Acoustic-Based Drone Detection

Identifying UAVs Through Sound Signatures

Mentor Evaluation - 1

Submitted by:

(102203449) Devansh Dhir

(102203061) Gautam Dhawan

(102203408) Iipsita Devgan

(102203012) Miet Pamecha

(102203413) Tamanna Bajaj

BE Third Year

CPG No. 179

Under the Mentorship of

Dr. Sharad Saxena

Associate Professor

Computer Science and Engineering Department

Thapar Institute of Engineering and Technology, Patiala

APRIL 2025

TABLE OF CONTENTS

•	Product Perspective	3
•	Use Case Diagrams	4
•	Tasks and Subtasks	10
•	Swimlane Diagram	12
•	Work Breakdown Structure	13
•	Gantt Chart	14
•	Functional & Non-Functional Requirements	15

Product Perspective

The Acoustic Drone Detection System provides real-time identification and tracking of UAVs through advanced sound signature analysis. By leveraging microphone arrays and machine learning algorithms, the system enables non-intrusive monitoring of drones in diverse environments, offering a practical solution for enhancing airspace security and management in urban areas, event venues, and sensitive locations.

Use Case Diagrams

Use Case Templates

1.Use Case Title	Capture Sound Data								
2. Abbreviated Title	CSD								
3. Use Case Id	UC1								
4. Actors	Drone Detection System , Unauthorized Drone Operator								
5. Description The system captures ambient sound data using acoustic se	ensors to detect potential drone activity.								
5.1. Pre Conditions: System must be powered on and sensors must be functional. 5.2. Task Sequence									
5.2. Task Sequence									
System initializes acoustic sensors. Continuous or periodic recording of environmental sounds. Store captured sound data for further processing.									
5.3. Post Conditions:									
1. Sound data is stored and ready for signal processing.									
6. Modification History: ₀₁₋₀₄₋₂₀₂₅									
7. Author: CPG 179									

1.Use Case Title	Process Acoustic Signals
2. Abbreviated Title	PAS
3. Use Case Id	UC2
4. Actors	Acoustic-Based Drone Detection System
5. Description The system processes recorded sound data to filter noise	and extract relevant drone-related signals.
5.1. Pre Conditions: Sound data must be available from the se	ensors.
5.2. Task Sequence 1. Apply noise filtering techniques. 2. Extract features specific to drone sounds. 3. Prepare processed data for detection.	
5.3. Post Conditions:	
Processed acoustic signals are available for drone detection.	
6. Modification History: ₀₁₋₀₄₋₂₀₂₅	
7. Author: CPG 179	

1.Use Case Title	Estimate Distance						
2. Abbreviated Title	ED						
3. Use Case Id	UC4						
4. Actors	Acoustic-Based Drone Detection System						
5. Description The system estimates the distance of a detected drone ba	ased on sound intensity analysis.						
5.1. Pre Conditions: Drone presence must be detected.							
5.2. Task Sequence 1. Measure sound intensity levels. 2. Use predefined models to approximate drone distance.							
Estimated distance value is available.							
6. Modification History: 01-04-2025							
7. Author: CPG 179							

1.Use Case Title	Generate Alert
2. Abbreviated Title	GA
3. Use Case Id	UC5
4. Actors	Security Personnel, Acoustic-Based Drone Detection System
5. Description The system generates an alert if unauthorized drone actively	vity is detected.
5.1. Pre Conditions: Drone presence must be detected.	
5.2. Task Sequence	
Send alert notification to security personnel. Log detection event. Optionally, trigger integration with security systems.	
5.3. Post Conditions:	
Security personnel is notified.	
6. Modification History: 01-04-2025	
7. Author: CPG 179	

1.Use Case Title	Estimate Direction
2. Abbreviated Title	EDIR
3. Use Case Id	UC6
4. Actors	Acoustic-Based Drone Detection System
5. Description The system estimates the direction from which a detecte	d drone is approaching.
5.1. Pre Conditions: A drone must be detected.	
5.2. Task Sequence	
Administrator logs into the system. Admin views, adds, or modifies QR code placements.	
5.3. Post Conditions:	
Directional data is available.	
6. Modification History: ₀₁₋₀₄₋₂₀₂₅	
7. Author: CPG 179	

Tasks and Subtasks

T. 1	
Task	Subtask
Researching Hardware / Planning	Identify required hardware components. Define project scope and goals.
Testing Hardware / Data Collection	Capture sounds from various drone models. Record at different distances and angles. Document flight modes. Record background noise in target environments.
Data Preprocessing & Feature Extraction	Filter background noise. Normalize audio samples. Segment recordings into usable frames. Implement MFCC extraction. Process STFT. Extract time-domain features.
Machine Learning Model Development	Evaluate classifiers (CNN, SVM, etc.). Train models on dataset. Optimize hyperparameters. Test accuracy with validation data. Measure false positive/negative rates.
Implementation of Distance & Direction Estimation	Implement time-delay localization algorithms. Develop beamforming techniques. Calibrate for accurate directional data. Create sound intensity analysis for distance estimation. Develop triangulation methods.
Model Evaluation / Testing	Evaluate in lab conditions. Measure detection accuracy & range. Test with multiple drones.
System Integration / UI Development	Create real-time processing pipeline. Implement detection algorithms. Design user dashboard. Create visualization components.

Performance Testing in Real-Time Environment	Deploy in real-world environments. Test in varying weather conditions. Document system limitations.
Final Deliverables	Technical Documentation. Develop user manual and guides. Prepare demonstration materials.

Swimlane Diagram

Work Breakdown Structure

Gantt Chart

Sr. No.	Activity	Month	Febi	ruary		Ma	rch			Apr	il			May	у			Ju	ne			Ju	ly			Augi	ıst		Se	pteml)er	T	0	ctob	er		No	ovem	iber	٦
	Activity	Week No.	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Researching Hardware /	Plan																																				T	T	
	Planning	Actual																														Τ						Τ	T	
2	Testing Hardware / Data	Plan																														T						T	T	٦
	Collection	Actual																																						
3	Data Preprocessing & Feature	Plan																																				T	T	
	Extraction	Actual																														T						T	T	
4	Machine Learning Model	Plan																																				T	T	
	Development	Actual																														T						T	T	
	Implementation of distance &	Plan																																				T	T	
	direction estimation techniques	Actual																																				T	T	
6	Model Evaluation / Testing	Plan																																						
U	Model Evaluation/ Testing	Actual																																				\Box		
7	System Integration / UI	Plan																													Т	Т	Т	Т	Т					
	Development	Actual																																					T	
8	Performance Testing in Real	Plan																																						
0	Time Envionment	Actual																																				$oxed{oxed}$		

Functional and Non-Functional Requirements

Functional Requirements

- **Sound Capture:** Capture drone sounds using microphones.
- Audio Processing: Continuously record and process audio.
- **Noise Reduction:** Apply noise reduction and filtering.
- **Sound Identification:** Identify and differentiate drone sounds.
- Machine Learning Classification: Use machine learning for classification.
- **Distance Estimation:** Estimate drone distance using sound intensity.
- **Direction Detection:** Determine drone direction using time-delay localization.
- Monitoring Dashboard: Offer a dashboard for real-time monitoring.

Non-Functional Requirements

- **Real-Time Processing:** Process audio data in real-time.
- Scalability: Support multiple microphones for accuracy.
- Large-Area Monitoring: Scale for large-area coverage.
- **Detection Accuracy:** Achieve at least 90% detection accuracy.
- Environmental Adaptability: Perform reliably in different environments.
- Error Reduction: Minimize false positives and negatives.
- Data Security: Ensure secure data transmission and storage.
- **Regulatory Compliance:** Comply with data protection regulations.
- Access Control: Prevent unauthorized access.
- User-Friendly Interface: Provide an intuitive user interface.
- Remote Access: Support remote access via web or mobile.
- Customizable Alerts: Allow alert and notification customization.
- **Modular Design:** Ensure modular design for future upgrades.
- System Updates: Support updates without downtime.
- **Diagnostics & Troubleshooting:** Provide logs and diagnostics.
- Operational Flexibility: Operate in indoor and outdoor environments.
- Weather Resistance: Function under varying weather conditions.
- **Power Efficiency:** Be power-efficient with battery/solar support.