שעור 5 אסטרטגיות מעורבות הגדרה של אסטרטגיות מעורבות 5.1

הגדרה 5.1 אסטרטגיות מעורבות

. משחק בצורה אסטרטגיות שבו קבוצות אסטרטגיות משחק בצורה משחק בצורה משחק משחק משחק השחקנים סופיות. $G = \left(N, \left(S_i\right)_{i \in N}, \left(u_i\right)_{i \in N}\right)$ יהי

,1 קבוצת אסטרטגיות קבוצת $S_1=(s_1^1,s_1^2,\dots,s_1^n)$ נניח כי S_1 היא פונקצית ההסתברות של הקבוצת אסטרטגיות אסטרטגיות ונניח כי X_1

$$X_1: S_1 \to [0,1]$$
.

קבוצה אסטרטגיה מעורבת של שחקן 1 מסומן להיות הקבוצה קבוצה אסטרטגיה מעורבת אסטרטגיה אסטרטגיה אסטרטגיה אסטרטגיה אסטרטגיה של שחקן

$$X_1(S_1) = \{X_1(s_1^1), X_1(s_1^2), \dots, X_1(s_1^n)\}$$

:כאשר

 $_{1},s_{1}^{1}$ ההסתברות לשחקן לשחק לפי האסטרטגיה והסתברות ההסתברות לשחקן לשחק לפי האסטרטגיה האסטרטגיה $X_{1}(s_{1}^{1})$ ההסתברות לשחקן לשחק לפי האסטרטגיה וכן הלא.

.1 באופן כללי, נניח כי $S_i=(s_i^1,s_i^2,\ldots,s_i^m)$ קבוצת אסטרטגיות של באופן באופן קבוצה אסטרטגיה מעורבת של שחקן X_i מסומן שחקן מסומרבת הקבוצה אסטרטגיה מעורבת אל

$$X_i(S_i) = \left\{ X_i \left(s_i^1 \right), X_i \left(s_i^2 \right), \dots, X_i \left(s_i^m \right) \right\}$$

:כאשר

 s_i^1 ההסתברות לשחקן לשחק לפי האסטרטגיה האסטרטגיה האסטרטגיה האסטרטגיה א s_i^2 ההסתברות לשחקן לשחק לפי האסטרטגיה וכן הלא.

סימון: ניתן לסמן אסטרטגיה מעורבת עם אותיות גדולות, ולסמן את ההסתברויות עצמן עם אותיות קטנות. למשל

$$X(S_1) = \{X(s_1^1), X(s_1^2), \dots, X(s_1^n)\} = \{x_1, x_2, \dots, x_n\}$$

מסמן את ההסתברות את את את אסטרטגיה s_1^1 , ו- s_1^2 , ו- s_1^2 מסמן את את את אמערטגיה s_1^2 מסמן את אסטרטגיה ברות אסטרטגיה אסטרטגיה בישחקן s_1^2 מסמן את אסטרטגיה אסטרטגיה בישחקן אסטרטגיה אסטרטגירטגיה אסטרטגיה אסטרטגיה אסטרטגירטגיה אסטרטגירטגירטגירטגירט אטטרטגירט אטטרטעט אטטרטגירט אטטרט אטטרט אטטרטעט אטטרט אטטרט אטטרט אטטרט אטטרט

לפי תכונת החיובית של פונקצית הסתברות,

$$0 \le X\left(s_i\right) \le 1 \tag{*1}$$

לכל $s_i \in S_i$ ולפי תכונת הנרמול של פונקצית הסתברות, אם אסטרטגיה מעורבת של שחקן אז מתקיים $s_i \in S_i$

$$X(s_i^1) + X(s_i^2) + \ldots + X(s_i^n) = 1$$
 (*2)

תכונות (*1) ו- (*2) אומרות כי הקבוצה X היא סימפלקס.

דוגמה 5.1 (אסטרטגיה מעורבת)

1 נניח שקבוצת האסורוגיות הטהורות של שחקן היא ו1

$$S_1 = \{A, B, C\}$$
.

את האסטרטגיות המעורבת שבה הוא בוחר כל אסטרטגיה שבה שבה ל שבה את שבה אמעורבת את את אמעורבת אוא שבה אוא שבה הוא את א

$$X(S_1) = \{X(A), X(B), X(C)\}\$$

= $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

$$\Sigma_1 = \{ \{ X(H), X(T) \} = (x_1 \ x_2) \mid 0 \le x_1, x_2 \le 1, x_1 + x_1 = 1 \}$$
.

(0,1) עם (1,0) את המחבר את \mathbb{R}^2 -במקרה לקטע Σ_1 שקולה הקבוצה במקרה את

$$\Sigma_2 = \{ \{ Y(L), Y(M), Y(R) \} = \begin{pmatrix} y_1 & y_2 & y_3 \end{pmatrix} \mid 0 \le y_1, y_2, y_3 \le 1 , y_1 + y_2 + y_3 = 1 \} .$$

(0,0,1) -ו (0,1,0), (1,0,0) שקדקודיו הם הנקודות \mathbb{R}^3 -במקרה אה למשולש ב- Σ_2

דוגמה 5.2 (וקטור אסטרטגיות מעורב)

נתון המשחק באסטרטגיות טהורות באסטרטגיוG במשחק

$$\begin{array}{c|ccccc}
II & A & B \\
\hline
 & \alpha & 1, 1 & 2, -7 \\
\hline
 & \beta & 3, -2 & 5, 6
\end{array}$$

B נניח כי באסטרטגיות מעורבות שחקן 1 משחק לפי אסטרטגיה A בהסתברות ולפי אסטרטגיה 1 ולפי אסטרטגיה 2 וקטור בהסתברות בהסתברות 1 משחק לפי אסטרטגיה 2 בהסתברות בהסתברות 1 משחקן 1 משחקן 1 הוא המעורב של שחקן 1 הוא

$$X = (x_1, x_2) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

ווקטור האסטרגיות המעורב של שחקן 2 הוא

$$Y = (y_1, y_2) = \left(\frac{2}{5}, \frac{3}{5}\right) .$$

המשחק בצורה אסטרטגית מעורבת הינה

$$\begin{array}{c|ccccc}
II & \frac{1}{3}(A) & \frac{2}{3}(B) \\
\hline
\frac{\frac{2}{5}(\alpha)}{\frac{2}{5}(\beta)} & 1, 1 & 2, -7 \\
\hline
\frac{2}{5}(\beta) & 3, -2 & 5, 6
\end{array}$$

 $y_1+y_2=1$ -ו $x_1+x_2=1$ -שימו לב X ו- Y הם סימפלקסים, בגלל ש-

דוגמה 5.3 (וקטור אסטרטגיות מעורב)

נתון המשחק G באסטרטגיות טהורות הנתון למטה:

II	L	C	R
\overline{t}	0, 2	2, -7	3, 2
\overline{m}	3, -2	5,4	2,9
\overline{b}	3, -2	5,6	7, -8

C נניח כי באסטרטגיות מעורבות שחקן 1 משחק לפי אסטרטגיה L בהסתברות $\frac{1}{7}$, לפי אסטרטגיה $\frac{1}{9}$, ולפי אסטרטגיה $\frac{1}{7}$, ושחקן $\frac{1}{7}$ משחק לפי אסטרטגיה $\frac{1}{7}$, ולפי אסטרטגיה $\frac{1}{7}$, ולפי אסטרטגיה $\frac{1}{9}$, ולפי אסטרטגיה $\frac{1}{9}$, ולפי אסטרטגיה $\frac{1}{9}$, ולפי אסטרטגיה $\frac{1}{9}$, ולפי אסטרטגיות המעורב של שחקן $\frac{1}{9}$ הוא

$$X = (x_1, x_2, x_3) = \left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)$$

ווקטור האסטרגיות המעורב של שחקן 2 הוא

$$Y = (y_1, y_2, y_3) = \left(\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right).$$

המשחק בצורה אסטרטגית מעורבת הינה

 $y_1+y_2+y_3=rac{1}{9}+rac{4}{9}+rac{5}{9}=1$ יו $x_1+x_2+x_3=rac{1}{7}+rac{3}{7}+rac{4}{7}=1$ שימו לב X ו- Y הם סימפלקסים, בגלל ש

הגדרה 5.2 ההרחבה של משחק לאסטרטגיות מעורבות

יהי $G = \left(N, (S_i)_{i \in N}, (u_i)_{i \in N}\right)$ יהי לאסטרטגיות מעורבות הוא המשחק לאסטרטגיות מעורבות הוא המשחק

$$\Gamma = \left(N, (\Sigma_i)_{i \in N}, (U_i)_{i \in N}\right) \tag{5.1}$$

:כאשר

 $X_i\left(S_i
ight)$ מסמן את האוסף של כל האסורוגיות המעורבות בל שחקן של האוסף של בל האסון את פונקצית התשלום של שחקן אשר מוגדרת ו- U_i

$$U_i(X_1, \dots, X_N) = \sum_{s_1 \in S_1, \dots, s_N \in S_N} u_i(s_1, \dots, s_n) X_1(s_1) X_2(s_2) \dots X_n(s_n) .$$
 (5.2)

דוגמה 5.4 (פונקצית התשלום של משחק באסטרטגיות מעורבות)

נתון המשחק G באסטרטגיות טהורות:

ונתון הוקטור האסטרגיות המעורבות של שחקן 1:

$$X = (x_1, x_2) = \left(\frac{1}{3}, \frac{2}{3}\right)$$

והוקטור אסטרטגיות מעורבות של שחקן 2:

$$Y = (y_1, y_2) = \left(\frac{2}{5}, \frac{3}{5}\right) .$$

ההרחבה של המשחק לאסטרטגיות מעורבות הינה

i פונקצית התשלום של של שחקן והיא התוחלת התשלום של פונקצית התשלום ו

$$U_1(X,Y) = 1x_1x_2 + 2x_2y_1 + 3x_1y_2 + 5x_2y_2 = \frac{59}{15} .$$

$$U_2(X,Y) = 1x_1x_2 - 7x_2y_1 - 2x_1y_2 + 6x_2y_2 = \frac{4}{15}.$$

ניתן לרשום את פונקצית התשלום במונחי המטריצות התשלומים של שחקן 1 ו- שחקן 2 בנפרד. המטריצת התשלומים של המשחק הינה

$$U = \begin{pmatrix} (1,1) & (2,-7) \\ (3,-2) & (5,6) \end{pmatrix}$$

והמטריצת התשלומים של השחקנים הנפרדים הינן

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & -7 \\ -2 & 6 \end{pmatrix} .$$

הפונקציות B -ו A ו- B המטיצת התשלומים של שחקן 2 המטיצת החקן B ו- ו- B הפונקציות התשלומים שלהם התשלומים מעורבות הן מעורבות הן

$$U_1(X,Y) = X^t A Y = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

$$U_2(X,Y) = X^t B Y = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 1 & -7 \\ -2 & 6 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

דוגמה 5.5 (וקטור אסטרטגיות מעורב)

נתון המשחק G באסטרטגיות טהורות:

II	L	C	R
\overline{t}	0, 2	2, -7	3, 2
\overline{m}	3, -2	5,4	2,9
\overline{b}	3, -2	5, 6	7, -8

-2ן 9,0ן יי, כונתון וקטור האסטרגיות המעורבות של שחקן 1:

$$X = (x_1, x_2, x_3) = \left(\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right)$$

ווקטור האסטרגיות המעורבות של שחקן 2:

$$Y = (y_1, y_2, y_3) = \left(\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right).$$

המשחק בצורה אסטרטגית מעורבת הינה

i פונקצית התשלום של שחקן i היא התוחלת התשלום של פונקצית פונקצית התשלום של פונקצית התשלום של

$$U_1(X,Y) = 0 \cdot x_1 x_2 + 2x_2 y_1 + 3x_1 y_2 + 3x_3 y_1 + 3x_1 y_2 + 5x_2 y_2 + 2x_3 y_2 + 3x_1 y_3 + 5x_2 y_3 + 7x_3 y_3 = \frac{107}{21}.$$

$$U_2(X,Y) = 2x_1y_1 - 7x_1y_2 + 2x_1y_3 - 2x_2y_1 + 4x_2y_2 + 9x_2y_3 - 2x_3y_1 + 6x_3y_2 - 8x_3y_3 = \frac{10}{21}.$$

ניתן לרשום את פונקצית התשלום במונחי המטריצות התשלומים של שחקן 1 ו- שחקן 2 בנפרד. המטריצת התשלומים של המשחק הינה

$$U = \begin{pmatrix} (0,2) & (2,-7) & (3,2) \\ (3,-2) & (5,4) & (2,9) \\ (3,-2) & (5,6) & (7,-8) \end{pmatrix}$$

והמטריצת התשלומים של השחקנים הנפרדים הינן

$$A = \begin{pmatrix} 0 & 2 & 3 \\ 3 & 5 & 2 \\ 3 & 5 & 7 \end{pmatrix} , \qquad B = \begin{pmatrix} 2 & -7 & 2 \\ -2 & 4 & 9 \\ -2 & 6 & -8 \end{pmatrix} .$$

הפונקציות B -ו A המטיצת התשלומים של שחקן B ו- ו- B הפונקציות המטיצת התשלומים שלהם באסטרטגיות מעורבות הן

$$U_1(X,Y) = X^t A Y = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 \\ 3 & 5 & 2 \\ 3 & 5 & 7 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$U_2(X,Y) = X^t B Y = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 2 & -7 & 2 \\ -2 & 4 & 9 \\ -2 & 6 & -8 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

5.2 שיווי משקל נאש ועקרון האדישות

הגדרה 5.3 שיווי משקל האש באסטרטגיות מעורבות

 $\hat{X}^* = (X_1^*, \dots, X_N^*)$ וקטור אסטרטגיות הבא וקטור הבא וקטור הבא התנאי הבא וקטור הבא התנאי מעורבות מעורבות אם התנאי הבא מתקיים המא שיווי משקל באסטרטגיות מעורבות אם התנאי הבא הבא מתקיים

$$U_i\left(\hat{X}^*\right) \ge U_i\left(X_i, \hat{X}_{-i}^*\right) . \tag{5.3}$$

משפט 5.1 עקרון האדישות

 \hat{s}_i יהי \hat{s}_i שתי אסטרטגיות יותה של שחקן אזי במשחק בצורה אסטרטגית, ותהיינה ווהיינה \hat{s}_i שיווי שקל במשחק בצורה אסטרטגית, ותהיינה אזי אזי $X_i^*(\hat{s}_i)>0$ וכן $X_i^*(\hat{s}_i)>0$ אזי

$$U_i(s_i, X_{-i}^*) = U_i(\hat{s}_i, X_{-i}^*) \tag{5.4}$$

הוכחה: נניח בשלילה כי משוואה (5.4) אינה מתקיימת ובלי הגבלת הכלליות נניח כי

$$U_i(s_i, X_{-i}^*) > U_i(\hat{s}_i, X_{-i}^*)$$
 (5.5)

הבא: האסטרטגיה של שחקן שחקן הבאופן הבאופן הבא תהי σ_i

$$X_{i}(t_{i}) \triangleq \begin{cases} X_{i}^{*}(t_{i}) & t_{i} \notin \{s_{i}, \hat{s}_{i}\} \\ 0 & t_{i} = \hat{s}_{i} \\ X_{i}^{*}(s_{i}) + X_{i}^{*}(\hat{s}_{i}) & t_{i} = s_{i} \end{cases}.$$

$$U_{i}\left(X_{i}, X_{-i}^{*}\right) = \sum_{t_{i} \in S_{i}} X\left(t_{i}\right) U_{i}\left(t_{i}, X_{-i}^{*}\right) \tag{5.6}$$

$$= \sum_{t_{i} \notin \{s_{i}, \hat{s}_{i}\}} X^{*}(t_{i}) U_{i}(t_{i}, X_{-i}^{*}) + (X^{*}(s_{i}) + X^{*}(\hat{s}_{i})) U_{i}(s_{i}, X_{-i}^{*})$$
(5.7)

$$> \sum_{t_{i} \notin \{s_{i}, \hat{s}_{i}\}} X^{*}(t_{i}) U_{i}(t_{i}, X_{-i}^{*}) + X^{*}(s_{i}) U_{i}(s_{i}, X_{-i}^{*}) + X^{*}(\hat{s}_{i}) U_{i}(\hat{s}_{i}, X_{-i}^{*})$$
 (5.8)

$$= \sum_{t_{i} \in S_{i}} X^{*}(t_{i}) U_{i}(t_{i}, X_{-i}^{*})$$
(5.9)

$$=U_{i}\left(X^{\ast}\right) \ . \tag{5.10}$$

. פיבלנו כי X^* -ש בסתירה לכך בסתירה $U_i\left(X_i,X_{-i}^*\right)>U_i\left(X^*\right)$ שיווי משקל

דוגמה 5.6 ()

נתון משחק שני שחקנים (שאינו סכום אפס) בצורה אסטרטגית על ידי המטריצה הבאה.

I	L	R
T	1,8	9, 2
В	7, 1	2, 5

מצאו את השיווי משקל באסטרטגיות מעורבות.

פתרון:

I	y(L)	(1-y)(R)
x(T)	1,8	9, 2
(1-x)(B)	7, 1	2,5

$$U_1(x,y) = (2(1-x)+9x)(1-y) + (7(1-x)+x)y = -13xy + 7x + 5y + 2.$$

$$U_2(x,y) = (5(1-x)+2x)(1-y) + (7x+1)y = 10xy - 3x - 4y + 5.$$

לפי עקרון האדישות:

$$U_{1}(T, y^{*}) = U_{1}(B, y^{*})$$

$$\Rightarrow U_{1}(1, y^{*}) = U_{1}(0, y^{*})$$

$$\Rightarrow 9 - 8y^{*} = 2 + 5y^{*}$$

$$\Rightarrow y^{*} = \frac{7}{13}.$$

$$U_{2}(x^{*}, L) = U_{2}(x^{*}, R)$$

$$\Rightarrow U_{2}(x^{*}, 1) = U_{2}(x^{*}, 0)$$

$$\Rightarrow 1 + 7x^{*} = 5 - 3x^{*}$$

$$\Rightarrow x^{*} = \frac{2}{5}.$$

לכן השיווי משקל הוא

$$X^* = \left(\frac{2}{5}, \frac{3}{5}\right) , \qquad Y^* = \left(\frac{7}{13}, \frac{6}{13}\right) .$$

דוגמה 5.7 ()

נתון משחק שני שחקנים (שאינו סכום אפס) בצורה אסטרטגית על ידי המטריצה הבאה.

I	L	R
T	5, 5	-2, -2
B	4, 4	3,3

מצאו את השיווי משקל באסטרטגיות מעורבות.

I	y(L)	(1-y)(R)
x(T)	5,5	-2, -2
B	4,4	3,3

$$U_1(x,y) = (3(1-x)-2x)(1-y) + (4(1-x)+5x)y = 6xy - 5x + y + 3.$$

$$U_2(x,y) = (3(1-x)-2x)(1-y) + (4(1-x)+5x)y = 6xy - 5x + y + 3.$$

לפי עקרון האדישות:

$$U_{1}(T, y^{*}) = U_{1}(B, y^{*})$$

$$\Rightarrow U_{1}(1, y^{*}) = U_{1}(0, y^{*})$$

$$\Rightarrow -2 + 7y^{*} = 3 + y^{*}$$

$$\Rightarrow y^{*} = \frac{5}{6}.$$

$$U_{2}(x^{*}, L) = U_{2}(x^{*}, R)$$

$$\Rightarrow U_{2}(x^{*}, 1) = U_{2}(x^{*}, 0)$$

$$\Rightarrow 4 + x^{*} = 3 - 5x^{*}$$

$$\Rightarrow x^{*} = -\frac{1}{6} \notin [0, 1].$$

אין השיווי משקל באסרטגיות מעורבות.

משפט 5.2 נוסחאות שיווי משקל למשחק שני-שחקנים ריבועי

יהי שחקנים שני שחקנים $G=(\{1,2\},\{S_1,S_2\},\{u_1,u_2\})$ יהי שבו לכל שחקן יש n אסטרטגיות טהורות.

,1 וקטור אסטרטגיות שיווי משקל אל אחקן
$$X^* = \begin{pmatrix} x_1^* \\ \vdots \\ x_n^* \end{pmatrix} \in \mathbb{R}^n$$
 יהי

$$2$$
 וקטור אסטרטגיות שיווי משקל של אחקן $Y^* = egin{pmatrix} y_1^* \\ \vdots \\ y_n^* \end{pmatrix} \in \mathbb{R}^n$ יהי

,2שחקן של התשלומים מטריצת מטריצת $B\in\mathbb{R}^{n\times n}$, תהי שחקן של התשלומים מטריצת מטריצת מטריצת התשלומים און תהי

. בהתאמה בהתשלומי ושחקן 1 ושחקן 2 בהתאמה ויהו U_2^* -ו ו U_1^* ויהו ויהו U_2^*

אזי

$$\begin{split} X^{*t} = & \frac{e^t A^{-1}}{\langle e, A^{-1} e \rangle} \ , \qquad \quad U_1^* = \langle X^*, AY^* \rangle = \frac{1}{\langle e, A^{-1} e \rangle} \\ Y^* = & \frac{B^{-1} e}{\langle e, B^{-1} e \rangle} \ , \qquad \quad U_2^* = \langle X^*, BY^* \rangle = \frac{1}{\langle e, B^{-1} e \rangle} \ . \end{split}$$

.1 -טווה ל- פאיבר איבר
$$\mathbb{R}^n$$
 שבו כל איבר שווה ל- $e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$ כאשר

הוכחה:

• לפי עקרון האדישות,

$$X^{*t}A = u_1e^t .$$

לכן

$$X^{*t} = u_1 e^t A^{-1} \ .$$

מכיוון שהסכום של ההסתברויות שווה ל- 1 אז

$$1 = X^{*t}e = u_1e^tA^{-1}e \qquad \Rightarrow \qquad u_1 = \frac{1}{e^tA^{-1}e} = \frac{1}{\langle e, A^{-1}e \rangle} .$$

על ידי הצבה בביטוי הקודם נקבל

$$X^{*t} = \frac{e^t A^{-1}}{\langle e, A^{-1}e \rangle} .$$

• באותה מידה לפי עקרון האדישות,

$$BY^* = u_2e .$$

לכן

$$Y^* = u_2 B^{-1} e$$
.

מכיוון שהסכום של ההסתברויות שווה ל- 1 אז

$$1 = e^t X^* = u_2 e^t B^{-1} e \qquad \Rightarrow \qquad u_2 = \frac{1}{e^t B^{-1} e} = \frac{1}{\langle e, B^{-1} e \rangle} .$$

על ידי הצבה בביטוי הקודם נקבל

$$Y^* = \frac{A^{-1}e}{\langle e, B^{-1}e \rangle} .$$

$$\begin{split} U_1^* &= \langle X^*, AY^* \rangle = X^{*t}AY^* \\ &= \frac{e^t A^{-1}AB^{-1}e}{\langle e, A^{-1}e \rangle \langle e, B^{-1}e \rangle} \\ &= \frac{e^t B^{-1}e}{\langle e, A^{-1}e \rangle \langle e, B^{-1}e \rangle} \\ &= \frac{\langle e, B^{-1}e \rangle}{\langle e, A^{-1}e \rangle \langle e, B^{-1}e \rangle} \\ &= \frac{1}{\langle e, A^{-1}e \rangle} \; . \end{split}$$

$$\begin{split} U_2^* &= \langle X^*, BY^* \rangle = X^{*t}BY^* \\ &= \frac{e^t A^{-1}BB^{-1}e}{\langle e, A^{-1}e \rangle \langle e, B^{-1}e \rangle} \\ &= \frac{e^t A^{-1}e}{\langle e, A^{-1}e \rangle \langle e, B^{-1}e \rangle} \\ &= \frac{\langle e, A^{-1}e \rangle}{\langle e, A^{-1}e \rangle \langle e, B^{-1}e \rangle} \\ &= \frac{1}{\langle e, B^{-1}e \rangle} \; . \end{split}$$

דוגמה 5.8 ()

II I	a	b	c
α	1, 1	1,2	2,1
β	1, 2	3, 1	0, 1
γ	2, -1	1,1	1,2

פתרון:

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

$$A^{-1} = \frac{1}{8} \begin{pmatrix} -3 & -1 & 6 \\ 1 & 3 & -2 \\ 5 & -1 & -2 \end{pmatrix}, \qquad B^{-1} = \frac{1}{6} \begin{pmatrix} -1 & 3 & -1 \\ 5 & -3 & -1 \\ -3 & 3 & 3 \end{pmatrix}.$$

$$U_1^* = \frac{1}{\langle e, A^{-1}e \rangle} = \frac{4}{3}.$$

$$U_2^* = \frac{1}{\langle e, B^{-1}e \rangle} = \frac{6}{5}.$$

$$X^* = U_1^* e^t A^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \end{pmatrix},$$

$$Y^* = U_2^* B^{-1} e = \begin{pmatrix} \frac{1}{2} & \frac{1}{5} & \frac{3}{5} \end{pmatrix}.$$

מסקנה 5.1 נוסחאות שיווי משקל למשחק שני-שחקנים סכום-אפס ריבועי

במשחק סכופ אפס ריבועי שבו לכל שחקו יש n אסטרטגיות טהורות. אם A המטריצת המשחק אז הווקטורי אסטרטגיות שיווי משקל X^* ו- Y^* של שחקן Y^* (שחקן השורות) ושחקן Y^* (שחקן העמודות), והתשלום שיווי משקל נתונים על ידי

$$X^{*t} = \frac{e^t A^{-1}}{\langle e, A^{-1} e \rangle} , \qquad Y^* = \frac{A^{-1} e}{\langle e, B^{-1} e \rangle} , \qquad U = \langle X^*, AY^* \rangle = \frac{1}{\langle e, A^{-1} e \rangle} .$$

5.3 משפט

יהי $G=\left(N,(S_i)_{i\in N},(u_i)_{i\in N}\right)$ ההרחבה שלו לאסטרטגיות מעורבות. $G=\left(N,(S_i)_{i\in N},(u_i)_{i\in N}\right)$ יהי ורק אם לכל שחקן אם לכל שחקן אסטרטגיות מעורבות σ^* הוא שיווי משקל באסטרטגיות מעורבות במשחק אסטרטגיה טהורה $s_i\in S_i$ מתקיים ולכל אסטרטגיה טהורה ולכל אסטרטגיה מעורבות מעורבות מעורבות מעורבות מעורבות ולכל אסטרטגיה טהורה ולכל אסטרטגיה שורק מעורבות מעורבות ולכל אסטרטגיה טהורה ולכל אסטרטגיה טהורה ולכל אסטרטגיה טהורה ולכל אסטרטגיה שורק מעורבות ולכל אסטרטגיה טהורה ולכל אסטרטגיה טהורה ולכל אסטרטגיה שורק מעורבות ולכל אסטרטגיה טהורה ולכל אסטרטגיה שורק מעורבות ולכל אסטרטגיה שורק מעורבות ולכל אסטרטגיה שורק ולכל אסטרטגיה שורק ולכל אסטרטגיה שורק ולכל אסטרטגיה ולכל אסטרטגיים ולכל ולכל אסטרטגיים ולכל אסטרטגים ולכל אסטרטגיים ו

$$U_i(\hat{X}^*) \ge U_i(s_i, X_{-i}^*)$$
 (5.11)

אז Γ איווי משקל באסטרטגיות מעורבות משחק \hat{X}^* אז

$$U_i\left(\hat{X}^*\right) \ge U_i\left(X_i, X_{-i}^*\right)$$

 $X_i \in \Sigma_i$ מעורבת אסטרטגיה ולכל ולכל ולכל לכל

כל אסטרטגיה טהורה היא אסטרטגיה מעורבת, אז

$$U_i\left(\hat{X}^*\right) \ge U_i\left(s_i, X_{-i}^*\right)$$

 $s_i \in S_i$ לכל שחקן i ולכל אסטרטגיה טהורה

 $i\in N$ לכל שחקן (5.11) מקיים את מקיים את מעורבות המטרטגיות האסטרטגיות נניח כי וקטור ההפוך, נניח כי וקטור האסטרטגיות המעורבות \hat{X}^* מקיים את המשוואה וקטור האסטרטגיה כי וקטור האסטרטגיה אסטרטגיה ווער האסטרטגיה אסטרטגיה ווער האסטרטגיה אסטרטגיה ווער האסטרטגיה ווער האסטרטגיה אסטרטגיה ווער האסטרטגיה ווער האסטרטגים ווער האסטרטגיה ווער האסטרטגיה ווער האסטרטגיים ווער האסטרטגיה ווער ו

:i אזי לכל אסטרטגיה מעורבת X_i של אסטרטגיה

$$U_{i}\left(X_{i}, X_{-i}^{*}\right) = \sum_{s_{i} \in S_{i}} X_{i}\left(s_{i}\right) U_{i}\left(s_{i}, X_{-i}^{*}\right) \tag{5.12}$$

$$\leq \sum_{s_{i} \in S_{i}} X_{i}\left(s_{i}\right) U_{i}\left(\hat{X}^{*}\right) \tag{5.13}$$

$$=U_{i}\left(\hat{X}^{*}\right)\sum_{s_{i}\in S_{i}}X_{i}\left(s_{i}\right)=U_{i}\left(\hat{X}^{*}\right),$$
(5.14)

(5.11) נובע מהאי-שוויון (5.12) נובע מכך ש- U_i היא פונקציה מולטי-לינארית והאי-שוויון (5.13) נובע מהאי-שוויון (5.11). בפרט, \hat{X}^* הוא שיווי משקל באסטרטגיות מעורבות ב-

מסקנה 5.2

 \hat{x}_i שתי אסטרטגיות טהורות של שחקן יהי \hat{s}_i ו- והיינה אסטרטגית, ותהיינה אסטרטגיות טהורות של שחקן \hat{X}^*

$$.X_{i}^{st}\left(s_{i}
ight)=0$$
 אז $U_{i}\left(s_{i},X_{-i}^{st}
ight)< U_{i}\left(\hat{X}^{st}
ight)$ אם (1

$$.X_{i}^{*}\left(s_{i}
ight)=0$$
 אם $U_{i}\left(s_{i},X_{-i}^{*}
ight)< U_{i}\left(\hat{s}_{i},X_{-i}^{*}
ight)$ אם (2

$$U_{i}\left(s_{i},X_{-i}^{*}
ight)=U_{i}\left(\hat{s}_{i},X_{-i}^{*}
ight)$$
 אם $X_{i}^{*}\left(\hat{s}_{i}
ight)>0$ -1 $X_{i}^{*}\left(s_{i}
ight)>0$ אם (3

$$X_{i}^{st}\left(s_{i}
ight)=0$$
 אם \hat{s}_{i} אז על ידי איז נשלטת נשלטת נשלטת (4

הוכחה:

$$U_i\left(s_i,X_{-i}^*
ight) < U_i\left(\hat{X}^*
ight)$$
 נניח (1

נניח בשלילה כי \hat{s}_i עבורה $X_i^*\left(\hat{s}_i\right)>0$ מתקיים לכל אסטרטגיה טהורה $X_i^*\left(\hat{s}_i\right)>0$ מתקיים

לכן
$$U_i\left(\hat{s}_i, X_{-i}^*\right) = U_i\left(s_i, X_{-i}^*\right)$$

$$U_{i}\left(\hat{X}^{*}\right) = \sum_{\hat{s}_{i} \in S_{i}} X_{i}^{*}\left(\hat{s}_{i}\right) U_{i}\left(\hat{s}_{i}, X_{-i}^{*}\right)$$

$$= \sum_{\hat{s}_{i} \in S_{i}} X_{i}^{*}\left(\hat{s}_{i}\right) U_{i}\left(\hat{s}_{i}, X_{-i}^{*}\right)$$

$$X_{i}^{*}(\hat{s}_{i}) > 0$$

$$= \sum_{\hat{s}_{i} \in S_{i}} X_{i}^{*}\left(\hat{s}_{i}\right) U_{i}\left(s_{i}, X_{-i}^{*}\right)$$

$$X_{i}^{*}(\hat{s}_{i}) > 0$$

$$= U_{i}\left(s_{i}, X_{-i}^{*}\right)$$

$$U_i\left(s_i,X_{-i}^*
ight) < U_i\left(\hat{X}^*
ight)$$
 -בסתירה לכך ש

 $U_i\left(s_i,X_{-i}^*
ight) < U_i\left(\hat{s}_i,X_{-i}^*
ight) \overset{ ext{NFYMIN}}{=} U_i\left(\hat{X}^*
ight)$ $X_i^*\left(s_i
ight)=0$ 'א ולכן לפי סעיף א' $U_i\left(s_i,X_{-i}^*
ight) < U_i\left(\hat{X}^*
ight)$ א"א

- .(3 עקרון האדישות (משפט 5.1).
- נניח כי \hat{s}_i נשלטת חזק על ידי (4

$$u_i(s_i, s_{-i}) < u_i(\hat{s}_i, s_{-i}) \qquad \forall s_{-i} \in S_{-i} .$$

מכאן

$$U_{i}(s_{i}, X_{-i}^{*}) = \sum_{s_{-i} \in S_{-i}} X_{-i}^{*}(s_{-i}) u_{i}(s_{i}, s_{-i})$$

$$< \sum_{s_{-i} \in S_{-i}} X_{-i}^{*}(s_{-i}) u_{i}(\hat{s}_{i}, s_{-i})$$

$$= U_{i}(\hat{s}_{i}, X_{-i}^{*})$$

ז"א

$$U_i(s_i, X_{-i}^*) < U_i(\hat{s}_i, X_{-i}^*)$$

 $X_{i}^{st}\left(s_{i}
ight)=0$ ולכן לפי סעיף ב'

5.3 דוגמאות

דוגמה 5.9 (מלחמת המינים)

המשחק הבא נקרא "מלחמת המינים". זוג מתכונן בילוי לערב שבת. האפשרויות העומדות לרשותם הן קונצרט (C) או צפיייה שמשחק כדורגל (F). הגבר מעדיף צפייה במשחק הכדורגל, בעוד האישה מעדיפה את הוקנצרט, אך שניהם מעדיפים להיות יחד גם אם הבילוי המשותף הוא הפחות עדיף בעיניהם. מצאו את כל שיווי המשקל של המשחק.

I	F	C
F	2, 1	0,0
C	0,0	1, 2

מצאו כל שיווי משקל של המשחק.

פתרון:

קודם כל נשים לב שיש למשחק שיווי משקל באסטרטגיות טהורות:

II I	F	C
F	<u>2</u> , <u>1</u>	0,0
C	0, 0	1, 2

כעת נבדוק אם יש שיווי משקל באסטרטגיות מעורבות.

I	y(F)	(1-y)C
x(F)	$\underline{2},\underline{1}$	0,0
(1-x)(C)	0,0	<u>1, 2</u>

לפי עקרון האדישות:

$$U_1(F, y^*) = U_1(C, y^*) \quad \Rightarrow \quad 2y^* = (1 - y^*) \quad \Rightarrow \quad y^* = \frac{1}{3}.$$

$$U_2(x^*, F) = U_2(x^*, C) \implies x^* = 2(1 - x^*) \implies x^* = \frac{2}{3}.$$

כאשר $\sigma^* = (X^*, Y^*)$ כאשר לכן הווקטור אסטרטגיות

$$X^* = \left(\frac{2}{3}(F), \frac{1}{3}(C)\right) , \qquad Y^* = \left(\frac{1}{3}(F), \frac{2}{3}(C)\right)$$

הוא שיווי משקל באסטרטגיות מעורבות.

דוגמה 5.10 ()

במשחק הבא מצאו את כל שיווי המשקל של המשחק.

I	L	R
T	4, -4	-4, 4
M	-4, 4	4, 3
В	-4, 2	3, 1

פתרון:

II	L	R
T	$\underline{4}, -4$	-4, 4
M	-4, 4	<u>4</u> , 3
B	-4, 2	3, 1

לפיכך לא קיים שיווי משקל באסטרטגיות טהורות.

לפי משפט נאש בהכרח קיים שיווי משקל באסטרטגיות מעורבות.

אסטרטגיות B נשלטת על ידי M לכן שחקן 1 ישחק לפי אסטרטגיה בהסתברות B נשלטת על ידי מעורבות הינו

I	y(L)	(1-y)(R)
x(T)	4, -4	-4, 4
(1-x)(M)	-4, 4	4, 3
0(B)	-4, 2	3, 1

:R לבין האסטרטגיה בין האסטרטגיה אז שחקן איז שחקן x^* שיווי אם לפי עקרון האדישות אם

$$U_2(x^*, L) = U_2(x^*, R) \implies -4x^* + 4(1 - x^*) = 4x^* + 3(1 - x^*) \implies -7x^* = -1 \implies x^* = \frac{1}{7}.$$

M לפי עקרון האדישות אם y^* שיווי משקל אז א דיש בין האסטרטגיה אדישות אם א לפי לפי

$$U_1(T, y^*) = U_1(M, y^*) \quad \Rightarrow \quad 4y^* - 4(1 - y^*) = -4y^* + 4(1 - y^*) \quad \Rightarrow \quad 16y^* = 8 \quad \Rightarrow \quad y^* = \frac{1}{2}.$$

לכן מעורבות מעורבות המשחק של של שיווי משקל שיווי $\sigma^* = (X^*, Y^*)$

$$X^* = \left(\frac{1}{7}, \frac{6}{7}\right) , \qquad Y^* = \left(\frac{1}{2}, \frac{1}{2}\right) .$$

דוגמה 5.11 ()

נתון המשחק הבא.

I	L	C	R
T	0, 0	7, 6	6, 7
M	6, 7	0,0	7, 6
В	7,6	6, 7	0,0

מצאו את כל שיווי המשקל של המשחק.

פתרון:

היא I המטריצת התשלומים של התשלומים

$$A = \begin{pmatrix} 0 & 7 & 6 \\ 6 & 0 & 7 \\ 7 & 6 & 0 \end{pmatrix}$$

לכן
$$|A| = 559$$

$$A^{-1} = \frac{1}{559} \begin{pmatrix} -42 & 49 & 36 \\ 36 & -42 & 49 \\ 49 & 36 & -42 \end{pmatrix}^{t} = \frac{1}{559} \begin{pmatrix} -42 & 36 & 49 \\ 49 & -42 & 36 \\ 36 & 49 & -42 \end{pmatrix} .$$

היא II המטריצת התשלומים של

$$B = \begin{pmatrix} 0 & 6 & 7 \\ 7 & 0 & 6 \\ 6 & 7 & 0 \end{pmatrix}$$

לכן |B| = 559

$$B^{-1} = \frac{1}{559} \begin{pmatrix} -42 & 36 & 49 \\ 49 & -42 & 36 \\ 36 & 49 & -42 \end{pmatrix}^{t} = \frac{1}{559} \begin{pmatrix} -42 & 49 & 36 \\ 36 & -42 & 49 \\ 49 & 36 & -42 \end{pmatrix} .$$

מכאן

$$\langle e, A^{-1}e \rangle = \frac{1}{559} \left\langle \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 43\\43\\43 \end{pmatrix} \right\rangle = \frac{129}{559} .$$

לכן התשלומי שיווי משקל הינם

$$u_1^* = \frac{1}{\langle e, A^{-1}e \rangle} = \frac{559}{129}$$

$$\langle e, B^{-1}e \rangle = \frac{1}{559} \left\langle \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 43\\43\\43 \end{pmatrix} \right\rangle = \frac{129}{559} .$$

לכן התשלומי שיווי משקל הינם

$$u_2^* = \frac{1}{\langle e, B^{-1}e \rangle} = \frac{559}{129}$$

$$X^* = \frac{e^t A^{-1}}{\langle e, A^{-1} e \rangle} = \frac{559}{129} \cdot \frac{1}{559} \begin{pmatrix} 43 & 43 & 43 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$Y^* = \frac{B^{-1}e}{\langle e, B^{-1}e \rangle} = \frac{559}{129} \cdot \frac{1}{559} \begin{pmatrix} 43\\43\\43 \end{pmatrix} = \begin{pmatrix} \frac{1}{3}\\\frac{1}{3}\\\frac{1}{3} \end{pmatrix}$$