Euclidean domain; then any finitely generated module M is the direct sum of a finite number of cyclic submodules.

Proof. By definition, if M is finitely generated, then there are $a_1, \ldots, a_n \in M$ for which every element of M is of the form $r_1a_1 + \cdots + r_na_n$, for $r_1, \ldots, r_n \in R$. If M is indeed a direct sum of a finite collection of cyclic submodules, then each r_ia_i is uniquely determined.

By induction in the rank of M; if rank M = 1, then M is generated by a single element m_0 . That is, for some $r \in R$, every element of M has the form rm_0 ; this makes M cyclic by definition, and hence the direct sum of itself.

Now suppose for rank M=q, that $M=\bigoplus_{i=1}^q M_q$, where M_i is a cyclic submodule. Suppose now that rank M=q+1 and let $\{a_i\}_{i=1}^{q+1}$ be a minimal generating set for M. Then there are $r_1,\ldots,r_{q+1}\in R$ for which $r_1a_1+\cdots+r_{q+1}a_{q+1}=0$ (the identity of (M,+)). If $r_1a_1=\cdots=r_{q+1}a_{q+1}=0$, then $M=\bigoplus_{i=1}^{q+1} M_i$ and we are done.

Now suppose that not all the $r_i a_i$ are 0. Since R is a Euclidean domain, with a degree function deg, there is an element s_1 of minimum degree occurring as a coefficient in a relation of $\{a_i\}_{i=1}^{q+1}$. Then $s_1 a_1 + \cdots + s_{q+1} a_{q+1} = 0$, where deg $s_1 \leq \deg s_i$ for all $1 < i \leq q+1$. Now if $r_1 a_1 + \cdots + r_{q+1} a_{q+1} = 0$, then $s_1 | r_1$, for if $r_1 = m s_1 + t$ with t = 0 or deg $t < \deg s_1$, then taking $(m s_1) a_1 + \ldots (m s_{q+1}) a_{q+1} = 0$ and subtracting $r_1 a_1 + \cdots + r_{q+1} a_{q+1}$, we get $t a_1 + (r_2 - m s_2) a_2 + \cdots + (r_{q+1} - m s_{q+1}) a_{q+1} = 0$, since $\deg t < \deg s_1$, and s_1 has minimum such degree, this makes t = 0.

We also have $s_1|s_i$ for all $1 \le i \le q+1$ (obviously $s_1|s_1$). For, suppose that $s_1 \not|s_i$ for all $1 < i \le q+1$, then $s_2 = m_2s_1 + t$ with $\deg t < \deg s_1$. Now $a'_1 = a_1 + m_2a_2 + \cdots + m_{q+1}a_{q+1}, m_2a_2, \ldots, m_{q+1}a_{q+1}$ also generate M; however, $s_1a'_1 + ta_2 + s_3a_3 + \cdots + s_{q+1}a_{q+1} = 0$, so t is a coefficient occurring in some relation of $\{a_i\}$. But $\deg t < \deg s_1$, which contradicts that s_1 has minumum such degree, so t = 0 and hence $s_1|s_2$. Similarly we get $s_1|s_i$.

Now consider $a_1^* = a_1 + m_2 a_2 + \cdots + m_{q+1} a_{q+1}, a_2, \ldots, a_{q+1}$. They generate M; moreover $s_1 a_1^* = s_1 a_1 + (s_1 m_2) a_2 + \cdots + (s_1 m_{q+1}) a_{q+1} = s_1 a_1 + \cdots + s_{q+1} a_q + 1 = 0$. If $r a_1^* = r a_1 + (r m_2) a_2 + \cdots + (r m_{q+1}) a_{q+1} = 0$, then there is some relation on $\{a_i\}$ for which a_1 has coefficent r, i.e. $s_1 | r$, so $r_1 a_1^* = 0$. Letting M_1 the cyclic submodule generated by a_1^* , and a_2 the submodule finitely generated by $a_1^* = a_1 + a_2 + a_3 + a_4 +$

Corollary. Any finite abelian group is the direct product of cyclic groups.

Proof. Consider the finite abelian group G as a \mathbb{Z} -module.

Theorem 1.5.2. The number of non-isomorphic finite abelian groups of order p^n is p(n); where p(n) is the number of partitions of n.

Proof. Let G be a finite abelian group of order ord $G = p^n$, for $n, p \in \mathbb{Z}^+$ and p prime. By the corollary to the fundamental theorem, $G = G_1 \times \cdots \times G_k$, where G_i is a cyclic group of order ord $G_i = p^{n_i}$, where $n_k \leq \cdots \leq n_1 \leq n_1$. Then

$$G_1 \times G_2 = \frac{\operatorname{ord} G_1 \operatorname{ord} G_2}{\operatorname{ord} (G_1 \cap G_2)}.$$

Since $G_1 \times G_2$ is a direct product, ord $(G_1 \cap G_1) = (e)$, so ord $G_1 \times G_2 = \operatorname{ord} G_1$ ord $G_2 = p^{n_1}p^{n_2} = p^{n_1+n_2}$. Continuing this way we get $p^n = \operatorname{ord} G = \operatorname{ord} (G_1 \times \cdots \times G_k) = p^{n_1+\cdots+n_k}$, hence $n = n_1 + \cdots + n_k$ making $\{n_i\}_{i=1}^k$ a partition of n.

On the other hand, if $\{n_i\}_{i=1}^k$ is a partition of n, then we construct G of ord $= p^n$ as follows: for $1 \le i \le k$, let G_i be a cyclic group of order ord $G_i = p^{n_i}$ and let G be the external direct product of $\{G_i\}_{i=1}^k$. G is an abelian group of order p^n . Hence for each partition of

1.5. MODULES.

n, there is a abelian group of order p^n , if we take p^{n_i} for $1 \le i \le k$, characterizing G up to isomorphism, we get a 1-1 correspondence of non-isomorphic finite abelian groups of order p^n and partitions if n.

Corollary. The number of non-isomorphic finite abelian groups of order $p_1^{n_1} \dots p_k^{n_k}$ for p_i distinct primes is $p(n_1) \dots p(n_k)$.

We now observe R-modules in the context of homomorphisms.

Definition. Let R be a ring, and let M and N be left R-modules. We define a map $T: M \to N$ to be a **left** R-homomorphism if

- (1) $(m_1 + m_2)T = m_1T + m_2T$.
- (2) $(rm_1)T = r(m_1)T$.

We define the **kernel** of T to be $\ker T = \{x \in M : xT = 0\}$. We define the **image** of T to be $\operatorname{Im} T = \{xT : x \in M\}$.

Here we mean xT to be T(x) to reduce notational encumberance. In the case of composition of R-homomorphisms, we mean TS $S \circ T$.

Example 1.14. Let $T: M \to N$ and $S: N \to Q$ be left R-homomorphisms. Define $TS: M \to Q$ by xTS = (xT)S. Then for $r, s \in R$ and $m_1, m_2 \in M$, we have that $(rm_1 + sm_2)TS = r((m_1T)S) + s((m_2T)S)$. Which makes TS into an R-homomorphism. It is easy to see then that $\ker TS = \{xT: xTS = 0\}$.

Lemma 1.5.3. Let M and N be left R-modules, and let $T: M \to N$ be a left R-homomorphism. Then $\ker T$ and $\operatorname{Im} T$ are submodules of M and N respectively.

Proof. Since T is a R-homomorphism, it is a group homomorphism; hence $\ker T \leq M/$ Now letting $r \in R$ and $x \in \ker T$, (rx)T = r(xT) = r0 = 0, putting $rx \in \ker T$. Similarly, by the bilinearity of T, $\operatorname{Im} T \leq N$ and $xT \in \operatorname{Im} T$. since $rx \in M$, and r(xT) = (rx)T, we get that $r(xT) \in \operatorname{Im} T$.

Lemma 1.5.4. Let T be an R-homomorphism. Then T is 1-1 if and only if $\ker T=0$.

Proof. Suppose that T is 1-1. Then xT=yT implies x=y, this makes ord $(\ker T)=1$, hence $\ker T=0$. Now suppose that $\ker T=0$, and let xT=yT. Then xT-yT=(x-y)T=0, so $x-y\in\ker T$. This makes x-y=0, hence x=y which makes T 1 – 1.

Definition. Let M and N be R-modules. We say that an R-homomorphism $T: M \to N$ is an R-isomorphism if T is 1-1 from M onto N. In this case, we say that M and N are R-isomorphic, and write $M \simeq_R N$.

We would also like to define what a "left quotient module" much in the same manner we described the left quotient module" of a ring R by a left ideal (λ) . Our motivation is the fact that if M is a left R-module, and $A \subseteq M$ is a submodule, then since $(r, a) \in R \times A$ implies $ra \in A$, this makes A into a left ideal of R. So already we have that R/A is a left quotient module of R by A.

We would like to take this same quotient, restricting R to M. Define the operations $+: M/A \times M/A \to M/A$ by (a+A) + (b+A) = (a+b) + A and $\cdot: R \times M/A \to M/A$ by r(a+A) = ra + A. Like in the case of quotient modules by ideals, these operations are well defined, and make (M/A, +) into a group; moreover they satisfy the rest of the axioms for modules. Thus we then have the following definition.

Definition. Let M be a left R-module and $A \subseteq M$ a submodule. Define the operations + and \cdot by (a + A) + (b + A) = (a + b) + A and r(a + A) = ra + A, respectively. We call the module M/A the **left quotient module** of M by A.

Lemma 1.5.5. Let M be an a left R-module, and let $A \subseteq M$ be a submodule. Then there exists a left R-homomorphism from M onto M/A.

Proof. Take the map $m \to m + A$ which defines a left R- homomorphism for (rm + sn) + A = r(m + A) + s(n + A); this map is also onto by definition.

Theorem 1.5.6. Let M and N be R-modules. If $T: M \to N$ is an R-homomorphism from M onto T, then $N \simeq_R M$.

Proof. By the fundamental theorem for group homomorphisms, we have that as groups, $N \simeq M/\ker T$. By the aximos of modules, this makes $N \simeq_R M/\ker T$.

Definition. We call an R-module M irreducible if its only submodules are 0 and M.