

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

may be aided in his task of revision, from time to time, rarely happens that the early editions of works of any and, to that end, the greatest accuracy is sought. It our publications standard works of study and reference, by the kindly criticism of his readers. discovered, and it is therefore desired that the Author Publishers to see them removed immediately upon being size are free from errors; but it is the endeavor of the that they may find therein. It is intended to make any of the readers of this volume who will kindly call their attention to any errors of omission or of commission The Publishers and the Author will be grateful to JOHN WILEY & SONS.

53 East Tente Street, New York.

MECHANICAL ENGINEER'S POCKET-BOOK.

A REFERENCE-BOOK OF RULES, TABLES, DATA,

AND FORMULÆ, FOR THE USE OF

ENGINEERS, MECHANICS,

AND STUDENTS.

RY

WILLIAM KENT, A.M., M.E.,

Consulting Engineer.

Member Amer. Soc'y Mechl. Engrs, and Amer Inst. Mining Engrs.

FIRST THOUSAND.
FIRST EDITION.

NEW YORK:

JOHN WILEY & SONS,

53 EAST TENTH STREET.

1895.

345.55 Eng 348.95.5 JUN 15 1895

I'm morning Appropriation

COPYRIGHT, 1895, BY WILLIAM KENT.

PREFACE.

More than twenty years ago the author began to follow the advice given by Nystrom: "Every engineeer should make his own pocket-book, as he proceeds in study and practice, to suit his particular business." The manuscript pocket-book thus begun, however, soon gave place to more modern means for disposing of the accumulation of engineering facts and figures, viz., the index rerum, the scrapbook, the collection of indexed envelopes, portfolios and boxes, the card catalogue, etc. Four years ago, at the request of the publishers, the labor was begun of selecting from this accumulated mass such matter as pertained to mechanical engineering, and of condensing, digesting, and arranging it in form for publication. In addition to this, a careful examination was made of the transactions of engineering societies, and of the most important recent works on mechanical engineering, in order to fill gaps that might be left in the original collection, and insure that no important facts had been overlooked.

Some ideas have been kept in mind during the preparation of the Pocket-book that will, it is believed, cause it to differ from other works of its class. In the first place it was considered that the field of mechanical engineering was o great, and the literature of the subject so vast, that as little space as possible should be given to subjects which especially belong to civil engineering. While the mechanical engineer must continually deal with problems which belong properly to civil engineering, this latter branch is well covered by Trautwine's "Civil Engineer's Pocket-wk" that any attempt to treat it exhaustively would not say fill no "long-felt want," but would occupy space ich should be given to mechanical engineering.

Another idea prominently kept in view by the author has been that he would not assume the position of an "authority" in giving rules and formulæ for designing, but only that of compiler, giving not only the name of the originator of the rule, where it was known, but also the volume and page from which it was taken, so that its derivation may be traced when desired. When different formulæ for the same problem have been found they have been given in contrast, and in many cases examples have been calculated by each to show the difference between them. In some cases these differences are quite remarkable, as will be seen under Safety-valves and Crank-pins. Occasionally the study of these differences has led to the author's devising a new formula, in which case the derivation of the formula is given.

Much attention has been paid to the abstracting of data of experiments from recent periodical literature, and numerous references to other data are given. In this respect the present work will be found to differ from other Pocketbooks.

The author desires to express his obligation to the many persons who have assisted him in the preparation of the work, to manufacturers who have furnished their catalogues and given permission for the use of their tables, and to many engineers who have contributed original data and tables. The names of these persons are mentioned in their proper places in the text, and in all cases it has been endeavored to give credit to whom credit is due. thanks of the author are also due to the following gentlemen who have given assistance in revising manuscript of proofs of the sections named: Prof. De Volson Wood mechanics and turbines; Mr. Frank Richards, compressed air: Mr. Alfred R. Wolff, windmills; Mr. Alex. Humphreys, illuminating gas; Mr. Albert E. Mitchell locomotives: Prof. James E. Denton, refrigerating-ma chinery; Messrs. Joseph Wetzler and Thomas W. Varley electrical engineering; and Mr. Walter S. Dix, for valu able contributions on several subjects, and suggestions a WM. KENT. to their treatment.

(For Alphabetical Index see page 1975.)

MATHEMATICS.

Arithmetic.

Arithmetical and Algebraical Signs	1
Greatest Common Divisor.	2
Least Common Multiple.	2
Fractions	2
Decimals Table. Decimal Equivalents of Fractions of One Inch	8
Table. Decimal Equivalents of Fractions of One Inch	8
Table. Products of Fractions expressed in Decimals	4
Compound or Denominate Numbers	5
Reduction Descending and Ascending.	5
Ratio and Proportion.	5
Involution or Powers of Numbers	ĕ
Involution, or Powers of Numbers Table. First Nine Powers of the First Nine Numbers	6
Table. First Forty Powers of 2.	ż
Evolution. Square Root.	÷
Tube Root	7
Alligation.	10
Permutation.	10
	10
Combination.	11
Arithmetical Progression	11
icometrical Progression	18
nterest	
Discount	13
ompound Interest	14
ompound Interest Table, 3, 4, 5, and 6 per cent	14
quation of Payments	14
'artial Payments	15
Innuities	16
lables of Amount, Present Values, etc., of Annuities	16
Weights and Measures.	
Ang Measure	17
All Tari Maria	17
d Land Measure	17
autical Measure	18
quare Measure	
olid or Cubic Measure.	18
iquid Measure	18
ne Miners' Inch.	18
pothecaries' Fluid Measure	18
Measure	18
mipping Measure	19
voirdupois Weight	19
by Weight	19
bothecaries' Weight	19
Weigh Correctly on an Incorrect Balance	
	19
fcular Measure	20

PAGE

Board and Timber Measure. Table. Contents in Feet of Joists, Scantlings, and Timber	2
Table. Contents in Feet of Joists. Scantlings, and Timber	∷ 2
French or Metric Measures. British and French Equivalents. Metric Conversion Tables	2
British and French Equivalents	2
Metric Conversion Tables	2
of Pressure and Weight of Water, Weight, and Bulk of Work, Power, and Duty	2
of Water, Weight, and Bulk	
of Work, Power, and Duty	2
of Velocityof Pressure per unit area	2
of Pressure per unit area	2
Wire and Sheet Metal Gauges. Twist-drill and Steel-wire Gauges. Music-wire Gauge	2
Twist-drill and Steel-wire Gauges.	2
Music-wire Gauge	2
Circular-mil Wire Gauge	8
Circular-mil Wire Gauge. New U. S. Standard Wire and Sheet Gauge, 1893	8
Algebra.	
Addition, Multiplication, etc	8
Powers of Numbers	8
Parentheses, Division	8
Parentheses, Division Simple Equations and Problems	8
Fanations containing two or more Unknown Quantities	
Quadratic Equations Theory of Exponents.	8
Quadratic Equations	8
Theory of Exponents	8
Binomial Theorem	8
Binomial Theorem Geometrical Problems of Construction	8
of Straight Lines	8
of Angles	
of Circles	8
of Triangles	
of Squares and Polygons	
of the Ellipse	4
of Squares and Polygons of the Ellipse. of the Parabola.	•
of the Hyperbola	4
of the Cycloid	
of the Hyperbola. of the Cycloid. of the Tractrix or Schiele Anti-friction Curve	11 1
of the Spiral	
of the Catenary	
of the Spiral of the Catenary of the Involute.	
Geometrical Propositions	
Mensuration, Plane Surfaces.	
•	
Quadrilateral, Parallelogram, etc <u>T</u> rapezium and Trapezoid	
Trapezium and Trapezoid	
Triangles Triangles Polygons. Properties of the Circle. Properties of the Circle.	
Polygons. Table of Polygons	
Irregular Figures	
Properties of the Circle	٠,
Values of π and its Multiples, etc	
Values of π and its Multiples, etc. Relations of arc, chord, etc Relations of circle to inscribed square, etc	
Relations of circle to inscribed square, etc	
Sectors and Segments. Circular Ring.	
Circular Ring	٠.
The Ellipse The Helix.	• •
The Helix	٠.
The Spiral	• •
Mensuration, Solid Bodies.	
Prism	٠.
Pyramid	٠.
Pyramid. Wedge. The Prismoidal Formula.	• •
The Prismoidal Formula.	٠.
Rectangular Prismoid	
Cylinder	٠.
Cone	• •

	AGE.
· bere	61
rical Triangle	61
erical Polygon	61
Sherical Zone	62
herical Segment	62
eroid or Ellipsoid	68
yedron. hdrical Ring.	62
Indrical King	62
s dis of Revolution	62 63
riadies	63
strum of a Spheroid.	64
3.300RG CODOR	64
ume of a Cask.	64
Citymai Sunus	~
Plane Trigonometry.	
Lition of Plane Triangles	65
Tengent Secont etc	65
Tangent, Secant, etcs of the Trigonometric Functions	66
ganomatrical Formula	66
Station of Plane Right-angled Triangles	68
is-nometrical Formula. Cation of Plane Right-angled Triangles. Cution of Oblique-angled Triangles.	68
	•••
Analytical Geometry.	
Ordinates and Abscissas	69
Fountions of a Straight Line Intersections etc.	69
requations of the Circle.	70
Equations of the Ellipse	70
Equations of the Parabola	70
Equations of the Hyperbola	70
Logarithmic Curves	71
Differential Calculus.	
Pefinitions.	72
ifferentials of Algebraic Functions	72
formulæ for Differentiating	73
Partial Differentials	78
Integrals Iormulæ for Integration.	78 74
Integration between Limits.	74
Quadrature of a Plane Surface.	74
Quadrature of Surfaces of Revolution	78
Abature of Volumes of Revolution. Second, Third, etc., Differentials. Maclaurin's and Taylor's Theorems.	75 75
Second Third etc. Differentials	75
Maclaurin's and Taylor's Theorems	76
Maxima and Minima.	76
Maßima and Minima. Inferential of an Exponential Function.	77
Logarithms.	77
Logarithms. Inferential Forms which have Known Integrals.	77 77 78
Exponential Functions.	78
Circular Functions	78
The Cycloid	79
Integral Calculus	79
Mathematical Tables.	
Reciprocals of Numbers 1 to 2000	80
Squares, end Cubes, Square Roots, and Cube Roots from 0.1 to 1600	.86
Squares and Cubes of Decimals. Fifth Roots and Fifth Powers.	101
Fifth Roots and Fifth Powers	
Grounderences and Areas of Circles, Diameters 1 to 1000	103
100	100
100becimals of a Foot Equivalent to Inches and Fractions of an Inch	108 112
Grounferences of Circles in Feet and Inches, from 1 inch to 32 feet 11	112
inches in diameter.	113
inches in diameter. Lengths of Circular Arcs, Degrees Given	114
lengths of Circular Arcs, Height of Arc Given	
dreas of the Segments of a Circle.	

Spucies	and Cylinders, Cubic Feet and Gallons, Tanks, Cisterns, etc	
Contents of Pines s	and Cylinders Cabic Feet and Gallons	
Onlindrical Vessels	Manha Olatoma etc	•
Cymnurical vessels,	, Tanks, Cisterns, etc	,
Cubic Foot in a Nu	mbou of Callana	•
Cubic Feet III & Nui	mber of Gallons. es 3 to 32 feet long and 1 inch wide ngular Tanks in Gallons. in Cylindrical Cisterns and Tanks.	
Square Feet in Plat	es 3 to 32 feet long and 1 inch wide	
Connection of Posts	noules Conks in College	٠.
Capacities of Recu	ngular Tauks in Ganons	
Number of Barrels	in Cylindrical Cisterns and Tanks	•
Logowithman		
Dogariums	18	
Table of Logarithm	18	•
Trum on boll of a month	hann	- :
Hyperbone Logarit	hms	1
Natural Trigonome	trical Functions	1
T	and the state of t	
Logarithmic Trigor	iometrical functions	- 2
	MATERIALS.	
Chemical Elements	d Weight of Materials.	1
Consider Consider on	d Whiteha of Madamiala	
Specinc Gravity and	d weight of Materials	1
Metals Properties	of	1
mount, 1 roper des		
The Hydrometer		1
Aluminum	of	1
A 41	•••••••••••••••••••••••••••••••••••••••	-
Anumony		1
Riemuth		1
O. A	• • • • • • • • • • • • • • • • • • • •	-
Caamium		1
Connar		1
Cohhor		
Gold		10
Twidings		ī
in turum		
Iron		10
Load		
Lieau		10
Magnesium		16
Managanaga		
manganese		16
Mercury		16
37:-11		-:
NICKEI		16
Platinum		16
Ott		
DIIVEL	• • • • • • • • • • • • • • • • • • • •	16
Tin	· · · · · · · · · · · · · · · · · · ·	
Tin	••••••	16
Tin		
TinZine		16
TinZine		16
Tin	Miscellaneous Materials.	16 16
Tin	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16
Tin	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16 16
Tin	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16 16
Tin Zinc	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16 17
Tin Zinc	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16 17
Tin Zinc	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16 17
Tin Zinc	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16 17
Order of Malleabilit Formulæ and Table Measures and Weigi Commercial Sizes of Weights of Iron Bar of Flat Rolled Iron of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc	16 16 16 16 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets.	16 16 16 16 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig' Commercial Sizes o Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms of Structural Shas Sizes and Weights o	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Order of Malleabilit Formulæ and Table Measures and Weig! Commercial Sizes of Weights of Iron Bar of Flat Rolled Iro of Iron and Steel of Plate Iron of Steel Blooms	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials. ty, etc., of Metals for Calculating Weight of Rods, Plates, etc. hts of Various Materials f Iron Bars. s. n. Sheets. 1 pes 1 f Carnegie Deck Beams. "Steel Channels. 1 Pencoyd Steel Angles. 1 Pencoyd Steel Angles. 1 "Cheangle. 1 "Channels. 1 "Channels. 1 "Tees. 1	16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials.	1616 1616 1777 1777 1777 1777 1777 1777
Tin	Miscellaneous Materials.	1616 1616 1777 1777 1777 1777 1777 1777
Tin	Miscellaneous Materials.	16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials.	16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials.	16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials.	16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17
Tin	Miscellaneous Materials.	166 1617 1717 1717 1718 1818 1818 1818 1
Tin	Miscellaneous Materials.	166 1617777777778881183833445678
Tin	Miscellaneous Materials.	166 167777777777788881818888344556789
Tin	Miscellaneous Materials.	166 167777777777788881818888344556789

· · · · · · · · · · · · · · · · · · ·	AGE
Sheet-iron Hydraulic Pipe	191
andard Pipe Flanges	192
The Flanges and Cast-iron Pipe	193
Sandard Pipe Flanges The Flanges and Cast-iron Pipe Anadard Sizes of Wrought-iron Pipe Wrought-iron Welded Tubes	108
Riveted Iron Pines	107
Riveted Iron Pipes Weight of Iron for Riveted Pipe	197
Spiral Riveted Pipe	198
Colled Pipes Brass, Copper, and Zinc Tubing. Lead and Tin-lined Lead Pipe. Weight of Copper and Brass Wire and Plates	199
Brass, Copper, and Zinc Tubing	200
Weight of Conney and Proc. Wise and Plates	201 202
Kound Rolf Conner	210
" Sheet and Bar Brass	208
Composition of Rolled Brass	203
Sizes of Shot. Screw-thread, U. S. Standard. Limit-gauges for Screw-threads.	204
Screw-thread, U. S. Standard	204
Size of Iron for Standard Polts	205 206
Size of Iron for Standard Bolts. Sizes of Screw-threads for Bolts and Taps.	207
Set Screws and Tap Screws.	208
Siandard Machine Screwe	900
Sizes and Weights of Nuts	209
Sizes and Weights of Nuts. Weight of Bolis with Heads Track Bolis	210
Weights of Nuts and Dalk hands	210
Weights of Nuts and Bolt-heads	211 211
Sizes of Turnbuckles.	211
Washers	919
Trick Snikes	919
Mailway Spikes	212
kaliway Spikes Boat Spikes Wrought Spikes	212
Wire Spikes.	218
Cut Nails	218
Wire Nails	215
Iron Wire, Size, Strength, etc. Galvanized Iron Telegraph Wire.	216
Tests of Telegraph Wire	217
Legis of Telegraph Wire	217 218
Copper Wire Table, B. W. Gauge	219
" B. & S. Gauge	220
Insulated Wire	221
Copper Telegraph Wire.	221
	, 222
Jalyanized Steel-wire Strand	222
Electric Cables. 221 Gardinarized Steel-wire Strand. Steel-wire Cables for Vessels.	228 223
Secifications for Galvanized Iron Wire	223 224
Steelwire Cables for Vessels Steelfications for Galvanized Iron Wire Strength of Piano Wire	223 224 224
Steficiations for Galvanized Iron Wire	223 224 224 224
Stei-wire Cables for Vessels. Svecifications for Galvanized Iron Wire. Strength of Piano Wire. Flough-steel Wire. Wires of different metals.	223 224 224 224 225
Stei-wire Cables for Vessels. Steinfactions for Galvanized Iron Wire. Stength of Piano Wire. Wires of different metals. Specifications for Copper Wire.	223 224 224 224 225 225
Stei-wire Cables for Vessels. Steinfactions for Galvanized Iron Wire. Stength of Piano Wire. Wires of different metals. Specifications for Copper Wire.	223 224 224 224 225 225
Stei-wire Cables for Vessels. Steinfactions for Galvanized Iron Wire. Stength of Piano Wire. Wires of different metals. Specifications for Copper Wire.	223 224 224 224 225 225
Stei-wire Cables for Vessels. Steinfactions for Galvanized Iron Wire. Steingth of Piano Wire. Wires of different metals. Specifications for Copper Wire. Cable-traction Ropes. Wire Ropes. Pugh-steel Ropes. 227. Galvanized Iron Wire Rope.	223 224 224 224 225 225 225 226 227 228 228
Stei-wire Cables for Vessels. Svecifications for Galvanized Iron Wire. Strength of Piano Wire Strength of Piano Wire Ropes. Specifications for Copper Wire. Calletraction Ropes. Strength of Piano Wire Rope.	223 224 224 224 225 225 226 227 228 228
Steel wire Cables for Vessels	223 224 224 224 225 225 226 227 228 228 229 229 229
Steel wire Cables for Vessels	223 224 224 224 225 225 226 227 228 228 229 229 229
Steel wire Cables for Vessels Steelfactions for Galvanized Iron Wire Strength of Piano Wire. Biough-steel Wire Wires of different metals Specifications for Copper Wire Cable-traction Ropes Wire Ropes Wire Ropes 227 Salvanized Iron Wire Rope Med Hawsers Fattwire Ropes Salvanized Steel Cables Vength of Chains and Ropes Joseon use of Wire Rope	223 224 224 224 225 225 226 227 228 228 229 279 230 231
Steel wire Cables for Vessels. Steelifications for Galvanized Iron Wire. Strength of Piano Wire. Plough-steel Wire. Wires of different metals. Specifications for Copper Wire. Cable-traction Ropes. Wire Ropes. Wire Ropes. 226 Falvanized Iron Wire Rope. Act Hawsers. 227 Sat Wire Ropes. 228 Salvanized Steel Cables Strength of Chains and Ropes. Some on use of Wire Rope. Locked Wire Rope.	223 224 224 224 225 225 226 227 228 228 229 230 231 231
Steel wire Cables for Vessels Steel Steel Cables	223 224 224 224 225 225 226 227 228 229 230 231 231
Steel wire Cables for Vessels Steelfactions for Galvanized Iron Wire Strength of Piano Wire Wires of different metals Specifications for Copper Wire Cable-traction Ropes Wire Ropes Wire Ropes Steel Ropes Galvanized Iron Wire Rope Sel Hawsers Fait Wire Ropes Galvanized Steel Cables Weepth of Chains and Ropes Steen on use of Wire Rope Locked Wire	223 224 224 224 225 225 226 227 228 229 230 231 231 232 232 232 233 233 233 233 233
Steel wire Cables for Vessels Steelfactions for Galvanized Iron Wire Stength of Piano Wire. Wires of different metals Specifications for Copper Wire Cabletraction Ropes Wire Ropes. Wire Ropes. Steel Ropes	223 224 224 224 225 226 227 228 229 230 231 232 233 233 234 235 237 239 239 239 239 239 239 239 239 239 239
Steel wire Cables for Vessels Steel Steel Cables	223 224 224 224 224 225 225 225 225 225 225

Strength of Materials.

Stress and Strain
Otress and outsil
Elastic Limit
Yield Point
Modulus of Elasticity
Resilience Elastic Limit and Ultimate Stress.
Elastic Limit and Ottimate Stress
Repeated Stresses
Repeated Snocks
Stresses due to Sudden Snocks
Repeated Shocks Stresses due to Sudden Shocks Increasing Tensile Strength of Bars by Twisting. Tensile Strength
Tensile Strength
measurement of Flongation
Shapes of Test Specimens
Compressive Strength
Columns, Pillars, or Struts
Hodgkinson's Formula
Gordon's Formula
Moment of Inertia
Radius of Gyration
Elements of Usual Sections
Solid Cast-iron Columns
Hollow Cast-iron Columns
Wrought-iron Columns
Safe load of Cast-iron Columns
Eccentric loading of Columns
Built Columns
Phoenix Columns
Working Formulæ for Struts
Merriman's Formula for Columns 9
Working Strains in Bridge Members
Working Stresses for Steel
Resistance of Hollow Cylinders to Collapse
Working Stresses for Steel Resistance of Hollow Cylinders to Collapse. Collapsing Pressure of Tubes or Flues.
Formula for Corrugated Furnaces
Transverse Strength
Transverse Strength 96 Formulæ for Flexure of Beams 26
Safe Loads on Steel Beams
Elastic Resilience
Reams of Uniform Strength
Beams of Uniform Strength 271 Properties of Rolled Structural Shapes 272
Spacing of I Beams
Properties of Steel I Beams
" " Channels 27
" " Z Bars 270
Iron Beams and Channels
Trenton Angle Bars
" Tee Bars
Size of Beams for Floors
Flooring Material
Tie Rods for Brick Arches
To recional Strength
Torsional Strength 281 Elastic Resistance to Torsion 282
Ligatic legislates of Tollows
Committee to Tamparatura
th of Flat Platae
the Best of Unetawal Flat Surfaces
Elastic Resistance to Torsion 28 Combined Stresses 28 Stress due to Temperature 28 Stress th of Flat Plates 28 Less th of Unstayed Flat Surfaces 28 Less of Heads of Bollers 28 District Ses of Flat Cast-iron Plates 28 And Torsion Plates 2
ass of Flat Cast iron Plates
1 1 2 4 of Staved Surfaces
1 Shalle and Domad Heads
to Stad Deline under Water Practure
ss of Flat Cast-iron Plates 25 of Stayed Surfaces 28 il Shells and Domed Heads 25 in Steel Plating under Water Pressure 25 ollow Cylinders under Tension 25 inders under Tension 26
adars under Tension and
Jipaner Balle 080
Copper Balls Polter Polte and Savayes 986
Wiles Walls, Spikes, Doils, and Screws
ollow Cylinders under Tension. 287 Jinders under Tension 288 Copper Balls 289 Power of Nails, Spikes, Bolts, and Screws 289 Wire Nails 299 Wrought-iron Bolts 299
of wrongherron Botts
of wronghi-hon Boils

PA	GE
Initial Strain on Bolts	292
Stand Pipes and their Design	292
Pirotod Ctool Water-nines	2540
Mannesmann Tubes. Kirkaldy's Tests of Materials.	296
Kirkaldy's Tests of Materials	296
Coet Imon	2300
Iron Bars. Forgings, etc	297
Steel Rails and Tires	298
Iron Castings. Iron Bars, Forgings, etc Steel Rails and Tires. Steel Axles, Shafts, Spring Steel.	299
Wolde	300
Conner Brass, Bronze, etc	300
Wire Wire-rope	301
D. TT and Cotton	8 01
Ropes, Hermp, and Cotton Relting, Canvas. Stones, Brick, Cement	802
Stones, Brick, Cement	802
Tensile Strength of Wire	303
Tensile Strength of Wire	303
Directed Toints	M IX
Wassands inon Dara Compression Tests	90.4
Wrought-iron Columns Wrought-iron Columns Cold Drawn Steel	304
Wrought-iron Columns	305
Cold Drawn Steel	305
Imerican Woods	306
hearing Strength of Iron and Steel	3 06
Holding Power of Boiler-tubes	3 07
Cold Drawn Steel merican Woods hearing Strength of Iron and Steel holding Power of Boiler-tubes hains. Weight, Proof Test, etc.	307
rength of Glass. Copper at High Temperatures. Frength of Timber.	808
Copper at High Temperatures	909
Frength of Timber	311
Expansion of Timber	910
nearing Strength of Woods.	210
rength of Brick, Stone, etc. "Flagging" " Lime and Cement Mortar	212
" Time and Cement Mortar	313
deduli of Elasticity of Various Materials	814
actors of Safety	314
tion of Cork	RIA
ulcanized India-rubber	316
wilcanized India rubber yiolith or Woodstone	316
Juminum, Properties and Uses	317
Alloys.	
Moys of Copper and Tin, Bronze	319
opper and Zinc, Brass	321
ariation in Strength of Bronze	321
pper-tin-zinc Alloys	322
quation or Separation of Metals	020
loys used in plass roundles	200
pper-nicket Andys	040
aquation of Separation of Helassilloys used in Brass Foundries pper-nickel Alloys pper-zinc-iron Alloys bin Bronze	207
osphor Bronze	827
uminum Bronze	828
t Decor	000
aution as to Strength of Alloys.	329
Juminum hardened	830
aution as to Strength of Alloys. Auninum hardened. Alloys of Aluminum, Silicon, and Iron.	330
neet on all milling Allovs.	XXI
luminum-tin Alloys langanese Alloys langanese Bronze	331
langanese Alloys	331
langanese Bronze	331
Frman Silver	332
Move of Riemuth	332
resible Alloys	833
Baring Metal Alloys.	تدن

	PAG
Alloys containing Antimony White-metal Alloys Type-metal Babbit metals. Solders	. 33
Type metal	. 33
Solders	. 38
Ropes and Chains.	
Strongth of Homn Iron and Steel Pones	91
Working Load of Ropes and Chains. Strength of Ropes and Chain Cables. Rope for Hoisting or Transmission. Cordage, Technical terms of	. 20
Working Load of Ropes and Chains	. 3
Strength of Ropes and Chain Cables	. 84
Rope for Hoisting or Transmission	. 34
Cordage, Technical terms of	34
Coal Hoisting Manila Cordage, Weight, etc. Knots, how to make Splicing Wire Ropes	. 34
Manila Cordage, Weight, etc	. 34
Knots, now to make	. 84
Splicing wire kopes	04
Springs.	
Tanahara Marah Mandanan	9:
Helical Steel Springs	34
Carrying Canacity of Springs	34
Elliptical Springs	3
Phosphor-bronze Springs	. 8
Laminated Steel Springs Helical Steel Springs Carrying Capacity of Springs Elliptical Springs Phosphor-bronze Springs Springs to Resist Torsional Force Helical Springs for Cars, etc	. 35
Helical Springs for Cars, etc	. 35
Piveted Jointe	
Riveted Joints. Fairbairn's Experiments. Loss of Strength by Punching Strength of Perforated Plates	Q#
Loss of Strength by Punching	. 8
Strength of Perforated Plates	. 33
Hand vs. Hydraulic Riveting	. 35
Formulæ for Pitch of Rivets	. 35
Proportions of Joints	35
Efficiencies of Joints	. 35
Diameter of Rivets	. 36
Strength of Riveted Joints	. 30
Riveting Pressures	. 80
Strength of Perforated Plates Hand vs. Hydraulic Riveting Formulæ for Pitch of Rivets Proportions of Joints Efficiencies of Joints Diameter of Rivets Strength of Rivets Riveting Pressures Shearing Resistance of Rivet Iron	. 00
Iron and Steel.	
Classification of Iron and Steel	. 36
Grading of Pig Iron	. 36
Influence of Silicon Sulphur, Phos. and Mn on Cast Iron	. 36
Tests of Cast Iron	. 30
Chemistry of Foundry Iron	. 01
Analyses of Cast Iron	. 97
Specifications for Cast Iron	87
Mixture of Cast Iron with Steel	. 87
Bessemerized Cast Iron	. 87
Bad Cast Iron	. 37
Malleable Cast Iron	. 87
Wrought Iron	. 37
Chemistry of Wrought Iron	. 87
Influence of Rolling on Wrought iron	. 51
Specifications for wrought from	. 01
Classification of Iron and Steel Grading of Pig Iron. Influence of Silicon Sulphur, Phos. and Mn on Cast Iron. Tests of Cast Iron Chemistry of Foundry Iron Analyses of Castings Strength of Cast Iron Specifications for Cast Iron Mixture of Cast Iron with Steel Bessemerized Cast Iron Malleable Cast Iron Malleable Cast Iron Morought Iron Chemistry of Wrought Iron Influence of Rolling on Wrought Iron Specifications for Wrought Iron Stay-bolt Iron. Formulæ for Unit Strains in Structures Permissible Stresses in Structures	37
Pormissible Strugges in Structures	39
Tenacity of Iron at High Temperatures	. 39
Effect of Cold on Strength of Iron	. 88
Proportioning materials in membras bridge Tenacity of Iron at High Temperatures. Effect of Cold on Strength of Iron Expansion of Iron by Heat	. 38
Durability of Cast Iron	. 38
Corrosion of Iron and Steel	. 38
Expansion of Iron by Heat Durability of Cast Iron Corrosion of Iron and Steel Manganese Plating of Iron	36

Non-oxidizing Process of Annealing	PAGE 907
Non-oxidizing Process of Annealing.	900
Painting Wood and Iron Structures	. 000
Qualities of Paults	. 000
Steel,	
Relation between Chem. and Phys. Properties	. 889
Variation in Strength	. 2001
Oran baawth	. 83622
D'	200
Uandoning Coft Steel	. 890
Effect of Cold Rolling Comparison of Full-sized and Small Pieces	. 898
Comparison of Full-sized and Small Pieces	. 398
Treatment of Structural Steel	. 394
Treatment of Structural Steel Influence of Annealing upon Magnetic Capacity	. 396
inquence of Ameaning upon magness Capacity Specifications for Steel Boiler, Ship and Tank Plates.	. 897
Roller Shin and Tank Plates	. 899
Steel for Springs, Axles, etc	. 400
May Carbon be Burned out of Steel?	. 402
Recalescence of Steel Effect of Nicking a Bar	. 402
Effect of Nicking a Bar	. 402
Plantain Conductivity	4t D
Encaida Gravity	. 4 U0
Segregation in Ingots.	. 404
Farliest Uses for Structures	. 405
Occasional Failures Segregation in Ingots Earliest Uses for Structures Steel Castings Manganese Steel	. 405
Wanganese Steel	. 407
VICEO SIGO	404
Alasmaim sem Otool	. GUID
(1	AL IV
Tungeten Steel	. 408
Compressed Steel	. 410
Compressed Steel	. 410
Crucible Steel Effect of Heat on Grain " " Hammering, etc Heating and Forging. Tempering Steel.	. 412
" Hammering, etc	412
Heating and Forging	. 412
Tempering Steel	418
Force. Unit of Force	. 415
In a rtia	. 415
Manual Town of Motion	415
Događestian of Forese	. 415
De-11-logram of Forces	. 41r
Mamont of a Force	41r
Ctation Moment Stability	417
Stability of a Dam	. 417
Demailal Forces	. 417
Couples	418
Couples. Equilibrium of Forces	. 418
Centre of Gravity	418
Moment of Inertia	. 419
Comerce of Caraction	491
Dading of Gyration	. 421
Centre of Oscillation	. 421
Centre of Percussion	. 422
Centre of recussion The Pendulum Conical Pendulum	422
Conical Pendulum	423
Centrifugal Force	426
Aggeleration	. 429
Talling Podice	. 424
Volue of a	. 424
Anomier Velocity	. 927
Height due to Velocity	. 4X
Parallelogram of Velocities	920
Maca	. 424
Momentum	. 420

***- ***	PAGE
Vis Viva	. 428
Power, Horse-power Energy Work of Acceleration	. 429
Work of Acceleration	. 430
FORCE OF B DIOW	430)
Impact of Bodies Energy of Recoil of Guns.	431
Conservation of Energy	. 432
Conservation of Energy Perpetual Motion	432
Efficiency of a Machine Aminal-power, Man-power.	. 432
Work of a Horse	433
Work of a Horse	431
Horse-gin	. 434
Resistance of Vehlcles	. 435
Elements of Machines.	
The Lever	425
The Bent Lever	436
The Moving Strut	436
The Toggle-joint The Inclined Plane The Wedge	436
The Inclined Plane	437
The Screw	437
The Cam	438
The Pulley	438
Differential Pulley	439
Differential Windlass Differential Screw Wheel and Axle	489
Wheel and Axle	. 439
Toothed-wheel Gearing	. 439
Endless Screw	. 440
Stresses in Framed Structures.	
Stresses in Framed Structures.	
Cranes and Derricks	440
Cranes and Derricks Shear Poles and Guys Ving Pact Truss or Bridge	442
Cranes and Derricks Shear Poles and Guys Ving Pact Truss or Bridge	442
Cranes and Derricks Shear Poles and Guys Ving Pact Truss or Bridge	442
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss	. 442 . 442 . 442 . 443
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss	. 442 . 442 . 442 . 443 . 443
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder	442 442 442 443 443 443 445
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss	442 442 442 443 443 443 445
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss	442 442 443 443 443 445 445
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss	442 442 443 443 443 445 445
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss	442 442 443 443 443 445 445
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared	442 442 443 443 445 445 446
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared	442 442 443 443 445 445 446
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared. Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wibborgh Air Pyrometer	442 442 443 443 445 445 446 448 449 451 451 451
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared. Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wibborgh Air Pyrometer	442 442 443 443 445 445 446 448 449 451 451 451
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared. Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wibborgh Air Pyrometer	442 442 443 443 445 445 446 448 449 451 451 451
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Mesuré and Nouel's Pyrometer Mesuré and Nouel's Pyrometer Mesuré and Nouel's Pyrometer	442 442 443 443 443 445 445 446 448 449 451 451 451 453 453
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Mesuré and Nouel's Pyrometer Mesuré and Nouel's Pyrometer Mesuré and Nouel's Pyrometer	442 442 443 443 443 445 445 446 448 449 451 451 451 453 453
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Uehling and Steinhart's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Dellar Source of Substances	442 442 442 443 443 445 445 445 445 451 451 451 453 453 453 454 454
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Uehling and Steinhart's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Dellar Source of Substances	442 442 442 443 443 445 445 445 445 451 451 451 453 453 453 454 454
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Uehling and Steinhart's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Dellar Source of Substances	442 442 442 443 443 445 445 445 445 451 451 451 453 453 453 454 454
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Uehling and Steinhart's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Dellar Source of Substances	442 442 442 443 443 445 445 445 445 451 451 451 453 453 453 454 454
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Mesuré and Nouel's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Boiling-points of Substances Metting-points Unit of Heat Mechanical Equivalent of Heat Heat of Combustion Specific Heat Heat of Combustion Specific Heat	442 442 443 443 445 445 446 448 449 451 451 451 453 453 453 454 455 455 455 456 457
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Uehling and Steinhart's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Boiling-points of Substances Melting-points Unit of Heat Mechanical Equivalent of Heat Heat of Combustion Specific Heat Latent Heat of Fusion 456	442 442 442 443 443 445 446 446 448 449 451 451 453 453 453 454 454 455 455 456 456 456 456 456 456
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared. Copper-ball Pyrometer Thermo-electric Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Mesuré and Nouel's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Boiling-points of Substances Melting-points of Substance	442 442 442 443 443 445 445 446 448 449 451 451 451 451 453 453 454 455 455 456 456 457 460
Cranes and Derricks Shear Poles and Guys King Pest Truss or Bridge. Queen Post Truss Burr Truss Pratt or Whipple Truss Howe Truss Warren Girder Roof Truss HEAT. Thermometers and Pyrometers Centigrade and Fahrenheit degrees compared Copper-ball Pyrometer Thermo-electric Pyrometer Temperatures in Furnaces Wiborgh Air Pyrometer Seeger's Fire-clay Pyrometer Uehling and Steinhart's Pyrometer Uehling and Steinhart's Pyrometer High Temperatures judged by Color Boiling-points of Substances Melting-points Unit of Heat Mechanical Equivalent of Heat Heat of Combustion Specific Heat Latent Heat of Fusion 456	442 442 442 443 443 445 445 446 448 449 451 451 451 451 453 453 454 455 455 456 456 457 460

PAG	Æ
Latent Heat Latent Heat of Evaporation 4	61
Total Heat of Evaporation	43 43
Evaporation and Drving	62
December 1 - American December 1	æυ
Evaporation by the Multiple System 4	63
Manufacture of Salt	84
Evaporation by the Multiple System	64
Salt Contents of Brines. Concentration of Sugar Solutions.	64
Evaporating by Exhaust Steam 4	ion iar
Drying in Vacuum	66
Prying in Vacuum	67
Conduction and Convection of Heat 4	68
Steam-pipe Coverings 4 Rate of External Conduction 4	171
Transmission through Plates 4	113
" in Condenser Tubes 4	178
	74
from Air or Gases to Water	75
" through Walls of Buildings 4	178
Thermodynamics 4	78
PHYSICAL PROPERTIES OF GASES.	
Expansion of Gases 4	179
Powle and Marrietta's Law	70
Law of Charles, Avogadro's Law 4	179
Law of Gaseous Pressure	180
Law of Charles, Avogadro's Law Saturation Point of Vapors Law of Gaseous Pressure Flow of Gaseos 4	80
Absorption by Liquids 4	180
AIR.	
Properties of Air	181
Properties of Air	181 181
Properties of Air	181
Properties of Air	181 181 182 182 183 183
Properties of Air	181 181 182 182 183 183
Properties of Air	181 181 182 182 183 183 184 184
Properties of Air	181 181 182 182 183 183 184 184
Properties of Air	181 181 182 182 183 183 184 184
Properties of Air	181 181 182 182 183 183 184 184 184 185 188
Properties of Air	181 181 182 182 183 183 184 184 185 188 188
Properties of Air	181 181 182 182 183 183 184 184 184 185 188 188 188 189
Properties of Air	181 181 182 182 183 183 184 184 184 188 188 189 191
Properties of Air.	181 181 182 182 183 183 184 184 184 188 188 189 191
Properties of Air. 4 Air-manometer. 4 Pressure at Different Altitudes 8 Barometric Pressures 4 Levelling by the Barometer and by Bolling Water 4 To find Difference in Altitude 4 Moisture in Atmosphere 4 Weight of Air and Mixtures of Air and Vapor 5 Specific Heat of Air 4 Flow of Air 4 Flow of Air in Pipes 4 Effect of Bends in Pipe 5 Flow of Compressed Air 4 Tables of Flow of Air 4 Areamometer Measurements 5 Cqualization of Pipes 4 Loss of Pressure in Pipes 4 Loss of Pressure in Pipes 4 Loss of Pressure in Pipes 4 Loss of the Wind 5 Errore of the Wind 5	181 181 182 182 183 183 184 184 184 185 188 188 189 191 192
Properties of Air	181 181 182 182 183 183 184 184 184 185 188 188 189 191 192 193
Properties of Air. Air-manometer. Pressure at Different Altitudes Barometric Pressures Levelling by the Barometer and by Boiling Water. 4 To find Difference in Altitude. Moisture in Atmosphere. Weight of Air and Mixtures of Air and Vapor. Specific Heat of Air. Flow of Air through Orifices Flow of Air through Orifices. Flow of Air through Orifices. Flow of Air in Pipes. Effect of Bends in Pipe. 4 Anemometer Measurements. Equalization of Pipes. Loss of Pressure in Pipes. Wind. Force of the Wind. Vind Pressure in Storms. Windmills Spacity of Windmills Ceonomy of Windmills Ceonomy of Windmills Ceonomy of Windmills Celectric Power from Windmills	181 181 182 182 183 183 184 184 184 185 188 188 189 191 192 193
Properties of Air. Air-manometer Pressure at Different Altitudes Barometric Pressures Levelling by the Barometer and by Boiling Water. Levelling by the Barometer and by Boiling Water. 4 Moisture in Atmosphere. Weight of Air and Mixtures of Air and Vapor. Specific Heat of Air. Flow of Air through Orifices Flow of Air in Pipes. Effect of Bends in Pipe. Effect of Bends in Pipe. Flow of Compressed Air. Anemometer Measurements. Equalization of Pipes. Loss of Pressure in Pipes. Wind. Force of the Wind. Force of the Wind. Flow of Mindmills. Economy of Windmills. Economy of Windmills. Electric Power from Windmills. Compressed Air.	181 181 182 182 183 183 183 184 184 185 188 188 189 191 192 193 193 193 193 194 195 197 1498
Properties of Air. Air-manometer. Pressure at Different Altitudes Barometric Pressures Levelling by the Barometer and by Boiling Water. 4 To find Difference in Altitude. Moisture in Atmosphere. Weight of Air and Mixtures of Air and Vapor. Specific Heat of Air. Flow of Air through Orifices Flow of Air through Orifices. Flow of Air through Orifices. Flow of Air in Pipes. Effect of Bends in Pipe. 4 Anemometer Measurements. Equalization of Pipes. Loss of Pressure in Pipes. Wind. Force of the Wind. Vind Pressure in Storms. Windmills Spacity of Windmills Ceonomy of Windmills Ceonomy of Windmills Ceonomy of Windmills Celectric Power from Windmills	181 181 182 182 183 183 183 184 184 185 188 188 189 191 192 193 193 193 193 194 195 197 1498

	AGE
Loss due to Excess of Pressure Horse-power Required for Compression	501
Table for Adiabatic Compression	, 501 500
Magn Effective Pressures	ECH)
Mean and Terminal Pressures	503
Air-compressors	503
Practical Results. Efficiency of Compressed-air Engines.	506
Requirements of Rock-drills	506
Popp Compressed-air System	507
Efficiency of Compressed Air Engines Requirements of Rock-drills. Popp Compressed-air System Small Compressed-air Motors Efficiency of Air-heating Stoves Efficiency of Compressed-air Transmission Shore Organizad by Compressed Air	507
Efficiency of Compressed-air Transmission	508
Shops Operated by Compressed Air	509
Mekarski Compressed sir Tramways	509
Shops Operated by Compressed Air Pneumatic Postal Transmission Mekarski Compressed air Tramways Compressed Air Working Pumps in Mines	511
Fans and Blowers.	
Centrifugal Fans	511
Centrifugal Fans	512
Pressure due to Velocity Experiments with Blowers	513
Experiments with Blowers	514
Quantity of Air Delivered. Efficiency of Fans and Positive Blowers.	516
Capacity of Fans and Blowers	517
Table of Centrifugal Fans	518
Capacity of Faus and Blowers. Table of Centrifugal Faus Engines, Faus, and Steam-coils for the Blower System of Heating Sturtevant Steel Pressure-blower	519
Diameter of Blast-pipes	519
Diameter of Blast-pipes Centrifugal Ventilators for Mines	521
Experiments on Mine Ventilators	522
Air Removed by Exhaust Wheel	524 525
Disk Fans Air Removed by Exhaust Wheel Efficiency of Disk Fans Positive Rotary Blowers	525
Positive Rotary Blowers	526
Blowing Engines	597
Blowing Engines Steam-jet Blowers Steam-jet for Ventilation	527
HEATING AND VENTILATION.	
Ventilation	528
VentilationQuantity of Air Discharged through a Ventilating Duct	530
Artificial Cooling of Air	531
Quantity of Air Discharged through a Ventuating Duct. Artificial Cooling of Air. Mine-ventilation Friction of Air in Underground Passages Equivalent Orifices Relative Efficiency of Fans and Heated Chimneys Heating and Ventilating of Large Buildings Rules for Computing Radiating Surfaces	531
Equivalent Orifices	533
Relative Efficiency of Fans and Heated Chimneys	583
Heating and Ventilating of Large Buildings	534
Overhead Steam-pipes	537
Indirect Heating-surface	537
Boiler Heating-surface Required	538
Proportion of Grate-Surface to Gaulator-Surface	538
Diameters of Steam Supply Mains	539
Registers and Cold-air Ducts	539
Rules for Computing Radiating Surfaces Overhead Steam-pipes Indirect Heating-surface Boiler Heating-surface Required Proportion of Grate-surface to Radiator-surface. Steam consumption in Car-heating Diameters of Steam Supply Mains Registers and Cold-sir Ducts Physical Properties of Steam and Condensed Water Steam sings for Heating	540
Physical Properties of Steam and Condensed Water Size of Steam-pipes for Heating. Heating a Greenhouse by Steam Heating a Greenhouse by Hot Water Hot-water Heating Law of Velocity of Flow Proportions of Radiating Surfaces to Cubic Capacities Diameter of Main and Branch Pipes Rules for Hot-water Heating	541
Heating a Greenhouse by Hot Water	542
Hot-water Heating	542
Law of velocity of Flow	549
Diameter of Main and Branch Pipes	543
rrangements of Mains	544

xvii

P	16K
ring and Ventilating	545
ors	545
	546
	OTO
WATER.	
	547
emperatures	540
sures	549
	550
	550
	550 550
	550
4 Water	550
of Water	551
of Water Incrustation	RR1
or Preventing Incrustation	552
ses of Boiler-scale	552
r Preventing Incrustation r Preventing Incrustation r of Boiler-scale liness of Water liying Feed-water	558
tening Hard Water	554 555
Hydraulics, Flow of Water,	•••
•	
Formulæ for Discharge through Orifices	555
Flow in Open and Closed Channels	557
Flow of Water from Orifices. Flow in Open and Closed Channels. General Formulæ for Flow. Table Fall of Feet per mile, etc.	557
Table Fall of Feet per mile, etc	558
Values of \sqrt{r} for Circular Pipes	559
Kutter's Formula Molesworth's Formula	559
Bazin's Formula	568
()'A may'a K'ormiila	KR9
Older Formulæ	564
Older Formulæ. Velocity of Water in Open Channels. Mean, Surface and Bottom Velocities. Safe Bottom and Mean Velocities.	BRA
Safe Bottom and Mean Velocities.	565
Resistance of Soil to Erosion	565
Abrading and Transporting Power of Water	565
Relations of Diameter of Pipe to Quantity discharged	566
Flow of Water in a 20-inch Pipe	566
Resistance of Soil to Erosion. Abrading and Transporting Power of Water. Grade of Sewers. Relations of Diameter of Pipe to Quantity discharged. Flow of Water in a 20-inch Pipe. Velocities in Smooth Cast-fron Water-pipes.	567
Loss of Head Frictional Heads at given rates of discharge Effect of Bend and Curves.	577
Effect of Bend and Curves	578
Enect of Bela and Curves. Hydraulic Grade-line. Flow of Water in House-service Pipes. Air-bound Pipes. Vertical Jets. Water Delivered through Meters.	578
Air-hound Pines	570
Vertical Jets	579
Water Delivered through Meters	579
Fire Streams	579
Friction Losses in Hose Head and Pressure Losses by Friction Loss of Pressure in smooth 2½-inch Hose Rated capacity of Steam Fire-engines Pressures required to throw water through Nozzles	580
Loss of Pressure in smooth 21/2-inch Hose	580
Rated capacity of Steam Fire-engines	580
The Sinhon	581
The Siphon Measurement of Flowing Water Piezometer	582
Piezometer	582
PILOT TILDE (18119)	
The Venturi Meter	

Flow through Rectangular Orifices. Measurement of an Open Stream	584
Miners' Inch Measurements	585
Flow of Water over Weirs	586
Francis's Formula for Weirs	586
Weir Table Bazin's Experiments	587
	٠
Water-power.	
Power of a Fall of Water Horse-power of a Running Stream Current Motors Horse-power of Water Flowing in a Tube	588
Current Motors	589
Horse-power of Water Flowing in a Tube	589
Mill-power Value of Water-power The Power of Ocean Waves. Utilization of Tidal Power.	589
The Person of Ocean Works	590
Utilization of Tidal Power	600
	000
Turbine Wheels.	
Proportions of Turbines	591
Tests of Turbines	596
Dimensions of Turbines	597
The Petton water-wheel	981
Pumps.	
Theoretical capacity of a pump	601
Depth of Suction	602
Amount of Water raised by a Single-acting Lift-pump	602 602
Proportioning the Steam cylinder of a Direct-acting Pump	602
Sizes of Direct-acting Pumps	603
Speed of Water through Pipes and Pump-passages Sizes of Direct-acting Pumps. The Deane Pump Efficiency of Small Pumps.	603
Efficiency of Small Pumps	603
The Worthington Duplex Pump	604 605
Speed of Piston Speed of Water through Valves Boiler-feed Pumps	605
Boiler-feed Pumps	605
Pump valves	
Centrifugal Pumps	606 607
Lawrence Centrifugal Pumps Efficiency of Centrifugal and Reciprocating Pumps Vanes of Centrifugal Pumps The Centrifugal Pump used as a Suction Dredge.	608
Vanes of Centrifugal Pumps	609
The Centrifugal Pump used as a Suction Dredge	609
Duty Trials of Pumping Engines	609
Vacuum Pumps	612
The Pulsometer	612
The Jet Pump	614
The Injector	614
Air-lift Pump	614 614
The Hydraulic RamQuantity of Water Delivered by the Hydraulic Ram	615
Hydraulic Pressure Transmission.	
	010
Energy of Water under Pressure	616 818
Hydraulic Presses	617
Hydraulic Power in London	617
Hydraulic Riveting Machines	618
The Aiken Intensifier	619
Hydraulic Forging The Aiken Intensifier Hydraulic Engine	619
FUEL.	
Theory of Combustion	620
otal Heat of Combustion	621

P.	AGE
Analyses of Gases of Combustion	622
Temperature of the Fire	622
Classification of Solid Fuel	628
Classification of Coals	024
Aualyses of Coals	891
Analyses of Foreign Coals.	691
NI	40.3
Sampling Coal for Analyses	682
Relative Value of Fine Sizes	632
Pressed Fuel	63:3
NIXON'S Ravigation Coal Sampling Coal for Analyses Relative Value of Fine Sizes Pressed Fuel Relative Value of Steam Coals Approximate Heating Value of Coals Kind of Furnace Adapted for Different Coals	633
Approximate Heating Value of Coals	634
Kind of Furnace Adapted for Different Coals	685
Colorimo drie Testa of American Cools	000
Downward-draught Furnaces. Calorimetric Tests of American Coals. Evaporative Power of Bituminous Coals.	898
Weathering of Coal	687
Coke Experiments in Coking.	637
Experiments in Coking	637
Coal Washing Recovery of By-products in Coke manufacture Making Hard Coke Generation of Steam from the Waste Heat and Gases from Coke-ovens.	635
Recovery of By-products in Coke manufacture	638
Making Hard Coke	638
Products of the Distillation of Coal	638
Wood as Fuel	660
Wood as Fuel Heating Value of Wood Composition of Wood	690
Composition of Wood	640
Charcoal	640
Charcoal Yield of Charcoal from a Cord of Wood. Consumption of Charcoal in Blast Furnaces.	641
Consumption of Charcoal in Blast Furnaces	641
A bacomption of Water and of Hases by Charcost	641
Composition of Charcoals. Miscellaneous Solid Fuels Dust-fuel—Dust Explosions.	643
Duct-fuel_Dust Explosions	649
Peat or Turf	643
Sawdust as Fuel	643
Horse-manure as Fuel	648
Wet Tan-bark as Fuel	643
Straw as Fuel	648
Bagasse as Fuel in Sugar Manufacture	648
Petroleum.	
Products of Distillation	GAK
Lima Patroleum	845
Lima Petroleum Value of Petroleum as Fuel	645
Oil vs. Coal as Fuel	646
Fuel Gas.	
Carbon Gas	646
Anthracite Gas	647
Bituminous Gas	647
Water Gas. Producer-gas from One Ton of Coal.	648
Natural Gas in Ohio and Indiana	649
Combustion of Producer-gas.	650
Use of Steam in Producers.	650
Use of Steam in Producers. Gas Fuel for Small Furnaces.	651
Illuminating Gas.	
Coal-gas	651
Water mag	859
Analyses of Water-gas and Coal gas. Calorific Equivalents of Constituents Efficiency of a Water-gas Plant.	653
Calorine Equivalents of Constituents	854
Space Required for a Water gas Plant	654
Fuel-value of Illuminating-gas	656
* ACT_ACTIO OT THRISTICANTE 200	-

Plant of Condu Diagram	AGE
Flow of Gas in Pipes	657 658
-	•••
STEAM.	
Temperature and Pressure	659
Total Heat	R50
Latent Heat of Steam.	659
Latent Heat of Volume	660
Density and Volume	660
Density and Volume	661
Regnault's Experiments	661
Table of the Properties of Steam	662
Flow of Steam.	-
Napier's Approximate Rule	669
Flow of Steam in Pipes Loss of Pressure Due to Radiation	669
Loss of Pressure Due to Radiation	671
Resistance to Flow by Bends Sizes of Steam-pipes for Stationary Engines	672
Sizes of Steam-pipes for Marine Engines	674
	•••
Steam Pipes.	
Bursting-tests of Copper Steam-pipes.	674
Thickness of Copper Steam-pipes. Reinforcing Steam-pipes	675
Wire-wound Steam-pipes	675
Riveted Steel Steam pipes Valves in Steam-pipes. Planges for Steam-pipe	675
Valves in Steam-pipes	675
Flanges for Steam-pipe	676
The Steam Loop	676 676
	010
THE STEAM BOILER.	
The Horse-power of a Steam-boiler. Measures for Comparing the Duty of Boilers. Steam-boiler Proportions.	677
Measures for Comparing the Duty of Boilers	678
Heating-surface	678
Heating-surface Horse-power, Builders' Rating Grate-surface	670
Grate-surface	680
Areas of Flues. Air-passages Through Grate-bars	680
Air-passages Through Grate-bars	681
Conditions which Secure Economy	681 682
Efficiency of a Boiler	683
Performance of Boilers Conditions which Secure Economy Efficiency of a Boiler Tests of Steam-boilers	685
Boilers at the Centennial Exhibition	685
Tests of Tubulous Boilers	686
Economy Effected by Heating the Air	687
Results of Tests with Different Coals.	688
High Rates of Evaporation Economy Effected by Heating the Air Results of Tests with Different Coals Maximum Boiler Efficiency with Cumberland Coal	689
Bollers Using waste gases	HXO
Boilers for Blast Furnaces Rules for Conducting Boiler Tests.	689
Table of Factors of Evaporation	695
Strength of Steam-boilers.	
	700
Shell-plate Formulæ	701
Rules for Flat Plates	701
Furnace Formulæ	702
Material for Stays	703
Loads allowed on Stays	703

D.	AGE
U. S. Rule for Allowable Pressures. Safe-working Pressures Rules Governing Inspection of Boilers in Philadelphia. Flues and Tubes for Steam Boilers. Flat-stayed Surfaces. Diameter of Stay-bolts. Strength of Stays. Stay-bolts in Curved Surfaces.	ma
Boiler Attachments, Furnaces, etc.	
Fusible Plugs Steam Domes Height of Furnace Mechanical Stokers The Hawley Down-draught Furnace. Under-feed Stokers Smoke Prevention Gas-fired Steam-boilers Forced Combustion Fuel Economizers Incrustation and Scale Boiler-scale Compounds Removal of Hard Scale Corrosion in Marine Boilers Use of Zinc Effect of Deposit on Flues Dangerous Boilers.	710 711 711 712 712 712 714 714 715 716 717 718 720 720
	720
Safety Valves	721 724
The Injector.	
Equation of the Injector	726
Strains Caused by Cold Feed-water	727
Steam Separators.	
Efficiency of Steam Separators	728
Determination of Moisture in Steam. Coil Calorimeter. Throttling Calorimeters.	729 729
Throttling Calorimeters. Separating Calorimeters. Identification of Dry Steam Usual Amount of Moisture in Steam	780 780 781
Chimneys.	
Chimney Draught Theory Force or Intensity of Draught Rate of Combustion Due to Height of Chimney High Chimneys not Necessary Heights of Chimneys Required for Different Fuels Table of Size of Chimneys Protection of Chimney from Lightning Some Tall Brick Chimneys Stability of Chimneys Weak Chimneys Stability of Chimneys Steel Chimneys Sheet-iron Chimneys	781 782 733 734 734 736 736 737 788 739 740 741
THE STEAM ENGINE.	
Expansion of Steam Mean and Terminal Absolute Pressures	749

Table of Engine Constants. 756 To Draw Clearance on Indicator-diagram 759 Theoretical Water Consumption 760 Leakage of Steam 761 Compound Engines. 762 Compound Engines. 762 Combined Diagrams. 762 Woolf and Receiver Types of Engines. 762 Combined Diagrams. 764 Proportions of Cylinders inCompound Engines. 765 Formula for Calculating Work of Steam 767 Calculation of Diameters of Cylinders. 768 Triple-expansion Engines. 769 Trypes of Three-stage Expansion Engines 769 Annular Ring Method. 769 Rule for Proportioning Cylinders 771 Sequence of Cranks. 772 Quadruple Expansion Engines. 772 Quadruple Expansion Engines. 772 Diameters of Cylinders of Marine Engines 773 Progress in Steam-engines 773 Principal Engines, World's Columbian Exhibition, 1883 774 Steam Engine Economy. Economic Performance of Steam Engines 775 Sizes and Calculated Performances of Vertical High-speed Engines 777 Most Economical Point of Cut-off 777 Type of Engine Used when Exhaust-steam is used for Heating 778 Relative Commercial Economy of Compound and Triple-expansion Engines 778 Relative Commercial Economy of Compound Engines 778 Relative Commercial Economy of Engine With and without Jackets 788 Relative Economy of Engines under Variable Loads 783 Relative Economy of Engines 1787 Resteam Consumption in Small Engines 786 Relative Economy of Engines Under Variable Loads 783 Relative Economy of Engines 1787 Reconsumption of Various Speeds 786 Limitation of Engine Speed 787 Influence of the Steam Jacket 789 Reconsumption Engines 7	Calculation of Mean Effective Pressure. Work of Steam in a Single Cylinder. Measures for Comparing the Duty of Engines. Efficiency, Thermal Units per Minute Real Ratio of Expansion Effect of Compression Clearance in Low and High Speed Engines. Cylinder-condensation. Water-consumption of Automatic Cut-off Engines Experiments on Cylinder-condensation Indicated Horse-power Rules for Estimating Horse-power Horse-power Constant Errors of Indicators	750 751 752 753 753 754 755 755 756
Compound Engines. Advantages of Compounding 762 Woolf and Receiver Types of Engines 762 Combined Diagrams 764 Proportions of Cylinders inCompound Engines 764 Proportions of Cylinders inCompound Engines 768 Formula for Calculating Work of Steam 768 Formula for Calculating Work of Steam 768 Triple-expansion Engines 768 Triple-expansion Engines 769 Proportions of Cylinders 769 Annular Ring Method 769 Rule for Proportioning Cylinders 771 Types of Three-stage Expansion Engines 771 Sequence of Cranks 772 Velocity of Steam Through Passages 772 Quadruple Expansion Engines 772 Diameters of Cylinders of Marine Engines 772 Diameters of Cylinders of Marine Engines 773 Progress in Steam-engines 773 A Double-tandem Triple-expansion Engine 773 Principal Engines, World's Columbian Exhibition, 1893 774 Economic Performance of Steam Engines 775	To Draw Clearance on Indicator-diagram	759
Compound Engines. Advantages of Compounding 762 Woolf and Receiver Types of Engines 762 Combined Diagrams 764 Proportions of Cylinders inCompound Engines 764 Proportions of Cylinders inCompound Engines 768 Formula for Calculating Work of Steam 768 Formula for Calculating Work of Steam 768 Triple-expansion Engines 768 Triple-expansion Engines 769 Proportions of Cylinders 769 Annular Ring Method 769 Rule for Proportioning Cylinders 771 Types of Three-stage Expansion Engines 771 Sequence of Cranks 772 Velocity of Steam Through Passages 772 Quadruple Expansion Engines 772 Diameters of Cylinders of Marine Engines 772 Diameters of Cylinders of Marine Engines 773 Progress in Steam-engines 773 A Double-tandem Triple-expansion Engine 773 Principal Engines, World's Columbian Exhibition, 1893 774 Economic Performance of Steam Engines 775	Theoretical Water Consumption Leakage of Steam	760 761
Combined Diagrams 764 Proportions of Cylinders inCompound Engines 765 Receiver Space 766 Formula for Calculating Work of Steam 767 Calculation of Diameters of Cylinders 768 Triple-expansion Engines 769 Proportions of Cylinders 769 Annular Ring Method 769 Rule for Proportioning Cylinders 771 Types of Three-stage Expansion Engines 771 Sequence of Cranks 772 Velocity of Steam Through Passages 772 Quadruple Expansion Engines 772 Progress in Steam engines 772 Progress in Steam-engines 773 A Double-tandem Triple-expansion Engine 773 Principal Engines, World's Columbian Exhibition, 1893 774 Steam Engines Economy Economic Performance of Steam Engines 775 Feed-water Consumption of Different Types 775 Sizes and Calculated Performances of Vertical High-speed Engines 777 Type of Engine Used when Exhaust-steam is used for Heating 780 Comparison of Compound and Si		
Economic Performance of Steam Engines	Combined Diagrams Proportions of Cylinders inCompound Engines. Receiver Space. Formula for Calculating Work of Steam. Calculation of Diameters of Cylinders. Triple-expansion Engines. Proportions of Cylinders. Annular Ring Method. Rule for Proportioning Cylinders. Types of Three-stage Expansion Engines Sequence of Cranks. Velocity of Steam Through Passages Quadruple Expansion Engines Diameters of Cylinders of Marine Engines Progress in Steam-engines	764 765 766 767 768 769 769 771 772 772 772 773 773
Feed-water Consumption of Different Types. 775 Sizes and Calculated Performances of Vertical High-speed Engines. 777 Most Economical Point of Cut-off. 777 Type of Engine Used when Exhaust-steam is used for Heating. 780 Comparison of Compound and Single-cylinder Engines. 780 Two-cylinder and Three-cylinder Engines. 781 Effect of Water in Steam on Efficiency 781 Relative Commercial Economy of Compound and Triple-expansion Engines Triple-expansion Pumping-engines 782		
Engines 781 Triple-expansion Pumping-engines 782 Test of a Triple-expansion Engine with and without Jackets 783 Relative Economy of Engines under Variable Loads 783 Efficiency of Non-condensing Compound Engines 784 Economy of Engines under Varying Loads 784 Steam Consumption of Various Sizes 785 Steam Consumption in Small Engines 786 Steam Consumption at Various Speeds 786 Limitation of Engine Speed 787 Influence of the Steam Jacket 787 Counterbalancing Engines 788 Preventing Vibrations of Engines 789 Foundations Embedded in Air 789 Cost of Coal for Steam-power 789	Feed-water Consumption of Different Types. Sizes and Calculated Performances of Vertical High-speed Engines Most Economical Point of Cut-off. Type of Engine Used when Exhaust-steam is used for Heating	775 777 777 780
	Engines Triple-expansion Pumping-engines Triple-expansion Pumping-engines Test of a Triple-expansion Engine with and without Jackets Relative Economy of Engines under Variable Loads. Efficiency of Non-condensing Compound Engines Economy of Engines under Varying Loads Steam Consumption of Various Sizes Steam Consumption at Various Sizes Steam Consumption at Various Speeds Limitation of Engine Speed Limitation of Engine Speed Counterbalancing Engines Preventing Vibrations of Engines Preventing Vibrations of Engines Froundations Embedded in Air Cost of Coal for Steam-power	781 782 783 784 784 785 786 786 787 787 788 789 789

m. A. Mariani Maria	PAGE
Storing Steam Heat.	. 789
Cost of Steam-power	. 790
Rotary Steam-engines.	
Steam Turbines	. 791
The Tower Spherical Engine	. 792
•	
Dimensions of Parts of Engines.	
Cylinder	. 792
Clearance of Piston	. 792
Thickness of Cylinder	. 792
Thickness of Cylinder Cylinder Heads Cylinder-head Bolts. The Piston.	. 799
The Diston	795
Piston Packing-rings	. 796
Fit of Piston-rod	796
Dismeter of Piston-rods	797
Piston-rod Guides. The Connecting-rod Connecting-rod Ends	. 798
The Connecting-rod	. 799
Connecting-rod Ends	. 800
Tapered Connecting-rods	. 901
Oreschood nin or Wrist nin	. 601
The Crank-arm	805
Connecting-rods. Tapered Connecting-rods. The Crank-pin. Crosshead-pin or Wrist-pin The Crank-arm The Shaft, Twisting Resistance	806
Resistance to Bending	. 808
Equivalent Twisting Moment	. 808
Fly-wheel Shafts. Length of Shaft-bearings. Crank-shafts with Centre-crank and Double-crank Arms	. 809
Length of Shaft-bearings	810
Crank-shafts with Centre-crank and Double-crank Arms	. 818
Crank-shaft with two Cranks Coupled at 90°	. 614
Size of Slot-link	. OIO
The Eccentric	818
The Eccentric-rod	. 816
Reversing-gear	. 816
Reversing-gear. Engine-frames or Bed-plates	. 817
Fly-wheels.	
_	0.0
Weight of Fly-wheels	. 817
Arms of Fly-whools and Pulleys	890
Diameters for Various Speeds	821
Arms of Fly-wheels and Pulleys. Diameters for Various Speeds. Strains in the Rims.	. 822
Thickness of Rims	. 823
Thickness of Rims A Wooden Rim Fly-wheel	. 824
Wire-wound Fly-wheels	. 824
The Slide-valve.	
Definitions I an I and ata	90.4
Definitions, Lap, Lead, etc. Sweet's Valve-diagram The Zeuner Valve-diagram Port Opening	896
The Zeuner Valve-diagram	827
Port Opening	. 828
1,080	X:M
Inside Lead. Ratio of Lap and of Port opening to Valve-travel. Crank Angles for Connecting-rods of Different Lengths.	. 829
Ratio of Lap and of Port-opening to Valve-travel	. 829
Crank Angles for Connecting-rods of Different Lengths	. 830
Relative Motions of Crosshead and Crank Periods of Admission or Cut-off for Various Laps and Travels	. 831
Piston-valves	. 834
Setting the Valves of an Engine	. 834
To put an Engine on its Centre	. 834
Piston-valves. Setting the Valves of an Engine. To put an Engine on its Centre. Link-motion.	. 834
Governors.	
Pendulum or Fly-ball Governors	
To Change the Speed of an Engine	
In Countill and Change of an Engineering	

Fly-wheel or Shaft-governors	2AGE 838
Condensers, Air-pumps, Circulating-pumps, etc.	. 000
	839
The Jet Condenser	
Ejector Condensers	840
Who plates	040
Tube-plates. Spacing of Tubes. Quantity of Cooling Water Air-pump. Area through Valve-seats.	041
Quantity of Cooling Water	841
Air numn	841
A rea through Valva.coats	849
Circulating-numn	843
Circulating-pump Feed-pumps for Marine-engines	848
An Evaporative Surface Condenser. Continuous Use of Condensing Water Increase of Power by Condensers. Evaporators and Distillers.	844
Continuous Use of Condensing Water	844
Increuse of Power by Condensing	846
Even prators and Distillars	847
	071
GAS, PETROLEUM, AND HOT-AIR ENGINES.	_
Gas-engines	847
Gas-engines. Efficiency of the Gas-engine. Tests of the Simplex Gas Engine. A 3:0-H.P. Gas-engine. Test of an Otto Gas-engine. Temperatures and Pressures Developed Test of the Clerk Gas-engine. Combustion of the Gas in the Otto Engine Use of Carburetted Air in Gas-engines.	848
Tests of the Simplex Gas Engine	848
A 320-H.P. Gas-engine	848
Test of an Otto Gas-engine	849
Temperatures and Pressures Developed	849
Test of the Clerk Gas-engine	849
Combustion of the Gas in the Otto Engine	849
Use of Carburetted Air in Gas-engines.	849
The Otto Gasoline-engine	850
The Priestman Petroleum-engine	850
Test of a 5-H.P. Priestman Petroleum-engine	850
Naptha-engines	851
Hot-air or Caloric-engines	851
The Otto Gasoline-engine. The Priestman Petroleum-engine. Test of a 5-H.P. Priestman Petroleum-engine. Naptha-engines. Hot-air or Caloric-engines. Test of a Hot-air Engine	851
LOCOMOTIVES.	
Efficiency of Locomotives and Resistance of Trains	021
Miniciplicy of Lacomolytes and Accistance of Traine	001
Inertia and Resistance at Increasing Speeds	984
Size of Locomotive Cylinders	854
Size of Lecomotive Pollogs	QE E
Size of Locomotive Bollers. Qualities Essential for a Free-steaming Locomotive. Wootten's Locomotive Grate-surface, Smoke-stacks, and Exhaust-nozzles for Locomotives. Exhaust Nozzles.	OKE
Wester's Learning December 101 & Fire-steaming December 1	955
Woottell's Locomotive	OSS
Grade-Surface, Smort-States, and Exhaust-Hozzies for Incomouves	256
Fire-brick Arches	256
Cine Weight Chesting Down ata	85K
Leading American Tunes	RKR
Size, Weight, Tractive Power, etc. Leading American Types. Steam Distribution for High Speed. Speed of Railway Trains. Dimensions of Some American Locomotives. 859	050
Steam Distribution for Light Spectron	950
Dimensions of Some American Locomotives 850	_849
Indicated Water Consumption	-500
Indicated water Consumption.	969
Locomotive Testing Apparatus. Waste of Fuel in Locomotives.	869
Waste of Fuel in Locomotives	200
Auvantages of Compounding	984
Maximum Safa Load on Steel Pails	SAF
Norman angga Dailways	201) 285
Waste of rei in Documentes Advantages of Compounding Counterbalancing Locomotives Maximum Safe Load on Steel Rails. Narrow-guage Railways. Petroleum-burning Locomotives.	Res
Fireless Locomotives	RRR
	500
SHAFTING.	
Diameters Resist Torsional Strain	867
Deflection of Shafting	868
Deflection of Shafting. Horse-power Transmitted by Shafting.	869
Table for Laying Out Shafting.	371

PULLEYS.

1	AGE
Proportions of Pulleys	878
Convexity of Pulleys	874
	874
BELTING.	
Theory of Belts and Bands	876
Centrifugal Tension	876
Centrifugal Tension	877
Horse-power of a Belt one inch wide	873
A. F. Nagle's Formula	878
Width of Belt for Given Horse-power	813
Notes on Belting	882
Lacing of Belts	883
Setting a Relt on Quarter-twist	RRR
To Find the Length of Belt. To Find the Angle of the Arc of Contact. To Find the Length of Belt when Closely Rolled	884
To Find the Angle of the Arc of Contact	884
To Find the Approximate Weight of Relts	284
To Find the Approximate Weight of Belts	884
Evils of Tight Belts	885
Evils of Tight Belts	885
Arrangements of Belts and Pulleys	885
Care of Belts	999
Strength of Belting	RNA
Indiese Reits	RRA
Belt Data	888
Belt Dressing. Cement for Cloth or Leather.	887
Cement for Cloth or Leather	887
Rubber Belting	557
GEARING.	
Pitch, Pitch-circle, etc	887
Diametral and Circular Pitch	888
Chordal Pitch	889
Diametral and Circular Pitch Chordal Pitch Diameter of Pitch-line of Wheels from 10 to 100 Teeth. Proportions of Teeth Proportion of Gear-wheels.	889
Proportion of Geer-wheele	801
Width of Teeth	891
Rules for Calculating the Speed of Gears and Pullevs	891
Milling Cutters for Interchangeable Gears	892
Forms of the Teeth.	
The Cycloidal Tooth	809
The Involute Tooth	894
Approximation by Circular Arcs	896
Stepped Gears	897
Twisted Teeth	897
Worm Gearing.	807
Teeth of Bevel-wheels	898
Annular and Differential Gearing	898
Efficiency of Gearing	899
Strength of Gear Teeth.	
Various Formulæ for Strength	900
Comparison of Formulæ	903
Comparison of Formulæ Maximum Speed of Gearing A Heavy Machine-cut Spur-gear	905
A Heavy Machine-cut Spur-gear	905
Frictional Gearing Frictional Grooved Gearing	908 908
	300
HOISTING.	
Weight and Strength of Cordage	906
Working Strength of Blocks	906

Proportions of Hooks. Power of Hoisting Engines. Effect of Slack Rope on Strain in Hoisting. Limit of Depth for Hoisting. Large Hoisting Records. Pneumatic Hoisting. Counterbalancing of Winding-engines. Belt Conveyors. Bands for Carrying Grain.	OWN
Cranes. Classification of Cranes Position of the Inclined Brace in a Jib Crane A Large Travelling-crane A 150-ton Pillar Crane Compressed-air Travelling Cranes Wire-rope Haulage.	912 912 912
Self-acting Inclined Plane Simple Engine Plane Tail-rope System Endless Rope System Wire-rope Tramways Suspension Cableways and Cable Hoists Stress in Hoisting-ropes on Inclined Planes Tension Required to Prevent Wire Slipping on Drums Taper Ropes of Uniform Tensile Strength Effect of Various Sized Drums on the Life of Wire Ropes	913 913 913 914 914 915 915 916 916 917
WIRE-ROPE TRANSMISSION.	
The Driving Wheels. Horse-power of Wire-rope Transmission Durability of Wire Ropes Inclined Transmissions. The Wire-rope Catenary. Diameter and Weight of Pulleys for Wire-rope. Table of Transmission of Power by Wire Ropes. Long-distance Transmissions	
ROPE DRIVING.	
Formulæ for Rope Driving Horse-power of Transmission at Various Speeds Sag of the Rope Between Pulleys. Tension on the Slack Part of the Rope Miscellaneous Notes on Rope-driving	922 924 925 925 926
FRICTION AND LUBRICATION.	
Coefficient of Friction Rolling Friction Friction of Solids Friction of Rest Laws of Unlubricated Friction Friction of Sliding Steel Tires Coefficient of Rolling Friction Laws of Fluid Friction Laws of Fluid Friction Angles of Repose Friction of Motion Coefficient of Friction of Journal Experiments on Friction of a Journal Coefficients of Friction of Journal with Oil Bath Coefficients of Friction of Motion and of Rest Value of Anti-friction Metals Cast-iron for Bearings Friction of Metal Under Steam-pressure Morin's Laws of Friction	928 928 928 929 929 929 930 931 932 932 933

	PAGE
Laws of Friction of well-lubricated Journals	984
Allowable Pressures on Bearing-surface.	935
Oil-pressure in a Bearing	. 937
Laws of Friction of well-lubricated Journals Allowable Pressures on Bearing-surface. Oil-pressure in a Bearing. Friction of Car-journal Brasses. Experiments on Overheating of Bearings. Moment of Friction and Work of Friction.	987
Experiments on Overheating of Rearings	098
Mamont of Printion and Work of Printion	098
Moment of Fredom and Work of Fredom.	. 800
PlyOt Dearings	. 200
The Schiele Curve	. 939
Friction of a Flat Pivot-bearing	. 939
Mercury-bath Pivot	. 940
Friction Rollers	. 940
Rearings for Very High Rotative Speed	941
Printing of Steem engines	041
Friction Rollers Bearings for Very High Rotative Speed Friction of Steam-engines Distribution of the Friction of Engines	041
Distribution of the Friction of Engines	. 341
Lubrication.	
Durability of Lubricants	. 942
Qualifications of Lubricants	. 943
Amount of Oil to run an Engine	943
Examination of Oils	. 944
Penna. R. R. Specifications.	944
Solid Tubricants	0.45
Solid Lubricants Graphite, Soapstone, Metaline	048
	. 840
THE FOUNDRY.	
Cupola Practice	. 946
Charging a Cupola	. 948
Charges in Stove Foundries	949
Results of Increased Driving	040
Pressure Blowers	050
Loss of Iron in Melting	. 000
LOSS Of Iron in Melining.	. 850
Use of Softeners	. 950
Shrinkage of Castings	951
Weight of Castings from Weight of Pattern	. 952
Moulding Sand	. 952
Shrinkage of Castings. Weight of Castings from Weight of Pattern. Moulding Sand. Foundry Ladles.	952
THE MACHINE SHOP.	
a a Coultry Marks	
Speed of Cutting Tools	. 958
Table of Cutting Speeds	. 954
Speed of Turret Lathes	. 954
Speed of Turret Lathes. Forms of Cutting Tools Rule for Gearing Lathes. Change-gears for Lathes.	. 955
Rule for Gearing Lathes	. 955
Change-gears for Lathes	956
Classific Comew.threads	054
Metric Screw-threads. Setting the Taper in a Lathe.	9.30
Setting the taper in a Launo	. 900
Speed of Drilling Holes. Speed of Twist-drills.	. 900
Speed of Twist-drills	. 957
O = = = d of Chittage	958
STREET OF COUCID ************************************	959
Regults with Milling-machines.	
Speed of Cutters Results with Milling-machines, Milling with or Against Reed	
Milling-machine vs. Planer.	. 960 . 960
Milling-machine vs. Planer. Power Required for Machine Tools.	960 960 960
Milling-machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes	960 960 960
Milling-machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes	960 960 960
Milling machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes. Power used by Machine Tools.	960 960 960 961 963
Milling machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes. Power used by Machine Tools.	960 960 960 961 963
Milling-machine vs. Planer. Power Required for Machine Tools Heavy Work on a Planer Horse-power to run Lathes. Power used by Machine Tools. Power used to Drive Machinery. Power used in Machine-shops.	960 960 960 961 963
Milling machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes. Power used by Machine Tools. Power Required to Drive Machinery.	960 960 960 961 963 964 965
Milling-machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes. Power used by Machine Tools. Power used by Machine Tools. Power used in Machine-shops. Abraeius Pros	960 960 960 961 963 964
Milling machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes. Power used by Machine Tools. Power Required to Drive Machinery. Abrasive Processes.	960 960 960 961 963 964 965
Milling machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes. Power used by Machine Tools. Power Required to Drive Machinery. Abrasive Processes.	960 960 960 961 963 964 965
Milling-machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes Power used by Machine Tools Power Required to Drive Machinery Power used in Machine-shops. Abrasive Processes. Reese's Fusing-disk.	960 960 961 963 964 965 966
Milling-machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes Power used by Machine Tools Power Required to Drive Machinery Power used in Machine-shops. Abrasive Processes. Reese's Fusing-disk.	960 960 961 963 964 965 966
Milling-machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes Power used by Machine Tools Power Required to Drive Machinery Power used in Machine-shops. Abrasive Processes. Reese's Fusing-disk.	960 960 961 963 964 965 966
Milling-machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes Power used by Machine Tools Power Required to Drive Machinery Power used in Machine-shops. Abrasive Processes. Reese's Fusing-disk.	960 960 961 963 964 965
Milling machine vs. Planer. Power Required for Machine Tools. Heavy Work on a Planer. Horse-power to run Lathes. Power used by Machine Tools. Power Required to Drive Machinery. Abrasive Processes.	960 960 963 964 964 965 966

Various Tools and Processes,	
Tens for Machine sorows	AGE
Taps for Machine-screws. Tap Drills. Taper Bolts, Pins, Reamers, etc. Punches, Dies, Presses	971
Taper Bolts, Pins, Reamers, etc	972
Punches, Dies, Presses Clearance Between Punch and Die	972
Clearance Between Punch and Die. Size of Blanks for Drawing-press. Pressure of Drop-press.	973
Pressure of Drop-press	978
Flow of Metals Forcing and Shrinking Fits Efficiency of Screws	973
Efficiency of Screws	974
Provell's Screw-thread. Proportioning Parts of Machine. Keys for Gearing, etc. Holding-power of Set-screws.	975
Keys for Gearing, etc	975
Holding-power of Keys	977
DYNAMOMETERS.	•
Traction Dynamometers	978
The Prony Brake.	978
The Alden Dynamometer	979 980
The Prony Brake. The Alden Dynamometer Capacity of Friction-brakes. Transmission Dynamometers.	980
ICE MAKING OR REFRIGERATING MACHINES.	
Operations of a Refrigerator-machine	981
Pressures, etc., of Available Liquids Ice-melting Effect. Ether-machines.	982
Ice-melting Effect	983 983
Air-machines.	963
Ammonia Compression-machines	983
Ammonia Absorption-machines	984 985
Sulphur-dioxide Machines. Performance of Ammonia Compression-machines	986
Economy of Ammonia Compression-machines	987 968
Efficiency of a Refrigerating machine	988
Economy of Ammonia Compression-machines. Machines Using Vapor of Water. Efficiency of a Befrigerating machine. Test Trials of Refrigerating-machines.	990
Metering the Ammonia	991 992
Temperature Range. Metering the Ammonia Properties of Sulphur Dioxide and Ammonia Gas Properties of Brine used to absorb Refrigerating Effect.	992
Properties of Brine used to absorb Refrigerating Effect	994 994
	904
Actual Performances of Refrigerating Machines. Performance of a 75-ton Refrigerating-machine	000
Cylinder-heating.	997
Cylinder-heating Tests of Ammonia Absorption-machine. Ammonia Compression-machine, Results of Tests	997
Ammonia Compression-machine, Results of Tests	888
Artificial Ice-manufacture.	
	1000
MARINE ENGINEERING.	
	1001 1001
Coefficient of Finances	00.
Coefficient of Water-lines	002
Coefficient of Water-lines	003
Defects of the Common Formula for Resistance	uus
Rankine's Formula	008
Dr. Kirk's Method	005
E. R. Mumford's Method	006 006
receive trouse-bower teduited for different Speeds of Aessels It	~~

CONTENTS

TTIT

PAGE Results of Progressive Speed-trials in Typical Vessels. 1008
Estimated Displacement, Horse-power, etc., of Steam-vessels of Various The Screw-propeller. The Paddle-wheel. Paddle-wheel with Radial Floats...... 1013 Feathering Paddle-wheels 1018
Efficiency of Paddle-wheels 1014 Jet-propulsion. Reaction of a Jet 1015 Recent Practice in Marine Engines.
 Forced Draught
 1015

 Boilers.
 1015

 Piston-valves.
 1016
 Steam-pipes 1016
Auxiliary Supply of Fresh-water Evaporators 1016
Auxiliary Supply of Fresh-water Evaporators 1016
Weir's Feed-water Heater 1016
Passenger Steamers fitted with Twin-screws 1017
Comparative Results of Working of Marine-engine, 1872, 1881, and 1891 1017
Weight of Three-stage Expansion-engines 1017
Particulars of Three-stage Expansion-engines 1018 CONSTRUCTION OF BUILDINGS
 Walls of Warehouse, Stores, Factories, and Stables.
 1019

 Strength of Floors, Roofs, and Supports.
 1019

 Columns and Posts.
 1019, 1029

 Fireproof Buildings
 1020

 Iron and Steel Columns
 1020

 Lintels. Bearings, and Supports.
 1020

 Strains on Girders and Rivets.
 1020

 Maximum Load on Floors.
 1021

 Strength of Floors.
 1021

 Safe Distributed Loads on Southern-pine Beams
 1023
 ELECTRICAL ENGINEERING. Standards of Measurement. Relations of Various Units. 1025
Equivalent Electrical and Mechanical Units. 1026
Analogies between Flow of Water and Electricity 1027
Analogy between the Ampere and Miner's Inch 1027 Electrical Resistance. Laws of Electrical Resistance...... 1028
 Equivalent Conductors
 1028

 Electrical Conductivity of Different Metals and Alloys
 1028

 Relative Conductivity of Different Metals
 1029

 Conductors and Insulators
 1029

 Resistance Varies with Temperature
 1029

 Annealing
 1029

 Standard of Resistance of Copper Wire
 1030
 Electric Currents. Ohm's Law 1090 Divided Circuits 10

Conductors in Series Internal Resistance Joint Resistance of Two Branches Kirchhoff's Laws Power of the Circuit Heat Generated by a Current Heating of Conductors Heating of Wires of Cables Copper-wire Table Heating of Coils Fusion of Wires Electric Transmission.	1031 1032 1032 1032 1032 1033 1033 1033
==	1000
Section of Wire required for a Given Current Constant Pressure. Three-wire Feeder Short-circuiting. Economy of Electric Transmission. Table of Electrical Horse-powers Wiring Formulæ for Incandescent Lighting. Wire Table for 100 and 500 Volt Circuits. Cost of Copper for Long-distance Transmission Graphical Method of Calculating Leads. Weight of Copper for Long-distance Transmission Efficiency of Long-distance Transmission Efficiency of Long-distance Transmission Efficiency of Long-distance Transmission Efficiency of a Combined Engine and Dynamo Electrical Efficiency of a Generator and Motor Efficiency of an Electrical Pumping Plant	1038 1039 1039 1039 1042 1043 1044 1045 1047 1047 1047 1048 1049
Electric Railways.	
Test of a Street Railway Plant Proportioning Boiler, Engine, and Generator for Power Stations	1050 1050
Electric Lighting.	
Quantity of Energy Required to Produce Light. Life of Incandescent Lamps Life and Efficiency Tests of Lamps Street Lighting Lighting-power of Arc-lamps. Candle-power of the Arc-light	1051 1051 1051 1051 1052 1052
Electric Welding Electric Heaters	1053 1054
Electric Accumulators or Storage-batteries.	
Use of Storage-batteries in Power and Light Stations. Working Current of a Storage-cell Electro-chemical Equivalents. Electrolysis	1056 1056 1057 1057
Electro-magnets.	
Units of Electro-magnetic Measurement Lines of Loops of Force Strength of an Electro-magnet Force in the Gap between Two Poles of a Magnet The Magnetic Circuit. Determining the Polarity of Electro-magnets.	1058 1059 1059 1060 1060 1060
Dynamo-Electric Machines.	
Kinds of Dynamo-electric Machines as regards Manner of Winding Current Generated by a Dynamo-electric Machine Torque of an Armature Electro-motive Force of the Armature Circuit. Strength of the Magnetic Field Application to Designing of Dynamos Permeability Permissible Amperage for Magnets with Cotton-covered Wire 1066, Formulæ of Efficiency of Dynamos The Electric Motor	1062 1063 1064 1066 1066 1068

NAMES AND ABBREVIATIONS OF PERIODICALS AND TEXT-BOOKS FREQUENTLY REFERRED TO IN THIS WORK.

Am. Mach. American Machinist.
Bull. 1. & S. A. Bulletin of the American Iron and Steel Association (Philadelphia). Sur's Elasticity and Resistance of Materials. Sark, R. T. D. D. K. Clark's Rules, Tables, and Data for Mechanical Engineers. Mark, S. E. D. K. Clark's Treatise on the Steam-engine. ingg. Engineering (London). ing. News. Engineering News.
ingr. The Engineer (London).
Sairbairn's Useful Information for Engineers. Journal of the Franklin Institute. Kapp's Electric Transmission of Energy. heriman's Strength of Materials.

Heriman's Strength of Materials.

Lanza's Applied Mechanics.

Proc. Inst. C. E. Proceedings Institution of Civil Engineers (London).

Proc. Inst. M. E. Proceedings Institution of Mechanical Engineers (London). leabody's Thermodynamics. reacon's Thermodynamics.
Proceedings Engineers' Club of Philadelphia.
Sankine, S. E. Rankine's The Steam Engine and other Prime Movers.
Sankine's Machinery and Millwork.
Sankine's Machinery and Millwork.
Sankine's Machiner Rules, Tables, and Data.
Reports of U. S. Test Board.
Reports of U. S. Testing Machine at Watertown, Massachusetts.
Rontgen's Thermodynamics.
Seaton's Manual of Marine Engineering. Seaton's Manual of Marine Engineering. Hamilton Smith, Jr.'s Hydraulics. The Stevens Indicator. Thompson's Dynamo-electric Machinery. Thurston's Manual of the Steam Engine. Thurston's Materials of Engineering. Tans. A. I. E. E. Transactions American Institute of Electrical Engineers.
Trans. A. I. M. E. Transactions American Institute of Mining Engineers.
Trans. A. S. C. E. Transactions American Society of Civil Engineers.
Trans. A. S. M. E. Transactions American Society of Mechanical Engineers l'autwine's Civil Engineer's Pocket Book. The Locomotive (Hartford, Connecticut). Unwin's Elements of Machine Design. Weisbach's Mechanics of Engineering. Wood's Resistance of Materials,

Wood's Thermodynamics.

xxxi

MATHEMATICS.

Arithmetical and Algebraical Signs and Abbreviations.

```
+ plus (addition).
                                                    ∠ angle.
∟ right angle.
 + positive.
 - minus (subtraction).
                                                      perpendicular to.
 - negative.
                                                   sin., sine.
± plus or minus.

Ŧ minus or plus.
                                                   cos., cosine.
                                                   tang., or tan., tangent.
= equals.
                                                   sec., secant.
x multiplied by.
                                                   versin., versed sine.
ab \text{ or } a.b = a \times b.
+ divided by.
                                                   cot., cotangent.
                                                   cosec., cosecant.
/ divided by.
                                                   covers., co-versed sine.
                                                   In Algebra, the first letters of the alphabet, a, b, c, d, etc., are generally used to denote known quantities,
  or a-b = a/b = a + b.
2 = \frac{2}{10}; .002 = \frac{2}{1000}
                                                   and the last letters, w, x, y, z, etc.,
                                                   unknown quantities.

√ square root.

                                                     Abbreviations and Symbols com-
 √ cube root.
                                                                   monly used.
 ∛4th root.
                                                   d, differential (in calculus).
: is to, :: so is, : to (proportion).
2 : 4 :: 3 : 6, as 2 is to 4 so is 3 to 6.
                                                        integral (in calculus).
: ratio; divided by.
                                                       , integral between limits a and b.
2:4, ratio of 2 to 4=2/4.
. therefore
                                                   Δ, delta, difference.
   greater than.
                                                   Z. sigma, sign of summation.
< less than.
                                                   w, pi, ratio of circumference of circle
o square.
                                                           to diameter = 3.14159.
O round.
o degrees, arc or thermometer.
                                                   g, acceleration due to gravity = 82.16
                                                           ft. per sec.
 ' minutes or feet.
 " seconds or inches.
                                                   Abbreviations frequently used in this Book.
'"" accents to distinguish letters, as
      a', a'', n'''.
                                                   L., l., length in feet and inches.
a_1, a_2, a_3, a_b, a_c. read a \text{ sub } 1, a \text{ sub } b,
                                                   B., b., breadth in feet and inches.
      etc.
                                                   D., d., depth or diameter.
H., h., height, feet and inches.
()[] { }

    vincula, denoting

                                                   T., t., thickness or temperature.
      that the numbers enclosed are
                                                   \nabla ... v., velocity.
      to be taken together; as,
                                                   F., force, or factor of safety.
      (a+b)c = 4+3 \times 5 = 35.
                                                   f., coefficient of friction.
a², a³, a squared, a cubed.
a¹, a raised to the nth power.
                                                   E., coefficient of elasticity.
                                                   R., r., radius.
a^3 = \sqrt[4]{a^2}, a^{\frac{3}{2}} = \sqrt[4]{a^3}.
                                                   W., w., weight.
                                                   P., p., pressure or load.
H.P., horse-power.
I.H.P., indicated horse-power.
B.H.P., brake horse-power.
         \frac{1}{a}, a^{-2} =
10^9 = 10 to the 9th power = 1,000,000,-
      000.
                                                   h. p., high pressure.
sin. a = the sine of a.
                                                  i. p., intermediate pressure.
i. p., low pressure.
A.W. G., American Wire Gauge
(Brown & Sharpe).
\sin_{\alpha} - 1 a = the arc whose sine is \alpha.
\sin a^{-1} = \frac{1}{\sin a}
log. = logarithm.
                                                   B.W.G., Birmingham Wire Gauge.
or hyp. log. = hyperbolic logarithm.
                                                   r. p. m., or revs. per min., revolutions
```

per minute.

ARITHMETIC.

The user of this book is supposed to have had a training in arithmetic as well as in elementary algebra. Only those rules are given here which are apt to be easily forgotten.

GREATEST COMMON MEASURE, OR GREATEST COMMON DIVISOR OF TWO NUMBERS.

Rule. Divide the greater number by the less; then divide the divisor by the remainder, and so on, dividing always the last divisor by the last remainder, until there is no remainder, and the last divisor is the greatest common measure required.

LEAST COMMON MULTIPLE OF TWO OR MORE NUMBERS.

Rule.—Divide the given numbers by any number that will divide the greatest number of them without a remainder, and set the quotients with the undivided numbers in a line beneath.

Divide the second line as before, and so on, until there are no two numbers that can be divided; then the continued product of the divisors and last quotients will give the multiple required.

FRACTIONS.

To reduce a common fraction to its lowest terms.—Divide both terms by their greatest common divisor: $\frac{26}{3} = \frac{2}{3}$ To change an improper fraction to a mixed number.—Divide the numerator by the denominator; the quotient is the whole number, and the remainder placed over the denominator is the fraction: 32 = 93.

and the remainder placed over the denominator is the fraction; $\gamma = \gamma \gamma$.

To change a mixed number to an improper fraction.—
Multiply the whole number by the denominator of the fraction; to the product add the numerator; place the sum over the denominator: $\frac{1}{3} = \frac{1}{3} k$.

To express a whole number in the form of a fraction with a given denominator,—Multiply the whole number by the given denominator, and place the product over that denominator is $3 = \frac{1}{3} k$.

To reduce a compound to a simple fraction, also to multiply fractions,—Multiply the numerators together for a new numerator and the denominators together for a new denominator:

$$\frac{2}{3}$$
 of $\frac{4}{3} = \frac{8}{9}$, also $\frac{2}{3} \times \frac{4}{3} = \frac{8}{9}$.

To reduce a complex to a simple fraction.—The numerator and denominator must each first be given the form of a simple fraction; then multiply the numerator of the upper fraction by the denominator of the lower for the new numerator, and the denominator of the upper by the numerator of the lower for the new denominator:

$$\frac{\frac{2}{3}}{1\frac{1}{4}} = \frac{\frac{2}{3}}{\frac{4}{3}} = \frac{6}{12} = \frac{1}{2}.$$

To divide fractions.--Reduce both to the form of simple fractions. invert the divisor, and proceed as in multiplication:

$$\frac{2}{8} + 1\frac{1}{3} = \frac{2}{3} + \frac{4}{3} = \frac{2}{3} \times \frac{3}{4} = \frac{6}{19}$$

ansallation of functions

tor by all the denominators except its own for the new numerators, and all the denominators together for the common denominator:

$$\frac{1}{2}$$
, $\frac{1}{8}$, $\frac{3}{7} = \frac{21}{42}$, $\frac{14}{42}$, $\frac{18}{42}$.

To add fractions.-Reduce them to a common denominator, then add the numerators and place their sum over the common denominator:

$$\frac{1}{2} + \frac{1}{3} + \frac{3}{7} = \frac{21 + 14 + 18}{42} = \frac{53}{42} = 1\frac{11}{42}.$$

To subtract fractions.—Reduce them to a common denominator. subtract the numerators and place the difference over the common denominator:

$$\frac{1}{2} - \frac{8}{7} = \frac{7-6}{14} = \frac{1}{14}$$

DECIMALS.

To add decimals. - Set down the figures so that the decimal points are one above the other, then proceed as in simple addition: 18.75 + .012 =

To subtract decimals.—Set down the figures so that the decimal points are one above the other, then proceed as in simple subtraction: 18.75 - .012 = 18.738.

To multiply decimals.—Multiply as in multiplication of whole numbers, then point off as many decimal places as there are in multiplier and multiplicand taken together: 1.5 × .02 = .030 = .03.

To divide decimals.—Divide as in whole numbers, and point off in

the quotient as many decimal places as those in the dividend exceed those in the divisor. Ciphers must be added to the dividend to make its decimal places at least equal those in the divisor, and as many more as it is desired to have in the quotient: 1.5 + .25 = 6. 0.1 + 0.3 = 0.10000 + 0.3 = 0.3833 +

Decimal Equivalents of Fractions of One Inch.

1-64	.015625	17-64	.265625	33-64	.515625	49-64	.765625
1-32	.03125	9_32	.28125	17-32	.53125	25-32	.78125
3-64	.046875	19-64	.296875	35-64	.546875	51-64	.796875
1-16	.0625	5-16	.3125	9-16	.5625	13-16	.8125
5-64	.078125	21-64	.328125	37-64	.578125	53-64	.828125
3-32	.09375	11-32	.84375	19-32	.59375	27-32	.84375
7-64	.109375	23-64 i	.359375	39-64	.609375	55-64	.859375
1-8	.125	8-8	.875	5-8	, 625	7-8	.875
9-64	.140625	25-64	.390625	41-64	.640625	57-64	.890625
5-32	.15625	13-32	.40625	21-32	.65625	29-32	.90625
11-64	.171875	27-64	.421875	43-64	.671875	59-64	.921875
3-16	.1875	7-16	.4375	11-16	. 6875	15-16	.9375
13-64	.203125	29-64	.453125	45-64	.708125	61-64	.953125
7-32	.21875	15-32	.46875	23-32	.71875	31-32	.96875
15-64	.284875	31-64	.484375	47-64	.734375	63-64	.984375
1-4	.25	1-2	.50	8-4	.75	1	1.
] -				-	1

To convert a common fraction into a decimal.—Divide the numerator by the denominator, adding to the numerator as many ciphers

numerator by the denominator, againg to the numerator as many cipners prefixed by a decimal point as are necessary to give the number of decimal places desired in the result: $\frac{1}{10000} + 3 = 0.3333 + 10000$. Set down the decimal as a numerator, and place as the denominator 1 with as many ciphers annexed as there are decimal places in the numerator; erase the

Product of Fractions Expressed in Decimals.

-												
1 6												
1-100												
141 640								•				
e3 4												.5625
11											.4727	.5156
rajao										3306	.4297	.4688
18									.3164	.3516	.3867	6167
- 63								.2500	.2818	.8125	.3438	Caluc
17							.1914	.2188	.2461	2734	3008	_
ecko						.1406	.1641	.1875	.2109	.2344	.2578	-
15					7260.	.1172	.1867	.1562	.1758	.1953	.2148	
4				.0625	.0781	.0987	.1098	.1250	.1406	.1562	1719	
3 T 6			.0852	0469	.0586	.0708	0830	.0988	.1055	.1172	ξ	
- ∞		.0156	.0234	.0313	.0891	.0469	.0547	.0625	.0708	.0781		
14	.0039	.0078	7110.	9210.	.0195	.0234	.0273	.0313	.0352	.0391	-	
н	.0625	.1250	.1875	.2500	.8125	.8750	.4375	.5000	.5625	Ro50		
0	7	-tao	S) PO	-44	9	catoo	18	 €1	all B	ĸ		

decimal point in the numerator, and reduce the fraction thus formed to its lowest terms:

.25 =
$$\frac{25}{100}$$
 = $\frac{1}{4}$; .3388 = $\frac{3388}{10000}$ = $\frac{1}{8}$, nearly.

To reduce a recurring decimal to a common fraction.— Subtract the decimal figures that do not recur from the whole decimal including one set of recurring figures; set down the remainder as the numerator of the fraction, and as many nines as there are recurring figures, followed by as many ciphers as there are non-recurring figures, in the denominator. Thus:

Subtract

$$\frac{78975}{99900} = \text{(reduced to its lowest terms)} \frac{117}{148}$$

COMPOUND OR DENOMINATE NUMBERS.

Reduction descending.—To reduce a compound number to a lower denomination. Multiply the number by as many units of the lower denomination as makes one of the higher.

3 yards to inches: $3 \times 36 = 108$ inches.

.04 square feet to square inches: $.04 \times 144 = 5.76$ sq. in.

If the given number is in more than one denomination proceed in steps from the highest denomination to the next lower, and so on to the lowest, adding in the units of each denomination as the operation proceeds.

$$3 \text{ yds. } 1 \text{ ft. } 7 \text{ in. to inches: } 3 \times 3 = 9, +1 = 10, 10 \times 12 = 120, +7 = 127 \text{ in.}$$

Reduction ascending.—To express a number of a lower denomination in terms of a higher, divide the number by the number of units of the lower denomination contained in one of the next higher; the quotient is in the higher denomination, and the remainder, if any, in the lower.

127 inches to higher denomination.

$$127 + 12 = 10$$
 feet $+ 7$ inches; 10 feet $+ 3 = 3$ yards $+ 1$ foot.
Ans. 3 yds. 1 ft. 7 in.

To express the result in decimals of the higher denomination, divide the given number by the number of units of the given denomination contained in one of the required denomination, carrying the result to as many places of decimals as may be desired.

127 inches to yards: $127 + 36 = 3\frac{13}{38} = 3.5277 + yards$.

RATIO AND PROPORTION.

Ratio is the relation of one number to another, as obtained by dividing one by the other.

Ratio of 2 to 4, or 2:
$$4 = 2/4 = 1/2$$
.

Ratio of 4 to 2, or 4 :
$$2 = 2$$
.

Proportion is the equality of two ratios. Ratio of 2 to 4 equals ratio of 3 to 6, 2/4 = 3/6; expressed thus, 2:4:3:6; read, 2 is to 4 as 3 is to 6. The first and fourth terms are called the extremes or outer terms, the second and third the means or inner terms.

The product of the means equals the product of the extremes:

$$2:4::3:6; 2\times 6=12; 3\times 4=12.$$

Hence, given the first three terms to find the fourth, multiply the second and third terms together and divide by the first.

2:4::3: what number? Ans.
$$\frac{4 \times 3}{2} = 6$$
.

Algebraic expression of proportion.— $a:b::c:d; \frac{a}{b} = \frac{c}{d}; ad$ = bc; from which $a = \frac{bc}{d}$; $d = \frac{bc}{a}$; $b = \frac{ad}{c}$; $c = \frac{ad}{b}$.

Mean proportional between two given numbers, 1st and 2d, is such a number that the ratio which the first bears to it equals the ratio which it bears to the second. Thus, 2: 4:: 4: 8; 4 is a mean proportional between 2 and 8. To find the mean proportional between two numbers, extract the square root of their product.

Mean proportional of 2 and $8 = \sqrt{2 \times 8} = 4$.

Single Rule of Three; or, finding the fourth term of a proportion when three terms are given.—Rule, as above, when the terms are stated in their proper order, multiply the second by the third and divide by the first. The difficulty is to state the terms in their proper order. The term which is of the same kind as the required or fourth term is made the third; the first and second must be like each other in kind and denomination. To determine which is to be made second and which first requires a little reasoning. If an inspection of the problem shows that the answer should be greater than the third term, then the greater of the other two given terms should be made the second term—otherwise the first. Thus, 3 men remove 54 cubic be made the second term—other was such as a second term of the same time 10 cubic yards? The answer is to be men—make men third term; the answer is to be me yards, the second term; but as it is not the same denomination as the other term it must be reduced, = 270 cubic feet. The proportion is then stated:

54: 270::3: x (the required number);
$$x = \frac{3 \times 270}{54} = 15$$
 men.

The problem is more complicated if we increase the number of given terms. Thus, in the above question, substitute for the words "in the same time" the words "in 3 days." First solve it as above, as if the work were

time" the words "in 3 days." First solve it as above, as if the work were to be done in the same time; then make another proportion, stating it thus: If 15 men do it in the same time, it will take fewer men to do it in 3 days; make 1 day the 2d term and 3 days the first term. 3:1::15 men: 5 men. Compound Proportion, or Double Rule of Three.—By this rule are solved questions like the one just given, in which two or more statings are required by the single rule of three. In it as in the single rule, there is one third term, which is of the same kind and denomination as the fourth or required term but there may be two or more first and second fourth or required term, which is of the same kind and denomination as the fourth or required term, but there may be two or more first and second terms. Set down the third term, take each pair of terms of the same kind separately, and arrange them as first and second by the same reasoning as is adopted in the single rule of three, making the greater of the pair the second if this pair considered alone should require the answer to be greater.

Set down all the first terms one under the other, and likewise all the second terms. Multiply all the first terms together and all the second terms second terms. Multiply at the inst terms together and at the second terms to the third term, and divide this product by the product of all the first terms. Example: If 3 men remove 4 cubic yards in one day, working 12 hours a day, how many men working 10 hours a day will remove 20 cubic yards in 3 days?

4: 20 3: 1 10: 12 :; 3 men. Yards Days Hours Products 120: 240:: 3:6 men. Ans.

To abbreviate by cancellation, any one of the first terms may cancel either the third or any of the second terms; thus, 8 in first cancels 8 in third. making it 1, 10 cancels into 20 making the latter 2, which into 4 makes it 2, which into 12 makes it 6, and the figures remaining are only 1:6::1:6.

INVOLUTION, OR POWERS OF NUMBERS.

Involution is the continued multiplication of a number by itself a given number of times. The number is called the root, or first power, at the products are called powers. The second power is called the square

the third power the cube. The operation may be indicated without being performed by writing a small figure called the *index* or *exponent* to the right of and a little above the root; thus, $3^3 = \text{cube}$ of 3 = 27.

To multiply two or more powers of the same number, add their exponents; thus, $2^3 \times 2^3 = 2^6$, or $4 \times 8 = 32 = 2^6$.

To divide two powers of the same number, subtract their exponents; thus, $x^3 + 2^3 = 2^1 = 2$; $2^3 + 2^4 = 2^{-3} = \frac{1}{2^2} = \frac{1}{4}$. The exponent may thus be negative. $2^3 + 2^3 = 2^0 = 1$, whence the zero power of any number = 1. The first power of a number is the number itself. The exponent may be fractional, as 21, 23, which means that the root is to be raised to a power whose exponent is the numerator of the fraction, and the root whose sign is the denominator is to be extracted (see Evolution). The exponent may be a decimal, as 29°5, 21°5; read, two to the five-tenths power, two to the one and five-tenths power. These powers are solved by means of Logarithms (which

First Nine Powers of the First Nine Numbers.

1st Pow'r	2d Pow'r	8d Power.	4th Power.	5th Power.	6th Power.	7th Power.	8th Power.	9th Power.
1 2	1 4	1 8	1 16	1 82	1 64	1 128	1 256	1 512
3	9	27	81	248	729	2187	6561	19683
5	16 25	64 125	256 625	1024 8125	4096 15625	16884 78125	65536 39 0625	262144 1953125
6	36	216	1296	7776	46656	279986	1679616	10077696
7	49	343	2401	16807	117649	823543	5764801	40353607
8	64	512	4096	32768	262144	2097152	16777216	184217728
9	81	729	6581	59049	531441	4782969	43046721	387420489

The First Forty Powers of 2.

Power.	Value.	Power.	Value.	Power.	Value.	Power.	Value.	Power.	Value.
0 1 2 3	1 2 4 8 16	9 10 11 12 13	512 1024 2048 4096 8192	18 19 20 21 22	262144 524288 1048576 2097152 4194804	27 28 29 30 31	134217728 268435456 536870912 1073741824 2147483648	36 37 38 39 40	68719476736 137438953472 274877906944 549755813888 1099511627776
5 6 7 8	32 64 128 256	14 15 16 17	16384 32768 65536 131072	23 24 25 26	8888608 16777216 83554432 67108864	32 83 34 85	4294967296 8589934592 17179669184 34350738368		

EVOLUTION.

Evolution is the finding of the root (or extracting the root) of any number the power of which is given.

The sign ψ indicates that the square root is to be extracted: $\sqrt[3]{4}$, the cube root, 4th root, nth root.

A fractional exponent with 1 for the numerator of the fraction is also used to indicate that the operation of extracting the root is to be performed; thus, $2^{\frac{1}{2}}$, $2^{\frac{1}{2}} = \sqrt{2}$, $\sqrt[3]{2}$.

When the power of a number is indicated, the involution not being per-formed, the extraction of any root of that power may also be indicated by

dividing the index of the power by the index of the root, indicating the division by a fraction. Thus, extract the square root of the 6th power of 2:

$$4\sqrt{2^6} = 2^{\frac{6}{3}} = 2^{\frac{3}{1}} = 2^{3} = 8.$$

The 6th power of 2, as in the table above, is 64; $\sqrt{64} = 8$.

Difficult problems in evolution are performed by logarithms, but the square roof and the cube root may be extracted directly according to the rules given below. The 4th root is the square root of the square root. The 6th root is the cube root of the square root, or the square root of the cube

6th root is the cube root of the square root, or the square root of the cube root; the 9th root is the cube root of the cube root; etc.

To Extract the Square Hoot.—Point off the given number into periods of two places each, beginning with units. If there are decimals, point these off likewise, beginning at the decimal point, and supplying as many ciphers as may be needed. Find the greatest number whose square is less than the first left-hand period, and place it as the first figure in the quotient. Subtract its square from the left-hand period and to the remainder annex the two figures of the second period for a dividend. Double the first figure of the quotient for a partial divisor: find how many times the latter is contained in the dividend exclusive of the right-hand figure, and set the figure representing, that number of of the right-hand figure, and set the figure representing that number of times as the second figure in the quotient, and annex it to the right of the partial divisor, forming the complete divisor. Multiply this divisor by the second figure in the quotient and subtract the product from the divi-dend. To the remainder bring down the next period and proceed as before, in each case doubling the figures in the root already found to cotain the trial divisor. Should the product of the second figure in the root by the completed divisor be greater than the dividend, erase the second figure both from the quotient and from the divisor, and substitute the next smaller figure, or one small enough to make the product of the second figure by the divisor less than or equal to the dividend.

To extract the square root of a fraction, extract the root of numerator and denominator separately. $\sqrt{\frac{4}{9}} = \frac{2}{8}$ or first convert the fraction into a

decimal,
$$\sqrt{\frac{4}{9}} = \sqrt{.4444 +} = .6666 +$$
.

To Extract the Cube Boot.—Point off the number into periods of 3 figures each, beginning at the right hand, or unit's place. Point off decimals in periods of 3 figures from the decimal point. Find the greatest cube that does not exceed the left hand period; write its root as the first figure in the required root. Subtract the cube from the left hand period, and to the remainder bring down the next period for a dividend.

Square the first figure of the root; multiply by 300, and divide the product into the dividend for a trial divisor; write the quotient after the first figure

of the root as a trial second figure.

Complete the divisor by adding to 300 times the square of the first figure, 30 times the product of the first by the second figure. Multiply

stitute for the last figure the next smaller number, and correct the trial ison accordingly.)

To the remainder bring down the next period, and proceed as before to dithe third figure of the root—that is, square the two figures of the root feedy found; multiply by 300 for a trial divisor, etc.

If at any time the trial divisor is less than the dividend, bring down an-

her period of 3 figures, and place 0 in the root and proceed.

The cube root of a number will contain as many figures as there are riods of 3 in the number.

Shorter Methods of Extracting the Cube Root.—1. From Wentworth's Algebra:

After the first two figures of the root are found the next trial divisor is ound by bringing down the sum of the 60 and 4 obtained in completing the receding divisor, then adding the three lines connected by the brace, and maxing two ciphers. This method shortens the work in long examples, as seen in the case of the last two trial divisors, saving the labor of squaring 23 and 1234. A further shortening of the work is made by obtaining the sst two figures of the root by division, the divisor employed being three imes the square of the part of the root already found; thus, after finding he first three figures:

$$\begin{array}{c} 8\times 123^2 = 45387 | 20498963 | 45.1 + \\ \hline 181548 \\ \hline 224416 \\ 226985 \\ \hline 74813 \end{array}$$

he error due to the remainder is not sufficient to change the fifth figure of ae root.

 By Prof. H. A. Wood (Stevens Indicator, July, 1890):
 I. Having separated the number into periods of three figures each, countig from the right, divide by the square of the nearest root of the first eriod, or first two periods; the nearest root is the trial root.

II. To the quotient obtained add twice the trial root, and divide by 3. his gives the root, or first approximation.

44 .- 7- 1

III. By using the first approximate root as a new trial root, and proceedig as before, a nearer approximation is obtained, which process may be peated until the root has been extracted, or the approximation carried as ir as desired.

EXAMPLE.—Required the cube root of 20. The nearest cube to 20 is 33.

$$2.72 = 7.29)20.000
2.748
5.4
3)8.143$$

2.714, 1st ap. cube root.

2.7144178 2d ap. cube root.

REMARK.—In the example it will be observed that the second term, or first two figures of the root, were obtained by using for trial root the root of the first period. Using, in like manner, these two terms for trial root, we obtained four terms of the root; and these four terms for trial root gave seven figures of the root correct. In that example the last figure should bee?. Should we take these eight figures for trial root we should obtain at least fifteen figures of the root correct.

To Extract a Higher Boot than the Cube.—The fourth root is the square root of the square root; the sixth root is the cube root of the square root of the cube root. Other roots are most conveniently found by the use of logarithms.

ALLIGATION

shows the value of a mixture of different ingredients when the quantity and value of each is known.

Let the ingredients be a, b, c, d, etc., and their respective values **per unit** w, x, y, z, etc.

A =the sum of the quantities = a + b + c + d, etc.

P = mean value or price per unit of A.

$$AP = aw + bx + cy + dz$$
, etc.

$$P = \frac{aw + bx + cy + dz}{A}$$

PERMUTATION

shows in how many positions any number of things may be arranged in \mathbf{a} row; thus, the letters a, b, c may be arranged in six positious, viz. abc, acc, cab, bac, bca.

cab, cba, bac, bca.
Rule.—Multiply together all the numbers used in counting the things; thuspermutations of 1, 2, and $3 = 1 \times 2 \times 3 = 6$. In how many positions can Shings in a row be placed?

$$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 = 362880.$$

COMBINATION

How many combinations of 9 things can be made, taking 8 in each combination ?

$$\frac{9 \times 8 \times 7}{1 \times 2 \times 8} = \frac{504}{6} = 84.$$

ARITHMETICAL PROGRESSION,

in a series of numbers, is a progressive increase or decrease in each successive number by the addition or subtraction of the same amount at each step, as 1, 2, 3, 4, 5, etc., or 15, 12, 9, 6, etc. The numbers are called terms, and the equal increase or decrease the difference. Examples in arithmetical progression may be solved by the following formulæ:

Let a = first term, l = last term, d = common difference, n = number of terms, d = common difference, d = common difference.

terms, s = sum of the terms:

$$\begin{aligned} &l = a + (n-1)d, & = -\frac{1}{2}d \pm \sqrt{2ds + \left(a - \frac{1}{2}d\right)^{n}}, \\ &= \frac{2s}{n} - a, & = \frac{s}{n} + \frac{(n-1)d}{2}. \\ &s = \frac{1}{2}n[2a + (n-1)d], & = \frac{l+a}{2} + \frac{l^{3} - a^{3}}{2d}, \\ &= (l+a)\frac{n}{2}, & = \frac{1}{2}n[2l - (n-1)d]. \\ &a = l - (n-1)d, & = \frac{s}{n} - \frac{(n-1)d}{2}, \\ &= \frac{1}{2}d \pm \sqrt{\left(l + \frac{1}{2}d\right)^{2} - 2ds}, & = \frac{2s}{n} - l. \\ &d = \frac{l-a}{n-1}, & = \frac{2(s-an)}{n(n-1)}, \\ &= \frac{l^{2} - a^{3}}{2s - l - a}, & = \frac{2(nl-s)}{n(n-1)}. \\ &n = \frac{l-a}{d} + 1, & = \frac{d-2a}{2} \pm \frac{\sqrt{(2a-d)^{2} + 8ds}}{2d}, \\ &= \frac{2l+d \pm \sqrt{(2l+d)^{3} - 8ds}}{2d}. \end{aligned}$$

GEOMETRICAL PROGRESSION.

in a series of numbers, is a progressive increase or decrease in each successive number by the same multiplier or divisor at each step, as 1, 2, 4, 8, 16, etc., or 243, 81, 27, 9, etc. The common multiplier is called the ratio. Let a= first term, t= last term, r= ratio or constant multiplier, n= number of terms, m= any term, as 1st, 2d, etc., s= sum of the terms:

$$l = ar^{n-1},$$
 $= \frac{a + (r-1)s}{r},$ $= \frac{(r-1)sr^{n-1}}{r^{n}-1},$

$$\log l = \log a + (n-1) \log r,$$
 $l(s-l)^{n-1} - a(s-a)^{n-1} = 0.$

 $m = ar^{m}$ 1. $\log m = \log a + (m-1)\log r.$

$$s = \frac{a(r^n - 1)}{r - 1}, \qquad = \frac{rl - a}{r - 1}, \qquad = \frac{\binom{n - 1}{\sqrt{n}} - \binom{n - 1}{\sqrt{a}}}{\binom{n - 1}{\sqrt{n}} - \binom{n - 1}{\sqrt{a}}}, \qquad = \frac{lr^n - l}{r^n - r^{n - 1}}.$$

1

$$a = \frac{l}{r^{n-1}}, \qquad = \frac{(r-1)s}{r^{n}-1}. \qquad \log a = \log l - (n-1) \log r.$$

$$r = \sqrt[n-1]{\frac{l}{a}}, \qquad = \frac{s-a}{s-l}. \qquad \log r = \frac{\log l - \log a}{n-1}.$$

$$r^{n} - \frac{s}{a}r + \frac{s-a}{a} = 0. \qquad r^{n} - \frac{s}{s-l}r^{n-1} + \frac{l}{s-l} = 0.$$

$$n = \frac{\log l - \log a}{\log r} + 1, \qquad = \frac{\log l - \log a}{\log (s-a) - \log (s-l)} + 1, \qquad = \frac{\log l - \log a}{\log r}, \qquad = \frac{\log l - \log a}{\log r} + 1.$$

Population of the United States.

(A problem in geometrical progression.)

			Annual Increase.
Year.	Population.	Years, per cent.	per cent.
1860	31,443,821		• • • • • • • • • • • • • • • • • • • •
1870	39 ,819,449*	26.63	2.39
1880	50,155,788	25.96	2.83
1890	62,622,250	24.86	2.25
1895	Est. 69,733,000		Est. 2.174
1900	" 77,652,000	Est. 24.0	" 2.174

Estimated Population in Each Year from 1860 to 1899.

(Based on the above rates of increase, in even thousands.)

		1)		11			
1860	31,443	1870	39,818	1880	50,156	1890	62,622
1861	32,195	1871	40,748	1881	51,281	1891	63,984
1862	32,964	1872	41,699	1882	52,433	1892	65,375
1863	33,752	1873	42,673	1883	53,610	1898	66.797
1864	34,558	1874	43,670	1884	54,813	1894	68,249
1865	35,384	1875	44,690	1885	56,043	1895	69.783
1866	36,229	1876	45,378	1886	57,301	1896	71,249
1867	37,095	1877	46,800	1887	58,588	1897	72,799
1868	37,981	1878	47,893	1888	59,903	1898	74.882
1869	88.889	1879	49,011	1889	61,247	1899	75,999

The above table has been calculated by logarithms, as follows:

$$\log r = \log l - \log a + (n-1), \qquad \log m = \log a + (m-1) \log r$$

$$\text{Pop. } 1870... \quad 39,818449 \log = 7.6000841 \qquad = \log l$$

$$\text{`` } 1860... \quad 31,443321 \log = 7.4975288 \qquad = \log a$$

$$\text{diff.} = \frac{1025553}{0.0025553}$$

$$n = 11, n - 1 = 10, \text{diff.} + 10 = \frac{1025553}{0.0025553} \qquad = \log r,$$

$$\text{add log for } 1861 = 7.50778433 \text{ No.} = 32,195...$$

$$\log \text{ for } 1862 = 7.50778433 \text{ No.} = 32,195...$$

$$\log \text{ for } 1862 = 7.51803966 \text{ No.} = 32,964...$$

Compound interest is a form of geometrical progression; the ratio being 1 plus the percentage.

^{*}Corrected by addition of 1.260,078, estimated error of the census of 1870, nsus Bulletin No. 16, Dec. 12, 1890.

INTEREST AND DISCOUNT.

Interest is money paid for the use of money for a given time; the fac tors are :

p, the sum loaned, or the principal:

t, the time in years;
t, the rate of interest;
t, the amount of interest for the given rate and time;

a = p + i = the amount of the principal with interest

at the end of the time.

Formulæ:

$$i = \text{interest} = \text{principal} \times \text{time} \times \text{rate per cent} = i = \frac{ptr}{100};$$
 $a = \text{amount} = \text{principal} + \text{interest} = p + \frac{ptr}{100};$
 $r = \text{rate} = \frac{100i}{pt};$
 $p = \text{principal} = \frac{100i}{tr} = a - \frac{ptr}{100};$
 $t = \text{time} = \frac{100i}{pr}.$

If the rate is expressed decimally as a per cent,—thus, 6 per cent = .06,—the formulæ become

$$i = prt; \ a = p(1+rt); \quad r = \frac{i}{pt}; \quad t = \frac{i}{pr}; \quad p = \frac{i}{tr} = \frac{a}{1+rt}$$

Rules for finding Interest.—Multiply the principal by the rate per aunum divided by 100, and by the time in years and fractions of a year.

If the time is given in days, interest = $\frac{\text{principal} \times \text{rate per annum}}{\text{principal}}$ 365×100

In banks interest is sometimes calculated on the basis of 360 days to a year, or 12 months of 30 days each.

Short rules for interest at 6 per cent, when 360 days are taken as 1 year:

Multiply the principal by number of days and divide by 6000.
Multiply the principal by number of months and divide by 200.
The interest of 1 dollar for one month is 1/2 cent.

Interest of 100 Dollars for Different Times and Rates.

Time.	2%	8%	4%	5%	6%	8%	10%
l year	\$2.00	\$8.00	\$4.00	\$5.00	\$6.00	\$8.00	\$ 10 00
1 month	.163	.25	.831	.41#	.50	.664	.831
$1 day = \frac{1}{160} year$.0055#	.00831	.01111	.01388	.0166#	.02223	.02773
$1 day = \frac{1}{368} year$.005479	.008219	.010959	.013699	.016438	.0219178	.0273973

Discount is interest deducted for payment of money before it is due. True discount is the difference between the amount of a debt payable at a future date without interest and its present worth. The present worth is that sum which put at interest at the legal rate will amount to the debt when it is due.

To find the present worth of an amount due at future date, divide the amount by the amount of \$1 placed at interest for the given time. The discount equals the amount minus the present worth.

What discount should be allowed on \$103 paid six months before it is due, interest being 6 per cent per annum?

$$\frac{103}{1 + 1 \times .06 \times \frac{1}{2}} = $100 \text{ present worth, discount} = 3.00.$$

Bank discount is the amount deducted by a bank as interest on money loaned on promissory notes. It is interest calculated not on the actual sum loaned, but on the gross amount of the note, from which the discount is deducted in advance. It is also calculated on the basis of 360 days in the year, and for 3 (in some banks 4) days more than the time specified in the note. These are called days of grace, and the note is not payable fill the last of these days.

What discount will be deducted by a bank in discounting a note for \$103 payable 6 months hence? Six months = 182 days, add 8 days grace = 185 days, $\frac{108 \times 185}{6000}$ = \$3.176.

Compound Interest.—In compound interest the interest is added to the principal at the end of each year, (or shorter period if agreed upon). Let p = the principal, r = the rate expressed decimally, n = no of years.

and a the amount:

$$a = \text{amount} = p (1+r)^n$$
; $r = \text{rate} = \sqrt[n]{\frac{a}{p}} - 1$,
 $p = \text{principal}$, $= \frac{a}{(1+r)^n}$, no of years $= n$, $= \frac{\log a - \log p}{\log (1+r)}$.

Compound Interest Table.

(Value of one dollar at compound interest, compounded yearly, at 3, 4, 5, and 6 per cent, from 1 to 50 years.)

Years.	8%	4%	5%	6%	Years.	8%	4%	5%	6%
1	1.08	1.04	1.05	1.06	16	1.6047	1.8730	2.1829	2,5403
2	1.0609	1.0816	1.1025	1.1236	17	1.6528	1.9479	2.2920	2.6928
8	1.0927	1.1249	1.1576	1.1910	18	1.7024	2.0258	2.4066	2.8548
4	1.1255	1.1699	1.2155	1.2625	19	1.7535	2.1068	2 5269	3.0256
5	1.1593	1.2166	1.2763	1.3382	20	1.8061	2.1911	2.6538	8.2071
6	1.1941	1.2658	1.8401	1.4185	21	1.8603	2.2787	2.7859	3.3995
7	1.2299	1.3159	1.4071	1.5036	22	1.9161	2.3699	2.9252	3.6035
8	1.2668	1.3686	1.4774	1.5938	23	1.9736	2.4647	3.0715	8.8197
9	1.3048	1.4233	1.5513	1.6895	24	2.0328	2.5633	3.2251	4 0487
10	1.3439	1.4802	1.6289	1.7908	25	2.0937	2.6658	3.3864	4.2919
11	1.3842	1,5394	1.7103	1.8983	30	2.4272	3.2434	4.3219	5 7435
12	1.4258	1.6010	1.7958	2.0122	35	2,8138	3.9460	5.5166	7.6861
13	1.4685	1.6651	1.8856	2.1329	40	3,2620	4,8009	7 0100	10.2858
14	1.5126	1.7817	1.9799	2,2609	45	3,7815	5.8410	8.9850	18.7646
15	1.5580	1.8009	2.0789	2.3965	50	4.3838	7.1064	11.6792	18.4190

At compound interest at 3 per cent money will double itself in 23% years, at 4 per cent in 177% years, at 5 per cent in 14.2 years, and at 6 per cent in 11.9 years.

EQUATION OF PAYMENTS.

By equation of payments we find the equivalent or average time in which one payment should be made to cancel a number of obligations due at different dates; also the number of days upon which to calculate interest or discount upon a gross sum which is composed of several smaller sums payable at different dates.

Rule.—Multiply each item by the time of its maturity in days from a fixed date, taken as a standard, and divide the sum of the products by the sum of the items: the result is the average time in days from the standard date.

A owes B \$100 due in 30 days, \$200 due in 60 days, and \$300 due in 90 days. In how many days may the whole be paid in one sum of \$600?

$$100 \times 30 + 200 \times 60 + 300 \times 90 = 42,000$$
; $42,000 + 600 = 70$ days, ans.

PARTIAL PAYMENTS.

To compute interest on notes and bonds when partial payments have been

made:
Tinited States Bule.—Find the amount of the principal to the time of the first payment, and, subtracting the payment from it, find the amount of the remainder as a new principal to the time of the next payment.

If the payment is less than the interest, find the amount of the principal to the time when the sum of the payments equals or exceeds the interest due, and subtract the sum of the payments from this amount.

Proceed in this manner till the time of settlement.

Proceed in this mainer that the time of settlement.

Note: The principles upon which the preceding rule is founded are:
1st. That payments must be applied first to discharge accrued interest,
and then the remainder, if any, toward the discharge of the principal.
2d. That only unpaid principal can draw interest.

Moreantile method. When partial payments are made on short

notes or interest accounts, business men commonly employ the following

method:

Find the amount of the whole debt to the time of settlement; also find the amount of each payment from the time it was made to the time of settlement. Subtract the amount of payments from the amount of the debt; the remainder will be the balance due.

ANNUITIES.

An Annuity is a fixed sum of money paid yearly, or at other equal times receil upon. The values of annuities are calculated by the principles of agreed upon. compound interest.

1. Let i denote interest on \$1 for a year, then at the end of a year the

amount will be 1+i. At the end of n years it will be $(1+i)^n$.

2. The sum which in n years will amount to 1 is $\frac{1}{(1+i)^n}$ or $(1+i)^{-n}$, or the present value of 1 due in n years.

3. The amount of an annuity of 1 in any number of years n is $\frac{(1+i)^n-1}{i}$.

4. The present value of an annuity of 1 for any number of years n is $1-(1+i)^{-n}$

5. The annuity which 1 will purchase for any number of years n is $1 - (1+i)^{-n}$

6. The annuity which would amount to 1 in n years is $\frac{1}{(1+i)^n-1}$

Amounts, Present Values, etc., at 5% Interest.

Years	(1)	(2)	(8)	(4)	(5)	(6)
	$(1+i)^n$	$(1+i)^{-n}$	$\frac{(1+i)^n-1}{i}$	$\frac{1-(1+i)^{-n}}{i}$	$\frac{i}{1-(1+i)^{-n}}$	$\frac{i}{(1+i)^n-1}$
12355	1.05 1.1025 1.157625 1.215506 1.278282 1.278282	.952381 .907029 .863838 .822702 .783526 .746215 .710681 .678839 .644609 .613913	1. 2.05 8.1525 4.310125 5.525631 6.801913 8.142008 9.549109 11.026564 12.577893	.952381 1.859410 2.723248 3.545951 4.329477 5.075692 5.786373 6.463213 7.107822 7.721735	1.05 .537805 .367209 .282012 .230975 .197017 .172820 .154722 .140690 .129505	1. .487905 .317209 .232012 .180975 .147018 .122820 .104722 .090690 .079505

Table I.-Annuity Required to Redeem \$1000 in from 1 to 50 Years.

Years to run.			•	,		Rate of	Rate of Interest, per cent.	per cent.					
	67	234	8/18	28%	•	8¼	878	8%	*	4,4	79	849	· \$
0, 10 4 10 10	495.05 326.72 242.63 192.16 158.53	494.50 825.94 241.74 191.18	493.78 825.14 820.84 190.24 156.56	493.23 324.35 239.33 189.30 155.58	492.69 823.56 239.02 188.85 154.61	492.05 822.75 238.14 187.42 153.64	491.42 821.94 237.26 186.49	490.81 821.18 296 88 185.56 151.73	490.20 820.28 285.50 184.63	489.00 318.77 233.74 182.79 148.88	487.80 317.21 232.01 180.96 147.02	486.62 315.63 230.29 179.18 145.18	485.48 814.10 228 60 177.39
7 8 9 10 11	134.52 116.51 102.52 91.83 82.18	188.51 115.48 101.48 90.29 81.14	182.49 114.47 100.46 89.25 90.11	131.50 118.46 99.45 88.24 79.09	130.51 112.46 98.44 87.24 78.07	129.54 111.47 97.44 86.24 77.08	128.57 110.48 96.44 85.24 76.09	127.59 109.50 95.46 84.26 75.12	126.61 108.53 94.49 88.29 74.15	124.67 106.60 92.57 81.38 72.25	82.55 82.88 82.89 83.50 83.50	120.96 102.86 77.67 68.57	119.18 101.03 87.02 75.87 66.79
12 13 14 15 16	74.56 68.12 62.60 57.88 53.65	73.52 67.08 61.56 56.79 52.62	52.49 66.05 60.54 55.77 51.60	56.04 59.53 50.60 50.77	70.46 64.03 58.53 49.61	69.47 63.05 52.73 48.64	68.48 56.06 51.82 71.82 71.82	67.51 61.10 55.62 50.88 46.70	86.27 26.27 26.97 26.97 26.97 26.97	64.67 58.27 52.82 48.11 44 01	62.85 56.65 51.02 46.34 72.27	22.24.44.88.88.88.88.88.88.88.88.88.88.88.88	59.58 47.58 88.98
17 18 20 25 25	49.97 46.70 48.78 41.15 31.25	48.94 45.67 40.76 30.24	24.67 44.67 41.76 39.14 20.27	46.94 43.69 40.78 88.18 28.35	45.95 89.31 87.38 87.38	44.99 41.76 38.87 26.29	448888 282888	43.12 39.90 37.04 34.47 24.84	88 99 88.14 88.14 83.58	24.04 24.24 28.187 29.187	88.88.88 87.78 87.78 87.88 87.88	87.04 88.92 81.15 28.68 19.55	35.44 32.86 29.62 27.18 18.23
88 98 44 65 65	24.65 20.06 16.55 118.91	28.70 19.09 15.68 11.02	22.78 18.20 14.84 10.27 10.28	21.90 17.37 14.05 11.52 9.56	21.02 16.54 13.26 10.78 8.87	20.19 15.77 12.54 10.12 8.35	19.37 15.00 11.83 9.45 7.63	18.60 14.29 11.17 8.85 7.09	25.85 8.85 8.85 8.95 9.95	16.89 72.87 7.80 5.60	15.05 11.07 86.28 6.38	8.8.7.7.4. 8.8.8.8.	12.85 8.97 8.70 4.70 44.80

TABLES FOR CALCULATING SINKING-FUNDS AND PRESENT VALUES.

Engineers and others connected with municipal work and industrial enterprises often find it necessary to calculate payments to sinking funds which will provide a sum of money sufficient to pay off a bond issue or other debt at the end of a given period, or to determine the present value of certain annual charges. The accompanying tables were computed by Mr. John W. Hill, of Cincinnati, Eng'g News, Jan. 25, 1894.

Table I (opposite page) shows the annual sum at various rates of interest required to not \$1000 in from 2 to 50 years, and Table II shows the present value at various rates of interest of an annual charge of \$1000 for from 5 to

50 years, at five-year intervals and for 100 years.

Table II.—Capitalization of Annuity of \$1000 for from 5 to 100 Years.

Years.			Rate	of Intere	st, per ce	nt,		
	21/6	8	81/4	4	41/6	5	51%	6
10	4,645 88 8,752.17	8,530.13	8,316.45	4,451.68 8,110.74	7,912.67	7,721.78	7,587.54	7,860.19
20	12,381.41 15,589.215 18,424.67	14,877.27 14,877.27 17,413.01	14,212.12	11,118.06 13,590.21 15,621.93	13,007.88	12,462.18	11,950.26	11,469.96
35· 40;	20,930.59 23,145.31 25,103.53	21,487.04 28,114.86	20,000.43 21,354.83	17,291.86 18,664.87 19,792.65	17,460.89 18,401.49	16,374.36 17,159.01	15,890.48 16,044.92	14,488.65 15,046.81
50	26,833.15 28,3 62.48 36,614.21	25,729.58	23,455.21	20,719.89 21,482.08 24,504.96	19,761 98	18,255.86	16,931.97	15,761.87

WEIGHTS AND MEASURES.

Long Measure.-Measures of Length.

12 inches = 1 foot8 feet = 1 yard. 54 yards, or 164 feet = 1 rod, pole, or perch.

40 poles, or 220 yards = 1 furlo 8 furlongs, or 1760 yards, or 5280 feet = 1 mile. = 1 furlong. = league.

Additional measures of length in occasional use: 1000 mils = 1 inch; 4 inches = 1 haud; 9 inches = 1 span; 24 feet = 1 military pace; 2 yards = 1 fathom.

Old Land Measure.—7.92 inches = 1 link; 100 links, or 66 feet, or 4 poles = 1 chain; 10 chains = 1 furlong; 8 furlongs = 1 mile; 10 square chains

Nautical Measure. 6080.26 feet, or 1,15156 stat- $} = 1$ nautical mile, or knot.* ute miles

3 nautical miles = 1 league.

60 nautical miles, or 69.168 $\}$ = 1 degree (at the equator). statute miles

= circumference of the earth at the equator. 360 degrees

^{*}The British Admiralty takes the round figure of 6080 ft. which is the length of the "measured mile" used in trials of vessels. The value varies from 6060.26 to 6088.44 ft. according to different measures of the earth's diameter. There is a difference of opinion among writers as to the use of the word "knot" to mean length or a distance-some holding that it should b

Square Measure. - Measures of Surface.

```
144 square inches, or 183.35 circular Inches
9 square feet
30; square yards, or 272; square feet
40 square poles
4 roods, or 10 sq. chains, or 160 sq.
poles, or 4840 sq. yards, or 43560
sq. feet,'
640 acres

= 1 square foot.
= 1 square yard.
= 1 square rod, pole, or perch.
= 1 rood.

= 1 acre.
= 1 square mile.
```

An acre equals a square whose side is 208.71 feet.

A circular inch is the area of a circle 1 inch in diameter = 0.7854 square inch.

1 square inch = 1.2732 circular inches.

A circular mil is the area of a circle 1 mil, or .001 inch in diameter. 10002 or 1,000,000 circular mils = 1 circular inch.

1 square inch = 1,278,239 circular mils.

The mil, and circular mil are used in electrical calculations involving the diameter and area of wires.

Solid or Cubic Measure.—Measures of Volume.

```
1728 cubic inches = 1 cubic foot. 27 cubic feet = 1 cubic yard. 1 cord of wood = a pile, 4\times4\times8 feet = 128 cubic feet. 1 perch of masonry = 16\frac{1}{4}\times1\frac{1}{4}\times1 foot = 24\frac{3}{4} cubic feet.
```

Liquid Measure.

```
4 gills = 1 pint.
2 pints = 1 quart.
4 quarts = 1 gallon { U. S. 231 cubic inches.
4 quarts = 1 barrel.
42 gallons = 1 berrel.
2 barrels, or 63 gallons = 1 tierce.
2 hogsheads, or 126 gallons = 1 pincheon.
2 hogsheads or 126 gallons = 1 pipe or butt.
2 pipes, or 3 puncheons = 1 tun.
```

The U. S. gallon contains 231 cubic inches; 7.4805 gallons = 1 cubic foot. A cylinder 7 in, diam. and 6 in, high contains 1 gallon, very nearly, or 230.9 cubic inches. The British Imperial gallon contains 277.274 cubic inches = 1.20032 U. S. gallon.

The Miner's Inch,—(Western U.S. for measuring flow of a stream of water).

The term Miner's Inch is more or less indefinite, for the reason that Californie, water companies do not all use the same head above the centre of the sperture, and the inch varies from 1.86 to 1.78 cubic feet per minute each; but the most common measurement is through an aperture 2 inches high and whatever length is required, and through a plank 1½ inches thick. The lower edge of the aperture should be 2 inches above the bottom of the measuring-box, and the plank 5 inches high above the aperture, thus making a 6-inch head above the centre of the stream. Each square inch of this opening represents a miner's inch, which is equal to a flow of 1½ cubic feet per minute.

Apothecaries' Fluid Measure.

```
60 minims = 1 fluid drachm. 8 drachms, or 437; grains, or 1.732 cubic inches = 1 fluid ounce.
```

Dry Measure, U. S.

```
2 pints = 1 quart.
8 quarts = 1 peck.
4 pecks = 1 bushel.
```

The standard U.S. bushel is the Winchester bushel, which is in cylinder form, 181 inches diameter and 8 inches deep, and contains 2150.42 cubic inches.

A struck bushel contains 2150.42 cubic inches = 1.2445 cu. ft.; 1 cubic foot = 0.80856 struck bushel. A heaped bushel is a cylinder 184 inches diameter and 8 inches deep, with a heaped cone not less than 6 inches high. It is equal to 13 struck bushels.

The British Imperial bushel is based on the Imperial gallon, and contains

8 such gallons, or 2218.192 cubic inches = 1.2837 cubic feet. The English quarter = 8 Imperial bushels.

Capacity of a cylinder in U.S. gallons = square of diameter, in inches ×

height in inches × .0034. (Accurate within 1 part in 100,000.)
Capacity of a cylinder in U. S. bushels = square of diameter in inches × height in inches × .0008652.

Shipping Measure.

Register Ton .- For register tonnage or for measurement of the entire internal capacity of a vessel:

100 cubic feet = 1 register ton.

This number is arbitrarily assumed to facilitate computation. Shipping Ton.—For the measurement of cargo:

```
40 cubic feet = { 1 U. S. shipping ton. 81.16 Imp. bushels. 32.143 U. S. "
```

Carpenter's Rule.—Weight a vessel will carry = length of keel × breadth at main beam × depth of hold in feet +95 (the cubic feet allowed for a ton). The result will be the tonnage. For a double-decker instead of the depth of the hold take half the breadth of the beam.

Measures of Weight.—Avoirdupois, or Commercial Weight.

```
16 drachms, or 437.5 grains = 1 ounce, oz.
   16 ounces, or 7000 grains
                                         = 1 pound, lb.
                                          = 1 quarter, qr.
= 1 hundredweight, cwt. = 112 lbs.
= 1 ton of 2240 pounds, or long ton.
   28 pounds
   4 quarters
20 hundred weight
2000 pounds
2204.6 pounds
                                          = 1 net, or short ton.
                                          = 1 metric ton.
             1 \text{ stone} = 14 \text{ pounds}; 1 \text{ quintal} = 100 \text{ pounds}.
```

Troy Weight.

```
24 grains
                          = 1 pennyweight, dwt.
20 pennyweights = 1 ounce, oz. = 480 grains.
12 ounces = 1 pound, lb. = 5760 grains.
```

Troy weight is used for weighing gold and silver. The grain is the same in Avoirdupois, Troy, and Apothecaries' weights. A carat, used in weighing diamonds = 3.168 grains = .205 gramme.

Apothecaries' Weight.

```
20 grains = 1 scruple. \Theta
 8 scruples = 1 drachm, 3 8 drachms = 1 ounce, 3
                                       60 grains.
                                  = 480 grains.
12 ounces = 1 pound, lb.
                                 = 5760 grains.
```

To determine whether a balance has unequal arms.-After weighing an article and obtaining equilibrium, transpose the article and the weights. If the balance is true, it will remain in equilibrium; if untrue, the pan suspended from the longer arm will descend.

To weigh correctly on an incorrect balance.—First, hy substitution. Put the article to be weighed in one pan of the balance a

counterpoise it by any convenient heavy articles placed on the other paralemove the article to be weighed and substitute for it standard weight suntil equipoise is again established. The amount of these weights is the weight of the article.

Second, by transposition. Determine the apparent weight of the article as usual, then its apparent weight after transposing the article and three weights. If the difference is small, add half the difference to the smaller of the apparent weights to obtain the true weight. If the difference is per cent the error of this method is 1 part in 10,000. For larger differences, or to obtain a perfectly accurate result, multiply the two apparent weight the together and extract the square root of the product.

Circular Measure.

```
60 seconds, " = 1 minute, '.
60 minutes, ' = 1 degree, °.
90 degrees = 1 quadrant.
e circumference,
```

Time.

```
60 seconds = 1 minute.

60 minutes = 1 hour.

24 hours = 1 day.

7 days = 1 week.
```

7 days = 1 week. 365 days, 5 hours, 48 minutes, 48 seconds = 1 year.

By the Gregorian Calendar every year whose number is divisible by 4 is ealeap year, and contains 866 days, the other years containing 865 days, except that the centesimal years are leap years only when the number of the year is divisible by 400.

The comparative values of mean solar and sidereal time are shown by the following relations according to Bessel:

```
365.24222 mean solar days = 366.24222 sidereal days, whence

1 mean solar day = 1.00273791 sidereal days;

1 sidereal day = 0 99726957 mean solar day;

24 hours mean solar time = 24<sup>h</sup> 3<sup>m</sup> 56<sup>n</sup>.555 sidereal time;

24 hours sidereal time = 23<sup>h</sup> 56<sup>m</sup> 4*.091 mean solar time.
```

whence 1 mean solar day is 3^m 55^s.91 longer than a sidereal day, reckoned in mean solar time.

BOARD AND TIMBER MEASURE. Board Measure.

In board measure boards are assumed to be one inch in thickness. To obtain the number of feet board measure (B. M.) of a board or stick of square timber, multiply together the length in feet, the breadth in feet, and the thickness in inches.

To compute the measure or surface in square feet.—When all dimensions are in feet, multiply the length by the breadth, and the product will give the surface required.

When either of the dimensions are in inches, multiply as above and divide

the product by 12.

When all dimensions are in inches, multiply as before and divide product by 144.

Timber Measure.

To compute the volume of round timber.—When all dimensions are in feet, multiply the length by one quarter of the product of the mean girth and diameter, and the product will give the measurement in

Contents in Feet of Joists, Scantling, and Timber.

Length in Feet.

Size.	12	14.	16	18	20	55	24	26	28	80
		· · · · · ·	Feet	Board	i Mea	sure.				
2 × 4	8	9	11	12	13	15	16	17	19	2
2 X 6	12	14	16	18	20	22	21	26	28	8
2 X 8	16 20	19	21	24	27	29 37	88	85	87	4
2 × 10 2 × 12	24	23 28	27 32	30 36	38 40	44	40 48	48 52	47 56	5 6
2 × 14	28	88	87	42	47	51	56	61	65	7
3 × 8	24	28	82	36	40	44	48	52	56	6
3 × 10	30	35	40	45	50	55	60	85	70	7
3 × 12	86	42	48	54	60	66	72	65 78	84	ġ
3×14	42	49	56	63	70	77	84	91	98	10
4 × 4	16	19	21	24	27	29	82	85	87	4
4 × 6	24	23	32	36	40	44	48	52	56	ē
4 × 8	85	. 87	43	48	58	59	64	69	75	8
4 × 10	40	47	53	60	67	78	80	87	93	10
4 × 12	48	56	64	72	80	88	96	104	112	12
4 × 14	56	65	75	84	93	103	112	121	181	14
6 × 6 6 × 8	36	42	48	54	60	66	72	78	84	9
6 × 8 6 × 10	48	56 70	64	73 90	80	88	96	104	112	12
6 × 12	60 72	84	80 96	108	100 120	110 132	120 144	180 156	140 168	18 18
- / 1.]					105			100	
6×14	84	98	112	126	140	154	168	182	196	21
8 X 8	64	75	85	96	107	117	128	139	149	16
8×10	80	93	107	120	183	147	160	173	187	20
8 × 12	96	112 131	128	144	160	176	192	208	224	24
8 × 14	112	181	149	168	187	205	224	243	261	28
10 × 10	100	117	133	150	167	183	200	217	233	25
10×12	120	140	160	180	200	250	240	260	280	30
10×14	140	163	187	210	233	257	280	303	327	35
12 × 12	144	168	192	216	240	264	288	312	336	30
11 × 14	168	196	224	252	280	308	336	864	392	4:
14×14	196	229	261	294	827	859	392	425	457	49

FRENCH OR METRIC MEASURES.

The metric unit of length is the metre = 39.37 inches.

The metric unit of neight is the grain = 15.482 grains.

The following prefixes are used for subdivisions and multiples; Milli = $\tau_0 t_0$.

Centi = $\tau_0 t_0$, Deci = τ_0 , Deca = 10, Hecto = 100, Kilo = 1000, Myria = 10,000.

FRENCH AND BRITISH (AND AMERICAN) EQUIVALENT MEASURES.

Measures of Length.

BRITISH and U. S. FRENCH. = 39.37 inches, or 3.28083 feet, or 1.09361 yards. 1 metre

.3048 metre = 1 foot. 1 centimetre = .8937 fnch.

2.54 centimetres = 1 inch. 1 milimetre = .03937 inch, or 1/25 inch, nearly. 2.54 millimetres = 1 inch.

1 kilometre = 1093.61 yards, or 0.62137 mile.

1 litre

Measures of Surface.

```
FRENCH.
                                                BRITISH.
                                      = \ \ \ 10.764 square feet, \ \ 1.196 square yards.
            1 square metre
          .836 square metre
                                      = 1 square yard.
= 1 square foot.
        .0929 square metre
            1 square centimetre = .155 square inch.
        6.452 square centimetres = 1 square inch.
            1 square millimetre = .00155 square inch.
        645.2 square millimetres = 1 square inch,
iare = 1 sq. metre = 10 764 square feet.
1 centiare = i sq. metre
1 are = 1 sq. decametre
1 hectare = 100 ares
                                    = 1076.41
                                    = 107641
                                                          " = 2.4711 acres.
1 sq. kilometre
                                    = .386109 sq. miles = 247.11
1 sq. myriametre
                                    = 38.6109 "
```

Of Volume.

```
FRENCH.
                                         BRITISH and U. S.
                                     1 cubic metre
             .7645 cubic metre
                                     = 1 cubic yard.
            .02832 cubic metre
                                     = 1 cubic foot.
                                        61.028 cubic inches, .0358 cubic foot.
                 1 cubic decimetre
                                     =
             28.32 cubic decimetres = 1 cubic foot.
                 1 cubic centimetre = .061 cubic inch.
            16.387 cubic centimetres = 1 cubic inch.
1 cubic centimetre = 1 millilitre =
                                     .061 cubic inch.
1 centilitre =
                                     .610
                                =
                                    6.102
1 decilitre =
                                =
           = 1 cubic decimetre = 61.023
                                           66
                                                46
                                                     = 1.05671 quarts, U.S.
1 hectolitre or decistere
                                                    = 2.8875 bushels, "
                                = 3.314 cubic feet
1 stere, kilolitre, or cubic metre = •1.308 cubic yards = 28.37 bushels,
```

Of Capacity.

```
FRENCH.
                                                  BRITISH and U. S.
                                           61.023 cubic inches,
                                           .03581 cubic foot,
     1 litre (= 1 cubic decimetre) =
                                         .2642 gallon (American),
2.202 pounds of water at 62° F.
28.317 litres
                                      = 1 cubic foot.
 4.543 litres
                                      = 1 gallon (British).
 3.785 litres
                                      = 1 gallon (American).
```

Of Weight.

```
FRENCH.
                            BRITISH and U. S.
   1 gramme
                     = 15.432 grains.
.0648 gramme
                     = 1 grain.
28.85 gramme
1 kilogramme
                     = 1 ounce avoirdupois.
                     =2.2046 pounds.
.4536 kilogramme
                     = 1 pound.
   1000 kilogrammes
                       2204.6 pounds.
1.016 metric tons
                     =
                         1 ton of 2240 pounds.
1016 kilogrammes
```

Mr. O. H. Titmann, in Bulletin No. 9 of the U. S. Coast and Geodetic Survey, discusses the work of various authorities who have compared the yard and the metre, and by referring all the observations to a common standard has succeeded in reconciling the discrepancies within very narrow limits

The following tables, with the subjoined memoranda, were published in 1890 by the United States Coast and Geodetic Survey, office of standard weights and measures, T. C. Mendenhall, Superintendent.

Tables for Converting U. S. Weights and Measures— Customary to Metric.

LINEAR.

	Inches to Milli- metres.	Feet to Metres.	Yards to Metres.	Miles to Kilo- metres.
1 = 2 = 3 = 4 = 5 =	25, 4000	0.804801	0.914402	1,60935
	50, 8001	0.609601	1.828804	3,21869
	76, 2001	0.914402	2.743205	4,82804
	101, 6008	1.319908	8.657607	6,48789
	127, 0002	1.524008	4.572009	8,04674
6 =	152.4008	1.828804	5.486411	9.65608
7 =	177.8008	2.138604	6.400813	11,26548
8 =	208.2004	2.438405	7.815215	12.87478
9 =	228.6004	2.748205	8.229616	14.48412

SQUARE.

	Square Inches to Square Centi- metres.	Square Feet to Square Deci- metres.	Square Yards to Square Metres.	Acres to Hectares.
11 11 11 11	6.452	9.290	0.836	0.4047
	12.906	18.581	1.672	0.8094
	19.355	27.871	2.508	1.2141
	25.807	87.161	3.344	1.6187
	32.258	46.452	4.181	2.0234
= = = =	88.710	55.742	5.017	2,4281
	45.161	65.032	5.853	2,8328
	51.618	74.325	6.689	3,2375
	58.065	88.613	7.525	8,6422

CUBIC.

	Cubic Inches to Cubic Centi- metres,	Cubic Feet to Cubic Metres.	Cubic Yards to Cubic Metres.	Bushels to Hectolitres
1 = 2 = 3 = 4 = 5 =	16.387	0.02832	0.765	0.85242
	32.774	0.05463	1.529	0.70485
	49.161	1.195	2.294	1.05727
	65.549	327	3.058	1.40969
	81.936	(58	3.822	1.76211
6 =	98, 323	990	4.587	2,11454
7 =	114, 710	822	5.352	2,46696
8 =	131, 097	854	6.116	2,81938
9 =	147, 484	485	6.881	3,17181

	Fluid Drachms to Millilitres or Cubic Centi- metres.	Fluid Ounces to Millilitres.	Quarts to Litres.	Gallons to Litress
1 = 2 = 3 =	8.70 7.39 11.09 14.79	29:57 59:15 88:72 118:30	0.94636 1.89272 2.83906 8.78544	8.78544 7.57088 11.85632 15.14176
=	18.48	147.87	4.78180	18.92720
= = = =	22.18 25.88 29.57 88.28	177.44 207.02 236.59 266.16	5.67816 6.62452 7.57088 8.51724	22.71264 26.49808 30.28352 84.06896

WEIGHT.

10

	Grains to Milligrammes.	Avoirdupois Ounces to Grammes.	Avoirdupois Pounds to Kilo- grammes.	Troy Ounces to Grammes.
1 =	64.7989	28.3495	0.45359	31.10348
2 =	129.5978	56.6991	0.90719	62.20696
3 =	194.3968	85.0486	1.36078	93.81044
4 =	259.1957	118.3981	1.81437	124.41392
5 =	323.9946	141.7476	2.26796	155.51740
S = 7 = 8 = 9 =	388.7985	170.0972	2.72156	186.62089
	453.5924	198.4467	3.17515	217.72437
	518.3914	226.7962	3.62874	248.82785
	583.1903	255.1457	4.08233	279.93133

1 chain = 259 hectares.
1 square mile = 259 hectares.
1 fathom = 1.829 metres.
1 nautical mile = 1853.27 metres.
2 co.04801 metre.
2 co.0497 gram. 1 chain 20.1169 metres.

1 avoir. pound = 15432.85639 grains = 453.5924277 gram. 1 kilogramme.

Tables for Converting U. S. Weights and Measures-Metric to Customary.

LINEAR.

	Metres to	Metres to	Metres to	Kilometres to
	Inches.	Feet.	Yards.	Miles.
i =	39.3700	8.28083	1.093611	0.62137
8 =	78.7400	6.56167	2.187222	1.24274
	118.1100	9.84250	8.280883	1.86411
	157.4800	13.12833	4.874444	2.48548
=	196.8500	16.40417	5.468056	8.10685
=	286,2200	19 68500	6.561667	8.72822
	275,5900	22 96583	7.655278	4.34959
3=	814,9600	26.24667	8.748889	4.97096
	854,3300	29.52750	9.842500	5.59283

SQUARE.

Square Metres to Square Feet.	Square Metres to Square Yards.	Hectares to Acres.
10.764	1.196	2,471
21.528	2.892	4.942
32.292	3.588	7.418
48,055	4.784	9.884
53.819	5.990	12.855
64.588	7.176	14.826
75.847	8.872	17.297
86.111	9.568	19.768
96.874	10.764	22.239

CUBIC.

Cubic Deci- metres to Cubic Inches.	Cubic Metres to Cubic Feet.	Cubic Metres to Cubic Yards.
61.028	85.314	1.808
122.047	70.629	2.616
188.070	105.948	8.924
244.098	141.258	5.232
805.117	176.572	6.540
866.140	211.887	7.848
427.168	247.201	9.158
488.187	282.516	10.464
549.210	817.880	11.771

CAPACITY.

ntilitres Fluid unces.	Litres to Quarts.	Dekalitres to Gallons.	Hektolitres to Bushels.
0.388	1.0567	2.6417	2.8975
0.676	2.1184	5.2834	5.6750
1.014	3.1700	7.9251	8.5125
1.852	4.2267	10.5668	11.3500
1.691	5.2834	13.2085	14.1875
029	6.8401	15.8502	17.0250
368	7.3968	18.4919	19.8625
706	8.4584	21.1336	22.7000
043	9.5101	23.7758	25.5375
_ 1	i		

WEIGHT.

	Milligrammes to Grains.	Kilogrammes to Grains.	Hectogrammes (100 grammes) to Ounces Av.	Kilogrammes to Pounds Avoirdupois.
1 = 2 = 3 = 4 = 5 =	0.01543	15482.86	3.5274	2.20462
	0.03086	80864.71	7.0548	4.40924
	0.04630	46297.07	10.5822	6.61386
	0.06173	61729.48	14.1096	8.81849
	0.07716	77161.78	17.6370	11.02811
6 =	0.09259	92594.14	21.1644	18.22778
7 =	0.10808	108026.49	24.6918	15.43285
8 =	0.12846	128458.85	28.2192	17.68697
9 =	0.18889	188891.21	81.7466	19.84159

WEIGHT—(Continued).

	Quintals to	Milliers or Tonnes to	Grammes to Ounces,
	Pounds Av.	Pounds Av.	Troy.
1 = 2 = 3 = 4 = 5 =	220.46	2204.6	0.08215
	440.92	4409.2	0.06490
	661.38	6613.8	0.09645
	881.84	8818.4	0.12980
	1102.30	11023.0	0.16075
6 = 7 = 8 = 9 =	1322.76	13227.6	0.19290
	1543.22	15432.2	0.22505
	1768.68	17636.8	0.25721
	1984.14	19841.4	0.25986

The only authorized material standard of customary length is Troughton scale belonging to this office, whose length at 59.63 Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

The only authorized material standard of customary weight is the **Troy** pound of the mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7000 grains Troy. The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound

Avoirdupois.

The metric system was legalized in the United States in 1866.

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris.

The International Standard Metre is derived from the Mètre des Archives. and its length is defined by the distance between two lines at 0° Centigrade.

METRIC CONVERSION TABLES.

The following tables, with the subjoined memoranda, were published in 1890 by the United States Coast and Geodetic Survey, office of standard weights and measures, T. C. Mendenhall, Superintendent.

Tables for Converting U. S. Weights and Measures— Customary to Metric.

LINEAR.

	Inches to Milli- metres.	Feet to Mecres.	Yards to Metres.	Miles to Kilo- metres.
1 =	25.4000	0.304801	0.914402	1.60935
2 =	50.8001	0.609601	1.828804	8 21869
3 =	76.2001	0.914402	2.743205	4.82804
=	101.6008	1.219902	8.657607	6.48789
=	127.0002	1.524008	4.572009	8.04674
_	152.4008	1.828804	5.486411	9.65608
· 🚆	177.8008	2.138604	6.400618	11.26548
3 =	203, 2004	2.438405	7.815215	12.87478
i = 1	228.6004	2.748205	8.229616	14.48412

SQUARE.

	Square Inches to Square Centi- metres,	Square Feet to Square Deci- metres.	Square Yards to Square Metres.	Acres to Hectares.
l =	6.452	9.290	0.836	0.4047
=	12.908	18.581	1.672	0.8094
3 ==	19.355	27.871	2.508	1.2141
=	25.807	87.161	3.344	1.6187
=	32.258	46.452	4.181	2.0234
3 =	88,710	55.742	5.017	2.4281
=	45.161	65.032	5.858	2.8328
3 ==	51.618	74.323	6.689	3.2375
) -	58.065	88.618	7.525	8.6422

CUBIC.

	Cubic Inches to Cubic Centi- metres.	Cubic Feet to	Cubic Yards to Cubic Metres.	Bushels to Hectolitres.
1 = 2 = 3 = 4 = 5 =	16.387	0.02832	0.765	0.85242
	32.774	0.05663	1.529	0.70485
	49.161	0.08495	2.294	1.06727
	65.549	0.11327	8.058	1.40969
	81.986	0.14158	8.823	1.76211
6 =	96.823	0.16990	4.587	2.11454
7 =	114.710	0.19822	5.352	2.46696
8 =	131.097	0.22654	6.116	2.81938
9 =	147.484	0.25485	6.881	8.17181

Number of Gauge.	Birmingham Wire Gauge.		Roebling's and Washburn & Moen's Gauge.	Trenton Iron Co.'s Wire Gauge.	British Imperial Standard Wire Gauge. (Legal Standard in Great Britain since March 1, 1884.)		U. S. Standard Gauge for Sheet and Plate Iron and Steel. (Legal Standard since July 1, 1893)	Number of Gauge,
00000000 0000000 000000 0000 000 000 0	inch. .454 .425 .38 .34 .3 .284 .259 .238 .262 .203 .18 .165 .134 .12 .095 .058 .049 .049 .035 .038 .028 .028 .028 .016 .014 .013 .012 .01 .009 .008 .007 .005 .004	inch. 46 40964 3648 32486 2893 25763 22942 20431 18194 16202 114428 12849 11443 10189 09074 08081 07196 0408 05707 05082 04526 0403 02589 03196 02545 0201 0179 01594 01419 01264 01002 00693 00795 00708 0063 00561 0095	inch49 .46 .43 .393 .362 .331 .307 .283 .263 .244 .225 .207 .192 .148 .135 .110 .092 .063 .054 .047 .047 .016 .035 .032 .023 .02 .018 .017 .016 .015 .013 .011 .015 .013 .011 .015 .009 .0085 .009 .0095 .0095 .0095 .0095	inch. .45 .40 .36 .33 .305 .285 .245 .295 .19 .175 .16 .145 .175 .105 .0925 .045 .045 .045 .045 .045 .045 .045 .04	inch500 .464 .432 .464 .432 .487 .324 .324 .322 .332 .332 .332 .332 .332	millim. 12:7 11:78 10:97 11:78 10:97 10:16 9:45 8:84 8:82 7:62 7:61 6:4 5:38 4:88 4:88 4:88 4:88 4:88 4:88 4:88 4	inch5 .469 .438 .406 .375 .344 .313 .281 .266 .25 .234 .219 .203 .188 .172 .156 .141 .125 .109 .094 .078 .07 .0625 .0563 .05 .0438 .0375 .0344 .0313 .0281 .0281 .021 .0188 .0172 .0186 .0172 .0186 .0172 .0186 .0172 .0186 .0172 .0186 .0078 .007	7/0 5/0 4/0 4/0 5/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4/0 4

SQUARE.

	Square Centi- inetres to Square Inches.	Square Metres to Square Feet.	Square Metres to Square Yards.	Hectares to Acres.
=	0.1550	10.764	1.196	2.471
= f	0.3100 .	21.528	2.892	4.942
. {	0.4650	82.292	8.588	7.418
- [0.6200;	43.055	4.784	9.884
1	0.7750	58.819	5.980	12.355
. {	0.9300	64.588	7.176	14.826
: [1.0850	75.817	8,372	17.297
= [1.2400	86.111	9.568	19.768
=	1.8950	96.874	10.764	22,239

CUBIC.

	Cubic Centimetres to Cubic Inches.	Cubic Decimetres to Cubic Inches.	Cubic Metres to Cubic Feet.	Cubic Metres to Cubic Yards.
1 =	0.0610	61.028	85.814	1.306
2 =	0.1290	122.047	70.629	2.616
3 =	0.1831	188.070	105.948	8.924
4 =	0.2441	244.098	141.258	5.282
5 =	0.3051	305.117	176.572	6.540
6 =	0.3661	866, 140	211.887	7.848
7 =	0.4272	427, 168	247.201	9.156
8 =	0.4882	488, 187	282.516	10.464
9 =	0.5492	549, 210	817.880	11.771

CAPACITY.

	Millilitres or Cubic Centi- litres to Fluid Drachms.	Centilitres to Fluid Ounces.	Litres to Quarts.	Dekalitres to Gallons.	Hektolitres to Bushels.
1 = 2 = 3 = 4 =	0.27	0.888	1.0567	2.6417	2.8875
	0.54	0.676	2.1184	5.2834	5.6750
	0.81	1.014	3.1700	7.9251	8.5125
	1.08	1.852	4.2267	10.5668	11.8500
5 =	1.85	1.691	5.2834	13.2085	14.1875
6 =	1.62	2.029	6.3401	15.8502	17.0250
7 =	1.89	2.368	7.3968	18.4919	19.8625
8 =	2.16	2.706	8.4584	21.1336	22.7000
9 =	2.48	3.043	9.5101	23.7758	25.5875

WEIGHT.

	Milligrammes to Grains.	Kilogrammes to Grains.	Hectogrammes (100 grammes) to Ounces Av.	Kilogrammes to Pounds Avoirdupois.
1 =	0.01543	15432.36	3.5274	2.20462
2 =	0.03086	30864.71	7.0548	4.40924
8 =	0.04630	46297.07	10.5822	6.61386
4 =	0.06173	61729.48	14.1096	8.81849
5 =	0.07716	77161.78	17.6370	11.02311
6 =	0.09259	92594.14	21.1644	18.22778
7 =	0.10608	108026.49	24.6918	15.43285
8 =	0.12346	128458.85	28.2192	17.63697
9 =	0.13889	138891.21	81.7466	19.84159

WEIGHT—(Continued).

	Quintals to	Milliers or Tonnes to	Grammes to Ounces,
	Pounds Av.	Pounds Av.	Troy.
1 = 2 = 3 = 4 = 5 =	220.46	2204.6	0.08215
	440.92	4409.2	0.06430
	661.38	6613.8	0.09645
	881.84	8818.4	0.12800
	1102.30	11023.0	0.16075
6 = 7 = 8 = 9 =	1322.76	13227.6	0.19290
	1543.22	15432.2	0.22505
	1768.68	17636.8	0.25721
	1984.14	19841.4	0.28986

The only authorized material standard of customary length is the Troughton scale belonging to this office, whose length at 59°,62 Fahr. conforms to the British standard. The yard in use in the United States is therefore equal to the British yard.

The only authorized material standard of customary weight is the Troy pound of the mint. It is of brass of unknown density, and therefore not suitable for a standard of mass. It was derived from the British standard Troy pound of 1758 by direct comparison. The British Avoirdupois pound was also derived from the latter, and contains 7000 grains Troy.

was also derived from the latter, and contains 7000 grains Troy.

The grain Troy is therefore the same as the grain Avoirdupois, and the pound Avoirdupois in use in the United States is equal to the British pound Avoirdupois.

The metric system was legalized in the United States in 1866.

By the concurrent action of the principal governments of the world an International Bureau of Weights and Measures has been established near Paris.

The International Standard Metre is derived from the Mètre des Archives, and its length is defined by the distance between two lines at 0° Centigrade, on a platinum-iridium bar deposited at the International Bureau.

The International Standard Kilogramme is a mass of platinum-iridium deposited at the same place, and its weight in vacuo is the same as that of the Kilogramme des Archives.

Copies of these international standards are deposited in the office of standard weights and measures of the U. S. Coast and Geodetic Survey.

The litre is equal to a cubic decimetre of water, and it is measured by the

The litre is equal to a cubic decimetre of water, and it is measured by the quantity of distilled water which, at its maximum density, will counterpoise the standard kilogramme in a vacuum; the volume of such a quantity of water being, as nearly as has been ascertained, equal to a cubic decimetre.

COMPOUND UNITS.

Measures of Pressure and Weight.

1 lb. per square inch.	=	144 lbs. per square foot. 2.0835 ins. of mercury at 32° F. 2.0416 " " " 62° F. 2.309 ft. of water at 62° F. 27.71 ins. " " 62° F.
1 atmosphere (14.7 lbs. per sq. in.).	. = :	(2116.3 lbs. per square foot. 33.947 ft. of water at 62° F. 30 ins. of mercury at 62° F. 29.922 ins. of mercury at 32° F. 760 millimetres of mercury at 32° F.
1 inch of water at 62° F.	= -	.0861 lb. per square inch. 5.196 lbs. " foot0736 in. of mercury at 62° F.
1 inch of water at 32° F.	= -	5.2021 lbs. per square foot. .036125 lbs. per '' inch.
1 foot of water at 62° F.	=-	.433 lb. per square inch. 62.355 lbs. '''foot. .883 in. of mercury at 62° F.
1 inch of mercury at 62° F.	=	.49 lb. per square inch. 70.56 lbs. "foot. 1.165 ft. of water at 62° F. 13.98 ins. "62° F.
Weight of One Cu	bic	Foot of Pure Water.

At 32° F. (freezing-point)	62.418 lbs.	
" 39.1° F. (maximum density).	62,425 "	
" 62° F. (standard temperature	2)	
" 212° F. (boiling-point, under	1 atmosphere) 59.76 "	
American gallon = 281 cubic in	ns. of water at 62° F. = 8.3356 lbs.	
British " = 277 274 "	·· · · · · · - 10 lbs.	

Measures of Work, Power, and Duty.

Work.—The sustained exertion of pressure through space.
Unit of work.—One foot-pound, i.e., a pressure of one pound exerted through a space of one foot.

Horse-power. The rate of work. Unit of horse-power = 33,000 ft.-lbs, per minute, or 550 ft.-lbs, per second = 1,980,000 ft.-lbs, per hour. Heat unit = heat required to raise 1 lb, of water 1° F. (from 39° to 40°).

83000 Horse-power expressed in heat units = $\frac{60000}{778}$ = 42.416 heat units per min-

ute = .707 heat unit per second = 2545 heat units per hour. 1 lb. of fuel per H. P. per hour= $\begin{cases} 1,980,000 \text{ ft.-lbs. per lb. of fuel.} \\ 2,545 \text{ heat units} \end{cases}$

1,000,000 ft.-lbs. per lb. of fuel = 1.98 lbs. of fuel per H. P. per hour.

Velocity.—Feet per second = $\frac{5280}{3600} = \frac{22}{15} \times \text{miles per hour.}$

Gross tons per mile = $\frac{1760}{2240} = \frac{11}{14}$ lbs. per yard (single rail.)

French and British Equivalents of Weight and Pressure per Unit of Area.

FRENCH.			ь	RITI	SH.	
1 gramme per square millimetre	=	1.422	lbs.	per	square	inch.
1 kilogramme per square "		1422.32	**	- "	-,,	**
1 " centimetre	=	14.228	"	**	"	44
1.0835 kilogrammes per square centimetre	} =	14.7	• •		**	••
(1 atmosphere) 0 70303 kilogramme per square centimetre	: =	1 lb. per	· sqt	are	inch.	

Number of Gauge. Birmingham Wire Gauge.		Birmingham Wire Gauge. American or Brown and Brown and Sharpe Gauge.		Trenton Iron Co.'s Wire Gauge.	British Imperial Standard Wire Gauge. (Legal Standard in Great Britain since March 1, 1884.)		U. S. Standard Gauge for Sheet and Plate Iron and Sterl. (Legal Standard since July 1, 1893)	Number of Gauge,	
0000000	inch.	inch.	inch.	inch.	inch. .500	millim.	inch.	7/0	
000000			.46		.464	12.7 11.78 10.97	.469	6/0	
000000		1	.43	.45	.432	10.97	.438	F /()	
0000	.454	.46	.393	.40	.4	10.16	.406	4/0	
000	.425	.40964	.362	.36	.372	9.45	.375	3/0	
00	.38	.3648	.381	.33	.348	8.84	.344	2/0	
0	.34	.32486	.307	.305	.3	8.23 7.62	.313	0	
3	.284	.25763	.263	.265	.276	7.01	266	2	
3	259	22942	.244	245	.252	6.4	.25	3	
4	.238	.20431	.225	.225	.232	5.89	.234	4	
5	.22	.18194	.207	.205	.212	5.38	.219	5	
6	,203	.16202	.192	.19	.192	4.88	.203	6	
7	.18	.14428	.177	.175	.176	4.47	.188	4 5 6 7 8	
8	.165	.12849	.162	.16	.16	4.06 3.66	.172 .156	9	
10	.134	,10189	.135	.13	.128	3.26	.141	10	
11	.12	.09074	.12	.1175	.116	2.95	.125	11	
12	.109	.08081	.105	.105	.104	2.64	.109	11 12 13	
18	.095	.07196	.092	.0925	.092	2.34	.094	13	
14	.083	.06408	.08	.08	.08	2.03	.078	14	
15	.072	.05707	.072	.07	.072	1.83	.07	15 16	
16 17	.058	.04526	.054	.0525	056	1.42	.0563	17	
18	.049	.0403	.047	.045	.049	1.22	.05	18	
19	.042	.03589	.041	.04	.04	1.01	.0438	10	
20	.035	.03196	.035	.035	.036	.91	.0875	20	
21	.032	.02846	.032	.031	.032	.81	.0344	21	
22 23	.028	.02535	.028	.028	.028	.61	.0313	22	
24	.023	.0201	.023	.0225	.022	.56	.025	24	
25	.02	.0179	.02	.02	.02	.51	.0219	25	
26	.018	.01594	.018	.018	.018	.45	.0188	26	
27	.016	.01419	.017	.017	.0164	.42	.0172	27	
28 29	.014	.01264	.016	.016	.0148	.38	.0156	28	
30	.013	.01126	.015	.015	.0136	.35	.0141	29	
31	.01	.00893	.0135	.013	.0116	.29	.0109	31	
32	.009	.00795	.013	.012	.0108	.27	.0101	32	
33	.008	.00708	.011	.011	.01	.25	.0094	33	
34	.007	,0063	.01	.01	.0092	.23	.0086	34	
35	.005	.00561	.0095	.0095	.0084	.21	.0078	35	
36 37	004	.005	.009	.009	.0076	.19	.007	36 37	
38		.00396	.008	.0085	.006	.15	.0063	38	
39		.00353	.0075	.0075	.0052	.13	.0000	39	
40		.00314	.007	.007	.0048	.12	1000	40	
41		70.774	1	,,,,,	.0044	.11		41	
42			1		.004	.10		42	
43			1 1		.0036	.09		43	
44					.0032	.08		44	
46					.0024	.07		45 46	
47					.0021	.05		47	
48					.0016	.04		47	
49					.0012	.03		49	
50					.001	.025	1	50	

EDISON, OR CIRCULAR MIL GAUGE, FOR ELECTRICAL WIRES.

Gauge Num- ber.	Circular Mils.	Diam- eter in Mils.	Gauge Num- ter.	Circular Mils.	Diam- eter in Mils.	Gauge Num- ber.	Circular Mils.	Diam- eter in Mils.
3	3,000	54.78	70	70,000	264.58	190	190,000	435.89
5	5,000	70.72	75	75,000	273.87	200	200,000	447.22
3 5 8	8,000	89.45	80	80,000	282.85	220	220,000	469.05
12	12,000	109.55	85	85,000	291.55	240	240,000	489.90
15	15,000	122.48	90	90,000	800.00	260	260,000	509.91
20	20,000	141.43	95	95,000	308.28	280	280,000	529.16
25	25,000	158.12	100	100,000	816.23	800	300,000	547.78
30	30,000	178.21	110	110,000	331.67	8:20	320,000	565.69
35	35,000	187.09	120	120,000	346.42	840	340,000	583.10
40	40,000	200.00	180	130,000	360.56	860	360,000	600.00
45	45,000	212.14	140	140,000	874.17	1		1
50	50,000	223.61	150	150,000	387.30		1	1
55	55,000	234.58	160	160,000	400.00	1	l	l
60	60,000	244.95	170	170,000	412.32	İ	ì	l .
65	65,000	254.96	180	180,000	424.27	ll .	l	l

TWIST DRILL AND STEEL WIRE GAUGE.

(Morse Twist Drill and Machine Co.)

No.	Size.	No.	Size.	No.	Size.	No.	Size.
	inch.		inch.		inch.		inch.
1	. 2280	16	.1770	81	.1200	46	.0810
2	.2210	17	.1780	82 83	.1160	47	.0785
2 8	.2130	18	.1695	83	.1130	48	.0760
4 5	.2090	19	.1660	· 34	.1110	49	.0730
5	.2055	20	.1610	- 35	.1100	50	.0700
6	.2040	21	.1590	36	.1065	51	.0670
6 7 8 9	.2010	22	.1570	37	.1040	52	.0635
8	.1990	23	.1540	88	.1015	53	.0595
9	.1960	24	.1520	89	.0995	54	.0550
10	.1935	25	.1495	40	.0980	55	.0520
11	.1910	26	.1470	41	.0960	56	.0465
12	.1890	27	.1440	42	.0935	57	.0430
13	.1850	27 28	.1405	43	.0890	58	.0420
14	.1820	29	.1360	44	.0860	59	.0410
15	.1800	30	.1285	45	.0820	60	.0400

STEEL MUSIC-WIRE GAUGE.

(Washburn & Moen Mfg. Co.)

No.	Size.	No.	Size.	No.	Size.	No.	Size.
12 13 14 15 16	inch. .0295 .0311 .0825 .0843 .0359	17 18 19 20	inch. .0378 .0395 .0414 .043	21 22 23 24	inch. .0461 .0481 .0506 .0547	25 26 27 28	inch. .0585 .0626 .0663 .0719

THE EDISON OR CIRCULAR MIL WIRE GAUGIE.

(For table of copper wires by this gauge, giving weights, electrical resistances, etc., see Copper Wire.)
Mr. C. J. Field (Stevens Indicator, July, 1887) thus describes the origin of

the Edison gauge:

The Edison company experienced inconvenience and loss by not having a wide enough range nor sufficient number of sizes in the existing gauges. This was felt more particularly in the central-station work in making electrical determinations for the street system. They were compelled to make use of two of the existing gauges at least, thereby introducing a complication that was liable to lead to mistakes by the contractors and

In the incandescent system an even distribution throughout the entire system and a uniform pressure at the point of delivery are obtained by calculating for a given maximum percentage of loss from the potential as delivered from the dynamo. In carrying this out, on account of lack of regular sizes, it was often necessary to use larger sizes than the occasion demanded, and even to assume new sizes for large underground conductors. It was also found that nearly all manufacturers based their calculation for the conductivity of their wire on a variety of units, and that not one used the latest unit as adopted by the British Association and determined from the latest unit as adopted by the British Association and determined from Dr. Matthiesseu's experiments; and as this was the unit employed in the manufacture of the Edison lamps, there was a further reason for constructing a new gauge. The engineering department of the Edison company, knowing the requirements, have designed a gauge that has the widest range obtainable and a large number of sizes which increase in a regular and uniform manner. The basis of the graduation is the sectional area, and the number of the wire corresponds. A wire of 100,000 circular mils area is No. 100; a wire of one half the size will be No. 50; twice the size No. 200. In the older gauges, as the number increased the size decreased. With this gauge, however, the number increases with the wire, and the number multiplied by 1000 will give the circular mils.

The weight per mil-foot, 0.0000392705 pounds, agrees with a specific

The weight per mil-foot, 0.0000332705 pounds, agrees with a specific gravity of 8.889, which is the latest figure given for copper. The ampere capacity which is given was deduced from experiments made in the com-

rapacity which is given was deduced from experiments made in the company's laboratory, and is based on a rise of temperature of 50° F. in the wire.

In 1893 Mr. Field writes, concerning gauges in use by electrical engineers:
The B. and S. gauge seems to be in general use for the smaller sizes, up to 100,000 c. m., and in some cases a little larger. From between one and two hundred thousand circular mile upwards, the Edison gauge or its equivalent is practically in use, and there is a general tendency to designate-all sizes above this in circular mils, specifying a wire as 200,000, 400,000, 500,-

000, or 1,000,000 c. m.

In the electrical business there is a large use of copper wire and rod and other materials of these large sizes, and in ordering them, speaking of them, specifying, and in every other use, the general method is to simply specify the circular milage. I think it is going to be the only system in the future for the designation of wires, and the attaining of it means practically the adoption of the Edison gauge or the method and basis of this gauge as the correct one for wire sizes.

THE U. S. STANDARD GAUGE FOR SHEET AND PLATE IRON AND STEEL, 1893.

The Committee on Coinage, Weights, and Measures of the House of Representatives in 1898, in introducing the bill establishing the new sheet and plate gauge, made a report from which we take the following:
The purpose of this bill is to establish an authoritative standard gauge for

the measurement of sheet and plate iron.

There is in this country no uniform or standard gauge, and the same

U. S. STANDARD GAUGE FOR SHEET AND PLATE IHON AND STEEL, 1893.

								
Number of Gauge.	Approximate Thickness in Fractions of an Inch.	Approximate Thickness in Decimal Parts of an Inch.	Approximate Thickness in Millimeters.	Weight per Square Foot in Ounces Avoirdupois.	Weight per Square Foot in Pounds Avoirdupois.	Weight per Square Foot in Kilograms.	Weight per Square Meter in Kilograms.	Weight per Square Meter in Pounds Avoirdupois.
000000 000000 00000 0000 0000	1-2 15-32 7-16 13-32 3-8	0.5 0.46875 0.4375 0.40625 0.875	12.7 11.90625 11.1125 10.31875 9.525	320 300 280 260 240	20. 18.75 17.50 16.25 15.	9.079 8.505 7.938 7.371 6.804	97.65 91.55 85.44 79.83 78.24	215.28 201.32 188.37 174.91 161.46
00 0 1 2 3	11-32 5-16 9-32 17-64 1-4	0.84375 0.3125 0.28125 0.265625 0.25	8.73125 7.9375 7.14375 6.746875 6.35	220 200 180 170 160	13.75 12.50 11.25 10.625 10.	6.237 5.67 5.103 4.819 4.536	67.13 61.08 54.93 51.88 48.82	148 00 184.55 121.09 114.37 107.64
4 5 6 7	7-32 13-64 3-16	0.234375 0.21875 0.203125 0.1875 0.171875	5.953125 5.55625 5.159375 4.7625 4.865625	150 140 130 120 110	9.875 8.75 8.125 7.5 6.875	4.252 3.969 3.685 3.402 3.116	45.77 42.72 39.67 36.62 38.57	100.91 94.18 87.45 80.72 74.00
10 10 11 11 12	9-64 1 1-8 2 7-64	0.15625 0.140625 0.125 0.109375 0.09375	3.96875 3.571875 3.175 2.778125 2.38125	100 90 80 70 60	6.25 5.625 5. 4.375 3.75	2.835 2.552 2.268 1.984 1.701	80.52 27.46 24.41 21.86 18.31	67.27 60.55 53.82 47.09 40.36
. 1 . 1 . 1	5 9-128 6 1-16 7 9-160	0.078125 0.0708125 0.0625 0.05625 0.05	1.984875 1.7859875 1.5875 1.42875 1.27	50 45 40 86 32	8.125 2.8125 2.5 2.25 2.25	1.134	15.26 13.73 12.21 10.99 9.765	83.64 90.27 26.91 24.22 21.53
1 2 2 2 2	0 3-80 1 11-320 2 1-32	0.04875 0.0375 0.034375 0.03125 0.028125	1.11125 0.9525 0.873125 0.798750 0.714875	28 24 22 20 18	1.75 1.50 1.875 1.25 1.125	0.7938 0.6804 0.6237 0.567 0.5103	8.544 7.324 6.713 6.103 5.493	18.84 16.15 14.80 13.46 12.11
22 22 22 22	1-40 5 7-320 6 8-160 7 11-840 8 1-64	0.025 0.021875 0.01875 0.0171875 0.015625	0.685 0.555625 0.47625 0.4365625 0.896875	16 14 12 11 10	0.6875 0.625	0.4536 0.3969 0.3402 0.3119 0.2835	4.882 4.272 3.662 3.357 8.052	10.76 9.42 8.07 7.40 6.73
1	29 9-640 30 1-80 31 7-640 32 13-1280 33 3-820	0.0140625 0.0125 0.0109875 0.01015625 0.009375	0.3571875 0.8175 0.2778125 0.25796875 0.238125	9 8 7 61⁄2 6	0.40625	0.2551 0.2268 0.1984 0.1843 0.1701	2.746 2.441 2.136 1.983 1.831	6.05 5.38 4.71 4.37 4.04
1	34 11-1280 35 5-640 36 9-1280 37 17-2560 38 1-160	0 00859375 0.0078125 0.00708125 0.006640625 0.00625	0.21828125 0.1984375 0.17859375 0.168671875 0.15875	51/8 5 41/4 41/4 4	0.3125 0.28125	0.1559 0.1417 0.1276 0.1205 0.1134	1.678 1.526 1.873 1.297 1.221	8 70 3.36 8.03 2.87 2.69

ought to have the same meaning and significance at all times and under

circumstances.

To accomplish this and furnish a legal guide in the collection of gover-nment duties, the United States should establish a legal standard gauge. None of the existing gauge-tables or scales exactly meet the requirements of accuracy and convenience, nor rest on a systematic basis; but the one submitted by your committee is believed to fully meet these requirements.

It is based on the fact that a cubic foot of iron weighs 480 pounds. This is the same basis on which the Imperial gauge of Great Britain rests, and

also the New Birmingham and Amalgamated Association gauges.

A sheet of iron 1 foot square and 1 inch thick weighs 40 pounds, or 640 ounces, and I ounce in weight should be 1/640 inch thick. The scale has been arranged so that each descriptive number represents a certain number of ounces in weight, and an equal number of six hundred and fortieths of an inch in thickness, and the weights, and hence the thicknesses, have been arranged in a regular series of gradations. A micrometer for measuring the thickness of sheets and plates can be constructed to indicate six hundred and fortieths of an inch as easily as one thousandths, and thus the; measurement of a sheet of iron will give the thickness in six hundred and fortieths of an inch and in weight in ounces at the same time.

It is probable that the adoption of this gauge will gradually lead to the abandonment of the numbers and to the use of the number of ounces in weight per square foot as the descriptive terms of the different thicknesses of sheet and plate iron. It will become as easy to order a 20-ounce sheet as a No. 22, or a 10 ounce as a No. 25; and this will cause a more general and intelligent comprehension of just what is being contracted for, and the opportunity for mistake or fraud growing out of an uncertainty of designa-

tion will be removed.

A natural consequence also will be the substitution of such weight designation for the arbitrary methods now in vogue of describing tin and terne plates as IC, IX, IXX, DC, DX, etc.

The law establishing the new gauge enacts as follows:

That for the purpose of securing uniformity, the following is established as the only standard gauge for sheet and plate iron and steel in the United States of America, namely :

And on and after July 1, 1893, the same and no other shall be used in determining duties and taxes levied by the United States of America on

sheet and plate iron and steel.

SEC. 2. That the Secretary of the Treasury is authorized and required to prepare suitable standards in accordance herewith.

SEC. 3. That in the practical use and application of the standard gauge hereby established a variation of 2½ per cent either way may be allowed.

ALGEBRA.

Addition.—Add a and b. Ans. a+b. Add a, b, and -c. Ans. a+b-c. Add 2cs and -3a. Ans. -a. Add 2ab, -3ab, -c, -3c. Ans. -ab-4c. Subtraction.—Subtract a from b. Ans. b-a. Subtract -a from -b.

Ans. -b+a. Subtract b+c from a. Ans. a-b-c. Subtract $3a^2b-9c$ from $4a^2b+c$. Ans. a^2b+10c . Bule: Change the signs of the subtrahend and proceed as in addition.

Multiplication.—Multiply a by b. Ans, ab. Multiply ab by a+b. Ans. a^2b+ab^2 .

Multiply a+b by a+b. Ans. $(a+b)(a+b)=a^2+2ab+b^2$. Multiply -a by -b. Ans. ab. Multiply -a by b. Ans. -ab. Like signs give plus, unlike signs minus.

Powers of numbers.—The product of two or more powers of any

number is the number with an exponent equal to the sum of the powers: $a^2 \times a^3 = a^5$; $a^3b^3 \times ab = a^3b^3$; $-7ab \times 2ac = -14 a^3bc$.

To multiply a polynomial by a monomial, multiply each term of the poly-

nomial by the monomial and add the partial products: $(6a - 3b) \times 8c = 18ac$

To multiply two polynomials, multiply each term of one factor by each term of the other and add the partial products: $(5a - 6b) \times (3a - 4b) = 15a^2 - 38ab + 24b^3$.

The square of the sum of two numbers = sum of their squares + twice heir product.

The square of the difference of two numbers = the sum of their squares twice their product.

The product of the sum and difference of two numbers = the difference of their squares:

$$(a+b)^2 = a^2 + 2ab + b^2;$$
 $(a-b)^2 = a - 2ab + b^2;$ $(a+b) \times (a-b) = a^2 - b^2.$

The square of half the sums of two quantities is equal to their product plus he square of half their difference: $\left(\frac{a+b}{2}\right)^2 = ab + \left(\frac{a-b}{2}\right)^2$

The square of the sum of two quantities is equal to four times their prodicts, plus the square of their difference: $(a+b)^2 = 4ab + (a-b)^2$

The sum of the squares of two quantities equals twice their product, plus he square of their difference: $a^2 + b^2 = 2ab + (a - b)^2$.

he square of their difference: $a^2+b^3=2ab+(a-b)^2$. The square of a trinomial = the square of each term + twice the product if each term by each of the terms that follow it: $(a+b+c)^2=a^2+b^2+b^2+2ab+2ac+2bc$; $(a-b-c)^2=a^2+b^2+c^2-2ab-2ac+2bc$. The square of (any number + $\frac{1}{2}$) = square of the number + the number + $\frac{1}{2}$; = the number × (the number + $\frac{1}{2}$) + $\frac{1}{2}$; = the number × (the number + $\frac{1}{2}$) + $\frac{1}{2}$; = $\frac{1}{2}$ + $\frac{$

$$(a + b)^2 = a^2 + 2ab + b^2;$$
 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3;$ $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$

In each case the number of terms is one greater than the exponent of he power to which the binomial is raised.

Parentheses. - When a parenthesis is preceded by a plus sign it may be The strength of the value of the expression: a+b+(a+b)=2a+2b. When a parenthesis is preceded by a minus sign it may be removed if we change the signs of all the terms within the parenthesis: 1-(a-b)=1-a+b+c. When a parenthesis is within a parenthesis removes the inner one first: a - |b-|c-(d-e)| = a - |b-|c-d+e|

the inner one first:
$$a - \lfloor b - \{c - (d - e)\}\rfloor = a - \lfloor b - \{c - d + e\}\rfloor$$

= $a - \lfloor b - c + d - e \rfloor = a - b + c - d + e$

=a-[b-c+a-e]=a-v+c-a+e. A multiplication sign, \times , has the effect of a parenthesis, in that the operation indicated by it must be performed before the operations of addition or subtraction. $a+b\times a+b=a+ab+b$; while $(a+b)\times (a+b)=a^2+2ab+b^2$, and $(a+b)\times a+b=a^2+ab+b$.

Division.—The quotient is positive when the dividend and divisor have like signs, and negative when they have unlike signs: abc+b=ac;

abc + - b = -ac.

To divide a monomial by a monomial, write the dividend over the divisor with a line between them. If the expressions have common factors, remove the common factors:

$$a^{2}bx + aby = \frac{a^{2}bx}{aby} = \frac{ax}{y}; \quad \frac{a^{4}}{a^{3}} = a; \quad \frac{a^{3}}{a^{5}} = \frac{1}{a^{2}} = a^{-2}.$$

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial: (8ab - 12ac) + 4a = 2b - 3c.

To divide a polynomial by a polynomial, arrange both dividend and divisor in the order of the ascending or descending powers of some common letter, and keep this arrangement throughout the operation.

Divide the first term of the dividend by the first term of the divisor, and

write the result as the first term of the quotient.

Multiply all the terms of the divisor by the first term of the quotient and subtract the product from the dividend. If there be a remainder, consider it as a new dividend and proceed as before: $(a^2 - b^2) + (a + b)$.

$$\begin{array}{c|c}
 a^2 - b^2 & a + b. \\
 \underline{a^2 + ab} & a - b. \\
 -ab - b^2. \\
 -ab - b^2.
 \end{array}$$

The difference of two equal odd powers of any two numbers is divisible by their difference and also by their sum:

 $(a^3 - b^3) + (a - b) = a^2 + ab + b^2; (a^3 - b^3) + (a + b) = a^2 - ab + b^2$

The difference and also by their sum: $(a^2 - b^2) + (a - b) = a + b$. The sum of two equal even powers of two numbers is divisible by their difference and also by their sum: $(a^2 - b^2) + (a - b) = a + b$. either the difference or the sum of the numbers; but when the exponent of each of the two equal powers is composed of an odd and an even factor, the sum of the given power is divisible by the sum of the powers expressed by the even factor. Thus $x^6 + y^6$ is not divisible by x + y or by x - y, but is divisible by $x^2 + y^2$.

division by x + y. **Simple equations.**—An equation is a statement of equality between two expressions; as, a + b = c + d.

A simple equation, or equation of the first degree, is one which contains only the first power of the unknown quantity. If equal changes be made (by addition, subtraction, multiplication, or division) in both sides of an exception, the results will be acqual

(by addition, suptraction, mutuphention, of a superscript of the results will be equal.)

Any term may be changed from one side of an equation to another, provided its sign be changed: a+b=c+d; a=c+d-b. To solve an equation having one unknown quantity, transpose all the terms involving

10, whence x=4 or -2.2/3. The square root of 100 is either +10 or -10, since the square of -10 as well as $+10^3=100$.

Problems involving quadratic equations have apparently two solutions, as

a quadratic has two roots. Sometimes both will be true solutions, but generally one only will be a solution and the other be inconsistent with the conditions of the problem.

The sum of the squares of two consecutive positive numbers is 481. Find the numbers.

Let x = one number, x + 1 the other. $x^2 + (x + 1)^2 = 481$. = 481.

 $x^2 + x = 240$. Completing the square, $x^2 + x + 0.25 = 240.25$. Extracting the root we obtain $x + 0.5 = \pm 15.5$; x = 15 or -16.

The positive root gives for the numbers 15 and 16. The negative root Extracting

16 is inconsistent with the conditions of the problem.

Quadratic equations containing two unknown quantities require different methods for their solution, according to the form of the equations. For these methods reference must be made to works on algebra.

Theory of exponents. $-\sqrt[n]{a}$ when n is a positive integer is one of n equal factors of a. $\sqrt[4]{a^m}$ means a is to be raised to the mth power and the nth root extracted.

 $\left(\sqrt[n]{a}\right)^m$ means that the *n*th root of *a* is to be taken and the result raised to the *n*th power.

 $\sqrt[n]{a^m} = {\binom{n}{\sqrt{a}}}^m = a^n$. When the exponent is a fraction, the numerator indicates a power, and the denominator a root. $a^{\frac{6}{2}} = \sqrt{a^{\frac{2}{6}}} = a^{\frac{2}{3}} = a^{\frac{2}{3}}$ $\sqrt{u^8 = a^{1.5}}$

To extract the root of a quantity raised to an indicated **power**, divide the exponent by the index of the required root; as,

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}; \qquad \sqrt[3]{a^6} = a^{\frac{6}{3}} = a^{\frac{9}{3}}.$$

Subtracting 1 from the exponent of a is equivalent to dividing by a:

$$a^{2}-1=a^{1}=a; \ a^{1}-1=a^{0}=\frac{a}{a}=1; \ a^{0}-1=a^{-1}=\frac{1}{a}; \ a^{-1}-1=a^{-2}=\frac{1}{a^{2}}$$

A number with a negative exponent denotes the reciprocal of the number with the corresponding positive exponent.

A factor under the radical sign whose root can be taken may, by having the root taken, be removed from under the radical sign:

$$\sqrt{a^2b} = \sqrt{a^2} \times \sqrt{b} = a \sqrt{b}$$

A factor outside the radical sign may be raised to the corresponding power and placed under it:

$$\sqrt{\frac{a}{b}} = \sqrt{\frac{a\overline{b}}{b^2}} = \sqrt{ab \times \frac{1}{b^2}} = \frac{1}{b} \sqrt{ab}; \quad \sqrt{\frac{a}{b^2}} = \frac{1}{b} \sqrt{a}$$

Binomial Theorem.—To obtain any power, as the nth, of an expression of the form x+a

$$(a+x)^{n} = a^{n} + na^{n-1} x + \frac{n(n-1)a^{n-2}}{1.2}x^{2} + \frac{n(n-1)(n-2)a^{n-2}}{1.2.3.}x^{3} + \frac{n(n-1)(n-2)a^{n-2}}{1.2.3}$$

The following laws hold for any term in the expansion of $(n + x)^n$. The exponent of x is less by one than the number of terms. The exponent of a is n minus the exponent of x.

GEOMETRICAL PROBLEMS.

- 1. To bisect a straight line, or an arc of a circle (Fig. 1).—
 From the ends A, B, as centres, describe arcs intersecting at C and D, and draw a line through C and D which will bisect the line at E or the arc at F.
- 2. To draw a perpendicular to a straight line, or a radial line to a circular arc.—Same as in Problem 1. CD is perpendicular to the line AB, and also radial to the arc.
- 3. To draw a perpendicular to a straight line from a given point in that line (Fig. 2).—With any radius, from the given point A in the line B C, cut the line at B and C. With a longer radius describe arcs from B and C, cutting each other at D, and draw the perpendicular D A.
- 4. From the end A of a glevn line A D to erect a perpendicular A E (Fig. 3).—From any centre E, above A D, describe a circle passing through the given point A, and cutting the given line at D. Draw D E and produce it to cut the circle at E, and draw the perpendicular A E.

and draw the perpendicular A E.

Second Method (Fig. 4).—From the given point A set off a distance A E equal to three parts, by any scale; and on the centres A and E, with radii of four and five parts respectively, describe arcs intersecting at C. Draw the perpendicular A C

the perpendicular A C.

Note.—This method is most useful on very large scales, where straight edges are inapplicable. Any multiples of the numbers 8, 4, 5 may be taken with the same effect as 6, 8, 10, or 9, 12, 15.

- 5. To draw a perpendicular to a straight line from any point without it (Fig. 5.)—From the point A, with a sufficient radius cut the given line at F and G, and from these points describe arcs cutting at E. Draw the perpendicular A E.
- 6. To draw a straight line parallel to a given line, at a given distance apart (Fig. 6).— From the centres A, B, in the given line, with the given distance as radius, describe arcs C, D, and draw the parallel lines C D touching the arcs.

Fig. 12.

7. To divide a straight line into a number of equal parts (Fig. 7).—To divide the line A B into, say, five parts, draw the line A C at an angle from A; set off five equal parts; draw B5 and draw parallels to it from the other points of division in A C. These parallels divide A B as required.

Note.—By a similar process a line may be divided into a number of unequal parts; setting off divisions of A.C. proportional by a scale to the required divisions, and drawing parallel cutting A.B. The triangles A11, A22, A33, etc., are similar triangles.

8. Upon a straight line to draw an angle equal to a given angle (Fig. 8).—Let A be the given angle and K G the line. From the point A with any radius describe the arc D E. From F with the same radius describe I H. Set off the arc I Hequal to D E, and draw F H. The angle F is equal to A, as required.

9. To draw angles of 60° and 30° (Fig. 9).—From F, with any radius FI describe an arc IH; and from I, with the same radius, cut the arc at H and draw F H to form the required angle IF H. Draw the perpendicular H K to the base line to form the angle of 30° F H K.

10. To draw am angle of 45° (Fig. 10).—Set off the distance F I; draw the perpendicular I H equal to I IF, and join HF to form the angle at F. The angle at H is also 45°.

11). To bisect an angle (Fig. 11).—Let $A \subset B$ be the angle; with C as a centre draw an arc cutting the sides at A, B. From A and B as centres, describe arcs cutting each other at D. Draw C D, dividing the angle into two equal parts.

12. Through two points to describe an are of a circle with a given rad (Fig. 12).—From the points a scentres, with the given r scribe arcs cutting at C C with the same rad.

Fig. 18.

Fig. 14.

Fig. 15.

Fig. 16.

13. To find the centre of a circle or of an arc of a circle (Fig. 13).—Select three points, A, B, C, in the circumference, well apart; with the same radius describe arcs from these three points, cutting each other, and draw the two lines, DE, FG, through their intersections. The point O, where they cut, is the centre of the circle or arc.

To describe a circle passing through three given points.

Let A, B. C be the given point and proceed as in last problem to find the centre O, from which the circle may

be described.

14. To describe an arc of a circle passing through three given points when the centre is not available the centre is not available (Fig. 14).—From the extreme points A, B, as centres, describe arcs A H, B G. Through the third point C draw A E, B F, cutting the arcs. Divide A F and B E into any number of equal parts, and set off a series of equal parts of the same length on the upper portions of the arcs beyond the sorte E F. Draw length on the upper portions of ward arcs beyond the points EF. Draw straight lines, BL, BM, etc., to the divisions in AF, and AI, AK, the divisions in EG. The successive intersections N, O, etc., of these lines are points in the circle required between the given points A and C, which may be drawn in; similarly the remaining part of the curve B C may be described. (See also Problem 54.)

15. To draw a tangent to a circle from a given point in the circumference (Fig. 15).

—Through the given point A, draw the radial line A C, and a perpendicular to it, FG, which is the tangent required.

16. To draw tangents to a circle from a point without it (Fig. 18).—From 4, with the radius A.C., describe an arc B.C.D., and from C, with a radius equal to the diameter of the circle, cut the arc at B D. Join B C, C D, cutting the circle at E F, and draw A E, A F, the tangents.

Note.—When a tangent is already

drawn, the exact point of contact may be found by drawing a perpendicular

to it from the centre.

17. Between two inclined lines to draw a series of circles touching these lines and touching each other (Fig. 17). Bisect the inclination of the given lines AB, CD, by the line NO. From a point P in this line draw the perpendicular PB to the line AB, at

on P describe the circle B D, touching the lines and cutting the centre line at E. From Edraw E F perpendicular to the centre line, cutting A B at F, and from F describe an arc E G, cutting A B at G. Draw G H parallel to B P, giving H, the centre of the next circle, to be described with the radius H E, and so on for the next circle IN.

Inversely, the largest circle may be described first, and the smaller ones in succession. This problem is of fre-

quent use in scroll-work.

18. Between two inclined lines to draw a circular segment tangent to the lines and passing through a point F on the lines (Fig. 18). —Through F draw D A at right angles to F C; bisect the angles A and D, as in Problem 11, by lines cutting at C, and from C with radius C F draw the are H F G required.

19. To draw a circular are that will be tangent to two given lines AB and CD inclined to one amother, one tangential point E being given (Fig. 19).—Draw the centre line GF. From E draw EF at right to angles AB; then F is the centre of the circle required.

20. To describe a circular are joining two circles, and touching one of them at a given point (Fig. 20).—To join the circles AB, FG, by an arc touching one of them at F, draw the radius EF, and produce it both ways. Set off FH equal to the radius A'C of the other circle; join CH and bisect it with the perpendicular LI, cutting EF at I. On the centre I, with radius IF, describe the arc FA as required.

21. To draw a circle with a given radius R that will be tangent to two given circles A and B (Fig. 21)—From centre of circle A with radius equal R plus radius of A, and from centre of B with radius equal to R + radius of B, draw two arcs cutting each of her in C, which will be the centre of the circle required.

22. To construct an equilatoral triangle, the sides being given Fig. 22).—On the ends of one side. A, B, with A B as radius, describe ares cutting at O, and draw A C, C B,

Fig. 28.

23. To construct a triangle of unequal sides (Fig. 23).—On either end of the base A D, with the side B as radius, describe an arc; and with the side C as radius, on the other end of the base as a centre, cut the arc at E. Join A E. D E.

24. To construct a square on a given straight line A B (Fig. 24).—At A erect a perpendicular A C, as in Problem 4. Lay off A D equal to AB; from D and B as centres with radius equal AB, describe arcs cutting each other in E. Join DE and

25. To construct a rectangle with given base E F and height E H (Fig. 25).—On the base EF draw the perpendiculars EH, F G equal to the height, and join G H.

26. To describe a circle about a triangle (Fig. 26).—
Bisect two sides A B, A C of the triangle at E F, and from these points draw perpendiculars cutting at K. On the centre K, with the radius KA, draw the circle ABC

27. To inscribe a circle in a triangle (Fig. 27).—Bisect two of the angles A, C, of the triangle by lines cutting at D; from D draw a perpendicular D E to any side, and with D E as radius describe a circle.

When the triangle is equilateral, draw a perpendicular from one of the angles to the opposite side, and from the side set off one third of the per-

pendicular.

28. To describe a circle about a square, and to inscribe a square in a circle (Fig. 28).—To describe the circle, draw the diagonals AB, CD of the square, cutting at E. On the centre E, with the radius AE, describe the circle.

To inscribe the square.—
Draw the two diameters, AB, CD, at right angles and inin the points AB.

right angles, and join the points A, B,

C D, to form the square.

Note.—In the same way a circle may be described about a rectangle.

- 29. To inscribe a circle in a square (Fig. 29).—To inscribe the circle, draw the diagonals A B, C D of the square, cutting at E; draw the perpendicular E F to one side, and with the radius E F describe the circle.
- 30. To describe a square about a circle (Fig. 30).—Draw two diameters A, C D at right angles. With the radius of the circle and A, B, C and D as centres, draw the four half circles which cross one another in the corners of the square.
- 31. To inscribe a pentagon in a circle (Fig. 31).—Draw diameters A C, B D at right angles, cutting at o. Bisect A o at E, and from E, with radius E B, cut A C at F; from B, with radius B F, cut the circumference at G, H, and with the same radius tep round the circle to I and K; join the points so found to form the pentagon.
- 32. To construct a pentagon on a given line A B (Fig. 32).—From B erect a perpendicular B C half the length of A B; join A C and prolong it to D, making C D = B C. Then B D is the radius of the circumscribing the pentagon. From A and B as centres, with B D as radius, draw arcs cutting each other in O, which is the centre of the circle.
- 33. To construct a hexagon upon a given straight line (Fig. 33).—From A and B, the ends of the given line, with radius A B, describe arcs cutting at g; from g, with the radius g A, describe a circle; with the same radius set off the arcs A G, GF, and BD, DE. Join the points G, found to form the hexagon. The side of a hexagon = radius of its circumscribed circle.
- 34. To inscribe a hexagon in a circle (Fig. 34).—Draw a diameter A CB. From A and B as centres, with the radius of the circle A C, cut the circumference at D, E, F, G, and draw A D, D E, etc., to form the hexagon. The radius of the circle is equal to the side of the hexagon; therefore the points D, E, etc., may also be found by stepping the radius of times round the circle. The angibetween the diameter and the sides a hexagon and also the exterior an between a side and an adjacent of prolonged is 60 degrees; therefor hexagon may conveniently be dr. by the use of a 60-degree triang.

- 35. To describe a hexagon about a circle (Fig. 35).—Draw a diameter A D B, and with the radius A D, on the centre A, cut the circumference at C; join A C, and bisect it with the radius D E; through E draw F G, parallel to A C, cutting the diameter at F, and with the radius D F describe the circumscribing circle F H. Within this circle describe a hexagon by the preceding problem. A more convenient method is by use of a 60-degree triangle. Four of the sides make angles of 60 degrees with the diameter, and the other two are parallel to the diameter.
- 36. To describe an octagon on a given straight line (Fig. 36).—Produce the given line AB both ways, and draw perpendiculars AE, BF; bisect the external angles A and B by the lines AH, BC, which make equal to AB. Draw CD and HG parallel to AE, and equal to AB; from the centres G, D, with the radius AB, cut the perpendiculars at E, F, and draw EF to complete the octagon.
- 37. To convert a square into an octagon (Fig. 37).—Draw the diagonals of the square cutting at e; from the corners A, B, C, D, with A e as radius, describe arcs cutting the sides at gn, fk, lm, and ol, and join the points so found to form the octagon. Adjacent sides of an octagon make an angle of 135 degrees.
- 38. To insertbe an octagon in a circle (Fig. 38).—Draw two diameters, A C, B D at right angles; bisect the arcs A B, B C, etc., at e f, etc., and join A e, e B, etc., to form the octagon.
- 39. To describe an octagon about a circle (Fig. 39).—Describe a square about the given circle AB; draw perpendiculars hk, etc., to the diagonals, touching the circle to form the octagon.

^{40.} To describe a polygon of any number of sides upon given straight line (Fig. 40).—Produce the given line A B, and on A

Fig. 41.

Fig. 42.

with the radius AB, describe a semicircle; divide the semi-circumference into as many equal parts as there are to be sides in the polygon—say, in this example, five sides. Draw lines from A through the divisional points D, b, and c, omitting one point a; and on the centres B, D, with the radius AB cut AB at E and AC at F. Draw DE EF, FB to complete the polygon.

41. To inscribe a circle within a polygon (Figs. 41, 42).— When the polygon has an even number of sides (Fig. 41), bi-ect two opposite sides at A and B; draw AB, and bisect it at C by a diagonal DE, and with the radius CA describe the circle.

When the number of sides it needs

When the number of sides is odd (Fig. 42), bisect two of the sides at A and B, and draw lines A E, B D to the opposite angles, intersecting at C; from C, with the radius C A, describe the circle.

42. To describe a circle without a polygon (Figs. 41. 42).—Find the centre C as before, and with the radius C D describe the circle.

43. To inseribe a polygon of any number of sides within a circle (Fig. 43).—Draw the diameter AB and through the centre E draw the perpendicular EC, cutting the circle at F. Divide E F into four equal parts, and set off three parts equal to those from F to C. Divide the diameter AB into as many equal parts as the polygon is to have sides; and from C draw CD, through the second point of division, cutting the circle at D. Then AD is equal to one side of the polygon, and by stepping round the circumference with the length AD the polygon may be completed.

TABLE OF POLYGONAL ANGLES.

Number of Sides.	Angle at Centre.	Number of Sides.	Angle at Centre.	Number of Sides.	Angle at Centre.						
No.	Degrees, 120 90	No. 9	Degrees, 40 36	No. 15 16	Degrees,						
5 6 7	79 60 514	11 12 13	32,5 30 27,5	17 18 19	221 21 1 20 19						
8	45	14	25\$	20	18						

In this table the angle at the centre is found by dividing 860 degrees, the number of degrees in a circle, by the number of sides in the polygon; and by setting off round the centre of the circle a succession of angles by means of the protractor, equal to the angle in the table due to a given number of sides, the radii so drawn will divide the circumference into the same number of parts.

44. To describe an ellipse when the length and breadth are given (Fig. 44).—AB, transverse axis; CD, conjugate axis; FG, foci. The sum of the distances from C to $m{F}$ and $m{G}$, also the sum of the distances from F and G to any other point in the curve, is equal to the transverse axis. From the centre C, with A E as radius, cut the axis A B at F and G, the foci; fix a couple of pins into the axis at F and G, and loop on a thread or cord upon them equal in length to the axis AB, so as when stretched to reach to the extremity C of the con-jugate axis, as shown in dot-lining. Place a pencil inside the cord as at H, and guiding the pencil in this way, keeping the cord equally in tension, carry the pencil round the pins F, G, and so describe the ellipse.

Norz.—This method is employed in

setting off elliptical garden - plots,

walks, etc.

2d Method (Fig. 45). — Along the straight edge of a slip of stiff paper mark off a distance a c equal to A C, half the transverse axis; and from the same point a distance ab equal to CD, half the conjugate axis. Place the slip so as to bring the point b on the line AB of the transverse axis, and the point c on the line DE; and set off on the drawing the position of the point a. Shifting the slip so that the point b travels on the transverse axis, and the point c on the conjugate axis, any number of points in the curve may be found, through which the curve may be traced. 3d Method (Fig. 46).—The action of

the preceding method may be embodied so as to afford the means of bodied so as to anord the means of describing a large curve continuously by means of a bar m k, with steel points m, l, k, riveted into brass slides adjusted to the length of the semi-axis and fixed with set-screws. A rectangular cross E G, with guiding-slots is placed, coinciding with the two axes of the ellipse A C and B H. By sliding the points k, l in the slots, and carrying round the point m, the and carrying round the point m, the curve may be continuously described.

A pen or pencil may be fixed at m.

4th Method (Fig. 47).—Bisect the transverse axis at C, and through C draw the perpendicular D E, making C D and C E each equal to half the conjugate axis. From D or E, with the radius A C, cut the transversaxis at F, F', for the foci. Divid A C into a number of parts a

points 1, 2, 8, etc. With the radius A I on F and F' as centres, describe arcs, and with the radius B I on the same centres cut these arcs as shown.

Fig. 48.

Fig. 49.

Fig. 50.

Fig. 51,

Repeat the operation for the other divisions of the transverse axis. The series of intersections thus made are points in the curve, through which the curve may be traced.

5th Method (Fig. 48).—On the two axes A B, D E as diameters, on centre C, describe circles; from a number of points a, b, etc., in the circumference AFB, draw radii cutting the inner

circle at a', b', etc. From a, b, etc., draw perpendiculars to AB; and from a', b', etc., draw parallels to AB, cutting the respective perpendiculars at n, o, etc. The intersections are points in the curve, through which the curve may be traced.

may be traced.

6th Method (Fig. 49). — When the transverse and Conjugate diameters are given, AB, CD, draw the tangent EF parallel to AB. Produce CD, and on the centre G with the radius AB describes a complaint of half AB, describe a semicircle HDK; from the centre G draw any number of straight lines to the points E, r, etc., in the line E F, cutting the circumference at l, m, n, etc.; from the centre 0 of the ellipse draw the centre O or the ellipse draw straight lines to the points E, r, etc.: and from the points l, m, n, etc., draw parallels to G C, cutting the lines O E, O, etc., at L, M, N, etc. These are points in the circumference of the ellipse, and the curve may be traced through them. Points in the other half of the ellipse are formed by extending the intersecting lines as indi-cated in the figure.

cated in the figure.

45. To describe an ellipse approximately by means of circular arcs.—First.—With arcs of two radii (Fig. 50).—Find the difference of the two axes, and set it off from the centre 0 to a and c on 0 A and 0 C; draw a c, and set off half a c to d; draw d d parallel to a c; set off 0 e equal to 0 d; join e d; and draw the parallels e m, d m. From m, with radius m C, describe an arc through radius m C, describe an arc through C; and from i describe an arc through D; from d and e describe arcs through A and B. The four arcs form the ellipse approximately.

NOTE.—This method does not apply

satisfactorily when the conjugate axis is less than two thirds of the trans-

verse axis.

2d Method (by Carl G. Barth, Fig. 51).—In Fig. 51 a b is the major and cd the minor axis of the ellipse to be approximated. Lay off be equal to the semi-minor axis c O, and use ac as radius for the arc at each extremit of the minor axis. Bisect e o at fa lay off eg equal to ef, and use p radius for the arc at each extr of the major axis.

The method is not considered applicable for cases in which the minor axis is less than two thirds of the major.

3d Method: With arcs of three radii (Fig. 52).—On the transverse axis A B draw the rectangle B G on the height O C; to the diagonal A C draw the perpendicular G H D: set off O K equal to O C, and describe a semicircle on A K, and produce O C to L; set off O M equal to C L, and from D describe an arc with radius D M; from A, with radius O L, cut this arc at a. Thus the five centres D, a, b, H, H are found, from which the arcs are described to form the ellipse.

described to form the ellipse.

NOTE.—This process works well for nearly all proportions of ellipses. It is employed in striking out vaults and

stone bridges.

4th Method (by F. R. Honey, Figs. 53 and 54).—Three radii are employed. With the shortest radius describe the two arcs which pass through the vertices of the major axis, with the longest the two arcs which pass through the vertices of the minor axis, and with the third radius the four arcs which connect the former.

A simple method of determining the radii of curvature is illustrated in

i of curvature is illustrated in Fig. 58. Draw the straight lines af and ac, forming any angle at a. With a as a centre, and with radii ab and ac, respectively, equal to the semininor and semi-major axes, draw the arcs be and cd. Join ed, and through b and c respectively draw bg and cf parallel to ed, intersecting ac at g, and af at f; af is the radius of curvature at the vertex of the minor axis; and af the radius of curvature at the

vertex of the major axis.

Lay off dh (Fig. 53) equal to one eighth of bd. Join eh, and draw ck and bl parallel to eh. Take ak for the longest radius (=R), al for the shortest radius (=r), and the arithmetical mean, or one half the sum of the semi-axes, for the third radius (=p), and employ these radii for the eight-centred oval as follows:

Fig. 54.

The remainder of the work is symmetrica respect to the axe

46. The Parabola. A parabola (DAC, Fig. 55) is a curve such that every point in the curve is equally distant from the directrix KL and the focus F. The focus lies in the axis A B drawn from the vertex or head of the curve A, so as to divide the figure into two equal parts. The vertex A is equidistant from the directrix and is equipment from the characteristic focus, or Ae = AF. Any line parallel to the axis is a diameter. A straight line, as EG or DC, drawn across the figure at right angles to the axis is a double ordinate, and either half of it is an ordinate. The ordinate half of it is an ordinate. The ordinate to the axis EFG, drawn through the focus, is called the parameter of the axis. A segment of the axis, reckoned from the vertex, is an abscissa of the axis, and it is an abscissa of the ordinate drawn from the base of the abscissa. Thus, AB is an abscissa of the ordinate BC.

Abscissæ of a parabola are as the squares of their ordinates. Abscisse of a parabola are as the squares of their ordinates. To describe a parabola when an abscissa and its ordinate are given (Fig. 55).—Bisect the given ordinate B C at a, draw Aa, and then ab perpendicular to it, meeting the axis at b. Set off Ae, AF, each equal to Bb; and draw KeL perpendicular to the axis. Then KL is the directrix and F is the focus. Through F and any number of points, o, o, etc., in the axis, draw double ordinates, non, etc., and from the centre F, with the radii Fe, oe, etc., cut the respective ordinates at E, G, n, n, etc. The curve may be traced through these noints as shown.

The curve may be traced through these points as shown.

2d Method: By means of a square and a cord (Fig. 56) -Place a straightand a cord (Fig. 30).—Flace a straignedge to the directrix E N, and apply to it a square LEG. Fasten to the end G one end of a thread or cord equal in length to the edge E G, and attach the other end to the focus F; slide the square along the straight-dependent of the cord fair the cord that a context the edge, holding the cord taut against the eige of the square by a pencil D, by which the curve is described.

3d Method: When the height and the base are given (Fig. 57)—Let AB be the given axis, and CD a double ordinate or base; to describe a parabola of which the vertex is at A.
Through A draw E F parallel to CD, and through C and D draw C E and DF parallel to the axis. Divide B C Divide B C and BD into any number of equal parts, say five, at a, b, etc., and divide CE and DF into the same number of parts. Through the points a, b, c, d in

47. The Hyperbola (Fig. 58).—A hyperbola is a plane curve, such that the difference of the distances from any point of it to two fixed points

is equal to a given distance. The fixed points are called the foci.

Fig. 58.

Fig. 59.

To construct a hyperbola.

—Let F and F be the foct, and F' F the distance between them. Take a ruler longer than the distance F' F, and fasten one of its extremities at the focus F'. At the other extremity, H, attach a thread of such a length that the length of the ruler shall exceed the length of the thread by a given distance A B. Attach the other extremity of the thread at the focus F.

Press a pencil, P, against the ruler, and keep the thread constantly tense, while the ruler is turned around F as a centre. The point of the pencil will describe one branch of the curve.

2d Method: By points (Fig. 59).—
From the focus F' lay off a distance
F' N equal to the transverse axis, or
distance between the two branches of
the curve, and take any other distance,
as F'H, greater than F'N.
With F' as a centre and F'H as a

With F' as a centre and F'H as a radius describe the arc of a circle. Then with F as a centre and NH as a radius describe an arc intersecting the arc before described at p and q.

These will be points of the hyperbola, for F'q - Fq is equal to the transverse axis AB.

If, with F as a centre and F' H as a radius, an arc be described, and a second arc be described with F' as a centre and NH as a radius, two points in the other branch of the curve will be determined. Hence, by changing the centres, each pair of radii will determine two points in each branch.

The Equitatoral Hyperbola.—The transverse axis of a hyperbola is the distance, on a line joining the foot, between the two branches of the curve. The conjugate axis is a line perpendicular to the transverse axis, drawn from its centre, and of such a length that the diagonal of the rectangle of the transverse and conjugate axes is equal to the distance between the foci. The diagonals of this rectangle, indefinitely prolonged, are the asymptotes of the hyperbola, lines which the curve continually approaches, but touches only at an infinite distance. If these asymptotes are perpendicular to each other, the hyperbola is called a rectangular or equilateral hyperbola. It is a property of this hyperbola that if the asymptotes are taken as axes of a rectangular system of coordinates (see Analytical Geometry), the product of the abscissa and ordinate of any other point; or, if p is the ordinate of any point and p that of the abscissa, and p, and p, are the ordinate and abscissa of any other point, p = p, p; or p = a constant.

48. The Cycloid (Fig. 60).—If a circle Ad be rolled along a straight line A6, any point of the circumference as A will describe a curve, which is called a cycloid. The circle is called the generating circle, and A the generating point.

To draw a cycloid.

—Divide the circumference

of the generating circle into an even number of equal parts, as A1, 12, etc., and set off these distances on the base. Through the points 1, 2, 3, etc., on the circle draw horizontal lines, and on them set off distances 1a = A1, 2b = A2, 3c = A3, etc. The points A, a, b, c, etc., will be points in the cycloithrough which draw the curve

Fig. 62.

Fig. 63.

49. The Epicycloid (Fig. 61) is generated by a point D in one circle DC rolling upon the circumference of another circle A C B, instead of on a flat surface or line; the former being the generating circle, and the latter the fundamental circle. The generating circle is shown in four positions, in which the generating point is successively marked D, D', D'', D'''. AD'''Bis the epicycloid.

50. The Hypocycloid (Fig. 62) is generated by a point in the generating circle rolling on the inside of the fundamental circle.

When the generating circle = radius of the other circle, the hypocycloid becomes a straight line.

51. The Tractrix OI Schiele's anti-friction curve (Fig. 63).-R is the radius of the shaft. C, I, 2, etc., the axis. From O set off on R a small distance, oa; with radius R and centre a cut the axis at 1. join a 1, and set off a like small distance a b; from b with radius R cut axis at 2, join b 2, and so on, thus finding points a, a, b, c, d, etc., through which the curve is to be drawn.

52. The Spiral.—The spiral is a curve described by a point which moves along a straight line according to any given law, the line at the same time having a uniform angular motion. The line is called the radius vector.

Fig. 64.

If the radius vector increases directly as the measuring angle, the spires, or parts described in each revolution. thus gradually increasing their dis-tance from each other, the curve is known as the spiral of Archimedes (Fig. 64).

This curve is commonly used for cams. To describe it draw the radius vector in several different directions around the centre, with equal angles

between them; set off the distances 1, 2, 3, 4, etc., corresponding to the scale upon which the curve is drawn, as shown in Fig. 64. In the common spiral (Fig. 64) the pitch is uniform; that is, the spires are equidistant. Such a spiral is made by rolling up a belt of uniform thickness.

To construct a spiral with four centres (Fig. 65).—Given the pitch of the spiral, construct a square about the centre, with the sum of the four sides equal to the pitch. Prolong the sides in one direction as shown; the corners are the centres for each arc of the external angles, forming & quadrant of a spire.

53. To find the diameter of a circle into which a certain number of rings will fit on its inside (Fig. 66).—For instance, what is the diameter of a circle into which twelve ½-inch rings will fit as per sketch? Assume that we have found the diameter of the required

circle, and have drawn the rings inside of it. Join the centres of the rings by straight lines, as shown : we then obtain a regular polygon with 12 sides, each side being equal to the diameter of a given ring. We have now ameter of a given ring. We have now to find the diameter of a circle circumscribed about this polygon, and add the diameter of one ring to it; the sum will be the diameter of the circle into which the rings will fit. Through the centres A and D of two adjacent rings draw the radii CA and CD; since the polygon has twelve sides the angle $A C D = 30^{\circ}$ and $A C B = 15^{\circ}$. One half of the side A D is equal to AB. We now give the following proportion: The sine of the angle ACB is to AB as 1 is to the required ra-

dius. From this we get the following rule: Divide AB by the sine of the angle ACB; the quotient will be the radius of the circumscribed circle; add to the corresponding diameter the diameter of one ring; the sum will be the required diameter FG.

54. To describe an arc of a circle which is too large to be drawn by a beam compass, by means of points in the arc, radius being given.—Suppose the radius is 20 feet and it is desired to obtain five points in an arc whose half chord is 4 feet. Draw a line equal to the half chord, full size, or on a smaller scale if more convenient, and erect a perpendicular at one end, thus making rectangular axes of coördinates. Erect perpendiculars at points 1, 2, 3, and 4 feet from the first perpendicular. Find values of y in the formula of the circle. $x^2 + y^2 = R^2$ by substituting for x the values 0, 1, 2, 3, and 4, etc., and for R^2 the square of the radius, or 400. The values will be $y = \sqrt[4]{R^2 - x^2} = \sqrt[4]{400}$, $\sqrt{399}$, $\sqrt{396}$, $\sqrt{391}$, $\sqrt{384}$; = 20, 19.975, 19.90, 19.774, 19.596,

Subtract the smallest, or 19.596, leaving 0.404, 0.879, 0.304, 0.178, 0 reet. Lay off these distances on the five perpendiculars, as ordinates from the half chord, and the positions of five points on the arc will be found.

Through these the curve may be chosen of the points of the curve may be
drawn. (See also Problem 14.)
55. The Catenary is the curve assumed by a perfectly flexible chord

when its ends are fastened at two points, the weight of a unit length being constant.

The equation of the catenary is $y = \frac{a}{2} (e^{a} + e^{-a})$, in which e is the base of the Naperian system of log-

To plot the catenary.—Let o (Fig. 67) be the origin of coordinates. Assigning to a any value as 3, the equation becomes

$$y = \frac{3}{2} \left(e^{\frac{x}{3}} + e^{-\frac{x}{3}} \right).$$

To find the lowest point of the curve.

Put
$$x = 0$$
; $y = \frac{3}{2} \left(e^0 + e^{-0} \right) = \frac{3}{2} (1 + 1) = 3$,

Then put
$$x = 1$$
; $\therefore y = \frac{3}{2} \left(e^{\frac{3}{2}} + e^{-\frac{3}{2}} \right) = \frac{3}{2} (1.396 + 0.717) = 3.17.$
Put $x = 2$; $\therefore y = \frac{3}{2} \left(e^{\frac{3}{2}} + e^{-\frac{3}{2}} \right) = \frac{3}{2} (1.948 + 0.513) = 3.69.$

Put x=3,4,5, etc., etc., and find the corresponding values of y. For each value of y we obtain two symmetrical points, as for example p and p^1 . In this way, by making a successively equal to 2, 3, 4, 5, 6, 7, and 8, the curves of Fig. 68 were plotted.

In each case the distance from the origin to the lowest point of the curve is equal to a; for putting x = 0, the general equation reduces to y = a.

is equal to a; for putting x = a, the general equation rectices to y = a. For values of a = 6, 7, and 8 the catenary closely approaches the parabola. For derivation of the equation of the catenary see Bowser's Analytic Mechanics. For comparison of the catenary with the parabola, see article by F. R. Honey, Amer. Machinist, Feb. 1, 1894.

 b_1 abз 64

56. The Involute is a name given to the curve which is formed by the end of a string which is unwound tne end of a sering from a cylinder and kept taut; consequently the string as it is unwound will always lie in the direction of a tangent to the cylinder. tangent to the cylinder. To describe the involute of any given circle, Fig. 68, take any point A on its circumference, draw a diameter AB, and from B draw B b perpendicular to AB. Make Bb equal in length to half the circumference of the circle. Divide Bb and the semi-circumference into the same number of equal parts. Bb and the semi-circumference into the same number of equal parts, say six. From each point of division 1,2,3, etc., on the circumference draw lines to the centre C of the circle. Then draw 1a perpendicular to C1; 2a₂ perpendicular to C2; and so on. Make 1a equal to bb₁; 2a₂ equal do bb₂; 3nd so on. to bb₂; 3a₂ equal to bb₃; and so on. required involute.

required involue.

57. Method of plotting angles without using a protractor.—The radius of a circle whose circumference is 360 is 57.3 (more accurately 57.296). Striking a semicircle with a radius 57.3 by any scale, spacers set to 10 by the same scale will divide the arc into 18 spaces of 10° spacers set to 10 by the same scale will divide the late of 10 spaces of 10-each, and intermediates can be measured indirectly at the rate of 1 by scale for each 1, or interpolated by eye according to the degree of accuracy required. The following table shows the chords to the above-mentioned radius, for every 10 degrees from 0° up to 110°. By means of one of these, Angla

Augie.	Chord,	Angle.	~ .
1°	0 . 999	60°	Chord.
10°	9.988	700	57.296
20°	19.899	70°	65.727
30°	29.658	900	73.658
40°	39.192	90°	81.029
50°	48 429	100° 110°	87.782
		110	03 660

GEOMETRICAL PROPOSITIONS.

In a right-angled triangle the square on the hypothenuse is equal to the sum of the squares on the other two sides.

If a triangle is equilateral, it is equiangular, and vice versa.

If a straight line from the vertex of an isosceles triangle bisects the base, it bisects the vertical angle and is perpendicular to the base.

If one side of a triangle is produced, the exterior angle is equal to the sum of the two interior and opposite angles.

If two triangles are mutually equiangular, they are similar and their

corresponding sides are proportional. If the sides of a polygon are produced in the same order, the sum of the exterior angles equals four right angles.

In a quadrilateral, the sum of the interior angles equals four right angles. In a parallelogram, the opposite sides are equal; the opposite angles are equal; it is bisected by its diagonal; and its diagonals bisect each other

If three points are not in the same straight line, a circle may be passed

through them.

If two arcs are intercepted on the same circle, they are proportional to the corresponding angles at the centre.

If two arcs are similar, they are proportional to their radii.

The areas of two circles are proportional to the squares of their radii.

If a radius is perpendicular to a chord, it bisects the chord and it bisects the arc subtended by the chord.

A straight line tangent to a circle meets it in only one point, and it is

perpendicular to the radius drawn to that point.

If from a point without a circle tangents are drawn to touch the circle, there are but two; they are equal, and they make equal angles with the chord joining the tangent points.

If two lines are parallel chords or a tangent and parallel chord, they

intercept equal arcs of a circle.

If an angle at the circumference of a circle, between two chords, is subtended by the same arc as an angle at the centre, between two radii, the angle at the circumference is equal to half the angle at the centre.

If a triangle is inscribed in a semicircle, it is right-angled.

If an angle is formed by a tangent and chord, it is measured by one half of the arc intercepted by the chord; that is, it is equal to half the angle at the centre subtended by the chord.

If two chords intersect each other in a circle, the rectangle of the segments of the one equals the rectangle of the segments of the other.

And if one chord is a diameter and the other perpendicular to it, the rectangle of the segments of the diameter is equal to the square on half the other chord, and the half chord is a mean proportional between the segments of the diameter.

MENSURATION.

PLANK SURFACES.

Quadrilateral. —A four-sided figure.

Parallelogram.—A quadrilateral with opposite sides parallel.

Varieties.—Square: four sides equal, all angles right angles. Rectangle: opposite sides equal, all angles right angles. Rhombus: four sides equal, Rhomboid: opposite sides opposite angles equal, angles not right angles. equal, opposite angles equal, angles not right angles.

Trapezium.—A quadrilateral with unequal sides.
Trapezoid.—A quadrilateral with only one pair of opposite sides paraliel.

Diagonal of a square = $\sqrt{2 \times \text{side}^2} = 1.4142 \times \text{side}$.

Diagonal of a rectangle = /product of two adjacent sides.

Area of any parallelogram = base × altitude.

Area of rhombus or rhomboid = product of two adjacent sides × sine of angle included between them.

Area of a trapezium = half the product of the diagonal by the sum of the perpendiculars let fall on it from opposite angles.

Area of a trapezoid = product of half the sum of the two parallel

sides by the perpendicular distance between them.

To find the area of any quadrilateral figure.—Divide the quadrilateral into two triangles; the sum of the areas of the triangles is the area.

Or, multiply half the product of the two diagonals by the sine of the angle

at their intersection. To find the area of a quadrilateral inscribed in a circle. -From half the sum of the four sides subtract each side severally; multiply the four remainders together; the square root of the product is the area.

Triangle.—A three-sided plane figure.

Varieties.-Right-angled, having one right angle; obtuse-angled, having one obtuse angle; isosceles, having two equal angles and two equal sides: equilateral, having three equal sides and equal angles. The sum of the three angles of every triangle = 180°.

The two acute angles of a right-angled triangle are complements of each

other.

Hypothenuse of a right-angled triangle, the side opposite the right angle.

= \sum of the squares of the other two sides.

To find the area of a triangle:

RULE 1. Multiply the base by half the altitude.

RULE 2. Multiply half the product of two sides by the sine of the included angle.

RULE 3. From half the sum of the three sides subtract each side severally: multiply together the half sum and the three remainders, and extract the square root of the product.

The area of an equilateral triangle is equal to one fourth the square of one of its sides multiplied by the square root of 3, = $\frac{a^2 \sqrt{3}}{4}$, a being the side; or

 $\alpha^2 \times 433013$

division of the base constitutes a right-angled triangle, the perpendicular is ascertained by the rule perpendicular = Vhyp2 - base2.

Polygon. - A plane figure having three or more sides. Regular or irregular, according as the sides nor angles are equal or unequal. Polygons are named from the number of their sides and angles.

To find the area of an irregular polygon.—Draw diagonals dividing the polygon into triangles, and find the sum of the areas of these triangles.

To find the area of a regular polygon:

RULE.—Multiply the length of a side by the perpendicular distance to the centre; multiply the product by the number of sides, and divide it by 2.

Or, multiply half the perimeter by the perpendicular let fall from the centre on one of the sides.

The perpendicular from the centre is equal to half of one of the sides of the polygon multiplied by the cotangent of the angle subtended by the half side.

The angle at the centre = 360° divided by the number of sides.

TABLE OF REGULAR POLYGONS.

	op.	•	cums	of Cir- cribed rcle.	ribed = 1.	Side, Ra- Sircumsc. 1.		Angle between Ad- jacent Sides.		
No. of Sides.	Name of Polygon.	Area, Side = 1	Perpen. from Centre = 1.	Side = 1.	Radius of Inscribed Circle, Side = 1.	Length of Side dius of Circu Circle = 1.	Angle at Centre.			
3 4 5 6 7	Triangle Square Pentagon Hexagon Heptagon	.4880127 1. 1.7204774 2.5960762 3.6389124	2. 1.414 1.238 1.156 1.11	.5773 .7071 .8506 1. 1.1524	.2887 .5 .6882 .866 1.0383	1.732 1.4142 1.1756 1. .8677	120° 90 72 60 51 26′	60° 90 108 120 128 4–7		
8 9 10 11 12	Octagon Nonagon Decagon Undecagon Dodecagon	4.8284271 6.1818242 7.6942088 9.3656399 11.1961524	1.083 1.064 1.051 1.042 1.037	1.3066 1.4619 1.618 1.7747 1.9319	1.2071 1.3737 1.5388 1.7028 1.866	.7658 .684 .618 .5634 .5176	45 40 36 32 43' 30	135 140 144 147 3–11 150		

To find the area of a regular polygon, when the length of a side only is given:
RULE.—Multiply the square of the side by the multiplier opposite to the

name of the polygon in the table.

To find the area of an irregular figure (Fig. 69).—Draw ordinates across its breadth at equal distances apart, the first and the last ordinate each being one half space from the ends of the figure. Find the average breadth by adding together the lengths of these lines included between the boundaries of the figure, and divide by the number of the lines and divide by the mean breadth by added; multiply this mean breadth by The greater the number the approximation.

an outling or

. diagram from a high.

2d Method: THE TRAPEZOIDAL RULE. - Divide the figure into any sufficient number of equal parts; add half the sum of the two end ordinates to the sum of all the other ordinates; divide by the number of spaces (that is,

the sum of all the other ordinates; divide by the number of spaces (that is, one less than the number of ordinates) to obtain the mean ordinate, and multiply this by the length to obtain the area.

3d Method: Simpson's Rule.—Divide the length of the figure into any even number of equal parts, at the common distance D apart, and draw ordinates through the points of division to touch the boundary lines. Add together the first and last ordinates and call the sum A; add together the even ordinates and call the sum B; add together the odd ordinates, except the first and last, and call the sum C. Then,

area of the figure =
$$\frac{A+4B+2C}{3} \times D$$
.

4th Method: DURAND's RULE.—Add together 4/10 the sum of the first and last ordinates, 1 1/10 the sum of the second and the next to the last (or the penultimates), and the sum of all the intermediate ordinates. Multiply the sum thus gained by the common distance between the ordinates to obtain the area, or divide this sum by the number of spaces to obtain the mean ordinate.

Prof. Durand describes the method of obtaining his rule in Engineering News, Jan. 18, 1894. He claims that it is more accurate than Simpson's rule, and practically as simple as the trapezoidal rule. He thus describes its application for approximate integration of differential equations. Any definite integral may be represented graphically by an area. Thus, let

$$Q = \int u \, dx$$

be an integral in which u is some function of x, either known or admitting of computation or measurement. Any curve plotted with x as abscissa and u as ordinate will then represent the variation of u with x, and the area between such curve and the axis X will represent the integral in question, no matter how simple or complex may be the real nature of the function u.

Substituting in the rule as above given the word "volume" for "area" and the word "section" for "ordinate," it becomes applicable to the determination of volumes from equidistant sections as well as of areas from equidistant ordinates.

Having approximately obtained an area by the trapezoidal rule, the area by Durand's rule may be found by adding algebraically to the sum of the ordinates used in the trapezoidal rule (that is, half the sum of the end ordinates used in the trapezoidal rule (that is, half the sum of the end ordinates). nates + sum of the other ordinates) 1/10 of (sum of penultimates - sum of first and last) and multiplying by the common distance between the other ordinates.

5th Method.—Draw the figure on cross-section paper. Count the number of squares that are entirely included within the boundary; then estimate the fractional parts of squares that are cut by the boundary, add together these fractions, and add the sum to the number of whole squares. The result is the area in units of the dimensions of the squares. The finer the result is the area in units of the dimensions of the squares. ruling of the cross-section paper the more accurate the result.

6th Method.—Use a planimeter.
7th Method.—With a chemical balance, sensitive to one milligram, draw the figure on paper of uniform thickness and cut it out carefully; weigh the piece cut out, and compare its weight with the weight per square inch of the paper as tested by weighing a piece of rectangular shape.

THE CIRCLE.

Circumference = diameter × 3.1416, nearly; more accurately, 3.14159265359. Approximations, $\frac{22}{7} = 8.143$; $\frac{355}{113} = 8.1415929$.

The ratio of circum. to diam. is represented by the symbol * (called Pi).

Multiples of w.
 Multiples of
$$\frac{\pi}{4}$$
.

 $1\pi = 3.14159265359$
 $\frac{1}{4}\pi$
 = .7853962

 $2\pi = 6.28318530718$
 " × 2 = 1.5707963

 $3\pi = 9.42477796077$
 " × 3 = 2.8561945

 $4\pi = 12.56637061436$
 " × 4 = 3.1415927

 $5\pi = 15.70796326795$
 " × 5 = 3.9269908

 $6\pi = 18.84955592154$
 " × 6 = 4.7123890

 $7\pi = 21.99114857513$
 " × 7 = 5.4977871

 $3\pi = 25.18274122272$
 " × 8 = 6.2831835

 $9\pi = 28.27432388231$
 " × 9 = 7.068583

Ratio of diam. to circumference = reciprocal of $\pi = 0.3183099$.

Reciprocal of
$$\frac{1}{4}\pi = 1.27394$$
.

Multiples of $\frac{1}{\pi}$.

 $\frac{8}{\pi} = 2.54648$
 $\frac{8}{\pi} = 2.54648$
 $\frac{1}{360} = 0.0087266$
 $\frac{1}{\pi}$
 $\frac{1}{\pi} = .31831$
 $\frac{9}{\pi} = 2.86479$
 $\frac{360}{\pi} = 114.5915$
 $\frac{2}{\pi} = .63662$
 $\frac{10}{\pi} = 3.18310$
 $\frac{12}{\pi} = 3.81972$
 $\frac{1}{\pi^2} = 0.101321$
 $\frac{4}{\pi} = 1.27394$
 $\frac{1}{3}\pi = 1.570796$
 $\frac{5}{\pi} = 1.69155$
 $\frac{1}{3}\pi = 1.047197$
 $\frac{1}{6}\pi = 0.523599$

Log $\pi = 0.49714987$

Diam, in ins. = $13.5405 \, brac{V}{
m area}$ in sq. ft. Area in sq. ft. = (diam, in inches)² × .0054542, D= diameter, E= radius, C= circumference,

$$C = \pi D; = 2\pi R; = \frac{4A}{D}; = 2\sqrt{\pi A}; = 3.545\sqrt{A};$$

$$A = D^2 \times .7854; = \frac{CR}{2}; = 4R^2 \times .7854; = \pi R^2; = \frac{1}{4}\pi D^2; = \frac{C^2}{4\pi}; = .07958C^2; = \frac{CD}{4}.$$

$$D = \frac{C}{\pi}; = 0.31831C; = 2\sqrt{\frac{A}{\pi}}; = 1.12838\sqrt{A};$$

$$R = \frac{C}{6\pi}; = 0.159155C; = \sqrt{\frac{A}{\pi}}; = 0.564189\sqrt{A}.$$

Areas of circles are to each other as the squares of their diameters.

To find the length of an arc of a circle:

RULE 1. As 360 is to the number of degrees in the arc, so is the circum
greence of the circle to the length of the arc.

RULE 2. Multiply the diameter of the circle by the number of degrees in

the arc, and this product by 0.0087266.

Relations of Arc, Chord, Chord of Half the Arc, Versed Sine, etc.

Let R = radius. D = diameter.Arc = length of arc.

Cd =chord of the arc. ch = chord of half the arc.

V = versed sine, D - V = diam. minus ver. sin.,

$$Arc = \frac{8ch - Cd}{3} \text{ (very nearly)}, = \frac{\sqrt{Cd^2 + 4V^2} \times 10V^2}{15Cd^2 + 38V^2} + 2ch, \text{ nearly.}$$

$$Arc = \frac{2ch \times 10V}{60D - 27V} + 2ch, \text{ nearly.}$$

Chord of the arc = $2\sqrt{ch^2-V^2}$; = $\sqrt{D^2-(D-2V)^2}$: = 8ch-3Arc.

$$=2\sqrt{R^2-(R-V)^2}; = 2\sqrt{(D-V)} \times V.$$
the are $ch = 1\sqrt{Cd^2+4V^2}, -\sqrt{D+V}, -3Arc + C$

Chord of half the arc, $ch = \frac{1}{2} \sqrt[4]{Cd^2 + 4V^2}$; $= \sqrt[4]{D \times V}$; $= \frac{8Arc + Cd}{c}$

Diameter

$$=\frac{ch^2}{V}; = \frac{\left(\frac{1}{2}Cd\right)^2 + V^2}{V};$$

Versed sine

$$=\frac{ch^2}{D}; = \frac{1}{2}(D - \sqrt{D^2 - Cd^2})$$

(or $\frac{1}{a}(D+\sqrt{D^2-Cd^2})$, if V is greater than radius.

$$=\sqrt{ch^2-\frac{Cd^2}{4}}.$$

Half the chord of the arc is a mean proportional between the versed sine and diameter minus versed sine:

$$\frac{1}{2}Cd = \sqrt{V \times (D - V)}.$$

Length of a Circular Arc.—Huyghens's Approximation. Let C represent the length of the chord of the arc and c the length of the chord of half the arc; the length of the arc

$$L=\frac{8c-C}{3}.$$

Professor Williamson shows that when the arc subtends an angle of 30°, the radius being 100,000 feet (nearly 19 miles), the error by this formula is about two inches, or 1/60000 part of the radius. When the length of the arc is equal to the radius, i.e., when it subtends an angle of 57°.3, the error is less than 1/7680 part of the radius. Therefore, if the radius is 100,000 feet, the

error is less than $\frac{100000}{7680}$ = 13 feet. The error increases rapidly with the increase of the angle subtended.

In the measurement of an arc which is described with a short radius the error is so small that it may be neglected. Describing an arc with a radius of 12 inches subtending an angle of 30°, the error is 1/50000 of an inch. For 57°.3 the error is less than 0".0015.

In order to measure an arc when it subtends a large angle, bisect it and measure each half as before—in this case making B= length of the chord of half the arc, and b= length of the chord of one fourth the arc; then

$$L=\frac{16b-2B}{3}.$$

Relation of the Circle to its Equal, Inscribed, and Circumscribed Squares.

Diameter of circle × .88023 = side of equal square.

Circumference of circle × .28209 = perimeter of equal square.

Diameter of circle × .7071 | Circumference of circle × .22508 | Area of circle × .90081+- diameter | = side of inscribed square. Area of circle × 1.2782 = area of circumscribed square. = area of inscribed square. Area of circle × .68662 Side of square × 1.4142 = diam. of circumscribed circle. 4.4428 × = circum. 66 46 1.1284 = diam, of equal circle, × 46 8.5449 = circum. Perimeter of square × 0.88623 = Square inches × 1.2782 = circular inches.

Sectors and Segments.—To find the area of a sector of a circle. Rule 1. Multiply the arc of the sector by half its radius. Rule 2. As 360 is to the number of degrees in the arc, so is the area of

the circle to the area of the sector.

RULE 3. Multiply the number of degrees in the arc by the square of the radius and by .006727.

To find the area of a segment of a circle: Find the area of the sector which has the same arc, and also the area of the triangle formed by the chord of the segment and the radii of the sector.

Then take the sum of these areas, if the segment is greater than a semicircle, but take their difference if it is less.

Another Method: Area of segment = $-\frac{A}{2}$ (arc - sin A) in which A is the

central angle, R the radius, and arc the length of arc to radius 1. To find the area of a segment of a circle when its chord and height or versed sine only are given. First find radius, as follows:

radius =
$$\frac{1}{2} \left[\frac{\text{square of half the chord}}{\text{height}} + \text{height} \right]$$
.

2. Find the angle subtended by the arc, as follows: half chord = sine of half the angle. Take the corresponding angle from a table of sines, and double it to get the angle of the arc.

3. Find area of the sector of which the segment is a part ;

area of sector = area of circle
$$\times \frac{\text{degrees of arc}}{360}$$

4. Subtract area of triangle under the segment:

Area of triangle =
$$\frac{\text{chord}}{\lambda}$$
 × (radius – height of segment).

The remainder is the area of the segment.

When the chord, arc, and diameter are given, to find the area. From the length of the arc subtract the length of the chord. Multiply the remainder by the radius or one-half diameter; to the product add the chord multiplied by the height, and divide the sum by 2.

Another rule: Multiply the chord by the height and this product by .6834

plus one tenth of the square of the height divided by the radius.

To find the chord: From the diameter subtract the height; multiply the remainder by four times the height and extract the square root,

When the chords of the arc and of half the arc and the versed sine are given: To the chord of the arc add four thirds of the chord of half the arc; multiply the sum by the versed sine and the product by .40426 (approximate).

Circular Hing.—To find the area of a ring included between the circumferences of two concentric circles: Take the difference between the areas of the two circles; or, subtract the square of the less radius from the square of the greater, and multiply their difference by 3.14159.

The area of the greater circle is equal to πR^2 ; and the area of the smaller.

This less than the area of the smaller.

Their difference, or the area of the ring, is $\pi(R^2 - r^2)$. The Ellipse.—Area of an ellipse = product of its semi-axes × 3.14159 = product of its axes × .785398.

The Ellipse.—Circumference (approximate) = 8.1416 $\sqrt{\frac{D^2+d^2}{a}}$, D and d

being the two axes Trautwine gives the following as more accurate: When the longer axis D is not more than five times the length of the shorter axis, d,

Circumference =
$$8.1416 \sqrt{\frac{D^2 + d^2}{2} - \frac{(D-d)^2}{8.8}}$$
.

When D is more than 5d, the divisor 8.8 is to be replaced by the following divisors:

$$\frac{D}{d}$$
 = 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50.

Reuleaux gives: Circumference =
$$\pi (a + b) \left(1 + \frac{n^2}{4} + \frac{n^4}{64} + \frac{n^6}{256} + \dots\right)$$
, in

which $n = \frac{a-b}{a+b}$, a and b being the semi-axes.

Area of a segment of an ellipse the base of which is parallel to one of the axes of the ellipse. Divide the height of the segment by the axis of which it is part, and find the area of a circular segment, in a table of circular segments, of which the height is equal to the quotient; multiply the area thus found by the product of the two axes of the ellipse.

Cycloid.—A curve generated by the rolling of a circle on a plane.

Length of a cycloidal curve $= 4 \times$ diameter of the generating circle. Length of the base = circumference of the generating circle. Area of a cycloid = $3 \times$ area of generating circle.

Helix (Screw).—A line generated by the progressive rotation of a point around an axis and equidistant from its centre.

Length of a helix.—To the square of the circumference described by the generating-point add the square of the distance advanced in one revolution, and take the square root of their sum multiplied by the number of revolutions of the generating point. Or,

$$\sqrt{(c^2+h^2)n} = \text{length}, n \text{ being number of revolutions.}$$

Spirals.—Lines generated by the progressive rotation of a point around a fixed axis, with a constantly increasing distance from the axis.

A plane spiral is when the point rotates in one plane.

A conical spiral is when the point rotates around an axis at a progressing distance from its centre, and advancing in the direction of the axis, as around

Length of a plane spiral line.—When the distance between the coils is uniform.

Rule.-Add together the greater and less diameters; divide their sum by 2; multiply the quotient by 3.1416, and again by the number of revolutions. Or, take the mean of the length of the greater and less circumferences and multiply it by the number of revolutions. Or,

length =
$$\pi n \frac{d+d'}{2}$$
, d and d' being the inner and outer diameters.

Length of a conical spiral line.—Add together the greater and less diameters; divide their sum by 2 and multiply the quotient by 8.1416. To the square of the product of this circumference and the number of revolutions of the spiral add the square of the height of its axis and take the square root of the sum.

Or, length =
$$\sqrt{\left(\pi n \frac{d+d'}{2}\right)^2 + h^2}$$
.

SOLID BODIES.

The Prism.—To find the surface of a right prism: Multiply the perimeter of the base by the altitude for the convex surface. To this add the areas of the two ends when the entire surface is required.

Volume of a prism = area of its base \times its altitude.

The pyramid.-Convex surface of a regular pyramid = perimeter of its base x half the slant height. To this add area of the base if the whole surface is required.

Volume of a pyramid = area of base \times one third of the altitude.

To find the surface of a frustum of a regular pyramid: Multiply half the slant height by the sum of the perimeters of the two bases for the convex surface. To this add the areas of the two bases when the entire surface is

required.

To find the volume of a frustum of a pyramid: Add together the areas of the two bases and a mean proportional between them, and multiply the sum by one third of the altitude. (Mean proportional between two numbers = square root of their product.)

Wedge.—A wedge is a solid bounded by five planes, viz.: a rectangular base, two trapezoids, or two rectangles, meeting in an edge, and two triangular ends. The altitude is the perpendicular drawn from any point in

the edge to the plane of the base.

To find the volume of a reedge: Add the length of the edge to twice the length of the base, and multiply the sum by one sixth of the product of the height of the wedge and the breadth of the base.

Rectangular prismoid.—A rectangular prismoid is a solid bounded by six planes, of which the two bases are rectangles, having their corresponding sides parallel, and the four upright sides of the solids are trapezoids.

To find the volume of a rectangular prismoid: Add together the areas of the two bases and four times the area of a parallel section equally distant from the bases, and multiply the sum by one sixth of the altitude.

Cylinder.—Convex surface of a cylinder = perimeter of base × altitude. . To this add the areas of the two ends when the entire surface is required.

Volume of a cylinder = area of base \times altitude

Come.—Convex surface of a cone = circumference of base × half the slant side. To this add the area of the base when the entire surface is required.

Volume of a cone = area of base $\times \frac{1}{9}$ altitude.

To find the surface of a frustum of a cone: Multiply half the side by the sum of the circumferences of the two bases for the convex surface; to this add the areas of the two bases when the entire surface is required.

To find the volume of a frustum of a cone: Add together the areas of the two bases and a mean proportional between them, and multiply the sum

by one third of the altitude.

Sphere. To find the surface of a sphere: Multiply the diameter by the circumference of a great circle; or, multiply the square of the diameter by 3.14159.

Surface of sphere $= 4 \times$ area of its great circle.

= convex surface of its circumscribing cylinder.

Surfaces of spheres are to each other as the squares of their diameters.

To find the volume of a sphere: Multiply the surface by one third of the radius; or, multiply the cube of the diameter by 1/6w; that is, by 0.5236.

Value of $\frac{1}{4}\pi$ to 10 decimal places = .5285987756.

The volume of a sphere = 2/8 the volume of its circumscribing cylinder.

Volumes of spheres are to each other as the cubes of their diameters.

Spherical triangle.—To find the area of a spherical triangle: Compute the surface of the quadrantal triangle, or one eighth of the surface of the sphere. From the sum of the three angles subtract two right angles; divide the remainder by 90, and multiply the quotient by the area of the quadrantal triangle.

Spherical polygon.—To find the area of a spherical polygon: Compute the surface of the quadrantal triangle. From the sum of all the angles subtract the product of two right angles by the number of sides less two; divide the remainder by 90 and multiply the quotient by the area of the

quadrantal triangle.

The prismoid.—The prismoid is a solid having parallel end areas, and may be composed of any combination of prisms, cylinders, wedges, pyramids, or cones or frustums of the same, whose bases and apices lie in the

Inasmuch as cylinders and cones are but special forms of prisms and pyramids, and warped surface solids may be divided into elementary forms of them, and since frustums may also be subdivided into the elementary forms, it is sufficient to say that all prismolds may be decomposed into prisms, wedges, and pyramids. If a formula can be found which is equally applicable to all of these forms, then it will apply to any combination of them. Such a formula is called

The Prismoidal Formula.

Let A = area of the base of a prism, wedge, or pyramid; $A_1, A_2, A_m =$ the two end and the middle areas of a prismoid, or of any of its elementary solids;

h = altitude of the prismoid or elementary solid; V = its volume;

$$V = \frac{h}{6}(A_1 + 4Am - A_2).$$

For a prism A_1 , A_m and A_2 are equal, A_3 ; $V = \frac{h}{a} \times 6A = hA$.

For a wedge with parallel ends, $A_2 = 0$, $A_m = \frac{1}{2}A_1$; $V = \frac{h}{6}(A_1 + 2A_1) = \frac{hA}{2}$

For a cone or pyramid,
$$A_2 = 0$$
, $A_m = \frac{1}{4}A_1$; $V = \frac{h}{6}(A_1 + A_1) = \frac{hA}{8}$.

The prismoidal formula is a rigid formula for all prismoids. The only approximation involved in its use is in the assumption that the given solid may be generated by a right line moving over the boundaries of the end

The area of the middle section is never the mean of the two end areas if the prismoid contains any pyramids or cones among its elementary forms. When the three sections are similar in form the dimensions of the middle area are always the means of the corresponding end dimensions. This fact often enables the dimensions, and hence the area of the middle section, to be computed from the end areas.

Polyedrons.—A polyedron is a solid bounded by plane polygons. A

regular polyedron is one whose sides are all equal regular polygons.

To find the surface of a regular polyedron.—Multiply the area of one of the faces by the number of faces; or, multiply the square of one of the edges by the surface of a similar solid whose edge is unity.

A TABLE OF THE REGULAR POLYEDRONS WHOSE EDGES ARE UNITY.

Names.	No. of Faces.	Surface.	Volume.
Tetraedron	4	1.7320508	0.1178513
Hexaedron	6	6.0000000	1.0000000
Octaedron	8	3.4641016	0.4714045
Dodecaedron	12	20.6457288	7.6631189
Icosaedron	20	8.6602540	2.1816950

To find the volume of a regular polyedron.-Multiply the surface by one third of the perpendicular let fall from the centre on one of the faces; or, multiply the cube of one of the edges by the solidity of a

similar polyedron whose edge is unity.

Solid of revolution.—The volume of any solid of revolution is equal to the product of the area of its generating surface by the length of the path of the centre of gravity of that surface.

The convex surface of any solid of revolution is equal to the product of the convex surface of any solid of revolution is equal to the product of

the perimeter of its generating surface by the length of path of its centre of gravity.

Cylindrical ring.—Let d = outer diameter; d' = inner diameter; $\frac{1}{2}(d-d')$ = thickness = t; $\frac{1}{4}\pi t^2$ = sectional area; $\frac{1}{2}(d+d')$ = mean diameter = M; πt = circumference of section; πM = mean circumference of ring; surface = $\pi t \times \pi M$; = $\frac{1}{4}\pi^2 (d^2 - d'^2)$; = 9.86965 t M; = 2.46741 $(d^2 - d'^2)$; volume = $\frac{1}{4}\pi t^2 M \pi$; = 2.46741 $t^2 M$.

Spherical zone.—Surface of a spherical zone or segment of a sphere its altitude × the circumference of a great circle of the sphere. A great circle is one whose plane passes through the centre of the sphere. Volume of a zone of a sphere.—To the sum of the squares of the radii of the ends add one third of the square of the height; multiply the sum by the height and by 1.5708.

Spherical segment. - Volume of a spherical segment with one base -

Multiply half the height of the segment by the area of the base, and the ruthriply had the height of the segment by the area of the base, and the sube of the height by .5238 and add the two products. Or, from three times the diameter of the sphere subtract twice the height of the segment; multiply the difference by the square of the height and by .5238. Or, to three itness the square of the radius of the base of the segment add the square of its height, and multiply the sum by the height and by .5238.

Spheroid or ellipsoid.—When the revolution of the spheroid is about

the transverse diameter it is prolate, and when about the conjugate it is

oblate.

Convex surface of a segment of a spheroid.—Square the diameters of the spheroid, and take the square root of half their sum; then, as the diameter from which the segment is cut is to this root so is the height of the segment to the proportionate height of the segment to the mean diameter. Multiply the product of the other diameter and 8.1416 by the proportionate height.

Convex surface of a frustum or zone of a spheroid.—Proceed as by previous rule for the surface of a segment, and obtain the proportionate height of the frustum. Multiply the product of the diameter parallel to the base of the frustum and 3.1416 by the proportionate height of the frustum.

Volume of a spheroid is equal to the product of the square of the revolving axis by the fixed axis and by .5236. The volume of a spheroid is two thirds

of that of the circumscribing cylinder.

Volume of a segment of a spheroid.—1. When the base is parallel to the revolving axis, multiply the difference between three times the fixed axis and twice the height of the segment, by the square of the height and by .5236. Multiply the product by the square of the revolving axis, and divide by the square of the fixed axis.

2. When the base is perpendicular to the revolving axis, multiply the difference between three times the revolving axis and twice the height of the segment by the square of the height and by .5236. Multiply the product by the length of the fixed axis, and divide by the length of the

revolving axis.

Volume of the middle frustum of a spheroid.—1. When the ends are circular, or parallel to the revolving axis: To twice the square of the middle diameter add the square of the diameter of one end; multiply the

sum by the length of the frustum and by .2618.
2. When the ends are elliptical, or perpendicular to the revolving axis: To twice the product of the transverse and conjugate diameters of the middle section add the product of the transverse and conjugate diameters of one end; multiply the sum by the length of the frustum and by .2618.

Spindles. - Figures generated by the revolution of a plane area, when the curve is revolved about a chord perpendicular to its axis, or about its double ordinate. They are designated by the name of the arc or curve from which they are generated, as Circular, Elliptic, Parabolic, etc., etc.

Convex surface of a circular spindle, zone, or segment of it—Rule: Muliply the length by the radius of the revolving are; multiply this are by the central distance, or distance between the centre of the spindle and centre of the revolving arc; subtract this product from the former, double the

remainder, and multiply it by 3.1416

Volume of a circular spindle.—Multiply the central distance by half the area of the revolving segment; subtract the product from one third of the

cube of half the length, and multiply the remainder by 12 5664.

Volume of frustum or zone of a circular spindle.—From the square of half the length of the whole spindle take one third of the square of half the length of the frustum, and multiply the remainder by the said half length of the frustum; multiply the central distance by the revolving area which generates the frustum; subtract this product from the former, and multiply the remainder by 6.2832.

Volume of a segment of a circular spindle.—Subtract the length of the segment from the half length of the spindle; double the remainder and secretain the volume of a middle frustum of this length; subtract the result from the volume of the whole spindle and halve the remainder.

Volume of a cycloidal spindle = five eighths of the volume of the circumscribing cylinder.—Multiply the product of the square of twice the diameter of the generating circle and 3.927 by its circumference, and divide this pro-

Parabolic conoid. - Volume of a parabolic conoid (generated by the revolution of a parabola on its axis).—Multiply the area of the base by half the height.

Or multiply the square of the diameter of the base by the height and by

Volume of a frustum of a parabolic conoid.—Multiply half the sum of the areas of the two ends by the height.

Volume of a parabolic spindle (generated by the revolution of a parabola on its base).—Multiply the square of the middle diameter by the length and by .4189.

The volume of a parabolic spindle is to that of a cylinder of the same

height and diameter as 8 to 15.

Volume of the middle frustum of a parabolic spindle.—Add together 8 times the square of the maximum diameter, 3 times the square of the end diameter, and 4 times the product of the diameters. Multiply the sum by the length of the frustum and by .05236.

This rule is applicable for calculating the content of casks of parabolic

form.

Casks.—To find the volume of a cask of any form.—Add together 3 times the square of the bung diameter, 25 times the square of the head diameter, and 25 times the product of the diameters. Multiply the sum by the length, and divide by 31,773 for the content in Imperial gallons, or by 28,470 for U.S. gallons.

This rule was framed by D. Hutton on the approximate that the cast in the content in t

This rule was framed by Dr. Hutton, on the supposition that the middle third of the length of the cask was a frustum of a parabolic spindle, and

each outer third was a frustum of a cone.

each outer third was a frustum of a cone.

To find the ullage of a cask, the quantity of liquor in it when it is not full.

For a lying cask: Divide the number of wet or dry inches by the bung diameter in inches. If the quotient is less than .5, deduct from it one fourth part of what it wants of .5. If it exceeds .5, add to it one fourth part of the excess above .5. Multiply the remainder or the sum by the whole content of the cask. The product is the quantity of liquor in the cask, in gallons, when the dividend is vet inches; or the empty space, if dry inches.

For a standing cask: Divide the number of wet or dry inches by the length of the cask. If the quotient exceeds .5, add to it one tenth of its excess above .5; if less than .5, subtract from it one tenth of what it wants of .5. Multiply the sum or the remainder by the whole content of the cask.

of .5. Multiply the sum or the remainder by the whole content of the cask. The product is the quantity of liquor in the cask, when the dividend is wet

inches; or the empty space, if dry inches.

Volume of cask (approximate) U. S. gallons = square of mean diam. x length in inches x .0034. Mean diam. = half the sum of the bung and

head diams.

Volume of an irregular solid.—Suppose it divided into parts, resembling prisms or other bodies measurable by preceding rules. Find the content of each part; the sum of the contents is the cubic contents of the solid.

The content of a small part is found nearly by multiplying half the sum of the areas of each end by the perpendicular distance between them.

The contents of small irregular solids may sometimes be found by immersing them under water in a prismatic or cylindrical vessel, and observing the amount by which the level of the water descends when the solid is withdrawn. The sectional area of the vessel being multiplied by the descent of the level gives the cubic contents.

Or, weigh the solid in air and in water; the difference is the weight of

or, weigh the solid in air and in water; the difference is the weight of water it displaces. Divide the weight in pounds by 62.4 to obtain volume in cubic feet, or multiply it by 27.7 to obtain the volume in cubic inches. When the solid is very large and a great degree of accuracy is not requisite, measure its length, breadth, and depth in several cifferent places, and take the mean of the measurement for each dimension, and multiply the three means together.

When the surface of the solid is very extensive it is better to divide it into triangles, to find the area of each triangle, and to multiply it by the mean depth of the triangle for the contents of each triangular portion; the

contents of the triangular sections are to be added together.

The mean depth of a triangular section is obtained by measuring the depth at each angle, adding together the three measurements, and taking one third of the sum.

PLANE TRIGONOMETRY.

Trigonometrical Functions.

Every triangle has six parts—three angles and three sides. When any three of these parts are given, provided one of them is a side, the other parts may be determined. By the solution of a triangle is meant the determination of the unknown parts of a triangle when certain parts are given. The complement of an angle or arc is what remains after subtracting the

angle or arc from 90°

In general, if we represent any arc by A, its complement is $90^{\circ} - A$. Hence the complement of an arc that exceeds 90° is negative.

Since the two acute angles of a right-angled triangle are together equal to

a right angle, each of them is the complement of the other.

a right angle, each of them is the complement of the other. The supplement of an angle or arc is what remains after subtracting the angle or arc from 180°. If A is an arc its supplement is 180° — A. The supplement of an arc that exceeds 180° is negative.

The sum of the three angles of a triangle is equal to 180°. Either angle is the supplement of the other two. In a right-angled triangle, the right angle shallow arched the angle is the supplement of the other two.

being equal to 90°, each of the acute angles is the complement of the other. In all right-angled triangles having the same acute angle, the sides have to each other the same ratio. These ratios have received special names, as follows:

If A is one of the acute angles, a the opposite side, b the adjacent side, and c the hypothenuse. **The sine** of the angle A is the quotient of the opposite side divided by the

Sin. $A = \frac{1}{c}$ hypothenuse.

The tangent of the angle A is the quotient of the opposite side divided by the adjacent side. Tang. $A = \frac{1}{b}$

The secant of the angle A is the quotient of the hypothenuse divided by the adjacent side. Sec. $A = \frac{1}{h}$

The cosine, cotangent, and cosecant of an angle are respectively the sine, taugent, and secant of the complement of that angle. terms sine, cosine, etc., are called trigonometrical functions.

In a circle whose radius is unity, the sine of an arc, or of the angle at the centre measured by that arc, is the perpendicular let fall from one extremite ity of the arc upon the diameter passing through the other extremity.

The tangent of an arc is the line which touches the circle at one extremity of the arc, and is limited by the diameter (produced) passing through the other extremity.

The secant of an arc is that part of the produced diameter which is intercepted between the centre and the tangent.

The versed sine of an arc is that part of the diameter intercepted between the extremity of the arc and the foot of the sine.

In a circle whose radius is not unity, the trigonometric functions of an arc will be equal to the lines here defined, divided by the radius of the circle.

If ICA (Fig. 70) is an angle in the first quadrant, and CF = radius,

The sine of the angle
$$= \frac{FG}{\mathrm{Rad}}$$
. $\mathrm{Cos} = \frac{CG}{\mathrm{Rad}} = \frac{KF}{\mathrm{Rad}}$. $\mathrm{Tang.} = \frac{IA}{\mathrm{Rad}}$. Secant $= \frac{CI}{\mathrm{Rad}}$. $\mathrm{Cot.} = \frac{DL}{\mathrm{Rad}}$. $\mathrm{Cosec.} = \frac{CL}{\mathrm{Rad}}$. $\mathrm{Versin.} = \frac{GA}{\mathrm{Rad}}$.

If radius is 1, then Rad. in the denominator is omitted, and sine = FG, etc.

The sine of an arc = half the chord of twice the

The sine of the supplement of the arc is the same as that of the arc itself. Sine of arc BDF = FG =sin arc FA.

Fig. 70.

The tangent of the supplement is equal to the tangent of the arc, but with a contrary sign. Tang. BDF = BM.

The secant of the supplement is equal to the secant of the arc, but with a contrary sign. Sec. BDF = CM.

Signs of the functions in the four quadrants.—If we divide a circle into four quadrants by a vertical and a horizontal diameter, the upper right-hand quadrant is called the first, the upper left the second, the lower left the third, and the lower right the fourth. The signs of the functions in the four quadrants are as follows:

First quad. Second quad. Third quad. Fourth quad. Sine and cosecant, Cosine and secant, Tangent and cotangent.

The values of the functions are as follows for the angles specified:

	_	1	· · ·	1			1	,	1	_	_
	•	•	•	0	•		•		•	۰	•
Angle	0	30	45		90	120	135	150	180	270	360
Sine	0	1 2	1	Ë	1	<u>√3</u>	1	1 2	0	١,	0
Dido	۳	1	₹ 2	2	1	2	1/2	2	١		ľ
~ .		4 ∕§	1	1	0	$-\frac{1}{2}$	1	4∕8			
Cosine	1	2	√ 2̄	$\frac{1}{2}$	١	- <u>2</u>	1/2	- 2	-1	0	1
Tangent	0	1/8	1	√ ã	8	-√3		1	1		
_	•	4∕8	•	1	ı	\ * 3	-1	1/8	0	69	0
Cotangent	8	√ 3	1	1	0	1_	_1		١		
				√ §		√ 8		- 1/8	œ	0	œ
Secant	1	2 √ 3	√ 2̄	2	æ	-2	- 1/2		-1	œ	1
,			√ 2	2		2	. ~	1√8	l	1	
Cosecant	000	2	72	₹ <u>8</u>	1	2/8	1/2	5	œ	-1	œ
			./-			_		2+ 4/§	1	1	
Versed sine	0	2 - Vã		$\frac{1}{2}$	1	$\frac{3}{2}$	7~ -	70	2	١, ١	2
		2	1/2	2	1	2	1/2	2	~	1 1	٦
		1						i .	1	1 1	

TRIGONOMETRICAL FORMULÆ.

The following relations are deduced from the properties of similar triangles (Radius = 1):

$$\cos A : \sin A : 1 : \tan A$$
, whence $\tan A = \frac{\sin A}{\cos A}$; $\sin A : \cos A : 1 : \cot A$, " $\cot A = \frac{\cos A}{\sin A}$; $\cos A : 1 : 1 : \sec A$, " $\sec A = \frac{1}{\cos A}$; $\sin A : 1 : 1 : \csc A$, " $\csc A = \frac{1}{\sin A}$; $\tan A : 1 : 1 : \cot A$ " $\tan A = \frac{1}{\cot A}$.

The sum of the square of the sine of an arc and the square of its cosine

equals unity. $\sin^2 A + \cos^2 A = 1$. Formulæ for the functions of the sum and difference of two angles:

Let the two angles be denoted by A and B, their sum A+B=C, and their difference A - B by D.

$$\cos A + B = \cos A \cos B - \sin A \sin B; \dots (9)$$

$$\sin (A - B) = \sin A \cos B - \cos A \sin B; \dots (3)$$

From these four formulæ by addition and subtraction we obtain

$$\sin (A + B) + \sin (A - B) = 2 \sin A \cos B;$$
 (5)

$$\sin (A + B) - \sin (A - B) = 2 \cos A \sin B$$
; (6)

$$\cos(A + B) + \cos(A - B) = 2\cos A\cos B; \dots (7)$$

$$\cos(A - B) - \cos(A + B) = 2 \sin A \sin B$$
. (8)

If we put A+B=C, and A-B=D, then $A=\frac{1}{2}(C+D)$ and $B=\frac{1}{2}(C-D)$, and we have

$$\sin C + \sin D = 2 \sin \frac{1}{2}(C+D) \cos \frac{1}{2}(C-D);$$
 (9)

$$\sin C - \sin D = 2 \cos \frac{1}{2}(C + D) \sin \frac{1}{2}(C - D);$$
 . . . (10)

$$\cos C + \cos D = 2 \cos \frac{1}{2}(C+D) \cos \frac{1}{2}(C-D);$$
 . . . (11)

$$\cos D - \cos C = 2 \sin \frac{1}{2}(C+D) \sin \frac{1}{2}(C-D)$$
. . . . (12)

Equation (*) may be enumciated thus: The sum of the sines of any two angles is equal to twice the sine of half the sum of the angles multiplied by the cosine of half their difference. These formulæ enable us to transform a sum or difference into a product.

a sum or difference into a product.

The sum of the sines of two angles is to their difference as the tangent of half the sum of those angles is to the tangent of half their difference.

$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{2 \sin \frac{1}{2}(A+B)\cos \frac{1}{2}(A-B)}{2 \cos \frac{1}{2}(A+B)\sin \frac{1}{2}(A-B)} = \frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}.$$
 (13)

The sum of the cosmes of two angles is to their difference as the cotangent of half the sum of those angles is to the tangent of half their difference.

$$\frac{\cos A + \cos B}{\cos B - \cos A} = \frac{2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}{2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)} = \frac{\cot \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}.$$
 (14)

The sine of the sum of two angles is to the sine of their difference as the sum of the tangents of those angles is to the difference of the tangents.

$$\frac{\sin (A+B)}{\sin (A-B)} = \frac{\tan A + \tan B}{\tan A - \tan B}; \quad . \quad . \quad . \quad . \quad (15)$$

$$\frac{\sin (A+B)}{\cos A \cos B} = \tan A + \tan B; \qquad \tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B};$$

$$\frac{\sin (A-B)}{\cos A \cos B} = \tan A - \tan B; \qquad \tan (A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B};$$

$$\frac{\cos (A+B)}{\cos A \cos B} = 1 - \tan A \tan B; \qquad \cot (A+B) = \frac{\cot A \cot B}{\cot B + \cot A};$$

$$\frac{\cos (A-B)}{\cos A \cos B} = 1 + \tan A \tan B; \qquad \cot (A-B) = \frac{\cot A \cot B}{\cot B + \cot A};$$

Solution of Plane Right-angled Triangles.

Let A and B be the two acute angles and C the right angle, and a, b, and c the sides opposite these angles, respectively, then we have

1.
$$\sin A = \cos B = \frac{a}{c}$$
; 8. $\tan A = \cot B = \frac{a}{b}$;
2. $\cos A = \sin B = \frac{b}{c}$; 4. $\cot A = \tan B = \frac{b}{a}$.

1. In any plane right-angled triangle the sine of either of the acute angles is equal to the quotient of the opposite leg divided by the hypothenuse. 2. The cosine of either of the acute angles is equal to the quotient of the

adjacent leg divided by the hypothenuse.

3. The tangent of either of the acute angles is equal to the quotient of the

opposite leg divided by the adjacent leg.

4. The cotangent of either of the acute angles is equal to the quotient of

the adjacent leg divided by the opposite leg.

5. The square of the hypothenuse equals the sum of the squares of the other two sides.

Solution of Oblique-angled Triangles.

The following propositions are proved in works on plane trigonometry. In

any plane triangle—
Theorem 1. The sines of the angles are proportional to the opposite sides.
Theorem 2. The sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference.

Theorem 3. If from any angle of a triangle a perpendicular be drawn to the opposite side or base, the whole base will be to the sum of the other two sides as the difference of those two sides is to the difference of the segments of the base.

CASE I. Given two angles and a side, to find the third angle and the other two sides. 1. The third angle = 180° - sum of the two angles. 2. The sides may be found by the following proportion:

The sine of the angle opposite the given side is to the sine of the angle op-

posite the required side as the given side is to the required side. CASE II. Given two sides and an angle opposite one of them, to find the third side and the remaining angles.

The side opposite the given angle is to the side opposite the required angle

as the sine of the given angle is to the sine of the required angle. The third angle is found by subtracting the sum of the other two from 180°,

and the third side is found as in Case I. CASE III. Given two sides and the included angle, to find the third side and

The sum of the required angles is found by subtracting the given angle from 180°. The difference of the required angles is then found by Theorem II. Half the difference added to half the sum gives the greater angle, and half the difference subtracted from half the sum gives the less angle. The

third side is then found by Theorem I.

Another method:

Given the sides c, b, and the included angle A, to find the remaining side aand the remaining angles B and C.

From either of the unknown angles, as B, draw a perpendicular B e to the opposite side. Then

$$Ae = c \cos A$$
, $Be = c \sin A$, $eC = b - Ae$, $Be + eC = \tan C$.

Or, in other words, solve Be, Ae and Be C as right-angled triangles.

CASE IV. Given the three sides, to find the angles. Let fall a perpendicular upon the longest side from the opposite angle, dividing the given triangle into two right-angled triangles. The two segments of the base may be found by Theorem III. There will then be given the hypothenuse and one side of a right-angled triangle, to find the angles.

For areas of triangles, see Mensuration.

ANALYTICAL GEOMETRY.

Analytical geometry is that branch of Mathematics which has for its object the determination of the forms and magnitudes of geometrical

magnitudes by means of analysis.

Ordinates and abscissas.—In analytical geometry two intersecting lines YY'. XX' are used as coördinate axes, XX' being the axis of abscissas or axis of X, and YY' the axis of ordinates or axis of Y. A, the intersection, is called the origin of coordinates. The distance of any point P from the axis of Y measured parallel to the axis of X is called the abscissa of the point, as AD or CP, Fig. 71. Its distance from the axis of X. measured parallel to the axis of Y, is called the ordinate, as AC or PD. The abscissa and ordinate taken together are called the coör-dinates of the point P. The angle of intersec-tion is usually taken as a right angle, in which case the axes of X and Y are called rectangu-

lar coördinates The abscissa of a point is designated by the letter x and the ordinate by y. The equations of a point are the equations which express the distances of the point from the axis. Thus x = a, y = b are the equations of the point P. Equations referred to rectangular coordinates.—The equa

tion of a line expresses the relation which exists between the coördinates of every point of the line.

Equation of a straight line, $y = ax \pm b$, in which a is the tangent of the angle the line makes with the axis of X, and b the distance above A in which the line cuts the axis of Y.

Every equation of the first degree between two variables is the equation of a straight line, as Ay + Bx + C = 0, which can be reduced to the form y = $ax \pm b$

Equation of the distance between two points:

$$D = \sqrt{(x''-x')^2 + (y''-y')^2},$$

in which x'y', x''y'' are the coordinates of the two points. Equation of a line passing through a given point:

$$y-y'=a(x-x'),$$

in which x'y' are the coördinates of the given point, a, the tangent of the angle the line makes with the axis of x, being undetermined, since any number of lines may be drawn through a given point. Equation of a line passing through two given points:

$$y - y' = \frac{y'' - y'}{x'' - x'}(x - x').$$

Equation of a line parallel to a given line and through a given point:

$$y-y'=a(x-x').$$

Equation of an angle V included between two given lines:

$$tang V = \frac{a'-a}{1+a'a},$$

in which a and a' are the tangents of the angles the lines make with the axis of abscissas.

If the lines are at right angles to each other tang $V = \infty$, and

$$1+a'a=0.$$

Equation of an intersection of two lines, whose equations are

$$y = ax + b$$
, and $y = a'x + b'$,
 $x = -\frac{b - b'}{a - a'}$, and $y = \frac{ab' - a'b}{a - a'}$.

Equation of a perpendicular from a given point to a given line:

$$y-y'=-\frac{1}{a}(x-\alpha').$$

Equation of the length of the perpendicular P:

$$P = \frac{y' - ax' - b}{\sqrt{1 \times a^2}}.$$

The circle.—Equation of a circle, the origin of coordinates being at the centre, and radius = R:

$$x^2 + y^2 = R^2$$
.

If the origin is at the left extremity of the diameter, on the axis of X:

$$y^2 = 2Rx - x^2.$$

If the origin is at any point, and the coördinates of the centre are x'y':

$$(x-x')^2+(y-y')^2=R^2.$$

Equation of a tangent to a circle, the coordinates of the point of tangency being x''y'' and the origin at the centre,

$$yy^{\prime\prime}+xx^{\prime\prime}=R^{2}.$$

The ellipse. - Equation of an ellipse, referred to rectangular coordinates with axis at the centre:

$$A^2y^2 + B^2x^2 = A^2B^2,$$

in which A is half the transverse axis and B half the conjugate axis.

Equation of the ellipse when the origin is at the vertex of the transverse

$$y^2 = \frac{B^2}{A^2}(2Ax - x^2).$$

The eccentricity of an ellipse is the distance from the centre to either focus, divided by the semi-transverse axis, or

$$e=\frac{\sqrt{A^2-B^2}}{A}.$$

The parameter of an ellipse is the double ordinate passing through the focus. It is a third proportional to the transverse axis and its conjugate, or

$$2A:2B::2B:$$
 parameter; or parameter = $\frac{2B^3}{A}$.

Any ordinate of a circle circumscribing an ellipse is to the corresponding ordinate of the ellipse as the semi-transverse axis to the semi-conjugate. Any ordinate of a circle inscribed in an ellipse is to the corresponding ordinate of the ellipse as the semi-conjugate axis to the semi-transverse.

Equation of the tangent to an ellipse, origin of axes at the centre:

$$A^2yy^{\prime\prime} + B^2xx^{\prime\prime} = A^2B^2,$$

y''x'' being the coördinates of the point of tangency. Equation of the normal, passing through the point of tangency, and perpendicular to the tangent:

$$y - y'' xx \frac{A^2y''}{B^2x''}(x - x'').$$

The normal bisects the angle of the two lines drawn from the point of tangency to the foci.

The lines drawn from the foci make equal angles with the tangent.

The parabola.—Equation of the parabola referred to rectangular coordinates, the origin being at the vertex of its axis. $y^2 = 2px$, in which 2pis the parameter or double ordinate through the focus.

The parameter is a third proportional to any abscissa and its corresponding ordinate, or

Equation of the tangent:

$$yy''=p(x+x''),$$

y''x'' being coördinates of the point of tangency. Equation of the normal:

$$y-y^{\prime\prime}xx-\frac{y^{\prime\prime}}{v}(x-x^{\prime\prime}).$$

The sub-normal, or projection of the normal on the axis, is constant, and equal to half the parameter.

The tangent at any point makes equal angles with the axis and with the

line from the point of tangency to the focus.

The hyperbola.—Equation of the hyperbola referred to rectangular coordinates, origin at the centre:

$$A^2y^3 - B^3x^2 = -A^2B^2,$$

in which A is the semi-transverse axis and B the semi-conjugate axis. Equation when the origin is at the vertex of the transverse axis:

$$y^2 = \frac{B^2}{A^2} (2A xx x^2).$$

Conjugate and equilateral hyperbolas.—If on the conjugate axis, as a transverse, and a focal distance equal to $\sqrt{A^2 + B^2}$, we construct the two branches of a hyperbola, the two hyperbolas thus constructed are called conjugate hyperbolas. If the transverse and conjugate are saves are equal, the hyperbolas are called equilateral, in which case $y^2 - x^2 = -A^2$ when A is the transverse axis, and $x^2 - y^3 = -B^2$ when B is the transverse axis.

The parameter of the transverse axis is a third proportional to the transverse axis and its conjugate.

The tangent to a hyperbola bisects the angle of the two lines drawn from the point of tangency to the foci.

The asymptotes of a hyperbola are the diagonals of the rectangle described on the axes, indefinitely produced in both directions.

In an equilateral hyperbola the asymptotes make equal angles with the

transverse axis, and are at right angles to each other.

The asymptotes continually approach the hyperbola, and become tangent to it at an infinite distance from the centre.

Conic sections.—Every equation of the second degree between two

variables will represent either a circle, an ellipse, a parabola or a hyperbola. These curves are those which are obtained by intersecting the surface of a

come by planes, and for this reason they are called conic sections.

Logarithmic curve.—A logarithmic curve is one in which one of the coordinates of any point is the logarithm of the other.

The coordinate axis to which the lines denoting the logarithms are parallel is called the axis of logarithms, and the other the axis of numbers. If y is the axis of logarithms and x the axis of numbers, the equation of the curve

is $y = \log x$. If the base of a system of logarithms is a, we have $a^y = x$, in which y is the logarithm of x.

Each system of logarithms will give a different logarithmic curve. If y=0, z=1. Hence every logarithmic curve will intersect the axis of numbers at a distance from the origin equal to 1.

DIFFERENTIAL CALCULUS.

The differential of a variable quantity is the difference between any two of its consecutive values; hence it is indefinitely small. It is expressed by writing d before the quantity, as dx, which is read differential of x.

The term $\frac{dy}{dx}$ is called the differential coefficient of y regarded as a func-

The differential of a function is equal to its differential coefficient multiplied by the differential of the independent variable; thus, $\frac{dy}{dx}dx = dy$.

The limit of a variable quantity is that value to which it continually approaches, so as at last to differ from it by less than any assignable quan-

tity.

The differential coefficient is the limit of the ratio of the increment of the independent variable to the increment of the function.

The differential of a constant quantity is equal to 0.

The differential of a product of a constant by a variable is equal to the constant multiplied by the differential of the variable.

If
$$u = Av$$
, $du = Adv$.

In any curve whose equation is y = f(x), the differential coefficient $\frac{dy}{dx} = \tan \alpha$; hence, the rate of increase of the function, or the ascension of the curve at any point, is equal to the tangent of the angle which the tangent line makes with the angle of abscissas.

All the operations of the Differential Calculus comprise but two objects:

1. To find the rate of change in a function when it passes from one state of value to another, consecutive with it.

2. To find the actual change in the function: The rate of change is the differential coefficient, and the actual change the function.

Differentials of algebraic functions.—The differential of the sum or difference of any number of functions, dependent on the same variable, is equal to the sum or difference of their differentials taken separated.

If
$$u = y + z - w$$
, $du = dy + dz - dw$.

The differential of a product of two functions dependent on the same variable is equal to the sum of the products of each by the differential of the other:

$$d(uv) = vdu + udv.$$
 $\frac{d(uv)}{uv} = \frac{du}{u} + \frac{dv}{v}.$

The differential of the product of any number of functions is equal to the sum of the products which arise by multiplying the differential of each function by the product of all the others:

$$d(uts) = tsdu + usdt + utds.$$

The differential of a fraction equals the denominator into the differential of the numerator minus the numerator into the differential of the denominator, divided by the square of the denominator:

$$dt = d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}.$$

If the denominator is constant, dv = 0, and $dt = \frac{vdu}{v^2} = \frac{du}{v}$.

If the numerator is constant, du = 0, and $dt xx - \frac{udv}{v^2}$

The differential of the square root of a quantity is equal to the differential of the quantity divided by twice the square root of the quantity:

If
$$v = u^{\frac{1}{2}}$$
, or $v = \sqrt{u}$, $dv = \frac{du}{2\sqrt{u}}$; $= \frac{1}{2}u^{-\frac{1}{2}}du$.

The differential of any power of a function is equal to the exponent multiplied by the function raised to a power less one, multiplied by the differential of the function, $d(n^n) = nu^{n-1}du$.

Formulas for differentiating algebraic functions.

1.
$$d(a) = 0$$
.
2. $d(\alpha x) = a dx$.
3. $d(x + y) = dx + dy$.
4. $d(x - y) = dx - dy$.
5. $d(xy) = x dy + y dx$.
6. $d\begin{pmatrix} x \\ y \end{pmatrix} = \frac{y dx - x dy}{y^3}$.
7. $d(x^m) = mx^{m-1} dx$.
8. $d(\sqrt{x}) = \frac{dx}{\sqrt{x}}$.
9. $d\begin{pmatrix} -\frac{r}{s} \end{pmatrix} = -\frac{r}{s} - \frac{r}{s} - 1 dx$.

To find the differential of the form $u=(a+bx^n)^m$:
Multiply the exponent of the parenthesis into the exponent of the variable within the parenthesis, into the coefficient of the variable, into the binomial raised to a power less 1, into the variable within the parenthesis raised to a power less 1, into the differential of the variable.

$$du = d(a + bx^n)^m = mnb(a + bx^n)^{m-1}x^{n-1}dx.$$

To find the rate of change for a given value of the variable: Find the differential coefficient, and substitute the value of the variable in the second member of the equation.

EXAMPLE.—If x is the side of a cube and u its volume, $u = x^3$, $\frac{du}{dx} = 3x^2$.

Hence the rate of change in the volume is three times the square of the edge. If the edge is denoted by 1, the rate of change is 3.

Application. The coefficient of expansion by heat of the volume of a body is three times the linear coefficient of expansion. Thus if the side of a cube expands .001 inch, its volume expands .003 cubic inch. 1.001 = 1.003003001.

A partial differential coefficient is the differential coefficient of a function of two or more variables under the supposition that only one of them has changed its value.

A partial differential is the differential of a function of two or more variables under the supposition that only one of them has changed its value.

The total differential of a function of any number of variables is equal to the sum of the partial differentials.

If
$$u = f(xy)$$
, the partial differentials are $\frac{du}{dx}dx$, $\frac{du}{dy}dy$.

If
$$u = x^2 + y^2 - z$$
, $du = \frac{du}{dx}dx + \frac{du}{dy}dy + \frac{du}{dz}dz$; $= 2xdx + 3y^2dy - dz$.

Integrals.—An integral is a functional expression derived from a differential. Integration is the operation of finding the primitive function from the differential function. It is indicated by the sign f, which is read "the integral of." Thus $\int 2xdx = x^2$; read, the integral of 2xdx equals x^2 . To integrate an expression of the form $nx^{m-1}dx$ or x^mdx , add 1 to the exponent of the variable, and divide by the new exponent and by the differential of the variable: $\int 3x^2dx = x^3$. (Applicable in all cases except when

m=-1. For $\int x^{-1} dx$ see formula 2 page 78.)

The integral of the product of a constant by the differential of a variable is equal to the constant multiplied by the integral of the differential:

$$\int ax^{m}dx = a\int x^{m}dx = a\frac{1}{m+1}x^{m+1}$$
.

The integral of the algebraic sum of any number of differentials is equal to the algebraic sum of their integrals;

$$du = 2ax^2dx - bydy - z^2dz$$
; $fdu = \frac{2}{3}ax^3 - \frac{b}{3}y^2 - \frac{z^3}{3}$.

Since the differential of a constant is 0, a constant connected with a variable by the sign + or - disappears in the differentiation; thus $d(a+x^m) =$ $dx^m = mx^{m-1}dx$. Hence in integrating a differential expression we must annex to the integral obtained a constant represented by C to compensate for the term which may have been lost in differentiation. Thus if we have dy = adx; fdy = afdx. Integrating,

$$y = ax \pm C$$
.

The constant C, which is added to the first integral, must have such a value as to render the functional equation true for every possible value that may be attributed to the variable. Hence, after having found the first integral equation and added the constant C, if we then make the variable equal to zero, the value which the function assumes will be the true value of C.

An indefinite integral is the first integral obtained before the value of the constant C is determined.

A particular integral is the integral after the value of C has been found. A definite integral is the integral corresponding to a given value of the variable.

Integration between limits.-Having found the indefinite inte-

grain and the particular integral, the next step is to find the definite integral, and then the definite integral between given limits of the variable.

The integral of a function, taken between two limits, indicated by given values of x, is equal to the difference of the definite integrals corresponding to those limits. The expression

$$\int_{x'}^{x''} dy = a \int dx$$

is read: Integral of the differential of y, taken between the limits x' and x''; the least limit, or the limit corresponding to the subtractive integral, being placed below.

Integrate $du = 9x^2dx$ between the limits x = 1 and x = 3, u being equal to 81 when x = 0. $\int du = \int 9x^2 dx = 8x^3 + C$; C = 81 when x = 0, then

$$\int_{x=1}^{x=8} du = 3(3)^3 + 81, \text{ minus } 3(1)^3 + 81 = 78.$$

Integration of particular forms.

To integrate a differential of the form $du = (a + bx^n)^m x^{n-1} dx$.

1. If there is a constant factor, place it without the sign of the integral, and omit the power of the variable without the parenthesis and the differential;

2. Augment the exponent of the parenthesis by 1, and then divide this quantity, with the exponent so increased, by the exponent of the parenthesis, into the exponent of the variable within the parenthesis, into the coefficient of the variable. Whence

$$\int \! du = \frac{(a+bx^n)^{m+1}}{(m+1)nb} = C.$$

The differential of an arc is the hypothenuse of a right-angle triangle of which the base is dx and the perpendicular dy.

If z is an arc,
$$dz = \sqrt{dx^2 + dy^2}$$
 $z = \int \sqrt{dx^2 + dy^2}$.

Quadrature of a plane figure.

The differential of the area of a plane surface is equal to the ordinate into the differential of the abscissa.

$$ds = ydx$$
.

To apply the principle enunciated in the last equation, in finding the area of any particular plane surface:

Find the value of y in terms of x, from the equation of the bounding line;

substitute this value in the differential equation, and then integrate between

the required limits of x.

Area of the parabola.—Find the area of any portion of the common parabola whose equation is

$$y^2 = 2px$$
; whence $y = \sqrt{2px}$.

Substituting this value of y in the differential equation ds = ydx gives

$$\int ds = \int \sqrt{2px} dx = \sqrt{2p} \int x^{\frac{1}{2}} dx = \frac{2\sqrt{2p}}{3} x^{\frac{3}{2}} + C;$$
or, $s = \frac{2\sqrt{2px}}{3} \times x = \frac{2}{3} xy + C.$

If we estimate the area from the principal vertex, x = 0, y = 0, and C = 0; and denoting the particular integral by s', $s' = \frac{2}{a}xy$.

That is, the area of any portion of the parabola, estimated from the vertex, is equal to % of the rectangle of the abscissa and ordinate of the extreme point. The curve is therefore quadrable.

Quadrature of surfaces of revolution. —The differential of a surface of revolution is equal to the circumference of a circle perpendicular to the axis into the differential of the arc of the meridian curve.

$$de = 2\pi y \sqrt{dx^2 + dy^2};$$

in which y is the radius of a circle of the bounding surface in a plane per-pendicular to the axis of revolution, and x is the abscissa, or distance of the plane from the origin of coordinate axes.

Therefore, to find the volume of any surface of revolution:

Find the value of y and dy from the equation of the meridian curve in terms of x and dx, then substitute these values in the differential equation, and integrate between the proper limits of x. By application of this rule we may find:

The curved surface of a cylinder equals the product of the circumference of the base into the altitude.

The convex surface of a cone equals the product of the circumference of the base into half the slant height.

The surface of a sphere is equal to the area of four great circles, or equal

to the curved surface of the circumscribing cylinder.

Cubature of volumes of revolution.—A volume of revolution is a volume generated by the revolution of a plane figure about a fixed line called the axis.

If we denote the volume by V, $dV = \pi y^2 dx$. The area of a circle described by any ordinate y is πy^2 ; hence the differential of a volume of revolution is equal to the area of a circle perpendicular to the axis into the differential of the axis.

The differential of a volume generated by the revolution of a plane figure

about the axis of Y is $\pi x^2 dy$.

To find the value of V for any given volume of revolution:

Find the value of y^2 in terms of x from the equation of the meridian curve, substitute this value in the differential equation, and then integrate between the required limits of x.

By application of this rule we may find:

The volume of a cylinder is equal to the area of the base multiplied by the altitude.

The volume of a cone is equal to the area of the base into one third the altitude.

The volume of a prolate spheroid and of an oblate spheroid (formed by the revolution of an ellipse around its transverse and its conjugate axis respectively) are each equal to two thirds of the circumscribing cylinder.

If the axes are equal, the spheroid becomes a sphere and its volume =

 $\pi R^2 \times D = \frac{1}{6} \pi D^3$; R being radius and D diameter.

The volume of a paraboloid is equal to half the cylinder having the same base and altitude.

The volume of a pyramid equals the area of the base multiplied by one third the altitude.

Second, third, etc., differentials.—The differential coefficient being a function of the independent variable, it may be differentiated, and we thus obtain the second differential coefficient:

 $d\left(\frac{du}{dx}\right) = \frac{d^2u}{dx}.$ Dividing by dx, we have for the second differential coefficient $\frac{d^2u}{dx^2}$, which is read: second differential of u divided by the square of the differential of x (or dx squared).

The third differential coefficient $\frac{d^3u}{dx^3}$ is read: third differential of u divided

by dx cubed. The different orders are obtained by multiplying the differential coefficients by the corresponding powers of dx; thus $\frac{d^3u}{dx^3} = t$ third differential of u.

whose equation is y=fx, referred to rectangular coördinates, the curve whose equation is y=fx, referred to rectangular coördinates, the curve will recede from the axis of X when $\frac{dy}{dx}$ is positive, and approach the axis when it is negative, when the curve lies within the first angle of the coördinate axes. For all angles and every relation of y and x the curve will recede from the axis of X when the ordinate and first differential coefficient have the same sign, and approach it when they have different signs. If the tangent of the curve becomes parallel to the axis of X at any point $\frac{dy}{dx} = 0$. If the tangent becomes perpendicular to the axis of X at any point $\frac{dy}{dx} = \infty$.

Sign of the second differential coefficient. The second differential coefficient has the same sign as the ordinate when the curve is convex toward the axis of abscissa and a contrary sign when it is concave.

Maclaurin's Theorem.—For developing into a series any function of a single variable as $u = A + Bx + Cx^2 + Dx^3 + Ex^4$, etc., in which A, B, C, etc., are independent of x:

$$u = (u)_{x=0} + \left(\frac{du}{dx}\right)_{x=0} x + \frac{1}{1 \cdot 2} \left(\frac{d^2u}{dx^2}\right)_{x=0} x^2 + \frac{1}{1 \cdot 2 \cdot 3} \left(\frac{d^2u}{dx^3}\right)_{x=0} x^3 + \text{etc.}$$

In applying the formula, omit the expressions x = 0, although the coefficients are always found under this hypothesis.

$$(a+x)^{m} = a^{m} + ma^{m-1}x + \frac{m}{1} \frac{(m-1)}{2} a^{m-2}x^{2} + \frac{m}{1} \frac{(m-1)}{2} \frac{(m-2)}{3} a^{m-3}x^{3} + \text{etc.}$$

$$\frac{1}{a+x} = \frac{1}{a} - \frac{x}{a^{2}} + \frac{x^{3}}{a^{3}} - \frac{x^{3}}{a^{4}} + \dots + \frac{x^{n}}{a^{n+1}}, \text{ etc.}$$

Taylor's Theorem.—For developing into a series any function of the sum or difference of two independent variables, as $u' = f(x \pm y)$:

$$u' = u + \frac{du}{dx}y + \frac{d^2u}{dx^2}\frac{y^2}{1 \cdot 2} + \frac{d^3u}{dx^3}\frac{y^3}{1 \cdot 2 \cdot 3} + \text{etc.},$$

in which u is what u' becomes when y=0, $\frac{du}{dx}$ is what $\frac{du'}{dx}$ becomes when y=0, etc.

Maxima and minima.—To find the maximum or minimum value of a function of a single variable:

 Find the first differential coefficient of the function, place it equal to 0, and determine the roots of the equation.

Find the second differential coefficient, and substitute each real root, for the variable in the second member of the equation. Each root which gives a negative result will correspond to a maximum value of the function, and each which gives a positive result will correspond to a minimum value.

Example.—To find the value of x which will render the function y a maximum or minimum in the equation of the circle, $y^2 + x^2 = R^2$;

$$\frac{dy}{dx} = -\frac{x}{y}$$
; making $-\frac{x}{y} = 0$ gives $x = 0$.

The second differential coefficient is: $\frac{d^2y}{dx} = -\frac{x^2 + y^2}{x^3}$.

When x = 0, y = R; hence $\frac{d^3y}{dx^2} = -\frac{1}{R}$, which being negative, y is a maximum for R positive

In applying the rule to practical examples we first find an expression for the function which is to be made a maximum or minimum.

If in such expression a constant quantity is found as a factor, it may be omitted in the operation; for the product will be a maximum or a mini-mum when the variable factor is a maximum or a minimum.

3. Any value of the independent variable which renders a function a maximum or a minimum will render any power or root of that function a maximum or minimum; hence we may square both members of an equation to free it of radicals before differentiating.

By these rules we may find:

The maximum rectangle which can be inscribed in a triangle is one whose altitude is half the altitude of the triangle.

The altitude of the maximum cylinder which can be inscribed in a cone is one third the altitude of the cone.

The surface of a cylindrical vessel of a given volume, open at the top, is a minimum when the altitude equals half the diameter.

The altitude of a cylinder inscribed in a sphere when its convex surface is

a maximum is $r \sqrt{2}$. r = radius.

The altitude of a cylinder inscribed in a sphere when the volume is a $\frac{2r}{r}$. maximum is

Differential of an exponential function.

in which k is a constant dependent on a.

The relation between a and k is $a^{k} = e$; whence $a = e^{k}$, (3)

in which $e=2.7182818\ldots$ the base of the Naperian system of logarithms. **Logarith ms.**—The logarithms in the Naperian system are denoted by l_i Nap. log or hyperbolic log, hyp. log, or \log_e ; and in the common system always by log.

$$k = \text{Nap. log } a, \log a = k \log e$$

The common logarithm of $e_1 = \log 2.7182818 \dots = .4342945 \dots$ is called the modulus of the common system, and is denoted by M. Hence, if we have the Naperian logar thm of a number we can find the common logarithm of the same number by multiplying by the modulus. Reciprocally, Nap. $\log = c \cos \log a = c \cos \log a$. If in equation (4) we make a = 10, we have

$$1 = k \log e, \text{ or } \frac{1}{k} = \log e = M.$$

That is, the modulus of the common system is equal to 1, divided by the Naperian logarithm of the common base.

From equation (2) we have

$$\frac{du}{u} = \frac{da^x}{a^x} = kdx.$$

If we make a = 10, the base of the common system, $x = \log u$, and

$$d(\log u) = dx = \frac{du}{u} \times \frac{1}{k} = \frac{du}{u} \times M.$$

That is, the differential of a common logarithm of a quantity is equal to the differential of the quantity divided by the quantity, into the modulus. If we make a=c, the base of the Naperian system, x becomes the Naperian rian logarithm of u, and k becomes 1 (see equation (3)); hence M=1, and

$$d(\text{Nap. log } u) = dx = \frac{du}{u^x}; = \frac{du}{u}$$

That is, the differential of a Naperian logarithm of a quantity is equal to the differential of the quantity divided by the quantity; and in the Naperian system the modulus is 1.

Since k is the Naperian logarithm of a, $du = a^x l a dx$. That is, the

differential of a function of the form a^x is equal to the function, into the Naperian logarithm of the base a, into the differential of the exponent. If we have a differential in a fractional form, in which the numerator is the differential of the denominator, the integral is the Naperian logarithm of the denominator. Integrals of fractional differentials of other forms are given helow:

Differential forms which have known integrals; exponential functions. (l = Nap. log.)

1.
$$\int a^{x} l a dx = a^{x} + C;$$
2.
$$\int \frac{dx}{x} = \int dx x^{-1} = lx + C;$$
3.
$$\int (xy^{x-1}dy + y^{x} ly \times dx) = y^{x} + C;$$
4.
$$\int^{2} \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = l(x + \sqrt{x^{2} \pm a^{2}}) + C;$$
5.
$$\int \frac{dx}{\sqrt{x^{2} \pm 2ax}} = l(x \pm a + \sqrt{x^{2} \pm 2ax}) + C;$$
6.
$$\int^{2} \frac{2adx}{a^{2} - x^{2}} = l(\frac{a + x}{a - x}) + C;$$
7.
$$\int \frac{2adx}{x^{2} - a^{2}} = l(\frac{x - a}{x + a}) + C;$$
8.
$$\int^{2} \frac{2adx}{x\sqrt{a^{2} + x^{2}}} = l(\frac{\sqrt{a^{2} + x^{2}} - a}{\sqrt{a^{2} + x^{2}} + a}) + C;$$
9.
$$\int^{2} \frac{2adx}{x\sqrt{a^{2} - x^{2}}} = l(\frac{a - \sqrt{a^{2} - x^{2}}}{a + \sqrt{a^{2} - x^{2}}}) + C;$$
10.
$$\int^{2} \frac{x^{-2}dx}{x\sqrt{a + x^{-2}}} = -l(\frac{1 + \sqrt{1 + a^{2}x^{2}}}{x\sqrt{a^{2} - x^{2}}}) + C.$$

Circular functions.—Let z denote an arc in the first quadrant, y its sine, x its cosine, v its versed sine, and t its tangent; and the following notation be employed to designate an arc by any one of its functions, viz...

$$\sin^{-1} y$$
 denotes an arc of which y is the sine $\cos^{-1} x$ " " " x is the cosine, $\tan^{-1} t$ " " " t is the tangent

(read "arc whose sine is y," etc.),—we have the following differential forms which have known integrals (r = radius):

$$\int_{0}^{2} \cos z \, dz = \sin z + C;$$

$$\int_{0}^{2} - \sin z \, dz = \cos z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - y^{2}}} = \sin^{-1} y + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} x + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} x + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cot^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cot^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cot^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \sin^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} z + C;$$

$$\int_{0}^{2} \frac{dz}{\sqrt{1 - x^{2}}} = \cos^{-1} z + C;$$

The cycloid.—If a circle be rolled along a straight line, any point of the circumference, as P, will describe a curve which is called a cycloid. The circle is called the generating circle, and P the generating point.

The transcendental equation of the cycloid is

$$x = \text{ver-sin}^{-1} y - \sqrt{2ry - y^2},$$

and the differential equation is $dx = \frac{ydx}{\sqrt{2ry-1}}$

The area of the cycloid is equal to three times the area of the generating circle.

The surface described by the arc of a cycloid when revolved about its base is equal to 64 thirds of the generating circle.

The volume of the solid generated by revolving a cycloid about its base is

equal to five eighths of the circumscribing cylinder.

Integral calculus.—In the integral calculus we have to return from the differential to the function from which it was derived. A number of differential expressions are given above, each of which has a known in-tegral corresponding to it, and which being different ated, will produce the given differential.

In all classes of functions any differential expression may be integrated when it is reduced to one of the known forms; and the operations of the integral calculus consist mainly in making such transformations of given differential expressions as shall reduce them to equivalent ones whose integrals are known.

For methods of making these transformations reference must be made to the text-books on differential and integral calculus.

RECIPROCALS OF NUMBERS.

No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.
1	.100000000	64	.01562500	127	.00787402	190	.00526316	253	. 00395257
2	.50000000	5	.01588461	8	.00781250	1	.00523560	4	.00393701
3	.33333333	6	.01515151	9	.00775194	3	.00520833	5.	.00392157
4	.25000000	8	.01492537	130	00769281	4	.00518135	6	.00390625 .00389105
6	16666667	9	.01470588 .01449275	1 2	.00757576	5	.00513404	8	.00387597
7	.14285714	70	.01428571	3	00751880	6	.00510204	9	.00386100
8	.12500000	1	.01408451	4	.00746269	7	.00507614	260	.00384613
9	.11111111	2	.01388889	5	00740741	8	.00505051	1	.00383143
10	.10000000	- 3	.01369863	6	.00735294	9		2	.00381679
11	.09090909	4	.01351351	7	.00729927	200		8	.0038022
13	.08333333	5	.01338333	8	.00724638	1	.00497512	4	.0037878
13	.07692308	6	.01315789	9	.00719424	3	.00495049	5	.0037735
14	.066666667	8	.01298701	140	.00714286	4		6	.00375940
16	06250000	9	.01265823	2	.00704225	5		8	.00373134
17	.05582353	80		3	: 00699301	6		9	.00371717
18	.05555556	1	.01234568	4	.00694444	7	.00483093	270	.00370370
19	.05263158	2	.01219512	5	.00689655	. 8		1	.00369004
20	.05000000	3		6	.00684931	9		2	.00367647
1	.04761905	4	.01190476	7	.00680272	210		3	.00366300
-0	04545455	5	.01176471	8	.00675676	11	.00473934	4	.00864963
3	.04347826	2	.01162791 .01149425	150	00671141	12		5 6	.00363636
5	.04000000	8	.01136364	130	.00662252	14		7	.00361011
6	.03846154	9		2	.00657895	15		8	.00359712
7	.03703704	90		3	.00653595	16		9	.00358423
8	.03571429	1	.01098901	4	.00649351	17	.00460829	280	.00357143
9	.03448276	2	.01086956	5	.00645161	18		1	.00355872
30	.03833333	8	.01075269	6	.00641026	19		2	.00854610
1 2	.03225806	5	.01063830	7	.00636943	220		3	.00353357
3	.03030303	6	.01052632	8 9	.00632911	1 2	.00452489	5	.00352113 .00350877
4	.02941176		.01030928	160		3	.00430430	6	.00349650
5	.03857143	Ĩ.	.01020408	100	.00621118	4		7	.00848432
6	.02777778	9	.01010101	2	.00617284	5	.00444444	8	.00347222
7	.02702703	100	.01000000	3	.00613497	6		9	.00346021
8	.02631570	1	.00990099	4	.00609756	7	.00440529	290	.00344828
9.	.02564103	2 3	.00980392	5	.00606061	8 9		1	.00343643
40	.02500000	4	.00910814	6	.00598802	230		8	.00342466
9	.02380952	5	.00952381	8	.00595238	1	.00432900	4	.00340136
3	02325581	6	.00943396	9	.00591716	9	00431034	5	.00338983
4	.02272727	7	.00934579	170	.00588235	3	.00429184	6	.00337838
5	.02222222	8	.00925926	1	.00584795	4		7	.00336700
6	.02178913	9	.00917431	2	.00581395	5		8	.00335570
7	.09127660	110	.00909091	3	.00578035	6		9	.00334448
8	.02083333	11	.00900901 .00892857	5	.00574713	8	.00421941	300	.00333333
50	.02040810	13	.00884956	6	.00568182	9		2	.00332226
1	.01960784	14	.00877193	7	.00564972	240		3	.00330033
2	.01923077	15	.00869565	8	.00561798	1	.00414938	4	.00328947
3	.01886792	16	.00862069	9	.00558659	2		5	.00327869
4	01851852	17	.00854701	180	.00555556	3		6	.00326797
5	.01818182	18	.00847454	1	.00552486	4		7	.00325733
6	.01785714	19	.00840336	3	.00549451	5	.00408163	8	.00324675
8	.01754386	120	.00826446	4	.00543478	7		310	.00323625
9	.01694915	2	.00819672	5	.00540540	8		11	.00323543
60	.01666667	3	.00813008	6	.00537634	9	.00401606	12	.00320513
1	.01639344	4	.00806452	3	.00534759	250	.00400000	13	.00319489
2	.01612903	5		8		1		14	00318471
10	1 .01587300	6	.00793651	6	.00529100	2	1 .00396825	1 15	.00317460

No	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.
316	.00816456	381	.00262467	446	.00224215	511	.00195695	576	.00173611
17	.00815457	2	.00261780	7	.00223714	12	.00195312	7	.00178310
18	.00814465	3	90261097	8	.00223214	18	.00194932	8	.00178010
19 320	.00813480 .00812500	5	.00260417	450	.00222717	14	.00194552 .00194175	580	.00172712
1!	.00311526	6	.00259067	1	.00221729	15 16	.00193798	360	.00172414
2.	.00810559	7		2	.00221239	17	.00198424	2	.00171821
3		8	.00257732	8	.00220751	18	.00193050	8	.00171527
4	.00808642	9	.00257069	4	.00220364	19	.00192678	4	.90171233
5	.00907692	890	.00256410	5	.00219780	520	.00192808	5	.00170940
6	.00806748	1	.00255754	6	.00219298	1	.00191939	6	.00170648
8	.00905910	2	.00255102	7	.00218818	2	.00191571	7	.00170358
9.	.00904878 .00903951	8	.00254453	8	.00218341	8	.00191205	8	.00170068
330	.00303030	4	.00253807	460	.00217865	4	.00190840	9	.00169779
3 20	.00303030	5	.00253165	400	.00217391	5 6	.00190476	590	.00169491
2	.00301205	7	.00251889	2	.60216450	7	.00189753	2	.00168919
3	.00300300	8	.00251256	8	90215983	8	.00189394	8	.00168634
4	.00299401	9	.00250627	4	.00215517	ğ	.00189036	4	.00168350
5 6	.00298507	400	.00250000	5	.00215054	580	.00188679	5	.00168067
6	.00297619	1	.00249377	6	.00214592	1	.00188324	6	.00167785
?	.00296736	2	.00248756	7	.00214133	2	.00187970	7	.00167504
8	.00295858	3	.00248139	- 8	.00213675	3	.00187617	8	.00167224
240	.00294985	4	.00247525	9	.00213220	4	.00187266	9	.00166945
340	.00294118	5	.00246914	470	.00212766	5	.00186916	600	.00166667
1 2	.00293255	6	.00216305	1 2	.00212314	6	.00186567	1	.00166389
3	.00292586	8	.00245700 .00245098	3	.00211864	8	.00186220 .00185874	3	.00166113 .00165837
4	.00290698	9		4	.00210970	ĝ	.00185528	3	.00165563
5	.00289855	410	.00243902	5	.00210526	540	.00185185	5	.00165289
6	.00289017	111		6	.00210084	1	.C0184*43	6	.00165016
7	.00288184	12	.00242718	7	.00209644	2	.00184502	7	.00164745
8	.00287356	13	.00242131	8	.00209205	3	.00184162	8	.00164474
9	.00286533	14	.00241546	9	.00208768	4	.00183823	9	.00164204
350 1		15	.00240964	480	.00208333	5	.00183486	610	.00163934
2	.00284900	16 17	.00240385	1 2	.00207900	6	.00183150	11	.00163666
ã	.00283286	18	.00239234	3	.00207469	8	.00182815	12 13	.90163399 .00163132
4		19	.00238663	4	.00206612	9	.00182149	14	.00162866
	00981600	420	.00238095	5	.00206186	550	.00181818	15	.00162602
6	.00280899	1	.00237530	6	.00205761	1	.00181488	16	.00162338
7		2	.00236967	7	.00205339	2	.00181159	17	.00162075
8		8	.00236407	8	.00204918	8	.00180832	18	.00161812
360	1 .00010001	4	.00235849	9	.00204499	4	.00180505	19	.00161551
900		5	.00235294	490	.00204082	5	.00180180	620	.00161290
2	.00277008	6	.00234742 .00234192	1 2	.00203666	6	.00179856	1	.00161031
3		8		3	.00203252	8	.00179533	3	.00160772
ă		9	.00233100	4	.00202429	9	.00179211	3	.00160314
		430	.00232558	5	.00202020	560	.00178571	5	.00160000
5		1	.00232019	6	.00201613	1	.00178253	6	.00159744
7		2	.00231481	7	.00201207	2	.00177936	7	.00159490
8		3	.00230947	8	.00200803	8	.00177620	8	.00159236
370	1 .000.1000	4	.00230415	9	.00200401	4	.00177305	9	.00158982
9/(5 6	.00229885	500	.00200000	5	00176991	630	.00158730
9	.00269542 .00268817	7	.00229358	1 2	.00199601	6	.00176678	1	.00158479
8	.00268096	8	.00228310	8	.00199203	8	.00176367	8	.00158228 .00157978
4		9	.00227790	4	.00198413	9	.00175747	4	.00157978
		440	.00227278	5	.00198020	570	.00175439	5	.00157480
6	.00265957	1	.00226757	6	.00197628	1	.00175131	6	.00157238
7	.00265252	2	.00226244	7	.00197239	2	.00174825	7	.00156986
		8	.00225734	8	.00196850	8	.00174520	8	.00156740
9		4	.00225225	9	.00196464	4	.00174216	9	.00156494
380	.00263158	1 5	.00224719	510	.00196078	5	.00173913	640	.00156250

RECIPROCALS OF NUMBERS.

		KI	CIPRO	UAL	79 UF N	UM	BEES.		
No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro-	No.	Recipro-	No.	Recipro- cal.
1	.10000000	64	.01562500	127	00787402	190	.00526316	253	.00395257
2	.50000000	5	.01588461	8	00781250	190	.00523560	205	.00393701
8	.33333333	6	.01515151	9	.00775194	2	.00520833	5	.00392157
. 4	.25000000	7	.01492537	130	100769231	3	.00518135	6	.00390625
5 6	.20000000	8	.01470588	1	,00763359	4	.00515464	7	.00389105
6	.16666667	9 70	.01449275	3	00757576	5	.00512820	8 9	.00387597
7 8	.14285714 .12500000	1	.01428571 .01408451	4	00746269	7	.00507614	260	.00384615
9	.11111111	2	.01388889	5	00740741	8	.00505051	1	.00383142
10	.10000000	2 3	.01369863	∥ 6	.00735294	. 9	.00502513	2	.00381679
11	.09090909	4	.01351351	8	.00729927	200	.00500000	8	.00380228
12	.08833333	5	.01338333	8		1	.00497512	4	.00378788
13 14	.07692308	6 7 8	.01315789 .01298701	140		3	.00495049	5	.00377358 .0037 5 940
15	06666667	é	.01282051	140	00709220	4	.00492011	7	.00374532
16	.06250000	9	.01265829	2	.00704225	5	.00487805	8	.00373184
17	.05582353	80	.01250000	3	.00699301	6	.00485437	9	.00371747
18	.0555556	1	.01234568	4	.00694444	2	.00483093	270	
19	.05263158	2	.01219512	5	.00689655	, 8		1	.00369004
20	.05000000	3		6		210	.00478469	3	.00367647
1 2 3	.04761905	5	.01190476 .01176471	8	.00675676	11	.00476190	4	.00864963
ã	.04347826	6	.01162791	9		12	.00471698	5	.00363636
4	.04166667	6	.01149425	150		13	.00469484	6	.00362319
5	.04000000	8	.01136364	1	.00662252	14	.00467290	8	.00361011
6 7 8	.03846154	9	.01123595	2		- 15	.00465116	. 8	.00359712
7	.03703704	90	.01111111 .01098901	3	.00653595	16		280	.00358423
9	.03371429	1 2	.01086956	5		18	.00460829	280	.00857148 .00355872
30	03833333	ll ã	.01075269	6		19		2	.00854610
1 2	.03225806	4	.01063830	ž	.00636943	220	.00454545	3	.00353357
2	.03125000	5	01052632	8	.00632911	1	.00452489	4	.00852113
8	.03030303	6	.01041667	9		3	.00450450	5	.00350877
4	.02941176	8	.01030928	160	.00625000 .00621118	4	.00448430	6	.00349650
6	.02777778	9	.01010101	2	.00617284	5	.00444444	8	.00347222
7	.02702703	100	.01000000	3	.00613497	6	.00442478	9	.00346021
7 8 9	.02631579	1	.00990099	4	.00609756	. 7	.00440529	290	.00344828
9	.02564103	. 2	.00980392	5	.00606061	8	.00438596	1	.00343648
40	.02500000	3	.00970874	6	.00602410	9	.00436681	8	.00342466
1	.02439024	4 5	.00961538	8	.00598802	230	.00434783		.00341297
1 2 3	.02325581	6	.00932361	9	.00591716	2	.00432900	5	.00340136
4	.02272727	8	.00934579	170	.00588235	3	.00429184		.00337838
5	.02222222	8	.00925926	1	.00584795	4	.00427350	6	.00336700
6	.02178913	9	.00917431	2	.00581395	5	.00425532	8	.00335570
8	.02127660	110	.00909091	3		6	.00423729	9	.00334448
9	.02063333	11 12	.00900901	5	.00574713	8	.00421941	300	.00333333
50	.02000000	13	.00884956	6	.00568182	9	.00420103	2	.00331126
1	.01960784	14	.00877193	7	.00564972	240	.00416667	3	.00330083
2	01923077	15	.00869565	8	.00561798	1	.00414938	4	.00328947
3	.01886792	16	00862069	100		2	.00413223	5	.00327869
4	.01851852 .01818182	17 18	.00854701 .00847459	180	.00555556 .00552486	3	.00411523	6	.00326797
5 6 7 8	.01818182	19	.00840336	2	.00549451	5	.00409836	8	.00325733
7	.01754386	120	.00833333	3	.00546448	6	.00406504	9	.00323625
8	.01724138 .01694915	1	.00826446	4	.00543478	7	.00404858	310	.00322581
9	.01694915	2	.00819672	5		8		11	.00321543
60	.01666667	3	.00813008	6	.00537634	9	.00401606	12	
1	.01639344	5	.00806452	7	.00534759	250	.00400000	13	.00319489
2	.01587302		.00793651	8	.00529100		.00396825	15	
	001905	0	0010001	0	000-0100				00011400

B	Recipro-	No.	Recipro-	No.	Recipro-	No.	Recipro-	No.	Recipro-
	00316456	381	.00262467	446	.00224215	511	.00195695	576	.00173611
~ ·	00315457	2	.00261780	7	.00223714	12	.00195812	7	.00178810
	00314465 00313480	4	.00261097 .00260417	8	.00223214	18 14	.00194932 .00194552	8	.00178010 .00172712
$\tilde{\mathfrak{d}}_{i}$.	00812500	5	.00259740	450	.00222222	15	.00194175	580	.00172414
1, .	00311526	6	.00259067	1	.00221729	16	.00198798	1	.00172117
$\frac{1}{2}$, $\frac{1}{3}$, .	00310559	7	.00258398	2 3	.00221289	17	.00193424	2	.00171821
	.00309597 .00308642	8	.00257782 .00257069	4	.00220751	18 19	.00193050 .00192678	8	.90171527
5.	00307692	390	.00256410	5	.00219780	520	.00192808	5	.00170940
	.00306748	1	.00255754	6	.00219298	1	.00191939	6	.00170648
31	.00 30 5510	2	.00255102	8	.00218818	2	.00191571	7	.00170358
	.00303951	8	.00254453	9	.00218341	3 4	.00191205	8 9	.00170068
30,	.00303030	5	.00253165	460	.00217391	5	.00190476	590	.00169491
1/	.00302115	6	.00252525	1	.00216920	6	.00190114	1	.00169205
3	.00301205	8	.00251889	8	.00216450	7	.00189758	2	.00168919
41	.00299401	9	.00251256	4	.90215983	8 9	.00189394	3	.00168634
5	.00:298507	400	.00250000	5	.00215054	530	.00188679	5	.00168067
6	.00297619	1	.00249377	6	.00214592	1	.00188324	6	.00167785
8	.00296736	3	.00248756 .00248189	8	.00214133	3	.00187970	[]	.00167504
9	.00294985	4	.00246189	9	.00213075	4	.00187617 .00187266	8 9	.00167224
340	.00294118	5	.00246914	470	.00212766	5	.00186916	600	.00166667
1	.00293255	6	.00246305	1	.00212314	6	.00186567	1	.00166389
2 .	.00292398	8	.00245700	3	.00211864	8	.00186220	3	.00166113
4	.00291545	9	.00245098	4	.00211416	9	.00185874 .00185528	3	.00165837
5	.00289855	410	.00243902	5	.00210526	540	.00185185	5	.00165289
6	.00289017	11	.00243309	6	.00210084	1	.C0184843		.00165016
8	.00288184	12 13	.00242718	8	.00209644	3	.00184502 .00184162	8	.00164745
9	.00286533	14		9	.00208768	4	.00183823	9	.00164204
350	.00285714	15	.00240964	480	.00208333	5	.00183486	610	.00163934
1 2	.00284900	16 17	.00240385 .00239808	1 2	.00207900	6	.00183150	11	.00163666
3	.00283286	18	.00239234	3	.00207469	8	.00182815 .00182482	12 13	.90163399 .00163132
4	.00282486	19	.00238663	4	.00206612) è	.00182149	14	.00162866
5	.00281690	420	.00238095	5	.00206186	550	.00181818	15	.00162602
?	.00280899 .00280112	1 2	.00237530	6 7	.00205761 .00205339	1 2	.00181488 .00181159	16 17	.00162338 .00162075
8	90279330	8	.00236407	8	.00203938	ã	.00180832	18	.00162015
9	.00278551	4	.00235849	9	.00204499	4	.00180505	19	.00161551
360 1	.00277778	5	.00235294	490	.00204082	5	.00180180	620	.00161290
2	.00277008 .00276243	6	.00234742 .00234192	2	.00203666	6	.00179856 .00179583	1 2	.00161031
3	.00275482	8	.00233645	s s	.00203232	8	.00179211	3	.00160514
4	.00274725	9	.00233100	4	.00202429	9	.00178891	3	.00160256
5 6	.00273973	430 1	.00232558	5	.00202020	560	.00178571	5	.00160000
7	.00273224	2	.00232019	7	.00201613	2	.00178253 .00177936	6	.00159744
8	.00271739	8	.00230947	8	.00200803	ã	.00177620	8	.00159236
320 8	.00271003	4	.00230415	9	.00200401	4	.00177305	9	.00158982
010	.00270270 .00269542	5	.00229885	500	.00200000	5 6	00176991	630	.00158730
2	.00268817	6	.00328833		.00199601	7	.00176678 .00176367	1 2	.00158479
3	.00268096	8	.00228310	2 3	.00198807	8	.00176056	8	.00157978
4	.00267380	440	.00227790	4	.00198413	9	.00175747	4	.00157729
5 6 7	.00966667 .00965957	440	.00227278	5 6	.00198020 .00197628	570	.00175439 .00175131	5 6	.00157480
7	00265252	2	.00226244	7	.00197239	2	.00174825	8	.00156986
8	00984550	8	.00225784	8	.00196850	3	.00174520		.00156740
9 380		4 5	.00225225	510	.00196464	5	.00174216	640	.00156494 .00156250
-000	OCTOBER.	1 0	.002241191	1 910	.00196078	1 9	.00110810	UEO	,00100200

No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal,
641	.00156006	706	.00141643	771	.00129702	836	.00119617	901	.00110988
2	.00155763	7	.00141443	2	.00129534	7	.00119474	2	.00110865
4	.00155521	8 9	.00141243 .00141044	8	.00129366	8	.00119332	3	.00110742
4 5 6 7 8 9	.00155039	710	.00140845	5	.00129032	840	.00119189	5	.00110619 .00110497
6	.00154799	ii	.00140647	5	.00128866	1	.00118906	6	.00110375
7	.00154559	12	.00140449	7	.00128700	2	.00118765	7	.00110254
8	.00154321	13	.00140252	8	.00128535	3	.00118624	8	.00110133
650	.00154083	14 15	.00140056	780	.00128370	4 5	.00118488	9	11001100.
ĭ	.00153610	16	.00139665	100	.00128041	6	.00118343 .00118203	910	.00109890
2	.00153374	17	.00139470	2	.00127877	7	.00118064	12	.00109649
2 3 4 5	.00153140	18	.00139276	3	.00127714	8	.00117924	13	.00109529
4	.00152905	19	.00139082	4	.00127551	9	.00117786	14	.00109409
6	.00152672	720 1	.00138889	5 6	.00127388 .00127226	850	.00117647	15	.00109290
7	.00152207	2	.00138501	7	.00127220	1 2	.00117509 .00117371	16	.00109170
8	.00151975	3	.00138313	8	.00126904	ã	00117233	17 18	.00109051 .00108932
9	.00151745	4	.00138121	9	.00126748	4	.00117096	19	.00108814
660	.00151515	5	.00137931	790	.00126582	5	.00116959	920	.00108696
1	.00151286	6	.00187741	1	.00126422	6	.00116822	1	.00108578
2	.00151057	8	.00137552	2	.00126263	7	.00116686	2	.00108460
4	.00150602	9	.00137174	4	.00126103 .00125945	8	.00116550	8	.00108312
5	.00150376	730	.00136986	5	.00125786	860	.00116279	5	.00108:25
4 5 6 7 8 9	.00150150	1	.00136799	6	.00125628	1	.00116144	6	.00107991
7	.00149925	3	.00136612	7	.00125470	2	.00116009	7	.00107875
8	.00149701	3	.00136426	8	.00125313		.00115875	8	.00107759
370	.00149477	4	.00136240 .00136054	800	.00125156	4	.00115741	9	.00107643
"1	.00149031	8	.00135870	1	.00125000	5 6	.00115607	930	.00107527
	.00148809	5 6 7 8	.00135685	2	.00124688		.00115340	2	.00107411
8	.00148588	8	.00135501	3	.00124533.	8	.00115207	~ š	.00107181
4 5	.00148368	9	.00135318	4	.00124378	9	.00115075	4	.60107065
6	.00148148	740	.00135135 .00134953	5 6	.00124224	870	.00114942	5	.00106953
7	.00147710		.00134771	7	.00124069 .00123916	1 2	.00114811	6	.00106838
7	.00147493	2 3	.00134589	8	.00123762	8	.00114547	8	.00106724
9	.00147275	4	.00134409	9	.00123609	4	.00114416	ğ	.00106496
680	.00147059	5	.00134228	810	.00123457	5	.00114286	940	.0010633
1	.00146843	6	.00134048	11	.00123305	6	.00114155	1	.00106270
2	.00146628 .00146413	6 7 8	.00133869	12 13	.00123153	8	.00114025	2	.00106157
4	.00146199	9	.00133511	14	.00122850	9	.00113895 .00113766	3	.00106044
5	.00145985	750	00133333	15	.00122699	880	.00113636	5	.00105932 .00105820
6	.00145773	1	.00133156	16	.00122549	1	.00113507	6	.00105708
7	.00145560	2	.00132979	17	.00122399	2 3	.00113379	7	.00105597
4 5 6 7 8 9	.00145349	8	.00132802	18	.00122249	3	.00113250	6 7 8 9	.00105485
3 9 0	.00145137 .00144927	5	.00132626 .00132450	19 820	.00122100	5	.00113122	29	.00105374
1	.00144718	6	.00132275	1	.00121931	6	.00112994	950	.00105263
2	.00144509	7	.00132100	2	.00121654	7	.00112740	1 2 3	.00105152
3	.00144300	8	00131926	3	.00121507	8	.00112613	3	.00103033
4	.00144092	9	.00131752	4	.00121359	9	.00112486	4	.00104822
9	.00143885	760	.00131579	5	.00121212	890	.00112360	5	.00104712
2 3 4 5 6 7 8	.00143678	1 2	.00131406 .00131234	6	.90121065 ¹ .00120919	1 2	.00112233	6	.00104603
8	00143266	3	.00181062	8	.00120773	8	.00112108	8	.00104493
9	.00143061	4	.00130890	9	.00120627	4	.00111857	9	.00104884 .00104275
00	.00142857	5	.00130719	830	.00120482	5	.00111732	960	.00104167
1	.00142653	6	.00180548	1	.00120337	6	.00111607	1	.00104058
2	.00142450	8	.00130378	3	00120192	8	.00111483	2	.00103950
4	.00142347	9	.00180039	4	.00120048	900	.00111859 .00111235	8 4 5	.00103842 .00103734
	00141844	770		5		0			

	cal.	No.	cal.	No.	cal.	No.	cal.	No.	cal.
66	.09106590	1081	.000969082	1096	.000919409	1161	.000661826	1226	.000815661
7	00100413	2	.000968992	7	.000911577	2	.000860585	7	000814996
뵁	.90108806	8	.000068054	8	.000910747	8	.000859845	8	.000814332
9	.00108199	4	.000967118	9	.000909918	4	.000859106	9	.000818670
1	.00108093	5	.000966184	1100	.000900091	5	.000858369	1230	.000818008
1	.00102987	6	.000965251	1	000908265	6	.000857638	1	.000812848
2	.00102881	7	.000964320	2	000907441	7	.000856898	5	.000811688
3	.00102775	8	.000902464	8	000906618	8	.000856164	8	.000811030
4	.00102564	1040		8	.000905797	9	.000855432	4	.000810378
6	00102459	1040		6	.000904159	1170	.000858971	5	.000809717
7	.00109G54	2		7	.000903342	2	.000853242	7	.000808407
8	.00104250	8		8	.000902527	3	.000852515	8	.000807754
9	00102145	4	.000957854	9	.000901713	4	.000851789	9	.000807102
80	.00100041	5		1110		5	.090051064	1240	.000806452
1	.00101937	6		11	000900090	6	.000850840	1	000805802
2	.00101833	7		12	.000899281	7	.000849618	2	.000805153
3	.00101729	8		13	.000898473	İ	.000848896	3	.000804505
4	.00101626	9	.009958289	14	.000897666	9	.000848176	4	.000803858
5	.09101528	1050		15	.000896861	1180		5	.000803218
6	.09101420	1	.000931475	16	.000896057	1	1.000846740	6	.000802568
7	.00101317	2		17	.000895255	2	.000846024	7	.000801925
8	.00101215	8		18		3	,. 0 00845 3 08	8	.000801282
9	.00101112	4	.000948767	19	.000893655	4	.000844595	9	.000800640
90	.00101010	5	.000947867	1120		5	.000843882	1250	.000800000
1	.00100008	6		1	.000892061	6	.000843170	1	.000799800
2	.99100806	7		2	.000891266	7	.000842460	2	.000798722
3	.00100705	8		8	.000890472	8	.000841751	3	.000798085
4	.00100604	9		4	.000889680	9	.000841043	4	.000797448
5	.001000000	1060		5		1190		5	000796813
6	.00100402	1	.000942507	6	.000888099	1	.000839631	6	.000796178
8	.00100801 .00100200	3		8	.000886525	2	.000838926 .000838222	7 8	000795545
9	.00100100	4		9	.000885740	4	000837521	9	.000794913
00	.00100000	5		1130		5	.000836820	1260	.000793651
1	.099999001	6		1	.000884173	6	.000836120	1 200	.000793021
2	.099998004	7		l ĝ		7	.000835422	2	000792393
31	000097009	8		8		Ŕ		8	000791766
4	.009996016	9		1 4	.000881834	9	.000834028	4	.000791139
5	35030000.	1070	.000934579) 5	.000881057	1200	88888H000 .	5	.000790514
6	.000094036	1	.000988707	6		1	000832639	6	.000189889
7	.009993049 .000992063	2		7		2		7	.000789266
8	.000992063	3		8		3		8	.000788643
9	.000091080	4		9	.000877963	4	000830565	9	
10	.000990099	5		1140		5	.000829875	1270	
11	.009989120	6		1	.000876424	6	.000829187	1	.000786782
12	.000088142	7		2	.000875657	7	.000828500	5	.000786163
13	.000987167	8		3	.000874891	8	.000827815	8	.000785546
14	.000066193 .000065222) ·			.000827130	4	.000784929
15	.0000034252	1080	.000925926	5	.000872600	1210 11		5	.000784314
16	099083284	2	.000924214	7	.000871840	12	000825764	6	.000783699
18	.000003234	8		8	.000871080	13		8	.000783085
19	.000081354	4	.000922509	9	090870322	14	.000823723	9	.000782473
20	.0000001304	5		1150	.000869565	15	.000823045	1280	.000781250
1	.000079432	6		1	.000868810	16	.000822368	1200	.000780640
2	000078474	7	.000919963	2	.000868056	17	.000821693	2	.000780031
3	.000077517	8		3	.000867303	18	000821018	~~3	.000779423
4	000076562	ğ		4	.000866551	19	.000820344	4	.000778816
5	999973610	1090	.000917431	5	.000865801	1220	.000819672	3	.000778210
6	065007465U	1	.000916590	6	000865052	1	.000819001	ا ا	.000777605
7	.000078710	2	.000915751	7	.000864304	2,	.000818331	7	.000777001
8	.0000022703	8	.000914913	8	.000863558	8.	.000817661	8	000776397
Q.	1817	4	.000914077	9	.000862813	4	.000816993	9	.000775795

No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.
1291	.000774593	1356	.000737463	1421	.000703780	1486	.000672948	1551	.000644745
2	.000778994	7	000736920	2	.000703235	7	.000672495	2	.000644330
3	.000773395	8	.000736377	8	.000702741	8	.000672048	8	.000643915
4 5	.000772797	1360	.000735835 .000735294	5	.900702247 .000701754	1490	.000671592	5	.000643501 .000643087
6	.000771605	1	.000784754	6	.000701262	1	.000670691	6	.000642673
7	.000771010	2	.000734214	7	.000700771	2	.000670241	7	.000642261
8	.000770416 .000769823	3 4	.000733676 .000733138	8	.000700280	3	.000669792	8	.000641848
1300	.000769231	5	.000732601	1430	.000699301	5	.000668896	1560	.000641026
1	.000768639	6	.000732064	1	.000698812	6	.000668449	1	.000640615
2	.000768049 .000767459	8	.000781529 .000780994	2	.000698324	8	.000668003	2	.000640205 .000639795
4	.000766871	9	.000730364	4	.000697350	9	.000667111	4	.000639386
5	.000766283	1870	.000729927	5	.000696864	1500	.000666667	5	.000638978
6	.000765697	1	.000729395	6	.000696379	1	.000666223	6	.000638570
7 8	.000765111 .000764526	2	.000728863	8	.000695894 .000695410	2 3	.000665779 .000655336	8	.000638162 .000637755
9	.000763942	4	.000727802	9	.000694927	4	.000664894	9	.000637349
1310	.000763359	5	.000727273	1440	.000694444	5	.000664452	1570	.000636943
11	.000762776	6	.000726744	. 1	.000693962	6	.000664011	1	.000636537
12 13	.000762195	8	.000726216	2	.000693481	7	.000668570	2 8	.000636132
14	.000761035	9	.000725163	4	.000692521	9	.000662691	4	.000635324
15	.000760456	1380	.000724638	5	.000692041	1510	.000662252	5	.000634921
16	.000759878	1	.000724113	6	.000691563	11	.000661813	6	.000634518
17 18	.000759301	2 8	.000723589 .000723066	8	.000691085	12 13	.000661376	7 8	.000634115 .000633714
19	.000758150	4	.000722543	9	.000690181	14	.000660502	9	.000633312
1320	.000757576	5	.000722022	1450	.000689655	15	.000660066	1580	.000632911
1 2	.000757002	6 7	.000721501	1 2	.000689180	16 17	.000659631	1 2	.000632511
3	.000755858	8	.000720461	8	.000688231	18	.000658761	3	.000631712
4	.000755287	9	.000719942	4	.000687758	19	.000658328	4	.000631313
5	.000754717	1390	.000719424	5	.000687285	1520	.000657895	5	.000630915
6 7	.000754148	1 2	.000718907 .000718891	6	.000686813	1 2	.000657462	6	.000630517
8	.000753012	3	.000717875	8	.000685871	3	.000656598	8	.000629723
9	.000752445	4	.000717360	9	.000685401	4	.000656168	9	.000629327
1330	.000751880	5 6	.000716846	1460	.000684932	5	.000655738	1590 1	.000628931 .000628536
2	.000750750	7	.000715820	1 2	.000683994	7	.000654879	2	.000628141
3	.000750187	. 8	.000715308	3	.000683527	8	.000654450	3	.000627746
4	.000749625	9	.000714796	4	.000683060	9	.000654022	4	.000627353
5 6	.000749064	1400	.000714286	5	.000682594	1530 1	.000653595	5	.000626959 .000626566
7	.000747943	2	.000713267	7	.000681663	2	.000652742	7	.000626174
8	.000747384	3	.000712758	8	.000681199	3	.000652316	8	.000625782
1040	.000746826	4	.000712251	9	.000680735	4	.000651890	1000	.000625391
1340 1	.000746269	5 6	.000711744	1470	.000680272	5 6	.000651460 .000651042	1600 2	.000625000
2	.000745156	7	.000710732	2	.000679348	7	.000650618	4	.000623441
3	.009744602	8	.000710227	8	.000678887	8	.000650195	6	.000622665
4 5	.000744048	1410	.000709723	4	.000678426	1540	.000649773 .000649351	1610	.000621890 .000621118
6	.000742942	11	.000709220	6	.000677507	1540	.000648929	2	.000620347
7	.000742390	12	.000708215	7	.000677048	2	.000648508	4	.000619578
8	.000741840	13	.000707714	8	.000676590	8	.000648088	6	.000618812
9 1350	.000741290	14 15	.000707214	1480	000676132	5	.000647668	1620	.000618047 .000617284
1	.000740192	16	.000706215	1	.000675219	6	.000646830	2	.000616523
2	000739645	17	.000705716	2	.000674764	7	.000646412	4	.000615763
3	.000739098 .000738552	18 19	.000705219	3	.000674309 .000678854	8 9	.000645995	8	.000615006
	.000738007			5			.000645578		.000614250 .000618497
		1 + 0		,		1000		,2030	

85

Ю.	Recipro- cal.	No.	Recipro-	No.	Recipro- cal.	No.	Recipro- cal.	No.	Recipro- cal.
	.000612745	1706	.000586166	1780	.000561798	1854	.000539374	1928	.000518672
	.000611247	1710	.000584795	2	.000560588	8	.000538793 .000588213	1930	.00051813 5 .000517599
9	000610500	12	.000584112	4	.000559910	1860	.000587684	2	.000517068
640		14	.000583430	8	.000559284	1000	.000587057	4	.000516528
	.000609013	16	.000582750	17 90	.000558659	2	.000586480	8	.000515996
 A	.000608272	18	.000582072	11, 20	.000558035	6	.000535905		.000515464
	.000607533	1720	.000581395	1 7	.000557413	8	.000535332	2	.000514933
	000606796	1120	.000580720	1 2	.000556793	1870	.000534759	1 7	.000514408
	.000606061	1 7	.000580046	8	.000556174	1010	.000534188	8	.000518874
	.000505327	6	.000579374	1800	.000555556	7	.000533618	Š	.000518847
41		8	.000578704	2	.000554989	6	.000533049	1950	.000512820
6	.000608865	1730	.000578035	1 4	.000554324	l š	.000582481	2	.000512295
8	.000698136	2	.000577367	6	.000553710	1880	.000581915	1 4	.000511770
660	000602410	4	.000576701	Ř	.000553097	2	.000531350	6	.000511247
2	.000601685	6	.000576037	18 10	.000552486	4	.000580785	8	.000510725
4	.000600962	8	.000575374	12	.000551876	6	.000530222	1260	.000510204
6	.000600240	1740	.000574718	14	.000551268	8	.000529661	2	.000509684
- 8	.000599520	2	.000574053	16	.000550661	1890	.000529100	4	.000509165
370	.000598802	4	.000573394	18	.000550055	2	.000528541	6	.000508647
2	.000598086	6	.000572737	1820	.000549451	4	.000527983	8	.000508130
4	.000597371	8	.000572082	2	.000548848	6	.000527426	1970	.000507614
6	.000596658	1750	.000571429	4	.000548246	8	.000526870	2	.000507099
8	.000595947	2	.000570776	6	.000547645	1900	.000526816	4	.600506585
570	.000595238	4	.000570125	8	.000547046	2	.000525762	6	.000506073
2	.000594530	6	.000569476	1830	.000546448	4	.000525210	' 8	.000505561
4.	.090593824	8	.000563828	2	.000545851	6	.000524659	1980	.000505051
6.	.000593120	1760	.000568182	4	.000545256	8	.000524109	2	.000504541
- 8	.0005 92417	2	.000567537	6	.000544662	19 10	.000523560	4	.000504082
690	.000591716	4	.000566893	8	.000544069	12	.000523012	6	.000503524
2	.000591017	6	.000566251	1840	.000548478	14	.000522466	8	.000503018
4	.000590319	8	.000565611	2	.000542888	16	.000521920	1990	.000502513
6	.000589622	1770	.000564972	4	.000542299	18	.000521376	. 2	.000502008
. 8	.000588928	2	.000564334	6	.000541711	1920	.000520833	4	.000501504
700;	.000588235	4	.000563698	8	.000541125	2	.000520291	6	.000501002
2	.000587544	6	.000563063	1850	.000540540	4	.000519750	8	.000500501
4	.000586854	8	.000562430	1 2	.000539957	1 6	.000519211	12000	000500000

Use of reciprocals,—Reciprocals may be conveniently used to faciliate computations in long division. Instead of dividing as usual, multiply he dividend by the reciprocal of the divisor. The method is especially seful when many different dividends are required to be divided by the ame divisor. In this case find the reciprocal of the divisor, and make a mall table of its multiples up to 9 times, and use this as a multiplicationable instead of actually performing the multiplication in each case.

Example.—9871 and several other numbers are to be divided by 1638. The

reiprocal of 1688 is .000610500.

fultiples of the reciprocal: 1. .0006105

2. .0012210 3. .0018315 4. .0024420 5, .0030525 .0036630 6. .0042735

.0048840

9 0054945 .0061050

The table of multiples is made by continuous addition of 6105. The tenth line is written to check the accuracy of the addition, but it is not afterwards used. Operation:

Dividend Take from table 1...... .0006105 7..... 0.042735 8. 00.48840 9 005 4945

> Quotient.... 6.0262455

Correct quotient by direct division. 6.0262515
The result will generally be correct to as many figures as there are signifiant figures in the reciprocal, less one, and the error of the next figure will in Pheral not exceed one. In the above example the reciprocal has six significant figures, 610500, and the result is correct to five places of figures.

SQUARES, CUBES, SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM .1 TO 1600.

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cut Roo
.1 .15 .2 .25	.04	.001 .0034 .008 .0156	.8162 .8878 .4472 .500 .5477	.4642 .5318 .5848 .6300 .6694	3.1 .2 .3 .4 .5	9.61 10.24 10.89 11.56 12.25	29.791 32.768 85.937 89.804 42.875	1.761 1.789 1.817 1.844 1.871	1.458 1.474 1.489 1.500 1.518
.35 .4 .45 .5	.1225 .16 .2025 .25 .3025	.0429 .064 .0911 .125 .1664	.5916 .6825 .6708 .7071 .7416	.7047 .7368 .7663 .7987 .8198	.6 .7 .8 .9	12.96 13.69 14.44 15.21 16.	46.656 50.653 54.872 59.319 64.	1.897 1.924 1.949 1.975	1.535 1.547 1.560 1.574 1.587
.6 .65 .7 .75	.36 .4225 .49 .5625 .64	.216 .2746 .343 .4219 .512	.7746 .8062 .8367 .8660 .8944	.8434 .8662 .8879 .9086 .9283	.1 .2 .3 .4 .5	16.81 17.64 18.49 19.86 20.25	68.921 74.068 79.507 85.184 91.125	2.025 2.049 2.074 2.008 2.121	1.601 1.618 1.636 1.639
.85 .9 .95 1.05	.7225 .81 .9025 1. 1.1025	.6141 .729 .8574 1. 1.158	.9219 .9487 .9747 1. 1.025	.9478 .9655 .9830 1. 1.016	.6 .7 .8 .9	21.16 22.09 23.04 24.01 25.	97.386 108.828 110.592 117.649 125.	2.145 2.168 2.191 2.214 2.2361	1.665 1.675 1.687 1.696 1.710
i.1 i.15 i.2 i.25	1.44	1.331 1.521 1.728 1.953 2.197	1.049 1.072 1.095 1.118 1.140	1.082 1.048 1.068 1.077 1.091	.1 .2 .3 .4 .5	26.01 27.04 28.09 29.16 30.25	132.651 140.608 148.877 157.464 166.375	2.258 2.260 2.302 2.324 2.324	1.72 1.73 1.74 1.75 1.76
1.85 1.4 1.45 1.5	1.96 2.1025 2.25	2.460 2.744 3.049 3.375 3.724	1.162 1.183 1.204 1.2247 1.245	1.105 1.119 1.132 1.1447 1.157	.6 .7 .8 .9 6.	31.36 32.49 33.64 34.81 36.	175.616 185.193 195.112 205.379 216.	2.366 2.387 2.408 2.429 2.4495	1.77 1.78 1.79 1.80 1.80
1.6 1.65 1.7 1.75 1.8	2.89	4.096 4.492 4.913 5.359 5.832	1.265 1.285 1.304 1.323 1.342	1.170 1.182 1.193 1.205 1.216	.1 .2 .3 .4 .5	37.21 38.44 39.69 40.96 42.25	226.981 238.328 250.047 262.144 274.625	2.470 2.490 2.510 2.530 2.550	1.82 1.83 1.84 1.85 1.85
1.85 1.9 1.95 2.	3.61	6.332 6.859 7.415 8. 9.261	1.360 1.378 1.396 1.4142 1.449	1.228 1.239 1.249 1.2599 1.281	.6 .7 .8 .9	43.56 44.89 46.24 47.61 49.	287.496 300.763 314.432 328.509 343.	2.569 2.588 2.608 2.627 2.6458	1.87 1.88 1.89 1.90 1.91
.2 .3 .4 .5 .6	4.84 5.29 5.76 6.25 6.76	10.648 12.167 13.824 15.625 17.576	1.483 1.517 1.549 1.581 1.612	1.801 1.320 1.339 1.357 1.375	.1 .2 .3 .4 .5	50.41 51.84 58.29 54.76 56.25	857.911 873.248 389.017 405.224 421.875	2.665 2.688 2.702 2.720 2.789	1,92: 1,93: 1,940 1,949 1,957
.7 .8 .9 3 .	7.29 7.84 8.41 9.	19.683 21.952 24.389 27.	1.643 1.673 1.708 1.7821	1.392 1.409 1.426 1.4422	.6 .7 .8	57.76 59.29 60.84 62.41	438.976 456.533 474.552 493.089	2.757 2.775 2.793 2.811	1.96 1.97 1.98 1.98

No.	Square.	Cube.	Sq. Root,	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root,
8.	64.	512.	2.8284	2.	45	2025	91125	6.7092	3.5569
. 1	65.61	581.441	2.846	2.008	46	2116	97336	6.7823	8.5830
.2	67.24	551. 3 68		2.017	47	2-209	103823	6.8557	3.6088
.3	68.89	571.787		2 025	48	2304	110592	6.9282	3.6342
.4	70.56	592.704	2.898	2.033	49	2401	117649	7.	3.6593
.5 .5	72.25 73.96	614.125 686.056		2.041 2.049	50	2500	125000	7.0711	3.6840
. 7	75.69	658.503		2.057	51 52	2601 2704	182651	7.1414	3.7084
g l	77.44	681.472		2.065	58	2809	140608 148877	7.2111 7.2801	3.7325 8.7563
.9	79.21	704.969		2.072	54	2916	157464	7.3485	8.7798
).	81.	729.	8.	2.0001	55	3025	166375	7.4162	3.8030
1	82.81	753.571		2.088	56	3136	175616	7.4833	3.8259
.2	81.64	778.688		2.095	57	3249	18519 3	7.5498	8.8485
.3	86.49	804.357		2.103	58	3364	195112	7.6158	3.8709
.4	88.36	880.584	8.066	2.110	59	8481	205379	7.6811	3.8930
.5 .6	90.25 92.16	857.875 884.790		2.118 2.125	60 61	3600 3721	216000	7.7460	3.9149
~	04 00	912.673		2 133	62	3844	226981 238328	7.8102 7.8740	3.9365 3.9579
.8	96.04	941.192		2.140	63	3969	250047	7.9373	3.9791
.9	98.01	970.299		2.147	64	4096	262144	8.	4.
10	100		3.1628	2.1544	65	4225	274625	8.0623	4.0207
- 11	121		8.3166	2.2240	66	4856	287496	8.1240	4.0112
12			3.4641	2.2894	67	4189	300763	8.1851	4,0615
13 !		2197	8.6056	2.3518	68	4624	314432	8.2162	4.0817
14	196	2744	8.7417	2.4101	69	4761	828509	8.3066	4.1016
15	225	8375	3.8730	2.4662	70	4900	843000	8.3666	4.1218
16	256	4096	4.	2.5198	71	5041	857911	8.4261	4.1408
17	289	4918	4.1281	2.5718	72	5184	373248	8.4853	4.1602
18 19	324 361	5832 6859	4.2426 4.8589	2.6207 2.6684	78 74	5329 5476	389017 405224	8.5440 8.6023	4.1793 4.1963
20	400	8000	4.4721	2./144	75	5625	421875	8,6603	4.2172
21	441	9261	4.5826	2 7589	76	5776	438976	8.7178	4.2858
22.2	484	10648	4.6904	2.8020	77	5929	456533	8.7750	4.2543
23	529	12167	4.7958	2.8439	78	6084	474552	8.8318	4.2727
24	576	18824	4.8990	2.8845	79	6211	493039	8.8882	4.2908
25	625		5.	2.9240	80	6400	512000	8.9443	4.3089
26	676	17576	5.0990	2.9625	81	6561	531441	9.	4.3267
27 28	7 29 784	19683 21952	5.1962 5.2915	3. 3 0366	83 83	6724 6889	551368	9.0554	4.8445
29	841		5.8852	3.0728	84	7056	571787 592704	9.1104 9.1652	4.8621 4.3795
30	900	27000	5.4772	8.1072	85	7925	614125	9.2195	4.3968
31	961	29791	5.5678	8.1414	86	7396	636056	9.2736	4.4140
32	1024		5.6569	3.1748	87	7569	658503	9 3276	4.4310
	1099		5.7446	3.2075	88	7744	681472	9,3808	4.4480
34	1156	39304	5.8310	3.2396	89	7921	7049 69	9.4340	4.4647
35	1225	42875	5.9161	3.2711	90	8100	729000	9.4868	4.4814
36 37	1296 1369		6.	3.3019	91	8281	753571	9.5394	4.4979
	1369		6.0828 6.1644	3.3 32 2 3.3 62 0	92 93	8464	778688 804357	9.5917	4.5144
	1521		6.2450	3.3912	94	8649 8836	830584	9 6437 9 6954	4.5307 4.5468
40	1600	64000	6.3246	3 4200	95	9025	857375	9 7468	4.5629
41	1681	689-21	6.4031	3.4482	96	9216	884736	9.7980	4.5789
42	1764	74066	6.4807	3.4760	97	9409	912673	9.8489	4.5947
43	1849		6.5574	3.5034	98	9604	941192	9.8995	4.6104
44	1986	85184	6.6382	8.5	99	9801	970299	9.9499	4.6261

100 10000 1000000 10 10 10							,			
1021 10201 103091 10,0199 4,6870 156 24336 3796416 12,4900 53,369898 12,5000 53,369898 12,5000 53,369898 12,5000 53,369898 12,5000 53,369898 12,5000 53,369898 12,5000 53,369898 12,5000 53,369898 12,5000 1	No.	Square.	Cube.	Sq. Root.		No.	Square.	Cube.	Sq. Root.	Cube Root
102 10404 1061208 1092727 10.1489 4.6875 152 24649 38689898 12.5689 5.8 103 10609 1092727 10.1489 4.6875 158 24664 3814312 12.5689 5.8 106 112 6 1191016 10.2856 4.7326 161 25921 4019679 12.6695 5.8 107 11449 1225043 10.3441 4.7475 162 25824 44751283 12.6886 5.1 108 11841 1295072 10.38923 4.7622 163 25824 4251283 12.7279 5.8 109 11881 1295023 10.4038 4.7762 163 25824 4251283 12.7279 5.8 110 12100 1331000 10.4881 4.7914 165 27225 4492125 12.8687 11.2 12544 1404985 10.5830 4.8903 167 27568 4574296 12.8841 5.8 112 12544 1404987 10.6301 4.8348 168 28824 4741632 12.96215 5.8 113 12769 1481544 10.6771 4.8488 168 28824 4741632 12.9228 5.1 114 12996 1481544 10.6771 4.8488 168 28861 488690 31.0000 5.8 115 13225 1520875 10.7238 4.8629 170 28900 4918000 13.0864 5.8 116 13456 1560896 10.7703 4.8770 171 29241 5000211 13.07007 5.8 117 13689 1691613 10.8167 4.8910 17.2 29584 488690 13.0000 5.8 118 13924 1613032 10.8868 4.9049 173 29029 5177717 13.1529 5.8 120 14400 1728000 10.9454 4.9924 175 30276 5268044 13.149 5.8 121 14641 1771561 11.0000 4.9461 176 30976 5359375 13.2288 5.8 122 14884 1815848 11.0454 4.9924 178 30276 5268044 13.149 5.8 121 14611 1685159 10.9067 4.9461 176 30976 5359375 13.2288 5.8 122 14684 15868 11.0454 4.9961 178 30976 536900 13.6467 5.8 123 15129 1808087 11.9035 5.0000 180 32400 538303 11.0476 5.6658 183 3144 6028568 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.4076 5.6658 13.407	100			10.	4.6416			8723875		5.371
104 10816 1124864 10.1980 4.6875 158 24964 3944312 12.5698 5.4	101	10201	1030301				24336	3796416		5.38
10816	102									
106	103									
106	104	10816	1124864	10.1980	4.7027	15ָ9	25281	4019679	12.6095	5.41
107 11449		11025		10.2470						5.42
108 11664 1259712 10.3923 4,7622 163 26569 4380747 12.7671 5.7671 5.1091 12100 1331000 10.4403 4.7769 164 26896 4410944 12.8062 5.3 110 12101 13221 1367631 10.5357 4,8059 166 27556 4574296 12.8451 5.4 12.841 1404928 10.530 4.8346 168 28254 4741632 12.9618 5.1 113 12769 1442897 10.5301 4.8346 168 28254 4741632 12.9618 5.1 114 12996 1481544 10.6771 4.8488 169 28561 4826809 13.0000 5.5 115 13225 1580656 10.7703 4.8770 171 28241 5000211 13.0767 18.848 169 28561 4826809 13.0000 5.5 116 13466 1560806 10.7703 4.8710 172 29584 5088448 31.149 5.5 117 13689 1601613 10.8167 4.8910 172 29584 5088448 13.1149 5.5 118 13924 1613032 10.8628 4.9949 173 29929 5177717 13.1529 5.5 121 14641 1771561 11.0000 4.9161 176 30976 5268094 13.0009 5.5 121 14641 1771561 11.0000 4.9611 176 30976 5548094 13.0097 5548	100				4.7320				19 7070	5.44
11881	100			10.3441	4.7410			4990047	19 7671	5 46
111 12931 1367631 10.5357 4,8059 166 27556 457496 12.8841 5.21 112 12544 1404928 10.6301 4.8346 108 28224 4741632 12.9288 5.51 114 12996 1481544 10.6771 4.8388 169 28561 4826609 13.0000 5.5 115 13225 15520875 10.7238 4.8629 170 28900 4919000 13.0864 5.5 116 13456 1560896 10.7703 4.8770 171 29284 500811 13.0767 5.5 117 18689 1601613 10.8167 4.8910 172 29584 508448 13.1149 5.3 119 14161 1685159 10.9067 4.9181 176 30276 5368024 13.199 5.6 120 14400 1728000 10.9545 4.9924 175 30625 5359375 18.2288 5.5 121				10.4403	4.7769			4410944	12.8062	5.47
111 12321 1367631 10.5357 4,8059 166 27556 4574296 12.8841 5.6 113 12769 1442897 10.6301 4.8366 168 28524 4741632 12.9615 5.1 114 12996 1481544 10.6771 4.8488 169 28561 4826809 13.0000 5.5 115 13225 1520875 10.7238 4.8629 170 28900 4919000 13.0884 5.2 116 13456 1560896 10.7703 4.8770 171 29241 5000211 13.0767 5.5 117 18689 1601613 10.8167 4.8910 172 29584 500211 13.1529 5.7 119 14161 1685159 10.9087 4.9187 173 30276 5359375 13.1299 5.2 120 14400 1728000 10.9545 4.9324 175 30625 5359375 13.2288 5.6 121	110	12100	1331000	10.4881		165	27225	4492125	12.8452	5.48
112 12544 1404928 10.5830 4.8203 167 27889 4657463 12.9228 5.1 114 12996 1481544 10.6771 4.8488 169 28561 4826809 13.0000 5.5 115 13225 1520875 10.7238 4.8629 170 28900 4919000 13.0384 5.1 116 13465 1560896 10.7703 4.8770 171 29241 500211 13.0767 5.2 118 13924 1643032 10.8628 4.9049 173 30276 5268024 13.1909 5.3 119 14161 1685159 10.9087 4.9187 174 30276 5268024 13.1909 5.3 120 14400 1728000 10.9545 4.9324 175 30625 5359375 18.2288 5.5 121 14641 1771561 11.0000 4.9461 176 30976 5451776 13.2865 5.6 122 14884 1815848 11.0454 4.9997 177 31329 5545233				10.5357	4 8059					5.49
114 12996 1481544 10.6771 4.8488 169 28561 4826809 18.0000 5.5 115 13225 1520875 10.7238 4.8629 170 28900 4919000 13.0384 5.5 116 13465 1560896 10.7703 4.8770 171 29241 5008211 13.0767 5.2 118 13924 1643032 10.8628 4.9049 173 30929 5177717 18.1529 5.8 119 14161 1685159 10.9087 4.9481 176 30276 5268024 18.1909 5.5 120 14400 1728000 10.9545 4.9324 175 30625 5359375 18.2288 5.5 121 14641 1771561 11.0000 4.9461 176 30976 545176 13.2865 5.6 122 14884 1818548 11.0434 4.9597 177 31399 5545283 18.30417 5.6 123 <td>112</td> <td></td> <td></td> <td></td> <td>4.8203</td> <td></td> <td></td> <td></td> <td></td> <td></td>	112				4.8203					
115 13225 1520875 10.7238 4.8629 170 28900 4919000 13.0884 5.5 16 13466 1660896 10.7703 4.8770 171 29241 500021 13.0767 5.1 117 18689 1601613 10.8167 4.8910 172 29584 508448 13.1149 5.3 118 13924 1613032 10.8628 4.9049 173 23929 5177717 13.1529 5.2 119 14401 1725000 10.9645 4.9824 173 30276 5359375 18.2288 5.5 121 14641 1771561 11.0000 4.9641 176 30976 5451776 13.2865 5.6 122 14884 1815848 11.0434 4.9597 177 31389 5545233 13.3041 5.6 123 15265 1953125 11.1803 5.0000 180 32400 583200 13.4164 5.6 125										5.517
116 13456 1560896 10.7703 4.8770 171 29241 5000211 13.0767 5.2 117 18689 1601613 10.8167 4.8910 172 29584 5082448 13.1149 5.3 118 13894 1613032 10.8628 4.9049 173 29929 5177717 13.1529 5.2 120 14400 1725000 10.9645 4.9324 176 30276 5358975 18.2288 5.2 121 14641 1771561 11.0000 4.9461 176 30976 5451776 13.2865 5.6 122 14884 1816848 11.0434 4.9597 177 31389 5545238 13.3417 5.6 123 15129 1860867 11.0903 4.9732 178 31684 5639752 13.3417 5.6 125 15625 1953125 11.1803 5.0000 180 32400 583200 13.4164 5.6 127	114	12996	1481544	10.6771	4.8188	169	28561	4826809	13.0000	5.52
117 13689 1691613 10.8167 4.8910 172 29584 5088488 183.1149 5.5 118 13924 1643032 10.86828 4.9949 173 29929 5177777 13.1529 5.5 119 14161 1685159 10.9087 4.9187 174 30276 5268024 13.1909 5.5 120 14400 1728000 10.9543 4.9324 175 30625 5359375 18.2288 5.5 121 14641 1771561 11.0000 4.9461 176 30976 5451776 13.2665 5.6 122 14884 1815484 11.0444 4.9597 177 31329 545233 13.3411 5.6 123 15129 1860867 11.0905 4.9732 178 31684 569752 18.3417 5.6 125 15625 1953125 11.1803 5.0000 180 32401 5.753339 13.4164 5.6 126 15876 2003676 11.2250 5.0333 181 32761 5929741 <td></td> <td></td> <td></td> <td>10.7238</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.539</td>				10.7238						5.539
118 13924 163032 10.8628 4.9039 173 29929 5177717 18.1529 5.5 119 14161 1685159 10.9087 4.9187 174 30276 5268024 18.1909 5.5 120 14400 1728000 10.9543 4.9324 175 30625 5359375 18.2288 5.6 122 14841 1815848 11.0454 4.9597 177 31329 5545233 18.3041 5.6 123 1529 1806867 11.0000 4.9461 176 30976 5545233 18.3041 5.6 124 15376 1906624 11.1803 5.0000 180 32400 5835009 18.4164 5.6 125 15625 1953125 11.1803 5.0000 180 32400 5832009 18.4164 5.6 127 16129 2046883 11.2950 5.0333 181 32761 6028487 13.4580 5.6 129 16641 2146689 11.3578 5.0528 184 33856 6229504				10.7703						
119 14161 1685159 10.9087 4.9187 174 30276 5268024 13.1909 5.5 120 14400 1728000 10.9545 4.9324 175 30625 5359375 18.2288 5.5 121 14641 1771561 11.0000 4.9461 176 30976 5451776 13.2865 5.6 122 15831 180867 11.0903 4.9732 178 31684 5639752 18.3417 5.6 123 15876 1906867 11.1803 5.0000 180 32400 5832009 13.4164 5.6 126 15876 2000376 11.2250 5.033 181 32761 5028741 18.4590 5.6 127 16129 2018383 11.2691 5.0528 182 33124 6028568 13.4907 5.6 128 16894 2097152 11.3137 5.0528 184 33856 6322504 13.5647 5.6 130	117									5.50
121 14641 1771561 11.0000 4.9461 176 30976 545176 18.265 5.6 122 14884 1815484 11.0454 4.9597 177 31389 5545238 13.3041 5.6 123 15129 1860867 11.0903 4.9732 178 31684 558752 18.3417 5.6 125 15625 1953125 11.1803 4.9866 179 32041 5735389 13.4164 5.6 126 15876 2003768 11.2250 5.0031 181 32761 583209 13.4164 5.6 127 16129 201883 11.2694 5.0265 182 33124 6028568 13.4907 5.6 128 16894 2097152 11.3187 5.0397 183 33124 6028568 13.4007 5.6 130 16900 2197000 11.4018 5.0658 185 34225 6331625 13.6015 5.6 131						174			13. 1909	5.58
121 14641 1771561 11.0000 4.9461 176 30976 545176 18.265 5.6 122 14884 1815484 11.0454 4.9597 177 31389 5545238 13.3041 5.6 123 15129 1860867 11.0903 4.9732 178 31684 558752 18.3417 5.6 125 15625 1953125 11.1803 4.9866 179 32041 5735389 13.4164 5.6 126 15876 2003768 11.2250 5.0031 181 32761 583209 13.4164 5.6 127 16129 201883 11.2694 5.0265 182 33124 6028568 13.4907 5.6 128 16894 2097152 11.3187 5.0397 183 33124 6028568 13.4007 5.6 130 16900 2197000 11.4018 5.0658 185 34225 6331625 13.6015 5.6 131	120	14400	1728000	10.9545	4.9324	175	30625	5359375	18.2288	5.593
122 14884 1815848 11.0454 4.9597 177 31329 5545233 18.3041 5.61233 1123 15129 1860867 11.0905 4.9732 178 31684 5489752 18.317 5.66 124 15376 1906624 11.1855 4.9866 179 32041 5735339 13.3791 5.66 125 15625 1953125 11.1803 5.0000 180 32400 5832009 13.4164 5.62 126 15876 2000876 11.2250 5.0133 181 32761 5029741 13.4580 5.6 128 16384 2097152 11.3187 5.0397 183 33499 6025868 13.4907 5.6 129 16641 2146689 11.3578 5.0528 184 33856 6229504 13.5647 5.6 130 16900 2197000 11.4018 5.0668 185 34225 6331625 13.6015 5.6 131 17161 2249096 11.4591 5.0916 187 34596 6434856										5.604
123 15129 1860867 11.0905 4.9732 178 31684 5639752 118.3417 5.6 124 15376 1906624 11.1355 4.9866 179 32041 5735339 13.8791 5.6 125 15625 1953125 11.1803 5.0000 180 32400 5832000 13.4164 5.6 127 16129 901883 11.2694 5.0265 182 33124 6028568 13.4007 5.6 128 16384 2097152 11.3187 5.0397 183 33499 6128487 13.5277 5.6 129 16641 2146689 11.3578 5.0528 184 33856 6229504 13.5647 5.6 131 17161 2248091 14.4485 5.0788 186 34225 6331625 13.6015 5.6 132 17424 2299968 11.4495 5.0788 186 34596 6434856 13.6382 5.7 133 17669 2352837 11.5936 5.1045 188 35344 6644672 <td>122</td> <td></td> <td></td> <td>11'.0454</td> <td>4.9597</td> <td>177</td> <td>31329</td> <td>5545233</td> <td></td> <td>5.614</td>	122			11'.0454	4.9597	177	31329	5545233		5.614
124 15376 1906624 11.1355 4.9866 179 32041 5735339 13.3791 5.6 125 15625 1953125 11.1803 5.0000 180 32400 5832009 13.4164 5.6 126 15876 2000876 11.2250 5.0133 181 32761 5929741 13.4580 5.6 128 16384 2097152 11.3137 5.0397 183 33499 6028568 13.4907 5.6 129 16641 2146689 11.3578 5.0528 184 33856 6229504 13.5647 5.6 130 16900 2197000 11.4018 5.0658 185 34225 6331625 13.6487 5.6 131 17161 2248091 11.4055 5.0788 186 34225 6331625 13.6485 5.7 132 17689 2352837 11.5326 5.1045 188 35344 6644672 13.7113 5.7 135 <td>123</td> <td></td> <td>1860867</td> <td>11.0905</td> <td></td> <td></td> <td></td> <td>5639752</td> <td></td> <td>5.62</td>	123		1860867	11.0905				5639752		5.62
127 16129 2018983 2097152 11.3187 5.0397 183 33499 6028568 18.4907 5.6 129 16641 2146689 11.3578 5.0528 184 33856 6629504 13.5647 5.6 130 16900 2197000 11.4018 5.0658 185 34225 6331625 13.6015 5.6 131 17161 2248091 11.4495 5.0788 186 34596 6434856 13.6382 5.7 133 17689 2352837 11.5326 5.1045 188 35344 6644672 13.7118 5.7 134 17956 2460375 11.6190 5.1299 190 38100 8859000 13.7447 5.7 135 18255 2460375 11.6190 5.1299 190 38640 6859000 13.7477 5.7 137 18769 2571353 11.7047 5.1551 192 36861 7077888 13.8564 5.7	124	15376	1906624	11.1355	4.9866	179	32041	5735339	13.3791	5.65
127 16129 2018983 2097152 11.3187 5.0397 183 33499 6028568 18.4907 5.6 129 16641 2146689 11.3578 5.0528 184 33856 6629504 13.5647 5.6 130 16900 2197000 11.4018 5.0658 185 34225 6331625 13.6015 5.6 131 17161 2248091 11.4495 5.0788 186 34596 6434856 13.6382 5.7 133 17689 2352837 11.5326 5.1045 188 35344 6644672 13.7118 5.7 134 17956 2460375 11.6190 5.1299 190 38100 8859000 13.7447 5.7 135 18255 2460375 11.6190 5.1299 190 38640 6859000 13.7477 5.7 137 18769 2571353 11.7047 5.1551 192 36861 7077888 13.8564 5.7				11.1803						5.640
128 16384 2097152 11.3187 5.0397 183 33499 6128487 13.5277 5.6 129 16641 2146689 11.3578 5.0528 184 33856 6229504 13.5647 5.6 130 16900 2197000 11.4018 5.0658 185 34225 633628 13.6747 5.6 131 17161 2248091 11.4455 5.0788 186 34596 6434856 13.6382 5.7 132 17424 2299968 11.4891 5.0916 187 34999 6639208 13.6748 5.7 134 17956 2406104 11.5758 5.1172 189 35721 6751209 13.7477 5.7 135 18255 2460375 11.6100 5.1299 190 36804 665791 13.8203 5.7 136 1896 2571333 11.7047 5.1551 192 36864 7077888 13.8546 5.7 139				11.2250					13.4580	5.600
129 16641 2146689 11,3578 5.0528 184 33856 6229504 13.5647 5.66 130 16900 2197000 11.4018 5.0658 185 34225 6331625 13.6015 5.67 131 17161 2248091 11.4485 5.0788 186 34596 6434856 13.6362 5.76 133 17689 2352837 11.5326 5.1045 188 35344 664672 13.7118 5.72 134 17956 2406104 11.5758 5.1172 189 35721 6751269 13.7477 5.73 136 18496 2515456 11.6619 5.1426 191 36481 6967871 13.8263 5.76 137 18769 2571353 11.7047 5.1551 192 36861 7077888 13.8564 5.76 138 19044 2689072 11.7473 5.1801 194 37636 7301384 13.8924 5.73		10129	9007159	11.2094				6100407	10.4907	
131 17161 2248091 11.4455 5.0788 186 34596 6434856 18.6382 5.7183 17.442 2299968 11.4485 5.0768 186 34969 6539908 13.6748 5.7183 5.7183 5.7192 188 35344 6644672 13.7118 5.75 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7477 5.73 <										5.68
131 17161 2248091 11.4455 5.0788 186 34596 6434856 18.6382 5.7183 17.442 2299968 11.4485 5.0768 186 34969 6539908 13.6748 5.7183 5.7183 5.7192 188 35344 6644672 13.7118 5.75 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7118 5.73 13.7477 5.73 <	190	16900	2197000	11 4018	5 0658	185	34995	6231695	18 6015	5.694
192 17424 2299968 11.4891 5.0916 187 34969 6539208 13.6748 5.71 133 17696 2353827 11.5936 5.1045 188 35344 664672 13.7118 5.72 134 17956 2406104 11.5758 5.1172 189 35721 6751269 13.7417 5.73 135 18265 2460375 11.6190 5.1299 190 3610.0 6859000 13.7840 5.73 136 18496 2571355 11.6197 5.1519 194 36864 7077888 13.8503 5.76 137 18769 2571353 11.7077 5.1551 192 36864 7077888 13.8503 5.76 138 19044 2628072 11.7473 5.1676 193 37249 718057 13.8924 5.77 140 19600 2744000 11.8922 5.1925 195 38025 7414875 14.0864 5.2753 14.08677	131									5.708
133 17689 2852837 11.5926 5.1045 188 35344 6644672 13.7113 5.75 134 17956 2406104 11.5758 5.1172 189 35721 6751269 13.7477 5.75 136 18496 2515456 11.6190 5.1299 190 36481 6859000 13.7840 5.7 137 18769 2571353 11.7047 5.1551 192 36864 7077886 13.8545 5.76 138 19044 2828072 11.7473 5.1676 198 3729 718057 13.8945 5.7 139 19321 2685619 11.7898 5.1801 194 37636 7301384 13.9284 5.79 140 19600 2744000 11.8322 5.1925 195 38025 7414875 18.9642 5.79 142 29164 2863288 11.9146 5.2171 197 38809 7645378 14.0000 5.83 145	132									5.718
134 17956 2406104 11.5758 5.1172 189 35721 6751209 13.7477 5.77 135 18295 2460375 11.6100 5.1299 190 38100 8659000 13.7840 5.74 136 18496 2515456 11.6109 5.1426 191 36481 6967871 13.8203 5.73 137 18769 2571333 11.7047 5.1551 192 36864 7077888 13.8544 5.77 139 19321 2683619 11.7473 5.1676 193 37249 7180057 13.8924 5.77 140 19600 2744000 11.8392 5.1925 195 38025 7301384 13.9284 5.79 141 19881 2803221 11.8743 5.2048 196 38116 7529536 14.0000 5.80 143 20449 2924207 11.9583 5.22933 198 39204 7762392 14.0712 5.83 <t< td=""><td>133</td><td></td><td>2352637</td><td></td><td></td><td></td><td>35344</td><td>6644672</td><td>13.7118</td><td>5.725</td></t<>	133		2352637				35344	6644672	13.7118	5.725
136 18496 2515456 11.6619 5.1426 191 36481 9667871 13.8203 5.751 137 18769 2571353 11.7047 5.1551 192 36864 7077888 13.8526 5.76 138 19044 2628072 11.7473 5.1676 198 37249 7189057 13.8924 5.77 139 19821 2685619 11.7898 5.1801 194 37636 7301384 13.9284 5.77 140 19600 2744000 11.8322 5.1925 195 38025 7414875 14.9664 5.2771 197 38809 7414875 14.0867 5.81 142 26164 2863288 11.9164 5.2171 197 38809 7645373 14.0857 5.81 143 20449 294207 71.9588 5.2933 198 39204 7645373 14.0857 5.83 145 21025 3048625 12.0416 5.2536 200 40000 8000000 14.1421 5.84 147 21609 3176523 12.1655 5.2996 203 41009 8365127 14.2478 5.88 149 22201 3307949	184	17956	2406104	11.5758	5.1172	189	85721	67512 6 9	13.7477	5.73N
137 18769 2571353 11.7047 5.1551 192 36864 7077888 3.8564 5.76 138 19044 2682072 11.7473 5.1676 198 37249 7189057 13.8564 5.76 139 19321 2685619 11.7898 5.1801 194 37636 7301384 13.9284 5.72 140 19600 2744000 11.8322 5.1925 195 38025 7414875 18.9642 5.79 141 19881 280321 11.8743 5.2048 196 38116 7529536 14.0000 5.87 142 29164 2863288 11.9164 5.2719 197 38809 7645378 14.0857 5.87 143 20449 2924207 11.9583 5.2293 198 39204 7762392 14.0712 5.83 145 21025 3046825 12.0416 5.2536 200 4000 8000000 14.1421 5.83 146 21316 311238 12.0830 5.2536 201 40401 8129601 14.1747 5.83 147 21609 3176523 12.1244 5.2776 202 40804 8242408 <									13.7840	5.748
188 19044 2628072 11.7473 5.1676 193 37249 7189057 13.8924 5.73 139 19821 2685619 11.7893 5.1801 194 37636 7301384 13.9284 5.72 140 19600 2744000 11.8322 5.1925 195 38025 7414875 18.9642 5.73 142 20164 2863288 11.9164 5.2171 197 38809 7645373 14.0857 5.81 143 20449 294207 11.9583 5.2933 198 39204 7762393 14.0857 5.83 145 21025 3048625 12.0416 5.2536 200 40000 8000000 14.121 5.84 147 21609 3170533 12.1244 5.2756 201 40804 824206 14.2478 5.87 149 22201 3307949 12.1655 5.2896 203 41009 8365127 14.2478 5.86 15										5.7590
139 19321 2685619 11.7898 5.1801 194 37636 7301884 18.9284 5.72 140 19600 2744000 11.8322 5.1925 195 38025 7414875 18.9642 5.73 141 19881 2803221 11.8743 5.2048 196 38116 7529536 14.0000 5.83 142 29164 286328 11.9164 5.2171 197 38809 7645373 14.0005 5.83 143 20449 2934207 11.9583 5.2293 198 39204 7762392 14.0712 5.83 145 21025 3048625 12.0416 5.2536 201 40001 8120601 14.1067 5.83 146 21316 3112336 12.0830 5.2536 201 40401 8120601 14.1747 5.83 147 21609 3176523 12.1244 5.2776 202 40804 8242408 14.2127 5.86			2571353	11.7047	5.1551		36864			5.769
140 19600 2744000 11.8322 5.1925 195 38025 7414875 18.9642 5.78 141 19881 2803221 11.8743 5.2048 196 38116 7529536 14.0000 5.81 142 29149 2934207 11.9583 5.2293 198 39204 7645373 14.0867 5.81 144 20736 2985984 12.0000 5.2415 199 39601 7880599 14.1067 5.83 145 21025 3048625 12.0416 5.2736 201 4000 8000000 14.1421 5.84 146 21316 3112136 12.0830 5.2656 201 40401 8120601 14.1774 5.83 149 22201 3307949 12.2066 5.3015 204 41616 8489664 14.2829 5.88 150 22500 3875000 12.2474 5.3133 205 42025 8015125 14.3127 5.90										5.789
141 19881 2803221 11.8743 5.2048 196 38416 7529536 14.0000 5.875 142 29164 28624207 11.9583 5.2293 198 39204 762392 14.0712 5.83 144 20736 2985984 12.0000 5.2315 199 39601 762392 14.0712 5.83 145 21025 3046825 12.0416 5.2586 200 40000 5.000000 14.1421 5.83 146 21316 3112136 12.0830 5.2856 200 40401 8129601 14.1774 5.83 147 21609 3176523 12.1244 5.2776 202 40804 8242408 14.2478 5.87 149 22201 3307949 12.2066 5.896 203 41209 3865127 14.2478 5.87 150 22500 3375000 12.2474 5.3133 205 42025 8015125 14.3178 5.89 151 22801 3442951 12.2988 5.1251 206 42436 8741816 14.3527 5.90 153 23409 381587 12.3688 5.3368 207 42849 8741816	- 1			1. 1		105				
142 20164 2863288 11.9164 5.2171 197 38809 7645378 14.0857 5.83 143 20449 294207 11.9583 5.2293 198 39204 7762392 14.0712 5.83 144 20736 2985984 12.0000 5.2115 199 39601 7680599 14.1071 5.83 145 21025 3048625 12.0416 5.2586 200 40000 8000000 14.1421 5.83 146 21316 3112136 12.0830 5.2856 201 40041 8120601 14.1774 5.85 147 21609 3176523 12.1244 5.2776 202 40804 8242408 14.2187 5.85 148 21904 3241792 12.1655 5.2896 203 41209 8865127 14.2478 5.87 149 22201 3307949 12.2066 5.3015 204 41616 8489664 14.2822 5.88			2144UUU						14 0000	J. 1000
143 20449 2924207 11.9583 5.2293 198 39204 7762392 14.0712 5.25 144 20736 2985984 12.0000 5.2415 199 39601 7880599 14.1067 5.83 145 21025 3048625 12.0416 5.2536 200 40000 8000000 14.1421 5.84 147 21609 3176523 12.1244 5.2776 202 40804 842408 14.2127 5.86 148 21904 3241792 12.1655 5.2896 203 41209 8365127 14.2478 5.87 150 22500 3875000 12.2474 5.3133 205 42025 8615125 14.3178 5.89 151 22301 3442951 12.3288 5.3368 207 42849 8741816 14.3527 5.90 152 23104 3511803 12.3288 5.3368 207 42849 8969743 14.3875 5.90 153 23409 3361577 12.3693 5.3485 208 42849 899912 14.4222 5.225							38809		14 0857	5.818
144 20736 2985984 12.0000 5.2415 199 39601 7880599 14.1067 5.83 145 21025 3048625 12.0416 5.2836 200 40000 8000000 14.1421 5.83 146 21316 3112136 12.0830 5.2656 201 40401 8120601 14.1774 5.85 147 21609 3170523 12.1244 5.2776 202 40804 8242408 14.2175 5.86 149 22201 3307949 12.2066 5.3015 204 41616 8489664 14.2829 5.88 150 22500 3875000 12.2474 5.3133 205 42025 8015125 14.3178 5.90 151 22801 3442951 12.2882 5.1251 206 42436 8741816 14.3527 5.90 153 23409 3381507 12.3683 5.3368 207 42849 8741816 14.3527 5.90			2924207	11.9583	5.2293		39204	7762392	14.0712	5.8285
146 21316 3112136 12.0830 5.2856 201 40401 8120601 14.1774 5.85 147 21609 3170528 12.1244 5.2776 202 40804 8242408 14.2127 5.86 148 21904 3241792 12.1655 5.2966 203 41209 8365127 14.2127 5.86 149 22201 3307949 12.2066 5.3015 204 41616 8489664 14.2829 5.88 150 22500 3875000 12.2474 5.3133 205 42025 8615125 14.3178 5.89 151 23014 3511803 12.3288 5.3868 207 42849 8741816 14.3875 5.90 153 23409 3381577 12.3683 5.3485 208 48264 898912 14.42825 5.29 5.29										5.8353
146 21316 3112136 12,0830 5,2856 201 40401 8120601 14,1774 5,856 147 21609 3176523 12,1244 5,2776 202 40804 8424208 14,2127 5,86 149 22201 3307949 12,2066 5,3015 204 41616 8489664 14,2829 5,86 150 22500 3375000 12,2474 5,3133 205 42025 8615125 14,3178 5,89 151 22304 3511803 12,2882 5,1251 206 42436 8741816 14,3875 5,90 152 23104 3511803 12,3288 5,3368 207 42849 8869743 14,3875 5,90 153 23409 3381577 12,3683 5,3485 208 43264 899812 14,4222 5,225	145	21025	3048625	12.0416			40000	8000000		5.8480
148 21904 3241792 12.1655 5.2896 203 41209 8365127 14.2478 5.87 149 22201 3307949 12.2006 5.3015 204 41616 8489664 14.2478 5.87 150 22500 3875000 12.2474 5.8133 205 42025 8615125 14.3178 5.89 151 22801 3443951 12.2882 5.1251 206 42436 8741816 14.3527 5.90 152 23104 3511808 12.3888 5.3688 207 42849 866743 14.3875 5.91 153 23409 3681577 12.3683 5.3685 208 43264 8098912 14.42225 5.9225	146	21316		12.0830				8120601	14.1774	5.8578
149 22201 3307949 12.2066 5.3015 204 41616 8489664 14.2829 5.88 150 22500 3375000 12.2474 5.3133 205 42025 8615125 14.3178 5.89 151 22901 3442951 12.2882 5.1251 206 42436 8741816 14.3875 5.90 152 23104 3511803 12.3288 5.3368 207 42849 8869743 14.3875 5.90 153 23409 3381577 12.3683 5.3488 208 43264 8998912 14.4222 5.92			3176523	12.1244	5.2776		40804			5.8675
150 22500 3875000 12.2474 5.3133 205 42025 8615125 14.3178 5.89 151 22801 3442951 12.2882 5.1251 206 42436 8741816 14.3527 5.90 152 23104 3511809 12.3288 5.3368 207 42849 8669743 14.3875 5.91 153 23409 3381577 12.3693 5.3485 208 43264 8998912 14.4225 5.92				12.1655 12.2066	5.3015					5.8771 5.886
151 2:901 3443951 12. 9882 5. 1251 206 42436 8741816 14. 3527 5.00 152 23104 3511803 12. 3288 5. 3368 207 42849 869743 14. 3875 5. 01 153 23409 33681577 12. 3683 5. 3485 208 43264 898912 14. 4225 5.92									1 [
152 23104 3511803 12.3288 5.3368 207 42849 8869743 14.3875 5.91 153 23409 3581577 12.3693 5.3185 208 43264 8998912 14.4222 5.92									14.3178	5.896
153 23409 3581577 12.3693 5.3485 208 43264 8998912 14.4222 5.92		23001							14 9975	
		23409	3581577	12.3693					14 4229	5.925
TOTAL CONTROL TO THE PROPERTY OF THE PROPERTY	154	23716	3652264	12 4097			43681		14.4568	5.934

0	Square.	Cube.	8q.	Cube	No.	Square.	Cube.	Sq.	Cube
			Root.	Root.				Root.	Root.
10	44100	9:261000	14.4914	5.9439	265	70225	18609625	16.2788	6.4282
11 -	44521	9393931	14.5258	5.9583	266	70756	18821096	16.8095	6.4312
12 '	44944	9528128	14.5602	5.9627	267	71289	19084168	16.3401	6.4393
13	45369	9663597	14.5945	5.9721	268	71824	19248882	16.3707	6.4478
14,	45796	9800844	14.6287	5.9814	269	72361	19465109	16.4012	6.4558
15 16	46225 46656	9938875 10077696	14.6629 14.6969	5 9907 6.0000	270 271	72900 78441	19683000 19902511	16 4817 16 4621	6.4688
17	47089	10218318	14.7309	6.0092	272	78984	20128648	16.4924	6.4718 6.4792
18	47524	10360232	14.7648	6.0185	278	74529	20346417	16.5227	6.4872
19	47961	10508459	14.7986	6 0277	274	75076	20570824	16.5529	6.4951
20	48400	10648000	14.8824	6.0368 6.0459	275	75625	20796875	16.5881	6.5030
21 22	48841 49284	10793861 10941048	14.8661 14.8997	6.0550	276 277	76176 76729	21024576 21258988	16.6132 16.6433	6.5108 6.5187
23	49729	11089567	14.9332	6.0641	278	77284	21484952	16.6788	6.5265
24	50176	11239424	14.9666	6.0782	279	77841	21717639	16.7033	6.5343
25	50625	11390625	15.0000	6.0822	280	78400	21952000	16.7882	6.5421
26	51076	11543176	15.0333	6.0912	281	78961	22188041	16.7631	6.5499
223 223	51529	11697088	15.0665	6.1002	282	79524	22425768	16.7929	6.5577
23	51 984 52441	11852852 12008969	15.0997 15.1327	6.1091 6.1180	283 284	80089 806 56	22665187 22906304	16.8226 16.8528	6.5654 6.5731
3 0	52900	12167000	15.1658	6.1269	285	81225	28149125	16.8819	6.5808
131	53361	12326391	15.1987	6.1358	286	81796	23393656	16.9115	6.5885
32	53824	12487168	15.2315	6.1446	287	82369	23639903	16.9411	6.5962
233	54289	1:2649337	5.2643	6.1534	288	82944	23887872	16.9706	6.6039
31	54756	12812904	15.2971	6.1622	289	88521	24137569	17.0000	6.6115
235	55225	12977875	15.3297	6.1710	290	84100	24389000	17.0294	6.6191
236 247	55696	13144256	15.3623	6.1797	291	84681	24642171	17.0587 17.0880	6.6267
238	56169 56644	13312053 13481272	15 3948 15 4278	6.1885 6.1972	292 298	85264 85849	24897088 25153757	17.0880	6.6343
239	57121	13651919	15.4596	6.2058	294	86436	25412184	17.1464	6.6494
210	57600	13824000	15.4919	6.2145	295	87025	2567:375	17.1756	6.6569
241	58081	13997521	15.5242	6.2231	296	87616	25934336	17.2047	6.6644
242 243	58564	14172488	15.5563	6.2317	297	88209	26198073	17.2337	6.6719
244	59049 59536	14348907 14526784	15.5885 15.6205	6.2403 6.2488	298 299	88804 89401	26463592 26730899	17.2627 17.2916	6.6794 6.6869
245	60025	14706125	15.6525	6.2573	800	90000	27000000	17.3205	6.6943
246	60516	14886936	15.6844	6.2658	301	90601	27270901	17.3494	6.7018
247	61009	15069223	15.7162	6.2743	303	91204	27543608	17.8781	6.7092
248	61504	15252992	15.7480	6.2828	303	91809	27818127	17.4069	6.7166
249	62001	15438249	15.7797	6.2912	304	92416	28091464	17 4356	6.7240
250	62500	15625000	15.8114	6.2996	305	93025	28372625	17.4642	6.7313
251	63001	15818251	15.8430	6.3080	806	93636	28652616	17.4929	6.7387 6.7460
252 25 }	68504	16003008	15.8745	6.3164	307	94249	28934443	17.5214 17.5499	6.7460
251	64009 6451 6	16194 <i>2</i> 77 16387064	15.9060 15.9374	6.3247 6.3330	308 309	94864 95481	29218112 29503629	17.5499 17.5784	6.7533 6.7606
255	65025	16581875	15.9687	6.8413	310	96100	29791000	17.6068	6.7679
256	65536	16777216	16.0000	6.3496	311	96721	30080231	17.6352	6.7752
257		16974598	16.0312	6.3579	312	97314	3 0371328	17.6635	6.7824
258		17173512	16.0624	6.3661	313	97969	30664297	17.6918	6.7897
259	67081	17373979	16.0935	6.3743	314	98596	30959144	17.7200	6.7969
260	101000	17576000	16.1245	6 3825	315	99225	31255875	17.7482 17.7764	6.8041
26) 26)	100744	17779581	16.1555	6.3907	316	99856	81554496 31855013	17.7764	6.8113 6.8185
263		17984728 18191447	16.1864 16.2178	6.3988 6.4070	317 318	100489	31800013 32157432	17.8045 17.8326	6.8256
264			16.2481			101761		17.8606	

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root.
320	102400	82768000	17.8885	6.8399	375	140625	52784875	19.3649	7.2112
321	103041	33076161	17.9165	6.8470	376	141376	53157876	19.3907	7.2177
3:22	103684	33386248	17.9444	6.8541	377	142129	53582683	19.4165	7.2240
323	104329	33698267	17.9722	6.8612	378	142884	54010152	19.4422	7.2304
354	104976	84012224	18.0000	6.8688	879	143641	54439989	19.4679	7.2368
325	105625	84828125	18.0278	6.8753	380	144400	54872000	19.4986	7.248 7.248
32 6 327	106276 106929	84645976 84965788	18.0555 18.0831	6.8824	381 882	145161 145924	55306341 55742968	19.5192 19.5448	7.255
328	107584	85287552	18.1108	6.8964	888	146689	56181887	16.5704	7.26
329	108241	85611289	18.1384	6.9034	884	147456	50623104	19.5959	7.268
5 80	108900	85937000	18.1659	6.9104	885	148225	57066625	19.6214	7.2748
331	109561	86264691	18.1934	6.9174	886	148996	57512456	19.6469	7.2811
332	110224	86594868	18.2209	6.9244	387	149769	57960603	19.6723	7.2874
333	110889	86926037	18.2483	6.9318	388	150544	58411072	19.6977	7.2936
334	111556	87259704	18.2757	6.9382	889	151821	588638 69	19.7281	7.2999
335 336	112225	87595375 37983056	18.3080	6.9451 6.9521	890 891	152100 152881	59319000 59716471	19.7484 19.7787	7.3061 7.3184
337	112896 118569	38272758	18.3303 18.3576	6.9589	392	153664	60236288	19.7990	7.3186
338	114244	38614472	18.3848	6.9658	898	154449	60698457	19.8242	7.3243
339	114921	88958219	18.4120	6.9727	894	155286	61162984	19.8494	7.3310
840	115600	39304000	18.4391	6.9795	895	156025	61629875	19.8746	7.337
841	116281	39651821	18.4662	6.9864	896	156816	62099136	19.8997	7.8484
342	116964	40001688	18.4932	6 9935	397	157609	62570778	19.9249	7.3490
343	117649	40353607	18.5203	7.0000	898	158404	63044792	19.9499	7,3558
344	118386	40707584	18.5472	7.0068	399	159201	68521199	19.9750	7.3619
345	119025	41068625	18.5742	7.0136	400	160000	64000000	20 0000	7.3681
346	119716	41421736	18.6011	7.0208	401	160801	64481201	20 0250	7.3742
347 348	120409 121104	41781928 42144192	18.6279 18.6548	7.0271 7.0338	402 403	161604 162409	64964808 65450827	20.0499	7.3809
349	121801	42508549	18.6815	7.0406	404	163216	65989264	30.0998	7.8925
350	122500	42875000	18.7083	7.0473	405	164025	66430125	20.1246	7.3986
351	123201	43243551	18.7850	7.0540	406	164836	66923416	20.1494	7.4047
352	123904	43614208	18.7617	7.0607	407	165649	67419148	20.1742	7.4100
353	124609		18.7883	7.0674	408	166464	67917812	20.1990	7.4169
354	125316	44361864	18.8149	7.0740	409	167281	68417929	20.2287	7.4229
355	126025	44788875	18.8414	7.0807	410	168100	68921000	20.2485	7.4290
3.6	126736	45118016 45499293	18.8680	7.0873	411 412	168921	69426531 69934528	20.2781 20.2978	7.4350
357 358	127449 128164	45882712	18.8944 18 9209	7.0940 7.1006	413	169744 170569	70444997	20.3224	7.4410
359	128881	46268279	18.9473	7.1072	414	171396	70957944	20.8470	7.4580
360	129600	46656000	18.9737	7.1138	415	172225	71478375	20.8715	7.4590
361	130321	47045881	19.0000	7.1204	416	173056	71991296	20.3961	7.4650
362	131044	47437928	19.0263	7.1204 7.1269 7.1335	417	173889	72511713	20.4206	7.4710
363	131769		17.0526	7.1335	418	174724	73034632	20.4450	7,4770
364	132496	48228544	19.0788	7.1400	419	175561	73560059	20.4695	7.4829
365	183225	48627125	19.1050	7.1466	420	176400	74088000	20.4939	7.4889
366	133956	49027896	19.1311	7.1531	421	177241	74618461	20.5188	7.4948
367 368	134689	494 3 0863 498 3 6032	19.1572	7.1596 7.1661	422 423	178084	75151448	20.5426	7.5007
369	185424 186161	49830032 50243409	19.1833 19.2094	7.1661	423 424	178929 179776	75686967 762 2 5024	20.5670 20.5918	7.5067 7.5126
370	136900	50653000	19.2354	7.1791	425	180625	76765625	20.6155	7.5185
871	137641	51064811	19.2614	7.1855	426	181476	77308776	20.6398	7.5244
872	138384	51478848	19.2873	7.1920	427	182329	77854483	20.6640	7.5303
373	139129	51895117	19.3132	7.1984	428	183184	78402752	20 6832	7.5361
374	139876	52313624	19.3391	7.2048	4:29	184041	78958589	20.7123	

								·	
No. Squ	are.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root.
130 184	990	79507000	20.7364	7.5478	485	235325	114084125	22,0227	7.8568
	761	80000001	20.7605	7.5537	486	236196	114791256	22.0454	7.8622
成 186	6e)4	80621568	20.7846	7.5595	487	237169	115501308	22,0681	7.8676
133 187	489	S1182737	20.8087	7.5654	488	238144	116214272	22.0907	7.8780
184 188	356	81746504	20.8327	7.5712	489	239121	116930169	22.1188	7.8784
	225	82312975	20.8567	7.5770	490		117649000	22.1859	7.8837
4% 190 4% 190		84881856	20.8906	7.5828	491	241081	118870771	≈2.1585	7.8891
43) 191		88458453 84027672	20.9045 20.9284	7.5886 7.5944	492 492	243064 248049	119095488 119628157	22.1811	7.8944
139 192		84604519	20.9523	7.6001	194		120558784	22.2086 22.2261	7.8998 7.9051
H) 198	600	85184000	20.9762	7.6059	495	245025	121287375	22.2486	7.9105
141 ' 194	481	85766121	21.0000	7.6117	496	246016	122023936	22.2711	7.9158
142 195	964	86850688	21.0238	7.6174	497	247009	122763478	22.2935	7.9211
	240	86938307	21.0476	7.6232	498	248004	123505992	22.3159	7.9264
197	136	87528384	21.0718	7.6289	499	249001	124251499	\$5 8883	7.9317
	095 916	88121125 88716586	21.0050	7.6846	500	250000	125000000	22.3607	7.9370
117 199	666	89814623	21.1187 21.1424	7.6463 7.6460	501 50%	251001 252004	125751501 126506068	22.8830 22.4054	7.9428
148 200	794	89915392	21.1660	7.6517	508		127263527	22.4277	7.9528
	601	90518849	21.1896	7.6574	504	254016	128024064	22.4499	7.9581
	500	91195000	21.2182	7.6631	505	255025	128787625	22.4722	7.9634
	401	91788851	21.2868	7.6688	506	256086	129554216	22.4944	7.9686
	304	94845496 92959677	21.2608	7.6744	507	257049	180823843	22.5167	7.9739
	116	94979877	21.4838	7.6800	508		131096512	22.5389	7.9791
1			21.8078	7.6857	509	259081	181872229	22.5610	7.9848
455 207	095	94196375	21.8307	7.6914	510		132651000	22.5832	7.9896
456 207 457 208	986 849	94819816	21.3542	7.6970	511	261121	133432831	22.6053	7.9948
	744	95448998 96071912	21.3776 21.4009	7.7026 7.7082	512 513		134217728 135005697	22.6274 22.6495	8.0000
		96702579	21.4248	7.7138	514		185796744	22.6716	8.0052 8.0104
460 211	600	97886000	21.4476	7.7194	545	265225	136590875	22.6996	8.0156
461 213	521	97972181	21.4709	7.7250	516	266256	187388096	22.7156	8.0208
462 213	H44 1360	98611128	21.4942	7.7306	517	267289	138188413	22.7876	8.0260
463 214	306	99252847	21.5174	7.7862	518		138991832	22.7596	8.0311
1	STATE OF	99897344	21.5407	7.7418	519	269361	139798359	22.7816	8.0863
		100544625	21.5699	7.7478	520		140608000	22.8035	8.0415
	156	101194696	21.5870	7.7529	521		141420761	22.8254	8.0466
467 244 468 244		201847 56 3	21.6102 21.6883	7.7584	522	272484	142236648	22.8473	8.0517
	981	102503432 103161709	21.6564	7.7689 7.7695	524	273529 274576	143055667 143877824	22.8692 22.8910	8,0569 8, 063 0
470 220	1990	103893000	21.6795	7.7750	525	27 562 5	144703125	22.9129	8.0671
		104487111	21.7025	7.7805	526	276676	145531576	22.9347	8.0728
172 22	2784	105154048	21.7256	8.7960	527		146363183	22 9565	8.0774
473 224	799	105843817	21.7486	7.7915		278784	147197952	22.9783	8.0825
171 224	1676 	106496424	21.7715	7.7970	529	279841	148085889	28.0000	8.0876
	495	107171875	21.7945	7.8025	580		148877000	23.0217	8.0927
477 900	zan l	107850176 108581888	21.8174 21.8403	7.8079 7.8184	581 582		149721291	23.0434	8.0978
478 : 226	484	109215352	21 8632	7.8188	588	284089	150568768 151419487	23.0651 23.0868	8.1028 8.1079
479 23	141	109902289	21.8861	7.8248	584		152273304	23.1084	8.1130
480 296	1490	110599000	21 .9089	7.8997	535	286225	153180875	23.180	8.1180
181 231	13K1	11 1284641	21.9817	7.8852	536		153990656	28.1517	8.1231
182 23	2894 1480	111999168	21.9545	7.8406	537	288369	154854153	23.1738	8.1281
483 23 184 23	100	149678587 113379904	21.9778	7.8460		289444	155720872	23.1948	8.1332
179 (28)	1356	114047001	22.0000	7.8514	างง	290521	156590819	23.2164	8 1382

								1 1	
No.	Square.	Cabe.	Sq. Root.	Cube Root.	No.	Square.	Cübe.	Sq. Root.	Cub Roo
540	291600	157464000	23.2379	8.1483	595	354025	210644875	24.3926	8.41
541	292681	158840421	23.2594	8.1483	596	355216	211708736	24.4131	8.41
542	293764	159220088	23.2809	8.1583	597	356409	212776178	24.4336	
543	294849	160103007	23.8024	8.1583	598	357604	218847192	24.4540	8.4
544	295936	160989184	23.8238	8.1633	599	858801	214921799	24.4745	8.4
545	297025	161878625	23.3452	8.1683	600	860000	216000000	24.4949	
546	298116	162771336	23.3666	8.1783	601	361201	217081801	24.5153	8.4
547 548	299209 300304	163667323 164566592	23.3890 23.4094	8.1783 8.1833	603	362404 363609	218167208 219256227	24.5357 24.5561	
549	301401	165469149	23.4307	8.1882	604	364816	220348864	24.5764	
550	302500	166875000	23,4521	8.1932	605	366025	221445125	24.5967	8.45
551	303601	167284151	23.4784	8.1982	606	367236	222545016	24.6171	
552	304704	168196608	23.4947	8.2031	607	368449	223648548	24 . 6374	8.46
553	305809	169112377	23.5160	8.2081	608	369664	224755712	24 . 6577	8.4
554	306916	170031464	23.5372	8.2130	609	370881	225866529	24.6779	8.43
555	308025	170953875	23.5584	8.2180	610	372100	226981000	24 6962	
556	309136	171879616	23.5797	8.2229	611	378821	228099131	24.7184	8 48
557	310249	172808693	23.6008	8.2278	612	874544	229220928	24 7386	
558 559	311364 312481	173741112 174676879	23.6220 23.6432	8.2327 8.2377	613 614	375769 376996	230346397 231475544	24.7588 24.7790	
					ŀ	1		ĺ	1 :
560	313600	175616000	23.6643	8.2426	615	378225	232608375	24.7992	
561	814721	176558481	23.6854	8.2475	616	379456	233744896	24.8193	
562 563	315844 316969	177504328 178458547	23.7065 23.7276	8.2524 8.2573	617	380689 381924	234885118 236029032	24.8395	
564	318096	179406144	28.7487	8.2621	618 619	383161	237176659	24.8596 24.8797	
			1					VI. 0131	
565	319225	180362125	23.7697	8.2670	620	384400	238328000	24.8998	8.52
566	320356	181321496	28.7908	8.2719	621	885641	239483061	24.9199	
567 568	321489 322624	182284263 183250432	23.8118 23.8328	8.2768 8.2816	622 623	386884 388129	240641848 241804367	24.9399	
569	323761	184220009	23.8537	8.2865	624	389376	242970624	24.9600 24.9800	
E70	924000	10510000	23.8747	8.2913	625	90000	04444000	0.000	i i
570 571	324900 326041	185193000 186169411	23.8956		626	390625 391876	244140625 245314376	25.0000 25.0200	
572	327184	187149248	23.9165	8.3010	627	392129	246491883	25.0400	8.55
573	328329	188132517	23.9374	8.3059	628	394884	247673152	25.0599	8.56
574	329476	189119224	23.9583	8.3107	629	395641	248858189	25.0799	
575	330625	190109375	23.9792	8.3155	630	396900	250047000	25.0998	8.57
576	331776	191102976	24.0000	8.3203	631	398161	251239591	25.1197	8.57
577	332929	192100033	24.0208	8.3251	632	399424	252435968	25.1396	8.58
578	334084	193100552	24.0416	8.3300	633	400689	253636137	25.1595	8.5
579	335241	194104539	24.0624	8.3348	684	401956	254840104	25.1794	8.59
580	336400	195112000	24.0832	8.3396	635	403225	256047875	25.1992	8.59
581	337561	196122941	24.1039	8.3448	636	404496	257259456	25.2190	8 59
582	338724	197137368	24.1247	8.3491 8.3539	637 638	405769	258474853	25.2389	8.60
588 584	339889 341056	198155287 199176704	24.1454 24.1661	8.3587	638 639	407044	259694072 260917119	25.2587 25.2784	8.60 8.61
585	342225	1	24.1868	8.3634	640	409600	1	1	
586	343396	200201625	24.1808	8.3682	641	410881	262144000 263374721	25.2989 25.3180	8.62
587	344569	202262003	24 . 2281	8.3730	642	412164	264609288	25.3377	8.62
588	345744	203297472	24.2487	8.3777	643	413449	265847707	25.3574	8.63
589	846921	204336469	24.2698	8.3825	644	414786	267089984	25.3772	8.63
590	348100	205879000	24.2899	8.3872	645	416025	268336125	25.3969	8.61
591	349281	206425071	24 8105	8.3919	646	417816	269586136	25.4165	8 64
592	350464	207474688	24.3311	8.3967	647	418609	270840028	25.4362	8.61
593	351649	208527857	24.3516		648	419904	272097792	25.4558	8.35
594	352836	209594584	24.3721	8.4061	649	421201	273359449	25.4755	8.65

lo.	Squ are.	Cube.	Sq. Root.	Cube Root,	No.	Squ ar e.	Cube.	Sq. Root.	Cube Root.
` 50	422500	274625000	25.4 9 51	8.6624	705	497025	350402625	26.5518	8.9001
ŭΙ	423901	275894451	25.5147	8.6668	706	498436	351895816	26.5707	8.9043
52	425104	277167808	25.5343	8.6713	707	499849	358393248	26.5895	8.9085
53 54	426409 427716	2784 15077 279726264	25.5589 25.5784	8.6757 8.6801	708 709	501264 502681	354894912 356400829	26.6083 26.6271	8.9127 8.9169
	701110	210100007	20.0.0	0.000		000001	00010000	20.00.	0.0100
555	429025	281011375	25.5930	8.6845	710	504100	357911000	26.6458	8.9211
656 657 :	4303 36 431 649	282300416 283593393	25.6125 25.6320	8.6890 8.6934	711 712	505521 506944	359425431 360944128	26.6646 26.6833	8.9258 8.9295
558	432964	284890312	25.6515	8 6978	718	508369	362467097	26,7021	
39	434281	286191179	25.6710		714	509796	863994344	26.7208	
36 0	435600	287496000	25.6905	8.7066	715	511225	365525875	26.7395	8.9420
361	436921	288804781	25.7099		716	512656	367061696	26.7582	8.9462
562	438244	290117528	25 7294	8.7154	717	514089	368601818	26.7769	8.9503
663	439569	291484247	25.7488	8.7198	718	515524	870146232	26.7955	8.9545
664	440896	292754944	25.7682	8.7241	719	516961	871694959	26.8142	8.9587
665	442225	294079625	25.7876		720	518400	373248000	26.8828	8.9628
666	443556	295408296	25.8070	8.7329	721	519841	374805361	26.8514	8.9670
667 663	444889 446224	296740963 298077632	25.8263		722 723	521284	376367048 377933067	26.8701	8.9711 8.9752
669	447561	299418309	25.8457 25.8650		724	522729 524176	379503424	26.8887 26.9072	
	!	ì	Í			1	j	1	{
0,0	448900	300763000	25.8844	8.7503	725	525625	381078125	26.9258	
671 672	450241 451584	802111711 303464448	25.9037 25.9230		726 727	527076 526529	382657176 384240583	26.9444	
6.3	452929	304821217	25.9423		728	529984	385828352	26.9815	
6,1	454276	306182024	25.9615		729	581441	387420489	27.0000	
675	455625	307546875	25.9808	8.7721	780	532900	389017000	27 0185	9 0041
676	456976	308915776	26.0000	8.7764	731	534361	390617891	27.0370	
677	458329	310288783	26.0192		732	535824	392223168	27.0555	9.0123
678	459684	311665752	26.0384		733	537289	393832837	27.0740	9.0164
679	461041	318046889	26.0576	8.7893	784	538756	395446904	27.0924	9.0205
680		314432000	26.0768		785	540225	397065375	27.1109	9.0246
641		315821241	26.0960		736	541696	398688256	27.1293 27.1477 27.1662	9.0287
632		317214568 318611987	26.1151 26.1343		787 738	543169	400315553	27.1477	9.0328
684		320013504	26.1534		739	546121	403588419	27.1846	9.0410
60*		mm	04 4505	1		- 45000	405004000	a 0000	0.0450
685 690		321419125 322828856	26.1725 26.1916		740 741	547600 549801	405224000	27,2029 27,2213	9.0450 9.0491
65		324242708	26.2107		742	550564	408518488	27 2397	
64	473341	3:25660672	26.2298		743	552049	410172407	27.2580	
(jeg)	474721	327082769	26.2488		744	558536	411830784	27.2764	9.0613
G)	476100	328509000	26.2679	8.8366	745	555025	413493625	27.2947	9.0654
9	477481	8:29989:371	26.2869	8.8408	746	556516	415160936	27.3130	9.0694
f _e ,		331373888	26.3059		747	558009	416832723	27. 3313	
69 63		332812557 334255384	26.3249		748	559504	418508992	27.3496	9.0775
		009200004	26.8439	8.8586	749	561001	420189749	27.3679	İ
69		335702375	26.3629		750	562500	421875000	27.3861	9.0856
69 69		387158586 338608873	26.3818 26.4006		751 752	564001 565504	423564751 425259008	27.4044	
69		840068892	26.4197			567009	426957777	27.4408	9.0977
G		341582099	26.4886		754	568516	428661064	27.4591	
า	0 490000	343000000	26.4575	8.8790	755	570025	430368875	27.4778	9.1057
	491401	344472101	26.4764		756	571536	432081216	27.4955	
31	13 49:3804	345948408	26.4958	8.8875		573049	433798093	27.5136	9.1138
	494909	3474:28927	26.5141	8.8917	758	574564	435519512	27.5318	9.1178
- 5	4 495616	348013664	26.5330	8.8959	759	576081	437245479	27.5500	9.1218

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube,	Sq. Root.	Cube Root.
		40000000	OF E001	0.1050	815	664225	541848375	00 2400	9.340
760	577600	438976000		9.1358		665856	543338496		9.344
761	579121	440711081	27.0002	9.1298	816	667489			9.348
762	580644	442450728		9.1338	817	669124	545338518 547343432		9.352
763	582169	444194947		9.1378	818	670761			9.356
764	583696	445948744	21.0405	9.1418	819	DIDIOI	549358359	20.0102	9.000
765	585225	447697125	27.6586	9.1458	820	672400	551368000	28.6856	9,359
766	586756	449455096 451217663	27.6767	9.1498	821	674041	558387661	28.6531	9.363
767		451217663	27.6948	9.1537	822	675684	555412248	28.6705	9.367
768		452984832		9.1577	823	677329	557441767		9.371
769	591361	454756609	27.7308	9.1617	8:4	678976	559476224	28.7054	9.375
770	592900	456533000	27.7489	9.1657	895	680625	561515625	28.7228	9 378
771	594141	458314011	27.7669	9.1696	826	682276	568559976	28.7402	9.382
772	595984	460099648			827	683929	565609283		9 386
773 774	597529	461889917	27.8029	9.1775	828	685584	567663552		9.390
774	599076	463684824	27.8209	9.1815	829	687241	569722789	28.7924	9.394
775	600625	465484375	27.8388	9.1855	830	688900	571787900	28.8097	9.397
776		467288576	27.8568	9.1894	831	690561	573856191	28.8271	9.401
777		469097433	27.8747	9.1933	832	692224	575980368	28.8444	9 405
778	605284	470910952	27.8927	9.1973	883	693889	578009537		9.409
779	606841	472729139	27.9106	9.2012	834	695556	580093704		9.412
780	608400	474552000	27 9285	9.2052	835	697225	582182875	28.8964	9.416
781	609961	476879541		9.2091	836	698896	584277056		9.420
782		478211768		9.2130	837	700569	586876253	28.9310	9.424
783	613089	480048687		9.2170	838	702244	588480472	28.9482	9.427
784	614656	481890304		9.2209	839	708921	590589719		9.431
785	616225	483736625	00 0150	9.2248	840	705600	592704000	00 0000	9.435
786	617796	485587656		9.2287	841	707281	594828321		9.439
787	619369	487443403		9.2326	842	708964	596947688		9.442
788		489303872		9.2365	843	710649	599077107		9.446
789	622521	491169069		9.2404	844	712836	601211584		9.450
200	004100	400000000	00 1000	0.0449	845	P1400F	2000F110F	00 0000	0.454
790		493039000	28.1009	9.2448		714025	603351125		9.454
791	625681	494913671	20.1247	9.2482 9.2521	846 847	715716 717409	605495786 607645428	39.0001	9.457 9.461
792 793		496793088		9.2560	848	719104	609800192		9.465
794		498677257 500566184		9.2599	849	720801	611960049		9.469

795	632025	502459875			850	722500	614125000	29.1548	9.472
796		504358336			851	724201	616295051		9.476
797	635209	506261573		9.2716	852	725904	618470208		9.480
798	636804	508169592		9.2754	853 854	727609 729316	620650477 622835864		9.483
79 9	638401	510082399	60.2000	9.2793	004	129910	046000004	K# . XXXXX	9.487
800		512000000	28.2843	9.2832	855	731025	625026375		9.491
801	641601	513922401 515849608	28,3019	9.2870	856	782736	627222016		9.4949
802		515849608	28.3196	9.2909	857	734449	629422793		9 4956
803	644809	517781627	28.3373	9.2948	858	736164	631628712	29.2916	9 502
804	646416	519718464	28.3549	9.2986	859	787881	633839779	29.8087	9.506
805	648025	521660125	28.3725	9.3025	860	739600	636056000	29.8258	9.5097
806		523606616	28.3901	9.3063	861	741321	638277381		9.513
807	651249	525557943	28.4077		862	743044	640503928		9 5171
808		527514112		9.3140	863	744769	642735647		9.5207
809	654481	529475129	28.4429	9.3179	864	746496	644972544	29.8989	9.5244
810	656100	531441000	28.4605	9.8217	865	748225	647214625	29.4100	9,5281
811	657721	533411731			866	749956	649461896		9.5317
812		535887328			867	751689	651714363		9.5354
813	660969	537367797	28.5132	9,3332	868	753424	653972082	29.4618	9.5391
814		539353144		9.3370	869	755161	656234909		9.5427

No.	Sq uare .	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root.
570	756900	658508000	 90 4058	9.5464	925	855625	791453125	30 4188	9.7435
	758641	660776311		9.5501	926	857476	794022776	30.4302	9.7470
	760384	663054848		9.5537	927	859329	796597983		9.7505
	762129	665339617		9.5574	928	861184	799178752	80,4631	9 7540
574	763876	667627624	29.5685	9.5610	929	863041	801765089	30.4795	9.7575
	765625	669921875	29.5804	9.5647	930 931	864900	804357000 806954491		9.7610
	7673 76 7691 29	672221376 674526133		9.5668 9.5719	932	866761 868 624	809557568		9.7645 9.7680
	770884	676836152		9.5756	933	870489	812166237	80.5450	9.7715
	772641	679151439		9.5792	934		814780504		9.7750
	774400	681472000		9.5828	985	874225	817400375		9.7785
	776161	683797841		9.5865	936	876096	820025856		9.7819
	777924 779689	686128968 688465387	29.0900	9.5901 9.5937	937 938		822656953 825293672		9.7854 9.7889
884	781456	690807104		9.5978	939	881721	827986019		9.7934
885	7833225	693154125	29.7489	9.6010	940	883600	830584000		9.7959
	784996	695506456	29.7658	9.6046	941		833237621	80.6757	9.7993
887	786769	697864103		9.6082	942	887364	885896888		9.8028
888 ₁ 889,	788544 7903±1	700227072 702595369		9.6118 9.6154	943 944	889249 891186	838561807 841282884		9.8063
,						ļ		ł	
890 891	792100 793881	704969000 707847971		9.6190 9.6226	945 946		843908625 846590536		9.8132 9.8167
89-3	795664	709782288	28.0480 20 REEA	9.6262	947	896809	849278123		9.8201
993	797449	712121957		9.6298	948	898704	851971893		9.8236
634	199:236	714516964		9.6334	949	900601	854670849		9.8270
895	801025	716917375		9.6370	950	902500	857375000		9.8305
	802816	719323136		9.6406	951	904401	860085351		9.8339
897 898	80 4609 80 6404	721734273 724150792	29.9000	9.6442 9.6477	952 953	906304 908209	862801408 865523177		9.8374 9.8408
899	808201	726572699	29.9833	9 6513	954		868250664		9.8448
900	810000	729000000	ao 0000	9.6549	955	912025	870983875	30.9031	9.8477
901	811801	731432701	30.0167	9.6585	956	913936	878722816		9.8511
902	813604	783870808		9.6620	957		876467493		9.8546
903	815409 817216	736314327 738763264		9.6656 9.6692	958 959	917764 91 96 81	879217912 881974079		9.8580 9.8614
- 1									
905	819025	741217625		9.6727	960	921600	884736000		9.8648
907	8208 36 822649	748677416 746142643	20.0000	9.6763 9.6799	961 962	923521 925444	887503681 890277128	31.0000	9.8683 9.8717
908	824464	748618312	30 1330	9.6934	963	927369	893056347		9.8751
909		751089429		9.6870	964	929296	895841344		9.8785
910	828100	753571000		9.6905	965	931225	898632125	31.0644	9.8819
911	829921	756058031	30.1828	9.6941	966	933156	901428696		9.8854
912		758550528	30.1993	9.6976	967	935089	904231063		9.8888
913 914		761048497 768551944		9.7012 9,7047	968 969	937024 938961	907039282 909853209		9.8922 9.8956
915:	837225		3 0.2490	9.7082	970	940900	912673000	81 1448	9.8990
916		768575296		9.7118	971	942841	915498611		9.9024
917	840889	771095213		9.7153	972	944784	918330048		9.9058
918	842724	773620682	80.2985	9.7188	973	946729	921167317	81.1929	9.9092
919	844561	776151559	3 0.3150	9.7224	974	948676	924010424	31.2090	9.9126
920	846400	778688000		9.7259	975	950625	926859375		9.9160
9::	848241	781229961		9.7294	976	952576	929714176		9.9194
9:55	850084 851929	783777448 786380467		9.7329 9.7364	977 978	954529 956484	932574838 935441352	31.2570	9 9227 9 9261
(ale)									

Square Cube Root Root Root Square Cube Root February Root Febr					<u> </u>					
981 962381 944076141 31. 3209 9. 9363 1036 1073296 1111934656 32. 1870 11 982 994394 946960188 31. 3358 9. 9360 1037 1073296 1111515875 32. 2025 1083 966329 94962007 31. 3528 9. 9400 1038 1077444 1118866672 32. 2160 10 9656 952763904 31. 3688 9. 9464 1039 1079621 1121622319 32. 2385 10 965 970225 955671625 31. 3847 9. 9497 1040 1081600 1124664000 32. 2490 10 9867 974169 961504803 31. 4166 9. 9531 1041 1088361 1129111221 32. 23645 10 988 976144 9644302 31. 4166 9. 9531 1041 1088361 1129111221 32. 23645 10 988 976144 9644302 31. 4486 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9789121 967361669 31. 4464 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9960100 97029900 31. 4464 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9960100 97029900 31. 4464 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9960100 9702990 31. 4460 9. 9533 1047 1066309 114780633 32. 3557 10 993 98604 997014685 731. 5119 9. 9766 1045 1092025 11476363 32. 3455 10 993 986049 97014685 731. 5119 9. 9766 1045 104500 115782503 32. 3558 10 993 98604 99901665 731. 5119 9. 9766 1045 104500 1157825000 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 11608003 31. 5019 9. 9967 1046 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 104040 10606108 31. 5546 10. 0067 104040 104040 10606108 31. 5546 10. 0067 104040 10404	No.	Square.	Cube.			No.	Square.	Cube.	Sq. Root.	Cubes Root.
981 962381 944076141 31. 3209 9. 9363 1036 1073296 1111934656 32. 1870 11 982 994394 946960188 31. 3358 9. 9360 1037 1073296 1111515875 32. 2025 1083 966329 94962007 31. 3528 9. 9400 1038 1077444 1118866672 32. 2160 10 9656 952763904 31. 3688 9. 9464 1039 1079621 1121622319 32. 2385 10 965 970225 955671625 31. 3847 9. 9497 1040 1081600 1124664000 32. 2490 10 9867 974169 961504803 31. 4166 9. 9531 1041 1088361 1129111221 32. 23645 10 988 976144 9644302 31. 4166 9. 9531 1041 1088361 1129111221 32. 23645 10 988 976144 9644302 31. 4486 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9789121 967361669 31. 4464 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9960100 97029900 31. 4464 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9960100 97029900 31. 4464 9. 9532 1044 1089936 1137893184 32. 3110 10 900 9960100 9702990 31. 4460 9. 9533 1047 1066309 114780633 32. 3557 10 993 98604 997014685 731. 5119 9. 9766 1045 1092025 11476363 32. 3455 10 993 986049 97014685 731. 5119 9. 9766 1045 104500 115782503 32. 3558 10 993 98604 99901665 731. 5119 9. 9766 1045 104500 1157825000 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 1154820649 32. 3588 10 900 1049 100400 11608003 31. 5019 9. 9967 1046 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 10606108 31. 5546 10. 0067 104040 104040 10606108 31. 5546 10. 0067 104040 104040 10606108 31. 5546 10. 0067 104040 10404	090	060400	941199000	91 9050	0 0990	1085	1071995	1108717875	39 1714	10 1153
963 96829 94896818 31 3369 9 9480 1088 1077586] 111517653 32 2025 1088 1088 9484 111888687 32 2285 1088 1079521 1121622319 32 2285 1088 1079521 1121622319 32 2285 1088 1079521 1121622319 32 2285 1088 1079521 1121622319 32 2285 1088 10891 108981 118811182 32 2455 1088 10891 108981 118811182 32 2455 1088 10891 108988 118811182 32 2455 108988 108911982 32 2455 1088 108911982 32 2455 1088 108911982 32 2455 1088 108911982 32 2455 1088 108911982 32 2455 1088 108911982 32 2455 1088 108911982 32 2455 10898 1087848 1188186868 32 2400 10898 1087848 11881182 32 3255 108988 10898										
985 968256 958763904 31.3688 9.9464 1039 1077444 1118886872 32.2855 10 986 972196 958585256 31.4060 9.9531 1041 1088681 1128111921 32.2855 10 987 974169 961504803 31.4166 9.9565 1042 1086764 1181886063 32.2800 11 988 976144 96443072 31.4355 9.9596 1043 1087894 113468607 32.2801 11 990 980100 97029900 31.4484 9.9632 1044 1089936 1187893184 32.3110 11 990 980100 97029900 31.4484 9.9632 1044 1089936 1187893184 32.3110 11 990 980100 97029900 31.4484 9.9632 1044 1089936 1187893184 32.3110 11 990 980109 978121 97029900 31.4643 9.9666 1045 109205 1141166125 32.3855 11 991 98010 97824271 31.4802 9.9699 1046 1094116 1144445336 32.3410 11 992 984064 978194687 31.5119 9.9766 1045 1098304 1151022592 32.3783 11 993 986049 979146657 31.5119 9.9766 1045 1098304 1151022592 32.3783 11 994 98630 982107784 31.5278 9.9800 1049 1100401 115082592 32.3783 11 995 990025 985074875 31.5436 9.9833 1050 1049 1100401 115082592 32.3783 11 996 999016 989047936 31.5595 9.9800 1049 1100401 115082592 32.3853 11 998 999004 994011992 31.5911 9.9937 1052 1107640 1164820649 32.3863 11 999 998001 997002999 31.6670 9.9967 1054 1110916 1170905464 32.4664 10 1000 1000000 100000000 31.6228 10.0000 1055 110670 116482064 32.4664 10 1001 1002001 1003003001 31.6388 10.0003 10660 1115188 1177868516 32.4992 11 1004 1006016 1012048064 31.6860 10.003 1066009 110982797 31.5772 10.0100 1058 1113964 11849871 32.52591 1004 1008016 1012048064 31.6860 10.003 1066009 1009027027 31.5772 10.0100 1058 1113964 11849871 32.52591 1009 1018060 101808216 31.7771 10.0166 1060 112860 101808216 31.7771 10.0260 1061 1128791 119489981 32.51515 11 1001 1002010 10030010 31.6381 10.0390 1066 1185791 31.5952 31.7691 10.0390 1069 112444 103443372 31.7490 10.0266 1063 112969 12045044 32.6906 11 1010 102010 103306403 31.3874 10.0895 1066 1185856 121356546 32.6492 11 1011 1022121 1033364331 31.7962 10.0652 1067 1184984 11897770328 32.5883 11 1014 1022121 1043441 1054332372 31.7691 10.0893 1067 1184900 122504503 32.5656 11 1021 104444 1054433783 31.3994 10.0865 1066 1186366 121356496 32.68						1087				
985 970225 955671625 31 3847 9 9497 1040 1081600 1124664000 32 2490 10 986 972169 965858526 31 4006 9 9531 1041 1083681 1138111021 32 3845 10 987 974169 961504803 31 4166 9 9.555 1042 1085764 1131366088 32 2800 10 988 976144 964430372 31 4325 9 9596 1043 1087349 1134628070 32 2855 10 989 978121 967361669 31 4484 9 9632 1044 108936 1137888184 32 3110 10 990 980100 973824271 31 4802 9 9696 1045 1089205 1141166125 32 32855 10 991 982061 97324271 31 4802 9 9696 1045 109205 1141166125 32 32855 10 992 984064 97619468 31 4960 9 9733 1047 1096309 1147780823 32 3574 10 993 986049 979146657 31 5119 9 9766 1045 108936 115762802 32 3788 11 994 988030 982107784 31 5278 9 9800 1049 1100401 1154820649 32 3888 11 995 990025 985074875 31 5436 9 9833 1050 1102500 1157625000 32 4037 10 996 999016 988047936 31 5595 9 9866 1051 1104601 1156935651 32 4191 10 999 998001 99700299 31 6507 9 99806 1051 1104601 1160935551 32 4191 10 999 998001 99700299 31 6507 9 9996 1052 1100701 11043093801 31 6386 10 0038 10 10 10 10 10 10 10 10 10 10 10 10 10		966289	949862087	31.3528			1077444	1118886872	32.2180	10.1251
966 972196 96868226 31. 4066 9. 9581 1041 1088681 1128111921 32. 2545 10 976124 964430272 31. 4325 9. 9598 1043 1067949 113469507 32. 2955 10 989 978121 967861669 31. 4464 9. 9682 1044 1069936 1137883184 32. 3110 10 990 980100 707029000 31. 4643 9. 9666 1045 1092025 114166125 32. 3265 10 990 980101 97029900 31. 4643 9. 9666 1046 1094116 114444836 32. 3410 10 990 980101 97029903 31. 4802 9. 9699 1046 1094116 114444836 32. 3419 10 992 984064 976191488 31. 4960 9. 9735 1047 1096309 1147780823 32. 3574 10 993 986049 979146657 31. 5119 9. 9766 1049 1100401 1154820649 32. 3883 10 995 990025 985074876 31. 5436 9. 9633 1050 109804 1151022592 32. 3728 110 996 992016 988047886 31. 5535 9. 9800 1049 1100401 1154820649 32. 3883 10 997 99400 991029978 31. 5738 9. 9900 1052 1100704 116428360 32. 3419 10 998 998001 997002999 31. 6070 9. 9967 1052 1100704 116428360 32. 3419 10 999 998001 997002999 31. 6070 9. 9967 1052 1100704 116428360 32. 3449 10 1000 1000000 1000000000 13. 6228 10. 0000 1052 1100704 116428360 32. 3464 10 1001 1002001 1003003001 31. 6228 10. 0000 1055 1110061 11749411676 32. 4664 10 1002 100404 1006012008 31. 6546 10. 0033 1066 1115186 1177582616 32. 4968 10 1003 1006009 1009027027 31. 6707 10. 0166 1060 112860 111948991 32. 5730 11 1005 1010025 1015075125 31. 7017 10. 0166 1060 112860 111948991 32. 5730 11 1006 1010025 1015075125 31. 7017 10. 0166 1060 112860 111948991 32. 5730 11 1007 1014019 1021147343 31. 7333 10. 0233 1062 1127481 11877648879 32. 5423 11 1008 1016064 10221921 33. 7490 10. 0266 1063 112860 1201157047 32. 6066 11 1011 1022121 1033364331 31. 7962 10. 0365 1066 1138365 121385640 32. 6497 11 1012 1024141 (104382461 31. 8434 10. 0465 1069 1138286 121385640 32. 6497 11 1013 1026169 1039509197 31. 8277 10. 0431 1068 1140641 1148490 122504800 32. 7709 11 1014 1028186 1042590744 31. 8434 10. 0465 1069 1138666 121385640 32. 6497 11 1015 1036251 1045678375 31. 8591 10. 0498 1067 1138469 124767763 32. 6666 11 1015 1036256 1046773096 31. 8748 10. 0465 1069 114490 1225048000 32. 7709 11 1019 103836 10	984	968256	952763904	31.3688	9.9464	1039	1079521	1121622319	32.2835	10.1283
988 976144 86449272 31. 4385 9.5698 1043 1067849 1134636507 32. 2955 10 989 978121 967361669 31. 4484 9.5682 1044 108936 1137893184 32. 3110 10 990 980100 970299000 31. 4484 9.5682 1044 108936 1137893184 32. 3110 10 991 982061 973242271 31. 4802 9.5696 1046 1044116 11444443836 32. 3419 10 992 984064 976191488 31. 4960 9.9733 1047 1056209 1147736823 32. 3574 10 993 986049 979146657 31. 5119 9.9766 1043 1098930 4115102529 32. 3782 32 994 988036 982107784 31.5278 9.9800 1049 1100401 1154836649 32. 3883 10 995 990025 985074875 31.5436 9.9833 1050 1102500 1157625000 32. 4037 10 996 992016 988047896 31.5595 9.9866 1051 104601 116083651 32. 4191 10 997 994009 99102999 31.5911 9.9933 1052 1106704 1164253608 32. 4481 10 998 996004 994011992 31.5911 9.9933 1053 1106809 11678787877 32. 4500 10 1000 1000000 100000000 31.6228 10.0000 1052 1106704 1164253608 32. 4484 10 1001 1002001 1003003001 31.6386 10.0033 1056 1115188 1177688516 32. 4062 10 1001 1002001 1003003001 31.6386 10.0033 1056 1115188 1177688516 32. 4062 10 1004 1008016 1012048064 31.6660 10.0133 1059 1121481 1187648879 32. 5423 10 1005 1010025 1015075125 31.7017 10.0166 1060 1123481 1187648879 32. 5423 10 1006 1010086 1012048064 31.6860 10.0200 1058 1113984 118487112 32.5590 1006 1012048 108108216 31.775 10.0200 1061 1135731 1194389891 32. 5730 11 1007 1014049 1021147343 31.7333 10.0233 1062 1127484 1197770328 32. 5865 10 1010 102010 1030301000 31.7805 10.0832 1062 1127484 1197770328 32. 5865 10 1011 1022121 1033364331 31.7962 10.0365 1066 11383636 1211355406 32. 6866 10 1011 1022121 1033364331 31.7962 10.0365 1066 11383636 1211355406 32. 6866 10 1015 10303256 1045678375 31.8591 10.0496 1070 114490 122157431 31.8434 10.0465 1069 1132636 32. 6860 1001 1001 1038361 105407832 31.8199 10.0699 1070 114490 12238490919 31.8771 10.016 1082121 1034441 1036433226 31.8748 10.0699 1070 114490 1223849091 32. 7261 11 1011 1022121 1033364331 31.7910 10.066 1070 114490 12238576017 32. 7567 11 1012 1024144 105433226 31.8748 10.0699 1070 113684 1138284 32. 6860 11 1013 103669 104			955671625	31.3847			1081600	1124864000	82.2490	10.1316
988 976144 9643027231. 4325 9.5698 1043 1067349 1134636507 32. 2955 10 989 978121 967361669 31.4864 9.5682 1044 108936 1137689184 32. 3110 10 990 980100 970299000 81.4643 9.5666 1045 1092025 1141168125 32. 3265 10 991 982061 973242271 81.4802 9.5699 1046 1044116 11444448383 32. 3419 10 992 984064 976191488 81.4960 9.9733 1047 1056209 1147730823 32. 3574 10 993 986049 979146657 31.5119 9.5766 1043 10589304 1151025292 32. 3728 32 994 988036 982107784 81.5278 9.5800 1049 1100401 1154830649 32. 3888 10 995 990025 985074875 31.5436 9.5833 1050 1102500 1157625000 32. 4037 10 996 992016 9890479861 31.5955 9.5866 1051 104601 116083651 32. 4191 10 997 994009 991026973 31.5753 9.5900 1052 1106704 1164258608 32. 4481 10 998 996004 994011992 31.5911 9.9933 1053 1106801 116083651 32. 4191 10 1000 1000000 100000000 31.6228 10.0000 1054 1101061 1170905464 32. 4664 10 1001 1002001 100303001 31.6826 10.0033 1056 1115186 117768856 82. 4802 11 1002 1004004 1006012008 31.6644 10.0067 1057 1117249 1180932193 32. 5115 11 1003 1006009 1009072072 31.6702 10.0100 1058 1113984 118487112 32.5901 1004 100601 1002500 101808216 31.7175 10.0260 1058 1113984 118487112 32.5901 1004 1008016 1012048064 31.6860 10.033 10660 112348064 31.6860 10.033 10660 1012048064 31.6860 10.0200 1058 1113984 118487112 32.5901 1006 1012048064 1024192512 31.7490 10.0266 1063 112481 1187648879 32.5423 10 1005 1016064 1022192512 31.7490 10.0266 1063 112481 1187648879 32.5423 10 1010 102010 1030301000 31.7608 10.0290 1064 1138096 120157047 32.6066 10 1010 102010 1030301000 31.7608 10.0290 1064 1138096 120157047 32.6066 10 1010 102010 1030301000 31.7608 10.0290 1064 1138096 120157047 32.6066 10 1010 102010 1030301000 31.7608 10.0290 1064 1138096 120157047 32.6066 10 1010 102010 1030301000 31.7608 10.0290 1064 1138096 120157047 32.6066 10 1010 102010 1030301000 31.7608 10.0290 1064 1138086 1211855408 32.6660 10 1010 102010 1030301000 31.7608 10.0069 1070 114490 1221504300 32.7607 10000 10000000000000000000000000000					9.9581		1008081	1125111921	90 0000	10.134
980 978191 967861669 31.4484 9.9682 1044 1089936 1187898184 32.310 10 990 980100 97029900 31.4643 9.9666 1045 1092025 1141166125 32.3265 10 991 982061 9732342271 31.4802 9.9699 1046 1094116 1144448386 32.3419 19 992 98404 976191488 31.4902 9.9699 1047 106309 1147736233 32.3781 19 993 986049 97914657 31.5119 9.766 1049 100400 1154820649 32.3788 19 994 988036 982107784 31.5278 9.9800 1049 1100401 1154820649 32.3888 16 995 990025 985074875 31.5436 9.9833 1050 1102500 1157825000 32.4037 1099 19900 991028973 31.5753 9.9800 1049 1100401 1164826606 32.4491 10 996 992016 988047986 31.5595 9.9866 1051 1104601 1160825651 32.4191 10 997 994009 991028973 31.5753 9.9900 1052 1106704 1164256606 32.4491 10 998 996001 997002999 31.6070 9.9967 1054 1110916 1170905464 32.4654 10 1001 1002001 100900301 31.6386 10.0003 1055 1113089 117878877 32.4600 1001 1002001 100900301 31.6386 10.0003 1056 1115183 1177882616 32.4962 11 1003 1006006 1009027027 31.6702 10.0100 1058 1119384 1184987112 32.5269 11 1004 1006016 1012048064 31.6860 10.0133 1059 1121481 1187648879 32.5423 11 1005 1010025 1015075125 31.7017 10.0166 1063 112999 120147047 32.6068 1008 1016064 1021147348 31.7333 10 0233 1069 1121481 1187648879 32.5423 11 1006 1012036 1018108216 31.7175 10.0200 1051 1125721 1194389981 32.5730 11 1007 1014049 1021147348 31.7333 10 0233 1069 1121481 1187648879 32.5423 11 1008 10160604 1024192512 31.7490 10.0266 1063 112999 1201457044 32.6190 11 1010 1022101 10303001000 31.7805 10.0832 1065 1138366 1204550144 32.6190 11 1011 1022121 1033364331 31.7962 10.0955 1066 1138366 1204550144 32.6190 11 1011 1022121 1033364331 31.7962 10.0955 1066 1138649 1247841 103483272813 32.5151 1009 1018081 1024144 1034433728 31.8191 10.0395 1067 1138499 124147074 32.6068 11 1014 102816 1045290744 31.8444 10.0662 1075 115656 1242896875 32.6497 11 1015 10324364 10546746244 31.8444 10.0662 1075 115656 1242896875 32.6497 11 1016 1032256 1045673875 31.8591 10.0695 1076 1136866 1243283633 32.7719 11 1020 1044444 1034633728 31.8718 10.0689 1077 115929 1249243538 32.8177			964430279	31 4995			1087840	1184696507	89 9955	10.100
992 984064 976191488 31.4960 9.9783 1047 1096209 1147780883 32.8149 19 992 984064 976191488 31.4960 9.9783 1047 1096209 1147780883 32.8574 10 993 986049 979146657 31.5119 9.9766 1043 1096209 1147780883 32.8573 10 994 985036 982107784 81.5278 9.9900 1049 1100401 1157625000 32.4383 10 995 99604 9940798 31.5578 9.9900 1052 1106704 1164252608 32.4385 10 997 994009 991026973 31.5758 9.9900 1052 1106704 1164252608 32.4345 10 998 999004 994011992 31.5911 9.9933 1053 110690 1167675877 32.400 10 999 999009 99400999 31.6070 9.9967 1054 1110916 117090644 32.4651 10 1000 100000 1000000000 31.6228 10.0003 1056 1115186 1177582616 32.4962 10 1001 1002001 1002003001 31.6288 10.0003 1056 1115186 1177582616 32.4962 10 1002 1004004 1006012008 31.6546 10.0067 1057 1117249 1189832138 32.5115 14 1003 1006009 1009027027 31.6702 10.0100 1058 1119364 1184827112 32.5560 10 1004 1006016 1012048064 31.6660 10.0133 1059 1121481 1187646879 32.5423 14 1005 1010025 1015075125 31.7017 10.0166 1060 1123600 1191016000 32.5576 10 1007 1014049 1021147348 31.7333 10 0233 1062 1127644 1197770328 32.5883 11 1008 1016064 1024192512 31.7490 10.0266 1063 1129572 1194389981 32.5730 11 1010 102010 1030301000 31.7668 10.0832 1065 1184225 1207949625 32.5883 11 1011 1022121 1033364331 31.7602 10.0366 1063 1129699 1201157047 32.6066 11 1012 1024141 1036433728 31.7648 10.0269 1064 1138366 1211856496 32.6497 11 1014 1028196 1048772099 31.8448 10.0363 1070 114490 12225043000 32.7109 11 1015 1030225 1045678375 31.8591 10.0498 1070 114490 1225043000 32.7109 11 1016 1032265 1046772096 31.8748 10.0662 1070 114490 1225043000 32.7109 11 1017 1034299 1051871913 31.8904 10.0665 1070 114490 1225043000 32.7109 11 1018 1036364 105680859 31.9974 10.0662 1070 1144900 1225043000 32.7109 11 1019 1038361 105680859 31.9974 10.0669 1070 1156804 1225043000 32.7109 11 1021 104444 1064332261 31.9574 10.0669 1070 114490 1225043000 32.7109 11 1023 1046499 1051871913 31.8904 10.0669 1070 114490 1225043000 32.7109 11 1024 1048441 1064332261 31.9574 10.0669 1070 114490 1225043000 32.7709			967361669	31.4484						
992 984064 976191488 31.4960 9.9738 1047 1096209 1147730823 82.3574 11993 9866 992016 98207784 31.5278 9.9800 1049 1100401 1154830649 82.3588 1695 992016 98207784 31.5278 9.9800 1049 1100401 1154830649 82.3588 1695 992016 98207986 31.5595 9.9866 1051 1104601 1150825651 82.4191 1697 9940 991026973 31.5578 9.9900 1052 1100704 1164258608 32.4491 1697 9940 991026973 31.5578 9.9900 1052 1100704 1164258608 32.4491 1697 9999 99800 1997002699 31.6670 9.9967 1054 110160 11707056464 32.4654 1600 1000000 10000000 31.6228 10.0000 1052 1100704 1164258608 32.4491 1600 1001 1002001 1003003001 31.6826 10.0033 1056 1113025 11742413775 32.4600 1601 1002001 1003003001 31.6826 10.0033 1056 1115186 1177582516 82.4962 1600 10030009 1009027027 31.6702 10.010 1058 1113025 11742413775 32.4602 1600 10030009 1009027027 31.6702 10.010 1058 1113084 118482711 32.5500 1004 1008016 1012048064 31.6860 10.0133 1059 1121481 1187648879 32.5423 16006 1012036 1018108216 31.7175 10.0260 1061 1125721 1194389961 32.5730 16007 1014091 1021147349 31.7333 10.0233 1052 1127484 119770328 32.5883 1008 1016064 1022192512 31.7409 10.0266 1033 1059 1121481 1187648879 32.5423 1600 1018081 1022221 1033364331 31.7648 10.0269 1064 113206 120157047 32.6066 1603 1120440 1030301000 31.7805 10.0832 1065 1134225 120157047 32.6066 1601 1022121 1033364331 31.7648 10.0269 1065 1134225 1207949682 32.6300 1011 1022121 1033643313 31.7648 10.0269 1065 1134225 1207949682 32.6437 11011 1022121 103364331 31.7805 10.0832 1065 1134225 1207949682 32.6437 11013 1026169 1039509197 31.8777 10.031 1068 11408412135549 31.8139 10.0396 1070 1144900 12225610483226 1046778938 31.8139 10.0396 1070 1144900 1223564048772096 31.8748 10.0662 1070 1144900 12235650 10467463648 31.8434 10.0465 1069 11326441 1064332261 31.8434 10.0465 1069 11326441 1064332261 31.8434 10.0465 1069 114260 120200 32.7409 11021 104444 1064332261 31.8434 10.0465 1069 114260 1223049001 32.7709 11011 1022121 103366 1045676 106666 106666 106667 10666 106666 1067666 1067666 1067666 106766 106766 106766 106766 10676 10676 106			970299000	81.4643						
993 980049 97914687; 31.5119 9.7766 1045 1098304 1151022502 82, 37281 1994 98838 982107784 81.5278 9.9800 1049 1100401 1154820649 82.3788 16 996 990025 985074875 31.5436 9.9833 1050 1102500 1157825000 32.4037 16 996 992016 988047986 31.5595 9.9866 1051 1104601 1160835651 32.4191 16 998 99600 99401999 31.5753 9.9900 1052 1106704 1164258608 32.4451 16 998 99600 99401999 31.5753 9.9900 1052 1106704 1164258608 32.4451 16 998 99600 99401999 31.5753 9.9900 1052 1106704 1164258608 32.4654 16 1001 100200 1002000 131.6288 10.0000 1055 111909 11707965464 32.4654 16 1001 1002001 10020001 31.6288 10.0003 1055 111909 117778877 32.4608 16 1001 1002001 10020001 31.6288 10.0003 1055 1119385 1177882616 32.4908 16 1002 1004004 1006012008 31.6544 10.0067 1057 117249 1180932183 32.5151 1002 1004004 1006013008 31.6544 10.0067 1057 117249 1180932183 32.5151 1003 1006009 1009027027 31.6702 10.0100 1058 1119364 1184987112 32.5269 14 1004 100616 1012048064 31.6860 10.0133 1059 1121481 1187648879 32.5423 14 1008 10160604 102104381 31.7175 10.0200 1051 1125721 1194389981 32.5730 1007 1014049 1021147348 31.7333 10 0233 1069 1121481 1187648879 32.5423 16 1008 1016064 1024192512 31.7490 10.0266 1063 112999 1201157047 32.6068 1016064 1024192512 31.7490 10.0266 1063 112999 1201157047 32.6068 10100 1020100 1030301000 31.7805 10.0892 1064 1138299 1201457044 32.6190 10 1011 1022121 1033364331 31.7962 10.0355 1066 1138356 121355409 32.6497 10 10 1020100 1030301000 31.7805 10.0892 1065 1138489 1214767763 32.6650 11 1011 1022121 1033364331 31.7962 10.0355 1066 1138356 121355409 32.6497 10 10 103030100 31.7805 10.0892 1064 1138299 12114767763 32.6650 11 1011 1022121 1033364331 31.7962 10.0355 1066 1138356 121355400 32.6497 10 10 10 100000 100000 100000 100000 100000 100000 100000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 10000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 10000 1000000			978242271	81.4802	9.9699					
994 998036 982107784 81.5278 9.9800 1049 1100401 1154830649 82.3888 16 995 99006 985074875 31.5436 9.9833 1050 1102500 1157625000 32.4037 16 996 992016 985074875 31.5585 9.9866 1051 1104601 1160836561 82.4191 19 997 994009 991029978 31.55738 9.9900 1052 1107074 1164258608 32.4845 14 999 998001 997002999 31.5911 9.9983 1058 1108909 11678787877 82.4500 14 999 998001 997002999 31.6670 9.9967 1054 1110916 1170906464 32.4654 10 1000 1000000 100000000 31.6288 10.0003 1055 1113025 11742413775 32.4500 14 1001 1002001 1003003001 31.6386 10.0033 1056 1115186 117758656 82.4962 14 1002 1004004 1006012008 31.6644 10.0067 1057 1117249 1180932193 82.5115 14 1003 1006009 100907207 31.6702 10.0100 1058 1113984 118487112 82.5593 10 1004 1008016 1012048064 31.6860 10.0183 1059 1121481 1187648879 32.5423 10 1005 1010025 1015075125 31.7017 10.0166 1060 112361 018108216 31.7175 10.0200 1061 1125721 1194389981 32.5730 11 1006 1012081 1018108216 31.7175 10.0200 1061 1125721 1194389981 32.5730 11 1007 1014091 1021147343 31.7333 10.0233 1062 1127484 1197770328 32.5863 11 1008 1016064 1021192512 31.7490 10.0266 1063 1129969 1201157047 32.6066 11 1010 1020101 1030301000 31.7608 10.0269 1064 1132061 1204505014 32.6190 11 1011 1022121 1033364331 31.7902 10.0365 1066 1138425 1207949682 32.5831 1011 1022121 1033364331 31.7902 10.0365 1066 1138036 1211355496 32.6497 11 1012 1024141 (036433728) 31.7648 10.0299 1064 1132046 124767763 32.6650 11 1013 1026169 1039509197 31 82.771 10.031 1068 1140634 12181856496 32.6497 11 1014 1028196 1045772096 31.8748 10.0652 1070 114490 1228489911 82.7861 11 1015 1030225 1045678375 31.8591 10.0496 1070 114490 1228389911 87.7867 11 1016 1032265 1045678375 31.8591 10.0496 1070 114490 1228389911 82.7861 11 1017 1034299 105187191 31 31.9001 10.0596 1070 114490 1228389913 82.7861 11 1018 103634 10569869 31.9278 10.0682 1077 1159929 124767763 32.6650 11 1021 104441 1043832261 31.9374 10.0682 1077 1159929 1249243538 38.8177 11 1022 104444 104432261 31.93891 10.0699 1076 1157776 1242576555 32.8389 11 1023 1046529 10705			976191488	31.4960	9.9783		1096209	1147780823	82 8574	10.154
995 990025 985074875 31.5436 9.9838 1050 110850 1157625000 32.4037 11 996 992016 988047936 31.5535 9.9866 1051 1104601 116035551 32.4101 16 998 996004 994011992 31.5911 9.9933 1053 1108701 1164253603 32.4101 16 998 998004 994011992 31.5911 9.9933 1053 1108909 116777877 32.4500 11 9993 998001 997002999 31.6070 9.9967 1054 1110916 1170905464 32.4651 11 1001 1002001 1003003001 31.6228 10.0000 1055 1113025 1174941375 39.4808 14 1001 1002001 1003003001 31.6386 10.0033 1056 1115186 117768536 32.4962 11 1002 1004004 1008012008 31.6544 10.0067 1057 1117249 1180932193 32.5115 14 1003 1006009 1090927027 31.6702 10.0100 1038 1113854 1184987112 32.5389 14 1004 1008016 1012049064 31.6806 10.0133 1059 11214341 118764879 32.5428 14 1006 1012036 1018108216 31.7175 10.0200 1061 1123548 11848873 22.5253 14 1007 1014049 1021147348 31.7333 10.0233 1059 1121481 1187648879 32.5253 14 1008 1016064 1024193512 31.7490 10.0233 1052 1127844 1187770328 32.5883 14 1008 1016064 1024193512 31.7490 10.0233 1052 1127844 1187770328 32.5883 14 1009 1018081 1027243729 31.7648 10.0299 1084 1133096 120157047 32.6085 11 1011 1022121 1033364331 31.7962 10.0385 1066 11346356 121355404 32.6190 11 1011 1022121 1033964391 31.7648 10.0399 1084 1133096 1204550144 32.6190 11 1011 1022121 1033964391 31.7962 10.0385 1066 11346356 121355409 32.6866 11 1013 1026169 1039001997 31.8277 10.0431 1081081081081081081 31.7962 10.0385 1066 1134636 121355409 32.6866 11 1013 1026169 103900197 31.8277 10.0431 1081081081081081 31.7962 10.0385 1066 1132899 1201157047 32.6085 11 1014 1023216 1045770206 31.8748 10.0682 1075 1134849 1218186432 22.6808 11 1014 1032326 1046772006 31.8748 10.0682 1075 1134949 12218186432 22.6808 11 1014 1032326 10467470206 31.8748 10.0682 1075 1147494 1223480911 32.7261 11 1014 1032386 1042590744 31.8434 10.0465 1077 115929 124943538 32.8491 1014 1034386 104577832 31.9061 10.0689 1077 115929 124943538 32.8491 1021 104444 1046432261 31.9531 10.0685 1076 114490 1223564000 32.7467 11021 104444 1046432261 31.9531 10.0685 1076 115652 124299675 32.8521										
996 992016 988047886 31.5585 9.9866 1051 1104601 1160885651 82.4191 1997 9970 99106978 31.5785 9.9900 1052 1106704 1164258608 32.4461 1998 998001 997002999 31.6070 9.9967 1054 1110916 1170906464 32.4654 1999 998001 997002999 31.6070 9.9967 1054 1110916 1170906464 32.4654 1900 10001 100000000 131.6228 10.0000 1055 1110916 1170906464 32.4654 1900 1001 1002001 1003003001 31.6228 10.0000 1055 111092 11742413775 93.4668 1900 1004 1006016 1012048064 31.6702 10.0100 1058 1119481 1187481377 32.5269 1004 1006016 1012048064 31.6702 10.0100 1058 1119481 1187484879 32.5259 11004 1006016 1012048064 31.6702 10.0100 1058 1119481 1187484879 32.5259 11006 1012036 1018108216 31.7175 10.0200 1061 1125721 1194889981 32.5780 11007 1014049 1021147494 31.7333 10.0233 1062 1127481 1187748879 32.5259 11008 1016064 1021192512 31.7490 10.0266 1063 112841 11877484 31.7333 10.0233 1062 1127484 1197770282 82.5889 11008 1016064 1021192512 31.7490 10.0266 1063 112849 1291157047 32.6036 1011 1022102 1030301003 1.7805 10.0399 1064 1132096 1207949625 23.6490 1101 1022121 1033364331 31.7962 10.0395 1066 1138265 121855496 32.6490 1011 1022121 1033364331 31.7962 10.0395 1066 1138265 121855496 32.6490 1011 1022121 1033364331 31.7962 10.0395 1066 1386356 121855496 32.6490 1011 1022121 10339509197 31.8277 10.0431 1068 1140624 1218186432 32.6636 1013 1026169 1039509197 31.8277 10.0431 1068 1140624 1218186432 32.6636 1013 1026169 1039509197 31.8277 10.0431 1068 1140624 1218186432 32.6636 1017 1032828 1058778096 31.8748 10.0465 1069 114260 122848491 32.7261 1101 1032836 1045772096 31.8748 10.0465 1069 114260 1228389011 32.7261 1101 1038386 1042590744 31.8434 10.0465 1069 114260 1228389 1051871913 31.8904 10.0665 1070 114490 1225048000 32.7109 11017 1038289 1051871913 31.8904 10.0665 1070 114490 1225048000 32.7109 11017 1038281 1056976 106605 106605 10660 106606			008074978	01 8498	0 0000	1050	1100800	1157605000	90 4025	10.1640
998 998001 997002999 31.5758 9.9900 1052 1106704 1144258908 32, 4540 14 999 998001 997002999 31.6070 9.9967 1054 1110916 1170906464 32, 4654 14 1000 10000000 100000000 31.6228 10.0000 1055 1113025 1174241375 32, 4654 14 1000 1000000 100000000 31.6228 10.0000 1055 1113025 1174241375 33, 4664 14 1000 1000000 100000000 31.6288 10.0000 1055 1113025 1174241375 33, 4664 14 1000 1000 1000000 100000000 31.6228 10.0000 1055 1113025 1174241375 33, 4664 14 1000 1000 1000000 100000000 13.6228 10.0000 1055 1113025 11774241375 33, 4608 14 1000 1000 100000 100000000 13.6228 10.0000 1055 1113025 11774241375 33, 4608 14 1000 1000 100000 100000000 13.6228 10.0000 1055 1113025 1177625 16 82, 4962 14 1000 1000 100000 100000000 13.6228 10.0000 10.0000 1000000000 100000000 10.00000 10.			988047986	31 5595						10.104
999 996004 994011992 31.5911 9 9983 1058 1106809 1167878877 32.4500 14 9999 99800 997002999 31.6970 9.9967 1054 1110916 1170906464 32.4664 10 1000 1000000 10000000 31.6228 10.0000 1055 1113025 11742413775 32.4661 1001 1002001 1003003001 31.6328 10.0003 1055 1113025 11742413775 32.4602 14 1003 1006009 1009027027 31.6702 10.0100 1058 1113026 117686766 32.4902 14 1004 1008016 1012048064 31.6860 10.0033 1059 1121481 1187648879 32.5423 14 1006 1012048064 31.6860 10.0133 1059 1121481 1187648879 32.5423 14 1006 1012048064 31.6860 10.0133 1059 1121481 1187648879 32.5423 14 1007 101404 1021147349 31.7533 10.0233 1059 1121481 1187648879 32.5423 14 1007 101404 1021147349 31.7533 10.0233 1059 1121481 1187648879 32.5423 14 1007 101404 1021147349 31.7533 10.0233 1052 1127484 1197770328 32.5863 1008 1016064 1021192512 31.7490 10.0266 1063 1129969 1201157047 32.6066 1009 1018081 1027243729 31.7648 10.0299 1064 1132096 1201157047 32.6066 1011 1021121 1033364331 31.7602 10.0365 1066 11836356 1211355496 32.6497 14 1011 1022121 1033364331 31.7905 10.0382 1065 1134225 1207949682 32.6843 11 1014 1022121 1033364331 31.7905 10.0396 1067 1138499 1214767763 32.6606 11 1014 1022121 1033364331 31.7905 10.0396 1067 1138499 1214767763 32.6606 11 1014 1022121 1033364331 31.7905 10.0396 1007 1144900 122364000 32.7109 11 1014 1023121 103444 105643729 31.8434 10.0465 1069 1142761 1223645014 32.6190 11011 1023121 103444 1058438728 31.819 10.0496 1070 1144900 122364800 32.7109 11 1017 1034299 1051877899 31.8748 10.0696 1070 1144900 122364800 32.7109 11 1017 1034299 1051871913 31.8904 10.0665 1070 1144900 122364800 32.7109 11 1017 103429 105187913 31.8904 10.0665 1070 114490 122364800 32.7109 11 1023 1046401 1067462648 31.9687 10.0629 1070 1156929 1249243538 32.8177 11 1023 1046529 1070599167 31.9841 10.0696 1073 1156281 1225616099 32.8696 1023 1046459 1076590167 31.9844 10.0665 1078 1156261 12325656 32.82656 32.0006 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.00090 10.000							1108704	1164252608	32.4845	10.1704
1000										
1002 1003003001 31. 6886 10.0083 1056 1115186 1177683616 82. 4962 1	999	998001	997002999	31.6070	9.9967	1054	1110916	1170905464	32.4654	10.1769
1004 1004004 1006012008 31.6644 10.0667 1057 1117249 1180982193 32.5156 116 1003 1006009 1009072027 31.6702 10.000 1058 11189384 118487112 32.55871 32.5423 106 1006 101006 101006 101006 101006 101006 101006 1012048064 31.6860 10.0166 1060 112360 1191016000 32.5423 10 1006 1012036 1018108216 31.7175 10.0200 1061 1125721 1194389961 32.5780 1 1007 104049 1021174343 31.7331 0.233 1062 1127444 119770232 32.5876 1 1009 1016064 102172523729 31.7648 10.0299 1064 1132969 12015704732 32.6066 1 1010 1020100 1030301000 31.7648 10.0299 1064 1132969 120157047632 32.6497 1 1011 1022119434 1036433733		1000000	1000000000	31.6228	10.0000		1113025	1174241375	32.4808	10.1801
1006		1002001	1003003001	31.6386	10.0083		1115186	1177588616	82.4962	10.183
1006		1004004	1000012000	31.0044	10.0007		11117249	1184987119	89 5980	10.186 10.189
1012 1024104 1021147348 31. 7373 10.0230 1061 1125721 1194889981 82. 5730 1		1008016	1012048064	31.6860	10.0183		1121481	1187648879	32.5423	10.192
1016 1018	1005	1010025	1015075125	31.7017	10.0166	1060	1128600	1191016000	82.5576	10.1961
1009 1016064 1021192512 31 7490 10 0266 10299 10180 1129969 1201157047 32 6066 1 1010 1018081 1027243729 31 7648 10 0299 1064 1132096 1204550144 32 6190 10 1011 1022121 1033364331 31 7902 10 0365 1066 1138295 12077949682 32 6850 1 1012 1024144 1036343728 31 8119 10 0386 1067 1138489 1214767763 32 6850 1 1013 1028196 1042590744 31 8434 10 0465 1069 1142761 1221611509 32 6850 1 1015 1080225 10456783775 31 8591 10 0496 1070 1144900 122364800 32 7109 1 1016 10322561 104577832 31 9081							1125721			
1000 1018081 1027243729 31.7648 10.0299 1064 1132096 1204550144 32.6190 1 1010 1020100 1030301000 31.7805 10.0832 1065 1138252 1207949625 32.6343 13.17962 10.0865 1066 1138369 121855496 32.6497 11 1011 1022121 1033364331 31.7962 10.0865 1066 1138489 121457763 32.6607 11 1013 1026169 1039509197 31.8777 10.0431 1068 1140624 1218186432 32.6003 1 1013 1028169 1042590744 31.8434 10.0465 1069 1142761 1221611509 32.6966 1 1015 1080225 1048772096 31.8748 10.0531 1071 11447041 1228480911 32.7261 1 1 1147041 1228480911 32.7261 1 1 1071 1144900 1228490911 32.7261 1 1 1 1 1		1014049	1021147348	31.7333	10 0233					
1010		1016064	1024192512	31.7490	10.0266					10.2057
1022 102414 1033384331 31 7962 10 0.985 1066 1188566 121855496 32 6497 1 1012 102414 103433243 31 17962 10 0.985 1067 1138489 1214767763 32 6550 1 1014 1028196 1042590744 31 8434 10 0.465 1069 1142761 1221611509 32 6968 1 1014 1028196 1042590744 31 8434 10 0.465 1069 1142761 1221611509 32 6966 1 1015 1039255 1045678375 31 8591 10 0.465 1079 1144701 1225045000 32 7109 1 1016 1032256 1048772096 31 8748 10 0.0531 1071 1147041 1225490911 32 7261 1017 1034289 1051871913 31 8904 10 0.0531 1071 1147041 1228490911 32 7261 1018 1038324 1054977832 31 9061 10 0.0596 1073 1151329 1235376017 32 7567 1019 1038361 1058089659 31 9218 10 0.0692 1074 1158476 1238833224 32 7719 1 1019 1038361 1058089659 31 9374 10 0.0662 1075 1155625 1242296875 32 7719 1 1021 1042441 1064332261 31 9371 10 0.0662 1075 1155625 1242296876 32 8024 1 1023 1046529 107599167 31 9441 10.0746348 31 9687 10 0.0728 1077 1159929 1249243533 32 8177 1 1023 1046529 1070599167 31 9441 10.074634 32 0.000 10 0.0794 1079 1164241 1256216039 32 8481 1 1025 1056625 1076890625 32 0.016 10 0.0856 1081 1086561 1268214441 32 8786 1 1027 1045749 103830683 32 0484 10 0.061 1089 1168561 1268314441 32 8786 1 1027 1045749 103830683 32 0484 10 0.065 1081 1176238 127783985 32 9090 1 1038 10666784 1086547389 32 0780 10 0.095 1084 1175256 1277889125 32 32845 1 10381 1062961 1095912791 32 1092 10 1028 106661 1095840766 32 9485 108661 1179396 1277889125 32 9485 10381 1062961 1095912791 32 1092 10 1028 103661 179396 120840566 32 9485 10 10381 1062961 1095912791 32 10961 109091	1009	l	l	1	!					10.2089
1014 1028169 1039509197 31 .8277 10 .0431 1068 1140624 1218186432 32 .6968 1		1020100	1030301000	31.7805	10.0832					10.2121
1013 1026169 1039509197 31 8277 10 0431 1068 1140624 1218186432 32 6908 1 1014 1028169 1042590744 31 8434 10 0465 1069 1142761 1221611509 32 6956 1015 1016 1032256 1048772096 31 8748 10 0563 1071 1147041 122848091 32 7261 1017 1034289 1051871913 31 8904 10 0563 1072 1149184 123192548 32 7414 1018 1036324 1054977832 31 9061 10 0596 1073 1151329 1235376017 32 7567 1019 1038361 1038088659 31 9218 10 0662 1073 1151329 1235376017 32 7567 1019 1038361 1038088659 31 9218 10 0662 1075 1155625 1242296876 32 7567 1021 1042441 1064332261 31 9531 10 0695 1076 115776 1245766976 32 8024 11022 1044484 1067492648 31 9687 10 0728 1077 115929 1249243538 32 8177 11023 1048576 10789167 31 9844 10 0761 1078 1152084 1252726552 32 8329 11024 1048576 1078741824 32 0000 10 0794 1079 1164941 1256216039 32 8481 1027 1056729 1036683 32 0484 10 0856 1082 107638683 32 0484 10 08576 10806784 1086373962 32 0324 10 0925 1084 108566 127023888 32 0324 10 0865784 1086573962 32 0324 00 00925 1084 117525 1277839787 32 9090 1029 1058841 1089547389 32 0308 10 09090 10881 1082961 1095212791 32 1092 10 1085 1177225 1277839125 32 9385 1031 1062961 1095212791 32 1092 10 1028 10786 127789125 32 9385 1031 1062961 1095212791 32 1092 10 1029 1086 1179396 1277889125 32 9365 1031 1031 1062961 1095212791 32 1092 10 1022 1086 1179396 12084056 32 945516 10311 1062961 109521791 32 1092 10 1022 1086 1179396 12084056 32 945516 108516		1022121	1033364331	31.7962	10.0365		1186856	1211855496	32.6497	10.215
1014 1028196 1042590744 31.8434 10.0465 1069 1142761 1221611509 32.6966 10 1015 1030225 1045678375 31.8591 10.0498 1070 1144900 1225043000 32.7109 10 1016 10322256 1048772096 31.8748 10.0531 1071 1147041 1223480911 32.7261 10 1017 1034289 1051871913 31.8904 10.0563 1072 1149184 123929248 32.7411 1018 1038324 1054977832 31.9081 10.0596 1073 115329 1235879017 32.7567 11 1021 1044401 1061208000 31.9218 10.0629 1074 1158476 1238833224 32.7719 10 1021 1044401 1061208000 31.9374 10.0662 1075 1155625 1242296875 32.78791 10 1023 1045291 107599167 1159625 1249243533 32.87719 1023 1044941 1067462648 <td></td> <td>1024144</td> <td>1030433728</td> <td>101.8119</td> <td>10.0390</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1024144	1030433728	101.8119	10.0390					
1032295 1048772096 31. 8748 10. 6831 1071 1147041 1289480911 32. 7361 1017 1034289 1051871913 31. 8904 10. 0863 1072 1149144 129192848 32. 4714 1018 1038634 1054977832 31. 9061 10. 0866 1073 1151329 1235376017 32. 7567 1019 1038361 1058089859 31. 9218 10. 0829 1074 1153476 1238833244 32. 7719 1021 1044441 1064332261 31. 9531 10. 0862 1075 1155625 124299875 32. 7872 1021 1044441 1064332261 31. 9531 10. 0862 1076 1157776 12457669778 32. 8024 1022 1044444 1067463648 31. 9687 10. 0728 1077 115929 1249243538 32. 8177 11023 1048526 1070599167 31. 9844 10. 0761 1078 1162084 1252726552 32. 8329 1024 1048576 1073741824 32. 0000 10.0794 1079 1164241 125671200 32. 8481 1025 1056625 1076890625 32. 0156 10. 0826 1080 1166400 1259712000 32. 8648 1028 1056784 1086373952 32. 0624 10. 0925 1082 1177074 1268723888 32. 8936 1028 1056784 1086373952 32. 0624 10. 0925 1083 1172889 1270338787 32. 9090 1031 1062961 1098712791 32. 1092 10. 1085 107728 1277891823 32. 9930 1031 1062961 1098712791 32. 1092 10. 1029 10785 1177325 1277891823 32. 8938 1031 1062961 1098712791 32. 1092 10. 1029 10866 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1029 10866 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1029 10866 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1029 1086 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1022 1086 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1022 1086 1179396 12084056 32. 98451 1031		1028196	1042590744	31.8434	10.0465		1142761	1221611509	32.6956	10.2249
1032295 1048772096 31. 8748 10. 6831 1071 1147041 1289480911 32. 7361 1017 1034289 1051871913 31. 8904 10. 0863 1072 1149144 129192848 32. 4714 1018 1038634 1054977832 31. 9061 10. 0866 1073 1151329 1235376017 32. 7567 1019 1038361 1058089859 31. 9218 10. 0829 1074 1153476 1238833244 32. 7719 1021 1044441 1064332261 31. 9531 10. 0862 1075 1155625 124299875 32. 7872 1021 1044441 1064332261 31. 9531 10. 0862 1076 1157776 12457669778 32. 8024 1022 1044444 1067463648 31. 9687 10. 0728 1077 115929 1249243538 32. 8177 11023 1048526 1070599167 31. 9844 10. 0761 1078 1162084 1252726552 32. 8329 1024 1048576 1073741824 32. 0000 10.0794 1079 1164241 125671200 32. 8481 1025 1056625 1076890625 32. 0156 10. 0826 1080 1166400 1259712000 32. 8648 1028 1056784 1086373952 32. 0624 10. 0925 1082 1177074 1268723888 32. 8936 1028 1056784 1086373952 32. 0624 10. 0925 1083 1172889 1270338787 32. 9090 1031 1062961 1098712791 32. 1092 10. 1085 107728 1277891823 32. 9930 1031 1062961 1098712791 32. 1092 10. 1029 10785 1177325 1277891823 32. 8938 1031 1062961 1098712791 32. 1092 10. 1029 10866 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1029 10866 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1029 10866 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1029 1086 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1022 1086 1179396 1270894056 32. 98451 1031 1062961 1095912791 32. 1092 10. 1022 1086 1179396 12084056 32. 98451 1031	1015	1090995	1045678375	31 8591	10 0498	1070	1144900	1225043000	82 7100	10 9961
1018 1036324 1054977832 31 904 10 0663 1073 1149184 1231925248 32 7414 11	1016									
1019 1038361 1058089859 31.9218 10.0629 1074 1158476 1238833224 32.7719 10 1020 1040400 1061208000 31.9374 10.0662 1075 1155625 1242296876 32.7872 11 1021 1044441 1064332261 31.9531 10.0695 1076 115776 1245766976 32.8024 10 1022 1044494 1067463648 31.9687 10.0726 1077 1159929 1249243538 32.8171 1023 1016529 1070599167 31.9844 10.0761 1078 1162084 1252725552 32.8829 16 1024 1048576 1076890625 32.0156 10.0826 1080 1168400 1259712000 32.8841 14 1025 1052676 1080045576 32.0312 10.0859 1081 1168561 1268214441 32.8938 16 1027 1054729 1083206683 32.0624 10.0925 1082 1170724 1250712000 32.8938 16		1034289	1051871913	31.8904	10.0563		1149184	1231925248	82.7414	10.2345
1020 1040400 1061208000 31 9374 10 0682 1075 1155625 1242296876 32 7872 14 1021 1042441 1064332261 31 9531 10 0695 1076 115776 1245766978 32 8024 14 1022 1044494 1067463648 31 9687 10 0728 1077 1159929 1249243538 38 8177 14 1023 1046529 1070599167 31 9844 10 0.761 1078 1162084 125276552 32 8329 8177 14 1048576 1078741824 32 0000 10 0794 1079 1164941 1256216039 32 8481 10 1025 1050625 1076890625 32 0156 10 0826 1090 1166400 1259712000 32 8481 10 1027 1054729 108320683 32 04881 0.0859 1081 1186561 1263214441 32 8786 11 1027 1054729 108320683 32 04881 0.0859 1081 1186561 1263214441 32 8786 11 1027 1054729 108320683 32 04881 0.0859 1082 117724 1266723368 32 8987 1029 1058841 1069547389 32 0780 10 9057 1084 117525 1277898787 32 9090 11 1030 1060900 1092727000 32 0936 10 09090 1085 1177225 1277789125 32 9399 10 1031 1062961 109572790 32 0936 10 09090 1085 1177325 1277789125 32 9399 1031 1031 1062961 109572791 32 1092 10 10 1085 1177325 1277789125 32 9399 11 1031 1062961 109572791 32 1092 10 10 1085 1177325 1277789125 32 9399 11 1031 1062961 109572791 32 1092 10 10 1085 1177325 1277789125 32 9399 11 1031 1062961 109571791 32 1092 10 10 1085 1177325 127789125 32 9399 11 1031 1062961 109571791 32 1092 10 10 1029 1086 1179396 126984056 32 945511		10363:24	1054977832	31.9061	10.0596		1151329	1235376017	32.7567	10.2376
1022 1044494 1067463645 31 , 9987; 10 , 0728 1077 1159829 12482443538 32 , 8177 11023 1048529 1070599167 31, 9844 10.0761 1078 1162084 1255725552 32, 8328 1024 1048576 1078741824 32,0000 10.0794 1079 1164241 3256216039 32, 8481 1025 1056625 10780625 32, 323 32, 32481 1025 1056625 10780683 32, 1048 10.0859 1081 1168501 1258314441 32, 8786 1027 1054729 108320683 32, 04881 10.0859 1082 117724 1268723363 32, 3898 1028 105864 1086547389 32, 0424 10.0925 1084 1175256 1278760704 32, 9242 1030 1069090 1092727000 32, 0936 10.0909 1085 1177225 1277289125 32, 9393 1031 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095912791 32, 10921 10, 10221 1086 1179396 126984056 32, 94851 1081 1082961 1095912791 32, 10921 10, 10221 1086 1179396 126984056 32, 94851 1084 108	1019	1038361	1058089859	31.9218	10.0629	1074			i	ı
1022 1044494 1067463645 31 , 9987; 10 , 0728 1077 1159829 12482443538 32 , 8177 11023 1048529 1070599167 31, 9844 10.0761 1078 1162084 1255725552 32, 8328 1024 1048576 1078741824 32,0000 10.0794 1079 1164241 3256216039 32, 8481 1025 1056625 10780625 32, 323 32, 32481 1025 1056625 10780683 32, 1048 10.0859 1081 1168501 1258314441 32, 8786 1027 1054729 108320683 32, 04881 10.0859 1082 117724 1268723363 32, 3898 1028 105864 1086547389 32, 0424 10.0925 1084 1175256 1278760704 32, 9242 1030 1069090 1092727000 32, 0936 10.0909 1085 1177225 1277289125 32, 9393 1031 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095912791 32, 10921 10, 10221 1086 1179396 126984056 32, 94851 1081 1082961 1095912791 32, 10921 10, 10221 1086 1179396 126984056 32, 94851 1084 108		1040400	1061208000	31.9374	10.0662		1155625	1242296875	82.7872	10.2440
1022 1044494 1067463645 31 , 9987; 10 , 0728 1077 1159829 12482443538 32 , 8177 11023 1048529 1070599167 31, 9844 10.0761 1078 1162084 1255725552 32, 8328 1024 1048576 1078741824 32,0000 10.0794 1079 1164241 3256216039 32, 8481 1025 1056625 10780625 32, 323 32, 32481 1025 1056625 10780683 32, 1048 10.0859 1081 1168501 1258314441 32, 8786 1027 1054729 108320683 32, 04881 10.0859 1082 117724 1268723363 32, 3898 1028 105864 1086547389 32, 0424 10.0925 1084 1175256 1278760704 32, 9242 1030 1069090 1092727000 32, 0936 10.0909 1085 1177225 1277289125 32, 9393 1031 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095212791 32, 10921 10.1025 1086 1179396 126984056 32, 94851 1081 1062961 1095912791 32, 10921 10, 10221 1086 1179396 126984056 32, 94851 1081 1082961 1095912791 32, 10921 10, 10221 1086 1179396 126984056 32, 94851 1084 108	1021	1042441	1064332261	31.9531	10.0695		1157776	1245766976	82.8024	10.2471
1024 1048576 1073741824 32.0000 10.0794 1079 1164941 1256216039 32.8481 10 1025 1050625 1076890625 32.0156 10.0826 1080 1166400 1259712000 32.8684 10 1026 1052676 1060045576 32.0312 10.0859 1081 1168561 1256214441 32.8786 10 1027 1054729 108320683 32.0488 10.0892 1082 117724 1256723368 32.8986 10 1028 1056784 1068573952 32.0824 10.0925 1083 1172889 1270838787 32.9090 10 1029 1058481 1069547389 32.0780 10.0957 1084 1175056 1278760704 32.9242 10 1030 1060900 1092727000 32.0986 10.0990 1085 1177225 1277289125 32.9824 10 1031 1062961 1095912791 32.1092 10.1023 1086 1179396 1280824056 32.9645 10		1044484	1067462648	31.9687	10.0728		1159929	1249243588	32,8177	10.250
1025 1050625 1076890625 32.0156 10.0826 1080 1166400 1259712000 82.8634 10.0861 10866 1082676 1080405576 32.0312 10.0859 1081 1188561 1268214441 32.8786 10.027 1054729 1083206683 32.0468 10.0892 1082 1170724 1296723368 32.8838 10.088 1086784 1086373952 32.0624 10.0925 1083 117289 1270383787 32.9090 10.0990 108841 1089547389 32.0780 10.0957 1084 1175056 1273760704 32.9242 10.0910 1080900 1092727000 32.0936 10.0990 1085 1177225 1277289125 32.9383 10.031 1062961 1095912791 32.10921 0.1023 1086 1179396 1280684056 32.9445 10.0910 10.0910 1085 11773936 1280684056 32.9445 10.0910 108090 1082961 1095912791 32.10921 0.1023 1086 1179396 1280684056 32.9445 10.0910 108090 108084056 32.9445 10.0910 10.0910 1080 1180684056 32.9445 10.0910 10.0910 1080 1180684056 32.9445 10.0910 1080 108084056 32.9445 10.0910 1080 108084056 32.9445 10.0910 10808 10.0910 10808 10.0910 10808 10.0910 10.0910 10808 10.0910 1		1046529	1070599167	31.9844	10.0704					
1026 1062676 1060045576 32 .0312 10 .0859 1081 1168561 12638214441 32 .8766 11 1027 10647921 108320683 32 .0488 10 .0892 1082 117074 1266723868 32 .8985 1028 1028 1056784 1086373952 32 .0624 10 .0925 1083 1172859 1270238787 32 .9090 10 1029 1068841 1089647389 32 .0780 10 .0957 1084 1175056 1273760704 32 .9242 11 1030 1060900 1092727000 32 .0936 10 .0990 1085 1177225 1277289125 32 .9090 10 1031 1062961 1095912791 32 .1092 10 .1023 1086 1179396 128084056 32 .944510				1		ł				,
1027 1054729 1 083206683 132, 0468 10, 0892 10821 1170724 1296723368 132, 8838 16 1028 1056784 1 066373952 132, 0624 10, 0925 1083 117289 127023878 132, 9900 10 1029 1058841 1069547389 132, 0780 10, 0957 1084 1175056 1273760704 132, 9242 10 1030 1060900 1092727000 132, 0936 10, 0990 1085 1177225 1277289125 132, 9383 10 1031 1062961 1095912791 132, 1092 10, 1023 1086 1179336 1280684056 132, 9445 10		1050625	1076890625	32.0156	10.0826		1166400	1259712000	82.8634	10.259
1028 1056784 1066373952 82, 0624 10, 0925 1083 1172889 1270336787 32, 9090 1029 105841 1069547389 32, 0780 10, 0957 1084 1175056 1273760704 32, 9242 10 1030 1060900 1092727000 32, 0936 10, 0900 1085 1177225 1277289125 32, 9393 10 1031 1062961 1095912791 32, 1092 10, 1023 1086 1179396 126084056 32, 9445 10							1168561	1268214441	82.8786	10.2680
1029 1058841 1089547389 32.0780 10.0957 1084 1175056 1273760704 32.9242 10 1030 1060900 1092727000 32.0936 10.0990 1085 1177225 1277289125 32.3898 10 1031 1062961 1095912791 32.1092 10.1023 1086 1179396 1280624056 32.3645 10		1054729	1088373059	32 0824	10.0092		1179880	1270238727	99 0000	10.200
1031 1062961 1095912791 32, 1092 10, 1023 1086 1179396 1280824056 32, 9545 1086										
1031 1062961 1095912791 32, 1092 10, 1023 1086 1179396 1280824056 32, 9545 10	1030	1060900	1092727000	32.0936	10.0990	1085	1177225	1277289125	32 9309	10.275
1032 1065024 1099104768 32, 1248 10, 1055 1087 1181569 1284365508 32, 9697 (0 1038 1067089 1102302937 32, 1403 10, 1088 1088 1183744 1287918472 32, 9848 10		1062961	1095912791	32.1092	10.1023	1086	1179396	1280824056	32.9545	10.278
1033 1067089 1102302937 32,1403 10,1088 1088 1183744 1287918472 39 9848 10	1032	1065024	1099104768	32.1248	10.1055	1087	1181569	1284365503	32.9697	10.289
1000 to 000 1033	1067089	1102302937	32.1403	10.1088			1287918472	32.9848	10.28	
1034 1069156 1105507304 32, 1559 10, 1121 1089 1185921 1291467969 33,0000 10	1034	1069156	1105507304	132.1559	10.1121	1089	1185921	1291467969	133.0000	10.29

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root.
1000	1100100	100500000	99 0181	10 0014	1145	1911008	1801100808	99 0070	10 4017
1090!		1295029000 1298596571			1145 1146		1501128625 1505060136		
1092		1302170688			1147		1509003523		
1093	1194649	1305751357	33.0606	10.3009	1148	1817904	1512958792	33.8821	10.4708
1094	1196836	1309338584	83.0757	10.8040	1149	1820201	1516910949	33.8969	10.4789
1095	1199025	1312932375	33.0908	10.3071	1150	1322500	1520875000	33.9116	10.4769
1096		1316582736			1151		1524845951		
1097		1320139673 1323753192			1152 1158		1528828808 1532908577		
	1207801	1327373299	33.1512	10.8197	1154	1331716	1536800264		
1100	1210000	1831000000	33 1662	10 8928	1155	1884025	1540798875	38 9853	10.4921
1101	1212201	1344633301	83.1818	10.3259	1156		1544804416		
1102	1214404	1334633301 1338273208	33.1964	10.3290	1157	1838649	1548816893	34.0147	10.4981
	1216609	1341919727	33.2114	10.3322	1158		1552836812		
1104	1218816	1345572864	33.2264	10.3853	1159	1343281	1556862679	84.0441	10.5042
1105		1349232625			1160		1560896000		
1106	1223236	1352399016	33.2566	10.8415	1161	1347921	1564936281	34.0785	10.5102
1107	1225449	1856572043	33.2716	10.8447	1162	1850244	1569983528	34.0881	10.5182
1108 1109	1227004	1356572043 1360251712 1363938029	33.3017	10.8478	1163 1164		1573037747 1577098944		
1110			1	i i	4400	100000	1 FO1 1 671 OF	04 1901	10 1000
1110		1367631000 1371330631			1165 1166		1581167125 1585242296	94 1467	10.5888
		1375036928			1167		1589324463		
		1378749897			1168		1593413632		
1114		1382469544			1169		1597509809		
1115	1243225	1386195875	33.3916	10 3695	1170	1368900	1601618000	34.2053	10.5373
1116	1245456	1389928896	33.4066	10.8726	1171		1605723211		
1117	1247689	1393668613	33.4215	10.8757	1172		1609840448		
1118		1397415032			1173	1375929	1613964717	34.2491	10.5463
1119		1401168159			1174		1618096024		
1120	1254400	1404928000	38.4664	10.3850	1175		1622234375		
1121	1256641	1408694561	33.4813	10.3881	1176		1626379776		
1122	1000004	1412467848 1416247867	33.4903 99 K110	10.3912	1177 1178	1997894	1630532233 1634691752	24 2000	10.0000
1124	1263376	1420084624	83.5261	10.8973	1179	1390041	1638858339	34.3366	10.5642
1125	1265625	1423828125	33.5410	10.4004	1180	1392400	1643032000	34.3511	10.5672
1126	1267876	1427628376	83.5559	10.4035	1181	1394761	1647212741	34.3657	10.5702
1127		1431435383			1182	1397124	1651400568	34.3802	10.5732
1128		1435249152			1183		1655595487		
1129		1439069689			1184		1659797504		
1130		1442897000			1185		1664006625		
1131	1279161	1446731091	33.6303	10.4189	1186		1668222856		
1132	1281424	1450571968	33.6452	10.4219	1187		1672446203		
1133 1134		1454419687 1458274104			1188 1189		1676676672 1680914269		
1135	1988995	1462135875	22 6206	10 4811	1190	1416100	1685159000	84 4984	10 5970
1136		1466008456			1190		1689410871		
1137	1292769	1469878858	33.7174	10 4373	1192	1420864	1693669888	84.5254	10.6029
1138	1295044	1478760072 1477648619	33.7342	10.4404	1193	1423249	1697936057	34.5398	10.6059
1139	1297321	1477648619	83.7491	10.4434	1194	1425636	1702209384	34.5548	10.6088
1140	1299600	1481544000	88.7639	10.4464	1195	1428025	1706489875	34.5688	10.6118
1141	1301881	1485446221	33.7787	10.4495	1196		1710777536	34.5832	10.6148
1142	1304164	1489355288	83.7985	10.4525	1197	1432809	1715072378	34.5977	10 6177
1143	1300449	1498271207	33.8083	10.4556	1198	1435204	1719374392 1728683599	24 6266	10.6286
1123				4586					

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root.
1200	1440000	1728000000	24 6410	10 6966	1255	1878005	1976656375	35 4960	10.7%
1201		1732323601			1256		1981385216		
1202		1736654408			1257		1986121593		
1203		1740992427			1258		1990865512		
1204		1745337664			1259		1995616979		
1401	1310010		02.000.		2.000				
1205	1452025	1749690125	34.7181	10.6413	1260	1587600	2000376030	85.4965	10.800
1206	1454436	1754049816	84.7275	10.6443	1261	1590121	2005142581	35.5106	10.803
1207		1758416748			1262		2009916728		
1208		1762790912			1 26 3		2014698447		
1209	1461681	1767172329	34.7707	10.6530	1264	1597696	2019487744	35.5528	10.812
				40.000	4000	-	000 400 400		10.017
1210	1464100	1771561000 1775956981	84.7851	10.6560	1265		2024284625		
1211	1400021	1770900931	34.7994	10.0090	1266 1267	1002700	2029089096	OF FOAD	10.00
1212 1213	1471980	1780860128 1784770597	94 9001	10.0019	1268	1807994	2083901163 2088720832	00.0948	10 899
1214		1789188844			1269	1610361	2043548109	35 6930	10.8%
1614	1410100	1100100044	01.0140	10.0010	1200	1010001	2010010100	00. 00 00	10.0
1215	1476225	1798618875	34 8569	10 6707	1270	1612900	2048383000	35.6871	10.829
1216		1798045696			1271		2053225511		
1217		1802485313			1272		2058075648		
1218	1488524	1806932232	34.8999	10.6795	1278		2062933417		
1219	1485961	1811386459	34.9142	10.6824	1274	1623076	2067798824	35.6931	10.50
							20022004000		
1220	1488400	1815848000	34.9285	10.6858	1275	1625625	2072671875	35.7071	10.848
1221		1820816861			1276		2077552576		
1222 1223		1824798048			1277 1278		2082440933 2087336952		
1224		1829276567 1838767424			1279		2092240639		
1601	1400110	1000101343	01.0001	10.0010	12.0	100001	~00000000	00.1001	10.00
1225	1500625	1838265625	35.0000	10.6999	1280	1638400	2097152000	35.7771	10.857
1226	1503076	18 38265625 1842771176	35,0143	10.7028	1281	1640961	2102071041	35.7911	10.80
1227	1505529	1847:284083	35.0286	10.7057	1282		2106997768		
1228		1851804352			1:283		2111932187		
12:29	1510441	1856381989	85.0571	10.7115	1284	1648656	2116874304	35.8329	10.869
1230	1811000	1860867000	OE 0714	10 7144	1285	1851005	2121824125	OK 9460	10 801
1231	1515961	1865400301	95 0950	10.7144	1286	1859708	2126781656	25 RAOR	10.00
1232	1517894	1865409391 1869959168	35 0000	10.7202	1287	1656969	2131746903	85 8748	10.87
1283	1520289	1874516337	35.1141	10.7231	1288	1658944	2136719872	35 9887	10.8%
1234		1879080904			1289		2141700569		
1235		1883652875			1290		2146689000		
1236		1888232256			1291		2151685171		
1237		1892819053			1292		2156689088	35.9444	10.89
1238		1897413272			1203		2161700757 2166720184		
1239	1999121	1902014919	35.1994	10.7405	1294	10/4180	2100720164	33.8622	10.89
1240	1597600	1906624000	25 9126	10 7/19/1	1295	1822095	2171747875	28 9881	10 804
1241	1540081	1911240521	35 2278	10.7463	1296		2176782836		
1242		1915864488			1297		2181825073		
1243	1545049	1920495907	35.2562	10.7520	1298	1684804	2186875592	36.0278	10.90
1244		1925134784			1299		2191933899		
4345	4.5500.55				4000	40000			
1245	1550025	1929781125	85.2846	10.7578	1300	1690000	2197000000	30.0555	10.91
1246	1995916	1934434936	30.2967	10.7607	1301 1302	1092001	2202073901	90.0094	10.91
1247 1248	1557504	1939096223 1943764992			1302		2207155608 221 224 5127		
1249		1948441249			1304		2217842464		
ANTO	1000001	1730331649	JU. J714	.0.1000	1.004	1,00110	~~1.024701		10.34
1250	1562500	1953125000	85.3553	10.7722	1805	1703025	2222447625	36, 1248	10.92
1251	1565001	1957816251	35.3695	10.7750	1306	1705636	2227560616	36.1886	10 93
1252	1567504	1962515008.	35.3836	10.7779	1307				
1253	1570009	1967221277	35.8977	10 7808	1308	1710864	2237810112	36.1 66 3	10.93
1254	1572516	1971935064	35.4119	10 78371	1309	1713481	2242946629	36.1801	10.93

									
No.	Squ are .	Cube.	Sq. Root.	Cube Root.	No.	Squ ar e.	Cube.	Sq. Root.	Cube Root.
1310	1216100	2248091000	26 1020	10 9418	1365	1868995	2548802125	88 0450	11 0000
1311	1710731	COCC 40001	ייצע פני	10 0446	1366	1865956	25488Q58QR	38 Q5Q4	11 0956
315	1721344	2258408328 2268571297	36.2215	10.9474	1367	1868689	2554497863	36.9780	11.0988
:313	1723969	2268571297	36.2358	10.9502	1368	1871424	2560108032	36.9865	11.1010
1314	1120090	2268747144	80.2191	10.9550	1369	1914101	2565726409	31.0000	11.1087
		2273930875			1370	1876900	2571353000	37.0135	11.1064
1316	1731856	2279122496	36.2767	10.9585	1371		2576987811		
-011	1797194	2284322013 2289529482	36.2300	10.9018	1872 1873	1885190	2582630848 2588282117	97 OS40	11 1145
a19	1789761	2294744759	36 3180	10.9668	1874	1887876	2593941624	87.0675	11.1172
1331	17/9/00	229996 8000	96 9916	10 0606	1875	1800695	25996093 75	37 0810	11 1100
1321	1745041	2295500000 2205199161	36 3456	10.9724	1376	1898376	2605285376	37 0945	11.1226
1322	1747684	2305199161 2310438248	36.3593	10.9752	1877	1896129	2605285376 2610969633	87.1080	11.1258
1323	1750329	2315685267	36 3781	10.9779	1378	1898884	2616662152	37.1214	11.1280
1324	1752976	2320940224	36.3868	10.9607	1379	1901641	2622362939	87.1849	11.1307
1325		2326203125	86.4005	10.9834	1380		2628072000		
1336	1758276	2331473976	36.4143	10.9862	1381		2633789341		
1327 1328	1769594	2336752783 2342039552	36.4280	10.9890	1382 1383	1019680	2689514968 2645248887	87 1887	11.1007
1329	1766241	2347334289	36.4555	10.9945	1384	1915456	2650991104	87.2021	11.1441
1330	1700000	00*000*000	20 4000	10 0020	1885	1010000	30E0#4180E	07 OLER	11 1480
1331	1771561	2352637000 2357947691	36 4929	11 0000	1386	1920996	2656741625 2662500456	87 2290	11.1495
1332		2863266368			1387		2668267603		
1333	1776889	2368593037	36.5103	11.0055	1888		2674043072		
1334	1779556	2373927704	36.5240	11.0083	1389	1929321	2679826869	87.2693	11.1575
1335	1782225	28792708 75	36.5377	11.0110	1390	1932100	2685619000	87.2827	11.1602
1336	1784896	1 23846 21056	36.5513	11.0138	1891	1934881	2691419471 2697228288	37.2961	11.1629
1837	1787569	2389979753 2395346472	36,5650 28,5747	11.0165	1392 1393	1937664	2697228288 2703045457	37.8095	11 1699
1339	1792921	2400721219	36.5923	11.0220	1394	1943236	2708870984	37.8363	11.1709
1040	1000000	1400101000	00 0000	11 0047	1395	104000	071 470 4077	20 2400	11 1790
1340 1341	170000	2406104000 2411494821	36.0000 38.8107	11.0247	1396		2714704875 2720547136		
1342		2416893688			1397	1951609	2726397773	37.3765	11.1789
1343	. 1803649	2422300607	36.6469	11.0330	1398	1954404	2732256792	37.3898	11.1816
1344	1806336	2427715584	36. 66 06	11.0357	1399	1957201	2738124199	37.4032	11.1842
1345	1809025	2433138625	36.6742	11.0384	1400	1960000	2744000000	37.4166	11,1869
1346	1811716	2438569736	36.6879	11.0412	1401	1962801	2749884201	37.4299	11.1896
		2444008923			1402	1965604	2755776808 2761677827	87.4438	11.1923
1349	1819801	2449456192 2454911549			1403 1404		2767587264		
	ì	1			ì		'	İ	
1350	1822500	2460375000	30.7423	11.0521	1405 1406		2773505125 2779431416		
1352	1827904	2471326208	36.7696	11.0575	1400	1979649	2785366143	37.5100	11.2055
1353	1830609	2465846551 2471326208 2476813977	36.7831	11.0603	1408	1982464	2791309312	37.5233	11.2082
1354	1833316	2482309864	36.7967	11.0630	1409	1985281	2797260929	37.5366	11.2108
1355	183602	2487813875	36.8103	11.0657	1410	1988100	2803221000	37.5500	11.2185
1756	1838736	2493326016	36.8239	11.0684	1411	1990921	2809189531	37.5633	11.2161
1357		2498846298	36.8375	11.0712	1412		2815166528		
1358 1359		2504374712 2509911279	36.8646	11.0766	1413 1414		2821151997 2827145944		
					i i		i	ľ	l
1360	1849600	2515456000 2521008881	36.8782	11.0793	1415	2002225	2833148375	87.6165	11.2207
136	1855044	2526569928	36 9053	11 0847	1416 1417	2005050	2839159296 2845178713 2851206632	37 6431	11.2320
1363	1857769	12582189147	36.9188	11.0875	1418	2010724	2851206632	37.6568	11.2346
126	1869496	3 2537 7165 14	86.9324	11.0902	1419	2013561	2857843059	37.6696	11.2373

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sq. Root.	Cube Root.
1420	9016400	2868288000	27 6990	11 9900	1475	9178698	3209046875	20 4057	11 909
1420	2010200	2869341461	37 6962	11 2425	1476	2178576	3215578176	88 4187	11 385
1422	2022084	2875403448	37.7094	11.2452	1477		3222118333		
1428	2024929	2875403448 2881473967	37.7227	11.2478	1478	2184484	3228667352	88.4448	11.390
1424	2027776	2887553024	37.7359	11.2505	1479	2187441	3235225239	38.4578	11.398
1425	2030625	2893640625	37,7492	11.2531	1480	2190400	8241792000	38 4708	11 396
1426	9088476	9900798778	27 7804	11 9557	1481		8248367641		
1427	2036329	2905841483	37.7757	11.2588	1482	2196324	3254952168	38.4968	11.401
1428	2039184	2911954752	87.7889	11.2610	1483		3261545587		
1429	2042041	29 1807 6 589	37.8021	11.2636	1484	2202256	8268147904	88.5227	11.406
1430	2044900	2924207000	37.8153	11.2662	1485	2205225	3274759125	38.5357	
1431	2047761	2930345991	37.8286	11.2689	1486	2208196	3281379256	38.5487	11.411
1432	2050624	2936493568	37.8418	11.2715	1487		3288008303		
1438 1434		2942649737 2948814504			1488		3294646272		
1404	2000000	2940014004	31.0002	11.2/0/	1489	2211121	8301293169	30.3010	11.419
1485		2954987875			1490		8307949000		
1486	2062096	2961169856	37.8946	11.2820	1491	2223081	3314613771	38.6185	11.424
1437	2064969	2967860453	37.9078	11.2846	1492	2226064	3321287488 3327970157	38.6264	11.426
1438 1489	2007844	2973559672 2979767519	37.9210	11.2872	1498	2229049	3327970157	38.6894	11.429
1408				1	1494	2232030	3634661784	a6.002a	11.431
1440	2073600	2985984000 2992209121	87.9478	11.2924	1495	2235025	3341862375	38.6652	11.434
1441	2076481	2992209121	37.9605	11.2950	1496	2238016	3348071936	38.6782	11.437
1442	2079364	2998442888	37.9737	11.2977	1497		3354790478		
1443	2082249	3004685307	37.9868 ₁	11.3003	1498		3361517992		
1444	\$000190	3010936884	90.0000,	11.3029	1499	2247001	3368254499	30.1109	11.444
1445	2088025	3017196125	38.0132	11.3055	1500	2250000	3375000000	38.7298	11.447
1446	2090916	3023464536	38.0263	11.3081	1501	2253001	3381754501	38.7427	11.449
1447	2098809	3029741628	88.0395	11.8107	1502	2256004	3388518008	38.7556	11.452
1448	2096704	3036027392	38.0526	11.3133	1503	2259009	3395290527	38.7685	11.454
1449	2088001	3042321849	90.0007	11.0109	1504	2202010	8402072064	30.7014	11.40
1450	2102500	3048625000	38.0789	11.8185	1505	2265025	3408862625	38.7943	11.459
1451		3054936851			1506	2268036	3415662216	38.8072	11.463
1452		3061257408			1507		3422470843		
1453		3067586677			1508		3429288512		
1454	2114110	3073924664	35.1314	11.5269	1509		3436115229		
1455		3080271375			1510	2280100	3442951000	38.8587	11.479
1456	2119936	3086626816	38.1576	11.3341	1511	~~001Z1	0449190001	30.0110	11.410
1457	2122849	3092990993 3099363912	38.1707	11.3367	1512	2286144	3456649728	38 8844	11.477
1458	2125764	3099363912	38.1838	11.3398	1513		3463512697		
1459	2120001	3105745579	od.1909	11.5419	1514	2292196	3470364744	99.8102	11.482
1460	2131600	3112136000	38.2099	11.3445	1515	2295225	3477265875	38.9230	11.485
1461	2134521	8118585181	38.2230	11.3471	1516	2298256	3484156096	38.9358	11.487
1462	2137444	3124943128	38.2361	11.3496	1517	2301289	3491055413	38.9487	11.490
1463		3131359847			1518		3597963832		
1464	2142296	3137785344	oo. 2623	11.8548	1519	2307361	3504881859	55.9744	11.495
1465	2146225	3144219625	38.2753	11.3574	1520	2310400	3511808000	38.9872	11.497
1466	2149156	3150662696	38.2884	11.3600	1521	2313441	3518743761	89.0000	11,500
1467		3157114563			1522		3525688648		
1468		3163575232			1523		3532642667		
1469	%19/961	3170044709	30.5275	11.3077	1524	2822076	3539605824	oy.U364	11.50
1470	2160900	3176523000	38.3406	11.3703	1525		3546578125		
1471	2163841	3183010111	38.3536	11.3729	1526	2328676	3553559576	39.0640	11.514
1472	2166784	3189506048	38.3667	11.3755	1527	2331729	3560550183	39.0768	11.515
1473 1474	2109/29	3196010817 3202524424	96 3007	11.8780	1528 1529	2554784	3567549952 3574558889	39.0096	11.517
1414	2112010	0505034424	OC . 08211	11.0000	1989	\$001041	00140000009	07.1024	11.07

No.	Square.	Cube.	Sq. Root.	Cube Root.	No.	Square.	Cube.	Sqs Root.	Cube Root.
1530	2840900	3581577000	39.1152	11.5230	1565	2449225	3833087125	39.5601	11.6102
1531		3588604291			1566	2452356	3840389496	39.5727	11.6126
1532		3595640768			1567		3847751268		
1538	2850089	3602686437	39.1585	11.5305	1568	2458624	3855123432	39.5980	11.6176
1534	2359156	3609741304	39.1663	11.5830	1569	2461761	3862503009	39.6106	11.6200
1535		3616805875			1570		3869893000		
1536		3623878656			1571		3877292411		
1537		3630961153			1572		3884701248		
1535		3634052872			1573		3892119517		
1539	2368521	3 64 515 3 819	39.2301	11.5455	1574	2477476	3899547224	39.6787	11.6324
1540		3652264000			1575		3906984375		
1541		3659883421			1576		3914430976		
1542		3666512068			1577		3921887033		
1543		3673650007			1578		3929352552		
1544	2388936	3680797184	39.2938	11.5580	1579	2493241	3936827539	39.7366	11.6447
1545		3687953625			1580		3944312000		
1546		3695119336			1581		3651805941		
1547		3702294323			1582		3959309368		
1548		3709478592			1583		3966822287		
1549	2899401	3716672149	89.8573	11.5705	1584	2509056	3974344704	89.7995	11.6570
1550	2402500	3723875000	39 8700	11 5729	1585	2512225	3981876625	89 8121	11.6594
1551		3731087151			1586		8989418056		
1552		3738309608			1587		3996969003		
1553		3745539377			1588		4004529472		
1554		3752779464			1589		4012099469		
1555	2418025	3760028875	39.4335	11.5854	1590	2528100	4019679000	89.8748	11.6717
1556	2421136	3767287616	39.4462	11.5879	1591	2531281	4027268071	39.8873	11.6741
1557		3774555693			1592	2534464	4034866688	39.8999	11.6765
1558	2427364	3781833112	39.4715	11.5928	1593	2537649	4042474857	39.9124	11.6790
1559	2430481	3789119879	39.4842	11.5953	1594	2540836	4050092584	39.9249	11.6814
1560	2433600	3796416000	39 4968	11.5978	1595	2544025	4057719875	39.9375	11.7839
1561		3803721481			1596		4065356736		
1562		3811036328			1597	2550409	4073003173	39.9625	11.6888
1563	2442969	3818360547	39.5318	11.6052	1598		4080659192		
1564	2446096	3825694144	39.5474	11.6077	1599	2556801	4088324799	39.9875	11.6936
	l	1	•		1600	2560000	4096000000	40.0000	11.6961

SQUARES AND CUBES OF DECIMALS.

No.	Square.	Cube.	No.	Square. Cube.		No. Square.		Cube.		
.1		.001	.01	.0001	.000 001	.001	.00 00 01	.000 000 001		
.2 .8	.04 .09	.008 .027	.02	.0004 .0009	.000 008	.002	.00 00 04	.000 000 008		
.4		.064	.08	.0016	.000 034	.003	.00 00 09	.000 000 027		
.5	.25	.125	.05	.0025	.000 125	.005	00 00 25	.000 000 125		
.6		.216	.06	.0036	.000 216	.006	.00 00 36	000 000 216		
.7	.49	.343	.07	.0049	.000 343	.007	.00 00 49	.000 000 848		
.8	.64	.512	.08	.0064	.000 512	.008	.00 00 64	.000 000 512 .000 000 729		
.9		.729 1.000	.09 .10	.0081	.000 729	.009	.00 00 81	.000 000 729		
1.0 1.2		1.728	.12	.0144	.001 728	.012	.00 01 44	.000 001 728		

Note that the square has twice as many decimal places, and the cube three times as many decimal places, as the root.

FIFTH ROOTS AND FIFTH POWERS.

(Abridged from TRAUTWINE.)

No. or Root.	Power.	No. or Root.	Power.	No. or Root.	Power.	No. or Root.	Power.	No. or Root.	Power.
.10	.000010	3.7	693.440	9.8	90392	21.8	4923597	40	102400000
.15	.000075	3.8	792.352	9.9	95099	22.0	5153682	41	115856201
.20	.000320	3.9	902.242	10.0	100000	22.2	5392186	42	130691232
.25 .30	.000977 .002430	4.0	1024.00 1158.56	10 2 10.4	110408 121665	22.4 22.6	5689498 5895798	48 44	147008413
.35	.005252	4.2	1306.91	10.6	133823	22.8	6161827	45	164916224 1845 2 8125
.40	.010240	4.3	1470.08	10.8	146933	23.0	6436343	46	205962976
.45	.018453	4.4	1649.16	11.0	161051	28.2	6721093	47	229345007
.50 .55	.031250 .050328	4.6	1845.28 2059.63	$\frac{11.2}{11.4}$	176234 192541	23.4 23.6	7015834 7320825	48 49	254803968 282475249
.60	.077760	4.7	2293.45	11.6	210(81	23.8	7636882	50	312500000
.65	.116029	4.8	2548.04	11.8	228776	24.0	796:624	51	345025251
.70	.168070	4.9	2824.75	12.0	248832	24.2	8299976	52	380204032
.75	.237305	5.0	8125.00	12.2	270271	24.4	8645666	58	418195493
.80 .85	.327680 .4437 0 5	5.1 5.2	3450.25 3802.04	12.4 12.6	293163 317580	24.6 24.8	9005978 9381200	54 55	459165024 508284375
.90	.590490	5.3	4181.95	12.8	343597	25.0	9705625	56	550781776
.95	.773781	5.4	4591.65	13.0	371293	25.2	10162550	57	601692057
1.00	1.00000	5.5	5032.84	13.2	400746	25.4	10572278	58	656356768
1.05 1.10	1.27628	5.6 5.7	5507.32 6016.92	13.4 13 6	482040 465259	25.6	10995116 11431377	59 60	714924299 777600000
1.15	1.61051 2.01135	5.8	6563.57	13.8	500490	25.8 26.0	11881376	61	844596301
1.20	2.48832	5.9	7149,24	14.0	537824	26.2	12845487	62	916132832
1.25	3.0517 6	8.0	7776.00	14.2	577358	26.4	12828886	63	992436543
1.30	3.71293	6.1	8445.96	14.4	619174	26.6	13317055	64	1078741824
1.35 1.40	4.48403 5.37824	6.2 6.3	9161.33 9924.37	14 6 14.8	663383 710082	$\frac{26.8}{27.0}$	18825281 14348907	65 66	1160290625 1252332576
1.45	6.40973	6 4	10737	15.0	759375	27.2	14888280	67	1850125107
1.50	7.59375	6.5	11603	15.2	811368	27.4	15448752	68	1453933568
1.55	8.94661	6.6	12523	15.4	866171	27.6	16015681	69	1564081849
1.60	10.4858	6.7	13501	15.6	923896	27.8	16604480	70	1680700000
1.65 1.70	12.2298 14.1986	6.8 6.9	14539 15640	15.8 16.0	984658 1048576	28.0 28.2	17210368 17833868	71	1804229351 1934917632
1.75	16.3141	7.0	16807	16.0	1115771	28.4	18475809	72 78	2078071593
1.80 1.85	18.8957	7.1	18042	16.4	1186367	28.6	19185075	74	2219006624
1.85	21.6700	7.2	19349	16.6	1260498	28.8	19818557	75 76	2378046875
1.90	24.7610	7.3	20731	16.8	1338278	29.0	20511149	76	2535525376
$\frac{1.95}{2.00}$	28.1951 32.0000	7.4	22190 237 3 0	17.0 17.2	1419857 1505 366	29.2 29.4	21228253 21965275	77 78	2706784157 2887174368
2.05	36.2051	7.5 7.6	25355	17.4	1594947	29.6	22722628	79	3077056399
2.10	40.8410	7.7 7.8	27068	17.6	1688742	29 8 30.0	28500728	79 80	3276800000
2.15	45.9401	7.8	28872	17.8	1786899	30.0	24300000	81	3486784401
2.20 2.25	51.5368 57.6650	7.9 8.0	30771 32768	18.0 18.2	1889568 1996903	30.5 31.0	26398634 28629151	82 83	370789843: 3939040643
2.30	64.3634	8.1	34868	18.4	2109061	31.5	31013642	84	4182119424
2.35	71.6703	8.2	37074	18.6	2226208	32.0	83554432	85	4487058125
2.40	79.6262	8.3	39390	18.8	2348493	32.5	36259082	86	4704270176
2.45	88.2735	8.4	41821	19 0	2476099	33.0	39135393	87	4984209207
2.50 2.55	97.6562 107.820	8.5 8.6	44371 470 48	19.2 19.4	2609193 2747949	33.5 34.0	42191410 4 5485424	88	5277819168 5584059449
2.60	118.814	8.7	49842	19.6	2892547	81.5	48875980	90	5904900000
$\frac{2.60}{2.70}$	143.489	8.8	52778	19.8	3043168	35.0	52521875	91	6240321451
2.80	172.104	8.9	55841	20.0	3200000	35.5	56 3 821 67	92	6590815232
2.90	205.111	9.0	59049	20.2 20.4	3863232	36.0	60466176	98	6956888698
3.00 3.10	243.000 286.292	9.1 9.2	6240 3 65 908	20.4	3533059 3709677	86.5 37.0	64783487 69 8 43957	94 95	7339040224 7737809375
3.20	335.544	9.3	69569	20.8	8893289	37.5	74157715	96	8153726976
3.30	391.354	9.4	73390	21.0	4084101	38.0	79235168	96 97	8587340257
8.40	454.354	9.5	77378	21.2	4282322	38.5	84587005	98	9039207968
3.50 3.60	525 . 219 604 . 662	9.6 9.7	81537 85873	21.4 21.6	4488166 4701850	39.0 39.5	90224199 96158012	99	9509900499
3.00	UU1.UU4	0.1	00010	41.0	4101000	100.0	20100013		1

CIRCUMFERENCES AND AREAS OF CIRCLES.

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam	Circum.	Area.
1	3.1416	0.7854	65	201.20	3318.31	129	405.27	13069.81
2	6.2832	3.1416	66	207.84	3421.19	180	408.41	13278.23
3	9.4248	7.0686	67	210.49	3525.65	131	411.55	18478.2
4	12.5664 15.7080	12.5664 19.635	68	213.63 216.77	8631.68	132	414.69	13684 78
5 6 7 8	18.850	28 274	69 7 0	219.91	8739.28 8848.45	133 134	417.83 420.97	13892.91 14102.61
7	21.991	38.485	71	223 05	8959.19	135	424.12	14318.8
8	25.133	50,266	72	226.19	4071.50	136	427.26	14526,7
9	28.274	63,617	78	229.34	4185.89	137	430.40	14741.1
10	31.416	78.540	74	232.48	4300 84	138	433.54	14957.19
11	34.558	95.0 3 3	75	235.62	4417.86	139	436.68	15174.68
12	37.699	113.10	76	238.76	4536.46	140	439.82	15398.80
13	40.841	132.73	77	241.90	4656.63	141	442.96	15614.50
14 15	43.982	153.94	78	245.04	4778.86	142	446.11	15836.7
16	47.124 50.265	176.71 201.06	79 80	248.19 251.33	4901.67 5026.55	143	449.25	16060.6
17	53.407	226.98	81	254.47	5153.00	144 145	452.89 455.58	16286.0: 16518.0
18	56.549	254.47	82	257.61	5281.02	146	458.67	16741.5
19	59.690	283.53	83	260.75	5410.61	147	461.81	16971.6
20	62.832	314.16	84	263.89	5541.77	148	464.96	17208.8
21	65.978	846.36	85	267.04	5674 50	149	468.10	17436 . 6
22	69.115	380.13	86	270.18	5808.80	150	471.24	17671.40
23	72.257	415.48	87	273.32	5944.68	151	474.88	17907 8
샏	75.398	452.89	88	276.46	6082.12	152	477.52	18145.8
25	78.540	490.87	89	279.60	6221.14	153	480.66	18385.89
26 27	81.681	530.93	90	282.74	6361.73	154	483.81	18626.5
28	84.823 87.965	572.56 615.75	91 92	285.88 289.03	6503.88 6647.61	155	486.95	18869.1
29	91.106	660.52	93	292.17	6792.91	156 157	490.09 498.23	19118.4
30	91 248	706.86	91	295.31	6939.78	158	496.37	19359.26 19606.68
31	94,248 97.889	754.77	95	298.45	7088.22	159	499.51	19855.6
32	100.53	804.25	96	801.59	7238.23	160	502.65	20106.19
33	103.67	855.30	97	304.73	7389.51	161	505.80	20358.3
34	106.81	907.92	98	307.88	7542.96	162	508.94	20611.99
35	109.96	962.11	99	311.02	7697.69	168	512.08	20867.24
36	113.10	1017.88	100	314.16	7853.98	164	515.22	21124.0
37 38	116.24	1075.21	101	817.30	8011.85	165	518.86	21382.40
39	119.38 122.52	1184.11 1194.59	102 103	320 44 323.58	8171,28 8332,29	166	521.50	21642.43
40	125.66	1256.64	104	326.78	8104 87	167 168	524.65 527.79	21903 9
41	128.81	1320.25	105	329 87	8494.87 8659.01	169	530.93	22167 00 22431.70
42	131.95	1385.44	106	333.01	8821.73	170	534 07	22698.0
43	135.09	1452.20	107	336.15	8992.02	171	537.21	22965.8
44	138.23	1520.53	108	339.29	9160.88	172	540.35	23235.2
45	141.37	1590.43	109	342.48	9331.32	178	543.50	23506.18
46	144.51	1661.90	110	345.58	9503.82	174	546.64	23778.7
47	147.65	1734.94	111	348.72	9676.89	175	549.78	24052.8
48 49	150.80 153.94	1809.56 1885.74	112 113	351.86 355.00	9852.03 10028.75	176	552.92	24828.49
50	157.08	1963.50	114	358.14	10207.03	177 178	556.06 559.20	24605.74 24884.50
51	160.22	2042.82	115	861.28	10386 89	179	562.35	25164.9
52	163.36	2123.72	116	364.42	10568.32	180	565.49	25446 90
53	166.50	2206.18	117	367.57	10751.32	181	568.68	25730.4
54	169.65	2290.22	118	370.71	10985.88	182	571.77	26015.5
55	172.79	2375.88	119	878.85	11122.02	183	574.91	26302.20
56	175.93	2463.01	120	876.99	11309.78	184	578.05	26590.4
57	179.07	2551.76	121	380.13	11499.01	185	581.19	26880.2
58	182.21	2642.08	122	383.27	11689.87	186	584.34	27171.6
59 60	185.35 188.50	2783.97	123	386.42	11882.29	187	587.48	27464.59
61	191.64	2827.43 2922.47	124 125	389.56 392.70	12076.28 12271.85	188 189	590.63	27759.13 28055.2
65 01	194.78	3019.07	125 126	392.10	12271.85	190	593.76 596.90	28055.2 28352.8
63	197.92	3117.25	127	898.98	12667.69	191	600.04	28652.1
64	201.06	3216.99	128	402.12		192	603.19	28952.9

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
193	606.33	29255.30	260	816.81	53092.92	327	1027.30	88981.84
194	609.47	29559.25	261	819.96	53502.11	328	1030.44	84496 28
195	612.61	29864.77	262	823.10	58912.87	329	1033.58	85012.28
196	615.75	30171.86	263	826.24	54325.21	880	1086.73	85529.86
197	618.89 622.04	30480.52 30790.75	264 265	829.38 832.52	54739.11 55154.59	331 332	1039.87 1043.01	86049.01
198 199	625.18	31102.55	266	835.66	55571.63	333	1046.15	86569.73 87092.02
200	628.32	31415.93	267	838.81	55990.25	334	1049.29	87615.88
201	631.46	81780.87	268	841.95	56410.44	385	1052.43	88141.31
202	634.60	32047.39	269	845.09	56832.20	336	1055.58	88668.31
203	637.74	32365.47	270	848.23	57255.58	337	1058.72	89196.88
204	640.88	32685.13	271	851.37	57680.48	338	1061.86	89727.03
205	644.08	33006,36 33329,16	272 273	854.51	58106.90	839° 840	1065.00 1068.14	90258.74
206 207	647.17 650.31	83653.53	273 274	857.65 860.80	58534.94 58964.55	341	1071.28	90792.03 91326.88
208	658.45	33979.47	275	863.94	59395.74	342	1074.42	91863.31
209	656.59	34306.98	276	867.08	59828.49	343	1077.57	92401.31
210	659.73	34636.06	277	870.22	60262.82	344	1080.71	92940.88
211	662.88	34966.71	278	873.36	60698.71	845	1083.85	98482.02
212	666.02	85298.94	279	876.50	61136.18	846	1086.99	94024.73
213	669.16	35632.73	280	879.65	61575.22	847	1090.13	94569.01
214 215	672.30 675.44	35968.09 36805.03	281 282	882.79 885.93	62015.82 62458.00	348 349	1093.27 1096.42	95114.86 95662.28
216	678.58	36643.54	283	889.07	62901.75	850	1099.56	96211.28
217	681.73	36983.61	284	892.21	63347.07	351	1102.70	96761.84
218	684.87	37325.26	285	895.35	63793.97	352	1105.84	97818.97
219	688.01	87668.48	286	898.50	64242.48	853	1108.98	97867.68
220	691.15	88013.27	287	901.64	64692.46	854	1112.12	98422.96
221	694.29	88359.63	288	904.78	65144.07	355	1115.27	98979.80
222 223	697.43 700.58	38707.56. 39057.07	289 290	907.92 911.06	65597.24 66051.99	356 357	1118.41 1121.55	99538.22 100098.21
224	703.72	39408.14	291	914 20	66508.30	358	1124.69	100659.77
225	706.86	89760.78	292	914.20 917.35	66966.19	359	1127.83	101222.90
226	710.00	40115.00	293	920.49	67425.65	860	1130.97	101787.60
227	713.14	40470.78	294	923.63	67886.68	361	1134.11	102353.87
228	716.28	40828.14	295	926.77	68349.28	362	1137.26	102921.72
229 280	719.42 722.57	41187.07 41547.56	296 297	929.91 933.05	68813.45 69279.19	363 364	1140.40 1143.54	103491.13
231	725.71	41909.63	298	936.19	69746.50	365	1146.68	104062.12 104634.67
232	728.85	42273.27	299	939.34	70215.38	366	1149.82	105208.80
233	731.99	42638.48	800	942.48	70685.88	367	1152.96	105784.49
234	735.13	43005.26	301	945.62	71157.86	868	1156.11	106361.76
235	738.27	43373.61	302	948.76	71681.45	369	1159.25	106940.60
236	741.42	43743.54	308	951.90	72106.62	870	1162.39	107521.01
237 238	744.56 747.70	44115.03 44488.09	304 305	955.04 958.19	72583.36 73061.66	371 372	1165.58 1168.67	108102.99
239	750.84	44862.73	306	961.33	73541.54	373	1171.81	108686.54 109271.66
240	753.98	45238.93	807	964.47	74022.99	374	1174 96	109858.35
241	757.12	45616.71	308	967.61	74506.01	375	1178.10	110446.62
242	760.27	45996.06	309	970.75	74990.60	376	1181.24	111036.45
243	763.41	46376.98	810	973.89	75476.76	377	1184.88	111627.86
244	766.55	46759.47	311	977.04	75964.50	378	1187.52	112220.83
245 246	769.69 772.83	47143.52 47529.16	312 313	980.18 983.32	76453.80	379 380	1190 66	112815.88
247	775.97	47916.36	314	986.46	76944.67 77437.12	381	1193.81 1196.95	113411.49 114009.18
248	779.11	48305.18	315	989.60	77931.18	382	1200.09	114608.44
249	782.26	48695.47	316	992.74	78426.72	883	1203.23	115209.27
250	785.40	49087.39	817	995.88	78923.88	384	1206.87	115811.67
251	788.54	49480.87	318	999.03	79422.60	235	1209.51	116415.64
252	791.68	49875.92		1002.17	79922.90	386	1212.65	117021.18
258 254	794.82	50272.55	820 321	1005.31 1008.45	80424.77	387	1215.80	117628.30
	207 00			1000.40	80928.21	388	1218.94	118236.98
	797.96	50670.75	300		R1499 90		1000 00	
255	801.11	51070.52	322	1011.59	81433 22 81939 80	389	1222.08	118847.24
	801.11 804.25	51070.52 51471.85	322 323 324	1011.59 1014.73	81939.80	389 890	1222.08 1225.22	118847.24 119459.06
255 256	801.11	51070.52	322 323	1011.59		389	1222.08	118847.24

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
394	1237.79	121922.07	461	1448.27	166913.60	528	1658.76	218956.44
395	1240.93	122541.75 123163.00	462	1451.42	167638 53	529	1661.90	219786.61
396 397	1244.07 1247.21	123785.82	463 464	1454.56 1457.70	168365.02 169093.08	580 531	1665.04 1668.19	220618.34 221451.65
398	1250.35	124410.21	465	1460.84	169822.72	532	1671.83	222286.58
399	1253.50	125036.17	466	1463.98	170553.92	533	1674.47	223122.98
400	1256.64	125663.71	467	1467.12	171286.70	534	1677.61	223961.00
401 402	1259.78 1262.92	126292.81 126923.48	468 469	1470.27 1473 41	172021.05 172756.97	535 536	1680.75 1683.89	224800.59 225641.75
403	1266.06	127555.78	470	1476.55	173494.45	537	1687.04	226484.48
404	1269.20	128189.55	471	1479.69	174233.51	538	1690.18	227328.79
405	1272.35	128824.93	472	1482.83	174974.14	539	1693.32	228174.66
406	1275.49	129461.89	473	1485.97	175716.35 176460 12	540	1696.46 1699.60	229022.10 229871.12
407 408	1278.63 1281.77	130100.42 130740.52	474	1489.11 1492.26	177205.46	541 542	1702.74	280721.71
409	1284.91	131382.19	476	1495.40	177952.37	548	1705.88	231578.86
410	1288.05	132025.43	477	1498.54	178700.86	544	1709.08	232427.59
411	1291.19	132670.24	478	1501.68	179450.91	545	1712.17	233282.89
412 413	1294.34 1297.48	133316.63 133964.58	479 480	1504.82 1507.96	180202.54 180955.74	546 547	1715.31 1718.45	234139.76 234998.20
414	1300.62	134614.10	481	1511.11	181710.50	548	1721.59	235858,21
415	1303.76	135265.20	482	1514.25	182466.84	549	1724.78	236719.79
416	1306.90	135917.86	483	1517.89	183224.75	550	1727.88	287582.94
417 418	1310.04 1313.19	136572.10 137227.91	484 485	1520.53 1523.67	183984.23 184745.28	551 552	1731.02 1734.16	238447.67 239818.96
419	1316.33	137885.29	486	1526.81	185507.90	553	1737.80	240181.83
420	1819.47	138544,24	487	1529.96	186272.10	554	1740.44	241051.26
421	1322.61	139204.76	488	1533.10	187037.86	555	1743.58 1746.73	241922.27
422	1325.75	139866.85	489	1536.24	187805.19	556	1746.73	242794.85 243668.99
423 424	1328.89 1332.04	140530.51 141195.74	490 491	1539.38 1542.52	188574.10 189344.57	557 558	1749.87 1753.01	244544.71
425	1335.18	141862.54	492	1545.66	190116.62	559	1756.15	245422 00
426	1338.32	142530.92	498	1548.81	190890.24	560	1759.29	246300.86
427	1341.46	143200.86	494	1551.95	191665.43	561	1762.43	247181.30
428 429	1344.60 1347.74	143872.38 144545.46	495 496	1555 09 1558.23	192442.18 193220.51	562 563	1765.58 1764.72	248063.30 248946.87
480	1350.88	145220.12	497	1561.87	194000.41	564	1771.86	249832.01
431	1854.03	145896.35	498	1564.51	194781.89	565	1775.00	250718.73
432	1857.17	146574 15	499	1567.65	195564.93	566	1778.14	251607.01
433 434	1360.31 1363.45	147253.52 147934.46	500 501	1570.80 1573.94	196349.54 197135.72	567 568	1781.28 1784.42	252496.87 253388.30
435	1366.59	148616.97	502	1577.08	197923.48	569	1787.57	254281.29
436	1369.73	149301.05	503	1580.22	198712.80	570	1790.71	255175.86
437	1372.88	149986.70	504	1583.36	199503.70	571	1793.85	256072.00
438 439	1876.02 1879.16	150673.93 151362.72	505 506	1586 50 1589 65	200296.17 201090.20	572 573	1796.99 1800.13	256969.71 257868.99
440	1382.30	152053.08	507	1592.79	201885.81	574	1803.27	258769.85
441	1385.44	152745 02	508	1595.93	202682.99	575	1806.42	259672.27
442	1388.58	153438.58	509	1599.07	203481.74	576	1809.56	260576.26
443 444	1391.78 1394.87	154133.60 154830.25	510 511	1602.21 1605 35	201282.06 205083.95	577 578	1812.70 1815 84	261481.83 262388.96
445	1398.01	155528.47	512	1608.50	205887,42	579	1818.98	268297.67
446	1401.15	156228.26	513	1611.64	206692.45	580	1822.12	264207.94
447	1404.29	156929.62	514	1614.78	207499.05	581	1825 .27	265119.79
448 449	1407.43 1410.58	157632.55 158337.06	515 516	1617.92 1621.06	208307.23 209116.97	582 583	1828.41 1831.55	266033.21 266948.20
450	1413.72	159043.13	517	1624.20	209928.29	584	1834.69	267864.76
451	1416.86	159750.77	518	1627.34	210741.18	585	1837.83	268782.89
452	1420.00	160459.99	519	1630.49	211555.63	586	1840.97	269702.59
453 454	1423.14 1426.28	161170.77 161883.18	520 521	1633.63 1636.77	212371.66 213189.26	587 588	1844.11 1847.26	270623.86 271546.70
455	1429.42	162597.05	522	1639.91	214008.43	589	1850.40	272471.12
456	1432.57	163312.55	523	1643.05	214829.17	590	1853.54	273397.10
457	1485.71	164029.62	524	1646.19	215651.49	591	1856.68	274324.60 275253.78
458	1436.85 1441.99	164748.26 165468.47	525 526	1649.34 1652.48	216475.37 217300.82	592 593	1859.82 1862.96	275255 75 276184 18
459								

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
595	1869.25	278050.58	663	2082.88	345286.69	781	2296.50	419686.15
596	1872.39	278985.99	664	2083.02	346278.91	782	2299.65	420835.19
597	1875.53	279922.97	665	2089.16	347322.70	733	2302.79	421985.79
598 599	1878 67 1881.81	280861.52 281801 65	666 667	2092.30 2095.44	348368.07 349415.00	784 735	2305.93 2309.07	423137.97 424291.72
600	1884.96	282743.34	668	2098.58	350463,51	736	2812.21	425447.01
601	1888.10	283686.60	669	2101.73	851518.59	737	2815.35	426603.94
602	1891.24	284631.44	670	2104.87	352565.24	738	2318.50	427762.40
603 604	1894.38 1897.52	285577.84 286525.82	671 672	2108.01	353618.45 354673.24	739 740	2821.64 2824.78	428922.43 480084.03
605	1900.66	287475.36	673	2111.15 2114.29	355729.60	741	2327.92	481247.21
606	1903.81	288426.48	674	2117.43	356787.54	742	2331.06	432411.95
607	1906.95	289379.17	675	2120.58	857847.04	743	2834.20	433578.27
608	1910.09	290333.43	676	2123.72	358908.11	744	2337.34	434746.16 435915.62
609 610	1913.23 1916.37	291289.26 292246.66	677 678	2126.86 2130.00	359970.75 361034.97	745 746	2840.49 2843.68	487086.61
611	1919 51	293205.63	679	2183.14	362100.75	747	2346.77	438259.24
612	1922.65	294166.17	680	2136.28	363168.11	748	2349.91	439433.41
618	1925.80	295128.28	681	2139.42	364237.04	749	2353.05	440609 16
614 615	1928.94 1932.08	296091.97 297057.22	682 683	2142.57 2145.71	365307.54 366379.60	750 751	2356.19 2359.34	441786.47 442965.35
616	1935.22	298024.05	684	2148.85	367453.24	752	2362.48	444145.80
617	1938.36	298992.44	685	2151.99	368528.45	758	2365.62	445827.53
618	1941.50	299962.41	686	2155.13	369605.23	754	2368.76	446511.42
619 620	1944.65 1947.79	300933.95	687	2158.27	370683.59 371763.51	755 756	2871.90 2875.04	447696.59 448883.32
621	1950.93	301907.05 302881.73	688 689	2161.42 2164.56 2167.70	372845.00	757	2378.19	450071.63
622	1954.07	303857.98	690	2167.70	373928.07	758	2881.83	451261.51
623	1957.21	304835.80	691	2170.84	375012.70	759	2384.47	452452.96
624 625	1960.35	305815.20	692	2173.98	376098.91	760	2387.61	453645.98
626	1963.50 1966.64	306796.16 307778.69	693 694	2177.12 2180.27	377186.68 378276.03	761 762	2390.75 2393.89	454840.57 456036.73
627	1969.78	308762.79	695	2183.41	379366.95	768	2397.04	457234.46
628	1972.92	309748.47	696	2186.55	380459.44	764	2400.18	458433.77
629	1976.06 1979.20	310735.71	697	2189.69	381558.50	765	2403.32 2406.46	459634.64
630 631	1982.35	311724.53 312714.92	698 699	2192.83 2195.97	382649.13 383746.83	766 767	2400.40	460837.08 462041.10
632	1985.49	313706.88	700	2199.11	384845.10	768	2412.74	463246.69
638	1988.63	314700.40	701	2202.26	385945.44	769	2415.88	464453.81
634 635	1991.77 1994.91	315695.50 316692.17	702 703	2205.40 2208.54	387047.36 388150.84	770	2419.03 2422.17	465662.57 466872.87
636	1998.05	817690.42	704	2211.68	389255.90	771 772	2425.31	468084.74
637	2001.19	318690.23	705	9914 89	390362.52	778	2428.45	469298.18
638	2004.34	319691.61	706	2217.96	891470.72	774	2431.59	470513.19
639	2007.48	320694.56	707	2221.11	392580.49	775	2434.73	471729.77 472947.92
640 641	2010.62 2013.76	321699.09 322705.18	708 709	2224 .25 2227 .39	393691.82 394804.73	776 777	2437.88 2441.02	474167.65
642	2016.90	323712.85	710	2230.53	395919.21	778	2444.16	475388.94
643	2020.04	324722.09	711	2233.67	397035 26	779	2447.30	476611.81
644	2023.19	825732.89	712	2236.81	398152.89	780	2450.44	477836,24 479062,25
645 646	2026.33 2029.47	326745 .27 327759 .22	713 714	2239.96 2243.10	399272.08 400392.84	781 782	2453.58 2456.73	480289.83
647	2032.61	328774.74	715	2246.24	401515.18	783	2459.87	481518.97
648	2035.75	329791.83	716	2249.38	402639.08	784	2463.01	482749.69
649	2038.89	830810.49	717	2252.52	403764.56	785	2466.15	483981.98 485215.84
650 651	2042.04 2045.18	331830.72 332852.58	718 719	2255.66 2258.81	404891.60 406020.22	786 787	2469.29 2472.43	486451.28
652	2048.32	333875.90	720	2261.95	407150.41	788	2475.58	487688.28
653	2051.46	334900.85	721	2265.09	408282.17	789	2478.72	488926.85
654 655	2054.60	335927.36	722 723	2268.23	409415.50	790	2481.86	490166.99
656	2057.74 2060.88	336955.45 337985.10	723 724	2271.37 2274.51	410550.40 411686.87	791 792	2485.00 2488.14	491408.71 492651.99
657	2064.03	339016.33	725	2277.65	412824.91	793	2491.28	493896.85
658	2067.17	340049.18	726	2280.80	418964.52	794	2494.42	495143.28
659 660	2070.31	841088.50	727 728	2283.94	415105.71	795	2497.57	496391.27
661	2073.45 2076.59	342119 44 343156 95	729	2287.08 2290.22	416248.46 417392.79	796 797	2500.71 2503.85	497640.84 498891.98
662	2079.73		780	2293.36	418538.68	798	2506.99	

	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
799	2510.13	501898.97	867	2723.76	590375.16	935	2937.39	686614.71
800	2513.27	503654.82 503912.25	868 869	2726.90 2730.04	591787.83	936	2940.58	688084.19
801 802	2516.42 2519.56	505171.24	870	2783.19	598102 06 594467.87	937 938	2943.67 2946 81	689555.24 691027.86
803	2522.70	506431.80	871	2736.33	595835.25	939	2949.96	692502.05
804	2525.84	507693.94	872	2739.47	597204.20	940	2953.10	693977.82
805	2528.98	508957.64	873	2742.61	598574.72	941	2956.24	695455.15
806	2532.12	510222.92	874	2745.75	599946.81	942	2959.38	696934 .06
807	2535.27	511489.77	875	2748.89	601320 47	943	2962.52	698414.53
808 809	2538.41 2541.55	512758.19 514028.18	876 877	2752.04 2755.18	602695.70 604072.50	944 945	2965.66 2968.81	699896,58 701380,19
810	2544.69	515299.74	878	2758.32	605450.88	946	2971.95	702865.38
811	2547.88	516572.87	879	2761.46	606830.82	947	2975.09	704352.14
812	2550.97	517847.57	880	2764.60	608212.34	948	2978.28	705840.47
813	2554.11	519123.84	881	2767.74	609595.42	949	2981.87	707330.37
814	2557.26	520401.68	882 883	2770.88	610980.08	950	2984.51	708821.84
815 816	2560.40 2563.54	521681.10 522962.08	884	2774.03 2777.17	612866.31 613754.11	951 952	2987.65 2990.80	710314.88 711809.50
817	2566.68	524244.63	885	2780.31	615143.48	953	2993.94	713305.68
818	2569.82	525528.76	886	2783.45	616534.42	954	2997.08	714803.43
819	2572.96	526814.46	887	2786.59	617926.93	955	3000.22	716302.76
820	2576.11	528101.73	888		619321.01	956	3003.86	717803.66
821 822	2579.25 2582.39	529390.56 530680.97	889 8 90	2792.88 2796.02	620716 66 622113 89	957	3006.50	719306 13
823	2585.53	531972.95	891	2799.16	623512.68	958 959	3009.65 3012.79	720810.16 722315.77
824	2588.67	533266.50	892	2802.30	624913.04	960	3015.93	723822.95
825	2591.81	534561.62	893	2805.44	626314.98	961	3019.07	725331.70
826	2594.96	535858.32	894	2808.58	627718.49	962	3022.21	726842.02
827	2598.10	537156.58	895	2811.73	629123.56	963	3025.35	728353.91
828 829	2601.24 2604.38	538456 41 539757 82	896 897	2814.87 2818.01	630530.21 631938.43	964 965	3028.50	729867.37
880	2607.52	541060.79	898	2821.15	633348.22	966	3031.64 3034.78	731382.40 732899.01
831	2610.66	542365.34	899	2824.29	634759.58	967	3037.92	784117.18
832	2613.81	545671.46	900	2827.43	636172.51	968	8041.06	735936.93
833	2616.95	544979.15	901	2830.58	637587.01	969	3044.20	737458.24
884	2620.09 2623.23	546288.40 547599.23	902 903	2833.72	639003.09	970	3047.34	738981.13
835 836	2626.37	548911.68	903	2836.86 2840.00	640420.73 641839.95	971 972	3050.49 3053.63	740505.59 742031.62
837	2629.51	550225.61	905	2843.14	643260.73	973	3056.77	743559.22
838	2632.65	551541.15	906	2846.28	644683.09	974	3059.91	745088.39
839	2635.80	552858.26	901	4010.44	646107.01	975	3063.05	746619.13
840	2638.94	554176.94	908	2852.57	647532.51	976	3066.19	748151.44
841 842	2642.08 2645.22	555497.20 556819.02	909 910	2855.71 2858.85	648959.58 650388.22	977 978	3069.34 3072.48	749685.32
843	2648 36	558142.42	911	2861.99	651818.43	979	3075.62	751220.78 752757.80
841	2651.50	559467.39	912	2865.13	653250.21	980	3078.76	754296.40
845	2654 65	560793.92	913	2868.27	654683.56	981	3081.90	755836,56
846	2657.79 2660.93	562122.08	914	2871.42	656118.48	982	3085.04	757378.30
847 848	2660.93	563451.71 564782.96	915 916	40.3.00	657554.98 658993.04	983 984	3088.19	758921.61
849	2667.21	566115.78	917	2880.84	660432.68	985	3091.33 3094.47	760466.48 762012.93
850	2670.35	567450.17	918	2883.98	661873.88	986	3097.61	763560.95
851	2673.50	568786.14	919	2887.12	663316 66	987	3100.75	765110.54
852	2676.64	570128.67	920	2890.27	664761.01	988	3103.89	766661.70
853	2679.78	571462.77	921	2893.41	666206.92	989	3107.04	768214.44
854 855	2682.92 2686.06	572803.45 574145.69	922 923	2896.55 2899.69	667654.41 669103.47	990 991	3110.18 3113.32	769768.74
856	2689.20	575489.51	924	2902.83	670554.10	992	3116.46	771324.61 772882.06
857	2692.34	576834.90	925		672006.30	993	3119.60	774441.07
858	2695.49	578181.85	926	2909.11	673460.08	994	3122.74	776001.66
859	2698.63	579580.38	927	2912.26	674915.42	995	3125.88	777563.82
869	2701.77	580880.48	928	2915.40	676872.33	996	3129.03	779127.54
861 862	2704.91 2708.05	582232.15 583585.39	929 980	2918.54 2921.68	677830.82 679290.87	997 998	3132.17 3135.31	780692.84 782259.71
863	2711.19	584940.20	931	2921.68	680752.50	999	3138.45	783828.15
864	2714.34	586296.59	932	2927.96	682215.69	1000	3141.59	785398.16
865	2717.48	587654.54	033	2931 11	683680.46			
866	2720 62	589014.07	934	2934.25	685146.80			

CIRCUMFERENCES AND AREAS OF CIRCLES Advancing by Eighths.

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
1/64	.04909	.00019	2 36	7.4618	4.4301	6 1/4	19.242	29.465
1/32	.09818	.00077	7/16	7.6576	4.6664	6 1/8 1/4 8/8	19.635	30.680
3/64	.14726	.00173	36	7.8540	4.9087	87	20.028	31.919
1/16	. 19635	.00307	9/16	8.0503	5.1572	1/6	20.420	33.183
3/32	.29452	.00690	56	8.2467	5.4119	5/8 5/4 2/8	20.813	34.472
1/8	. 39270	.01227	11/16	8.4430	5.6727	34	21 206	35.785
5/32	.49087	.01917	13/16	8.6394	5.9396	3∕8	21.598	37.122
3/16	.58905	.02761	13/16	8.8357	6.2126	7.	21.991	38.485
7/32	.68722	.03758	36	9.0321	6.4918	1/8 1/4 8/8 1/4	22.384	39.871
			15/16	9.2284	6.7771	1/4	22.776	41.282
1/4 9/32	.78540	.04909				₹8	23.169	42.718
9/32	.88357	.06213	31.	9.4248	7.0686	1/4	23.562	44.179
5/16 11/32	.98175	.07670	1/16	9.6211	7.3662	\$6 34 78	23.955	45.664
11/32	1.0799	.09281	3/16	9.8175	7.6699	24	24.347	47.173
3/8 13/32	1.1781	.11045	3/16	10.014	7.9798	3 /8	24.740	48.707
13/32	1.2763	.12962	34	10.210	8.2958	8.	25.133	50.265
7/16	1.3744	.15033	5/16	10.407	8.6179	! /8	25.525	51.849
15/32	1.4726	.17257	7/16	10.603	8.9462	3 3	25.918	53.456
	4 5500	10000	1/10	10.799	9.2806	16141818181818	26.311	55.088
1700	1 5708	.19635	16	10.996	9.6211	29	26.704	56.745
17/32	1.6690	.22166	9/16	11.192	9.9678	29	27.096	58.426
9/16	1.7671	.24850	58	11.388	10.321	24	27.489° 27.882	60.132
19/32	1.8653	.27688	11/16	11.585 11.781	10.680 11.045	9. 28	28.274	61.862 63.617
5/8 21/32	1.9635	.30680	13/16	11.701				05.017
21/33	2.0617 2.1598	.33824	10/10	11.977 12.174	11.416 11.793	78	28.667 29.060	65.397 67.201
11/16 23/32	2.1596		15/16	12.370	12.177	32	29.452	69.029
20/02	æ. 2000	.40574	4.	12.566	12.566	78	29.845	70.882
3/	2.3562	.44179	1/16	12.763	12.962	18 14 8 8 4 8	30.238	72.760
34 25/32	2.4544	.47937	16	12.959	13.364	78 8/4	30.631	74.662
13/16	2.5525	.51849	3/16	13.155	13.772	72	31.023	76.589
27/32	2.6507	.55914	14	13.352	14.186	10.78	31.416	78.540
7/8	2.7489	.60132	5/16	13.548	14.607		31.809	80.516
29/32	2.8471	64504	8	13.744	15.033	í	32.201	82.516
15/16	2.9452	.69029	7/16	13.941	15.466	86	32.594	84.541
31/32	3.0434	.73708	16	14.137	15.904	1,8	32.987	86,590
31, 5.0	0.0101		9/16	14.334	16.349	62	33.379	88.664
1.	3.1416	.7854	96	14.530	16.800	84	33.772.	90.763
1/16	3.3379	.8866	11/16	14.726	17.257 17.728	1614.812.834.8	34.165	92.886
1/2	3.5348	.9940	13/16	14.923	17.728	11.	34.558	95.033
3/10	3.7306	1.1075	13/16	15.119	18.190	1/8	34.950	97.205
1/4	3.9270	1.2272 1.3530	15/16	15.315	18.665	1814.8884.8884.88	35.343	99.402
5/16	4.1233	1.3530	15/16	15 512	19.147	₹8	35.736	101.62
3/8 7/16	4.3197	1.4849	0.	15.708	19.635	1/2	36.128	103.87
7/16	4.5160	1.6230	1/16	15.904	20.129	5 ∕8	36.521	106.14
1/2	4.7124	1.7671	3/16	16.101	20.629	24	36.914	108.43
9/16	4.9087	1.9175	3/16	16.297	21.135	%	37.306	110.75
56 11/16	5.1051	2.0739	5 16	16.493	21.648	12	87.699	113.10
11/16	5.3014	2.2365	5/16	16.690	22.166	. / 8	38.092	115.47
3/4	5.4978	2.4053	7 16	16.886	22.691	24 .	38.485	117.86
13/16	5.6941	2.5502	7/16	17.082	28.221	1814888148	38.877	120.28
3/8 15/16	5.8905	2.7612	9/16	17.279 17.475	23.758	7 3	39.270	122.72
15/16	6.0868	2.9483	19/16	17.470	24.301	78	39.663	125.19
0	6.2832	2 1416	58 11/16	17.671 17.868	24.850	72	40.055	127.68
2. 1/16	6.4795	3.1416 3.3410	41/10	18.064	25.406 25.967	13. 18	40.448 40.841	130.19
1/10	6.6759	3.5466	13-16	18.261	26.535		41.233	132.73 135.30
$\frac{78}{3/16}$	6.8722	8.7583	76	18.457	27.109	78 14	41.626	137.89
1/4	7.0686	3.9761	78 15-16	18.653	27.688	1/8 1/4 3/8 1/9	42.019	140.50
$\frac{1}{4}$ 5/16	7.2649	4.2000	6	18.850	28.274	12	42.412	148.14

iam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
3 56 3 4 78	42.804	145.80	21.74	68,722	375.83	80 1/8 1/4 1/4 1/8 1/8 1/8	94.640	712.76
3,	43.197	148.49	22.	69.115	380.13	14	95.083	718.69
78	43.590	151.20	34	69.508	384.46	3 ∕8	95.426	724 64
		153.94	14	69.900	388.82	₹	95.819	780.68
L,	44.375	156.70	28	70.293	393.20	29	96.211	786.62
14	44.768	159.48	24	70.686	397.61	24	96.604	742.64
*8	45.160	162.30	28	71.079	402.04	81. 18	96.997	748.69
.2	45.553 45.916	165.13 167.99	33	71.471 71.864	406.49 410.97	01.iz	97.389	754.77 760.87
74. 30 to 10. 34. 30	46.338	170 87	23.	72.257	415.48	1.	97.782 98.175 98.567	766.99
74	46.731	170.87 173.78	16	72.649	420.00	\$2 12	98.567	773.14
ð.	46.731 47.124	176.71	14	78.042	424.56	34	BO.800	779.31
75.47.87.87.47.8 75.47.87.87.87.47.8	47.517	179.67	36	73 435	429.13	29 28	99.338	785.51
14	47.809	182.65	2.9	78.827	433.74	2/8	99.746	791.78
? 9	48.302	185.66	29	74.220	438.36	78	100.138	797.98
52	48.695 49.087	188.69	29	74.613	443.01	82.	100.531	804.25
39	49.087 49.480	191.75 194.88	24 78	75.006 75.398	447.69 452.39	79	100.924 101.316	810.54 816.86
72	49.873	107 09	14	75.791	457 11	62	101.510	828.21
6.	50.265	197.93 201.06	13	76.184	457.11 461.86	78	101.709 102.102	829.58
	50.658	204.22	86	76.576	466.64	62	102.494	835.97
14	51 051	207.39	12	76.969	471.44	84	102.887	842.89
No. 1 No. 1	51.414	210.60	96	77.362	476.26	S. S. S. S. S. S. S. S. S. S. S. S. S. S	103.280	848.83
29	51.836	213.82	24	77.754	481.11	83.	103.673	855.30
38	52.229	217.08	28	78.147	485.98	7 8	104.065	861.79
29	52.622 53.014	220.35 223.65	25.	78.540 78.933	490.87 495.79	3	104.458 104.851	868.31
178	58 407	226.98	18	79.825	500.74	79	105.243	874.85 881.41
	58.407 58.800	230 38	86	79.718	505.71	72	105.636	888.00
i,	54 192	230.33 233.71	38	80.111	510.71		106.029	894.62
3%	54.585	237.10	52	80.503	515.72	级	106.421	901.26
18.14.8.3.8.34.3.	34.978	240.53	34	80.896	520.77	34.	106.814	907.92
28	55.371	243.98	3/8	81.289	525.84	A STATE OF THE STA	107.207	914.61
24	50.100	247.45	26.	81.681	530.93	24	107.600	921.32
IS. ⁷⁸	56.156 56.549	250.95 254.47	29	82.074 82.467	536.05	98	107.992 108.385	938.06 934.82
``ik	56.941	258.02	142	82 860	541.19 546.85	3 3	108.778	941.61
14.14.15	57 334	261.59	12	83.252	551.55	3 8	109.170	948.42
32	57.334 57.727 58.119	265.18		88.645	556.76	<i>72</i>	109.563	955.25
1/2	58.119	268.80	93	84.038	562.00	30.	109.956	962.11
96	58.512	272.45	- 28	84.430	567.27	1/6	110.848	969.00
34	58.905	276.12	20.0	84.823	572.56	14	110.741	975.91
19.78	59.298	279.81	16 14	85.216	577.87	1/8 1/4 1/8 1/8 1/8 1/8 1/8 1/8	111.134	982.84
	59.690 60.083	283.53	23	85.608	583.21	19	111.527	989.80
78	60.476	287.27 291.04	729	86.001 86.904	588.57 593.96	28 37	111.919	996.78 1003.8
18 18 18 18 18 18 18 18 18 18 18 18 18 1	60.868	294.83	16 58	86.394 86.786	599.87	3% %	112.312 112.705 113.097	1010.8
1%	61.261	298.65	34	87.179	604.81	86. ^{'8}	113.097	1017.9
58	61.654	302.49	7/2	87.572	610.27	1/6	113.490	1025.0
34	62.046	306 35	28.	87.965	615.75	1/8 1/4 8/8 1/2 5/8	113.88 3	1032.1
1/2	62.439	310.24	1/8	88.357	621.26	3∕8	114.275	1039.2
20	62.832	314.16	14	88.750	626 80	1/2	114.668	1046.3
18	63.225	318.10	164484848	89.143	632.86	%	115.061	1053.5
34 32	63.617 64.010	322.06 326.05	63	89.535	637.94 643.55	34 78	115.454 115.84 6	1060.7 1068.0
78	64.403	330.06	28	89.928 90.321	649.18	87. ⁷⁸	116.239	1075.2
64	64.403 64.795	334.10	72	90.713	654.81		116.632	1082.5
¾	65.188	338.16	29.	91.106	660.52	1%	117.024	1089.8
**************************************	65.581	342.25		91.499	666.23	***************************************	117.417	1097.1
21.	65.973	346.36	1/4	91.892	671.96	1/2	117.810	1104.5
16	66.366	350.50	3/8	92.284	677.71	26	118.202	1111.8
1/8 1/4 3/8	66.759	354.66	161436148		1683.49	23	118.596	1119.2 1126.7
78.	67.152 67.544	358.84 363.05	28	93.070	689.30 695.13	38 . **8	118.988 119.381	1134.1
1/2 %	67.987	367.28	72	93.462 98.855	700.98		119.773	1141.6
40		371.54	30.	94.248	706 86	1/8 1/4	120.166	1149.1

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Are
88 \$6 12 56 34	120,559	1156.6	46 56	146.477	1707.4	54 %	172.395	236
24	120.951	1164.2	8 4	146.869	1716.5	55.	172.788	237
29	121.344	1171.7	%	147.262 147.655	1725.7	18148148	178.180	238
% %	121.787 122.129	1179.3 1186.9	44.	147.655	1734.9 1744.2	34	173.573	239
9 28	122.522	1100.9 1101 R	16 14 84 88	148.048 148.440	1753.5	78	178.966 174.858	240
	122.915	1194.6 1202.3	82	148.833	1762.7	72	174.751	243
18481884% 18481884%	123.308	1210.0	íå	149.236	1772.1	\$%	175.144	244
98	123.700	1217.7	14 5% 34 34 34 36	149.618	1781.4	17	175.536	245
1/4	124.093	1225.4	34	150.011	1790.8	56.	175.536 175.929	246
28	124.486	1233.2	7/8	150.404	1800.1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	176.322	247
24	124.878	1241.0	48.	150.796	1809.6	24	176.715	248
Λ ⁷⁸	125.271 125.664	1248.8 1256.6	1/8 1/4 8/8	151.189	1819.0	29	177.107 177.500 177.898 178.285	249
υ. 1∠	126.056	1264.5	3 3	151.582 151.975	1828.5	23	177.500	250 251
**************************************	126.449	1272 4	78	159 367	1837.9 1847.5 1857.0	28 8/	178 985	252
82	126.842	1272.4 1280.3	1000000	152.367 152.760 158.153	1857.0	72	178.678	2540
íž	126.842 127.235	1288.2	8%	158, 153	1866.5	57.	179.071	2551
5%	127.627	1296.2	17	158.545	1876.1	1,6	179.468	2563
34	128.020	1304.2	49.	153.938	1885.7	14	179.856	2574
∴%/8	128.413	1312.2	1∕8	154.331	1895.4	<u>8</u> % ∣	180.249	2585
1	128.805	1320.3	4	154.723	1905.0	24	180.642	2596
. 1 8	129.198	1328.3 1336.4	2/8	155.116	1914.7	28	181.034	2608
NEW SERVE	129.591	1336.4	SECTION OF THE PERSON.	155.509	1924.4	A A A A A A A A A A A A A A A A A A A	181.427	2619
79	129.983	1344.5 1352.7	28	155.902	1934.2 1943.9	/8	181.820	2630 2642
32	130.376 130.769	1360.8	32	156.294 156 687	1953.7	58. 1∠	182.212 182.605 182.998 183.390	2653
82	131.161	1269.0	50.	157 080	1963.5	78	189 000	2664
62	131.554	1377.2		157 472	1973.3	82	188 390	2676
2.	131.947	1385.4	122	157.080 157.472 157.865	1978.3 1988.2	12	183.783	2687
1/8	132.340	1393.7	8%	158.258	1993.1	5%	184.17 6	2699
1014781787478	132.732	1402.0	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	158.650	2003.0	AND AND AND AND AND AND AND AND AND AND		2710
3/8	133.125	1410.8	5/8	159.043	2012.9	34.8	184.961	2722
29	133.518	1418.6	24	159.436	2022.8	59.	185.854	2734
%	133.910	1427.0	78	159.829	2032.8	₹6	185.747	2745
- 24	134.303	1485.4	51.	160.221	2042.8	34	186.139	2757
18.78	134.696 135.088	1443.8 1452.2	18438	160.614 161.007	2052.8. 2062.9	? 9.	186.532 186.925	2768. 2780.
	135.481	1460.7	82	161 300	2078.0	1 23 1	187 817	2792
16 14 18 18 18 18 18 18 18 18 18 18 18 18 18	135.874	1469 1	78	161.399 161.792 162.185	2083.1	38	187.317 187.710 188.103	2803
82	136.267	1469.1 1477.6	62	162.185	2083.1 2098.2	72	188.108	2815.
1%	136.659	1486.2	3 ₄	162.577	2103.3	60.°	188.496	2827.
58	137.052	1494.7	38	162.970	2118.5	3/8	100.000	2839.
34	137.445	1508.3	52.	163.363	2128.7	14	189.281	2851
∵% ∣	137.837	1511.9	1/8	163.756	2133.9	8/8	189.674	2862
	138.230	1520.5	1/4	164.148	2144.2	29	190.066	2874.
18	138.623	1529.2	?8	164.541	2154.5	? 8	190.459	2886. 2898.
1614 164 164 168 168 168 168 168 168 168 168 168 168	139.015 139.408	1537.9 1546.6	\$4 \$2 \$2 \$2 \$3 \$4 \$4 \$4 \$4 \$4 \$4 \$5 \$4 \$6 \$4 \$6 \$4 \$6 \$4 \$6 \$6 \$4 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6	164.934 165.326	2164.8 2175.1	**************************************	190.852 191.244	2910.
78	139.801	1555.8	78	165.020	2185.4		191 637	2922
62	140.194	1564.0	72	165.719 166.112	2195.8	1.6	192.030	2934
82	140.586	1572.8	58.°	166.504	2206.2	1%	192.423	2916.
%	140.979	1581.6	1,6	166.897	2216.6	8%	192.815	2958
.a. I	141.872	1590.4	1/4	167.290	2227.0	1/6	193.208	2970.
⅓	141.764	1599.3	86	167.683	2237.5	98	193.601	298:
24	142.157	1608.2	1/2	168.075	2248.0	84	193.993	2994
76	142,550	1617.0	**************************************	168.468	2258.5	181488148	194.386	8006
29	142.942	1626.0	24	168.861	2269.1	162. I	194.779	3019
28	143.335	1634.9	54. 8	169.253 169.646	2279.6	18	195.171	3031 3 3043 3
72	148.728 144.121	1643.9 1652.9	16	170.039	2290.2 2300.8	74 82	195.564 195.957	3055
LR 18	144.518	1661.9	18	170.039	2300.8	78	108 950	3068
"i.	144.906	1670.9	**************************************	170.431	2322.1	16.74.86.74.86.74.86 16.74.86.74.86.74.86	196 . 850 196 . 742 197 . 135 197 . 528 197 . 920	3080
***************************************	145.299	1680.0	12	171 217	2332.8	34	197.135	3092
62	145.691	1689.1	67	171.609	2343.5	1 22	197.528	3104
íŽ	146.084	1698.2	§ 3∡	172.003	2354.8	68.°	197.920	3117

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
63 1/8	198.313	3129.6	71 %	224.281	4001.1	7956 34 38	250.149	4979.5
1/4	198.706	3142.0	1/4	224.634	4015.2	34	250 542	4995.2
1/4 3/8	199.098	3154.5	5%	225.017	4029.2	<i>7</i> ∕8	250.935	5010.9
- 46 I	199.491	3166.9	34	225,409	4043 3	ov.	251.327	5026.5
56 34	199.884	8179.4	73 × 38	225.802	4057.4	ALEXANDER.	251.730	5042.3
24	200.277	3191.9	(Z.	226,195 226,587	4071.5 4085.7	23	252.118 252.506	5058.0 5073.8
1/8	200.669 201.062	3204.4 3217.0	16 14	226,980	4099.8	78	252.898	5089.6
16	201.455	3239 6	32	227 373	4114.0	1 72 1	253.291	5105.4
18.138.138.14.88 14.188.14.88 14.188.14.88	201.847	8242.2	12	227.373 227.765	4128.2	\$2	253.684	5121.2
\$ 7	202.240	3254.8	7.7%	228.158	4142.5	1/2	254.076	5187.1
1/2	202.633	3267.5	34	228.551	4156.8	181.	254.469	5153.0
26	203.025	3280.1	%	228.944	4171.1	. <u>₹</u> 6	254.862	5168.9
24	203.418	3292.8	78.	229.336	4185.4	SESENTE SE	255.254	5184.9
65. 8	203.811 204.204	3305.6 3318.3	16	229.729 230.122	4199.7 4214.1	?9	255.647 256.040	5200.8 5216.8
	204.204	3331.1	62	230 514	4228.5	23	256.433	5282.8
78	204.989	3343.9	78	230,907	4242.91	82	256 825	5248.9
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	205.382	3356.7	\$28 149 149 149 149 149 149 149 149 149 149	231.300	4257.4	1 62	256.825 257.218	5264.9
1%	205.774	3369.6	8 %	231.692	4271.8	82.	257.611	5281.0
5∕8	206.167	8382.4	1 /8	232.085	4286.3	⅓6	258.003	5297.1
34	206.560	3395.3	74.	232.478	4300.8	14	258.896	5318.3
78	206.952	3408.2	1∕8	232.871	4815.4	₹ 9	258.769	5329.4
	207.345	3421.2	1438	233 263	4329.9	**************************************	259.181	5345.6
78	207.738 208.131	3434.2 8447.2	?8	238 656 234.019	4344.5 4359.2	29	259.574 259.967	5361.8 5378.1
18 14 8 19 8 14 8	208.523	3460.2	22	234.441	4373.8	72	260.359	5394.3
72	208.916	3473.2	28 8/4	234 834	4388.5	88.	260 752	5410.6
62	209.309	3486.3	3/8	235 227	4403.1	1,6	260.752 261.145	5426.9
34	209.701	8499.4	70.	235.619	4417.9	14	261.538	5443.3
3/8	210.094	3512.5	⅓	236.012	4432.6	88	261.930	5459.6
67.	210.487	3525 7	1/8 1/4 3/6 1/8	236.405	4447.4	**************************************	262.823	5476.0
X8.4% X8.4%	210.879	3538.8	? 6	236.798	4462.2	26	262.716	5492.4
3	211.272	3552.0	29	237.190	4477.0	29	263.108	5508.8
78	211.665 212.058	3565.2 3578.5	58 24	237.583 237.976	4491.8 4506.7	84. 8	263.501 263.894	5525.8 5541.8
72	212.450	3591.7	1/8	238.368	4521.5		264.286	5558.8
3 2	212.843	3005.0	76.	238.761	4536.5	XXXXXXX	264.679	5574.8
1 7	213.236	3618.3		239.154	4551.4	82	265.072	5591.4
95.	213.628	3631.7	1514 ST 150 ST 1	239.546	4566.4	1%	265.465	5607.9
⅓6	214.021	3645.0	3%	239.939	4581.3	9%	265.857	5624.5
14	214.414	3658.4	24	240.332	4596.3	3/4	266.250	5641.2
7 9	214.806	3671.8	26	240.725	4611.4	%	266.643	5657.8
23	215.199 215.592	3685.3 3698.7	33	241.117	4626.4 4641.5	1 39 . 1	267.085 267.428	5674.5
78	215.984	3712.2	77.28	241.510 241.903	4656.6	78	267.821	5091.2 5707.9
**************************************	216.377	3725 7	16	242.295	4671.8	82	268.213	5724.7
ΟУ.	216.770	3725.7 3739.3	16 14	242.688	4686.9	**************************************	268.606	5741.5
36	216.770 217.168	8752.8	\$7	243.081	4702.1	6%	268.999	5758.3
***************************************	¥17.555	3766.4	1%	243.473	4717.3	84	269.392	5775.1
₹6	217.948	8780.0	5%	243.866	4782.5	1/6	269.784	5791.9
1/9	218.341	3793.7	*4 *8	244.259	4747.8	86.	270.177	5808.8
29	218.78	3807.3	78	244.652	4763.1	∤8	270.570	5825.7
72	219.126 219.519	3821.0 3834.7	78.	245.044 245.437	4778.4 4793.7	39	270.962	5842.6 5859.6
70.78	219.911	3548.5	78	245.830	4809.0	72	271.355 271.748	5876.5
	220.304	3862.2	82	246.222	4824.4	62	272.140	5893.5
1/2	220.697	3876.0	12	246.615	4839 8	**************************************	272.533	5910.6
37	221.090	3889.8	₩	247.008	4855.2	1 % I	272.926	5927.6
1814 3814 3814 3814 3814 3814 3814 3814	221.482	3903.6	X0.14.80.48.00.00.00.00.00.00.00.00.00.00.00.00.00	247.400	4870.7	187.	273.319	5944.7
26	221.875	3917.5	- %	247.793	4886.2	1/8	273.711	5961.8
24	222.268	3931.4	79.	248.186	4901.7	24	274.104	5978.9
71.78	222.660	8945.8	₹ 9	248.579	4917.2	76	274.497	5996.0 6013.2
11. 18 14	223.053 223.446	3959.2 3973.1	24	248.971 249.364	4932.7 4948.3	1014 151	274.889 275.282	6030.4
78	223 838	3987.1	\$7 1%	249.757	4963.9	78	275.282 275.675	6047.6

Diam.	Circum.	Area.	Diam.	Circum.	Area.	Diam.	Circum.	Area.
87 3/6	276,067	6064.9	92.	289.027	6647.6	96 16	301.986	7257.1
88.	276.460	6082.1	1/6	289.419	6665.7	1/4	302.378	7276.0
1/8	276.853	6099.4	34	289.812	6683.8	3%	302.771	7294.9
*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	277.246	6116.7	NEW SERVE	290,205	6701.9	4767476 4767476	303.164	7313.8
3/6	277.638	6134.1	1/6	290.597	6720.1	5%	303.556	7332.8
- ¥ i	278.031	6151.4	5%	290.990	6738.2	3 ⁄4	803.949	7351.8
- 5% ∣	278.424	6168.8	8/4	291.383	6756.4	36	304.342	7370.8
- 3 4	278.816	6186.2	36	291.775	6774.7	97.	304.734	7389.8
3/8	279.209	6208.7	98.``	292.168	6792.9	. 1/6	305.127	7408.9
89.	279.602	6221.1	1/6	292.561	6811.2	·	305.520	7428.0
3/8	279.994	6238.6	XXXXXXXX	292.954	6829.5	86	305.913	7447.1
1/4	280.387	6256.1	84	293.346	6847.8	1,6	306.305	7466.2
***************************************	280.780	6273.7	1/6	293.739	6866.1	52	306.698	7485.3
1/2	281.178	6291.2	547	294.132	6884.5	8%	807.091	7504.5
5%	281.565	6.08.8	34	294.524	6902.9	36	307.483	7523.7
34	281.958	6326.4	34	294.917	6921.3	98.	307.876	7543.0
- 3∕8	282.351	6344.1	94.	295.310	6939.8	1,6	808.269	7562.2
90.	282.743	6361.7	1/6	295.702	6958.2	XXXXXX	308.661	7581.5
1/6	283.136	6379.4	1/4	296.095	6976.7	87	309.054	7600.8
34	288.52 9	6397.1	84	296.488	6995.3	1,6	309.447	7620.1
96	283.921	6414.9	136	296.881	7013.8	52	309.840	7639.5
1/6	284.814	6432.6	52	297.273	7032.4	3 ₄	310.232	7658.9
5% I	284.707	6450.4	84	297.666	7051.0	74	310.625	7678.3
**************************************	285,100	6468.2	**************************************	298.059	7069.6	99.	311.018	7697.7
74 I	285.492	6486.0	95.	298.451	7088.2	16	311.410	7717.1
91.	285.885	6503.9	16	298.844	7106.9	14	311.803	7736.6
36	286.278	6521.8	14	299.237	7125.6	86	312.196	7756.1
1/4	286.670	6539.7	82	299.629	7144.3	126	312.588	7775.6
3 2	287.063	6557.6	1 12	300.022	7163.0	52	312.981	7795.2
14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	287.456	6575.5	**************************************	300.415	7181.8	***************************************	313.374	7814.8
57	287.848	6593.5	l \$21	300.807	7200.6	%	313.767	7834.4
3/4	288.241	6611.5	1 %	301.200	7219.4	106.	314.159	7854.0
猛	288.634	6629.6	96.	301.593	7238.2	1 1		

DECIMALS OF A FOOT EQUIVALENT TO INCHES AND FRACTIONS OF AN INCH.

Inches.	0	1∕8	14	%	1∕2	56	34	7 6
o o	0.	.01042	.02083	.03125	.04166	.05208	.06250	.07292
1	.0833	.0937	.1042	.1146	.1250	.1354	.1459	.1563
2	.1667	.1771	.1875	.1979	.2083	.2188	.2292	.2396
8	.2500	.2604	.2708	.2813	.2917	.3021	.8125	. 3229
4	.3333	.8437	.3542	.3646	.3750	.3854	.3958	.4063
5	.4167	.4271	.4375	.4479	.4583	.4688	.4792	.4896
6	.5000	.5104	.5208	.5813	.5417	.5521	.5625	.5729
7	.5833	.5937	.6042	.6146	.6250	.6354	.6459	.6563
8	.6667	.6771	.6875	.6979	.7083	.7188	.7292	.7396
8 9	.7500	.7604	.7708	.7813	.7917	.8021	.8125	.8229
10	.8333	.8437	.8542	.8646	.8750	.8854	.8958	.9068
11	.9167	.9271	.9875	.9479	.9583	.9688	.9792	.9896

	Diam. Feet.	
	ä	# # # # # # # # # # # # # # # # # # #
THE RE	=	F
2	ä	ૄઽૢ૱ૢૼ૱ૹ૱ૢઽૢ૽૾ૼ૱ૹૹૢઌૢઌૹૢ૽ૼ૱૿ૹ૱ૢ૱૽ૢ૱ૢૹૢ૱ૢ ૱ૢ૱ૢ૱ૢ
¥	9	F. a. a. a. a. a. a. a. a. a. a. a. a. a.
Ē	ä	# 4_68_224264
Ž	6	F. acc = 14224288866866858888888888888888888888888
=	In.	HINGT SEE WAS ENGLASS OF SEE STANKS - SEE SEE
F	8	goroc: 125822288883444335252812459888888
85 1	ا ہ	TO HER & CORE TO CORE
0	7 In	F4014738888888448888222654688888888
H		1895.328 285 5.228.2865 4888.3852 88823
INCH	6 In.	7.142547888888884487278727562588888888888
-	!	T882-82-62-82-68-5-
FROM	5 In.	
E.		F
	4 In.	- 1924 - 21- 21- 21- 21- 21- 21- 21- 21- 21- 2
3	4	5
CIRCLES	In.	
40	8 1	¥ *-5255888888844427258888888888888
- 1		12.82.24.26.27.24.26.2.2.2 .2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
ENC	2 In	F 000000000000000000000000000000000000
CUMFERENCE		194000552 45005513 45005512349F251 849F2
IN IF	1 Inch.	F
		t
CIR	0 In.	¥
	Diam. Feet.	

LENGTHS OF CIRCULAR ARCS. (Degrees being given. Hadius of Circle = 1.)

Formula.—Length of arc = $\frac{3.1415927}{180}$ × radius × number of degrees.

RULE.—Multiply the factor in table for any given number of degrees by the radius.

EXAMPLE.—Given a curve of a radius of 55 feet and an angle of 78° 20'. What is the length of same in feet?

 Factor from table for 78°
 1.3613568

 Factor from table for 20′
 .0058178

 Factor
 1.3671746

 $1.3671746 \times 55 = 75.19$ feet.

		I	Degrees.	М	inutes.		
1	.0174533	61	1 0646508	121	2.1118484	1	.000290
- 1	.0349066	62	1.0821041	122	2.1293017	2	.000581
- 1	.0523599	63	1.0995574	123	2.1467550	3	.000872
	.0698132	64	1.1170107	124	2.1642083	4	.001163
	.0872665	65	1.1344640	125	2.1816616	5	.001454
- 1	.1047198	66	1.1519173	126	2,1991149	ě	.001745
- 1	.1221730 .1396263	67	1.1693706	127	2.2165682	7 8	.002036
- 1	.1570796	68 69	1.1868239	128 129	2.2340214 2.2514747	8	.002327
	.1745329	70	1.2042772 1.2217305	130	2.2689280	10	.0029089
- 1	.1919862	71	1.2201838	131	2.2863813	iĭ	.0031999
	2094395	72	1.2566371	132	2.3038346	12	,003490
- 1	2268928	73	1.2740904	133	2,3212879	13	.003781
	.2443461	74	1.2915436	134	2.3387412	14	.004073
- 1	9617994	75	1.3089969	135	2.3561945	15	.0043633
- 1	.2792527	76	1.3264502	136	2.3736478	16	.0016543
	.2967060	77	1.3439035	137	2.3911011	17	.004945
	.3141593	78 79	1.3613568	138 139	2.4085544 2.4260077	18 19	.0052366
- 1	3490659	80	1.3962634	140	2.4200077 2.4434610	20	.0055269
	3665191	81	1.4137167	141	2.4609142	21	.006108
	3839724	82	1.4311700	142	2.4783675	23	.006399
- 1	4014257	83	1.4486233	143	2,4958208	23	.006690
- i	4188790	84	1.4660766	144	2,5132741	24	.0069813
- 1	.4363323	85	1,4835299	145	2.5307274	25	.007272
- 1	.4537856	86	1.5009832	146	2,5481807	26 27	.007563
	.4712389	87	1.5184364	147	2.5656340	27	.0076040
	.4886922	88	1.5358897	148	2.5830873	28 29	.0081449
	5061455	89 90	1,5533490	149 150	9.6005406 9.6179939	30	.0084358
	.5410531	91	1.5882496	151	2.6354472	31	.0090175
	.5585054	92	1.6057029	152	2.6529005	32	.0093084
	.5759587	93	1.6231562	153	2.6703538	33	.0095993
	5934119	94	1.6406095	154	2.6878070	34	.0098905
	6108652	95	1.6580628	155	2.7052603	35 36	.0101811
1	.6283185	96	1.0755161	156	2.7227136		.0104720
1	6457718	97 98	1.6929694	157	2.7401669	37 38	.0107629
1	6632251	99	1.7104227	158 159	2.7576202 2.7750735	38	.0110538
1	.6806784 .6981317	100	1.7278760	160	2.7750735 2.7925268	40	.0113446
1	.7155850	101	1.7627825	161	2.8099801	4i	.011936
	7330383	102	1.7809358	162	2.8274334	42	.0122173
1	.7504916	103	1.7976891	163	2.8448867	43	.0125089
1	.7679449	104	1.8151424	164	2.8623400	44	.0127991
1	.7853983	105	1.8325957	165	2.8797933	45	.0130900
1	.8028515	106	1.8500490	166	2.8972466	46	-0133809
	.8203047	107 108	1.8675023	167 168	2.9146999 2.9321531	47 48	.0136717
1	.8552113	109	1.8849556	169	2.9496064	49	.0139636
1	.8726646	110	1.9198622	170	2.9670597	50	.0145444
	.8901179	iii	1.9379155	171	2.9845130	51	.0148353
Т	.9075712	112	1.9547688	172	3.0019663	52	.0151262
-	.9250245	113	1.9722221	173	3.0194196	. 23	.0154171
1	.9424778	114	1.9896753	174	3.0368729	54	.0157080
	.9599311	115	2.0071286	175	31.0543262	55 56	.0159059
1	.9773844	116	2.0245819	176	3.0717795	56	.0169897
1	.9948377	117	2 0420352	177	3.0892328	57 58	.0165806
1	1.0122910 1.0297443	118 119	2.0594885 2.0769418	178 179	3.1066861 3.1241394	58 59	.0168715
1	1.0471976	120	2.0943951	180	3.1415927	60	.0174533

LENGTHS OF CIRCULAR ARCS.

(Diameter = 1. Given the Chord and Height of the Arc.)

RILE FOR USE OF THE TABLE.—Divide the height by the chord. Find in the column of heights the number equal to this quotient. Take out the corresponding number from the column of lengths. Multiply this last number by the length of the given chord; the product will be length of the arc. If the arc is greater than a semicircle, first find the diameter from the formula, Diam.— (square of half chord + rise) + rise; the formula is true whether the arc exceeds a semicircle or not. Then find the circumference. From the diameter subtract the given height of arc, the remainder will be height of the smaller arc of the circle; find its length according to the rule, and subtract it from the circumference.

Hgts.	Lgths.	Hgts.	Lgths.	Hgts.	Lgths.	Hgts.	Lgths.	Hgts.	Lgths.
					'			i	
.001	1.00002	.15	1.05896	.238	1.14480	.326	1.26288	.414	1.40788
.005	1.00007	.152	1.06051	.24	1.14714	.328	1.26588	.416	1.41145
.01	1.00027	.154	1.06209	.242	1.14951	.88	1.26892	.419	1.41503
.015	1.00061	.156	1.06368	.244	1.15189	.882	1.27196	.42	1.41861
.02	1.00107	.158	1.06580	.246	1.15428	.334	1.27502	.422	1.42221
.035	1.00167	.16	1.06693	.248	1.15670	.336	1.27810	.424	1.42583
.08	1.00240	. 162	1.06858	.25	1.15912	.338	1.28118	. 426	1.42945
.035	1.00927	.164	1.07025	.252	1.16156	.34	1.28428	.428	1.43309
.04	1.00426	.166	1.07194	.254	1.16402	.842	1.28739	.43	1,43673
.045	1.00589	.168	1.07365	.256	1.16650	.344	1.29052	432	1.44039
.05	1.00665	.17	1.07587	.258	1.16899	.346	1.29366	.434	1.44405
.055	1.00805	.172	1.07711	.26	1.17150	348	1.29681	.436	1.44773
.06	1.00957	.174	1.07888	.262	1.17403	.35	1.29997	.438	1.45142
.065	1.01128	.176	1.08066	.264	1.17657	.352	1.30315	.44	1.45519
.07	1.01302	.178	1.08246	.266	1.17912	.354	1.30634	.442	1.45883
.075	1.01498	.18	1.08428	.268	1.18169	.356	1.30954	.444	1.46255
.08	1.01698	.182	1.08611	.27	1.18429	.358	1.31276	.446	1.46628
.085	1.01916	.184	1.08797	.272	1.18689	.36	1.31599	.448	1.47002
.09	1.02146	.186	1.08984	.274	1.18951	.362	1.31923	. 45	1.47377
.095	1.02389	.198	1.09174	.274 .276	1.19214	.364	1.32249	.452	1.47753
.10	1.02646	.19	1.09365	.278	1.19479	.366	1.32577	.454	1.48131
.102	1.02752	.192	1.09557	.28	1.19746	.368	1.32905	.456	1.48509
.104	1.02860	.194	1.09752	.282	1.20014	37	1.33234	.458	1.48889
.106	1.02970	.196	1.09949	.284	1.20284	.372	1.33564	.46	1.49269
.108	1.03082	.198	1.10147	.286	1.20555	.374	1.33896	.462	1,49651
.11	1.03196	.20	1.10347		1.20827	.376	1.34229	.464	1.50033
.112	1.03812	.202	1.10548	.29	1.21102	.378	1.34563	.466	1.50416
.114	1.03430	.204	1.10752	.292	1.21377	.38	1.34899	.468	1.50800
.116	1.08551	.206	1.10958	.294	1.21654	.382	1.35237	.47	1.51185
.118	1.03572	.208	1.11165	.296	1.21938	.384	1.85575	472	1.51571
.12	1.03797	.21	1.11874	.298	1.22213	.386	1.35914	.474	1.51958
.122	1.03923	.212	1.11584	.30	1.22495	.388	1.36254	476	1.52346
.124	1.04051	.214	1.11796	.802	1.22778	.39	1.36596	.478	1.52736
.126	1.04181	.216	1.12011	.304	1.23068	.392	1.36939	.48	1.53126
.128	1.04813	.218	1.12225	.306	1.23349	.394	1.37283	.482	1.53518
.13	1.04447	.22	1.12444	.308	1.23636	.896	1.37628	.484	1.53910
.132	1.04584	.222	1.12664	.31	1.23926	.398	1.37974	.486	1,54302
.134			1.12885	.312				.488	1.54696
			1.13108					. 19	1.55091
.188		228	1.18331	.316			1.39021	.492	1.55487
.14			1.18557	.318			1.39372	.494	1.55854
.142	1.05293	232	1.13785	.32				.496	1.56282
.144	1.05441		1.14015		1.25689			.498	1.56681
	1.05591	.236	1.14247	.324					1.57080
.148	1.05743		1		1	1	1	1	1,
.134 .136 .138 .14 .142 .144 .146	1.04722 1.04862 1.05003 1.05147 1.05293 1.05441 1.05591	.224 .226 .228 .23 .232 .234 .236	1.12885 1.13108 1.13331 1.18557 1.18785 1.14015	.312 .314 .316 .318 .32	1.24216 1.24507 1.24801 1.25095 1.25391	.40 .402 .404 .406 .408 .41 .412	1.38322 1.88671 1.39021 1.39372 1.39724 1.40077 1.40432	.4: .4: .4: .4:	88 9 92 94 96 98

AREAS OF THE SEGMENTS OF A CIRCLE.

(Diameter = 1; Rise or Versed Sine in parts of Diameter being given.)

RULE FOR USE OF THE TABLE,—Divide the rise or height of the segment by the diameter to obtain the versed sine. Multiply the area in the table corresponding to this versed sine by the square of the diameter.

If the segment exceeds a semicircle its area is area of circle—area of segment whose rise is (diam. of circle—rise of given segment).

Given chord and rise, to find diameter. Diam. = (square of half chord + rise) + rise. The half chord is a mean proportional between the two parts into which the chord divides the diameter which is perpendicular to it.

Versed Sine.	Area.	Versed Sine.	Area.	Versed Sine.	Area,	Versed Sine.	Area.	Versed Sine.	Area.
.001	.00004	.054	.01646	.107	.04514	.16	.08111	.218	.12235
.002	,00012	. 055	.01691	.108	.04576	.161	.08185	.214	.12317
.003	.00022	.056	.01737	.109	.04638	.162	.08258	.215	. 12399
.004	.00034	.057	.01783	.11	.04701	.168	.08332	.216	.12481
.005	.00047	.058	.01830	.111	.04763	.164	.08406	.217	.12568
.006	.00062	.059	.01877	.112	.04826	.165	.08480	.218	.12646
.007	.00078	.06	.01924	.118	.04889	.166	. 08554	.219	.12729
.008	.00095	.061	.01972	.114	.04958	.167	.08629	.22	.12811
.009	.00118	062	.02020	.115	.05016	.168	.08704	.221	.12894
.01	.00133	.063	.02068	.116	.05080	.169	.08779	.222	. 12977
.011	.00153	.064	.02117	.117	.05145	.17	.08854	.228	.13060
.012	.00175	.065	.02166	.118	.05:209	.171	.08929	. 224	.18144
.013	.00197	.066	.02215	.119	.05274	.172	.09004	.225	.13227
.014	.0022	.067	.02265	.12	.05388	.173	.09080	.226	. 13311
.015	.00244	.068	.02315	.121	.05404	.174	.09155	.227	.13895
.016	.00268	.069	.02366	.122	.05469	.175	.09231	.228	.13478
.017	.00294	.07	.02417	.128	.05535	.176	.09307	.229	. 13562
.018	.0032	.071	.02468	.124	.05600	.177	.09384	.23	.13646
.019	.00347	.072	.02520	.125	.05666	.178	.09460	.231	.13731
.02	.00375	.078	.03571	.126	.05733	.179	.09537	.232	.18815
.021	.00403	.074	.02624	.127	.05799	.18	.09613	.233	.13900
.022	.00432	.075	.02676	.128	.05866	.181	.09690	.234	.13984
.023	.00462	.076	.02729	.129	.05933	.182	.09767	.235	. 14069
.024	.00492	.077	.02782	.13	.06000	.183	.09845	.236	.14154
.025	.00523	.078	.02836	.131	.06067	.184	.09922	.237	. 14239
.026	.00555	.079	.02889	.132	.06135	.185	. 10000	.238	. 14324
.027	,00587	.08	.02943	.188	.06203	.186	.10077	.239	. 14409
.028	.00619	.081	.02998	.134	.06271	.187	. 10155	.24	.14494
.029	.00653	.082	.03053	.135	.06339	.188	.10233	.241	. 14580
.03	.00687	.083	.03108	.136	.06407	.189	.10312	.242	. 14666
.031	.00721	.084	.03163	.137	.06476	.19	.10390	.243	. 14751
.032	.00756	.085	.03219	.138	.06545	.191	.10469	.244	.14837
.033	.00791	.086	.03275	.189	.06614	.192	.10547	.245	. 14928
.084	.00827	.087	.03331	.14	.06683	.193	.10626	.246	. 15009
.035	.00864	.088	.03387	.141	.06753	.194	.10705	.247	.15095
.036	.00901	.089	.03444	.142	.06822	.195	.10784	.248	.15182
.087	.00938	.09	.08501	.143	.06892	.196	.10864	.249	. 15268
.038	.00976	.091	.03559	.144	.06963	.197	.10943	.25	. 15855
.039	.01015	.092	.03616	.145	.07033	.198	.11023	.251	. 15441
.04	.01054	.093	.03674	.146	.07103	.199	.11102	.252	. 15528
.041	.01093	.094	.03782	.147	.07174	.2	.11182	.253	.15615
.042	.01133	.095	.03791	.148	.07245	.201	.11262	.254	. 15702
.048	.01173	.096	.03850	.149	.07316	.202	.11343	.255	. 15789
.044	.01214	.097	.03909	.15	.07387	.203	.11423	.256	.15876
.045	.01255	.098	.03968	.151	.07459	.204	.11504	.257	. 15964
.046	.01297	.099	.04028	.152	.07531	.205	.11584	.258	.16051
.047	.01339	.1	.04087	.153	.07603	.206	.11665	.259	.16139
.048	.01382	.101	.04148	.154	.07675	.207	.11746	.26	.16226
.049	.01425	.102	.04208	.155	.07747	.208	.11827	.261	.16314
.05	.01468	.103	.04269	. 156	.07819	.209	.11908	.263	.16402
.051	.01512	.104	.04330	.157	.07892	.21	.11990	.268	.16490
.052	.01556	.105	.04391	.158	.07965	.211	.12071	.264	.16578
.053	.01601	.106	.04452	.159	.08038	.212	.12153	.265	. 16666

rsed inc.	Area.	Versed Sine.	Area.	Versed Sine.	Area.	Versed Sine.	Area,	Versed Sine.	Area.
 266	.16755	.313	.21015	.36	.25455	407	.30024	.454	.34676
267	.16843	.814	.21108	.861	.25551	.408	.30122	.455	.34776
68	.16932	.315	.21201	.362	.25647	.409	.30220	.456	.34876
69	.17020	.316	.21294	.363	.25743	.41	.80319	.457	.34975
21 21	.17109	.317	.21387	.364	.25839	.411	.80417	.458	.85075
۲I	.17198	.318	.21480	.365	.25936	412	.80516	.459	.85175
2.2	.17287	.319	.21578	.366	.26032	.413	.80614	.46	.85274
2.3	.17376	.32	.21667	.867	.26128	.414	.80712	.461	.25874
274	.17465	.321	.21760	.368	. 26 225	.415	.30811	.462	.85474
273	.17554	.322	.21858	.369	.26321	.416	.30910	.468	.85578
76	.17644	.323	.21947	.37	.26418	.417	.81008	.464	.85678
17	.17733	.324	.22040	.871	.26514	.418	.81107	.465	.85778
23	.17823	.325	.22184	.872	.26611	.419	.81205	.466	.35878
79 j	.17912	.326	.22228	. 78	.26708	.42	.31304	.467	.85972
8	.18002	.327	.22322	.874	.26805	.421	.81403	.468	.36072
81	.18092	. 828	.22415	.875	.26901	.422	.81502	.469	.86172
83 83	.18182	.829	.22509	.376	.26998	.423	.31600	.47	.86272
M N	.18272	.83	.22603	.877	.27095	.424	.81699	.471	.86872
	.18362	.331	22697	.378	.27192	.425	.31798	.472	.86471
No. 1 86 1	.18452	.332	.22792	.379	.27289 .27886	.426	.31597	.478	.86571
87	.18542	.334	.22980	.381		.428	.81996	.474	.36671
8	.18633	.385	.23074	.382	.27483 .27580	.429	.32095 .32194	.475	.86771
9	.18814	.336	.23169	.883	.27678	.43	32293	.476	.86871 .86971
G)	.18905	.337	23263	.884	.27775	.431	32392	.478	.87071
51 j	.18996	.338	.23858	.385	.27872	.482	.32491	.479	.87171
292	.19086	.339	.23453	.386	.27969	.433	.32590	.48	.87270
32	.19177	.34	.23547	.887	.28067	.434	32689	.481	.37370
291	19268	.341	.23642	.888	.28164	.435	32788	.482	.87470
295	.19360	342	23737	.889	28262	.436	32887	.483	.87570
16	.19451	.343	23832	.39	.28359	.437	32987	.484	.87670
97	.19542	.344	23927	.391	.28457	.438	.33086	.485	.87770
93	.19684	.345	24022	392	28554	.439	.33185	.486	37870
299 '	.19725	.346	.24117	.393	.28652	.44	.83284	.487	.37970
} ,	.19817	.347	.24212	.394	.28750	.441	.33384	.488	.88070
301	.19906	.348	.24807	.395	.28848	.442	.33488	.489	.86170
¥)3	.20000	.349	.24403	.896	.28945	.443	.33582	.49	.38270
103 j	.20092	.35	.24498	.397	.29043	.444	.33682	.491	.88370
304	.20184	.351	.24593	.398	.29141	.445	.33781	.492	.88470
305	.20276	.352	.24689	.399	.29239	.446	.33880	.493	.88570
306		.353	.24784	.4	.29337	.447	.33980	.494	.38670
307	.20460	.354	.24880	.401	.29435	.448	.34079	.495	.38770
303	.20553	.355	.24976	.402	.29533	.449	.84179	.496	.88870
309	.20645	.356	.25071	.403	.29681	.45	.84278	.497	.38970
31	.20738	.357	.25167	.404	.29729	.451	.34378	.498	.89070
311	.20830	.358	.25268	.405	.29827	.452	.84477	.499	.39170
312	.20923	.359	.25859	.406	.29926	.453	.34577	1.5	.89270

For rules or finding the area of a segment see Mensuration, page 59.

SPHERES.

(Some errors of 1 in the last figure only. From TRAUTWINE.)

Diam.	Sur- face.	Solid- ity.	Diam.	Sur- face.	Solid- ity.	Diam.	Sur- face.	Solid ity.
1-32	.00307	.00002	8 1/4	83.183	17.974	9 7/8	306.36	504.2
1-16	.01227	.00018	8 ½ 5–16	84.472	19.031	10.	814.16	523.6
3-32	.02761	.00048	86 7–16	35.784	20:129	36	322.06	543 4
1/8 5-32	.04909	.00102	7-16	37.122	21.268	N. M. W. W. W. W. W. W. W. W. W. W. W. W. W.	330.06	563 8
5-32	.07670	.00200	9–16	88.484	22.449	₹ 8	338.16	584.7
3-16	.11045	.00345	9-16	39.872	23.674	<u>₹</u> 49	846.86	606 1
7-32	.15033	.00548	5% 11–16	41.288	24.942	26	854.66	628.0
9_32	.19635	.00818	11-16	42.719	26.254	24	363.05	650.4
9-32	.24851	.01165	13-16	44.179	27.611 29.016	%	871.54	673.4
5-16 11-82	.30680 .87123	.01598 .02127	18-16	45.664	30.466	11.	880.18	696.9
11-02	.44179	.02761	7/8 15-16	47.178	31.965	79	388.83	720.9
86 13-82 7-16	.51848	.02701	4.	48.708 50.265	33.510	23	897.61	745.5
7 16	.60132	.04885		53.456	36.751	78	406.49 415.48	770.6
15-82	.69028	.05393	79	56.745	40.195	23	424.50	822.5
16	.78540	.06545	72	60.133	43.847	7 9	483.78	849.4
9-16	.99408	.00343	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	63.617	47.718	A SA SA SA SA SA SA SA SA SA SA SA SA SA	443.01	876.7
5.6	1.2272	.12783	2 2	67.201	51.801	12. 78	452.89	904 7
5% 11-16	1.4849	.17014	6 2°	70.883	56.116	14.	471.44	962.5
8/4	1.7671	22089	72	74.663	60.668	12	490,87	1022.7
13-16	2.0739	.28084	5. ´°	78.540	65.450	14 14 14 14 14	510.71	1085.3
76	2.4053	. 35077	1,6	82.516	70.482	13.	580.98	1150.3
76 15-16	2.7611	.43143	16 14 88	86.591 90.763	75.767	14	551.55	1218.0
1.	3.1416	.52360	8 7	90.763	81.308	iZ	572.55	1288.3
1-16	3.5466	.62804	1,6	95.033	87.118	\$2	593.95	1361.2
3-16	8.9761	.74551	58	99.401	93.189	14.	615.75 687.95	1436.8
3-16	4.4301	.87681	34	108.87	99.541	1/4	637.95	1515.1
5-16	4.9088	1.0227	78	108.44	106.18	14	660.52	1596.3
5-16	5.4119	1.1839	6.	113.10	118.10	3/4	683.49	1680.3
% 7-16	5.9396	1.3611	18 14 36 14	117.87	120.31	15.	706.85	1767.3
7-16	6.4919	1.5553	24	122.72	127.88	14	730.63	1857.0
9-16	7.0686	1.7671	7 6	127.68	135.66	1/4	754.77	1949.8
9-16	7.6699	1.9974		182.73	143.79	10 %	779.32	2045.7
5/8 11-16	8.2957 8.9461	2.2468 2.5161	% 84 78	137.89	152.25 161.08	16.	804.25	2144.7
11-10	9.6211	2.8062	24	143.14 148.49	170.14	14	829.57 855.29	2246.8 2352.1
13-16	10.321	8.1177	7. 18	153.94	179.59	29	881.42	2460.6
76	11.044	3.4514		159.49	189.39	17.	907.98	2572.4
	11.793	3.8083	78	165.13	199.53	11.	934.83	2687.6
2.	12.566	4.1888	82	170.87	210.08	73	962.12	2806.2
1-16	13.364	4.5939	**************************************	176.71	220.89	14	989.80	2928.2
1,6	14.186	5.0248	6%	182.66	232.18	18.	1017.9	3053.6
3-16	15.033	5.4809	8%	188.69	243.78	1/4	1046.4	3182.6
1/4	15.904	5.9641	12	194.83	255.72	14	1075.2	3315.3
5-16	16.800	6.4751	8. '	201.06	268.08	62	1104.5	3451.5
86	17.721	7.0144		207.39	280.85	19.	1134.1	3591.4
7-16	18.666	7.5829	14	213.82	291.01	1/4	1164.2	3735.0
1/2	19.635	8.1813	86	220.86	307.58	12	1194.6	3882.5
9-16	20.629	8.8108	1/2	226.98	321.56	14	1225.4	4033.7
56	21.648	9.4708	1 98	233.71	835.95	20.	1256.7	4188.8
11-16	22.691	10.164	84	240.53	350.77	1/4	1288.3	4347.8
	23.758	10.889	76	247.45	360.02	14	1320.3	4510.9
13-16	24.850	11.649	I ¥.	254.47	881.70	. %	1852.7	4677.9
	25.967	12.448	1/6 1/4 8/8	261.59	397.83	21.	1885.5	4849 1
19–10	27.109	18.272	4	268.81	414.41	/4	1418.6	5024.8
8.	28.274 29.465	14.137	. %	270.12 283.53	431.44	14	1452.2	5203.7
	ZH 4NO	15,039	46	283.03	448.92	2/	1486.2	5387.4
1-16 1/8 3-16	30.680	15.979	52 34	291.04	466.87	22. 74	1520.5	5575.3

SPHERES.

SPHERES—(Continued.)

Diam.	Sur- face.	Solid- ity.	Diam.	Sur- face.	Solid- ity.	Diam.	Sur- face.	Solid- ity.
22 14	159G.4	5964.1	40 1/4	5158.1	84788	70 1/2	15615	183471
23.	1626.0 1661.9	6165.2 6370.6	41.	5281.1	36087	71.	15837	187402
	1698.2	6580.6	42.	5410.7 5541.9	3742 3 88792	72.	16061 16286	191889 195433
14.14	1735.0	6795.2	₩. ₩	5674.5	40194	۰۳. _{1/2}	16513	199532
32	1772.1	7014.8	48. ^*	5808.8	41630	78. ′*	16742	203689
24.	1809.6	7238.2	1/2	5944.7	43099	¾	16972	207908
14	1847.5	7466.7	44.	6082.1	44602	74.	17904	212175
14	1885.8 1924.4	7700.1 7988.3	45. 3	6221.2 6361.7	46141 47718	75. 3/2	17437 17672	216505 220894
20.	1963.5	8181.3	1. 1/4	6503.9	49821	10. 16	17908	225341
14 14 14 14 14	2002.9	8429.2	46.	6647.6	50965	76.	18146	229848
34	2042.8	8682.0	3/6	6792.9	52645	- 1/8	18386	234414
26.	2083.0 2123.7	8989.9 9202.8	47.	6939.9 7088.3	54362	77.	18626	289041
	2164.7	9470.8	48.	7238.3	56115 57906	78. ¹ /2	18869 19114	248728 248475
12	2206.2	9744.0	36.	7389.9	59784	13. 16	19360	253284
14	2248.0	10022	49.	7548.1	61601	79.	19607	258155
27.	2290.2	10306	3/6	7697.7	63506	. 1/8	19856	263088
14 14 14 14	2332.8 2375.8	10595	50.	7851.0	65450	80.	20106	268083
3	2419.2	10889 11189	51.	8011.8 8171.2	67483 69456	81. 36	20358 20612	278141 278263
28.	2463.0	11494	Ji. 1/4	8332.3	71519	31. 1/2	20867	283447
14	2507.2	11805	52. ~	8494.8	78622	82.	21124	288696
1/4	2551.8	12121	1/8	8658.9	75767	. 36	21382	294010
29. 34	2596.7 2642.1	12448	53.	8824.8	77952	88.	21642	299388
	2687.8	12770 18103	54.	8992.0 9160.8	80178 82448	84.	21904 22167	304881 310340
14	2734.0	13442	16	9331.2	84760	34.	22432	815915
. %	2780.5	13787	55.	9503.2	87114	85.	22698	221556
30.	2827.4	14137	1/6	9676.8	89511	¥	22966	327264
14 14 14 14	2874.8 2922.5	14494 14856	56. 1/4	9852.0 10029	91953 94438	86.	23235 23506	333039 338882
3	2970.6	15224	57. ²⁹⁸	10207	96967	87.	23779	844792
ðI.	3019.1	15599	1,6	10387	99541	16	24053	850771
14 14 14 14 14 14 14 14 14 14 14 14 14 1	3068.0	15979	58.	10568	102161	88	24328	356819
29	3117.3 3166.9	16366 16758	59. ³ /8	10751 10936	104826 107536	89. ¹ /2	24606 24885	362935 369122
32. 74	8217.0	17157	14	11122	110294	89. 1⁄8	25165	375378
	8267.4	17563	60.	11310	113098	90. 28	25447	381704
14	3318.3	17974	36	11499	115949	1/6	25730	388102
33. 34	3369.6	18392	61.	11690	118847	91.	26016	394570
	3421.2 3473.8	18817 19248	62.	11882 12076	121794 124789	92.	26302 26590	401109
1/4	3525.7	19685	1/2.	12272	127832	92. 16	26880	407721
5 2	3578.5	20129	68.	12469	130925	93.	27172	421161
34.	3681.7	20580	36	12668	134067	36	27464	427991
14	3685.3	21087	64.	12868	137259	94.	27759	434894
35. ³ /8	3789.8 3848.5	21501 22449	65.	13070 13273	140501 143794	95. ¹ /8	28055 28353	441871 448920
1/2	3959.2	23425	₩. ₩	18478	147138	35. 1/8	28652	456047
36.	4071.5	24429	66. '*	13685	150533	96.	28953	463248
<u>~</u> ⅓	4185.5	25461	1/6	13893	153980	36	29255	470524
87. 1	4300.9 4417.9	26522 27612	67.	14108	157480	97.	29559	477874
88. ¹ /2	4586.5	27012	68. ¹ /s	14814 14527	161032 . 164637	98.	29865 30172	485302 492808
16	4656.7	29880	1,6	14741	168295	3 6. ⅓ 2	30481	500388
39.	4778.4	81059	69.	14957	172007	99.	30791	508047
40. ³ €	4901.7	32270	/ ∕s	15175	175774	½	31103	515785
40,	5026.5	33510	70.	15394	179595	100.	81416	523598

CONTENTS IN CUBIC FEET AND U. S. GALLONS OF PIPES AND CYLINDERS OF VARIOUS DIAMETERS AND ONE FOOT IN LENGTH.

1 gallon = 231 cubic inches. 1 cubic foot = 7.4805 gallons.

	For 1 F		i	For 1 F		i	For 1 F	
ä	Leng	th.	틥.	Leng	th.	rin	Leng	gt h .
Diameter in Inches.	Cubic Ft. also Area in Sq. Ft.	U. S. Gals., 231 Cu. In.	Diameter in Inches.	Cubic Ft. also Area in Sq. Ft.	U. S. Gals., 231 Cu. In.	Diameter i Inches.	Cubic Ft. also Area in Sq. Ft.	U. S. Gals., 231 Cu. In.
5-16 5-16 7-16 14	.0003 .0005 .0008 .001 .0014	.0025 .004 .0057 .0078 .0102	634 714 714 714	.2485 .2673 .2867 .3068 .3276	1.859 1.999 2.145 2.295 2.45	19 1914 20 2014 21	1.969 2.074 2.182 2.292 2.405	14.73 15.51 16.32 17.15 17.99
9–16	.0017	.0129	8	.3491	2.611	211/2	2.521	18.86
58	.0021	.0159	814	.3712	2.777	22	2.640	19.75
11–16	.0026	.0198	814	.8941	2.948	221/2	2.761	20.66
34	.0081	.0280	894	.4176	3.125	23	2.885	21.58
13–16	.0036	.0269	9	.4418	3.305	23/2	8.012	22.58
76	.0042	.0312	914	.4667	3.491	24	8.142	23.50
15–16	.0048	.0359	914	.4922	3.682	25	3.409	25.50
1	.0055	.0408	944	.5185	3.879	26	3.687	27.58
114	.0085	.0638	10	.5454	4.08	27	8.976	29.74
114	.0123	.0918	1014	.5780	4.286	28	4.276	81.99
194	.0167	.1249	1016	.6013	4.498	29	4.587	34.31
2	.0218	.1632	1034	.6303	4.715	30	4.909	36.72
214	.0276	.2066	11	.66	4.987	81	5.241	39.21
214	.0341	.2550	1114	.6903	5.164	32	5.585	41.75
234	.0412	.3085	1114	.7213	5.396	33	5.940	44.43
3	.0491	.3672	113/4	.7530	5.683	34	6.305	47.16
314	.0576	.4309	12	.7854	5.875	35	6.681	49.98
314	.0668	.4998	121/6	.8522	6.375	36	7.069	52.88
334	.0767	.5738	13	.9218	6.895	37	7.467	55.86
4	.0878	.6528	131/4	.994	7.436	38	7.876	58.92
414	.0985	.7369	14	1.069	7.997	89	8.296	62.06
414	.1134	.8263	1416	1 147	8.578	40	8.727	65.28
434	.1231	.9206	15	1.227	9.180	41	9.168	68.58
5	.1864	1.020	1516	1.310	9.801	42	9.621	71.97
514	.1503	1.125	16	1.396	10.44	48	10.085	75.44
516	.1650	1.234	161/2	1.485	11.11	44	10,559	78.99
534	.1803	1.349	17	1.576	11.79	45	11,045	82.62
6	.1963	1.469	171/2	1.670	12.49	46	11,541	86.38
614	.2131	1.594	18	1.768	13.22	47	12,048	90.13
616	.2304	1.724	181/2	1.867	13.96	48	12,566	94.00

To find the capacity of pipes greater than the largest given in the table, look in the table for a pipe of one half the given size, and multiply its capacity by 4; or one of one third its size, and multiply its capacity by 9, etc.

To find the weight of water in any of the given sizes multiply the capacity in cubic feet by 6214 or the gallons by 814, or, if a closer approximation is required, by the weight of a cubic foot of water at the actual temperature in

Helpinos, 37 Len 1852. The pipe. Given the dimensions of a cylinder in inches, to find its capacity in U. 8. gallons: Square the diameter, multiply by the length and by .0034. If d = diameter, l = length, gallons = $\frac{d^2 \times .7854 \times l}{281} = .0084d^2l$.

CYLINDRICAL VESSELS, TANKS, CISTERNS, ETC. Diameter in Feet and Inches, Area in Square Feet, and U. S. Gallons Capacity for One Foot in Depth.

1 gallon = 231 cubic inches = $\frac{1 \text{ cubic foot}}{7.4805}$ = 0.13368 cubic feet.

				•••	1000			
Diam.	Area.	Gals.	Diam.	Area.	Gals.	Diam.	Area.	Gals.
Ft. In.	Sq. ft.	1 foot	Ft. In.	Sq. ft.	1 foot	Ft, In.	8q. ft.	1 foot
1	.785	depth. 5.87	5 8	25.22	depth. 188.66	19	283.53	depth.
i 1	922	6.89	5 8 5 9	25.97	194.25	19 8	291.04	2120.9 2177.1
i 2	1.069	8.00	5 10	26.78	199.92	19 6	298.65	2234.0
i 8	1.227	9.18	5 11	27.49	205.67	19 9	806.85	2291.7
1 4	1,396	10.44		28,27	211.51	20	814.16	2850.1
1 5	1.576	11.79	6 6 8 6 8	80.68	229.50	20 8	822.06	2409.2
16	1.767	18.22	6 6	33.18	248.28	20 6	830.06	2469.1
17	1.969	14.78	6 9	85.78	267.69	20 9	838.16	2529.6
1 8	2.182	16.82	7 8 6 9 8 6 9 8 6 9 9 6	88.48	287.88	21	846.86	2591.0
1 9	2.405	17.99	7876	41.28	308.81	21 8	854.66	2653.0
1 10	2.640	19.75	7 8	44.18	830.49	21 6	868.05	2715.8
1 11	2.885 3.142	21.58 23.50	7 9	47.17	852.88	21 9 22	871.54	2779.8
2 1	3.409	25.50	8 8	50,27 58,4 6	876.01 899.88	22 8	380.18	2843.6 2908.6
2 2	3.687	27.58	8 6	56,75	424.48	22 6	388.82 397.61	2974.8
2 2 2 3 2 4	3.976	29.74	8 9	60.13	449.82	22 6 22 9	406.49	8040.8
2 4	4.276	31.99	ğ	63.62	475.89	28	415.48	8108.0
2 5	4.587	84.81	98	67.20	502.70	28 8	424.56	8175.9
2 6	4.909	86.72	9 8 9 6	70,88	580 24	28 6	488.74	3244.6
2 7	5.241	89.21	99	74.66	558.51	23 9	448.01	3814.0
28	5.585	41.78	10	78.54	587.52	24	452.89	8884.1
2 9	5.940	44.43	10 8	82,52	617.26	24 8	461.86	3455.0
2 10	6.305	47.16	10 6	86.59	647.74	24 6	471.44	8526.6
ž 11	6.681	49.98	10 9	90.76	678.95	24 9	481.11	3598.9
8 3 1	7.069	52.88	11	95.03	710.90	25	490.87	8672.0
3 1 3 2	7.467 7.876	55.86 58.92	11 3 11 6	99.40 103.87	743.58 776.99	25 8 25 6	500.74	8745.8
8 3	8.296	62.06	11 9	108.43	811,14	25 9	510.71 520.77	3820.8 3895.6
3 4	8.727	65.28	12	113.10	846.03	26	530.93	3971.6
3 2 8 3 3 4 3 5 3 6 3 7	9.168	68.58	12 8	117.86	881.65	26 8	541.19	4048.4
3 6	9.621	71.97	12 6	122.72	918.00	26 6	651.55	4125.9
3 7	9.621 10.085	75.44	12 9	127.68	955.09	26 9	562,00	4204.1
3 8	10.559	78.99	18	132.73	992.91	27	572.56	4283.0
3 9 3 10	11.045	82 62	188	187.89	1081.5	27 8	583.21	4862.7
	11.541	86.83	13 6	143.14	1070.8	27 6	598.96	4448.1
8 11 4	12.048	90.13	13 9	148.49	1110.8	27 9	604.81	4524.8
4 1	12.566	94.00	14	153.94	1151.5	28	615.75	4606.2
4 2	13.095 13.635	97.96 102.00	14 3 14 6	159.48	1193.0 1235.3	28 3 28 6 28 9	626.80	4688.8
4 8	14.186	106.12	14 0	165.18 170.87	1278.2	28 9	687.94 649.18	4772.1 4856.2
4 4	14.748	110.82	15	176.71	1321.9	29	660.52	4941.0
4 5	15.321	114.61	15 8	182 65	1366.4	29 3	671.96	5026.6
4 6	15.90	118.97	15 6	188.69	1411.5	29 6	688.49	5112.9
4 7	16.50	123,42	15 9	194.83	1457.4	29 9	695.13	5199.9
4 8	17.10	127.95	16	201.06	1504.1	80	706.86	5287.7
4 9	17.72	132.56	16 8	207.39	1551.4	80 8	718.69	5376.2
4 10	18.35	137.25	16 6	213 82	1599.5	30 6 30 9	730.62	5465.4
4 11 5	18.99	142.02	16 9	220.35	1648.4	30 9	742.64	5555.4
5 1	19.63	146.88	17	226.98	1697.9	81	754.77	5646.1
5 2	20.29 20.97	151.82 156.83	17 3 17 6	233.71	1748.2 1799.3	31 8 31 6	766.99	5787.5
5 3	21,65	161.93	17 9	240.53 247.45	1799.5 1851.1	31 9	779.31 791.73	5829.7 5922.6
5 4	22.34	167.12	18	254.47	1903.6	82	804.25	6016.2
5 5	23.04	172.38	18 8	261.59	1956.8	32 3	816.86	6110.6
5 6	23.76	177.72	18 6	268.80	2010.8	82 6	829.58	6205.7
5 7	24.48	188.15	18 9	276.12	2065.5	32 9	842.39	6301.5

GALLONS AND CUBIC FEET.

United States Gallons in a given Number of Cubic Feet.

1 cubic foot = 7.480519 U. S. gallons; 1 gallon = 231 cu. in. = .13368056 cu. ft.

Cubic Ft.	Gallons.	Cubic Ft.	Gallons.	Cubic Ft.	Gallons.
0.1	0.75	50	374.0	8,000	59,844.2
0.2	1.50	60	448.8	9,000	67,324.7
0.3	2.24	70	523.6	10,000	74,805.2
0.4	2,99	80	598.4	20,000	149,610.4
0.5	3.74	90	678.2	80,000	224,415.6
0.6	4.49	100	748.0	40,000	299,220.8
0.7	5.24	200	1,496.1	50,000	374,025.9
0.8	5.98	800	2,244.2	60,000	448,881.1
0.9	6.73	400	2,992.2	70,000	523,686.8
1	7.48	500	3,740.3	80,000	598,441.5
2	14.96	600	4,488.3	90,000	673.246.7
8	22.44	700	5,236.4	100,000	748,051.9
2 3 4 5	29.92	800	5.984.4	200,000	1,496,103.8
5	87.40	900	6,732.5	800,000	2,244,155.7
6	44.88	1,000	7,480.5	400,000	2,992,207.6
7	52.86	2,000	14,961.0	500,000	8,740,259.5
8	59.84	8,000	22,441.6	600,000	4.488.311.4
Ď.	67.32	4,000	29,922.1	700,000	5,236,363.3
10	74.80	5,000	87,402.6	800,000	5,984,415.2
20	149.6	6,000	44,888.1	900,000	6,732,467.1
80	224.4	7,000	52,368.6	1,000,000	7,480,519.0
40	299.2	.,,	,	1 -,,	.,,

Cubic Feet in a given Number of Gailons.

Gallons.	Cubic Ft.	Gallons.	Cubic Ft.	Gallons.	Cubic Ft.
1	.134	1,000	133.681	1,000,000	183,680.6
$ar{2}$.267	2,000	267.861	2,000,000	267,361.1
8	.401	8,000	401.042	3,000,000	401,041.7
4	,585	4,000	584.722	4,000,000	534,722,2
5	.668	5,000	668.403	5,000,000	668,402.8
6	.802	6,000	802.083	6,000,000	802,083,3
7	.986	7,000	935.764	7,000,000	935,763.9
8	1.069	8,000	1.069.444	8,000,000	1,069,444.4
9	1.203	9,000	1,203.125	9,000,000	1,208,125.0
10	1.387	10,000	1,386.806	10,000,000	1,336,805.6

NUMBER OF SQUARE FIRT IN PLATES 8 1 FRET LONG, AND 1 INCH WIDE.

For other widths, multiply by the width in inches. 1 sq. in. = .00

Ft. and Ins.		Ft. and Ins. Long.	Ins. Long.	Square Feet.	Ft. and Ins. Long.	Ins. Long.
3. 0 36 1 37 2 38	.25 .2569 .2639	7.10 11 8. 0 1	94 95 96 97	.6528 .6597 .6667 .6736	12. 8 9 10 11	152 153 154 155
2 38 3 39 4 40 5 41	.2708 .2778 .2847	2 8	98 99	.6806 .6875	18. 0 1	156 157
6 42 7 43	. 2917 . 2986	4 5	100 101 102	.6944 .7014 .7083	2 3 4	158 159 160
8 \ 44 9 \ 45	.3056 .3125 .3194	6 7 8	103 104	.7158 .7222	5 6	161 162
10 46 11 47 40 48	.3264 .3333	9 10 11	105 106 107	.7292 .7361 .7431	7 8 9	163 164 165
1 1 49	3403	9. 0 1 2	108 109	.75 .7569	10 11	166 167
2 50 3 51 4 52	.3611	2 3 4	110 111 112	.7639 .7708 .7778	14.0 1 2	168 169 170
5 53 6 54 7 55	375 381 9	5 6	113 114	.7847 .7917	2 3 4	171 172
8 56	3958	789	115 116 117	.7986 .8056 .8125	5 6 7	178 174 175
10 50	.4097 4167	10 11	118 119	.8194 .8264	8 9	176 177
5. 1 61	4306	10- 0 1 2	120 121 122	.8333 .8403 .8472	10 11 15. 0	178 179 180
2 65	4444	2 3 4	123 124 125	.8542 .8611 :8681	1 2 3	181 182 183
5 66	.4583 .4653	5 6 7 8 9	126 127	.875 .8819	4 5	184 185
8 68	4861	8 9 10	128 129 130	.8889 .8958 .9028	6 7 8	186 187 188
10 7	4931	11 11.0	131 182	.9097 9167	9 10	189 190
6. 0 73 1 74	5185	2 3	133 134 135	. 9236 . 9306 . 9375	16. 0 1	191 192 193
2 75	5347	4 5 6	136 187	.9444 .9514	2 8	194 195
5 78	5486	6 7 8	188 139 140	.9583 .9653 .9722	4 5 6	196 197 198
6 79 7 80 8 81	5694 5694	9 10	141 142	.9792 .9861	7 8	199 200
9 82	5503	12. 0	143 144 145	.9931 1.000 1.007	9 10 11	201 202 203
11 84	6042	12. 0 1 2 3 4	146 147 148	1.014 1.021 1.028	17. 0 1	204 205 206
7 1 86 87 88 88	619	5 6	149 150	1.035 1.042	2 3 4	207 208
4 89	625 6319 6389 6458	7	151	1.049	5	209
35555993539 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	.632					

SQUARE FEET IN PLATES-(Continued.)

		,0111111				(00,000		
Ft. and Ins. Long.	Ins. Long.	Square Feet.	Ft. and Ins. Long.	Ins. Long.	Square Feet.	Ft. and Ins. Long.	Ins. Long.	Square Feet.
17. 6	210	1.458	22.5	269	1.868	27.4	828	2.278
7 8	211 212	1.465 1.472	6 7	270 271	1.875 1.88 2	5 6	329 330	2.285
9	218	1.479	8	272	1.889	7	331	2.299
10	214	1.486	9	278	1.896	8	832	2.306
11 18. 0	215 216	1.493 1.5	10 11	274 275	1.903 1.91	9 10	383 334	2.313 2.319
1	217	1.507	28.0	276	1.917	11	335	2.326
2	218	1.514	1	277	1.924	28.0	836	2.333
4	219 220	1.521 1.528	2 3	278 279	1.931 1.938	1 2	337 338	2.34 2.347
5	221	1.585	4	280	1.944	8	339	2.354
6 7	222 223	1.542	5 6	281 282	1.951 1.958	4 5	340 341	2.361
8	223	1.549 1.556	7	283	1.965	6	341	2.368 2.375
9	225	1.563	8	284	1.972	7	343	2.382
.0	226	1.569	.9	285	1.979	8 9	844	2.389
11 19. 0	227	1.576 1.588	10 11	286 287	1.986 1.993	10	345 346	2.396 2.403
1	229	1.59	24 . 0	288	2.	11	847	2.41
2 8	230 231	1.597 1.604	1 2	289 290	2.007 2.014	29.0 1	348 349	2.417
4	232	1.611	8	290	2.014	2	850	2.424 2.481
5	233	1.618	4	292	2.028	8	851	2.438
6 7	234 235	1.625 1.632	5 6	293 294	2.035 2.042	4 5	852 853	. 2.444
Ŕ	286	1.639	7	295	2.042	6	854	2.451 2.458
8 9	237	1.645	8	296	2.056	7	855	2.465
10 11.	238 289	1.653 1.659	9 10	297 298	2.068 2.069	8 9	856 857	2.479
20.0	240	1.667	11	299	2.076	10	858	2.479 2.486
1	241	1.674	25.0	300	2.088	11	859	2.493
2 3	242 243	1.681 1.688	1 2	301 302	2.09 2.097	80 . 0	860 861	2.5 2.507
4	244	1.694	ã	803	2.104	2	862	2.514
5	245	1.701	4	804	2.111	8	363	2.521
6	246 247	1.708 1.715	5 6	305 306	2.118 2.125	4 5	864 865	2.528 2.535
8	248	1.722	7	807	2.132	6	866	2.542
9	249	1.729	8	308	2.139	7	867	2.549
10 11	250 251	1.736 1.743	9 10	809 810	2.146 2.153	8 9	368 369	2.556 2.563
21.0	252	1.75	11	811	2.16	10	870	2.569
1	253 254	1.757	26 . 0	812 313	2.167 2.174	31. 0	871	2.576
2 3	255	1.764 1.771	1 2	814	2.174	31.0	872 873	2.583 2.59
4	256	1.778	3	815	2.188	2	874	2.597
5 6	257 258	1.785	4 5	316 317	2.194 2.201	3 4	875 876	2.604
7	259	1.799	6	818	2.201	5	877	2.611 2.618
8	260	1.806	7	319	2.215	6	878	2.625
9 10	261 262	1.813 1.819	. 8	320 321	2.222 2.229	7 8	380	2.632 2.639
11	263	1.826	10	322	2.236	9	381	2.646
22.0	264	1.883	11	323	2.248	10	882	2 653
1 2	265 266	1.84 1.847	27. 0 1	824 325	2.25 2.257	32. 0	383 384	2 66 2.667
ã	267	1.854	2	826	2.264	1	385	2.674
4	268	1.861	3	327	2.271	2	886	2.681
			•		1	•		1

CAPACITIES OF RECTANGULAR TANKS IN U. S. GALLONS, FOR EACH FOOT IN DEPTH.

1 cubic foot = 7.4805 U.S. gallons.

	dth				1	Lengt	h of T	ank.		_		
	f nk.	feet.	ft. in. 2 6	feet.	ft. in.	feet. 4	ft. in. 4 6	feet. 5	ft. in		ft, in. 6 6	feet.
ft. 2 2 3 3	in. 6 6	29.92	46.75	44.88 56.10 67.32	91.64	04.78	84,16 100,99 117,82	93.5 112.2 130.9	1 12 8.4 1 144.0	6 112.2 3 184.6 0 157.0	7 97.25 1 121.56 5 145.87 9 170.18 3 194.49	130.91 157.09 183.27
4 5 6 6	6 6								1 205.7 . 226.2	1 224.4 8 246.8 . 269.3		261,82 288,00 314,18
	idth		Length of Tank.									
	of ink.	ft. in.	feet.	ft. ir 8 6		ft. 9			t. in. 0 6	feet. 11	ft. in. 11 6	feet. 12
ft. 2 2 3 4	in. 6 6	112.21 140.26 168.81 196.36 224.41	179.53 209.45	158.9 190.7 222.5	06 168.8 75 202.9 54 235.6	1 177 7 218 3 248	.66 18 .19 22 .73 26	7.01 4.41 1.82	157.09 196.36 285.68 274.90 314.18	164.57 205,71 246.86 288,00 829,14	172,05 215,06 258,07 801,09 344,10	179 59 224.41 269.30 314.18 359.06
4 5 5 6 6	6 6	252.47 280.52 308.57 336.62 364.67	299.22 829.14 359.06	317.9 349.7 381.5	3 302.9 32 336.6 71 370.2 50 403.9	6 319 2 355 8 390 4 426	.32 37 .85 41 .39 44	4.03 3 1.43 4 8.83 4	353.45 392.72 432.00 471.27 510.54	370.28 411.43 452.57 493.71 534.85	387.11 430.13 473.14 516.15 559.16	403,94 448,88 493,71 538,59 583,47
7 8 8 9	6	892.72 420.78		476.8	38 504.9 37 538.5 46 572.2	3 532	.98 56 .51 59 .05 63	1 04 8 8.44 6 5.84 6	549.81 589.08 528.36 567 63 706.90	575.99 617.14 658.28 699.42 740.56	602.18 645.19 688.20 731.21 774.23	628 36 673.24 718.12 763.00 807.89
9 10 10 11 11	6 6 6						74	8.05	746.17 785.45 324.78	781.71 822.86 864.00 905.14	817.24 860.26 903.26 946.27 989.29	852.77 897.66 942.56 987.43 1032.3
12		1	1	1	1	1	- 1	- 1	1		1	

NUMBER OF BARBELS (31 1-2 GALLONS) IN CISTERNS AND TANKS.

1 Barrel = 3114 gallons = $\frac{31.5 \times 231}{1728}$ = 4.21094 cubic feet. Reciprocal = .237477.

Diameter in Feet.

Depth in				1	nameu	er in Fe	ве т.			
Feet.	5	6	7	.8	9	10	11	12	13	14
1 5	4.663 23.3	6.714 33.6	45.7	59.7	15.108 75.5	93.3	112.8	26.85 184.8	157.6	
6	28.0	40.8	54.8	71.6	90.6	111.9	135.4	161.2		
5 6 7 8	32.6 87.3	47.0 58.7	64.0 73.1	83.6 95.5	105.8 120.9	130.6 149.2	158.0 180.6	188.0 214.9		
.9	42.0	60.4	82.3	107.4	136.0	167.9	203.1	241.7		
10 11	46.6 51.3	67.1 78.9	91.4 100.5	11 9.4 131.3	151.1 166.2	186.5 205.2	225.7 248 3	268.6 295.4		
12	56.0	80.6	100.5	143.2	181.3	223.8	270.8	322.3		
18	60.6	87.8	118.8	155.2	196.4	242.5	293.4	849.2		
14	65.8	94.0	127.9	167.1	211.5	261.1	816.0	876.0	441.8	
15 16	69.9 74.6		137.1 146.2	179.1 191.0	226.6 241.7	289.8 298.4	838.5 361.1	402.9 429.7		
17	79.8		155.4	202.9	256.8	317.1	883.7	456.6		
18	83.9	120.9	164.5	214.9	271.9	335.7	406.2	483.5	567.4	658.0
19 20	88.6 93.3		173.6 182.8	226.8 238.7	287.1 802.2	354.4 378.0	428.8 451.4	510.8 587.2		
Depth	h Diameter in Feet.									
in Feet.	15	16		17	18	19	20	•	21	22
1	41.96	6 47.7	48 5	3.903	60.431	67.8	32 74	606	82,253	90.273
5	209.8	238.	7 2	69.5	302.2	336.	7 378	. o l	411.3	451.4
6	251.8 293.8			23.4 77.8	362 6 423.0	404.			498.5 575.8	541.6 681.9
6 7 8	335.7			81.2	483.4	538.	7 596		658.0	722.2
9	877.7			85 1	543.9	606.	0 671	.5	740.8	812.5
10	419.7			39.0	604.3	673.		.1	822.5	902.7
11 12	461.6 503.6			92.9 46.8	664.7 725.2	740. 808.			904.8 987.0	993.0 1083.8
13	545.6			00.7	785.6	875.			069.3	1178.5
14	587.5			54.6	846.0	942.		.5 1	151.5	1263.8
15 16	629.5 671.5	716. 764.		08.5 62.4	906.5 966.9	1010. 1077.	0 1119 3 1193	1 1	233.8 816.0	1854.1 1444.4
17	713.4			16.4	1027.3	1144.			398.8	1534.5
18	755.4				1087.8	1212.			480.6	1624.9
· 19	797.4			24.2	1148.2	1279.			562.8	1715.2
20	839.3	955.	0 10	78.1	1 20 8.6	1346.	6 1492	.1 1	645.1	1805.5
	335.0	300.	10			1010.	1404		J.D.1	

NUMBER OF BARRELS (31 1-2 GALLONS) IN CISTERNS AND TANKS.—Continued.

Depth				Diamete	r in Feet	•		
in Feet.	28	24	25	26	27	28	29	80
1	98.666	107.432	116.571	126.083	135.968	146.226	157.858	167.863
Ř.	493.3	537.2	582.9	630.4	679.8	731.1	784.8	889.3
Ř	592.0	644.6	699.4	756.5	815.8	877.4	941.1	1007.2
7	690.7	752.0	816.0	882.6	951.8	1023.6	1098.0	1175.0
5 6 7 8	789.3	859.5	932.6	1008.7	1087.7	1169.8	1254 9	1342.9
				2000	200,			10 20.0
9	888.0	966.9	1049.1	1134.7	1223.7	1816.0	1411.7	1510.8
10	986.7	1074.3	1165.7	1260.8	1359.7	1462.2	1568.6	1678.6
11	1095.3	1181.8	1282.3	1386.9	1495.6	1608.5	1725.4	1846.5
12	1184.0	1289.2	1398.8	1513.0	1631.6	1754.7	1882.8	2014.4
13	1282.7	1396.6	1515.4	1639.1	1767.6	1900.9	2039.2	2182.2
14	1381.3	1504 0	1632.0	1765.2	1903.6	2047.2	2196.0	2850.1
15	1480.0	1611.5	1748.6	1891.2	2089.5	2193.4	2352.9	2517.9
16	1578.7	1718.9	1865.1	2017.3	2175.5	2339.6	2509.7	2685.8
17 18	1677.3	1826.3	1981.7	2143.4	2311.5	2485.8	2666.6	2853.7
18	1776.0	1933.8	2098.3	2269.5	2147.4	2632.0	2823.4	3021.5
19	1874.7	2041.2	2214.8	2895.6	2583.4	2778.3	2980.8	8189.4
19 20	1973.3	2148.6	2321.4	2521.7	2719.4	2924.5	8187.2	3357.8

LOGARITHMS.

Logarithms (abbreviation log).—The log of a number is the exponent of the power to which it is necessary to raise a fixed number to produce the given number. The fixed number is called the base. Thus if the base is 10, the log of 1000 is 3, for $10^3 = 1000$. There are two systems of logs in general use, the common, in which the base is 10, and the Naperian, or hyperbolic, in which the base is 2.718281828.—The Naperian base is commonly defined by a contract of the production of the produc

noted by e, as in the equation $e^y = x$, in which y is the Nan. log of x. In any system of logs, the log of 1 is 0; the log of the base, taken in that system, is 1. In any system the base of which is greater than 1, the logs of all numbers greater than 1 are positive and the logs of all numbers less than 1 are negative.

The modulus of any system is equal to the reciprocal of the Naperian log of the base of that system. The modulus of the Naperian system is 1, that of the common system is .4342945.

The log of a number in any system equals the modulus of that system \times the Naperian log of the number.

The hyperbolic or Naperian log of any number equals the common log x2.302861.

X.3.23251. Swery log consists of two parts, an entire part called the characteristic, or index, and the decimal part, or mantissa. The mantissa only is given in the usual tables of common logs, with the decimal point omitted. The characteristic is found by a simple rule, viz., it is one less than the number of fures to the left of the decimal point in the number whose log is to be found. Thus the characteristic of numbers from 1 to 9.99 + is 0, from 10 to 9.99 + is 1, from 100 to 9.99 + is 3, from .1 to .99 + is -1, from .01 to .099 + is -2, etc. Thus

log of 2000 is 3.30103; log of .2 is - 1.30103; " " 200 " 2.30103; " " .02 " - 2.30103; " " .02 " - 3.30103; " " .002" - 4.30103; " " .0002" - 4.30103;

The minus sign is frequently written above the characteristic thus: log .002 = 3.30103. The characteristic only is negative, the decimal part, or

mantissa, being always positive.

When a log consists of a negative index and a positive mantissa, it is usual

When a log consists of a negative index and a positive mantissa, it is usual to write the negative sign over the index, or else to add 10 to the index, and

to indicate the subtraction of 10 from the resulting logarithm. Thus $\log .2 = T.30103$, and this may be written 9.30103 - 10. In tables of logarithmic sines, etc., the -10 is generally omitted, as being understood.

Rules for use of the table of Logarithms.—To find the log of any whole number.—For 1 to 100 inclusive the log is given complete in the small table on page 129.

For 100 to 999 inclusive the decimal part of the log is given opposite the

given number in the column headed 0 in the table (including the two figures

given number in the commin neaded of it the stable (including the two figures to the left, making six figures). Frefix the characteristic, or index. 2.

For 1000 to 9999 inclusive: The last four figures of the log are found opposite the first three figures of the given number and in the vertical column headed with the fourth figure of the given number; prefix the two figures under column 0, and the index, which is 3.

For numbers over 10,000 having five or more digits: Find the decimal part of the log for the first four digits as above multiply the difference figure.

of the log for the first four digits as above, multiply the difference figure in the last column by the remaining digit or digits, and divide by 10 if there be only one digit more, by 100 if there be two more, and so on; add the quotient to the log of the first four digits and prefix the index, which is 4 if there are five digits, 5 if there are six digits, and so on. The table of pro-

portional parts may be used, as shown below.

To find the log of a decimal fraction or of a whole number and a decimal.—First find the log of the quantity as if there were no decimal point, then prefix the index according to rule; the index is one less than the number of figures to the left of the decimal point.

Required log of 3.141593.

To find the anti-mber corresponding to a given log.—Find in the table the anti-karest to the decimal part of the given log and take the first four digits of the required number from the column. N and that the por foot of the column. And the top or foot of the column and of the digits subtract the log in the table from the given log, multiply the difference by 100, and divide by the figure in the Diff. column opposite the log; annex the quotient to the four digits already found, and place the decimal point according to the rule; the number of figures to the left of the decimal point according to the rule; the number of figures to the left of the decimal point is one greater than the index.

The index being 0, the number is therefore 3.14159 +.

To multiply two numbers by the use of logarithms.—
Add together the logs of the two numbers, and find the number whose log is the sum.

To divide two numbers.—Subtract the log of the less from the log of the greater, and find the number whose log is the difference.

To raise a number to any given power.—Multiply the log of the number by the exponent of the power, and find the number whose log is

the product.

To find any root of a given number.—Divide the log of the number by the index of the root. The quotient is the log of the root. To find the reciprocal of a number.—Subtract the decimal

part of the log of the number from 0, add 1 to the index and change the sign of the index. The result is the log of the reciprocal.

Required the reciprocal of 3.141593.

Log of 3.141593, as found above..... 0.4971498

which is the log of 0.81881.

To find the fourth term of a proportion by logarithms.

Add the logarithms of the second and third terms, and from their sum subtract the logarithm of the first term.

When one logarithm is to be subtracted from another, it may be more convenient to convert the subtraction into an addition, which may be done by first subtracting the given logarithm from 10, adding the difference to the the logarithm, and afterwards rejecting the 10.

The difference between a given logarithm and 10 is called its aritimetical

complement, or cologarithm.

To subtract one logarithm from another is the same as to add its comple-

ment and then reject 10 from the result. For a-b=10-b+a-10. To work a proportion, then, by logarithms, add the complement of the logarithm of the first term to the logarithms of the second and third terms. The characteristic must afterwards be diminished by 10.

Example in logarithms with a negative index.—Solve by 526 \2.45 logarithms $(\frac{1011}{1011})$, which means divide 526 by 1011 and raise the quotient to the 2.45 power.

In multiplying -1.7 by 5, we say: $5 \times 7 = 35$, 3 to carry; $5 \times -1 = -5$ less +3 carried =-2. In adding -2+8+3+1 carried from previous column, we say: 1+3+8=12, minus 2=10, set down 0 and carry 1; 1+4-2=3.

LOGARITHMS OF NUMBERS FROM 1 TO 100401

- 1		l	ł	1	1		36		i
N.	Log.	N.	Log.	N.	Log.	N .	Log.	N.	Log.
1	0.000000	21	1.322219	41	1.612784	61	1.785330	,81	1.908485
2	0.301030	222	1.342423	42	1.623249	62	1.792392	82	1.913814
3	0.477121	23	1.361728	43	1.633468	63	1.799341	83	1.919078
4	0.602060	24	1.380211	44	1.643453	64	1.806180	84	1.924279
5	0.698970	25	1.397940	45	1.653213	65	1.812913	85	1.929419
6	0.778151	26	1.414978	46	1.662758	66	1.819544	86	1.934496
7	0.845098	27	1.431364	47	1.672098	67	1.826075	87	1.939519
8	0.903090	28	1.447158	48	1.681241	68	1.832509	88	1.94448
9	0.954243	29	1.462398	49	1.690196 i	69	1.838849	il 89	1.949390
10	1.000000	30	1.477121	50	1.698970	70	1.845098	90	1.95424
11	1.041393	81	1.491362	51	1.707570	71	1.851258	91	1.95904
12	1.079181	32	1.505150	52	1.716003	72	1.857332	92	1.96378
13	1.113943	33	1.518514	53	1.724276	73	1.863323	93	1.96848
14 ,	1.146128	34	1.581479	54	1.732394	74	1.869232	94	1.973128
15	1.176091	35	1.544068	55	1.740363	75	1.875061	95	1.977724
16	1.204120	36	1.556808	56	1.748188	76	1.880814	96	1.98227
17	1.230449	37	1.568202	57	1.755875	77	1.886491	97	1.98677
18	1.255273	38	1.579784	58	1.763428	78	1.892095	98	1.991226
19	1.278754	39	1.591065	59	1.770852	79	1.897627	99	1.99563
20	1.801030	40	1.602060	60	1.778151	80	1.903090	100	2.000000

No.	100 L. 00	0.]			<u> </u>				[N	o. 109	L. 040
N.	0	1	2	8	4	5	6	7	8	9	Diff.
100 1 2	000000 4321 8600	0484 4751 9026	0868 5181 9451	1301 5609 9876	1734 6038	2166 6466	2598 6894	3029 7321	3461 7748	3891 8174	432 428
3 4	012837 7083	3259 7451	3680 7868	4100 8284	0300 4521 8700	0724 4940 9116	1147 5360 9532	1570 5779 9947	1993 6197	2415 6616	424 420
5 6 7	021189 5306 9384	1603 5715 9789	2016 6125	2428 6533	2841 6942	3252 7850	3664 7757	4075 8164	0861 4486 8571	0775 4896 8978	416 412 408
8 9	033424	3826 7825	0195 4227 8228	0600 4628 8620	1004 5029 9017	1408 5430 9414	1812 5830 9811	2216 6230	2619 6629	3021 7028	404 400
-	04							0207	0602	0998	397

Diff.	1	2	8	4	5	6	7	8	9
434	43.4	86.8	130.2	173.6	217.0	260.4	803.8	347.2	390.6
438	43.3	86.6	129.9	173.2	216.5	259.8	303.1	346.4	389.7
432	43.2	86.4	129.6	172.8	216.0	259.2	802.4	345.6	388.8
431	43.1	86.2	129.3	172.4	215.5	258.6	801.7	344.8	387.9
430	43.0	86.0	129.0	172.0	215.0	258.0	801.0	844.0	387.0
429	42.9	85.8	128.7	171.6	214.5	257.4	800.8	848.2	386.1
428	42.8	85.6	128.4	171.2	214.0	256.8	299.6	342.4	385.2
427	42.7	85.4	128.1	170.8	218.5	256.2	298.9	341.6	384.3
426	42.6	85.2	127.8	170.4	213.0	255.6	298.2	340.8	383.4
425	42.5	85.0	127.5	170.0	212.5	255.0	297.5	340.0	382 .5
424	42.4	84.8	127.2	169.6	212.0	254.4	296.8	839.2	381.6
428	42.3	84.6	126.9	169.2	211.5	253.8	296.1	338.4	380.7
422	42.2	84.4	126.6	168.8	211.0	253.2	. 295.4	337.6	879.8
421	42.1	84.2	126.3	168.4	210.5	252.6	294.7	336.8	878.9
420	42.0	84.0	126.0	168.0	210.0	252.0	294.0	836.0	378.0
419	41.9	83.8	125.7	167.6	209.5	251.4	293.3	335.2	377.1
418	41.8	83.6	125.4	167.2	209.0	250.8	292.6	334.4	376.2
417	41.7	83.4 83.2	125.1 124.8	166.8 166.4	208.5 208.0	250.2	291.9 291.2	333.6 332.8	375.3
416 415	41.6	83.0	124.5	166.0	206.0	249.6 249.0	291.2	332.0	874.4 878.5
	1								(
414	41.4	82.8	124.2	165.6	207.0	248.4	289.8	331.2	372.6
418	41.8	82.6	123.9	165.2	206.5	247.8	289.1	330.4	871.7
412	41.2	82.4	123.6	164.8	206.0	247.2	288.4	829.6	870.8
411	41.1	82.2	123.3	164.4	205.5	246.6	287.7	828.8	369.9
410	41.0	82.0	123.0	164.0	205.0	246.0	287.0	328.0	369.0
409	40.9	81.8	122.7	163.6	204.5	245.4	286.8	327.2	368.1
408	40.8	81.6	122.4	168.2	204.0 203.5	244.8	285.6	326.4	867.2
407	40.7	81.4	122.1 121.8	162.8 162.4	203.0	244.2 243 6	284.9 284.2	825.6 824.8	366.3
406		81.2	121.5	162.0	202.5		283.5	324.0	365.4
405	40.5	81.0	1		!	243.0	ľ	ı	364.5
404	40.4	80.8	121.2	161.6	202.0	242.4	282.8	323.2	363.6
403	40.8	80.6	120.9	161.2	201.5	241.8	282.1	322.4	362.7
402	40.2	80.4	120.6	160.8	201.0	241 2	281.4	821.6	361.8
401	40.1	80.2	120.3	160.4	200.5	240.6	280.7	320.8	360.9
400 399	40.0 89.9	80.0	120.0 119.7	160.0	200.0 199.5	240.0	280.0	890.0	96C.0
		79.8 79.6	119.7	159.6	199.5	239.4	279.8	819.2	359.1
398 397	89.8 89.7	79.6	119.4	159.2 158.8	198.5	238.8 238.2	278.6 277.9	318.4 317.6	358.2
396	39.6	79.2	118.8	158.4	198.0	237.6	277.2	317.0 816.8	357.3
396	39.5	79.0	118.5	158.0	197.5		276.5		356.4 355.5

No.	110 L. 04	1.]							[No	. 119 1	078
N.	•	1	2	8	4		6	7	8	9	Diff.
1 2	041398 5323 9218	1787 5714 9606	2182 6105 9993	2576 6495	2969 6885	3362 7275	3755 7664	4148 8058	4540 8442	. 4982 8830	398 390
3 4	053078 6905	8468 7286	8846 7666	0880 4280 8046	0766 4613 8426	1158 4996 8805	1588 5878 9185	1924 5760 9563	2809 6142 9942	9694 6594	886 888
5 6 7	060 698 4456 8186	1075 4832 8557	1452 5206 8928	1829 5580 9298	2206 5953 9668	2582 6326	2958 6699	8888 7071	3709 7448	0820 4083 7815	879 876 878
9	971882 5547	2250 5912	2617 6276	2985 6640	8852 7004	0038 8718 7368	0407 4085 7781	0776 4451 8094	1145 4816 8457	1514 5182 8819	870 866 868

Di ff .	1	2	8	4	5	6	7	8	9
395	39.5	79.0	118.5	158.0	197.5	287.0	276.5	816.0	855.5
394	39.4	78.8	118.2	157.6	197.0	236.4	275.8	815.2	354.6
393	89.8	78.6	117.9	157.2	196.5	235.8	275.1	814.4	858.7
392 391	89.2 89.1	78.4 78.2	117.6	156.8	196.0	235.2	274.4	818.6	852.8
390	80.0	78.0	117.3 117.0	156.4 156.0	195.5 195.0	234.6 234.0	273.7 273.0	812.8 812.0	851.9 851.0
349	38.9	77.8	116.7	155.6	194.5	233.4	272.8	811.2	850.1
388	38.8	77.6	116.4	155.2	194.0	232.8	271.6	810.4	349.2
387	38.7	77.4	116.1	154.8	193.5	282.2	270.9	809.6	848.8
386	88.6	77.2	115.8	154.4	198.0	231.6	270.2	808.8	347.4
385	88.5	77.0	115.5	154.0	192.5	281.0	269.5	808.0	846.5
384	88.4	76.8	115.2	158.6	192.0	230.4	268.8	807.2	345.6
383 382	38.3	76.6	114.9	153.2	191.5	229.8	268.1	806.4	344.7
381	38.2 38.1	76.4	114.6	152.8	191.0	229.2	267.4	805.6	343.8
380	38.0	76.2 76.0	114.8 114.0	152.4 152.0	190.5 190.0	228.6 228.0	266.7 266.0	804.8 804.0	342.9 342.0
379	87.9	75.8	118.7	151.6	189.5	227.4	265.8	^308.2	341.1
378	87.8	75.6	118.4	151.2	189.0	226.8	264.6	802.4	840.2
377	87.7	75.4	118.1	150.8	188.5	226.2	268.9	801.6	339.8
376	87.6	75.2	112.8	150.4	188.0	225.6	263.2	800.8	338.4
375	87.5	75.0	112.5	150.0	187.5	225.0	262.5	300.0	337.5
374	87.4	74.8	112.2	149.6	187.0	224.4	261.8	299.2	336.6
373	87.8	74.6	111.9	149.2	186.5	228.8	261.1	298.4	335.7
372 371	87.2 87.1	74.4	111.6	148.8	186.0	223.2	260.4	297.6	334.8
370	87.0	74.2 74.0	111.8 111.0	148.4	185.5	222.6	259.7	296.8	333.9
369	36.9	78.8	110.7	148.0 147.6	185.0 184.5	222.0 221.4	259.0 258.8	296.0 295.2	333.0 332.1
368	86.8	78.6	110.4	147.2	184.0	220.8	257.6	294.4	331.2
367	86.7	78.4	110.1	146.8	183.5	220.2	256.9	293.6	330.3
366	86.6	78.2	109.8	146.4	183.0	219.6	256.2	292.8	329.4
565	86.5	78.0	109.5	146.0	182.5	219.0	255.7	292.0	328.5
364	36.4	72.8	109.2	145.6	182.0	218.4	254.8	291.2	327.6
363	86.3	72.6	108.9	145.2	181.5	217.8	254.1	290.4	826.7
362 361	86.2	72.4	108.6	144.8	181.0	217.2	253.4	289.6	825.8
300	36.1 36.0	72.2	108.8	144.4	180.5	216.6	252.7	288.8	324.9
359	85.9	72.0 71.8	108.0 107.7	144.0 143.6	180.0 179.5	216.0 215.4	252.0 251.8	288.0 287.2	324.0 328.1
374	85.8	71.6	107.4	143.0	179.0	214.8	250.6	286.4	322.2
357	85.7	71.4	107.1	142.8	178.5	214.2	249.9	285.6	321.8
336	85.6	71.2	106.8	142.4	178.0	213.6	249.2	284.8	320.4

o.	120 L. 0	79.]							[N	o. 134	L. 130
N.	0	1	2	8	4	5	6	7	8	9	Diff.
20	079181	9548	9904	0266	0826	0987	1847	1707	2067	2426	36
	000001	0144	0500			i	i ·		1	1	
28	082785 6360 9905	8144 6716	3503 7971	3061 7426	4219 7781	4576 8136	4934 8490	5291 8845	5647 9198	6004 9552	35 35
•		0258	0611	0963	1315	1667	2018	2370	2721	8071	35
5	098422 0910	3772 7257	4122 7604	4471 7951	4820 8298	5169 8644	5518 8990	5866 9335	6215 9681	6562	84
										0026	34
6	100371	0715	1059	1403	1747	2091	2434	2777	8119	8462	34
7 8	8804	4146	4487	4828	5169	5510	5851	6191	6531	6871	34
0	7210	7549	7888	8227	8565	8903	9241	9579 .	9916	0253	33:
9	110590	0926	1263	1599	1934	2270	2605	2940	3275	3609	33
30	3943	4277	4611	4944	5278	5611	5943	6276	6608	6940	333
1	7271	7603	7934	8265	8595	8926	9256	9586	9915		
	10000	2000		4500	1000		25.44	2084	0400	0245	330
3	120574	0903	1231	1560	1888	2216	2544	2871	8198	3525-	32
4	3852 7105	4178 7429	4504 7753	4830 8076	5156 8399	5481 8722	5806 9045	6131 9368	6456 9690	6781	325
-	18	17240	1100	5010	0000	01.22	5040	<i>8</i> 000	5050	0012	323

							·		
Diff.	1	2	8	4	5	6	7	8	9
355	35.5	71.0	106.5	142.0	177.5	213.0	248.5	284.0	319.5
354	85.4	70.8	106.2	141.6	177.0	212.4	247.8	283.2	318.6
353	35.3	70.6	105.9	141.2	176.5	211.8	247.1	282.4	317.7
852	35.2	70.4	105.6	140.8	176.0	211.2	246.4	281.6	316.
351	35.1	70.2	105.3	140.4	175.5	210.6	245.7	280.8	315.
350	35.0	70.0	105.0	140.0	175.0	210.0	245.0	280.0	315.
349	34.9	69.8	104.7	139.6	174.5	209.4	244.3	279.2	314.1
348	34.8	69.6	104.4	139.2	174.0	208.8	243.6	278.4	313.
347	34.7	69.4	104.1	138.8	173.5	208.2	242.9	277.6	812.
346	34.6	69.2	103.8	138.4	173.0	207.6	242.2	276.8	811.4
345	84.5	69.0	103.5	138.0	172.5	207.0	241.5	276.0	310.
344	34.4	68.8	103.2	137.6	172.0	206.4	240.8	275.2	309.
343	34.3	68.6	102.9	137.2	171.5	205.8	240.1	274.4	808,
342	34.2	68.4	102.6	136.8	171.0	205.2	239.4	273.6	307
341	84.1	68.2	102.3	136.4	170.5	204.6	238.7	272.8	206
340	34.0	68.0	102.0	136.0	170.0	204.0	238.0	272.0	306
339	33.9	67.8	101.7	135.6	169.5	203.4	237.3	271.2	805
338	33.8	67.6	101.4	135.2	169.0	202.8	236 .6	270.4	304.
337	33.7	67.4	101.1	134.8	168.5	202.2	235.9	269.6	303.
336	38.6	67.2	100.8	134.4	168.0	201.6	235.2	268.8	302.
335	33.5	67.0	100.5	134.0	167.5	201.0	234.5	268.0	301.
334	33.4	66.8	100.2	133.6	167.0	200.4	233.8	267.2	300.
333	33.3	66.6	99.9	133.2	166.5	199.8	233.1	266.4	299.
332	83.2	66.4	99.6	132.8	166.0	199.2	232.4	265.16	298.
331	33.1	66.2	99.8	132.4	165.5	198.6	231.7	264.8	297.
830	33.0	66.0	99.0	132.0	165.0	198.0	231.0	264.0	297.
329	82.9	65.8	98.7	131.6	164.5	197.4	230.3	263.2	296.
328	32.8	65.6	98.4	131.2	164.0	196.8	220.6	262.4	295.
327	32.7	65.4	98.1	130.8	163.5	196.2	228.9	261.6	294.
326	32.6	65.2	97.8	180.4	163.0	195.6	228.2	260.8	293.
325	32.5	65.0	97.5	130.0	162.5	195.0	227.5	260.0	293
324	32.4	64.8	97.2	129.6	162.0	194.4	226.8	259.2	291.
323	32.8	64.6	96.9	129.2	161.5	193.8	226.1	258.4	290.
200	90.0	64.4	96.6	128.6	161.0	193.2	225.4	257.6	289

lo. 1	35 L. 1	30.]							[]	No. 149	L. 175.
N.	0	1	2	8	4	5	•	7	8	9	Diff.
35 6	130334 3539 6721	0655 3858 7037	0977 4177 7354	129 449 767	6 4814	1989 5133 8308	2260 5451 8618	2580 5769 8934	2900 6096 9249	8219 6408 9564	821 818 816
-	9879 43015	0194 3327	0508 3689	082 895		1450 4574	1763 4885	2076 5196	2389 5507	2702 5818	814 811
10	6128 9219	6438 9527	6748 9885	705		7676	7985	8294	8603	_'	309
2 1	52288 5336 8362	2594 5640 8664	2900 5943 8965	014 320 624 926	5 8510 6 6 549	0756 3815 6852 9868	1068 4120 7154	1370 4424 7457	1676 4728 7759	1982 5032 8061	807 805 303
'-	61368 4353 7317	1667 4650 7613	1967 4947 7908	226 524 820	6 2564 4 5541	2863 5838 8792	0168 3161 6134 9086	0469 8460 6430 9380	9674	1068 4055 7022 9968	301 299 297 295
8 1	70262 3186	0555 8478	0848 9769	114 406		1726 4641	2019 4982	2811 5222	2603 5512		293 291
				Pi	OPORTIC	ONAL PA	RTS.	<u>'</u>	<u>' </u>	·	
Diff.	1	2		В	4	5	6	1	7	8	9
319 318 316 315 314 313 312	82.1 82.0 81.9 81.8 81.7 81.6 81.5 81.4 81.8 81.2	64.2 64.0 63.8 63.6 63.4 63.2 63.0 62.8 62.6	96 96 95 95 95 94 94 94 98	07.41.85.29	128.4 128.0 127.6 127.2 126.8 126.4 126.0 125.6 125.2 124.8	160.5 160.0 159.5 159.0 158.5 158.0 157.5 157.0 156.5 156.0	192 192 191 190 190 189 189 188 187 187	0 2 4 2 8 2 2 2 6 2 0 2 4 2 8 2	24.7 24.0 23.3 22.6 21.9 21.2 20.5 19.8 19.1 18.4	256.8 256.0 255.2 254.4 253.6 252.8 252.0 251.2 250.4 249.6	288.9 288.0 287.1 286.2 285.3 284.4 283.5 282.6 281.7 280.8
311 310 309 306 307 306 305 304 303 302	81.1 81.0 30.9 30.8 30.7 80.6 80.5 30.4 30.8 80.2	62.2 62.0 61.8 61.6 61.4 61.2 61.0 60.8 60.6	98 92 92 92 91 91 91 90 90	07418529	124.4 124.0 123.6 128.2 122.8 122.4 122.0 121.6 121.2	155.5 155.0 154.5 154.0 153.5 153.0 152.5 152.0 151.5	186 186 185 184 184 183 183 182 181	0 2 4 2 8 2 2 2 6 2 6 2 4 2 8 2	17.7 17.0 16.8 15.6 14.9 14.2 13.5 12.8 12.1	248.8 248.0 247.2 246.4 245.6 244.8 244.0 243.2 242.4 241.6	279.9 279.0 278.1 277.2 276.8 275.4 274.5 273.6 279.7 271.8
301 300 339 357 356 357 356 357 358 357 358 358 358 358 358 358 358 358 358 358	30.1 30.0 29.9 29.8 29.7 29.6 29.5 29.4 29.3 29.2	60.2 60.0 59.8 59.6 59.4 59.2	90 90 89 89 89 88 88 88 87	.3 .0 .7 .4 .1 .8 .5 .9	120.4 120.0 119.6 119.2 118.8 118.4 118.0 117.6 117.2 116.8	150.5 150.0 149.5 149.0 148.5 148.0 147.5 147.0 146.5 146.0	180 180 179 178 178 177 177 176 175	0 2 4 2 8 2 2 2 6 2 6 2 4 2	10.7 10.0 09.8 08.6 07.9 07.2 06.5 05.8 05.1	240.8 240.0 239.2 238.4 237.6 236.8 236.0 235.2 234.4 233.6	270.9 270.0 269.1 268.2 267.3 266.4 265.5 264.6 263.7 262.8
291 290 289 288 287 286	29.1 29.0 28.9 28.8 28.7 28.6	58.2 58.0 57.8 57.6 57.4 57.2	87 87 86 86 86	.3 .0 .7 .4 .1	116.4 116.0 115.6 115.2 114.8 114.4	145.5 145.0 144.5 144.0 143.5 143.0	174 174 173 172 172 171	.6 2 .0 2 .4 2 .8 2 .2 2	03.7 03.0 02.3 01.6 00.9	282.8 282.0 231.2 230.4 229.6 228.8	261.9 261.0 260.1 259.2 258 8 257

N.	0	1	2	8	4	5	6	7	8	9	Di
150	110001	6381	6670	6959	7248	7536	7825	8118	8401	8689	- 5
1	8977	9264	9552	9839	0126	0413	0699	0986	1272	1558	9
2	181844	2129	2415	2700	2985	3270	8555	8839	4128	4407	1 2
3	4691 7521	4975 7803	5259 8084	5542 8366	5825 8647	6108 8928	6391 9209	6674 9490	6956 9771	7239	!
						-			· <u>'</u>	0051	1 :
5	190332 3125	0612 3403	0892 3681	1171 3959	1451 4237	1730 4514	2010 4792	2289 5069	2567 5346	2846 5628	
7	5900	6176	6453	6729	7005	7281	7556	7832	8107	8382	
8	8657	8932	9206	9481	9755	0029	0303	0577	0650	1124	١,
9	201397	1670	1943	2216	2488	2761	3033	3305	3577	3848	3
160	4120	4391	4663	4934	5204	5475	5746	6016	6286	6556	1
1 2	6826 9515	7096 9788	7365	7634	7904	8173	8441	8710	8979	9247	;
			0051		0586	0853	1121	1388	1654	1921	1 5
8	212188	2454 5109	2720 5373	2986 5638	3252 5902	3518 6166	3783 6430	4049 6694	4814 6957	4579 7221	
4 5	4844 7484	7747	8010	8273	8536	8798	9060	9323	9585	9846	1
	000100		0631	0892	1158	1414	1675	1936	2196	2456	1
6 7	220108 2716	0870 2976	8236	3496	3755	4015	4274	4583	4792	5051	۱ ہ
8	5309	5568	5826	6084	6342	6600	6858	7115 9682	7372 9938	7680	۱
9	7887 28	8144	8400	8657	8913	9170	9426	800%	8890	0193	١,
		F7 0	01		114.0	140 K	171		100 K	998 0	-9
285		57.0	88	5.5	114.0	142.5	171		99.5	228.0	2
284 283	28.4 28.3	56.8 56.6		5.2 1.9	113.6 118.2	142.0 141.5	170 169	8 1	98.8 198.1	227.2 226.4	2f 2f
282	28.2	56.4	84	1.6	112.8	141.0	169	.2]	197.4	225.6	2
281 280	28.1 28.0	56.2 56.0		1.8	112 4 112.0	140.5 140.0	168 168	.6	196.7 196.0	224.8 224.0	2
279	27.9	55.8	88	3.7	111.6	139.5	167	.4 1	195.3	223.2	2
278 277		55.6 55.4		3.4 3.1	111.2 110.8	139.0 138.5	166 166	.8	194.6 198.9	222.4 221.6	2
276	27.6	55.2		8.8	110.4	138.0		.6	98.2	220.8	2
275	27.5	55.0	8	2.5	110.0	187.5	165		192.5	220.0	2
274 278		54.8 54.6	82	2.2 1.9	109.6 109.2	137.0 136.5	164	.4	191.8 191.1	219.2 218.4	24
272	27.2	54.4		1.6	108.8	136.0	168	.2	190.4	217.6	. 24
271	27.1	54.2	81	1.8	108.4	135.5	162	.6	189.7	216.8 216.0	24
270 269		54.0 53.8	80	1.0	108.0	135.0 134.5	162 161	.4	189.0 188.3	215.2	24
268	26.8	53.6	80).4	107.6 107.2	134.0	160	.8 :	187.6	214.4	24
267 266		53.4 53.2		0.1	106.8 106.4	133.5 133.0		.6	186.9 186.2	218.6 212.8	23
265	26.5	58.0	- 1	9.5	106.0	182.5	159	.0	185.5	212.0	23
264 263	26.4	52.8	79	9.2	105.6	132.0	158	.4	184.8 ! 184.1	211.2 210.4	23 23
262		52.6 52.4	7	3.9 3.6	105.2 104.8	181.5 131.0	157 157	2	188.4	209.6	23
261	26.1	52.2	77	3.8	104.4	130.5	· 156	.6 3	182.7.	208.8	23
	26.0	52.0		3.0	104.0 103.6	130.0 129.5	156	.4	182.0 181.8	208.0 207.2	23 23
260	25 9	51.8	1 7	7.7							
259 259 259	9 25.9 8 25.8	51.8 51.6	3 7	7.7	103.2	129.0	154	.8 :	180.6	206.4	28
260 259	25.9 3 25.8 7 25.7	51.8 51.6 51.4 51.2	} 7°	7.4 7.1 8.8		129.0 128.5 128.0	154 154	.8	180.6 179.9 179.2	906.4 905.6 904.8	

No.	170 L. 2	90.]							[N	To. 189	L. 278.
N.	•	1	2		4	5	6	7	8		Diff.
.70	230449	0704	0960	1215	1470	1724	1979	2234	2488	2742	255
1	2996	8250	8504	8757	4011	4264	4517	4770	50:28	5276	253
2	5598	5781	6088	6285	6537	6789	7041	7292	7544	7795	252
3.	8046	8297	8548	8799	9049	9299	9550	9800			
		!							0050	0900	250
4	240549	0799	1048	1297	1546	1795	2044	2293	2541	2790	249
5	3038	8286	8584	8782	4080	4277	4525	4772	5019	5266	248
6	5518	5759	6006	6252	6499	6745	6991	7237	7482	7728	246
7	7978	8219	8464	8709	8954	9198	9448	9687	9982		
					ــــــا	٠	!			0176	245
ş	250420	0664	0908	1151	1395	1688	1881	2125	2368	2610	243
9	2858	3096	8838	3580	3822	4064	4306	4548	4790	5031	242
W)	5273	5514	5755	5996	6287	6477	6718	6958	7198	7439	241
ï	7679	7918	8158	8898	8637	8877	9116	9355	9594	9633	239
•	1010					0011	8110	-	9092	9000	208
2	260071	0310	0548	0787	1025	1263	1501	1789	1976	2214	238
3	2451	2688	2925	8162	3399	3686	3873	4109	4346	4582	237
4	4818	5054	5290	5525	5761	5996	6232	6467	6702	6987	235
5	7172	7406	7641	7875	8110	8344	8578	8812	9046	9279	234
6	9518	9746	9980							02.0	201
				0218	0446	0679	0912	1144	1877	1609	238
7 .	271842	2074	2306	2588	2770	3001	8233	8464	8696	3927	282
5	4158	4389	4620	4850	5081	5811	5542	5772	6002	6232	230
9	6462	6692	6921	7151	7880	7609	7838	8067	8296	8525	229

Diff.	1	2	3	4	5	6	7	8	9
**************************************	25.5 25.4 25.3 25.2 25.1 25.0 24.9 24.8 24.7 24.6 24.5	51.0 50.8 50.6 50.4 50.2 50.0 49.8 49.6 49.4 49.2 49.0	76.5 76.2 75.9 75.6 75.8 75.0 74.7 74.4 74.1 73.8 73.5	102.0 101.6 101.2 100.8 100.4 100.0 99.6 99.2 98.8 98.4	127.5 127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0	153.0 152.4 151.8 151.2 150.6 150.0 149.4 148.8 148.2 147.6 147.0	178.5 177.8 177.1 176.4 175.7 175.0 174.8 178.6 172.9 172.9 172.2 171.5	204.0 208.2 202.4 201.6 200.8 200.0 199.2 198.4 197.6 196.8 196.0	229.5 228.6 227.7 226.8 225.9 225.0 224.1 223.2 222.8 221.4 220.5
244 243 242 241 240 239 238 237 236 235	24.4 24.3 24.2 24.1 24.0 23.9 23.8 23.7 23.6 23.5	48.8 48.6 48.4 48.2 48.0 47.6 47.6 47.4 47.3	73.2 72.9 72.6 72.8 72.0 71.7 71.4 71.1 70.8 70.5	97.6 97.2 96.8 96.4 96.0 95.6 95.2 94.8 94.4	122.0 121.5 121.0 120.5 120.0 119.5 119.0 118.5 118.0 117.5	146.4 145.8 145.2 144.6 144.0 148.4 142.8 142.2 141.6 141.0	171.5 170.8 170.1 169.4 168.7 168.0 167.8 166.6 165.9 165.2 164.5	195.2 194.4 193.6 192.8 192.0 191.2 190.4 189.6 188.8 188.0	219.6 218.7 217.8 216.9 216.0 215.1 214.2 213.3 212.4 211.5
34 33 32 33 33 33 35 35 35 35 35 35 35 35 35 35	28.4 28.8 28.2 28.1 28.9 28.8 28.7 24.6	46.8 46.6 46.2 46.0 45.8 45.6 45.4 45.2	70.2 69.9 69.6 69.8 69.0 68.7 68.4 68.1	93.6 93.2 92.8 92.4 92.0 91.6 91.2 90.8 90.4	117.0 116.5 116.0 115.5 115.0 114.5 114.0 118.5 113.0	140.4 139.8 139.2 138.6 138.0 137.4 136.8 136.2 135.6	163.8 163.1 162.4 161.7 161.0 160.3 159.6 158.9 178.2	187.2 186.4 185.6 184.8 184.0 183.2 182.4 181.6 180.8	210.6 209.7 208.8 207.9 207.0 206.1 205.2 204.8 208.4

No. 1	190 L. 27	8.]								<u> </u>	No. 214	L. 8
N.	0	1	!	2	8	4	5	6	7	8	9	Di
190	278754	8982	92	111	9439	9667	9895				-	i -i
1	281033	1261		88	1715	1942	2169	0128 2396	035 262		8 0806 9 8075	2
2 8	3301 5557	3527 5782	87	53 07	3979 6232	4205 6456	4431 6681	4656 6905	488 718	2 510	7 5332	2
4	7802	8026		49	8473	8696	8920	9143	936		9812	4
5	290035 2256	0257 2478		80 99	0702 2920	0925 8141	1147 8868	1369 3584	159 380	181	3 2034 5 4246	2
7 8	4466 6665	4687 6884	49	107	5127 7323	5347 7542	5567 7761	5787 7979	600	77 622		1 2
9	8853	9071	92	04 89	9507	9725	9943	0161	037	_	_	<u> </u>
200	801030	1247	14	64	1681	1898	2114	2881	254	1	1) 2
1 2	3196 5351	3412 5566		28 81	3844 5996	4059 6211	4275 6425	4491 6639	470 683	06 492	1 5136 8 7282	2
3 4	7496 9630	7710 9843		24	8137	8351	8564	8778	899		4 9417	2
5	311754	1966		56 77	0268 2389	0481 2600	0693 2812	0906 3023	111 822			2
6	3867	4078	42	89	4499	4710	4920	5180	53	10 555	1 5760	2
8	5970 8063	6180 8272		190 181	6599 8689	6809 8898	7018 910 6	7227 9314	743 959			2
9	820146	0354	05	62	0769	0977	1184	1391	159	180	5 2012	2
210	2219 4282	2426 4488		33 394	2839 4899	8046 5105	8252 5310	8458 5516	360 573		1 4077 6 6131	2
2 3	6336 8380	6541 8583	67	45 87	6950 8991	7155 9194	7359 9398	7568 9601	980	37 79 7	2 8176	2
4	330414	0617		319	1022	1225	1427	1630	18	000		2
_=	000111	(OII)	1 00	,10		ROPORT					1 1100	<u> </u>
Diff	. 1	2		8		4	5	6		7	8	8
225	22.5	45.0	- -	67	_	90.0	112.5	135	-i	157.5	180.0	20:
224 223	22.4 22.3	44.8 44.6	- 1	67 66	.2	89.6 89.2	112.0 111.5	134 133	.4	156.8 156.1	179.2 178.4	20 20
222	22.2	44.4	- 1	66	.6	88.8	111.0	133	.2	155.4	177.6	19
221 220	22.1 22.0	44.2 44.0	1	66 66	.0	88.4 88.0	110.5 110.0	132 132	.0	154.7 154.0	176.8 176.0	190 190
219 218	21.9 21.8	43.8 43.6		65 65		87.6 87.2	109.5 109.0	181 180		153.3 152.6	175.2 174.4	197 196
217	21.7	43.4 43.2		65 64	.1	86.8 86.4	108.5 108.0	130 129		151.9 151.2	178.6 172.8	194 194
216 215	21.6 21.5	43.0	. !	64	.5	86.0	107.5	129	.0	150.5	172.0	199
214 218	21.4 21.3	42.8 42.6		64 63	.9	85.6 85.2	107.0 106.5	127	.8	149.8 149.1	171.2 170.4	192 191
212 211	21.2 21.1	42.4 42.2	: 1	63 63	.8	84.8 84.4	106.0 105.5	126	.6	148.4 147.7	169.6 168.8	190 189
210 209	21.0	42.0 41.8	1	63 62	.0	84.0 83.6	105.0 104.5	126	.0	147.0 146.3	168.0 167.2	189 188
208	20.8	41.6		62	.4	83.2	104.0	124	.8	145.6	166 4	187
207 206	20.7 20.6	41.4 41.2	:	62 61	.8	82.8 82.4	103.5 103.0	123	.6	144.9 144.2	165.6 164.8	186 185
	20.5	44.0		C1		82.0 81.6	102.5 102.0	123 122	.0	143.5 142.8	164.0 163.2	184
205 204	20.4	40.8	, 1	61	.73	OT .O	102.0	1,55	. 12	146.0	162.4	183

. 215 L. 332.] [No. 239 L. 8												
	0	1	2	8	4	5	6	7	8		Diff	
-, ;	332438	2640	2842	8044	8246	3417	8649	3850	4051	4258	202	
	4454	4655	4856	50£7	5257	5458	5658	5859	6059	6260	201	
	6460	6600	6860	7060	7260	7459	7659	7858	8058	8257	200	
	8 456	8656	8855	9054	9253	9451	9650	9649	!	¦	!	
							<u>'</u>	·——	0047	0246	19	
	340 444	0642	0841	1089	1237	1485	1632	1830	2028	2225	19	
١.	2428	2620	2817	8014	8212	8409	3606	8802	8999	4196	19	
1	4902	4589	4785	4961	5178	5874	5570	5708	5962	6157	19	
	6358	6549	6744	6939	7185	7330	7525	77:20	7915	8110	19	
:	8305	8500	8694	8889	9088	9278	9472	9666	9860			
								!	<u> </u>	0054	19	
١	350248	0442	0636	0829	1028	1216		1603	1796	1989	193	
	2183	2375	2568	2761	2954	8147	3339	8532	8724	8916	193	
1	4108	4301	4493	4685	4876	5068	5:260	5452	5648	5834	19	
ļ	60:26	6217	6408	6599	6790	6981	7172	7363	7554	7744	19	
,	7935	8125	8316	8506	8696	8886	9076	9266	9456	9646	19	
	9635	00:25	0215	0404	0598	0788	0972	1161	1350	1539	18	
ι	0047700	1917	2105	2294	2482	2671	2859	3048	8286	3424	18	
	361728 3612	8800	3988	4176	4368	4551	4739	4926	5118	5301	18	
	5488	5675	5862	6049	6236	6423	6610	6796	6983	7169	18	
•	7356	7542	7729	7915	8101	8287	8473	8659	8845	9030	18	
	9216	9401	9587	9772	9958	1						
	3010			'		0148	0328	0513	0698	0883	18	
t	371068	1253	1437	1622	1806	1991	2175	2360	2544	2728	18	
ı	2912	8096	8280	8464	8647	8831	4015	4198	4382	4565	18	
	4748	4932	5115	5298	5481	5664	5846	6029	6212	6894	18	
	6577	6759	6942	7124	7306	7488	7670	7852	8034	8216	18	
	8398	8580	8761	8943	9124	9306	9487	9668	9849	<u> </u>		
ı	88					1	1	1	1	0080	18:	

			8	4	5	6	7	8	Q
Diff.	1	2		7		J	•	3	
		40.4	60.6	80.8	101.0	121.2	141.4	161.6	181.8
302	20.2	40.2	60.8	80.4	100.5	120.6	140.7	160.8	180.9
201	20.1	40.0	60.0	80.0	100.0	120.0	140.0	160.0	180.0
310	20.0	39.8	59.7	79.6	99.5	119.4	139.8	159.2	179.1
199	19.9	89.6	59.4	79.2	99.0	118.8	138.6	158.4	178.2
198	19.8	59.4 59.4	59.1	78.8	98.5	118.2	137.9	157.6	177.8
197	19.7	39.2	58.8	78.4	98.0	117.6	137.2	156.8	176.4
196	19.6	89.2 89.0	58.5	78.0	97.5	117.0	136.5	156.0	175.5
195	19.5		58.2	77.6	97.0	116.4	135.8	155.2	174.6
194	19.4	38.8		77.2	6 I		- 1		
193	19.8	38.6	57.9		96.5 96.0	115.8	135.1	154.4	178.7
192	19.2	38.4	57.6	76.8		115.2	134.4	153.6	172.8
191	19.1	38.2	57.8	76.4	95.5	114.6	133.7	152.8	171.9
190	19.0	38.0	57.0	76.0	95.0	114.0	133.0	152.0	171.0
189	18.9	37.8	56.7	75.6	94.5	118.4	132.8	151.2	170.1
188	18.8	37.6	56.4	75.2	94.0	112.8	131.6	150.4	169.2
187	18.7	87 4	56.1	74.8	93.5	112.2	130.9	149.6	168.3
186	18.6	87.2	55.8	74.4	98.0	111.6	130.2	148.8	167.4
			55.5	74.0	92.5	111.0	129.5	148.0	166.5
185	18.5	37.0	55.2	78.6	92.0	110.4	128.8	147.2	165.6
184	18.4	36.8	54.9	73.2	91.5	109.8	128.1	146.4	164.7
183	18.8	86.6	54.6	72.8	91.0	109.2	127.4	145.6	163.8
182	18.2	36.4	54.8	72.4	90.5	108.6	126.7	144.8	162.9
181	18.1	36.2	54.0	72.0	90.0	108.0	126.0	144.0	162.0
140	18.0	36.0	58.7	71.6	89.5	107.4	125.3	143.2	161.1
179	17.9	35.8							

No.	240 L. 38	0.]							[N	o , 269	L. 43
N.	0	1	2	8	4	5	6	7	8	9	Diff
240	380211	0892	0578	0754	0984	1115	1296	1476	1656	1837	18
1	2017	2:97	2377	2557	2787	2917	3097	8277	8456	8636	18
2	3815	8995	4174	4353	4588	4712	4891	5070	. 5249	5428	17
3	5606	5785	5964	6142	6321	6499	6677	6856	7034	7212	177
4	7890	7568	7746	7924	8101	8279	8456	8634	8811	8989	177
5	9166	9343	95:20	9698	9875						-
						0051	0228	0405	0582	0759	17
6	390935	1112	1288	1464	1641	1817	1993	2169	2345	2521	17
7	2697	2873	8048	3224	8400	3575	8751	8926	4101	4277	17
8	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025	17
9	6199	6374	6548	6722	6896	7071	7245	7419	7592	7766	17
250	7940	8114	8287	8461	8684	8908	8981	9154	9328	9501	17
~U	9674	9847	0001	0101	0002	6666	0001	BIOX	-	5001	١
•	8014	0021	0020	0192	0365	0538	0711	0888	1056	1228	17
2	401401	1578	1745	1917	2089	2261	2433	2605	2777	2949	l îñ
ã	3121	3292	8464	3635	.8807	3978	4149	4820	4492	4668	l ir
4	4834	5005	5176	5346	5517	5688	5858	6029	6199	6870	i i
5	6540	6710	6881	7051	7221	7391	7561	7781	7901	8070	l i
6	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764	16
7	9933	0410	0015	0170	0010	2001	0.001	0200	8080	3101	1 20
•		0102	0271	0440	0609	0777	0946	1114	1283	1451	16
8	411620	1788	1956	2124	2293	2461	2629	2796	2964	8182	16
9	3300	8467	3635	3803	8970	4187	4305	4472	4639	4806	16
200								I			
260	4973	5140	5307	5474	5641	5808	5974	6141	6808	6474	16
1	6641	6807	6973	7189	7806	7472 9129	7638	7804	7970	8185	16 16
2	8301	8467	8633	8798	8964	9129	9295	9460	9625	9791	10
3	9956	0101	0000	0451	0010	0001	0045	1110	1000	1 400	16
	101004	0121	0286	0451 2097	0616	0781 2426	0945 2590	1110	1275	1439	16
4	421604 3246	1768 3410	1933 8574	8737	2261 8901	4065	4000	2754 4392	2918 4555	4718	16
5	4882					5697	4228 5860	6028	6186		16
6	6511	5045 6674	5208	5371	5534	7324	7486	7648		6349	16
	8185	8297	6836	6999 8621	7161	8944	7400		7811	7973	16
8	9752	9914	8459	0021	8783	0944	9106	9268	9429	9591	14
y	43	9914	0075	0236	0398	0559	0720	0881	1042	1203	16

Diff.	1	8	8	4	5	6	7.	8	9
178	17.8	85.6	53.4	71.2	89.0	106.8	124.6	142.4	160
177	17.7	35.4	53.1	70.8	88.5	106.2	123.9	141.6	159
176	17.6	35.2	52.8	70.4	88.0	105.6	123.2	140.8	158
175	17.5	85.0	52.5	70.0	87.5	105.0	122.5	140.0	157
174	17.4	84.8	52.2	69.6	87.0	104.4	121.8	139.2	156
173	17.8	84.6	51.9	69.2	86.5	108.8	121.1	188.4	155.
172	17.2	84.4	51.6	68.8	86.0	103.2	120.4	137.6	134.
171	17.1	84.2	51.8	68.4	85.5	102.6	119.7	186.8	158
170	17.0	84.0	51.0	68.0	85.0	102.0	119.0	186.0	153,
169	16.9	88.8	50.7	67.6	84.5	101.4	118.8	135.2	153.
168	16.8	88.6	50.4	67.2	84.0	100.8	117.6	184.4	151.
167	16.7	88.4	50.1	66.8	83.5	100.2	116.9	133.6	130.
166	16.6	88.2	49.8	66.4	83.0	99.6	116.2	132.8	149
165	16.5	83.0	49.5	66.0	82.5	99.01	115.5	182.0	148
164	16.4	32.8	49.2	65.6	82.0	98.4	114.8	181.2	147
163	16.3	82.6	48.9	65.2	81.5	97.8	114.1	180.4	146
162	16.2	32.4	48.5	64.8	81.0	97.2	118.4	129.6	1.0
161	16.1	82.2	48.3	64.4	80.5	96.6	112.7	128.8	14

No. 270 L. 431.] (No. 299 L. 47)													
٧.	•	1	2	8	4	6	•	7	8	•	Dif		
—; ن	481364	1525	1695	1846	2007	2167	2328	2488	2649	2809	16		
1 1	2969	8130	8290	8450	8610	8770	8930	4090	4249	4409	16		
2 !	4569	4729	4888	5048	5207	5367	5526	5685	5844	6004	1:		
3	6168	6322	6481	6640	6799	6957	7116	7275	7438	7592	1		
4 (7751	7909	8067	8226	8384	8542	8701	8859	9017	9175	1		
5)	9333	9491	9648	9806	9964	·		'- -					
٦.				i 		0122	0279	0437	0594	0752	1		
6	440909	1066	1234	1381	1538	1695	1852	2009	2166	2323	1		
÷'.	2480	2637	2798	2950	8106	8263	8419	8576	8782	3889	1		
ġ١	4045	4201	4357	4518	4669	4825	4981	5137	5293	5449	1		
او	5604	5760	5915	6071	6226	6882	6537	6692	6848	7003	1		
- 1		7318	7468	7628	7778	7938	8088	8242	8397	8552	1 1		
ijΙ	7158	8861	9015	9170	9324	9478	9633	9787	9941		1 -		
1	8706	9901								0095	1		
. 1	170010	0408	0657	0711	0865	1018	1172	1826	1479	1633	1		
2	450249	1940	22093	2247	2400	2553	2706	2859	8012	8165	1		
8	1786	8471	2624	8777	8930	4082	4235	4387	4540	4692	l 1		
4	8818	4997	5150	5302	5454	5606	5758	5910	6062	6214	1		
5	4845	6518	6670	6821	6973	7125	7276	7428	7579	7731	1		
6	6366	8033	8184	8336	8487	8638	8789	8940	9091	9242	1 1		
7	7882	9548	9694	9845	9995	!	!				.[
8	9398	80.00				0146	0296	0447	0597	0748	1		
_	100000	1048	1198	1848	1499	1649	1799	1948	2098	2248	1		
9	460898	- 1	2697	2847	2997	8146	8296	8445	8594	8744	1		
90	\ 2396	2548	4191	4340	4490	4639	4788	4936	5085	5234	١i		
1	8898	4042	5680	5829	5977	6126	6274	6423	6571	6719	li		
2	5388	5582	7164	7812	7460	7608	7756	7904	8052	8200	Ιî		
8	6868	7016	8648	8790	8938	9085	9233	9380	9527	9675	Ιî		
4	8347	8495	90-20								. 1		
5	9828	9969	0116	0263	0410	0557	0704	0851	0998	1145	1		
-			1585	1732	1878	2025	2171	2318	2464	2610	l i		
6	471292	1438	3049	3195	8341	8487	3633	8779	8925	4071	li		
7	2756	2908	4506	4658	4799	4944	5090	5235	6381	5526	Ιî		
8	4216	4362	5962	6107	6252	6397	6542	6687	6832	6976	li		
ğ	5671	5816	Dans	-201	1	1		1 550.	1 330	55,0	1 *		

Diff.	1	2	3	4	5	6	7	8	9
Diff. 161 160 159 158 157 156 155 154 153 152 151	16.1 16.0 15.9 15.8 15.7 15.6 15.5 15.4 15.3 15.2	\$2.2 \$2.0 \$1.8 \$1.6 \$1.4 \$1.2 \$1.0 \$0.8 \$0.6 \$0.4	48.8 48.0 47.7 47.4 47.1 46.5 46.2 45.9 45.8	64.4 64.0 63.6 63.2 62.8 62.4 62.0 61.6 61.2 60.8 60.4	80.5 80.0 79.5 79.0 78.5 77.0 76.5 76.0 75.5	96.6 96.0 95.4 94.8 94.2 98.6 98.0 92.4 91.8 91.2 90.6	7 112.7 112.0 111.8 110.6 109.9 109.2 108.5 107.8 107.1 106.4 105.7	128.8 128.0 127.2 126.4 125.6 124.8 124.0 123.2 122.4 121.6 120.8	144.9 144.0 143.1 142.2 141.3 140.4 139.5 138.6 137.7 136.8 135.9
150 149 148 147 146 145 144 143 142 141 140	15.0 14.9 14.8 14.7 14.6 14.5 14.4 14.3 14.3	80.0 29.8 29.6 29.4 29.2 29.0 28.8 28.6 28.4 28.2 28.0	45.0 44.7 44.4 43.8 43.5 43.9 42.9 42.8 42.8	59.6 59.2 58.8 58.4 58.0 57.6 57.2 56.8 56.4	74.5 74.0 73.5 73.0 72.5 72.0 71.5 71.0 70.5	89.4 88.8 88.2 87.6 87.0 86.4 85.8 85.2 84.6 84.0	104.3 103.6 102.9 102.2 101.5 100.8 100.1 99.4 98.7 98.0	119.2 118.4 117.6 116.8 116.0 115.2 114.4 113.6 112.0	184.1 183.2 132.3 181.4 130.5 129.6 128.7 127.8 126.9

	000 L. 47	۲۰,]							FL	No. 839	L. 531
N.	0	1	2	8	4	5	6	7	8	9	Diff
300	477121 8586	7266 8711	7411 8855	7555 8999	7700 9143	7844 9287	7989 9431	8133 9575	8278 9719		14:
2	480007	0151	0294	0438	0582	0725	0869	1012	1156		144
3 ¹	1443 2874	1586	1729	1872	2016	2159	2302	2445	2588		143
5 ¦	4300	3016 4442	8159 4585	3302 4727	3445 4869	3587 5011	3790 5153	3872 5295	4015 5437		143
6	5721	5863	6005	6147	6289	6430	6572	6714	6855		14
7.	7138	7280	7421	7563	7704	7845	7986	8127	8269	8410	14
8	8551 9958	8692	8833	8974	9114	9255	9396	9537	9677	9818	14
		0099	0239	0380	0520	0661	0801	0941	1081	1222	14
310	491362	1502	1642	1782	1922	2062	2201	2341	2481		14
2	2760	2900	8040	3179	8319	8458	3597	3787	8876		159
3	4155 5544	4294 5683	4433 5822	4572 5960	4711 6099	4850 6238	4989	5128 6515	5267 6658		188 188
4	6930	7068	7206	7344	7483	7621	6376	7897	8038	6791 8178	15
5	8311	8448	8586	8724	8862	8999	9137	9275	9412		18
6	9687	9824	9962								
_ !	201026			0099	0236	0374	051L	0648	078		137
7	501059	1196	1333	1470	1607	1744	1880	2017	2154		157
8	2427 3791	2564 3927	2700 4063	2837	2973	3109	3246	8382	3518		136
- 1				4199	4335	4471	4607	4743	4878	1	136
320	5150	5286	5421	5557	5693	5828	5964	6099	6284		136
1	6505	6640	6776	6911	7046	7181	7816	7451	7586		13
3	7856 9203	7991 9337	8126 9471	8260 9606	8395 9740	8530 9874	8664	8799	8984	9068	13
'.					-		0009	0148	0277		134
4 5	510545 1883	0679	0813	0947	1081	1215	1849	1482	1616		13
6	3218	2017 8351	2151 3484	2284 3617	2418 3750	2551 3883	2684 4016	2818 4149	2951 4282		133
7	4548	/4681	4813	4946	5079	5211	5344	5476	5609		133
8	5874	6006	6139	6271	6403	6535	6668	6800	698		133
9	7196	7328	7460	7592	7724	7855	7987	8119	8251		13:
330	8514	8646	8777	8909	9040	9171	9303	9434	9566	9697	131
1 '	9828	9959	0090	0221	0353	0484	0615	0745			•.
2	521138	1269	1400	1530	1661	1792	1922	2053	0876 2188		131
3	2144	2575	2705	2835	2966	3096	3226	3356	3486	8616	13
4 1	3746	8876	4006	4136	4266	4396	4526	4656	478		130
5	5045	5174	5304	5484	5563	5698	5822	5951	6081	6210	129
6	6339	6469	6598	6727	6856	6985	7114	7243	7372	7501	129
8	7630 8917	7759 9045	7888 9174	8016 9302	8145 9430	8274 955 9	8402 9687	8531 9815	9948		129
9	530200	0328	0456	0584	0712	0840	0968	1096	1228	- 0072	128 128
						NAL PA	·				
Diff	. 1	2	1	3	4	5	6	- -	7	8	9
1/39	13.9	27.8	41	7	55.6	69.5	83.4		7.8	111.2	125.
138	13.8	27.6	41		55.2	69.0	82.		8.6	110.4	124
137	13.7	27.4	41	.1	54.8	68.5	82.5	8 8	5.9	109.6	123
136	13.6	27.2	40	.8	54.4	68.0	81.0	B 94	5.2	108.8	122
135 134	18.5	27.0	40	.5	54.0	67.5	81.0		4.5	108.0	121.5
134 133	13.4 13.8	26.8 26.6	40 39	0	53.6 53.2	67.0 66.5	80.4 79.6	. 9	8.8 8.1	107.2	120.6 119.5
132	13.2	26.4	39		52.8	66.0	79.	2 8	2.4	106.4 105.6	118.8
131	13.1	26.2	89	.3	52.4	65.5	78.	š Š	1.7	104.8	117.5
	13.0	26.0	89	0	52.0	65.0	78.0		i.o l	104.0	110
130	10.0										117.0
129 128	12.9 12.8	25.8 25.6	38 38	.7	51.6 51.2	64.5 64.0	77.4	1 9	0.8	108.2 102.4	116 1 115.

0. 3	340 L 53	۱. <u>ا</u>							[N	o. 879	L., 57
i.	•	1	2		4	8	•	7	8		Dif
0	531479	1607	1784	1862	1990	2117	2245	2372	2500	2627	12
1	2754	2882	8009 4280	3136	8264	8391	8518	8645	8772	8899	12
Ş	4026	4153	4280	4407	4584	4661	4787	4914	5041	5167	12
3	5294	5-121	5547	5674	5800	5927	6058	6180	6806	6482	12
1	6558	6685	6811	6937	7068	7189	7815	7441	7567	7698	12
5 ' 6 !	7819 9076	7945 92202	9071 9327	8197 . 9452	8322 9578	9708	8574 9629	8699 9954	8825	8951	12
. !	540329	0455	0580	0705	0830	0955	1080	1205	0079	0204	12 12 12
71	1579	1704	1829	1953	2078	2208	2327	2452	1880 2576	1454 2701	12
9 1	2825	2950	8074	8199	8323	3447	8571	8696	8890	8944	12
, [4068	4192	4316	4440	4564	4688	4812	4936	5060 6296	5188	12 12
1	5307	5431	5555 6789	5678	5802	5925	6049	6172	6296	6419	12
2	6543	6666	6789	6913	7096	7159	7282	7405	7529	7652	12
3	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	1
4	9003	9126	9249	9371	9494	9616	9739	9861	9984	0108	1 40
5 Ì	550228	0351	0478	0595	0717	0840 2060 8276	0962	1084	1206	0106 1828 2547	12 12
6	1450	1572	1694	1816	1938	2060	2181	1084 2303	2425	9547	12
7	2668	2790 4004	2911	3038	8155	8276	8398	8519	1206 2425 8640	8762	12
8 I	3883	4004	4126	4247	4368	4489	4610	4781	4852	4978	12
9	5094	5215	5336	5457	5578	5699	5690	5940	4852 6061	6182	18
0	6303	6428 7627	6544	6664	6785	6905	7026	7146	7267	7887	19
1	7507 8709	8829	7748 8948	7868 9068	7988 9188	8108 9308	8228 9428	8349 9548	8469 9667	8589 9787	12
3	9907]								8/87] 12
		0026	0146	0265	0385	0504	0624	0743	0863	0982	11
4	561101	1221	1340	1459 2650	1578 2769	1698 2887	1817 3006	1936 3125	2055	2174	11
5	2:293 3481	2412 3600	2531 3718	3837	3955	4074	4192	4311	8244	8362	1 11
7	4666	4784	4908	5021	5139	5257	5376	5494	4429 5612	4548	11 11
8	5848	5966	6084	6202	6320	6437	6555	6673	6791	5730 6909	lii
9	7026	7144	7262	7879	7497	7614	7738	7849	7967	8084	lii
10 1	8202 9374	8319 9491	8486 9608	8554 9725	9671 9842	8788 9959	8905	9023	9140	9257	11
		,					0076	0198	0309	0426	11
2 3	570543	0660	0776	0893	1010	1126	1243 2407	1859 2523	1476	0426 1592 2755	11
3	1709 2872	1825	1942	2058	2174	2291	2407	2523	.2639	2755	11 11
4	2672	2988	8104	8220	8336	8452	8568	3684	8800	3915	1 11
5	4081	4147	4263	4379	4494	4610	4726 5880	4841	4957	5072	11
6	5188	5308	5419	5534	5650	5765	2000	5996	6111	6226 7877	11
8	6341 7492	6457 7607	6572 7722	6687 7836	6802 7951	6917 8066	7032 8181	7147 8295	7262	7877	11
9				8088					8410	8525	11 11
9	8639	8754	8868	8988	9097	9212	9326	9441	9555	9669	

PROPORTIONAL PARTS.

Diff.	1	2	8.	4	5	6	7	8	9
128	12.8	25.6	88.4	51.2	64.0	76.8	89.6	102.4	115
127	12.7	25.4	88.1	50.8	63.5	76.2	88.9	101.6	114
126	12.6	25.2	87.8	50.4	63.0	75.6	88.2	100.8	113
125	12.5	25.0	87.5	50.0	62.5	75.0	87.5	100.0	112
124	12.4	24.8	87.2	49.6	62.0	74.4	86.8	99.2	111
123	12.8	24.6	86.9	49.2	61.5	78.8	86.1	98.4	110
122	12.2	24.4	86.6	48.8	61.0	73.2	85.4	97.6	109
121	12.1	24.2	86.8	48.4	60.5	72.6	84.7	96.8	108
120	12.0	94.0	86.0	48.0	60.0	72.0	84.0	96.0	108
119	11.9	23.8	85.7	47.6	59.5	71.4	83.8	95.2	107

No. 8	380. L. 5	79.]							[]	No. 414	L. 617
N.	0	1	2	8	4	5	6	7	8	9	Diff.
180	579784	9898	0012	0126	0241	0855	0469	0588	0697	0811	114
1	580925	1039	1153	1267	1381	1495	1608	1722	1836	1950	
2	2063	2177	2291	2404	2518	2631	2745	2858 3992	2972	8085	
8	3199	8312	3426	8539	8652	3765	8879	8992	4105	4218	
4 5	4331 5461	4444 5574	4557	4670 5799	4783 5912	4896 6024	5009 6137	5122 6250	5235 6362	5348 6475	113
6	6587	6700	5686 6812	6925	7037	7149	7262	7374	7486		
6	7711	7823	7935	8047	8160	8272	8384	8496	8608	8720	11
8	8832 9950	8944	9056	9167	9279	9391	9503	9615	9726	9838	l
	8850	0061	0178	0284	0396	0507	0619	0730	0842	0958	
390	591065	1176	1287	1399	1510	1621	1732	1843	1955	2066	
1	2177 3286	2288	2399	2510	2621	2732	2843	2954	8064	8175	11
2	8286	8397	3508	8618	8729	8840	8950	4061	4171	4282	
8	4398 5496	4503	4614	4724 5827	4834 5937	4945 6047	5055 6157	5165 6267	5276 6877	5386 6487	
	6597	5606 6707 7805	5717 6817	6927	7037	7146	7256	7366	7476	7586	110
6	7695	7805	7914	8024	8134	8248	8353	8462	8571		1
5 6 7 8	8791 9883	8900 9992	9009	9119	9228	9337	9446	9556	9665	9774	١
•	2000	9892	0101	0210	0319	0428	0537	0646	0755	0864	10
9	600978	1082	1191	1299	1408	1517	1625	1734	1848	1951	
400	2060	2169	2277	2386	2494	2608	2711	2819	2928		
2	8144	3253	8361 4442	8469 4550	3577	3686 4766	8794 4874	3902 4982	4010 5089		10
8	4226 5305	4334 5413	5521	5628	4658 5736	5844	5951	6059	6166		
4	6381	6489	6596	6704	6811	6919	5951 7026 8098	7133	7241	7348	1
5	7455	7562	7669	7777	7884	7991	8098	8205	8312		10
6	852 6 9594	8633 9701	8740 9808	8847 9914	8954	9061	9167	9274	9381	9488	!
-		0101			0021	0128	0234	0841	0447		ĺ
8	610660	0767	0878	0979	1086	1192	1298	1405	1511		i
9	1728	1829	1936	2042	2148	2254	2360	2466	2572	1	10
410 1	2784 3842	2890 3947	2996 4053	8102 4159	3207 4264	8313 4370	8419 4475	3525 4581	8630 4686		1
2	4897	5003	5108	5218	5319	5424	5529	5634	5740	5845	
3	5950	6055	6160	6265	6370	6476	6581	6686	6790	6895	10
4	7000	7105	7210	7315	7420	7525	7629	7734	7839	7943	<u> </u>
				Pro	PORTIO	nal Pa	RTS.				
Diff	1. 1	2	1	3	4	5	6		7	8	9
118	11.8	23.6	95	.4	47.2	59.0	70.8		8.6	94.4	106
117	11.7	23.4	85	.1	46.8	58.5	70.5	8 8	1.9	98.6	105
116 115	11.6 11.5	23.2 23.0	84	.8	46.4	58.0	69.6 69.6		1.2	92.8	104
114	11.4	22.8	84 84		46.0 45.6	57.5 57.0	68.4	(%	0.5	92.0 91.2	103 102
118	11.8	22.6	88	.9	45.2	56.5	67.8	3 71	9.1	90.4	101
112	11.2	22.4	88	.6	44.8	56.0	67.9	3 26	3.4	89.6	100
111 110	11.1	22.2 22.0			44.4	55.5	66.6		7.7	88.8	99
109	11.0 10.9	21.8	83 82	7	44.0 43.6	55.0 54.5	66.0	1 7	7.0	88.0 87.2	99
108	10.8	21.6	1 82	.4	43.2	54.0	64.8	3 7	5.6	86.4	97
107	10.7	21.4	82	.1	42.8	53.5	64.2	3 74	1.9	85.6	96
106	10.6	21.2 21.0	81 81	ğ.	42.4 42.0	58.0 52.5	68.6	1 2	1.2 3.5	84.8	95
	1 10.0	I & .∨	(57	١ ٠٠٠	70.0	က်စ်.ပ	1 00.0	3	5.5	84.0 84.0	94 94
105 105 104	10.5 10.4	21.0 20.8	81 81		42.0 41.6	52.5 52.0	63.0		3.5	84.0	94

r. ⁽	•	1	2	8	4	5	6	7	8	•	Diff.
				!							·
	767156	7230	7804	7379	7458	7527 8268	7601	7075	7749	7898	
6	7898	7972	8046	8120	8194		8842	8416	8490	8564	74
7	8688	8712	8786	8860	8984	9008	9082	,9156	9930	9808	
8 1	9877	9451	9525	9599	9678	9746	9820	9894	9968	0042	İ
٠, و	770115	0189	0263	0336	0410	0484	0557	0681	0705	0778	
00	0852	0926	0999	1078	1146	1220	1293	1367	1440	1514	l
Ĩ.	1587	1661	1784	1808	1881	1955	2028	2102	2175	2248	l .
2	1587 2822	2395	2468	2542	2615	2688	2762	2835	2908	2981	
3	3055	3128	8901	3274	8348	OZAL	8494	8567	3640	3713	
4	8055 8786	3860	3938	4006	4079	4152	4225	4298	4371	4444	78
5	4517	4590	4668	4786	4809	4882	4955	5028	5100	, 5178	ł
6	5246	5819	5892	5465	5538	5610	5688	5756	5899	5902	1
7	5974	6047	6120	6198	6265	6338	6411	6488	6556	6629	
8	6701	6774	6846	6919	6992	7064	7187	7209	7282	7854	1
9 '	7427	7499	7572	7644	7717	7789	7862	7984	8006	8079	İ
0 -	8151	8224	8296	8368	8441	8518	8585	8658	8730	8802	i
2	8874 9596	8947 9669	9019 9741	9091 9818	9168 9885	9236	9308	9380	9452	9524	ļ
							0029	0101	0178	9245	72
3 (780317	0389	0461	0533	0605	0677	0749	0821	0893	0965	.~
4	1087	1109	1181	1258	1824	1396	1468	1540	1612	1684	1
5	1755	1827	1899	1971	2042	2114	2186	2258	2329	2401	1
6	2473	2544	2616	2688	2759	2831	2902	2974	3046	8117	1
7	3189	3260	3332	3408	8475	3546	3618	3689	8761	3832	i
8 ,	3904	3975	4046	4118	4189	4261	4332	4408	4475	4546	
9 \	4617	4689	4760	4831	4902	4974	5045	5116	5187	5259	ļ
10	5330	5401	5472	5543	5615	5686	5757	5828	5899	5970	!
1	6041	6112	6188	6254	6325	6396	6467	6538	6609	6680	, 71
2	6751	6822	6893	6964	7085	7106	7177	7248	7819	7890	
3	7460	7581	7602	7678	7744	7815	7885	7956	8027	8098	i
4	8168	8239	8810	8381	8451	8522 9228	8598	8668	8784	8804	1
5	8875 9581	8946 9651	9016 9722	9087 9792	9157 9863	9983	9299	9869	9440	9510	1
						-	0004	0074	0144	0215	
7	790285	0856	0426	0496	0567	0637	0707	0778	0848	0918	!
8	0988	1059	1129	1199	1269	1340	1410	1480	1550	1620	1
9	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	ĺ
620	2892	2462	2532	2602	2672	2742	2812	2882	2952	3022	70
1	3092	3162	8281	3301	3871	3441	3511	3581	3651	8721	l
2	3790	3860	3990	4000	4070	4189	4209	4279	4849	4418	ł
3	4488	4558	4627	4697	4767	4836	4906	4976	5045	5115	ŀ
4	5185	5254	5324	5393	5463	5532	5602	5672	5741	5811	
5	5880	5949	6019	6088	6158	6227	6297	6366	6486	6505	ł
6	6574	6644	6718	6782	6852	6921	6990	7060	7129	7198	i
7	7268	7337 8029	7406	7475	7545 8236		7683 8374	7752 8443	7821 8513	7890 8582	l
8	7960 8651	8720	8098 8789	8167 8858	8927	8305 8996	9065	9134	9203	9272	69
9	9001	0120	0100	0000	00.01	0000	8000	9104	0.000	0212	
				Pro	PORTIO	NAL PA	RTS.				
Dif	T. 1	2		3	4	5	6		7	8	9
<u>-</u>			-				45.0		0 8	80 A	67.5
7	7.5	15.0	22	.0	30.0	37.5	45.0		2.5 1.8	60.0 59.2	66.
74	7.4 3 7.8 2 7.2	14.8 14.6	64	.9	29.6 29.2	37.0 36.5	48.	i K	i.i	58.4	65.
"	7.0	14.4		.6	28.8	36.0	43.		0.4	57.6	64.8
7	7.1	14.2		.3	28.4	35.5	42.0	8 4	9.7	56.8	68.9
່ ກ່	7.0	14.0		.0	28.0	35.0	42.0		9.0 8.3	56.0	68.0
					27.6	34.5	41.4		8.3	55.2	62.1

No. 680 L. 799.]

[No. 674 L. 829.

N.	0	1	2	8	4	5	6	7	8	9	Diff
630	799841	9409	9478	9547	9616	9685	9754	9823	9892	9961	
1	800029	0098	0167	0236	0305	0373	0442	0511	0580	0648	•
2	0717	0786	0854	0928	0992	1061	1129	1198	1266	1835	i
ã	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	i
4	2089	2158	2226	2295	2363	2432	2500	2568	2637	2705	Į.
5	2774	2842	2910	2979	3047	3116	3184	3252	3321	3389	1
6	3457	3525	3594	3662	3730	3798	3867	8985	4008	4071	1
7	4139	4208	4276	4344	4412	4480	4548	4616	4685	4758	1
8	4821	4889	4957	5025	5093	5161	5229	5297	5865	5433	66
9	5501	5569	5637	5705	5773	5841	5908	5976	6044	6112	1
40	806180	6248	6316	6384	6451	6519	6587	6655	6728	6790	
1	6858	6926	6994	7061	7129	7197	7264	7882	7400	7467	i
2	7585	7603	7670	7738	7806	7878	7941	8008	8076	8148	1
3	8211	8279	8346	8414	8481	8549	8616	8684	8751	8818	1
4	8886	8953	9021	9088	9156	9228	9290	9858	9425	9492	i
5	9560	9627	9694	9762	9829	9896	9964			-	-
6	810233	0300	0367	0434	0501	0500	0000	0081	0098	0165	l
7	0904	0971	1039	1106		0569	0636	0708	0770	0887	67
8		1642		1776	1173	1240	1307	1874	1441	1508	64
9	1575 2245	2312	1709 2379	2445	1843 2512	1910	1977 2646	2044	2111	2178	1
			1		1	2579		2718	2780	2847	İ
350	2918	2980	3047	8114	3181	3247	8314	8881	8448	3514	1
1	3581	8648	8714	3781	3848	3914	3981	4048	4114	4181	1
2	4248	4314 4980	4881	4447	4514	4581	4647	4714	4780	4847	1
	4918		5046	5118	5179	5246	5312	5378	5445	5511	1
4	5578	5644	5711	5777	5843	5910	5976	6042	6109	6175	1
5	6241	6808	6374	6440	6506	6578	6689	6705	6771	6838	
é	6904	6970	7036	7102	7169	7235	7301	7867	7488	7499	1
7	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160	ı
8	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820	66
9	. 8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	
360	9544	9610	9676	9741	9807	9873	9939	0004	0070	0186	1
1	820201	0267	0888	0399	0464	0530	0595	0661	0727	0792	
2	0858	0924	0989	1055	1120	1186	1251	1817	1882	1448	1
8	1514	1579	1645	1710	1775	1841	1906	1972	2037	2108	1
4	2168	2233	2299	2364	2430	2495	2560	2626	2691	2756	ĺ
5	2822	2887	2952	3018	3083	3148	8218	8279	8844	8409	1
6	3474	3539	3605	3670	3735	3800	8865	3930	8996	4061	i
7	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	
8	4776	4841	4906	4971	5036	5101	5166	5231	5296	5961	65
9	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010	1
70	6075	6140	6204	6269	6334	6899		6528	6593	1	ı
1	6728	6787	6852	6917	6981	7046	6464 7111	7175	7240	6658	1
2	7369	7484	7499	7563	7628	7692			7886	7905 7951	ŀ
8	8015	8080	8144	8209	8273	8338	7757	7821		8595	!
4	8660	8724	8789	8853	8918	8982	8402 9046	8467 9111	8531 9175	9239	i
•	0000	0124	0109	0000	0910	0902	80-10	9111	8110	8.408	Ì
			-	Pro	PORTIO	NAL PA	RTS.				·
Diff	. 1	2	1	3	4	5	6		7	8	9
68				_ -	200		40.0		_		
n/i	6.8	18.6 18.4	20		27.2 26.8	84.0	40.8		7.6	54.4	61.2
87						83.5	40.2		3.9	58.6	60.3
67	6.7		40								
67 66	6.6	18.2	19		26.4	33.0	89.6		3.2	52.8	59 4
67			19 19 19	.5	26.4 26.0 25.6	82.5 82.0	89.0 89.0	48	5.5	52.8 52.0 51.2	59 4 58.5 57.6

r.	•	1	2	8	4	5	•	7	8	9	Diff
- - - -	829304	9368	9432	9497	9561	9625	9690	9754	9818	9888	
	9947	0011	0075	0189	0204	0268	0882	0396	0460	0525	!
İ	830589	0658	0717	0781	0845	0909 1550	0973	1087 1678	1102 1742	1166 1806	64
i	1230 1870	1294 1984	1358 1998	1422 2062	1486 2126	2189	1614 2258	2817	2881	2445	04
	2509	2578	2687	2700	2764	2828	2892	2956	8020	8088	
	8147	8211	8275	8338	8402	8466	8580	8598	3657	3721	
1	3784 4421	3848 4484	8912 4548	8975 4611	4039 4675	4108 4789	4166 4802	4280 4866	4294 4929	4857 4998	1
ļ	5056	5129	5183	5247	5310	5373	5437	5500	5564	5627	i
i.	5691	5754	5817	5881	5944	6007	6071	6184	6197	6261	1
1	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894	1
1	6957	7020	7088	7146	7210	7273	7886	7899 8030	7462	7525	1
. 1	7588 8219	7652 8282	7715 8845	7778 8408	7841 8471	7904 8534	7967 8597	8660	8093 8723	8156 8786	63
	8849	8912	8975	9088	9101	9164	9227	9289	9852	9415	
	9478	9541	9604	9667	9729	9792	9855	9918	9981		
: -	840106	0169	0282	0294	0857	0420	0482	0545	0608	0043	
	0733	0796	0859	0921	0984	1046	1109	1172	1234	1297	
	1359	1422	1485	1547	1610	1672	1785	1797	1860	1922	
	1985	2047	2110	2172	2235	2297	2360	2422	2484	2547	
	2609 3233	2672 8295	2734 8857	2796 3420	2859 3462	2921 3544	2988 3606	3046 3669	3108 3731	8170 3798	
	3855	8918	3980	4042	4104	4166	4229	4291	4858	4415	
1	4477	4589	4601	4664	4726	4788	4850	4912	4974	5086	
	5099	5160	5222	5284	5846	5408	5470	5532	5594	5656	62
	5718 6337	5780 6399	5842 6461	5904 6528	5966 6585	6028 6646	6090 6708	6151 6770	6213 6832	6275 6894	
	6955	7017	7079	7141	7202	7264	7326	7388	7449	7511	
1	7573	7634	7696	7758	7819	7881	7943	8004	8066	8128	
	8189	8251	8312	8874	8485	8497	8559	8620 9235	8682 9297	8748 9858	ł
i	8805 9419	8866 9481	8928 9542	9989 9604	9051 9665	9112 9726	9174 9788	9849	9911		
3	850083	0095	0156	0217	0279	0840	0401	0462	0524	0585	
)	0646	0707	0769	0830	0891	0962	1014	1075	1136	1197	
l	1258 1870	1 320 1931	1381 1992	1442 2053	1508 2114	1564 2175	1625 2236	1686 2297	1747 2358	1809 2419	١
	2480	2541	2602	2663	2724	2785	2846	2907	2968	3029	61
3	8090	8150	8211	8272	8333	3394	3455	8516	8577	3637	
ļ	8698 4306	8759 4367	8820 4428	3881 4488	8941 4549	4002 4610	4063 4670	4124 4781	4185 4792	4245 4852	
; .	4913	4974	5034	5095	5156	5216	5277	5337	5398	5459	
	5519	5580	5640	5701	5761	5822	5882	5943	6003	6064	
3	6124	6185	6245	6306	6366	6427	6487	6548	6608	6668	
)	6729	6789	6850	6910	6970	7081	7091	7152	7212	7272	
				Pro	PORTIC	NAL PA	RTS.				
iff	. 1	2	1	3	4	5	6		7	8	9
65	6.5	18.0	10	.5	26.0	32.5	39.0) 4	5.5	52.0	58.
64	6.4	12.8	19	2	25.6	32.0	38.4 37.8	4	1.8	51.2	57.
8	6.8	12.6	18	.9	25.2	31.5			1.1	50.4	56.
52 51	6.2	12.4		.0	24.8	81.0 80.5	37.2 36.6		2.7	49.6 48.8	55.
1	6.1	12.2 12.0	18	.8	24.4 24.0	30.5 30.0	36.6		2.7	48.8 48.0	54.5 54.0

Diff	9	8	7	6	5	4	8	2	1	0	N.
	7875	7815	7755	7694	7684	7574	7518	7453	7893	857332	20
	8477	8417	8357	8297	8236	8176	8116	8056	7995	7985	1
	9078	9018	8958	8898	8838	8778	8718	8657	8597	8537	2
6	9679	9619	9559	9499	9439	9379 9978	9318 9918	9258 9859	9198 9799	9188 9789	3 4
	0278	0218	0158	0098	0038						-
	0877	0817	0757 1355	0697 1295	0637 1235	0578	0518	0458	0398	860338	5
	1475 2072	1415 2012	1952	1893	1833	1176 1773	1116 1714	1056	0996 1594	0937 1534	6 7
	2068	2608	2549	2489	2430	2570	2310	1654 2251	2191	2131	8
	8268	8204	8114	8085	8025	2966	2906	2847	2787	2728	ğ
	8858	3799	3739	8680	3620	8561	3501	3442	3382	3323	30
	4452	4392	4333	4274	4214	4155	4096	4036	8977	3917	1
	5045 5637	4985 5578	4926 5519	4867 5459	4808	4748 5341	4689 5282	4630 5222	4570 5168	4511 5104	2
	6228	6169	6110	6051	5992	5933	5874	5814	5755	5696	4
5	6819	6760	6701	C642	6583	6524	6465	6405	6346	6287	5
Đ	7409	7350	7291 7880	7232	7173	7114	7055	6996	6937	6878	6
	7998 8586	7989 8527	7880 8468	7821 8409	7762 8350	7703 8292	7644 8233	7585 8174	7526 8115	7467 8056	7
•	91.8	9114	9056	8997	8938	8879	8821	8762	8703	8644	8
	9760	9701	9642	9584	9525	9466	9408	9349	9290	9232	10
				0480		2050	9994	9935	9877	9818	1
	0845 0980	0287 0872	0228 0818	0170 0755	0111 0696	0053 0638	0579	0521	0462	870404	2
	1515	1456	1398	1339	1281	1228	1164	1106	1047	0989	3
	2098	2040	1981	1928	1865	1806	1748	1690	1631	1573	4
	2681	2623	2564	2506	2448	2389	2331	2273	2215	2156	5
	8262	8204	8146	8088	3030	2972	2913	2855	2797	2739	6
5	8844 4424	8785 4366	3727 4308	3669 4250	3611 4192	8553 4134	3495 4076	3437 4018	3379 3960	3321 3902	8
•	5008	4945	4888	4830	4772	4714	4656	4598	4540	4482	9
	5582	5524	5466	5409	5351	5298	5235	5177	5119	5061	50
	6160	6102	6045	5987	5929	5871	5818	5756	5698	5640	1
	6787	6680	6622	6564	6507	6449	6391	6333	6276	6218	2
	7814 7889	7256 7882	7199 7774	7141 7717	7083 7659	7026 7602	6968 - 7544	6910 7487	6853 7429	6795 7371	3
	8464	8407	8349	8292	8234	8177	8119	8062	8004	7947	5
	9039	8981	8924	8866	8809	8752	8694	8637	8579	8522	6
	9612	9555	9497	9440	9383	9325	9268	9211	9153	. 9096	7
	0185	0127	0070	0013	9956	9898	9841	9784	9726	9669	8
	0756	0699	0642	0585	0528	0471	0418	0356	0299	880242	9
	1328	1271	1218	1156	1099	1042	0985	0928	0871	0814	0
57	1898	1841	1784	1727	1670	1613	1556	1499	1442	1385	1
91	2468	2411	2354	2297	2240	2183	2126	2069	2012	1955	2
						3321	3264	3207			3
	3087 3605	2980 8548	2923 8491	2866 8434	2809 3377	2752 3321 PORTIO		2638 3207	2581 3150	2525 3093	
9	8	7	, ,	6	5	4		. 8	2	1	iff
58.	47.2	9	41	35.4	29.5	3.6	7 9	- - 17.	11.8	5.9	59
52.	46.4		40	34.8	29.0 28.5	3.2	4 2	17.	11.6	5.8	58 57
	45.6					22.8		17.	11.4		

N.	•	1	2	8	4		•	7	8	•	Diff.
65	883661	3718	8775	3882	3888	8945	4002	4059	4115	4172	
6	4220	4285	4842	4399	4455	4512	4569	4625	4682	4789	
7	4795	4852	4909	4965	5022	5078	5185	5192	5248	5305	
8	5361 5926	5418 5983	5474 6080	5581 6096	5587 6152	6209	5700 6265	5757 6821	5813 6378	5870 6434	
70	6491	6547	6604	6660	6716	6778	6829	6885	6942	6998	
1	7054	7111	7167	7228	7280	7336	7392	7449	7505	7561	}
2	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123	l
3	8179	8236	8292	8348	8404	8460	8516	8573	8629	8685	
4 5	8741 9802	8797 9858	8858 9414	8909 9470	8965 9526	9021 9582	9077 9638	9134 9694	9190 9750	9246 9806	56
6	8995	9918	9974								-
7	890421	0477	0533	0090 0589	0096 0645	0141	0197 0756	0258 0812	0809	0965 0924	
8	0980	1085	1091	1147	1208	1259	1314	1870	1426	1482	
9	1537	1598	1649	1705	1760	1816	1872	1928	1983	2039	ļ
80	2095	2150	2206	2262	2317	2373	2429	2484	2540 8096	2595	
1 2	2651 3207	2707 3262	2762 8318	2618 3378	2878 8429	2929 3484	2985 3540	8040 8595	8651	8151 8706	i
3	3762	3817	8873	3928	8984	4039	4094	4150	4205	4261	
4	4316	4371	4427	4482	4538	4593	4648	4704	4759	4814	
5	4870	4925	4980	5036	5091	5146	5201	5257	5812	5367	
6	5423	5478	5533	5588	5644	5699	5754	5809	5864	5920	
7	5975	6080	6085	6140	6195	6251	6306	6361	6416	6471	
8	6526 7077	6581 7132	6686 7187	6692 7242	6747 7297	6802 7352	6857 7407	6912 7462	6967 7517	7022 7572	
90	7627	7682	7787	7792	7847	7902	7957	8012	8067	8122	55
1	8176	8231	8286	8841	8396	8451	8506	8561	8615	8670	l
2	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218	1
3	9273	9828	9383	9437	9492	9547	9602	9656	9711	9766	1
4	9821	9875	9930	9985	0039	0094	0149	0203	0258	0312	
5	900367	0422	0476	0581	0586	0640	0695	0749	0804	0859	
6	0913	0968	1022	1077	1131	1186	1240	1295	1849	1404	1
7	1458	1518	1567	1622	1676	1731	1785	1840	1894	1948	l
8	2008	2057	2112	2166	2221	2275	2329	2384	2438	2492	
9	2547	2601	2655	2710	2764	2818	2873	2927	2981	3036	
300 1	3090 3633	3144 3687	8199 8741	8253 8795	3849	8361 8904	8416 8958	8470 4012	8524 4066	8578 4120	1
2	4174	4229	4283	4337	4891	4445	4499	4558	4607	4661	1
3	4716	4770	4824	4878	4932	4986	5040	5094	5148	5202	54
4	5256	5310	5364	5418	5472	5526	5580	5634	5688	5742	"
5	5796	5850	5904	5958	6012	6066	6119	6178	6227	6281	
6 7	6335 6874	6389	6448 6981	6497 7085	6551 7089	6604 7143	6658 7196	6712 7250	6766 7304	6820 7358	ŀ
8	7411	7465	7519	7578	7626	7680	7734	7787	7841	7895	
ğ	7949	8002	8056	8110	8168	8217	8270	8824	8378	8481	
	<u> </u>	!		Pec	PORTIO	NAT. PA	Dma	1	<u> </u>	<u> </u>	<u> </u>
Dif	r. 1	2	1	8	4	5	6		7	8	9
	-		-,	-				¦	-		·
57		11.4	17	.1	22.8	28.5	34.	3 / 3	9.9	45.6	51.
56	5.6	11.2		.8	22.4	28.0	33.	0 8	9.2	44.8	50.4
55		11.0		.5	22.0	27.5	33.	n , .	8.5	44.0	49.

N.	0	1	2	8	4	5	6	7	8	9	Diff
310 1 2	908465 9021 9556	8589 9074 9610	8592 9128 9663	8646 9181 9716	8699 9235 9770	9758 9269 9828	8807 9842 9877	8860 9896 9980	8914 9449 9984	8967 9503	
- 1										0037	
8	910091	0144	0197	0251	0904	0358	0411	0464	0518	0571	
4	0624 1158	0678 1211	0731 1264	0784 1817	0838 1371	0891 1424	0944 1477	0998 1530	1051 1584	1104	
6	1690	1743	1797	1850	1903	1956	2009	2063	2110	2169	
7	2222	2275	2328	2381	2435	2488	2541	2594	2647	2700	
8	2753	2806	2859	2913	2966	8019	3072	3125	3178	3231	
9	8284	8337	8390	3443	3496	8549	8602	3655	8708	3761	5
320	8814	8867	3920	8978	4026	4079	4132	4184	4237	4290	
1	4343	4896	4449	4502	4555	4608	4660	4718	4766	4819	
2 8	4872	4925	4977	5030	5083	5186	5189	5241	5294 5822	5347 5875	i
4	5400 5927	5453 5980	5505 6088	5558 6085	5611 6138	5664 6191	571d 6243	5769 6296	6849	6401	
5	6454	6507	6559	6612	6664	6717	6770	(822	6875	6927	l
6	6980	7033	7085	7138	7190	7248	6770 7295	7848	7400	7458	
7	7506	7558	7611	7668	7716	7768	7820	7878	7925	7978	
8	8030	8083	8135	8188	8240	8293	8845	8397	8450	8502	
9	8555	8607	8659	8712	8764	8816	8869	8921	8978	9026	
830	9078	9130	9188	9235	9287	9340	9892	9444	9496	9549	
1	9601	9658	9706	9758	9810	9862	9914	9967	0019	0071	
2	920128	0176	0228	0280	0332	0884	0436	0489	0541	0593	
ã	0645	0697	0749	0801	0858	0906	0958	1010	1062	1114	1
4	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634	۹ ا
5	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154	l
6	2206	2258	2310 2829	2962	2414	2466	2518	2570 3089	2622		
7.	2725 8244	2777 8296	8348	2881 3399	2933 3451	2985 3508	8087	3607	8140 8658		1
8	8762	3814	3865	8917	8969	4021	8555 4072	4124	4176		l
	1	1	4883		4486	4538	1	4641	4698		1
840 1	4279 4796	4331 4848	4899	4434 4951	5008	5054	4589 5106	5157	5209		ĺ
	5812	5364	6415	5467	5518	5570	5621	5678	5725		ŀ
2 8	5828	5879	5931	5982	6034	6085	6187	6188	6240	6291	
4	6842	6394	6445	6497	6548	6600	6651	6702	6754	6806	
5	6857	6908	6959	7011	7062	7114	7165	7216	7268	7319	l
6 7	7870 7883	7422 7935	7478 7986	7524 8087	7576 8088	7627 8140	7678	77790 8242	7781 8298	7832 8345	l
8	8396	8447	8498	8549	8601	8652	8191 8708	8754	8805	8857	1
9	8908	8959	9010	9061	9112	9163	9215	9266	9817		
850	9419	9470	9521	9572	9628	9674	9725	9776	9827	9879	5
1	9930	9981	0032	0000	0194	010	0236	0287	0338	0389	"
2	930440	0491	0542	0088	0184 0648	0185	0745	0796	0847		
8	0949	1000	1051	1102	1158	1204	1254	1305	1356	1407	1
4	1458	1509	1560	1610	1661	1712	1763	1814	1865	1915	l
8	0949	1000	1051	1102	1158	1204		1305		1407	
		T -	<u> </u>		1	NAL PA	1	i	_		
Dif	r. 1	2	_L '	8	4	5	6		7	8	9
	5.3	10.6	15	5.9	21.2	26.5	31.	8 9	7.1	42.4	47
59		10.4		.6	20.8	26.0	31.		6.4	41.6	46
					20.4		80.				

N.	●, 、	1	2		4	•	•	•	8	•	Diff
— ` 55	981966	2017	2068	2118	2169	2220	2271	2392	2872	2428	
6	2474	2524	2575	2626	2677	2727	2778	2829	2879	2980	
7	2981	3081	8082	3133	8188	3234	8285	3335	8386	8487	l
8	8487 3908	3588 4044	3569 4094	3639 4145	3690 4195	8740 4246	8791 4296	3841 4847	3892 4897	3943 4448	1
ю;	4498	4549	4500	4650	4700	4751	4801	4852	4902	4953	l
1,	5008	5054	5104 5608	5154 5658	5205 5709	5255 5759	5806 5809	5356 5860	5406	5457	
2 8	5507 6011	6061	6111	6162	6212	6262	6818	6368	5910 6413	5960 6468	1
4	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966	
5	7016	7066	7116	7167	7217	7267	7817	7867	7418	7468	l
6	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969	50
7	8019	8069	8119	8169	8219	8269	8390	8870	8420	8470	_ ~
8	8520 9020	8570 9070	9620 9120	8670	8720 9220	8770	9820 9820	9870 9869	8920	9469	l
9 ¦ 10 i	9519	9569	9619	9170 9669	9719	9270	9819	9869	9419 9918	9968	l
· '-										-	ł
1	940018	0068	0118	0168	0218	0267	0817	0867	0417	0467	1
3	0516 1014	0566 1064	0616 1114	0666 1168	0716 1218	1268	0815 1818	0865 1362	0915 1412	1462	
4	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958	1
5	2008	2058	2107	2157	2207	2256	1809 2806	2855	2405	2455	l
6 1	2504	2554	2008 3099	2653	2207 2702	2752	2801	2851	2901	2950	l
7	3000	8049	3099	8148	8198	3247	3297	3346	8396	8445	l
8 9	3495 3989	8544 4088	3598 4088	8648 4187	8692 4186	3742 4236	8791 4285	3841 4835	3890 4384	8939 4488	
o ¦	4483	4582	4581	4631	4680	4729	4779	4828	4877	4927	
1	4976	5025	5074	5124	5178	5222	5272	5821	5370	5419	
2	5469	5518 6010	5567 6059	5616	5665	5715	5764	5813	5862	5912	
4	5961 6452	8501	6551	6108	6157 6649	6207 6698	6256 6747	6305 6796	6354 6845	6408 6894	
5	6948	6501 6992	7041	6600 7090	7189	7189	7238	7287	7336	7885	
6	7434	7488	7532	7581 8070	7680	7679	7728	7777	7826	7875	49
7	7924	7973	8022	8070	8119	8168	8217	8266	8315	8364	
8	8413 8902	8462 8951	8511 8999	8560 9048	8608 9097	8657 9146	8706 9195	8755 9244	8804 9292	8858 9841	
90	9890	9439	9488	9586	9585	9684	9683	9781	9780	9829	
1	9878	9926	9975	0024	0078	0121	0170	0219	0267	0816	
2 1	950365	0414	0462	0511	0560	0608	0657	0706	0754	0808	
8	0851	0900	0949	0997	1046	1095	1148	1192	1240	1289	
5	1338 1823	1386 1872	1435 1990	1483 1969	1532 2017	1580 2066	1629 2114	1677 2163	1726 2211	1775 2260	
6	2308	2356	2405	2453	2502	2550	2599	2647	2696	2744	
7	2792	2841	2889	2938	2986	3034	3083	8131	3180	3228	
8 '	3276	3325	8378	8421	3470	3518	3566	3615	8663	3711	
9	3760	3808	3856	8905	8958	4001	4049	4098	4146	4194	
			2889 8878 8856								*****************
	· 1			Pro	PORTIO	NAL PA	RTS.				
		2	8	- 1	4	5	6	- 1 - 1	7	8	9
Diff.	1			!_				_ '		-	•
51	<u> </u>	10.2	-	8 9	0 4	25.5	30.6	905			
_	5.1 5.0 4.9		15. 15. 14.	0 8	0.4 0.0 9.6	25.5 25.0	30.6		.7	40.8	45.9 45.0

N.	0	1	2	8	4	5	6	7	8	9	Diff.
00	954948	4291	4889	4887	4435	4484	4532	4580	4628	4677	
1	4725 5207	4778	4821	4869	4918	4966	5014	5062	5110	5158	l
2	5207	5255	5303	5851	5399	5447	5495	5543	5592	5640	1
3	5688	5736	5784	5832	5880	5928	5976	6024	6072	6120	l
4	6168	6216	6265	6318	6861	6409	6457	6505	6553	6601	4
5	6649	6697	6745	6798	6840	6888	6936	6984	7032	7080	•
6	7128 7607	7176	7224	7272	7320	7868	7416	7464	7512	7559	}
7	1001	7655	7708	7751	7799	7847	7894	7942	7990	8088	l
8	8086 8564	8134 8612	8181 8659	8229 8707	8277 8755	8825 8808	8878	8421	8468	8516	l
9			9009	8101		1	8850	8898	8946	8994	l
10	9041	9089	9137	9185	9232	9280	9328	9375	9423	9471	i
1	9518	9566	9614	9661	9709	9757	9804	9852	9900	9947	1
2	9995										l
		0042	0090	0138	0185	0233	0280	0828	0376	0423	l
8	960471	0518	0566	0613	0661	0709	0756	0804	0851	0899	1
4	0946	0994	1041	1089	1136	1184	1231	1279	1326	1874	ļ
5	1421	1469	1516	1563	1611	1658	1706	1758	1801	1848	ı
6	1895	1948	1990	2038	2085	2182	2180	2227	2275	2322	ł
7	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795	l
8	2848	2890	2987	2985	3032	8079	8126	8174	8221	3268	
9	8316	8363	8410	8457	8504	8552	8599	8646	8698	8741	l .
20	3788	3835	3882	3929	8977	4024	4071	4118	4165	4212	l
1	4260	4807	4354	4401	4448	4495	4542	4590	4637	4684	l .
2	4731	4778	4825	4872	4919	4966	5018	5061	5108	5155	1
8	5202	5249	4825 5296	5348	5390	5437	5484	5581	5578	5625	i
4	5672	5719	5766	5813	5860	5907	5954	6001	6048	6095	4
5	6142	6189	6236	6283	6329	6376	6423	6470	6517	6564	
6	6611	6658	6705	6752	6799	6845	6892	6939	6986	7088	i
7	7080	7127	7173	7220	7267	7314	7861	7408	7454	7501	1
8	7548	7595	7642	7688	7735	7782	7829	7875	7922 8390	7969	1
9	8016	8062	8109	8156	8208	8249	8296	8848	8390	8486	١.
80	8483	8530	8576	8628	8670	8716	8763	8810	8856	8903	i .
1	8950	8996	9043	9090	9136	9183	9229	9276	9323	9369	ł
2	9416	9463	9509	9556	9602	9649	9695	9742	9789	9835	
3	9882	9928	9975								1
				0021	0068	0114	0161	0207	0254	0300	l
4	970347	0393	0440	0486	0533	0579	0626	0672	0719	0765	
5	0812	0858	0904	0951	0997	1044	1090	1137	1188	1229	Ì
6	1276	1822	1369	1415	1461	1508	1554	1601	1647	1698	
7	1740	1786	1832	1879	1925	1971	2018	2064	2110	2157	
8	2208	2249	2295	2342	2388	2434	2481	2527	2578	2619	
9	2666	2712	2758	2804	2851	2897	2943	2989	8085	8088	
40	8128	3174	8220	8266	8313	3359	8405	3451	3497	8543	
ĭ	3590		3682	3728	8774	3820	3866	3913	3959	4005	
2	4051	3636 4097	4143	4189	4235	4281	4327	4374	4420	4466	
ã	4512	4558	4604	4650	4696	4742	4788	4834	4880	4926	
4	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386	46

PRO	PORT	TONAT.	PARTS

							,		- '
Diff.	1	2	8	4	5	6	7	8	9 '
47 46	4.7	9.4 9.2	14.1 13.8	18.8 18.4	23.5 23.0	28.2 27.6	82.9 32.2	37.6 36.8	42.3 41.4

	45 L 97	5. <u>J</u>							ĮN	o. 989	L. 990		
N.	•	1	8	8	4	5	6	7	8	9	Diff		
15	975432	5478	5524	5570	5616	5662	5707	5758	5799	5845			
6	5891	5987 6896	5988	6029	6075	6121	6167	6212	6258	6304			
7	6350	6896	6442	6488	6588	6579	6625	6671	6717	6763	•		
8	6908 7266	6854 7812	6900 7358	6946 7408	6992 7449	7097 7495	7088 7541	7129 7586	7175 7632	7220 7678	1		
- 1						1		1		i			
0	7724	7769 8226	7815	7861	7906	7952 8409	7998 8454	8043 8500	8089 8546	8185 8591			
2	8181 8 68 7	8683	8272 8728	8817 8774	8868 8819	8865	8911	8956	9002	9047	l		
3	9098	9188	9184	9280	. 9275	9321	9866	9412	9457	9503	1		
4	9548	9594	9639	9685	9730	9776	9821	9867	9912	9958			
5	980008	0049	0094	0140	0185	0231	0276	0822	0867	0412			
6	0458	0508	0549	0594	0640	0685	0730	0776	0821	0867	l		
7	0912	0957	1008	1048	1093	1189	1184	1229	1275	1320	1		
8	1366	1411	1456	1501	1547	1592	1687	1683	1728	1773			
9	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226			
BO	2271	2316	2362	2407	2452	2497	2548	2588	2688	2678			
1	2723	2769	2814	2859	2904	2949	2994	8040	8085	8180	ł		
2	8175	8220	3265	3310	8856	8401	3446	8491	8586	3581	l		
3	3626	3671	8716	8762	3807	8852	3897	3942 4392	3987	4032	}		
5	4077 4527	4122 4572	4167 4617	4212 4662	4257 4707	4302 4752	4847 4797	4842	4437 4887	4982	45		
6	4977	5022	5067	5112	5157	5202	5247	5292	5337	5382	1		
7	5496	5471	5516	5561	5606	5651	5696	5741	5786	5830	ł		
8	5875	5920	5965	6010	5606 6055	6100	6144	6189	6234	6279	1		
9	6324	6869	6418	6458	6503	6548	6598	6637	6682	6727			
70	6772	6817	6861	6906	6951	6996	7040	7085	7130	7175			
1	7219	7264	7209	7858	7898	7448	7488	7532	7577	7622	1		
8	7666	7711	7756	7800	7845	7890 8336	7984 8881	7979 8425	8024	8068 8514	i		
4	8118 8559	8157 8604	8202 8648	8247 8698	8291 8737	8782	8826	8871	8470 8916	8960	l		
5	9005	9049	9094	9138	9188	9227	9272	9316	9361	9405	l		
6	9450	9494	9539	9583	9628	9672	9717	9761	9806	9850	f		
7	9895	9939	9988		0000	0117	0101	0206	0250	0004			
8	990339	0383	0428	0028 0472	0072 0516	0117 0561	0161 0605	0650	0694	0294			
9	0783	0827	0871	0916	0960	1004	1049	1098	1137	1182			
180	1226	1270	1315	1359	1408	1448	1492	1536	1580	1625	ì		
1	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	ł		
2	2111	2156	2200	2244	2288	2333	2377 2819	2421	2465	2509			
8	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951			
4	2995	8089	8083	3127	3172	8216	3260	3304	3348	3392			
5	8436 8877	8480 8921	3524 3965	3568 4009	3613 4053	3657 4097	3701 4141	3745 4185	3789 4229	3833 4273	1		
7	4317	4861	4405	4449	4493	4537	4581	4625	4669	4713	44		
8	4757	4801	4845	4889	4933	4977	5021	5065	5108	5152			
9	5196			5328	5372	5416	5460	5504	5547	5591			
Proportional Parts,													
Diff	. 1	2	1	<u> </u>	4	5	6		7	8	9		
	-			-				-					
46	4.6	9.2	13		18.4	23.0	27.6	38	2.2	36.8	41.		
45		9.0	18	.5	18.0	22.5	27.0		.5	36.0	40.		
	4.4	8.8	13	.26	17.6	22.0	26.4	⊦ ∶ ઝા	8.0	35.2	39.		
44 48		8.6	12		17.2	21.5	25.8	2. 92.).1	34.4	38.		

No. 990 L. 995.]

[No. 999 L. 999.

N.	0	1	2	8	4	5	6	7	8	9	Diff
990	995635	5679	5728	5767	5811	5854	5898	5942	5986	6080	i -
1	6074	6117	6161	6205	6249	6298	6837	6380	6424	6468	44
2	6512	6555	6599	6648	6687	6781	6774	6818	6862	6906	1
3	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343	ŀ
4	7386	7430	74/14	7517	7561	7605	7648	7692	7736	7779	1
5	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216	•
6	8259	8303	8347	8390	8434	8477	8521	8564	8608	8652	i
7	8695	8739	8782	8826	8869	8918	8956	9000	9043	9087	l
ġ	9181	9174	9218	9261	9305	9848	9892	9485	9479	9522	j
ğ	9565	9609	9652	9696	9789	9783	9826	9870	9918	9957	i
•		5000	50000	2000	0.00	0100	3000	.0010	0010	200.	4

HYPERBOLIC LOGARITHMS.

HIPERDULIU LUGARIIMIS.											
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.		
1.01	.0099	1.45	.8716	1.89	.6366	2.83	.8458	2.77	1.0188		
1.02	.0198	1.46	.3784	1.90	.6419	2.34	.8502	2.78	1.0225		
1.08 1.04	.0296	1.47	.8853	1.91	.6471	2.85	.8544	2.79	1.0260		
1.04	.0392	1.48	.3920	1.92	.6528	2.86	.8587	2.80	1.0296		
1.05 1.06	.0488	1.49	.8988	1.93	.6575	2.37	.8629	2.81	1.0332		
1.06	.0583	1.50	.4055	1.94	.6627	2.88	.8671	2.82	1.0367		
1.07	.0677	1.51	.4121	1.95	.6678	2.39	.8713	2.88	1.0403		
1.08	.0770	1.52	.4187	1.96	.6729	2.40	.8755	2.54	1.0438		
1.09	.0862	1.58	.4258	1.97	.6780	2.41	.8796	2.85	1.0473		
1.10	.0953	1.54	.4318	1.98	.6831	2.42	.8838	2.86	1.0508		
1.11	.1044	1.55	.4888	1.99	.6881	2.48	.8879	2.87	1.0543		
1.12	.1188	1.56	.4447	2.00	.6931	2.44	.8920	2.88	1.0578		
1.18	.1222	1.57	.4511	2.01	.6981	2.45	.8961	2.89	1.0613		
1.14	.1310	1.58	.4574	2.02	.7081	2.46	.9002	2.90	1.0647		
1.15 1.16	.1898	1.59	.4637 .4700	2.08	.7080	2.47	.9042	2.91	1.0682		
1.17	.1484 .1570	1.61	.4762	2.04	.7129	2.48	.9083	2.92	1.0716		
1.18	.1655	1.62	.4824	2.06		2.49 2.50	.9128 .9163	2.94	1.0750		
1.19	.1740	1.63	.4886	2.07	.7227	2.51	.9203	2.95	1.0784		
1.20	.1823	1.64	.4947	2.08	.7824	2.52	.9248	2.96	1.0852		
1.21	.1906	1.65	.5008	2.09	.7872	2.58	.9246	2.97	1.0886		
1 99	.1988	1.66	.5068	2.10	.7419	2.54	.9322	2.98	1.0919		
1.22 1.28	.2070	1.67	.5128	2.11	.7467	2.55	9361	2.99	1.0953		
1.24	.2151	1.68	.5188	2.12	.7514	2.56	.9400	8.00	1.0986		
1.25	.2231	1.69	5247	2.13	.7561	2.57	.9439	8.01	1.1019		
1.26	.2311	1.70	.5306	2.14	7608	2.58	.9478	8.02	1.1053		
1.27	.2390	1.71	.5365	2.15	.7655	2.59	.9517	3.03	1.1086		
1.28	.2469	1.72	.5423	2.13	.7701	2.60	.9555	8.04	1.1119		
1.29	.2546	1.73	.5481	2.17	.7747	2.61	.9594	8.05	1.1151		
1.80	.2624	1.74	.5589	2.18	.7793	2.62	.9632	8.06	1.1184		
1.81	.2700	1.75	.5596	2.19	.7889	2.68	.9670	8.07	1.1217		
1.82	.2776	1.76	.5653	2.20	.7885	2.64	.9708	8.08	1.1249		
1.33	.2852	1.77	.5710	2.21 2.22	.7980	2.65	.9746	8.09	1.1282		
1.34	.2927	1.78	.5766	2.22	.7975	2.66	.9783	8.10	1.1314		
1.35 1.86	.3001	1.79	.5822	2.28	.8020	2.67	.9821	8.11	1.1846		
1.86	.3075	1.80	.5878	2.24	.8065	2.68	.9858	8.12	1.1878		
1.37	.3148	1.81	.5938	2.25	.8109	2.69	.9895	8.18	1.1410		
1.37 1.38 1.39	.3221	1.82	.5988	2.26	.8154	2.70	.9933	8.14	1.1442		
1.39	.3293	1.88	.6043	2.27	.8198	2.71	.9969	8.15	1.1474		
1.40	.8865	1.84	.6098	2.28	.8242	2.72	1.0006	8 16	1.1506		
1.41	.3436	1.85	.6152	2.29	.8286	2.78	1.0048	8.17	1.1587		
1.42	.8507	1.86	.6206	2.30	.8329	2.74	1.0080	8.18	1.1569		
1.43	.3577	1.87	.6259	2.31	.8372	2.75	1.0116	3.19	1.1600		
1.44	.3646	1.88	.6313	2.32	.8416	2.76	1.0152	3.20	1.1632		
	'	<u>u</u>			'- '			' _!	_		

No. Log. No. Log. No. Log. No. Log. No. Log. No. Log.		. — .								<u> </u>
3.22 1.1694 3.88 1.2856 4.54 1.5129 5.20 1.6487 5.86 1.7681 3.24 1.1725 3.89 1.2854 4.55 1.5131 5.21 1.6506 5.87 1.7699 3.24 1.1725 3.89 1.2856 4.55 1.5173 5.22 1.6525 5.88 1.7716 3.25 1.1877 3.91 1.3635 4.57 1.5199 5.23 1.6526 5.88 1.7716 3.25 1.1877 3.92 1.2861 4.57 1.5195 5.23 1.6526 5.88 1.7716 3.25 1.1817 3.92 1.2861 4.57 1.5195 5.23 1.6526 5.89 1.7738 3.26 1.1817 3.92 1.2861 4.59 1.5237 5.24 1.6526 5.91 1.7736 3.28 1.1878 3.94 1.28712 4.00 1.5281 5.26 1.6526 5.91 1.7736 3.28 1.1878 3.94 1.28712 4.00 1.5281 5.26 1.6520 5.92 1.7788 3.29 1.1099 3.96 1.2727 4.61 1.5229 5.27 1.6620 5.92 1.7788 3.29 1.1999 3.96 1.2728 4.62 1.5394 5.29 1.6623 5.34 1.7817 3.31 1.090 3.96 1.2828 4.62 1.5394 5.29 1.6623 5.34 1.7817 3.33 1.2030 4.00 1.3863 4.63 1.5347 5.30 1.6677 5.86 1.7813 3.31 1.2030 4.01 1.3868 4.63 1.5399 5.22 1.0715 5.86 1.7821 3.33 1.2030 4.01 1.3868 4.63 1.5390 5.32 1.0716 5.86 1.7821 3.33 1.2030 4.01 1.3868 4.67 1.5412 5.33 1.6734 5.30 1.6757 5.86 1.7801 3.37 1.2119 4.02 1.3913 4.68 1.5434 5.33 1.6734 5.00 1.7913 3.37 1.2119 4.02 1.3913 4.68 1.5434 5.33 1.6734 6.00 1.7913 3.37 1.2119 4.02 1.3913 4.68 1.5434 5.33 1.6734 6.00 1.7913 3.39 1.2308 4.06 1.3867 4.70 1.5476 5.36 1.6771 6.01 1.7931 3.37 1.2119 4.02 1.3913 4.08 1.3915 5.34 1.6732 6.00 1.7913 3.39 1.2308 4.06 1.3867 4.70 1.5476 5.36 1.6790 6.00 1.7918 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.7918 3.41 1.2257 4.04 1.3862 4.70 1.5576 5.36 1.6790 6.00 1.7918 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.8913 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.8913 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.8913 3.49 1.2284 4.11 1.4134 4.77 1.5692 5.40 1.6901 6.00 1.8913 3.49 1.2284 4.01 1.4104 4.77 1.5692 5.40 1.6901 6.00 1.8913 3.49 1.2289 4.06 1.3864 6.00 1.8913 3.50 1.2856 4.09 1.4665 4.09 1.4665 5.40 1.470 5.5589 5.39 1.6845 6.00 1.8913 3.50 1.2856 4.00 1.4665 6.40 1.5865 5.50 1.7917 6.00 1.8913 3.50 1.2894 4.11 1.4134 4.77 1.5692 5.40 1.7919 6.00 1.8913 3.50 1.2894 4.11 1.4134 4.77 1.5693 5.59 1.7919 6.00 1.8913	No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
3.22 1.1694 3.88 1.2856 4.54 1.5129 5.20 1.6487 5.86 1.7681 3.24 1.1725 3.89 1.2854 4.55 1.5131 5.21 1.6506 5.87 1.7699 3.24 1.1725 3.89 1.2856 4.55 1.5173 5.22 1.6525 5.88 1.7716 3.25 1.1877 3.91 1.3635 4.57 1.5199 5.23 1.6526 5.88 1.7716 3.25 1.1877 3.92 1.2861 4.57 1.5195 5.23 1.6526 5.88 1.7716 3.25 1.1817 3.92 1.2861 4.57 1.5195 5.23 1.6526 5.89 1.7738 3.26 1.1817 3.92 1.2861 4.59 1.5237 5.24 1.6526 5.91 1.7736 3.28 1.1878 3.94 1.28712 4.00 1.5281 5.26 1.6526 5.91 1.7736 3.28 1.1878 3.94 1.28712 4.00 1.5281 5.26 1.6520 5.92 1.7788 3.29 1.1099 3.96 1.2727 4.61 1.5229 5.27 1.6620 5.92 1.7788 3.29 1.1999 3.96 1.2728 4.62 1.5394 5.29 1.6623 5.34 1.7817 3.31 1.090 3.96 1.2828 4.62 1.5394 5.29 1.6623 5.34 1.7817 3.33 1.2030 4.00 1.3863 4.63 1.5347 5.30 1.6677 5.86 1.7813 3.31 1.2030 4.01 1.3868 4.63 1.5399 5.22 1.0715 5.86 1.7821 3.33 1.2030 4.01 1.3868 4.63 1.5390 5.32 1.0716 5.86 1.7821 3.33 1.2030 4.01 1.3868 4.67 1.5412 5.33 1.6734 5.30 1.6757 5.86 1.7801 3.37 1.2119 4.02 1.3913 4.68 1.5434 5.33 1.6734 5.00 1.7913 3.37 1.2119 4.02 1.3913 4.68 1.5434 5.33 1.6734 6.00 1.7913 3.37 1.2119 4.02 1.3913 4.68 1.5434 5.33 1.6734 6.00 1.7913 3.39 1.2308 4.06 1.3867 4.70 1.5476 5.36 1.6771 6.01 1.7931 3.37 1.2119 4.02 1.3913 4.08 1.3915 5.34 1.6732 6.00 1.7913 3.39 1.2308 4.06 1.3867 4.70 1.5476 5.36 1.6790 6.00 1.7918 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.7918 3.41 1.2257 4.04 1.3862 4.70 1.5576 5.36 1.6790 6.00 1.7918 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.8913 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.8913 3.41 1.2257 4.07 1.4665 4.73 1.5589 5.39 1.6845 6.00 1.8913 3.49 1.2284 4.11 1.4134 4.77 1.5692 5.40 1.6901 6.00 1.8913 3.49 1.2284 4.01 1.4104 4.77 1.5692 5.40 1.6901 6.00 1.8913 3.49 1.2289 4.06 1.3864 6.00 1.8913 3.50 1.2856 4.09 1.4665 4.09 1.4665 5.40 1.470 5.5589 5.39 1.6845 6.00 1.8913 3.50 1.2856 4.00 1.4665 6.40 1.5865 5.50 1.7917 6.00 1.8913 3.50 1.2894 4.11 1.4134 4.77 1.5692 5.40 1.7919 6.00 1.8913 3.50 1.2894 4.11 1.4134 4.77 1.5693 5.59 1.7919 6.00 1.8913	3 21	1 1668	8 87	1 3588	4 58	1 5102	K 10	1 6467	R SK	1 7881
3.28 1.1726 3.90 1.3610 4.55 1.5151 5.21 1.6506 5.87 1.7699 3.25 1.1776 3.91 1.3635 4.57 1.5195 5.23 1.6514 5.89 1.7738 3.26 1.1817 3.92 1.3661 4.58 1.5271 5.24 1.6503 5.90 1.7730 3.27 1.1848 3.98 1.3896 4.59 1.5239 5.25 1.6826 5.90 1.7730 3.29 1.1909 3.95 1.3732 4.60 1.5239 5.25 1.6836 5.90 1.7730 3.29 1.1909 3.96 1.3732 4.60 1.5239 5.27 1.6620 5.93 1.7800 3.30 1.1939 3.96 1.3732 4.60 1.5239 5.27 1.6620 5.93 1.7800 3.31 1.1969 3.97 1.3788 4.63 1.5326 5.29 1.6639 5.94 1.7817 3.32 1.1969 3.96 1.3732 4.60 1.5326 5.29 1.6658 5.94 1.7817 3.33 1.2030 3.99 1.3838 4.63 1.5334 6.5 1.5343 5.30 1.6667 5.97 1.7867 3.34 1.2030 3.99 1.3838 4.63 1.5399 5.31 1.6696 5.97 1.7867 3.34 1.2030 3.99 1.3838 4.65 1.5337 5.30 1.6677 5.90 1.7831 3.35 1.2030 4.00 1.3886 4.65 1.5380 5.32 1.6715 5.99 1.7867 3.36 1.3119 4.02 1.3913 4.68 1.5433 5.33 1.6734 5.99 1.7907 3.38 1.2119 4.04 1.3962 4.07 1.5410 5.33 1.6732 6.00 1.7918 3.38 1.2208 4.06 1.4012 4.72 1.5518 5.38 1.6771 6.00 1.7918 3.44 1.2238 4.06 1.4012 4.72 1.5518 5.38 1.6771 6.00 1.7931 3.45 1.2238 4.06 1.4012 4.72 1.5518 5.38 1.6827 6.04 1.7934 3.46 1.2238 4.06 1.4012 4.73 1.5599 5.39 1.6845 6.06 1.7934 3.47 1.2246 4.08 1.4061 4.74 1.5560 5.40 1.6864 6.06 1.8017 3.44 1.2356 4.09 1.4085 4.75 1.5518 5.38 1.6827 6.04 1.7934 3.45 1.2384 4.11 1.4134 4.77 1.5525 5.40 1.6864 6.06 1.8017 3.46 1.2341 4.12 1.4159 4.77 1.5565 5.45 1.6996 6.07 1.8084 3.47 1.2246 4.13 1.4183 4.77 1.5525 5.42 1.6901 6.06 1.8017 3.48 1.2364 4.11 1.4134 4.77 1.5525 5.42 1.6901 6.07 1.8083 3.51 1.2378 4.18 1.4483 4.79 1.5686 5.46 1.7997 6.18 1.8181 3.55 1.2384 4.11 1.4384 4.77 1.5526 5.42 1.6901 6.07 1.8083 3.56 1.2387 4.18 1.4483 4.87 1.5810 5.55 1.7738 6.18 1.8181 3.56 1.2387 4.18 1.4483 5.18 1.5893 5.59 1.7716 6.18 1.8181 3.57 1.2384 4.11 1.4384 4.79 1.5685 5.45 1.7997 6.04 1.8883 3.59 1.2388 4.18 1.4889 5.50 1.5887 5.57 1.7717 6.23 1.8818 3.50 1.2386 4.90 1.4885 5.488 5.589 5.59 1.7718 6.23 1.8818 3.50 1.2387 4.18 1.4889 5.50 1.5887 5.58 1.7718 6.23 1.8818 3.50 1.2387 4.18 1.4889 5.50 1.5887 5.58 1.7718 6.23 1.							5.20		5.86	
3.24 1.1756 3.90 1.3610 4.56 1.5173 5.22 1.6525 5.88 1.7716 3.28 1.1617 3.92 1.3661 4.56 1.5217 5.24 1.6563 5.90 1.7750 3.28 1.1617 3.92 1.3661 4.59 1.5227 5.24 1.6563 5.90 1.7750 3.28 1.1618 3.98 1.3686 4.59 1.5227 5.24 1.6563 5.90 1.7750 3.28 1.1618 3.94 1.3712 4.60 1.5261 5.36 1.6614 5.59 11.7756 3.28 1.1618 3.94 1.3712 4.60 1.5261 5.36 1.6614 5.59 11.7758 3.29 1.1090 3.96 1.3737 4.61 1.5228 5.27 1.6820 5.33 1.7803 3.30 1.1090 3.97 1.3788 4.63 1.5360 5.29 1.6653 5.94 1.7817 3.31 1.969 3.97 1.3788 4.63 1.5347 5.30 1.6677 5.86 1.7831 3.33 1.2030 3.99 1.3838 4.64 1.5347 5.30 1.6677 5.86 1.7831 3.33 1.2030 3.99 1.3838 4.64 1.5347 5.30 1.6677 5.89 1.7863 3.33 1.2030 3.99 1.3888 4.65 1.5399 5.25 3.1 1.6759 6.00 1.7831 3.33 1.2030 3.99 1.3888 4.65 1.5399 5.32 1.0715 5.98 1.7843 3.33 1.2030 3.99 1.3888 4.65 1.5399 5.32 1.0715 5.98 1.7843 3.33 1.2030 3.99 1.3888 4.65 1.5399 5.32 1.0715 5.98 1.7843 3.33 1.2030 4.01 1.3888 4.65 1.5399 5.32 1.0715 5.98 1.7843 3.33 1.2030 4.01 1.3888 4.67 1.5419 5.38 1.6734 5.99 1.7901 3.37 1.219 4.02 1.5913 4.68 1.5433 5.34 1.6752 6.00 1.7913 3.37 1.219 4.02 1.5913 4.69 1.5454 5.95 1.6771 6.01 1.7934 3.38 1.219 4.02 1.5913 4.69 1.5454 5.95 1.6771 6.01 1.7934 3.34 1.2028 4.05 1.3987 4.70 1.5476 5.36 1.6790 6.03 1.7967 3.49 1.2028 4.05 1.3987 4.70 1.5476 5.36 1.6904 6.00 1.7918 3.49 1.2028 4.06 1.4012 4.72 1.5518 5.38 1.6827 6.06 1.7907 6.00 1.7918 3.49 1.2028 4.06 1.4012 4.72 1.5518 5.38 1.6827 6.06 1.8019 3.44 1.2257 4.07 1.4036 4.73 1.5539 5.49 1.6845 6.06 1.8019 3.44 1.2257 4.07 1.4036 4.73 1.5544 5.45 1.6901 6.06 1.8013 3.44 1.2257 4.07 1.4036 4.73 1.5544 5.45 1.6901 6.06 1.8013 3.44 1.2257 4.07 1.4036 4.73 1.5544 5.45 1.6901 6.06 1.8013 3.44 1.2257 4.07 1.4036 4.73 1.5544 5.44 1.4001 6.00 1.7918 3.44 1.2250 4.08 1.4061 1.4076 5.47 1.5544 5.47 1.5646 6.07 1.8018 3.20 1.2028 4.06 1.4012 4.73 1.5559 5.50 1.7017 6.16 6.01 1.8018 3.20 1.2028 4.06 1.4012 4.73 1.5559 5.50 1.7017 6.16 6.01 1.8018 3.20 1.2028 4.08 1.4014 4.77 1.5625 5.45 1.7091 6.00 1.8018 3.20 1.2028 4.10 1.4018 3.4018 3.20	3.23	1.1725	3.89	1.8584					5.87	
3.26 1.1817 3.92 1.38661 4.59 1.5227 5.24 1.6863 5.90 1.7750 3.29 1.1909 3.95 1.1909 3.96 1.1909 3.96 1.1909 3.96 1.1909 3.96 1.1909 3.96 1.7782 4.61 1.5288 5.27 1.6820 5.93 1.7803 3.20 1.1999 3.96 1.3737 4.61 1.5288 5.29 1.6820 5.93 1.7817 3.31 1.1999 3.98 1.3813 4.62 1.5304 5.28 1.6839 5.94 1.7817 3.33 1.2030 3.99 1.3828 4.65 1.5390 5.31 1.6666 5.97 1.7863 3.35 1.2119 4.02 1.3918 4.66 1.5890 5.32 1.6716 5.96 1.7831 3.37 1.2149 4.03 1.3988 4.69 1.5312 5.33 1.6716 6.00 1.7901 3.37 1.2149 4.0			3.90	1.8610			5.22		5.88	
3.27										
3.28					4.58		5.21		5.90	1.7750
3.39					4.59		0.20			1.7766
3.80 1.1939 3.96 1.3762 4.62 1.5304 5.98 1.6839 5.96 1.7817 3.32 1.1999 3.98 1.8813 4.63 1.5347 5.30 1.6677 5.96 1.7831 3.33 1.2030 3.99 1.8838 4.63 1.5347 5.30 1.6677 5.96 1.7831 3.34 1.2000 4.00 1.3863 4.65 1.5830 5.31 1.6966 5.97 1.7864 3.35 1.2119 4.02 1.5913 4.66 1.5830 5.31 1.6715 5.98 1.7891 3.37 1.2119 4.02 1.5968 4.69 1.5454 5.33 1.6715 5.98 1.7891 3.38 1.2179 4.04 1.3962 4.70 1.5467 5.36 1.6796 6.00 1.7931 3.40 1.2286 4.06 1.4061 4.72 1.5560 5.40 1.6864 6.06 1.8017 3.44 1.2336 4.10 1.4110 4.72 1.5581 5.34 1.6991 6.08										
3.31 1 1969 3.97 1.5788 4.68 1.5347 5.90 1.6638 5.96 1.7831 3.32 1 1.999 3.98 1.3813 4.64 1.5347 5.00 1.6677 5.96 1.7851 3.34 1 2.000 4.00 1.3888 4.65 1.5369 5.31 1.6696 5.97 1.7861 3.35 1 2.000 4.01 1.3888 4.67 1.5410 5.33 1.6734 5.98 1.7881 3.36 1.2119 4.02 1.5913 4.68 1.5410 5.33 1.6734 5.99 1.7901 3.36 1.2119 4.02 1.5913 4.68 1.5410 5.36 1.6770 6.00 1.7913 3.38 1.2219 4.04 1.3962 4.70 1.5476 5.36 1.6790 6.02 1.7913 3.41 1.2286 4.06 1.4012 4.72 1.5518 5.38 1.6827 6.04 1.7941 3.42 1.2294 4.07 1.4066 4.73 1.5549 5.37 1.6806 6.07								1 6630		
3.32 1.1999 3.98 1.3893 4.64 1.5347 5.30 1.6877 5.96 1.7887 3.34 1.2960 4.00 1.3868 4.65 1.5390 5.32 1.6715 5.98 1.7884 3.35 1.2090 4.01 1.3898 4.67 1.5418 5.33 1.6734 5.99 1.7891 3.37 1.219 4.08 1.3898 4.69 1.5454 5.36 1.6771 6.01 1.7918 3.37 1.219 4.04 1.3892 4.70 1.5476 5.36 1.6771 6.01 1.7918 3.38 1.2208 4.05 1.3987 4.71 1.5476 5.36 1.6771 6.02 1.7951 3.39 1.2208 4.06 1.4012 4.72 1.5518 5.36 1.6790 6.02 1.7951 3.40 1.2238 4.06 1.4012 4.72 1.5518 5.38 1.6827 6.03 1.7964 3.41 1.2236 4.09 1.4061 4.73 1.5580 5.39 1.6845 6.06 1.8017 3.42 1.2236 4.09 1.4061 4.73 1.5580 5.40 1.6884 6.06 1.8017 3.45 1.2328 4.10 1.4110 4.76 1.5622 5.42 1.6901 6.08 1.8050 3.45 1.2384 4.11 1.4134 4.77 1.5623 5.45 1.6901 6.08 1.8050 3.45 1.2384 4.11 1.4134 4.77 1.5623 5.45 1.6901 6.08 1.8053 3.47 1.242 4.13 1.4183 4.79 1.5645 5.45 1.6956 6.11 1.8099 3.48 1.2470 4.14 1.4207 4.80 1.5686 5.46 1.6974 6.12 1.8116 3.55 4.10 1.4327 4.80 1.5686 5.46 1.6974 6.12 1.8116 3.55 4.17 1.4279 4.80 1.5686 5.46 1.6974 6.12 1.8116 3.55 4.17 4.427 4.80 4.83 5.578 5.55 1.7047 6.16 1.8181 3.55 1.2528 4.16 1.4325 4.82 1.5728 5.48 1.7011 6.14 1.8148 3.55 1.2528 4.16 1.4327 4.85 1.5769 5.55 1.7047 6.16 1.8181 3.55 1.2528 4.18 4.194 4.87 4.85 1.5709 5.55 1.7047 6.16 1.8181 3.55 1.2528 4.18 4.194 4.87 4.85 1.5799 5.55 1.7047 6.16 1.8181 3.55 1.2528 4.18 4.194 4.87 4.85 1.5709 5.55 1.7047 6.16 1.8181 3.55 1.2528 4.29 1.4586 4.89 1.5872 5.55 1.7174 6.22 1.8176 3.55 1.2528 4.28 1.4540 4.91 5.993 5.55 1.7174 6.22 1.8136 4.91 4.444 4.477 5.565 5.57 1.7174 6.22										
3.33 1.9050 3.99 1.8838 4.65 1.5399 5.81 1.6696 5.97 1.7867 3.35 1.2000 4.01 1.3888 4.67 1.5390 5.32 1.6734 5.99 1.7801 3.35 1.2119 4.02 1.3913 4.68 1.5433 5.34 1.6732 6.00 1.7918 3.37 1.2149 4.02 1.3913 4.68 1.5433 5.34 1.6732 6.00 1.7918 3.38 1.2179 4.04 1.3962 4.70 1.5476 5.36 1.6770 6.01 1.7918 3.38 1.2179 4.04 1.3962 4.70 1.5476 5.36 1.6770 6.01 1.7918 3.39 1.2206 4.05 1.3967 4.71 1.5497 5.37 1.6808 6.03 1.7967 3.40 1.2233 4.06 1.4012 4.72 1.5518 5.33 1.6827 6.04 1.7934 3.41 1.2256 4.08 1.4061 4.74 1.5560 5.40 1.6864 6.05 1.8017 3.44 1.2355 4.10 1.4110 4.73 1.5581 5.41 1.6882 6.07 1.8034 3.45 1.2328 4.11 1.4134 4.77 1.5623 5.42 1.6901 6.08 1.8017 3.45 1.2324 4.13 4.12 1.4139 4.78 1.5644 5.44 1.6938 6.10 1.8083 3.47 1.2442 4.13 4.183 4.78 1.5664 5.45 4.10 1.4834 4.78 1.5664 5.45 4.10 1.8031 4.78 1.5668 5.45 1.6956 6.09 1.8063 3.45 1.2326 4.11 4.1439 4.78 1.5665 5.45 4.10938 6.10 1.8083 3.47 1.2442 4.13 4.12 4.139 4.78 1.5665 5.45 4.10938 6.10 1.8083 3.47 1.2442 4.13 4.183 4.78 1.5666 5.45 4.10938 6.10 1.8083 3.47 1.2442 4.13 4.183 4.78 1.5666 5.45 4.10938 6.10 1.8083 3.45 1.2470 4.14 4.297 4.80 1.5666 5.45 1.0956 6.17 1.8168 3.50 1.2528 4.16 4.1457 4.85 4.82 1.5730 5.51 1.7066 6.17 1.8168 3.55 1.2566 4.17 1.4879 4.83 1.5740 5.54 1.7106 6.18 1.8148 3.55 1.2666 4.28 1.4864 4.94 1.5873 5.55 1.7106 6.17 1.8143 4.18 4.	3.32		3.98		4.64		5.30		5.96	
3 35										
3.36 1.2119 4.02 1.3913 4.68 1.5438 5.34 1.6752 6.00 1.7918 3.37 1.2149 4.04 1.3962 4.70 1.5476 5.36 1.6790 6.02 1.7951 3.39 1.2208 4.05 1.4012 4.72 1.5518 5.36 1.6790 6.02 1.7951 3.39 1.2208 4.05 1.4012 4.72 1.5518 5.36 1.6790 6.02 1.7951 3.40 1.2238 4.06 1.4012 4.72 1.5518 5.36 1.6790 6.02 1.7951 3.40 1.2238 4.06 1.4012 4.72 1.5518 5.36 1.6827 6.04 1.7984 3.41 1.2257 4.07 1.4036 4.73 1.5539 5.39 1.6845 6.05 1.8013 3.42 1.2296 4.08 1.4061 4.74 1.5500 5.40 1.6864 6.06 1.8017 3.43 1.2328 4.09 1.4085 4.75 1.5560 5.40 1.6864 6.06 1.8017 3.44 1.2255 4.10 1.4110 4.78 1.5602 5.42 1.6901 6.08 1.8050 3.45 1.2384 4.11 1.4184 4.77 1.5623 5.43 1.6919 6.09 1.8066 3.46 1.2413 4.12 1.4139 4.78 1.5645 5.45 1.6956 6.11 1.8039 3.47 1.2424 4.13 1.4183 4.79 1.5665 5.45 1.6956 6.11 1.8039 3.45 1.2328 4.16 1.4297 4.80 1.5665 5.46 1.6974 6.12 1.8184 3.50 1.2556 4.17 1.4279 4.80 1.5685 5.46 1.6974 6.12 1.8116 3.50 1.2556 4.17 1.4279 4.80 1.5685 5.50 1.7017 6.16 1.8181 3.53 1.2556 4.17 1.4279 4.80 1.5685 5.50 1.7017 6.16 1.8181 3.53 1.2568 4.18 1.4303 4.84 1.5769 5.50 1.7017 6.16 1.8181 3.55 1.2564 4.22 1.4396 4.84 1.5810 5.55 1.7006 6.17 1.8197 3.55 1.2566 4.22 1.4396 4.84 1.5810 5.55 1.7106 6.17 1.8197 3.55 1.2566 4.22 1.4396 4.84 1.5810 5.55 1.7106 6.17 1.8197 3.55 1.2566 4.22 1.4396 4.84 1.5810 5.55 1.7106 6.17 1.8197 3.55 1.2566 4.22 1.4396 4.84 1.5810 5.55 1.7106 6.17 1.8197 3.55 1.2566 4.22 1.4396 4.84 1.5810 5.55 1.7106 6.17 1.8197 3.55 1.2566 4.22 1.4396 4.84 1.5810 5.57 1.7104 6.16 1.8181 3.56 1.2567 4.22 1.4396 4.89 1.5870 5.50 1.7014 6.16 1.8181 3.56 1.2566 4.28 1.4604 4.99 1.5892 5.56 1.7156 6.22 1.8278 3.56 1.2290 4.26 1.4493 4.92 1.5893 5.59 1.7104 6.16 1.8218 3.56 1.2290 4.26 1.4493 4.92 1.5893 5.59 1.7104 6.22 1.8218 3.56 1.2290 4.26 1.4493 4.92 1.5893 5.57 1.7104 6.22 1.8278 3.60 1.2290 4.26 1.4493 5.90 1.5892 5.56 1.7156 6.22 1.8278 3.60 1.2290 4.26 1.4493 5.90 1.5892 5.56 1.7156 6.22 1.8286 3.64 1.2290 4.26 1.4493 5.90 1.5892 5.56 1.7714 6.22 1.8394 3.60 1.2297 4.31 1.4406 5.06 1.6049 5.62 1.7246 6.26 1.8344 3.80 1										
3.37 1.9149 4.08 1.8968 4.69 1.5476 5.36 1.6771 6.02 1.7951 3.38 1.9179 4.04 1.3967 4.71 1.5476 5.36 1.6790 6.02 1.7951 3.40 1.9288 4.05 1.3967 4.71 1.5467 5.37 1.6808 6.03 1.7967 3.40 1.9288 4.05 1.3967 4.71 1.5497 5.37 1.6808 6.03 1.7967 3.41 1.9267 4.07 1.4066 4.73 1.5599 5.39 1.6845 6.05 1.8001 3.42 1.9296 4.08 1.4061 4.74 1.5590 5.39 1.6845 6.05 1.8001 3.43 1.3226 4.09 1.4065 4.75 1.5581 5.41 1.6862 6.06 1.8017 3.44 1.3255 4.10 1.4110 4.76 1.5662 5.42 1.6901 6.08 1.8013 3.45 1.2384 4.11 1.4184 4.77 1.5623 5.43 1.6919 6.09 1.8063 3.46 1.2413 4.12 1.4159 4.78 1.5645 5.45 1.6956 6.11 1.8083 3.47 1.9442 4.13 1.4183 4.79 1.5665 5.45 1.6956 6.11 1.8083 3.49 1.3270 4.14 1.4907 4.80 1.5668 5.45 1.6956 6.11 1.8043 3.50 1.2528 4.16 1.4255 4.52 1.5728 5.48 1.7011 6.14 1.8143 3.51 1.2556 4.17 1.4879 4.83 1.5707 5.47 1.6998 6.13 1.8182 3.52 1.2586 4.18 1.4303 4.81 1.5707 5.47 1.6998 6.18 1.8183 3.53 1.3913 4.19 1.4327 4.85 1.5790 5.50 1.7047 6.16 1.8181 3.54 1.39641 4.20 1.4351 4.86 1.5810 5.52 1.7066 6.17 1.8197 3.54 1.3964 4.22 1.4398 4.88 1.5813 5.55 1.7102 6.19 1.8249 3.55 1.2766 4.23 1.4462 4.89 1.5892 5.55 1.71720 6.20 1.8245 3.57 1.3726 4.28 1.4464 4.90 1.5892 5.56 1.7156 6.22 1.8278 3.56 1.3908 4.28 1.4636 4.98 1.5933 5.57 1.7174 6.28 1.8310 3.61 1.2897 4.27 1.4516 4.98 1.5933 5.56 1.7387 6.26 1.8313 3.61 1.2897 4.27 1.4516 4.98 1.5933 5.55 1.7716 6.22 1.8378 3.63 1.3294 4.28 1.4636 4.99 1.5094 5.66 1.7387 6.30 1.8454 3.77 1.3110 4.37 1.4792 5.00 1.6094 5.66 1.7387 6.30 1.8454 3.79 1.3083 4.98 1.4658 5.00 1.609										
3.83 1.2179 4.04 1.3962 4.70 1.5476 5.36 1.6790 6.02 1.7967 3.40 1.2208 4.06 1.4012 4.72 1.5487 5.37 1.6808 6.03 1.7967 3.40 1.2298 4.06 1.4012 4.73 1.5589 5.38 1.6827 6.04 1.7984 3.42 1.2296 4.08 1.4061 4.73 1.5589 5.38 1.6827 6.04 1.7984 3.43 1.2326 4.09 1.4085 4.75 1.5581 5.41 1.6882 6.07 1.8034 3.44 1.2355 4.10 1.4110 4.76 1.5602 5.42 1.6901 6.09 1.8068 3.46 1.2413 4.13 1.4183 4.77 1.5635 5.43 1.6919 6.09 1.8064 3.49 1.2499 4.15 1.4231 4.18 4.72 1.5655 5.45 1.9956 6.11 1.8116 3.50				1.5915						1.7918
3.39				1 3069	4.70	1.5478				1 7051
3.40 1.9288 4.06 1.4012 4.72 1.5518 5.38 1.6827 6.04 1.7984 3.41 1.9286 4.08 1.4061 4.73 1.5589 5.39 1.6845 6.06 1.8001 3.43 1.3296 4.09 1.4081 4.75 1.5580 5.40 1.8882 6.06 1.8017 3.44 1.3285 4.01 1.4110 4.76 1.5602 5.42 1.6901 6.09 1.8068 3.45 1.2384 4.11 1.4184 4.77 1.5623 5.43 1.6919 6.09 1.8068 3.46 1.2413 4.12 1.4189 4.78 1.5644 5.44 1.6983 6.01 1.8083 3.47 1.2432 4.14 1.4807 4.80 1.5665 5.45 1.6956 6.11 1.8099 3.50 1.2556 4.17 1.4297 4.88 1.5789 5.48 1.7011 6.14 1.8143 3.50 1.2556 <td></td> <td></td> <td></td> <td>1.3987</td> <td>4.71</td> <td>1.5497</td> <td></td> <td></td> <td></td> <td>1.7967</td>				1.3987	4.71	1.5497				1.7967
3.41 1.9287 4.07 1.4086 4.73 1.5590 5.39 1.6845 6.06 1.8001 3.42 1.2926 4.09 1.4085 4.75 1.5580 5.41 1.6882 6.07 1.8014 3.44 1.2355 4.10 1.4100 4.76 1.5622 5.42 1.9901 6.08 1.8063 3.46 1.2384 4.11 1.4134 4.77 1.5622 5.43 1.6919 6.09 1.8068 3.47 1.2442 4.13 1.4183 4.79 1.5685 5.45 1.6968 6.10 1.8089 3.48 1.2499 4.14 1.4207 4.80 1.5686 5.46 1.6974 6.12 1.8116 3.50 1.2528 4.16 1.4255 4.82 1.5728 5.48 1.7011 6.14 1.8182 3.51 1.2586 4.18 1.4803 4.81 1.5790 5.51 1.7047 6.16 1.8118 3.52 1.2586 <td></td> <td></td> <td></td> <td></td> <td>4.72</td> <td></td> <td></td> <td></td> <td></td> <td></td>					4.72					
3.43 1.3296 4.09 1.4085 4.75 1.5891 5.41 1.6882 6.07 1.8034 3.44 1.2355 4.01 1.4110 4.78 1.5602 5.42 1.6901 6.08 1.8080 3.45 1.2384 4.11 1.4184 4.77 1.5623 5.43 1.6919 6.09 1.8068 3.46 1.2413 4.18 1.418 4.77 1.5623 5.43 1.6919 6.09 1.8069 3.47 1.2424 4.13 1.4183 4.79 1.5665 5.46 1.6974 6.12 1.8118 3.49 1.2499 4.15 1.42931 4.81 1.5789 5.48 1.7011 6.14 1.8118 3.50 1.2528 4.16 1.4297 4.83 1.5789 5.48 1.7017 6.16 1.8181 3.51 1.2556 4.17 1.4293 4.85 1.5799 5.50 1.7047 6.16 1.8181 3.52 1.2686 <td>3.41</td> <td></td> <td></td> <td>1.4036</td> <td></td> <td>1.5589</td> <td></td> <td></td> <td></td> <td>1.8001</td>	3.41			1.4036		1.5589				1.8001
3.44										
3.45 1.2384 4.11 1.4184 4.77 1.5623 5.43 1.6819 6.00 1.8083 3.46 1.2413 4.13 1.4183 4.79 1.5665 5.45 1.6956 6.10 1.8083 3.47 1.2442 4.13 1.4183 4.79 1.5665 5.45 1.6956 6.11 1.8093 3.48 1.2470 4.14 1.4807 4.80 1.5686 5.46 1.6974 6.12 1.8116 3.50 1.2528 4.16 1.4257 4.81 1.5707 5.47 1.6993 6.13 1.8182 3.51 1.2556 4.17 1.4279 4.81 1.5789 5.50 1.7017 6.16 1.8183 3.53 1.2585 4.18 1.4327 4.85 1.5789 5.50 1.7017 6.16 1.8181 3.54 1.3641 4.20 1.4851 4.86 1.5810 5.52 1.7084 6.18 1.8213 3.55 1.3699 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
3.46		1.2355			4.76		5.42		6.08	
3.47 1.2442 4.13 1.4183 4.79 1.5668 5.45 1.6656 6.11 1.8069 3.48 1.2470 4.14 1.4297 4.80 1.5686 5.46 1.6974 6.12 1.8116 3.49 1.2429 4.15 1.4221 4.81 1.5707 5.47 1.6993 6.18 1.8132 3.50 1.2526 4.16 1.4251 4.81 1.5707 5.47 1.0993 6.18 1.8132 3.51 1.2556 4.17 1.4279 4.83 1.5748 5.49 1.7029 6.15 1.8165 3.52 1.2556 4.18 1.4303 4.84 1.5769 5.50 1.7017 6.16 1.8181 3.53 1.3613 4.19 1.4327 4.85 1.5780 5.50 1.7017 6.16 1.8181 3.54 1.2614 4.20 1.4351 4.86 1.5709 5.50 1.7017 6.16 1.8181 3.55 1.3669 4.21 1.4875 4.87 1.5831 5.53 1.7102 6.19 1.8213 3.55 1.3609 4.22 1.4398 4.88 1.5851 5.54 1.7120 6.20 1.8215 3.57 1.2726 4.23 1.4422 4.89 1.5872 5.55 1.77084 6.18 1.8213 3.56 1.2908 4.22 1.4398 4.88 1.5851 5.54 1.7120 6.20 1.8215 3.57 1.2726 4.23 1.4422 4.89 1.5872 5.55 1.7138 6.21 1.8202 3.59 1.2782 4.25 1.4469 4.91 1.5913 5.57 1.7174 6.23 1.8244 3.60 1.2809 4.2 1.4493 4.99 1.5872 5.55 1.77126 6.22 1.8278 3.62 1.2865 4.28 1.4640 4.91 1.5913 5.57 1.7174 6.23 1.8243 3.64 1.2920 4.20 1.4586 4.98 1.5933 5.58 1.7192 6.26 1.8234 3.65 1.2947 4.31 1.4699 4.91 1.5913 5.57 1.7124 6.24 1.8310 3.66 1.2975 4.32 1.4586 4.96 1.6014 5.62 1.7263 6.26 1.8312 3.67 1.3002 4.30 1.4586 4.96 1.6014 5.62 1.7263 6.26 1.8312 3.68 1.2947 4.31 1.4609 4.97 1.6034 5.62 1.7263 6.26 1.8313 3.69 1.3056 4.35 1.4702 5.01 1.6044 5.65 1.7377 6.31 1.8493 3.70 1.3002 4.38 1.4656 4.99 1.6074 5.65 1.7377 6.31 1.8493 3.71 1.3110 4.37 1.4748 5.03 1.6044 5.67 1.7352 6.33 1.8453 3.77 1.3214 4.43 1.4469 5.00 1.6245 5.73 1.7346 6.38 1.8353 3.78 1.3083 4.48 1.4770 5.00 1.6044 5.66 1.7377 6.38 1.8453 3.79 1.3083 4.48 1.4770 5.00 1.6245 5.77 1.7357 6.48 1.8369 3.77 1.3227 4.44 1.4486 5.00 1.6253 5.77 1.7456 6.48 1.8594 3.77 1.3257 4.48 1.4861 5.06 1.6044 5.72 1.7475 6.49 1.8594 3.79 1.3324 4.45 1.4929 5.11 1.6332 5.77 1.7357 6.43 1.8594 3.79 1.3324 4.45 1.4861 5.06 1.6243 5.77 1.7357 6.48 1.8594 3.70 1.3083 4.86 1.4770 5.00 1.6292 5.76 1.7559 6.47 1.8594 3.77 1.3277 4.44 1.4486 5.00 1.6253 5.77 1.7457 6.49 1.8594 3.79 1.3324 4.45 1.4861 5.06 1.6253 5.77 1.7457 6.43 1.8594 3.77									0.09	
3.48 1.2470 4.14 1.4807 4.80 1.5686 5.46 1.6974 6.12 1.8116 3.49 1.2499 4.16 1.4825 4.82 1.5728 5.48 1.7011 6.14 1.8182 3.51 1.2528 4.16 1.4827 4.82 1.5728 5.48 1.7011 6.14 1.8183 3.51 1.2586 4.17 1.4827 4.85 1.5728 5.48 1.7017 6.15 1.8183 3.53 1.2586 4.18 1.4803 4.84 1.5769 5.50 1.7047 6.16 6.18 1.8183 3.54 1.3641 4.20 1.4851 4.86 1.5810 5.51 1.7064 6.17 1.8197 3.55 1.3669 4.21 1.4875 4.87 1.5811 5.53 1.7102 6.19 1.8224 3.56 1.2898 4.23 1.4422 4.89 1.5872 5.55 1.7138 6.21 1.8262 3.57					4 79					
8.49 1.2499 4.15 1.4821 4.81 1.5707 5.47 1.6998 6.18 1.8192 8.50 1.2528 4.16 1.4925 4.82 1.5728 5.48 1.7011 6.14 1.8148 8.51 1.2536 4.17 1.4279 4.83 1.5728 5.49 1.7029 6.15 1.8185 8.52 1.2586 4.18 1.4303 4.84 1.5769 5.50 1.7047 6.16 1.8181 8.53 1.2613 4.19 1.4327 4.85 1.5790 5.50 1.7047 6.16 1.8181 8.53 1.2613 4.19 1.4327 4.85 1.5790 5.50 1.7047 6.16 1.8181 8.53 1.2614 4.20 1.4351 4.86 1.5810 5.52 1.7064 6.17 1.8197 8.54 1.2641 4.20 1.4351 4.86 1.5810 5.52 1.7064 6.18 1.8213 8.55 1.2669 4.21 1.4375 4.87 1.5831 5.53 1.7102 6.19 1.8229 8.56 1.2669 4.22 1.4398 4.88 1.5851 5.54 1.7120 6.20 1.8245 8.57 1.3726 4.23 1.4422 4.89 1.5872 5.55 1.7138 6.21 1.8262 8.58 1.2754 4.24 1.4446 4.90 1.5892 5.56 1.71756 6.22 1.8278 8.59 1.2782 4.25 1.4469 4.91 1.5913 5.57 1.7174 6.23 1.8294 8.59 1.2878 4.27 1.4516 4.93 1.5953 5.59 1.7210 6.25 1.8238 8.61 1.2890 4.28 1.4469 4.91 1.5913 5.57 1.7174 6.28 1.8294 8.62 1.2865 4.28 1.4540 4.93 1.5953 5.59 1.7210 6.25 1.8283 8.63 1.2892 4.29 1.4583 4.95 1.5994 5.61 1.7228 6.26 1.8312 8.64 1.2920 4.30 1.4586 4.96 1.6014 5.62 1.7283 6.28 1.8314 8.65 1.2947 4.31 1.4609 4.97 1.6034 5.61 1.7286 6.28 1.8314 8.66 1.3025 4.38 1.4633 4.95 1.6044 5.62 1.7283 6.28 1.8314 8.67 1.3002 4.33 1.4656 4.99 1.6074 5.65 1.7376 6.28 1.8313 8.68 1.3029 4.34 1.4679 5.00 1.6094 5.66 1.7387 6.30 1.8405 8.77 1.3083 4.38 1.4702 5.01 1.6014 5.67 1.7352 6.33 1.8453 8.70 1.3083 4.38 1.4793 5.00 1.6094 5.66 1.7387 6.33 1.8453 8.71 1.3164 4.39 1.4793 5.00 1.6094 5.66 1.7387 6.34 1.8403 8.72 1.3184 4.49 1.4686 5.09 1.6044 5.67 1.7352 6.33 1.8453 8.73 1.3083 4.38 1.4779 5.00 1.6094 5.66 1.7387 6.34 1.8403 8.77 1.3210 4.37 1.4748 5.09 1.6024 5.67 1.7352 6.34 1.8403 8.77 1.3227 4.48 1.4489 5.07 1.6223 5.76 1.7509 6.42 1.8504 8.77 1.3227 4.48 1.44861 5.08 1.6253 5.77 1.7346 6.48 1.8504 8.78 1.3364 4.49 1.4686 5.08 1.6235 5.77 1.7367 6.46 1.8504 8.79 1.3364 4.48 1.4907 5.10 1.6292 5.76 1.7509 6.42 1.8594 8.79 1.3364 4.48 1.4907 5.10 1.6292 5.76 1.7509 6.42 1.8594 8.81 1.3376 4.48 1.4907 5.10 1.6292 5.76 1.7509 6.42 1.8594 8.81										
8.50 1.8528 4.16 1.4855 4.82 1.5788 5.48 1.7011 6.15 1.8185 3.51 1.2556 4.17 1.4279 4.88 1.5788 5.49 1.7029 6.15 1.8185 3.52 1.2585 4.18 1.4908 4.84 1.5769 5.50 1.7017 6.16 1.8181 3.54 1.3641 4.20 1.4851 4.85 1.5780 5.52 1.7084 6.18 1.8181 3.55 1.3669 4.21 1.4875 4.87 1.5810 5.52 1.7084 6.18 1.8213 3.56 1.36996 4.22 1.4896 4.88 1.5851 5.53 1.7102 6.19 1.8245 3.57 1.2726 4.23 1.4422 4.99 1.5872 5.55 1.7156 6.21 1.8268 3.58 1.2754 4.24 1.4469 4.91 1.5913 5.57 1.7174 6.23 1.8294 3.60 1.2896 </td <td></td> <td></td> <td></td> <td>1.4231</td> <td></td> <td></td> <td></td> <td></td> <td>6.18</td> <td></td>				1.4231					6.18	
3.52 1.8586 4.18 1.4803 4.84 1.5709 5.50 1.7017 6.16 1.8181 3.53 1.3813 4.19 1.4827 4.85 1.5709 5.55 11.7066 6.17 1.8187 3.54 1.3641 4.20 1.4851 4.86 1.5810 5.52 1.7084 6.18 1.8213 3.55 1.3609 4.21 1.4875 4.87 1.5831 5.53 1.7102 6.19 1.8223 3.57 1.2726 4.23 1.4422 4.89 1.5872 5.55 1.7708 6.20 1.8245 3.57 1.2726 4.23 1.4422 4.89 1.5872 5.55 1.77138 6.21 1.8203 3.58 1.2754 4.24 1.4446 4.90 1.5892 5.55 1.77138 6.21 1.8203 3.59 1.2738 4.25 1.4469 4.91 1.5913 5.57 1.7174 6.23 1.8234 3.60 1.2809 4.26 1.4493 4.92 1.5933 5.58 1.77192 6.24 1.8310 3.61 1.2867 4.27 1.4516 4.93 1.5933 5.58 1.77192 6.26 1.8228 3.62 1.2865 4.28 1.4540 4.94 1.5974 5.60 1.7228 6.26 1.8324 3.63 1.2929 4.29 1.4553 4.95 1.5994 5.61 1.7246 6.26 1.8312 3.64 1.2920 4.30 1.4586 4.96 1.6014 5.62 1.7263 6.28 1.8334 3.65 1.2947 4.31 1.4609 4.97 1.6034 5.62 1.7263 6.28 1.8374 3.66 1.2975 4.32 1.4634 4.98 1.6054 5.64 1.7299 6.30 1.8405 3.67 1.3002 4.33 1.4656 4.96 1.6014 5.62 1.7263 6.28 1.8374 3.69 1.3056 4.35 1.4702 5.01 1.6044 5.66 1.7337 6.31 1.8421 3.70 1.3003 4.38 1.4702 5.01 1.6044 5.66 1.7387 6.34 1.8403 3.71 1.3110 4.37 1.4748 5.03 1.6144 5.70 1.7345 6.32 1.8437 3.72 1.3137 4.38 1.4703 5.00 1.6144 5.70 1.7345 6.33 1.8453 3.73 1.3083 4.36 1.4725 5.02 1.6134 5.67 1.7352 6.33 1.8453 3.74 1.3191 4.40 1.4816 5.06 1.6214 5.72 1.7445 6.38 1.8503 3.77 1.3224 4.43 1.4769 5.00 1.6225 5.76 1.7375 6.38 1.8503 3.78 1.3164 4.39 1.4778 5.00 1.6225 5.76 1.7375 6.38 1.8503 3.79 1.3083 4.36 1.4725 5.00 1.6245 5.77 1.7357 6.38 1.8503 3.79 1.3083 4.36 1.4729 5.00 1.6235 5.77 1.7357 6.38 1.8503 3.79 1.3083 4.36 1.4729 5.00 1.6225 5.76 1.7359 6.48 1.8503 3.79 1.3083 4.36 1.4729 5.00 1.6235 5.77 1.7357 6.48 1.8503 3.79 1.3324 4.41 1.4839 5.07 1.6233 5.77 1.7357 6.48 1.8503 3.79 1.3324 4.48 1.4770 5.00 1.6235 5.77 1.7357 6.48 1.8503 3.79 1.3324 4.41 1.4839 5.07 1.6233 5.77 1.7357 6.48 1.8503 3.79 1.3324 4.48 1.4484 5.09 5.07 1.6239 5.77 1.7357 6.48 1.8503 3.79 1.3324 4.48 1.4861 5.06 1.6235 5.77 1.7357 6.48 1.8504 3.79 1.3324 4.48 1.4861 5.06 1.6235 5.77 1.7357 6.48 1.8		1.2528	4.16	1.4255	4.82	1.5728		1.7011		
3.53				1.4279						
3.54				1.4303						
3.55 1.9669 4.21 1.4875 4.87 1.5831 5.53 1.7102 6.19 1.8225 3.56 1.3998 4.22 1.4398 4.88 1.5851 5.54 1.7102 6.20 1.8225 3.57 1.2726 4.23 1.4422 4.89 1.5872 5.55 1.7138 6.21 1.8226 3.59 1.2782 4.25 1.4446 4.91 1.5982 5.56 1.7174 6.22 1.8278 3.60 1.2807 4.26 1.4493 4.92 1.5933 5.56 1.7174 6.23 1.8244 3.62 1.2867 4.27 1.4516 4.93 1.5953 5.59 1.7174 6.24 1.8310 3.63 1.2896 4.28 1.4560 4.94 1.5974 5.60 1.7226 6.26 1.8388 3.64 1.2892 4.20 1.4563 4.96 1.6044 5.62 1.72286 6.28 1.8374 3.65 1.2947 </td <td></td> <td></td> <td></td> <td>1.4021</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				1.4021						
3.56 1.2996 4.22 1.4396 4.88 1.5851 5.54 1.7120 6.90 1.8245 3.57 1.2726 4.23 1.4422 4.89 1.5872 5.55 5.7138 6.21 1.8263 3.59 1.2784 4.24 1.4469 4.91 1.5913 5.57 1.7136 6.22 1.8278 3.59 1.2809 4.26 1.4469 4.91 1.5913 5.57 1.7172 6.23 1.8294 3.61 1.2807 4.27 1.4516 4.93 1.5933 5.59 1.7210 6.25 1.8310 3.62 1.2865 4.28 1.4540 4.91 1.5933 5.59 1.7210 6.25 1.8383 3.63 1.2892 4.29 1.4563 4.95 1.5944 5.60 1.7228 6.26 1.8312 3.64 1.2920 4.30 1.4686 4.96 1.6014 5.62 1.7281 6.28 1.8374 3.65 1.2947 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
3.57 1.2726 4.28 1.4462 4.99 1.5872 5.55 1.7138 6.22 1.8278 3.59 1.2754 4.24 1.4446 4.90 1.5892 5.55 6.1 7.7156 6.22 1.8278 3.59 1.2782 4.25 1.4469 4.91 1.5913 5.57 1.7174 6.23 1.8294 3.60 1.8809 4.26 1.4498 4.92 1.5933 5.58 1.7192 6.24 1.8310 3.61 1.2867 4.27 1.4516 4.93 1.5953 5.59 1.7210 6.25 1.8226 3.62 1.2865 4.28 1.4540 4.94 1.5974 5.60 1.7228 6.26 1.8312 3.63 1.2892 4.29 1.4553 4.95 1.5994 5.61 1.7246 6.27 1.8358 3.64 1.2929 4.30 1.4563 4.95 1.5994 5.61 1.7246 6.27 1.8358 3.65 1.2947 4.31 1.4609 4.97 1.6034 5.62 1.7283 6.28 1.8374 3.65 1.2947 4.31 1.4609 4.97 1.6034 5.62 1.7283 6.28 1.8374 3.65 1.2947 4.31 1.4606 4.99 1.6074 5.65 1.7289 6.30 1.8405 3.67 1.3002 4.38 1.4656 4.99 1.6074 5.65 1.7317 6.31 1.8421 3.69 1.3056 4.35 1.4702 5.01 1.6014 5.67 1.7352 6.30 1.8433 3.70 1.3083 4.36 1.4702 5.01 1.6114 5.67 1.7352 6.38 1.8437 3.71 1.3110 4.37 1.4748 5.03 1.6154 5.69 1.7387 6.34 1.8469 3.71 1.3110 4.37 1.4748 5.03 1.6154 5.69 1.7387 6.34 1.8469 3.72 1.3187 4.38 1.4770 5.04 1.6174 5.70 1.7405 6.36 1.8405 3.73 1.3164 4.39 1.4770 5.04 1.6174 5.70 1.7405 6.36 1.8503 3.74 1.3191 4.40 1.4816 5.06 1.6214 5.72 1.7440 6.38 1.8503 3.75 1.3248 4.41 1.4889 5.07 1.6233 5.75 1.7457 6.39 1.8516 3.76 1.3324 4.45 1.4893 5.07 1.6233 5.75 1.7457 6.39 1.8516 3.77 1.3218 4.41 1.4889 5.07 1.6233 5.75 1.7492 6.41 1.8579 3.78 1.3248 4.45 1.4894 5.09 1.6233 5.75 1.7492 6.41 1.8579 3.79 1.3324 4.45 1.4894 5.09 1.6233 5.75 1.7557 6.49 1.8516 3.81 1.3267 4.44 1.4889 5.07 1.6233 5.75 1.7557 6.49 1.8516 3.81 1.3269 4.45 1.4894 5.10 1.6332 5.77 1.7577 6.43 1.8516 3.82 1.3499 4.45 1.4909 5.11 1.6332 5.77 1.7577 6.43 1.8519 3.83 1.3320 4.46 1.4951 5.12 1.6332 5.76 1.7599 6.42 1.8519 3.84 1.3489 4.45 1.4909 5.11 1.6332 5.77 1.7577 6.46 1.8612 3.84 1.3489 4.45 1.4909 5.15 1.6330 5.81 1.7596 6.47 1.8672 3.84 1.3480 4.45 1.4903 5.16 1.6439 5.83 1.7590 6.42 1.8672			4.22							
3.58 1.2754 4.24 1.4446 4.90 1.5892 5.56 1.7156 6.22 1.8278 3.59 1.2782 4.26 1.4493 4.92 1.5983 5.58 1.7192 6.24 1.8310 3.60 1.2897 4.26 1.4493 4.92 1.5983 5.58 1.7192 6.24 1.8310 3.61 1.2865 4.28 1.4540 4.94 1.5933 5.59 1.7210 6.25 1.8324 3.63 1.2892 4.29 1.4563 4.95 1.5944 5.61 1.7228 6.26 1.8312 3.64 1.2892 4.30 1.4863 4.95 1.5944 5.61 1.7228 6.28 1.8374 3.65 1.2947 4.31 1.4609 4.97 1.6034 5.63 1.7281 6.29 1.8389 3.66 1.29375 4.32 1.4633 4.98 1.6044 5.64 1.7299 6.30 1.8409 3.67 1.3002 </td <td></td> <td>1.2726</td> <td>4.23</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1.2726	4.23							
3.60	3.58	1.2754	4.24		4.90		5.56	1.7156	6.22	
3.61 1.2897 4.27 1.4516 4.98 1.5953 5.59 1.7210 6.25 1.8328 3.62 1.2895 4.28 1.4540 4.94 1.5974 5.60 1.7226 6.28 1.8342 3.63 1.2892 4.29 1.4568 4.95 1.5994 5.61 1.7226 6.28 1.8384 3.64 1.2920 4.30 1.4686 4.96 1.6014 5.62 1.7281 6.28 1.8374 3.65 1.2917 4.31 1.4699 4.97 1.6084 5.63 1.7281 6.28 1.8374 3.66 1.3975 4.32 1.4633 4.98 1.6054 5.64 1.7289 6.80 1.8402 3.68 1.3029 4.34 1.4679 5.00 1.6094 5.66 1.7334 6.32 1.8421 3.69 1.3056 4.35 1.4702 5.01 1.6114 5.67 1.7370 6.31 1.8437 3.71 1.3110 <td></td> <td>1.2782</td> <td>4.25</td> <td></td> <td></td> <td></td> <td>5.57</td> <td>1.7174</td> <td></td> <td></td>		1.2782	4.25				5.57	1.7174		
3.62 1.2865 4.28 1.4540 4.94 1.5974 5.60 1.7228 6.26 1.8312 3.63 1.2892 4.29 1.4563 4.96 1.5994 5.61 1.7246 6.27 1.8358 3.64 1.2920 4.30 1.4586 4.96 1.6014 5.62 1.7283 6.28 1.8374 3.65 1.2947 4.31 1.4609 4.97 1.6034 5.63 1.7281 6.29 1.8930 3.66 1.2975 4.32 1.4656 4.99 1.6074 5.65 1.7317 6.31 1.8405 3.67 1.3002 4.33 1.4656 4.99 1.6074 5.65 1.7317 6.31 1.8427 3.69 1.3056 4.35 1.4702 5.01 1.6114 5.67 1.7352 6.33 1.8433 3.70 1.3083 4.36 1.4772 5.01 1.6114 5.67 1.7357 6.34 1.8469 3.72 1.3137 <td></td> <td>1.2809</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1.2809								
3.63 1.2892 4.29 1.4563 4.95 1.5994 5.61 1.7246 6.87 1.8383 3.64 1.2920 4.30 1.4566 4.96 1.6014 5.62 1.7263 6.28 1.8374 3.65 1.2947 4.31 1.4609 4.97 1.6034 5.63 1.7281 6.29 1.8390 3.66 1.3975 4.32 1.4633 4.98 1.6064 5.64 1.7299 6.30 1.8421 3.68 1.3029 4.34 1.4679 5.00 1.6044 5.66 1.7317 6.31 1.8421 3.70 1.3083 4.36 1.4702 5.01 1.6114 5.67 1.7352 6.33 1.8453 3.71 1.3187 4.38 1.4702 5.02 1.6134 5.68 1.7370 6.34 1.8469 3.71 1.3194 4.37 1.4748 5.03 1.6154 5.69 1.7397 6.34 1.8469 3.72 1.3137 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.7210</td> <td>6.25</td> <td></td>								1.7210	6.25	
3.64 1.2920 4.30 1.4586 4.96 1.6014 5.62 1.7283 6.29 1.8390 3.65 1.2947 4.31 1.4693 4.98 1.6054 5.63 1.7283 6.29 1.8930 3.66 1.2975 4.32 1.4633 4.98 1.6054 5.64 1.7299 6.30 1.8405 3.67 1.3002 4.34 1.4656 4.99 1.6074 5.65 1.7317 6.31 1.8421 3.69 1.3056 4.35 1.4702 5.01 1.6044 5.66 1.7334 6.32 1.8437 3.70 1.3083 4.36 1.4702 5.01 1.6144 5.67 1.7352 6.33 1.8453 3.71 1.3110 4.37 1.4748 5.08 1.6154 5.69 1.7387 6.85 1.8459 3.72 1.3184 4.39 1.4770 5.04 1.6174 5.70 1.7452 6.36 1.8500 3.73 1.3164 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5974</td> <td></td> <td>1.7228</td> <td></td> <td></td>						1.5974		1.7228		
3.65 1.2947 4.31 1.4609 4.97 1.6034 5.63 1.7281 6.29 1.8930 3.66 1.2975 4.32 1.4633 4.98 1.6054 5.64 1.7299 6.30 1.8421 3.68 1.3022 4.33 1.4679 5.00 1.6044 5.65 1.7317 6.31 1.8421 3.69 1.3056 4.35 1.4725 5.02 1.6114 5.67 1.7352 6.33 1.8433 3.70 1.3083 4.36 1.4725 5.02 1.6194 5.68 1.7370 6.34 1.8490 3.71 1.3110 4.37 1.4748 5.03 1.6154 5.69 1.7387 6.35 1.8500 3.73 1.3164 4.39 1.4793 5.05 1.6194 5.71 1.7420 6.36 1.8500 3.74 1.3191 4.40 1.4816 5.06 1.6214 5.72 1.7440 6.87 1.8516 3.76 1.3248 <td></td> <td></td> <td>4.30</td> <td>1.4506</td> <td>4.96</td> <td></td> <td></td> <td></td> <td></td> <td></td>			4.30	1.4506	4.96					
3.66 1.2975 4.32 1.4683 4.98 1.6064 5.64 1.7289 6.80 1.8405 3.67 1.3002 4.38 1.4666 4.99 1.6074 5.65 1.7317 6.31 1.8421 3.68 1.3029 4.34 1.4679 5.00 1.6094 5.66 1.7334 6.32 1.8437 3.69 1.3056 4.35 1.4702 5.01 1.6114 5.66 1.7370 6.33 1.8453 3.71 1.3103 4.36 1.4748 5.08 1.6154 5.69 1.7387 6.34 1.8469 3.72 1.3137 4.38 1.4779 5.04 1.6174 5.70 1.7466 6.36 1.8370 6.34 1.8469 3.73 1.3164 4.39 1.4798 5.05 1.6194 5.71 1.7422 6.37 1.8516 3.74 1.3191 4.40 1.4816 5.06 1.6214 5.72 1.7440 6.38 1.8512 <t< td=""><td></td><td></td><td>4.31</td><td>1.4609</td><td>4.97</td><td></td><td></td><td></td><td></td><td></td></t<>			4.31	1.4609	4.97					
8.88 1.8029 4.34 1.4679 5.00 1.6094 5.66 1.7334 6.82 1.8137 3.69 1.3056 4.35 1.4702 5.01 1.6114 5.67 1.7352 6.33 1.8453 3.70 1.3083 4.36 1.4728 5.02 1.6134 5.68 1.7370 6.34 1.8469 3.71 1.3110 4.37 1.4748 5.08 1.6154 5.69 1.7397 6.35 1.8469 3.72 1.3137 4.38 1.4707 5.04 1.6174 5.70 1.7405 6.36 1.8500 3.73 1.3164 4.39 1.4798 5.05 1.6194 5.71 1.7422 6.87 1.8516 3.74 1.3216 4.41 1.4861 5.06 1.6214 5.72 1.7440 6.38 1.8523 3.75 1.3216 4.42 1.4861 5.08 1.6253 5.73 1.7475 6.40 1.8562 3.76 1.3221 <td></td> <td>1.2975</td> <td>4.32</td> <td></td> <td>4.98</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1.2975	4.32		4.98					
8.89 1.3056 4.35 1.4702 5.01 1.6114 5.67 1.7852 6.83 1.9453 3.70 1.3983 4.36 1.4726 5.02 1.6134 5.68 1.7370 6.34 1.8469 3.71 1.3110 4.37 1.4748 5.03 1.6154 5.69 1.7387 6.35 1.8469 3.72 1.3137 4.38 1.4770 5.04 1.6174 5.70 1.7405 6.36 1.8507 3.73 1.3164 4.39 1.4793 5.05 1.6194 5.71 1.7422 6.37 1.8516 3.74 1.3191 4.40 1.4816 5.06 1.6214 5.72 1.7440 6.38 1.8517 3.75 1.3218 4.41 1.4889 5.07 1.6233 5.73 1.7457 6.38 1.8516 3.77 1.3271 4.43 1.4884 5.09 1.6273 5.75 1.7457 6.40 1.8583 3.79 1.3324 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
3.70 1.3083 4.36 1.4725 5.02 1.6184 5.68 1.7370 6.85 1.8489 3.71 1.3110 4.37 1.4748 5.08 1.6154 5.69 1.7370 6.36 1.8489 3.72 1.3187 4.38 1.4770 5.04 1.6174 5.70 1.7405 6.36 1.8500 3.78 1.3164 4.39 1.4793 5.05 1.6194 5.71 1.7422 6.37 1.8516 3.75 1.3218 4.41 1.4839 5.07 1.6233 5.73 1.7457 6.89 1.8547 3.76 1.3244 4.42 1.4861 5.09 1.6273 5.73 1.7475 6.40 1.8563 3.77 1.3271 4.43 1.4894 5.09 1.6273 5.76 1.7592 6.41 1.8579 3.78 1.3320 4.44 1.4907 5.10 1.6292 5.76 1.7592 6.41 1.8614 3.79 1.3320 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.7834</td> <td></td> <td></td>								1.7834		
3.71 1.8110 4.37 1.4748 5.08 1.6154 5.69 1.7887 6.85 1.8480 3.72 1.8137 4.88 1.4770 5.04 1.6174 5.70 1.7492 6.87 1.8516 3.73 1.3164 4.39 1.4798 5.05 1.6194 5.71 1.7422 6.37 1.8516 3.74 1.3216 4.41 1.4893 5.07 1.6293 5.73 1.7457 6.38 1.8573 3.76 1.3246 4.42 1.4861 5.06 1.6293 5.74 1.7475 6.40 1.8563 3.77 1.3271 4.48 1.4894 5.08 1.6293 5.75 1.7492 6.41 1.8573 3.79 1.3324 4.45 1.4897 5.10 1.6292 5.76 1.7509 6.42 1.8519 3.79 1.3324 4.45 1.4929 5.11 1.6312 5.77 1.7549 6.42 1.8514 3.80 1.3350 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.7852</td> <td></td> <td></td>								1.7852		
3.72 1.8137 4.88 1.4770 5.04 1.6174 5.70 1.7405 6.96 1.8500 3.73 1.3164 4.39 1.4798 5.05 1.6194 5.71 1.7422 6.37 1.8516 3.74 1.3191 4.40 1.4816 5.06 1.6214 5.72 1.7422 6.38 1.8502 3.75 1.3216 4.41 1.4839 5.07 1.6253 5.73 1.7457 6.40 1.8563 3.77 1.3244 4.42 1.4861 5.09 1.6273 5.75 1.7492 6.41 1.8563 3.77 1.3227 4.44 1.4807 5.10 1.6293 5.76 1.7509 6.41 1.8579 3.78 1.3297 4.44 1.4907 5.10 1.6292 5.76 1.7527 6.42 1.8610 3.80 1.3350 4.46 1.4951 5.13 1.6312 5.77 1.7527 6.43 1.8610 3.81 1.3493 <td></td> <td></td> <td>4 27</td> <td></td> <td></td> <td>1.0154</td> <td></td> <td></td> <td></td> <td></td>			4 27			1.0154				
8.78 1.3164 4.39 1.4798 5.05 1.6194 5.71 1.7422 6.87 1.8516 3.74 1.3191 4.40 1.4816 5.06 1.6914 5.72 1.7440 6.38 1.8532 3.75 1.3246 4.41 1.4861 5.08 1.6253 5.73 1.7475 6.39 1.8517 3.76 1.3271 4.43 1.4894 5.09 1.6273 5.75 1.7492 6.41 1.8579 3.78 1.3271 4.43 1.4894 5.09 1.6273 5.75 1.7492 6.41 1.8579 3.79 1.3234 4.44 1.4907 5.10 1.6292 5.76 1.7509 6.42 1.8514 3.80 1.3350 4.46 1.4929 5.11 1.6332 5.78 1.7544 6.44 1.8610 3.81 1.3493 4.48 1.4965 5.13 1.6331 5.79 1.7544 6.44 1.862 3.81 1.3493 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
8.74 1.8191 4.40 1.4816 5.06 1.6214 5.72 1.7440 6.88 1.8542 3.75 1.8218 4.41 1.4839 5.07 1.6233 5.73 1.7457 6.40 1.8543 3.76 1.8324 4.42 1.4864 5.09 1.6273 5.76 1.7492 6.41 1.8563 3.77 1.83271 4.43 1.4894 5.09 1.6273 5.75 1.7492 6.41 1.8573 3.79 1.3324 4.45 1.4907 5.10 1.6292 5.76 1.7527 6.43 1.8610 3.80 1.3350 4.46 1.4951 5.12 1.6332 5.78 1.7544 6.44 1.8625 3.81 1.3876 4.47 1.4974 5.18 1.6351 5.79 1.7561 6.45 1.8641 3.82 1.3403 4.48 1.4994 5.14 1.6371 5.80 1.7579 6.45 1.8643 3.83 1.3429 </td <td></td> <td></td> <td>4.89</td> <td></td> <td>5.05</td> <td></td> <td></td> <td></td> <td></td> <td></td>			4.89		5.05					
3.75 1.8218 4.41 1.4889 5.07 1.6238 5.73 1.7457 6.89 1.8543 3.76 1.8244 4.42 1.4884 5.09 1.6253 5.74 1.7475 6.40 1.8563 3.77 1.8297 4.44 1.4894 5.09 1.6273 5.75 1.7492 6.41 1.8579 3.79 1.3324 4.45 1.4907 5.10 1.6292 5.76 1.7527 6.42 1.8510 3.80 1.3350 4.46 1.4951 5.12 1.6332 5.78 1.7544 6.44 1.8612 3.81 1.3403 4.48 1.4994 5.13 1.6351 5.79 1.7544 6.44 1.8612 3.83 1.3403 4.48 1.4994 5.14 1.6371 5.80 1.7579 6.46 1.8154 3.84 1.3455 4.50 1.5049 5.15 1.6300 5.81 1.7596 6.47 1.8672 3.84 1.3465 <td></td> <td>1.3191</td> <td></td> <td>1.4816</td> <td>5.06</td> <td>1.6214</td> <td></td> <td></td> <td></td> <td></td>		1.3191		1.4816	5.06	1.6214				
3.77 1.3271 4.43 1.4884 5.09 1.6273 5.75 1.7492 6.41 1.8579 3.78 1.3297 4.44 1.4907 5.10 1.6292 5.76 1.7509 6.42 1.8514 3.79 1.3324 4.45 1.4929 5.11 1.6312 5.77 1.7527 6.43 1.8610 3.80 1.3350 4.46 1.4951 5.12 1.6332 5.78 1.7544 6.44 1.8625 3.81 1.3496 4.47 1.4974 5.18 1.6351 5.79 1.7561 6.45 1.8641 3.83 1.3429 4.49 1.5019 5.15 1.6300 5.81 1.7596 6.47 1.8672 3.84 1.3455 4.50 1.5041 5.16 1.6409 5.82 1.7613 6.48 1.8674 3.85 1.3480 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8673	8.75	1.8218		1.4839	5.07					
3.78 1.8397 4.44 1.4907 5.10 1.6392 5.76 1.7509 6.42 1.8594 3.79 1.3324 4.45 1.4929 5.11 1.6312 5.77 1.7527 6.43 1.8610 3.80 1.3350 4.46 1.4951 5.12 1.6332 5.78 1.7544 6.44 1.8625 3.81 1.8396 4.47 1.4974 5.18 1.6351 5.79 1.7561 6.46 1.8646 3.82 1.3408 4.48 1.4996 5.14 1.6371 5.80 1.7579 6.46 1.8652 3.83 1.3429 4.49 1.5019 5.15 1.6390 5.81 1.7596 6.47 1.8652 3.84 1.3425 4.50 1.5041 5.16 1.6409 5.82 1.7618 6.48 1.8622 3.85 1.3489 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8703					5.08					
3.79 1.3824 4.45 1.4929 5.11 1.6312 5.77 1.7527 6.43 1.8610 3.80 1.3350 4.46 1.4951 5.12 1.6332 5.78 1.7544 6.44 1.8625 3.81 1.3876 4.47 1.4974 5.18 1.6351 5.79 1.7561 6.45 1.8640 3.82 1.3408 4.48 1.4996 5.14 1.6371 5.80 1.7579 6.46 1.8656 3.83 1.3429 4.49 1.5019 5.15 1.6390 5.81 1.7596 6.47 1.8672 3.84 1.3455 4.50 1.5041 5.16 1.6409 5.82 1.7618 6.48 1.8647 3.85 1.3484 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8703										
3.80 1.3350 4.46 1.4951 5.19 1.6332 5.78 1.7544 6.44 1.8625 3.81 1.3876 4.47 1.4974 5.18 1.6351 5.79 1.7561 6.45 1.8041 3.82 1.3403 4.48 1.4996 5.14 1.6371 5.80 1.7579 6.46 1.8054 3.83 1.3429 4.49 1.5019 5.15 1.6390 5.81 1.7596 6.47 1.8672 3.84 1.3455 4.50 1.5041 5.16 1.6409 5.82 1.7613 6.48 1.8673 3.85 1.3489 4.51 1.5063 5.17 1.6429 5.83 1.7830 6.49 1.8703										
8.81 1.8376 4.47 1.4874 5.18 1.6851 5.79 1.7561 6.45 1.8641 8.82 1.3403 4.48 1.4996 5.14 1.6371 5.90 1.7579 6.46 1.8654 8.83 1.3429 4.49 1.5019 5.15 1.6390 5.81 1.7596 6.47 1.8672 8.84 1.3429 4.50 1.5041 5.16 1.6409 5.82 1.7618 6.48 1.7807 8.85 1.3420 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8703 8.95 1.8703 6.49 1.8703 6.49 1.8703 6.49 1.8703	3.79									
8.82 1.8408 4.48 1.4996 5.14 1.6371 5.80 1.7579 6.46 1.8656 8.83 1.3429 4.49 1.5019 5.15 1.6390 5.81 1.7596 6.47 1.8672 8.84 1.3455 4.50 1.5041 5.16 1.6409 5.82 1.7618 6.48 1.8687 8.85 1.3484 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8703	9.81		4.47				5.79			
8.83 1.8499 4.49 1.5019 5.15 1.6390 5.81 1.7596 6.47 1.8672 8.84 1.3455 4.50 1.5041 5.16 1.6409 5.82 1.7613 6.48 1.8687 8.85 1.3464 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8703										
8.84 1.3455 4.50 1.5041 5.16 1.6409 5.82 1.7613 6.48 1.86%7 8.85 1.3491 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8703					5.15	1.6390		1.7596		
8.85 1.8481 4.51 1.5063 5.17 1.6429 5.83 1.7630 6.49 1.8703	3.84	1.3455	4.50	1.5041	5.16	1.6409	5.82	1.7613	6.48	1.8687
	8.85									
3.86 1.8507 4.52 1.5085 5.18 1.6448 5.84 1.7647 6.50 1.8718	3,86	1 1.8507 1	4.52	1.5085	5.18	1.6448	1 5.84	1.7647	6.50	1.8718

	4								
No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
6.51	1.8783	7.15	1.9671	7.79	2.0528	8.66	2.1587	9.94	2,2966
6.52	1.8749	7.16	1.9685	7.80	2.0541	8.68	2.1610	9.96	2.2986
6.53	1.8764	7.17	1.9699	7.81	2.0554	8.70	2.1633	9.98	2.3006
6.54	1.8779	7.18	1.9713	7.82	2.0567	8.72	2.1656	10.00	2.3026
6.55	1.8795	7.19	1.9727	7.88	2.0580	8.74	2.1679	10.25	2.3279
6.56	1.8810	7.20	1.9741	7.84	2.0592	8.76	2.1702	10.50	2.3513
6.57	1.8825	7.21	1.9754	7.85	2.0605	8.78	2.1725	10.75	2.3749
6.58	1.8840	7.22	1.9769	7.86	2.0618	8.80	2.1748	11.00	2.3979
6.59	1.8856	7.23	1.9782	7.87	2.0631	8.82	2.1770	11.25	2.4201
6.60	1.8871	7.24	1.9796	7.88	2.0648	8.84	2.1798	11.50	2.4430
6.61	1.8886	7.25	1.9810	7.89	2.0656	8.86	2.1815	11.75	2.4686
6.62	1.8901	7.26	1.9824	7.90	2.0669	8.88	2.1838	12.00	2.4849
6.63	1.8916	7.27	1.9838	7.91	2.0681	8.90	2.1861	12.25	2.5052
6.64	1.8931	7.28	1.9851	7.92	2.0694	8.92	2.1883	12.50	2.5262
6.65	1.8946	7.29	1.9865	793	2.0707	8.94	2.1905	12.75	2.5455
6.66	1.8961	7.30	1.9879	7.94	2.0719	8.96	2.1928	18.00	2.5649
6.67	1.8976	7.31	1.9892	7.95	2.0732	8.98	2.1950	18.25	2.5840
6.68	1.8991	7.32	1.9906	7.96	2.0744	9.00	2.1972	18.50	2.6027
6.69	1.9006	7.38	1.9920	7.97	2.0757	9.02	2.1994	13.75	2.6211
6.70	1.9021	7.34	1.9933	7.98	2.0769	9.04	2.2017	14.00	2.6391
6.71	1.9036	7.35	1.9947	7.99	2.0782	9.06	2.2039	14.25	2.6567
6.72	1.9051	7.86	1.9961	8.00	2.0794	9.08	2.2061	14.50	2.6740
6.78	1.9066	7.87	1.9974	8.01	2.0807	9 10	2.2083	14.75	2.6913
6.74	1.9081	7.38	1.9988	8.02	2.0819	9.12	2.2105	15.00	2.7081
6.75	1.9095	7.89	2.0001	8.03	2.0832	9.14	2.2127	15.50	2.7408
6.76	1.9110	7.40	2.0015	8.04	2.0844	9.16	2.2148	16.00	9 7796
6.77	1.9125	7.41	2.0028	8.05	2.0857	9.18	2.2170	16.50	2.7726 2.8034
6.78	1.9140	7.42	2.0041	8.06	2.0869	9.20	2.2192	17.00	2.8332
6.79	1.9155	7.48	2.0055	8.07	2.0882	9.22	2.2214	17.50	2.8621
6.80	1.9169	7.44	2.0069	8.08	2.0894	9.24	2.2235	18.00	2.8904
6.81	1.9184	7.45	2.0082	8.09	2.0906	9.26	2.2257	18.50	2.9178
6.82	1.9199	7.46	2.0096	8.10	2.0919	9.28	2.2279	19.00	2.9444
6.83	1.9218	7.47	2.0108	8.11	2.0931	9.80	2.2300	19.50	2.9703
6.84	1.9228	7.48	2.0122	8.12	2.0948	9.82	2.2822	20.00	2.9957
6.85	1.9242	7.49	2.0136	8.13	2.0956	9.84	2.2848	21	3.0445
6.86	1.9257	7.50	2.0149	8.14	2.0968	9.36	2.2364	22	3.0910
6.87	1.9272	7.51	2.0162	8.15	2.0980	9.88	2.2886	28	8.1855
6.88	1.9286	7.52	2.0176	8.16	2.0992	9.40	2.2407	24	3.1781
6.89	1.9301	7.58	2.0189	8.17	2.1005	9.42	2.2428	25	8.2189
6.90	1.9315	7.54	2.0202	8.18	2.1017	9.44	2.2450	26	8.2581
6.91	1.9330	7.55	2.0215	8.19	2.1029	9.46	2.2471	27	8.2958
6.92	1.9344	7.56	2.0229	8.20	2.1041	9.48	2.2492	28	8.3322
6.93	1.9359	7.57	2.0242	8.22	2.1066	9.50	2.2513	29	3.3 673
6.94	1.9378	7.58	2.0255	8.24	2.1090	9.52	2.2534	80	8.4012
6.95	1.9387	7.59	2.0268	8.26	2.1114	9.54	2.2555	81	8.4340
6.96	1.9402	7.60	2.0281	8.28	2.1138	9.56	2.2576	88	8.4657
6.97	1.9416	7.61	2.0295	8.30	2.1163	9.58	2.2597	83	8.4965
6.98	1.9430	7.62	2.0308	8.32	2.1187	9.60	2.2618	84	8.5263
6.99	1.9445	7.63	2.0321	8.34	2.1211	9.62	2.2638	85	8.5558
7.00	1.9459	7.64	2.0334	8.36	2.1235	9.64	2.2659	86	8.5835
7.01	1.9473	7.65	2.0847	8.38	2.1258	9.66	2.2680	87	8.6109
7.02	1.9488	7.66	2.0360	8.40	2.1282	9.68	2.2701	38	8.6876
7.03	1.9502	7.67	2.0378 2.0386	8.42	2.1306	9.70	2.2721	89	8.6686
7.04	1.9516	7.68			2.1830	9.72	2.2742	40	8.6889
7.05	1.9530	7.69	2.0399	8.46	2.1353	9.74	2.2762 2.2783	41	8.7186
7.06	1.9544	7.70	2.0412	8.48	2.1877	9.76	2.2/83	42	8.7877
7.07	1.9559	7.71 7.72	2.0425	8.50	2.1401	9.78	2.2808	43	8.7612
7.08	1.9578	7.12	2.0438	8.52	2.1424	9.80	2.2824	. 44	8.7842
$7.09 \\ 7.10$	1.9587	7.78	2.0451 2.0464	8.54 8.56	2.1448	9.82	2.2844	45	8.8067
7.10	1.9615	1.14	2.0404	8.58	2.1471	9.84	2.2865	46	8.8286
7.11	1.9629	7.74 7.75 7.76	2.0477	8.60	2.1494 2.1518	9.86 9.88	2.2885	47	8.8501
7.13	1.9643	7.77	2.0503	8.62	2.1541	9.90	2.2905 2.2925	48 49	8.8712
7.14	1.9657	7.78	2.0516	8.64	2.1564	9.92	2.2935	50	8.8918 8.9120
		1	2.00.0		2.1004	0.00	~	"	0.7140
		•				-			

0	M.	Sime.	Co-Vers.	Cosec.	Tang.	Cotan,	Secant,	Ver. Sin.	Cosine.		
30	0	.50000	.50000	2.0000	.57785	1.7820	1.1547	.18397	.86608	60	-
	15	.50877	.49623	1.9850	.58818	1.7147	1.1576	.13616	.86884		4
	30	.50754	.49246	1.9703	.58904	1.6977	1.1606	.13837	.86168	l	3
٠.'	45	.51129	.48871	1.9558	.59494	1.6808	1.1686	.14059	.85941	ļ	1
81	0	.51504	.48496	1.9416	60086	1.6643	1.1666	.14283	.85717	59	1
- 1	15	.51877	.48123	1.9276	60681	1.6479	1.1697	.14509	.85491		4
- 1	30	.52250	.47750	1.9189	.61280	1.6819	1.1728	. 14786	.85264	1	Į٤
	45	.52621	.47379	1.9004	.61882	1.6160	1.1760	.14965	.85085		1
2	0	.52992	.47008	1.8871	.62487	1.6003	1.1792	. 15195	.84805	58	1
	15	.58361	.46639	1.8740	. 63095	1.5849	1.1824	. 15427	.84578		14
- 1	30	.58730	.46270	1.8612	.63707	1.5697	1.1857	.15661	.84389		1
_ 1	45	.54097	.45903	1.8485	.64822	1.5547	1.1890	.15896	.84104		1 1
3	0	.54464	.45536	1.8361	.64941	1.5399	1 1924	.16133	.83867	57	1
- 1	15	.54829	.45171	1.8238	. 65563	1.5253	1.1958	.16371	.83629		14
- !	30	.55194	.44806	1.8118	.66188	1.5108	1.1992	.16611	83389		١٤
- 1	45	.55557	.44443	1.7999	.66818	1.4966	1.2027	.16853	.88147	i	li
4	0	.55919	. 44081	1.7883	. 67451	1.4826	1.2062	.17096	.82904	56	1 -
- 1	15	.56280	.43790	1.7768	.68087	1.4687	1.2098	.17841	.82659		١
1	80	.56641	.48859	1.7655	.68728	1.4550	1.2184	.17587	.82418		1
- 1	45	.57000	43000	1.7544	.69372	1.4415	1.2171	17835	82165		lì
5	ō	.57858	42642	1.7484	.70021	1.4281	1.2208	.18085	.61915	55	١ '
٦	15	.57715	42285	1.7827	.70678	1.4150	1.2245	.18336	.81664		14
Į	30 1	.58070	.41980	1.7220	.71329	1.4019	1.2283	.18588	.81412	l	13
1	45	.58425	.41575	1.7116	.71990	1.3891	1.2322	.18843	.81157	1	li
6	õ	.58779	.41231	1.7013	72654	1.3764	1.2361	.19098	.80902	54	14
٠,	15	.59181	40869	1.6912	.78328	1.3638		.19356		92	١
	ão l	.59482	.40518	1.6812	.73996		1.2400		.80644	l	
	45	.59832				1.8514	1.2440	.19614	.80386	1	13
37			.40168	1.6713	.74673	1.8392	1.2480	.19875	.80125	ا	1
91	0	.60181	.89819	1.6616	.75855	1.3270	1.2521	.20136	.79864	58	١.
	15	.60529	.89471	1.6521	.76042	1.8151	1.2563	.20490	.79600	i	1
	30	.60876	.39124	1.6427	.76783	1.3082	1.2605	.20665	.79835	i	1 8
	45	.612-22	.38778	1.6834	.774:28		1.2647	.20981	.79069	1	1
8	0	.61566	.88434	1.6248	.78129	1.2799	1.2690	.21199	.78801	52	١.
	15	41909 231	.38091	1.6153	.78834	1.2685	1.2734	.21468	.78532	1	4
			.87749	1.6064	.79543	1.2572	1.2778	. 21739	.78261		8
	45	.82592	.37408	1.5976	.80258	1.2460	1.2822	.22012	.77988	l	1
9	0;	.62932	. 37068	1.5890	.80978	1.2349	1.2868	. 222285	.77715	51	1
	15	.63271	.36729	1.5805	.81703	1.2239	1.2913	.22561	.77439	1	14
ĺ	30	.63608	.86392	1.5721	.82484	1.2131	1.2960	. 22838	.77162	ł	1 8
	45	.63944	.86056	1.5639	.83169	1.2024	1.8007	.28116	.76884		11
ю	0	.64279	.85721	1.5557	.83910	1.1918	1.8054	.23396	.76604	50	1
	15	.64612	.85338	1.5477	.84656	1.1812	1.8102	.28677	.76323		14
	30	.64945	.35055	1.5398	.85408	1.1708	1.8151	.23959	.76041		1 8
	45	.65276	. 34724	1.5320	.86165	1,1606	1.3200	.24244	.75756		1
11	0	.65606	.31394	1 5242	.86929	1.1504	1.8250	24529	.75471	49	Π
	15	.65935	. 34065	1.5166	.87698	1.1403	1.3301	.24816	.75184		14
	30	.66262	.83788	1 5092	.88472	1.1303	1.8352	.25104	.74896	İ	18
	45	66588	.83412	1.5018	.89253	1,1204	1.8404	25394	.74606		1
12	Õ	.66918	.33087	1.4945	.90040	1,1106	1.8456	.25686	.74314	48	Ι΄
	15	.67287	.82763	1.4873	90834	1.1009	1.3509	.25978	.74022	1	4
	80	.67559	.82441	1.4802	.91633	1 0913	1.3563	26272	.73728	ĺ	3
	45	.67880	.82120	1.4732	.92439	1.0818	1.3618	.26568	.78432	l	lì
13	õ	.68200	.81800	1.4663	93251	1.0724	1.8673	.26865	.73135	47	۱'
-•	15	.68518	.31482	1.4595	.94071	1.0630	1.3729	.27163	.72837	1 ~ *	4
	30	.68835	81165	1.4527	.94896		1.3786	.27468	.72587	l	13
	45	.69151	30849	1.4461	.95729	1.0446	1.3843	.27764	.72236	l	li
44	10	.69466	.30534	1.4396	.96569	1.0855	1.8902	.28066	.71934	46	
**	15	.69779	.80221	1.4331	.97416		1.3961	.28370		10	L
	30	.70091	.29909						.71630		4
	45	.70401	.29599	1.4267	.98270 .99131	1.0176	1.4020	.28675	.71825		3
4=			.29289	1.4204		1.0088	1.4081	.28981	.71019	4-	1
45	0	.70711	.29209	1.4142	1.0000	1.0000	1.4142	.29289	.70711	45	_
		Cosine.	Ver. Sin.	Secant,	Cotan.	Tang.	Cosec,	Co-Vers.	Sine.	۰	N
		, ,									

From 45° to 60° read from bottom of table upwards.

162 MATHEMATICAL TABLES.

LOGABITHMIC SINES, ETC.

Deg.	Sine.	Cosec.	Versin.	Tangent.	Cotan.	Covers.	Secant.	Cosine.	De
0	In Neg.	Infinite.	In. Neg.	In.Neg.	Infinite.	10.00000	10.00000	10.00000	9
ĭ	8 24186	11.75814	6.18271	8.24192	11.75808	9.99235	10.00007	9.99998	8
2	8 54292	11.75814 11.45718	6.78474		11 45692		10.00026	9.99974	
ŝ	9 71990	11.28120	7.18687		11.28060		10.00060	9.99940	
4		11.15642	7.38667		11.15586		10.00108	9.99894	
-	0.04000	11.05970	7.58039	2 04108	11.05805	0.08040	10.00166	9.99834	8
5		10.98077	7.78863	0.00189	10.97888		10.00239	9.99761	
6			7.87238	0.02102	10.91086		10.00325	9.99675	
7		10.91411							
8		10.85644 10.80567	7.98820 8.09032		10.85220		10.00425 10.00538	9.99575 9.99462	
-	l			l	į į	1	1		
10	9.23967	10.76033		9.24632	10.75868	9.91717	10.00665	9.99335	
11	9.28060	10.71940	8.26418	9.28865	10.71135		10.00805	9.99195	, 7
12	9.31788	10.68212	8.88950		10.67258		10.00960	9.99040	
18	9.35209	10.64791	8.40875	9.36886	10.63664	9.88933	10.01128	9.98872	ì. î
14	9.38368	10.61632		9.89677	10.60328	9.87971	10.01810	9.98690), 7
	0.41900	10 50000	8.53243	0.40008	10.57195	0 98000	10.01506	9.98494	1 7
15		10.58700			10.54250		10.01716	9.98284	7
16		10.55966							
17		10.53406			10.51466		10.01940	9.98060	
18		10.51002			10.48822		10.02179	9.97821	
19	9.51264	10.48736	8.78625	9.53697	10.46303	9.02094	10.03488	9.97567	,
20		10.46595	8.78087		10.48893		10.02701	9.97299	;
21		10.44567	8.82280	9.58418	10.41582		10.02985	9.97015	
22	9.57358	10.42642	8.86228		10.89859		10.03288	9.96717	
23	9.59188	10.40812	8.90084	9.62785	10.87215		10.08597	9.96403	
24	9.60931	10.39069	8.93679	9.64858	10.85142	9.77825	10.03927	9.96078	6
25	9.62595	10.37405	8.97170	9.66867	10.88188	9.76146	10.04272	9.95728	6
26	9.64184	10.35816	9.00521	9.68818	10.31182	9.74945	10.04684	9.95366	6
27		10.34295		9.70717	10.29283	9.78720	10.05012	9.94988	6
28	9.67161	10.32839	9.06838	9.72567	10.27483	9.72471	10.05407	9.94593	6
29		10.81448	9.09828		10.25625		10.05818	9.94182	
30	0 60607	10.30108	9.12702	9 76144	10.23856	9 69897	10.06247	9.98758	6
81		10.28816			10.22123		10.06693	9.93307	
82		10.27579			10.20421		10.07158		
83	0 73611	10.26389	9.20771		10.18748		10.07641	9.92859	
34	9.74756	10.25244	9.23290		10.17101		10.08148	9.91857	
	l	1	ł						1
85		10.24141	9.25781		10.15477		10.08664	9.91336	
36		10.23078			10.13874		10.09204	9.90796	
37		10.22054			10.12289		10.09765	9.90235	
38		10.21066	9.32681	9.89281			10.10847	9.89653	5
3 9	9.79887	10.20113	9.34802	9.90887	10.09163	9.56900	10.10950	9.89050	5
40	9.80807	10.19193	9.36913	9.92381	10.07619	9.55293	10.11575	9.88425	5
41		10.18396			10.06084		10.12222	9.87778	
42		10.17449	9.40969		10.04556		10.12893	9.87107	
48		10.16622			10.03034		10.13587	9.86413	
44	9.84177	10.15828	9.44818		10.01516		10.14307	9.85693	
45	9.84949	10.15052	9.46671	10.00000	10.00000	9.46671	10.15052	9.84949	4
	Cosine.	Secant.	Covers.	Cotan.	Tangent.	Versin.	Cosec.	Sine.	

From 45° to 90° read from bottom of table upwards.

MATERIALS.

THE CHEMICAL ELEMENTS.

The Common Elements (42).

Chember Symbol.	Name.	Atomic Weight, Chemical Symbol.		Name.	Atomic Weight.	Chemical Symbol.	Name.	Atomic Weight.
Al Sb	Aluminum	27.1 120.	F	Fluorine Gold	19. 196.2	Pd P	Palladium	106.
As	Antimony Arsenic	75.	Au H	Hydrogen	190.2	Pt	Phosphorus Platinum	195.
Ba	'Barium	137.	i	Iodine	126.6	ĸ	Potassium	89.03
Bi	Bismuth	208.	Īr	Iridium	198.	ŝi	Silicon	28.4
В	Boron	10.9	Fe	Iron	56.	Ag	Silver	107.7
Br	Bromine	79.8	Pb	Lead	206.4	Na	Sodium	28.
Çd	Cadmium	111.8	Li	Lithium	7.01	8r	Strontium	87.4
Ca.	Calcium	40.	Mg	Magnesium	24.	8	Sulphur	82.
CI	Carbon	12. 35.4	Мū	Manganese	55.	Sn Ti	Tin	118.
Cr	Chlorine Chromium	52.8	Hg Ni	Mercury Nickel	199.8 58.8	w	Titanium	50. 184.
Co	Cobalt	59.	N	Nitrogen	14.	Va.	Tungsten Vanadium	51.2
Ču	Copper	63.2	ő	Oxygen	15.90	Žn	Zinc	65.

The atomic weights of many of the elements vary in the decimal place as given by different authorities.

The Bare Elements (27).

Beryllium, Be. Cæsium, Cs. Cerium, Ce. Thallium, Tl. Thorium, Th. Uranium, U. Glucinum, G. Rubidium, Rb. Indium, In. Ruthenium, Ru. Samarium, Sm. Lanthanum, La Ytterbium, Yr. Yttrium, Y. Didymium, D. Molybdenum, Mo. Scandium, Sc. Niobium, Nb. Osmium, Os. Erbium, E. Selenium, Se. Gallium, Ga. Germanium, Ge. Tantalum, Ta. Tellurium, Te. Zirconium, Zr. Rhodium, R.

SPECIFIC GRAVITY.

The specific gravity of a substance is its weight as compared with the weight of an equal bulk of pure water.

To find the specific gravity of a substance.

W = weight of body in air; to = weight of body submerged in water.

Specific gravity =
$$\frac{W}{W-w}$$
.

If the substance be lighter than the water, sink it by means of a heavier substance, and deduct the weight of the heavier substance.

Specific gravity determinations are usually referred to the standard of the weight of water at 62° F., 02.355 lbs. per cubic foot. Some experimenters have used 60° F. as the standard, and others 32° and 39.1° F. There is no general agreement.

Given sp. gr. referred to water at 39.1° F., to reduce it to the standard of 62° F. multiply it by 1.00112.

Given sp. gr. referred to water at 62° F., to find weight per cubic foot multiply by 62.355. Given weight per cubic foot, to find sp. gr. multiply by 0.016037. Given sp. gr., to find weight per cubic inch multiply by .036085.

Weight and Specific Gravity of Stones, Brick, Cement, etc.

	Pounds per Cubic Foot.	Specific Gravity.
Asphaltum	87	1.39
Brick, Soft	100	1.6
" Common	112	1.79
" Hard	125	2.0
" Pressed	135	2.16
" Fire.	140 to 150	2.24 to 2.4
Brickwork in mortar	100	1.6
" cement	112	1.79
Cement, Rosendale, loose	60	.96
"Portland. "	78	1.25
1010101010		
Clay	120 to 150	1.92 to 2.4
Concrete	120 to 140	1.92 to 2.24
Earth, loose	72 to 80	1.15 to 1.28
" rammed	90 to 110	1.44 to 1.76
Emery	250	4.
Glass	156 to 172	2.5 to 2.75
" flint	180 to 196	2.88 to 3.14
Gneiss (160 to 170	2.56 to 2.72
Granite (····	100 to 170	2.50 to 2.12
Gravel	100 to 120	1.6 to 1.92
Gypsum	130 to 150	2.08 to 2.4
Hornblende	200 to 220	3.2 to 3.52
Lime, quick, in bulk	50 to 55	.8 to .88
Limestone	170 to 200	2.72 to 3.2
Magnesia, Carbonate	150	2.4
Marble	160 to 180	2.56 to 2.88
Masonry, dry rubble	140 to 160	2.24 to 2.56
" dressed	140 to 180	2.24 to 2.88
Mortar	90 to 100	1.44 to 1.6
Pitch	72	1.15
Plaster of Paris	74 to 80	1.18 to 1.28
	165	2.64
Quartz		
Sand	90 to 110	1.44 to 1.76
Sandstone	140 to 150	2.24 to 2.4
Slate	170 to 180	2.72 to 2.88
Stone, various	135 to 200	2.16 to 8.4
Trap	170 to 200	2.72 to 8.4
Tile	110 to 120	1.76 to 1.93
Soapstone	166 to 175	2.65 to 2.8

PROPERTIES OF THE USEFUL METALS.

under Strength of Materials.

Antimony (Subium), Sb.—At. wt. 120. Sp. gr. 6.7 to 6.8. A brittle metal of a bluish-white color and highly crystalline or laminated structure. Melts at 842° F. Heated in the open air it burns with a bluish-white flame. Its chief pise is for the manufacture of certain alloys, as type-metal (antimony 1, lead 4), britannia (antimony 1, tin 9), and various anti-friction metals (see Alloys). Cubical expansion by heat from 32° to 212° F., 0.0070. Specific heat .050.

Bismuth, Bi.—At. wt. 208. Bismuth is of a peculiar light reddish color, highly crystalline, and so brittle that it can readily be pulverized. It melts at 510° F., and boils at about 2200° F. Sp. gr. 9.823 at 54° F., and 10.055 just above the melting-point. Specific heat about .0301 at ordinary

temperatures. Coefficient of cubical expansion from \$2° to 212°, 0.0040. Conductivity for heat about 1/36 and for electricity only about 1/30 of that of silver. Its tensile strength is about 6400 lbs, per square inch. Bismuth expands in cooling, and Tribe has shown that this expansion does not take place until after solidification. Bismuth is the most diamagnetic element known, a sphere of it being repelled by a magnet; and on account of its marked thermo-electric properties it is much used in laboratories in the construction of delicate thermopiles.

In the arts bismuth is used chiefly in the preparation of alloys.

In the arts bismuth is used coneny in the preparation of anoys.

Cadmaiuma, Cd.—At. wt. 112. Sp. gr. 8.6 to 8.7. A bluish-white metal, histrous, with a fibrous fracture. Melts below 500° F. and volatilizes at about 560° F. It is used as an ingredient in some fusible alloys with lead, in, and hismuth. Cubical expansion from 82° to 212° F., 0.0094.

Coppers Cu.—At. wt. 63.2. Sp. gr. 8.81 to 8.95. Fuses at about 1930° F. Distinguished from all other metals by its reddish color. Very ductile

F. Ustinguished from all other metals by its reddish color. Very ductile and malleable, and its tenacity is next to iron. Tensile strength 20,000 to 30,000 to be. per square inch. Heat conductivity 73.6% of that of silver, and superior to that of other metals. Electric conductivity equal to that of gold and silver. Expansion by heat from 32° to 212° F., 0,0051 of its volume. Specific heat .093. (See Copper under Strength of Materials; also Alloys.)

Gold (Aurum), Au.—At. wt. 197. Sp. gr., when pure and pressed in a die, 19.34. Melts at about 1915° F. The most malleable and ductile of all metals. One ounce Troy may be beaten so as to cover 160 sq. ft. of surface. The average thickness of gold-leaf is 1/282000 of an inch, or 100 sq. ft. per ounce. One grain may be drawn into a wire 500 ft. in length. The ductily is destroyed by the presence of 1/2000 part of lead, bismuth, or antimony. Gold is hardened by the addition of silver or of copper. In U. S. gold coin there are 30 parts gold and 10 parts of alloy, which is chiefly copper with a little silver. By jewelers the flueness of gold is expressed in carats, pure little silver. By jewelers the fineness of gold is expressed in carats, pure gold being 24 carats, three fourths fine 18 carats, etc.

Iridiama.—Iridium is one of the rarer metals. It has a white lustre, resembling that of steel; its hardness is about equal to that of the ruby; in sentoning that of seet; its naruness is about equal to that of the ruby; in the cold it is quite brittle, but at a white heat it is somewhat malleable. It is one of the heaviest of metals, having a specific gravity of 22.88. When heated in the air to a red heat the metal is very slowly oxidized. It is insoluble in all single acids, but is very slightly soluble in aqua regia after being heated in the state of fine powder for many hours. In a massive state, how-

ever, aqua regia does not attack it.

Iridium is extremely infusible. With the heat of the oxyhydrogen or electric furnaces, a globule of very small size may be melted. Mr. John Holland found that by heating the ore in a Hessian crucible to a white heat and adding to it phosphorus, and continuing the heating for a few minutes, he could obtain a perfect fusion of the metal, which could be poured out and cast into almost any desired shape. This material was about as hard as the natural grains of iridium, and contained, according to two determinations, 7.52% and 7.74% of phosphorus. By heating the metal in a bed of lime the phosphorus could be completely removed. In this operation the metal is first heated in an ordinary furnace at a white heat, and finally, after no more phosphorus makes its appearance, it is removed and placed in an electric furnace with a lime crucible, and there heated until the last traces of phosphorus are removed; the metal which then remains will resist as much heat without fusion as the native metal.

For uses of iridium, methods of manufacturing it, etc., see paper by W. D. Dudley on the "Iridium Industry." Trans. A. I. M. E. 1884.

Iron (Ferrum), Fo.—At. wt. 56. Sp. gr.: Cast, 6.85 to 7.48; Wrought, 7.4 to 7.9. Pure iron is extremely infusible, its melting point being above 300° F., but its fusibility increases with the addition of carbon, cast iron fusing about 2500° F. Conductivity for heat 11.9, and for electricity 12 to 14.8, silver being 100. Expansion in bulk by heat: cast iron 0.033, and wrought iron 0.035, from 32° to 212° F. Specific heat: cast iron 1.208, wrought iron 1.138, steel .1165. Cast iron exposed to continued heat becomes permanently expanded 114 to .3 per cent of its length. Grate-bars should therefore be allowed about 4 per cent play. (For other properties see Iron and Steel under Strength of Materials.)

Lead (Plumbum, Pb.—At. wt. 206.4. Sp. gr. 11.07 to 11.44 by different authorities. Melts at about 625° F., softens and becomes pasty at about 617° F. If broken by a sudden blow when just below the melting-point it is quite brittle and the fracture appears crystalline. Lead is very malleable and ductile, but its tenacity is such that it can be drawn into wire with great

difficulty. Tensile strength, 1600 to 2400 lbs. per square inch. Its elasticity is very low, and the metal flows under very slight strain. Lead dissolves to some extent in pure water, but water containing carbonates or sulphates forms over it a film of insoluble salt which prevents further action. (For alloys of lead see Alloys.)

Magnesium, Mg.—At. wt. 24. Sp. gr. 1.69 to 1.75. Silver-white, brilliant, malleable, and ductile. It is one of the lightest of metals, weighing only about two thirds as much as aluminum. In the form of filings, wire or thin ribbons it is highly combustible, burning with a light of dazzling brilliancy, useful for signal-lights and for flash-lights for photographers. It is nearly non-corrosive, a thin film of carbonate of maguesia forming on exposure to damp air, which protects it from further corrosion. It may balloyed with aluminum, 5 per cent Mg added to Al giving about as much in crease of strength and hardness as 10 per cent of copper. Cubical expansion by heat 0.0083, from 32° to 212° F. Meits at 1200° F. Specific heat .25.

Manganese, Mm.—At. wt. 55. Sp. gr. 7 to 8. The pure metal is not used in the arts, but alloys of manganese and irou, called spiegeleisen where containing below. We have containing below. We have containing below. We have containing below.

containing below 25 per cent of manganese, and ferro-manganese when containing from 25 to 90 per cent, are used in the manufacture of steel. Metallic manganese oxidizes rapidly in the air, and its function in steel manufacture is to remove the oxygen from the bath of steel whether it exists as oxide of

iron or as occluded gas.

iron or as occluded gas.

Mercury (Hydrargyrum), Hg.—At. wt. 199.8. A silver-white metal, liquid at temperatures above—39° F., and boils at 680° F. Unchangeable as gold, silver, and platinum in the atmosphere at ordinary temperatures, but oxidizes to the red oxide when near its boiling-point. Sp. gr.: when liquid 18.58 to 18.59, when frozen 14.4 to 14.5. Easily tarnished by sulphur fumes also by dust, from which it may be freed by straining through a cloth. No metal except iron or platinum should be allowed to touch mercury. The smallest portions of tin, lead, zinc, and even copper to a less extent, cause it to tarnish and lose its perfect liquidity. Coefficient of cubical expansion from 32° to 212° F. .0182; per deg. .000101.

Nickel, Ni.—At. wt. 58.8. Sp. gr. 8.27 to 8.98. A silvery-white metal with a strong lustre, not tarnishing on exposure to the air. Ductile, hard, and as tenacious as iron. It is attracted to the magnet and may be made magnetic like iron. Nickel is very difficult of fusion, melting at about

magnetic like iron. Nickel is very difficult of fusion, melting at about 3000° F. Chiefly used in alloys with copper, as german-silver, nickel-silver etc., and recently in the manufacture of steel to increase its hardness and strength, also for nickel-plating. Cubical expansion from 82° to 212° F.,

0.0088. Specific heat .109.

Platinum, Pt.—At, wt. 195. A whitish steel-gray metal, malleable very ductile, and as unalterable by ordinary agencies as gold. When fused and refined it is as soft as copper. Sp. gr. 21.15. It is fusible only by the oxyhydrogen blowpipe or in strong electric currents. When combined with iridium it forms an alloy of great hardness, which has been used for gunvents and for standard weights and measures. The most important uses of platinum in the arts are for vessels for chemical laboratories and manufactories, and for the connecting wires in incandescent electric lamps. Cubical expansion from 32° to 212° F., 0.0027, less than that of any other metal expected the property of the property

cept the rare metals, and almost the same as glass.

Silver (Argentum), Ag.—At. wt. 107.7. Sp. gr. 10.1 to 11.1, according to condition and purity. It is the whitest of the metals, very malleable and ductile, and in hardness intermediate between gold and copper. Melts at about 1750° F. Specific heat .056. Cubical expansion from 32° to 212° F., As a conductor of electricity it is equal to copper. As a conductor

of heat it is superior to all other metals.

Tin (Stannum) Sn.-At. wt. 118. Sp. gr. 7.293. White; lustrous, soft, malleable, of little strength, tenacity about 3500 lbs. per square inch. Fuses at 442° F. Not sensibly volatile when melted at ordinary heats. Heat conductivity 14.5, electric conductivity 12.4; silver being 100 in each case. Expansion of volume by heat .0069 from 32° to 212° F. Specific heat .055. Its Not sensibly volatile when melted at ordinary heats. Heat conchief uses are for coating of sheet-iron (called tin plate) and for making

alloys with copper and other metals.

Zinc, Zin.—At. wt. 05. Sp. gr. 7.14. Melts at 780° F. Volatilizes and burns in the air when melted, with bluish-white fumes of zinc oxide. It is ductile and malleable, but to a much less extent than copper, and its tenacity, about 5000 to 6000 lbs. per square inch, is about one tenth that of wrought It is practically non-corrosive in the atmosphere, a thin film of carbonate of zinc forming upon it. Cubical expansion between 32° and 212° F.

0.0088. Specific heat .096. Electric conductivity 29, heat conductivity 36, silver being 100. Its principal uses are for coating iron surfaces, called galvanizing," and for making brass and other alloys.

Table Showing the Order of

Malleability.	Ductility.	Tenacity.	Infusibility.
Gold	Platinum	Iron	Platinum
Silver	Silver	Copper	Iron
Aluminum	Iron	Aluminum	Copper Gold
Copper	Copper	Platinum	Gold
Tin	Go ld	Silver	Silver
Lead	Aluminum	Zinc	Aluminum
Zinc	Zinc	Gold	Zinc
Platinum	Tin	Tin	Lead
Iron	Lead	Lead	Tin

FORMULE AND TABLE FOR CALCULATING THE WRIGHT OF RODS, BARS, PLATES, TUBES, AND SPHERES OF DIFFERENT MATERIALS.

Notation: b =breadth, t =thickness, s =side of square, d =external diameter, $d_1 =$ internal diameter, all in inches.

Sectional areas: of square bars = s^2 ; of flat bars = bt; of round rods =

7834d²; of tubes = .7834d² - d_1^2) = 3.1416($dt - t^2$). Volume of 1 foot in length: of square bars = $12s^2$; of flat bars = 12bt; of round bars = $9.4248d^2$; of tubes = $9.4248(d^2 - d_1^2)$ = 37.6992($dt - t^2$), in cubic

Weight per foot length = volume × weight per cubic inch of the material. Weight of a sphere = diam. 3 × .5236 × weight per cubic inch.

Material.	Specific Gravity.	Weight per cubic foot, ibs.	Weight of Plates 1 inch thick per per eq. ft., lbs.	Weight of Square Bars per foot length, lbs.	Weight of Flat Bars per foot length, ibs.	Weight per cubic inch, lbs. Relative Weights. Wrought Iron	Weight of Round Rod per foot length, lbs.	Weight of Syberes or Balls, Ibs.
Cast iron Wrought Iron Steel		450. 480. 489.6	87.5 40. 40.8	31,582	316bt 316bt 3.4bt	.2604 15-1 .2779 1 .2833 1.02	2.618d2	.1868d* .1455d* .1484d*
Copper & Bronze (copper and tin) Brass (65 Copper	8.855 8.893	552. 528.2				.3195 1.15		.1673d3 .1586d3
Lead		709.6 166.5 163.4	13.9 13.6	1.168 ² 1.138 ²	4.93bt 1.16bt 1.13bt	.4106 1.48 .0963 0.84 .0945 0.34	8.870d ² 7 0.908d ² 0.891d ²	.2150d ³ .0504d ³ .0495d ³
Pine Wood, dry	0.481	30 .0	2.5	0.2182	0.21bt	.0174 1-16	0.164d2	.0091d

For tubes use the coefficient of d^2 in ninth column, as for rods, and multiply it into $(d^2 - d_1^2)$; or take four times this coefficient and multiply it into $(dt - t^2)$.

For hollow spheres use the coefficient of d2 in the last column and multiply it into $(d^3 - d_1^3)$.

MKASURES AND WEIGHTS OF VARIOUS MATERIALS (APPROXIMATE).

Brickwork. - Brickwork is estimated by the thousand, and for various thicknesses of wall runs as follows:

814-in.	wall,	or	1 b	rick	in	tbickness,	14	bricks	per	superficial "	foot.
1292 "	**	44	114	44	"	**	21	**	٠.,	- "	66
17 "	**	"	2′~	**	"	**	28	46	"	"	
						44	35	4.6	"	**	44

An ordinary brick measures about $814 \times 4 \times 2$ inches, which is equal to 66 cubic inches, or 26.2 bricks to a cubic foot. The average weight is 414 lbs.

Fuel.—A bushel of bituminous coal weighs 76 pounds and contains 264

cubic inches = 1.554 cubic feet. 29.47 bushels = 1 gross ton.
A hughel of coke weighe 40 lbs (25 to 49 lbs)
One acre of bituminous coal contains 1600 tons of 2240 lbs. per foot
thickness of coal worked. 15 to 25 per cent must be deducted for waste
mining.
44.8 cubic feet bituminous coal when broken down = 1 ton, 2240 lbe
42.3 " anthracite " " " = 1 ton, 2240 lbg
42.3 " anthracite " " = 1 ton, 2240 bt 128 " of charcoal = 1 ton, 2240 bt
70 9 " " coke = 1 ton. 220 \text{ ton. 220 \text{ ton. } 220 \text
1 cubic foot of anthracite coal = 50 to 55 lbs
1 cubic foot of anthracite coal. = 50 to 55 lbs 1 " " bituminous " = 45 to 55 lbs
1 " " Cumberland coal = 53 lbs. J
1 " Cannel coal = 50.3 lbd
1 " " charcoal (hardwood) = 18.5 lb
1 " " (pine) = 18 lbs.
1 " Cumberland coal = 53 lbs.] 1 " Cannel coal = 50.3 lb 1 " Charcoal (hardwood) = 18.5 lb 1 " (pine) = 18 lbs. A bushel of charcoal.—In 1881 the American Charcoal-Iron World
be taken at 2000 pounds. This figure of 20 pounds to the bushel was taken as a fair average of different bushels used throughout the country, and
as a fair average of different bushels used throughout the country, and is
has since been established by law in some States.
Ones Pouths ato
Ores, Earths, etc.
13 cubic feet of ordinary gold or silver ore, in mine = 1 ton = 2000 lbs.
20 " " broken quartz = P ton = 2000 108.
IN feet of gravel in Dank = 1 Wa
27 cubic feet of gravel when dry = 1 tou.
25 " " " 88ud
17 " " clay = 1 ton.
Cement.—English Portland, sp. gr. 1.25 to 1.51, per bbl 400 to 430 lbs.
Rosendale, U. S., a struck bushel
Lime.—A struck bushel
Grain. —A struck bushel of wheat = 60 lbs.; of corn = 56 lbs.; of cats =
30 thg
Salt.—A struck bushel of salt, coarse, Syracuse, N. Y. = 56 lbs.; Turk's
Island = 76 to 80 lbs.
Weight of Earth Filling.
(From Howe's "Retaining Walls.")
Average weight in
lbs. per cubic foot.
Earth, common loam, loose
SIRKEI
Gravel 90 to 100
Sand 90 to 106
Soft flowing mud
,.
CAMPATURATE STATE AT TRANS

COMMERCIAL SIZES OF IRON BARS.

Width.	Thickness.	Width.	Thickness.	Width.	Thickness.
78 116 114 118 118 118 118	16 to 56 18 to 34 18 to 15/16 19 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1 18 to 1	17/6 2 21/4 29/6 21/6 29/6 28/4 3 31/6	14 to 14 14 to 184 14 to 184 14 to 184 14 to 186 15 to 186 14 to 186 14 to 186 14 to 2 14 to 2	4 41/4 5 51/4 6 61/4 7 71/4	to 2 to 2 to 2 to 2 to 2 to 2 to 2 to 2

Rounds: 1/4 to 13/4 inches, advancing by 16ths, and 13/4 to 5 inches by Sths. Squares: 5/16 to 11/4 inches, advancing by 16ths, and 11/4 to 8 inches by Sth~

Half rounds: 7/16, ½, 54, 11/16, ¾, 1, 1½, 1½, 1½, 1¾, 2 inches.

Hexagons: ¾ to 1½ inches, advancing by 8ths.

Owals: ¼ × ½, 54 × 5/16, ¾ × 54, 7/16 inch.

Half evals: ½ × ½, 56 × 5/24, ¾ × 8/16, ¾ × 7/82, 1½ × ½, 1¾ × ½,

176 × 56 inch.

BLOW and edge flats: 1½ × ½, 1½ × 56, 1½ × 56 inch.

BLOW and edge flats: 1½ × ½, 1½ × 56, 1½ × 56 inch.

BLOW inches, advancing by 8ths, 7 to 16 gauge up to 3 inches, 4 to 14 gauge, 314 to 5 inches.

WEIGHTS OF SQUARE AND HOUND BARS OF WEGUGHT IRON IN POUNDS PER LINEAL FOOT.

Iron weighing 480 lbs. per cubic foot. For steel add 2 per cent.

Thickness or Diameter in Inches.	Weight of Square Bar One Foot Long.	5	Thickness or Diameter in Inches.	Weight of Square Bar One Foot Long.	=	ib	Veight of Square Bar One Foot Long.	Weight of Round Bar One Foot Long.
hickness Diameter in Inches	~ # # 8	Veight of Round Bar One Foot Long.	8 2 2	₩ A X	Feight of Round Bar One Foot Long.	Thickness or Diameter in Inches.	Veight of Square Ba One Foot Long.	무줍음
á 5 5	ووي ا	1370	822	ک و د	ا مجردا	8 5 5	ق ہ دا	2 2
5 5 2	1 E 2 P 46	3 A 20	9 8 8	2 2 2 2 3	2 2 2	9 5 8	12 2 E 80	35.7
ಕ್ಷ≕	Weight of Square B One Fool Long.	Weight Round One F Long.	hickness Diameter In Inches	Weight of Square B One Foot Long.	Weight of Round B One Fool Long.	hickness Diameter in Inches	Weight of Square E One Foo Long.	Weight of Round B One Fool Long.
339	2863	೯೬೦೨	EZ F	1 2863	128831	1200	5223	2553
<u>-</u>	F	12	F	1 2 3 3 3 3 3 3 3 3 3 3	S	E	×	₽
		i	ļ 					
0	1	1 1	11/16	24.08	18.91	34	96.30	75.64
1/16	.018	.010	1 2	25.21	19.80	7/16	98.55	77.40
1/16 1/6 3/16	.013 .053 .117	.041	13/16	25.21 26.37	20.71	122	100.8	79.19
2716	117	.092	74	97.85	21.64	9/16	109.1	81.00
14	.208	.164	15/16	27.55 28.76	22.59	6/4	108.1 105.5	82.88
2418	.326	.256	8 15/10	30.00	23.56	11/16	107.8	84.69
3/10	460	260	1/18	91.04	24.55		110.2	86.56
5/16 5/16 7/16	689	.368 .501	1/16	81.26 82.55		13/16	112.6	00.00
1/10	.469 .638 .883	.501	3/16	33.87	25.57	10/10	112.0	88.45
9/16	1.055	.654 .828	3/16	98.01	26.60	15/16	115.1	90.36
9/16	1.000	1.626	1/4	85.21	27.65 28.78	15/16	117.5	92.29
78	1.302 1.576	1.023	5/16	36.58	25.78	6	120.0	94.25
11/16 13/16 13/16 76 15/16	1.576	1.237	7/16	87.97	29.82	28	125.1	98.22
. 74	1.875	1.473	7/16	39.39	80.94	24	130.2	102.3
13/16	2.201 2.552	1.728 2.004 2.301	9/16	40.83	82.07	38	135.5	106.4
7∕8	2.552	2.004	9/16	42.30	83.23	1/6	140.8	110.6
15/16	2.990	2.301	56	43.80	84.40	96	146.8	114.9
1 (8.333	2.618	11/16	45.33	35.60	36 34 26	151.9	119.3
1/16	3.768	2.955	34	46.88	36.82	36	157.6	123.7
3/16	4.219	2.955 3.313	13/16	48.45	88.05	7	163.3	128.3
3/16	4.701	3.692	7,6	50.05	89.31	18	169.2	132.9
14 5/16	5.208 5.742	4.091	15/16	51.68 53.33	40.59	13	175.2 181.3	137.6
5/16	5.742	4.510	14	53.33	41.89	36	181.3	142.4
36	6.302	4.950	1/16	55.01	43.21	1.6	187.5	147.8
3/8 7/16	6.888	5.410 5.890	1/16 1/6 3/16	56.72	44.55	6.2	187.5 193.8	152.2 157.3
14	7.500	5.890	3/16	58.45	45.91	3.2	200.2	157.2
9716	8.188	6.392	14	60.21	47.29	- 52	206.7	162.4
46	8.188 8.802	6.913	5/18	61.99	48.69	8	213.8	162.4 167.6
9/16 56 11/16	9.492	7.455	346	63.80	50.11	1/4	226.9	178.2
2/	10.21	7.455 8.018	7/18	63.80 65.64	51.55	12	240.8	178.2 189.2
13/18	10.95	8.601	5/16 5/16 3/6 7/16	67.50	53.01	37	255.2	200.4
13/16 15/16	11.72	9.204	9/16	69.39	54.50	9	270.0	212.1
15/16	12.51	9.204 9.828	1 % L	71.30	56.00	1.4	285.2	224.0
2 2	13.33	10.47	11/16	73.24	57.52	1.2	300.8	236.8
1/16	14.18	11.14	11/10	75.21	59.07	3.3	316.9	248.9
1/10	15.05	11.82	18/16	77.20	60.63	10	333.3	261.8
1/8 3/16	15.95	12.53	10/10	79.22	62.22	14	350.2	275.1
3/10	16.88	18.25	15/16	81.26	63.82	1.4	367.5	288.6
5/16		14.00	5 15/10	01.20	00.02 0E 4E	23		
2/10	17.88	14.00		83.33 85.43	65.45	, 24	385.2 403.3	302.5 316.8
3/6 7/16	18.80	14.77	1/16	50.43	67.10	11		
7/16	19.80	15.55	18	87.55	68.76	23	421.9	331.3
9/16 9/	20.83	16.86	3/16 1/4	89.70	70.45	25	440.8	346.2
9/16	21.89	17.19	14	91.88	72.16	94	460.2	361.4
%	22.97	18.04	5/16	94.08	73.89	12	480.	377.
	1	1	ı	l		1	1	L

WEIGHTS OF FLAT BOLLED IRON IN POUNDS PER LINEAL FOOT. Widths from 1 In. to 12 In. Iron weighing 480 lbs. per cubic foot. For steel add 2 per cent.

1	٤	88888888888888888888888888888888888888
	44%	88826838848888588888888888888888888888888888
	4,4%".	
	4.	8 2 2 8 2 1 2 8 2 2 2 8 2 2 2 2 8 2
	8%".	
100	81/6".	1 1 2 3 2 2 4 2 2 2 2 2 2 2 2 3 2 3 2 3 2 3
one v no	314".	76.00.00.00.00.00.00.00.00.00.00.00.00.00
101 200	3,′.	28.88.82.25.88.88.82.25.88.88.88.88.88.88.88.88.88.88.88.88.88
1 28	234".	
Widt	37%	24.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
ġ	24	448.44.44.44.44.44.44.44.44.44.44.44.44.
work and	2′′.	44. 11.00.00.00.00.00.00.00.00.00.00.00.00.0
	184".	286. 26. 26. 26. 26. 26. 26. 26. 26. 26. 2
	11/8".	2008
	134".	8255-4888888888888888888844444000000000000
	1″.	85.456 86.4568 87.45668 88.8568 88.856
Thick-	Inches.	

		WMMIIIS OF FERT WROUGHT IRON.
j	12′′.	& \$\circ\$\ci
	11".	84.00.1185.0008888789888848858888888888888888888888888
	10′′.	4464014168888888888888888888888888888888
	,, ,	
	84%".	
	, %	28.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	%	25:440.005242575888888828864848888888888888888888888888
	7,,	
Widths.	.,,%	
	63%"	81.845.886122888888888888888888888888888888888
	61%".	88888888888888888888888888888888888888
	6′′.	#2558355835558355835583558355835583558355
	5%".	**************************************
	53%".	118844868860118845678888888888888888888888888888888888
	.,) %9	
	۵′.	1.0.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
Thick-	Inches.	

Other sizes. -Weight of other sizes can easily be obtained from the above table by means of combinations or divisions. Thus, for example,

8888 8888 8888 Weight of 12 × 14 equals weight of 12 × 1 plus weight of 12 × 14.
Or, twice weight of 12 × 95, as it is twice as thick.
Weight of 6 × 114 equals midway weight between 6 × 175 and 6 × 2.
Weight of 34 × 14, being twice as wide as 12 × 14, weighs.

WEIGHT OF IBON AND STEEL SHEETS. Weights per Square Foot.

(For weights by new U. S. Standard Gauge, see page 31.)

Thickne	ess by Birn	ingham	Gauge.	Thickne	ss by Ame Sharpe's	erican (Br) Gauge.	own and
No. of Gauge.	Thick- ness in Inches.	Iron.	Steel.	No. of Gauge.	Thick- ness in Inches.	Iron.	Steel.
0000	.454	18.16	18.52	0000	.46	18.40	18.77
000	.425	17.00	17.84	000	.4096	16.38	16.71
00	.38	15.20	15.30	00	.3648	14.59	14.88
0	.84	18.60	18.87	0	.8249	18.00	13.26
1	.8	12.00	12.24	1	.2898	11.57	11:80
2	.284	11.36	11.59	2	.2576	10.80	10:51
8	.259	10.36	10.57	8	.2994	9.18	9:36
4	.238	9.52	9.71	4	.2043	8.17	8:34
5	.22	8.80	8.98	5	.1819	7.28	7:42
6 7 8 9 10	.203 .18 .165 .148 .134	8.12 7.20 6.60 5.92 5.36	8.28 7.34 6.73 6.04 5.47	6 7 8 9	.1620 .1443 .1285 .1144 .1019	6.48 5.77 5.14 4.58 4.08	6.61 5.89 5.24 4.67 4.16
11	.12	4.80	4.90	11	.0907	3.68	8.70
12	.109	4.36	4.45	12	.0808	3.23	3.30
18	.095	3.80	3.88	18	.0720	2.88	2.94
14	.083	8.32	3.39	14	.0641	2.56	2.62
15	.072	2.88	2.94	15	.0571	2.28	2.33
16	.065	2.60	2.65	16	.0508	2.08	2.07
17	.058	2.32	2.37	17	.0458	1.81	1.85
18	.049	1.96	2.00	18	.0408	1.61	1.64
19	.042	1.68	1.71	19	.0859	1.44	1.46
20	.085	1.40	1.43	20	.0820	1.28	1.31
21 22 23 24 25	.032 .028 .025 .022	1.28 1.12 1.00 .88 .80	1.81 1.14 1.02 .898 .816	21 22 28 24 25	.0285 .0253 .0226 .0201 .0179	1.14 1.01 .904 .804 .716	1.16 1.03 .922 .820 .730
26	.018	.72	.784	26	.0159	.636	.649
27	.016	.64	.653	27	.0149	.568	.579
28	.014	.56	.571	28	.0126	.504	.514
29	.013	.52	.530	29	.0118	.452	.461
30	.012	.48	.490	80	.0100	.400	.408
81	.01	.40	.408	31	.0089	.856	.363
89	.009	.36	.367	82	.0080	.320	.326
88	.008	.32	.326	33	.0071	.284	.290
84	.007	.28	.286	34	.0068	.252	.257
85	.005	.20	.204	35	.0056	.224	.328

	Iron.	Steel.
Specific gravity	7.7	7.854
Weight per cubic foot	480. 2778	489.6 2833

As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufacturers, orders for sheets and wires should always state the weight per square foot, or the thickness in thousandths of an inch.

PLATE IBON, PER LINEAL FOOT, IN POUNDS. on 4 WEIGHT)

9 8385232233528852855233550850 18-18 20288844448588828528825865959598888 2028868448446888874688288640688887 11-18 2825E0855288550855828820552565266558805528 in Inches 04804804804806840840840840840840840840840 X Thickness 28488858111884264888881788248876018188888 1.18 × 0428671756888886048871388456754888888888 5-16 gazzeztete 0320320320320320220132013201320132001 × 001282454667482888388888888864464686 3-18 1-16 in Inches.

MATERIALS.

WEIGHTS OF STEEL BLOOMS.

Soft steel. 1 cubic inch = 0.284 lb. 1 cubic foot = 490.75 lbs.

٠.		Lengths.												
Si	zes.	1"	6"	12"	18"	24"	30"	86"	42"	48"	54"	60′′	66"	
12" 11	× 4" × 6 × 5 × 4	18.63 18.75 15.62 12.50	82 118 94 75	164 225 188 150	245 338 281 225	327 450 375 800	409 563 469 875	491 675 562 450	578 788 656 525	654 900 750 600	736 1013 843 675	818 1125 937 750	900 1238 1031 825	
10	× 7 × 6 × 5 × 4 × 3	19.88 17.04 14.20 11.36 8.52	120 102 85 68 51	239 204 170 136 102	358 307 256 205 153	477 409 341 273 -204	596 511 426 341 255	715 618 511 409 306	835 716 596 477 358	955 818 682 546 409	1074 920 767 614 460	1193 1022 852 682 511	1312 1125 987 750 562	
9	× 7 × 6 × 5 × 4	17.89 15.34 12.78 10.22	107 92 77 61	215 184 153 123	322 276 230 184	430 368 307 245	537 460 383 307	644 552 460 368	751 644 587 429	859 736 614 490	966 828 690 552	1078 920 767 613	1181 1012 844 674	
8	× 8 × 7 × 6 × 5 × 4	18.18 15.9 18.68 11.36 9.09	109 95 82 68 55	218 191 164 136 109	827 286 245 205 164	436 382 327 273 218	545 477 409 841 278	655 572 491 409 327	764 668 578 477 382	878 763 654 546 436	982 859 736 614 491	1091 954 818 682 545	1200 1049 900 750 600	
7	× 7 × 6 × 5 × 4 × 3	13.92 11.93 9.94 7.95 5.96	83 72 60 48 86	167 143 119 96 72	251 215 179 143 107	334 286 238 191 143	418 358 298 239 179	501 430 358 286 214	585 501 417 834 250	668 573 477 382 286	752 644 536 429 822	885 716 596 477 858	919 788 656 525 393	
6 <u>1,6</u> 6	× 61/2 × 4 × 6 × 5 × 4 × 8	12. 7.38 10.22 8.52 6.82 5.11	72 44 61 51 41 81	144 89 123 102 82 61	216 133 184 153 123 92	288 177 245 204 164 123	360 221 307 255 204 153	482 266 368 307 245 184	504 810 429 358 286 214	576 854 490 409 827 245	648 899 551 460 368 276	720 443 613 511 409 807	792 487 674 562 450 887	
5⅓≨ 5	× 51/2 × 4 × 5 × 4	8.59 6.25 7.10 5.68	52 37 43 84	108 75 85 68	155 112 128 102	206 150 170 186	258 188 213 170	309 225 256 205	361 262 298 239	412 300 341 278	464 837 883 807	515 375 426 341	567 412 469 875	
41% 4	× 41/6 × 4 × 4 × 31/6 × 3	5.75 5.11 4.54 8.97 8.40	85 81 27 24 20	69 61 55 48 41	104 92 82 72 61	188 123 109 96 82	178 158 186 119 102	207 184 164 143 122	242 215 191 167 143	276 246 218 181 163	311 276 246 215 184	845 907 272 238 204	380 338 300 262 224	
31 <u>4</u> 8	× 31/2 × 8 × 8	8.48 2.98 2.56	21 18 15	42 36 31	63 54 46	84 72 61	104 89 77	125 107 92	146 125 108	167 143 128	188 161 138	209 179 154	230 197 169	

SIZES AND WEIGHTS OF STRUCTURAL SHAPES.

Minimum and Maximum Weights and Dimensions of Carnegie I-Beams.

STEEL BEAMS.

Section Index.	epth of eam, in inches.	Weigi Foot,	nt per in lbs.	Flange	Width.	Web Th	Flanges for	
	Depth Beam, inche	Mio.	Max.	Min.	Max.	Min.	Max.	each lb. in crease of weight.
B 1	24	80.00	100.00	6.95	7.90	.50	.75	.0123
B 2	20	80.00	100.00	7 00	7.80	.60	.90	.015
B 3	20	64.00	75.00	6.85	6.41	.50	.66	.015
B 4	15	80.00	100.00	6.41	6.79	.77	1.16	.020
B 5	15	60.00	75.00	6.04	6.34	.54	.84	.020
B 6	15	50.00	59.00	5.75	5.98	.45	.68	.020
*B 7	15	41.00	49.00	5.50	5.66	.40	.56	.020
B 8	12	40.00	56.70	5.50	5.91	.89	.80	.025
*B 9	12	82.00	89.00	5.25	5.42	.35 .37	.52	.025
B10	10	83.00	40.00	5.00	5.21	.37	.58	.029
B11	10	25.50	32.00	4.75	4.94	.32	.51	.029
B12	9	27.00	88.00	4.75	4.95	.81	.51	.083
B13	9	21.00	26.00	4.50	4.66	.27 .27	.48	.083
B14	8	22.00	27.00	4.50	4.68	.27	.45	.087
B15	8	18.00	21.70	4.25	4.39	.25	.89 .85	.037
B16	8 8 7	20.00	22.00	4.25	4.33	.27	.85	.042
B17		15.50	19.00	4.00	4.15	.28	.38	.042
B18	9	16.00	20.00	8.68	8.88	1 .26	.46	.049
B19	9	18.00	15.00	8.50	8.60	.28	.84	.049
B20	6 6 5	18.00	16.00	8.18	8.31	1 .20	.44	.059
B21		10.00	12.00	8.00 2.75	8.12	.22	.33	.059
B22 B23	1 1 1	10.00 7.50	13.00 9.00	2.63	2.97	.24	.46	.074
B24	4 4	6.00	8.00	2.00	2.88	.18	.83	.074

	Iron.	Steel.
Given weight in pounds per foot, to find sectional area	a+ 3 1/8	8.4
		.2941
Given sectional area, to find weight in lbs. per foot """ " " lbs. per yard	× 31/6	8.4
" " lbs. per yard	× 10	10.2

Maximum and Minimum Weights and Dimensions of Carnegie Dock Beams,

STEEL.

Section Index.	Depth of Beam,		ht per , lbs.	Flange	Width.		eb mess.	Increase of Web and Flanges per lb. in-
muex.	inches.	Min.	Max.	Min.	Max.	Min.	Max.	crease of weight.
B100 B101 B102 B108 B105	10 9 8 7 6	27.28 26.52 20.15 18.10 15.80	35.70 30.60 24.48 23.46 18.36	5.25 4.94 5.00 4.87 4.38	5.50 5.07 5.16 5.10 4.53	.88 .44 .81 .81	.68 .57 .47 .54 .48	.029 .032 .087 .049

Weights and Dimensions of Carnegie Steel Channels.

Sec-	Depth of Chan-		Weight per Foot, in lbs.		Width.		eb r ness.	Increase of Web and Flanges for each
Index	nel, in inches.	Min.	Max.	Min.	Max.	Min.	Max.	lb. in- crease of weight.
C1 C2 C3 C4 C5 C6 C7 C8	15 12 10 9 8 7 6 5	82.00 20.00 15.25 12.75 10.00 8.50 7.00 6.00 5.00	51 00 30.25 23.75 20.50 17.25 14.50 12.00 10.25 8.25	8.40 2.90 2.66 2.44 2.20 2.00 1.89 1.78 1.67	8.78 8.15 2.91 2.69 2.47 2.25 2.14 2.03 1.91	.40 .80 .26 .24 .20 .20 .19 .18	.78 .55 .51 .49 .47 .45 .44 .43	.020 .025 .029 .038 .087 .042 .049 .059

Weights and Dimensions of Carnegie Z-Bars.

Section	Thickness		Size.		Weig	ght.
Index.	of Metal.	Flange.	Web.	Flange.	Iron.	Steel
Z 1 Z 2 Z 3	7-16 7-16 1/2 9-16 9-6 11-16 3/4 18-16 3/8	3 1/2 3 9-16 3 5/4 3 1/2 3 9-16 3 5/6 3 1/2 3 9-16 3 5/6	6 1-16 6 ½6 6 1-16 6 ½6 6 1-16 6 ½6	3 9-16 3 9-16 3 9-16 3 9-16 3 9-16 3 9-15 3 9-15	15.3 18.0 20.6 22.3 24.9 27.5 28.6 31.3 88.9	15.0 18.21.0 22.0 25.0 28.0 29.0 82.0 84.0
Z 4 Z 5 Z 6	5-16 3/6 7-16 1/6 9-16 5/6 11-16 3/4 13-16	3 5-16 3 36 3 36 3 34 3 5-16 3 36 3 5-16 3 36	5 1-16 5 36 5 1-16 5 36 5 1-16 5 36 5 1-16 5 36	3 1/4 3 5-16 3 7/4 8 1/4 3 5-16 3 1/4 3 5-16 5 7/8	11.8 18.7 16.0 17.5 19.8 22.1 23.2 25.5 27.8	11.6 18.6 16.4 17.8 20.5 22.6 28.7 26.0 28.8
Z.7 Z.8 Z.9	5-16 36 7-16 36 9-16 9-16 9-16 9-18 9-18	3 1-16 3 1/8 3 8-16 3 1-16 3 1/8 3 8-16 3 1-16 3 1/6 3 8-16	4 1-16 4 36 4 1-16 4 36 4 1-16 4 36 4 1-16 4 36	3 1-16 3 ½ 3 3-16 3 1-16 3 ½ 8-16 3 1-16 3 ½ 3 3-16	8.0 10.1 12.2 18.5 15.5 17.6 18.5 20.5	8.2 10.3 12.4 13.8 15.8 17.9 18.9 20.9 22.9
Z10 Z11 Z12	34 5-16 36 7-16 14 9-16	2 11-16 2 34 2 11-16 2 34 2 11-16 2 34	3 1-16 3 1-16 3 1-16 3 1-16	2 11-16 2 34 2 11-16 2 34 2 11-16 2 34	6.6 8.3 9.5 11.2 12.3 18.9	6.7 8.4 9.7 11.4 12.5 14.2

SIZES AND WEIGHTS OF STRUCTURAL SHAPES. 179

Pencoyd Steel Angles.

EVEN LEGS.

Sec.	Size		Approximate Weight in Pounds per Foot for Various Thicknesses in Inches.											
No. of Section.	in Inches	36 .125	3-16 .1875	14 .25	5-16 .3125	36 .375	7–16 .4375	36 .50	9-16 .5625	98 .625	11-16 .6875	34	36 .875	1,00
134 135 136 137 138 139	5 × 5 4 × 4 316 × 316 3 × 3 234 × 234 214 × 214 2 × 2 134 × 134 114 × 114 114 × 114	1.16 1.02 0.82	3.1 2.7 2.44 2.14 1.80 1.59 1.16	4.9 4.5 4.1 3.6 3.3 2.9 2.4 2.04 1.53	8.2 7.1 6.0 5.6 5.1 4.5 4.1 8.6 3.0	14.8 12.2 9.8 8.6 7.1 6.7 6.1 5.4 4.9 4.4 3.6	14.8 11.3 10.0 8.3 7.8 7.1		18.5 14.6 12.8	24.9 20.7 16.1 14.2 11.6	22.8 17.7	29.1 25.0 19.3	29.2	

UNEVEN LEGS.

Size		Approximate Weight in Pounds per Foot for Various Thicknesses in Inches.											
in Inches.	16 .125	3-16 1875	14 .25	5-16 .3125	36 .375	7–16 .4375	14 .50	9–16 .5625	.625	11-16 .6875	84 .75	76 .875	1 1.00
154 7 × 814 152 654 × 4 140 6 × 4 151 6 × 334 153 654 × 314 142 5 × 314 143 5 × 3 145 4 × 314 146 4 × 314 146 3 × 32 148 3 × 22 148 3 × 22 148 3 × 23 155 324 × 21 156 324 × 12 156 324 × 12 157 2 × 12 157 2 × 14		2.7 2.24 1.94	4.9 4.5 4.5 4.1 3.6 3.03 2.7	8.7 8.2 7.7 7.1 6.6 6.0 5.6 5.1 4.5 3.8 8.3	12.9 12.2 11.5 11.0 11.0 10.8 9.7 9.2 9.2 6.7 6.7 6.7 6.7 6.1	14.4 13.6 12.8 12.8 12.0 11.2 10.6 10.0 9.2 8.3 7.8 7.1 6.3	8.9 8.2	19.3 18.6 17.6 16.4 15.2 14.3 13.6 12.8 11.8	20.9 £1.4 20.7 19.7 18.2 16.8 15.0 15.0 14.2 13.1	23.6 22.8 21.7 20.0 18.5 17.8 16.5 16.5	25.7		31.3

Pencoyd Tees.

EVEN TEES.

UNEVEN TEES.

Chart	Size in	Weigi Fo	ht per ot.	Chart	Size	Weigl Fo	nt per ot.
Number.	Inches.	Iron.	Steel.	Number.	Inches.	Iron.	Steel.
70 71 72 82 88 84 78 74 75 76 77 78 79 80 81	4 × 4 314 × 314 3 × 8 3 × 8 3 × 8 214 × 214 214 × 214 2 × 2 154 × 214 2 × 2 154 × 114 1 × 1 4 × 4	12.40 10.17 8.83 6.43 7.53 4.88 6.50 5.73 3.90 8.93 8.93 1.50 1.03 10.98	18.65 10.37 8.50 6.56 7.68 4.93 6.68 5.85 4.01 3.54 2.41 2.05 11.19	107 106 93 92 90 109 91 94 95 96 110 111 117 99 105 104 100 108 101 112 102 103 116 118 114 115 118	5 × 4 5 × 23 × 3 = 16 5 × 23 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×	2.88 2.08 3.47 1.87	15.00 16.46 11 25 10.44 15.13 18.50 14.21 8.53 6.56 9.55 8.09 5.80 7.00 5.81 7.28 6.66 8.09 2.24 2.96 2.24 2.97 8.54 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39

Pencoyd Car-Builders' Channels, Iron.

on Number.	h in Inches.	mum Flange dth in Inches.	3283	um W Foo	Appr	sed Thickness ches for Each litional Pound Foot.					
Section	Depth	Mini	M dT dT	Minim Per Pour	5–16	₹6	7–16	⅓	9–16	%	Incres in It Add
55 54 381/6 83	13 12 1014 1012	37/6 3 53/6	\$4 9-82 7-16 5-16	29.5 22.4 23.6 17.6	23.6 17.6	29.5 26.1 19.8	32.2 28.6 23.6	34.9 31.1 25.8	37.6 33.6	40.3	.023 .025 .029

Pencoyd Car-Builders' Channels, Steel.

55 54	18 12	87/8 8	9-32 9-32	30.1 22.8	24.1	30.1 26.6	32.9 29.2	35.6 31.7	38.4 34.3	41.1	.022 .024 .028
33	1017	21,6	5-16	24.1 17.9	17.9	20.2	24.1	20.8			028

SIZES AND WEIGHTS OF BOOFING MATERIALS. Corrugated Iron (Phonix Iron Co.).

	BLAC	K IRON.	GALVANIZED IRON.			
Thick- ness in Inches.	Weight in Lbs. per Sq. Ft., Flat.	Weight in Lbs. per Sq. Ft. on Roof. Flat.	Weight in Lbs. per Sq. Ft., on Roof. Corrugated	Weight in Los. per Sq. Ft., Flat.	Weight in Lbs. per Sq. Ft. on Roof. Flat.	Weight in Lbs. per Sq. Ft., on Roof. Corrugated
0.065 0.049 0.035 0.028 0.022 0.018	2.61 1.97 1.40 1.12 0.88 0.72	8.08 2.29 1.63 1.31 1.03 0.84	8.87 2.54 1.82 1.45 1.14 0.98	8.00 2.87 1.75 1.81 1.06 0.94	8.50 2.76 2.08 1.58 1.24 1.09	3.88 3.07 2.26 1.71 1.87 1.21

The above table is calculated for the ordinary size of sheet, which is from 2 to 21/2 feet wide, and from 6 to 8 feet long, allowing 4 inches lap in length and 21/2 inches in width of sheet.

The galvanizing of sheet iron adds about one-third of a pound to its weight

per square foot.

per square foot. In corrugated iron made by the Keystone Bridge Co., the corrugations are 2.42% long, measured on the straight line; they require a length of iron of 2.725% to make one corrugation, and the depth of corrugation is 21.82%. One corrugation is allowed for lap in the width of the sheet and 6% in the length, for the usual pitch of roof of two to one. Sheets can be corrugated of any length not exceeding the feet. The most advantageous width is 30½%, which (allowing ½% for irregularities) will make eleven corrugations = 30%, or, making allowance for laps, will cover 24¼% of the surface of the

By actual trial it was found that corrugated iron No. 20, spanning 6 feet, will begin to give a permanent deflection for a load of 30 lbs. per square foot, and that it will collapse with a load of 60 lbs. per square foot. The distance between centres of purlins should therefore not exceed 6 feet, and, preferably, be less than this.

Terra-Cotta.

Porous terra-cotta roofing 3" thick weighs 16 lbs. per square foot and 2" thick, 12 lbs. per square foot.

Ceiling made of the same material 2" thick weighs 11 lbs. per square foot.

Tiles.

Flat tiles $6\frac{1}{4}$ " \times 10 $\frac{1}{4}$ " \times $\frac{1}{2}$ " weigh from 1480 to 1850 lbs. per square of roof, the lap being one-half the length of the tile.

Tiles with grooves and fillets weigh from 740 to 925 lbs. per square of roof. Pan-tiles 1414" × 1014" laid 10" to the weather, weigh 850 lbs. per square,

Tin.

The usual sizes for roofing tin are $14'' \times 20''$ and $20'' \times 28''$. Without allowance for lap or waste, tin roofing weighs from 50 to 62 lbs, per square. Tin on the roof weighs from 62 to 75 lbs, per square. Roofing plates or terne plates (steel plates coated with an alloy of tin and lead) are made only in IC and IX thicknesses (27 and 29 Birmingham gauge). "Coke" and "charcoal" tin plates, old names used when iron made with coke and charcoal was used for the tinned plate, are still used in the trade, although steel plates have been substituted for iron; a coke plate the plates have been substituted for iron; a coke plate the plates have been substituted for iron; a coke plate in the trade, although steel plates have been substituted for iron; a coke plate been substituted for iron; and a charcoal plate is the plate of the plate in the trade of the plate is the plate in the trade of the plate is the plate in the plate is the plate in the plate is the plate is the plate is the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate is the plate in the plate in the plate is the plate in the plate is the plate in the plate in the plate in the plate is the plate in the plate in the plate in the plate is the plate in the p now commonly meaning one made of Bessemer steel, and a charcoal plate one of open-hearth steel. The thickness of the tin coating on the plates varies with different "brands."

For valuable information on Tin Roofing, see circulars of Merchant & Co.,

Philadelphia.

TIN PLATES. (TINNED SHEET STEEL.) Standard Stock Sizes, with Number of Sheets and Net Weight per Box.

				37.4					Net
B. W. Gauge.	Thickness.	Size.	Sheets,	Net Weight lbs.	B. W. Gauge.	Thickness.	Size.	Sheets.	Weight lbs.
29	IC	10 × 14	225	108	29	IC	10 × 20	225	160
27	IX	10 × 14	225	135	27	IX	10×20	225	195
26	IXX	10×14	225	160	26	IXX	10 × 20	225	222
29	IC	12×12	225	110	29	IC	11 × 22	225	190
27	IX	12×12	225	138	27	IX	11 × 22	225	235
26	IXX	12 × 12	225	165	26	IXX	11 × 22	225	275
29	IC	14 × 20	112	108	29	IC	12 × 24	112	110
27	IX	14×20	112	135	27	IX.	12×24	112	138
26	IXX	14 × 20	112	160	26	IXX	12 × 24	112	165
25	IXXX	14 × 20	112	180	29	IC	13 x 26	112	182
241/2	IXXXX	14×20	112	200	27	IX	13×26	112	162
29	IC	20×28	112	216	26 29	IXX	18×26	112	192
27	IX	20×28	112	270	29	IC	14 × 22	112	120
26	IXX	20 × 28	• 112	320	27	IX	14 × 22	112	149
25	IXXX	20 × 28	56	180	26	IXX	14 × 22	112	174
2416		20×28	56	200	29	īc	14×24	112	130
29	IC	13×13	225	182	27	IX	14×24	112	161
27	IX_	13 × 13	225	162	26	IXX	14 × 24	112	190
26 29	IXX	13×18	225	192	29	IC	14 × 28	112	155
29	IC	14 × 14	225	155	27	1X_	14 × 28	112	193
27	IX_	14 × 14	2:25	193	26	IXX	14 × 28	112	230
26 29 27 26	IXX	14×14	225	230	29	IC	14 × 81	112	178
29	<u>IC</u>	15 × 15	2:25	178	27	IX.	14 × 81	112	210
27	IX	15 × 15	225	218	26	IXX	14 × 81	112	240
26	IXX	15 × 15	225	260	27	IX	14 × 56	56	185
29	ίC	16 × 16	225	200	26	IXX	14×56	56	220
29 27 26 29	IX	16×16	225	248	27	IX	14×60	56	200
26	IXX	16×16	225	290	26 29	IXX	14 × 60	56	240
29	IC	17×17	225	230	29	IC	15 × 21	112	120
27 26	IX	17×17	225	289	27	IX	15 × 21	112	152
20	IXX	17 × 17	225	340	26	IXX	15 × 21	112	176
29	ĬĈ	18 × 18	112	138	29	ĪĈ	16 × 19	112	120
27 26	IX	18 × 18	112	158	27	IX	16 × 19	112	147 170
	IXX	18 × 18	112	178	26 29	IXX	16 × 19	112	127
29 27	IC IX	20 × 20	112	160	29 27	IC IX	16 × 20	112 112	154
26	IXX	20 × 20 20 × 20	119 112	195 222	26 26	IXX	16 × 20	112	180
20	IC.	20 × 20 22 × 22	112	190		ic.	16 × 20		138
29	1X	22 × 22	112	235	29 27		16 × 22 16 × 22	119 112	170
27 26	IXX	22 × 22 22 × 22	112	275	26 26	IX IXX	16 × 22	112	200
20 29	IC	24 × 24	112	220	20	100	10 X 42	112	400
28 27	IX	24 × 24	112	276	ı				ľ
26	IXX	24 × 24	112	880		ł	1	1	l
	IAA	1 22 4 23	114			1	1	<u>' </u>	
B. W.	1	1	l	Net	B. W.	1		1	Net Weight
Gauge.	Ti.ickness.	Size.	Sheets.	Weight lbs.	Gauge.	Thickness.	Size.	Sheeta.	lbs.
	DO	101/ 10	-100			DAAA			
28	DC	1216 × 17	100	94	23	DXXX	15 × 21	100	244
25	DX	1216 × 17	100	122	22	DXXXX	15 × 21	100	275
24	DXX	1216 × 17	100	143	28	DG	17×25	50	94 122
23	DXXX	1236 × 17	100	164	25	DX	17 × 25	50	143
22	DXXXX	1216 × 17	100	185	24	DXX	17 × 25	50	164
28	DC	15 × 21	100	180	28 22	DXXX	17×25	50	185
25	DX DXX	15 × 21	100	180	22	DXXXX	17 × 25	50	100
24	IDAA.	15 × 21	100	218	<u> </u>	<u> </u>	1		

Slate. Number and superficial area of slate required for one square of roof. (1 square = 100 square feet.)

Dim ensions in Inches.	Number per Square.	Superficial Area in Sq. Ft.	Dimensions in Inches.	Number per Square.	Superficial Area in Sq. Ft.
6×12	538	267	12×18	160	240
7 × 12	457	1	10 × 20	169	235
8 x 12	400		11×20	154	
9 × 12	855		12×20	141	1
7×14	874	264	14×20	121	1
8 x 14	827		16×20	187	1
9×14	291		12 × 22	126	231
10 x 14	261		14 × 22	108	
8 x 16	277	246	12 × 24	114	228
9×16	246		14×24	98	
10 × 16	221	1	16×24	86	1
9×18	213	240	14×26	89	225
10 × 18	192		16×26	78	

As state is usually laid, the number of square feet of roof covered by one state can be obtained from the following formula :

width \times (length -3 inches) = the number of square feet of roof covered.

Weight of slate of various lengths and thicknesses required for one square of roof:

Length in Inches.	Weight in Pounds per Square for the Thickness.										
	₩"	8-16"	¼ "	36"	36"	5 6''	34"	1"			
12	483	724	967	1450	1936	2419	2902	3872			
14	460	688	920	1379	1842	2801	2760	3683			
16	445	667	890	1336	1784	55550	2670	8567			
18	434	650	869	1303	1740	2174	2607	8480			
20 -	425	637	851	1276	1704	2129	2553	3408			
22	418	626	836	1254	1675	2093	2508	3350			
24	412	617	825	1238	1653	2066	2478	8306			
26	407	610	815	1222	1631	2039	2445	3269			

The weights given above are based on the number of slate required for one square of roof, taking the weight of a cubic foot of slate at 175 pounds.

Pine Shingles.

Number and weight of pine shingles required to cover one square of roof:

Inches	Number of Shingles per Square of Roof.	Weight in Pounds of Shingle on One-square of Roofs.	Remarks.
4	900	216	The number of shingles per square is for common gable-roofs. For hiproofs add five per cent. to these figures. The weights per square are based on the number per square.
4)4	800	192	
5	720	178	
5)4	655	157	
6	600	144	

Skylight Glass.

The weights of various sizes and thicknesses of fluted or rough plate-glass required for one square of roof.

Dimensions in Inches.	Thickness in	Area	Weight in Lbs. per
	Inches.	in Square Feet.	Square of Roof.
12 × 48	8-16	8.997	250
15 × 60	14	6.246	350
20 × 100	36	13.880	500
94 × 156	15	101.768	700

In the above table no allowance is made for lap.

If ordinary window-glass is used, single thick glass (about 1-16") will weigh about 82 lbs. per square, and double thick glass (about ½") will weigh about .164 lbs. per square, no allowance being made for lap. A box of ordinary window-glass contains as nearly 50 square feet as the size of the panes will admit of. Paues of any size are made to order by the manufacturers, but a great variety of sizes are usually kept in stock, ranging from 6 × 8 inches to 36 × 60 inches.

APPROXIMATE WEIGHTS OF VARIOUS ROOF-COVERINGS.

For preliminary estimates the weights of various roof coverings may be taken as tabulated below:

name.	Weight in Lbs. p Square of Root
Cast-iron plates (%" thick)	. 1500
Copper	MIL 125
Felt and asphalt	. 100
Feit and gravel	. 800-1000
Iron, corrugated	. 100-275
Iron, galvanized, nat	. 100 250
Lath and plaster	. 900-1000
Lath and plaster	. 300
" " " southern.	. 400
Spruce, 1" thick	. 200
Sheathing, chestnut or maple, 1" thick	. 400
" ash, hickory, or oak, 1" thick	. 500
Sheet iron (1-16" thick)	. 800
Sheet iron (1–16" thick)	. 800
Shingles, pine	. 200
Slates (1/4" thick)	. 900
Skylights (glass 3-16" to 14" thick)	. 250-700
Sheet lead	. 500-800
Thatch	. 650
Tin	. 70- 125
Tiles, flat	. 1500-2000
" (grooves and fillets)	. 700-1000
" pan	. 1000
" with mortar	. 2000-3000
Zinc	100- 200

WEIGHT OF CAST-IRON PIPES OR COLUMNS.

In Lbs. per Lineal Foot.

Cast iron = 450 lbs. per cubic foot.

Bore.	Thick. of Metal.	Weight per Foot.	Bore.	Thick. of Metal.	Weight per Foot.	Bore.	Thick. of Metal.	Weight per Foot
Ins.	Ins.	Lbs.	Ins.	Ins.	Lbs.	Ins.	Ins.	Lbs.
8	75	12.4 17.2	10 10%	12	79.8 54.0	22	***************************************	167.5 196.5
	100 mg	22.2	1078	2	68 2	23	2	174.9
31/	12	14.8 19.6	11	12	82.8 56.5		1 78	205.1 235.6
4	29	25.3 16.1		1	71.8 86.5	24	**	182.2 213.7
4	72	22.1	111/4	12	58.9		128	945.4
41/6	25	28.4 17.9	/-	26	74.4 90.2	25	72	189.6 222.8
478	72	24.5	12	1	61.8		1	255.3
5	2	81.5 19.8		26	77.5 98.9	26	18	197.0 280.9
•	1 2	27.0	121/6	12	63.8		1	265.1
51/6	29	84.4 21.6	·	29	80.5 97.6	27	**	204.3 289.4
-/5	123	29.4	13	13	66.8 88.6	28	1	274.9 211.7
6	79 %	87.6 28.5		73	101.2	20	76	248.1
	2	31.8 40.7	14	12	71.2 89.7	29	1	284.7 219.1
61/6	3%	25.8		2	108.6		**	256.6
	Z	34.4 43.7	15	25	95.9 116.0	80	1 %	294.5 265.2
7	**	27.1		23	186.4		1	804.8
	3	36.8 46.8	16	3	102.0 123.8	81	114	343.7 278.8
734	₹6	29.0 4	17	26	145.0		1	814.2 854.8
	73	49.9	17	7	108.2 180.7	82	116	282.4
8	% 12	30.8 41.7	18	75	158.6 114.8		1146	824.0 865.8
	76	52.9	10	23	188.1	33	11/6	291.0
83/6	12	44.2 56.0	19	12	162.1 120.4		111/6	833.8 876.9
	3	68 1		1 2	145.4 170.7	84	11/6	299.6 343.7
9	32	46.6 59.1	20	1 73	126.6		116	388.0
012		71.8 49.1			152.8 179.8	85	176	308.1 858.4
91/6	7	62.1	21	1	132.7		ių %	899.0
10	12	75.5 51.5		1 %	160.1 187.9	36	1 78	316.6 363.1
	1 6	65.2	22	1 %	138.8		11/6	410.0

The weight of the two flanges may be reckoned = weight of one foot.

WEIGHTS OF CAST-IRON PIPE TO LAY 12 FEET LENGTH.

Weights are Gross Weights, including Hub.

(Calculated by F. H. Lewis.)

Thic	kness.	Inside Diameter.											
Inches.	Equiv. Decimals.	4"	6"	8′′	10"	12"	14"	16"	18"	20"			
36 13–82	.875	209	304	400									
13-82	.40625	228	381	485						1			
7-16	.4375	247	358	470	581					1			
15-32	.4687	266	386	505	624	692	804			i			
16	.5	296	414	541	668	744	863			l			
17-32	.58125	306	442	577	712	795	922	1050	1177	ı			
9-16	.5625	327	470	618	756	846	983	1118	1253	1			
19-32	.59875		498	649	801	899	1048	1186	1829				
56	.625	• • • • • •		686	845	951	1108	1254	1405				
1116	.6875		• • • • • •		935	1008	1163	1322	1481	1640			
34	.75		• • • • •		1026	1110	1285	1460	1635	1810			
13-16	.8125		• • • • •			1216	1408	1598	1789	1980			
7∕8	.875				. 	1324	1531	1738	1945	2152			
15-16	.9375					1432	1656	1879	2101	2324			
1	1.			. .		'	1783	2021	2259	2496			
11/6 11/4 18/6	1.125			l			1909	2163	2418	2672			
11/4	1.25						 		2788	3024			
187	1.375	. <i>.</i>		l. 			١		3062	3380			

Thic	Thickness.		Inside Diameter.											
Inches.	Equiv. Decimals.	22''	24"	27''	30"	33′′	36"	42"	48"	60″				
%	.625	1799					•			-				
11-16	.6875	1985	2160	2422				1	i ·					
34	.75	2171	2362	2648	2984	3221	8507		i i					
13-16	.8125	2359	2565	2875	3186	3496	3806	4426						
3/8	.875	2547	2769	8108	8137	3771	4105	4778	5442					
15-16	.9375	2787	2975	8832	3690	4048	4406	5122	5839					
1	1.	2927	3180	3562	3942	4325	4708	5472	6286					
11/6	1 125	3 310	3598	4027	4456	4886	5316	6176	7084					
11/4	1.25	3698	4016	4492	4970	5447	5924	6880	7883	974				
13%	1.375		4439	4964	5491	6015	6540	7591	8640	1074				
11/6	1.5			5439	6012	6584	7158	8308	9447	1173				
15/8	1 625				6539	7159	7789	8055	10260	1274				
13/4	1.75					7787	8405	9742	11076	1875				
1%	1.875							10468	11898	1476				
2	2.							11197	12725	15770				
114 114 115 115 115 115 115 115 115 115	2.25				· • • • •				14885	1782				
21/2	2.5			·						1988				
23/4	2.75	l	l .	l	1		l	l .	1	21956				

CAST-IRON PIPE FITTINGS. Approximate Weight.

Addyston Pipe and Steel Co., Cincinnati, Ohio.

		ystou Tipe			Cinnau, C		
Size in Inches.	Weight in Lbs.	Size in Inches.	Weight in Lbs.	Size in Inches.	Weight in Lbs.	Size in Inches.	Weight in Lbs.
CROS	SES.	TEE	18.	SLEE	VES.	REDU	CERS.
2	1 40	8×3	220	6	65	10×4	128
8	104	10	390	8	86	12×10	278
3×2	90	10×8	880	10	140	12×8	254
4	150	10×6	812	12	176	12 × 6	250
4×3	114	10×4	292	14	208	12 × 4	250
4×8	110	10×8	290	16	840	14 × 12	475
, 6	200	12	565	20	500	14 × 10	480
6×4	150	12 × 10	510	24	710	14×8	840
6×8	150	12×8	492	30	965	14×6	285
8	325 265	12×6	484 460	36	1500	16×12 16×10	475 435
8×6	265	12×4 14×12	650			20 x 16	690
8×4 8×8	200	14 × 10	650	90° ELI	BOWS.	20 × 10	575
10	510	14×8	575		1 14	20 x 12	540
10×8	415	14×6	545	2 8	84	20 × 8	300
10×6	888	14×4	525	4	48	24 × 20	745
10×4	838	14×8	490	ě	110	30 × 24	1306
10 × 8	850	16	790	Š	145	30 × 18	1385
12	700	16×14	850	1Ŏ	225	36 × 80	1730
12 × 10	650	16 × 12	825	12	870		
12×8	615	16 × 10 ·	890	14	450	ANGLE	DEDITO.
12×6	540	16×8	785	16	595	ERS FO	B GAS
12×4	525	16×6	630	20	900	EIG FO	K UAS.
12 × 3	496	16×4	655	24	1400	6×4	95
14×10	750	90	1875			6×3	80
14×8	635	20 × 16	1115	⅓ or 45°	BENDS.		
14 × 6	570	20 × 12	1025			8 PI	PES.
16	1025 1070	20×10	1090	8	30		
16 × 14	1070	20×8	900	4	65	4	90
16 × 12	1025	20×6	875	6	85	6	190
16 × 10	1010	20×4	845	8	160		
16×8	825 700	21 × 10 24	1465 1875	10 12	190 290	PLU	GS.
16 × 6 16 × 4	650	24 × 12	1425	16	510	2	1 2
20 × 1	1790	24×8	1875	20	740	8	5
20 × 19	1370	24×6	1375	24	1425	4	8
20 × 10	1225	30	3025	30	2000	6	12
20 x 8	1000	30×24	2640			Š	26
20×6	1000	30×20	2200	1-16 or	991/0	1Ŏ	46
20×4	1000	80 × 12	2035	BEN	DG.	12	66
24	2190	80 × 10	2050	DEA	D3.	14	70
24×20	2020	30 × 6	1825	6	150	16	100
24 × 6	1340	36	5140	8	155	20	150
30 × 20	2685	36×80	4200	10	165	24	185
30 × 12	2250	36 × 12	4050	12	260	30	870
30 × 8	1995	45° BR	NOH	16	500		
TE	CS .	PIPI		24 30	1280 1735	CAI	28.
2	28	8	90			8	15
8	76	6×6×4	145	REDU	TERS	4	25
3×2	76	8	300			6	60
4	100	8×6	290	3×2	85	.8	75
4×8	90	24	2765	4×8	42	10	100
4 × 2	87	24 × 24 × 20		4×2	40	12	120
6	150	30	4170	6×4	95	l	
6×4	180	86	10300	6×3	80 126	DRIP B	OXES.
6×8	125	SLEE	VES.	8×6 •8×4	116	4	235
6×2	120 266	2	10	8×3	116	8	855
8 8×6	200	8	20	10×8	212	10	760
8×4	922	å	44	10×6	150	2ŏ	1490
0 4 3							

WEIGHTS OF CAST-IRON WATER- AND GAS-PIPE.

(Addyston Pipe and Steel Co., Cincinnati, Ohio.)

± 8€	Stand	lard Wate	r-Pipe.	₩ 1 8	Standard Gas-Pipe.					
Size	Per Foot.	Thick- ness.	Per Length.	Size	Per Foot.	Thick- ness.	Per Length.			
2 8	7 15	5-16 36	68 180 204	2 8	6 12 1 /2	5-16	48 150			
2 8 8 4 6 8 10	17 22 83 42	72	264 896 504	4 6 8	17 30 40	36 7-16 7-16	204 360 480			
10 12 14	60 75 117	9-16 9-16 9-16	720 900 1400	10 12 14	50 70 84	7–16 16 9–16	600 840 1000			
16 18 20 24	125 167 200	\$2 58 15–16	1500 2000 2400	16 18 20	100 184 150	9-16 11-16 11-16	1200 1600 1800			
24 30 36	250 850 475	1126	3000 4200 5700	24 30 36	184 250 350	34	2200 3000 4200			
30 36 42 48 60	600 775 1330	1% 1% 11% 2	7200 9800 15960	42 48 60	383 542 900	11/8 11/8 19/8	4600 6590 10800			

THICKNESS OF CAST-IRON PIPES.

- P. H. Baermann, in a paper read before the Engineers' Club of Philadelphia in 1882, gave twenty different formulas for determining the thickness of cast-iron water-pipes under pressure. The formulas are of three classes:
 - Depending upon the diameter only.
 Those depending upon the diameter and head, and which add a con-
- 8. Those depending upon the diameter and head, contain an additive or subtractive term depending upon the diameter, and add a constant.

subtractive term depending upon the diameter, and add a constant.

The more modern formulas are of the third class, and are as follows:

d more modern rerundad in e en ene inni	or creeport entrop entrop to	0410 W B.
t = .00008hd + .01d + .36	Shedd,	No. 1.
$t = .00006hd + .0138d + .296 \dots$	Warren Foundry.	No. 2.
t = .000058hd + .0152d + .812	Francis,	No. 8.
t = .000048hd + .013d + .82		No. 4.
$t = .00004hd + .1 \sqrt{d} + .15 \dots $ $t = .000185hd + .40011d \dots$	Box,	No. 5.
t = .000185hd + .40011d	Whitman,	No. 6.
t = .00006(h + 280d) + .3830033d	Fanning,	No. 7.
+ _ 0001Khd L 95 _ 0059d	Morrora	NA G

In which t = thickness in inches, h = head in feet, d = diameter in inches.

Rankine, "Civil Engineering," p. 721, says: "Cast-iron pipes should be made of a soft and tough quality of iron. Great attention should be made to moulding them correctly, so that the thickness may be exactly uniform all round. Each pipe should be tested for air-bubbles and flaws by ringing it with a hammer, and for strength by exposing it to double the intended greatest working pressure." The rule for computing the thickness of a pipe

to resist a given working pressure is $t=\frac{rp}{f}$, where r is the radius in inches, p the pressure in pounds per square inch, and f the tenacity of the iron per square inch. When f=18000, and a factor of safety of 5 is used, the above expressed in terms of d and h becomes

$$t = \frac{.5d .433h}{3600} = \frac{dh}{16628} = .00006dh,$$

[&]quot;There are limitations, however, arising from difficulties in casting, and by the strain produced by shocks, which cause the thickness to be made greater than that given by the above formula."

Thickness of Metal and Weight per Length for Different Sizes of Cast-iron Pipes under Various Heads of Water.

(Warren Foundry and Machine Co.)

		0 Iead.	100 Ft. Head.		150 Ft. Head.		20 Ft. F		2! Ft. I	iO Iead.	800 Ft. Head.	
Size.	Thickness of Metal.	Weight per Length.	Thickness of Metal.	Weight per Length.	Thickness of Metal.	Weight per Length.	Thickness of Metal.	Weight per Length.	Thickness of Metal.	Weight per Length.	Thickness of Metal.	Weight per Length.
3 4 5 6 8 10 12 14 16 18 20	.344 .361 .378 .893 .422 .459 .491 .524 .557	144 197 254 315 445 600 768 952 1152 1370	.353 .373 .393 .411 .450 .489 .527 .566 .604	149 204 265 830 475 641 826 1081 1253 1500	.862 .385 .408 .429 .474 .519 .568 .606	158 211 275 345 502 682 885 1111 1360 1680	.871 .897 .428 .447 498 .549 .559 .650 .700	1191 1468 1761	.380 .409 .438 .465 .522 .579 .635 .692 .748	161 226 298 877 557 766 1004 1272 1568 1894	.890 .421 .453 .483 .546 .609 .671 .784 .796	166 285 309 393 584 806 1064 1352 1673 2026
20 24 30 86 42 48	.622 .687 .785 .862 .960	3020 4070 5265	1.106	8876 4581	.742 .831 .965 1.098 1.232 1.366			2086 2811 4095 5618 7860 9340	.862 .975 1.145 1.814 1.484 1.654	2248 3045 4458 6183 8070 10269	.922 1.047 1.235 1.422 1.610 1.798	2412 3279 4822 6656 8804 11195

All pipe cast vertically in dry sand; the 3 to 12 inch in lengths of 12 feet, all larger sizes in lengths of 12 feet 4 inches.

Safe Pressures and Equivalent Heads of Water for Castiron Pipe of Different Sizes and Thicknesses.

(Calculated by F. H. Lewis, from Fanning's Formula.)

	l	Size of Pipe.															
	4"	6	,	8	"	10	D''	19	"	14	! "	16	3′′	18	3′′	20)''
Thick- ness.	Pressure in Pounds. Head in	Feet. Pressure	Head in Feet.	Pressure in Pounds.	Head in Feet.	Pressure in Pounds.	Head in Feet.	Pressu.e	Head in Feet.	Pressure in Pounds.	Head in Feet,	Pressure in Pounds.	Head in Feet.	Pressure in Pounds.	Head in Feet.	Pressure in Pounds.	Head in Feet.
7-16 1-2 9-16 5-8 11-16 3-4 13-16 7-8 15-16 1 1 1-8 1 1-4	112 2 224 5 336 7	58 49 16 124 74 199 274	25v	18 74 130 186	42 171 300 429	44 89 132 177 224	408	24 62 90 137 174 212 249	55 143 228 316 401 488 574	42 74	244 316 392	56 84 112 140 168 196 224	129 194 258 323 387 452 516	91 116 141 166	95 152 210 267 325 382 440 497	51 74 96 119 141 164 209 256	118 170 221 274 325 378 481 589

Safe Pressures, etc., for Cast-iron Pipe.-(Continued.)

	L							Si	ze of	Pip	e.							
	25	2"	2	1 "	27	"	30)"	35	3"	36	···	49	11	45	3"	60	y "
Thick- ness.	Pressure in Pounds.	Head in Feet.	Pressure in Pounds.	Head in Feet.	Pressure in Pounds.	Head in Feet.	Pressure, in Pounds.	Head in Feet,	Pressure in Pounds,	Head in Feet.	Pressure in Pounds.	Head in Feet.	Pressure in Pounds,	Head in Feet,	Pressure in Pounds.	Head in Feet,	Pressure in Pounds.	Head in Feet,
11-16 3-4 13-16 7-8 15-16	40 60 80 101 121	92 138 184 233 279 327	30 49 68 86 105 124	198	19 36 52 69 85 102	64 83 120 159 196 235	24 39 54 69 84	55 90 124 159 194	49	97 127 159	99 44 57	74 101 131	38	88	24	55		
1 1-8 1 1-4 1 3-8 1 1-2	142 182 224		161 199 237	371 458 546	135 169 202 236	311 389 465 544	114 144 174 204	263	96 124 151	221 286 348 410	82 107 132 157	189 247 304 362	59 81 103 124	136 187 237 286	43 62 81 99	99 143 187 228	34	7 11 14
1 5-8 1 3-4 1 7-8				****	1100	1111	234	538	205	479 537	907	419	145 167 188 210	334 385 433 484	118 136 155 174	279 313 357	79	18 21 25 28
2 1-8 2 1-4 2 1-2 2 3-4															193	445	139	39 35 42 48

Note.—The absolute safe static pressure which may be put upon pipe is given by the formula $P=\frac{2T}{D}\times\frac{S}{6}$, in which formula P is the pressure per square inch; T, the thickness of the shell; S, the ultimate strength per square inch of the metal in tension; and D, the inside diameter of the pipe. In the tables S is taken as 18000 pounds per square inch, with a working strain of one fifth this amount or 8600 pounds per square inch. The formula for the absolute safe static pressure then is: $P=\frac{7200T}{D}$.

It is, however, usual to allow for "water-ram" by increasing the thickness enough to provide for 100 pounds additional static pressure, and, to insure sufficient metal for good casting and for wear and tear, a further increase equal to 333 $\left(1-\frac{D}{100}\right)$.

The expression for the thickness then becomes:

$$T = \frac{(P+100)D}{7200} + .333 \left(1 - \frac{D}{100}\right),$$

and for safe working pressure

$$P = \frac{7200}{D} \left(T - .838 \left(1 - \frac{D}{100} \right) \right) - 100.$$

The additional section provided as above represents an increased value under static pressure for the different sizes of pipe as follows (see table in margin). So that to test the pipes up to one fifth of the ultimate strength of the material, the pressures in the marginal table should be added to the pressure-values given in the table above.

·		
	Size of Pipe.	Lbs.
	4" 6 8 10 12 14 16 18 20 22 24 27 30 38 36 42 48 60	676 476 316 276 248 226 209 196 185 176 156 149 149 133 126

SHERT-IRON HYDRAULIC PIPE.

(Pelton Water-Wheel Co.)

Weight per foot, with safe head for various sizes of double-riveted pipe.

Diameter of Pipe.		Thickness of Iron by Wire Gauge.	afe Head in Feet the Pipe will stand.	قو	Diameter of Pipe.	1	Thickness of Iron by Wire Gauge.	afe Head in Feet the Pipe will stand.	ئورر
ĭ	Ι.	20.00	22E	2 2 2	2	1		3-1	2 2 2
35	•	8 2 2	 		ভ	8	122	= ~ =	
ē 6	o •	520	E	200	த வ	- e-	850	H.O o Z	Z o Z
5.24	Area of Pipe.	Thickness of Iron b Wire Gaug	Safe Head in Feet 11 Pipe wil stand.	Weight of Pipe per Lineal Ft	Pipe.	Area o Pipe.	Thickness of Iron b Wire Gaug	Safe Head in Feet th Pipe will stand.	Weight Pipe J Lines
<u> 2</u> <u>7</u>	2.2	- 8 B E	SEER	EAG	42	200	1.22.	들르지점	E A B
₫	- ₹			≥	2 .	₹		200	8 `
	. 7								
in.	8q. in.	B.W.G.	feet.	lbs.	in,	sq. in.	B,W.G.	feet.	lbs.
8	7	18	400	2	18	254	16	165	1614
ā	12	18	850	214	18	254	14	252	901.2
- 2	10	l ia	KOR	2/4	iĕ	954	19	995	1614
- 2	90	1 48	908	91/	18	06.4	47	494	2074
	200	1 10	040	273	10	204	1 44	454	90
9	100	B.W.G. 18 18 16 16 16	300	1bs. 2 214 8 814 414 5	10	sq. in. 254 254 254 254 254 254 814	B.W. G. 16 14 18 11 10 16	000	049 .
5	20	14	075	5	, XU	814	16	148	18
6	28	18	296	414	20	814	14	227	2214
6	28	14 18 16	487	137.5887.	20	814 814	14 12 11 10 16	346	80°~
6	28	14	748	712	20	814	11	880	8214
7	200	18	254	KLZ .	90	814	10	456	8612
÷	90	18 16	410	852	55	990	16	195	90
Ļ	90	14	240	79	323	990	134	906	5497
	- 60	14	040	229	22	800	19	200	2023
8	50	16 14	307	22	122	380	1%	316	0294
8	50	14	500	934	22	880	11	847	3594
8	50	12	854	18	22	880	10	415	40
9	63	12 16	827	S14	94	452	14	188	2714
9	68	14	499	1042	24	452	12	290	8512
ğ	63	19	781	1417	نة	459	111	818	89
10	70	12 16	904	012	<u>ត</u>	450	1 10	970	4917
10	70	10	450	1.73	2	720	1 40	466	2078
10	1.0	14	900	1123	274	203		400	001
8 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	78	14 12 11	067	18 Side 1094 1194 1194 1194 1294 1294 1294 1294 12	726	200	14	feet. 165 252 385 424 505 148 424 505 148 506 185 296 847 415 188 290 816 175 267 427 432 247 327 400 231 524 327 400 375	30 34 18 2214 30 3214 3614 3214 3614 3514 40 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48
10	78	31	754	1734	53	530	12	267	3814
10	78	10 16	900	1934	26	530	11	294	42
11 11	95	16	2649	942	26	530	10	859	47
11	95	14	412	18	26	580	8	432	5714
11 11	05	12 11 10 16 14	396	1714	98	615	14	162	811.7 411.4
11	05	17	697	1062	ãĕ	RIK	1 10	945	4112
ii	~	1 10	900	91	I ‱	016	1 17	979	45 5014 6114
10	110	1 10	040	111/	800	010	110	900	801/
12	110	10	240	1174	, zo	010	10	921	301/4
12	118	14	577	14	20	610		400	0134
13	113	12	574	1874	80	706	12	¥231	44
12	113	11	680	1994	80	70G	11	254	48
12	118	10	758	2297	80	706	10	804	54
13	182	16	228	12	20	706	8	875	65
19 19 19 19 19 13 13 13 13	eq. in. 7	12 11 10 16 14 12 11	848	12 15 20 22 24 13 16 21 28 26 18 26 18 21 26 17 28 24 14 28 24 14 21 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 24 14 14 14 14 14 14 14 14 14 14 14 14 14	80	814 380 880 880 880 880 452 452 452 452 452 530 530 530 515 615 615 706 706 706 706 1017 1017	14 11 10 14 12 11 10 8 14 12 11 10 8 7 11 10 8 7 11 10 8 7 11 10 8 7 11 10 8 7 11 10 8 7 11 10 8 7 11 10 8 7 11 10 8 7 10 8 10 8		444 48 54 55 74 58 67 78 88 97 1106 126 7414 102 114 1188 187
13	189	1 12	580	20	86	1017	11]	58
18	199	1 17	588	99	ac.	1017	iñ		67
13	100	1 10	808	9412	ı ∝	1017	1 4		78
14	100	1 12	011	1073	90	1017	1 %	(90
14	100	16 14 12 11 10 16	211	110	90	1017	1 46	!	00
14 14	193	14	3524	10	40	1200	10	1 1	71
14	158	12	494	211/4	40	1256	8	i !	86
14	158	11	548	281/6	40	1256	7]	97
14	158	10	648	26 ~	40	1256	6	[.108
15	176	16	197	1834	1 40	1256	4		126
15	176	14	302	17	42	1385	10	1	7434
15	176	1 12	460	98	42	1385	8	1 1	91
15	178	17	F07	‱1∠	49	1988	7	1	109
15	110	1 10	608	1 6678 1 6678	40	1908	i		114
15 15 16	110	14 12 11 10 16	000	20	42	1000	, ,		114
10	201	1 10	150	1479	42	1565	9		100
16	201	14	288	1714	4%	1385	24	, 1	187
16 16	201	12	300 350 325 325 500 675 295 487 741 419 307 500 412 419 419 419 419 419 419 419 419 419 419	241/4	42	1385	3	l j	145
16	201 201 201 201 201	12 11	474	2612 2912	18 18 18 18 18 18 18 18 18 18 18 18 18 1	1017 1256 1256 1256 1256 1256 1256 1385 1385 1385 1385 1385 1385 1385	4 14 3 5–16 88		145 177 216
16	201	10	567	2912	42	1385	i 8√a] [216
				/3					

STANDARD PIPE PLANGES.

Adopted July 18, 1994, at a conference of committees of the American Society of Mechanical Engineers, and the Master Steam and Hot Water Fixers' Association, with representatives of leading manufacturers and users

of pipe.

The list is divided into two groups; for medium and high pressures, the first ranging up to 75 lbs. per square inch, and the second up to 200 lbs.

Pipe size, inches. Pipe Thickness, d	$\begin{array}{c}$	Stress on Pipe per square inch @ 200 lbs.	Flange Diameters, inches.	Flange Thickness, inches.	Width Flange Face, inches.	Bolt Circle Diameter, inches.	Number of Bolts.	Bolt Diameter, inches. Bolt Length, inches.	Stress on each Bolt, per square inch, at Bottom of Thread @ 200 lbs.
2 4 4 4 4 4 4 4 4 4 5 6 6 5 7 6 6 8 6 6 9 9 6 8 10 7 14 8 8 10 22 11 15 9 16 12 27 14 8 13 30 14 36 1.7 42 148 8 2.1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	460 1 550 3 690 3 900 1 1000 1 1120 2 1280 3 1310 7 1600 7 1600 7 1600 7 1780 7 1780 7 1780 7 1980 8 2040 3 2040 3 2100 3 2100 3	6 7 7 6 6 9 9 14 10 10 11 12 15 16 16 19 11 12 15 16 16 19 12 11 12 15 16 16 19 12 12 15 16 16 19 12 12 15 16 16 19 12 12 15 16 16 16 16 16 16 16 16 16 16 16 16 16	**************************************	**************************************	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	825 1050 1330 2530 2530 2530 25100 1430 1630 2360 3300 4190 3610 2970 4280 4280 4280 4280 4280 4280 5130 5030 5030 5790 5790 5790 5790 6090

Notes.—Sizes up to 24 inches are designed for 200 lbs. or less. Sizes from 24 to 48 inches are divided into two scales, one for 200 lbs., the other for less.

The sizes of bolts given are for high pressure. For medium pressures the diameters are ½-inch less for pipes 2 to 20 inches diameter inclusive, and ½ inch less for larger sizes, except 48-inch pipe, for which the size of bolt is 1%

When two lines of figures occur under one heading, the single columns up to 24 inches are for both medium and high pressures. Beginning with 24 inches, the left-hand columns are for medium and the right-hand lines are for high pressures.

The sudden increase in diameters at 16 inches is due to the possible insertion of wrought-iron pipe, making with a nearly constant width of gasket a greater diameter desirable.

When wrought-iron pipe is used, if thinner flanges than those given are swiftleient, it is proposed that bosses be used to bring the nuts up to the standard lengths. This avoids the use of a reinforcement around the pipe.

Figures in the third, fourth, fifth, and last columns refer only to pipe for

200 lbs. pressure.

In drilling valve flanges a vertical line parallel to the spindles should be nidway between two holes on the upper side of the flanges.

DIMENSIONS OF PIPE FLANGES AND CAST-IRON PIPES.

(J. E. Codman, Engineers' Club of Philadelphia, 1889.)

Pipe.	ater ange.	lameter of Bolt Circle.	nete ^r Bolt	Number of Bolts.	Thickness of Flange.	Thick of I	kness lipe.	eight per foot without Flange.	Weight of Flange and Bolts.
Diameter of Pipe.	Diamater of Flange.	Diameter of Bolt Circle.	Diameter of Bolt	Num	P of Fi	Frac.	Dec.	Weight per fo	Weig Fig
2 3 4 5 6 8 10	614 714 9	43/4 55/8	**************************************	4	11-16 34 18-16 18-16	% 13-82	.873 .896 .420 .448 .466 .511 .557 .603 .649	6.96 11.16	4.41 5.98 7.66
4	9′~	7	2	6 6 8 8 10 12 14 16 16 16 20 22 4 24 26 28 32 32 32 34 34	11-16	7-16	.420	15.84	7.66
5	994 1094 1394 1594 1794	8	24	6	%	7-16 15-32	.448	21.00	9.68
2	1094	976	23	8	?3 .a	10-32	.400	26.64 89.36	11.89
10	15/2	111400	23	10	19-10	9-16	.DII	54.00	10.91
19	1722	1514 1534 18 20 2214	1 72	10	18_16	10.32	808	70.56	16.91 23.00 80.18
14	20	1874	1 62	14	1.0-10	19-32 21-32 11-16	649	89.04	88.84
16	20 22 24	20	12	16	1 1-16	11-16	.695	89.04 109.44	88.84 47.70
18	24	221/1	122	16	1 1-16 114 1 8-16	25-32 27-32 15-16	.741 .787 .833 .879 .925 .971	131.76	58.28
20	27 28%	2412	1	18	1 8-16	25-32	.787	156.00	70.00
22	289/4	263.2	1	20	11/4 1 5-16	27-32	.833	182.16	70.00 88.05
24	8114	241/4 261/4 289/4 81 331/4 351/4 371/4	1	22	1 5-16	1 1/8	.879	210.24	97.42
26	851/4	81	1	24	1 5-16 186 1 7-16 1 9-16	15-16	.925	240.24	113.18
28	861/6	3834	1	24	1 7-16	81-32	.971	272.16	130.35
30	86	3576	1.,	20	1 9-16	1	1.017	806.00	149.00 169.17
32	40	3775	179	20	156 1 11-16	1 1-16	1.063 1.109	341.76 879.44	190.90
34	48/4	49	178	90	184	11/6 1 5-82	1.155	419.04	214.26
30	40	44	172	9.)	1 13-16	1 5-32 1 3-16	1.201	460.56	289.27
20 22 24 25 28 20 32 34 36 38 40 42	811/4 861/4 861/4 86 40 431/4 45 47 49	40 42 44 46 4834 5034	172	84	176	11/4	1.247	504.00	266.00
42	511/4	4844	112	84	1% 1 15-16	1 5-16	1.293	549.36	294.49
44	5312	5012	112	36	2	111-82	1.839	596.64	824.78
46. 48	55%		112	38	2 1-16	186	1.385	645.84	856.94
48	55 9 2 58	5894 55	11/4	36 38 40	2 1-16 21/6	186 176	1.431	696.96	891.00

D = Diameter of pipe. All dimensions in inches.

u = manneter or pipe. All dimensions in Formula. Thickness of flange = 0.033D + 0.56. Thickness of pipe = 0.023D + 0.327. Weight of pipe per foot = 0.24 D^3 + 3D. Weight of flange = 0.01 D^3 + 0.1 D^3 + D + 2. Diameter of flange = 1.125D + 4.25. Diameter of bolt-circle = 1.092D + 2.566. Diameter of bolt = 0.011D + 0.73. Number of bolts = 0.78D + 2.56.

PIPE FLANGES FOR HIGH STEAM-PRESSURE.

(Chapman Valve Mfg. Co.)

Size of Pipe.	Diameter of Flange.	Number of Bolts.	Diameter of Bolts.	Diameter of Bolt Circle.	Length of Pipe-Thread
Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
23/4	71/6	6	2 9	6%8	1 129
3	9	, 9	24	098	1,198
81/6	1 9	7	94	124	1 7-10
4	10	1 8	34	7/8	1 9-16
416	1016	8	3/4	81/2	1 11-16
5 ~	11	9	34	91/4	1 13-16
6	18	10	1 %	1056	13%
7	14	12	1 %	113%	1 15-16
Ř	15	12	62	13	2
ă	16	18	1 62	14	1 2
10	1736	15	1 62	1514	216
12	20	18	1 62	1782	212 \
	23	18	1 1 78	9017	212
14		18	1 4	2114	962
15	231/6	1 10	1 2	~174	78

STANDARD SIZES, ETC., OF WROUGHT-IRON PIPE. For Water, Gas, or Steam.

(Briggs Standard.)

Dian	neter of	Tube.	ess tal.	nal m.	e ii ii	t of per t. of s Sur-	ge of a	la "	12 .
Nomi- nal Inside.	Actual Inside.	Actual Out- side.	Thickness of Metal.	Internal Circum- ference.	External Circum- ference.	Length Pipe p Sq. Ft. Inside face.	Length o Pipe per Sq. Ft. Outside Surface	Internal Area.	External Area.
Ins.	Ins. .270	Ins. .405	Ins. .068	Ins. .848	Ins. 1.272	Feet. 14.15	Feet. 9.44	Ins. .0572	Ins. .129
	.364	.540	.088	1.144	1.696	10.50	7.075	.1041	
8 7	.494	.675	.091	1.552	2.121	7.67	5.657	.1916	. 358
1%	.623	.840	.109	1.957	2.652	6.18	4.502	.3048	.554
\$ Z	.824	1.050	.113	2.589	3.299	4.635	8.637	.5333	.866
1 1	1.048	1.315	.184	3.292	4.134	3.679	2.903	.8627	1.357
11/4 11/4 2 21/4 3	1.380	1.660	.140	4.335	5.215	2.768	2.301	1.496	2.164
11/6	1.610	1.900	.145	5.061	5.969	2 371	2.01	2.038	2.835
2	2.067	2.875	.154	6.494	7.461	1.848	1.611	3.855	4.430
21/6	2.468	2.875	.204	7.754	9.032	1.547	1.328	4.783	6.491
3	3.067	3.500	.217	9.636	10.996	1.245	1.091	7.388	9.621
31/6	3.548	4.000	.226	11.146	12.566	1.077	.955	9.887	12.566
4	4.026	4.500	.237	12.648	14.137	.949	.849	12.730	15.904
414	4.508	5.000	.246	14.153	15.708	.848	.765	15.989	19. 63 5
5	5.045	5.563	.259	15.849	17.475	.757			24.299
6	6.065	6.625	.280	19.054	20 818	.63	.577		34.471
414 5 6 7 8	7.023	7.695	.301	22.063	23.954	.544	.505		45.663
8	7.982	8.625	.322	25.076	27.096	.478	.444	50.039	58.426
Ty	9.000	9.688	.344	28.277	30.433	.425	.394	63.633	78.715
10	10.019	10.750	.366	31.475	33.772	.381	. 355	78.838	90.762

* By the action of the Manufacturers of Wrought-iron Pipe and Boiler Tubes, at a meeting held in New York, May 9, 1889, a change in size of actual outside diameter of 9-inch pipe was adopted, making the latter 9.625 instead of 9.688 inches, as given in the table of Briggs' standard pipe diameters. For discussion of the Briggs Standard of Wrought-iron Pipe Dimensions, see Report of the Committee of the A. S. M. E. in "Standard Pipe and Pipe Threads," 1886, Trans., Vol. VIII, p. 29. The figures in the next to the last column are derived from the formula

$$D = (0.05D + 1.9) \times \frac{1}{n}$$

in which D = outside diameter of the tubes, and n the number of threads to the inch. The figures in the last column are derived from the formula $0.8\frac{1}{n} \times 2 + d$, or $1.6\frac{1}{n} + d$, in which d is the diameter at the bottom of the

thread at the end of the pipe.

Having the taper, length of full-threaded portion, and the sizes at bottom and top of thread at the end of the pipe, as given in the table, taps and dies can be made to secure these points correctly, the length of the imperfect threaded portions on the pipe, and the length the tap is run into the fittings beyond the point at which the size is as given, or, in other words, beyond the end of the pipe, having no effect upon the standard. The angle of the thread is 60°, and it is slightly rounded off at top and bottom, so that, instead of its depth being equal to its pitch, as is the case with a full V-thread, it is

4/5 the pitch, or equal to $0.8\frac{1}{n}$, n being the number of threads per inch.

WROUGHT-IRON PIPE.

Sizes, etc., of Wrought-iron Pipe-(Continued.)

		Sizes, et	c.		Screwed Ends.						
Nominal Inside Diameter.	Length of Pipe Con- taining One Cubic Foot.	_X @C Y P Em 6 0 E Y				Length of Perfect Screw.	Diameter of Bottom of Thread at End of Pipe.	Diameter of Top of Thread at End of Pipe.			
Inch. 1/8 1/4 1/4 1/4 2 2/4 3 3 3/4 4/4 6	Feet. 2500. 1385. 751.5 472.4 270. 166.9 96.25 70.65 42.36 80.11 19.49 14.56 11.31 9.08	Lbs. .243 .422 .561 .845 1.126 1.670 2.258 2.694 3.667 5.778 7.547 9.055 10.728	.0006 .0026 .0057 .0102 .0230 .0406 .0688 .0918 .1632 .2550 .3673 .4998 .6528 .8263	Lbs005 .021 .047 .085 .190 .349 .527 .760 1.56 8.116 8.049 4.155 5.405 6.851	No. 27 18 18 14 14 11 12 11 12 8 8 8 8 8	Inch. .19 .29 .80 .39 .40 .51 .54 .55 .58 .89 .95 1.00 1.05	Inches334 .433 .567 .701 .911 1.144 1.488 1.727 2.2 2.62 3.241 3.738 4.235 4.732	Inches. .393 .522 .656 .815 1.025 1.283 1.627 1.866 2.339 2.89 3.441 3.938 4.435 4.932			
41/6 5 6 7 8 9	7.20 4.98 8.72 2.88 2.26	14.564 18.767 23.410 28.348 84.077 40.641	1.020 1.469 1.999 2.611 3.300 4.081	8.500 12.312 16.662 21.750 27.500 34.000	88888888888	1.16 1.26 1.36 1.46 1.57	5.291 6.346 7.34 8.334 9.39 10.445	5.491 6.546 7.54 8.584 9.59 10.645			

Taper of conical tube ends, 1 in 32 to axis of tube = 34 inch to the foot total taper.

Inch and below are butt-welded, and proved to 300 pounds per square inch hydraulic pressure.

11/4 inch and above are lap-welded, and proved to 500 pounds per square inch hydraulic pressure.

SIZES ABOVE 10 INCHES.

(Morris, Tasker & Co., Limited.)

Nominal Size.	Actual Inside Diameter.	Actual Outside Diameter.	Thickness.	Internal Cir- cumference.	External Cir- cumference.	Internal Area.	External Area.	Length of Pipe per sq. ft. of Inside Surface.	Length of Pipe per sq. ft. of Outside Surface.	Length of Pipe containing 1 cubic foot.	Weight per foot of Length.
in.	in.	in.	ín.	in.	in.	sq. in.	sq. in.	ft.	ft.	ft.	lbs.
11	11.224	12	.388	35.26	37.70		113,10		.318	1.455	47.73
12	12.180	13	.41	88.26			132.73	.813	.298	1.285	54.66
13	13.136	14	.432	41.27		134.58		.290	.278	1.069	61.94
14	14.092	15	.454	44.27	47.12	155.97	176.72	.271	.254	.923	70.01
15	15.048	16	.476	47.27	50.27	177.87	201.06	.254	.238	.809	78.27
16 17	16.004	16 17 18	.498	50.28	53.41	201.16	226.98	.288	.225	.715	87.12
17	16.960	18	.520	53.28	56.55	225.91	254.47	.225	.212	.638	96.38
18	17.916	19	542	56.28	59.69	252.10	283.53	.213	.201	.571	106.07
18 19	18.372	20	.564	59.29	62.83	279.72	314.16	.202	.191	.515	116.21
20	19.828	21	.586	62.29	65.97	308.77	346.36	.192	.183	.466	126.76
						<u> </u>					

WROUGHT-IRON WELDED TUBES, EXTRA STRONG. Standard Dimensions.

Nominal Diameter.	Actual Out- side Diameter.	Thickness, Extra Strong.	Thickness, Double Extra Strong.	Actual Inside Diameter, Extra Strong.	Actual Inside Diameter, Double Extra Strong.
Inches.	Inches. 0.405 0.54 0.675 0.84	Inches. 0.100 0.128 0.127 0.149	Inches.	Inches. 0.205 0.294 0.421 0.542	Inches. 0.244
1 114 116 2	1.05 1.315 1.66 1.9 2.375	0.157 0.182 0.194 0.203 0.221	0.314 0.364 0.388 0.406 0.442	0.786 0.951 1.272 1.494 1.938	0.422 0.587 0.884 1.088 1.491
21 <u>6</u> 8 81 <u>6</u> 4	2.875 8.5 4.0 4.5	0.280 0.304 0.321 0.341	0.560 0.608 0.642 0.682	2.315 2.892 3.358 3.818	1.755 2.284 2.716 3.136

STANDARD SIZES, ETC., OF LAP-WELDED CHAR-COAL-IRON BOILER-TUBES.

(Morris, Tasker & Co., Limited).

External Diameter.	Standard Thick-			Internal External Area.		Length of Tube per Sq. Ft. of InsideSurface.	Length of Tabe per Sq. Ft. of Outside Sur- face.	Length of Tube per Sq. Ft. of Mean Surface.	Weight per Lineal Foot.		
11-4 1. 11-2 1. 12-4 1. 21-4 2. 21-2 2. 23-4 2. 33-4 2. 33-4 3. 31-2 3. 33-4 3. 41-2 4. 56 5. 76 6. 8 7.	\$566 07:1656 0	3 2,889 3 3,44 3 4,191 3 4,191 3 4,191 3 5,667 8 6,484 5,667 8 9 7,757 9 9,462 9 9,462 9 9 10,248 9 9 11,733 0 11,733 0 13,323 0 13,323 0 14,818 1 17,900 1 2,20 1 3,175 2 20,914 2 30,974 3 30,974 3 30,974 3 30,974 4 30,974 4 30,974 4 30,974 4 30,974 5 7,805	10, 210 10, 995 11, 781 12, 566 14, 137 15, 708 18, 849 28, 274 37, 699 40, 840 34, 557 37, 699 40, 840 40, 840 47, 124 50, 265 50, 265 50, 407 56, 56, 54, 56	965,900 294,378	.058 .0673 .0763 .0981 .1216 .1771 .2417 .318 .4048 .4098 .6075 .7205 .8554 .9943 1.1438 1.4738 1.4738 1.6543 1.8465 2.0443	\$q. In. 785; 1.227, 1.767; 2.405; 3.976; 4.909; 6.940; 7.069; 8.200; 9.621; 11.045; 11.045; 11.045; 12.566; 12.566; 13.84; 14.95; 13.84; 14.95; 13.97; 13.93; 113.097	1.069 1.2878 1.188 1.5762 1.7671 1.969 2.1817	Ft. 4.463 3.455 2.863 2.863 1.850 1.373 1.268 1.171 1.083 1.901 8.09 670 670 670 670 670 670 670 670 670 670	Ft. 9 3.056 2.046 2.046 2.046 2.183 1.906 1.203 1.688 1.588 2.183 1.051 1.051 1.075 2.051	Ft. 4 139 23 3.255 2.013 1.774 1.600 1.449 1.323 1.053 875 786 653 560 489 375 227 227 242 242 242 242 243 1.131 1.053 259 242 242 242 243 1.131	Libes708 -70 -1.56 -1.981 -1.981 -1.983 -1.75 -1.393 -1

In estimating the effective steam-heating or boiler surface of tubes, the surface in contact with air or gases of combustion (whether internal or external to the tubes) is to be taken.

be taken.

be taken, or transferring heat from one liquid or gas to another, the mean surface of the tubes is to be taken.

To find the square feet of surface, S, in a tube of a given length, L, in feet, and diameter, d, in inches, multiply the length in feet by the diameter in inches and by .2618. Or, $S = \frac{3.1416dL}{12} = .2618dL$. For the diameters in the table below, multiply the length in feet by the figures given opposite the diameter.

Inches, Diameter.	Square Feet per Foot Length.	Inches, Diameter.	Square Feet per Foot Length.	Inches, Diameter.	Square Feet per Foot Length.
14 14 14 14 1 114	.0654 .1809 .1963 .2618 .8272	21/4 21/4 24/4 3 31/4	.5890 .6545 .7199 .7854 .8508	5 6 7 8	1.3090 1.5708 1.8326 2.0944 2.3562
114 114 134 2	.3927 .4581 .5236	31/4 81/4 33/4 4	.9168 .9817 1.0472	10 11 12	2.6180 2.8798 3.1416

RIVETED IRON PIPE.

(Abendroth & Root Mfg. Co.)

Sheets punched and rolled, ready for riveting, are packed in convenient form for shipment. The following table shows the iron and rivets required for punched and formed sheets.

required Feet Pur	Iquare Fed to make inched and when put to	Formed	dmate No. vets I Inch regulred 100 Lineal Funched Formed	Number required Feet Pur Sheets w	mate No. ets 1 Inch required 00 Lineal Punched Formed		
Diam- eter in Inches.	Width of Lap in Inches.	Square Feet.	Approxi of Riv apart for 16 Feet and Bheets	Diam- eter in Inches.	Width of Lap in Inches.	Square Feet.	Approxi of Riv for if Feet and Sheets
3 4 5 6 7 8 9 10 11 12 13		90 116 150 178 906 234 258 289 314 843 869	1,600 1,709 1,809 1,900 2,000 2,200 2,300 2,400 2,500 2,600 2,700	14 15 16 18 20 22 24 26 28 30		897 423 452 506 562 617 670 725 779 836 998	2,800 2,900 3,000 3,200 8,500 3,700 3,900 4,100 4,400 4,600 5,200

WEIGHT OF ONE SQUARE FOOT OF SHRET-IRON FOR BIVETED PIPE.

Thickness by the Birmingham Wire-Gauge.

No. of Gauge.	Thick- ness in Decimals of an Inch.	Weight in lbs , Black.	Weight in lbs.; Galvan- ized.	No. of Gauge.	Thick- ness in Decimals of an Inch.	Weight in lbs., Black.	Weight in lbs., Galvan- ized.
26	.018	.72	.94	18	.049	1.97	2.19
24	.022	.88	1.13	16	.065	2.61	2.82
22	.028	1.12	1.38	14	.083	3.33	3.52
20	.035	1.40	1.69	12	.109	4.37	4.50

SPIRAL RIVETED PIPE.

(Abendroth & Root Mfg. Co.)

	B. W. G. Inches.		Approxir in lbs. Le		ot in	Approximate Bursting Pressure in lbs. per sq. in.						
26 24 22	.018 .022 .028	3 to 6 3 to 12 3 to 14	lbs.= '' =½ of	diam	. in ins.							
20 18	.035	3 to 24 3 to 24	" =.5 " =.6	46	**	3600	" ÷	4.4	in ins.			
16 14	.065	6 to 24 8 to 24	" =.8 " =1.1	"	"	4800 6400	" ÷	"	4.			

The above are black pipes. Galvanized weighs from 10 to 30 per cent heavier. Double Galvanized Spiral Riveted Flanged Pressure Pipe, tested to 150 lbs. hydraulic pressure.

Inside diameters, inches	3	1 4	5	61	71	8.	9110	111	112	131	141	151	16	.81	20
Thickness, B. W. G	20	20	20	18	18 1	811	18 16	16	16	16	14	14	14	14	14
Inside diameters, inches Thickness, B. W. G Nominal weight per foot, lbs	21/4	3	4	5	6	7	8 11	12	14	15	20	22	24	29	34

DIMENSIONS OF SPIRAL PIPE FITTINGS. Dimensions in Inches.

Inside Diameter.	Outside Diameter Flanges.	Number Bolt Holes	Diameter Bolt Holes.	Diameter Circles on which Bolt Holes are Drilled.	Sizes of Bolts.
ins. 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18	6 7 7 8 % 10 11 13 14 15 16 17 17 % 19 3-16 23 14 25 16	4 8 8 8 8 8 8 12 12 12 12 12 12 12 16	1777	484 5 15-16 6 15-16 77-6 9 10 111-14 122-14 133-6 143-15-14 167-7-16 191-4 231-8	7-16 × x 134 7-16 × x 134 1-18 x 134 1-18 x 22 1-18 MLESS BRASS TUBE. IRON-PIPE SIZES.

(Randolph & Clowes).

(For actual dimensions see tables of Wrought-iron Pipe.)

Nominal Size.	Weight per Foot, lbs.	Nom- inal Size.	Weight per Foot, lbs.	Nom- inal Size.	Weight per Foot, lbs.	Nom- inal Size.	Weight per Foot, lbs.
1/6 1/4 3/6 1/8	.266 .461 .617 .925	\$4 1 11/4 11/2	1.228 1.837 2.468 3.045	2 21/6 3 31/6	4. 6.323 8.266 9.878	4 5 6 7 8.	11.719 15.935 20.690 26.286 29.881

SEAMLESS DRAWN BRASS-TURING.

(Randolph & Clowes, Waterbury, Conn.)

Outside diameter 3-16 to 73/4 inches. Thickness of walls 8 to 25 Stubbs' Gauge, length 12 feet. The following are the standard sizes:

SEAMLESS DRAWN BRASS-TUBING.

hitside Diam- eter	Length Feet.	Stubbs' or Old Gauge.	Outside Diam- eter.	Length Feet.	Stubbs' or Old Gauge.	Outside Diam- eter.	Length	Stubbs or Old Gauge.
34 5-16	12	20 19 19 18 18 17 17 17 17 16 16	136	12	14	256	12 12	11
86	12	19	156	12 12	14 13	294	12	11
12	12 12 12 12	18	134	12	13 13	314 314	12	îî
56	12	18	1 13-16	12	13	31.6	12	11
34	12	17	13/6	12	12	4	10 to 12	11
13-16	12	17	1 15-16		12 12	5	10 to 12	11
36 15-16	13	17	2	12	12	534	10 to 12	11
15-16	12	17	21/6	12	12	516	10 to 12	11
1	12	16	214	12	12	536	10 to 12	11
116	12 12 12 12 12	16	234	12	12 12 12	6	10 to 12	11
134	12	15	216	12	11			1

COILED PIPES.

(National Pipe-bending Co., New Haven, Conn.)

COILS OF STEEL OR IRON PIPE; WELDED LENGTHS.

		Butt	-wel	ded 1	Pipe		La wel Pi	
Size of pipe	14	%	⅓	34	1	11/4	11/6	2
ing 25 feet of pipe and less. Inches Least outside diameter of coils over 25		21/6	31⁄2	4	6	8	12	18
feet and not over 200 feetInches	6	7	71/6	81/6	9	11	14	18

COILS OF SEAMLESS DRAWN BRASS AND COPPER TUBING.

Size of tube, outside diameterIns.	1/4	36	1/2	34	1	11/4	13%	11/6	134	2	21/4	25%	216
Least outside diameter of coilsIns.	1	11/6	2	3	4	6	7	8	10	12	14	16	18

Welded solid drawn-steel tubes, imported by P. S. Justice & Co., Philadelphia, are made in sizes from ½ to 4½ inches external diameter, varying by ½ths, and with thickness of walls from 1-16 to 11-16 inches. The maximum length is 15 feet,

WEIGHT OF BRASS, COPPER, AND ZINC TUBING. Per Foot.

Thickness by Brown & Sharpe's Gauge.

Brass,	No. 17.	Brass,	No. 20.	Cop Lightning No.	rod Tube,
Inch. 1/4 5-16 3/6 7-16 1/6 9-11 5/8 11/6 11/4	Lbs. .107 .157 .185 .234 .266 .318 .383 .377 .462 .542 .675	Inch. 146 3-16 1-46 5-16 3-6 7-16 9-16 5-6 5-6 5-6 5-6	Lbs. .082 .089 .063 .106 .126 .189 .208 .220 .252 .284 .378	Inch. 1/4 9-16 9-8 11-16 3/4 Zinc,	Lbs. .162 .176 .186 .210 .229 No. 20,
114 114 134 2 21 ₄ 21 ₅	.915 .980 1.90 1.506 2.188	11/4	.500 .580	11/4 11/4 11/4	.234 .272 .811 .380 .452

LEAD PIPE IN LENGTHS OF 10 FEET.

In.	8-87	Thick.	5–16 7	hick.	¼.T	hick.	8-16	Thick
	lb.	oz.	lb.	oz.	lb.	oz.	lb.	oz.
21/6 3 31/6	17	0	14	0	11	0	8	0
8	20 22	Ů,	16 18	Ň	12 15	Ŭ	9	Ü
4	25	ŏ	21	ŏ		ŏ	12	8
416		_			16 18	Ō	12 14	Ö
5	31	0	1		20	Ø	1	

LEAD WASTE-PIPE.

136 in.,	2 lbs. per foot.		4 lbs. per root.
2 "	3 and 4 lbs. per foot.	4	5, 6, and 8 lbs.
3 "			
-	3½ and 5 lbs. per foot. 5 in. 8, 10, a	nd 12 lbs.	

LEAD AND TIN TUBING,

1/2 inch.

¼ inch.

SHEET LEAD.

Weight per square foot, 21/2, 3, 31/2, 4, 41/2, 5, 6, 8, 9, 10 lbs. and upwards. Other weights rolled to order.

BLOCK-TIN PIPE.

36 in , 416, 616, and 8 oz. per foot. 16 " 6, 716, and 10 oz. " 56 " 8 and 10 oz. " 54 " 10 and 12 oz. "	in., 15, and 18 oz. per foot.
16 " 6, 716, and 10 oz. "	11/4 " 11/4 and 11/6 lbs. "
5% " 8 and 10 oz. "	11/4 " 11/4 and 11/4 lbs. " 11/4 " 2 and 21/4 lbs. "
34 " 10 and 12 oz. "	2" " 216 and 3 lbs. "

LEAD PIPE.

LEAD AND TIN-LINED LEAD PIPE.

(Tatham & Bros., New York.)

Calibre. Letter.	Weight per Foot and Rod.	Thickness in 1-100th in.	Calibre.	Letter.	Weight per Foot and Rod.	Thickness in 1-100th In.
%in. E B AAA 7-16 in. D B AAA **AAAA **AAAA **AAAA **AAA **AAA **AAA **AAA **AAA **AAA **AAA **A	7 lbs. per rod 10 os. per foot 12 "" 1 lb. " 112 " " 113 oz. " 1 lb. " 13 oz. " 1 lb. " 9 lbs. per rod 1 '" 1 '" 1 '" 1 '" 1 '" 1 '" 1 '" 1 '"	6 8 12 16 19 27 7 9 11 13 16 19 28 25 8 9 18 16 20 22 25 8 10 12 16 20 23	1 in. 11½ in. 11½ in. 11½ in. 11½ in. 11½ in. 11½ in.	E D C B A AAA A E D C B A AAA A C B A AAA A C B A AAA A AAA C B A AAA AA	114 lbs. per foot 2	10 11 14 17 21 24 80 10 10 12 14 16 19 25 18 11 17 19 23 27 18 18 22 18 23 27

WEIGHT OF LEAD PIPE WHICH SHOULD BE USED FOR A GIVEN HEAD OF WATER.

(Tatham & Bros., New York.)

Head or Number	Pressure		Ca	libre and	i Weigh	t per Fo	ot.	
of Feet Fall.	per sq. inch.		¾ inch.	⅓ inch.	5∕6 inch.	¾ inch.	1 inch.	1¼ in.
30 ft. 50 ft. 75 ft. 100 ft. 150 ft. 200 ft.	15 lbs. 25 lbs. 38 lbs. 50 lbs. 75 lbs. 100 lbs.	D C B A AA AAA	10 oz. 12 oz. 1 lb. 1¼ lbs. 1¼ lbs. 1¼ lbs.	2 lbs.	2 lbs. 216 lbs. 234 lbs.	3 lbs.	3¼ lbs. 4 lbs. 4¾ lbs.	334 lbs 434 l: s 6 lbs

To find the thickness of lead pipe required when the head of water is given. (Chadwick Lead Works).

Rule.—Multiply the head in feet by size of pipe wanted, expressed decimally, and divide by 750; the quotient will give thickness required, in one-hundredths of an inch.

Example.—Required thickness of half-inch pipe for a head of 25 feet.

WEIGHT OF COPPER AND BRASS WIRE AND PLATES.

Brown & Sharpe's Gauge.

(From tables of leading manufacturers.)

No. of	Size of	Weight of W 1000 Lineal	Wire per eal Feet.	Weight of Plates per Square Foot,	Plates per Foot,	No. of	Size of	Weight of W 1,000 Lineal	f Wire per neal Feet.	Weight of Plates per Square Foot.	Plates per Foot.
augo.	Feedl Mo.	Copper.	Brass.	Copper.	Brass.			Copper.	Brass.	Copper.	Brass.
	Inch.	Lbs.	Lbs.	Lbs.	Lbs.	1	Inch.	Lbs.	Lbs.	Lbs.	Lbs.
88	40064	250.55 20.55 20.55	83.58 83.58	85 20 20 20 20 20 20 20 20 20 20 20 20 20	19.69	25.8	028462	% -	2.817	8:	818
8	86480	402.0	380.77	16.58	15.61	1 88	022571	2.	1.457	1.02	8.
•	.82476	319.5	301.82	14.72	18.90	\$.020100	33	1.155	.911	38 .
	28980	253. 253. 253. 253. 253.	239.45	18.10	12.38	88	017900	89.	916	E	92.5
ON 0	85783	500.5	20.00	11.67	33	88	9145	.769	22.	32.	38.8
9 4	90481	198.0	110.02	96.0	22.2	¥8	019641	484	457	0. 0. 0. 0. 0. 0.	3.2
	18194	100.2	25.	22	2.29	8	.011257	888	362	510	8
9	.16202	79.46	25.08	7.34	6.93	8	.010025	808.	.287	2 54.	.459
٠.	14428	20.00	20.5	2.5	6.18	ಪ	888800	24.5	88	404.	
00	11443	8.5	2.5	0 r	98	88	08020	181	187	96.5	₹. 8.
9	10189	8	8	. 20	88.	3 25	008304	200	114	288	98
=	.090742	25.	88	4.11	88.8	88	.005614	980	.0915	25.	8
13	908080	19.77	18.68	3.66	3.46	8	00000	.0757	.0715	328	.214
2 :	.071961	92.6	14.81	83.8	83	56	.004458	0000	.0567	88.	<u> </u>
4 4	00000	18	98	200	***	68	00000	0.50	0450	25	2.
35	00000	88	3.5	88	. 0	35	77.000	38	38	33	101.
42	045957	8.8	88	88	25	}	##T000	RAZO.	8090	251.	3
80	040808	26	199	88	2	Specifics	pravity	88	988	808	8.218
2	.082890	8.8	8.68	88	70			3	3	3	}
8	.081961	8.08 8.09	88.	1.45	1.87	Weight p	Weight per cubic Ft.	555	K94 1R	K49 R	518 6

WEIGHT OF BOUND BOLT COPPER. Per Foot.

Inches.	Pounds.	Inches.	Pounds.	Inches.	Pounds.
***	.425 .756 1.18 1.70 2.31	1 11/6 11/4 11/6	3.02 3.83 4.72 5.72 6.81	156 154 176 2	7.99 9.27 10.64 12.10

WEIGHT OF SHEET AND BAR BRASS.

Thick- ness. Inches.	Sheets per sq. ft.	Square Bars 1 ft. long.	Round Bars 1 ft. long.	Thick- ness. Inches.	per	Square Bars 1 ft. long.	Round Bars 1 ft. long.
1-16	lbs. 2.7	lbs. .015	lbs. .011	1 1-16	lbs. 45.95	lbs. 4.08	lbs 8.20
	5.41	.055	.045		48.69	4.55	8.57
⅓ 3–16	8.12	.125	.1	13/6 1 3-16	51.4	5.08	8.97
34	10.7 6	.225	.175	11/4	54.18	5.65	4.41
⅓ 5–16	18.48	.850	.275	1 5-16	56.85	6.22	4.86
% 7–16	16.25	.51	.395	1% 1 7-16	59.55	6.81	5.35
	19.	.69	.54		62.25	7.45	5.85
56	21.65	.905	.71	13/6	65	8.13	6.87
9-16	24.3	1.15	.9	1 9-16	67.75	8.83	6.92
56	27.12	1.4	1.1	15%	70.85	9.55	7.48
11-16	29.77	1.72	1.85	1 11-16		10.27	8.05
34 13–16	82.46	2.05	1.66	13/4	75.86	11	8.65
	35.18	2.4	1.85	1 18-16		11.82	9.29
76	37.85	2.75	2.15	17/6	81.25	12.68	9.95
15-16	40.55	3.15	2.48	1 15-16		13.5	10.58
11	43.29	8.65	2.85	2	86.75	14.35	11.25

COMPOSITION OF VARIOUS GRADES OF ROLLED BRASS, ETC.

Trade Name.	Copper	Zinc.	Tin.	Lead.	Nickel.
Common high brassYellow metal		38.5 40			
Cartridge brass	663/8	331/8 20			
Clock brass	60	40 40		11/6 11/6 to 2	
Spring brass		331/6	11/6	178 00 2	18

The above table was furnished by the superintendent of a mill in Connecticut in 1894. He says: While each mill has its own proportions for various mixtures, depending upon the purposes for which the product is intended, the figures given are about the average standard. Thus, between cartridge brass with 32½ per cent zinc and common high brass with 38½ per cent zinc, there are any number of different mixtures known generally as "high brass," or specifically as "spinning brass," "drawing brass," etc., wherein the amount of zinc is dependent upon the amount of scrap used in the mixture, the degree of working to which the metal is to be subjected, etc.

AMERICAN STANDARD SIZES OF DROP-SHOT.

	Diameter.	No. of Shot to the oz.	Diameter.	No. of Shot to the oz.		Diam- eter.	No. of Shot to the oz.
Fine Dust. Dust No. 12 " 11 " 10 " 10 " 9	3-100" 4-100 5-100 6-100 Trap Shot 7-100" Trap Shot 8-100"	848	9-100" Trap Shot 10-100" 11-100 12-100 13-100	399	No. 2 " 1 " BB " BB " BBB." " TT " FT " FF	15-100" 16-100 17-100 18-100 19-100 20-100 21-100 22-100 23-100	86 71 59 50 42 36 31 27 24

COMPRESSED BUCK-SHOT.

	Diameter.	No. of Balls to the lb.		Diameter.	No. of Balls to the lb.
No. 8	25-100'' 27-100 30-100 32-100	282	No. 00 " 000 Balls	34-100" 36-100 38-100 44-100	115 98 85 50

SCREW-THREADS, SELLERS OR U. S. STANDARD.

In 1864 a committee of the Franklin Institute recommended the adoption of the system of screw-threads and bolts which was devised by Mr. William Sellers, of Philadelphia. This same system was subsequently adopted as the standard by both the Army and Navy Departments of the United States, and by the Master Mechanics' and Master Car Builders' Associations, so that it may now be regarded, and in fact is called, the United States Standard,

The rule given by Mr. Sellers for proportioning the thread is as follows: Divide the pitch, or, what is the same thing, the side of the thread, into eight equal parts; take off one part from the top and fill in one part in the bottom of the thread; then the flat top and bottom will equal one eighth of the pitch, the wearing surface will be three quarters of the pitch, and the diameter of screw at bottom of the thread will be expressed by the formula

diameter of bolt $-\frac{1.239}{\text{no. threads per inch}}$

For a sharp V thread with angle of 60° the formula is

diameter of bolt $-\frac{1.755}{\text{no. of threads per inch}}$

The angle of the thread in the Sellers system is 60°. In the Whitworth or English system it is 55°, and the point and root of the thread are rounded.

Screw-Threads, United States Standard.

Diam.	Pitch.	Diam.	Pitch.	Diam.	Pitch.	Diam.	Pitch.	Diam.	Pitch.
5-16 5-16 5-16 7-16 9-16 5-6 11-16	20 18 16 14 13 12 11	34 13–16 26 15–16 1 1 1–16 1½	10 10 9 8 7	11/4 1 5–16 13/6 11/6 15/6 13/4 17/8	7 6 6 6 5 5 5 5	1 15-16 2 21.4 2 5-16 23.6 21.5 21.5 23.4	5 4 4 4 4 4 4	2 13-16 3 31,4 3 5-16 31,6 39,4 4	31/2 31/2 31/2 31/4 31/4 3

Screw-Threads, Whitworth (English) Standard.

Diam.	Pitch.	Diam.	Pitch.	Diam.	Pitch.	Diam.	Pitch.	Diam.	Pitch.
5-16 38 7-16 14 9-16	20 18 16 14 12 12	56 11-16 34 13-16 36 15-16	11 11 10 10 9	1 11/6 11/4 19/6 11/6 11/6	8 7 6 6 5	194 176 2 214 214 254	5 41/4 41/2 4 4 81/4	8 814 814 814 4	314 314 314 3

U. S. OR SELLERS SYSTEM OF SCREW-THREADS.

В	OLT	S AN	D TH	IREAL	S.	HE	X. NUI	'S AND	HEA	DS.	
Diam. of Bolt.	Threads per Inch.	Diam, of Root of Thread.	Width of Flat.	Area of Bolt Body in Sq. Inches.	Area at Root of Thread in Sq. Inches.	Short Diam., Rough.	Short Diam., Finish.	Long Diam., Rough.	Thickness, Rough.	Thickness, Finish.	Long Diam. Sq. Nuts Rough,
Ins.		Ins.	Ins.			Ins.	Ins.	Ins.	Ins.	Ins.	Ins.
15-56-16-16-16-16-16-16-16-16-16-16-16-16-16	16 14 18	.240 .294 .344 .400 .454 .507 .620 .731 .837 .940 1 .065 1 .160 1 .284 1 .491 1 .616 1 .712 2 .176 2 .176 2 .426	.0250 .0250 .0277 .0277 .0312 .0312 .0357 .0357 .0354 .0413 .0413 .0454 .0476 .0500 .0500	07771 11001 11001 11002		19-32 11-16 25-32 76 31-32 11-16 114-16 115-16 23-16 2	3 1-16 3 7-16 3 18-18 4 3-16 4 9-16 4 15-16 5 5-16 5 11-16 6 7-16 6 13-16 7 9 16 7 15-16 8 5-16	2 17-32 2341-32 3 31-32 3 5-16 3 13-32 356 4 1-16 4 29-32 5 5 13-16 6 7-64 6 21-32 7 9-16 7 31-32 8 13-32 8 27-32	1156 1178 1178 1178 1178 1178 1178 1178 117	1 1-16 1 3-16 1 5-16 1 7-16 1 19-16 1 11-16 1 115-16 2 3-16 2 7-16 2 11-16 3 3-16 3 7-16 3 15-16 4 7-16 4 11-16 5 3-16 5 5-16 5 5-16	21-32 219-64 29-16 253-64 38-32 328-64 357-64 457-32 71-16 739-61 841-64 93-16 1049-64 1123-64

LIMIT GAUGES FOR IRON FOR SCREW THREADS.

In adopting the Sellers, or Franklin Institute, or United States Standard, as it is variously called, a difficulty arose from the fact that it is the habit of iron manufacturers to make iron over-size, and as there are no over-size

screws in the Sellers system, if iron is too large it is necessary to cut it away with the dies. So great is this difficulty, that the practice of making taps and dies over-size has become very general. If the Sellers system is adopted it is essential that iron should be obtained of the correct size, or very nearly so. Of course no high degree of precision is possible in rolling iron, and when exact sizes were demanded, the question arose how much allowable variation there should be from the true size. It was proposed to make limitgauges for inspecting iron with two openings, one larger and the other smaller than the standard size, and then specify that the iron should enter the large end and not enter the small one. The following table of dimensions for the limit-gauges was recommended by the Master Car-Builders' Association and adopted by letter ballot in 1883.

Size of Iron.	Size of Large End of Gauge.	Size of Small End of Gauge.	Differ- ence.	Size of Iron.	Size of Large End of Gauge.	Size of Small End of Gauge.	Differ- ence.
14 in.	0.2550	0.2450	0.010	56 in.	0.6330	0.6170	0.016
5–16	0.3180	0.3070	0.011	34	0.7585	0.7415	0.017
36	0.3810	0.3690	0.012	26	0.8840	0.8660	0.018
7–16	0.4440	0.4310	9.013	1	1.0095	0.9905	0.019
14	0.5070	0.4930	0.014	116	1.1350	1.1150	0.020
9–16	0.5700	0.5550	0.015	114	1.2605	1.2395	0.021

Caliper gauges with the above dimensions, and standard reference gauges for testing them are made by the Pratt & Whitney Co.

VARIATION IN SIZE OF ROUGH THE MAXIMUM IRON FOR U. S. STANDARD BOLTS.

Am. Mach., May 12, 1892.

By the adoption of the Sellers or U. S. Standard thread taps and dies keep their size much longer in use when flatted in accordance with this system than when sharp, though it has been found advisable in practice in most cases to make the taps of somewhat larger outside diameter than the nominal size, thus carrying the threads further towards the V-shape and giving corresponding clearance to the tops of the threads when in the nuts or

tapped holes.

Makers of taps and dies often have calls for taps and dies, U. S. Standard,

" for rough iron."

An examination of rough iron will show that much of it is rolled out of

round to an amount exceeding the limit of variation in size allowed.

In view of this it may be desirable to know what the extreme variation in iron may be, consistent with the maintenance of U.S. Standard threads, i.e., threads which are standard when measured upon the angles, the only place where it seems advisable to have them fit closely. Mr. Chas. A. Bauer, the general manager of the Warder, Bushnell & Glessner Co., at Springfield, Ohio, in 1884 adopted a plan which may be stated as follows: All bolts, whether cut from rough or finished stock, are standard size at the bottom and at the sides or angles of the threads, the variation for fit of the nut and allowance for wear of taps being made in the machine taps. Nuts are punched with holes of such size as to give 85 per cent of a full thread, experience showing that the metal of wrought nuts will then crowd into the threads of the taps sufficiently to give practically a full thread, while if punched smaller some of the metal will be cut out by the tap at the bottom of the threads, which is of course undesirable. Machine taps are made enough larger than the nominal to bring the tops of the threads up sharp, plus the amount allowed for fit and wear of taps. This allows the iron to be enough above the nominal diameter to bring the threads up full (sharp) at top, while if it is small the only effect is to give a flat at top of threads: neither condition affecting the actual size of the thread at the point at which it is intended to bear. Limit gauges are furnished to the mills, by which the iron is rolled, the maximum size being shown in the third column of the table. The minimum diameter is not given, the tendency in rolling being nearly always to exceed the nominal diameter.

In making the taps the threaded portion is turned to the size given in the righth column of the table, which gives 6 to 7 thousandths of an inch allowe for fit and wear of tap. Just above the threaded portion of the tap a

place is turned to the size given in the ninth column, these sizes being the same as those of the regular U. S. Standard bolt, at the bottom of the thread, plus the amount allowed for fit and wear of tap; or, in other words, d'=U. S. Standard d+(D'-D). Gauges like the one in the cut, Fig. 72, are furnished for this sizing. In finishing the threads of the tap a tool

F1G. 72.

is used which has a removable cutter finished accurately to gauge by grinding, this tool being correct U. S. Standard as to angle, and flat at the point. It is fed in and the threads chased until the flat point just touches the portion of the tap which has been turned to size d'. Care having been taken with the form of the tool, with its grinding on the top face (a fixture being provided for this to insure its being ground properly), and also with the setting of the tool properly in the lathe, the result is that the threads of the tap are correctly sized without further attention.

It is evident that one of the points of advantage of the Sellers system is sacrificed. i.e., instead of the taps being flatted at the top of the threads they are sharp, and are consequently not so durable as they otherwise would be; but practically this disadvantage is not found to be serious, and is far overbalanced by the greater ease of getting iron within the prescribed limits; while any rough bolt when reduced in size at the top of the threads, by filing or otherwise, will fit a hole tapped with the U.S. Standard hand taps, thus affording proof that the two kinds of bolts or screws made for the two different kinds of work are practically interchangeable. By this system \(\frac{2}{3} \) iron can be .005'' smaller or .0108'' larger than the nominal diameter, or, in other words, it may have a total variation of .0158'', while 1½'' iron can be .005'' smaller or .0309'' larger than nominal—a total variation of .0414''—and within these limits it is found practicable to procure the iron.

STANDARD SIZES OF SCREW-THREADS FOR BOLTS
AND TAPS,
(CHAS A RAHER)

				(CHAB.	A. DAU	ER.)			
1	2	8	4	5	6	7	8	9	10
A	n	D	d	h	f	D'-D	D'	ď	H
		Inches.	Inches	Inches.	Inches.	Inches.	Inches.	Inches.	Inches.
1/4	20	.2608	.1855	.0379	.0062	.006	.2668	.1915	.2024
5-16	18	.3245	.2403	.0421	.0070	.006	.3305	.2468	.2589
36	16	.3885	.2938	.0474	.0078	.006	.3945	.2998	.8139
7-16	14	.4530	.8447	.0541	.0089	.006	.4590	.3507	.3670
56	13	.5166	.4000	.0582	.0096	.006	.5226	.4060	.4236
5∕8 9–16	12	.5805	.4548	.0631	.0104	.007	.5875	.4613	.4802
	11	.6447	.5069	.0689	.0114	.007	.6517	.5189	.5846
3/4 7/8	10	.7717	.6201	.0758	.0125	.007	.7787	.6271	.6499
/0	9	.8991	.7307	.0842	.0139	.007	.9061	.7377	.7630
1	8	1.0271	.8376	.0947	.0156	.007	1.0341	.8446	.8731
1146	7	1.1559	.9394	.1083	.0179	.007	1.1629	.9464	.9789
114 114	7	1.2809	1.0644	.1083	.0179	.007	1.2879	1.0714	1.1039
		1	1		ı		1	1	1

A =nominal diameter of bolt.

D =actual diameter of bolt.

d =diameter of bolt at bottom of thread.

n =number of threads per inch.

f =flat of bottom of thread.

h = depth of thread.

D' and d' = diameters of tap.

H =hole in nut before tapping.

$$D = A + \frac{.2165}{n}.$$

$$d = A - \frac{1.29904}{n}.$$

$$h = \frac{.7577}{n} = \frac{D - d}{2}.$$

$$f = \frac{.125}{n}.$$

$$H = D' - \frac{1.288}{n} = D' - .85(2h.)$$

STANDARD SET-SCREWS AND CAP-SCREWS.

American, Hartford, and Worcester Machine-Screw Companies. (Compiled by W. S. Dix.)

Diameter of Screw Threads per Inch Size of Tap Drill*	(A) 1/8 40 No. 43	(B) 3-16 24 No. 30	(C) 14 20 No. 5	(D) 5-16 18 17-64	(E) 36 16 21–64	(F) 7–16 14 5%	(G) 12 12 27-64
Diameter of Screw Threads per Inch Size of Tap Drill*	(H) 9-16 12 81-64	(I) 56 11 17-32	(J) 84 10 21–32	(K) 3/8 9 49-64	(L) 1 8 -36	(M) 11/6 7 68-64	(N) 11/4 11/6

	Set Scre	ws.	Hex. I	Head Ca	p-screws.	Sq. H	ead Ca	p-screws.
S:ort Diam of Head	Long Diam. of Head	Lengths (under Head).	Short Diam. of Head.	of	(under	Short Diam. of Head.	Long Diam. of Head.	Lengths (under Head).
(C) 1/4 (D) 5-16 (E) 5/6 (F) 7-16 (G) 1/4 (H) 9-16 (I) 5/6 (J) 5/4 (K) 1/4 (N) 11/4	.58 .62 .71 .80 .89 1.06 1.24 1.42 1.60	\$4 to 8 \$4 to 314 \$4 to 314 \$4 to 314 \$4 to 414 \$4 to 414 \$1 to 44 \$1 to 5 \$114 to 5 \$12 to 5	7-16 1/2 9-16 54 18-16 7/8 1 11/4 13/4 13/4	.51 .58 .65 .72 .87 .94 1.01 1.15 1.30 1.45 1.59 1.73	34 to 3 54 to 334 54 to 334 54 to 334 54 to 44 1 to 44 114 to 5 124 to 5 2 to 5 2 to 5	96 1-16 9-16 11-16 11-16 11-16 11-16 11-16	.53 .62 .71 .80 .98 1.06 1.24 1.60 1.77 1.95 2.13	\$\frac{1}{4}\$ to 3 \$\frac{1}{4}\$ to 3\frac{1}{4}\$ to 3\frac{1}{4}\$ to 3\frac{1}{4}\$ to 3\frac{1}{4}\$ to 3\frac{1}{4}\$ to 4\frac{1}{4}\$ to 4\frac{1}{4}\$ to 4\frac{1}{4}\$ to 4\frac{1}{4}\$ to 4\frac{1}{4}\$ to 5 \$\frac{1}{2}\$ to 5 \$\frac{2}{2}\$ to 5

Round and Filister Head Cap-screws.		Flat Head	Cap-screws.	Rutton-head Cap- screws.	
Diam. of Head.	Lengths (under Head).	Diam. of Head.	Lengths (including Head).	Diam. of Head.	Lengths (under Head).
(A) 3-16 (B) 14 (C) 34 (C) 34 (D) 7-16 (E) 9-16 (F) 54 (H) 13-16 (I) 76 (J) 1 (K) 114 (L) 114	34 to 214 34 to 234 34 to 314 34 to 314 34 to 334 34 to 334 34 to 414 114 to 414 114 to 414 115 to 45 12 to 5	15-32 15-32 56 18-16 76 1 116 136	34 to 134 54 to 2 54 to 2 54 to 2 54 to 2 54 to 2 54 to 3 1 to 3 114 to 3 1 14 to 3 1 2 to 3	7-82 (.225) 5-16 7-16 9-16 9-16 18-16 15-16	\$\ \to 1\$4 \$\ \to 2\}\$ \$\ \to 2\}\$ \$\ \to 2\}\$ \$\ \to 2\}\$ \$\ \to 2\}\$ \$\ \to 2\}\$ \$\ \to 2\}\$ \$\ \to 3 1\}\$\ \to 3 1\}\$\ \to 3 1\}\$\ \to 3

^{*} For cast iron.

Threads are U. S. Standard. Cap-screws are threaded ¼ length up to and including 1"diam. × 4" long, and ½ length above. Lengths increase by ½" each regular size between the limits given. Lengths of heads, except flat and button, equal diam. of screws.

The angle of the cone of the flat-head screw is 76°, the sides making angles of 52° with the top.

STANDARD MACHINE SCREWS.

(Am. Screw Co.'s Catalogue, 1883, 1892.)

No.	Threads per	Diam. of	Diam.	Diam, of Round	Diam. of Filister	Len	gths.
No.	Inch.	Body.	Head.	Head.	Head.	From	To
23456789	56	.0842	.1631	.1544	.1882	8-16	14
3	48	.0978	.1894	.1786	.1545	8-16	29
2	32, 36, 40	.1105	.2158	.2028	.1747	3-16	23
5	32, 36, 40	.1236	.2421	.2270	.1985	3-16	_ ,%
Ö	30, 32	.1368	.2684	.2512	.2175	8-16	1,,
7	36, 32	.1500	.2947	.2754	.2392	23	179
8	30, 32	.1631 .1768	.3210 .3474	.2936	.2610	73	173
10	24, 30, 32 24, 30, 32	.1894	.3737	.3238	.2805 .3035	79	179
12	20, 24	.2158	.4263	.3922	.8445	73	137
14	20, 24	.2421	.4790	.4364	.8885	79	574
16	16, 18, 20	.2684	.5816	.4866	.4300	72	91.4
18	16, 18	.2947	.5842	5248	.4710	72	214 214 234
90	16, 18	3210	.6368	.5690	.5200	122	937
20 22	16, 18	.3474	.6894	.6106	.5557	12	874
24	14, 16	.3737	.7420	.6522	.6005	12	ž
26	14, 16	.4000	.7420	.6938	.6425		3 8 8
28	14, 16	.4263	.7946	.7854	.6920	62	8
24 26 28 30	14, 16	.4520	.8478	.7770	.7240	1′°	3

Lengths vary by 16ths from 3-16 to 1/2, by 8ths from 1/2 to 1/2, by 4ths from 1/2 to 3.

SIZES AND WEIGHTS OF SQUARE AND HEXAGONAL NUTS,

United States Standard Sizes. Chamfered and trimmed. Punched to suit U. S. Standard Taps.

3olt.	,		Hole.	a. Sq.	its.	Squ	are.	Hexa	gon.
Diam. of Bolt.	Width.	Thickness.	Diam. of F	Long Diam. 1 Nuts.	Long Diam. Hex. Nuts.	No. in 100 lbs.	Wt. each in lbs.	No. in 190 lbs.	Wt. each in lbs.
146 5-16 7-1-156 1	19-32 11-16 25-32 76-32 1-1-16 1-16-16 1-17-16 15-6 1-17-16 1-18-16 2-16-16 2-16-16 2-16-16 31-5 2-16-16 31-5 31-5 31-5 31-5 31-5 31-5 31-5 31-5	11/4	18-64 11-82 25-64 38-64 38-64 38-64 58-64 1 1-5-82 1 9-32 1 18-32 1 br>13-16 1 11-6 11-6 11-6 11-6 11-6 11-6 2 1-16 2 1-16 2 18-16 2 18-16 2 18-16 3 5-16 2 18-16 3 5-16 2 18-16 3 5-16 2 18-16 3 5-16 3	9-16 11-16 13-16 76 11-16 11-16 11-16 11-16 12-16 2 1-16 2 5-16 2 5-16 2 5-16 2 5-16 2 5-16 4 1-16 4 1-16 4 15-16 5 5 5-16	7270 4700 4700 2350 1630 1120 6890 640 280 170 130 96 70 58 44 30 23 23 12 9	.0138 .0231 .0426 .0613 .0893 .1124 .156 .253 .357 .588 .769 1.04 1.48 2.27 2.27 2.29 4.35 8.38 4.35 8.38 11.11	7615 5200 2000 1430 1100 740 450 309 216 148 111 85 68 56 40 87 29 115 115	.0131 .0192 .0333 .050 .070 .091 .135 .222 .324 .403 .676 .911 .118 1.47 1.47 2.50 2.70 3.45 4.76 6.67 9.09	

WEIGHTS OF 100 BOLTS WITH SQUARE HEADS AND NUTS.

(Hoopes & Townsend's List.)

Length un- der Head				Dian	neter o	f Bolts.			
to Point.	1/4 in.	5–16 in.	% in.	7–16 in.	1% in.	% in.	3/4 in.	3∕6 in.	1 in
	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
116 134	4.00		10.50		22.50	89.50	63.00	 .	l
134	4.85		11.25	16.30	28.82	41.62	66.00	!	
2 -	4.75		12.00		25.15	43.75	69.00	109.00	163
2 214 214 284 3	5.15		12.75	18-50	26.47	45.88	72.00	113.25	169
21/2	5.50		13.50	19.60	27.80	48.00	75.00	117.50	174
23/4	5.75		14.25	20.70	29.12	50.12	78.00	121.75	180
8	6.25	10.00	15.00	21.80	80.45	52.25	81.00	126.00	185
81/6	7.00		16.50	24.00	33.10	56.50	87.00	134.25	196
4	7.75	12.00	18.00	26.20	35.75	60.75	93.10	142.50	207
41/6	8.50	13.00	19.50	28.40	38.40	65.00	99.05	151.00	218
5	9.25	14.00	21.00	30.60	41.05	69.25	105.20	159.55	229
51/6	10.00	15.00	22.50	32.80	43.70	73.50	111.25	168.00	240
6	10.75	16.00	24.00	35.00	46.35	77.75	117.80	176.60	251
61 <u>/6</u> 7		l	25.50	37.20	49.00	82.00	123.35	185.00	262
	. 		27.00	39.40	51.65	86.25	129.40	193.65	273
716		ا ا	28.50	41.60	54.80	90.50	135.00	202.00	284
8	١		30.00	43.80	59,60	94.75	141.50	210.70	295
9				46.00	64.90	103.25	153.60	227.75	317
10		l l		48.20	70.20	111.75	165.70	224.80	339
11	 .	1		50.40	75.50	120.25	177.80	261.85	360
12				52.60	80.80	128.75	189.90	278.90	385
18		1			86.10	137.25	202.00	295.95	404
14		l			91.40	145.75	214.10	313.00	426
15	l				96.70	154.25	226.20	830.05	448
16					102.00	162.75	238.30	347.10	470
17	١	l l			107.30	171.00	250.40	364.15	492
18		l	l		112.60	179.50	262.60	381.20	514
19		l			117.90	188.00	274.70	398.25	536
20					123.20	206.50	286.80	415.30	558
Per inch additional.	}1.87	2.13	3.07	4.18	5.45	8.52	12.27	16.70	21.82

TRACK BOLTS.
With United States Standard Hexagon Nuts.

Rails used.	Bolts.	Nuts.	No. in Keg, 200 lbs.	Kegs per Mile.
45 to 85 lbs	\$4 × 41/4	114	280	6.3
	\$4 × 4	114	240	6.
	\$4 × 33/4	114	254	5.7
	\$4 × 81/4	114	260	5.5
	\$4 × 81/4	114	266	5.4
	\$4 × 8	114	288	5.1
30 to 40 lbs	56 × 31⁄4	1 1-16	375	4.
	56 × 3	1 1-16	410	3.7
	56 × 25⁄4	1 1-16	485	3.8
	56 × 21⁄4	1 1-16	46 5	8.1
20 to 30 lbs	16 × 8 13 × 216 16 × 214 18 × 2	76.676	715 760 800 820	2. 2. 2. 2.

WEIGHTS OF NUTS AND BOLT-HEADS, IN POUNDS. For Calculating the Weight of Longer Bolts.

Diameter of Bolt, in Inches.		1/4	3/8	⅓	56	*	₹
Weight of hexagon nut and head. Weight of square nut and head	:::::	.017	.057 .069	.128 .164	.267 .320	.43 .55	.13 .88
Diameter of Dale to Tasker							
Diameter of Bolt, in Inches.	1	11/4	13%	134	2	21/2	3

NUMBER OF RIVETS IN 100 POUNDS.

Lengths.	% in .	7-16 in.	⅓ in.	9–16 in.	% in.	11-16 in.	¾ in.	3% in.
34	1965	1419	1092	944	665			
% %	1848	1335	1027	846	597			
1'0	1692	1222	940	763	588	450		
116	1512	1092	840	726	512	415		
īú	1437	1036	797	691	487	389	356	228
192	1368	988	760	653	460	870	829	211
112	1300	.949	730	624	440	357	280	180
162	1260	924	711	596	420	840	271	174
184	1200	900	693	558	390	325	262	169
134 1378 2	1156	840	648	532	375	312	257	165
578	1100	789	608	511	860	297	243	156
914	1031	744	578	502	354	289	237	152
21/4 21/4	999	721	555	491	347	280	232	149
212	945	682	525	475	835	260	220	141
217	900	650	500	443	312	242	208	183
374	828	598	460	411	290	224	197	127
81.4	779	562	433	879	267	212	180	115
81/4 31/4 31/4	748	536	413	352	248	201	169	108
937	715	518	395	841	241	192	160	102
4	1 110	010	200	3:26	230	184	158	99
414	• • • • • • • • • • • • • • • • • • •			312	220	177	150	96
41/4 41/2 43/4 5				298	210	171	146	94
72		1		284	200	166	138	89
274		1		270	190	161	135	87
81.4			••••	256	180	156	130	04
51.7		J	• • • • • • • • •	244	172	151	130 124	84 80
51/4 51/4 51/4 6		1	• • • • • • • • •	233				, OU
374			• • • • • • •		164	145	120	77
0	· ··· ·		• • • • • • • •	223	157	140	115	74
63/4 63/4 63/4 7				218	150	138	111	71
923	• •••		• • • • • • • •	207	146	134	107	69
09/4		·····	•• ••••	203	143	129	104	67
v	· · · · · · · ·			198	140	125	100	64

TURNBUCKLES.

Turnbuckles with right and left threads are made of standard sizes. B =

Fig. 73.

diameter of bolt, O=6 inches in all sizes of turnbuckle. H= length of tapped heads = $1\frac{1}{2}B$. L= length = 6 inches + 3B.

SIZES OF WASHERS.

Diameter in inches.	Size of Hole, in inches.	Thickness, Birmingham Wire-gauge.	Bolt in inches.	No. in 100 lbs.
\$6 \$4 11/6 11/6 11/6 11/6 11/6 11/6 11/6 11/	5-16 7-16 9-16 9-16 9-16 9-11-16 13-16 31-82 144 144 144	No. 16 " 16 " 14 " 11 " 11 " 11 " 10 " 8 " 8 " 7 " 6	5-16 36 3-16 3-16 3-16 3-16 3-16 3-17 3-17 3-17	29,300 18,000 7,600 3,300 2,180 2,350 1,680 1,140 580 470 360 360

TRACK SPIKES.

Rails used.	Spikes.	Number in Keg, 200 lbs.	Kegs per Mile, Ties 24 in. between Centres.
45 to 85 40 " 52 35 " 40 24 " 35 24 " 30 18 " 24 16 " 20 14 " 16 8 " 12 8 " 10	514 × 9-16 5 × 9-16 5 × 14 414 × 16 414 × 7-16 4 × 7-16 814 × 34 8 × 34 214 × 36 214 × 5-16	880 400 490 550 725 820 1250 1350 1550 2240	80 87 82 20 15 13 9 8 7

STREET RAILWAY SPIKES.

Spikes.	Number in Keg, 200 lbs.	Kegs per Mile, Ties 24 in. between Centres.
51/4×9-16	400	30
5×1/4	575	19
41/4×7-16	. 800	13

BOAT SPIKES.

Number in Keg of 200 lbs.

Length.	1/4	5–16	%	1/4
4 inch. 5 " 6 " 7 " 8 " 9 " 10 "	2375 2050 1825	1230 1175 990 880	940 800 650 600 525 475	450 875 835 800 275

WROUGHT SPIKES. Number of Nails in Keg of 150 Pounds.

Size.	⅓ in.	5–16 in.	% in.	7-16 in.	⅓ in.
3 inches	2250 1890 1650 1464 1380 1292 1161	1908 1125 1064 980 868 662 685 573	748 570 488 455 424 391	445 384 380 270 949 226	806 256 240 222 208 180

WIRE SPIKES.

Size.	Approx. Size of Wire Nails.	Ap. No. in 1 lb.	Size.	Approx. Size of Wire Nails.	Ap. No. in 1 lb.
10d Spike	3 in. No. 7 31/4 " " 6 4 " " 5 41/4 " " 4 5 " " 3 51/4 " " 2	50 85 26 20 15	60d Spike	6 in. No. 1 614 " " 1 7 " " 0 8 " " 00 9 " " 00	10 9 7 5 434

LENGTH AND NUMBER OF CUT NAILS TO THE POUND.

Size.	Length.	Common.	Clinch.	Fence.	Finishing	Fine.	Barrel.	Casing.	Brads.	Tobacco.	Cut Spikes.
<u> </u>	¾ in.						800				
%	,78	800	• • • •	• • • •	1100	1000	500 376				
d	11/4	400	•••	•••	790	760	224			• • • • •	• • •
d	172	480 288	•••	•••	523	368	180	398			
5d	122	200			410		100	000		130	٠
id	274	168	95	84	410 268			224	126	96	
d	21/4	124	74	64	188 146				98	82	
3d	217	88	62	48	146			128	75	68	
d	214 214 244	124 88 70 58 44 34 23	58	86	130			110	65		
0d	3	58	46	30	102 76			91	55	1	28
	31/4	44	42	24	76			71	40		١
6d	33/6	34	38	20	62			54	27		25
)d	4	23	88	16	54	• • • • • •	••••	40			141
0d 0d	41/4	18	20					83			123
	5	14						27			9,
0d	51/6	10	••••								12) 94 8 6

SIZES, LENGTH, AND NUMBER TO THE POUND OF STANDARD STEEL WIRE NAILS.

(John A. Roebling's Sons Co.)

	89ziS	282 282 282 282 282 282 282 282 282 282
tp' inches.	Leng	25 72575 253 855 45 50 25 25 25 25 25 25 25 25 25 25 25 25 25 2
Spikea.	Wire	
.3	riaiJ	2100 1780 1500
.000	RooT	72850
gje.	guid8	25.50 25.50
ed Roofing.	длвЯ	717 4684 1182 1183 11088 11088 11088
.30	itali	12 20 20 20 20 20 20 20 20 20 20 20 20 20
Barbed Oval Head Car Nail.	Невуу.	822888484872
Barbed Head Na	Light.	4448888824482775
Flooring Brads.		117288888
g, and ooth and rbed Box,	ws.	1850 1850 1850 1850 1850 1850 1850 1850
Je	Barn	1500 1000 1000 1355 1355 1355 1355 1355
	Fine	760
oth and ed Finishing.		155 155 155 155 155 155 155 155 155 155
.0	Fenc	
·ų·	Cline	0 8 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ed Common.	Barb	855 - 558 -
mon Vails.	moD aa	25.50 25.50
th, inches.	guə·I	22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
	eəzi3	22 22 23 24 19 25 25 25 25 25 25 25 25 25 25 25 25 25

386 lbs. of 4d Common, or 286 lbs. of 3d Common, will lay 1000 shingles. 314 lbs. of 3d Fine will put on 1000 latin—4 nails to the lath.

APPROXIMATE NUMBER OF WIRE NAILS PER POUND.

	11 13	12 10 9 8 7 6 5 414 4 354 84 11 11 10 9 8 7 7 55 5 4 4 5 5 11 10 10 11 11 10 8 7 7 5 5 5 6 5 5 5 6 5 5 5 5 6 5 5 5 5 5
•	10	11 10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	80	11 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	b-	200 200 200 200 200 200 200 200 200 200
	•	10 9 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2,4	11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.
	4	113 11 10 9 8 7 6 11 11 11 11 11 11 11 11 11 11 11 11 1
	*	112 112 113 115 115 115 115 115 115 115 115 115
108	80	111日報報の第18万金銀石部に第
, inch	2 23	01888888888888847480818 21188888847568883471888
Length, inches.	7.	8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25
	7.	882 883 883 883 883 883 883 883 883 883
		657 657 657 1006 1108 1128 1128 1128 1128 1114 1114 1115 1155 1155 1155 1155 115
	×	100 120 120 120 120 121 121 121 121 121
	28	169 175 275 275 275 275 275 275 275 275 275 2
	*	2111 2211 224 236 236 236 237 237 237 237 237 237 237 237 237 237
	*	668 837 1096 1429 1893 834 8048 4156 4156 110000
	*	2840 2840 8504 8573 86278 8276 7777 7777
Wire Gauge.	B. W. G.	80-188488787888888888888888888888888888888

SIZE, WEIGHT, LENGTH, AND STRENGTH OF IRON WIRE.

(Trenton Iron Co.)

No. by Wire Gauge.	Diam. in Deci- mals of One	Area of Section in Decimals of	Feet to the Pound.	Weight of One Mile in pounds.	proximate)	rength (Ap- of Charcoal in Pounds.
Crauge.	Inch.	One Inch.	round.	in pounds.	Bright,	Annealed.
00000	.450	.15904	1.863	2838.248	12598	9449
0000	.400	.12566	2.358	2238.878	9955	7466
009	.360	.10179	2.911	1818,574	8124	6091
00	.330	.08553	3.465	1523.861	· 6880	5160
0	.305	.07306	4.057	1801.678	5926	4445
1 2 3 4 5 6 7 8	. 285	.06379	4.645	1136.678	5226	3920
2	.265	.05515	5.374	982 555	4570	3425
8	.245	.04714	6.286	839.942	3948	2960
4	.225	.03976	7.454	708.365	8374	2580
5	.205 .190	.03301	8.976 10.453	588.189	2839	2130
õ		.02835	10.453	505.084	2476	1860 1600
7	.175 .160	.02405 .02011	14.736	428.472 858.3008	2136 1813	1360
ò	.145	.01651	17.950	294.1488	1507	1130
10	.130	.01327	22,333	236.4384	1283	925
11	.1175	.01084	27.340	198.1424	1010	758
12	.105	.00866	84.219	154.2816	810	607
13:	.0925	.00672	44 092	119.7504	681	478
14	.080	.00508	58.916	89.6016	474	356
15	.070	.00885	76.984	68.5872	372	280
16	.061	.00292	101.488	52.0080	292	220
17	.0525	.00216	137.174	38.4912	222	165
18	.045	.00159	186.335	28.3378	169	127
19	.040	.0012566	235.084	22.8872	187	103
20	.035	.0009621	308.079	17.1389	107	80
21	.031	.0007547	392.772	18.4429		
22	.028	.0006157	481.284	10.9718	strength th good blooms. e of— 15% less,	more,
23	.025	.0001909	603.863	8.7437	5,800 1 m	: g: -
24	.0225	.0008976	745.710	7.0805	2,568	
25	.020	.0003142	943.396	5.5968	I ## _ o='	to 150 100 100 100 100 100 100 100 100 100
25 26 27 28	.018	.0002545	1164.689	4.5334 4.0439	tensile lade wi Frenton re mad	is about 10 m bout 10 m is about 26 from 30 tol30 a wire.
20	.017	.0002270	1305.670 1476.869	3.5819	tensi Frent Ire m	n is about s about ed is abo is from 30 i
20	.016 .015	.0002011	1676.989	3.1485	3 3 4 5 5	3.63.5
29 30	.013	.0001539	1925.321	2.7424		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
31	.013	.0001337	2232.653	2.8649	of the standard and standard an	steel is steel is steel is steel is coal-fro
32	.012	.0001181	2620.607	2.0148	88642	1 8 6 3 6
33	.011	.0000950	8119.092	1.6928	2.65.2	8 × 4 0 2
34	.010	.00007854	3773.584	1.8992	The above figures are based upon test charcoal-iron wire frogen food food refined from the from the food refined from the food refined from the food from the food from the food from the food from the food from the from the food from the	Swedish charcoal fron is about Mild Bessemer steel is about Ordinary erucible steel is about Special crucible steel is from that of charcoal from 81 than that of charcoal from wire
35	.0095	.00007088	4182.508	1.2624	9 2 2 2 2 2	g dens
36	.009	.00006862	4657.728	1.1336	above used up andiest names	2855
37	.0085	.00005675	5222.035	1.0111	e abov based coal-ir tensile	E E E E
88	.008	.00005027	5896.147	.89549	The a larcoa	8282 #
39	.0075	.00004418	6724.291	.78672	The term of the te	Swedist Mild Be Ordina Special
40	.007	.00003848	7698.258	.68587	. #95	

GALVANIZED IRON WIRE FOR TELEGRAPH AND TELEPHONE LINES.

(Trenton Iron Co.)

WEIGHT PER MILE-OHM.—This term is to be understood as distinguishing the resistance of material only, and means the weight of such material required per mile to give the resistance of one ohm. To ascertain the mileage resistance of any wire, divide the "weight per mile-ohm" by the weight of the wire per mile. Thus in a grade of Extra Best Best, of which the weight per mile-ohm is 5000, the mileage resistance of No. 6 (weight per mile 525 lbs.) would be about 9½ ohms; and No. 14 steel wire, 6500 lbs. weight per mile-ohm (95 lbs. weight per mile), would show about 69 ohms.

Sizes of Wire used in Telegraph and Telephone Lines.

No. 4. Has not been much used until recently; is now used on important ines where the multiplex systems are applied.

No. 5. Little used in the United States.

No. 6. Used for important circuits between cities.

No. 8. Medium size for circuits of 400 miles or less.

No. 9. For similar locations to No. 8, but on somewhat shorter circuits;

until lately was the size most largely used in this country.

Nos. 10, 11. For shorter circuits, railway telegraphs, private lines, police and fire-alarm lines, etc.

No. 12. For telephone lines, police and fire-alarm lines, etc. Nos. 13, 14. For telephone lines and short private lines: steel wire is used most generally in these sizes.

The coating of telegraph wire with zine as a protection against oxidation

The costing of length in wire with the sa a protection against oxidation is now generally admitted to be the most efficacious method.

The grades of line wire are generally known to the trade as "Extra Best Best" (E. B. B.), "Best Best P. B. B.), and "Steel."

"Extra Best Best Pest" is made of the very best iron, as nearly pure as any commercial iron, soft, tough, uniform, and of very high conductivity, its resicht per mile observations.

commercial ros, soit, tough, unform, and of very high conductivity, its weight per mile-ohm being about 5000 lbs.

The "Best Best" is of iron, showing in mechanical tests almost as good results as the E. B. B., but not quite as soft, and being somewhat lower in conductivity; weight per mile-ohm about 5700 lbs.

The Trenton "Steel" wire is well suited for telephone or short telegraph

lines, and the weight per mile-ohm is about 6500 lbs.

The following are (approximately) the weights per mile of various sizes of galvanized telegraph wire, drawn by Trenton Iron Co.'s gauge:

No. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.

720, 610, 525, 450, 375, 310, 250, 200, 160,

TRETS OF TELEGRAPH WIRE.

The following data are taken from a table given by Mr. Prescott relating to tests of E. B. B. galvanized wire furnished the Western Union Telegraph Co.:

Size of	Diam. Parts of	Parts of		Length. Feet	Resist Temp. 75	Ratio of Breaking Weight to	
Wire.	One Inch.		Pounds per mile.	per pound.	Feet per ohm.	Ohms per mile.	Weight per mile.
4 5 6 7	.238 .220 .203 .190	1048.2 891.8 758.9 596.7	896.6 673.0 572.2 449.9	6.00 7.85 9.20 11.70	958 727 618 578	5.51 7.26 8.54 10.86	3.05 3.40
8 9 10 11 12	.165 .148 .134 .120 .109	501.4 403.4 330.7 265.2 218.8	878.1 304.2 249.4 200.0 165.0	14.00 17.4 21.2 26.4 32.0	409 828 269 216 179	12.92 16.10 19.60 24.42 29.60	3.07 3.38 3.37 2.97 3.48
14	.083	126.9	95.7	55.2	104	51.00	3.05

JOINTS IN TELEGRAPH WIRES.—The fewer the joints in a line the better. All joints should be carefully made and well soldered over, for a bad joint may cause as much resistance to the electric current as several miles of wire

COPPER WIRE. Ģ WEIGHT, AND RESISTANCE (Birmingham Gauge.) DIMENSIONS, TABLE OF

Gauge Number. 88**8888888888888888888888888**888888 Ohms per Foot. 000000182 000001840 00011840 00011870 00011870 00011870 00011870 00011830 Resistance. 000000077 00010450 000010450 000005253 000005253 000005255 00010752 00010752 00010775 00010775 00010775 00010775 00010775 00010775 001104 00110775 Ohms per Lb. Feet per Ohm. 11966.65 111968.11 111968. Length. Feet per Lb. 1.0027 1.10 Lbs. per Ohm. Weight. Lbs. per Foot. Sectional Area in Circular Mils. = diam³. Diameter, Inch. Gauge Number.

TABLE OF DIMENSIONS, WEIGHT, AND RESISTANCE OF PURE COPPER WIRE,

Teet per Lb. Feet per Ohm 110 087 60 084 61 889 61	Los per Ohm. Peet per Lh. 1264 per Ohm. Peet per Lh. 1310.087 1110	Weight, Sp. gr. 8.890, Long Colors (1982) Co	Weight, Sp. gr. 8.890. Length Len	Mile. Mile. 10.11. Libe, per Foot, Libe, per Ohm. 10.15.
	Lbe, por Ohm, Lbe, por Ohm, 1.007 1.	Weight, Sp. gr. 8.890, Lee, per Foot, Lba per Ohm, 000004, 0	Mile. Mile. Mile. 100 In. Lbe, per Foot, Lbe, per Ohm. 100-65 60450 116.13 1000084 116.14 1000084 116.15 11	MI Mile. MI Mil

MATERIALS.

Gauge	Number.	SSSOHGONARGERSENSENSENSENSENSENSENSENSENSENSENSENSENS
ResistanceOhms.	Per Lb.	000071000 00007000 00007000 00077011 00077
Kesistan	Per Foot.	0.0001539 0.00001588 0.001588
Length.—Feet.	Per Ohm.	18985 77 1 19885 77 1 19885 77 1 19885 77 1 19885 77 1 19885 78 1
Length	Per Lb.	1. 1. 66 192 1. 1. 66 192 1. 1. 66 192 1. 1. 66 192 1. 1. 68 174 1. 1. 68 174 1. 1. 68 174 1. 1. 68 174 1. 1. 68 174 1. 1. 68 174 1. 1. 68 174 1. 1. 68 174 1. 1. 68 174 1. 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1. 1. 184 1
weight.	Lbs. per Ohm.	200.000 100 100 100 100 100 100 100 100 1
We	Lbs. per Foot,	641025 641025 641024 14024 110225 110025 110025 110025 110025 110025 110025 110025 110025 110025 110025 110025 110025 110025 1
in Circular	Mils.	187100. 187100
Diameter	Inch.	4405.00 (1994) (
Gauge	Number.	86800000000000000000000000000000000000

HARD-DRAWN COPPER TELEGRAPH WIRE.

(J. A. Roebling's Sons Co.)

Furnished in half-mile coils, either bare or insulated.

Size, B. & S. Gauge.	Resistance in Ohms per Mile.	Breaking Strength.	Weight per Mile.	Approximate Size of E. B. B. Iron Wire equal to Copper.		
9 10 11 12 18 14 15	4.30 5.40 6.90 8.70 10.90 13.70 17.40 22.10	696 526 490 339 270 218 170	200 166 131 104 88 66 52 41	Iron-wire Gauge		

In handling this wire the greatest care should be observed to avoid kinks, beads, scratches, or cuts. Joints should be made only with McIntire Connectors.

On account of its conductivity being about five times that of Ex. B. B. Iron Wire, and its breaking strength over three times its weight per mile, copper may be used of which the section is smaller and the weight less than an equivalent iron wire, allowing a greater number of wires to be strung on the poles.

Besides this advantage, the reduction of section materially decreases the electrostatic capacity, while its non-magnetic character lessens the self-induction of the line, both of which features tend to increase the possible speed of signalling in telegraphing, and to give greater clearness of enunciation over telephone lines, especially those of great length.

INSULATED COPPER WIRES. Weight per 1000 feet.

B. & B. Gauge.	Weather- proof Line Wire.	Under- writers' Line Wire.	B. & S. Gauge.	Weather- proof Line Wire.	Under- writers' Line Wire.	B. & S. Gauge.	Weather- proof Line Wire.	Under- writers' Line Wire.
0000 009 00 0 0 1 2 3	671. 537. 426. 848. 274. 220. 178.	701. 565. 447. 864. 294. 241. 185. 147.	5 6 7 8 9 10 11 12	115. 98. 77. 64. 53. 44. 37. 30.	121. 99. 80. 67. 54. 45. 37.	18 14 15 16 17 18 19 20	26. 20.5 17. 14. 12. 10.75 9. 7.5	26.5 22. 20. 15. 13. 11.

LEAD-ENCASED ANTI-INDUCTION TELEPHONE AND TELEGRAPH CABLES. (Roebling's.)

PLAIN CABLES, LEAD ENCASED.		For Me	TALLIC CIRCUIT.	FOR TELEGRAPH CIR- CUITS.		
No. of Wires. 4 7 10 50	Size Wire B. & S. Gauge. 18 18 18 18 18	No. of Pairs. 5 15 25 50 75	Size Wire B. & S. Gauge. 18 18 18 18 18	No. of Wires. 8 4 7 10 20 50 100	Size Wire B. & S. Gauge. 14 14 14 14 14 14	

FLEXIBLE CABLES.

Area Circ. Mils.	No. of Wires.	Size Wire B. & S. Gauge.	Approximate Size of Equivalent Solid Wire.	Area Circ. Mils.	No. of Wires.	Size Wire B. & S. Gauge.	Diameter of Equivalent Solid Wire, Mils.
15699.6 24963.0 39693.9 63116.9	49 49 49 49	25 23 21 19	8 B. & S. 6 " 4 " 2 "	272410.6 433154.4 688727.2 868476.7 1095135.3 210964.6 420127.2 657656.8 835827.2 1062198.9	133 183 183 183 183 103 129 127 128 129	17 15 18 12 11 17 15 13 12	522. 658. 830. 932. 1046. 459. 649. 811. 914.

WEATHERPROOF AERIAL CABLES.

No. of Conductors.	Weight per Conductor per 1000 feet.	No. of Con- ductors.	Weight per Conductor per 1000 feet.	No. of Conductors.	Weight per Conductor per 1000 feet.
1 2 3 4 5 6	10.75 lbs. 18.00 " 13.00 " 10.75 " 10.00 " 9.50 " 9.25 "	8 9 10 11 12 13	9.25 lbs. 9.25 " 9.25 " 9.25 " 9.25 " 9.25 "	15 16 17 18 19 20	9.25 lbs. 9.25 " 9.25 " 9.25 " 9.25 "

LEAD-ENCASED ELECTRIC-LIGHT CABLES.

Single Wires. (J. A. Roebling's Sons Co.)

		0	8		
Size, B. & S. Gauge.	Diameter of Solid Cop- per Wire. Mils.	Area. Circular Mils.	Nearest Approximate Birming- ham Wire- gauge No.	Approxi- mate Weight per Foot of Cable. Oz.	Approxi- mate Diameter of Cable. Mils.
20 19 18 17 16 15 14 13 12 11 10 9	31.96 35.39 40.30 45.25 50.82 57.07 64.08 71.96 80.80 90.74 101.89 114.23 128.49 144.28	1021. 1252. 1624. 2048. 2583. 3257. 4107. 5178. 6530. 8234. 10381. 13094. 16509. 20816.	21 20 19 181/2 18 17 16 15 14 131/2 111/2 101/2	1.68 1.70 1.75 1.84 2.00 3.20 3.38 3.56 5.00 5.23 5.68 5.95 6.35	170 175 180 185 245 250 255 265 810 890 830 835 345 360 375

As tested by the Bell Telephone Co. of Philadelphia, the insulation may be stated at 2000 megohms per mile, with an electrostatic capacity of .14 microfarad.

GALVANIZED STEEL-WIRE STRAND. For Smokestack Guys, Signal Strand, etc.

(J. A. Roebling's Sons Co.)

This strand is composed of 7 wires, twisted together into a single strand.

7 Wires.	Diameter.	Weight per 100 Feet.	Estimated Breaking Strength.	7 Wires.	Diameter.	Weight per 100 Feet.	Estimated Breaking Strength.
No. 8 9 10 11 12 13 14	in. 15-32 7-16 5-16 9-32 17-64	lbs. 52 42 36 29 21 16 12	1bs. 8,320 6,720 5,720 4,640 8,360 2,560 1,920	No. 15 16 17 18 19 20 21	in. 14 7-39 8-16 11-64 9-64 16 8-32	lbs. 10 8 6 4 3-10 8 8-10 2 4-10	1bs. 1,600 1,280 960 688 528 884 820

For special purposes these strands can be made of 50 to 100 per cent greater tensile strength. When used to run over sheaves or pulleys the use of soft-iron stock is advisable.

PLEXIBLE STEEL-WIRE CABLES FOR VESSELS.

(Trenton Iron Co., 1886.)

With numerous disadvantages, the system of working ships' anchors with chain cables is still in vogue. A heavy chain cable contributes to the holding-power of the anchor, and the facility of increasing that resistance by paying out the cable is prized as an advantage. The requisite holdingpower is obtained, however, by the combined action of a comparatively light anchor and a correspondingly great mass of chain of little service in proportion to its weight or to the weight of the anchor. If the weight and size of the anchor were increased so as to give the greatest holding-power required, and it were attached by means of a light wire cable, the combined weight of the cable and anchor would be much less than the total weight of the chain and anchor, and the facility of handling would be much greater. English shipbuilders have taken the initiative in this direction, and many of the largest and most serviceable vessels afloat are fitted with steel-wire

cables. They have given complete satisfaction.

The Trenton Iron Co.'s cables are made of crucible cast-steel wire, and guaranteed to fulfil Lloyd's requirements. They are composed of 72 wires subdivided into six strands of twelve wires each. In order to obtain great flexibility, hempen centres are introduced in the strands as well as in the completed cable.

FLEXIBLE STEEL-WIRE HAWSERS.

These hawsers are extensively used. They are made with six strands of twelve wires each, hemp centres being inserted in the individual strands as well as in the completed rope. The material employed is crucible cast steel, well as in the completed tope. The material employed is crucinic cast seen, salvanized, and guaranteed to fulfil Lloyd's requirements. They are only one third the weight of hempen hawsers; and are sufficiently pliable to work round any bitts to which hempen rope of equivalent strength can be applied.

13-inch tarred Russian hemp hawser weighs about 39 lbs. per fathom.
10-inch white manila hawser weighs about 20 lbs. per fathom.

116-inch stud chain weighs about 68 lbs. per fathom.
4-inch galvanized steel hawser weighs about 12 lbs. per fathom. Each of the above named has about the same tensile strength.

SPECIFICATIONS FOR GALVANIZED IRON WIRE. Issued by the British Postal Telegraph Authorities.

Weig	ht pe	r Mile.	I	iamet	er.	Te	ests i	or S Due	treng ctilit	gth ar y.	ıd	Mile hr.	
ed Standard.	Alle	owed.	d Standard.	∆llo	wed.	Breaking Weight.	No. of Twists in 6 in.	king Weight not less than—	No. of Twists in 6 in.	Breaking Weight not less than-	No. of Twists in 6 in.	Resistance per Mil of the Standard Size at 60° Fahr.	t, being Standard t X Resistance.
Required	Minfmum.	Maximum.	Required	Kinimum.	Maximum.	Minimum.	Minimum.	For Breaking less t	Minimum.	For Break	Minimum.	Maximum.	Constant, Weight
lbs. 800 600 450 400 200	lbs. 767 571 424 877 190	lbs. 833 629 477 424 218	mils. 242 209 181 171 121	mils. 237 204 176 166 118	mils. 247 214 186 176 125	lbs. 2480 1860 1390 1240 620		lbs. 2550 1910 1425 1270 638	14 16 18 20 28	lbs, 2620 1960 1460 1300 655	17	ohms. 6.75 9.00 12.00 18.50 27.00	5400 5400 5400 5400 5400

STRENGTH OF PIANO-WIRE.

The average strength of English piano-wire is given as follows by Webster, Horsfals & Lean:

Numbers	Equivalents		Numbers	Equivalents	Ultimate.
in Music-	in Fractions		in Music-	in Fractions	Tensile
wire	of Inches in		wire	of inches in	Strength in
Gauge.	Diameters.		Gauge.	Diameters.	Pounds.
12 18 14 15 16	.029 .031 .033 .035 .037 .039	225 250 285 305 340 360	18 19 20 21 22	.041 .048 .045 .047 .052	895 425 500 540 650

These strengths range from 300,000 to 340,000 lbs. per sq. in. The composition of this wire is as follows: Carbon, 0.570; silicon, 0.090; sulphur, 0.011; phosphorus, 0.018; manganese, 0.425.

"PLOUGH"-STEEL WIRE.

The term "plough," given in England to steel wire of high quality, was derived from the fact that such wire is used for the construction of ropes used for ploughing purposes. It is to be hoped that the term will not be used in this country, as it tends to confusion of terms. Plough-steel is known here in some steel-works as the quality of plate steel used for the mould-boards of ploughs, for which a very ordinary grade is good enough. Experiments by Dr. Percy on the English plough-steel (so-called) gave the following results: Specific gravity, 7.814; carbon, 0.828 per cent; manganese, 0.587 per cent; silicon, 0.143 per cent; sulphur, 0.09 per cent; phosphorus, nil; copper, 0.630 per cent. No traces of chromium, titanium, or tungsten were found. The breaking strains of the wire were as follows:

tungsten were found. The breaking strains of the wire were as follows:

.132 .159 .191 224,000 257,600 201,600

The elongation was only from 0.75 to 1.1 per cent.

WIRES OF DIFFERENT METALS AND ALLOYS.

(J. Bucknall Smith's Treatise on Wire.)

Brass Wire is commonly composed of an alloy of 13/4 to 2 parts of copper to 1 part of zinc. The tensile strength ranges from 20 to 40 tons per square inch, increasing with the percentage of zinc in the alloy.

German or Nickel Silver, an alloy of copper, zinc, and nickel, is practically brass whitened by the addition of nickel. It has been drawn into

wire as fine as .002" diam.

Platinum wire may be drawn into the finest sizes. On account of its high price its use is practically confined to special scientific instruments and ngh prace he use is practically commed to special scientific instruments and electrical appliances in which resistances to high temperature, oxygen, and wids are essential. It expands less than other metals when heated, which roperty permits its being sealed in glass without fear of cracking. It is therefore used in incandescent electric lamps.

Phosphor-broaze Wire contains from 2 to 6 per cent of tin and

from 16 to 16 per cent of phosphorus. The presence of phosphorus is detri-

mental to electric conductivity.

"Belta-meetal?" wire is made from an alloy of copper, iron, and zinc.

Its strength ranges from 45 to 62 tons per square inch. It is used for some kinds of wire rope, also for wire-gauze. It is not subject to deposits of verdigris. It has great toughness, even when its tensile strength is over 60

Aluminum Wire. — Specific gravity .268. Tensile strength only about 10 tons per square inch. It has been drawn as fine as 11,400 yards to

the ounce, or .042 grains per yard.

Alumniaum Eronze, 90 copper, 10 aluminum, has high strength and ductility; is inoxidizable, sonorous. Its electric conductivity is 12.6 per cent of that of pure copper.

Silicon Brenze, patented in 1882 by L. Weiler of Paris, is made as follows: Fluosilicate of potash, pounded glass, chloride of sodium and calcium, carbonate of soda and lime, are heated in a plumbago crucible, and after the reaction takes place the contents are thrown into the molten bronze to be treated.

Silicon-bronze wire has a conductivity of from 40 to % per cent of that of copper wire and four times more than that of iron, while its tensile strength is nearly that of steel, or 28 to 55 tons per square while its tensile strength is nearly that of section. The conductivity decreases as the tensile strength increases. Wire whose conductivity equals 95 per cent of that of pure copper gives a tensile strength of 28 tons per square inch, but when its conductivity is 34 per cent of pure copper, its strength is 50 tons per square inch. It is being largely used for telegraph wires. It has great resistance to oxidation.

Ordinary Brawn and Annealed Copper Wire has a strength

of from 15 to 20 tons per square inch.

SPECIFICATIONS FOR HARD-DRAWN COPPER WIRE.

The British Post Office authorities require that hard-drawn copper wire supplied to them shall be of the lengths, sizes, weights, strengths, and conductivities as set forth in the annexed table.

Weight per Statute Mile.			Approximate Equiva- lent Diameter.			Breaking ht.	No. of Inches.	tesist- file of n hard) r.	Weight fece (or Vire.
Required Standard.	Minimum.	Maximum.	Standard.	Minimum.	Maximum.	Minimum Br Weight	Minimum ? Twists in 3 I	Maximum R ance per N Wire (wher	Minimum Wof each Pie Coil) of Wi
lbs. 100 150 200 400	lbs. 971/4 1461/4 195 390	lbs. 1021/4 1533/4 205 410	mils. 79 97 112 158	mils. 78 9516 11016 15516	mils. 80 98 1131/4 1601/4	lbs. 330 490 650 1300	30 25 20 10	ohms, 9.10 6.05 4.53 2.27	lbs. 50 50 50 50

WIRE ROPES.

List adopted by manufacturers in 1892. See pamphlets of Trenton Iron Co., John A. Roebling's Sons Co., and other makers.

Pliable Hoisting Rope.

With 6 strands of 19 wires each.

IRON.

				non.			
Trade Number.	Diameter.	Circumference in inches.	Weight per foot in pounds. Rope with Hemp Cen- tre.	Breaking Strain, tons of 2000 lbs.	Proper Working Load in tons of 2000 lbs.	Circumference of new Manila Rope of equal Strength.	Min. Size of Drum or Sheave in feet.
1 2 3 4 4 5 5 5 6 7 8 9 10 10 14 10 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10	21/4 22/4 13/4 13/4 13/4 11/8 11/8 11/8 11/8 11/8 11/8 11/8 11	63/4 51/4 51/4 43/6 31/6 23/4 21/4 21/4 11/6 11/4	8.00 6.30 5.25 4.10 3.65 3.00 2.50 2.50 0.1.58 1.20 0.88 0.64 0.35 0.29	74 65 54 44 39 33 27 20 16 11.50 8.64 5.13 4.27 3.48 3.00 2.50	15 13 11 9 8 61,4 51,4 3 21,4 13,4 13,4 13,4 14,4 14,4	14 13 12 11 10 91,5 81,5 71,5 61,5 51,5 43,4 81,6 81,6 81,6 81,6 81,6 81,6 81,6 81,6	13 12 10 814 714 7 614 6 514 4 4 234 214 214
			CAST	STEEL.			
1 2 3 4 5 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	21/4 22 13/4 15/6 11/6 11/6 11/6 11/6 11/6 11/6 11/6	634 6 514 5434 436 314 314 214 214 214 214	8.00 6.30 5.25 4.10 8.65 3.00 2.50 2.50 1.58 1.20 0.88 0.44 0.35 0.29	155 125 106 86 77 63 52 42 33 25 18 12 9 7 51/4	31 25 21 17 15 10 8 6 5 31 21 21 11 2	15 14 13 12 11 914 814 7 7 414 314 314	814 8 714 614 534 54 44 314 313 214 114 114

Cable-Traction Ropes.

According to English practice, cable-traction ropes, of about 3½ in. in crumference, are commonly constructed with six strands of seven or fitteen wires, the lays in the strands varying from, say, 3 in. to 3½ in., and the lays in the ropes from, say, 7½ in. to 9 in. In the United States, however strands of nineteen wires are generally preferred as being more flexible but, on the other hand, the smaller external wires wear out more rapidly The Market street Street Railway Company, San Francisco, has used rope 1½ in. in diameter, composed of six strands of nineteen steel wires, weighin 2½ lbs, per foot, the longest continuous length being 24,125 ft. The Chicag City Railroad Company has employed cables of identical construction, the longest length being 27,700 ft. On the New York and Brooklyn Bridge cable railway steel ropes of 11,500 ft. long, containing 114 wires, have been used.

Transmission and Standing Rope.

With 6 strands of 7 wires each.

IRON.

Trade Number.	Diameter.	Circumference.	Weight per foot in pounds of Rope with Hemp Centre.	Breaking Strain in tons of 2000 lbs	Proper Working Load in tons of 2000 lbs.	Circumference of new Manila Rope of equal Strength.	Min. Size of Drum or Sheave in feet.
11 12 13 14 15 16 17 18 19 20 21 22 22 24 25	114 114 114 114 11-16 54 16 14 16 16 16 16 16 16 16 16 16 16 16 16 16	456 454 354 356 356 356 176 156 156 154 156	3.37 9.77 2.28 1.82 1.50 0.88 0.70 0.57 0.41 0.31 0.23 0.19 0.16 0.125	36 30 25 20 16 12.3 8.8 7.6 5.8 4.1 2.83 2.13 1.65 1.38	9 714 614 4 8 214 2 114 114	10 9 81 71 61 61 61 41 41 41 21 21 21 21 41	18 12 1094 914 814 64 6 514 416 4 114 214 214

AST	

11 12 18 14 15 16 17	11/2	456 414	8.37 2.77 2.28 1.82 1.50 1.12 0.88 0.70 0.57 0.41 0.29 0.19 0.19	62 52	18 10 9	18 12	81.6 8 71.4 61.4 53.4 5
18	i¼	392	2.28	86	9	11	734
14	13/6	35/6	1.82	36	71/4 6 41/4 81/4 8 21/4 11/4	10 9	614
16	126	256	1.50	80 22 17	0 414	š	294
17	36	294	0.88	17	316	ž	416
18	11-16	228	0.70	14 11	8	6.	
19	9-16	176	0.57	11 8	21/4	516 494	83/6
21	14	129	0.41	6	112		216
22	7-16	is l	0.28	416	iú ž	81/6	214
23	36	138	0.19	4	1	31,4	2
18 19 20 21 22 23 24 25	5-16 9-32	¹ %	0.16	3 2	34	814 814 234 214	81/6 8 21/6 21/4 2 19/4 11/6

Plough-Steel Rope.

Fire ropes of very high tensile strength, which are ordinarily called lough-steel Ropes," are made of a high grade of crucible steel, which en put in the form of wire, will bear a strain of from 100 to 150 tons per hare inch.

There it is necessary to use very long or very heavy ropes, a reduction of the dead wights and the strength becomes a put for of porture consideration.

riere it is necessary to use very long or very neavy ropes, a reduction of riead weight of ropes becomes a matter of serious consideration. It is advisable to reduce all bends to a minimum, and to use somewhat are drums or sheaves than are suitable for an ordinary crucible rope have attength of 60 to 80 tons per square inch. Before using Plough-steel lesit is best to have advice on the subject of adaptability.

Plough-Steel Rope.

With 6 strands of 19 wires each.

Trade Number.	Diameter in inches.	Weight per foot in pounds.	Breaking Strain in tons of 2000 lbs.	Proper Working Load.	Min. Size of Drum or Sheave in feet.
1 0	21/4	8.00 6,80	240 189	46 37	9 8
8	184 186	5.25 4.10	157 123	31 25	73-6
5 51⁄2 6	11/2 19/8	3.65 3.00	110 90	22 18	51.6 51.4
7	11/4 11/8	2.50 2.00	75 60	15 12	416
8 9 10	1 %	1.58 1.20 0.88	47 37 27	7 5	334 334
101/1	74 98 9–16	0.60 0.44	18 13	81/6	878 21 ₄
1052	1/6	0.35	10	11/6	2 2

With 7 Wires to the Strand.

19 56	1.50	45	9	51/4
	1.12	83	614	5
	0.88	85	414	4
	0.70	21	43	81/4
	0.57	16	334	8
	-16 0.41	12	2	29/4
	-16 0.28	9	114	21/4
	0.19	5	94	21/4

Galvanized Iron Wire Rope.

For Ships' Rigging and Guys for Derricks.

CHARCOAL ROPE.

Circum- ference in inches.	Weight per Fath- om in pounds.	Rope of	Break- ing Strain in tons of 2000 pounds	Circum- ference in inches	Weight per Fathom in pounds.	Cir. of new Manila Rope of equal Strength.	Break ing Strain in ton of 200 pound
514 514 544 414 414 4 834 814 814 814 814	26\4 24\4 22\2 21 19 16\4 12\34 10\4 10\4 9\4 8 6\34	11 1014 10 914 9 814 8 714 61 6 534	48 40 35 88 80 26 23 20 16 14 12	214 214 214 214 114 115 115 115 115 115 115 115 115 1	51/4 41/4 31/4 11/4 11/4 11/4 11/4 11/4 1	5 434 414 334 3 214 214 114 114 114	9 8 7 5 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Galvanized Cast-steel Yacht Rigging.

Circum- ference in inches.	Weight per Fath- om in pounds.		Break- ing Strain in tons of 2000 pounds	Circum- ference in inches		Rope of	Break- ing Strain in tons of 2000 pounds
4 31/4 3 23/4 21/4 21/4	141/4 109/4 8 69/4 51/6 41/4	13 11 914 814 8	66 43 32 27 22 18	2 194 114 196 114 1	314 214 2 176 134 38	61/2 51/4 49/4 41/4 33/4 3	14 10 8 614 514 314

Steel Hawsers.

For Mooring, Sea, and Lake Towing

		1700mmg, Doug	T DAME I	о н ш _и ,	
Circumfer- ence.	Breaking Strength.	Size of Manilla Haw- ser of equal Strength.	Circumfer- ence.	Breaking Strength.	Size of Manilla Haw- ser of equal Strength.
Inches. 21/4 23/4 3	Tons. 15 18 22	Inches. 61/2 7 81/2	Inches, 814 4	Tons. 29 85	Inches. 9 10

Steel Flat Ropes.

(J. A. Roebling's Sons Co.)

Steel-wire Flat Ropes are composed of a number of strands, alternately twisted to the right and left, laid alongside of each other, and sewed together with soft iron wires. These ropes are used at times in place of round ropes in the shafts of mines. They wind upon themselves on a narrow winding-drum, which takes up less room than one necessary for a round rope. The soft-iron sewing-wires wear out sooner than the steel strands, and then it becomes necessary to sew the rope with new iron wires.

Width and Thickness in inches.	Weight per foot in pounds.	Strength in pounds.	Width and Thickness in inches.	Weight per foot in pounds.	Strength in pounds.
\$6 × 2 \$6 × 21/6 \$6 × 3 \$6 × 31/6 \$6 × 4 \$6 × 41/6 \$6 × 5 \$6 × 5	1.19 1.86 2.00 2.50 2.86 3.12 3.40 3.90	85,700 55,800 60,000 75,000 85,800 93,600 100,000 110,000	16 × 3 16 × 3 16 × 4 16 × 4 16 × 5 16 × 5 16 × 5 16 × 6 16 × 7	2.88 2.97 3.30 4.00 4.27 4.82 5.10 5.90	71,400 89,000 99,000 120,000 128,000 144,600 153,000 177,000

For safe working load allow from one fifth to one seventh of the breaking "Lang Lay" Rope.

In wire rope, as ordinarily made, the component strands are laid up into rope in a direction opposite to that in which the wires are laid into strands; rope in a direction opposite to that in which the wires are laid into strands are laid into rope from left to right. In the "Lang Lay," sometimes known as "Universal Lay," the wires are laid into strands and the strands into rope in the same direction; that is, if the wire is laid in the strands from right to left, the strands are also laid into rope from right to left. Its use has been found desirable under certain conditions and for certain purposes, mostly the latter that the level of the strands are also laid. for haulage plants, inclined planes, and street railway cables, although it has also been used for vertical hoists in mines, etc. Its advantages are that

GALVANIZED STREL CABLES.

For Suspension Bridges. (Roebling's.)

Diameter in inches.	Ultimate Strength in tons of 2000 pounds.	Weight per foot.	Diameter in inches.	Ultimate Strength in tons of 2000 pounds.	Weight per foot.	Diameter in inches.	Ultimate Strength in tons of 2000 pounds.	Weight per foot.
256	220	13	21/4	155	8.64	13/4	95	5.6
256	200	11.3	2	110	6.5	15/6	75	4.85
258	180	10	17/6	100	5.8	11/6	65	3.7

COMPARATIVE STRENGTHS OF PLEXIBLE GAL-VANIZED STEEL-WIRE HAWSERS,

With Chain Cable, Tarred Russian Hemp, and White Manila Ropes. (Trenton Iron Co.)

Stee	atent Fle d-wire H and Cabl	awsers		Chain Cable.			Tarred Russian Hemp Rope.			White Manilla Ropes.		
Size, Circumference.	Weight per Fathom. Guaranteed Breaking Strain.	Diameter of Barrel or Sheave round which it may be worked.	Size.	Weight per Fathom.	Proof Strain.	Breaking Strain.	Size.	Weight per Fathom.	Breaking Strain.	Size.	Weight per Fathom.	Breaking Strain.
13/4 22/4 21/4 21/4 81/4 81/4 11 22/4 41/4 11 22/4 41/4 11 22/4 41/4 23/4 41/4 11 23/4 41/4 23/4 41/4 23/4 41/4 23/4 41/4 23/4 41/4 23/4 41/4 41/4 41/4 41/4 41/4 41/4 41/4 4	7 102 1 116 7 130	6 71/2 9 101/2 12 131/2 15 161/2 18 191/2 24 27 30 33 36 39 42 45 48	184 1 15-16 2 1-16 2 3-16	54 68 112 143 166 204 231 256	51/6 7 81/6 101/6 117/6 15 8-10 18 229/4 371/6 471/6 551/6 6761/6	6 734 994 1294 1516 17 8-10 287 7-10 287 5516 6619 7736 6619 7736 107 1-10 12014 12014 13434	29/4 81/2 55/4 61/2 7/3 89 10 11 12 13 15 17 19 21 22 24 25	3 31 6 8 10 13 16 19 23 28 33 39 56 67 84 106 123 184 146	11½ 21½ 31½ 7 9 11¼ 14½ 24¼ 24¼ 50 60 72 89 106 115 125	21/4 8 81/4 4 5 55/4 7 7 10 11 125/4 15 15 15 15 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	13/4 13/4 28 41/6 6 7 101/2 118 22 291/4 851/6 42	2 23/4 35/1 101/4

it is somewhat more flexible than rope of the same diameter and composed of the same number of wires laid up in the ordinary manner; and (especially) that owing to the fact that the wires are laid more axially in the rope, longer surfaces of the wire are exposed to wear, and the endurance of the rope is thereby increased. (Trenton Iron Co.)

Notes on the Use of Wire Rope.

(J. A. Roebling's Sons Co.)

Two kinds of wire rope are manufactured. The most pliable variety contains nineteen wires in the strand, and is generally used for hoisting and running rope. The ropes with twelve wires and seven wires in the strand

are stiffer, and are better adapted for standing rope, guys, and rigging. Orders should state the use of the rope, and advice will be given. Ropes are made up to three inches in diameter, upon application.

For safe working load, allow one fifth to one seventh of the ultimate strength, according to speed, so as to get good wear from the rope. When substituting wire rope for hemp rope, it is good economy to allow for the former the same weight per foot which experience has approved for the

Wire rope is as pliable as new hemp rope of the same strength; the former will therefore run over the same-sized sheaves and pulleys as the latter.

But the greater the diameter of the sheaves, pulleys, or drums, the longer wire rope will last. The minimum size of drum is given in the table.

Experience has demonstrated that the wear increases with the speed. It

is therefore, better to increase the load than the speed.

Wire rope is manufactured either with a wire or a hemp centre. The latter is more pliable than the former, and will wear better where there is short bending. Orders should specify what kind of centre is wanted.

Wire rope must not be coiled or uncoiled like hemp rope.

When mounted on a reel, the latter should be mounted on a spindle or flat turn-table to pay off the rope. When forwarded in a small coll, without reel, roll it over the ground like a wheel, and run off the rope in that way. All untwisting or kinking must be avoided.

To preserve wire rope, apply raw linseed-oil with a piece of sheepskin, wool inside; or mix the oil with equal parts of Spanish brown or lamp-black. To preserve wire rope under water or under ground, take mineral or vegetable tar, and add one bushel of fresh-slacked lime to one barrel of tar, which will neutralize the acid. Boil it well, and saturate the rope with the

hot tar. To give the mixture body, add some sawdust. In no case should galvanized rope be used for running rope. One day's use scrapes off the coating of zinc, and rusting proceeds with twice the

rapidity.

The grooves of cast-iron pulleys and sheaves should be filled with wellseasoned blocks of hard wood, set on end, to be renewed when worn out. This end-wood will save wear and increase adhesion. The smaller pulleys or rollers which support the ropes on inclined planes should be constructed on the same plan. When large sheaves run with very great velocity, the groves should be lined with leather, set on end, or with India rubber. This is done in the case of sheaves used in the transmission of power between distant points by means of rope, which frequently runs at the rate of 4000 feet her with the roll of the results of the results of the results of the roll of the results of the roll of the r feet per minute.

Steel ropes are taking the place of iron ropes, where it is a special object

to combine lightness with strength.

But in substituting a steel rope for an iron running rope, the object in view should be to gain an increased wear from the rope rather than to reduce the

Locked Wire Rope.

Fig. 74 shows what is known as the Patent Locked Wire Rope, made by the Trenton Iron Co. It is claimed to wear two to three times as long as an

Fig. 74.

ordinary wire rone of equal diameter and of like material. Sizes made are from 1/2 to 11/4 inches diameter.

CRANE CHAINS.

(Pencoyd Iron Works.)

	61	D. B. G.	'' Specia	l Crane.				Crane.	
Size of Chain, inches.	Pitch Approximately, inches	Weight per Foot in pounds, approximately.	Outside Width, inches.	Proof Test, pounds.	Average Breakage Strain, pounds.	Ordinary Safe Load, General Use, pounds.	Proof Test, pounds.	Average Breaking Strain, pounds.	Ordinary Safe Load, General Use, pounds.
14 5-16 36 7-16 9-16 9-16 9-16 11-16 15-16 1 1-16 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31-32 1 5-32 1 11-32 1 15-32 1 123-32 1 27-32 1 31-32 2 3-32 2 7-32 2 15-32 2 19-32 2 32	7/6 1 7-10 2 2 2 1/4 3 2-10 4 5 5 7/6 6 7-10 8 9 10 7-10 11 2-10 11 2-10 11 12/4 13 7-10 16 1/6 18 4-10 19 7-10 21 7-10	7/6 1 1-16 1 1/4 1 11-16 1 17/6 2 1-16 2 1/4 2 11-16 2 1/4 3 1-16	1982 2898 4186 5796 7728 9690 11914 14490 17388 20286 22484 25872 29568 33204 37576 41888 46200 50512 55748 60368	3864 5796 5796 11592 15456 19320 23828 25980 34776 40572 44968 51744 59136 66538 75152 83776 92400 1101024 111496 120736	1288 1932 2790 3864 5182 6440 7942 9660 11592 13524 14989 17248 19712 22176 25050 93674 37165 40243 41352	80240 84160 88080 42000 45920 50680	35280 40880 47040 53760 60480 68320 76160 84000	1120 1680 2427 3360 4480 5600 6907 1762 13627 15680 17920 22773 25387 28000 30613 33787 36587 40320

The distance from centre of one link to centre of next is equal to the inside length of link, but in practice 1/32 inch is allowed for weld. This is approximate, and where exactness is required, chain should be made so. For CHAIN SHEAVES.—The diameter, if possible, should be not less than twenty times the diameter of chain used.

EXAMPLE. - For 1-inch chain use 20-inch sheaves.

Weight of Green Logs to Scale 1,000 Feet, Board Measure.
A cight of dicon nogs to come 1,000 r.com monit urcastic
Yellow pine (Southern). 8,000 to 10,000 lbs.
Norway pine (Michigan) 7,000 to 8,000 " White pine (Michigan) 6,000 to 7,000 "
White pine (Michigan) { off of stump. 6,000 to 7,000 " out of water. 7,000 to 8,000 " White pine (Pennsylvania), bark off. 5,000 to 6,000 "
White pine (Pennsylvania), bark off

Weight of 1,000 reet of L	umber, Duaru	THE CARRELY.
Yellow or Norway pine	Dry, 3,000 lbs.	Green, 5,000 lbs.
White pine	" 2,500 "	" 4,000 "
Weight of 1 Cord of Seasoned	Wood, 128 Cu	bic Feet per

Cord,		•
Hickory or sugar maple	4,500	lbs.
White oak	3,850	٠.
Beech, red oak or black oak	3,250	**
Poplar, chestnut or elm	2,350	••
Pine (white or Norway)	2,000	**
Hemlock bark; dry	2,200	**

SIZES OF FIRE-BRICK.

	9-inch straight 9 × 41/4 × 21/4 inches.
	50ap 9×216×216 "
/ Jamb \	Checker
() and () ()	2-inch
9×434×234	Jamb 9 x 41/2 x 21/4 "
	No. 1 key 9 x 21/6 thick x 41/6 to 4 inches
	wide.
Key \	113 bricks to circle 12 feet inside diam. No. 2 key
8 x 236 x (434-234)	inches wide.
9×256× (274 m)	65 bricks to circle 6 ft. inside diam
	No. 3 key 9 x 21/6 thick x 41/6 to 3
	inches wide.
\\	38 bricks to circle 3 ft. inside diam. No. 4 key
\ Wedge \	inches wide.
9×45× (25:15)	25 bricks to circle 11/4 ft. inside diam.
V	No. 1 wedge (or bullhead). 9×416 wide × 216 to 2 in.
	thick, tapering lengthwise. 96 bricks to circle 5 ft. inside diam.
Arch	No. 2 wedge 9 × 4½ × 2½ to 1½ in. thick.
/ >	60 bricks to circle 216 ft. inside diam.
0×4%×(2%:1%)	No. 1 arch
<u> </u>	tapering breadthwise.
	72 bricks to circle 4 ft. inside diam. No. 2 arch
	42 Dricks to circle 2 ft, inside diam.
No. 1 Skew	NO. 1 SECW 9 to 7 x 414 to 214.
	Bevel on one end.
(9:7)×434×234	No. 2 skew
~	No. 8 skew 9 x 216 x 416 to 116.
	Taper on one edge,
No. 2 Skew	24 inch circle 8½ to 5½ × 4½ × 2½.
	Edges curved, 9 bricks line a 24-inch circle. 36-inch circle
9×234×(434-234)	13 bricks line a 36-inch circle.
1 33	48-inch circle
	17 bricks line a 48-inch circle.
$\langle \cdot \rangle$	1314 inch straight
No.3 Skew	W bricks turn a 12-ft, circle.
\ \	1314 inch key No. 2 1314 × 214 × 6 to 436 inch. 52 bricks turn a 6-ft. circle.
\\\\9×2½×(4½:1½)\\	52 bricks turn a 6-ft. circle.
	Bridge wall, No. 1
36 in. Circle	Mill tile
8%	Stock-hole tiles
(4) · 6×	18-inch block
12 02	Flat back
\//	22-10Ch radius, 56 bricks to circle.
	Locomotive tile $32 \times 10 \times 3$.
	84 × 10 × 3.
Cupola	34 × 8 × 3. 36 × 8 × 3.
	$40 \times 10 \times 3$.
	Tiles, slabs, and blocks, various sizes 12 to 30 inches long, 8 to 30 inches wide, 2 to 6 inches thick.
One 13 - Sent also 4 1 1 1 4	long, 8 to 30 inches wide, 2 to 6 inches thick.

long, 8 to 30 inches wide, 2 to 6 inches thick.

Cupola brick, 4 and 6 inches high, 4 and 6 inches radial width, to line shells
23 to 66 in diameter.

A sinch straight brick weighs 7 lbs. and contains 100 cubic inches. (=120
lbs. per cubic foot. Specific gravity 1.93.)

One cubic foot of wall requires 17 9-inch bricks, one cubic yard requires
400. Where keys, wedges, and other "shapes" are used, add 10 per cent in
estimating the number required.

One ton of fire-clay should be sufficient to lay 3000 ordinary bricks. To secure the best results, fire-bricks should be laid in the same clay from which they are manufactured. It should be used as a thin paste, and not as mortar. The thinner the joint the better the furnace wall. In ordering bricks the service for which they are required should be stated.

NUMBER OF FIRE-BRICK BEQUIRED FOR VARIOUS CIRCLES.

	1	KEY BRICKS. ARCH BRICKS.					wı	EDG	E BRJ	CKS.			
Diam. of Circle	No. 4.	No. 3.	No. 2.	No. 1.	Total.	No. 2.	No. 1.	%	Total.	No. 2.	No. 1.	š	Total.
ft. in. 1 6 2 0 3 6 3 6 4 6 5 6 6 0 6 6 7 0 7 6 8 6 9 0 9 6 10 6 11 6 12 0 12 6	25 17 9	18 25 38 32 25 19 13 6	10 21 32 42 53 65 55 47 42 21 16 11 5	9 19 29 38 47 57 66 85 94 113 118	25 30 34 38 42 46 51 55 63 67 71 76 80 88 92 97 101 105 113 117	42 31 21 10	18 36 54 72 72 72 72 72 72 72 72 72 72 72 72 72	8 15 28 30 38 45 53 60 68 75 83 90 98 105 118 121	429 499 577 644 722 800 875 102 1107 1125 1840 1447 1562 1700 1770 1770 1785 198	60 48 86 24 12	200 400 599 986 986 986 986 986 986 986 986 986 9	8 15 23 30 38 46 53 61 68 76 83 91 98	60 68 76 83 91 98 106 113 121 128 136 141 151 159 166 174 181 189 196 204

For larger circles than 12 feet use 113 No. 1 Key, and as many 9-inch brick as may be needed in addition.

ANALYSES OF MT. SAVAGE FIRE-CLAY.

(1)	(2)	•	(8)	(4)
1871	1877.		1878.	1885.
Mass. Institute of Technology.	Report of Clays of New Jers Prof. G. H. O	of	Second Geological Survey of Pennsylvania.	(2 samples) Dr. Otto Wuth.
50.457	56.80	Silica	. 44.395	56.15
35.904	80.08	Alumina	. 83.558	33.295
	1.15	Titanic acid	. 1.580	
1.504	1.12	Peroxide iron	1.000	0.59
0.133		Lime		0.17
0.018	•	Magnesia	. 0.108	0.115
trace	0.80	Potash (alkalies)	. 0.247	
12.744	10.50	Water and inorg. matter	. 14.575	9.68
0.760	100.450		100.493	100.000

MAGNESIA BRICKS.

"Foreign Abstracts" of the Institution of Civil Engineers, 1898, gives a paper by C. Bischof on the production of magnesia bricks. The material most in favor at present is the magnesite of Styria, which, although less pure considered as a source of magnesia than the Greek, has the property of fritting at a high temperature without melting. The composition of the two substances, in the natural and burnt states, is as follows:

Magnesite.	Styrian.	Greek.	
Carbonate of magnesia	. 0.5 to 2.0 . 8.0 to 6.0 . 1.0	94.46% 4.49 FeO 0.08 0.52 Water 0.54	
Burnt Magnesite.			
Magnesia	. 7.8 . 18.0	82.46—95.36 0.83—10.92 0.56— 8.54 0.73— 7.98	

At a red heat magnesium carbonate is decomposed into carbonic acid and caustic magnesia, which resembles lime in becoming hydrated and recarcauste magnesia, when resonates then in becoming hydrace and reaching the machine team to the air, and possesses a certain plasticity, so that it can be moulded when subjected to a heavy pressure. By long-continued or stronger heating the material becomes dead-burnt, giving a form of magnesia of high density, sp. gr. 3.8, as compared with 3.0 in the plastic form, which is unalterable in the air but devoid of plasticity. A mixture of two volumes of dead-burnt with one of plastic magnesia can be moulded into bricks which contract but little in firing. Other binding materials that have been used are: clay up to 10 or 15 per cent; gas-tar, porfectly freed from water, soda, silica, vinegar as a solution of magnesium acetate which is maddly decomposed by heat and carbolate of allegia or slign. water, soda, sinca, vinegar as a solution of magnesium acetate which is readily decomposed by heat, and carbolates of alkalies or line. Among magnesium compounds a weak solution of magnesium chloride may also be dead. For setting the bricks lightly burnt, caustic magnesia, with a small proportion of silica to render it less refractory, is recommended. The strength of the bricks may be increased by adding iron either as oxide or silicate. If a porous product is required, sawdust or starch may be added to the mixture. When dead-burnt magnesia is used alone, soda is said to be the best binding material the best binding material.

See also papers by A. E. Hunt, Trans. A. I. M. E., xvi, 720, and by T. Egleston, Trans. A. I. M. E., xiv, 458.

Asbestos.—J. T. Donald, Eng. and M. Jour., June 27, 1891.

ANALYSIS.

		Canadian.		
	Italian.	Broughton.	Templeton.	
Silica		40.57%	40.52≰	
Magnesia	48.37	41.50	42.05	
Ferrous oxide	87	2.81	1.97	
Alumina	. 2.27	.90	2.10	
Water	. 13.72	13.55	13.46	
	100.53	99.33	100.10	

Chemical analysis throws light upon an important point in connection with asbestos, i.e., the cause of the harshness of the fibre of some varieties. Asbestos is principally a hydrous silicate of magnesia, i.e., silicate of magnesia combined with water. When harsh fibre is analyzed it is found to contain less water than the soft fibre. In fibre of very fine quality from Black Lake analysis showed 14,38% of water, while a harsh-fibred sample gave only 11.70%. If soft fibre be heated to a temperature that will drive off a portion of the combined water, there results a substance so brittle that it may be crumbled between thumb and finger. There is evidently some connection between the consistency of the fibre and the amount of water in its composition,

STRENGTH OF MATERIALS.

Stress and Strain.—There is much confusion among writers on strength of materials as to the definition of these terms. An external force applied to a body, so as to pull it apart, is resisted by an internal force, or resistance, and the action of these forces causes a displacement of the molecules, or deformation. By some writers the external force is called a stress, and the internal force a strain; others call the external force a strain, and the internal force a stress: this confusion of terms is not of importance, as the words stress and strain are quite commonly used synonymously, but the use of the word strain to mean molecular displacement, deformation, or distortion, as is the custom of some, is a corruption of the language. See Engineering News, June 23, 1892. Definitions by leading authorities are given helow.

Stress.—A stress is a force which acts in the interior of a body, and resists the external forces which tend to change its shape. A deformation is the amount of change of shape of a body caused by the stress. strain is often used as synonymous with stress and sometimes it is also used to designate the deformation. (Merriman.)

The force by which the molecules of a body resist a strain at any point is

called the stress at that point.

The summation of the displacements of the molecules of a body for a given point is called the distortion or strain at the point considered.

Stresses are the forces which are applied to bodies to bring into action their elastic and cohesive properties. These forces cause alterations of the forms of the bodies upon which they act. Strain is a name given to the kind of alteration produced by the stresses. The distinction between stress and strain is not always observed, one being used for the other. (Wood.)

Stresses are of different kinds, viz.: tensile, compressive, transverse, tor-

sional, and shearing stresses.

A tensile stress, or pull, is a force tending to elongate a piece. A compressive stress, or push, is a force tending to shorten it. A transverse stress tends to bend it. A torsional stress tends to twist it. A shearing stress tends to force one part of it to slide over the adjacent part.

Tensile, compressive, and shearing stresses are called simple stresses.

Transverse stress is compounded of tensile and compressive stresses, and

torsional of tensile and shearing stresses.

To these five varieties of stresses might be added tearing stress, which is either tensile or shearing, but in which the resistance of different portions of the material are brought into play in detail, or one after the other, instead of simultaneously, as in the simple stresses,

Effects of Stresses.—The following general laws for cases of simple tension or compression have been established by experiment. (Merriman):

1. When a small stress is applied to a body, a small deformation is produced, and on the removal of the stress the body springs back to its original form. For small stresses, then, materials may be regarded as perfectly elastic.

Under small stresses the deformations are approximately proportional to the forces or stresses which produce them, and also approximately pro-

portional to the length of the bar or body.

3. When the stress is great enough a deformation is produced which is partly permanent, that is, the body does not spring back entirely to its original form on removal of the stress. This permanent part is termed a This permanent part is termed a set. In such cases the deformations are not proportional to the set of the stress is greater still the deformation rapidly increases and In such cases the deformations are not proportional to the stress.

the body finally ruptures.

5. A sudden stress, or shock, is more injurious than a steady stress or than a stress gradually applied.

Elastic Limit.—The elastic limit is defined as that point at which the deformations cease to be proportional to the stresses, or, the point at which the rate of stretch (or other deformation) begins to increase. It is also defined as the point at which the first permanent set becomes visible. The last definition is not considered as good as the first, as it is found that with some materials a set occurs with any load, no matter how small, and that with others a set which might be called permanent vanishes with lapse of time, and as it is impossible to get the point of first set without removing the whole load after each increase of load, which is frequently inconvenient. The elastic limit, defined, however, as the point at which the extensions be-

The elastic limit, defined, however, as the point at which the extensions begin to increase at a higher ratio than the applied stresses, usually corresponds very nearly with the point of first measurable permanent set.

Wield-point.—The term yield-point has recently been introduced into the literature of the strength of materials. It is defined as that point at which the rate of stretch suddenly increases rapidly. The difference between the elastic limit, strictly defined as the point at which the rate increases suddenly, may in some cases be considerable. This difference, however, will not be discovered in short test-pieces unless the readings of elongations are

made by an exceedingly fine instrument, as a micrometer reading to $\frac{1}{10000}$ of an inch. In using a coarser instrument, such as calipers reading to 1/100 of an inch, the elastic limit and the yield-point will appear to be simultaneous. Unfortunately for precision of language, the term yield-point was not introduced until long after the term elastic limit had been almost universally adopted to signify the same physical fact which is now defined by the term yield-point, that is, not the point at which the first change in rate, observable only by a microscope, occurs, but that later point (more or less indefinite as to its precise position) at which the increase is great enough to be seen by the naked eye. A most convenient method of determining the regist at which a andden increase of rate of stretch occurs in short received. point at which a sudden increase of rate of stretch occurs in short specimens, when a testing-machine in which the pulling is done by screws is used, is to note the weight on the beam at the instant that the beam "drops." During the earlier portion of the test, as the extension is steadily increased by the uniform but slow rotation of the screws, the poise is moved steadily along the beam to keep it in equipoise; suddenly a point is reached at which the beam drops, and will not rise until the elongation has been considerably increased by the further rotation of the screws, the advancing of the poise meanwhile being suspended. This point corresponds practically to the point at which the rate of elongation suddenly increases, and to the point at which an appreciable permanent set is first found. It is also the point which has hitherto been called in practice and in text-books the elastic limit, and it will probably continue to be so called, although the use of the newer term "yield-point" for it, and the restriction of the term elastic limit to mean the earlier point at which the rate of stretch begins to increase, as determin-

able only by micrometric measurements, is more precise and scientific.

In tables of strength of materials hereafter given, the term elastic limit is used in its customary meaning, the point at which the rate of stress has begun to increase, as observable by ordinary instruments or by the drop of the beam. With this definition it is practically synonymous with yieldpoint.

Coefficient (or Modulus) of Elasticity.—This is a term expressing the relation between the amount of extension or compression of a mate-

rial and the load producing that extension or compression.

It may be defined as the load per unit of section divided by the extension per unit of length; or the reciprocal of the fraction expressing the elongation per inch of length, divided by the pounds per square inch of section

per section producing that elongation. Let P be the applied load, k the sectional area of the piece, l the length of the part extended, λ the amount of the extension, and E the coefficient of elasticity. Then

$$rac{P}{k}=$$
 the load on a unit of section; $rac{\lambda}{l}=$ the elongation of a unit of length. $E=rac{P}{k}+rac{\lambda}{l}=rac{Pl}{k\lambda}.$

The coefficient of elasticity is sometimes defined as the figure expressing The coemiciant of elasticity is sometimes defined as the figure expressing the load which would be necessary to elongate a piece of one square inch section to double its original length, provided the piece would not break, and the ratio of extension to the force producing it remained constant. This definition follows from the formula above given, thus: If k = one square inch, l and k each = one inch, then E = P. Within the elastic limit, when the deformations are proportional to the stresses, the coefficient of elasticity is constant, but beyond the elastic limit

it decreases rapidly.

In cast iron there is generally no apparent limit of elasticity, the deforma-tions increasing at a faster rate than the stresses, and a permanent set being produced by small loads. The coefficient of elasticity therefore is not constant during any portion of a test, but grows smaller as the load increases. The same is true in the case of timber. In wrought iron and steel, however, there is a well-defined elastic limit, and the coefficient of elasticity within that limit is nearly constant.

Resilience, or Work of Resistance of a Material.—Within the elastic limit, the resistance increasing uniformly from zero stress to the stress at the elastic limit, the work done by a load applied gradually is equal to one half the product of the final stress by the extension or other deforma Beyond the elastic limit, the extensions increasing more rapidly than the loads, and the strain diagram approximating a parabolic form, the work is approximately equal to two thirds the product of the maximum stress by the extension.

The amount of work required to break a bar, measured usually in inchpounds, is called its resilience; the work required to strain it to the elastic

limit is called its elastic resilience.

Under a load applied suddenly the momentary elastic distortion is equal

to twice that caused by the same load applied gradually.

When a solid material is exposed to percussive stress, as when a weight falls upon a beam transversely, the work of resistance is measured by the

product of the weight into the total fall.

Rievation of Ultimate Resistance and Elastic Limit,—It was first observed by Prof. R. H. Thurston, and Commander L. A. Beardslee, U. S. N., independently, in 1873, that if wrought iron be subjected to a stress beyond its elastic limit, but not beyond its ultimate resistance, and then allowed to "rest" for a definite interval of time, a considerable in crease of elastic limit and ultimate resistance may be experienced. In other words, the application of stress and subsequent "rest" increases the resist-

ance of wrought iron.

This "rest" may be an entire release from stress or a simple holding the

test-piece at a given intensity of stress.

Commander Beardslee prepared twelve specimens and subjected them to an intensity of stress equal to the ultimate resistance of the material, without breaking the specimens. These were then allowed to rest, entirely free from stress, from 24 to 30 hours, after which period they were again stressed until broken. The gain in ultimate resistance by the rest was found to vary from 4.4 to 17 per cent.

This elevation of elastic and ultimate resistance appears to be peculiar to

iron and steel: it has not been found in other metals.

Relation of the Elastic Limit to Endurance under Repeated Stresses (condensed from Engineering, August 7, 1891).—
When engineers first began to test materials, it was soon recognized that if a specimen was loaded beyond a certain point it did not recover its original control of the control nal dimensions on removing the load, but took a permanent set; this point was called the elastic limit. Since below this point a bar appeared to recover completely its original form and dimensions on removing the load, it appeared obvious that it had not been injured by the load, and hence the work ing load might be deduced from the elastic limit by using a small factor of safety.

Experience showed, however, that in many cases a bar would not carry safely a stress anywhere near the elastic limit of the material as determined by these experiments, and the whole theory of any connection between the elastic limit of a bar and its working load became almost discredited, and engineers employed the ultimate strength only in deducing the safe working load to which their structures might be subjected. Still, as experience accu-nulated it was observed that a higher factor of safety was required for a live

load than for a dead one.

In 1871 Wöhler published the results of a number of experiments on bars of iron and steel subjected to live loads. In these experiments the stresses were put on and removed from the specimens without impact, but it was, nevertheless, found that the breaking stress of the materials was in every case much below the statical breaking load. Thus, a bar of Krupp's axie steel having a tenacity of 49 tons per square inch broke with a stress of 28.6 tons per square inch. when the load was completely removed and replaced without impact 170,000 times. These experiments were made on a large number of different brands of iron and steel, and the results were concordant in showing that a bar would break with an alternating stress of only, say, one third the statical breaking strength of the material, if the repetitions of stress were sufficiently numerous. At the same time, however, it appeared from the general trend of the experiments that a bar would stand an indefinite number of alternations of stress, provided the stress was kept below the limit.

Prof. Bauschinger defines the elastic limit as the point at which stress ceases to be sensibly proportional to strain, the latter being measured with

a mirror apparatus reading to $\frac{1}{5000}$ th of a millimetre, or about $\frac{1}{100000}$ in

This limit is always below the yield-point, and may on occasion be zero. On eading a bar above the yield-point, this point rises with the stress, and the rise continues for weeks, months, and possibly for years if the bar is left rest under its load. On the other hand, when a bar is loaded beyond its true elastic limit, but below its yield-point, this limit rises, but reaches a maximum as the yield-point, is approached, and then falls rapidly, reaching even to zero. On leaving the bar at rest under a stress exceeding that of its primitive breaking-down point the elastic limit begins to rise again, and may, if left a sufficient time, rise to a point much exceeding its previous value.

This property of the elastic limit of changing with the history of a bar has done more to discredit it than anything else, nevertheless it now seems as it, owing to this very property, were once more to take its former place in the estimation of engineers, and this time with fixity of tenure. It had long been known that the limit of elasticity might be raised, as we have said, to almost any point within the breaking load of a bar. Thus, in some experiments by Professor Styffe, the elastic limit of a puddled steel bar was raised limit.

A bar has two limits of elasticity, one for tension and one for compression. Bauschinger loaded a number of bars in tension until stress ceased to be ensibly proportional to strain. The load was then removed and the bar tested in compression until the elastic limit in this direction had been exceeded. This process raises the elastic limit in compression, as would be found on testing the bar in compression a second time. In place of this, however, it was now again tested in tension, when it was found that the artificial raising of the limit in compression had lowered that in tension below its previous value. By repeating the process of alternately testing in tension and compression, the two limits took up points at equal distances from the line of no load, both in tension and compression. These limits auschinger calls natural elastic limits of the bar, which for wrought iron correspond to a stress of about 8½ tons per square inch, but this is practically the limiting load to which a bar of the same material can be strained alternately in tension and compression, without breaking when the loading is repeated sufficiently often, as determined by Wöhler's method.

As received from the rolls the elastic limit of the bar in tension is above

As received from the rolls the elastic limit of the bar in tension is above the natural elastic limit of the bar as defined by Bauschinger, having been artificially raised by the deformations to which it has been subjected in the process of manufacture. Hence, when subjected to alternating stresses, the limit in tension is immediately lowered, while that in compression is raised until they both correspond to equal loads. Hence, in Wöhler's experiments, in which the bars broke at loads nominally below the elastic limits of the material, there is every reason for concluding that the loads were really greater than true elastic limits of the material. This is confirmed by tests on the connecting-rods of engines, which of course work under alternating stresses of equal intensity. Careful experiments on old rods show that the elastic limit in compression is the same as that in tension, and that both are far below the tension elastic limit of the material as received from the rolls.

The common opinion that straining a metal beyond its elastic limit injures it appears to be untrue. It is not the mere straining of a metal beyond one elastic limit that injures it, but the straining, many times repeated, beyond its two elastic limits. Sir Benjamin Baker has shown that in bending a shell plate for a boiler the metal is of necessity strained beyond its elastic limit, so that stresses of as much as 7 tons to 15 tons per square inch may obtain in it as it comes from the rolls, and unless the plate is annealed, these stresses will still exist after it has been built into the boiler. In such a case, however, when exposed to the additional stress due to the pressure inside

the boiler, the overstrained portions of the plate will relieve themselves by stretching and taking a permanent set, so that probably after a year's working very little difference could be detected in the stresses in a plate built in to the boller as it came from the bending rolls, and in one which had been annealed, before riveting into place, and the first, in spite of its having been strained beyond its elastic limits, and not subsequently annealed, would be as strong as the other.

Resistance of Metals to Repeated Shocks.

More than twelve years were spent by Wöhler at the instance of the Prus sian Government in experimenting upon the resistance of iron and steel to repeated stresses. The results of his experiments are expressed in what is known as Wöhler's law, which is given in the following words in Dubois: translation of Weyrauch:

"Rupture may be caused not only by a steady load which exceeds the carrying strength, but also by repeated applications of stresses, none of which are equal to the carrying strength. The differences of these stresses

are measures of the disturbance of continuity, in so far as by their increase the minimum stress which is still necessary for rupture diminishes."

A practical illustration of the meaning of the first portion of this law may be given thus: If 50,000 pounds once applied will just break a bar of iron or steel, a stress very much less than 50,000 pounds will break it if repeated sufficiently often.

This is fully confirmed by the experiments of Fairbairn and Spangenberg. as well as those of Wöhler; and, as is remarked by Weyrauch, it may be considered as a long-known result of common experience. It partially accounts for what Mr. Holley has called the "intrinsically ridiculous factor of safety of six."

Another "long-known result of experience" is the fact that rupture may be caused by a succession of shocks or impacts, none of which alone would be sufficient to cause it. Iron axles, the piston-rods of steam hammers, and other pieces of metal subject to continuously repeated shocks, invariably break after a certain length of service. They have a "life" which is lim-

ited.

Several years ago Fairbairn wrote: "We know that in some cases wrought iron subjected to continuous vibration assumes a crystalline structure, and that the cohesive powers are much deteriorated, but we are ignorant of the causes of this change." We are still ignorant, not only of the causes of this change, but of the conditions under which it takes place. Who knows whether wrought iron subjected to very slight continuous vibration will endure forever? or whether to insure flual rupture each of the continuous small shocks must amount at least to a certain percentage of single heavy shock (both measured in foot pounds), which would cause rupture with one applica-tion? Wöhler found in testing iron by repeated stresses (not impacts) that in one case 400,000 applications of a stress of 500 centners to the square inch caused rupture, while a similar bar remained sound after 48,000,000 applications of a stress of 300 centners to the square inch (1 centner = 110.2 lbs.).

Who knows whether or not a similar law holds true in regard to repeated shocks? Suppose that a bar of iron would break under a single impact of 1000 foot-pounds, how many times would it be likely to bear the repetition of 100 foot-pounds, or would it be safe to allow it to remain for fifty years subjected to a continual succession of blows of even 10 foot-pounds each?

Mr. William Metcalf published in the Metallurgical Review, Dec. 1877, the results of some tests of the life of steel of different percentages of carbon under impact. Some small steel pitmans were made, the specifications for which required that the unloaded machine should run 414 hours at the rate

of 1200 revolutions per minute before breaking.

The steel was all of uniform quality, except as to carbon. Here are the

results: The

- .30 C. ran 1 h. 21 m. Heated and bent before breaking. 1 h. 28 m., .49 C.
- " .43 C. 4 h. 57 m. Broke without heating.
- " 3 h. 50 m. .65 C. Broke at weld where imperfect.
- " 5 h. 40 m. .80 C.
- " 18 h. .84 C.
- .87 C. Broke in weld near the end.
- Ran 4.55 m., and the machine broke down. .96 C.

Some other experiments by Mr. Metcalf confirmed his conclusion, viz.,

that high-carbon steel was better adapted to resist repeated shocks and vibrations than low-carbon steel.

These results, however, would scarcely be sufficient to induce any engineer to use .84 carbon steel in a car-axle or a bridge-rod. Further experiments are needed to confirm or overthrow them.

(See description of proposed apparatus for such an investigation in the author's paper in Trans. A. I. M. E., vol. viii, p. 76, from which the above extract is taken.)

Stresses Produced by Suddenly Applied Forces and Shocks.

(Mansfield Merriman, R. R. & Eng. Jour., Dec. 1889.)

Let P be the weight which is dropped from a height h upon the end of a bar, and let y be the maximum elongation which is produced. The work performed by the falling weight, then, is

$$W=P(h+y),$$

and this must equal the internal work of the resisting molecular stresses. The stress in the bar, which is at first 0, increases up to a certain limit Q, which is greater than P; and if the elastic limit be not exceeded the elongation increases uniformly with the stress, so that the internal work is equal to the mean stress 1/2Q multiplied by the total elongation y, or

$$W = 1/2 Qy.$$

Whence, neglecting the work that may be dissipated in heat,

$$1/2Qy = Ph + Py.$$

If e be the elongation due to the static load P, within the elastic limit $y = \frac{Q}{D}e$; whence

which gives the momentary maximum stress. Substituting this value of Q, there results

$$y = e\left(1 + \sqrt{1 + 2\frac{h}{e}}\right), \quad . \quad . \quad . \quad . \quad . \quad (2)$$

which is the value of the momentary maximum elongation. A shock results when the force P, before its action on the bar, is moving with velocity, as is the case when a weight P falls from a height h. The above formulas show that this height h may be small if e is a small quanabove for integration of the state of the s that no lateral flexure occurs; but if a weight of 5000 lbs. drops upon its end from the small height of 0.0048 in. there will be produced the stress of 20,000

A suddenly applied force is one which acts with the uniform intensity P upon the end of the bar, but which has no velocity before acting upon it. This corresponds to the case of h = 0 in the above formulas, and gives Q = 2P and y = 2e for the maximum stress and maximum deformation. Probably the action of a rapidly-moving train upon a bridge produces stresses

of this character.

Increasing the Tensile Strength of Iron Bars by Twisting them.—Ernest L. Ransome of San Francisco has obtained an English Patent, No. 16221 of 1888, for an "improvement in strengthening and testing wrought metal and steel rods or bars, consisting in twisting the same in a cold state.

Any defect in the lamination of the metal which would otherwise be concealed is revealed by twisting, and imperfections are shown at once. The treatment may be applied to bolts, suspension-rods or bars subjected to tensile strength of any description."

Results of tests of this process were reported by Lieutenant F. P. Gilmore, U. S. N., in a paper read before the Technical Society of the Pacific Coast, published in the Transactions of the Society for the month of December,

Tests were also made in 1889 in the University of California. The experiments include trials with thirty-nine bars, twenty-nine of which were va-

riously twisted, from three-eighths of one turn to six turns per foot. The test-pieces were cut from one and the same bar, and accurately measured and numbered. From each lot two pieces without twist were tested for tensile strength and ductility. One group of each set was twisted until the pieces broke, as a guide for the amount of twist to be given those to be lested for tensile strain.

The following is the result of one set of Lieut. Gilmore's tests, on iron bars 8 in. long, 719 in. diameter.

No. of Bars.	Conditions.	Twists in Turns.	Twists per ft.	Tensile Strength.	Tensile per sq. in.	Gain per cent.
2 2 2 2 1	Not twisted. Twisted cold. """	0 1/2 1 2 21/2	0 34 11/2 3 33/4	22,000 23,900 25,800 26,300 26,400	54,180 59,020 63,500 64,750 65,000	9 17 19 20

TENSILE STRENGTH.

The following data are usually obtained in testing by tension in a testingmachine a sample of a material of construction:

The load and the amount of extension at the elastic limit.

The maximum load applied before rupture.

The elongation of the piece, measured between gauge-marks placed a stated distance apart before the test; and the reduction of area at the

point of fracture.

The load at the elastic limit and the maximum load are recorded in pounds re road at the classic limit and the maximum load are recorded in pounds per square inch of the original area. The clongation is recorded as a percentage of the stated length between the gauge-marks, and the reduction area as a percentage of the original area. The coefficient of clasticity is calculated from the ratio the extension within the clastic limit per inch of length bears to the load per square inch producing that extension.

On account of the difficulty of making accurate measurements of the fractured area of a test-piece, and of the fact that elongation is more valuable than reduction of area as a measure of ductility and of resilience or work of resistance before rupture, modern experimenters are abandoning the custom of reporting reduction of area. The "strength per square inch of fractured section" formerly frequently used in reporting tests is now almost entirely abandoned. The data now calculated from the results of a tensile test for commercial purposes are: 1. Tensile strength in pounds per square inch of original area. 2. Elongation per cent of a stated length between gauge-marks, usually 8 inches. 3. Elastic limit in pounds per square inch

The short or grooved test specimen gives with most metals, especially with wrought iron and steel, an apparent tensile strength much higher than the real strength. This form of test-piece is now almost entirely aban-

The following results of the tests of six specimens from the same 11/4" steel bar illustrate the apparent elevation of elastic limit and the changes in other properties due to change in length of stems which were turned down in each specimen to .798" diameter. (Jas. E. Howard, Eng. Congress 1893, Section G.)

Description of Stem.	Elastic Limit,	Tensile Strength,	Contraction of
	Lbs. per Sq. In.	Lbs. per Sq. In.	Area, per cent.
1.00" long .50 "	64,900 65,320 68,000	94,400 97,800 102,420	49.0 43.4 89.6
Semicircular groove, .4" radius	75,000	116,380	39.6 31.6
1/6" radius	86,000, about	134,960	23.0
V-shaped groove	90,000, about	117,000	Indeterminate.

Tests plate made by the author in 1879 of straight and grooved test-pieces of boiler-plate steel cut from the same gave the following results:

5 straight pieces, 56,605 to 59,012 lbs. T. S. Aver. 57,566 lbs. 4 grooved " 64,841 to 67,400 " " 65,452 "

Excess of the short or grooved specimen, 21 per cent, or 12,114 lbs.

Measurement of Klongation.-In order to be able to compare records of elongation, it is necessary not only to have a uniform length of section between gauge-marks (say 8 inches), but to adopt a uniform method of measuring the elongation to compensate for the difference between the apparent elongation when the piece breaks near one of the gauge-marks, and when it breaks midway between them. The following method is recommended (Trans. A. S. M. E., vol. xi., p. 622);

Mark on the specimen divisions of 1/8 inch each. After fracture measure

from the point of fracture the length of 8 of the marked spaces on each fractured portion (or 7 + on one side and 8 + on the other if the fracture is not at one of the marks). The sum of these measurements, less 8 inches, is the elongation of 8 inches of the original length. If the fracture is so near one end of the specimen that 7 + spaces are not left on the shorter portion, then take the measurement of as many spaces (with the fractional part next to the fracture) as are left, and for the spaces lacking add the measurement of as many corresponding spaces of the longer portion as are necessary to make the ?+ spaces.

Shapes of Specimens for Tensile Tests.—The shapes shown

Shapes of Specimens for Tensile Tests.—The shapes shown in Fig. 74 were recommended by the author in 1882 when he was connected

FIG. 75.

with the Pittsburgh Testing Laboratory. They are now in most general use, the earlier forms, with 5 inches or less in length between shoulders,

being almost entirely abandoned.

Precautions Required in making Tensile Tests.—The testing-machine itself should be tested, to determine whether its weighing apparatus is accurate, and whether it is so made and adjusted that in the test of a properly made specimen the line of strain of the testing-machine is absolutely in line with the axis of the specimen.

The specimen should be so shaped that it will not give an incorrect record of strength.

It should be of uniform minimum section for not less than five inches of its length.

Regard must be had to the time occupied in making tests of certain mate-Wrought iron and soft steel can be made to show a higher than their actual apparent strength by keeping them under strain for a great length of time.

In testing soft alloys, copper, tin, zinc, and the like, which flow under constant strain their highest apparent strength is obtained by testing them rapidly. In recording tests of such materials the length of time occupied in the test should be stated,

For very accurate measurements of elongation, corresponding to increments of load during the tests, the electric contact micrometer, described in Trans. A. S. M. E., vol. vi., p. 479, will be found convenient. When readings of elongation are then taken during the test, a strain diagram may be plotted from the reading, which is useful in comparing the qualities of different specimens. Such strain diagrams are made automatically by the new Olsen testing-machine, described in Jour. Frank. Inst. 1891.

The coefficient of elasticity should be deduced from measurement observed between fixed increments of load per unit section, say between 2000 and 12,000 pounds per square inch or between 1000 and 11,000 pounds instead of between 0 and 10,000 pounds.

COMPRESSIVE STRENGTH.

What is meant by the term "compressive strength" has not yet been settled by the authorities, and there exists more confusion in regard to this term than in regard to any other used by writers on strength of materials. The reason of this may be easily explained. The effect of a compressive stress upon a material varies with the nature of the material, and with the shape and size of the specimen tested. While the effect of a tensile stress is to produce rupture or separation of particles in the direction of the line of to produce reputation of particles in the direction of the filled of strain, the effect of a compressive stress on a piece of material may be either to cause it to fly into splinters, to separate into two or more wedge-shaped pieces and fly apart, to bulge, buckle, or bend, or to flatten out and utterly resist rupture or separation of particles. A piece of speculum metal under compressive stress will exhibit no change of appearance until rupture takes place, and then it will fly to pieces as suddenly as if blown apart by gun-powder. A plece of cast iron or of stone will generally split into wedges shaped fragments. A piece of wrought iron will buckle or bend. A piece of wood or zinc may bulge, but its action will depend upon its shape and size. A piece of lead will flatten out and resist compression till the last degree; that is, the more it is compressed the greater becomes its resistance.

Air and other gaseous bodies are compressible to any extent as long as they retain the gaseous condition. Water not confined in a vessel is compressed by its own weight to the thickness of a mere film, while when con-

fined in a vessel it is almost incompressible.

ned in a vessel it is almost incompressive.

It is probable, although it has not been determined experimentally, that
It is probable, although it has not been determined experimentally. When solid bodies when confined are at least as incompressible as water. When they are not confined, the effect of a compressive stress is not only to shorten them, but also to increase their lateral dimensions or bulge them.

Lateral strains are therefore induced by compressive stresses.

The weight per square inch of original section required to produce any given amount or percentage of shortening of any material is not a constant quantity, but varies with both the length and the sectional area, with the shape of this sectional area, and with the relation of the area to the length. The "compressive strength" of a material, if this term be supposed to mean the weight in power and area may remain the section. the weight in pounds per square inch necessary to cause rupture, may vary with every size and shape of specimen experimented upon. Still more difficult would it be to state what is the "compressive strength" of a material which does not rupture at all, but flattens out. Suppose we are testing a cylinder of a soft metal like lead, two inches in length and one inch in diamcettra, a certain weight will shorten it one per cent, another weight en per cent, another fifty per cent, but no weight that we can place upon it will rupture it, for it will flatten out to a thin sheet. What, then, is its compressions. sive strength? Again, a similar cylinder of soft wrought iron would probably compress a few per cent, bulging evenly all around; it would then commence to bend, but at first the bend would be imperceptible to the eye and noticed, and finally the piece might be bent nearly double, or otherwise distorted. What is the "compressive strength" of this piece of iron? Is it the weight per square inch which compresses the piece one per cent or five per cent, that which causes the first bending (impossible to be discovered),

or that which causes a perceptible bend?

As showing the confusion concerning the definitions of compressive strength, the following statements from different authorities on the strength

of wrought iron are of interest.

Wood's Resistance of Materials states, "comparatively few experiments have been made to determine how much wrought iron will sustain at the oint of crushing. Hodgkinson gives 65,000, Rondulet 70,800, Weisbach 72,000 Rankine 30,000 to 40,000. It is generally assumed that wrought iron will resist about two thirds as much crushing as to tension, but the experiments fail

to give a very definite ratio."

Mr. Whipple, in his treatise on bridge-building, states that a bar of good wrought iron will sustain a tensile strain of about 60,000 pounds per square inch, and a compressive strain, in pieces of a length not exceeding twice the least diameter, of about 90,000 pounds.

The following values, said to be deduced from the experiments of Major Wade, Hodgkinson, and Capt. Meigs, are given by Haswell:

American	wrough	t iroi	a	127,720	108
	"	**	(mean)	85,500	**
	44	44		65,200	**
English	••			40,000	**

Stoney states that the strength of short pillars of any given material, all having the same diameter, does not vary much, provided the legith of the piece is not less than one and does not exceed four or five diameters, and that the weight which will just crush a short prism whose base equals one square inch, and whose height is not less than 1 to 11/4 and does not exceed 4 or 5 diameters, is called the crushing strength of the material. It would to be well if experimenters would all agree upon some such definition of the term "crushing strength," and insist that all experiments which are made for the purpose of testing the relative values of different materials in compression be made on specimens of exactly the same shape and size. An arbitrary size and shape should be assumed and agreed upon for this purpose. The size mentioned by Stoney is definite as regards area of section, viz.. one square inch, but is indefinite as regards length, viz., from one to five diameters. In some metals a specimen five diameters long would bend, and give a much lower apparent strength than a specimen having a length of one diameter. The words "will just crush" are also indefinite for ductile materials, in which the resistance increases without limit if the piece tested does not bend. In such cases the weight which causes a certain percentage of compression, as five, ten, or fifty per cent, should be assumed as the crushing strength.

For future experiments on crushing strength three things are desirable : First, an arbitrary standard shape and size of test specimen for comparison of all materials. Secondly, a standard limit of compression for ductile materials, which shall be considered equivalent to fracture in brittle mate-Thirdly, an accurate knowledge of the relation of the crushing strength of a specimen of standard shape and size to the crushing strength of specimens of all other shapes and sizes. The latter can only be secured by a very extensive and accurate series of experiments upon all kinds of materials, and on specimens of a great number of different shapes

The author proposes, as a standard shape and size, for a compressive test specimen for all metals, a cylinder one inch in length, and one half square inch in sectional area, or 0.38 inch diameter; and for the limit of compression equivalent to fracture, ten per cent of the original length. The term "compressive strength," or "compressive strength of standard specimen, would then mean the weight per square inch required to fracture by compressive stress a cylinder one inch long and 0.798 inch diameter, or to reduce its length to 0.9 inch if fracture does not take place before that reduction in length is reached. If such a standard, or any standard size whatever, had been used by the earlier authorities on the strength of materials, we never would have had such discrepancies in their statements in regard to the compressive strength of wrought iron as those given above.

The reasons why this particular size is recommended are: that the sectional area, one-half square inch, is as large as can be taken in the ordinary testing-machines of 100,000 pounds capacity, to include all the ordinary metals of construction, cast and wrought iron, and the softer steels; and that the length, one inch, is convenient for calculation of percentage of compression. If the length were made two inches, many materials would bend in testing, and give incorrect results. Even in cast iron Hodgkinson found as the mean and give incorrect results. Even in cast from roughtson forms as the mean of several experiments on various grades, tested in specimens & inch in height, a compressive strength per square inch of 91,730 pounds, while the mean of the same number of specimens of the same irons tested in pieces 1½ inches in height was only 88,800 pounds. The best size and shape of standard specimen should, however, he settled upon only after consultation and

agreement among several authorities.

The Committee on Standard Tests of the American Society of Mechanical

Engineers say (vol. xi., p. 624):
"Although compression tests have heretofore been made on diminutive sample pieces, it is highly desirable that tests be also made on long pieces from 10 to 20 diameters in length, corresponding more nearly with actual practice, in order that elastic strain and change of shape may be determined by using proper measuring apparatus.

The elastic limit, modulus or coefficient of elasticity, maximum and ultimate resistances, should be determined, as well as the increase of section at

various points, viz., at bearing surfaces and at crippling point.

The use of long compression-test pieces is recommended, because the investigation of short cubes or cylinders has led to no direct application of the constants obtained by their use in computation of actual structures, which have always been and are now designed according to empirical for-mulæ obtained from a few tests of long columns."

COLUMNS, PILLARS, OR STRUTS.

Hodgkinson's Formula for Columns.

 $P = \text{crushing weight in pounds}; d = \text{exterior diameter in inches}; d_1 = \text{in-}$ terior diameter in inches; L = length in feet, D-41- -- 1- -- -- 1- 1 -1 -1

Kind of Column.	length of the column exceeding 15 times its diameter.	Both ends flat, the length of the column exceeding 30 times its diameter.
Solid cylindrical col- umns of cast iron	$P = 33,380 \frac{d^{3\cdot 7\cdot 6}}{L^{1\cdot 7}}$	$P = 98,920 \frac{d^{3.58}}{L^{1.7}}$ $P = 99,820 \frac{d^{3.58} - d_{1}^{3.58}}{L^{1.7}}$ $P = 299,800 \frac{d^{3.58}}{L^{3}}$ $P = 24,540 \frac{d^{4}}{L^{3}}$ $P = 17,510 \frac{d^{4}}{L^{3}}$
Hollow cylindrical col- umns of cast iron	$P = 29,120 \frac{d^{8\cdot76} - d_1^{8\cdot76}}{L^{1\cdot7}}$	$P = 99,820 \frac{d^{2\cdot 65} - d_1^{2\cdot 56}}{L^{1\cdot 7}}$
Solid cylindrical col- umns of wrought iron.	$P = 95,850 \frac{d^{3\cdot 76}}{L^3}$	$P = 299,600 \frac{d^{3.88}}{L^{3}}$
Solid square pillar of) Dantzic oak (dry)		$P=24,540rac{d^4}{L^3}$
Solid square pillar of red deal (dry)		$P = 17,510 \frac{d^4}{L^3}$

The above formulæ apply only in cases in which the length is so great that the column breaks by bending and not by simple crushing. If the column be shorter than that given in the table, and more than four or five times its diameter, the strength is found by the following formula:

$$W = \frac{PCK}{P + \frac{3}{4}CK},$$

in which P = the value given by the preceding formulæ, K = the transverse section of the column in square inches, C = the ultimate compressive resistance of the material, and W = the crushing strength of the column. Hodgkinson's experiments were made upon comparatively short columns, the greatest length of cast-iron columns being 60½ inches, of wrought iron 90¾ inches. The following are some of his conclusions:

1. In all long pillars of the same dimensions, when the force is applied in the direction of the axis, the strength of one which has flat ends is about these times as great as one with rounded ends.

three times as great as one with rounded ends.

2. The strength of a pillar with one end rounded and the other flat is an arithmetical mean between the two given in the preceding case of the same dimensions.

3. The strength of a pillar having both ends firmly fixed is the same as one of half the length with both ends rounded.

4. The strength of a pillar is not increased more than one seventh by enring it at the middle.

Gordon's formulas deduced from Hodgkinson's experiments are more generally used than Hodgkinson's own. They are:

Columns with both ends fixed or flat, P = -

Columns with one end flat, the other end round, $P = \frac{fS}{1 + 1.8a_{-5}^{23}}$

Columns with both ends round, or hinged, $P = \frac{fS}{1 + 4a^{-1}}$;

S= area of cross-section in inches; P= ultimate resistance of column, in pounds; f= crushing strength of the material in bls. per square inch; r= least radius of gyration, in inches, $r^2=\frac{\text{Moment of inertia}}{\text{area of section}}$ area of section

l = length of column in inches:

a = a coefficient depending upon the material;

f and a are usually taken as constants; they are really empirical variables, dependent upon the dimensions and character of the column as well as upon the material. (Burr.)

For solid wrought-iron columns, values commonly taken are: f = 36,000 to 1. 1 86,000 to 40,000 40,000; a =

For solid cast-iron columns, f = 80,000, $a = \frac{1}{6400}$

 $\frac{1+800^{\frac{l^2}{2}}}{l} = \text{length and}$ For hollow cast-iron columns, fixed ends, $p = \frac{80,000}{}$

d =diameter in the same unit, and p =strength in lbs. per square inch. Sir Benjamin Baker gives,

For mild steel, f = 67,000 lbs., a =

For strong steel, f = 114,000 lbs., $a = \frac{1}{14400}$

Mr. Burr considers these only loose approximations for the ultimate resistances.

MOMENT OF INERTIA AND RADIUS OF GYRETION.

The moment of inertia of a section is the sum of the products of each elementary area of the section into the square of its distance from an assumed axis of rotation, as the neutral axis.

The radius of gyration of the section equals the square root of the quotient of the moment of inertia divided by the area of the section. If R = radius of gyration, I = moment of inertia and A = area,

$$R = \sqrt{\frac{I}{A}}.$$
 $\frac{I}{A} = R^2.$

The moments of inertia of various sections are as follows:

The moments of merus of various sections are as follows: d = diameter, or outside diameter; $d_1 = \text{inside}$ diameter; b = breadth; h = depth; h_1 , inside breadth and diameter; Solid rectangle $I = 1/12bh^2$; Hollow rectangle $I = 1/12(bh^2 - b_1h_1^2)$; Solid cylinder $I = 1/64\pi d^4$; Hollow cylinder $I = 1/64\pi (d^4 - d_1^4)$.

Moments of Inertia and Radius of Gyration for Various Sections, and their Use in the Formulas for Strength of Girders and Columns.—The strength of sections to resist strains, either as girlers or as columns, depends not only on the area but also on the form of the section, and the property of the section which forms the basis of the constants used in the formulas for strength of girders and columns to the section which form the formulas for strength of girders and columns. to express the effect of the form, is its moment of inertia about its neutral axis. Thus the moment of resistance of any section to transverse bending

is its moment of inertia divided by the distance from the neutral axis to the fibres farthest removed from that axis; or

Moment of resistance =
$$\frac{\text{Moment of inertia}}{\text{Distance of extreme fibre from axis}}$$
. $M = \frac{I}{y}$

Moment of Inertia of Compound Shapes. (Pencoyd Iron Works.)—The moment of inertia of any section about any axis is equal to the I about a parallel axis passing through its centre of gravity + (the area of the section x the square of the distance between the axes).

By this rule, the moments of inertia or radii of gyration of any single sections being known, corresponding values may be obtained for any combina-

tion of these sections.

Radius of Gyration of Compound Shapes.—In the case of a pair of any shape without a web the value of R can always be found without considering the moment of inertia.

The radius of gyration for any section around an axis parallel to another

axis passing through its centre of gravity is found as follows: Let r = radius of gyration around axis through centre of gravity; R =radius of gyration around another axis parallel to above; d = distance between axes:

$$R=\sqrt{d^2+r^2}.$$

When r is small, R may be taken as equal to d without material error. Graphical Method for Finding Radius of Gyration.—Benj. F. La Rue, Eng. News, Feb. 2, 1893, gives a short graphical method for finding the radius of gyration of hollow, cylindrical, and rectangular columns, as follows:

For cylindrical columns:

Lay off to a scale of 4 (or 40) a right-angled triangle, in which the base equals the outer diameter, and the altitude equals the inner diameter of the column, or vice versa. The hypothenuse, measured to a scale of unity (or 10), will be the radius of gyration sought.

This depends upon the formula

$$G = \sqrt{\frac{\text{Mom. of Inertia}}{\text{Area}}} = \frac{\sqrt{D^2 + d^2}}{4},$$

in which A =area and D =diameter of outer circle, a =area and d =diameter of inner circle, and G = radius of gyration. $\sqrt{D^2 + d^2}$ is the expression for the hypothenuse of a right-angled triangle, in which D and d are the base and altitude.

The sectional area of a hollow round column is .7854($D^2 - d^2$). By constructing a right-angled triangle in which D equals the hypothenuse and d equals the altitude, the base will equal $\sqrt{D^2-d^2}$. Calling the value of this expression for the base B, the area will equal .7854 B^2 .

Value of G for square columns:

Lay off as before, but using a scale of 10, a right-angled triangle of which the base equals D or the side of the outer square, and the altitude equals d, the side of the inner square. With a scale of 3 measure the hypothenuse, which will be, approximately, the radius of gyration.

This process for square columns gives an excess of slightly more than 45.

By deducting 45 from the result, a close approximation will be obtained.

A very close result is also obtained by measuring the hypothenuse with the same scale by which the base and altitude were laid off, and multiplying by the decimal 0.29; more exactly, the decimal is 0.28867.

The formula is

$$G = \sqrt{\frac{\text{Mom. of inertia}}{\text{Area}}} = \frac{1}{\sqrt{12}} \sqrt{D^2 + d^2}, = 0.28867 \sqrt{D^2 + d^2}$$

This may also be applied to any rectangular column by using the lesser diameters of an unsupported column, and the greater diameters if the column is supported in the direction of its least dimensions.

ELEMENTS OF USUAL SECTIONS.

Moments refer to horizontal axis through centre of gravity. This table is intended for convenient application where extreme accuracy is not important. Some of the terms are only approximate; those marked * are correct. Values for radius of gyration in flanged beams apply to standard minimum sections only. A = area of section; b = breadth; b = depth; D = diameter.

Shape	of Section.	Moment of Inertia.	Moment of Resistance.	Square of Least Radius of Gyration.	Least Radius of Gyration.
U 4	Solid Rect- angle.	<u>b</u> A* • 12	bh2 *	(Least side)2*	Least side *
6-4-	Hollow Rect- angle.	bh³-b1h1³*	bh3-b1h13+	$\frac{h^2+h_1^2}{12}$	$\frac{h+h^1}{4.89}$
\bigcirc	Solid Circle.	<u>AD</u> * •	<u>AD</u> *	<u>D</u> a + 16	<u>D</u> .•
	Hollow Circle. A, area of large section; a, area of small section.	$\frac{AD^2-ad^2}{16}$	$\frac{AD^2 - ad^2}{8D}$	$\frac{D^2+d^2}{16}$	$\frac{D+d}{5.64}$
	Solid Triangle.	bh ² 36	bh² 24	The least of of the two: $\frac{h^2}{18}$ or $\frac{b^3}{24}$	The least of the two: $\frac{h}{4.24}$ or $\frac{b}{4.9}$
	Even Angle.	<u>A</u> h ² 10.2	<u>Ah</u> 7.2	b³ 25	<u>b</u> 5
	Uneven Angle.	Ah2 9.5	<u>A</u> h 6.5	$\frac{(hb)^3}{18(h^2+b^2)}$	$\frac{hb}{2.6(h+b)}$
	Even Cross.	Ah2 19	Ah 9.5	h ² 22.5	h 4.74
F	Even Tee.	<u>Ah²</u> 11.1	<u>Ah</u> 8	22.5	<u>b</u>
	I Beam.	4h ² 6.66	<u>Ah</u> 8.2	<u>5°</u>	b 4.58
	Channel.	Ah ² 7.84	Ah 8.67	12.5	8:54
	Deck Beam.	Ah ² 6.9	<u>Ah</u>	36.5	<u>b</u>

Distance of base from centre of gravity, solid triangle, $\frac{h}{3}$; even angle, $\frac{h}{3.3}$; uneven angle, $\frac{h}{8.5}$; even tee, $\frac{h}{3.3}$; deck beam, $\frac{h}{2.3}$; all other shapes given in the table, $\frac{h}{2}$ or $\frac{D}{2}$.

Solid Cast-iron Columns.

Hurst gives the following table, based on Hodgkinson's formula (tons of

2240 lbs.).
The figures are the safe load or 15 of the breaking weight in tons, for solid

ies.			I	ength o	f Colum	n in Fee	t.		
Diam. in Inches.	6.	8.	10.	12.	14.	16.	18.	20.	25.
11/6 13/4	.82	.50	.34	.25	.19	.15	.18	.11	.07
184	1.43	.87		.44	.34	.27	.22	.18	.13
2	2.31	1.41			.55	.44	.36	.80	.20
21/4 21/2 29/4 8 81/4	8.52	2.16		1.08	.83	.67	.54	.46	.31
21/6	5.15 7.26	3.16 4.45			1.22	.97	.80	.66	.56
294	9.93	6.09			2.85	1.87 1.87	1.12	.94 1.28	.64
81/	17.29	10.60		5.32	4.10	8.26	2.67	2,23	1.53
478	27.96	17.15		8.61	6.62	5.28	4.82	8.61	2.47
41∠	42.73	26.20			10.12	8.07	6.60	5.52	3.78
416	62.44	38.29	26.20	19.22	14.79	11.79	9.65	8.06	5.52
516	88.00	53.97		27.09	20.84	16.61	13.60	11.87	7.78
51/g	120.4	73.82		87.05	28.51	22.72	18.60	15.55	10.64
616	160.6	98.47			88.03	80.81	24.81	20.74	14.19
7 ~	209.7	128.6	87.98	64.53	49.66	89.57	82.83	27.08	18.53
736	268.8	164.8	112.8	82.73	63.66	50.78	41.58	84.72	28.76
8	839.1	207.9	142.8	104.4	80.31	64.00	52.39	43.80	29.97
71/6 8 81/6	421.8	258.6	177.0	129.8	99.90	79.61	65.16	54.48	87.28
9	518.2	317.7	217.4	159.5	122.7	97.80	80.05	66.92	45.80
916	629.5	386.0	264.2	193.8	149.1	118.8	97.25	81.70	55.64
10	757.2	464.8	317.7	233.1 277.8	179.8 218.8	142.9 170.8	117.0	97.79	66.92
101/	902.6 1067.1	553.5 654.4	378.7 447.8	328.5	252.7	201.4	189.4 164.9	116.6 187.8	79.77 94.31
11	1252.8	767.9	525.5	885.4	296.6	236.4	193.5	161.7	110.7
111 % 12	1459.6	895.1	612.5	449.8	345.7	275.5	225.5	188.5	129.0
14	1300.0	000.1	V.2.0	110.0	010.1	4.0.0		200.0	1.00.0

The correction for short columns should be applied where the length is less than 30 diameters.

Strength in tons of short columns =
$$\frac{8C}{108 + \frac{4}{3}C}$$
,

S being the strength for long columns given in the above table, and C=49 times the sectional area of the metal in inches.

Hollow Columns.—The strength nearly equals the difference be-

tween that of two solid columns the diameters of which are equal to the external and internal diameters of the hollow one.

Ultimate Strength of Hollow, Cylindrical Wrought and Cast-iron Columns, when fixed at the ends.

(Pottsville Iron and Steel Co.)

Computed by Gordon's formula,
$$p = \frac{f}{1 + C(\frac{l}{d})^{\frac{1}{2}}}$$
.

C = 1/3000 for wrought iron, and 1/800 for cast-iron.

For east-iron,
$$p = \frac{80000}{1 + \frac{1}{800} (\frac{l}{h})^3}$$
.
For wrought-iron, $p = \frac{40000}{1 + \frac{1}{3000} (\frac{l}{h})^3}$

HOLLOW CYLINDRICAL COLUMNS.

Ratio of Length to	Maximum I	oad per sq. in.	Safe Load per square inch.			
Diameter.	Cast Iron.	Wrought Iron.	Cast Iron, Factor of 6.	Wrought Iron Factor of 4.		
8	74075	89164	12846	9791		
1Ŏ	71110	88710	11851	9677		
12	67796	38168	11299	9542		
14	64256	87546	10709	9386		
16	60696	36854	10101	9213		
18	56938	86100	9489	9025		
20	58388	85294	8989	8823		
22	49845	84442	8307	8610		
22 24	46510	23556	7751	8389		
26 28 30 32 34 36 38 40	48360	82642	7226	8161		
28	40404	81712	6734	7928		
30	87646	80768	6274	7692		
85	85088	29820	5848	7455		
34	32718	28874	5458	7218		
36	30584	27932	5097	6983		
38	28520	27002	4756	6750		
40	26666	26066	4444	6522		
42	24962	25188	4160	6297		
44	23396	24310	3899	6077		
46	21946	28454	865 8	5868		
48	906 18	22620	8436	5655		
50 i	19803	21818	3262	5454		
52	18982	21036	3047	5259		
54	17222	20284	2870	5071		
56	16260	19556	2710	4889		
58	15868	18856	2561	4714		
60	14544	18180	2424	4545		

Ultimate Strength of Wrought-iron Columns.

p = ultimate strength per square inch;
 l = length of column in inches;
 r = least radius of gyration in inches.

For square end-bearings. For one pin and one square bearing,

For two pin-bearings,

For safe working load on these columns use a factor of 4 when used in buildings, or when subjected to dead load only; but when used in bridges the factor should be 5.

WROUGHT-IRON COLUMNS.

ı	Ultimat	e Strength r square inc	in lbs. ch.	ı	Safe Stre square i	ength in lbe	s. per or of 5.
$\frac{l}{r}$	Square Ends.	Pin and Square End.	Pin Ends.	$\frac{l}{r}$	Square Ends.	Pin and Square End.	Pin Ends.
10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95	39944 39776 39604 39814 39118 38810 38460 38072 37646 37196 36697 36182 35634 35076 34482 33883 33264	39866 39702 39472 39182 38884 38430 37974 87470 36928 36836 35714 84478 34884 33682 32966 32236 31496 30750	89800 89554 89214 86768 87690 87036 86322 85525 84744 33896 33024 32128 31218 30288 29384 28470 27562	10 15 20 25 30 35 40 45 50 65 70 70 75 80 95	7989 7955 7921 7877 7821 7762 7692 7614 7529 7437 7339 7236 71127 7015 6896 6777 6658 6527	7973 7940 7894 7836 7767 7686 7595 7494 7386 7287 7143 6896 6897 6396 6447 6299	7960 7911 7813 7758 7656 7538 7407 7264 7105 6949 6760 6426 6214 6058 5877 56945
100 105	32000 81357	80000 29250	26666 25786	100 105	6400 6271	6000 5850	5383 5157

Maximum Permissible Stresses in columns used in buildings. (Building Ordinances of City of Chicago, 1893.)

Maximum permissible loads:

For cast-iron round columns :

$$S = \frac{10000a}{l^3}.$$

$$1 + \frac{1}{6000^{2}}$$

$$a = \text{area of column in inches;}$$

$$a = \text{area of column in square inches.}$$

For cast-iron rectangular columns:

$$S = \frac{10000a}{1 + \frac{l^2}{800d^2}}$$
. $\frac{l \text{ and } a \text{ as before;}}{d = \text{least horizontal dimension of column.}}$

For riveted or other forms of wrought-iron columns:

$$S = \frac{12000a}{1 + \frac{l^2}{36000r^2}}$$
 $l = \text{and } a \text{ as before};$ $r = \text{least radius of gyration in inches.}$

For riveted or other steel colu.nns, if less than 60r in length:

$$S = 17,000 - \frac{60l}{r}$$
. l and r as before.

If more than 60r in length:

$$S = 18,500a$$
. a as before.

For wooden posts:

$$S = \frac{ac}{1 + \frac{l^2}{250d^3}}.$$

$$a = \text{area of post in square inches;}$$

$$d = \text{least side of rectangular post in inches;}$$

$$l = \text{length of post in inches;}$$

$$l = \text{length of post in inches;}$$

$$000 \text{ for white or Norway pine;}$$

$$c = \begin{cases} 800 \text{ for oak;} \\ 900 \text{ for long-leaf yellow pine.} \end{cases}$$

SAFF LOAD OF HOLLOW CYLINDRICAL CAST-IRON COLUMNS. (New Jersey Steel Iron Co.)

(One fifth the breaking weight.)

The following tables give the safe load in tons of 2,000 lbs., for columns having capitals and bases accurately turned to a true plane, and having a perfectly fair bearing on these surfaces. In the case of columns having turned ends, but set only with the degree of care usual in ordinary building, only one half of these loads should be taken; and for columns not turned at all, or having rounded ends, one third of these amounts should be taken for the safe load. Columns having one end accurately turned to a true plane, and the other rounded, may be loaded to two thirds the amount given in the tables.

Safe Load, in Tons of 2000 lbs. for Cast-iron Columns with Turned Capitals and Bases.

ft.	Outside Diameter, 3 inches.			in ft.	Outside Diameter, 3 inches.			in ft.						Outside Diameter, 4 inches.			
di digne,	Thickness in inches.		th	Thickness in inches.		gth	Thickness in inches.			ength in	Thickness in inches.			in			
Len	16	34	1	Leng	1/2	34	1	Len	16	34	1	11/4	Let	16	34	1	11/4
789	10.9	15.9 13.0 10.7		17 18 19	3.0 2.8 2.5	3.6 3.3 3.0	3.9 3.5 3.2			28.4			17 18 19	7.0 6.4 5.8	8.9 8.1 7.4		9.7
10 11 12	7.5 6.4 5.4	7.6 6.6	7.0	20 21 22	2.3 2.1 1.9	2.7 2.5 2.3	2.9 2.7 2.5	10 11 12	17.4 14.8 12.7		21.1 18.2	$\frac{22.4}{19.3}$	20 21 22	5.3 4.9 4.6	6.8 6.2 5.8	6.5	7.5 6.9
13 14 15 16	4.8		4.8	23 24 25	1.8 1.7 1.6	2.1 2.0 1.9	2.3 2.1 2.0	14 15 16	9.8 8.7 7.8		3 10 1 10		23 24 25	4.2 3.9 3.7	5.3 5.0 4.6	5.6	5.9

n ft.	Ou		Diam aches.	eter,	Ou		Diame ches.	ter,	Ou	Outside Diameter, 7 inches.				
Length in	Thic	knee	s in i	nches.	Thi	ckness	in in	ches.	Thickness in inches.					
Leg	1/2	34	1	13/4	%	1	11/4	136	3/4	1	11/4	11/6		
7		53.8	65.0	78.8	77.8	95.5	110.3	122.1	102.4	128.7	150.7	169.4		
8		47.6		64.4	69.7	85.7	98.7	108.8	93.6	117.0	186.9	153.5		
9	31.3	42.3	50.7	56.8	62.8	77.1	88.5	97.8	85.6	106.7	124.6			
10		37.7		50.4	56.9	69.6	79.6	87.4	78.4	97.5	113.5			
11		33.8		44.9	51.6	63.0	71.9	78.7	71.8	89.2	103.6			
		30.5		40.8	46.9	57.2	65.2	71.2	66.0	81.7		105.3		
		27.6		35.2	42.9	52.1	59.8	64.6	60.7	75.1	87.0			
		24.3		31.0	39.8	47.6	54.1	58.9	56.0	69.2	80.0	88.6		
		21.6		27.6	36.8	43.9	49.0	52.6	51.8	63.9	73.8			
		19.4	22.6	24.7	83.0	39.4	44.0	47.2	48.1	59.2	68.2			
		17.5		22.8	29.8	35.5	89.7	42.5	44.6	54.9	63.2			
		15.9	18.5	20.2	27.0	82.2	36.0	38.6	42.0	50.9	57.8			
		14.5	16.9	18.4	24.6	29.4	32.8	35.2	88.3	46.4	52.7	57.4		
		13.8	15.4	16.9	22.6	26.9	30.1	32.3	35.1	42.5	48.3			
21		12.2	14.2	15.5	20.8	24.8	27.7	29.7	32.3	39.1	44.5	48.4		
22		11.3	13.1	14.4	19.2	22.9	25.6	27.4	29.8	36.2	41.1	44.7		
23		10.5	12.2	18.8	17.8	21.2	23.7	25.4	27.7	33.5	38.1	41.5		
24	7.4		11.3	12.4	16.6	19.7	22.1	23.7	25.7	81.2	35.4	88.6		
25	6.9	9.1	10.6	11.5	15.4	18.4	20.6	22.1	24.0	29.1	33.1	36.0		

Safe Load, in Tons of 2000 lbs. for Cast-Iron Columns with Turned Capitals and Bases.

in ft.	Out	side I 8 inc	diame	eter,	Oi	itside l 9 in	Diame ches,	ter.	Outside Diameter, 10 inches.				
gth i	Thiel	rness	in in	ches.	Thi	ekness	in inc	hes,	Thi	ckness	in ine	hes.	
Length	34	1	13/4	11,6	34	1	11/4	11/2	34	1	11/4	136	
7	128.3	162.6	193.0	219.5	154.8	197.7	236.6	271.4	181.6	233.4	280.9	324.9	
.8				201.6		184.5	220.2	252.0	171.1	219.5	263.8	303.9	
9	109.8	138.5	163.6	185.2	135.0	171.8	204.7	233.9	160.9	206.2	247.3	284 5	
10				170.2		160.0	190.3	217.0	151.2	193.4	231.6	266,0	
11				156.7	117.5	149.0	177.0	201.4	142.0	181.4	216.9	248.7	
13				144.8	109.6	138.8	164.5	187.0	133.4	170.1	203.1	232,6	
13				133.2		129.4	153.2	173.9	125.3	159.6	190.3	217.7	
14				123.2	95.7	120.8	142.8	161.9	117.8	149.8	178.4	203.8	
15				114.2	89.5	112.9	133.8	150.9	110.8	140.7	167.5	191.1	
16		81.1		106.1	83.9	105.7	124.6	140.9	104.3	132.4	157.3	179.3	
17	60.7	75.7			78.7	99.0	116.7	131.8	98.3	124.6	148.0	168.5	
18			82.4		73.9	92.9	109.4	123.5	92.7	117.4	139.3	158 5	
19				86.1	69.6	87.4	102.7	115.9	87.5	110.8	131.3	149.3	
20	51.1	62.7	72.1		65.5	82.3	96.7	108.9	82.7	104.6	124.0	140 8	
21	47.0		66.4	73.2	61.8	75.5	91.0	102.6	78.3	99.0	117.2	133.0	
22	43.5	53.3	61.3		58.4	73.2	85.9	96.7	74.2	93.7	110.9	125.8	
23	40.3				55.9	69.3	80.4	89.5	70.4	88.9	105.1	119.1	
24	37.5		52.9	58.3	52.0	64.4	74.8	83.3	66.9	84.3	99.7	112.9	
25	35.0	42.9	49.3	54.4	48.5	60.1	69.8	77.7	64.9	81.0	94.2	106.3	

in fe.	Out		Diame ches.	ter,	Ou	tside 1 12 in	Diame ches.	ter,	Outside Diameter, 13 inches.				
Length i	Thicl	tness	in in	ches.	Thi	ckness	in inc	hes.	Thickness in inches.				
Len	1	11/4	11/2	2	1	1 11/4 11/4		8	1	11/4	13/6	2	
7 8				469.5 442.2		370.8 352.8	431.7 410.2	540.9 512.8	841.5 827.0	414.4 896.8	485.7 464.1	612.7 583.9	
10	227.8	274.2	316.7	415.6 390.8 866.3	262.7	335.0 317.7 301.0	389.1 368.6 348.8	485.0 458.8 432.9	812.4 298.0 284.0	378.4 360.6 343.4	442.5 421.3 400.6	555.5 527.8 501.1	
12 18	202.7 191.2	243.5 229.4	280.5 264.0	348.9 322.8	236.3 223.9	285.1 270.0	330.0 312.2	408.6 385.7	270.5 257.5	326.7 310.8	380.8 361.8	475.3 450.7	
15	170.3	203.9	234.1	303.8 285.1 268.8	201.2	255.6 242.1 229.4	295.8 279.4 264.5	364.1 343.9 325.0	245.0 233.2 222.0	295.5 281.1 267.8	343.7 326.5 310.3	427.4 405.4 384.6	
17 18	152.1 143.9	181.7 171.7	208.2 196.7	252.7 238.8	181.1 171.9	217.5 206.3	250.6 237.5	307.4 290.9	211.3 201.3	254.4 242.1	295.0 280.5	365.1 346.7	
20 21	129.1 122.4	158.9 145.9	176.0 166.7	212.6 201.2		195.8 186.0 176.9	225.3 213.9 208.2	275.6 261.3 247.9	191.8 182.8 174.4	230.6 219.7 209.5	267.0 254.2 242.2	329.5 313.3 298.2	
22 23	116.3 110.5	138.4 131.5	158.1 150.1	190.6 180.7	140.6	168.3 160.3 152.8	198.3 184.0 175.3	235.5 224.0 218.2	166.5 159.0 152.0	199.9 190.8 182.8	230.9 220.4 210.4	284.0 270.7 258.3	
25	100.2	119.1	135 7	163.1	122.0		167.1	208.1	145.4			246.6	

4.0 756	2 1	.8 551.1	in inc	hes.
4.0 756	6.7 449.	.8 551.1	.	8
2.2 727			648.0	
8.2 666 6.3 646 5.0 619 14.5 58 14.4 55 15.2 53 16.7 51 18.2 48 18.2 44 11.0 42 26.5 40	8.4 420. 99.8 405 0.9 890 12.8 876 155.9 861 199.7 847 14.9 888 10.9 880 10.9 880 186.5 295 165.9 284 166.8 272 17.8 262	.5 514.4 .6 496.0 .6 477.4 .0 459.8 .6 441.2 .6 442.8 .9 406.9 .7 890.6 .0 374.9 .8 359.9 .1 345.4 .1 318.4	626.8 604.1 581.8 559.8 538.0 516.7 495.9 475.9 475.9 420.1 403.0 886.8 371.2	888.6 799.8 770.4 740.9 711.7 683.4 655.1 601.8 576.6 552.5 486.3 446.3
	856.2 44 141.0 41 126.5 44 112.8 81 1299.8 81 1297.5 81	856.2 445.9 284 441.0 426.3 272 126.5 407.8 263 1312.8 890.8 251 1299.8 878.7 242 1287.5 858.1 232	866.2 445.9 284.1 345.4 441.0 426.8 272.9 331.6 826.5 407.8 262.1 318.4 812.8 390.8 251.9 305.9 899.8 378.7 242.2 293.9 897.5 368.1 232.9 282.5	186.2 445.9 284.1 315.4 403.0 141.0 426.8 272.9 331.6 386.8 186.5 407.8 262.1 1318.4 371.2 192.8 390.8 451.9 806.9 366.4 199.8 378.7 242.2 293.9 342.3 187.5 358.1 232.9 282.5 328.8

Safe Load of Cast-iron Columns-(Continued).

ECCENTRIC LOADING OF COLUMNS.

In a given rectangular cross-section, such as a masonry joint under pressure, the stress will be distributed uniformly over the section only when the resultant passes through the centre of the section; any deviation from such a central position will bring a maximum unit pressure to one edge and a minimum to the other; when the distance of the resultant from one edge is one third of the entire width of the joint, the pressure at the nearer edge is twice the mean pressure, while that at the farther edge is zero, and that when the resultant approaches still nearer to the edge the pressure at the farther edge becomes less than zero; in fact, becomes a tension, if the material (mortar, etc., there is capable of resisting tension. Or, if, as usual in masonry joints, the material is practically incapable of resisting tension, the pressure at the nearer edge, when the resultant approaches it nearer than one third of the width, increases very rapidly and dangerously, becoming theoretically infinite when the resultant reaches the edge.

With a given position of the resultant relatively to one edge of the joint or section, a similar redistribution of the pressures throughout the section may be brought about by simply adding to or diminishing the width of the

Let P = the total pressure on any section of a bar of uniform thickness. w = the width of that section = the area of the section, when thickness = 1.

 $p = \frac{P}{w}$ = the mean unit pressure on the section.

M = the maximum unit pressure on the section.

m = the minimum unit pressure on the section.

d = the eccentricity of the resultant = its distance from the centre of the section.

Then
$$M = p \left(1 + \frac{6d}{w}\right)$$
 and $m = p \left(1 - \frac{6d}{w}\right)$.

When
$$d = \frac{1}{6} w$$
 then $M = 2p$ and $m = 0$.

When d is greater than 1/6w, the resultant in that case being less than one third of the width from one edge, p becomes negative. (J. C. Trautwine, Jr., Engineering News, Nov. 23, 1893.)

36,000 (8) 1 15.000 r3

BUILT COLUMNS.

From experiments by T. D. Lovett, discussed by Burr, the values of f and a in several cases are determined, giving empirical forms of Gordon's formula as follows: p = pounds crushing strength per square inch of section, l = length of column in inches, r = radius of gyration in inches.

Round Ends.

$$p = \frac{42,000}{1 + \frac{1}{12,500}} {}_{7^2}^{(8)} = \frac{36,000}{1 + \frac{1}{11,500}} {}_{7^2}^{(11)}$$

With great variations of stress a factor of safety of as high as 6 or 8 may be used, or it may be as low as 3 or 4, if the condition of stress is uniform or essentially so.

Burr gives the following general principles which govern the resistance of built columns:

The material should be disposed as far as possible from the neutral axis of the cross-section, thereby increasing r; There should be no initial internal stress;

The individual portions of the column should be mutually supporting; The individual portions of the column should be so firmly secured to each other that no relative motion can take place, in order that the column may fail as a whole, thus maintaining the original value of r.

Stoney says: "When the length of a rectangular wrought-iron tubular column does not exceed 30 times its least breadth, it fails by the bulging or bugdling of a short portion of the plates not by the flavour of the piller as a

buckling of a short portion of the plates, not by the flexure of the pillar as a whole."

In Trans. A. S. C. E., Oct. 1880, are given the following formulæ for the ultimate resistance of wrought-iron columns designed by C. Shaler Smith;

Flat Ends.

$$p = \frac{38,500}{1 + \frac{1}{5880}} \frac{1}{d^3} (12) \frac{42,500}{1 + \frac{1}{4600}} \frac{1}{d^3} (15) \frac{36,500}{1 + \frac{1}{3750}} \frac{1}{d^3} (18) \frac{36,500}{1 + \frac{1}{2700}} (21)$$

One Pin End.

$$p = \frac{38,500}{1 + \frac{1}{3000} \frac{l^3}{d^3}} (13) \frac{40,000}{1 + \frac{1}{2250} \frac{l^3}{d^3}} (16) \frac{36,500}{1 + \frac{1}{2250} \frac{l^3}{d^3}} (19) \frac{36,500}{1 + \frac{1}{1500} \frac{l^3}{d^3}} (22)$$

Two Pin Ends.

$$p = \frac{87,500}{1 + \frac{1}{1900} \frac{f^3}{d^3}} (14) \frac{36,600}{1 + \frac{1}{1500} \frac{f^3}{d^3}} (17) \frac{36,500}{1 + \frac{1}{1750} \frac{f^3}{d^3}} (20) \frac{36,500}{1 + \frac{1}{1200} \frac{f^3}{d^3}} (23)$$

The "common" column consists of two channels, opposite, with flanges outward, with a plate on one side and a lattice on the other.

The formula for "square" columns may be used without much error for the common-chord section composed of two channel-bars and plates, with the axis of the pin passing through the centre of gravity of the crosssection. (Burr).

Compression members composed of two channels connected by zigzag bracing may be treated by formulæ 4 and 5, using f = 36,000 instead of

Experiments on full-sized Phœnix columns in 1878 showed a close agreement of the results with formulæ 6-8. Experiments on full-sized Phoenix columns on the Watertown testing-machine in 1881 showed considerable discrepancies when the value of l+r became comparatively small. The following modified form of Gordon's formula gave tolerable results through the whole range of experiments:

Phoenix columns, flat end,
$$p = \frac{40,000 \left(1 + \frac{2r}{l}\right)}{\frac{1}{1 + 50,000} \frac{l^3}{r^2}}$$
. (24)

Plotting results of three series of experiments on Phœnix columns, a more simple formula than Gordon's is reached as follows:

Phoenix columns, flat ends, $p = 39,640 - 46^{l}$, when l + r is from 30 to 140;

$$p = 64,700 - 4600 \sqrt{\frac{l}{r}}$$
 when $l + r$ is less than 30.

Dimensions of Phonix Columns.

(Phoenix Iron Co.)

The dimensions are subject to slight variations, which are unavoidable in rolling iron shapes.

The weights of columns given are those of the 4, 6, or 8 segments of which they are composed. The rivet-heads add from 2 to 5 per cent to the weights given. Rivets are spaced 3, 4, or 6 inches apart from centre to centre, and somewhat more closely at the ends than towards the centre of the column.

G columns have 8 segments, E columns 6 segments, C, B^2 , B^1 , and A have 4 segments. Least radius of gyration = $D \times .3636$.

One Se	gment.	Diame	ters in i	nches.	On	e Colum	nn.	
Thickness in inches.	Weight in lbs. per yard.	đ inside.	D Outside.	Di Over Flanges.	Area of Cross- section, sq. inches	Weight per ft.	Least Radius of Gyration, in inches.	Safe Load in net tons for 16-feet Lengths
3-16 14 5-16 36	91/6 12 141/6 17	A 35%	4 416 414 458	6 1-16 6 3-16 6 5-16 6 7-16	8.8 4.8 5.8 6.8	12.6 16.0 19.8 22.6	1.45 1.50 1.55 1.59	17.72 22.65 27.66 32.58
5-16 5-16 7-16 16 9-16	16 1914 23 2614 30 3314 37	B ¹ 418	5 5-16 5 7-16 5 9-16 5 11-16 5 18-16 5 15-16 6 1-16	8 1-16 81/6 81/4 84/4 84/6 8 7-16 81/6	6.4 7.8 9.2 10.6 12.0 13.4 14.8	21.8 26.0 30.6 35.3 40.0 44.6 49.3	1.92 1.96 2.02 2.07 2.11 2.16 2.20	82.00 89.15 46.45 53.72 61.08 68.48 70.88
5-16 96 7-16 14 9-16 9-8	1816 2216 2616 3016 3416 3816 4218	B ₂ {	6 7-16 6 9-16 6 11-16 6 13-16 6 15-16 7 1-16 7 3-16	91/8 91/4 9 5-16 98/6 91/4 95/6 9 11-16	7.4 9.0 10.6 12.2 18.8 15.4 17.0	24.6 30.0 35.3 40.6 46.0 51.3 56.6	2.34 2.39 2.43 2.48 2.52 2.57 2.61	45,72 55,77 65,82 75,95 86,08 96,30 106,49
5-16 5-16 7-16 9-16 56 11-16 76 11-16 11-16	251/4 31 36 41 46 51 56 62 68 78 89 99 109	C 736	7 11-16 7 18-16 7 15-16 8 1-16 8 5-16 8 5-16 8 7-16 8 11-16 8 11-16 8 15-16 9 7-16 9 11-16	1156 11 11-16 1154 11 13-16 1176 12 12 1-16 12 8-16 12 5-16 12 7-16 12 9-16	22.4 24.8 27.2 29.2 81.2 85.6 89.6	34. 41.3 48.0 54.6 61.3 68.7 74.6 82.6 90.6 97.3 104. 118.6 132. 145.3	2.80 2.85 2.90 2.94 2.98 3.08 3.12 3.16 3.21 3.26 3.34 3.43 3.52	64.41 78.45 91.28 104.09 116.94 129.87 142.83 158.84 173.86 186.93 200.02 228.72 255.02 281.41
5-16 5-16 7-16 9-16 56 11-16 34 18-16 11-16 11-16	28 321/2 37 42 47 52 57 62 68 73 78 88 98 108	E 11	1114 11156 11156 11154 11175 1216 1214 12156 12156 1256 1256 1254 1256 1254 1254 1254 1254	15 7-16 15 9-16 15 11-16 15 18-16 1578 16 16 1-16 16 5-16 16 7-16 1656 1654 17 8-16	19.5 22.2 25.2 28.2 81.2	56. 65. 74. 84. 94. 104. 114. 124. 136. 146. 156. 176. 196. 216.	4.18 4.28 4.28 4.32 4.36 4.40 4.45 4.50 4.55 4.60 4.64 4.78 4.82 4.91	109.88 127.64 145.48 165.21 184.98 206.33 224.64 244.53 268.37 288.30 308.16 348.15 488.26
5-16 % 7-16 34 9-18 54	31 36 41 46 51 56	G 1496	15 151/8 151/4 158/6	1914 1914 1938 19 7-16 1946	24.8 28.8 32.8 36.8 40.8 44.8	82.6 96. 109.3 122.6 136. 149.8	5.45 5.50 5.55 5.59 5.68 5.68	164 87 191.54 218.25 244.95 271.69 298.45

One Se	gment.	Diame	eters in	inches.	Oı	e Colum	n n .	
Thickness in inches.	Weight in lbs. per yard.	d inside.	D Outside.	Di Over Flanges.	Area of Cross- Section, sq. inches.	Weight per ft. in pounds.	Least Radius of Gyration, in inches.	Safe Load in net tons for 16-feet Lengths.
11-16 34 13-16 76 1 114 114 136	61 66 71 76 86 96 106 116	G {	15% 15% 16 16% 16% 16% 16% 16%	1994 1978 20 2016 2016 2016 2016 2014 21	48.8 52.8 56.8 60.8 68.8 76.8 84.8 92.8	162.6 176. 189.3 202.6 229.3 256. 282.6 309.3	5.72 5.77 5.82 5.87 5.95 6.04 6.14 6.23	325.21 352.02 378.85 405.70 464.38 513.17 567.06 620.98

he believ e	es to possess a	dvantage	s over	Gordon's:	•	al formulæ, which
				p = Ultin Strengt	h,	p ₁ = Working Strength = 1/5 Ultimate,
	Kind of 8	trut.		lbs. per so of Section	1. 10. ON.	lbs. per sq. in. of Section.
Flat and	fixed end iron	angles an	d tees	14000 – 140 1	(1)	$6800 - 28 \frac{l}{r}$ (2)
Hinged-e	nd iron angles	and tees	4	16000—175 - l	(3)	9200-85 $\frac{l}{r}$ (4)
Flat-end	iron channels s	and I bea	ms	40000—110 1	(5)	$8000-22\frac{l}{r}$ (6)
Flat-end	mild-steel angl	les		52000—180 - 1	· (7)	$10400 - 36 \frac{l}{r}$ (8)
Flat-end	high-steel angl	es	 !	7 6000 —290 $\frac{l}{r}$	(9)	$15200 - 58 \frac{l}{r}$ (10)
Pin-end s	olid wrought i	ron eolun	ans	82000 80 1	$\left\{ \right\} _{an}$	$ \begin{array}{c} 6400 - 16 \frac{l}{r} \\ 6400 - 55 \frac{l}{d} \end{array} $ (12)
				_	• ,	•
Equat	ions (1) to (4) a	re to be 1	used on	ly between	$\frac{l}{r} = 40$	and $\frac{l}{r} = 200$
44	(K) and (K)	** ** **	66 6	 	" = 20	" " = 200 " " = 200 " " = 200

Steel columns, properly made, of steel ranging in specimens from 65,000 to 73,000 lbs. per square inch should give a resistance 25 to 33 per cent in excess of that of wrought from columns with the same value of l+r, provided that ratio does not exceed 140.

The unsupported width of a plate in a compression member should not exceed 30 times its thickness.

In built columns the transverse distance between centre lines of rivets securing plates to angles or channels, etc., should not exceed 35 times the plate thickness. If this width is exceeded, longitudinal buckling of the

plate takes place, and the column ceases to fail as a whole, but yields in detail.

The same tests show that the thickness of the leg of an angle to which latticing is riveted should not be less than 1/9 of the length of that leg or side if the column is purely and wholly a compression member. The above limit may be passed somewhat in stiff ties and compression members designed to carry transverse loads.

The panel points of latticing should not be separated by a greater distance than 60 times the thickness of the angle-leg to which the latticing is riveted,

if the column is wholly a compression member.

The rivet pitch should never exceed 16 times the thickness of the thinnest metal pierced by the rivet, and if the plates are very thick it should never nearly equal that value.

Merriman's Bational Formula for Columns (Eng. News,

July 19, 1894).

$$C = \frac{B}{1 - \frac{nB}{\pi^2 E} \frac{l^2}{r^2}}. (1)$$

$$B = \frac{C}{1 + \frac{nC}{\pi^2 E} \frac{l^2}{r^2}}.$$
 (2)

B = unit-load on the column = total load P + area of cross-section A: B = unit-load on the column = total load F' + area of cross-section A; C = maximum compressive unit-stress on the concave side of the column; l = length of the column; r = least radius of gyration of the cross-section; E = coefficient of elasticity of the material; n = 1 for both ends round; n = 4/9 for one end round and one fixed; $n = \frac{1}{2}$ for both ends fixed. This formula is for use with strains within the elastic limit only: it does not hold good when the strain C exceeds the elastic limit.

Prof. Merriman takes the mean value of E for timber = 1,500,000, for cast Prof. Merriman takes the mean value ω and ω and for steel = 80,000,000, and for steel = 80,000,000, and ω = 10 as a close enough approximation. With these values he comand $\pi^2 = 10$ as a close enough approximation. putes the following tables from formula (1):

I .- Wrought-iron Columns with Round Ends.

Unit- load.		M	aximum	Compre	ssive Un	it-stress	C.	
$\frac{P}{A}$ or B .	$\frac{l}{r}=20$	$\frac{l}{r}=40$	$\frac{l}{r} = 60$	$\frac{l}{r} = 80$	$\frac{l}{r} = 100$	$\frac{l}{r} = 120$	$\frac{l}{r} = 140$	$\frac{l}{r} = 160$
5,000 6,000 7,000	5,040 6,055 7,080	5,170 6,240 7,330	5,390 6,560 7,780	5,780 7,090 8,580	6,250 7,890 9,720	6,980 9,090 11,610	8,220 11,380 15,510	10.250 15,560 24,720
8,000 9,000 10,000	8,100 9,130 10,160	8,430 9,550 10,680	9,040 10,340 11,680	10,060 11,690 13,440	11,660 14,060 16,670	14,640 18,380 23,090	21,460	
11,000 12,000 13,000	11,200 12,240 13,280	11,750 13,000 14,180	13,070 14,500 15,990	15,810 17,820 19,480	19,640 23,080			• • • • • • • • • • • • • • • • • • • •

II .- Wrought-iron Columns with Fixed Ends.

Unit- load.		M	aximum	Compre	essive Ur	nit-st ress	c.	
$\frac{P}{A}$ or B .	$\frac{l}{r}=20$	$\frac{l}{r} = 40$	$\frac{l}{r} = 60$	$\frac{l}{r} = 80$	$\frac{l}{r} = 100$	$\frac{l}{r} = 120$	$\frac{l}{r} = 140$	$\frac{l}{r} = 160$
6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 14,000	6,010 7,020 8,025 9,030 10,040 11,050 12,060 13,070 14,080	6,060 7,080 8,100 9,130 10,160 11,200 12,240 13,280 14,320	6,130 7,180 8,240 9,300 10,370 11,450 12,540 13,640 14,740	6,240 7,330 8,430 9,550 10,710 11,830 18,000 14,210 15,380	6,380 7,530 8,700 9,890 11,110 12,360 13,640 14,940 16,280	6,570 7,780 9,040 10,340 11,680 13,070 14,510 15,990 17,530	6,800 8,110 9,490 10,930 12,440 14,020 15,690 17,440 19,290	7,090 8,530 10,060 11,690 13,440 15,310 17,820 19,480 21,820

III.-Steel Columns with Round Ends.

Unit- load.		M	aximum	Compre	ssive Un	it-st ress	c.	
$\frac{P}{A}$ or B .	$\frac{l}{r}=20$	$\frac{l}{r} = 40$	$\frac{l}{r} = 60$	$\frac{l}{r} = 80$	$\frac{l}{r} = 100$	$\frac{l}{r} = 120$	$\frac{l}{r} = 140$	$\frac{l}{r} = 160$
6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 14,000	6,050 7,070 8,090 9,110 10,130 11,160 12,290 13,330 14,250	6,200 7,270 8,380 9,450 10,560 11,690 19,820 13,970 15,130	6,470 7,650 8,770 10,090 11,360 12,670 14,020 15,400 16,830	6,890 8,230 9,650 11,140 12,710 14,370 16,130 18,000 19,960	7,500 9,130 10,870 12,850 15,000 17,370 20,000 22,940 26,250	8,430 10,540 12,990 15,850 19,230 23,300 28,300	9,870 12,900 16,760 20,930 28,850	12,300 17,400 24,590

IV.-Steel Columns with Fixed Ends.

Unit- load.		M	aximum	Compre	essive Un	it-stress	<i>c</i> .	
$\frac{P}{A}$ or B .	$\frac{l}{r}=20$	$\frac{l}{r} = 40$	$\frac{l}{r} = 60$	$\frac{l}{r} = 80$	$\frac{l}{r} = 100$	$\frac{l}{r} = 120$	$\frac{l}{r} = 140$	$\frac{l}{r} = 160$
7,000 8,000 9,000 10,000 11,000 12,000 13,000 14,000 15,000	7,020 8,020 9,030 10,030 11,040 12,050 13,060 14,070 15,080	7,070 8,090 9,110 10,130 11,160 12,200 13,280 14,250 15,810	7,150 8,200 9,250 10,310 11,380 12,450 18,530 14,610 15,710	7,270 8,380 9,450 10,560 11,690 12,820 13,970 15,130 16,310	7,430 8,570 9,730 10,910 12,110 13,330 14,580 15,850 17,140	7,650 8,770 10,090 11,360 12,670 14,020 15,400 16,830 18,290	7,900 9,200 10,550 11,810 13,410 14,930 16,500 18,150 19,870	8,230 9,650 11,140 12,710 14,370 16,130 17,990 19,960 22,060

The design of the cross-section of a column to carry a given load with maximum unit-stress C may be made by assuming dimensions, and then

computing C by formula (1). If the agreement between the specified and computed values is not sufficiently close, new dimensions must be chosen and the computation be repeated. By the use of the above tables the world will be shortened.

The formula (i) may be put in another form which in some cases will ab breviate the numerical work. For B substitute its value P + A, and fo Ar^2 write I, the least moment of inertia of the cross-section; then

$$I - \frac{P}{C}r^2 = \frac{nPl^2}{\pi^2\bar{E}}, \qquad ($$

in which I and r^2 are to be determined. For example, let it be required to find the size of a square oak column with fixed ends when loaded with 24,000 lbs, and 16 ft long, so that the maximum compressive stress C shall be 1000 lbs, per square inch. Her $I=24,000,\ C=1000,\ n=\frac{1}{4},\ \pi^2=10,\ E=1,500,000,\ l=16\times12,\ \text{and}$ (3) be comes

$$I - 24r^2 = 14.75$$
.

Now let x be the side of the square: then

$$I = \frac{x^4}{12}$$
 and $r^2 = \frac{x^2}{12}$,

so that the equation reduces to $x^4 - 24x^2 = 177$, from which x^2 is found to be 29.92 sq. in., and the side x = 5.47 in. Thus the unit-load B is about 80 lbs. per square inch.

WORKING STRAINS ALLOWED IN BRIDGE MEMBERS.

Theodore Cooper gives the following in his Bridge Specifications: Compression members shall be so proportioned that the maximum load shall in no case cause a greater strain than that determined by the follow ing formula:

$$P = \frac{8000}{1 + \frac{l^2}{40,000r^2}}$$
 for square-end compression members;

$$P = \frac{8000}{1 + \frac{l^3}{30,000r^2}}$$
 for compression members with one pin and one square end

$$P = \frac{8000}{1 + \frac{l^2}{20,000r^2}}$$
 for compression members with pin-bearings;

(These values may be increased in bridges over 150 ft. span. See Cooper's Specifications.)

P = the allowed compression per square inch of cross-section;

l = the length of compression member, in inches;

r= the least radius of gyration of the section in inches. No compression member, however, shall have a length exceeding 45 times its least width.

The Phœnix Bridge Company give the following:

The greatest working stresses in wrought-iron compression members of spans 150 feet in length and under shall be the following:

Phoenix column.
$$P = \frac{8400}{1 + \frac{l^2}{50,000r^2}} \qquad P = \frac{\frac{10}{8400}}{1 + \frac{l^2}{30,000r^2}}$$
Latticed or common column.
$$P = \frac{8000}{1 + \frac{l^2}{40,000r^2}} \qquad P = \frac{7800}{1 + \frac{l^2}{30,000r^2}}$$
Angle-iron struts.
$$P = 9000 - 30\frac{l}{r} \qquad P = 9000 - 34\frac{l}{r}$$

Upper chords shall be proportioned by the flat-end formula.

A mean between flat-end and pin-end results shall be used for one pin end and one flat end.

Lateral and transverse struts shall be designed by taking working stresses equal to one and four tenths those given by the preceding formulæ.

Working Stresses allowed in Bridge Tension Members.

(Theodore Cooper's Specifications.)

All parts of the structure shall be so proportioned that the maximum leads shall in no case cause a greater tension than the following (except in mans exceeding 150 feet):

	Pounds per
	sq. in.
On lateral bracing	15,000
On solid rolled beams, used as cross floor-beams and stringer	
On bottom chords and main diagonals (forged eye-bars)	10,000
On bottom chords and main diagonals (plates or shapes), no	at
section	
On counter rods and long verticals (forged eye-bars)	
On counter and long verticals (plates or shapes), net section	
On bottom flange of riveted cross-girders, net section	8,000
On bottom flange of riveted longitudinal plate girders over	er .
20 ft. long, net section	8,000
On bottom flange of riveted longitudinal plate girders under	er
20 ft. long, net section	
On floor-beam hangers, and other similar members liable	to
sudden loading (bar iron with forged ends)	6,000
On floor beam hangers, and other similar members liable	
sudden loading (plates or shapes), net section	

Members subject to alternate strains of tension and compression shall be proportioned to resist each kind of strain. Both of the strains shall, however, be considered as increased by an amount equal to 8/10 of the least of the two strains, for determining the sectional area by the above allowed strains.

The Phoenix Bridge Company specify: The greatest working stresses in all wrought-iron tensile members of railway spans 150 feet in length and under shall be as follows:

,	Pounds per
	sq. in.
In counter web members	
In long verticals	8,000
In main-web and lower-chord members (eye-bars)	10,000
In suspension loops	7.000
In suspension plates (net section)	7.000
In tension members of lateral and transverse bracing	
In counter rods and long verticals of lattice girders (net se	C-
tion)	7.000
In lower chords and main tension members of lattice girds	TR
(net section)	
In bottom flange of plate girders (net section)	8,000
In bottom flange of rolled beams	8,000
In angle-iron lateral ties (net section)	19.000
In augustion material elea (het section)	12,000

In spans over 150 feet in length, the greatest working tensile stresses per mare inch of wrought iron, lower-chord and end main-web eye-bars, shall

$$8000 \left(1 + 0.9 \times \frac{\text{min. total stress}}{\text{max. total stress}}\right)$$

whenever this quantity exceeds 10.000.

Working Stresses for Steel.

The greatest allowed working stresses for steel tension me.nbers, for Pags of 200 feet in length and less, shall be as follows;

F per

	Pounas per
	8 q. in.
In counter web members	10,500
In long verticals	10,000
In all main-web and lower-chord eye-bars	13,200
In plate hangers (net section)	
In tension members of lateral and transverse bracing	
In steel-angle lateral ties (net section)	15.000
For spans over 200 feet in length the greatest allowed wor	king stresse
r square inch, in lower-chord and end main-web eye-bars, she	all be taken a

 $10,000 \left(1 + \frac{\text{min. total stress}}{\text{max. total stress}}\right)$

whenever this quantity exceeds 13,200.

The greatest allowable stress in the main-web eye-bars nearest the centrof such spans shall be taken at 13,200 pounds per square inch; and thosfor the intermediate eye-bars shall be found by direct interpolation between the preceding values.

The greatest allowable working stresses in steel plate and lattice girder and rolled beams shall be taken as follows:

Po	unds pe
Upper flange of plate girders (gross section)	sq. in.
Lower flange of plate girders (gross section)	10,000
In counters and long verticals of lattice girders (net section) In lower chords and main diagonals of lattice girders (net	9,000
section)	10,000
In bottom flanges of rolled beams	10,000 10,000

RESISTANCE OF HOLLOW CYLINDERS TO COLLAPSE.

Fairbairn's empirical formula (Phil. Trans. 1858) is

where p = pressure in lbs. per square inch, t = thickness of cylinder, d = diameter, and l = length, all in inches; or,

$$p = 806,600 \frac{t^{2\cdot 10}}{Ld}$$
, if L is in feet. (2)

He recommends the simpler formula

as sufficiently accurate for practical purposes, for tubes of considerable diameter and length.

The diameters of Fairbairn's experimental tubes were 4", 6", 8", 10", and 12", and their lengths, between the cast-iron ends, ranged between 19 inches and 60 inches.

His formula (3) has been generally accepted as the basis of rules for ascertaining the strength of boiler flues. In some cases, however, limits are

fixed to its application by a supplementary formula.

Lloyd's Register contains the following formula for the strength of circular boiler-flues, viz.,

The English Board of Trade prescribes the following formula for circular flues, when the longitudinal joints are welded, or made with riveted butter straps, viz.,

For lap-joints and for inferior workmanship the numerical factor may be reduced as low as 60,000.

The rules of Lloyd's Register, as well as those of the Board of Trade, prescribe further, that in no case the value of P must exceed the amount given by the following equation, viz.,

In formulae (4), (5), (6) P is the highest working pressure in pounds per square inch, t and d are the thickness and diameter in inches, L is the length of the flue in feet measured between the strengthening rings, in case it is fitted with such. Formula (4) is the same as formula (3), with a factor statety of 9. In formula (5) the length L is increased by 1; the influence which this addition has on the value of P is, of course, greater for short abes than for long ones.

Nystrom has deduced from Waithairn's experiments the following formulas of

Nystrom has deduced from Fairbairn's experiments the following formula for the collapsing strength of flues :

where p, t, and d have the same meaning as in formula (1), L is the length in fect, and T is the tensile strength of the metal in pounds per square inch. If we assign to T the value 50,000, and express the length of the flue in inches, equation (7) assumes the following form, viz.,

Nystrom considers a factor of safety of 4 sufficient in applying his formula. (See "A New Treatise on Steam Engineering," by J. W. Nystrom, p. 106.)
Formula (1), (4), and (8) have the common defect that they make the collapsing pressure decrease indefinitely with increase of length, and vice versa. M. Love has deduced from Fairbairn's experiments an equation of a different form, which, reduced to English measures, is as follows, viz.,

$$p = 5,358,150 \frac{t^2}{ld} + 41,906 \frac{t^2}{d} + 1823 \frac{t}{d}, \dots$$
 (9)

where the notation is the same as in formula (1).

D. K. Clark, in his "Manual of Rules," etc., p. 696, gives the dimensions of six flues, selected from the reports of the Manchester Steam-Users Association, 1862-69, which collapsed while in actual use in boilers. These flues varied from 24 to 60 inches in diameter, and from 3-16 to 36 inch in thickness. They consisted of rings of plates riveted together, with one or two longitudinal seams, but all of them unfortified by intermediate flanges or strengthening rings. At the collapsing pressures the flues experienced compressions ranging from 1.53 to 2.17 ions, or a mean compression of 1.82 tons per square inch of section. From these data Clark deduced the following formula "for the average resisting force of common boiler-flues," viz.,

where p is the collapsing pressure in pounds per square inch, and d and t are the diameter and thickness expressed in inches.

C. R. Roeiker, in Van Nostrand's Magazine, March, 1881, discussing the above and other formule, shows that experimental data are as yet insufficient to determine the value of any of the formule. He says that Nystrom's formula, (8), gives a closer agreement of the calculated with the actual collapsing arms were respected in experiments on flues of every description than any of lapsing pressures in experiments on flues of every description than any of he other formulæ.

Collapsing Pressure of Plain Iron Tubes or Flues.

The resistance to collapse of plain-riveted flues is directly as the square of the thickness of the plate, and inversely as the square of the diameter. The support of the two ends of the flue does not practically extend over a length of tube greater than twice or three times the diameter. The collapsing pressure of long tubes is therefore practically independent of the length.

Instances of collapsed flues of Cornish and Lancashire boilers collated b Clark, showed that the resistance to collapse of flues of minch plates, 18 t 43 feet long, and 30 to 50 inches diameter, varied as the 1.75 power of th diameter. Thus,

inches. lbs. per sq. in; for 7-16-inch plates the collapsing pressures were..... .. 60 49 42

For collapsing pressures of plain iron flue-tubes of Cornish and Lance shire steam-boilers, Clark gives:

$$P = \frac{200,000t^2}{c^{11.7}h}.$$

P =collapsing pressure, in pounds per square inch;

t = thickness of the plates of the furnace tube, in inches,

d = internal diameter of the furnace tube, in inches.

a = internal diameter of the furnace tuce, in inches.

For short lengths the longitudinal tensile resistance may be effective is augmenting the resistance to collapse. Flues efficiently fortified by flange joints or hoops at intervals of 8 feet may be enabled to resist from 50 list to 60 lbs. or 70 lbs. pressure per square inch more than plain tubes, according to the thickness of the plates.

Strength of Small Tubes.—The collapsing resistance of solid drawn tubes of small diameter, and from 1.34 inch to .109 inch in thickness has been tested experimentally by Messrs. J. Russell & Sons. The result for wrought-iron tubes varied from 14.38 to 20.07 tons per square-inch section of the metal, averaging 18.20 tons, as against 17.57 to 24.28 tons, averaging 22.40 tons, for the bursting pressure.

(For strength of Segmental Crowns of Furnaces and Cylinders see Clark S. E., vol. i, pp. 649-651 and pp. 627, 628.)

Formula for Corrugated Furnaces (Eng'g, July 24, 1891, p. 122).—As the result of a series of experiments on the resistance to collaps of Fox's corrugated furnaces, the Board of Trade and Lloyd's Registry altered their formulæ for these furnaces in 1891 as follows:

Board of Trade formula is altered from

Board of Trade formula is altered from

$$\frac{12,500\times T}{D}=WP \text{ to } \frac{14,000\times T}{D}=WP.$$

T= thickness in inches; D= mean diameter of furnace; WP= working pressure in pounds per square inch. Lloyd's formula is altered from

$$\frac{1000 \times (T^2)}{D} = WP \text{ to } \frac{1234 \times (T^2)}{D} = WP$$

T =thickness in sixteenths of an inch:

D = greatest diameter of furnace

WP = working pressure in pounds per square inch.

TRANSVERSE STRENGTH.

In transverse tests the strength of bars of rectangular section is found to vary directly as the breadth of the specimen tested, as the square of its depth, and inversely as its length. The deflection under any load varies as the cube of the length, and inversely as the breadth and as the cube of the depth. Represented algebraically, if S = the strength and D the deflection, l the length, b the breadth, and d the depth,

S varies as
$$\frac{bd^2}{l}$$
 and D varies as $\frac{l^3}{bd^3}$.

For the purpose of reducing the strength of pieces of various sizes to a common standard, the term modulus of rupture (represented by R) is used. Its value is obtained by experiment on a bar of rectangular section

supported at the ends and loaded in the middle and substituting numerical values in the following formula:

$$R = \frac{3}{2} \frac{Pl}{bd^2},$$

in which P = the breaking load in pounds, l = the length in inches, b the preadth, and d the depth.

The modulus of rupture is sometimes defined as the strain at the instant of rupture upon a unit of the section which is most remote from the neutral axis on the side which first ruptures. This definition, however, is based non a theory which is yet in dispute among authorities, and it is better to efine it as a numerical value, or experimental constant, found by the ap-

plication of the formula above given.

From the above formula, making l 12 inches, and b and d each 1 inch, it follows that the modulus of rupture is 18 times the load required to break a bar one inch square, supported at two points one foot apart, the load being

applied in the middle.

Coefficient of transverse strength = $\frac{\text{span in feet} \times \text{load at middle in lbs.}}{\text{breadth in inches} \times (\text{depth in inches})^2}.$ $= \frac{1}{18} \text{th of the modulus of rupture.}$

Fundamental Formulæ for Flexure of Beams (Merriman),

Resisting shear = vertical shear;

Resisting moment = bending moment; Sum of tensile stresses = sum of compressive stresses; Resisting shear = algebraic sum of all the vertical components of the in-

ternal stresses at any section of the beam.

If A be the area of the section and S_s the shearing unit stress, then resist-

ing shear $=AS_s$; and if the vertical shear =V, then $V=AS_s$.

The vertical shear is the algebraic sum of all the external vertical forces on one side of the section considered. It is equal to the reaction of one support, considered as a force acting upward, minus the sum of all the vertical downward forces acting between the support and the section.

The resisting moment = algebraic sum of all the moments of the internal horizontal stresses at any section with reference to a point in that sec-

tion, $=\frac{SI}{s}$, in which S= the horizontal unit stress, tensile or compressive

as the case may be, upon the fibre most remote from the neutral axis, c =the shortest distance from that fibre to said axis, and I = the moment of inertia of the cross-section with reference to that axis.

The bending moment M is the algebraic sum of the moment of the external forces on one side of the section with reference to a point in that section = moment of the reaction of one support minus sum of moments of loads between the support and the section considered.

$$M = \frac{SI}{c}$$

The bending moment is a compound quantity = product of a force by the distance of its point of application from the section considered, the distance being measured on a line drawn from the section perpendicular to the direction of the action of the force.

Concerning the above formula, Prof. Merriman, Eng. News, July 21, 1894. says: The formula just quoted is true when the unit stress S on the part of the beam farthest from the neutral axis is within the elastic limit of the material. It is not true when this limit is exceeded, because then the neutral axis does not pass through the centre of gravity of the cross-section, and because also the different longitudinal stresses are not proportional to their distances from that axis, these two requirements being involved in the deduction of the formula. But in all cases of design the permissible unitstresses should not exceed the elastic limit, and hence the formula applies rationally, without regarding the ultimate strength of the material or any of the circumstances regarding rupture. Indeed so great reliance is placed upon this formula that the practice of testing beams by rupture has been almost entirely abandoned, and the allowable unit-stresses are mainly derived from tensile and compressive tests.

GENERAL FORMULÆ FOR TRANSVERSE STRENGTH OF BEAMS OF UNIFORM CROSS-SECTION.

		SECTION.			
	Rectangu	Rectangular Beam.	Beam o	Beam of any Section.	ion.
Веап.	Breaking Load.	Deflection for Load P or W.	Maximum Moment of Stress.	Moment of Rupture.	Deflection,
Fixed at one end, load at the other	$P = \frac{1}{6} \frac{Rbd^2}{l}$	4Pl8 Ebd3	= 1d	RI	1 Pls 8 EI
Same with load distributed uniformly	$W=rac{1}{3}rac{Rbd^3}{l}$	3 W73	$\frac{1}{2}m_l =$	RI	$\frac{1}{8} \frac{W7^3}{EI}$
Supported at ends, loaded in middle	$P = \frac{2}{3} \frac{Rbd^2}{l}$	Pts 4Ebd3	$\frac{1}{4}Pl$ =	RI	1 Pis 48 El
Same loaded uniformly	$W = \frac{4}{3} \frac{Rbd^3}{l}$	5 W78 32 Ebds	$\frac{1}{8}m =$	RI	5 W73 384 EI
Same, loaded at middle, and also with uniform load.	$2P + W = \frac{4}{3} \frac{Rbd^3}{l}$	$\frac{1}{4} \left(P + \frac{1}{8}W\right) \frac{l^3}{Ebd^3}$	$\left(\frac{1}{4}P + \frac{1}{8}W\right)l = $	RI c	$rac{1}{48} (P + rac{5}{8}W) rac{l^3}{El}$
Fixed at both ends, loaded in middle	$P = \frac{4 Rbd^3}{3 l}$	'1 Pts 16 Ebds	$\frac{1}{8}Pl$	RI	$\frac{P}{192}\frac{l^3}{EI}$
Same, Barlow's Experiments	$P = \frac{Rbd^2}{l}$		$= \frac{1}{6}Pl$	RI o	
Same, uniformly loaded	$W = \frac{2Rbd^2}{l}$	1 W78 88 Ebd3	$\frac{1}{12}W7 =$	RI o	W 13 884 EI
Fixed at one end, supported at the other, loaded at .6841 from fixed end,		.1148P13 Ebd3	$\frac{3}{8}(2\sqrt{8}-3)Pl =$	S S	$\frac{P}{105} \frac{l^3}{EI}$ (nearly).
Same uniformly loaded	$W = \frac{4}{3} \frac{Rbd^3}{l}$.0648W73 Ebd3	$\frac{1}{8}W7 =$	RI	W 13 185 EI
					(nearly).

APPROXIMATE SAFE LOADS IN LBS. ON STEEL BEAMS, 269

Formulæ for Transverse Strength of Beams.-Referring to table on preceding page, P = load at middle:

W= total load, distributed uniformly;

l = length, b = breadth, d = depth, in inches;

E = modulus of elasticity;

R = modulus of rupture, or stress per square inch of extreme fibre:

I =moment of inertia;

c = distance between neutral axis and extreme fibre.

For breaking load of circular section, replace bd* by 0.50d*.
For good wrought iron the value of R is about 20,000, for steel about 120,000, the percentage of carbon apparently having no influence. (Thurston, Iron and Steel, p. 491).

For cast iron the value of R varies greatly according to quality. Thurston found 45,740 and 67,980 in No. 2 and No. 4 cast iron, respectively.

For beams fixed at both ends and loaded in the middle, Barlow, by experiment, found the maximum moment of stress = 1/6/Pt instead of \$4.5Pt, the result given by theory. Prof. Wood (Resist. Matls. p. 155) says of this case: The phenomena are of too complex a character to admit of a thorough and exact analysis, and it is probably safer to accept the results of Mr. Barlow in practice than to depend upon theoretical results.

APPROXIMATE GREATEST SAFE LOADS IN LBS. ON STEEL BEAMS. (Pencoyd Iron Works.)

Based on fibre strains of 16,800 lbs. for steel. (For iron the loads should be one sixth less, corresponding to a fibre strain of 14,000 lbs. per square inch).

L =length in feet between supports; a = interior area in squareinches;

A =sectional area of beam in square inches:

d = interior depth in inches.D = depth of beam in inches. w = working load in net tons.

Ohama of	Greatest Safe	Load in Pounds	Deflection	in Inches.
Shape of Section.	Load in Middle.	Load Distributed.	Load in Middle.	Load Distributed.
Solid Rect- angle.	940AD L	1890 <i>AD</i>	wL ³ 52AD ³	wL ³ 52AD ²
Hollow Rect- angle.	940(AD-ad) L	1880(AD-ad) L	$\frac{wL^3}{39(AD^2-ad^2)}$	$\frac{wL^3}{52(AD^2-ad^2)}$
Solid Cylin- der.	700AD	1400AD L	10L3 24AD2	10L3 38AD2
Hollow Cylinder.	$\frac{700(AD-ad)}{L}$	1400(AD-ad) L	$\frac{wL^3}{24(AD^2-ad^2)}$	$\frac{wL^3}{88(AD^2-ad^2)}$
Even-legged Angle or Tee.	980 <i>AD</i>	1860 <i>AD</i>	10L3 82AD2	$\frac{wL^3}{52AD^2}$
Channel or Z bar.	1600AD L	3200AD L	$\frac{wL^3}{53AD^2}$	$\frac{wL^3}{85AD^2}$
Deck Beam.	1450AD L	2900AD L	$\frac{10L^2}{50AD^2}$	$\frac{wL^3}{80AD^2}$
I Beam.	1790AD L	3560AD L	$\frac{wL^3}{58AD^2}$	$\frac{wL^3}{98AD^2}$
I	п	III	IV	v

The above formulæ for the strength and stiffness of rolled beams of various sections are intended for convenient application in cases where

strict accuracy is not required.

The rules for rectangular and circular sections are correct, while those for the flanged sections are approximate, and limited in their application to the standard shapes as given in the Pencoyd tables. When the section of any beam is increased above the standard minimum dimensions, the flanges remaining unaltered, and the web alone being thickened, the tendency will be for the load as found by the rules to be in excess of the actual; but within the limits that it is possible to vary any section in the rolling, the rules will apply without any serious inaccuracy.

The calculated safe loads will be approximately one half of loads that would injure the elasticity of the materials.

The rules for deflection apply to any load below the elastic limit, or less than double the greatest safe load by the rules.

If the beams are long without lateral support, reduce the loads for the ratios of width to span as follows:

		h of B	eam.		n of Calcula Greatest Sa		
20	times	flange	width.	Whole	calculated	load.	
80	66	" -	**	9–10	**	**	
40	66	66	46	8-10	46	44	
50	"	46	66	7-10	44	44	
60	64	44	44	6-10	44	44	
70	44	44	**	5-10	44	44	

These rules apply to beams supported at each end. For beams supported otherwise, after the coefficients of the table as described below, referring to the respective columns indicated by number.

Changes of Coefficients for Special Forms of Beams.

	retends for special	TOTAL OF LOCALIDA
Kind of Beam.	Coefficient for Safe Load.	Coefficient for Deflection.
Fixed at one end, loaded at the other.	One fourth of the coefficient, col. II.	One sixteenth of the co- efficient of col. IV.
Fixed at one end, load evenly distributed.	One fourth of the coeffi- cient of col. III.	Five forty-eighths of the coefficient of col. V.
Both ends rigidly fixed, or a continuous beam, with a load in middle.	Twice the coefficient of col. II.	Four times the coeffi- cient of col. IV.
Both ends rigidly fixed, or a continuous beam, with load evenly dis- tributed.	One and one-half times the coefficient of col. III.	Five times the coefficient of col. V.

ELASTIC RESILIENCE.

In a rectangular beam tested by transverse stress, supported at the ends and loaded in the middle,

$$P = \frac{2}{3} \frac{Rbd^2}{l};$$

$$\Delta = \frac{1}{4} \frac{Pl^3}{Eod^2};$$

in which, if P is the load in pounds at the elastic limit, R = the modulus of In which, if F is the load in pointed at the elastic limit, E is the least of the strain on the extreme fibre, at the elastic limit, E is modulus of elasticity, Δ is deflection, L, L, and L is elastic, breadth, and depth in inches. Substituting for L in (2) its value in (1), we have

$$\Delta = \frac{1}{6} \frac{Rl^2}{Ed}.$$

The elastic resilience = half the product of the load and deflection = $\frac{1}{2}P\Delta$, and the elastic resilience per cubic inch

$$=\frac{1}{2}\frac{P\Delta}{lbd}$$
.

Substituting the values of P and Δ , this reduces to elastic resilience per cubic inch = $\frac{1}{18} \frac{R^3}{E}$, which is independent of the dimensions; and therefore the elastic resilience per cubic inch for transverse strain may be used as a modulus expressing one valuable quality of a material. Similarly for tension:

Let P = tensile stress in pounds per square inch at the elastic limit;

e = elongation per unit of length at the elastic limit;

E = modulus of elasticity = P + e; whence e = P + E.

Then elastic resilience per cubic inch = $\frac{1}{2}Pe = \frac{1}{2}\frac{F^*}{E}$.

BRAMS OF UNIFORM STRENGTH THROUGHOUT THEIR LENGTH.

The section is supposed in all cases to be rectangular throughout. The beams shown in plan are of uniform depth throughout. Those shown in elevation are of uniform breadth throughout. B = breadth of beam. D = depth of beam.

PLAN.

PARABOLA

PIAN.

PIAN.

PARABOLA

PIAN.

PIAN.

PARABOLA

PIAN.

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PARABOLA

PIAN.

PARABOLA

PIAN.

PARABOLA

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN.

PIAN

Fixed at one end, loaded at the other; curve parabola, vertex at loaded end; BD^3 proportional to distance from loaded end. The beam may be reversed, so that the upper edge is parabolic, or both edges may be parabolic.

Fixed at one end, loaded at the other; triangle, apex at loaded end; BD^2 proportional to the distance from the loaded end.

Fixed at one end; load distributed; triangle, apex at unsupported end; BD² proportional to square of distance from unsupported end.

Fixed at one end; load distributed; curves two parabolas, vertices touching each other at unsupported end; BD^{\bullet} proportional to distance from unsupported end.

Supported at both ends; load at any one point; two parabolas, vertices at the point of support, bases at point loaded; BD³ proportional to distance from nearest point of support. The upper edge or both edges may also be parabolic.

Supported at both ends; load at any one point; two triangles, apices at points of support, bases at point loaded; BD² proportional to distance from the nearest point of support.

Supported at both ends; load distributed; curves two parabolas, vertices at the middle of the beam; bases centre line of beam; BD² proportional to product of distances from points of support.

Supported at both ends; load distributed; curve semi-ellipse; BD^{α} proportional to the product of the distances from the points of support.

PROPERTIES OF ROLLED STRUCTURAL SHAPES. Explanation of Tables of the Properties of Carnegie I Beams, Channels, and Z Bars.

The tables of I beams are calculated for the minimum weight to which each pattern can be rolled. The tables of channels are calculated for the minimum and maximum weights of the various shapes, while the properties

of Z bars are given for thicknesses differing by 1/16 inch.

Columns 11 and 18, in the tables for I beams and channels, give coefficients Columbs 11 and 15, in the tautes for 1 dealins and channess, give confidence by the help of which the safe uniformly-distributed load may readily be determined. To do this, divide the coefficient given by the span or distance between supports in feet. If the weight of the section is intermediate between the minimum and maximum weights given, add to the coefficient for the minimum weight the value given in columns 12 or 14 (for one pound in the control of maintain multiplied by the number of mounds the section is increase of weight), multiplied by the number of pounds the section is heavier than the minimum.

If a section is to be selected (as will usually be the case) intended to carry a certain load, for a length of span already determined on, ascertain the coefficient which this load and span will require, and refer to the table for a section having a coefficient of this value. The coefficient is obtained by multiplying the load, in pounds uniformly distributed, by the span

length in feet.

In case the load is not uniformly distributed, but is concentrated at the middle of the span, multiply the load by 2 and then consider it as uniformly distributed. The deflection will be 8/10 of the deflection for the latter load.

For other cases of loading obtain the bending moment in foot-pounds; this

multiplied by 8 will give the coefficient required.

multiplied by 8 will give the coefficient required.

If the loads are quiescent, the coefficients for a fibre strain of 16,000 lbs. per square inch for steel and 12,000 lbs. for iron may be used; but if moving loads are to be provided for, the coefficients for 12,500 and 10,000 lbs., respectively, should be taken. Inasmuch as the effects of impact may be very considerable (the strains produced in an unyielding, inclastic material by a load suddenly applied being double those produced by the same load in a quiescent state), it will sometimes be advisable to use still smaller fibre strains than those given in the tables. In such cases the coefficients can readily be determined by proportion. Thus, for a fiber strain of 8000 lbs. per square inch the coefficient will equal the coefficient for 10,000 lbs. fibre strain, from the table, multiplied by 8/10.

The moments of resistance given in column 9 are used to determine the libre strain per square inch in a beam, or other shape, subjected to bending

fibre strain per square inch in a beam, or other shape, subjected to bending or transverse strains, by dividing the same into the bending moment

expressed in inch-pounds.

For Carnegie Z bars, complete tables of moments of inertia, moments of resistance, radii of gyration, and values of the coefficients (O) are given for thicknesses varying by 1/16 inch. These coefficients may be applied, as explained above, for cases where the Z bars are subjected to transverse loading, as, for example, in the case of roof-purlins.

For more complete and detailed information concerning structural shapes,

consult the pocket-books and circulars issued by the manufacturers.

Spacing of Carnegle I Beams for Uniform Load of 100 lbs, per square foot,

Proper Distance in Freet, Centre to Centre of Beams.

è	ï		16″	ï		18,	ï	10,	,ï	9, I.		dng	è	ij,	1	ï	è	ï	à		-
8,5	25	SO 1bs.	8 %	25. 108.	15 G	40 lbs.	8 <u>F</u>	8 <u>2</u>	25. 108.	27. Abs.	15 th	Distand tween ports i	22.5	18 Ibs.	% हैं	5 5 5 5	5 jg	8 2	≅ 5	10 lbg.	5 8
0								83			13.0	00		128	88	53				a :	1≌;
9.00	6.00	57.0	9.4	\$ 8	. æ.	6 KG	2 2 3 3 3 3 3 3 3	17.6	18.5	18.4	10.8	-40	200	81.4	80.8	.O.	88	23.5	18.7	10.8	≓œi
88.7		50.0	40.7	33.5	8.93		17.6	15.8	11.7	11.7	8.9	80	8	24.1	:8.7	18.4	15.9	18.0	10.5	8.8	6.4
80.4	7.7	48.7	82.8	83 •	83 9.	19.5	15.4	18.4	10.3	10.2	7.8	•	88	ĕ	018.7	14.5	12.6	10.8	8.8	9.9	•
58.5	60	38.7	93	8.1	8	17.8	18.7	11.9	9.1	9.1	6.9	2	19.2	<u> </u>	15.1	11.8	10.2	4.	6.7	5.8	4
7.7	1-0	84.5	80.4	88	18.6	4.6	25.5		80.1	8.1	6.2	=:	20	91			80.5	8.0	5.5	40	000
					15.1			o e	. 6		0 6	× 5	13.0	<u> </u>	<u> </u>	<u>ة د-</u>			•	, «	N O
					18.7						4.5	7	8.	-	1-	6					ભ
	8	23.1	18.9		12.5	10.3					Ţ	5		é	€.	e i				01	
85 85 65 60	5 64 5 64	19.4	17.3	2.5	======================================	20.00	20.00	8.0	. 4 0. 6	6 4	80 80 80 10	22	2. C	9 40	C 10	4.4	4 es	80 G	0. C	 	6.4
	19.6	17.9	14.7		9.6	8.0					8	18		4	4	80				_	
8	18.1	16.5	13.6	11.1	8.9	7.4		5.1	8.0	3. 8.	8.0	2	8.	8.4.8	4.2			8.	1.9	1.5	1.1
			12.6	10.3	80.1		4.0	7.				8		•:	တ်	œ			—	<u>-</u>	-
7.8	5.4 5.4	4. 8. 8. 8.	10.9	9.0		6 K	0.4	4 -	80. ex	eo e	0, 6	28	4. 4 20 C	00 00 00 00	× ×	39 00 10A	0; 0 00 –	9.5	 	<u>- به</u>	:
			10.3	8			4	8	. 63			!		•	; 	i		:	٠	•	:

Thus for a load of 1:0 lbs. per square foot divide by 1.5. Maximum fibre strain, 16,000 lbs. per square inch. Only figures above the cross lines should be used for plastered cellings, so that the deflection will not cause cracking of the plaster.

Beams-Steel.
6
Carnegi
Jo
Properties

19	Radius of Gy- ration, Meut. Axisasbefore.	1,2	7.8	1.80	8	88	8.9	35	100	3.8	6	1.0	0.91	0.97	50.0	48	0	99.0	9.63	0.0 8.6	K
15	Mom. of Inertia Neutral Axis, coincident with Cent. Line of Web.	I'	41.6 45.6	27.3	42.2	8.03 4.03	14.0	20.00	8.11	85	2.5	8.8	4.85	6.52	 4.0	200	1.99	.28	3.5	 5.8.	Ta=TI=D
14	Add to Coeff. for every ib. Increase in Wt. of Beam		10000 8200		6100	6100		4900	4100	0800	3	8300		8	076	<u>}</u>	000		1600		10 to 10
13	Coefficient of Strength for Fibre Strain 12,500 lbs. per sq. inch. Used for Bridges.	Ć	1430100 1207500	955000	873500	288500	471300	30800	768800	206100	156100	149700	120300	118900	91900	6530	52400	41300	82200	24600 19060	$M = \frac{C \text{ or } C'}{C'}$
12	Add to Coeff. for every lb, Increase in Wt. of Beam,		12800 10450		<u>8</u>	2800		000	2500	7600	3	4500		980	9100	3	9800		2100		, ; ;
11	Coefficient of Strength for Fibre Strain of 16,000 lbs. per sq. inch. Used for Used for	S	1890500 1545600	1222400	1117700	153300	603200	395200	844000	263800	188900	191600	154000	151400	117600	83500	67000	2500	41200	81400 84400	$V_{\text{e}} \left\{ L = \frac{C \text{ or }}{T} \right\}$
01	Radius of Gy- ration, Neutral ratis as before.	,	9.5 3.8	8	88	38	2.2	3 4	8	88	35	88	8.8	2.91	2.6	2.48	8	20. 20.	1.68	 8.e.	en abo
6	Moment of Resistance, Meutral Axis as before.	R	171.6	114.6	8.6	88	9.9	2. C	8	2.5	2 2	18.0	14.4	14.2	5.5 5.2	8	88	4.96	8.88	% % % %	span in feet; coefficients given above.
æ	Moment of Inertia, Neu- tral Axis Per- pendicular to Webat Centre.	-	2059.3 1449.2	1146.0	38.50	529.7	424.1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	161.3	123.7	2	71.9	57.8	49.7	88	3 8	16.7	12.4	7.7	₽. 4. © &:	1. 11
2	Increase of Thickness of Web for each Ib. Increase of Weight.	toch.	0128	!	88	080		85	620	8	3	.087		35	8	Š	690		-0.4	_	tributed;
9	Width of Flange.	ä	2.8 2.8	6.25	4.6	35	20.00	3.5	8	4.4 15.1	5	3.	8	33	3.6	32	8.18	8.8	2.75	8 8 8	uniformly distin foot-pounds;
2	Thickness of Web.		38	•	•		•	•	•		•		٠	•	•	•		-	•		foot-p
4	lo aera Gection,	80. in.	38 88	18.8	83	14.0	12.0	7.6	6		9.5	6.5	5.5				80.	80.0			pounds u
æ	Weight per foot,	lbs.	88	2	88	38	4:	38	8	श्चर स्ट	5 50	3	9	ଛ :	15.5	200	8	2		6.0	프닝
63	Depth of Beam.		જેજ	ક્રે	15,	2,0	15,	30 30	ģ	<u>6</u> 6	à	à	ò	2	ì- è	è	ò	2	÷	÷÷	noment
-	Section Index.		BB 57	æ	4	a a a	2	n n o	B10	B11	38	B14	B15	B16	512	100	88 B	器	83 E	88	X = 1

	l	4
	١	
	١	
	ľ	
;	l	•
è	1	1
ē	1	_
i	1	
Ç	l	
Ł	1	
3	1	
2		-
5		١
2		ļ
ì		l
ā		ŀ
J		l
	:	١
C	•	l
×	7	ł
Ž	:	١
7	•	1
?	Š	
`	•	
-	Ė	
`	_	
	ş	
i		i
Į	Ė	į
1		į
ì	ž	Ì
	Ż	•
		į
	á	

1.8	:	TYS	on Control on the own to ap	141 TO	inches.	0.73	88	88	38.8	7.4	9.5	84.0	88	0.48	Ll = 8M.
7	=	-U	Coefficier very lo. Li ein Weig annel.	9 101 88913		6100	006	4100	9800	8800	8800	5400	2000	1600	C or $C' = I$
:	01		Coefficient of Strength for Fibre Strain of 12,500 lbs.	per square inch, used for Bridges	ð	438400	16890	106800	0000	57100	1500	2000	21800	14000	Cor C':
;	7	31	Joefficien ery lb. In in Weigh	79 701	,	7800	9	2800	909	90	98	3100	0008	2100	M = C
	=	Pe	nt of th for Strain of los. per inch, use ildings.	16,000 square	0	554700 404700	873800 80900	180500	138700	10870 78100	75000 58100	80400 80400	27900	18700	Cor C';
-	2	1,5	(Gyration) Axis as	o suibal Neutri eroled	4 1								52		T = 0
	ø	1.	of Regist. Neutral s before.	ADOR.	RE NI	328	82	95	20				80 85 F- 80		above,
	œ	٠.	of Inertia. Axis Per- lar to Wel	IRTITION		890.0	158.9	25.55	88.8 10.00	88.2	8.7.	15.6	6.9	4.00 0.70	feet, nts giver
	2	T		ness or esch lb of Wei	ches	8	. E	8	8	8	96	6	88	.074	= span in feet, coefficients given above,
	4	•	Flange.		8	85.00 86.00		22.8	883	 	: 0: 0 : 8: 5	22.5	85	1.67	~ 1
PROFESETES		•	s of Web.	nicknes	Fr Inches.	85.5	:88	įzig	6. 6 .9	: 2: 8	; 4 :8	₹ 4 :5		£1:	distribi
H	-	*	ection.	8 10 891	A Š	15.0			.0.	-00	4. d. d.		-02	2. T	niformly in foot-l
	-	90	J001 10	eight pe	w ş	120	38 38 38 38	383	55 27.	27	147.		- 20.	- 20° co	in lbs. u
	-	91	Jannad.) to fliq	De	15″	12/2	10,15	ð, 6	တိစ်ဆိ		6.6	اها ها	**	Safe load in lbs. uniformly distributed Moment of forces in foot-lbs.; C and C
		-	dex.	al noite	æg '	0.10	- a	8 80 8 80	ದಿ ಬ 4	00 4 v	0 0 0 0	00 00	æ:	000 000	

PROPERTIES OF CARNEGIE Z BARS. IRON OR STEEL.

16	of Strength.	For Fibre Strain of 18,000 ibs. per equare inch, Axis Perpendicular to Web at Centre.	67500 82400 82400 102800 112800 1112800 1112800 1112800 68000 68000 77800 77800 8270
16	Coefficient	Yor Fibre Strain of For 16,000 lbs. per square inch, Axis Perpendicular to Perpendicular to Web at Centre.	90000 104800 128700 128700 128700 128700 168200 174900 57000 68820 77000 110910 110910
14	ation.	Least Radius, Neu- tral Axis Diagonal.	00000000000000000000000000000000000000
18	b	Neutral Axis through Centre of Gravity Coin- cident with Web.	4.44.22.44.28.22.22.22.22.22.22.22.22.22.22.22.22.
12	Radii	through Centre of Gravity Per- pendicular to Web.	8888888888888888888888888
11	nts of sance.	through Centre of Gravity Coin- cident with Web.	838884446888888884 67688847888884 28
10	Momes Resist	Meutral Axis through Centre of Gravity Per- pendicular to Web.	80011134445555555500000 488888528648848848
6	nts of rtis.	Meutral Axia through Centre of Gravity Coin- cident with Web.	e 5 8 8 4 8 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ø	Mome	Meutral Axis through Centre of Gravity Per- pendicular to Web.	88888888888888888888888888888888888888
2		g Area of Section.	4400000000044400000 88608848845550884888
9	Steel.	Weight per foot,	######################################
9	.nonI	g Weight per foot,	おおの名はないない 第二日の北方の北京の東京の まらしら 見らせ 見らら 見られ 見 見 の は し は し は し は し は し は は は は は は は は は は は は は は は は は は は は
+	.I.a	ј. Трісквеза от Мер	%1-%1-%1-%1-%1-%1-%-1-%
•		E Width of Flange.	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
97		E Depth of Web.	66 1-16 67 1-16 67 1-16 67 1-16 67 1-16 67 1-16 77 1-16
-		Section Index.	00000000000000000000000000000000000000
	8 4 5 6 7 8 9 10 11 12 18 14 16	8 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15	## Control of Web. ## The period of Web. ## The period of Web. ## The period of Web. ## The period of Web. ## The period of Gravity P

$\hat{}$
÷
ĭ
¥
=
.=
~
=
3
čĭ.
\simeq
Ī
£
=
••
N
•
÷
•
•
ĕ
E
-
6
Č.
•
•
0
•
z
-
⋍
=
Ξ
7
¥
=
0
ĭ
-
2

	•	MOTERATION OF CAL	MAGIE Z BARS. 2
10	of Strength.	For Fibre Strain of 12,000 lbs. per aquare inch, Axia Perpendic- inch, Over proposition.	9150 9150 9150 9150 9150 9150 9150 9150
*	Coefficient o	For Fibre Strain of 16,000 lbe, per square inch, Axis Perpendic- ular to Web at Centre.	1188000 88600 88600 61700 61700 66500 66500 77400 82640 82640 82640 82640 82640 82640 82640 82640 82640 82640 82640 82640 82640
#	Gyration.	Least Radius, Neutral Axis Diagonal.	252555555555555555555555555555555555555
18	8	Meutral Axis through Centre of Gravity Coincident with Web.	E8888888888888888888888888888888888888
13	Radii	Neutral Axis through Centre of Gravity Perpendicular to Web.	888888888888888888888888888888888888888
11	loments of Resistance.	Neutral Axis through Centre of Gravity Colncident with Web.	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
2	Mome Resist	Neutral Axis through Centre of Gravity Perpendicular to Web.	1122244700005514888888488
	nts of rtis.	Meutral Axis through Centre of Gravity Colneident with Web.	#4+000000000000000449 884668868482868
30	Moments o Inertia.	Meutral Axis through Centre of Gravity Perpendicular to Web.	860r-000 11 61 61 61 41 41 80 80 41 41 70 82 82 82 82 82 82 82 82 82 82 82 82 82
~		Area of Section.	8:4:8:8:4:4:4:5:8:8:8:4:4:5:2:4:5:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8:8
•	.ie	Weight per toot, 8ted	80000000000000000000000000000000000000
40		ल Weight per foot, Iron	8.00.000000000000000000000000000000000
*		Thickness of Metal.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
•		.egasia to didibiw E	33.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
61	<u> </u>	F Depth of Web.	53/8 4 4 4 1 - 16 4 4 4 4 6 4 4 4 1 - 10 5 4 4 4 1 - 10 8 3 1 - 16 8 3 1 - 16 8 3 1 - 16
-		Section Index.	00000000000000000000000000000000000000

TRENTON IRON BEAMS AND CHANNELS.

(New Jersey Steel and Iron Co.)

Height in inches.	Least Weight per Yard, in pounds.	Width of Flange, in inches.	Thickness of Web. in inches.	Coefficient in lbs. for Transverse Strength.	Height in inches.	Least Weight per Yard, in pounds.	Width of Flange, in inches.	Thickness of Web, in inches.	Coefficient in 1bs. for Transverse Strength.
		I Bean	ns.			(hanne	ls.	
20 20 15 8 16 15 8 16 12 5 18 12 5 18 12 12 12 10 14 10 14 9 9 9 9 8 8 8 7 6 6 6 6 5 5 5 4 4 4 4	272 200 200 150 125 170 125 126 135 105 90 125 70 80 80 65	654 6 554 5 514 4.8 514 414 414 414 414 4334	11-16 14.6 14.6 14.47 .39 .32 .47 55-16 -57 56.3 58	1,320,000 748,000 551,000 551,000 377,000 375,000 386,000 250,000 268,000 199,000 167,000 168,000 135,000	15 15 1214 1214 100 9 9 8 8 7 6 6 6 6 5 4 3	190 120 140 70 60 48 70 45 38 36 25\45 83 22\4 19 16\4 15	45/4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$4 11-16 88 \$5 5-16 7-16 .33 .26 .40 .40 .28 .18 .20 .20	625,000 401,000 381,000 200,100 134,750 102,000 146,000 104,000 88,950 65,800 62,000 39,500 58,300 45,700 33,680 22,800 15,700
6	120 90	334 514 5	56 16	101,000 172,000 182,000 76,800		De	ck Be	ams.	
6 5 5	50 40 40 30 37 30	31/2 3 3 25/4 3 25/4	.3 14 5–16 14 5–16	49,100 49,100 38,700 36,800 80,100	8	65 55	414	3/8 5-16	91,800 63,500
4	18	274	3-16	18,000					

Trenton Beams and Channels.

To find which beam, supported at both ends, will be required to support with safety a given uniformly distributed load:
Multiply the load in pounds by the span in feet, and take the beam whose
"Coefficient for Strength" is nearest to and exceeds the number so found. The weight of the beam itself should be included in the load.

The weight of the beam itself should be included in the load. The deflection in inches, for such distributed load, will be found by dividing the square of the span taken in feet, by 70 times the depth of the beam, taken in inches, for iron beams, and by 52.5 times the depth for steel. Example.—Which beam will be required to support a uniformly distributed load of 12 tons (= 24,000 lbs.) on a span of 15 feet? 24,000 × 15 = 360,000, which is less than the coefficient of the 12½-inch 125-lb, iron beam. The weight of the beam itself would be 625 lbs., which, added to the load and multiplied by the span, would still give a product less than the coefficient: thus than the coefficient; thus,

 $24.625 \times 15 = 369,375.$

The deflection will be

$$\frac{15 \times 15}{70 \times 1214} = 0.26 \text{ inch.}$$

The safe distributed load for each beam can be found by dividing the colcient by the span in feet, and subtracting the weight of the beam.

When the load is concentrated entirely at the centre of the span, one half

of this amount must be taken.

The beams must be secured against yielding sideways, or the safe loads will be much less.

will be much rese.

For beams used with plastered ceilings, the deflection allowed should not exceed 1/30 inch per foot of span, to avoid cracking of the plaster.

TRENTON ANGLE-BARS.

Size of Bar.	Approximate Weight, in pounds per yard, for each thickness in inches.								Coeff. for Transverse Strength.		
	7/16	36	9/16	56	11/16	34	13/16	76	Thinnest		
6 ×6	1	57.5	64.8	71.1	77.8	84.4	91.0	97.8	86,900		
436 × 436	87.5	42.5	47.5	52.8	57.2	61.9			18,000	"	
-/= -/-	36	7 16	34	9/16	56	11/16	34		l		
4 ×4	28.6	88.1	87.5	41.8	46.1	50.5	54.4		12,184	**	
314 × 31/4	24.8	28.7	82.5	86.2	89.8	48.4	l .	l	9,200	**	
072 ~ 073	14	5/16	36	7/16	16	9/16	96	11/16	1 '		
3 × 3	14.4	17.7	21°1	24.4	27.5	80.6	23.6	86.5	4,611	**	
3 × 5	5/16	76	18/32	7/16	15/32	16	17/82	9/16	, ,,,,,,,		
987937	16.2	19.2	20.7	22.2	28.6	25.0	26.8	27.7	4,710	"	
2% × 2%		5/16	11/32	36	18/32	7/16	15/32				
m/ m/	1,14	14.7	16.0	17.8	18.6	20.0	21.2	22.5	3,156	46	
21/4×21/4	11.9		5/16	11/32		13/32	7/16	44.0	0,100		
	1.4	9/32		14 8	.26			i	2,530		
21/4 × 21/4	10.6	11.9	18.1		15.5	16.8	17.8	1	2,000		
	7/82	1/4	9/82	5/16	11/32	36	1	ì	1 770		
2 ×2	8.8	9.4	10.4	11.5	12.6	18 6	1	• • • • •	1,752		
	8/16	7/32	-14	9/32	5/16	11/.2		1	4450	44	
1%×1%	6.21	7.18	8.18	9.05	9.96	10.8	11.7		1,150	**	
114×114	5.27	6.09	6.88	7.64	8.40	9.13			832	••	
	1/6	5/32	8/16	7/32	14	ļ	l .	1		44	
11/4 × 11/4	2.97	8.66	4 84	4.99	5.68				398		
1 x1	2.84	2.88	8.40	3.91	4.88	1			246	44	
	2.08	2.48	2.98	1	l				186	**	
%× %	1.72	2.09	2.46	1	l	1	1	1	183	"	

Uneven Legs.

5 ×4		7/16 41.8	47.5	9/16 53 .1	58.6	11/16 64.0	89.4	(30,680, 6" way) 14,750, 4" " (18,353, 5" "
5 ×31 <u>4</u> £14×8	80 20	85.8 3.7 80.9	40.0 85.0	44.7 89.0	49.2 48.0	58.7 46.8	58.1 50.6	9,651, 816"" 14,580, 412"" 7,020, 8"
4 ×8	20	/16 % 0.9 24.8	7/16 28.7	82.5	9/16 86 .2	89 .8	11/16 48 .4	9,850, 4" " 5,871, 8" " 6,180, 814" "
314 × 3 314 × 214	15.6 14.4	9.3 28.0 7.7 21.1	26.5 24.4	30.0 27.5	88.4 80.6	86.7 88.6	40 0 36.5	4,710, 8" " 6,037, 816" " 8,296, 216" "
81⁄4 × 11⁄4	1	1.9 /16 11/32	 36	13/32	7/16	36	9/16	5,515, 812"" 1,148, 112"" 4,490, 8""
3 ×21/4 3 ×2	13.110 7	8.2 17.7 /32 14 0.4 11.9	19.2 9/32 13.3	20.7 5/16 14.6	22.2 36 17.8	25.0 7/16 20.0	27.7 16 22.5	3,238, 214" " 8,838, 3" " 1,850, 2" "

TRENTON TEE BARS.

Designation of Bar.	Approximate Weig yard, for each th	Coefficient for Transverse Strength.		
Table. Leg. 4" × 4" 314" × 314" 314" × 314" 214" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214" 21" × 214"	7-16" 28.7 lbs. 96" 21.1" 5-16" 14.7" 5-16" 13.09 " 14" 9.4 " 14" 6.68 " 7-32" 4.87 " 5-32" 2.80 " 5-16" 14.6 lbs. 36" 17.3 " 9-32" 9.1 14" 7.4 " 14" 6.5 "	14" 87.5 ltms. 15" 82.5 " 15" 27.5 " 16" 17.3 " 5-16" 11.5 " 14" 5.5 " 8-16" 8.3 " 14" 5.5 "	Thinnest Bar. 15,800 lbs. 10,550 " 6,680 " 8,087 " 1,970 " 1,038 " 596 " 268 " 6,344 " 2,540 " 6,404 " 6,173 " 1,355 " 1,355 "	

SIZE OF BEAMS, AND THEIR DISTANCE APART, Suitable for Floors having Loads per square foot from 100 lbs. to 300 lbs.

t.	1	Load per sq. ft. 100 lbs.				per ft. lbs.	- 1	Load per sq. ft. 200 lbs.			q. f	per t. bs.		Load per sq. ft. 300 lbs.		
Clear Span in feet,	Size and Weight	per yard.	Distance from Centre to Cen- tre.	Size and Weight	per yard.	Distance from Centre to Cen- tre.	Size and Weight	per yard.	Distance from Centre to Cen- tre.	Size and Weight	per yard.	Dist. from Cen- tre to Centre.	Size and Weight	per yard.	Dist, from Cen-	
8 1	in.	lb. 30	feet 4.6	in,	lb. 30	feet 3.1	in.	1b. 30	feet 3.0	in.	lb. 40	3.9	6	40	feet 3.2	
i	5	30	5.9	5	30	4.0	6	40	4.8	6	50 50	3.0	5	50	3.9	
10	5	40	4.8	6	50	5.0	6	50	3.7	7	55	4.0	8	65	4.4	
19	6	40	4.2	6	50	3.4	7	55	3.4	8	65	3.6		65	3.0	
1-1	6	50	5.2	7	55	4.6	8	65	4.5	9	70	4.5	9	70	3.8	
14	8	55	5.0	8	65	3.3	8	65	3.3	1016	70 90	3.3	1016	90	3.3	
	8	65	6.7 5.0	8	65	3.3	9	85	3.7	1016	90	3.0	1012	105	3.6	
16}	9	70	6.3	9	70	4.2	1016	90	4.7	1016	105	4 3	1214	125	4.8	
. 6	9	70	4.9	9	85	3.9	1016	105	4.3	1012	105		1016	135	3.6	
18}	9	85	5.9	1016	90	4.9	12	96	4.6	1214	125	4.5	1214	125	3.7	
100	1016	90	6.0	101%	105	4.5	1016	105	3.4	1214	125	3,6	1214	125	3.0	
20			*****	1214	125	6.0	1214	125	4.5	1214	170	4.9	15	150	4.4	
22	1016	90	4.9	12	96	4.0	1214	125	3.7	1254	125	3.0	1234	170	3.3	
1	1016	105	5.6	1254	125	4.9	15	125	4.5	15	125	3.6		150	3.6	
24	12	96	5.0	1214	125	4.1 5.0	1234	125	3.0	1214	170	3.3	15	150 200	3.0	
- 1	1214	125	5.1	15	125	4.3	15 15	150	4.5 3.8	15 15	150 150	3.6	10	200	4.1	
263	1254	125		15 15	150	5.1	15	200	5.2	15	200	4.2	90	200	3.5	
1	15	125	5 5	15	150	4.3	15	200	4.4	15	200	3.5		200	3.9	
28}	1	140		15	200	5.9	20	200	6.0	20	200	4.8		272	5.8	
	15	150	5.6	15	150	3.7	15	200	3.8	20	200	4.1		200	3.4	
30 }	1000		0.55	15	200	5.1	20	200	5.2	20	272	5.5		272	4.0	

FLOORING MATERIAL.

For fire-proof flooring, the space between the floor-beams may be spanned with brick arches, or with hollow brick made especially for the purpose, the latter being much lighter than ordinary brick.

Arches 4 inches deep of solid brick weigh about 70 lbs. per square foot,

including the concrete levelling material, and substantial floors are thus including the concrete levelling material, and substantial floors are thus made up to 6 feet span of arch, or much greater span if the skew backs at the springing of the arch are made deeper, the rise of the arch being preferably not less than 1/10 of the span. Hollow brick for floors are usually in depth about ½ of the span, and are used up to, and even exceeding, spans of 10 feet. The weight of the latter material will vary from 20 lbs, per square foot for 3-foot spans up to 80 lbs, per square foot for spans of 10 feet. Full particulars of this construction are given by the manufacturers. For supporting brick floors the beams should be securely tied with rods to resist the laterial pressure.

In the following cases the loads, in addition to the weight of the floor itself way be assumed as:

med se

acm, many oc manusamu as.			
For street bridges for general public traffic	80 lbs.	per sq	. ft.
For floors of dwellings	40 lbs.	• "	
For floors of dwellings For churches, theatres, and ball-rooms	80 lbs.		44
For hay-lofts	80 lbs.		60
For storage of grain			44
For warehouses and general merchandise	250 lbs	- 66	44
For factories			64
For snow thirty inches deep			**
For maximum pressure of wind	50 lbs	- 44	46
For brick walls	112 lbs.	per cu	ı. ft.
For masonry walls 116			46
Roofs, allowing thirty pounds per square foot for wi	nd and	spow:	
For corrugated iron laid directly on the purlins	87 lbs.	Der so	. ft.
For corrugated from laid on boards	40 lbs	Po."	
For slate nailed to laths			**
For slate nailed on boards			66
201 2000 2000 1000			

If plastered below the rafters, the weight will be about ten pounds per square foot additional.

TIE-RODS FOR BEAMS SUPPORTING BRICK ARCHES.

The horizontal thrust of brick arches is as follows:

$$\frac{1.5WS^2}{R} = \text{pressure in pounds. per lineal foot of arch:}$$

W =load in pounds. per square foot; S =span of arch in feet; B =rise in inches.

Place the tie-rods as low through the webs of the beams as possible and spaced so that the pressure of arches as obtained above will not produce a greater stress than 15,000 lbs. per square inch of the least section of the bolt.

TORSIONAL STRENGTH.

Let a horizontal shaft of diameter = d be fixed at one end, and at the other or free end, at a distance = l from the fixed end, let there be fixed a horizontal lever arm with a weight = P acting at a distance = a from the axis of the shaft so as to twist it; then Pa = moment of the applied force.

Resisting moment = twisting moment = $\frac{SJ}{c}$, in which S = unit shearing resistance, J = polar moment of inertia of the section with respect to the axis, and c = distance of the most remote fibre from the axis, in a crosssection. For a circle with diameter d,

$$J = \frac{\pi d^4}{32}; \qquad c = 1/d;$$

$$Pa = \frac{8J}{c} = \frac{\pi d^3S}{16} = \frac{d^3}{5.1} = .1963d^3S; \quad d = \sqrt[3]{\frac{5.1Pa}{S}}.$$

For hollow shafts of external diameter d and internal diameter d_1 ,

$$Pa = .1968 \frac{d^4 - d_1^4}{d}S;$$
 $d = \sqrt[3]{\frac{5.1Pa}{\left(1 - \frac{d_1^4}{d^4}\right)S}}.$

For a square whose side = d,

$$J = \frac{d^4}{6}$$
; $c = d\sqrt{\frac{1}{2}}$; $\frac{SJ}{c} = Pa = \frac{d^3S}{4.2496} = 0.236d^3S$.

For a rectangle whose sides are b and d,

$$J = \frac{bd^3}{12} + \frac{b^3d}{12}; \qquad c = \frac{1}{2}\sqrt{b^2 + d^2}; \qquad \frac{SJ}{c} = Pa = \frac{(bd^3 + b^3d)S}{6\sqrt{b^2 + d^2}}.$$

The above formulæ are based on the supposition that the shearing resistance at any point of the cross-section is proportional to its distance from the axis; but this is true only within the elastic limit. In materials capable of axis; but this is true only within the elastic limit. In materials capable of flow, while the particles near the axis are strained within the elastic limit those at some distance within the circumference may be strained nearly to the ultimate resistance, so that the total resistance is something greater than that calculated by the formulæ. (See Thurston, "Mats of Eng.," Part II. p. 527.) Saint Venant finds for square shafts $Pa = 0.281d^3S$ (Rankine, "Mach, and Millwork," p. 504). For working strength, however, the formulæ may be used, with S taken at the safe working unit resistance. The ultimate torsional shearing resistance S is about the same as the direct shearing resistance, and may be taken at 20,000 to 25,000 lbs, per square inch for cast iron, 45,000 lbs, for wrought iron, and 50,000 to 150,000 lbs, for steel, according to its carbon and temper. Large factors of safety should be taken, especially when the direction of stress is reversed, as in reversing engines, and when the torsional stress is combined with other stresses, as is usual in shafting. (See "Shafting.")

Elastic Resistance to Torsion.—Let l = length of bar being twisted, d = diameter, <math>P = f force applied at the extremity of a lever arm of length = a, Pa = t twisting moment, G = t torsional modulus of elasticity, $\theta = angle through which the free end of the shaft is twisted, measured in arc of radius <math>= 1$.

arc of radius = 1.

For a cylindrical shaft

$$Pa = \frac{\pi \theta G d^4}{32l}; \qquad \theta = \frac{32 Pal}{\pi d^4 G}; \qquad G = \frac{32 Pal}{\theta \pi d^4}; \qquad \frac{32}{\pi} = 10.186.$$

If a =angle of torsion in degrees,

$$\theta = \frac{\alpha \pi}{180};$$
 $\alpha = \frac{180\theta}{\pi} = \frac{180 \times 32 Pal}{\pi^2 d^4 G} = \frac{583.6 Pal}{d^4 G}.$

The value of G is given by different authorities as from $\frac{1}{2}$ to $\frac{2}{5}$ of E, the modulus of elasticity for tension.

COMBINED STRESSES.

(From Merriman's "Strength of Materials.")

Combined Tension and Flexure.—Let A = the area of a bar subjected to both tension and flexure, P = tensile stress applied at the ends, P + A = unit tensile stress, S = unit stress at the fibre on the tensile side most remote from the neutral axis, due to flexure alone, then maximum tensile unit stress = (P+A)+8. A beam to resist combined tension and flexure should be designed so that (P+A)+8 shall not exceed the proper allowable working unit stress.

Combined Compression and Flexure.—If P+A= unit stress due to compression alone, and S= unit compressive stress at fibre most remote from neutral axis, due to flexure alone, then maximum compressive unit stress

$$=\frac{P}{A}+S$$
.

Combined Tension (or Compression) and Shear.-If ap-

plied tension (or compression) unit stress = p, applied shearing unit stress = v, then from the combined action of the two forces

Max.
$$S = \pm \sqrt{v^2 + \frac{1}{4}p^2}$$
, Maximum shearing unit stress;

Max. $t = \frac{1}{2}p + \sqrt{v^2 + \frac{1}{2}p^2}$, Maximum tensile (or compressive) unit stress.

Combined Flexure and Torsion.—If S= greatest unit stress due to flexure alone, and $S_0=$ greatest torsional shearing unit stress due to torsion alone, then for the combined stresses

Max. tension or compression unit stress
$$t = \frac{1}{4}S + \frac{1}{2}S^2 + \frac{1}{2}4S^2$$
;

Max. shear
$$s = \pm 4 S_0^2 + \frac{14}{4}S^2$$
.

Formula for diameter of a round shaft subjected to transverse load while transmitting a given horse-power (see also Shafts of Engines):

$$d^2 = \frac{16M}{\pi t} + \frac{16}{t} \sqrt{\frac{M^3}{\pi^2} + \frac{402,500,000H^2}{n^2}},$$

where $M=\max$ maximum bending moment of the transverse forces in poundinches, H= horse-power transmitted, n= No. of revs. per minute, and t= the safe allowable tensile or compressive working strength of the material.

Combined Compression and Torsion.—For a vertical round shaft carrying a load and also transmitting a given horse-power, the resultant maximum compressive unit stress.

$$t = \frac{4P}{\pi d^2} + \sqrt{821,000^2 \frac{H^2}{\pi^2 d^6} + \frac{16P^2}{\pi^2 d^4}},$$

in which P is the load. From this the diameter d may be found when t and the other data are given.

Stress due to Temperature.—Let l = length of a bar, A = its sectional area, c = coefficient of linear expansion for one degree, t = rise or fall in temperature in degrees, E = modulus of elasticity, λ the change of length due to the rise or fall t; if the bar is free to expand or contract, $\lambda = ctl$

If the bar is held so as to prevent its expansion or contraction the stress produced by the change of temperature = S = ActE. The following are average values of the coefficients of linear expansion for a change in temperature of one degree Fahrenheit:

For brick and stone...a = 0.000050, For cast iron....a = 0.000062, For wrought iron....a = 0.000067, For steela = 0.000063,

The stress due to temperature should be added to or subtracted from the stress caused by other external forces according as it acts to increase or to relieve the existing stress.

What stress will be caused in a steel bar 1 inch square in area by a change of temperature of 100° F.? $8 = ActE = l \times .0000055 \times 100 \times 30,000,000 =$

What stress will be caused in a steel bar 1 inch square in area by a change of temperature of 100° F.? $S = ActE = l \times .000005 \times 100 \times 30,000,000 = 19,500$ lbs. Suppose the bar is under tension of 19,500 lbs. between rigid abutments before the change in temperature takes place, a cooling of 100° F, will double the tension, and a heating of 100° will reduce the tension to zero.

STRENGTH OF FLAT PLATES.

For a circular plate supported at the edge, uniformly loaded, according to Grashof,

$$f = \frac{5}{6} \frac{r^2}{t^2} p;$$
 $t = \sqrt{\frac{5r^2p}{6f}};$ $p = \frac{6ft^2}{5r^3}.$

For a circular plate fixed at the edge, uniformly loaded,

$$f = \frac{2}{3} \frac{r^2}{t^2} p;$$
 $t = \sqrt{\frac{2}{3} \frac{r^2 p}{f}};$ $p = \frac{3ft^3}{2r^2};$

in which f denotes the working stress; r, the radius in inches; t, the thick ness in inches; and p, the pressure in pounds per square inch.

For mathematical discussion, see Lanza, "Applied Mechanics," p. 900, etc. Lanza gives the following table, using a factor of safety of 8, with tensile strength of cast iron 20,000, of wrought iron 40,000, and of steel 80,000:

Supporte	d. Fixed.
Cast iron $t = .0182570$	$r\sqrt{p}$ $t = .0168800 r\sqrt{p}$
Wrought iron $t = .0117850$	$r\sqrt{p}$ $t=.0105410r\sqrt{p}$
Steel $t = .0091287$	$r\sqrt{p} \qquad \qquad t = .0081649r\sqrt{p}$

For a circulate plate supported at the edge, and loaded with a concentrated load P applied at a circumference the radius of which is r_0 :

$$f = \left(\frac{4}{3}\log\frac{r}{r_0} + 1\right) \frac{P}{\pi t^2} = c\frac{P}{\pi t^2};$$
for $\frac{r}{r_0} = 10$ 90 30 40 50;
 $c = 4.07$ 5.00 5.53 5.92 6.22;
 $t = \sqrt{\frac{cP}{\pi f}};$ $P = \frac{\pi t^2 f}{c}.$

The above formulæ are deduced from theoretical considerations, and give thicknesses much greater than are generally used in steam-engine cylinder-heads. (See empirical formulæ under Dimensions of Parts of Engines.) The

heads. (See empirical formulæ under Dimensions of Parts of Engines.) The theoretical formulæ seem to be based on incorrect or incomplete hypotheses, but they err in the direction of safety.

The Strength of Unstayed Flat Surfaces.—Robert Wilson (Eng.g., Sept. 24, 1877) draws attention to the apparent discrepancy between the results of theoretical investigations and of actual experiments on the strength of unstayed flat surfaces of boiler-plate, such as the unstayed flat crowns of domes and of vertical boilers.

Rankine's "Civil Engineering" gives the following rules for the strength of a circular plate supported all round the edge, prefaced by the remark that "the formula is founded on a theory which is only approximately true, but which nevertheless may be considered to involve no error of practical importance:"

Who Pb2

$$M = \frac{Wb}{\theta \pi} = \frac{Pb^3}{94}$$
.

Here

M =greatest bending moment;

 $W = \text{total load uniformly distributed} = \frac{Pb^2\pi}{2\pi}$;

b =diameter of plate in inches;

P =bursting pressure in pounds per square inch.

Calling t the thickness in inches, for a plate supported round the edges,

$$M = \frac{1}{6} 42,000bt^2;$$
 $\therefore \frac{Pb^2}{24} = 7000t^2.$

For a plate fixed round the edges,

$$\frac{2}{8} \frac{Pb^2}{24} = 7000t^2$$
; whence $P = \frac{t^2 \times 68,000}{t^2}$,

where r =radius of the plate.

Dr. Grashof gives a formula from which we have the following rule:

$$P = \frac{t^2 \times 72,000}{t^2}.$$

This formula of Grashof's has been adopted by Professor Unwin in his "Elements of Machine Design." These formulæ by Rankine and Grashof

may be regarded as being practically the same.

On trying to make the rules given by these authorities agree with the results of his experience of the strength of unstayed flat ends of cylindrical boilers and domes that had given way after long use, Mr. Wilson was led to believe that the above rules give the breaking strength much lower than it actually is. He describes a number of experiments made by Mr. Nichols of Kirkstall, which gave results varying widely from each other, as the method of supporting the edges of the plate was varied, and also varying widely from the calculated bursting pressures, the actual results being in all cases very much the higher.

Some conclusions drawn from these results are:

 Although the bursting pressure has been found to be so high, boiler-makers must be warned against attaching any importance to this, since the plates deflected almost as soon as any pressure was put upon them and sprang back again on the pressure being taken off. This springing of the plate in the course of time inevitably results in grooving or channelling, which, especially when aided by the action of the corrosive acids in the water or steam, will in time reduce the thickness of the plate, and bring about the destruction of an unstayed surface at a very low pressure.

2. Since flat plates commence to deflect at very low pressures, they should never be used without stays; but it is better to dish the plates when they are

not stayed by flues, tubes, etc.

3. Against the commonly accepted opinion that the limit of elasticity should never be reached in testing a boiler or other structure, these experi-ments show that an exception should be made in the case of an unstayed flat end-plate of a boiler, which will be safer when it has assumed a permanent set that will prevent its becoming grooved by the continual variation of pressure in working. The hydraulic pressure in this case simply does what should have been done before the plate was fixed, that is, dishes it.

4. These experiments appear to show that the mode of attaching by flange or by an inside or outside angle-iron exerts an important influence on the

manner in which the plate is strained by the pressure.

When the plate is secured to an angle-iron, the stretching under pressure is, to a certain extent, concentrated at the line of rivet-holes, and the plate partakes rather of a beam supported than fixed round the edge. Instead of the strength increasing as the square of the thickness, when the plate is attached by an angle-iron, it is probable that the strength does not increase even directly as the thickness, since the plate gives way simply by stretching at the rivet-holes, and the thicker the plate, the less uniformly is the strain borne by the different layers of which the plate may be considered to be made up. When the plate is flanged, the flange becomes compressed by the pressure against the body of the plate, and near the rim, as shown by the contrary flavire, the inside of the plate is attached more than the outside. contrary flexure, the inside of the plate is stretched more than the outside, and it may be by a kind of shearing action that the plate gives way along

the line where the crushing and stretching meet.

5. These tests appear to show that the rules deduced from the theoretical investigations of Lamé, Rankine, and Grashof are not confirmed by experi-

ment, and are therefore not trustworthy.

Unbraced Wrought-fron Heads of Boilers, etc. (The Locomotive, Feb. 1890).—Few experiments have been made on the strength of flat heads, and our knowledge of them comes largely from theory. Experiments have been made on small plates 1-16 of an inch thick, yet the data so obtained cannot be considered satisfactory when we consider the far thicker heads that are used in practice, although the results agreed well with Ran-kine's formula. Mr. Nichols has made experiments on larger heads, and from them he has deduced the following rule: "To find the proper thickarom them he has deduced the following rule: "To find the proper thick-ness for a flat unstayed head, multiply the area of the head by the pressure per square inch that it is to bear safely, and multiply this by the desired factor of safety (say 8); theu divide the product by ten times the tensile strength of the material used for the head." His rule for finding the burst-ing pressure when the dimensions of the head are given is: "Multiply the thickness of the end-plate in inches by ten times the tensile strength of the material used, and divide the product by the area of the head in inches."

In Mr. Nichols's experiments the average tensile strength of the iron used for the heads was 44,800 pounds. The results he obtained are given below, with the calculated pressure, by his rule, for comparison.

1. An unstayed flat boiler-head is 34½ inches in diameter and 9-16 inches, thick. What is its bursting pressure? The area of a circle 34½ inches in diameter is 385 square inches; then 9-16 × 44,800 × 10 = 252,000, and 252,000 + 935 = 270 pounds, the calculated bursting pressure. The head actually burst at 280 pounds.

2. Head 34½ inches in diameter and $\frac{3}{2}$ inch thick. The area = $\frac{335}{2}$ square inches; then, $\frac{3}{2}$ × $\frac{4}{2}$ × $\frac{3}{2}$ × $\frac{3}{2}$ = $\frac{180}{2}$ pounds, calculated bursting pressure. This head actually burst at $\frac{3}{2}$ 00 pounds.

3. Head 2614 inches in diameter, and 36 inch thick. The area 541 square inches. Then, $36\times41,800\times10=168,000$, and 168,000+541=811 pounds. This head burst at 870 pounds.

4. Head 2814 inches in diameter and $\frac{9}{16}$ inch thick. The area = 638 square inches; then, $\frac{3}{16} \times 44,800 \times 10 = 168,000$, and $\frac{168,000 + 638}{168,000} = 263$ pounds. The actual bursting pressure was 300 pounds. In the third experiment, the amount the plate bulged under different pressures was as follows:

At pounds per sq. in.... 10 20 Plate bulged...........1/82 1/16 190 200 140 1/8 14 56 ¾

The pressure was now reduced to zero, "and the end sprang back 8-16 inch, leaving it with a permanent set of 9-16 inch. The pressure of 200 lbs. was again applied on 36 separate occasions during an interval of five days. the bulging and permanent set being noted on each occasion, but without any appreciable difference from that noted above.

The experiments described were confined to plates not widely different in their dimensions, so that Mr. Nichola's rule cannot be relied upon for heads

their dimensions, so that Mr. Melons & full cannot be relied upon for heads that depart much from the proportions given in the examples.

Thickness of Flat Cast-iron Plates to resist Bursting Pressures.—In Church's Life of Ericsson is found the following letter:

"My dear Sir: The proper thickness of a square cast-iron plate will be obtained by following: Multiply the side in feet (or decimals of a foot) by 1/4 of the pressure in pounds and divide by 850 times the side in inches; the custion is the course of the thickness in inches quotient is the square of the thickness in inches.

Example.—A plate 5 feet or 60 inches square, with a pressure of 80 lbs.

per square inch.

"Thickness =
$$\frac{5 \times \frac{1}{4} \times 3600 \times 30}{850 \times 60} = 2.64$$
. $\sqrt{2.64} = 1.62$ inches.

"For a circular plate, multiply 11-14 of the diameter in feet by 14 of the pressure on the plate in pounds. Divide by 850 times 11-14 of the diameter in inches. [Extract the square root.]

"Example.—Plate 5 feet diameter, pressure 80 lbs. per square inch.

"Area 2827
$$\times \frac{30}{4} = \frac{84.810}{4} = 21,203$$
; diam. 60 $\times \frac{11}{14} = 47.1$; 5 $\times \frac{11}{14} = 3.92$. 3.92 $\times 21,802 = 83,811$ 8.50 $\times 4.71 = \frac{83,811}{41,035} = 2.02$. $\sqrt{2.02} = 1.42$ inch.

"A great mathematician would cover half a dozen sheets with figures to solve this problem."

Strength of Stayed Surfaces.—A flat plate of thickness t is supported uniformly by stays whose distance from centre to centre is a, uniform load p lbs. per square inch. Each stay supports pa^2 lbs. The greatest stress on the plate is

 $f = \frac{2}{0} \frac{a^2}{49} p. \text{ (Unwin)}.$

SPHERICAL SHELLS AND DOMED BOILER-HEADS.

To find the Thickness of a Spherical Shell to resist a given Pressure.—Let d= diameter in inches, and p the internal pressure per square inch. The total pressure which tends to produce rupture around the great circle will be $\frac{1}{2}\pi d^2p$. Let S= safe tensile stress per square inch, and t the thickness of metal in inches; then the resistance to the pressure will be πdtS . Since the resistance must be equal to the pressure.

$$\frac{1}{4}\pi d^2p = \pi dtS$$
. Whence $t = \frac{pd}{4S}$.

The same rule is used for finding the thickness of a hemispherical head to a cylinder, as of a cylindrical boiler.

Thickness of a Domed Head of a boiler.—If S = safe tensile stress per square inch, d = diameter of the shell in inches, and t = thickness of the shell, t = pd + 2S; but the thickness of a hemispherical head of the same diameter is t = pd + 4S. Hence if we make the radius of curvature of a domed head equal to the diameter of the boiler, we shall have t = 2nd - 2nd.

 $\frac{P^{n*}}{2S}$, or the thickness of such a domed head will be equal to the thick-

ness of the shell.

Stresses in Steel Plating due to Water-pressure, as in plating of vessels and bulkheads (Engineering, May 22, 1891, page 629).

Mr. J. A. Yates has made calculations of the stresses to which steel plates

are subjected by external water-pressure, and arrives at the following connusions :

Assume 2a inches to be the distance between the frames or other rigid apports, and let d represent the depth in feet, below the surface of the vater, of the plate under consideration, t = thickness of plate in inches, the deflection from a straight line under pressure in inches, and P = stress per square inch of section.

For outer bottom and ballast-tank, plating, $a = 420 \frac{t}{10}$, D should not be greater than .05 $\frac{2a}{19}$, and $\frac{P}{9}$ not greater than 2 to 3 tons; while for bulkheads, etc., $a = 2352 \frac{t}{d}$, D should not be greater than $.1\frac{2a}{12}$, and $\frac{P}{9}$ not greater than tons. To illustrate the application of these formulæ the following cases have been taken:

For	Outer Bo	ttom, etc.	For Bulkheads, etc.				
Thick- ness of Plating.	Depth below Water.	Spacing of Frames should not exceed	Thick- ness of Plating	Depth of Water.	Maximum Spacing of Rigid Stiffeners.		
in XXXXXXX	ft. 20 10 18 9 10 5	in. About 21 42 43 48 48 48 48 48 40 40	in.	ft. 20 20 10 10 10	ft. in. 9 10 7 4 14 8 4 10 9 8 4 10		

It would appear that the course which should be followed in stiffening bulkheads is to fit substantially rigid stiffening frames at comparatively wide intervals, and only work such light angles between as are necessary for making a fair job of the bulkhead.

THICK HOLLOW CYLINDERS UNDER TENSION.

Burr, "Elasticity and Resistance of Materials," p. 86, gives

$$t = r \left\{ \left(\frac{h+p}{h-p} \right)^{\frac{1}{2}} - 1 \right\}$$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{maximum allowable hoop tension at the interior of the cylinder};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radius};$
 $t = \text{thickness}; r = \text{interior radi$

Merriman gives

s =unit stress at inner edge of the annulus; r =interior radius; t =thickness;

l = length.

The total interior pressure which tends to rupture the cylinder is 2rl - p. If p be the unit pressure, then $p = \frac{st}{r+t}$, from which one of the quantities s, p, r, or t can be found when the other three are given.

$$s = \frac{p(r+t)}{t};$$
 $r = \frac{(s-p)t}{p};$ $t = \frac{rp}{s-p}.$

In eq. (1), if t be neglected in comparison with r, it reduces to 2sit, which is the same as the formula for thin cylinders. If t=r, it becomes sit, or

is the same as the formula for thin symmers. If t = r, it becomes at, or only half the resistance of the thin cylinder.

The formulæ given by Burr and by Merriman are quite different, as will be seen by the following example: Let maximum unit stress at the inner edge of the annulus = 8000 lbs. per square inch, radius of cylinder = 4 inches, interior pressure = 4000 lbs. per square inch. Required the thickness.

By Burr,
$$t=4\left\{\left(\frac{8000+4000}{8000-4000}\right)^{\frac{1}{2}}-1\right\}=4\left(\sqrt[4]{8}-1\right)=2.928$$
 inches.

By Merriman,
$$t = \frac{4 \times 4000}{8000 - 4000} = 4$$
-inches.

Limit to Useful Thickness of Hollow Cylinders (Eng'g, Jan. 4, 1884).—Professor Barlow lays down the law of the resisting powers of thick cylinders as follows :

"In a homogeneous cylinder, if the metal is incompressible, the tension on every concentric layer, caused by an internal pressure, varies inversely as the square of its distance from the centre."

Suppose a twelve-inch gun to have walls 15 inches thick.

Pressure on exterior
$$=$$
 $\frac{6^2}{21^2} = 1:12.25.$

So that if the stress on the interior is 12½ tons per square inch, the stress on the exterior is only 1 ton.

Let s = the stress on the inner layer, and s, that at a distance x from the axis; r = internal radius, R = external radius.

$$s_1:s::r^2:x^2$$
, or $s_1=s\frac{r^2}{r^2}$.

The whole stress on a section 1 inch long, extending from the interior to the exterior surface, is $S = sr \times \frac{R - r}{R}$. In a 12-inch gun, let s = 40 tons, r = 6 in., R = 21 in.

$$s = 40 \times 6 \times \frac{21-6}{21} = 179$$
 tons.

Suppose now we go on adding metal to the gun outside: then R will become so large compared with r, that R-r will approach the value R, so that the fraction $\frac{R-r}{R}$ becomes nearly unity.

Hence for an infinitely thick cylinder the useful strength could never exceed Sr (in this case 240 tons).

Barlow's formula agrees with the one given by Merriman.

Another statement of the gun problem is as follows: Using the formula

$$p=\frac{st}{r+t},$$

 $s = 40 \text{ tons}, t = 15 \text{ in.}, r = 6 \text{ in.}, p = \frac{40 \times 15}{21} = 284 \text{ tons per sq. in.}, 284 \times$ radius = 172 tons, the pressure to be resisted by a section 1 inch long of the thickness of the gun on one side. Suppose thickness were doubled, making t = 30 in.: $p = \frac{40 \times 30}{32} = 38\frac{1}{6}$ tons, or an increase of only 16 per cent.

For short cast-iron cylinders, such as are used in hydraulic presses, it is doubtful if the above formulæ hold true, since the strength of the cylindrical portion is reinforced by the end. In that case the bursting strength would be higher than that calculated by the formula. A rule used in practice for such presses is to make the thickness = 1/10 of the inner circumference, for pressures of 3000 to 4000 lbs. per square inch. The latter pressure would bring a stress upon the inner layer of 10,350 lbs. per square inch, as calculated by the formula; which would necessitate the use of the best charcoal-iron to make the press reasonably as fe best charcoal-iron to make the press reasonably safe,

THIN CYLINDERS UNDER TENSION.

Let p = safe working pressure in lbs. per sq. in.; d = diameter in inches; T = tensile strength of the material, lbs. per sq. in.;

t =thickness in inches;

f = factor of safety;

c = ratio of strength of riveted joint to strength of solid plate.

$$fpd = 2Ttc; p = \frac{2Ttc}{df}; t = \frac{fpd}{2Tc}.$$

If T = 50000, f = 5, and c = 0.7; then

$$p = \frac{14000t}{d}$$
; $t = \frac{dp}{14000}$

The above represents the strength resisting rupture along a longitudinal seam. For resistance to rupture in a circumferential seam, due to pressure on the ends of the cylinder, we have $\frac{p\pi d^2}{4} = \frac{Tt\pi dc}{t}$;

whence
$$p = \frac{4Ttc}{df}$$
.

Or the strength to resist rupture around a circumference is twice as great as that to resist rupture longitudinally; hence boilers are commonly single-riveted in the circumferential seams and double-riveted in the longitudinal seams.

HOLLOW COPPER BALLS.

Hollow copper balls are used as floats in boilers or tanks, to control feed and discharge valves, and regulate the water-level.

They are spun up in halves from sheet copper, and a rib is formed on one half. Into this rib the other half fits, and the two are then soldered or brazed together. In order to facilitate the brazing, a hole is left on one side of the ball, to allow air to pass freely in or out; and this hole is made use of afterwards to secure the float to its stem. The original thickness of the metal may be anything up to about 1-16 of an inch, if the spinning is done on a hand lathe, though thickner metal may be used when special machinery on a nand latne, though thicker metal may be used when special machinery is provided for forming it. In the process of spinning, the metal is thinned down in places by stretching; but the thinnest place is neither at the equator of the ball (i.e., along the rib) nor at the poles. The thinnest points lie along two circles, passing around the ball parallel to the rib, one on each side of it, from a third to a half of the way to the poles. Along these lines the thickness may be 10, 15, or 20 per cent less than elsewhere, the reduction depending somewhat on the skill of the workman.

The Locomotive for October, 1891, gives two empirical rules for determining the thickness of a coppen ball which is to work under an external pressure as follows:

pressure, as follows:

1. Thickness =
$$\frac{\text{diameter in inches} \times \text{pressure in pounds per sq. in.}}{16,000}$$

These rules give the same result for a pressure of 166 lbs. only. Example: Required the thickness of a 5-inch copper ball to sustain

200 250 lbs. per sq. in.

HOLDING-POWER OF NAILS, SPIKES, AND SCREWS.

(A. W. Wright, Western Society of Engineers, 1881.)

Spikes.-Spikes driven into dry cedar (cut 18 months):

Size of spikes	$5 \times \frac{1}{4}$ in. sq.	6 × 1/4	6 × 1/4	5 × %
Length driven in	4¼ in.	5 in.	5 in.	4¼ in.
Pounds resistance to drawing. Av'ge, lbs.	857	821	1691	1202
	1159	923	2129	1556
From 6 to 9 tests each	7 6 6	766	1120	687

A. M. Wellington found the force required to draw spikes $9/16 \times 9/16$ in., driven 414 inches into seasoned oak, to be 4281 lbs.; same spikes, etc., in un-

driven 43 inches into seasoned oak, to be 421 10s.; same spikes, etc., in unseasoned oak, 6523 lbs.

"Professor W. R. Johnson found that a plain spike 36 inch square driven 336 inches into seasoned Jersey yellow pine or unseasoned chestnut required about 2000 lbs. force to extract it; from seasoned white oak about 4000 and from well-seasoned locust 6000 lbs."

Experiments in Germany, by Funk, give from 2465 to 3940 lbs. (mean of many experiments about 3000 lbs.) as the force necessary to extract a plain many experiments about 3000 lbs.) as the force necessary to extract a plain 45-inch square iron spike 6 inches long, wedge-pointed for one inch and driven 446 inches into white or yellow pine. When driven 5 inches the force required was about 1/10 part greater. Similar spikes 9/16 inches square, rinches long, driven 6 inches deep, required from 3700 to 6745 lbs. to extract them from pine; the mean of the results being 4873 lbs. In all cases about twice as much force was required to extract them from oak. The spikes were all driven across the grain of the wood. When driven with the grain, spikes or nails do not hold with more than half as much force.

Rearls of the required together by from 4 to 16 tengary common cut.

Boards of oak or pine nailed together by from 4 to 16 tenpenny common cut nails and then pulled apart in a direction lengthwise of the boards, and across the nails, tending to break the latter in two by a shearing action, averaged about 300 to 400 lbs. per nail to separate them, as the result of

many trials.

Resistance of Drift-bolts in Timber. Tests made by Rust and Coolidge, in 1878.

1st	Test.	1 in. square	iron	drove	30	in.	in	white pine	15/16-in.	Pounds. hole26,400
2d	• •	1 in, round	**	**	84	**	"		18/16-in.	16,800
3d	"	1 in. square	**			"				"14,600
4th		1 in. round	46					46 44	18/16-in.	"18,200
5th	**	1 in. round	"	**	84	64	"]	Norw'y pine	e,18/16-in.	"18,720
6th	"	1 in, square	"	"	80	"	"	" "	15/16-in.	
7th	44	1 in. square	"	**	18	"	**	** **	15/16-in.	
8th		1 in. round	**	**	22	"	"	** **	13/16-in.	"14,400

NOTE.—In test No. 6 drift-bolts were not driven properly, holes not being in line, and a piece of timber split out in driving.

Force required to draw Screws out of Norway Pine.

79 "	aiain.	4 threads	v 4 m. m i	voou.		rower	requirea,	average	2424 I	DR.
. 4	**	4 threads	per in. 5 i	n. in w	ood.	**	- "		2743	
"	"	D'ble thr'd				"	"	44	2780	"
"	"	Lag-screw	, 7 per in.,	11/6 "	"	46	44	46	1465	**
"	"	a	6 " "	217 "		"	**	44	2026	**
1 ∕6 i	in ch R.	R. spike	• · · · · · · · · ·	5 "	**	44	"	**	2191	**

Force required to draw Wood Screws out of Dry Wood. Force required to draw wood screws out of Dry Wood.
—Tests made by Mr. Bevan. The screws were about two inches in length,
22 diameter at the exterior of the threads, .15 diameter at the bottom, the
depth of the worm or thread being .635 and the number of threads in one
inch equal 12. They were passed through pieces of wood half an inch in
thickness and drawn out by the weights stated: Beech, 460 lbs.: ash, 790
lbs.: oak. 760 lbs.: mahogany, 770 lbs.; elm, 665 lbs.; sycamore, 830 lbs.

Tests of Lag-screws in Various Woods were made by A. J.
Cox, University of Iowa, 1891:

Kind of Wood.	Size Screw.	Size Hole bored.	Length in Tie.	Max. Resist. lbs.	No. Tests.
Seasoned white oak	56 in.	16 in.	436 in.	8037	3
	9/16 **	7/16 "	8´~ ''	6480	1
" " "	16 "	'86 ''	41/6 "	8780	2
Yellow-pine stick	56 "	12 "	4 " "	8800	2
White cedar, unseasoned	62 "	12 "	4 "	8405	2

In figuring area for lag-screws, the surface of a cylinder whose diameter is equal to that of the screw was taken. The length of the screw part in each case was 4 inches.—Engineering News, 1891.

Cut versus Wire Nails.—Experiments were made at the Watertown

Arsenal in 1893 on the comparative direct tensile adhesion, in pine and spruce, of cut and wire nails. The results are stated by Prof. W. H. Burr as follows:

There were 58 series of tests, ten pairs of nails (a cut and a wire nail in each) being used, making a total of 1180 nails drawn. The tests were made in spruce wood in most instances, but some extra ones were made in white pine, with "box nails." The nails were of all sizes, varying from 1½ inches to 6 inches in length. In every case the cut nails showed the superior holding strength by a large percentage. In spruce, in nine different sizes of nails, both standard and light weight, the ratio of tenacity of cut to wire nail was about 3 to 2, or, as he terms it, "a superiority of 47.45 of the former." With the "finishing" nails the ratio was roughly 3.5 to 2; superiority 7.2%. With box nails (1½ to 4 inches long) the ratio was roughly 3 to 2; superiority 7.5%. The mean superiority in spruce wood was 61%. In white pine, cut nails, driven with taper along the grain, showed a superiority of 100%, and with taper across the grain of 185%. Also when the nails were driven in the end of the stick, i.e., along the grain, the superiority of cut nails was 100%, or the ratio of cut to wire was 2 to 1. The total of the results showed the ratio of tenacity to be about 3.2 to 2 for the harder wood, and about 2 to 1 for the softer, and for the whole taken together the ratio was 3.5 to 2. We are led to conclude that under these circumstances the cut nail is superior to the wire nail in direct tensile holding-power by 72.74%.

Nail-holding Power of Various Woods.

(Watertown Experiments.)

Kind of Wood.	Size of Nail.	Holding-power per square inch of Surface in Wood, lbs.						
		Wire Nail.	Cut Nail.	Mean.				
White pine	8d 9 '' 20 '' 50 ''	- 167	450 455 477 847 868 840	405				
Yellow pine	8 " 10 " 50 "	818	695 755 596 604	662				
White oak	8 · · · · · · · · · · · · · · · · · · ·	940	1340 1292 1018	1216				
Chestnut	50 '' 60 ''		664 702	683				
Laurel }	9 ''	651	1179 1221	1200				

Nail-holding Power of Various Woods.

(F. W. Clay's Experiments. Ar	Tenacity of 6d nails				
Wood.					
11 00u.	Plain.	Barbed.	Blued.	Mean.	
White pine	106	94	185	111	
Yellow pine	190	130	270	196	
Basswood	78	132	219	143	
White oak	226	300	555	360	
Hamlack	1/11	901	910	990	

Tests made at the University of Illinois gave the resistance of a 1-in. round rod in a 15/16-inch hole perpendicular to the grain, as 6000 lbs. per lin. ft. in pine and 15,600 lbs. in oak, Experiments made at the East River Bridge gave resistances of 12,000 and 15,000 lbs. per lin. ft. for a 1-in. round rod in holes 15/16-in. and 14/16-in. diameter, respectively, in Georgia pine.

Holding-power of Bolts in White Pine.

(Eng'a News, September 26, 189	91.)	
(Round.	Square. Lbs.
	Lbs.	
Average of all plain 1-in, bolts	8224	8200
Average of all plain bolts, % to 11/6 in	7805	8110
Average of all bolts	8383	8598

Round drift-bolts should be driven in holes 13/16 of their diameter, and source drift-bolts in holes whose diameter is 14/16 of the side of the square.

STRENGTH OF WROUGHT IRON BOLTS.

(Computed by A. F. Nagle.)

	si	E	Stress upon Bolt upon Basis of						
Diameter of Bolt, Inches.	Diameter of Bottom of Thread, Inches	Area at Bottom of Thread, Square Inches.	g 3000 lbs. per sq. inch.	ed 4000 lbs. per g sq. inch.	eq 5000 lbs. per sq. inch.	sq 7000 lbs. per sq. inch.	sq 10000 lbs. per sq. inch.	Probable sq Breaking Load.	
1 18 9 16 12 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.66 1.92 2.12 2.37	.12 .15 .19 .28 .39 .52 .65 .84 1.00 1.23 1.44 1.65 2.18 2.18 2.18 3.55 2.18 4.43 5.20 7.25	350 450 560 750 1180 1550 2520 3000 3080 4300 5840 6540 6550 10640 13290 21780 21860	460 600 750 1130 1570 2600 3360 4900 4910 5740 6600 7800 8720 11530 11420 17720 290770 29000 38500	580 750 930 1410 1970 2000 3250 4200 5000 6140 7180 8250 9800 14400 17730 26000 36260 36260 48100	810 1050 1310 1990 2760 3680 4560 5900 7000 10000 11560 13640 20180 24830 31000 36360 50760 67350	1160 1500 1870 2880 3940 5180 6510 10000 12280 14360 16510 19500 28800 35500 44300 52000 72500	5800 7500 9000 14000 19000 25000 39000 56000 65000 74000 125000 150000 125000 213000 213000 213000	

When it is known what load is to be put upon a bolt, and the judgment of the engineer has determined what stress is safe to put upon the iron, look down in the proper column of said stress until the required load is found. The area at the bottom of the thread will give the equivalent area of a flat bar to that of the bolt.

Effect of Initial Strain in Bolts.—Suppose that bolts are used to connect two parts of a machine and that they are screwed up tightly before the effective load comes on the connected parts. Let $P_1 =$ the initial tension on a bolt due to screwing up, and $P_2 =$ the load afterwards added. The greatest load may vary but little from P_1 or P_2 , according as the former or the latter is greater, or it may approach the value $P_1 + P_2$, depending upon the relative rigidity of the bolts and of the parts connected. Where rigid flanges are bolted together, metal to metal, it is probable that the extension of the bolts with any additional tension relieves the initial tension, and that the total tension is P_1 or P_2 , but in cases where elastic packing, as india rubber, is interposed, the extension of the bolts may very little affect the initial tension, and the total strain may be nearly $P_1 + P_2$. Since the latter assumption is more unfavorable to the resistance of the bolt, this contingency should usually be provided for. (See Unwin, "Elements of Machine Design" for demonstration.)

STAND-PIPES AND THEIR DESIGN.

(Freeman C. Coffin, New England Water Works Assoc., Eng. News, March 16, 1893.) See also papers by A. H. Howland, Eng. Club of Phil. 1887; B. F. Stephens, Amer. Water Works Assoc., Eng. News, Oct. 6 and 13, 1888; W. Kiersted, Rensselaer Soc. of Civil Eng., Eng. q Record. April 25 and May 2, 1891, and W. D. Pence, Eng. News, April and May, 1894.

The question of diameter is almost entirely independent of that of height. The efficient capacity nust be measured by the length from the high-water line to a point below which it is undesirable to draw the water on account of loss of pressure for fire-supply, whether that point is the actual bottom of the stand-pipe or above it. This allowable fluctuation ought not to exceed of ft., in most cases. This makes the diameter dependent upon two condi-

tions, the first of which is the amount of the consumption during the ordinary interval between the stopping and starting of the pumps. This should never draw the water below a point that will give a good fire stream and leave a margin for still further draught for fires. The second condition is the maximum number of fire streams and their size which it is considered necessary to provide for, and the maximum length of time which they are liable to have to run before the pumps can be relied upon to reinforce

Another reason for making the diameter large is to provide for stability

against wind-pressure when empty.

The following table gives the height of stand-pipes beyond which they are not safe against wind-pressures of 40 and 50 lbs. per square foot. The area of surface taken is the height multiplied by one half the diameter.

Heights of Stand-pipe that will Resist Wind-pressure by its Weight alone, when Empty.

Diameter,	Wind, 40 lbs.	Wind, 50 lbs.
feet.	per sq. ft.	per sq. ft.
20	45	85
25	70	55
30	150	80
35		160

To have the above degree of stability the stand-pipes must be designed with the outside angle-iron at the bottom connection.

win the outside angle-iron at the bottom connection.

Any form of anchorage that depends upon connections with the side plates near the bottom is unsafe. By suitable guys the wind-pressure is resisted by tension in the guys, and the stand-pipe is relieved from wind strains that tend to overthrow it. The guys should be attached to a band of angle or other shaped iron that completely encircles the tank, and rests upon some sort of bracket or projection, and not be riveted to the tank. They should be anchored at a distance from the base equal to the height of the point at which they are attached, if possible.

The best plan is to build the stand-pipe of such diameter that it will resist the wind by its own stability.

the wind by its own stability.

Thickness of the Side Plates.

The pressure on the sides is outward, and due alone to the weight of the The pressure on the sides is ottward, and due above to the weight of the water, or pressure per square inch, and increases in direct ratio to the height, and also to the diameter. The strain upon a section 1 inch in height at any point is the total strain at that point divided by two—for each side is supposed to bear the strain equally. The total pressure at any point is equal to the diameter in inches, multiplied by the pressure per square inch, due to the height at that point. It may be expressed as follows:

$$H$$
 = height in feet, and f = factor of safety;
 d = diameter in inches;
 p = pressure in lbs. per square inch;
 434 = p for 1 ft. in height;
 s = tensile strength of material per square inch;
 T = thickness of plate.

Then the total strain on each side per vertical inch

$$=\frac{.434Hd}{2}=\frac{pd}{2}; T=\frac{.434Hdf}{2s}=\frac{pdf}{2s}.$$

Mr. Coffin takes f = 5, not counting reduction of strength of joint, equivalent to an actual factor of safety of 3 if the strength of the riveted joint is taken as 60 per cent of that of the plate.

The amount of the wind strain per square inch of metal at any joint can be found by the following formula, in which

H = height of stand-pipe in feet above joint;

T = thickness of plate in inches; p = wind-pressure per square foot: W = wind-pressure per foot in height above joint; W = Dp where D is the diameter in feet; m = average leverage or movement about neutral axis or central points in the circumference; or, $m = \text{sine of } 45^{\circ}$, or .707 times the radius in feet.

Then the strain per square inch of plate

$$= \frac{(Hw)\frac{H}{2}}{\text{circ. in ft.} \times mT}$$

Mr. Coffin gives a number of diagrams useful in the Jesign of stand-pipes, together with a number of instances of failures, with discussion of their probable causes.

Mr. Kiersted's paper contains the following: Among the most prominent strains a stand-pipe has to bear are: that due to the static pressure of the water, that due to the overturning effect of the wind on an empty stand-pipe, and that due to the collapsing effect, on the upper rings, of violent wind storms.

For the thickness of metal to withstand safely the static pressure of water, let

t =thickness of the plate iron in inches;

H = height of stand-pipe in feet;D = diameter of stand-pipe in feet.

Then, assuming a tensile strength of 48,000 lbs. per square inch, a factor of safety of 4, and efficiency of double-riveted lap-joint equalling 0.6 of the strength of the solid plate,

$$t = .00036H \times D;$$
 $H = \frac{10,000t}{3.6D};$

which will give safe heights for thicknesses up to 5% to 3% of an inch. The same formula may also apply for greater heights and thicknesses within practical limits, if the joint efficiency be increased by triple riveting.

The conditions for the severest overturning wind strains exist when the

stand-pipe is empty.

Formula for wind-pressure of 50 pounds per square foot, when

d = diameter of stand-pipe in inches;

x =any unknown height of stand-pipe;

 $x = \sqrt{80\pi dt} = 15.85 \sqrt{dt}$.

The following table is calculated by these formulæ. The stand-pipe is intended to be self-sustaining; that is, without guys or stiffeners.

Heights of Stand-pipes for Various Diameters and Thicknesses of Plates.

Thickness of	Diameters in Feet.												
Plate in Fractions of an Inch.	5	6	7	8	9	10	12	14	15	16	18	20	25
3-16	50	55	60	65	55	50	35			<u> </u>			
7-32	55				65	60	50	40	40				
4–16	60	65	70	75	75.	70	55	50	45	40	35	35	25
5-16	70	75	80	85	90.	85	70	60	55	50	45	40	35
6-16	75	80	90	95	100	100	85	75	70	65	55	50	40
7-16	80	90	95	100	110	115	100	85	80	75	65	60	45
8-16	85	95	100	110	115	120	115	100	90	85	75	70	55
9–16				115	125	130	130	110	100		85	80	60
10–16					130	135	145	120	115	105	95	85	65
11-16			l	1		145	155	135	125	120	105	95	75
12-16			1			150	165	145	135	130	115	105	80
13–16			١			.00		160	150		125	110	90
14-16			1				3.	100	160	150	185	120	95
15-16	• • • •	• • • • •			- 5		33.		100	160	145	130	105
		١٠٠٠.			1		550		••••	100	155	140	110
16–16	• • • •		1	1	- FI	- 1 4 2		· · · · · · · · · · · · · · · · · · ·	••••		100	140	310

Heights to nearest 5 feet. Rings are to build 5 feet vertically.

Fallures of Stand-pipes have been numerous in recent years. A list showing 23 important failures inside of nine years is given in a paper by Prof. W. D. Pence, Eng'g. News, April 5, 12, 19 and 25, May 3, 10 and 24, and June 7, 1894. His discussion of the probable causes of the failures is most valuable.

Kenneth Allen, Engineers Club of Philadelphia, 1886, givet the following

rules for thickness of plates for stand pipes.

Assume: Wrought iron plate T. S. 48,000 pounds in direction of fibre, and T. S. 45,000 pounds across the fibre. Strength of single riveted joint 4 that of the plate, and of double riveted joint, 7 that of the plate; wind pressure 50 pounds per square foot: safety factor = 3.

Let h = total height in feet; r = outer radius in feet; r' = inner radius

in feet; p = pressure per square inch; t = thickness in inches; d = outer diameter in feet.

Then for pipe filled and longitudinal seams double riveted

$$t = \frac{pr \times 12}{48,000 \times .7 \times \frac{1}{26}} = \frac{hd}{4301};$$

and for pipe empty and lateral seams, single riveted, we have by equating moments:

$$50 \times 2r \left(\frac{h}{2}\right)^2 = 144 \times 6000 \left(r^4 - r'^4\right) \cdot \frac{.7854}{r}$$
, whence $r^4 - r'^4 = \frac{h^2 r^2}{27144}$.

Table showing required Thickness of Bottom Plate.

Height in	Diameter.							
Feet.	5 feet.	10 feet.	15 feet.	20 feet.	25 feet.	30 feet.		
50 60 70 80 90 100 125 150 176 200	77-64* +11-64* +7-32 +19-64 + 36 +29-64	76 * 9-64* 11-64* 3-16 7-32 115-64 123-64 11-16 129-32	11-64* 7-32 14 9-32 5-16 28-64 7-16 17-32 39-64 45-64	15-64 9-32 21-64 34 27-64 15-32 37-64 45-64 13-16 15-16	19-64 23-64 13-32 15-32 17-32 37-64 47-64 76 1 1-32 1 11-64	23-64 27-64 31-64 9-16 96 45-64 1 3-64 1 7-32 1 25-64		

^{*}The minimum thickness should = 3-16".

Water Tower at Yonkers, N. Y.—This tower, with a pipe 122 feet high and 20 feet diameter, is described in *Engineering News*, May 18, 1892. The thickness of the lower rings is 11-16 of an inch, based on a tensile strength of 60,000 lbs. per square inch of metal, allowing 65% for the strength of riveted joints, using a factor of safety of 31/4 and adding a constant of 1/4 inch. The plates diminish in thickness by 1-16 inch to the last four values at the top which are 1/4 inch thickness.

1/4 inch. The plates diminish in thickness by 1-16 inch to the last rour plates at the top, which are 1/4 inch thick.

The contract for steel requires an elastic limit of at least 33,000 lbs. per square inch; an ultimate tensile strength of from 56,000 to 66,000 lbs, per square inch; an elongation in 8 inches of at least 20%, and a reduction of area of at least 45%. The inspection of the work was made by the Pittsburgh Testing Laboratory. According to their report the actual conditions developed were as follows: Elastic limit from 34,020 to 39,420; the tensile strength from 58,330 to 65,390; the elongation in 8 inches from 221/4 to 32%; reduction in area from 52.72 to 71.32%; 17 plates out of 141 were rejected in the inspection. the inspection.

WROUGHT-IRON AND STEEL WATER-PIPES.

Riveted Sicel Water-pipes Engineering News, Oct. 11, 1890, and Aug. 1, 1891.)—The use of riveted wrought-iron pipe has been common in the Pacific States for many years, the largest being a 44-inch conduit in connection with the works of the Spring Valley Water Co., which supplies San Francisco. The use of wrought iron and steel pipe has been necessary in the West, owing to the extremely high pressures to be withstood and the West, owing to the extremely high pressures to be withstood. and the difficulties of transportation. As an example: In connection with

N.B.—Dimensions marked † determined by wind-pressure.

the water supply of Virginia City and Gold Hill, Nev., there was laid in 1872 an 1114-inch riveted wrought-iron pipe, a part of which is under a head

of 1720 feet.

In the East, the most important example of the use of riveted steel water pipe is that of the East Jersey Water Co., which supplies the city of Newark. The contract provided for a maximum high service supply of 25,000,000 gallons daily. In this case 21 mues of 48 inch pipe was laid, some of it under 340 The plates from which the pipe is made are about 18 feet long feet head. by 7 feet wide, open-hearth steel. Four plates are used to make one section of pipe about 27 feet long. The pipe is riveted longitudinally with a double row, and at the end joints with a single row of rivets of varying diameter, corresponding to the thickness of the steel plates. Before being rolled into the trench, two of the 27-feet lengths are riveted together, thus diminishing still further the number of joints to be made in the trench and the extra excavation to give room for jointing. All changes in the grade of the pipeline are made by 10° curves and all changes in line by 2½, 5, 7½ and 10° curves. To lay on curved lines a standard bevel was used, and the different curves are secured by varying the number of beveled joints used on a certain length of pipe.

The thickness of the plates varies with the pressure, but only three thicknesses are used, ½, 5-16, and ½ inches, the pipe made of these thicknesses having a weight of 160, 185, and 225 lbs. per foot, respectively. At the works all the pipe was tested to pressure 1½ times that to which it is to be subjected when in place.

Mannesmann Tubes for High Pressures.—At the Mannesmann Works at Komotau, Hungary, more than 600 tons or 25 miles of 3-inch and 4-inch tubes averaging 14 inch in thickness have been successfully tested to a pressure of 2000 bis, per square inch. These tubes were intended for a high-pressure water-main in a Chilian nitrate district.

This great tensile strength is probably due to the fact that, in addition to being much more worked than most metal, the fibres of the metal run spirally, as has been proved by microscopic examination. While cast-iron tubes will hardly stand more than 200 lbs. per square inch, and welded tubes are not safe above 1000 lbs. per square inch, the Mannesmann tube easily withstands 2000 lbs. per square inch. The length up to which they can be readily made is shown by the fact that a coil of 3-inch tube 70 feet long was made recently.

For description of the process of making Mannesmann tubes see Trans.

A. I. M. E, vol. xix., 384.

STRENGTH OF VARIOUS MATERIALS. EXTRACTS FROM KIRKALDY'S TESTS.

The recent publication, in a book by W. G. Kirkaldy, of the results of many thousand tests made during a quarter of a century by his father, David Kirkaldy, has made an important contribution to our knowledge concerning the range of variation in strength of numerous materials. A condensed about these results was published in the American Muchinist, May II and 18, 1893, from which the following still further condensed extracts are taken:

The figures for tensile and compressive strength, or, as Kirkaldy calls them, pulling and thrusting stress, are given in pounds per square inch of them, pulming and throughout strength in pounds of actual stress or pounds of actual stress or pounds per BD^2 (breadth \times square of depth) for length of 36 inches between supports. The contraction of area is given as a percentage of the original area, and the extension as a percentage in a length of 10 inches, except when otherwise stated. The abbreviations T. S., E. L., Contr., and Ext. are used for the self-soft percentage in the strength of the stren for the sake of brevity, to represent tensile strength, elastic limit, and per-centages of contraction of area, and elongation, respectively. Cast Iron.—44 tests: T. S. 15,468 to 28,740 pounds; 17 of these were un-sound, the strength ranging from 15,468 to 24,357 pounds. Average of all,

23,805 pounds.

Thrusting stress, specimens 2 inches long, 1.34 to 1.5 in diameter; 43 tests, all sound, 94,352 to 131,912; one, unsound, 93,759; average of all, 113,825.

Bending stress, bars about 1 in. wide by 2 in deep, cast on edge. Ultimate stress 2876 to 3854; stress per $BD^2 = 725$ to 892; average, 820. Average modulus of rupture, $R_1 = \text{stress}$ per $BD^2 \times \text{length}$, = 29,520. Ultimate deflection, 29 to 40 in.; average 34 inch.

Other tests of cast iron, 460 tests, 16 lots from various sources, gave re-

sults with total range as follows: Pulling stress, 12,688 to 33,616 pounds; thrusting stress, 66,363 to 175,980 pounds; bending stress, per BD 5,505 to 11,28 pounds; modulus of rupture, R, 18,180 to 40,608. Ultimate deflection, .21 to .45 inch.

The specimen which was the highest in thrusting stress was also the highest in bending, and showed the greatest deflection, but its tensile strength

was only 26,502.

The specimen with the highest tensile strength had a thrusting stress of 143,939, and a bending strength, per BD^2 , of 979 pounds with 0.41 deflection. The specimen lowest in T. S. was also lowest in thrusting and bending, but gave .38 deflection. The specimen which gave .21 deflection had T. S., 19,188;

thrusting, 101.281; and bending, 561.

Iron Castings.—69 tests; tensile strength, 10,416 to 81,652; thrusting

stress, ultimate per square inch. 53.502 to 132,031.

Channel Irons.—Tests of 18 pieces cut from channel irons. 40.693 to 53,141 pounds per square inch; contr. of area from 3.9 to 32.5 \$\frac{3}{2}\$. Ext. in 10 in. from 2.1 to 22.5 \$\frac{3}{2}\$. The fractures ranged all the way from 100 \$\frac{3}{2}\$ fibrous to 100 \$\frac{3}{2}\$ crystalline. The highest T. S., 53,141, with 8.1 \$\frac{3}{2}\$ contr. and 2.1 \$\frac{3}{2}\$ ext., was 100 \$\frac{3}{2}\$ crystalline; the lowest T. S., 40,693, with 3.9 contr. and 2.1 \$\frac{3}{2}\$ ext., 7.73 to 32.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.2 to 22.5 \$\frac{3}{2}\$ ext., 17.3 to 32.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.2 to 22.5 \$\frac{3}{2}\$ ext., 17.3 to 32.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 22.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 22.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and T. S. from 43,426 to 49,615. The fibrous irons showed from 12.3 to 23.5 contr. and 13.5 contracture irons showed from 12.3 to 23.5 contracture irons showed from 12.3 to 23.5 contracture irons showed from 12.3 to 23.5 contracture irons showed from 12.3 to 23.5 contracture irons showed fro

22.5 ext., 11.3 to 32.5 contr., and T. S. from 43,420 to 49,015. The nbrous irons are therefore of medium tensile strength and high ductility. The crystalline irons are of wariable T. S., highest to lowest, and low ductility. **Lowmnoof Iron Bars.**—Three rolled bars 3½ inches diameter; tensile tests: elastic, 23,200 to 24,200; ultimate, 50,875 to 51,905; contraction, 44.4 to 42.5; extension, 29.2 to 24.3. Three hammered bars, 4½ inches diameter,

to 12.5; extension, 29.2 to 24.5. Three nammered oars, 4½ inches diameter, elastic 25,100 to 44,200; ultimate, 46,810 to 49,223; contraction, 20.7 to 46.5; extension, 10.8 to 31.6. Fractures of all, 100 per cent fibrous. In the hammered bars the lowest T. S. was accompanied by lowest ductility.

Iron Bars, Various, —Of a lot of 80 bars of various sizes, some rolled and some hammered (the above Lowmoor bars included) the lowest T. S. except one) 40,808 pounds per square inch, was shown by the Swedish "hoop L" bar 3¼ inches diameter, rolled. Its elastic limit was 19,150 pounds; contraction 68.7% and extension 37.7% in 10 inches. It was also the most ductile of all the bars tested, and was 100 % fibrous. The highest T. S., 60,780 pounds, with elastic limit, 29,400; contr., 36.6; and ext., 24.3% was shown by a "Farnley" 2-inch bar, rolled. It was also 100 % fibrous. The lowest ductility 2.6% contr., and 4.1% ext., was shown by a 3¾-inch hammered bar, without brand. It also had the lowest T. S., 40,278 pounds, but rather high elastic limit, 25,700 pounds. Its fracture was 95% crystaling. Thus of the two hars showing the lowest T. S. one was the most ducline. Thus of the two bars showing the lowest T. S., one was the most ductile and the other the least ductile in the whole series of 80 bars. Generally, high ductility is accompanied by low tensile strength, as in the Swedish bars, but the Farnley bars showed a combination of high ductility

and high tensile strength.

Locomotive Forgings, Iron.—17 tests: average, E. L., 80,420; T. S., 50.521; contr. 36.5; ext. in 10 inches. 23.8.

Broken Anchor Forgings, Iron.—4 tests: average, E. L., 23,825; T. S., 40,083; contr., 8.0; ext. in 10 inches, 3.8.

Kirkaldy places these two irons in contrast to show the difference between good and bad work. The broken anchor material, he says, is of a most

good and bad work. The broken anchor material, ne says, is or a most treacherous character, and a disgrace to any manufacturer.

Irom Plate Girder.—Tensile tests of pieces cut from a riveted iron girder after twenty years's service in a railway bridge. Top plate, average of 3 tests, E. L., 26,600; T. S., 40,806; contr. 16; ext. in 10 inches, 7.8. Bottom plate, average of 3 tests, E. L., 31,200; T. S., 44,288; contr., 13.3; ext. in 10 inches, 6.3. Web-plate, average of 3 tests, E. L., 28,000; T. S., 45,902; contr., 15 9; ext. in 10 inches, 8.9. Fractures all fibrous. The results of 30 wats from different parts of the girder prove that the iron has undergone to change during twenty verys of use. to change during twenty years of use.

Steel Plates.—Six plates 100 inches long, 2 inches wide, thickness various, .36 to .97 inch T. S., 55,485 to 60,805; E. L., 29,600 to 33,200; contr., 52.9 to 59.5; ext., 17.05 to 18.57.

Steel Bridge Links. -40 links from Hammersmith Bridge, 1886.

				ij	Fracture.	
	T. S.	E. L.	Contr.	Ext. in 100	Silky.	Granular.
Average of all	67,294 60,758 75,986 64,044 68,745 65,980 63,980	38,294 36,030 44,166 32,441 38,118 36,792 39,017	34.5% 30.1 31.2 84.7 52.8 40.8 6.0	14.11% 15.51 12.42 13.43 15.46 17.78 6.62	30% 15 30 100 85 0	70% 85 70 0 65 100

The ratio of elastic to ultimate strength ranged from 50.6 to 65.2 per cent average, 56.9 per cent.

Extension in lengths of 100 inches. At 10,000 lbs. per sq. in., .018 to .024; mean, .020 inch; at 20.000 lbs. per sq. in. .049 to .063; mean, .055 inch; at 30,000 lbs. per sq. in., .083 to .100; mean, .090; set at 30,000 pounds per sq. in., .060 to .002; mean, .090; set at 30,000 pounds per sq. in.,

The mean extension between 10,000 to 30,000 lbs. per sq. in. increased regularly at the rate of .007 inch for each 2000 lbs. per sq. in. increment of strain. This corresponds to a modulus of elasticity of 28,571,429. The least increase of extension for an increase of load of 20,000 lbs. per sq. in., .065 inch, corresponds to a modulus of elasticity of 30,769,231, and the greatest, .076 inch, to a modulus of 28,315,789.

Steel Rails.—Bending tests, 5 feet between supports, 11 tests of flange rails 72 pounds per yard, 4.63 inches high.

	Elastic stress.	Ultimate stress.	Deflection at 50,000	Ultimate
	Pounds.	Pounds.	Pounds.	Deflection.
Hardest	34,200	60,960	8.24 ins.	8 ins.
Softest	82,000	56,740	3.76 "	8 "
Mean	3 2,763	59,209	8.53 "	8 "

All uncracked at 8 inches deflection.

Pulling tests of pieces cut from same rails. Mean results.

Elast Stres per sq. Top of rails	s. Pounds. in. per sq. in. 83,110	Contraction of area of frac- ture. 19.9% 30.9%	Extension in 10 ins. 13.5% 22.8%
----------------------------------	---	--	----------------------------------

Steel Tires.-Tensile tests of specimens cut from steel tires.

KRUPP STEEL .- 262 Tests.

Highest 69 Mean 52	L. T. S. 119,079 869 104,112 700 90,528	Contr. 31.9 29.5 45.5	Ext. in 5 inches. 18.1 19.7 28.7
-----------------------	---	--------------------------------	--

VICKERS, Sons & Co .- 70 Tests.

	E. L.	T. S.	Contr.	5 inches.
Highest	58,600	120,789	11.8	8.4
Mean	51,066	101,264	17.6	12.4
Lowest	43,700	87,697	24.7	16.0

Note the correspondence between Krupp's and Vickers' steels as to tensile strength and elastic limit, and their great difference in contraction and elongation. The fractures of the Krupp steel averaged 22 per cent silky, % per cent granular; of the Vicker steel, 7 per cent silky, 93 per cent granu-

Steel Axles. Tensile tests of specimens cut from steel axles. PATENT SHAFT AND AXLE TREE Co.-157 Tests.

Ext. in E. L. T. 8. Contr. 5 inches. Highest..... 49,800 99,009 21.1 88.0 16.0 Mean.... 26.267 72,099 23,6 Lowest. 81.800 61.882 34.8 25.8 VICKERS, SONS & Co. -125 Tests. Ext. in T. S. 83,701 E. L. 5 inches. Contr. Highest..... 42,600 13.2 18.9 Mean. 37.618 70.572 27.5 41.6 Lowest 80,250 56,388 49.0 87.2

The average fracture of Patent Shaft and Axle Tree Co. steel was 33 per cent silky, 67 per cent granular.

The average fracture of Vickers' steel was 88 per cent silky, 12 per cent granular.

Tensile tests of specimens cut from locomotive crank axles.

VICKERS' -- 82 Tests 1879

	7 10 4	ware .— o⊷ iceire	, 1019.	
	-			Ext. in
	E. L.	T. S.	Contr.	5 inches.
Highest	26,700	68.057	28.3	18.4
Mean	24,146	57.922	32.9	24.0
Lowest	21,700	50,195	52.7	86.2
	VICE	ERS'78 Tests.	1884.	
		· ·		Ext. in
	E. L.	T. S.	Contr.	5 inches.
Highest	27,600	64,873	27.0	20.8
Mean	28,572	56,207	82.7	25.9
Lowest	17,600	47,695	85.0	27.2
	FRIED.	KRUPP43 Tes	sts. 1889.	
				Ext. in
	E. L.	T. S.	Contr.	5 inches.
Highest	81,650	66,868	48.6	35.6
Mean	29,491	61.774	47.7	32.8
Lowest	21,950	55,172	55.8	35.6

Stool Propeller Shafts.—Tensile tests of pieces cut from two shafts, mean of four tests each. Hollow shaft, Whitworth. T. S. 61,290; E. L., 30,575; contr., \$2.8; ext. in 10 inches, 28.6. Solid Shaft, Vickers', T. S., 46,870; E. L. 20,425; contr., 44.4; ext. in 10 inches, 30.7.
Thrusting tests, Whitworth, ultimate, 56,201; elastic, 29,300; set at 30,000 lbs., 0.18 per cent; set at 40,000 lbs., 2.04 per cent; set at 50,000 lbs., 3.82 per

cent.

Thrusting tests. Vickers', ultimate, 44,602; elastic, 22,250; set at 30,000 lbs., 2.29 per cent; set at 40,000 lbs., 4.69 per cent.

Shearing strength of the Whitworth shaft, mean of four tests, was 40,654

è

lbs. per square inch, or 66.3 per cent of the pulling stress. Specific gravity of the Whitworth steel, 7.867: of the Vickers', 7.856.

Spring Steel.—Untempered, 6 tests, average, E. L., 67,916; T. S.,

15,688; contr., 38,785; ext. in 10 inches, 16.6. Spring steel untempered. 15 tests, average, E. L., 38,785; T. S., 69,496; contr., 19.1; ext. in 10 inches, 29 8. These two lots were shipped for the same purpose, viz., railway carriage leaf springs.

Steel Castings.—44 tests, E. L., 31.816 to 35.567; T. S., 54,928 to 63,840; contr., 1.67 to 15.8; ext., 1.45 to 15.1. Note the great variation in ductility. The steel of the highest strength was also the most ductile.

Riveted Joints, Pulling Tests of Riveted Steel Plates, Triple Riveted Lap Joints, Machine Riveted, Holes Drilled.

Plates, width and thickn s	s, inches :			
13.50 × .25 13.00 >	₹.51 11.	$75 \times .78$ 12.	$.25 \times 1.01$ 14.0	$77. \times 00$
Plates, gross sectional area	a square inc	:hes:		
3.375 6.6	3	9.165	12.872	0.780
Stress, total, pounds:				
199,820 332,6	40 • 49	23,180 5	28,000 48	55,210

Stress per square inch of gross area, joint:

59,058	50,172	46,178	42,696	42,227
Stress per square in 70,765	ch of plates, s 65,300	011a : 64,050	62,280	68,045
Ratio of strength of 83.46	76.83	plate : 72.09	68.55	62.06
Ratio net area of plants 73.4	ate to gross : 65.5	62.7	64.7	72.9
Where fractured : plate at holes.	plate at holes.	plate at holes.	plate at holes.	rivets sheared.
Rivets, diameter, ar				.95, .708, 12
Rivets, total area:	6.741	8.496	10,992	8,496
Strength of W	Velds.—Tens	ile tests to det	ermine ratio o	strength of
weld to solid bar.	Iron Tie	BARS.—28 Te	sts.	
Strength of solid be Strenth of welded b Ratio of weld to soli	ars varied from id varied from IRON P.	M		to 44,586 lbs. 87.0 to 79.1%
Strength of solid pl Strength of welded Ratio of weld to sol	ate from plate from id	inks.—216 Tes	44,851 26,442 	to 47,481 lbs. to 88,931 lbs. 57.7 to 83.9%
Strength of solid be Strength of welded Ratio of weld to so	r from bar from lid	• • • • • • • • • • • • • • • • • • • •		to 57,875 lbs. to 48,824 lbs. 72.1 to 95.4%
32 tests, solid iron,				144
17 " electri wel	ded, average.	and Plates.—1		36 ratio 89.1% 99 " 89.3%
Strength of solid . Strength of weld Ratio weld to solid .				4,226 to 64,580 8,558 to 46,019 52.6 to 82.15
The ratio of weld of the great variation Cast Copper ext., 21.8.	to solid in all to on of workman -4 tests, avera	the tests rangi aship in weldir age, E. L., 590	ng from 87.0 to ng. D; T. S., 24,781;	95.4 is proof ecutr., 24.5;
Copper Plate 18,650; T. S., 30,993 riation in elastic li were finished. Ann E. L. from 3000 to 7	mit is due to de lealing reduce: 100 pounds.	difference in t s the T. S. only	he heat at whi y about 1000 po	unds, but the
Another series, .36 to 56.7; ext. in 16 strength.	to .52 thick; inches, 28.1	148 tests, T. S. to 41.8. Note	, 29,099 to 31,92 the uniformi	4; contr., 28.7 ty in tensile
Drawn Coppe 40,557; contr., 37.5 t	a 64 1 · ovt in	10 inches 58t	0.48.9	
Bronze from centre and edge. contr., 25.4; ext. in T. S., 35,960; contr.	37.8: ext. in 1	U inches, 41.9.		
Cast German 46,540; contr., 3.2 to	24.5; ext. in 10	0 inches, 0.6 to	10.2.	. 5., 25,714 10
German silver, 2 lot	in Sheet M	Ietal. —Tensil	ie Strength.	5 916 to 97 199
Rrouge 4 lots			7	3 3040 to 092 086
Brass 2 lots			4	4 898 to 59 188
Iron, 13 lots, length	wav			0,410 to 48,450 4.881 to 59.484
Copper, 9 lots Iron, 13 lots, length Iron, 18 lots, crossw	ay			9,888 to 57,350
Steel, 6 lots Steel, 6 lots, crossw	· · · · · · · · · · · · · · · · · · ·	. 		9,208 to 78,251

Wire,-Tensile Strength.

German silver, 5 lots	. 81,735 to 92,224
Bronze, 1 lot	. 78.049
Brass, as drawn, 4 lots	. 81.114 to 98.578
Copper, as drawn, 8 lots	. 87,607 to 46,494
Copper annealed, 8 lots	. 34,936 to 45,210
Copper (another lot), 4 lots	. 85,052 to 62,190
Copper (extension 36.4 to 0.66).	
Iron, 8 lots	. 59.246 to 97.908
Iron (extension 15.1 to 0.7%).	,
Steel, 8 lots	108,272 to 818,828
Copper (extension 36.4 to 0.8%). Iron, 8 lots	. 59,246 to 97,908

The Steel of \$18,823 T. S. was .047 inch diam., and had an extension of only 0.3 per cent; that of 103,272 T. S. was .107 inch diam. and had an extension of 2.2 per cent. One lot of .044 inch diam. had 267,114 T. S., and 5.2 per cent extension.

Wire Ropes.
Selected Tests Showing Range of Variation.

	noe,	ě.	Str	ands.	of nes.		ا م
Description.	Circumference, inches.	Weight per Fathom.	No. of Strands.	No. of Wires.	Diameter of Wires, inches.	Hemp Core.	Ultimate Strength, lbs.
Galvanized. Ungalvanized. Ungalvanized. Ungalvanized. Ungalvanized. Ungalvanized. Galvanized. Galvanized. Galvanized. Ungalvanized. Ungalvanized. Ungalvanized. Galvanized. Ungalvanized. Ungalvanized. Ungalvanized. Ungalvanized. Galvanized. Ungalvanized. Galvanized. Galvanized. Galvanized. Galvanized. Galvanized. Galvanized.	7.70 6.38 7.10 6.18 6.19 4.92 3.65 3.50 3.81 3.31 3.02 2.68 2.46	58.00 58.10 42.50 87.57 40.46 40.86 18.94 21.50 12.21 12.65 14.12 6.26 5.48 3.85	677677666676666666666666666666666666666	19 19 30 19 19 30 12 7 7 12 12 7 6 12 12	.1563 .1495 .1347 .1004 .1316 .0728 .1104 .1693 .0755 .122 .135 .080 .068 .068 .0563 .0563 .0563	Main Main and Strands Wire Core Main and Strands Wire Core Main and Strands Main and Strands Main and Strands Main Main Main Main Main and Strands Main and Strands Main and Strands Main and Strands Main and Strands Main and Strands Main and Strands Main and Strands Main and Strands	389,780 314,860 295,920 272,750 208,470 221,820 190,890 136,550 129,710 110,140 98,670 75,110 55,095 41,205 38,555 41,205 38,555
Ungalvanized Galvanized Galvanized	1.75 2.04 1.76	2.80 2.72 1.85	6 6	7 12 12	.0619 .0378 .0305	Main Main and Strands Main	24,552 20,415 14,634

Hemp Ropes, Untarred.—15 tests of ropes from 1.53 to 6.90 inches circumference, weighing 0.42 to 7.77 pounds per fathom, showed an ultimate strength of from 1670 to 33,608 pounds, the strength per fathom weight varying from 2872 to 5534 pounds.

varying from 2872 to 5534 pounds.

Hemp Bopes, Tarred. --15 tests of ropes from 1.44 to 7.12 inches circumference, weighing from 0.38 to 10.39 pounds per fathom, showed an ultimate strength of from 1046 to 31.549 pounds, the strength per fathom weight varying from 1767 to 5149 pounds.

weight varying from 1767 to 5149 pounds.

Cotton Bopes.—5 ropes, 2.48 to 6.51 inches circumference, 1.08 to 8.17 pounds per fathom. Strength 3089 to 23,258 pounds, or 2474 to 3346 pounds ner fathor weight

per fathom weight.

Manila Ropes.—35 tests: 1.19 to 8.90 inches circumference, 0.20 to 11.40 pounds per fathom. Strength 1280 to 65,550 pounds, or 3008 to 7394 pounds per fathom weight.

Relting.

No. of	Tensile strength
lots.	per square inch.
11 Leather, single, ordinary tanned	\$248 to 4824
4 Leather, single, Helvetia	
7 Leather, double, ordinary tanned	2160 to 35 72
8 Leather, double Helvetia	
6 Cotton, solid woven	
14 Cotton, folded, stitched	4570 to 7750
1 Flax, solid, woven	
1 Flax, folded, stitched	6389
6 Hair, solid, woven	3852 to 5159
2 Rubber, solid, woven	
Canvas35 lots: Strength, lengthwise, 113 to 408 p	ounds per inch;

crossways, 191 to 468 pounds per inch.

The grades are numbered 1 to 6, but the weights are not given. The strengths vary considerably, even in the same number.

Marbles.-Crushing strength of various marbles. 88 tests, 8 kinds. Marbles.—Crushing strength of various marbles. 38 tests, 8 kinds. Specimens were 6-inch cubes, or columns 4 to 6 inches diameter, and 6 and 12 inches high. Range 7542 to 13,720 pounds per square inch.

Grantte.—Crushing strength, 17 tests; square columns 4 × 4 and 6 × 4, to 24 inches high, 3 kinds. Crushing strength ranges 10,026 to 13,271 pounds per square inch. (Very uniform.)

Stones.—(Probably sandstone, local names only given.) 11 kinds, 42 tests, 6 × 6, columns 12, 18 and 24 inches high. Crushing strength ranges from 9105 to 12 129. The strength of the column 24 inches here the recognitive

from 2105 to 12,122. The strength of the column 24 inches long is generally from 10 to 20 per cent less than that of the 6-inch cube.

Stones.—(Probably sandstone) tested for London & Northwestern Railway. 16 lots, 3 to 6 tests in a lot. Mean results of each lot ranged from 3785 to 11,956 pounds. The variation is chiefly due to the stones being from different lots. The different specimens in each lot gave results which generally agreed within 30 per cent.

Bricks.—Crushing strength, 8 lots; 6 tests in each lot; mean results ranged from 1835 to 9209 pounds per square inch. The maximum variation in the specimens of one lot was over 100 per cent of the lowest. In the most uniform lot the variation was less than 20 per cent.

Wood.—Transverse and Thrusting Tests.

	Tests.	Sizes abt. in square.	Span, inches.	Ultimate Stress.	$\frac{S = LW}{4BD^2}.$	Thrust- ing Stress per sq. in.
Pitch pine	10	11½ to 12½	144	45,856 to 80,520 87,948	1096 to 1403 657	8586 to 5438 2478
Dantzic fir	12	12 to 13	144	to 54,152 82,856	to 790 1505	to 3423 2478
English oak American white	8	41/2 × 12	120	to 39,084 23,624	to 1779 1190	to 4487 2656
oak	5	41/6 × 12	120	to 26,952	to 1373	to 3899

Demerara greenheart, 9 tests (thrusting)	8169 to 10,785
Oregon pine, 2 tests	5888 and 7284
Honduras mahogany, 1 test	6769
Tobasco mahogany, 1 test	
Norway spruce, 2 tests	5259 and 5494
American yellow pine, 2 tests	
English ash, 1 test	3025

Portland Cement. - (Austrian.) Cross-sections of specimens 2 x 21/4 inches for pulling tests only; cubes, 3 × 8 inches for thrusting tests; weight, 98 8 pounds per imperial bushel; residue, 0.7 per cent with sieve 2500 meshes per square inch: 38.8 per cent by volume of water required for mixing; time of setting, 7 days; 10 tests to each lot. The mean results in lbs. per sq. in. were as follows:

	Cement alone.	Cement alone.	1 Cement, 2 Sand.	1 Cement, 3 Sand.	1 Cement, 4 Sand.
Age.	Pulling.	Thrusting.	Thrusting.	Thrusting.	Thrusting.
10 days	376	2910	H93	407	228
20 days	420	3342	1023	494	275
30 days	451	3724	1172	594	88 8

30 days 451 3724 1172 594 838 **Portland Coment.**—Various samples pulling tests, $2 \times 2\frac{1}{2}$ inches cross-section, all aged 10 days, 180 tests; ranges 87 to 643 pounds per square inch.

TENSILE STRENGTH OF WIRE.

(From J. Bucknall Smith's Trea	tise on Wire.)	
	Tons per sq. in, sectional	Pounds per sq. in, sec-
	area.	tional area.
Black or annealed iron wire	. 25	56,000
Bright hard drawn	. 85	78,400
Bessemer, steel wire		89,600
Mild Siemens-Martin steel wire	. 60	134,000
High carbon ditto (or "improved")		179,200
Crucible cast-steel "improved" wire	. 100	224,000
"Improved" cast-steel "plough"		268,800
Special qualities of tempered and improved age		

MISCRLLANEOUS TESTS OF MATERIALS, Reports of Work of the Watertown Testing-machine in 1883.

TESTS OF RIVETED JOINTS, IRON AND STEEL PLATES.

Thickness Plate.	Diameter, Rivets, inches.	Diameter, Punched Holes, inches.	Width Plate Tested, inches.	No. Rivets.	Pitch Rivets, inches.	Tensile Strength Joint in Net Section of Plate per square inch, pounds.	Tensile Strength Plate per square inch, pounds.	Efficiency of Joint. Per Cent.
***************************************	11-16 11-16 11-16 11-16 11-16 11-16 11-16 11-16 11-16 15-16 11-16 15-16 11-16 15-16 11-16 15-16	13-16 13-16 13-16 13-16 13-16 11-16 11-16 13-16 13-16 13-16 11 11 11 11 11 11 11 11 11 11 11 11 1	10/4 10/4 10 10 10 10 10 10 10 10 10/4 11/9 11/9 11/9 10/4 10 10 10 10 10 10 10 10 10 10 10 10 10	6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	134 134 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	39,300 41,000 35,650 35,150 46,360 46,875 46,400 44,260 42,350 41,920 61,270 60,830 47,530 62,770 61,210 68,920 66,710 62,180 62,590 54,650 54,650	47, 180 47, 180 44, 615 44, 615 47, 180 44, 615 44, 615 44, 635 44, 635 46, 590 46, 590 53, 330 57, 215 58, 330 57, 215 57,	47.0 ± 44.0 ± 44.0 ± 45.6 ± 55.9 ± 55.9 ± 55.2 ± 55.1 ± 55.1 ± 55.1 ± 55.0 ± 663.8 ± 663.8 ± 663.

^{*} Iron.

[†] Steel.

[‡] Lap-joint.

[&]amp; Butt-joint.

The efficiency of the joints is found by dividing the maximum tensile stress on the gross sectional area of plate by the tensile strength of the material.

COMPRESSION TESTS OF 8 × 8 INCH WROUGHT-IRON BARS.

	Tested with Two	o Pin Ends, Pins Diameter.	Tested with One Flat and One Pin
q	Ultimate Com- pressive Strength pounds per square inch.	Tested with Two Flat Ends, Ulti- mate Compressive Strength, pounds per square inch.	End, Ultimate Compressive Strength, pounds per square inch.
80.:	§ 28,260 § 81,990		
60) 26,310 26,640		
90	24,090 25,380	{ 26,780 { 25,580	{ 25,120 { 25,190
120	\$ 20,660 20,200	} 23,010 { 22,450	22,450 21,870
150	16,520 17,840	• • • • • • • • • • • • • • • • • • • •	••••
180	13,010 15,700		••••••

Tested with two pin-		Ult. Comp. Str., per sq. in., lbs.
ends. Length of bars	% inchi% inches	17,740
	214 "	00'040

TENSILE TEST OF SIX STEEL EYE-BARS.

COMPARED WITH SMALL TEST INGOTS.

The steel was made by the Cambria Iron Company, and the eye-bar heads made by Keystone Bridge Company by upsetting and hammering. All the bars were made from one ingot. Two test pieces, $\frac{3}{4}$ -inch round, rolled from a test-ingot, gave elastic limit 48,040 and 42,210 pounds; tensile strength, 73,150 and 69,470 pounds, and elongation in 8 inches, 22,4 and 25,6 per cent. respectively. The ingot from which the eye-bars were made was 14 inches square, rolled to billet, 7×6 inches. The eye-bars were rolled to $6\frac{1}{4}\times1$ inch. Chemical tests gave carbon .27 to .30; manganese, .64 to .73; phosphorus, .074 to .098.

Gauged Length, inches.	Elastic limit, lbs. per sq. in.	Tensile strength per sq. in., lbs.	Elongation per cent, in Gauged Length.
160	37,480	67,800	15.8
160	86,650	64,000	6.96
160	*****	71,560	8.6
200	87.600	68,720	12.8
200	35,810	65,850	12.0
200	83,230	64,410	16.4
200	37,640	68,290	18.9

The average tensile strength of the 34-inch test pieces was 71,310 lbs., that of the eye-bars 67,230 lbs., a decrease of 5.7%. The average elastic limit of the test pieces was 45,150 lbs., that of the eye-bars 36,402 lbs., a decrease of 19.4%. The elastic limit of the test pieces was 63.3% of the ultimate strength, that of the eye-bars 54.2% of the ultimate strength.

COMPRESSION OF WROUGHT-IRON COLUMNS, LATTICED BOX AND SOLID WEB.

ALL TESTED WITH PIN ENDS.

Columns made of	Length, feet.	Sectional Area, square inch.	Total Weight of Column, pounds.	Ultimate Strength, per square inch, pounds.
6 inch channel, solid web	10.0	9.881	482	80,220
g as as as	15.0	9.977	592	21.050
£ 40 66 66	20.0	9.762	755	16,220
g ss ss	20.0	16.281	1,200	22,540
g a 66 66 66	26.8	16.141	1,645	17,570
Sinch channels, with 5-16-in, continuous		1 -4:	1,010	11,070
plates	26.8	19.417	1,940	25,290
5-16-inch continuous plates and angles.			1 -4	,
Width of plates, 12 in., 1 in. and 7,85 in.	26.8	16,168	1,765	28,020
7-16-inch continuous plates and angles.			.,	,
Plates 12 in. wide.	26.8	20,954	2,242	25,770
Sinch channels, latticed	13.3	7.628	679	83,910
8" "	20.0	7.621	924	84,120
8 " " …	26.8	7,678	1,255	29,870
8-inch channels, latticed, swelled sides	13.4	7.624	684	83,530
8 " " " " " " " " " " " " " " " " " " "	20.0	7.517	921	33,390
8 " " " " " "	26.8	7,702	1.280	80,770
10 " "	16.8	11.944	1,470	33,740
10 " "	25.0	12.175	1,926	82,440
10-inch channels, latticed, swelled sides.	16.7	12.366	1,549	31,130
	25.0	11.932	1,962	82,740
*10-inch channels, latticed one side; con-		ł	1	'
tinuous plate one side	25.0	17.622	1,848	26,190
† 10 inch channels, latticed one side; con-		l	1	'
tinuous plate one side	25.0	17.721	1,827	17,270

^{*} Pins in centre of gravity of channel bars and continuous plate, 1.63 inches from centre line of channel bars.

† Pins placed in centre of gravity of channel bars.

EFFECT OF COLD-DRAWING ON STEEL

Three tensile bars and two compression bars, cut from the same bar of hot-rolled steel, from the Norway Steel and Iron Company:

•	Tensile strength per sq. in., lbs.	r ti	onga- on. cent.
1. Piece of the original hot-rolled bar, length 66 inches, diameter 2.08 inches. Gauge	d	-	
length 30 inches	e .	,	23.9
pass), .094 inch. Gauged length 20 inches 3. Diameter reduced in compression dies (on	. 70,420		2.7
pass), .222 inch. Gauged length 20 inches	. 81,890		0.075
	Compress. Stress, lbs. per sq. in. 1	of Com-	Com- press. set, in.
4. Compression test of cold-drawn bar (sam as No. 8). Length 4 inches, diamete	e		
1.808 inches	. 75,000	.0562	.0395
5. Do., same as No. 4	. 75,000	.0578	.0400

Pieces 4 and 5 both had diameters increased in the middle to 1.821 inches, and at the ends to 1.818 inches.

TESTS OF AMERICAN WOODS. (See also page 309.)

In all cases a large number of tests were made of each wood. Minimum and maximum results only are given. All of the test specimens had a sectional area of 1.575 × 1.575 inches. The transverse test specimens were 39.37 inches between supports, and the compressive test specimens were 12.60 inches long. Modulus of rupture calculated from formula $R = \frac{3}{2} \frac{Pl}{v d d^2}$; P = load in pounds at the middle, l = length in inches, b = breadth, d = depth:

Cucumber tree (Magnolia acuminata). Yellow poplar white wood (Liriodendron tulipifera)	40 12,056 60 11,756 20 11,536 80 20,136 10 13,456 10 16,800 70 11,138 90 14,536 30 14,300 00 10,230 50 15,800 30 10,155 20 18,952 50 18,952 20 11,360	4,560 6 4,150 0 3,810 0 7,460 0 6,010 0 8,330 0 5,830 0 5,830 0 6,240 0 6,250 0 6,250 0 6,350 0 4,050 0 4,060 0 4,960	7,410 5,790 6,480 9,940 7,590 11,940 9,120 7,620 9,400 7,480 8,080 8,830 5,970 8,790 8,790 8,740
Yellow poplar white wood (Liriodendron tulipifera) White wood, Basswood (Tilia Americana) Sugar-maple, Rock-maple (Acer saccharinum Ret maple (Acer rubrum) Locust (Robinia pseudacacia) Wild cherry (Frunus serotina) Sweet gum (Liquidambar styracifua) Dogwood (Cornus florida) Sour gum, Pepperidge (Nyssa sylvatica) Persimmon (Diospyros Virginiana) White ash (Fraxunis Americana) Sysasafras (Sassafras officinale) Sycamore; Buttonwood (Platanus occidentalis) Butternut; white walnut (Juglans cinera) Butternut; white walnut (Juglans cinera) Black walnut (Juglans nigra) Sylipant (Carya porcina) Butternut; white walnut (Juglans cinera) Rejanut (Carya porcina) White oak (Quercus alba) Red oak (Quercus theta) Red oak (Quercus rubra) Plack oak (Quercus theta) Resech (Fagus ferrupinen) 13,8	60 11,756 20 11,536 80 20,138 10 13,456 00 21,736 10 16,800 30 14,536 30 14,306 00 10,296 50 15,806 30 10,156 30 13,952 50 15,070 20 11,360	8 4,150 0 3,810 7,460 0 6,010 8,330 5,830 5,830 6,250 6,250 6,240 6,650 4,550 6,960 4,960 4,960	5,790 6,480 9,940 7,500 11,940 9,120 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
dron tulipifera). White wood, Basswood (Tilia Americana) Sugar-maple, Rock-maple (Acer saccharinum	20 11,530 80 20,138 10 18,450 00 21,739 16,800 70 11,130 30 14,500 30 14,500 00 10,290 50 10,150 20 18,952 50 15,070 20 11,360	3,810 0,7,460 0,7,460 0,8,330 0,5,830 0,5,830 0,5,830 0,5,830 0,6,240 0,6,240 0,6,240 0,6,650 1,580 0,4,050 0,4,050 1,960 0,4,960 0,4,960	6,480 9,940 7,500 11,940 9,120 7,620 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
cana). Sugar-maple, Rock-maple (Acer saccharinum 8,8 Red maple (Acer rubrum) 8,6 Locust (Robinia pseudacacia) 12,2 Wild cherry (Frunus serotina) 8,5 Sweet gum (Liquidambar styracifua) 7,4 Dogwood (Cornus florida) 10,5 Sour gum, Pepperidge (Nyssa sylvatica) 9,8 Persimmon (Diospyros Virginiana) 18,5 Sassafras (Sassafras officinale) 5,1 Slippery elm (Ulmus fulva) 10,2 White elm (Ulmus Americana) 8,2 Sycamore; Buttonwood (Platanus occidentalis) 8,8 Sycamore; Buttonwood (Platanus occidentalis) 14,8 Shellbark hickory (Carya alba) 14,8 Spignut (Carya porcina) 11,5 White oak (Quercus alba) 7,0 Red oak (Quercus rubra) 9,7 Red oak (Quercus inctorin) 7,9 Chestnut (Custanea vulgaris) 5,0 Beech (Fagus ferruginen) 13,8	80 20,136 10 13,456 00 21,736 10 16,800 70 11,138 90 14,560 30 14,360 00 10,296 50 15,800 30 10,150 20 18,952 50 15,070 20 11,360	7,460 6,010 6,010 6,330 5,830 5,830 6,250 6,240 6,650 4,520 4,520 4,560 4,960 4,960	9,940 7,500 11,940 9,120 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
charinum	10 13,450 00 21,738 10 16,800 70 11,180 90 14,580 30 14,380 00 10,290 50 15,800 20 13,952 15,070 20 11,360	0 6,010 8,330 5,830 5,630 5,630 6,250 6,240 0 6,650 4,520 4,520 4,960 4,960	7,500 11,940 9,120 7,620 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
Red maple (Acer rubrum) Locust (Robinia pseudacacia) Wild cherry (Frunus serotina) Sweet gum (Liquidambar styracifua) Dogwood (Cornus florida) Sour gum, Pepperidge (Nyssa sylvatica) Persimmon (Diospyros Virginiana) Sassafras (Sassafras officinate) Slippery elm (Ulmus fluva) White elm (Ulmus Americana) Sycamore; Buttonwood (Platanus occidentatis) Butternut; white walnut (Juglans cinerca) Butternut; white walnut (Juglans cinerca) Black walnut (Juglans nigra) Shelibark hickory (Carya aba) Hagigut (Carya porcina) Shelibark hickory (Carya alba) Piguat (Carya porcina) Shelibark hickory (Carya alba) Shelibark hickory (Carya alba) Shelibark hickory (Carya alba) Shelibark hickory (Carya alba) Shelibark hickory (Carya alba) Shelibark hickory (Carya alba) Shedoak (Quercus alba) Shedoak (Quercus tinctoria) Chestnut (Castanea vulgaris) Sheech (Fagus ferviginea) Sassafras Sylvatica) Sheech (Fagus ferviginea)	10 13,450 00 21,738 10 16,800 70 11,180 90 14,580 30 14,380 00 10,290 50 15,800 20 13,952 15,070 20 11,360	0 6,010 8,330 5,830 5,630 5,630 6,250 6,240 0 6,650 4,520 4,520 4,960 4,960	7,500 11,940 9,120 7,620 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
Locust (Robinia pseudacacia) 12,2 Wild cherry (Prunus serotina) 8,8 Sweet gum (Liquidambar styraciflua) 7,4 Dogwood (Cornus florida) 9,8 Persimmon (Diospyros Virginiana) 18,5 White ash (Fraxunis Americana) 5,9 Sassafras (Sassafras officinale) 5,1 Slippery elm (Ulmus fulva) 6,2 White elm (Ulmus fulva) 6,2 White elm (Ulmus fulva) 6,7 Butternut; white walnut (Juglans cineral) 6,7 Black walnut (Juglans nigra) 8,4 Shellbark hickory (Carya alba) 14,8 Fignut (Carya porcina) 1,5 White oak (Quercus alba) 7,0 Red oak (Quercus rubra) 9,7 Black oak (Quercus inctoria) 7,9 Chestnut (Castanea vulgaris) 5,0 Beech (Fagus ferruginen) 13,8	00 21,730 16,800 11,130 90 14,580 30 14,300 00 10,290 15,800 30 10,150 20 13,952 50 15,070 20 11,360	0 8,330 5,830 5,830 6,250 6,250 6,650 4,550 4,550 4,050 6,980 4,960	11,940 9,120 7,620 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
Wild cherry (Prunus serotina). Sweet gum (Liquidambar styraciftua). Sweet gum (Liquidambar styraciftua). Sour gum, Pepperidge (Nyssa sylvatica). Persimmon (Diospyros Virginiana). Sassafras (Sassafras officinale). Slippery elm (Ulnus fulva). White elm (Ulnus fulva). Sycamore; Buttonwood (Platanus occidentalis). Butternut; white walnut (Juglans cinerea). Black walnut (Juglans nigra). Shejinda (Quercus alba). Has Pignut (Carya porcina). White oak (Quercus alba). Red oak (Quercus rubra). Shech (Fagus ferruginen). Sassafras (Sassafras officinale). 5.9 6.7 6.7 7.9 6.7 6.7 6.7 6.7 6	10 16,800 70 11,138 90 14,560 30 14,300 90 10,290 50 15,800 90 10,150 20 13,952 50 15,070 90 11,360	5,830 5,630 6,250 6,240 6,650 4,520 4,050 6,680 4,960 4,960	9,120 7,620 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
Sweet gum (Liquidambar styracifua). Dogwood (Cornus florida). Sour gum, Pepperidge (Nyssa sylvatica). Persimmon (Diospyros Virginiana). Sassafras (Sassafras officinate). Slippery elm (Ulmus fluva). Nycamore; Buttonwood (Platanus occidentalis). Butternut; white walnut (Juglans cinerea). Black walnut (Juglans nigra). Shelibark hickory (Carya aba). White oak (Quercus alba). Red oak (Quercus alba). Chestnut (Castanea vubra). Potentul (Castanea vubra). Chestnut (Castanea vulgaris). Sassafras (Sassafras officinate). 5,9 6,7 8,4 7,9 8,4 7,9 8,4 8,4 8,6 8,7 8,7 8,7 8,7 8,7 8,7 8,7	70	5,680 6,250 6,240 6,650 4,520 4,050 6,980 4,960	7,620 9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
Dogwood (Cornus florida). Sour gum, Pepperidge (Nyssa sylvatica). Persimmon (Diospyros Virginiana). Nitie ash (Fraxunis Americana). Sassafras (Sassafras officinale). Sippery elm (Ulmus fulva). Nycamore: Buttonwood (Platanus occidentalis). Sycamore: Buttonwood (Platanus occidentalis). Butternut; white walnut (Juglans cinera). Black walnut (Juglans nigra). Shellbark hickory (Carya alba). Nigunt (Carya porcina). White oak (Quercus alba). Red oak (Quercus alba). Red oak (Quercus inctorin). Polestnut (Castanea vulgaris). Speech (Fagus ferruginea). 13.8	90	6,250 6,240 6,650 4,520 4,050 6,980 4,960 4,960	9,400 7,480 8,080 8,830 5,970 8,790 8,040 7,340
Sour gum, Pepperidge (Nyssa sylvatica). Persimmon (Diospyros Virginiana). White ash (Frazunis Americana). Sassafras (Sassafras officinale). Slippery elm (Ulnus fulva). Sycamore; Buttonwood (Platanus occidentalis). Butternut; white walnut (Juglans cinerea). Black walnut (Juglans nigra). Shejiput (Carya porcina). Shejiput (Carya porcina). White oak (Quercus alba). Toked oak (Quercus tinctorin). Chestnut (Castanee vulgaris). Speech (Fagus ferruginee). Sassafras Syramore.	30	6,240 6,650 4,520 4,520 4,050 6,980 4,960 4,960	7,480 8,080 8,830 5,970 8,790 8,040 7,340
Persimmon (Diospyros Virginiana). 18,5 White ash (Fraxunis Americana). 5,9 Sassafras (Sassafras officinale). 5,1 Slippery elm (Ulmus fulva). 10,2 White elm (Ulmus fulva). 8,2 Sycamore; Buttonwood (Platanus occidentalis). 6,7 Butternut; white walnut (Juglans cinera). 8,4 Shellbark hickory (Carya alba). 14,8 Signut (Carya porcina). 11,5 White oak (Quercus alba). 7,0 Red oak (Quercus rubra). 9,7 Black oak (Quercus tinctorin). 7,9 Chestnut (Castanea vulgaris). 5,0 Beech (Fagus ferruginea). 5,3	00 10,290 50 15,800 90 10,150 20 13,952 50 15,070 90 11,360	6,650 4,520 4,050 6,980 4,960 4,960	8,080 8,830 5,970 8,790 8,040 7,340
White ash (Fraxinis Americana). 5,9 Sassafras (Sassafras officinale). 5,1 Slippery elm (Ulmus fulva). 10,2 White elm (Ulmus Americana). 8,2 Sycamore: Buttonwood (Platanus ocidentalis). 6,7 Butternut; white walnut (Juglans cinerea). 1,8 Black walnut (Juglans nigra). 8,4 Sheillbark hickory (Carya alba). 14,8 Pignut (Carya porcina). 11,5 White oak (Quercus alba). 7,0 Red oak (Quercus rubra). 9,7 Black oak (Quercus tinctoria). 7,9 Chestnut (Castanea vulgaris). 5,5,0 Beech (Fagus ferruginea). 13,8	30 10,150 20 13,952 50 15,070 20 11,360	4,050 6,980 4,960 4,960	8,830 5,970 8,790 8,040 7,340
Sassafras (Sassafras officinale). 51. Slippery elm (Ulmus fulva). 10.2 White elm (Ulmus Americana). 8,2 Sycamore; Buttonwood (Platanus occidentalis). 6,7 Butternut; white walnut (Juglans cinerea). 8,4 Black walnut (Juglans nigra). 8,4 Shelibark hickory (Carya aba). 14,8 Fignut (Carya porcina). 11,5 White oak (Quercus alba). 7,0 Red oak (Quercus rubra). 9,7 Black oak (Quercus tinctoria). 7,9 Chestnut (Castanea vulgaris). 5,0 Beech (Fagus ferruginea). 13,8	30 10,150 20 13,952 50 15,070 20 11,360	4,050 6,980 4,960 4,960	8,790 8,040 7,340
Slippery elm (Ulmus fulva)	50 15,070 20 11,360	4,960	8,040 7,340
Sycamore: Buttonwood (Platanus occidentalis). 6,7 Butternut; white walnut (Juglans cinerea). 4,7 Black walnut (Juglans nigra). 8,4 Shellbark hickory (Carya alba). 14,8 Fignut (Carya porcina). 11,5 White oak (Quercus alba). 7,0 Red oak (Quercus tinctorin). 7,9 Black oak (Quercus tinctorin). 7,9 Chestnut (Castanea vulgaris). 5,0 Beech (Fagus ferruginen). 13,8	20 11,360	4,960	7,340
dentalis . 6,7		1 '	
nerea). 4.7 Black walnut (Juglans nigra). 8.4 Shellbark hickory (Carya alba). 14.8 Pignut (Carya porcina). 11.5 White oak (Quercus alba). 7.0 Red oak (Quercus rubra). 9.7 Black oak (Quercus tinctorin). 7.9 Chestnut (Castanea vulgaris). 5.0 Beech (Fagus ferruginea). 13.8	00 11.740		
Black walnut (Juglans nigra)			0.010
Shellbark hickory (Carya alba). 14.8 Pignut (Carya porcina). 11.5 White oak (Quercus alba). 7.0 Red oak (Quercus rubra) 9.7 Black oak (Quercus tinctorin). 7.9 Chestnut (Castanea vulgaris) 5.9 Beech (Fagus ferruginea) 13.8			6,810 8,850
Pignut (Carya porcina). 11,5 White oak (Quercus alba). 7,0 Red oak (Quercus rubra). 9,7 Black oak (Quercus tinctorin). 7,9 Chestnut (Castanea vulgaris). 5,0 Beech (Fagus ferruginea). 13,8	$\begin{array}{c c} 00 & 16,320 \\ 70 & 20,710 \end{array}$		10,280
White oak (Quercus alba), 7,0 Red oak (Quercus rubra) 9,7 Black oak (Quercus tinctoria), 7,9 Chestnut (Castanea vulgaris), 5,9 Beech (Fagus ferruginea) 13,8			8,470
Red oak (Quercus rubra). 9.7 Black oak (Quercus tinctoria). 7,9 Chestnut (Custanea vulgaris). 5,9 Beech (Fagus ferruginea). 13,8			9.070
Black oak (Quercus tinctoria)			8,970
Chestnut (Castanea vulgaris) 5,9 Beech (Fagus ferruginea)			8,550
Beech (Fagus ferruginea)			6,650
			7,840
	10,010	, ,,,,,	1,020
racea) 11,7	10 17,610	5,770	8,590
Cottonwood (Populus monilifera) 8,3			6.510
White cedar (Thuja occidentalis) 6,3			5,810
Red cedar (Juniperus Virginiana) 5,6			7.040
Cypress (Saxodium Distichum) 9,5			7,140
White pine (Pinus strobus) 5,6	10 11,580	3,750	5,600
Spruce pine (Pinus glabra)	30 10,980		4,680
Long-leaved pine, Southern pine (Pinus	'	1 .	1
palustris) 9,2			10,600
White spruce (Picea alba) 9,9	00 11,650		5,300
Hemlock (Tsuga Canadensis)	90 14,680	4,500	7,420
lasii)		4,880	9,800
Tamarack (Larix Americana) 10,0	20 17,920	6.810	10,700

SHEARING STRENGTH OF IRON AND STREL.

H. V. Loss in American Engineer and Railroad Journal, March and April, 1898, describes an extensive series of experiments on the shearing of iron and steel bars in shearing machines. Some of his results are:

307 CHAINS.

Depth of penetration at point of maximum resistance for soft steel bars is independent of the width, but varies with the thickness. If d = depth of peretration and t = thickness, d = .8t for a flat knife, d = .25 t for a 4° bevel safe, and d=.16 ½'s for an 8° bevel knife. The ultimate pressure per inch swidth in flat steel bars is approximately 50,000 lbs. \times t. The energy connect in foot pounds per inch width of steel bars is, approximately: 1 hck, 1300 ft.-lbs.; 1½', 250; 1¾', 370; 1¾', 450; the energy increasing at a slower rate than the thickness. Iron angles require more energy han steel angles of the same size; steel breaks while iron has to be out off. For hot-rolled steel the resistance per square inch for rectan-vlar sections varies from 4400 lbs. to 20,500 lbs., depending partly upon its andness and partly upon the size of its cross-area, which latter element Lirectly but greatly indicates the temperature, as the smaller dimensions quire a considerably longer time to reduce them down to size, which time again means loss of heat.

It is not probable that the resistance in practice can be brought very much below the lowest figures here given—viz., 4400 lbs. per square inch—as a decrease of 1000 lbs. will henceforth mean a considerable increase in

cross-section and temperature.

HOLDING-POWER OF BOILER-TUBES EXPANDED INTO TUBE-SHEETS.

Experiments by Chief Engineer W. H. Shock, U. S. N., on brass tubes, 2½ inches diameter, expanded into plates ¾-inch thick, gave results ranging from 5850 to 46,000 lbs. Out of 48 tests 5 gave figures under 10,000 lbs., 12 between 10,000 and 20,000 lbs., 18 between 20,000 and 30,000 lbs., 10 between

20.00 and 40,000 lbs, and 3 over 40,000 lbs.

Experiments by Yarrow & Co., on steel tubes, 2 to 2½ inches diameter, gave results similarly varying, ranging from 7900 to 41,715 lbs., the majority ranging from 20,000 to 30,000 lbs. In 15 experiments on 4 and 5 inch tubes the strain ranged from 20,720 to 68,040 lbs. Beading the tube does not necessarily give increased resistance, as some of the lower figures were obtained with beaded tubes. (See paper on Rules Governing the Construction of Steam Boilers, Trans. Engineering Congress, Section G, Chicago, 1893.)

CHAINS. Weight per Foot, Proof Test and Breaking Weight. (Pennsylvania Railroad Specifications.)

Nominal		Specifications.					
Diameter of Wire, inches.	Description.	Weight per foot, lbs.	Proof Test, lbs.	Breaking Weight, lbs.			
5/32	Lock-chain	0.20					
3/1 6	Fire-door chain	0.85					
<u>14</u>	Crossing-gate chain	0.70	1500	3000			
5/16	Sprocket-wheel chain	1.10	3000	5500			
3%	Brake-chain	1.50	3500	7000			
%	Crane-chain	1.50	4000	7500			
% % 7/16	Drop-bottom branch chain.	1.90	5000	9500			
7/16	Crane-chain	1.90	5500	10.000			
12	Drop-bottom main chain	2.50	7000	12.500			
	Crane-chain	2.50	7500	13.000			
\$ 2	Safety "	4.00	11,000	20,000			
62	Crane "	4.00	11,000	20,000			
\$2	Log "	5.50	16,000	29,000			
\$2	Crane "	5.50	16,000	29,000			
źΖ	" "	7.40	22,000	40,000			
1′°	66 66	9.50	30,000	55,000			
116	66 66	12.00	40,000	66,000			
i12		15.00	50,000	82,000			
11/6 11/4 11/6	4 4	21.00	70,000	116,000			

Elongation of all sizes, 10 per cent. All chain must stand the prescribed proof test without deformation.

British Admiralty Proving Tests of Chain Cables. links. Minimum size in inches and 16ths. Proving test in tons of 2240 lbs.

Test, tons: 818 10 **%** 11 38 19 110 112 113 114 116 23. 2 22 Min. Size: 18 111 21 4018 4318 4718 515 553 593 695 6711 72 7611 815 913 Test, tons:

Wrought-iron Chain Cables.—The strength of a chain link is less than twice that of a straight bar of a sectional area equal to that of one side of the link. A weld exists at one end and a bend at the other, each re quiring at least one heat, which produces a decrease in the strength. The report of the committee of the U.S. Testing Board, on tests of wrought-troand chain cables contains the following conclusions. That beyond doubt when made of American bar iron, with cast-iron studs, the studded link is inferior in strength to the unstudded one.

"That when proper care is exercised in the selection of material, a variation of 5 to 17 per cent of the strongest may be expected in the resistance of cables. Without this care, the variation may rise to 25 per cent.

"That with proper material and construction the ultimate resistance of the chain may be expected to vary from 155 to 170 per cent of that of the bar used in making the links, and show an average of about 163 per cent.

"That the proof test of a chain cable should be about 50 per cent of the ultimate resistance of the weakest link."

The decrease of the resistance of the studded below the unstudded cable is probably due to the fact that in the former the sides of the link do not remain parallel to each other up to failure, as they do in the latter. The result is an increase of stress in the studded link over the unstudded in the proportion of unity, to the secant of half the inclination of the sides of the former to each other.

From a great number of tests of bars and unfinished cables, the committee considered that the average ultimate resistance, and proof tests of chain cables made of the bars, whose diameters are given, should be such as are

shown in the accompanying table.

ULTIMATE RESISTANCE AND PROOF TESTS OF CHAIN CABLES.

Diam. of Bar.	Average resist. = 168% of Bar.	Proof Test.	Diam. of Bar.	Average resist. = 163% of Bar.	Proof Test.
Inches. 1 1/16 1 1/16 1 1/6 1 8/16 1 8/16 1 5/16 1 5/16 1 7/16	Pounds. 71,172 79,544 88,445 97,731 107,440 117,577 128,129 139,103 150,485	Pounds. 33,840 37,820 42,053 46,468 51,084 55,903 60,920 66,138 71,550	Inches. 1 9/16 15/6 1 11/16 18/4 1 13/16 17/6 1 15/16	162,288 174,475 187,075 200,074 218,475	Pounds. 77,159 82,956 88,947 96,128 101,499 103,058 114,806 121,737

STRENGTH OF GLASS.

(Fairbairn's "Useful Information for Engineers, " Second Series.) Best Common Extra White

Flint Glass. Green Glass. Crown Glass. Mean specific gravity 3.078 2.5282,450 Mean tensile strength, lbs. per sq. in., bars.. do. thin plates. 2,413 2,896 2,546 4,200 4.800 6,000 Mean crush'g strength, lbs. p. sq. in., cyl'drs. 27,582 39,876 31,003 cubes. 13,130 20,206

The bars in tensile tests were about 1/4 inch diameter. The crushing tests were made on cylinders about 3/4 inch diameter and from 1 to 2 inches high, and on cubes approximately 1 inch on a side. The mean transverse strength of glass, as calculated by Fairbairn from a mean tensile strength of 2560 lbs. and a mean compressive strength of 30,150 lbs. per sq. in., is, for a bar supported at the ends and loaded in the middle,

ir which w = breaking weight in its., b = breadth, d = depth, and l = length, it inches. Actual tests will probably show wide variations in both directions from the mean calculated strength.

STRENGTH OF COPPER AT HIGH TEMPERATURES.

The British Admiralty conducted some experiments at Portsmouth Dockyard in 1877, on the effect of increase of temperature on the tensile strength of copper and various bronzes. The copper experimented upon was in rods. 2: in diameter, having a tensile strength of about 25 tons per square inch. The following table shows some of the results:

Temperature	Tensile Strength	Temperature	Tensile Strength in lbs. per sq. in.		
Fahr.	in lbs. per sq. in.	Fahr.			
Atmospheric. 100° 200° 300°	23,115 23,366 22,110 21,607	Atmospheric. 400° 500°	21,105 19,597		

Up to a temperature of 400° F. the loss of strength was only about 10 per cent, and at 500° F. the loss was 16 per cent. The temperature of steam at 200 lbs. pressure is 382° F., so that according to these experiments the loss of strength at this point would not be a serious matter. Above a temperature of 500° the strength is seriously affected.

STRENGTH OF TIMBER.

Strength of Long-leaf Pine (Yellow Pine, Pinus Palustris) from Alaban a (Bulletin No. 8, Forestry Div., Dept. of Agriculture, 1898, Tests by Prof. J. B. Johnson.)

The following is a condensed table of the range of results of mechanical tests of over 2000 specimens, from 26 trees from four different sites in Alabama : reduced to 15 per cent moisture :

	But	t I	.ogs.	Midd	lle	Logs.	Top	p L	ogs.	Av'g of all Butt Logs.
Specific gravity	0.449	to	1.039	0.575	to	0.859	0.484	to	0.907	0.767
Transverse strength, $\frac{8}{2} \frac{WL}{hh^2}$	4,762	to	16,200	7,640	to	17,128	4,268	to	15,554	12,614
do do. at elast. limit Mod. of elast., thous. lbs. Relative elast. resilience.	4, 93 0 1,119	to	18,110	5,540	to	11,790	2,553	to	11,950	9,460
inch-pounds per cub. in. Crushing endwise, str. per		to	4.69	1.84	to	4.21	ა 09	to	4.65	2.98
sq. inlbs		to	9,850	5 ,03 0	to	9,800	4,587	to	9,100	7,452
strength per sq. in.,lbs.	675					1,445				1,598
Tensile strength per sq. in. Shearing strength (with		to	81,890	6,330	to	29,500	4,170	to	23,280	17,859
grain), mean per sq. in.		to	1,299	539	to	1,23 0	484	to	1156	866

Some of the deductions from the tests were as follows:

1. With the exception of tensile strength a reduction of moisture is ac-

companied by an increase in strength, stiffness, and roughness.

2. Variation in strength goes generally hand-in-hand with specific gravity.

3. In the first 20 or 30 feet in height the values remain constant; then occurs a decrease of strength which amounts at 70 feet to 20 to 40 per cent of that of the butt-log.
4. In shearing parallel with the grain and crushing across and parallel

with the grain, practically no difference was found.
5. Large beams appear 10 to 20 per cent weaker than small pieces.

6. Compression tests endwise seem to furnish the best average statement of the value of wood, and if one test only can be made, this is the safest, as was also recognized by Bauschinger.
7. Bled timber is in no respect inferior to unbled timber.

The figures for crushing across the grain represent the load required to cause a compression of 15 per cent. The relative elastic resilience, in inchipounds per cubic inch of the material, is obtained by measuring the area of the plotted-strain diagram of the transverse test from the origin to the point in the curve at which the rate of deflection is 50 per cent greater than the rate in the earlier part of the test where the diagram is a straight lime. This point is arbitrarily chosen since there is no definite "elastic limit" is thus strength taken at this same point. Timber is not perfectly elastic for any load if left on any great length of time.

The long-leaf pine is found in all the Southern coast states from North Carolina to Texas. Prof. Johnson says it is probably the strongest timber in large sizes to be had in the United States. In small selected specimens, other species, as oak and hickory, may exceed it in strength and toughness. The other Southern yellow pines, viz., the Cuban, short-leaf and the loblolly pines are inferior to the long-leaf about in the ratios of their specific gravities; the long-leaf being the heaviest of all the pines. It averages (kiln-dried) 48 pounds per cubic foot, the Cuban 47, the short-leaf

40, and the loblolly 34 pounds.

Strength of Spruce Timber.—The modulus of rupture of spruce is given as follows by different authors: Hatfield, 9900 lbs. per square inch; Rankine, 11,100; Laslett, 9045; Trautwine, 8100; Rodman, 6168. Trautwine advises for use to deduct one-third in the case of knotty and poor timber.

Prof. Lanza, in 25 tests of large spruce beams, found a modulus of rupture from 2995 to 5666 lbs.; the average being 4618 lbs. These were average beams, ordered from dealers of good repute. Two beams of selected stock, seasoned four years, gave 7562 and 8748 lbs. The modulus of elasticity ranged from 897,000 to 1,588,000, averaging 1,294,000.

Time tests show much smaller values for both modulus of rupture an.1 modulus of elasticity. A beam tested to 5800 lbs. in a screw machine was left over night, and the resistance was found next morning to have dropped

to about 3000, and it broke at 3500.

Prof. Lanza remarks that while it was necessary to use larger factors of safety, when the moduli of rupture were determined from tests with smaller pieces, it will be sufficient for most timber constructions, except in factories, to use a factor of four. For breaking strains of beams, he states that it is better engineering to determine as the safe load of a timber beam the lond that will not deflect it more than a certain fraction of its span, say about 1,300 to 1,400 of its length.

Properties of Timber.

(N. J. Steel & Iron Co.'s Book.)

Description.	Weight per cubic foot, in lbs.	Tensile Strength per sq. inch, in lbs.	Crushing Strength per sq. inch, in lbs.	Relative Strength for Cross Breaking. White Pine = 100.	
Ash	48 to 55.8	11.000 to 17.207	4,400 to 9,363	130 to 180	458 to 700
Beech					
Cedar					
Cherry				130	
Chestnut		10.500	5,350 to 5,600		
Elm					
Hemlock			5.700	88 to 95	
Hickory		12 800 to 18 000		150 to 210	
Locust	44	20 500 to 24 800	0 113 to 11 700	132 to 227	
Maple	40	10 500 to 10 584	8,150	122 to 220	867 to 647
Oak, White					
					752 to 966
Oak, Live		10.000 4 - 10.000	6,850	155 to 189	200
Pine, White			5,000 to 6.650		225 to 423
Pine, Yellow					
Spruce				86 to 110	253 to 374
Walnut, Black.	42	9,286 to 16,000	7,500		

The above table should be taken with caution. The range of variation in the species is apt to be much greater than the figures indicate. See Johnson's tests on long-leaf pine, and Lanza's on spruce, above. The weight of yellow pine in the table is much less than that given by Johnson. (W. K.)

Compressive Strengths of American Woods, when slowly

and carefully seasoned.—Approximate averages, deduced from many experiments made with the U.S. Government testing machine at Watertown, Mass., by Mr. S. P. Sharpless, for the Census of 1880. Seasoned woods resist crushing much better than green ones; in many cases, twice as well. Different specimens of the same wood vary greatly. The strengths may readily vary as much as one-third part more or less from the average.

	End- wise,* lbs. per sq. in,	* wise,†			End- wise,* lbs. per sq. in.	wis	le- se,† per in.
		.01	.1			.01	1.1
Ash, red and white		1300		Maple:			i
Aspen	4400	800	1400	sugar and black	8000	1900	4300
Be ech	7000	1100		white and red	6800	1300	2900
Birch	8000	1300		Oak :		1	1
Buckeye	4400	600		white, post (or		ł	
Butternut	5400	700	1600	iron), swam p		l	
Butto nw ood		l i		white, red, and		1	
(sycamore)		1300		black	7000	1600	
Cedar, red	6000	700	1000	scrub and basket.	6000	1700	
Cedar, white (arbor-				chestnut and live	7500	1600	4500
vitue)	4400	500	900	pin	6500	1300	3000
Catalpa (Ind. bean)		700		Pine ;			
Cherry, wild	8000	1700	2600	white	5400	° 600	
Chestnut	5300	900	1600	red or Norway	6300	600	1400
Coffee-tree, Ky	5200	1300		pitch and Jersey		Ì	1
Cypress, bald	6000	500		scrub	5000	1000	
Elm, Am. or white	6800	1300		Georgia	8500	1300	2600
" red	7700	1300		Poplar	5000	600	1100
Hemlock	5800	600	1100	Sassafras	5000	1300	2100
Hickory	8000	2000		Spruce, black	5700	700	1300
Lig num-vi tæ	10000		13000	" white	4500	600	1200
Linden, American.	5000	500	900	Sycamore (button-	!		1
Locust:				wood	6000	1300	2600
black and yellow.	9800	1900		Walnut:			
honey	7000	1600	2600	black	8000	1300	2600
Mahogany	9000	1700	5300	white (butternut).			1600
Maple:	l	1		Willow	4400	700	1400
broad-leafed, Ore.	5300	1400	2600				

>

Expansion of Timber Due to the Absorption of Water.

(De Volson Wood, A. S. M. E., vol. x.)

Pieces 36 × 5 in., of pine, oak, and chestnut, were dried thoroughly, and then immersed in water for 37 days.

The mean per cent of elongation and lateral expansion were:

	Pine.	Oak.	Cnestnut.
Elongation, per cent	0.065	0.085	0.165
Lateral expansion, per cent	2.6	3.5	8.65

Expansion of Wood by Heat.—Trautwine gives for the expansion of white pine for 1 degree Fahr. 1 part in 440,530, or for 180 degrees 1 part in 2447, or about one-third of the expansion of iron.

^{*} Specimens 1.57 ins. square × 12.6 ins. long.
† Specimens 1.57 ins. square × 6.8 ins. long. Pressure applied at mid-length by a punch covering one-fourth of the length. The first column gives the loads producing an indentation of .01 inch, the second those producing an indentation of .1 inch. (See also page 306).

Shearing Strength of American Woods, adapted for Pins or Treenails.

J. C. Trautwine (Jour. Franklin Inst.). (Shearing across the grain.)

per sq. in. 6280	per sq. in. Hickory
Beech	7285
Birch 5595	Maple
Cedar (white)	Oak 4425
" " 1519	Oak (live)
Cedar (Central American) 3410	Pine (white)
Cherry 2945	Pine (Northern yellow 4340
Chestnut	Pine (Southern yellow) 5735
Dogwood	Pine (very resinous yellow) 5053
Ebony	Poplar
Gum 5890	Spruce
Hemlock	Walnut (black)
Locust 7176	Walnut (common) 2830

THE STRENGTH OF BRICK, STONE, ETC.

A great advance has recently been made in the manufacture of brick, in A great abvance has recently been made in the manufacture or Drick, in the direction of increasing their strength. Chas. P. Chase, in Engineering News, says: "Taking the tests as given in standard engineering books eight or ten years ago, we find in Trautwine the strength of brick given as 500 to 4200 lbs. per sq. in. Now, taking recent tests in experiments made at Watertown Arsenal, the strength ran from 5000 to 22,000 lbs. per sq. in. In the tests on Illinois paving-brick, by Prof. I. O. Baker, we find an average strength in hard paving brick of over 5000 lbs. per square inch. The average crushing strength of the varieties of review-brick much used in the West I crushing strength of ten varieties of paving-brick much used in the West, I find to be 7150 lbs. to the square inch.

A recent test of brick made by the dry-clay process at Watertown Arsenal, according to Paving, showed an average compressive strength of 3972 lbs. per sq. in. In one instance it reached 4973 lbs. per sq. in. A test was made at the same place on a "fancy pressed brick." The first crack developed at a pressure of 305,000 lbs., and the brick crushed at 364,300 lbs., or 11,130 lbs. per sq. in. This indicates almost as great compressive strength as granite paving-blocks, which is from 12,000 to 20,000 lbs. per sq. in.

The following notes on bricks are from Trautwine's Engineer's Pocket-

Strength of Brick. 40 to 300 tons per sq. ft., 622 to 4668 lbs. per sq. in. A soft brick will crush under 450 to 600 lbs. per sq. in., or 30 to 40 tons per square foot, but a first-rate machine-pressed brick will stand 200 to 400 tons

square foot, but a inst-rate macinie-pressed brick will stand 20 to 300 to 500 per sq. ft. (3112 to 6224 lbs. per sq. in.).

Weight of Bricks.—Per cubic foot, best pressed brick, 150 lbs.; good pressed brick, 181 lbs.; common hard brick, 125 lbs.; good common brick, 118 lbs.; soft inferior brick, 100 lbs.

Absorption of Water.—A brick will in a few minutes absorb 1/2 to 3/4 lb. of water, the last being 1/7 of the weight of a hand-moulded one, or 1/2 of its bulk.

Tests of Bricks, full size, on flat side. (Tests made at Watertown Arsenal in 1883.)—The bricks were tested between flat steel buttresses. Compressed surfaces (the largest surface) ground approximately flat. The bricks were all about 2 to 2.1 inches thick, 7.5 to 8.1 inches long, and 3.5 to 3.76 inches wide. Crushing strength per square inch: One lot ranged from 11,056 to 16,784 lbs.; a second, 12,995 to 22,351; a third, 10,390 to 12,709. Other tests gave results from 5960 to 10,250 lbs. per sq. in

Crushing Strength of Masonry Materials. (From Howe's "Retaining Walls,")

t	ons per sa. ft.	to	ns per sq. ft.
Brick, best pressed	40 to 300	Limestones and marbles.	250 to 1000
Chalk		Sandstone	150 to 550
Granite	300 to 1200	Soapstone	400 to 800

Strength of Granite.—The crushing strength of granite is commonly rated at 12,000 to 15,000 lbs. per sq. in, when tested in two-inch cubes, and only the hardest and toughest of the commonly used varieties reach a strength above 20,000 lbs. Samples of granite from a quarry on the Connecticut River, tested at the Watertown Arsenal, have shown a strength of

33.965 lbs. per sq. in (Engineering News, Jan. 12, 1988).
Strongth of Avondale, Pa., Limestone—(Engineering News, Feb. 9, 1883).—Crushing strength of 2-in, cubes: light stone 12,112, gray stone 15.040. lbs. per sq. in:

Transverse test of lintels, tool-dressed, 42 in. between knife-edge bearings, load with knife-edge brought upon the middle between bearings: Gray stone, section 6 in. wide × 10 in. high, broke under a load of 20,950 lbs.

Transverse Strength of Flagging. (N. J. Steel & Iron Co.'s Book.)

EXPERIMENTS MADE BY R. G. HATFIELD AND OTHERS.

b =width of the stone in inches; d =its thickness in inches: l =distance between bearings in inches.

The breaking loads in tons of 2000 lbs., for a weight placed at the centre of the space, will be as follows:

_	$\frac{bd^2}{1} \times$	$\frac{bd^2}{dt}$ ×
	TX	I ×
		Dorchester freestone
Quincy granite	.624	Aubigny freestone
Little Falls freestone		Caen freestone
Believille, N. J., freestone		Glass
Granite (another quarry)		Slate
Connecticut freestone	312	

Thus a block of Quincy granite 80 inches wide and 6 inches thick, resting on beams 36 inches in the clear, would be broken by a load resting midway $\frac{80 \times 36}{2} \times .624 = 49.92 \text{ tons.}$ between the beams =

STRENGTH OF LIME AND CEMENT MORTAR.

(Engineering, October 2, 1891.)

Tests made at the University of Illinois on the effects of adding cement to Tests made at the University of Illinois on the eneces of adding cements of time mortar. In all the tests a good quality of ordinary fat lime was used, slaked for two days in an earthenware jar, adding two parts by weight of water to one of lime, the loss by evaporation being made up by fresh additions of water. The cements used were a German Portland, Black Diamond (Louisville), and Rosendale. As regards fineness of grinding, 85 per cent of the Portland passed through a No. 100 sieve, as did 72 per cent of the Rosendale. As fairly sharp and those parts washed and dried passing through a dale. A fairly sharp and, thoroughly washed and dried, passing through a No. 18 sieve and caught on a No. 30, was used. The mortar in all cases consisted of two volumes of sand to one of lime paste. The following results were obtained on adding various percentages of cement to the mortar:

Tensile Strength, pounds per square inch.

Age	Days.	7 Days.	Days.	21 Days.	28 Days.	50 Days.	84 Days
Lime mortar	ale. 5	8	10	13	18	21	26
20 per cent Rosend	aie. 5	81/6	916	12	17	17	18
20 " " Portlan	d 5	814	14	20	25	24	26
30 '' Rosend	ale 7	11	13	1816	21	2216	23
30 " " Portlan	d 8	16	18	222	25	28	27
40 " " Rosend	ale 10	12	1616	2114	2216	28	36
40 " " Portlan		89	88 2	43	47	59	57
60 " " Rosend		13	20	16	22	2216	23
60 " " Portlan		58	55	68	67	102	78
80 " " Rosend		1816	2216	27	29	311/6	33
80 " " Portlan		91	103	124	94	210	145
100 " " Rosend		23	26	31	34	46	48
100 " " Portlan		120	146	152	181	205	202

MODULI OF ELASTICITY OF VARIOUS MATERIALS.

The modulus of elasticity determined from a tensile test of a bar of any material is the quotient obtained by dividing the tensile stress in pounds per square inch at any point of the test by the elongation per inch of length produced by that stress; or if P = pounds of stress applied, K = the sectional area, l = length of the portion of the bar in which the measurement is made, and λ = the elongation in that length, the modulus of elasticity $E = \frac{P}{K} + \frac{\lambda}{l} = \frac{Pl}{K\lambda}$. The modulus is generally measured within the elastic limit only, in materials that have a well-defined elastic limit, such as iron and steel, and when not otherwise stated the modulus is understood to be the modulus within the elastic limit. Within this limit, for such materials the modulus is practically constant for any given bar, the elongation being directly proportional to the stress. In other materials, such as cast iron, which have no well-defined elastic limit, the elongations from the beginning of a test increase in a greater ratio than the stresses, and the modulus is therefore at its maximum near the beginning of the test, and continually decreases. The moduli of elasticity of various materials have already been given above in treating of these materials but the following table since given above in treating of these materials, but the following table gives some additional values selected from different sources:

Brass, cast	9,170,000
" wire	14,230,000
Copper	15,000,000 to 18,000,000.
Lead	1,000,000
Tin, cast	4,600,000
Iron, cast	12,000,000 to 27,000,000 (?)
Iron, wrought	22,000,000 to 29,000,000
Steel	26,000,000 to 32,000,000
Marble.	25,000,000
Slate.	14,500,000
Glass	8,000,000
Ash	1,600,000
Beech	1,300,000
Birch	1,250,000 to 1,500,000
	869.000 to 2.191.000
Fir	
Oak	974,000 to 2,283,000
Teak	2,414,000
Walnut	306,000
Pine, long-leaf (butt-logs)	1,119,000 to 8,117,000 Avg

ge. 1,926,000

The maximum figures given by many writers for iron and steel, viz.,

10,000,000 and 42,000,000, are undoubtedly erroneous.

Prof. J. B. Johnson, in his report on Long-leaf Pine, 1893, says: "The modulus of elasticity is the most constant and reliable property of all engineering materials. The wide range of value of the modulus of elasticity of the various metals found in public records must be explained by erroneous methods of testing.

In a tensile test of cast iron by the author (Van Noetrand's Science Series, No. 41, page 45), in which the ultimate strength was 23,285 lbs. per sq. in., No. 41, page 43, in which the diffinate strength was 23,233 los, per 3d, in the measurements of elongation were made to .0001 inch, and the modulus of elasticity was found to decrease from the beginning of the test, as follows: At 1000 lbs. per sq. in., 25,000,000; at 2000 lbs., 16,666,000; at 4000 lbs., 13,636,000; at 8000 lbs., 12,500,000; at 23,000 lbs., 11,250,000; at 15,000 lbs., 10,000,000; at 20,000 lbs., 8,000,000; at 23,000 lbs., 6,140,000. The modulus of elasticity of steel (within the elastic limit) is remarkably constant, notwithstanding great variations in chemical analysis, temper, etc. It rarely is found below 28,000,000 or above 81,000,000. It is generally taken at 30,000,000 in engineering calculations.

FACTORS OF SAFETY.

A factor of safety is the ratio in which the load that is just sufficient to overcome instantly the strength of a piece of material is greater than the greatest safe ordinary working load. (Rankine.)

Rankine gives the following "examples of the values of those factors which occur in machines":

De	ad Load.	Live Load, Greatest.	Live Load, Mean.
Iron and steel	3	6	from 6 to 40
Timber	4 to 5	8 to 10	
Masonry	4	8	****

The great factor of safety, 40, is for shafts in millwork which transmit very variable efforts.

Unwin gives the following "factors of safety which have been adopted in certain cases for different materials." They "include an allowance for ordinary contingencies."

Dead Loud.	In Temporary	In Permanent	In Structures
Wrought iron and steel. 3	4	4 to 5	10
Cast iron 8	4	5	10
Timber	4	10	
Brickwork	••••	6	
Masonry 20	••••	20 to 30	

Unwin says says that "these numbers fairly represent practice based on experience in many actual cases, but they are not very trustworthy.

Prof. Wood in his "Resistance of Materials" says: "In regard to the margin that should be left for safety, much depends upon the character of the loading. If the load is simply a dead weight, the margin may be comparatively small; but if the structure is to be subjected to percussive forces or shocks, the margin should be comparatively large on account of the indeterminate effect produced by the force. In machines which are subjected to a constant jar while in use, it is very difficult to determine the proper margin which is consistent with economy and safety. Indeed, in such cases, economy as well as safety generally consists in making them ercessively strong, as a single breakage may cost much more than the extra

For discussion of the resistance of materials to repeated stresses and shocks, see pages 238 to 240.

Instead of using factors of safety it is becoming customary in designing to fix a certain number of pounds per square inch as the maximum stress which will be allowed on a piece. Thus, in designing a boiler, instead of naming a factor of safety of 6 for the plates and 10 for the stay-bolts, the ultimate tersile strength of the steel being from 50 000 to 6 000 lbs, year, in ultimate tersile strength of the steel being from 50,000 to 60,000 lbs. per sq. in., an allowable working stress of 10,000 lbs. per sq. in. on the plates and 6000 lbs. per sq. in. on the stay-bolts may be specified instead. So also in Merriman's formula for columns (see page 260) the dimensions of a column are calculated after assuming a maximum allowable compressive stress per square inch on the concave side of the column.

The factors for masonry under dead load as given by Rankine and by Unwin,

viz. 4 and 20, show a remarkable difference, which may possibly be explained as follows: If the actual crushing strength of a pier of masonry is known from direct experiment, then a factor of safety of 4 is sufficient for a pier of the same size and quality under a steady load; but if the crushing strength is merely assumed from figures given by the authorities (such as the crushing interpret of present bright, unded above from Howels Bactains W. 11. ing strength of pressed brick, quoted above from Howe's Retaining Walls, 40 to 300 tons per square foot, average 170 tons), then a factor of safety of 20 may be none too great. In this case the factor of safety of 20 of gnorance."

The selection of the proper factor of safety or the proper maximum unit stress for any given case is a matter to be largely determined by the judg-ment of the engineer and by experience. No definite rules can be given. The customary or advisable factors in many particular cases will be found where these cases are considered throughout this book. In general the following circumstances are to be taken into account in the selection of a factor

1. When the ultimate strength of the material is known within narrow limits, as in the case of structural steel when tests of samples have been made, when the load is entirely a steady one of a known amount, and there is no reason to fear the deterioration of the metal by corrosion, the lowest

factor that should be adopted is 3.

When the circumstances of 1 are modified by a portion of the load being variable, as in floors of warehouses, the factor should be not less than 4.
 When the whole load, or nearly the whole, is apt to be alternately put

on and taken off, as in suspension rods of floors of bridges, the factor should be 5 or 6.

4. When the stresses are reversed in direction from tension to compres-

sion, as in some bridge diagonals and parts of machines, the factor should be not less than 6.

5. When the piece is subjected to repeated shocks, the factor should be not less than 10.

6. When the piece is subject to deterioration from corrosion the section should be sufficiently increased to allow for a definite amount of corrosion before the piece be so far weakened by it as to require removal.

before the piece be so far weakened by it as to require removal.

7. When the strength of the material, or the amount of the load, or both are uncertain, the factor should be increased by an allowance sufficient to

cover the amount of the uncertainty.

8. When the strains are of a complex character and of uncertain amount, such as those in the crank-shaft of a reversing engine, a very high factor is necessary, possibly even as high as 40, the figure given by Rankine for shafts in millwork.

THE MECHANICAL PROPERTIES OF CORK.

Cork possesses qualities which distinguish it from all other solid or liquid bodies, namely, its power of altering its volume in a very marked degree in consequence of change of pressure. It consists, practically, of an aggregation of minute air-vessels, having thin, water-tight, and very strong walls, and hence, if compressed, the resistance to compression rises in a manner more like the resistance of gases than the resistance of an elastic solid such as a spring. In a spring the pressure increases in proportion to the distance to which the spring is compressed, but with gases the pressure increases in a much more rapid manner; that is, inversely as the volume which the gas is made to occupy. But from the permeability of cork to air, it is evident that, if subjected to pressure in one direction only, it will gradually part with its occluded air by effusion, that is, by its passage through the porous walls of the cells in which it is contained. The gaseous part of cork constitutes 53% of its bulk. Its elasticity has not only a very considerable range, but it is very persistent. Thus in the better kind of corks used in bottling the corks expand the instant they escape from the bottles. This expansion may amount to an increase of volume of 75%, even after the corks have been kept in a state of compression in the bottles for ten years. If the cork be steeped in hot water, the volume continues to increase till tattains nearly three times that which it occupied in the neck of the bottle.

When cork is subjected to pressure a certain amount of permanent deformation or "permanent set" takes place very quickly. This property is common to all solid elastic substances when strained beyond their elastic limits, but with cork the limits are comparatively low. Besides the permanent set, there is a certain amount of sluggish elasticity—that is, cork on being released from pressure springs back a certain amount at once, but

the complete recovery takes an appreciable time.

Cork which had been compressed and released in water many thousand times had not changed its molecular structure in the least, and had continued perfectly serviceable. Cork which has been kept under a pressure of three atmospheres for many weeks appears to have shrunk to from 80% to 85% of its original volume.—Van Nostrand's Eng'g Mag. 1886, xxxv. 307.

TESTS OF VULCANIZED INDIA-RUBBER.

Lieutenant L. Vladomiroff, a Russian naval officer, has recently carried out a series of tests at the St. Petersburg Technical Institute with a view to establishing rules for estimating the quality of vulcanized india-rubber. The following, in brief, are the conclusions arrived at, recourse being had to physical properties, since chemical analysis did not give any reliable result: 1. India-rubber should not give the least sign of superficial cracking when bent to an angle of 180 degrees after five hours of exposure in a closed air-bath to a temperature of 125° C. The test-pieces should be 2.4 inches thick. 2. Rubber that does not contain more than half its weight of metalic oxides should stretch to five times its length without breaking. 3. Rubber free from all foreign matter, except the sulphur used in vulcanizing it, should stretch to at least seven times its length without rupture. 4. The original length, with given dimensions. 5. Suppleness may be determined by measuring the percentage of ash formed in incineration. This may form the basis for deciding between different grades of rubber for certain purposes. 6. Vulcanized rubber should not harden under cold. These rules have been adopted for the Russian navy.—Iron Age, June 15, 1893.

XYLOLITH, OR WOODSTONE

is a material invented in 1883, but only lately introduced to the trade by Otto Serrig & Co., of Pottschappel, near Dresden. It is made of magnesia

cement, or calcined magnesite, mixed with sawdust and saturated with a solution of chloride of calcium. This pasty mass is spread out into sheets and submitted to a pressure of about 1000 lbs. to the square inch, and then simply dried in the air. Specific gravity 1.558. The fractured surface shows a uniform close grain of a yellow color. It has a tensional resistance when lry of 100 lbs. per square inch, and when wet about 66 lbs. When immersed in water for 12 hours it takes up 2.1% of its weight, and 8.8% when immersed :16 hours.

When treated for several days with hydrochloric acid it loses 2.3% in weight, and shows no loss of weight under boiling in water, brine, soda-lye, and solution of sulphates of iron, of copper, and of ammonium. In hardness the material stands between feldspar and quarts, and as a non-conductor of

eat it ranks between asbestos and cork.

It stands fire well, and at a red heat it is rendered brittle and crumbles at the edges, but retains its general form and cohesion. This xylolith is suptied in sheets from 14 in. to 114 in, thick, and up to one metre square. It extensively used in Germany for floors in railway stations, hospitals, etc., and for decks of vessels. It can be sawed, bored, and shaped with ordinary soodworking tools. Putty in the joints and a good coat of paint make it entirely water-proof. It is sold in Germany for flooring at about 7 cents per quare foot, and the cost of laying adds about 4 cents more.—Eng'g News, July 28, 1892, and July 27, 1893.

ALUMINUM-ITS PROPERTIES AND USES. (By Alfred E. Hunt, Pres't of the Pittsburgh Reduction Co.)

The specific gravity of pure aluminum in a cast state is 2.58; in rolled bars of large section it is 26; in very thin sheets subjected to high compression under chilled rolls, it is as much as 2.7. Taking the weight of a oven bulk of cast aluminum as 1, wrought from is 2.90 times restricted under the compression of the compression

Pure aluminum is practically not acted upon by boiling water or steam. Carbonic oxide or hydrogen sulphide does not act upon it at any temperature under 600° F. It is not acted upon by most organic secretions.

Hydrochloric acid is the best solvent for aluminum, and strong solutions of caustic alkalies readily dissolve it. Ammonia has a slight solvent action, and concentrated sulphuric acid dissolves aluminum upon heating, with evolution of sulphurous acid gas. Dilute sulphuric acid acts but slowly on evolution of sulphirous acid gas. Dilute sulphiric acid acts but slowly on the metal, though the presence of any chlorides in the solution allow rapid lecomposition. Nitric acid, either concentrated or dilute, has very little action upon the metal, and sulphir has no action unless the metal is at a red hat. Sea-water has very little effect on aluminum. Strips of the metal placed on the sides of a wooden ship corroded less than 1/1000 inch after six months' exposure to sea-water, corroding less than copper sheets similarly placed.

In malleability pure aluminum is only exceeded by gold and silver. In ductility it stands seventh in the series, being exceeded by gold, silver, platinum, iron, very soft steel, and copper. Sheets of aluminum have been rolled down to a thickness of 0.0005 inch, and beaten into leaf nearly as thin as gold leaf. The metal is most malleable at a temperature of between 400° and 600° F., and at this temperature it can be drawn down between rolls with nearly as much draught upon it as with heated steel. It has also been drawn down into the very finest wire. By the Mannesmann process aluminum tubes have been made in Germany.

Aluminum stands very high in the series as an electro-positive metal, and contact with other metals should be avoided, as it would establish a galyanic

couple.

The electrical conductivity of aluminum is only surpassed by pure copper. silver, and gold. With silver taken at 100 the electrical conductivity of aluminum is 54.20; that of gold on the same scale is 78; zinc is 29.90; iron is only 16, and platinum 10.60. Pure aluminum has no polarity, and the

metal in the market is absolutely non-magnetic.

Sound castings can be made of aluminum in either dry or "green" sand moulds, or in metal "chills." It must not be heated much beyond its melting, point, and must be poured with care, owing to the ready absorption of occluded gases and air. The shrinkage in cooling is 17.64 inch per foot, or a little more than ordinary brass. It should be melted in plumbago crucibles, and the metal becomes molten at a temperature of 1120° F. according to Professor Roberts-Austen, or at 1300° F. according to Richards.

The coefficient of linear expansion, as tested on \(\frac{3}{2} \)-inch round aluminum rods, is 0.00002295 per degree centigrade between the freezing and boiling point of water. The mean specific heat of aluminum is higher than that of any other metal, excepting only magnesium and the alkali metals. From zero to the melting-point it is 0.2185; water being taken as 1, and the latent heat of fusion at 28.5 heat units. The coefficient of thermal conductivity of the conductivity of th unannealed aluminum is 37.96; of annealed aluminum, 38.37. As a conductor of heat aluminum ranks fourth, being exceeded only by silver, copper, and

Aluminum, under tension, and section for section, is about as strong as cast iron. The tensile strength of aluminum is increased by cold rolling or cold forging, and there are alloys which add considerably to the tensile

strength without increasing the specific gravity to over 8 or 8.25

The strength of commercial aluminum is given in the following table as the result of many tests:

Form.	Elastic Limit per sq. in. in Tension,	Ultimate Strength per sq. in, in Tension,	Percentage of Reduct'n of Area in
Form.	lbs.	lbs.	Tension.
Clastinas		15.000	15
Castings		24,000	35
Wire		30,000-65,000	60
		28,000	. 40
Bars	19,000	40, 000	. 40

The elastic limit per square inch under compression in cylinders, with length twice the diameter, is 3500. The ultimate strength per square inch under compression in cylinders of same form is 12,000. The modulus of elasticity of cast aluminum is about 11,000,000. It is rather an open metal in its texture, and for cylinders to stand pressure an increase in thickness must

its texture, and for cylinders to stand pressure an increase in thickness must be given to allow for this porceity. Its maximum shearing stress in castings is about 12,000, and in forgings about 16,000, or about that of pure copper. Pure aluminum is too soft and lacking in tensile strength and rigidity for many purposes. Valuable alloys are now being made which seem to give great promise for the future. They are alloys containing from 2% to 7% or 8% of copper, manganese, iron, and nickel. As nickel is one of the principal constituents, these alloys have the trade name of "Nickel-aluminum." Plates and bars of this nickel alloy have a tensile strength of from 40,000 to 000 pounds per square inch an elastic limit of 5% to 60% of the ultimate tensile.

50,000 pounds per square inch, an elastic limit of 55% to 60% of the ultimate tensile strength, an elongation of 20% in 2 inches, and a reduction of area of 25%.

This metal is especially capable of withstanding the punishment and distortion to which structural material is ordinarily subjected. Nickelaluminum alloys have as much resilience and spring as the very hardest of hard-drawn brass.

Their specific gravity is about 2.80 to 2.85, where pure aluminum has a

specific gravity of 2.72

In castings, more of the hardening elements are necessary in order to give the maximum stiffness and rigidity, together with the strength and ductility of the metal; the favorite alloy material being zinc, iron, manganese, and copper. Tin added to the alloy reduces the shrinkage, and alloys of aluminum and tin can be made which have less shrinkage than cast iron.

The tensile strength of hardened aluminum-alloy castings is from 20,000

to 25,000 pounds per square inch.

Alloys of aluminum and copper form two series, both valuable. The first is aluminum bronze, containing from 5% to 1136% of aluminum; and the second is copper hardened aluminum, containing from 2% to 15% of copper. second is copper-hardened aluminum, containing from 2% to 15% of copper-Aluminum-bronze is a very dense, fine-grained, and strong alloy, having good ductility as compared with tensile strength. The 10% bronze in forged bars will give 100,000 lbs. tensile strength per square inch, with 60,000 lbs. elastic limit per square inch, and 10% elongation in 8 inches. The 5% to 73% bronze has a specific gravity of 8 to 8.30, as compared with 7.50 for the 10% to 11½...? bronze, a tensile strength of 70,000 to 80,000 lbs., an elastic limit of 40,000 lbs. per square inch, and an elongation of 30% in 8 inches. Aluminum is used by steel manufacturers to prevent the retention of the occluded gases in the steel, and thereby produce a solid ingot. The propor-

occluded gases in the steel, and thereby produce a solid ingot. The proportions of the dose range from ½ lb. to several pounds of aluminum per ton of steel. Aluminum is also used in giving extra fluidity to steel used in castings. making them sharper and sounder. Added to cast iron, aluminum causes the iron to be softer, free from shrinkage, and lessens the tendency to "chill."

With the exception of lead and mercury, aluminum unites with all metals,

though it unites with antimony with great difficulty. A small percentage of silver whitens and hardens the metal, and gives it added strength; and his alloy is especially applicable to the manufacture of fine instruments and apparatus. The fellowing alloys have been found recently to be useful and apparatus. The fellowing alloys have been found recently to be useful in the arts: Nickel-aluminum, composed of 20 parts nickel to 8 of aluminum; resine, made of 40 parts nickel, 10 parts silver, 30 parts aluminum, and 20 parts tin, for jewellers' work; mettaline, made of 35 parts cobalt, 25 parts aluminum, 10 parts iron, and 30 parts copper. The aluminum-bourbounz metal, shown at the Paris Exposition of 1889, has a specific gravity of 2.9 to 2.5, and can be cast in very solid shapes, as it has very little shrinkage. From analysis the following composition is deduced: Aluminum, 85.74%; tin, 29 46, silicon 1.394 iron none 12.94%; silicon, 1.32%; iron, none.

12.94%; silicon, 1.32%; iron none.

The metal can be readily electrically welded, but soldering is still not satstactory. The high heat conductivity of the aluminum withdraws the heat
of the molten solder so rapidly that it "freezes" before it can flow sufficiently. A German solder said to give good results is made of 80% tin to 20%
cinc, using a flux composed of 80 parts stearic acid, 10 parts chloride of
cinc, and 10 parts of chloride of tin. Pure tin, fusing at 250° C., has also
been used as a solder. The use of chloride of silver as a flux has been
patented, and used with ordinary soft solder has given some success. A
pure nickel soldering-bit should be used, as it does not discolor aluminum
as copport bits do.

as copper bits do.

ALLOYS. ALLOYS OF COPPER AND TIN. (Extract from Report of U. S. Test Board.*)

-	Mean	Com-	ngth, in	ž.	in 5	Test,	1" sq. long,	. in	Te	sion sts.
Number.	Ana	lysis.	lle Stren per sq.	lastic Limi(lbs. per sq.	ation, cent in	ransverse Modulus o Rupture.	effection, 1 Bar 22 in. inches.	ing ngth, per so	num fom- tlbs.	oof Ses.
ž —	Cop- per.	Tin.	Tensile Strength lbs. per sq. in.	Elastic Limit, lbs. per sq. i	Elongation, per cent in inches.	Transverse T Modulus of Rupture.	Deffec Bar inch	Crushing Strength, Ibs. per sq.	Maximum Tor. Mom- ent, ftlbs.	Angle of Torsion, degrees.
1 1a	100. 100.		27,800 12,760	14,000 11,000	6.47 0.47	29,848 21,251	bent. 2.31	42,000 89,000	148 65	153 40
10	97.89	1.90	24,580	10,000	13.33	21,201	2 .01	34,000		317
3	96.06		82,000	16,000	14.29	33,282	bent.	42,048		247
4	94.11		00,000	20,000	12.20	38,659	٠,,	1		
4 5 6 7 8 9	92.11		28,540	19,000	5.58	43,731	"	42,000	160	126
6	90.27		26,860		3.66	49,400	46	38,000		114
7	88.41	11.59				60,403	**	l		
Ř	87.15		29,430	20,000	3.33	34,531	4.00	53,000	182	100
ğ	82.70		. 			67,930	0.63			
10	80.95	18.84	32,980		0.04	56,715	0.49	78,000	190	16
11	77.56	22,25			0.	29,926	0.16			
12	76.63	23.24	22,010	22,010	0.	32,210	0.19	114,000	122	8.4
13	72.89	26.85			0. 0.	9,512	0.05			
14	69.84	29.88	5,585	5,585	0.	12,076	0.06	147,000	18	1.5
15	68.58	31.26			0. 0.	9,152	0.04			
16	67.87	32.10			0.	9,477	0.05			
17	65.34	34.47	2,201	2,201	0.	4,776	0.02	84,700	16	1
18	56.70		1,455	1,455	0.	2,126 4,776	0.02	::		
19	44.52	55.28	8,010	3,010	0.	4,776	0.03	35,800		1
20	34.22	65.80	3,371	3,371	0.	5,384	0.04	19,600	17	2
21	23.85	76.99	6,775	6,775	0.	12,408	0.27			
21 22 28 24	15.08	84.62				9.063		6,500		25
23	11.49	88.47	6,390	3,500	4.10	10,706	5.85	10,100		62
24	8.57	91.39	6,450	8,500	6.87	5,305	bent.	9,800		132
25 26	3.72	96.31	4,780	2,750	12.32	6,925	1	9,800	28	220 557
26	! 0.	100.	3,505		85.51	3,740		6,400	12	007

^{*}The tests of the alloys of copper and tin and of copper and zinc, the results of which are published in the Report of the U. S. Board appointed to test Iron, Steel, and other Metals, Vols. I and II, 1879 and 1881, were made by the author under direction of Prof. R. H. Thurston, chairman of the Committee on Alloys. See preface to the report of the Committee, in Vol. I.

320

Nos. 1a and 2 were full of blow-holes.

Tests Nos. 1 and 1a show the variation in cast copper due to varying conditions of casting. In the crushing tests Nos. 12 to 20, inclusive, crushed and broke under the strain, but all the others bulged and flattened out. In these cases the crushing strength is taken to be that which caused a decrease of 10% in the length. The test pieces were 2 in. long and 5% in. diameter. The torsional tests were made in Thurston's torsion-machine, on pieces 5% in. diameter and 1 in. long between heads.

Specific Gravity of the Copper-tin Alloys.—The specific gravity of copper, as found in these tests, is 8.874 (tested in turnings from the ingot, and reduced to 39.1° F.). The alloy of maximum sp. 8.956 contained 62.42 copper, 37.48 tin, and all the alloys containing less than 37% tin varied irregularly in sp. gr. between 8.65 and 8.93, the density depending not on the composition, but on the porosity of the casting. It is probable that the actual sp. gr. of all these alloys containing less than 37% tin is about

8.95, and any smaller figure indicates porosity in the specimen.

From 37% to 100% tin, the sp. gr. decreases regularly from the maximum of 8,956 to that of pure tin, 7.298.

Note on the Strength of the Copper-tin Alloys.

The bars containing from 2% to 24% tin, inclusive, have considerable strength, and all the rest are practically worthless for purposes in which strength is required. The dividing line between the strong and brittle alloys is precisely that at which the color changes from golden yellow to silverwhite, viz., at a composition containing between 24% and 30% of tin.

It appears that the tensile and compressive strengths of these alloys are in no way related to each other, that the torsional strength is closely proportional to the tensile strength, and that the transverse strength may depend in some degree upon the compressive strength, but it is much more nearly related to the tensile strength. The modulus of rupture, as obtained by the transverse tests, is, in general, a figure between those of tensile and compressive strengths per square inch, but there are a few exceptions in

which it is larger than either.

The strengths of the alloys at the copper end of the series increase rapidly The strengths of the alloys at the copper end of the series increase rapidly with the addition of tin till about 4% of tin is reached. The transverse strength continues regularly to increase to the maximum, till the alloy containing about 17½% of tin is reached, while the tensile and torsional strengths also increase, but irregularly, to the same point. This irregularity is probably due to porosity of the metal, and might possibly be removed by any means which would make the castings more compact. The maximum is reached at the alloy containing 82.70 copper, 17.34 tin, the transverse strength, however, being very much greater at this point than the tensile or torsional strength. From the point of maximum strength the figures drop rapidly to the alloys containing about 27.5% of tin, and then more slowly to 37.5% at which point the minimum (or nearly the minimum) strength, by to 37.5%, at which point the minimum (or nearly the minimum) strength, by all three methods of test, is reached. The alloys of minimum strength are found from 87.5% tin to 52.5% tin. The absolute minimum is probably about 45% of tin.

From 52.5% of tin to about 77.5% tin there is a rather slow and irregular increase in strength. From 77.5% tin to the end of the series, or all tin, the

strengths slowly and somewhat irregularly decrease.

The results of these tests do not seem to corroborate the theory given by some writers, that peculiar properties are possessed by the alloys which are compounded of simple multiples of their atomic weights or chemical equivalents, and that these properties are lost as the compositions vary more or less from this definite constitution. It does appear that a certain percentage composition gives a maximum strength and another certain percentage a minimum, but neither of these compositions is represented by simple multiples of the atomic weights.

There appears to be a regular law of decrease from the maximum to the minimum strength which does not seem to have any relation to the atomic

proportions, but only to the percentage compositions.

Hardness.—The pieces containing less than 24% of tin were turned in the lathe without difficulty, a gradually increasing hardness being noticed, the last named giving a very short chip, and requiring frequent sharpening

With the most brittle alloys it was found impossible to turn the test-pieces in the lathe to a smooth surface. No. 13 to No. 17 (26.85 to 84.47 tin) could not be cut with a tool at all. Chips would fly off in advance of the tool and beseath it, leaving a rough surface; or the tool would sometimes, apparently, crush off portions of the metal, grinding it to powder. Beyond 40% tin the hardness decreased so that the bars could be easily turned.

ALLOYS OF COPPER AND ZINC. (U. S. Test Board).

_	Mean positi		Tensile	Elastic Limit	on %	Trans-	, kg , ,	Crush-		ional sts.
No.	Anal		Strength, lbs. per	Break- ing	Elongation z in 5 inches.	Test Modu- lus of	유노무	ing Str'gth per sq.	Moment ftlbs.	e of sion,
·	Cop- per.	Zinc.	sq. in.	Load, lbs. per sq. in.	팅료	Rup- ture.	Deflect sq. ba long.	in., lbs.	Max. To Momen ftlbs.	Angle Torsic deg.
1	97.83	1.88		 	l				130	357
2	82.93	16.98		26.1	26.7		Bent		155	329
3	81.91	17.99		80.6	31.4			l	166	845
4	77.39	22.45		20.0	35.5		"		169	811
5	76.65	25.08		24.6	35.8	22,825	"	42,000	165	267
5	73.20	26.47 28.54		28.7	38.5	25,891			168	298
8	71.20 69.74	80.06		29.5 28.7	29.2 20.7	24,468 26,930	16	[• • • • • • • • • • • • • • • • • • •	164 148	269 202
9	69.74 66.27	88.50		25.1	87.7	28,459	4.	·····	176	257
10	63.44	36.36	48,300	82.8	31.7	43,216			202	230
11	60.94	38.65		40.1	20.7	38,968	16	75,000	194	202
12	58.49	41.10		54.4	10.1	68,004	66	.0,000	227	93
13	55.15	44.44	44,280	44.0	15.8		**	78,000	209	109
14	54.86	44.78	46,400	53.9	8.0		**	10,000	223	78
15	49.66	50.14		54.5	5.0	83,467	1.26	117,400	179	88
16	48.99	50.82	26,050	100.	0.8	40,189	0.61	l [']	176	16
17	47.56	52.28		100.	0.8	48,471	1.17	121,000	155	18
18	43.36	56.22		100.		17,691	0.10		88	18 2 2 1 2
19	41.30	58.12		100.		7,761	0.04	l	18	2
20	32.94	66.23		100.		8,296	0.04		29	1
21	29.20	70.17		100.		16,579	0.04		40	2
22	20.81	77.63		100.	0.2	22,972	0.13	52,15%	65	1· 8
23	12.12	86.67		100.	0.4		0.81		82	8
24	4.85	94.59		100.	0.5	26,162	0.46		81	222
25	Cast	Zidc.	5.400	75.	0.7	7,589	0.12	22,000	87	142

Variation in Strength of Gun-bronze, and Means of Improving the Strength.—The figures obtained for alloys of from 1.8% to 12.7% im, viz., from 26.80 to 29.430 pounds, are much less than are usually given as the strength of gun-metal. Bronze guns are usually cast under the pressure of a head of metal, which tends to increase the strength and density. The strength of the upper part of a gun casting, or sinking head, is not greater than that of the small bars which have been tested in these experiments. The following is an extract from the report of Major Wade concerning the strength and density of gun-bronze (1850):—Extreme variation of six samples from different parts of the same gun (a 32-pounder howitzer): Specific gravity, 8.487 to 8.395; tenacity, 26.428 to 52.192. Extreme variation of all the samples tested: Specific gravity, 8.308 to 8.850; tenacity, 23,108 to 54.531. Extreme variation of all the samples tested: Specific gravity, 8.308 to 8.850; tenacity, 29.108 to 54.531. Extreme variation of all the samples from the gun heads: Specific gravity, 8.308 to 8.850; tenacity, 29.529 to 35,484.

Major Wade says: The general results on the quality of bronze as it is found in guns are mostly of a negative character. They expose defects in

Major Wade says: The general results on the quality of bronze as it is found in guns are mostly of a negative character. They expose defects in density and strength, develop the heterogeneous texture of the metal in different parts of the same gun, and show the irregularity and uncertainty of quality which attend the casting of all guns, although made from similar

materials, treated in like manner.

Navy ordnance bronze containing 9 parts copper and 1 part tin, tested at Washington, D. C., in 1875-6, showed a variation in tensile strength from 29,800 to 51,400 lbs. per square inch, in elongation from 3% to 58%, and in spe-

cific gravity from 8.39 to 8.88.

That a great improvement may be made in the density and tenacity of run-bronze by compression has been shown by the experiments of Mr. S. B. bean in Boston, Mass., in 1869, and by those of General Uchatius in Austria in 1873. The former increased the density of the metal next the bore of the gun from 8,321 to 8,875, and the tenacity from 27,238 to 41,471 pounds per

square inch. The latter, by a similar process, obtained the following figures for tenacity:

•	-	-	Pounds per sq. in.
Bronze with 10% tin			
Bronze with 8% tin			73,958
Bronze with 6% tin			77.656

ALLOYS OF COPPER, TIN, AND ZINC.

(Report of U. S. Test Board, Vol. II, 1881.)

No.	A Origin	nalysis nal Mix	s, kture.	Transverse Strength.		Tensile Strength per square inch.		Transverse Strength per per cent in			ent in
in . Report.	Cu.	Sn.	Zn.	Modulus of Rupture	Deflec- tion, ins.	<i>A</i> .	В.	A.	В.		
72	90	5	5	41,834	2.68	23,660	30,740	2.84	9.68		
5	88.14	1.86	10	31,986	8.67	32,000	38,000	17.6	19.5		
70	85	5	10	44,457	2.85	28,840	28,560	6.80	5.28		
71	85	10	5	62,470	2.56	35,680	86,000	2.51	2.25		
89	85	12.5	2.5	62,405	2.83	34,500	32,800	1.29	2.79		
88	82.5	12.5	5	69,960	1.61	36,000	34,000	.86	.92		
88 77	82.5	15	2.5	69,045	1.09	83,600	83,800	1	.68		
67	80	5	15	42,618	3.88	87,560	82,300	11.6	8.59		
68	80	10	10	67,117	2.45	82,830	81,950	1.57	1.67		
69	80	15	5	54,476	.44	32,350	80,760	.55	.44		
86	77.5	10	12.5	63,849	1.19	35,500	36,000	1.00	1.00		
87	77.5	12.5	10.0	61,705	1.71	36,000	32,500	7.72	.59		
6 3	75	5	20	55,855	2.91	83,140	34,960	2.50	8.19		
85	75	7.5	17.5	62,607	1.39	33,700	89,300	1.56	1.83		
64	75	10.5	15.5	58,345	.73	35,320	84,000	1.18	1.25		
	75	15	10	51,109	.31		28,000	1.59	1.54		
65			5	40,235	.21	85,440 23,140	27,660	.43			
66	75	20	20	51,839		32,700		3.73	8.78		
83	72.5	7.5		51,009	2.86	30,000	34,800	3.73	.49		
84	72.5	10	17.5	53,230	.74		30,000	2.06	.99		
59	70	5 _	25 22.5	57,349	1.37	38,000	82,940	.84			
82	70	7.5		48,836	.36	38,000	32,400		.40		
60	70	10	20	36,520	.18	33,140	26,300	.31			
61	70	15	15	37,924	.20	33,440	27,800	.25			
62	70	20	10	15,126	.08	17,000	12,900	08			
81	67.5	2.5	30	58,343	2.91	34,720	45.850	7.27	3.09		
74	67.5	5	27.5	55,976	.49	34,000	34,460	1.06	.43		
75	67.5	7.5	25	46,875	.32	29,500	30,000	.36	.26		
80	65	2.5	32.5	56,949	2.36	41,350	38.300	3.26	3.02		
55	65	5	30	51,369	.56	37,140	36,000	1.21	.61		
56	65	10	25	27,075	.14	25,720	22.500	.15	. 19		
57	65	15	20	18,591	.07	6,820	7,231				
58	65	20	15	11,932	.05	3,765	2,665				
79	62.5	2.5	85	69,255	2.34	44,400	45,000	2.15	2.19		
78	60	2.5	37.5	69,508	1.46	57,400	52,900	4.87	8.02		
52	60	5	35	46,076	.28	41,160	38,330	.39	.40		
53	60	10	30	24,699	.13	21,780	21,240	.15			
54	60	15	25	18,248	.09	18,020	12,400				
12	58.22	2.30	39.48		1.99	66,500	67,600	8.13	3.15		
3	58.75	8.75	32.5	35,752	.18	Broke	before t	est; ver	y brittle		
4	57.5	21.25	21.25	2,752	.02	725	1,300	l	1		
73	55	0.5	44.5	72,308	8.05	68,900	68,900	9.43	2.88		
50	55	5	40	38,174	.22	27,400	30,500	.46	.43		
51	55	10	35	28,259	.14	25,460	18,500	.29	.10		
49	50	5	45	20,814	.11	23,000	81,300	.66	.45		

The transverse tests were made in bars 1 in. square, 22 in. between supports. The tensile tests were made on bars 0.788 in. diam. turned from the two halves of the transverse-test bar, one half being marked A and the other B.

Ameient Bronzes.—The usual composition of ancient bronze was the same as that of modern gun-metal-90 copper, 10 tin; but the proportion of tin varies from 5% to 15%, and in some cases lead has been found. Some an-

cient Egyptian tools contained 88 copper, 12 tin.

Strength of the Copper-zine Alloys.—The alloys containing less than 15% of zinc by original mixture were generally defective. The bars were full of blow-holes, and the metal showed signs of oxidation. To insure good castings it appears that copper-zinc alloys should contain more than

15% of zinc.

From No. 2 to No. 8 inclusive, 16.98 to 30.06% zinc the bars show a remarkable similarity in all their properties. They have all nearly the same able similarity in all their properties. They have all hearly the same strength and ductility, the latter decreasing slightly as zinc increases, and are nearly alike in color and appearance. Between Nos. 8 and 10, 30.06 and 36.30% zinc, the strength by all methods of text rapidly increases. Between Nos. 10 and No. 15, 35.36 and 50.14% zinc, there is another group, distinguished by high strength and diminished ductility. The alloy of maximum tensile, transverse and torsional strength contains about 41% of zinc.

The alloys containing less than 55% of zinc are all yellow metals. Beyond 55% the color changes to white, and the alloy becomes weak and brittle. Be tween 70% and pure zinc the color is bluish gray, the brittleness decreases and the strength increases, but not to such a degree as to make them useful

man the strength increases, but not to such a way to as to make the strength increases, but not to such a way to as to make the such as th

bars a considerable amount of liquation took place, analysis showing a difference in composition of the two ends of the bar. In such cases the change in composition was gradual from one end of the bar to the other, the upper end in general containing the higher percentage of copper. A

the upper end in general containing the inginer percentage of copper. Anotable instance was bar No. 13, in the above table, turnings from the upper end containing 40.36% of zinc, and from the lower end 48.52%.

Specific Gravity.—The specific gravity follows a definite law. varying with the composition, and decreasing with the addition of zinc. From the plotted curve of specific gravities the following mean values are taken:

10 20 30 40 50 60 70 80 90 100. Per cent zinc Specific gravity...... 8.80 8.72 8.60 8.40 8.36 8.20 8.00 7.72 7.40 7.20 7.14.

Graphic Representation of the Law of Variation of Strength of Copper-Tin-Zinc Alloys.—In an equilateral triangle the sum of the perpendicular distances from any point within it to the three sides is equal to the altitude. Such a triangle can therefore be used to show graphically the percentage composition of any compound of three parts, such as a triple alloy. Let one side represent 0 copper, a second 0 tin, and the third 0 zinc, the vertex opposite each of these sides representing 100 of each element respectively. On points in a triangle of wood representing different alloys tested, wires were erected of lengths proportional to the tensile strengths, and the triangle then built up with plaster to the height of the wires. The surface thus formed has a characteristic topography representing the variations of strength with variations of composition. The cut shows the surface thus made. The vertical section to the left represents the law of tensile strength of the copper-tin alloys, the one to the right that of tin-zine alloys, and the one at the rear that of the copper-zine alloys. The high point represents the strongest possible alloys of the three metals. Its composition is copper 55, zinc 43, tin 2, and tis strength about 70,000 lbs. The high ridge from this point to the point of maximum height of the section on the left is the line of the strongest alloys,

represented by the formula zinc $+(3 \times tin) = 55$. All alloys lying to the rear of the ridge, containing more copper and less tin or zinc are alloys of greater ductility than those on the line of maximum strength, and are the valuable commercial alloys; those in front on the declivations. ity toward the central valley are brittle, and those in the valley are both brittle and weak. Passing from the valley toward the section at the right the alloys lose their brittleness and become soft, the maximum softness being at tin = 100, but they remain weak, as is shown by the low elevation of the surface. This model was planned and constructed by Prof. Thurston in 1877. (See Trans. A. S. C. E. 1881, Report of the U. S. Board appointed to

324

test Iron, Steel, etc., vol. ii., Washington, 1881, and Thurston's Materials of Engineering, vol. iii.)

The best alloy obtained in Thurston's research for the U. S. Testing Board has the composition, Copper 55, Tin 0.5, Zinc 44.5. The tensile strength in a cast bar was 68,900 lbs. per sq. in., two specimens giving the same result; the elongation was 47 to 51 per cent in 5 inches. Thurston's formula for copper-tin-zinc alloys of maximum strength (Trans. A. S. C. E., 1881) is z+3t=55,

Fig. 77.

in which z is the percentage of zinc and t that of tin. Alloys proportioned according to this formula should have a strength of about 40,000 lbs. per sq. in. +500z. The formula fails with alloys containing less than 1 per

The following would be the percentage composition of a number of alloys made according to this formula, and their corresponding tensile strength in castings:

Tin.	Zinc.	Copper.	Tensile Strength, Ibs. per sq. in.	Tin.	Zinc.	Copper.	Tensile Strength, lbs. per sq. in.
1	52	47	66,000	S	81	61	55,500
2	49	49	64,500	9	28	63	54,000
3	46	51	63,000	10	25	65	52,500
4	43	58	61,500	12	19	69	49,500
5	40	55	60,000	14	13	73	46,500
6	37	57	58,500	16	7	77	43,500
7	34	59	57,000	18	1	81	40,500

These alloys, while possessing maximum tensile strength, would in general be too hard for easy working by machine tools. Another series made on the formula z+4 t=50 would have greater ductility, together with considerable strength, as follows, the strength being calculated as before tensile strength in lbs. per sq. in. = 40,000+500z.

Tin.	Zinc.	Copper.	Tensile Strength, lbs. per sq. in.	Tin.	Zinc.	Copper.	Tensile Strength, lbs. per sq. in.
1	46	53	63,000	7	22	71	51,000
2	42	56	61,000	8	18	74	49,000
3	38	59	59,000	9	14	77	47,000
4	34	62	57,000	10	10	80	45,000
5	30	65	55,000	11	6	83	43,000
6	26	68	58,000	12	2	86	41.000

Composition of Alloys in Every-day Use in Brass Foundries. (American Machinist.)

	Cop- per.	Zinc.	Tin.	Lead.	
	lhs.	Ibs.	lbs.	lbs.	
Admiralty metal	87	5	8		For parts of engines on board naval vessels.
Bell metal	16	l	4	<i></i>	Bells for ships and factories.
Brass (yellow)	16	8	••••	34	For plumbers, ship and house brass work.
Bush metal	64	- 8	4	4	For bearing bushesfor shafting.
Gun metal	32	1	8		For pumps and other hydraulic purposes.
Steam metal	20	1	13/6	1	Castings subjected to steam pressure.
Hard gun metal	16	1	214		For heavy bearings.
Muntz metal	60	40			Metal from which bolts and nuts are forged, valve spindles, etc.
Phosphor bronze	92	ļ	8 ph	os. tin	For valves, pumps and general work.
" "	90	l	10 "	* **	For cog and worm wheels,
					bushes, axle bearings, slide valves, etc.
Brazing metal	16	8	l 		Flanges for copper pipes.
" solder	50	50	J	1	Solder for the above flanges.

Gurley's Bronze.—16 parts copper, 1 tin, 1 zinc, 1/2 lead, used by W. & L. E. Gurley of Troy for the framework of their engineer's transits. Tensile strength 41,114 lbs. per sq. in., elongation 27% in 1 inch, sp. gr. 8.696. (W. J. Keep, Trans. A. I. M. E. 1890.)

Useful Alloys of Copper, Tin, and Zinc.

(Selected from numerous sources.)

(Scientia ii ciii ii	u	D OO GE C	,00.,
U. S. Navy Dept. journal boxes	Copper.	Tin.	Zinc.
and guide-glbs	82.8	13.8	3.4 per cent.
Tobin bronze	58.22	2.30	39.48
Naval brass	62	I	01
Composition, U. S. Navy	. 88	10	4
Brass bearings (J. Rose)	∫ 64	8	1 parts.
	(01.1	11.0	1.3 per cent.
Gun metal	92.5	5	2.5
46 66	91	7	Z
ts	87.75	9.75	2.5 " "
44 64	85	5	10 " "
46 46	83	2	15 " "
Tough brass for engines	§ 13	2	2 parts.
rough brass for engines	76.5	11.8	11.7 per cent.
Bronze for rod-boxes (Lafond)	82	16	2 slightly malleable.
" " pieces subject to shock	83	15	1.50 0.50 lead.
Red brass parts	20	1	1 1 "
" " per cent	87	4.4	4.3 4.3 ''
Bronze for pump casings (Lafond)	88	10	2
" eccentric straps. "	84	14	2
" " shrill whistles	80	18	2.0 antimony.
" " low-toned whistles	81	17	2.0 "

		all red fracture		Tin. 2	Zinc. 1
Gold bro	nze		. 89.5	2.1	5.6 2.8 lead.
Bearing	metal	l 	. 89	8 .	8
"	**		. 89	216	816
44	44		. 86	14	-/-
44	66	***************************************	071	1284	2
46	44		80	18	2
66			. 79	18	214 14 lead
64	46	•••••	. 74	916	916 7 lead.
English 1	orass	of A.D. 1504		3	2916 316 lead.

Copper-Nickel Alloys, German Silver.

			Copper.	Nickel.	Tin.	Zinc.
German	silve	r	51.6	25.8	22.6	
66	••		50.2	14.8	3.1	31.9
"	"		51.1	13.8	3.2	31.9
"	**		52 to 55	18 to 25		20 to 30
Nickel	**		75 to 66	25 to 33		

A refined copper-nickel alloy containing 50% copper and 49% nickel, with very small amounts of iron, silicon and carbon, is produced direct from Bessemer matte in the Sudbury (Canada) Nickel Works. German silver manufacturers purchase a ready-made alloy, which melts at a low heat and requires simple addition of zinc, instead of buying the nickel and copper separately. This alloy, "50-50" as it is called, is almost indistinguishable from pure nickel. Its cost is less than nickel, its melting point much lower, it can be cast solid in any form desired, and furnishes a casting which works easily in the lathe or planer, yielding a silvery white surface unchanged by air or moisture. For builet casings now used in various British and continental rifles, a special alloy of 80% copper and 20% nickel is made.

Special Alloys. (Engineer, March 24, 1898.)

JAPANESE ALLOYS for art work:

	Copper.	Silver.	Gold.	Lead.	Zinc.	Iron.
Shaku-do Shibu-ichi	94.50 67.31	1.55 82.07	8.73 traces.	0.11 .52	trace.	trace.

GILBERT'S ALLOY for cera-perduta process, for casting in plaster-of-paris, Copper 91.4 Tin 5.7 Lead 2.9 Very fusible.

COPPER-ZINC-IRON ALLOYS.

(F. L. Garrison, Jour. Frank. Inst., June and July, 1891.)

Delta Metal.—This alloy, which was formerly known as sterro-metal, is composed of about 60 copper, from 34 to 44 zinc, 2 to 4 iron, and 1 to 2 tin. The peculiarity of all these alloys is the content of iron, which appears to have the property of increasing their strength to an unusual degree. In making delta metal the iron is previously alloyed with zinc in known and definite proportions. When ordinary wrought-iron is introduced into molten zinc, the latter readily dissolves or absorbs the former, and will take it up to the extent of about 5% or more. By adding the zinc-iron alloy that obtained to the requisite amount of copper, it is possible to introduce any definite quantity of iron up to 5% into the copper alloy. Garrison gives the following as the range of composition of copper-zinc-iron, and copper-zinc-in-iron alloys:

I.	II.
Per cent.	Per cent
Iron 0.1 to 5	Iron 0.1 to 5
Copper 50 to 65	Tin 0.1 to 10
Zinc	Zinc 1.8 to 4
	Conner 08 to 4

The advantages claimed for delta metal are great strength and toughness tip produces sound castings of close grain. It can be rolled and forged hot and can stand a certain amount of drawing and hammering when cold. It takes a high polish, and when exposed to the atmosphere tarnishes less that brass,

When cast in sand delta metal has a tensile strength of about 45,000 pounds per square inch, and about 10% elongation; when rolled, tensile strength of \$0.00 to 75,000 pounds per square inch, elongation from 9% to 17% on bars 1.128 mch in diameter and 1 inch area.

Wallace gives the ultimate tensile strength 33,600 to 51,520 pounds per square inch, with from 10% to 20% elongation.

Delta metal can be forged, stamped and rolled hot. It must be forged at a dark cherry-red heat, and care taken to avoid striking when at a black

According to Lloyd's Proving House tests, made at Cardiff, December 20. 187. a half-inch delta metal-rolled bar gave a tensile strength of 88,400

pounds per square inch, with an elongation of 30% in three inches.

Tobia Bronze.—This alloy is practically a sterro or delta metal with he addition of a small amount of lead, which tends to render copper softer and more ductile.

The following analyses of Tobin bronze were made by Dr. Chas. B. Dudley: Dig Matel

,	Pig Metal, per cent.	Test Bar (Rolled). per cent.
CopperZinc		61.20 87.14
Tin		0.90
IronLead		0.18 0.85

Dr. Dudley writes, "We tested the test bars and found 78,500 tensile strength with 15% elongation in two inches, and 4016% in eight inches. This

strength with 13% etongation in two incres, and 40.5% in eight incres. This high tensile strength can only be obtained when the metal is manipulated. Such high results could hardly be expected with cast metal."

The original Tobin bronze in 1875, as described by Thurston, Trans. A. S. C. E 1881, had, composition of copper 58.22, tin 2.30, zinc 39.48. As cast it had a tenacity of 66,000 lbs. per sq. in., and as rolled 79,000 lbs.; cold

rolled it gave 104,000 lbs.

A circular of Ansonia Brass & Copper Co. gives the following:—The tensile strength of six Tobin bronze one-inch round rolled rods, turned down to a diameter of \$\frac{5}{2}\$ of an inch, tested by Fairbanks, averaged 79,600 lbs. per sq. in., and the elastic limit obtained on three specimens averaged 54,257 lbs. per sq. in.

At a cherry-red heat Tobin bronze can be forged and stamped as readily as steel. Bolts and nuts can be forged from it, either by hand or by machinery, with a marked degree of economy. Its great tensile strength, and resistance to the corrosive action of sea-water, render it a most suitable metal for condenser plates, steam-launch shafting, ship sheathing and fastenings, nails, hull plates for steam yachts, torpedo and life boats, and ship deck fittings.

The Navy Department has specified its use for certain purposes in the machinery of the new cruisers. Its specific gravity is 8.071. The weight of a cubic inch is .291 lb.

PHOSPHOR-BRONZE AND OTHER SPECIAL

BRONZES.

Phosphor-bronze.—In the year 1868, Monteflore & Kunzel of Liège, Beigium, found by adding small proportions of phosphorus or "phosphoret of tin or copper" to copper that the oxides of that metal, nearly always present as an impurity, more or less, were deoxidized and the copper much improved in strength and ductility, the grain of the fracture became finer,

the color brighter, and a greater fluidity was attained.

Three samples of phosphor-bronze tested by Kirkaldy gave:

Elastic limit, lbs. per sq. in	23,800	24,700	16,100
Tensile strength, lbs. per sq. in	52,625	46,100	44,448
Elongation, per cent	8.40	1.50	33.40

The strength of phosphor-bronze varies like that of ordinary bronze according to the percentages of copper, tin, zinc, lead, etc., in the alloy. **Deoxidized Bronze.**—This alloy resembles phosphor bronze somewhat in composition and also delta metal, in containing zinc and iron. The following analysis gives its average composition:

Copper	82 67	Iron	0,10
Tin	12.40		
Zinc	3.23	Phosphorus	
Lead	2.14	1 -	
_			100.615

Comparison of Copper, Silicon-bronze, and Phosphorbronze Wires.

(Engineering, Nov. 23, 1883.)

Description of Wire.		rength per inch in	Relative Conductivity.						
	Tons.	Lbs.							
Pure copper. Silicon bronze (telegraph). (telephone), Phosphor Bronze (telephone)	18.27 48.25	89,827 41,696 108,080 102,390	100 per cent. 96 " 34 " 26 "						

ALUMINUM ALLOYS.

(Aluminum Bronze. Cowles Electric Smelting and Al. Co.'s circular.)

The standard A No. 2 grade of aluminum bronze, containing 10% of aluminum and 90% of copper, has many remarkable characteristics which distinguish it from all other metals.

The tenacity of castings of A No. 2 grade metal varies between 75,000 and 90,000 lbs. to the square inch, with from 4% to 14% elongation.

Increasing the proportion of aluminum in bronze beyond 110 produces a brittle alloy; therefore nothing higher than the A No. 1, which contains 11%, is made.

The B, C, D, and E grades, containing 736%, 5%, 236%, and 134% of aluminum, respectively, decrease in tenacity in the order named, that of the former being about 65,000 pounds, while the latter is 25,000 pounds. While there is also a proportionate decrease in transverse and torsional strengths, elastic limit, and resistance to compression as the percentage of aluminum is lowered and that of copper raised, the ductility on the other hand increases in

the same proportion. The specific gravity of the A No. 1 grade is 7.56.

Bell Bros., Newcastle, gave the specific gravity of the aluminum bronzes as below:

	aluminum																			
4% 5%																	8			
10%	44	:		•								•	•	 •	•	•	7	 ε	Ì)

Casting.—The melting point of aluminum bronze varies slightly with the amount of aluminum contained, the higher grades melting at a some-what lower temperature than the lower grades. The A No. 1 grades melt at about 1700° F., a little higher than ordinary bronze or brass.

Aluminum bronze shrinks more than ordinary brass. As the metal solidifies rapidly it is necessary to pour it quickly and to make the feeders amply large, so that there will be no "freezing" in them before the casting is properly fed. Baked-sand moulds are preferable to green sand, except for small castings, and when fine skin colors are desired in the castings. paper by Thos. D. West, Trans. A. S. M. E. 1886, vol. viii.)

All grades of aluminum bronze can be rolled, swedged, spun, or drawn cold except A 1 and A 2. They can all be worked at a bright red heat.

In rolling, swedging, or spinning cold, it should be annealed very often, and at a brighter red heat than is used for annealing brass.

Brazing.—Aluminum bronze will braze as well as any other metal, using one quarter brass solder (zinc 500, copper 500 (and three quarters borax, or, better, three quarters cryolite.

Soldering.—To solder aluminum bronze with ordinary soft (pewter) solder: Cleanse well the parts to be joined free from grease and dirt. Then place the parts to be soldered in a strong solution of sulphate of copper and place in the bath a rod of soft iron touching the parts to be joined. After a while a coppery-like surface will be seen on the metal. Remove from bath, rinse quite clean, and brighten the surfaces. These surfaces can then be tinned by using a fluid consisting of zinc dissolved in hydrochloric acid, in the ordinary way, with common soft solder.

Mierzinski recommends ordinary hard solder, and says that Hulot uses an alloy of the usual half-and-half lead-tin solder, with 12.5%, 25% or 50% of

zinc amalgam.

Tests of Aluminum Bronzes.

(By John H. J. Dagger, in a paper read before the British Association, 1889.)

Per cent	Tensile	Strength.	Elonga-	Specific Gravity.	
of Aluminum.	Tons per square inch.	Pounds per square inch.	tion, per cent.		
11	40 to 45 33 " 40 25 " 30 15 " 18 13 " 15 11 " 13	89,600 to 100,800 73,920 " 89,600 56,000 " 67,200 33,600 " 40,320 29,120 " 83,600 24,640 " 29,120	8 14 40 40 50 55	7.23 7.69 8.00 8.37 8.69	

Both physical and chemical tests made of samples cut from various sections of 245, 55, 7345, or 10% aluminized copper castings tend to prove that the aluminum unites itself with each particle of copper with uniform pro-

the aluminum unites itself with each particle of copper with uniform proportion in each case, so that we have a product that is free from liquation and highly homogeneous. (R. C. Cole, Iron Age, Jan. 16, 1890.)

Aluminum unum-Brass (E. H. Cowles, Trans. A. I. M. E., vol. xviii.)—Cowles aluminum-bronze, copper, and zinc. The copper and bronze are first thoroughly melted and mixed, and the zinc is finally added. The material is left in the furnace until small test-bars are taken from it and broken. When these bars show a tensile strength of 80,000 pounds or over, with 2 or 3 per cent ductility, the metal is ready to be poured. Tests of this brass, on small bars, have at times shown as high as 100,000 pounds tensile strength.

The screw of the United States gunboat Petrel is cast from this brass,

The screw of the United States gunboat Petrel is east from this brass, mixed with a trifle less zinc in order to increase its ductility.

Tests of Aluminum-Brass, (Cowles E. S. & Al. Co.)

Specimen (Castings.)	Diameter of Piece, Inch.	Area. sq. in.	Tensile Strength, lbs. per sq. in.	Elastic Limit, lbs. per sq. in.	Elonga- tion. per ct.	Remarks.
15% A grade Bronze. 17% Zinc	.465	.1698	41,225	17,668	411/6	pieces long the
1 part A Bronze 1 part Zinc 1 part Copper	.465	.1698	78,327		21/2	test gall 6" ween
1 part A Bronze 1 part Zinc 1 part Copper	.460	.1661	72,246		21/6	These were bety

The first brass on the above list is an extremely tough metal with low elastic limit, made purposely so as to "upset" easily. The other, which is called Aluminum-brass No 2, is very hard.

We have not in this country or in England any official standard by which to judge of the physical characteristics of cast metals. There are two conditions that are absolutely necessary to be known before we can make a fair comparison of different materials: namely, whether the casting was made in dry or green sand or in a chill, and whether it was attached to a larger casting or cast by itself. It has also been found that chill castings give higher results than sand-castings, and that bars cast by themselves purposely for testing almost invariably run higher than test-bars attached to castings. It is also a fact that hars cut out from castings are generally weaker than bars cast alone. (E. H. Cowles.)

Caution as to Reported Strength of Alloys.—The same variation in strength which has been found in tests of gun-metal (copper and tin) noted above, must be expected in tests of aluminum bronze and in fact of all alloys. They are exceedingly subject to variation in density and in grain, caused by differences in method of molding and casting, temperature of pouring, size and shape of casting, depth of "sinking head," etc. 330

Aluminum Hardened by Addition of Copper Rolled Sheets .04 Inch Thick. (The Engineer, Jan 2, 1891.)

Al. Per cent.	Cu. Per cent.	Sp. Gr. Calculated.	Sp. Gr. Determined.	Tensile Strength in pounds per square inch.
100			2.67	26,535
98	2	2.78	2.71	48,563
96	4	2.90	2.77	44,180
94	6	8.02	2.82	54,778
92	Ř	8 14	2.85	50.874

Tests of Aluminum Alloys.

(Engineer Harris, U. S. N., Trans. A. I. M. E., vol. xviii.)

Composition.					Elastic	Elonga-	Reduc	
Cop- per.	Alumi- num.	Silicon.	Zinc.	Iron.	Strength, per sq. in. lbs.	Limit,	l tion	tion of Area, per ct.
91.50% 88.50	6.50% 9.33	1.75% 1.66		0.25% 0.50	60,700 66,000	18,000 27,000	23.2 3.8	- 30 .7
91.50 90.00	6.50 9.00	1.75		0.25	67,600 72,830	24,000 83,000	18. 2.40	21.62 5.78
63.00 63.00	3.83 8.83	0.33	83.83% 33.33		82,200 70,400	60,000 55,000	2.83	9.88 4.33
91.50 93.00	6.50 6.50	1.75 0.50		0.25	59,100 58,000	19,000 19,000	15.1 6.2	23.59 15.5
88.50 92.00	9.33 6.50	1.66 0.50		0.50	69,930 46,530	88,000 17,000	1.33 7.8	3.30 19.19

For comparison with the above 6 tests of "Navy Yard Bronze," Cu 88, Sn 10, Zn 2, are given in which the T. S. ranges from 18,000 to 24,590, E. L. from 10,000 to 18,000, El. 2.5 to 5.8%. Red. 4.7 to 10.89.

Alloys of Aluminum; Silicon and Iron.

M, and E. Bernard have succeeded in obtaining through electrolysis, by treating directly and without previous purification, the aluminum earths (red and white bauxites) the following:

Alloys such as ferro-aluminum, ferro-silicon-aluminum and silicon-aluminum, where the proportion of silicon may exceed 10% which are employed in the metallurgy of iron for refining steel and cast-iron.

Also silicon-aluminum, where the proportion of silicon does not exceed 10%, which may be employed in mechanical constructions in a rolled or hammered condition, in place of steel, on account of their great resistance, especially where the lightness of the piece in construction constitutes one of the main conditions of success.

The following analyses are given:

1. Alloys applied to the metallurgy of iron, the refining of steel and cast fron:

Types,	Aluminum.	Iron.	Silicon.	Manganese.
No. 1	70%	25%	5%	0%
No. 2		20	10	O O
No. 3	70	15	15	0
No. 4		10	20	0
No. 5		10	10	10
No 6	70	traca	90	10

2. Mechanical alloys:

Types.	Aluminum.	Silicon.	Iron.
No. 1	92%	6.75≴	1.25%
No. 2	90	9.25	0.75
No. 8	90	10.00	trace.

Up to this time it has been thought that silicon was rather injurious when alloyed with aluminum. From numerous experiences it has been demonstrated that it gives to aluminum some remarkable properties of resistance; the best results were with alloys where the proportion of iron was very low, and the proportion of silicon in the neighborhood of 10%. Above that proportion the alloy becomes crystalline and can no longer be employed. The density of the alloys of silicon is approximately the same as that of alumi-

num.—La Metallurgie, 1892.
Tungsten and Aluminum.—Mr. Leinhardt Mannesmann says that the addition of a little tungsten to pure aluminum or its alloys communicates a remarkable resistance to the action of cold and hot water, salt water and other re-agents. When the proportion of tungsten is sufficient the

alloys offer great resistance to tensile strains.

Alumainum and Tin.—M. Bourbouze has compounded an alloy of aluminum and in, by fusing together 100 parts of the former with 10 parts of the latter. This alloy is paler than aluminum, and has a specific gravity of 2.85. The alloy is not as easily attacked by several reagents as aluminum is, and it can also be worked more readily. Another advantage is that it can be soldered as easily as bronze, without further preliminary preparations.

Aluminum-Antimony Alloys. - Dr. C. R. Alder Wright describes some aluminum-antimony alloys in a communication read before the Society of Chemical Industry. The results of his researches do not disclose the existence of a commercially useful alloy of these two metals, and have greater scientific than practical interest. A remarkable point is that the alloy with the chemical composition Al Sb has a higher melting point than either aluminum or antimony alone, and that when aluminum is added to pure antimony the melting-point goes up from that of antimony (450° C.) to a certain temperature rather above that of silver (1000° C.).

ALLOYS OF MANGANESE AND COPPER.

Various Manganese Alloys.—E. H. Cowles, in Trans. A. I. M. E., vol. xviii, p. 495, states that as the result of numerous experiments on mixtures of the several metals, copper, zinc, tin. lead, aluminum, iron, and manganese, and the metalloid silicon, and experiments upon the same in ascertaining tensile strength, ductility, color, etc., the most important determinations appear to be about as follows:

1. That pure metallic manganese exerts a bleaching effect upon copper more radical in its action even than nickel. In other words, it was found that 1814% of manganese present in copper produces as white a color in the resulting alloy as 25% of nickel would do, this being the amount of each required to remove the last trace of red.

2. That upwards of 20% or 25% of manganese may be added to copper without reducing its ductility, although doubling its tensile strength and chang-

ing its color.

3. That manganese, copper, and zinc when melted together and poured into moulds behave very much like the most "yeasty" German silver, producing an ingot which is a mass of blow-holes, and which swells up above the mould before cooling.

4. That the alloy of manganese and copper by itself is very easily

oxidized.

5. That the addition of 1.25% of aluminum to a manganese-copper alloy converts it from one of the most refractory of metals in the casting process into a metal of superior casting qualities, and the non-corrodibility of which

is in many instances greater than that of either German or nickel silver.

A "silver-bronze" alloy especially designed for rods, sheets, and wire A "silver-bronze" alloy especially designed for rods, sneets and wire has the following composition: Manganese, 18; aluminum, 1.20; silicon, 0.5; zinc, 13; and copper, 67.5%. It has a tensile strength of about 57,000 pounds on small bars, and 20% elongation. It has been rolled into thin plate and drawn into wire. 008 inch in diameter. A test of the electrical conductivity of this wire (of size No. 32) shows its resistance to be 41.44 times that of pure copper. This is far lower conductivity than that of German silver.

copper. This is far lower conductivity than that of German silver.

Manganese Bronze, (F. L. Garrison, Jour. F. I., 1891.)—This alloy has been used extensively for casting propeller-blades. Tests of some made by B. H. Cramp & Co., of Philadelphia, gave an average elastic limit of 30,000 pounds per square inch, with an elongation of % to 10% in sand castings. When rolled the classic limit is about 80,000 pounds per square inch, with an elongation of % to 10% in sand castings.

square inch. With all endgation of % to 10% in said castings. When rolled the elastic limit is about 80,000 pounds per square inch, tensile strength %,000 to 106,000 pounds per square inch, with an elongation of 12% to 15%. Compression tests made at United States Navy Department from the metal in the pouring-gate of propeller-hub of U. S. S. Maine gave in two tests a crushing stress of 12%,450 and 135,750 lbs. per sq. in. The specimens were 1 inch high by 0.7×0.7 inch in cross-section = 0.49 square inch. Both speci-

mens gave way by shearing, on a plane making an angle of nearly 45° with the direction of stress.

the direction of stress. A test on a specimen $1 \times 1 \times 1$ inch was made from a piece of the same pouring-gate. Under stress of 150,000 pounds it was flattened to 0.72 inch high by about $1\frac{1}{4} \times 1\frac{1}{4}$ inches, but without rupture or any sign of distress. One of the great objections to the use of manganese bronze, or in fact any alloy except iron or steel, for the propellers of iron ships is on account of the galvanic action set up between the propeller and the stern-post. This difficulty has in great measure been overcome by putting strips of rolled zinc around the propeller apertures in the stern-frames.

The following analysis of Parsons' manganese bronze No. 2 was made from a chip from the propeller of Mr. W. K. Vanderbilt's yacht Alva.

Copper		88.644
Zine		1.570
TinIron		
Lead		
Phosphorus	• • •	trace
		99.923

It will be observed there is no manganese present and the amount of zinc is very small.

E. H. Cowles, Trans. A. I. M. E., vol. xviii, says: Manganese bronze, so called, is in reality a manganese brass, for zinc instead of tin is the chief element added to the copper. Mr. P. M. Parsons, the proprietor of this brand of metal, has claimed for it a tensile strength of from 24 to 28 tons on small bars when cast in sand. Mr. W. C. Wallace states that brass-founders of high repute in England will not admit that manganese bronze has more than from 12 to 17 tons tensile strength. Mr. Horace See found tensile strength of 45,000 pounds, and from 6% to 1216% elongation.

· CERMAN-SILVER AND OTHER NICKEL ALLOYS.

	Copper.	Nickel.	Zinc.	
Chinese packfong	40.4	31.6	6.5	parts.
" tutenag		3	6.5	
German silver	2	ī	1	44
" (cheaper)		2	3.5	44
" (closely resembles	sil) 8	Ř	8.5	44

For analyses of some German-silvers see page 326.

German Silver.—The composition of German silver is a very uncertain German Silver.—The composition of German silver is a very incertain thing and depends largely on the honesty of the manufacturer and the price the purchaser is willing to pay. It is composed of copper, zinc, and nickel in varying proportions. The best varieties contain from 18% to 25% of nickel and from 20% to 30% of zinc, the remainder being copper. The more expensive nickel silver contains from 25% to 33% of nickel and from 75% to 66% of copper. The nickel is used as a whitening element; it also strengthens the alloy and renders it harder and more non-corrodible than the brass made without it, of copper and zinc. Of all troublesome alloys to harde in the foundry or rolling-mill, German silver is the worst. It is unmanageable and refractory at every step in its transition from the crude elements into rods, sheets, or wire. (E. H. Cowles, Trans. A. I. M. E., vol. xviii, p. 494.)

ALLOYS OF BISMUTH.

By adding a small amount of bismuth to lead that metal may be hardened and toughened. An alloy consisting of three parts of lead and two of bismuth has ten times the hardness and twenty times the tenacity of lead. The alloys of bismuth with both tin and lead are extremely fusible, and The alloys of bishith with both in and read are extremely tustole, and take fine impressions of casts and moulds. An alloy of one part bismuth, two parts tin, and one part lead is used by pewter-workers as a soft solder, and by soap-makers for moulds. An alloy of five parts bismuth, two parts tin, and three parts lead melts at 199° F., and is somewhat used for stereotyping, and for metallic writing-pencils. Thorpe gives the following proportions for the better-known fusible metals:

Name of Alloy.	Bismuth.	Lead.	Tin. Cad- mium cury.	Melting- point.
Newton's	50	31.25	18.75	202° F.
Rose's	50 50	28.10 25.00	25.00	201° ''
D'Arcet's with mercury.	50	25.00 25.00	25.00 250.0 12.50 12.50	1490 "
Lipowitz's	50 50	26.90 20.55	12.78 10.40 21.10 14.03	149° '' '' Very low.'

The action of heat upon some of these alloys is remarkable. Thus, Lipowitz's alloy, which solidifies at 149° Fah., contracts very rapidly at first, as it cools from this point. As the cooling goes on the contraction becomes slower and slower, until the temperature falls to 101 3° Fah. From this point the alloy expands as it cools, until the temperature falls to about 77° Fah., after which it again contracts, so that at 32° F. a bar of the alloy has the same length as at 115° F.

Alloys of bismuth have been used for making fusible plugs for boilers, but it is found that they are altered by the continued action of heat, so that one cannot rely upon them to melt at the proper temperature. Pure Banca tin

is used by the U. S. Government for fusible plugs.

FUSIBLE ALLOYS. (From various sources.)

Sir Isaac Newton's, bismuth 5, lead 3, tin 2, melts at		
Rose's, bismuth 2, lead 1, tin 1, melts at		
Guthrie's, cadmium 13.29, bismuth 47.38, lead 19.36, tin 19.97, melts at.	160	
	208	
Lead 1, tiu 3, bismuth 5, melts at	212	
Lead 1, tin 4, bismuth 5, melts at	240	**
Tin 1, bismuth 1, melts at	286	"
Lead 2, tin 3, melts at	834	44
Tin 2, bismuth 1, melts at	336	"
Lead 1, tin 2, melts at	860	"
Tin 8, bismuth 1, melts at	392	**
Lead 2, tin 1, melts at	475	"
Lead 1, tin 1, melts at		
Lead 1, tin 3, melts at		
Tin 3, bismuth 1, melts at.		
Lead 1, bismuth 1, melts at		
Lead 1, Tin 1, bismuth 4, melts at	001	
Lead 5, tin 3, bismuth 8, melts at		
Tin 3, bismuth 5, melts at,	202	••

BEARING-METAL ALLOYS.

(C. B. Dudley, Jour. F. I., Feb. and March, 1892.)

Alloys are used as bearings in place of wrought iron, cast iron, or steel, partly because wear and friction are believed to be more rapid when two metals of the same kind work together, partly because the soft metals are more easily worked and got into proper shape, and partly because it is desirable to use a soft metal which will take the wear rather than a hard metal, which will wear the journal more rapidly.

A good bearing-metal must have five characteristics: (1) It must be strong

enough to carry the load without distortion. Pressures on car-journals are frequently as high as 850 to 400 lbs. per square inch.

(2) A good bearing-metal should not heat readily. The old copper-tin bearing, made of seven parts copper to one part tin, is more apt to heat than some other alloys. In general, research seems to show that the harder

the bearing-metal, the more likely it is to heat.

(3) Good bearing-metal should work well in the foundry. Oxidation while melting causes spongy castings. It can be prevented by a liberal use of powdered charcoal while melting. The addition of 1% to 2% of zinc or a small amount of phosphorus greatly aids in the production of sound castings. This is a principal element of value in phosphor-bronze.

(4) Good bearing-metals should show small friction. It is true that friction is almost wholly a question of the lubricant used; but the metal of the bearing has certainly some influence.

(5) Other things being equal, the best bearing-metal is that which wears

slowest.

The principal constituents of bearing-metal alloys are copper, tin, lead, zinc, antimony, iron, and aluminum. The following table gives the constituents of most of the prominent bearing-metals as analyzed at the Pennsylvania Railroad laboratory at Altoona.

Analyses of Bearing-metal Alloys.

Metal.	Cop- per.	Tin.	Lead.	Zinc.	Anti- mony.	Iron.
Camelia metal	70.20 1.60 4.01 75.47 77.83 92.39 trace	trace 9 91 14.38 9.72 9.60 2.37	87.92 84.87 1.15 67.73 80.69 14.57 12.40 5.10 83.55 76.44 0.31	85.57 trace trace 0.98 38.40	12.08 15.10 16.73 18.83 16.45 19.60	? (1) (2) trace(3) 0.07 trace(4) 0.65 0.11
Graney bronze Damascus bronze. Manganese bronze. Ajax metal Anti-friction metal Harrington bronze Car-box metal Hard lead Phosphor-bronze Ex. B. metal	76.41 90.52 81.24 55.73	9.20 10.60 9.58 10.98 0.97	12.52 7.27 88.32 84.33 94.40 9.61	42.67 trace	11.93 14.38 6.08	(5) (6) 0.68 0.61

Other constituents:

(1) No graphite.

(2) Possible trace of carbon.(3) Trace of phosphorus.

(5) No manganese.

(6) Phosphorus or arsenic, 0.37.(7) Phosphorus, 0.94.

(4) Possible trace of bismuth. (8) Phosphorus, 0.20.

* Dr. H. C. Torrey says this analysis is erroneous and that Magnolia metal always contains tin.

As an example of the influence of minute changes in an alloy, the Harrington bronze, which consists of a minute proportion of iron in a copperzinc alloy, showed after rolling a tensile strength of 75,000 lbs. and 20% elongation in 2 inches.

In experimenting on this subject on the Pennsylvania Railroad, a certain number of the bearings were made of a standard bearing-metal, and the same number were made of the metal to be tested. These bearings were placed on opposite ends of the same axle, one side of the car having the standard bearings, the other the experimental. Before going into service the bearings were carefully weighed, and after a sufficient time they were again weighed.

The standard bearing-metal used is the "S bearing-metal" of the Phos-

phor-bronze Smelting Co. It contains about 79.70% copper, 9.80% lead, 10% tin, and 0.80% phosphorus. A large number of experiments have shown that the loss of weight of a hearing of this metal is 1 lb. to each 18,000 to 25,000 miles travelled. Besides the measurement of wear, observations were made on the frequency of "hot boxes" with the different metals. The results of the tests for wear, so far as given, are condensed into the

following table:

Metal.	Composition.					
metal.	Copper.	Tin.	Lead.	Phos.	Arsenic.	of Wear.
Standard	79.70	10.00	9.50	0.80		100
Copper-tin		12.50		•••		148
Copper-tin, secon						
Copper-tin, third	experiment	same mel	al			. 147
Arsenic-bronze	89.20	10.00		••••	0.80	142
Arsenic-bronze	79.20	10.00	7.00	••••	0.80	115
Arsenic-bronze	79.70	10.00	9.50	••••	0.80	101
"K" bronze		10.50	12.50	• • • •		92
"K" bronze, seco	ond experim	ent, same	metal			. 92.7
Alloy "B"	77.00	8.00	15.00			86.5

The old copper-tin alloy of 7 to 1 has repeatedly proved its inferiority to the phosphor-bronze metal. Many more of the copper-tin bearings heated than of the phosphor-bronze. The showing of these tests was so satisfactory that phosphor-bronze was adopted as the standard bearing-metal of

the Pennsylvania R.R., and was used for a long time.

The experiments, however, were continued. It was found that arsenic practically takes the place of phosphorus in a copper-tin alloy, and three feets were made with arsenic bronzes as noted above. As the proportion to lead is increased to correspond with the standard, the durability increases to lead is increased to correspond with the standard, the durability increases as well. In view of these results the "K" bronze was tried, in which neither phosphorus nor arsenic were used, and in which the lead was increased above the proportion in the standard phosphor-bronze. The result was the metal wore 7.30 slower than the phosphor-bronze. No trouble from heating was experienced with the "K" bronze more than with the standard.

Dr. Dudley continues: At about this time we began to find evidences that wear of bearing-metal alloys varied in accordance with the following law: "That alloy which has alloys varied in accordance with the following law: "That alloy which has the greatest power of distortion without rupture (resilience), will best resist wear." It was now attempted to design an alloy in accordance with this law, taking first the proportions of copper and tin, 9½ parts copper to 1 of tin was settled on by experiment as the standard, although some evidence since that time tends to show that 12 or possibly 15 parts copper to 1 of tin might have been better. The influence of lead on this copper-tin alloy seems to be much the same as a still further diminution of tin. However, the readency of the metal to wild under pressure increases as the amount of tendency of the metal to yield under pressure increases as the amount of tin is diminished, and the amount of the lead increased, so a limit is set to the use of lead. A certain amount of tin is also necessary to keep the lead alloyed with the copper,

alloyed with the copper,

Bearings were cost of the metal noted in the table as alloy "B," and it
wore 13.5% slower than the standard phosphor-bronze. This metal is now
the standard bearing-metal of the Pennsylvania Railroad, being slightly
changed in composition to allow the use of phosphor-bronze scrap. The
formula adopted is: Copper, 105 lbs.; phosphor-bronze, 60 lbs.; tin, 934 lbs.
lead, 2534 lbs. By using ordinary care in the foundry, keeping the metal
well covered with charcoal during the melting, no trouble is found in casting
good bearings with this metal. The copper and the phosphor-bronze can be
put in the pot before putting it in the melting-hole. The tin and lead should
be added after the pot is taken from the fire.

It is not known whether the use of a little zinc, or possibly some other

It is not known whether the use of a little zinc, or possibly some other combination, might not give still better results. For the present, however, this alloy is considered to fulfil the various conditions required for good bearing-metal better than any other alloy. The phosphor-bronze had an ultimate tensile strength of 30,000 lbs., with 6% elongation, whereas the alloy 122 the decided by the tensile strength of 4100 lbs. "B" had 24,000 lbs. tensile strength and 11% elongation.

(For other bearing-metals, see Alloys containing antimony, on next page.

ALLOYS CONTAINING ANTIMONY.

VARIOUS ANALYSES OF BABBITT METAL AND OTHER ALLOYS CONTAINING ANTIMONY.

Copper	Antimony.	Zinc.	Lead.	Bismuth.
1	5 parts			
1.8	8.9 per ct. 8 parts			
	7.4 per ct.			· • • • • • • • • • • • • • • • • • • •
9	16.2	1.9		
	16. 25.5	1.		
10	62. 18	6.	40 0	
	7.1			1.8
	1 1.8 4 8.7 1.0 2 4 10 1.5	3 1.8 8.9 per ct. 8 parts 9 1.8 8.9 per ct. 9 3.7 7.4 per ct. 10.1 16.2 10.2 16. 10.2 2.5.5 10.62.5 1.5 18.	1	1

*It is mixed as follows: Twelve parts of copper are first melted and then 86 parts of tin are added; 24 parts of antimony are put in, and then 86 parts of tin, the temperature being lowered as soon as the copper is melted in order not to oxidize the tin and antimony, the surface of the bath being protected from contact with the air. The alloy thus made is subsequently

remelted in the proportion of 50 parts of alloy to 100 tin. (Joshua Rose.)

White-metal Alloys.—The following alloys are used as lining metals

by the Eastern Railroad of France (1890):

Number.	Lead.	Antimony.	Tin.	Copper.
1	65	25	0	10
2	0	11.12	83.33	5.55
8		20	10	0
	80	8	12	0

No. 1 is used for lining cross-head slides, rod-brasses and axle-bearings; No. 2 for lining axle-bearings and connecting-rod brasses of heavy engines; No. 3 for lining eccentric straps and for bronze slide-valves; and No. 4 for metallic rod-packing.

Some of the best-known white-metal alloys are the following (Circular

of Hoveler & Dieckhaus, London, 1898):

•	Tin.	Antimony.	Lead.	Copper.	Zinc.
1. Parsons'		1	2	2	27
2. Richards'	70	15	1016	414	0
3. Babbitt's	55	18	2312	81/2	0
4. Fentons'		0	0. ~	5	79
5. French Navy	716	0	7	7	8714
6. German Navy	85	71/6	0	736	0

"There are engineers who object to white metal containing lead or zinc. This is, however, a prejudice quite unfounded, inasmuch as lead and zinc often have properties of great use in white alloys."
It is a further fact that an "easy liquid" alloy must not contain more than 18% of antimony, which is an invaluable ingredient of white metal for

improving its hardness; but in no case must it exceed that margin, as this would reduce the plasticity of the compound and make it brittle.

Hardest alloy of tin and lead: 6 tin, 4 lead. Hardest of all tin alloys (?): 74

tin, 18 antimony, 8 copper.

Alloy for thin open-work, ornamental castings: Lead 2, antimony 1. White metal for patterns: Lead 10, bismuth 6, antimony 2, common brass 8,

Type-metal is made of various proportions of lead and antimony, from 17% to 20% antimony according to the hardness desired.

Babbitt Metals. (C. R. Tompkins, Mechanical News, Jan. 1891.)

The practice of lining journal-boxes with a metal that is sufficiently fusible to be melted in a common ladle is not always so much for the purpose of securing anti-friction properties as for the convenience and cheapness of forming a perfect bearing in line with the shaft without the necessity of boring them. Boxes that are bored, no matter how accurate, require great care in fitting and attaching them to the frame or other parts of a machine.

It is not good practice, however, to use the shaft for the purpose of casting the bearings, especially if the shaft be steel, for the reason that the hot metal is apt to spring it; the better plan is to use a mandrel of the same size or a trifi larger for this purpose. For slow-running journals, where the load is moderate, almost any metal that may be conveniently melted and will run free will answer the purpose. For wearing properties, with a moderate speed, there is probably nothing superior to pure zinc, but when not combined with some other metal it shrinks so much in cooling that it

not combined with some other metal it shrinks so much in cooling that it cannot be held firmly in the recess, and soon works loose; and it lacks those anti-friction properties which are necessary in order to stand high speed.

For line-shafting, and all work where the speed is not over 800 or 400 r. pm., an alloy of 8 parts zinc and 2 parts block-tin will not only wear longer than any composition of this class, but will successfully resist the force of a heavy load. The tin counteracts the shrinkage, so that the metal, if no verheated, will firmly adhere to the box until it is worn out. But this mixture does not possess sufficient anti-friction properties to warrant its use

in fast-running journals.

Among all the soft metals in use there are none that possess greater anti-Antong at the soft means in use there are none that possess greater anti-friction properties than pure lead; but lead alone is impracticable, for it is so soft that it cannot be retained in the recess. But when by any process lead can be sufficiently hardened to be retained in the boxes without materially injuring its auti-friction properties, there is no metal that will wear longer in light fast-running journals. With most of the best and most popular anti-friction metals in use and sold under the name of the Babbitt metal, the basis is lead.

Lead and antimony have the property of combining with each other in all proportions without impairing the anti-friction properties of either. The antimony hardens the lead, and when mixed in the proportion of 80 parts head by weight with 30 parts antimony, no other known composition of metals possesses greater anti-friction or wearing properties, or will stand a higher speed without heat or abrasion. It runs free in its melted state, has no shrinkage, and is better adapted to light high-speeded machinery than any other known metal. Care, however, should be manifested in using it, and it should never be heated beyond a temperature that will scorch a dry pine stick

Many different compositions are sold under the name of Babbitt metal. Some are good, but more are worthless; while but very little genuine Babbitt metal is sold that is made strictly according to the original formula. Most of the metals sold under that name are the refuse of type-foundries and other smelting-works, melted and cast into fancy ingots with special brands,

and sold under the name of Babbitt metal.

It is difficult at the present time to determine the exact formulas used by the original Babbitt, the inventor of the recessed box, as a number of differ, ent formulas are given for that composition. Tin, copper, and antimony were the ingredients, and from the best sources of information the original proportions were as follows:

Another writer gives:

50 parts tin =		83.3%
2 parts copper =	8.6%	8.3%
4 parts antimony =	7.1%	8.3%

The copper was first melted, and the antimony added first and then about ten or fifteen pounds of tin, the whole kept at a dull-red heat and constantly ten or fifteen pounds of tin, the whole kept at a dull-red heat and constantly stirred until the metals were thoroughly incorporated, after which the balance of the tin was added, and after being thoroughly stirred again it was then cast into ingots. When the copper is thoroughly melted, and before the antimony is added, a handful of powdered charcoal should be thrown into the crucible to form a flux, in order to exclude the air and prevent the antimony from vaporizing; otherwise much of it will escape in the form of a vapor and consequently be wasted. This metal, when carefully prepared, is probably one of the best metals in use for lining boxes that are subjected to a heavy weight and wear; but for light fast-running journals the copper renders it more susceptible to friction, and it is more liable to heat than the metal composed of lead and antimony in the proportions just given. given.

SOLDERS.

Common solders, equal parts tin and lead; fine solder, 2 tin to 1 lead; cheap solder, 2 lead, 1 tin.

Fusing-point of tin-lead alloys:

Tin	1	to	lead	25 558°	F.	Tin	116	to	lead	1	8340	F.
. **	1	. "	• • •	10541		44	2 ~	"	**	1	340	
**	1	"	46	5511		44	8	46	44	1	356	
				3482		"	4	"	66	1	365	
			"	2 441		**	5	"	46	1	378	
44	1	"	**	1370		44	6	"	44	1	381	

Common pewter contains 4 lead to 1 tin.
Gold solder: 14 parts gold, 6 silver, 4 copper. Gold solder for 14-carat gold: 25 parts gold, 25 silver, 12½ brass, 1 zinc.
Silver solder: Yellow brass 70 parts, zinc 7, tin 11½. Another: Silver 145 parts, brass (3 copper, 1 zinc) 73, zinc 4.
German-silver solder: Copper 38, zinc 54, nickel 8.
Novel's solders for aluminum:

Tin 100 parts,	lead 5;	melts at	586° to 572° F
" 100 "	zinc 5;		586 to 612
" 1000 "	copper 10 to 15;	**	662 to 842
" 1000 "	nickel 10 to 15;	"	662 to 842

Novel's solder for aluminum bronze: Tin 900 parts, copper 100, bismuth 2 to 3. It is claimed that this solder is also suitable for joining aluminum to copper, brass, zinc, iron, or nickel.

ROPES AND CABLES.

STRENGTH OF ROPES.

(A S. Newell & Co., Birkenhead. Klein's Translation of Weisbach, vol. iii. part 1, sec. 2.)

Hemp.		Ire	on.	St	eel.	•
Girth.	Weight per Fathom.	Girth.	Weight per Fathom.	Girth.	Weight per Fathom.	Tensile Strength.
Inches.	Pounds.	Inches.	Pounds.	Inches.	Pounds.	Gross tons
~74	~	1112	11/	1		
334	4	162	11/2 2			å
U/4	- 1	182	216	11/6	11/6	5
41/6	5	126	8 *			6
		2	31/6	156 154	2 21⁄4	7
51/6	7	21/6	4	13/4	21/6	8
6	. 9	21/4 28/4	21/4 31/4 4 41/4 5 51/4 6 61/4	17/6	8	3 4 5 6 7 8 .9
_	Į.	214	51/6			11
61/6	10	256	6	2	336	12
7	12	234	61/6	21/6 21/4	4	18
7	12	3/8	71/	2/4	41/2	14 15
71/6	14	31/8	71/6 8 81/6 9	23%	5	16
_		31/4	81/2		1 1	17
8	16	85%	10	276	51/6 6	18
81/6	18	362	111	296	61/6	2U 90
	10	384	1 12	~74	8%	94
91% 10 11	22	372	1 13	31/4	1 8 I	26
10 ~	22 26 30	4	14		l - I	28
11	80	41/4	15	33/6	9	80
	1	486	16		l	82
12	34	1 4149	18 20	81/6 33/4	10	18 20 24 24 26 28 30 32 36
14	1 04	1 478	20	39/4	12	40

Flat Ropes.

Hemp.		Iron.		St		
Girth.	Weight per Fathom.	Girth.	Weight. per Fathom.	Girth.	Weight per Fathom.	Tensile Strength.
Inches. 4 × 11/6 5 × 11/4	Pounds. 20 24	Inches. 214 × 14 214 × 14	Pounds. 11 18 15	Inches.	Pounds.	Gross tons. 20 23 27
12 × 12 6 × 13	24 26 28 30 36 40	874 × 75 814 × 75	16 18	2 × 1/4 21/4 × 1/2	10 ⁻	28 32 36
× 136 × 236 × 234	45	374 × 76 374 × 11/16 4 × 11/16	20 22 25 26 32	21. × 1. 24. × 1.	12 13 15	40 45
9 × 234 9% × 234 0 × 234	50 55 60	414 × 34 412 × 33	28 32 34	8 × 34 814 × 36 314 × 36	16 18 20	50 56 60

Working Load, Diameter, and Weight of Ropes and Chains. (Klein's Weisbach, vol. iii, part 1, sec. 2, p. 561.)

Hemp ropes: d= diam. of rope. Wire rope: d= diam. of wire, n= number of wires, G= weight per running foot, k= permissible load in pounds per square inch of section, P= permissible load on rope or chain. Oval chains: d= diam of iron used; inside dimensions of oval 1.5d and 2.6d. Each link is a piece of chain 2.6d long. $G_0=$ weight of a single link = 2.10 d^3 lbs.; G= weight per running foot = 9.73 d^3 lbs.

		Hempen	Rope.	Wire Rope.
	Dry and	Untarred.	Wet or Tarrec	
k (lbs.) =	1	420	1160	17000
d (ins.) =	0.	03 √ <u>P</u>	$0.083 \ \sqrt[4]{P}$	$0.0087 \sqrt{\frac{P}{n}}$
P(lbs.) = G(lbs.) =	1120d2 = 1.28d2 =	= 2855 <i>G</i> = 0.00035 <i>P</i>	$\begin{array}{c} 916d^2 = 1975G \\ 1.54d^2 = 0.0005 \end{array}$	$18850nd^9 = 4590G$
Open		Open-l	ink Chain.	Stud-link Chain.
k (lbs.) =		8500		11400
d (ins.) = P (lbs.) = G (lbs.) =		$ \begin{array}{c c} 0.0087 \sqrt{P} \\ 13350d^2 = 1360G \\ 9.73d^2 = 0.000737P \end{array} $		$0.0076 \sqrt{P}$ $17800d^2 = 1660G$ $10.65d^2 = 0.0006P$

Stud Chains 4/3 times as strong as open-link variety. [This is contrary to the statements of Capt. Beardslee, U. S. N., in the report of the U. S. Test Board. He holds that the open link is stronger than the studded link. See p. 308 ante].

STRENGTH AND WEIGHT OF WIRE ROPE, HEMPEN ROPE, AND CHAIN CABLES. (Klein's Weisbach.)

Breaking Load in tons of 2240 lbs.	Kind of Cable.	Girth of Wire Rope and of Hemp Rope Diameter of Iron of Chain, inches.	Weight of One Foot in length. Pounds.
1 Ton	Wire Rope	1.0	0.125
	Hemp Rope	2.0	0.177
	Chain	14	0.500
8 Tons	Wire Rope Hemp Rope Chain	2.0° 5.0	0.438 0.978 2.667
12 Tons	Wire Rope	2.5	0.758
	Hemp Rope	7.0	2.036
	Chain	11/16	4.502
16 Tons	Wire Rope	8.0	1.186
	Hemp Rope	8.0	2.365
	Chain	13/16	6.169
20 Tons	Wire Rope	8.5	1.546
	Hemp Rope	9.0	8.225
	Chain	29/32	7.674
24 Tons	Wire Rope Hemp Rope Chain	4.0 10.0 31/32 4.5	2.043 4.166 8.836 2.725
30 Tons	Wire Rope Hemp Rope Chain Wire Rope	11.0 1.1/16 5.0	5.000 10.335 3.723
36 Tons	Hemp Rope	12.5	5.940
	(Chain	1.3/16	18.01
	(Wire Rope	5.5	4.50
44 Tons	Heinp Rope	14.0	6.94
	(Chain	1.5/16	16.00
	(Wire Rope	6.0	5.67
54 Tons	Hemp Rope	5.0	7.92
	Chain	1.7/16	19.16

Length sufficient to provide the maximum working stress:

Hempen rope, dry and untarred wet or tarred	2855	feet.
Wire rope	4590	44
Wire ropeOpen-link chain	1860	".
Stud chain	1660	44

Sometimes, when the depths are very great, ropes are given approximately the form of a body of uniform strength, by making them of separate pieces, whose diameters diminish towards the lower end. It is evident that by this means the tensions in the fibres caused by the rope's own weight can be considerably diminished.

Rope for Hoisting or Transmission. Manila Rope (C. W. Hunt Company, New York.)—Rope used for hoisting or for transmission of power is subjected to a very severe test. Ordinary rope chares and grinds to powder in the centre, while the exterior may look as though it was little worn.

In bending a rope over a sheave, the strands and the yarns of these strands slide a small distance upon each other, causing friction, and wear the rope internally.

The "Stevedore" rope used by the C. W. Hunt Co. is made by lubricating the fibres with plumbago, mixed with sufficient tallow to hold it in position. This lubricates the yarns of the rope, and prevents internal chaing and wear. After running a short time the exterior of the rope gets compressed and coated with the lubricant.

In manufacturing rope, the fibres are first spun into a yarn, this yarn being twisted in a direction called "right hand." From 20 to 80 of these yarns, depending on the size of the rope, are then put together and twisted in the opposite direction, or "left hand," into a strand. Three of these

strands, for a 3-strand, or four for a 4-strand rope, are then twisted together, the twist being again in the "right hand" direction. When the strand is twisted, it untwists each of the threads, and when the three strands are twisted together into rope, it untwists the strands, but again strands are twisted together into rope, it untwists the strands, but again twists up the threads. It is this opposite twist that keeps the rope in its proper form. When a weight is hung on the end of a rope, the tendency is for the rope to untwist, and become longer. In untwisting the rope, it would twist the threads up, and the weight will revolve until the strain of the untwisting strands just equals the strain of the threads being twisted tighter. In making a rope it is impossible to make these strains exactly balance each other. It is this fact that makes it necessary to take out the turns" in a new rope, that is, untwist it when it is put at work. The proper twist that should be put in the threads has been ascertained approximately we experience. imately by experience.

The amount of work that the rope will do varies greatly. It depends not only on the quality of the fibre and the method of laying up the rope, but also on the kind of weather when the rope is used, the blocks or sheaves over which it is run, and the strain in proportion to the strain put upon the rope. The principal wear comes in practice from defective or badly set

sheaves, from excess of load and exposure to storms.

The loads put upon the rope should not exceed those given in the tables, for the most economical wear. The indications of excessive load will be the twist coming out of the rope, or one of the strands slipping out of its proper position. A certain amount of twist comes out in using it the first day or two, but after that the rope should remain substantially the same. If it does not, the load is too great for the durability of the rope. If the rope wears on the outside, and is good on the inside, it shows that it has been chafed in running over the pulleys or sheaves. If the blocks are very small, it will increase the sliding of the strands and threads, and result in a more rapid internal wear. Rope made for hoisting and for rope transmission is usually made with four strands, as experience has shown this to be the most serviceable.

The strength and weight of "stevedore" rope is estimated as follows:

Breaking strength in pounds = 720 (circumference in inches)²: Weight in pounds per foot = .032 (circumference in inches)2.

The Technical Words relating to Cordage most frequently heard are:

YARN.-Fibres twisted together.

THREAD.—Two or more small yarns twisted together.
STRING.—The same as a thread but a little larger yarns.
STRAND.—Two or more large yarns twisted together.

CORD.—Several threads twisted together.

ROPE.—Several strands twisted together.

HAWSER.—A rope of three strands. Shroud-Laid.—A rope of four strands.

CABLE -Three hawsers twisted together.

YARNS are laid up left-handed into strands. STRANDS are laid up right-handed into rope.

HAWSERS are laid up left-handed into a cable.

A rope is:

LAID by twisting strands together in making the rope.

SPLICED by joining to another rope by interweaving the strands.
WHIPPED.—By winding a string around the end to prevent untwisting.
SERVED.—When covered by winding a yarn continuously and tightly around it.

PARCELED.—By wrapping with canvas.
SEIZED.—When two parts are bound together by a yarn, thread or string.
PAYED.—When painted, tarred or greased to resist wet. PAYED.—When painted, ta HAUL.—To pull on a rope.

TAUT.-Drawn tight or strained.

Splicing of Ropes.—The splice in a transmission rope is not only the weakest part of the rope but is the first part to fail when the rope is worn out. If the rope is larger at the splice, the projecting part will wear on the pulleys and the rope fail from the cutting off of the strands. The following directions are given for splicing a 4-strand rope.

The engravings show each successive operation in splicing a 13/2 inch

manila rope. Each engraving was made from a full-size specimen.

The a piece of twine, 9 and 10, around the rope to be spliced, about 6 feet from each end. Then unlay the strands of each end back to the twine.

Butt the ropes together and twist each corresponding pair of strands loosely, to keep them from being tangled, as shown in Fig. 78.

The twine 10 is now cut, and the strand 8 unlaid and strand 7 carefully laid

in its place for a distance of four and a half feet from the junction

The strand 6 is next unlaid about one and a half feet and strand 5 laid in

its place.

The ends of the cores are now cut off so they just meet.

Unlay strand 1 four and a half feet, laying is strand 2 in its place.

Unlay strand 3 one and a half feet, laying in strand 4. Cut all the strands off to a length of about twenty inches, for convenience in manipulation.

The rope now assumes the form shown in Fig. 79 with the meeting points of the strands three feet apart.

Each pair of strands is successively subjected to the following operation: From the point of meeting of the strands 8 and 7, unlay each one three turns; split both the strand 8 and the strand 7 in halves as far back as they are now unlaid and "whip" the end of each half strand with a small piece of twine.

The half of the strand 7 is now laid in three turns and the half of 8 also laid in three turns. The half strands now meet and are tied in a simple knot, 11, Fig. 80, making the rope at this point its original size.

The rope is now opened with a marlin spike and the half strand of 7 worked around the half strand of 8 by passing the end of the half strand of 7 through the rope, as shown in the engraving, drawn taut and again worked around this half strand until it reaches the half strand 18 that was not laid.

This half strand 13 is now split and the half strand 7 drawn through in. This half strand 13 is now split, and the half strand 7 drawn through the opening thus made, and then tucked under the two adjacent strands, as the opening thus made, and then tucked under the two adjacent strands, as shown in Fig. 81. The other half of the strand 8 is now wound around the other half strand 7 in the same manner. After each pair of strands has been treated in this manner, the ends are cut off at 12, leaving them about four inches long. After a few days' wear they will draw into the body of the rope or wear off, so that the locality of the splice can scarcely be detected.

Coal Hoisting. (C. W. Hunt Co.).—The amount of coal that can be hoisted with a rope varies greatly. Under the ordinary conditions of use a rope hoists from 5000 to 8000 tons. Where the circumstances are more fractable, the awaynts run in fragmently to 12 000 or 15 000 tons.

favorable, the amounts run up frequently to 12,000 or 15,000 tons, occasion-

ally to 20,000 and in one case 32,400 tons to a single fall.

When a hoisting rope is first put in use, it is likely from the strain put upon it to twist up when the block is loosened from the tub. This occurs in the first day or two only. The rope should then be taken down and the "turns" taken out of the rope. When put up again the rope should give no further trouble until worn out.

It is necessary that the rope should be much larger than is needed to bear

the strain from the load.

Practical experience for many years has substantially settled the most economical size of rope to be used which is given in the table below

Hoisting ropes are not spliced, as it is difficult to make a splice that will

not pull out while running over the sheaves, and the increased wear to be obtained in this way is very small.

Coal is usually hoisted with what is commonly called a "double whip;" that is, with a running block that is attached to the tub which reduces the strain on the rope to approximately one half the weight of the load hoisted.

The following table gives the usual sizes of hoisting rope and the proper working strain:

Stevedore Hoisting-rope. C W Hunt Co.

0: W. Huit Co.							
Circumference of the rope in ins.	Proper Working Strain on the Rope in lbs.	Nominal size of Coal tubs. Double whip.	Approximate Weight of a Coil, in lbs.				
3 81/4 4 41/4	850 500 650 800	1/6 to 1/5 tons. 1/5 " 1/4 " " 1/4 " " 1/4 " 1/4 " 1/4 " 1/4 "	860 480 650 830				

Hoisting rope is ordered by circumference, transmission rope by diameter.

Weight and Strength of Manila Cordage.

Dodge Manufacturing Co.

Size, Diameter in inches.	Weight of 100 Fathoms Manila in lbs.	Strain Borne by New Rope pounds.	Feet in a pound.	Size. Diameter in inches.	Weight of 100 Fathoms Manila in lbs.	Strain Borne by New Rope pounds.	Feet in a pound.
3/16 14 5/16 3/6 7/16 1/6 9/16 5/6 13/16	12 18 24 30 87 46 65 80 98 120	540 780 1,000 1,280 1,562 2,250 8,062 4,000 5,000 6,250	50' 33' 4'' 25 20 17 8 18 9 3 7 6	1 5/16 136 116 1 9/16 156 154	310 346 390 485 480 581 678	16,000 18,062 20,250 22,500 25,000 30,250 36,000 42,250	1' 11' 1 8 1 6 1 5 1 3 1
34 13/16 26 1 1 1/16 11/6 11/4	80 98 120 142 170 200 230 271	4,000 5,000 6,250 7,500 9,000 10,500 12,250 14,000	18 9 8 7 6 6 5 4 3 8 6 8 2 7	21/6 21/4 21/6 21/6 21/6 31/6 31/6 83/8	678 797 920 1,106 1,265 1,420 1,572 1,760 1,951	42,250 49,000 56,250 64,000 72,250 81,000 90,250 100,000	103% 9 63% 71% 51% 4 4 31%

T. Spencer Miller (Eng'g News, Dec. 6, 1890) gives the following table of breaking strength of mauila rope, which he considers more reliable than the strength computed by Mr. Hunt's formula. Breaking strength = 720 × (circumference in inches)². Mr. Miller's formula is: Breaking weight lbs. = circumference² × a coefficient which varies from 900 for $\frac{1}{2}$ " to 700 for 2" diameter rope, as shown in the table.

Diam. in.	Circum- ference. in.	Ultimate Strength. lbs.	Coeffi- cient.	Diam. in.	Circum- ference. in.	Ultimate Strength. lbs.	Coeffi- cient.
1/6 8/8 8/4 7/8 1 11/6	11/6 2 21/4 23/4 33/4 3	2,000 3,250 4,000 6,000 7,000 9,350	900 845 820 790 780 765	114 138 116 156 176	334 414 414 5 5 516 6	10,000 18,000 15,000 18,200 21,750 25,000	760 745 785 725 712 700

For rope-driving Mr. Hunt recommends that the working strain should not exceed 1/20 of the ultimate breaking strain. For further data on ropes see "Rope-driving."

Knots.—A great number of knots have been devised of which a few only are illustrated, but those selected are the most frequently used. In the cuts. Fig. 22, they are shown open, or before being drawn taut, in order to show the position of the parts. The names usually given to them are:

- Bight of a rope.
- B. Simple or Overhand knot.
- Figure 8 knot. C. Ď.
- Double knot.
- Boat knot. Bowline, first step.
- Bowline, second step.
- E. F. G. H. Bowline completed.
- Square or reef knot.
- Sheet bend or weaver's knot.
- Sheet bend with a toggle.
- Carrick bend.
- Stevedore knot completed.
 - Stevedore knot commenced.
- Slip knot.

- P. Q. R. Flemish loop. Chain knot with toggle.
- Half-hitch.
- Timber-hitch. S.
- Ť. Clove hitch.
- U. Rolling-hitch. Timber-hitch and half-hitch.
- w Blackwall-hitch.
- X. Y.
- Fisherman's bend. Round turn and half-hitch.
- Ž. Wall knot commenced.
- AA. completed.
- Wall knot crown commenced. BB.
- completed.

345 KNOTS.

The principle of a knot is that no two parts, which would move in the same direction if the rope were to slip, should lay along side of and touching each other.

The bowline is one of the most useful knots, it will not slip, and after being strained is easily untied. Commence by making a bight in the rope, then put the end through the hight and under the standing part as shown in

6, then pass the end again through the bight, and haul tight.

The square or reef knot must not be mistaken for the "granny" knot that slips under a strain. Knots H. K and M are easily untied after being inder strain. The knot M is useful when the rope passes through an eye and is held by the knot, as it will not slip and is easily untied after being strained.

Fig. 82.—Knors.

The timber hitch S looks as though it would give way, but it will not; the greater the strain the tighter it will hold. The wall knot looks complicated, but is easily made by proceeding as follows: Form a bight with strand 1 and pass the strand 2 around the end of it, and the strand 3 round the end of 2 and then through the bight of 1 as shown in the cut Z. Haul the ends taut when the appearance is as shown in AA. The end of the strand 1 is now laid over the centre of the knot, strand 2 laid over 1 and 3 over 2, when the end of 3 is passed through the bight of 1 as shown in BB. Haul all the strands taut as shown in CC.

To Splice a Wire Rope.—The tools required will be a small marline spike, nipping cutters, and either clamps or a small hemp-rope sling with which to wrap around and untwist the rope. If a bench-vise is accessible it will be found convenient,

In will be found convenient.

In splicing rope, a certain length is used up in making the splice. An allowance of not less than 16 feet for 1/2 inch rope, and proportionately longer for larger sizes, must be added to the length of an endless rope in

ordering.

Having measured, carefully, the length the rope should be after splicing, and marked the points M and M', Fig. 83, unlay the strands from each end E and E' to M and M' and cut off the centre at M and M', and then:

(1). Interlock the six unlaid strands of each end alternately and draw them together so that the points M and M' meet, as in Fig. 84.

(2). Unlay a strand from one end, and following the unlay closely, lay into the seam or groove it opens, the strand opposite it belonging to the other end of the rope, until within a length equal to three or four times the length of one lay of the rope, and cut the other strand to about the same length from the point of meeting as at A, Fig. 85.

(3) Unlay the adjacent strand in the opposite direction and following the

(8). Unlay the adjacent strand in the opposite direction, and following the

unlay closely, lay in its place the corresponding opposite strand, cutting the ends as described before at B, Fig. 85.

There are now four strands laid in place terminating at A and B, with the eight remaining at M M', as in Fig. 85.

It will be well after laying each pair of strands to tie them temporarily at the points A and B.

Pursue the same course with the remaining four pairs of opposite strands,

SPLICING WIRE ROPE.

stopping each pair about eight or ten turns of the rope short of the preced-

ing pair, and cutting the ends as before.

We now have all the strands laid in their proper places with their respect-

ive ends passing each other, as in Fig. 86. All methods of rope-splicing are identical to this point; their variety consists in the method of tucking the ends. The one given below is the one

most generally practiced.

Clamp the rope either in a vise at a point to the left of A, Fig. 86, and by a hand-clamp applied near A, open up the rope by untwisting sufficiently to cut the core at A, and seizing it with the nippers, let an assistant draw it out slowly, you following it closely, crowding the strand in its place until it is all laid in. Cut the core where the strand ends, and push the end back into its place. Remove the clamps and let the rope close together around it. Draw out the core in the opposite direction and lay the other strand in the cutter of the rope in the spreamment. Persent the fire centre of the rope, in the same manner. Repeat the operation at the five remaining points, and hammer the rope lightly at the points where the ends pass each other at A, A, B, B, etc. with small wooden mallets, and the splice is complete, as shown in Fig. 87.

If a clamp and vise are not obtainable, two rope slings and short wooden

levers may be used to untwist and open up the rope.

A rope spliced as above will be nearly as strong as the original rope and smooth everywhere. After running a few days, the splice, if well made, cannot be found except by close examination.

The above instructions have been adopted by the leading rope manufacrs of America,

SPRINGS.

Definitions. A spiral spring is one which is wound around a fixed point or centre, and continually receding from it like a watch spring. A point or centre, and continually recount from it has a wasen apring, helical spring is one which is wound around an arbor, and at the same time advancing like the thread of a screw. An elliptical or laminated spring is made of flat bars, plates, or "leaves," of regularly varying lengths, superposed one upon the other.

Launinated Steel Springs.—Clark (Rules, Tables and Data) gives the following from his work on Railway Machinery, 1855:

$$\Delta = \frac{1.66L^3}{bt^2n};$$
 $s = \frac{bt^2n}{11.3L};$ $n = \frac{1.66L^3}{\Delta bt^2};$

 $\Delta=$ elasticity, or deflection, in sixteenths of an inch per ton of load, s= working strength, or load, in tons (2240 lbs.), L= span, when loaded, in inches, b= breadth of plates, in inches, taken as uniform, t= thickness of plates, in sixteenths of an inch,

n = number of plates.

NOTE.-The span and the elasticity are those due to the spring when

Norm.—The span and the elasticity are those due to the spring when weighted.

When extra thick back and short plates are used, they must be replaced by an equivalent number of plates of the ruling thickness, prior to the employment of the first two formulæ. This is found by multiplying the number of extra thick plates by the cube of their thickness, and dividing by the cube of the ruling thickness. Conversely, the number of plates of the ruling thickness given by the third formula, required to be deducted and replaced by a given number of extra thick plates, are found by the same calculation.

It is assumed that the plates are similarly and regularly formed, and that they are of uniform breadth, and but slightly taper at the ends.

Reuleaux's Constructor gives for semi-ellinic sarrings:

Reuleaux's Constructor gives for semi-elliptic springs:

$$P = \frac{8nbh^2}{6l} \quad \text{and} \quad f = \frac{6Pl^3}{Enbh^3};$$

 $S = \max$ direct fibre-strain in plate;

b = width of plates;

n = number of plates in spring;

l =one half length of spring; P =load on one end of spring; h = thickness of plates; f = deflection of end of spring; E = modulus of direct elasticity.

The above formula for deflection can be relied upon where all the plates of the spring are regularly shortened; but in semi-elliptic springs, as used, there are generally several plates extending the full length of the spring, and the proportion of these long plates to the whole number is usually about $\frac{Enbh^3}{Enbh^3}$. (G. R. Henderson, Trans. A. S. M. E., one fourth. In such cases f =

vol. xvi.)

In order to compare the formulæ of Reuleaux and Clark we may make the following substitutions in the latter: s in tons = P in lbs. + 1120; Δs = 16f; L = 2l; t = 16h; then

$$\Delta s = 16f = \frac{1.66 \times 8l^3 \times P}{4096 \times 1120 \times nbh^3}, \quad \text{whence} \quad f = \frac{Fl^3}{5,527,183}.$$

which corresponds with Reuleaux's formula for deflection if in the latter we take E = 83.162.800.

Also
$$s = \frac{P}{1120} = \frac{256nbh^2}{11.3 \times 2l}$$
, whence $P = \frac{12.687nbh^2}{l}$

which corresponds with Reuleaux's formula for working load when S in the latter is taken at 76,120.

The value of E is usually taken at 30,000,000 and S at 80,000, in which case Reuleaux's formulæ become

$$P = \frac{13,833nbh^2}{l}$$
 and $f = \frac{Pl^3}{5,000,000nbh^3}$

Helical Steel Springs.—Clark quotes the following from the report on Safety Valves (Trans. Inst. Engrs. and Shipbuilders in Scotland, 1874-5):

$$E = \frac{d^3 \times w}{D^4 \times C}.$$

E =compression or extension of one coil in inches.

d = diameter from centre to centre of steel bar constituting the spring,in inches.

w =weight applied, in pounds,

D = diameter, or side of the square, of the steel bar, in sixteenths of an

C = a constant, which may be taken as 22 for round steel and 30 for square steel.

Note.—The deflection E for one coil is to be multiplied by the number of

free coils, to obtain the total deflection for a given spring.

The relation between the safe load, size of steel, and diameter of coil, may be taken for practical purposes as follows:

$$D = \sqrt[3]{\frac{wd}{3}}, \text{ for round steel;}$$

$$D = \sqrt[3]{\frac{wd}{4.29}}, \text{ for square steel.}$$

Rankine's Machinery and Millwork, p. 390, gives the following:

$$\begin{split} \frac{W}{v} &= \frac{cd^4}{64nr^3}; \qquad W_1 = \frac{.196fd^3}{r}; \qquad v_1 = \frac{12.566nfr^2}{cd}; \\ &\frac{W_1}{2} = \text{greatest safe sudden load}. \end{split}$$

In which d is the diameter of wire in inches; c a co-efficient of transverse elasticity of wire, say 10,500,000 to 12,000,000 for charcoal iron wire and steel; r radius to centre of wire in coil; n effective number of coils; f greatest safe shearing stress, say 30,000; W any load not exceeding greatest safe load; v corresponding extension or compression; W, greatest safe load; and v_1 greatest safe steady extension or compression.

If the wire is square, of the dimensions $d \times d$, the load for a given deflection is greater than for a round wire of the diameter d in the ratio of 2.81 to

tion is greater than for a round wire of the diameter d in the ratio of 2.81 to 1.96 or of 1.48 to 1, or of 10 to 7, nearly.

Wilson Hartnell (Proc. Inst. M. E., 1882, p. 426), says: The size of a spiral spring may be calculated from the formula on page 304 of "Rankine's Useful Rules and Tables"; but the experience with Salter's springs has shown that the safe limit of stress is more than twice as great as there given, namely 60,000 to 70,000 lbs. per square inch of section with \$\frac{4}{2}\$ inch wire, and about 50,000 with \$\frac{1}{2}\$ inch wire. Hence the work that can be done by springs of wire is four or five times as great as Rankine allows.

Ror.A link wire and under

For % inch wire and under,

Maximum load in lbs. =
$$\frac{12,000 \times (\text{diam. of wire})^3}{\text{Mean radius of springs}}$$
;

Weight in lbs. to deflect spring 1 in. = $\frac{100,000 \, \land \, (coll)}{\text{Number of coils} \times (rad.)^3}$

The work in foot-pounds that can be stored up in a spiral spring would lift it above 50 ft.

In a few rough experiments made with Salter's springs the coefficient of rigidity was noticed to be 12,600,000 to 13,700,000 with 14 inch wire; 11,000,000 for 11/32 inch; and 10,600,000 to 10,900,000 for 36 inch wire.

Helical Springs.—J. Begtrup, in the American Machinist of Aug. 18, 1892, gives formulas for the deflection and carrying capacity of helical

springs of round and square steel, as follow:

square steet, as follow:
$$W = .3927 \frac{Sd^3}{D-d},$$

$$F = 8 \frac{P(D-d)^3}{Ed^4},$$
for round steel.
$$W = .471 \frac{Sd^3}{D-d},$$

$$F = 4.712 \frac{P(D-d)^3}{Ed^4},$$
for square steel.

W = carrying capacity in pounds,

S = greatest tensile stress per square inch of material, d = diameter of steel,

D =outside diameter of coil. F = deflection of one coil,

E = torsional modulus of elasticity.

P = load in pounds.

From these formulas the following table has been calculated by Mr. Begtrup. A spring being made of an elastic material, and of such shape as to allow a great amount of deflection, will not be affected by sudden shocks or blows to the same extent as a rigid body, and a factor of safety very much less than for rigid constructions may be used.

HOW TO USE THE TABLE.

When designing a spring for continuous work, as a car spring, use a greater factor of safety than in the table; for intermittent working, as in a steam-engine governor or safety valve, use figures given in table; for square steel multiply line W by 1.2 and line F by .59.

Example 1.—How much will a spring of \(\frac{4}{6}'' \) round steel and \(\frac{3}{6}'' \) outside diameter carry with safety? In the line headed D we find 3, and right understand the safety with safety with safety. How many collections of the safety is the safety of the safety in the safety in the safety is the safety.

derneath 473, which is the weight it will carry with safety. How many coils must this spring have so as to deflect 3" with a load of 400 pounds? Assummust this spring have so as to deflect 3" with a load of 400 pounds? Assuming a modulus of elasticity of 12 millions we find in the centre line headed F the figure .0610; this is deflection of one coil for a load of 100 pounds; therefore .061 × 4 = .244" is deflection of one coil for 400 pounds load, and \$\psi\$. *244 = .12½ is the number of coils wanted. This spring will therefore be 43" long when closed, counting working coils only, and stretch to 73".

Example 2.—A spring 3½" outside diameter of 7/16" steel is wound close; how much can it be extended without exceeding the limit of safety? We find maximum safe load for this spring to be 702 pounds, and deflection of one coil for 100 pounds load .0405 inches; therefore 7.02 × .0405 = .284" is the excentest admissible opening between coils. We may thus without know.

greatest admissible opening between coils. We may thus, without knowing the load, ascertain whether a spring is overloaded or not.

Carrying Capacity and Deflection of Helical Springs of Round Steel.

d = diameter of steel, D = outside diameter of coil, W = safe workingload in pounds—tensile stress not exceeding 60,000 pounds per square inch. F = deflection by a load of 100 pounds of one coil, and a modulus of elasticity of 10, 12 and 14 millions respectively. The ultimate carrying capacity will be about twice the safe load.

188 198	D W	.25 35	.50 15	.75 9	1.00	1.25	1.50 4.5	1.75 3.8	2.00 3.3			
= .065" No. 16.	F.	.0276 .0236		1.433 1.228	3.562 3.053	7.250	12.88 11.04	20.85 17.87	81.57			
y	<u> </u>	.0197	.2562		2.544		9.200					
d = .130'' No. 11.	$\frac{D}{W}$.50 107	.75 65	1.00. 46	1.25 36	1.50 29	1.75 25	2.00 22	2.25 19	2.50 17	1	
11.0	$_{F}$.0206	.0987 .0804	.2556 .2191	.5412 .4639	.9856 .8448	1.624 1.892	2.136	3.625 3.107	4.334		
	$\frac{1}{D}$.0147 75	1.00	1.25	1.50	.7010 1.75	1.160 2.00	2.25	2.589	2.75		
.180′	W	241 0137	167 .0408	128 .0907	104 .1703	.2866	75 .4466	66 .6571	59	58 1.256	49	
ď ≡ .	F	.0118 .0098	.0850 .0292	.0778 .0648	.1460 .1217	.2457	.3828 .3190	.5632 .4693	.7928	1.077	1.428	
	D	1.25	1.50	1.75	2.00	2.25	2.50	2.75	8.00	8.25	8.50	
= 14"	w (.0199	294 .0389	245 .0672	210 .1067	184 .1593	164 .2270	147 .3109	184 .4139			
Ŗ	$F\{$.0171 .0142	.0838 .0278	.0576 .0480	.0914 .0762	.1365 .1137	.1944 .1610	.2665 .2221		.4607 .3839		

350

Carrying Capacity and Deflection of Helical Springs of Bound Steel,—(Continued).

d = 5/16''	$F_{\mathbf{F}}^{D}$	1.50 605 .0136 .0117 .0097	1.75 500 .0242 .0207 .0173	2.00 426 .0392 .0336 .0280	2.25 371 .0593 .0508 .0424	2.50 329 .0854 .0732 .0610	2.75 295 .1187 .1012 .0853	3.00 267 .1583 .1857 .1131	8.25 245 .2066 .1771 .1476	8.50 226 .2640 .2263 .1886	8.75 209 .8312 .2839 .2366	4.00 195 .4089 .3505 .2921
q = 3%"	$F \left\{ egin{array}{c} D \\ W \\ F \end{array} ight.$	2.00 765 .0169 .0145 .0120	2.25 663 .0259 .0222 .0185	2.50 589 .0377 .0323 .0269	2.75 528 .0528 .0452 .0376	8.00 473 .0711 .0610 .0508	3.25 433 .0935 .0801 .0668	3.50 398 .1200 .1029 .0858	3.75 368 .1513 .1297 .1081	4.00 848 .1874 .1606 .1338	4.25 321 .2290 1963 .1635	4.50 301 .2761 .2367 .1972
d = 7/16''	$F \left\{ \begin{array}{c} D \\ W \\ F \left\{ \end{array} \right.$	2.00 1263 .0081 .0069 .0058	2.25 1089 .0126 .0108 .0090	2.50 957 .0186 .0160 .0133	2.75 853 .0262 .0225 .0187	3.00 770 .0357 .0306 .0255	3.25 702 .0472 .0405 .0887	8.50 644 .0617 .0529 .0441	8.75 596 .0772 .0661 .0551	4.00 544 .0960 .0823 .0686	4.50 486 .1428 .1220 .1017	5.00 432 .2016 1728 .1440
d = 1/8"	F	2.00 1963 .0042 .0036 .0030	2.25 1683 .0067 .0057 .0048	2.50 1472 .0099 .0085 .0071	2.75 1309 .0141 .0121 .0101	3.00 1178 .0194 .0167 .0139	3 25 1071 .0259 .0222 .0185	3.50 982 .0336 .0288 .0240	8.75 906 .0427 .0366 .0305	4.00 841 .0534 .0457 .0381	4.50 786 .0796 .0688 .0569	5.00 654 .1134 .0972 .0810
d = 9/16''	F	2.50 2163 .0056 .0048 .0040	2.75 1916 .0081 .0070 .0058	3.00 1720 .0112 .0096 .0080	3.25 1560 .0151 .0129 .0108	3.50 1427 .0197 .0169 .0141	8.75 1815 .0252 .0216 .0180	4.09 1220 .0316 .0271 .0225	4.25 1137 .0890 .0834 .0278	4.50 1065 .0474 .0406 .0339	5.00 945 .0679 .0582 .0485	5.50 849 .0935 .0801 .0668
q = b%"	F	2.50 3068 .0034 .0029 .0024	2.75 2707 .0049 .0042 .0035	8.00 2422 .0068 .0058 .0049	3.25 2191 .0092 .0079 .0066	3.50 2001 .0121 .0104 .0086	8.75 1841 .0155 .0138 .0111	4.00 1704 .0196 .0168 .0140	4.25 1587 .0243 .0208 .0178	4.50 1484 .0297 .0254 .0212	5.00 1315 .0427 .0866 .0305	5.50 1180 .0591 .0506 .0422
d = 11/16"	$F_{\mathbf{F}}^{\mathbf{D}}$	3.00 3311 .0043 .0037 .0080	3.25 2988 .0058 .0050 .0042	8.50 2723 .0077 .0066 .0055	3.75 2500 .0100 .0086 .0071	4.00 2311 .0127 .0108 .0090	4.25 2151 .0157 .0135 .0112	4.50 2009 .0198 .0165 .0138	4.75 1885 .0288 .0200 .0167	5.00 1776 .0279 .0239 .0199	5.50 1591 .0388 .0383 .0277	6.00 1441 .0532 .0447 .0373
d = ¾"	$egin{array}{c} ar{D} \ W \ F \end{array}$	3.00 4418 .0028 .0024 .0020	3.25 3976 .0088 0033 .0027	3.50 3615 .0051 .0044 .0036	8.75 3318 .0066 .0057 .0047	4.00 3058 .0084 .0072 .0060	4.25 2840 .0105 .0090 .0075	4.50 2651 .0129 .0111 .0093	4.75 2485 .0157 .0185 .0113	5.00 2889 .0189 .0162 .0185	5.50 2093 .0264 .0226 .0188	6.00 1893 .0356 .0305 .0254
q = 2%,	$F \left\{ egin{array}{c} D \\ W \\ F \end{array} ight.$	3.50 6018 .0021 .0018 .0015	3.75 5490 .0027 .0024 .0020	4.00 5051 .0085 .0080 .0025	4.25 4676 .0045 .0038 .0032	4.50 4854 .0055 .0047 .0089	4.75 4073 .0067 .0058 .0048	5.00 *8826 0081 .0070 .0058	5.25 3607 .0097 .0083 .0069	5.50 8413 .0115 .0098 .0082	.0156	6.50 2806 .0207 .0177 .0148
d=1''	F	8.50 9425 .0012 .0010 .0008	3.75 8568 .0016 .0014 .0011	4.00 7854 .0021 .0018 .0015	4.25 7250 .0026 .0023 .0019	4.50 6732 .0033 .0028 .0023	4.75 6288 .0041 .0035 .0029	5.00 5890 .0049 .0043 .0035	5.25 5544 .0059 .0051 .0043	.0061	6.00 4712 .0097 .0063 .0069	6.50 4284 .0129 .0111 .0092

The formulæ for deflection or compression given by Clark, Hartnell, and Begtrup, although very different in form, show a substantial agreement when reduced to the same form. Let d= diameter of wire in inches, $D_1=$ mean diameter of coil, n the number of coils, w the applied weight in pounds, and C a coefficient, then

Compression or extension of one coil = $\frac{wD_1^3}{CH^4}$;

Weight in pounds to cause comp. or ext. of 1 in. = $\frac{\nabla a}{n D_{1}}$.

The coefficient C reduced from Hartnell's formula is $8 \times 180,000 = 1,440,000$; according to Clark, $16^4 \times 22 = 1,441.792$, and according to Begtrup (using 12.000,000 for the torsional modulus of elasticity) = 12.000,000 + 8 = 1,500,000.

Rankine's formula for greatest safe extension, $v_1 = \frac{12.506nfr^2}{1}$ - may take

the form $v_1 = \frac{.7854 n D_1^2}{100 d}$ if we use 30,000 and 12,000,000 as the values for fand c respectively.

The several formulæ for safe load given above may be thus compared, letting d= diameter of wire, and $D_1=$ mean diameter of coll, Rankine, $W=\frac{.196fd^3}{r}$; Clark, $W=\frac{3dd\times 169}{D_1}$; Begtrup, $W=\frac{.3927Sd^3}{D_1}$; Hartnell, Substituting for f the value 30,000 given by Rankine, and for

S, 60,000 as given by Begtrup, we have $W=11,760 \frac{d^3}{D}$ Rankine; 12,288 $\frac{d^3}{D}$

Clark; 23,562 $\frac{d^3}{D_1}$ Begtrup; 24,000 $\frac{d^3}{D_1}$ Hartnell.

Taking from the Pennsylvania Railroad specifications the capacity when closed of the following springs, in which d = diameter of wire, D diameter outside of coil, $D_1 = D - d$, c capacity, H height when free, and h height when closed, all in inches.

and substituting the values of c in the formula $c = W = x \frac{d^3}{D}$ we find x, the coefficient of $\frac{d^3}{D}$ to be respectively \$2,000; 38,000; \$2,400; 24,888; 34,560; 42,140, average \$4,000.

Taking 12,000 as the coefficient of $\frac{d^3}{D_1}$ according to Rankine and Clark for safe load, and 24,000 as the coefficient according to Begtrup and Hartnell, we have for the safe load on these springs, as we take one or the other coefficient,

D. I. 3,750 5,400 lbs. Rankine and Clark..... 3,000 300 1,200 2,024 6,000 7,500 10,800 Capacity when closed, as above 400 1,900 2,100 8,100 10,000 16,000 "

J. W. Cloud (Trans. A. S. M. E., v. 173) gives the following:

$$P = \frac{8\pi d^3}{16R} \quad \text{and} \quad f = \frac{32PR^2l}{G\pi d^4};$$

P = load on spring;

 $S = \max_{i} mum$ shearing fibre-strain in bar; d = diameter of steel of which spring is made;

definition of the second which appears
 length of bar before coiling;
 modulus of shearing elasticity;

f = deflection of spring under load.

Mr. Cloud takes S = 80,000 and G = 12,600,000. The stress in a helical spring is almost wholly one of torsion. For method of deriving the formulæ for springs from torsional formula see Mr. Cloud's paper, above quoted.

ELLIPTICAL SPRINGS, SIZES, AND PROOF TESTS. Pennsylvania Railroad Specifications, 1889

	fn.	sr all,	inches.	ရီ အက်	Tests.
Class.	Length be	Width over	Bands, inc	Width of Plates, inches.	To stand ins. High. With Load of lbs.
A, Triple	40	1134	3 ×3%	3	334 between bands. 4800 5500
C, Quadruple	40	1516	3 ×34	8	(2 " " A. p. t.* (8%4 " " 6650 -3 " " 8000
D, Triple		1134			(2 " " A. p. t.* 4 " " 6000 8000
E, Single	40	sin.	3 ×36	8 × 11/82	5 bet. centre of eye and top of leaf. When free
F, Triple	86	1134	3 ×3/8	3×11/32	(3 214 between bands. 11.800 (6/4 " " When free
G, Double	32	71/2	3 × 5/8	8	13 " " [8000
H, Double	36	916	3 ×3/8	4	1 31/6 " " 5400 3 " " 6000
$K, \begin{cases} \text{Double,} \\ 6 \text{ plates} \end{cases}$	22	105%	316×36	416×11/32	18/16 " " 18,800
L, Double, 7 plates	22	1056	31/6 × 3/6	41 % × 11/82	
M, Quadruple	40	1516	3 ×3/8	8	4 " " 8000 10,000 2 " " A. p. t.*

* A. p. t., auxiliary plates touching.

PHOSPHOR-BRONZE SPRINGS.

Wilfred Lewis (Engineers' Club, Philadelphia, 1887) made some tests with phosphor-bronze wire, .12 in. diameter, coiled in the form of a spiral spring,

phosphor-bronze wire, 12 in. diameter, coiled in the form of a spiral spring, 1½ in. diameter from centre to centre, making 52 coils.

This spring was loaded gradually up to a tension of 30 lbs., but as the load was removed it became evident that a permanent set had taken place. Such a spring of steel, according to the practice of the P. R. R., might be used for 40 lbs. A weight of 21 lbs. was then suspended so as to allow a small amount of vibration, and the length measured from day to day. In 30 hours the spring lengthened from 20% inches to 21½ inches, and in 200 hours to 21½ inches. It was concluded that 21 lbs. was too great for durability, and that probably 10 lbs. was as much as could be depended upon with safety. For a given load the extension of the bronze spring was just double the extension of a similar steel spring, that is, for the same extension the steel

extension of a similar steel spring, that is, for the same extension the steel

spring is twice as strong.

SPRINGS TO RESIST TORSIONAL FORCE. (Reuleaux's Constructor.)

Flat spiral or helical spring... $P = \frac{S}{a} \frac{bh^2}{a}$: Round helical spring $P = \frac{S\pi}{32} \frac{d^3}{R}$; Round bar, in torsion

P = force applied at end of radius or lever-arm R; $\vartheta =$ angular motion at end of radius R; S = permissible maximum stress, = 4/5 of permissible stress in flexure; E = modulus of elasticity in tension; G = torsional modulus, = 2/5 E; l = developed length of spiral, or length of bar; d = diameter wire; b = breadth of flat bar; h = thickness.

HELICAL SPRINGS FOR CARS AND LOCOMOTIVES, Arranged in Order of Mrength.

	Capacity,		110 at 814 in.		170 at 6	200 at 69%	1.200 at 6	1,280 at 59%	8,600 at 6	4,500 85	4,000 at 7%	6,000 at 4	6,000 at 7%	6,000 at 4 15/16	6.800 at 736		7,000 at 7	7.000 at 71/4	7.000 at 5 7/16	19 000 at 412	13 500 at 536	16,700 at 54	21,000 at 5 27/32	19 Ann at 8 5.18
	Capacity.	ļ	108. 130	3	25	\$3	96.	8,100	96	900	10,00	10,000	11,000	18,000	14.000	16.000	16,000	19.000	19.000	8		45,000	48,000	49 000
	ht. Closed.		angues.	72	-	œ Ì	R	*	200	00	*	368	•	2,4	•	788	**		5		3	3	over plates	52
Spring.	Height. Free. C	-	inches.	ž	90 (۵,	5		ထင်	Ş		2,4	•	ž	•	**		80	•	72	3	3	676 18 778	72
	Diam, Cut-	alua or com	inches.	*		*	- ec	ž		2	300	\\ \\ 20\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	200	96	88			. Z	<u> </u>	8	-	5 5/16		8.57.18
	ght				1/16	2/16	2, 2,	10%	900	28.6		92	3674	8	4814	8	9	**	251,6	3417	43.24	28	7	20
	Weight	1	<u> </u>	×	X ,	Z.												*8	561%	3517	43.7	511,3	<u>ئ</u>	6017
	Length after	-	menes.				8284	8696	%28 	2 <u>5</u>	108		106%	- 25 E	1067	417.	92%		4.5	2007	62%	58%	6. e.	71,7
Bar.	Length.	Jan 19 miles	57.72	32	e.	% ?	18. 28.	887,	28	35 7	92.6	25.55 24.55	88	82	888	85	26 66	£.5	2,00	46.24	200	21%	25.4 27.04 21.04	19
	Diameter.		9/64	Z	11/64	4 7	7. 2	3 7	15/16		7.7		1,5/16	~~ ~~ ~~	1,5/16	136/10	138 238	~ .7.		4 hars 15/18	4 15/16	4 1 1/16	15/16	4 1/16
7	. A . 9 2.63 5.63	Ī	7	H	×į	, T	d oo	M	<u> </u>	,-	-	z	H	¢	9	Ö	1	×	¥	æ	Þ	>	Ö	A

Springs N. O. Q. L. X, and Y are made of two colls, one inside of the other. Springs B, U, G, Y, and W are made of four equal coils placed near together and joined by top and bottom cap-pleces.

RIVETED JOINTS.

Fairbairn's Experiments. (From Report of Committee on Riveted Joints, Proc. Inst. M. E., April, 1881.)

The earliest published experiments on riveted joints are contained in the memoir by Sir W. Fairbairn in the Transactions of the Royal Society. Making certain empirical allowances, he adopted the following ratios as expressing the relative strength of riveted joints:

Solid plate	100
Double-riveted joint	70
Single-riveted joint	56

These well-known ratios are quoted in most treatises on riveting, and are still sometimes referred to as having a considerable authority. It is singular, however, that Sir W. Fairbairn does not appear to have been aware that the proportion of metal punched out in the line of fracture ought to be different in properly designed double and single riveted joints. These celebrated ratios would therefore appear to rest on a very unsatisfactory analysis of the experiments on which they were based.

Loss of Strength in Punched Plates.—A report by Mr. W. Parker and Mr. John, made in 1878 to Lloyd's Committee, on the effect of punching and drilling, showed that thin steel plates lost comparatively little from punching, but that in thick plates the loss was very considerable. The following table gives the results for plates punched and not annealed

or reamed:

Thickness of Plates.	Material of Plates.	Loss of Tenacity, per cent.
1/4	Steel	8
\$ Z	44	18
12	44	26
\$ 2	44	83
§ 4	Iron	18 to 23

The effect of increasing the size of the hole in the die-block is shown in the following table:

Total Taper of Hole in Plate, inches.	Material of Plates.	Loss of Tenacity due to Punching, per cent.
1–16	Steel	17.8
1/6	46	12.3
16 14	" (H	(ole ragged) 24.5

The plates were from 0.675 to 0.712 inch thick. When 36-in punched holes were reamed out to 136 in diameter, the loss of tenacity disappeared, and the plates carried as high a stress as drilled plates. Annealing also restores to punched plates their original tenacity.

Strength of Perforated Plates.

(P. D. Bennett, Eng'g, Feb. 12, 1886, p. 155.)

Tests were made to determine the relative effect produced upon tensile strength of a flat bar of iron or steel: 1. By a ¾-inch hole drilled to the required size; 2, by a hole punched ¼ inch smaller and then drilled to the size of the first hole; and, 3, by a hole punched in the bar to the size of the drilled bar. The relative results in strength per square inch of original area were as follows:

	1.	2.	3,	4.
	Iron.	Iron.	Steel.	Steel.
Unperforated bar	1.000	1.000	1.000	1.000
Perforated by drilling	1.029	1.012	1.068	1.103
" punching and drilling.	1.030	1.008	1.059	1.110
" " punching only		0.894	0.985	0.927

In tests 2 and 4 the holes were filled with rivets driven by hydraulic pressure. The increase of strength per square inch caused by drilling is a phenomenon of similar nature to that of the increased strength of a grooved bar over that of a straight bar of sectional area equal to the smallest section of he grooved bar. Mr. Bennett's tests on an iron bar 0.84 in. diameter, 10 in.

long, and a similar bar turned to 0.84 in, diameter at one point only, showed that the relative strength of the latter to the former was 1.323 to 1.000.

Riveted Joints.-Drilling versus Punching of Holes,

The Report of the Research Committee of the Institution of Mechanical Engineers, on Riveted Joints (1881), and records of investigations by Prof. A. B. W. Kennedy (1881, 1882, and 1885), summarize the existing information regarding the comparative effects of punching and drilling upon fron and steel plates. From an examination of the voluminous tables given in Profresor Unwin's Report, the results of the greatest number of the experiments made on iron and steel plates lead to the general conclusion that, while thin plates, even of steel, do not suffer very much from punching, yet a those of ½-inch thickness and upwards the loss of tenacity due to punching ranges from 10% to 23% in iron plates, and from 11% to 33% in the case of mild steel. In drilled plates there is no appreciable loss of strength. It is possible to remove the bad effects of punching by subsequent reaming or annealing; but the speed at which work is turned out in these days is not avorable to multiplied operations, and such additional treatment is seldom practised. The introduction of a practicable method of drilling the plating of ships and other structures, after it has been bent and shaped, is a matter of great importance. If even a portion of the deterioration of tenacity can be prevented, a much stronger structure results from the same material and the same scantling. This has been fully recognized in the modern English practice (1887) of the construction of steam-boilers with steel plates; punching in such cases being almost entirely abolished, and all rivet holes being drilled after the plates have been bent to the desired form.

Comparative Efficiency of Riveting done by Different Methods.

The Reports of Professors Unwin and Kennedy to the Institution of Mechanical Engineers (Proc. 1881, 1882, and 1885) tend to establish the four following points:

1. That the shearing resistance of rivets is not highest in joints riveted by

means of the greatest pressure;

2. That the ultimate strength of joints is not affected to an appreciable extent by the mode of riveting; and, therefore,
3. That very great pressure upon the rivets in riveting is not the indispensable requirement that it has been sometimes supposed to be;

4. That the most serious defect of hand-riveted as compared with machineriveted work consists in the fact that in hand-riveted joints visible slip commences at a comparatively small load, thus giving such joints a low value as regards tightness, and possibly also rendering them liable to failure under sudden strains, after slip has once commenced.

The following figures of mean results, taken from Prof. Kennedy's tables (Proceedings 1865, pp. 218-225), give a comparative view of hand and hydraulic riveting, as regards their ultimate strengths in joints, and the periods at which in both cases visible slip commenced.

Total Bree	king Load.	Load at which Visible Slip began.				
Hand-riveting.	Hydraulic Rivet- ing.	Hand-riveting.	Hydraulic Rivet- ing.			
Tons.	Tons.	Tons.	Tons.			
86.01	85.75	21.7	47.5			
	77.00		35.0			
82.16	82.70	25.0	53.7			
	78.58		54.0			
149.2	145.5	31.7	49.7			
*****	140.2		46.7			
193.6	188.1	25.0	56.0			
	183.7					

In these figures hand-riveting appears to be rather better than hydraulic riveting, as far as regards ultimate strength of joint; but is very much inferior to hydraulic work, in view of the small proportion of load borne by it before visible slip commenced.

Some of the Conclusions of the Committee of Research on Riveted Joints.

(Proc. Inst. M. E., Apl. 1885.)
The conclusions all refer to joints made in soft steel plate with steel rivets, the holes all drilled, and the plates in their natural state (unannealed). In every case the rivet or shearing area has been assumed to be that of the holes, not the nominal (or real) area of the rivets themselves. Also, the strength of the metal in the joint has been compared with that of strips cut from the same plates, and not merely with nominally similar material.

The metal between the rivet-holes has a considerably greater tensile resistance per square inch than the unperforated metal. This excess tenacity amounted to more than 20%, both in %-inch and %-inch plates tenacity amounted to more than 20%, both in %-inch and %-inch plates when the pitch of the rivet was about 1.9 diameters. In other cases %-inch plate gave an excess of 15% at fracture with a pitch of 2 diameters, of 10% with a pitch of 8.6 diameters, and 06.6.6%, with a pitch of 8.9 diameters; and %-inch plate gave 7.8% excess with a pitch of 2.8 diameters.

In single-riveted joints it may be taken that about 22 tons per square inch is the shearing resistance of rivet steel, when the pressure on the rivets does not exceed about 40 tons per square inch. In double-riveted joints, with rivets of about 34 inch diameter, most of the experiments gave about 24 tons per square inch as the shearing resistance, but the joints in one series went

at 22 tons.

The ratio of shearing resistance to tenacity is not constant, but diminishes

very markedly and not very irregularly as the tenacity increases.

The size of the rivet heads and ends plays a most important part in the strength of the joints—at any rate in the case of single-riveted joints. An increase of about one third in the weight of the rivets (all this increase, of course, going to the heads and ends) was found to add about 35% to the resistance of the joint, the plates remaining unbroken at the full shearing resistance of 22 tons per square inch, instead of tearing at a shearing stress of only a little over 20 tons. The additional strength is probably due to the prevention of the distortion of the plates by the great tensile stress in the rivets.

The intensity of bearing pressure on the rivet exercises, with joints proportioned in the ordinary way, a very important influence on their strength. So long as it does not exceed 40 tons per square inch (measured on the projected area of the rivets), it does not seem to affect their strength; but pressures of 50 to 55 tons per square inch seem to cause the rivers to shear in most cases at stresses varying from 16 to 18 tons per square inch. For ormost cases at stresses varying from no to 10 to 10 per square incil. For ordinary joints, which are to be made equally strong in plate and in rivets, the bearing pressure should therefore probably not exceed 42 or 43 tons per square inch. For double-riveted butt-joints perhaps, as will be noted later, a higher pressure may be allowed, as the shearing stress may probably not be more than 10 or 18 tons per square inch when the plate tears.

A margin (or not distance from outside of holes to edge of plate) equal to the diameter of the drilled hole has been found sufficient in all cases hitherto tried.

To attain the maximum strength of a joint, the breadth of lap must be such as to prevent it from breaking zigzag. It has been found that the net measured zigzag should be from 80% to 85% in excess of that measured straight across, in order to insure a straight fracture. This corresponds to a diagonal pitch of 2/3 p + d/8, if p be the straight pitch and d the diameter of the rivet-hole.

Visible slip or "give" occurs always in a riveted joint at a point very wishe sup or "give" occurs always in a riveted joint at a point very much below its breaking load, and by no means proportional to that load. A collation of the results obtained in measuring the slip indicates that it depends upon the number and size of the rivets in the joint, rather than upon anything else; and that it is tolerably constant for a given size of rivet in a given type of joint. The loads per rivet at which a joint will commence to slip visibly are approximately as follows:

Diameter of Rivet.	Type of Joint.	Riveting.	Slipping Load per Rivet.
% inch	Single-riveted	Hand	2.5 tons
34	Double-riveted	Hand	8.0 to 8.5 tons
32	Double-riveted	Machine	7 tons
í inch	Single-riveted Double-riveted Double-riveted	Hand	8.2 tons
1 "		Hand	4.3 tons
1 "		Muchine	8 to 10 tons

To find the probable load at which a joint of any breadth will commence to slip, multiply the number of rivets in the given breadth by the proper figure taken from the last column of the table above. It will be understood that the above figures are not given as exact; but they represent very well the results of the experiments.

The experiments point to simple rules for the proportioning of joints of maximum strength. Assuming that a bearing pressure of 43 tons per square inch may be allowed on the rivet, and that the excess tenacity of the plate is 10% of its original strength, the following table gives the values of the ratios of diameter d of hole to thickness t of plate (d + t), and of pitch p to diameter d of the contraction of the plate d is the following table d in the plate d is the plate d in the plate d in the plate d is the plate d in the plate d in the plate d is the plate d in the plate d in the plate d in the plate d is the plate d in the plate d in the plate d in the plate d is the plate d in the plate d in the plate d in the plate d in the plate d is the plate d in the plate d in the plate d in the plate d in the plate d is the plate d in the plate deter of hole (p+d) in joints of maximum strength in %-inch plate.

For Single-riveted Plates.

Original T Pla	enacity of te.	Shearing Resistance of Rivets. Ratio. R		Ratio.	Ratio.	
Tons per sq. in.	Lbs. per sq. in.	Tons per sq. in.	Lbs. per sq. in.	d+t	n + d	Plate Area Rivet Area
30 28 30 28	67,900 62,720 67,900 62,720	22 22 24 24	49,200 49,200 53,760 58,760	2.48 2.48 2.28 2.28	2.30 2.40 2.27 2.36	0.667 0.785 0.718 0.690

This table shows that the diameter of the hole (not the diameter of the rivet) should be 2% times the thickness of the plate, and the pltch of the rivets 2% times the diameter of the hole. Also, it makes the mean plate area 71% of the rivet area.

If a smaller rivet be used than that here specified, the joint will not be of uniform, and therefore not of maximum, strength; but with any other size of rivet the best result will be got by use of the pitch obtained from the simple formula

$$p=a\frac{d^2}{4}+d,$$

where, as before, d is the diameter of the hole.

The value of the constant a in this equation is as follows:

Or, in the mean, the pitch $p = 0.56 \frac{d^2}{dt} + d$.

It should be noticed that with too small rivets this gives pitches often considerably smaller in proportion than 2% times the diameter.

For double-riveted lap-joints a similar calculation to that given above, but with a somewhat smaller allowance for excess tenacity, on account of the large distance between the rivet-holes, shows that for joints of maximum strength the ratio of diameter to thickness should remain precisely as in single-riveted joints; while the ratio of pitch to diameter of hole should be 8.64 for 30 ton plates and 22 or 24 ton rivets, and 3.82 for 28 ton plates with the same (ivets.

Here, still more than in the former case, it is likely that the prescribed size of rivet may often be inconveniently large. In this case the diameter of rivet should be taken as large as possible; and the strongest joint for a given thickness of plate and diameter of hole can then be obtained by using the pitch given by the equation

$$p=a\,\frac{d^2}{t}+d,$$

where the values of the constant a for different strengths of plates and rivets may be taken as follows:

Table of Proportions of Double-riveted Lap-joints.

in which $p = a \frac{d^2}{t} + d$.

Thickness of Plate.	Original tenacity of Plate, Tons per sq. in.	Shearing Resist- ance of Rivets. Tons per sq. in.	Value of Constant.
36 inch	30	24	1.15
8½ · ·	28	24	1.22
\$2° "	30	22	1.05
82 "	28	22	1.12
% "	30	24	1.17
8 ∕2 "	28	24	1.25
\$ 2 ''	30	22	1.07
§2 "	28	22	1.14

Practically, having assumed the rivet diameter as large as possible, we can fix the pitch as follows, for any thickness of plate from % to % inch:

For 30-ton plate and 24-ton rivets
$$\left.\right\}$$
 $p=1.16$ $\frac{d^2}{t}+d$;
 "30 " "22 " " $p=1.06$ $\frac{d^2}{t}+d$;
 "28 " "24 " " $p=1.24$ $\frac{d^2}{t}+d$.

In double-riveted butt-joints it is impossible to develop the full shearing resistance of the joint without getting excessive bearing pressure, because the shearing area is doubled without increasing the area on which the pressure acts. Considering only the plate resistance and the bearing pressure, and taking this latter as 45 tons per square inch, the best pitch would be about 4 times the diameter of the hole. We may probably say with some certainty that a pressure of from 45 to 50 tons per square inch on the rivets will cause shearing to take place at from 16 to 18 tons per square inch. Working out the equations as before, but allowing excess strength of only 5% on account of the large pitch, we find that the proportions of double-riveted butt-joints of maximum strength, under given conditions, are those of the following table:

Double-riveted Butt-joints.

Original Ten- acity of Plate, Tons per sq. in.	Shearing Resistance of Rivets, Tons per sq. in.	Bearing Pressure, Tons per sq. in.	Ratio $\frac{d}{t}$	Ratio <u>p</u> d
30	16	45	1.80	3.85
28	16	45	1.80	4.06
30	18	48	1.70	4.08
28	18	48	1.70	4.27
30	16	50	2.00	4.20
28	16	50	2.00	4.42

Practically, therefore, it may be said that we get a double-riveted butt-joint of maximum strength by making the diameter of hole about 1.8 times the thickness of the plate, and making the pitch 4.1 times the diameter of the hole.

The proportions just given belong to joints of maximum strength. But in a boiler the one part of the joint, the plate, is much more affected by time than the other part, the rivets. It is therefore not unreasonable to estimate the percentage by which the plates might be weakened by corrosion, etc.. before the boiler would be unfit for use at its proper steam-pressure, and to add correspondingly to the plate area. Probably the best thing to do in this case its to proportion the joint, not for the actual thickness of plate, but for a nominal thickness less than the actual by the assumed percentage. In this case the joint will be approximately one of uniform strength by the time it has reached its final workable condition; up to which thine the joint as a whole will not really have been weakened, the corrosion only gradually bringing the strength of the plates down to that of rivets.

Raciencies of Joints.

The average results of experiments by the committee gave: For double-riveted lap-joints in %-inch plates, efficiencies ranging from 67.1% to 81.2%. For double-riveted butt-joints (in double shear) 61.4% to 71.3%. These low resuits were probably due to the use of very soft steel in the rivets. For single-niveted lap-joints of various dimensions the efficiencies varied from 54.8% to 60 4

The experiments showed that the shearing resistance of steel did not increase nearly so fast as its tensile resistance. With very soft steel, for instance, of only 25 tons tenacity, the shearing resistance was about 80% of the tensile resistance, whereas with very hard steel of 52 tons tenacity the shearing resistance was only somewhere about 65% of the tensile resistance.

Proportions of Pitch and Overlap of Plates to Diameter of Rivet-Hole and Thickness of Plate.

(Prof. A. B. W. Kennedy, Proc. Inst. M. E., April, 1885.)

t =thickness of plate; d =diameter of rivet (actual) in parallel hole;

p = pitch of rivets, centre to centre; s = space between lines of rivets;

|l = overlap of plate.

The pitch is as wide as is allowable without imparing the tightness of the joint under steam.

For single-riveted lap-joints in the circular seams of boilers which have double-riveted longitudinal lap joints,

$$d = t \times 2.25;$$

 $p = d \times 2.25 = t \times 5$ (nearly);
 $l = t \times 6.$

For double-riveted lap-joints:

$$d = 2.25t;$$

 $p = 8t;$
 $s = 4.5t;$
 $l = 10.5t.$

Single-riveted Joints.			Double-riveted Joints.					
t	d	р	ı	t	đ	p		ı
3-16 14 5-16 36 7-16 14 9-16	7-16 9-18 11-16 13-16 1 114 114	15-16 11/4 1 9-16 17/6 2 8-16 21/6 2 13-16	11/6 11/6 17/8 21/4 25/8 3 33/8	3-16 14 5-16 36 7-16 14 9-16	7-16 9-16 11-16 13-16 1 116 114	11/2 2 21/2 3 31/2 4 41/2	13-16 114 134 2214 214	2 23/4 33/8 4 45/6 51/4 57/8

With these proportions and good workmanship there need be no fear of

leakage of steam through the riveted joint.

The net diagonal area, or area of plate, along a zigzag line of fracture should not be less than 30% in excess of the net area straight across the joint, and 35% is better.

Mr. Theodore Cooper (R. R. Gazette, Aug. 22, 1890) referring to Prof. Kennedy's statement quoted above, gives as a sufficiently approximate rule for the proper pitch between the rows in staggered riveting, one half of the pitch of the rivets in a row plus one quarter the diameter of a rivet-hole.

Apparent Excess in Strength of Perforated over Unperforated Plates. (Proc. Inst. M. E., October, 1888.)

The metal between the rivet-holes has a considerably greater tensile resistance per square inch than the unperforated metal. This excess tenacity amounted to more than 20%, both in %-inch and %-inch plates, when the pitch of the rivets was about 1.9 diameters. In other cases & inch plate gave an excess of 15% at fracture with a pitch of 2 diameters, of 10% with a pitch of 3.6 diameters, and of 6.6% with a pitch of 3.9 diameters; and ¾ inch plate gave 7.8% excess with a pitch of 2.8 diameters.

(1) The "excess strength due to perforation" is increased by anything which tends to make the stress in the plate uniform, and to diminish the effect of the narrow strip of metal at the edge of the specimen.

(2) It is diminished by increase in the ratio of p/d, of pitch to diameter of hole, so that in this respect it becomes less as the efficiency of the joint

increases.

(3) It is diminished by any increase in hardness of the plate. (4) For a given ratio p/d, of pitch to diameter of hole, it is also apparently diminished as the thickness of the plate is increased. The ratio of pitch to thickness of plate does not seem to affect this matter directly, at least within the limits of the experiments.

Test of Double-riveted Lap and Butt Joints. (Proc. Inst. M. E., October, 1888.)

Steel plates of 25 to 26 tons per square inch T. S., steel rivets of 24.6 tons shearing-strength per square inch.

Kind of Joint.	Thickness of Plate.	Diameter of Rivet-holes.	Ratio of Pitch to Diameter.	Efficiency of Joint.
Lap	3 5′′	0.8"	8.62	75.2
Butt	84	0.7	3.93	76.5
Lap	\$ %	Ĭ.1	2.82	68.0
"	\$ 2	1.6	8.41	78.6
Butt	\$2	1.1	4.00	72.4
**	\$ 2	1.6	8.94	76.1
Lap	1'	1.8	2.42	63.0
"	1	1.75	8.00	70.2
Butt	1	1.3	3.92	76.1
			posed for th	
Browne	Triver in Si	- 2t (with doub	le covers 11/t)	(1)
				(2)
Fairbairn	a =	= 2t for blates	iess man 9a m.	(2)

Drowne	(11
Fairbairn $d = 2t$ for plates less than $\frac{3}{6}$ in.	(2)
"	(3)
Lemaitre $d = 1.5t + 0.16$	(4)
Antoine $d = 1.1 \sqrt{t}$	(5)
Pohlig $d = 2t$ for boiler riveting	(6)
"	(7)
Redtenbacher $d = 1.5t$ to $2t$	(8)
Unwin $d = \frac{3}{4}t + \frac{5}{16}$ to $\frac{3}{6}t + \frac{9}{6}$	(9)
" $d = 1.2 \sqrt{t}$	(10)

 $\dots \qquad d = 1.2 \ \sqrt{t}$ The following table contains some date of the sizes of rivets used in practice, and the corresponding sizes given by some of these rules.

Diameter of Rivets for Different Thicknesses of Plates.

		Diameter of Rivets, in inches.								
Thick- ness of plate. Inches.	Lloyd's Rules.	Liverpool Rules.	English Dock-yards.	French Veritas.	Browne Eq. (1).	Fairbairn (2) and (3).	Lemaitre (4).	Antoine (5).	Unwin (10).	Wilson.
5/46 96 7/46 1/2	56 56 56 54	56 56 34 13/16	1/9 5/8 3/4 3/4	5% 5%	5/8 3/4 3/8 1	56 34 21/82 34	56 23/32 13/16 15/16	56 11/16 34 34	11/16 34 13/16 36	5/6 11/16 3/4 3/4
9/16 5/8 11/16 3/4	3/4 3/4 7/8 7/8	13/16 78 78 15/16	7/8 7/8 7/8 1	3/4 13/16 3/8	11/6 11/4	27/32 15/16 1 1/32 11/8	1 11/6 1 3/16 11/4	13/16 76 15/16 15/16	76 15/16 1 1 1/16	76 76 78 18
13/16 76 15/16	7/8 1 1 1	1 116 1 3/16 1 4	1 11/8 11/8 11/8	1 1/16		1 7/32	13/6	1 1 1 1/16 11/6	1 3/32 11/6 1 3/16 13/4	1 1 11/6 11/6

Strength of Double-riveted Scams, Calculated.—W. B. Ruggles, Jr., in Power for June, 1899, gives tables of relative strength of rivets and parts of sheet between rivets in double-riveted seams, compared with strength of shell, based on the assumption that the shearing strength of rivets and the tensile strength of steel are equal. The following figures show the sizes in his tables which show the nearest approximation to equal-avof strength of rivets and parts of plates between the rivets, together with the percentage of each relative to the strength of the solid plate.

kinches,	Pitch of Rivets,		Streng	Plate.		Size of Rivet- holes,	Percen Strens Pla	th of	
Part I	inches.	inches.	Rivets.	Plate.	Thickn Plate, i	inches	inches.	Rivets.	Plate.
14 14 14 14 15 16	21/6 21/4 31/6 35/6 21/6	9/16 9/16 56 11/16 9/16	.789 .795 .785 .819 .749	.765 .775 .800 .810	7/16 7/16 7/16 7/16 7/16	294 314 356 416 214	13/16 3/8 15/16	.734 .758 .758 .765	.728 .740 .759 .778
5 16 5 16 5 16	256 314 356 214 254	11/16 11/16 34 11/16	.748 .761 .780 .727 .755	.762 .780 .793 .722 .738	14 14 14 14 16 9/16	27/8 31/4 89/4 41/8 25/8	13/16 76 15/16 1 13/16	.721 .740 .736 .761 .701	.718 .731 .750 .758 .690
% % % % % % % % % % % % % % % % % % %	31/4 35/6 41/6 25/8	34 13/16 76 11/16	.754 .762 .777 .714	.760 .776 .788 .711	9/16 9/16 9/16 9/16	3 396 394 414	3/8 15/16 1 1 1/16	.714 .727 .745 .742	.708 .722 .733 .750

H. De B. Parsons (R. R. & Eng. Journal, 1890) holds that it is an error to assume that the shearing strength of the rivet is equal to the tensile strength Also, referring to the apparent excess in strength of perforated over unperforated plates, be claims that on account of the difficulty in properly matching the holes, and of the stress caused by forcing, as is too often the case in practice, this additional strength cannot be trusted much more than that of friction.

Adopting the sizes of iron rivets as generally used in American practice for steel plates from ¼ to 1 inch thick: the tensile strength of the plates as 60,000 lbs.; the shearing strength of the rivets as 40,000 for single-shear and 35,500 for double-shear. Mr. Parsons calculates the following table of pitches, so that the strength of the rivets against shearing will be approximately equal to that of the plate to tear between rivet-holes. The diameter of the rivets has in all cases been taken at 1/16 in. larger than the nominal size, as the rivet is assumed to fill the hole under the power riveter.

Riveted Joints.

Lap or Butt with Single Welt—Steel Plates and Iron Rivets.

Thickness Diameter		Pi	tch.	Efficiency.		
of Plates.	of Rivets.	Single.	Double.	Single.	Double.	
in.	in. 14, 24, 28, 78 1 1 1/8	in. 1 3/16 1 11/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16 1 1/16	in. 176 2 11/16 234 2 7/16 256 2 1/16 258	55.7% 52.7 49.0 43.6 42.0 38.6 38.1	70.0% 68.6 65.9 60.4 59.5 55.4 54.9	

Calculated Efficiencies—Steel Plates and Steel Rivets.—The differences between the calculated efficiencies given in the two tables above are notable. Those given by Mr. Ruggles are probably too high, since he assumes the shearing strength of the rivets equal to the tensile strength of the plates. Those given by Mr. Parsons are probably lower than will be obtained in practice, since the figure he adopts for shearing strength is rather low, and he makes no allowance for excess of strength of the perforated by the author on the assumptions that the excess strength of the perforated plate is 10%, and that the shearing strength of the rivets per square inch is four fifths of the tensile strength of the plate. If t = 10% the tensile strength of the plate, t = 10% the consideration of rivet-hole, t = 10% pitch, and t = 10% tensile strength per square inch, then for single-riveted plates

$$(p-d)t \times 1.10T = \frac{\pi}{4}d^2 \times \frac{4}{5}T, \text{ whence } p = .571\frac{d^3}{t} + d.$$
For double-riveted plates, $p = 1.142\frac{d^2}{t} + d.$

The coefficients .571 and 1.142 agree closely with the averages of those given in the report of the committee of the Institution of Mechanical Engineers, quoted on pages 357 and 358, ante.

		Pit	ch.	Effici	ency.			Pit	ch.	Effici	ency.
Thickness.	Diam, of Rivet- hole.	Single Riveting.	Double Riveting.	Single Riveting.	Double Riveting.	Thickness	Diam, of Rivet- hole.	Single Riveting.	Double Riveting.	Single Riveting.	Double Riveting.
in.	in.	in.	in.	*	%	in.	in.	in.	in.	*	76
3/16 1/4 5/16 3/8 7/16	7/16 3/2 9/16 9/16 9/16 5/6 11/16 5/4 3/4 3/8 1	1.020 1.261 1.071 1.285 1.137 1.551 1.218 1.607 2.041 1.136 1.484 1.869 2.305	1.603 2.023 1.642 2.008 1.712 2.053 2.415 1.810 2.463 3.206 1.647 2.218 2.864 3.610	57.1 60.5 53.8 56.2 50.5 58.3 55.7 48.7 53.3 57.1 45.0 49.5 53.2	72.7 75.8 69.6 72.0 67.1 69.5 71.5 69.5 72.7 62.0 66.2 69.3	1/2 0/16 5/8 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.392 1.749 2.142 2.570 1.321 1.652 2.015 2.410 2.836 1.264 1.575 1.914 2.281 2.678	4.016 1.892 2.429 8.030	46.1 50.0 58.3 56.2 43.2 47.0 50.4 55.9 40.7 44.4 47.7 50.7 53.8	63.1 66.6 70.0 72.0 60.3 64.0 67.5 57.8 61.5 64.6 67.3

Riveting Pressure Required for Bridge and Boiler Work.

(Wilfred Lewis, Engineers' Club of Philadelphia, Nov., 1893.)

A number of 34-inch rivets were subjected to pressures between 10,000 and 60,000 lbs. At 10,000 lbs. the rivet swelled and filled the hole without forming a head. At 20,000 lbs. the head was formed and the plates were slightly pinched. At 30,000 lbs. the rivet was well set. At 40,000 lbs. the metal in the plate surrounding the rivet began to stretch, and the stretching became more and more apparent as the pressure was increased to 50,000 and 60,000 lbs. From these experiments the conclusion might be drawn that the pressure required for cold riveting was about 300,000 lbs. per square inch of rivet section. In hot riveting, until recently there was never any call for a pressure exceeding 60,000 lbs., but now pressures as high as 150,000 lbs. are not uncommon, and even 300,000 lbs. have been contemplated as desirable.

Apparent Shearing Resistance of Rivet Iron and Steel.

(Proc. Inst. M. E., 1879, Engineering, Feb. 20, 1880.)

The true shearing resistance of the rivets cannot be ascertained from experiments on riveted joints (1), because the uniform distribution of the load to all the rivets cannot be insured; (2) because of the friction of the plates, which has the effect of increasing the apparent resistance to shearing in an element uncertain in amount. Probably in the case of single-riveted joints the shearing resistance is not much affected by the friction;

Ultimate Shearing Stress							
	Tons per sq in. 🗆	Lbs. per sq. in.					
iron, single shear (12 bars)	24.15	54.096 (C	No who				
" double shear (8 bars)	22.10	49.504	HAFKU.				
44 44	22.62	50.669 B	Barnaby.				
44 44	22,30	49.952 H	lankine.				
" ¾-in. rivets		1.632 to 57.277)					
" 🐕 in. rivets	24.32 to 27.94 5	1.477 to 62.862 > F	Rilev.				
" mean value	25.0	56.000					
" 54-in, rivets	19.01	42.582 G	reig and Evth.				
Steel	17 to 26 3	8 080 to 58 940 P	arker				
Landore steel, %-in. rivets	31.67 to 33.69 7	0.941 to 75.466)					
" '' 1/2 in, rivets	30.45 to 35.78 6	8.208 to 80.035 - I	Rilev.				
" mean value	33.3	74.592					
Brown's steel	22.18	49.683 G	reig and Eyth.				

Fairbairn's experiments show that a rivet is 614% weaker in a drilled than in a punched hole. By rounding the edge of the rivet-hole the apparent shearing resistance is increased 12%. Mr. Maynard found the rivets 4% weaker in drilled holes than in punched holes. But these results were obtained with riveted joints, and not by direct experiments on shearing. There is a good deal of difficulty in determining the true diameter of a punched hole, and it is doubtful whether in these experiments the diameter was very accurately ascertained. Messrs. Greig and Eyth's experiments also indicate a greater resistance of the rivets in punched holes than in drilled holes.

If, as appears above, the apparent shearing resistance is less for double than for single shear, it is probably due to unequal distribution of the stress on the two rivet sections.

The shearing resistance of a bar, when sheared in circumstances which prevent friction, is usually less than the tenacity of the bar. The following results show the decrease:

	Tenacity of Bar.	Shearing Resistance.	Ratio.
Harkort, iron	26.4	16.5	0.62
	25.4	20.2	0.79
	22.2	19.0	0.85
	28.8	22.1	0.77

In Wöhler's researches (in 1870) the shearing strength of iron was found to be four-fifths of the tenacity. Later researches of Bauschinger confirm this result generally, but they show that for iron the ratio of the shearing resistance and tenacity depends on the direction of the stress relatively to the direction of rolling. The above ratio is valid only if the shear is in a plane perpendicular to the direction of rolling, and if the tension is applied parallel to the direction of rolling. The shearing resistance in a plane parallel to the direction of rolling is different from that in a plane perpendicular to that direction, and again differs according as the plane of shear is perpendicular or parallel to the breadth of the bar. In the former case the resistance is 18 to 20% greater than in a plane perpendicular to the fibres; or is equal to the tenacity. In the latter case it is only half as great as in a plane perpendicular to the fibres.

CLASSIFICATION OF IRON AND STEEL.
(W. Kent, Railroad & Engineering Journal, April, 1887.)

IRON AND STEEL.

CLASSIFICATION OF IRON AND STEEL.

Generic Term.			IRON.		
How Obtained.	Or ob	CAST, Or obtained from a fluid mass.	d mass.	WROUGHT, Or welded from a pasty mass.	GHT, a pasty mass.
Distinguishing Quality.	Distinguishing Non-malleable.	Mall	Malleable.	Will Not Harden.	Will Harden.
Species.	CAST IRON.	IRON.	CAST STEEL.	(7) WROUGHT IRON.	(84) WROUGHT STEEL.
Varieties.	(1) Ordinary castings.	(1) Ordinary cast iron, obtastings. trained from No. 1 by annealing in oxides.	(3) Crucible, (4) Bessemer, and (5) Open-hearth steels. (6) Mitis.*	a. Obtained by direct process from ores, as criticalm, Chenot, and German, shear bilsother process from ter, and puddled of the sand puddled from sat firer, as finery-hearth	a. Obtained by direct cocess from ores, as or indirect process, as infallin. Chenot, and german, shear, bilselve, be obtained by indirect process from cast or process from cast or as a first, hearth of an additional from

* No. 6. Mitis is the name given to a new product (having the same general properties and produced by the same processes as soft cast steels) made by adding an alloy of aluminum to nelted wrought iron or soft steel before pouring. + No. 8. Wrought steel is almost an obsolete product, having been replaced in commerce by cast steel. behave articles of Nos. 3, 4, and 1, soft, mild, medium, and hard steels, according to percentage of carbon, the divisions between them not being well defined.

Cast from usually contains over \$\preceq 0 carbon; cast steel anywhere from 0.06\$ to 1.50\$, according to the purpose for which it is used; wrought from from 0.05\$ to 0.10\$. The quality of hardening and tempering which formerly distinguished steel from wrought from is now no longer the dividing line between them, since soft steels are now produced which, by the ordifron wrought from is now no longer the dividing line between them, since soft steels are now produced which, by the ordimary blacksmith's tests, will not harden. All products of the crucible, Bessemer, and open-bearth processes are now com-

mercially known as steel.

CAST IRON.

Grading of Pig Iron .. Pig iron is commonly graded according to its fracture, the number of grades varying in different districts. In Eastern Pennsylvania the principal grades recognized are known as No. 1 and 2 coundry, gray forge or No. 3, mottled or No. 4, and white or No. 5. Intermediate grades are sometimes made, as No. 2 X, between No. 1 and No. 2, mediate grades are sometimes made, as No. 2 X, between No. 1 and No. 2, and special names are given to irons more highly silicized than No. 1, as No. 1 X, silver-gray, and soft. Charcoal foundry pig iron is graded by numbers 1 to 5, but the quality is very different from the corresponding numbers in anthracite and coke pig. Southern coke pig from is graded into tenor more grades. Grading by fracture is a fairly satisfactory method of grading irons made from uniform ore mixtures and fuel, but is unreliable as means of determining quality of irons produced in different sections or from different ores. Grading by chemical analysis, in the latter case, is the only satisfactory method. The following analyses of the five standard produces of northern foundry and mill pix irons are given by J. M. Hartman grades of northern foundry and mill pig irons are given by J. M. Hartman (Bull. I. & S. A., Feb., 1892);

	No. 1.	No. 2.	No. 8.	No. 4.	No. 4 B.	No. 5.
Iron	92.37	92.31	94.66	94.48	94.08	94.68
Graphitic carbon		2.99	2.50	2.02	2.02	
Combined carbon	.18	.37	1.52	1.98	1.43	8.83
Silicon	2.44	2.52	.72	.56	.92	.41
Phosphorus	1.25	1.08	.26	.19	.04	.04
Sulphur	.02	.02	trace	.08	.04	.02
Manganese	.28	.72	.84	.67	2.02	.98

CHARACTERISTICS OF THESE IRONS.

No. 1. Gray.-A large, dark, open-grain iron, softest of all the numbers and used exclusively in the foundry. Tensile strength low. Elastic limit low. Fracture rough. Turns soft and tough.

No. 2. Gray.—A mixed large and small dark grain, harder than No. 1 iron, and used exclusively in the foundry. Tensile strength and elastic limit higher than No. 1. Fracture less rough than No. 1. Turns harder, less tough, and more brittle than No. 1.

No. 3. Gray.-Small, gray, close grain, harder than No. 2 iron, used either

No. 5. 1979.—Shiah, gray, close grain, harder than No. 2 fron, used either in the rolling-mill or foundry. Tensile strength and elastic limit higher than No. 2.

No. 4. Mottled.—White background, dotted closely with small black spots of graphitic carbon; little or no grain. Used exclusively in the rolling-mill. Tensile strength and elastic limit lower than No. 3. Turns with difficulty; less tough and more brittle than No. 3. The manganese in the B pig iron replaces part of the combined carbon, making the iron harder and closing the grain, notwithstanding the lower combined carbon.

No. 5. White.—Smooth, white fracture, no grain, used exclusively in the rolling mill. Tensile strength and elastic limit much lower than No. 4. Too

hard to turn and more brittle than No. 4.

hard to turn and more brittle than No. 4.

Southern plg irons are graded as follows, beginning with the highest in silicon: Nos. 1 and 2 silvery, Nos. 1 and 2 soft, all containing over 3% of silicon; Nos. 1, 2, and 3 foundry, respectively about 2.75%, 2.5% and 2% silicon; No. 1 mill, or "foundry forge;" No. 2 mill, or gray forge; mottled; white. Good charcoal chilling iron for car wheels contains, as a rule, 0.56 to 0.95 silicon, 0.08 to 0.90 manganese, 0.05 to 0.75; phosphorus. The following is an analysis of a remarkably strong car wheel: Si, 0.73% Mn, 0.43%; P. 0.42%, S. 0.08; Graphitic C. 3.083; Combined C., 1.247; Copper, 0.029. The chill was very hard—14 in, deep at root of flange, 14 in, deep on tread. A good ordnance iron analyzed: Si, 0 30; Graphitic C. 2.20; Combined C. 1.70; P. 0.44; Mn, 855 (?). Its specific gravity was 7.22 and tenacity 81,734 lbs.

Influence of Silicon, Phosphorus, Sulphur, and Manganese upon Cast Iron.—W. J. Keep, of Detroit, in several papers (Trans. A. I. M. E., 1889 to 1893), discusses the influence of various chemical elements on the quality of cast iron. From these the following notes have been condensed:

SILICON .- Pig iron contains all the carbon that it could absorb during its reduction in the blast-furnace. Carbon exists in cast iron in two distinct forms. In chemical union, as "combined" carbon, it cannot be discerned. except as it may increase the whiteness of the fracture, in so-called white

iron. Carbon mechanically mixed with the iron as graphite is visible, varying in color from gray to black, while the fracture of the iron ranges from a light to a very dark gray.

Silicon will expel carbon, if the iron, when melted, contains all the carbon that it can hold and a portion of silicon be added.

Prof. Turner concludes from his tests that the amount of silicon producing the maximum strength is about 1.80%. But this is only true when a white base is used. If an iron is used as a base which will produce a sound casting to begin with, each addition of silicon will decrease strength. Silicon itself is a weakening agent. Variations in the percentage of silicon added to a pig iron will not insure a given strength or physical structure, but these results will depend upon the physical properties of the original iron.

After enough silicon has been added to cause solid castings, any further addition and consequent increase of graphite weakens the casting. The softness and strength given to castings by a suitable addition of silicon is, by a further increase of silicon, changed to stiffness, brittleness, and

weakness.

As strength decreases from increase of graphite and decrease of combined carbon, deflection increases; or, in other words, bending is increased by graphite. When no more graphite can form and silicon still increases, detection diminishes, showing that high silicon not only weakens iron, but makes it stiff. This stiffness is not the same strength-stiffness which is

caused by compact iron and combined carbon. It is a brittle-stiffness.

In pig irons which received their silicon while in the blast-furnace the graphite more easily separates, and the shrinkage is less than in any mixture. As silicon increases, shrinkage also increases. Silicon of itself increases shrinkage, though by reason of its action upon the carbon in ordinary practice it is truly said that silicon "takes the shrinkage out of castiron." The slower a casting crystallizes, the greater will be the quantity

of graphite formed within it.

Silicon of itself, however small the quantity present, hardens cast-iron; but the decrease of hardness from the change of the combined carbon to graphite, caused by the silicon, is so much more rapid than the hardening produced by the increase of silicon, that the total effect is to decrease hardness, until the silicon reaches from 3 to 5%.

As practical foundry-work does not call for more than 3% of silicon, the ordinary use of silicon does reduce the hardness of castings; but this is produced through its influence on the carbon, and not its direct influence on the

iron.

When the change from combined to graphite carbon has ceased to diminish hardness, say at from 2/ to 5% of silicon, the hardening by the silicon

itself becomes more and more apparent as the silicon increases.

Shrinkage and hardness are almost exactly proportional. When silicon varies, and other elements do not vary materially, castings with low shrinkage are soft; as shrinkage increases, the castings grow hard in almost, if not exactly, the same proportion. For ordinary foundry-practice the scale of shrinkage may be made also the scale of hardness, provided variations in sulphur, and phosphorus especially, are not present to complicate the re-

The term "chilling" irons is generally applied to such as, cooled slowly, would be gray, but cooled suddenly, become white either to a depth sufficient for practical utilization (e.g., in car-wheels) or so far as to be detrimental. Many irons chill more or less in contact with the cold surface of the mould in which they are cast, especially if they are thin. Sometimes this is a valuable quality, but for general foundry purposes it is desirable to have all parts of a casting an even gray.

Silicon exerts a powerful influence upon this property of irons, partially

or entirely removing their capacity of chilling.

When silicon is mixed with irons previously low in silicon the fluidity is

It is not the percentage of silicon, but the state of the carbon and the action of silicon through other elements, which causes the iron to be fuid.

Silicon irons have always had the reputation of imparting fluidity to other This comes, no doubt, from the fact that up to 3% or 4% they increase

the quantity of graphite in the resulting casting.

From the statement of Prof. Turner, that the maximum strength occurs with just such a percentage of silicon, and his statement that a founder can, with silicon, produce just the quality of iron that he may need, and from his naming the composition of what he calls a typical foundry-iron, some

founders have inferred that if they knew the percentages of silicon in their irons and in their ferro-silicon, they need only mix so as to get 2% of silicon in order to obtain, always and with certainty, the maximum strength. The solution of the problem is not so simple. Each of the irons which the founder uses will have peculiar tendencies, given them in the blast-furnace, which will exert their influence in the most unexpected ways. However, a white iron which will invariably give porous and brittle eastings can be made solid and strong by the addition of slicon; a further addition of slicon will turn the iron gray; and as the grayness increases the iron will grow weaker. Excessive silicon will again lighten the grain and cause a hard and brittle as well as a very weak iron. The only softening and shrinkage-lessening influence of silicon is exerted during the time when graphite is being produced, and silicon of itself is not a softener or a lessener of shrinkage but through its influence on carbon, and only during a certain stage does it but through its influence on carbon, and only during a certain stage, does it produce these effects.

PHOSPHORUS. - While phosphorus of itself, in whatever quantity present, weakens cast iron, yet in quantities less than 1.5% its influence is n t sufficiently great to overbalance other beneficial effects, which are exerted before the percentage reaches 1%. Probably no element of itself weakens cast iron as much as phosphorus, especially when present in large quantities.

Shrinkage is decreased when phosphorus is increased. All high-phosphorus pig irons have low shrinkage. Phosphorus does not ordinarily harden cast iron, probably for the reason that it does not increase combined carbon.

The fluidity of the metal is slightly increased by phosphorus, but not to

any such great extent as has been ascribed to it.

The property of remaining long in the fluid state must not be confounded with fluidity, for it is not the measure of its ability to make sharp castings, or to run into the very thin parts of a mould. Generally speaking, the statement is justified that, to some extent, phosphorus prolongs the fluidity of the iron while it is filling the mould.

The old Scotch irons contained about 1% of phosphorus. The foundry-irons which are most sought for for small and thin castings in the Eastern States

contain, as a general thing, over 1% of phosphorus.

Certain irons which contain from 4% to 7% silicon have been so much used on account of their ability to soften other irons that they have come to be known as "softeners" and as lesseners of shrinkage. These irons are valuable as carriers of silicon; but the irons which are sold most as softeners and shrinkage-lesseners are those containing from 1% to 2% of phosphorus. We must therefore ascribe the reputation of some of them largely to the

phosphorus and not wholly to the silicon which they contain.

From 1/2 to 1/2 of phosphorus will do all that can be done in a beneficial way, and all above that amount weakens the iron, without corresponding benefit. It is not necessary to search for phosphorus-irons. Most irons contain more than is needed, and the care should be to keep it within limits.

SULPHUR.—Only a small percentage of sulphur can be made to remain in carbonized iron, and it is difficult to introduce sulphur into gray cast iron or into any carbonized iron, although gray cast iron often takes from the fuel as much more sulphur as the iron originally contained. Percentages of sulphur that could be retained by gray cast iron cannot materially injure the iron except through an increase of shrinkage. The higher the carbon, or the higher the silicon, the smaller will be the influence exerted by sulphur.

The influence of sulphur on all cast iron is to drive out carbon and silicon and to increase chill, to increase shrinkage, and, as a general thing, to decrease strength; but if in practice sulphur will not enter such iron, we shall not have any cause to fear this tendency. In every-day work, however, it is found at times that iron which was gray when put into the cupola comes out white, with increased shrinkage and chill, and often with decreased strength. This is caused by decreased silicon, and can be remedied by an increase of silicon.

Mr. Keep's opinion concerning the influence of sulphur, quoted above, is

disagreed with by J. B. Nau (Iron Aye, March 29, 1894). He says:
"Sulphur, in whatever shape it may be present, has a deleterious influence on the iron. It has the tendency to render the iron white by the influence it exercises on the combination between carbon and iron. Pig iron containing a certain percentage of it becomes porous and full of holes, and castings made from sulphurous iron are of inferior quality. This happens especially when the element is present in notable quantities. With foundry-iron containing as high as 0.1% of sulphur, castings of greater strength may be obtained than when no sulphur is present. Thus, in some tests on this element quoted by R. Akerman, it is stated that in the foundry-iron from Finspong, used in the manufacture of cannons, a percentage of 0.1% to 0.14% of sulphur in the iron increased its strength to a considerable extent. The percentage of sulphur found originally in the iron put in the cupola is liable to be further increased by part of the sulphur that is invariably found in the coke used. It is seldom that a coke with a small percentage of sulphur is found, whereas coke containing 1% of it and over is very common. With such a fuel in the cupola, if no special precautions are resorted to, the percentage

of sulphur in the metal will in most cases be increased."

That the sulphur contents of pig iron may be increased by the sulphur contained in the coke used, is shown by some experiments in the cupola, reported by Mr. Nau. Seven consecutive heats were made.

The sulphur content of the coke was 1%, and 11.7% of fuel was added to the

charge.

Before melting, the silicon ranged from 0.320 to 0.830 in the seven heats:

Before melting, the silicon ranged from 1.000 in melting being being from 1.000 in melting being being from 1.000 after melting, it was from 0.110 to 0.584, the loss in melting being from .100 to .875. The sulphur before melting was from .076 to .090, and after melting from .132 to .174, a gain from .044 to .098.

From the results the following conclusions were drawn:

In all the charges, without exception, sulphur increased in the pig iron after its passage through the cupola. In some cases this increase more

than doubled the original amount of sulphur found in the pig iron.

2. The increase of the sulphur contents in the iron follows the elimination of a greater amount of silicon from that same iron. A larger amount of limestone added to these charges would have produced a more basic cinder, and undoubtedly less sulphur would have been incorporated in the iron

8. This coke contained 1% of sulphur, and if all its sulphur had passed into the iron there would have been an average increase of 0.12 of sulphur for the seven charges, while the real increase in the pig iron amounted to only 0.081. This shows that two thirds of the sulphur of the coke was taken up

by the iron in its passage through the cupola.

MANGANESE.—Manganese is a nearly white metal, having about the same appearance when fractured as white cast iron. Its specific gravity is about 8, while that of white cast iron, reasonably free from impurities, is but a little above 7.5. As produced commercially, it is combined with iron,

and with small percentages of silicon, phosphorus, and sulphur.

It is generally produced in the blast furnace. If the manganese is under 40%, with the remainder mostly iron, and silicon not over 0.50%, the alloy is called spiegeleisen, and the fracture will show flat reflecting surfaces, from

which it takes its name.

With manganese above 50%, the iron alloy is called ferro-manganese.

As manganese increases beyond 50%, the mass cracks in cooling, and when

it approaches 98% the mass crumbles or falls in small pieces.

Manganese combines with iron in almost any proportion, but if an iron containing manganese is remelted, more or less of the manganese will escape by volatilization, and by oxidation with other elements present in the iron. If sulphur be present, some of the manganese will be likely to unite with it and escape, thus reducing the amount of both elements in the casting.

Cast iron, when free from manganese, cannot hold more than 4.50% of carbon, and 3,50% is as much as is generally present; but as manganese increases, carbon also increases, until we often find it in spiegel as high as 5%, and in ferro-manganese as high as 6%. This effect on capacity to hold carbon is

oeculiar to manganese.

Manganese renders cast iron less plastic and more brittle.

Manganese increases the shrinkage of cast iron. An increase of 1% raised the shrinkage 26%. Judging from some test records, manganese does not influence chill at all; but other tests show that with a given percentage of silicon the carbon may be a little more inclined to remain in the combined form, and therefore the chill may be a little deeper. Hence, to cause the chill to be the same, it would seem that the percentage of silicon should be a little higher with manganese than without it.

An increase of 1% of manganese increased the hardness 40%. If a hard chill is required, manganese gives it by adding hardness to the whole casting. J. B. Nau (Iron Age, March 29, 1894), discussing the influence of manga-

nese on cast iron, says:

Manganese favors the combination between carbon and iron. Its influence, when present in sufficiently large quantities, is even great enough not only to keep the carbon which would be naturally found in pig iron combined, but it increases the capacity of iron to retain larger amounts of car-bon and to retain it all in the combined state.

Manganese iron is often used for foundry purposes when some chill and hardness of surface is required in the casting. For the rolls of steel-rail mills we always put into the mixture a large amount of manganiferous iron, and the rolls so obtained always presented the desired hardness of surface and in general a mottled structure on the outside. The inside, which always cooled much slower, was gray iron. One of the standard mixtures that invariably gave good results was the following:

505 of foundry iron with 13 silicon and 1.5% manganese;

375 of foundry iron with 18 silicon and 1.5% manganese;

15% steel (rail ends) with about 0.35% to 0.40% carbon.

The roll resulting from this mixture contained about 1% of silicon and 1% d manganese.

Another mixture, which differed but little from the preceding, was as follows:

45% foundry iron with about 1.3% silicon and 1.5% manganese;

80% foundry iron with about 1% silicon and 1.5% manganese

10% white or mottled from with about 0.5% to 0.6% Si. and 1.2% Mn.

15% Bessemer steel-rail ends with about 0.35% to 0.40% C. and 0.6% to 1% Mn. The pig from used in the preceding mixtures contained also invariably from 1.5% to 1.6% of phosphorus, so that the rolls obtained therefrom carried about 1.5% to 1.4% of that element. The last mixture used produced rolls containing on the average 0.8% to 1% of silicon and 1% of manganese. Whenever we tried to make those rolls from a mixture containing but 0.2% to 0.3% manganese our rolls were invariably of inferior quality, grayer, and consequently softer. Manganese iron cannot be used indiscriminately for foundry purposes. When greater softness is required in the castings manganese has to be avoided, but when hardness to a certain extent has to be

obtained manganese iron can be used with advantage.

Manganese decreases the magnetism of the iron. This characteristic increases with the percentage of manganese that enters into the composition of the iron. The iron loses all its magnetism when manganese reaches 25% of its composition. This peculiarity has been made use of by French metallurgists to draw a clear line between spiegel and ferro-manganese. When the pig contains less than 25% of manganese it is classified as spiegel, and when it contains more than 25 it is classified as ferro-manganese. For this reason manganese fron has to be avoided in castings of dynamo fields and other pieces belonging to electric machinery, where magnetic conduc-

tibility is one of the first considerations.

Irregular Distribution of Silicon in Pig Iron.—J. W. Thomas (Iron Age, Nov. 12, 1891) finds in analyzing samples taken from every other bed of a cast of pig iron that the silicon varies considerably, the iron coming first from the furnace having generally the highest percentage. In one series of tests the silicon decreased from 2.040 to 1.718 from the first bed to the eleventh. In another case the third bed had 1.260 Si., the seventh 1.718, and the eleventh 1.101. He also finds that the silicon varies in each pig, being higher at the point than at the butt. Some of his figures are: point of pig 2.328 Si., butt of same 2.157; point of pig 1.834, butt of same 1.787. Some Tests of Cast Iron. (G. Lanza, Trans. A. S. M. E., x., 187.)—

The chemical analyses were as follows:

Gun Iron, Common Iron. per cent. per cent. Total carbon 8.51 Sulphur..... 0.138 0.173
 Phosphorus
 0.155
 0.413

 Silicon
 1.140
 1.89

 The test specimens were 26 inches long and square in section; those tested

with the skin on being very nearly one inch square, and those tested with the skin removed being cast nearly one and one quarter inches square, and afterwards planed down to one inch square.

						rensile trength.	Elastic Limit,	of Elas- ticity.
Upplaned common. 2	0.200 to	23,000 '	T. S.	Ă٧.	=	22,066	6,500	13,194,233
Planed common 2	0,300 to	20,800		**	=	20,520	5,833	11,943,953
Unplaned gun 2		40,110		**		28,175	11,000	16,130,800
Planed gun 2	9,500 to	81,000	**	**	=	30,500	8,500	15,932,880

The elastic limit is not clearly defined in cast iron, the elongations increasing faster than the increase of the loads from the beginning of the test. The modulus of elasticity is therefore variable, decreasing as the loads increase. For example, the following results of a test of common cast iron, reported by Prof. Lanza:

Lbs. per sq. in.	Elongation in 18.4 inches.	Sets, in.	Modulus of Elasticity.
1000	.0004		18,217,400
2000	.0013		16,777,700
3000	.0024		14,085,400
4000	.0036		13,101,200
5000	.0048		12,809,200
6000	.0061	.0000	12,319,300
8000	.0088	.0001	11,600,800
10000	.0119	.0001	10,930 500
12000	0162	0007	9 714 200

CHEMISTRY OF FOUNDRY IRONS.

(C. A. Meissner, Columbia College Q'ly, 1890; Iron Age, 1890.)

Silicon is a very important element in foundry irons. Its tendency when not above 21/4% is to cause the carbon to separate out as graphite, giving the casting the desired benefits of graphitic iron. Between 21/4% and 31/4% silicon is best adapted for iron carrying a fair proportion of low silicon scrap and close iron, for ordinarily no mixture should run below 116% silicon to get good castings.

From 3% to 5% silicon, as occurs in silvery iron, will carry heavy amounts of scrap. Castings are liable to be brittle, however, if not handled carefully

as regards proportion of scrap used. From 11/4 % to 2% silicon is best adapted for machine work; will give strong

clean castings if not much scrap is used with it.

Below 1% silicon seems suited for drills and castings that have to stand

great variations in temperature.

Silicon has the effect of making castings fluid, strong, and open-grained; also sound, by its tendency to separate the graphite from the total carbon. and consequent slight expansion of the iron on cooling, causing it to fill out thoroughly. Phosphorus, when high, has a tendency to make iron fluid, retain its heat longer, thereby helping to fill out all small spaces in casting. It makes iron brittle, however, when above 3/2 in castings. It is excellent when high to use in a mixture of low-phosphorus irons, up to 1/25 giving good results, but, as said before, the casting should be below 3/2. It has a strong tendency when above 1/2 in pig to make the iron less graphitic, preventing the sequenting of graphite venting the separation of graphite.

Sulphur in open iron seldom bothers the founder, as it is seldom present to any extent. The conditions causing open iron in the furnace cause low sulphur. A little manganese is an excellent antidote against sulphur in the furnace. Irons above 1% manganese seldom have any sulphur of any con-

sequence

Graphite is the all-important factor in foundry irons; unless this is present in sufficient amount in the casting, the latter will be liable to be poor. Graphite causes iron to slightly expand on cooling, makes it soft, tough and fluid. (The statement as to expansion on cooling is denied by W. J. Keep.)

Relation of the Appearance of Fracture to the Chemical Composition.—S. H. Chauvenet says when run from the blast-funace] the lower bed is almost always close-grain, but shows practically the same analysis as the large grain in the rest of the cast. If the iron runs rapidly, the lower bed may have as large grain as any in the cast. If the iron runs rapidly are not grain to the cast. If the iron runs rapidly for, say, six beds and some obstruction in the tap-hole causes the seventh bed to fill up slowly and sluggishly, this bed may be close-grain, although the eighth bed, if the obstruction is removed, will be open-grain. Neither the graphitic carbon nor the silicon seems to have any influence on the fracture in these cases, since by analysis the graphite and silicon is the same in each. The question naturally arises whether it would not be better to be guided by the analysis than by the fracture. The fracture is a guide, but it is not an infallible guide. Should not the open- and the close grain iron from the same cast be numbered under the same grade when they have the same analysis?

Mr. Meissner had many analyses made for the comparison of fracture

with analysis, and unless the condition of furnace, whether the iron ran fast or slow, and from what part of pig bed the sample is taken, are known, the fracture is often very misleading. Take the following analyses:

	A.	В.	C.	D.	Е.	F.
Silicon Sulphur Graphitic car Comb. carbon	4.815 0.008 8.010	4.818 0.008 2.757	4.270 0.007 2.680	3.328 0.033 2.243	8.869 0.006 8.070 0.108	8.861 0.006 8.100 0.096

A. Very close grain iron, dark color, by fracture, gray forge.

B. Open-grain, dark color, by fracture, No. 1.
C. Very close-grain, by fracture, gray forge.
D. Medium-grain, by fracture, No. 2, but much brighter and more open than A, C, or F.

E. Very large, open-grain, dark color, by fracture, No. 1.

F. Very close-grain, by fracture, gray forge.

By comparing analyses A and B, or E and F, it appears that the close-grain iron is in each case the highest in graphitic carbon. Comparing A and E, the graphite is about the same, but the close-grain is highest in silicon.

Analyses of Foundry Irons. (C. A. Meissner.) SCOTCH IRONS.

Name.	Grade.	Silicon.	Phos- phorus.	Manga- nese.	Sul- phur.	Graph- ite.	Comb
Summerlee	1	2.70 2.47	0.545 0.760	1.80 2.51	0.01 0.015	8.09	0.25
"	1	3.44	1.000	1.70	0.015		
Eglinton	2 1	2.70 2.15	0.810	2.90 2.80	0.02 0.025	2.00 3.76	0.80 0.21
Coltness	1	2.59 1.70	0.840 1.100	1.70 1.83	0.010 0.008	8.75 8.50	3.75 0.40
Glengarnock Glengarnock said	1	8.08	1.200	2.85	0.000	0.00	0.20
to carry % scrap	2	4.00	0.900	8.41	0.010	1.78	0.90

AMERICAN SCOTCH IRONS.

No. Sample	Silicon.	Phos- phorus.	Manganese	Sulphur.	No. Grade.	
1	6.00	0.430	1.00		1	
2	1.67	1.920	1.90			casting
8	2.40	1.000	1.70		2	
4	1.28	0.690	1.40		2	
5a	8.50	0.613	2.51		1	
5b	2.90	0.733	1.40			casting
6a	8.44	1.000	1.70	0.015	1	
6b	3.35	1.300	1.50	0.012	1	
7	3.68	0.503	2.96		i	

DESCRIPTION OF SAMPLES.-No. 1. Well known Ohio Scotch iron, almost silvery, but carries two-thirds scrap; made from part black-band ore. Very successful brand The high silicon gives it its scrap-carrying capacity.

No. 2. Brier Hill Scotch castings, made at scale works; castings demanding more fluidity than strength.

No. 3. Formerly a famous Ohio Scotch brand, not now in the market Made mainly from black-band ore.

No. 4. A good Ohio Scotch, very soft and fluid; made from black-band ore-mixture.

Nos. 5a and 5b. Brier Hill Scotch iron and casting; made for stove purposes; 350 lbs. of iron used to 150 lbs. scrap gave very soft fluid iron; worked

No. 6a. Shows comparison between Summerlee (Scotch) (6a) and Brier Hill Scotch (6b). Drillings came from a Cleveland foundry, which found both irons closely alike in physical and working quality.

No. 7. One of the best southern brands, very hard to compete with, owing to its general qualities and great regularity of grade and general working.

MACHINE IRONS.

Sample No.	Silicon.	Phos- phorus.	Manga- nese.	Sulphur.	Graphite.	Comb. Carbon.	Gr a de No.
8 9 10a 10b 11 12 13	2.80 1.30 2.66 3.63 2.10 1.87 8.10	0.492 0.262 0.770 0.411 0.415 0.294 0.124	0.61 0.70 1.20 1.25 0.60 1.51 trace	0.015 0.030 0.020 0.014 0.050 0.080 0.021	2.51 3.05 2.31	0.78	1 8 2 1 2 2
14 15 16a 16b 17	2.12 1.70 1.45 1.40 8.26 0.80	0.610 0.632 0.470 0.316 0.426 0.164	0.80 1.60 1.25 1.37 0.25 0.90	0.009 0.008			2

DESCRIPTION OF SAMPLES. - No. 8. A famous Southern brand noted for fine machine castings.

No. 9. Also a Southern brand, a very good machine iron.

Nos. 10a and 10b. Formerly one of the best known Ohio brands. Does not shrink; is very fluid and strong. Foundries having used this have reported very favorably on it.

No. 11. Iron from Brier Hill Co., made to imitate No. 3; was stronger than No. 3; did not pull castings; was fluid and soft.

No. 12. Copy of a very strong English machine iron.
No. 13. A Pennsylvania iron, very tough and soft. This is partially Bessemer iron, which accounts for strength, while high silicon makes it soft.
No. 14. Castings made from Brier Hill Co.'s machine brand for scale works.

very satisfactory, strong, soft and fluid.

No. 15. Castings made from Brier Hill Co.'s one half machine brand, one half Scotch brand, for scale works, castings desired to be of fair strength, but very fluid and soft.

No. 16a. Brier Hill machine brand made to compete with No. 3.

No. 16b. Castings (clothes-hooks) from same, said to have worked badly, castings being white and irregular. Analysis proved that some other fron too high in manganese had been used, and probably not well mixed.
No. 17. A Pennsylvania iron, no shrinkage, excellent machine iron, soft

and strong.

No. 18. A very good quality Northern charcoal iron.

"Standard Grades" of the Brier Hill Iron and Coal Company.

Brier Hill Scotch Iron.-Standard Analysis, Grade Nos. 1 and 2. Silicon 2.00 to 3.00 Phosphorus.... 0.50 to 0.75 Manganese 2.00 to 2.50

Used successfully for scales, mowing-machines, agricultural implements, novelty hardware, sounding-boards, stoves, and heavy work requiring no special strength.

Brier Hill	Silvery	Iron	-St and ard	Analysis,	Grade	No.	1.
Silicon							
Phosphorus	š	• • • • • • •			1.00	to 1.	50
Manganese					2.00	to 2.	25

Used successfully for hollow-ware, car-wheels, etc., stoves, bumpers, and smilar work, with heavy amounts of scrap in all cases. Should be mainly used where fluidity and no great strength is required, especially for heavy work. When used with scrap or close pig low in phosphorus, castings of considerable strength and great fluidity can be made

Fairly Heavy Muchine Iron.—Standard Analysis, Grade No. 1.

Silicon	
Phosphorus	0.50 to 0.60
Manganese	1.20 to 1.40

The best iron for machinery, wagon-boxes, agricultural implements, pump-works, hardware specialties, lathes, stoves, etc., where no large amounts of scrap are to be carried, and where strength, combined with great fluidity and softness, are desired. Should not have much scrap with it.

Regular Machine Iron.—Standard Analysis, Grade Nos. 1 and 2.

Silicon	
Phosphorus	0.30 to 0.50
Manganese	0.80 to 1.00

Used for hardware, lawn-mowers, mower and reaper works, oil-well machinery, drils, fine machinery, stoves, etc. Excellent for all small fine castings requiring fair fluidity, softness, and mainly strength. Cannot be well used alone for large castings, but gives good results on same when used with above mentioned heavy machine grade; also when used with the Scotch in right proportion. Will carry but little scrap, and should be used alone for good strong castings.

Manganese 0.80

This gave excellent results.

A good neutral iro	n for	guns,	, etc.,	will	run	abou	t as	follov	78 :
Silicon									
Phosphorus									
Sulphur									
Manganese								. .	none

It should be open No. 1 iron.

This gives a very tough, elastic metal. More sulphur would make tough but decrease elasticity.

For fine castings demanding elegance of design but no strength, phosphorus to 3.00% is good. Can also stand 1.50% to 2.00% manganese. For work of a hard, abrasive character manganese can run 2.00% in casting.

Analyses of Castings.

Sample No.	Silicon.	Phos- phorus.	Manganese	Sulphur.	Graphite.	Comb. Carbon.
31 32	2.50 0.85	1.400 0.351	2.20 0.92	0.080		
83	1.53	0.827	1.08	0.040	8.10	0.58
	1.84			0.040	0.10	0.00
34a		0.577	1.04	· • • • • • • • • • • • • • • • • • • •		
34 <i>b</i>	2.20	0.742	1.10		1	
84c	2.50	1.208	1.16		1	l
85a	2.80	0.418	0.54			
356	8.10	1.280	1.14			
35c	3.30	0.879	0.80			
35d	2.88	0.408	1.10			
35e	4.50	0.660	0.78			
36	8.48	1.439	0.90	0.025		
87a	2.68	0.900	1.30	1 3.0.00	1	-
				···• ······		· · · · · · · · · · · · · · · · · · ·
37b	1.90	0.980	1.20	1	1	l

No. 31. Sewing-machine casting, said to be very fluid and good casting. This is an odd analysis. I should say it would have been too hard and brittle, yet no complaint was made.

No. 32. Very good machine casting, strong, soft, no shrinkage. No. 33. Drillings from an annealer-box that stood the heat very well.

No. 84a. Drillings from door-hinge, very strong and soft. No. 34b. Drillings from clothes-hooks, tough and soft, stood severe hammering

No. 34c. Drillings from window-blind hinge, broke off suddenly at light

strain. Too high phosphorus. No. 35a. Casting for heavy ladle support, very strong. Nos 35b and 35c. Broke after short usage. Phosphorus too high. Car-

No. 35d. Elbow for steam heater, very tough and strong.

No. 36. Cog-wheels, very good, shows absolutely no shrinkage. No. 37. Heater top network, requiring fluidity but no strength.

No. 37a. Gray part of above. No. 37b. White, honeycombed part of above. Probably bad mixing and got chilled suddenly.

STRENGTH OF CAST IRON.

Rankine gives the following figures:

Various qualities, T. S..... 13,400 to 29,000, average 16,500 82,000 to 145,000, Compressive strength..... 82,000 to 145,000, Modulus of elasticity..... 14,000,000 to 22,900,000, 112,000 17,000,000

Specific Gravity and Strength. (Major Wade, 1856.) Third-class guns: Sp. Gr. 7.087, T. S. 20,148. Another lot: least Sp. Gr. 7.163,

T. S. 22,402.

Second-class guns: Sp. Gr. 7.154, T. S. 24,767. Another lot: mean Sp. Gr. 7.802, T. S. 27,232.

First class guns: Sp. Gr. 7.204, T. S. 28,805. Another lot: greatest Sp. Gr. 7.402, T. S. 31,027.

Strength of Charcoal Pig Iron.—Pig iron made from Salisbury ores, in furnaces at Wassaic and Millerton, N. Y., has shown over 40,000 lbs. T. 8. per square inch, one sample giving 42,281 lbs. Muirkirk, Md., iron tested at the Washington Navy Yard showed: average for No. 2 iron, 21,601 lbs.: No. 3, 23,959 lbs.; No. 4, 41,329 lbs.; average density of No. 4, 7.336 (J. C. I. W., v. p. 44.)

Nos. 3 and 4 charcoal pig iron from Chapinville, Conn., showed a tensile strength per square inch of from 34,761 lbs. to 41,882 lbs. Charcoal pig iron

from [Shelby, Ala. (tests made in August, 1891), showed a strength of 34,800 lbs. for No. 3; No. 4, 39,675 lbs.; No. 5, 46,450 lbs.; and a mixture of equal parts of Nos. 2, 3, 4. and 5, 41.470 lbs. (Bull. I. & S. A.)

Variation of Density and Tenacity of Gun-frons.—An increase of density invariably follows the rapid cooling of cast iron, and as a general rule the tenacity is increased by the same means. The tenacity generally increases quite uniformly with the density, until the latter ascends to some given point; after which an increased density is accompanied by a diminished tenacity.

The turning-point of density at which the best qualities of gun-iron attain their maximum tenacity appears to be about 7.80. At this point of density,

or near it, whether in proof-bars or gun-heads, the tenacity is greatest.

As the density of iron is increased its liquidity when melted is diminished. This causes it to congeal quickly, and to form cavities in the interior of the casting. (Pamphlet of Builders' Iron Foundry, 1898.)

Specifications for Cast Iron for the World's Fair Build-

ings, 1892.—Except where chilled iron is specified, all castings shall be of tough gray iron, free from injurious cold-shuts or blow-holes, true to pattern, and of a workmanlike finish. Sample pieces I in. square, cast from the same heat of metal in sand moulds, shall be capable of sustaining on a clear span of 4 feet 6 inches a central load of 500 lbs. when tested in the rough bar.

Specifications for Tests of Cast Iron in 12" B. L. Mortars, (Pamphlet of Builders Iron Foundry, 1898.)—Charcoal Gun Iron.—The tensile strength of the metal must average at each end at least 30,000 lbs. per square inch; no specimen to be over 37,000 lbs. per square inch; but one specimen from each end may be as low as 28,000 lbs. per square inch. The long extension specimens will not be considered in making up these averages, but must show a good elongation and an ultimate strength, for each specimen, of not less than 24,000 lbs. The density of the metal must be such * o indicate that the metal has been sufficiently refined, but not carried so

high as to impair the other qualities.

Specifications for Grading Pig Iron for Car Wheels by Chill Teets made at the Furnace. (Penna, R. R. Specifications, 1883)—The chill cup is to be filled, even full, at about the middle of every cast from the furnace. The test-piece so made will be 7½ inches long, 8½ inches wide, and 1½ inches thick, and is to be broken across the centre when inches wide, and 1% inches thick, and is to be broken across the centre when entirely cold. The depth of chill will be shown on the bottom of the test-piece, and is to be measured by the clean white portion to the point where gray specks begin to show in the white. The grades are to be by eighths of an inch, viz., ½, ½, ½, ½, ½, ½, ½, ½, ½, , etc., until the iron is mottled; the lowest grade being ½ of an inch in depth of chill. The pigs of each cast are to be marked with the depth of chill shown by its test-piece, and each grade is to be kept by itself at the furnace and in forwarding.

**Substitute of Cast Team with Stael.—(ar wheels are sometimes

Mixture of Cast Iron with Steel. ('ar wheels are sometimes made from a mixture of charcoal iron, anthracite iron, and Bessemer steel. The following shows the tensile strength of a number of tests of wheel mixtures, the average tensile strength of the charcoal iron used being

22.000 lbs.:

			214% steel	lbs. per sq. in.
Charcos	l iron	with	1 216≴ steel	22,467
- 44	44	**	89/4% steel	26,783
66	"		61/4% steel and 61/4% anthracite	
44	**	**	716 steel and 716 anthracite	28,150
44	66		216% steel, 216% wro't iron, and 61/4% an	
••	46		5 % steel, 5% wro't iron, and 10 % anth	

Cast Iron Partially Bessemerized.—Car wheels made of partially Bessemerized iron (blown in a Bessemer converter for 3½ minutes), chilled in a chill-test mould over an inch deep, just as a test of cold-blast charcoal iron for car wheels would chill. Car wheels made of this blown iron have run 250,000 miles. (Jour. C. I. W., vr. p. 77.)

Bad Cast Iron.—On October 15, 1891, the cast iron fly-wheel of a large

pair of Corliss engines belonging to the Amoskeag Mfg. Co., of Manchester, N. H., exploded from centrifugal force. The fly-wheel was 80 feet diameter and 110 inches face, with one set of 12 arms, and weighed 116,000 lbs. After the accident, the rim castings, as well as the ends of the arms, were found to be full of flaws, caused chiefly by the drawing and shrinking of the metal. Specimens of the metal were tested for tensile strength, and varied from 15.00 lbs. per square inch in sound pieces to 1000 lbs. in spongy ones. None of these flaws showed on the surface, and a rigid examination of the parts before they were erected failed to give any cause to suspect their true nature. Experiments were carried on for some time after the accident in the Amoskeag Company's foundry in attempting to duplicate the flaws, but with no success in approaching the badness of these castings.

MALLEABLE CAST IRON.

Maileableized cast iron, or malleable iron castings, are castings made of ordinary cast iron which have been subjected to a process of decarbonization, which results in the production of a crude wrought iron. Handles, latches, and other similar articles, cheap harness mountings, plowshares, iron handles for tools, wheels, and pinions, and many small parts of ma-chinery, are made of malleable cast iron. For such pieces charcoal cast iron of the best quality (or other iron of similar chemical composition), should be selected. Coke irons low in silicon and sulphur have been used in place of charcoal irons. The castings are made in the usual way, and are then imbedded in oxide of iron, in the form, usually, of hematite ore, or in peroxide of manganese, and exposed to a full red-heat for a sufficient length of time, to insure the nearly complete removal of the carbon. This decarbonizatime, to insure the nearly complete removal of the carbon. Insure the nearly complete removal of the carbon. Insure the the terms of the carbon is the carbon in alternate layers with the decarbonizing material. The largest pieces require the longest time. The fire is quickly raised to the maximum temperature, but at the close of the process the furnace is cooled very slowly. The operation requires from three to five days with ordinary small castings, and may-take two weeks for large pieces.

Rules for Use of Maileable Castings, by Committee of Master Carbuilders' Ass'n, 1890.

1. Never run abruptly from a heavy to a light section.

2. As the strength of malleable cast iron lies in the skin, expose as much surface as possible. A star-shaped section is the strongest possible from which a casting can be made. For brackets use a number of thin ribs instead of one thick one.

3. Avoid all round sections; practice has demonstrated this to be the

5. Avoid an round sections; practice has demonstrated this to be the weakest form. Avoid sharp angles.

4. Shrinkage generally in castings will be 3/16 in. per foot.

Strength of Malleable Cast Iron.—Experiments on the strength of malleable cast iron, made in 1891 by a committee of the Master Carbuilders' Association. The strength of this metal varies with the thickness. as the following results on specimens from 1/4 in. to 11/4 in. in thickness show:

Dimensions.	Tensile Strength.	Elongation.	Elastic Limit.
in. in.	lb. per sq. in.	per cent in 4 in.	lb. per sq. in.
1.52 by .25 1.52 ' .39	84,700 83,700	8	21,100 15,200
1.53 " .5	32,800	2	17,000
1.53 " .64	82,100	2	19,400
2. " .78	25,100	11/2	15,400
1.54 " .88	33,600	11/2	19,300
1.06 " 1.02	30,600	1 ~	17,600
1.28 " 1.3	27,400	1 .	1
1.52 " 1.54	28,200	11/6	j

The low ductility of the metal is worthy of notice. The committee gives the following table of the comparative tensile resistance and ductility of malleable cast iron, as compared with other materials:

	Ultimate Strength, lb. per sq. in	Comparative Strength; Cast Iron = 1.	Elongation Per Cent in 4 in.	Comparative Ductility; Malleable Cast Iron = 1.
Cast iron Malleable cast iron. Wrought iron Steel castings	82,000 50,000	1 1.6 2.5 3	0.35 2.00 20.00 10.00	0.17 1 10 5

Another series of tests, reported to the Association in 1892, gave the following:

Thick- ness.	Width.	Area.	Elastic Limit,	Ultimate Strength.	Elongation in 8 in.
in, .271 .293 .39 .41	in. 2.81 2.78 2.82 2.79	sq. in. .7615 .8145 1.698 1.144	lb. per sq. 28.520 22,650 20,595 20,280	lb. per sq. in. 32,620 28,160 82,060 28,850	percent. 1.5 .6 1.5
.529 .661 .8 1.025 1.117 1.021	2.76 2.81 2.76 2.82 2.81 2.83	1.46 1.857 2.208 2.890 3.138 2.879	19,520 18,840 18,890 18,220 17,050 18,410	27,875 25,700 25,120 26,720 25,510 26,950	1.1 .7 1.1 1.5 1.8 1.8

WROUGHT IRON.

Influence of Chemical Composition on the Properties of Wrought Iron. (Beardslee on Wrought Iron and Chain Cables, Aordgement by W. Kent. Wiley & Sons, 1879.)—A series of 2000 ests of specimens from 14 brands of wrought iron, most of them of high repute, as made in 1877 by Capt. L. A. Beardslee, U.S.N., of the United States Testing Baard. Porty-two chemical analyses were made of these irons, with a view to determine what influence the chemical composition had upon the strength, ductility, and welding power. From the report of these tests by A. L. Holley the following figures are taken:

	Average		Chem	Chemical Composition.				
Brand.	Tensile Strength.	8.	P.	Si .	C.	Mn.	Slag.	
L	66,598	trace	{ 0.065 0.084	0.080 0.105	0.212 0.512	0.005	0.192 0.452	
P	54,868	0.009 0.001	0.250 0.095	0.182 0.028	0.088	0.033	0.848	
В	52,764	0.008	0.281	0.156	0.015	0.017		
J	51,754	0.008	0.140 0.291	0.182 0.321	0.027 0.051	trace 0.053	0.678	
O	51,184	0.004	0.067 0.078	0.065 0.073	0.045 0.042	0.007	1.168	
C	50,765	0.007	0.169	0.154	0.042	0.021		

Where two analyses are given they are the extremes of two or more analyses of the brand. Where one is given it is the only analysis. Brand L should be classed as a puddled steel.

ORDER OF QUALITIES GRADED FROM No. 1 TO No. 19.

Brand.	Tensile Strength.	Reduction of Area.	Elongation.	Welding Power.
L	1	18	19	most imperfect.
P	6	6	8	badly.
В	12	16	15	best.
J	16	19	18	rather badly.
0	18	1	4	very good.
C	10	19	16	

The reduction of area varied from 54.2 to 25.9 per cent, and the elongation from 29.9 to 8.8 per cent.

tion from 29.9 to 8.8 per cent.

Brand O, the purest iron of the series, ranked No. 18 in tensile strength, but was one of the most ducile; brand B, 'quite impure, was below the average both in strength and ductility, but was the best in welding power?, also quite impure, was one of the best in every respect except welding, while L, the highest in strength, was not the most pure, it had the least ductility, and its welding power was most imperfect. The evidence of the influence of chemical composition upon quality, therefore, is quite contradictory and confusing. The irons differing remarkably in their mechanical composition upon quality, therefore, is quite contradictory and confusing. properties, it was found that a much more marked influence upon their qualities was caused by different treatment in rolling than by differences in

In regard to slag Mr. Holley says: "It appears that the smallest and most worked iron often has the most slag. It is hence reasonable to con-

clude that an iron may be dirty and yet thoroughly condensed."

In his summary of "What is learned from chemical analysis," he says: "So far, it may appear that little of use to the makers or users of wrought . The character of steel can be surely prediron has been learned. icated on the analyses of the materials; that of wrought iron is altered by subtle and unobserved causes."

Influence of Reduction in Holling from Pile to Bar on the Strength of Wrought Iron,—The tensile strength of the irons used in Beardslee's tests ranged from 46,000 to 62,700 lbs. per sq. in., brand L, which was really a steel, not being considered. Some specimens of L gave figures as high as 70,000 lbs. The amount of reduction of sectional area in rolling the bars has a notable influence on the strength and elastic limit; the greater the reduction from pile to bar the higher the strength. The following are a few figures from tests of one of the brands:

Size of bar, in, diam.:	4	3	2	1	1/6 9	1/4
Area of pile, sq. in.:	80	80	72	25		3
Bar per cent of pile:	15.7	8.83	4.86	8.14	2.17	1.6
Tensile strength, lb.:	46,322	47,761	48,280	51,128	52,275	59,585
Elastic limit. lb.:	28,430	26,400	31.892	36.467	89.126	<u> </u>

Specifications for Wrought Iron (F. H. Lewis, Engineers' Club of Philadelphia, 1891).—1. All wrought iron must be tough, ductile, fibrous, and of uniform quality for each class, straight, smooth, free from cinderpockets, flaws, buckles, blisters, and injurious cracks along the edges, and must have a workmanlike finish. No specific process or provision of manufacture will be demanded, provided the material fulfils the requirement of these profilestions. ments of these specifications.

2. The tensile strength, limit of elasticity, and ductility shall be determined from a standard test-piece not less than 1/4 inch thick, cut from the full-sized bar, and planed or turned parallel. The area of cross-section shall not be less than 1/2 square inch. The elongation shall be measured after breaking on an original length of 8 inches.

3. The tests shall show not less than the following results:

	Ultimate Strength, lbs. per sq. inch.	Limit of Elasticity, lbs. per sq. inch.	Elongation in 8 inches, per cent.
For bar iron in tension	50,000	26,000	18
	48,000	26,000	15
	48,000	26,090	12
	46,000	25,000	10

4. When full-sized tension members are tested to prove the strength of their connections, a reduction in their ultimate strength of (500 x width of

bar) pounds per square inch will be allowed. 5. All iron shall bend, cold, 180 degrees around a curve whose diameter 5. twice the thickness of piece for bar iron, and three times the thickness

for plates and shapes

6. Iron which is to be worked hot in the manufacture must be capable of bending sharply to a right angle at a working heat without sign of fracture.

7. Specimens of tensile iron upon being nicked on one side and bent shall show a fracture nearly all fibrous.

All rivet iron must be tough and soft, and be capable of bending cold until the sides are in close contact without sign of fracture on the convex side of the curve.

Pennsylvania Hailroad Specifications for Merchant Bar Iron or Steel.—Miscellaneous merchant bar iron or steel for which no special specifications defining shapes and uses are issued, should have a tensile strength of 50,000 to 55,000 lbs. per square inch and an elongation of 20% in a section originally 2 inches long.

No iron or steel will be accepted under this specification if tensile strength falls below 48,000 lbs. or goes above 60,000 lbs. per square inch, nor if elongation is less than 15% in 2 inches, nor if it shows a granular fracture covering more than 50% of the fractured surface, nor if it shows any difficulty in

In preparing test-pieces from round or rectangular bars, they will be turned or shaped so that the tested sections may be the central portion of the bar, in all sizes up to 1¾ inches in any diametrical or side measurement. In larger sizes test-pieces will be made to fall about half-way from centre to circumference.

Bars of iron 1/2 in thick or less, or tortured forms of iron, such as angle, tee or channel bars, will be accepted if tensile strength is above 45,000 lbs. and elongation above 12%; but the testing of such sizes and sections is optional.

Specifications for Wrought Iron for the World's Fair Buildings. (Eng'y News, March 26, 1892.) All iron to be used in the tensile members of open trusses, laterals, pins and bolts, except plate iron over 8 inches wide, and shaped iron, must show by the standard test-pieces a tensile strength in lbs. per square inch of:
7,000 × area of original bar in sq. in.

circumference of original bar in inches'

with an elastic limit not less than half the strength given by this formula,

and an elongation of 20% in 8 in.

Plate iron 24 inches wide and under, and more than 8 inches wide, must with an elastic limit not less than 25,000 lbs. per square inch, and an elongation of not less than 125. All plates over 24 inches in width must have an elongation of not less than 45,000 lbs., with an elastic limit not less than 25,000 lbs., with an elastic limit not less than 25,000 lbs., with an elastic limit not less than 25,000 lbs., per square inch. Plates from 24 inches to 36 inches in width must have an elongation of not less than 10%; those from 36 inches to 48 inches in width 50 cores 36 inches to 48 inches in width 50 cores 36 inches to 48 inches in width, 8%; over 48 inches in width, 5%.

All shaped iron, flanges of beams and channels, and other iron not hereinbefore specified, must show by the standard test-pieces a tensile strength in

lbs. per square inch of :

 $7.000 \times area of original bar$ circumference of original bar'

with an elastic limit of not less than half the strength given by this formula, and an elongation of 15% for bars % inch and less in thickness, and of 12% for bars of greater thickness. For webs of beams and channels, specifications

for plates will apply.

All rivet iron must be tough and soft, and pieces of the full diameter of the rivet must be capable of bending cold, until the sides are in close contact,

without sign of fracture on the convex side of the curve.

Stay-bolt Iron,-Mr. Vauclain, of the Baldwin Locomotive Works, at a meeting of the American Railway Master Mechanics' Association, in 1892, says: Many advocate the softest iron in the market as the best for stay-bolts. He believed in an iron as hard as was consistent with heading the bolt nicely. The higher the tensile strength of the iron, the more vibrations it will stand, for it is not so easily strained beyond the yield-point. The Baldwin specifications for stay-bolt iron call for a tensile strength of 50,000 to 52,000 lbs. per square inch. the upper figure being preferred, and the lower being insisted upon as the minimum.

FORMULE FOR UNIT STRAINS FOR IRON AND (F. H. Lewis, Engineers' Club of Philadelphia, 1891.)

The following formulæ for unit strains per square inch of net sectional area shall be used in determining the allowable working stress in each member of the structure. (For definitions of soft and medium steel see Specifications for Steel.) Tension Members

Acasion Members.					
	Wrought Iron.	Soft Steel.	Medium Steel.		
Floor-beam hangers or suspenders, forged bars Counter-ties Suspenders, hangers and counters, riveted members, net sec-	Will not be used 6000	Will not be used	7000 7000		
tion	5000	5500	7000		
Solid rolled beams Riveted truss members and tension flanges		8000	Will not be used		
of girders, net sec-	$7000 \left(1 + \frac{\min}{\max}\right)$		$9000(1+\frac{m}{max})$		
Forged eyebars	Will not be used	Will not be used	$9000 \left(1 + \frac{\min}{\max}\right)$		
Lateral or cross-section rods		16,000	(For eyebars)		

Shearing.

•	Wrought Iron.	Soft Steel.	Medium Steel.
On pins and shop rivets On field rivets In webs of girders	4800	6600 5200 5000	7200 Will not be used 6000
	Bearing	5 •	
	Wrought Iron.	Soft Steel.	Medium Steel.
On projected semi- intrados of main-pin holes	12,000	18,200	14,500
trados of rivet-holes* On lateral pins Of bed-plates on ma-	12,000 15,000	18,200 16,500	14,500 18,000

^{*} Excepting that in pin-connected members taking alternate stresses, the bearing stress must not exceed 9000 lbs. for iron or steel.

soury 250 lbs. per sq. in.

Bending.

On extreme fibres of pins when centres of bearings are considered as points of application of strains:

Wrought Iron, 15,000. Soft Steel, 16,000. Medium Steel, 17,000.

Compression Members.

	Wrought Iron.	Soft Steel.	Medium Steel.
Chord sections: Flat ends One flat and one pin end Chords with pin ends and all end-posts All trestle-posts Intermediate posts Lateral struts, and compression in collision struts. stiff suspenders and stiff chords	7000 $\left(1 + \frac{\text{min.}}{\text{max.}}\right) - 40 \frac{l}{r}$ 7000 $\left(1 + \frac{\text{min.}}{\text{max.}}\right) - 35 \frac{l}{r}$ 7500 $- 40 \frac{l}{r}$	10% greater than iron	20% greater than iron

In which formulæ l = length of compression member in inches, and r = least radius of gyration of member in inches. No compression member shall have a length exceeding 45 times its least width, and no post should be used in which l+r exceeds 125.

Members Subject to Alternate Tension and Compression.

	Wrought Iron.	Soft Steel.	Medium Steel.
For compression only For the greatest stress	Use the formulæ above $7000\left(1 - \frac{\text{max. lesser}}{2 \text{ max. greater}}\right)$	8% greater than iron	20% greater than iron

Use the formula giving the greatest area of section.

The compression flanges of beams and plate girders shall have the same cross section as the tension flanges.

W. H. Burr, discussing the formulæ proposed by Mr. Lewis, says: "Taking the results of experiments as a whole, I am constrained to believe that they indicate at least 15% increase of resistance for soft-steel columns over those of wrought iron, with from 20% to 25% for medium steel, rather than 10% and 20% respectively.

"The high capacity of soft steel for enduring torture fits it eminently for alternate and combined stresses, and for that reason I would give it 15% increase over iron, with about 22% for medium steel.

"Shearing tests on steel seem to show that 15% and 22% increases, for the

two grades respectively, are amply justified.
"I should not hesitate to assign 15% and 22% increases over values for iron for bearing and bending of soft and medium steel as being within the safe limits of experience. Provision should also be made for increasing pin-bending and bearing stresses for increasing ratios of fixed to moving loads."

Maximum Permissible Stresses in Structural Materials used in Buildings. (Building Ordinances of the City of Chicago, 1893.)
Cast iron, crushing stress: For plates, 15,000 lbs. per square inch; for lintels, brackets, or corbels, compression 13,500 lbs. per square inch, and tension 3000 lbs. per square inch. For girders, beams, corbels, brackets, and trusses, to the product of the product of the corbes. 16,000 lbs. per square inch for steel and 12,000 lbs. for iron. For plate girders:

Flange area = maximum bending moment in ft.-lbs.

D =distance between centre of gravity of flanges in feet. $C = \begin{cases} 13,500 \text{ for steel.} \\ 10,000 \text{ for iron.} \end{cases}$

Web area = $\frac{\text{maximum shear}}{C}$. $C = \begin{cases} 10,000 \text{ for steel,} \\ 6,000 \text{ for iron.} \end{cases}$

For rivets in single shear per square inch of rivet area:

Steel. Iron. If shop-driven 9000 lbs.
If field-driven 7500 " 7500 lbs. 6000

For timber girders:

b =breadth of beam in inches. $g = \frac{cbd^3}{1}$.

Proportioning of Materials in the Memphis Bridge (Geo. S. Morison, Trans. A. S. C. E., 1893).—The entire superstructure of the Memphis bridge is of steel and it was all worked as steel, the rivet-holes being drilled in all principal members and punched and reamed in the lighter

The tension members were proportioned on the basis of allowing the dead load to produce a strain of 20,000 lbs. per square inch, and the live load a strain of 10,000 lbs. per square inch. In the case of the central span, where the dead load was twice the live load, this corresponded to 15,000 lbs. total

strain per square inch, this being the greatest tensile strain.

The compression members were proportioned on a somewhat arbitrary basis. No distinction was made between live and dead loads. A maximum strain of 14,000 lbs. per square inch was allowed on the chords and other large compression members where the length did not exceed 16 times the least transverse dimension, this strain being reduced 750 lbs. for each additional unit of length. In long compression members the maximum length was limited to 30 times the least transverse dimension, and the strains limited to 6,000 lbs. per square inch, this amount being increased by 200 lbs. for each unit by which the length is decreased.

Wherever reversals of strains occur the member was proportioned to resist the sum of compression and tension on whichever basis (tension or compression) there would be the greatest strain per square inch; and, in addition, the net section was proportioned to resist the maximum tension, and the gross section to resist the maximum compression.

The floor beams and girders were calculated on the strain being limited to 10,000 lbs. per square inch in extreme fibres. Rivet-holes in cover-plates and flanges were deducted.

The rivets of steel in drilled or reamed holes were proportioned on the basis of a bearing strain of 15,000 lbs. per square inch and a shearing strain of 7500 lbs. per square inch, and special pains were taken to get the double shear in as many rivets as possible. This was the requirement for shop rivets. In the case of field rivets, the number was increased one half.

The pins were proportioned on the basis of a bearing strain of 18,000 lbs. per square inch and a bending strain of 20,000 lbs. per square inch in extreme fibre, the diameters of the pins being never made more than one inch

less than the width of the largest eye-bar attaching to them.

The weight on the rollers of the expansion joint on Pier II is 40,000 lbs. per linear foot of roller, or 8,333 lbs. per linear inch, the rollers being 15 ins. in diameter.

As the sections of the superstructure were unusually heavy, and the strains from dead load greatly in excess of those from moving load, it was thought best to use a slightly higher steel than is now generally used for lighter structures, and to work this steel without punching, all holes being drilled. A somewhat softer steel was used in the floor-system and other lighter parts.

The principal requirements which were to be obtained as the results of

tests on samples cut from finished material were as follows:

	Max. Ultimate Strength, lbs. per sq. inch.	Min. Ultimate Strength, lbs. per sq. inch.	Min. Elastic Limit, lbs, per sq. in.	Elongation	Min. Per- centage of Reduction at Fracture
High-grade steel	78,500	69,000	40,000	18	88
Eye-bar steel	75,000	66,000	88,000	20	40
Medium steel	72,500	64,000	37,000	22	44
Soft steel	63,000	55,000	80,000	28	50

TENACITY OF METALS AT VARIOUS TEMPERATURES.

The British Admiralty made a series of experiments to ascertain what loss of strength and ductility takes place in gun-metal compositions when raised to high temperatures. It was found that all the varieties of gun-metal suffer a gradual but not serious loss of strength and ductility up to a certain temperature, at which, within a few degrees, a great change takes place, the strength falls to about one half the original, and the ductility is wholly gone. At temperatures above this point, up to 500, there is little, if any further loss of strength; the temperature at which this great change and loss of strength takes place, although uniform in the specimens cast from the same pot, varies about 100° in the same composition cast at different temperatures, or with some varying conditions in the foundry process. The temperature at which the change took place in No. 1 series was ascertained to be about 370°, and in that of No. 2, at a little over 250°. Whatever may be the cause of this important difference in the same composition, the fact stated may be taken as certain. Rolled Muntz metal and copper are satisfactory up to 500°, and may be used as securing-bolts with safety. Wrought iron, Yorkshire and remanufactured, increase in strength up to 500°, but lose slightly in ductility up to 300°, where an increase begins and continues up to 500° where it is still less than at the ordinary temperature of the atmosphere. The strength of Landore steel is not affected by temperature up to 500°, but its ductility is reduced more than one half. (Iron, Oct. 6, 1877.)

Tensile Strength of Iron and Steel at High Temperatures.—James E. Howard's tests (Iron Age, April 10, 1890), shows that the tensile strength of steel diminishes as the temperature increases from 0° until a minimum is reached between 200° and 300° F., the total decrease being about 4000 lbs. per square inch in the softer steels, and from 600 to 8000 lbs. in steels of over 80,000 lbs. tensile strength. From this minimum point the strength increases up to a temperature of 400° to 650° F., the maximum being reached earlier in the harder steels, the increase amounting to from 200, 10,000 lbs. per square inch above the minimum strength at from 200,

to 300°. From this maximum, the strength of all the steel decreases steadily as a rate approximating 10,000 lbs, decrease per 100° increase of tempera-ture. A strength of 20,000 lbs, per square inch is still shown by .10°C, steel at about 1000° F., and by .60 to 1.00°C, steel at about 1600° F. The strength of wrought iron increases with temperature from 0° up to a maximum at from 400 to 600° F., the increase being from 8000 to 10 000 lbs.

per square inch, and then decreases steadily till a strength of only 6000 lbs.

er square inch is shown at 1500° F. Cast from appears to maintain its strength, with a tendency to increase, and 1900° is reached, beyond which temperature the strength gradually diminishes. Under the highest temperatures, 1500° for 1600° F., numerous racks on the cylindrical surface of the specimen were developed prior to apture. It is remarkable that cast iron, so much inferior in strength to the seels at atmospheric temperature, under the highest temperatures has

**strain the same strength the high-temper steels then have.

**Strength of Iron and Steel Boiler-plate at High Temperatures.* (Chas. Huston, Jour. F. I., 1877.)

AVERAGE OF THREE TESTS OF	EACH.		
Temperature F.	68°	575*	925°
Charcoal iron plate, tensile strength, lbs contr. of area \$ Soft open-hearth steel, tensile strength, lbs	26 54,600	68,080 23 66,083	65,843 21 64,850 83
" Crucible steel, tensile strength, lbs	64,000	38 69,266 30	68,600 21

Strength of Wrought Iron and Steel at High Temperatures. (Jour. F. I., cxii., 1881, p. 241.) Kollmann's experiments at Oberhausen included tests of the tensile strength of iron and steel at temperatures ranging between 70° and 2000° F. Three kinds of metal were tested, viz., fibrous iron having an ultimate tensile strength of 52,464 lbs., an elastic viz., norous iron having an intimate tensile strength of 22,404 10s., an elastic strength of 38,280 lbs., and an elongation of 17.5%; fine-grained iron having for the same elements values of 58,892 lbs., 39,113 lbs., and 20%; and Besemer steel having values of 84,826 lbs., 55,029 lbs., and 14.5%. The mean ultimate tensile strength of each material expressed in per cent of that at ordinary atmospheric temperature is given in the following table, the fifth column of which exhibits, for purposes of comparison, the results of experiments carried on by a committee of the Franklin Institute in the years 1820 as 1832 36

~~~ ·			_	
_	Fibrous	Fine-grained	Bessemer	Franklin
Temperature	Wrought	Iron,	Steel,	Institute,
Degrees F.	Iron, p. c.	per cent.	per cent.	per cent.
_ 0	100.0	100.0	100.0	96.0
100	100.0	100.0	100.0	102.0
200	100.0	-100.0	100.0	105.0
300	97.0	100.0	100.0	106.0
400	95.5	100.0	100.0	106.0
500	92.5	98.5	98.5	104.0
600	88.5	95.5	92.0	99.5
700	81.5	90.0	68.0	92.5
800	67.5	77.5	44.0	75.5
900	44.5	51.5	36.5	58.5
1000	26.0	86.0	81.0	86.0
1100	20.0	30.5	26.5	
1200	18.0	28.0	22.0	• • • •
1300	16.5	23.0	18.0	••••
1400	. 13.5	19.0	15.0	••••
1500	10.0	15.5	12.0	
1600	7.0	12.5	10.0	
1700	5.5	10.5	8.5	
1800	4.5	8.5	7.5	••••
1900	8.5	7.0	6.5	
2000	8.5	5.0	5.0	

The Effect of Cold on the Strength of Iron and Steel .-

The following conclusions were arrived at by Mr. Styffe in 1865:

(i) That the absolute strength of iron and steel is not diminished by cold, but that even at the lowest temperature which ever occurs in Sweden it is at least as great as at the ordinary temperature (about 60° F.).

(2) That neither in steel nor in iron is the extensibility less in severe cold

than at the ordinary temperature.

(3) That the limit of elasticity in both steel and iron lies higher in severe cold.

(4) That the modulus of elasticity in both steel and iron is increased on reduction of temperature, and diminished on elevation of temperature; but that these variations never exceed 0.05 % for a change of temperature of 1.8° F., and therefore such variations, at least for ordinary purposes, are of no special importance.

Mr. C. P. Sandberg made in 1867 a number of tests of iron rails at various temperatures by means of a falling weight, since he was of opinion that, although Mr. Styffe's conclusions were perfectly correct as regards tensile strength, they might not apply to the resistance of iron to impact at low temperatures. Mr. Sandberg convinced himself that "the breaking strain" of iron, such as was usually employed for rails, " as tested by sudden blows or shocks, is considerably influenced by cold; such iron exhibiting at 10° F. only from one third to one fourth of the strength which it possesses at \$4° F." Mr. J. J. Webster (Inst. C. E., 1880) gives reasons for doubting the accuracy of Mr. Sandberg's deductions, since the tests at the lower temperature were nearly all made with 21-ft. lengths of rail, while those at the higher temperatures were made with short lengths, the supports in

every case being the same distance apart.

W. H. Barlow (Proc. Inst. C. E.) made experiments on bars of wrought iron, cast iron, malleable cast iron, Bessemer steel, and tool steel. The bars were tested with tensile and transverse strains, and also by impact; one half of them at a temperature of 50° F., and the other half at 5° F. The lower temperature was obtained by placing the bars in a freezing mixture care being taken to keep the bars covered with it during the whole time of

the experiments.

The results of the experiments were summarized as follows:

1. When bars of wrought iron or steel were submitted to a tensile strain and broken, their strength was not affected by severe cold (5° F.), but their ductility was increased about 1% in iron and 3% in steel.

2. When bars of cast iron were submitted to a transverse strain at a low temperature, their strength was diminished about 3% and their flexibility

about 16%.

3. When bars of wrought iron, malleable cast iron, steel, and ordinary cast iron were subjected to impact at a temperature of 5° F., the force required to break them, and the extent of their flexibility, were reduced as follows, viz.:

	Reduction of Force of Impact, per cent.	Reduction of Flexi- bility, per cent.
Wrought iron, about Steel (best cast tool), about	8 814	18 17
Malleable cast iron, about	41/2	î5
Cast iron, about		not taken

The experience of railways in Russia, Canada, and other countries where the winter is severe is that the breakages of rails and tires are far more numerous in the cold weather than in the summer. On this account a softer class of steel is employed in Russia for rails than is usual in more temperate climates.

The evidence extant in relation to this matter leaves no doubt that the capability of wrought iron or steel to resist impact is reduced by cold.

capsomy or wrought from or seet to resist impact is reduced by Cold. On the other hand, its static strength is not impaired by low temperatures.

Effect of Low Temperatures on Strength of Railroad Axles. (Thos. Andrews, Proc. Inst. C. E., 1891.)—Axles 6 ft. 6 in. long between centres of journals, total length 7 ft. 8½ in., diameter at middle 4½ in., at wheel-sets 5½ in., journals 3¾ × 7 in. were tested by impact at temperatures of 0° and 100° F. Between the blows each axle was half turned over, and was also replaced for 15 minutes in the water-bath.

The mean force of concussion resulting from each impact was ascertained as follows:

Let h = height of free fall in feet, w = weight of test ball, hw = W ="energy," or work in foot-tons, x =extent of deflections between bearings,

then 
$$F$$
 (mean force) =  $\frac{W}{x} = \frac{hw}{x}$ .

The results of these experiments show that whereas at a temperature of F. a total average mean force of 179 tons was sufficient to cause the breaking of the axies, at a temperature of 100° F. a total average mean force of 428 tons was requisite to produce fracture. In other words, the resistance to concussion of the axies at a temperature of 0° F, was only about 125 of what it was at a temperature of 100° F.

The average total deflection at a temperature of 0° F, was 6.48 in., as against 15.06 in. with the axles at 100° F, under the conditions stated; this represents an ultimate reduction of flexibility, under the test of impact, of about 57% for the cold axles at 0° F., compared with the warm axles at 10° F.

#### EXPANSION OF IRON AND STEEL BY HEAT.

James E. Howard, engineer in charge of the U.S. testing-machine at Warrown, Mass., gives the following results of tests made on bars 35 inches ang (Iron Age, April 10, 1890):

		•	Chemi	position.	Coefficient of Expansion.	
Metal.	Marks.	C.	Ma.	Si.	Fe by difference.	Per degree F. per unit of length.
Wrought iron						.0000087802
Steel	la.	.09	.ii		99.80	.0000067561
**	. 2a.	.20	.45	1	99.35	.0000066259
**	. 3a.	.81	.57	i	99.12	.0000065149
44	. 4a	.37	.70		98.93	.0000066597
••	58.	.51	.58	.02	98.89	.0000066202
	. 6a	.57	.93	.07	98.48	.0000063891
	. 78	.71	.58	.08	98.63	.0000064716
**	. 8e.	.81	.56	17	98.46	.0000062167
44	98.	.89	.57	.19	98.85	.0000062835
	10a	.97	.80	.28	97.95	.0000002850
Cast (gun) iron			1 .00		Ø1.00	.0000059261
		· · · · · · ·			••••••	.0000039281
Drawn copper				1 1	••••	.00000012860

### DURABILITY OF IRON, CORROSION, ETC.

Durability of Cast Iron.—Frederick Graff, in an article on the Philadelphia water-supply, says that the first cast-iron pipe used there was laid in 1820. These pipes were made of charcoal iron, and were in constant use for 53 years. They were uncoated, and the inside was well filled with tubercles. In salt water good cast iron, even uncoated, will last for a century at least; but it often becomes soft enough to be cut by a knife, as is shown in iron cannon taken up from the bottom of harbors after long submersion. Close-grained, hard white metal lasts the longest in sea water.—

Engla News. April 23, 1887, and March 26, 1892.

Tests of Iron after Forty Wears' Service.—A square link is inches broad, I inch thick and about 12 feet long was taken from the Kieff bridge, then 40 years old, and tested in comparison with a similar link which had been preserved in the stock-house since the bridge was built. The following is the record of a mean of four longitudinal test-pieces, 1 × 1½ × 8 inches, taken from each link (Stahl und Eisen, 1890):

	Old Link taken from Bridge.	New Link from Store-house.
Tensile strength per square inch, tons Elastic limit	21.8	22.2
Elastic limit "	11.1	11.9
Elongation, per cent		13.42
Contraction, per cent	17.35	18.75

**Durability of Iron in Bridges.** (G. Lindenthal, Eng'g, May 2, 1881, p. 139.)—The Old Monongahela suspension bridge in Pittsburgh, built in 1845, was taken down in 1882. The wires of the cables were frequently strained to half of their ultimate strength, yet on testing them after 37 years'

use they showed a tensile strength of from 72,700 to 100,000 lbs. per square inch. The elastic limit was from 67,100 to 78,600 lbs. per square inch. duction at point of fracture, 35% to 75%. Their diameter was 0.13 inch.

A new ordinary telegraph wire of same gauge tested for comparison showed: T. S., of 100,000 lbs.; E. L., 81,550 lbs.; reduction, 57%. Iron rods used as stays or suspenders showed: T. S. 48,770 to 49,720 lbs. per square inch; E. L., 26,380 to 29,200. Mr. Lindenthal draws these conclusions from his tests:

"The above tests indicate that iron highly strained for a long number of years, but still within the elastic limit, and exposed to slight vibration, will

not deteriorate in quality.

"That if subjected to only one kind of strain it will not change its texture, even if strained beyond its elastic limit, for many years. It will stretch and behave much as in a testing-machine during a long test.

"That iron will change its texture only when exposed to alternate severe

straining, as in bending in different directions. If the bending is slight but very rapid, as in violent vibrations, the effect is the same."

Corrosion of Iron Bolts. - On bridges over the Thames in London, bolts exposed to the action of the atmosphere and rain-water were eaten away in 25 years from a diameter of % in. to ½ in., and from % in. diameter

Wire ropes exposed to drip in colliery shafts are very liable to corrosion. Corrosion of Iron and Steel.—Experiments made at the Riverside Iron Works, Wheeling, W. Va., on the comparative liability to rust of iron and soft Bessemer steel: A piece of iron plate and a similar piece of steel, both clean and bright, were placed in a mixture of yellow loam and sand, with which had been thoroughly incorporated some carbonate of soda, nitrate of soda, ammonium chloride, and chloride of magnesium. The earth as prepared was kept moist. At the end of 33 days the pieces of metal were taken out, cleaned, and weighed, when the iron was found to have lost 0.8% of its weight and the steel 0.72%. The pieces were replaced and after 28 days

weighed again, when the iron was found to have lost 2.06% of its original weight and the steel 1.79%. (Engg. June 26, 1891.)
Corrostve Agents in the Atmosphere.—The experiments of F. Crace Calvert (Chemical News, March 3, 1871) show that carbonic acid, in the presence of moisture, is the agent which determines the oxidation of iron in the atmosphere. He subjected perfectly cleaned blades of iron and steel to the action of different gases for a period of four months, with

results as follows:

Dry oxygen, dry carbonic acid, a mixture of both gases, dry and damp oxygen and ammonia: no oxidation. Damp oxygen: in three experiments

one blade only was slightly oxidized.

Damp carbonic acid: slight appearance of a white precipitate upon the iron, found to be carbonate of iron. Damp carbonic acid and oxygen: oxidation very rapid. Iron immersed in water containing carbonic acid oxidized rapidly.

Iron immersed in distilled water deprived of its gases by boiling rusted

the iron in spots that were found to contain impurities.

Galvanic action is a most active agent of corrosion. It takes place when two metals, one electro-negative to the other, are placed in contact and exposed to dampness.

Sulphurous acid (the product of the combustion of the sulphur in coal) is an exceedingly active corrosive agent, especially when the exposed iron is coated with soot. This accounts for the rapid corrosion of iron in railway bridges exposed to the smoke from locomotives. (See account of experiments by the author on action of sulphurous acid in Jour. Frank. Inst., June. 1875, p. 437.) An analysis of sooty iron rust from a railway bridge showed the presence of sulphurous, sulphuric, and carbonic acids, chlorine, and ammonia. Bloxam states that ammonia is formed from the nitrogen of the

air during the process of rusting.

Rustless Coatings for Iron and Steel.—Tinning, enamelling, lacquering, galvanizing, electro-chemical painting, and other preservative methods are discussed in two important papers by M. P. Wood, in Trans.

A. S. M. E., vols, xv and xvi.

A Method of Producing an Inoxidizable Surface on iron and steel by means of electricity has been developed by M. A. de Meritens (Engineering.) The article to be protected is placed in a bath of ordinary of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the nary or distilled water, at a temperature of from 158° to 176° F., and an electric current is sent through. The water is decomposed into its elements,

oxygen and hydrogen, and the oxygen is deposited on the metal, while the hydrogen appears at the other pole, which may either be the tank in which the operation is conducted or a plate of carbon or metal. The current has only sufficient electromotive force to overcome the resistance of the circuit and to decompose the water; for if it be stronger than this, the oxygen combines with the iron to produce a pulverulent oxide, which has no adherence. If the conditions are as they should be, it is only a few minutes after the oxygen appears at the metal before the darkening of the surface shows that the gas has united with the iron to form the magnetic oxide Fe₂O₄, which it is well known will resist the action of the air and protect the metal After the action has continued an hour or two the coating is ufficiently solid to resist the scratch-brush, and it will then take a brilliant

If a piece of thickly rusted iron be placed in the bath, its sesquioxide  $Fe_2O_3$ ) is rapidly transformed into the magnetic oxide. This outer layer has no adhesion, but beneath it there will be found a coating which is actually a part of the metal itself.

In the early experiments M de Meritens employed pieces of steel only, but in wrought and cast iron he was not successful, for the coating came off with the slightest friction. He then placed the iron at the negative pol of the apparatus, after it had been already applied to the positive pole. Here the oxide was reduced, and hydrogen was accumulated in the pores of the metal. The specimens were then returned to the anode, when it was found that the oxide emperated outle readily and was very solid. But the result that the oxide appeared quite readily and was very solid. But the result was not quite perfect, and it was not until the bath was filled with distilled water, in place of that from the public supply, that a perfectly satisfactory result was attained.

Manganese Plating of Iron as a Protection from Rust.

-According to the Italian Progresso, articles of iron can be protected against rust by sinking them near the negative pole of an electric bath composed of 10 litres of water, 50 grammes of chloride of manganese, and 200 grammes of nitrate of ammonium. Under the influence of the current the bath deposits on the articles a film of metallic manganese which prevents

them from rusting.

A Non-oxidizing Process of Annealing is described by H. P. Jones, in Eng'g News, Jan. 2, 1892. The ordinary process of annealing, by means of which hard and brittle iron or steel is rendered soft and tough, consists in heating the metal to a good red-heat and then allowing it to cool gradually. While the metal is in a heated condition the surface becomes oxidized; and although for many classes of work this scale of oxide is of practical importance, yet in some cases it is very undesirable and even necessitates considerable expense in its removal.

The new process uses a non-oxidizing gas, and is the invention of Mr. Horace K. Jones, of Hartford, Coun. The principal feature of this process consists in keeping the annealing-retort in communication with the gas holder or gas main during the entire process of heating and cooling, the gas thus being allowed to expand back into the main, and being, therefore,

kept at a practically constant pressure.

The retorts used are made from wrought-iron tubes. The gas used is taken directly from the mains supplying the city with illuminating gas. It was noticed that if metal which had been blued or slightly oxidized was subjected to the annealing process it came out bright, the oxide being reduced by the action of the gas. Practical use has been made of this fact in deoxidizing metal.

Comparative tests were made of specimens of metal annealed in illiuminating gas and of specimens annealed in nitrogen. The results of these tests were compared with the results of tests of specimens annealed in an open fire and cooled in ashes, and of specimens of the unannealed metal, and

thus the relative efficiency of the gas process was determined.

The specimens were made from steel wire .188 in. in diameter and were turned down to diameters of .156 and .150 in. Different lots of wire were tested in order to secure average results. The elongations were in each case referred to an original length of 1.15 ins.

The difference in total per cent of elongation and in breaking load between the specimens annealed in nitrogen and those annealed in illuminating gas

is very slight. The average results were as follows:

Tot	G	No. Test	Breaking	Elongation.			
Tor.	Lot. Gas used.		Load, lbs. per sq. in.	Total p. c.	p. c. gained		
A B C E F G H	Nitrogen Illuminating Nitrogen Illuminating Nitrogen Illuminating Open fire Unannealed Unannealed	4 4 4 5 5 5 5	62,140 68,140 60,000 60,400 57,330 57,070 63,090 97,120 80,790	29.12 28.06 28.00 27.20 30.86 29.60 26.76 7.12 8.80	22.00 20.86 19.20 18.40 23.76 22.48 19.64		

Painting Wood and Iron Structures. (E. H. Brown, Eng'rs Club of Phila., Engineering News, April 20, 1893.)—A paint consists of two portions—the pigment and the vehicle or binder. The pigment is a solid substance which is more or less finely ground, so as to be capable (when mixed with the vehicle) of being spread out in a thin layer or coating over the surface to be painted. The vehicle or binder is the liquid in which the pigment is mixed or ground, which serves to spread the pigment over the surface to be painted, and which also holds it to that surface. For ordinary painting the most generally used vehicle is linseed oil.

Linseed oil possesses the peculiar property of drying by uniting with the oxygen of the air to form a tough, leather-like compound called linoxin.

For painting on wood, zinc white has valuable pigment properties, but these seem to be most fully developed when this pigment is used in conjunction with white lead, and then to the best advantage when the mixture is used as a final coat over an elastic undercoating of white lead. So far no other white base has been discovered which possesses at the same time the other properties which render white lead valuable, namely, covering and spreading capacity.

spreading capacity.

Of the inert pigments, lampblack is probably the most valuable. Being almost pure carbon, it is practically unchangeable except by fire. It has the peculiar property of absorbing great quantities of linseed oil, and hence of spreading over a large surface. French ochre, an earth pigment containing more or less of the hydrated oxide of iron, possesses the property of absorbing a large quantity of oil, and hence has considerable spreading capacity, and also holds very firmly to any wooden surface to which it may be applied.

The various mineral and metallic paints are almost all natural or artificial interaction.

The various mineral and metallic paints are almost all natural or artificial iron oxides. While these are cheap and useful for painting rough wooden structures they are sometimes really quite dangerous for application to from work, because, instead of preventing oxidation, they are apt to further it.

Coal tar is much used as a paint for the roughest class of work, both wood and iron; in the latter case especially for cast-iron pipes, smoke-stacks, and work to be buried underground. It has the nature both of a resin and an oil. It has the disadvantage of becoming exceedingly brittle by the action of cold, and softening at 115° F. Asphalt permits of somewhat wider range of temperature, but otherwise exhibits the same peculiarities. These substances, while they last, are probably the most valuable of paints, especially under water; but they are unfortunate in their tendency to flow or crawl on the surface to which they are applied, finally leaving the upper portions almost or quite bare. This is the case even under ground.

Red lead has long been regarded as the best possible preservative for clean dry iron. But in order to be most effective, the iron must be perfectly clean and free from any suspicions of rust, and absolutely dry. Red lead should be perfectly pure and of the best and most careful preparation. That from any well-known corroding house may be depended upon for purity, but not always for quality. It is simply a red oxide of lead. The best type is orange mineral, which is made by roasting white lead. On account of its expense this is not so frequently used as it would deserve. Red lead proper is made directly from the metal, which is first oxidized to the yellow litharge, and then to the red oxide. This, however, does not give as good a paint as that made from the scrap, settlings, and tailings of the white lead works. As red lead saponifies very quickly with linseed oil, it must be used within a few days after being ground, and, moreover, it is rather difficult to work.

Hence there is great temptation to add some substance, such as whiting, to

it in order to make it work freer, as well as to cost less money for material.

Before painting iron work it is essential that the Iron itself should be about the painting iron work it is essential that the Iron itself should be about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spreading about the painting of spr solutely free from rust. Rust has the peculiar property of spreading and extending from a centre, if there be the slightest chance to do so. Hence, & small amount of rust on the iron may grow under the surface of the paint, especially if it be true, as Dr. Dudley asserts, that linseed oil is permeable by air and moisture, and in time the paint will be flaked off by the rust underneath, thus gradually exposing the bare surface of the iron to the action its destroying agent, oxygen in the presence of water. It is necessary thremove all the scale possible from wrought iron by means of stiff wire rushes, and then to remove the rust by a pickle of very dilute acid, which not afterward be thoroughly washed off before the paint is applied. The of the iron should be dry and at least moderately warmed before it primed. The best method of painting a tin roof is to carefully remove ill traces of oil or grease from the surface of the tin while it is yet bright with benzine; then to apply a coat of red lead and linseed oil, or the best quality of metallic paint, and to follow this with one or two coats of graphite maint. The graphite is almost unchangeable by atmospheric action, and is remarkably waterproof as well.

Red Lead as a Preservative of Iron. -A. J. Whitney writes to Engineering News, August, 1891, that in 30 years' experience he has found red lead to be the best material for preserving iron under all circumstances.

Quantity of Paint Hequired for a Given Surface. (M. P. Wood.)—Sq. ft. of surface + 200 = gallons of liquid paint for two coats; sq.

ft. of surface + 18 = lbs. of pure white lead for three coats.

Qualities of Paints. - The Railroad and Engineering Journal, vols. liv and Iv, 1890 and 1891, has a series of articles on paint as applied to mooden structures, its chemical nature, application, adulteration, etc., by Dr. C. B. Dudley, chemist, and F. N. Pease, assistant chemist, of the Penna. R. R. They give the results of a long series of experiments on paint as applied to railway purposes.

Graphite Paint. (M. P. Wood.)—Graphite, mixed with pure boiled linseed oil in which a small percentage of litharge, red lead, manganese, or other metallic salt has been added at the time of boiling to aid in the oxidation of the oil, forms a most effective paint for metallic surfaces, as well as for wood and fibrous substances. Wood surfaces protected by this paint, and exposed to the action of sea-water for a number of years, are found in a perfect state of preservation.

# STEEL.

## BELATION BETWEEN THE CHEMICAL COMPOSI-TION AND PHYSICAL CHARACTER OF STEEL.

W. R. Webster (see Trans. A. I. M. E., vols. xxi and xxii, 1893-4) gives results of several hundred analyses and tensile tests of basic Bessemer steel plates, and from a study of them draws conclusions as to the relation of chemical composition to strength, the chief of which are condensed as follows:

The indications are that a pure iron, without carbon, phosphorus, manganese, silicon, or sulphur, if it could be obtained, would have a tensile strength of 34,750 lbs. per square inch, if tested in a 34-inch plate. Withis as a base, a table is constructed by adding the following hardening effects, as shown by increase of tensile strength, for the several elements

Carbon, a constant effect of 800 lbs. for each 0.01%. Sulphur. 500 0.01%.

Phosphorus, the effect is higher in high-carbon than in low-carbon steels. With carbon hundreths \$\(\times\). 9 10 11 12 13 14 15 16 17 Each .013 P has an effect of lbs. 900 1000 1100 1300 1400 1500 1500 1500 1500 Manganese, the effect decreases as the per cent of manganese increases.

.00 .15 .20 .25 .30 .35 .40 .45 .50 .55 Mn being per cent..... to to to .15 .20 .25 to to to to to 30 .35 .40 .45 .50 to 10 .65 Str'gth increases for .01% 240 240 220 200 180 160 140 120 100 100 lbs. Total incr. from 0 Mn... 3600 4800 5900 6900 7800 8600 9300 9900 10,400 11,400

390

Silicon is so low in this steel that its hardening effect has not been considered.

With the above additions for carbon and phosphorus the following table has been constructed (abridged from the original by Mr. Webster). To the figures given the additions for sulphur and manganese should be made as above.

# Estimated Ultimate Strengths of Basic Bessemer Steel Plates,

For Carbon, .06 to .24; Phosphorus, .00 to .10; Manganese and Sulphur, .00 in all cases.

Carl	on,	.06	.08	.10	.12	.14	.16	.18	.20	.20	.24
Phos.	.005	39,950	41,550				48,300				54,700
**	.01	40,350	41,950	43,750	45,550	47,350	49,050	50,650	52,250	53,850	55,450
**	.02	91,150	42,750	44,750	46,750	48,750	50,550	52,150	53,750	55,350	56,950
**	.03	41,950	43,550	45,750	47,950	50,150	52,050	53,650	55,250	56.850	58,450
**	.04	42,750	41,350	46,750	49,150	51,550	58,550	55,150	56,750	58,850	59,950
	.05	43,550	45,150	47,750	50,350	52,950	55,050	56,650	58,250	59,850	61,450
**	.06	44,350	45,950							61.350	
10	.07	45, 150	46,750	49,750	52,750	55,750	58,050	59,650	61,250	62,850	64,450
+4	.08		47,550							64,350	65,950
**	.09		48,350							65,850	67.450
4.0	.10	47,550								67,350	68,950
001 Ph		80 lbs.								150 lb	

In all rolled steel the quality depends on the size of the bloom or ingot from which it is rolled, the work put on it, and the temperature at which it is finished, as well as the chemical composition.

is missined, as well as the chemical composition.

The above table is based on tests of plates \$\frac{3}{2}\$ inch thick and under 70 inches wide; for other plates Mr. Webster gives the following corrections for thickness and width. They are made necessary only by the effect of thickness and width on the finishing temperature in ordinary practice. Steel is frequently spoiled by being finished at too high a temperature.

## Corrections for Size of Plates.

	Plates.	Up to 70 ins. wide.	Over 70 ins. wide.
	Inches thick.	Lbs.	Lbs.
3/4	and over		1000
11/16	44		<b>— 750</b>
5/6	"		500
9/16	"	— 1250	250
1/6	**		- 0
7/16	**	— 500	± 500
%≉	*	0	+ 1000
5/16	**	+ 3000	+ 5000

Comparing the actual result of tests of 408 plates with the calculated results, Mr. Webster found the variation to range as in the table below.

# Summary of the Differences Between Calculated and Actual Results in 408 Tests of Plate Steel.

In the first three columns the effects of sulphur were not considered; in the last three columns the effect of sulphur was estimated at 500 lbs. for each .01% of S.

	Universal Mill.	Sheared.	Both Mills.	Universal Mill.	Sheared.	Both Mills.	Both Mills, Corrected for Thickness and Width.
Per cent within 1000 lbs	23.4	32.1	28.4	24.6	27.0	26.0	28.4
2000	40.9	48.9	45.6	48.5	54.9	52.2	55.1
" " " 3000 "	62.5	71.3	67.6	67.8	73.0	70.8	
· · · · 4000 · ·	CE E	81.0	78.7	82.5	85.2	84.1	89.9
5000	89.5	91.1	90.4	93.0	92.8	92.9	94.9

The last figure in the table would indicate that if specifications were drawn the last rights in the table would indicate that it specifications were drawn calling for steel plates not to vary more than 3000 lbs. T. S. from a specified figure (equal to a total range of 10,000 lbs.), there would be a probability of the rejection of 5% of the blooms rolled, even if the whole lot was made from steel of identical chemical analysis. In 1000 heats only 2% of the heats failed to meet the requirements of the orders on which they were graded; the loss of plates was much less than 1%, as one plate was rolled from each neat and tested before rolling the remainder of the heat.

neat and tested before rolling the remainder of the heat.

R. A. Hadfield (Jour. Iron & Steel Inst., No. 1, 1884) gives the strength of very pure Swedish iron, remelted and tested as cast, 20.1 tons (45,024 lbs.) er sq. in.; remelted and forged, 21 tons (47,040 lbs.). The analysis of the ist bar was: C, 0.08; Si, 0.01; Si, 0.02; P. 0.02; Mn. 0.01; Fe, 9.08;

Reflect of Oxygen upon Strength of Steel.—A. Lantz, of the Peine works, Germany, in a letter to Mr. Webster, says: "We have fouring the current year (1883) that oxygen plays an important rôle, till now atthe observed—such, indeed, that given a like content of carbon, phosphores and remeasured in the blows: a blow with resistency were required in the blows: rus, and manganese in the blows, a blow with greater oxygen content gives a greater hardness and less ductility than a blow with less oxygen content."
The method used for determining oxygen is that of Prof. Ledebur, given in Stahl und Eisen, May, 1892, p. 193. The variation in oxygen content may make a difference in strength of nearly one half ton per square inch. Jour. Iron & Steel Inst., No. 1, 1894.)

#### BANGE OF VARIATION IN STRENGTH OF BESSEMER AND OPEN-HEARTH STEELS.

The Carnegie Steel Co. in 1888 published a list of 1057 tests of Bessemer and open-hearth steel, from which the following figures are selected:

Kind of Steel.		Elastic Limit.			nate ngth.	Elongation per cent in 8 inches.		
		t.	Lowest	High't.	Lowest	High't.	Lowest	
(a) Bess. structural	0 47,69 2 41,89 5	<b>90</b>	\$9,230 \$9,970 32,630	71,300 73,540 63,450 62,790 66,062 69,940	61,450 65,200 56,130 50,350 59,440 63,970	33.00 30.25 34.30 36.00 27.50 30.00	23 75 23.15 26.25 25.62 19.25 22 75	

REQUIREMENTS OF SPECIFICATIONS.

(a) Elastic limit, 45,000; tensile strength, 62,000 to 70,000; elong. 22% in 8 in.

(b) Elastic limit, 40,000; tensile strength, 67,000 to 75,000.

(c) Elastic limit, 40,000 to 62,000; elong. 20% in 4 in.

(d) Tensile strength, 50,000 to 65,000; elong. 20% in 4 in.

(e) Tensile strength, 60,000 to 65,000; elong. 18% in 8 in.

(f) Tensile strength, 64,000 to 70,000; elong. 20% in 8 in.

Strength of Open-hearth Structural Steel. (Pencoyd Iron

North As a general rule the percentage of caphon in steel determines its Works.)—As a general rule, the percentage of carbon in steel determines its hardness and strength. The higher the carbon the harder the steel, the higher the tenacity, and the lower the ductility will be. The following list exhibits the average physical properties of good open-hearth steel:

Percentage of Carbon.	Ultimate Tenacity, lbs. per sq. in.	Elastic Limit, lbs. per sq. in.	Stretch in 8 inches,	Reduction of Area, %.
.10 .15 .20 .25 .80 .35 .40	57.000 62,000 67,000 72,000 77,000 82,000 87,000	34,000 37,000 40,000 43,000 46,000 49,000 52,000	28 per cent. 26 " 24 " 22 " 20 " 18 "	55 per cent. 50 " 45 " 40 " 35 " 30 "

The coefficient of elasticity is practically uniform for all grades, and is the same as for iron, viz., 29,000,000 lbs. These figures form the average of a numerous series of tests from rolled bars, and can only serve as an ap-

proximation in single instances, when the variation from the average may be considerable. Steel below .10 carbon should be capable of doubling flat without fracture, after being chilled from a red heat in cold water. Steel of .15 carbon will occasionally submit to the same treatment, but will usually bend around a curre whose radius is equal to the thickness of the specimen; about 90% of specimens stand the latter bending test without fracture. As the steel becomes harder its ability to endure this bending test becomes more exceptional, and when the carbon ratio becomes .20, little over 25% of specimens will stand the last-described bending test. Steel having about .40% carbon will usually harden sufficiently to cut soft iron and maintain an edge.

Mehrtens gives the following tables in Stahl und Eisen (Iron Age, April 20,

1893):

Basic Bessemer Steel.	
680 Charges.	tural Steel.
Elastic Limit Charges within	489 Charges.
Elastic Limit, pounds per sq. in. Charges within Range, per cent of total number. 35.500 to 38,400. 15.0	Elastic Limit, pounds per Range, per cent sq. in. 62,400 to \$7,000
so in of total number	pounds per Range, per cent
35 500 to 38 400	sq. in. of total charges
38,400 to 39,800 31.6	84,400 to 37,000
39,800 to 41,200 27.5	37,000 to 38,400
41,200 to 42,700	38,400 to 39,800 20.3
42,700 to 46,400 9.9	89,800 to 41,200 17.4
Tonaile Strongth Charges within	41,200 to 42,700
Tensile Strength, pounds per Range, per cent of total number. 55,600 to 56,900. 18.67	42,700 to 44,100
ea in of total number	44,100 to 48,400 8.5
55 600 to 58 000 19 67	Tensile Strength.
56,900 to 58,300	55,800 to 56,900 8.0
58,300 to 59,700	56,900 to 58,300
59,700 to 61,200 15.60	58,300 to 59,700 25.4
61,200 to 62,300	59,700 to 61,200 19.6
01,000 to 00,000 0.00	61,200 to 62,600 11.2
STRUCTURAL STEEL.	62,600 to 65,100 9.04
Charges within	Elongation,
Charges within Range, per cent per cent. of total number. 21 to 25	per cent.
ner cent of total number	20 to 25 21.7
91 to 95 9.65	25 to 26 7.7
25 to 26 8.53	26 to 27 10.0
26 to 27	27 to 28 11.0
27 to 28	28 to 29 12.0
28 to 29	29 to 30
29 to 30 14.41	
30 to 32.5 6.62	RIVET STEEL, 19 CHARGES.
	Tensile Strength.
RIVET STEEL.	51,800
RIVET STEEL. 25.2 to 26	51,900 to 58,800
²⁶ to 27 15.0	53,300 to 54,900
27 to 28	54,900 to 56,300
28 to 29	56,300 to 56,900
29 to 29,8 15.0	Elongation all above 25 per cent.

In the basic Bessemer steel over 90% was below 0.8 phosphorus, and all were below 0.10; manganese was below 0.6 in over 90%, and below 0.9 in all; sulphur was below 0.05 in 84%, the maximum being 0.071; carbon was below 0.10, and silicon below 0.01 in all. In the basic open-hearth steel phosphorus was below 0.06 in 96%, the maximum being 0.08; manganese below 0.50 in 97%; sulphur below 0.07 in 88%, the maximum being 0.12. The carbon ranged from 0.09 to 0.14.

Low Tensile Strength of Very Pure Steel.—Swedish nail-rod open-hearth steel, tested by the author in 1881, showed a tensile strength of only 42,591 lbs. per sq. in. A piece of American nail-rod steel showed 45,021 lbs. per sq. in. Both steels contained about .10 carbon and .015 phosphorus, and were very low in sulphur, manganese, and silicon. The pieces tested were bars about 2. 36 in section.

Low Strength Due to Insufficient Work. (A. E. Hunt,

Low Strength Due to Insufficient Work. (A. E. Hult, Trans. A. I. M. E., 1886.)—Soft steel ingots, made in the ordinary way for boiler plates, have only from 10,000 to 20,000 lbs. tensile strength per sq. in., an elongation of only about 10% in 8 in., and a reduction of area of less than 20%. Such ingots, properly heated and rolled down from 10 in. to ½ in.

thickness, will give from 55,000 to 65,000 lbs, tensile strength, an elongation in 3 in, of from 23% to 33%, and a reduction of area of from 55% to 70%. Any suck stopping short of the above reduction in thickness ordinarily yields intermediate results in its tensile tests.

Hardoming of Soft Steel.—A. E. Hunt (Trans. A. I. M. E., 1883, vol. m., says that soft steel, no matter how low in carbon, will harden to a certain extent upon being heated red-hot and plunged into water, and that it tarlens more when plunged into brine and less when quenched in oil.

An illustration was a heat of open-hearth steel of 0.15% carbon and 0.29% of manganese, which gave the following results upon test-pieces from the same 1 m. thick plate.

<b>- •</b>	Maximum Load.	Elongation in 8 in.	Reduction of Area.
	lbs. per sq. in.	Per cent.	Per cent.
Unhardened	. 55,000	. 27	62
Hardened in water	74,000	25	50
Hardened in brine	84,000	22	48
Hardened in oil	67,700	26	49

While the ductility of such hardened steel does not decrease to the extent that the increased tenacity would indicate, and is much superior to that of permal steel of the high tenacity, still the greatly increased tenacity after hardening indicates that there must be a considerable molecular change in the steel thus hardened, and that if such a hardening should be created locally in a steel plate, there must be very dangerous internal strains caused thereby.

Refect of Cold Bolling.—Cold rolling of fron and steel increases the elastic limit and the ultimate strength, and decreases the ductility. Major Walle's experiments on bars rolled and polished cold by Lauth's process showed an average increase of load required to give a slight permanent set as follows: Transverse, 182%; torsion, 130%; compression, 161% on short columns 1½ in. long, and 64% on columns 8 in. long; tension, 95%. The hardness, as measured by the weight required to produce equal indentations, was increased 50%; and it was found that the hardness was as great in the centre of the bars as elsewhere. Sir W. Fairbairn's experiments showed an increase in ultimate tensile strength of 50%, and a reduction in the elongation in 10 in. of from 2 in. or 20%, to 0.79 in. or 7.9%.

# Comparison of Tests of Full-size Eye-bars and Sample Test-pieces of Same Steel Used in the Memphis Bridge. (Geo. S. Morison, Trans. A. S. C. E., 1898.)

Full-Sized Eyebars. Sample Bars from Same Melts, Sections 10" wide × 1 to 2 3/16" thick. about 1 in. area. Elastic Elastic Elongation. Max. Reduc-Elon-Max. Reduc-Limit, tion of Limit. Load. tion. gation. Load. Area, Inches. lbs. per sq. in. p.c. p.c. lbs. per sq. in. p. c. p. c. 35.100 39.6 20.2 16.8 67,490 47.5 27.5 41,580 73,050 37,680 26.6 52.6 42,650 75,620 39.7 8.2 70,160 24.4 36.8 11.8 39,700 65,500 28.8 40,280 70,280 47.9 44.4 41,580 65,060 38.5 33,140 47.5 27.5 38.5 17.8 73,050 82.5 13.5 82,860 6 .600 44.5 20.0 43,750 75,000 40.0 39.4 36.8 15.3 31,110 61,060 42.7 28.8 42,210 69,730 18.7 82.9 33,990 63,220 52.2 28.1 40,230 69,720 34.6 32.6 29,330 63,100 48.3 13.0 13.5 28.838.090 71,300 28,080 43.2 6.9 55,160 24.2 38,320 70,220 7.3 20 8 28.9 14.1 29,670 32,700 62,140 59.6 26.3 40,200 71,080 38.1 31.8 24.0 11.8 65,400 40.3 25.0 39,860 69,360 25.0 39.4 19.3 30,500 58,870 40.3 40,910 70,360 48.6 73,550 33,360 25.5 40,410 69,900 10.3 11.8 12.3 51.5 15.7 32,520 27.0 40,400 44.6 32.0 60,710 43.6 70,490 58,720 14.9 13.1 28,000 29.5 35.8 44.4 40,000 66,800 46.0 23.5 32,290 62,270 42.8 21.8 40,530 72,210 41.8 47.1 29,970 27.0 41.2 15.1 58,680 45.7 40.610 70,480

The average strength of the full-sized eye-bars was about 8000 lbs. per sq. in., or about 12% less than that of the sample test-pieces.

# TREATMENT OF STRUCTURAL STEEL.

(James Christie, Trans. A. S. C. E., 1893.)

Effect of Punching and Shearing.—There is no doubt that steel of higher tensile strength than is now accepted for structural purposes should not be punched or sheared, or that the softer material may contain elements prejudicial to its use however treated, but especially if punched. But extensive evidence is on record indicating that steel of good quality. in bars of moderate thickness and below or not much exceeding 80,000 lbs. tensile strength, is not any more, and frequently not as much, injured as wrought iron by the process of punching or shearing.

The physical effects of punching and shearing as denoted by tensile test

are for iron or steel:

Reduction of ductility; elevation of tensile strength at elastic limit; reduc-

tion of ultimate tensile strength.

In very thin material the superficial disturbance described is less than in thick; in fact, a degree of thinness is reached where this disturbance practically ceases. On the contrary, as thickness is increased the injury becomes more evident.

The effects described do not invariably ensue; for unknown reasons there

are sometimes marked deviations from what seems to be a general result.

By thoroughly annealing sheared or punched steels the ductility is to a large extent restored and the exaggerated elastic limit reduced, the change being modified by the temperature of reheating and the method of cooling.

It is probable that the best results combined with least expenditure can

be obtained by punching all holes where vital strains are not transferred by the rivets; and by reaming for important joints where strains on riveted the rivets; and by reaming for important joints where strains on riveted joints are vital, or wherever perforation may reduce sections to a minimum. The reaming should be sufficient to thoroughly remove the material disturbed by punching; to accomplish this it is best to enlarge punched holes at least ½ in diameter with the reamer.

**Eiveting.**—It is the current practice to perforate holes 1/16 in. larger than the rivet diameter. For work to be reamed it is also a usual requirement to punch the holes from ½ to 8/16 in. less than the finished diameter, the holes heing reamed to the proper size after the various parts are

the holes being reamed to the proper size after the various parts are

assembled.

It is also excellent practice to remove the sharp corner at both ends of the reamed holes, so that a fillet will be formed at the junction of the body and head of the finished rivets.

The rivets of either iron or mild steel should be heated to a bright red or yellow heat and subjected to a pressure of not less than 50 tons per square

inch of sectional area.

For rivets of ordinary length this pressure has been found sufficient to completely fill the hole. If, however, the holes and the rivets are exceptionally long, a greater pressure and a slower movement of the closing tool than is used for shorter rivets has been found advantageous in compelling the more sluggish flow of the metal throughout the longer hole.

Welding.—No welding should be allowed on any steel that enters into

structures

Upsetting.—Enlarged ends on tension bars for screw-threads, evebars. etc., are formed by upsetting the material. With proper treatment and a sufficient increment of enlarged sectional area over the body of the bar the result is entirely satisfactory. The upsetting process should be performed so that the properly heated metal is compelled to flow without folding or lapping.

Annealing.—The object of annealing structural steel is for the purpose of securing homogeneity of structure that is supposed to be impaired by unequal heating, or by the manipulation necessarily attendant on certain processes. The objects to be annealed should be heated throughout to a

uniform temperature and uniformly cooled.

The physical effects of annealing, as indicated by tensile tests, depend on the grade of steel, or the amount of hardening elements associated with it; also on the temperature to which the steel is raised, and the method or rate

of cooling the heated material.

The physical effects of annealing medium-grade steel, as indicated by tensile test, are reported very differently by different observers, some claiming directly opposite results from others. It is evident, when all the attendant conditions are considered, that the obtained results must vary both in kind and degree.

The temperatures employed will vary from 1000° to 1500° F.; possibly even a wider range is used. In some cases the heated steel is withdrawn at full imperature from the furnace and allowed to cool in the atmosphere; in thers the mass is removed from the furnace, but covered under a muffle, blessen the free radiation; or, again, the charge is retained in the furnace, and the whole mass cooled with the furnace, and more slowly than by either of the other methods.

The best general results from annealing will probably be obtained by introducing the material into a uniformly heated oven in which the temperaare is not so high as to cause a possibility of cracking by sudden and requal changing of temperature, then gradually raising the temperature the material until it is uniformly about 1200° F., then withdrawing the naterial after the temperature is somewhat reduced and cooling under nelter of a muffle, sufficiently to prevent too free and unequal cooling on

the one hand or excessively slow cooling on the other.
G. G. Mehrteus, Trans. A. S. C. E. 1893, says: "A good mild steel can be worked as readily as wrought iron in the shop or the field, and even bear still harder treatment. It was, however, often thought necessary to require preliminary annealing to remove the initial strains due to rolling. sealing is undoubtedly of great advantage to all steel above 64,000 lbs. rength per square inch, but it is questionable whether it is necessary in ofter steels. The distortions due to heating cause trouble in subsequent straightening, especially of thin plates. It cannot be denied, however, that

annealing produces greater toughness.

"In a general way all unannealed mild steel for a strength of 56,000 to 64.000 lbs. may be worked in the same way as wrought iron. Rough treatment or working at a blue heat must, however, be prohibited. Such treatment cannot be borne by wrought iron, although it does not suffer so much as soft steel. Shearing is to be avoided, except to prepare rough plates, which should afterwards be smoothed by machine tools or files before using. Drifting is also to be avoided, because the edges of holes are thereby strained beyond the yield point. Reaming drilled holes is not necessary, particularly when sharp drills are used and neat work is done. A slight countersinking of the edges of drilled holes is all that is necessary. Working the material while heated should be avoided as far as possible, and the engineer should bear this in mind when designing structures. Upsetting, cran king, and bending ought to be avoided, but when necessary the material should be annealed after completion.

The riveting of a mild-steel rivet should be finished as quickly as possible. before it cools to the dangerous heat. For this reason machine work is the best. There is a special advantage in machine work from the fact that the pressure can be retained upon the rivet until it has cooled sufficiently to

prevent elongation and the consequent loosening of the rivet.

Punching and Drilling of Steel Plates. (Proc. Inst. M. E., Aug. 1887, p. 326.)-In Prof. Unwin's report the results of the greater number of the experiments made on iron and steel plates lead to the general conclusion that, while thin plates, even of steel, do not suffer very much from punching, yet in those of 1/4 in thickness and upwards the loss of tenacity due to punching ranges from 10% to 23% in iron plates and from 11% to 33% in the case of mild steel. Mr. Parker found the loss of tenacity in steel plates to be as high as fully one third of the original strength of the plate. In drilled plates, on the contrary, there is no appreciable loss of strength. It is even possible to remove the bad effects of punching by subsequent reaming or annealing.

Working Steel at a Blue Heat.—Not only are wrought iron and steel much more brittle at a blue heat (i.e., the heat that would produce an oxide coating ranging from light straw to blue on bright steel, 430° to 600° F.), but while they are probably not seriously affected by simple exposure to b'ueness, even if prolonged, yet if they be worked in this range of temperature they remain extremely brittle after cooling, and may indeed be more brittle than when at blueness; this last point, however, is not certain. (Howe, "Metallurgy of Steel," p. 534.)

Tests by Prof. Krohn, for the German State Railways, show that working the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th

at blue heat has a decided influence on all materials tested, the injury done being greater on wrought iron and harder steel than on the softer steel. The fact that wrought iron is injured by working at a blue heat was reported by Stromeyer. (Engineering News, Jan. 9, 1892.)

A practice among boiler-makers for guarding against failures due to working at a blue heat consists in the cessation of work as soon as a plate which

had been red-hot becomes so cool that the mark produced by rubbing a

had been red-hot becomes so cool that the mark produced by rubbing a hammer-handle or other piece of wood will not glow. A plate which is not hot enough to produce this effect, yet too hot to be touched by the hand, is most probably blue-hot, and should under no circumstances be hammered or bent. (C. E. Stromever, Proc. Inst C. E. 1886.)

Welding of Steel.—A. E. Hunt (A. I. M. E., 1892) says: I have never senso-called "welded" pieces of steel pulled apart in a testing-machine or otherwise broken at the joint which have not shown a smooth cleavage—plane, as it were, such as in iron would be condemned as an imperfect weld. My experience in this matter leads me to agree with the positions weld. My experience in this matter leads me to agree with the positions taken by Mr. William Metcalf in his paper upon Steel in the Trans. A. S. C. E., vol. xvi., p. 301. Mr. Metcalf says, "I do not believe steel can be welded."

# INFLUENCE OF ANNEALING UPON MAGNETIC CAPACITY.

Prof. D. E. Hughes (Eng'g, Feb. 8, 1884, p. 130) has invented a "Magnetic Balance," for testing the condition of iron and steel, which consists chiefly of a delicate magnetic needle suspended over a graduated circular index, and a magnet coil for magnerizing the bar to be tested. He finds that the following laws hold with every variety of iron and steel:

1. The magnetic capacity is directly proportional to the softness, or mo-

lecular freedom.

2. The resistance to a feeble external magnetizing force is directly as the

hardness, or molecular rigidity.

hardness, or molecular rigidity.

The magnetic balance shows that annealing not only produces softness in iron, and consequent molecular freedom, but it entirely frees it from all strains previously introduced by drawing or hammering. Thus a bar of iron drawn or hammered has a peculiar structure, say a fibrous one, which gives a greater mechanical strength in one direction than another. This bar, if thoroughly annealed at high temperatures, becomes homogeneous in all directions, and has no longer even traces of its previous strains, provided that there has been no actual mechanical separation into a distinct series of fibres.

Effect of Annealing upon the Magnetic Capacity of Different Wires; Tests by the Magnetic Balance.

Magnetic Capacity.		
right as sent.	Annealed.	
deg. on scale. 230 236 275 165 212 150	deg. on scale. 525 510 503 430 340 291 172	
	50	

Crucible Fine Steel, Tempered.	Magnetic Capacity.	
Bright-yellow heat, cooled completely in cold water. Yellow-red heat, cooled completely in cold water. Bright yellow, let down in cold water to straw color.	28 32 33 43	
" cooled completely in oil	51 58	
Reheat, cooled completely in water	66 72 84	

#### SPECIFICATIONS FOR STREL.

Structural Steel.—There has been a change during the ten years from 100 to 1390, in the opinions of engineers, as to the requirements in specificatrons for structural steel, in the direction of a preference for metal of low tensile strength and great ductility. The following specifications of different dates are given by A. E. Hunt and G. H. Clapp, Trans. A. I. M. E. 1890, rix, 926:

Tension Members.	1879.	1881.	1882.	1895.	1887.	1883.
Elastic limit	50,000	40@45,000	40,000	40,000	40,000	38,000
Tensile strength	80,000		70,000	70,000	67@:5,000	
Emngation in 8 in	12%	18%	18%	18%	20%	255%
Reduction area			45%	42%	42%	45%
Kind of steel	O.H.	O.H. or B.	О.Н.	Not	O.H. or B.	O.H.or B.
COMPRESSION MEMBER	<b>s</b> :			spec.		
Elastic limit	Same	50@,55,000	50,000	50,000	Same as	tension
Tensile strength	8.5	80@90,000	80,000	80.000	mem	bers.
Elongation in 8 in	ten-	12%	15%	15%	•	•

20%

35%

35%

F. H. Lewis (Iron Age, Nov. 8, 1892) says: Regarding steel to be used under the same conditions as wrought iron, that is, to be punched without reaming, there seems to be a decided opinion (and a growing one) among engineers, that it is not safe to use steel in this way, when the ultimate tensile strength is above 65,000 lbs. The reason for this is, not so much because there is any marked change in the material of this grade, but because all steel, especially Bessemer steel, has a tendency to segregations of carbon and phosphorus, producing places in the metal which are harder than they normally should be. As long as the percentages of carbon and phosphorus are kept low, the effect of these segregations is inconsiderable; but when these percentages are increased, the existence of these hard spots in the metal becomes more marked, and it is therefore less adapted to the treatment to which wrought iron is subjected.

There is a wide consensus of opinion that at an ultimate of 64,000 to 65,000 lhs, the percentages of carbon and phosphorus (which are the two hardening elements) reach a point where the steel has a tendency to become tender, and to crack when subjected to rough treatment.

Reduction area ..... sion.

A grade of steel, therefore, running in ultimate strength from 54,000 to 62,000 lbs., or in some cases to 64,000 lbs., is now generally considered a proper material for this class of work.

Millard Hunsicker, engineer of tests of Carnegie, Phipps & Co., writes as follows concerning grades of structural steel (Eng'g News, June 2, 1892); Grade of Steel.—Steel shall be of three grades—soft, medium, high. Soft Steel.—Specimens from finished material for test, cut to size speci-

fied above, shall have an ultimate strength of from 54,000 to 62,000 lbs, per so, in.; elastic limit one half the ultimate strength; minimum elongation of 26% in 8 in.; minimum reduction of area at fracture 50%. This grade of steel to bend cold 180° flat on itself, without sign of fracture on the outside of the bent portion.

Medium Steel.—Specimens from finished material for test, cut to size specified above, shall have an ultimate strength of 60,000 to 68,000 lbs. per sq. in.; elastic limit one half the ultimate strength; minimum elongation 20% in 8 in.; minimum reduction of area at fracture, 40%. This grade of steel

to bend cold 180° to a diameter equal to the thickness of the piece tested, without crack or flaw on the outside of the bent portion.

High Steel.—Specimens from finished material for test, cut to size speci-High Steet.—Specimens from minsned material for fest, cut to size specified above, shall have an ultimate strength of 66 000 to 74,000 lbs. per sq. in; elastic limit one half the ultimate strength; minimum elongation, 18% in 8 in.; minimum reduction of area at fracture, 35%. This grade of steel to bend cold 180° to a diameter equal to three times the thickness of the test-plece, without crack or flaw on the outside of the bent portion.

F. H. Lewis, Engineers' Club of Phila., 1891, gives specifications for structural steel as follows: The phosphorus in acid open-hearth steel must be less than 0.10%, and in all Bessemer or basic steel must be less than 0.08%

The material will be tested in specimens of at least one half square inch section, cut from the fluished material. Each melt of steel will be tested and each section rolled, and also widely differing gauges of the same section.

Soft Steel. Medium Steel. Requirements. 32,000 Elastic limit, lbs. per sq. in., at least..... 85,000 60,000 to 70,000 20% Reduction of area, per cent, at least..... 45% 40%

In soft steel for web-plates over 86 in. wide the elongation will be reduced to 20% and the reduction of area to 40%.

It must bend cold 180 degrees and close down on itself without cracking on the outside.

%-inch holes pitched % inch from a roll-finished or machined edge and 2 inches between centres must not crack the metal; and %-inch holes pitched 11/2 inches between centres and 11/2 inches from the edge must not split the metal between the holes.

Medium steel must bend 180 degrees on itself around a 11/2-inch round bar.

Full sized eye-bars, when tested to destruction, must show an ultimate strength of at least 55,000 lbs., and stretch at least 10% in a length of 10 feet.

A. E. Hunt, in discussing Mr. Lewis's specifications, advises a requirement as to the character of the fracture of tensile tests being entirely silky in sections of less than 7 square inches, and in larger sections the test specimen not to contain over 25% crystalline or granular fracture. He also advises the drifting test as a requirement of both soft and medium steel; the requirethe drifting test as a requirement of both soft and medium steel; the requirement being worded about as follows: "Steel to be capable of having a hole, punched for a 34" rivet, enlarged by blows of a sledge upon a drift-pin until the hole (which in the first case should be punched 114" from the rollinish or machined edge) is 114" diameter in the case of soft steel, and 114" diameter in the case of medium steel, without fracture." This drifting test is an excellent requirement, not only as a matter of record, but as a measure of the destribit of the city. ure of the ductility of the steel.

H. H. Campbell, Trans. A. I. M. E. 1893, says: In adhering to the safest

course, engineers are continually calling for a metal with lower phosphorus. The limit has been 0.10%; it is now 0.08%; soon it will be 0.06%; it should be

A. E. Hunt, Trans. A. I. M. E. 1892, says: Why should the tests for steel be so much more rigid than for iron destined for the same purpose? Some of the reasons are as follows: Experience shows that the acceptable qualities of one melt of steel offer no absolute guarantee that the next melt to it, even though made of the same stock, will be equally satisfactory.

Again, good wrought iron, in plates and angles, has a narrow range (from 25,000 to 27,000 lbs.) in elastic limit per square inch, and a tensile strength of from 46,000 to 52,000 lbs. per square inch; whereas for steel the range in elastic limit is from 27,000 to 80,000 lbs., and in tensile strength from 48,000 to 120,000 lbs. per square inch, with corresponding variations in ductility. Moreover, steel is much more susceptible than wrought iron to widely varying effects of treatment, by hardening, cold rolling, or overheating.

It is now almost universally recognized that soft steel, if properly made

and of good quality, is for many purposes a safe and satisfactory substitute for wrought iron, being capable of standing the same shop-treatment as wrought iron. But the conviction is equally general, that poor steel, or an unsuitable grade of steel, is a very dangerous substitute for wrought iron

even under the same unit strains.

For this reason it is advisable to make more rigid requirements in selecting material which may range between the brittleness of glass and a duc-

thirty greater than that of wrought iron.

Specifications for Steel for the World's Fair Buildings.
Chicago, 1892.—No steel shall contain more than .0% of phosphorus.
From three separate ingots of each cast a round sample bar, not less than 34 in. in diameter, and having a length not less than twelve diameters be-tween jaws of testing machine, shall be furnished and tested by the manu-facturer. From these test-pieces alone the quality of the material in the steel works shall be determined as follows:

All the test-bars must have a tensile strength of from 60,000 to 68,000 lbs. per square inch, an elastic limit of not less than half the tensile strength of the test-bar, an elongation of not less than 24%, and a reduction of area of not less than 40% at the point of fracture. In determining the ductility, the elongation shall be measured after breaking on an original length of ten times

the shortest dimension of the test-piece

Rivet steel shall have a tensile strength of from 52,000 to 58,000 lbs. per square inch, and an elastic limit, elongation, and reduction of area at the point of fracture as stated above for test-bars, and be capable of bending double flat, without sign of fracture on the convex surface of the bend

Boiler, Ship, and Tank Plates. W. F. Mattes (Iron Age, July 9, 1988) recommends that the different qualities of steel plates be classified as follows:

Tank.	Ship.	Shell.	Fire-box.
75,000	55,000 to 65,000	55,000 to 65,000	55,000 to 60,000
	20	223/6	25
			Flat.
	0.10	0.06 0.065	0 045 0 05 Rigid.
	Limit,   75,000	Limit,   55,000   to 65,000   to 65,000	Limit,   55,000   55,000   75,000   to 65,000   to 65,000   to 65,000

A steel-manufacturing firm in Pittsburgh advertises six different grades of steel as follows:

Extra fire-box. Fire-box. Flange. Extra flange. Shell. The probable average phosphorus content in these grades is, respectively:
.02
.03
.04
0.6
0.8
.10. .04

Different specifications for steel plates are the following (1889):

United States Navy.-Shell: Tensile strength, 58,000 to 67,000 lbs. per sq. in.; elongation, 22% in 8-in. transverse section, 25% in 8-in. longitudinal section. Flange: Tensile strength, 50,000 to 58,000 lbs.; elongation. 26% in 8 inches. Chemical requirements: P. not over .035%; S. not over .040%.

Cold-bending test: Specimen to stand being bent flat on itself.

Quenching test: Steel heated to cherry-red, plunged in water 82° F., and to be bent around curve 1½ times thickness of the plate.

British Admiralty.—Tensile strength, 58,240 to 67,200 lbs.; elongation in 8 in., 20%; same cold-bending and quenching tests as U. S. Navy.

American Boiler-makers' Association.—Tensile strength, 55,000 to 65,000

American Botter-makers' Association.—Tensile strength, 50.000 to 50.000 lbs.; elongation in 8 in., 20% for plates \$4 in. thick and under; 22% for plates \$4 in. and over.
Cold-bending test: For plates \$4 in. and over.
Cold-bending test: For plates \$4 in. thick and under, specimen must bend back on itself without fracture; for plates over \$4 in. thick, specimen must withstand bending 180° around a mandril, 1½ times the thickness of the plate.

Chemical requirements: P. not over .040%; S. not over .030%.

American Shipmasters' Association.—Tensile strength, 62,000 to 72,000

lbs.; elongation, 16% on pieces 9 in. long.

Strips cut from plates, heated to a low red and cooled in water the temperature of which is 82° F., to undergo without crack or fracture being doubled over a curve the diameter of which does not exceed three times the thickness of the piece tested.

Boller Shell-plates, Front Tube-plate, and Butt-strips. (Penna, R. R., 1892.)—The metal desired is a homogeneous steel having a tensile strength of 60,000 lbs. per sq. in., and an elongation of 25% in a section originally 8 in. long. These plates will not be accepted if the test-

piece shows

1. A tensile strength of less than 55,000 lbs. per sq. in.; 2. An elongation in section originally 8 in. long less than 20%; 3. A tensile strength over 65,000 lbs. per sq. in.; should, however, the elongation be 27% or over, plates will not be rejected for high strength.

Inside Fire-box Plates, including Back Tube-plate. (Penna R. R., 1892.)—The metal should show a tensile strength of 60,000 lbs.

per sq. in., and an elongation of 28% in a test section originally 8 in. long.

Chemical Composition.	Desirea.	will be Kejected.
Carbon	0.18 per cent.	over 0.25, below 0.15
Phosphorus, not above	0.03 "	over 0.04
Manganese, not above	0.40 "	over 0.55
Silicon, not above	0.02 ''	over 0.04
Sulphur, not above	0.02 ''	over 0 05
Copper, not above	0.03 "	over 0.05

These plates will not be accepted if the test-piece shows: 1. A tensile strength of less than 55,000 lbs. per sq. in.; 2. An elongation in section originally 8 in. long, less than 22% (20% in plates 14 inch thick); 3. A tensite strength over 65,000 lbs. per sq. in. (80,000 for plates 14 in. thick); should, however, the elongation be 30% or over, plates will not be rejected for high strength; 4. Any single seam or cavity more than 14 in. long in either of the

three fractures obtained on test for homogeneity, as described below. Homogeneity test: A portion of the test-piece is nicked with a chisel, or rooved on a machine, transversely about a sixteenth of an inch deep, in three places about 1½ in. apart. The first groove should be made on one aide, 1½ in. from the square end of the piece; the second, 1½ in. from it on the opposite side; and the third, 1½ in. from the last, and on the opposite side from it. The test-piece is then put in a vise, with the first process about 1½ in above the jaw, care being taken to hold it firmly groove about 14 in. above the jaw, care being taken to hold it firmly. The projecting end of the test-piece is then broken off by means of a harmer, a number of light blows being used, and the bending being away from the groove. The piece is broken at the other two grooves in the same way. The object of this treatment is to open and render visible to the eye any seams due to failure to weld up, or to foreign interposed matter, or cavities due to gas bubbles in the ingot. After rupture, one side of each fracture is examined, a pocket lens being used if necessary, and the length of the seams and cavities is determined. The length of the longest seam or cavity determines the acceptance or rejection of the plate.

Dr. C. B. Dudley, chemist of the Penna. R. R. (Trans. A. I. M. E. 1892, vol. xx. p. 709), gives as an example of the progressive improvement in specifications the following: In the early days of steel boilers the specification in force called for steel of not less than 50,000 lbs. tensile strength and not less than 25% elongation. Some metal was received having 75,000 lbs. tensile strength, and as the elongation was all right it was accepted; but when those plates were being flanged in the boiler-shop they cracked and went to pieces. As a result, an upper limit of 65,000 lbs. tensile strength was

established.

Am. Ry. Master Mechanics' Assn., 1894.—Same as Penna. R. R. Specifications of 1892, including homogeneity test.

Plate, Tank, and Sheet Steel. (Penna. R. R., 1888.*)—A test strip taken lengthwise of each plate, ½ in thick and over, without annealing, should have a tensile strength of 60,000 lbs. per sq. in., and an elongation of 25% in a section originally 2 in. long.

Sheets will not be accepted if the tests show the tensile strength less than

55,000 lbs. or greater than 70,000 lbs. per sq. in., nor if the elongation falls

Steel Billets for Main and Parallel Rods. (Penna, R. R., 1884.) One billet from each lot of 25 billets or smaller shipment of steel for main or parallel rods for locomotives will have a piece drawn from it under the hammer and a test-section will be turned down on this piece to % in. in diameter and 2 in long. Such test-piece should show a tensile strength of 85,000 lbs. and an elongation of 15%.

No lot will be acceptable if the test shows less than 80,000 lbs. tensile

strength or 12% e'ongation in 2 in.

Locomotive Spring Steel. (Penna. R. R., 1887.)—Bars which vary more than 0.01 in. in thickness, or more than 0.02 in. in width, from the size ordered, or which break where they are not nicked, or which, when properly nicked and held, fail to break square across where they are nicked, will be returned. The metal desired has the following composition: Carbon, 1.00%; manganese. 0.25%; phosphorus, not over 0.03%; silicon, not over 0.15%; sulphur, not over 0.03%; copper, not over 0.03%.

Shipments will not be accepted which show on analysis less than 0.90% or

over 1.10% of carbon, or over 0.50% of manganese, 0.05% of phosphorus, 0.25% of silicon, 0.05% of sulphur, and 0.05% of copper.

Steel for Locomotive Driving-axles. (Penna. R. R., 1883.)-Steel for driving-axles should have a tensile strength of 85,000 lbs, per sq. in. and an elongation of 15% in section originally 2 in. long and 56 in. diameter, taken midway between centre and circumference of the axle

Axles will not be accepted if tensile strength is less than 80,000 lbs., nor if

elongation is below 12%.

Steel for Crank-pins. (Penna, R. R., 1886.)—Steel ingots for crank-

^{*}The Penna, R. R. specifications of the several dates given are still in force, July, 1894.

pins must be swaged as per drawings. For each lot of 50 ingots ordered, 51 must be furnished, from which one will be taken at random, and two pieces, with test sections §6 in. diameter and 2 in. long, will be cut from any part of it, provided that centre line of test-pieces falls 1½ in. from centre line of ingot. Such test-pieces should have a tensile strength of 85,000 lbs, per sq. in. and an elongation of 15%. Ingots will not be accepted if the tensile strength is less than 80,000 lbs. nor if the elongation is below 12%.

Dr. Chas. B. Dudley, Chemist of the P. R. R. (Trans. A. I. M. E. 1892), referring to this specification, says: In testing a recent shipment, the piece from one side of the pin showed 88,000 lbs. strength and 22% elongation, and the piece from the opposite side showed 106,000 lbs. strength and 14% clongation. Each piece was above the specified strength and ductility, but the lack of uniformity between the two sides of the pin was so marked that it was finally determined not to put the lot of 50 pins in use. To guard against trouble of this sort in future, the specifications are to be amended to require that the difference in ultimate strength of the two specimens shall not be more than 3000 lbs.

Steel Car-axles. (Penna. R. R., 1891.)—For each 100 axles ordered 101 must be furnished, from which one will be taken at random, and subjected

to tests prescribed.

Axies for passenger cars and passenger locomotive and tender trucks must be made of steel and be rough turned throughout. Two test-pieces will be cut from an axle, and the test sections of % in. diameter by 2 in. long may fall at any part of the axle provided that the centre line of the testsection is 1 in. from the centre line of the axle. Such test-pieces should have a tensile strength of 80,000 lbs. per sq. in. and an elongation of 20%. Axles will not be accepted if the tensile strength is less than 75,000 lbs. or the elongation below 15%, nor if the fractures are irregular.

Axles for freight cars and freight-locomotive tender trucks must be made of steel, and will be subjected to the following test, which they must stand

without fracture:

AXLES 4 IN. DIAMETER AT CENTRE - Five blows at 20 ft. of a 1640-lb. weight, striking midway between supports 8 ft. apart; axle to be turned over after each blow.

Axles 4% in. DIAMETER AT CENTRE—Five blows at 25 ft. of a 1640-lb. weight, striking midway between supports 3 ft. apart: axles to be turned over after each blow.

Steel for Rails.-P. H. Dudley (Trans. A. S. C. E. 1893) recommends the following chemical composition for rails of the weights specified:

Weights per yard..... 60, 65, and 70 lbs. 75 and 80 lbs. 100 lbs. .50 to .60% .65 to .75%

For all weights: Manganese, .80% to 1.00%; silicon, .10% to .15%; phosphorus, not over .06%; sulphur, not over .07%.

Carbon by itself up to or over 1% increases the hardness and tensile strength the iron rapidly, and at the same time decreases the elongation. The of the iron rapidly, and at the same time decreases the elongation. The amount of carbon in the early rails ranged from 0.25 to 0.5 of 1% while in recent rails and very heavy sections it has been increased to 0.5, 0.6, and 0.75 of 1%. With good irons and suitable sections it can run from 0 55 to 0.75 of 1%, according to the section, and obtain fine-grain tough rails with low phosphorus.

Manganese is a necessary ingredient in the first place to take up the oxide of iron formed in the bath of molten metal during the blow. It also is of great assistance to check red shortness of the ingots during the first passes in the blooming train. In the early rails 0.4 to 0.5 of 1% was sufficient when the ingots were hammered or the reductions in the passes in the trains were very much lighter than to day. With the more rapid rolling of recent years the manganese is very often increased to 1.25% to 1.5%. It makes the rails hard with a coarse crystallization and with a decided tendency to brittleness. Rails high in manganese seem to flow quite easily, especially under severe service or the use of sand, and oxidize rapidly in tunnels. From 0.80 to 1.00% seems to be all that is necessary for good rolling at the present time

Steel Bivets. (H. C. Torrance, Amer. Boiler Mfrs. Assn., 1890.)—The Government requirements for the rivets used in boilers of the cruisers built in 1890 are: For longitudinal seams, 58,000 to 67,000 lbs. tensile strength; elongation, not less than 26% in 8 in., and all others a tensile strength of 50,000 to 58,000 lbs., with an elongation of not less than 30%. They shall be capable of being flattened out cold under the hammer to a thickness of one half the diameter, and of being flattened out hot to a thickness of one third 402 STEEL.

the diameter without showing cracks or flaws. The steel must not contain more than .085 of 1% of phosphorus, nor more than .04 of 1% of sulphur.

A lot of 30 succesive tests of rivet steel of the low tensile strength quality

and 12 tests of the higher tensile strength gave the following results:

	Low Steel.	Higher.
Tensile strength, lbs. per sq. in	51,230 to 54,100	59,100 to 61,850
Elastic limit, lbs. per sq. in	31.050 to 33.190	82.080 to 33.070
Elongation in 8 in., per cent	80.5 to 85 25	28.5 to 31.75
Carbon, per cent	.11 to .14	.16 to .18
Phosphorus	.027 to .029	.08
Sulphur	.033 to .035	.033 to .035

The safest steel rivets are those of the lowest tensile strength, since they are the least liable to become hardened and fracture by hammering, or to break from repeated concussive and vibratory strains to which they are subjected in practice. For calculations of the strength of riveted joints the tensile strength may be taken as the average of the figures above given, or 52,665 lbs., and the shearing strength at 45,000 lbs. per sq. in.

#### MISCELLANEOUS NOTES ON STEEL.

May Carbon be Burned Out of Steel?—Experiments made at the Laboratory of the Penna. Railroad Co. (Specifications for Springs, 1889) with the steel of spiral springs, show that the place from which the borings are taken for analysis has a very important influence on the amount of carbon found. If the sample is a piece of the round bar, and the borings are taken from the end of this piece, the carbon is always higher than if the borings are taken from the side of the piece. It is common to find a difference of 0.10% between the centre and side of the bar, and in some cases the difference is as high as 0.23%. Furthermore, experiments made with samples taken from the drawn out end of the bar show, usually, less carbon than samples taken from the round part of the bar, even though the borings may be taken out of the side in both cases.

Apparently during the process of reducing the metal from the ingots to the round bar, with successive heatings, the carbon in the outside of the bar is

burned out.

66 Hecalescence " of Steel.—If we heat a bar of copper by a flame of constant strength, and note carefully the interval of time occupied in passing from each degree to the next higher degree, we find that these intervals increase regularly, i.e., that the bar heats more and more slowly, as its temperature approaches that of the flame. If we substitute a bar of steel for one of copper, we find that these intervals increase regularly up to a certain point, when the rise of temperature is suddenly and in most cases greatly retarded or even completely arrested. After this the regular rise of temperature is resumed, though other like retardations may recur as the temperature rises farther. So if we cool a bar of steel slowly the fail of temperature is greatly retarded when it reaches a certain point in duli redness. If the steel contains much carbon, and if certain favoring conditions be maintained, the temperature, after descending regularly, suddenly rises spontaneously very abruptly, remains stationary a while, and then redescends. This spontaneous reheating is known as "recalescence."

These retardations indicate that some change which absorbs or evolves heat occurs within the metal. A retardation while the temperature is rising points to a change which absorbs heat; a retardation during cooling points to some change which evolves heat. (Henry M. Howe, on "Heat Treatment

of Steel," Trans. A. I. M. E., vol. xxii.)

Effect of Nicking a Steel Bar. - The statement is sometimes made that, owing to the homogeneity of steel, a bar with a surface crack or nick in one of its edges is liable to fail by the gradual spreading of the nick, and thus break under a very much smaller load than a sound bar. With iron it is contended this does not occur, as this metal has a fibrous structure. Sir Benjamin Baker has, however, shown that this theory, at least so far as statical stress is concerned, is opposed to the facts, as he purposely made nicks in specimens of the mild steel used at the Forth Bridge, but found that the tensile strength of the whole was thus reduced by only about one ton per square inch of section. In an experiment by the Union Bridge Company a full sized steel counter-bar, with a screw-turned buckle connection, was tested under a heavy statical stress, and at the same time a weight weighing 1040 lbs. was allowed to drop on it from various heights. The bar was first broken by ordinary statical strain, and showed a breaking stress of 65,800 lbs. per square inch. The longer of the broken parts was then placed in the machine and put under the following loads, whilst a weight, as already mentioned, was dropped on it from various heights at a distance of five feet from the sleeve-nut of the turn-buckle, as shown below:

Stress in pounds per sq. in.... . 50,000 55,000 63,000 65,000 ft. in. ft. in. ft. in. ft. in. ft, in. 2 1 2 6 8 0 Height of fall..... 4 0 5 0

The weight was then shifted so as to fall diretly on the sleeve-nut, and the test proceeded as follows:

Stress on specimen in lbs. per square inch ...... 65,350 65,350 68,800 ft. ft. ft. Height of fall.....

It will be seen that under this trial the bar carried more than when originally tested statically, showing that the nicking of the bar by screwing had not appreciably weakened its power of resisting shocks.—Eng's Neves.

Electric Conductivity of Steel.—Louis Campredon reports in Le Génic Civil the results of a series of experiments made to ascertain the rela-

tions between electric resistance and chemical compositions of steel. wires were No. 17, 8 mm. diameter. The results are given in the table below:

	Car- bon.	Silicon.	Sulphur.	Phos- phorus.	Manga- nese.	Total.	Electric Resist- ance, Ohms.
1	0.090	0.020	0.050	0.030	0.210	0.410	127.7
2	0.100	0.020	0.050	0.040	0.240	0.450	133.0
3	0.100	0.020	0.060	0.040	0.260	0.480	187.5
4	0.100	0.020	0.050	0.050	0.310	0.530	140.3
5	0.120	0.030	0.070	0.050	0.830	0.600	142.7
6	0.110	0.030	0.060	0.060	0.850	0.610	144.5
7	0.100	0.020	0.070	0.040	0.400	0.630	149.0
8	0.120	0.020	0.070	0.070	0.400	0.680	150.8
9	0.110	0.030	0.060	0.060	0.490	0.750	156.0
10	0.140	0.930	0.060	0.080	0.540	0.850	173.0

An examination of these series of figures shows that the purer and softer steel the better is its electric conductivity, and, furthermore, that manga-

nese is the element which most influences the conductivity.

Specific Gravity of Soft Steel. (W. Kent, Trans. A. I. M. E., ziv. S55...—Five specimens of boiler-plate of C. 0.14, P. 0.03 gave an average sp. gr. of 7.932, maximum variation 0.008. The pieces were first planed to remove all possible scale indentations, then filed smooth, then cleaned in dilute sulphuric acid, and then boiled in distilled water, to remove all traces

of air from the surface

The figures of specific gravity thus obtained by careful experiment on bright, smooth pieces of steel are, however, too high for use in determining the weights of rolled plates for commercial purposes. The actual average thickness of these plates is always a little less than is shown by the calipers, on account of the oxide of iron on the surface, and because the surface is not perfectly smooth and regular. A number of experiments on commercial plates, and comparison of other authorities, led to the figure 7.854 as the average specific gravity of open-hearth boiler plate steel. This figure is easily remembered as being the same figure with change of position of the decimal point (.7854) which expresses the relation of the area of a circle to that of its circumscribed square. Taking the weight of a cubic foot of water at 62° F. as 62.36 lbs. (average of several authorities), this figure gives 489.775 lbs. as the weight of a cubic foot of steel, or the even figure, 490 lbs., may be taken as a convenient figure, and accurate within the limits of the error of observation.

A common method of approximating the weight of iron plates is to consider them to weigh 40 lbs. per square foot one inch thick. Taking this weight and adding  $2\pi$  gives almost exactly the weight of steel boiler-plate given above  $(40 \times 12 \times 1.02 = 489.6 \, \text{lbs.})$  per cubic foot).

Occasional Failures of Bessemer Steel.-G. H. Clapp and A. E. Hunt, in their paper on "The Inspection of Materials of Construction in 404 STEEL.

the United States" (Trans. A. I. M. E., vol. xix), say: Numerous instances could be cited to show the unreliability of Bessemer steel for structural purposes. One of the most marked, however, was the following: A 12-in, 1-beam weighing 30 lbs. to the foot, 20 feet long, on being unloaded from a car broke in two about 6 feet from one end.

The analyses and tensile tests made do not show any cause for the failure. The cold and quench bending tests of both the original %-in. round test-pieces, and of pieces cut from the finished material, gave satisfactory results; the cold-bending tests closing down on themselves without sign of

fracture.

Numerous other cases of angles and plates that were so hard in places as to break off short in punching, or, what was worse, to break the punches, have come under our observation, and although makers of Bessemer steel claim that this is just as likely to occur in open-hearth as in Bessemer steel, we have as yet never seen an instance of failure of this kind in open-hearth steel having a composition such as C 0.25%, Mn 0.70%, P 0.80%.

J. W. Wailes, in a paper read before the Chemical Section of the British Association for the Advancement of Science, in speaking of mysterious failures of steel, states that investigation shows that "these failures occur in steel of one class, viz., soft steel made by the Bessemer process."

Segregation in Steel Ingots. (A. Pourcel, Trans. A. I. M. E. 1893.)

—H. M. Howe, in his "Metallurgy of Steel," gives a résumé of observations, with the results of numerous analyses, bearing upon the phenomena of segregation.

In 1881 Mr. Stubbs, of Manchester, showed the heterogeneous results of

analyses made upon different parts of an ingot of large section.

A test-piece taken 24 inches from the head of the ingot 7.5 feet in length gave by analysis very different results from those of a test-piece taken 30 inches from the bottom.

	C.	Mn.	Si.	8.	Р.
Top	0.92	0.535	0.043	0.161	0.261
Bottom	0 37	0.498	0.006	0.025	0.096

Windsor Richards says he had often observed in test-pieces taken from different points of one plate variations of 0.05% of carbon. Segregation is specially pronounced in an ingot in its central portion, and around the space of the piping.

It is most observable in large ingots, but in blocks of smaller weight and

limited dimensions, subjected to the influence of solidification as rapid as An ingot of Martin steel, weighing about 1000 lbs., and having a height of 1.10 feet and a section of 10.24 inches square, gave the following:

1. Upper section:	C.	ъ.	Р.	MD.
Border	0.830	0.040	0.083	0.490
Centre		0.077	0.057	0.430
2. Lower section:	C.	8.	Ρ.	Mn.
Border	0.280	0.029	0.016	0.890
Centre		0.030	0.038	0.890
3. Middle section:	C.	8.	Ρ.	Mn.
Border	0.820	0.025	0.025	0.400
Centre		0.048	0.048	0.400

Segregation is less marked in ingots of extra-soft metal cast in cast-iron moulds of considerable thickness. It is, however, still important and explains the difference often shown by the results of tests on pieces taken from different portions of a plate. Two samples, taken from the sound part of a flat ingot, one on the outside and the other in the centre, 7.9 inches from the upper edge, gave:

	v.	D.	r.	MIII.
Centre	0.14	0.053	0.072	0.576
Exterior	0.11	0.036	0.027	0.610

Manganese is the element most uniformly disseminated in hard or soft

steel.

For cannon of large calibre, if we reject, in addition to the part cast in sand and called the masselotte (sinking-head), one third of the upper part of the ingot, we can obtain a tube practically homogeneous in composition, because the central part is naturally removed by the boring of the tube. With extra-soft steels, destined for ship or boiler-plates, the solution for practically perfect homogeneity lies in the obtaining of a metal more closely deserving its name of extra soft metal.

The injurious consequences of segregation must be suppressed by reduc-

ing, as far as possible, the elements subject to liquation.

Earliest Uses of Steel for Structural Purposes. (G. G. Mehrtens, Trans. A. S. C. E. 1893).—The Pennsylvania Railroad Company first introduced Bessemer steel in America in locomotive boilers in the year 1.63, but the steel was too hard and brittle for such use. The first plates made for steel boilers had a tenacity of 85,000 to 92,000 lbs. and an elongation of but 7% to 10%. The results were not favorable, and the steel works were soon forced to offer a material of less tenacity and more ductility. The requirements were therefore reduced to a tenacity of 78,000 lbs. or less, and the elongation was increased to 15% or more. Even with this, between the years 1870 and 1880, many explosions occurred and many careful examinations were made to determine their cause. It was found on examining the rivet-holes that there were incipient changes in the metal, many cracks around them, and points near them were corroded with rust, all caused by the shock of tools in manufacturing. It was evident that the material was unsuitable, and that the treatment must be changed. In the beginning of 1878, Mr. Parker, chief engineer of the Lloyds, stated that there was then but one Euglish steamer in possession of a steel boiler; a year later there were 120. In 1878 there were but five large English steamers built of steel, while in 1883 there were 116 building. The use of Bessemer steel in bridge-building was tried first on the Dutch State railways in 1868-64, then in England and Austria. In 1874 a bridge was built of Bessemer steel in Austria. The first use of cast steel for bridges was in America, for the St. Louis Arch Bridge and for the wire of the East River Bridge. These gave an impetus to the use of ingot metal, and before 1880 the Glasgow and Plattsmouth Bridges over the Missouri River were also built of ingot metal. Steel eyebars were applied for the first time in the Glasgow Bridge. Since 1880 the introduction of mild steel in all kinds of engineering structures has steadily increased.

#### STEEL CASTINGS.

(E. S. Cramp, Engineering Congress, Dept. of Marine Eng'g, Chicago, 1893.)

In 1891 American steel-founders had successfully produced a considerable variety of heavy and difficult castings, of which the following are the most noteworthy specimens:

Bed-plates up to 24,000 lbs.; stern-posts up to 54,000 lbs.; stems up to 21,000 lbs.; hydraulic cylinders up to 11,000 lbs.; shaft-struts up to 82,000 lbs.;

hawse-pipes up to 7500 lbs.; stern-pipes up to 8000 lbs.

The percentage of success in these classes of castings since 1890 has ranged from 65% in the more difficult forms to 90% in the simpler ones; the tensile strength has been from 62,000 to 78,000 lbs., elongation from 15% to 25%. The best performance recorded is that of a guide, cast in January, 1893, which

developed 84,000 lbs. tensile strength and 15.6% elongation.

The first steel castings of which anything is generally known were crossing frogs made for the Philadelphia & Reading R. R. in July, 1867, by the William Butcher Steel Works, now the Midvale St. el Co. The moulds were made of a mixture of ground fire-brick, black-lead crucible-pots ground fine, and fire-clay, and washed with a black-lead wash. The seel was melted in crucibles, and was about as hard as tool steel. The surface of these castings was very smooth, but the interior was very much honey-combed. This was before the days when the use of silicon was known for solidifying steel. The sponginess, which was almost universal, was a great obstacle to their general adoption.

The next step was to leave the ground pots out of the moulding mixture and to wash the mould with finely ground fire-brick. This was a great improvement, especially in very heavy castings; but this mixture still clung so strongly to the casting that only comparatively simple shapes could be made with certainty. A mould made of such a mixture became almost as hard as fire-brick, and was such an obstacle to the proper shrinkage of castings, that, when at all complicated in shape, they had so great a tendency to crack as to make their successful manufacture almost impossible. By this time the use of silicon had been discovered, and the only obstacle in the way of making good castings was a suitable moulding mixture. This was ultimately found in mixtures having the various kinds of silica sand as the principal constituent.

One of the most fertile sources of defects in castings is a bad design. Very intricate shapes can be cast successfully if they are so designed as to cool uniformly. Mr. Cramp says while he is not yet prepared to state that anything that can be cast successfully in iron can be cast in steel, indications seem to point that way in all cases where it is possible to put on suit-

able sinking heads for feeding the casting.

H. L. Gantt (Trans. A. S. M. E., xii. 710) says: Steel castings not only shrink much more than iron ones, but with less regularity. The amount of shrinkage varies with the composition and the heat of the metal; the hotter the metal the greater the shrinkage; and, as we get smoother castings from hot metal, it is better to make allowance for large shrinkage and pour the metal as hot as possible. Allow 3/16 or 1/4 in. per ft. in length for shrinkage, and 1/4 in. for finish on machined surfaces, except such as are cast "up." Cope surfaces which are to be machined should, in large or hard castings, have an allowance of from 1/2 to 1/2 in. for finish, as a large mass of netal slowly rising in a mould is apt to become crusty on the surface, and such a crust is sure to be full of imperfections. On small, soft castings 1/2 in. on drag side and 1/2 in. on cope side will be sufficient. No core should have less than ¼ in. finish on a side and very large ones should have as much as ¼ in. on a side. Blow-holes can be entirely prevented in castings by the addition of manganese and silicon in sufficient quantities; but both of these cause brittleness, and it is the object of the conscientious steelmaker to put no more manganese and silicon in his steel than is just sufficient to make it solid. The best results are arrived at when all portions of

the castings are of a uniform thickness, or very nearly so.

The following table will illustrate the effect of annealing on tensile

strength and elongation of steel castings:

Carbon.	Unannea	led.	Annealed.			
	Tensile Strength.	Elongation.	Tensile Strength.	Elongation.		
.23% .37 .58	68,738 85,540 90,121	22.40% 8.20 2.35	67,210 82,228 106,415	81.40≴ 21.80 9.80		

The proper annealing of large castings takes nearly a week.

The proper annealing of large castings takes nearly a week. The proper steel for roll plinions, hammer dies, etc., seems to be that containing about. 60% of carbon. Such castings, properly annealed, have worn well and seldom broken. Miscellaneous gearing should contain carbon. 40% to 60%, gears larger in diameter being softest. General machinery castings should, as a rule, contain less than. 40% of carbon, those exposed to great shocks containing as low at 20% of carbon. Such castings will give a tensile strength of from 60,000 to 80,000 lbs. per sq. in. and at least 15% extension in a 2 in. long specimen. Machinery and hull castings for war-vessels for the United States Navy, as well as carriages for naval guns, contain from .20% to 30% of carbon.

The following is a partial list of castings in which steel seems to be rapidly taking the place of iron: Hydraulic cylinders, crossheads and pistons for large engines, roughing rolls, rolling-mill spindles, coupling-boxes, roll pinions, gearing, hammer-heads and dies, riveter stakes, castings for ships,

car couplers, etc.

For description of methods of manufacture of steel castings by the Bessemer, open-hearth, and crucible processes, see paper by P. G. Salom, Trans. A. I. M. E. xiv, 118.

Specifications for steel castings issued by the U.S. Navy Department, 1889 (abridged): Steel for castings must be made by either the open hearth or the crucible process, and must not show more than .06% of phosphorus. All castings must be annealed, unless otherwise directed. The tensile strength of steel castings shall be at least 60,000 lbs., with an elongation of at least 15% in 8 in. for all castings for moving parts of the machinery, and at least 10% in 8 in. for other castings. Bars 1 in. sq. shall be capable of bending cold, without fracture, through an angle of 90°, over a radius not greater than 1½ in. All castings must be sound, free from injurious roughness, sponginess, pitting, shrinkage, or other cracks, cavities, etc.

Pennsylvania Railroad specifications, 1888: Steel castings should have a

tensile strength of 70,000 lbs. per sq. in. and an elongation of 15% in section originally 2 in. long. Steel castings will not be accepted if tensile strength

falls below 60,000 lbs., nor if the elongation is less than 12%, nor if castings have blow-holes and shrinkage cracks. Castings weighing 80 lbs. or more must have cast with them a strip to be used as a test-piece. The dimensions of this strip must be % in. sq. by 12 in. long.

### MANGANESE, NICKEL, AND OTHER "ALLOY" STEELS.

Manganese Steel. (H. M. Howe, Trans. A. S. M. E., vol. xii.)—Manganese steel is an alloy of iron and manganese, incidentally, and probably

unavoidably, containing a considerable proportion of carbon.

The effect of small proportions of manganese on the hardness, strength, and ductility of iron is probably slight. The point at which manganese begins to have a predominant effect is not known: it may be somewhere about 2.5%. As the proportion of manganese rises above 2.5% the strength and ductility diminish, while the hardness increases. This effect reaches a maximum with somewhere about 6% of manganese. When the proportion of this element rises beyond 6% the strength and ductility both increase. while the hardness diminishes slightly, the maximum of both strength and ductility being reached with about 14% of manganese. With this proportion the metal is still so hard that it is very difficult to cut it with steel tools. As the proportion of manganese rises above 15% the ductility falls off abruptly, the strength remaining nearly constant till the manganese passes 18%, when it in turn diminishes suddenly.

Steel containing from 4s to 6.5s of manganese, even if it have but 0.37s of carbon, is reported to be so extremely brittle that it can be powdered under a hand-hammer when cold; yet it is ductile when hot.

Manganese steel is very free from blow-holes; it welds with great diffi-

culty; its toughness is increased by quenching from a yellow heat; its electric resistance is enormous, and very constant with changing temperature; it is low in thermal conductivity. Its remarkable combination of great hardness, which cannot be materially lessened by annealing, and great tensile strength, with astonishing toughness and ductility, at once creates and limits its usefulness. The fact that manganess steel cannot be softened, that it ever remains so hard that it can be machined only with great difficulty, sets up a barrier to its usefulness.

The following comparative results of abrasion tests of manganese and

other steel were reported by T. T. Morrell:

# ABRASION BY PRESSURE AGAINST A REVOLVING HARDENED-STEEL SHAFT.

1.0
0.4
7.5
7.0
14.0
1.00
1.00 1.19

The hardness of manganese steel seems to be of an anomalous kind. The alloy is hard, but under some conditions not rigid. It is very hard in its resistance to abrasion; it is not always hard in its resistance to impact,

Manganese steel forges readily at a yellow heat, though at a bright white heat it crumbles under the hammer. But it offers greater resistance to deformation, i.e., it is harder when hot, than carbon steel.

The most important single use for manganese-steel is for the pins which hold the buckets of elevated dredgers. Here abrasion chiefly is to be

Another important use is for the links of common chain-elevators.

As a material for stamp-shoes, for horse-shoes, for the knuckles of an automatic car-coupler, manganese steel has not met expectations.

Manganese steel has been regularly adopted for the blades of the Cyclone pulverizer. Some manganese-steel wheels are reported to have run over 300,000 miles each without turning, on a New England railroad.

Nickel Steel.—The remarkable tensile strength and ductility of nickel

steel, as shown by the test-bars and the behavior of nickel-steel armorplate under shot tests, are witness of the valuable qualities conferred upon steel by the addition of a few per cent of nickel.

The following tests were made on nickel steels by Mr. Maunsel White of the Bethlehem Iron Company (Eng. & M. Jour., Sept. 16, 1893.):

	Specimen from—	Diam., in.	Length, in.	Tensile Str'gth, lbs. per sq. in.	Elastic Limit, lbs. per sq. in.	p. e. ex.	p. c. cont.	
steel.	Forged bars. *	.625  	4   4	276,800 246,595 105,300 142,800	74.000	2.75 4.25 19.25 13.0	6.0 55.0 28.2	Special treatment. Annealed.
31/4 nickel steel.	1½-in. round rolled bar.†	"     "     "	" " "	143.200 117,600 119,200 91,600 91,200 85,200	74,000 64,000 65,000 51,000 51,000 53,000	12.32 17.0 16.66 22.25 21.62 21.82	27.6 46.0 42.1 53.2 53.4 49.5	
nickel steel.	1½ in. sq. bar, rolled.;	798	8	86,000 115,464 112,600 102,010 102,510	48,000 51,820 60,000 89,180 40,200	21.25 36.25 37.87 41.37 44.00	47.4 66.23 62.82 69.59 68.34	Annealed.
27% nich	1-in, round bar, rolled.§	.500 	2	114,590 115,610 105,240 106,780	56,020 59,080 45,170 45,170	47.25 45.25 49.65 55.50	68.4 62.3 72.8 63.6	Annealed.

* Forged from 6-in. ingot to % in. diam., with conical heads for holding.

+ Showing the effect of varying carbon.

‡ Rolled down from 14-in. ingot to 1½-in. square billet, and turned to size. § Rolled down from 14-in. ingot to 1-in. round, and turned to size.

Nickel steel has shown itself to be possessed of some exceedingly valuable properties; these are, resistance to cracking, high elastic limit, and homogeneity. Resistance to cracking, a property to which the name of non fissibility has been given, is shown more remarkably as the percentage of nickel increases. Bars of 27% nickel illustrate this property. A 1½-in. square barwas nicked ½ in. deep and bent double on itself without further fracture than the splintering off, as it were, of the nicked portion. Sudden failure or rupture of this steel would be impossible; it seems to possess the toughness of rawhide with the strength of steel. With this percentage of nickel the steel is practically non-corrodible and non-magnetic. The resistance to cracking shown by the lower percentages of nickel is best illustrated in the many trials of nickel-steel armor.

The elastic limit rises in a very marked degree with the addition of about 3% of nickel, the other physical properties of the steel remaining unchanged or perhaps slightly increased.

In such places (shafts, axles, etc.) where failure is the result of the fatigue of the metal this higher elastic limit of nickel steel will tend to prolong indefinitely the life of the piece, and at the same time, through its superior toughness, offer greater resistance to the sudden strains of shock.

Howe states that the hardness of nickel steel depends on the proportion of nickel and carbon jointly, nickel up to a certain percentage increasing the hardness, beyond this lessening it. Thus while steel with % of nickel and 0.9% of carbon cannot be machined, with less than 5% nickel it can be worked cold readily, provided the proportion of carbon be low. As the proportion of nickel rises higher, cold-working becomes less easy. It forges easily whether it contain much or little nickel.

The presence of manganese in nickel steel is most important, as it appears that without the aid of manganese in proper proportions, the conditions of

treatment would not be successful.

Tosts of Nickel Steel.—Two heats of open hearth steel were made by the Cleveland Rolling Mill Co., one ordinary steel made with 9000 lbs. each scrap and pig, and 165 lbs. ferro-manganese, the other the same with the addition of 3%, or 540 lbs. of nickel. Tests of six plates rolled from each heat, 0.24 to 0.3 in. thick, gave results as follows:

Ordinary steel, T. S. 52,500 to 56,500; E. L. 32,800 to 37,900; elong. 26 to 324. Nickel steel, "63,370 to 67,100; "47,100 to 48,200; "2814 to 264.

The nickel steel averages 31% higher in elastic limit, 20% higher in ultimate tensile strength, with but slight reduction in ductility. (Eng. & M. Jour.,

Feb. 25, 1893.)

Aluminum Steel.-R. A. Hadfield (Trans. A. I. M. E. 1890) says: Aluminum appears to be of service as an addition to baths of molten iron or steel unduly saturated with oxides, and this in properly regulated steel manufacture should not often occur. Speaking generally, its rôle appears to be similar to that of silicon, though acting more powerfully. The statement that aluminum lowers the melting-point of iron seems to have no foundation in fact. If any increase of heat or fluidity takes place by the addition of small amounts of aluminum, it may be due to evolution of heat, owing to oxidation of the aluminum, as the calorific value of this metal is very high—in fact, higher than silicon. According to Berthollet, the conversion of aluminum to  $\Delta l_0 \Omega_1$  equals 7900 cal.; silicon to 81 $\Omega_1$  is stated as 7000. The action of aluminum may be classed along with that of silicon, sulphur,

phosphorus, arsenic, and copper, as giving no increase of hardness to iron, in contradistinction to carbon, manganese, chromium, tungsten, and nickel. Therefore, whilst for some special purposes aluminum may be employed in the manufacture of iron, at any rate with our present knowledge of its properties, this use cannot be large, especially when taking into consideration the fact of its comparatively high price. Its special advantage seems to be that it combines in itself the advantages of both silicon and manganese; but so long as alloys containing these metals are so cheap and aluminum

dear, its extensive use seems hardly probable.

J. E. Stead, in discussion of Mr. Hadfield's paper, said: Every one of our trials has indicated that aluminum can kill the most fiery steel, providing, of course, that it is added in sufficient quantity to combine with all the oxygen which the steel contains. The metal will then be absolutely dead, and will pour like dead-melted silicon steel. If the aluminum is added as metallic aluminum, and not as a compound, and if the addition is made just before the steel is cast, 1/10% is ample to obtain perfect solidity in the steel. Chrome Steel. (F. L. Garrison, Jour. F. I., Sept. 1891.)—Chromium increases the hardness of iron, perhaps also the tensile strength and elastic

limit, but it lessens its weldibility.

Ferro chrome, according to Berthier, is made by strongly heating the mixed oxides of Iron and chromium in brasqued crucibles, adding powdered charcoal if the oxide of chromium is in excess, and fluxes to scorify the earthy matter and prevent oxidation. Chromium does not appear to give steel the power of becoming harder when quenched or chilled. Howe states that chrome steels forge more readily than tungsten steels, and when not containing over 0.5 of chromium nearly as well as ordinary carbon steels of like percentage of carbon. On the whole the status of chrome steel is not satisfactory. There are other steel alloys coming into use, which it will much better, that it would seem to be only a question of time when it will have states that many experienced chemists drop entirely out of the race. Howe states that many experienced chemists have found no chromium, or but the merest traces, in chrome steel sold in the markets.

J. W. Langley (Trans. A. S. C. E. 1892) says: Chromium, like manganese, is a true hardener of iron even in the absence of carbon. The addition of 1% or 2% of chromium to a carbon steel will make a metal which gets excessively hard. Hitherto its principal employment has been in the production of chilled shot and shell. Powerful molecular stresses result during cooling, and the shells frequently break spontaneously months after they are made.

Tungsten Steel-Mush et Steel. (J. B. Nau, Iron Age, Feb. 11, 1892.)

-By incorporating simultaneously carbon and tungsten in iron, it is possible to obtain a much harder steel than with carbon alone, without danger of an extraordinary brittleness in the cold metal or an increased difficulty in

the working of the heated metal.

When a special grade of hardness is required, it is frequently the custom to use a high tungsten steel, known in England as special steel. A specimen from Sheffield, used for chisels, contained 9.3% of tungsten, 0.7% of silver, and 0.6% of carbon. This steel, though used with advantage in its unternpered state to turn chilled rolls, was not brittle; nevertheless it was hard enough to scratch glass.

A sample of Mushet's special steel contained 8.3% of tungsten and 1.73% of

manganese. The hardness of tungsten steel cannot be increased by the or-

dinary process of hardening.

The only operation that it can be submitted to when cold is grinding. It has to be given its final shape through hammering at a red heat, and even

then, when the percentage of tungsten is high, it has to be treated very carefully; and in order to avoid breaking it, not only is it necessary to reheat it several times while it is being hammered, but when the tool has acquired the desired shape hammering must still be continued gently and with numerous blows until it becomes nearly cold. Then only can it be cooled entirely.

Tungsten is not only employed to produce steel of an extraordinary hardness, but more especially to obtain a steel which, with a moderate hardness, allies great toughness, resistance, and ductility. Steel from Assailly, used for this purpose, contained carbon, 0.52%; silicon, 0.04%; tungsten, 0.8%; phosphorus, 0.04%; sulphur, 0.005%.

Mechanical tests made by Styffe gave the following results:

Breaking load per square inch of original area, pounds.. 172,424 Reduction of area, per cent ...... 0.54 Average elongation after fracture, per cent ......

According to analyses made by the Duc de Luynes of ten specimens of the celebrated Oriental damasked steel, eight contained tungsten, two of them in notable quantities (0.518% to 1%), while in all of the samples analyzed nickel was discovered ranging from traces to nearly 4%.

Stein & Schwartz of Philadelphia, in a circular say: It is stated that tungsten steel is suitable for the manufacture of steel magnets, since it retains its magnetism longer than ordinary steel. Mr. Kniesche has made tungsten up to 98% fine a specialty. Dr. Heppe, of Leipsig, has written a number of articles in German publications on the subject. The following instructions are given concerning the use of tungsten: In order to produce a strip of progressing great headings and of one helf to one and one cast iron possessing great hardness an addition of one half to one and one half of tungsten is all that is needed. For bar iron it must be carried up to 1% to 2%, but should not exceed 21%. For puddled steel the range is larger, 1% to 2%, but should not exceed 2\%. For puddled steel the range is larger, but an addition beyond 3\% only increases the hardness, so that its brought up to 1\% only for special tools, coinage dies, drills, etc. For tires 2\% to 5\% have proved best, and for axles \% to 1\%. Cast steel to which tungsten has been added needs a higher temperature for tempering than ordinary steel, and should be hardened only between yellow, red, and white. Chisels made of tungsten steel should be drawn between cherry-red and blue, and stand well on iron and steel. Tempering is best done in a mixture of 5 parts of yellow rosin, 3 parts of tar, and 2 parts of tallow, and then the article is once more heated and then tempered as usual in water of about 15° C.

Whitworth Compressed Steel. (Proc. Inst. M. E. May, 1887, p. 167)—In this system a gradually increasing pressure up to 6 or 8 tons per square inch is applied to the fluid ingot, and within half an hour or less after the application of the pressure the column of fluid steel is shortened 1\% inch per foot or one eighth of its length; the pressure is then kept on for several hours, the result being that the metal is compressed into a perfectly solid and homogeneous material, free from blow holes.

solid and homogeneous material, free from blow-holes.

In large gun-ring ingots during cooling the carbon is driven to the centre, the centre containing 0.8 carbon and the outer ring 0.3. The centre is bored out until a test shows that the inside of the ring contains the same percentage of carbon as the outside.

Compressed steel is made by the Bethlehem Iron Co. and the Carnegie

Steel Co. for armor plate and for gun and other heavy forgings.

#### CRUCIBLE STEEL.

Selection of Grades by the Eye, and Effect of Heat Treat-ment. (J. W. Langley, Amer. Chemist, November, 1876.)—In 1874, Miller, Metcalf & Parkin, of Pittsburgh, selected eight samples of steel which were neural a raisin, or ritisourgh, selected eight samples of steel which were believed to form a set of graded specimens, the order being based on the quantity of carbon which they were supposed to contain. They were numbered from one to eight. On analysis, the quantity of carbon was found to follow the order of the numbers, while the other elements present—silicon, phosphorus, and sulphur—did not do so. The method of selection is described as follows:

The steel is melted in black-lead crucibles capable of holding about eighty pounds; when thoroughly fluid it is poured into cast-iron moulds, and when cold the top of the ingot is broken off, exposing a freshly-fractured surface. The appearance presented is that of confused groups of crystals, all appearing to have started from the outside and to have met in the centre; this general form is common to all ingots of whatever composition, but to the trained eye, and only to one long and critically exercised, a minute but indescribable difference is perceived between varying samples of steel, and this difference is now known to be owing almost wholly to variations in the amount of combined carbon, as the following table will show. Twelve samples selected by the eye alone, and analyses of drillings taken direct from the ingot before it had been heated or hammered, gave results as below:

Ingot Nos.	Iron by Diff.	Carbon.	Diff. of Carbon.	Silicon.	Phos.	Sulph.
1	99.614	.802		.019	.047	.018
2	99.455	.490	.188	.034	.005	.016
3	99.363	.529	.039	.048	.047	.018
4	99.270	.649	.120	.039	.080	.012
5	99.119	.801	.152	.029	.085	.016
6	99.086	.841	.040	.039	.024	.010
7	99.044	.867	.026	.057	.014	.018
8	99.040	.871	.004	.053	.024	.012
9	98.900	.955	.084	.059	.070	.016
10	98 861	1.005	.050	.088	.084	1 040
11	98.752	1.058	.053	.120	.064	.006
12	98.884	1.079	.021	.039	. 044	.004

Here the carbon is seen to increase in quantity in the order of the numbers, while the other elements, with the exception of total iron, bear no rela-

bers, while the other elements, with the exception of total fron, bear no relation to the numbers on the samples. The mean difference of carbon is .071.

In mild steels the discrimination is less perfect.

The appearance of the fracture by which the above twelve selections were made can only be seen in the cold ingot before any operation, except the original one of casting, has been performed upon it. As soon as it is hammered, the structure changes in a remarkable manner, so that all trace

of the primitive condition appears to be lost.

Another method of rendering visible to the eye the molecular and chemi-Another method of rendering visible to the eye the molecular and chemical changes which go on in steel is by the process of hardening or tempering. When the metal is heated and plunged into water it acquires an increase of hardness, but a loss of ductility. If the heat to which the steel has been raised just before plunging is too high, the metal acquires intense hardness, but it is so brittly as to be worthless; the fracture is of a bright, granular, or saudy character. In this state it is said to be burned, and it cannot again be restored to its former strength and ductility by annealing; it is ruined for all practical purposes, but in just this state it again shows differences of structure corresponding with its content in carbon. The nature of these changes can be illustrated by plunging a bar highly heated at one end and cold at the other into water, and then breaking it off in at one end and cold at the other into water, and then breaking it off in pieces of equal length, when the fractures will be found to show appearances characteristic of the temperature to which the sample was raised.

The specific gravity of steel is influenced not only by its chemical analy-

sis, but by the heat to which it is subjected, as is shown by the following

table (densities referred to 60° F.):

Specific gravities of twelve samples of steel from the ingot; also of six hammered bars, each bar being overheated at one end and cold at the other, in this state plunged into water, and then broken into pieces of equal length.

	1	2	я	4	5	6	7	8	9	10	11	12
Ingot Bar:	ı	1	ı	l	l	1		1				i
		<b> </b>	7.814	7.811	<b>.</b>	7.784		7.755		7.749		7.741
4			7.826	7.849		.7.808		7.773		7.789		7.769 7.798
Cold 6			7.831 7.844	7.806 7.824		7.812 7.829		7.790 7.825		7.812 $7.826$		7.81 f 7.825

^{*} Order of samples from bar.

Effect of Heat on the Grain of Steel. (W. Metcalf,—Jeans on Steel, p. 642.)—A simple experiment will show the alteration produced in a high-carbon steel by different methods of hardening. If a bar of such steel be nicked at about 9 or 10 places, and about half an inch apart, a suitable specimen is obtained for the experiment. Place one end of the bar in a specimen is obtained for the experiment. Place one end of the bar in a good fire, so that the first nicked piece is heated to whiteness, while the rest of the bar, being out of the fire, is heated up less and less as we approach the other end. As soon as the first piece is at a good white heat, which of course burns a high carbon steel, and the temperature of the rest of the bar gradually passes down to a very dull red, the metal should be taken out of the fire and suddenly plunged in cold water, in which it should be left till quite cold. It should then be taken out and carefully dried. An examination with a file will show that the first niece has the greatest bardness. tion with a file will show that the first piece has the greatest hardness, while the last piece is the softest, the intermediate pieces gradually passing from one condition to the other. On now breaking off the pieces at each been produced in the appearance of the metal. The first burnt piece is very open or crystalline in fracture; the succeeding pieces become closer and closer in the grain until one piece is found to possess that perfectly ever grain and velvet-like appearance which is so much prized by experienced stort uners. The first places elso, which have been termined to be seen that the first places elso, which have been termined to be seen that the first places elso, which have been termined to be seen that the first places elso, which have been termined to be seen that the first places elso, which have been termined to be seen that the first places elso, which have been termined to be seen that the first places elso, which have been termined to be seen that the first places elso. enced state users. The first pleces also, which have been too much hardened, will probably be cracked; those at the other end will not be hardened through. Hence if it be desired to make the steel hard and strong, the temperature use. Must be high enough to harden the metal through, but

temperature use: must be high enough to harden the meets through, our obtained into open the grain.

Changes in Flaimate Strength and Elasticity due to Hammering, Annealing, and Tempering. (J. W. Langley. Trans. A. S. C. E. 1992.)—The following table gives the result of tests made on some round steel bars, all from the same ingot, which were tested by

tensile stresses, and also by bending till fracture took place:

Number.	Treatment.	Angle of cold bend, degrees.	Total.	Semi- graphite.	Diameter, in.	Elastic limit, pounds per square inch.	Tensile, pounds per square inch.	Elongation, , per cent.	Red area, per cent.
1 2 8 4	Cold-hammered bar Bar drawn black Bar annealed Bar bardened and drawn black	75 175		.47 .47 .70	.577 .580	92,420 114,700 68,110 152,800	141,500 138,400 98,410 248,700	9.00 6.00 10.00 8.83	2.42 12.45 11.69 17.9

The total carbon given in the table was found by the color test, which is affected, not only by the total carbon, but by the condition of the carbon. The analysis of the steel was:

Silicon	.242	Manganese	.24
Phosphorus		Carbon (true total carbon, by	
Sulphur	.009	combustion)	1.31

Heating Tool Steel. (Miller, Metcalf & Parkin, 1877.)-There are three distinct stages or times of heating: First, for forging; second, for

hardening; third, for tempering.

The first requisite for a good heat for forging is a clean fire and plenty of fuel, so that jets of hot air will not strike the corners of the piece; next, the fire should be regular, and give a good uniform heat to the whole part to be forged. It should be keen enough to heat the piece as rapidly as may be, and allow it to be thoroughly heated through, without being so fierce as to overheat the corners.

Steel should not be left in the fire any longer than is necessary to heat it clear through, as "soaking" in fire is very injurious; and, on the other hand, it is necessary that it should be hot through, to prevent surface cracks.

By observing these precautions a piece of steel may always be heated safely, up to even a bright yellow heat, when there is much forging to be done on it.

The best and most economical of welding fluxes is clean, crude borax, which should be first thoroughly melted and then ground to fine powder.

After the steel is properly heated, it should be forged to shape as quickly as possible; and just as the red heat is leaving the parts intended for cutting edges, these parts should be refined by rapid, light blows, continued until the red disappears.

For the second stage of heating, for hardening, great care should be used; first, to protect the cutting edges and working parts from heating more rapidly than the body of the piece; next, that the whole part to be hardened be heated uniformly through, without any part becoming visibly hotter than the other. A uniform heat, as low as will give the required hardness,

than the other. A uniform near, as low as will give the required naruness, is the best for hardening.

For every variation of heat, which is great enough to be seen, there will result a variation in grain, which may be seen by breaking the piece; and for every such variation in temperature, there is a very good chance for a crack to be seen. Many a costly tool is ruined by inattention to this point.

The effect of too high heat is to open the grain; to make the seel coarse

The effect of an irregular heat is to cause irregular grain, irregular strains, and cracks.

As soon as the piece is properly heated for hardening, it should be promptly and thoroughly quenched in plenty of the cooling medium, water, brine, or oil, as the case may be.

An abundance of the cooling bath, to do the work quickly and uniformly

all over, is very necessary to good and safe work.

To harden a large piece safely a running stream should be used.

Much uneven hardening is caused by the use of too small baths.

For the third stage of heating, to temper, the first important requisite is again uniformity. The next is time; the more slowly a piece is brought down to its temper, the better and safer is the operation.

When expensive tools are to be made it is a wise precaution to try small

pieces of the steel at different temperatures, so as to find out how low a heat will give the necessary hardness. The lowest heat is the best for any steel.

Heating to Forge.—The trouble in the forge fire is usually uneven heat, and not too high heat. Suppose the piece to be forged has been put neat, and not too high neat. Suppose the piece to be forged has been put into a very hot fire, and forced as quickly as possible to a high yellow heat, so that it is almost up to the scintillating point. If this be done, in a few minutes the outside will be quite soft and in a nice condition for forging, while the middle parts will not be more than red-hot. Now let the piece be placed under the hammer and forged, and the soft outside will yield so that the outer particles will be too. much more readily than the hard inside, that the outer particles will be torn asunder, while the inside will remain sound.

Suppose the case to be reversed and the inside to be much hotter than the outside; that is, that the inside shall be in a state of semi-fusion, while the outside; that is, that the inside shall be in a state of semi-tusion, while the outside is hard and firm. Now let the piece be forged, and the outside will be all sound and the whole piece will appear perfectly good until it is cropped, and then it is found to be hollow inside.

In either case, if the piece had been heated soft all through, or if it had been only red-hot all through, it would have forged perfectly sound.

In some cases a high heat is more desirable to save heavy labor but in every case where a fine steel is to be used for cutting purposes it must be borne in mind that very heavy forging refines the bars as they slowly cool, and if the smith heats such refined bars until they are soft, he raises the grain, makes them coarse, and he cannot get them fine again unless he has a very heavy steam-hammer at command and knows how to use it well.

Annealing. (Miller, Metcalf & Parkin.)—Annealing or softening is accomplished by heating steel to a red heat and then cooling it very slowly,

to prevent it from getting hard again.

The higher the degree of heat, the more will steel be softened, until the

limit of softness is reached, when the steel is melted.

It does not follow that the higher a piece of steel is heated the softer it will be when cooled, no matter how slowly it may be cooled; this is proved by the fact that an ingot is always harder than a rolled or hammered bar made from it.

Therefore there is nothing gained by heating a piece of steel hotter than a good, bright, cherry-red: on the contrary, a higher heat has several disadvantages: First. If carried too far, it may leave the steel actually harder than a good red heat would leave it. Second. If a scale is raised on the steel, this scale will be harsh, granular oxide of iron, and will spoil the tools used to cut it. Third. A high scaling heat continued for a little time changes the structure of the steel, makes it brittle, liable to crack in hardening, and impossible to refine.

ening, and impossible to renne.

To anneal any piece of steel, heat it red-hot; heat it uniformly and heat it through, taking care not to let the ends and corners get too hot.

As soon as it is hot, take it out of the fire, the sconer the better, and cool it as slowly as possible. A good rule for heating is to heat it at so low a red that when the piece is cold it will still show the blue gloss of the oxide that

was put there by the hamer or the rolls.

Steel annealed in this way will cut very soft; it will harden very hard, without cracking; and when tempered it will be very strong, nicely refined,

and will hold a keen, strong edge.

Tempering.—Tempering steel is the act of giving it, after it has been shaped, the hardness necessary for the work it has to do. This is done by first hardening the piece, generally a good deal harder than is necessary, and then toughening it by slow heating and gradual softening until it is just right for work.

A piece of steel properly tempered should always be finer in grain than the bar from which it is made. If it is necessary, in order to make the piece as hard as is required, to heat it so hot that after being hardened the grain will be as coarse as or coarser than the grain in the original bar, then the steel

itself is of too low carbon for the desired work.

If a great degree of hardness is not desired, as in the case of taps, and most tools of complicated form, and it is found that at a moderate heat the tools are too hard and are liable to crack, the smith should first use a lower heat in order to save the tools already made, and then notify the steelmaker

neat in order to save the tools already made, and then notify the steelinaker that his steel is too high, so as to prevent a recurrence of the trouble.

For descriptions of various methods of tempering steel, see "Tempering of Metals," by Joshua Rose, in App. Cyc. Mech., vol. ii. p. 863; also, "Wrinkles and Recipes," from the Scientific American. In both of these works Mr. Rose gives a "color scale," lithographed in colors, by which the color to which the temper is to be drawn for different tools is shown. The color is a litt of the tool in their order or the scale recent texts to the steel or the scale texts to the steel or the scale texts. following is a list of the tools in their order on the color scale, together with the approximate color and the temperature at which the color appears on brightened steel when heated in the air:

Scrapers for brass; very pale yel-

low, 480° F. Steel-engraving tools. Slight turning tools. Hammer faces. Planer tools for steel. Ivory-cutting tools. Planer tools for iron. Paper-cutters. Wood-engraving tools.

Bone cutting tools. Milling-cutters; straw yellow, 460° F. Wire-drawing dies.

Boring-cutters. Leather cutting dies. Screw-cutting dies.

Inserted saw-teeth. Taps. Rock-drills. Chasers.

Punches and dies. Penknives. Reamers

Half-round bits.

Planing and moulding cutters. Stone-cutting tools; brown yellow, 500° F.

Gouges.

Hand-plane irons. Twist-drills. Flat drills for brass. Wood-boring cutters.

Drifts. Coopers' tools. Edging cutters; light purple, 580° F.

Dental and surgical instruments.

Cold chisels for steel. Axes; dark purple, 550° F. Gimlets.

Cold chisels for cast iron. Saws for bone and ivory. Needles.

Firmer-chisels. Hack-saws.

Framing-chisels.
Cold chisels for wrought iron. Moulding and planing cutters to by

filed. Circular saws for metal. Screw-drivers.

Springs. Saws for wood.

Dark blue, 570° F. Pale blue, 610°. Blue tinged with green, 630°.

## MECHANICS.

# FORCE, STATICAL MOMENT, EQUILIBRIUM, ETC.

MECHANICS is the science that treats of the action of force upon bodies. A Force is anything that tends to change the state of a body with respect to rest or motion. If a body is at rest, anything that tends to put it in mo-tion is a force; if a body is in motion, anything that tends to change either

its direction or its rate of motion is a force.

A force should always mean the pull, pressure, rub, attraction (or repulsion) of one body upon another, and always implies the existence of a simulaneous equal and opposite force exerted by that other body on the first body, i.e., the reaction. In no case should we call anything a force unless we can conceive of it as capable of measurement by a spring balance, and are able to say from what other body it comes. (I. P. Church.)

Forces may be divided into two classes, extraneous and molecular: extra-

neous forces act on bodies from without; molecular forces are exerted be-

tween the neighboring particles of bodies.

Extraneous forces are of two kinds, pressures and moving forces: pressures simply tend to produce motion; moving forces actually produce motion. Thus, if gravity act on a fixed body, it creates pressure; if on a free

motion. Thus, it gravity act on a fixed body, it creates pressure; if on a free body, it produces motion.

Molecular forces are of two kinds, attractive and repellent: attractive forces tend to bind the particles of a body together; repellent forces tend to thrust them asunder. Both kinds of molecular forces are continually exerted between the molecules of bodies, and on the predominance of one or the other depends the physical state of a body, as solid, liquid, or gaseous.

The Unit of Force used in engineering, by English writers, is the pound avoirdupois. (For some scientific purposes, as in electro-dynamics, forces are sometimes expressed in "absolute units." The absolute unit of time pro-

force is that force which acting on a unit of mass during a unit of time produces a unit of veloc ty; in English measures, that force which acting on the mass whose weight is one pound in London will in one second produce a velocity of one foot per second = 1 + 32.187 of the weight of the standard pound avoirdupois at London. In the French C. G. S. or centimetre-gramme second system it is the force which acting on the mass whose weight is one gramme at Paris will produce in one second a velocity of one centimetre per second. This unit is called a "dyne" = 1/981 gramme at Paris.)

**Emertia is that property of a body by virtue of which it tends to continue

in the state of rest or motion in which it may be placed, until acted on by

some force.

Newton's Laws of Motion.—1st Law. If a body be at rest, it will remain at rest; or if in motion, it will move uniformly in a straight line till acted on by some force.

2d Law. If a body be acted on by several forces, it will obey each as though the others did not exist, and this whether the body be at rest or in motion.

3d Law. If a force act to change the state of a body with respect to rest or motion, the body will offer a resistance equal and directly opposed to the

or motion, the body with oner a resistance equal and directly opposed to ine force. Or, to every action there is opposed an equal and opposite reaction.

Graphic Representation of a Force,—Forces may be represented geometrically by straight lines, proportional to the forces. A force is given when we know its intensity, its point of application, and the direction in which it acts. When a force is represented by a line, the length of the line represents its intensity; one extremity represents the point of applica-tion; and an arrow-head at the other extremity shows the direction of the

Composition of Forces is the operation of finding a single force whose effect is the same as that of two or more given forces. The required

force is called the resultant of the given forces. Resolution of Forces is the operation of finding two or more forces whose combined effect is equivalent to that of a given force. The required

forces are called components of the given force.

The resultant of two forces applied at a point, and acting in the same direction, is equal to the sum of the forces. If two forces act in opposite directions, their resultant is equal to their difference, and it acts in the direction of the greater.

If any number of forces be applied at a point, some in one direction and others in a contrary direction, their resultant is equal to the sum of those that act in one direction, diminished by the sum of those that act in the opposite direction; or, the resultant is equal to the algebraic sum of the components.

Parallelogram of Forces.—If two forces acting on a point be represented in direction and intensity by adjacent sides of a parallelogram, their resultant will be represented by that diagonal of the parallelogram which passes through the point. Thus OR, Fig. 88, is the resultant of OQ and OP.



Polygon of Forces.—If several forces are

applied at a point and act in a single plane, their resultant is found as follows:

Through the point draw a line representing the first force; through the extremity of this draw a line representing the second force; and so on, throughout the system; finally, draw a line from the starting-point to the extremity of the last line

drawn, and this will be the resultant required.

Suppose the body A, Fig. 89, to be urged in the directions A1, A2, A3, A4, and A5 by forces which are to each other as the lengths of those lines. Suppose these forces to act successively and the body to first move from A to 1; the second force A2 then acts and finding the body at 1 would take it by; the third force would then carry it to 8', the fourth to 4', and the fifth to 5'. The line A5' represents in magnitude and direction the resultant of

all the forces considered. If there had been an additional force, Ax, in the group, the body would be returned by that force to its original position, supposing the forces to act successively, but if they had acted simultaneously the body would never 2 have moved at all; the tendencies to mo-tion balancing each other. It follows, therefore, that if the several

forces which tend to move a body can be represented in magnitude and direction by the sides of a closed polygon taken in order, the body will remain at rest; but if the forces are represented by the sides of

Fig. 89.

an open polygon, the body will move and the direction will be represented

an open polygon, the body will move and the direction will be represented by the straight line which closes the polygon.

Twisted Polygon.—The rule of the polygon of forces holds true even when the forces are not in one plane. In this case the lines A1, 1-2', 2'-3', etc., form a twisted polygon, that is, one whose sides are not in one plane.

Parallelopipedon of Forces.—If three forces acting on a point be represented by three edges of a parallelopipedon which meet in a common point, their resultant will be represented by the diagonal of the parallelopipedon that passes through their common point.

Thus OR, Fig. 90, is the resultant of OQ, OS, and OP. OM is the resultant of OP and OQ, and OR is the resultant of OM and OS.

Moment of a Force,—The moment of a force (sometimes called stat.

ment of a force (sometimes called statical moment), with respect to a point, is the product of the force by the perpendicular distance from the point to the direction of the force. The fixed point is called the centre of mo-



Fig. 90.



Fig. 91.

ments; the perpendicular distance is the lever-arm of the force; and the moment itself measures the tendency of the force to produce rotation about the centre of moments.

If the force is expressed in pounds and the distance in feet, the moment is expressed in foot-pounds. It is necessary to observe the distinction between foot-pounds of statical moment and foot-pounds of work or energy.

(See Work.)

In the bent lever, Fig. 91 (from Trautwine), if the weights n and m represent forces, their moments about the point f are respectively  $n \times af$  and  $m \times fc$ . If instead of the weight m a pulling force to balance the weight n is applied in the direction bs, or by or bd, s, y, and d being the amounts of these forces, their respective moments are  $s \times ft$ ,  $y \times fb$ ,  $d \times fb$ . If the forces acting on the lever are in equilibrium it remains at rest, and

the moments on each side of f are equal, that is,  $n \times af = m \times fc$ , or  $s \times ft$ ,

or  $y \times fb$ , or  $d \times hf$ . The moment of the resultant of any number of forces acting together in the same plane is equal to the algebraic sum of the moments of the forces

taken separately.

Statical Moment. Stability.—The statical moment of a body is the product of its weight by the distance of its line of gravity from some assumed line of rotation. The line of gravity is a vertical line drawn from its centre of gravity through the body. The stability of a body is that resistance which its weight alone enables it to oppose against forces tending

to overturn it or to slide it along its foundation.

To be safe against turning on an edge the moment of the forces tending to overturn it, taken with reference to that edge, must be less than the statical moment. When a body rests on an inclined plane, the line of gravity being vertical, falls toward the lower edge of the body, and the condition of its not being overturned by its own weight is that the line of gravity must its not being overturned by its own weight is that the line of gravity must fall within this edge. In the case of an inclined tower resting on a plane the same condition holds—the line of gravity must fall within the base. The condition of stability against sliding along a horizontal plane is that the horizontal component of the force exerted tending to cause it to slide shall be less than the product of the weight of the body into the coefficient of friction between the base of the body and its supporting plane. This coefficient of friction is the tangent of the angle of repose, or the maximum angle as which the minorities plane might be raised from the horizontal before the which the supporting plane might be raised from the horizontal before the body would begin to slide. (See Friction.)

The Stability of a Dam against overturning about its lower edge

is calculated by comparing its statical moment referred to that edge with the resultant pressure of the water against its upper side. The horizontal pressure on a square foot at the bottom of the dam is equal to the weight of as column of water of one square foot in section, and of a height equal to the distance of the bottom below water-level; or, if H is the height, the pressure at the bottom per square foot =  $62.4 \times H$  lbs. At the water-level the pressure sure is zero, and it increases uniformly to the bottom, so that the sum of the pressures on a vertical strip one foot in breadth may be represented by the area of a triangle whose base is  $62.4 \times H$  and whose altitude is H, or  $62.4H^2+2$ . The centre of gravity of a triangle being  $\frac{1}{2}$  of its altitude, the resultant of all the horizontal pressures may be taken as equivalent to the sum of the pressures acting at  $\frac{1}{16}H$ , and the moment of the sum of the pressures is therefore  $62.4 \times H^2 + 6$ .

Parallel Forces. - If two forces are parallel and act in the same direction, their resultant is parallel to both, and lies between them, and the intensity of the resultant is equal to the sum of the intensities of the two forces. Thus in Fig. 91 the resultant of the forces n and m acts vertically downward at f, and is equal to n + m. If two parallel forces act at the extremities of a straight line and in the

same direction, the resultant divides the line joining the points of application Thus in Fig. 91, m:n:: of the components, inversely as the components.

af: fc; and in Fig. 92, P: Q:: SN:: SM.
The resultant of two parallel forces acting in opposite directions is parallel to both, lies without both, on the side and in the direction of the greater, and its intensity is equal to the difference of the intensities of the two forces.



Thus the resultant of the two forces Q and P, Fig. 93, is equal to Q - P = R. Of any two parallel forces and their resultant each is proportional to the dis-

resultant each is proportional to the distance between the other two; thus in both Figs. 92 and 93, P: Q: R:: SN: SM: MN. Couples.—If P and Q be equal and act in opposite directions, R = 0; that is, they have no resultant. Two such forces constitute what is sufficiently as well as a series of the such forces. stitute what is called a couple.

The tendency of a couple is to produce rotation; the measure of this tendency, called the moment of the couple, is the

product of one of the forces by the distance between the two.

Since a couple has no single resultant, no single force can balance a couple. To prevent the rotation of a body acted on by a couple the application of two other forces is required, forming a second couple. Thus in Fig. 94, P and Q forming a couple, may be balanced by a second couple formed by R and S. The

point of application of either R or S may be a fixed pivot or axis.

Moment of the couple PQ = P(c + b + a) =moment of RS = Rb. Also, P + R = Q + S. The forces R and S need not be parallel to P. and Q, but if not, then their components parallel to PQ are to be taken instead of the forces

themselves

Equilibrium of Forces.—A system of forces applied at points of a solid body will be in equilibrium when they have no tendency to produce motion, either of translation or of rota-



The conditions of equilibrium are: 1. The algebraic sum of the components of the forces in the direction of any three rectangular axes must be separately equal to 0.

2. The algebraic sum of the moments of the forces, with respect to any

three rectangular axes, must be separately equal to 0.

If the forces lie in a plane: 1. The algebraic sum of the components of the forces, in the direction of any two rectangular axes, must be separately equal to 0.

2. The algebraic sum of the moments of the forces, with respect to any

point in the plane, must be equal to 0.

If a body is restrained by a fixed axis, as in case of a pulley, or wheel and axle, the forces will be in a equilibrium when the algebraic sum of the moments of the forces with respect to the axis is equal to 0.

# CENTRE OF GRAVITY.

The centre of gravity of a body, or of a system of bodies rigidly connected together, is that point about which, if suspended, all the parts will be in equilibrium, that is, there will be no tendency to rotation. It is the point through which passes the resultant of the efforts of gravitation on each of the elementary particles of a body. In bodies of equal heaviness throughout, the centre of gravity is the centre of magnitude.

(The centre of magnitude of a figure is a point such that if the figure be divided into equal parts the distance of the centre of magnitude of the whole figure from any given plane is the mean of the distances of the centres

of magnitude of the several equal parts from that plane.)

If a body be suspended at its centre of gravity, it will be in equilibrium in all positions. If it be suspended at a point out of its centre of gravity, it will swing into a position such that its centre of gravity is vertically beneath its point of suspension.

To find the centre of gravity of any plane figure mechanically, suspend the figure by any point near its edge, and mark on it the direction of a plumb-line hung from that point; then suspend it from some other point, and again mark the direction of the plumb-line in like manner. Then the centre of gravity of the surface will be at the point of intersection of the two marks of the plumb-line.

The Centre of Gravity of Regular Figures, whether plane or solid, is the same as their geometrical centre; for instance, a straight line,

parallelogram, regular polygon, circle, circular ring, prism, cylinder, sphere, spheroid, middle frustums of spheroid, etc.

Of a triangle: On a line drawn from any angle to the middle of the op-

posite side, at a distance of one third of the line from the side; or at the intersection of such lines drawn from any two angles.

Of a trapezium or trapezoid; Draw the two diagonals, dividing it into four triangles. Draw lines joining the centres of gravity of opposite pairs of triangles, and their intersection is the centre of gravity.

Of a sector of a circle: On the radius which bisects the arc,  $\frac{2}{3} \frac{cr}{l}$  from the centre, c being the chord, r the radius, and I the arc.

Of a semicircle: On the middle radius, .4244r from the centre.

Of a quadrant: On the middle radius, .6002r from the centre.

of a segment of a circle;  $c^2 + 12a$  from the centre, c = chord, a = area. Of a segment of a circle;  $c^3 + 12a$  from the centre, c = chord, a = area. Of a semi-parabola (surface): 3/5 length of the axis from the vertex, and % of the semi-base from the axis.

Of a cone or pyramid; In the axis, 14 of its length from the base.
Of a paraboloid: In the axis, 34 of its length from the vertex.
Of a cylinder, or regular prism: In the middle point of the axis.

Of a frustum of a cone or pyramid: Let  $a = \text{length of a line drawn from the vertex of the cone when complete to the centre of gravity of the base, and <math>a'$  that portion of it between the vertex and the top of the frustum; then distance of centre of gravity of the frustum from centre of gravity of its

base =  $\frac{a}{4} - \frac{8a'^3}{4(a^2 + aa' + a'^3)}$ .

For two bodies, fixed one at each end of a straight bar, the common centre of gravity is in the bar, at that point which divides the distance that we are a fixed point when a straight bar, the common centre of gravity in the inverse ratio of the between their respective centres of gravity in the inverse ratio of the weights. In this solution the weight of the bar is neglected. But it may be taken as a third body, and allowed for as in the following directions:

For more than two bodies connected in one system: Find the common centre of gravity of two of them; and find the common centre of these two

centre of gravity of two of them; and find the common centre of these two jointly with a third body, and so on to the last body of the group.

Another method, by the principle of moments: To find the centre of gravity of a system of bodies, or a body consisting of several parts, whose several centres are known. If the bodies are in a plane, refer their several centres to two rectangular co-ordinate axes. Multiply each weight by its distance from one of the axes, add the products, and divide the sum by the sum of the weights: the result is the distance of the centre of gravity from that axis. Do the same with regard to the other axis. If the bodies are not in a plane refer them to three planes at right angles to each other and not in a plane, refer them to three planes at right angles to each other, and determine the mean distance of the sum of the weights from each of the three planes.

#### MOMENT OF INERTIA.

The moment of inertia of the weight of a body with respect to an axis is The moment of mertia of the weight of a body with respect to an axis at the algebraic sum of the products obtained by multiplying the weight of each elementary particle by the square of its distance from the axis. If the moment of inertia with respect to any axis = I, the weight of any element of the body = v, and its distance from the axis = r, we have  $I = \Sigma(w^{2})$ . The moment of inertia varies, in the same body, according to the position of the position when the axis = r we have  $I = \Sigma(w^{2})$ .

of the axis. It is the least possible when the axis passes through the centre of gravity. To find the moment of inertia of a body, referred to a given axis, divide the body into small parts of regular figure. Multiply the weight of each part by the square of the distance of its centre of gravity from the axis. The sum of the products is the moment of inertia. The value of the moment of inertia thus obtained will be more nearly exact, the smaller and

more numerous the parts into which the body is divided.

Moments of Inertia of Regular Solids.—Rod, or bar, of uniform thickness, with respect to an axis perpendicular to the length of the rod,

$$I=W\left(\frac{l^2}{3}+d^2\right), \quad \ldots \quad (1)$$

W = weight of rod, 2l = length, d = distance of centre of gravity from axis. Thin circular plate, axis in its  $I = W(\frac{r^2}{4} + d^2); \ldots (2)$ 

r = radius of plate.

Circular plate, axis perpendicular  $\left\{ I = W\left(\frac{r^2}{2} + d^2\right), \dots \right\}$ 

Circular ring, axis perpendicular to its own plane,  $I = W\left(\frac{r^2 + r'^2}{2} + d^2\right), \dots$ 

r and r' are the exterior and interior radii of the

Cylinder, axis perpendicular to  $\left\{ l = W\left(\frac{r^2}{4} + \frac{l^2}{8} + d^2\right), \ldots \right\}$ (5)r = radius of base, 2l = length of the cylinder

By making d=0 in any of the above formulæ we find the moment of inertia for a parallel axis through the centre of gravity.

The moment of inertia.  $\Sigma wr^2$ , numerically equals the weight of a body which, if concentrated at the distance unity from the axis of rotation, would which, it concentrated at the distance unity from the axis of rotation, would require the same work to produce a given increase of angular velocity that the actual body requires. It bears the same relation to angular acceleration which weight does to linear acceleration (Rankine). The term moment of inertia is also used in regard to areas, as the cross-sections of beams under strain. In this case  $I = \sum_{\alpha} x^{\alpha}$ , in which  $\alpha$  is any elementary area, and r its distance from the centre. (See Moment of Inertia, under Strength of Matricks  $n \ge 347$ ) terials, p. 247.)

#### CENTRE AND RADIUS OF GYRATION.

The centre of gyration, with reference to an axis, is a point at which, if The centre of yy at the x, with reference y and x, is a point at which, remain unchanged; or, in a revolving body, the point in which the whole weight of the body may be conceived to be concentrated, as if a pound of platinum were substituted for a pound of revolving feathers, the angular velocity and the accumulated work remaining the same. The distance of this point from the axis is the y and y and y are y and y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y are y and y are y and y are y are y and y are y and y are y and y are y and y are y and y are y and y are y are y are y and y are y and y are y and y are y and y are y are y and y are y are y and y are y and y are y and y are y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y are y and y are y and y are y and y are y and y are y and y are y are y and y are y are y and y are y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y and y are y a

$$I = Wk^2 = \Sigma wr^2; \quad k = \sqrt{\frac{\Sigma vor^2}{W}}.$$

The moment of inertia = the weight  $\times$  the square of the radius of gyration. To find the radius of gyration divide the body into a considerable number of equal small parts—the more numerous the more nearly exact is the reor equal sinial parts—the more numerous the more nearly exact is the result,—then take the mean of all the squares of the distances of the parts from the axis of revolution, and find the square root of the mean square. Or, if the moment of inertia is known, divide it by the weight and extract the square root. For radius of gyration of an area, as a cross-section of a beam, divide the moment of inertia of the area by the area and extract the square root.

The radius of gyration is the least possible when the axis passes through the centre of gravity. This minimum radius is called the principal radius of gyration. If we denote it by k and any other radius of gyration by k', we have for the five cases given under the head of moment of inertia above the following values:

(1) Rod, axis perpen. to 
$$\begin{cases} k = l \sqrt{\frac{1}{3}}; & k' = \sqrt{\frac{l^2}{3} + d^2}. \end{cases}$$

(2) Circular plate, axis 
$$k = \frac{r}{2}$$
;  $k' = \sqrt{\frac{r^2}{4} + d^2}$ .

(3) Circular plate, axis 
$$\left\{ k = r \sqrt{\frac{1}{2}}; \ k' = \sqrt{\frac{r^2}{2} + d^2}. \right.$$

(4) Circular ring, axis 
$$k = \sqrt{\frac{r^2 + r'^2}{2}}$$
;  $k' = \sqrt{\frac{r^2 + r'^2}{2} + d^2}$ .

(5) Cylinder, axis per- 
$$\begin{cases} k = \sqrt{\frac{r^2}{4} + \frac{l^2}{3}}; & k' = \sqrt{\frac{r^3}{4} + \frac{l^3}{3} + d^2}. \end{cases}$$

# Principal Radii of Gyration and Squares of Radii of Gyration.

(For radii of gyration of sections of columns, see page 249.)

Surface or Solid.	Rad. of Gyration.	Square of R. of Gyration.
Parallelogram: axis at its base height h	.5778h .2886h	1/12h ² · 1/12h ²
length i, or thin rectang. plate	.5773 <i>l</i> .2886 <i>l</i>	1/3l ² 1/12l ²
Rectangular prism: axes 2a, 2b, 2c, referred to axis 2a Parallelopiped: length l, base b, axis	$.577 + b^2 + c^2$ $.289 + 4l^2 + b^2$	$\begin{array}{c} (b^2 + c^2) + 3 \\ 4l^2 + b^2 \end{array}$
at one end, at mid-breadth } Hollow square tube: out. side h, inn'r h', axis mid-length very thin, side = h, "	.289 $\sqrt{h^2 + h'^2}$ .406 $h$	$   \begin{array}{c}     12 \\     (h^2 + h'^2) + 12 \\     h^2 + 6   \end{array} $
Thin rectangular tube: sides $b$ , $h$ , axis mid-length	$.289h\sqrt{\frac{\overline{h+3b}}{\overline{h+b}}}$	$\frac{h^2}{12} \cdot \frac{h+3b}{h+b}$
Thin circ.plate: rad.r,diam.h,ax. diam. Flat circ. ring: diams. h, h', axis diam.	<u>16r</u>	$\begin{vmatrix} \frac{1}{4}r^2 = h^2 + 16 \\ (h^2 + h'^2) + 16 \\ \frac{1}{2}r^2 \end{vmatrix}$
Solid circular cylinder: length · l,   axis diameter at mid-length (Circular plate: solid wheel of uni-)	.289 4/12 + 31-2	$\frac{l^2}{12} + \frac{r^2}{4}$
form thickness, or cylinder of any length, referred to axis of cyl	.7071r	3½r-2
Hollow circ. cylinder, or flat ring: l, length; R, r, outer and inner radii. Axis, 1, longitudinal axis; 2, diam, at mid-length	.7071 $\sqrt{R^2 + r^2}$ .289 $\sqrt{l^2 + 8(R^2 + r^2)}$	$\begin{vmatrix} (R^2 + r^2) + 2 \\ \frac{l^2}{12} + \frac{R^2 + r^2}{4} \end{vmatrix}$
Same: very thin, axis its diameter	.289 1 $l^2 + 6R^2$	$\frac{l^2}{12} + \frac{R^2}{2}$
radius r; axis, longitud'l axis Circumf. of circle, axis its centre diam	7 7 .7071r	r ² r ² 16r ²
Sphere: radius r. axis its diam  Spheroid: equatorial radius r, re- volving polar axis a	.6325r .6325r	2/5r ² 2/5r ²
Paraboloid: $r = \text{rad.}$ of base, rev. i	.5773r	$b^2 + c^2$
Ellipsoid: semi-axes a, b, c; revolv-(ing on axis 2a)	$.4472 \sqrt{b^2+c^2}$	5
Spherical shell: radii $R$ , $r$ , revolving $\{$ on its diam	$.6325\sqrt{\frac{R^6-r^6}{R^9-r^8}}$	$\frac{2}{5} \frac{R^5 - r^5}{R^3 - r^3}$
Same: very thin, radius $r$	.8165r .5477r	3/81·2 0.3r2

#### CENTRES OF OSCILLATION AND OF PERCUSSION.

Centre of Oscillation.—If a body oscillate about a fixed horizontal axis, not passing through its centre of gravity, there is a point in the line drawn from the centre of gravity perpendicular to the axis whose motion is the same as it would be if the whole mass were collected at that point and allowed to vibrate as a pendulum about the fixed axis. This point is called the centre of oscillation.

The **Hadius of Oscillation**, or distance of the centre of oscillation from the point of suspension = the square of the radius of gyration + distance of the centre of gravity from the point of suspension or axis. The centres of oscillation and suspension are convertible.

If a straight line, or uniform thin bar or cylinder, be suspended at one end, oscillating about it as an axis, the centre of oscillation is at 34 the length of

the rod from the axis. If the point of suspension is at 1/4 the length from the end, the centre of oscillation is also at 1/4 the length from the axis, that is, it is at the other end. In both cases the oscillation will be performed in the same time. If the point of suspension is at the centre of gravity, the length of the equivalent simple pendulum is infinite, and therefore the time of vibration is infinite.

For a sphere suspended by a cord, r = radius, h = distance of axis of motion from the centre of the sphere, h' = distance of centre of oscillation from centre of the sphere,  $l = \text{radius of oscillation} = h + h' = h + \frac{2}{5} \frac{r^2}{h}$ .

If the sphere vibrate about an axis tangent to its surface, h = r, and l = r+2/5r. If h=10r,  $l=10r+\frac{r}{25}$ .

Lengths of the radius of oscillation of a few regular plane figures or thin

plates, suspended by the vertex or uppermost point.

1st. When the vibrations are flatwise, or perpendicular to the plane of the

In an isosceles triangle the radius of oscillation is equal to 34 of the height

In a circle, \$\frac{5}{6}\$ of the diameter.

In a parabola, 5/7 of the height.

2d. When the vibrations are edgewise, or in the plane of the figure:

In a circle the radius of oscillation is \$\frac{5}{4}\$ of the diameter.

In a rectangle suspended by one angle, \$\frac{5}{6}\$ of the diagonal. In a parabola, suspended by the vertex, 5/7 of the height, plus 1/4 of the parameter.

In a parabola, suspended by the middle of the base, 4/7 of the height plus

1/2 the parameter.

Centre of Percussion.—The centre of percussion of a body oscillating about a fixed axis is the point at which, if a blow is struck by the body, the percussive action is the same as if the whole mass of the body were concentrated at the point. This point is identical with the centre of oscillation.

#### THE PENDULUM.

A body of any form suspended from a fixed axis about which it oscillates by the force of gravity is called a compound pendulum. The ideal body concentrated at the centre of oscillation suspended from the centre of suspension by a string without weight, is called a simple pendulum. This equivalent simple pendulum has the same weight as the given body, and also the same moment of inertia, referred to an axis passing through the point of suspension, and it oscillates in the same time.

The ordinary pendulum of a given length vibrates in equal times when the angle of the vibrations does not exceed 4 or 5 degrees, that is, 2° or 2½° each side of the vertical. This property of a pendulum is called its isochronism. The time of vibration of a pendulum varies directly as the square root of the length, and inversely as the square root of the acceleration due to grav-

ity at the given latitude and elevation above the earth's surface.

If T = the time of vibration, l = length of the simple pendulum, g = acceleration = 32.16,  $T = \pi \sqrt{\frac{l}{g}}$ ; since  $\pi$  is constant,  $T \propto \frac{\sqrt{l}}{\sqrt{g}}$ . At a given loca-

tion g is constant and  $T \propto \sqrt{l}$ . If l be constant, then for any location

 $T \propto \frac{1}{\sqrt{g}}$ . If T be constant,  $gT^2 = \pi^2 l$ ;  $l \propto g$ ;  $g = \frac{\pi^2 l}{T^2}$ . From this equation

the force of gravity at any place may be determined if the length of the simple pendulum, vibrating seconds, at that place is known. At New York this length is 39.1017 inches = 3.2585 ft., whence g = 32.16 ft. At London the length is 39.1393 inches. At the equator 39.0152 or 39.0168 inches, according to different authorities.

Time of vibration of a pendulum of a given length at New York

$$= t = \sqrt{\frac{l}{89.1017}} = \frac{\sqrt{l}}{6.258},$$

t being in seconds and l in inches. Length of a pendulum having a given time of vibration,  $l=t^2\times 39.1017$  inches.

The time of vibration of a pendulum may be varied by the addition of a weight at a point above the centre of suspension, which counteracts the lower weight, and lengthens the period of vibration. By varying the height of the upper weight the time is varied.

To find the weight of the upper bob of a compound pendulum, vibrating seconds, when the weight of the lower bob, and the distances of the weights

from the point of suspension are given:

$$w = W \frac{(39.1 + D) - D^2}{(39.1 + d) + d^2}.$$

W = the weight of the lower bob, w = the weight of the upper bob; D = the distance of the lower bob and d = the distance of the upper bob from the point of suspension, in inches.

Thus, by means of a second bob, short pendulums may be constructed to

vibrate as slowly as longer pendulums. By increasing w or d until the lower weight is entirely counterbalanced,

the time of vibration may be made infinite.

the time of vibration may be made infinite.

Conical Pendulum.—A weight suspended by a cord and revolving at a uniform speed in the circumference of a circular horizontal plane whose radius is r, the distance of the plane below the point of suspension being h, is held in equilibrium by three forces—the tension in the cord, the centrifugal force, which tends to increase the radius r, and the force of gravity acting downward. If v = the velocity in feet per second, the centre of gravity of the weight, as it describes the circumference, g = 82.16, and r and h are taken in feet, the time in seconds of performing one revolution is

$$t = \frac{2\pi r}{v} = 2\pi \sqrt{\frac{h}{g}}; \quad h = \frac{gt^2}{4\pi^2} = .8146t^2.$$

If t = 1 second, h = .8146 foot = 9.775 inches.

The principle of the conical pendulum is used in the ordinary fly-ball governor for steam-engines. (See Governors.)

#### CENTRIFUGAL FORCE.

A body revolving in a curved path of radius =R in feet exerts a force, called centrifugal force, F, upon the arm or cord which restrains it from moving in a straight line, or "flying off at a tangent." If W= weight of the body in pounds, N= number of revolutions per minute, V= linear velocity of the centre of gravity of the body, in feet per second, g=32.16,

$$v = \frac{2\pi RN}{60}$$
;  $F = \frac{Wv^3}{gR} = \frac{Wv^3}{32.16R} = \frac{W4\pi^2RN^2}{3600g} = \frac{WRN^2}{2933} = .0003410WRN^2$  lbs.

If n = number of revolutions per second,  $F = 1.2276WRn^2$ .

(For centrifugal force in fly-wheels, see Fly-wheels.)

#### VELOCITY, ACCELERATION, FALLING BODIES.

**Velocity** is the rate of motion, or the distance passed over by a body in

a given time. If t = space in feet passed over in t seconds, and v = velocity in feet per second, if the velocity is uniform,

$$v = \frac{s}{t}$$
;  $s = vt$ ;  $t = \frac{s}{v}$ .

If the velocity varies uniformly, the mean velocity  $v_0 = \frac{v_1 + v_2}{v_1}$ , in which  $v_1$  is the velocity at the beginning and  $v_2$  the velocity at the end of the time  $t_2$ 

**Acceleration** is the change in velocity which takes place in a unit of time. Unit of acceleration =a=1 foot per second in one second. For uniformly varying velocity, the acceleration is a constant quantity, and

$$a = \frac{v_2 - v_1}{t}$$
;  $v_3 = v_1 + at$ ;  $v_1 = v_2 - at$ ;  $t = \frac{v_2 - v_1}{a}$ . . . . (2)

If the body start from rest,  $v_1 = 0$ ; then

$$v_0 = \frac{v^2}{2}; \quad v_2 = 2v_0; \quad a = \frac{v_2}{t}; \quad v_2 = at; \quad v_2 - at = 0; \quad t = \frac{v_2}{a}.$$

Combining (1) and (2), we have

$$s = \frac{v_2{}^2 - v_1{}^2}{2a}; \ s = v_1t + \frac{at^2}{2}; \ s = v_2t - \frac{at^2}{2}.$$

If  $v_1 = 0$ ,  $s = \frac{v_2}{2}t$ .

**Betarded Motion.**—If the body start with a velocity  $v_1$  and come to rest,  $v_2 = 0$ ; then  $s = \frac{v_1}{2}t$ .

In any case, if the change in velocity is v,

$$s = \frac{v}{2}t; \quad s = \frac{v^2}{2a}; \quad s = \frac{a}{2}t^2.$$

For a body starting from or ending at rest, we have the equations

$$v = at; \quad s = \frac{v}{2}t; \quad s = \frac{at^2}{2}; \quad v^2 = 2as.$$

**Falling Bodies.**—In the case of falling bodies the acceleration due to gravity is 32.16 feet per second in one second, =g. Then if v= velocity acquired at the end of t seconds, or final velocity, and h= height or space in feet passed over in the same time,

$$v = gt = 32.16t = \sqrt{2gh} = 8.02 \sqrt{h} = \frac{2h}{t};$$

$$h = \frac{gt^2}{2} = 16.08t^2 = \frac{v^2}{2g} = \frac{v^2}{64.32} = \frac{vt}{2};$$

$$t = \frac{v}{g} = \frac{v}{32.16} = \sqrt{\frac{2h}{g}} = \frac{4\sqrt{h}}{4.01} = \frac{2h}{v};$$

 $u = \text{space fallen through in the } T \text{th second} = g(T - \frac{1}{2}).$ 

**Value of** g.—The value of g increases with the latitude, and decreases with the elevation. At the latitude of Philadelphia,  $40^{\circ}$ , its value is 32.16. At the sea-level, Everett gives  $g = 32.173 - .082 \cos 2$  lat. -.000003 height in feet.

Values of  $\sqrt{2g}$ , calculated by an equation given by C. S. Pierce, are given in a table in Smith's Hydraulies, from which we take the following:

Latitude...... 0° 10° 20° 30° 40° 50° 60° Value of  $\sqrt[4]{2g}$ . 8.0112 8.0118 8.0137 8.0165 8.0199 8.0235 8.0269

Value of  $\sqrt{2g}$ . 5.0112 5.0115 5.0167 5.0169 5.0239 5.0239 The value of  $\sqrt{2g}$  decreases about .0004 for every 1000 feet increase in elevation above the sea-level.

For all ordinary calculations for the United States, g is generally taken at 32.16, and  $\sqrt[4]{2g}$  at 8.02. In England g = 32.2,  $\sqrt[4]{2g} = 8.025$ . Practical limiting values of g for the United States, according to Pierce, are:

From the above formula for falling bodies we obtain the following: During the first second the body starting from a state of rest (resistance of the air neglected) falls g+2=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relocity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired relacity is g=16.08 feet; the acquired

32.16 ft. per sec.; the distance fallen in two seconds is  $h = \frac{gt^2}{2} = 16.08 \times 4 = 0.000$ 

 $64.32~{\rm ft.}$ ; and the acquired velocity is  $v=gt=64.32~{\rm ft.}$  The acceleration, or increase of velocity in each second, is constant, and is  $32.16~{\rm ft.}$  per sec. Solving the equations for different times, we find for

Total height of fall, h...  $\frac{62.10}{2} \times 1$  4 9 16 25 36

Fig. 95 represents graphically the velocity, space, etc., of a body falling for six seconds. The vertical line at the left is  $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$   $\frac{1}{2}$ 

the time in seconds, the horizontal lines represent one half the acquired velocities at the end of each second. The area of the small triangle at the top represents the height fallen through in the first second = ½g = 16.08 feet, and each of the other triangles is an equal space. The number of triangles between each pair of horizontal lines represents the height of fall in each second, and the number of triangles between any horizontal line and the top is the total height fallen during the time. The figures under h, u, and v adjoining the cut are to be multiplied by 16.08 to obtain the actual velocities and 25 heights for the given times.

Angular and Linear Velocity
of a Turning Body.—Let r = radius of a Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stationary Stati

per minute.

turning body in feet, n = number of revolutions per minute, v = linear velocity of a point on the circumference in feet per second, and 60v = velocity in feet

 $v = \frac{2\pi rn}{60}$ ,  $60v = 2\pi rn$ .

Angular velocity is a term used to denote the angle through which any radius of a body turns in a second, or the rate at which any point in thaving a radius equal to unity is moving, expressed in feet per second. The unit of angular velocity is the angle which at a distance = radius from the centre is subtended by an arc equal to the radius. This unit angle =  $\frac{180}{\pi}$  degrees = 57.8°.  $2\pi \times 57.3^\circ = 360^\circ$ , or the circumference. If A = angular velocity, v = Ar,  $A = \frac{v}{r} = \frac{2\pi n}{40}$ .

Height Corresponding to a Given Acquired Velocity.

Velocity.	Height.	Velocity.	Height.	Velocity.	Height.	Velocity.	Height.	Velocity.	Height.	Velocity.	Height.
feet p.sec. .25	feet.	feet p.sec. 13	feet. 2.62	feet p sec. 84	feet. 17.9	feet p.sec. 55	feet. 47.0	feet p.sec. 76	feet. 89.8	feet p.sec. 97	feet. 146
.50	.0039	14	3.04	35	19.0	56	48.8	77	92.2	98	149
.75 1.00	.0087	15	3.49	36	20.1	57	50.5	78	94.6	99	152
1.00	.016	16	3.98	37	21.8	58	52.3	79	97.0	100	155
1.25	.024	17	4.49	38	22.4	59	54.1	80	99.5	105	171
1.50	.035	18	5.03	39	23.6	60	56.0	81	102.0	110	188
1.75	.048	19 20	5.61	40	24.9	61	57.9	82	104.5	115	205
2 2.5 3 3.5	.062	20	6.22	41	26.1	62	59.8	83	107.1	120	224
2.5	.097	21	6.85	42	27.4	63	61.7	84	109.7	130	263
3	.140	22	7.52	43	28.7	64	63.7	85	112.3	140	804
3.5	.190	23	8.21	44	30.1	65	65.7	86	115.0	150	350
4	.248	24	8.94	45	31.4	66	67.7	87	117.7	175	476
4.5	.314	25	9.71	46	32.9	67	69.8	88	120.4	200	622
5	.388	26	10.5	47	34.8	68	71.9	89	123.2	300	1399
6	.559	27	11.8	48	35.8	69	74.0	90	125.9	400	2488
7	.761	28	12.2	49	37.3	70	76.2	91	128.7	500	3887
5 6 7 8 9	.994	29	13.1	50	38.9	71	78.4	95	131 6	600	5597
9	1.26	30	14.0	51	40.4	72	80.6	93	134.5	700	7618
10	1.55	81	14.9	52	42.0	78	82.9	94	137.4	800	9952
11	1.88	82	15.9	53	43.7	74	85.1	95	140.3	900	12593
12	2.24	83	16.9	54	45.3	75	87.5	96	143.3	1000	15547

Falling Bodies: Velocity Acquired by a Body Falling a Given Height.

Height.	Velocity.	Height.	Velocity.	Height.	Velocity.	Height.	Velocity.	Height.	Velocity.	Height.	Velocity.
feet.	feet	feet.	feet p.sec. 5.01 5.07 5.14 5.20 5.26 5.32 5.38	feet.	feet	feet.	feet p.sec. 17.9 18.3 18.7 19.0 19.8	feet.	feet	feet.	feet
005	57	.39	5.01	1 20	8.79	5.	17.9	23.	p.sec. 38.5	72	p.sec. 68.1
.005 .010	.80	.40	5.07	1.22	8.87	.2	18.3	.5	88.9	78	68.5
.015	p.sec. .57 .80 .98	.41	5.14	1 20 1.22 1.24 1.26 1.30 1.32 1.34 1.38 1.40	p.sec. 8.79 8.87 8.94	.4	18.7	24.	39.3	74	69.0
.015 .020 .025 .030 .035 .040 .040 .050 .060 .065 .070 .075 .080 .090 .095 .110 .115 .125 .130 .125 .130 .144 .15 .16 .177 .18	l 1.18 i	.42	5.20	1.26	9.01	.6	19.0	.5	39.7	75 76	69.5
.025	1.27 1.39 1.50 1.60 1.70 1.79 1.88 1.97 2.04 2.12 2.20 2.27 2.34 2.41	.43	5.26	1.28	9.08	.8	19.3	25	40.1	76	69.9
.030	1.39	.44	5.82	1.30	9.15 9.21	6.	19.7	26	40.9	77	70.4
.035	1.50	.45 .46	5.38	1.32	9.21	.2 .4	20.0	27 28 29 80 81	41.7	78 79	70.9
.040	1.00	.47	5.44 5.50 5.56 5.61	1 28	9.29 9.36	.6	20.8	80	42.5 48.2 48.9 44.7	80	71.8 71.8
.050	1.79	.48	5.56	1.30	9.43	.8	20.9	ÃO.	48 0	81	72 2
.055	1.88	.49	5.61	1.40	9.48	7.	21.2	81	44.7	81 82	72.2 72.6
.060	1.97	.50	5.67	1.42	9.57	8.	91 5	22	45.4	88	73.1
.065	2.04	.51	5.73	1.44	9.62	.4	21.8 22.1 22.4	33	46.1	84	78.5 74.0
.070	2.12	.52	5.78	1.46	9.70	.6	22.1	84	46.8	85 86	74.0
.075	2.20	.53 .54	5.84	1.48	9.77	.8	22.4	85	47.4 48.1	86	74.4
.080	2.27	.54 .55	5.90	1.50	9.82	8.	22.7	86	48.1	87	74.8
.000	9.41	.56	5.67 5.78 5.78 5.84 5.90 5.95 6.00	1.48 1.50 1.52 1.54	9.90	.2 .4	23.0	85 86 87 88	48.8 49.4	88 89	40.3
035	9 47	.57	8.08	1.56	10.0	∵	23.0 23.3 23.5	89	50.1	90	74.8 75.3 75.7 76.1 76.5
.100	2.47 2.54	.58	6.06	1 80	10 1	.š	23.8	40	50.7	91	76.5
.105	2.60	.59	1 6 16	1.60	10.2	9.	24.1	41	51.4	92	76.9
.110	2.60 2.66 2.72 2.78 2.84 2.89	60	6.21 6.82 6.42 6.52	1.60 1.65 1.70 1.75 1.80	10.3	.2 .4	24.3	42	52 0	98	77.4
.115	2.72	.62 .64 .66	6.82	1.70	10.5	.4	24.6	48	52.6 53.2	94 95	77.8 78.2
.120	2.78	.64	6.42	1.75	10.6	.6	24.8	44	53.2	95	78.2
.125	2.84	.66 .68	6.61	1.80 1.90	10.8	8	25.1 25.4	45	53.8	98	78.6
.130	2.89	.08	8 21	1.80	11.1	10. .5	25.4 26.0	46 47	54.4	97 98	79.0 79.4
15	3 11	.70 .72 .74 .76 .78	6.71 6.81 6.90 6.99	2. 2.1	11.4 11.7 11.9 12.2 12.4 12.6	11.	26.6	48	55.6	30	70.4
.16	8 21	74	6.90	2.2	11.9	``.5	27 2	49	56 1	99 100 125	79.8 80.2
.17	8.31	.76	6.99	2.8	12.2	12.	27.2 27.8	50	56.1 56.7	125	89.7
.18	8.40	.78	7.09 7.18	2.4 2.5	12.4	.5	28.4 28.9	51	57.8 57.8 58.4	150	98.3
.19	8.50	.80	7.18	2.5	12.6	18.	28.9	52	57.8	175 200	106
.20	3.59	.82	7.26	2.6 2.7	12.9 13.2	5	29.5	58	58.4	200	114
.21	8.68	.84	7.35	2.7	18.2	14	30.0	54	59.0 59.5	225	120
.22	8.00 3.11 3.21 3.31 8.40 8.50 3.59 3.68 3.76 3.85 3.93 4.01 4.09	.86	7.44 7.58 7.61 7.69 7.78 7.86 7.94 8.02	2.8 2.9	18.4	. <b>5</b> 15.	30.5 81.1	55 56	59.5	250	126
94	8 93	.88 .90	7 61	2.9 3.	13.7 13.9 14.1 14.3	.5	31.6	57	60.0 60.6	275 300	133 139 150 160
.25	4.01	.92	7.69	8.1	14.1	16.	82 1	57 58 59	61.1	950	150
.26	4.09	.94	7.78	9.2	14.3	.5	32.6	59	61.1 61.6	400	160
.27	4.17	.96	7.86	8.8	14.5	17.	83.1	<b>1</b> 60	62.1 62.7 63.2	450	1170
.28	4.25	.98	7.94	8.4	14.8	.5	83.6 84.0	61	62.7	500	179
.29	4.82	1.00	8.02	8.5	15.0	18	84.0	62	63.2	550 600	188 197
.80	4.17 4.25 4.82 4.89 4.47	1.00 1.02 1.04 1.06	8.10 8.18 8.26 8.34	3.6 8.7 3.8 8.9	15.2	5	84.5	68	68.7	600	197
16.	4.54	1.04	0.10	8 (	15.4	19. .5	35.0 35.4 35.9 36.8	64 65	64.2	700 800	212 227
.04	4.54 4.61	<b>2</b> 1 OX	8 34	3.0	15.0	20.	95.0	88	64.7	ann	941
.34	4 68	1.10	8 41	4.	16.0	∞.5	36.8	66 67	65.7	1000	241 254
.35	4.74	1.12	8.41 8.49	⁻.2	16.4	21.	86.8	68	66.1	2000	980
.36	4.68 4.74 4.81	1.10 1.12 1.14	8.57	.4	15.6 15.8 16.0 16.4 16.8	.5	36.8 37.2	69	66.6	8000	439
.22 .23 .24 .25 .26 .27 .28 .29 .30 .31 .32 .33 .34 .35 .36	4.88	1.16	8.64	8	117.2	22.	37.6	70	67.1	900 1000 2000 8000 4000	439 507
.38	4.94	1.18	8.72	.8	17.6	.5	88.1	71	67.6	5000	567
	1		1	•	!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	l .	i .

Parallelogram of Velocities.—The principle of the composition and resolution of forces may also be applied to velocities or to distances moved in given intervals of time. Referring to Fig. 88, page 416, if a body at O has a force applied to it which acting alone would give it a velocity represented by OQ per second, and at the same time it is acted on by

another force which acting alone would give it a velocity OP per second, the result of the two forces acting together for one second will carry it to R, OR being the diagonal of the parallelogram of OQ and OP, and the resultant velocity. If the two component velocities are uniform, the resultant will be uniform and the line OR will be a straight line; but if either velocity is a varying one, the line will be a curve. Fig. 96 shows the resultant velocities, also the path traversed by a body acted on by two forces, one of which would carry it at a uniform velocity.

by a body acted on by two forces, one of which would carry it at a uniform velocity over the intervals 1, 2, 3, B, and the other of which would carry it by an accelerated motion over the intervals a, b, c, D in the same times. At the end of the respective intervals the body will be found at C₁, C₂, C₃, C, and the mean velocity during each interval is represented by the distances between these points. Such a curved path is traversed by a shot, the impelling force from the gun giving it a uniform velocity in the direction the gun is aimed, and gravity giving it an accelerated velocity downward. The path of a projectile is a parabola. The distance it will travel is greatest when its initial direction is at an angle 45° above the horisontal.



above the horizontal.

Mass-Force of Acceleration.—The mass of a body, or the quantity of matter it contains, is a constant quantity, while the weight varies according to the variation in the force of gravity at different places. If g = the acceler-

ation due to gravity, and w= weight, then the mass  $m=\frac{w}{w}$ -, w = mg. Weight

here means the resultant of the force of gravity on the particles of a body, such as may be measured by a spring balance, or by the extension or deflection of a rod of metal loaded with the given weight.

Force has been defined as that which causes, or tends to cause, or to destroy, motion. It may also be defined (Kennedy's Mechanics of Machinery) as the cause of acceleration; and the unit of force as the force required to produce unit acceleration in a unit of free mass.

Force equals the product of the mass by the acceleration, or f = ma. Also, if v = the velocity acquired in the time t, ft = mv; f = mv + t; the

acceleration being uniform.

The force required to produce an acceleration of q (that is, 32.16 ft. per sec.) in one second is  $f = mg = \frac{w}{a}g = w$ , or the weight of the body. Also,

 $f = ma = m \frac{v_2 - v_1}{\epsilon}$ , in which  $v_2$  is the velocity at the end, and  $v_1$  the velocity at the beginning of the time t, and  $f = mg = \frac{w}{a} \frac{(v_2 - v_1)}{t} = \frac{w}{a}a$ ;

 $\frac{f}{w} = \frac{a}{a}$ ; or, the force required to give any acceleration to a body is to the

weight of the body as that acceleration is to the acceleration produced by gravity. (The weight w is the weight where g is measured.) EXAMPLE.—Tension in a cord lifting a weight. A weight of 100 lbs. is lifted vertically by a cord a distance of 80 feet in 4 seconds, the velocity uniformly increasing from 0 to the end of the time. What tension must be maintained in the cord? Mean velocity =  $v_0 = 20$  ft. per sec.; final velocity

 $=v_2=2v_0=40$ ; acceleration  $a=\frac{v_2}{t}=\frac{40}{4}=10$ . Force  $f=ma=\frac{wa}{g}=\frac{100}{32.16}\times$ 10 = 31.1 lbs. This is the force required to produce the acceleration only; to it must be added the force required to lift the weight without acceleration, or 100 lbs., making a total of 131.1 lbs.

The Resistance to Acceleration is the same as the force required to produce the acceleration =  $\frac{w}{v_2-v_1}$ 

Formulæ for Accelerated Motion.-For cases of uniformly accelerated motion other than those of falling bodies, we have the formulæ already given,  $f = \frac{w}{g}\alpha_1 = \frac{w}{g} \frac{v_2 - v_1}{t}$ . If the body starts from rest,  $v_1 = 0$ ,  $v_2$  =v, and  $f=\frac{w}{g}\frac{v}{t}$ , fgt=wv. We also have  $s=\frac{vt}{2}$ . Transforming and substituting for g its value 32.16, we obtain

$$\begin{split} f &= \frac{wv^3}{64.32s} = \frac{wv}{32.16t} = \frac{ws}{16.08t^2}; \quad w = \frac{32.16ft}{v} = \frac{64.32fs}{v^2}; \\ s &= \frac{wv^3}{64.32f} = \frac{16.08ft^2}{w} = \frac{vt}{2}; \quad v = 8.02 \sqrt{\frac{fs}{w}} = \frac{32.16ft}{w}; \\ t &= \frac{wv}{32.16f} = \frac{1}{4.01} \sqrt{\frac{ws}{f}} \end{split}$$

For any change in velocity  $f = w \left( \frac{v_3^2 - v_1^3}{64.328} \right)$ . (See also Work of Acceleration, under Work

Motion on Inclined Planes.—The velocity acquired by a body descending an inclined plane by the force of gravity (friction neglected) is equal to that acquired by a body falling freely from the height of the plane. The times of descent down different inclined planes of the same height

vary as the length of the planes.

The rules for uniformly accelerated motion apply to inclined planes. If ais the angle of the plane with the horizontal,  $\sin a =$  the ratio of the height to the length  $=\frac{h}{i}$ , and the constant accelerating force is  $g \sin a$ . The final velocity at the end of t seconds is  $v=gt\sin a$ . The distance passed over in t seconds is  $l=\frac{1}{2}gt^2\sin a$ . The time of descent is

$$t = \sqrt{\frac{2l}{g \sin a}} = \frac{l}{4.01 \text{ Vh}}.$$

# MOMENTUM, VIS-VIVA.

Momentum, or quantity of motion in a body, is the product of the mass by the velocity at any instant =  $mv = \frac{iv}{a}v$ .

Since the moving force = product of mass by acceleration, f = ma; and if the velocity acquired in t seconds = v, or  $a = \frac{v}{t}$ ,  $f = \frac{mv}{t}$ ; ft = mv; that is, the product of a constant force into the time in which it acts equals numerically the momentum.

Since ft = mv, if t = 1 second mv = f, whence momentum might be defined as numerically equivalent to the number of pounds of force that will stop a moving body in 1 second, or the number of pounds of force which acting during 1 second will give it the given velocity, written on Mochanic

Vis-viva, or living force, is a term used by early writers on Mechanics to denote the energy stored in a moving body. Some defined it as the product of the mass into the square of the velocity,  $mv^2$ ,  $=\frac{w}{a}v^2$  others as one half of this quantity or ½mv², or the same as what is now known as energy. The term is now practically obsolete, its place being taken by the word energy.

# WORK, ENERGY, POWER.

Work is the overcoming of resistance through a certain distance. It is measured by the product of the resistance into the space through which it is overcome. It is also measured by the product of the moving force into the distance through which the force acts in overcoming the resistance. the distance through which the force acts in overcoming the resistance. Thus in lifting a boly from the earth against the attraction of gravity, the resistance is the weight of the body, and the product of this weight into the height the body is lifted is the work done.

The Unit of Work, in British measures, is the fcot-pound, or the amount of work done in overcoming a pressure or weight equal to one

und through one foot of space.

The work performed by a piston in driving a fluid before it, or by a fluid in driving a piston before it, may be expressed in either of the following ways:

Resistance × distance traversed = intensity of pressure × area × distance traversed;

= intensity of pressure × volume traversed.

The work performed in lifting a body is the product of the weight of the body into the height through which its centre of gravity is lifted.

If a machine lifts the centres of gravity of several bodies at once to heights

either the same or different, the whole quantity of work performed in so doing is the sum of the several products of the weights and heights; but that quantity can also be computed by multiplying the sum of all the weights into the height through which their common centre of gravity is lifted. (Rankine.)

Power is the rate at which work is done, and is expressed by the quotient of the work divided by the time in which it is done, or by units of work per second, per minute, etc., as foot-pounds per second. The most common unit of power is the horse-power, established by James Watt as the power of a strong London draught-inorse to do work during a short interval and used by him to measure the power of his steam-engines. This unit is \$3,000 foot-power of the steam report of the power of the steam report of the stable power of the steam report of the stable power of the stable power of the steam report of the stable power of the stable power of the steam report of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power of the stable power o pounds per minute = 550 foot-pounds per second = 1,980,000 foot-pounds per

Expressions for Force, Work, Power, etc.

The fundamental conceptions in Dynamics are:

Force, Time, Space, represented by the letters F, T, S.

**Velocity** = space divided by time,  $V = \frac{S}{T}$ , if V be uniform.

**Work** = product of force into space =  $\overrightarrow{FS} = W = FVT$ . (V uniform.) **Power** = rate of work = work divided by time =  $\frac{FS}{T} = P$  = product of

force into velocity = FV.

Power exerted for a certain time produces work; PT = FS = FVT = W. Effort is a name applied to a force which acts on a body in the direction of its motion.

**Elesistance** is that which is opposed to a moving force. It is equal and opposite force.

**Horse-power Hours,** an expression for work measured as the product of a power into the time during which it acts = PT. Sometimes it is the summation of a variable power for a given time, or the average power multiplied by the time.

**Energy**, or stored work, is the capacity for performing work. It is measured by the same unit as work, that is, in foot-pounds. It may be either potential, as in the case of a body of water stored in a reservoir, capable of doing work by means of a water-wheel, or actual, sometimes called kinetic, which is the energy of a moving body. Potential energy is measured by the product of the weight of the stored body into the distance through which it is capable of acting, or by the product of the pressure it exerts into the distance through which that pressure is capable of acting. Potential energy may also exist as stored heat, or as stored chemical energy, as in fuel, gunpowder, etc., or as electrical energy, the measure of these energies being the amount of work that they are capable of performing. Actual energy of a moving body is the work which it is capable of performing against a retarding resistance before being brought to rest, and is equal to the work which must be done upon it to bring it from a state of rest to its actual velocity.

The measure of actual energy is the product of the weight of the body into the height from which it must fall to acquire its actual velocity. If v =the velocity in feet per second, according to the principle of falling bodies,

h, the height due to the velocity  $=\frac{v^2}{2y}$ , and if w= the weight, the energy =

 $\frac{\mathbf{v}}{\mathbf{v}} = \mathbf{w}\mathbf{h}$ . As the quantity  $\frac{\mathbf{w}}{\mathbf{v}}$  is called the mass = m, energy is equal to half the mass into the square of the velocity =  $\frac{1}{2}mv^2$ . Since energy is the capacity for performing work, the units of work and energy are equivalent, or FS =

 $\frac{1}{2}mv^2 = \frac{vv^2}{2a} = wh$ . Energy exerted = work done.

The actual energy of a rotating body whose angular velocity is A and moment of inertia  $\Sigma w^2 = I$  is  $\frac{A^2I}{2g}$ , that is, the product of the moment of inertia into the height due to the velocity, A, of a point whose distance from the axis of rotation is unity; or it is equal to  $\frac{wv^3}{2g}$ , in which w is the weight of

the body and v is the velocity of the centre of gyration.

Work of Acceleration.—The work done in giving acceleration to a body is equal to the product of the force producing the acceleration, or of the resistance to acceleration, into the distance moved in a given time. This force, as already stated equals the product of the mass into the acceleration, or  $f=ma=\frac{w}{g}\frac{v_2-v_1}{t}$ . If the distance traversed in the time t=s, then work  $=fs=\frac{w}{g}\frac{v_2-v_1}{t}s$ .

$$work = fs = \frac{w}{v_2 - v_1}s.$$

Example — What work is required to move a body weighing 100 lbs. horizontally a distance of 80 ft. in 4 seconds, the velocity uniformly increasing,

Mean velocity  $v_0 = 20$  ft. per second; final velocity  $= v_2 = 2v_0 = 40$ ; initial velocity  $v_1 = 0$ ; acceleration,  $a = \frac{v_2 - v_1}{t} = \frac{40}{4} = 10$ ; force  $= \frac{v_0}{a}a = \frac{100}{32.16} \times 100$ 

10 = 31.1 lbs.; distance 80 ft.; work = fs = 31.1  $\times$  80 = 2498 foot-pounds. The energy stored in the body moving at the final velocity of 40 ft. per second is

$$\frac{1}{2}mv^2 = \frac{1}{2}\frac{w}{a}v^2 = \frac{100 \times 40^2}{2 \times 32.16} = 2488$$
 foot-pounds,

which equals the work of acceleration.

$$fs = \frac{w}{q} \frac{v_2}{t} s = \frac{w}{q} \frac{v_2}{t} \frac{v_2}{2} t = \frac{1}{2} \frac{w}{q} v_2^2.$$

If a body of the weight W falls from a height H, the work of acceleration is simply WH, or the same as the work required to raise the body to the same height.

Work of Accelerated Rotation.—Let A = angular velocity of a solid body rotating about an axis, that is, the velocity of a particle whose radius is unity. Then the velocity of a particle whose radius is r is v = Ar. If the angular velocity is accelerated from  $A_1$  to  $A_2$ , the increase of the velocity of the particle is  $v_2 - v_1 = r(A_1 - A_2)$ , and the work of accelerating

$$\frac{w}{g} \times \frac{v_2^2 - v_1^2}{2} = \frac{wr^2}{g} \frac{A_2^2 - A_1^2}{2},$$

in which w is the weight of the particle.

The work of acceleration of the whole body is

$$\sum \left\{ \frac{w}{g} \times \frac{v_2^2 - v_1^2}{2} \right\} = \frac{A_2^2 - A_1^2}{2g} \times \Sigma wr^2.$$

The term  $\Sigma mr^2$  is the moment of inertia of the body.

**Groce of the Blow? of a Steam Hammer or Other Ralling Weight.—The question is often asked: "With what force does a falling hammer strike?" The question cannot be answered directly, and it is based upon a misconception or ignorance of fundamental mechanical laws. The energy, or capacity of doing work, of a body raised to a given height and let fall cannot be expressed in pounds, simply, but only in foot pounds, which is the product of the weight into the height through which it fails, or the product of its weight + 64.82 into the square of the velocity, in fact per second, which it acquires after falling through the given height. If F = weight of the body. M its mass, g the acceleration due to gravity. S the height of fall, and v the velocity at the end of the fall, the energy in the body just before striking, is  $FS = \frac{1}{2}Mv^2 = Wv^2 + 2g = Wv^2 + 64.32$ , which is the general equation of energy of a moving body. Just as the energy of the body is a product of a force into a distance, so the work it does when it strikes is not the manifestation of a force, which can be expressed simply in pounds, but it is the accuracy of a resistance through pressed simply in pounds, but it is the overcoming of a resistance through a certain distance, which is expressed as the product of the average resistance into the distance through which it is exerted. If a hammer weighing 100 lbs. falls 10 ft., its energy is 1000 foot-pounds. Before being brought to rest it must do 1000 foot-pounds of work against one or more resistances. These are of various kinds, such as that due to motion imparted to the body struck, penetration against friction, or against resistance to shearing or other deformation, and crushing and heating of both the falling body and the body struck. The distance through which these resisting forces act is generally indeterminate, and therefore the average of the resisting forces,

which themselves generally vary with the distance, is also indeterminate.

Impact of Bodies.—It two inelastic bodies collide, they will move on together as one mass, with a common velocity. The momentum of the combined mass is equal to the sum of the momenta of the two bodies before impact. If  $m_1$  and  $m_2$  are the masses of the two bodies and  $v_1$  and  $v_2$  their respective velocities before impact, and v their common velocity after impact,  $(m_1 + m_2)v = m_1v_1 \times m_2v_2$ 

 $v = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}.*$ 

If the bodies move in opposite directions  $v = \frac{m_1 v_1 - m_2 v_3}{1 + \dots + m_3}$ , or, the velocity of two inelastic bodies after impact is equal to the algebraic sum of their momenta before impact, divided by the sum of their masses.

If two inelastic bodies of equal momenta impinge directly upon one another from consolite directly each of their masses.

other from opposite directions they will be brought to rest.

Empact of Inclastic Bodies Causes a Loss of Energy, and this loss is equal to the sum of the energies due to the velocities lost and gained by the bodies, respectively.

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - \frac{1}{2}(m_1 + m_2)v^2 = \frac{1}{2}m_1(v_1 - v)^2 + \frac{1}{2}m_2(v_2 - v)^2.$$

In which  $v_1 - v$  is the velocity lost by  $m_1$  and  $v - v_2$  the velocity gained by  $m_2$ .

Example—Let  $m_1 = 10$ ,  $m_2 = 8$ ,  $v_1 = 12$ ,  $v_2 = 15$ .

If the bodies collide they will come to rest, for  $v = \frac{10 \times 12 - 8 \times 15}{3} = 0$ .

The energy loss is

 $\frac{1}{2}10 \times 144 + \frac{1}{2}8 \times 225 - \frac{1}{2}18 \times 0 = \frac{1}{2}10(12 - 0)^2 + \frac{1}{2}8(15 - 0)^2 = 1620$  ft. lbs. What becomes of the energy lost? Ans. It is used doing internal work

on the bodies themselves, changing their shape and heating them. For imperfectly elastic bodies, let e = the elasticity, that is, the ratio which the force of restitution, or the internal force tending to restore the shape of a body after it has been compressed, bears to the force of compressed. sion; and let  $m_1$  and  $m_2$  be the masses,  $v_1$  and  $v_2$  their velocities before impact, and  $v_1'v_2'$  their velocities after impact: then

$$\begin{split} & v_1{}' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} = -\frac{m_2 e(v_1 - v_2)}{m_1 + m_2}; \\ & v_2{}' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2} + \frac{m_1 e(v_1 - v_2)}{m_1 + m_2}. \end{split}$$

If the bodies are perfectly elastic, their relative velocities before and after impact are the same. That is:  $v_1' - v_2' = v_2 - v_1$ . In the impact of bodies, the sum of their momenta after impact is the

same as the sum of their momenta before impact.

$$m_1v_1'+m_2v_2'=m_1v_1+m_2v_2.$$

For demonstration of these and other laws of impact, see Smith's Mechanics; also, Weisbach's Mechanics.

Energy of Recoil of Guns.—(Eng'g, Jan. 25, 1884, p. 72.)

Let W = the weight of the gun and carriage;

V = the maximum velocity of recoil;

w = the weight of the projectile;

v = the muzzle velocity of the projectile.

Then, since the momentum of the gun and carriage is equal to the momentum of the projectile, we have WV = wv, or V = wv + W.

^{*}The statement by Prof. W. D. Marks, in Nystrom's Mechanics, 20th edition, p. 454, that this formula is in error is itself erroneous.

Taking the case of a 10-inch gun firing a 400-lb. projectile with a muzzle velocity of 1400 feet per second, the weight of the gun and carriage being 22 tons = 49.280 lbs., we find the velocity of recoil =

$$V = \frac{1400 \times 400}{49.280} = 11$$
 feet per second.

Now the energy of a body in motion is  $WV^2 + 2g$ .

Therefore the energy of recoil  $=\frac{49,280\times11^2}{2\times32.2}=92,598$  foot-pounds.

The energy of the projectile is  $\frac{400 \times 1400^{9}}{2 \times 32.2} = 12,173,913$  foot-pounds.

Conservation of Energy.—No form of energy can ever be produced except by the expenditure of some other form, nor annihilated except by being reproduced in another form. Consequently the sum total of energy in the universe, like the sum total of matter, must always remain the same. (S. Newcomb.) Energy can never be destroyed or lost; it can be transformed, can be transferred from one body to another, but no matter what transformations are undergone, when the total effects of the exertion of a given amount of energy are summed up the result will be exactly equal to the amount originally expended from the source. This law is called the Conservation of Energy. (Cotterill and Slade.)

exertion of a given amount of energy are summed up the result will be exactly equal to the amount originally expended from the source. This law is called the Conservation of Energy. (Cotterill and Slade.)

A heavy body sustained at an elevated position has potential energy. When it falls, just before it reaches the earth's surface it has actual or kinetic energy, due to its velocity. When it strikes it may penetrate the earth a certain distance or may be crushed. In either case friction results by which the energy is converted into heat, which is gradually radiated into the earth or into the atmosphere, or both. Mechanical energy and heat are mutually convertible. Electric energy is also converted into the or mechanical energy, and either kind of energy may be converted into the other.

Sources of Energy.—The principal sources of energy on the earth's surface are the muscular energy of men and animals, the energy of the wind, of flowing water, and of fuel. These sources derive their energy from the rays of the sun. Under the influence of the sun's rays vegetation grows and wood is formed. The wood may be used as fuel under a steam boiler, its carbon being burned to carbonic acid. Three tenths of its heat energy escapes in the chimney and by radiation, and seven tenths appears as potential energy in the steam. In the steam-engine, of this seven tenths six parts are dissipated in heating the condensing water and are wasted; the remaining one tenth of the original heat energy of the wood is converted into mechanical work in the steam-engine, which may be used to drive machinery. This work is finally, by friction of various kinds, or possibly after transformation into electric currents, transformed into heat, which is radiated into the atmosphere, increasing its temperature. Thus all the potential heat energy of the wood is, after various transformations, converted into heat, which, mingling with the store of heat in the atmosphere, apparently is lost. But the carbonic acid generated by the combustion of the wood is, again, under the influence of the sun's rays, absorbed by vegetation, and more wood may thus be formed having potential energy equal to the original.

Perpetual Motion.—The law of the conservation of energy, than which no law of mechanics is more firmly established, is an absolute barrier to all schemes for obtaining by mechanical means what is called "perpetual motion," or a machine which will do an amount of work greater than the equivalent of the energy, whether of heat, of chemical combination, of electricity, or mechanical energy, that is put into it. Such a result would be the creation of an additional store of energy in the universe, which is not possible by any human agency.

The Efficiency of a Machine is a fraction expressing the ratio of the useful work to the whole work performed, which is equal to the energy expended. The limit to the efficiency of a machine is unity, denoting the efficiency of a perfect machine in which no work is lost. The difference between the energy expended and the useful work done, or the loss, is usually expended either in overcoming friction or in doing work on bodies surrounding the machine from which no useful work is received. Thus in an engine propelling a vessel part of the energy exerted in the cylinder

-----

does the useful work of giving motion to the vessel, and the remainder is spent in overcoming the friction of the machinery and in making currents and eddies in the surrounding water.

ANIMAL POWER.

Work of a Man against Known Besistances. (Rankine.)

Kind of Exertion.	R, lbs.	V, ft. per sec.	3600 (hours per day).	RV, ftlbs. per sec.	RVT, ftlbs. per day.
Raising his own weight up stair or ladder      Hauling up weights with rope, and lowering the rope un-	148	0.5	8	72.5	2,088,000
loaded	40	0.75	6	80	648,000
3. Lifting weights by hand	44	0.65	6	24.2	522,720
4. Carrying weights up-stairs		-1.00	1		0.0.0, 1.00
and returning unloaded	148	0.18	6	18.5	899,600
<ol> <li>Shovelling up earth to a height of 5 ft. 3 in</li> <li>Wheeling earth in barrow up slope of 1 in 12, 1/2 horiz.</li> </ol>	6	1.8	10	7.8	280,800
veloc. 0.9 ft. per sec. and re-				!	
turning unloaded	132	0.075	10	9.9	856,400
7. Pushing or pulling horizon-	og K	2.0	8	58	1 898 400
tally (capstan or oar)	26.5 ( 12.5	5.0	,0	62.5	1,526,400
8. Turning a crank or winch		2.5	<b>'8</b>	45	1,296,000
8. Turning a crank or which	20.0	14.4	2 min	288	1,200,000
9. Working pump	18.2	2.5	10	38	1,188,000
10. Hammering	15	?	8?	7	480,000

EXPLANATION.—R, resistance; V, effective velocity = distance through which R is overcome + total time occupied, including the time of moving unloaded, if any; T', time of working, in seconds per day; T' + 300, same time, in hours per day; RV, effective power, in foot-pounds per second; RVT, dally work.

# Performance of a Man in Transporting Loads Horizontally. (Rankine.)

Kind of Exertion.	L, lbs.	V, ftsec.	7 3600 (hours per day).	LV, lbs. con- veyed 1 foot.	LVT, lbs. con- veyed 1 foot.							
11. Walking unloaded, transporting his own weight  12. Wheeling load L in 2-whld. barrow, return unloaded.  13. Ditto in 1-wh. barrow, ditto.  14. Travelling with burden  15. Carrying burden, returning unloaded  16. Carrying burden, for 30 seconds only	140 224 182 90	5 176 176 21/8 21/8 196 0 11.7 23.1	10 10 10 7 6	700 \$78 220 225 288 0 1474.2	25,200,000 18,428,000 7,920,000 5,670,000 5,082,800							

EXPLANATION.—L, load; V, effective velocity, computed as before; T', time of working, in seconds per day; T'' + 3600, same time in hours per day; LV, transport per second, in lbs. conveyed one foot; LVT, daily transport.

In the first line only of each of the two tables above is the weight of the

man taken into account in computing the work done.

Clark says that the average net daily work of an ordinary laborer at a



pump, a winch, or a crane may be taken at 3300 foot-pounds per minute, or one-tenth of a horse-power, for 8 hours a day; but for shorter periods from four to five times this rate may be exerted.

Mr. Glynn says that a man may exert a force of 25 lbs. at the handle of a crane for short periods; but that for continuous work a force of 15 lbs. is all that should be assumed, moving through 220 feet per minute.

Man-wheel.—Fig. 97 is a sketch of a very efficient man-power hoisting-machine which the author saw in Berne, Switzerland, in 1889. The face of the wheel was wide enough for three men to walk abreast, so that nine men could work in it at one time.

Fig. 97.

# Work of a Horse against a Known Resistance. (Rankine.)

Kind of Exertion.	R.	V.	T. 3600	RV.	RVT.
Cantering and trotting drawing a light railway carriage (thoroughbred)	mean 301% max. 50	14%	4	44736	6,444,000
walking (draught-horse)	120	8.6	8	432	12,441,600
8. Horse drawing a gin or mill, walking	100 . 66	3.0 6.5	8 41,6	300 429	8,640,000 6,950,000

Explanation.—R, resistance, in lbs.; V, velocity, in feet per second; T'

+ 3800, hours work per day; RV, work per second; RVT, work per day;
The average power of a draught-horse, as given in line 2 of the above table,
being 432 foot-pounds per second, is 432/550 = 0.785 of the conventional value
assigned by Watt to the ordinary unit of the rate of work of prime movers.
It is the mean of several results of experiments, and may be considered the average of ordinary performance under favorable circumstances.

#### Performance of a Horse in Transporting Loads Horizontally. (Rankine.)

Kind of Exertion.	L.	v.	T.	LV.	LVT.
5. Walking with cart, always loaded	1500	8.6	10	5400	194,400,000
	750	7.2	41/6	5400	87,480,000
ed, returning empty; V, mean velocity	1500	2.0	10	8000	108,000,000
	270	3.6	10	972	84,992,000
	180	7.2	7	1296	82,659,200

Explanation.—L, load in ibs.; V, velocity in feet per second; T+3600, working hours per day; LV, transport per second; LVT, transport per day. This table has reference to conveyance on common roads only, and those

evidently in bad order as respects the resistance to traction upon them.

Horse Gin.—In this machine a horse works less advantageously than in drawing a carriage along a straight track. In order that the best possible results may be realized with a horse-gin, the diameter of the circular track in which the horse walks should not be less than about forty

Oxon, Mules, Assoc.—Authorities differ considerably as to the power of these animals. The following may be taken as an approximative comparison between them and draught-horses (Rankine):

Ox.—Load, the same as that of average draught-horse; best velocity and

work, two thirds of horse.

Mule.-Lord, one half of that of average draught-horse; best velocity, the same with horse; work one half.

Ass.—Load, one quarter that of average draught-horse; best velocity the same; work one quarter.

Reduction of Draught of Horses by Increase of Grade of Boads, (Engineering Record, Prize Essays on Roads, 1892.)-Experiments on English roads by Gayffler & Parnell:

Cailing load that can be drawn on a level 100;

On a rise of. ...... 1 in 100. 1 in 50, 1 in 40. 1 in 30. 1 in 36, 1 in 30, 1 in 10. A horse can draw only 90. 81. 72. 64. 54. 40.

The Hesistance of Carriages on Hoads is (according to Gen. Morin) given approximately by the following empirical formula:

$$R = \frac{W}{r}[a + b(u - 3.28)].$$

In this formula R = total resistance; r = radius of wheel in inches; W = radius of wheel in inchesgross load; u = velocity in feet per second; while a and b are constants, whose values are: For good broken-stone road, a = 4 to .55, b = .024 to .026; for paved roads, a = .27, b = .0684.

Rankine states that on gravel the resistance is about double, and on sand five times, the resistance on good broken-stone roads.

#### BLEMENTS OF MACHINES.

The object of a machine is usually to transform the work or mechanical energy exerted at the point where the machine receives its motion into

work at the point where the final resistance is overcome. The specific end may be to change the character or direction of motion, as from circular to rectilinear, or vice versa, to change the velocity, or to overcome a great resistance by the application of a moderate force. In all cases the total energy exerted equals the total work done, the latter including the overcoming of all the frictional resistances of the machine as well as the useful work performed. No increase of power can be obtained from any machine, since this is impossible according to the law of conservation of energy. In a frictionless machine the product of the force exerted at the drivingpoint into the velocity of the driving-point or the distance it moves in a given interval of time, equals the product of the resistance into the distance through which the resistance is overcome in the same time.

The most simple machines, or elementary machines, are reducible to three classes, viz., the Lever, the Cord, and the Inclined Plane.

The first class includes every machine consisting of a solid body capable of revolving on an axis, as the Wheel and Axle.

The second class includes every machine in which force is transmitted by means of flexible threads, ropes, etc., as the Pulley.
The third class includes every machine in

which a hard surface inclined to the direc-

Fig. 98. C B F1G. 99. В Fig. 100.

tion of motion is introduced, as the Wedge and the Screw. A Lever is an inflexible rod capable of motion about a fixed point, called a fulcrum. The rod may be straight or bent at any angle, or curved. It is generally regarded, at first, as without weight, but its weight may be

considered as another force applied in a vertical direction at its centre of

The arms of a lever are the portions of it intercepted between the force, P, and fulcrum, C, and between the weight, W, and fulcrum. Levers are divided into three kinds or orders, according to the relative

positions of the applied force, weight, and fulcrum.

In a lever of the first order, the fulcrum lies between the points at which

the force and weight act. (Fig. 98.)
In a lever of the second order, the weight acts at a point between the fulcrum and the point of action of the force. (Fig. 99.)

In a lever of the third order, the point of action of the force is between that of the weight and the fulcrum. (Fig. 100.)

In all cases of levers the relation between the force exerted or the pull,

P, and the weight lifted, or resistance overcome, W, is expressed by the equation  $P \times AC = W \times BC$ , in which AC is the lever-arm of P, and BC is the lever-arm of W, or moment of the force = the moment of the resistance. (See Moment.)

In cases in which the direction of the force (or of the resistance) is not at right angles to the arm of the lever on which it acts, the "lever-arm" is the length of a perpendicular from the fulcrum to the line of direction of the force (or of the resistance). W:P::AC:BC, or, the ratio of the resistance to the applied force is the inverse ratio of their lever-arms. Also, if  $V^w$  is the velocity of W, and  $V_P$  is the velocity of P,  $W:P::V_P$ , and  $P \times V_P$  $= W \times V_{w}$ 

If Sp is the distance through which the applied force acts, and Sw is the distance the weight is lifted or through which the resistance is overcome,  $W: P: Sp: Sw: W \times Sw = P \times Sp.$  or the weight into the distance it is lifted equals the force into the distance through which it is exerted.

These equations are general for all classes of machines as well as for levers, it being understood that friction, which in actual machines increases

the resistance, is not at present considered.

The Bent Lever.—In the bent lever (see Fig. 91, page 416) the leverarm of the weight m is cf instead of bf. The lever is in equilibrium when  $n \times \alpha f = m \times cf$ , but t is to be observed that the action of a bent lever may be very different from that of a straight lever. In the letter, so long as the force and the resistance act in lines parallel to each other, the ratio of the lever-arms remains constant, although the lever itself changes its inclinalever-arms remains constant, antiough the lever tasel: changes its inclina-tion with the horizontal. In the bent lever, however, this ratio changes: thus, in the cut, if the arm bf is depressed to a horizontal direction, the dis-tance cf lengthens while the horizontal projection of af shortens, the latter becoming zero when the direction of af becomes vertical. As the arm afapproaches the vertical, the weight m which may be lifted with a given force s is very great, but the distance through which it may be lifted is very small. In all cases the ratio of the weight m to the weight n is the inverse ratio of the horizontal projection of their respective lever-arms.

The Moving Strut (Fig. 101) is similar to the bent lever, except that

one of the arms is missing, and that the force and the resistance to be



Fig. 101.

overcome act at the same end of the single arm. The resistance in the case shown in the cut is not the weight W, but its resistance to being moved, R, which may be sim-ply that due to its friction on the horizontal plane, or some other op-posing force. When the angle between the strut and the horizontal plane changes, the ratio of the resistance to the applied force changes. When the angle becomes very small, a moderate force will overcome a very great resistance, which tends to become infinite as

the angle approaches zero. If a= the angle,  $P \times \sin a = R \times \text{versin } a$ . If a= 5 degrees,  $\sin a=0.8716$ , versin a=.00381, R=23 R, nearly.

The stone crusher (Fig. 102) shows a practical example of the use of two moving struts.

The Toggle-joint is an elbow or knee-joint consisting of two bars so connected that they may be brought into a straight line and made to produce great endwise pressure when a force is applied to bring them into this position. It is a case of two moving struts placed end to end, the moving force being applied at their point of junction, in a direction at right angles to the direction of the resistance, the other end of one of the struts resting against a fixed abutment, and that of the other against the body to be moved. If a= the angle each strut makes with the straight line joining the points about which their outer ends rotate, the ratio of the resistance to the applied force is R:P: sin a: 2 versin a: 2 versin a= P sin a. The





Fig. 108.

ratio varies when the angle varies, becoming infinite when the angle becomes sero.

The toggle-joint is used where great resistances are to be overcome

through very small distances, as in stone-crushers (Fig. 108). The Inclined Plane, as a mechanical element, is supposed perfectly hard and smooth, unless friction be considered. It assists in sustaining a heavy body by its reaction. This reaction, however, being normal to the

plane, cannot entirely counteract the weight of the body, which acts vertically downward Some other force must therefore

be made to act upon the body, in order that it may be sustained.

If the sustaining force act parallel to the plane (Fig. 104), the force is to the weight as the height of

the plane is to its length, measured on the incline.

If the force act parallel to the base of the plane, the power is to the weight as the height is to the

If the force act at any other angle, let i = theangle of the plane with the horizon, and e = theFrg. 104. angle of the direction of the applied force with the angle of the plane.  $P: W: \sin i \cdot \cos e$ ;  $P \times \cos e = W \sin i$ . Problems of the inclined plane may be solved by the parallelogram of

forces thus:

Let the weight W be kept at rest on the incline by the force P, acting in the line bP', parallel to the plane Draw the vertical line ba to represent the weight; also bb' perpendicular to the plane, and complete the parallelogram b'c. Then the vertical weight ba is the resultant of bb', the measure of support given by the plan to the weight, and bc, the force of gravity tending to draw the weight down the plane. The force required to maintain the weight in equilibrium is represented by this force bc. Thus the force and the weight are in the ratio of bc to ba. Since the triangle of forces abc is similar to the triangle of the incline ABC, the latter may be substituted for the former in determining the relative magnitude of the forces, and

The Wedge is a pair of inclined planes united by their bases. In the application of pressure to the head or butt end of the wedge, to cause it to penetrate a resisting body, the applied force is to the resistance as the thickness of the wedge is to its length. Let t be the thickness, l the length, W the resistance, and P the applied force or pressure on the head of the

wedge. Then, friction neglected, 
$$P:W::t:l;\ P=\frac{Wt}{l};\ W=\frac{Pl}{t}$$
.

The Screw is an inclined plane wrapped around a cylinder in such a way that the height of the plane is parallel to the axis of the cylinder. If the screw is formed upon the internal surface of a hollow cylinder, it is usually called a nut. When force is applied to raise a weight or overcome a resistance by means of a screw and nut, either the screw or the nut may

be fixed, the other being movable. The force is generally applied at the end of a wrench or lever-arm, or at the circumference of a wheel. If r= radius of the wheel or lever-arm, and p= pitch of the screw, or distance between threads, that is, the height of the inclined plane

threads, that is, the neight of the inclined plane for one revolution of the screw, P =the applied force, and W =the resistance overcome, then, neglecting resistance due to friction,  $2mr \times P = Wp$ ; W = 6.283 Fr + p. The ratio of P to W is thus independent of the diameter of the screw. In actual screws, much of the power transmitted is lost through friction.



The Cam is a revolving inclined plane. It may be either an inclined plane wrapped around a cylinder in such a way that the height of the plane is radial to the cylinder, such as the ordinary lifting-cam, used in stamp-mills



(Fig. 105), or it may be an inclined plane curved edgewise, and rotating in a plane parallel to its base (Fig. 106). The relation of the weight to the applied force is calculated in the same manner as in the case of the screw.



**Pulleys or Blocks.** P = force applied, or pull; W = weight lifted or resistance. In the simple pulley A (Fig. 107) the point P on the pulling pope descends the same amount that the weight is lifted, therefore P = W. In B and C the point P moves twice as far as the weight is lifted, therefore W = 2P. In B and C there is one movable block, and two plies of the rope engage with it. In D there are three sheaves in the movable block, each with two plies engaged, or six in all. Six plies of the rope are therefore shortened by the same amount that the weight is lifted, and the point P moves six times as far as the weight, consequently W = 6P. In general, the ratio of W to P is equal to the number of plies of the rope that are shortened, and also is equal to the number of plies that engage the lower block. If the lower block has 2 sheaves and the upper 3, the end of the rope is fastened to a hook in the top of the lower block, and then there are 5 plies shortened instead of 6, and W = 5P. If V = velocity of W, and v = velocity of P, then in all cases VW = vP, whatever the number of sheaves or their arrangement. If the hauling rope, at the pulling end, passes first around a sheave in the upper or stationary block, it makes no difference in what direction the rope is led from this block to the point at which the pull on the rope is applied; but if it first passes around the movable block, it is necessary that the pull be exerted in a direction parallel to the line of action of the resistance, or a line joining the centres of the two blocks, in order to obtain the maximum effect. If the rope pulls on the lower block at an angle, the block will be pulled out of the line drawn between the weight and the upper block, and the effective pull will be less than the actual pull

on the rope in the ratio of the cosine of the angle the pulling rope makes

on the rope in the ratio of the cosine of the angle the pulling rope makes with the vertical, or line of action of the resistance, to unity.

**Differential Pulley.** (Fig. 108.)—Two pulleys. B and C, of different radii, rotate as one piece about a fixed axis, A. An endless chain, BDECLKH, passes 'over both pulleys. The rims of the pulleys are shaped so as to hold the chain and prevent it from slipping. One of the bights or loops in which the chain hangs, DE, passes under and supports the running block F. The other loop or bight, HKL, hangs freely, and is called the hauling part. It is evident that the velocity of the hauling part is equal to that of the pitch-circle of the pulley B.

In order that the velocity-ratio may be exactly uniform.

In order that the velocity-ratio may be exactly uniform, the radius of the sheave F should be an exact mean between the radii of B and C.

Consider that the point B of the cord BD moves through an arc whose length = AB, during the same time the point C or the cord CE will move downward a distance = AC. The length of the bight or loop BDEC will be shortened by AB - AC, which will cause the pulley F to be raised half of this amount. If P = the pulling force onthe cord HK, and W the weight lifted at F, then  $P \times AB = W \times \frac{1}{2}(AB - AC)$ .

To calculate the length of chain required for a differential pulley, take the following sum: Half the circumference of A+ half the circumference of B+ half the circumference of F+ twice the greatest distance of F from A+ the least length of loop HKL. The last quantity is fixed





according to convenience. Fig. 108.

The Bifferential Windlass (Fig. 109) is identical in principle with the differential pulley, the difference in construction being that in the differential windlass the running block hangs in the bight of a rope whose two parts are wound round, and have their ends respectively made fast to two barrels of different radii. which rotate as one piece about the axis A. The differential windlass is little used in practice, because of the great length of rope which it requires.

The Differential Screw (Fig. 110) is a compound screw of different pitches, in which the threads wind the same way.  $N_1$  and  $N_2$  are the two nuts;  $S_1S_1$ , the longer-pitched thread;  $S_2S_2$ , the shorter-pitched thread: in the figure both these threads are left-handed. At each turn of the screw the nut N2 advances relatively to N2 through a distance equal to the difference of the pitch. The use of the differential screw is to combine the slowness

of advance due to a fine pitch with the strength of thread which can be obtained by means of a coarse pitch only.

A Wheel and Axle, or Windlass, resembles two pulleys on one axis.

having different diameters. If a weight he lifted by means of a rope wound over the axle, the force being applied at the rim of the wheel, the action is like that of a

lever of which the shorter arm is equal to the radius of the axle plus half the thickness of the rope, and the longer arm is equal to the radius of the wheel. A wheel and axie is therefore sometimes classed as a perpetual lever. If P = the applied force, D = diameter of the wheel,



W = the weight lifted, and d the diameter of the axis + the diameter of the rope, PD = Wd.

Toothed-wheel Gearing is a combination of two or more wheels and axis (Fig. 111). If a series of wheels and pinions gear into each other, as in the cut, friction neglected, the weight lifted, or resistance overcome, is to the force applied inversely as the distances through which they act in a given time. If R, R, R, be the radii of the successive wheels measured to the pitch-line of the tech, and r, r, r, the radii of the corresponding pinions, P the applied force, and W the weight lifted,  $P \times$   $R \times R^2 \times R_2 = W \times r \times r_1 \times r_2$ , or the applied force is to the weight as the product of the radii of the pinions is to the product of the radii of the wheels; or, as the product of the numbers expressing the teeth in each pinion is to the product of the numbers expressing the teeth in each wheel.

Endless Screw, or Worm-gear. (Fig. 112.)—This gear is commonly used to convert motion at high speed into motion at very slow







Fig. 112.

speed. When the handle P describes a complete circumference, the pitch-line of the cog-wheel moves through a distance equal to the pitch of the screw, and the weight W is lifted a distance equal to the pitch of the screw multiplied by the ratio of the diameter of the axle to the diameter of the pitch-circle of the wheel. The ratio of the applied force to the weight lifted is inversely as their velocities, friction not being considered; but the friction in the worm-gear is usually very great, amounting sometimes to three or four times the useful work done.

If v = the distance through which the force P acts in a given time, say 1 second, and V = distance the weight W is lifted in the same time, r = radius of the crank or wheel through which P acts, t = pitch of the screw, and also of the teeth on the cog-wheel, d = diameter of the axle, and D = diameter of the pitch-line of the cog-wheel,  $v = \frac{6.283}{t} \frac{D}{d} \times V$ ;  $V = v \times td + 6.283rd$ , Pv = WV + friction.

### STRESSES IN FRAMED STRUCTURES.

Framed structures in general consist of one or more triangles, for the reason that the triangle is the one polygonal form whose shape cannot be changed without distorting one of its sides. Problems in stresses of simple framed structures may generally be solved either by the application of the triangle, paralellogram, or polygon of forces, by the principle of the lever, or by the method of moments. We shall give a few examples, referring the student to the works of Burr, Dubois, Johnson, and others for more elaborate treatment of the subject.

1. A Simple Crane. Figs. 113 and 114.)—A is a fixed mast, B a brace or boom, T a tie, and P the load. Required the strains in B and T. The weight P, considered as acting at the end of the boom, is held in equilibrium by three forces: first, gravity acting downwards; second, the tension in T: and third, the thrust of B. Let the length of the line p represent the magnitude of the downward force exerted by the load, and draw a parallelogram with sides  $b^t$  parallel, respectively, to B and T, such that p is the diagonal of the parallelogram. Then b and t are the components drawn to the same scale as p, p being the resultant. Then if the length p represents the load, t is the tension in the tie, and b is the compression in the brace.

Or, more sinply, T, B, and that portion of the mast included between them or A' may represent a triangle of forces, and the forces are proportional to the length of the sides of the triangle; that is, if the height of the triangle A' = the load, then B = the compression in the brace, and T = the tension in the tie; or if P = the load in pounds, the tension in  $T = P \times \frac{T}{A'}$ , and the com-

pression in  $B = P \times \frac{B}{A'}$ . Also, if a = the angle the inclined member makes

with the mast, the other member being horizontal, and the triangle being right-angled, then the length of the inclined member = height of the triangle  $\times$  secant a, and the strain in the inclined member = P secant a. Also, the strain in the horizontal member =  $P \tan a$ .

The solution by the triangle or parallelogram of forces, and the equations Tension in  $T=P\times T/A'$ , and Compression in  $B=P\times B/A'$ , hold true even if the triangle is not right-angled, as in Fig. 115; but the trigonometrical rela-



tions above given do not hold, except in the case of a right-angled triangle. It is evident that as A' decreases, the strain in both T and B increases, tending to become infinite as A' approaches zero. If the tie T is not attached to the mast, but is extended to the ground, as shown in the dotted line, the tension in it remains the same.

2. A Guyed Crane or Berrick. (Fig. 116.)—The strain in B is, as before,  $P \times B/A'$ , A' being that portion of the vertical included between B and T, wherever T may be attached to A. It, however, the tie T is attached to B beneath its extremity, there may be in addition a bending strain in B due to a tendency to turn about the point of attachment of T as a fulcrum.

The strain in T may be calculated by the principle of moments. The moment of P is Fc, that is, its weight  $\times$  its perpendicular distance from the point of rotation of B on the mast. The moment of the strain on T is the product of the strain into the perpendicular distance from the line of its



Frg. 116.

direction to the same point of rotation of B, or Td. The strain in T therefore = Pc + d. As d decreases the strain on T increases, tending to infin-

ity as d approaches zero.

The strain on the guy-rope is also calculated by the method of moments.

The strain on the guy-rope is also calculated by the mest O is as before. Pc. The moment of the load about the bottom of the mast O is, as before, Pc. If the guy is horizontal the strain in it is F and its moment is Ff, and F=Pc+f. If it is inclined, the moment is the strain  $G \times$  the perpendicular distance of the line of its direction from Q, or Gg, and G=Pc+g. The guy-rope having the least strain is the horizontal one F, and the strain



 $\frac{AD}{AB}$ ; on  $CA = \frac{1}{16}P \times \frac{CA}{AB}$ .

nite when q=0. 3. Shear-poles with Guys. (Fig. 109.)—Resultant of strain in both masts =  $P \times BD$ + BC. Resultant strain in both

in G = the strain in  $F \times$  the se cant of the angle between F and G. As G is made more nearly vertical g decreases, and the strain increases, becoming infl-

This is true only if CB and BD are of equal

length, in which case  $\frac{1}{2}$  of  $\stackrel{\frown}{P}$  is supported by each abutment C and D. If they are unequal in length (Fig. 119), then, by the principle of the lever, find the reby the principle of the lever, and  $R_3$ . If P is the load applied at the point B on the lever CD, the fulcrum being D, then  $R_1 \times CD = P \times BD$  and  $R_2 \times CD = P \times BC$ ;  $R_3 = P \times BC + CD$ .

The strain on  $AC = R_1 \times AC + AB$ , and on  $AD = R_2 \times AD + AB$ .

The strain on the tie =  $R_1 \times CB + AB$  $= R_0 \times BD + AB$ .

Frg. 118.

When CB = BD,  $R_1 = R_2$ , the strain on CB and BD is the same, whether the braces are of equal length or not, and is equal to  $\frac{1}{2}P \times \frac{1}{2}CD + AB$ .

If the braces support a uniform load, as a pair of rafters, the strains caused by such a load are equivalent to that caused by one half of the load applied at the centre. The horisontal thrust of the braces against each other at the

Frg. 119.

apex equals the tensile strain in the tie.

King-post Truss or Bridge. (Fig. 120.)—If the load is distributed over the whole leugth of the truss, the effect is the same as if half the load were placed at the centre, the other half being carried by the abutments. Let P = one half the load on the truss, then tension in the vertical tie AB = P. Com-

pression in each of the inclined braces =  $\frac{1}{2}P \times AD + AB$ . Tension in the tle  $CD = \frac{1}{2}P \times BD + AB$ . Horizontal thrust of inclined brace AD at D = the tension in the tie. If W = the total load on one truss uniformly distributed, l = its length and d = its depth, then the tension on the horwı



izontal tie =

Inverted King-post Truss. (Fig. 121.)—If P = a load applied at B, or one half of a uniformly distributed load, then compression on AB = P



(the floor-beam CD not being considered (the noor-beam CD not being considered to have any resistance to a slight bending). Tension on AC or  $AD = \frac{1}{2}P \times AD + AB$ . Compression on  $CD = \frac{1}{2}P \times BD + AB$ . Queen-post Truss. (Fig. 192.)—If uniformly loaded, and the queen-post distance of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property

vide the length into three equal bays, the load may be considered to be divided into three equal parts, two parts of which,  $P_1$  and  $P_2$ , are concentrated at the panel joints

and the remainder is equally divided between the abutments and supported by them directly. The two parts  $P_1$  and  $P_2$  only are considered to affect the members of the truss. Strain in



the vertical ties BE and CF each equals  $P_1$  or  $P_2$ . Strain on AB and CD each  $= P_1 \times CD + CF$ . Strain on the tie AE or EF or  $ED = F \times FD + CF$ . Thrust on BC = tension on EF.

For stability to resist heavy unequal loads the queen-post truss should have diagonal braces from

B to F and from C to E.

Inverted Queen-post Trues. (Fig. 123.) — Compression on EB and FC each = P. Tension on EB and EC each  $= P \times AB + EB$ . Compression on AE or EF or  $FD = P \times AE + EB$ . Tension on BC = compression on EF. For stability to resist unequal loads, ties should be run from the E-and from should be run from C to E and from B to F.

Burr Trues of Five Panels. (Fig. 124.)—Four fifths of the load may be taken as concentrated at the points E, K, L and F, the other fifth being



supported directly by the two abutments. For the strains in BA and CDthe truss may be considered as a queen-post truss, with the loads  $P_1$ ,  $P_2$  concentrated at E and the loads  $P_2$ ,  $P_4$  concentrated at E. Then, compressive strain on  $AB = (P_1 + P_2) \times AB + BE$ . The strain on CD is the same if the loads and panel lengths are equal. The tensile strain on BE or CF = $P_1+P_2$ . That portion of the truss between E and F may be considered as a smaller queen-post truss, supporting the loads  $P_2$ ,  $P_2$  at E and E. The strain on EG or  $HF=P_2\times EG+GE$ . The diagonals GL and EG every no strain unless the truss is unequally loaded. The verticals GE and EG and EG are That portion of the truss between E and F may be considered as

receive a tensile strain equal to  $P_2$  or  $P_3$ .

For the strain in the horizontal members: BG and CH receive a thrust For the strain in the nonzontal members: BG and CH receive a thrust equal to the horizontal component of the thrust in AB or CL,  $= (P_1 + P_2) \times \tan$  angle ABE, or  $(P_1 + P_2) \times AE + BE$ . GH receives this thrust and also, in addition, a thrust equal to the horizontal component of the thrust in EG or HF, or, in all,  $(P_1 + P_2 + P_3) \times AE + BE$ . The tension in AE or FD equals the thrust in BG or HC, and the tension in EK, KL, and LF equals the thrust in GH.

Pratter Whipple Truss. (Fig. 125.)—In this truss the diagonals are ties, and the verticals are struts or columns.

Calculation by the method of distribution of strains: Consider first the load  $P_1$ . The truss having six bays or panels, 5/6 of the load is transmitted to the abutment H, and 1/6 to the abutment O, on the principle of the lever. As the five sixths must be transmitted through JA and AH, write on these members the figure 5. The one sixth is transmitted successively through The one state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the load  $P_3$ , of which 4/6 goes to AH and 2/6 to GO. Write on KB, BJ, JA, and AH the figure 4, and on KD, DL, LE, etc., the figure 2. The load  $P_2$ 

transmit 3/6 in each direction; write 8 on each of the members through which this stress passes, and so on for all the loads, when the figures on the several members will appear as on the cut. Adding them up, we have the following totals:

Tension on diagonals  $\begin{cases} AJ & BH & BK & CJ & CL & DK & DM & EL & EN & FM & FO & GN \\ 15 & 0 & 10 & 1 & 6 & 8 & 9 & 9 & 8 & 10 \end{cases}$ AH BJ CK DL EM FN GO Compression on verticals

Each of the figures in the first line is to be multiplied by  $1/6P \times$  secant of angle HAJ, or  $1/6P \times AJ + AH$ , to obtain the tension, and each figure in the lower line is to be multiplied by 1/6P to obtain the compression. The diag-

lower line is to be multiplied by 1/6P to obtain the compression. onals HB and FO receive no strain.

Frg. 125.

It is common to build this truss with a diagonal strut at HB instead of the post HA and the diagonal AJ; in which case 5/6 of the load P is carried through JB and the strut BH, which latter then receives a strain = 15/6 $P \times$ secant of HBJ.

The strains in the upper and lower horizontal members or chords increase from the ends to the centre, as shown in the case of the Burr truss. AB receives a thrust equal to the horizontal component of the tension in AJ, BC receives the same thrust + the horizontal component of the tension in BK, and so on. The tension in the lower chord of each panel is the same as the thrust in the upper chord of the same panel. (For calculation of the chord strains by the method of moments, see below.)

The maximum thrust or tension is at the centre of the chords and is equal WL to  $\frac{\partial^2 L}{\partial D}$ , in which W is the total load supported by the truss, L is the length.

and  $\overline{D}$  the depth. This is the formula for maximum stress in the chords of a truss of any form whatever.

The above calculation is based on the assumption that all the loads  $P_1$ ,  $P_2$ , the above execution is based on the assumption that an inertensis  $P_1, P_2$ , etc., are equal. If they are unequal the value of each has to be taken into account in distributing the strains. Thus the tension in AJ, with unequal loads, instead of being  $15 \times 1/6$  P secant  $\theta$  would be  $\sec \theta \times (5/6P_1 + 4/6P_2 + 3/6P_2 + 2/6P_4 + 1/6P_5)$ . Each panel load,  $P_1$  etc., includes its fraction of the weight of the truss.

General Formula for Strains in Diagonals and Verticals. Let n = total number of panels, x = number of any vertical consideredfrom the nearest end, counting the end as 1, r = rolling load for each panel. P = total load for each panel,

Strain on verticals = 
$$\frac{(n-x)+(n-x)^3-(x-1)+(x-1)^3W}{2n} + \frac{r(x-1)+(x-1)^3}{2n}.$$

For a uniformly distributed load, leave out the last term,

$$[r(x-1)+(x-1)^2]+2n$$
.

Strain on principal diagonals = strain on verticals × secant 0, that is secant of the angle the diagonal makes with the vertical.

Strain on the counterbraces: The strain on the counterbrace in the first panel is 0, if the load is uniform. On the 2d, 3d, 4th, etc., it is P secant 0

$$\times \frac{1}{n}, \frac{1+2}{n}, \frac{1+2+3}{n}$$
, etc., P being the total load in one panel.

Strain in the Chords-Method of Moments, -Let the truss be uniformly loaded, the total load acting on it = W. Weight supported at each end, or reaction of the abutment W/2. Length of the truss = L. Weight on a unit of length = W/L. Horizontal distance from the nearest abutment to the point (say M in Fig. 125) in the chord where the strain is be determined = x. Horizonta, strain at that point (tension on the lower chord, compression in the upper) = H. Depth of the truss = D. By the method of moments we take the difference of the moments, about the point M, of the reaction of the abutment and of the load between and the abutments, and equate that difference with the moment of the resistance, or the strain in the horizontal chord, considered with reference to a point in the opposite chord, about which the truss would turn if the first chord were severed at M.

The moment of the reaction of the abutment is Wx/2. The moment of the load from the abutment to M is  $W/Lx \times$  the distance of its centre of gravity from M, which is x/2, or moment =  $Wx^2 + 2L$ . Moment of the stress in the chord =  $HD = \frac{Wx}{2} - \frac{Wx^2}{2L}$ , whence  $H = \frac{W}{2D} \left(x - \frac{x^2}{L}\right)$ . If x = 0 or L,

H=0. If x=L/2,  $H=\frac{WL}{8D}$ , which is the horizontal strain at the middle of the chords, as before given.

The Howe Truss. (Fig. 125.)—In the Howe truss the diagonals are struts, and the verticals are ties. The calculation of strains may be made



220, 270,

in the same method as described above for the Pratt truss.

The Warren Girder. (Fig. 127.)—In the Warren girder, or triangular truss, there are no vertical struts, and the diagonals may transmit either



tension or compression. The strains in the diagonals may be calculated by the method of distribution of strains as in the case of the rectangular truss.

On the principle of the lever, the load  $P_1$  being 1/10 of the length of the span from the line of the nearest support a, transmits 4/10 of its weight to a and 1/10 to g. Write 9 on the right hand of the strut 1a, to represent the compression, and 1 on the right hand of 1b, 2c, 3d, etc., to represent compression, and on the left hand of  $b^2$ ,  $c^3$ , etc., to represent tension. The load  $P_3$  transmits 7/10 of its weight to a and 8/10 to g. Write 7 on each member from 2 to a and 8 on each member from 2 to g, placing the figures representing compression on the right hand of the member, and those representing tension on the left. Proceed in the same manner with all the loads, then

sum up the figures on each side of each diagonal, and write the difference of each sum beneath, and on the side of the greater sum, to show whether the difference represents tension or compression. The results are as follows: Compression, 1a, 25; 2b, 15; 3c, 5; 3d, 5; 4e, 15; 5g, 2b. Tension, 1b, 15; 2c, 5; 4d, 5; 5e, 15. Each of these figures is to be multiplied by 1/10 of one of the loads as  $P_1$ , and by the secant of the angle the diagonals make with a vertical line.

The strains in the horizontal chords may be determined by the method of

moments as in the case of rectangular trusses.

Roof-truss.—Solution by Method of Moments.—The calculation of strains in structures by the method of statical moments consists in taking a cross-section of the structure at a point where there are not more than three members (struts, braces, or chords).

To find the strain in either one of these members take the moment about the intersection of the other two as an axis of rotation. The sum of the moments of these members must be 0 if the structure is in equilibrium. But the moments of the two members that pass through the point of reference or axis are both 0, hence one equation containing one unknown quantity can be found for each cross-section.



Fra. 128.

In the truss shown in Fig. 128 take a cross-section at ts, and determine the strain in the three members cut by it, viz., CE, ED, and DF. Let X = force exerted in direction CE, Y = force exerted in direction DE, Z = force exerted in direction FD.

For X take its moment about the intersection of Y and Z at D = Xx. For Y take its moment about the intersection of X and Z at A = Yy. For Z take its moment about the intersection of X and Y at E = Zz. Let z = 18, z = 18.6, y = 38.4. AD = 50, CD = 20 ft. Let  $P_1$ ,  $P_2$ ,  $P_3$ ,  $P_4$  be equal loads, as shown, and  $3\frac{1}{2}P$  the reaction of the abutment A.

The sum of all the moments taken about D or A or E will be 0 when the structure is at rest. Then  $-Xx+3.5P\times 50-P_3\times 12.5-P_2\times 25-P_1\times$ 

37.5 = 0.

The +. signs are for moments in the direction of the hands of a watch or "clockwise" and – signs for the reverse direction or anti-clockwise. Since  $P = P_1 = P_2 - P_3$ , -18.6X + 175P - 75P = 0; -18.6X = -100P; X = -100P"clockwise" and — signals of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of

 $-Zz + 3.5P \times 87.5 - P_1 \times 25 - P_2 \times 12.5 - P_3 \times 0 = 0$ ; 15Z = 93.75P; Z = 6.25P.

In the same manner the forces exerted in the other members have been found as follows: EG = 6.78P; GJ = 8.07P; JA = 9.42P; JH = 1.35P; GF = 1.59P; AH = 8.75P; HF = 7.50P.

The Fink Hoof-truss. (Fig. 129.)—An analysis by Prof. P. H. Philbrick (Van N. Mag., Aug. 1880) gives the following results:



F16. 129.

W= total load on roof: N= No. of panels on both rafters; W/N=P= load at each joint b,d,f, etc.; V= reaction at  $A=\frac{1}{2}W=\frac{1}{2}NP=4P;$  AD=8; AC=L; CD=D;  $t_1,t_2,t_3=$  tension on  $De,e_0,gA$ , respectively;  $e_1,e_2,e_3,e_4=$  compression on Cb,bd,df, and fA.

```
Strains in 1, or De = t_1 = 2PS + D; 7, or bC = c_1 = 7/2 PL/D - 8 PD/L; 2, " eg = t_2 = 8PS + D; 8, " bc or fg = PS + L; 3, " gA = t_3 = 7/2PS + D; 9, " de = 2PS + L; 4, " Af = c_4 = 7/2PL + D; 10, " cd or dg = \frac{1}{2}YPS + D; 5, " fd = c_3 = 7/2PL/D - 2PD/L; 11, " ec = PS + D; 6, " db = c_3 = 7/2PL/D - 2PD/L; 12, " cC = 3/2 PS + D.
```

Example.—Given a Fink roof-truss of span 64 ft., depth 16 ft., with four panels on each side, as in the cut; total load 32 tons, or 4 tons each at the points f, d, b, C, etc. (and 2 tons each at A and B, which transmit no strain to the truss members). Here W=32 tons, P=4 tons, S=82 ft., D=16 ft.,  $L=\sqrt{S^2+D^2}=2.235\times D$ . L+D=2.235, D+L=.4472, S+D=2, S+L=.8944. The strains on the numbered members then are as follows:

```
1, 2 × 4 × 2 = 16 tons; 7, 31.3 - 12 × .447 = 25.94 tons.
2, 3 × 4 × 2 = 24 " 8, 4 × .8944 = 3.58 "
3, 7/2 × 4 × 2 = 28 " 9, 8 × .8944 = 7.16 "
4, 7/2 × 4 × 2 .295 = 31.3 " 10, 2 × 2 = 4 "
5, 31.3 - 4 × .447 = 29.52 " 11, 4 × 2 = 8 "
6, 31.3 - 8 × .447 = 27.72 " 12, 6 × 3 = 12 "
```

#### HEAT.

#### THERMOMETERS.

The Fahrenheit thermometer is generally used in English-speaking countries, and the Centigrade, or French thermometer, in countries that use the metric system. In many scientific treatises in English, however, the Centigrade temperatures are also used, either with or without their Fahrenheit equivalents. The Réaumur thermometer is used in Russia, Sweden, Turkey, and Egypt. (Clark.)
In the Fahrenheit thermometer the freezing-point of water is taken at 32°,

and the bolling-point of water at mean atmospheric pressure at the sea-level, 14.7 lbs. per sq. in., is taken at 212°, the distance between these two points being divided into 180°. In the Centigrade and Réaumur thermometers the freezing-point is taken at 0°. The boiling-point is 100° in the Centigrade scale, and 80° in the Réaumur.

sale, and out in the Keaumur.

1 Fahrenheit degree = 5/9 deg. Centigrade = 4/9 deg. Réaumur.

1 Centigrade degree = 9/5 deg. Fahrenheit = 4/5 deg. Réaumur.

1 Réaumur degree = 9/4 deg. Fahrenheit = 5/4 deg. Centigrade.

Temperature Fahrenheit = 9/5 × tehnp. C. +  $32^\circ$  = 9/4 R. +  $32^\circ$ .

Temperature Centigrade = 5/9 (temp. F. -  $32^\circ$ ) = 5/4 R.

Temperature Réaumur = 4/5 temp. C. = 4/9 (F. Mercurial Thermometer. (Rankine, S. E., p. 224.)—The rate of expansion of mercury with rise of temperature increases as the temperature becomes higher; from which it follows, toat if a thermometer showing the dilatation of mercury simply were made to agree with an air thermometer at 32° and 212°, the mercurial thermometer would show lower temperatures than the air thermometer between those standard points, and higher temperatures beyond them.

For example, according to Regnault, when the air thermometer marked 350° C. (= 662° F.), the mercurial thermometer would mark 362.16° C. (= 688.89° F.), the error of the latter being in excess 12.16° C. (= 21.59° F.).

Actual mercurial thermometers indicate intervals of temperature propor-

tional to the difference between the expansion of mercury and that of glass. The inequalities in the rate of expansion of the glass (which are very different for different kinds of glass) correct, to a greater or less extent, the errors arising from the inequalities in the rate of expansion of the mercury.

For practical purposes connected with heat engines, the mercurial thermometer made of common glass may be considered as sensibly coinciding with the air-thermometer at all temperatures not exceeding 500° F.

#### PYROMETRY.

Principles Used in Various Pyrometers.—Contraction of clay by heat, as in the Wedgwood pyrometer used by potters. Not accurate, as the contraction varies with the quality of the clay

Expansion of air, as in the air-thermometers, Wiborgh's pyrometer. Ueh-

ling and Steinhart's pyrometer, etc.

Specific heat of solids, as in the copper-ball, platinum-ball, and fire-clay pyrometers.

Relative expansion of two metals or other substances, as copper and iron, as in Brown's and Bulkley's pyrometers, etc.

Melting-points of metals, or other substances, as in approximate determinations of temperature by melting pieces of zinc, lead, etc.

Measurement of strength of a thermo-electric current produced by heat-

ing the junction of two metals, as in Le Chatelier's pyrometer.
Changes in electric resistance of platinum, as in the Siemens pyrometer.
Time required to heat a weighed quantity of water enclosed in a vessel,

as in the water pyrometer.

Thermometer for Temperatures up to 800° F.—Mercury with compressed nitrogen in the tube above the mercury. Made by Queen & Co., Philadelphia.

C.	F.	C.	F.	C.	F.	C.	F.	C.	F.	C.	F.	C.	F.
-40	-40.	26	78.8	92	197.6	158	316.4	224	485.2	 290	554	950	1742
39	-38.2	27	80.6	029	199.4	159	318.2	225	437.	300	572	960	1760
-38	-36.4	28	82.4	94	201.2	160	320.	226	438.8	310	590	970	
-37 -36	-34 6 -82.8	29 80	84.2 86.	95 96 97	203. 204.8	161 162	321.8 323.6	227 228	442.4	320 330	608 626		1796 1814
-35	_31.	81	87.8	97	206.6	163	325.4	229	444.2	340	644	1000	
-34	-29.2	32 33	89.6	98	208.4	164	327.2	230	446.	340 850	662	1010	1850
-34 -33 -32 -31 -30 -29	-27.4		91.4	99	210.2	165	329.	231	447.8	360	680	1020	1868
-32	-25.6 -23.8	34 35	93.2 95.	100 101	212. 213.8	166 167	330.8 332.6	222 233	449.6 451.4	370 380	698 716	1030	1886 1904
-30	-22.0	86	96.8	102	215.6	168	334.4	234	458.2	390	784		1922
-29	-20.2	87	98.6	108	217.4	169	336.2	235	455.	400	752	1060	1940
28	-18.4	38	100.4	104	219.2	170	338.	236	456.8	410	770		1958
-27 -26	-16.6 -14.8	89 40	102.8 104.	105 106	221. .22.8	171 172	339.8 341.6	237 238	458.6 460.4	420 480	788 806	1000	1976 1994
-25 -25	-13.	41	105.8	107	224.6	173	343.4	239	462 2	440	824		3012
94	-11.2	42	107.6	108	226.4	174	345.2	240	464.	450	849		2030
-23	_ 9.41	48	109.4	109	228.2	175	347.	241	465.8	460	860		2048
-22	- 7.6 - 5.8	44	111.2	110	230.	176	348.8	242 243	467.6 469.4	470	878		2066
-23 -22 -21 -20	- 4.	45 46	113. 114.8	111 112	231.8 233.6	177 178	350.6 352.4	244	471.2	480 490	896 914		2084 2102
-19	9 9 1	47	116.6	118	235.4	179	354.2	245	478	500	982	1160	2120
-18	- 0.4	48	118.4	114	237.2	180	856.	246	474.8	510	950	1170	2138
-17 -16	+ 1.4 8.2	49 50	120.2 122.	115	239.	181	357.8 359.6	247 248	476.6 478.4	520 580		1180	2156 2174
-16 -15	5.	51	123.8	116 117	240.8 242.6	182 183	361.4	248 249	480.2	540			2192
-14	6.8	52	125.6	118	244.4	184	363.2	250	482.	550			2210
-13	8.6	58	127.4	119	246.2	185	365.	251	488.8	<b>56</b> 0	1040	1220	2228
-12 -11	10.4	54	129.2	120	248.	186	866.8	252	485.6	570		1230	
-11 -10	12.2 14.	55 56	131. 182.8	121 122	249.8 251.6	187 188	368.6 370.4	253 254	487.4 489.2	580 590		1240 1250	
- 9	15.8	57	134.6	123	253.4	189	372.2	255	491.		1112	1260	
- 8	17.6	58	136.4	124	255.2	190	374.	256	492.8	610	1130	1270	2318
- 7 - 6	19.4	59 60	138.2 140.	125 126	257.	191	375.8	257 258	494.6		1148	1280	2336
- 5 - 5	21.2 23.	61	141.8	127	258.8 260.6	192 193	377.6 379.4	258 259	496.4 498.2	630	11 <b>66</b> 1184	1290	2354 2372
- 4	24.8	62	143.6	128	262.4	194	381.2	260	500.	650	1202	1310	2390
- 8	26.6	68	145.4	129	264.2	195	383.	261	501.8	660	1220	1320	2408
- 2	28.4 30.2	64	147.2 149.	130	266.	196	384.8	262	303.6 505.4		1238		2426
- 1 0	32.	65 66	150.8	181 182	267.8 269.6	197 198	386.6 388.4	263 264	507.2		1256		2444 2462
+ 1	88.8	67	152.6	133	271.4	199	390.2	265	509		1292		2480
. 2	85.6	68	154.4	134	273.2	200	392.	266	510.8	710	1310	1870	2498
8	87.4	69	156.2	135 136	275.	201	393.8	267 268	512.6		1328	1880	2516
4 5	39.2 41.	70 71	158. 159.8	137	276.8 278.6	202 203	395.6 397.4	269	514.4 516.2		1346 1364	1400	2584
6	42.8	71 72	161.6	138	280.4	204	399.2	270	518.	750	1382	1410	
7	44.6	73	163.4	139	282.2	205	401.	271	519.8	760	1382 1400	1420	2588
8	46.4	74	165.2	140	284.	206	402.8	272 273	521.6	770	1418		2606
9 10	48.2 50.	75 76	167. 168.8	141 142	285.8 287.6	207 208	404.6 406.4	274	523.4 525.2		1436 1454	1440 1450	
11	51.8	77	170.6	143	289.4	209	408.2	275	527.		1472		2660
12	58.6	78	172.4	144	291.2	210	410.	276	528.8	810	1490	1470	2678
18	55.4	79	174.2	145	293.	211	411.8	277	530.6		1508	1480	2696
14 15	57.2 59.	80 81	176. 177.8	146 147	294.8 296.6	212 213	413.6 415.4	278 279	532.4 534.2	83C	1526 1544		2714 2732
16	60.8	82	179.6	148	298.4	214	417.2	280		850	1562	1510	2750
17	62.6	83	181.4	149	300.2	215	419.	281	537.8	860	1580	1520	2768
18	64.4	84	183.2	150	802.	216	420.8	282	539.6		1598		2786
19 20	66.2 68.	85 86	185. 186.8	151 152	303.8	217 218	422.6 424.4	283 284	541.4 543.2		161 <b>6</b>		2804 2822
20 21	69.8	87	188.6	153	307.4	219	426.2	$\frac{264}{285}$	545.		1652		2912
21 22	71.6	88	190.4	154	309.2	220	428.	286	546.8	910	1670	1650	3002
23	78.4	89	192.2	155	311.	221	429.8	287	548.6		1688	1700	3092
24 25	75.2 77.	90 91	194. 195.8	156 157	312.8	222 223	431.6 433.4	258 289	550.4 552.2		170 <b>6</b> 1724		3182 8272
æ	, ,,,	a 21	1	- 101	1072.0	••••	1 400.4	• ~03	1004.0	2 nz0	11141	1000	100.0

CENTIGRADE.													
F.	C.	F.	C.	F.	C.	F.	C.	F.	C.	F.	C.	F.	C.
40	-40.	26	_ 3.3	92	33.3	158	70.	224	106.7	290	143.3	360	182.
39	-39.4	27	- 2.8	93	33.9	159	70.6	225	107.2	291	143.9	370	187.
38	-38.9	28	- 22	94	34.4	160	70.6	226	107.2 107.8	292	144.4	380	193.
37	-38.3	29	- 2.8 - 2.2 - 1.7 - 1.1 - 0.6	95	85.	161	71.7	227	108.3	293	145.		198.
6.5	37.8	30	-1.1	96	35.6	162	72.2 72.8	228	108.9	294	145.6	400	204.
	-37.2	31	- 0.6	97	36.1	163	72.8	229	109.4	295	146.1		210.
	-36.7 $-36.1$	32	0.	98 99	36.7	164 165	73.3 73.9	230 231	110. 110.6	296 297	146.7 147.2		215. 221.
	-35.6	34	+ 0.6	100	37.2 37.8 38.3	166	74.4	232	111.1	298	147.8		226.
	-35.	35	1.1	101	38.3	167	75.	233	111 7	299	148.3	450	282
	-34.4	36	2.2 2.8	102	38.9	168	75.6	234	112.2 112.8 113.3 113.9	300	148.9	460	282 287
	-33.9	37	2.8	103	39.4	169	76.1 76.7 77.2 77.8	235	112.8	301	149.4	470	243
	-33.3	38	3.3	104	40.	170	76.7	236	113.8	305	150.	480	248 254
	-32.8	39	3.9	105	40,6	171	77.2	287	113.9	803	150.6	490	254
	-32.2 -31.7	40	4.4 5.	106 107	41.1	172 173	78.3	238 239	114.4 115.	304 305	150.6 151.1 151.7		260 265
	-31.7 $-31.1$	42	5.6	108	42.2	174	78.9	240	115.6	306	152.2	520	271
	-30.6	43	6.1	109	42.8	175	79.4	241	116.1	307	152.8	530	276
	-30.	44	6.7	110	43.3	176	80.	242	116.7	308	153.8	540	282
	-29.4	45	6.1 6.7 7.2 7.8	111	43.9	177	80.6	243	116.7 117.2	309	153.9	550	287
	-28.9	46	7.8	112	44,4	178	81.1	244	117.8	310	154.4		293
	-28.3	47	8.3	113	45.	179	81.7 82.2	245	118.3	311	155.	570	298
	-27.8	48	8.9	114	45.6	180	82.2	246	118.9	312	155.6	580	304
	$-27.2 \\ -26.7$	49 50	9.4	115 116	46.1	181 182	82.8	247 248	119.4 120.	313 314	156.1	990	310 315
	-26.1	51	10.6	117	47.2	183	83.3 83.9	249	120.6	315	156.7 157.2	610	321
	-25.6	52	11.1	118	47.8	184	84.4	250	121.1	316	157.8	620	326
	-25.	53	11.7	119	48.3	185	85.	251	121.7	317	158.8		332
	-24.4	54	12.2 12.8	120	48.9	186	85.6	252	122,2	318	158.9		337
	-23.9	55	12.8	121	49.4	187	86.1	253	122.8	319	159,4		343
ŀ	-23.3	56	13.3	122	50.	188	86.7	254	123.3	320	160.		348
ŀ	-22.8 $-22.2$	57 58	13.9	123 124	50.6	189 190	86.7 87.2 87.8 88.3	255	123.9	821	160.6	670	354
ľ	-22.2	59	14.4 15.	125	51.7	191	01.0	256 257	124.4 125.	323	161.1 161.7		360 365
	-21.7 $-21.1$	60	15.6	126	59.9	192	88.9	258	125.6	324	162,2	200	371
١	-20.6	61	16.1	127	52.2 52.8 53.3	193	89.4	259	126 1	325	162.8	710	376
	-20.	62	16.7	128	53.3	194	90	260	126.7	326	163.8	720	376 382
	-19.4	63	17.2 17.8	129	53.9	195	90.6	261	126.7 127.2 127.8	327	168.9	730	387
	-18.9	64	17.8	130	54.4	196	91.1 91.7 92.2 92.8 93.3	565	127.8	328	164.4	740	393
	-18 3	65	18.3	131	55.	197	91.7	263	128.3	359	165.		398
	$-17.8 \\ -17.2 \\ -16.7$	66 67	18.9 19.4	132 133	55.6 56.1	198 199	92.2	264 265	128.9 129.4	330 331	165.6 166.1		404.
	16.7	68	20.	134	56.7	200	03 3	266	130.	332	166.7		410.
	-16.1	69	20.6	135	56.7 57.2 57.8	201	93.9	267	130.6	333	167.2		421
	$-16.1 \\ -15.6$	70	21.1	136	57.8	202	94.4	268	131.1	334	167.8	800	426
	-15.	71	21.7	137	58.3	203	95.	269	131.7	335	168.3	810	482.
	-14.4	72	55.5	138	58.9	204	95.6	270	132.2	336	168.9		437.
	-13.9	73.	22.8	139	59.4	205	96.1	271	132.8	337	169.4		443.
	-13.3	74 75	23.3 23.9	140	60.	206 207	96.7	272	133,8	338 339	170.		448.
	$-12.8 \\ -12.2$	76	24.4	141 142	60.6	208	97.2 97.8	273 274	133.9 134.4	340	170.6 171.1	860	454,
	-11.7	77	25.	143	61.7	209	98.3	275	135.	341	171.7	870	
	-11.1	78	25.6	144	62,2	210	98.9	276	135.6	342	172.2	880	
	-10.6	79	26.1	145	62.8	211	99.4	277	136.1	343	172.8 173.3		476.
	-10.	80	26.7	146	63.3	212	100.	278	136.7	344	173.3		482,
	-9.4	81	27.2	147	63.9	213	100.6	279	137.2	345	173.9	910	
	- 8.9	82	27.8	148	64.4	214	101.1	280	137.8	346	174.4	920	
	- 8.3	83 84	28.3 28.9	149	65	215	101.7	281	138.3	347	175. 175.6	980	498.
1	-7.8 $-7.2$	85	29.4	150 151	65.6	216 217	102.2 102.8	283 283	138.9 139.4	348 349	176.1	940	510
j	- 6.7	86	30.	152	66.7	218	103.3	284	140.	350	176.1 176.7 177.2	960	515
	- 6.1	87	80.6	153	67 2	219	103.9	285	140.6	351	177.2	970	
1	- 5.6	88	31.1	154	67.8 68.3	220	104.4	286	141.1	352	177.8	980	
1	- 5.	89	31.7	155	68.3	221	105.	287	141.7	353	178.3	990	
-1	-4.4	90	32.2	156	68.9	222	105.6	288 289	142.2 142.8	354 355	178.9	1000	
4	-3.9	91	32.8	157	69.4	223	106.1				179.4	1010	

Platinum or Copper Ball Pyrometer.—A weighed piece of platmum, copper, or iron is allowed to remain in the furnace or heated chamber till it has attained the temperature of its surroundings. It is then suddenly taken out and dropped into a vessel containing water of a known weight and temperature. The water is stirred rapidly and its maximum temperature taken. Let  $W = \text{weight of the water, } w \text{ the weight of the ball, } t = \text{the original and } T \text{ the final heat of the water, and } S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the specific heat of the water, } and S \text{ the spe$ the metal; then the temperature of fire may be found from the formula

$$x = \frac{W(T-t)}{wS} + T.$$

For a fuller description, by J. C. Hoadley, see Trans. A. S. M. E., vi, 702. The mean specific heat of platinum above 32° is .03333 or 1/30th that of water, and it increases with the temperature, the increase being about .000305 for each 100° F.

For accuracy corrections are required for variations in the specific heat of the water and of the metal at different temperatures, for loss of heat by radiation from the metal during the transfer from the furnace to the water, and from the apparatus during the heating of the water; also for the heatabsorbing capacity of the vessel containing the water.

Fire-clay or fire-brick may be used instead of the metal ball

Le Chateller's Thermo-electric Pyrometer.—For a very full description see paper by Joseph Struthers, School of Mines Quarterly, vol. xii, 1891; also, paper read by Prof. Roberts-Austen before the Iron and Steel Institute, May 7, 1891.

The principle upon which this pyrometer is constructed is the measurement of a current of electricity produced by heating a couple composed of two wires, one platinum and the other platinum with 10% rhodium—the current produced being measured by a galvanometer.

The composition of the gas which surrounds the couple has no influence

on the indications.

When temperatures above 2500° F. are to be studied, the wires must have an isolating support and must be of good length, so that all parts of a furnace can be reached.

For a Siemens furnace, about 1114 feet is the general length. The wires are supported in an iron tube, 14 inch interior diameter and held in place by a cylinder of refractory clay having two holes bored through, in which the wires are placed. The shortness of time (five seconds) allows the temperature to be taken without deteriorating the tube.

Tests made by this pyrometer in measuring furnace temperatures under a great variety of conditions show that the readings of the scale uncorrected are always within 45° F. of the correct temperature, and in the majority of industrial measurements this is sufficiently accurate. Le Chatelier's py-

rometer is sold by Queen & Co., of Philadelphia.

Graduation of Le Chateller's Pyrometer.—W. C. RobertsAusten in his Researches on the Properties of Alloys, Proc. Inst. M. E. 1992, says: The electromotive force produced by heating the thermo-junction to any given temperature is measured by the movement of the spot of light on the scale graduated in millimetres. A formula for converting the divisions of the scale into thermometric degrees is given by M. Le Chatelier; but it is better to calibrate the scale by heating the thermo-junction to temperatures which have been very carefully determined by the aid of the airthermometer, and then to plot the curve from the data so obtained. Many fusion and boiling-points have been established by concurrent evidence of various kinds, and are now very generally accepted. The following table contains certain of these:

Deg. F.	Deg. (	<b>7.</b>	Deg. F.	Deg. 0	C.
. 212	100	Water boils.	1733	945	Silver melts.
618	326	Lead melts.	1859	1015	Potassium sul-
676	358	Mercury boils.	l		phate melts.
779	415	Zinc melts.	1913	1045	Gold melts.
838	448	Sulphur boils.	1929	1054	Copper melts.
1157	625	Aluminum melts.	2732	1500	Palladium melts.
12:29	665	Selenium boils.	8:2:27	1775	Platinum melts.

The Temperatures Developed in Industrial Furnaces. M. Le Chatelier states that by means of his pyrometer he has discovered that the temperatures which occur in melting steel and in other industrial operations have been hitherto overestimated.

M. Le Chatelier finds the melting heat of white cast iron 1135° (2075° F.), and that of gray cast iron 1220° (22:28° F.). Mild steel melts at 1475° (2687° F.), semi-mild at 1455° (2651° F.), and hard steel at 1410° (2570° F.). The furnace for hard porcelain at the end of the baking has a heat of 1370° (2498° F.). The heat of a normal incandescent lamp is 1800° (3272° F.), but it may be pushed to beyond 2100° (3812° F.).

Prof. Roberts-Austen (Recent Advances in Pyrometry, Trans. A. I. M. E., Chicago Meeting, 1828) gives an excellent description of modern forms of pyrometers. The following are some of his temperature determinations.

GOLD-MELTING, ROYAL MINT.	
Degrees.	Degrees.
Centigrade.	Fahr.
Temperature of standard alloy, pouring into moulds 1180 Temperature of standard alloy, pouring into moulds (on	2156
a previous occasion, by thermo-couple) 1147	2097
Annealing blanks for coinage, temperature of chamber 890	1684
SILVER-MELTING, ROYAL MINT.	
Temperature of standard alloy, pouring into mould 980	1796
TEN-TON OPEN-HEARTH FURNACE, WOOLWICH ARSENAL.	
Temperature of steel, 0.3% carbon, pouring into ladle 1645 Temperature of steel, 0.3% carbon, pouring into large	2993
mould 1580	2876
Reheating furnace, Woolwich Arsenal, temperature of interior	1706
Cupola furnace, temperature of No. 2, cast-iron pouring into ladle 1600	2912
The following determinations have been effected by M. Le Chate	lier:

#### BESSEMER PROCESS.

# Six-ton Converter.

Bix-ton Converter.		_
	Degrees.	Degrees.
	Centigrade	Fahr.
A. Bath of slag		2876
B. Metal in ladle	1640	2984
C. Metal in ingot mould	1890	2876
D. Ingest in reposition furness	1900	2192
D. Ingot in reheating furnace		
E. Ingot under the hammer	1060	1976
OPEN-HEARTH FURNACE (Siemens	3).	
Semi-Mild Steel.	-	
A. Fuel gas near gas generator	720	1328
B. Fuel gas entering into bottom of regenerator cham		752
C. Fuel gas issuing from regenerator chamber	1200	2192
Air issuing from regenerator chamber	1000	1882
CHIMNEY GASES.		
Furnace in perfect condition	800	590
OPEN-HEARTH FURNACE.		
End of the melting of pig charge	1420	2588
Completion of conversion	1500	2732
Completion of Conversion	1000	2.00
Molten Steel.		
In the ladle—Commencement of casting	1580	2876
End of casting		2714
In the moulds		2768
For very mild (soft) steel the temperatures are high	er by 50° C.	2.00
CIENTING CONGINE OF DOS FURNA	CP	

### SIEMENS CRUCIBLE OR POT FURNACE. 1600° C., 2912° F.

## ROTARY PUDDLING FURNACE.

TOTALL TODDENG TOMMEN		
Furnace	1340-1230	Degrees F. 2444-2246
Puddled ball—End of operation	1830	2426

#### BLAST-FURNACE (Gray-Bessemer Pig).

Molten metal—Commencement of fusion	1400 1570	2552 2858
HOFFMAN RED-BRICK KILN.	1100	2012

The Wibergh Air-pyrometer. (E. Trotz, Trans. A. I. M. E. 1892.)—The inventor using the expansion-coefficient of air, as determined by Gay-Lussac, Dulon, Rudberg, and Regnault, bases his construction on the following theory: If an air-volume, V. enclosed in a porcelain globe and connected through a capillary pipe with the outside air, be heated to the temperature T (which is to be determined) and thereupon the connection be discontinued, and there be then forced into the globe containing V another volume of air V of known temperature t, which was previously under the completion preserves. If the additional preserves he due to the addiunder atmospheric pressure H, the additional pressure L, due to the addition of the air-volume V' to the air-volume V, can be measured by a map L moments. But this pressure is of course a function of the temperature L. Before the introduction of V', we have the two separate air-volumes, V at the temperature L and V' at the temperature L, both under the atmospheric pressure L. After the forcing in of V' into the globe, we have, on the contrary, only the volume V of the temperature L, but under the pressure L at L and L are the forcing in of L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L and L are the forcing in L an H + h.

The Wiborgh Air-pyrometer is adapted for use at blast-furnaces, smeltingworks, hardening and tempering furnaces, etc., where determinations of temperature from 0° to 2400° F. are required.

Seger's Fire-clay Pyrometer. (H. M. Howe, Eng. and Mining Jour., June 7, 1990.)—Professor Seger uses a series of siender triangular fire-clay pyramids, about 3 inches high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{inches} high and \$\frac{1}{2}\sigma\text{i plasticity is reached; and the temperature at which it has bent, or "wept, so far that its apex touches the hearth of the furnace or other level surface on which it is standing, is selected as a point on Seger's scale. These points may be accurately determined by some absolute method, or they may merely serve to give comparative results. Unfortunately, these pyramids afford no indications when the temperature is stationary or falling.

Mesuré and Nouel's Pyrometric Telescope. (lbid.)—Mesuré and Nouel's pyrometric telescope gives us an immediate determination of the temperature of incandescent bodies, and is therefore much better adapted to cases where a great number of observations are to be made, and at short intervals, than Seger's. Such cases arise in the careful heating of steel. The little telescope, carried in the pocket or hung from the neck, can

be used by foreman or heater at any moment.

It is based on the fact that a plate of quartz, cut at right angles to the axis, rotates the plane of polarization of polarized light to a degree nearly inversely proportional to the square of the length of the waves; and, further, on the fact that while a body at dull redness merely emits red light, as the temperature rises, the orange, yellow, green, and blue waves

successively appear.

If, now, such a plate of quartz is placed between two Nicol prisms at right angles, "a ray of monochromatic light which passes the first, or polarizer, and is watched through the second, or analyzer, is not extinguished as it was before interposing the quartz. Part of the light passes the analyzer, and, to again extinguish it, we must turn one of the Nicols a certain angle," depending on the length of the waves of light, and hence on the temperature of the incandescent object which emits this light. the angle through which we must turn the analyzer to extinguish the light is a measure of the temperature of the object observed.

The instrument is made by Ducretet, of Paris, in two sizes; cost, \$20 and

The Uehling and Steinbart Pyrometer. (For illustrated description see Engineering, Aug. 24. 1894.)—The action of the pyrometer is based on a principle which involves the law of the flow of gas through minute apertures in the following manner: If a closed tube or chamber be supplied with a minute inlet and a minute outlet aperture and air be caused by a constant suction to flow in through one and out through the other of these apertures, the tension in the chamber between the apertures will vary with

the difference of temperature between the inflowing and outflowing air. If the inflowing air be made to vary with the temperature to be measured, and the outflowing air be kept at a certain constant temperature, then the tension in the space or chamber between the two apertures will be an exact measure of the temperature of the inflowing air, and hence of the temperature to be measured.

In operation it is necessary that the air be sucked into it through the first minute aperture at the temperature to be measured, through the second aperture at a lower but constant temperature, and that the suction be of a constant tension. The first aperture is therefore located in the end of a platinum tube in the bulb of a porcelain tube over which the hot blast sweeps, or inserted into the pipe or chamber containing the gas whose temperature is to be ascert ined.

The second aperture is located in a coupling, surrounded by boiling water, and the suction is obtained by an aspirator and regulated by a column of water of constant height.

The tension in the chamber between the apertures is indicated by a

manometer.

The Air-thermometer. (Prof. R. C. Carpenter, Eng'g News, Jan. 5. 1893.—Air is a perfect thermometric substance, and if a given mass of air be considered, the product of its pressure and volume divided by its absolute temperature is in every case constant. If the volume of air remain constant, the temperature will vary with the pressure; if the pressure remain constant the temperature will vary with the volume. As the former condition is more easily attained air-thermometers are usually constructed of constant volume, in which case the absolute temperature will vary with the pressure.

If we denote pressure by p and p', the corresponding absolute temperatures by T and T', we should have

$$p:p'::T:T'$$
 and  $T'=p'\frac{T}{p}$ .

The absolute temperature T is to be considered in every case 460 higher than the thermometer-reading expressed in Fahrenheit degrees. From the form of the above equation, if the pressure be corresponding to a known absolute temperature, T can be found. The quotient is a constant which may be used in all determinations with the instrument. The pressure on the instrument can be expressed in inches of mercury, and is evidently the expression pressure has a seven by a baronmeter plus are mixed as additional contractions. atmospheric pressure b as shown by a barometer, plus or minus an additional amount h shown by a manometer attached to the air thermometer.

That is, in general,  $p=b \times h$ .

The temperature of 32° F, is fixed as the point of melting ice, in which case  $T=460 \times 32=492^{\circ}$  F. This temperature can be produced by surrounding the bulb in melting ice and leaving several minutes, so that the temperature of the confined air shall acquire that of the surrounding ice.

when the air is at that temperature, note the reading of the attached manometer h, and that of a barometer; the sum will be the value of p corresponding to the absolute temperature of 492° F. The constant of the instrument, K = 492 - p, once obtained, can be used in all future determina-

High Temperatures judged by Color.—The temperature of a body can be approximately judged by the experienced eye unaided, and M. Pouillet has constructed a table, which has been generally accepted, giving the colors and their corresponding temperature as below:

Deg. C.	Deg. F.	Deg. C.	Deg. F.
Incipient red heat 525	977	Deep orange heat 1100	Deg. F. 2021
Dull red heat 700	1292	Clear orange heat 1200	2192
Incipient cherry-red		White heat 1300	2372
heat 800	1472	Bright white heat . 1400	2552
Cherry-red heat 900	1652	1 1500	2782
Clear cherry - red		Dazzling white heat > to	to
heat 1000	1832	Dazzling white heat to	2912

The results obtained, however, are unsatisfactory, as much depends on the susceptibility of the retina of the observer to light as well as the degree of illumination under which the observation is made.

A bright bar of iron, slowly heated in contact with air, assumes the following tints at annexed temperatures (Claudel):

	Cent.	Fabr.	1	Cent.	Fahr.
Yellow at	2:25	437	Indigo at	288	550
Orange at	243	473	Blue at	293	559
Red at	265	509	Green at		630
Violet at		531	"Oxide-gray"	400	752

# BOILING POINTS AT ATMOSPHERIC PRESSURE.

#### 14.7 lbs. per square inch.

Ether, sulphuric	Average sea-water Saturated brine	218.20	F.
Ammonia	Nitric acid		
Chloroform			
Bromine	Oil of turpentine		
	Phosphorus		
Wood spirit	Sulphur		
Alcohol	Sulphuric acid		
Benzine	Linseed oil		
Water	Mercury	676	

The boiling points of liquids increase as the pressure increases. The boiling point of water at any given pressure is the same as the temperature of saturated steam of the same pressure. (See Steam.)

#### MELTING-POINTS OF VARIOUS SUBSTANCES.

The following figures are given by Clark (on the authority of Poulllet, Claudel, and Wilson), except those market, which are given by Prof. Roberts-Austen in his description of the Le Chateller pyrometer. These latter are probably the most reliable figures.

Sulphurous acid 148° F.	Alloy, 1 tin, 1 lead 370 to 466° F.
Carbonic acid 108	Tin 442 to 446
Mercury 39	Cadmium
Bromine + 9.5	Bismuth 504 to 507
Turpentine 14	Lead 608 to 618*
Hyponitrie acid 16	Zinc 680 to 779*
Ice 32	Antimony 810 to 1150
Nitro-glycerine 45	Aluminum 1157*
Tallow 92	Magnesium 1200
Phosphorus 112	Calcium Full red heat.
Acetic acid 118	Bronze 1692
Stearine 109 to 120	Silver 1738* to 1878
Spermaceti 120	Potassium sulphate 1859*
Margaric acid 131 to 140	Gold 1913* to 2282
Potassium 136 to 144	Copper 1929* to 1996
Wax 142 to 154	Cast iron, white 1922 to 2075*
Stearic acid	" gray 2012 to 2786 2228*
Sodium 194 to 208	Steel 2372 to 2532
Alloy, 3 lead, 2 tin, 5 bismuth 199	" hard 2570*; mild, 2687*
Iodine 225	Wrought iron 2732 to 2912
Sulphur 239	Palladium 2732*
Alloy, 11/2 tin, 1 lead 834	Platinum 3227*

For melting-point of fusible alloys, see Alloys.
Cobalt, nickel, and manganese, fusible in highest heat of a forge. Tungsten and chromium, not fusible in forge, but soften and agglomerate. Platinum and iridium, fusible only before the oxyhydrogen blowpipe.

# QUANTITATIVE MEASUREMENT OF HEAT.

Unit of Heat.—The British unit of heat, or British thermal unit (B. T. U.), is that quantity of heat which is required to raise the temperature of 1 lb. of pure water 1° Fahr., at or near 89°.1 F., the temperature of maximum density of water.

The French thermal unit, or calorie, is that quantity of heat which is required to raise the temperature of 1 kilogramme of pure water 1° Cent., at or

about 4° C., which is equivalent to 39°.1 F.

1 French calorie = 3.968 British thermal units; 1 B. T. U. = .252 calorie. The "pound calorie" is sometimes used by English writers; it is the quantity of heat required to raise the temperature of 1 lb. of water 1° C. 1 lb. calorie = 2.2046 B. T. U. = 5/9 calorie. The heat of combustion of carbon, to CO₃, is said to be 8080 calories. This figure is used either for French calories or for pound calories, as it is the number of pounds of water that can be raised 1° C. by the complete combustion of 1 lb. of carbon, or the number of kilogrammes of water that can be raised 1° C. by the combustion of 1 kilo. of carbon; assuming in each case that all the heat generated is transferred to the water.

The Mechanical Equivalent of Heat is the number of footpounds of mechanical energy equivalent to one British thermal unit, heat and mechanical energy being mutually convertible. Joule's experiments, 1843-50, gave the figure 772, which is known as Joule's equivalent. More recent experiments by Prof. Rowland (Proc. Am. Acad. Arts and Sciences, 1890; see also Wood's Thermodynamics) give higher figures, and the most probable average is now considered to be 778.

Theat-unit is equivalent to 778 ft.-lbs. of energy. 1 ft. lb. = 1/778 = .0012852 heat-units. 1 horse-power = 88,000 ft.-lbs. per minute = 2545 heat-units phour = 42,416 + per minute = .70694 per second. 1 lb. carbon burned to  $CO_2 = 14.544$  heat-units. 1 lb. C. per H.P. per hour = 2545 +  $\frac{14544}{14544} = 17\frac{1}{18}$  efficiency

(.174986).

Heat of Combustion of Various Substances in Oxygen.

	Heat	units.	V 24	
	Cént.	Fahr.	Authority.	
	(34,462		Favre and Silbermann.	
Hydrogen to liquid water at 0° C	33,808		Andrews.	
the steam at 1000 C	(34,342		Thomsen,	
" to steam at 100° C	28,732		Favre and Silbermann.	
Carbon (wood charcoal) to carbonic	8,080			
acid, CO,; ordinary temperatures.	7,900		Andrews. Berthelot.	
Carbon, diamond to CO2	7,859		Bertheiot.	
" black diamond to CO ₂	7,861		44	
" graphite to CO ₂	7,901			
Carbon to carbonic oxide, CO	2,473		Favre and Silbermann.	
Carbon to carbonic oxide, Commission	( 2,403			
Carbonic oxide to CO2, per unit of CO	2,431		Andrews.	
Our sould say the graph of the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the say the	2,385		Thomsen.	
CO to CO, per unit of $C = 2\frac{1}{2} \times 2403$			Favre and Silbermann.	
***************************************	/ 19 190		Thomsen.	
Marsh-gas, Methane, CH ₄ to water	13,108	23,594	Andrews.	
and CO ₂	13,063	23,513	Favre and Silbermann.	
Oleflant gas, Ethylene, C.H. to	11,858			
water and CO ₂	J. AA, O'SO		Andrews.	
materialia cog	(11,957		Thomsen.	
Benzole gas, CaHa to water and CO2	1 10,102			
Dentois Rus, Citif to water and CO	9,915	17,847	Favre and Silbermann.	

In burning 1 pound of hydrogen with 8 pounds of oxygen to form 9 pounds of water, the units of heat evolved are 62,032 (Favre and 8.); but if the resulting product is not cooled to the initial temperature of the gases, part of the heat is rendered latent in the steam. The total heat of 1 lb. of steam at  $212^{\circ}$  F. is 1146.1 heat-units above that of water at  $32^{\circ}$ , and  $9 \times 1146.1 = 10,815$  heat-units, which deducted from 62,032 gives 51,717 as the heat evolved by the combustion of 1 lb. of hydrogen and 8 lbs. of oxygen at  $32^{\circ}$  F. to form steam at  $212^{\circ}$  F.

By the decomposition of a chemical compound as much heat is absorbed or rendered latent as was evolved when the compound was formed. If 1 lb. of carbon is burned to  $CO_2$ , generating 14,544 B.T.U., and the  $CO_2$  thus formed is immediately reduced to CO in the presence of glowing carbon, by the reaction  $CO_2 + C = 2CO$ , the result is the same as if the 2 lbs. C had been burned directly to 2CO, generating 2 × 4451 = 8902 heat-units; consequently 14,544 — 8902 = 5642 heat-units have disappeared or become latent, and the

"unburning" of  $CO_9$  to CO is thus a cooling operation. (For heats of combustion of various fuels, see Fuel.)

#### SPECIFIC HEAT.

Thermal Capacity. - The thermal capacity of a body is the quantity of heat required to raise its temperature one degree. The ratio of the heat required to raise the temperature of a given substance one degree to that required to raise the temperature of water one degree from the temperature of maximum density 89.1 is commonly called the specific heat of the substance. Some writers object to the term as being an inaccurate use of the words "specific" and "heat." A more correct name would be "coefficient of thermal capacity."

Determination of Specific Heat.—Method by Mixture.—The body whose specific heat is to be determined is raised to a known temperature, and is then immersed in a mass of liquid of which the weight, specific heat, and temperature are known. When both the body and the liquid have attained the same temperature, this is carefully ascertained.

Now the quantity of heat lost by the body is the same as the quantity of

heat absorbed by the liquid.

Let c, w, and t be the specific heat, weight, and temperature of the hot body, and c', w', and t' of the liquid. Let T be the temperature the mix-

Then, by the definition of specific heat,  $c \times w \times (t-T) = \text{heat-units lost}$  by the hot body, and  $c' \times w' \times (T-t') = \text{heat-units gained by the cold liquid.}$  If there is no heat lost by radiation or conduction, these must be equal, and

$$cw(t-T)=c'w'(T-t')$$
 or  $c=\frac{c'w'(T-t')}{w(t-T)}$ .

# Specific Heats of Various Substances.

The specific heats of substances, as given by different authorities, show considerable lack of agreement, especially in the case of gases.

The following tables give the mean specific heats of the substances named

according to Regnault. (From Rontgen's Thermodynamics, p. 184.) These specific heats are average values, taken at temperatures which usually come under observation in technical application. The actual specific heats of all substances, in the solid or liquid state, increase slowly as the body expands or as the temperature rises. It is probable that the specific heat of a body when liquid is greater than when solid. For many bodies this has been verified by experiment.

Antimony         0.0508           Copper         0.0951           Gold         0.0324           Wrought iron         0.1138           Glass         0.1937           Cast iron         0.1298           Lead         0.0314           Platinum         0.0324           Silver         0.6570	Steel (soft)     0.1165       Steel (hard)     0.1175       Zinc     0.0956       Brass     0.0939       Ice     0.5040       Sulphur     0.2026       Charcoal     0.2410       Alumina     0.1970       Phosphorus     0.1887

#### EGTTTOT: I

Water 1 Lead (melted). 0 Sulphur '' 6 Bismuth '' 7 Tin '' 7	0.0402 0.2340 0.0308	Mercury	0.7000 0.5640 0.4500
-------------------------------------------------------------	----------------------------	---------	----------------------------

GA	ses.
	onstant Pressure Constant Volume.
<u> </u>	0.23751 0.16847
Oxygen	0.21751 0.15507
Hydrogen Nitrogen Superheated steam	8.40900 2.41226 0.24380 0.17278
Superheated steam	0.4805 0.346
Carbonic acid	0.217 0.1585
Carbonic acid	0.404 0.173
Carbonic oxide	0.2479 0.1758
Ammonia	
Ether	
AlcoholAcetic acid	
Chloroform	0.1567
In addition to the above, the [folior (Selected from various sources.)	wing are given by other authorities.
Mer	ALS.
Platinum at 82° F	Wrought iron (Petit & Dulong).
(increased .000305 for each 100° F.)	" \$2° to 212°
Cadmium         .0567           Brass         .0939	82° to 892°
Copper 990 to 9100 F 004	" 82° to 892° 115 " 82° to 572° 1218 " 82° to 662° 1255
32° to 572° F 1013	Wrought iron (J. C. Hoadley.
Zinc 82° to 212° F	A. S. M. E., vi. 718),
Copper, 32° to 212° F	Wrought iron (J. C. Hoadley, A. S. M. E., vi. 718), Wrought iron, 32° to 200°
Nickel	" 82° to 600°1827
Aluminum, of F. to melting-	" 82° to 2000°2619
point (A. E. Hunt) 0.2160	·
OTHER	
Brickwork and masonry, about20	Coal20 to 241
Marble	Coke
Ouicklime 217	Graphite .202 Sulphate of lime .197
Quicklime	Magnesia222
Silica	Soda
Corundum	Quartz
Stones generally	River sand
	ods.
Pine (turpentine)	Oak
Fir	Pear
Liqu	UIDS.
Alcohol, density .793	
Alcohol, density .793	Olive oil
Alcohol, density .793	Olive oil
Alcohol, density .793	Olive oil
Alcohol, density 793	Olive oil
Alcohol, density 793	Olive oil
Alcohol, density 7.93	Olive oil
Alcohol, density .793	Olive oil
Alcohol, density .793	Olive oil
Alcohol, density .793	Olive oil
Alcohol, density 793 622 Sulphuric acid, density 1.87 335 Sulphuric acid 661 Hydrochloric acid 600 GA Sulphurous acid Light carburetted hydrogen, ma Blast-furnace gases Specific Heat of Sal	Olive oil
Alcohol, density 793 622 Sulphuric acid, density 1.87 335 Sulphuric acid 661 Hydrochloric acid 600 GA Sulphurous acid Light carburetted hydrogen, ma Blast-furnace gases Specific Heat of Sal	Olive oil
Alcohol, density 7.93 . 6.22 Sulphuric acid, density 1.87 . 335 . 661 Hydrochloric acid	Olive oil
Alcohol, density 7.93	Olive oil
Alcohol, density .793	Olive oil
Alcohol, density .793	Olive oil

the specific heat of a fixed gas at constant pressure to the sp. ht. at constant volume is given as follows by different writers  $(Eng^2g, July 12, 1889)$ : Repusult, 1.3953; Moll and Beck, 1.4085; Szathmari, 1.4027; J. Macfarlane Gray, 1.4. The first three are obtained from the velocity of sound in air. The fourth is derived from theory. Prof. Wood says: The value of the ratio for air, as found in the days of La Place, was 1.41, and we have 0.2377 + 1.41 = 0.1686, the value used by Clausius, Hanssen, and many others. But this ratio is not definitely known. Rankine in his later writings used 1.408, and Tait in a recent work gives 1.404, while some experiments gives less than 1.4 and others more than 1.41. Prof. Wood uses 1.406.

Specific Heat of Gases.—Experiments by Mallard and Le Chateller indicate a continuous increase in the specific heat at constant volume of steam. CO₂, and even of the perfect gases, with rise of temperature. The variation is inappreciable at 100° C., but increases rapidly at the high temperatures of the gas-engine cylinder. (Robinson's Gas and Petroleum Engines.)

# Specific Heat and Latent Heat of Fusion of Iron and Steel. (H. H. Campbell, Trans. A. I. M. E., xix. 18i.)

								Troilius.
Specific	heat	pig from		1200°	C	<b>.</b>	0.16	
- 44	**		1200 to	1800°	C		0.21	
**	44	**	0 to	1500°	C			0.18
66	44	**	1500 to	1800°	C		• • • •	0.20

#### Calculating by both sets of data we have :

Akerman. Troilius.
Heating from 0 to 1800° C 318 330 calories per kilo.
Heating from 0 to 1800° C
Specific heat, steel (probably high carbon)(Troilius)
" soft iron "
Hence probable value solid rail steel
" " melted rail steel

••	••	••	melted rail steel	1275
			Åkerman.	Troilius,
Latent	heat of		pig iron, calories per kilo 46 gray pig	83
" From which	" WA MA	46	white pig shout : Steel, 20 ;	23 nig iron 80.

#### EXPANSION BY HEAT.

In the centigrade scale the coefficient of expansion of air per degree is 0.003665=1/273; that is, the pressure being constant, the volume of a perfect gas increases 1/273 of its volume at 0° C. for every increase in temperature of 1° C. In Fafrenheit units it increases 1/491.2=.002036 of its volume at  $32^{\circ}$  F. for every increase of 1° F.

#### Expansion of Gases by Heat from 32° to 212° F. (Regnault.)

	Pressur	e Constant. at 32° Fahr.	Increase in Pressure, Volume Constant. Pressure at 32° Fahr. = 1.0, for		
	100° C.	1° F.	100° C.	1° F.	
Hydrogen. Atmospheric air. Nitrogen Carbonic oxide. Carbonic acid Sulphurous acid	0.8670 0.8670 0.3669 0.3710	0.002034 0.002039 0.002039 0.002038 0.002061 0.002168	0.3667 0.3665 0.3668 0.3667 0.3688 0.3845	0.002037 0.002036 0.002039 0.002037 0.002039 0.002136	

If the volume is kept constant, the pressure varies directly as the absolute temperature.

# Lineal Expansion of Solids at Ordinary Temperatures.

(British Board of Trade; from CLARK.)

		·	<u> </u>	
	For 1° Fahr.	For 1° Cent.	Coef- ficient of Expan- sion from 82° to 212° F.	According to Other Authorities.
	Length=1	Length=1		
Aluminum (cast)	.00001234	.00002221	.002221	
Antimony (cryst.)	.00000627	.00001129	.001129	.001088
Brass, cast	.00000957	.00001722	.001722	.001868
" plate	.00001052	.00001894	.001894	
Brick	.00000806	.00000550	.000550	
Bronze (Copper, 17; Tin, 21/2; Zinc 1).	.00000986	.00001774	.001774	******
Bismuth	.00000975	.00001755	.001755	.001392
Cement, Portland (mixed), pure	.00000594	.00001070	.001070	••••
Concrete: cement, mortar, and pebbles	.00000795	.00001480	.001430	001010
Copper	.00004278	.00007700	.001596	.001718
Ebonite	.00004218	.00000812	.000812	
" thermometer	.00000499	.00000897	.000897	
" hard	.00000397	.00000714	.000714	
Granite, gray, dry	.00000438	.00000789	.000789	
" red, dry	.00000498	.00000897	.000897	
Gold, pure	.00000786	.00001415	.001415	
Iridium, pure	.00000356	.00000641	.000641	
Iron, wrought	.00000648	.00001166	.001166	.001235
" cast	.00000556	.00001001	.001001	.001110
Lead	.00001571	.00002828	.002828	.002694
Magnesium	.000000808	.00000554	000554	
Marbles, various { from	.00000786	.00001415	.001415	••••••
(from	.00000256	.00000460	.000460	
Masonry, brick from to	.00000494	.00000890	.000890	
Mercury (cubic expansion)	.00009984	.00017971	.017971	.018018
Nickel	.00000695	.00001251	.001251	.001279
Pewter	.00001129	.00002033	.002088	
Plaster, white	.00000922	.00001660	.001660	
Platinum	.00000479	.00000863	.000868	
Platinum, 85 per cent ( Iridium, 15 " " }	.00000453	.00000815	.000815	.000884
Iridium, 15 " " \			1 '	.000004
Porcelain	.000000200	.00000360	.000360	
Quartz, parallel to major axis, t 0° to		00000000		1
40° C	.00000434	.00000781	.000781	
Quartz, perpendicular to major axis,		00001410	001410	l
t 0° to 40° C	.00000788	.00001419	.001419	
Silver, pure	.00001079	.00001933	.001943	.001908
Steel, cast	.00000636	.00001038	.001038	.001079
tempered	00000689	.00001240	.001240	.001019
Stone (sandstone), dry	.00000652	.00001240	.001240	1
Rauville	.00000417	.00000750	.000750	
Tin	.00001163	.00002094	.002094	001988
Wedgwood ware	.00000489	.00000881	.000881	
Wood, pine		.00000496	.000496	1
Zinc	.00001407	.00002582	.002532	.002942
Zinc, 8	.00001496	.00002692	.002692	
Tin, 1 5	.0001190	.00002092	.002092	•••••
	<u> </u>	1	1	

Absolute Temperature-Absolute Zero. - The absolute zero of a gas is a theoretical consequence of the law of expansion by heat, assuming that it is possible to continue the cooling of a perfect gas until its volume is

diminished to nothing.

diminished to nothing.

If the volume of a perfect gas increases 1/273 of its volume at 0° C. for every increase of temperature of 1° C., and decreases 1/273 of its volume for every decrease of temperature of 1° C., then at - 273° C. the volume of the imaginary gas would be reduced to nothing. This point - 273° C., or 491.2° F. below the melting-point of ice on the air thermometer, or 492.66° F. below on a perfect gas thermometer  $= -459.2^{\circ}$  F. (or  $-460.66^{\circ}$ ), is called the absolute zero; and absolute temperatures are temperatures measured, on either the Fahrenheit or centigrade scale, from this zero. The freezing point, 32° F., corresponds to 491.2° F. absolute. If  $p_0$  be the pressure and  $r_0$  the volume of a gas at the temperature of 32° F.  $=491.2^{\circ}$  on the absolute scale  $= T_0$ , and p the pressure, and p the volume of the same quantity of gas at any other absolute temperature T, then gas at any other absolute temperature T, then

 $\frac{pv}{p_0v_0} = \frac{T}{T} = \frac{t + 459.2}{491.2}$  $\frac{r^{\nu}}{T} = \frac{p_0 v_0}{T}.$ 491.2

The value of  $p_0v_0$  T 491.2 ,  $\overline{T}=\overline{T_0}$ . The value of  $p_0v_0+T_0$  for air is 53.37, and pv=53.37T, calculated as follows by Prof. Wood:

A cubic foot of dry air at 32° F. at the sea-level weighs 0.080728 lb. The volume of one pound is  $v_0 = \frac{1}{0.00724} = 12.387$  cubic feet. The pressure per square foot is 2116.2 lbs.

 $\frac{\mathbf{p_0 v_0}}{\mathbf{p_0 v_0}} = \frac{2116.2 \times 12.387}{491.18} = \frac{26214}{491.13} = 53.87.$ 

The figure 491.13 is the number of degrees that the absolute zero is below the melting-point of ice, by the air thermometer. On the absolute scale, whose divisions would be indicated by a perfect gas thermometer, the calculated value approximately is 492.66, which would make pv = 53.21T. Prof. Thomson considers that  $-273.1^{\circ}$  C.,  $= -491.4^{\circ}$  F., is the most probable value of the absolute zero. See Heat in Ency. Brit.

Expansion of Liquids from  $32^{\circ}$  to  $212^{\circ}$  F.—Apparent expansion in glass (Clark). Volume at  $212^{\circ}$ , volume at  $32^{\circ}$  being 1:

Water		Nitric acid	
Mercury	1.0182	Turpentine and ether	
Alcohol 1		Hydrochlor, and sulphuric acids	1.06

For water at various temperatures, see Water. For air at various temperatures, see Air.

#### LATENT HEATS OF FUSION AND EVAPORATION.

Latent Heat means a quantity of heat which has disappeared, having been employed to produce some change other than elevation of temperature. By exactly reversing that change, the quantity of heat which has disappeared is reproduced. Maxwell defines it as the quantity of heat which must be communicated to a body in a given state in order to convert it into

another state without changing its temperature.

Latent Heat of Fusion.—When a body passes from the solid to the liquid state, its temperature remains stationary, or nearly stationary, at a certain melting point during the whole operation of melting; and in order to make that operation go on, a quantity of heat must be transferred to the substance melted, being a certain amount for each unit of weight of the

This quantity is called the latent heat of fusion.

substance. This quantity is called the latent heat of fusion.

When a body passes from the liquid to the solid state, its temperature remains stationary or nearly stationary during the whole operation of freezing; a quantity of heat equal to the latent heat of fusion is produced in the body and rejected into the atmosphere or other surrounding bodies.

The following are examples in British thermal units per pound, as given

by Rankine:

Substances.	Melting	Latent Heat
	Points.	of Fusion.
Ice (according to Person)	32	142.65
Spermaceti	56	148
Beeswax	140	175
Phosphorus	177	9.06
Sulphur	405	16.86
Tin		500

Prof. Wood considers 144 heat units as the most reliable value for the latent heat of fusion of ice. Box gives only 26.6 for tin. Clements gives 233 for cast iron.

Latent Heat of Evaporation.—When a body passes from the solid or liquid to the gaseous state, its temperature during the operation remains stationary at a certain boiling point, depending on the pressure of the vapor produced; and in order to make the evaporation go on, a quantity of heat must be transferred to the substance evaporated, whose amount for each unit of weight of the substance evaporated depends on the temperature. That heat does not raise the temperature of the substance, but disappears in causing it to assume the gaseous state, and it is called the latent heat of

evaporation.

When a body passes from the gaseous state to the liquid or solid state, its temperature remains stationary, during that operation, at the boiling point corresponding to the pressure of the vapor: a quantity of heat equal to the latent heat of evaporation at that temperature is produced in the body; and in order that the operation of condensation may go on, that heat must be transferred from the body condensed to some other body.

The following are examples of the latent heat of evaporation in British thermal units, of one pound of certain substances, when the pressure of the vapor is one atmosphere of 14.7 lbs. on the square inch;

Substance.	Boiling-point under one atm. Fahr.	Latent Heat in British units.
Water	212.0	965.7 (Regnault.)
Alcohol	172.2	364.3 (Andrews.)
Ether	95.0	162.8 "
Bisulphide of carbon	114.8	156.0 "

The latent heat of evaporation of water at a series of boiling-points ex tending from a few degrees below its freezing-point up to about 375 degrees Fahrenheit has been determined experimentally by M. Regnault. sults of those experiments are represented approximately by the formula, in British thermal units per pound,

$$l \text{ nearly} = 1091.7 - 0.7(t - 32^{\circ}) = 965.7 - 0.7(t - 212^{\circ}).$$

The Total Heat of Evaporation is the sum of the heat which disappears in evaporating one pound of a given substance at a given temperature (or latent heat of evaporation) and of the heat required to raise its temperature, before evaporation, from some fixed temperature up to the temperature of evaporation. The latter part of the total heat is called the sensible heat.

In the case of water, the experiments of M. Regnault show that the total heat of steam from the temperature of melting ice increases at a uniform rate as the temperature of evaporation rises. The following is the formula in British thermal units per pound:

$$h = 1091.7 + 0.305(t - 32^{\circ}).$$

For the total heat, latent heat, etc., of steam at different pressures, see table of the Properties of Saturated Steam. For tables of total heat, latent heat, and other properties of steams of ether, alcohol, acetone, chloroform, chloride of carbon, and bisulphide of carbon, see Rontgen's Thermodynamics (Dubois's translation.) For ammonia and sulphur dioxide, see Wood's Thermodynamics; also, tables under Refrigerating Machinery, in this book.

#### EVAPORATION AND DRYING.

In evaporation, the formation of vapor takes place on the surface; in boiling, within the liquid: the former is a slow, the latter a quick, method of evaporation.

If we bring an open vessel with water under the receiver of an air-pump and exhaust the air the water in the vessel will commence to boil, and if we keep up the vacuum the water will actually boil near its freezing-point. formation of steam in this case is due to the heat which the water takes out of the surroundings.

Steam formed under pressure has the same temperature as the liquid in which it was formed, provided the steam is kept under the same pressure.

By properly cooling the rising steam from boiling water, as in the multipleeffect evaporating systems, we can regulate the pressure so that the water b ils at low temperatures.

Evaporation of Water in Heservoirs.—Experiments at the Mount Hope Reservoir, Rochester, N. Y., in 1891, gave the following results:

	July.	Aug.	Sept.	Oct.
Mean temperature of air in shade	70,5	70.8	68.7	53.3
" water in reservoir	68.2	70.2	66.1	54.4
" humidity of air, per cent		74.6	75.2	74.7
Evaporation in inches during month		4.98	4.05	8.23
Rainfall in inches during month	8 44	2.95	1.44	2.16

Evaporation of Water from Open Channels. (Flynn's Irrigation Canals and Flow of Water.)—Experiments from 1881 to 1885 in Tulare County, California, showed an evaporation from a pan in the river equal to an average depth of one eighth of an inch per day throughout the

wear.

When the pan was in the air the average evaporation was less than 3/16 of an inch per day. The average for the month of August was 1/3 inch per day, and for March and April 1/12 of an inch per day. Experiments in Colorado show that evaporation ranges from .088 to .16 of an inch per day

during the irrigating season.

In Northern Italy the evaporation was from 1/12 to 1/9 inch per day, while in the south, under the influence of hot winds, it was from 1/6 to 1/5 inch

per day.

In the hot season in Northern India, with a decidedly hot wind blowing, the average evaporation was 1/2 inch per day. The evaporation increases

with the temperature of the water.

Evaporation by the Multiple System. - A multiple effect is a series of evaporating vessels each having a steam chamber, so connected that the heat of the steam or vapor produced in the first vessel heats the second, the vapor or steam produced in the second heats the third, and so on. The vapor from the last vessel is condensed in a condenser. Three vessels are generally used, in which case the apparatus is called a Triple Effect. In evaporating in a triple effect the vacuum is graduated so that the

liquid is boiled at a constant and low temperature. **Resistance to Ediling.—Brine.** (Rankine.)—The presence in a liquid of a substance dissolved in it (as salt in water) resists ebuilition, and raises the temperature at which the liquid boils, under a given pressure; but unless the dissolved substance enters into the composition of the vapor, the relation between the temperature and pressure of saturation of the vapor remains unchanged. A resistance to ebullition is also offered by a vessel of a material which attracts the liquid (as when water bells in a glass vessel), and the boiling take place by starts. To avoid the errors which causes of this kind produce in the measurement of boiling-points, it is advisable to place the thermometer, not in the liquid, but in the wapor, which shows the true boiling-point, freed from the disturbing effect of the attractive nature of the vessel. The boiling-point of saturated brine under one atmosphere is 226° Fahr., and that of weaker brine is higher than the boiling-point of pure water by 1.2° Fahr., for each 1/32 of salt that the water contains. Average sea-water contains 1/32; and the brine in marine boilers is not suffered to contain more than from 2/32 to 3/32.

Methods of Evaporation Employed in the Manufacture of Salt, (F. E. Engelhardt, Chemist Onondaga Salt Springs; Report for 1889.)—1. Solar heat—solar evaporation. 2. Direct fire, applied to the heating surface of the vessels containing brine—kettle and pan methods. 3. The steam-grainer system-steam-pans, steam-kettles, etc. 4. Use of steam and a reduction of the atmospheric pressure over the boiling brine-vacuum

system. When a saturated salt solution bolls, it is immaterial whether it is done under ordinary atmospheric pressure at 22% F., or under four atmospheres with a temperature of 320° F., or in a vacuum under 1/10 atmosphere, the

result will always be a fine-grained sait.

The fuel consumption is stated to be as follows: By the kettle method, 40 to 45 bu. of salt evaporated per ton of fuel, anthracite dust burned on perforated grates; evaporation, 5.53 lbs. of water per pound of coal. By the pan method, 70 to 75 bu. per ton of fuel. By vacuum pans, single effect, 86 lbs. per ton of anthracite dust (2000 lbs.). With a double effect nearly double that amount can be produced.

## Solubility of Common Salt in Pure Water. (Andreæ.)

Temp. of brine, F	32	50	86	104	140	176
100 parts water dissolve parts	35.63	<b>8</b> 5.69	36.03	36.82	87.06	38.00
100 parts brine contain salt	26.27	26.30	26.49	26.64	27.04	27.54

According to Poggial, 100 parts of water dissolve at 229.66° F., 40.35 parts of salt, or in per cent of brine, 28.749. Gay Lussac found that at 229.72° F. 100 parts of pure water would dissolve 40.38 parts of salt, in per cent of

brine, 28,764 parts.

The solubility of salt at 229° F. is only 2.5% greater than at 32°. Hence we cannot, as in the case of alum, separate the salt from the water by allowing a saturated solution at the boiling point to cool to a lower temperature.

# Solubility of Sulphate of Lime in Pure Water. (Marignac.)

Temperature F. degrees. Parts water to dissolve	32 415	64.5 886	89.6 871		105.8 870	127.4 875	186.8 417	212 452
1 part gypsum Parts water to dissolve 1 t part anhydrous CaSO ₄ }	525	488	470	466	468	474	528	572

In salt brine sulphate of lime is much more soluble than in pure water. In the evaporation of salt brine the accumulation of sulphate of lime tends to stop the operation, and it must be removed from the pans to avoid waste of fuel.

The average strength of brine in the New York salt districts in 1889 was 69.38 degrees of the salinometer.

Strength of Salt Brines.—The following table is condensed from one given in U. S. Mineral Resources for 1888, on the authority of Dr. Englehardt.

Relations between Salinometer Strength, Specific Gravity, Solid Contents, etc., of Brines of Different Strengths.

Salinometer, degrees.	Baumé, degrees.	Specific gravity.	Per cent of salt.	Weight of a gallon of this brine in pounds.	Pounds of salt in a gal- lon of brine of 231 cubic inches.	Gallons of brine required for a bushel of sait.	Pounds of water to be evaporated to produce a bushel of salt.	Lbs. of coal required to produce a bushel of salt, 1 lb. coal evapo- rating 6 lbs. of water.	Bushels of salt that can be made with a ton of coal of 2000 pounds.
1	.26 .52 1.04 1.56 2.08 2.60 3.12 3.64 4.18 5.20 7.80 10.40 13.00 15.60 18.20 20.80 23.40 26.00	1.002 1.003 1.007 1.010 1.014 1.017 1.025 1.025 1.085 1.054 1.078 1.114 1.136 1.158 1.158 1.158	.265 .530 1.060 1.590 2.120 2.650 8.180 4.240 4.770 5.300 7.950 10.600 13.250 15.900 18.550 21.200 28.500	8.347 8.356 8.389 8.414 8.447 8.506 8.589 8.564 8.622 8.781 8.939 9.164 9.647 9.647	.022 .044 .088 .133 .179 .224 .270 .316 .457 .698 .947 1.206 .947 1.755 2.045 2.348	2,531 1,264 629.7 418.6 312.7 207.0 176.8 154.2 136.5 192.5 80.21 59.09 46.41 37.94 81.89 27.38 23.84 21.04	21,076 10,510 5,227 8,466 2,585 2,057 1,705 1,458 1,265 1,118 1,001 648 472.8 866.6 296.2 245.9 208.1 178.8	61.10 49.36 40.98 84.69 29.80	.569 1.141 2.295 3.462 4.641 5.833 7.088 9.256 9.488 10.78 11.99 18.51 25.41 32.78 40.51 40.80 57.65 67.65

Concentration of Sugar Solutions.* (From "Heating and Concentrating Liquids by Steam," by John G. Hudson; The Engineer, June 18, 1890.)—In the early stages of the process, when the liquor is of low density, the evaporative duty will be high, say two to three (British) gallons per square foot of heating surface with 10 lbs. steam pressure, but will gradually fall to an almost nominal amount as the final stage is approached. As a generally safe basis for designing, Mr. Hudson takes an evaporation of one gallon per hour for each square foot of gross heating surface, with steam of the pressure of about 10 lbs.

As examples of the evaporative duty of a vacuum pan when performing the earlier stages of concentration, during which all the heating surface can be employed, he gives the following:

COIL VACUUM PAN.—44, in copper coils, 528 square feet of surface; steam in coils, 15 lbs.; temperature in pan, 141° to 148°; density of feed, 25° Beaumé, and concentrated to \$1° Beaumé.

First Trial.—Evaporation at the rate of 2000 gallons per hour = 8.8 gallons per square foot; transmission, 376 units per degree of difference of temperature

Second Trial.—Evaporation at the rate of 1503 gallons per hour = 2.8 gal-

lons per square foot; transmission, 265 units per degree.

As regards the total time needed to work up a charge of massecuite from liquor of a given density, the following figures, obtained by plotting the results from a large number of pans, form a guide to practical working. The pans were all of the coil type, some with and some without jackets, the gross heating surface probably averaging, and not greatly differing from, 25 square foot per gallon capacity, and the steam pressure 10 lbs, per square inch. Both plantation and refining pans are included, making various grades of sugar:

Density	of Feed	(degs.	Beaum	ı <b>6</b> ).
10°	15°	200	250	800
	2.6	0.96	1.8	.97
,	0.0	N.20	1.0	.91
	9.	61/6	5.	4.
2.04	1.6	1.39	1.2	.97
8.5	5.5	8.8	2.75	2,0
2.88	2.6	2.38	2.18	1.9
	10° 6.123 12. 2.04 8.5	10° 15° 6.123 8.6 12. 9. 2.04 1.6 8.5 5.5	10° 15° 20° 6.123 8.6 2.26 12. 9. 61½  2.04 1.6 1.39 8.5 5.5 8.8	6.123 8.6 2.26 1.5 12. 9. 614 5.  2.04 1.6 1.39 1.2 8.5 5.5 8.8 2.76

The quantity of heating steam needed is practically the same in vacuum as in open pans. The advantages proper to the vacuum system are primarily the reduced temperature of boiling, and incidentally the possibility of using heating steam of low pressure.

In a solution of sugar in water, each pound of sugar adds to the volume of the water to the extent of .061 gallon at a low density to .0638 gallon at

high densities

A **Method of Evaporating by Exhaust Steam** is described by Albert Steams in Trans. A. S. M. E., vol. viii. A pan 17' 6'' × 11' × 1' 6'', fitted with cast-iron condensing pipes of about 250 sq. ft. of surface, evaporated 120 gallons per hour from clear water, condensing only about one half of the steam supplied by a plain slide-valve engine of 14" × 32" cylinder, making 55 revs. per min., cutting off about two thirds stroke, with steam at 75 lbs. boiler pressure.

It was found that keeping the pan-room warm and letting only sufficient air in to carry the vapor up out of a ventilator adds to its efficiency, as the average temperature of the water in the pan was only about 165° F.

Experiments were made with coils of pipe in a small pan, first with no agitator, then with one having straight blades, and lastly with troughed blades; the evaporative results being about the proportions of one, two, and

three respectively.

In evaporating liquors whose boiling point is 220° F., or much above that of water, it is found that exhaust steam can do but little more than bring them up to saturation strength, but on weak liquors, syrups, glues, etc., it should be very useful.

For other sugar data see Bagasse as Fuel, under Fuel.

Drying in Vacuum.—An apparatus for drying grain and other substances in vacuum is described by Mr. Emil Passburg in Proc. Inst. Mech. Engrs., 1889. The three essential requirements for a success? I and economical process of drying are: 1. Cheap evaporation of the moisture; 2. Quick drying at a low temperature; 3. Large capacity of the apparatus employed.

The removal of the moisture can be effected in either of two ways: either

by slow evaporation, or by quick evaporation—that is, by boiling.

Slow Evaporation.—The principal idea carried into practice in machines acting by slow evaporation is to bring the wet substance repeatedly into contact with the inner surfaces of the apparatus, which are heated by steam, while at the same time a current of hot air is also passing through the substances for carrying off the moisture. This method requires much heat, because the hot-air current has to move at a considerable speed in order to shorten the drying process as much as possible; consequently a great quantity of heated air passes through and escapes unused. As a carrier of moisture hot air cannot in practice be charged beyond half its full saturation; and it is in fact considered a satisfactory result if even this proportion be attained. A great amount of heat is here produced which is not used; while, with scarcely half the cost for fuel, a much quicker removal of the water is obtained by heating it to the boiling point.

Quick Evaporation by Boiling.—This does not take place until the water is brought up to the boiling point and kept there, namely, 212° F., under atmospheric pressure. The vapor generated then escapes freely. Idquids are easily evaporated in this way, because by their motion consequent on boiling the heat is continuously conveyed from the heating surfaces through the liquid, but it is different with solid substances, and many more difficul-ties have to be overcome, because convection of the heat ceases entirely in solids. The substance remains motionless, and consequently a much greater quantity of heat is required than with liquids for obtaining the

same results.

Evaporation in Vacuum - All the foregoing disadvantages are avoided if the boiling-point of water is lowered, that is, if the evaporation is carried out under vacuum.

This plan has been successfully applied in Mr. Passburg's vacuum drying apparatus, which is designed to evaporate large quantities of water con-

tained in solid substances.

The drying apparatus consists of a top horizontal cylinder, surmounted by a charging vessel at one end, and a bottom horizontal cylinder with a discharging vessel beneath it at the same end. Both cylinders are encused in steam-jackets heated by exhaust steam. In the top cylinder works a revolving cast-iron screw with hollow hiades, which is also heated by exhaust steam. The bottom cylinder contains a revolving drum of tubes, consisting of one large central tube surrounded by 24 smaller ones, all fixed in tube-plates at both ends; this drum is heated by live steam direct from the boiler. The substance to be dried is fed into the charging vessel through two manufactures are the controlled the state of the charging the controlled the state of the charging the charge of the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the charging the c holes, and is carried along the top cylinder by the screw creeper to the back end, where it drops through a valve into the bottom cylinder, in which it is lifted by blades attached to the drum and travels forwards in the reverse direction; from the front end of the bottom cylinder it falls into a discharging vessel through another valve, having by this time become dried. The vapor arising during the process is carried off by an air-pump, through a dome and air-valve on the top of the upper cylinder, and also through a throttle-valve on the top of the lower cylinder; both of these valves are supplied with strainers.

As soon as the discharging vessel is filled with dried material the valve connecting it with the bottom cylinder is shut, and the dried charge taken out without impairing the vacuum in the apparatus. When the charging vessel requires replenishing, the intermediate valve between the two cylinders is shut, and the charging vessel filled with a fresh supply of wet material; the vacuum still remains unimpaired in the bottom cylinder, and has to be restored only in the top cylinder after the charging vessel has been

In this vacuum the boiling-point of the water contained in the wet material is brought down as low as 110° F. The difference between this temperature and that of the heating surfaces is amply sufficient for obtaining good results from the employment of exhaust steam for heating all the surfaces except the revolving drum of tubes. The water contained in the solid substance to be dried evaporates as soon as the latter is heated to about 110° F.1

and as long as there is any moisture to be removed the solid substance is not heated above this temperature.

Wet grains from a brewery or distillery, containing from 75% to 78% of water, have by this drying process been converted in some localities from a worthless incumbrance into a valuable food-stuff. The water is removed

by evaporation only, no previous mechanical pressing being resorted to.

At Messrs, Guinness's brewery in Dublin two of these machines are employed. In each of these the top cylinder is 20' 4" long and 2' 8" diam., and the screw working inside it makes 7 revs. per min.; the bottom cylinder is 20' 80 gand 5' 4" diam., and the drum of the tubes inside it makes 5 revs. per min. The drying surfaces of the two cylinders amount together to a total area of about 1000 sq. ft., of which about 40% is heated by exhaust steam direct from the boiler. There is only one air pump, which is made large enough for three machines; it is horizontal, and has only one arreylinder, which is double-acting, 17% in. diam. and 17% in. stroke; and it is driven at about 45 revs. per min. As the result of about eight months' experience, the two machines have been drying the wet grains from about 500 cwt. of malt per day of 24 hours.

Roughly speaking, 3 cwt. of malt gave 4 cwt. of wet grains, and the latter yield 1 cwt. of dried grains; 500 cwt. of malt will therefore yield about 670 cwt. of wet grains, or 335 cwt. per machine. The quantity of water to be evaporated from the wet grains is from 75% to 70% of their total weight, or

say about 512 cwt. altogether, being 256 cwt. per machine.

#### BADIATION OF HEAT.

Radiation of heat takes place between bodies at all distances apart, and follows the laws for the radiation of light.

The heat rays proceed in straight lines, and the intensity of the rays radiated from any one source varies inversely as the square of their distance

from the source.

This statement has been erroneously interpreted by some writers, who have assumed from it that a boiler placed two feet above a fire would receive by radiation only one fourth as much heat as if it were only one foot above. The law refers only to the emanation of heat rays in all directions in radial lines from a single point. When the radiation is from a multitude of points, as from the surface of a fire or flame, the rays from the several points cross each other and cause the intensity at moderate distances to be much greater than the law of inverse squares would indicate. Moreover, in the case of boiler furnaces the side walls reflect those rays that are received at an angle—following the law of optics, that the angle of incidence is equal to the angle of reflection.—with the result that the intensity of heat two feet above the fire is practically the same as at one foot above, instead of only one-fourth as much.

The rate at which a hotter body radiates heat, and a colder body absorbs heat, depends upon the state of the surfaces of the bodies as well as on their temperatures. The rate of radiation and of absorption are increased by darkness and roughness of the surfaces of the bodies, and diminished by smoothness and polish. For this reason the covering of steam pipes and boilers should be smooth and of a light color: uncovered pipes and steam-

cylinder covers should be polished.

The quantity of heat radiated by a body is also a measure of its heatabsorbing power, under the same circumstances. When a polished body is struck by a ray of heat, it absorbs part of the heat and reflects the rest. The reflecting power of a body is therefore the complement of its absorbing power, which latter is the same as its radiating power.

The relative radiating and reflecting power of different bodies has been determined by experiment, as shown in the table below, but as far as quantities of heat are concerned, says Prof. Trowbridge Johnson's Cyclopedia, art. Heat, it is doubtful whether anything further than the said relative determinations can, in the present state of our knowledge, be depended upon, the actual or absolute quantities for different temperatures being still uncertain. The authorities do not even agree on the relative radiating powers. Thus, Leslie gives for tin plate, gold, silver, and copper the figure 12, which differs considerably from the figures in the table below, given by Clark, stated to be on the authority of Leslie, De La Provostaye and Desains, and Melloni.

#### Relative Radiating and Reflecting Power of Different Substances.

	Radiating or Absorbing Power.	Reflecting Power.		Radiating or Absorbing Power.	Reflecting Power.
Lampblack	100 100	0 0 0 2	Zinc,polished Steel, polished	19 17	81 88
Carbonate of lead	100	l X	Platinum, polished	24	76
Writing-paper	98	ž	" in sheet	17	83
Ivory, jet, marble		7 to 2	Tin	15	85
Ordinary glass	98 to 98 90 85 72 27	10 15 28 78	Brass, cast, dead		
Ice	85	15	polished	11	89
Gum lac	72	28	Brass, bright pol-		l
Silver-leaf on glass		78	ished	7	93
Cast iron, bright pol-		1	Copper, varnished	14 7 5	86
ished	25 23	75 77	nammereu	7	98
Mercury, about	23	77	Gold, plated	5	95
Wrought iron, pol-		1	" on polished	l	1
ished	28	77	steel	8	97
	i	<b>!</b>	Silver, polished		1
		1	bright	8	97

Experiments of Dr. A. M. Mayer give the following: The relative radiations from a cube of cast iron, having faces rough, as from the foundry, planed, "drawfiled," and polished, and from the same surfaces oiled, are as below (Prof. Thurston, in Trans. A. S. M. E., vol. xvi.):

Surface.	Oiled.	Dry.
Rough	60	100 32 20 18

It here appears that the oiling of smoothly polished castings, as of cylinder-heads of steam-engines, more than doubles the loss of heat by radiation, while it does not seriously affect rough castings.

#### CONDUCTION AND CONVECTION OF HEAT.

Conduction is the transfer of heat between two bodies or parts of a body which touch each other. Internal conduction takes place between the parts of one continuous body, and external conduction through the surface of contact of a pair of distinct bodies.

of contact of a pair of distinct bodies.

The rate at which conduction, whether internal or external, goes on, being proportional to the area of the section or surface through which it takes place, may be expressed in thermal units per square foot of area per hour.

Internal Conduction varies with the heat conductivity, which depends upon the nature of the substance, and is directly proportional to the difference between the temperatures of the two faces of a layer, and inversely as its thickness. The reciprocal of the conductivity is called the internal thermal resistance of the substance. If r represents this resistance x the thickness of the layer in inches, x and x the temperatures on the two faces, and x the quantity in thermal units transmitted per hour per square

foot of area, 
$$q = \frac{T' - T}{Tx}$$
. (Rankine.)

Péclet gives the following values of r:

Gold, platinum, silver Copper Iron	0.0018	Marble	0.0716
Zina	0.0045	Discussion	

# Belative Heat-conducting Power of Metals.

(* Calvert & Johnson ; † Weidemann & Franz )

Silver = 1000.

Metals, *C. &				tW. & F.
Silver	00 1000	Cadmium	577	
Gold 96	31 532	Wrought iron .	436	119
Gold, with 15 of		Tin		145
silver 8	10	Steel	897	116
Copper, rolled 8		Platinum		84
Copper, cast 8		Sodium	865	
Mercury 67		Cast iron		
Mercury, with 1.25%	· · · · · · · · · · · · · · · · · · ·	Lead		85
of tin 4	12	Antimony:		-
Aluminum 66		cast horizonta	llv 215	
Zinc, rolled 6		cast vertically	192	
Zine:	- ::::	Bismuth		18
cast vertically 6			<b></b>	
cast horizontally 60				

# INFLUENCE OF A NON-METALLIC SUBSTANCE IN COMBINATION ON THE CONDUCTING POWER OF A METAL.

Influence of carbon on iron :     436   Steel	Copper with 1% of arsenic 570 with .5% of arsenic 669
	" with .25% of arsenic 771

#### Steam-pipe Coverings.

(Experiments by Prof. Ordway, Trans. A. S. M. E., v, 73; also Circular No. 27 of Boston Mfrs. Mutual Fire Ins. Co., 1890,)

It will be observed that several of the incombustible materials are nearly as efficient as wool, cotton, and feathers, with which they may be compared in the following table. The materials which may be considered wholly free from the danger of being carbonized or ignited by slow contact with pipes or boilers are printed in Roman type. Those which are more or less liable to be carbonized are printed in italics.

TABLE I.

Substance 1 inch thick. Heat applied, 310° F.	Pounds of Water heated 10° F., per hour, through 1 square foot,	Solid Matter in 1 square foot 1 inch thick, parts in 1000.	Air Included, parts in 1000.
1. Loose wool	8.1	56	944
2. Live-geese feathers	9.6	50	950
3. Carded cotton wool	10.4	20	980
4. Hair felt	10.3	l 185 i	815
5 Loose lamphlack	9.8	56	944
6. Compressed lampblack	10.6	244	756
7. Cork charcoal	11.9	53	947
8. White-pine charcoal	13.9	119	881
9. Anthracite-coal powder	35.7	506	494
10. Loose calcined magnesia	12.4	23	977
11. Compressed calcined magnesia	42.6	285	715
12. Light carbonate of magnesia	18.7	60	940
18. Compressed carbonate of magnesia	15.4	150	850
14. Loose fossil-meal	14.5	60	940
15. Crowded fossil-meal	15.7	112	888
16. Ground chalk (Paris white)	20.6	253	747
17. Dry plaster of Paris	80.9	368	632
18. Fine asbestos	49.0	81	919
19. Air alone	48.0	0	1000
20. Sand	62.1	527	471

#### TABLE II.

Covering.	Pounds of Water heated 10° F., per hour, by 1 square foot.
21. Best slag-wool	18.
21. Best slag-wool	14.
23. Blotting-paper wound tight	21. 21.7
25. Cork strips bound on	14.6
26. Straw rope wound spirally	18.
27. Loose rice chaff	18.7
28. Paste of fossil-meal with hair	16.7
29. Paste of fossil-meal with asbestos	22.
30. Loose bituminous coal ashes	
31. Loose anthracite-coal ashes	

Professor Ordway's report says: Careful experiments have been made with various non-conductors, each used in a mass one inch thick, placed on a flat surface of iron kept heated by steam to 310° Fahr. Table I gives the amount of heat transmitted per hour through each kind of non-conductor one inch thick, reckoned in pounds of water heated 10° Fahr., the unit of area being one square foot of covering.

The substances given in Table II were actually tried as coverings for two-inch steam-pipe, but for convenience of comparison the results have been reduced by calculation to the same terms as in Table I.

Later experiments have given results for still air which differ little from those of Nos. 3, 4, and 6. In fact the bulk of matter in the best non-conductross is relatively too small to have any specific effect, except to entrap the air and keep it stagnant. These substances keep the air still by virtue of the roughness of their fibres or particles. The asbestos, No. 18, had smooth fibres, which could not prevent the air from moving about.

Later trials with an asbestos of exceedingly fine fibre have made a somewhat better showing, but asbestos is really one of the poorest non-conductors. By reason of its fibrous character it may be used advantageously to hold together other incombustible substances, but the less the better. We have made trials of two samples of a "magnesia covering," consisting of carbonate of magnesia with a small percentage of good asbestos fibre. One transmitted heat which, reduced to the terms of Table I, would amount to 15 lbs: the denser one gave 20 lbs. The former contained 250/1000 of solid matter; the latter 396/1000.

Any suitable substance which is used to prevent the escape of steam

heat should not be less than one inch thick.

Any covering should be kept perfectly dry, for not only is water a good carrier of heat, but it has been found that still water conducts heat about eight times as rapidly as still air.

# Heat-conducting Power of Covering Materials.

(J. J. Coleman, Eng'g, Sept. 5, 1884, p. 287.)

Experiments were made by filling a 10-in, cube with ice, surrounding it with the different materials to be tested, and noting the quantity of ice melted per hour with each insulator.

The relative results were as follows:

Inc relative recalls were as			
Silicate cotton (mineral wool).	100   0	Charcoal	140
Hair felt	117   8	Sawdust	163
		Gas works breeze	
Sheep's wool	136   V	Wood and air-space	280
Infus rul conth	196		

The Rate of External Conduction through the bounding surface between a solid body and a fluid is approximately proportional to the difference of temperature, when that is small; but when that difference is considerable the rate of conduction increases faster than the simple ratio that difference. (Rankine.)

If r, as before, is the coefficient of internal thermal resistance, e and e' the coefficient of external resistance of the two surfaces, x the thickness of the plate, and T and T the temperatures of the two fluids in contact with the two surfaces, the total thermal resistance is  $q = \frac{T' - T}{e + e' + rx}$ . According to

Peciet,  $e + e' = \frac{1}{A(1 + B(T' - T))}$ , in which the constants A and B have the following values:

B	for polished metallic surfaces	.0028
B	for rough metallic surfaces and for non-metallic surfaces	.0037
	for polished metals, about	
4	for glassy and varnished surfaces	1.84
Ą	for dull metallic surfaces	1.58
4	for lamp.black	178

When a metal plate has a liquid at each side of it, it appears from experiments by Peclet that B = .058, A = 8.8.

The results of experiments on the evaporative power of boilers agree very with the following approximate formula for the thermal resistance of boiler plates and tubes:

$$e+e'=\frac{a}{(T'-T)},$$

which gives for the rate of conduction, per square foot of surface per Lour,

$$q=\frac{(T'-T)^2}{a}.$$

This formula is proposed by Rankine as a rough approximation, near enough to the truth for its purpose. The value of a lies between 160 and 200. Convection, or carrying of heat, means the transfer and diffusion of the heat in a fluid mass by means of the motion of the particles of that mass.

The conduction, properly so called, of heat through a stagnant mass of fluid is very slow in liquids, and almost, if not wholly, inappreciable in gases. It is only by the continual circulation and mixture of the particles of the fluid that uniformity of temperature can be maintained in the fluid mass, or heat transferred between the fluid mass and a solid body.

The free circulation of each of the fluids which touch the side of a solid plate is a necessary condition of the correctness of Rankine's formulæ for the conduction of heat through that plate; and in these formulæ it is implied that the circulation of each of the fluids by currents and eddies is such as to prevent any considerable difference of temperature between the fluid particles in contact with one side of the solid plate and those at considerable distances from it.

When heat is to be transferred by convection from one fluid to another, through an intervening layer of metal, the motions of the two fluid masses should, if possible, be in opposite directions, in order that the hottest particles of each fluid may be in communication with the hottest particles of the two fluid may be the greatest particles of the two fluids may be the greatest possible.

adjacent particles of the two fluids may be the greatest possible.

Thus, in the surface condensation of steam, by passing it through metal tubes immersed in a current of cold water or air, the cooling fluid should be

made to move in the opposite direction to the condensing steam.

Transmission of Heat, through Solid Plates, from Water to Water. (Clark, S.E.).—M. Péclet found, from experiments made with plates of wrought iron, cast iron, copper, lead, zinc, and tin, that when the fluid in contact with the surface of the plate was not circulated by artificial means, the rate of conduction was the same for different metals and for plates of the same metal of different thicknesses. But when the water was thoroughly circulated over the surfaces, and when these were perfectly clean, the quantity of transmitted heat was inversely proportional to the thickness, and directly as the difference in temperature of the two faces of the plate. When the metal surface became dull, the rate of transmission of heat through all the metals was very nearly the same.

It follows, says Clark, that the absorption of heat through metal plates is more active whilst evaporation is in progress—when the circulation of the water is more active—than while the water is being heated up to the boiling point.

Transmission from Steam to Water.-M. Péclet's principle is supported by the results of experiments made in 1867 by Mr. Isherwood on supported by the results of experiments made in 100 by Mr. Isherwood on the conductivity of different metals. Cylindrical pots, 10 inches in diameter, 214 inches deep inside, and ½ inch, ¼ inch, and ¾ inch thick, turned and bored, were formed of pure copper, brass (60 copper and 40 zinc), rolled wrought iron, and remelted cast iron. They were immersed in a steam bath, which was varied from 220 to 320° F. Water at 212° was supplied to the pots, which were kept filled. It was ascertained that the rate of evaporation was in the direct ratio of the difference of the temperatures inside and outside of the pots; that is, that the rate of evaporation per degree of difference of temperatures was the same for all temperatures; and that the rate of evaporation was exactly the same for different thicknesses of the metal. The respective rates of conductivity of the several metals were as follows, expressed in weight of water evaporated from and at 212° F. per square foot of the interior surface of the pots per degree of difference of temperature per hour, together with the equivalent quantities of heat-units:

	water at ziz.	Heat-units.	Katio	
Copper	665 lb.	642.5	1.00	
Brass		556.8	.87	
Wrought iron	387 "	873.6	.58	
Cast iron		815.7	.49	

Whitham, "Steam Engine Design," p. 283, also Trans. A. S. M. E. ix, 425, in using these data in deriving a formula for surface condensers calls these using these data in deriving a formula for surface concensors cans according figures those of perfect conductivity, and multiplies them by a coefficient C, which he takes at 0.323, to obtain the efficiency of condenser surface in ordinary use, i.e., coated with saline and greasy deposits.

Transmission of Heat from Steam to Water through Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.—H. G. C. Kopp and F. J. Meystre (Stevens Individual Coils of Iron Pipe.)

cator, Jan., 1894), give an account of some experiments on transmission of heat through coils of pipe. They collate the results of earlier experiments as follows, for comparison:

Experimenter.	er of Surface.	ature per hour, ature per ho		ed per foot per differ- temper-	Remarks.	
Experi	Character	Heating, pounds.	Evapo- rating, pounds.	Heating, B. T. U.	Evapo- rating B. T. U.	
Havrez	Copper coils 2 Copper coils Copper coil		.981 1.20 1.26	815 280	974 1120 1200	∫Steam pressure
	Iron coil Iron tube	.235	.24	230	215 208.2	= 100. Steam pressure = 10.
"	Cast-iron boil-	.196 .206 .077	.105	207 210 82	100	

From the above it would appear that the efficiency of iron surfaces is less than that of copper coils, plate surfaces being far inferior.

In all experiments made up to the present time, it appears that the temperature of the condensing water was allowed to rise, a mean between the initial and final temperatures being accepted as the effective temperature. But as water becomes warmer it circulates more rapidly, thereby causing the water surrounding the coil to become agitated and replaced by cooler water, which allows more heat to be transmitted.

Again, in accepting the mean temperature as that of the condensing medium, the assumption is made that the rate of condensation is in direct proportion to the temperature of the condensing water.

In order to correct and avoid any error arising from these assumptions and approximations, experiments were undertaken, in which all the coudi-

tions were constant during each test.

The pressure was maintained uniform throughout the coil, and provision was made for the free outflow of the condensed steam, in order to obtain at all times the full efficiency of the condensing surface. The condensing water was continually stirred to secure uniformity of temperature, which was regulated by means of a steam-pipe and a cold-water pipe entering the tank in which the coil was placed.

The following is a condensed statement of the results

HEAT TRANSMITTED PER SQUARE FOOT OF COOLING SURFACE, PER DEGREE OF DIFFERENCE OF TEMPERATURE. (British Thermal Units.)

Temperature of Condens- ing Water.	1-in. Iron Pipe; Steam inside, 60 lbs. Gauge Pressure.	11/2 in. Pipe; Steam inside, 10 lbs. Pressure.	1½ in. Pipe; Steam inside, 10 lbs. Pressure.	1½ in. Pipe; Steam inside, 60 lbs. Pressure.
80	265	128	200	
100	269	130	230	289
120	272	187	260	247
140	277	145	267	276
160	281	158	271	806
180	299	174	270	849
200	818			419

The results indicate that the heat transmitted per degree of difference of temperature in general increases as the temperature of the condensing water is increased.

The amount transmitted is much larger with the steam on the outside of the coil than with the steam inside the coil. This may be explained in part by the fact that the condensing water when inside the coil flows over the surface of conduction very rapidly. and is more efficient for cooling than when contained in a tank outside of the coil.

This result is in accordance with that found by Mr. Thomas Craddock, which indicated that the rate of cooling by transmission of heat through metallic surfaces was almost wholly dependent on the rate of circulation of

the cooling medium over the surface to be cooled.

Transmission of Heat in Condenser Tubes. (Eng'g, Dec. 10, 1875, p. 449.).—In 1874 B. C. Nichol made experiments for determining the rate at which heat was transmitted through a condenser tube. The results went to show that the amount of heat transmitted through the walls of the tube per estimated degree of mean difference of temperature increased considerably with this difference. For example:

Estimated mean difference of temperature between inside and	rtical T		sontal 7	
outside of tube, degrees Fahr Heat-units transmitted per hour	151.9	152.9	146.2	
per square foot of surface per				

degree of mean diff. of temp.... 422 581 561 610 737 823

These results seem to throw doubt upon Mr. Isherwood's statement that

the rate of evaporation per degree of difference of temperature is the same for all temperatures.

Mr. Thomas Craddock found that water was enormously more efficient than air for the abstraction of heat through metallic surfaces in the process of cooling. He proved that the rate of cooling by transmission of heat through metallic surfaces depends upon the rate of circulation of the cooling medium over the surface to be cooled. A tube filled with hot water, moved by rapid rotation at the rate of 59 ft. per second, through air, lost as much heat in one minute as it did in still air in 12 minutes. In water, at a velocity of 3 ft. per second, as much heat was abstracted in one minute when it was at rest in the water. Mr. Craddock concluded, further, that the circulation of the cooling fluid became of

474

greater importance as the difference of temperature on the two sides of the

greater importance as the difference of temperature on the two suces of the plate became less. (Clark R. T. D., p. 461.)

Heat Transmission through Cast-iron Plates Pickled in Nitric Acid.—Experiments by R. C. Carpenter (Trans. A. S., M. E., xii 179) show a marked change in the conducting power of the plates (from steam to water), due to prolonged treatment with dilute nitric acid.

The action of the nitric acid, by dissolving the free iron and not attacking

the carbon, forms a protecting surface to the iron, which is largely com-

posed of carbon. The following is a summary of results:

Character of Plates, each plate 8.4 in. by 5.4 in., exposed surface 27 sq. ft.	Increase in Tempera- ture of 8.125 lbs. of Water each Minute.	Transmitted for	Rela- tive Trans- mission of Heat.
Cast iron—untreated skin on, but clean, free from rust	13.90	118.9	100.0
	11.5	97.7	86.8
	9.7	80.08	70.7
	9.6	77.8	68.7
	9.93	87.0	76.8
" 5% sol., 40 days.  Plate of pine wood, same dimensions as the plate of cast iron	10.6	77.4	68.5
	0.88	1.9	1.6

The effect of covering cast-iron surfaces with varnish has been investigated by P. M. Chamberlain. He subjected the plate to the action of strong acid for a few hours, and then applied a non-conducting varnish. One surface only was treated. Some of his results are as follows:

for for	
units per per hour, in degree,	•
Heat tr. p	

- 170. As finished—greasy.
- 152. washed with benzine and dried.
- 169. Oiled with lubricating oil.
  162. After exposure to nitric acid sixteen hours, then oiled (linseed oil.)
- After exposure to hydrochloric acid twelve hours, then oiled (linseed oil.)
- After exposure to sulphuric acid 1, water 2, for 48 hours, then oiled, varnished, and allowed to dry for 24 hours.

Transmission of Heat through Solid Plates from Air or other Dry Gases to Water. (From Clark on the Steam Engine.)

The law of the transmission of heat from hot air or other gases to water, through metallic plates, has not been exactly determined by experiment. The general results of experiments on the evaporative action of different The general results of experiments of the evaporative action of different portions of the heating surface of a steam-boiler point to the general law that the quantity of heat transmitted per degree difference of temperature is practically uniform for various differences of temperature. The communication of heat from the gas to the plate surface is much accelerated by mechanical impingement of the gaseous products upon the

surface.

Clark says that when the surfaces are perfectly clean, the rate of transmission of heat through plates of metal from air or gas to water is greater for copper, next for brass, and next for wrought iron. But when the surfaces are dimmed or coated, the rate is the same for the different metals,

Faces are dimmed or coaced, the rate is the same for the dimerent means. With respect to the influence of the conductivity of metals and of the thickness of the plate on the transmission of heat from burnt gases to water, Mr. Napier made experiments with small boilers of iron and copper placed over a gas-flame. The vessels were 5 inches in diameter and 2½ inches deep. From three vessels, one of iron, one of copper, and one of iron sides and copper bottom, each of them 1/30 inch in thickness, equal quantities of water were evaporated to dryness, in the times as follows:

Water.	Iron Vessel.	Copper Vessel.	Iron and Copper Vessel.
4 ounces	19 minutes	18.5 minutes 30.75	
514 " 4	50 " 85.7 "	44 "	<b>3</b> 6.83 minutes.

Two other vessels of iron sides 1/30 inch thick, one having a ¼-inch copper bottom and the other a ½-inch lead bottom, were tested against the iron and copper vessel, 1/30 inch thick. Equal quantities of water were evaporated in 54, 55, and 53½ minutes respectively. Taken generally, the results of these experiments show that there are practically but slight differences between iron, copper, and lead in evaporative activity, and that the activity is not affected by the thickness of the bottom.

Mr. W. B. Johnson formed a like conclusion from the results of his observations of two boilers of 160 horse-power each, made exactly alike, except that one had iron flue-tubes and the other copper flue-tubes. No difference could be detected between the performances of these boilers.

ference could be detected between the performances of these boilers. Divergencies between the results of different experimenters are attributable probably to the difference of conditions under which the heat was transmitted, as between water or steam and water, and between gaseous matter and water. On one point the divergence is extreme: the rate of transmission of heat per degree of difference of temperature. Whilst from 400 to 600 units of heat are transmitted from water to water through iron plates, per degree of difference per square foot per hour, the quantity of heat transmitted between water and air, or other dry gas, is only about from 2 to 5 units, according as the surrounding air is at rest or in movement. In a locomotive boiler, where radiant heat was brought into play, 17 units of heat were transmitted through the plates of the fire-box per degree of difference of temperature per square foot per hour.

difference of temperature per square foot per hour.

Transmission of Heat through Plates and Tubes from Steam or Hot Water to Air.—The transfer of heat from steam or water through a plate or tube into the surrounding air is a complex operation, in which the internal and external conductivity of the metal, the radiating power of the surface, and the convection of heat in the surrounding air are all concerned. Since the quantity of heat radiated from a surface varies with the condition of the surface and with the surroundings, according to laws not yet determined, and since the heat carried away by convection varies with the rate of the flow of the air over the surface, it is evident that no general law can be laid down for the total quantity of heat emitted.

The following is condensed from an article on Loss of Heat from Steampipes, in The Locomotive, Sept. and Oct., 1892.

A hot steam pipe is radiating heat constantly off into space, but at the same time it is cooling also by convection. Experimental data on which to base calculations of the heat radiated and otherwise lost by steam-pipes are neither numerous nor satisfactory.

In Box's Practical Treatise on Heat a number of results are given for the amount of heat radiated by different substances when the temperature of the air is 1° Fahr. lower than the temperature of the radiating body. A portion of this table is given below. It is said to be based on Péclet's experiments.

HEAT UNITS RADIATED PER HOUR, PER SQUARE FOOT OF SURFACE, FOR 1° FAHRENHEIT EXCESS IN TEMPERATURE.

Copper, polished	
Zinc and brass, polished	Cast iron, new
Tinned iron, polished	Common steam-pipe, inferred6400
Sheet-iron, polished	Cast and sheet iron, rusted6868
Sheet lead	Wood, building stone, and brick .7358

When the temperature of the air is about 50° or 60° Fahr., and the radiating body is not more than about 30° hotter than the air, we may calculate the radiation of a given surface by assuming the amount of heat given off by it in a given time to be proportional to the difference in temperature between the radiating body and the air. This is "Newton's law of cooling." But when the difference in temperature is great, Newton's law does not hold good; the radiation is no longer proportional to the difference in temperature, but must be calculated by a complex formula established experiment, ally by Dulong and Petit. Box has computed a table from this formula, which greatly facilitates its application, and which is given below:

FACTORS FOR REDUCTION TO DULONG'S LAW OF RADIATION.

Differences in Temperature between	Temperature of the Air on the Fahrenheit Scale.											
Radiating Body and the Air.	320	50°	590	68°	86°	104°	1220	140°	158°	1760	1940	2120
Deg. Fahr.			10							A.	T.	
<b>18</b>	1.00	1.07	1.12	1.16	1.25	1.36	1.47	1.58	1.70	1.85	1,99	2.15
36	1.03	1.08		1.21	1.30	1.40	1.52	1.68	1.76	1.91	2.06	2.23
54	1,07	*	1.20	1.25	1.35	1,45	1.58	1.70	1.83	1.99	2.14	2.31
72	1.12	1.20										2.40
90												2.51
108											2.42	
126	1.26	1.36										2.72
144	1.32	1.42	1,48	1.54	1.65	1.79	1.94	2.08	2.24	2.44	2.64	2.83
162	1.87	1.48	1.54	1.60	1.73	1.86	2.02	2,17	2.34	2.54	2.74	2.96
180	1.44	1.55		1.68	1.81	1.95	2.11	2.27	2.46	2.66	2.87	8.10
198	1.50	1.62	4.00									3.24
216	1.58	1.69	1.76	1.83	1.97	2.18	2.32	2,48	2.68	2.91	8,13	3.38
234	1,64											3.46
252	1.71											3.70
<b>27</b> 0	1.79	1.93										3.87
288 · 306	1.89	2.13	Sec. T. Tree	2.20	2.01	2.50	2.78	2.99	3.22	8.50	3.77	4.07
300 324	1.98										8.95	4.20
	2.07	2.23	2.33									4.46
342 360	2.17	2.34			0.10	2.90	0.19	0.44	3.70	4.02	4.34	4.68
378												4.91
396												5.15
414	0.00	0 04	W. 01	2.00	0.10	9.51	0.08	4.10	1 40	4.04	5.01	5.40
432	2.03	0 08	9 10	9 99	9 47	9 76	4.10	4.12	1.98	4.86	5.20	5.67
202	3.76	2.90	a. 10	0.20	0.47	0,40	4.10	4.32	4.01	5.12	0.33	0.04

The loss of heat by convection appears to be independent of the nature of the surface, that is, it is the same for iron, stone, wood, and other materials. It is different for bodies of different shape, however, and it varies with the position of the body. Thus a vertical steam-pipe will not lose so much heat by convection as a horizontal one will; for the air heated at the lower part of the vertical pipe will rise along the surface of the pipe, protecting it to some extent from the chilling action of the surrounding cooler air. For a similar reason the shape of a body has an important influence on the result, those bodies losing most heat whose forms are such as to allow the cool air free access to every part of their surface. The following table from Box gives the number of heat units that horizontal cylinders or pipes lose by convection per square foot of surface per hour, for one degree difference in temperature between the pipe and the air.

HEAT UNITS LOST BY CONVECTION FROM HORIZONTAL PIPES, PER SQUARE FOOT OF SURFACE PER HOUR, FOR A TEMPERATURE DIFFERENCE OF 1° FAHR.

External Diameter of Pipe in inches,	Heat Units Lost.	External Diameter of Pipe in inches.	Heat Units Lost.	External Diameter of Pipe in inches.	Heat Units Lost.
2 3 4 5 6	0.728 0.626 0.574 0.544 0.528	7 8 9 10 12	0.509 0.498 0.489 0.482 0.472	18 24 36 48	0.455 0.447 0.438 0.434

The loss of heat by convection is nearly proportional to the difference in temperature between the hot body and the air; but the experiments of

Dulong and Péclet show that this is not exactly true, and we may here also resort to a table of factors for correcting the results obtained by simple proportion.

FACTORS FOR REDUCTION TO DULONG'S LAW OF CONVECTION.

Difference in Temp. between Hot Body and Air.	Factor.	Difference in Temp. between Hot Body and Air.	Factor.	Difference in Temp. between Hot Body and Air.	Factor.
18° F. 26° 54° 72° 90° 106° 125° 144° 182°	0.94 1.11 1.28 1.80 1.87 1.43 1.49 1.58 1.58	180° F. 196° 216° 224° 252° 270° 288° 306° 324°	1.62 1.65 1.68 1.72 1.74 1.77 1.80 1.83 1.85	342° F. 360° 378° 414° 432° 450° 468°	1.87 1.90 1.92 1.94 1.96 1.98 2.00 2.02

EXAMPLE IN THE USE OF THE TABLES.—Required the total loss of heat by both radiation and convection, per foot of length of a steam-pipe 2 11/32 in. external diameter, steam pressure 60 lbs., temperature of the air in the room 68° Fahr.

Temperature corresponding to 60 lbs. equals 807°; temperature difference  $= 307 - 68 = 239^{\circ}$ 

Area of one foot length of steam-pipe =  $2.11/82 \times 3.1416 + 12 = 0.614$  sq.

Heat radiated per hour per square foot per degree of difference, from

table, 064.

Radiation loss per hour by Newton's law =  $239^{\circ} \times .614$  ft.  $\times .64 = 93.9$  heat units. Same reduced to conform with Dulong's law of radiation: factor from table for temperature difference of 239° and temperature of air 68° = 1.93.  $98.9 \times 1.98 = 181.2$  heat units, total loss by radiation.

Convection loss per square foot per hour from a 211/82-inch pipe: by interpolation from table, 2" = .728, 3" = .626, 211/82" = .698.

Area, .614 x .693 + 2389 = 101.7 heat units. Same reduced to conform with Dulong's law of convection: 101.7 x 1.73 (from table) = 175.9 heat units per hour. Total loss by radiation and convection = 181.2 + 175.9 = 357.1 heat units per hour. Loss per degree of difference of temperature per square foot of surface per hour = \$67.1 + 239 = 1.494 heat units.

It is not claimed, says The Locomotive, that the results obtained by this

It is not claimed, says The Locomotive, that the results obtained by time method of calculation are strictly accurate. The experimental data are not sufficient to allow us to compute the heat-loss from steam-pipes with any great degree of refinement; yet it is believed that the results obtained as indicated above will be sufficiently near the truth for most purposes. An experiment by Prof. Ordway, in a pipe 2 11/32 in. diam. under the above conditions (Trans. A. S. M. E., v. 73), showed a condensation of steam of 181 grammes per hour, which is equivalent to a loss of heat of 358.7 heat units per hour, or within half of one per cent of that given by the above calculation. tion.

According to different authorities, the quantity of heat given off by steam and hot water radiators in ordinary practice of heating of buildings by direct radiation varies from 1.8 to about 8 heat units per hour per square foot per degree of difference of temperature.

The lowest figure is calculated from the following statement by Robert Briggs in his paper on "American Practice in Warming Buildings by Steam" (Proc. Inst. C. E., 1882, vol. lxxi): "Each 100 sq. ft. of radiating surface will give off 3 Fahr, heat units per minute for each degree F. of difference in temperature between the radiating surface and the air in which it is exposed."

The figure 2 1/2 heat units is given by the Nason Manufacturing Company

in their catalogue, and 2 to 2 1/4 are given by many recent writers. For the ordinary temperature difference in low-pressure steam-heating, say  $212^{\circ}-70^{\circ}=142^{\circ}$  F., 1 lb. steam condensed from  $212^{\circ}$  to water at the

same temperature gives up 965.7 heat units. A loss of 2 heat units per sq. to be the total of the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second to the second

Transmission of Heat through Walls, etc., of Buildings (Nason Manufacturing Co.). (See also Heating and Ventilation.)—Heat has the remarkable property of passing through moderate thicknesses of air and gases without appreciable loss, so that air is not warmed by radiant heat, but by contact with surfaces that have absorbed the radiation.

#### POWERS OF DIFFERENT SUBSTANCES FOR TRANSMITTING HEAT.

Window-glass	10	00	Bricks, rough	200 to	250
Oak or walnut		66	Bricks, whitewashed		200
White pine		80	Granite or slate		250
Pitch-pine	10	00	Sheet iron	1030 to	1110
Lath or plaster	75 to 1	00			

A square foot of glass will cool 1.279 cubic feet of air from the tempera-

ture inside to that outside per minute, and outside wall surface is generally estimated at one fifth of the rate of glass in cooling effect.

Box, in his "Practical Treatise on Heat," gives a table of the conducting powers of materials prepared from the experiments of Péclet. It gives the quantity of heat in units transmitted per square foot per hour by a plate 1 inch in thickness, the two surfaces differing in temperature 1 degree:

Fine-grained gray marble	28,00
Coarse-grained white marble	22.4
Stone, calcareous, fine	16.7
Stone, calcareous, ordinary	18.68
Baked clay, brickwork	4.88
Brick-dust, sifted	1.88

Hood, in his "Warming and Ventilating of Buildings," p. 249, gives the results of M. Depretz, which, placing the conducting power of marble at 1.00, give .488 as the value for firebrick.

#### THERMODYNAMICS.

Thermodynamics, the science of heat considered as a form of energy, is useful in advanced studies of the theory of steam, gas, and air englies, refrigerating machines, compressed air, etc. The method of treament adopted by the standard writers is severely mathematical, involving constant application of the calculus. The student will find the subject constant application of the calculus. The student will find the subject thoroughy treated in the recent works by Rontgen (Dubois's translation),

Wood, and Peabody.

First Law of Thermodynamics.—Heat and mechanical energy are mutually convertible in the ratio of about 778 foot-pounds for the British are mutually convertible in the ratio of about 778 foot-pounds for the British are mutually convertible. thermal unit. (Wood.) Heat is the living force or vis viva due to certain molecular motions of the molecules of bodies, and this living force may be stated or measured in units of heat or in foot-pounds, a unit of heat in British measures being equivalent to 772 [778] foot-pounds. (Trowbridge. Trans. A. S. M. E., vii. 727.)

Second Law of Thermodynamics.-The second law has by different writers been stated in a variety of ways, and apparently with ideas so diverse as not to cover a common principle. (Wood, Therm., p. 889.) It is impossible for a self-acting machine, unaided by any external agency,

to convert heat from one body to another at a higher temperature. (Clausius.)

If all the heat absorbed be at one temperature, and that rejected be at one lower temperature, then will the heat which is transmuted into work be to the entire heat absorbed in the same ratio as the difference between the absolute temperature of the source and refrigerator is to the absolute temperature of the source. In other words, the second law is an expression for the efficiency of the perfect elementary engine. (Wood.)

The living force, or vis viva, of a body (called heat) is always proportional to the absolute temperature of the body. (Trowbridge.)

The expression  $\frac{Q_1 - Q_2}{Q_1 - Q_2} = \frac{T_1 - T_2}{T_1}$  may be called the symbolical or al-The expression  $\frac{Q_1}{Q_1} = \frac{1}{T_1}$  may be called the symbolical or algebraic enunciation of the second law,—the law which limits the efficiency of heat engines, and which does not depend on the nature of the working medium employed. (Trowbridge.)  $Q_1$  and  $T_1$  = quantity and absolute temperature of the heat received,  $Q_2$  and  $T_2$  = quantity and absolute tem-

temperature of the near reserved. Perature of the heat rejected.

The expression  $\frac{T_1}{T_1} = \frac{T_2}{T_1}$  represents the efficiency of a perfect heat engine in the absolute temperature  $T_1$ , and rejects heat heat engine in the absolute temperature  $T_2$ . which receives all its heat at the absolute temperature  $T_1$ , and rejects heat at the temperature  $T_2$ , converting into work the difference between the quantity received and rejected.

EXAMPLE.—What is the efficiency of a perfect heat engine which receives heat at \$85° F. (the temperature of steam of 200 lbs, gauge pressure) and rejects heat at 100° F. (temperature of a condenser, pressure 1 lb. above vacuum).

$$\frac{888 + 459.2 - 100 + 459.2}{388 + 459.2} = 84\%, \text{ nearly.}$$

In the actual engine this efficiency can never be attained, for the difference between the quantity of heat received into the cylinder and that rejected into the condenser is not all converted into work, much of it being lost by radiation, leakage, etc. In the steam engine the phenomenon of cylinder condensation also tends to reduce the efficiency.

## PHYSICAL PROPERTIES OF GASES.

(Additional matter on this subject will be found under Heat, Air, Gas, and Steam.)

When a mass of gas is enclosed in a vessel it exerts a pressure against the walls. This pressure is uniform on every square inch of the surface of the vessel; also, at any point in the fluid mass the pressure is the same in every direction.

In small vessels containining gases the increase of pressure due to weight may be neglected, since all gases are very light; but where liquids are concerned, the increase in pressure due to their weight must always be taken into account.

Expansion of Gases, Marriotte's Law.—The volume of a gas diminishes in the same ratio as the pressure upon it is increased.

This law is by experiment found to be very nearly true for all gases, and is known as Boyle's or Mariotte's law.

If p =pressure at a volume v, and  $p_1 =$ pressure at a volume  $v_1, p_1v_1 =$  $pv; p_1 = \frac{v}{v}p; pv = a \text{ constant.}$ 

The constant, C, varies with the temperature, everything else remaining the same.

Air compressed by a pressure of seventy-five atmospheres has a volume

Air compressed by a pressure of seventy-tive aumospheres has a volume about 2k less than that computed from Boyle's law, but this is the greatest divergence that is found below 160 atmospheres pressure.

Law of Charles,—The volume of a perfect gas at a constant pressure is proportional to its absolute temperature. If  $v_0$  be the volume of a gas at  $32^{\circ}$  F., and  $v_1$  the volume at any other temperature,  $t_1$ , then

$$\begin{aligned} v_1 &= v_0 \Big( \frac{t_1 + 459.2}{491.2} \Big); \quad v_1 &= \Big( 1 + \frac{t_1 - 32^\circ}{491.2} \Big) v_0, \\ \text{or} \quad v_1 &= [1 + 0.002036(t_1 - 32^\circ)] v_0. \end{aligned}$$

If the pressure also change from  $p_0$  to  $p_1$ ,

$$v_1 = v_0 \frac{p_0}{\bar{p_1}} \left( \frac{t_1 + 459.2}{491.2} \right).$$

The Densities of Gases and Vapors are simply proportional to their atomic weights.

Avogadre's Law.-Equal volumes of all gases, under the same conditions of temperature and pressure, contain the same number of mole-

To find the weight of a gas in pounds per cubic foot at 32° F., multiply half the molecular weight of the gas by .00559. Thus 1 cu. ft. marsh-gas, CH.,

$$=\frac{12+4}{2} \times .00559 = .0447$$
 lb.

When a certain volume of hydrogen combines with one half its volume of oxygen, there is produced an amount of water vapor which will occupy the same volume as that which was occupied by the hydrogen gas when at the

same temperature and pressure.

Saturation-point of Vapors.—A vapor that is not near the saturation-point behaves like a gas under changes of temperature and pressure; but if it is sufficiently compressed or cooled, it reaches a point where it begins to condense: it then no longer obeys the same laws as a gas, but its pressure cannot be increased by diminishing the size of the vessel containing it, but remains constant, except when the temperature is changed. The only gas that can prevent a liquid evaporating seems to be its own vapor.

Dalton's Law of Gaseous Pressures.—Every portion of a mass of gas inclosed in a vessel contributes to the pressure against the sides of the vessel the same amount that it would have exerted by itself had no

other gas been present.

Mixtures of Vapors and Gases.—The pressure exerted against the interior of a vessel by a given quantity of a perfect gas enclosed in its the sum of the pressures which any number of parts into which such quantity might be divided would exert separately, if each were enclosed in a such parts of the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as the such as vessel of the same bulk alone, at the same temperature. Although this law vessel of the same bulk alone, at the same temperature. Although this law is not exactly true for any actual gas, it is very nearly true for many. Thus if 0.080728 ib. of air at 32° F., being enclosed in a vessel of one cubic foot capacity, exerts a pressure of one atmosphere or 14.7 pounds, on each square inch of the interior of the vessel, then will each additional 0.080728 ib. of air which is enclosed, at 82°, in the same vessel, produce very nearly an additional atmosphere of pressure. The same law is applicable to mixtures of gases of different kinds. For example, 0.12344 lb. of carbonic-acid gas, at 32°, being enclosed in a vessel of one cubic foot in capacity, exerts a pressure of one atmosphere; consequently, if 0.080728 lb. of air and 0.12344 lb. of of one atmosphere; consequently, if 0.080728 lb. of air and 0.12344 lb. of carbonic acid, mixed, be enclosed at the temperature of 32°, in a vessel of one cubic foot of capacity, the mixture will exert a pressure of its vo atmospheres. As a second example: Let 0.080728 lb. of air, at 212°, be enclosed in a vessel of one cubic foot; it will exert a pressure of

 $\frac{212 + 459.2}{32 + 459.2} = 1.366 \text{ atmospheres.}$ 

Let 0.03797 lb. of steam, at 212°, be enclosed in a vessel of one cubic foot; it will exert a pressure of one atmosphere. Consequently, if 0.080728 lb. of air and 0.03797 lb. of steam be mixed and enclosed together, at 212°, in a vessel of one cubic foot, the mixture will exert a pressure of 2.366 atmospheres. It is a common but erroneous practice, in elementary books on physics, to describe this law as constituting a difference between mixed and homogeneous gases; whereas it is obvious that for mixed and homogeneous gases the law of pressure is exactly the same, viz., that the pressure of the whole of a gaseous mass is the sum of the pressures of all its parts

This is one of the laws of mixture of gases and vapors.

A second law is that the presence of a foreign gaseous substance in contact with the surface of a solid or liquid does not affect the density of the

vapor of that solid or liquid unless there is a tendency to chemical combination between the two substances, in which case the density of the vanor is slightly increased. (Rankine, S. E., p. 239.)

Flow of Gases.—By the principle of the conservation of energy, it may be shown that the velocity with which a gas under pressure will escape into a vacuum is inversely proportional to the square root of its density; that is, oxygen, which is sixteen times as heavy as hydrogen, would, under exactly the same circumstances, escape through an opening only one fourth as fast as the latter gas.

Absorption of Gases by Liquids.—Many gases are readily absorbed by water. Other liquids also possess this power in a greater or less degree. Water will for example, absorb its own volume of carbonic-acid gas, 430 times its volume of ammouia, 21/6 times its volume of chlorine, and

only about 1/20 of its volume of oxygen.

The weight of gas that is absorbed by a given volume of liquid is proportional to the pressure. But as the volume of a mass of gas is less as the pressure is greater, the volume which a given amount of liquid can absorb at a certain temperature will be constant, whatever the pressure. Water, for example, can absorb its own volume of carbonic-acid gas at atmospheric pressure; it will also dissolve its own volume if the pressure is twice as great, but in that case the gas will be twice as dense, and consequently twice the weight of gas is dissolved,

#### ATR.

**Properties of Air.**—Air is a mechanical mixture of the gases oxygen and nitrogen; 21 parts O and 79 parts N by volume, 23 parts O and 77 parts N by weight.

The weight of pure air at 32° F, and a barometric pressure of 29.92 inches of mercury, or 14.6963 ibs. per sq. in., or 2116.3 ibs. per sq. ft., is .080728 ibs. The volume of 1 ib. is 12.887 cubic feet. At any other temperature and barometric pressure its weight in lbs. per cubic foot is  $W = \frac{1.3253 \times B}{456.2 + T}$ , where B = height of the barometer, T = temperature and 1.3253 — and 1.3253.

where B = height of the barometer, T = temperature Fahr., and 1.3253 = weight in lbs. of 459.2 c. ft. of air at 0° F. and one inch barometric pressure. Air expands 1/491.2 of its volume for every increase of 1° F., and its volume varies inversely as the pressure.

Volume, Density, and Pressure of Air at Various Temperatures. (D. K. Clark.)

Volume at Atmos. Pressure.		Density, lbs. per Cubic Foot at	Pressure at Constant Volume.			
Fahr.	Cubic Feet Comparative Vol.		Atmos. Pressure.	Lbs. per Sq. In.	Compara-	
0	11.588	.881	. 086381	12.96	.881	
82	12.887	.943	.080728	18.86	.943	
40	12.586	.958	.079439	14.08	.958	
50	12.840	.977	.077884	14.36	.977	
62 70 80	18.141	1.000	.076097	14.70	1.000	
70	18.842	1.015	.074950	14.92	1.015	
80	18.593	1.034	.073565	15.21	1.084	
90	13.845	1.054	.072230	15.49	1.054	
100	14.098	1.073	.070942	15.77	1.078	
110	14.844	1.092	.069721	16.05	1.092	
120 130	14.592	1.111 1.130	.063500	16.33	1.111	
140	14.846 15.100	1.149	.067361	16.61	1.180	
150	15.351	1.149	.065155	16.89 17.19	1.149	
160	15.608	1.187	.061088	17.50	1.187	
170	15.854	1.206	.063089	17.76	1.206	
180	16.106	1.226	.062090	18.02	1.226	
200	16.606	1.264	.060210	18.58	1.264	
210	16.860	1.283	.059313	18.86	1.283	
212	16.910	1.287	.059135	18.92	1.287	

The Air-mamometer consists of a long vertical glass tube, closed at the upper end, open at the lower end, containing air, provided with a scale, and immersed, along with a thermometer, in a transparent liquid, such as water or oil, contained in a strong cylinder of glass, which communicates with the vessel in which the pressure is to be ascertained. The scale shows the volume occupied by the air in the tube.

Let  $v_0$  be that volume, at the temperature of 32° Fahrenheit, and mean pressure of the atmosphere,  $p_0$ ; let  $v_1$  be the volume of the air at the temperature t, and under the absolute pressure to be measured  $p_1$ ; then

$$p_1 = \frac{(t + 459.2^{\circ})p_0v_0}{491.2^{\circ}v_1}$$

# Pressure of the Atmosphere at Different Altitudes.

At the sea-level the pressure of the air is 14.7 pounds per square inch; at 14 of a mile above the sea-level it is 14.02 pounds; at 14 mile, 18.33; at 34 mile, 18.66; at 1 mile, 12.02; at 114 mile, 11.42; at 114 mile, 10.88; and at 3

miles, 9.80 pounds per square inch. For a rough approximation we may assume that the pressure decreases ½ pound per square inch for every 1000 feet of ascent.

It is calculated that at a height of about 3½ miles above the sea-level the weight of a cubic foot of air is only one half what it is at the surface of the earth, at seven miles only one fourth, at fourteen miles only one sixteenth, at twenty-one miles only one sixty-fourth, and at a height of over forty-five miles it becomes so attenuated as to have no appreciable weight.

The pressure of the atmosphere increases with the depth of shafts, equal to about one inch rise in the barometer for each 900 feet increase in depth: this may be taken as a rough-and-ready rule for ascertaining the depth of shafts.

# Pressure of the Atmosphere per Square Inch and per Square Foot at Various Readings of the Barometer.

RULE.—Barometer in inches × .4908 = pressure per square inch; pressure per square inch × 144 = pressure per square foot.

Barometer.	Pressure per Sq. In.	Pressure per Sq. Ft.	Barometer.	Pressure per Sq. In.	Pressure per Sq. Ft.
in. 28.00 28.25 28.50 28.75 29.00 29.25 29.50	lbs. 13.74 13.86 13.98 14.11 14.23 14.35 14.47	lbs.* 1975 1995 2018 2031 2049 2066 2083	in. 29.75 30.00 30.25 30.50 30.75 31.00	lbs. 14.60 14.72 14.84 14.96 15.09	1bs.* 2102 2119 2136 2154 2172 2190

* Decimals omitted.

For lower pressures see table of the Properties of Steam.

## Barometric Readings corresponding with Different Altitudes, in French and English Measures.

Alti- tude.	Read- ing of Barom- eter.	Altitude.	Reading of Barom- eter.	Alti- tude.	Reading of Barom- eter.	Altitude.	Reading of Barom- eter.
meters.	mm. 762	feet.	inches.	meters.	mm. 660	feet. 3763.2	inches. 25.98
21	760	68.9	29.92	1269	650	4163.3	25.59
127	750	416.7	29.52	1398	640	4568.8	25.19
234	740	767.7	29.13	1519	630	4988.1	24.80
842	780	1122.1	28.74	1647	620	5408.2	24.41
458	720	1486.2	28.35	1777	610	5830.2	24.01
564	710	1850.4	27.95	1909	600	6248.	28.62
678	700	2224.5	27.55	2043	590	6702.9	23.22
793	690	2599.7	27.16	2180	580	7152.4	22.88
909	680	2962.1	26.77	2318	570	7605.1	22.44
1027	670	8369.5	26.38	2460	560	8071.	22.04

Levelling by the Barometer and by Boiling Water. (Trautwine.)—Many circumstances combine to render the results of this kind of levelling unreliable where great accuracy is required. It is difficult to read off from an aneroid (the kind of barometer usually employed for engineering purposes) to within from two to five or six feet, depending on its size. The moisture or dryness of the air affects the results; also winds, the vicinity of mountains, and the daily atmospheric tides, which cause incessant and irregular fluctuations in the barometer. A barometer hanging quietly in a room will often vary 1/4 of an inch within a few hours, corresponding to a difference of elevation of nearly 100 feet. No formula can possibly be devised that shall embrace these sources of error.

To Find the Difference in Altitude of Two Places.—Take from the table the altitudes opposite to the two boiling temperatures, or to the two barometer readings. Subtract the one opposite the lower reading from that opposite the upper reading. The remainder will be the required height, as a rough approximation. To correct this, add together the two thermometer readings, and divide the sum by 2, for their mean. From table of corrections for temperature, take out the number under this mean. Multiply the approximate height just found by this number.

At 70° F. pure water will boil at 1° less of temperature for an average of

At 70° F, pure water will boil at 1° less of temperature for an average of about 550 feet of elevation above sea-level, up to a height of 1/2 a mile. At the height of 1 mile, 1° of boiling temperature will correspond to about 560 feet of elevation. In the table the mean of the temperatures at the two stations is assumed to be 32° F., at which no correction for temperature is

necessary in using the table.

Bolling- point in deg. Fah.	in. Altitude above Sea-leve	Bolling- point in deg. Fab.	Barom, in.	Altitude above Sea-level feet.	Bolling- point in deg.	Barom. In.	Altitude above Sea-leve feet.
185   17 186   17 187   17 188   18 189   18 190   19 191   19 192   19 193   20	.79 15,221 .16 14,649 .54 14,075 .98 13,498 .82 12,984 .72 12,367 .13 11,799 .54 11,243 .96 10,683 .89 10,127 .82 9,579	196 197 198 199 200 201 202 203 204 205 206	21.71 22.17 22.64 28.11 28.59 24.08 24.58 25.08 25.08 25.11 26.64	8,481 7,932 7,381 6,843 6,804 5,764 5,225 4,697 4,169 3,642 3,115	208 208.5 209 209.5° 210 210.5 211 211.5 212.5 213	27.73 28.00 28.29 28.56 28.85 29.15 29.42 29.71 30.00 30.30 30.59	2,063 1,809 1,539 1,290 1,025 754 512 255 S. L. = 0 -261 -511

#### CORRECTIONS FOR TEMPERATURE.

 Mean temp. F. in shade.
 0 | 10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90° | 100° |

 Multiply by
 .933 | .954 | .975 | .996 | 1.016 | 1.036 | 1.058 | 1.079 | 1.100 | 1.121 | 1.142 |

Moisture in the Atmosphere.—Atmospheric air always contains a small quantity of carbonic acid gas and a varying quantity of aqueous vapor. Pure mountain air contains about 3 to 4 parts of carbonic acid in 10,000. A properly ventilated room should contain not more than six parts in 10,000.

The degree of saturation or relative humidity of the air is determined by the use of the dry and wet bulb thermometer. The degree of saturation for a number of different readings of the thermometer is given in the following table:

# Indications of the Hygeometer (Dry and Wet Bulb), from Mr. Glaisher's Observations at Greenwich.

-	Difference of Temperature or Degrees of Cold in the Wet- bulb Thermometer,	
Temperature of the Air, Fahrenheit.	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2	24
	Degrees of Humidity, Saturation being 100.	
32° 42° 52° 62° 72°	87 75 92 85 78 72 66 60 54 49 44 40 36 33 30 27 93 86 80 74 69 64 59 54 50 46 42 39 39 33 30 27 25 94 88 82 77 72 67 62 58 54 50 47 44 14 13 83 53 22 30 28 26 21 94 89 84 79 74 59 65 61 57 54 51 48 45 42 39 36 34 32 30 28 26 24 23 3	95
920	95 90 85 80 76 72 68 64 60 57 54 51 48 45 42 40 38 35 33 31 39 37 26 3 95 90 85 81 77 73 70 66 62 59 56 53 50 47 45 43 41 88 30 31 32 30 38 3	26

Weights of Air, Vapor of Water, and Saturated Mixtures of Air and Vapor at Different Temperatures, under the Ordinary Atmospheric Pressure of 29.921 inches of Mercury.

inches of Mercury.											
	Ft.	or,	MIXTUE	es of An	R SATURAT	ED WITH V	APOR.				
e,	oic Fer Ibs.	ce of Vap Mercury.	Elastic Force of the Air in	Weight o Mixture	Weight of						
Temperature, Fahrenheit.	Weight of a Cul of Dry Air at Dif Temperatures,	Elastic Force of Vapor, Inches of Mercury.	Mixture of Air and Vapor, Inches of Air lbs		Weight of the Vapor, pounds.	Total W'ght of Mixture, pounds.	Vapor mixed with 1 lb. of Air, pounds.				
0° 12 22 32 42 52 62 72 82	.0864 .0842 .0824 .0807 .0791 .0776 .0761 .0747 .0783	.044 .074 .118 .181 .267 .388 .556 .785	29.877 29.849 29.808 29.740 29.654 29.533 29.365 29.136 28.829	.0863 .0840 .0821 .0802 .0784 .0766 .0747 .0727	.00079 .000130 .000202 .000304 .000440 .000627 .000681 .001221	.086379 .084130 .082302 .080504 .078840 .077227 .075581 .073921 .072267	.00092 .00155 .00245 .00379 .00561 .00819 .01179 .01680 .02361				
92 102 119 122 132 142 152 152 172	.0720 .0707 .0694 .0682 .0671 .0660 .0649 .0638 .0628	1.501 2.036 2.731 8.621 4.752 6.165 7.930 10.099 12.758 15.960	28.420 27.885 27.190 26.300 25.169 23.756 21.991 19.822 17.163 13.961	.0684 .0659 .0631 .0599 .0564 .0524 .0477 .0423 .0360 .0288	.002250 .002997 .003946 .005142 .006639 .008473 .010716 .013415 .016682 .020536	.070717 .068897 .067046 .065042 .063039 .060873 .058416 .055715 .052682 .049336	.08289 .04547 .06253 .08584 .11771 .16170 .22465 .81713 .46388 .71300				
192 202 212	.0609 .0600 .0591	19.828 24.450 29 921	10.093 5.471 0.000	.0205 .0109 .0000	.025142 .030545 .036820	.045642 .041445 .086820	1.22643 2.80230 Infinite.				

The weight in lbs, of the vapor mixed with 100 lbs, of pure air at any given temperature and pressure is given by the formula

$$\frac{62.3 \times E}{29.92 - E} \times \frac{29.92}{p}$$

where E = elastic force of the vapor at the given temperature, in inches of mercury; p = absolute pressure in inches of mercury, = 29.92 for ordinary atmospheric pressure.

Specific Heat of Air at Constant Volume and at Constant Pressure.—Volume of 1 lb. of air at 32° F. and pressure of 14.7 lbs. per sq. in. = 12.387 cu. ft. = a column 1 sq. ft. area  $\times$  12.387 ft. high. Raising temper-

ature 1° F. expands it  $\frac{1}{491.2}$ , or to 12.4122 ft. high—a rise of .02522 foot. Work done = 2116 lbs. per sq. ft.  $\times$  .02522 = 53.37 foot-pounds, or 53.37 + 778

= .0686 heat units. The specific heat of air at constant pressure, according to Regnault, is 0.2375; but this includes the work of expansion, or .0686 heat units; hence the specific heat at constant volume = 0.2375 - .0686 = 0.1689.

Ratio of specific heat at constant pressure to specific heat at constant volume = .2375 + .1689 = 1.406. (See Specific Heat, p. 458.)

Flow of Air through Orlifices.—The theoretical velocity in feet per second of flow of any fluid, liquid, or gas through an orifice is v =  $\sqrt{2gh} = 8.02 \ \sqrt{h}$ , in which h = the "head" or height of the fluid in feet required to produce the pressure of the fluid at the level of the orifice. The quantity of flow in cubic feet per second is equal to the product

of this velocity by the area of the orifice, in square feet, multiplied by a "coefficient of flow," which takes into account the contraction of the vein or flowing stream, the friction of the orifice, etc.

For air flowing through an orifice or short tube, from a reservoir of the pressure  $p_1$  into a reservoir of the pressure  $p_2$ . Weisbach gives the following values for the coefficient of flow, obtained from his experiments.

#### FLOW OF AIR THROUGH AN ORIFICE. Coefficient c in formula n - c 4/20h

	Cocincient c in tormina	U - C V 29				
Diameter	Ratio of pressures $p_1 + p_2$	1.05 1.09	1.43	1.65	1.89	2.15
1 centimetre.	Coefficient	.555 .589	.692	.724	.754	.788
Diameter	Ratio of pressures	1.05 1.09	1.36	1.67	2.01	
2.14 centimetres	Coefficient	.558 .573	. 634	.678	.723	• • • •
	FLOW OF AIR THROUGH A	SHORT TU	BE.			
Diam. 1 cm.,	Ratio of pressures $p_1 + p_2$	1.05 1.10	1.30			

Diam. i cm., | Ratio of pressures. | 1.24 | 1.38 | 1.59 | 1.85 | 2.14 | ... | Coefficient. | 979 | 986 | 965 | 971 | 978 | ... |

FLIEGNEB'S EQUATIONS FOR FLOW OF AIR FROM A RESERVOIR THROUGH AN ORIFICE. (Peabody's Thermodynamics, p. 135.)

For 
$$p_1 > 2pa$$
,  $G = 0.530 F \frac{p_1}{\sqrt{T_1}}$ ;  
 $p_1 > 2pa$ ,  $G = 1.060 F \sqrt{\frac{pa(p_1 - pa)}{T_1}}$ ;

G= flow of air through the orifice in lbs. per sec., F= area of orifice in square inches,  $p_1=$  pressure in reservoir in lbs. per sq. in.,  $p_a=$  pressure of atmosphere,  $T_1=$  absolute temperature, Fahrenheit, of air in reservoir. Clark (Rules, Tables, and Data, p. 891) gives, for the velocity of flow of air through an orifice due to small differences of pressure,

$$V = C \sqrt{\frac{\frac{2gh}{12} \times 778.2 \times \left(1 + \frac{t - 32}{493}\right) \times \frac{29.92}{p}},$$
 or, simplified, 
$$V = 352 C \sqrt{\left(1 + .00203(t - 32)\frac{h}{p}\right)};$$

in which V = velocity in feet per second; 2g = 64.4; h = height of the column of water in inches, measuring the difference of pressure; t = the temperature Fahr.; and p = barometric pressure in inches of mercury. 773.2 is the volume of air at 32° under a pressure of 29.92 inches of mercury when that of an equal weight of water is taken as 1.

For 62° F., the formula becomes  $V = 363C \sqrt{\frac{h}{a}}$ , and if p = 29.92 inches V =

66.35C √ħ The coefficient of efflux C, according to Weisbach, is: Conical converging mouthpieces ...... C = .90 to .99 Flow of Air in Pipes.-Hawksley (Proc. Inst. C. E., xxxiii, 55)

states that his formula for flow of water in pipes v=48  $\sqrt{\frac{HD}{L}}$  may also

be employed for flow of air. In this case H = height in feet of a column ofair required to produce the pressure causing the flow, or the loss of head

for a given flow; v = velocity in feet per second, D = diameter in feet, L = diameter

Hength in feet. If the head is expressed in inches of water, h, the air being taken at  $62^{\circ}$  F, its weight per cubic foot at atmospheric pressure = .0761 lb. Then  $H = \frac{62.36}{.0761 \times 12} = 68.3h$ . If d = diameter in inches,  $D = \frac{d}{13}$ , and the formula

becomes  $v = 114.5 \sqrt{\frac{hd}{L}}$ , in which h = inches of water column, d = diam-

eter in inches and L = length in feet;  $h = \frac{Lv^2}{13110d}$ ;  $d = \frac{Lv^2}{13110d}$ .

The quantity in cubic feet per second

$$Q = .7854 \frac{d^2}{144} v = .6245 \sqrt{\frac{h d^5}{L}}; \quad d = \sqrt[4]{\frac{\overline{Q^2 L}}{.39h}}; \quad h = \frac{Q^3 L}{.39d^5}.$$

The horse-power required to drive air through a pipe is the volume Q in cubic feet per second multiplied by the pressure in pounds per square f, ot and divided by 550. Pressure in pounds per square foot = P = inches f water column  $\times$  5.196, whence horse-power =

$$HP_{\cdot} = \frac{QP}{550} = \frac{Qh}{105.9} = \frac{Q^3L}{41.3d^5}$$

If the head or pressure causing the flow is expressed in pounds per square inch = p, then h = 27.71p, and the above formulæ become

$$v = 602.7 \sqrt{\frac{pd}{L}}; \quad p = \frac{Lv^2}{363,300d}; \quad d = \frac{Lv^2}{363,300p};$$

$$Q = 3.287 \sqrt{\frac{pd^5}{L}}; \quad p = \frac{Q^2L}{10.806d^4}; \quad d = \sqrt[5]{\frac{Q^2L}{10.806p}};$$

$$HP. = \frac{Q144p}{840} = .2618Qp = .02421\frac{Q^2L}{d^4}.$$

# Volume of Air Transmitted in Cubic Feet per Minute in Pipes of Various Diameters.

Formula 
$$Q = \frac{.7854}{144} d^2 v \times 60$$
.

Veloc'y		Actual Diameter of Pipe in Inches.											
Feet p. sec		2	8	4	5	6	8	10	12	16	20	24	
1	.327	1.81	2.95	5,24	8.18	11.78	20.94	32,73	47.12	83.77	130.9	188.5	
2	.655	2.62	5.89	10.47	16.36	23.56	41 89	65.45	94.25	167.5	261.8	877	
2	.982	3.93	8.84	15.7	24.5	35.3	62,8	98.2	141.4	251.3	892,7	565.5	
4	1.31	5,24	11.78	20.9	32.7	47.1	83.8	181	188	335	523	754	
5	1.64	6.54		26.2	41	59	104	163	235	419	654	942	
6	1.96		17.7	31.4	49.1	70.7	125	196	283	502 586 670	785	1131	
7	2.29	9.16	206	36.6	57.2	82.4	146	229	330	586	916	1819	
9	2.62		23.5	41.9	65.4	94	167	262	877	670	1047	1508	
ý	2.95	11.78		47	78	106	188	294 327	424	754	1178	1696	
10	3.27	13.1	29.4	52	83	118	209	327	471	888	1309	1885	
12	3.93	15.7	35.3	68	98	141	251	393	565	1005	1571	2565	
15	4.91	19.6	44.2	78	122	177	314	491	707	1256	1963	2627	
18	5.89	23.5	53	94	147	212	377	589	848	1508	2856	3393	
20	6.54	26.2	59	105	164	235	419	654	942	1675		8770	
24		31.4	71	125	196	283	502	785	1131	2010		4524	
25		32.7	78	131	204	294	528	818	1178	2094		4712	
28		36.6	82	146	229	330	586	916	1819	2846	3665	5278	
80						353					8927	5655	

In Hawksley's formula and its derivatives the numerical coefficients are constant. It is scarcely possible, however, that they can be accurate except within a limited range of conditions. In the case of water it is found that the coefficient of friction, on which the loss of head depends, varies with the length and diameter of the pipe, and with the velocity, as well as with the condition of the interior surface. In the case of air and other gases we have, in addition, the decrease in density and consequent increase in volume and in velocity due to the progressive loss of head from one end of the pipe to the other. to the other.

Clark states that according to the experiments of D'Aubisson and those of a Sardinian commission on the resistance of air through long conduits or pipes, the diminution of pressure is very nearly directly as the length, and as the square of the velocity and inversely as the diameter. The resistance is not varied by the density.

If these statements are correct, then the formulæ  $h=\frac{Lv^2}{cd}$  and  $h=\frac{Q^2L}{c'd^3}$ and their derivatives are correct in form, and they may be used when the numerical coefficients c and c' are obtained by experiment.

If we take the forms of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct, and let C be a variable of the above formulæ as correct.

the detailed the server forming as correct, and set C oe a variable coefficient, depending upon the length, diameter, and condition of surface of the pipe, and possibly also upon the velocity, the temperature and the density, to be determined by future experiments, then for h = head in inches of water, d = diameter in inches, L = length in feet, v = velocity in feet per second, and Q = quantity in cubic feet per second:

$$v = C_1 \sqrt{\frac{hd}{L}};$$
  $d = \frac{Lv^a}{C^2h};$   $h = \frac{Lv^a}{C^ad};$   $Q = .006454C_1 \sqrt{\frac{hd^a}{L}};$   $d = \sqrt[4]{\frac{33683Q^aL}{C^ah}};$   $h = \frac{33683Q^aL}{C^ad^a}.$ 

For difference or loss of pressure p in pounds per square inch,

$$\begin{split} h &= 27.71p & \sqrt{h} = 5.864 \ \sqrt{p}; \\ v &= 5.264 C \sqrt{\frac{pd}{L}}; & d &= \frac{Lv^3}{27.71C^2p}; & p &= \frac{Lv^2}{27.71C^2d}; \\ Q &= .02871 C \sqrt{\frac{pd^3}{L}}; & d &= \sqrt[4]{\frac{1213 \sqrt[3]{L}}{C^2p}}; & p &= \frac{1213 \sqrt[3]{L}}{C^3d^3}. \end{split}$$

(For other formulæ for flow of air, see Mine Ventilation,)

Loss of Pressure in Ounces per Square Inch.—B. F. Sturtevant Company uses the following formulæ:

$$p_1 = \frac{Lv^2}{25000d}\,; \quad v = \frac{\sqrt{25000dp_1}}{L}\,; \quad d = \frac{Lv^2}{25000p_1}\,;$$

in which  $p_1 = loss$  of pressure in ounces per square inch, v = velocity of air in feet per second, and L = length of pipe in feet. If p is taken in pounds per square inch, these formulæ reduce to

$$p = .0000025 \frac{Lv^2}{a}$$
;  $v = \frac{.00158 \sqrt{dp}}{L}$ ;  $d = \frac{.0000025 Lv^2}{p}$ .

These are deduced from the common formula (Weisbach's),  $p = f_{\overline{d}}^{l} \frac{v^{s}}{2a}$ , in which f = .0001608,

The following table is condensed from one given in the catalogue of B. F.

Sturtevant Company.

Loss of pressure in pipes 100 feet long, in ounces per square inch. For any other length, the loss is proportional to the length.

of Air,			-	Diar	neter o	of Pipe	in In	ches.				
city of per m	1	2	8	4	5	6	7	8	9	10	11	13
Velocity o		Loss of Pressure in Ounces.										
600 1200 1800 2400 3000 3600 4200 4800 6000	14.4	5. 7.2 9.8 12.8 20.	.183 .583 1.200 2.133 3.833 4.8 6.553 8.533 13.888	Dia	.080 .320 .720 1.280 2. 2.88 3.92 5.12 8.0	3.267 4.267 6.667 of Pipe	2.057 2.8 8.657 5.714 e in Ir	2.45 8.2 5.0 nches	1.6 2.178 2.844 4.444	 I	8.636	
	14	16	18	20	22 s of Pr	24	in ()	32	36	40	44	48
1											i	
600 1200	.029 .114	.026 .100	.022	.020	.018 .073	.017 .067	.014	.012	.011	.010	.009	.008 .033
1800	.257	.225	.200	.180	.164	. 156	.129	.112	.100	.090	.082	.075
2400 3600	1.029	.400 .900	.356 .800	.320 .720	.291	.267 .600	.239 .514	.200 .450	.178	.160 .360	.145	.133
4200	1.400	1.225	1.089	.980	.891	.817	.700	.612	.544	.490	.445	.408
4800 6000	1.829 2.857	1.600 2.500	1.422 2.222	1.280 2.000	1.164 1.818	1.067 1.667	.914 1.429	.800 1.250	.711 1.111	.640 1.000	.582	.583 .833

# Effect of Bends in Pipes. (Norwalk Iron Works Co.)

Radius of elbow, in diameter of pipe = 5 3 2 1½ 1½ 1 34 ½ Equivalent lgths. of straight pipe, diams 7.85 8.24 9.03 10.86 12.72 17.51 35.09 121.2

Compressed-air Transmission. (Frank Richards, Am. Mach., March 8, 1894)—The volume of free air transmitted may be assumed to be directly as the number of atmospheres to which the air is compressed. Thus, if the air transmitted be at 75 pounds gauge-pressure, or six atmospheres, the volume of free air will be six times the amount given in the table (page 486). It is generally considered that for economical transmission the velocity in main pipes should not exceed 20 feet per second. In the smaller distributing pipes the velocity should be decidedly less than this.

The loss of power in the transmission of compressed air in general is not a serious one, or at all to be compared with the losses of power in the opera-

The loss of power in the transmission of compressed air in general is not a serious one, or at all to be compared with the losses of power in the operation of compression and in the re-expansion or final application of the air. The formulas for loss by friction are all unsatisfactory. The statements of observed facts in this line are in a more or less chaotic state, and self-

evidently unreliable.

A statement of the friction of air flowing through a pipe involves at least all the following factors: Unit of time volume of air, pressure of air, diameter of pipe, length of pipe, and the difference of pressure at the ends of the pipe or the head required to maintain the flow. Neither of these factors can be allowed its independent and absolute value, but is subject to modifications in deference to its associates. The flow of air being assumed to be uniform at the entrance to the pipe, the volume and flow are not uniform after that. The air is constantly losing some of its pressure and its volume is constantly increasing. The velocity of flow is therefore also somewhat accelerated continually. This also modifies the use of the length of the pipe as a constant factor.

Then, besides the fluctuating values of these factors, there is the condition of the pipe itself. The actual diameter of the pipe, especially in the smaller sizes, is different from the nominal diameter. The pipe may be straight, or it may be crooked and have numerous elbows. Mr. Richards

considers one elbow as equivalent to a length of pipe.

Head or Additional Pressure in pounds per sq. in. required to deliver Air at 75 Pounds Gauge-pressure through Pipes of Various Sizes and Lengths. (Frank Richards.)

		1" P	IPE.					4" F	IPE.		
Cubic ft. free air per min.		Len	gth in	feet.		Cubic ft. free air per min.		Len	gth in	feet.	
Cublc free per	50	100	300	500	1,000	Cub fre	200	300	400	1,000	2,000
25 50 100 150	Loss .245 .961 3.925 8.829	of pre .49 1.962 7.85 17.66	1.47 5.586	2.45	sq. in. 4.9	500 750 1,000 1,250 1,500	Loss .16 .36 .64 1.	of pre .24 .54 .96 1.5 2.16	.4 .9 1.6 2.5 3.6	lbs. p. .8 1.8 3.2 5. 7.2	sq. in. 1.6 3.6 6.4 10. 14.4
25	.056	.112		.561	1.12			5" ]	PIPE.		
50 100 150 200	.224 .897 2 02 3.50	.449 1.79 3.94 7.18	1.35 5.88 12.11	2.24 8.97	4.49	500	.11	1,000	2,000	4,000	5,000
		136"				1,000 1,500	.44 .99	.881 1.98	1.76 3.96	3.52 7.92	4.4 9.9
25 50	.017	.034	103 .411	.171 .685	1.37	2,000 2,500	1.76 2.75	8.52	7.04	14.08	
100 150	.274 .616	.548 1.23	1.64 3.69	2.74 6.16	5.48 12.83			6" F	PIPE.		-
200	1.09	2.19	6.57	10.96	21.9		1,000	2,000	4,000	5,000	10,000
			PE.			1.000		<u> </u>		<del></del>	<u> </u>
50 100 150 200 250	.019 .076 .171 .804 .476	.038 .152 .314 .609	.114 .457 1.03 1.83 2.86	.19 .761 1.71 8 04 4.76	.38 1.52 3.44 6.09 9.53	1,000 1,500 2,000 2,500 3,000	.354 .799 1.417 2.22 3.18	.708 1.599 2.83 4.44 6.37	1.42 8.2 5.67 8.89 12.7	1.77 8.99 7.09 11.1 15.9	8.54 7.99 14.17
300	.685		4.11	6.85	13.72			8″ I	IPE.		
	200	21/4" 300	PIPE. 500	1,000	2,000		2,000	4,000	8,000	10,000	15,000
100 200 300 400 500	.067 .847 .781 1.39	.18 .521 1.17 2.08 3.25	.217 .868 1.95 3.47	.434 1.74 8.91 6.94	.87 8.47 7.81 18.89	2,000 2,500 3,000 4.000 5,000	.598 .985 1.25 2.39 3.74	1.19 1.87 2.49 4.79 7.48	2.39 3.74 4.99 9.58 14.97	2.99 4.68 6.24 11.97 18.71	4.48 7.02 9.36
500	2.17			10.85	21.7			10" I			
100 200 300 400 500	.0338 .133 .3 .533	.05 .2 .45 .8	.0833 .333 .75 1.33 2.08	.166 .666 1.5 2.66 4.16	.33 1.33 3 5.33 8.33	2,500 5,000 7,500 10,000	1.14 2.57	2.29 5.15 9.14 12"	1.14 4.57 10.29	1.43 5.71 12.86	8.56
- CANO	.000		Pipe.	7.10	0.00		0.000	4 000	0.000	10.000	Jan 000
250 500 750 1,000 1,250	.0832 .832 .748 1 328 2.08	.125 .499 1.12 1.99 8.12	.208 .832 1.87 8.33	1.66 3.75 6.66	8.82 7.49 13.8	2,500 5,000 7,500 10,000	.11 .44 .99 1.76	.22 .88 1.98 3.52	8,000 -44 1.76 3.96 7.05	.55 2.2 4.95 8.81	1.101 4.4 9.91 17.6

Although Mr. Richards does not give any formula with this table, an nspection of it shows that for any given diameter the loss of head is

taken to vary directly as the length and as the square of the quantity delivered, but for a given quantity and length the loss of head appears to vary inversely as some higher power of the diameter than the fifth, approximately the 5.5 power; or, in other words, that the coefficient of fric-

tion is variable. If we take the formula of the form  $Q' = c' \sqrt{\frac{pd^5}{L}}$ .

$$p = \frac{Q'^2L}{c'^2d^3}$$
, and solve for  $c' = \sqrt{\frac{\overline{Q'^2L}}{d^3p}}$ , in which  $Q' =$  cubic feet of free air

per minute, we find values of the coefficient as follows:

For diameter, inches 1 2 4 6 8 10 12 Value of 
$$c'=$$
 857 453 552 608 689 664 676

The following table is condensed from one given by F. A. Halsey in the catalogue of the Rand Drill Co.:

Diameter in inches.	Cul	oic fee	t of fr		compa throu						60 11	08.
al Dia e, in l	50	100	200	400	600	800	1000	1500	2000	3000	4000	3000
Nominal of Pipe,		Loss	of pre	ssure i		per so			or eac	eh 100	0 ft.	
1 11/4 11/2 2 21/2 3 4 5 6 8	10.40 2.68 1.22 .85 .14	4.89 1.41	5.64 2.30 .78 .20	9.20 3.14 .80	7.05 1.81 .59	3.22 1.04	5.02 1.68	8.66	6.50			
6 8 10 12 14		•••••		.20	.23	.41	.16	1.46 .87 .12	2.59 .65 .21	5.81	.84	4.08 1.80 .58

This table appears to follow more closely than does Richards' table the law of the formula  $p=\frac{Q^2L}{C^2d^3}$ , but the coefficients differ considerably from those of Richards. Solving for C', we obtain—

Comparing some of the losses of pressure in the two tables, we find-

Length, feet 1000	1000	1000	5000	5000	5000
Quantity, cu. ft 1000	1000	1000	4000	4000	4000
Diameter, inches 4	5	6	8	10	12
Loss, Richards 3.2	.881	.354	7.48	2.29	.88
" Halsey 5.02	1.63	.64	13.05	4.20	1 70

The two tables are not calculated for the same amount of compression, but the difference is not sufficient to account for the difference in the coefficients. If we multiply the coefficients derived from Halsey's table by 5/4, the ratio of the pressures 75 and 60 lbs., they become for a 2-inch pipe 589, and for a 12-inch pipe 531, against Richards's figures of 453 and 676 for the same pipes. To compare Richards's figures for loss of pressure with Halsey's, the former should be multiplied by 25/16. In the absence of experimental data no opinion can be formed as to which table is the more accurate, but either one is probably of sufficient accuracy for practical purposes.

Mr. Richards, in Am. Mach., Dec. 27, 1894, publishes a new formula, viz.:

$$p = \frac{V^3L}{10,000d^3a}; \quad V = \sqrt{\frac{10,000d^3ap}{L}}; \quad L = \frac{10,000d^3ap}{V^3}; \quad d^3a = \frac{V^3L}{10,000p};$$

in which V= actual volume of compressed air delivered, in cubic feet per minute (not the volume of free air, as in the other formulæ), L= length of pipe in feet, d= internal diameter of pipe in inches, p= head or additional pressure in pounds per square inch required to maintain the flow, and a is a coefficient varying with the diameter of the pipe. Its value for different nominal diameters of wrought-tron pipe is given by Mr. Richards as follows:

Diam. in.	Val. of a.	Diam. in.	Val. of a.	Diam. in.	Val. of a.	Diam. ir	.Val. of a
1	.85	234	.65	5	.93	12	1.26
11/4	.5	8 ~	.78	6	1.	16	1.84
134	.66	814	.79	18	1.125	20	1.4
2 ~	.56	4	.84	10	1.2	24	1.45

The values of a for the 1 and 1½ inch pipes appear inconsistent with the values for the other sizes, because the nominal diameters of these two sizes are relatively much less than their actual diameters, 1.38 and 1.61 inches, respectively

spectively.

The following values of the fifth power of d and of  $d^ba$  are given by Mr. Richards to facilitate calculations:

Fifth Po	wers of d.			Value	of dea.	
134"	8" 10" 12" 16"	7,776 82,768 100,000 248,832 1,048,576 3,200,000	1" 114" 114" 118" 2" 214" 33" 314"	1.525 5.03 18.08 63.47 177.4 413.2	5" 6" 10" 12" 16" 20"	7,776 86,864 120,000 813,528 1,405,091 4,480,000

In order to compare Mr. Richards' new formula for volume of compressed air transmitted with the formula  $Q'=c'\sqrt{\frac{pd^3}{L}}$ , in which Q is the volume of free air, = 5V if the air is compressed to 5 atmospheres, we have

$$Q' = 5V = 500 \sqrt{a} \times \sqrt{\frac{pd^b}{L}},$$

and from the values of a given by Mr. Richards we find values of c' as follows:

Measurement of the Velocity of Air in Pipes by an Anemometer.—Tests were made by B. Donkin, Jr. (Inst. Civil Engrs. 1892), to compare the velocity of air in pipes from 8 in, to 24 in, diam., as shown by an anemometer 34 in, diam. with the true velocity as measured by the time of descent of a gas-holder holding 1622 cubic feet. A table of the results with discussion is given in Eng's News. Dec. 22, 1892. In pipes from 8 in, to 20 in, diam. with air velocities of from 140 to 690 feet per minute the anemometer showed errors varying from 14.5% fast to 10% slow. With a 24-inch pipe and a velocity of 73 ft. per minute, the anemometer gave from 44 to 63 feet, or from 13.6 to 39.6% slow. The practical conclusion drawn from these experiments is that anemometers for the measurement of velocities of air in pipes of these diameters should be used with great caution. The percentage of error is not constant, and varies considerably with the diameter of the pipes and the speeds of air. The use of a baffle, consisting of a perforated plate, which tended to equalize the velocity in the centre and at the sides in some cases diminished the error.

The impossibility of measuring the true quantity of air by an anemometer held stationary in one position is shown by the following figures, given by Wm. Daniel (Proc. Inst. M. E., 1875), of the velocities of air found at different points in the cross-sections of two different airways in a mine.

#### DIFFERENCES OF ANEMOMETER READINGS IN AIRWAYS.

	8 ft. sq	uare.	
1712	1795	1859	1329
1622	1685	1782	1091
1477	1844	1524	1049
1262	1356	1293	1333

A	v	era	ge	14	69.

	5 × 8 ft.										
1170	1209	1288									
948	1104	1177									
1134	1049	1106									

Average 1132.

Equation of Pipes.—It is frequently desired to know what number of pipes of a given size are equal in carrying capacity to one pipe of a larger size. At the same velocity of flow the volume delivered by two pipes of different sizes is proportional to the squares of their diameters; thus, one 4-inch pipe will deliver the same volume as four 2-inch pipes. With the same head, however, the velocity is less in the smaller pipe, and the volume delivered varies about as the square root of the fifth power (i.e., as the 2.5 power). The following table has been calculated on this basis. The figures opposite the intersection of any two sizes is the number of the smaller-sized pipes required to equal one of the larger. Thus, one 4-inch pipe is equal to 5.72-inch pipes.

Diam.	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20	24
2 3 4 4 5 6 6 7 8 9 9 10 11 12 18 19 20 22 24 48 48 48 56 0	5.7 15.6 32 55.9 88.2 130 248 316 4499 609 733 787 	2.8 5.7 9.9 15.6 22.9 32 43.	2.1 3.6 5 7 8 3 11.7 15.6 20.8 25.7 32 39.1 47 55.9 65.7 76.4 88.2 101	2.8 4.1 7.6 9.9 9.9 15.6 19.2 27.2 32.2 37.2 48.1 55.9 88.2 108 130 154 3357	1.6 2.3 3.2 4.3 7.2 8.9 10.9 13.1 15.6 22.3 24.6 61.7 74.2 88.2 1205	1.5 2.1 2.8 3.6 4.6 5.7 7.1 8.3 9.9 11.7 13.5 15.6 17.8 20.8 25.7 39.1 47.9 88.2	1.4 1.9 2.4 3.1 3.8 4.7 5.7 7.9 10.6 12.1 13.8 17.5 21.8 26.6 32	1.3 1.7 2.2 2.8 3.4 4.1 4.8 5.7 6.6 7.6 7.8 9.9 12.5 15.6 122.9 27.2	1.7 2.1 2.5 3.0 8.6 4.2 5.7 6.5 7.4 9.3 11.6 14.2 17.1 20.3	2 8 3.2 3.8 4.3 5.7 7.2 8.9 10.9 13.1 15.6	1 1.2 1.5 1.7 2.1 2.4 2.8 3.2 8.6 4.6 5.7 7.1 8.3 9.9	1 1.2 1.4 1.6 1.9 2.1 2.4 3.1 3.8 4.7 5.7 10.6	1 1.2 1.3 1.5 1.7 2.2 2.8 3.4	1 1.1 1.8 1.7 2.1 2.5 3.6 5.7 8.8	1 1.8 1.6 1.9 2.8 2.8 4.3	1.2
54	1			499 670 787	286 383 499	243	165 215	118 154	88.2	67.8 88.2	48 55.9	22.2	20.9	15.6 20.3	12	7.6 9.9

# Loss of Pressure in Compressed Air Pipe-main, at St. Gothard Tunnel.

(E. Stockalper.)

				٧-		- Luipo	,				
	ster.	sond qui- e at	t air	_=	flow- ond.	_÷	Obse	rved l	Pressur	es.	
Experiment.	Air Main Diamet	Volume per sec of free air. or e valent volum atmospheric p	Volume per sec of compressec at mean densi	Mean density o compressed a (Water = 1.)	Weight of air flow ing per second	Mean velocity in feet per second	Pressure at beginning of pipe.	Pressure at end of pipe.	Loss Press		Value of $c'$ in for- mula p = Q'L $c'^2d^5$
No. 1 1 2 1 3 1	in. 7.87 5.91 7.87 5.91 7.87 5.91	eu.ft.   83.056     22.002     18.364	cu. ft. 6,594 7,063 5,509 5,863 5,262 5,580	den. .00650 .00603 .00514 .00482 .00449		feet. 19.32 37.14 16.30 15.58 29.84	at. 5.60 5.24 4.35 4.13 3.84 8.65	at. 5.24 5.00 4.18  3.65 3.54	lbs. per sq.in 5.292 3.528 8.234 2.793 1.617	5.4 4.6 5.1  5.0 3.0	610 515 519  466 422

The length of the pipe 7.87 in diameter was 15,092 ft., and of the smaller pipe 1712.6 ft. The mean temperature of the air in the large pipe was 70° F. and in the small pipe 80° F.

### WIND.

Force of the Wind.—Smeaton in 1759 published a table of the velocity and pressure of wind, as follows:

VELOCITY AND FORCE OF WIND, IN POUNDS PER SQUARE INCH.

	· BLA	DITT AND TORON OF THIS		CUMDS		CHILD THOIL.
Miles per hour.	Feet per second.	Common Appellation of the Force of Wind.	Miles per Hour.	Feet per second.	sq. ft. pounds.	Common Appella- tion of the Force of Wind.
1 9	1.47	0.005 Hardly percepti-	50		1.55 1.968 3.075	Very brisk.
2 3 4	4.4 5.87	0.044 ( Just perceptible. 0.079 )	30 35	44.01 51.34	4.429 6.027	High wind.
4 5 6 7 8 9	7.33 8.8 10.25	0.177 wind. 0.241	40 45 50	66.01 73.35 1		Very high storm.
8 9 10 12	11.75 13.2 14.67 17.6	0.400 0.492 Pleasant brisk	55 60 66 70			Great Storm.
14 15	20.5 22.00	0.964 gaie.	75 80	110. 2 117.36 3	7.7	Hurricane.
16	23.45	1.25	100	146.67 4	9.2	Immense hurri-

The pressures per square foot in the above table correspond to the formula P=0.005.7°, in which V is the velocity in miles per hour. Englewise Feb. 9, 1893, says that the formula was never well established, and has floated chiefly on Smeaton's name and for lack of a better. It was put forward only for surfaces for use in windmill practice. The trend of modern evidence is that it is approximately correct only for such surfaces, and that for large solid bodies it often gives greatly too large results. Observations by others are thus compared with Smeaton's formulas

Old Smeaton formula $P =$	
As determined by Prof. Martin $P =$	
" Whipple and Dines $P =$	.0029 V2

At 60 miles per hour these formulas give for the pressure per square foot, 18, 14.4 and 10.44 lbs., respectively, the pressure varying by all of them as the square of the velocity. Lieut. Crosby's experiments  $(Eng^iq, \text{June 13}, \text{BSO})$ , claiming to prove that P=fV instead of  $P=fV^2$ , are discredited. A. R. Wolff (The Windmill as a Prime Mover, p. 9) gives as the theoretical pressure per sq. ft. of surface,  $P = \frac{dQv}{g}$ , in which d = density of air in pounds

per cu. ft. =  $\frac{.018748(p+P)}{4}$ ; p being the barometric pressure per square foot at any level, and temperature of 32° F., t any absolute temperature, Q = volume of air carried along per square foot in one second, v = velocityof the wind in feet per sec., g=32.16. Since Q=v cu. ft. per sec.,  $P=\frac{dv^2}{dv^2}$ . Multiplying this by a coefficient 0.93 found by experiment, and substituting

 $0.017431 \times p$ the above value of d, he obtains  $P = \frac{1}{2}$ and when  $t \times 32.16$ 

= 2116.5 lbs. per sq ft. or average atmospheric pressure at the sea-level, 86.8929 -, an expression in which the pressure is shown to vary  $t \times 32.16$ - 0 18743

with the temperature; and he gives a table showing the relation between velocity and pressure for temperatures from 0° to 100° F., and velocities from 1 to 80 miles per hour. For a temperature of 45° F. the pressures agree with those in Smeaton's table, for 0° F. they are about 10 per cent greater, and for 100° 10 per cent less. Prof. H. Allen Hazen, Eng'g News, July 5, 1890, says that experiments with whirling arms, by exposing plates to direct wind, and on locomotives with velocities running up to 40 miles per hour, have invariably shown the resistance to vary with  $V^2$ . In the formula  $P = .005SV^2$ , in which P = pressure in pounds, S = surface in square feet, V = velocity in miles per hour, the doubtful question is that regarding the accuracy of the first two factors in the second member of this equation. The first factor has been variously determined from .003 to .005 [it has been determined as low as .0044.—Ed. Engly News].

The second factor has been found in some experiments with very short

whirling arms and low velocities to vary with the perimeter of the plate, but this entirely di-appears with longer arms or straight line motion, and the only question now to be determined is the value of the coefficient. haps some of the best experiments for determining this value were tried in France in 1886 by carrying flat boards on trains. The resulting formula in

this case was, for 44.5 miles per hour,  $p=.00535 SV^2$ .

Mr. Crosby's whirling experiments were made with an arm 5.5 ft. long. It is certain that most serious effects from centrifugal action would be set up by using such a short arm, and nothing satisfactory can be learned with

arms less than 20 or 30 ft. long at velocities above 5 miles per hour.

Prof. Kernot, of Melbourne (Engineering Record, Feb. 20, 1894), states that

experiments at the Forth Bridge showed that the average pressure on surfaces as large as railway carriages, houses, or bridges never exceeded two thirds of that upon small surfaces of one or two square feet, such as have been used at observatories, and also that an inertia effect, which is frequently overlooked, may cause some forms of anemometer to give false results enormously exceeding the correct indication. Experiments of Mr. O. T. Crosby showed that the pressure varied directly as the velocity, whereas all the early investigators, from the time of Smeaton onwards, made it vary as the square of the velo ity. Experiments made by Prof. Kernot at speeds varying from 2 to 15 miles per hour agreed with the earlier authorities, and tunded to negative Crosby's results. The pressure upon one side of a cube, or of a block proportioned like an ordinary carriage, was found to be 9 of that upon a thin plate of the same area. The same result was obtained for a square tower. A square pyramid, whose height was three times its base, experienced .8 of the pressure upon a thin plate equal to one of its sides, but if an angle was turned to the wind the pressure was increased by fully 20%. A bridge consisting of two plate-girders connected by a deck at the top was found to experience 9 of the pressure on a thin plate equal in size to one girder, when the distance between the girders was equal to their depth, and this was increased by one fifth when the distance between the girders was

double the depth. A lattice-work in which the area of the openings was 55% of the whole area experienced a pressure of 80% of that upon a plate of the same area. The pressure upon cylinders and cones was proved to be equal to half that upon the diametral planes, and that upon an octagonal prism to be 20% greater than upon the circumscribing cylinder. A sphere was subject to a pressure of .36 of that upon a thin circular plate of equal diameter. A hemispherical cup gave the same result as the sphere; when its convexity was turned to the wind the pressure was 1.15 of that on a flat plate of equal diameter. When a plaue surface parallel to the direction of the wind was brought nearly into contact with a cylinder or sphere, the pressure on the latter bodies was augmented by about 20%, owing to the lateral escape of the air being checked. Thus it is possible for the security of a tower or chimney to be impaired by the erection of a building nearly jouching it on one side.

to be impaired by the erection of a building nearly lonching it on one side.

Pressures of Wind Engistered in Storms.—Mr. Frizell has
examined the published records of Greenwich Observatory from 1849 to 1869,
and reports that the highest pressure of wind he finds recorded is 41 lbs,
per sq. ft., and there are numerous instances in which it was between 30 and
40 lbs. per sq. ft. Prof. Henry says that on Mount Washington, N. H., a velocity of 150 miles per hour has been observed, and at New York City 60
miles an hour, and that the highest winds observed in 1870 were of 72 and 63

miles per hour, respectively.

Lieut. Dunwoody, U.S. A., says, in substance, that the New England coast is exposed to storms which produce a pressure of 50 lbs. per sq. ft. Engineering News, Aug. 20, 1891.

#### WINDMILLS.

**Power and Efficiency of Windmills.**—Rankine, S. E., p. 215, gives the following: Let Q = volume of a sail, and the sail, or part of a sail, in cubic feet per second,  $v = \text{velocity of the wind in feet per second, } s = \text{sectional area of the cylinder, or annular cylinder of wind, through which the sail, or part of the sail, sweps in one revolution, <math>c = \mathbf{a}$  coefficient to be found by experience; then Q = cvs. Rankine, from experimental data given by Smeaton, and taking c to include an allowance for friction, gives for a wheel with four sails, proportioned in the best manner, c = 0.75. Let  $A = \text{weather angle of the sail at any distance from the axis, i.e., the angle the portion of the sail considered makes with its plane of revolution. This angle gradually diminishes from the inner end of the sail to the tip; <math>u = \text{the velocity of the same portion of the sail, and } E = \text{the efficiency}$ . The efficiency is the ratio of the useful work performed to whole energy of the stream of wind acting on the surface s of the wheel, which energy is  $\frac{Dsv^2}{2g}$ , D being the weight of a cubic foot of air. Rankine's formula for efficiency is

$$E = \frac{Ru}{\frac{Dsv^3}{2a}} = c \left\{ \frac{u}{v} \sin 2A - \frac{u^3}{v^3} \left( 1 - \cos 2A + f \right) - f \right\},$$

in which c=0.75 and f is a coefficient of friction found from Smeaton's data = 0.016. Rankine gives the following from Smeaton's data:

$$A =$$
 weather-angle...= 7°13°19° $V + v =$  ratio of speed of greatest efficiency, for a given weatherangle, to that of the wind...= 2.631.861.41 $E =$  efficiency...= 0.240.290.31

Rankine gives the following as the best values for the angle of weather at different distances from the axis:

But Wolff (p. 125) shows that Smeaton did not term these the best angles, but simply says they "answer as well as any," possibly any that were in existence in his time. Wolff says that they "cannot in the nature of things be the most desirable angles." Mathematical considerations, he says, conclusively show that the angle of impulse depends on the relative velocity of each point of the sail and the wind, the angle growing larger as the ratio becomes greater. Smeaton's angles do not fulfil this condition. Wolff developments

ops a theoretical formula for the best angle of weather, and from it calculates a table for different relative velocities of the blades (at a distance of one seventh of the total length from the centre of the shaft) and the wind, from which the following is condensed:

Ratio of the	Distanc	e from tl	ne axis of	the wh	eel in sev	enths of	radius
Speed of Blade at 1/7 of Radius to Velocity of Wind.	1	2	8	4	5	6	7
wina.			Best an	gles of v	eather.	•	
0.10	42° 9′		36° 39′	840 6	81° 43′	29° 81′	27° 30′
0.15 0.20	40 44 39 21	36 39 84 6	82 58 29 31	29 81 25 40	26 84 22 80	24 0 19 54	21 48 17 46
0.25	37 59	36 43 29 31	26 34	22 80	19 20	16 51 14 32	14 52
0.30 0.35	36 39 35 21	29 31 27 30	24 0 21 48	19 54 17 46	16 51 14 52	14 82 12 44	12 44 11 6
0.40	34 6	25 40	19 54	16 0	13 17	11 19	9 50
0.45 0.50	32 58 31 48	24 0 22 30	18 16 16 51	14 32 13 17	11 59 10 54	10 10 9 13	8 48

The effective power of a windmill, as Smeaton ascertained by experiment, varies as s, the sectional area of the acting stream of wind; that is, for simi-

lar wheels, as the squares of the radii.

The value 0.75, assigned to the multiplier c in the formula Q = cvs, is founded on the fact, ascertained by Smeaton, that the effective power of a windmill with sails of the best form, and about 151/2 ft. radius, with a breeze on that fact, the mean angle of weather is made = 13°. The efficiency of this wheel, according to the formula and table given, is 0.29, at its best speed, when the tips of the sails move at a velocity of 2.6 times that of the wind.

Merivale (Notes and Formulæ for Mining Students), using Smeaton's coefficient of efficiency, 0.29, gives the following:

U = units of work in foot-lbs. per sec.; W = weight, in pounds, of the cylinder of wind passing the sails eachsecond, the diameter of the cylinder being equal to the diameter of the sails;

V = velocity of wind in feet per second;

H.P. = effective horse-power;  $WV^2$  0.29  $WV^2$ 

 $\frac{WV^2}{44}; \quad \text{H.P.} = \frac{0.40}{64 \times 550}.$ 

A. R. Wolff, in an article in the American Engineer, gives the following (see also his treatise on Windmills):

Let c =velocity of wind in feet per second; n = number of revolutions of the windmill per minute;

 $b_0, b_1, b_2, b_2$  be the breadth of the sail or blade at distances  $l_0, l_1, l_2, l_3$ 

 $l_0$ , and  $l_0$ , respectively, from the axis of the shaft;  $l_0 =$ distance from axis of shaft to beginning of sail or blade proper; l = distance from axis of shaft to extremity of sail proper;

 $v_0, v_1, v_2, v_3, v_x$  = the velocity of the sail in feet per second at dis-

tances  $l_0$ ,  $l_1$ ,  $l_2$ ,  $l_1$  respectively, from the axis of the shaft;  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_{2i}$  = the angles of impulse for maximum effect at dis-

tances  $l_0, l_1, l_2, l_3, l$  respectively from the axis of the shaft; a = the angle of impulse when the sails or blocks are plane surfaces, so that there is but one angle to be considered;

N = number of sails or blades of windmill;

d = density of wind (weight of a cubic foot of air at average temperature and barometric pressure where mill is erected);

W = weight of wind-wheel in pounds; f = coefficient of friction of shaft and bearings; D = diameter of bearing of windmill in feet.

The effective horse-power of a windmill with plane sails will equal

$$\frac{(l-l_0)Kc^2dN}{550g} \times \text{mean of} \left(v_0(\sin\alpha - \frac{v_0}{c}\cos\alpha)b_0\cos\alpha\right)$$
$$v_x\left(\sin\alpha - \frac{v_x}{c}\cos\alpha\right)b_x\cos\alpha\right) - \frac{fW \times .05236nD}{550}.$$

The effective horse-power of a windmill of shape of sail for maximum effect equals

$$\begin{split} \frac{N(l-l_0)Kdc^3}{2200g} \times \text{mean of} \left( \frac{2\sin^3 a_0 - 1}{\sin^2 a_0} b_0, \quad \frac{2\sin^3 a_1 - 1}{\sin^3 a_1} b_1 \right. \dots \\ \cdot \dots \cdot \frac{2\sin^3 a_x - 1}{\sin_3 a_x} b_x \right) - \frac{fW \times .05236nD}{550}. \end{split}$$

The mean value of quantities in brackets is to be found according to Simpson's rule. Dividing *l* into 7 parts, finding the angles and breadths corresponding to these divisions by substituting them in quantities within brackets will be found satisfactory. Comparison of these formulæ with the only fairly reliable experiments in windmills (Coulomb's) showed a close agreement of results.

Approximate formulæ of simpler form for windmills of present construction can be based upon the above, substituting actual average values for a,

tion can be based upon the above, substituting actual average values for a, c, d, and e, but since improvement in the present angles is possible, it is better to give the formulæ in their general and accurate form.

Wolff gives the following table based on the practice of an American manufacturer. Since its preparation, he says, over 1500 windmills have been sold on its guaranty (1885), and in all cases the results obtained did not vary sufficiently from those presented to cause any complaint. The actual results obtained are in close agreement with those obtained by theoretical analysis of the impulse of wind upon windmill blades.

# Capacity of the Windmill.

Designation of Mill.	of Wind, in per hour.	ons of Wheel minute.	Gallor	ns of W	ater ra n Elev			te to	quivalent Actual Use- ful Horse-power de- veloped.	No. of Hours during which sult will be ob-
Designat	Velocity	Revolutions per mi	25 feet.	50 feet.	75 feet.	100 feet,	150 feet.	200 feet.	Equivalent ful Horse veloped.	Average per Day this Res tained.
wheel 816 ft. 10 " 12 " 14 "	16 16 16 16 16	70 to 75 60 to 65 55 to 60 50 to 55 45 to 50	33,941 45,139	22,569	6.638 11.851 15.304 19.542	4.750 8.485 11.246 16.150		4 998 8,075	0.04 0.12 0.21 0.28 0.41	6 8 8 8
12 " 14 " 16 " 18 " 20 "	16 16 16	40 to 45 35 to 40 30 to 35	97.682 124.950	52.165	32 513 40.800	24.421	17,485 19,284 37,849	12,211 15,988	0.61 0.78	8 8

These windmills are made in regular sizes, as high as sixty feet diameter of

These windmills are made in regular sizes, as high as sixty feet diameter of wheel; but the experience with the larger class of mills is too limited to enable the presentation of precise data as to their performance. If the wind can be relied upon in exceptional localities to average a higher velocity for eight hours a day than that stated in the above table, the performance or horse-power of the mill will be increased, and can be obtained by multiplying the figures in the table by the ratio of the cube of the higher average velocity of wind to the cube of the velocity above recorded. He also gives the following table showing the economy of the windmill. All the items of expense, including both interest and repairs, are reduced to the hour by dividing the costs per annum by  $385 \times 8 = 3920$ ; the interest,

etc., for the twenty-four hours being charged to the eight hours of actual work. By multiplying the figures in the 5th column by 584, the first cost of the windmill, in dollars, is obtained.

Economy of the Windmill.

			raised r.	tual Useful developed.	of Inring tity	Expense of Developed	Actual U	sefu , per	l Po	wer	ber
De	signa( of Mil	tion l.	Gallons of Water r 25 ft. per hour	Equivalent Actual Horse-power deve	Average Number Hours per Day d which this Quan will be raised.	For Interest on First Cost (First Cost, including Cost of Wind- mill, Pump. and Tower, 5% per annum).	For Repairs and Depreciation (5g of First Cost per annum).	For Attendance.	For Oil.	Total.	Expense per Horse power, in cents, hour.
814	ft. w	heel	370	0.04	8	0.25	0.25	0.06	0.04	0.60	15.0
10′		**	1151	0.12	8	0.30	0.30	0.06		0.70	
12	66	**	2036	0.21	8	0.36	0.86		0.04		
14	**	66	2708	0.28	8	0.75	0.75		0.07		
16	44	44	3876	0.41	8	1.15	1.15		0.07		
18	44	**	5861	0.61	8	1,35	1.35		0.07		
20	**	**	497	0.79	8	1.70	1.70		0.10		
25	**	**	12743	1.34	8	2.05	2.05	0.06			

Lieut. I. N. Lewis (Eng'g Mag., Dec. 1894) gives a table of results of experiments with wooden wheels, from which the following is taken:

	Velocity of Wind, miles per hour.											
Diameter of wheel, Feet.	8	10	12	16	20	25	30					
reet.		Actua	l Useful I	lorse-pow	er develor	ed.						
12	0	16	14	116	1 21⁄4	126	2					
16 20 25 80	78 114	11/4 13/4	3 8	879 41⁄6	4 6	514	10					
80	2	3	4	51/6	7	9	12					

The wheels were tested by driving a differentially wound dynamo. The "useful horse-power" was measured by a voltmeter and ammeter, allowing 500 watts per horse-power. Details of the experiments, including the means used for obtaining the velocity of the wind, are not given. The results are so far in excess of the capacity claimed by responsible manufacturers that they should not be given credence until established by further

experiments.

A recent article on windmills in the Iron Age contains the following: According to observations of the United States Signal Service, the average velocity of the wind within the range of its record is 9 miles per hour for the year along the North Atlantic border and Northwestern States, 10 miles on the plains of the West, and 6 miles in the Gulf States.

The horse-powers of windmills of the best construction are proportional to the squares of their diameters and inversely as their velocities; for example, a 10-ft. mill in a 16-mile breeze will develop 0.15 horse-power at 65 revolutions per minute; and with the same breeze

A 20-ft. mill, 40 revolutions, 1 horse-power.

A 25-ft. mill, 35 revolutions, 13/ horse-power, A 30-ft. mill, 28 revolutions, 34/2 horse-power, A 40-ft. mill, 22 revolutions, 7/4 horse-power, A 50-ft. mill, 18 revolutions, 7/2 horse-power.

The increase in power from increase in velocity of the wind is equal to the square of its proportional velocity; as for example, the 25-ft. mill rated above for a 16-mile wind will, with a 32-mile wind, have its horse-power increased to  $4 \times 1\% = 7$  horse-power, a 40-ft, mill in a 32-mile wind will run up to 30 horse-power, and a 50-ft, mill to 48 horse-power, with a small de duction for increased friction of air on the wheel and the machinery.

The modern mill of medium and large size will run and produce work in a

4-mile breeze, becoming very efficient in an 8 to 16-mile breeze, and increase

its power with safety to the running gear up to a gale of 45 miles per hour. Prof. Thurston, in an article on modern uses of the windmill, Engineering Magazine, Feb. 1893, says: The best mills cost from about \$600 for the 10-ft. wheel of ½ horse-power to \$1200 for the 25-ft. wheel of ½ horse-power or less. In the estimates a working-day of 8 hours is assumed; but the machine, when used for pumping, its most common application, may actually do its work 24 hours a day for days, weeks, and even months together, whenever the wind is "stiff" enough to turn it. It costs, for work done in situations in which its irregularity of action is no objection, only one half or one third as much as steam, hot-air, and gas engines of similar power. At Faversham, it is said, a 15-horse-power mill raises 2,000,000 gallons a month from a depth of 100 ft., saving 10 tons of coal a month, which would otherwise be expended in doing the work by steam.

Electric storage and lighting from the power of a windmill has been tested Electric storage and lighting from the power of a windmill has been tested on a large scale for several years by Charles F. Brush, at Cleveland, Ohio. In 1887 he erected on the grounds of his dwelling a windmill 56 ft. in diameter, that operates with ordinary wind a dynamo at 500 revolutions per minute, with an output of 12,000 ampères—16 electric horse-power—charging a storage system that gives a constant lighting capacity of 100 16 to 20 candle-power lamps. The current from the dynamo is automatically regulated to commence charging at 330 revolutions and 70 volts, and cutting the circuit at 75 volts. Thus, by its 24 hours' work, the storage system of 408 calls in 12 persilla series, each cell by the presile series each cell by the proposed to the control of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of th cells in 12 parallel series, each cell having a capacity of 100 ampère hours, is kept in constant readiness for all the requirements of the establishment, it being fitted up with 350 incandescent lamps, about 100 being in use each evening. The plant runs at a mere nominal expense for oil, repairs, and attention. (For a fuller description of this plant, and of a more recent one at Marblehead Neck, Mass., see Lieut. Lewis's paper in Engineering Magazine, Dec. 1894, p. 475.)

#### COMPRESSED AIR.

Heating of Air by Compression.—Kimball, in his treatise on Physical Properties of Gases, says: When air is compressed, all the work which is done in the compression is converted into heat, and shows itself in the rise in temperature of the compressed gas. As the gas becomes hotter it is compressed with more difficulty; so in practice many devices are employed to carry off the heat as fast as it is developed, and keep the temperature down. But it is not possible in any way to totally remove this difficulty. But, it may be objected, if all the work done in compression is converted into heat, and if this heat is got rid of as soon as possible, then the work may be virtually thrown away, and the compressed air can have no more energy than it had before compression. It strue that the compressed gas has no more energy than the gas had before compression, if its temperature is no higher, but the advantage of the compression lies in bringing its energy into more avail-

The total energy of the compressed and uncompressed gas is the same at the same temperature, but the available energy is much greater in the former. The rise in temperature due to compression is so great that if a mass of air at 32° F. is compressed to one fourth its original volume, its temperature will be raised 376° F., if no heat is allowed to escape.

When the compressed air is used in driving a rock-drill, or any other piece

of machinery, it gives up energy equal in amount to the work it does, and its temperature is accordingly greatly reduced.

Causes of Loss of Energy in Use of Compressed Air.
(Zahner, on Transmission of Power by Compressed Air.)—1. The compression of air always develops heat, and as the compressed air always cools down to the temperature of the surrounding atmosphere before it is used, the mechanical equivalent of this dissipated heat is work lost.

2. The heat of compression increases the volume of the air, and hence it is necessary to carry the air to a higher pressure in the compressor in order that we may finally have a given volume of air at a given pressure, and at the temperature of the surrounding atmosphere. The work spent in effecting this excess of pressure is work lost.

3. The great cold which results when air expands against a resistance forbids expansive working, which is equivalent to saying, forbids the realization of a high degree of efficiency in the use of compressed air.

4. Friction of the air in the pipes, leakage, dead spaces, the resistance of fered by the valves, insufficiency of valve-area, inferior workmanship, and slovenly attendance, are all more or less serious causes of loss of power.

slovenly attendance, are all more or less serious causes of loss of power.

The first cause of loss of work, namely, the heat developed by compression, is entirely unavoidable. The whole of the mechanical energy which the compressor-piston spends upon the air is converted into heat. This heat is dissipated by conduction and radiation, and its mechanical equivalent is work lost. The compressed air, having again reached thermal equilibrium with the surrounding atmosphere, expands and does work in virtue of its intrinsic energy.

The intrinsic energy of a fluid is the energy which it is capable of exerting against a piston in changing from a given state as to temperature and volume, to a total privation of heat and indefinite expansion.

Volumes, Mean Pressures per Stroke, Temperatures, etc., in the Operation of Air-compression from I Atmosphere and 60° Fahr. (F. Richards, Am. Mach., March 30, 1898.)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gauge-pressure.	Atmospheres.	ω Volume with Air at Constant Temp.	Volume with Air not cooled.	Mean Pressure per Stroke; Air Con- stant Temp.	Mean Pressure per Stroke; Air not cooled.	Temp. of Air; not	- Gauge-pressure.	Atmospheres.	α Volume with Air at Constant Temp.	Volume with Air not cooled.	Mean Pressure per Stroke; Air Con- stant Temp.	Mean Pressure per Stroke; Air not cooled.	Temp. of Air; not cooled.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1-										_			432
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111	ngo!	กอล้อ	05				90	0.442	1474	201	00 16	90.04	447
411.272, 78611.84 3.53 3.67 98 100 7.802, 12811.232 30.21 41.6 51.34 7.462.81 4.3 4 5 106 105 8.142, 1288, 2254 30.81 42.78 101.68 .5952 .69 7.62 8.27 145 110 8.483 .1178 .2189 31.39 48.91 152.02 .495 .606 10.33 11.51 178 115 8 823 .1133 .2129 31.98 44.91 252 .7 .3703 .494 14.59 17.01 .234 129 9.503 .1091 .2073 32.54 46.04 252 .7 .3703 .494 14.59 17.01 .234 125 9.503 .1092 .2073 32.54 46.04 252 .7 .3703 .494 14.59 17.01 .234 125 9.503 .1052 .2020 33.07 47.06 30 3.04 3289 .4588 16.34 19.4 252 130 9.843 .1015 .1909 33.57 48.1 35 3.381 .2957 .42 17.92 21.6 281 135 10.183 .0981 .1922 34.05 49.1 40 3.721 .2687 .393 19.32 23.66 302 140 10.523 .095 .1878 34.57 50.02 40 40 1.2272 .35 21.69 .27.39 339 150 11.204 .0892 .1796 .35 48 51.89 55 4.741 .2109 .331 22.66 29.11 357 160 11.98 .0841 .1722 .36.29 53.65 50 5.05 .081 .1968 .1344 .23.78 30.75 375 170 12.56 .0766 .1057 37.2 55.59	9 1	138	. 8000	01	1 97	1 01	60 4	60	7 100	1404		98 80	90 10	
411.272, 78611.84 3.53 3.67 98 100 7.802, 12811.232 30.21 41.6 51.34 7.462.81 4.3 4 5 106 105 8.142, 1288, 2254 30.81 42.78 101.68 .5952 .69 7.62 8.27 145 110 8.483 .1178 .2189 31.39 48.91 152.02 .495 .606 10.33 11.51 178 115 8 823 .1133 .2129 31.98 44.91 252 .7 .3703 .494 14.59 17.01 .234 129 9.503 .1091 .2073 32.54 46.04 252 .7 .3703 .494 14.59 17.01 .234 125 9.503 .1092 .2073 32.54 46.04 252 .7 .3703 .494 14.59 17.01 .234 125 9.503 .1052 .2020 33.07 47.06 30 3.04 3289 .4588 16.34 19.4 252 130 9.843 .1015 .1909 33.57 48.1 35 3.381 .2957 .42 17.92 21.6 281 135 10.183 .0981 .1922 34.05 49.1 40 3.721 .2687 .393 19.32 23.66 302 140 10.523 .095 .1878 34.57 50.02 40 40 1.2272 .35 21.69 .27.39 339 150 11.204 .0892 .1796 .35 48 51.89 55 4.741 .2109 .331 22.66 29.11 357 160 11.98 .0841 .1722 .36.29 53.65 50 5.05 .081 .1968 .1344 .23.78 30.75 375 170 12.56 .0766 .1057 37.2 55.59	3 1	204	8305	876	9 70	9 8	88 0		7 469	194		90.65		472
511.34 .7462 .81	4 1	272	7861		3 53	3 67	98	100	7 802	1981		30.21	41 6	485
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1	.34	7462		4.3	4.5	106	105	8 142	1228		30.81	42 78	496
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	.68			7.62	8.27	145		8.483	1178			48.91	507
202 2.36	15 2	.02				11.51			8 823	.1133	.2129	31.98		
25 2. 7 3703 4.94 14.58 17.01 234 125 9.503 1052 2020 33.07 47.06 303.04 3289 4588 16.34 19.4 252 130 9.843 1015 1909 33.57 48.1 35 3.381 2957 42 17.92 21.6 281 135 10.183 0981 1.922 34.05 49.1 40 3.721 2867 393 19.32 23.66 302 140 10.523 0981 11.922 34.05 49.1 45 1.061 2.462 37 20.57 25.59 321 140 10.523 098 1.878 35 7 85.09 51. 50 4.401 .2272 35 21.69 27.39 339 150 11.204 0.892 17.96 35.48 51.89 55 4.741 .2109 .331 22.66 29.11 357 160 11.98 0.841 1.722 36.29 53.65 05.08 1.988 1.989 1.988 1.988 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.989 1.9	20 2	.36	.4237									32.54		
303 .04 3289 .4588 16 .34 19 .4 252 130 9 .848 .1015 .1969 38 .57 48 .1 35 3 .381 .285 .285 .1 .285 .7 48 .1 135 10 .183 .0961 .1922 34 .05 49 .1 40 3 .721 .2687 .398 19 .32 23 .66 302 140 10 .523 .095 .1878 34 .57 50 .02 45 1 .061 .2462 .37 20 .57 25 .59 321 140 10 .523 .095 .1878 34 .57 50 .02 145 10 .864 .0821 .1857 .85 .09 51 .50 4 .401 .2272 .35 21 .69 27 .39 339 150 11 .204 .0892 .1793 .35 48 51 .89 55 4 .741 .2109 .331 22 .76 29 .11 357 160 11 .98 .0841 .1722 36 .29 53 .65 60 50 .881 .1968 .3144 23 .78 30 .75 375 170 12 .56 .0786 .1057 37 .2 55 58	25 2.	.7		.494	14.59	17.01	234	125	9.503	.1052		33.07	47.06	540
4013.721,2887,393 19.32,23.66 902 140.10.523,095 1.1878 34.57 50.02 145.10.61,2462,37 20.57 25.59 321 145.10.864,0921,1837,85.09 51. 1504.401,2272,35 21.69.27.39 339 150.11.204,0892,1796,35.48 51.89 554.741,2109,331 22.76.29,11 357 160.11.98 ,0841,1722,36.29 53.65 (05.081,1968,3144,23.78)30,75 375 17012.56 0.0961,1657,37.2 55.39	30 3.	.04			16.34	19.4	252	130		.1015		33,57	48.1	550
45   4.061   .2462   .87   20.57   25.59   321   145 10.864   .0921   1.837   85.09   51.   504   .401   .2272   .35   21.69   27.89   339   150 11.204   .0892   .1796   35.48   51.89   55   4.741   .2109   .331   22.76   29.11   357   160 11.88   .0841   .1722   36.29   53.65   605.081   .1968   .3144   23.78   30.75   375   170   12.56   .0796   .1657   37.2   55.39	35 3.	.381		.42	17.92	21.6	281		10.183	.0981		34.05	49.1	560
50 4.401   2272   35   21.69   27.39   339   150   11.204   0802   1796   35.48   51.89   55   4.741   2109   331   22.76   29.11   357   160   11.88   0841   1.722   36.29   53.65   005.081   1968   3144   23.78   30.75   37.5   170   12.56   0.796   1.657   37.2   55.39	40 3.	.721			19.32	23.66					.1878	34.57	50.02	
55 4,741 ,2109 ,331  22,76 29,11  357   160 11.88 ,0841 ,1722  36,29  53,65  60 5,081 ,1968 ,3144  23,78 30,75  375   170 12.56 ,0796 ,1657  37,2  55,39				. 37	20.57	25.59	321			.0921	.1837	85.09	51.	580
60 5.081 .1968 .3144  23.78 30.75  375   170 12.56   0796 .1657   37 2   55.39			.2272	.35	21.69	27.39				.0892	.1796	35.48	51.89	589
60[5.081].1968[.3144] 23.78[30.75] 375					22.76	29.11					.1722			607
	60 5.	.081	.1968		23.78	30.75					1657	37.2	55.39	
09] 542-9, 10441, 2001 24, 491-92, 92 939 180 18, 24 1, 07551, 1000 87 90 57, 01	65 5.	.423	.1844	.301	24.75	32.32	389	180	13.24	.0755		37.96		
70 5.762 1735 288 25.67 33.88 405 190 13.92 .0718 .154 38.68 58.57			.1735											
75 6.102 .1639 .276 26.55 35.27 420 200 14.6 .0685 .149 39.42 60.14	10 6.	.102	. 1039	.216	20.55	35.27	420	200	14.6	.0085	. 149	69.42	00.14	672

Column 3 gives the volume of air after compression to the given pressure and after it is cooled to its initial temperature. After compression air loses its heat very rapidly, and this column may be taken to represent the volume of air after compression available for the purpose for which the air has been compressed.

Column 4 gives the volume of air more nearly as the compressor has to deal with it. In any compressor the air will lose some of its heat during compression. The slower the compressor runs the cooler the air and the smaller the volume.

Column 5 gives the mean effective resistance to be overcome by the air-cylinder piston in the stroke of compression, supposing the air to remain constantly at its initial temperature. Of course it will not so remain, but this column is the ideal to be kept in view in economical air-compression.

Column 6 gives the mean effective resistance to be overcome by the piston, supposing that there is no cooling of the air. The actual mean effective tive pressure will be somewhat less than as given in this column; but for computing the actual power required for operating air-compressor cylinders the figures in this column may be taken and a certain percentage addedsay 10 per cent-and the result will represent very closely the power required by the compressor.

The mean pressures given being for compression from one atmosphere

upward, they will not be correct for computations in compound compression or for any other initial pressure.

Loss Bue to Excess of Pressure caused by Heating in the Compression-cylinder.—If the air during compression were kept at a constant temperature, the compression-curve of an indicator-diagram taken from the cylinder would be an isothermal curve, and would follow the law of Boyle and Marriotte, pv = a constant, or  $p_1v_1 = p_6v_0$ , or

 $\frac{v_0}{r}$ ,  $p_0$  and  $v_0$  being the pressure and volume at the beginning of  $p_1 = p_0 \frac{v_0}{v_1}$ ,  $p_0$  and  $v_0$  being the pressure and volume at the end, or at any intercompression, and  $p_1v_1$  the pressure and volume at the end, or at any intercompression the pressure mediate point. But as the air is heated during compression the pressure mediate point. But as the air is neated uting compression the pressure increases faster than the volume decreases, causing the work required for any given pressure to be increased. If none of the heat were abstracted by radiation or by injection of water, the curve of the diagram would be an adiabatic curve, with the equation  $p_1 = p_0 \left(\frac{v_0}{v_0}\right)^{1.466}$ . Cooling the air during the curve of the diagram would be an adiabatic curve, with the equation  $p_1 = p_0 \left(\frac{v_0}{v_0}\right)^{1.466}$ .

ing compression, or compressing it in two cylinders, called compounding, and cooling the air as it passes from one cylinder to the other, reduces the exponent of this equation, and reduces the quantity of work necessary to effect a given compression. F. T. Gause (Am. Mach., Oct. 20, 1892), describing the operations of the Popp air-compressors in Paris, says: The greatest saving realized in compressing in a single cylinder was 38 per cent of that theoretically possible. In cards taken from the 2000 H.P. compound compressor at Quai De La Gare. Paris, the saving realized is 85 per cent of the theoretical amount. Of this amount only 8 per cent is due to cooling during compression, so that the increase of economy in the compound compressor is mainly due to cooling the air between the two stages of compression. A compression-curve with exponent 1.25 is the best result that was obtained for compression in a single cylinder and cooling with a very fine spray. The curve with exponent 1.15 is that which must be realized in a single cylinder to equal the present economy of the compound compressor at Quai De La Gare.

forse-power required to Horse-power required to compress one cubic foot of Free Air per minute to a Air per minute at a given given Pressure with no cooling of the air during the compression; also the horse-power required, supposing the norse-power required, supposing the six to be maintained at contrast to the six to be maintained at a contrast to the six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a six to be a Horse-power posing the air to be maintained at constant temperature during the compression. (Richards.)

air to be maintained at constant temperature during the compression. (Richards.)

Gauge- pressure	Air not cooled.	Air constant Temperature.	Gauge-	Air not cooled.	Air constant Temperature.
100	.22183	.14578	100	1.7317	1.13801
90	.20896	.13954	90	1.4883	.99387
80	.19521	.18251	80	1.25779	.8538
70	.17989	.12606	70	1.03688	.72651
60	.164	.11558	60	.83344	.58729
50	.14607	.10565	50	.64291	.465
40	.12438	.093667	40	.46271	.34859
30	.10346	.079219	30	.31456	.24086
20	.076808	.061188	20	.181279	.14441
10	.044108	.036944	10	.074106	.06069
5	.024007	.020848	5	032172	027938

In computing the above table an allowance of 10 per cent has been made for friction of the compressor.

Table for Adiabatic Compression or Expansion of Air.

(Proc. Inst. M.E., Jan. 1881, p. 123.)

	Pressure.	Absolute T	emperature.	Volume.			
Ratio of Greater to Less. (Expan- sion.)	Ratio of Less to Greater. (Compres- sion.)	Ratio of Greater to Less. (Expan- sion.)	Ratio of Less to Greater. (Compression.)	Ratio of Greater to Less. (Compres- sion.)	Ratio of Less to Greater. (Expan- sion.)		
1.2 1.4 1.6 1.8 2.0 2.2 2.6 2.8 3.0 3.2 3.6 3.6 4.0 4.2 4.6 4.8 5.0 6.0 7.0 8.0	.833 .714 .625 .556 .500 .454 .417 .385 .387 .333 .312 .294 .278 .263 .250 .288 .227 .217 .208 .200 .167 .143 .125 .111	1.054 1.102 1.146 1.186 1.222 1.257 1.257 1.319 1.348 1.375 1.401 1.426 1.450 1.473 1.516 1.516 1.517 1.557 1.557 1.556 1.681 1.758 1.828	948 .907 .873 .843 .818 .796 .776 .758 .742 .727 .714 .701 .690 .669 .669 .660 .651 .642 .685 .627 .595 .569 .569	1.188 1.270 1.396 1.518 1.696 1.750 1.862 1.971 2.077 2.182 2.884 2.483 2.589 2.576 2.770 2.770 2.783 2.955 8.185 8.569 8.185 8.569 8.3961 4.759	.879 .788 .716 .659 .611 .571 .587 .507 .481 .458 .438 .419 .403 .888 .874 .361 .349 .328 .328 .328 .329 .251		

Mean Effective Pressures for the Compression Part only of the Stroke when compressing and delivering Air from one Atmosphere to given Gauge-pressure in a Single Cylinder. (F. Richards, Am. Mach., Dec. 14, 1893.)

Gauge-	Adiabatic	Isothermal	Gauge-	Adiabatic	Isothermal
pressure.	Compression	Compression.	pressure.	Compression.	Compression.
1	.44	.43	45	13.95	12.62
2	1.41	.95	50	15.05	13.48
3		1.4	55	15.98	14.3
4	1.86	1.84	60	16.89	15.05
5	2.26	2.22	65	17.88	15.76
10	4.26	4.14	70	18.74	16.48
15	5.99	5.77	75	19.54	17.09
20	7.58	7.2	80	20.5	17.7
25	9.05	8.49	85	21.22	18.3
80	10.39	9.66	90	22.	18.87
85	11.59	10.72	95	22.77	19.4
40	12.8	11.7	100	23.43	19.92

The mean effective pressure for compression only is always lower than the mean effective pressure for the whole work

Mean and Terminal Pressures of Compressed Air used Expansively for Gauge-pressures from 60 to 100 lbs.

(Frank Richards, Am. Much., April 13, 1893.)

Initial Pres- sure.	60.		7	0.	80.		90	D.	100.		
Point of Cut-off.	Mean Air. pressure.	Terminal Air- pressure.	Mean Air- pressure.	Terminal Air- pressure.	Mean Air. pressure.	Terminal Air-	Mean Air- pressure.	Terminal Air. pressure.	Mean Air- pressure.	Terminal Air- pressure.	
25 .30 .35 .35 .40 .45 .50 .56 .75 .80 .80	28.6 98.9 32.13 33.66 35.86 37.98 41.74 45.14 50.75 51.92 53.67 54.93 56.52 57.79 59.15	2.83 8.85 5.64 10.71 13.96 21.58 23.69 27.94 30.89 35.01 39.78 47.14	28.74 34.75 38.41 40.15 42.63 44.99 49.31 53.16 60.81 60.85 66.05 67.5 69.38	26.4 28.85 33.03 36.44 41.68 47.08 55.43	88.89 40.61 44.69 46.64 49.41 52.05 56.9 61.18 69.28 69.76 77.559 77.2 78.92 79.81		39 04 46.46 50.98 53.13 56.2 59.11 64.45 69.19 77.05 76.69 81.14 82.9 85.12 86.91 88.81 89.24	44.88 48.54 55.02 61.69 72.	44.19 58.32 57.26 59.62 62.96 66.16 72.02 77.21 85.82 87.61 90.32 92.22 94.66 96.61 98.7	1.88 6.11 9.48 11.23 18.89 16.64 22.36 28.33 41.01 44.32 54.59 61.69 80.28 87.82	

The pressures in the table are all gauge-pressures except those in italics, which are absolute pressures (above a vacuum).

# Straight-line Air-compressors, Ingersoll-Sergeant Rock-drill Co.

Diameter Steam- cylinder, inches.	Diameter of Air- cylinder, inches.	Length of Stroke, inches.	No. of Revolu- tions per minute.	Piston Speed in feet per minute.	Cubic Feet Free Air per minute (Theo- retical).	Horse- power of Boiler required.
4 5 6 7 8	41.4 51.4 61.4 71.4 8.4	10 10 12 12 12	175 175 160 160	291 291 320 320 320 320	28 42 66 91 117	6 8 10 12 15 20
10 12 14	1014 1014 1214 1414	12 14 14 18	160 156 155 120	361 361 360	148 207 295 398	30 40 55
16 18 20 22	1414 1614 1814 2014	18 24 24 80	120 94 94 75	360 376 376 875	518 683 840 1011	70 100 130 155
24	2414	80	75	875	1202	:00

The same sizes are made to be driven by belt or gearing.

Compressors at High Altitudes.—Cubic feet of compressed air delivered by air-compressors at high altitudes, expressed as a percentage of the air delivered at the sea-level.

Altitude above Sealevel, feet.	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000
Air delivered, per cent	100	97	94	91	89	86	84	81	78	76	74

## Standard Air-compressors driven by Steam.

(Norwalk Iron Works Co.)

In the following list the large air-cylinder gives the capacity of the machine. For actual capacity, allowance of 10 per cent may be made for contingencies. The small piston only encounters the pressure of the final compression.

Diameter of Aircylinder.	Length of Stroke.	Diameter of Com- pressing Cylinder.	Diameter of Steam- cylinder.	Revolutions or Double Strokes per minute.	Theoretical Capacity, cubic feet per minute, Free Air.	Steam-pipe.	Exhaust- pipe.	Air-pipe.	Water-pipe.	Horse. power.
8 10 14 20 26 32	10 12 16 24 30 36	5 694 914 1314 1714 2114	8 10 14 20 24 80	200 190 150 110 90 80	116 207 427 960 1659 2686	2 21/2 3 5 6 7	21/2 3 4 6 8 10	2 21/2 4 5 6 8	1/4 1/4 1/4 1/4 1/4	15 28 55 125 215 850

## Double-compound Compressors,

(Norwalk Iron Works Co.)

	Length of Stroke.		Diamete	Paralu	Capac'y		
Diameter Air- cylinder.		Com- pressing cylinder.	High- pressure Steam- cylinder.	Low- pressure Steam- cylinder.	Steam- pipe.	Revolu- tions per minute.	cubic feet Free Air per minute.
10 12 14 16 20 20	12 12 16 16 20 24	5 5 914 914 1314 1314	716 712 10 10 14 14	12 12 16 16 22 22	2 2 21/2 21/2 3 8	190 190 150 150 120 110	207 298 427 558 872 960
22 26 28 32	24 80 80 80 86	1817 1717 1717 2117	14 18 18 22	22 28 28 28 35	8 414 414 6	110 90 90 80	1160 1659 1924 2686

### Mountain or High-altitude Compressors.

(Norwalk Iron Works Co.)

			<del> `</del>									
Air-	f of essing		seing of		At Sea- level.		At 2000 feet.		At 6000 feet.		At 10,000 feet.	
Diameter A	ength of Stroke.	Diameter Compres Cylinder	neter eam- linder	Revolutions per minute	Capacity. cubic feet.	orse- power.	Capacity.	se-	Capacity.	orse- power.	Capacity.	orse.
Dian	Fen	<u> </u>	Diar St cy	Rev	ಕ್ಷಿ ಕ್ಷ	Horse	Cap	Horse	Cap	Horse	ğ	Horse
12	12	7	10	190	298	35 70	280	34	244	32	214	30
16 20	16 20	916 1816	14	150	558	70	524	68	462	64	405 <b>634</b>	60
20		1812	18 20	120	872	110	819	107	722	100	634	94
22	24	1816	20	110	1160	145	1090	140	960	182	848	124
26	30	173%	24	90	1659	215	1560	207	1873	195	1200	184

The delivery and power of the compressors decrease as the height increases. As the capacity decreases in a greater ratio than the power necessary to compress, it follows that operations at a high altitude are more expensive than at sea-level. At 10,000 feet this extra expense amounts to over 20 per cent.

#### Rand Drill Co.'s Air-compressors.

	Dimen	Dimensions of Air- cylinders in inches.		Dimensions of Air- cylinders in		Theor		Volume er min				ubic		
Class.	of A cyline in					Air-			Compressed to a Gauge-pressure of					
•	inch			Free.	10 lbs.	20 lbs.	40 lbs.	• 60 lbs.	80 lbs.	100 lbs.				
	10 × 16	{S* D*	100 100	145.44 290.88	86.56 173.12	61.61 123.23	89.08 78.17	28.62 57.24	22.57 45.15	18.64 87.28				
В	14 × 22	S D	85 85	333.20 666.40	198.31 396.61	141.10 282.20	89.51 179.01	65.54 131.07	51.93 103.86	42.67 85.34				
1	1634 × 8	ıν.	75 75	556.83 1118.66	662.79	235.89 471.79		219.15	86.43 172.86					
A and B	18 × 30	8 D 8	75 75 50	662.68 1325.36 872.66	394.39 788.78 519.36	280.73 561.46 369.69	356.17	130.40 260.81	205.72 185.46	84.92 169.84				
В	20 × 48	Ď	50 40	1745.32 1368.84	1038.72 814.86	739.38 579.67	469.03	343.45	270.92 212.40	223.68				
,	(188 × 48 · (188 × 48 ·	∫ D ∫ §	40 40		1063.65	1159.34 757.12	785.45 480.29	538.54 351.70	424.80 277.42	350.73 229.05				
and B	32 × 60	) D ) S	40 85 85	3574.44 1954.77	2127.30 1163.37 2326.73	1514.24 828.10 1656.20	525.82	384.67	554.85 803.43	250.52				
Geared	36 × 60	§	30 30	2120.61 4241.22	1262.07	898.35 1796.70	572.07 1144.14	417.72	329.16	272.82				
!	1 8 × 12.		120 110	83.78 189.95	49.86 83.27	35.49 59.29	22.51 87.62	16.49 27.50	18.00 21.72	10.74 17.94				
c	12 × 16. 14 × 22.		100 95	209.44 372.40	124.65 221.64	88.73 157.70	56.28 100.04	41.22 78.25	82.51 58.04	26.66 47.69				
	16 × 24, 1714 × 2 20 × 30.	4	90 90 80	502.66 601.29 872.67	299.15 357.85 519.36	212.94 254.95 369.69		98.92 118 33 171.73	78.03 93.33 135.46					

^{*}S. Single; D. Duplex.

Practical Results with Compressed Air.—Compressed-air System at the Chapin Mines, Iron Mountain, Mich.—These mines are three miles from the fails which supply the power. There are four turbines at the falls, one of 1000 horse-power and three of 900 horse-power each. The pressure is 60 pounds at 60° Fahr. Each turbine runs a pair of compressors. The pipe to the mines is 24 inches in diameter. The power is applied at the mines to Corliss engines, running pumps, hoists, etc., and direct to rock-drills.

A test made in 1888 gave 1430.27 horse-power at the compressors, and 890.17 horse-power as the sum of the lorse-power of the engines at the mines. Therefore, only 27% of the power generated was recovered at the mines. This includes the loss due to leakage and the loss of energy in heat, but not the friction in the engines or compressors. (F. A. Pocock, Trans. A. I. M. E., 1891).

W. L. Saunders (Jour. F. I. 1892) says: "There is not a properly designed compressed-air installation in operation to-day that loses over 5% by transmission above. The question is altogether one of the size of pipe; and if the pipe is large enough, the friction loss is a small item. The largest compressed-air power plant in America is that at the Chapin Mines in Michigan, where power is generated at Quinnesse Falls, and transmitted three miles. This is is not an economical plant, but the loss of pressure as shown by the gauge is only 2 lbs., and this is the loss which may be laid strictly to transmission.

"The loss of power in common practice, where compressed air is used to drive machinery in mines and tunnels, is about 70%. I refer to cases where common American air-compressors are used, and where the air is transmitted far enough to lose its heat of compression and is exhausted without

506

reheating. In the best practice, with the best air-compressors, and without reheating, the loss is about 60%.

"These losses may be reduced to a point as low as 20% by combining the

best systems of reheating with the best air-compressors.

Prof. Kennedy says compressed air transmission system is now being carried on, on a large commercial scale, in such a fashion that a small motor four miles away from the central station can indicate in round numbers 10 horse-power, for 20 horse-power at the station itself, allowing for the value of the coke used in heating the air.

The limit to successful reheating lies in the fact that air engines cannot

work to advantage at temperatures over 350°

The efficiency of the common system of reheating is shown by the results obtained with the Popp system in Paris. Air is admitted to the reheater at about 83°, and passes to the engine at about 815°, thus being increased in volume about 42%. The air used in Paris is about 11 cubic feet of free air per minute per horse-power. The ordinary practice in America with cold air is from 15 to 25 cubic feet per minute per horse-power. When the Paris engines were worked without reheating the air consumption was increased to about 15 cubic feet per horse-power per minute. The amount of fuel consumed during reheating is trifling.

Efficiency of Compressed-air Engines.—The efficiency of an air-engine, that is, the percentage which the power given out by the air-engine bears to that required to compress the air in the compressor, depends on the loss by friction in the pipes, valves, etc., as well as in the engine itself. This question is treated at length in the catalogue of the Norwalk Iron Works Co., from which the following is condensed. As the friction increases the most economical pressure increases. In fact, for any given friction in a pipe, the pressure at the compressor must not be carried below a certain limit. The following table gives the lowest pressures which should be used at the compressor with varying amounts of friction in the pipe:

88.2

An increase of pressure will decrease the bulk of air passing the pipe and its velocity. This will decrease the loss by friction, but we subject ourselves to a new loss, i.e. the diminishing efficiencies of increasing pressures. Yet as each cubic foot of air is at a higher pressure and therefore carries more power, we will not need as many cubic feet as before, for the same work. With so many sources of gain or loss, the question of selecting the proper pressure is not to be decided hastily.

The losses are, first, friction of the compressor. This will amount ordinarily to 15 or 20 per cent, and cannot probably be reduced below 10 per cent. Second, the loss occasioned by pumping the air of the engine-room, rather than the air drawn from a cooler place. This loss varies with the season and amounts from 3 to 10 per cent. This can all be saved. The third loss, or series of losses, arises in the compressing cylinder, viz., insufficient supply, difficult discharge, defective cooling arrangements, poor lubrication, etc. The fourth loss is found in the pipe. This loss varies with the situation, and is subject to somewhat complex influences. The fifth loss is chargeable to fall of temperature in the cylinder of the air-engine. Losses arising from leaks are often serious.

Air should be drawn from outside the engine-room, and from as cool a place as possible. The gain amounts to one per cent for every five degrees that the air is taken in lower than the temperature of the engine-room. The inlet conduit should have an area at least 50% of the area of the air-

piston, and should be made of wood, brick, or other non-conductor of heat.

Discharge of a compressor having an intake capacity of 1000 cubic feet per minute, and volumes of the discharge reduced to cubic feet at atmospheric pressure and at temperature of 62 degrees Fahrenheit:

**Requirements of Rock-drills Driven by Compressed Air.** (Norwalk Iron Works Co.)—The speed of the drill, the pressure of air, and the nature of the rock affect the consumption of power of rockdrills.

A three-inch drill using air at 30 lbs. pressure made 300 blows per minute and consumed the equivalent of 64 cubic feet of free air per minute. The same drill, with air of 58 lbs. pressure, made 450 blows per minute and consumed 160 cubic first of free air per minute. At Hell Gate different machines doing the same work used from 80 to 150 cubic feet free air per minute.

An average consumption may be taken generally from 80 to 100 cubic feet

per minute, according to the nature of the work.

The Popp Compressed air System in Paris.—A most extensive system of distribution of power by means of compressed air is that of M. Popp, in Paris. One of the central stations is laid out for 24,000 horse power. For a very complete description of the system, see Engineering, Feb. 15, June 7, 21, and 28, 1889, and March 13 and 29, April 10, and May 1, 1891. Also Proc. Inst. M. E., July, 1889. A condensed description will be found in Modern Mechanism. p. 12 found in Modern Mechanism, p. 12.

Utilization of Compressed Air in Small Motors.—In the earliest stages of the Popp system in Paris it was recognized that no good results could be obtained if the air were allowed to expand direct into the motor; not only did the formation of ice due to the expansion of the air rapidly accumulate and choke the exhaust, but the percentage of useful work obtained, compared with that put into the air at the central station, was so small as to render commercial results hopeless.

After a number of experiments M. Popp adopted a simple form of castiron stove lined with fire-clay, heated either by a gas jet or by a small coke fire. This apparatus answered the desired purpose until some better arrangement was perfected, and the type was accordingly adopted throughout the whole system. The economy resulting from the use of an improved form was very marked, as will be seen from the following table.

#### EFFICIENCY OF AIR-HEATING STOVES.

	rface.	Per .	Tempe of Air i	erature n Oven.	Value of Heat Absorbed per Hour.				
Nature of Stove.	Heating Surface	Air Heated Hour.	Admission Deg. Fahr.	Exit Deg. Fahr.	Total.	Per Square Foot of Heating Surface.	Per Pound of Coke.		
Cast-iron box { stoves Wrought-iron	sq. ft, 14 14	cub.ft. 20,342 11,054	45 45	215 364	cal. 17,900 17,200	cal. 1278 1228	cal. 2032 2058		
coiled tubes	46.8	58,428	41	847	39,200	830	2545		

The results given in this table were obtained from a large number of trials. From these trials it was found that more than 70% of the total number of calories in the fuel employed was absorbed by the air and transformed into useful work. Whether gas or coal be employed as the fuel, the amount required is so small as to be scarcely worth consideration; according to the experiments carried out it does not exceed 0.2 lb. per horse-power per hour, but it is scarcely to be expected that in regular practice this quantity is not largely exceeded. The efficiency of fuel consumed in this way is at least six times greater than when utilized in a boiler and steam-engine.

According to Prof. Riedler, from 15% to 20% above the power as the central station can be obtained by means at the disposal of the power users, and it has been shown by experiment that by heating the air to 480° F. an increased efficiency of 30% can be obtained.

A large number of motors in use among the subscribers to the Compressed Air Company of Paris are rotary engines developing 1 horse-power and less, and these in the early times of the industry were very extravagant in ness, and these in the early times of the industry were very extravagant in their consumption. Small rotary engines, working cold air without expansion, used as high as 2830 cu. ft. of air per brake horse-power per hour, and with heated air 1624 cu. ft. Working expansively, a 1 horse-power rotary engine used 1469 cu. ft. of cold air, or 860 cu. ft. of heated air, and a 2-horse-power rotary engine 1059 cu. ft. of cold air, or 847 cu. ft. of air, heated to about 50° C.

The efficiency of this type of rotary motors, with air heated to 50° C, may be assumed at 43%. With such an efficiency the use of small motors in now be assumed at 43%.

many industries becomes possible, while in cases where it is necessary to have a constant supply of cold air economy ceases to be a matter of the first importance.

The following table shows the results of tests of a small rotary engine used for driving sewing-machines, and indicating about a tenth of a horse-power:

## TRIALS OF A SMALL ROTARY RIEDINGER ENGINE.

Numbers of trials	I.	П.
Initial air-pressure, lbs. per sq. in	86	71.8
Initial temperature, deg. Fahr	54°	338°
Ftlbs. per sec., measured on the brake	51.63	34.07
Revolutions per minute		300
Consumption of air per 1 horse-power per hour	1877	988

The following table shows the results obtained with a one-half horsepower variable expansive Riedinger rotary engine. These trials represent the best practice that has been obtained up to the present time (1890). The volumes of air were in all cases taken at atmospheric pressure:

#### TRIALS OF A 5-HORSE-POWER RIEDINGER ROTARY ENGINE.

Numbers of trials	I.	II.	III.	IV.
Initial pressure of air, lbs. per sq. in	54	69.7	85	71.8
Initial pressure of air, lbs. per sq. in temperature of air, deg. Fahr	<b>33</b> 8	356	388	46
Final " " " "	77	<b>68</b>		77
Revolutions per minute	335	350	310 -	243
Ftlbs. per second, measured on brake		477	376	316
Consumption of air per horse-power per hour	883	791	900	1148

Trials made with an old single-cylinder 80-horse-power Farcot steam-engine, indicating 72 horse-power, gave a consumption of air per brake horse-power as low as 465 cu. It. per hour. The temperature of admission was 390° F., and of exhaust 95° F. Prof. Elliott gives the following as typical results of efficiency for various

systems of compressors and air-motors:

Simple compressor and simple motor, efficiency	89.1%
Compound compressor and simple motor, "	44.9
" compound motor, efficiency	50.7
Triple compressor and triple motor, "	55.8

The efficiency is the ratio of the indicated horse-power in the motor cylinders to the indicated horse-power in the steam-cylinders of the compressor. The pressure assumed is 6 atmospheres absolute, and the losses are equal to those found in Paris over a distance of 4 miles.

# Summary of Efficiencies of Compressed-air Transmission at Paris, between the Central Station at St. Fargeau and a 10-horse-power Motor Working with Pressure Reduced to 4½ Atmospheres.

(The figures below correspond to mean results of two experiments cold and two heated.)

1 indicated horse-power at central station gives 0.845 indicated horse-power in compressors, and corresponds to the compression of 348 cubic feet of air per hour from atmospheric pressure to 6 atmospheres absolute. (The weight of this air is about 25 pounds.)

0.845 indicated horse power in compressors delivers as much air as will do

0.52 indicated horse-power in adiabatic expansion after it has fallen in tem-

perature to the normal temperature of the mains.

The fall of pressure in mains between central station and Paris (say 5 kilometres) reduces the possibility of work from 0.52 to 0.51 indicated horsepower.

The further fall of pressure through the reducing valve to 41/4 atmospheres

(absolute) reduces the possibility of work from 0.51 to 0.50.

Incomplete expansion, wire-drawing, and other such causes reduce the actual indicated horse-power of the motor from 0.50 to 0.89.

By heating the air before it enters the motor to about 320° F., the actual

indicated horse-power at the motor is, however, increased to 0.54. The ratio 0.54

of gain by heating the air is, therefore,  $\frac{0.07}{0.39} = 1.38$ .

In this process additional heat is supplied by the combustion of about 0.39 pounds of coke per indicated horse-power per hour, and if this be taken into account, the real indicated efficiency of the whole process becomes 0.47instead of 0.54.

Working with cold air the work spent in driving the motor itself reduces the available horse-power from 0.39 to 0.25.

Working with heated air the work spent in driving the motor itself reduces the available horse-power from 0.54 to 0.44.

A summary of the efficiencies is as follows:

Efficiency of main engines 0.845.

Efficiency of compressors 0.52 + 0.845 = 0.61. Efficiency of transmission through mains 0.51 + 0.52 = 0.98. Efficiency of reducing valve 0.50 + 0.51 = 0.98.

The combined efficiency of the mains and reducing valve between 5 and 414 atmospheres is thus  $0.98 \times 0.98 = 0.96$ . If the reduction had been to 4, 314, or 8 atmospheres, the corresponding afficiencies and authorities as stills  $0.50 \times 0.50 = 0.50$ . It the reduction had been to 4, 31-4, or 3 atmospheres, the corresponding efficiencies would have been 0.93, 0.82, and 0.85 respectively.

Indicated efficiency of motor 0.39 + 0.50 = 0.78.

Indicated efficiency of whole process with cold air 0.39. Apparent indicated efficiency of whole process with heated air 0.54.

Real indicated efficiency of whole process with heated air 0.47. Mechanical efficiency of motor, cold, 0.67.

Mechanical efficiency of motor, hot, 0.81.

Most of the compressed air in Paris is used for driving motors, but the work done by these is of the most varied kind. A list of motors driven from St. Fargeau station shows 25 installations, nearly all motors working at from 16 horse-power to 50 horse-power, and the great majority of them more than two miles away from the station. The new station at Quai de la Gare is much larger than the one at St. Fargeau. Experiments on the Riedler air-compressors at Paris, made in December, 1891, to determine the ratio between the indicated work done by the air-pistons and the indicated work in the steam-cylinders, showed a ratio of 0.8997. The compressors are driven by four triple-expansion Corliss engines of 2000 horse-power each.

Shope Operated by Compressed Air.—The Iron Age, March 2, 1893, describes the shops of the Wuerpel Switch and Signal Co., East St. Louis, the machine tools of which are operated by compressed air, each of the larger tools having its own air engine, and the smaller tools being belted from shafting driven by an air engine. Power is supplied by a compound compressor rated at 55 horse-power. The air engines are of the Kriebel make, rated from 2 to 8 horse-power.

Pneumatic Postal Transmission.—A paper by A. Falkenau, Eng'rs Club of Philadelphia, April 1894, entitled the "First United States Pneumatic Postal System," gives a description of the system used in London and Paris, and that recently introduced in Philadelphia between the main and raris, and that recently introduced in Filiadelphia between the main post-office and a substation. In London the tubes are 2½ and 3 inch lead pipes laid in cast-iron pipes for protection. The carriers used in 2½-inch tubes are but 1½ inches diameter, the remaining space being taken up by packing. Carriers are despatched singly. First, vacuum alone was used; later, vacuum and compressed air. The tubes used in the Continental cities. nater, vacuum and compressed air. Inc tubes used in the Continental cities in Europe are wrought iron, the Paris tubes being 2½ inches diameter. There the carriers are despatched in trains of six to ten, propelled by a piston. In Philadelphia the size of tube adopted is 6½ inches, the tubes being of cast iron bored to size. The lengths of the outgoing and return tubes are 3928 feet each. The pressure at the main station is 7 lbs., at the substation 4 lbs., and at the end of the return pipe atmospheric pressure. The compressor has two air-cylinders  $18 \times 24$  in. Each carrier holds about 200 letters, but 100 to 150 are taken as an average. Eight carriers may be despatched in a minute, giving a delivery of 48,000 to 72,000 letters per hour.

The time required in transmission is about 57 seconds.

The Mekarski Compressed-air Tramway at Berne,
Switzerland. (Eng'g News, April 20, 1893.)—The Mekarski system has been introduced in Berne, witzerland, on a line about two miles long, with grades of 0.25% to 3.75 and 5.2%. A special feature of the Mekarski system is the heating of the air, to maintain it at a constant temperature, by passing it through superheated water at 330° F. The air thus becomes saturated with steam, which subsequently partly condenses, its latent heat being absorbed by the expanding air. The pressure in the car reservoirs is 440

lbs. per sq. in.

The engine is constructed like an ordinary steam tramway locomotive,

and drives two coupled axles, the wheel-base being 5.2 ft. It has a pair of outside horizontal cylinders,  $5.1 \times 8.6$  in.; four coupled wheels, 27.5 in. diameter. The total weight of the car including compressed air is 7.25 tong, and with 30 passengers, including the driver and conductor, about 95 tong.

and with 30 passengers, including the driver and conductor, about 9.5 tons. The authorized speed is about 7 miles per hour. Taking the resistance due to the grooved rails and to curves under unfavorable conditions at 30 lbs. per ton of car weight, the engine has to overcome on the steepest grade, 5%, a total resistance of about 0.63 ton, and has to develop 25 H.P. At the maximum authorized working pressure in cylinders of 176 lbs. per sq. in. the motors can develop a tractive force of 0.64 ton. This maximum is, therefore, just sufficient to take the car up the 5.2% grade, while on the flatter sections of the line the working pressure does not exceed 78 to 147 lbs. per sq. in. Sand has to be frequently used to increase the adhesion on the 2% to 5% grades.

Between the two car frames are suspended ten horizontal compressed-air storage-cylinders, varying in length according to the available space, but of uniform inside diameter of 17.7 in., composed of riveted 0.27-in. sheet iron, and tested up to 588 lbs. per sq. in. These cylinders have a collective capacity of 64.25 cu. ft., which, according to Mr. Mekarski's estimate, should have been sufficient for a double trip, 3% miles. The trial trips, however, showed this estimate to be inadequate, and two further small storage-cylinders had therefore to be added of 5.3 cu. ft. capacity each, bringing the total cubic contents of the 12 storage-cylinders per car up to 75 cu. ft. divided into two groups, the working and the reserve battery, the former of 49 cu. ft. the latter of 26 cu. ft. capacity.

From the results of six official trips, the pressure and the mean consumption of air during a double journey per motor car are as follows:

Storage-cylinders.	sq. in.	Reserve, lbs. per sq. in,
Pressure of air on starting Pressure of air at end of up journey Pressure of air at end of down journey	176 103	440 260 176
Consumption of air at end of up journey Consumption of air during down journey	Lbs. 92 31	

The principal advantages of the compressed-air system for urban and suburban tramway traffic as worked at Berne consist in the smooth and noiseless motion; in the absence of smoke, steam, or heat, of overhead or underground conductors, of the more or less grinding motion of most electric cars, and of the jerky motion to which underground cable traction is subject. On all these grounds the system has vindicated its claims as being preferable to any other so far known system of mechanical traction for street tramways. Its disadvantages, on the other hand, consist in the extremely delicate adjustment of the different parts of the system, in the comparatively small supply of air carried by one motor car, which necessitates the car returning to the depot for refilling after a run of only four miles or 40 minutes, although on the Nogent and Paris lines the cars, which are, moreover, larger, and carry outside passengers on the top, run seven miles, and the loading pressure is 517 lbs. per sq. in. as against only 440 lbs. at Berne.

Longer distances in the same direction would involve either more powerful motors, a larger number of storage-cylinders, and consequently heavier cars, or loading stations every four or seven miles; and in this respect the system is manifestly inferior to electric traction, which easily admits of a line of 10 to 15 miles in length being continuously fed from one central station without the loss of time and expense caused by reloading.

The cost of working the Berne line is compared in the annexed table

The cost of working the Berne line is compared in the annexed table with some other transways worked under similar conditions by horse and mechanical traction for the year 1891. As is seen, both in the case of compressed air and of electric traction, the cost of working is considerably

increased where steam at a high cost of fuel has to be used instead of hydraulic power. Given the latter, the cost of working by air is about the same as that by steam-locomotives or steam-cars; but over both of these last-named, compressed-air offers, at equal cost and for such short lines with constant traffic, certain advantages:

		Constr.	Opera-
1891.	Length of Line,	Motive Power, and equip's	t, tion,
	miles.	, per mîlê.	p. car mi.
Geneva, city		Horse	19.4 cts.
Zurich, city		Horse	11.6
Geneva, suburban	40.80	Steam locomotive.82,000	18.2
Mulhouse, city	18.00	Steam locomotive, 22,400	17.8
Montreux, suburbar	1 6.82	Hydro-electric 20,800	10.4
Florence, suburban	4.96	Steam electric 32,000	20.0
Tours, suburban		Steam cars19,200	17.2
Nogent (Paris), sub	urban 7.44	Steam-compr. air.46,100	25.6
Berne, city	1.86	Hydro-compr. air.48,950	17.8

For description of the Mekarski system as used at Nantes, France, see paper by Prof. D. S. Jacobus, Trans. A. I. M. E. xix. 553.

Compressed Air for Working Underground Pumps in Mines.—Eng g Record, May 19, 1894, describes an installation of compressors for working a number of pumps in the Nottingham No. 15 Mine, Plymouth, Pa., which is claimed to be the largest in America. The compressors develop above 2300 H.P., and the piping, horizontal and vertical, is 6000 feet in length. About 25,000 gallons of water per hour are raised.

#### FANS AND BLOWERS.

Centrifugal Fans. - The ordinary centrifugal fan consists of a number of blades fixed to arms, revolving on a shaft at high speed. The width of the blade is parallel to the axis of the shaft. Most engineers' reference books quote the experiments of W. Buckle, Proc. Inst. M.E., 1847, as still standard. Mr. Buckle's conclusions are given below, together with data of more recent experiments.

Experiments were made as to the proper size of the inlet openings and on the proper proportions to be given to the vane. The inlet openings in the sides of the fan-chest were contracted from 171/4 in., the original diameter,

to 12 and 6 in. diam., when the following results were obtained:

First, that the power expended with the opening contracted to 12 in. diam.
was as 24 to 1 compared with the opening of 174 in. diam.; the velocity of
the fan being nearly the same, as also the quantity and density of air

Second, that the power expended with the opening contracted to 6 in. diam, was as 2½ to 1 compared with the opening contracted to 5 in. diam, was as 2½ to 1 compared with the opening of 17½ in. diam.; the velocity of the fan being nearly the same, and also the area of the efflux pipe, but the density of the air decreased one fourth. These experiments show that the inlet openings must be made of sufficient size, that the air may have a free and uninterrupted action in its passage to the helder of the fort for it we impred this extensive we do not the heave of the fort for it we impred this extensive we do not the heave of the fort for it we impred this extensive we do not the heave of the fort for it we impred this extensive we do not the heave of the fort for it we impred this extensive we do not the passage to

the blades of the fan; for if we impede this action we do so at the expense

of power.

With a vane 14 in. long, the tips of which revolve at the rate of 236.8 ft. per second, air is condensed to 9.4 ounces per square inch above the pressure of the atmosphere, with a power of 9.6 H. P.; but a vane 8 inches long, the diameter at the tips being the same, and having, therefore, the same velocity, condenses air to 6 ounces per square inch only, and takes 12 H. P. Thus the density of the latter is little better than six tenths of the former, while the newer absorbed is nearly 1.95 to 1. Although the velocity of the

while the power absorbed is nearly 1.25 to 1. Although the velocity of the tips of the vanes is the same in each case, the velocities of the heels of the respective blades are very different, for, while the tips of the blades in each case move at the same rate, the velocity of the heel of the 14-inch is in the ratio of 1 to 1.67 to the velocity of the heel of the 8-inch blade. The longer blades approaching nearer the centre, strikes the air with less velocity and allowed the part to part on the blade with reacter freedom. city, and allows it to enter on the blade with greater freedom, and with considerably less force than the shorter one. The inference is, that the short blade must take more power at the same time that it accumulates a less quantity of air. These experiments lead to the conclusion that the length of the vane demands as great a consideration as the proper diameter of the inlet opening. If there were no other object in view, it

would be useless to make the vanes of the fan of a greater width than the would be useless to make the vanes of the fan of a greater which that the inlet opening can freely supply. On the proportion of the length and width of the vane and the diameter of the inlet opening rest the three most important points, viz., quantity and density of air, and expenditure of power. In the 14-inch blade the tip has a velocity 2.6 times greater than the heel; and, by the laws of centrifugal force, the air will have a density 2.6

times greater at the tip of the blade than that at the heel. The air cannot enter on the heel with a density higher than that of the atmosphere; but in its passage along the vane it becomes compressed in proportion to its centrifugal force. The greater the length of the vane, the greater will be the difference of the centrifugal force between the heel and the tip of the

blade; consequently the greater the density of the air.

Reasoning from these experiments, Mr. Buckle recommends for easy reference the following proportions for the construction of the fan:

1. Let the width of the vanes be one fourth of the diameter; 2. Let the diameter of the inlet openings in the sides of the fan-chest be one half the diameter of the fan; 3. Let the length of the vanes be one fourth of the diameter of the fan.

In adopting this mode of construction the area of the inlet openings in

In adopting this mode of construction, the area of the inlet openings in the sides of the fan-chest will be the same as the circumference of the heal of the blade, multiplied by its width; or the same area as the space described by the heal of the blade.

### Best Proportions of Fans. (Buckle.)

PRESSURE FROM 3 OUNCES TO 6 OUNCES PER SQUARE INCH: OR 5.2 INCHES TO 10.4 INCHES OF WATER.

Diameter of Fan.			Va	nes.		of	meter Inlet oen-		meter Fan.	-  -	Va	nes.		of	meter Inlet en-
		Wi	dth.	Lei	igth.		gs.	Width. Length							
ft.	ins.	ft.	ins.	ft.	ins.	ft.	ins.	ft.	ins.	ft.	ins.	ft.	ins.	·ft.	ins.
3 3 4	0 6 0	0 0 1	9 1014 0	0 0 1	9 101⁄2 0	1 1 2	6 9 0	4 5 6	6 0 0		11/6 8 6	1 1 1	11/2 3 6	2 2 8	8 6 0

PRESSURE FROM 6 OUNCES TO 9 OUNCES PER SQUARE INCH, AND UPWARDS, OR 10.4 INCHES TO 15.6 INCHES OF WATER.

3 3 4	0 6 0	0	7 816 916	1 1 1	0 116 812	1 1 1	0 8 6	4 5 6	6 0 0	0 1 1	101/2 0 2	1 1 1	41/6 6 10	1 2 2	9 0 4	
-------------	-------------	---	-----------------	-------------	-----------------	-------------	-------------	-------------	-------------	-------------	-----------------	-------------	-----------------	-------------	-------------	--

The dimensions of the above tables are not laid down as prescribed limits, but as approximations obtained from the best results in practice.

Experiments were also made with reference to the admission of air into the transit or outlet pipe. By a slide the width of the opening into this pipe was varied from 12 to 4 inches. The object of this was to proportion the opening to the quantity of air required, and thereby to lessen the power necessary to drive the fan. It was found that the less this opening is made, provided we produce sufficient blast, the less noise will proceed from the fan; and by making the tops of this opening level with the tips of the vane, the column of air has little or no reaction on the vanes.

The number of blades may be 4 or 6. The case is made of the form of an arithmetical spiral, widening the space between the case and the revolving blades, circumferentially, from the origin to the opening for discharge.

The following rules deduced from experiments are given in Spretson's

treatise on Casting and Founding:

The fan-case should be an arithmetical spiral to the extent of the depth of the blade at least.

The diameter of the tips of the blades should be about double the diameter of the hole in the centre; the width to be about two thirds of the radius of the tips of the blades. The velocity of the tips of the blades should be rather more than the velocity due to the air at the pressure required, say one

eighth more velocity.

In some cases, two fans mounted on one shaft would be more useful than

a symmetry two the area of inlet opening is one wide one, as in such an arrangement twice the area of inlet opening is obtained as compared with a single wide fan. Such an arrangement may be adopted where occasionally half the full quantity of air is required, as

one of them may be put out of gear, thus saving power.

Pressure due to Velocity of the Fan-blades.—"By increasing the number of revolutions of the fan the head or pressure is increased, the law being that the total head produced is equal (in centrifugal fans) to twice the height due to the velocity of the extremities of the blades, or

approximately in practice" (W. P. Trowbridge, Trans. A. S. M. E. vii. 536.) This law is analogous to that of the pressure of a jet striking a plane surface. T. Hawksley, Proc. Inst. M. E., 1882, vol. lxix.. says: "The pressure of a fluid striking a plane surface perpendicularly and then escaping at right angles to its original path is that due to twice the height h due the velocity."

(For discussion of this question, showing that it is an error to take the pressure as equal to a column of air of the height  $h = v^2 + 2g$ , see Wolff on

pressure as equal to a column of air of the height  $h=v^2+2g$ , see Wolff on Windmills, p. 17.)
Buckle says: "From the experiments it further appears that the velocity of the tips of the fan is equal to nine tenths of the velocity a body would acquire in falling the height of a homogeneous column of air equivalent to the density." D. K. Clark (R. T. & D., p. 924), paraphrasing Buckle, appareatly, says: "It further appears that the pressure generated at the circumferterence is one ninth greater than that which is due to the actual circumferential velocity of the fan." The two statements, however, are not in  $v^2$ ential velocity of the fan." The two statements, however, are not in harmony, for if  $v=0.9 \sqrt[4]{2gH}$ ,  $H=\frac{v^2}{0.81\times 2g}=1.284\frac{v^2}{2g}$  and not  $1\frac{v^2}{2g}$ .

If we take the pressure as that equal to a head or column of air of twice the height due the velocity, as is correctly stated by Trowbridge, the paradoxical statements of Buckle and Clark—which would indicate that the actual pressure is greater than the theoretical-are explained, and the formula becomes  $H = .617^{v^2}$ and  $v = 1.278 \sqrt{gH} = 0.9 \sqrt{2gH}$ , in which H is the head of a column producing the pressure, which is equal to twice the theoretical head due the velocity of a falling body (or  $h = \frac{v^2}{2g}$ ), multiplied by the coefficient .617. The difference between 1 and this coefficient expresses the loss of pressure due to friction, to the fact that the inner por-tions of the blade have a smaller velocity than the outer edge, and probably to other causes. The coefficient 1.273 means that the tip of the blade must be given a velocity 1.273 times that theoretically required to produce the head H.

To convert the head H expressed in feet to pressure in lbs. per sq. in multiply it by the weight of a cubic foot of air at the pressure and temperature of the air expelled from the fan (about .08 lb. usually) and divide by 144. Multiply this by 16 to obtain pressure in ounces per sq. in. or by 2.085 to obtain inches of mercury, or by 27.71 to obtain pressure in inches of water column. Taking .08 as the weight of a cubic foot of air,

> p lbs. per sq. in.  $= .00001066v^2$ ; v = 810 + p nearly;  $p_1$  ounces per sq. in. = .0001706 $v^2$ ;  $v = 80 \text{ f/}p_1$  $p_2$  inches of mercury = .00002169 $v^2$ ;  $v = 220 + p_2$ p. inches of water  $= .0002954v^2$ :  $v = 60 \sqrt{p_*}$

in which v = velocity of tips of blades in feet per second.

Testing the above formula by the experiment of Buckle with the vane 14 inches long, quoted above, we have  $p = .00001066v^2 = 9.56$  oz. The experiment gave 9.4 oz.

Testing it by the experiment of H. I. Snell, given below, in which the circumferential speed was about 150 ft. per second, we obtain 3.85 ounces, while the experiment gave from 2.88 to 8.50 ounces, according to the amount of opening for discharge. The numerical coefficients of the above formulæ are all based on Buckle's statement that the velocity of the tips of the fan is equal to nine tenths of the velocity a body would acquire in falling the

height of a homogeneous column of air equivalent to the pressure. Should other experiments show a different law, the coefficients can be corrected accordingly. It is probable that they will vary to some extent with different proportions of fans and different speeds.

Taking the formula  $v=80~\sqrt{p_1}$ , we have for different pressures in ounces per square inch the following velocities of the tips of the blades in feet per second:

$$p_1 = \text{ounces per square inch...}$$
 2 3 4 5 6 7 8 10 12 14  $v = \text{feet per second....}$  113 139 160 179 196 212 226 253 277 299

A rule in App. Cyc. Mech., article "Blowers," gives the following velocities of circumference for different densities of blast in ounces: 8, 170; 4, 180; 5, 185; 6, 205; 7, 215.

The same article gives the following tables, the first of which shows that the density of blast is not constant for a given velocity, but depends on the ratio of area of nozzle to area of blades:

#### QUANTITY OF AIR OF A GIVEN DENSITY DELIVERED BY A FAN.

Total area of nozzles in square feet × velocity in feet per minute corresponding to density (see table) = air delivered in cubic feet per minute.

Density, ounces per sq. in,	ner minute	Density, ounces per sq. in.	Velocity, feet per min.	Density, ounces per sq. in.	Velocity, feet per minute.
1	5000	5	11,000	F	15,000
2 .	7000	6	12,250	10	15,800
3	8600	7	13,200	11	16,500
4	10,000	8	14,150	12	17,300

Experiments with Blowers. (Henry I. Snell, Trans. A. S. M. E. ix. 51.)—The following tables give velocities of air discharging through an aperture of any size under the given pressures into the atmosphere. The volume discharged can be obtained by multiplying the area of discharged opening by the velocity, and this product by the coefficient of contraction: .65 for a thin plate and .98 when the orifice is a conical tube with a convergence of about 3.5 degrees, as determined by the experiments of Weisback. The tables are calculated for a barometrical pressure of 14.69 back.

The tables are calculated for a barometrical pressure of 14.09 los. (= 235 oz.), and for a temperature of 50° Fahr., from the formula  $V = \sqrt{2gh}$ . Allowances have been made for the effect of the compression of the air, but none for the heating effect due to the compression.

Allowances have been made by the check of the compression.

At a temperature of 50 degrees, a cubic foot of air weighs .078 lbs., and calling g = \$2,1602, the above formula may be reduced to

$$V_1 = 60 \sqrt{31.5812 \times (285 - P) \times P}$$

where  $V_1$  = velocity in feet per minute.

P = pressure above atmosphere, or the pressure shown by gauge, in oz, per square inch.

Pressure per sq. in. in inches of water.	Corresponding Pressure in oz. per sq. inch.	Velocity due the Pressure in feet per minute.	Pressure per sq. in. in inches of water.	Corresponding Pressure in oz. per sq. inch.	Velocity due the Pressure in feet per minute.
1/32	.01817	696.78	56	.36340	3118.38
1/16 1/6 3/16	.03634 .07268	987.66 1393.75	34 78	.43608 .50870	3416.64 3690.62
•	.10902 .14536	1707.00 1971.30	1	.58140 .7267	8946.17 4362.62
5/16	.18170 .21804	2204.16 2414.70	11/4 11/6 13/4	.8721 1.0174	4886.06 5224.98
72	.29072	2788.74	274	1 1628	5587 58

Pressure in ox. per sq. inch.	Velocity due the Pressure in ft. per minute.	ure in os. per sq.	Velocity due the Pressure in ft. per minute.	ure in oz. per sq.	Velocity due the Pressure in ft. per minute.	Pressure in oz.	Velocity due the Pressure in ft. per minute.
.25 .50	2,582 3,658	2.25 2.50	7,787 8.218	5.50 6.00	12,250	11.00 12.00	17,534
.75	4,482	2.75	8,618	6.50	12,817 13,354	18.00	18,350 19,188
1.00	5,178	8.00	9,006	7.00	18,878	14.00	19,901
1.25	5,792	8.50	9,789	7.50	14,874	15.00	20,641
1.50	6,349	4.00	10,421	8.00	14,861	16.00	21,360
1.75	6.861	4.50	11,065	9.00	15,795		ł
2.00	7,888	5.00	11,676	10.00	16,684		l

Pressure in ounces per square inch.	Velocity in feet per minute.	Pressure in ounces per square inch.	Velocity in feet per minute.
.01	516.90	.06	1206.24
.08	722.64 895.26	.07 .08	1867.76 1462.20
.04	1033.86	.00	1550.70
.05	1155.90	.10	1685.00

# Experiments on a Fan with Varying Discharge-opening. Revolutions nearly constant.

Ravolutions per minute.	Ares of Discharge in square inches.	Observed Pressure in ounces.	Volume of Air dis- charged per min., cubic feet.	Horse-power.	Actual Number of cu. ft. of Air de- livered per H.P.	Theoret. Vol. per min. that may be discharged with 1 H.P. at corresp. Pressure.	Efficiency of Blowers as per Experiment.
1519 1479 1480 1471 1485 1485 1465 1465 1466 1500 1426	0 6 10 20 28 36 40 44 48 89.5	8.50 8.50 8.50 8.50 8.50 8.40 3.25 8.00 8.00 2.88	0 406 676 1353 1894 2400 2605 2752 3002 3972	.80 1.15 1.30 1.95 2.55 3.10 3.30 3.55 3.80 4.80	853 520 694 742 774 790 775 790 827	1048 1048 1048 1048 1048 1078 1126 1222 1222 1544	.337 .496 .66 .709 .718 .70 .635 .646

The fan wheel was 25 inches in diameter, 65% inches wide at its periphery. and had an inlet of 121/2 inches in diameter on either side, which was

and had an inlet of 12½ inches in diameter on either side, which was partially obstructed by the pulleys, which were 5 9/16 inches in diameter. It had eight blades, each of an area of 45.49 square inches.

The discharge of air was through a conical tin tube with sides tapered at an angle of 8½ degrees. The actual area of opening was 7% greater than given in the tables, to compensate for the vena contracta.

In the last experiment, 89.5 sq. in. represents the actual area of the mouth of the blower less a deduction for a narrow strip of wood placed across it for the purpose of holding the pressure-gauge. In calculating the volume of an inches pressure in the last experiment the value of very contracts is taken at 81. discharged in the last experiment the value of vena contracta is taken at 80.

Experiments were undertaken for the purpose of showing the results obtained by running the same fan at different speeds with the discharge-open-

ing the same throughout the series.

The discharge-pipe was a conical tube 8½ inches inside diameter at the end, having an area of 56.74, which is 7% larger than 58 sq. inches; therefore 53 square inches, equal to 368 square feet, is called the area of discharge, as

that is the practical area by which the volume of air is computed.

Experiments on a Fan with Constant Discharge-opening and Varying Speed.—The first four columns are given by Mr.

Snell, the others are calculated by the author.

Revs. per min.	Pressure in ounces, $p$	Vol. of Air in cu. ft. per minute; V.	Horse-power.	Velocity of Tips of Blades, ft. per sec.	Velocity due Pressure from Formula $v = 80 \ Vp$ .	Coefficient of Formula $v = x \sqrt{p}$ from Experiment.	Velocity of Air per minute in Efflux Pipe, V + .368.	Theoretical Horse- power.	Efficiency per cent.
600 800 1000 1200 1400 1600 1800 2000	.50 .88 1.38 2.00 2.75 3.80 4.80 5.95	1336 1787 2245 2712 3177 3670 4172 4674	.25 .70 1.35 2.20 3.45 5.10 8.00 11.40	60.2 80.3 100.4 120.4 140.5 160.6 180.6 200.7	56.6 75.0 94. 113. 133. 156. 175.	85.1 85.6 85.4 85.1 84.8 82.4 82.4 82.4	3,630 4,856 6,100 7,370 8,633 9,973 11,387 12,701	.182 .429 .845 1.479 2.283 8.803 5.462 7.586	73 61 63 67 66 74 68 67

Mr. Snell has not found any practical difference between the efficiencies of blowers with curved blades and those with straight radial ones.

From these experiments, says Mr. Snell, it appears that we may expect to receive back 65s to 75s of the power expended, and no more.

The great amount of power often used to run a fan is not due to the fan itself, but to the method of selecting, erecting, and piping it. (For opinions on the relative merits of fans and positive rotary blowers, see discussion of Mr. Snell's paper, Trans. A. S. M. E., ix. 66, etc.)

Comparative Efficiency of Fans and Positive Blowers.—
(H. M. Howe, Trans. A. I. M. E., x. 482.)—Experiments with fans and positive Blowers working at moderately low pressures, under 20 ounces, show that they work more efficiently at a given pressure when delivering large volumes (i.e., when working pearly up to their maximum capacity) than when delivering comparatively small volumes. Therefore, when great variations of the comparatively small volumes. ations in the quantity and pressure of blast required are liable to arise, the highest efficiency would be obtained by having a number of blowers, always driving them up to their full capacity, and regulating the amount of blast by altering the number of blowers at work, instead of having one or two very large blowers and regulating the amount of blast by the speed of the blowers.

There appears to be little difference between the efficiency of fans and of Baker blowers when each works under favorable conditions as regards

quantity of work, and when each is in good order.

For a given speed of fan, any diminution in the size of the blast-orifice decreases the consumption of power and at the same time raises the pressure of the blast; but it increases the consumption of power per unit of orifice for a given pressure of blast. When the orifice has been reduced to the normal size for any given fan, further diminishing it causes but slight elevation of the blast pressure; and, when the orifice becomes consecutive small further diminishing its causes. paratively small, further diminishing it causes no sensible elevation of the blast pressure, which remains practically constant, even when the orifice is entirely closed.

Many of the failures of fans have been due to too low speed, to too small pulleys, to improper fastening of belts, or to the belts being too nearly vertical; in brief, to bad mechanical arrangement, rather than to inherent de-

fects in the principles of the machine.

If several fans are used, it is probably essential to high efficiency to provide a separate blast pipe for each (at least if the fans are of different size or speed), while any number of positive blowers may deliver into the same pipe without lowering their efficiency.

### Capacity of Fans and Blowers.

The following tables show the guaranteed air-supply and air-removal of leading forms of blowers and exhaust fans. The figures given are often exceeded in practice, especially when the blowers and fans are driven at higher speeds than stated. The ratings, particularly of the blowers, are below those generally given in catalogues, but it was the desire to present only conservative and assured practice. (A. R. Wolff on Ventilation.)

QUANTITY OF AIR SUPPLIED TO BUILDINGS BY BLOWERS OF VARIOUS SIZES.

eter of Wheel	Ordinary Number of Revs. per min.	Horse- power to Drive Blower,	Capacity cu, ft. per min. against a Pressure of 1 ounce per sq. in	Wheel	Ordinary Number of Revs. per min.	Horse- power to Drive Blower.	Capacity cu. ft. per min. against a Pressure of 1 ounce per sq. in.
4	350	6.	10,635	9	175	29	56,800
5	325	9.4	17,000	10	160	85.5	70,340
6	275	18.5	29,618	12	130	49.5	102,000
7	230	18.4	42,700	14	110	66	189,000
8	200	94	46,000	15	100	77	160,000

If the resistance exceeds the pressure of one ounce per square inch, of above table, the capacity of the blower will be correspondingly decreased, or power increased, and allowance for this must be made when the distributing ducts are small, of excessive length, and contain many contractions and bends.

QUANTITY OF AIR MOVED BY AN APPROVED FORM OF EXHAUST FAN, THE FAN DISCHARGING DIRECTLY FROM ROOM INTO THE ATMOSPHERE.

eter of Wheel	Ordinary Number of Revs. per min.	power	Capacity in cu. ft. per min.	eter of	Ordinary Number of Revs. per min.	power	Capacity in cu. ft. per min.
2.0	600	0.50	5,000	4.0	475	8.50	28,000
2.5	550	0.75	8,000	5.0	350	4.50	35,000
3.0	500	1.00	12,000	6.0	300	7.00	50,000
3.5	500	2.50	20,000	7.0	250	9.00	80,000

The capacity of exhaust fans here stated, and the horse-power to drive them, are for free exhaust from room into atmosphere. The capacity decreases and the horse-power increases materially as the resistance, resulting from lengths, smallness and bends of ducts, enters as a factor. The difference in pressures in the two tables is the main cause of variation in the respective records. The fan referred to in the second table could not be used with as high a resistance as one ounce per square inch, the rated resistance of the blowers.

#### CENTRIFUGAL FANS.

Pressures, Velocities, Volume of Air, Horse-Power Required, etc. (B. F. Sturtevant Co.)

ressure per sq. in. in ounces, from ¼ to 20 ounces; which includes the strongest blast found on any cupola in this country.	elocity in feet per minute of Air (at 50°F.) escaping into open air through any stated toole from any pipe or reservoir in which the Air is compressed.	ubic feet of Air per minute (at 1876 F.), which may be discharged through a proper shaped mouthpleee, the diameter of which must be 1.389 inches, the area. being 10 f. square inches.	stual H. P. contained in the blast discharged through the mouth-piece described in column 3.	*Cubic feet of Air per minute that may be discharged with one H. P., no allowance being made for friction in the blast-machine (whatever power that friction amounts to must be added). It makes no difference how the pressure is surent, the same as given in the first column.	Number of mouth-pieces described in column 3, required to discharge one H. P. of wind, no allowance being made for friction in the blast-machine.
<u>a</u>	Velocity (at 50 through the A	Cubic feet of 50° F.), which through a property the must be 1.3 being 1 or sq	Actual blast mouth umn 3	*	† Number scribed dischara allowan
			4	5	
14 12 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2584 .80 3657 .60 4482 .00 5175 .00 7338 .24 9006 42 10421 .58 11676 .00 12817 .08 13872 .72 14861 .16 15795 .06 16683 .51 17535 .50 18350 .34 19138 .26	17. 944 25. 400 31. 124 35. 93 50. 96 62. 54 72. 37 81. 08 89. 01 96. 34 103. 20 115. 86 121. 76 127. 43 132. 90	0.001224 0.003463 0.005659 0.0098 0.0098 0.0278 0.0789 0.1106 0.1456 0.1839 0.2251 0.2692 0.3160 0.3652 0.4170 0.4712	14662.76 7833.70 4889.11 8666.62 1833.00 1222.30 916.27 783.39 611.10 523.81 458.43 407.42 866.69 833.40 905.56 282.05	817.00 288.70 157.08 102.05 85.970 19.540 12.660 9.045 6.867 5.440 4.440 3.715 8.165 2.788 2.186 2.186
14 15 16 17 18 19	20640 48 21360 00 22060 80 22745 40 23415 00 24070 80	138.20 143.34 148.33 153.26 157.96 162.60 167.16	0.5277 0.5864 0.6473 0.7108 0.7754 0.8426 0.9118	201: 91 244: 44 229: 17 215: 77 203: 71 192: 98 183: 33	1.895 1.705 1.545 1.408 1.290 1.187 1.097

^{*} Always give the wind a good wide opening into the furnace or forge: see by this table how much more wind can be discharged with one H. P. at low pressure than at high.

low pressure than at high.

This table shows the great advantage of large tuyeres, large pipes, large blower, and slow speed when the nature of the work will admit.

Number of forges driven with 1.2 H. P. with Sturtevant blower.

# Engines, Fans, and Steam-coils combined for the Blower System of Heating. (Buffalo Forge Co.)

Size of Engine.	Height, in.	Speed of Engine, revs.	Capacity of Fan per Minute at 1 oz. Pressure.	Weight of Fan and Engine.	Floor-space of Fan and Engine. Inches.	Required H.P. to drive Fan.	Usual Size Heater in ft. of Pipe.	Required H.P. of Boller.
4 × 8 4 × 4 5 × 4 5 × 5 6 × 5 6 × 6 7 × 7 8 × 7 8 × 8 10 × 9	52 60 70 80 90 100 110 120 130 150 170	459 425 390 860 880 290 260 235 210 180 165	8,740 11,000 15,280 19,900 25,900 32,500 39,300 49,161 57,720 81,120 101,250	1,200 1,525 1,700 2,450 2,700 8,200 8,200 4,500 5,800 6,000	49 × 88 51 × 45 52 × 50 52 × 56 59 × 74 62 × 84 69 × 94 79 × 104 83 × 111 87 × 138 92 × 148	8.1 4.5 6 7.2 9.1 11 18.5 15 20 23	1,000 1,200 1,600 2,000 2,500 8,000 8,500 4,000 4,500 5,000 6,000	12 15 20 25 80 85 42 48 54 62 72

#### The Sturtevant Steel Pressure-blower, applied to Cupola Furnaces.

of the	in in.	de of cola. c Capa- er bour lbs.		last.		ed. ure in st.		Power Saved by Reducing the Speed and Pressure of Blast.					
No. of Blov	Diam, insid Cup	Melting city pe	No. of	Cub. f	_	Spee Pressu ounce Blas	Horse- Requi	Speed.	Oz. Press.	H. P	Speed.	Oz. Press.	H. P.
1	22	1200	*4	324	4135	5	0.5			-		13	
3	26	1900	5.7	507	3756	6	1	3445	5	0.8	3100	4	0,6
3	30	2880	8	768	3250	7	1.8	3000	6	1.5		5	1.1
4	35	4130	10.7	1105	3100	8	3	2900	7	2.5	2700	6	2.
5	40	6178	14.2	1646	2900	10	5.5	2560	8	4.	2390	7	3.8
6	46	8900	18.7	2375	2820	12	9.7	2550	10	7.4	2260	8	5.8
7	46 53	19500	24.3	3353	2600	14	16.	2380	12	12.7	2150	10	9.4
456789	60	16560	32	4416	2270	14	90	2100	12	16.7	1900	10	12.7
9	72	23800	43	6864	2100	16	35.	1960	14		1800	12	22.5
10	84	33300	60	8880	1815	16	48.	1700	14		1566		31 7

^{*}One square inch of blast is sufficient for one forge-fire, or 90 square inches area of cupola furnaces.

The speed given is regulated so as to give the pressure of blast stated in ounces per square inch.

The term "square inches of blast" refers to the area of a proper shaped

mouth-piece discharging blast into the open air. The melting capacity per hour in pounds of iron is made up from an average of tests on a few of the best cupolas found, and is reliable in cases where the cupolas are well constructed and driven with the greatest force

of blast given in the table.

For tables of the steel pressure blower as applied to forge-fires, and for sizes, etc., of other patterns of blowers and exhausters, see catalogue of B. F. Sturtevant Co.

(For other data concerning Cupolas, see Foundry Practice.)

#### Diameter of Blast-pipes for Pressure-blowers for Cupola Furnaces and Forges. (B. F. Sturtevant Co.)

The following table has been constructed on this basis, namely: Allowing a loss of pressure of 1/2 oz. in the process of transmission through any length of pipe of any size as a standard, the increased friction due to lengthening the pipe has been compensated for by an enlargement of the pipe sufficient to keep the loss still at 14 os. The quantities of air in the left-hand column of each division indicate the capacity of the given blower when working under pressures of 4, 8, 12, and 16 ozs. Thus a No. 6 Blower will force 2678 cubic ft. of air, at 8 oz. pressure, through 50 ft. of 1214-in. pipe, with a loss of 14 oz. pressure. If it is desired to force the air 300 ft. without an increased loss by friction, the pipe must be enlarged to 1714 in. diameter.

	I	BLOWE	R No. 1	ι,			1	BLOWE	a No.	в.	
f Air	Leng	ths of	Blast-	pipe in	Feet.	d Air	Leng	ths of	Blast-p	oipe in	Feet.
Feet of smitted minute.	50	100	150	200	300	Cubic Feet of L transmitted per minute.	50	100	150	200	300
Cubic Feet of transmitted per minute.		Di <b>a</b> me	ter in	inches		Cubic tran per		Diame	ter in	inches	
360 515 635 740	5% 6% 6% 714	614 716 734 84	634 734 816 9	714 814 9 916	77/8 87/8 95/8 101/4	1872 2678 3302 3848	10% 1214 1314 1418	121/8 14 151/6 161/8	1814 1516 1615 1712	137/8 16 171/4 181/2	15 1714 1876 2018
	Е	BLOWE	R No. S	).			I	BLOWE	R No.	7.	·
504 721 889 1036	614 714 776 838	716 814 9 916	734 9 934 1038	814 914 1038 11	876 1014 11 1134	2592 8708 4572 5828	12 1376 1518 16	1834 1576 1784 1814	15 1714 1878 20	1576 1814 1976 2114	1716 1954 2156 23
	В	BLOWER	No.	B.	<u>.                                    </u>	Blower No. 8.					
720 1030 1270 1480	71/4 83/4 91/6 95/8	814 914 1034 11	9 1086 1114 12	91/2 11 117/6 125/8	1014 1184 1284 1316	3812 4738 5842 6808	13¼ 15¼ 165% 175%	1516 1756 1916 2014	1614 1914 2054 2218	1716 2018 22 2336	1876 2176 2876 2876 2598
	E	BLOWE	R No.	4.			I	BLOWE	R No.	P.	
1008 1442 1778 2072	81/4 91/4 109/8 11	9% 10% 11% 11% 12%	1014 1176 1276 1334	10% 1216 1356 1416	1156 1336 1456 1516	4320 6180 7620 8880	1434 17 1836 1912	17 1916 2116 2216	1884 2114 2314 2414	1994 2214 2458 26	211/6 243/6 261/4 281/8
BLOWER No. 5.							1	BLOWE	R No.	10.	
1440 2060 2540 <b>2960</b>	91/6 11 117/6 129/4	10% 12% 13% 141%	11% 1334 147% 157%	1216 1416 1558 1658	13% 151% 167% 18	5760 8240 10160 11840	1614 1874 2056 2218	19 2134 2334 2514	2056 2334 2576 2714	2176 2516 2796 2998	2534 2714 2954 8114

Contributal Ventilators for Mines.—Of different appliances for ventilating mines various forms of centrifugal machines having proved their efficiency have now limost completely replaced all others. Most if not all of the machines in use in this country are of this class, being either open-periphery fans, or closed, with chimney and spiral casing, of a more or less modified Guibal type. The theory of such machines has been demonstrated by Mr. Daniel Murgue in "Theories and Practices of Centrifugal Ventilating Machines," translated by A. L. Stevenson, and is discussed in a paper by R. Van A. Norris, Trans. A. I. M. E. xx. 687. From this paper the following formules are taken: muke are taken:

Let a = area in sq. ft. of an orifice in a thin plate, of such area that its resistance to the passage of a given quantity of air equals the resistance of the mine;

o = orifice in a thin plate of such area that its resistance to the passage of a given quantity of air equals that of the machine:

Q = quantity of air passing in cubic feet per minute; V = velocity of air passing through a in feet per second;  $V_a = velocity$  of air passing through a in feet per second; h = head in feet air column to produce velocity V;

 $h_a =$ head in feet air-column to produce velocity  $V_a$ .

$$Q = 0.65a V; V = 1 \overline{2gh}; Q = 0.65a \sqrt{2gh};$$
  
 $a = \frac{Q}{0.65 \sqrt{2gh}} = \text{equivalent orifice of mine};$ 

or, reducing to water-gauge in inches and quantity in thousands of feet per minute.

$$\alpha = \frac{.403Q}{\sqrt{W.G.}}; \quad Q = 0.65oV_0; \quad V_0 = \sqrt{2gh_0}; \quad Q = 0.65o\sqrt{2gh_0};$$

$$o = \sqrt{\frac{Q^2}{0.65^3h_0^2g}} = \text{equivalent orifice of machine.}$$

The theoretical depression which can be produced by any centrifugal ventilator is double that due to its tangential speed. The formula

$$H=\frac{T^2}{2q}-\frac{V^2}{2q},$$

in which T is the tangential speed,  $\mathcal V$  the velocity of exit of the air from the space between the blades, and H the depression measured in feet of sincolumn, is an expression for the theoretical depression which can be produced by an uncovered ventilator; this reaches a maximum when the air leaves the blades without speed, that is, V=0, and  $H=T^2+2g$ .

Hence the theoretical depression which can be produced by any uncovered ventilator is equal to the height due to its tangential speed, and one halfthat which can be produced by a covered ventilator with expanding

chimney.

So long as the condition of the mine remains constant:

The volume produced by any ventilator varies directly as the speed of rotation.

The depression produced by any ventilator varies as the square of the speed of rotation.

For the same tangential speed with decreased resistance the quantity of air increases and the depression diminishes.

The following table shows a few results, selected from Mr. Norris's paper, giving the range of efficiency which may be expected under different circumstances. Details of these and other fans, with diagrams of the results are given in the paper.

Experiments on Mine-ventilating Fans.

Fan.	Revolutions per Minute, Fan.	Periphery Speed, Feet per Min.	Cubic Feet Air per Minute.	Cubic Feet Air per Revolution	Cubical Contents of Fan-blades.	Cub. Feet Air per 100 Feet Periph- ery Motion.	Water-gauge, Inches.	Horse - power in Air.	Indicated Horse- power of Engine,	Efficiency Engine and Fan.	Equivalent Ori- fice of Mine, Square Feet.
<b>A</b>	84 100 111 128	5517 6282 6978	236,684 336,862 347,396	2818 3369 8130 8204	8040 8040 8040	4290 5398 5002 5100	1.80 2.50 8.20 8.60	67.13 182.70 175.17 228.56	209.64	85.4 83.6	% e 80
B {	100	7727 6282	894,100 188,888	1889	8040 1520	3007	1.40	41.67	97.99	42.5	Av
c {	130 59	8167 8702	274,876 59,587	2114 1010	1520 1520	8366 1610	2.00 1.20	11.27		67.83	
~ }	83	5208	82,969	1000	1520 8096	1593	2.15	27.86	48.54	57.88	
<b>D</b> {	40 70	8140 5495	49,611 137,760	1240 1825	8096	1580 2507	0.87 2.55	6.80 55.35	13.82	49.2 82.07	82
· i	50	2749	147,282	2944	1522	5356	0.50	11.60	28.55	40.68	!
E₹	69	3793	205,761	2982	1522	5451	1.00	32.42	45.98	70.50	83
- (	96	5278	299,600	8121	1522	5676	2.15	101.50	120.64	84.10	
<b>F</b> {	200 200	7540	133,198	666	746	1767	8.35	70.30	102.79	68.40	26.9
F 3	200	7540 7540	180,809 209,150	904 1046	746 746	2398 2774	3.05 2.80	80.89	129.07	67.50	38.3 46.3
٠ ٢	10	785	28,896	2890	8022	3680	0.10	0.45	150.08 1.30	01.7U 195	40.3
1	20	1570	57,120	2856	8022	3687	0.20	1.80	8.70		ł
1	20 25 30	1962	66,640	2665	3022	3399	0.29	2.90	6.10		
- (	30	2355	73,080	2436	8022	8108	0.40	4.60	9.70		52
G-{	85	2747	94,080	2688	8022	3425	0.50	7.40	15.00		
գյ	40	8140	112,000	2800	3022	8567	0.70	12.80	24.90		l
- !	50 60	8925	132,700	2654	8022	8381	0.90 1.35	18.80	88.80		<b>!</b>
- 1	70	4710 5495	178,600 203,280	2898 2904	3022 3022	3686 8718	1.80	86.90	66.40 107.10	DD.	l
- 1	80	6280	222,320	2779	8022	8540	2.25	78 90	152.60	59. 59	)
	1 00	0000	,000	21.15		0010	~	1 10.50	100.00	,	<u>'</u>
	T	ype of	Fan.		Diam.	Wid	th. N	o. Inle	ts. D	iam. I	Inlets.
				20 ft		ft.	4		8 ft. 1	0 in.	
B. Same, only left hand running.				. 20	6		4		81	0	
	luibal.	· · · · · · ·	• • • • • • • • •		20	6		2		§ 1	0
<u>D</u> . 9	duibal.	• • • • • • •	• • • • • • • •	• • • • • • •	. 25	8		1	1	1	6

An examination of the detailed results of each test in Mr. Norris's table shows a mass of contradictions from which it is exceedingly difficult to draw any satisfactory conclusions. The following, he states, appear to be more or less warranted by some of the figures:

1. Influence of the Condition of the Airroays on the Fan.—Mines with varying equivalent orifices give air per 100 feet periphery-motion of fan, within limits as follows, the quantity depending on the resistance of the mine:

Equivalent Orifice.	Cu. Ft. Air per 100 ft. Periphery- speed.	Aver- age.	Equivalent Orifice.	Cu. Ft. Air per 100 ft. Periphery- speed.	Aver- age.
Under 20 sq. ft	t. 1100 to 1700	1300	60 to 70	8300 to 5100	4000
20 to 80	1800 to 1800	1600	70 to 80	4000 to 4700	4400
80 to 40	1500 to 2500	2100	80 to 90	8000 to 5600	4800
40 to 50	2300 to 8500	2700	90 to 100		
50 to 60	2700 to 4800	8500	100 to 114	5200 to 6200	8700

The influence of the mine on the efficiency of the fan does not seem to be very clear. Eight fans, with equivalent orifices over 50 square feet, give

efficien. Acs over 70%; four, with smaller equivalent mine-orifices, give about the same figures; while, on the contrary, six fans, with equivalent orifices of over 50 square feet, give lower efficiencies, as do ten fans, all drawing from mines with small equivalent orifices.

It would seem that, on the whole, large airways tend to assist somewhat in attaining large efficiency.

2. Influence of the Diameter of the Fan .- This seems to be practically nil, the only advantage of large fans being in their greater width and the lower speed required of the engines.

3. Influence of the Width of a Fun.—This appears to be small as regards the efficiency of the machine; but the wider fans are, as a rule, exhausting

4. Influence of Shape of Blades.—This appears, within reasonable limits, to be practically nil. Thus, six fans with tips of blades curved forward, three fans with flat blades, and one with blades curved back to a tangent with the circumference, all give very high efficiencies- over 70%.

5. Influence of the Shape of the Spiral Casing.—This appears to be considerable. The shapes of spiral casing in use fall into two classes, the first appears to be considerable.

second a circular casing reaching around three quarters of the circumterence of the fan, with a short spiral reaching to the evasée chimney.

Fans having the first form of casing appear to give in almost every case large efficiencies.

Fans that have a spiral belonging to the first class, but very much contracted, give only medium efficiencies. It seems probable that the proper shape of spiral casing would be one of such form that the air between each pair of blades could constantly and freely discharge into the space between the fan and casing, the whole being swept along to the evasee chimney. This would require a spiral beginning near the point of cut-off, enlarging by gradually increasing increments to allow for the slowing of the air caused by its friction against the casing, and reaching the chimney with an area such that the air could make its exit with its then existing speed—somewhat leas

than the periphery-speed of the fan.

6. Influence of the Shutter. -This certainly appears to be an advantage, as by it the exit area can be regulated to suit the varying quantity of air given by the fan, and in this way re-entries can be prevented. It is not uncommon to find shutterless fans into the chimneys of which bits of paper may be dropped, which are drawn into the fan, make the circuit, and are again thrown out. This peculiarity has not been noticed with fans provided with

Influence of the Speed at which a Fan is Run.—It is noticeable that most of the fans giving high efficiency were running at a rather high periphery velocity. The best speed seems to be between 5000 and 6000 feet per minute.

The fans appear to reach a maximum efficiency at somewhere about the speed given, and to decrease rapidly in efficiency when this maximum point

is passed.
In discussion of Mr. Norris's paper, Mr. A. H. Storrs says: From the "cubic feet per revolution" and "cubical contents of fan-blades," as given in the table, we find that the enclosed fans empty themselves from one half to table, we find that the enclosed fans empty themselves from one half to twice per revolution, while the open fans are emptied from one and three-quarter to nearly three times. This for fans of both types, on mines covering the same range of equivalent orifices. One open fan, on a very large orifice, was emptied nearly four times, while a closed fan, on a still larger orifice, only shows one and one-half times. For the open fans the "cubic feet per 100 ft. motion" is greater, in proportion to the fan width and equivalent orifice, than for the enclosed type. Notwithstanding this apparently free discharge of the open fans, they show very low efficiencies.

As illustrating the very large capacity of centrifugal fans to pass air, if the conditions of the mine are made favorable, a 16-ft. diam. fan, 4 ft. 6 in wide at 130 revolutions nassed 360,000 cu. ft. ner min. and another, of same

wide, at 180 revolutions, passed 360,000 cu. ft. per min., and another, of same diameter, but slightly wider and with larger intake circles, passed 500,000 cu.

the the water gauge in both instances being about 1/2 in.

T. D. Jones says: The efficiency reported in some cases by Mr. Norris is larger than I have ever been able to determine by experiment. My own experiments, recorded in the Pennsylvania Mine Inspectors' Reports from 1875 to 1881, did not show more than 60% to 65%,

#### DISK FANS.

Experiments made with a Blackman Disk Fan, 4 ft. diam., by Geo. A. Suter, to determine the volumes of air delivered under various conditions, and the power required; with calculations of efficiency and ratio of increase of power to increase of velocity, by G. H. Babcock. (Trans. A. S. M. E., vii. 547):

Rev. per min.	Cu. ft. of Air delivered per min.,	Horse-power, HP.	Water- gauge, in.,	Ratio of Increase of Speed.	Ratio of In- crease of Delivery.	Ratio of Increase of Power.	Exponent x, HP \alpha V.	Exponent $y$ , $h \propto P^y$ .	Efficiency of Fan.
350 440 534 612	25,797 82,575 41,929 47,756 For	0.65 2.29 4.42 7.41 series		1.257 1.186 1.146 1.749	1.262 1.287 1.139 1.851	8.523 1.848 1.677 11.140	5.4 2.4 8.97 4.		1.682 .9553 1.062 .9358
340 453 536 627	20,372 26,660 81,649 86,548 For	0.76 1.99 3.86 6.47 series		1.832 1.183 1.167 1.761	1.308 1.187 1.155 1.794	2.618 1.940 1.676 8.513	3.55 3.86 8.59 3.63		.7110 .6068 .5205 .4802
840 430 534 570	9,983 18,017 17,018 18,649 For	1.12 3.17 6.07 8.46 series	0.28 0.47 0.75 0.87	1.265 1.242 1.068 1.676	1.804 1.307 1.096 1.704	2.837 1.915 1.894 7.554	3.98 2.25 3.68 8.24	1.95 1.74 1.60 1.81	.3939 .3046 .3319 .8027
830 437 516	8,399 10,071 11,157 For	1.31 3.27 6.00 series	0.26 0.45 0.75	1.324 1.181 1.563	1.199 1.108 1.329	8.142 1.457 4.580	6.31 3.66 5.85	3.06 4.96 3.72	.2681 .2188 .2202

Nature of the Experiments.-First Series: Drawing air through 80 ft. of 48-in. diam. pipe on inlet side of the fan. Second Series: Forcing air through 30 ft. of 48-in. diam. pipe on outlet side

of the fan.

Third Series: Drawing air through 30 ft. of 48-in, pipe on inlet side of the fan—the pipe being obstructed by a diaphragm of cheese-cloth.

Fourth Series: Forcing air through 80 ft. of 48-in. pipe on outlet side of fan

the pipe being obstructed by a diaphragm of cheese cloth.

Mr. Babcock says concerning these experiments: The first four experiments are evidently the subject of some error, because the efficiency is such as to prove on an average that the fan was a source of power sufficient to overcome all losses and help drive the engine besides. The second series is less questionable, but still the efficiency in the first two experiments is larger than might be expected. In the third and fourth series the resistance of the cheese cloth in the pipe reduces the efficiency largely, as would be expected. In this case the value has been calculated from the height equivalent to the water-pressure, rather than the actual velocity of the air.

This record of experiments made with the disk fan shows that this kind of fan is not adapted for use where there is any material resistance to the flow of the air. In the centrifugal fan the power used is nearly proportioned to the amount of air moved under a given head, while in this fan the power required for the same number of revolutions of the fan increases very matequired for the same number of revolutions of the fan increases very materially with the resistance, nowithstanding the quantity of air moved is at the same time considerably reduced. In fact, from the inspection of the third and fourth series of tests, it would appear that the power required is very nearly the same for a given pressure, whether more or less air be in motion. It would seem that the main advantage, if any, of the disk fan over the centrifugal fan for slight resistances consists in the fact that the delivery is the contraction of the disk fan over the central contraction. full area of the disk, while with centrifugal fans intended to move the same quantity of air the opening is much smaller.

It will be seen by columns 8 and 9 of the table that the power used increased much more rapidly than the cube of the velocity, as in centrifugal fans. The different experiments do not agree with each other, but a general average may be assumed as about the cube root of the eleventh power.

Cubic Feet of Air removed by Exhaust Disk-wheel per minute. (Buffalo Forge Co.)

Diameter of Wheel.										
24 Inch.	30 Inch.	36 Inch.	42 Inch.	48 Inch.	54 Inch.	60 Inch.	72 Inch.			
Amount of Air in cubic feet per minute.										
				4,245	6,059	.8,387	14,936			
			K 607	0,405			22,926 31,267			
	2 696						39,956			
	8.338						48,996			
2,014	4,042	6,621	10,233	16,315	23,147	32,565	58,386			
2,875	4,808	7,755	11,915	19,119	27,048	87,997	67.985			
							76,900			
		11,430								
						1 '				
5,221		15,776								
	1,307 1,684 2,014 2,875 2,770 3,197 3,684 4,148 4,671	1.307 2.696 1.684 8.338 2.014 4.042 2.875 4.608 2.770 5.636 3.197 6.516 3.656 7.446 4.148 8.426	24 Inch. 30 Inch. 36 Inch.  Amount of  1.307 2.696 4.541 1.684 3.338 5.560 2.014 4.012 6.621 2.875 4.806 7.755 2.770 5.636 8.950 3.197 6.516 10.210 3.656 7.446 11,430 4.148 8.425 12,816 4.671 9.456 14,265	24 Inch. 30 Inch. 36 Inch. 42 Inch.  Amount of Air in cu  3,594 5,607 1,397 2,696 4,541 7,079 1,684 3,338 5,550 8,621 2,014 4,042 6,621 10,233 2,875 4,808 7,755 11,915 2,770 5,636 8,950 13,967 3,197 6,516 10,210 15,489 3,656 7,446 11,490 17,381 4,148 8,426 12,816 19,345 4,671 9,456 14,265 21,375	24 Inch. 30 Inch. 36 Inch. 42 Inch. 48 Inch.  Amount of Air in cubic feet	24 Inch. 30 Inch. 36 Inch. 42 Inch. 48 Inch. 54 Inch.  Amount of Air in cubic feet per min	24 Inch. 30 Inch. 36 Inch. 42 Inch. 48 Inch. 54 Inch. 60 Inch.  Amount of Air in cubic feet per minute.			

Referency of Disk Pans.—Prof. A. B. W. Kennedy (Industries, Jan. 17, 1890) made a series of tests on two disk fans, 2 and 3 ft. diameter, known as the Verity Silent Air-propeller. The principal results and conclusions are condensed below.

In each case the efficiency of the fan, that is, the quantity of air delivered per effective horse-power, increases very rapidly as the speed diminishes to that lower speeds are much more economical than higher ones. On the other hand, as the quantity of air delivered per revolution is very nearly constant, the actual useful work done by the fan increases almost directly with its speed. Comparing the large and small fans with about the same air delivery, the former (running at a much lower speed, of course) is much the more economical. Comparing the two fans running at the same speed, however, the smaller fan is very much the more economical. The delivery of air per revolution of fan is very nearly directly proportional to the area of the fan's diameter.

The air delivered per minute by the 3-ft. fan is nearly 12.5R cubic feet (R being the number of revolutions made by the fan per minute). For the 2-ft. fan the quantity is 5.7R cubic feet. For either of these or any other similar fans of which the area is A square feet, the delivery will be about 1.8AR cubic feet. Of course any change in the pitch of the blades might entirely change these figures.

The net H.P. taken up is not far from proportional to the square of the number of revolutions above 100 per minute. Thus for the 3-ft. fan the net H.P. is  $\frac{(R-100)^2}{200,000}$ , while for the 2-ft. fan the net H.P. is  $\frac{(R-100)^2}{1,000,000}$ .

The denominators of these two fractions are very nearly proportional inversely to the square of the fan areas or the fourth power of the fan diameters. The net H.P. required to drive a fan of diameter D feet or area A square feet, at a speed of R revolutions per minute, will therefore be approximately  $\frac{D^d(R-100)^2}{17,000,000}$  or  $\frac{A^2(R-100)^2}{10,400,000}$ .

The 2-ft. fan was noiseless at all speeds. The 3-ft. fan was also noiseless up to over 450 revolutions per minute,

		`					•
			ropelle ft. dia			ropelle ft. dia	
Sand of the manufactions now mix		750	676	577	576	459	373
Speed of fan, revolutions per mir Net H.P. to drive fan and belt	uu.e.	0.42					
Cubic feet of air per minute		4,188					
Ween releaser of air in 2 ft flue	Poot	4,100	0,000	0,710	1,200	3,000	3,310
Mean velocity of air in 3-ft. flue,	1001	598	543	48	1,046	820	632
mean velocity of air in flue,		350	340	404	1,020	1 0	000
diameter as fan		1,320	1,220	1 00	s <b></b> .		1
On ft of air nor min nor offective	H D	0.000	11 000	15,000	7 950	10,070	19 000
Cu.ft.of air per min.per effective	n.F.	1.77	1.81				
Motion given to air per rev. of fa	11, 10.	5.58				12.6	
Cubic feet of air per rev. of fan	• • • • • • •	0.00	3.00	1 5.80	16.0	12.0	12.0
POSITIVE ROTARY	BLC	WE	RS.	(P. H	. & F.	M. Roo	ts.)
Size number 1	4 16	. 1	2	8	4	5 6	3 7
Cubic feet per revolution	4 12	3	5	š		2Š 4	
	ð 25ð	225				25 100	
Revolutions per initiate, ) ,		to	to			o to	
Smith fires						75 150	
. i	2 6		16	24		7 70	
Furnishes blast for Smith ) +		to	to			o to	
	4 8		20	30		37 100	
Demolaritana man milmuta fon		275				70 150	
Revolutions per infinite for		to	to			o to	
cupola, melting iron)		875				50 200	
Gina of sumals implies in (::		18	24	80		12 50	
Size of cupota, fuches, in-		to	to			o to	
side lining		24	30	36			์ 2-55 ห
\		136	216		19%	8 121	
Will melt iron per hour, tons ?	• • • • •	to	to			o to	
ment ment per neur, tene		2	8			12 16%	
Horse-power required	i 2		516	43/6 8 1:	116 17	2	7 40

8 1114 1734 The amount of iron melted is based on 30,000 cubic feet of air per ton of iron. The horse-power is for maximum speed and a pressure of 1/4 pound, ordinary cupola pressure. (See also Foundry Practice.)

#### BLOWING-ENGINES.

# Blast-furnace Blowing-engines of the Variable Puppet-valve Cut-off Type. (Philada. Engineering Works.)

Diameter of Steam- cylinder.	Diameter of Blowing- cylinder.	Stroke.	Shop Weights. approxi- mate.		Displace- ment of Piston per minute at ordinary speed.	Maximum Blast-pres- sure for Reg- ular Work.
in.	in, 66	in. 36	pounds. 80,000	60	cubic feet. 8,550	lbs. per sq.in. 10
28 28	66	48	90,000	50	9,500	10
32	72	48	106,000	50	11,308	18
36	72	48	130,000	50	11,308	15
86	84	48	140.000	50	15,392	ii
36	84	60	165.000	40	15,892	ii
42	84	48	165,000	50	15,392	15
42	84	60	190,000	40	15,392	15
42	90	48	170,000	5ŏ	17,700	18
49	90	60	195,000	40	17,700	18
48	96	48	220,000	50	20,000	15
42 48 48	96	60	280,000	40	20,000	15

The blowing-engines of the country are usually very wasteful of steam, by reason of wire-drawing valve-gear, and especially of slow piston-speed. The latter is perhaps the greatest and the least recognized of all steamengine defects. Almost any expense to increase the economy of blowing-engines is warranted. (A. L. Holley, Trans. A. I. M. E., vol. iv. p. 81.)

The calculations of power, capacity, etc., of blowing-engines are the same as those for air-compressors. They are built without any provision for cooling the air during compression. About 400 feet per minute is the usual piston-speed for recent forms of engines, but with positive air-valves, which have been introduced to some extent, this speed may be increased. The efficiency of the engine, that is, the ratio of the I.H.P. of the air-cylinder to that of the steam-cylinder, is usually taken at 30 per cent, the losses by friction, leakage, etc., being taken at 10 per cent.

#### STRAM-JET BLOWER AND EXHAUSTER.

A blower and exhauster is made by L. Schutte & Co., Philadelphia, on the principle of the steam-jet ejector. The following is a table of capacities:

Size	Quantity of Air per hour	Diame Pipes in		Size No.	Quantity of Air per hour	Diameter of Pipes in inches.		
No.	cubic feet.	Steam.	Air.	No.	cubic feet.	Steam.	Air.	
000 00 0 1 2 8 4	1,000 2,000 4,000 6,000 12,000 18,000 24,000	1/4 1/4 11/4 11/4 11/2 2	1 11/4 2 21/4 3 31/4	5 6 7 8 9	30,000 36,000 42,000 48,000 54,000 60,000	214 214 8 8 314 814	5 6 7 7 8	

The admissible vacuum and counter pressure, for which the apparatus is constructed, is up to a rarefaction of 20 inches of mercury, and a counterpressure up to one sixth of the steam-pressure.

The table of capacities is based on a steam pressure of about 60 lbs., and a counter-pressure of about 8 lbs. With an increase of steam-pressure or decrease of counter-pressure the capacity will largely increase.

Another steam-jet blower is used for boiler-firing, ventilation, and similar

Another steam-jet blower is used for boiler-firing, ventilation, and similar purposes where a low counter-pressure or rarefaction meets the requirements.

The volumes as given in the following table of capacities are under the supposition of a steam-pressure of 45 lbs. and a counter-pressure of, say, 2 inches of water:

Size	feet of of		Diameter in inches of—		Size No.	Cubic feet of Air de-	Diam. of Steam-	Diameter in inches of—	
No.	delivered per hour.	pipe in inches.	Inlet	Disch.		livered per hour	pipe in inches.		Disch.
00 0 1 2	6,000 12,000 30,000 60,000	% 1/2 1/3	4 5 8 11	8 4 6 8	4 6 8 10	250,000 500,000 1,000,000 2,000,000	11/4 11/6	17 24 32 42	14 20 27 36
8	125,000	1 1	14	10			!		<u> </u>

The Steam-jet as a Means for Ventilation.—Between 1810 and 1850 the steam-jet was employed to a considerable extent for ventilating English collieries, and in 1852 a committee of the House of Commons reported that it was the most powerful and at the same time the cheapest method for the ventilation of mines; but experiments made shortly afterwards proved that this opinion was erroneous, and that furnace ventilation was less than half as expensive, and in consequence the jet was soon abandoned as a permanent method of ventilation.

For an account of these experiments see Colliery Engineer, Feb. 1890.

For an account of these experiments see Colliery Engineer, Feb. 1890. The jet, however, is sometimes advantageously used as a substitute, for instance, in the case of a fan standing for repairs, or after an explosion, when the furnace may not be kept going, or in the case of the fan having

been rendered useless.

### HEATING AND VENTILATION.

**Ventilation.** (A. R. Wolff, Stevens Indicator, April, 1890.)—The popular impression that the impure air falls to the bottom of a crowded room is erroneous. There is a constant mingling of the fresh air admitted with the impure air due to the law of diffusion of gases, to difference of temperature, etc. The process of ventilation is one of dilution of the impure pir by the fresh, and a room is properly ventilated in the opinion of the hygienists when the dilution is such that the carbonic acid in the air does not exceederom 6 to 8 parts by volume in 10,000. Pure country air contains about 4 parts CO₂ in 10,000, and badly-ventilated quarters as high as 80 parts. An ordinary man exhales 0.6 of a cubic foot of CO₂ per hour. New York gas gives out 0.75 of a cubic foot of CO₂ for each cubic foot of gas burnt. An ordinary lamp gives out 1 cu. ft. of CO₂ per hour. An ordinary candle gives out 0.8 cu. ft. per hour. One ordinary gaslight equals in vitiating effect about 5½ men, an ordinary lamp 1% men, and an ordinary candle ½ man.

To determine the quantity of air to be supplied to the inmates of an unlighted room, to dilute the air to a desired standard of purity, we can establish equations as follows:

Let v = cubic feet of fresh air to be supplied per hour;  $r = \text{cubic feet of CO}_2$  in each 10,000 cu. ft. of the entering air;

R= cubic feet of CO₂ which each 10,000 cu. ft. of the air in the room may contain for proper health conditions; n = number of persons in the room; .6 = cubic feet of CO₂ exhaled by one man per hour.

Then  $\frac{v \times r}{10,000} + .6n$  equals cubic feet of CO₂ communicated to the room during one hour.

This value divided by v and multiplied by 10,000 gives the proportion of CO2 in 10,000 parts of the air in the room, and this should equal R, the standard of purity desired. Therefore

$$R = \frac{10,000 \left[ \frac{v \times r}{10,000} + .6n \right]}{v}, \text{ or } v = \frac{6000n}{R - r}. \quad . \quad . \quad . \quad . \quad (1)$$

If we place r at 4 and R at 6, 
$$v = \frac{6000}{6-4}n = 3000n$$
, . . . . . . . (2)

or the quantity of air to be supplied per person is 3000 cubic feet per hour. If the original air in the room is of the purity of external air, and the cubic contents of the room is equal to 100 cu. ft. per inmate, only 3000 - 100 = 2900 cu. ft. of fresh air from without will have to be supplied the first hour to keep the air within the standard purity of 6 parts of CO₂ in 10,000. If the cubic contents of the room equals 200 cu. ft. per inmate, only 3000 - 2000 = 2800 cu. ft. will have to be supplied the first hour to keep the air within the standard purity and so on

standard purity, and so on. Again, if we only desire to maintain a standard of purity of 8 parts of carbonic acid in 10,000, equation (1) gives as the required air-supply per hour

$$v = \frac{6000}{2 - 4}n = 1500n$$
, or 1500 cu. ft. of fresh air per inmate per hour.

Cubic feet of air containing 4 parts of carbonic acid in 10,000 necessary per person per hour to keep the air in room at the composition of

If the original air in the room is of purity of external atmosphere (4 parts of carbonic acid in 10,000), the amount of air to be supplied the first hour, for given cubic spaces per inmate, to have given standards of purity not exceeded at the end of the hour is obtained from the following table:

Cubic Feet	Proportion of Carbonic Acid in 10,000 Parts of the Air, not to be Exceeded at End of Hour.										
Space ia Room per	6	7	8	9	10	15	20				
Individual,	Cubic Fe	et of Air, o 10,000,	of Composito be Supp				Acid in				
100	2900	1900	1400	1100	900	445	275				
200	2800	1800	1300	1000	800	845	175				
800	2700	1700	1200	900	700	245	75				
400	2600	1600	1100	800	600	145	None				
500	2500	1500	1000	700	500	45	. <b></b>				
600	2400	1400	900	600	400	None					
709	2360	1300	800	500	800						
800	2200	1200	700	400	200						
900	2100	1100	600	800	100						
1000	2000	1000	500	200	None						
1500	1500	500	None	None			1				
			1 1	l	ı	i	1				
2000 2500	1000 500	None	** ** ***								

It is exceptional that systematic ventilation supplies the 3000 cubic feet per inmate per hour, which adequate health considerations demand. Large auditoriums in which the cubic space per individual is great, and in which the atmosphere is thoroughly fresh before the rooms are occupied, and the occupancy is of two or three hours' duration, the systematic air supply may be reduced, and 2000 to 2500 cubic feet per inmate per hour is a satisfactory

Hospitals where, on account of unhealthy excretions of various kinds, the air-dilution must be largest, an air-supply of from 4000 to 6000 cubic feet per inmate per hour should be provided, and this is actually secured in some hospitals. A report dated March 15, 1882, by a commission appointed to examine the public schools of the District of Columbia, says:

"In each class-room not less than 15 square feet of floor-space should be allotted to each pupil. In each class-room the window-space should not be less than one fourth the floor-space, and the distance of desk most remote from the window should not be more than one and a half times the height of the top of the window from the floor. The height of the class-room should never exceed 14 feet. The provisions for ventilation should be such as to provide for each person in a class-room not less than 30 cubic feet of fresh air per minute (1800 per hour), which amount must be introduced and thoroughly distributed without creating unpleasant draughts, or causing any two parts of the room to differ in temperature more than 2° Fahr., or the maximum temperature to exceed 70° Fahr.

When the air enters at or near the floor, it is desirable that the velocity of inlet should not exceed 2 feet per second, which means larger sizes of register openings and flues than are usually obtainable, and much higher velocities of inlet than two feet per second are the rule in practice.

velocity of current into vent-flues can safely be as high as 6 or even 10 feet per second, without being disagreeably perceptible. The entrance of fresh air into a room is co-incident with, or dependent on, the removal of an equal amount of air from the room. The ordinary means of removal is the vertical vent-duct, rising to the top of the building. Sometimes reliance for the production of the current in this vent-duct is placed solely on the difference of temperature of the air in the room and that of the external atmosphere; sometimes a steam coil is placed within the flue near its bottom to heat the air within the duct; sometimes steam pipes (risers and returns) run up the duct performing the same functions; or steam jets within the flue, or exhaust fans, driven by steam or electric power, act directly as exhausters; sometimes the heating of the air in the flue is accomplished by gas-jets.

The draft of such a duct is caused by the difference of weight of the

heated air in the duct, and a column of equal height and cross-sectional area of weight of the external air.

Let d = density, or weight in pounds, of a cubic foot of the external air. Let  $d_1 =$  density, or weight in pounds, of a cubic foot of the heated air within the duct.

Let h =vertical height, in feet, of the vent-duct.

 $h(d-d_1)$  = the pressure, in pounds per square foot, with which the air is forced into and out of the vent-duct.

Or, if t = absolute temperature of external air, and  $t_1 =$  absolute temperature of the air in vent-duct in the form, then the pressure equals

$$\frac{h(t_1-t)}{t}. \ldots \ldots \ldots \ldots (4)$$

The theoretical velocity, in feet per second, with which the air would travels through the vent-duct under this pressure is

The actual velocity will be considerably less than this, on account of loss due to friction. This friction will vary with the form and cross-sectional area of the vent duct and its connections, and with the degree of smoothness of its interior surface. On this account, as well as to prevent leakage of air through crevices in the wall, tin lining of vent-flues is desirable.

The loss by friction may be estimated at approximately 50%, and so we find for the actual velocity of the air as it flows through the vent-duct:

$$v=rac{1}{2}\sqrt{2ghrac{(t_1-t)}{t}},$$
 or, approximately,  $v=4\sqrt{hrac{(t_1-t)}{t}}$  . . (6)

If V= velocity of air in vent-duct, in feet per minute, and the external air be at 32° Fahr, since the absolute temperature on Fahrenheit scale equals thermometric temperature plus 459.4,

$$V = 240 \sqrt{h \frac{(t_1 - t)}{491.4}}, \dots (7)$$

from which has been computed the following table:

Quantity of Air, in Cubic Feet, Discharged per Minute through a Ventilating Duct, of which the Cross-sectional Area is One Square Foot (the External Temperature of Air being 32° Fahr.).

Height of Vent-duct in	Excess of Temperature of Air in Vent-duct above that of External Air.									
feet.	50	100	15°	20°	250	80°	50°	1000	150°	
10	77	108	133	153	171	188	249	842	419	
15	94	133	162	188	210	230	297	419	514	
20	108	158	188	217	242	265	842	484	598	
25	121	171	210	242	271	297	888	541	668	
30	138	188	230	265	297	825	419	598	726	
85	148	203	248	286	320	351	458	640	784	
40	158	217	265	306	842	375	484	656	888	
45	162	280	282	825	363	896	514	476	889	
50	171	242	297	842	883	419	541	278	937	

Multiplying the figures in above table by 60 gives the cubic feet of air discharged per hour per square foot of cross-section of vent-duct. Knowing

the cross-sectional area of vent-ducts we can find the total discharge; or for a desired air-removal, we can proportion the cross-sectional area of

for a desired air-removal, we can proportion the cross-sectional area of vent-ducts required.

Artificial Cooling of Air for Ventilation. (Engineering News, July 7, 1892.)—A pound of coal used to make steam for a fairly efficient refrigerating-machine can produce an actual cooling effect equal to that produced by the melting of 16 to 46 lbs. of ice, the amount varying with the conditions of working. Or, 835 heat-units per lb. of coal converted into work in the refrigerating plant (at the rate of 3 lbs. coal per horse-power hour) will abstract 2275 to 6345 heat-units of heat from the refrigerated body. If we allow 2000 cu. ft. of fresh air per hour per person as sufficient for fair ventilation, with the air at an initial temperature of 80° F., its weight per cubic foot will be .0736 lb.; hence the hourly supply per person will weigh 2000 × .0735 lb. = 147.2 lbs. To cool this 10°, the specific heat of air being 0.238, will require the abstraction of 147.2 × 0.286 × 10 = 350 heat-units per person per hour.

air being 0.228, will require the abstraction of  $147.2 \times 0.288 \times 10 = 350$  heatunits per person per hour. Taking the figures given for the refrigerating effect per pound of coal as above stated, and the required abstraction of 350 heat-units per person per hour to have a satisfactory cooling effect, the refrigeration obtained from a pound of coal will produce this cooling effect for 2275 + 350 = 94, hours with the least efficient working, or 6545 + 350 = 18. Fours with the most efficient working. With ice at 35 per ton, Mr. Wolff computes the cost of cooling with ice at about \$5 per hour per thousand persons, and concludes that this is too expensive for any general use. With mechanical refrigeration, however, if we assume 10 hours' cooling per person per pound of coal as a fair practical service in regular work, we have an expense of only 15 cts. per thousand persons per hour, coal being estimated at \$3 per short ton. This is for fuel alone, and the various items of oil, attendance, interest, and depreciation on the plant, etc., must be considered in making up the actual total cost of the plant, etc., must be considered in making up the actual total cost of mechanical refrigeration.

Mine-ventilation—Friction of Air in Underground Passages. -In ventilating a mine or other underground passage the resistance sages.—In venilating a nine or other underground passage the resistance to be overcome is, according to most writers on the subject, proportional to the extent of the frictional surface exposed; that is, to the product lo of the length of the gangway by its perimeter, to the density of the air in circulation, to the square of its average speed, v, and lastly to a coefficient k, whose numerical value varies according to the nature of the sides of the gangway

and the irregularities of its course.

The formula for the loss of head, neglecting the variation in density as unimportant, is  $p = \frac{kev^2}{n}$ , in which p = loss of pressure in pounds per square

foot, s =square feet of rubbing-surface exposed to the air, v the velocity of note, s = square rest of rubbing surface exposed to the air, v the velocity of the air in feet per minute, a the area of the passage in square feet, and k the coefficient of friction. W. Fairley, in Colliery Engineer, Oct. and Nov. 1828, gives the following formulæ for all the quantities involved, using the same notation as the above, with these additions: h = horse-power of ventilation; l = length of air-channel; a = perimeter of air-channel; q = quantity of air circulating in cubic feet per minute; n = units of work, in foot-pounds, applied to circulate the air: w = water-gauge in inches. Then,

1. 
$$a = \frac{ksv^2}{p} = \frac{ksv^3q}{u} = \frac{ksv^3}{pv} = \frac{u}{pv} = \frac{q}{v}$$
.  
2.  $h = \frac{u}{33,000} = \frac{qp}{33,000} = \frac{5.2qw}{33,000}$ .  
3.  $k = \frac{pa}{sv^2} = \frac{u}{sv^3} = \frac{p}{sv^2 + a} = \frac{5.2w}{sv^3 + a}$ .  
4.  $l = \frac{s}{o} = \frac{pa}{kv^2o}$ .  
5.  $o = \frac{s}{l} = \frac{pa}{kv^2l}$ .  
6.  $p = \frac{ksv^2}{u} = \frac{u}{q} = 5.2w = \left(\sqrt{\frac{u}{ks}}\right)^2 \frac{ks}{a} = \frac{ksv^8}{q} = \frac{u}{av}$ .

7. 
$$pa = ksv^{3} = \left(\sqrt[4]{\frac{u}{ks}}\right)^{3}ks = \frac{u}{v}; \quad pa^{3} = ksq^{9}.$$
8.  $q = va = \frac{u}{p} = \frac{ksv^{3}}{p} = \sqrt{\frac{pa}{ks}}a = \sqrt{\frac{u}{ks}}a.$ 
9.  $s = \frac{pa}{kv^{2}} = \frac{qp}{kv^{3}} = \frac{vpa}{kv^{3}} = lo.$ 
10.  $u = qp = vpa = \frac{ksv^{3}q}{a} = ksv^{3} = 5.2qw = 83,000k.$ 
11.  $v = \frac{u}{pa} = \frac{q}{a} = \sqrt[3]{\frac{u}{ks}} = \sqrt[3]{\frac{qp}{ks}} = \sqrt{\frac{pa}{ks}}.$ 
12.  $v^{2} = \frac{pa}{ks} = \left(\sqrt[3]{\frac{u}{ks}}\right)^{2}.$ 
13.  $v^{3} = \frac{u}{ks} = \frac{qp}{ks} = \frac{vpa}{ks}.$ 

To find the quantity of air with a given horse-power and efficiency (e) of engine:

 $q = \frac{h \times 33,000 \times e}{n}.$ 

14.  $w = \frac{p}{8.9} = \frac{ksv^3}{8.9c}$ 

The value of k, the coefficient of friction, as stated, varies according to the nature of the sides of the gangway. Widely divergent values have been given by different authorities (see Colliery Engineer, Nov. 1698), the most generally accepted one until recently being probably that of J. J. Atkinson, .000000217, which is the pressure per square foot in decimals of a pound for each square foot of rubbing-surface and a velocity of one foot per minute. Mr. Fairley, in his "Theory and Practice of Ventilating Coal-minea," gives a value less than half of Atkinson's, or .0000001; and recent experiments by D. Murgue show that even this value is high under most conditions. Murgue's results are given in his paper on Experimental Investigations in the Loss of Head of Air currents in Underground Workings, Trans. A. I. M. E., 1893. vol. xxiii, 63. His coefficients are given in the following table, as determined in twelve experiments:

		Coemcie	nt of Loss of
		Head	by Friction.
		French.	British.
	(Straight, normal section	.00092	.000,000,00486
Rock.	Straight, normal section		.000,000,00497
gangways.	Straight, large section		.000,000,00549
0	Straight, normal section		.000,000,00645
	Straight, normal section	.00030	.000,000,00158
Brick-lined	Straight, normal section	.00036	.000,000,00190
arched	Continuous curve, normal section	.00062	.000,000,00328
gangways.	Sinuous, intermediate section		.009,000,00269
B	Sinuous, small section		.000,000,00291
Minch and	(Straight, normal section	.00168	.000,000,00688
Timbered	Straight, normal section		.000,000,00761
gangways.	Slightly sinuous, small section		.000,000,01257

The French coefficients which are given by Murgue represent the height of water-gauge in millimetres for each square metre of rubbing-surface and a velocity of one metre per second. To convert them to the British measure of pounds per square foot for each square foot of rubbing-surface and a velocity of one foot per minute they have been multiplied by the factor of conversion, .000005283. For a velocity of 1000 feet per minute, since the loss of head varies as  $v^3$ , move the decimal point in the coefficients six places to the right.

Equivalent Orifice.—The head absorbed by the working-chambers Equivalent Orinee.—The head absorbed by the working-chambers of a mine cannot be computed a priori, because the openings, cross-passages, irregular-shaped gob-piles, and daily changes in the size and shape of the chambers present much too complicated a network for accurate analysis. In order to overcome this difficulty Murgue proposed in 1872 the method of equivalent orifice. This method consists in substituting for the mathod of beconsidered the equivalent thin-lipped orifice, requiring the same height of head for the discharge of an equal volume of air. The area of this orifice is obtained when the head and the discharge are known, by means of the following formulæ, as given by Fairley:

Let Q = quantity of air in thousands of cubic feet per minute;
w = inches of water-gauge;
A = area in square feet of equivalent orifice.

$$A = \frac{0.37Q}{\sqrt{w}} = \frac{Q}{2.7\sqrt{w}}; \quad Q = \frac{A \times \sqrt{w}}{0.87}; \quad w = 0.1869 \times \left(\frac{Q}{A}\right)^{3}.$$

Motive Column or the Head of Air Due to Differences of Temperature, etc. (Fairley.)

Let M = motive column in feet;

T = temperature of upcast; f = weight of one cubic foot of the flowing air;

t =temperature of downcast; D =depth of downcast.

$$M = D \frac{T-t}{T \times 459}$$
 or  $\frac{5.2 \times w}{f}$ ;  $p = f \times M$ ;  $w = \frac{f \times M}{5.2} = \frac{p}{5.2}$ .

To find diameter of a round airway to pass the same amount of air as a square airway the length and power remaining the same:

Let D = diameter of round airway. A = area of square airway; O = perimeter of square airway. Then  $D^3 = \sqrt[5]{\frac{A^3 \times 3.1416}{.7854^3 \times O}}$ 

If two fans are employed to ventilate a mine, each of which when worked separately produces a certain quantity, which may be indicated by  $\boldsymbol{A}$  and  $\boldsymbol{B}$  then the quantity of air that will pass when the two fans are worked together will be  $\sqrt[3]{A^3 + B^3}$ . (For mine-ventilating fans, see page 521.)

Relative Efficiency of Fans and Heated Chimneys for Ventilation.—W. P. Trowbridge, Traus. A. S. M. E. vii. 531, gives a theo-Ventilation.—W. P. Trowbridge, Traus. A. S. M. E. vii. 531, gives a theoretical solution of the relative amounts of heat expended to remove a given volume of impure air by a fan and by a chimney. Assuming the total efficiency of a fan to be only 1/25, which is made up of an efficiency of 1/10 for the engine, 5/10 for the fan itself, and 8/10 for efficiency as regards friction, the fan requires an expenditure of heat to drive it of only 1/38 of the amount that would be required to produce the same ventilation by a chimney 100 ft. high. For a chimney 500 ft. high the fan will be 7.6 times more efficient.

In all cases of moderate ventilation of rooms or buildings where the air heated before iterators the recover and generate ventilation is pro-

is heated before it enters the rooms, and spontaneous ventilation is produced by the passage of this heated air upwards through vertical flues, no special heat is required for ventilation; and if such ventilation be sufficient, the process is faultless as far as cost is concerned. This is a condition of things which may be realized in most dwelling houses, and in many halls schoolrooms, and public buildings, provided inlet and outlet flues of ample cross-section be provided, and the heated air be properly distributed.

If a more active ventilation be demanded, but such as requires the smallest amount of power, the cost of this power may outweigh the advantages of the fan. There are many cases in which steam-pipes in the base of a chimney, requiring no care or attention, may be preferable to mechanical ventilation, on the ground of cost, and trouble of attendance, repairs, etc.

^{*} Murgue gives  $A = \frac{0.88Q}{\sqrt{m}}$ , and Norris  $A = \frac{0.408Q}{\sqrt{m}}$ . See page 521, ante.

The following figures are given by Atkinson (Coll. Engr., 1889), showing the minimum depth at which a furnace would be equal to a ventilatingmachine, assuming that the sources of loss are the same in each case, i.e. that the loss of fuel in a furnace from the cooling in the upcast is equivalent to the power expended in overcoming the friction in the machine, and also assuming that the ventilating-machine utilizes 60% of the engine-power. The coal consumption of the engine per I.H.P. is taken at 8 lbs. per hour:

100° F. 200° F. Average temperature in upcast...... 100° F. 150° F. 200° F. Minimum depth for equal economy... 960 yards. 1040 yards. 1180 yards.

Heating and Ventilating of Large Buildings. (A. R. Wolff, Jour. Frank. Inst., 1893.)—The transmission of heat from the interior to the exterior of a room or building, through the walls, ceilings, windows, etc., is calculated as follows:

S = amount of transmitting surface in square feet;

 $t = \text{temperature F. inside}, t_0 = \text{temperature outside};$  K = a coefficient representing, for various materials composing buildings.the loss by transmission per square foot of surface in British thermal units per hour, for each degree of difference of temperature on the two sides of the material;

 $Q = \text{total heat transmission} = SK(t - t_0).$ 

This quantity of heat is also the amount that must be conveyed to the room in order to make good the loss by transmission, but it does not cover room in order to make good the loss by transmission, but it does not cover the additional heat to be conveyed on account of the change of air for pur-poses of ventilation. The coefficients K given below are those prescribed by law by the German Government in the design of the heating plants of its public buildings, and generally used in Germany for all buildings. They have been converted into American units by Mr. Wolff, and he finds that they agree well with good American practice:

#### VALUE OF K FOR EACH SQUARE FOOT OF BRICK WALL.

Thickness of \ 12" 16" 20" 24" 82" 40" brick wall. \ K = 0.68 0.46 0.32 0.26 0.23 0.20 0.174 0.15 0.1290.115

1 sq. ft., wooden-beam construction,	
planked over or ceiled,	$\ldots$ as ceiling, $K = 0.104$
1 sq. ft., fireproof construction,	$\ldots$ as flooring, $K = 0.124$
floored over, 1 sq. ft., single window	$\ldots$ as ceiling, $K = 0.145$
1 sq. ft., single window	K = 0.776
1 sq. ft., single skylight	K = 1.118
1 sq. ft., double window	
1 sq. ft., double skylight	
1 sq. ft. door	K = 0.414

These coefficients are to be increased respectively as follows: 10% when the exposure is a northerly one, and winds are to be counted on as important factors; 10% when the building is heated during the daytime only, and the location of the building is not an exposed one; 30% when the building is

location of the building is not an exposed one; 30% when the building is heated during the daytime only, and the location of the building is exposed; 50% when the building is heated during the winter months intermittently, with long intervals (say days or weeks) of non-heating.

The value of the radiating-surface is about as follows: Ordinary bronzed cast-iron radiating-surfaces, in American radiators (of Bundy or similar type), located in rooms, give out about 250 heat-units per hour for each square foot of surface, with ordinary steam-pressure, say 3 to 5 lbs. per sq. in., and about 0.6 this amount with ordinary hot-water heating.

Non-painted radiating-surfaces, of the ordinary "indirect" type (Climax or pin surfaces), give out about 400 heat-units per hour for each square foot of heating-surface, with ordinary steam-pressure. say 3 to 5 lbs. per so. in:

of pair surfaces, give ontabout 400 heat-units per nour for eating quare foot heating-surface, with ordinary steam-pressure, say 3 to 5 lbs. per sq. in.; and about 0.6 this amount with ordinary hot-water heating.

A person gives out about 400 heat-units per hour; an incandescent electric (16 candle-power) light, about 1600 heat-units per hour.

The following example is given by Mr. Wolff to show the application of the formula and coefficients:

Lecture-room  $40 \times 60$  ft., 20 ft. high, 48,000 cubic feet, to be heated to  $60^{\circ}$  F.; exposures as follows: North wall,  $60 \times 20$  ft., with four windows, each  $14 \times 4$  feet, outside temperature 0° F. Room beyond west wall and

## HEATING AND VENTILATING OF LARGE BUILDINGS. 535

From overhead heated to 69°, except a double skylight in ceiling,  $14 \times 24$  ft., exposed to the outside temperature of 0°. Store-room beyond east wall at 35°. Door 6 × 12 ft. in wall. Corridor beyond south wall heated to 59°. Two doors, 5 × 12, in wall. Cellar below, temperature 36°. The following table shows the calculation of heat transmission:

t-f, (Fahr. degrees).	Kind of Transmitting Surface.	Thickness of Wall in inches.	Calculation of Area of Transmitting Surface.	Square feet of Surface.	$K(t-t_0)$ .	Thermal Unite.	
69 83 83 10 10 10 10	Outside wall. Four windows (single). Inside wall (store-room). Door Inside wall (corridor). Door Inside wall (corridor). Door Boof. Double skylight. Floor.	86'' 24'' 36''	63 × 22 - 448 4 × 8 × 14 42 × 23 - 72 6 × 12 45 × 22 - 72 6 × 12 17 × 22 - 72 6 × 12 32 × 42 - 336 14 × 24 62 × 43	852 78 918 72 802 72	9 72 4 19 2 5 1 5 10 48 4	8,442 32,256 8,408 1,368 1,886 360 302 360 10,080 14,448 10,416	
-		north (	outside windov	78, 10 <b>%</b>	•••••	88,276 844 - 8,226 87,846 26,204	
	Exposed location and intermittent day or night use, 30% Total thermal units						

If we assume that the lecture-room must be heated to 69 degrees Fahr. in the daytime when unoccupied, so as to be at this temperature when first the daytime when unoccupied, so as to be at this temperature when his persons arrive, there will be required, ventilation not being considered, and broused direct low-pressure steam-radiators being the heating media, about 113,550 + 250 = 455 sq. ft. of radiating-surface. (This gives a ratio of about 105 cm. ft. of contents of room for each sq. ft. of heating-surface.)

If we assume that there are 160 persons in the lecture-room, and we pro-

wide 2500 cubic feet of fresh air per person per hour, we will supply 160 X 400,000

2500 = 400,000 cubic feet of air per hour (i.e.,  $\frac{400,000}{48,000}$  = over eight changes of

contents of room per hour).

To heat this air from 0° Fahr, to 69° Fahr, will require 400,000 imes 0.0189 imes69 = 521,640 thermal units per hour (0.0189 being the product of a weight of a cubic foot by the specific heat of air). Accordingly there must be provided 521,640 +400 = 1304 sq. ft. of indirect surface, to heat the air required for ventilation, in zero weather. If the room were to be warmed entirely indirectly, that is, by the air supplied to room (including the heat to be conveyed to cover loss by transmission through walls, etc.), there would have to be conveyed to the fresh-air supply 521,640 + 113,550 = 635,190 heat-units. This would imply the provision of an amount of indirect heating-surface of the "Climax" type of 635,190 + 400 = 1589 sq. ft., and the fresh air entering the room would have to be at a temperature of about 84° Fabr., viz., 69° = 113,550

 $\frac{1}{400,000 \times 0.0189}$ , or 69 + 15 = 84° Fahr.

The above calculations do not, however, take into account that 160 persons in the lecture-room give out  $160 \times 400 = 64,000$  thermal units per hour; and that, say, 50 electric lights give out 50 × 1600 = 80,000 thermal units per hour; and that, say, 50 electric lights give out 50 × 1600 = 80,000 thermal units per hour; or, say, 50 gaslights, 50 × 4800 = 240,000 thermal units per hour. The presence of 160 people and the gas-lighting would diminish considerably the amount of heat required. Practically, it appears that the heat generated by the presence of 160 people, 64,000 heat-units, and by 50 electric lights, 80,000 heat-units, a total of 144,000 heat-units, more than covers the amount of heat transmitted through walls, etc. Moreover, that if the 50 gaslights give out 240,000 thermal units per hour, the air supplied for ventilation must enter considerably below 69° Fahr., or the room will be heated to an unbearably high temperature. If 400,000 cubic feet of fresh air per hour are supplied, and 240,000 thermal units per hour generated by the gas must be abstracted, it means that the air must, under these conditions, enter  $\frac{240,000}{400,000 \times 0.0189}$  = about 32° less than 84°, or at about 52° Fahr. Further-

 $400,000 \times .0189$  more, the additional vitiation due to gaslighting would necessitate a much larger supply of fresh air than when the vitiation of the atmosphere by the people alone is considered, one gaslight vitiating the air as much as five

Various Rules for Computing Radiating-surface.—The following rules are compiled from various sources. They are more in the nature of "rule-of-thumb" rules than those given by Mr. Wolff, quoted

nature of "rule-or-tnumb" rules than those given by Mr. wolf, quoted above, but they may be useful for comparison.

Divide the cubic feet of space of the room to be heated, the square feet of wall surface, and the square feet of the glass surface by the figures given under these headings in the following table, and add the quotients together; the result will be the square feet of radiating-surface required. (F. Schumann.)

SPACE, WALL AND GLASS SURFACE WHICH ONE SQUARE FOOT OF RADIATING-SURFACE WILL HEAT.

	nre	cubic							
nge.	ress		All 8	All Sides.		west.	Southeast.		
Air Change.	Steam-p in por	Space in feet.	Wall Surface, sq. ft.	Glass Surface, sq. ft.	Wall Surface, sq. ft.	Glass Surface, sq. ft.	Wall Surface, sq. ft.	Glass Surface, sq. ft.	
Once per hour.	1 3 5	190 210 225	15.0	7 7.7 8.5	15,87 17.25 18.97	8.05 8.85 9.77	16.56 18.00 19.80	8.4 9.24 10.20	
Twice per hour.	1 8 5	75 82 90	11.1 12.1 13.0	5.7 6.2 6.7	12.76 13.91 14.52	6.55 7.18 7.60	13.22 14.52 15.60	6.84 7.44 8.04	

Emission of Heat-units per square foot per Hour from Cast-iron Pipes or Radiators. Temp. of Air in Room, 70° F. (F. Schumann.)

	an Temperature of	Ву Со	ntact.	By Radi-	By Radiation and Contact.			
н	eated Pipe, Radia- tor, etc.	Air quiet. Air moving.		ation.	Air quiet.	Air moving.		
Hot	water	55.51	92.52	59.68	115.14	152 15		
**	" 150°	65,45	109.18	69.69	185.14	178.87		
**	"160°	75.68	126.18	80,19	155 87	206.32		
64	"170°	86.18	143.30	91.12	177.80	284.42		
**	" 180°	96.93	161.55	102.15	199.48	264.05		
66	"	107.90	179.83	114.45	222.85	294.28		
44	"200°	119.13	198.55	127.00	246.13	325.55		
**	" or steam 210°	180.49	217.48	139.96	270.49	357.48		
Stear		142.20	237.00	155.27	297.47	392.27		
44	230°	153.95	256.58	169.56	328.51	426.14		
• 6	240°	165.90	279.83	184.58	850.48	464 . 41		
**	250°	178.00	296.65	200.18	878.18	496.81		
46	260°	189.90	816.50	214.86	404.26	530.86		
66	270°	202.70	337.88	288.42	486.12	571.25		
**	280°	215.30	858.85	251.21	466.51	610.06		
46	290°	228.55	880.91	267.78	496.28	648.64		
40	800°	240.85	401.41	279.12	519.97	680.58		

RADIATING-SURFACE REQUIRED FOR DIFFERENT KINDS OF BUILDINGS. (From practice of the Dubuque Steam Supply Co., External Air 0° F. Chas. A. Smith.)

Cubic ft. of Root	m heated	Cubic ft, of Root	m heated
by 1 sq. ft. of 8		by 1 sq. ft. of 8	
	Indirect		Indirect
System.			System.
Dwellings 50		Banks, offices, drug-stores 70	60
Stores, wholesale125		Large hotels 125	100
" retail100	80	Churches	150

The Nason Mfg. Co.'s catalogue gives the following: One square foot of surface will heat from 40 to 100 cu. ft. of space to 75° in - 10° latitudes. This range is intended to meet conditions of exposed or corner rooms of buildings, and those less so, as intermediate ones of a block. As a general role, 1 sq. ft. of surface will heat 70 cm. ft. of air in outer or front rooms and 100 cm. ft. in inner rooms. In large stores in cities with buildings on each side, 1 to 100 is ample.

#### APPROXIMATE PROPORTIONS OF RADIATING-SURFACES.

One square foot radiating-surface will heat:

	In dwellings, schoolrooms,	In hall, stores, lofts, factories,	In churches, large auditoriums,
	offices, etc.	etc.	etc.
RA direct Littlierion · · ·	60 to 80 ft.	75 to 100 ft.	150 to 900 ft.
By direct radiation By indirect radiation.	40 to 50 "	50 to 70 "	100 to 140 "

Isolated buildings exposed to prevailing north or west winds should have

Isolated buildings exposed to prevailing north or west winds should have a generous addition made to the heating-surface on their exposed sides. The following rule is given in the catalogue of the Baboocs & Wilcox Co., and is also recommended by the Nason Mig. Co.:
Radiating surface may be calculated by the rule: Add together the square feet of glass in the windows, the number of cubic feet of air required to be changed per minute, and one twentieth the surface of external wall and roof; multiply this sum by the difference between the required temperature of the room and that of the external air at its lowest point, and divide the product by the difference in temperature between the steam in the pipes and the required temperature of the room. The quotient is the required radiating-surface in source feet.

every 90 cu. ft. of space. Of course a great range of difference exist, due to the special character of the operating machinery in the mill, both in respect to the amount of air circulated by the machinery, and also the aid to

warming the room by the friction of the journals.

**Emdirect Heating-surface.**—J. H. Kinealy, in Heating and Ventilation, May 15, 1894, gives the following formula, deduced from results of experiments by C. B. Richards, W. J. Baldwin, J. H. Mills, and others, upon indirect heaters of various kinds, supplied with varying amounts of air per

hour per square foot of surface:

$$N = \frac{35.04}{\frac{T_2 - T_1}{T_0 - T_3} - 0.369}; \quad T_2 = (T_0 - T_1) \left(0.369 + \frac{35.04}{N}\right) + T_1.$$

N = cubic feet of air, reduced to 70° F., supplied to the heater per square foot of heating-surface per hour;

 $T_0$  = temperature of the steam or water in the heater;

 $T_1$  = temperature of the air when it enters the heater;  $T_2$  = temperature of the air when it leaves the heater.

As the formula is based upon an average of experiments made upon all sorts of indirect heaters, the results obtained by the use of the equation may in some cases be slightly too small and in others slightly too large

although the error will in no case be great. No single formula ought to be expected to apply equally well to all dispositions of heating-surface in in-

direct heaters, as the efficiency of such heater can be varied between such wide limits by the construction and arrangement of the surface. In indirect heating, the efficiency of the radiating-surface will increase, and the temperature of the air will diminish, when the quantity of the air caused to pass through the coil increases. Thus 1 sq. ft. radiating-surface. caused to pass through the coil increases. Thus 1 sq. ft. radiating-surface, with steam at 212°, has been found to heat 100 cu. ft. of air per hour from zero to 150°, or 300 cu. ft. from zero to 100° in the same time. The best results are attained by using indirect radiation to supply the necessary ventilation, and direct radiation for the balance of the heat. (Steam.)

In indirect steam-heating the least flue area should be 1 to 1½ sq. in. to every square foot of heating-surface, provided there are no long horizontal reaches in the duct, with Httle rise. The register should have twice the area of the duct to allow for the fretwork. For hot water heating from 25% to 30% more heating-surface and flue area should be given than for low-pressure steam. (Engineering Record, May 25, 1894.)

Boiler Heating-surface Required. (A. R. Wolff, Stevens Indicator, 1887.)—When the direct system is used to heat buildings in which the street floor is a store, and the upper floors are devoted to sales and stock-

street floor is a store, and the upper floors are devoted to sales and stockrooms and to light manufacturing, and in which the fronts are of stone or iron, and the sides and the rear of building of brick—a safe rule to follow is to supply 1 sq. ft. of boiler heating-surface for each 700 cu. ft., and 1 sq. ft. of radiating-surface for each 100 cu. ft. of contents of building.

For heating mills, shops, and factories, 1 sq. ft. of boiler heating-surface should be supplied for each 475 cu. ft. of contents of building; and the same allowance should also be made for heating exposed wooden dwellings. For heating foundries and wooden shops, 1 sq. ft, or boiler heating surface should be provided for each 400 cu. ft, of contents; and for structures in which glass enters very largely in the construction—such as conservatories, exhibition buildings, and the like—1 sq. ft. of boiler heating surface should be provided for each 275 cu. ft. of contents of building.

When the indirect system is employed, the radiator-surface and the boiler

capacity to be provided will each have to be, on an average, about 25% more than where direct radiation is used. This percentage also marks approximately the increased fuel consumption in the indirect system.

Steam (Babcock & Wilcox Co.) has the following: 1 sq. ft. of boiler-surface

will supply from 7 to 10 sq. ft. of radiating-surface, depending upon the size of boiler and the efficiency of its surface, as well as that of the radiating-surface. Small boilers for house use should be much larger proportionately than large plants. Each horse-power of boiler will supply from 240 to 360 ft. of 1-in, steam pipe, or 80 to 120 sq. ft. of radiating surface. Cubic feet of space has little to do with amount of steam or surface required, but is a convenient factor for rough calculations. Under ordinary conditions 1 horse-power will heat, approximately, in-

Brick dwellings, in blocks, as in cities	15,000	to	20,000	cu. f	ŧ
" stores " "	10,000	**	15,000	**	
" dwellings, exposed all round	10,000	**	15,000	**	
" mills, shops, factories, etc	7,000	**	10,000	44	
Wooden dwellings, exposed	7.000	44	10,000		
Foundries and wooden shops	6,000	44	10,000	**	
Exhibition buildings, largely glass, etc	4.000	**	15,000		

#### Proportion of Grate-surface to Radiator-surface.

(J. R. Willett, Heating and Ventilation, Feb. 1894.)

Radiator-surf., }	100	200	400	600	800	1000	1200	1400	1600	1800	2000
sq. ft	120	208	862	501	630	754	872	986	1100	1210	1810

#### Steam-consumption in Car-heating,

C., M. & ST. PAUL RAILY	VAY TESTS. (Lingineerin	ig, June 27, 1890, p. 764-)
		Water of Condensation
Outside Temperature.	Inside Temperature.	per Car per Hour.
40	70	70 lbs.
80	70	85
10	70	100

## Internal Diameters of Steam Supply-mains, with Total Besistance equal to 2 inches of Water-column.*

Steam, Pressure 10 lbs. per square inch above atm., Temperature 239° F. Formula,  $d \approx 0.5874 \sqrt[5]{\frac{Q^2l}{h}}$ ; where d = internal diameter in inches:

Q = 9.2 cubic feet of steam per minute per 100 sq. ft. of radiating-surface; l = length of mains in feet; h = 159.3 feet head of steam to produce flow.

Radiating-Internal Diameters in inches for Lengths of Mains from 1 ft. to 600 ft. 20 ft. 60 ft. 80 ft. 100 ft. 200 ft. 300 ft. 400 ft. 600 ft. 1 ft. 10 ft 40 ft. inch. sq.ft. inch. inch. inch. inch. inch. inch. inch. inch. inch. inch. 0.075 0 119 0.186 0.157 0.170 0.180 0.189 0.216 0.234 0.248 0.270 0.54 1Ō 0.19 0.30 0.84 0.39 0.43 0.45 0.47 0.59 0.62 0.68 20 0.89 0.45 0.52 0.56 0 60 0.62 0.72 0.78 0.820.89 0.52 40 0.88 0.60 0.69 0.74 0.79 0.82 0.95 1.08 1.09 1.18 0.89 60 0.61 0.87 0.97 1.21 1.28 0.71 0.81 0.981.11 1.39 0.90 80 0.43 0.680.79 0.98 1.04 1.09 1.25 1.85 1.43 1.55 0.99 1.86 100 0.47 0.75 1.07 1.48 1.70 0.86 1.14 1.19 1.57 1.30 1.80 200 0 62 0.99 1.14 1.41 1.50 1.57 1.95 2.07 2.24 2.64 200 0.78 1.84 2.30 2.48 2.78 1.16 1.34 1.58 1.66 1.76 2 12 1.50 1.86 2.96 400 0.82 1.80 1.72 2.07 2.37 2.57 1.98 500 0.90 1.43 1.64 1.88 2.04 2.16 2.26 2.60 2.79 2.81 2.98 3.28 1.58 600 2.03 0.97 1.76 2.20 2.33 2.43 8.03 8.21 3.48 800 1.09 1.72 1.98 2.27 2 46 2.61 2.78 8.18 8.40 8.60 3.90 1,000 2.48 2.60 2.85 1.19 2.98 8.71 8.94 1.88 2.16 8.43 4.27 8.21 200 1.28 2.04 2.38 2.67 2.90 8.07 3.68 4.00 4.28 4.59 400 1.36 8.08 2.15 2.47 2.84 8.26 3.41 3.92 4.25 4.50 4.88 2.61 8.00 3.25 1.600 1.43 2.27 3.44 3.60 4.13 4.49 4.75 5.15 1.50 2.38 8.41 4.70 4.98 1.800 2.74 3.14 3.61 8.78 4.34 5.40 2,000 1.57 2.48 2.85 4.52 3.28 3.55 3.76 3.98 4.90 5.19 5.68 2.92 3.36 8,000 1.64 3.85 4.18 4.43 4 63 5.32 5.77 6.11 6.63 1 4,000 4.69 4.96 5.96 6.85 2.07 8.28 8.76 4.32 5.19 6.47 7.44

For other resistances and pressures above atmosphere multiply by the respective factors below:

12 in.

Water col. 6 in. 24 in. | Press. ab. atm. 01bs. 31bs. 301bs. 601bs. 0.6084 | Multiply by 1.023 1.015 0.973 0.948 Multiply by 0.8027 0.6988 Registers and Cold-air Ducts for Indirect Steam Heating.

—The Locomotive gives the following table of openings for registers and cold-air ducts, which has been found to give satisfactory results. The cold-air boxes should have 1½ sq. in. area for each square foot of radiator surface and never less than ¾ the sectional area of the hot-air ducts. The hot air ducts should have 2 sq. in. of sectional area to each square foot of radiator surface on the first floor, and from 1½ to 2 inches on the second floor.

Heating Surface in Stacks.			Cold	air Sı	ıpply,	First Floor.	Size Register.	Cold-air Supply, 2d Floor.		
						inches	inches	inches		
30 s	guard	e feet	45 s	quare	inche	s = 5 by 9	9 by 12	4 by 10		
40		**	60	- 44	**	= 6  by  10	10 by 14	4 by 14		
50	**	**	75	44	+4	= 8  by  10	10 by 14	5 by 15		
60	**	44	90	66	86	= 9 by 10	12 by 15	6 by 15		
70	**	**	108	**	46	= 9  by  12	12 by 19	6 by 18		
80	44	46	120	66	44	= 10  by  12	12 by 22	8 by 15		
90	66	46	185	64	46	= 11  by  12	14 by 24	9 by 15		
100	**	**	150	6.	-	= 12  by  12	16 by 20	12 by 12		

The sizes in the table approximate to the rules given, and it will be found that they will allow an easy flow of air and a full distribution throughout the room to be heated.

^{*} From Robert Briggs's paper on American Practice of Warming Buildings by Steam (Proc. Inst. C. E., 1882, vol. lxxi).

Physical Properties of Steam and Condensed Water, under Conditions of Ordinary Practice in Warming by Steam, (Briggs.)

Steam-pressure   above atm   lbs.   0   3   10   30   60   74.7	_							
CTemperature of air	A							
E   100 sq. ft. of radiating-sur- face = B × 3 F   Latent heat of steam	C	Temperature of air	Fahr.	60°	60	60°	60°	60-
O Volume of 1 lb. weight of steam   Weight of 1 cubic foot of steam   Volume Q of steam per minute   Logive out E units   E K Q + F.   Cu. ft.   12.48   11.21   9.20   6.44   4.70	E	100 sq. ft. of radiating-sur-	1					741
H Weight of 1 cubic foot of steam   Volume Q of steam per minute   Volume Q of steam per minute   Volume Q of steam per minute   Volume Q of steam per minute   Volume Q of steam per minute   Volume Q of condensed water at temperature B,   Volume of condensed water to return to boiler per minute   J × H + K,   Head of steam equivalent to 12 inches water-column   K + H.   STEAM-SUPPLY MAINS.   Head h of steam, equivalent to assumed 2 inches water-column flow Q, = M + 6,   Internal diameter d of tube* for flow Q when l = 1 foot, B Do. do. when l = 100 feet, Ratios of values of d.   WATER-RETURN MAINS.   Head h assumed at 14-inch water-column for producing full-bore water-flow Q, U   Internal diameter d of tube* for flow Q when l = 1 foot, The per minute   Volume of tube* for flow Q when l = 1 foot, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flow Q when l = 100 feet, The per minute   Volume of tube* for flo	F	Latent heat of steam	Fahr.	965°	958°	946°	921°	898°
To give out E units		Weight of 1 cubic foot of steam	lb.		22.1 0.0452			
Column of condensed water to return to boiler per minute	J	to give out E units	cu.ft.	12.48	11.21	9.20	6.44	4.70
Teturn to boiler per minute	K	densed water at tempera- ture B,	)	59.64	59.51	59.05	58.07	57.08
M   12 inches water-column	L	return to boiler per minute $= J \times H + K$ ,	cu. ft.	0.0079	0.0085	0.0096	0.0120	0.0144
Head h of steam, equivalent to assumed 2 inches water-column for producing steam flow Q. = M + 6,	M	12 inches water-column	feet	1569	1817	955.5	586.7	825.5
to assumed 2 inches water- column for producing steam flow Q, = M + 6, Internal diameter d of tube* Internal diameter d of tube* Internal diameter d of tube* Internal diameter d of tube* Internal diameter d of tube* Ratios of values of d.  WATER-RETURN MAINS.  Head h assumed at 14-inch water-column for producing full-bore water-flow Q, Internal diameter d of tube* Inch for flow Q when l = 1 foot, for flow Q when l = 1 foot, Do. do. when l = 1 foot, for flow Q when l = 1 foot, Inch O.0417 0.0417 0.0417 0.0417 0.0417 O.0588 0.879 0.898 0.484 0.488		STEAM-SUPPLY MAINS.						
P) for flow Q when l = 1 foot, B B Do. do. when l = 100 feet, inch ratio   1.217   1.2907   1.190   1.158   1.128   1.228   1.023   1.015   1.000   0.973   0.948    WATER-RETURN MAINS.  (Head h assumed at 1/4-inch water-column for producing full-bore water-flow Q, Internal diameter d of tube* for flow Q when l = 1 foot, V Do. do. when l = 100 feet, inch   0.388   0.879   0.398   0.484   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488   0.488	N	to assumed 2 inches water- column for producing steam flow $Q_1 = \mathbf{M} + 6$ ,	feet	261.5	219.5	159.8	89.45	54.25
R   Do.   do.   when     = 100 feet,   inch   ratio     1.217   1.207   1.190   1.158   1.128	P			0.484	0.481	0.474	0.461	0.449
Head h assumed at 1/4-inch   water-column for producing   full-bore water-flow Q,   Internal diameter d of tube*   for flow Q when l = 1 foot,   To do do do do do do do do do do do do do		Do. do. when $l = 100$ feet.	inch					
T water-column for producing full-bore water-flow Q. U Internal diameter d of tube* for flow Q when l = 1 foot, V Do. do. when l = 100 feet, inch 0.388 0.879 0.398 0.484 0.488		WATER-RETURN MAINS.						
U   Internal diameter d of tube*   inch   0.147   0.151   0.158   0.178   0.186   V   Do. do. when l = 100 feet, inch   0.388   0.879   0.398   0.434   0.488	T	⟨ water-column for producing	} foot	0.0417	0.0417	0.0417	0.0417	0. <b>04</b> 17
V Do. do. when $l = 100$ feet, inch   0.368   0.379   0.388   0.484   0.468	U	Internal diameter d of tube*		0.147	0.151	0.158	0.178	0 186
		Do. do. when $l = 100$ feet,	inch	0.368	0.879	0.898	0.434	0.468

^{*} P, R, U, V are each determined from the formula  $d=0.5374\sqrt[6]{rac{Q^{2}l}{h}}$  .

Size of Steam Pipes for Steam Heating. (See also Flow of Steam in Pipes.)—Sizes of vertical main pipes. Direct radiation. (J. R. Willett, Heating and Ventilation, Feb., 1894.)

Diameter of pipe, inches. 1 1½ 1½ 2 2½ 8 8 3½ 4 5 6 Sq. ft. of radiator surface 40 70 110 220 880 560 810 1110 2000 3000 A horizontal branch pipe for a given extent of radiator surface should be one size larger than a vertical pipe for the same surface. No return from a main should be more than two sizes smaller than the feed at its commencement (or than its largest dimension).

A. R. Wolff (Stevens Indicator, 1887) says: For determining the cross-sectional area of pipes (in square inches) for steam mains and returns it will be ample to allow a constant of .375 sq. in, for each hundred square

feet of heating-surface in coils and radiators, when exhaust steam is used. . 19 sq. in, when live steam is used, and .09 sq. in, for the return. If the cross-sectional areas thus obtained are each mulitplied by 1.273, and the square root extracted from each product, the respective figures obtained will represent the proper diameters in inches of the several steam-pipes referred to.

Steam, by the Babcock & Wilcox Co., says: Where the condensed water is returned to the boiler, or where low pressure of steam is used, the diameas returned to the boller, or where low pressure of steam is used, the diameter of mains leading from the boiler to the radiating-surface should be equal in inches to one tenth the square root of the radiating-surface, mains included, in square feet. Thus a 1-inch pipe will supply 100 square feet of surface, itself included. Return-pipes should be at least ¾ inch in diameter, and never less than one half the diameter of the main—longer returns requiring larger pipe. A thorough drainage of steam-pipes will effectually prevent all cracking and pounding noises therein.
The Nason Mfg. Co. gives the following:

Radiating-surface in square	Size of Steam-	Size of Return
feet to be supplied.	pipes,	pipes.
125	11/4	ſ
125 to 200		14
200 to 500		112
500 to 1000	216	2′ *
1000 to 1500	8 -	21,6
1500 to 2500	31/4	8

When mains and surfaces are very much above the boiler the pipes need when mains and surfaces are very much above the boller the pipes need not be as large as given above; under very favorable circumstances and conditions a 4-inch pipe may supply from 2000 to 2500 sq. ft. of surface, a 6-inch pipe for 5000 sq. ft., and a 10-inch pipe for 15,000 to 20,000 sq. ft., if the distance of run from boiler is not too great. Less than 13-inch pipe should not be used horizontally in a main unless for a single radiator connection. The return sizes named are large enough in ordinary pipe-work, though when horizontal pipes with many fittings are used they should be of the same diameter as the steam-pipes.

Generally, when condensation is returned to the boiler by gravity, the diameter of mains in inches should equal one tenth of the square root of the radiating-surfaces in square feet; thus a 1-inch pipe will supply 100 sq. ft. of surface, or with 900 sq. ft, the supply-pipe should be  $\sqrt{900} = 30 + 10 = 3''$ 

diameter.

diameter.

Eteating a Greenhouse by Steam.—Wm. J. Baldwin answers a question in the American Machinist as below: With five pounds steampressure, how many square feet or inches of heating surface is necessary to heat 100 square feet of glass on the roof, ends, and sides of a greenhouse in order to maintain a night heat of 55° to 65°, while the thermometer outside ranges at from 15° to 20° below zero; also, what boller-surface is necessary? What is the best way to set pipes in a greenhouse—hang them or lay them down? Which is the best for the purpose to use—2° pipe or 1½" pipe Ans.—Reliahle authorities agree that 1.25 to 1.50 cubic feet of air in an enclosed space will be cooled per minute per sq. ft. of glass as many degrees as the internal temperature of the house exceeds that of the air outside. Between + 65° and — 20° there will be a difference of 85°, or, say, one cubic foot of air cooled 127.5° F. for each sq ft. of glass for the most extreme condition mentioned. Multiply this by the number of square feet of glass and by 60, and we have the number of cubic feet of air cooled 1° per hour within the building or house. Divide the number thus found by 983, and it will give the number of pounds of steam that must be condensed from a pressure and temperature of five pounds above atmosphere to water at are a pressure and temperature of five pounds above atmosphere to water at the same temperature in an hour to maintain the heat. Each square foot of surface of pipe will condense from ½ to nearly ½ [b. of steam per hour, according as the coils are exposed or well or poorly arranged, for which an average of 1/3 lb, may be taken. According to this, it will require 8 sq. ft. of pipe surface per lb. of steam to be condensed. Proportion the heating-surface of the boiler to have about one fifth the actual radiating-surface, if you wish to keep steam over night, and proportion the grate to burn not more than six pounds of coal per sq. ft. of grate per hour. With very slow combustion, such as takes place in base-burning boilers, the grate might be proportioned for four to five pounds of coal per hour. It is cheaper to make coils of 1½" pipe than of 2", and there is nothing to be gained by using 2" pipe unless the coli: are very long. The pipes in a greenhouse should be

under or in front of the benches, with every chance for a good circulation of air. "Header" coils are better than "return-bend" coils for this purpose. Mr. Baldwin's rule may be given the following form: Let H = heat-units

transferred per hour, T= temperature inside the greenhouse, t= temperature outside, S= sq. ft. of glass surface; then  $H=1.5S(T-t)\times 60+48=1.875S(T-t)$ . Mr. Wolff's coefficient K for single skylights would give H = 1.118S(T - t).

Heating a Greenhouse by Hot Water.—W. M. Mackay, of the Richardson & Boynton Co., in a lecture before the Master Plumbers' Association, N. Y., 1889, says: I find that while greenhouses were formerly heated by 4-inch and 3-inch cast-iron pipe, on account of the large body of water which they contained, and the supposition that they gave better satisfaction and a more even temperature, florists of long experience who have tried 4-inch and 3-inch cast-iron pipe, and also 2-inch wrought-iron pipe for a number of years in heating their greenhouses by hot water, and who have also tried steam-heat, tell me that they get better satisfaction, greater economy, and are able to maintain a more even temperature with 2-inch wrought-iron pipe and hot water than by any other system they have used. They attribute this result principally to the fact that this size pipe contains less water and on this account the heat can be raised and lowered quicker than by any other arrangement of pipes, and a more uniform temperature maintained than by steam or any other system.

#### HOT-WATER HEATING.

(Nason Mfg. Co.)

There are two distinct forms or modifications of hot-water apparatus, depending upon the temperature of the water.

In the first or open-tank system the water is never above 212° temperature, and rarely above 200°. This method always gives satisfaction where the surface is sufficiently liberal, but in making it so its cost is considerably greater than that for a steam-heating apparatus.

In the second method, sometimes called (erroneously) high-pressure hot-

water heating, or the closed-system apparatus, the tank is closed. If it is provided with a safety-valve set at 10 lbs. it is practically as safe as the opentank system.

Law of Velocity of Flow.—The motive power of the circulation in a hot-water apparatus is the difference between the specific gravities of the ascending and the descending pipes. This effective pressure is very small, and is equal to about one grain for each foot in height for each degree difference between the pipes; thus, with a height of 12" in "up" pipe, and a difference between the temperatures of the up and down pipes of 8°, the difference in their specific gravities is equal to 8.16 grains on each square inch of the section of return-pipe, and the velocity of the circulation is proportioned to these differences in temperature and height.

To Calculate Velocity of Flow.—Thus, with a height of ascending pipe equal to 10' and a difference in temperatures of the flow and return pipes of  $8^\circ$ , the difference in their specific gravities will equal 81.6 grains, or +7000 = .01166 lbs., or  $\times 2.31$  (feet of water in one pound) = .0269 ft., and by the law of falling bodies the velocity will be equal to 8  $\sqrt{.0269}$  = 1.312 ft. per second, or  $\times$  60 = 78.7 ft. per minute. In this calculation the effect of friction is entirely omitted. Considerable deduction must be made on this tion is entirely officed. Considerable deduction must be made on make account. Even in apparatus where length of pipe is not great, and with pipes of larger areas and with few bends or angles, a large deduction for friction must be made from the theoretical velocity, while in large and complex apparatus with small head, the velocity is so much reduced by friction that sometimes as much as from 50% to 90% must be deducted to obtain the true rate of circulation.

Main flow-pipes from the heater, from which branches may be taken, are to be preferred to the practice of taking off nearly as many pipes from the heater as there are radiators to supply.

It is not necessary that the main flow and return pipes should equal in capacity that of all their branches. The hottest water will seek the highest level, while gravity will cause an even distribution of the heated water if the surface is properly proportioned.

It is good practice to reduce the size of the vertical mains as they ascend,

say at the rate of one size for each floor.

As with steam, so with hot water, the nines must be unconfined to allow

expansion of the pipes consequent on having their temperatures increased.

An expansion tank is required to keep the apparatus filled with water, which latter expands 1/24 of its bulk on being heated from 40° to 212°, and the cistern must have capacity to hold certainly this increased bulk. It is recommended that the supply cistern be placed on level with or above the nighest pipes of the apparatus, in order to receive the air which collects in the mains and radiators, and capable of holding at least 1/20 of the water by the entire apparatus,

# Approximate Proportions of Radiating-surfaces to Cubic Capacities of Space to be Heated.

One Square Foot of Ra- diating-surface will heat with—	In Dwellings, School-rooms, Offices, etc.	In Halls, Stores, Lofts, Facto- ries, etc.	In Churches, Large Audito- riums, etc.
High temperature direct hot-water radiation	50 to 70 cu. ft.	65 to 90 cu. ft.	180 to 180 cu. ft.
rect hot-water radi- ation	80 to 50 " "	85 to 65 " "	70 to 130 ", "
High temperature in- direct hot-water ra- diation	80 to 60 " "	85 to 75 " "	70 to 150 " "
Low temperature in- direct hot-water ra- diation	20 to 40 " "	25 to 50 " "	50 to 100 " "

Diameter of Maiu and Branch Pipes and square feet of coil surface they will supply, in a low-pressure hot-water apparatus (212°) for direct or indirect radiation, when coils are at different altitudes for direct radiation or in the lower story for indirect radiation:

Diam. of Pipe, in inches.	Indirect Radiation	Direct Radiation. Height of Coil above Bottom of Boiler, in feet.										
A A	0	10	20	30	40	50	60	70	80	90	100	
	sq. ft.	sq. ft.	sq. ft.	sq. ft.	sq ft.	sq. ft.	sq. ft.	sq. ft.	sq.ft.	sq. ft.	sq. ft.	
34	49	50	52	58	55	57	59	61	63	65	68	
1	87	89	92	95	98	101	103	108	112	116	121	
11/4	136	140	144	149	153	158	161	169	175	182	189	
116	196	202	209	214	222	228	235	243	252	261	271	
2	849	859	870	880	393	405	413	433	449	465	488	
21/4 3	546	561	577	595	613	633	643	678	701	727	755	
3	785	807	835	856	888	912	941	974	1009	1046	1086	
31/6	1069	1099	1132	1166	1202	1241	1283	1327	1374	1425	1480	
4	1395	1436	1478	1520	1571	1621	1654	1783	1795	1861	1933	
41/6	1767	1817	1871	1927	1988	2052	2120	2193	2272	2356	2445	
5 6 7 8 9	2185	2244	2309	2376	2454	2531	2574	2713	2805	2907	3019	
6	8140	3228	3341	8424	3552	3648	3763	3897	4036	4184	4344	
7	4276	4396	4528	4664	4808	4964	5132	5308	5496	5700	59:20	
8	5580	5744	5912	6090	6284	6484	6616	6932	7180	7444	7735	
	7068	7268	7484	7708	7952	8208	8482	8774	9088	9424	9780	
10	8740	8976	9236	9516	9816	10124	10:296	10852	11220	11628	12076	
11	10559	10860	11180		11879	12262		13108	13576	14078	14620	
12	12560	12912	13364	13696	14208	14592	15052	15588	16144	16736	17376	
13	14748	15169	15615	16090	16591	17126	17697	18307	18961	19633	20420	
14		17584	18109	18656	19232	19856	20528	21232	21984	22800	23680	
15		20195	20789	21419	22089	22801	23561	24373	25244	26179	27168	
16	22320	22978	23648	24320	25136	25936	26464	27728	28720	29776	80928	

The best forms of hot-water-heating boilers are proportioned about as

1 sq. ft. of grate-surface to about 40 sq. ft. of boiler-surface. boilerradiating surface. 200 " " grate-

Rules for Hot-water Heating.—J. L. Saunders (Heating and Ventilation, Dec. 15, 1894) gives the following: Allow 1 sq. ft. of radiating surface for every 3 ft. of glass surface, and 1 sq. ft. for every 30 sq. ft. of wall surface, also 1 sq. ft. for the following numbers of cubic feet of space in the several cases mentioned.

In dwelling-houses:	Libraries and dining-rooms, first floor	35 to	40	cu.	ft.
	Reception halls, first floor	40 to	50		er.
	Stair halls. " "	40 to	55	٠.	46
	Chambers above. "	50 to	65		• 6
	Libraries, sewing-rooms, nurseries, etc.,				
	above first floor	45 to	55	* *	**
	Bath-rooms	80 to	40		**
Public-school room	R	60 to	85	••	••
Office		50 to	65	••	
Factories and store	g	65 to	90		
Assembly halls and	churches	90 to	150		**

To find the necessary amount of indirect radiation required to heat a room: Find the required amount of direct radiation according to the foregoing method and add 50%. This if wrought-iron pipe coil surface is used; if castiron pin indirect-stack surface is used it is advisable to add from 70% to 80%.

Sizes of hot-air flues, cold-air ducts, and registers for indirect work.—
Hot-air flues, first floor: Make the net internal area of the flue equal to
\$\frac{1}{2}\$ sq. in to every square foot of radiating surface in the indirect stack. Hotair flues, second floor: Make the net internal area of the flue equal to \$\frac{1}{2}\$ sq. in.

an mes, second noor; make the net microal area of the indeed allowing sq. m. to every square foot of radiating surface in the indirect stack.

Cold-air ducts, first floor: Make the net internal area of the duct equal to % sq. in. to every square foot of radiating surface in the indirect stack. Cold air ducts, second floor: Make the net internal area of the duct equal to % sq. in. to every square foot of radiating surface in the indirect stack.

Hot air registers should have their net area equal in full to the area of the other in fluor.

hot-air flues. Multiply the length by the width of the register in inches; %

of the product is the net area of register.

Arrangement of Mains for Hot-water Heating. (W. Makky, Lecture before Master Plumbers' Assoc., N. Y., 1889)—There are two different systems of mains in general use, either of which, if properly placed, will give good satisfaction. One is the taking of a single large-flow main from the heater to supply all the radiators on the several floors, with a corresponding return main of the same size. The other is the taking of a number of 2 inch wayner in or mains from the heater with the same number of 2 inch wayners. number of 2-inch wrought-iron mains from the heater, with the same number of return mains of the same size, branching off to the several radiators or colls with 1½-inch or 1-inch pipe, according to the size of the radiator or coll. A 2-inch main will supply three 1½-inch or four 1-inch branches, and these branches should be taken from the top of the horizontal main with a nipple and elbow, except in special cases where it is found necessary to retard the flow of water to the near radiator, for the purpose of assisting the circulation in the far radiator; in this case the branch is taken from the side of the horizontal main. The flow and return mains are usually run side by side, suspended from the basement ceiling, and should have a gradual ascent from the heater to the radiators of at least 1 inch in 10 feet. It is customary, and an advantage where 2 inch mains are used, to reduce the size of the main at every point where a branch is taken off.

The single or large main system is best adapted for large buildings; but there is a limit as to size of main which it is not wise to go beyond-gener-

ally 6-inch, except in special cases.

The proper area of cold-air pipe necessary for 100 square feet of indirect radiation in hot-water heating is 75 square inches, while the hot air pipe should have at least 100 square inches of area. There should be a damper in the cold-air pipe for the purpose of controlling the amount of air admitted to the radiator, depending on the severity of the weather,

### THE BLOWER SYSTEM OF HEATING AND VENTILATING.

The system provides for the use of a fan or blower which takes its supply of fresh air from the outside of the building to be heated, forces it over steam coils, located either centrally or divided up into a number of independent groups, and then into the several ducts or flues leading to the various rooms. The movement of the warmed air is positive, and the delivery of the air to the various points of supply is certain and entirely independent

in the temperature of this greatly increased air-volume was only about 12.6%. The condensation of steam in the radiators with the forced-air circulation also was only 66% greater than with natural air draught. One of the several sets of test figures obtained is as follows:

	Draugh	
		Circulation.
Cubic feet of air per minute		1227
Condensation of steam per minute in ounces	11.7	19.6
Steam pressure in radiator, pounds		9
Temperature of air after leaving radiator	142°	124°
" before passing through radiato	r. 61°	61°
Amount of radiating surface in square feet	60	60
Size of flue in both cases	12 ×	18 inches.

There was probably an error in the determination of the volume of air in these tests, as appears from the following calculation. (W. K.) Assume that 1 lb. of steam in condensing from 9 lbs. pressure and cooling to the temperature at which the water may have been discharged from the radiator gave up 1000 heat-units, or 62.5 h. u. per ounce; that the air weighed .076 lb. per cubic foot, and that its specific heat is .238. We have

	rai Forced
Heat given up by steam, ounces × 62.5	ght. Draught. 1225 H.U. 1809 "
Heat received by air, cu. it. x.0/0 x diff. of tem. x.235 = 0/3	1966

Or, in the case of forced draught the air received 14% more heat than the steam gave out, which is impossible. Taking the heat given up by the steam as the correct measure of the work done by the radiator, the temperature of the steam at 287°, and the average temperature of the air in the case of natural draught at 102° and in the other case at 93°, we have for the temperature difference in the two cases 135° and 144° respectively; dividing these into the heat-units we find that each square foot of radiating surface transmitted 5.4 heat-units per hour per degree of difference of temperature. in the case of natural draught, and 8.5 heat-units in the case of forced draught.

In the Women's Homosopathic Hospital in Philadelphia, 2000 feet of one-inch pipe heats 250,000 cubic feet of space, ventilating as well; this equals one square foot of pipe surface for about 350 cubic feet of space, or less than 3 square feet for 1000 cubic feet. The fan is located in a separate building about 100 feet from the hospital, and the air, after being heated to about 135°, is conveyed through an underground brick duct with a loss of only five or six degrees in cold weather. (H. I. Sneil, Trans. A. S. M. E. ix. 106.

Heating a Building to 70° F. Inside when the Outside Temperature is Zoro.—It is customary in some contracts for heating to guarantee that the apparatus will heat the interior of the building to 70° mentions to the building to 70° mentions to the provided to the contracts for the suit of the contract of the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the building to 70° mentions the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the provided to the

in zero weather. As it may not be practicable to obtain zero weather for the purpose of a test, it may be difficult to prove the performance of the guarantee. E. E. Macgovern, in Engineering Record, Feb. 3, 1894, gives a calculation tending to show that a test may be made in weather of a higher temperature than zero, if the heat of the interior is raised above 70°. The higher the temperature of the rooms the lower is the efficiency of the radiating-surface, since the efficiency depends upon the difference between the

temperature inside of the radiator and the temperature of the room. He concludes that a heating apparatus sufficient to heat a given building to 70° concludes that a heating apparatus summent to heat a given building to 70° in zero weather with a given pressure of steam will be found to heat the same building, steam-pressure constant, to 110° at 60°, 95° at 50°, 82° at 40°, and 74° at 32°, outside temperature. The accuracy of these figures, however has not been tested by experiment.

The following solution of the question is proposed by the author. It gives

results quite different from those of Mr. Macgovern, but, like them, lacks ex-

perimental confirmation.

Let S = sq. ft. of surface of the steam or hot-water radiator;

W = sq. ft. of surface of exposed walls, windows, etc.;

T_s = temp. of the steam or hot water, T₁ = temp. of inside of building or room, T₀ = temp. of outside of building or room;

a = heat-units transmitted per sq. ft. of surface of radiator per hour per degree of difference of temperature;

b = average heat-units transmitted per sq. ft. of walls per hour, per degree of difference of temperature;

degree of difference of temperature, including allowance for ventilation.

It is assumed that within the range of temperatures considered Newton's law of cooling holds good, viz., that it is proportional to the difference of temperature between the two sides of the radiating-surface.

Then 
$$aS(T_{\theta}-T_{1})=bW(T_{1}-T_{0})$$
. Let  $\frac{bW}{aS}=C$ ; then  $T_{\theta}-T_{1}=C(T_{1}-T_{0})$ ;  $T_{1}=\frac{T_{\theta}+CT_{0}}{1+C}$ ;  $C=\frac{T_{\theta}-T_{1}}{T_{1}-T_{0}}$ . If  $T_{1}=70$ , and  $T_{0}=0$ ,  $C=\frac{T_{\theta}-70}{70}$ . Let  $T_{\theta}=140^{\circ}$ , 213.5°, 808°; Then  $C=1$ , 2.05.

From these we derive the following:

Heating by Electricity.—If the electric currents are generated by a dynamo driven by a steam-engine, electric heating will prove very expensive, since the steam-engine wastes in the exhaust-steam and by radiation about 90% of the heat-units supplied to it. In direct steam-heating, with a good boiler and properly covered supply-pipes, we can utilize about 60% of the total heat value of the ful. One pound of coal, with a heating value of 18,000 heat-units, would supply to the radiators about 13,000 × .60 = 7800 heat units. In electric heating, suppose we have a first-class condensing-engine developing 1 H.P. for every 2 lbs. of coal burned per hour. This would be equivalent to 1,980,000 ft.-lbs. + 778 = 2545 heat-units, or 1272 heat-units for 1 lb. of coal. The friction of the engine and of the dynamo and the loss by electric leakage, and by heat radiation from the conducting wires, might reduce the heat-units delivered as electric current to the electric radiator, and these converted into heat to 50% of this, or only 636 heatunits, or less than one twelfth of that delivered to the steam-radiators in direct steam-heating. Electric heating, therefore, will prove uneconomical unless the electric current is derived from water or wind power, which would otherwise be wasted. (See Electrical Engineering.)

### WATER.

Expansion of Water.—The following table gives the relative vol-umes of water at different temperatures, compared with its volume at 4° C. according to Kopp, as corrected by Porter.

Cent.	Fahr.	Volume.	Cent.	Fahr.	Volume.	Cent.	Fahr.	Volume.
4° 5 10 15 20 25	89.1° 41 50 59 68 77 86	1.00000 1.00001 1.00025 1.00083 1.00171 1.00286 1.00425	35° 40 45 50 55 60 65	95° 104 118 122 181 140 149	1.00586 1.00767 1.00967 1.01186 1.01423 1.01678 1.01951	70° 75 80 85 90 95	158° 167 176 185 194 203 212	1.02241 1.02548 1.02872 1.03218 1.08570 1.03943 1.04832

Weight of 1 cu. ft. at 89.1° F. = 62,4245 lb. +1.04832 = 59.833, weight of 1 cu. ft. at 212° F.

Weight of Water at Different Temperatures.—The weight of water at maximum density, 39.1°, is generally taken at the figure given by Rankine, 62.450 lbs. per cubic foot. Some authorities give as low as 62.379. The figure 62.5 commonly given is approximate. The highest authoritative figure is 63.425. At 62° F. the figures range from 62.291 to 62.360. The figure 62.355 is generally accepted as the most accurate.

At 32° F. figures given by different writers range from 63.379 to 62.416. Clark gives the latter figure, and Hamilton Smith, Jr., (from Rosetti,) gives

62.416.

Weight of Water at Temperatures above \$12° F.—Porter (Richards' "Steam-engine Indicator," p. 52) says that nothing is known about the expansion of water above 212°. Applying formulæ derived from experiments made at temperatures below 212°, however, the weight and volume above 212° may be calculated, but in the absence of experimental

data we are not certain that the formulæ hold good at higher temperatures.

Thurston, in his "Engine and Boller Trials," gives a table from which we take the following (neglecting the third decimal place given by him):

Tempera- ture, deg. F.	Weight, lbs. per cubic foot.	Tempera- ture, deg. F.	Weight, Ibs. per cubic foot.	Tempera- ture, deg. F.	Weight, Ibs. per cubic foot.	Tempera- ture, deg. F.	Weight, lbs. per cubic foot.	Tempera- ture, deg. F.	Weight, lbs. per cubic foot.
212	59.71	280	57.90	850	55.52	420	52.86	490	50.03
220 230	59.64	290	57.59	<b>36</b> 0	55.16	430	52.47	500	49.61
230	59.87	300	57.26	370	54.79	440	52.07	510	49.20
240	59.10	310	56.93	380	54.41	450	51.66	520	48.78
240 250	58.81	3:30	56.58	390	54.08	460	51.26	530	48.36
260	58 52	880	56.24	400	58 64	470	50.85	540	47.94
270	58.21	840	55.88	410	58.26	480	50.44	550	47.52

Box on Heat gives the following:

Temperature F..... 212° 250° 300° 850° 400° 450° 500° Lbs. per cubic foot.... 59.82 58.85 57.42 55.94 54.84 52.70 51.02 47.64

At 212° figures given by different writers (see Trans. A. S. M. E., xiii. 409) range from 59.56 to 59.845, averaging about 59.77.

Weight of Water per Cubic Foot, from 82° to 212° F., and heatunits per pound, reckoned above 82° F.: The following table, made by interpolating the table given by Clark as calculated from Rankine's formula, with corrections for apparent errors, was published by the author in 1884, Trans. A. S. M. E., vi. 90. (For heat units above 212° see Steam Tables.)

							<del>. •</del>				
Temp., deg. F.	Weight, lbs. per cubic foot.	Heat-units.	Tempera- ture, deg. F.	Weight, lbs. per cubic foot.	Heat-units.	Tempera- ture, deg. F.	Weight, lbs. per cubic foot.	Heat-units.	Tempera- ture, deg. F.	Weight, lbs. per cubic foot.	Heat-units.
	62.42	0.	78 79	62.25 62.24	46.08	128 124	61.68	91.16	168	60.81	136.44
32 33 84	62.42	1.	79	62.24	47.08	124	61.67	92.17	169	60.79	137.45
81 88	62.42 62.42	2. 3.	80 81	62.23 62.22	48.04 49.04	120	61.65 61.68	98.17 94.17	170 171	60.77	138.45 139.46
35 36	62.42	4.	82	62.21	50.04	125 126 127 128 129	61 61	i 95.18	172	60.78	140.47
37 38 39	62.42	5.	88 84	62.20	51.04	128	61.60	96.18	178 174	60.70	141.48
38	62.42	6.	84	62.19	52.04	129	61.58	97.19	174	60.68	142.49
39	62.42	7.	85	62.18	53.05	180	61.56	98.19	175		143.50
40 41	62.42 62.42	8. 9.	80	62.17 62.16	54.05 55.05	131	61.54	98.19 99.20 100.20	176 177		144.51 145.52
42	62.42	10.	85 86 87 88 89	62.15	56.05	180 131 182 138	61.51	101.21	178	60.59	146.52
43	62.42	ii.	89	62.14	57.05	184 185	61.49	102.21	179	60.57	147.53
44	62.42	12.	90	62.13	58.06	185	61.47	108.22	180	60.55	148.54
45	62.42	13.	91	62.12	59.06	186	61.45	104.22	181	60.58	149.55
46 47	62.42	14. 15.	98 92	62.11 62.10	60.06 61.06	137	61.48	105.28 106.28	182 188		150.56 151.57
48	62.41	16.	94	62.09	62.06	137 138 139	61.89	100.28	184	89 46	152.58
49	62.41	17.	95	62.08	63.07	140	61.37	108.25	185	60.44	153.59
49 50	62.41	18.	95 96	62.07	64.07	141	61.36	108.25 109.25	186	60.41	154.60
51	62.41	19.	97	62.06	65.07	142	61.34	110.26	187	60.89	155.61
52 58	62.40 62.40	20.	98 99	62.05 62.03	66.07	148 144	61.80	111.26 112.27	188 189	60.87	156.62 157.68
54	62.40	21.01 22.01	100	62.02	67.08 68.08	145	61 99	112.27	190	60.89	158.64
55	62.39	23.01	100 101	62.01	69.08	146	61.26	113.28 114.28	191	60.29	159.65
55 56 57 58 59 60 61 62 63 64	62.39	24.01	102	62.00	70.09	147	61 24	1115 20	192	60.27	160.67
57	62.39	25.01	103	61.99	71.09	148	61.22	116.29 117.30	193	60.25	161.68
58	62.38	26.01	104	61.97	72.09	149	61.20	117.30	194	60.22	162.69
59	62.38 62.37	27.01	105	61.96 61.95	78.10	150	61.18	118.81	195		163.70 164.71
81	62.87	28.01 29.01	106 107	61.93	74.10 75.10	151 152	81 14	119.31 120.32	196 197	60 15	165.72
62	62.36	30.01	108	61.92	76.10		61.12	121.83	198		166.78
63	62.86	31.01	109 110	61.91	77.11	154	61.10	122.33	199	60.10	167.74
64	62.35	32.01	110	61.89	78.11	155	61.08	128.84	200	60.07	168.75
65	62.34	38.01	111	61.88	79.11	156	61.06	124.85	201	60.05	169.77
65 66 67	62.34	34.02	112 113	61.86 61.85	80.12	157 158		125.85	202 208		170.78
60	62.33 62.33	35.02 36.02	114	61.83	81.12 82.13	159	01.03	126.36 127.37		80.00	171.79
68 69	62.32	37.02	115	61.82	83.13	160	60.98	128.37	205	59.95	172.80 178.81
70	62.31	38.02	116	61 00	84.13	161		129.88	205 206	59.92	174.83
71	62.31	39.02	117	61.78 61.77 61.75 61.74 61.72 61.70	85.14	162	60.94	1 130.39	207	59.89	175 84
71 72 73 74 75 76	62.30	40.02	118	61.77	86.14	163	60.9	131 . 40	208	59.87	176.85
73	62.29	41.02	119	61.75	87.15	164	60.90	132.41	209	59.84	177.86
74	62.28	42.03	120	61.74	88.15	165	60.87	138.41	210	59.89 59.79	178.87
10	62.28 62.27	48.03 44.03		81 70	89.15 90.16	166 167	60.80	134.42 135.43	211 212	50 7	179.89 180.90
77	62.26			01.70	30.10	101	00.00	100.40	212	39.10	100.30
	1 04.40	70.00				•	<u> </u>	<u> </u>	•	<u> </u>	<u> </u>

### Comparison of Heads of Water in Feet with Pressures in Various Units.

```
One foot of water at 39°.1 Fahr. = 62.425 lbs. on the square foot;
" " " = 0.4335 lbs, on the square inch;
" = 0.0295 atmosphere;
" " = 0.8826 inch of mercury at 32°;
" " = 773.3 { feet of air at 32° and atmosphere; pressure:
```

One lb, on the square foot, at 89°.1 Fahr	=	0.01602	foot	of	water:
One lb. on the square inch " =			feet	of	water:
One atmosphere of 29.922 inches of mercury =	= 8	<b>33.9</b>			**
One inch of mercury at 32°.1 =	=	1.183			**
One foot of air at 32 deg., and one atmosphere =	=	0.001293	64	••	••
One foot of average sea-water =	= :	1.026 foot	of	pui	e water;
One foot of water at 62° F	= (	62.355 lbs	. pe	r sc	ı. foot ;
" " " 62° F =	=	0.43302 1	bs. j	oer	sq. inch;
One inch of water at 62° F =	=	0.036085	"	••	
One pound of water on the square inch at 62° F. =	=	2.3094 fe	et o	f w	ater.

### Pressure in Pounds per Square Inch for Different Heads of Water.

At 62° F. 1 foot head = 0.433 lb. per square inch,  $.433 \times 144 = 62.352$  lbs, per cubic foot.

Head, feet.	0	1	2	3	4	5	6	7	8	9
0		0.438							8.464	
10	4.330				6.062			7.361		
20	8.660								12.124	
30									16,454	
40									20,784	
50	21.650									
60	25.980									
70	30.310									
	84.640									
90	88.970	39.408	39.836	40.269	40.702	41.135	41.568	42.001	42.436	42.867
	l j		i	1	l	l		i	l	

### Head in Feet of Water, Corresponding to Pressures in Pounds per Square Inch.

1 lb. per square inch = 2.80947 feet head, 1 atmosphere = 14.7 lbs. per sq. inch = 38.94 ft. head.

Pressure.		0		1		2 —	_	8	_	4		5	_	6		7		8		9
0			2.	309	4.	619	6	.928	9.	238	11.	547	18	.857	16.	166	18.	476	20.	78
10		0947																		
20		1894																		
30	69.	2841	71.	594	73.	903	76	. 213	78.	522	80	.881	88	.141	85.	450	87.	760	90.	069
40	92.	3788	94.	688	96.	998	99	. 307	101	.62	10	3.93	100	3.24	108	3.55	110	).85	113	. 10
50	115.	4735	117	.78	120	.09	12	2.40	124	.71	126	3.02	129	33	131	.64	189	3.95	136	. 20
60	138.	5682	140	.88	148	. 19	14	5.50	147	.81	150	).12	159	2.42	154	1.73	157	7.04	159	. 82
70	161.	6629	168	.97	166	.28	168	3.59	170	.90	175	3 21	17	5.52	177	.83	180	1.14	182	4!
80	184.	7576	187	.07	189	.38	19	1.69	194	00	196	3.31	198	3.61	200	.92	205	3.23	205	.54
90	207.	8523	210	. 16	212	.47	214	1.78	217	.09	219	.40	22	1.71	224	1.02	226	3.33	228	6

Pressure of Water due to its Weight.—The pressure of still water in pounds por square inch against the sides of any pipe, channel, or vessel of any shape whatever is due solely to the "head," or height of the level surface of the water above the point at which the pressure is considered, and is equal to 43802 lb. per square inch for every foot of head, or 62,355 lbs. per square foot for every foot of head (at 62° F.).

The pressure per square inch is equal in all directions, downwards, upwards, or sideways, and is independent of the shape or size of the containing vessel.

The pressure against a vertical surface, as a retaining-wall, at any point is in direct ratio to the head above that point, increasing from 0 at the level surface to a maximum at the bottom. The total pressure against a vertical strip of a unit's breadth increases as the area of a right-angled triangle

550 WATER.

whose perpendicular represents the height of the strip and whose base represents the pressure on a unit of surface at the bottom; that is, it increases as the square of the depth. The sum of all the horizontal pressures is represented by the area of the triangle, and the resultant of this sum is equal to this sum exerted at a point one third of the height from the bottom. (The centre of gravity of the area of a triangle is one third of its height.

The horizontal pressure is the same if the surface is inclined instead of

vertical.

(For an elaboration of these principles see Trautwine's Pocket-Book, or the chapter on Hydrostatics in any work on Physics. For dams, retaining walls, etc., see Trautwine.)

The amount of pressure on the interior walls of a pipe has no appreciable

effect upon the amount of flow.

Buoyancy.—When a body is immersed in a liquid, whether it float or sink, it is buoyed up by a force equal to the weight of the bulk of the liquid displaced by the body. The weight of a floating body is equal to the weight of the bulk of the liquid that it displaces. The upward pressure or buoyancy of the liquid may be regarded as exerted at the centre of gravity of the displaced water, which is called the centre of pressure or of buoyancy. A vertical line drawn through it is called the axis of buoyancy or of flotation. In a floating body at rest a line joining the centre of gravity and the centre of buoyancy is vertical, and is called the axis of equilibrium. When an external force causes the axis of equilibrium to lean, if a vertical line be drawn upward from the centre of buoyancy to this axis, the point where it cuts the axis is called the metacentre. If the metacentre is above the centre of gravity the distance between them is called the metacentric height, and the body is then said to be in stable equilibrium, tending to return to its

original position when the external force is removed.

Boiling-point.—Water boils at 212* F. (100° C.) at mean atmospheric pressure at the sea-level, 14.696 lbs. per square inch. The temperature at which water boils at any given pressure is the same as the temperature of saturated steam at the same pressure. For boiling-point of water at other pressure than 14.696 lbs. per square inch, see table of the Properties of

Saturated Steam.

The Bolling-point of Water may be Raised.—When water is entirely freed of air, which may be accomplished by freezing or bolling, the cohesion of its atoms is greatly increased, so that its temperature may be raised over 50° above the ordinary bolling-point before sbulltion takes place. It was found by Faraday that when such air-freed water did boil, the rupture of the liquid was like an explosion. When water is surrounded by a film of oil, its boiling temperature may be raised considerably above its normal standard. This has been applied as a theoretical explanation in the instance of boiler-explosions.

The freezing-point also may be lowered, if the water is perfectly quiet, to - 10° C., or 18° Fahrenheit below the normal freezing-point, (Hamilton Smith, Jr., on Hydraulics, p. 13.) The density of water at 14° F. is .99814, its density at 39°. 1 being 1, and at 32°, .99987.

Freezing-point.—Water freezes at 32° F. at the ordinary atmospheric pressure, and ice melts at the same temperature. In the melting of 1 pound of ice into water at 32° F. about 14°, best puris are absorbed or become

of ice into water at 32° F. about 142 heat-units are absorbed, or become latent; and in freezing 1 lb. of water into ice a like quantity of heat is given out to the surrounding medium.

Sea-water freezes at 27° F. The ice is fresh. (Trautwine.)

Ice and Snow. (From Clark.)—I cubic foot of ice at 32° F. weighs
57.50 lbs.: 1 pound of ice at 32° F. has a volume of .0174 cu ft. = 30.067 cu. in.

Relative volume of ice to water at 32° F., 1.0855, the expansion in passing into the solid state being 8.55%. Specific gravity of ice = 0.923, water at 62° F. being 1.

At high pressures the melting-point of ice is lower than 32° F., being at the rate of .0183° F. for each additional atmosphere of pressure

The specific heat of ice is .504, that of water being 1.

1 cubic foot of fresh snow, according to humidity of atmosphere: 5 lbs. to 12 lbs. 1 cubic foot of snow moistened and compacted by rain: 15 lbs. to 50 lbs. (Trantwine) (Trantwine).

Specific Heat of Water. (From Clark's Steam-engine.)—Calculated by means of Regnault's formula,  $c=1+0.00004t+0.000009t^2$ , in which c is the specific heat of water at any temperature t in centigrade degrees, the specific heat at the freezing point being 1.

Tempera- tures.		sh Ther- Units pound, ve 32° F.	fic Heat he given perature.	u Specific at between F. and the en Temp.	Tem;	pera- res.	th Ther- Units pound, e 32° F.	cific Heat the given mperature.	Specific t between f. and the f. Temp.
Cent.	Fahr.	32.0	Speci at th Tem	Mean Head 38° F	Cent.	Fahr.	British mal U per po above	Speci at th Tem	Mean Heat 32° F given
0.	320	0.000	1.0000		120°	2480	217.449	1.0177	1.0067
10	50	18.004	1.0005	1.0002	180	266	235.791	1.0204	1.0076
20	68	36.018	1.0012	1.0005	140	284	254.187	1.0232	1.0087
30	86	54.047	1.0020	1.0009	150	303	272.628	1.0262	1.0097
40	104	72.090	1.0030	1.0013	160	320	291.132	1.0294	1.0109
50	122	90.157	1.0042	1.0017	170	3.3	309.690	1.0328	1.0121
60	140	108.247	1.0056	1.0028	180	350	328.320	1.0364	1.0188
70	158	126.378	1.0072	1.0030	190	874	317.004	1.0401	1.0146
80	176	144.508	1.0089	1.0085	200	892	365.760	1.0440	1.0160
90	194	162.686	1.0109	1.0042	210	410	384.588	1.0481	1.0174
100	212	180.900	1.0130	1.0050	220	428	403.48	1.0524	1.0189
110	230	199.152	1.0153	1.0058	230	446	4:2.47	1.0568	1.0204

Compressibility of Water.—Water is very slightly compressible. Its compressibility is from .00010 to .00051 for one atmosphere, decreasing with increase of temperature. For each foot of pressure distilled water will be diminished in volume .0000015 to .0000013. Water is so incompressible that even at a depth of a mile a cubic foot of water will weigh only about half a pound more than at the surface.

### THE IMPURITIES OF WATER.

### (A. E. Hunt and G. H. Clapp, Trans. A. I. M. E. xvii, 338.)

Commercial analyses are made to determine concerning a given water: (1) its applicability for making fram; (2) its hardness, or the facility with which it will "form a lather" necessary for washing; or (3) its adaptation to other manufacturing purposes.

At the Buffalo meeting of the Chemical Section of the A. A. A. S. it was de-

cided to report all water analyses in parts per thousand, hundred-thousand,

and million.

To convert grains per imperial (British) gallons into parts per 100,000, divide by 0.7. To convert parts per 100,000 into grains per U. S. gallon, mul-

tiply by 7/12 or .588.

The most common commercial analysis of water is made to determine its fitness for making steam. Water containing more than 5 parts per 100,000 of free sulphuric or nitric acid is liable to cause serious corrosion, not only of the metal of the boiler itself, but of the pipes, cylinders, pistons, and valves with which the steam comes in contact.

The total residue in water used for making steam causes the interior linings of boilers to become coated, and often produces a dangerous hard

scale, which prevents the cooling action of the water from protecting the metal against burning.

Lime and magnesia bicarbonates in water lose their excess of carbonic acid on boiling, and often, especially when the water contains sulphuric acid, produce, with the other solid residues constantly being formed by the evaporation, a very hard and insoluble scale. A larger amount than 100 parts per 100,000 of total solid residue will ordinarily cause troublesome scale, and should condemn the water for use in steam-boilers, unless a better supply can be obtained.

The following is a tabulated form of the causes of trouble with water for

steam purposes, and the proposed remedies, given by Prof. L. M. Norton.

### CAUSES OF INCRUSTATION.

Deposition of suspended matter.

 Deposition of deposed salts from concentration.
 Deposition of carbonates of lime and magnesia by boiling off carbonic acid, which holds them in solution.

Deposition of sulphates of lime, because sulphate of lime is but slightly soluble in cold water, less soluble in hot water, insoluble above 270° F.
 Deposition of magnesia, because magnesium salts decompose at high

6 Deposition of lime soap, iron soap, etc., formed by saponification of grease.

#### MEANS FOR PREVENTING INCRUSTATION.

1. Filtration.

 Blowing off.
 Use of internal collecting apparatus or devices for directing the circulation.

·4. Heating feed-water.

5. Chemical or other treatment of water in boiler.6. Introduction of zinc into boiler.

7. Chemical treatment of water outside of boiler.

### TABULAR VIEW.

Troublesome Substance. Sediment, mud, clay, etc. Readily soluble salts.	Trouble. Incrustation.	Remedy or Palliation. Filtration; blowing off. Blowing off.
Bicarbonates of lime, magnesia, iron.		Heating feed. Addition of caustic soda, lime, or magnesia, etc.
Sulphate of lime.	"	Addition of carb. soda, barium chloride, etc.
Chloride and sulphate of magne-	Corrosion.	Addition of carbonate of soda, etc.
Carbonate of soda in large	Priming.	Addition of barium chlo- ride, etc.
Acid (in mine waters).	Corrosion.	Alkali.
Dissolved carbonic acid and and axygen.	" .	Heating feed. Addition of caustic sods, slacked lime, etc.
Grease (from condensed water).	**	Slacked lime and filtering. Carbonate of soda. Substitute mineral oil.
Organic matter (sewage).	Priming.	Precipitate with alum or ferric chloride and filter.
Organic matter.	Corrosion.	Ditto.

The mineral matters causing the most troublesome boiler-scales are bicarbonates and sulphates of lime and magnesia, oxides of iron and alumina, and silica. The analyses of some of the most common and troublesome boiler-scales are given in the following table :

### Analyses of Boiler-scale. (Chandler.)

						Sul- phate of Lime.	Mag- uesia.	Silica.	Per- oxide of Iron,	Water.	Car- bonate of Lime.
N. Y.	C.	& H.	R. Ry.	, No.	1	74.07	9.19	0.65	0.08	1.14	14.78
••			••	No.	2	71.37		1.76			******
"		**	"	No.	3	62.86	18.95	2.60	0.92	1.28	12.62
• •		**	"	No.	4	53.05	l . <b></b>	4.79	. <b>.</b> '	<b></b>	· • • • • • •
**		"	44	No.	5	46.83	1	5.32			
**		**	46	No.	6	30.80	31.17	7.75	1.08	2.41	26.93
46		66	44	No.	7	4.95	2.61	2.07	1.08	0.63	86.25
46		44	44	No.	-8	0.88	2.84	0.65	0.36	0.15	93 19
66		66	44	No.	9	4.81	~.04	2.92	0.00	0.10	20 12
		"	**	No.		30.07		8.24	l · · · · · · ·		• • • • • • • • • • • • • • • • • • •

Analyses	in I	Parts	per	100,0	DO of	W	ter	giving	Bad
=	Resi	olta i	m St	es méh	vilers.	( A	K. Hu	int i	

Mesuits in	366	rm.	DOL	EFF	. (/	1. L.	Hui	11.)		
	Bicarbonate of Lime deposited on Boiling.	Bicarbonate of Mag- nesia depos'd on Boil'g	Total Line.	Total Magnesia,	Sulphuric Acid.	Chlorine.	Iron.	Organic Matter.	Alumina.	Chloride of Sodium.
Coal-mine water	110 151	25 38	119 1.90	89 48	890 360	590 990	780 88	30 21	640 30	18.10
Spring	75	89	95	120	810		88 75	10	80	36
Monongahela River	130	21	161	83	210	38	70			
	80	70	94	81	219	210	70 90 88 23			
** *********	35	83	61	1.04	28	1.90	88			
Allegheny R., near Oil-works	30	50	41	68	890	42	23			

Many substances have been added with the idea of causing chemical action which will prevent boiler-scale. As a general rule, these do more harm than good, for a boiler is one of the worst possible places in which to carry on chemical reaction, where it nearly always causes more or less corrosion of the metal, and is liable to cause dangerous explosions.

In cases where water containing large amounts of total solid residue is necessarily used, a heavy petroleum oil, free from tar or wax, which is not acted upon by acids or alkalies, not having sufficient wax in it to cause saponification, and which has a vaporizing-point at nearly 600° F., will give the best results in preventing boiler-scale. Its action is to form a thin greasy film over the boiler linings, protecting them largely from the action of acids in the water and greasing the sediment which is formed, thus preventing the formation of scale and keeping the solid residue from the evaporation of the water in such a plastic suspended condition that it can be easily ejected from the boiler by the process of "blowing off." If the water is not blown off sufficiently often, this sediment forms into a "putty" that will necessitate cleaning the boilers. Any boiler using bad water should be blown off every twelve hours.

be blown off every twelve hours.

Hardmess of Water.—The hardness of water, or its opposite quality, indicated by the ease with which it will form a lather with soap, depends almost altogether upon the presence of conpounds of lime and magnesia. Almost all soaps consist, chemically, of oleate, stearate, and palmitate, of an alkaline base, usually soda and potash. The more lime and magnesia in a sample of water, the more soap a given volume of the water will decompose, so as to give insoluble cleate, palmitate, and stearate of lime and magnesia, and consequently the more soap must be added to a gallon of water in order that the necessary quantity of soap may remain in solution to form the lather. The relative hardness of samples of water is generally expressed in terms of the number of standard soap-measures consumed by a gallon of water in yielding a permanent lather.

The standard soap-measure is the quantity required to precipitate one grain of carbonate of lime.

It is commonly reckoned that one gallon of pure distilled water takes one soap-measure to produce a lather. Therefore one is deducted from the total number of soap-measures found to be necessary to use to produce a lather in a gallon of water, in reporting the number of soap-measures, or "degrees" of hardness of the water sample. In actually making tests for hardness, the "miniature gallon," or seventy cubic centimetres, is used rather than the inconvenient larger amount. The standard measure is made by completely dissoniving ten grammes of pure castile soap (containing 60 per cent olive-oil) in a litre of weak alcohol (of about 35 per cent alcohol). This yields a solution containing exactly sufficient soap in one cubic centimeter of the solution to precipitate one milligramme of carbonate of lime, or, in other words, the standard soap solution is reduced to terms of the "miniature gallon" of water taken.

If a water charged with a bicarbonate of lime, magnesia, or iron is boiled,

554 WATER.

it will, on the excess of the carbonic acid being expelled, deposit a considerable quantity of the lime, magnesia, or iron, and consequently the water will be softer. The hardness of the water after this deposit of lime, after long boiling, is called the permanent hardness and the difference between it and the total hardness is called temporary hardness.

Lime salts in water react immediately on soap-solutions, precipitating the oleate, palmitate, or stearate of lime at once. Magnesia salts, on the contary, require some considerable time for reaction. They are, however, more powerful hardeners; one equivalent of magnesia salts consuming as

more powerful nardeners; one equivalent of magnesia saits consuming a much soap as one and one-half equivalents of lime.

The presence of soda and potash salts softens rather than hardens water. Each grain of carbonate of lime per gallon of water causes an increased expenditure for soap of about 2 ounces per 100 gallons of water. (Eng'g.

News, Jan. 31, 1885.)

Purifying Feed-water for Steam-bollers.—To effect the purification of water before and after being fed into a boiler, a device manufactured by the Albany Steam Trap Company, Albany, N. Y. removes the impurities by the process of a continuous circulation of the water from the boiler, through the filter and back into the boiler. The scale forming impurities that are held in suspension are thus brought in contact with and "arrested" by the filtering agent contained in the filter while under pressure, and at a temperature limited only by that contained in the boiler.

It is sometimes desirable, in the removal of the sulphates and carbonates from the feed-water, to heat the water up to nearly the same temperature as it is in the boiler, and then to filter the same before feeding it into the boiler. The operation in a general way is: The water is first forced into the usual exhaust-heater by the feed-pump, and there it is heated by the exhaust from the engine, say to 200°, and at this temperature it enters the reheater. The reheater consists of a vertical, cylindrical shell containing a series of water pans or shelves, and so arranged that as the water enters it series or water pans or snelves, and so arranged that as the water enters it it delivered into the top pan, and then overflows into the second, and so on down the series to the bottom, and during its transit deposits the scale-forming material. The circulating-pump takes the water from the bottom of the reheater and forces it through the filter on its way into the boller.

Mr. W. B. Coggswell, of the Solvay Process Co.'s Soda Works in Syracuse.
N. Y., thus describes the system of purification of boiler feed-water in use at these works (Trans. A. S. M. E., xiii, 255):

For purifying waves a weak soda liquor containing showt 18 to 15 grams.

For purifying, we use a weak soda liquor, containing about 12 to 15 grams Na₂Co₃ per litre. Say 1½ to 2 M² (or 397 to 530 gals.) of this liquor is run into the precipitating tank. Hot water about 60° C. is then turned in, and the reaction of the precipitation goes on while the tank is filling, which requires about 15 minutes. When the tank is full the water is filtered through the Hyatt (4), 5 feet diameter, and the Jewell (1), 10 feet diameter, filters in 30 minutes. Forty tanks treated per 24 hours.

A sample is taken from each boiler every other day and tested for deg. Baumé, soda and sait. If the deg. B is more than 2, that boiler is blown to reduce it below 2 deg. B.

The following are some analyses given by Mr. Coggswell:

	Lake Water, grams per litre.	Mud from Hyatt Filter.	Scale from Boiler- tube.	Scale found in Pump,
Calcium sulphate	.261 .186	3.70	51.24	10.9
Calcium chloride Calcium carbonate Magnesium carbonate	.091	63.37 1.11	19.76 25.21	87.
Magnesium chloride	.087		.14	
Silica		15.17 8.75	2.29 1.10	.8 1. <b>?</b>
Total	1.270	87.10	99.74	99 9

Softening Hard Water for Locomotive Use.—A water-soft-ening plant in operation at Fossil, in Western Wyoming, on the Union Pa-cific Railway, is described in Eng'g Netes, June 9, 1892. It is the invention of Arthur Pennell, of Kansas City. The general plan adopted is to first dis-solve the chemicals in a clo-ed tank, and then connect this to the supply main so that its contents will be forced into the main tank, the supply-pipe being so arranged that thorough mixture of the solution with the water is obtained. A waste-pipe from the bottom of the tank is opened from time to time to draw off the precipitate. The pipe leading to the tender is arranged to Jraw the water from near the surface

A water-tank 24 feet in diameter and 16 feet high will contain about 46,600 gallons of water. About three hours should be allowed for this amount of water to pass through the tank to insure thorough precipitation, giving a permissible consumption of about 15,000 gallons per hour. Should more than this be required, auxiliary settling tanks should be provided.

The chemicals added to precipitate the scale-forming impurities are so-dium carbonate and quicklime, varying in proportions according to the relative proportions of sulphates and carbonates in the water to be treated. Sufficient sodium carbonate is added to produce just enough sodium sulphate to combine with the remaining lime and magnesia sulphate and produce glauberite or its corresponding magnesia salt, thereby to get rid of the sodium sulphate, which produces foaming, if allowed to accumulate.

### HYDRAULICS-FLOW OF WATER.

Formulæ for Discharge of Water though Orifices and Weirs.—For rectangular or circular orifices, with the head measured from centre of the orifice to the surface of the still water in the feeding reservoir.

$$Q = C \sqrt{2gH} \times a. \qquad (1)$$

For weirs with no allowance for increased head due to velocity of approach:

$$Q = C\% \sqrt{2gH} \times LH. \qquad (2)$$

For rectangular and circular or other shaped vertical or inclined orifices: formula based on the proposition that each successive horizontal layer of water passing through the orifice has a velocity due to its respective head:

For rectangular vertical weirs:

Q = quantity of water discharged in cubic feet per second; C = approximate coefficient for formulas (1) and (2); c = correct coefficient for (8)and (4). Values of the coefficients c and C are given below.

g=32.16;  $\sqrt{2g}=8.02$ ; H= head in feet measured from centre of orifice to level of still water; Hb= head measured from bottom of orifice; Ht= head measured from top of orifice; h=H, corrected for velocity of approach,  $Va_1=H+\frac{4}{3}\frac{Va_2^2}{2g}$ ; a= area in square feet; L= length in feet.

Flow of Water from Orifices. - The theoretical velocity of water flowing from an orifice is the same as the velocity of a falling body which has fallen from a height equal to the head of water,  $= \sqrt{2g}H$ . The actual velocity at the smaller section of the vena contracta is substantially the same as the theoretical, but the velocity at the plane of the orifice is  $C\sqrt{2gH_1}$ , in which the coefficient C has the nearly constant value of .62. The smallest diameter of the vena contracta is therefore about .79 of that of the orifice. If C be the approximate coefficient = .62, and c the correct coeffi

cient, the ratio  $\frac{C}{c}$  varies with different ratios of the head to the diameter of the vertical orifice, or to  $\frac{H}{D}$ . Hamilton Smith, Jr., gives the following:

For 
$$\frac{H}{D} = .5$$
 .875 .1 .1.5 2. 2.5 5. 10.  $\frac{C}{c} = .9604$  .9849 .9918 .9965 .9980 .9987 .9997 1.

For vertical rectangular orifices of ratio of head to width W:

For 
$$\frac{H}{W} = .5$$
 .6 .8 .1 1.5 2. 3. 4. 5. 8.  $\frac{C}{c} = .9428$  .9657 .9823 .9890 .9953 .9974 .9988 .9993 .9996 .999 For  $H + D$  or  $H + W$  over 8,  $C = c$ , practically.

Weisbach gives the following values of c for circular orifices in a thin wall. H = measured head from centre of orifice.

D ft.				H ft.			
D 10.	.066	.33	.82	2.0	3.0	45.	84Q.
.083 .066 .10	.711	.665	.637 .629 .622 .614	.628 .621 .614 .607	.641	.682	.600

For an orifice of D = .088 ft. and a well-rounded mouthpiece, H being the effective head in feet,

$$H = .066$$
 1.64 11.5 56 338  $c = .959$  .967 .975 .994 .994

Hamilton Smith, Jr., found that for great heads, 312 ft. to 336 ft., with converging mouthpieces, c has a value of about one, and for small circular orifices in thin plates, with full contraction, c= about .60. Some of Mr. Smith's experimental values of c for orifices in thin plates discharging into air are as follows. All dimensions in feet.

For the rectangular orifice, L, the length, is horizontal. Mr. Smith, as the result of the collation of much experimental data of others as well as his own, gives tables of the value of c for vertical orifices, with full contraction, with a free discharge into the air, with the inner face of the plate, in which the orifice is pierced, plane, and with sharp inner corners, so that the escaping vein only jouches these inner edges. These tables are abridged below. The coefficient c is to be used in the formula (3) and (4) above. For formulæ (1) and (2) use the coefficient C found from the values of the ratios  $\frac{C}{c}$  above.

Walnes of Coefficient c for Vertical Orifices with Sharp Edges, Full Contraction, and Free Discharge into Air. (Hamilton Smith, Jr.)

	Squa.	re Or	ifices,	Let	igth o	f the	Side (	of the	Squa	re, in	feet.	
.02	.03	.04	.05	.07	.10	.12	.15	.20	.40	.60	.80	1.0
.600 .648 .632 .623 .616 .606	.645 .686 .622 .616 .611 .605	.643 .636 .628 .616 .612 606 .604		.609 .607 .605 .602 .598	.607 .605 .604 .602 .598			.605 .605 .605 .604 .603 .602	.601 .603 .605 .604 .603 .601 .598		.596 .600 .603 .602 .602 .602	.599 .603 .602 .601 .600
.02	.03	.04	.05	.07	.10	.12	.15	.20	.40	.60	.80	1.0
.655 .644 .639 .628 .618 .611 .601	.640 .631 .621 .614 .611 .606 .600	.630. .623 .614 .609 .607 .603 .599	.637 .624 .617 .610 .605 .604 .601 .598 .595	.602 .599 .597	.600 .598 .596 .594	.612 .609 .605 .601 .600 .599 .598 .596 .594	.606 .605 .603 .600 .599 .599 .597 .596 .594	.601 .600 .599 .598 .598 .597 .596 .594	.596 .598 .599 .598 .598 .597 .596	.598 .595 .597 .597 .596 .596 .596	.590 .593 .596 .597 .596 .596 .595 .593	.591 .595 .596 .596 .595 .594 .593
	.660 .648 .628 .616 .606 .599 .028 .655 .644 .628 .628 .628 .611 .601 .596	.02 .03  .660 .645 .648 .636 .623 .616 .616 .611 .509 .596  .02 .03  .655 .640 .644 .631 .632 .621 .632 .621 .632 .614 .618 .611 .632 .614 .618 .611 .635 .596	.08 .03 .04  .600 .645 .635 .628 .648 .635 .628 .632 .661 .612 .616 .611 .608 .605 .605 .604 .599 .598 .598  .08 .03 .04  .655 .640 .630 .644 .631 .623 .652 .614 .609 .618 .611 .606 .601 .600 .509	.08 .08 .04 .05  .600 .645 .636 .630 .648 .636 .628 .622 .632 .632 .632 .632 .632 .632 .633 .634 .636 .636 .638 .636 .638 .636 .638 .637 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638 .638	.02 .03 .04 .05 .07  .643 .637 .628 .660 .645 .636 .630 .623 .648 .636 .628 .622 .618 .632 .622 .616 .612 .600 .623 .616 .612 .600 .005 .606 .605 .604 .606 .605 .606 .605 .604 .603 .602 .599 .596 .598 .598 .598  .655 .640 .630 .624 .618 .644 .631 .623 .617 .612 .632 .621 .614 .609 .605 .603 .632 .621 .614 .610 .607 .623 .611 .607 .604 .602 .633 .621 .614 .610 .607 .623 .611 .607 .604 .602 .611 .606 .603 .601 .599 .601 .600 .509 .595 .595 .595	.08 .08 .04 .05 .07 .10  .08 .08 .04 .05 .07 .10  .09 .645 .636 .630 .623 .617  .648 .636 .628 .622 .618 .613  .632 .682 .616 .612 .609 .607  .636 .616 .612 .609 .607 .605  .616 .611 .606 .606 .605 .605  .606 .605 .604 .603 .602 .602  .599 .598 .598 .598 .598  Circular Orifice  .08 .03 .04 .05 .07 .10  .637 .623 .618 .613  .644 .631 .623 .612 .612  .655 .640 .630 .624 .618 .613  .644 .631 .623 .617 .612 .604  .632 .621 .614 .609 .605 .603 .602  .633 .644 .630 .624 .618 .613  .644 .631 .623 .617 .612 .604  .652 .621 .614 .610 .607 .004  .623 .614 .609 .605 .603 .602  .618 .611 .607 .604 .602 .600  .611 .606 .603 .601 .599 .598  .601 .600 .909 .598 .597 .598  .601 .600 .599 .598 .597 .598  .596 .596 .595 .595 .594 .594	.08 .03 .04 .05 .07 .10 .12  .600 .645 .636 .637 .628 .621 .616 .618 .613 .630 .623 .617 .613 .617 .613 .616 .628 .622 .618 .613 .610 .628 .622 .616 .612 .609 .607 .605 .605 .605 .606 .605 .604 .606 .606 .605 .604 .606 .605 .604 .606 .605 .604 .606 .605 .604 .606 .605 .604 .606 .605 .604 .606 .606 .605 .604 .606 .606 .606 .606 .606 .606 .606	.08 .03 .04 .05 .07 .10 .12 .15  .600 .645 .635 .630 .633 .617 .613 .610 .648 .635 .628 .622 .618 .613 .610 .608 .632 .622 .616 .612 .609 .607 .606 .606 .632 .626 .612 .609 .607 .605 .605 .605 .616 .611 .608 .606 .605 .604 .604 .603 .606 .605 .604 .603 .602 .602 .602 .602 .509 .598 .598 .598 .598 .598 .598 .598  Circular Orifices. Diamet  .08 .03 .04 .05 .07 .10 .12 .15 .655 .640 .630 .624 .618 .613 .609 .605 .644 .631 .623 .617 .612 .606 .605 .632 .622 .618 .613 .609 .607 .606 .606 .633 .624 .618 .613 .609 .605 .634 .631 .623 .617 .612 .604 .605 .603 .632 .621 .614 .609 .605 .603 .602 .600 .599 .618 .611 .607 .604 .602 .607 .599 .599 .618 .611 .607 .604 .602 .599 .599 .598 .611 .606 .603 .601 .599 .598 .598 .597 .601 .600 .599 .598 .597 .596 .596 .596	.08	.08	.08	.08

### HYDRAULIC FORMULE.-FLOW OF WATER IN OPEN AND CLOSED CHANNELS.

Flow of Water in Pipes. The quantity of water discharged through a pipe depends on the "head;" that is, the vertical distance between the level surface of still water in the chamber at the entrance end of the pipe and the level of the centre of the discharge end of the pipe; also upon the length of the pipe, upon the character of its interior surface as to smoothness, and upon the number and sharpness of the bends: but it is independent of the position of the pipe, as horizontal, or inclined

upwards or downwards.

The head, instead of being an actual distance between levels, may be caused by pressure, as by a pump, in which case the head is calculated as a vertical distance corresponding to the pressure 1 lb. per sq. in. = 2.309 ft. head, or 1 ft. head = .433 lb. per sq. in.

The total head operating to cause flow is divided into three parts: 1. The velocity-head, which is the height through which a body must fall in vacuo to acquire the velocity with which the water flows into the pipe  $=v^2+2q$ , in which v is the velocity in ft. per sec. and  $2q=64.32;\ 2.$  the entry-head. that required to overcome the resistance to entrance to the pipe. With sharpedged entrance the entry-head = about  $\frac{1}{2}$  the velocity-head; with smooth rounded entrance the entry-head is inappreciable; 3. the friction-head, due to the frictional resistance to flow within the pipe.

In ordinary cases of pipes of considerable length the sum of the entry and velocity heads required scarcely exceeds 1 foot. In the case of long pipes with low heads the sum of the velocity and entry heads is generally so small

that it may be neglected.

General Formula for Flow of Water in Pipes or Conduits. Mean velocity in ft. per sec. = c t mean hydraulic radius  $\times$  slope

Do, for pipes running full = 
$$c_1 / \frac{\text{diameter}}{4} \times \text{slope}$$
,

in which c is a coefficient determined by experiment. (See pages 559-564.)

The mean hydraulic radius  $=\frac{\epsilon rea \text{ of wet cross-section}}{\epsilon}$ wet perimeter.

In pipes running full, or exactly half full, and in semicircular open channels running full it is equal to 1/4 diameter.

The slope = the head (or pressure expressed as a head, in feet)

+ length of pipe measured in a straight line from end to end. In open channels the slope is the actual slope of the surface, or its fall per unit of length, or the sine of the angle of the slope with the horizon. If r = mean hydraulic radius, s = slope = head + length, v = velocity infeet per second (all dimensions in feet),  $v = c \sqrt{r} \sqrt{s} = c \sqrt{rs}$ .

Quantity of Water Discharged, -lf Q = discharge in cubic feetper second and a = area of channel,  $Q = av = ac \sqrt{rs}$ .

 $a \sqrt{r}$  is approximately proportional to the discharge. It is a maximum at 308°, corresponding to 19/20 of the diameter, and the flow of a conduit 19/20 full is about 5 per cent greater than that of one completely filled.

### Table giving Fall in Feet per Mile, the Distance on Slope corresponding to a Fall of 1 Ft., and also the Values of s and $\sqrt{s}$ for Use in the Formula $v = c \sqrt{rs}$ .

s = H + L = sine of angle of slope = fall of water-surface(H), in any distance (L), divided by that distance.

Fall in Feet per Mi.	Slope, 1 Foot in	Sine of Slope, s.	<b>√</b> s.	Fall in Feet per Mi.	Slope, 1 Foot in	Sine of Slope, s.	√8.
0.25	21120	.0000473	.006881	17	810.6	.0082197	.056742
.80	17600	.0000568	.007588	18	293.3	.0084091	.058888
.40	18200	.0000758	.008704	19	277.9	.0085985	.059988
.50	10560	.0000947	.009731	20	264	.0087879	.061546
.60	8800	.0001136	.010660	22	240	.0041667	.064549
.702	7520	.0001330	.011532	24	220	.0045455	.067419
.805	6560	.0001524	.012847	26	203.1	.0049242	.070178
.904	5840	.0001712	.013085	28	188.6	.0053080	.072822
1.	5280	.0001894	.013762	80	176	.0056818	.075878
1.25	42-24	.0002367	.015386	85.20	150	.0066667	.081650
1.5	8520	.0002841	.016854	40	182	.0075758	.087089
1.75	8017	.0008314	.018205	44	120	.0083333	.091287
2.	2640	.0003788	.019463	48	110	.0090909	.095846
2.25	2347	.0004261	.020641	52.8	100	.010	.1
2.5	2112	.0004785	.021760	60	88	.0113636	.1066
2.75	1920	.0005208	.022822	66	80	.0125	.111808
8.	1760	.0005682	.023837	70.4	75	.0188388	.115470
8.25	1625	.0006154	.024807	80	66	.0151515	.123091
8.5	1508	.0006631	.025751	88	60	.0166667	.1291
3.75	1408	.0007102	.026650	96	55	.0181818	.134839
4	1820	.0007576	.027524	105.6	50	.02	. 141421
5 6 7	1056	.0009470	.030773	120	44	.0227278	. 150756
6	880	.0011864	.03371	132	40	.025	.158114
7	754.8	.0013257	.036416	160	33	.0808080	.174077
8	660	.0015152	.038925	220	24	.0416667	.204124
9	586.6	.0017044	.041286	264	20	.05	.223607
10	528	.0018939	.043519	330	16	.0625	. 25
11	443.6	.0020833	.045643	440	12	.0833333	.288675
12	440	.0022727	.047673	528	10	.1	.316228
18	406.1	.0024621	.04962	660	8	.125	. 353563
14	877.1	.0026515	.051493	880	6	.1666667	.408248
15	352	.0028409	.0533	1056	5	.2	.447214
16	330	.0030303	.055048	1320	4	.25	.5

# Values of $\hat{fr}$ for Circular Pipes, Sewers, and Conduits of different Diameters.

 $r = \text{mean hydraulic depth} = \frac{\text{area}}{\text{perimeter}} = \frac{1}{4} \text{ diam. for circular pipes run$ ning full or exactly half full.

Diam., ft. in.	in Feet.	Diam., ft. in.	∮r in Feet.	Diam., ft. in.	in Feet.	Diam., ft. in.	1/r in Feet.
%	.088	2	.707 .722	4 6	1.061	9	1.500
34	.102	2 2 2 3 4 5 6 7 8 9 10 1 1 1 2 3 3 4 5 6 7 8 9 10 11 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.722	4 7	1.070	98	1.591
34	.125	2 2 2 2	.7%6 .750	4 8	1.080	9 6	1.541
1	.144 .161 .177 .191 .204	28	.750	4 9	1.089	9 9	1.561
134	.161	2 4	.764	4 10	1.099	10	1.581
134	.177	2 5	.777	4 11	1.109	10 3	1.601
114 114 194 2 214 8	191	2 6	.777 .790 .804 .817	5	1.118	10 6	1.620
2 -	.904	2 7	.804	5 1	1.127	10 9	1.689
214	.228	2 8	.817	5 2	1.137	11	1.658
8	25)	2 9	.829	5 3	1.146	11 8	1.677
4	.290	2 10	.842	5 4	1.155	11 6	1.696
5 6 7 8 9	.823 .854 .882 .408 .433	2 11	.854	5 5 5 6	1.164	11 9	1.714
6	.854	3	.866	5 6	1.178	12	1.782
7	.382	8 1	.878	5 7 5 8	1.181	12 3	1.750
8	.408	8 2	.890	5 8	1.190	12 6	1.768
	.433	3 2 3 3 3 4	.901	5 9	1.199	12 9	1.785
10	I .4545 I	8 4	.913	5 10	1.208	18	1.083
11	.479	8 5	.924	5 11	1.216	13 3	1.820
1	.500	8 6	.935	6	1.225	18 6	1.837
1 1	.479 .500 .520	3 7	.946 .957	6 8	1.250	14	1.871
1 2 1 3 1 4	.540	8 8	.957	6 6	1.275	14 6	1.904
18	.559	8 9	.968	6 9	1.299	15	1.936
	.577	8 10	.979	7	1.328	15 6	1.968
15	.595	8 11	.990	7 3	1.346	16	2.
1 5 1 6 1 7	.612	4	1.	7 6	1.369	16 6	2.031
1 7	.629	4 1	1.010	7 9	1.392	17	2.061
1 8 1 9	.646	4 2	1.021	[8	1.414	17 6	2.091
1 9	.661		1.031	8 3	1.436	18	2.121
1 10	.677	4 4 4	1.041	8 8 8 8 6	1.458	19	2.180
1 11	.692	4 5	1.051	89	1.479	20	2.236

Values of the Coefficient c. (Chiefly condensed from P. J. Flynn on Flow of Water.)—Almost all the old hydraulic formulæ for finding the mean velocity in open and closed channels have constant coefficients, and are therefore correct for only a small range of channels. They have often been found to give incorrect results with disastrous effects. Ganguillet and Kutter thoroughly investigated the American, French, and other experiments, and they gave as the result of their labors the formula now generally known as Kutter's formula. There are so many varying conditions affecting the flow of water, that all hydraulic formulæ are only approximations to the correct result.

When the surface-slope measurement is good, Kutter's formula will give results seldom exceeding 71% error, provided the rugosity coefficient of the formula is known for the site. For small open channels D'Arcy's and Bazin's formulæ, and for cast fron pipes D'Arcy's formulæ, are generally accepted as being approximately correct.

Kutter's Formula for measures in feet is

$$v = \left\{ \frac{\frac{1.811}{n} + 41.6 + \frac{.00281}{s}}{1 + \left(41.6 + \frac{.00281}{s}\right) \times \frac{n}{\sqrt{r}}} \right\} \times \sqrt{rs},$$

in which v = mean velocity in feet per second;  $r = \frac{a}{n} =$  hydraulic mean

depth in feet = area of cross-section in square feet divided by wetted perimeter in lineal feet; s = fall of water-surface (h) in any distance (l) divided by that distance,  $=\frac{n}{l}$ , = sine of slope; n= the coefficient of rugosity, de-

pending on the nature of the lining or surface of the channel. If we let the first term of the right-hand side of the equation equal c, we have Chezy's

formula,  $v = c \sqrt{rs} = c \times \sqrt{r} \times \sqrt{s}$ .

Values of n in Kutter's Formula.—The accuracy of Kutter's formula depends, in a great measure, on the proper selection of the coefficient of roughness n. Experience is required in order to give the right value to this coefficient, and to this end great assistance can be obtained, in making this selection, by consulting and comparing the results obtained from experiments on the flow of water already made in different channels.

In some cases it would be well to provide for the contingency of future and in the contingency of future, where a dense growth of weeds is likely to occur in small channels, and also

where channels are likely not to be kept in a state of good repair.

The following table, giving the value of n for different materials, is compiled from Kutter, Jackson, and Hering, and this value of n applies also in each instance, to the surfaces of other materials equally rough.

VALUE OF n IN KUTTER'S FORMULA FOR DIFFERENT CHANNELS.

n=.009, well-planed timber, in perfect order and alignment; otherwise, perhaps .01 would be suitable.

n=.010, plaster in pure cement; planed timber; glazed, coated, or enamelled stoneware and iron pipes; glazed surfaces of every sort in perfect order.

n = .011, plaster in cement with one third sand, in good condition; also for

iron, cement, and terra cotta pipes, well joined, and in best order. n=.012, unplaned timber, when perfectly continuous on the inside;

flumes.

n = .018, ashlar and well-laid brickwork; ordinary metal; earthen and stoneware pipe in good condition, but not new; cement and terra-cotta pipe not well jointed nor in perfect order, plaster and planed wood in imperfect or inferior condition; and generally the materials mentioned with n=.010, when in imperfect or inferior condition.

n=.015, second class or rough-faced brickwork; well-dressed stonework; foul and slightly tuberculated iron; cement and terra-cotta pipes, with imperfect joints and in bad order; and canvas lining on wooden frames.

n = .017, brickwork, ashlar, and stoneware in an inferior condition; tuberculated fron pipes; rubble in cement or plaster in good order; fine gravel, well rammed,  $\frac{1}{2}$  to  $\frac{3}{6}$  inch diameter; and, generally, the materials mentioned with n=0.13 when in bad order and condition.

n = .020, rubble in cement in an inferior condition; coarse rubble, rough set in a normal condition; coarse rubble set dry; rulned brickwork and masonry; coarse gravel well rammed, from 1 to 1½ inch diameter; canals with beds and banks of very firm, regular gravel, carefully trimmed and rammed in defective places; rough rubble with bed partially covered with silt and mud; rectangular wooden troughs, with battens on the inside two inches apart; trimmed earth in perfect order.

n = .0225, canals in earth above the average in order and regimen.

n=.025, can als and rivers in earth of tolerably uniform cross-section; slope and direction, in moderately good order and regimen, and free from stones and weeds.

n = .0275, canals and rivers in earth below the average in order and regimen.

n = .030, canals and rivers in earth in rather bad order and regimen, having stones and weeds occasionally, and obstructed by detritus. n=.085, suitable for rivers and canals with earthen beds in bad order and

regimen, and having stones and weeds in great quantities. n = .05, torrents encumbered with detritus.

Kutter's formula has the advantage of being easily adapted to a change in the surface of the pipe exposed to the flow of water, by a change in the value of n. For cast-iron pipes it is usual to use n = .013 to provide for the future deterioration of the surface.

Reducing Kutter's formula to the form  $v = c \times \sqrt{r} \times \sqrt{s}$ , and taking n, the coefficient of roughness in the formula = .011, .012, and .013, and s = .001, we have the following values of the coefficient c for different diameters of

conduit.

### Values of c in Formula $v = c \times \sqrt{r} \times \sqrt{s}$ for Metal Pipes and Moderately Smooth Conduits Generally.

By Kutter's Formula. (s = .001 or greater.)

Diameter.	n = .011	n = .012	n = .018	Diameter.	n = .011	n = .012	n = .015
ft. in. 0 1 2	c = 47.1 61.5	c =	c =	ft. 7 8	c = 152.7 155.4	c = 189.2 141.9	c = 127.9 130.4
1 6	77.4 87.4 105.7	77.5 94.6	69.5 85.8	10 11	157.7 159.7 161.5	144.1 146 147.8	182.7 184.5 136.2
1 6 2 3	116.1 123.6 133.6	104.8 111.8 190.8	94.4 101.1 110.1	12 14 16	168 165.8 168	149.8 152 154.2	187.7 140.4 142.1
4 5 6	140.4 145.4 149.4	127.4 182.8 136.1	116.5 121.1 124.8	18 20	169.9 171.6	156.1 157.7	144.4 146

For circular pipes the hydraulic mean depth r equals  $\frac{1}{4}$  of the diameter. According to Kutter's formula the value of c, the coefficient of discharge, is the same for all slopes greater than 1 in 1000; that is, within these limits c is constant. We further find that up to a slope of 1 in 2640 the value of c is, for all practical purposes, constant, and even up to a slope of 1 in 5000 the difference in the value of c is very little. This is exemplified in the following:

## Value of $\sigma$ for Different Values of $\sqrt{r}$ and s in Kutter's Formula, with n = .013.

		♥ =	01 r×18.		
,-			Slopes.		
√ <del>r</del>	1 in 1000	1 in 2500	1 in 8833.3	1 in 5000	1 in 10,000
.6 1 2	98.6 116.5 142.6	91.5 115.2 142.8	90.4 114.4 148.0	88.4 118.2 143.1	88.8 109.7 143.8

The reliability of the values of the coefficient of Kutter's formula for pipes of less than 6 in. diameter is considered doubtful. (See note under table on page 564.)

## Values of c for Earthen Channels, by Kutter's Formula, for Use in Formula $v = c \sqrt{rs}$ .

	Coefficient of Roughness, n = .0225.						efficie: n	nt of R = .080		e <b>ss</b> ,
		1	r in fe	et.	$\sqrt{r}$ in feet.					
	0.4	1.0	1.8	2.5	4.0	0.4	1.0	1.8	2.5	4.0
Slope, 1 in	C	c	c	c	c	c	c	c	c	C
1000	85.7	62.5	80.3	89.2	99.9	19.7	37.6	51.6	59.3	69.9
1250	<b>8</b> 5 5	62.3	80.3	89.8	100.2	19.6	87.6	51.6	59.4	69.4
1667	85.2	62.1	80.3	89.5	100 6	19.4	87.4	51.6	59.5	€9.8
2500	\$4.6	61.7	80.3	89.8	101.4	19.1	87.1	51.6	59.7	70.4
3838	84.	61.2	80.3	90.1	102.2	18.8	86.9	51.6	59.9	71.0
5000	<b>\$3.</b>	60.5	80.3	90.7	103.7	18.8	36.4	51.6	60.4	72.8
7500	81.6	59.4	80.8	91.5	106.0	17.6	85.8	51.6	60.9	73.9
10000	30.5   58.5   80.3   92.3   107.9						35.8	51.6	60.5	75.4
15840	28.5	56.7	80.2	93.9	112.2	16.2	34.8	51.6	62.5	78.6
20000	27.4	55.7	80.2	94.8	115.0	15.6	33.8	51.5	63.1	80.6

Mr. Molesworth, in the 22d edition of his "Pocket-book of Engineering Formulæ," gives a modification of Kutter's formulæ as follows: For flow in cast-iron pipes,  $v=c\sqrt{rs}$ , in which

$$c = \frac{181 + \frac{.00281}{s}}{1 + \frac{.00261}{\sqrt{d}} \left(41.6 + \frac{.00281}{s}\right)},$$

in which d = diameter of the pipe in feet.

(This formula was given incorrectly in Molesworth's 21st edition.)

**Molesworth's Formula.**— $v = \sqrt{krs}$ , in which the values of k are as follows:

	Values of $k$ for Velocities.					
Nature of Channel.	Less than 4 ft. per sec.	More than 4 ft. per sec.				
Brickwork. Earth Shingle Rough, with bowlders.	8900 7200 6400 5300	8500 6800 5900 4700				

In very large channels, rivers, etc., the description of the channel affects the result so slightly that it may be practically neglected, and k assumed = from 8500 to 9000.

**Figure's Formula.**—Mr. Flynn obtains the following expression of the value of Kutter's coefficient for a slope of .001 and a value of n = .013:

$$c = \frac{188.72}{1 + \left(44.41 \times \frac{.018}{4\sqrt{r}}\right)}$$

The following table shows the close agreement of the values of c obtained from Kutter's, Molesworth's, and Flynn's formulæ:

Diameter.	Slope.	Kutter.	Molesworth.	Flynn.
6 inches	1 in 40	71.50	71.48	69.5
6 inches	1 in 1000	69.50	69.79	69.5
4 feet	1 in 400	117.	117.	116.5
4 feet	1 in 1000	116.5	116.55	116.5
8 feet	1 in 700	130.5	180.68	130.5
8 feet	1 in 2600	129.8	129.98	180.5

Mr. Flynn gives another simplified form of Kutter's formula for use with different values of n as follows:

$$v = \left(\frac{K}{1 + \left(44.41 \times \frac{n}{\sqrt{r}}\right)}\right) \sqrt{rs}.$$

In the following table the value of K is given for the several values of n:

n	K	72	K	n	K	n	K	n	K
.009 .010 .011	245.68 225.51 209.05	.013	195.38 183.72 187.77	.016	165.14 157.6 150.94	nta	. 190 78 I	UO-)	100 ~0

If in the application of Mr. Flynn's formula given above within the limits of n as given in the table, we substitute for n, K, and  $\sqrt{r}$  their values, we have a simplified form of Kutter's formula.

For instance, when n = .011, and d = 3 feet, we have

$$v = \frac{209.05}{1 + \left(44.41 \times \frac{.011}{.866}\right)} \times \sqrt{rs}.$$

Bazin's Formule:

For very even surfaces, fine plastered sides and bed, planed planks, etc.,

$$v = \sqrt{1 + .0000045 \left(10.16 + \frac{1}{r}\right)} \times \sqrt{rs}$$

For even surfaces such as cut-stone, brickwork, unplaned planking, mortar. etc.:

$$\Psi = \sqrt{1 + .000018(4.854 + \frac{1}{r})} \times \sqrt{rs}$$

For slightly uneven surfaces, such as rubble masonry:

$$v = \sqrt{1 + .00006 \left(1.219 + \frac{1}{r}\right)} \times \sqrt{rs}$$

For uneven surfaces, such as earth:

$$v = \sqrt{1 + .00085 \left(0.2438 + \frac{1}{r}\right)} \times \sqrt{rs}$$

A modification of Bazin's formula, known as D'Arcy's Bazin's:

$$v = r \sqrt{\frac{1000s}{.08534r + 0.35}}$$

For small channels of less than 20 feet bed Bazin's formula for earthen

ror small channels or less than 20 feet ben basin's formula for earther channels in good order gives very fair results, but Kutter's formula is superseding it in almost all countries where its accuracy has been investigated. The last table on p. 561 shows the value of c, in Kutter's formula, for a wide range of channels in earth, that will cover anything likely to occur in the ordinary practice of an engineer.

122 A PROPER FRANCE OF CHARLES IN PROPERTY PROPERTY IN COURT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

D'Arey's Formula for clean iron pipes under pressure is

$$v = \left\{ \frac{rs}{.00007796 + \frac{.00000162}{r}} \right\}^{\frac{1}{2}}$$

Flynn's modification of D'Arcy's formula is

$$v = \left(\frac{155256}{12d+1}\right)^{\frac{1}{2}} \times \sqrt{rs}$$

in which d = diameter in feet,

D'Arcy's formula, as given by J. B. Francis, C.E., for old cast-iron pipe, lined with deposit and under pressure, is

$$v = \left(\frac{144d^2s}{.0082(12d+1)}\right)^{1/2}.$$

Flynn's modification of D'Arey's formula for old cast-iron pipe is

$$v = \left(\frac{70243.9}{12d+1}\right) \times \sqrt{rs}.$$

For Pipes Less than 5 inches in Diameter, coefficients (c) in the formula  $v = c \sqrt{rs}$ , from the formula of D'Arcy, Kutter, and Fanning.

Diam. in inches.	D'Arcy, for Clean Pipes.	Kutter, for n = .011 s = .001	Fanning, for Clean Iron Pipes	Diam. in inches	for Clean	Kutter, for n = .011 s = .001	Fanning, for Clean Iron Pipes.
36 12 34	59.4 65.7 74.5	32. 36.1 42.6		13/4 2 21/6	90.7 92.9 96.1	58.8 61.5 66.	92.5 94.8
1 11/4 11/8	80.4 84.8 88.1	47.4 51.9 55.4	80.4 88.	3 4 5	98.5 101.7 103.8	70.1 77.4 82.9	96.6 103.4

Mr. Flynn, in giving the above table, says that the facts show that the co-efficients diminish from a diameter of 5 inches to smaller diameters, and it is a safer plan to adopt coefficients varying with the diameter than a constant coefficient. No opinion is advanced as to what coefficients should be used with Kutter's formula for small diameters. The facts are simply

stated, giving the results of well-known authors.

Older Formulæ,—The following are a few of the many formulæ for flow of water in pipes given by earlier writers. As they have constant coefficients, they are not considered as reliable as the newer formulæ.

Prony, 
$$v = 97 \sqrt{rs} - .08$$
;  
Eytelwein,  $v = 50 \sqrt{\frac{dh}{l + 50d}}$ , or  $v = 108 \sqrt{rs} - 0.18$ ;  
Hawksley,  $v = 48 \sqrt{\frac{dh}{l + 54d}}$ ; Neville,  $v = 140 \sqrt{rs} - 11 \sqrt[3]{rs}$ .

In these formulæ d = diameter in feet; h = head of water in feet; l = diameterlength of pipe in feet;  $s = \text{sine of slope} = \frac{h}{l}$ ; r = mean hydraulic depth,

= area + wet perimeter = 
$$\frac{d}{4}$$
 for circular pipe.

Mr. Santo Crimp (Eng'g, August 4, 1893) states that observations on flow in brick sewers show that the actual discharge is 83% greater than that calculated by Eytelwein's formula. He thinks Kutter's formula not superior D'Arcy's for brick sewers, the usual coefficient of roughness in the former, viz., 013, being too low for large sewers and far too small in the case of small sewers.

D'Arcy's formula for brickwork is

$$v = \frac{\sqrt{2g}}{m} rs$$
;  $m = a(1 + \frac{B}{r})$ ;  $a = .0087285$ ;  $B = .229668$ .

### VELOCITY OF WATER IN OPEN CHANNELS.

Irrigation Canals.—The minimum mean velocity required to prevent Iffigure Canals.—The minimum mean velocity required to prevent the deposit of silt or the growth of aquatic plants is in Northern India taken at 1½ feet per second. It is stated that in America a higher velocity is required for this purpose, and it varies from 2 to 3½ feet per second. The maximum allowable velocity will vary with the nature of the soil of the bed. A sandy bed will be disturbed if the velocity exceeds 8 feet per second. Good loam with not too much sand will bear a velocity of 4 feet per second. The Cavour Canal in Italy, over a gravel bed, has a velocity of about 5 per second. (Flynn's "Irrigation Canals.")

Mean Surface and Extraory Velocities.

Mean Surface and Bottom Velocities,-According to the formula of Bazin,

$$v = v_{\text{max}} - 25.4 \sqrt{rs}; \ v = v_b + 10.87 \sqrt{rs}.$$

...  $vb = v - 10.87 \sqrt{rs}$ , in which v = mean velocity in feet per second, wax = maximum surface velocity in feet per second, vb = bottom velocity in feet per second, r = hydraulic mean depth in feet = area of cross-section

in square feet divided by wetted perimeter in feet, s = sine of slope.

The least velocity, or that of the particles in contact with the bed, is almost as much less than the mean velocity as the greatest velocity is

gre**ater than the** mean.

Rankine states that in ordinary cases the velocities may be taken as bearregistric states that in ordinary cases the velocities may be taken as near-ing to each other nearly the proportions of 3, 4, and 5. In very slow cur-rents they are nearly as 2, 3, and 4.

Safe Bottom and Mean Velocities,—Ganguillet & Kutter give

the following table of safe bottom and mean velocity in channels, calculated

from the formula  $v = vb + 10.87 \sqrt{rs}$ :

Material of Channel.	Safe Bottom Veloc ity vb, in feet per second.	Mean Velocity v, in feet per second.
Soft brown earth	0.249	0.898
Soft loam	0.499	0.656
Sand	1.000	1.812
Gravel	1.998	2.625
Pebbles		8,938
Broken stone, flint		5.579
Conglomerate, soft slate	4.988	6.564
Stratified rock	6.006	8.204
Hard rock		18.127

Ganguillet & Kutter state that they are unable for want of observations to judge how far these figures are trustworthy. They consider them to be rather disproportionately small than too large, and therefore recommend

them more confidently.

Water flowing at a high velocity and carrying large quanties of silt is very destructive to channels, even when constructed of the best masonry.

Resistance of Soils to Erosion by Water.—W. A. Burr, Eng'g News, Feb. 8, 1894, gives a diagram showing the resistance of various soils to

erosion by flowing water.

Experiments show that a velocity greater than 1.1 feet per second will erode sand, while pure clay will stand a velocity of 7.35 feet per second. The greater the proportion of clay carried by any soil, the higher the permissible velocity. Mr. Burr states that experiments have shown that the line describing the power of soils to resist erosion is parabolic. From his diagram the following figures are selected representing different classes of soils:

Pure sand resists erosion by flow of	1.1 fe	et per	second
Sandy soil. 15% clay	1.2		***
Sandy loam. 40% clay	1.8	64	44
Loamy soil, 65% clay	8.0	44	66
Clay loam. 85% clay	4.8	64	66
Clay loam, 85% clay Agricultural clay, 95% clay	6.2	44	4.6
Clay	7.35	44	46

Abrading and Transporting Power of Water.—Prof. J. LeConte, in his "Elements of Geology," states:

The erosive power of water, or its power of overcoming cohesion, varies as the square of the velocity of the current.

The transporting power of a current varies as the sixth power of the velocity. * * * If the velocity therefore be increased ten times, the transporting power is increased 1,000,000 times. A current running three feet per second, or about two miles per hour, will bear fragments of stone of the size of a hen's egg, or about three ounces weight. A current of ten miles an hour will bear fragments of one and a half tons, and a torrent of twenty miles an hour will carry fragments of 100 tons.

The transporting power of water must not be confounded with its erosive power. The resistance to be overcome in the one case is weight, in the other, cohesion; the latter varies as the square: the former as the sixth

power of the velocity.

In many cases of removal of slightly cohering material, the resistance is a

mixture of these two resistances, and the power of removing material will

vary at some rate between  $v^2$  and  $v^3$ .

Baldwin Latham has found that in order to prevent deposits of sewage silt in small sewers or drains, such as those from 6 inches to 9 inches diameter, a mean velocity of not less than 3 feet per second should be produced. Sewers from 12 to 24 inches diameter, should, have a velocity of not less than 2½ feet per second, and in sewers of larger dimensions in no case should the velocity be less than 2 feet per second.

The specific gravity of the materials has a marked effect upon the mean velocities necessary to move them. T. E. Blackwell found that coal of a

sp. gr. of 1.26 was moved by a current of from 1.25 to 1.50 ft. per second, while stones of a sp. gr. of 2.32 to 3.00 required a velocity of 2.5 to 2.75 ft. per

second.

Chailly gives the following formula for finding the velocity required to move rounded stones or shingle:

$$v = 5.67 \sqrt{ag}$$

in which v =velocity of water in feet per second. a =average diameter in feet of the body to be moved, g = its specific gravity.

Geo. Y. Wisner, Eng'g News, Jan 10, 1895, doubts the general accuracy of statements made by many authorities concerning the rate of flow of a cur-

rent and the size of particles which different velocities will move. He says: The scouring action of any river, for any given rate of current, must be an inverse function of the depth. The fact that some engineer has found that a given velocity of current on some stream of unknown depth will move sand or gravel has no bearing whatever on what may be expected of cur-rents of the same velocity in streams of greater depths. In channels 3 to 5 ft. deep a mean velocity of 3 to 5 ft. per second may produce rapid scouring, while in depths of 18 ft. and upwards current velocities of 6 to 8 ft. per

second often have no effect whatever on the channel bed. Grade of Sewers.—The following empirical formula is given in Baumeister's "Cleaning and Sewerage of Cities," for the minimum grade for a sewer of clear diameter equal to d inches, and either circular or oval in

section:

Minimum grade, in per cent, 
$$=\frac{100}{5d+50}$$
.

As the lowest limit of grades which can be flushed, 0.1 to 0.2 per cent may be assumed for sewers which are sometimes dry, while 0.8 per cent is allowable for the trunk sewers in large cities. The sewers should run dry as rarely as possible.

Relation of Diameter of Pipe to Quantity Discharged.-In many cases which arise in practice the information sought is the diameter necessary to supply a given quautity of water under a given head. The diameter is commonly taken to vary as the two-fifth power of the discharge. This is almost certainly too large. Hagen's formula, with Prof. Unwin's coordinate gived  $= e^{-Q}$  . 387 where  $= e^{-2}$  . 390 when d and  $e^{-2}$ 

Unwin's coefficients, give  $d = c \left( \frac{Q}{\left( \frac{h}{I} \right)^{\frac{1}{2}}} \right)$ , where c = .239 when d and O

are in feet and cubic feet per second.

Mr. Thrupp has proposed a formula which makes d vary as the .383 power of the discharge, and the formula of M. Vallot, a French engineer, makes d vary as the .375 power of the discharge. (Engineering.)

### FLOW OF WATER-EXPERIMENTS AND TABLES.

The Flow of Water through New Cast-iron Pipe was recently measured by S. Bent Russell, of the St. Louis, Mo., Water-works. The pipe was 12 inches in diameter, 1631 feet long, and laid on a uniform grade from end to end. Under an average total head of 3.36 feet the flow was 48,200 cubic feet in seven hours; under an average head of 3.37 feet the flow was the same; under an average total head of 3.41 feet the flow was 46,700 cubic feet in 8 hours and 35 minutes. Making allowance for loss of head due to entrance and to curves, it was found that the value of c in

the formula v=c  $\sqrt{rs}$  was from 88 to 93 (Eng'g Record, April 14, 1894. Flow of Water in a 20-inch Pipe 75,000 Feet Long. comparison of experimental data with calculations by different formulæ is

### PLOW OF WATER—EXPERIMENTS AND TABLES, 567

griven by Chas. B. Brush, Trans. A. S. C. E., 1888. The pipe experimented with was that supplying the city of Hoboken, N. J.

RESULTS OBTAINED BY THE HACKENSACE WATER COMPANY, FROM 1882-1887, IN PUMPING THROUGH A 20-IM, CAST-IRON MAIN 75,000 FRET LONG.

Pressure in lbs. per sq. in. at pumping-station: 100 105 120 125 130 Total effective head in feet : 100 185 80 118 123 Discharge in U. S. gallons in 24 hours, 1 = 1000: 4,255 8,165 8.354 8,566 8.804 8,904 4.116 Actual velocity in main in feet per second : 2.36 2.76 2.92 8.00 Cost of coal consumed in delivering each million gals. at given velocities: \$8.60 \$9.00 \$9.60 \$3.40 \$8.15 \$8.00 \$8,10 \$8.30 Theoretical discharge by D'Arcv's formula: 2,748 8.004 3,214 3,488 3,699 8,915 4,102 4,297

Velocities in Smooth Cast-iron Water-pipes from 1 Foot to 9 Feet in Diameter, on Hydraulic Grades of 0.5 Feet to 8 Feet per Mile; with Corresponding Values of c in V = c Vrs. (D. M. Greene, in Engly News, Feb. 24, 1894.)

ret.	drau- Mean sdil.	Hydraulic Grade; Feet per Mile = h.												
Dlame.	r.	h = 0.5 $a = 0.0000947$	1.0 0.0001894	1.5 0.0002841	2.0 0.000 <b>378</b> 8	8.0 0.0005682	4.0 0.0007576							
1.	0.25	V = 0.4542 $c = 92.7$	97.0	0.8856 99.1	0.9808 100.7	1.2277 103.0	1.4408 104.7							
2.	0.5	V = 0.7859 $c = 106.6$	110.9	1.8516 118.4	1.5856 115.2	1.9857 117.9	2.3294 119.7							
8.	0.75	V = 0.9788 $c = 115.5$	1.4298 119.9	1.7906 122.6	2.1017 124.4	2.6306 127.5	3.0860 129.5							
4.	1.0	V = 1.1883 $c = 122.1$ $V = 1.3872$	126.8	2.1861 129.7 2.5521	2.5645 181.8 2.9989	8.2116 184.7 3.7498	8.7676 186.9 4.3983							
	1.25	c = 127.5 $V = 1.5742$	182.4	185.5 2.8961	187.6 8.8975	140.7 4.2548	142.9							
	1.5	c = 182.1 $V = 1.7518$	187.8	140.3 8.2230	142.6 8.7809	145.8 4.7350	148.1 5.5546							
7.	1.75	c = 185.9 $V = 1.9218$	141.4	146.0 8.5858	146.8 4.1479	150.2 5.1945	152.5 6.0936							
8. 9.	2.0	c = 189.7 $V = 2.0854$		148.4 3.8868	150.7 4.5010	154.1 5.6868	156.5 6.6125							
ø.	F. 40 1	c=142.9	148.4	151.7	154.2	157.6	160.1							

The velocities in this table have been calculated by Mr. Greene's modification of the Chery formula, which modification is found to give results which differ by from 1.29 to -2.65 per cent (average 0.9 per cent) from very carefully measured flows in pipes from 16 to 48 inches in diameter, on grades from 1.65 feet to 10.296 feet per mile, and in which the velocities ranged from 1.577 to 6.195 feet per second. The only assumption made is that the modified formula for V gives correct results in conduits from 4 feet to 9 feet in diameter, as it is known to do in conduits less than 4 feet in diameter. Other articles on Flow of Weter in long times are to be found in Factor

Other articles on Flow of Water in long tubes are to be found in Eng'g News as follows: G. B. Pearsons, Sept. 23, 186; E. Sherman Gould, Feb. 16, 23, March 9, 16, and 23, 1889; J. L. Fitzgerald, Sept. 6 and 13, 1890; Jas. Duane, Jan. 2, 1892; J. T. Fanning, July 14, 1892; A. N. Talbot, Aug. 11, 1892.

Flow of Water in Circular Pipes, Sewers, etc., Flowing Full. Based on Kutter's Formula, with n=.013.

Discharge in cubic feet per second.

Diam-		Slope	, or Hea	d Divide	ed by Le	ngth of	Pipe.	
eter.	1 in 40	1 in 70	1 in 100	1 in 200	1 in 300	1 in 400	1 in 500	1 in 600
5 in. 6 " 7 "	.456 .762 1.17	.344 .576 .889	.288 .482 .744	.204 .341 .526	.166 .278 .430	.144 .241 .872	.137 .280 .355	.118 .197 .304
8 " 9 "	1.70 2.87	1.29	1.08	.765 1.06	.624 .868	.54 .75	.516 .717	.441 .618
Slope 10 in. 11 " 12 " 13 "	1 in 60 2.59 3.39 4.32 5.38 6.60	1 in 80 2.24 2.94 3.74 4.66 5.72	1 in 100 2.01 2.63 3.35 4.16 5.15	1 in 200 1.42 1.86 2.37 2.95 3.62	1 in 300 1.16 1.52 1.93 2.40 2.95	1 in 400 1.00 1.31 1.67 2.08 2.57	1 in 500 .90 1.17 1.5 1.86 2.29	1 in 600 .82 1.07 1.37 1.70 2.09
Slope 15 in. 16 " 18 " 20 "		1 in 200 4 87 5.22 7.22 9.65 12.52	1 in 800 3.57 4.26 5.89 7.88 10.22	1 in 400 3.09 3.69 5.10 6.82 8.85	1 in 500 2.77 3.30 4.56 6.10 7.92	1 in 600 2.52 8.01 4.17 5.57 7.28	1 in 700 2.34 2.79 3.86 5.16 6.69	1 in 800 2.19 2.61 8.61 4.83 6.26
Slope 2 ft. 2 fr. 2 in. 2 " 4 " 2 " 6 " 2 " 8 "	1 in 200 15.88 19.78 24.15 29.08 34.71	1 in 400 11.28 18.96 17.07 20.56 24.54	1 in 600 9.17 11.39 13.94 16.79 20.04	1 in 800 7.94 9.87 12.07 14.54 17.35	1 in 1000 7.10 8.82 10.80 13.00 15.52	1 in 1250 6.35 7.89 9 66 11.63 18.88	1 in 1500 5 80 7.20 8.82 10.62 12.67	1 in 1800 5.29 6.58 8.05 9.69 11.57
Slope 2 ft. 10 in. 3 " 2 in. 3 " 4 " 3 " 6 "	1 in 500 25.84 30.14 34.90 40.08 45.66	1 in 750 21.10 24.61 28.50 82.72 87.28	1 in 1000 18.27 21.31 24.68 28.84 32.28	1 in 1250 16.84 19.06 22.07 25.85 28.87	1 in 1500 14.92 17.40 20.15 23.14 26.86	1 in 1750 18.81 16.11 18.66 21.42 24.40	1 in 2000 12.92 15.07 17.45 20.04 22.88	1 in 2500 11.55 13.48 15.61 17.98 20.41
Slope 3 ft. 8 in. 8 " 10 " ' 4 " 4 " 6 in. 5 "	1 in 500 51.74 58.36 65.47 89.75 118.9	1 in 750 42.52 47.65 53.46 73.28 97.09	1 in 1000 86.59 41.27 46.30 63.47 84.08	1 in 1250 32.72 36 91 41.41 56.76 75.21	1 in 1500 29.87 83.69 87.80 51.82 68.65	1 in 1750 27.66 31.20 34.50 47.97 68.56	1 in 2000 25.87 29.18 32.74 44.88 59.46	1 in 2500 23.14 26.10 29.28 40.14 53.18
Slope 5 ft. 6 in. 6 " 6 " 6 " 7 " 6 "	1 in 750 125.2 157.8 195.0 237.7 285.3	1 in 1000 108.4 186.7 168.8 205.9 247.1	1 in 1500 88.54 111 6 187.9 168.1 201.7	1 in 2000 76.67 96.66 119.4 145.6 174.7	1 in 2500 68.58 86.45 106.8 130.2 156.8	1 in 3000 62.60 78.92 97.49 118.8 142.6	1 in 3500 57.96 78.07 90.26 110.00 132.1	1 in 4000 54.21 68.35 84.43 102.9 128.5
Slope 8 ft. 8 " 6 in. 9 " 6 "	1 in 1500 239.4 281.1 827.0 376.9 431.4	1 in 2000 207.3 248.5 283.1 326.4 373.6	1 in 2500 195.4 217.8 253.3 291.9 334.1	1 in 3000 169.3 198.8 231.2 266.5 305.0	1 in 3500 156.7 184.0 214.0 246.7 282.4	1 in 4000 146.6 172.2 200.2 230.8 264.2	1 in 4500 188.2 162.8 188.7 217.6 249.1	1 in 5000 131.1 154.0 179.1 206.4 286.8

For U. S. gallons multiply the figures in the table by 7.4805.

For a given diameter the quantity of flow varies as the square root of the sine of the slope. From this principle the flow for other slopes than those

given in the table may be found. Thus, what is the flow for a pipe 8 feet diameter, slope 1 in 125? From the table take Q=307.8 for slope 1 in 2000, The given slope 1 in 125 is to 1 in 2000 as 16 to 1, and the square root of this ratio is 4 to 1. Therefore the flow required is  $207.3 \times 4=829.2$  cu, ft.

### Circular Pipes, Conduits, etc., Flowing Full.

Values of the factor  $ac \uparrow \bar{r}$  in the formula  $Q = ac \uparrow \bar{r} \times \sqrt{s}$  corresponding to different values of the coefficient of apughness, n. (Based on Kutter's formula.)

Ë				Value of	ac √r.		
ft.		n = .010.	n = .011.	n = .012,	n = .018.	n = .015.	n = .017.
	6	6.906	6.0627	5.8900 16.708	4.8216 15.029	8.9604 12.421	8.829
_	٧ ا	21.25 46.93	18.742 41.487	87.149	88.497	27.808	10.50 23 60
1	8	96.95 86.05	76.347	68.44	61.867	51.600	43.98
1	6	141.2	125.60	112.79	102.14	85.496	72.99
•	9	214.1	190.79	171.66	155.68	130.58	111.8
ŗ	•	307.6	274.50	247.88	224.63	189.77	164
2	8	421.9	817.07	840.10	809.23	960.47	228.9
ž	6	559.6	500.78	452.07	411.27	847.28	299.3
ã	9	722.4	647.18	584.90	582.76	451.28	388.8
1 2 2 2 2 3	•	911.8	817.50	789.59	674.09	570.90	498.3
8	3	1128.9	1013.1	917.41	836.69	709.56	618.9
3	6	1874.7	1284.4	1118.6	1021.1	866.91	750.8
3	9	1652.1	1484.9	1845.9	1229.7	1045	906
4	-	1962.8	1764.3	1600.9	1463.9	1245.8	1090.7
4	6	2682.1	2413.3	2193	2007	1711.4	1487.8
5	-	3543	8191.8	2903.6	2659	2272.7	1977
5	6	4557.8	4111.9	8742.7	8429	2934.8	2557.2
6		5781.5	5176.8	4718.9	4322	3702.8	8232.5
6	6	7075.2	6894.9	5825.9	5339	4588,8	4010
7		8595.1	7774.8	7087	6510	5591.6	4898
7	6	10296	9318.8	8501.8	7814	6717	5884.2
8		12196	11044	10083	9272	7978.8	6995.8
- 8	6	14298	12954	11882	10889	9377.9	8226.3
9	_	16604	15049	18751	12663	10917	9580.7
9	6	19118	17388	15847	14597	12594	11061
10	_	21858	19884	18134	16709	14426	12678
10	6	24823	22534	20612	18996	16412	14484
11	_	28020	25144	28285 26179	21464 24189	18555 20879	16333
11	6	31482	28593	20119	26981	, 23352	18395 20584
12		85156	81987 85529	32558	80041	26012 26012	22938
12	6	39104 43307	89858	36077	33301	28853	25451
13	6	47751	43412	39802	36752	81860	28117
18	0	52491	47789	48778	40432	85078	30965
14 14	6	57496	52308	47969	44322	88454	33975
15	0	62748	57108	52382	48413	42040	87147
16		74191	67567	62008	57843	49828	44073
17		86769	79050	72594	67140	58387	51669
18		100617	91711	84247	77982	67839	60067
19		115769	105570	96991	89759	78201	69801
20		182133	120570	110905	102559	89423	79259

Flow of Water in Circular Pipes, Conduits, etc., Flowing under Pressure.

Based on D'Arcy's formulæ for the flow of water through cast-iron pipes. With comparison of results obtained by Kutter's formula, with n=.013. (Condensed from Flynn on Water Power.)

Values of  $\alpha$ , and also the values of the factors  $c\sqrt{r}$  and  $ac\sqrt{r}$  for use in the formulæ Q = av;  $v = c\sqrt{r} \times \sqrt{s}$ , and  $Q = ac\sqrt{r} \times \sqrt{s}$ .

Q= discharge in cubic feet per second, a= area in square feet, v= velocity in feet per second,  $r\pm$  mean hydraulic depth,  $\frac{1}{2}$  diam. for pipes running full, s= sine of slope.

(For values of  $\sqrt{s}$  see page 558.)

	Size o	f Pipe.		Cast-iron ipes.	Value of		iron Pipes h Deposit.
d= ft.	diam. in in.	a = area in square feet.	For Velocity, c r.	For Discharge,	$ac \sqrt{r}$ by Kutter's Formula, when $n = .018$ .	For Velocity, $c \sqrt{r}$ .	For Discharge, ac $\sqrt{r}$ .
11111122222333334444555556677889	369 34 114 14 14 14 14 14 14 14 14 14 14 14 1	.00077 .00136 .00807 .00136 .00802 .00852 .01227 .01670 .02182 .0341 .0491 .0873 .136 .196 .267 .349 .442 .545 .660 .785 1.000 1.396 1.767 2.182 2.640 3.142 3.643 3.142 3.643 3.142 3.643 3.142 3.643 3.142 3.640 5.585 6.785 9.621 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541	5.251 6.702 9.809 11.61 13.68 15.58 18.96 24.63 29.37.265 440.63 29.37.265 440.63 29.37.75 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50	.00403 .00914 .02855 .03834 .11659 .19115 .29906 .41357 .74786 .1.2069 .2.5680 .4.8610 .7.3068 .4.8610 .7.3068 .4.8610 .7.3068 .4.8610 .7.3068 .4.8610 .7.3068 .4.8610 .7.3068 .4.8610 .7.3068 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610 .4.8610	4: 822 15.03 33.50 102.14 224.63 411.37 674.09 1021.1 1463.9 2007 2659 3429 4322 5339 6510 7814 9272 10889	3.532 4.507 6.361 7.811 9.255 10.48 11.65 12.75 16.56 19.75 22.56 22.56 22.56 22.56 22.56 23.43 23.42 23.43 23.42 23.43 23.42 23.43 24.57 27.34 29.43 38.26 38.99 38.75 48.34 45.57 48.34 45.57 48.34 45.57 48.34 45.57 48.34 45.57 48.34 45.57 48.34 46.34 47.57 48.34 48.34 48.37 48.34 48.38 49.07 72.40 74.10 75.73 78.12 80.43 80.99 80.98 80.97 91.08 81.88 80.99 80.07	.00272 .00613 .01922 .04257 .07885 .12845 .37824 .81333 1.7246 .3.0621 .81333 1.7246 .3.0621 .81333 1.7246 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.0621 .3.
9 10	6	63.617 70.882 78.540	169.8 174.5 179.1	10804 12870 14066	12663 14597 16709	114.2 117.4 120.4	7267.3 8890.6 9460.9

Size of Pipe.				Cast-iron ipes.	Value of	Old Cast-iron Pipe: Lined with Deposit.		
	diam. in in,	a = area in square feet.	For Velocity, c Vr.	For Discharge,	ac \( \frac{r}{r} \) by Kutter's Formula, when \( n = .013 \)	For Velocity,	For Discharge, ac $\sqrt[4]{r}$ .	
10	6	86.590	183.6	15893	18996	128.4	10690	
11		95.088	187.9	17855	21464	126.8	12010	
11	6	103.869	192.2	19966	24189	129.3	13429	
12	•	113.098	196.3	22204	26981	182	14935	
12	6	122 719	200.4	24598	80041	134.8	16545	
13		182.788	204.4	27184	88301	137.5	18252	
13	6	143.189	208.3	29618	36752	140.1	20056	
14		153.988	212.2	32664	40432	142.7	21971	
14	6	165.130	216.0	35660	44322	145 2	23986	
15		176.715	219.6	38807	48413	147.7	26108	
15	6	188.692	223.3	42125	52758	150.1	28335	
16		201.062	226.9	45621	57348	152.6	30686	
16	6	213.825	230 4	49273	62182	155	83144	
17		226.981	233.9	53082	67140	157.3	35704	
17	6	240.529	237.8	57074	72409	159.6	38389	
18		254.470	240.7	61249	77932	161.9	41199	
19		288.529	247.4	70154	89759	166.4	47186	
20		814.159	258.8	79786	102559	170.7	58633	

## Flow of Water in Circular Pipes from $\frac{1}{2}$ inch to 12 inches Diameter.

Based on D'Arcy's formula for clean cast-iron pipes.  $Q = ac \sqrt{r} \sqrt{s}$ .

Value of	Dia.		Slope,	or Head	Divide	M by Le	ngth of	Pipe.	
ac Vr.	ín.	1 in 10.	1 in 20.	1 in 40.	1 in <b>6</b> 0.	1 in 80.	1 in 100.	1 in 150.	1 in 200.
			Quan	tity in	cubic	feet p	er sec	ond.	
.00408	84	.00127	.00090	.00064	.00052	.00045	.00040	.00038	.0002
.00914	(2	.00289	.00:204	.00145	.00118	.00102	.00091	.00075	.0006
.02855	X	.00903	.00638	.00451	.00369		.00286	.00233	.0020
.06834	1	.02003	.01416	.01001	.00818	.00708	.00633	.00517	.0044
.11659	134	08687	.02607	.01843					.0082
.191!5	112	.06044	.04274				.01912		.0135
.28936	設	.09140							.0204
.41357	2	.18077	.09247	.06539			.04136		.0292
.74786	234	.28647	.1672-2		.09655		.07479	.06106	.0528
1.9089	3	.88225	.27031	.19118			.12089	.09871	.0854
2.5680	4	.81042					.25630		.1812
4.5610	5	1.4432	1.0198	.72109				.37241	.3325
7.8068	6	2.8104		1.1552	.94381			.59660	
10.852	1 7	8.4814	2.4265	1.7157	1.4110	1.2132	1.0852	.88607	.7673
15.870	8	4.8284	3.4143	2.4141	1.9718		1.5270	1.2468	1.0797
20.652		6.5802	4.6178	3. 2651	2.6662		2.0652	1.6862	1.4603
26.952	10	8.5232	6.0265	4.2611	3.4795	8.0132	2.6952	2.2006	1.9058
84.428	11	10.886 13.571	7.6981 9.5965	5.4431 6.7853	4.4447 5.5407	3.8491 4.7982	3.4428 4.2918	2.8110 8.5043	2 4344
42.918	12	10.0/1	F.0900	0.1803	0.0401	2.1906	4.6810	0.0045	8.0847
Value of 4	<i>_</i>	.8162	.2236	.1581	.1291	.1118	.1	.08165	.0707

Value of	Dia.		orope, c	or neau	Divide	d by Le	ngth of	r ipe.	
ac √r.	in.	1 in 250.	1 in 300.	1 in <b>35</b> 0.	1 in 400.	1 in 450.	1 in 500.	1 in 550.	1 in 600.
.00403	36	.00025	.00023	.00022	.00020	.00019	.00018	.00017	.0001
.00914	% 1/9 3/4	.00058	.00058	.00049	.00046	.00048	.00041	.00039	
.02855	32	.00181	.00165		.00148	.00134	.00128		
.06334	11	.00400	.00366		.00317	.00:298	.00283		
.11659	11/4 11/6 13/4	.00737	.00673		.00583	.00549		.00497	.0047
.19115	1176	.01209	.01104	.01022	.00956	.00901	.00855		.0078
.28936	132	.01830	.01671	.01547	.01447	.01363		.01234	.0118
.41357	2	.02615	.02388		.02068	.01948	.01849		.0168
. 74786	216	.04730			.03739		,08344		
1.2089	3	.07645							
2.5680	4	.16208	.14799			.12074	.11461	.10929	.1046
4.5610	5	.28843	.26335		. 22805	.21487			.1962
7.8068	6	.46208	.42189	.39055	.36534	.34422	.32676	.31156	.2983
10.852	7	.68628	. 62660		.54260		.48530		
15.270	8	.96567	.88158	.81617	.76350		.68286		.62340
20.652	9	1.3060	1.1924	1.1038	1.0326	. 97292	.92356		
26.952	10	1.7044	1.5562	1.4405	1.3476	1.2697	1 2053	1.1492	1.1003
34.428	11	2.1772	1.9878	1.8402	1.7214	1.6219	1.5396	1.4680	1.4055
42.918	12	2.7141	2.4781	2.2940	2.1459	2.0219	1.9193	1.8300	1.7521

For	U. S.	gals.	pe	r sec., I	nultiply	the figures in	the	table	by	7.4805
**	**	•••	14	min.		ส	"	**		448.88
**	"	**	**	hour,	67	44	"	44		26929.8
**	**	**	**	24 hi 4	66	46	64	46		646315

For any other slope the flow is proportional to the square root of the slope; thus, flow in slope of 1 in 100 is double that in slope of 1 in 400.

Flow of Water in Pipes from % Inch to 12 Inches Diameter for a Uniform Velocity of 100 Ft. per Min.

Diameter	Area	Flow in Cubic	Flow in U. S	Flow in U. S.
in	in	Feet per	Gallons per	Gallons per
Inches.	Square Feet.	Minute.	Minute,	Hour,
%	.00077	0.077	.57	84
152	.00136	0.186	1.02	61
	.00807	0.307	2.30	188
	.00545	0.545	4.08	245
114	.00852	0.852	6.38	388
	.01227	1.227	9.18	551
13/2 21/4	.01670 .02182 .0841	1.670 2.182 3.41	12.50 16.32 25.50	750 979 1,580
8'*	.0491	4.91	36.72	2,208
4		8.73	65.28	3,917
6 7	.136 .196 .267	13.6 19.6 26.7	102.00 146.88 199.92	6,120 8,813 11,995
	.349	84.9	261.12	15,667
9	.442	44.2	330.48	19,829
10	.545	54.5	408.00	24,480
11	.660	66.0	498.68	29,621
12	.785	78.5	587.52	35,251

Given the diameter of a pipe, to find the quantity in gallons it will deliver, the velocity of flow being 100 ft. per minute. Square the diameter in inches and multiply by 4.08.

If Q' = quantity in gallons per minute and d = diameter in inches, then

$$Q' = \frac{d^3 \times .7854 \times 100 \times 7.4805}{144} = 4.08d^3.$$

For any other velocity, V', in feet per minute,  $Q'=4.08d^3\frac{V'}{100}=.0408d^3V'$ .

Given diameter of pipe in inches and velocity in feet per second, to find discharge in cubic feet and in gallons per minute.

$$Q' = \frac{d^3 \times .7854 \times v \times 60}{144} = 0.82725 d^3 v \text{ cubic feet per minute.}$$
  
= .33725 × 7,4805 or 2.448 d³ v U. S. gallons per minute.

To find the capacity of a pipe or cylinder in gallons, multiply the square of the diameter in inches by the length in inches and by .0084. Or multiply the square of the diameter in inches by the length in feet and by .0408,

$$Q = \frac{.7854d^3l}{.951} = .0084d^3l \text{ (exact) } .0084 \times 12 = .0408.$$

#### LOSS OF HEAD.

The loss of head due to friction when water, steam, air, or gas of any kind flows through a straight tube is represented by the formula

$$h = f \frac{4l}{d} \frac{v^2}{2g}; \quad \text{whence } v = \sqrt{\frac{64.4}{4f} \frac{hd}{l}},$$

in which l= the length and d= the diameter of the tube, both in feet; v= velocity in feet per second, and f is a coefficient to be determined by experiment. According to Weisbach, f=.00644, in which case

$$\sqrt{\frac{64.4}{4f}} = 50$$
, and  $v = 50\sqrt{\frac{hd}{l}}$ ,

which is one of the older formulæ for flow of water (Downing's). Prof. Unwin says that the value of f is possibly too small for tubes of small bore, and he would put f=.006 to .01 for 4-inch tubes, and f=.0084 to .012 for 2-inch tubes. Another formulæ by Weisbach is

$$h = \left(.0144 + \frac{.01716}{\sqrt{v}}\right) \frac{l}{d} \frac{v^2}{2g}.$$

Rankine gives

$$f = .005 \left(1 + \frac{1}{12d}\right).$$

From the general equation for velocity of flow of water  $v=c \sqrt{r} \sqrt{s}$ , = for round pipes  $c \sqrt{\frac{d}{4}} \sqrt{\frac{h}{l}}$ , we have  $v^2=c^2 \frac{d}{4} \frac{h}{l}$  and  $h=\frac{4lv^2}{c^2 d}$ , in which

c is the coefficient c of D'Arcy's, Bazin's, Kutter's, or other formula, as found by experiment. Since this coefficient varies with the condition of the inner surface of the tube, as well as with the velocity, it is to be expected that values of the boss of head given by different writers will vary as much as those of quantity of flow. Two tables for loss of head per 100 ft. in length in pipes of different diameters with different velocities are given below. The first is given by Clark, based on Ellis' and Howland's experiments; the second is from the Pelton Water-wheel Co.'s catalogue, authority not stated. The loss of head as given in these two tables for any given diameter and velocity differs considerably. Either table should be used with caution and the results compared with the quantity of flow for the given diameter and head as given in the tables of flow based on Kutter's and D'Arcy's formulæ.

### Relative Loss of Head by Friction for each 100 Feet Length of Clean Cast-iron Pipe.

(Based on Ellis and Howland's experiments.)

Velocity	1		Diameter of Pipes in Inches.									
in Feet per Second.	3	4	5	6	7	8	9	10	12	14		
Second.		. I	oss of	Head	in Fee	t, per 1	00 Fee	t Long	ζ.			
Feet	Feet of Head	Feet of Head	Feet of Head	Feet of Head	Feet of Head	of	Feet of Head	Feet of Head	Feet of Head	Feet of Head		
2 2.5	.97 1.49	.55	.64	.32	.43	.28	.19	.18	.15	.12		
3 3.5 4	1.9 2.6 3.3	1.2 1.6 2.2	.82 1.2 1.7	.72 1.0 1.8	.61 .7 .9	.51 .71 .92	.44 .61 .79	.52 .69	.83 .45 .59	.27 .37 .49		
4.5 5 5.5				1.6	1.2	1.2	1.01	.87 1.1	.75 .90	.61 .76		
6.5	1:::::		J			l::::::		<u> </u>		1		
	15	18	21	24	27	80	38	36	42	48		
2.5	.11	.095	.075 .117	.065	.055	.052	.049 .076	.047	.036 .056	.030 .046		
8 3.5 4	.25 .84 .44	.21 .29 .36	.17 .28 .31	.15 .20 .27	.18 .18 .28	.12 .16 .22	.108 .15 .20	.10 .14 .17	.081 .111	.067 .092		
4.5 5 5.5	.56 .70 .84	.46 .58 .70	.39 .48 .59	.84 .41 .50	.30 .37 .44	.28 .34 .89	.25 .30	.22 .27 .82	.18 .22 .27	.15 .18 .22		
6				.59	.53	.49	48	.4	.82	.27		

Loss of Head in Pipe by Friction.—Loss of head by friction in each 100 feet in length of different diameters of pipe when discharging the following quantities of water per minute (Pelton Water-wheel Co.):

per				Inside	Diame	ter of	Pipe in	Inch	es.			
	1	1 2			8 4		4		5		5	
Velocity in Feet Second.	Loss of Head in Feet.	Cubic Feet per Minute.	Loss of Head	Cubic Feet per Minute.	Loss of Head in Feet.	Cubic Feet per Minute.	Loss of Head in Feet.	Oubic Feet per Minute.	V Loss of Head in Feet.	Cubic Feet per Minute.	Loss of Head in Feet.	Cubic Feet per Minute.
2.0 3.0 4.0 5.0 6.0 7.0	4.89 8.20 12.33 17.23	.65 .99 1.82 1.65 1.98 2.31	1.185 2.44 4.10 6.17 8.61 11.45	2.62 8.92 5.28 6.54 7.85 9.16	.791 1.62 2.73 4.11 5.74 7.62	5.89 8.83 11.80 14.70 17.70 20.6	.598 1.22 2.05 3.06 4.31 5.72	81.4	474 978 1 64 2 46 3 45 4 57	16.3 24.5 32.7 40.9 49.1 57.2	.895 .815 1.87 2.05 2.87 2.81	28.5 85.8 47.1 58.9 70.7 89.4

١		Inside Diameter of Pipe in Inches,											
	7	i	8		9		10	10		11		12	
F-	A	Q	A	Q	h	Q	h	Q	h	Q	h	Q	
2 0 3 0 4 0 5 0 6 0	.338 .698 1.175 1.76 2.46 3.26	32.0 48.1 64.1 80.2 96.2 112.0	.\$96 .611 1.027 1.54 2.15 2.85	41.9 62.8 83.7 105 125 146	.264 .544 .918 1.37 1.92 2.52	53 79.5 106 132 159 185	.287 .488 .822 1.23 1.71 2.28		.216 .444 .747 1.122 1.56 2 07	79.2 119 158 198 287 277	.407 585 1.028 1.48	94.5 141 188 235 283 380	
Ī	Inside Diameter of Pipe in Inches.												
	18   14			4	1	5	1	16	1	8	20		
V	À	Q	h	Q	h	6	h	Q	h	6	h	Q	
2.0 3.0 4.0 5.0 6.0	.683 .949 1.885	110 166 931 276 882 887	.169 .849 .587 .881 1.229 1.63	198 192 256 821 885 449	.158 .825 .548 .822 1.148 1.52	147 221 294 868 442 515	.147 .806 .513 .770 1.076 1.48	167 251 335 419 502 586	.132 .271 .456 .685 .957	212 318 424 580 686 742	.119 .245 .410 .617 .861 1.148	528 654 785	
				Inside	Diame	ter of	Pipe i	n Inch	<b>e</b> 8.				
	8	2	22 24		26		28		80		86		

442 663 091 513 .079 848 204 .174 . 188 770 888 475 565 .163 . 135 1278 842 754 942 .815 885 .298 10:26 .278 1178 1697 1283 792 .513 1106 440 .411 .474 1472 342 2121 1181 662 1327 615 1539 .574 950 1767 1109 .953 1319 .879 1548 .817 1796 . 762 2061 2968

EXAMPLE.—Given 200 ft. head and 600 ft. of 11 inch pipe, carrying 119 cubic feet of water per minute. To find effective head: In right-hand column, under 11-inch pipe, find 119 cubic ft.; opposite this will be found the loss by friction in 100 ft. of length for this amount of water, which is .444. Multiply this by the number of hundred feet of pipe, which is 6, and we have 2.66 ft. which is the loss of head. Therefore the effective head is 200 - 2.66

EXPLANATION.—The loss of head by friction in pipe depends not only upon diameter and length, but upon the quantity of water passed through it. The diameter and length, but upon the quantity of water passed through it. Thehead or pressure is what would be indicated by a pressure-gauge attached
to the pipe near the wheel. Readings of gauge should be taken while the
water is flowing from the nozzle.
To reduce heads in feet to pressure in pounds multiply by .433. To reduce
pounds pressure to feet multiply by 2.309.
Cox's Formula.—Weisbach's formula for loss of head caused by the

friction of water in pipes is as follows:

Friction-head = 
$$\left(0.0144 + \frac{0.01716}{\sqrt{V}}\right) \frac{L.V^2}{5.367d}$$

where L = length of pipe in feet;

V = velocity of the water in feet per second;

d = diameter of pipe in inches.

William Cox (Amer. Mach., Dec. 28, 1893) gives a simpler formula which gives almost identical results:

$$H = \text{friction-bead in feet} = \frac{L}{d} \frac{4V^2 + 5V - 2}{1200} . . . . . (1)$$

$$\frac{Hd}{L} = \frac{4V^2 + 5V - 2}{1200} . . . . . . . . . . . . (2)$$

He gives a table by means of which the value of  $\frac{4V^2+5V-2}{2}$ obtained when V is known, and vice versa.

VALUES OF 
$$\frac{4V^2 + 5V - 2}{1200}$$
.

						1200				
V	0.0	0.1	0.2	0.8	0.4	0.5	0.6	0.7	0.8	0.9
1	.00583	.00695	.00813	.00938	.01070	.01208	.01858	.01505	.01663	.01828
2	.02000	.02178	.02363	.02555	.02758	.02958	.08170	.08388	.08618	.08845
8	.04083	.04828	.04590	.04838		.05875	.05658	.05988		.06528
4	.06833	.07145	.07463							.09878
5	.10250	.10628	.11013	.11405		.12208				.13895
6	.14333	.14778	.15230	.15688	.16153			.17588	.18080	. 18578
7	.19083	.19595	.20113	.20638				.22805	.22363	.23928
8	.24500	.25078	.25663	.26255					.29313	.29945
9	.30583	.31228							.35930	.36628
10	.37333	.38045		.39488					.48218	.43978
11	.44750	.45528	.46318	.47105					.51168	.51995
12	.52883	.53678		.55388				.58888		.60678
18	.61583									.70028
14	.71000									.80045
15	.81083	.82128								.90728
16	.91883									1.02078
17										1.14095
										1.26778
										1.40128
										1.54145
21	1.55588	1.57028	1.58480	1.59938	1.61403	1.62875	1.64853	1.65838	1.67830	1.68828
	ı	I	l	i	1	1	ı	l .	i	l

The use of the formula and table is illustrated as follows:

Given a pipe 5 inches diameter and 1000 feet long, with 49 feet head, what

will the discharge be?

If the velocity V is known in feet per second, the discharge is  $0.32725d^3V$ cubic foot per minute.

By equation 2 we have

$$\frac{4V^2+5V-2}{1200}=\frac{Hd}{L}=\frac{49\times5}{1000}=0.245;$$

whence, by table,  $V={\rm real}$  velocity = 8 feet per second. The discharge in cubic feet per minute, if V is velocity in feet per second and d diameter in inches, is  $0.32725d^2V$ , whence, discharge

= 
$$0.82725 \times 25 \times 8 = 65.45$$
 cubic feet per minute.

The velocity due the head, if there were no friction, is 8.025  $\sqrt{H}$  = 56.175 feet per second, and the discharge at that velocity would be

$$0.32725 \times 56.175 \times 8 = 460$$
 cubic feet per minute.

Suppose it is required to deliver this amount, 460 cubic feet, at a velocity of 2 feet per second, what diameter of pipe will be required and what will be the loss of head by friction?

$$d = \text{diameter} = \sqrt{\frac{Q}{V \times 0.32725}} = \sqrt{\frac{460}{2 \times 0.32725}} = \sqrt{708} = 26.5 \text{ inches.}$$

Having now the diameter, the velocity, and the discharge, the friction-head is calculated by equation 1 and use of the table; thus,

$$H = \frac{L}{d} \frac{4V^2 + 5V - 2}{1200} = \frac{1000}{26.5} \times 0.02 = \frac{20}{26.5} = 0.75 \text{ foot,}$$

thus leaving 49 - 0.75 = say 48 feet effective head applicable to power-producing purposes.

Problems of the loss of head may be solved rapidly by means of Cox's Pipe Computer, a mechanical device on the principle of the slide-rule, for sale by Keuffel & Esser, New York,

### Frictional Heads at Given Bates of Discharge in Clean Cast-iron Pipes for Each 1000 Feet of Length.

(Condensed from Ellis and Howland's Hydraulic Tables.)

4-in Pij	eh pe.	6-in Pir	ch œ.	8-in Pij	ch e.	10-iı Pip	nch æ.	12-i Pi ₁	œ.	Pi	inch pe.
Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.	Velocity, in ft. per sec.	Friction- head, feet.	Velocity, in ft. per sec.	Friotion- head, feet.
. 64 1.28 2.55 3.83 5.11 6.37 7.66 8.94 10.21 12.77 15.32 17.87	59 2 01 7 86 16 03 28 09 43 47 62 20 84 26 109 66 109 68 170 53 244 76	20.42	298,90	.16 .32 .64 1.28 1.60 1.91 2.23 2.55 8.19 3.83 4.47 5.74 6.88 7.66 8.94 10.21 11.47 12.77	.04 .10 .20 .20 1.01 1.52 2.15 3.68 5.64 8.03 10.83 14.05 17.68 21.74 31.10 42.13 54.84 69.22 85.27 182.70	.10 .20 .41 .61 .82 .1.23 .1.23 .1.48 .1.68 .2.45 .2.45 .2.45 .2.45 .2.45 .2.45 .2.66 .3.27 .7.35 .6.35 .7.35 .7.35 .7.35 .7.35	.02 .04 .11 .23 .54 .75 .99 1.27 1.93 2.72 8.68 4.78 5.93 7.28 10.38 14.02 18.22 22.96 28.25 62.98	.07 .14 .28 .43 .57 .71 .85 .99 1.18 1.70 1.98 2.27 2.55 3.40 3.97 4.54 5.11 7.09 8.51	.01 .02 .05 .10 .10 .24 .82 .48 .54 .14 1.52 2.45 8.00 5.74 4.26 5.74 4.26 5.74 7.44 9.36 117.82 2.55.51		
Pi	nch pe.	18-i Pij	nch pe.	20-i Pij	nch pe.	24-i Pi _l	n <b>ch</b> pe.	30-i Pi	nch pe.	36- Pi	inch ipe.
Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.	Velocity in ft. per sec.	Friction- head, feet.
.80 1.60 2.39 3.19 3.99 4.79 5.59 6.38 7.18 7.98	.22 .76 1.63 2.82 4.34 6.19 8.37 10.87 13.70	.63 1.26 1.89 2.52 8.15 8.78 4.41 5.64 5.630 7.57	.13 .44 .93 1.60 2.45 3.48 4.70 6.09 7.67 9.43 13.49	.51 1.02 1.53 2.04 2.55 3.06 3.57 4.08 4.59 5.11 6.13 7.15	.08 .27 .56 .96 1.47 2.09 2.81 3.64 4.58 5.62 8.03 10.86	.35 .71 1.06 1.42 1.77 2.13 2.48 2.84 3.19 3.55 4.26 4.96 5.67 6.38	.24 .41 .62 .87 1.16 1.50 1.88 2.31 3.28 4.43	.68 .91 1.13 1.36 1.59 1.82 2.04 2.27 2.72 3.18	.15 .22 .30 .40	.63 .79 .95 1.10 1.26	.04 .06 .09 .18 .17
	Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in   Velocity in	16.00	Velocity in   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte   Carte	11   12   13   14   15   15   15   15   15   15   15	16 inch   18 inch   19   19   19   19   19   19   19   1	16   16   17   18   18   18   18   18   18   18	Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp	100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe.	1	Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe. Pipe.

Effect of Bends and Curves in Pipes.—Weisbach's rule for

 $v_3$  $\boldsymbol{a}$  $\frac{1}{64.4} \times \frac{3}{180}$ , in which r bends: Loss of head in feet = .131 + 1.847

= internal radius of pipe in feet, R = radius of curvature of axis of pipe, v= velocity in feet per second, and a = the central angle, or angle subtended by the bend.

Hamilton Smith, Jr., in his work on Hydraulics, says: The experimental data at hand are entirely insufficient to permit a satisfactory analysis of this quite complicated subject; in fact, about the only experiments of value are those made by Bossut and Dubuat with small pipes.

are those made by Bossut and Dubuat with small pipes.

Curves.—If the pipe has easy curves, say with radius not less than 5 diameters of the pipe, the flow will not be materially diminished, provided the tops of all curves are kept below the hydraulic grade-line and provision be made for escape of air from the tops of all curves. (Trautwine.)

Hydraulic Grade-line.—In a straight tube of uniform diameter throughout, running full and discharging freely into the air, the hydraulic grade-line is a straight line drawn from the discharge end to a point immediately over the entry end of the pipe and at a depth below the surface equal to the entry and velocity heads. (Trautwine.)

In a pipe leading from a reservoir, no part of its length should be above the hydraulic grade-line.

the hydraulic grade line.

Flow of Water in House-service Pipes.

Mr. E. Kuichling, C.E., furnished the following table to the Thomson Meter Co.:

Condition	in Main, per inch.		Cul	bic Fee	et per l	capable Minute, pecifie	from	the Pi	pe,	
of Discharge.	Pressure in pounds pe square inc	No	minal	Diame		Iron or nches.	r Lead	Servi	ce-pipe	in
	Pre g	1/2	5%	3⁄4	1	11/2	2	8	4	6
Through 85 feet of service-pipe, no back pressure.	30 40 50 60 75 100 130	1.10 1.27 1.42 1.56 1.74 2.01 2.29 0.66 0.77	1.92 2.22 2.48 2.71 3.03 3.50 3.99 1.16 1.34	8.01 3.48 3.89 4.26 4.77 5.50 6.28	6.18 7.08 7.92 8.67 9.70 11.20 12.77	16.58 19.14 21.40 23.44 26.21 30.27 84.51	48.04 47.15 52.71 60.87 69.40 21.30 24.59	101.80 113.82 124.68 189.39 160.96 183.52 58.19 67.19	200.75 224.44 245.87 274.89 317.41 861.91 118.13	444.63 513.42 574.02 628.81 708.08 811.79 925.58 317.23 366.30
100 feet of service- pipe, no back pressure.	50 60 75 100 180	0.86 0.94 1.05 1.22 1.39	1.50 1.65 1.84 2.13 2.42	2.37 2.60 2.91 3.36 3.83	4.88 5.84 5.97 6.90 7.86	18.43 14.71 16.45 18.99 21.66		82.30 92.01 106.24 121.14	167.06 186.78 215.68 245.91	409.54 448.68 501.58 579.18 660.36
Through 100 feet of service- pipe and 15 feet vertical rise.		0.66 0.75 0.83 0.94 1.10 1.26	1.15 1.31 1.45 1.64 1.92 2.20	1.32 1.81 2.06 2.29 2.59 3.02 3.48	3 72 4.24 4.70 5.32 6.21 7.14	10.24 11.67 12.94 14.64 17.10 19.66	20.95 23.87 26.48 29.96 35.00 40.23	57.20 65.18 72.28 81.79 95.55	116.01 132.20 146.61 165.90 198.82	311.09 354.49 393.13 444.85 519.72 597.31
Through 100 feet of service- pipe, and 30 feet vertical rise.	80 40 50 60 75 100 130	0.44 0.55 0.65 0.73 0.84 1.00 1.15	0.77 0.97 1.14 1.28 1.47 1.74 2.02	1.22 1.53 1.79 2.02 2.32 2.75 3.19	2.50 8.15 8.69 4.15 4.77 5.65 6.55	6,80 8,68 10,16 11,45 18,15 15,58 18,07	28.47 26.95 31.93	48.68 56.98 64.28 73.76 87.88	98.96 3.115.87 2.130.58 3.149.96 3.177.67	211.54 3 266.59 7.312.08 9 351.73 9 403.98 7 478.55 1 554.96

In this table it is assumed that the pipe is straight and smooth inside; that the friction of the main and meter are disregarded; that the inlet from the main is of ordinary character, sharp, not flaring or rounded, and that the outlet is the full diameter of pipe. The deliveries given will be increased if, first, the pipe between the meter and the main is of larger diameter than the outlet; second, if the main is tapped, say for 1-inch pipe, but is enlarged from the tap to 1½ or 1½ inch; or, third, if pipe on the outlet is larger than that on the inlet side of the meter. The exact details of the conditions given are rarely met in practice; consequently the quantities of the table may be expected to be decreased, because the pipe is liable to be throttled at the joints, additional bends may interpose, or stop-cocks may be used, or the

back-pressure may be increased.

Air-bound Pipes.—A pipe is said to be air-bound when, in consequence of air being entrapped at the high points of vertical curves in the line, water will not flow out of the pipe, although the supply is higher than the outlet. The remedy is to provide cocks or valves at the high points, through which the air may be discharged. The valve may be made auto-

matic by means of a float.

**Vertical Jets.** (Molesworth.)—H = head of water, h = height of jet, d = diameter of jet, K = coefficient, varying with ratio of diameter of jet to head; then h = KH.

If 
$$H = d \times 300$$
 600 1000 1500 1800 2800 8500 4500,  $K = .96$  .9 .85 .8 .7 .6 .5 .25

Water Belivered through Meters. (Thomson Meter Co.).—The best modern practice limits the velocity in water-pipes to 10 lineal feet per second. Assume this as a basis of delivery, and we find, for the several sizes of pipes usually metered, the following approximate results:

Nominal diameter of pipe in inches:

#### PIRK-STREAMS.

### Discharge from Nozzles at Different Pressures.

(J. T. Fanning, Am. Water-works Ass'n, 1892, Eng'g News, July 14, 1892.)

Nozzle diam., in.	Height of stream, ft.	Pressure at Play- pipe, lbs.	Horizon- tal Pro- jection of Streams, ft.	Gallons per minute.	Gallons per 24 hours.	Friction per 100 ft. Hose, lbs.	Friction per 100 ft. Hose, Net Head, ft.
1	70	46.5	59.5	203	292,298	10.75	24.77
i	80 80	59.0	67.0	230	881,200	18.00	31.10
ī	90	79.0	76.6	267	384,500	17.70	40.78
i	100	130.0	88.0	311	447,900	22.50	54.14
116	70	44.5	61.3	249	358,520	15.50	85.71
114	80	55.5	69.5	281	404,700	19.40	44.70
112	90	72.0	78.5	324	466,600	25.40	58.52
112	100	103.0	89.0	376	541,500	88.80	77.88
11/2	70	48.0	66.0	306	440,613	22.75	52.42
11/4	80	53.5	72.4	848	498,900	28.40	65.43
11/2	90	68.5	81.0	388	558,800	35.90	82.71
112	100	93.0	92.0	460	662,500	57.75	86.98
156	70	41.5	77.0	868	530,149	82.50	74.88
124	80	51.5	74.4	410	590,500	40.00	92.16
197	90	65.5	82.6	468	674,000	51.40	118.43
196 196	100	88.0	92.0	540	777,700	72.00	165.89

Friction Losses in Hose.—In the above table the volumes of water discharged per jet were for stated pressures at the play-pipe

In providing for this pressure due allowance is to be made for friction losses in each hose, according to the streams of greatest discharge which are to be used.

The loss of pressure or its equivalent loss of head (h) in the hose may be

found by the formula  $h = v^2(4m)\frac{1}{2gd}$ .

In this formula, as ordinarily used, for friction per 100 ft. of  $2\frac{1}{2}$  in. hose there are the following constants:  $2\frac{1}{2}$  in. diameter of hose d=.20838 ft.; length of hose l=100 ft., and 2g=64.4. The variables are: v= velocity in feet per second; h= loss of head in feet per 100 ft. of hose; m= a coefficient found by experiment; the velocity v is found from the given discount for the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th charges of the jets through the given diameter of hose.

Head and Pressure Losses by Friction in 100 Lengths of Rubber-lined Smooth 2½-in. Hose. 100 - ft.

Discharge per minute, gallons.	Velocity per second, ft.	Coefficient, m.	Head Lost, ft.	Pressure Lost, lbs. per sq. in.	Gallons per 24 hours.
200	13.072	.00450	22.89	9.93	288,000
250	16.388	.00446	35.55	15.43	360,000
300	18.858	.00442	46.80	20.31	482,000
847	21.677	.00439	61.58	26.70	499,680
850	22.873	.00439	68.48	29.73	504,000
400	26.144	.00436	88.83	38.55	576,000
450	29,408	.00434	111.80	48.52	648,000
500	82.675	.00432	137.50	59.67	720,000
520	33.982	.00431	148.40	64.40	748,800

These frictions are for given volumes of flow in the bose and the velocities respectively due to those volumes, and are independent of size of nozzle. The changes in nozzle do not affect the friction in the hose if there is no change in velocity of flow, but a larger nozzle with equal pressure at the nozzle augments the discharge and velocity of flow, and thus materially increases the friction loss in the hose.

Loss of Pressure (p) and Head (h) in Rubber-lined Smooth  $2\frac{1}{2}$ -in. Hose may be found approximately by the formulæ  $lq^2$  $lq^2$  $\frac{4}{4150d^6}$  and  $h = \frac{4}{1801d^6}$ , in which p = pressure lost by friction, in pounds per square inch; l = length of hose in feet; q = gallons of water discharged per minute; d = diam, of the hose in inches, 214 in.; h = triction head in feet. The coefficient of  $d^b$  would be decreased for rougher hose.

The loss of pressure and head for a 1½-in. stream with power to reach a height of 80 ft. is, in each 100 ft. of 2½-in. hose, approximately 20 lbs., or 45 ft. net, or, say, including friction in the hydrant, ½ ft. loss of head for each foot of hose.

If we change the nozzles to 1½ or 1¾ in diameter, then for the same 80 ft. height of stream we increase the friction losses on the hose to approximately ¾ ft. and 1 ft. head, respectively, for each foot-length of hose. These computations show the great difficulty of maintaining a high stream through large nozzles unless the hose is very short, especially for a

gravity or direct pressure system.

This single 116-in, stream requires approximately 56 lbs pressure, equivalent to 129 ft. head, at the play-pipe, and 45 to 50 ft. head for each 100 ft. length of smooth 216-in, hose, so that for 100, 200, and 300 ft. of hose we must have available heads at the hydrant or fire-engine of 16, 156, and 206 ft. respectively. If we substitute 14-in. nozzles for same height of stream we must have available heads at the hydrants or engine of 185, 255 and 325 ft., respectively, or we must increase the diameter of a portion at least of the long hose and save friction-loss of head.

Rated Capacities of Steam Fire-engines, which is perhaps one third greater than their ordinary rate of work at fires, are substantially as follows:

550 gals. per min., or 792,000 gals. per 24 hours. 3d size, 700 1,008,000 2d 1st " " 1,296,000 900 1 ext., 1,100 1,584,000

Deat Dalla

Pressures required at Nozzle and at Pump, with Quantity and Pressure of Water Necessary to throw Water Various Distances through Bifferent-sized Nozzles—using 2½-inch Rubber Hose and Smooth Nozzles.

(From Experiments of Ellis & Leshure, Fanning's "Water Supply.")

Eize of Nozzles.		1 Ir	ich.		11/4 Inch.			
Pressure at nozzle, lbs. per sq in  * Pressure at pump or hydrant with 100 ft. 2½ inch rubber hose	48 155	189 142	97 219 168	121 245 186	198 113	148	175	810
	1¼ Inch.					1% Inch.		
Size of Nozzles.		11/4 ]	inch.			1% 1	nch.	
Pressure at nozzle, lbs. per sq. in	40	60	80	100	40	60	80	100
Pressure at nozzle, lbs. per sq. in	40 61	60 92 297	80 123 842	100 154 883	40 71 298	60 107 358	80 144 413	100 180 462

^{*}For greater length of 2½-inch hose the increased friction can be obtained by noting the differences between the above given "pressure at nozzle" and "pressure at pump or hydrant with 100 feet of hose." For instance, if it requires at hydrant or pump eight pounds more pressure than it does at nozzle to overcome the friction when pumping through 100 feet of 2½-inch hose (using 1-inch nozzle, with 40-pound pressure at said nozzle) then it requires 16-pounds pressure to overcome the friction in forcing through 200 feet of same size hose.

Decrease of Flew due to Increase of Longth of Hose. (J. R. Freeman's Experiments, Trans. A. S. C. E. 1889.)—If the static pressure is 80 lbs. and the hydrant-pipes of such size that the pressure at the hydrant is 70 lbs., the hose 2½ in. nominal diam., and the nozzle 1½ in. diam., the height of effective fire-stream obtainable and the quantity in gallons per minute will be:

							Linen	Hose.		kuoper- d Hose.
							Height,	Gals.	Height,	
							feet.	per min.	feet.	per min.
With	50	ft.	of	216-in.	hose	B	. 78	261	81	282
**	250		**	77.	••		. 42	184	61	229
**	500	**	**	44	44		27	146	46	162

With 500 ft. of smoothest and best rubber-lined hose, if diameter be exactly 2½ in., effective height of stream will be 39 ft. (177 gals.); if diameter be ½ in. larger, effective height of stream will be 46 ft. (192 gals.)

### THE SIPHON.

The Siphon is a bent tube of unequal branches, open at both ends, and is used to convey a liquid from a higher to a lower level, over an intermediate point higher than either. Its parallel branches being in a vertical plane and plunged into two bodies of liquid whose upper surfaces are at different levels, the fluid will stand at the same level both within and without each branch of the tube when a vent or small opening is made at the bend. If the air be withdrawn from the siphon through this vent, the water will rise in the branches by the atmospheric pressure without, and when the two columns unite and the vent is closed, the liquid will flow from the upper reservoir as long as the end of the shorter branch of the siphon is below the surface of the liquid in the reservoir.

If the water was free from air the height of the bend above the supply level might be as great as 33 feet.

If A = area of cross-section of the tube in square feet, H = the difference in level between the two reservoirs in feet, D the density of the liquid in pounds per cubic foot, then ADH measures the intensity of the force which causes the movement of the fluid, and  $V = \sqrt{2gH} = 8.02 \ \sqrt{H}$  is the theoretical velocity, in feet per second, which is reduced by the loss of head for entry and friction, as in other cases of flow of liquids through pipes. In the case of the difference of level being greater than 33 feet, however, the velocity of the water in the shorter leg is limited to that due to a height of 33 feet, or that due to the difference between the atmospheric pressure at the entrance and the vacuum at the bend.

Leicester Allen (Am. Mach., Nov. 2, 1893) says: The supply of liquid to a siphon must be greater than the flow which would take place from the discharge end of the pipe, provided the pipe were filled with the liquid, the supply end stopped, and the discharge end opened when the discharge end

is left free, unregulated, and unsubmerged.

To illustrate this principle, let us suppose the extreme case of a siphon having a calibre of 1 foot, in which the difference of level, or between the point of supply and discharge, is 4 inches. Let us further suppose this siphon to be at the sea-level, and its highest point above the level of the supply to be 27 feet. Also suppose the discharge end of this siphon to be unregulated, unsubmerged. It would be inoperative because the water in the longer leg would not be held solid by the pressure of the atmosphere against it, and it would therefore break up and run out faster than it could be replaced at the inflow end under an effective head of only 4 inches.

placed at the inflow end under an effective head of only 4 inches.

Long Siphons.—Prof. Joseph Torrey, in the Amer. Machinist, describes a long siphon which was a partial failure.

The length of the pipe was 1792 feet. The pipe was 3 inches diameter, and rose at one point 9 feet above the initial level. The final level was 20 feet below the initial level. No automatic air valve was provided. The highest point in the siphon was about one third the total distance from the pond and point in the siphon was about one third the total distance from the pond and nearest the pond. At this point a pump was placed, whose mission was to fill the pipe when necessary. This siphon would flow for about two hours and then cease, owing to accumulation of air in the pipe. When in full operation it discharge 43½ gallons per minute. The theoretical discharge from such a sized pipe with the specified head is 55½ gallons per minute.

Siphon on the Water-supply of Mount Vernon, N. Y. (Eng'o News, May 4, 1898.)—A 12-inch siphon, 925 feet long, with a maximum lift of 22.12 feet and a 45° change in alignment, was put in use in 1892 by the New York City Suburban Water Co. Which surplies Mount Vernon, N. Y.

New York City Suburban Water Co., which supplies Mount Vernon, N. Y.

At its summit the siphon crosses a supply main, which is tapped to charge

the siphon.

The air-chamber at the siphon is 12 inches by 16 feet long. A 14 inch tap and cock at the top of the chamber provide an outlet for the collected air.

It was found that the siphon with air-chamber as desc itsed would run until 125 cubic feet of air had gathered, and that this took place only half as soon with a 14-foot lift as with the full lift of 22.12 feet. The siphon will operate about 12 hours without being recharged, but more water can be gotten over by charging every six hours. It can be kept running 23 hours out of 24 with only one man in attendance. With the siphon as described above it is necessary to close the valves at each end of the siphon to recharge it.

It has been found by weir measurements that the discharge of the siphon before air accumulates at the summit is practically the same as through a

straight pipe.

### MEASUREMENT OF FLOWING WATER.

**Piezometer.**—If a vertical or oblique tube be inserted into a pipe containing water under pressure, the water will rise in the former, and the vertical height to which it rises will be the head producing the pressure at the point where the tube is attached. Such a tube is called a piezometer or pressure measure. If the water in the piezometer falls below its proper level it shows that the pressure in the main pipe has been reduced by an obstruction between the piezometer and the reservoir. If the water rises above its proper level, it indicates that the pressure there has been increased by an obstruction beyond the piezometer

If we imagine a pipe full of water to be provided with a number of pie-zometers, then a line joining the tops of the columns of water in them is

the hydraulic grade-line.

Pitot Tube Gauge.—The Pitot tube is used for measuring the velocity of fluids in motion. It has been used with great success in measuring the flow of natural gas. (S. W. Robinson, Report Ohio Geol. Survey, 1890.) See also Van Nostrand's Mug., vol. xxxv.) It is simply a tube so bent that a short leg extends into the current of fluid flowing from a tube, with the plane of the entering orifice opposed at right angles to the direction of the current. The pressure caused by the impact of the current is transmitted through the tube to a pressure gauge of any kind, such as a column of water or of mercury, or a Bourdon spring-gauge. From the pressure thus indicated and the known density and temperature of the flowing gas is obtained the head corresponding to the pressure, and from this the velocity, In a modification of the Pitot tube described by Prof. Robinson, there are In a modification of the Pitot tube described by Prof. Robinson, there are two tubes inserted into the pipe conveying the gas, one of which has the plane of the orifice at right angles to the current, to receive the static pressure plus the pressure due to impact; the other has the plane of its orifice parallel to the current, so as to receive the static pressure only. These tubes are connected to the legs of a U tube partly filled with mercury, which then registers the difference in pressure in the two tubes, from which the velocity may be calculated. Comparative tests of Pitot tubes with gazmeters, for measurement of the flow of natural gas, have shown an agreement within 3%.

The Venturi Meter, invented by Clemens Herschel, and described in a pamphlet issued by the Builders' Iron Foundry of Providence, R. I., is named from Venturi, who first called attention, in 1796, to the relation between the velocities and pressures of fluids when flowing through converging

and diverging tubes,
It consists of two parts—the tube, through which the water flows, and the recorder, which registers the quantity of water that passes through the

The tube takes the shape of two truncated cones joined in their smallest diameters by a short throat-piece. At the up-stream end and at the throat there are air chambers, at which points the pressuees are taken.

The action of the tube is based on that property which causes the small section of a gently expanding frustum of a cone to receive, without material resultant loss of head, as much water at the smallest diameter as is discharged at the large end, and on that further property which causes the pressure of the water flowing through the throat to be less, by virtue of its greater velocity, than the pressure at the up-stream end of the tube, each pressure being at the same time a function of the velocity at that point and of the hydrostatic pressure which would obtain were the water motionless within the pipe. The action of the tube is based on that property which causes the small

The recorder is connected with the tube by pressure-pipes which lead to it from the chambers surrounding the up stream end and the throat of the It may be placed in any convenient position within 1000 feet of the It is operated by a weight and clockwork, tube.

The difference of pressure or head at the entrance and at the throat of the meter is balanced in the recorder by the difference of level in two columns of mercury in cylindrical receivers, one within the other. The inner carries a float, the position of which is indicative of the quantity of water flowing through the tube. By its rise and fall the float varies the time of contact between an integrating drum and the counters by which the successive readings are registered.

There is no limit to the sizes of the meters nor the quantity of water that may be measured. Meters with 24-inch, 36-inch, 48-inch, and even 20-foot

tubes can be readily made.

Measurement by Venturi Tubes. (Trans. A. S. C. E., Nov., 1887, and Jan., 1888.)—Mr. Herschel recommends the use of a Venturi tube, inserted in the force-main of the pumping engine, for determining the quantity of water discharged. Such a tube applied to a 24-inch main has a total length of about 90 feet. At a distance of 4 feet from the end nearest the engine the inside diameter of the tube is contracted to a throat having a diameter of about 8 inches. A pressure-gauge is attached to each of two chambers, the one surrounding and communicating with the entrance or main pipe, the other with the throat. According to experiments made upon two tubes of this kind, one 4 in. in diameter at the throat and 12 in, at the entrance, and the other about 36 in. in diameter at the throat and 9 feet at its entrance, the quantity of water which passes through the tube is very nearly the theoretical discharge through an opening having an area equal to that of the throat, and a velocity which is that due to the difference in head snown by the two gauges. Mr. Herschel states that the coefficient for these two widely-varying sizes of tubes and for a wide range of velocity through the pipe, was found to be within two per cent, either way, of 98%. In other words, the quantity of water flowing through the tube per second is expressed within two per cent by the formula  $W = 0.98 \times A \times \sqrt{2gh}$ , in which A is the area of the throat of the tube, h the head, in feet, correspond-

In the difference in the pressure of the water entering the tube and that found at the throat, and g=32.16.

Measurement of Discharge of Pumping-engines by Means of Nozzles. (Trans. A. S. M. E., xiii, 557.—The measurement of water by computation from its discharge through orifices, or through the nozzles of fire-hose, furnishes a means of determining the quantity of water nozzies of fire-nose, turishies a means of otermining the quantity of water delivered by a pumping-engine which can be applied without much difficulty. John R. Freeman, Trans. A. S. C. E., Nov., 1889, describes a series of experiments covering a wide range of pressures and sizes, and the results showed that the coefficient of discharge for a smooth nozzle of ordinary good form was within one half of one per cent, either way, of 0.977; the diameter of the nozzle being accurately calipered, and the pressures being determined by means of an accurate gauge attached to a suitable piezometer at the base of the playing. of the play-pipe.

In order to use this method for determining the quantity of water discharged by a pumping-engine, it would be necessary to provide a pressure box, to which the water would be conducted, and attach to the box as many box, to which the water would be conducted, and attach to the box as many nozzles as would be required to carry off the water. According to Mr. Freeman's estimate, four 1½-inch nozzles, thus connected, with a pressure of 80 lbs. per square inch, would discharge the full capacity of a two-and a half-million engine. He also suggests the use of a portable apparatus with a single opening for discharge, consisting essentially of a Siamese nozzle, so-called, the water being carried to it by three or more lines of fire-hose. To insure reliability for these measurements, it is necessary that the shut-off valve in the force-main, or the several shut-off valves, should be tight cothet all the water discharged by the engine may ness through the porgles.

so that all the water discharged by the engine may pass through the nozzles.

# Flow through Bectangular Orifices. (Approximate. Seep. 556.)

CUBIC FRET OF WATER DISCHARGED PER MINUTE THROUGH AN ORIFICE ONE INCH SQUARE, UNDER ANY HEAD OF WATER FROM 3 TO 72 INCHES.

For any other orifice multiply by its area in square inches. Formula,  $Q' = .624 \sqrt{h''} \times a$ . Q' = cu, ft. per min.; a = area in sq. in.

Heads in inches. Cubic Feet Discharged per min.	neads in inches. Cubic Feet Discharged per min.	Heads In inches. Cubic Feet Discharged per min.	Heads in inches. Cubic Feet Discharged	Heads In inches.		Cubic Feet Discharged per min.		Cubic Feet Discharged per min.
8 1.12 4 1.27 5 1.40 6 1.52 7 1.64 8 1.75 9 1.84 10 1.94 11 2.08	13 2.20 14 2.28 15 2.36 16 2.43 17 2.51 18 2.58 19 2.64 20 2.71 21 2.78 22 2.84	23 2.90 24 2.97 25 3.08 26 3.08 27 3.14 28 3.20 29 3.25 30 3.31 31 3.86 32 3.41	33 3.47 34 3.52 35 3.57 36 3.62 37 3.67 38 3.72 39 3.77 40 3.81 41 3.86 42 3.91	44 45 46 47 48 49 50 51	3 95 53 4 00 54 4 05 55 4 09 56 4 12 57 4 18 58 4 21 59 4 27 60 4 30 61 4 34 62	4.39 4.42 4.46 4.52 1.55 4.63 4.65 4.72 4.74	63 64 65 66 67 68 69 70 71 72	4.78 4.81 4.85 4.89 4.92 4.97 5.00 5.08 5.07 5.09

Measurement of an Open Stream by Velocity and Cross-section.—Measure the depth of the water at from 6 to 12 points across the stream at equal distances between. Add all the depths in feet together and divide by the number of measurements made; this will be the average depth of the stream, which multiplied by its width will give its area or cross-Multiply this by the velocity of the stream in feet per minute, and the result will be the discharge in cubic feet per minute of the stream.

The velocity of the stream can be found by laying off 100 feet of the bank and throwing a float into the middle, noting the time taken in passing over the 100 ft. Do this a number of times and take the average; then, dividing this distance by the time gives the velocity at the surface. As the top of the stream flows faster than the bottom or sides—the average velocity being about 83% of the surface velocity at the middle—it is convenient to measure a distance of 120 feet for the float and reckon it as 100.



F1G. 130.

# Miners' Inch Measurements. (Pelton Water Wheel Co.)

The cut, Fig. 130, shows the form of measuring-box ordinarily used, and the following table gives the discharge in cubic feet per minute of a miner's inch of water, as measured under the various heads and different lengths and heights of apertures used in California.

Length	Openin	gs 2 Inche	s High.	Openi	ngs 4 Inche	s High.
of Opening in inches.	Head to Centre, 5 inches.	Head to Centre, 6 inches.	Head to Centre, 7 inches.	Head to Centre, 5 inches.	Head to Centre, 6 inches.	Head to Centre, 7 inches.
4 6 8 10 12 14 16 18 20 22 24 28 28	Cu. ft. 1.348 1.353 1.359 1.361 1.363 1.364 1.365 1.365 1.365 1.366 1.366 1.366	Cu. ft. 1.473 1.480 1.484 1.485 1.485 1.489 1.489 1.489 1.490 1.490 1.490	Cu. ft. 1.589 1.596 1.600 1.602 1.604 1.605 1.606 1.606 1.607 1.607	Cu. ft. 1.320 1.336 1.344 1.349 1.352 1.354 1.356 1.357 1.359 1.359 1.360 1.361	Cu. ft. 1.450 1.470 1.481 1.487 1.491 1.494 1.496 1.498 1.500 1.501 1.502	Cu. ft. 1.570 1.595 1.605 1.615 1.620 1.623 1.626 1.630 1.631 1.632 1.632 1.633
80 40 50	1.367 1.367 1.368 1.368	1.491 1.492 1.493 1.493	1.608 1.608 1.609 1.609	1.362 1.363 1.364 1.365	1.503 1.506 1.507 1.508	1.635 1.637 1.639 1.640
70 80 90 100	1.368 1.368 1.369 1.369	1.493 1.493 1.493 1.494	1.609 1.609 1.610 1.610	1.365 1.366 1.866 1.366	1.508 1.509 1.509 1.509	1.641 1.641 1.641 1.642

Note. - The apertures from which the above measurements were obtained

were through material 11/4 inches thick, and the lower edge 2 inches above

the bottom of the measuring-box, thus giving full contraction.

Flow of Water Over Weirs. Weir Dam Measurement.

(Pelton Water Wheel Co.)—Place a board or plank in the stream, as shown



Fig. 131.

in the sketch, at some point where a pond will form above. The length of the notch in the dam should be from two to four times its depth for small quantities and longer for large quantities. The edges of the notch should be bevelled toward the intake side, as shown. The overfall below the notch should not be less than twice its depth, that is, 12 inches if the notch is 6 inches and a post scale. inches deep, and so on.

In the pond, about 6 ft. above the dam, drive a stake, and then obstruct the In the pond, about of t. above the dam, drive a stake, and then obstruct the water until it rises precisely to the bottom of the notch and mark the stake at this level. Then complete the dam so as to cause all the water to flow through the notch, and, after time for the water to settle, mark the stake again for this new level. If preferred the stake can be driven with its top precisely level with the bottom of the notch and the depth of the water be measured with a rule after the water is flowing free, but the marks are preferable in most cases. The stake can then be withdrawn; and the distance between the marks is the theoretical depth of flow corresponding to the quantities in the table.

### Francis's Formulæ for Weirs.

	As given by Francis.	As modified by Smith.
Weirs with both end contractions appressed	$Q=3.33lh^{\frac{3}{2}}$	$3.29\left(l+\frac{h}{7}\right)h^{\frac{3}{2}}$
Weirs with one end contraction suppressed	$Q = 3.33(l1h)h^{\frac{3}{2}}$	8.29 <i>lh</i> ²
Weirs with full contraction	$Q = 3.33(l2h)h^{\frac{3}{2}}$	$8.29\left(l-\frac{h}{10}\right)h^{\frac{3}{2}}$

The greatest variation of the Francis formulæ from the values of c given by Smith amounts to 31/2. The modified Francis formulæ, says Smith, will give results sufficiently exact, when great accuracy is not required, within the limits of h, from .5 ft. to 2 ft., l being not less than 3 h. Q = discharge in cubic feet per second, l = length of weir in feet, h = effective head in feet, measured from the level of the crest to the level of still water above the weir.

If Q'= discharge in cubic feet per minute, and l' and h' are taken in inches, the first of the above formulæ reduces to  $Q'=0.4l'h'^{\frac{3}{2}}$ . From this formula the following table is calculated. The values are sufficiently accurate for ordinary computations of water-power for weirs without end contraction, that is, for a weir the full width of the channel of approach, and are approximate also for weirs with end contraction when l= at least 10h, but about 6l in excess of the truth when l=4h.

### Weir Table.

GIVING CUMC FRET OF WATER PER MINUTE THAT WILL FLOW OVER A WEIR ONE INCH WIDE AND FROM 1/4 TO 20% INCHES DEEP.

For other	-ridtha	 her tha	midth i	n imahaa

		1 1/6 in.	1/4 in.	¾ in.	14 in.	5% in.	\$4 in.	% in.
in.	cu. ft.	cu. ft.	cu. ft.	cu. ft.	cu. ft.	cu. ft.	cu. ft.	cu. ft.
0	.00	.01	.05	.09	.14	.19	.26	.32
1	.40	.47	.55	.61	.73	.82	.92	1.02
2	1.13	1.23	1.85	1.46	1.58	1.70	1.82	1.95
3	2.07	2.21	2.34	2.48	2.61	2.76	2.90	3.05
4	3.20	3.85	8.50	3.66	8.81	3.97	4.14	4.30
5	4.47	4.64	4.81	4.98	5.15	5.33	5.51	5.69
6	5.87	6.06	6.25	6.44	6.62	6.82	7.01	7.21
6 7 8 9	7.40	7.60	7.80	8.01	8.21	8.42	8.63	8.88
8	9.05	9.26	9.47	9.69	9.91	10.13	10.35	10.57
9	10.80	11.02	11.25	11.48	11.71	11.94	12.17	12.41
10	12.64	12.89	13.12	13.36	13.60	13.85	14.09	14.34
11	14.59	14.84	15.09	15 34	15.59	15.85	16.11	16.30
12	16.62	16.88	17.15	17.41	17.67	17.94	18.21	18.47
13	18.74	19.01	19.29	19.56	19.84	20.11	20 39	20.67
14	20.95	21.23	21.51	21.80	22.08	22.37	22.65	22.94
15	23.23	23.52	23.82	24.11	24.40	24.70	25.00	25.30
16	25.60	25.90	26.20	26.50	26.80	27.11	27.42	27.72
17	28.03	28.34	28.65	28.97	29.28	29.59	29.91	30.2
18	30.54	30.86	31.18	31.50	81.82	32.15	32.47	82.80
19	83.12	33.45	33.78	34 11	34.44	84.77	35,10	85.44
20	35.77	36.11	36.45	36.78	37.12	37.46	37.80	38.13

For more accurate computations, the coefficients of flow of Hamilton Smith, Jr., or of Bazin should be used. In Smith's hydraulics will be found a collection of results of experiments on orifices and weirs of various shapes made by many different authorities, together with a discussion of their several formulæ. (See also Trautwine's Pocket Book.)

several formulæ. (See also Trautwine's Pocket Book.)

Baxin's Experiments.—M Bazin (Annales des Ponts et Chaussées, Oct., 1888, translated by Marichal and Trautwine, Proc. Engrs. Club of Phila., Jan., 1890), made an extensive series of experiments with a sharp-crested weir without lateral contraction, the air being admitted freely behind the falling sheet, and found values of m varying from 0.42 to 0.50, with variations of the length of the weir from 19% to 78% in., of the height of the crest above the bottom of the channel from 0.70 to 2.46 ft., and of the head from 1.77 to 23.62 in. From these experiments he deduces the following formula:

$$Q = \left[0.425 + 0.21 \left(\frac{H}{P+H}\right)^2\right] LH \sqrt{2gH},$$

in which P is the height in feet of the crest of the weir above the bottom of the channel of approach, L the length of the weir, H the head, both in feet, and Q the discharge in cu. ft. per sec. This formula, says M. Bazin, is entirely practical where errors of 2% to 3% are admissible. The following table is condensed from M. Bazin's paper:

Values of the Coefficient m in the Formula  $Q=mLH~\sqrt{2gH}$ , for a Sharp-crested Weir without lateral Contraction; the Air being Admitted Freely Beind the Falling Sheet.

Head,	Heig	ht of Crest	of We	ir Above	Bed of	Chann	el.	
Н.	Feet0.66 Inches 7.87	0.98 1.3 11.81 15.73		1.97 23.62 31		4.92 59.07		. œ
Ft. In164 1.97 .230 2.76 .295 3.54 4.72	0.455 0.457	m m 0.453 0.45 0.448 0.44 0.447 0.44 0.448 0.44	0.448	0.449 0.4 0.442 0.4 0.438 0.4	441 0.440 486 0.436	0.440 0.435	0.489 0.484	0.4391 0.4340
.525 6.30 .656 7.87 .787 9.45 .919 11.02	0.471 0.480 0.488 0.496	0.453 0.44 0.459 0.44 0.465 0.45 0.472 0.45 0.478 0.46	$\begin{bmatrix} 0.438 \\ 0.440 \\ 0.444 \\ 0.448 \end{bmatrix}$	0.485 0. 0.486 0. 0.488 0. 0.441 0.	481 0.429 431 0.428 482 0.428 433 0.429	0.427 0.425 0.424 0.424	0.426 0.423 0.422 0.422	0.4246 0.4215 0.4194 0.4181
1.181 14.17 1.812 15.75 1.444 17.82 1.575 18.90 1.706 20.47 1.837 22.05 1.969 23.62		0.488 0.46 0.489 0.47 0.494 0.47 0.48 0.48	7 0.456 2 0.459 6 0.463 0 0.467 3 0.470 7 0.478	0.448 0. 0.451 0.	438 0.482 440 0.433 442 0.435 444 0.436 446 0.438 448 0.439	0.424 0.424 0.425 0.425 0.426 0.427	0.421 0.421 0.421 0.421 0.421 0.421	0.4156 0.4144 0.4134 0.4122 0.4112 0.4101

A comparison of the results of this formula with those of experiments, says M. Bazin, justifies us in believing that, except in the unusual case of a very low weir (which should always be avoided), the preceding table will give the coefficient m in all cases within 1%; provided, however, that the arrangements of the standard weir are exactly reproduced. It is especially important that the admission of the air behind the falling sheet be perfectly assured. If this condition is not complied with, m may vary within much wider limits. The type adopted gives the least possible variation in the coefficient.

### WATER-POWER.

Power of a Fall of Water-Efficiency.—The gross power of a fall of water is the product of the weight of water discharged in a unit of time into the total head, i.e., the difference of vertical elevation of the upper surface of the water at the points where the fall in question begins and ends. The term "head" used in connection with water wheels is the difference in height from the surface of the water in the wheel-pit to the surface in the pen-stock when the wheel is running.

If Q = cubic feet of water discharged per second, D = weight of a cubic foot of water = 62.36 lbs. at 60° F., <math>H = total head in feet; then

PQH = gross power in foot-pounds per second, and PQH + 550 = .1134QH = gross horse-power.

If Q' is taken in cubic feet per minute, H. P. =  $\frac{Q'H \times 62.86}{33,000}$  = .00189Q'H.

A water-wheel or motor of any kind cannot utilize the whole of the head H, since there are losses of head at both the entrance to and the exit from the wheel. There are also losses of energy due to friction of the water in its passage through the wheel. The ratio of the power developed by the wheel to the gross power of the fall is the efficiency of the wheel. For 75% efficiency, net horse-power = .00142 $Q'H = \frac{Q'H}{r_{cos}}$ .

A head of water can be made use of in one or other of the following ways ∿ iz. :

1st. By its weight, as in the water-balance and overshot-wheel.
2d. By its pressure, as in turbines and in the hydraulic engine, hydraulic press, crane, etc.

3d. By its impulse, as in the undershot-wheel, and in the Pelton wheel. 4th. By a combination of the above.

**Herse-power of a Running Stream.**—The gross horse-power is, H. P. =  $QH \times 63.36 + 580 = .1134QH$ , in which Q is the discharge in cubic feet per second actually impinging on the float or bucket, and H = theoretvª ₩8 ical head due to the velocity of the stream  $=\frac{v^2}{2g}=\frac{v^2}{64.4}$ , in which v is the

velocity in feet per second. If Q' be taken in cubic feet per minute, H.P. = .00189Q'H.

Thus, if the floats of an undershot-wheel driven by a current alone be 5 feet  $\times$  1 foot, and the velocity of stream = 210 ft. per minute, or 3½ ft. per sec., of which the theoretical head is .19 ft., Q = 5 sq. ft.  $\times$  210 = 1050 cu. ft. per minute; H = .19 ft.;  $H = .1050 \times .19 \times .00189 = .37$  H.P.

The wheels would realize only about .4 of this power, on account of friction and slip, or .151 H.P., or about .03 H.P. per square foot of float, which is equivalent to 33 sq. ft. of float per H.P.

Current Motors.—A current motor could only utilize the whole power of a running stream if it could take all the velocity out of the water, so that it would leave the floats or buckets with no velocity at all; or in other words, it would require the backing up of the whole volume of the stream until the actual head was equivalent to the theoretical head due to the velocity of the stream. As but a small fraction of the velocity of the stream can be taken up by a current motor, its efficiency is very small. Current motors may be used to obtain small amounts of power from large streams, but for large powers they are not practicable.

Horse-power of Water Flowing in a Tube. -- The head due to the velocity is  $\frac{v}{2a}$ ; the head due to the pressure is  $\frac{J}{2a}$ ; the head due to actual height above the datum plane is h feet. The total head is the sum of these =  $+h+\frac{f}{m}$ , in feet, in which v= velocity in feet per second, f= pressure in ibs. per sq. ft., w = weight of 1 cu. ft. of water = 62.36 lbs. If p = pressure in lbs. per sq. in.,  $\frac{f}{w} = 2.309p$ . In hydraulic transmission the velocity and the height above datum are usually small compared with the pressurehead. The work or energy of a given quantity of water under pressure = its volume in cubic feet  $\times$  its pressure in lbs. per sq. ft.; or if Q = quantity in cubic feet per second, and p = pressure in lbs. per square inch, W =144pQ, and the H. P. =  $\frac{144pQ}{140}$  = .2618pQ.

Maximum Efficiency of a Long Conduit.—A. L. Adams and R. G. Gemmel (Eng'y News, May 4, 1893), show by mathematical analysis that the conditions for securing the maximum amount of power through a long conduit of fixed diameter, without regard to the economy of water, is that the draught from the pipe should be such that the frictional loss in the pipe

the draught from the pipe should be such that the frictional loss in the pipe will be equal to one third of the entire static head.

MIII-Power,—A "mill-power" is a unit used to rate a water-power for the purpose of renting it. The value of the unit is different in different localities. The following are examples (from Emerson):

Holpoke, Mass.—Each mill-power at the respective falls is declared to be the other declaration of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control

the right during 16 hours in a day to draw 88 cu. ft. of water per second at the upper fall when the head there is 20 feet, or a quantity proportionate to the height at the falls. This is equal to 86.2 horse-power as a maximum.

Lowell, Mass.—The right to draw during 15 hours in the day so much water

as shall give a power equal to 25 cu. ft. a second at the great fall, when the fall there is 30 feet. Equal to 85 H. P. maximum.

Manchester, N. H.—Divide 725 by the number of feet of fall minus 1, and

the quotient will be the number of cubic feet per second in that fall. For 20 feet fall this equals 38.1 cu. ft., equal to 86.4 H. P. maximum.

Cohoes, N. Y.—"Mill-power" equivalent to the power given by 6 cu. ft. per second, when the fall is 20 feet. Equal to 13.6 H. P., maximum.

Pussaic, N. J.—Mill-power: The right to draw 81/2 cu. ft. of water per sec.,

Fassatt, N. .—Mili-power: The right to draw 5½ cu. It. of water per sec., fall of 22 feet, equal to 21.2 horse-power. Maximum rental \$700 per year for each mill-power = \$33.00 per H. P.

The horse-power maximum above given is that due theoretically to the weight of water and the height of the fall, assuming the water-wheel to have perfect efficiency. It should be multiplied by the efficiency of the wheel, say 75% for good turbines, to obtain the H. P. delivered by the wheel.

Value of a Water-power.—In estimating the value of a water-power, especially where such value is used as testimony for a plaintiff whose water-power has been diminished or confiscated, it is a common custom for the person making such estimate to say that the value is represented by a sum of money which, when put at interest, would maintain a steam-plant of the same power in the same place.

Mr. Charles T. Main (Trans. A. S. M. E. xiii. 140) points out that this system of estimating is erroneous; that the value of a power depends upon a great number of conditions, such as location, quantity of water, fall or head, uniformity of flow, conditions which fix the expense of dams, canals, founda-tions of buildings, freight charges for fuel, raw materials and finished prod-He gives an estimate of relative cost of steam and water-power for a 500 H. P. plant from which the following is condensed:

The amount of heat required per H. P. varies with different kinds of business, but in an average plain cotton-mill, the steam required for heating and slashing is equivalent to about 25% of steam exhausted from the highpressure cylinder of a compound engine of the power required to run that

mill, the steam to be taken from the receiver.

The coal consumption per H. P. per hour for a compound engine is taken at 134 lbs. per hour, when no steam is taken from the receiver for heating purposes. The gross consumption when 25% is taken from the receiver is about 2.06 lbs.

75% of the steam is used as in a compound engine at 1.75 lbs. = 1.81 lbs. high-pressure  $3.00 \text{ lbs.} = .75 \text{ }^{\circ}$ 

2.06 "

The running expenses per H. P. per year are as follows; 2.06 lbs. coal per hour = 21.115 lbs. for 10½ hours or one day = 6503.42 lbs. for 308 days, which, at \$3.00 per long ton = Attendance of boilers, one man @ \$2.00, and one man @ \$1.25 = "engine," \$3.50. \$8 71

2 00 2 16

Oil, waste, and supplies. The cost of such a steam-plant in New England and vicinity of 500 H. P. is about \$65 per H. P. Taking the fixed expenses as \$4 on engine, 55 on boilers, and 25 on other portions, repairs at 25, interest at 54, taxes at 1145 on 34 cost, an insurance at 145 on exposed portion, the total average per cent is about 121/28, or \$65  $\times$  .121/2 =

8 13

Gross cost of power and low-pressure steam per H. P. \$21 80

Comparing this with water-power, Mr. Main says: "At Lawrence the cost of dam and canals was about \$650,000, or \$65 per H. P. The cost per H. P. of wheel-plant from canal to river is about \$45 per H. P. of plant, or about \$65 per H. P. used, the additional \$20 being caused by making the plant large enough to compensate for fluctuation of power due to rise and fall of The total cost per H. P. of developed plant is then about \$130 per H. P. Placing the depreciation on the whole plant at 2%, repairs at 1%, inverest at 5%, taxes and insurance at 1%, or a total of 9%, gives:

> Fixed expenses per H. P.  $$130 \times .09 = $1170$ Running. (Estimated)

> > \$13 70

"To this has to be added the amount of steam required for heating purposes, said to be about 25% of the total amount used, but in winter months the consumption is at least 371/2%. It is therefore necessary to have a boiler plant of about 871/2% of the size of the one considered with the steam-plant. costing about \$30  $\times$  .375 = \$7.50 per H. P. of total power used. The expense of running this boiler-plant is, per H. P. of the the total plant per year;

Fixed expenses 1214% on \$7.50	\$0.94 8.26
Coal. Labor.	

Making a total cost per year for water-power with the auxiliary boiler plant \$13.70 + \$5.43 = \$19.13 which deducted from \$21.80 make a difference in favor of water-power of \$2.67, or for 10,000 H. P. a saving of \$26,700 per

"It is fair to say," says Mr. Main," that the value of this constant power is a sum of money which when put at interest will produce the saving; or if 6% is a fair interest to receive on money thus invested the value would be \$25.700 + .06 = \$445,000."

Mr. Main makes the following general statements as to the value of a water-power: "The value of an undeveloped variable power is usually nothing if its variation is great, unless it is to be supplemented by a steam-plant. It is of value then only when the cost per horse-power for the double plant is less than the cost of steam-power under the same conditions as mentioned for a permanent power, and its value can be represented in the same man-

or a permanent power, and its value can be represented in the same manner as the value of a permanent power has been represented.

"The value of a developed power is as follows: If the power can be run cheaper than steam, the value is that of the power, plus the cost of plant, less depreciation. If it cannot be run as cheaply as steam, considering its cost, etc., the value of the power itself is nothing, but the value of the plant is such as could be paid for it new, which would bring the total cost of run-

is such as could be paid for it new, which would bring the total cost of running down to the cost of steam-power, less depreciation."

Mr. Samuel Webber, Iron Age, Feb. and March, 1893, writes a series of articles showing the development of American turbine wheels, and incidentally criticises the statements of Mr. Main and others who have made comparisons of costs of steam and of water-power unfavorable to the latter. Hesays: "They have based their calculations on the cost of steam, on large compound engines of 1000 or more H. P. and 120 pounds pressure of steam in their boilers, and by careful 10-hour trials succeeded in figuring down steam to a cost of about \$20 per H. P., ignoring the well-known fact that its average cost in practical use, except near the coal mines, is from \$40 to \$50. In many instances dams, canals, and modern turbines can be all completed for a cost of \$100 per H. P.; and the interest on that, and the cost of attendance and oil, will bring water-power up to but about \$10 or \$12 per annum; and with a man competent to attend the dynamo in attendance, it can probably be safely estimated at not over \$15 per H. P."

### TURBINE WHEELS.

Proportions of Turbines.—Prof. De Volson Wood discusses at length the theory of turbines in his paper on Hydraulic Reaction Motors, Trans. A. S. M. E. xiv. 266. His principal deductions which have an immediate bearing upon practice are condensed in the following:

Notation.

Q = volume of water passing through the wheel per second,

 $h_1$  = head in the supply chamber above the entrance to the buckets,  $h_2$  = head in the tail-race above the exit from the buckets,

 $h_1 = \text{fall}$  in passing through the buckets.  $H = h_1 + z_1 - h_2$ , the effective head,  $\mu_1 = \text{coefficient of resistance along the guides,}$ 

#1 = coefficient of resistance along the buckets,

 $r_1 =$ radius of the initial rim

 $r_1$  = radius of the terminal rim, V = velocity of the water issuing from supply chamber,

 $v_i = initial$  velocity of the water in the bucket in reference to the bucket,

 $v_2$  = terminal velocity in the bucket,

w = angular velocity of the wheel,  $\alpha =$  terminal angle between the guide and initial rim = CAB, Fig. 132.

71 — sugget octowers the minual element of bucket and initial rim  $\cong EAD$ ,  $\gamma_{+} = GFI$ , the angle between the terminal rim and terminal element of the bucket.  $\gamma_1$  = angle between the initial element of bucket and initial rim = EAD.

a = eb. Fig. 183 = the arc subtending one gate opening.

 $a_1$  = the arc subtending one bucket at entrance. (In practice  $a_1$  is larger than a,)

 $a_1 = gh$ , the arc subtending one bucket at exit, K = bf, normal section of passage, it being assumed that the passages and buckets are very narrow,  $k_1 = bd$ , initial normal section of bucket,

 $k_1=gi$ , terminal normal section,  $wr_1=$  velocity of initial rim,  $wr_2=$  velocity of terminal rim,  $\theta=HFI$ , angle between the terminal rim and actual direction of the water at exit,

Y = depth of K. y, of  $a_1$ , and  $y_2$  of  $K_2$ , then  $K = Ya \sin a$ ;  $K_1 = y_1 a_1 \sin \gamma_1$ ;  $K_2 = y_2 a_2 \sin \gamma_2$ .



Three simple systems are recognized,  $r_1 < r_2$ , called outward flow;  $r_1 > r_3$ , called inward flow;  $r_1 = r_4$ , called parallel flow. The first and second may be combined with the third, making a mixed system.

Value of  $r_2$  (the quitting angle).—The efficiency is increased as  $r_3$  decreases, and is greatest for  $r_2 = 0$ . Hence, theoretically, the terminal element of the bucket should be tangent to the quitting rim for best efficiency. This, however, for the discharge of a finite quantity of water, would require an infinite depth of bucket. In practice, therefore, this angle must have a finite value. The larger the diameter of the terminal rim the smaller may be this angle for a given death of wheel and given quantity of water may be this angle for a given depth of wheel and given quantity of water

discharged. In practice  $\gamma_2$  is from 10° to 20°.

In a wheel in which all the elements except  $\gamma_2$  are fixed, the velocity of the wheel for best effect must increase as the quitting angle of the bucket decreases.

Values of  $a + \gamma_1$  must be less than 180°, but the best relation cannot be determined by analysis. However, since the water should be deflected from its course as much as possible from its entering to its leaving the wheel, the angle α for this reason should be as small as practicable.
In practice, α cannot be zero, and is made from 20° to 30°.

The value  $r_1 = 1.4r_2$  makes the width of the crown for internal flow about the same as for  $r_1 = r_2 \sqrt{\frac{1}{12}}$  for outward flow, being approximately 0.3 of the external radius.

Values of  $\mu_1$  and  $\mu_2$ .—The frictional resistances depend upon the construction of the wheel as to smoothness of the surfaces, sharpness of the angles, regularity of the curved parts, and also upon the speed it is run. These values cannot be definitely assigned beforehand, but Weisbach gives for good conditions  $\mu_1=\mu_2=0.05$  to 0.10.

They are not necessarily equal, and  $\mu_1$  may be from 0.05 to 0.075, and  $\mu_2$  from 0.05 to 0.10 or even larger.

Values of  $\gamma_1$  must be less than  $180^\circ - \alpha$ . To be on the safe side,  $\gamma_1$  may be 20 or 30 degrees less than  $180^\circ - 2\alpha$ , giving

$$\gamma_1 = 180^\circ - 2a - 25$$
 (say) =  $155 - 2a$ .

Then if  $\alpha=30^\circ$ ,  $\gamma_1=95^\circ$ . Some designers make  $\gamma_1$  90°; others more, and still others less, than that amount. Weisbach suggests that it be less, so that the bucket will be shorter and friction less. This reasoning appears to be correct for the inflow wheel, but not for the outflow wheel. In the Tremont turbines, described in the Lowell Hydraulic Experiments, this angle is 90°, the angle  $\alpha$  20°, and  $\gamma_2$  10°, which proportions insured a positive pressure in the wheel. Fourneyron made  $\gamma_1=90^\circ$ , and a from 30° to 33°, which values made the initial pressure in the wheel near zero.

Form of Bucket —The form of the bucket cannot be determined analytic strong initial and terminal directions and the volume of the water.

ally. From the initial and terminal directions and the volume of the water flowing through the wheel, the area of the normal sections may be found. The normal section of the buckets will be:

$$K = \frac{Q}{V}; k_1 = \frac{Q}{v_1}; k_2 = \frac{Q}{v_2}.$$

The depths of those sections will be:

$$Y = \frac{K}{a \sin a}; \quad y_1 = \frac{k_1}{a_1 \sin \gamma_1}; \quad y_2 = \frac{k_2}{a_2 \sin \gamma_2}.$$

The changes of curvature and section must be gradual, and the general form regular, so that eddles and whiris shall not be formed. For the same reason the wheel must be run with the correct velocity to secure the best effect. In practice the buckets are made of two or three arcs of circles, mutually tangential.

mutually tangential.

The Value of  $\omega$ .—So far as analysis indicates, the wheel may run at any speed; but in order that the stream shall flow smoothly from the supply chamber into the bucket, the velocity V should be properly regulated.

If  $\mu_1 = \mu_2 = 0.10$ ,  $r_3 + r_1 = 1.40$ ,  $\alpha = 25^\circ$ ,  $\gamma_1 = 90^\circ$ ,  $\gamma_2 = 12^\circ$ , the velocity of the initial rim for outward flow will be for maximum efficiency 0.614 of the

velocity due to the head, or  $\omega r_1 = 0.614 \sqrt{2gH}$ .

The velocity due to the head would be  $4\sqrt{2}y\overline{H} = 1.414 \sqrt{gH}$ . For an inflow wheel for the case in which  $r_1^2 = 2r_2^2$ , and the other dimen sions as given above,  $\omega r_1 = 0.682 \sqrt{2gH}$ .

The highest efficiency of the Tremont turbine, found experimentally, was 0.7875, and the corresponding velocity, 0.82645 of that due to the head, and for all velocities above and below this value the efficiency was less. In the Tremont wheel  $a=20^\circ$  instead of  $25^\circ$ , and  $\gamma_0=10^\circ$  instead of 12°. These would make the theoretical efficiency and velocity of the wheel some-

what greater. Experiment showed that the velocity might be considerably larger or smaller than this amount without much diminution of the efficiency.

It was found that if the velocity of the initial (or interior) rim was not less than 44% nor more than 75% of that due to the fall, the efficiency was 75% or more. This wheel was allowed to run freely without any brake except its own friction, and the velocity of the initial rim was observed to be 1.335  $\sqrt{2gH}$ , half of which is 0.6675  $\sqrt{2gH}$ , which is not far from the velocity giving maximum effect; that is to say, when the gate is fully raised the coefficient of effect is a maximum when the wheel is moving with about half its maximum velocity.

Number of Buckets,-Successful wheels have been made in which the dis-Number of Burkets.—Successful wheels have been made in which the distance between the buckets was as small as 0.75 of an inch, and others as much as 2.75 inches. Turbines at the Centennial Exposition had buckets from 4½ inches to 9 inches from centre to centre. If too large they will not work properly. Neither should they be too deep. Horizontal partitions are sometimes introduced. These secure more efficient working in case the gates are only partly opened. The form and number of buckets for commercial purposes are chiefly the result of experience.

Ratio of Radii.-Theory does not limit the dimensions of the wheel. In practice.

for outward flow,  $r_2 + r_3$  is from 1.25 to 1.50; for inward flow,  $r_2 + r_3$  is from 0.66 to 0.80.

It appears that the inflow-wheel has a higher efficiency than the outward-flow wheel. The inflow-wheel also runs somewhat slower for best effect. The centrifugal force in the outward-flow wheel tends to force the water outward faster than it would otherwise flow; while in the inward-flow wheel it has the contrary effect, acting as it does in opposition to the velocity in

It also appears that the efficiency of the outward-flow wheel increases slightly as the width of the crown is less and the velocity for maximum efficiency is slower; while for the inflow wheel the efficiency slightly increases for increased width of crown, and the velocity of the outer rim at the same time also increases.

Efficiency.—The exact value of the efficiency for a particular wheel must

be found by experiment.

It seems hardly possible for the effective efficiency to equal, much less exceed, 86%, and all claims of 90 or more per cent for these motors should be discarded as improbable. A turbine yielding from 75% to 80% is extremely

good. Experiments with higher efficiencies have been reported.

The celebrated Tremont turbine gave 7914% without the "diffuser," which might have added some 2%. A Jonval turbine (parallel flow) was reported might have added some 2%. A Jonal turbine (parallel now) was reported as yielding 0.75 to 0.90, but Morin suggested corrections reducing it to 0.63 to 0.71. Weisbach gives the results of many experiments, in which the efficiency ranged from 50% to 84%. Numerous experiments give E=0.60 to 0.85. The efficiency, considering only the energy imparted to the wheel, will exceed by several per cent the efficiency of the wheel, for the latter will include the friction of the support and leakage at the joint between the shince and wheel, which are not included in the former; also as a plant the resistances and losses in the supply-chamber are to be still further deducted.

The Crowns.—The crowns may be plane annular disks, or conical, or curved. If the partitions forming the buckets be so thin that they may be discarded, the law of radial flow will be determined by the form of the crowns. If the crowns be plane, the radial flow (or radial component) will diminish, for the outward flow-wheel, as the distance from the axis increases

the buckets being full—for the angular space will be greater.

Prof. Wood deduces from the formulæ in his paper the tables on page 595.

It appears from these tables: 1. That the terminal angle, a, has frequently

been made too large in practice for the best efficiency.

2. That the terminal angle, a, of the guide should be for the inflow less than 10° for the wheels here considered, but when the initial angle of the bucket is 90°, and the terminal angle of the guide is 5° 28′, the gain of efficiency is not 2% greater than when the latter is 25°.

3. That the initial angle of the bucket should exceed 90° for best effect for

outflow-wheels.

4. That with the initial angle between 60° and 120° for best effect on inflow

- wheels the efficiency varies scarcely 1%.

  5. In the outflow-wheel, column (9) shows that for the outflow for best effect the direction of the quitting water in reference to the earth should be nearly radial (from 76° to 97°), but for the inflow wheel the water is thrown forward in quitting. This shows that the velocity of the rim should somewhat exceed the relative final velocity backward in the bucket, as shown in columns (4) and (5).
- 6. In these tables the velocities given are in terms of  $\sqrt{2gh}$ , and the coefficients of this expression will be the part of the head which would produce that velocity if the water issued freely. There is only one case, column (5), where the coefficient exceeds unity, and the excess is so small it may be discarded; and it may be said that in a properly proportioned turbine with the conditions here given none of the velocities will equal that due to the head

in the supply-chamber when running at best effect.

7. The inflow turbine presents the best conditions for construction for producing a given effect, the only apparent disadvantage being an increased first cost due to an increased depth, or an increased diameter for producing a given amount of work. The larger efficiency should, however, more than

neutralize the increased first cost.

# Outward-flow Turbine.

$r_1 = r_1 \sqrt{t}.$	3 V.F.	£	$\mu_1 = \mu_2 = 0.10.$	$\gamma_{9}=12^{o}.$		Parallel Crowns.	-2	1°1 = kg	$k_1 v_1 = k_2 v_2 = KV = Q = 1.$	Q = 1.
Initial Angle. 71	Effi- ciency.	Velocity Outer Rim. rse'	Velocity Inner Rim. $r_1\omega'=\sqrt{4}r_2\omega'$	Relative Velocity of Exit.	Velocity Inner Relative Veloc. Relative Veloc. Relative Veloc. From supply. Rim. if y of Exit ity of Entrance. Chamber. $v_3 = V_4^{\dagger} v_5^{\omega}$	Velocity of Exit from supply- Chamber.	Terminal Angle of Guide.	Direction of quit- ting water.	Head Equivalent of Energy in quitting $k_2 \neq 0$	k, 40H
-	63	<b>8</b>	4	20	•	7	œ	a	10	=
60° 120° 150°	0.804 0.828 0.839 0.921	0.872 \\ \forage{V2GH} \\ 0.874 \\ \forage{V2GH} \\ 0.798 \\ \forage{V2GH} \\ 0.709 \\ \forage{V2GH} \end{array}	0.687 4 2gH 0.619 4 2gH 0.565 4 2gH 0.501 4 2gH	1.048 \(\sqrt{2gH}\) 0.881 \(\sqrt{2gH}\) 0.843 \(\sqrt{2gH}\) 0.707 \(\sqrt{2gH}\)	0.856 \\ \forall \forall	0.595 4 29H 0.676 4 29H 0.749 4 29H 0.886 4 29H	31° 17' 23° 56' 19° 5' 18° 31'	\$ 5. 5. 5.	0.061H 0.089H 0.081H 0.082H	0.67 0.78 1.00

# Inward-flow Turbine.

Q = 1.	k, 1'9H	1.46 1.50 1.55 1.65
$k_1 v_1 = k_2 v_2 = KV = Q = 1.$	29	H010.0 H010.0 H010.0
$v_1 = k_2$	•	110° 106° 105°
4	ಕ	5 4 8 8 4 8 8 08
Parallel Crowns.	4	0.672 4/29H 0.691 4/29H 0.709 4/29H 0.745 4/29H
Para	vı	0.089 \\ \frac{29H}{29H} \\ 0.069 \\ \frac{429H}{29H} \\ 0.077 \\ \frac{29H}{29H} \\ 0.126 \\ \frac{429H}{29H} \\ 0.126 \\ \frac{429H}{29H} \\ 0.126 \\ \frac{429H}{29H} \\ 0.126 \\ \frac{429H}{29H} \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\ 0.126 \\
$\gamma_2 = 12^{\circ}$ .	^E a	0.476 \(\frac{\psi_2gH}{\psi_2gH}\) 0.476 \(\frac{\psi_2gH}{\psi_2gH}\) 0.456 \(\frac{\psi_2gH}{\psi_2gH}\) 0.429 \(\frac{\psi_2gH}{\psi_2gH}\)
$\mu_1 = \mu_9 = 0.10.$	Velocity Inner Rim.	0.501 4 29H 0.487 4 29H 0.473 4 29H 0.448 4 29H
I	Velocity Outer Rim.	0.709 \\ \sqrt{2gH} \\ 0.688 \sqrt{2gH} \\ 0.688 \sqrt{2gH} \\ 0.688 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.684 \sqrt{2gH} \\ 0.6
1/2/19.	E.	0.920 0.920 0.919 0.918
1.	ž.	60° 90° 120° 150°

Tests of Turbines. - Emerson says that in testing turbines it is a rare thing to find two of the same size which can be made to do their best at the same speed. The best speed of one of the leading wheels is invariably wide from the tabled rate. It was found that a 54-in. Leffel wheel under 12 ft, head gave much better results at 78 revolutions per minute than at 90.

Overshot wheels have been known to give 75% efficiency, but the average

performance is not over 60%.

A fair average for a good turbine wheel may be taken at 75%. In tests of 18 wheels made at the Philadelphia Water-works in 1859 and 1860, one wheel

wheels made at the Philadelphia Water-works in 1859 and 1860, one wheel gave less than 50% efficiency, two between 50% and 60%, six between 60% and 70%, seven between 71% and 77%, two 82%, and one 87.77%. (Emerson.)

Tests of Turbine Wheels at the Centennial Exhibition, 1876. (From a paper by R. H. Thurston on The Systematic Testing of Turbine Wheels in the United States, Trans. A. S. M. E., viii. 359.)—In 1876 the judges at the International Exhibition conducted a series of trials of turbines. Many of the wheels offered for tests were found to be more or less defective in fitting and workmanship. The following is a statement of the results of all turbines entered which gave an efficiency of over 75%. Seven other wheels were tested, giving results between 65% and 75%.

Maker's Name, or Name the Wheel is Known By.	Per Cent at Full Gate or Dis- charge.	Per Cent at about 9/10 of Full Discharge.	Per Cent at about % of Full Discharge.	Cent	Per Cent at about % of Full Discharge.	Per Cent at about 1/4 of Full Discharge.	Per Cent at about 4/10 of Full Dis- charge.
Risdon	87.68		86.20	82.41		75.35	
National	83.79			70.79			
Geyelin (single)	83.30						
Thos. Tait	82.13			70.40	66.85		55.00
Goldie & McCullough	81,21		71.01	55,90			
Rodney Hunt Mach. Co	78.70	71.66		68.60	51.08		
Tyler Wheel	79.59		81.24	79.92	67.23	69.59	
Geyelin (duplex)	77.57						
Knowlton & Dolan	77.43	74.25			62.75		
E. T. Cope & Sons	76.94		69.92		0.0		
Barber & Harris	76.16	73.83			70.87	71.74	
York Manufacturing Co	75.70		67.08	67.57	62.06	*****	
W. F. Mosser & Co	75.15	74.89	71.90	70.52		66.04	

The limits of error of the tests, says Prof. Thurston, were very uncertain; they are undoubtedly considerable as compared with the later work done in

they are undoubtedly considerable as compared with the facts work done in the permanent flume at Holyoke—possibly as much as 4% or 5%.

Experiments with "draught-tubes," or "suction-tubes," which were actually "diffusers" in their effect, so far as Prof. Thurston has analyzed them, indicate the loss by friction which should be auticipated in such cases, this loss decreasing as the tube increased in size, and increasing as the state of the wheal the minimum. tiss diameter approached that of the wheel—the minimum diameter tried. It was sometimes found very difficult to free the tube from air completely, and next to impossible, during the interval, to control the speed with the brake. Several trials were often necessary before the power due to the full head could be obtained. The loss of power by gearing and by belting was variable with the proportions and arrangement of the gears and pulleys, length of helt at a but averaged not for form 300 for a relative to the selection. length of belt, etc., but averaged not far from 30% for a single pair of bevel-gears, uncut and dry, but smooth for such gearing, and but 10% for the same gears, well lubricated, after they had been a short time in operation. The amount of power transmitted was, however, small, and these figures are probably much higher than those representing ordinary practice. Introducing a second pair—spur-gears—the best figures were but little changed, although the difference between the case in which the larger gear was the driver, and the case in which the small wheel was the driver, was perceivable, and was in favor of the former arrangement. A single straight belt gave a loss of but 2% or 3%, a crossed belt 6% to 8%, when transmitting 14

horse-power with maximum tightness and transmitting power. A "quarter turn" wasted about 10% as a maximum, and a "quarter twist" about 5%.

**Elimensions of Turbines.—For dimensions, power, etc., of standard makes of turbines consult the catalogues of different manufacturers.

The wheels of different makers vary greatly in their proportions for any given canacity.

The Pelton Water-wheel. -Mr. Ross E. Browne (Eng'g News, Feb. 20, 1892) thus occines the principles upon which this water-wheel is

constructed:

The function of a water-wheel, operated by a jet of water escaping from a nozzle, is to convert the energy of the jet, due to its velocity, into useful work. In order to utilize this energy fully the wheel-bucket, after catching the jet, must bring it to rest before discharging it, without inducing turbu-

lence or agitation of the particles.

This cannot be fully effected, and unavoidable difficulties necessitate the loss of a portion of the energy. The principal losses occur as follows:

First, in sharp or angular diversion of the jet in entering, or in its course through the bucket, causing impact, or the conversion of a portion of the energy into heat instead of useful work. Second, in the so-called frictional resistance offered to the motion of the water by the wetted surfaces of the buckets, causing also the conversion of a portion of the energy into heat instead of useful work. Third, in the velocity of the water, as it leaves the bucket, representing energy which has not been converted into work. Hence, in seeking a high efficiency: 1. The bucket surface at the entrance should be approximately parallel to the relative course of the jet, and the lineaget should be curved in such

the bucket should be curved in such a manner as to avoid sharp angular deflection of the stream. If, for example, a jet strikes a surface at an angle and is sharply deflected, a portion of the water is backed, the smoothness of the stream is disturbed, and there results considerable loss by impact and other-The entrance and deflection in the Pelton bucket are such as to avoid





F1G. 184.

Fig. 185.

these losses in the main. (See Fig. 136.)

2. The number of buckets should be small, and the path of the jet in the bucket short; in other words, the total wetted surface should be small, as

the loss by friction will be proportional to this.

3. The discharge end of the bucket should be as nearly tangential to the wheel periphery as compatible with the clearance of the bucket which follows; and great differences of velocity in the parts of the escaping water should be avoided. In order to bring the water to rest at the discharge end of the bucket, it is shown, mathematically, that the velocity of the bucket

should be one half the velocity of the jet.

A bucket, such as shown in Fig. 135, will cause the heaping of more or less dead or turbulent water at the point indicated by dark shading. This dead water is subsequently thrown from the wheel with considerable velocity, and represents a large loss of energy. The introduction of the wedge in the Pelton bucket (see Fig. 184) is an efficient means of



Fig. 186.

avoiding this loss. A wheel of the form of the Pelton conforms closely in construction to each of these requirements.

In a test made by the proprietors of the Idaho mine, near Grass Valley, Cal., the dimensions and results were

long, with a head of 38614 feet above centre of nozzle. The loss by friction in the pipe was 1.8 ft., reducing the effective head to 384.7 ft. The Pelton wheel used in the test was 6 ft. in diameter and the nozzle was 1.89 in, diameter. The work done was measured by a Prony brake, and the mean of 13 tests showed a useful effect of 87.3%.

The Pelton wheel is also used as a motor for small powers. A test by M. E. Cooley of a 12-inch wheel with a 34-inch nozzle, under 100 lbs. pressure, gave 1.9 horse-power. The theoretical discharge was .0935 cubic feet per second, and the theoretical horse-power 2.45; the efficiency being 80 per cent. Two other styles of water-motor tested at the same time each gave

efficiencies of 55 per cent.

# Pelton Water-wheel Tables. (Abridged.)

The smaller figures under those denoting the various heads give the spouting velocity of the water in feet per minute. The cubic-feet measurement is also based on the flow per minute.

Head in ft.	Size of Wheels.	6 in. No.1	12 in. No. 2	18 in. No. 8	18 in. No. 4	24 in. No. 5	g ft.	ft.	5 ft.	ft.
<b>20</b> 2151.97	Horse-power. Cubic feet Revolutions	.05 1.67 684	.12 3.91 342	.20 6.62 228	.37 11.72 228	20.83 171	1 50 46.98 114	2.64 83.32 85	4.18 180.86 70	6.00 187.72 57
80 2635.62	Horse-power. Cubic feet Revolutions	.10 2.05 837	.23 4.79 418	.38 8.11 279	.69 14.36 279	1.22 25.51 209	2.76 57.44 189	.4.88 102.04 104	7.69 159.66 83	11.04 229.76 69
40 3043.39	Horse-power. Cubic feet Revolutions	.15 2.37 969	.35 5.58 484	.59 9.37 323	1.06 16.59 823	1.89 29.46 242	4.24 66.36 161	7.58 107.84 121	11.85 184.86 96	16.96 265.44 80
50 3402.61	Horse-power. Cubic feet Revolutions	.21 2.64 1083	.49 6.18 541	.84 10.47 361	1.49 18.54 861	2.65 32.98 270	5.98 74.17 180	10.60 131.72 135	16.68 206.13 108	23.93 296.70 90
<b>60</b> 3727.37	Horse-power. Cubic feet Revolutions	.28 2.90 1185	.65 6.77 592	1.10 11.47 <b>39</b> 5	1.96 20.31 395	3.48 36.08 296	7.84 81.25 197	18.94 144.32 148	21.77 225.80 118	81.36 825.00 98
70 4026.00	Horse-power. Cubic feet Revolutions	.35 3.13 1281	.82 7.31 640	1.39 12.39 427	2.47 21.94 427	4.39 88.97 320	9.88 87.76 213	17.58 155.88 160	27.51 248.89 180	89.52 851.04 106
80 4303.99	Horse-power. Cubic feet Revolutions	.43 3.35 1368	1.00 7.82 684	1.70 18 25 456	3.01 23.46 456	5.36 41.66 342	12.04 93 84 228	21 . 44 166 . 64 171	38.54 260.78 187	48.16 375.86 114
90 4565.04	Horse-power. Cubic feet Revolutions.	.51 3.55 1452	1.20 8.29 726	2.03 14.05 484	3.60 24.88 484	6.39 44.19 363	14.40 99.52 242	25.59 176.75 181	40.04 276.55 145	57.60 898.08 121
100 4812.00	Horse-power. Cubic feet Revolutions	.60 3.74 1530	1.40 8.74 765	2.32 14.81 510	4.21 26.22 510	.7.49 46.58 382	16.84 104.88 255	29.93 186.32 191	46.85 291.51 152	67.86 419.52 127
120 5271.30	Horse-power. Cubic feet Revolutions	.79 4.10 1677	1 84 9.57 838	3.12 16.21 559	5.54 28.72 559	9.85 51.02 419	22.18 114.91 279	39.41 204.10 209	61.66 819.88 167	88.75 459.64 139
140 5693.65	Horse-power. Cubic feet Revolutions.	4.43		3.94 17.53 604	6.99 31.03 604	12.41 55.11 458	27.96 124.12 802	49.64 220.44 226	77.71 844.92 181	111.85 496.48 151
160 6096 74	Horse-power. Cubic feet Revolutions	4.73	2.84 11.05 969	4.82 18.74 646	8.54 33.17 646	15.17 58.92 484	34.16 132.68 323	60.68 235.68 242	94.94 368.73 198	136.65 530.75 161
180 6455.97	Horse power. Cubic feet Revolutions	5.02	3.39 11.72 1024	5.75 19.87 683	10.19 85.18 683	18.10 62.49 518	40.77 140.74 842		118.80 891.10 206	168.08 562.96 171
<b>200</b> 6805.17	Horse-power. Cubic feet Revolutions.	5.29	12.86		11.93 37.08 720	21.20 65.87 540	47.75 148.35 860	263.49		191.00 593.40 180
250 7608.44	Horse power. Cubic feet Revolutions	5.92	13.82	23.42			165.86	118.54 294.59 302		266.96 663.45 202

### Pelton Water-wheel Tables .- Continued.

Head in ft.	Size of Wheels.	6 in. No.1	12 in. No. 2	18 in. No. 3	18 in. No. 4	24 in. No. 5	8 ft.	ft.	5 ft.	ft.
	Horse-pow'r Cubic feet Revolutions	6.48	15.13	25.66			87.73 181.69 442		243.82 504.91 265	350.94 726.76 221
	Horse-pow'r Cubic feet Revolutions	7.00	16.35	27.71	27.64 49.06 955		196.25	196.88 348.57 858	807.25 545.36 285	442.27 785.00 288
100	Horse-pow'r Cubic feet	4.82	11.25 17.48	19.0 29.68	88.77 52.45	59.98	185.08	239.94 372.64	875.40 588.02	540.83 889.20
9624.00 450	Revolutions Horse-pow'r	5.75	1581	1021 22.76	1021		161.19	286.81	806 447.95	
	Cubic feet Revolutions	8249	16:24	1083		812	541	395.24 406	618.38 824	270
<b>500</b> 10759.96	Horse-pow'r Cubic feet Revolutions	8.87	19.54	33.12	58.64	104.15	234.56	385.84 416.62 428	524.66 651.88 842	938.25
600	Horse-pow'r Cubic feet Revolutions					114.09	256.95	440.77 456.88 469		992.65 1027.86
650	Horse-pow'r Cubic feet Revolutions				69.95	124.25 118.75	279.82 267.44	497.01 475.02 488	777.62	1119.29 1069.77
700	Horse-pow'r Cubic feet Revolutions				78.18	138.86 123.23	312.78 277.54	555.46 492.95	869.06 771.26	1250.99 1110.10
750	Horse-pow'r Cubic feet				86.70 71.82	154.00 127.56	346.83 287.28	616.03 510.25	963.82 798.33	1887.34 1149.13
800	Revolutions Horse-pow'r Cubic feet Revolutions				74.17	169.66 131.74	382.09 296.70	678.66 526.99	1061.81 824.51	1186.81
900	Horse-pow'r	-			78.67	202.45 139.74	455.94 314.70	809.82 558.96	1267.02 874.53	1823.76 1258.81
14436.00	Revolutions Horse-pow'r				1532	1	<u> </u>			389
	Cubic feet Revolutions				82.93	147.30	331.7	589.19	921.83	1326.91

### THE POWER OF OCEAN WAVES.

Albert W. Stahl, U. S. N. (Trans. A. S. M. E., xiii. 438), gives the following formulæ and table, based upon a theoretical discussion of wave motion: The total energy of one whole wave-length of a wave H feet high, L feet long, and one foot in breadth, the length being the distance between successive creats, and the height the vertical distance between the creat and the trough, is  $E = 8LH^2 \left(1 - 4.935 \frac{H^2}{L^2}\right)$  foot-pounds.

The time required for each wave to travel through a distance equal to its seconds, and the number of waves passing any given point in one minute is  $N = \frac{60}{P} = 60 \sqrt{\frac{5.123}{L}}$ . Hence the total energy

of an indefinite series of such waves, expressed in horse-power per foot of breadth, is

$$\frac{E \times N}{33000} = .0329H^2L\left(1 - 4.935\frac{H^2}{L^2}\right).$$

By substituting various values for H+L, within the limits of such values actually occurring in nature, we obtain the following table of

TOTAL ENERGY OF DEEP-SEA WAVES IN TERMS OF HORSE-POWER PER FOOT OF BREADTH.

Ratio of Length of		Length of Waves in Feet.											
Waves to Height of Waves.	25	50	75	100	150	200	<b>[300</b>	400					
50 40	.04	.23	.64 1.00	1.31	3.62 5.65	7.43 11.59	20.46 81.95	42.01 65.58					
80 20	.12 .25	.64 1.44	1.77 3.96	3.64 8.13	10.02 21 79	20.57 45.98	56.70 120.70	116.38 260.08					
15 10 5	.42 .98 3.30	2.83 5.53 18.68	6.97 15.24 51 48	14.31 31.29 105.68	39.48 86.22 291.20	80.94 177.00 597.78	223.06 487.75 1647.31	457 . 89 1001 . 25 3381 . 60					

The figures are correct for trochoidal deep-sea waves only, but they give a close approximation for any nearly regular series of waves in deep water

and a fair approximation for waves in shallow water.

The question of the practical utilization of the energy which exists in ocean waves divides itself into several parts:

1. The various motions of the water which may be utilized for power

purposes.

2. The wave motor proper. That is, the portion of the apparatus in direct
2. The wave motor proper and receiving and transmitting the energy thereof; contact with the water, and receiving and transmitting the energy thereof; together with the mechanism for transmitting this energy to the machinery for utilizing the same.

Regulating devices, for obtaining a uniform motion from the irregular and more or less spasmodic action of the waves, as well as for adjusting the apparatus to the state of the tide and condition of the sea.

apparatus to the state of the tide and condition of the sea.

4. Storage arrangements for insuring a continuous and uniform output of power during a calim, or when the waves are comparatively small.

The motions that may be utilized for power purposes are the following:

1. Vertical rise and fall of particles at and near the surface.

2. Horizontal to-and-fro notion of particles at and near the surface.

3. Varying slope of burface of wave.

4. Impetus of waves rolling up the beach in the form of breakers.

5. Motion of distorted verticals. All of these motions, except the last one mentioned, have at various times been proposed to be utilized for nower purposes: and the last is proposed to be used in apparatus described. power purposes; and the last is proposed to be used in apparatus described by Mr. Stahl.

The motion of distorted verticals is thus defined: A set of particles, origi-

The motion of distorted verticals is thus defined: A set of particles, originally in the same vertical straight line when the water is at rest, does nermain in a vertical line during the passage of the wave; so that the line connecting a set of such particles, while vertical and straight in still water, becomes distorted, as well as displaced, during the passage of the wave, its upper portion moving farther and more rapidly than its lower portion.

Mr. Stahl's paper contains illustrations of several wave-motors designed upon various principles. His conclusions as to their practicability as follows: "Possibly none of the methods described in this paper may ever prove commercially successful; indeed the problem may not be susceptible of a financially successful; indeed the problem may not be susceptible of a financially successful solution. My own investigations, however, so far as I have yet been able to carry them, incline me to the belief that wave-power can and will be utilized on a paying basis."

Continuous Utilization of Tidal Power. (P. Decœur, Proc. Inst. C. E. 1890.)—In connection with the training-walls to be constructed in

the estuary of the Seine, it is proposed to construct large basins, by means of which the power available from the rise and fall of the tide could be utilized. The method proposed is to have two basins separated by a bank rising above high water, within which turbines would be placed. The upper basin above high water, within which turbines would be placed. The upper basin would be in communication with the sea during the higher one third of the tidal range, rising, and the lower basin during the lower one third of the tidal range, falling. If H be the range in feet, the level in the upper basin would never fall below  $\frac{3}{2}H$  measured from low water, and the level in the lower basin would never rise above  $\frac{3}{2}H$ . The available head varies between 0.53H and 0.80H, the mean value being  $\frac{3}{2}H$ . If 8 square feet be the area of the lower basin, and the above conditions are fulfilled, a quantity  $\frac{1}{3}H$  cu. ft. of water is delivered through the turbines in the space of  $\frac{3}{2}H$  bours. The mean flow is, therefore, SH + 99.900 cu. ft. per sec. and, the mean fall being  $\frac{3}{2}H$ , the available gross horse-power is about  $\frac{1}{2}98.^{3}H^{3}$ , where S' is measured in acres. This might be increased by about one third if a variation of level in the basins amounting to  $\frac{3}{2}H$  were permitted. But to reach this end the number of turbines would have to be doubled, the mean head being reduced to  $\frac{3}{2}H$ , and it would be more difficult to transmit a constant power from the turbines. The turbine proposed is of an improved model designed to produce  $\frac{3}{2}00$  horse-power, with a minimum head of  $\frac{5}{2}$  ft. internal diameter. The speed would be maintained constant by regulating sluices.

# PUMPS AND PUMPING ENGINES.

**Theoretical Capacity of a Pump.**—Let  $Q' = \mathrm{cu}$ . ft. per min.;  $G' = \mathrm{Amer}$ . gals. per min. = 7.4805Q';  $d = \mathrm{diam}$ . of pump in inches;  $l = \mathrm{stroke}$  in inches;  $N = \mathrm{number}$  of single strokes per min.

Capacity in gals, per min. 
$$Q' = \frac{\pi}{4} \cdot \frac{d^3}{144} \cdot \frac{lN}{13} = .0004545 Nd^3 l;$$
Capacity in gals, per min.  $G' = \frac{\pi}{4} \cdot \frac{Nd^3 l}{231} \cdot \dots = .0084 Nd^3 l;$ 
Capacity in gals, per hour  $d' = \frac{\pi}{4} \cdot \frac{Nd^3 l}{231} \cdot \dots = .0084 Nd^3 l;$ 

Capacity in gals, per min. 
$$G' = \frac{\pi}{4} \cdot \frac{Nd^3l}{\sqrt{21}} \cdot \dots = .0084Nd^3l$$
;

Diameter required for a given capacity per min. 
$$d = 46.9 \sqrt{\frac{Q'}{Nl}} = 17.15 \sqrt{\frac{G'}{Nl}}$$

If 
$$v = \text{piston speed in feet per min.}$$
,  $d = 13.54 \sqrt{\frac{Q'}{v}} = 4.98 \sqrt{\frac{G'}{v}}$ .

If the piston speed is 100 feet per min.:

$$Nl = 1200$$
, and  $d = 1.354 \sqrt{Q'} = .495 \sqrt{G'}$ ;  $G' = 4.08d^9$  per min.

The actual capacity will be from 60% to 95% of the theoretical, according to the tightness of the piston, valves, suction-pipe, etc.

Theoretical Horse-power required to raise Water to a given Height.-Horse-power =

$$\frac{\text{Volume in cu. ft. per min.} \times \text{pressure per sq. ft.}}{33,000} = \frac{\text{Weight } \times \text{ height of lift.}}{33,000}$$

Q'= cu. ft. per min.; G'= gals. per min.; W= wt. in lbs.; P= pressure in lbs. per sq. ft.; P= pressure in lbs. per sq. in.; H= height of lift in ft.; W= 62.36Q',P= 144p,p= .433H,H= 2.309p,G'= 7.4805Q'.

$$\begin{split} \mathbf{HP} &= \frac{Q'P}{33,000} = \frac{Q'H \times 144 \times 483}{33,000} = \frac{Q'H}{529.2} = \frac{G'H}{3958.7}; \\ \mathbf{HP} &= \frac{WH}{33,000} = \frac{Q' \times 6236 \times 2.309p}{33,000} = \frac{Q'p}{229.2} = \frac{G'p}{1714.5} \end{split}$$

For the actual horse-power required an allowance must be made for the friction, slips, etc., of engine, pump, valves, and passages.

**Depth of Suction.**—Theoretically a perfect pump will draw water from a height of nearly 34 feet, or the height corresponding to a perfect vacuum (14.7 lbs. × 2.309 = 38.95 feet); but since a perfect vacuum cannot be obtained, on account of valve-leakage, air contained in the water, and the vapor of the water itself, the actual height is generally less than 30 feet. When the water is warm the height to which it can be lifted by suction determined to the valve of the interest of the interest of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of the variety of th When the water is warm the neighbor which it can be ward. In pumping hot creases, on account of the increased pressure of the vapor. In pumping hot homeone the water must flow into the pump by gravity. The folwater, therefore, the water must flow into the pump by gravity. The following table shows the theoretical maximum depth of suction for different temperatures, leakage not considered:

Temp. F.	Absolute Pressure of Vapor, lbs. per sq. in.	Vacuum in Inches of Mercury.	Max. Depth of Suction, feet.	Temp. F.	Absolute Pressure of Vapor, lbs. per sq. in.	in	
101.4 126.2 144.7 153.8 162.5 170.8	1 2 8 4 5	27.88 25.85 23.81 21.77 19.74 17.70 15.66	81.6 29.3 27.0 24.7 22.4 20.1 17.8	183.0 188.4 193.2 197.6 201.9 205.8 209.6	8 9 10 11 12 13	13.68 11.59 9.55 7.51 5.48 3.44 1.40	15.5 13.2 10.9 8.5 6.2 3.9

Amount of Water raised by a Single-acting Lift-pump.

—It is common to estimate that the quantity of water raised by a single-acting bucket-valve pump per minute is equal to the number of strokes in one direction per minute, multiplied by the volume traversed by the piston in a single stroke, on the theory that the water rises in the pump only when the piston or bucket ascends; but the fact is that the column of water deep not case flowing when the bucket descends but flows on conwater does not cease flowing when the bucket descends, but flows on continuously through the valve in the bucket, so that the discharge of the pump, if it is operated at a high speed, may amount to nearly double that calculated from the displacement multiplied by the number of single strokes in one direction.

Proportioning the Steam-cylinder of a Direct-acting Pump.—Let

A =area of steam-cylinder;

a = area of pump-cylinder;

D = diameter of steam-cylinder;d = diameter of pump-cylinder;

P = steam-pressure, lbs. per sq. in.; p = resistance per sq. in. on pumps;

H = head = 2.309p;p = .488H;

 $E = \text{efficiency of the pump} = \frac{\text{work done in pump-cylinder}}{\text{work done by the steam-cylinder}}$ 

$$A = \frac{ap}{EP}; \quad a = \frac{EAP}{p}; \quad D = d\sqrt{\frac{p}{EP}}; \quad d = D\sqrt{\frac{EP}{p}}; \quad P = \frac{ap}{EA}; \quad p = \frac{EAP}{a}.$$

$$\frac{A}{a} = \frac{p}{EP} = \frac{.433H}{EP}; \quad H = 2.309EP \frac{A}{a}; \quad \text{If } E = 75\%, H = 1.732P \frac{A}{a}.$$

E is commonly taken at 0.7 to 0.8 for ordinary direct-acting pumps. For the highest class of pumping-engines it may amount to 0.9. The steampressure P is the mean effective pressure, according to the indicator-diagram; the water-pressure p is the mean total pressure acting on the pump plunger or piston, including the suction, as could be shown by an indicator-diagram of the water-cylinder. The pressure on the pump-piston is frequently much greater than that due to the height, of the lift, on account of the friction of the valves and passages, which increases rapidly with velocity of flow.

Speed of Water through Pipes and Pump-passages. The speed of the water is commonly from 100 to 200 feet per minute. If z feet per minute is exceeded, the loss from friction may be considerable.

The diameter of pipe required is 4.954/velocity in feet per minute

For a velocity of 200 feet per minute, diameter =  $.35 \times \sqrt{\text{gallons per min.}}$ 

Sizes of Birect-acting Pumps.—The two following tables are selected from catalogues of manufacturers, as representing the two common types of direct-acting pump, viz., the single-cylinder and the duplex. Both types are now made by most of the leading manufacturers.

# The Deane Direct-acting Pump. STANDARD SIZES FOR ORDINARY SERVICE.

									<del>-,</del>			
Ė	Ė	lei i	9	ف	١		8	5 1	-dng	Ex-		نە
اء 🥦	ž ::	6	<b>7</b>	2			4	=	26 I			50
3-	2-	15	<u>ئ</u> ا	- ≛	Cap	icity	. 64€	=	a .:	E .	8	4
25	C.E	90 -	oz i	7	per n	linute iven	E 96	.≍ <u>w</u> .	28	M. C.	Ť	믕
0 5	0 -	of a	ĕ	. ē	at G	iven	ne Ler Inches	me Wi Inches	of Steam ply-pipe	of Steam haust-pipe	3	.2
5-5	2.0	<b>1</b> = 1		<u>.</u>	Spe	ea.	9 2	9 2	00	S 39	ďΩ	A
ᇶᆖ	동트	5	2	5	1				* a	ot	Ħ	<b>7</b>
Diameter of Steam- cylinder in In.	Diameter of Water- cylinder in In.	Length of Stroke. in In.	Gallons per Stroke	Strokes per Minute.	Stks.	Gals.	Extreme Length Inches.	Extreme Width Inches.	Size of Steam ply-pipe.	Size of Steam haust-pipe.	Size of Suction.	Size of Discharge.
a o	20	ē	- 6 ∣	5	DIKE.	Gaus.	<u> </u>	H	Ĭ.	i i	Ŋ	12
А	P	-	ם ו	vo.			×	<b>E</b>	ďΩ	20	002	202
_	91/	5	.14	1 10 900	180	18	99	01∠	1/	3/		11/
7	33/6	5	.27	1 to 800 1 to 800	130	35	38 83	916 916	XXXXXXX	34	õ	117
	1	7	.39	1 to 300	195	49	4814	1579	23	,74	ã	912
51∠	1 2	7	.08 51	1 to 275	125 125 125	84	451/4 451/4 451/4	15 15	74	i	9	912
517	1 502	7	.51 .72	1 to 975	195	64 90	4512	15	73	i	Š	912
272	773	10	1.64	1 to 250	110	180	58	17	174		5	11/6 11/6 21/6 21/6 21/6
71∡	∠تخا	10	1.91	1 to 250	110	210	50	i7	î	172	5	4
712	5 51/4 7 71/4 8 6	10	1.91 2.17	1 to 250 1 to 250 1 to 250	110	239	58 58 58 67	17	i	172	5	4
873	1 6	12	1.47	1 to 250	100	147	67	2016	i	112	4	4
Ř	1 7	12	2 00	1 to 250	100	200	67	2012	i	112	5	1
Ř	7 8 10	12	2.00 2.61	1 to 250 1 to 250 1 to 250 1 to 250	100	261	68 68 6814	30	1 1 1	114 114 114 114 114 114	5	5
Ř	10	12	4.08	1 to 250	100	408	68	2016	ī	112	8	8
1Ŏ	ľš	12	2.61	110250	100	261	6814	30	114	2'*	5	5
4 4 5 5 7 7 8 8 8 8 10	8 10	12	4.08	1 to 250	100 100 100 100 100	408	6814	30	11/4 11/4 11/4	2	8	8
10	12	12	5.87	1 to 250	100	587	6816	80	112	2	8	8
12 12	10	12	4.08 5.87 4.08	1 to 250 1 to 200	100 100	408 428 587	64 6816	24	2′*	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 3 3 3 5 5 5 5 4 5 5 5 5 5 5 5 8 5 8 8 8 8 8 8	4 4 4 5 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8
12	10	18	6.12 5.87 8.80	1 to 200	70 100 70	428	6816	30	2	217	8	8
12 12	12	12	5.87	1 to 250 1 to 175	100	587	64	2816	2	216	8	8
12	12	18	8.80	1 to 175	70	616	88 88	2816	2	216	8	8
12	14	18	1 10 M	1 to 175	70	840	88	281/2	2	21,6	8	8
14	10	12	4.08	1 to 250 1 to 175	100	408 428	69	80	2	23/6	8	8
14	10	18	4.08 6.12 8.16	1 to 175	70	428	93	25	2	21/2	8	8
14	10	24	8.16	1 to 150	50	408 587	112	26	2	21/6	8	8
14	12	12	5.87	1 to 250	100	597	69	30	2	23/6	8	8
14	12	18	8.80	1 to 175	70 100 70 50 100 70 50	616	88 112	281/2	2	216	-8	1 8
14	12	24	11.75	1 to 150	50	587	112	26	2	216	10	8
14	14	24	5 87 8 80 11 75 15 99 18 92 20 88 12 00 15 99 18 92 20 88	1 to 150	50 80 50 70 50	800	112	34	z	27.25.25.25.25.25.25.25.25.25.25.25.25.25.	12	10
14 14	16	16 24	10.92	1 to 175 1 to 150	80	1114 1044	84 112	34 38	z	21/9	12	10
16	16	18	10.00	1 to 175	50	840	112	27	z	278	12	10
16	14 14	24	18.00	1 to 150	1 60	800	89 109	34	ž	279	10	8 10
16	16	16	19 00	1 to 175	80	1114	103	34	ž	273	8 12 12	10
16	16	24	90.86	1 to 150	50	1044	85 115	34		378	12	10
16	18	24	26.43	1 to 125	50	1990	115	40	2 0	917	14	12
18	16	24	90.88	1 to 125	1 80	1044 1322 1044 1322	118	38	2	912	12	10
18	18	24	20.88 26.43	1 to 125 1 to 125	50 50	1999	118	40	9	912	14	12
18	20	24	82.64	1 to 125	50	1639	118	40	9	812	16	14
20	18	24	26.43	1 to 125	50	1899	118	40	9	312	14	12
20	20	24	82.64	1 to 125	50	1632 1822 1632	118	40	3	312	16	14
20	20 22	24	39.50	1 to 125	50	1975	120	40	ଷ ର ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ ଖ	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	18	14
-		ا  ا	1 -5.00		1		l ·~	-		978	-0	1
	·	<u> </u>			•					·		

Reflectery of Small Direct-acting Pumps.—Chas. E. Emery, in Reports of Judges of Philadelphia Exhibition, 1876. Group xx., says: "Experiments made with steam-pumps at the American Institute Exhibition of 1867 showed that average sized steam-pumps do not, on the average, utilize more than 50 per cent of the indicated power in the steam-cylinders, the remainder being absorbed in the friction of the engine, but more particularly in the passage of the water through the pump. Again, all ordinary steam-pumps for miscellaneous uses require that the steam-cylinder shall have three to four times the area of the water-cylinder to give sufficient power

when the steam is accidentally low; hence as such pumps usually work against the atmospheric pressure, the net or effective pressure forms a small percentage of the total pressure, which, with the large extent of radiating surface exposed and the total absence of expansion, makes the expenditure of steam very large. One pump tested required 120 pounds weight of steam per indicated horse-power per hour, and it is believed that the cost will rarely fall below 60 pounds; and as only 50 per cent of the indicated power is utilized, it may be safely stated that ordinary steam-pumps rarely require less than 120 pounds of steam per hour for each horse-power utilized in raising water, equivalent to a duty of only 15,000,000 foot-pounds per 100 pounds of coal. With larger steam-pumps, particularly when they are proportioned for the work to be done, the duty will be materially increased."

The Worthington Duplex Pump.
STANDARD SIZES FOR ORDINARY SERVICE.

inders.	ıngers.		ns per ger.	aute of ag with	Minute by ated Num-	Sizes of Pipes for Short Lengths. To be increased as length increases.				
Diameter of Steam-cylinders.	Diameter of Water-plungers	Length of Stroke.	Displacement in Gallons per Stroke of One Plunger.	Proper Strokes per Minute of One Plunger, varying with kind of work and pressure.	Gallons delivered per Minute by both Plungers at stated Num- ber of Strokes.	Diameter of Plunger required in any single-cylinder pump to do the same work at same speed.	Steam-pipe.	Exhaust-pipe.	Suction-pipe.	Discharge-pipe.
3 41/4/4 66 77/4/2 77/4/2 910 10 112 14 16 18/4 20 14 16 18/4 20 21 14 16 18/4 20 20 21 22 22 22 22 22 22 22 22 22 22 22 22	2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 4 5 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10	.04 .100 .200 .333 .421 .511 .699 .1.66 1.66 1.66 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.45	100 to 250 100 to 200 100 to 200 100 to 150 100 to 150 100 to 150 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125 75 to 125	8 to 20 20 to 40 40 to 89 70 to 100 85 to 125 100 to 150 100 to 170 135 to 230 180 to 300 245 to 410 245 to 410 365 to 610 365 to 610 365 to 610 365 to 610 530 to 890 530 to 890 530 to 890 530 to 890 530 to 1220 990 to 1660 990 to 1660 510 to 1020 730 to 1220 990 to 1660 510 to 1020 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220 730 to 1220	81/2 97/6 97/6 97/6 12 12 12 12 14/4 14/4 14/4 14/4 14/4	49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49.54 \49	1112222222333333558335585	114 22 34 4 4 4 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6 6	1112 2 3 3 3 4 5 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 8 8 8 8

605

Speed of Piston.—A piston speed of 100 feet per minute is commonly assumed as correct in practice, but for short-stroke pumps this gives too high a speed of rotation, requiring too frequent a reversal of the valves. For long-stroke pumps, a feet and upward, this speed may be considerably exceeded, if valves and passages are of ample area.

Number of Strokes required to Attain a Piston Speed from 50 to 125 Feet per Minute for Pumps having Strokes from 3 to 18 Inches in Length.

	261		<b>V</b>		-			*****			
rect Feet		Length of Stroke in Inches.									
5 4 5	3	4	5	6	7	8	10	12	15	18	
Speed ton, 1			Numt	er of f	trokes	per Mir	ute.				
50	200	150	120	100	86	75	60	50	40	83	
55	220	165	182	110	94	82.5	66	55	44	87	
60	240	180	144	120	103	90	72	60	48	40	
65	260	195	156	130	111	97.5	78	65	52	43	
70 75	280	210	168	140	120	105	84	70	56	47	
75	300	225	180	150	128	112.5	90	75	60	50	
80	320	240	192	160	137	1:30	96	80	64	53	
85	340	255	204	170	146	127.5	102	85	68	57	
90	360	270	216	180	154	135	108	90	72	60	
95	380	285	228	190	163	142.5	114	95	76	63	
100	400	300	240	200	171	150	120	100	80	67	
105	420	315	252	210	180	157.5	126	105	84	70 78	
110	440	330	264	220	188	165	132	110	88	73	
115	460.	345	276	230	197	172.5	138	115	92	77	
120	480	360	288	240	206	180	144	120	96	80	
125	500	375	<b>30</b> 0	250	214	187.5	150	125	100	83	

Piston Speed of Pumping-ongines. (John Birkinbine, Trans. A. I. M. E., v. 459.)—In dealing with such a ponderous and unyielding substance as water there are many difficulties to overcome in making a pump work with a high piston speed. The attainment of moderately high speed is, however, easily accomplished. Well-proportioned pumping-engines of large capacity, provided with ample water-ways and properly constructed valves are operated announced like accomplished. valves, are operated successfully against heavy pressures at a speed of 250 ft. per minute, without "thug." concussion, or injury to the apparatus, and

per minute, winour "tinux." concussion, or injury to the apparatus, and there is no doubt that the speed can be still further increased.

Speed of Water through Valves.—If areas through valves and water passages are sufficient to give a velocity of 250 ft. per min. or less, they are ample. The water should be carefully guided and not too abruptly deflected. (F. W. Dean. Eng. News, Aug. 10, 1893.)

Beller-feed Pumps.—Practice has shown that 100 ft. of piston speed per minute is the limit if expessive wear and tage is to be avoided.

per minute is the limit, if excessive wear and tear is to be avoided.

The velocity of water through the suction-pipe must not exceed 200 ft. per minute, else the resistance of the suction is too great.

The approximate size of suction-pipe, where the length does not exceed 25 ft, and there are not more than two elbows, may be found as follows: 7/10 of the diameter of the cylinder multiplied by 1/100 of the piston speed

7/10 of the diameter of the cylinder multiplied by 1/100 of the piston speed in feet. For duplex pumps of small size, a pipe one size larger is usually employed. The velocity of flow in the discharge-pipe should not exceed 500 ft. per minute. The volume of discharge and length of pipe vary so greatly in different installations that where the water is to be forced more than 50 ft. the size of discharge-pipe should be calculated for the particular conditions, allowing no greater velocity than 500 ft. per minute. The scalenlated in single-cylinder pumps from 250 to 400 ft. per minute. Greater velocity is permitted in the larger pipes.

In determining the proper size of nump for a steam-boiler allowances.

In determining the proper size of pump for a steam-boiler, allowances must be made for a supply of water sufficient to cover all the demands of engines, steam-beating, etc., up to the capacity of generator, and should not be calculated simply according to the requirements of the engine. In practice engines use all the way from 12 up to 50, or more, pounds of steam per H.P. per hour when being worked up to capacity. When an engine is overloaded or underloaded more water per H.P. will be required than when operating at its rated capacity. The average run of horizontal tubular

boilers will evaporate from 2 to 3 lbs. of water per sq. ft. of heating-surface per hour, but may be driven up to 6 lbs. if the grate-surface is too large or

the draught too great for economical working.

Pump-Valves.—A. F. Nagle (Trans. A. S. M. E., x. 521) gives a number of designs with dimensions of double-beat or Cornish valves used in large pumping-engines, with a discussion of the theory of their proportions. The following is a summary of the proportions of the valves described.

SUMMARY OF VALVE PROPORTIONS.

•	OMMAN	CI OF VALVE IN	or Ottrio	MD.	
Location of Engine.	Diam. of Valve in inches.	Weight in Water per square inch of Inside Un- balanced Area, in lbs.	Ratio of Seat- area to Inside Un- balanced Area.	Pressure upon Seat per sq. in., in lbs.	Action.
Providence high-service engine	12	1 lb. reduced to .66 lb.	16%	377 lbs.	Good
Providence Cornishengine	16 16	1.28 1.86	12 67	680 250	Good Some noise
Milwaukee " "	7	.40	88	120	Some noise at high speed.
Chicago " "	25 15	1.41 1.81	75 85	151 140	Noisy
wood seats	15 8	1.16 .96	94 75	132 151	<b>64</b> 16

Mr. Nagle says: There is one feature in which the Cornish valves are necessarily defective, namely the lift must always be quite large, unless great power is sacrificed to reduce it. It is undeniable that a small lift is preferable to a great one, and hence it naturally leads to the substitution of numerous small valves for one or several large ones. To what extreme reduction of size this view might safely lead must be left to the judgment of the engineer for the particular case in hand, but certainly, theoretically, we must adopt small valves. Mr. Corlies at one time carried the theory so far as to make them only 1% inches in diameter, but from 3 to 4 inches is the more common practice now. A small valve presents proportionately a larger surface of discharge with the same lift than a larger valve, so that whatever the total area of valve-seat opening, its fall contents can be discharged with less lift through numerous small valves than with one large one.

Henry R. Worthington was the first to use numerous small rubber valves in preference to the larger metal valves. These valves work well under all the conditions of a city pumping-engine. A volute spring is generally used to limit the rise of the valve.

In the Leavitt high-duty sewerage-engine at Boston (Am. Machinist, May 31, 1884), the valves are of rubber, 34-inch thick, the opening in valve-seat being 1314 × 414 inches. The valves have iron face and back-plates, and form their own hinges.

### CENTRIFUGAL PUMPS.

Relation of Height of Lift to Velocity.—The height of lift depends only on the tangential velocity of the circumference, every tangential velocity giving a constant height of lift—sometimes termed "head is whether the pump is small or large. The quantity of water discharged is in proportion to the area of the discharging orifices at the circumference, or in proportion to the square of the diameter, when the breadth is kept the same. R. H. Buel (App. Cyc. Mech., ii, 606) gives the following:

proportion to the square of the diameter, when the breadth is kept the same. R. H. Buel (App. Cyc. Mech., ii, 606) gives the following:

Let Q represent the quantity of water, in cubic feet, to be pumped per minute, h the height of suction in feet, h the height of discharge in feet, and d the diameter of suction-pipe, equal to the diameter of discharge-pipe, in

feet; then, according to Fink,  $d = .0004 \sqrt{\frac{Q}{1 \frac{Q}{2g'(h+h')}}}$ , g being the accel-

eration due to gravity.

If the suction takes place on one side of the wheel, the inside diameter of the wheel is equal to 1.2d, and the outside to 2.4d. If the suction takes place at both sides of the wheel, the inside diameter of the wheel is equal to 0.86d, a.m.d the outside to 1.7d. Then the suction-pipe will have two branches, the area of each equal to half the area of d. The suction-pipe should be as short as possible, to prevent air from entering the pump. The tangential velocity of the outer edge of wheel for the delivery Q is equal to  $1.25 \sqrt{2g(h+h')}$  feet per second.

The arms are six in number, constructed as follows: Divide the central angle of 60°, which incloses the outer edges of the two arms, into any number of equal parts by dividing the radii, and divide the breadth of the wheel in the same manner by drawing concentric circles. The intersections of the

several radii with the corresponding circles give points of the arm.

In experiments with Appold's pump, a velocity of circumference of 500 ft. per min. raised the water 1 ft. high, and maintained it at that level without discharging any; and double the velocity raised the water to four times the height, as the centrifugal force was proportionate to the square of the velocity; consequently,

The greatest height to which the water had been raised without discharge; in the experiments with the 1-ft. pump, was 67.7 ft., with a velocity of 4135 ft. per min., being rather less than the calculated height, owing probably to leakage with the greater pressure. A velocity of 1128 ft. per min. raised the water 514 ft. without any discharge, and the maximum effect from the power employed in raising to the same height 514 ft. was obtained at the velocity of 1678 ft. per min., giving a discharge of 1400 gals, per min. from the 1-ft. pump. The additional velocity required to effect a discharge of 1400 gals, per min., through a 1-ft. pump working at a dead level without any height of lift, is 550 ft. per min. Consequently, adding this number in each case to the velocity given above, at which no discharge takes place, the following velocities are obtained for the maximum effect to be produced in each case:

Or, in general terms, the velocity in feet per minute for the circumference of the pump to be driven, to raise the water to a certain height, is equal to 550 + 500 / height of lift in feet.

Lawrence Centrifugal Pumps, Class B-For Lifts from 15 to 35 ft.

	Size of	Pipes.	Economical Capacity,	Total Capacity,	Horse-power per Ft. Lift,
	Suction.	Dis- charge.	in gallons per min.	in gallons per min.	for smaller quantity.
No. 11/2	2 in.	11/2 in.	20 to 50	150	.024
. 2	234 834 432	2	60 to 80	300	.085
" 8	812	18	80 to 160	650	.055
" 4	417	14	160 to 350	1,250	.075
" 5	6	5	330 to 600	1,850	.175
" 6	6	6 8	500 to 900	2,600	.22
" 8	8		1,100 to 2,000	4.750	.45
" 10	10	10	1,600 to 3,000	7,500	.62
" 12	12	12	2,000 to 3,000	10,000	1.00
" 14	14	14	8,000 to 5,000	14,000	1.25
" 15	15	15	3,500 to 7,000	16,000	1.40
" 18	18	18	6,000 to 11,000	22,000	2.40

Table of Diameters and Width of Pulleys, Width of Belts, and Number of Bevolutions per Minute Necessary to raise Minimum Quantity of Water to Different Heights with Different Sizes of Pumps of Class B.

e.	uneter Pulley.	h of ap.	h of	mum ntity ater.	He	ight	in F		nd F inute		lutio	ns pe	er	of D.
Size.	Diameter of Pulley, Width of Pump.	Width	Pun Pun Widt Bel	Minin Quar of W	6	8	10	12	16	20	25	80	35	No. of Pump.
Ins.	Ins.	Ins.	Ins.					7					Ħ	
11/2	5	- 5	3	40	465	515	560	605	680	745	820	885	945	
2	5	5	4	60	425	475	515	560	625	680	750	810	870	
2 2	714	7	6	80	390	435	475	510	575	630	695	750	800	3
4	712	7	7	160	365	405	445	475	585	590	645	700	745	4
5	12	11	8	330	320	355	390	415	470	520	570	610	750	5
6	14	11	9	500	285	315	345	370	415	460	500	540	580	6
8	16	12	10	1100	215	240	260	280	310	340	375	410	435	8
10	18	12	10	1600	170	190	210	225	250	275	300	325	350	10
12	22	14	12	2000	150	165	185	195	220	240	265	285	310	12
14	24	14	12	3000	135	150	165	175	195	215	240	295	275	14
15	28	15	14	3500	125	145	155	165	190	210	230	245		
18	28	16	14	6000	110	120	130	135	160	175	190	255	220	18

. Efficiencies of Centrifugal and Reciprocating Pumps. W. O. Webber (Trans. A. S. M. E., vii. 598) gives diagrams showing the relative efficiencies of centrifugal and reciprocating pumps, from which the following figures are taken for the different lifts stated:

Lift, feet: 5 10 15 20 25 30 35 40 50 60 80 100 120 160 200 240 280 .88 .85

Efficiency centrifugal pump: .50 .56 .64 .68 .69 .68 .66 .62 .58 .50 .40 ...

The term efficiency here used indicates the value of W. H. P. + I. H. P., or horse-power of the water raised divided by the indicated horse-power of or horse-power of the water talect divided by the indicated noise-power of the steam-engine, and does not therefore show the full efficiency of the pump, but that of the combined pump and engine. It is, however, a very simple way of showing the relative values of different kinds of pumping-engines

having their motive power forming a part of the plant.

The highest value of this term, given by Mr. Webber, is .9164 for a lift of 170 ft. and 3615 gals, per min. This was obtained in a test of the Leavitt pumping engine at Lawrence, Mass., July 24, 1879.

With reciprocating pumps, for higher lifts than 170 ft., the curve of efficiencies falls, and from 200 to 300 ft. lift the average value seem; about .84. Below 170 ft. the curve also falls reversely and slowly, until at about 90 ft. its descent becomes more rapid, and at 35 ft. .727 appears the best recorded performance. There are not any very satisfactory records below this lift, but some figures are given for the yearly coal consumption and total number of gallons pumped by engines in Holland under a 16-ft. lift, from which an efficiency of .44 has been deduced.

With centrifugal pumps, the lift at which the maximum efficiency is obtained is approximately 17 ft. At lifts from 12 to 18 ft. some makers of large experience claim now to obtain from 655 to 70% of useful effect, but .613 appears to be the best done at a public test under 14.7 ft. head.

The drainage-pumps constructed some years ago for the Haariem Lake were designed to lift 70 tons per min. 15 ft., and they weighed about 150 tons. Centrifugal pumps for the same work weigh only 5 tons. The weight of a centrifugal pump and engine to lift 10,000 gals. per min. 35 ft. high is 6 tons.

The pumps placed by Gwynne at the Ferrara Marshes, Northern Italy, in 1865, are, it is believed, capable of handling more water than other set of pumping-engines in existence. The work performed by these pumps is the lifting of 2000 tons per min.—over 600,000,000 gals, per 24 hours on a mean lift of about 10 ft. (maximum of 12.5 ft.). (See Engineering, 1876.)

The efficiency of centrifugal pumps seems to increase as the size of pump

increases, approximately as follows: A 2" pump (this designation meaning always the size of discharge-outlet in inches of diameter), giving an efficiency of 38%, a 3" pump 45%, and a 4" pump 52%, a 5" pump 60%, and a 6" pump 64% efficiency.

# Tests of Centrifugal Pumps.

W. O. Webber, Trans. A. S. M. E., ix. 237.

Maker.	An- drews.	An- drews.	An- drews.	Heald & Sisco.	Heald & Sisco.	Heald & Sisco.	Berlin. Schwartz- kopff.
Size Diam. discharge. " suction " disk Rev. per minute. Galls, per minute Height in feet Water H.P Dynam'eter H.P. Efficiency	26" 191.9 1518.12 12.25 4.69 10.09	195.5	200.5 2499.38 13.08	188.3	No. 10. 10" 12" 80.5" 202.7 2044.9 12.58 6.51 10.74 60.74	No. 10. 10" 12" 30.5" 213.7 2371.67 13.0 7.81 14.02 55.72	No. 9. 914" 10.3" 20.5" 500 1944.8 16.46

Vanes of Centrifugal Pumps.—For forms of pump vanes, see paper by W. O. Webber, Trans. A. S. M. E., ix. 228, and discussion thereon by Profs. Thurston, Wood, and others.

The Centrifugal Pump used as a Suction Dredge.—The Andrews centrifugal pump was used by Gen. Gillmore, U. S. A., in 1871, in deepening the channel over the bar at the mouth of the St. John's River, Florids. The pump was a No. 9, with suction and discharge pipes each 9 inches diam. It was driven at 300 revolutions per minute by beit from an environ developing 26 useful borse power. engine developing 26 useful horse-power.

Although 200 revolutions of the pump disk per minute will easily raise 3000 gallons of clear water 12 ft. high, through a straight vertical 9-inch pipe, 300 revolutions were required to raise 2500 gallons of sand and water 11 ft. high, through two inclined suction-pipes having two turns each, dis-

through a pipe having one turn.

The proportion of sand that can be pumped depends greatly upon its specific gravity and fineness. The calcareous and argillaceous sands flow more freely than the silicious, and fine sands are less liable to choke the pipe than those that are coarse. When working at high speed, 50% to 55% of sand can be raised through a straight vertical pipe, giving for every 10 cubic yards of material discharged 5 to 51/2 cubic yards of compact sand. With the appliances used on the St. John's bar, the proportion of sand seldom. exceeded 45%, generally ranging from 30% to 35% when working under the most favorable conditions.

In pumping 2500 gallons, or 12.6 cubic yards of sand and water per minute, there would therefore be obtained from 3.7 to 4.3 cubic yards of sand. During the early stages of the work, before the teeth under the drag had been properly arranged to aid the flow of sand into the pipes, the yield was considerably below this average. (From catalogue of Jos. Edwards & Co.,

Mfrs. of the Andrews Pump, New York.)

### DUTY TRIALS OF PUMPING-ENGINES.

A committee of the A. S. M. E. (Trans., xii, 530) reported in 1891 on a standard method of conducting duty trials. Instead of the old unit of duty of foot-pounds of work per 100 lbs. of coal used, the committee recommend a new unit, foot-pounds of work per million heat-units furnished by the boiler. The variations in quality of coal make the old standard unit as a basis of duty ratings. The new unit is the precise equivalent of 100 lbs. of coal in cases where each pound of coal imparts 10,000 heat units to the water in the boiler, or where the evaporation is 10,000 + 965.7 = 10 355 lbs. of water from and at 212° per pound of fuel. This evaporative result is readily obtained from all grades of Cumberland bituminous coal, used in horizontal return tubular boilers, and, in many cases, from the best grades of anthracite coal.

The committee also recommend that the work done be determined by plunger displacement, after making a test for leakage, instead of by measurement of flow by weirs or other apparatus, but advise the use of such apparatus when practicable for obtaining additional data. The following extracts are taken from the report. When important tests are to be made the complete report should be consulted.

The necessary data having been obtained, the duty of an engine, and other quantities relating to its performance, may be computed by the use of the following formulæ:

1. Duty = 
$$\frac{\text{Foot-pounds of work done}}{\text{Total number of heat-units consumed}} \times 1,000,000$$
$$= \frac{A(P \pm p + s) \times L \times N}{H} \times 1,000,000 \text{ (foot-pounds)}.$$

- 2. Percentage of leakage =  $\frac{C \times 144}{A \times L \times N} \times 100$  (per cent).
- 3. Capacity = number of gallons of water discharged in 24 hours  $=\frac{A\times L\times N\times 7.4805\times 24}{D\times 144}=\frac{A\times L\times N\times 1.24675}{D}$  (gallons).
- 4. Percentage of total frictions,

$$= \left[\frac{\text{I.H.P.} - \frac{A(P \pm p + s) \times L \times N}{D \times 60 \times 33,000}}{\text{I.H.P.}}\right] \times 100$$

$$= \left[1 - \frac{A(P \pm p + s) \times L \times N}{As \times M.E.P. \times Ls \times Ns}\right] \times 100 \text{ (per cent)};$$

or, in the usual case, where the length of the stroke and number of strokes of the plunger are the same as that of the steam-piston, this last formula becomes:

Percentage of total frictions = 
$$\left[1 - \frac{A(P \pm p + s)}{As \times M.E.P.}\right] \times 100$$
 (per cent).

In these formulæ the letters refer to the following quantities: A = Area, in square inches, of pump plunger or piston, corrected for area of piston rod or rods;

P = Pressure, in pounds per square inch, indicated by the gauge on the force main;

p =Pressure, in pounds per square inch, corresponding to indication of the vacuum-gauge on suction-main (or pressure gauge, if the suction-pipe is under a head). The indication of the vacuum-gauge, in inches of mercury, may be converted into pounds by dividing it by

2.035;
s = Pressure, in pounds per square inch, corresponding to distance between the centres of the two gauges. The computation for this pressure is made by multiplying the distance, expressed in feet, by the weight of one cubic foot of water at the temperature of the pump-well, and dividing the product by 144;
L = Average length of stroke of pump-plunger, in feet;
N = Total number of single strokes of pump-plunger made during the trial;
As = Area of steam-cylinder, in square inches, corrected for area of piston-rod. The quantity As × M.E.P., in an engine having more than one cylinder, is the sum of the various quantities relating to the respective cylinders:

tive cylinders;

L₈ = A verage length of stroke of steam-piston, in feet;
 N₈ = Total number of single strokes of steam-piston during trial;
 M.E.P. = A verage mean effective pressure, in pounds per square inch, measured from the indicator-diagrams taken from the steam-cylin-

der;
I H.P. = Indicated horse-power developed by the steam-cylinder;
C = Total number of cubic feet of water which leaked by the pump-plunger during the trial, estimated from the results of the leakage test;

H = Total number of heat-units (B. T. U.) consumed by engine = weight ofwater supplied to boiler by main feed-pump x total heat of steam of boiler pressure reckoned from temperature of main feed-water + weight of water supplied by jacket-pump x total heat of steam of boiler-pressure reckoned from temperature of jacket-water + weight of any other water supplied × total heat of steam reckoned from its temperature of supply. The total heat of the steam is corrected for the moisture or superheat which the steam may contain. No allowance is made for water added to the feed water, which is derived from any source, except the engine or some accessory of the engine. Heat added to the water by the use of a flue-heater at the boiler is not to be deducted. Should heat be abstracted from the flue by means of a steam reheater connected with the intermediate receiver of the engine, this heat must be included in the total quantity supplied by the boiler.

Leakage Test of Pump.—The leakage of an inside plunger (the only type which requires testing) is most satisfactorily determined by making the test with the cylinder-head removed. A wide board or plank may be temporarily boited to the lower part of the end of the cylinder, so as to hold back the water in the manner of a dam, and an opening made in the temporary head thus provided for the reception of an overflow-pipe. The plunger is blocked at some intermediate point in the stroke (or, if this position is not practicable, at the end of the stroke), and the water from the force main is admitted at full pressure behind it. The leakage escapes through the overflow-pipe, and it is collected in barrels and measured. The test should be made, if possible, with the plunger in various positions.

In the case of a pump so planued that it is difficult to remove the cylinder-head, it may be desirable to take the leakage from one of the openings which are provided for the inspection of the suction-valves, the head being

allowed to remain in place.

It is assumed that there is a practical absence of valve leakage. Examination for such leakage should be made, and if it occurs, and it is found to be due to disordered valves, it should be remedied before making the plunger test. Leakage of the discharge valves will be shown by water passing down into the empty cylinder at either end when they are under pressure. Leakage of the suction-valves will be shown by the disappearance of water which covers them.

If valve leakage is found which cannot be remedied the quantity of water thus lost should also be tested. One method is to measure the amount of water required to maintain a certain pressure in the pump cylinder when this is introduced through a pe temporarily erected, no water being allowed to enter through the discharge valves of the pump.

Table of Data and Results.—In order that uniformity may be severed it is any greated that the data and results worked out in accordance.

cured, it is suggested that the data and results, worked out in accordance with the standard method, be tabulated in the manner indicated in the following scheme:

### DUTY TRIAL OF ENGINE.

### DIMENSIONS.

	1.	Number of steam-cylinders	_
	2.	Diameter of steam-cylinders	ins.
	3.	Diameter of piston-rods of steam-cylinders	ins.
	4.	Nominal stroke of steam-pistons	ft.
	5.	Number of water-plungers	
	6.	Diameter of plungers	ins.
	7.	Diameter of piston-rods of water-cylinders	ins.
	8.	Nominal stroke of plungers	ft.
	9.	Net area of steam-pistons	sa. ins.
1	10.	Net area of plungers	sa, ins.
3	11.	Average length of stroke of steam-pistons during trial	ft.
		Average length of stroke of plungers during trial	
•		(Give also complete description of plant.)	
		TEMPERATURES.	
	13.	Temperature of water in pump-well	degs.
	14	Temperature of water supplied to boiler by main feed-pump	degs.
	15	Temperature of water supplied to boiler from various other	6
	10.	sources	dege
		pources	~ . e.o.

	• *	
	FEED-WATER.	
17. Weight	t of water supplied to boiler by main feed-pump t of water supplied to boiler from various other sources, reight of feed-water supplied from all sources	lbs.
•	PRESSURES.	
20. Pressui 21. Vacuur 22. Pressui 23. Vertica	pressure indicated by gauge	lbs. ins. lbs. ins.
	MISCELLANEOUS DATA.	
26. Total n 27. Percent of de 28. Total le leaka 29. Mean e	on of trial umber of single strokes during trial tage of moisture in steam supplied to engine, or number grees of superheating sakage of pump during trial, determined from results of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of t	% or deg. lbs.
	PRINCIPAL RESULTS.	
30. Duty 31. Percent 32. Capacit 33. Percent	age of leakage .y .age of total friction	ft. lbs. % gals. %
	ADDITIONAL RESULTS.	
35. Indicate 36. Feed-ways and the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are the seed-ways are	r of double strokes of steam-piston per minute ed horse-power developed by the various steam-cylinders ater consumed by the plant per hour. ater consumed by the plant per indicated horse-power our, corrected for moisture in steam. r of heat units consumed per indicated horse-power	lbs.
per h 89. Number	our	B.T.U.
40. Steam a	ninuteaccounted for by indicator at cut-off and release in the us steam-cylinders	b.1,0. lbs.
41. Proport	tion which steam accounted for by indicator bears to eed-water consumption	
43. Mean et	r or double strokes of pump per minue	I.H.P.
(Alao :# :	SAMPLE DIAGRAM TAKEN FROM STEAM-CYLINDERS.	

(Also, if possible, full measurement of the diagrams, embracing pressures at the initial point, cut off, release, and compression; also back pressure, and the proportions of the stroke completed at the various points noted.)

SAMPLE DIAGRAM TAKEN FROM PUMP-CYLINDERS.

These are not necessary to the main object, but it is desirable to give them.

DATA AND RESULTS OF BOILER TEST.

(In accordance with the scheme recommended by the Boiler-test Committee of the Society.)

### VACUUM PUMPS-AIR-LIFT PUMP.

The Pulsometer.—In the pulsometer the water is raised by suction more pump-enamore by the condensation of steam within it, and is then forced into the delivery-pipe by the pressure of a new quantity of steam on the surface of the water. Two chambers are used which work alternately one raising while the other is discharging.

Test of a Pulsometer.—A test of a pulsometer is described by De Volson Wood in Trans. A. S. M. E. xiii. It had a 3½-inch suction-pipe, stood 40 in. igh, and weighed 695 lbs. into the pump-chamber by the condensation of steam within it, and is then

The steam-pipe was 1 inch in diameter. A throttle was placed about 2 feet

from the pump, and pressure gauges placed on both sides of the throttle, said a mercury well and thermometer placed beyond the throttle. The wire a trawing due to throttling caused superheating.

The pounds of steam used were computed from the increase of the tem

perature of the water in passing through the pump.

Pounds of steam  $\times$  loss of heat = lbs, of water sucked in  $\times$  increase of temp.

The loss of heat in a pound of steam is the total heat in a pound of saturated steam as found from "steam tables" for the given pressure, plus the heat of superheating, minus the temperature of the discharged water; or

Pounds of steam =  $\frac{\text{lbs. water} \times \text{increase of temp.}}{H - 0.48t - T.}$ 

The results for the four tests are given in the following table:

Data and Results.	Number of Test.					
	1	2	3	4		
Strokes per minute	71	60	57	64		
Steam press.in pipe before throttl'g		110	127	104.3		
Steam press, in pipe after throttl'g	19	30	43.8	26.1		
Steam temp, after throttling, deg. F.	270.4	277	<b>30</b> 9.0	270.1		
Steam am'nt of superheat'g, deg. F.	8.1	3.4	17.4	1.4		
Steam used as det'd from temp., lbs.	1617	931	1518	1019.9		
Water pumped, lbs	404.786	186.362	228,425	248,053		
Water temp.before entering pump.	75.15	80.6	76.3	70.25		
Water temp., rise of	4.47	5.5	7.49	4.55		
Water head by gauge on lift, ft	29.90	54.05	54.05	29.90		
Water head by gauge on suction	12.26	12.26	19.67	19.67		
Water head by gauge, total (H)	42.16	66.31	73.72	49.57		
Water head by measure, total (h)	82.8	57.80	66.6	41.60		
Coeff. of friction of plant $(h) + (H)$	0.777	0.877	0.911	0.839		
Efficiency of pulsometer	0.012	0.0155	0.0126	0.0138		
Effic. of plant exclusive of boiler	0 0098	0.0136	0.0115			
Effic. of plant if that of boiler be 0.7		0.0095	0.0080	0.0081		
Duty, if 1 lb.evaporates 10 lbs.water			11.059.000			
227,12						

Of the two tests having the highest lift (54.05 ft.), that was more efficient which had the smaller suction (12.26 ft.), and this was also the most efficient of the four tests. But, on the other hand, the other two tests having the same lift (29.9 ft.), that was the more efficient which had the greater suction (19.67), so that no law in this regard was established. The pressures used, 19.30, 43.8, 26.1, follow the order of magnitude of the total heads, but are not proportional thereto. No attempt was made to determine what pressure would give the best efficiency for any particular head. The pressure used was intrusted to a practical runner, and he judged that when the pump was running regularly and well, the pressure then existing was the proper one. It is peculiar that, in the first test, a pressure of 19 lbs. of steam should produce a greater number of strokes and pump over 50% more water than 26.1 lbs., the lift being the same, as in the fourth experiment.

Class. E. Emery in discussion of Prof. Wood's paper says, referring to tests made by himself and others at the Centennial Exhibition in 1876 (see

Chas. E. Emery in discussion of Prof. Wood's paper says, referring to tests made by himself and others at the Centennial Exhibition in 1876 (see Report of Judges, Group xx.), says that a vacuum-pump tested by him in 1871 gave a duty of 4.7 millions; one tested by J. F. Flagg, at the Cincinnati Exposition in 1875, gave a maximum duty of 3.25 millions. Several vacuum and small steam-pumps, compared later on the same basis, were reported to have given duties of 10 to 11 millions, the steam-pumps doing no better than the vacuum-pumps. Injectors, when used for lifting water not required to be heated, have an efficiency of 2 to 5 millions; vacuum-pumps vary generally between 3 and 10; small steam-pumps between 80 and 15; larger steam-pumps, between 15 and 30, and pumping-engines between 30 and 140 millions.

A very high record of test of a pulsometer is given in Eng'g. Nov. 24, 1893, p. 639, viz.: Height of suction 11.27 ft.; total height of lift, 102.6 ft.; horizontal length of delivery-pipe, 118 ft.; quantity delivered per hour, 26,188 British gallons. Weight of steam used per H. P. per hour, 92.76 lbs.; work

done per pound of steam 21,345 foot-pounds, equal to a duty of 21,345,000 foot-pounds per 100 lbs. of coal, if 10 lbs of steam were generated per

pound of coal.

The Jet-pump.—This machine works by means of the tendency of a stream or jet of fluid to drive or carry contiguous particles of fluid along with it. The water-jet pump, in its present form, was invented by Prof. James Thomson, and first described in 1852. In some experiments on a small scale as to the efficiency of the jet-pump, the greatest efficiency was found to take place when the depth from which the water was drawn by the action to take place when the depth from which the water was drawn by the suction-pipe was about nine tenths of the height from which the water fell to form the jet; the flow up the suction-pipe being in that case about one fifth of that of the jet, and the efficiency, consequently,  $9/10 \times 1/5 = 0.18$ . This is but a low efficiency; but it is probable that it may be increased by improvements in proportions of the machine. (Rankine, S. E.)

The Injector when used as a pump has a very low efficiency. (See

Injectors, under Steam-boilers.)

Air-lift Pump.—The air-lift pump consists of a vertical water-pipe with its lower end submerged in a well, and a smaller pipe delivering air into it at the bottom. The rising column in the pipe consists of air mingled with water, the air being in bubbles of various sizes, and is therefore lighter with water, the air cening in outdoes of various sizes, and is energic against than a column of water of the same height; consequently the water in the pipe is raised above the level of the surrounding water. This method of raising water was proposed as early as 1797, by Loescher, of Freiberg, and was mentioned by Collon in lectures in Paris in 1876, but its first practical application probably was by Werner Siemens in Berlin in 1885. Dr. J. G. application probably was by Werner Siemens in Berlin in 1885. Dr. J. G. Pohle experimented on the principle in California in 1886, and U. S. patents on apparatus involving it were granted to Pohle and Hill in the same year. A paper describing tests of the air-lift pump made by Randall, Browne and

Behr was read before the Technical Society of the Pacific Coast in Feb. 1890.
The diameter of the pump-column was 3 in., of the air-pipe 0.9 in., and of the air-discharge nozzle \$\forall \text{in}\$. The air-pipe had four sharp bends and a length of \$5 ft. plus the depth of submersion.

The water was pumped from a closed pipe-well (55 ft. deep and 10 in. in diameter). The efficiency of the pump was based on the least work theoretically required to compress the air and deliver it to the receiver. If the efficiency of the compressor be taken at 70%, the efficiency of the pump and compressor together would be 70% of the efficiency found for the pump

For a given submersion (h) and lift (H), the ratio of the two being kept within reasonable limits, (H) being not much greater than (h), the efficiency was greatest when the pressure in the receiver did not greatly exceed the head due to the submersion. The smaller the ratio H + h, the higher was the efficiency.

The pump, as erected, showed the following efficiencies: For H + h = 0.5 1.0 1.5 2.0 50% 40% 80% Efficiency =

The fact that there are absolutely no moving parts makes the pump

The fact that there are appeared to moving parts makes the pump especially fitted for handling dirty or gritty water, sewage, mine water, and acid or alkali solutions in chemical or metallurgical works.

In Newark, N. J., pumps of this type are at work having a total capacity of 1,000,000 gallons daily, lifting water from three 8-in artesian wells. The Newark Chemical Works use an air-lift pump to raise sulphuric acid of 1.72° gravity. The Colorado Central Consolidated Mining Co., in one of its mines at Georgetown, Colo., lifts water in one case 250 ft., using a series of lifts. For a full account of the theory of the pump, and details of the tests

above referred to, see Eng'g News, June 8, 1893.

### THE HYDRAULIC RAM.

Efficiency.—The hydraulic ram is used where a considerable flow of water with a moderate fall is available, to raise a small portion of that flow to a height exceeding that of the fall. The following are rules given by Eytelwein as the results of his experiments (from Rankine):

Let Q be the whole supply of water in cubic feet per second, of which q is lifted to the height h above the pond, and Q-q runs to waste at the depth H below the pond; L, the length of the supply-pipe, from the pond to the waste-clack; D, its diameter in feet; then

$$D - \sqrt{(1.63Q)}$$
;  $L = H + h + \frac{h}{H} \times 2$  feet;

Volume of air vessel = volume of feed pipe:

Efficiency, 
$$\frac{qh}{(Q-q)H} = 1.12 - 0.2 \sqrt{\frac{h}{H}}$$
 when  $\frac{h}{H}$  does not exceed 30.

OF

$$1 + \left(1 + \frac{h}{10H}\right)$$
 nearly, when  $\frac{h}{H}$  does not exceed 12.

$$\frac{qh}{QH} = 1.42 - .28\sqrt{\frac{h}{H}}.$$

Clark, using five sixths of the values given by D'Aubisson's formula, gives: Ratio of lift to fall. ... 4 6 8 10 12 14 16 18 20 22 24 26 Efficiency per cent.... 72 61 52 44 87 81 25 19 14 9 4 0

Prof. R. C. Carpenter (Eng'g Mechanics, 1894) reports the results of four tests of a ram constructed by Rumsey & Co., Seneca Falls. The ram was fitted for pipe connection for 134-inch supply and 34-inch discharge. The supply-pipe used was 144 inches in diameter, about 50 feet long, with 8-libows, so that it was equivalent to about 65 feet of straight pipe, so far as resistant. ance is concerned. Each run was made with a different stroke for the waste or clack-valve, the supply and delivery head being constant; the object of the experiment was to find that stroke of clack-valve which would give the highest efficiency.

Length of stroke, per cent.  Number of strokes per minute. Supply head, feet of water. Delivery head, feet of water.  Total water pumped, pounds.  Total water supplied, pounds.  Efficiency, per cent.	52 5.67 19.75 297 1615	80 56 5.77 19.75 296 1567 66	60 61 5.58 19.75 301 1518 74.9	46 66 5.65 19.75 297.5 1455.5 70
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------	------------------------------------------------	--------------------------------------------------	----------------------------------------------------

The efficiency, 74.9, the highest realized, was obtained when the clack-valve travelled a distance equal to 60% of its full stroke, the full travel being 15/16 of one inch.

Quantity of Water Delivered by the Hydraulic Ram. (Chadwick Lead Works.)—From 80 to 100 feet conveyance, one seventh of supply from spring can be discharged at an elevation five times as high as supply from spring can be discharged at an elevation five times as high as the fall to supply the ram; or, one fourteenth can be raised and discharged say ten times as high as the fall applied.

Water can be conveyed by a ram 3000 feet, and elevated 200 feet. The

drive-pipe is from 25 to 50 feet long.

The following table gives the capacity of several sizes of rams, the dimensions of the pipes to be used, and the size of the spring or brook to which they are adapted:

- 1	O	Caliber of Pipes.		Weight of Pipe (Lead), if Wrought Iron, then of Ordinary Weight.		
	Quantity of Water Furnished per Min. by the Spring or Brook to which the Ram is Adapted.	Drive.	Discharge.	Drive-pipe for head or fall not over 10 ft.	pipe for not	Discharge- pipe for over 50 ft. and not ex- ceeding 100 ft. in height.
No. 2 " 8 " 4 " 5 " 6 " 7 " 10	Gals. per min.  94 to 2  11/2 " 4  8 " 7  6 " 14  12 " 25  20 " 40  25 " 75	inch.  34  1 11/4 21/4 21/4 4	inch. 36 12 24 1 114 2	per foot. 2 lbs. 3 " 5 " 8 " 13 " 13 " 21 "	per foot. 10 ozs. 12 " 12 " 1 lb. 4 " 2 " 3 "	per foot. 1 lb. 1 " 4 ozs. 1 " 4 ozs. 2 " 3 " 4 " 8 "

### HYDRAULIC-PRESSURE TRANSMISSION.

Water under high pressure (700 to 2000 lbs. per square inch and upwards) affords a very satisfactory method of transmitting power to a distance, especially for the movement of heavy loads at small velocities, as by cranes and elevators. The system consists usually of one or more pumps capable of developing the required pressure; accumulators, which are vertical cylinders with heavily-weighted plungers passing through stuffing-boxes in the upper end, by which a quantity of water may be accumulated at the pressure to which the plunger is weighted; the distributing-pipes; and the presses,

cranes, or other machinery to be operated.

The earliest important use of hydraulic pressure probably was in the Bramah hydraulic press, paiented in 1796. Sir W. G. Armstrong in 1846 was one of the pioneers in the adaptation of the hydraulic system to cranes. The use of the accumulator by Armstrong led to the extended use of hydraulic machinery. Recent developments and applications of the system are largely due to Ralph Tweddell, of London, and Sir Joseph Whitworth. Sir Henry Bessemer, in his patent of May 13, 1856, No. 1292, first suggested the use of

hydraulic pressure for compressing steel ingots while in the fluid state.

The Gross Amount of Energy of the water under pressure stored in the accumulator, measured in foot-pounds, is its volume in cubic feet X its pressure in pounds per square foot. The horse-power of a given quantity  $\frac{144pQ}{}=.2618pQ$ , in which Q is the quantity flowing steadily flowing is  $H.P. = \frac{1}{2}$ 550

in cubic feet per second and p the pressure in pounds per square inch. The loss of energy due to velocity of flow in the pipe is calculated as follows (R. G. Blaine, Eng'g, May 22 and June 5, 1891):

According to D'Arcy, every pound of water loses  $\frac{\lambda 4L}{R}$  times its kinetic D energy, orenergy due to its velocity in passing along a straight pipe L feet in length and D feet diameter, where  $\lambda$  is a variable coefficient. For clean cast-iron pipes it may be taken as  $\lambda = .005 \left(1 + \frac{1}{12D}\right)$ , or for diameter in inches = d.

.01 .0075 .00667 .00625 .006 .00583 .00571 .00568 .00556 .0055 .00542

The loss of energy per minute is  $60 \times 62.36Q \times \frac{\lambda 4L}{D} \frac{v^2}{2a}$ , and the horse-

 $p^3 \overline{D^5}$ diameter as above.

 $d = \frac{1}{2} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 \\ .00954 .00636 .00477 .00424 .00398 .00382 .00871 .00863 .00358 .00353 .00350 .00345 \\ \end{pmatrix}$ 

Efficiency of Hydraulic Apparatus.—The useful effect of a direct hydraulic plunger or ram is usually taken at 98%. The following is given as the efficiency of a ram with chain-and-pulley multiplying gear properly proportioned and well lubricated: Multiplying.... 2 to 1 4 to 1 6 to 1 8 to 1 10 to 1 12 to 1 14 to 1 16 to 1 76

Efficiency 🕻 . . . 80 68 59 54 50 With large sheaves, small steel pins, and wire rope for multiplying gear the efficiency has been found as high as 66% for a multiplication of 20 to 1.

Henry Adams gives the following formula for effective pressure in cranes and hoists:

P = accumulator pressure in pounds per square inch; m = ratio of multiplying power;

E = effective pressure in pounds per square inch, including all allowances for friction;

$$E = P(.84 - .02m)$$
.

J. E. Tuit (Eng'g, June 15, 1888) describes some experiments on the friction of hydraulic jacks from 314 to 1356 inch diameter, fitted with cupped leather packings. The friction loss varied from 5.6% to 18.8% according to leather packings. The friction loss varied from 5.6% to 18.8% according to the condition of the leather, the distribution of the load on the ram, etc. The friction increased considerably with eccentric loads. With hemp packing a plunger, 14 inch diameter, showed a friction loss of from 11.4% to 3.4%, the load being central, and from 15.0% to 7.6% with eccentric load, the percentage of loss decreasing in both cases with increase of load.

Thickness of Hydraulic Cylinders. From a table used by Sir W. G. Armstrong we take the following, for cast-iron cylinders, for an in-terior pressure of 1000 lbs. per square inch;

Diam. of cylinder, inches. 2 4 6 8 10 12 16 20 24 Thickness, inches. . . . . . 0.832 1.146 1.552 1.875 2.222 2.578 3.19 3.69 4.11

For any other pressure multiply by the ratio of that pressure to 1000. These figures correspond nearly to the formula t=0.175d+0.48, in which t= thickness and d= diameter in inches, up to 16 inches diameter, but for 20 inches diameter the addition 0.48 is reduced to 0.19 and at 24 inches it

disappears. For formulæ for thick cylinders see page 287, ante.

Cast iron should not be used for pressures exceeding 2000 lbs, per square inch. For higher pressures steel castings or forged steel should be used. For working pressures of 750 lbs, per square inch the test pressure should be 2500 lbs. per square inch, and for 1500 lbs, the test pressure should not be less than 3500 lbs.

Speed of Hoisting by Hydraulic Pressure.—The maximum allowable speed for warehouse cranes is 6 feet per second; for platform cranes 4 feet per second; for passenger and wagon hoists, heavy loads, 2 feet per second. The maximum speed under any circumstances should never exceed 10 feet per second.

The Speed of Water Through Valves should never be greater

than 100 feet per second.

Speed of Water Through Pipes.—Experiments on water at 1600 lbs. pressure per square inch flowing into a flanging-machine ram, 20-inch diameter, through a ½ inch pipe contracted at one point to ½ inch, gave a velocity of 114 feet per second in the pipe, and 456 feet at the reduced section. Through a ½ inch pipe reduced to ¾ inch at one point the velocity was 213 feet per second in the pipe and 381 feet at the reduced section. In a 1/2-inch pipe without contraction the velocity was 355 feet per second.

For many of the above notes the author is indebted to Mr. John Platt, consulting engineer, of New York.

High-pressure Hydraulic Presses in Iron-works are described by R. M. Daelen, of Germany, in Trans. A. I. M. E. 1892. The following distinct arrangements used in different systems of high-pressure hydraulic work are discussed and illustrated:
1. Steam-pump, with fly-wheel and accumulator.

2. Steam pump, without fly-wheel and with accumulator.

3. Steam-pump, without fly-wheel and without accumulator.

In these three systems the valve-motion of the working press is operated in the high-pressure column. This is avoided in the following:

4. Single-acting steam-intensifier without accumulator.

Steam-pump with fly-wheel, without accumulator and with pipe-circuit.
 Steam-pump with fly-wheel, without accumulator and without pipe-

circuit.

The disadvantages of accumulators are thus stated: The weighted plungers which formerly served in most cases as accumulators, cause violent shocks in the pipe-line when changes take place in the movement of the water, so that in many places, in order to avoid bursting from this cause, the pipes are made exclusively of forged and bored steel. The seats and cones of the metallic valves are cut by the water (at high speed), and in such cases only the most careful maintenance can prevent great losses of power.

Hydraulic Power in London.—The general principle involved

is pumping water into mains laid in the streets, from which service-pipes are carried into the houses to work lifts or three-cylinder motors when rotatory power is required. In some cases a small Pelton wheel has been tried, working under a pressure of over 700 lbs. on the square inch. Over 55

miles of hydraulic mains are at present laid (1892).

The reservoir of power consists of capacious accumulators, loaded to a pressure of 800 lbs. per square inch, thus producing the same effect as if large supply-tanks were placed at 1700 feet above the street-level. The water is taken from the Thames or from wells, and all sediment is removed therefrom by filtration before it reaches the main engine-pumps.

There are over 1750 machines at work, and the supply is about 6,500,000

gallons per week.

It is essential that the water used should be clean. The storage-tank extends over the whole boiler-house and coal-store. The tank is divided, and a certain amount of mud is deposited here. It then passes through the surface condenser of the engines, and it is turned into a set of filters, eight in number. The body of the filter is a cast-iron cylinder, containing a layer of

granular filtering material resting upon a false bottom; under this is the distributing arrangement, affording passage for the air, and under this the real bottom of the tank. The dirty water is supplied to the filters from an overhead tank. After passing through the filters the clean effluent is pumped into the clean-water tank, from which the pumping-engines derive their supply. The cleaning of the filters, which is done at intervals of 24 hours, is effected so thoroughly in situ that the filtering material never requires to be

effected so thorougnly in state was a second or removed.

The engine-house contains six sets of triple-expansion engines. The cylinders are 15-inch, 22-inch, 36 inch × 24-inch. Each cylinder drives a single plunger-pump with a 5-inch ram, secured directly to the cross-head, the connecting-rod being double to clear the pump. The boiler-pressure is 10 bs. on the square inch. Each pump will deliver 300 gallons of water per minute under a pressure of 800 bs. to the square inch, the engines making about 61 revolutions per minute. This is a high velocity, considering the heavy pressure; but the valves work silently and without perceptible shock. The consumption of steam is 14.1 pounds per horse per hour.

The water delivered from the main pumps passes into the accumulators.

The water delivered from the main pumps passes into the accumulators. The rams are 20 inches in diameter, and have a stroke of 23 feet. They are each loaded with 110 tons of slag, contained in a wrought-iron cylindrical box suspended from a cross-head on the top of the ram.

One of the accumulators is loaded a little more heavily than the other, so that they rise and fall successively; the more heavily loaded actuates a stop-valve on the main steam pipe. If the engines supply more water than is wanted, the lighter of the two rams first rises as far as it can go; the other then ascends, and when it has nearly reached the top, shuts off steam and checks the supply of water automatically.

The mains in the public streets are so constructed and laid as to be per-

fectly trustworthy and free from leakage.

Every pipe and valve used throughout the system is tested to 2500 lbs. per square inch before being placed on the ground and again tested to a reduced pressure in the trenches to insure the perfect tightness of the joints. The jointing material used is gutta-percha.

The average rate obtained by the company is about 3 shillings per thousand gallons. The principal use of the power is for intermittent work in cases where direct pressure can be employed, as, for instance, passenger elevators,

cranes, presses, warehouse hoists, etc.

An important use of the hydraulic power is its application to the extinguishing of fire by means of Greathead's injector hydrant. By the use of

these hydrants a continuous fire-engine is available.

Hydraulic Riveting-machines.—Hydraulic riveting was introduced in England by Mr. R. H. Tweddell. Fixed riveters were first used about 1868. Portable riveting-machines were introduced in 1872.

The riveting of the large steel plates in the Forth Bridge was done by small portable machines working with a pressure of 1000 lbs. per square inch. In exceptional cases 3 tons per inch was used. (Proc. Inst. M. E., May, 1889.)

An application of hydraulic pressure invented by Andrew Higginson, of

Liverpool, dispenses with the necessity of accumulators. It consists of a partially upon the work accumulated in a heavy fly-wheel. The water in its passage from the pumps and back to them is in constant circulation at a passage from the pumps and back to them is in constant circulation at every feeble pressure, requiring a minimum of power to preserve the tube of water ready for action at the desired moment, when by the use of a tap the current is stopped from going back to the pumps, and is thrown upon the piston of the tool to be set in motion. The water is now confined, and the driving-belt or steam-engine, supplemented by the momentum of the heavy fly-wheel, is employed in closing up the rivet, or bending or forging the ob-

Hydraulic Forging.—In the production of heavy forgings from cast ingots of mild steel it is essential that the mass of metal should be operated on as equally as possible throughout its entire thickness. employing a steam-hammer for this purpose it has been found that the external surface of the ingot absorbs a large proportion of the sudden impact of the blow, and that a comparatively small effect only is produced on the central portions of the ingot, owing to the resistance offered by the inertia of the mass to the rapid motion of the falling hammer—a disadvantage that is entirely overcome by the slow, though powerful, compression of the hydraulic forging-press, which appears destined to supersede the steam-ammer for the production of massive steel forgings.

In the Allen forging-press the force-pump and the large or main cylinder the press are in direct and constant communication. There are no interof the press are in direct and constant communication. There are no intermediate valves of any kind, nor has the pump any clack-valves, but it simply forces its cylinder full of water direct into the cylinder of the press, simply forces its cylinder full of water direct into the cylinder of the press, and receives the same water, as it were, back again on the return stroke. Thus, when both cylinders and the pipe connecting them are full, the large ram of the press rises and falls simultaneously with each stroke of the pump, keeping up a continuous oscillating motion, the ram, of course, traveiling the shorter distance, owing to the larger capacity of the press cylinder. (Journal Iron and Steel Institute, 1801. See also illustrated article in "Modern Mechanism," page 668.)

For a very complete illustrated account of the development of the hydraulic forging-press, see a paper by R. H. Tweddell in Proc. Inst. C. E., vol. cavil 1802.4

cxvii. 1893-4

Hydraulic Forging-press.—A 2000-ton forging press erected at the Couillet forges in Belguim is described in Eng. and M. Jour., Nov. 25, 1893.

The press is composed essentially of two parts—the press itself and the compressor. The compressor is formed of a vertical steam-cylinder and a hydraulic cylinder. The piston-rod of the former forms the piston of the The hydraulic piston discharges the water into the press proper. The distribution is made by a cylindrical balanced valve; as soon as the pressure is released the steam-piston falls automatically under the action of gravity. During its descent the steam passes to the other face of the piston

to reheat the cylinder, and finally escapes from the upper end.

When steam enters under the piston of the compressor-cylinder the piston rises, and its rod forces the water into the press proper. The pressure thus exerted on the piston of the latter is transmitted through a cross-head to the forging which is upon the anvil. To raise the cross-head two small single-acting steam-cylinders are used, their piston-rods being connected to the grows head steam enter not control the cross-head there is the piston-rods being connected to the cross-head; steam acts only on the pistons of these cylinders from below. The admission of steam to the cylinders, which stand on top of the press frame, is regulated by the same lever which directs the motions of the compressor. The movement given to the dies is sufficient for all the ordinary

purposes of forging.

A speed of 30 blows per minute has been attained. A double press on the same system, having two compressors and giving a maximum pressure of

6000 tons, has been erected in the Krupp works, at Essen.

The Alken Intensifier. (Iron Age, Aug. 1890.)—The object of the machine is to increase the pressure obtained by the ordinary accumulator which is necessary to operate powerful hydraulic machines requiring very high pressures, without increasing the pressure carried in the accumulator and the general hydraulic system.

The Aiken Intensifier consists of one outer stationary cylinder and one inner cylinder which moves in the outer cylinder and on a fixed or stationary hollow plunger. When operated in connection with the hydraulic bloomshear the method of working is as follows: The inner cylinder having been filled with water and connected through the hollow plunger with the hydraulic cylinder of the shear, water at the ordinary accumulator-pressure is admitted into the outer cylinder, which being four times the sectional area of the plunger gives a pressure in the inner cylinder and shear cylinder connected therewith of four times the accumulator-pressure—that is, if the ac-

cumulator-pressure is 500 lbs. per square inch the pressure in the intensifier will be 2000 lbs. per square inch.

Hydraulie Engine driving an Air-compressor and a Forging-hammer. (Iron Age, May 12, 1892.)—The great hammer in Terni, near Rome, is one of the largest in existence. Its falling weight amounts to 100 tens, and the foundation belonging to it consists of a block of east iron of 1000 tens. The stroke is 16 feet 4% inches; the diameter of the cylinder 6 feet 34 inches; diameter of piston-rod 13% inches; total height of the hammer, 62 feet 4 inches. The power to work the hammer, as well as the two cranes of 100 and 150 tons respectively, and other auxiliary appli-ances belonging to it, is furnished by four air-compressors coupled together and driven directly by water-pressure engines, by means of which the air is compressed to 73.5 pounds per square inch. The cylinders of the water-pressure engines, which are provided with a bronze lining, have a 1334 inch bore. The stroke is 4734 inches, with a pressure of water on the piston amounting to 284.6 pounds per square inch. The compressors are bored out to 3114 inches diameter, and have 4734 inch stroke. Each of the four cylinders requires a power equal to 280 horse-power. The compressed air is de620

livered into huge reservoirs, where a uniform pressure is kept up by means

of a suitable water-column.

The Hydraulic Forging Plant at Bethlehem, Pa., is described in a paper by R. W. Davenport, read before the Society of Naval Engineers and Marine Architects, 1893. It includes two hydraulic forgingpresses complete, with engines and pumps, one of 1500 and one of 4500 tons capacity, together with two Whitworth hydraulic travelling forging cranes and other necessary appliances for each press; and a complete fluid compression plant, including a press of 7000 tous capacity and a 125 ton hydraulic travelling crane for serving it (the upper and lower heads of this press weighing respectively about 135 and 120 tons).

A new forging-press has been designed by Mr. John Fritz, for the Bethlehem Works, of 14,000 tons capacity, to be run by engines and pumps of 15,000 horse-power. The plant is served by four open-hearth steel furnaces of a

united capacity of 120 tons of steel per heat.

Some References on Hydraulic Transmission.—Reuleaux's "Constructor;" "Hydraulic Motors, Turbines, and Pressure-engines," G. Bodnier, London, 1889; Robinson's "Hydraulic Power and Hydraulic Machinery," London, 1888; Colyer's "Hydraulic Steam, and Hand-power Lifting and Pressing Machinery," London, 1881. See also Engineering (London), Aug. 1, 1884, p. 99; March 13, 1885, p. 262; May 22 and June 5, 1891, pp. 612, 665; Feb. 19, 1892, p. 25; Feb. 10, 1893, p. 170.

### FUEL.

Theory of Combustion of Solid Fuel. (From Rankine, somewhat altered.)—The ingredients of every kind of fuel commonly used may be thus classed: (1) Fixed or free carbon, which is left in the form of charcoal or coke after the volatile ingredients of the fuel have been distilled away. These ingredients burn either wholly in the solid state (C to  $CO_2$ ), or part in the solid state and part in the gaseous state ( $CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 = CO_2 =$ ter part being first dissolved by previously formed carbonic acid by the reaction  $CO_2 + C = 2CO$ . Carbonic oxide, CO, is produced when the supply of air to the fire is insufficient.

(2) Hydrocarbons, such as oleflant gas, pitch, tar, haphtha, etc., all of

which must pass into the gaseous state before being burned.

If mixed on their first issuing from amongst the burning carbon with a large quantity of hot air, these inflammable gases are completely burned with a transparent blue flame, producing carbonic acid and steam. When mixed with cold air they are apt to be chilled and pass off unburned. When raised to a red heat, or thereabouts, before being mixed with a sufficient quantity of air for perfect combustion, they disengage carbon in fine powder, and pass to the condition partly of marsh gas, and partly of free hydrogen; and the higher the temperature, the greater is the proportion of carbon thus disengaged.

If the disengaged carbon is cooled below the temperature of ignition before coming in contact with oxygen, it constitutes, while floating in the gas, smoke, and when deposited on solid bodies, soot.

But if the disengaged carbon is maintained at the temperature of ignition, and supplied with oxygen sufficient for its combustion, it burns while floating in the inflammable gas, and forms red, yellow, or white flame. The flame from fuel is the larger the more slowly its combustion is effected. The flame itself is apt to be chilled by radiation, as into the heating surface of a steam-boiler, so that the combustion is not completed, and part of the gas and smoke pass off unburned.

(3) Oxygen or hydrogen either actually forming water, or existing in combination with the other constituents in the proportions which form water. Such quantities of oxygen and hydrogen are to left be out of account in determining the heat generated by the combustion. If the quantity of water actually or virtually present in each pound of fuel is so great as to make its latent heat of evaporation worth considering, that heat is to be deducted from the total heat of combustion of the fuel.

(4) Nitrogen, either free or in combination with other constituents. This

substance is simply inert.

(5) Sulphuret of iron, which exists in coal and is detrimental, as tending

to cause spontaneous combustion.

(6) Other mineral compounds of various kinds, which are also inert, and form the ash left after complete combustion of the fuel, and also the clinker or glassy material produced by fusion of the ash, which tends to choke the rrate.

621 FUEL.

Total Heat of Combustion of Fuels. (Rankine.)—The following table shows the total heat of combustion with oxygen of one pound of and table shows the total heat of combustion with oxygen of one pound of each of the substances named in it, in British thermal units, and also in lbs. of water evaporated from 212°. It also shows the weight of oxygen required to combine with each pound of the combustible and the weight of air necessary in order to supply that oxygen. The quantities of heat are given on the authority of MM. Favre and Silbermann.

Combustible,	Lbs.Oxy- gen per lb. Com- bustible.	Lb. Air	Total Brit- ish Heat- units.	Evapora- tive Power from 212° F., lbs.
Hydrogen gas	8	36	62,082	64.2
to make carbonic oxide	134	6	4,400	4.55
Carbon perfectly burned so as to make carbonic acid  Olefiant gas, 1 lb	294 3 3/7	12 15 8/7	14,500 21,844	15.0 22.1
Various liquid hydrocarbons, 1 lb.	<b></b>	<b> </b> }	from 21,700 to 19,000	from 223/2
Carbonic oxide, as much as is made by the imperfect combustion of 1 lb of carbon, viz., 23% lbs	114	6	10,000	10.45

The imperfect combustion of carbon, making carbonic oxide, produces iess than one third of the heat which is yielded by the complete combustion. The total heat of combustion of any compound of hydrogen and carbon is nearly the sum of the quantities of heat which the constituents would pro-

duce separately by their combustion. (Marsh gas is an exception.)
In computing the total heat of combustion of compounds containing oxygen as well as hydrogen and carbon, the following principle is to be observed: When hydrogen and oxygen exist in a compound in the proper proportion to form water (that is, by weight one part of hydrogen to eight of oxygen), these constituents have no effect on the total heat of combustion. If hydrogen exists in a greater proportion, only the surplus of hydrogen above that which is required by the oxygen is to be taken into account.

The following is a general formula (Dulong's) for the total heat of combus-

tion of any compound of carbon, hydrogen, and oxygen:

Let C, H, and O be the fractions of one pound of the compound, which consists respectively of carbon, hydrogen, and oxygen, the remainder being nirrogen, ash, and other impurities. Let h be the total heat of combustion of one pound of the compound in British thermal units. Then

$$h = 14,500 \left\{ C + 4.28 \left( H - \frac{O}{8} \right) \right\}$$

The following table shows the composition of those compounds which are of importance, either as furnishing oxygen for combustion, as entering into the composition, or as being produced by the combustion of fuel:

Names.	Symbol of Chemical Composition.	Proportions of Element by Weight.	Chemical Equivalent by Weight.	Proportions of Elements by Volume.
Air. Water. Ammonia. Carbonic oxide. Carbonic acid. Olefiant gas. Marsh.gas or fire-damp. Sulphurous acid Sulphuretted hydrogen. Sulphuret of carbon.	CH ₂ CH ₄ SO ₂ SH ₂	N 77 + O 23 H 2 + O 16 H 3 + N 14 C 12 + O 16 C 12 + O 32 C 12 + H 2 C 12 + H 4 S 32 + O 32 S 32 + H 2 S 64 + C 12	100 18 17 28 44 14 16 64 34 76	N 79 + O 21 H 2 + O H 3 + N C + O C + O 2 C + H 2 C + H 4

Since each lb, of C requires 2% lbs. of O to burn it to CO₂, and air contains 23% of O, by weight, 2% + 0.23 or 11.6 lbs. of air are required to burn 1 lb. of C. Analyses of Gases of Combustion.—The following are selected from a large number of analyses of gases from locomotive boilers, to show the range of composition under different circumstances (P. H. Dudley, Trans. A. I. M. E., iv. 250):

Test.	CO3	со	o	N	
1	13.8	2.5	2.5	81.6	No smoke visible.
2	11.5		6.	82.5	Old fire, escaping gas white, engine working hard.
3	8.5		8.	83.	Fresh fire, much black gas, " " "
4	2.3		17.2		Old fire, damper closed, engine standing still.
5	5.7		14.7	79.6	" " smoke white, engine working hard.
6	8.4	1.2	8.4	82.	New fire, engine not working hard.
7	12	1	4.4	82.6	Smoke black, engine not working hard.
8	3.4		16.8		" dark, blower on, engine standing still.
9	6		13.5	81.5	" white, engine working hard.

In analyses on the Cleveland and Pittsburgh road, in every instance when the smoke was the blackest, there was found the greatest percentage of unconsumed oxygen in the product, showing that something besides the mere presence of oxygen is required to effect the combustion of the volatile carbon of fuels.

J. C. Hoadley (Trans. A. S. M. E., vi. 749) found as the mean of a great number of analyses of flue gases from a boiler using anthracite coal;

The loss of heat due to burning C to CO instead of to CO₂ was 2.13%. The surplus oxygen averaged 113.3% of the O required for the C of the fuel, the average for different weeks ranging from 88.6% to 137%.

Analyses made to determine the CO produced by excessively rapid firing gave results from 2.54% to 4.81% CO and 5.12% to 8.01% CO₂; the ratio of C in

Analyses made to determine the CO produced by excessively rapid firing gave results from 2.54% to 4.81% CO and 5.12% to 8.01% CO₂; the ratio of C in the CO to total carbon burned being from 43.80% to 48.55%, and the number of pounds of air supplied to the furnace per pound of coal being from 33.2 to 19.8 lbs. The loss due to burning C to CO was from 27.84% to 30.86% of the full power of the coal.

Temperature of the Fire. (Rankine, S. E., p. 283)—By temperature of the fire is meant the temperature of the products of combustion at the instant that the combustion is complete. The elevation of that temperature above the temperature at which the air and the fuel are supplied to the furnace may be computed by dividing the total heat of combustion of one lb. of fuel by the weight and by the mean specific heat of the whole products of combustion, and of the air employed for their dilution under constant pressure. The specific heat under constant pressure of these products is about as follows:

Carbonic-acid gas. 0.217; steam, 0.475; nitrogen (probably), 0.245; a.r. 0.238; ashes, probably about 0.200. Using these data, the following results are obtained for pure carbon and for oleflant gas burned, respectively, first, in just sufficient air, theoretically, for their combustion, and, second, when an equal amount of air is supplied in addition for dilution.

Fuel.	Products	undiluted.	Products diluted.		
ruei.	Carbon.	Oleflant Gas.	Carbon.	Olefiant Gas.	
Total heat of combustion, per lb Wt. of products of combustion, lbs Their mean specific heat Specific heat × weight. Elevation of temperature, F	13 0.237 3.08	21,300 16.43 0.257 4.22 5050°	14,500 25 0.238 5.94 2440°	21,300 81.86 0.248 7.9 2710°	

[The above calculations are made on the assumption that the specific heats of the gases are constant, but they probably increase with the increase of temperature (see Specific Heat), in which case the temperatures would be less than those above given. The temperature would be further

reduced by the heat rendered latent by the conversion into steam of any

water present in the fuel ]

Rise of Temperature in Combustion of Gases. (Eng'g, March 12 and April 2, 1886)—It is found that the temperatures obtained by experiment fall short of those obtained by calculation. Three theories have been given to account for this: 1. The cooling effect of the sides of the containing vessel; 2. The retardation of the evolution of heat caused by dissociation; 3. The increase of the specific heat of the gases at very high temperatures. The calculated temperatures are obtainable only or the condition that the gases all combine instantaneously and simultaneously and si on the condition that the gases shall combine instantaneously and simultaneously throughout their whole mass. This condition is practically impossible in experiments. The gases formed at the beginning of an explosion dilute the remaining combustible gases and tend to retard or check the combustion of the remainder.

### CLASSIFICATION OF SOLID FUELS.

Gruner classifies solid fuels as follows (Eng'a and M'a Jour., July, 1874):

Name of Fuel.	Ratio $\frac{O}{H}$ or $O + N *$ .	Proportion of Coke or Charcoal yielded by the Dry Pure Fuel.
Pure cellulose	6 <b>6</b> 5	0.28 @ 0.30 .30 @ .35 .35 @ .40 .40 @ .50 .50 @ .90

The bituminous coals he divides into five classes as below:

		lemente omposit		Ratio OH	Proportion of Coke	Nature and
Name of Type.	C.	Н.	0.	or O+N*.	yielded by Dis- tilla- tion.	Appearance of Coke.
1. Long flaming dry	75 <b>@</b> 80	5.5@4.5	19.5@15	4@3	0.50@.60	Pulveru- lent.
2. Long flaming fat ) or coking coals, or gas coals,	80@85	5.8@5	14.2@10	3@2	.60@.68	Melted. but friable.
3. Caking fat coals, or blacksmiths' coals,	84@80	5 @4.5	11 @5.5	2@1	.68@.74	Melted; some- what com- pact.
4. Short flaming fat or caking coals. coking coals,	88 <b>@</b> 91	5. <b>5@.4</b> .5	<b>6.5@5.</b> 5	1	.74@.82	Melted; very com- pact.
5. Lean or anthra-	90@93	4.5@4	5.5@3	1	.82@.90	Pulveru- lent.

^{*}The nitrogen rarely exceeds 1 per cent of the weight of the fuel.

Not including bituminous lignites, which resemble petroleums.

Rankine gives the following: The extreme differences in the chemical composition and properties of different kinds of coal are very great. The proportion of free carbon ranges from 30 to 93 per cent; that of hydrocarbons of various kinds from 5 to 55 per cent; that of water, or oxygen and hydrogen in the proportions which form water, from an inappreciably small quantity to 27 per cent; that of ash, from 14 to 26 per cent.

The numerous varieties of coal may be divided into principal classes as follows: 1, anthractic coal; 2, semi-bitumicous coal; 3, bituminous coal; 4, long flaming or cannel coal; 5, lignite or brown coal.

### Diminution of H and O in Series from Wood to Anthracite.

(Groves and Thorp's Chemical Technology, vol. i., Fuels, p. 58.)

Substance.	Carbon.	Hydrogen.	Oxygen.
Woody fibre	52.65	5.25	42.10
Peat from Vulcaire	59.57	5.96	34.47
Lignite from Cologne	66.04	5.27	28,69
Earthy brown coal	73.18	5.88	21.14
Coal from Belestat, secondary	75.06	5.84	19.10
Coal from Rive de Gier	89.29	5.05	5.66
Anthracite, Mayenne, transition formation	91.58	3.96	4.46

### Progressive Change from Wood to Graphite.

(J. S. Newberry in Johnson's Cyclopedia.)

	Wood.	Loss.	Lig- nite.	Loss.	Bitumi- nous coal	Loss.	Anthra- cite.	Loss.	Graph- ite.
Carbon	49.1	18,65	30.45	12.35	18.10	8.57	14.53	1.42	13.11
Hydrogen		8.25	3.05	1.85	1.20	0.98	0.27	0.14	0.13
Oxygen		24.40	20.20	18.13	2.07	1.32	0.65	0.65	0.00
	100.0	46 30	53 70	22 23	21 37	5.82	15 45	2 21	13 24

Classification of Coals, as Anthracite, Bituminous, etc.— Prof. Persifer Frazer (Trans. A. I. M. E., vi, 430) proposes a classification of coals according to their "fuel ratio," that is, the ratio the fixed carbon bears to the volatile hydrocarbon.

In arranging coals under this classification, the accidental impurities, such as sulphur, earthy matter, and moisture, are disregarded, and the fuel constituents alone are considered.

	Carbon Ratio.	Fixed Carbon.	Volatile Hydrocarbon.
<ol> <li>Hard dry anthracite.</li> </ol>	100 to 12	100. to 92.31%	0. to 7.69≰
II. Semi-anthracite	12 to 8	92.31 to 88.89	7.69 to 11.11
III. Semi-bituminous	8 to 5	88.89 to 83.33	11.11 to 16.67
IV. Bituminous	5 to 0	83.33 to 0.	16.67 to 100

It appears to the author that the above classification does not draw the line at the proper point between the semi-bituminous and the bituminous coals, viz., at a ratio of C + V.H.C. = 5, or fixed carbon 83.33, volatile hydrocarbon 16.675, since it would throw many of the steam coals of Clearfield and Somerset counties, Penn., and the Cumberland, Md., and Pocahontas, Va., coals, which are practically of one class, and properly rated as semi-bituminous coals, into the bituminous class. The dividing line steween the semi-anthracite and semi-bituminous coals, C + V.H.C. = 5, would place several coals known as semi-anthracite in the semi-bituminous class. The following is proposed by the author as a better classification:

	arbon Ratio.	Fixed Carbon.	Vol. H.C.
I. Hard dry anthracite	100 to 12	100 to 92.31%	0 to 7.69≰
II. Semi-anthracite	12 to 7	92.31 to 87.5	7.69 to 12.5
III. Semi-bituminous		87.5 to 75	12.5 to 25
IV. Bituminous	8 to 0	75 to 0	25 to 100

Rhode Island Graphitte Anthracite.—A peculiar graphite is found at Cranston, near Providence, R. I. It resembles both graphite and anthracite coal, and has about the following composition (A. E. Hunt, Trans. A. I. M. E., xvii., 678): Graphitic carbon, 785; volatile matter, 2.60%; stlica, 15.06%; phosphorus, 045%. It burns with extreme difficulty.

### ANALYSES OF COALS.

Composition of Pennsylvania Anthracites. (Trans. A. I. M. E., xiv., 706.)—Samples weighing 100 to 200 lbs. were collected from lots of 100 to 200 tous as shipped to market, and reduced by proper methods to laboratory samples. Thirty-three samples were analyzed by McCreath, giving results as follows. They show the mean character of the coal of the more important coal-beds in the Northern field in the vicinity of Wilkesbarre, in the Eastern Middle (Lehigh) field in the vicinity of Hazleton, in the Western

Middle field in the vicinity of Shenandoah, and in the Southern field between Mauch Chunk and Tamaqua.

Name of Bed.	Name of Field.	Water.	Volatile Matter.	Fixed Carbon.	Ash.	Sulphur.	Vol. Matter. Per cent of total com- bustible.	Ratio, C + V.H.C.
Wharton E Mammoth. E Primrose V Mammoth . V Primrose F 8 Buck Mtn V Seven Foot V Manmoth . S Mammoth . N B. Coal Bed L	Z. Middle V. Middle V. Middle outhern V. Middle V. Middle outhern Torthern	8.71 4.12 3.54 3.16 8.01 3.04 8.41 3.09 8.42 1.30	3.08 3.08 3.72 3.72 4.13 3.95 3.98 4.28 4.38 8.10	86.40 86.38 81.59 81.14 87.96 82.66 80.87 83.81 83.27 83.34	6.22 5.92 10.65 11.06 4.38 9.88 11.23 8.18 8.20 6.23	.58 .49 .50 .90 .50 .46 .51 .64 .78	3.45 4.36 4.88 4.48 4.56 4.69 4.85 5.00	28.07 27.99 21.93 21.88 21.82 20.93 20.82 19.62 19.00

The above analyses were made of coals of all sizes (mixed). When coal is screened into sizes for shipment the purity of the different sizes as regards ash varies greatly. Samples from one mine gave results as follows:

Name of Coal.	Scr.	ened	Analyses.		
	Through inches.	Over inches.	Fixed Carbon.	Ash,	
Egg	2.5	1.75	88.49	5.66	
Stove	1.75	1.25	83.67	10.17	
Chestnut		.75	80.72	12.67	
Pea	.75	.50	79 05	14.66	
Buckwheat	.50	.25	76.92	16.62	

### Bernice Basin, Pa., Coals.

W	ater.	Vol. H.C.	Fixed C.	Ash.	Sulphur.
Bernice Basin, Fullivan and J Lycoming Cos.; range of 8.	0.96	8.56	82.52	3.27	Ò.24
Define Dasin, rumvan and	to	to	to	to	to
TACOUNTRY COR! Large of o	1 07	8.56	80.80	0.84	1 04

This coal is on the dividing-line between the anthracites and semi-anthracites, and is similar to the coal of the Lykens Valley district.

More recent analyses (Trans. A. I. M. E., xiv. 721) give :

	Water.	Vol. H.C.	Fixed Carb.	Ash.	Sulphur.
Working seam	. 065	9,40	88,69	5.84	0.91
60 ft. below seam	. 3.67	15.42	71.84	8.97	0.59

The first is a semi-anthracite, the second a semi-bituminous.

Space Occupied by Anthractic Coal. (J. C. I. W., vol. iii.)—The cubic contents of 2240 lbs. of hard Lehigh coal is a little over 36 feet; an average Schuylkill W. A., 37 to 38 feet; Shamokin, 38 to 39 feet; Lorberry, nearly 41.

According to measurements made with Wilkesbarre anthracite coal from According to measurements made with Wilkesbarre anthractic coal from the Wyoming Valley, it requires 32.2 cu. ft. of lump, 33.9 cu. ft. broken, 34.5 cu. ft. egg, 34.8 cu. ft. of stove, 35.7 cu. ft. of chestnut, and 36.7 cu. ft. of pea, to make one ton of coal of 2240 lbs.; while it requires 28.8 cu. ft. of lump, 30.3 cu. ft. of broken, 30.8 cu. ft. of egg, 31.1 cu. ft. of stove, 31.9 cu. ft. of chestnut, and 32.8 cu. ft. of pea, to make one ton of 2000 lbs.

To restant, and 35.5 ct. it. of pea, to make one too of 2000 no.

Composition of Anthracite and Semi-bituminous Coals.

(Trans. A. I. M. E., vi. 430.)—Hard dry anthracites, 16 analyses by Rogers, show a range from 94.10 to 82.47 fixed carbon, 1.40 to 9.53 volatile matter, and 4.50 to 8.00 ash, water, and impurities. Of the fuel constituents alone, the fixed carbon ranges from 98.55 to 89.63, and the volatile matter from 1.47 to 10.37, the corresponding carbon ratios, or C + Vol. H.C. being from 67.02 to 8.64.

Semi-anthracites.—12 analyses by Rogers show a range of from 90.23 to 74.55 fixed carbon, 7.07 to 13.75 volatile matter, and 2.20 to 12.10 water, ash, and impurities. Excluding the ash, etc., the range of fixed carbon is 92.75 to 84.42, and the volatile combustible 7.27 to 15.58, the corresponding carbon ratio being from 12.75 to 5.41.

Semi-bituminous Coals.—10 analyses of Penna, and Maryland coals give fixed carbon 68.41 to 84.80, volatile matter 11.2 to 17.28, and ash, water, and impurities 4 to 13.99. The percentage of the fuel constituents is fixed carbon 79.84 to 88.80, volatile combustible 11.20 to 20.16, and the carbon ratio 11.41 to 3.96.

# American Semi-bituminous and Bituminous Coals.

(Selected chiefly from various papers in Trans. A. I. M. E.)

	Moist- ure.	Vol. Hydro- arbon.	Fixed Carbon	Ash.	Sul- phur.
Penna. Semi-bituminous;					
	( .79	13.84	78.46	6.00	.91
Broad Top, extremes of 5	78	17.38	76.14	4.81	.88
•	1.27	14.33	77.77	6.63	0.66
Somerset Co., extremes of 5	1.89	18.51	65.90	10.62	3.08
•		26.72	60.77	9.45	
Blair Co., average of 5	1.07	20.12	00.17	9.40	2.20
Cambria Co., average of 7, lower bed, B.	0.74	21.21	68.94	7.51	1.98
Cambria Co., 1, tupper bed, C.	1.14	17.18	73.42	6.58	1.41
Cambria Co., South Fork, 1		15.51	78.60	5.84	l
Centre Co 1	0.60	22.60	68.71	5.40	2.69
Clearfield Co., average of 9, tupper bed, C.	0.70	23.94	69.28	4.62	1.42
Clearfield Co., average of 8, 1 lower bed, D.	0.81	21.10	74.08	3.86	0.42
	(0.41	20.09	66.69	2.65	0.43
Clearfield Co., range of 17 anal	l⊰ to	to	to	to	to
	1.94	25.19	74.02	7.65	1.79
Rituminous:	l '	1			ŀ
Jefferson Co., average of 26	1,21	32.53	60.99	3.76	1.00
Clarion Co., average of 7	1.97	38.60	54.15	4.10	1.19
Armstrong Co., 1	1.18	42.55	49.69	4.58	2.00
Connellsville Coal	1.26	30.10	59.61	8.28	.78
Coke from Conn'ville (Standard)		0.01	87.46	11.32	.69
Youghiogheny Coal	1.03	36.49	59.05	2.61	.81
Pittsburgh, Ocean Mine	1.28	39.09	57.33	3.30	.01
ripsourgh, Ocean mine	٠. 🐱	30.00	000	0.00	

The percentage of volatile matter in the Kittaning lower bed B and the Freeport lower bed D increases with great uniformity from east to west; thus:

		Volatile Matter.	Fixed Carbon.
Clearfield Co.	bed D	20.09 to 25.19	68.73 to 74.76
**		22.56 to 26.13	64.87 to 69.68
Clarion Co.,	" B	35,70 to 42,55	47.51 to 55.44
**		37.15 to 40.80	51.39 to 56.36

Connellsville Coal and Coke. (Trans. A. I. M. E., xiii. 332.)—
The Connellsville coal-field, in the southwestern part of Pennsylvania, is
strip about 3 miles wide and 60 miles in length. The mine workings are
confined to the Pittsburgh seam, which here has its best development as to
size, and its quality best adapted to coke-making. It generally affords
from 7 to 8 feet of coal.

The following analyses by T. T. Morrell show about its range of composition:

	Moisture.	Vol. Mat.	Fixed C.	Ash.	Sulphur.	Phosph's.
Herold Mine	1.26	28.83	60.79	8.44	.67	.018
Kintz Mine	0.79	81.91	56.46	9.52	1.32	.02

In comparing the composition of coals across the Appalachian field, in the western section of Pennsylvania, it will be noted that the Connellsville variety occupies a peculiar position between the rather dry semi-bituminous coals across the apparent of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of t

Coals eastward of it and the fat bituminous coals flanking it on the west.

Beneath the Connellsville or Pittsburgh coal-bed occurs an interval of from 400 to 600 feet of "barren measures," separating it from the lower oductive coal measures of Western Pennsylvania. The following tables

show the great similarity in composition in the coals of these upper and lower coal measures in the same geographical belt or basin.

# Analyses from the Upper Coal-measures (Penna.) in a Westward Order.

Localities.	Moisture.	Vol. Mat.	Fixed Carb.	Ash.	Sulpbur.
Anthracite	1.35	8.45	89.06	5.81	0.80
Cumberland, Md.		15.52	74.28	9.29	0.71
Salisbury, Pa	1.66	22.35	68.77	5.96	1.24
Connellsville, Pa.		31.38	60.30	7.24	1.09
Greensburg, Pa		33.50	61.84	8.28	0.86
Irwin's Pa		37.66	54.44	5.86	0.64

# Analyses from the Lower Coal-measures in a Westward Order.

Localities.	Moisture.	Vol. Mat.	Fixed Carb.	Ash.	Sulphur.
Anthracite	1.35	8.45	89.06	5.81	đ.30
Broad Top	0.77	18.18	78.34	6,69	1.02
Bennington		27.28	61.84	6.93	2.60
Johnstown		16.54	74.46	5.96	1.86
Blairsville	0.92	24.36	62.22	7.69	4.92
Armstrong Co	0.96	38.20	52.03	5.14	3.66

Pennsylvania and Ohio Bituminous Coals. Variation in Character of Coals of the same Beds in different Districts.—From 50 analyses in the reports of the Pennsylvania Geological Survey, the following are relected. They are divided into different groups, and the extreme analysis in each group is given, ash and other impurities being neglected, and the percentage in 100 of combustible matter being alone considered.

	No. of Analyses		Vol. H. C.	Carbon Ratio.
Waynesburg coal-bed, upper bench  Jefferson township, Greene Co  Hopewell township, Washington Co	5	59.72	40.28	1.48
Waynesburg coal-bed, lower bench	9	53.22	46.78	1.13
Morgan township, Greene Co Pleasant Valley, Washington Co	3	60.69 54.81	39.31 <b>45.</b> 69	1.54 1.19
Sewickley coal-bed.  Whitely Creek, Greene Co		64.39 60.35	35.61 39.65	1.80 1.52
Upper bench, Washington Co		\$60.87 59.11	39.13 40.89	1.65 1.20
Lower bench, " "	5	50.97	36.46 49.03 38.20	1.74 1.04 1.61
Main bench, Greene Cc	1	61.80 54.33	45.67	1.19
Frick & Co., Washington Co., average Lower bench, Greene Co	1	66.44 57.83 § 79.73	33.56 42.17 20.27	1.98 1.37 3.93
decrease of vol. mat. to the eastward).  Beaver Co., Pa  Diehl's Bank, Georgetown	7	40.68	24.53 59.32	0.68
Bryan's Bank, Georgetown		62.57	37.43	1.66
Pittsburgh coal-bed in Ohio: Jefferson Co., Ohio		61.45	38.55	1.59
Belmont Co., Ohio		63.46 66.14	36.54 33.86	1.78 1.95
Harrison Co., Ohio		64.93	36.54 35.07	
Pomeroy Co., Ohio		62.33	39.08 37.67	1.55

Analyses of Southern and Western Coals.

	THUI MI	W W CBLC	III COA		
	Moisture.	Vol. Mat.	Fixed C.	Ash.	Sul- phur.
Onio.	/ * 00	92.00		0.05	2 44
Hocking Valley	<b>5.00 7.40</b>		53.15 60.45	9.05 2.95	0.44
MARYLAND.	, ,,,,,	28.20	00.45	2.35	0.80
Cumberland	§ 95	19.13	72.70	6.40	0.78
	1.23	15.47	78.51	9.09	0.70
VIRGINIA. South of James River, 23 anal-	(from 0.67	27.28	46.70	2.00	0.58
vses, range	to 2.46	38.60	67.83	15.76	2.89
Average of 23	1.48		58.89	7.72	1.45
North of James River, eastern	0.40		71.00	10.00	
outerop,	1.79	23.96 9.64	59.98 79.93	14.28	
Carbonite or Natural Coke	1.56		81.61	2.24	0.23
Western outcrop, 11 analyses,		21.83	54.97	3.35	0
range	} to	80.50	70.80	22.60	
Average of 11		26.06	68.75	10.06	
Pocahontas Flat-top* (Castner & Curran's Circular)	0.52 0.62		74.20 75.22	1.38 5.68	0.52
WEST VIRGINIA (New River.)		1	15.22		0.20
Quinnimont, † 3 analyses	) from 0.76		75.89	1.11	0.28
Quinnimone, o and y bob	to 0.94		79.40	1.07	0.80
Nuttalburgh †	1.85		69.00 70.67	2.10	0.08
VIRGINIA and KENTUCKY.	,	1			
Big Stone Gap Field, ‡ 9 anal-			54.80	1.73	0.56
yses, range	) to 2.01	36.27	63.50	8.25	1.72
KENTUCKY.	from 1.26	85.15	60.85	1.23	0.40
Pulaski Co., 8 analyses, range	( to 1.32	39.44	52.48	5.52	1.00
Muhlenberg Co., 4 analyses.			58.80	3.40	0.79
range Kentucky Cannel Coals,§ 5 an-	to 7.06		58.70 59.80 coke	6.50	3.16 0.96
alyses, range	1 to	63.30	33.70 coke		1.32
<b>.</b>		00.00	30.10 00.10	1	
TENNESSEE. Scott Co., Range of several. T	from 70		46.61	16.94	8.37
Decre Co., trange of Several	to 1.83		61.66	1.11	0.77
Roane Co., Rockwood Hamilton Co., Melville	1.10		60.11	11.52 3.68	1.49
Marion Co., Etna			63.94	11.40	1.19
Sewanee Co., Tracy City	1.60		61.00	7.80	1
Kelly Co., Whiteside		21.80	74.20	2.70	
Georgia.					
Dade Co	1.20	23.05	60.50	15.16	0.84
ALABAMA.			l	1	1
Warren Field: Jefferson Co., Birmingham	8.01	42.76	48.30	3.21	2.72
" Black Creek	.12	26.11	71.64	2.03	7.10
Tuscaloosa Co	1.59	88.33	54.64	5.45	1.33
Cahaba Field, (Helena Vein.	2.00	32.90	53.08	11.34	.68
Bibb Co Coke Vein	1.10	00.00	66.58	1.09	.04

^{*} Analyses of Pocahontas Coal by John Pattinson, F.C.S., 1889:

Vol. C. 0. N. S. Ash. Water. Coke. H. Mat. 4.95 1.29 78.8 Lumps... 86.51 Small ... 83.13 4.44 0.66 0.61 1.54 21.2 1.40 4.29 5.33 0.66 0.56 4.63 79.8 20.2

Calorific value, by Thomson's Calorimeter: Lumps = 15.4 lbs. of water evaporated from and at 212°; small = 14.7 lbs.

† These coals are coked in beehive ovens, and yield from 63% to 64% of coke.

† This field covers about 120 square miles in Virginia, and about 30 square

This next covers about 130 square inness in Virginia, and about 30 square miles in Kentucky.

\$ The principal use of the cannel coals is for enriching illuminating gas

[§] The principal use of the cannel coals is for enriching illuminating-gas. | Volatile matter including moisture.

Single analyses from Morgan, Rhea, Anderson, and Roane counties fall within this range.

ALABAMA COALS. (W. B. Phillips, Eng. & M. J., June 3, 1893.)

		Proximate.		Ultimate.						
Name of Seam.	Vol. and Combust. Matter.	Fixed Carbon.	Carbon.	Hydrogen.	Oxygen.	Nitrogen.	Sulphur.	Ash.	Moisture.	
Wadsworth	Helena	34.30	60.50	78.23	7.98	11.92	1.07	0.60	3.50	1.70
Pratt	Pratt mines	83.45	63.20	75.89	10.52	7.51	1.73	1.07	2.00	1.35
	Brookwood		58.70	72.47	10.38	1.60			11.90	1.60
	Blocton		60.60	72.75	8.61	11.12	1.48	1.44	2.65	1.95
Underwood		35.65	57.30	70.89	10.19	9.95	1.31	0.68	5.25	1.80
	Pratt mines		64.95	75.05	9.91	8.95	1.62	0.97	2.35	1.15
	Brookwood		66.30	73.96	10.50	9.57	1.62	1.15	2.20	1.00
	Blue Creek		69.90	72.68	10.77	9.83	1.39	1.03	2.80	1.50
	Coalburg		65.57	4.59	10.58	9.48	1.31	1.32		
Cahaba		1		100				100		-
Field	l	30.15	52.90	60.37	10.70	9.00	1.26	1.72	16.30	0.65

	Moisture.	Vol. Mat.	Fixed C.	Ash.	Sul- phur.
TEXAS.				1	
Eagle Mine	8.54	30.84	50.69	14.93	
Sabinas Field, Vein I		20.04	62.71	15.35	
" " " II	1.37	16.42	68.18	13.02	
" " " III	0.84	29.35	50.18	19.63	
" " IV	0.45	21.6	45.75	29.1	8.15
Indiana.	Ī	1		l	İ
Block coal, average.*	2.10	87.35	57.95	2.60	
" Lafayette	18.05	32.34	48.78		
			~		1
" " Sand Creekt	4.50	91	.00	4.50	• • • • •
Illinois.‡		i			l
La Salle	8.22	39.40	43.95	8.43	
Streator	7.20	38.88	45.30	8.60	
Danville	11.00	32.55	53.00	3.65	
**	5.78	43.70	45.37	6.15	
Lincoln	8 45	34.99	44.50		
Barclay	10.80	27.32	44.78	17.10	
Carbondale		26.40	59.84		
Du Quoin		23.54	60.60		
Mt. Čarbon	6.12	24.68	66.50		
Staunton	6.27	57.11	26.30	10.32	

^{*}Indiana Block Coal (J. S. Alexander, Trans. A. I. M. E., iv. 100).—The typical block coal of the Brazil (Indiana) district differs in chemical comtypical mock coal of the Brazii (miniana) district differs in chemical composition but little from the coking coals of Western Pennsylvania. The physical difference, however, is quite marked; the latter has a cuboid structure made up of bituminous particles lying against each other, so that under the action of heat fusion throughout the mass readily takes place, while block coal is formed of alternate layers of rich bituminous matter and a between library which is not only vary elements. charcoal-like substance, which is not only very slow of combustion, but so retards the transmission of heat that agglutination is prevented, and the coal burns away layer by layer, retaining its form until consumed. †Analysis by E. T. Cox: C, 72.94; H, 4.50; O, 11.77; N, 1.79; ash, 4.50;

moisture, 4.50.

[†]The Illinois coals are extremely variable in character. The above analyses are given in D. L. Barnes's paper on "American Locomotive Practice," Trans. A. S. C. E. 1893, except the last, the Staunton coal, which is by Hunt and Clapp (Trans. A. S. M. E., v. 266). The Staunton coal is remarkable for the high percentage of volatile matter, but it is excelled in this respect by

	Moisture.	Vol. Mat.	Fixed C.	Ash.	Sul- phur
Iowa.*					
Hiteman	4.99	85.27	25.37	34.87	
Keb	9.81	37.49	44.75	7.95	
Flaglers	9.84	40.16	37.69	12 31	
Chisholm	9.18	40.42	39.58	10.82	<b></b>
Missouri.*	i '			l	1
Brookfield	4.84	40.27	50.60	4.79	. <b></b> .
Mendota	9.03	87.48	46.24	7.25	
Hamilton	5.06	34.24	47.69	13.01	
Lingo	7.33	38.29	47.24	7.14	
Nebraska.*	1 :				
Hastings	0.21	27.82	60.88	11 09	
Wyoning.*	0.72	21.00	00.00	11.00	
	4.2	40.6	41.5	13.7	
Cambria	2.5	37.4	37.9	22.2	••••
Goose Creek	9.7	40.2	46.3	3.8	
Goose Creek	13.92	86.78	42.03	7.27	
Deek Creek	12.8	35.0	47.7	3.6	
Sheridan	6.04	42.87	35.57		
	0.04	34.01	۵۰.۰۰	10.02	•••••
COLORADO.‡		00 0	or 1	اممما	
Sunshine, Colo, average	2.8 1.7	36.3 37.95	37.1 48.6	23.8	•••••
Sunshine, Colo, average Newcastle, "" El Moro. ""		38.23		11.6	• • • • •
	1.32	23.20	55.86 72.60		· · · · · · ·
Crested Buttes, "	1.10	20.20	12.00	8.10	· • • • • •
Utah (Southern).					
Castledale	3.43	42.81	47.81+		
Cedar City	3.50	43.66	43.11†	5.95	
OREGON.	l 1	1			
Coos Bay	15.45	41.55	84.95	8.05	2.58
"	17.27	44.15	32.40	6.18	1.37
Yaquina Bay	18.08	46.20	82.60	7.10	1.07
John Day River	4.55	40.00	48.19	7.26	.60
46 46 46	6.54	34.45	52.41	5.95	. 65
VANCOUVER ISLAND.		}			
Comox Coal	1.7	27.17	68.27	2.86	

the Boghead coal of Linlithgowshire, Scotland, au analysis of which by Dr. Penny is as follows: Proximate—moisture 0.84; vol. 67.95; fixed C, 9.54, ash, 21.4; Ultimate—C,63.94; H, 8.86; O, 4.70; N, 0.96; which is remarkable for the high percentage of H.

*The analyses of Iowa, Missouri, Nebraska, and Wyoming coals are selected from a paper on The Heating Value of Western Coals, by Wm. Forsyth, Mech. Engr. of the C., B. & Q. R. R. Eng's News, Jan. 17, 1895.

† Includes sulphur, which is very high. Coke from Cedar City analyzed:

Water and volatile matter, 1.42; fixed carbon, 76.70; ash, 16.61; sulphur, 5.27,

‡ Colorado Coals.—The Colorado coals are of extremely variable composition, ranging all the way from lignite to anthracite. G. C. Hewitt (Trans. A. I. M. E., xvii. 377) says: The coal seams, where unchanged by heat and flexure, carry a lignite containing from 5% to 20% of water. In the south-eastern corner of the field the same have been metamorphosed so that in four miles the same seams are an anthracite, coking, and dry coal. In the basin of Coal Creek the coals are extremely fat, and produce a hard, bright, sonorous coke. North of coal basin half a mile of development shows a gradual change from a good coking coal with patches of dry coal to a dry coal that will barely agglutinate in a beehive oven. In another half mile the same seam is dry. In this transition area, a small cross-fault makes the coal fat for twenty or more feet on either side. The dry seams also present wide chemical and physical changes in short distances. A soft and loosely bedded coal has in a hundred feet become compact and hard without the intervention of a fault. A couple of hundred feet has reduced the water of combination from 12% to 5%.

Western Arkansas and Indian Territory. (H. M. Chance,

3. A. I. M. E. 1890.)-The Choctaw coal-field is a direct westward exten-

ssion of the Arkansas coal-field, but its coals are not like Arkansas coals, ex-

cept in the country immediately adjoining the Arkansas line.

The western Arkansas coals are dry semi-bituminous or semi-anthracitic The western Arkansas coals are dry semi-diffundions or semi-anthractic coals, mostly non-coking, or with quite feeble coking properties, ranging from 14% to 16% in volatile matter, the highest percentage yet found, according to Mr. Winslow's Arkansas report, being 17 655.

In the Mitchell basin, about 10 miles west from the Arkansas line, coal recently opened shows 19% volatile matter; the Mayberry coal, about 8 miles

farther west, contains 23% volatile matter; and the Bryan Mine coal, about the same distance west, shows 26% volatile matter. About 30 miles farther west, the coal shows from 3% to 41% volatile matter, which is also about the percentage in coals of the McAlester and Lebigh districts.

Western Lignites. (R. W. Raymond, Trans. A. I. M. E., vol. ii, 1873.)

	c.	н.	N.	О.	s.	Mois- ture.	Asb.	Calorific Power, calories.
Monte Diabolo.  Weber Cafion, Utah  Echo Cafion, Utah  Carbon Station, Wyo	69.84 64.99 69.14	4.34 3.90 3.76 4.36	1.29 1.93 1.74 1.25	10.99 15.20 9.54	1.60 0.77	9 41 9.17 11.56	5.64 3.00 3.40 1.68 6.62	5912 6400 5788
Coos Bay, Oregon	56.24 55.79 67.67 67.58 60.72	3.26 4.66 7.42	0.61 1.58	19.01	0.63 0.92 0.68	16.52 8.08 5.18	4.18 9.28 5.77	4565 4610 6428 7330 5602

The calorific power is calculated by Dulong's formula.

$$8080C + 84462 (H - \frac{O}{8}),$$

deducting the heat required to vaporize the moisture and combined water, that is, 587 calories for each unit of water. 1 calorie = 1.8 British thermal

Analyses of Foreign Coals. (Selected from D. L. Barnes's paper on American Locomotive Practice, A. S. C. E., 1893.)

		Carbon.	Λsh.	
Great Britain :				
South Wales	8.5	88.3	3.2	
** **	6.2	92.3	1.5	İ
Lancashire, Eng	17.2	80.1	2.7	i
Derbyshire, "	17.7	79.9	2.4	l
Durham, "	15 05	86.8	1.1	Semi-bit. coking coal.
Scotland	17.1	68.1	19.8	Boghead cannel gas coal,
**	17.5	80.1	2.4	Semi-bit. steam-coal.
Staffordshire, Eng	20.4	78.6	1.0	
South America:				
Chili, Conception Bay	21.98	70.55	7.52	
" Chiroqui	24.11	88.98	36.91	
Patagonia	24.85	62 25	13.4	
Brazil	40.5	57.9	1.6	
Canada:	1 20.0	5		
Nova Scotia	26.8	60.7	12.5	
Cape Breton	26.9	67.6	5.5	
Australia		0,0		
Australian lignite	15.8	64.3	10.0	•
Sydney, South Wales		82.89	2.04	
Borneo	26.5	70.3	14.2	
Van Diemen's Land		63.4	80.45	

An analysis of Pictou, N. S., coal, in Trans. A. I. M. E., xiv. 560, is: Vol., 29.63; carbon, 56.98; ash, 18.39; and one of Sydney, Cape Breton, coal is: vol., 34.07; carbon, 61.43; ash, 4.50.

632 PURL.

Nixon's Navigation Welsh Coal is remarkably pure, and contains not more than 3 to 4 per cent of ashes, giving 88 per cent of hard and lustrous coke. The quantity of fixed carbon it contains would classify it among the dry coals, but on account of its coke and its intensity of com-

among the dry coals, but on account of its coke and its intensity of combustion it belongs to the class of fat, or long flaming coals. Chemical analysis gave the following results: Carbon, 90.27; hydrogen, 4.39; sulphur, 69; nitrogen. 49; oxygen (difference), 4.16. The analysis showed the following composition of the volatile parts: Carbon, 22.53; hydrogen, 34.96; O + N + S, 42.51. The heat of combustion was found to be, as a result of several experiments, 8864 calories for the unit of weight. Calculated according to its composition, the heat of combustion would be 8805 calories = 15,849 British themsel units revenue.

thermal units per pound.

This coal is generally used in trial-trips of steam-vessels in Great Britain. Sampling Coal for Analysis.—J. P. Kimball, Trans. A. I. M. E., xii. 317, says: The unsuitable sampling of a coal-seam, or the improper preparation of the sample in the laboratory, often gives rise to errors in de-terminations of the ash so wide in range as to vitiate the analysis for all practical purposes; every other single determination, excepting moisture, showing its relative part of the error. The determination of sulphur and ash are especially liable to error, as they are intimately associated in the

Wm. Forsyth, in his paper on The Heating Value of Western Coals (Eng'g News, Jan. 17, 1895), says: This trouble in getting a fairly average sample of anthracite coal has compelled the Reading R. R. Co., in getting their samples, to take as much as 300 lbs. for one sample, drawn direct from the chutes, as

it stands ready for shipment.

The directions for collecting samples of coal for analysis at the C., B. & Q.

laboratory are as follows:

Two samples should be taken, one marked "average," the other "select." Each sample should contain about 10 lbs., made up of lumps about the size of an orange taken from different parts of the dump or car, and so selected that they shall represent as nearly as possible, first, the average lot; second, the best coal

An example of the difference between an "average" and a "select"

1.90 84.70 15.17

The theoretical evaporative power of the former was 9.13 lbs. of water from and at 212° per lb. of coal, and that of the latter 11.44 lbs.

Relative Value of Fine Sizes of Anthracite.—For burning on a grate coal-dust is commercially valueless, the finest commercial anthracites being sold at the following rates per ton at the mines, according to a recent address by Mr. Eckley B. Coxe (1893):

Price at Mines

Size.	Range or Size.	Price at Mil
Chestnut	11/2 to 3/8 inch	\$2.75
Pea	. % to 9/16	1.25
Buckwheat	. 9/16 to 34	0.75
Rice		0.25
Barley	3/16 to 2/32	0.10
A bon coal in moderned to on	Immalaabla dust	a mathad of h

But when coal is reduced to an impalpable dust, a method of burning it becomes possible to which even the finest of these sizes is wholly unadapted; the coal may be blown in as dust, mixed with its proper proportion

of air, and no grate at all is then required.

Pressed Fuel. (E. F. Loiseau, Trans. A. I. M. E., viii. 314.)—Pressed fuel has been made from anthracite dust by mixing the dust with ten per cent of its bulk of dry pitch, which is prepared by separating from tar at a temperature of 572° F. the volatile matter it contains. The mixture is kept heated by steam to 212°, at which temperature the pitch acquires its cementing properties, and is passed between two rollers, on the periphery of which are milled out a series of semi-oval cavities. The lumps of the mixture, about the size of an egg, drop out under the rollers on an endless belt which carries them to a screen in eight minutes, which time is sufficient to cool the lumps, and they are then ready for delivery.

The enterprise of making the pressed fuel above described was not com-

mercially successful, on account of the low price of other coal. In France, however, "briquettes" are regularly made of coal-dust (bituminous and

semi-bituminous).

### RRLATIVE VALUE OF STEAM COALS.

The heating value of a coal may be determined, with more or less approx-

imation to accuracy, by three different methods.

Ist, by chemical analysis; 2d. by combustion in a coal calorimeter; 3d, by actual trial in a steam-boiler. The first two methods give what may be

called the theoretical heating value, the third gives the practical value.

The accuracy of the first two methods depends on the precision of the method of analysis or calorimetry adopted, and upon the care and skill of the operator. The results of the third method are subject to numerous sources of variation and error, and may be taken as approximately true only for the particular conditions under which the test is made. Analysis and calorimetry give with considerable accuracy the heating value which may be obtained under the conditions of perfect combustion and complete absorption of the heat produced. A boiler test gives the actual result under conditions of more or less imperfect combustion, and of numerous and value which the conditions of more or less imperfect combustion, and of numerous and value which the conditions of more or less imperfect combustion, and of numerous and value which the conditions of more or less imperfect combustion, and of numerous and value which the conditions of more or less imperfect combustion, and of numerous and value which the conditions of more or less imperfect combustion, and of numerous and value which the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the conditions of the c riable wastes. It may give the highest practical heating value, if the conditions of grate-bars, draft, extent of heating surface, method of firing, etc.. are the best possible for the particular coal tested, and it may give results far beneath the highest if these conditions are adverse or unsuitable to the coal.

The results of boiler tests being so extremely variable, their use for the curpose of determining the relative steaming values of different coals has frequently led to false conclusions. A notable instance is found in the record of Prof. Johnson's tests, made in 1844, the only extensive series of tests of American coals ever made. He reported the steaming value of the Lehigh Coal & Navigation Co.'s coal to be far the lowest of all the anthracites, a result which is easily explained by an examination of the conditions under which he made the test, which were entirely unsuited to that coal. He also reported a result for Pittsburgh coal which is far beneath that now obtainable in every-day practice, his low result being chiefly due to the use of an improper furnace.

In a paper entitled Proposed Apparatus for Determining the Heating Power of Different Coals (Trans. A. I. M. E., xiv. 727) the author described and illustrated an apparatus designed to test fuel on a large scale, avoiding the errors of a steam-boiler test. It consists of a fire-brick furnace enclosed in a water casing, and two cylindrical shells containing a great number of tubes, which are surrounded by cooling water and through which the gases of combustion pass while being cooled. No steam is generated in the apparatus, but water is passed through it and allowed to escape at a tempera-ture below 200° F. The product of the weight of the water passed through the apparatus by its increase in temperature is the measure of the heating value of the fuel.

There has been much difference of opinion concerning the value of chemical analysis as a means of approximating the heating power of coal. It was found by Scheurer-Kestner and Meunier-Dollfus, in their extensive series of tests, made in Europe in 1888, that the heating power as determined by calorimetric tests was greater than that given to chemical analysis according to Dulong's law.

Recent tests made in Paris by M. Mahler, however, show a much closer agreement of analysis and calorimetric tests. A brief description of these tests, translated from the French, may be found in an article by the author in The Mineral Industry, vol. i. page 97.

Dulong's law may be expressed by the formula,

¢

Heating Power in British Thermal Units = 14,500C + 62,500 (H -  $\frac{O}{8}$ ),*

in which C, H, and O are respectively the percentage of carbon, hydrogen, and oxygen, each divided by 100. A study of M. Mahler's calorimetric tests shows that the maximum difference between the results of these tests and the calculated heating power by Dulong's law in any single case is only a little over 3%, and the results of 31 tests show that Dulong's formula gives an average of only 47 thermal units less than the calorimetric tests, the average total heating value being over 14,000 thermal units, a difference of less than 4/10 of 1%.

Heating Power = 
$$14,650C + 62,025 \left(H - \frac{(O + N) - 1}{8}\right)$$
.

^{*} Mahler gives Dulong's formula with Berthelot's figure for the heating value of carbon, in British thermal units,

634 FUEL.

Mahler's calorimetric apparatus consists of a strong steel vessel or "bomb" immersed in water, proper precaution being taken to prevent radiation. One gram of the coal to be tested is placed in a platinum boat within this bomb, oxygen gas is introduced under a pressure of 20 to 25 atmospheres, and the coal ignited explosively by an electric spark. Combustion is complete and instantaneous, the heat is radiated into the surrounding water, weighing 2200 grams, and its quantity is determined by the rise in temperature of this water, due corrections being made for the heat capacity of the apparatus itself. The accuracy of the apparatus is remarkable, duplicate tests giving results varying only about 2 parts in 1000.

The close agreement of the results of calorimetric tests when properly

The close agreement of the results of calorimetric tests when properly conducted, and of the heating power calculated from chemical analysis, indicates that either the chemical or the calorimetric method may be accepted as correct enough for all practical purposes for determining the total heating power of coal. The results obtained by either method may be taken as a standard by which the results of a boiler test are to be compared, and the difference between the total heating power, and the result of the boiler test is a measure of the inefficiency of the boiler under the con-

ditions of any particular test.

In practice with good anthracite coal, in a steam-boiler properly proportioned, and with all conditions favorable, it is possible to obtain in the steam 80% of the total heat of combustion of the coal. This result was nearly obtained in the tests at the Centennial Exhibition in 1876, in five different boilers. An efficiency of 70% to 75% may easily be obtained in regular practice. With bituminous coals it is difficult to obtain as close an approach to the theoretical maximum of economy, for the reason that some of the volatile combustible portion of the coal escapes unburned, the difficulty increasing rapidly as the content of volatile matter increases beyond 20% With most coals of the Western States it is with difficulty that as much as 60% or 65% of the theoretical efficiency can be obtained without the use of gas-producers.

The chemical analysis heretofore referred to is the ultimate analysis, or the percentage of carbon, hydrogen, and oxygen of the dry coal. It is found, however, from a study of Mahler's tests that the proximate analysis, which gives fixed carbon, volatile matter, moisture, and ash, may be relied on as giving a measure of the heating value with a limit of error of only about \$%. After deducting the moisture and ash, and calculating the fixed carbon as a percentage of the coal dry and free from ash, the author has constructed the following table:

APPROXIMATE	HEATING	TATTE	OF COAT	

Percentage F. C. in Coal Dry and Free from Ash.	Heating Value B.T.U. per lb. Comb'le.	Equiv. Water Evap. from and at 212° per lb. Combustible.	F. C. in Coal Dry and Free	Heating Value B.T.U. per.lb. Comb'le.	Equiv. Water Evap. from and at 212° per lb. Combustible.
100 97 94 90 87 80 72	14500 14760 15120 15480 15660 15840 15660	15.00 15.28 15.65 16.08 16.21 16.40	68 63 60 57 54 51	15480 15190 14580 14040 18320 12600 12240	16.08 15.65 15.09 14.53 13.79 13.04 12.67

Below 50% the law of decrease of heating-power shown in the table apparently does not hold, as some cannel coals and lignites show much higher heating-power than would be predicted from their chemical constitution.

The use of this table may be shown as follows:

Given a coal containing moisture 2%, ash 8%, fixed carbon 61%, and volatile matter 29%, what is its probable heating value? Deducting moisture and ash we find the fixed carbon is 61/90 or 68% of the total of fixed carbon and volatile matter. One pound of the coal dry and free from ash would, by the table, have a heating value of 15.480 thermal units, but as the ash and moisture, having no heating value, are 10% of the total weight of the coal, the coal would have 90% of the table value, or 13,932 thermal units. This divided by 966, the latent heat of steam at 212° gives an equivalent evaporation per 1b, of coal of 14.42 lbs.

The heating value that can be obtained in practice from this coal would depend upon the efficiency of the boiler, and this largely upon the difficulty of thoroughly burning its volatile combustible matter in the boiler furnace. If a boiler efficiency of 65% could be obtained, then the evaporation per lb. of

coal from and at 212° would be  $14.42 \times .65 = 9.37$  lbs. With the best anthracite coal, in which the combustible portion is, say, 97%fixed carbon and 3% volatile matter, the highest result that can be expected in a boiler-test with all conditions favorable is 12.2 lbs. of water evaporated from and at 212° per lb. of combustible, which is 80% of 15.28 lbs. the theoretical heating-power. With the best semi-bituminous coals, such as Cumberland and Pocahontas, in which the fixed carbon is 80% of the total combustible, 12 5 lbs., or 76% of the theoretical 16.4 lbs., may be obtained. For Pittsburgh coal, with a fixed carbon ratio of 68%, 11 lbs., or 69% of the theoretical 16.03 bs., is about the best practically obtainable with the best boilers. With some good Ohio coals, with a fixed carbon ratio of 60%, 10 bs., or 650 of the theoretical 15.09 bs., has been obtained, under favorable conditions, with a fire-brick arch over the furnace. With coals mined west of Ohio, with lower carbon ratios, the boiler efficiency is not apt to be as high as 60%.

From these figures a table of probable maximum boiler-test results from

coals of different fixed carbon ratios may be constructed as follows: Fixed carbon ratio ..... 97 80 68 60 Evap. from and at 212° per lb. combustible, maximum in boiler-tests: 12.2 12.5 11 10 8.8 7.0

80 76 69 66 60 55 Boiler efficiency, per cent..... Loss, chimney radiation, imperfect combustion, etc:

20 24 31 84

The difference between the loss of 20% with anthracite and the greater losses with the other coals is chiefly due to imperfect combustion of the bituminous coals, the more highly volatile coals sending up the chimney the greater quantity of smoke and unburned hydrocarbon gases. It is a measure of the inefficiency of the boiler furnace and of the inefficiency of heatingsurface caused by the deposition of soot, the latter being primarily caused by the imperfection of the ordinary furnace and its unsuitability to the proper burning of bituminous coal. If in a boiler test with an ordinary furnace lower results are obtained than those in the above table, it is an indication of unfavorable conditions, such as bad firing, wrong propositions of boiler, defective draft, and the like, which are remediable. Higher results can be expected only with gas-producers, or other styles of furnace especially designed for smokeless combustion.

cially designed for smokeless combustion.

Kind of Furnace Adapted for Different Coals. (From the author's paper on "The Evaporative Power of Bituminous Coals," Trans. A. S. M. E., iv, 257.)—Almost any kind of a furnace will be found well adapted to burning anthractic coals and semi-bituminous coals containing less than 20% of volatile matter. Probably the best furnace for burning those coals which contain between 20% and 40% volatile matter, including the Scotch, English, Welsh, Nova Scotia, and the Pittsburgh and Monongahela and seals for a full operate have furnace with a fire-brick arch thrown over river coals, is a plain grate-bar furnace with a fire-brick arch thrown over it, for the purpose of keeping the combustion-chamber thoroughly hot. The best furnace for coals containing over 40% volatile matter will be a furnace surrounded by fire-brick with a large combustion-chamber, and some special appliance for introducing very hot air to the gases distilled from the coal, or, preferably, a separate gas-producer and combustion-chamber, with facilities for heating both air and gas before they unite in the combustionchamber. The character of furnace to be especially avoid d in burning all bituminous coals containing over 20% of volatile matter is the ordinary furnace, in which the boiler is set directly above the grate bars, and in which the heating-surfaces of the boiler are directly exposed to radiation from the coal on the grate. The question of admitting air above the grate is still unsettled. The London Engineer recently said: "All our experience, extending over many years, goes to show that when the production of smoke is prevented by special devices for admitting air, either there is an increase in the consumption of full or a diminution in the production of steam. ** The best smoke-preventer yet devised is a good fireman."

**Downward-draught Furnaces.**—Recent experiments show that with bituminous coal considerable saving may be made by causing the draught to go downwards from the freshly-fired coal through the hot coal on the grate. Similar good results are also obtained by the upward draught by feeding the fresh coal under the bed of hot coal instead of on top. (See

Boilers.)

Calorimetric Tests of American Coals.—From a number of tests of American and foreign coals, made with an oxygen calorimeter, by Geo. H. Barrus (Trans. A. S. M. E., vol. xiv. 816), the following are selected, showing the range of variation:

	Percentage of Ash.		Total Heat reduced to Fuel free from Ash.
Semi-bituminous. George's Cr'k, Cumberl'd, Md.,10 tests	6.1	14,217 12,874	15,141 14,085
Pocahontas, Va., 5 tests	1 0.2	14,603 13,608	15,086 14,507
New River, Va., 6 tests	1 1 0.1	13,922 13,858	14,427 14,696
Elk Garden, Va., 1 test	7.8	13,180 13,581	14,295 14,714
Youghiogheny, Pa., lump slack	5.9	12,941	13,752
Frontenac, Kansas	17.7	11,664 10,506	12,988 12,765
Cape Breton, (Caledonia) Lancashire, Eng	6.8	12,420 12,122	13,602 13,006 12,873
Anthracite, 11 tests	9.1	11,521 13,189	14,509

# Evaporative Power of Bituminous Coals.

(Tests with Babcock & Wilcox Boilers, Trans. A. S. M. E., iv. 267.)

									,	
Name of Coal.	Duration of Test.	Grate Surface, sq. ft.	Heating Surface, sq. ft.	Percentage of Refuse.	Coal burned per sq. ft. of Grate, pounds.	Water evaporated per sq. ft. of Heating Surface per hour, pounds.	Water per pound Coal from and at 212°, lbs.	Water per pound Combustible from and at 212°.	Rated Horse-power.	Horse-power developed.
1. Welsh	1316 hrs	40	1679	7.5	6.8	2.07	11.53	12.46	146	96
2. Anthracite scr's 1/5	)	1	10.0		0.0		11.00		130	•
Powelton, Pa.,	101/4 h	60	3126	8.8	17.6	4.32	11.32	12.42	272	448
Semi-bit, 4/5,	1	"	01.20	0.0	1	2.50	11.00		~~~	770
3. Pittsbg'h fine slack	4 hrs.	33.7	1679	12.3	21.9	4.47	8.12	9.29	146	250
" 3d Pool lump					27.5	4.76	10.47	11.00	240	419
4. Castle Shannon, nr	)									
Pittsb'gh, 36 nut,	}42⅓ h	69.1	4781	10.5	27.9	4.13	10.00	11.17	416	570
% lump,	)		i	ĺ	1					
5. Ill. "run of mine"	6 days.		1196		l <b>.</b> .	1.41	9.49		104	54
" Ind. block, "very	}3 d'ys	1	1196		l	2.95	9.47		104	111
good "	1) -	1	ı							
6. Jackson, O., nut	8 hrs.		3358	9.6	32.1	4.11	8.93	9.88	292	460
" Staunton, Ill., nut	8 "	60	3358		25.1	2.27	5.09	6.19	292	246
7. Renton screenings.	5 h 50 m						6.88	7.98	136	151
" Wellington scr'gs	6 h 30 m					2.93	7.89	9.66	136	150
	5 h 58 m					8.11	6.29	7.80	136	160
	6 h 24 m					2.91	6.86	7.92	136	150
" Wellington lump	6 h 19 m	21.2	1564	18.8	28.2	3.52	9.02	10.46		171
" Cardiff lump	6 h 47 m	21.2	1564	11.7	20.7	3.69	10.07	11.40	186	189
• • • • • • • • • • • • • • • • • • • •	7 h 23 m					8.35	9.62	11.89	136	174
" South Paine lump.	6 h 35 m					8.53	8.96	10.41	186	182
" Seattle lump	6h 5m	· #1 . Z	11004	y.5	34.1	8.57	7.68	8.49	186	184

637

Place of Test: 1. London, England; 2. Peacedale, R. I.; 3. Cincinnati, O.; 4. Pittsburgh, Pa.; 5. Chicago, Ill.; 6. Springfield, O.; 7. San Francisco,

COKE.

In all the above tests the furnace was supplied with a fire-brick arch for

preventing the radiation of heat from the coal directly to the boiler.

Weathering of Coal. (I. P. Kimball, Trans. A. I. M. E., viii. 204.)—
The practical effect of the weathering of coal, while sometimes increasing its absolute weight, is to diminish the quantity of carbon and disposable hydrogen and to increase the quantity of oxygen and of indisposable hydrogen. Hence a reduction in the calorific value.

An excess of pyrites in coal tends to produce rapid oxidation and mechan-

ical disintegration of the mass, with development of heat, loss of coking

power, and spontaneous ignition.

The only appreciable results of the weathering of anthracite within the ordinary limits of exposure of stocked coal are confined to the oxidation of its accessory pyrites. In coking coals, however, weathering reduces and finally destroys the coking power, while the pyrites are converted from the state of bisulphide into comparatively innocuous sulphates.

Richters found that at a temperature of 186° to 180° fahr., three coals lost in fourteen days an average of 3.6% of calorific power. (See also paper by R. P. Rothwell, Trans. A. I. M. E., iv. 55.)

### COKE.

Coke is the solid material left after evaporating the volatile ingredients of coal, either by means of partial combustion in furnaces called coke ovens, or by distillation in the retorts of gas-works.

Coke made in ovens is preferred to gas coke as fuel. It is of a dark-gray color, with slightly metallic lustre, porous, brittle, and hard.

The proportion of coke yielded by a given weight of coal is very different for different kinds of coal, ranging from 0.9 to 0.35.

Reing of a propus texture it regdity attracts and retains water from the

Being of a porous texture, it readily attracts and retains water from the atmosphere, and sometimes, if it is kept without proper shelter, from 0.15 to 0.20 of its gross weight consists of moisture.

### Analyses of Coke. (From report of John R. Procter, Kentucky Geological Survey.)

, v	Vhere Mad	le.			Fixed Carbon	Ash.	Sul- phur.
Connellsville, Pa.	(Average	of 3	samples	3)	88.96	9.74	0.810
Chattanooga, Tenn.	(	" 4			80.51	16.84	1.595
Birmingham, Ala.	44	" 4	66		87.29	10.54	1.195
Pocahontas, Va.	**	" 8	44		92.53	5.74	0.597
New River, W. Va.	**	" 8	44		92.38	7.21	0.562
Big Stone Gap. Kv.	44	" 7	44		93.23	5.69	0.749

# Experiments in Coking. Connellsville Region.

(John Fulton, Amer. Mfr., Feb. 10, 1893.)

est.	<u> </u>	gg.	de.	oke e.	ade	Coke	Pe	r cent	of Yie	eld.	t
No. of Test.	Time in Oven.	Charged	Ash made.	Fine Comade	Market Coke ma	Total C made.	Ash.	Fine Coke.	Market Coke	Total Coke.	Per Cent Lost.
1 2 3 4	h. m. 67 00 68 00 45 00 45 00		90 77	lb. 385 359 272 349	lb. 7,518 6,580 5,418 5,334	lb. 7,908 6,939 5,690 5,683	00.80 00.81 00.84 00.82	3 10 3.24 2.98 3 87	60.53 59.33 59.41 59.13	62.57 62.89	36.62 36.77
	)	41,650	340	1365	24,850	26,215	00.82	3.28	59.66	62.94	36.24

These results show, in a general average, that Connellsville coal carefully coked in a modern beehive oven will yield 66.17% of marketable coke, 2.30% of small coke or braize, and 0.82% of ash.

638 FUEL.

The total average loss in volatile matter expelled from the coal in coking amounts to 30.71%.

The modern beehive coke oven is 12 feet in diameter and 7 feet high at

crown of dome. It is used in making 48 and 72 hour coke. In making these tests the coal was weighed as it was charged into the

oven; the resultant marketable coke, small coke or braize and ashes weighed dry as they were drawn from the oven.

Coal Washing.—In making coke from coals that are high in ash and sulphur, it is advisable to crush and wash the coal before coking it. A coalwashing plant at Brookwood, Ala., has a capacity of 50 tons per hour. The average percentage of ash in the coal during ten days' run varied from 14% to 21%, in the washed coal from 4.8% to 8.1%, and in the coke from 6.1% to 10.5%. During three months the average reduction of ash was 60.9%. (Eng. and Mining Jour., March 25, 1893.)

Recovery of By-products in Coke Manufacture.—In Germany considerable progress has been made in the recovery of by products. The Hoffman-Otto oven has been most largely used, its principal feature being that it is connected with regenerators. In 1884 40 ovens on this

system were running, and in 1892 the number had increased to 1209

A Hoffman-Otto oven in Westphalia takes a charge of 61/4 tons of dry coal and converts it into coke in 48 hours. The product of an oven annually is 1025 tons in the Ruhr district, 1170 tons in Silesia, and 960 tons in the Saar district. The yield from dry coal is 75% to 77% of coke, 2.5% to 3% of tar, and 1.1% to 1.2% of sulphate of ammonia in the Ruhr district; 65% to 70% of coke, 4% to 4.5% of tar, and 1% to 1.25% of sulphate of ammonia in the Upper Silesia region and 68% to 72% of coke, 4% to 4.3% of tar and 1.8% to 1.9% of sulphate of ammonia in the Saar district. A group of 60 Hoffman ovens, therefore, yields annually the following:

District.	Coke, tons.	Tar, tons,	Sulphate Ammonia, tons.
Ruhr	51,200	1860.	780
Upper Silesia	48,000	3000.	840
Saar	40,500	2400.	492

An oven which has been introduced lately into Germany in connection with the recovery of by-products is the Semet-Solvay, which works hotter than the Hoffman Otto, and for this reason 73% to 77% of gas coal can be mixed with 23% to 23% of coal low in volatile matter, and yet yield a good coke. Mixtures of this kind yield a larger percentage of coke, but, on the other hand, the amount of gas is lessened, and therefore the yield of tar and ammonia is not so great.

In the manufacture of coke from soft coal in retort ovens, particularly in those constructed so as to save the by-products formed in the coking operations, the coke has the disadvantage of being more porous, softer, with more easily crushed cell-walls than when the same coal is coked in the

ordinary beehive-oven.
References: F. W. Luerman, Verein Deutscher Eisenhuettenleute 1891, Iron Age, March 31, 1892; Amer. Mfr., April 28, 1893. An excellent series of articles on the manufacture of coke, by John Fulton, of Johnstown, Pa.,

is published in the Colliery Engineer, beginning in January, 1893.

Making Hard Coke.—J. J. Fronheiser and C. S. Price, of the Cambria Iron Co., Johnstown, Pa., have made an improvement in coke manufacture by which coke of any degree of hardness may be turned out. It is accomplished by first grinding the coal to a coarse powder and mixing it with a hydrate of lime (air or water slacked caustic lime) before it is charged into the coke-ovens. The caustic lime or other fluxing material used is mechanically combined with the coke, filling up its cell walls. It has been found that about 5% by weight of caustic lime mixed with the fine coal gives the best results. However, a larger quantity of lime can be added to coals containing more than 5% to 7% of ash Amer. Mfr.

pals containing more than 5% to 7% of ash (Amer. Mfr.)

Generation of Steam from the Waste Heat and Gases of Coke-ovens. (Erskine Ramsey, Amer. Mfr., Feb. 16, 1894.)—The gases from a number of adjoining ovens of the beehive type are led into a long horizontal flue, and thence to a combustion chamber under a battery of boilers. Two plants are in satisfactory operation at Tracy City, Tenn., and two at Pratt Mines. Ala.

A Bushel of Coal.—The weight of a bushel of coal in Indiana is 70 lbs., in Penna. 76 lbs.; in Ala., Colo., Ga., Ill., Ohio, Tenn., and W. Va. it is 80 lbs. A Bushel of Coke is almost uniformly 40 lbs., but in exceptional cases, when the coke is very light, 38, 36, and 33 lbs. are regarded as a bushel. In others, from 42 to 50 lbs are given as the weight of a bushel; in this case

the coke would be quite heavy.

Products of the Distillation of Coal.—S. P. Sadler's Handbook of Industrial Organic Chemistry gives a diagram showing over 50 chemical products that are derived from distillation of coal. The first derivatives are coal-gas, gas-liquor, coal-tar, and coke. From the gas-liquor are derived aminonia and sulphate, chloride and carbonate of ammonia. The coal-tar, is split up into oils lighter than water or crude naphtha, oils heavier than water—otherwise dead oil or tar, commonly called creosote,—and pitch. From the two former are derived a variety of chemical products.

From the coal-tar there comes an almost endless chain of known combina-tions. The greatest industry based upon their use is the manufacture of dyes, and the enormous extent to which this has grown can be judged from the fact that there are over 600 different coal-tar colors in use, and many more which as yet are too expensive for this purpose. Many medicinal preparations come from the series, pitch for paving purposes, and chemicals for the photographer, the rubber manufacturers and tanners, as well as for

preserving timber and cloths.

The composition of the hydrocarbons in a soft coal is uncertain and quite complex; but the ultimate analysis of the average coal shows that it approaches quite nearly to the composition of CH₄ (marsh-gas). (W. H. Blauvelt, Trans. A. I. M. E., xx. 625.)

#### WOOD AS FUEL.

Wood, when newly felled, contains a proportion of moisture which varies very much in different kinds and in different specimens, ranging between 30% and 50%, and being on an average about 40%. After 8 or 12 months' ordinary drying in the air the proportion of moisture is from 20 to 25%. This nary drying in the air the proportion of moisture is from 20 to 25%. This degree of dryness, or almost perfect dryness if required, can be produced by a few days' drying in an oven supplied with air at about 240° F. When coal or coke is used as the fuel for that oven, 1 lb. of fuel suffices to expel about 3 lbs. of moisture from the wood. This is the result of experiments on a large scale by Mr. J. R. Napier. If air dried wood were used as fuel for the oven, from 2 to 2½ lbs. of wood would probably be required to produce the same effect.

The specific gravity of different kinds of wood ranges from 0.3 to 1.2. Perfectly dry wood contains about 50% of carbon, the remainder consisting almost entirely of oxygen and hydrogen in the proportions which form water. The coniferous family contain a small quantity of turpentine, which is a hydrocarbon. The proportion of ash in wood is from 1% to 5%. The total heat of combustion of all kinds of wood, when dry, is almost ex-

actly the same, and is that due to the 50% of carbon.

The above is from Rankine; but according to the table by S. P. Sharpless in Jour. C. I. W., iv. 36, the ash varies from 0.03% to 1.20% in American woods, and the fuel value, instead of being the same for all woods, ranges from 2667 (for white oak) to 5546 calories (for long-leaf pine) = 6600 to 9883 British thermal units for dry wood, the fuel value of 0.50 lbs. carbon being 7272 B. T. U.

Heating Value of Wood.—The following table is given in several books of reference, authority and quality of coal referred to not stated.

The weight of one cord of different woods (thoroughly air-dried) is about as follows:

Hickory or hard maple	4500	lbs.	equal to	1800	lbs.	coal.	(Others	give 2000.)
White oak	3850	66	- 46	1540		**	( "	1715.)
Beech, red and black oak	3250	"	**	1300			( "	1450.)
Poplar, chestnut, and elm	2350	**	**	940	**	"	( "	1050.5
The average pine			**	800	• • •	**	٠ )	925.)

Referring to the figures in the last column, it is said:

From the above it is safe to assume that 21/4 lbs. of dry wood are equal to 1 lb. average quality of soft coal and that the full value of the same weight of different woods is very nearly the same—that is, a pound of hickory is worth no more for fuel than a pound of pine, assuming both to be dry. It is important that the wood be dry, as each 10% of water or moisture in wood will detract about 12% from its value as fuel.

Taking an average wood of the analysis 0.51%, H 6.5%, O 42.0%, ash 0.5%. perfectly dry, its fuel value per pound, according to Dulong's formula, V =  $\left[14,500 \text{ C}+62,000 \text{ (H}-\frac{0}{8})\right]$ , is 8170 British thermal units. If the wood, as ordinarily dried in air, contains 25% of moisture, then the heating value of a pound of such wood is three quarters of 8170 = 6127 heat-units, less the heat required to heat and evaporate the ¼ lb. of water from the atmospheric temperature, and to heat the steam made from this water to the temperature of the chimney gases, say 150 heat-units per pound to heat the water to 212°, 966 units to evaporate it at that temperature, and 100 heat-units to raise the temperature of the steam to 420° F., or 1216 in all = 304 for ¼ lb., which subtracted from the 6127, leaves 5824 heat-units as the net fuel value of the wood per pound, or about 0.4 that of a pound of carbon.

Composition of Wood.

(Analysis of Woods, by M. Eugene Chevandier.)

Woods.	Composition.										
woods.	Carbon.	Hydrogen.	Oxygen.	Nitrogen.	Ash.						
Beech	49.36% 49.64 50.20 49.87 49.96	6.01% 5.92 6.20 6.21 5.96	42.69% 41.16 41.62 41.60 39.56	0.91% 1.29 1.15 0.96 0.96	1.06% 1.97 0.81 1.86 3.37						
Average	49.70%	6.06%	41.30%	1.05%	1.80%						

The following table, prepared by M. Violette, shows the proportion of water expelled from wood at gradually increasing temperatures:

Temperature,	Water Expelled from 100 Parts of Wood.						
Temperature.	Oak.	Ash.	Elm.	Walnut.			
257° Fahr	15.26 17.93 32.13 35.80 44.31	14.78 16.19 21.22 27.51 33.38	15.82 17.02 86.94? 33.38 40.56	15.55 17.48 21.00 41.77? 86.56			

The wood operated upon had been kept in store during two years. When wood which has been strongly dried by means of artificial heat is left exposed to the atmosphere, it reabsorbs about as much water as it contains in its air-dried state.

A cord of  $wood = 4 \times 4 \times 8 = 128$  cu. ft. About 56% solid wood and 44% interstitial spaces. (Marcus Bull, Phila., 1829. J. C. I. W., vol. 1, p. 293.) B. E. Fernow gives the per cent of solid wood in a cord as determined officially in Prussia (J. C. I. W., vol. iii. p. 20):

Timber cords, 74.07% = 80 cu. ft. per cord;

Firewood cords (over 6" diam.), 69.44% = 75 cu. ft. per cord; "Billet" cords (over 3" diam.), 55.55% = 60 cu. ft. per cord; "Brush" woods less than 3" diam., 18.52%; Roots, 37.00%.

### CHARCOAL.

Charcoal is made by evaporating the volatile constituents of wood and peat, either by a partial combustion of a conical heap of the material to be charred, covered with a layer of earth, or by the combustion of a separate portion of fuel in a furnace, in which are placed retorts containing the ma-

terial to be charged.

According to Peclet, 100 parts by weight of wood when charred in a heap yield from 17 to 22 parts by weight of charcoal, and when charred in a

retort from 28 to 30 parts.

This has reference to the ordinary condition of the wood used in charcoalmaking, in which 25 parts in 100 consist of moisture. Of the remaining 75 parts the carbon amounts to one half, or 37% of the gross weight of the wood. Hence it appears that on an average nearly half of the carbon in the wood is lost during the partial combustion in a heap, and about one quarter during the distillation in a retort.

To char 100 parts by weight of wood in a retort, 12½ parts of wood must be burned in the furnace. Hence in this process the whole expenditure of wood to produce from 28 to 30 parts of charcoal is 112½ parts; so that if the weight of charcoal obtained is compared with the whole weight of wood expended, its amount is from 25% to 27%; and the proportion lost is on an average 11½ + 37½ = 0.3, nearly.

According to Peclet, good wood charcoal contains about 0.07 of its weight

of ash. The proportion of ash in peat charcoal is very variable, and is estimated on an average at about 0.18. (Rankine.)

Much information concerning charcoal may be found in the Journal of the Charcoal-iron Workers' Assn., vols. i. to vi. From this source the following

notes have been taken:

Yield of Charcoal from a Cord of Wood.—From 45 to 50 bushels to the cord in the kiln, and from 30 to 35 in the meiler. Prof. Eglecton in Trans. A. I. M. E., viii. 395, says the yield from kilns in the Lake Champlain region is often from 50 to 60 bushels for hard wood and 50 for soft wood; the average is about 50 bushels.

The apparent yield per cord depends largely upon whether the cord is a

1

full cord of 128 cu. ft. or not. In a four months' test of a kiln at Goodrich, Tenn., Dr. H. M. Pierce found results as follows: Dimensions of kiln-inside diameter of base, 28 ft. 8 in.; diam. at spring of arch, 26 ft. 8 in.; height of walls, 8 ft.; rise of arch, 5 ft.; capacity, 30 cords. Highest yield of charcoal per cord of wood (measured) 59.27 bushels, lowest 50.14 bushels, average 53.65 bushels.

No, of charges 12, length of each turn or period from one charging to another 11 days. (J. C. I. W., vol. vi. p. 26.)

### Results from Different Methods of Charcoal-making.

Coaling Methods.	Character of Wood used.	In Volume per cent.	In Weight P	Bushels of Charcoal per Cord of Wood,	Weight in Lbs. per Bushel of Charcoal.
Odelstjerna's experiments	Birch dried at 230 F		35.9		
Mathieu's retorts, fuel ex- cluded	Air dry, av. good yel-	77.0	28.3	63.4	15.7
Mathieu's retorts, fuel in- cluded		65.8	24.2	54.2	15.7
Swedish ovens, av. results	Good dry fir and pine, mixed.	81.0	27.7	66.7	13.3
Swedish ovens, av. results	Poor wood, mixed fir i	70.0	25 8	62.0	13.8
Swedish meilers excep- tional		72.2	24 7	59.5	13.3
Swedish meilers, av. results	lbs. per cu. ft.	52 5	18 3	43.9	13.3
American kilns, av. results American meilers, av. re-	(Av. good vellow pine)	54.7	22.0	45.0	17 5
sults	per cu. ft.	42.9	17.1	35 0	17.5

Consumption of Charcoal in Blast-furnaces per Ton of Pig Iron; average consumption according to census of 1880, 1.14 tons charcoal per ton of pig. The consumption at the best furnaces is much below this average. As low as 0.853 ton, is recorded of the Morgan furnace; Bay furnace, 0.858; Elk Rapids, 0.884. (1892.)

Absorption of Water and of Gases by Charcoal.—Svedlius, in his hand-book for charcoal burners, prepared for the Swedish Government, says: Fresh charcoal also reheated charcoal, contains scarcely any water but when cooled it absorbs it very rapidly, so that after twenty-four hours, it may contain 4% to 8% of water. After the lapse of a few weeks the moisture of charcoal may not increase perceptibly, and may be estimated at 10% to 15%, or an average of 12%. A thoroughly charred piece of charcoal ought, then, to contain about 84 parts carbon 12 parts water, 3 parts ash, and 1 part hydrogen.

M. Saussure, operating with blocks of fine boxwood charcoal, freshly burnt, found that by simply placing such blocks in contact with certain gases they absorbed them in the following proportion:

	Volumes.	Volu	mes.
Ammonia	90.00	Carbonic oxide	9.42
Hydrochloric-acid gas	85.00	Oxygen	
Sulphurous acid	65.00	Nitrogen	6.50
Sulphuretted hydrogen	55.00	Carburetted hydrogen	5.00
Nitrous oxide (laughing-gas)		Hydrogen	1.75
Carbonic scid	85.00		

It is this enormous absorptive power that renders of so much value a comparatively slight sprinkling of charcoal over dead animal matter, as a preventive of the scape of odors arising from decomposition.

preventive of the escape of odors arising from decomposition.

In a box or case containing one cubic foot of charcoal may be stored without mechanical compression a little over nine cubic feet of oxygen, representing a mechanical pressure of one hundred and twenty-six pounds to the square inch. From the store thus preserved the oxygen can be drawn by a small hand-pump.

## Composition of Charcoal Produced at Various Temperatures. (By M. Violette.)

		Composition of the Solid Product.						
	Temperature of Car bonization.	Carbon.	Hydro- gen.	Oxygen.	Nitrogen and Loss.	Ash.		
1 2 3 4 5 6 7	250 482 300 592 850 662	Per cent. 47.51 51.82 65.59 73.24 76.64 81.64 81.97	Per cent. 6.12 3.99 4.81 4.25 4.14 4.96 2.30	Per cent. 46.29 43.98 28.97 21.96 18.44 15.24 14.15	Per cent. 0.08 0.23 0.63 0.57 0.61 1.61 1.60	Per cent. 47.51 39.88 32.98 24.61 22.43 15.40 15.30		

The wood experimented on was that of black alder, or alder buckthorn, which furnishes a charcoal suitable for gunpowder. It was previously dried at 150 deg. C. = 302 deg. F.

#### MISCELLANEOUS SOLID FUELS.

Dust Fuel - Dust Explosions, - Dust when mixed in air burns with such extreme rapidity as in some cases to cause explosions. Explosions of flour-mills have been attributed to ignition of the dust in confined passages. Experiments in England in 1876 on the effect of coal-dust in carrying flame in mines showed that in a dusty passage the flame from a blown-out shot may travel 50 yards. Prof. F. A. Abel (Trans. A. I. M. E., xiii. 260) says that coal-dust in mines much promotes and extends explosions, and that it may readily be brought into operation as a flercely burning agent which will carry flame rapidly as far as its mixture with air extends, and will operate as an explosive agent though the medium of a very small proportion of free damp in the air of the mine. The explosive violence of the combustion of dust is largely due to the instantaneous heating and consequent expansion of the air. (See also paper on "Coal Dust as an Explosive Agent." by Dr. R. W. Raymond, Trans. A. I. M. E., 1894.) Experiments made in Germany in 1893. show that pulverized fuel may be burned without smoke, and with high economy. The fuel, instead of being introduced into the fire-box in the ordinary manner, is first reduced to a powder by pulverizers of any construction. In the place of the ordinary boiler fire-box there is a combustion chamber in the form of a closed furnace lined with fire-brick and provided with an air-injector similar in construction to those used in oil-burning furnaces. The nozzle throws a constant stream of the fuel into the chamber. This nozzle is so located that it scatters the powder throughout the whole

space of the fire-box. When this powder is once ignited, and it is very readily done by first raising the lining to a high temperature by an open fre, the combustion continues in an intense and regular manner under the action of the current of air which carries it in. (Mfrs. Record, April, 1898.)

Powered fuel was used in the Crompton rotary puddling-furnace at Woolwich Arsenal, England, in 1873. (Jour. I. & S. I., i. 1873, p. 91.)

Peat or Turf, as usually dried in the air, contains from 25% to 30% of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the

water, which must be allowed for in estimating its heat of combustion. This water having been evaporated, the analysis of M. Regnault gives, in 100 parts of perfectly dry peat of the best quality: C 58%, H 6%, O 31%, Ash 5%. In some examples of peat the quantity of ash is greater, amounting to 7%

and sometimes to 11%

The specific gravity of peat in its ordinary state is about 0.4 or 0.5. It can be compressed by machinery to a much greater density. (Rankine.)

Clark (Steam-engine, i. 61) gives as the average composition of dried Irish peat: C 59%, H 6%, O 30, N 1.25%, Ash 4.

Applying Dulong's formula to this analysis, we obtain for the heating value of perfectly dry peat 10,260 heat-units per pound, and for air-dried peat containing 25% of moisture, after making allowance for evaporating the water,

7391 heat-units per pounds.

Sawdust as Fuel.—The heating power of sawdust is naturally the same per pound as that of the wood from which it is derived, but if allowed to get wet it is more like spent tan (which see below). The conditions necessary for burning sawdust are that plenty of room should be given it in the furnace, and sufficient air supplied on the surface of the mass. The same applies to shavings, refuse lumber, etc. Sawdust is frequently burned in saw-mills, etc., by being blown into the furnace by a fan-blast.

**Horse-manure** has been successfully used as fuel by the Cable Railway Co. of Chicago. It was mixed with soft coal and burned in an ordinary

urnace provided with a fire-brick arch.

Wet Tan Bark as Fuel.—Tan, or oak bark, after having been used the processes of tanning, is burned as fuel. The spent tan consists of the in the processes of tanning, is burned as fuel. The spent tan consists of the fibrous portion of the bark. According to M. Peclet, five parts of oak bark produce four parts of dry tan; and the heating power of perfectly dry tan, containing 15s of ash, is 6100 English units; whilst that of tan in an ordinary tanks of the containing 15s of ash, is 6100 English units; whilst that of tan in an ordinary tanks of the containing 15s of ash, is 6100 English units; whilst that of tan in an ordinary tanks of the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containing the containi containing 10% of asa, is 5100 English units; whilst that of tan in an ordinary state of dryness, containing 30% of water, is only 4234 English units. The weight of water evaporated from and at 212° by one pound of tan, equivalent to these heating powers, is, for perfectly dry tan, 5.45 lbs., for tan with 30% moisture, 3.84 lbs. Experiments by Prof. R. H. Thurston (Jour. Frank. Inst., 1874) gave with the Crockett furnace, the wet tan containing 59% of water, an evaporation from and at 212° F. of 4.24 lbs. of water per pound of the wet tan, and with the Thompson furnace an evaporation of 3.19 lbs, per pound of wet tan containing 55% of water. The Thompson furnace consisted of six fire-brick ovens, each 9 feet × 4 feet 4 inches, containing 234 square feet of grate in all, for three boilers with a total heating surface of 2000 square feet, a ratio of heating to grate surface of 9 to 1. The tan was feet through holes in the top. The Crockett furnace was an ordinary firebrick furnace,  $6\times4$  feet, built in front of the boiler, instead of under it, the ratio of heating surface to grate being 14.6 to 1. According to Prof. Thurston the conditions of success in burning wet fuel are the surrounding of the mass so completely with heated surfaces and with burning fuel that it may be rapidly dried, and then so arranging the apparatus that thorough com-bustion may be secured, and that the rapidity of combustion be precisely equal to and never exceed the rapidity of desiccation. Where this rapidity

equal to and never exceed the rapidity of desiccation. Where this rapidity of combustion is exceeded the dry portion is consumed completely, leaving an uncovered mass of fuel which refuses to take fire.

Straw as Fuel. (Eng'g Mechanics, Feb., 1893, p. 55.)—Experiments in Russia showed that winter-wheat straw, dried at 230° F., had the following composition: C, 46.1; H, 5.6; N, 0.42: O, 43.7; Ash, 4.1. Heating value in British thermal units: dry straw, 6290; with 6% water, 5770; with 10% water, 5448. With straws of other grains the heating value of dry straw ranged from 5590 for buckwheat to 6750 for flax.

Clark (S, E, vol. 1, 1, 69) gives the mean composition of wheat and barlew.

Clark (S. E., vol. 1, p. 62) gives the mean composition of wheat and barley straw as C, 36; H. 5; O. 38; O. 0.50; Ash. 4.75; water, 15.75, the two straws varying less than 1\$. The heating value of straw of this composition, according to Dulong's formula, and deducting the heat lost in evaporating the water, is 5155 heat units. Clark erroneously gives it as 8144 heat units.

Bagasse as Fuel in Sugar Manufacture. Bagasse is the name given to refuse sugar-cane, after the juice has been extracted. Prof. L. A.

Becuel, in a paper read before the Louisiana Sugar Chemists' Association, in 1892, says: "With tropical cane containing 12.5% woody fibre, a juice containing 16.18% solids, and 83.37% water, bagasse of, say, 66% and 72% mill extraction would have the following percentage composition:

	Woody Fibre.	Combustible Salts.	Water.
66% bagasse	87	10	53
7% bagasse	45	9	46

"Assuming that the woody fibre contains 51% carbon, the sugar and other combustible matters an average of 42.1%, and that 12,906 units of heat are generated for every pound of carbon consumed, the 66% bagasse is capable of generating 297,634 heat units as against 345,200, or a difference of 47,366 units in favor of the 72% bagasse.

"Assuming the temperature of the waste gases to be 450° F., that of the surrounding atmosphere and water in the bagasse at 86° F., and the quansurrounding atmosphere and water in the dagasse at 50° F., and the quantity of air necessary for the combustion of one pound of carbon at 24 lbs., the lost heat will be as follows: In the waste gases, heating air from 86° to 450° F., and in vaporizing the moisture, etc., the 66% bagasse will require 112,546 heat units, and 116,150 for the 72% bagasse.

"Subtracting these quantities from the above, we find that the 66% bagasse will produce 155.288 available heat writing produce 155.288 available heat writing.

will produce 185,288 available heat units, or nearly 389, less than the 72% bagasse, which gives 299,050 units. Accordingly, one ton of cane of 2000 lbs. at 60% mill extraction will produce 680 lbs. bagasse, equal to 125,995,840 available heat units, while the same cane at 72% extraction will produce 560 lbs. bagasse, equal to 167,468,000 units.

A similar calculation for the case of Louisiana cane containing 10% woody fibre, and 16% total solids in the juice, assuming 75% mill extraction, shows that bagasse from one ton of cane contains 157,395,640 heat units, from

which 56,146,500 have to be deducted.

"This would make such bagasse worth on an average nearly 92 lbs. coal per ton of cane ground. Under fairly good conditions, 1 lb. coal will evaporate 716 lbs. water, while the best boiler plants evaporate 10 lbs. Therefore, the bagasse from 1 ton of cane at 75% mill extraction should evaporate from the bagasse from 1 con or cane at 75% time extraction should evaporate from 689 lbs. to 919 lbs. of water. The juice extracted from such cane would under these conditions contain 1260 lbs. of water. If we assume that the water added during the process of manufacture is 10% (by weight) of the juice made, the total water handled is 1410 lbs. From the juice represented in this case, the commercial massecuite would be about 15% of the weight of the original mill juice, or say 225 lbs. Said mill juice 1500 lbs., plus 10%, equals 1650 lbs. liquor handled; and 1650 lbs., minus 225 lbs., equals 1425 lbs. the constitute of water to be expected during the process of manufacture. the quantity of water to be evaporated during the process of manufacture. To effect a 714-lb. evaporation requires 190 lbs. of coal, and 14216 lbs. for a 10lb. evaporation.

"To reduce 1650 lbs. of juice to syrup of, say, 27° Baumé. requires the evaporation of 1770 lbs. of water, leaving 480 lbs. of syrup. If this work be accomplished in the open air, it will require about 156 lbs. of coal at 716 lbs.

boiler evaporation, and 117 at 10 lbs. evaporation.

"With a double effect the fuel required would be from 59 to 78 lbs., and

with a triple effect, from 36 to 52 lbs.

To reduce the above 480 lbs. of syrup to the consistency of commercial massecuite means the further evaporation of 255 lbs. of water, requiring the expenditure of 34 lbs. coal at 7½ lbs. boiler evaporation, and 25½ lbs. with a 10-lb. evaporation. Hence, to manufacture one ton of cane into sugar and molasses, it will take from 145 to 190 lbs. additional coal to do the work by the open evaporator process; from 85 to 112 lbs. with a double effect, and only 7% lbs. evaporation in the boilers, while with 10 lbs. boiler evaporation the bagasse alone is capable of furnishing 8% more heat than is actually required to do the work. With triple-effect evaporation depending on the excellence of the boiler plant, the 1425 lbs. of water to be evaporated from the juice will require between 62 and 86 lbs. of coal. These values show that from 6 to 30 lbs. of coal can be spared from the value of the bagasse to run engines, grind cane, etc.

It accordingly appears," says Prof. Becuel, "that with the best boiler plants, those taking up all the available heat generated, by using this heat economically the bagasse can be made to supply all the fuel required by our sugar-houses."

#### PETROLEUM.

### Products of the Distillation of Crude Petroleum.

Crude American petroleum of sp. gr. 0.800 may be split up by fractional distillation as follows (Robinson's Gas and Petroleum Engines):

Temp. of Distillation Fahr.	Distillate.	Percentages.	Specific Gravity.	Flashing Point. Deg. F.
113° 113 to 140° 140 to 158° 158 to 248° 248° to 337° 338° and } upwards. } 482°	Rhigolene.   Chymogene.   Gasolene (petroleum spirit). Benzine, naphtha C, benzolene.   Benzine, naphtha B.   A.   Polishing oils.   Kerosene (lamp-oil).   Lubricating oil   Paraffine wax   Residue and Loss.	traces. 1.5 10. 2.5 2. 50. 15. 2. 16.	.590 to .625 .686 to .657 .680 to .700 .714 to .718 .725 to .787 .802 to .820 .850 to .915	14 32 100 to 122 230

Lima Petroleum, produced at Lima, Ohio, is of a dark green color, very fluid, and marks 48° Baumé at 15° C. (sp. gr., 0.792).

The distillation in fifty parts, each part representing 2% by volume, gave

the following results:

Per	Sp.	Per	8p.	Per	Sp.	Per	Sp.	Per	Sp.	Per	Sp.
cent	. Gr.	cent.	Gr.	cent.	Gr.	cent.	Gr.	cent.	Gr.	cent.	Gr.
2	0.680	18	0.720	84	0.764	50	0.802	68	0.820	88	0.815
4	.683	20	.728	36	. 768	52)		70	.825	90	.815
6	.685	22	.730	88	.772	to }	.806	72	.830		
8	.690	24	.785	40	.778	58 \		73	.830	92 )	=
10 12	.694	26	.740	42	.782	60 ´	.800	76	.810	to }	Residuum
12	.698	28	.742	44	.788	62	.804	78	.820	100 \	:2
14	.700	30	.746	46	.792	64	.808	82	.818	,	8
16	.706	32	.760	48	.800	66	.812	86	.816		æ

RETURNS.

16 per cent naphtha, 70° Baumé. 6 per cent paraffine oil. burning oil. 68 10 residuum.

The distillation started at 23° C., this being due to the large amount of naphtha present, and when 60% was reached, at a temperature of 810° C.,

naphtha present, and when 60% was reached, at a temperature of 310°C, the hydrocarbons remaining in the retort were dissociated, then gases escaped, lighter distillates were obtained, and, as usual in such cases, the temperature decreased from 310°C. down gradually to 200°C, until 75% of oil was obtained, and from this point the temperature remained constant until the end of the distillation. Therefore these hydrocarbons in statu moriendi absorbed much heat. (Jour. Am. Chen. Soc.)

Value of Petroleum as Fuel.—Thos. Urquhart, of Russia (Proc. Inst. M. E., Jan. 1889), gives the following table of the theoretical evaporative power of petroleum in comparison with that of coal, as determined by Mesers ** Sulbermany**. Messrs, Favre & Silbermann:

Time	Specific Gravity Chem. Comp.				Heating- power, Parities   Theoret, Evap., lbs		
Fuel.	32° F., Water = 1.000.	C.	Н.	0.	British Thermal Units.	lb. Fuel, from and at 212° F.	
Penna. heavy crude oil Caucasian light crude oil heavy "" Petroleum refuse Good English Coal, Mean	0.938 0.928	p. c. 84.9 86.3 86.6 87.1	p. c. 13.7 13.6 12.3 11.7	p. c. 1.4 0.1 1.1 1.2	Units. 20,736 22,027 20,138 19,832	1bs. 21.48 22.79 20.85 20.53	
of 98 Samples	1.380	80.0	5.0	8.0	14,112	14.61	

In experiments on Russian railways with petroleum as fuel Mr. Urquhart obtained an actual efficiency equal to 82% of the theoretical heating-value. The petroleum is fed to the furnace by means of a spray-injector driven by steam. An induced current of air is carried in around the injector-nozzie,

and additional air is supplied at the bottom of the furnace.

Oil vs. Coal as Fuel. (Iron Age, Nov. 2, 1893.)—Test by the Twin City Rapid Transit Company of Minneapolis and St. Paul. This test showed that with the ordinary Lima oil weighing 6 6/10 pounds per gallon, and costing 2½ cents per gallon, and coal that gave an evaporation of 736 lbs. of water per pound of coal, the two fuels were equally economical when the price of coal was \$3.85 per ton of 2000 lbs. With the same coal at \$2.00 per ton, the coal was 37% more economical, and with the coal at \$4.85 per ton, the coal was 20% more expensive than the oil. These results include the difference in the cost of handling the coal, ashes, and oil.

In 1892 there were reported to the Engineers' Club of Philadelphia some

comparative figures, from tests undertaken to ascertain the relative value

of coal, petroleum, and gas.

, , , , , , , , , , , , , , , , , , , ,	Lbs. Water, from
	and at 212° F.
1 lb. anthracite coal evaporated	9.70
1 lb. bituminous coal	10.14
1 lb. free oil, 36° gravity	16 48
1 cubic fout gas 20 C. P	1.98

The gas used was that obtained in the distillation of petroleum, having about the same fuel-value as natural or coal-gas of equal candle-power. Taking the efficiency of bituminous coal as a basis, the calorific energy of petroleum is more than 60% greater than that of coal; whereas, theoretically, petroleum exceeds coal only about 45%—the one containing 14,500 heat-units,

and the other 21,000.

Orude Petroleum vs. Indiana Block Coal for Steam-raising at the South Chicago Steel Works. (E. C. Potter, Trans. A. I. M. E., xvii, 807.)—With coal, 14 tubular boilers 16 ft. × 5 ft. required 25 men to operate them; with fuel oil, 6 men were required, a saving of 19 men at \$2 per day, or \$38 per day. For one week's work 2731 barrels of oil were used, against 848 tons of coal

required for the same work, showing 822 barrels of oil to be equivalent to 1 ton of coal. With oil at 60 cents per barrel and coal at \$2.15 per ton, the relative cost of oil to coal is as \$1.98 to \$2.15. No evaporation tests were

made.

Petroleum as a Metallurgical Fuel.—C. E. Feiton (Trans. A. I. M. E., xvii, 809) reports a series of trials with oil as fuel in steel-heating and open-hearth steel-furnaces, and in raising steam with results as follows: 1. In a run of six weeks the consumption of oil, partly refined (the paraffine and some of the naphtha being removed), in heating 14-inch ingots in Siemens furnaces was about 645 gallons per ton of blooms. 2. In melting in a 30-ton open hearth furnace 48 gallons of oil were used per ton of ingots. 3. In a six weeks' trial with Lima oil from 47 to 54 gallons of oil were required per ton of ingots. 4. In a six months' trial with Siemens heating-furnaces the consumption of Lima oil was 6 gallons per ton of ingots. Under the most favorable circumstances, charging hot ingots and running full capacity, 444 to 5 gallons per ton were required. 5. In raising steam in two 100-H.P. tubular boilers, the feed-water being supplied at 160° F., the average evaporation was about 12 pounds of water per pound of oil, the best 12 hours' work being 16 pounds.

In all of the trials the oil was vaporized in the Archer producer, an apparatus for mixing the oil and superheated steam, and heating the mixture to a high temperature. From 0.5 lb. to 0.75 lb. of pea-coal was used per gallon

of oil in the producer itself.

### FUEL GAS.

The following notes are extracted from a paper by W. J. Taylor on "The Energy of Fuel" (Trans. A. I. M. E., xviii. 205):

Carbon Gas.—In the old Siemens producer, practically, all the heat of primary combustion—that is, the burning of solid carbon to carbon monoxprimary combustion—that is, the outling of solid carbon we carbon indicated, or about 30% of the total carbon energy—was lost, as little or no steam was used in the producer, and nearly all the sensible heat of the gas was dissipated in its passage from the producer to the furnace, which was usually placed at a considerable distance.

Modern practice has improved on this plan, by introducing steam with the

air blown into the producer, and by utilizing the sensible heat of the gas in the combustion-furnace. It ought to be possible to oxidise one out of every four ibs. of carbon with oxygen derived from water-vapor. The thermic reactions in this operation are as follows:

17,600

The steam which is blown into a producer with the air is almost all condensed into finely divided water before entering the fuel, and consequently

is considered as water in these calculations.

The 1.5 lbs. of water liberates .167 lb. of hydrogen, which is delivered to the gas, and yields in combustion the same heat that it absorbs in the producer by dissociation. According to this calculation, therefore, 60% of the heat of primary combustion is theoretically recovered by the dissociation of steam, and, even if all the sensible heat of the gas be counted, with radiation and other minor items, as loss, yet the gas must carry  $4\times14,500-(3748+3519)=50,738$  heat-units, or 67% of the calorific energy of the carbon. This estimate shows a loss in conversion of 13%, without crediting the gas with its sensible heat, or charging it with the heat required for generating the necessary steam, or taking into account the loss due to oxidizing some of the carbon to  $\mathrm{CO}_2$ . In good producer-practice the proportion of  $\mathrm{CO}_2$  in the gas represents from  $4\times$  to 7% of the C burned to  $\mathrm{CO}_2$ , but the extra heat of this combustion should be largely recovered in the dissociation of more water-vapor, and therefore does not represent as much loss as it would indicate. As a conveyer of energy, this gas has the advantage of carrying 4.46 lbs. less nitrogen than would be present if the fourth pound of coal had been gasified with air; and in practical working the use of steam reduces the amount of clinkering in the producer.

Anthracite Gas.—In anthracite coal there is a volatile combustible varying in quantity from 1.5% to over 7%. The amount of energy derived from the coal is shown in the following theoretical gasification made with coal of assumed composition: Carbon, 85%; vol. HC, 5%; ash, 10%; 80 lbs. carbon assumed to be burned to CO; 5 lbs. carbon burned to CO; three fourths of the necessary oxygen derived from air, and one fourth from water.

	Products.				
Process.	Pounds.	Cubic Feet.	Anal, by Vol.		
80 lbs. C burned to CO	186.66	2529.24	83.4		
5 lbs. C burned to	18. <b>33</b>	157.64	2.0		
5 lbs, vol. HC (distilled)	5.00	116. <b>6</b> 0	1.6		
120 lbs. oxygen are required, of which					
30 lbs. from H ₂ O liberateH	8.75	712.50	9.4		
90 lbs. from air are associatied with N	301.05	4064.17	58.6		
	514.79	7580.15	100.0		

Energy in the above gas obtained from 100 lbs. anthracite: 186.66 lbs. CO.... 807,304 heat-units.

8.75 " H 232,500	"
1,157,304	**
Total energy in gas per lb 2.248	**
Total energy in gas per lb 2,248 " "100 lbs. of coal1,349,500	"
Efficiency of the conversion86%.	

The sum of CO and H exceeds the results obtained in practice. The sensible heat of the gas will probably account for this discrepancy, and, therefore, it is safe to assume the possibility of delivering at least 82% of the energy of the anthracite.

Bituminous Gas.—A theoretical gasification of 100 lbs. of coal, containing 55% of carbon and 32% of volatile combustible (which is above the average of Pittsburgh coal), is made in the following table. It is assumed that 50 lbs. of C are burned to CO and 5 lbs. to CO₂; one fourth of the O is

derived from steam and three fourths from air; the heat value of the volatile combustible is taken at 20,000 heat-units to the pound. In computing volumetric proportions all the volatile hydrocarbons, fixed as well as condensing, are classed as marsh-gas, since it is only by some such tentative assumption that even an approximate idea of the volumetric composition can be formed. The energy, however, is calculated from weight:

	<del></del>	Products	
Process.	Pounds.	Cubic Feet.	Anal. by Vol.
50 lbs. C burned toCO	116.66	1580.7	27.8
5 lbs. C burned to	18. <b>33</b>	157.6	2.7
32 lbs. vol. HC (distilled)	32.00	746.2	13.2
80 lbs. O are required, of which 20 lbs.,			
derived from H ₂ O, liberate H	2.5	475.0	8. <b>3</b>
60 lbs. O, derived from air, are asso-			
ciated withN	200.70	2709.4	47.8
			<del></del>
	870.19	5668.9	<b>99</b> .8
Energy in 116.66 lbs. CO	504,	554 heat-units	
" " 32.00 lbs. vol. HC	640,0		
" " 2.50 lbs. H	155,0	000 "	
		<del></del>	
•	1,299,		
Energy in coal	1,437,	500 "'	
Per cent of energy delivered			
Heat-units in 1 lb. of gas		3,484	Į.

Water-gas. —Water-gas is made in an intermittent process, by blowing up the fuel-bed of the producer to a high state of incandescence (and in some cases utilizing the resulting gas, which is a lean producer-gas), then shutting off the air and forcing steam through the fuel, which dissociates the water into its elements of oxygen and hydrogen, the former combining with the carbon of the coal, and the latter being liberated.

This gas can never play a very important part in the industrial field, owing to the large loss of energy entailed in its production, yet there are places and special purposes where it is desirable, even at a great excess in cost per unit of heat over producer-gas; for instance, in small high-temperature furnaces, where much regeneration is impracticable, or where the "blow-up" gas can be used for other purposes instead of being wasted.

The reactions and energy required in the production of 1000 feet of watergas, composed, theoretically, of equal volumes of CO and H, are as follows:

 500 cubic feet of H weigh
 2.635 lbs.

 500 cubic feet of CO weigh
 36.89

Total weight of 1000 cubic feet...... 39.525 lbs.

Now, as CO is composed of 12 parts C to 16 of O, the weight of C in 36.89 lbs. is 15.81 lbs. and of O 21.08 lbs. When this oxygen is derived from water it liberates, as above, 2.635 lbs. of hydrogen. The heat developed and absorbed in these reactions (roughly, as we will not take into account the energy required to elevate the coal from the temperature of the atmosphere to say 1809) is as follows:

If this excess could be made up from C burnt to CO₂ without loss by radiation, we would only have to burn an additional 4.83 lbs. C to supply this heat, and we could then make 1000 feet of water-gas from 20.64 lbs. of carbon (equal 24 lbs. of 85% coal). This would be the perfection of gas-making, as the gas would contain really the same energy as the coal; but instead, we require in practice more than double this amount of coal, and do not deliver more than 50% of the energy of the fuel in the gas, because the supporting heat is obtained in an indirect way and with imperfect combustion. Besides this, it is not often that the sum of the CO and H exceed 90%, the balance being CO₂ and N. But water-gas should be made with much less loss of energy by burning the "blow-up" (producer) gas in brick regenerators, the stored-up heat of which can be returned to the producer by the air used in blowing-up.

The following table shows what may be considered average volumetric

analyses, and the weight and energy of 1000 cubic feet, of the four types of gases used for heating and illuminating purposes:

	Natural Gas.	Coal- gas.	Water- gas.	Produc	Producer-gas.	
co	0.50	6.0	45.0	Anthra.	Bitu. 27.0	
H	2.18	46.0	45.0	12.0	12.0	
CH4	92.6 0.81	40.0	2.0	1.2	2.5 0.4	
C ₂ H ₄		4.0 0.5	4.0	2.5	2.5	
N	8.61	1.5	2.0	57.0	56.2	
O	0.84	0.5 1.5	0.5	0.8	0.8	
Vapor	<b>≤</b> 45.6	32.0	1.5 45.6	65.6	65.9	
Heat units in 1000 cubic feet			322,000	137,455	156,917	

# Natural Gas in Ohio and Indiana.

(Eng. and M. J., April 21, 1894.)

		Ohio.		Indiana.				
Description.	Fos- toria.	Findlay	St. Mary's.	Muncie.	Ander- sou.	Koko- mo.	Mar- ion.	
Hydrogen	1.89 92.84 .20 .55	1.64 93.35 .35 .41	1.94 93.85 .20 .44	2.35 92.67 .25 .45	1.86 98.07 .47 .73	1.42 94.16 .30 .55	1.20 93.57 .15 .60	
Oxygen Nitrogen Hydrogen sulphide	.35 3.82	.39 8.41 .20	.35 2.98 .21	.85 8.53 .15	3.02 3.15	.30 2.80 .18	.55 8.42 .20	

Approximately 30,000 cubic feet of gas have the heating power of one ton of coal.

# Producer-gas from One Ton of Coal. (W. H. Blauvelt, Trans. A. I. M. E., xviii. 614.)

Analysis by Vol.	Per Cent.	Cubic Feet.	Lbs.	Equal to—			
CO CH C2H4 CO N (by difference	25.3 9.2 3.1 0.8 3.4 58.2	33,213.84 12,077.76 4,069.68 1,050.24 4,463.52 76,404.96	174.66 77.78 519.02 5659.63	77.73 " C ₂ H ₄ . 141.54 " C+877.44 lbs. O. 7850.17 " Air.			

Calculated upon this basis, the 131,280 ft. of gas from the ton of coal contained 20,811,162 B.T.U., or 155 B.T.U. per cubic ft., or 2270 B.T.U. per lb.

The composition of the coal from which this gas was made was as follows:

Water. 1.20%; volatile matter, 36.22%; fixed carbon, 57.38%; sulphur, 0.70%; ash, 3.78%. One ton contains 1159.6 ibs. carbon and 724.4 ibs. volatile combatible, the energy of which is 31,302,200 B.T.U. Hence, in the processes of gasification and purification there was a loss of 35.2% of the energy of the

The composition of the hydrocarbons in a soft coal is uncertain and quite complex; but the ultimate analysis of the average coal shows that it approaches quite nearly to the composition of CH₄ (marsh-gas).

Mr. Blauvelt emphasizes the following points as highly important in soft-

coal producer-practice:

First. That a large percentage of the energy of the coal is lost when the gas is made in the ordinary low producer and cooled to the temperature of the air before being used. To prevent these sources of loss, the producer should be placed so as to lose as little as possible of the sensible heat of the gas, and prevent condensation of the hydrocarbon vapors. A high fuel-bed should be carried, keeping the producer cool on top, thereby preventing the breaking-down of the hydrocarbons and the deposit of soot, as well as keep ing the carbonic acid low.

Second. That a producer should be blown with as much steam mixed with the air as will maintain incandescence. This reduces the percentage of nitrogen and increases the hydrogen, thereby greatly enriching the gas. The temperature of the producer is kept down, diminishing the loss of heat

by radiation through the walls, and in a large measure preventing clinkers.

The Combustion of Producer-gas. (H. H. Campbell, Trans. A. I. M. E., xix, 128.)—The combustion of the components of ordinary producer-gas may be represented by the following formulæ:

$$C_2H_4 + 6O = 2CO_2 + 2H_2O;$$
  $2H + O = H_2O;$   $CH_4 + 4O = CO_2 + 2H_2O;$   $CO + O = CO_2.$ 

AVERAGE COMPOSITION BY VOLUME OF PRODUCER-GAS: A, MADE WITH OPEN GRATES, NO STEAM IN BLAST; B, OPEN GRATES, STEAM-JET IN BLAST. 10 SAMPLES OF EACH.

	CO.	Ο.	C ₂ H ₄ . 0.2	co.	H.	CH ₄ .	N.
A min	3.6	0.4	0.2	20.0	5.8	8.0	58.7
A max	5.6	0.4	0.4	24.8	8.5	5.2	64.4
A average	4.84	0.4	0.34	22.1	6.8	8.74	61.78
B min		0.4	0.2	20.8	6.9	2.2	57.2
B max	6.0	0.8	0.4	24.0	9.8	8.4	62.0
B average	5.8	0.54	0.36	22.74	8.37	2.56	60.13

The coal used contained carbon 82%, hydrogen 4.7%. The following are analyses of products of combustion:

	CO ₂ .	Ο.	CO.	CH.	H.	N.
Minimum	15.2	0.2	trace.	trace.	trace.	80.1
Maximum	17.2	1.6	2.0	0.6	2.0	83.6
A verage	16.8	0.8	0.4	0.1	0.2	82.2

Use of Steam in Producers and in Boiler-furnaces. (R. Raymond, Trans. A. I. M. E., xx. 635.)—No possible use of steam cause a gain of heat. If steam be introduced into a bed of incandescent

carbon it is decomposed into hydrogen and oxygen.

The heat absorbed by the reduction of one pound of steam to hydrogen is much greater in amount than the heat generated by the union of the oxygen thus set free with carbon, forming either carbonic oxide or carbonic acid. Consequently, the effect of steam alone upon a bed of incandescent fuel is to chill it. In every water-gas apparatus, designed to produce by means of the decomposition of steam a fuel-gas relatively free from nitrogen the logs of heat in the reduces must be componented by companion. gen, the loss of heat in the producer must be compensated by some reheat-

ing device.

This loss may be recovered if the hydrogen of the steam is subsequently burned, to form steam again. Such a combustion of the hydrogen is contemplated, in the case of fuel-gas, as secured in the subsequent use of that gas. Assuming the oxidation of H to be complete, the use of steam will cause neither gain nor loss of heat, but a simple transference, the heat themshad by steam decomposition being restored by hydrogen combustion. absorbed by steam decomposition being restored by hydrogen combustion. In practice, it may be doubted whether this restoration is ever complete. But it is certain that an excess of steam would defeat the reaction altogether, and that there must be a certain proportion of steam, which permits the realization of important advantages, without too great a net loss in heat.

The advantage to be secured (in boiler furnaces using small sizes of The advantage to be secured (in boner turnaces using small sizes of anthractic) consists principally in the transfer of heat from the lower side of the fire, where it is not wanted, to the upper side, where it is wanted. The decomposition of the steam below cools the fuel and the grate-bars, whereas a blast of air alone would produce, at that point, intense combustion (forming at first  $CO_2$ ), to the injury of the grate, the fusion of part of the fuel, etc.

The proportion of steam most economical is not easily determined. temperature of the steam itself, the nature of the fuel mixture, and the use non-use of auxiliary air-supply, introduced into the gases above or beyond the fire-bed, are factors affecting the problem. (See paper by R. J. Foster on the Use of the McClave Grate and Argand Steam Blower, etc., in

Trans. A. I. M. E., xx. 625.)

Gas-fuel for Small Furnaces. E. P. Reichhelm (Am. Mach., Jan. 10, 1895) discusses the use of gaseous fuel for forge fires, for drop forging, in annealing-ovens and furnaces for melting brass and copper, for case-hardening, muffle-furnaces, and kilns. Under ordinary conditions, in such furnaces he estimates that the loss by draught, radiation, and the in such furnaces he estimates that the loss by draught, radiation, and the insuch furnaces are commissionly by work is with one 1806, with natural name of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con heating of space not occupied by work is, with coal, 80%, with petroleum 70%, and with gas above the grade of producer-gas 25%. He gives the following table of comparative cost of fuels, as used in these furnaces:

Kind of Gas.	No. of Heat- units in 1,000 cu. ft. used.	No. of Heatunits in Furnaces after Deducting 25% Loss.	Average Cost per 1,000 Ft.	Cost of 1,000,- 000 Heat- units Ob- tained in Fur- naces.				
Natural gas	1,000,000			<u></u>				
Coal-gas, 20 candle-power			\$1.25					
Carburetted water-gas	646,000		1.00					
Gasolene gas, 20 candle-power			.90					
Water-gas from coke	313,000	284,750	.40					
Water-gas from bituminous coal	877,000	282,750	.45	1.59				
Water-gas and producer-gas mixed	185,000	138,750	.20	1.44				
Producer-gas	150,000	112,500	.15	1.33				
Naphtha-gas, fuel 21/2 gals. per 1000 ft.	306,36	229,774	.15	.65				
Coal, \$4 per ton, per 1,000,000 heat-units utilized Crude petroleum, 3 cts. per gal., per 1,000,000 heat-units.								

Mr. Reichbelm gives the following figures from practice in melting brass with coal and with naphtha converted into gas: 1800 lbs. of metal require 1080 lbs. of coal, at \$4.65 per ton, equal to \$251, or, say, 15 cents per 100 lbs. Mr. T.'s report; 2500 lbs. of metal require 47 gals. of naphtha, at 6 cents per gal., equal to \$2.82, or, sav. 111/4 cents per 100 lbs.

## ILLUMINATING-GAS.

Coal-gas is made by distilling bituminous coal in retorts. The retort is usually a long horizontal semi-cylindrical or a shaped chamber, holding from 160 to 300 lbs. of coal. The retorts are set in "benches" of from 3 to 9, heated by one fire, which is generally of coke. The vapors distilled from the coal are converted into a fixed gas by passing through the retort,

which is heated almost to whiteness.

The gas passes out of the retort through an "ascension-pipe" into a long horizontal pipe called the hydraulic main, where it deposits a portion of the tar it contains: thence it goes into a condenser, a series of iron tubes surrounded by cold water, where it is freed from condensable vapors, as ammonia-water, then into a washer, where it is exposed to jets of water, and into a scrubber, a large chamber partially filled with trays made of wood or iron, containing coke, fragments of brick or paving-stones, which are wet with a spray of water. By the washer and scrubber the gas is freed from the last portion of tar and ammonia and from some of the sulphur compounds. The gas is then finally purified from sulphur compounds by passing it through lime or oxide of iron. The gas is drawn from the hydraulic main and forced through the washer, scrubber, etc., by an exhauster or gas nump. The gas passes out of the retort through an "ascension-pipe" into a long or gas pump.

The kind of coal used is generally caking bituminous, but as usually this coal is deficient in gases of high illuminating power, there is added to it a

portion of cannel coal or other enricher.

The following table, abridged from one in Johnson's Cyclopedia, shows the analysis, candle power, etc., of some gas-coals and enrichers:

Gas-coals, etc.	Matter.		per ton 2240 lbs. cu. ft.		lpow'r łas.	Coke per ton of 2240 lbs.		purified bush. of incu.ft.
	Vol. ]	Fixed	Ash.	Gas j of 2 in c	Cand.	lbs.	bush.	Gas by 1 lime
Pittsburgh, Pa Westmoreland, Pa Sterling, O. Despard, W. Va. Darlington, O. Petonia, W. Va. Grahamite, W. Va.	36.76 36.00 37.50 40.00 43.00 46.00 53.50	58.00 56.90 53.80 40.00 41.00	5.60 6.70 17.00 13.00	10,642 10,528 10,765 9,800 13,200	16.62 18.81 20.41 34.98 42.79 28.70	1544 1480 1540 1320 1380 1056	40 36 36 36 32 32 44	6420 3993 2494 2806 4510

The products of the distillation of 100 lbs. of average gas-coal are about as follows. They vary according to the quality of coal and the temperature of

Coke, 64 to 65 lbs.; tar, 6.5 to 7.5 lbs.; ammonia liquor, 10 to 12 lbs.; purified gas, 15 to 12 lbs.; impurities and loss, 4.5% to 3.5%.

The composition of the gas by volume ranges about as follows: Hydrogen, 38% to 48%; carbonic oxide, 2% to 14%; marsh-gas (Methane, CH₄), 43% to 31%; heavy hydrocarbons (C.H., ethylene, propylene, benzole vapor, etc.), 7.5% to 4.5%; nitrogen, 1% to 3%.

In the burning of the gas the nitrogen is inert; the hydrogen and carbonic oxide give heat but no light. The luminosity of the flame is due to the decomposition by heat of the heavy hydrocarbons into lighter hydrocarbons and carbon, the latter being separated in a state of extreme subdivision. By the heat of the flame this separated carbon is heated to intense whiteness, and the illuminating effect of the flame is due to the light of incandescence of the particles of carbon.

The attainment of the highest degree of luminosity of the flame depends upon the proper adjustment of the proportion of the heavy hydrocarbons (with due regard to their individual character) to the nature of the diluent mixed therewith.

Investigations of Percy F. Frankland show that mixtures of ethylene and hydrogen cease to have any luminous effect when the proportion of ethylene does not exceed 10% of the whole. Mixtures of ethylene and carbonic oxide cease to have any luminous effect when the proportion of the former does not exceed 20%, while all mixtures of ethylene and marsh-gas have more or less luminous effect. The luminosity of a mixture of 10% ethylene and 90% marsh gas being equal to about 18 candles, and that of one of 2% ethylene and 80% marsh gas about 25 candles. The illuminating effect of marsh gas alone, when burned in an argand burner, is by no means inconsiderable.

For further description, see the Treatises on Gas by King. Richards, and

For further description, see the Treatises on Gas by King, Richards, and Hughes; also Appleton's Cyc. Mech., vol. i. p. 900.

Water-gas.—Water gas is obtained by passing steam through a bed of coal, coke, or charcoal heated to redness or beyond. The steam is decomposed, its hydrogen being liberated and its oxygen burning the carbon of the fuel, producing carbonic-oxide gas. The chemical reaction is,  $C + H_2 = CO + 2H_1$ , or  $2C + 2H_2O = C + CO_2 + 4H$ , followed by a splitting up of the  $CO_3$ , making 2CO + 4H. By weight the normal gas CO + 2H is composed of CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 parts CO + 2H = 2 p

by volume it is composed of equal parts of carbonic oxide and hydrogen. Water-gas produced as above described has great heating-power, but no illuminating-power. It may, however, be used for lighting by causing it to heat to whiteness some solid substance, as is done in the Welsbach incandescent light.

An illuminating-gas is made from water-gas by adding to it hydrocarbon gases or vapors, which are usually obtained from petroleum or some of its products. A history of the development of modern illuminating water-gas processes, together with a description of the most recent forms of apparatus, is given by Alex. C. Humphreys, in a paper on "Water-gas in the United States," read before the Mechanical Section of the British Association for Advancement of Science, in 1889. After describing many earlier patents, he states that success in the manufacture of water-gas may be said to date

from 1874, when the process of T. S. C. Lowe was introduced. All the later most successful processes are the modifications of Lowe's, the essential rnost successful processes are the modifications of Lowes, the essential features of which were "an apparatus consisting of a generator and superheater internally fired; the superheater being heated by the secondary combustion from the generator, the heat so stored up in the loose brick of the superheater being used, in the second part of the process, in the fixing or rendering permanent of the hydrocarbon gases; the second part of the process consisting in the passing of steam through the generator fire, and the admission of oil or hydrocarbon at some point between the fire of the generator and the loose filling of the superheater.

generator and the loose filling of the superheater."

The water-gas process thus has two periods: first the "blow," during which air is blown through the bed coal in the generator, and the partially burned gaseous products are completely burned in the superheater, giving up a great portion of their heat to the fire-brick work contained in it, and then pass out to a chimney; second, the "run" during which the air blast is stopped, the opening to the chimney closed, and steam is blown through the incandescent bed of fuel. The resulting water-gas passing into the carburetting chamber in the base of the superheater is there charged with hydrogerbon vapors, or spray (such as apathha and other distillates or crude drocarbon vapors, or spray (such as naphtha and other distillates or crude oil) and passes through the superheater, where the hydrocarbon vapors become converted into fixed illuminating gases. From the superheater the combined gases are passed, as in the coal-gas process, through washers, scrubbers, etc., to the gas-holder. In this case, however, there is no ammonia to be removed.

The specific gravity of water-gas increases with the increase of the heavy hydrocarbons which give it illuminating power. The following figures, taken from different authorities, are given by F. H. Shelton in a paper on Watergas, read before the Ohio Gas Light Association, in 1894:

Candle-power .. 19.5 20, 22.5 Sp. gr. (Air = 1).. .571 .630 .589 24. 25.4 26.3 28.3 29.6 ,30 to \$1.9 .60 to .67 .64 .602 .70 .65 .65 to .71

Analyses of Water-gas and Coal-gas Compared.

The following analyses are taken from a report of Dr. Gideon E. Moore on the Granger Water-gas, 1885:

	Compos	ition by V	olume.	Composition by Weight.			
	Water	-gas.	Coal-gas. Heidel-	Water-	Coal-		
	Wor- cester.	Lake.	berg.	Wor- cester.	Lake.	gas.	
Nitrogen Carbonic acid Oxygen Ethylene Propylene Benzole vapor Carbonic oxide Marsh-gas	2.64 0.14 0.06 11.29 0.00 1.53 28.26 18.88 37.20	3.85 0.30 0.01 12.80 0.00 2.63 23.58 20.95	2.15 3.01 0.65 2.55 1.21 1.33 8.88 34.02	0.04402 0.00365 0.00114 0.18759 0.07077 0.46934 0.17928	0.06175 0.00753 0.00018 0.20454 0.11700 0.37664 0.19133	0.01569 0.05389 0.03834 0.07825 0.18758 0.41087	
Hydrogen  Density: Theory.	100.00	35.88 100.00 0.6057	100.00	1.00000	1.00000	1.00000	
Practice.	0.5915	0.6018	0.4580				
B. T. U. from 1 cu. ft.: Water liquid. "vapor.	650.1 597.0	688.7 646.6	642.0 577.0				
Flame-temp	5311.2°F.	5281.1°F.	5202,9°F	ļ			
Av. candle-power.	22.06	26.31	1	1	1::::::		

The heating values (B. T. U.) of the gases are calculated from the analysis by weight, by using the multipliers given below (computed from results of J. Thomsen), and multiplying the result by the weight of 1 cu. ft. of the gas at 62° F., and atmospheric pressure.

The flame temperatures (theoretical) are calculated on the assumption of

complete combustion of the gases in air, without excess of air.

The candle-power was determined by photometric tests, using a pressure of 14-in, water-column, a candle consumption of 120 grains of spermaceti per hour, and a meter rate of 5 cu. ft. per hour, the result being corrected for a temperature of 62° F. and a barometric pressure of 30 in. It appears that the candle-power may be regulated at the pleasure of the person in charge of the apparatus, the range of candle-power being from 20 to 29 candles, according to the manipulation employed.

# Calorific Equivalents of Constituents of Illuminating-

Heat-	units from 1 lb.	Heat-unit	from 1 lb.
Wat	er Water	Water	Water
Liqu	id. Vapor.	Liquid.	Vapor.
Ethylene 21,52	4.4 20.184.8	Carbonic oxide. 4.395.6	4.395.6
Propylene 21,22		Marsh-gas 24,021.0	21,592.8
Benzole vapor, 18,95		Hydrogen 61,524.0	51,804.0

Efficiency of a Water-gas Plant,-The practical efficiency of an illuminating water-gas setting is discussed in a paper by A. G. Glasgow (Proc. Am. Gaslight Assn., 1890), from which the following is abridged:

The results refer to 1000 cu. ft. of unpurified carburetted gas, reduced to 60° F. The total anthracite charged per 1000 cu. ft. of gas was 33.4 lbs., ash and unconsumed coal removed 9.9 lbs., leaving total combustible consumed 28.5 lbs., which is taken to have a fuel-value of 14500 B. T. U. per pound, or a total of 340,750 heat-units.

	Composi- tion by Volume.	Weight per 100 cu. ft.	Composi- tion by Weight.	Specific Heat.
I. Carburetted Water-gas. $ \begin{array}{c} \left\{ \begin{smallmatrix} \operatorname{CO}_2 + \operatorname{H}_2\operatorname{S} \\ \operatorname{C}_n\operatorname{H}_{2n} \\ \operatorname{CO} \\ \operatorname{CH}_4 \\ \operatorname{N} \end{smallmatrix} \right. \\ \end{array} $	3.8 14.6 28.0 17.0 35.6 1.0	.465842 1.139968 2.1868 .75854 .1991464 .078596	.09647 .23607 .45285 .15710 .04124 .01627	.02088 .08720 .11226 .09314 .14041 .00397
II. Uncarburetted gas. N	3.5 48.4 51.8 1.3	4.8288924 .429065 3.389540 .289821 .102175	1.00000 .1019 .8051 .0688 .0242	.45786 .02205 .19958 .23424 .00591
844	100.0	4.210601	1.0000	.46178
III. Blast products escaping from superheater.	17.4 3.2 79.4	2.133066 .2856096 6.2405224	.2464 .0329 .7207	.05842 .00718 .17585
(CO ₂	9.7 17.8	8.6591980 1.189123 1.390180	1.0000 .1436 .1680	.23645 .031075 .041647
IV. Generator blast-gases.	72.5	5.698210 8.277513	1.0000	.167970

The heat energy absorbed by the apparatus is  $23.5 \times 14,500 = 340,750$  heat-units = A. Its disposition is as follows:

B, the energy of the CO produced;
C, the energy absorbed in the decomposition of the steam;
D, the difference between the sensible heat of the escaping illuminatinggases and that of the entering oil;

E, the heat carried off by the escaping blast products; F, the heat lost by radiation from the shells;

G, the heat carried away from the shells by convection (air-currents); H, the heat rendered latent in the gasification of the oil;

٠,

t

I, the sensible heat in the ash and unconsumed coal recovered from the generator.

The heat equation is A = B + C + D + E + F + G + H + I. A being known. A comparison of the CO in Tables I and II show that  $\frac{260}{434}$ , or 64.5% of the volume of carburetted gas is pure water-gas, distributed thus: CO₂,

of the volume of carburetted gas is pure water-gas, distributed thus: CO₃, 2.3%; CO, 28.0%; H, 33.4%; N, 0.8%; = 64.5%. 1 lb. of CO at 60° F. = 13.531 cu. ft. CO per 1000 cu. ft. of gas = 280 + 13.531 = 20.694 lbs. Energy of the CO = 20.694 × 4395.6 = 91.043 heat-units, = B. 1 lb. of H at 60° F. = 189.2 cu. ft. H per M of gas = 334 + 189.2 = 1.7653 lbs. Energy of the H per lb. (according to Thomsen, considering the steam generated by its combustion to be condensed to water at 75° F.) = 61.524 B. T. U. In Mr. Glasgow's experiments the steam entered the generator at 331° F; the heat required to raise the product of combustion of 1 lb. of H, viz., 8.98 lbs. H₂O, from water at 73° to steam at 331° must therefore be deducted from Thomsen's figure, or 61.624 - (8.98 × 1140.2) = 51.225 B. T. U. per lb. of H. Energy of the H, then, is 1.7653 × 51.285 = 90.533 heat-units, = C. The heat lost due to the sensible heat in the illuminating-gases, their temperature being 1450° F., and that of the entering oil 235° F., is 48.29 (weight) × .45786 sp. heat × 1215 (rise of temperature) = 28.864 heat-units = D.

(The specific heat of the entering oil is approximately that of the issuing gas.)

The heat carried off in 1000 cu, ft. of the escaping blast products is 86.592 (weight) × .23645 (sp. heat) × 1474° (rise of temp.) = 30,180 heat-units: the temperature of the escaping blast gases being 1550° F., and that of the entering air 76° F. But the amount of the blast gases, by registration of an anemometer, checked by a calculation from the analyses of the blast gases, was 2457 cubic feet for every 1000 cubic feet of carburetted gas made. Hence the heat carried off per M. of carburetted gas is 30,180 × 2.457 = 74,152 heat-units = E.

Experiments made by a radiometer covering four square feet of the shell of the appearatus gave figures for the amount of heat lost by radiation = 12,454 heat-units = F, and by convection = 15,698 heat-units = G.

The heat rendered latent by the gasefication of the oil was found by taking the difference between all the heat fed into the carburetter and superheater and the total heat dissipated therefrom to be 13,841 heat-units = H. The sensible heat in the ash and unconsumed coal is 9.9 lbs.  $\times$  1500°  $\times$  .25 (sp. ht.) = 3712 heat-units = H.

(sp. ht.) = 3712 heat-units = I. The sum of all the items B+C+D+E+F+G+H+I=327,295 heat-units, which substracted from the heat energy of the combustible consumed, 340,750 heat-units, leaves 13,455 heat-units, or 4 per cent, unaccounted for.

Of the total heat energy of the coal consumed, or 340,730 heat-units, the energy wasted is the sum of items D, E, F, G, and I, amounting to 192,878 heat-units, or 39 per cent; the remainder, or 207,872 heat-units, or 61 per cent, being utilized. The efficiency of the apparatus as a heat machine is therefore 61 per cent.

Five gallons, or 35 ibs. of crude petroleum were fed into the carburetter per 1000 cu. ft. of gas made; deducting 5 lbs. of tar recovered, leaves 30 lbs. 20,000 = 600,000 heat-units as the net heating value of the petroleum used. Adding this to the heating value of the coal, 340,750 B. T. U., gives 940,750 heat-units, of which there is found as heat energy in the carburetted gas, as in the table below, 764,050 heat units, or 81 per cent, which is the commercial efficiency of the apparatus, i.e., the ratio of the energy contained in the finished product to the total energy of the coal and oil consumed.

The heating power per M. cu. ft. of the carburetted gas is CO  $_4$  38.0 CD  $_2$  He 17220 × 21222.0 = 363200 CD  $_4$  434.0 × .078100 × 4395.6 = 96120 H 518.0 × .005594 × 61524.0 = 122520 H  $_2$  1000.0  $_2$  764466  $_2$  764466

^{*} The heating value of the illuminants  $C_nH_{2n}$  is assumed to equal that of  $C_2H_4$ .

The candle-power of the gas is 31, or 6.2 candle-power per gallon of oil used. The calculated specific gravity is .6355, air being 1.

For description of the operation of a modern carburetted water-gas plant, see paper by J. Stelfox, Eng'g, July 20, 1894, p. 89.

Space required for a Water-gas Plant.—Mr. Shelton, taking 15 modern plants of the form requiring the most floor-space, figures the average floor-space required per 1000 cubic feet of daily capacity as follows:

Wat	er-gas Pla in 24	nts of hours	Capacity of	Require an Area of Floor-space each 1000 cu. ft. of about					
	100,000	cubic	feet	4 square feet.					
	200,000	44	46	85"" "					
	400,000	"	"	2.75 " "					
	600,000	"	"						
	7 to 10	millio	n cubic feet	1.25 to 1.5 sq. ft.					

These figures include scrubbing and condensing rooms, but not boiler and engine rooms. In coal-gas plants of the most modern and compact forms one engine rooms. In coargas plants of the most modern and compact forms one with 16 benches of 9 retorts each, with a capacity of 1,500,000 cubic feet per 24 hours, will require 4.8 sq. ft. of space per 1000 cu. ft. of gas, and one of 6 benches of 6 retorts each, with 300,000 cu. ft. capacity per 24 hours will require 6 sq. ft. of space per 1000 cu. ft. The storage-room required for the gas-making materials is: for coal-gas, 1 cubic foot of room for every 232 cubic feet of gas made; for water-gas made from coke, 1 cubic foot of room for every 378 cu. ft. of gas made; and for water-gas made from anthracite, 1 cu. ft. of room for every 645 cu. ft. of gas made.

The comparison is still more in favor of water-gas if the case is considered a water-gas plant added as an auxiliary to an existing coal-gas plant:

of a watergas plant added as an auxiliary to an existing coal-gas plant; for, instead of requiring further space for storage of coke, part of that already required for storage of coke produced and not at once sold can be cut off, by reason of the water-gas plant creating a constant demand for

more or less of the coke so produced.

Mr. Shelton gives a calculation showing that a water-gas of .625 sp. gr. would require gas-mains eight per cent greater in diameter than the same would require gas-mains eight per cent greater in the interest quantity coal-gas of .425 sp. gr. if the same pressure is maintained at the holder. The same quantity may be carried in pipes of the same diameter if the pressure is increased in proportion to the specific gravity. With the if the pressure is increased in proportion to the specific gravity. With the same pressure the increase of candle-power about balances the decrease of flow. With five feet of coal-gas, giving, say, eighteen candle-power, I cubic foot equals 3.6 candle-power; with water-gas of 23 candle-power, I cubic foot equals 4.6 candle-power, and 4 cubic feet gives 18.4 candle-power, or more than is given by 5 cubic feet of coal-gas. Water-gas may be made from oven-coke or gas-house coke as well as from anthracite coal. A watergas plant may be conveniently run in connection with a coal-gas plant, the surplus retort coke of the latter being used as the fuel of the former.

gas plant may be conveniently run in connection with a coargas plant, the surplus retort coke of the latter being used as the fuel of the former. In coal-gas making it is impracticable to enrich the gas to over twenty candle-power without causing too great a tendency to smoke, but water-gas of as high as thirty candle-power is quite common. A mixture of coal-gas and water-gas of a higher C.P. than 20 can be advantageously distributed.

Fuel-value of, Illuminating-gas.—E. G. Love (School of Mines Qtly, January, 1892) describes F. W. Hartley's calorimeter for determining the calorific power of gases, and gives results obtained in tests of the carburetted water-gas made by the municipal branch of the Consolidated Co. of New York. The tests were made from time to time during the past two years, and the figures give the heat-units per cubic foot at 60° F. and 30 inches pressure: 715, 602, 725, 732, 691, 738, 735, 703, 734, 730, 731, 727. Average, 721 heat units. Similar tests of mixtures of coal- and water-gases made by other branches of the same company give 694, 715, 684, 692, 727, 665, 695, and 686 heat-units per foot, or an average of 694.7. The average of all these tests was 710.5 heat-units, and this we may fairly take as representing the calorific power of the illuminating gas of New York. One thousand feet of this gas, costing \$1.25, would therefore yield 710,500 heat-units, which would be equivalent to 568,400 heat-units for \$1.00.

The common coal-gas of London, with an illuminating power of 16 to 17 candles, has a calorific power of about 668 units per foot, and costs from 60 to 70 cents per thousand.

to 70 cents per thousand.

The product obtained by decomposing steam by incandescent carbon, as effected in the Motay process, consists of about 40% of CO, and a little over 50% of H.

This mixture would have a heating-power of about 300 units per cubic foot, and if sold at 50 cents per 1000 cubic feet would furnish 600,000 units for \$1.00, as compared with 568,400 units for \$1.00 from illuminating gas at \$1.25 per 1000 cubic feet. This illuminating-gas if sold at \$1.15 per thousand would therefore be a more economical heating agent than the fuel-gas mentioned, at 50 cents per thousand, and be much more advantageous than the latter, in that one main, service, and meter could be used to furnish gas for both lighting and heating.

A large number of fuel-gases tested by Mr. Love gave from 184 to 470 heat-

units per foot, with an average of 309 units.

Taking the cost of heat from illuminating gas at the lowest figure given by Mr. Love, viz., \$1.00 for 600,000 heat-units, it is a very expensive fuel, equal to coal at \$40 per ton of 2000 lbs., the coal having a calorific power of only 12,000 heat-units per pound, or about 83% of that of pure carbon:

 $600,000:(12,000\times 2000)::$1:$40.$ 

# FLOW OF GAS IN PIPES.

The rate of flow of gases of different densities, the diameter of pipes required, etc., are given in King's Treatise on Coal Gas, vol. ii. 874, as follows:

If 
$$d=$$
 diameter of pipe in inches,  $Q=$  quantity of gas in cu. ft. per hour,  $l=$  length of pipe in yards,  $k=$  pressure in inches of water,  $s=$  specific gravity of gas, air being  $l$ ,  $Q=$  1850 $d^3\sqrt{\frac{dh}{sl}}=$  1850 $\sqrt{\frac{d^5h}{sl}}$ 

Molesworth gives 
$$Q = 1000 \sqrt{\frac{d^5h}{sl}}$$
.

J. P. Gill, Am. Gas-light Jour. 1894, gives 
$$Q = 1291 \sqrt{\frac{d^3h}{s(l+d)}}$$
.

This formula is said to be based on experimental data, and to make allowance for obstructions by tar, water, and other bodies tending to check the

flow of gas through the pipe.

A set of tables in Appleton's Cyc. Mech. for flow of gas in 2, 6, and 12 in. pipes is calculated on the supposition that the quantity delivered varies

as the square of the diameter instead of as  $d^3 \times \sqrt{d}$ , or  $\sqrt{d^3}$ . These tables give a flow in large pipes much less than that calculated by the formulæ above given, as is shown by the following example. Length of the pipe 100 yds., specific gravity of gas .042, pressure 1-in. water-column.

		6-in. Pipe.	12-in. Pipe.
$Q = 1350 \sqrt{\frac{d^3h}{st}} \dots \dots \dots$	1178	18,368	108,912
$Q = 1000 \sqrt{\frac{\overline{d^6 h}}{st}} \cdots \cdots$	873	18,606	76,972
$Q = 1291 \sqrt{\frac{d^5h}{s(l+d)}} \cdots$	1116	16,827	93,845
Table in App. Cyc	1290	11,657	46,628

An experiment made by Mr. Clegg, in London, with a 4-in. pipe, 6 miles long, pressure 3 in. of water, specific gravity of gas .398, gave a discharge the atmosphere of 852 cu. ft. per hour, after a correction of 33 cu. ft. was made for leakage.

Substituting this value, 852 cu. ft., for Q in the formula  $Q = C \sqrt{d^2h + sl}$ . we find C, the coefficient, = 997, which corresponds nearly with the formula given by Molesworth.

# Services for Lamps. (Molesworth.)

Lamps.	Ft. from Main.	Require Pipe-bore.	Lamps.	Ft. from Main.	Require Pipe-bore.
2 4		3% in. 16 in.		180 150	1 in. 1½ in.
6 10	50 100	₩ in.		180	134 in. 134 in.

(In cold climates no service less than ¾ in. should be used.)

# Maximum Supply of Gas through Pipes in eu. ft. per Hour, Specific Gravity being taken at .45, calculated from the Formula $Q=1000 \, \sqrt{d^5 h + st}$ . (Molesworth.)

LENGTH OF PIPE = 10 YARDS.

Diameter of Pipe in	Pressure by the Water-gauge in Inches.										
Inches.	.1	.8	.8	.4	.5	.6	.7	.8	.9	1.0	
96 16 34	13 26 73	18 37 103	22 46 126	26 53 145	29 59 162	81 64 187	84 70 192	86 74 205	38 79 218	41 83 230	
1 11/4 11/4 11/4	149 260 411	211 368 581	258 451 711	298 521 821	888 582 918	865 638 1006	394 689 1082	422 737 1162	447 781 1232	471 823 1299	
2	848	1192	1460	1686	1886	2066	2231	2385	2530	266	

# LENGTH OF PIPE = 100 YARDS.

			F	ressu	re by t	he Wat	ter-gau	ge in l	Inches		
	.1	.2	.8	.4	.5	.75	1.0	1.25	1.5	2	2.5
36	8	12	14	17	19	23	26	29	82	36	42
\$2	23	32	42	46	51	68	73	81	89	103	115
1 -	47	67	85	94	105	129	149	167	183	211	236
11/4	82	116		165	184	225	260	291	319	868	412
11/6	130	184	225	260	290	856	411	459	503	581	649
2 ~	267	877	462	583	596	730	843	943	1083	1193	1333
21/6	466	659	807	982	1042	1276	1478	1647	1804	2083	2329
114 114 214 214	735	1039	1270	1470	1648	2012	2323	2598	2846	8286	3674
31/ <b>6</b>	1080	1528	1871	2161	2416	2958	8416	8820	4184	4831	5402
4	1508	2133	2613	3017	3373	4131	4770	5888	5842	6746	7542

# LENGTH OF PIPE = 1000 YARDS.

		Pres	sure by t	he Wate	r-gauge in	Inches.	
	.5	.75	1.0	1.5	2.0	2.5	8.0
1	33	41	47	58	67	75	82
11/6 2 21/6 3	92	.118	130	159	184	205	226
2	189	231	267	327	377	422	462
216	329	403	466	571	659	787	807
3 ~	520	636	735	900	1039	1162	1278
4	1067	1806	1508	1847	2133	2885	2618
5	1863	2282	2685	3227	3727	4167	4564
Ğ	2989	3600	4157	5091	5879	6578	7900

# LENGTH OF PIPE = 5000 YARDS.

Diameter of Pipe	Pressure by the Water-gauge in Inches.								
in Inches.	1.0	1.5	2.0	2.5	8.0				
8	119	146	169	189	207				
8	329	402	465	520	569				
2 1	675 1179	826 1443	955 1667	1067 1968	1168 2041				
5	1859	2277	2629	2939	3220				
2	2733	8847	3865	4321	4784				
ė l	2816	4674	5897	6034	6610				
ğ	5128	6274	7245	8100	8878				
10	6667	8165	9428	10541	11547				
12	10516	12880	14872	16628	18215				

Mr. A. C. Humphreys says his experience goes to show that these tables give too small a flow, but it is difficult to accurately check the tables, on account of the extra friction introduced by rough pipes, bends, etc. For bends, one rule is to allow 1/42 of an inch pressure for each right-angle bend.

Where there is apt to be trouble from frost it is well to use no service of less diameter than ¾ in., no matter how short it may be. In extremely cold climates this is now often increased to 1 in., even for a single lamp. The best practice in the U.S. now condemns any service less than 3/4 in.

# STEAM.

The Temperature of Steam in contact with water depends upon the pressure under which it is generated. At the ordinary atmospheric pressure (14.7 lbs. per sq. in.) its temperature is 212° F. As the pressure is increased, as by the steam being generated in a closed vessel, its temperature, and that of the water in its presence, increases.

Saturated Steam is steam of the temperature due to its pressure not superheated.

Superheated Steam is steam heated to a temperature above that due

to its pressure. Dry Steam is steam which contains no moisture. It may be either saturated or superheated.

Wet Steam is steam containing intermingled moisture, mist, or spray. It has the same temperature as dry saturated steam of the same pressure.

Water introduced into the presence of superheated steam will fissh into vapor until the temperature of the steam is reduced to that due its pressure. Water in the presence of saturated steam has the same temperature as the steam. Should cold water be introduced, lowering the temperature of the whole mass, some of the steam will be condensed, reducing the pressure. ure and temperature of the remainder, until an equilibrium is established.

Temperature and Pressure of Saturated Steam.—The re-lation between the temperature and the pressure of steam, according to Regnault's experiments, is expressed by the formula (Buchanan's, as given 2938.16

by Clark)  $t = \frac{2000 \cdot 10}{6.1993544 - \log p}$  - 371.85, in which p is the pressure in pounds

per square inch and t the temperature of the steam in Fahrenheit degrees. per square inch and t the temperature of the steam in random vegicon. It applies with accuracy between 120° F. and 446° F., corresponding to pressures of from 1.68 lbs. to 448 lbs. per square inch. (For other formula see Wood's and Peabody's Thermodynamics.)

Total Heat of Saturated Steam (above 32° F.).—According to

Regnault's experiments, the formula for total heat of steam is  $H = 1091.7 + 305(t - 32^\circ)$ , in which t is temperature Fahr., and H the heat-units. (Rankine and many others; Clark gives 1091.16 instead of 1091.7.)

Latent Heat of Steam.—The formula for latent heat of steam, as given by Rankine and others, is  $L = 1091.7 - .695(t - 32^\circ)$ . Clausius's formula for the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the

mula, in Fahrenheit units, as given by Clark, is  $L = 1092.6 - .708(t - 32^{\circ})$ .

The total heat in steam (above 82°) includes three elements:

1st. The heat required to raise the temperature of the water to the temperature of the steam.

2d. The heat required to evaporate the water at that temperature, called

internal latent heat.

3d. The latent heat of volume, or the external work done by the steam in making room for itself against the pressure of the superincumbent atmosphere (or surrounding steam if inclosed in a vessel).

The sum of the last two elements is called the latent heat of steam. In Buel's tables (Weisbach, vol. ii., Dubois's translation) the two elements are

given separately.

Latent Heat of Volume of Saturated Steam. (External Work.)—The following formulas are sufficiently accurate for occasional use within the given ranges of pressure (Clark, S. E.):

From 14.7 lbs. to 50 lbs. total pressure per square inch... 55.900 + .0772t. From 50 lbs. to 200 lbs. total pressure per square inch... 59.191 + .0655t.

# Heat required to Generate 1 lb. of Steam from water at 32° F.

Heat-units. Sensible heat, to raise the water from  $32^{\circ}$  to  $212^{\circ} = \dots$ 180.9 Latent heat, 1, of the formation of steam at 212° = .... 894.0 2, of expansion against the atmospheric pressure, 2116.4 lbs. per sq. ft,  $\times$  26.36 cu. ft. = 55,786 foot-pounds + 778 = ......... 71.7 965.7 Total heat above 32° F...... 1146.6

The Heat Unit, or British Thermal Unit.—The definition of the heat-unit used in this work is that of Rankine, accepted by most modern writers, viz., the quantity of heat required to raise the temperature of 1 lb. of water 1° F. at or near its temperature of maximum density (39.1° F.). Peabody's definition, the heat required to raise a pound of water from 62° to 62° F. is not generally accepted. (See Thurston, Trans. A. S. M. E.,

Specific Heat of Saturated Steam.—The specific heat of saturated steam is .305, that of water being 1; or it is 1.281, if that of air be 1. The expression .305 for specific heat is taken in a compound sense, relating to changes both of volume and of pressure which takes place in the eleva-tion of temperature of saturated steam. (Clark, S. E.) This statement by Clark is not strictly accurate. When the temperature

of saturated steam is elevated, water being present and the steam remaining saturated, water is evaporated. To raise the temperature of 1 lb. of water 1° F. requires 1 thermal unit, and to evaporate it at 1° F. higher would require 0.695 less thermal unit, the latent heat of saturated steam decreasing 0.695 B.T.U. for each increase of temperature of 1° F. Hence 0.305 is

the specific heat of water and its saturated vapor combined.

When a unit weight of saturated steam is increased in temperature and in pressure, the volume decreasing so as to just keep it saturated, the specific heat is negative, and decreases as temperature increases. (See Wood, Therm., p. 147; Peahody, Therm., p. 93.)

Density and Volume of Saturated Steam.—The density of

steam is expressed by the weight of a given volume, say one cubic foot; and the volume is expressed by the number of cubic feet in one pound of steam.

Mr. Brownlee's expression for the density of saturated steam in terms of the pressure is  $D = \frac{p^{-941}}{330.36}$ , or log  $D = .941 \ p - 2.519$ , in which D is the den-

sity, and p the pressure in pounds per square inch. In this expression,  $p^{\cdot \cdot \cdot \cdot \cdot \cdot}$  is the equivalent of p raised to the 16/17 power, as employed by Rankine. The volume v being the reciprocal of the density,

$$v = \frac{330.36}{p^{.941}}$$
, or  $\log v = 2.519 - .941 \log p$ .

Relative Volume of Steam.—The relative volume of saturated steam is expressed by the number of volumes of steam produced from one volume of water, the volume of water being measured at the temperature 39° F. The relative volume is found by multiplying the volume in cu. ft. of one lb, of steam by the weight of a cu. ft. of water at 39° F., or 62.425 lbs.

Gaseous Steam.—When saturated steam is superheated, or sur-

charged with heat, it advances from the condition of saturation into that of charged with east, it advances from the condition of saturation into that or gaseity. The gaseous state is only arrived at by considerably elevating the temperature, supposing the pressure remains the same. Steam thus sufficiently superheated is known as gaseous steam or steam gas.

Total Heat of Gaseous Steam.—Regnault found that the total heat of gaseous steam increased, like that of saturated steam, uniformly with the temperature, and at the rate of .475 thermal units per pound for

each degree of temperature, under a constant pressure.

The general formula for the total heat of gaseous steam produced from 1 pound of water at 82° F. is H=1074.6+.475t. [This formula is for vapor generated at 32°. It is not true if generated at 212°, or at any other tempera-

renerated at 32°. It is not true it generated at 212°, or at any other temperature than 32°. (Prof. Wood.)]

The Specific Heat of Gaseous Steam is .475, under constant pressure, as found by Regnault. It is identical with the coefficient of increase of total heat for each degree of temperature. [This is at atmospheric pressure and 212° temperature. He found it not true for any other pressure. Theory indicates that it would be less at higher temperatures. (Prof. Wood.)

The Specific Density of Gaseous Steam is 622, that of air being 1. That is to say, the weight of a cubic foot of gaseous steam is about five eighths of that of a cubic foot of air, of the same pressure and temperature. The density or weight of a cubic foot of gaseous steam is expressible by the same formula as that of air, except that the multiplier or coefficient is less in proportion to the less specific density. Thus,

$$D' = \frac{2.7074p \times .622}{t + 461} = \frac{1.684p}{t + 461},$$

in which D' is the weight of a cubic foot of gaseous steam, p the total pressure per square inch, and t the temperature Fahrenheit.

**Superheated Steam.**—The above remarks concerning gaseous steam are taken from Clark's Steam engine. Wood gives for the total heat (above  $32^{\circ}$ ) of superheated steam  $H = 1091.7 + 0.48(t - 32^{\circ})$ .

The following is abridged from Peabody (Therm., p. 115, etc.).

When far removed from the temperature of saturation, superheated steam follows the laws of perfect gases very nearly, but near the temperature of saturation the departure from those laws is too great to allow of calculations by them for engineering purposes.

The specific heat at constant pressure,  $C_p$ , from the mean of three experi-

ments by Regnault, is 0.4805.

Values of the ratio of Cp to specific heat at constant volume:

Pressure p, pounds per square inch.. 1.835 1.332 1.330 1.324 1.316 Ratio  $C_{\mathcal{D}} + C_{\mathcal{V}} = k =$ 

Zeuner takes k as a constant = 1.338.

SPECIFIC HEAT AT CONSTANT VOLUME, SUPERHEATED STEAM.

200 300 Pressure, pounds per square inch..... 100 Specific heat Cv..... ...... 0.351 .348 .346 .344 .841

It is quite as reasonable to assume that  $C_r$  is a constant as to suppose that  $C_P$  is constant, as has been assumed. If we take  $C_P$  to be constant, then  $C_P$ will appear as a variable.

If p = pressure in lbs. per sq. ft., v = volume in cubic feet, and T =temperature in degrees Fahrenheit + 460.7, then  $pv = 93.5T - 971p_1$ .

Total heat of superheated steam,  $H = 0.4805(T - 10.38p^{\frac{1}{2}}) + 857.2$ .

The **Hationalization of Regnault's Experiments on Steam.** (J. McFarlane Gray, Proc. Inst. M. E., July, 1889.)—The formulae constructed by Regnault are strictly empirical, and were based entirely on his experiments. They are therefore not valid beyond the range of temperatures and pressures observed

Mr. Gray has made a most elaborate calculation, based not on experiments but on fundamental principles of thermodynamics, from which he deduces formulæ for the pressure and total heat of steam, and presents tables calc

662

lated therefrom which show substantial agreement with Regnault's figures. He gives the following examples of steam-pressures calculated for temperatures beyond the range of Regnault's experiments.

Tempe	erature.	Pounds per	Temp	Pounds per	
C.	Fahr.	sq. in.	C.	Fahr	sq. in.
230	446	406.9	340	644	2156.2
240	464	488.9	360	680	2742.5
250	482	579.9	380	716	3448.1
260	500	691.6	400	752	4300.2
280	536	940.0	415	779	5017.1
300	572	1261.8	427	800.6	5659.9
. 320	608	1661.9	241	300.0	0000.0

These pressures are higher than those obtained by Regnault's formula, which gives for 415° C. only 4067.1 lbs. per square inch.

Table of the Properties of Saturated Steam.—In the table of properties of saturated steam on the following pages the figures for temperature, total heat, and latent heat are taken, up to 210 lbs. absolute pressure, from the tables in Porter's Steam-engine Indicator, which tables have been widely accepted as standard by American engineers. The figures for total heat, given in the original as from 0° F., have been changed to heat above 32° F. The figures for weight per cubic foot and for cubic feet per pound have been taken from Dwelshauvers-Dery's table, Trans. A. S. M. E., vol. xi., as being probably more accurate than those of Porter. The figures for relative volume are from Buel's table. in Dubois's translation of Weisvol. it., as one processly more accurate that more of rorier. The lighter for relative volume are from Buel's table, in Dubois's translation of Weisbach, vol. ii. They agree quite closely with the relative volumes calculated from weights as given by Dery. From 211 to 219 lbs. the figures for temperature, total heat, and latent heat are from Dery's table; and from 220 to 1000 lbs. all the figures are from Buel's table. The figures have not been carried out to as many decimal places as they are in most of the tables given by the different authorities; but any figure beyond the fourth significant figure is unnecessary in practice, and beyond the limit of error of the observations and of the formulæ from which the figures were derived.

Weight of 1 Cubic Foot of Steam in Decimals of a Pound. Comparison of Different Authorities.

sure, r sq. in	w	eight acco	of 1 cording		ot	bsolute ressure, per sq. in.	w	eight o	of 1 cu		ot .
Absolute Pressure, lbs. per sq.	Por- ter.	Clark	Buel.	Dery.	Pea- body.		Por- ter.	Clark	Buel.	Dery.	Pea- body
1 14.7 20 40 60 80 100	.0030 .08797 .0511 .0994 .1457 .19015 .28302		.00303 .03793 .0507 .0972 .1424 .1866 .2303		.00299 .0376 .0502 .0964 .1409 .1843 .2271	120 140 160 180 200 220 240	.27428 .31386 .35209 .38895 .42496	.2788 .3162 .3590 .4009 .4481 .4842	.2735 .3163 .3589 .4012 .4438 .4652	.8147 .3567 .3988 .4400	.8118 .8580 .8945

There are considerable differences between the figures of weight and volume of steam as given by different authorities. Porter's figures are based on the experiments of Fairbairn and Tate. The figures given by the other authorities are derived from theoretical formulæ which are believed to give more reliable results than the experiments. The figures for temperature, total heat, and latent heat as given by different authorities show a practical agreement, all being derived from Regnault's experiments. See Peabody's Tables of Saturated Steam; also Jacobus, Trans. A. S. M. E., vol. xii., 598.

STEAM.

Proporties of Saturated Steam.

	r	reper	ries or	Setur	ateu s	Pewill.		
Gauge, of Mer-	Press. . per inch.	re dt.	Total above	Heat 32° F.	ut <i>L</i> . fg.	Relative Volume. Vol. of Water at 39° F. = 1.	e. Cu. ft.	1 cu.
es of	bsolute Pres ure, lbs. per square inch.	Temperature Fabreobeit.	In the Water	In the Steam	Latent Heat $I = H - h$ . Heat-units.	of W	e. (	Weight of 1 cu. ft. Steam, lb.
Vacuum Inches cury.	Absolute ure, lbs square	on of the	h Heat-	H Heat-	tent = H Heal	lativol.	Volume. in 1 lb. o	eigh ft. 8
	¥ 2		units.	units.			× =	
29.74 29.67	.089 .122	82 40	0 8.	1091.7 1094.1	1091.7 1086.1 1079.2	208080 154830	8333.8 2472.2	.00080
29.56 29.40	.176 .254	50 <b>60</b>	18. 28.01	1097.2 1100.2	1079.2 1072.2	107630 76870	1724.1 1223.4	.00058 .00082
29.19 28.90	.359 .502	70 80	88.02 48.04	1108.3 1106.3	1965.3 1058.3 1051.3	54660 39690	875.61 685.80	.00115 .00158
28.51 28.00	.692 .948	90 100	58.06 <b>68.</b> 08	1109.4 1112.4	1051.3 1044.4	29290 21830	469.20 349.70	.00213 .00286
27.88 25.85	1 2 3	102.1 126.3	70.09 94.44	1118.1 1120.5	1048.0 1026.0 1015.3	20623 10730	384.28 173.23 117.98	.00299
23.83 21.78	8	141.6 158.1	109.9 121.4	1125.1 1128.6	1015.3 1007.2	7825 5588	117.98 89.80	.00848 .01112
19.74 17.70	5 6 7 8	162.3 170.1	130.7 138.6	1181.4 1188.8	1000.7 995.2	4530 3816	72.50 61.10	.01873 .01631
17.70 15.67	7	176.9 182.9	145.4	1185.9 1137.7	990.5 986.2	3802	53.00	.01887 .02140
13.63 11.60	9	188.8	151.5 156.9	1189.4	982.4	2912 2607	46.60 41.82	.02891
9.56 7.52	10 11	193.2 197.8	161.9	1140.9 1142.3	979.0 975.8	2861 2159	87.80 84.61	.02641
5.49	12 18	202.0	166.5 170.7 174.7	1148.5	972.8 970.0	1990	31.90	.03186
3.45 1.41	18 14	205.9 209.6	174.7 178.4	1144.7 1145.9	970.0 967.4	1846 1721	29.58 27.59	.08381 .08625
Gauge Pressure	14.7	212	180.9	1146.6	965.7	1646	26.36	.08794
lbs. per sq. in.	34.1	212	100.8	1140.0		1040	20.30	.00194
0. <b>3</b> 04 1.3	15 16	218.0 216.3	181.9 185.3	1146.9 1147.9	965.0 962.7	1614 1519	25.87 24.33	.08868 .04110
2.3	17	219.4	188.4 191.4	1148.9	960.5	1434	22.98	.04352
3.3 4.3	18 19	222.4 225.2	191.4 194.3	1149 8 1150.6	958.3 956.3	1359 1292	21.78 20.70	.04592 .04831
5.3	20	227.9	197.0	1151.5	954.4	1281 1176	19.72	.05070
6.3 7.3	21 22	230.5 233.0	199.7 202.2	1152.2 1153.0	952.6 950.8	1176	18.84 18.08	.05308
8.3	28 24	235.4 237.8	204.7	.7	949.1 947.4	1080	17.30	.05782
9.8 10.8	25	240.0	207.0	1154.5 1155.1	945.8	1038 998.4	16.62 15.99	.06018
10.8 11.3	26	242.2	211.5	.8	944.3	962.3	15.42	.06487
12.3 12.3	26 27 28 29	244.3 246.3	213.7 215.7	1156.4 1157.1	942.8 941.8	928.8 897.6	14.88 14.38	.06721 .06955
12.3 13.3 14.3		248.3	217.8	.7	939.9	868.5	18.91	.07188
15.8 16.3 17.3 18.8	30 31 32	250.2 252.1	219.7 221.6	1158.3 .8	938.9 937.2	841.3 815.8	13.48 13.07	.07420 .07652
17.3	32	254.0	228.5	1159.4	937.2 935.9	791.8	12.68	.07884
18.8 19.8	83 34	255.7 257.5	225.3 227.1	1160.5	984.6 983.4	769.2 748.0	12.32 11.98	.08115 .08346
20.8 21.3	35 36 87	259.2 260.8	228.8 230.5	1161.0 1161.5	932.2 931.0	727.9 708.8	11.66 11.36	.08576 .08806
22.8	87	262.5	232.1	1162.0	929.8	690.8	11.07	.09085

Properties of Saturated Steam.

ē. <u>.</u>	w		Total		. r	Relative Volume. Vol. of Water at 89° F. = 1.	olume. Cu. ft. in 1 lb. of Steam	4.3
Gauge Pressure, lbs. per sq. in.	Absolute Press ure, lbs. per square inch.	ټنع	above	32° F.		elative Volume Vol. of Water at 89° F. = 1.	Cu. ft.	. E.
8 2	A LE	Temperature Fahrenheit.	T- Ab-	T- 43-0	Latent Heat $= H - h$ . Heat-units.	<b>\$</b> \$€.	2	Weight of 1 ft. Steam,
₽ 5	ag s	<b>E</b> 5	In the Water	In the Steam	H 12	\$ 2 c	9 6	t o
gr. %	us, es	قِية	l h	H	H H	± 50 €	≅≅	£02
<b>a</b> .≏	\$ 5 5 E	FE	Heat-	Heat-	第二年	4 ≥ 4	Volume. in 1 lb.	E E
		<u> </u>	units.	units.	<u> </u>	<u>~</u>	<b>&gt;</b>	<u>*</u>
23.3	38	264.0	233.8	1162.5	928.7	678.7	10.79 10.53	.09264
24.3	89	265.6	285.4	.9	927.6	657.5	10.53	.09493
25.8	40	267.1	236.9	1163.4	926.5	642.0	10.28 10.05	.09721
26.8 97.3	41	268.6 270.1	238.5 240.0	.9 1164.3	925.4 924.4	627.3 618.3	10.05 9.83	.1018
28.3	42 48	271.5	241.4	.7	928.8 922.8	599.9	9.61	.1040
25.8 26.3 27.3 28.3 29.3	44	272.9	242.9	1165.2	922.8	599.9 587.0	. 9.41	.1063
30.3	45	274.3	244.3	.6	921.3	574.7	9.21	1086
81.8	46	275.7	245.7 247.0	1166.0	920.4	568.0	9.21 9.02	.1108
32.3 33.3	47	277.0	247.0 248.4	.4 .8	919.4 918.5	551.7 540.9	8.84	.1131
84.8	48 49	278.3 279.6	249.7	1167.2	917.5	580.5	8.67 8.50	.1158 .1176
35.3	50	280.9	251.0	.6	916.6	520.5		
35.3 36.3	51	282.1	252 2	1168.0	915.7	510.9	8.84 8.19 8.04	.1198 .1221 .1243 .1266
37.3	52	283.3	253.5	.4	914.9	501.7	8.04	.1248
37.3 38.3 39.3	58	284.5 285.7	254.7 256.0	.7 1169.1	914.0 918.1	492.8	7.90	.1266
	54		,200.0			484.2	7.76	.1288
40.8	55	286.9	257.2	.4	912.8	475.9	7.63	.1811
41.3 42.8	56 57	288.1 289.1	258.3 259.5	.8 1170.1	911.5 910.6	467.9 460.2	7.50	.1333
48.8	58	290.3	260.7	.5	909.8	452.7	7.38 7.26	1877
44.8	58 59	291.4	261.8	1 .8	909.0	445.5	7.14	.1855 .1877 .1400
45.3 46.3	60	292.5	262.9	1171.2	908.2	438.5	7.08	.1422
46.3	61	298.6	264.0	.5	907.5	438.5 481.7	6.92	.1444
47.3 48.3	62 63	294.7 295.7	265.1 266.2	.8 1172.1	906.7 905.9	425.2 418.8	6.82 6.72	.1466
49.8	64	296.8	267.2	.4	905.2	412.6	6.62	.1488
50.8	65	297.8	268.3		904.5	406.6	l	.1533
51.3	66	298.8	269.3	.8 1178.1	908 7	400.8	6.53 6.43	.1555
51.3 52.3 58.8	67	299.8	270.4	.4	903.0	895.2	6.84	1577
58.8 54.8	68 69	300.8	271.4	1174.0	902.8	889.8	6.84 6.25 6.17	.1599
	1	801.8	272.4	١.	901.6	384.5	6.17	. 1621
55.3	70 71	302.7	278.4	.3	900.9	379.8	6.09	.1643
56.8 57.8	71	303.7 304.6	274.4 275.3	.6 .8	900.2 899.5	874.8 869.4	6.01	.1665
56.3 57.3 58.3 59.8	72 73	305.6	276.8	1175.1	898.9	364.6	6.01 5.93 5.85	.1687 .1709
59.8	73 74	306.5	277.2	.4	898.2	360.0	5.78	.1781
60.3	75	807.4	278.2	.7	897.5	855.5	5.71	.1753
61.3	75 76 77	808.8	279.1	1176.0	896.9	351.1	5.63	.1775
62.8 63.8	77	309.2 810.1	280.0 280.9	.2	896.2 895.6	846.8 342.6	5.57 5.50	.1797 .1819
61.3 62.3 63.8 64.8	78 79	810.9	281.8	1176.8	895.0	338.5	5.43	.1840
	80	811.8	282.7	1177.0	894.8	884.5	5.87	1869
65.8 66.8	81	812.7 818.5	283.6	.3	893.7	884.5 880.6	5.87 5.81 5.25 5.18	.1862 .1884 .1906 .1928
67.3 68.8	82	818.5	284.5	.6	893.1	826.8	5.25	.1906
68.3 69.3	83 84	314.4 815.2	285.8 286.2	.8 1178.1	892.5 891.9	828.1 819.5	5.18 5.18	.1928 .1950
70.8	85	316.0	287.0	.8	891.3	815.9	5.07	.1971
						0.0.0	9.01	

STEAM.

Properties of Saturated Steam.

	Properties of Saturated Steam.											
Gauge Pressure, lbs. per sq. in.	Press. per inch.	re fr.	Total above	Heat 32° F.	t L.	Relative Volume. Vol. of Water at 39° F. = 1.	olume. Cu. ft. in 1 lb. of Steam					
Pres er s		emperature Fahrenheit.	In the	In the	stent Heat $= H - h$ . Heat-units.	celative Vol. of W. at 39° F.	9	5				
2 A	beolute ure, lbs square	per	Water h	Steam H	E Hut	80°E	D.	Eg.				
Gauge Ibs.	Absolute ure, lbs square	Temperature Fahrenheit.	Heat- units.	Heat- units.	Latent Heat $= H - h.$ Heat-units	Rela Vo	Volume. in 1 lb. o	Weight of 1 cu. ft. Steam, lb.				
71.8	86	316.8	287.9	1178.6	890.7	812.5	5 02	.1993				
72.8 78.8	87 88 89	317.7 318.5	288.7 289.5	1179.1	890.7 890.1 889.5	309.1 305.8	4.96 4.91	.2015 .2086				
74.8	1	819.8	290.4	.8	888.9	<b>3</b> 02.5	4.86	.2058				
75.8 76.8	90 91	820.0 820.8	291.2 292.0	.6 .8	888.4 887.8	299.4 296.8	4.81 4.76	.2080 .2102				
77.8	92 93	321.6	292.8	1180.0	887.2	I 293.2 I	4.71	.2123				
78.3 79.3	94	822.4 823.1	293.6 294.4	.8 .5	886.7 896.1	290.2 287.3	4.66 4.62	.2145 .2166				
80.3 81.3	95 96	323.9 324.6	295.1 295.9	.7 1181.0	885.6 885.0	284.5 281.7	4.57 4.58	.2188 .2210				
82.3	96 97	825.4	296.7	.2	884.5	279.0	4.48	.2231				
88.3 84.3	98 99	326.1 326.8	297.4 298.2	.6	884.0 883.4	276.8 278.7	4.44 4.40	.2258 .2274				
85.3	100 101	8:27.6 8:28.3	298.9 299 7	8	882.9	271.1	4.36	.2296				
86.8 87.8	102 103	329.0	300.4	1182.1 .3	882.4 881.9	268.5 266.0	4.32 4.28	.2317 .2339				
88.3 89.3	103 104	829.7 880.4	301.1 301.9	.5 .7	881.4 880.8	263.6 261.2	4.24	.2360 .2382				
90.3	105	831.1	802.6	.9	880.8 879.8	258.9		.2408				
90.3 91.3 92.3 93.3	106	881.8 832.5	303.3 304.0	1183.1 .4	879.8 879.3	256.6 254.3	4.16 4.12 4.09	.2425 .2446				
98.3 94.3	107 108 109	333.2 333.9	304.7 305.4	.6	878.8 878.3	252.1	4.05	.2467				
	ì			.8		249.9	4.02	.2489				
95.3 96.3	110 111	334.5 335.2	306.1 306.8	1184.0 .2	877.9 877.4 876.9	247.8 245.7	3.98 3.95	.2510 .2531				
97.3 98.3 99.3	112 118	335.9 386.5	307.5 308.2	.4 .6	876.9 876.4	243.6 241.6	3.92 3.88	.2553 .2574				
	114	887.2	308.8	8	875.9	239.6	8.85	.2596				
100.8 101.3 102.8 103.3 104.3	115 116	837.8 338.5	809.5 810.2	1185.0 .2	875.5 875.0	287.6 285.7	3.82	.2617 .2638				
102.3	117	339.1	810.8	.4	874.5 874.1	288.8	3.79 3.76	.2660				
103.3	118 119	839.7 340.4	311.5 312.1	.6 .8	874.1 873.6	231.9 230.1	8.78 8.70	.2681 .2703				
105.3 106.3 107.3	120	841.0	312.8 813.4	.9.	878.2	228.3	8.67	.2724				
107.3	121 122 128	841.6 342.2	314.1	1186.1	872.7 872.3 871.8	226.5 224.7	3.64 3.62	.2745 .2766				
108.3 109.3	123 124	342.9 343.5	814.7 315.3	.5 .7	871.8 871.4	223.0 221.3	8.59 8.56	.2766 .2788 .2809				
110.3	125	344.1	816 0	.9	870.9	219.6	8.53	.2830				
111.3	126 127	844.7 845.3	816.6 817.2	1187.1	870.5 870.0	218.0 216.4	3.51 3.48	.2851 .2872				
112.3 113.3	128	345.9	817.8	.4	869.6	214.8	3.46	.2894				
114.8	129	846.5	318.4	.6	869.2	218.2	8.43	.2915				
115.3 116.3	130 131	347.1 347.6	319.1 319.7	1188.0	868.7 868.3	211.6 210.1	3.41 3.38	.2936 .2957				
117.3 118.3	132 133	348.2 348.8	320.3 320.8	.2	867.9	208.6	3.36	.2978				
119,3	134	349.4	321.5	.5	867.5 867.0	207.1 205.7	3.33 3.31	.3000 .3021				

Properties of Saturated Steam.

							·	
Gauge Pressure, lbs. per sq. in.	b		Total	Heat 32° F.	1	Relative Volume. Vol. of water at 89° F. = 1.	Cu. ft. Steam.	
est :	bsolute Press ure, lbs. per square inch.	5:43	above			<u> </u>	_≓ં કું	52
£ 2.	F. 70	tu	In the	In the	atent Heat $= H - h$ . Heat-units.	N 8 4	ဝစ္ထ	₽g f
현	age of	6.19	Water	Steam	E 13	9 4 1	9.0	13 <b>8</b> 8
& ¹ .	i e o	2.3	h	Steam H	ea Hat	# . F.	<b>1</b> 2 2 2	45
<b>8</b> 9	Absolute Pressure, lbs. persquare inch.	Temperature Fahrenheit.	Heat-	Heat-	Latent Heat $= H - h$ . Heat-units	_900 €	Volume. (in 1 lb. of f	Weight of 1 cu. ft. Steam, lb.
	■	<u> </u>	units.	units.	7	2 P	<u> </u>	*-
120.3	135	850.0	322.1	1188.7	866.6	204.2	8.29	.3042
121.3 122.3 123.3 124.3	136	350.5 351.1	322.6 323.2	.9 1189.0	866.2 865.8	202.8 201 4	8.27 8.24	.3063 .3084
123.3	187 188	351.8	328.8	.2	805.4	200.0	8.22	.8105
124.3	139	852.2	324.4	.4	865.0	198.7	8.20	.8126
125.3	140	352.8	325.0	5	864.6	197.8	8.18	.3147
126.3 127.8	141 142	353.8 853.9	325.5 326.1	.7 .9	864.2 868.8	196.0	3.16 3.14	.8169
128.8	143	354.4	326.7	1190.0	863.4	194.7 193.4	8.11	.8190 .8211
128.8 129.3	144	855.0	327.2	.2	863.0	192.2	8.09	. 8232
130.3	145	855.5	327.8	.4	862.6	190.9	8.07	.3253
131.8	146	856.0	328.4	.5 .7	862.2	189.7	8.05	.8274
132.3 133.3	147 148	856.6 857.1	328.9 329.5		861.8 861.4	185.5 187.8	8.04 8.02	.8295 .8816
134.3	149	857.6	330.0	1191.0	861.0	186.1	8.00	.8837
135.3	150 151	358.2	330.6	.2	860.6	184.9	2.98	.3358
136.3	151	358.7 359.2	381.1	.2 .3 .5 .7 .8	860.2 859.9	183.7	2.96 2.94	.8379
137.3 138.3	152 153	859.2 859.7	331.6 332.2	.5	859.5	182.6 181.5	2.94 2.92	.8400 .8421
135.3 136.3 137.3 138.8 139.3	154	360.2	832.7	.8	859.1	180.4	2.91	. 3442
140.3	155	360.7	<b>33</b> 3.2	1192.0	858.7	179.2 178.1	2.89	. 8468
141.3	156 157	361.3	333.8 334.3	.1	858.4	178.1	2.87	.8488
142.3 143.8	158	861.8 362.8	334.8	.8 .4	858.0 857.6	177.0 175.0	2.85 2.84	.8504 .8525
144.8	159	362.8	335.8	.6	857.6 857.2	174.9	2.82	.3546
145.8	160	363.3	335.9	.7	856.9	178.9	2.80	.8567
146.3	161	863.8	336.4	.7 .9	856.5 856.1	172.9	2.80 2.79	.8588
147.8	162 163	364.3 364.8	386.9	1193.0	856.1 855.8	171.9	2.77	.8609
145.8 146.3 147.8 148.8 149.3	164	365.3	887.4 837.9	.2	855.4	172.9 171.9 171.0 170.0	2.77 2.76 2.74	.8630 .8650
150.9	165	365.7	338.4		855.1	169.0	2.78	.8671
151.3 152.3 158.8	166 167	366.2	338.9	.5 .6 .8 .9	855.1 854.7	168.1	2.71	.3692
152.3	167 168	866.7 867.2	339.4 339.9	.8	854.4 854.0	167.1 166.2	2.69	.3713
154.3	169	367.7	340.4	1194.1	853.6	165.8	2.68 2.66	.8784 .8754
155.3	170	368.2	840.9	.2	858.8	164.8	9.65	.8775
156.3 157.3 158.3	171	368.6	341.4	.4	852.9	163.4 162.5 161.6	2.63 2.62 2.61	.8796
157.3	172 173	369.1	341.9 342.4	.5	852.6	162.5	2.62	.8817
159.3	174	869.6 370.0	342.9	.2 .4 .5 .7	852.8 851.9	160.7	2.59	.8838 .8858
160 3	175	870.5	343.4	.9	851.6	159 R	2.58	.3879
161 3	175 176	371.0	343.9	1195.1	851.6 851.2	159.8 158.9	2.56 2.55	.8900 .8921 .8942
162.3 163.3	177 178	371.4	344.3	.2	850.9	158.1	2.55	.8921
164.3	179	371.9 372.4	844.8 345.3	.5	850.5 850.2	157.2 156.4	2.54 2.52	.8942
165.3	180	372.8	345.8	.7	849.9	155.6	2.51	.3983
166 3	180 181	378.3	346.3	.7 .8	849.5	154.8	2.50	.4004
167.3 168.3	189 183	373.7 374.2	346.7 347.2	.9 1196.1	849.2 848.9	154.0 153.2	2.48	.4095
105.5	100	3/4.2	041.2	1190.1	040.9	105.2	2.47	.4046

STEAM.

# Properties of Saturated Steam.

. ته	ا بد		Total	Heat		at je	. Cu. ft. of Steam	,
lauge Pressure lbs. per sq. in	beolute Pressure, lbs. per square inch.	40	above	82° F.	. r	5 %	Cu. ft. f Stean	5 G
<b>3</b> '	' 본으등	E =:			18. BE	ੋੜੇ . I	, 5.00 l	<u> </u>
<b>ഉ</b> ∞	1 4 9 5	1 2 B	In the	In the	ig. A le	NA .	~ H	₩ ∄
P #	ا م ڪڍ	2,1	Water	Steam	田15	9 😓 🛚	ي يو	# # # # # # # # # # # # # # # # # # #
& □	B. 5	2.5	h	H	S Hin	. ₹ . F.	82	쯗
<u> </u>	1 % 2 R	8.5	Heat-	Heat-	stent Heat $= H - h.$ Heat-units	zelati Vol. 39° F	7olume in 1 lb.	· 6
Gauge Pressure, lbs. per sq. in.	Absolute Press ure, lbs. per square inch.	Temperature Fahrenheit.	units.	units.	Latent Heat $= H - h.$ Heat-units	Relative Volume. Vol. of water at 89° F.= 1.	Volume. in 1 lb. c	Weight of 1 cu. ft. Steam, lb.
169.8	184	874.6	847.7	1196.2	848.5	152.4	2.46	.4066
170.8	185	875.1	348.1	.8	848.9	151.6	2.45	.4087
171.8	186 187 188	375.5	848.6	.5	847.9	150.8	2.43	.4108
172.8	187	375.9	849.1	.6	847.9 847.6	150.0	2.42	4129
172.8 178.8	188	376.4	849.5	.7	847.2	149.2	2.41	.4150
174.8	189	876.9	850.0	.9	846.9	148.5	2.40	.4170
175.8	190	877.8	850.4	1197.0	846.6	147.8	9.80	.4191
176.8	191	877.7	850.9	.1	846.3	147.0	2.39 2.87 2.36	.4212
177.8	192	877.7 878.2	851.3		845.9	146.8	2.36	4283
175.8 176.8 177.8 178.8	191 192 198	878.6	851.8	.4	845.6	145.6	2.85	.4254
179.8	194	879.0	352.2	.5	845.3	144.9	2.34	.4275
180.3	195	879.5	352.7	.7	845.0	144.2	2.88	.4296
181.8	196	880.0	353.1	.8	844.7	148.5	2.88 2.82	.4317
181.3 182.3	197	880.0 880.8	358.6	.9	844.4	142.8	2.81	.4837
183.8	195 196 197 198	380.7	354.0	1198.1	844.1	142.1	2.29	.4337 .4358
184.8	199	381.2	854.4	.2	848.7	141.4	2.28	.4379
185.3 186.3 187.3 188.3 189.3	200 201	381.6	854.9	.8	843.4	140.8	2.27	.4400
186.3	201	382.0	855.3	.4	843.1	140.1	2.26	.4420
187.3	1 909	382.4	855.8	.6 .7	842.8	139.5	2.25	. <b>4441</b>
188.3	203	382.8	356.2	.7	842.5	138.8	2.24	.4462
189.3	204	388.2	356.6	.8	842.2	138.1	2.23	.4482
190.8	205	383.7	357.1	1199.0	841.9	187.5	2.22	.4508
191.8	206	384.1	357.5 357.9	.1	841.6	187.5 186.9	2.21 2.20	. 4523
192.8	207	384.5	357.9	.2	841.8	186.3	2.20	.4544
191.8 192.8 193.8	208	384.9	358.8	.8	841 0	185.7	2.19	.4564
194.3	209	885.8	358.8	.5	840.7	185.1	2.18	.4585
195.3	210	385.7	859.2	.6 .7 .8	840.4	184.5	2.17	.4605
- 196.3 197.8 198.3 199.8	211	386.1	859.6	.7	840.1	188.9	2 16	.4626
197.8	212	886.5	360.0	.8	839.8	188.8	2.15	.4646
198.3	213	886.9	360.4	.9	839.5	132.7	2.14 2.13	.4667
199.8	214	387.3	360.9	1200.1	839.2	132.1	2.13	.4687
200.8	215	387.7	361.3	.2 .3	888.9	181.5	2.12	.4707
201.3	216	388.1	361.7	.3	838.6	130.9	2.12	.4728
202.3	217	388.5	362.1	.4	838.3	180.3	2.11	.4748
203.8	218	388.9	362.5	.6 .7	838.1	129.7	2.10	.4768
204.3	219	389.8	362.9	.7	837.8	129.2	2.09	.4788
205.8	220	389.7	862.2*	1200.8	838.6*	128.7	2.06	. 4852
215.3	230	893.6	366.2	1202.0	835.8	123.8	1.98	.5061
225.8	240	397.8	370.0	1203.1	833.1	118.5	1.90	.5270
285.8	250	400.9	873.8	1204.2	830.5	114.0	1.83	.5478
245.8	260	404.4	877.4	1205.3	827.9	109.8	1.76 1.70	.5686
255.8	270	407.8	880.9	1206.8	825.4	105.9	1.70	.5894
265.8 275.8	280 290	411.0	884.3	1207.3	823.0	102.3	1.64	.6101
275.8	2590	414.2	887.7	1208.3	820.6	99.0	1.585	.6308
285.8	300	417.4	890.9	1209.2	818.3	95.8	1.535	.6515
335.8	350	432.0	406.8	1213.7	807.5	82.7	1.325	.7545

^{*} The discrepancies at 205.3 lbs. gauge are due to the change from Dery's to Buel's figures.

# Properties of Saturated Steam.

Pressure, r sq. in.	Press- per nch.	t.	Total Heat above 32° F.		t L.	e Volume. water at = 1.	Cu. ft. in 1 ib.	lb.
Gauge Pres lbs per sq.	Absolute Puure, lbs.	Temperature Fahrenheit.	In the Water h Heat- units.	In the Steam H Heat-units.	Latent Heat $= H - h.$ Heat-units.	Relative Vo Vol. of wat 89° F. = 1.	Volume. Co	Weight of 1 ft. Steam,
385.3	400	444.9	419.8	1217.7	797.9	72.8	1.167	.8572
435.3	450	456.6	432.2	1221.3	, 789.1	65.1	1.042	.9595
485.8	500	467.4	443.5	1224.5	781.0	58.8	.942	1.062
535.3	550	477.5	454.1	1227.6	773.5	53.6	.859	1.164
585.3	600	486.9	464.2	1280.5	766.8	49.8	.790	1.266
635.3	650	495.7	473.6	1233.2	759.6	45.6	.731	1.368
685.3	700	504.1	482.4	1285.7	753.3	42.4	.680	1.470
735.3	750	512.1	490.9	1238.0	747.2	39.6	,636	1.572
785.3	800	519.6	498.9	1240.3	741.4	37.1	.597	1.674
835.3	850	526.8	506.7	1242.5	735.8	84.9	.568	1.776
885.3	900	533.7	514.0	1244.7	730.6	88.0	.532	1.878
935.3	950	540.3	521.3	1246.7	725.4	81.4	.505	1.980
985.3	1000	546.8	528.3	1248.7	720.3	80.0	.480	2.082

# FLOW OF STEAM.

Flow of Steam through a Nozzle. (From Clark on the Steam-engine.)—The flow of steam of a greater pressure into an atmosphere of a less pressure increases as the difference of pressure is increased, until the external pressure becomes only 58% of the absolute pressure in the boiler. The flow of steam is neither increased nor diminished by the fall of the external pressure below 58%, or about 4/7ths of the inside pressure, even to the external pressure below 58%, or about 4/7ths of the inside pressure, even to the external pressure, and to the volume due to this pressure, so long as it is not less than 58% of the internal pressure. For an external pressure of 56%, and for lower percentages, the ratio of expansion is 1 to 1.624. The following table is selected from Mr. Brownlee's data exemplifying the rates of discharge under a constant internal pressure, into various external pressures, into

# Outflow of Steam; from a Given Initial Pressure into Various Lower Pressures.

Absolute initial pressure in boiler, 75 lbs. per sq. in.

Absolute Pressure in Boiler per square inch.	External Pressure per square inch.	Ratio of Expansion in Nozzle.	Velocity of Outflow at Constant Density.	Actual Velocity of Outflow Expanded.	Discharge per square inch of Orifice per minute.
1bs. 75 75 75 75 75 75 75 76 775 775 775	lbs. 74 72 70 65 61.62 60 50	ratio. 1.012 1.087 1.063 1.136 1.198 1.219 1.434 1.575	feet per sec. 227.5 386.7 490 660 736 765 873 890	feet p. sec. 280 401 521 749 876 933 1252 1401	1bs. 16.68 28.35 85.93 48.38 53.97 56.13 64 65.24
75 75	{ 43.46 } 58 p. cent }	1.624 1.624	890.6 890.6	1446.5 1446.5	65.8 65.8
75	l ō	1.624	890.6	1446.5	65.8

When steam of varying initial pressures is discharged into the atmosphere—the atmospheric pressure being not more than 58% of the initial pressure—the velocity of outflow at constant density, that is, supposing the initial density to be maintained, is given by the formula  $V=3.5953\, \psi h$ .

V = the velocity of outflow in feet per minute, as for steam of the initial density

h = the height in feet of a column of steam of the given absolute initial pressure of uniform density, the weight of which is equal to the pressure on the unit of base.

The lowest initial pressure to which the formula applies, when the steam is discharged into the atmosphere at 14.7 lbs. per square inch, is  $(14.7 \times$ 100/58 = ) 25.37 lbs. per square inch. Examples of the application of the formula are given in the table below.

From the contents of this table it appears that the velocity of outflow into the atmosphere, of steam above 25 lbs. per square inch absolute pressure, or 10 lbs. effective, increases very slowly with the pressure, obviously because the density, and the weight to be moved, increase with the pressure. An average of 900 feet per second may, for approximate calculations, be taken for the velocity of outflow as for constant density, that is, taking the volume of the steam at the initial volume.

Outflow of Steam into the Atmosphere.—External pressure per square inch 14.7 lbs. absolute. Ratio of expansion in nozzle, 1.624.

Absolute Initial Pressure per square inch.	Velocity of Out- flow as at Con- stant Density.	Actual Velocity of Outflow Expanded.	Discharge per square inch of Orifice per min	Horse-power per sq. in. of Orifice if H. P. = 30 lbs. per hour.	Absolute Initial Pressure per square inch.	Velocity of Outflow as at Constant Density.	Actual Velocity of Outflow Expanded.	Discharge per square inch of Orifice per minute.	Horse-power per sq. in. of Orifice if H. P. = 30 lbs. per hour.
lbs.	feet p.sec.	feet per sec.	lbs.	H.P.	lbs.	feet p.sec.	feet per sec.	lbs.	H.P.
25.37	863	1401	22.81	45.6	90	895	1454	77.94	155.9
30	867	1408	26.84	58.7	100	898	1459	86.34	172.7
40	874	1419	35.18		115	902	1466	98.76	197.5
50	880	1429	44.06		135	906	1472	115.61	281.2
60	885	1437	52.59	105.2	155	910	1478	132.21	264.4
70	889	1444	61.07	122.1	165	912	1481	140.46	280.9
75	891	1447	65.30	130.6	215	919	1498	181.58	863.2

Napier's Approximate Rule.—Flow in pounds per second = absolute pressure × area in square inches + 70. This rule gives results which closely correspond with those in the above table, as shown below.

Abs. press., lbs. p. sq. in. 25.37 60 75 100 135 165 215 Discharge per min., by 140.46 By Napier's rule...... 21.74 34.29 51.43 64.29 85.71 115.71 141.48 184.29

Prof. Peabody, in Trans. A. S. M. E., xi, 187, reports a series of experiments on flow of steam through tubes ¼ inch in diameter, and ¼, ¼, and ¼, inch long, with rounded entrances, in which the results agreed closely with Napier's formula, the greatest difference being an excess of the experimental over the calculated result of 3.2%. An equation derived from the theory of thermodynamics is given by Prof. Peabody, but it does not agree with the experimental results as well as Napier's rule, the excess of the actual flow being 6.6%.

Flow of Steam in Pipes.—A formula commonly used for velocity of flow of steam in pipes is the same as Downing's for the flow of water in

smooth cast-iron pipes, viz.,  $V = 50 \sqrt{\frac{H}{L}} D$ , in which V = velocity in feet

per second, L = length and D = diameter of pipe in feet, H = height in feet of a column of steam, of the pressure of the steam at the entrance,

which would produce a pressure equal to the difference of pressures at the two ends of the pipe. (For derivation of the coefficient 50, see Briggs on "Warming Buildings by Steam," Proc. Inst. C. E. 1882.) If Q= quantity in cubic feet per minute, d= diameter in inches, L and H being in feet, the formula reduces to

$$Q = 4.7233 \sqrt{\frac{H}{L}} d^{5}, \quad H = .0448 \frac{Q^{5}L}{d^{5}}, \quad d = .5874 \sqrt[5]{\frac{Q^{5}L}{H}}.$$

(These formulæ are applicable to air and other gases as well as steam.) If  $p_1 = \text{pressure}$  in pounds per square inch of the steam (or gas) at the entrance to the pipe,  $p_2 = \text{the pressure}$  at the exit, then  $144(p_1 - p_2) = \text{difference}$  in pressure per square foot. Let w = density or weight per cubic foot of steam at the pressure  $p_1$ , then the height of column equivalent to the difference in pressures

$$= H = \frac{144(p_1 - p_2)}{w}, \text{ and } Q = 60 \times .7854 \times 50 D^2 \sqrt{\frac{\overline{144(p_1 - p_2)D}}{wL}}.$$

If W = weight of steam flowing in pounds per minute = Qw, and d is taken in inches, L being in feet,

$$W = 56.68 \sqrt{\frac{w(p_1 - p_2)d^6}{L}}; \quad Q = 56.68 \sqrt{\frac{(p_1 - p_2)d^6}{Lw}};$$

$$d = 0.199 \sqrt[8]{\frac{W^2L}{w(p_1 - p_2)}} = 0.199 \sqrt[4]{\frac{Q^2wL}{p_1 - p_2}}.$$

Velocity in feet per minute =  $V = Q + .7854 \frac{d^2}{144} = 10392 \sqrt{\frac{(p_1 - p_2)d}{wL}}$ 

For a velocity of 6000 feet per minute, 
$$d = \frac{wL}{3(p_1 - p_2)}$$
;  $p_1 - p_2 = \frac{wL}{3d}$ 

For a velocity of 6000 feet per minute, a steam-pressure of 100 lbs. gauge, or w=.264, and a length of 100 feet,  $d=\frac{8.8}{p_1-p_2}$ ;  $p_1-p_2=\frac{8.8}{a}$ . That is, a pipe 1 inch diameter, 100 feet long, carrying steam of 100 lbs. gauge-pressure at 6000 feet velocity per minute, would have a loss of pressure of 8.8 lbs. per square inch, while steam travelling at the same velocity in a pipe 8.8 inches diameter would lose only 1 lb, pressure.

G. H. Babcock, in "Steam," gives the formula

$$W = 87 \sqrt{\frac{w(p_1 - p_2)d^5}{L\left(1 + \frac{3.6}{d}\right)}}.$$

In earlier editions of "Steam" the coefficient is given as 300,—evidently an error,—and this value has been reprinted in Clark's Pocket-Book (1892 edition). It is apparently derived from one of the numerous formulæ for flow of water in pipes, the multiplier of L in the denominator being used for an expression of the increased resistance of small pipes. Putting this formula

in the form  $W = c \sqrt{\frac{(p_1 - p_2)d^5}{L}}$ , in which c will vary with the diameter

of the pipe, we have,

For diameter, inches.... 40.7 52.1 58.8 79.3

instead of the constant value 56.68, given with the simpler formula.

One of the most widely accepted formulæ for flow of water is D'Arcy's,  $V = c_4 \sqrt{\frac{HD}{L4}}$ , in which c has values ranging from 65 for a  $\frac{1}{2}$ -inch pipe up to 111.5 for 24-inch. Using D'Arcy's coefficients, and modifying his formula to make it apply to steam, to the form

$$Q = c\sqrt{\frac{(p_1 - p_2)d^6}{wL}}, \text{ or } W = c\sqrt{\frac{w(p - p_1)d^6}{L}},$$

we obtain,

In the absence of direct experiments these coefficients are probably as accurate as any that may be derived from formulæ for flow of water.

Loss of pressure in lbs. per sq. in. =  $p_1 - p_3 = \frac{Q^3wL}{c^2d^3}$ 

Loss of Pressure due to Radiation as well as Friction.— E. A. Rudiger (Mechanics, June 30, 1883) gives the following formulæ and tables for flow of steam in pipes. He takes into consideration the losses in pressure due both to radiation and to friction.

Loss of power, expressed in heat-units due to friction,  $H_f = \frac{W^3 fl}{10p^3 d^5}$ .

Loss due to radiation,  $H_r = 0.262rld$ ,

In which W is the weight in lbs. of steam delivered per hour, f the coefficient of friction of the pipe, l the length of the pipe in feet, p the absolute terminal pressure, d the diameter of the pipe in inches, and r the coefficient of radiation. f is taken as from .0165 to .0175, and r varies as follows:

TABLE OF VALUES FOR r.

Dies Gerania e	Absolute Pressure.						
Pipe Covering.	40 lbs.	65 lbs.	90 lbs.	115 lbs.			
Uncovered pipe	487	555	620	684			
	146	178	193	209			
2 " asbestos "	157	192	202	222			
	150	185	197	210			
	100	122	145	151			
2 " mineral wool	61	76	85	98			
	48	58	66	78			

The appended table shows the loss due to friction and radiation in a steampipe where the quantity of steam to be delivered is 1000 lbs. per hour, l=1000 feet, the pipe being so protected that loss by radiation r=64, and the absolute terminal pressure being 90 lbs.:

Diameter of Pipe, inches.	Loss by Friction, <i>Hf</i> .	Loss by Radia- tion, <i>Hr</i> .	Total Loss, L.	Diam. of Pipe, inches.	Loss by Friction, <i>Hf</i> .	Loss by Radia- tion, Hr.	Total Loss, L.
1	197,531	16,768	214,300	31/6	376	58,688	59,064
144	64,727	20,960	85,687	4′~	193	67.072	67,265
112	26,012	25,152	51,164	5	68	83.840	88,903
114 114 134	12,035	29,344	41,379	6	25	100,608	1:0.623
2	6,173	33,536	39,709	7	12	117,376	117,388
21/6	2,023	41,920	43,943	8	6	134,144	134,150
3´*	813	50,304	51,117	_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,

672 STEAM.

If the pipes are carrying steam with minimum loss, then for same r, l, and p, the loss of pressure L for pipes of different diameters varies inversely as the diameters.

The general equation for the loss of pressure for the minimal loss from friction and radiation is

$$L = \frac{0.0007028 \quad drlp}{W}.$$

The loss of pressure for pipes of 1 inch diameter for different absolute terminal pressures when steam is flowing with minimal loss is expressed by the formula  $L = C l \sqrt{r^2}$ , in which the coefficient C has the following values:

For	65	lbs.	abs.	term.	pressure	 0.00089387
	75		46	46		0.00093684
**	90	44	44	"	44	 0.00099578
44	100	44	44	44	44	0.00108182
44	115	44	44		66	0.00108051

1

In order to find the loss of pressure for any other diameter, divide the loss of pressure in a 1-inch pipe for the given terminal pressure by the given diameter, and the quotient will be the loss of pressure for that diameter.

The following is a general summary of the results of Mr. Rudiger's inves-

tigation :

The flow of steam in a pipe is determined in the same manner as the flow of water, the formula for the flow of steam being modified only by substi-tuting the equivalent loss of pressure, divided by the density of the steam, for the loss of head.

The losses in the flow of steam are two in number—the loss due to the The losses in the flow of steam are two in number—the loss due to the friction of flow and that due to radiation from the sides of the pipe. The sum of these is a minimum when the equivalent of the loss due to friction of flow is equal to one fifth of the loss of heat by radiation. For a greater or less loss of pressure—i.e., for a less or greater diameter of pipe—the total loss increases very rapidly.

For delivering a given quantity of steam at a given terminal pressure, with minimal total loss, the better the non-conducting material employed, the larger the diameter of the steam-pipe to be used.

The most economical loss of pressure for a pipe of given diameter is equal to the most economical loss of pressure in a pipe of 1 inch diameter for same conditions, divided by the diameter of the given pipe in inches.

The following table gives the capacity of pipes of different diameters, to deliver steam at different terminal pressures through a pipe one half mile long for loss of pressure of 10 lbs., and a mean value of f = 0.0175. Let Wdenote the number of pounds of steam delivered per hour:

Diameter of Pipe,	Abs. T	erm. Pr	essure.	Diameter of Pipe,	Abs. Term. Pressure.			
inches.	65 lbs.	80 lbs.	100 lbs.	inches.	65 lbs.	80 lbs.	100 lbs.	
	W	W	W	417	W	W	W	
1	102 179	118 198	125 219	41/2 5	4,397 5,721	4,872 6,339	5,390 7,013	
11/2	282	312	346	6	9,024	10,000	11.063	
184	415	459	508	7	13,268	14,701	16,265	
2	579	641	710	8	18,526	20,528	22,711	
21/2	1,011	1,121	1,240	9	24,870	27,556	80,488	
3	1,595	1,768	1,956	10	32,364	35,860	39,675	
31/2	2,346	2,599	2,875	11	41,081	45,507	50,349	
4	3,275	3,629	4,042	12	51.049	56,564	62,581	

Resistance to Flow by Bends, Valves, etc. (From Briggs on Warming Buildings by Steam.)—The resistance at the entrance to a tube when no special bell-mouth is given consists of two parts. The head  $v^2 + 2q$ is expended in giving the velocity of flow; and the head  $0.505 \stackrel{v^2}{\sim}$  in overcoming the resistance of the mouth of the tube. Hence the whole loss of head at the entrance is  $1.505 \frac{v^2}{2g}$ . This resistance is equal to the resistance

of a straight tube of a length equal to about 60 times its diameter.

The loss at each sharp right-angled elbow is the same as in flowing through a length of straight tube equal to about 40 times its diameter. For a globe steam stop-valve the resistance is taken to be 1½ times that of the right-angled elbow.

Sizes of Steam-pipes for Stationary Engines.—Authorities on the steam-engine generally agree that steam-pipes supplying engines should be of such size that the mean velocity of steam in them does not exceed 6000 feet per minute, in order that the loss of pressure due to friction may not be excessive. The velocity is calculated on the assumption that the cylinder is filled at each stroke. In very long pipes, 100 feet and upward, it is well to make them larger than this rule would give, and to place a large steam receiver on the pipe near the engine, especially when the engine cuts off early in the stroke.

An article in *Power*, May, 1898, on proper area of supply-pipes for engines gives a table showing the practice of leading builders. To facilitate comparison, all the engines have been rated in horse-power at 40 pounds mean effective pressure. The table contains all the varieties of simple engines, from the slide-valve to the Corlies, and it appears that there is no general difference in the gives of size of the corling and it appears that there is no general

difference in the sizes of pipe used in the different types.
The averages selected from this table are as follows:

The factor .1375 in formula (1) is thus derived: Assume that the linear velocity of steam in the pipe should not exceed 6000 feet per minute, then pipe area = cyl. area  $\times$  piston-speed + 6000 (a). Assume that the av. mean effective pressure is 40 lbs. per sq. in., then cyl. area  $\times$  piston-speed  $\times$  40 + 33,000 = horse-power (b). Dividing (a) by (b) and cancelling, we have pipe area + H.P. = .1375 sq. in. If we use 8000 ft. per min. as the allowable velocity, then the factor .1375 becomes .1031; that is, pipe area + H.P. = .1031, or pipe area  $\times$  .97 = horse-power. This, however, gives areas of pipe smaller than are used in the most recent practice. A formula which gives results closely agreeing with practice, as shown in the above table is

Horse-power = 
$$6d^2$$
, or pipe diameter =  $\sqrt{\frac{\text{H.P.}}{6}}$  = .408  $\sqrt{\text{H.P.}}$ 

DIAMETERS OF CYLINDERS CORRESPONDING TO VARIOUS SIZES OF STEAM-PIPES BASED ON PISTON-SPEED OF ENGINE OF 600 FT. PER MINUTE, AND ALLOWABLE MEAN VELOCITY OF STEAM IN PIPE OF 4000, 6000, AND 8000 FT. PER MINUTE.

Diam. of pipe, inches	5.2 6.3 7.3	21.6 6.5 7.9 9.1	3 7.7 9.5 10.9	31/6 9.0 11.1 12.8	12.6 14.6	416 11.6 14.2 16.4	5 12.9 15.8 18.3	6 15.5 19. 21.8
Horse-power, approx	20	31	45	62	80	100	125	180
Diam. of pipe, inches Vel. 4000	7 18.1	8 20.7	9 23,2	10 25.8	11 28.4	12 31.0	18 33.6	14 36.1
" 6000	22.1	25.3	28.5	31.6	34.8	37.9	41.1	44.3
" 8000	25.6	29,2	32.9	36.5	40.2	43.8	47.5	51.1
Horse-power, approx	245	320	406	500	606	718	845	981

Formula. Area of pipe =  $\frac{\text{Area of cylinder} \times \text{piston-speed}}{\text{mean velocity of storm in pipe}}$ 

For piston-speed of 600 ft. per min. and velocity in pipe of 4000, 6000, and 8000 ft. per min. area of pipe = respectively .15, .10, and .075 × area of cylinder. Diam. of pipe = respectively .3873, .3162, and .2739 × diam. of cylinder. Reciprocals of these figures are 2.582, 3.162, and 3.651.

The first line in the above table may be used for proportioning exhaust-

pipes, in which a velocity not exceeding 4000 ft. per minute is advisable. The last line, approx. H.P. of engine, is based on the velocity of 6000 ft. per min. in the pipe, using the corresponding diameter of piston, and taking H.P. =  $\frac{1}{2}$  (diam. of piston in inches)².

Sizes of Steam-pipes for Marine Engines. - In marine-engine practice the steam pipes are generally not as large as in stationary practice for the same sizes of cylinder. Seaton gives the following rules:

Main Steam-pipes should be of such size that the mean velocity of flow does not exceed 8000 ft. per min.

In large engines, 1000 to 2000 H.P., cutting off at less than half stroke, the steam-pipe may be designed for a mean velocity of 9000 ft., and 10.000 ft. for still larger engines.

In small engines and engines cutting later than half stroke, a velocity of

less than 900 ft. per minute is desirable.

Taking 8100 ft. per min. as the mean velocity, S speed of piston in feet per min., and D the diameter of the cyl.

Diam. of main steam-pipe = 
$$\sqrt{\frac{\overline{D^2S}}{8100}} = \frac{D}{90} \sqrt{\overline{S}}$$
.

Stop and Throttle Valves should have a greater area of passages than the area of the main steam-pipe, on account of the friction through the circultous passages. The shape of the passages should be designed so as to avoid abrupt changes of direction and of velocity of flow as far as possible.

Area of Steum Ports and Passages =

$$\frac{\text{Area of piston} \times \text{speed of piston in ft. per min.}}{6000} = \frac{\text{(Diam.)}^2 \times \text{speed}}{7689}.$$

Opening of Port to Steam .- To avoid wire-drawing during admission the area of opening to steam should be such that the mean velocity of flow does not exceed 10,000 ft. per min. To avoid excessive clearance the width of not exceed 10,000 ft. per min. 10 avoid excessive clearance the winth of port should be as short as possible, the necessary area being obtained by length (measured at right angles to the line of travel of the valve). In practice this length is usually 0.6 to 0.8 of the diameter of the cylinder, but in long-stroke engines it may equal or even exceed the diameter.

Exhaust Passages and Pipes.—The area should be such that the mean chemical the carear should not exceed 600 ft. committee and the area.

velocity of the steam should not exceed 6000 ft. per min., and the area should be greater if the length of the exhaust-pipe is comparatively long. The area of passages from cylinders to receivers should be such that the velocity will not exceed 5000 ft. per min.

The following table is computed on the basis of a mean velocity of flow of 8000 ft. per min. for the main steam-pipe, 10,000 for opening to steam, and 6000 for exhaust. A = area of piston, D its diameter.

STEAM AND EXHAUST OPENINGS.

Piston- speed, ft. per min.	Diam. of Steam-pipe + D.	Area of Steam-pipe + A.	Diam. of Exhaust + D.	Area of Exhaust + A.	Opening to Steam + A.
300	0.194	0.0375	0.223	0.0500	0.03
400	0.224	0.0500	0.258	0.0667	0 04
500	0.250	0.0625	0.288	0.0833	0.05
600	0.274	0.0750	0.316	0.1000	0.06
700	0.296	0.0875	0.341	0.1167	0.07
900	0.316	0.1000	0.365	0.1333	0.08
900	0.335	0.1125	0.387	0.1500	0.09
1000	0.353	0.1250	0.400	0.1667	0.10

# STEAM PIPES.

Bursting-tests of Copper Steam-pipes. (From Report of Chief Engineer Melville, U. S. N., for 1892.)—Some tests were made at the New York Navy Yard which show the unreliability of brazed seams in copper pipes. Each pipe was 8 in. diameter inside and 3 ft. 1% in. long. Both ends were closed by ribbed heads and the pipe was subjected to a hort-process. water pressure, the temperature being maintained constant at 871° F. Three

of the pipes were made of No. 4 sheet copper ("Stubbs" gauge) and the fourth was made of No. 8 sheet.

The following were the results, in lbs. per sq. in., of bursting-pressure:

Pipe number	1	2	8	4	4'
Actual bursting-strength	835	785	950	1225	1275
Calculated " "	1336	1836	1569	1568	1568
Difference	501	551	619	348	293

The theoretical bursting-pressure of the pipes was calculated by using the figures obtained in the tests for the strength of copper sheet with a brazed joint at 350° F. Pipes 1 and 2 are considered as having been annealed.

The tests of specimens cut from the ruptured pipes show the injurious action of heat upon copper sheets; and that, while a white heat does not change the character of the metal, a heat of only slightly greater degree causes it to lose the fibrous nature that it has acquired in rolling, and a serious reduction in its tensile strength and ductility results.

All the brazing was done by expert workmen, and their failure to make a

pipe-joint without burning the metal at some point makes it probable that, with copper of this or greater thickness, it is seldom accomplished.

That it is possible to make a joint without thus injuring the metal was proven in the-cases of many of the specimens, both of those cut from the

proven in the cases of many of the specialis, over the fractive.

Bule for Thickness of Copper Steam-pipes. (U. S. Supervising Inspectors of Steam Vessels.)—Multiply the working steam-pressure in lbs. per sq. in. allowed the boiler by the diameter of the pipe in inches, then divide the product by the constant whole number 8000, and add .0625 to the quotient; the sum will give the thickness of material required.

Example.—Let 175 lbs. = working steam-pressure per sq. in. allowed the boiler, 5 in. = diameter of the pipe; then  $\frac{175 \times 5}{8000} + .0625 = .1718 + inch,$ 

thickness required.

Reinforcing Steam-pipes. (Eng., Aug. 11, 1893.)—In the Italian Navy copper pipes above 8 in. diam. are reinforced by wrapping them with a close spiral of copper or Delta-metal wire. Two or three independent spirals are used for safety in case one wire breaks. They are wound at a

tension of about 114 tons per sq. in.

Wire-wound Steam-pipes.—The system instituted by the British Admiralty of winding all steam-pipes over 8 in. in diameter with 3/16-in. copper wire, thereby about doubling the bursting pressure, has within recent years been adopted on many merchant steamers using high-pressure steam, says the London Engineer. The results of some of the Admiralty steam, says the London Engineer. The results of some of the Admiralty tests showed that a wire pipe stood just about the pressure it ought to have stood when unwired, had the copper not been injured in the brazing.

Eliveted Steel Steam-pipes have recently been used for high pressures. See paper on A Method of Manufacture of Large Steam-pipes, by Chas. H. Manning, Trans. A. S. M. E., vol. xv.

Valves in Steam-pipes.—Should a globe-valve on a steam-pipe have the steam-pressure on top or underneath the valve is a disputed question. With the steam-pressure on ton, the stuffing-box ground the valve-stem can-

With the steam-pressure on top, the stuffing-box around the valve-stem can-not be repacked without shutting off steam from the whole line of pipe; on the other hand, if the steam-pressure is on the bottom of the valve it all has to be sustained by the screw-thread on the valve-stem, and there is danger of stripping the thread.

A correspondent of the American Machinist, 1892, says that it is a very uncommon thing in the ordinary globe-valve to have the thread give out, but by water-hammer and merciless screwing the seat will be crushed down quite frequently. Therefore with plants where only one boiler is used he advises placing the valve with the boiler-pressure underneath it. On plants where several boilers are connected to one main steam-pipe he would reverse the position of the valve, then when one of the valves needs repacking the valve can be closed and the pressure in the boiler whose pipe it controls can be reduced to atmospheric by lifting the safety-valve. The repacking can then be done without interfering with the operation of the other boilers of the plant.

He proposes also the following other rules for locating valves: Place valves with the stems horizontal to avoid the formation of a water-pocket. Never put the junction-valve close to the boiler if the main pipe is above the boiler, but put it on the highest point of the junction-pipe. If the other plan is followed, the pipe fills with water whenever this boiler is stopped and the others are running, and breakage of the pipe may cause serious results. Never let a junction-pipe run into the bottom of the main pipe, but into the side or top. Always use an angle-valve where convenient, as there is more room in them. Never use a gate valve under high pressure unless a by-pass is used with it. Never open a blow-off valve on a boiler a little and then shut it; it is sure to catch the sediment and ruin the valve; throw it well open before closing. Never use a globe-valve on an indicator pipe. For water, always use gate or angle valves or stop-cocks to obtain a clear passage. Buy if possible valves with renewable disks. Lastly, never let a man go inside a boiler to work, especially if he is to hammer on it, unless you break the joint between the boiler and the valve and put a plate of steel between the flanges

Flanges for Steam-nozzles and Steam-pipe, used with the Gill Water-tube Boiler, Phila., 1892.

Size of pipe. Outside diameter of flange, inches. Pitch-circle for bolts, diam., " Outside diam. of gaskets, " Inside diam. of gaskets, " Number of bolts	3 9 7 516 316 5	4 10 8 616 415 6	5 11 9 714 514	6 12 10 816 616 8	7 13 11 916 716	8 14 12 1016 812 10	9 15 13 1114 914 11
Size of pipe. Outside diameter of flange, inches. Pitch-circle for bolts, diam., " Outside diam. of gaskets, " Inside diam. of gaskets, " Number of bolts"	10 16 14 1216 1012 12	11 17 15 131/6 111/2 13	12 18 16 1416 1212 14	18 19 17 151/2 181/2	14 20 18 1616 1412 16	15 21 19 1716 1517	16 22 20 1814 1614 18

All holes drilled 15/16 in., with a jig accurately laid out. All bolts to be % in. diam. by 3½ in. long under the head.

All bolts to have square heads and hexagon nuts.

The *Steam Loop* is a system of piping by which water of con-densation in steam-pipes is automatically returned to the boiler. In its simplest form it consists of three pipes, which are called the riser, the hori-zontal, and the drop-leg. When the steam-loop is used for returning to the boiler the water of condensation and entrainment from the steam-pipe through which the steam flows to the cylinder of an engine, the riser is generally attached to a separator; this riser empties at a suitable height into the horizontal, and from thence the water of condensation is led into the drop-leg, which is connected to the boiler, into which the water of condensation is fed as soon as the hydrostatic pressure in drop-leg in connection with the steam-pressure in the pipes is sufficient to overcome the boiler-pressure. The action of the device depends on the following principles: Difference of pressure may be balanced by a water-column: vapors or liquids tend to flow to the point of lowest pressure; rate of flow depends on difference of pressure and mass; decrease of static pressure in a steam-pipe or chamber is proportional to rate of condensation; in a steam-current water will be carried or swept along rapidly by friction. (Illustrated in Modern Mechanism, p. 807.)

Loss from an Uncovered Steam-pipe. (Bjorling on Pumpingengines.)—The amount of loss by condensation in a steam-pipe carried down a deep mine-shaft has been ascertained by actual practice at the Clay Cross Colliery, near Chesterfield, where there is a pipe 7½ in internal diam... 1100 ft. long. The loss of steam by condensation was ascertained by direct measurement of the water deposited in a receiver, and was found to be equivalent to about 1 lb. of coal per I.H.P. per hour for every 100 ft. of steam-pipe; but there is no doubt that if the pipes had been in the upcast shaft, and well covered with a good non-conducting material, the loss would have been less. (For Steam-pipe Coverings, see p. 469, ante.)

# THE STEAM-BOILER.

The Horse-power of a Steam-boiler .- The term horse power has two meanings in engineering: First, an absolute unit or measure of the rate of work, that is, of the work done in a certain definite period of time, by a source of energy, as a steam-boiler, a waterfall, a current of air or water, or by a prime mover, as a steam-engine, a water-wheel, or a wind-mill. The value of this unit, whenever it can be expressed in foot-pounds of energy, as in the case of steam-engines, water-wheels, and waterfalls, is 83,000 foot-pounds per minute. In the case of boilers, where the work done, the conversion of water into steam, cannot be expressed in foot-pounds of available energy, the usual value given to the term horse-power is the evaporation of 30 bs. of water of a temperature of 100° F. into steam at 70 bs. pressure above the atmosphere. Both of these units are arbitrary; the first, 33,000 foot-pounds per minute, first adopted by James Watt, being considered equivalent to the power exerted by a good London draught-horse, and the 30 lbs. of water evaporated per hour being considered to be the steam requirement per indicated horse-power of an average engine.

The second definition of the term horse-power is an approximate measure of the size, capacity, value, or "rating" of a boiler, engine, water-wheel, or other source or conveyer of energy, by which measure it may be described, bought and sold, advertised, etc. No definite value can be given to this measure, which varies largely with local custom or individual opinion of makers and users of machinery. The nearest approach to uniformity which can be arrived at in the term "horse power," used in this sense, is to say that a boiler, engine, water-wheel, or other machine, "rated" at a certain horse-power, should be capable of steadily developing that horse-power for a long period of time under ordinary conditions of use and practice leaving The second definition of the term horse-power is an approximate measure a long period of time under ordinary conditions of use and practice, leaving to local custom, to the judgment of the buyer and seller, to written contracts of purchase and sale, or to legal decisions upon such contracts, the interpretation of what is meant by the term "ordinary conditions of use and practice." (Trans. A. S. M. E., vol. vii. p. 226.)

The committee of the A. S. M. E. on Trials of Steam-boilers in 1884 (Trans.,

vol. vi. p. 265) discussed the question of the horse-power of boilers as follows: The Committee of Judges of the Centennial Exhibition, to whom the trials of competing boilers at that exhibition were intrusted, met with this same problem, and finally agreed to solve it, at least so far as the work of that committee was concerned, by the adoption of the unit, 30 lbs. of water evaporated into dry steam per hour from feed water at 100° F., and under a pressure of 70 lbs. per square inch above the atmosphere, these conditions being considered by them to represent fairly average practice. The quantity of heat demanded to evaporate a pound of water under these conditions is 110.2 British thermal units, or 1.1496 units of evaporation. The unit of power proposed is thus equivalent to the development of 33,305 heat units per hour, or 34 488 units of evaporation.

Your committee, after due consideration, has determined to accept the Centennial Standard, the first above mentioned, and to recommend that in all standard trials the commercial horse-power be taken as an evaporation of 30 lbs. of water per hour from a feed-water temperature of 100° F. into steam at 70 lbs. gauge pressure, which shall be considered to be equal to 34% units of evaporation, that is, to 34½ lbs. of water evaporated from a feed-water temperature of 212° F. into steam at the same temperature. This

standard is equal to 33,305 thermal units per hour.

It is the opinion of this committee that a boiler rated at any stated number of horse-powers should be capable of developing that power with easy firing, moderate draught, and ordinary fuel, while exhibiting good economy; and further, that the boiler should be capable of developing at least one third more than its rated power to meet emergencies at times when maximum

economy is not the most important object to be attained.

Unit of Evaporation.—It is the custom to reduce results of boilertests to the common standard of weight of water evaporated by the unit weight of the combustible portion of the fuel, the evaporation being considered to have taken place at mean atmospheric pressure, and at the temperature due that pressure, the feed-water being also assumed to have been supplied at that temperature. This is, in technical language, said to be the equivalent evaporation from and at the boiling-point at atmospheric pressure, or "from and at 212° F." This unit of evaporation, or one pound of water evaporated from and at 212°, is equivalent to 965.7 British thermal units.

Measures for Comparing the Duty of Hollers.—The measure of the efficiency of a boiler is the number of pounds of water evaporated per pound of combustible, the evaporation being reduced to the standard of "from and at 212";" that is, the equivalent evaporation from feed-water at a temperature of 212" F. into steam at the same temperature.

The measure of the capacity of a boiler is the amount of "boiler horsepower" developed, a horse-power being defined as the evaporation of 30 lbs. of water per hour from 100° F. into steam at 70 lbs. pressure, or 34½ lbs. per

hour from and at 212°.

The measure of relative rapidity of steaming of boilers is the number of pounds of water evaporated per hour per square foot of water-heating surface.

The measure of relative rapidity of combustion of fuel in boiler-furnaces is the number of pounds of coal burned per hour per square foot of grate-surface.

### STEAM-BOILER PROPORTIONS.

Proportions of Grate and Heating Surface required for a given Horse-power.—The term horse-power here means capacity to evaporate 30 lbs. of water from 100 F., temperature of feed-water, to steam of 70 lbs., gauge-pressure = 34.5 lbs. from and at 212° F.

Average proportions for maximum economy for land boilers fired with

good anthracite coal:

Heating surface per horse-power	11.5	sq. ft.
Grate " "	1/8	34
Ratio of heating to grate surface	34.5	**
Water evap'd from and at 212° per sq. ft. H.S. per hour	8	lbs.
Combustible burned per H.P. per hour	8	44
Coal with 1/6 refuse, lbs. per H.P. per hour	8.6	68
Combustible burned per sq. ft. grate per hour		"
Coal with 1/6 refuse, lbs. per sq. ft. grate per hour		44
Water evap'd from and at 212° per lb. combustible	11.5	44
" " coal (1/6 refuse)	9.6	**

The rate of evaporation is most conveniently expressed in pounds evaporated from and at 21.2° per sq. ft. of water-heating surface per hour, and the rate of combustion in pounds of coal per sq. ft. of grate-surface per hour.

Heating-surface,—For maximum economy with any kind of fuel a boiler should be proportioned so that at least one square foot of heating-surface should be given for every 3 lbs. of water to be evaporated from and at 212° F. per hour. Still more liberal proportions are required if a portion of the heating-surface has its efficiency reduced by: 1. Tendency of the heated gases to short-circuit, that is, to select passages of least resistance and flow through them with high velocity, to the neglect of other passages. 2. Deposition of soot from smoky fuel. 3. Incrustation. If the heating-surfaces are clean, and the heated gases pass over it uniformly, little if any increase in economy can be obtained by increasing the heating-surface beyond the proportion of 1 sq. ft. to every 3 lbs. of water to be evaporated, and with all conditions favorable but little decrease of economy will take place if the proportion is 1 sq. ft. to every 4 lbs. evaporated; but in order to provide for driving of the boiler beyond its rated capacity, and for possible decrease of efficiency due to the causes above named, it is better to adopt 1 sq. ft. to 3 lbs. evaporation per hour as the minimum standard proportion.

sq. ft. to 3 lbs. evaporation per hour as the minimum standard proportion. Where economy may be sacrificed to capacity, as where fuel is very cheap, it is customary to proportion the heating-surface much less liberally. The following table shows approximately the relative results that may be ex-

Lbs. water evapor'd from and at 212° per sq. ft, heating-surface per hour:

pected with different rates of evaporation, with anthracite coal.

2	2.5	8	3.5	4	5	6	7	- 8	9	10
80	լ. ft. he	eating-su	rface r	equired	per ho	rse-pow	er:			
17.8	13.8	11.5	9.8	8.6	6.8	5.8	4.9	4.8	3.8	3.5
Re	atio of	heating t	to grate	surface	if 1/3	sq. ft. o	f G. S.	is requ	tred per	H.P.:
52	41.4			25.8	20.4	17.4	13.7	12.9	11.4	10.5
		relative	econor	ny:						
100	100	100	95	90	85	80	75	70	65	60
Pı	obable	tempera	ature of	f chimne	v gase	s, degr	es F.:			
	450	450 45	0 516	2 595	859	790	797	OKK	000	000

The relative economy will vary not only with the amount of heating-surface per horse-power, but with the efficiency of that heating-surface as regards its capacity for transfer of heat from the heated gases to the water, which will depend on its freedom from soot and incrustation, and upon the circulation of the water and the heated gases.

With bituminous coal the efficiency will largely depend upon the thorough-

ness with which the combustion is effected in the furnace.

The efficiency with any kind of fuel will greatly depend upon the amount of air supplied to the furnace in excess of that required to support combustion. With strong draught and thin fires this excess may be very great,

causing a serious loss of economy.

Measurement of Heating-surface.—Authorities are not agreed as to the methods of measuring the heating-surface of steam-boilers. The usual rule is to consider as heating-surface all the surfaces that are surrounded by water on one side and by flame or heated gases on the other, but there is a difference of opinion as to whether tuoular heating-surface should be figured from the inside or from the outside diameter. Some writers say, measure the heating surface always on the smaller side—the fire side of the tube in a horizontal return tubular boiler and the water side in a water-tube boiler. Others would deduct from the heating-surface thus measured an allowance for portions supposed to be ineffective on account of being cov-

ered by dust, or being out of the direct current of the gases.

For the sake of uniformity, however, it would appear to be the best method to consider all surfaces as heating surfaces which transmit heat from the flame or gases to the water, making no allowance for different degrees of effectiveness; also, to use the external instead of the internal diameter of tubes, for greater convenience in calculation, the external diameter of boiler-tubes usually being made in even inches or half inches. There would seem to be no good reason for considering the smaller surface in a tube as the heating-surface, for the transmission of heat through plates that are ribbed or corrugated on one side does not appear to be proportional to the smaller surface, but rather to the larger. Thus the Serve ribbed tube trans-mits more heat to the water per foot of length than a plain tube of same external diameter, and a ribbed steam-radiator radiates more heat than a plain radiator having the same internal or smaller surface.

RULE for finding the heating-surface of vertical tubular boilers: Multiply the circumference of the fire-box (in inches) by its height above the grate; multiply the combined circumference of all the tubes by their length, and to these two products add the area of the lower tube-sheet; from this sum subtract the area of all the tubes, and divide by 144: the quotient is the

number of square feet of heating surface.

RULE for finding the heating-surface of horizontal tubular boilers: Multiply two thirds of the circumference of the shell (in inches) by its length; multiply the combined length of the tubes by their combined circumference, to the sum of these products add two thirds of the area of both tube-sheets; from this sum subtract the combined area of all the tubes, and divide the remainder by 144: the result is the number of square feet of heating-surface.

RULE for finding the square feet of heating surface in tubes: Multiply the number of tubes by the diameter of a tube in inches, by its length in feet,

and by .2618.

Horse-power, Builder's Rating. Heating-surface per Horse-power.—It is a general practice among builders to furnish about 12 square feet of heating surface per horse power, but as the practice is not uniform, bids and contracts should always specify the amount of heating-surface to be furnished. Not less than one third square foot of grate-surface should be furnished per horse-power.

Engineering News, July 5, 1894, gives the following rough-and-ready rule for finding approximately the commercial horse-power of tubular or watertube boilers: Number of tubes  $\times$  their length in feet  $\times$  their nominal diameter in inches + 50 = nLd + 50. The number of square feet of surface

in the tubes is  $\frac{n\pi dL}{12} = \frac{nLd}{3.82}$ , and the horse-power at 12 square feet of surface

of tubes per horse-power, not counting the shell, = nLd + 45.8. If 15 square feet of surface of tubes be taken, it is nLd + 57.3. Making allowance for the heating-surface in the shell will reduce the divisor to about 50.

Horse-power of Marine and Locomotive Boilers. - The term horse-power is not generally used in connection with boilers in marine practice, or with locomotives. The boilers are designed to suit the engines, and are rated by extent of grate and heating-surface only.

Grate-surface. - The amount of grate-surface required per horse power, and the proper ratio of heating-surface to grate-surface are extremely variable, depending chiefly upon the character of the coal and upon the rate of draught. With good coal, low in ash, approximately equal results may be obtained with large grate-surface and light draught and with small grate-surface and strong draught, the total amount of coal burned per hour being the same in both cases. With good bituminous coal, like Pittsburgh, low in ash, the best results apparently are obtained with strong draught and high rates of combustion, provided the grate-surfaces are cut down so that the total coal burned per hour is not too great for the capacity of the heating surface to absorb the heat produced.

With coals high in ash, especially if the ash is easily fusible, tending to choke the grates, large grate-surface and a slow rate of combustion are required, unless means, such as shaking grates, are provided to get rid of

the ash as fast as it is made.

The amount of grate-surface required per horse-power under various conditions may be estimated from the following table:

	Water m and 112° 11b.,	Coal H.P.	Pou	ınds	of C	oal b Grat	urne e pei	d pe	r squ ır.	are	foot
	Lbs. Coer at 1	Lbs. per	8	10	12	15	20	25	80	35	40
					Sq. I	rt. G	rate	per. I	I. P.		
Good coal and boiler,	{ 10 }	3.45 3.83	48	35 38	.28	.23	17	.14	.11	.10	.00
Fair coal or boiler,	8.61	4. 4.31 4.93	.54	.40 .43 .49	.88	.26 .29	.20 .22	.16 .17	.13	.13	11
Poor coal or boiler,	6.9	5. 5.75 6.9	62 63 72	.50	.48	.34	.25	.23	.17	15	.13
Lignite and poor boiler,	0.45	10.	1,25	1.00	.83	.67	.35	.40	.33	.22	.25

In designing a boiler for a given set of conditions, the grate-surface should be made as liberal as possible, say sufficient for a rate of combustion of 10 lbs. per square foot of grate for anthracite, and 15 lbs. per square foot for bituminous coal, and in practice a portion of the grate-surface may be bricked over if it is found that the draught, fuel, or other conditions render it advisable.

Proportions of Areas of Flues and other Gas-passages. -Rules are usually given making the area of gas-passages bear a certain ratio to the area of the grate-surface; thus a common rule for horizontal tubular boilers is to make the area over the bridge wall 1/7 of the grate-

surface, the flue area 1/8, and the chimney area 1/9.

For average conditions with anthracite coal and moderate draught, say a rate of combustion of 12 lbs. coal per square foot of grate per hour, and a ratio of heating to grate surface of 30 to 1, this rule is as good as any, but it is evident that if the draught were increased so as to cause a rate of combustion of 24 lbs., requiring the grate-surface to be cut down to a ratio of 60 to 1. the areas of gas-passages should not be reduced much, because the grate-surface is reduced. The coal burned being the same under the changed condirate is reduced. The confidence of the same under the changed contributions, and there being no reason why the gases should travel at a higher velocity, the actual areas of the passages should remain as before, but the ratio of the area to the grate-surface would in that case be doubled.

Mr. Barrus states that the highest efficiency with anthracite coal is obtained when the tube area is 1/9 to 1/10 of the grate-surface, and with bituminous coal when it is 1/6 to 1/7, for the conditions of medium rates of combustion, such as 10 to 12 lbs, per square foot of grate per hour, and 12 square feet of heating surface allowed to the horse-power.

The tube area should be made large enough not to choke the draught, and so lessen the capacity of the boiler; if made too large the gases are apt to select the passages of least resistance and escape from them at a high velocity and high temperature.

This condition is very commonly found in horizontal tubular boilers where

the gases go chiefly through the upper rows of tubes; sometimes also in vertical tubular boilers, where the gases are apt to pass most rapidly

through the tubes nearest to the centre.

Air-passages through Grate-bars.—The usual practice is, airopening = 30% to 50% of area of the grate; the larger the better, to avoid stoppage of the air-supply by clinker; but with coal free from clinker much smaller air-space may be used without detriment. See paper by F. A. Scheffler, Trans. A. S. M. E., vol. xv. p. 503.

# PERFORMANCE OF BOILERS.

Clark (Steam-engine, vol. i. p. 327) gives the following formulas for the relation of coal and water consumed in steam-boilers per square foot of grate-area per hour, and the ratio of the heating-surface to the area of the fire-grate. Water taken as evaporated from and at 212° F.

Stationary boilers	10	=	$.0222r^{2} + 9.56c$
Marine boilers	10	=	$.016r^2 + 10.25c$
Portable-engine boilers	10	=	$.008r^{-2} + 8.6c$
Locomotive boilers (coal-burning)	10	=	.009r2 + 9.7c
Locomotive boilers (coke-burning)	10	=	$0.0178r^2 + 7.94c$

In which w = weight of water in pounds per square foot of grate per hour; c = pounds of fuel per square foot of grate per hour;

r =ratio of heating to grate surface.

There are minimum rates of consumption of fuel below which these formulas are not applicable. The limit varies for each kind of boiler, and it varies with the surface-ratio. It is imposed by the fact that the maximum evaporative power of fuel is a fixed quantity, and is naturally at that point where the reduction of the rate of combustion for a given ratio procures the absorption into the boiler of the whole of the proportion of the heat which is available for evaporation. In the combustion of good coal the limit of evaporative efficiency may be taken as measured by 12½ lbs. of water from and at 212° F.; and in that of good coke by 12 lbs. of water from and at 212° F. Based on these formulæ Clark gives the following table:

Evaporative Performance of Steam-boilers for increasing Rates of Combustion and different Surface-ratios.
For best coal: surface-ratio 30.

Kind of Boiler.	Water from and at 212° F. per hour.	Fuel per Square Foot of Grate per hour, in pounds.						
		5	10	15	20	80	40	50
Stationary. Marine. Portable. Locomotive.	Per sq. ft. of grate Per lb. of coal Per sq. ft. of grate Per lb. of coal Per sq. ft. of grate Per lb. of coal Per sq. ft. of grate Per lb. of coal	12.5 62.5* 12.5 50 10	11.69 93 9.3 105 10.5	168	lbs. 211 10.56 219 10.95 179 8.95 202 10.10	322 10.69 265 8.83 299	424 10.61 351 8.77 396	527 10.54 437 8.74 493
		5	10	15	20	80	40	50
Stationary. Marine. Portable. Locomotive.	Per sq. ft. of grate Per lb. of coal Per sq. ft. of grate Per lb. of coal Per sq. ft. of grate Per lb. of coal Per sq. ft. of grate Per lb. of coal	12.5 62.5* 12.5 62.5* 12.5	12.5 106 10.6	Ibs. 187.5* 12.5 187.5* 12.5 149 9.93 168 11.20	lbs. 247 12.33 245 12.25 192 9.6 217 10.85	348 11.58 278 9.27 314	lbs. 438 10.95 450 11.25 364 9.10 411 10.26	552 11.05 450 9.00 508

^{*} These quantities fall below the scope of the formulæ for the water, as explained in the text.

#### Surface ratio 75.

	_	80	40	50	60	75	90	100
		lbs.				lbs.		
Locomotive.	Per sq. ft. of grate. Per lb. of coal	842 11.39	439 10.97	536 10.71	633 10.65	778 10.87	927 10.26	102C 10.20

General Conditions which secure Economy of Steamboilers. - In general, the highest results are produced where the temperature of the escaping gases is the least. An examination of this question is made up Mr. G. H. Barrus in his book on "Boiler Tests," by selecting those tests made by him, six in number, in which the temperature exceeds the average, that is, 376° F., and comparing with five tests in which the temperature is less than 375°. The boilers are all of the common horizontal type, and all use anthracite coal of either egg or broken size. The average flue temperatures in the two series was 444° and 343° respectively, and the difference was 101°. The average evaporations are 10.40 lbs. and 11.02 lbs. respectively and the leavest was the same of the between the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the same of the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was the leavest was spectively, and the lowest result corresponds to the case of the highest flue temperature. In these tests it appears, therefore, that a reduction of 101° in the temperature of the waste gases secured an increase in the evaporation of 6%. This result corresponds quite closely to the effect of lowering the temperature of the gases by means of a flue-heater where a reduction of 107° was attended by an increase of 7% in the evaporation per pound of coal.

A similar comparison was made on horizontal tubular boilers using Cumberland coal. The average flue temperature in four tests is 450° and the average evaporation is 11.34 lbs. Six boilers have temperatures below 415°, the average of which is 883°, and these give an average evaporation of 11.75 lbs. With 67° less temperature of the escaping gases the evaporation is higher by about 46°.

higher by about 4%.

The wasteful effect of a high flue temperature is exhibited by other boilers. than those of the horizontal tubular class. This source of waste was shown to be the main cause of the low economy produced in those vertical boilers

which are deficient in heating-surface.

Relation between the Heating-surface and Grate-surface to obtain the Heating-surface to three tests of horizontal tubular bollers with anthracite coal, the ratio of heating-surface to grate-surface being 364 to 1, with three other tests of similar boilers, in which the ratio was 48 to 1, showed practically no difference in the results. The evidence shows that a ratio of 36 to 1 provides a sufficient quantity of heating-surface to secure the full efficiency of anthracite coal where the rate of combustion

is not more than 12 lbs. per sq. ft. of grate per hour.

In tests with bituminous coal an increase in the ratio from 36.8 to 42.8 secured a small improvement in the evaporation per pound of coal, and a high temperature of the escaping gases indicated that a still further increase would be beneficial. Among the high results produced on common horizonwould be beneficial. Among the high results produced on common horizontal tubular boilers using bituminous coal, the highest occurs where the ratio is 53.1 to 1. This boiler gave an evaporation of 12.47 lbs. A double-deck boiler furnishes another example of high performance, an evaporation of 12.42 lbs. having been obtained with bituminous coal, and in this case the ratio is 65 to 1. These examples indicate that a much larger amount of heating-surface is required for obtaining the full efficiency of bituninous coal than for boilers using anthracite coal. The temperature of the escaping gases in the same toiler is invariably higher when bituminous coal is used than when anthracite coal is used. The deposit of soot on the surfaces when bituminous coal is used interferes with the full efficiency of the surwhen bituminous coal is used interferes with the full efficiency of the surface, and an increased area is demanded as an offset to the loss which this deposit occasions. It would seem, then, that if a ratio of 36 to 1 is sufficient for anthracite coal, from 45 to 50 should be provided when bituminous coal is burned, especially in cases where the rate of combustion is above 10 or 12 lbs. per sq. ft. of grate per hour.

The number of tubes controls the ratio between the area of grate-surface

and area of tube opening. A certain minimum amount of tube-opening is

required for efficient work.

The best results obtained with anthracite coal in the common horizontal boiler are in cases where the ratio of area of grate-surface to area of tube-opening is larger than 9 to 1. The conclusion is drawn that the highest efficiency with anthracite coal is obtained when the tube-opening is from 1,9 to 1/10 of the grate-surface.

When bituminous coal is burned the requirements appear to be different. The effect of a large tube opening does not seem to make the extra tubes inefficient when bituminous coal is used. The highest result on any boiler of the horizontal tubular class, fired with bituminous coal, was obtained where the tube-opening was the largest. This gave an evaporation of 12.47 lbs., the ratio of grate-surface to tube-opening beling 5.4 to 1. The next highest re-sult was 12.42 lbs., the ratio being 5.2 to 1. Three high results, averaging 12.01 lbs., were obtained when the average ratio was 7.1 to 1. Without going to extremes, the ratio to be desired when bituminous coal is used is that which gives a tube-opening having an area of from 1/6 to 1/7 of the grate-surface. This applies to medium rates of combustion of, say, 10 to 12 lbs. per sq. ft. of grate per hour, 12 sq. ft. of water-heating surface being allowed per horse-power.

A comparison of results obtained from different types of boilers leads to the general conclusion that the economy with which different types of boilers operate depends much more upon their proportions and the conditions under which they work, than upon their type; and, moreover, that when these proportions are suitably carried out, and when the conditions are favorable, the various types of boilers give substantially the same economic result.

Efficiency of a Steam-boiler.—The efficiency of a boiler is the percentage of the total heat generated by the combustion of the fuel which is utilized in heating the water and in raising steam. With anthracite coal the heating-value of the combustible portion is very nearly 14,500 B. T. U. per lb., equal to an evaporation from and at 212° of 14,500 + 966 = 15 lbs. of water. A boiler which when tested with anthracite coal shows an evaporation of 12 lbs, of water per lb, of combustible, has an efficiency of 12 + 15 = 80%, a figure which is approximated, but scarcely ever quite reached, in the best practice. With bituminous coal it is necessary to have a determination of its heating-power made by a coal calorimeter before the efficiency of the boiler using it can be determined, but a close estimate may be made from the chemical analysis of the coal. (See Coal.) The difference between the efficiency obtained by test and 100% is the sum

of the numerous wastes of heat, the chief of which is the necessary loss due to the temperature of the chimney-gases. If we have an analysis and a calorimetric determination of the heating-power of the coal (properly sampled), and an average analysis of the chimney-gases, the amounts of the several loses may be determined with approximate accuracy by the method described below.

Data given :

1. ANALYSIS OF THE COAL. Cumberland Semi-bituminous.	2. Analysis of the Dry Chimmey gases, by Weight.						
Carbon 80.55	C. O. N.						
Hydrogen 4.50	$CO_9 = 13.6 = 3.71  9.89  \dots$						
Oxygen 2.70	CO' = .2 = .09 .11						
Nitrogen 1.08	O = 11.2 = 11.20						
Moisture 2.92	$N = 75.0 = \dots 75.00$						
Ash 8.25							
	100.0 8.80 21.20 75.00						
100.00							

Heating-value of the coal by Dulong's formula, 14,243 heat-units.

The gases being collected over water, the moisture in them is not determ ined

3. Ash and refuse as determined by boiler-test, 10.25, or 2% more than that found by analysis, the difference representing carbon in the ashes obtained in the boiler-test.

4. Temperature of external atmosphere, 60° F.
5. Relative humidity of air, 60%, corresponding (see air tables) to .007 lb. of vapor in each lb. of air.

6. Temperature of chimney-gases, 560° F.

Calculated results:

The carbon in the chimney-gases being 3.8% of their weight, the total weight of dry gases per lb. of carbon burned is 100 + 3.8 = 26.32 lbs. Since the carbon burned is 80.55 - 2 = 78.55% of the weight of the coal, the weight of the dry gases per lb. of coal is  $26.32 \times 78.55 + 100 = 20.67$  lbs.

Each pound of coal furnishes to the dry chimney gases .7855 lb. C, .0108N,  $\left(\frac{4.50}{9}\right) + 100 = .0214 \text{ lb. O}$ ; a total of .8177, say .82 lb. This subtracted from 20.67 lbs. leaves 19.85 lbs. as the quantity of dry air (not including moisture) which enters the furnace per pound of coal, not counting the air required to burn the available hydrogen, that is, the hydrogen minus one eighth of the oxygen chemically combined in the coal. Each lb. of coal burned contained .045 lb. H, which requires .045  $\times$  8 = .36 lb. O for its combustion. Of this, .027 lb. is furnished by the coal itself, leaving .333 lb. to come from the air. The quantity of air needed to supply this oxygen (air containing 23% by weight of oxygen) is .333 + .28 = 1.45 lb., which added to the 19.85 lbs. already found gives 21.30 lbs, as the quantity of dry air supplied to the furnace per lb. of coal burned.

The air carried in as vapor is .0071 lb. for each lb. of dry air, or 21.8 × .0071 = 0.15 lb. for each lb. of coal. Each lb. of coal contained .029 lb. of moisture, which was evaporated and carried into the chimney-gases. The .045 lb. of H per lb. of coal when burned formed .045  $\times$  9 = .405 lb. of H₂O. From the analysis of the chimney-gas it appears that .09 + 3.50 = 2.37 $\times$  of

the carbon in the coal was burned to CO instead of to CO2.

We now have the data for calculating the various loses of heat as follows.

Per cent of

for each pound of coal burned:

	Heat- units.	Heat-value of the Coal.
21.3 lbs. dry air $\times$ (560° - 60°) $\times$ sp. heat .238 =	2534.7	17.80
.15 lb. vapor in air $\times$ (560° $-$ 60°) $\times$ sp. heat .48	= 36.0	0.25
.029 lb. moisture in coal heated from 60° to 212° =	4.4	0.03
" evaporated from and at 212°; $.029 \times 966 =$	= 28.0	0.20
" steam (heated from 212° to 560°) $\times$ 348 $\times$ .48 =	4.8	0.03
.405 lb. H ₂ O from H in coal $\times$ (560° - 60°) $\times$ .48 =	97.2	0.68
.0237 lb. C burned to CO; loss by incomplete com-		
bustion, $.0237 \times (14544 - 4451)$	= 239.2	1.68
.02 lb. coal lost in ashes; $.02 \times 14544$ =	= 290.9	2.04
Radiation and unaccounted for, by difference =	- 712.1	5.00
	8,947. <b>8</b>	27.71
Utilized in making steam, equivalent evaporation		
10.66 lbs. from and at 212° per lb. of coal =	10,295.7	72.29
	14,243.0	100.00

The heat lost by radiation from the boiler and furnace is not easily determined directly, especially if the boiler is enclosed in brickwork, or is protected by non-conducting covering. It is customary to estimate the heat lost by radiation by difference, that is, to charge radiation with all the heat lost which is not otherwise accounted for.

One method of determining the loss by radiation is to block off a portion of the grate-surface and build a small fire on the remainder, and drive this fire with just enough draught to keep up the steam-pressure and supply the heat lost by radiation without allowing any steam to be discharged, weighing the coal consumed for this purpose during a test of several hours' duration.

Estimates of radiation by difference are apt to be greatly in error, as in this difference are accumulated all the errors of the analyses of the coal and of the gases. An average value of the heat lost by radiation from a boiler set in brickwork is about 4 per cent. When several boilers are in a battery and enclosed in a boiler-house the loss by radiation may be very much less, since much of the heat radiated from the boiler is returned to it

in the air supplied to the furnace, which is taken from the boiler-room.

An important source of error in making a "heat balance" such as the one above given, especially when highly bituminous coal is used, may be due to the non-combustion of part of the hydrocarbon gases distilled from the coal immediately after fring, when the temperature of the furnace may be reduced below the point of ignition of the gases. Each pound of hydrogen which escapes burning is equivalent to a loss of heat in the furnace of 62,500 heat-units.

In analyzing the chimney gases by the usual method the percentages of the constituent gases are obtained by volume instead of by weight. To reduce percentages by volume to percentages by weight, multiply the per-centage by volume of each gas by its specific gravity as compared with air, and divide each product by the sum of the products.

The pounds of air required to burn a pound of carbon may be obtained

The pounds of air required to out it a point of the following formula:

Lbs. of air required to burn  $\frac{4}{3} = \frac{4}{3} \left\{ \frac{2(CO_2 + O) + CO}{CO_2 + CO} \right\} + 0.23;$ one pound of carbon

In which  $O, CO_2$ , and CO are the percents, by volume, of the several constituents of the flue gases.

To reduce to volume at temperature of 32° F. make use of the formula  $V_0 = 12.387 \times 1$ bs. of air per pound of coal.

# TESTS OF STEAM-BOILERS.

Boiler-tests at the Centennial Exhibition, Philadel-phia, 1876. - (See Reports and Awards Group XX, International Exhibi-tion, Phila., 1876; also, Clark on the Steam-engine, vol. i, page 253.)

tion, Phila., 1876; also, Clark on the Steam-engine, vol. 1, page 253.)

Competitive tests were made of fourteen boilers, using good anthracite coal, one boiler, the Galloway, being tested with both anthracite and semi-bituminous coal. Two tests were made with each boiler: one called the capacity trial, to determine the economy and capacity at a rapid rate of driving; and the other called the economy trial, to determine the economy when driven at a rate supposed to be near that of maximum economy and rated capacity. The following table gives the principal results obtained in the economy trial, together with the capacity and economy figures of the capacity trial for comparison.

				Capacity Tests.							
Name of Boiler.	Ratio Water-heating Sur- face to Grale-surface.	Grate per hour.	r cent Ash	Water evap. from 100° to 70 lbs. p. s.ft. H.S.per hr.	Water evap. from and at 212° p. 1b. comb'ble cor. for Quality of Steam.	Temperature in Uptake.	Moisture in Steam.	Superheating of Steam.	Horse power.	Horse power.	Water evap, from and at 212° per lb. Combustible.
Exeter	34.6 64.3 1 30.6 45.8 1 37.7 1 23.7 23.7 23.7 15.6 27.3 1 30.7 1 17.5 20.9 1 33.5	9.1 10 2 0 10 6.8 11 2.1 11 0.0 11 9.6 11 7.9 8 8.0 10 2.4 8 2.3 9.7 8 0.8 9 9.3 11 8.0 11	0.4 1 1.3 1 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3 1.1 3	1.68 1.87 2.42 2.43 3.63 3.63 3.20 2.32 2.75 3.30 2.64 3.82 1.38	1bs. 12.094 11.988 11.923 11.906 11.822 11.583 12.125 11.039 10.834 10.618 10.312 10.041 10.021 9.613	333 411 296 303 325 420 517 524 417	1.3 2.7 0.3 0.9	1.4 71.7 20.5 15.7	H.P. 119.8 57.8 47.0 99.8 135.6 108.3 90.9 42.6 82.4 147.5 98.0 72.1 51.7 45.7	69.3 125.0 186.6 133.8	9.745 9.889 9.145 9.568 9.397 9.974
Averages		-		2.77	11.123				85.0	110.8	10.251

The comparison of the economy and capacity trials shows that an average increase in capacity of 30 per cent was attended by a decrease in economy of 8 per cent, but the relation of economy to rate of driving varied greatly in the different boilers. In the Kelly boiler an increase in capacity of 22 per cent was attended by a decrease in economy of over 18 per cent, while the Smith boiler with an increase of 25 per cent in capacity showed a slight increase in economy.

One of the most important lessons gained from the above tests is that there is no necessary relation between the type of a boiler and economy. Of the five boilers that gave the best results, the total range of variation between the highest and lowest of the five being only 2.3%, three were watertube boilers, one was a horizontal tubular boiler, and the fifth was a combination of the two types. The next boiler on the list, the Galloway was an internally fired boiler, all of the others being externally fired. The following is a brief description of the principal constructive features of the fourteen boilers:

Root	4-in. water-tubes, inclined 20° to horizontal; reversed draught.
Firmenich	8 in. water-tubes, nearly vertical; reversed draught.
Lowe	Cylindrical shell, multitubular flue.
Smith	Cylindrical shell, multitubular flue—water-tubes in
O	side flues.
Babcock & Wilcox	314-in. water-tubes, inclined 15° to horizontal; reversed draught.
Galloway	Cylindrical shell, furnace-tubes and water-tubes.
Andrews	Square fire-box and double return multitubular flues.
Harrison	8 slabs of cast-iron spheres, 8 in. in diameter; reversed draught.
Wiegand	
Anderson	3-in. flue-tubes, nearly horizontal; return circulation.
Kelly	8-in. water-tubes, slightly inclined; each divided by internal diaphragm to promote circulation.
Exeter	27 hollow rectangular cast-iron slabs.
Pierce	Rotating horizontal cylinder, with flue-tubes.
Rogers & Black	Vertical cylindrical boiler, with external water-tubes.

Tests of Tubulous Boilers.—The following tables are given by S. H. Leonard, Asst. Engr. U. S. N., in Jour. Am. Soc. Naval Engrs. 1890. The tests were made at different times by boards of U. S. Naval Engineers, except the test of the loconotive-torpedo boiler, which was made in England.

		per sq. ft. hour.	fro	apora m and	l at	We	in. of	e, lbs.	; B, Bit.			
No.	Туре.	Coal burned per Grate per hou	Per lb. Com'ble.	Per sq. ft. H. Surface.	Per cu. ft. Space.	E, Empty. S, Steaming Level.	Per I.H.P.	Per sq. ft. H. Surface.	Per lb. Water evaporated.	Air-pressure, i Water.	Steam-pressure,	Coal. A, Anth.;
_		——										_
1	Belleville	12.8	10.42	5.2	6.4	E 40,670 S 42,770	204	53.2	10.1	Nat'l.	111	В.
2	Herreshoff	9.3 25.8	10.23 8.68	3.1 8	9.1 23.8	E 2,945 S 3,050	96 38	14.8	4.8 1.8	Jet. Jet.	120 195	A.
3	Towne	\$ 4.3 24.5	13.4 6 77	2.7 8.2	10 80.4	E 1,380 S 1,640	56	21.8	8.1 2.6	Nat'l. 1.14	148 152	A.
4	Ward	7.9 15.5 62.5	10.77 10.01 7.01	1.7 3.2 10	5.8 11 34.2	E 1,682 S 1,930	154 82 26	13.2	7.7 4.07 1.3	Nat'l. Jet. Jet.	0 17 161	A. B.
5	Scotch	24.8	9.93 9.06	8.6	11	E 18,900	120	41.2	4.7	2.08	77	
6	Locom'tive	) 38 ( 98.3	9.00	17.1	16.3 30.5	8 30,000	80 47.7		$\frac{3.1}{1.8}$	4.01 8.13	78 1 <b>2</b> 5	A. R
٠	torpedo,	120.8	• • • • • •	20.05	36.2	S 34,990	83.3	31.3	1.2	4.95	123	В.
7	Ward	55.04	8.44	9.47	32.1	E 26,533 S 30,474	20	12.3	1.8	2	160	В.
8	Thorny- croft. (U. S.S.Cush-	45			· • • · • ·	E 20,160 S 21,640	*31	10 3	. <b></b>	3	245	В.
	ing.)	<u> </u>		] 			l	I				<u> </u>

*Approximate.

Per cent moisture in steam: Belleville, 6.31; Herreshoff (first test), 3.5; rotch, 1st, 3.44; 2d, 4.29; Ward, 11.6; others not given.

# DIMENSIONS OF THE BOILERS.

No.	1	2	8	4	5	6	7	8
Length, ft. and in Width, """ Height, """ Space, cu. ft Grate-area, sq. ft Heating-surface, sq. ft Ratio H.S. + G	8' 6" 7 0 11 0 645.5 34.17 804 23.5	4' 9'' 3 8 4 0 69.6 9	2' 6'' 2 6 3 3 20 3 4.25 75 17.6	3' 2'' 1 7 7 2 42.7 3.68 146 39.5	9' 0'' 9 0 572.5 31.16 727 23.3	16' 8 6 4 7 6 630.3 28 1116 39.8	10' 8''* 4 6 † 11 8 729.3 66.5 2490 37.4	10' 0"‡ 7 0‡ 8 0‡ 560‡ 38.8 2875 62

Diameter. + Diam. of drum. + Approximate.

The weight per I.H.P. is estimated on a basis of 20 lbs. of water per hour for all cases expecting the Scotch boiler, where 25 lbs. have been used, as this boiler was limited to 80 lbs. pressure of steam.

The following approximation is made from the large table, on the assump-

tion that the evaporation varies directly as the combustion, and 25 lbs. of

coal per square foot of grate per hour used as the unit.

Type of Boiler.	Com bustion.	Evapora- tion per cu. ft. of Space.	Meight	Weight per sq. ft. Heating- surface.	Weight per lb. Water Evapo- rated.
Belleville	0.50	0.50	2.02	2.10	2.50
	1.00	0.95	0.72	0.60	0.90
	1.00	1.20	1.12	0.87	1.80
	1.00	0.44	2.40	1.64	2.30
	8.90	0.31	3.70	1.25	8.50
	2.20	0.58	1.27	0.50	1.53

The Belleville boiler has no practical advantage over the Scotch either in space occupied or weight. All the other tubulous boilers given greatly exceed the Scotch in these advantages of weight and space.

Some High Rates of Evaporation.—Eng'g, May 9, 1884, p. 415. Locomotive. Torpedo-boat

Water evap. per sq. ft. H.S. per hour. ...
" " lb. fuel from and at 212°. 12.57 13.73 12.54 20.74 8.22 8.94 8.37 7.04 Thermal units transf'd per sq. ft. of H.S. 12,142 13,263 12,113 20,034 .586 .637 .542 .468

It is doubtful if these figures were corrected for priming.

Reconomy Effected by Heating the Air Supplied to Boller-furnaces. (Clark, S. E.)—Meunier and Scheurer-Kestner obtained about 7% greater evaporative efficiency in summer than in winter, from the same bollers under like conditions,—an excess which had been explained by the difference of loss by radiation and conduction. But Mr. Poupardin, surmising that the gain might be due in some degree also to the greater temperature of the air in summer, made comparative trials with two groups of three boilers, each working one week with the heated air, and the next week with cold air. The following were the several efficiencies:

FIRST TRILIS. TURBE BOTTERS. BONCEAND COAT

Water per lb. of	Water per lb. of
Coal.	Combustible.
With heated air (128° F.) 7.77 lbs.	8.95 lbs.
With cold air (69°.8)	8.63 "
Difference in favor of heated air 0.41 "	0.32 ''
SECOND TRIALS: SAME COAL! THREE OTHER 1	ROTLERS

With heated air (120°.4 F.)	8.70 lbs.	10.08 lbs.
With cold air (75°.2)		9.34 "
Difference in favor of heated air		0.64 "

These results show economies in favor of heating the air of 6% and 716%. Mr. Poupardin believes that the gain in efficiency is due chiefly to the better combustion of the gases with heated air. It was observed that with heated air the flames were much shorter and whiter, and that there was

notably less smoke from the chimney.

An extensive series of experiments was made by J. C. Hoadley (Trans. A. S. M. E., vol. vi., 676) on a "Warm-blast Apparatus," for utilizing the heat of the waste gases in heating the air supplied to the furnace. The apparatus, as applied to an ordinary horizontal tu ular boiler 60 in diameter, 21 feet long, with 65 3½-inch tubes, consisted of 240 2-inch tubes, 18 feet long. through which the hot gases passed while the air circulated around them. The net saving of fuel effected by the warm blast was from 10.7% to 15.5% of the fuel used with cold blast. The comparative temperatures averaged as follows, in degrees F.:

C	old-blast Boiler.	Warm-blast Boiler.	Difference.
In heat of fire	. 2493	2793	800
At bridge wall	. 1340	1600	260
In smoke box		875	2
Air admitted to furnace		882	800
Steam and water in boiler		300	0
Gases escaping to chimney		162	211
External air	32	32	0

With anthracite coal the evaporation from and at 212° per lb. combustible was, for the cold-blast boiler, days 10.85 lbs., days and nights 10.51; and for the warm-blast boiler, days 11.83, days and nights 11.03.

# Results of Tests of Heine Water-tube Boilers with Different Coals.

(Communicated by E. D. Meier, C.E., 1894.)

Number	1	2 -	8	4	5	6	7	8-
Kind of Coal.	Cumberland, Semi-bitum.		Pool, hiogh- y.	Turkey Hill, Ill.	Carbon Hill, Wash.	Hocking Val., Ohio.	Gillespie, Lump, Ill.	Collinsville, Ill.
Per cent ash	5.1	4.89		11.6	16.1	11.5	91.8	12.8
Heating-surface, sq. ft	2900	2040	2040	2300	1260	3730	1168	2770
Grate-surface, sq. ft	54	44.8	44.8	50	21	73.3	27.9	50
Ratio H.S. to G.S	53.7	45.5	45.5	46	60	50.9	41.9	55.4
Coal per sq. ft. G.per hr.	24.7	23.5	22.7	85	88.7	26.2	27.7	36
Water per sq. ft. H.S.per		1		l	l			1
hr. from and at 212°	5.03	5.14	5.24	5.56	4.26	4.28	4.86	5.08
Water evap, from and at	1	1		ł	l	1		]
212° per lb. coal	10.91	9.94	10.51	7.31	7.59	8.33	7.36	7.81
Per lb. combustible	11.50	10.48	l	8.27	9.05	9.41	9.41	8.96
Temp, of chimney gases	530°		400	567	571	l	609	707
Calorific value of fuel		12,936	12,936	10,487	11,785	11,610	9,739	10,359
Efficiency of boiler per c.		74.3		67.2	62.5	69.8	73.0	72.6

Tests Nos. 7 and 8 were made with the Hawley Down-draught Furnace. the others with ordinary furnaces.

These tests confirm the statement already made as to the difficulty of obtaining, with ordinary grate-furnaces, as high a percentage of the calorific value of the fuel with the Western as with the Eastern coals.

Test No 3, 78.5% efficiency, is remarkably good for Pittsburgh (Youghiogheny) coal. If the Washington coal had given equal efficiency, the saving of fuel would be  $\frac{78.5 - 62.5}{}$ = 20.2%. The results of tests Nos. 7 and 8 indicate that the downward-draught furnace is well adapted for burning Illinois coals.

Maximum Boiler Efficiency with Cumberland Coal.—About 12.5 lbs. of water per ib. combustible from and at 212° is about the highest evaporation that can be obtained from the best steam fuels in the United States, such as Cumberland, Pocahontas, and Clearfield. In exceptional cases 13 lbs. has been reached, and one test is on record (F. W. Dean, Erb. 1, 1894) giving 13.23 lbs. The boiler was internally fired, of the Belpaire type, 82 inches diameter, 31 feet long, with 160 3-inch tubes 12½ feet long. Heating surface, 1998 square feet; grate-surface, 45 square feet, reduced during the test to 30½ square feet. Double furnace, with fire-brick arches and a long combustion-chamber. Feed-water neater in smoke-box. The following are the principal results:

1st Test.	2d Test.
Dry coal burned per sq. ft. of grate per hour, lbs 8.85	16.06
Water evap, per sq. ft. of heating-surface per hour, lbs 1.63	8.00
Water evap, from and at 212° per lb, combustible, in-	
cluding feed-water heater	18.23
Water evaporated, excluding feed-water heater 12.88	12.90
Temperature of gases after leaving heater, F 360°	46J°

# BOILERS USING WASTE GASES.

Proportioning Boilers for Blast-Furnaces.—(F. W. Gordon, Trans. A. I. M. E., vol. xii., 1883.)

Mr. Gordon's recommendation for proportioning bollers when properly set for burning blast furnace gas is, for coke practice, 30 sq. ft. of heating-surface per ton of iron per 24 hours, which the furnace is expected to make, calculating the heating-surface thus: For double-flued boilers, all shell-surface exposed to the gases, and half the flue-surface; for the French type, all the exposed surface of the upper boiler and half the lower boiler-surface; for cylindrical boilers, not more than 60 ft. long, all the heating-surface

To the above must be added a battery for relay in case of cleaning, repairs, etc., and more than one battery extra in large plants, when the water carries much lime.

For anthracite practice add 50% to above calculations. For charcoal practice deduct 20%.

In a letter to the author in May, 1894, Mr. Gordon says that the blast-furnace practice at the time when his article (from which the above extract is taken) was written was very different from that existing at the present time; besides, more economical engines are being introduced, so that less than 30 sq. ft. of boiler-surface per ton of iron made in 24 hours may now be adopted. He says further: Blast-furnace gases are seldom used for other than furnace requirements, which of course is throwing away good fuel. In this case a furnace in an ordinary good condition, and a condition where it can take its maximum of blast, which is in the neighborhood of 200 to 25 cubic ft., atmospheric measurement, per sq. ft. of sectional area of hearth, will generate the necessary H.P. with very small heating-surface, owing to the high heat of the escaping gases from the boilers, which frequently is 1000 degrees.

A furnace making 200 tons of iron a day will consume about 900 H.P. in blowing the engine. About a pound of fuel is required in the furnace per

pound of pig metal.

In practice it requires 70 cu. ft. of air-piston displacement per lb. of fuel consumed, or 22,400 cu. ft. per minute for 200 tons of metal in 1400 working minutes per day, at, say, 10 lbs. discharge-pressure. This is equal to 94 lbs. M.E.P. on the steam-piston of equal area to the blast-piston, or 900 l.H.P. To this add 20% for hoisting, pumping and other purposes for which steam is employed around blast-furnaces, and we have 1100 H.P., or say 514 H.P. per ton of iron per day. Dividing this into 30 gives approximately 514 sq. ft. of heating-surface of boiler per H.P.

water-tube Boilers using Blast-furnace Gases.—D. 8. Jacobus (Trans. A. I. M. E., xvii. 50) reports a test of a water-tube boiler using blast-furnace gas as fuel. The heating-surface was 2535 sq. ft. It developed 328 H.P. (Centennial standard), or 5.01 lbs. of water from and at 212° per sq. ft. of heating-surface per hour. Some of the principal data obtained were as follows: Calorific value of 1 lb. of the gas. 1418 B T.U., including the effect of its initial temperature, which was 650° F. Amount of air used to burn 1 lb. of the gas = 0.9 lb. Chimney draught, 1½ in. of water. Area of gas inlet, 300 sq. in.; of air inlet, 100 sq. in. Temperature of the chimney

gases, 775° F. Efficiency of the boiler calculated from the temperatures and analyses of the gases at exit and entrance, 61%. The average analyses were as follows, hydrocarbons being included in the nitrogen:

	By We	ight.	By Volume.		
	At Entrance.	At Exit.	At Entrance.	At Exit.	
CO ₂	10.69	26.37	7.08	18.64	
0	1 .11	3.05	.10	2.96	
CO	26.71	1.78	27.80	1.98	
Nitrogen	62.48	68.80	65.02	76.42	
C in CO ₂	2.92	7.19	1		
C in CO	11.45	.76	1		
Total C	14.87	7.95	1		

Steam-boilers Fired with Waste Gases from Puddling and Heating Furnaces.—The Iron Age, April 6, 1893, contains a report of a number of tests of steam-boilers utilizing the waste heat from puddling and heating furnaces in rolling-mills. The following principal data are selected: In Nos. 1, 2, and 4 the boiler is a Babcock & Wilcox water-tube boiler, and in No. 3 it is a plain cylinder boiler, 42 in. diam. and 26 ft. long. No. 4 boiler was connected with a heating-furnace, the others with puddling furnaces. furnaces.

	No. 1.	No. 2.	No. 8.	No. 4.
Heating-surface, sq. ft	1026	1196	143	1380
Grate-surface, sq. ft	19.9	18 6	13.6	16.7
Ratio H.S. to G.S.	52	87.2	10.5	82.8
Water evap. per hour, lbs	3358	2159	1812	3055
" " per sq. ft. H.S. per hr., lbs	3.3	1.8	12.7	2.2
" " per lb. coal from and at 212°.	5.9	6.24	3.76	6.34
" " comb. " " "	• • • •	7.20	4.81	8.34

In No. 2, 1.38 lbs. of iron were puddled per lb. of coal.

In No. 3, 1.14 lbs. of iron were puddled per lb. of coal.

No. 3 shows that an insufficient amount of heating surface was provided for the amount of waste heat available.

## RULES FOR CONDUCTING BOILER-TESTS.

The Committee of the A. S. M. E. on Boiler-tests, consisting of Wm. Kent (chairman), J. C. Hoadley, R. H. Thurston, Chas. E. Emery, and Chas. T. Porter, recommended the following code of rules for boiler-tests (Trans.. vol. vi. p. 256):

## PRELIMINARIES TO A TEST.

I. In preparing for and conducting trials of steam-boilers the specific object of the proposed trial should be clearly defined and steadily kept in view.

II. Measure and record the dimensions, position, etc., of grate and heating surfaces, flues and chimneys, proportion of air-space in the grate-surface, kind of draught, natural or forced.

III. Put the boiler in good condition. Have heating-surface clean inside and out, grate-bars and sides of furnace free from clinkers, dust ard ashes removed from back connections, leaks in masonry stopped, and all obstructions to draught removed. See that the damper will open to full extent, and that it may be closed when desired. Test for leaks in masonry by firing a little smoky fuel and immediately closing damper. The smoke will then escape through the leaks.

IV. Have an understanding with the parties in whose interest the test is to be made as to the character of the coal to be used. The coal must be dry, or, if wet, a sample must be dried carefully and a determination of the or, it well a sample must be under carefully and a determination of amount of moisture in the coal made, and the calculation of the results of the test corrected accordingly. Wherever possible, the test should be made with standard coal of a known quality. For that portion of the country east of the Alleghany Mountains good anthracite egg coal or Cumberland semi-bituminous coal may be taken as the standard for making tests. West

of the Alleghany Mountains and east of the Missouri River, Pittsburgh lump coal may be used.*

V. In all important tests a sample of coal should be selected for chemical

analysis.

VI. Establish the correctness of all apparatus used in the test for weighing and measuring. These are: 1. Scales for weighing coal, ashes, and water. 2. Tanks, or water-meters for measuring water. Water-meters, as rule, should only be used as a check on other measurements. For accurate work the water should be weighed or measured in a tank. 3. Thermometers and pyrometers for taking temperatures of air, steam, feed-water, waste gases, etc. 4. Pressure-gauges, draught-gauges, etc.
VII. Before beginning a test, the boiler and chimney should be thoroughly

VII. Before beginning a test, the boiler and chimney should be thoroughly heated to their usual working temperature. If the boiler is new, it should be in continuous use at least a week before testing, so as to dry the mortar

thoroughly and heat the walls.

VIII. Before beginning a test, the boiler and connections should be free from leaks, and all water connections, including blow and extra feed pipes, should be disconnected or stopped with blank flanges, except the particular pipe through which water is to be fed to the boiler during the trial. In locations where the reliability of the power is so important that an extra feed-pipe must be kept in position, and in general when for any other reason water-pipes other than the feed-pipes cannot be disconnected, such pipes may be drilled so as to leave openings in their lower sides, which should be kept open throughout the test as a means of detecting leaks, or accidental or unauthorized opening of valves. During the test the blow-off pipe should remain exposed.

If an injector is used it must receive steam directly from the boiler being

tested, and not from a steam-pipe or from any other boiler.

See that the steam-pipe is so arranged that water of condensation cannot run back into the boiler. If the steam-pipe has such an inclination that the water of condensation from any portion of the steam-pipe system may run back into the boiler, it must be trapped so as to prevent this water getting into the boiler without being measured.

### STARTING AND STOPPING A TEST.

A test should last at least ten hours of continuous running, and twenty-four hours whenever practicable. The conditions of the boiler and furiace in all respects should be, as nearly as possible, the same at the end as at the beginning of the test. The steam-pressure should be the same, the water-level the same, the fire upon the grates should be the same in quantity and condition, and the walls, flues, etc., should be of the same temperature. To secure as near an approximation to exact uniformity as possible in conditions of the fire and in temperatures of the walls and flues, the following method of starting and stopping a test should be adopted:

X. Standard Method.—Steam being raised to the working pressure, remove rapidly all the fire from the grate, close the damper, clean the ash pit, and as quickly as possible start a new fire with weighed wood and coal, noting the time of starting the test and the height of the water-level while

the water is in a quiescent state, just before lighting the fire.

At the end of the test remove the whole fire, clean the grates and ash-pit, and note the water-level when the water is in a quiescent state; record the time of hauling the fire as the end of the test. The water-level should be as nearly as possible the same as at the beginning of the test. If it is not the same, a correction should be made by computation, and not by operating pump after test is completed. It will generally be necessary to regulate the discharge of steam from the boiler tested by means of the stop-valve for a time while fires are being hauled at the beginning and at the end of the test, in order to keep the steam-pressure in the boiler at those times up to the average during the test.

XI. Alternate Method.—Instead of the Standard Method above described, the following may be employed where local conditions render it necessary:

At the regular time for slicing and cleaning fires have them burned rather low, as is usual before cleaning, and then thoroughly cleaned; note the amount of coal left on the grate as nearly as it can be estimated; note the

^{*} These coals are selected because they are about the only coals which contain the essentials of excellence of quality, adaptability to various kinds of furnaces, grates, boilers, and methods of firing, and wide distribution and general accessibility in the markets.

pressure of steam and the height of the water-level—which should be at the nedium height to be carried throughout the test—at the same time; and note this time as the time of starting the test. Fresh coal, which has been weighed, should now be fired. The ash-pits should be thoroughly cleaned at once after starting. Before the end of the test the fires should be burned low, just as before the start, and the fires cleaned in such a manner as to leave the same amount of fire, and in the same condition, on the grates as at the start. The water-level and steam-pressure should be brought to the same point as at the start, and the time of the ending of the test should be noted just before fresh coal is fired.

## DURING THE TEST.

XII. Keep the Conditions Uniform .- The boiler should be run continuously, without stopping for meal-times or for rise or fall of pressure of steam due to change of demand for steam. The draught being adjusted to the rate of evaporation or combustion desired before the test is begun, it should be retained constant during the test by means of the damper.

If the boiler is not connected to the same steam-pipe with other boilers, an extra outlet for steam with valve in same should be provided, so that in case the pressure should rise to that at which the safety-valve is set it may be reduced to the desired point by opening the extra outlet, without check-

ing the fires.

If the boiler is connected to a main steam-pipe with other boilers, the safety-valve on the boiler being tested should be set a few pounds higher than those of the other boilers, so that in case of a rise in pressure the other boilers may blow off, and the pressure be reduced by closing their dampers, allowing the damper of the boiler being tested to remain open,

and firing as usual.

All the conditions should be kept as nearly uniform as possible, such as An the conditions mound be kept as nearly uniform as possible, such as force of draught, pressure of steam, and height of water. The time of cleaning the fires will depend upon the character of the fuel, the rapidity of combustion, and the kind of grates. When very good coal is used, and the combustion not too rapid, a ten-hour test may be run without any cleaning of the grates, other than just before the beginning and just before the end of the test. But in case the grates have to be cleaned during the test, the intervals between one cleaning and mother should be uniform.

intervals between one cleaning and another should be uniform.

XIII. Keeping the Records.—The coal should be weighed and delivered to the firemen in equal portions, each sufficient for about one hour's run, and a fresh portion should not be delivered until the previous one has all been fired. The time required to consume each portion should be noted the time being recorded at the instant of firing the first of each new portion. It is desirable that at the same time the amount of water fed into the boiler should be accurately noted and recorded, including the height of the water in the boiler and the average pressure of steam and temperature of feed during the time. By thus recording the amount of water evaporated by successive portions of coal, the record of the test may be divided into several divisions, if desired, at the end of the test, to discover the degree of uniformity of combustion, evaporation, and economy at different stages of the test.

XIV. Priming Tests.-In all tests in which accuracy of results is important, calorimeter tests should be made of the percentage of moisture in the steam, or of the degree of superheating. At least ten such tests should be made during the trial of the boiler, or so many as to reduce the probable average error to less than one per cent, and the final records of the boiletest corrected according to the average results of the calorimeter tests.

On account of the difficulty of securing accuracy in these tests, the greatest care should be taken in the measurements of weights and temperatures. The thermometers should be accurate within a tenth of a degree, and the scales on which the water is weighed to within one hundredth of a pound.

## ANALYSES OF GASES .- MEASUREMENT OF AIR-SUPPLY, ETC.

XV. In tests for purposes of scientific research, in which the determination of all the variables entering into the test is desired, certain observations should be made which are in general not necessary in tests for commercial purposes. These are the measurement of the air-supply, the determination of its contained moisture, the measurement and analysis of the flue gases, the determination of the amount of heat lost by radiation, of the amount of infiltration of air through the setting, the direct determination by calorimeter experiments of the absolute heating value of the fuel, and (by condensation of all the steam made by the boiler) of the total heat imparted to the

The analysis of the flue-gases is an especially valuable method of determining the relative value of different methods of firing, or of different kinds of furnaces. In making these analyses great care should be taken to procure average samples—since the composition is apt to vary at different points of the flue, and the analyses should be intrusted only to thoroughly competent chemist, who is provided with complete and accurate apparatus.

competent chemist, who is provided with complete and accurate apparatus.

As the determinations of the other variables mentioned above are not likely to be undertaken except by engineers of high scientific attainments, and as apparatus for making them is likely to be improved in the course of scientific research, it is not deemed advisable to include in this code any specific directions for making them.

## RECORD OF THE TEST.

XVI. A "log" of the test should be kept on properly prepared blanks, containing headings as follows:

	P	ressure	es.	Temperatures.					Fuel.		Feed- water.	
Time.	Barome- ter.	Steam- gauge.	Praught- gauge.	External Air.	Boiler- room.	Flue.	Feed.	Steam.	Time.	Lbs.	Time.	Lbs. or cu. ft.

## REPORTING THE TRIAL.

Boiler at To determine		·····	
1. Date of trial 2. Duration of trial  DIMENSIONS AND PROPORTIONS.	hours.	,	
Leave space for complete description. 3. Grate-surface widelongarea 4. Water-heating surface 5. Superheating surface 6. Ratio of water-heating surface to grate surface	sq. ft. sq. ft. sq. ft.		
AVERAGE PRESSURES.  7. Steam-pressure in boiler, by gauge.  *8. Absolute steam-pressure.  *9. Atmospheric pressure, per barometer.  10. Force of draught in inches of water	lbs. lbs. in. in.		
#11. Of external air. #12. Of fire-room. #13. Of steam. #14. Of escaping gases.	deg. deg. deg.		

^{*} See reference in paragraph preceding table.

	FUEL.			
17. 18. 19. 20.	Total amount of coal consumed †	lbs. per cent. lbs. per cent. lbs. lbs. lbs. lbs.		
	RESULTS OF CALORIMETRIC TESTS.			}
24.	Quality of steam, dry steam being taken as unity.  Percentage of moisture in steam.  Number of degrees superheated	per cent.		
	WATER.			l
27.	Total weight of water pumped into bolier and apparently evaporated Water actually evaporated, corrected for quality of steam §	lbs.		
*29.	Equivalent total heat derived from fuel in	lbs.		1
	British thermal units §	B.T.U.	ŀ	
δU.	Equivalent water evaporated into dry steam from and at 212° F. per hour	lbs.		
	ECONOMIC EVAPORATION.			•
81.	Water actually evaporated per pound of dry coal, from actual pressure and temperature §			

* See reference in paragraph preceding table.

‡ Corrected for inequality of water-level and of steam-pressure at beginning and end of test.

§ The following shows how some of the items in the above table are derived from others:

```
Item 27 = \text{Item } 26 \times \text{Item } 23.
Item 28 = \text{Item } 27 \times \text{Factor of evaporation}.
```

Factor of evaporation  $=\frac{H-h}{965.7}$ , H and h being respectively the total heatunits in steam of the average observed pressure and in water of the average observed temperature of feed, as obtained from tables of the properties of steam and water.

```
Item 29 = Item 27 \times (H-h). Item 31 = Item 27 + Item 18. Item 32 = Item 28 + Item 18, or = Item 31 \times factor of evaporation. Item 33 = Item 28 + Item 20, or = Item 32 + (per cent 100 - Item 19). Items 36 to 38. First term = Item 22 \times 6/5. Items 40 to 42. First term = Item 30 \times 0.8698. Item 43 = Item 29 \times 0.00003, or = \frac{Item 30}{34\frac{1}{24}}, or \frac{Item 29}{33,305}.
```

Item 
$$45 = \frac{\text{Difference of Items } 43 \text{ and } 44}{\text{Item } 44}$$

[†] Including equivalent of wood used in lighting fire. 1 pound of wood equals 0.4 pound coal. Not including unburnt coal withdrawn from fire at end of test.

82. Equivalent water evaporated per pound of dry coal from and at 212° F. §	lbs.
COMMERCIAL EVAPORATION.	
34. Equivalent water evaporated per pound of dry coal with one sixth refuse, at 70 pounds gange-pressure, from temperature of 100° F. = Item 33 × 0.7249	1 1
RATE OF COMBUSTION.  35. Dry coal actually burned per square foot of grate-surface per hour	lbs.
Consumption of dry Per sq. ft. of grate-	lts.
37.   coal per hour. Coal   Per sq. ft. of water-	lbs.
sixth refuse. § Per sq. ft. of least area for draught.	
RATE OF EVAPORATION.	
39. Water evaporated from and at 212° F. per sq. ft. of heating-surface per hour	1 108. i
Water evaporated per sq. ft. of grate- surface.	lbs.
41. perature of 100° F. heating surface.	lbs.
gauge-pressure. § Per sq. ft. of least	
COMMERCIAL HORSE-POWER.	
43. On basis of thirty pounds of water per hour evaporated from temperature of 100° F into steam of 70 pounds gauge-pressure	; 1
(= 84½ lbs. from and at 212°)	
feet per horse-power	H.P. per cent

Factors of Evaporation.—The table on the following pages was originally published by the author in Trans. A. S. M. E., vol. vi., 1884, under the title, Tables for Facilitating Calculations of Boiler-tests. The table gives the factors for every 3° of temperature of feed-water from 3° to 212° F., and for every two pounds pressure of steam within the limits of ordinary

F., and for every two points pressure of steam within the limits of ordinary working steam-pressures.

The difference in the factor corresponding to a difference of 3° temperature of feed is always either .0031 or .0032. For interpolation to find a factor for a feed-water temperature between 32° and 212°, not given in the table, take the factor for the nearest temperature and add or subtract, as the case may be, .0010 if the difference is .0031, and .0011 if the difference is .0032. As in nearly all cases a factor of evaporation to three decimal places is accurate enough, any error which may be made in the fourth decimal place by interpolation is of no practical importance.

The tables used in calculating these factors of evaporation are those given

The tables used in calculating these factors of evaporation are those given in Charles T. Porter's Treatise on the Richards' Steam-engine Indicator. The formula is Factor  $=\frac{H-h}{965.7}$ , in which H is the total heat of steam at the observed pressure, and h the total heat of feed-water of the observed

temperature.

						7		<del></del>		
Gauge-pressu Absolute pres	Lhs, res0 + saures 15	10 + 25	20 + 1 35	30 ÷ 45	40 + 55	45 + 60	50 + 65	52 + 67	54 + 69	56 + 71
Feed-water Temperature.	ater   FACTORS OF EVAPORATION.									
212° F.	1.0003	1.0088	1.0149	1.0197	1.0237	1.0254	1.0271	1.0277	1.0283	1.0290
209				1.0228	68					1.0321
206	66		1.0213	60	99			40	46	
208	98		43	91	1.0331	49		72	78	
200	1.0129	1.0214	75	1.0323	65	80	97	1.0408	1.0409	1.0415
197	60	46	1.0306	54	94	1.0412	1.0428	84	41	47
194	92	77	38	85	1.0425	43	60	66	72	
191	1.0223	1.0308	69	1.0417	57	74		97		
188	55	40	1.0400	48	88			1.0528	35	41
185	86	71	32	80	1.0519	37	j 54	60	66	72
182	1.0317		63		51	68		91	98	1.0604
179	49		95	42				1.0628		35
176	80			74				54	60	
173	1.0411	97	57	1.0605		63		85	92	98
170	43		89	36		94		1.0717	1.0728	
167	74			68				48	54	60
164	1.0505		51	99		56		80	86	92
161	37		82				1.0804	1.0811	1.0817	
158	68		1.0714	62		1.0819		42	48	54
155	99		45	93	33	50		73	80	86
152	1.0681	1.0716	76		64	82		1.0905		1.0917
149	62		1.0808	55			1.0930	36	42	48
146	93		39	87	1.0926	44		67	73	79
148	1.0724		70		58	75		98 1.1030		
140			1.0901	49		1	1	1	36	1
187	87	72	33	80		38		61	67	73
134	1.0818		64	1.1012		69		92	98	
181 128	49 81	34 66	95 1.1026	48 74		1.1100		1.1128	1.1130	36 67
128	1.0912		57	1.1105		63		86	92	98
120			l	1		94			1	
122	43 74		89	36 68		1.1225		1.1217	1.1223	1.1229
119 116	1.1005		1.1120	99	39	56		48 79	86	92
118	36		82				1.1804	1.1310		
110	68		1.1213	61		1.1819		42	48	54
107	99	84	45	92	32	50	1	78	79	85
104	1.1130		76		68	81	98	1.1404		
101	61	46		55	94		1.1429	35	41	47
98	92		38		1.1426	43	60	66	78	79
95	1.1223		69	1.1417	57	75	91	97	1.1504	1.1510
92	55		1.1400	48	88	1.1506	1.1522	1.1529	35	41
89	86	71	31	79	1.1519	37	53	60	66	72
86	1.1817	1.1402	63	1.1510	50	68		91	97	1.1603
83	48		94	41	81	99		1.1622	1.1628	34
80	79	64	1.1525	73	1.1612	1.1630	47	53	59	65
77	1.1410	95	56	1.1604	44	61	78	84	90	96
74	41	1.1526	87	35	75	92		1.1715	1.1722	1.1728
71	72	58	1.1618	66	1.1706	1.1723		46	58	59
68	1.1504	89	49	97	87	55		78	84	90
65	35	1	80	1.1728	68	86	1		1.1815	1.1821
62	66	51	1.1711	59	99	1.1817	33	40	40	52
59	97	82	43	90	1.1830	48	64	71	77	88
56	1.1628		74	1.1821	61	79		1.1902		1.1914
58	59	44	1.1805	52	92		1.1927	38	89	45
50	90	75	86	84	1.1923	41	58	64	70	76
47	1.1721	1.1806	67	1.1915	54	72	89	95	1.2001	1.2007
44	52	87	98	46	86		1.2020		32	39
41 38	1 1914	1 1000	1.1929 60	77 1.2008	1.2017 48	84 65	511 821		64 95	70 1.2101
85	1.1814 45	1.1900 31	91	39	79		1.2118		1.2126	1.2101
32	76		1.2022		1.2110		44	51		68
- 04	10	- 50					44.	011		

Gauge-press., Absolute Pres	ibs. 58 +	60 +   75	62 + 77	64 + 79	66 + 81	68 + 83	70 +   85	72 +   87	74 +   89	76 + 91
Feed-water Temp.		FACTORS OF EVAPORATION.								
212° F. 209 206	1.0295 1.0827 58	1.0801 38 64	1. <b>030</b> 7 <b>3</b> 8 70	1.0312 44 75	1.0318 49 81	1.0823 55 86	1.0329 60 91	1.0334 65 97	1.0389 70 1.0402	75
208 200 197	90 1.0421 58	96 1.0427 58	1.0401 85 64	1.0407 88 70	1.0412 44 75	1.0418 49 80	1.0428 54 86	1.0428 59 91	83 65 96	38 69 1.0501
194 191 188 185	1.0515 47 78	90 1.0521 58 84	96 1.0527 58 90	1.0501 83 64 95	1.0507 88 69 1.0601	1.0512 48 75 1.0606	49 80	1.0522 54 85 1.0616	1.0527 59 90 1.0622	
182 179 176 173	1.0610 41 72 1.0704	1.0615 47 78	1.0621 52 84 1.0715	1.0627 58 89 1.0721	32 63 95 1.0726	87 69 1.0700	1.0705	48 79 1.0711 42	53 84 1.0716 47	1.0721
170 167 164	35 66 (8	41 72 1.0803	78 1.0609	52 88 1.08:5	57 89 1.0820	63 94 1.0825	68 99 1.0881	78 1.0805 86	78 1. <b>0</b> 810 41	83 1.0815 46
161 158 155 159	1.0829 60 92 1.0928	85 66 97 1.0929	1.0908	1.0909	45	57 88 1.0919 51	56	67 98 1.0930 61	72 1.0904 85 66	1.0908 40
149 146 148 140	54 85 1.1017 48	60 91 1.1022 54	66 97	71 1.1002 34	77	82	87 1.1018 50	92 1.1024 55 86	97	1.1002 34 65
187 184 131 128	79 1.1110 42 78	85 1.1116 47 79	91	96 1.1127 59	1 · 1102 83 64	1.1107 38 69	1.1112 48 75	1.1117 49 80 1.1211	1.1122 54 85 1.1216	1.1127 59 90
125 122 119	1.1204 85 66	1.1210 41 72	1.1215 47 78	1.1221 52 83	1.1226 58 89	32 63 94	37 68 99	42 78 1.1305	47 78 1.1310	52 83 1.1315
116 118 110 107	1,1829 60 91	1.1303 84 66 97	1.1309 40 71 1.1403	46 77	1.1820 51 82 1.1414	57	62 93	36 67 98 1.1429	41 72 1.1403	77 1.1408
104 101 98 95	1.1422 53 85 1.1516	1.1428 59 90 1.1521	84 65	39 70 1.1502	45 76	50 81	55 86	60 92	65 97 1.1528	70 1.1502 33
92 89 86 83	47 78 1.1609 40	58 84 1.1615 46	58 89 1.1621 52	64 95 1.1626 57	69	75 1.1606	80 1.1611 42	85	90 1.1621 52	95 1.1626 57
80 77 74 71	71 1.1702 34 65	77 1 1708 89 70		1.1719	94 1.1725 56 87	99 1.1730 61 92	35 67	41 72	1.1715 46 77 1.1808	51
68 65 62 59	96 1.1827 58 89	1 1802 83 64 95		1.1813	1.1818 49 80		1.1829	34 65 96 1.1927	39 70	44 75 1.1906
56 58 50	1.1920 51 82	1.1926 57 88	32 63 94	37 68 99	43 74 1.2005	48 79 1.2010	58 84 1.2015	58 89 1.2021	63 94 1.2026	68 99 1.2031
47 44 41 88	1.2013 44 76 1.2107	1.2019 50 81 1.2112	1.2118	1.2124	98 1.2129	34	1.2109 40	45	50	1.2124 55
85 82	38 69	43 75	49 80	55 86	60 91		$\frac{71}{1.2202}$	76 1.2207	1.2212	

Gange-	ressures os., 78 +	80 +	82 +	84 +	86 +	88 +	90 +	92 +	94 +	96 +	98 +
Absolut	e sures, 93	95	97	99	101	103	105	107	109	111	113
Feed wa	ter	-			1.77.	or Ev.			1 200		
212	1.0349									1.0389	
209 206	1.0411	1.0416		94 1.0426	1.0430		1.0408	1.0412	1.0416 48	1.0421	1.0425 56
203	48	48	52	57	62	66	71	75	79	83	88
200	74	79	1					1.0506	1.0511	1.0515	1.0519
197 194	1.0506	1.0511	1.0515		1.0525		33 65	38 69	42 78	46 78	50 82
191	69	73			87	. 92		1.0601		1.0609	1.0613
188 185	1.0600	1.0605					1.0628	32 63	36 68	40 72	45 76
182	63	68		77	81	86	90	95	99	1.0703	1.0707
179 176	94 1.0725	99 1.0780					1.0722 53	1.0726 57	1.0780 62	85 66	89 70
173	57	62	66	71	75	80	84	89	93	97	1.0801
170	88	99			1.0807		1.0816		1.0824	1.0829	33
167 164	1.0819 51	1.0824			38 69	43 74	47 78	51 <b>S8</b>	56 87	60 91	64 95
161	82	87	92	96	1.0901		1.0910	1.0914	1.0918	1.0923	1.0927
158 155	1.0913	1.0918			32 63		41 72	45	50 81	54 85	58 89
152	76	81	85	90	95	99	1.1004	1.1008	1.1012		1.1021
149 146	1.1007	1.1012		1.1021 53	1.1026	1.1030 62	35 66	39 70	48 75	48 79	52 88
143	70	74	79	84	88	93	97	1.1102	1.1106		1.1114
140	1.1101	1.1106					1.1129	88	87	41	46
137 134	32 63	37 68		46 78	51 82	55 87	60 91	64 98	68 1.1 <b>20</b> 0	73 1.1204	77 1.1208
131	95	99	1.1204	1.1209	1.1213	1,1218	1.1222	1.1227	81	35	39
128 125	1.1226	1.1231	85 67	40 71	45 76		53 85	58 89	62 93	66 98	71 1.1302
122	88	98	1		1	í	1.1316		1.1825		38
119	1.1320	1.1324			38 69		47 78	51 88	56 87	60	64
116 113	82	87		96				1.1414	1.1418	91 1.1422	95 1.1426
110	1.1418				32		41	45	49	58	58
107 104	44 75	49 80		58 89	63 94	67 99	72 1.1503	76 1.1507	80 1.1512	85 1.1516	89 1.1520
101	1.1506	1.1511	1.1516	1.1521	1.1525	1.1530	84	38	43	47	51
98 95	38 69	42		52 83	56 87	61 92	65 96	70 1.1601	1.1605	78 1.1609	82 1.1613
85	1.1600					1	1.1628	32	36	40	45
89 86	31 62	36 67		45 76	50 81	54 85	59 90	63 94	67 98	72 1.1708	1 1700
83	98	98			1.1712	1.1717	1.1721	1.1725	1.1730	34	1.1707 38
80	1.172+	1.1729		39	43	48	52	56	61	65	69
77 74	56 87	60 91		70 1.1801	74 1.1805	1.1810	83 1.1814	88 1.1819	92 1.1823	96 1.1827	1.1800
71	1.1818	1.1823	1.1827	35	36	41	45	50	54	58	65
68 65	49 80					72 1.1903	77. 1.1908	81 1.1912	85 1.1916	89 1 1920	94 1.1925
62	1.1911	1.1916	1.1921	1.1925	1.1930	34	39	43	47	52	56
59 56	42 73			56	61	65		74 1.2005	78 1.2010	83 1,2014	87 1.2018
53	1.2004	1 2009	1.2014		1 2023	1.2028	35	86	41	45	49
50	35						63	67	72	76	80
47 44	66 98	71 1.2102	1.2107		85 1.2116		94 1.2125	98 1.2130	1.2108 84	1.2107 38	1.2111
41	1.2129	33	38	43	47	52	56	61	65	69	78
38 35	60 91	64				83 1.2214	87 1.2218	92 1,2223	96 1,2227	1.2200	1.2204
32		1.2227				45		54	58	62	67

Gauge-p	res	oree O +	105 +	110 +	115 +	120 +	125 +	130 +	135 +	140 +	145 +	150 +
Absolut	e Pr	ess.	190	125	130	135	140	145	150	155	160	165
Feed-wi	ter			140	1.00		rs of I					
212°		1907	1 0407	1.0417	1 0427		1.0445	1.0453		1.0470	1.0478	1.0486
209	i.d	1429	39	49	58	67	76	85	98	1.0501	1.0509	1.0517
206 208		60 92	1 0809	- 80 1. <b>051</b> 1	89 1.0521		1.0508	1.0516 48	1.0525	33 64	41 72	48 80
200	1.0	)528	83				70	79	87	96		
197		55	65		84				1.0619	1.0627	35	43
194 191		86 617	1.0627	1.0606	1.0615 47		33 65	42 73	50 82		66 98	74 1.0706
188		49	59	69	78	87	96	1.0705		1.0721	1.0729	37
183	١.,	80	90				1.0727	36 67	44 76	53 84	61	1.0900
182 179	1.0	7712 43	1.0722	. 31 . 63	41 72	50 81	90	99	1.0807		1.0823	31
176	ĺ.,	74	54	94	1.0808	1.0813		1.0830	39	47 78	55	65
178 170	1.0	1606 37	1.0816	1.0825	35 66		53 84	61 93	1 0901	1.0909	86 1. <b>09</b> 17	
167	t	68	78	88	97		1.0915	1.0924	82	41	49	56
164	1.0	1000	1.0910			38	47	55	64	72 1.1008	80	
161 158	1	81 <b>6</b> 2	41 72	51 82	60 91		78 1.1009	1.1018	95 1.1026	35	1.1011 48	
155		23					41	49	58	66	74	
152	1.1	025	85	44	54	63	72	81	89	97 1.1128	1.1105	
149 146		56 87	66 97	76 1.1107	85 1.1116	94	1.1108	1.1112 48	1.1120	60	36 68	
148	1.1	1118	1.1129	88	48	57	66	74	83	91	99	1.1207
140		59	60	70	79		97	1.1206 87	1.1214	1.1222		38
137 184	1.1	81 212	91 1.1222	1.1201	1.1210	1.1219	1.1228	68	76	85	61 93	1.1300
181		43	53	63	78	85	91	99	1.1308	1.1316	1.1324	82
128 125	1 1	75 <b>306</b>	85 1 1816	94 1.1326	1.1304		1.1322	1.1331	39 70	47 78	55 86	63 94
122	١٠	87	47	57	66		84	93		1.1409	1.1417	
119	ĺ	68	78	88			1.1415	1.1424 55	32	41 72	49 80	56 88
116 113	1.1	99 431	1.1409 41	1.1419			47 78	86	64 95	1.1503	1.1511	1.1519
110		62	72		91	1.1500	1.1509		1.1516	84	42	50
107	١	93 524	1.1508	1.1518 44	1.1522 58	31 62	40 71	49 80	57 88	65 97	73 1.1605	81 1.1612
104 101	1	55	65		84		1.1602	1.1611	1.1620		36	43
98	١	86	96				34	42	51	59	67	75
95 92	1.1	618 49	1.1628 50	1	47	56 87	65 96	78 1.1705	82 1.1713	90 1.1721	98 1.1729	1.1706
89	1	80		1.1700			1.1727	86	44	52	60	68
86	1.1	711	1.1721	31 62	40 71	49 80	58 89	67	75 1.1806	83	91	1.1830
83 80	1	42 78	83		1.1802		1.1820	1.1829	37	1.1815 46	1.1823 54	1.1830
77	1.1	804	1.1814	1.1824	34	43	52	60	69	77	85	93
74 71	1	35 67	45 77	55 86	65	74 1.1905	83 1.1914	91 1.1922	1.1900 81	1.1908	1.1916	1.1924
68		98				36	45	54	62		78	
<b>6</b> 5	1.1	929	39	49	58		76	85	93			
62 59		60 91	1 9001	80 1.2011			1.2007	1.2016	1.2024	32 63	40 71	48 79
56	1.5	2022	. 32	42	51	60	69	78	86	94	1.2102	1.2110
53	1	53 84	63 94				1.2100	1.1209	1.2117	1.2126	34 65	41
50 47		84 115	1.2125	1.2101	1.2118	1 2138	63	40 71	80	57 88	96	72 1.2203
44	***	46	56	66	76	85	94	1.2202	1.2211	1.2219	1.2237	35
41 38		77 2208	87 1.2219		1.2207		1.2225	33 64	42 73	50 81	58 89	66 97
35	1	40	50	59	69			95	1.2304	1.2312	1.2820	
32	L	71	81	90	1.2300	1.2309	1.2318	1.2326	35	43	51	59

# STRENGTH OF STEAM-BOILERS. VÁRIOUS BULES FOR CONSTRUCTION.

There is a great lack of uniformity in the rules prescribed by different writers and by legislation governing the construction of steam-boilers In the United States, boilers for merchant vessels must be constructed according to the rules and regulations prescribed by the Board of Supervising Inspectors of Steam Vessels; in the U. S. Navy, according to rules of the Navy Department, and in some cases according to special acts of Congress. On land, in some places, as in Philadelphia, the construction of boilers is governed by local laws; but generally there are no laws upon the subject, and boilers are constructed according to the idea of individual engineers and boiler-makers. In Europe the construction is generally regulated by stringent inspection laws. The rules of the U. S. Supervising Inspectors of Steam-vessels, the British Lloyd's and Board of Trade, the French Bureau Steam-vesses, the British Lloyd's and Board of Trade, the French Bureland Veritas, and the German Lloyd's are ably reviewed in a paper by Nelson Foley, M. Inst. Naval Architects, etc., read at the Chicago Engineering Congress, Division of Marine and Naval Engineering. From this paper the following notes are taken, chiefly with reference to the U. S. and British rules:

(Abbreviations,—T. S., for tensile strength; El., elongation; Contr., con-

traction of area.) **Hydraulic Tests.**—Board of Trade, Lloyd's, and Bureau Veritas.—

Twice the working pressure.

United States Statutes.—One and a half times the working pressure.

Mr. Foley proposes that the proof pressure should be 1½ times the work-

ing pressure + one atmosphere

Established Nominal Factors of Safety. -Board of Trade .-4.5 for a boiler of moderate length and of the best construction and workmanship.

Lloyd's.—Not very apparent, but appears to lie between 4 and 5.

Lloyd's.—Not very apparent, but appears the strength of the

United Status Statutes.—Indefinite, because the strength of the joint is not considered, except by the broad distinction between single and double riveting.

Bureau Veritas: 4.4.
German Lloyd's: 5 to 4.65, according to the thickness of the plates.
Material tor Eliveting.—Board of Trade.—Tensile strength of rivet bars between 26 and 30 tons, el. in 10" not less than 25%, and contr. of area not less than 50%.

Lloyd's.—T. S., 26 to 30 tons; el. not less than 20% in 8". The material must stand bending to a curve, the inner radius of which is not greater than 11/2 times the thickness of the plate, after having been uniformly heated to a low cherry-red, and quenched in water at 82° F.

United States Statutes.—No special provision. **Bules Connected with Riveting.**—Board of Trade.—The shearing resistance of the rivet steel to be taken at 23 tons per square inch. 5 to be used for the factor of safety independently of any addition to this factor for the plating. Rivets in double shear to have only 1.75 times the single section taken in the calculation instead of 2. The diameter must not be less than the thickness of the plate and the pitch never greater than \$6.000. The thickness of double butt-straps (each) not to be less than \$6 the thickness of the plate; single butt-straps not less than 9/8.

Distance from centre of rivet to edge of hole = diameter of rivet  $\times 1\frac{1}{2}$ .

Distance between rows of rivets

= 2 × diam. of rivet or = 
$$[(\text{diam.} \times 4) + 1] + 2$$
, if chain, and  
=  $\frac{\sqrt{[(\text{pitch} \times 11) + (\text{diam.} \times 4)] \times (\text{pitch} + \text{diam.} \times 4)}}{10}$  if zigzag.

Diagonal pitch = (pitch  $\times$  6 + diam.  $\times$  4) + 10. Lloyd's.—Rivets in double shear to have only 1.75 times the single section taken in the calculation instead of 2. The shearing strength of rivet steel to be taken at 85% of the T. S. of the material of shell plates. In any case where the strength of the longitudinal joint is sati-factorily shown by experiment to be greater than given by the formula, the actual strength may be taken in the calculation. United States Statutes.—No rules.

Material for Cyindrical Shells Subject to Internal Pressure.—Board of Trade.—T. S. et ween 27 and 32 tons. In the normal continon, el. not less than 18% in 10°, but should be about 25%; if annealed, not

less than 20%. Strips 2" wide should stand bending until the sides are parallel at a distance from each other of not more than three times the

plate's thickness.

Lloyd's.-T. S. between the limits of 26 and 30 tons per square inch. El. not less than 20% in 8". Test strips heated to a low cherry-red and plunged into water at 82° F. must stand bending to a curve, the inner radius of which is not greater than 1½ times the plate's thickness.

U. S. Statutes.—Plates of ¼" thick and under shall show a contr. of not less than 50%; when over ½" and up to ¾", not less than 45%; when over

34", not less than 40%.

Mr. Foley's comments: The Board of Trade rules seem to indicate a steel of too high T. S. when a lower and more ductile one can be got : the lower tensile limit should be reduced, and the bending test might with advantage be made after tempering, and made to a smaller radius. Lloyd's rule for quality seems more satisfactory, but the temper test is not severe. The United States Statutes are not sufficiently stringent to insure an entirely satisfactory material.

Mr. Foley suggests a material which wou'd meet the following: 25 tons lower limit in tension; 25% in 8" minimum elongation; radius for bending

test after tempering = the plate's thickness.

**Shell-plate Formulæ.** - Board of Trade: 
$$P = \frac{T \times B \times t \times 2}{D \times F \times 100}$$
.

D = diameter of boiler in inches;

P =working-pressure in lbs. per square inch;

t =thickness in inches ;

B =percentage of strength of joint compared to solid plate;

T = tensile strength allowed for the material in lbs. per square inch; F = a factor of safety, being 4.5, with certain additions depending on method of construction.

Lloyd's: 
$$P = \frac{C \times (t-2) \times B}{D}$$
.

t= thickness of plate in sixteenths; B and D as before; C= a constant depending on the kind of joint. When longitudinal seams have double butt-straps, C= 20. When longitudinal seams have double butt-straps, C= 20. tudinal seams have double butt-straps of unequal width, only covering on one side the reduced section of plate at the outer line of rivets, C = 19.5. When the longitudinal seams are lap-jointed, C = 18.5.

U. S. Statutes.—Using same notation as for Board of Trade,

$$P = \frac{t \times 2 \times T}{D \times 6}$$
 for single-riveting; add 20% for double-riveting;

where T is the lowest T. S. stamped on any plate. Mr. Foley criticises the rule of the United States Statutes as follows: The The role of the Chief states at the states as follows. In rule ignores the riveting, except that it distinguishes between single and double, giving the latter 20% auvantage; the circumferential riveting or class of seam is altogether ignored. The rule takes no account of workmanship or method adopted of constructing the joints. The factor, one sixth simply covers the actual nominal factor of safety as well as the loss of strength at the joint, no matter what its percentage; we may therefore dismiss it as unsatisfactory.

**Rules for Flat Plates.** –Board of Trade; 
$$P = \frac{C(t+1)^2}{S-6}$$
.

P =working pressure in lbs. per square inch;

S =surface supported in square inches; t =thickness in sixteenths of an inch;

C = a constant as per following table:

C=125 for plates not exposed to heat or flame, the stays fitted with nuts and washers, the latter at least three times the diameter of the stay and  $\frac{3}{2}$  the thickness of the plate; C=187.5 for the same condition, but the washers  $\frac{3}{2}$  the pitch of stays in

diameter, and thickness not less than plate;

C=200 for the same condition, but doubling plates in place of washers, the width of which is  $\frac{2}{3}$  the pitch and thickness the same as the plate; C=112.5 for the same condition, but the stays with nuts only;

C=75 when exposed to impact of heat or flame and steam in contact with the plates, and the stays fitted with nuts and washers three times the diameter of the stay and 1/2 the plate's thickness;

C=67.5 for the same condition, but stays fitted with nuts only; C=100 when exposed to heat or fiame, and water in contact with the plates, and stays screwed into the plates and fitted with nuts;

C = 66 for the same condition, but stays with riveted heads.

U. S. Statutes.—Using same notation as for Board of Trade.  $P = \frac{C \times C}{2}$ . where p = greatest pitch in inches, P and t as above;

C = 112 for plates 7/16" thick and under, fitted with screw stay-bolts and nuts, or plain bolt fitted with single nut and socket, or riveted head and socket;
 C = 120 for plates above 7/16", under the same conditions;

C = 140 for flat surfaces where the stays are fitted with nuts inside and outside:

C = 200 for flat surfaces under the same condition, but with the addition of a washer riveted to the plate at least 1/2 plate's thickness, and of a diameter equal to 2/5 pitch.

N.B.—Plates fitted with double angle-irons and riveted to plate, with leaf at least 36 the thickness of plate and depth at least 14 of pitch, would be allowed the same pressure as determined by formula for plate with washer riveted on.

N.B.—No brace or stay-bolt used in marine boilers to have a greater pitch

than 101/4" on fire-boxes and back connections.

Certain experiments were carried out by the Board of Trade which showed that the resistance to bulging does not vary as the square of the plate's thickness. There seems also good reason to believe that it is not inversely as the square of the greatest pitch. Bearing in mind, says Mr. Foley, that mathematicians have signally failed to give us true theoretical foundations for calculating the resistance of bodies subject to the simplest forms of stresses, we therefore cannot expect much from their assistance in the matter of flat plates.

The Board of Trade rules for flat surfaces, being based on actual experiment, are especially worthy of respect; sound judgment appears also to

have been used in framing them.

Furnace Formulæ. -- Board of Trade. -- Long Furnaces. --

 $(L+1) \times D$ , but not where L is shorter than (11.5t-1), at which length the rule for short furnaces comes into play.

P = working-pressure in pounds per square inch; t = thickness in inches; D = outside diameter in inches; L = length of furnace in feet up to 10 ft.;

C = a constant, as per following table, for drilled holes: C = 99,000 for welded or butt-jointed with single straps, double-

riveted;

C = 88,000 for butts with single straps, single-riveted; C = 99,000 for butts with double straps, single-riveted.

Provided always that the pressure so found does not exceed that given by the following formulæ, which apply also to short furnaces:

$$P = \frac{C \times t}{D}$$
 for all the patent furnaces named;

$$P = \frac{C \times t}{3 \times D} \left( 5 - \frac{L \times 12}{67.5 \times t} \right)$$
 when with Adamson rings.

C=8,800 for plain furnaces; C=14,000 for Fox; minimum thickness 5/16", greatest 5%"; plain part not to exceed 6" in length;

C = 13,500 for Morison; minimum thickness 5/16'', greatest %''; plain

part not to exceed 6" in length;

C = 14,000 for Purves-Brown; limits of thickness 7/16" and %"; plain
part 9" in length;

C = 8,800 for Adamson rings; radius of flange next fire 1½".

U. S. STATUTES.—Long Furnaces.—Same notation.

$$P = \frac{89,600 \times t^2}{L \times D}$$
, but L not to exceed 8 ft.

N.B.-If rings of wrought iron are fitted and riveted on properly around and to the flue in such a manner that the tensile stress on the rivets shall not exceed 6000 lbs. per sq. in., the distance between the rings shall be taken as the length of the flue in the formulæ.

Short Furnaces, Plain and Patent .- P, as before, when not 8 ft.  $89,600 \times t^2$ 

$$long = \frac{\frac{U \times D}{L \times D}}{\frac{U \times D}{L}};$$

$$P = \frac{t \times C}{D} \text{ when}$$

C=14,000 for Fox corrugations where D= mean diameter; C=14,000 for Purves-Brown where D= diameter of flue; C=5677 for plain flues over 16" diameter and less than 40", when not over 3 ft. lengths.

Mr. Foley comments on the rules for long furnac s as follows: The Board of Trade general formula, where the length is a factor, has a very limited range indeed, viz., 10 ft. as the extreme length, and 135 thicknesses — 12",

 $L \times D$ , is that of Sir W.  $C \times t^2$ as the short limit. The original formula, P =

Fairbairn, and was, I believe, never intended by him to apply to short furnaces. On the very face of it, it is apparent, on the other hand, that if it is true for moderately long furnaces, it cannot be so for very long ones. We are therefore driven to the conclusion that any formula which includes simple L as a factor must be founded on a wrong basis.

With Mr. Traill's form of the formula, namely, substituting (L+1) for L, the results appear sufficiently satisfactory for practical purposes, and indeed, as far as can be judged, tally with the results obtained from experiment as nearly as could be expected. The experiments to which I refer were six in number, and of great variety of length to diameter; the actual factors of safety ranged from 4.4 to 6.2, the mean being 4.78, or practically 5. It seems to me, therefore, that, within the limits prescribed, the Board of Trade formula may be accepted as suitable for our requirements.

The United States Statutes give Fairbairn's rule pure and simple, except that the extreme limit of length to which it applies is fixed at 8 feet. As far as can be seen, no limit for the shortest length is prescribed, but the rules to me are by no means clear, flues and furnaces being mixed or not well distinguished.

Material for Stays.—The qualities of material prescribed are as follows:

Board of Trade.-The tensile strength to lie between the limits of 27 and 32 tons per square inch, and to have an elongation of not less than 20% in 10". Steel stays which have been welded or worked in the fire should not be used.

Lloyd's.—26 to 30 ton steel, with elongation not less than 20% in 8".
U. S. Statutes.—The only condition is that the reduction of area must not be less than 40% if the test bar is over 3/4" diameter.

Loads allowed on Stays. -Board of Trade. -9000 lbs. per square inch is allowed on the net section, provided the tensile strength ranges from 27 to 32 tons. Steel stays are not to be welded or worked in the fire.

Lloyd's.—For screwed and other stays, not exceeding 1½" diameter effective, 8000 lbs. per square inch is allowed; for stays above 1½", 9000 lbs. No stays are to be welded.

 $\dot{U}$ . S. Statutes.—Braces and stays shall not be subjected to a greater stress

than 6000 lbs. per square inch.

[Rankine, S. E., p. 459, says: "The iron of the stays ought not to be ex-[Rankine, S. E., P. 407, 8378. The month of the square inch, in posed to a greater working tension than 3000 lbs. on the square inch, in order to provide against their being weakened by corrosion. This amounts order to provide against their being weakened by corrosion. This amounts to making the factor of safety for the working pressure about 20." It is evident, however, that an allowance in the factor of safety for corrosion may reasonably be decreased with increase of diameter. W. K.)

! Girders.—Board of Trade.  $P = \frac{(V \times a^2 \times t)}{(W - p)D \times L}$ . P = working pressure in lbs. per sq. in.; W = width of flame-box in inches; L = length of  $C \times d^2 \times t$ girder in inches; p = pitch of bolts in inches; D = distance between girders from centre to centre in inches; d = depth of girder in inches; t = thickness of sum of same in inches; C = a constant = 6600 for 1 bolt, 9900 for 2

or 8 bolts, and 11,220 for 4 bolts. Lloyd's.—The same formula and constants, except that C=11,000 for 4 or 5 bolts, 11,550 for 6 or 7, and 11,880 for 8 or more.

U. S. Statutes.—The matter appears to be left to the designers.

**Tube-Flates.**—Board of Trade.  $P = \frac{t(D-d) \times 20,000}{W \times D}$ . D = least horizontal distance between centres of tubes in inches; d = inside diameter of ordinary tubes; t = thickness of tube-plate in inches; W = extremewidth of combustion-box in inches from front tube-plate to back of firebox, or distance between combustion-box tube-plates when the boiler is double-ended and the box common to both ends.

The crushing stress on tube-plates caused by the pressure on the flame-box top is to be limited to 10,000 lbs. per square inch.

Material for Tubes.—Mr. Foley proposes the following: If iron, the quality to be such as to give at least 22 tons per square inch as the minimum tensile strength, with an elongation of not less than 15% in 8". If steel, the elongation to be not less than 26% in 8" for the material before being rolled into strings, and after tempering the test har to stand completely elocities. into strips; and after tempering, the test bar to stand completely closing together. Provided the steel welds well, there does not seem to be any object in providing tensile limits.

The ends should be annealed after manufacture, and stay-tube ends should

be annealed before screwing.

Holding-power of Boiler-tubes.—Experiments made in Washington Navy Yard show that with 12% in brass tubes in no case was the holdingpower less, roughly speaking, than 6000 lbs., while the average was upwards of 20,000 lbs. It was further shown that with these tubes nuts were superfluous, quite as good results being obtained with tubes simply expanded into the tube-plate and fitted with a ferrule. When nuts were fitted it was shown that they drew off without injuring the threads.

In Messrs. Yarrow's experiments on iron and steel tubes of 2" to 21/4" diameter the first 5 tubes gave way on an average of 23,740 lbs., which would appear to be about % the ultimate strength of the tubes themselves. In all these cases the hole through the tube plate was parallel with a sharp edge

to it, and a ferrule was driven into the tube.

Tests of the next 5 tubes were made under the same conditions as the first 5, with the exception that in this case the ferrule was omitted, the tubes being simply expanded into the plates. The mean pull required was 15,270 lbs., or considerably less than half the ultimate strength of the tubes.

Effect of beading the tubes, the holes through the plate being parallel and rrules omitted. The mean of the first 3, which are tubes of the same ferrules omitted. kind, gives 26,876 lbs. as their holding-power, under these conditions, as compared with 23,740 lbs. for the tubes fitted with ferrules only. This high figure is, however, mainly due to an exceptional case where the holding-

power is greater than the average strength of the tubes themselves.

It is disadvantageous to cone the hole through the tube-plate unless its sharp edge is removed, as the results are much worse than those obtained with parallel holes, the mean pull being but 16.031 lbs., the experiments being made with tubes expanded and ferruled but not beaded over.

In experiments on tubes expanded into tapered holes, beaded over and

fitted with ferrules, the net result is that the holding-power is, for the size experimented on, about ¾ of the tensile strength of the tube, the mean pull being 28,797 lbs.

With tubes expanded into tapered holes and simply beaded over, better results were obtained than with ferrules; in these cases, however, the sharp edge of the hole was rounded off, which appears in general to have a good

effect.

In one particular the experiments are incomplete, as it is impossible to reproduce on a machine the racking the tubes get by the expansion of a boiler as it is heated up and cooled down again, and it is quite possible, therefore, that the fastening giving the best results on the testing-machine may not prove so efficient in practice.

N.B.—It should be noted that the experiments were all made under the

cold condition, so that reference should be made with caution, the circumstances in practice being very different, especially when there is scale on the tube-plates, or when the tube-plates are thick and subject to intense

Iron versus Steel Boiler-tubes. (Foley.) - Mr. Blechynden prefers iron tubes to those of steel, but how far he would go in attributing the leaky-tube defect to the use of steel tubes we are not aware. It appears, however, that the results of his experiments would warrant him in going a considerable distance in this direction. The test consisted of heating and cooling two tubes, one of wrought iron and the other of steel. Both tubes were 2% in. in diameter and .16 in. thickness of metal. The tubes were

put in the same furnace, made red-hot, and then dipped in water. The length was gauged at a temperature of 46° F.

This operation was twice repeated, with results as follows:

	Steel.	Iron.
Original length	55.495 in.	55,495 iu.
Heated to 186° F.; increase	0.52 "	0.48 "
Coefficient of expansion per degree F	.0000067	.0000062
Heated red-hot and dipped in water; decrease	.007 in.	.003 in.
Second heating and cooling, decrease	.081 in.	.004 in.
Third heating and cooling, decrease	.017 in.	.006 in.
Total contraction	.055 in.	.018 in.

Mr. A. C. Kirk writes: That overheating of tube ends is the cause of the leakage of the tubes in boilers is proved by the fact that the ferrules at present used by the Admiralty prevent it. These act by shielding the tube ends from the action of the flame, and consequently reducing evaporation, and so allowing free access of the water to keep them cool.

Although many causes contribute, there seems no doubt that thick tube-

plates must bear a share of causing the mischief.

# Rules for Construction of Boilers in Merchant Vessels in the United States.

(Extracts from General Rules and Regulations of the Board of Supervising Inspectors of Steam-vessels (as amended 1893 and 1894).)

Tensile Strength of Plate. (Section 3.)—To ascertain the tensile strength and other qualities of iron plate there shall be taken from each



sheet to be used in shell or other sheet to be used in should be parts of boiler which are subject to tensile strain a test piece prepared in form according to the following in form according to the following in length, 2 diagram, viz.: 10 inches in length, inches in width, cut out in the centre in the manner indicated.

To ascertain the tensile strength

and other qualities of steel plate, there shall be taken from each sheet to be used in shell or other parts of boiler which are subject to tensile strain, a test-

piece prepared in form according to the following diagram, the length of straight part in centre varying as called for by different thickness of material, as follows:

The straight portion shall be in length at least eight times the width multiplied by the thickness of said part, and have a reduction of area as called for by the present rules of the Board, and an elongation of at least 2%. The straight part shall be of a width of 1 inch. This rule to take effect on and after July 1, 1894.

Provided, that where contracts for boilers for ocean-going steamers require a test of material in compliance with the British Board of Trade, British Lloyd's, or Bureau Veritas rules for testing, the inspectors shall

make the tests in compliance with the following rules:
Steel plates shall in all cases to have an ultimate elongation not less than 20g in a length of 8 inches. It is to be capable of being bent to a curve of which the inner radius is not greater than one and a half times the thickness of the plates after having been heated uniformly to a low cherry-red, and quenched in water of 82° F.

[Prior to 1894 the shape of test-piece for steel was the same as that for iron, viz., the grooved shape. This shape has been condemned by authorities on strength of materials for over twenty years. It always gives results which are too high, the error sometimes amounting to 25 per cent. See pages 242, 243, ante; also, Strength of Materials, W. Kent. Van N. Science Series No. 41, and Beardslee on Wrought-iron and Chain Cables.]

Ductility. (Section 6.)—To ascertain the ductility and other lawful qualities, iron of 45,000 lbs. tensile strength shall show a contraction of area of 15 per cent, and each additional 1000 lbs. tensile strength shall show 1 per cent additional contraction of area, up to and including 55,000 tensile strength. Iron of 55,000 tensile strength and upwards, showing 25 per cent reduction of area, shall be deemed to have the lawful ductility. All steel plate of 1/4 inch thickness and under shall show a contraction of area of not less than 50 per cent. Steel plate over 1/2 inch in thickness, up to 3/4 inch in

thickness, shall show a reduction of not less than 45 per cent. All steel plate over ¾ inch thickness shall show a reduction of not less than 40 per cent. **Bumped Heads of Boilors.** (Section 17 as amended 1894.)—Pressure Allowed on Bumped Heads.—Multiply the thickness of the plate by one sixth of the tensile strength, and divide by six tenths of the radius to which head is bumped, which will give the pressure per square inch of steem ellowed. steam allowed.

Pressure Allowable for Concaved Heads of Boilers.—Multiply the pressure per square inch allowable for bumped heads attached to boilers or drums convexly, by the constant .6, and the product will give the pressure per

square inch allowable in concaved heads.

The pressure on unstayed flat-heads on steam-drums or shells of boilers, when flauged and made of wrought iron or steel or of cast steel,

shall be determined by the following rule:

The thickness of plate in inches multiplied by one sixth of its tensile strength in pounds, which product divided by the area of the head in square inches multiplied by .09 will give pressure per square inch allowed. The material used in the construction of flat-heads when tensile strength has not been officially determined shall be deemed to have a tensile strength of 45,000 lbs.

# Table of Pressures allowable on Steam-boilers made of Riveted Iron or Steel Plates.

(Abstract from a table published in Rules and Regulations of the U.S. Board of Supervising Inspectors of Steam-vessels.)

Plates 1/4 inch thick. For other thicknesses, multiply by the ratio of the thickness to 1/2 inch.

er of ins.	50,000 Tensile Strength. 55,000 Tensile Strength.				Tensile ngth.		65,000 Tensile 70,000 Strength. Stre			
Diameter Boiler, ins	Pressure.	20% Additional.	Pressure.	20% Ad- ditional.	Pressure.	20% Additional.	Pressure.	20% Additional.	Pressure.	20% Ad- ditional.
36 38 40 42 44 46 48 54 60 66 72	115.74 109.64 104.16 99.2 94.69 90.57 86.8 77.16 69.44 63.13 57.87	138.88 131.56 124.99 119.04 113.62 108.68 104.16 92.59 83.32 75.75 69.44	127.31 120.61 114.58 109.12 104.16 99.63 95.48 84.87 76.38 69.44 63.65	130.94 124.99 119.55 114.57 101.84 91.65 83.32 76.38	188.88 131.57 125 119.04 118.63 108.69 104.16 92.59 83.33 75.75 69.44	124.99 111.10 99.99 90.90 83.32	150.46 142.54 135.41 128.96 123.1 117.75 112.84 100.3 90.27 82.07 75.22	180.55 171.04 162.49 154.75 147.72 141.3 135.4 120.36 108.32 98.48 90.26	162.03 153.5 145.83 138.88 132.56 126.8 121.52 108.02 97.22 88.37 81.01	194.43 184.20 174.99 166.65 159.07 152.16 145.82 129.62 116.64 106.04 97.21
78 84 90 96	53.41 49.6 46.29 43.4	64.09 59.52 55.44 52.08	58.76 54.56 50.92 47.74	70.5 65.47 61.1 57.28	64.4 59.52 55.55 52.08	76.92 71.42 66.66 62.49	69.44 64.48 60.18 56.42	83.82 77.37 72.21 67.67	74.78 69.44 64.81 60.76	89.73 83.32 77.77 72.91

The figures under the columns headed "pressure" are for single-riveted Those under the columns headed "20% Additional" are for doubleboilers. riveted.

## U. S. RULE FOR ALLOWABLE PRESSURES.

The pressure of any dimension of boilers not found in the table annexed

to these rules must be ascertained by the following rule:

Multiply one sixth of the lowest tensile strength found stamped on any plate in the cylindrical shell by the thickness (expressed in inches or parts of an inch) of the thinnest plate in the same cylindrical shell, and divide by the radius or half diameter (also expressed in inches), and the sum will be the pressure allowable per square inch of surface for single-riveting, to

which add twenty per centum for double-riveting.

The author desires to express his condemnation of the above rule, and of the tables derived from it, as giving too low a factor of safety. (See also criticism by Mr. Foley, page 701, ante.)

If  $P_b$  = bursting-pressure, t = thickness, T = tensile strength, c = coefficient of strength of riveted joint, that is, ratio of strength of the joint to 2tTc that of the solid plate, d = diameter,  $P_b = \frac{z \epsilon I C}{d}$ , or if c be taken for doubleriveting at 0.7, then  $P_b = \frac{1.4tT}{d}$ .

By the U. S. rule the allowable pressure  $Pa = \frac{1/6tT}{1/4d} \times 1.20 = \frac{0.4tT}{d}$ ; whence Pb = 3.5Pa; that is, the factor of safety is only 3.5, provided the "tensile strength found stamped in the plate" is the real tensile strength of the material. But in the case of iron plates, since the stamped T.S. is obtained from a grooved specimen, it may be greatly in excess of the real T.S., which would make the factor of safety still lower. According to the table, a boiler 40 in. diam., 14 in. thick, made of iron stamped 60,000 T.S., would be to carry 150 lbs. pressure if double-riveted. If the real T.S. is only 50,000 lbs. the calculated bursting-strength would be

$$P = \frac{2tTc}{d} = \frac{2 \times 50,000 \times .25 \times .70}{40} = 437.5 \text{ lbs.},$$

and the factor of safety only 437.5 + 150 = 2.91!

The author's formula for safe working-pressure of externally-fired boilers with longitudinal seams double-riveted, is  $P = \frac{14000t}{d}$ ;  $t = \frac{Pd}{14000}$ ; P = gaugepressure in lbs. per sq. in.; t =thickness and d =diam. in inches.

This is derived from the formula  $P = \frac{2tTc}{fd}$ , taking c at 0.7 and f = 5 for steel of 50,000 lbs. T.S., or 6 for 60,000 lbs. T.S.; the factor of safety being increased in the ratio of the T.S., since with the higher T.S. there is greater danger of cracking at the rivet-holes from the effect of punching and riveting and of expansion and contraction caused by variations of temperature. For external shells of internally-fired boilers, these shells not being exposed to the fire, with rivet-holes drilled or reamed after punching, a lower factor of safety and steel of a higher T.S. may be allowable.

If the T.S. is 60,000, a working pressure  $P = \frac{16000t}{d}$  would give a factor of safety of 5.25.

The following table gives safe working pressures for different diameters of shell and thicknesses of plate calculated from the author's formula.

Safe Working Pressures in Cylindrical Shells of Boilers, Tanks, Pipes, etc., in Pounds per Square Inch.

Longitudinal seams double-riveted. (Calculated from formula  $P = 14,000 \times \text{thickness} + \text{diameter.}$ )

			1	Diame	ter in 1	nches.	hes.							
24	80	36	38	40	42	44	46	48	50	52				
36.5 72.9	29.2 58.3	24.8 48.6	23.0 46.1	21.9 43.8	20.8 41.7	19.9 39.8	19.0 38.0	18.2 36.5	17.5 25.0	16 8 33.7				
109.4 145.8	87.5 116.7	72.9 97.2	69.1 92.1	65.6 87.5	62.5 83.3	59.7 79.5	57.1 76.1	54.7 72.9	52.5 70.0	50.5 67.3				
218.7	175.0	145.8	138.2	131.3	125.0	119.3	114.1	109.4	105.0	84.1 101.0				
291.7	283.3	194.4	184.2	175.0	166.7	159.1	152.2	145.8	140.0	117.8 134.6 151.4				
364.6 401.0	291.7 320.8	243.1 267.4	230.3 253.3	218.8 240.6	208.3 229.2	198.9 218.7	190.2	182.8 200.5	175.0	168.3 185.1				
437.5 478.9	350.0 379.2	291.7 316.0		262.5 284.4	250.0 270.9	238.6 258.5	228.3 247.3	218.7 337.0	227.5	201.9 218.8				
546.9	437.5	364.6	345.4	328.1	312.5	298 3	285.3	273.4	266.5	235.6 252.4 269.2				
	36.5 72.9 109.4 145.8 182.3 218.7 255.2 255.2 291.7 328.1 364.6 401.0 437.5 478.9 410.4 546.9	36.5 29.2 72.9 58.3 109.4 87.5 145.8 116.7 145.8 116.7 125.2 204.1 291.7 233.3 328.1 262.5 204.1 291.7 33.3 34.6 291.7 401.0 320.8 437.5 850.0 478.9 379.2 410.4 408.3	36.5 29.2 24.3 72.9 58.3 48.6 109.4 87.5 72.9 145.8 116.7 97.2 182.3 145.8 121.5 218.7 175.0 145.8 255.2 20.4 1 170.1 291.7 233.3 194.4 328.1 262.5 218.8 364.6 291.7 243.1 401.0 320.8 267.4 437.5 850.0 291.7 478.9 379.2 316.0 410.4 408.3 340.3 546.9 347.5 864.6	24         30         36         38           36.5         29.2         24.3         23.0           72.9         58.3         48.6         46.1           109.4         87.5         72.9         69.1           145.8         116.7         97.2         92.1           182.8         145.8         121.5         115.1           182.7         175.0         145.8         138.2           255.2         204.1         170.1         161.2           291.7         233.3         194.4         184.2           328.1         262.5         218.8         207.2           364.6         291.7         243.1         120.3           401.0         320.8         267.4         253.3           437.5         350.0         291.7         276.3           478.9         379.2         316.0         299.3           410.4         408.3         340.3         322.4           456.9         437.5         584.6         345.4           456.9         437.5         584.6         345.4	24         30         36         38         40           36.5         29.2         24.3         23.0         21.9           72.9         58.3         48.6         46.1         43.8           109.4         87.5         72.9         69.1         65.6           145.8         116.7         97.2         92.1         87.5           182.8         145.8         121.5         115.1         109.4           4218.7         175.0         145.8         138.2         131.3           255.2         204.1         170.1         161.2         153.1           291.7         233.3         194.4         184.2         175.0           328.1         262.5         218.8         207.2         196.9           364.6         291.7         243.1         230.3         218.4           401.0         320.8         267.4         253.3         240.6           437.5         350.0         291.7         276.3         362.5           478.9         379.2         316.0         299.3         284.4           410.4         408.3         340.3         322.4         306.3           346.9         437.5 <t< th=""><th>24         30         36         38         40         42           36.5         29.2         24.3         23.0         21.9         20.8           72.9         58.3         48.6         46.1         43.8         41.7           109.4         87.5         72.9         69.1         65.6         62.5           145.8         116.7         97.2         92.1         87.5         83.3           182.8         145.8         121.5         115.1         109.4         104.2           255.2         204.1         170.1         161.2         153.1         145.9           291.7         233.3         194.4         184.2         175.0         166.7           328.1         262.5         218.8         207.2         196.9         187.5           364.6         291.7         243.1         123.0         3 218.8         208.3           401.0         320.8         267.4         253.3         240.6         229.2           437.5         350.0         291.7         276.3         362.5         50.0           478.9         379.2         316.0         299.3         284.4         270.9           410.4         &lt;</th><th>24         30         36         38         40         42         44           36.5         29.2         24.3         23.0         21.9         20.8         19.9           72.9         58.3         48.6         46.1         43.8         41.7         39.8           109.4         87.5         72.9         69.1         65.6         62.5         59.7           145.8         116.7         97.2         92.1         87.5         83.3         79.5           182.8         145.8         121.5         115.1         109.4         104.2         99.4           182.7         175.0         145.8         138.2         131.3         125.0         119.3           255.2         204.1         170.1         161.2         153.1         145.9         139.2           291.7         233.3         194.4         184.2         175.0         167.7         159.1           328.1         262.5         218.8         207.2         196.9         187.5         179.0           328.1         262.5         218.8         207.2         196.9         187.5         179.0           401.0         320.8         287.4         253.3         <t< th=""><th>36.5 29.2 24.3 23.0 21.9 20.8 19.9 19.0 109.0 109.4 87.5 72.9 69.1 65.6 62.5 59.7 57.1 145.8 116.7 97.2 92.1 87.5 83.3 79.5 76.1 145.8 116.7 97.2 92.1 87.5 83.3 79.5 76.1 128.3 145.8 121.5 115.1 109.4 104.2 99.4 95.1 218.7 175.0 145.8 138.2 131.3 125.0 119.3 114.1 255.2 204.1 170.1 161.2 153.1 145.9 139.2 133.1 291.7 233.3 194.4 184.2 175.0 166.7 159.1 152.2 328.1 262.5 28.8 207.2 196.9 187.5 179.0 171.2 328.1 262.5 25.0 204.7 243.1 230.3 218.8 208.3 198.9 190.2 401.0 320.8 267.4 253.3 240.6 229.2 218.7 209.2 401.0 320.8 267.4 253.3 240.6 229.2 218.7 209.2 437.5 850.0 291.7 276.3 325.5 250.0 283.6 228.3 473.9 379.2 316.0 299.3 284.4 270.9 258.5 247.3 410.4 408.3 340.3 322.4 306.3 291.7 278.4 266.3 456.9 437.5 586.9 347.5 364.6 325.5 250.0 288.6 228.3 473.5 356.7 379.2 316.0 299.3 284.4 270.9 258.5 247.3 410.4 408.3 340.3 322.4 306.3 291.7 278.4 266.3 456.9 437.5 586.6 345.7 5 364.6 345.4 328.1 312.5 298.3 285.3</th><th>24         30         36         38         40         42         44         46         48           36.5         29.2         24.3         23.0         21.9         20.8         19.9         19.0         18.2           72.9         58.3         48.6         46.1         43.8         41.7         39.8         38.0         36.5           109.4         87.5         72.9         69.1         65.6         62.5         59.7         57.1         54.7           145.8         116.7         97.2         92.1         87.5         83.3         79.5         76.1         72.9           182.3         145.8         121.5         110.9         4         104.2         99.4         95.1         91.1           218.7         175.0         145.8         138.2         131.3         125.0         119.3         114.1         109.4           255.2         204.1         170.1         161.2         153.1         145.9         139.2         133.2         127.6           291.7         233.3         194.4         184.2         175.0         166.7         159.1         152.2         145.8           328.1         262.5         218.8</th><th>24         30         36         38         40         42         44         46         48         50           36.5         29.2         24.3         23.0         21.9         20.8         19.9         19.0         18.2         17.5           72.9         58.3         48.6         46.1         43.8         41.7         39.8         38.0         36.5         25.0           109.4         87.5         72.9         69.1         65.6         62.5         59.7         57.1         54.7         52.5           145.8         116.7         97.2         92.1         87.5         83.3         79.5         76.1         72.9         70.0           182.3         145.8         121.5         110.4         104.2         99.4         95.1         91.1         87.5           218.7         175.0         145.8         138.2         131.3         125.0         119.3         114.1         109.4         105.0           255.2         204.1         170.1         161.2         153.1         145.9         139.2         133.2         127.6         122.5           291.7         233.3         194.4         184.2         175.0         166.7</th></t<></th></t<>	24         30         36         38         40         42           36.5         29.2         24.3         23.0         21.9         20.8           72.9         58.3         48.6         46.1         43.8         41.7           109.4         87.5         72.9         69.1         65.6         62.5           145.8         116.7         97.2         92.1         87.5         83.3           182.8         145.8         121.5         115.1         109.4         104.2           255.2         204.1         170.1         161.2         153.1         145.9           291.7         233.3         194.4         184.2         175.0         166.7           328.1         262.5         218.8         207.2         196.9         187.5           364.6         291.7         243.1         123.0         3 218.8         208.3           401.0         320.8         267.4         253.3         240.6         229.2           437.5         350.0         291.7         276.3         362.5         50.0           478.9         379.2         316.0         299.3         284.4         270.9           410.4         <	24         30         36         38         40         42         44           36.5         29.2         24.3         23.0         21.9         20.8         19.9           72.9         58.3         48.6         46.1         43.8         41.7         39.8           109.4         87.5         72.9         69.1         65.6         62.5         59.7           145.8         116.7         97.2         92.1         87.5         83.3         79.5           182.8         145.8         121.5         115.1         109.4         104.2         99.4           182.7         175.0         145.8         138.2         131.3         125.0         119.3           255.2         204.1         170.1         161.2         153.1         145.9         139.2           291.7         233.3         194.4         184.2         175.0         167.7         159.1           328.1         262.5         218.8         207.2         196.9         187.5         179.0           328.1         262.5         218.8         207.2         196.9         187.5         179.0           401.0         320.8         287.4         253.3 <t< th=""><th>36.5 29.2 24.3 23.0 21.9 20.8 19.9 19.0 109.0 109.4 87.5 72.9 69.1 65.6 62.5 59.7 57.1 145.8 116.7 97.2 92.1 87.5 83.3 79.5 76.1 145.8 116.7 97.2 92.1 87.5 83.3 79.5 76.1 128.3 145.8 121.5 115.1 109.4 104.2 99.4 95.1 218.7 175.0 145.8 138.2 131.3 125.0 119.3 114.1 255.2 204.1 170.1 161.2 153.1 145.9 139.2 133.1 291.7 233.3 194.4 184.2 175.0 166.7 159.1 152.2 328.1 262.5 28.8 207.2 196.9 187.5 179.0 171.2 328.1 262.5 25.0 204.7 243.1 230.3 218.8 208.3 198.9 190.2 401.0 320.8 267.4 253.3 240.6 229.2 218.7 209.2 401.0 320.8 267.4 253.3 240.6 229.2 218.7 209.2 437.5 850.0 291.7 276.3 325.5 250.0 283.6 228.3 473.9 379.2 316.0 299.3 284.4 270.9 258.5 247.3 410.4 408.3 340.3 322.4 306.3 291.7 278.4 266.3 456.9 437.5 586.9 347.5 364.6 325.5 250.0 288.6 228.3 473.5 356.7 379.2 316.0 299.3 284.4 270.9 258.5 247.3 410.4 408.3 340.3 322.4 306.3 291.7 278.4 266.3 456.9 437.5 586.6 345.7 5 364.6 345.4 328.1 312.5 298.3 285.3</th><th>24         30         36         38         40         42         44         46         48           36.5         29.2         24.3         23.0         21.9         20.8         19.9         19.0         18.2           72.9         58.3         48.6         46.1         43.8         41.7         39.8         38.0         36.5           109.4         87.5         72.9         69.1         65.6         62.5         59.7         57.1         54.7           145.8         116.7         97.2         92.1         87.5         83.3         79.5         76.1         72.9           182.3         145.8         121.5         110.9         4         104.2         99.4         95.1         91.1           218.7         175.0         145.8         138.2         131.3         125.0         119.3         114.1         109.4           255.2         204.1         170.1         161.2         153.1         145.9         139.2         133.2         127.6           291.7         233.3         194.4         184.2         175.0         166.7         159.1         152.2         145.8           328.1         262.5         218.8</th><th>24         30         36         38         40         42         44         46         48         50           36.5         29.2         24.3         23.0         21.9         20.8         19.9         19.0         18.2         17.5           72.9         58.3         48.6         46.1         43.8         41.7         39.8         38.0         36.5         25.0           109.4         87.5         72.9         69.1         65.6         62.5         59.7         57.1         54.7         52.5           145.8         116.7         97.2         92.1         87.5         83.3         79.5         76.1         72.9         70.0           182.3         145.8         121.5         110.4         104.2         99.4         95.1         91.1         87.5           218.7         175.0         145.8         138.2         131.3         125.0         119.3         114.1         109.4         105.0           255.2         204.1         170.1         161.2         153.1         145.9         139.2         133.2         127.6         122.5           291.7         233.3         194.4         184.2         175.0         166.7</th></t<>	36.5 29.2 24.3 23.0 21.9 20.8 19.9 19.0 109.0 109.4 87.5 72.9 69.1 65.6 62.5 59.7 57.1 145.8 116.7 97.2 92.1 87.5 83.3 79.5 76.1 145.8 116.7 97.2 92.1 87.5 83.3 79.5 76.1 128.3 145.8 121.5 115.1 109.4 104.2 99.4 95.1 218.7 175.0 145.8 138.2 131.3 125.0 119.3 114.1 255.2 204.1 170.1 161.2 153.1 145.9 139.2 133.1 291.7 233.3 194.4 184.2 175.0 166.7 159.1 152.2 328.1 262.5 28.8 207.2 196.9 187.5 179.0 171.2 328.1 262.5 25.0 204.7 243.1 230.3 218.8 208.3 198.9 190.2 401.0 320.8 267.4 253.3 240.6 229.2 218.7 209.2 401.0 320.8 267.4 253.3 240.6 229.2 218.7 209.2 437.5 850.0 291.7 276.3 325.5 250.0 283.6 228.3 473.9 379.2 316.0 299.3 284.4 270.9 258.5 247.3 410.4 408.3 340.3 322.4 306.3 291.7 278.4 266.3 456.9 437.5 586.9 347.5 364.6 325.5 250.0 288.6 228.3 473.5 356.7 379.2 316.0 299.3 284.4 270.9 258.5 247.3 410.4 408.3 340.3 322.4 306.3 291.7 278.4 266.3 456.9 437.5 586.6 345.7 5 364.6 345.4 328.1 312.5 298.3 285.3	24         30         36         38         40         42         44         46         48           36.5         29.2         24.3         23.0         21.9         20.8         19.9         19.0         18.2           72.9         58.3         48.6         46.1         43.8         41.7         39.8         38.0         36.5           109.4         87.5         72.9         69.1         65.6         62.5         59.7         57.1         54.7           145.8         116.7         97.2         92.1         87.5         83.3         79.5         76.1         72.9           182.3         145.8         121.5         110.9         4         104.2         99.4         95.1         91.1           218.7         175.0         145.8         138.2         131.3         125.0         119.3         114.1         109.4           255.2         204.1         170.1         161.2         153.1         145.9         139.2         133.2         127.6           291.7         233.3         194.4         184.2         175.0         166.7         159.1         152.2         145.8           328.1         262.5         218.8	24         30         36         38         40         42         44         46         48         50           36.5         29.2         24.3         23.0         21.9         20.8         19.9         19.0         18.2         17.5           72.9         58.3         48.6         46.1         43.8         41.7         39.8         38.0         36.5         25.0           109.4         87.5         72.9         69.1         65.6         62.5         59.7         57.1         54.7         52.5           145.8         116.7         97.2         92.1         87.5         83.3         79.5         76.1         72.9         70.0           182.3         145.8         121.5         110.4         104.2         99.4         95.1         91.1         87.5           218.7         175.0         145.8         138.2         131.3         125.0         119.3         114.1         109.4         105.0           255.2         204.1         170.1         161.2         153.1         145.9         139.2         133.2         127.6         122.5           291.7         233.3         194.4         184.2         175.0         166.7				

Thickness in 16thsof an Inch.				1	Diame	ter in	Inche	es.				
Thic in 16 an I	54	60	66	72	78	84	90	96	102	108	114	120
1 2	16.2 82.4	14.6 29.2	13.3 26.5	12.2 24.3	11.2 22.4	10.4 20.8	9.7 19.4	9.1 18.2	8.6 17.2	8.1 16.2	7.1 15 4	7.3
2 3 4	48.6 64.8	58.8		36.5 48.6	33.7 44.9	31.3 41.7	29.2 38.9	27.3 36.5	34.3	32.4	23 0 30.7	21.9 29.2
5 6 7 8 9	81.0 97.2 113.4	72.9 87.5 102.1	79.5	60.8 72.9 85.1	56.1 67.3 78.5	52.1 62.5 72.9	48.6 58.3 68.1	45.6 54.7 63.8	51.5	40.5 48.6 56.7	38.4 46.1 53.7	36.5 43.8 51.0
8	129.6 145.8	116.7 181.2	106.1 119.3	97.2 109.4	89.7 101.0	83.3 93.8	77.8 87.5	72.9 82.0	68.6 77.2	64.8 72.9	61.4 69.1	58.3 65.6
10 11 12	162.0 178.2 194.4	145.8 160.4 175.0	132.6 145.8 159.1	121.5 133.7 145.8	123.4		97.2 106.9 116.7	100.3	85.8 94.4 102.9	89.1	76.8 84.4 92.1	72.9 80.9 87.5
13 14	210.7 226.9	189.6 204.2	172.4 185.6	158.0 170.1	145.8 157.1	135.4 145.8	126.4 136.1	118.5 127.6	111.5 120.1	105.3 118 4	99.8 107.5	94.8 102.1
15 16	248.1 259.3	218.7 238.3	198.9 212.1	182.3 194.4	168.3 179.5	156.8 166.7	145.8 1 <b>5</b> 5.6	186.7 145.8	128.7 137.3	121.5 129.6	115.1 122.8	109.4 116.7

# Rules governing Inspection of Boilers in Philadelphia.

In estimating the strength of the longitudinal seams in the cylindrical shells of boilers the inspector shall apply two formulæ, A and B:

$$\Delta_{i}$$
 { Pitch of rivets - diameter of holes punched to receive the rivets pitch of rivets

percentage of strength of the sheet at the  $ses_{12}$ .

percentage of strength of the rivets in the seam.

Take the lowest of the percentages as found by formulæ A and B and apply that percentage as the "strength of the seam" in the following formulæ C, which determines the strength of the longitudinal seams:

ormula C, which determines the strength of the longitudinal seams:

(Thickness of sheet in parts of inch × strength of seam as obtained by formula A or B × ultimate strength of iron stamped on plates

internal radius of boiler in inches × 5 as a factor of safety.

safe working pressure.

Table of Proportions and Safe Working Pressures with Formulæ A and C, @ 50,000 lbs., T.S.

Diameter of rivet. Diameter of rivet-hole. Pitch of rivets. Strength of seam, * Thickness of plate.	5%" 11/16" 2" .656 14"	11/16 34 2 1/16 .636 5/16	34 13/16 21/6 .62 3/6	13/16 7/8 2 3/16 .60 7/16	36 15/16 214 .58 34
Diameter of boiler, in	Safe Wor	king Press Si	ure with ingle-rivet	Longitudin ed.	al Seams
24	137	165	193	220	242
30	109	132	154	176	194
32	102	124	144	165	182
34	96	117	136	155	171
36	91	110	129	147	161
38	86	104	122	189	153
40	82	99	116	132	145
44	74	91	105	120	132
48	68	83	96	110	121
54	60	73	86	98 88	107
60	55	66	77	l 88 l	97

Diameter of rivet Diameter of rivet-hole Pitch of rivets Strength of seam, \$ Thickness of plate	56" 11/16" 3" .77 14"	11/16 34 316 .78 5/16	13/16 81/4 .75 9/8	18/16 78 88/6 .74 7/16	7/6 15/16 81/6 .78
Diameter of boiler, in	Safe Wor	king Press De	ure with I ouble-rivet	Longitudin ed.	al Seams,
24	160	1 198	235	269	305
30	127	158	188	215	243
82	119	148	176	302	228
34	112	140	166	190	215
36	106	132	156	179	203
38	101	125	148	170	192
40	96	119	141	161	188
44	87	108	128	147	166
48	79	99	118	185	152
54	70	88	104	120	135
60	64	79	94	108	122

Flues and Tubes for Steam-boilers.—(From Rules of U. S. Supervising Inspectors. Steam-pressures per square inch allowable on riveted and lap-welded flues made in sections. Extract from table in Rules of U. S. Supervising Inspectors.)

T = least thickness of material allowable, D = greatest diameter in inches, P = allowable pressure. For thickness greater than T with same diameter P is increased in the ratio of the thickness.

For diameters not over 10 inches the greatest length of section allowable is 5 feet; for diameters 10 to 23 inches, 3 feet; for diameters 23 to 40 inches, 30 inches. If lengths of sections are greater than these lengths, the allowable pressure is reduced proportionately.

The U. S. rule for corrugated flues, as amended in 1894, is as follows: Rule II, Section 14. The strength of all corrugated flues, when used for furnaces or steam chimneys (corrugation not less than 1½ inches deep and not exceeding 8 inches from centres of corrugation), and provided that the plain parts at the ends do not exceed 6 inches in length, and the plates are not less than 5/16 inch thick, when new, corrugated, and practically true circles, to be calculated from the following formula:

$$\frac{14,000}{D} \times T = \text{pressure}.$$

T = thickness, in inches; D = mean diameter in inches.

Ribbed Flues.—The same formula is given for ribbed flues, with rib projections not less than 1% inches deep and not more than 9 inches apart.

Flat Stayed Surfaces in Steam-bollers.—Rule II., Section 6, of the rules of the U. S. Supervising Inspectors provides as follows:

No braces or stays hereafter employed in the construction of boilers shall be allowed a greater strain than 6000 lbs. per square inch of section.

Clark, in his treatise on the Steam-engine, also in his Pocket-book, gives the following formula: p=407ts+d, in which p is the internal pressure in pounds per square inch that will strain the plates to their elastic limit, t is the thickness of the plate in inches, d is the distance between two rows of stay-bolts in the clear, and s is the rensile stress in the plate in tons of 2240 lbs. per square inch, at the elastic limit. Substituting values of s for iron, steel, and copper, 12, 14, and 8 tons respectively, we have the following:

FORMULE FOR ULTIMATE ELASTIC STRENGTH OF FLAT STAYED SURFACES.

	Iron.	Steel.	Copper.
Pressure	$p = 5000 \frac{t}{d}$	$p = 5700 \frac{t}{d}$	$p = 3300 \frac{t}{d}$
Thickness of plate	$t = \frac{p \times d}{5000}$	$t = \frac{p \times d}{5700}$	$t = \frac{p \times d}{3300}$
Pitch of bolts	$d = \frac{5000t}{p}$	$d = \frac{5700t}{p}$	$d = \frac{3300t}{p}$

For Diameter of the Stay-bolts, Clark gives d' = .0024

in which d'= diameter of screwed bolt at bottom of thread, P= longitudinal and P transverse pitch of stay-bolts between centres, p= internal pressure in lbs. per sq. in. that will strain the plate to its elastic lint, s= elastic strength of the stay-bolts in lbs. per sq. in. Taking s= 12, 14, and 8 tons, respectively for iron, steel, and copper, we have

For iron, 
$$d' = .00069 \sqrt{PP'p}$$
, or if  $P = P'$ ,  $d' = .00069 P \sqrt{p}$ ;  
For steel,  $d' = .00064 \sqrt{PP'p}$ , "  $d' = .00064 P \sqrt{p}$ ;  
For copper,  $d' = .00084 \sqrt{PP'p}$ , "  $d' = .00084 P \sqrt{p}$ ,

In using these formulæ a large factor of safety should be taken to allow for reduction of size by corrosion. Thurston's Manual of Steam-boilers, p. 144, recommends that the factor be as large as 15 or 20. The Hartford

Steam Boiler Insp. & Ins. Co. recommends not less than 10.

Strength of Stays.—A. F. Yarrow (Engr., March 20, 1891) gives the following results of experiments to ascertain the strength of water-space stays:

Description.	Length between Plates.	Diameter of Stay over Threads.	Ulti- mate Stress.
Hollow stays screwed into plates and hole expanded Solid stays screwed into plates and riveted over.		1 in.(hole 7/16 in. and 5/16 in. 1 in.(hole 9/16 in. and 7/16 in. % in. % in.	

The above are taken as a fair average of numerous tests.

Stay-bolts in Curved Surfaces, as in Water-legs of Vertical Bollers.—The rules of the U. S. Supervising Inspectors provide as follows: All vertical boiler-furnaces constructed of wrought iron or steel plates, and having a diameter of over 42 in. or a height of over 40 in. shall be stayed with bolts as provided by § 6 of Rule II, for flat surfaces; and the thickness of material required for the shells of such furnaces shall be determined by the distance between the state of the state belts in the fermined by the distance between the state of the state belts in the fermined state. nace and not in the shell of the boiler; and the steam-pressure allowable shall be determined by the distance from centre of stay-bolts in the furnace and the diameter of such stay-bolts at the bottom of the thread.

The Hartford Steam-boiler Insp. & Ins. Co. approves the above rule (The

The Hartford Steam-boiler Insp. & Ins. Co. approves the above rule (The Locomotive, March, 1892) as far as it states that curved surfaces are to be computed the same as flat ones, but prefers Clark's formulæ for flat stayed surfaces to the rules of the U. S. Supervising Inspectors.

Fusible-plugs.—Fusible-plugs should be put in that portion of the heating-surface which first becomes exposed from lack of water. The rules of the U. S. Supervising Inspectors specify Banca tin for the purpose. Its melting-point is about 445° F. The rule says: All steamers shall have inserted in their boilers plugs of Banca tin, at least ½ in. In diameter at the smallest end of the internal opening, in the following manner, to wit: Cylinder-boilers with flues shall have one plug inserted in one flue of each boiler; and also one plug inserted in the shell of each boiler from the inside, immediately before the fire line and not less than 4 ft. from the forward end of the boiler. All fire-box boilers shall have one plug inserted in the end of the boiler. All fire-box boilers shall have one plug inserted in the rown of the back connection, or in the highest fire-surface of the boiler.

All upright tubular boilers used for marine purposes shall have a fusible plug inserted in one of the tubes at a point at least 2 in. below the lower gauge-cock, and said plug may be placed in the upper head sheet when deemed advisable by the local inspectors.

Steam-domes. - Steam domes or drums were formerly almost universally used on horizontal boilers, but their use is now generally discontinued, as they are considered a useless appendage to a steam-boiler, and unless

properly designed and constructed are an element of weakness.

Height of Furnace.—Recent practice in the United States makes the height of furnace much greater than it was formerly. With large sizes of anthracite there is no serious objection to having the furnace as low as 12 to 18 in., measured from the surface of the grate to the nearest portion of the heating surface of the boiler, but with coal containing much volatile matter and moisture a much greater distance is desirable. With very volatile coals the distance may be as great as 4 or 5 ft. Rankine (S. E., p. 457) says: The clear height of the "crown" or roof of the furnace above the gratebars is seldom less than about 18 in., and often considerably more. In the fire-boxes of locomotives it is on an average about 4 ft. The height of 18 in. is suitable where the crown of the furnace is a brick arch. Where the crown of the furnace, on the other hand, forms part of the heating-surface of the boiler, a greater height is desirable in every case in which it can be obtained; for the temperature of the boiler-plates, being much lower than that of the fame, tends to check the combustion of the inflammable gases which rise from the fuel. As a general principle a high furnace is favorable to complete combustion.

# IMPROVED METHODS OF FEEDING COAL.

Mechanical Stokers. (William R. Roney, Trans. A. S. M. E., vol. xii.)—Mechanical stokers have been used in England to a limited extensince 1785. In that year one was patented by James Watt. It was a simple device to push the coal, after it was coked at the front end of the grate, back towards the bridge. It was worked intermittently by levers, and was designed primarily to prevent smoke from bituminous coal. (See D. K. Clark's Treatise on the Steam-engine.)

After the year 1840 many styles of mechanical stokers were patented in England, but nearly all were variations and modifications of the two forms of stokers patented by John Jukes in 1841, and by E. Henderson in 1843.

The Jukes stoker consisted of longitudinal fire-bars, connected by links, so as to form an endless chain, similar to the familiar treadmill horse-power. The small coal was delivered from a hopper on the front of the boiler, on to the grate, which slowly moving from front to rear, gradually advanced the fuel into the furnace and discharged the ash and clinker at the back.

The Henderson stoker consists primarily of two horizontal fans revolving

on vertical spindles, which scatter the coal over the fire.

Numerous faults in mechanical construction and in operation have limited the use of these and other mechanical stokers. The first American stoker was the Murphy stoker, brought out in 1878. It consists of two coal magazines placed in the side walls of the boiler furnace, and extending back from the boiler front 6 or 7 feet. In the bottom of these magazines are rectangular iron boxes, which are moved from side to side by means of a rack and pinion, and serve to push the coal upon the grates, which incline at an angle of about 35° from the inner edge of the coal magazines, forming a V-shaped receptacle for the burning coal. The grates are composed of narrow parallel bars, so arranged that each alternate bar lifts about an inch at the lower end, while at the bottom of the V, and filling the space between the ends of the grate-bars, is placed a cast-iron toothed bar, arranged to be turned by a crank. The purpose of this bar is to grind the clinker coming in contact with it. Over this V-shaped receptacle is sprung a fire-brick arch.

In the Roney mechanical stoker the fuel to be burned is dumped into a hopper on the boiler front. Set in the lower part of the hopper is a "pusher" to which is attached the "feed-plate" forming the bottom of the hopper. The "pusher," by a vibratory motion, carrying with it the "feed-plate," gradually forces the fuel over the "dead-plate" and on the grate. The grate-bars, in their normal condition form a series of steps, to the top step of which coal is fed from the "dead-plate." Each bar rests in a concave cent in the bearer and is graneble of a rocking motion through an adjustable seat in the bearer, and is capable of a rocking motion through an adjustable angle. All the grate-bars are coupled together by a "rocker-bar." A variable back-and-forth motion being given to the "rocker-bar," through a connecting-rod, the grate-bars rock in unison, now forming a series of steps, and now approximating to an inclined plane, with the grates partly over-lapping, like shingles on a roof. When the grate-bars rock forward the fire will tend to work down in a body. But before the coal can move too far the bars rock back to the stepped position, checking the downward motion, breaking up the cake over the whole surface, and admitting a free volume of air through the fire. The rocking motion is slow, being from 7 to 18 strokes per minute, according to the kind of coal. This alternate starting and checking motion is continuous, and finally lands the cinder and ash on the dumping-grate below.

Mr. Roney gives the following record of six tests to determine the comparative economy of the Roney mechanical stoker and hand-firing on return tubular boilers, 60 inches  $\times$  20 feet, burning Cumberland coal with natural

draught. Rating of boiler at 12.5 square feet, 105 H. P.

Three tests, hand-firing. Three tests, Stoker. Evaporation per pound, dry ( 10.86 10.44 11.00 11.89 12.25 12.54 coal from and at 212° lbs H.P. developed above rating, % 13.5 54.6 66.7 84.3

Results of comparative tests like the above should be used with caution in drawing generalizations. It by no means follows from these results that a stoker will always show such comparative excellence, for in this case the

a stord with aways and when comparative excentee, for in this case the results of hand-firing are much below what may be obtained under favorable circumstances from hand-firing with good Cumberland coal.

The Hawley Down-draught Furnace,—A foot or more above the ordinary grate there is carried a second grate composed of a series of water-tubes, opening at both ends into steel drums or headers, through which water is circulated. The coal is fed on this second grate, and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and as it is parallely account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate and account of the second grate account of the second grate account of the second grate account of the second grate account of the second grate account of the second grate account of the second grate account of the second grate account of the water is circulated. The coal is led on this second grate, where the combustion is completed in the ordinary manner. The draught through the coal on the unner grate is downward through the coal and the grate. The volatile gases upper grate is downward through the coal and the grate. The volatile gases are therefore carried down through the bed of coal, where they are thoroughly heated, and are burned in the space beneath, where they niest the excess of hot air drawn through the fire on the lower grate. In tests in Chicago, from 30 to 45 lbs, of coal were burned per square foot of grate upon this system, with good economical results. (See catalogue of the Hawley Down Draught Furnace Co., Chicago, 1894.)

Under-feed Stokers.—Results similar to those that may be obtained with downward draught are obtained by feeding the coal at the bottom of the bed, pushing upward the coal already on the bed which has had its volatile matter distilled from it. The volatile matter of the freshly fired coal then

has to pass through a body of ignited coke. (See circular of the Jones Under-feed Stoker, Fraser & Chalmers, Chicago, 1894.)

## SMOKE PREVENTION.

A committee of experts was appointed in St. Louis in 1891 to report on the smoke problem. A summary of its report is given in the *Iron Age* of April 7, 1892. It describes the different means that have been tried to prevent smoke, such as gas-fuel, steam-jets, fire-brick arches and checker-work, hollow walls for preheating air, coking arches or chambers, double combustion furnaces, and automatic stokers. All of these means have been more or less effective in diminishing smoke, their effectiveness depending largely upon the skill with which they are operated; but none is entirely satisfactory. Fuel-gas is objectionable chiefly on account of its expense. The average quality of fuel-gas made from a trial run of several car-loads of average quanty of the gas mane from a trial run of several car-loads of allinois coal, in a well-designed fuel-gas plant, showed a calorific value of 243,391 heat-units per 1000 cubic feet. This is equivalent to 5052.8 heat-units per lb. of coal, whereas by direct calorimeter test an average sample of the coal gave 11,172 heat-units. One lb. of the coal showed a theoretical evaporation of 11.56 lbs. water, while the gas from 1 lb. showed a theoretical evaporation of 5.23 lbs. 48.17 lbs. of coal were required to furnish 1000 cubic feet of the gas. In 39 tests the smoke-preventing furnaces showed only 7.14 of the capacity of the common furnaces, reduced the work of the boilers 28%, and required about 2% more fuel to do the same work. In one case with steam-jets the fuel consumption was increased 12% for the same work.

Prof. O. H. Landreth, in a report to the State Board of Health of Tennessee (Engineering News, June 8, 1893), writes as follows on the subject of

smoke prevention;

As pertains to steam-boilers, the object must be attained by one or more of the following agencies:

1. Proper design and setting of the boiler-plant. This implies proper grate area, sufficient draught, the necessary air-space between grate-bars and

through furnace, and ample combustion-room under boilers

That system of firing that is best adapted to each particular furnace to secure the perfect combustion of bituminous coal. This may be either: (a) "coke-firing," or charging all coal into the front of the furnace until par-tially coked, then pushing back and spreading; or (b) "alternate side-fir-ing"; or (c) "spreading," by which the coal is spread over the whole grate area in thin, uniform layers at each charging.

The admission of air through the furnace door, bridge-wall, or side walls.
 Steam-jets and other artificial means for thoroughly mixing the air and

combustible gases.

5. Preventing the cooling of the furnace and boilers by the inrush of cold air when the furnace-doors are opened for charging coal and handling the

Establishing a gradation of the several steps of combustion so that the coal may be charged, dried, and warmed at the coolest part of the furnace, and then moved by successive steps to the hottest place, where the final combustion of the coked coal is completed, and compelling the distilled combustible gases to pass through this hottest part of the fire.

Preventing the cooling by radiation of the unburned combustible gases

until perfect mixing and combustion have been accomplished.

8. Varying the supply of air to suit the periodic variation in demand. Varying the supply of air to suit the periodic variation in demand.The substitution of a continuous uniform feeding of coal instead of

intermittent charging.

10. Down-draught burning or causing the air to enter above the grate and pass down through the coal, carrying the distilled products down to the high temperature plane at the bottom of the fire.

The number of smoke-prevention devices which have been invented is

A brief classification is: legion.

(α) Mechanical stokers. They effect a material saving in the labor of firing, and are efficient smoke-preventers when not pushed above their capacity, and when the coal does not cake badly. They are rarely susceptible to the sudden changes in the rate of firing frequently demanded in service.

(b) Air-flues in side walls, bridge-wall, and grate-bars, through which air when passing is heated. The results are always beneficial, but the flues are

difficult to keep clean and in order.

(c) Coking arches, or spaces in front of the furnace arched over, in which the fresh coal is coked, both to prevent cooling of the distilled gases, and to force them to pass through the hottest part of the furnace just beyond the arch. The results are good for normal conditions, but ineffective when the fires are forced. The arches also are easily burned out and injured by working the fire.

(d) Dead-plates, or a portion of the grate next the furnace-doors, reserved for warming and coking the coal before it is spread over the grate. These

give good results when the furnace is not forced above its normal capacity. This embodies the method of "coke-firing" mentioned before.

(e) Down-draught furnaces, or furnaces in which the air is supplied to the coal above the grate, and the products of combustion are taken away from beneath the grate, thus causing a downward draught through the coal, carrying the distilled gases down to the highly heated incandescent coal at the bottom of the layer of coal on the grate. This is the most perfect manner of producing combustion, and is absolutely smokeless.

(f) Steam jets to draw air in or inject air into the furnace above the grate, and also to mix the air and the combustible gases together. A very efficient smoke-preventer, but one liable to be wasteful of fuel by inducing too rapid

a draught.

(g) Baffle-plates placed in the furnace above the fire to aid in mixing the

coinbustible gases with the air.

(h) Double furnaces, of which there are two different styles; the first of which places the second grate below the first grate; the coal is coked on the first grate, during which process the distilled gases are made to pass over the second grate, where they are ignited and burned; the coke from the first grate is dropped onto the second grate: a very efficient and economical smoke-preventer, but rather complicated to construct and maintain. In the second form the products of combustion from the first furnace pass through

the grate and fire of the second, each furnace being charged with fresh fuel when needed, the latter generally with a smokeless coal or coke: an irrational and unpromising method.

Mr. C. F. White, Consulting Engineer to the Chicago Society for the Prevention of Smoke, writes under date of May 4, 1893:

The experience had in Chicago has shown plainly that it is perfectly easy

to equip steam-boilers with furnaces which shall burn ordinary soft coal in such a manner that the making of smoke dense enough to obstruct the vision shall be confined to one or two intervals of perhaps a couple of minutes'

duration in the ordinary day of 10 hours.

Gas-fired Steam-bollers.—Converting coal into gas in a separate producer, before burning it under the steam-boiler, is an ideal method of smoke-prevention, but its expense has hitherto prevented its general introduction. A series of articles on the subject, illustrating a great number of devices, by F. J. Rowan, is published in the Colliery Engineer, 1889-90. See also Clark on the Steam-engine.

## FORCED COMBUSTION IN STEAM-BOILERS.

For the purpose of increasing the amount of steam that can be generated by a boiler of a given size, forced draught is of great importance. It is universally used in the locomotive, the draught being obtained by a steamin the smoke-stack. It is now largely used in ocean steamers, especially in ships of war, and to a small extent in stationary boilers. Economy of fuel is generally not attained by its use, its advantages being confined to the securing of increased capacity from a boiler of a given bulk, weight, or cost. The subject of forced draught is well treated in a paper by James Howden, entitled, "Forced Combustion in Steam-boilers" (Section G. Engineering Congress at Chicago in 1803) from which we obstruct the following:

Congress at Chicago, in 1893), from which we abstract the following:
Edwin A. Stevens at Bordentown, N. J., in 1827, in the steamer "North
America," fitted the boilers with closed ash-pits, into which the air of com-

bustion was forced by a fan. In 1828 Ericsson fitted in a similar manner the steamer 'Victory,' commanded by Sir John Ross.

Messrs. E. A. and R. L. Stevens continued the use of forced draught for a considerable period, during which they tried three different modes of using the fan for promoting combustion: 1, blowing direct into a closed ash-pit; 2, exhausting the base of the funnel by the suction of the fan; 3, forcing air into an air-tight boiler-room or stoke-hold. Each of these three methods was attended with serious difficulties.

In the use of the closed ash-pit the blast-pressure would frequently force the gases of combustion, in the shape of a serrated flame, from the joint around the furnace doors in so great a quantity as to affect both the effi-

ciency and health of the firemen.

The chief defect of the second plan was the great size of the fan required to produce the necessary exhaustion. The size of fan required grows in a rapidly increasing ratio as the combustion increases, both on account of the greater air-supply and the higher exit temperature enlarging the volume of

the waste gases.

The third method, that of forcing cold air by the fan into an air-tight boiler-room—the present closed stoke-hold system—though it overcame the difficulties in working belonging to the two forms first tried, has serious defects of its own, as it cannot be worked, even with modern high-class boiler-construction, much, if at all, above the power of a good chimney

draught, in most boilers, without damaging them.

In 1875 John I. Thornycroft & Co., of London, began the construction of torpedo-boats with boilers of the locomotive type, in which a high rate of combustion was attained by means of the air-tight boiler-room, into which

air was forced by means of a fan.
In 1882 H.B.M. ships "Satellite" and "Conqueror" were fitted with this system, the former being a small ship of 1500 I.H.P., and the latter an iron-clad of 4500 I.H.P. On the trials with forced draught, which lasted from two to three hours each, the highest rates of combustion gave 16.9 I.H.P. per square foot of fire-grate in the "Satellite," and 18.41 I.H.P. in the "Conqueror.

None of the short trials at these rates of combustion were made without injury to the seams and tubes of the boilers, but the system was adopted,

and it has been continued in the British Navy to this day (1898).

In Mr. Howden's opinion no advantage arising from increased combustion over natural-draught rates is derived from using forced draught in a closed ash-pit sufficient to compensate the disadvantages arising from difficulties in working, there being either excessive smoke from bituminous coal or reduced evaporative economy.
In 1880 Mr. Howden designed an arrangement intended to overcome the

defects of both the closed ash-pit and closed stoke-hold systems.

An air-tight reservoir or chamber is placed on the front end of the boiler and surrounding the furnaces. This reservoir, which projects from 8 to 10 inches from the end of the boiler, receives the air under pressure, which is passed by the valves into the ash-pits and over the fires in proportions suited to the kind of fuel used and the rate of combustion required. The air nsed above the fires is admitted to a space between the outer and inner furnace-doors, the inner having perforations and an air-distributing box through which the air passes under pressure.

By means of the balance of air-pressure above and below the fires all

tendency for the fire to blow out at the furnace-door is removed.

By regulating the admission of the air by the valves above and below the fires, the highest rate of combustion possible by the air-pressure used can be effected, and in same manner the rate of combustion can be reduced to far below that of natural draught, while complete and economical combustion at all rates is secured.

A feature of the system is the combination of the heating of the air of combustion by the waste gases with the controlled and regulated admission of air to the furnaces. This arrangement is effected most conveniently by passing the hot fire-gases after they leave the boiler through stacks of vertical tubes enclosed in the uptake, their lower ends being immediately above the smoke-box doors.

Installations on Howden's system have hitherto been arranged for a rate of combustion to give at full sea-power an average of from 18 to 22 I.H.P. per square foot of fire-grate with fire-bars from 5'0' to 5'6" in length. It is believed that with suitable arrangement of proportions even 80 I.H.P. per square foot can be obtained.

For an account of recent uses of exhaust-fans for increasing draught, see paper by W. R. Roney, Trans. A. S. M. E., vol. xv.

## FUEL ECONOMIZERS.

Green's Fuel Economizer.—Clark gives the following average results of comparative trials of three boilers at Wigan used with and without economizers :

	Without	With
	Economizers.	Economizers.
Coal per square foot of grate per hour	. 21.6	21.4
Water at 100° evaporated per hour	. 73.55	79.32
Water at 212° per pound of coal	9.60	10.56

Showing that in burning equal quantities of coal per hour the rapidity of evaporation is increased 9.3% and the efficiency of evaporation 10% by the addition of the economizer.

The average temperatures of the gases and of the feed-water before and after passing the economizer were as follows:

	With 6-ft	. grate.	With 4-ft	grate.
	Before.	Äfter.	Before.	After.
Average temperature of gases	649	840	501	812
Average temperature of feed-water.	47	157	41	187

Taking averages of the two grates, to raise the temperature of the feedwater 100° the gases were cooled down 250°.

water 100° the gases were cooled down 250°.

Performance of a Green Economizer with a Smoky Coal,

—The action of Green's Economizer was tested by M. W. Grosseteste for a period of three weeks. The apparatus consists of four ranges of vertical pipes, 6½ feet high, 3½ inches in diameter outside, nine pipes in each range, connected at top and bottom by horizontal pipes. The water enters all the tubes from below, and leaves them from above. The system of pipes is enveloped in a brick casing, into which the gaseous products of combustion are introduced from above, and which they leave from below. The pipes are cleared of soot externally by automatic scrapers. The capacity for water is 24 cubic feet, and the total external heating-surface is 290 square feet. The appearatus is placed in connection with a boiler having 355 square feet. The apparatus is placed in connection with a boiler having 355 square feet of surface.

This apparatus had been at work for seven weeks continuously without having been cleaned, and had accumulated a 1/4-inch coating of soot and

ash, when its performance, in the same condition, was observed for one week. During the second week it was cleaned twice every day; but during the third week, after having been cleaned on Monday morning, it was worked continuously without further cleaning. A smoke-making coal was used. The consumption was maintained sensibly constant from day to day.

GREEN'S ECONOMIZER.—RESULTS OF EXPERIMENTS ON ITS EFFICIENCY AS AFFECTED BY THE STATE OF THE SURFACE. (W. Grosseteste.)

						ature of Gas- Products.	
TIME (February and March).	Enter- ing Feed- heater.	Leav- ing Feed- heater.	ing Differ- Feed- ence.		Leav- ing Feed- heater.	Differ- ence.	
1st Week	Fahr. 73.5°	Fahr.	Fahr. 88.0°	Fahr. 849°	Fahr.	Fahr.	
1st Week	77.0	161.5° 280 0	158.0	882	297	585	
3d Week—Monday	78.4	196.0	122.6	831	284	547	
Tuesday	73.4	181.4	108.0	871	809	562	
Wednesday	79.0	178.0	99.0				
Thursday	80.6	170.6	90.0	952	329	623	
Friday	80.6	169 0	88.4	889	338	551	
Saturday	79.0	172.4	93.4	901	351	550	

	1st Week.	2d Week.	8d Week,
Coal consumed per hour	. 214 lbs.	216 lbs.	213 lbs.
Water evaporated from 32° F. per hour.	. 1424	1525	1428
Water per pound of coal	6.65	7.06	6.70

It is apparent that there is a great advantage in cleaning the pipes daily -the elevation of temperature having been increased by it from 88° to 153°. In the third week, without cleaning, the elevation of temperature relapsed in three days to the level of the first week; even on the first day it was quickly reduced by as much as half the extent of relapse. By cleaning the pipes daily an increased elevation of temperature of 65° F., was obtained, whilst a gain of 6% was effected in the evaporative efficiency.

## INCRUSTATION AND CORROSION.

Incrustation and Scale.—Incrustation (as distinguished from mere sediments due to dirty water, which are easily blown out, or gathered up, by means of sediment-collectors) is due to the presence of salts in the feed-water (carbonates and sulphates of lime and magnesia for the most part), which are precipitated when the water is heated, and form hard deposits upon the boiler-plates. (See Impurities in Water, p. 551, ante.)

Where the quantity of these salts is not very large (12 grains per gallon, say) scale preventives may be found effective. The chemical preventives either form with the salts other salts soluble in hot water; or precipitate them in the form of soft mud, which does not adhere to the plates, and can be washed out from time to time. The selection of the chemical must depend upon the composition of the water, and it should be introduced regularly with the feed.

EXAMPLES.—Sulphate-of-lime scale prevented by carbonate of soda. The

Examples.—Sulphate of lime scale prevented by carbonate of soda: The sulphate of soda produced is soluble in water; and the carbonate of lime falls down in grains, does not adhere to the plates, and may therefore be blown out or gathered into sediment collectors. The chemical reaction is:

Sulphate of lime + Carbonate of soda = Sulphate of soda + Carbonate of lime CaSO NA2CO2 NA2SO4 CaCO,

Sodium phosphate will decompose the sulphates of lime and magnesia: Sulphate of lime + Sodium phosphate = Calcium phos. + Sulphate of soda. CaSO₄ Na₂HPO₄ CaHPO₄ Na₂SO₄

Sul. of magnesia + Sodium phosphate = Phosphate of magnesia + Sul. of soda.

MgSO₄

Na₂HPO₄

Na₂SO₄

Na₂SO₄

Where the quantity of salts is large, scale preventives are not of much use. Some other source of supply must be sought, or the bad water purified before it is allowed to enter the boilers. The damage done to boilers by unsuitable water is enormous.

Pure water may be obtained by collecting rain, or condensing steam by means of surface condensers. The water thus obtained should be mixed with a little bad water, or treated with a little bad water, or treated with a little alkali, as undiluted, pure water corrodes iron; or, after each periodic cleaning, the bad may be used

for a day or two to put a skin upon the plates.

Carbonate of lime and magnesia may be precipitated either by heating the water or by mixing milk of lime (Porter Clark process) with it, the water

being then filtered.

Corrosion may be produced by the use of pure water, or by the presence of acids in the water, caused perhaps in the engine-cylinder by the action of high-pressure steam upon the grease, resulting in the production of fatty acids. Acid water may be neutralized by the addition of lime.

Amount of Sediment which may collect in a 100-H.P. steam-boiler, evaporating 3000 lbs. of water per hour, the water containing different amounts of impurity in solution, provided that no water is blown off:

Grains of solid impurities per gallon:

5	10	20	30	40	50	60	70	80	90	100
Equival	Equivalent parts per 100,000: 8.57 17.14 34.28 51.42 68.56 85.71 102.85 120 187.1 154.3 171.4									
8.57	17.14	84.28	51.42	<b>6</b> 8.56	85.71	102.85	120	187.1	154.3	171.4
	Sediment deposited in 1 hour, pounds:									
	5.14				25.71	30.85	36	41.1	46.8	51.4
In one										
	51.4				257.1	308.5	360	411	468	514
	In one week of 6 days, pounds: 154.8 3 8.5 617.0 925.5 1:34 1543 1851 2160 2468 2776 3085									
154.8	8.8.5	617.0	925.5	1:34	1543	1851	2160	2468	2776	8085

If a 100-H.P. boiler has 1200 sq. ft. heating-surface, one week's running without blowing off, with water containing 100 grains of solid matter per gallon in solution, would make a scale nearly 1/5 in thick, if evenly depostited all over the heating-surface, assuming the scale to have a sp. gr. of 2.5 = 156 lbs. per cu. ft.;  $1/5 \times 1200 \times 156 \times 1/12 = 3120$  lbs. **Boller-scale Compounds.**—The Bavarian Steam-boiler Inspection

Assn. in 1885 reported as follows:

Generally the unusual substances in water can be retained in soluble form or precipitated as mud by adding caustic soda or lime. This is especially desirable when the boilers have small interior spaces.

It is necessary to have a chemical analysis of the water in order to fully determine the kind and quantity of the preparation to be used for the

above purpose.

All secret compounds for removing boiler-scale should be avoided. (A list of 27 such compounds manufactured and sold by German firms is then given which have been analyzed by the association.)

Such secret preparations are either nonsensical or fraudulent, or contain either one of the two substances recommended by the association for removing scale, generally soda, which is colored to conceal its presence, and sometimes adulterated with useless or even injurious matter.

These additions as well as giving the compound some strange, fanciful name, are meant simply to deceive the boiler owner and conceal from him the fact that he is buying colored soda or similar substances, for which he is

paying an exorbitant price.

The Chicago, Milwaukee & St. P. R. R. uses for the prevention of scale in locomotive-boilers an alkaline compound consisting of 3750 gals, of water, 2600 lbs. of 70% caustic soda, and 1600 lbs. of 58% soda-ash. Between Milwaukee and Madison the water supply contains from 1 to 41% lbs. of incrusting solids per 1000 gals., principally calcium carbonate and sulphate and magnesium sulphate. The amount of compound necessary to prevent the incrustation is 1½ to 7 pints per 1000 gals, of water. This is really only one fourth of the quantity needed for chemical combination, but the action of the compound is regenerative. The soda-ash (sodium carbonate) extracts carbonic acid from the carbonates of lime and magnesia and precipitates them in a granular form. The bicarbonate of soda thus formed, however, loses its carbonic acid by the heat, and is again changed to the active carbonate form. Theoretically this action might continue indefinitely; but on account of the loss by blowing off and the presence of other impurities in the water, it is found that the soda-ash will precipitate only about four times the theoretical quantity. Scaling is entirely prevented. One engine made 122,000 miles, and inspection of the boiler showed that it was as clean as when new. This compound precipitates the impurities in a granular form, and careful attention must be paid to washing out the precipitate. The practice is to change the water every 600 miles and wash out the boiler every 1200 miles, using the blow-off cocks also whenever there is any indication of foaming, which seems to be caused by the precipitate in the water, but not by the alkali itself. (Engla News Dec 5, 1891.)

revery 1200 miles, using the blow-off cocks also whenever there is any indication of foaming, which seems to be caused by the precipitate in the water, but not by the alkali itself. (Erag'g News, Dec. 5, 1891.)

Kerosene and other Petroleum Oils; Foaming.—Kerosene has recently been highly recommended as a scale preventive. See paper by L. F. Lyne (Trans. A. S. M. E., ix. 247). The Am. Mach., May 22, 1890, says: Kerosene used in moderate quantities will not make the boiler foam; it is recommended and used for loosening the scale and for preventing the formation of scale. Neither will a small quantity of common oil always cause foaming; it is sometimes injected into small vertical boilers to prevent priming, and is supposed to have the same effect on the disturbed surface of the water that oil has when poured on the rough sea. Yet oil in boilers will not have the same effect, and give the desired results in all cases. The presence of oil in combination with other impurities impedes the free escape of steam from the water surface. The use of common oil not only tends to cause foaming, but is dangerous otherwise. The grease appears to combine with the impurities of the water, and when the boiler is at rest this compound sinks to the plates and clings to them in a loose, spongy mass, preventing the water from coming in contact with the plates, and thereby producing overheating, which may lead to an explosion. Foaming may also be caused by forcing the fire, or by taking the steam from a point over the furnace or where the ebullition is violent; the greasy and dirty state of new boilers is another good cause for foaming. Kerosene should be used at first in small quantities, the effect carefully noted, and the quantity increased if necessary for obtaining the desired results.

R. C. Carpenter (Trans. A. S. M. E., vol. xi.) says: The boilers of the State agricultural College at Lansing, Mich., were badly incrusted with a hard scale. It was fully three eighths of an inch thick in many places. The first application of the oil was made while the boilers were being but little used, by inserting a gallon of oil, filling with water, heating to the boiling-point and allowing the water to stand in the boiler two or three weeks before removal. By this method fully one half the scale was removed during the warm season and before the boilers were needed for heavy firing. The oil was then added in small quantities when the boiler was in actual use. For boilers 4 ft. in diam. and 12 ft. long the best results were obtained by the use of 2 qts. for each boiler per week, and for each boiler 5 ft. in diam. 3 qts. per week. The water used in the boilers has the following analysis:

Tannate of Soda Compound.—T. T. Parker writes to Am. Mach.: Should you find kerosene not doing any good, try this recipe: 50 lbs. sal-soda, 35 lbs. japonica; put the ingredients in a 50-gal. barrel, fill half full of water, and run a steam hose into it until it dissolves and boils. Remove the hose, fill up with water, and allow to settle. Use one quart per day of ten hours for a 40-H.P. boiler, and, if possible, introduce it as you do cylinder oil to your engine. Barr recommends tannate of soda as a remedy for scale composed of sulphate and carbonate of line. As the japonica yields the tannic acid, I think the resultant equivalent to the tannate of soda.

Petroleum Oils heavier than kerosene have been used with good results. Crude oil should never be used. The more volatile oils it contains make explosive gases, and its tarry constituents are apt to form a spongy incrustation.

Bemoval of Hard Scale.—When boilers are coated with a hard scale difficult to remove the addition of 1/4 lb. caustic soda per horse-power, and steaming for some hours, according to the thickness of the scale, just before cleaning, will greatly facilitate that operation, rendering the scale

soft and loose. This should be done, if possible, when the boilers are not otherwise in use, (Steam.)

Corrosion in Marine Boilers. (Proc. Inst. M. E., Aug. 1884).—The investigations of the Committee on Boilers served to show that the internal corrosion of boilers is greatly due to the combined action of air and seawater when under steam, and when not under steam to the combined action of air and moisture upon the unprotected surfaces of the metal. There are other deleterious influences at work, such as the corrosive action of fatty acids, the galvanic action of copper and brass, and the inequalities of temperature; these latter, however, are considered to be of minor importance.

Of the several methods recommended for protecting the internal surfaces of boilers, the three found most effectual are: First, the formation of a thin layer of hard scale, deposited by working the boiler with sea-water; second, the coating of the surfaces with a thin wash of Portland cement, partially wherever there are signs of decay; third, the use of zinc slabs

suspended in the water and steam spaces.

As to general treatment for the preservation of boilers in store or when laid up in the reserve, either of the two following methods is adopted, as may be found most suitable in particular cases. First, the boilers are dried as much as possible by airing stoves, after which 2 to 3 cwt. of quick-lime, according to the size of the boiler, is placed on suitable trays at the bottom of the boiler and on the tubes. The boiler is then closed and made bottom of the botter and on the tuces. The botter is then closed and made as air-tight as possible. Periodical inspection is made every six months, when if the lime be found slacked it is renewed. Second, the other method is to fill the boilers up with sea or fresh water, having added soda to it in the proportion of 1 lb. of soda to every 100 or 120 lbs, of water. The sufficiency of the saturation can be tested by introducing a piece of clean new iron and leaving it in the boiler for ten or twelve hours; if it shows the saturation was said added. It is essential that the boilers signs of rusting, more soda should be added. It is essential that the boilers be entirely filled, to the complete exclusion of air.

Great care is taken to prevent sudden changes of temperature in boilers. Directions are given that steam shall not be raised rapidly, and that care shall be taken to prevent a rush of cold air through the tubes by too sud-denly opening the smoke-box doors. The practice of emptying boilers by blowing out is also prohibited, except in cases of extreme urgency. As a rule the water is allowed to remain until it becomes cool before the boilers

are emptied.

Mineral oil has for many years been exclusively used for internal lubrication of engines, with the view of avoiding the effects of fatty acid, as this oil

does not readily decompose and possesses no acid properties.

Of all the preservative methods adopted in the British service, the use of zinc properly distributed and fixed has been found the most effectual in saving the iron and steel surfaces from corrosion, and also in neutralizing by its own deterioration the hurtful influences met with in water as ordinarily supplied to boilers. The zinc slabs now used in the navy boilers are 12 in. long, 6 in. wide, and 1/2 inch thick; this size being found convenient for general application. The amount of zinc used in new boilers at present is one slab of the above size for every 20 I.H.P., or about one square foot of zinc surface to two square feet of grate surface. Rolled zinc is found the most suitable for the purpose. To make the zinc properly efficient as a protector especial care must be taken to insure perfect metallic contact between the slabs and the stays or plates to which they are attached. The slabs should be placed in such positions that all the surfaces in the boiler shall be protected. Each slab should be periodically examined to see that its connection remains perfect, and to renew any that may have decayed; this examination is usually made at intervals not exceeding three months. Under ordinary circumstances of working these zinc slabs may be expected to last in fit condition from sixty to ninety days, immersed in hot sea-water; but in new boilers they at first decay more rapidly. The slabs are generally secured by means of iron straps 2 in. wide and 36 inch thick, and long enough to reach the nearest stay, to which the strap is firmly attached by screw-bolts.

To promote the proper care of boilers when not in use the following order has been issued to the French Navy by the Government: On board all ships in the reserve, as well as those which are laid up, the boilers will be completely filled with fresh water. In the case of large boilers with large tubes there will be added to the water a certain amounts of milk of lime, or a solution of soda may be used instead. In the case of tubulous boilers with small tubes milk of lime or soda may be added, but the solution will not be so strong as in the case of the larger tube, so as to avoid any danger of

so strong as in the case of the larger tube, so as to avoid any danger of contracting the effective area by deposit from the solution; but the strength of the solution will be just sufficient to neutralize any acidity of the water. (Iron Age, Nov. 2, 1893.)

**Use of Zinc.**—Zinc is often used in boilers to prevent the corrosive action of water on the metal. The action appears to be an electrical one, the iron being one pole of the battery and the zinc being the other. The hydrogen goes to the iron shell and escapes as a gas into the steam. The outvoer goes to the zinc.

oxygen goes to the zinc.

On account of this action it is generally believed that zinc will always prevent corrosion, and that it cannot be harmful to the boiler or tank. Some experiences go to disprove this belief, and in numerous cases zinc has not only been of no use, but has even been harmful. In one case a tubular boiler had been troubled with a deposit of scale consisting chiefly of organic matter and lime, and zinc was tried as a preventive. The beneficial ganic matter and lime, and zinc was tried as a preventive. The beneficial action of the zinc was so obvious that its continued use was advised, with frequent opening of the boiler and cleaning out of detached scale until all the old scale should be removed and the boiler become clean. Eight or ten months later the water supply was changed, it being now obtained from another stream supposed to be free from lime and to contain only organic matter. Two or three months after its introduction the tubes and shell were found to be coated with an obstinate adhesive scale, and composed of carbonaceous kind is often deposited from the flame and smoke of the furrance of the plates over the fire. (The Locomotive.)

Effect of Deposit on Flues. (Rankine.)—An external crust of a carbonaceous kind is often deposited from the flame and smoke of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of the furrance of t

naces in the flues and tubes, and if allowed to accumulate seriously impairs the economy of fuel. It is removed from time to time by means of scrapers and wire brushes. The accumulation of this crust is the probable cause of the fact that in some steamships the consumption of coal per indicated horse-power per hour goes on gradually increasing until it reaches one and

horse-power per hour goes on gradually increasing until it reaches one and a half times its original amount, and sometimes more.

Dangerous Steam-boilers discovered by Inspection.—
The Hartford Steam-boiler Inspection and Insurance Co. reports that its inspectors during 1893 examined 163,328 boilers, inspected 68,688 boilers, both internally and externally, subjected 7861 to hydrostatic pressure, and found 597 unsafe for further use. The whole number of defects reported was 122,893, of which 12,399 were considered dangerous. A summary is given below. (The Locomotive, Feb. 1894.)

#### SUMMARY, BY DEFECTS, FOR THE YEAR 1898.

·			
		Nature of Defects. Whole No. g	Dan- erous.
Deposit of sediment 9,774		Leakage around tubes 21,211	2,909
Incrustation and scale18,369		Leakage at seams 5,424	482
Internal grooving 1,249		Water-gauges defective. 8,070	660
Internal corrosion 6,252	397	Blow outs defective 1,620	425
External corrosion 8,600	536	Deficiency of water 204	107
Def'tive braces and stays 1,966	485	Safety-valves overloaded 723	203
Settings defective 3,094		Safety-valves defective 942	300
Furnaces out of shape 4,575		Pressure-gauges def'tive 5,958	558
Fractured plates 3,532		Boilers without pressure-	
Burned plates 2,762	325		115
Blistered plates 3,331		Unclassified defects 755	4
Defective rivets 17,415	1,569		
Defective heads 1,357	350	Total122,898	12,390

The above-named company publishes annually a classified list of boiler-explosions, compiled chiefly from newspaper reports, showing that from 200 to 300 explosions take place in the United States every year, killing from 200 to 300 persons, and injuring from 300 to 450. The lists are not pretended to be complete, and may include only a fraction of the actual number of explosions.

Steam-boilers as Magazines of Explosive Energy.—Prof. R. H. Thurston (Traus. A. S. M. E., vol. vi.), in a paper with the above title, presents calculations showing the stored energy in the hot water and s eam of various boilers. Concerning the plain tubular boiler of the form and dimensions adopted as a standard by the Hartford Steam-boiler Insurance Co., he says: It is 60 inches in diameter, containing 66 3-inch tubes, and is 15 feet long. It has 850 feet of heating and 30 feet of grate surface; is rated at 60 horse-power, but is oftener driven up to 75; weight 9500 pounds, and contains nearly its own weight of water, but only 21 pounds of steam when under a pressure of 75 pounds per square inch, which is below its safe allowance. It stores 52,000,000 foot-pounds of energy, of which but 4 per cent is in the steam, and this is enough to drive the boiler just about one mile into the air, with an initial velocity of nearly 600 feet per second.

## SAFETY-VALVES.

# Calculation of Weight, etc., for Lever Safety-valves.

Let W= weight of ball at end of lever, in pounds; w= weight of lever itself, in pounds; V= weight of valve and spindle, in pounds; L= distance between fulcrum and centre of ball, in inches; l= " " valve, in inches; g= " " " " gravity of lever, in in.; A= area of valve, in square inches; P= pressure of steam, in ibs. per sq. in., at which valve will open.

Then 
$$PA \times l = W \times L + w \times g + V \times l$$
;  
whence  $P = \frac{WL + wg + Vl}{Al}$ ;  
 $W = \frac{PAl - wg - Vl}{L}$ ;  
 $L = \frac{PAl - wg - Vl}{W}$ .

EXAMPLE.—Diameter of valve, 4"; distance from fulcrum to centre of ball, 86"; to centre of valve, 4"; to centre of gravity of lever, 15\\( \frac{1}{2} \) "; weight of lever, 7 lbs.; required the weight of ball to make the blowing-off pressure 80 lbs. per sq. in.; area of 4" valve = 12.566 sq. in. Then

$$W = \frac{PAl - wg - Vl}{L} = \frac{80 \times 12.566 \times 4 - 7 \times 151/4 - 4 \times 4}{36} = 108.2 \text{ lbs.}$$

The following rules governing the proportions of !ever-valves are given by the U. S. Supervisors. The distance from the fulcrum to the valve-stem must in no case be less than the diameter of the valve-opening; the length of the lever must not be more than ten times the distance from the fulcrum to the valve-stem; the width of the bearings of the fulcrum must not be less than three quarters of an inch; the length of the fulcrum-link must not be less than four inches; the lever and fulcrum-link must be made of wrought iron or steel, and the knife-edged fulcrum points and the bearings for these points must be made of steel and hardened; the valve must be guided by its spindle, both above and below the ground seat and above the lever, through supports either made of composition (gun-metal) or bushed with it; and the spindle must fit loosely in the bearings or supports

## Rules for Area of Safety-valves.

(Rule of U. S. Supervising Inspectors of Steam-vessels (as amended 1894).)

Lever safety-valves to be attached to marine boilers shall have an area of not less than 1 sq. in. to 2 sq. ft. of the grate surface in the boiler, and the seats of all such safety-valves shall have an angle of inclination of 45° to the centre line of their axes.

Spring-loaded safety-valves shall be required to have an area of not less than 1 sq. in. to 3 sq. ft. of grate surface of the boiler, except as hereinafter otherwise provided for water-tube or coil and sectional boilers, and each spring-loaded valve shall be supplied with a lever that will raise the valve from its seat a distance of not less than that equal to one eighth the diameter of the valve-opening, and the seats of all such safety-valves shall have an angle of inclination to the centre line of their axes of 45°. All spring loaded safety-valves for water-tube or coil and sectional boilers required to

carry a steam-pressure exceeding 175 lbs, per square inch shall be required to have an area of not less than 1 sq. in. to 6 sq. ft. of the grate surface of the boiler. Nothing herein shall be construed so as to prohibit the use of two safety-valves on one water-tube or coil and sectional boiler, provided the combined area of such valves is equal to that required by rule for one such valve.

Rule in Philadelphia Ordinances: Bureau of Steamengine and Boller Inspection.—Every boiler when fired separately, and every set or series of boilers when placed over one fire, shall have attached thereto, without the interposition of any other valve, two or more safety-valves, the aggregate area of which shall have such relations to the area of the grate and the pressure within the boiler as is expressed in schedule A.

SCHEDULE A.—Least aggregate area of safety-valve (being the least sectional area for the discharge of steam) to be placed upon all stationary boilers with natural or chimney draught [see note a].

$$A = \frac{22.5G}{P + 8.62},$$

in which A is area of combined safety-valves in inches; G is area of grate in square feet; P is pressure of steam in pounds per square inch to be carried in the boiler above the atmosphere.

The following table gives the results of the formula for one square foot of

grate, as applied to boilers used at different pressures:

Pressures per square inch:

1,21 0.79 0.58 0.46 0.38 0.33 0.29 0.25 0.23 0.21 0.19 0.17

[Note a.] Where bollers have a forced or artificial draught, the inspector must estimate the area of grate at the rate of one square foot of grate-surface for each 16 lbs. of fuel burned on the average per hour. Comparison of Various Rules for Area of Lever Safety-

Comparison of Various Bules for Area of Lever Safety-valves. (From an article by the author in American Machinist, May 24, 1894, with some alterations and additions.)—Assume the case of a boiler rated at 100 horse-power; 40 sq. ft. grate; 1200 sq. ft. heating-surface; using 400 lbs. of coal per hour, or 10 lbs. per sq. ft. of grate per hour, and evaporating 3600 lbs. of water, or 3 lbs. per sq. ft. of heating-surface per hour; steam-pressure by gauge, 100 lbs. What size of safety-valve, of the lever type, should be required?

A compilation of various rules for finding the area of the safety-vale disk, from *The Locomotive* of July, 1892, is given in abridged form below, together with the area calculated by each rule for the above example.

TT Cl Companying booting and as in an 6t of the	Disk Area in sq. in.
U. S. Supervisors, heating-surface in sq. ft. + 25* English Board of Trade, grate-surface in sq. ft. + 2	
Molesworth, four fifths of grate surface in sq. ft	32
Thurston, 4 times coal burned per hour × (gauge pressure	+ 10) 14.5
Thurston, $\frac{1}{2} \frac{(5 \times \text{heating-surface})}{\text{gauge pressure} + 10}$	27.3
Rankine, .006 × water evaporated per hour	91 R
Committee of U. S. Supervisors, .005 × water evaporated p	er hour 18

Suppose that, other data remaining the same, the draught were increased so as to burn 13½ lbs. coal per square foot of grate per hour, and the grate-surface cut down to 30 sq. ft. to correspond, making the coal burned per hour 400 lbs., and the water evaporated 3600 lbs., the same as before; then the English Board of Trade rule and Molesworth's rule would give an area of disk of only 15 and 24 sq. in., respectively, showing the absurdity of making the area of grate the basis of the calculation of disk area.

Another rule by Prof. Thurston is given in American Machinist, Dec. 1877, viz.:

Disk area = 
$$\frac{\frac{1}{2} \text{ max. wt. of water evap. per hour}}{\text{gauge pressure} + 10}$$

This gives for the example considered 16.4 sq. in.

^{*} The edition of 1893 of the Rules of the Supervisors does not contain this rule, but gives the rule grate-surface +2.

One rule by Rankine is 1/150 to 1/180 of the number of pounds of water evaporated per hour, equals for the above case 27 to 20 sq. in. A communition in *Power*, July, 1890, gives two other rules:

1st. 1 sq. in. disk area for 3 sq. ft. grate, which would give 13.3 sq. in.

2d. 34 sq. in. disk area for 1 sq. ft. grate, which would give 30 sq. in.; but if the grate-surface were reduced to 30 sq. ft. on account of increased draught, these rules would make the disk area only 10 and 22.5 sq. iu., respectively.

The Philadelphia rule for 100 lbs. gauge pressure gives a disk area of 0.21 sq. in. for each sq. ft. of grate area, which would give an area of 8.4 sq. in. for 40 sq. ft. grate, and only 6.3 sq. in. if the grate is reduced to 30 sq. ft.

According to the rule this aggregate area would have to be divided between two valves. But if the boiler was driven by forced draught, then the in-spector "must estimate the area of grate at 1 sq. ft. for each 16 lbs. of fuel burned per hour.

Under this condition the actual grate-surface might be cut down to 400 + 16=25 sq. ft., and by the rule the combined area of the two safety-valves would be only  $25\times0.21=.25$  sq. in.

Nystrom's Pocket-book, edition of 1891, gives ¾ sq. in. for 1 sq. ft. grate; also quoting from Weisbach, vol. ii, 1/3000 of the heating-surface. This in the case considered is 1200/3000 = 4 sq. ft. or 87.6 sq. in.

We thus have rules which give for the area of safety-valve of the same 100-

horse-power boiler results ranging all the way from 5.25 to 57.6 sq. in.

All of the rules above quoted give the area of the disk of the valve as the thing to be ascertained, and it is this area which is supposed to bear some direct ratio to the grate-surface, to the heating-surface, to the water evaporated, etc. It is difficult to see why this area has been considered even approximately proportional to these quantities, for with small lifts the area of actual opening bears a direct ratio, not to tne area of disk, but to the circumference.

Thus for various diameters of valve:

Diameter 1	2	3	4)	3	6	7
Area	3.14	7.07	12.57	19.64	28.27	38.48
Circumference 3.14	6.28	9.42	12.57	15.71	18.85	21.99
Circum. × lift of 0.1 in31	.63	.94	1.26	1.57	1.89	2.20
Ratio to area 4	2	13	1	08	.067	.057

The apertures, therefore, are therefore directly proportional to the diameter or to the circumference, but their relation to the area is a varying one.

If the lift  $= \frac{1}{4}$  diameter, then the opening would be equal to the area of the disk, for circumference  $\times \frac{1}{4}$  diameter = area, but such a lift is far beyond the actual lift of an ordinary safety-valve.

A correct rule for size of safety-valves should make the product of the diameter and the lift proportional to the weight of steam to be discharged.

A "logical" method for calculating the size of safety-valve is given in The Locomotive, July, 1892, based on the assumption that the actual opening should be sufficient to discharge all the steam generated by the boiler. Napier's rule for flow of steam is taken, viz., flow through aperture of one sq. in. in lbs. per second = absolute pressure +70, or in lbs. per hour = 51.43

 $\times$  absolute pressure. If the angle of the seat is 45°, as specified in the rules of the U. S. Super-

visors, the area of opening in sq. in. = circumference of the disk  $\times$  the lift  $\times$  71, 71 being the cosine of 45°; or diameter of disk  $\times$  lift  $\times$  2.23.

A. G. Brown in his book on The Indicator and its Practical Working (London, 1894) gives the following as the lift of the ordinary lever safety-

valve for 100 lbs. gauge-pressure:

Diam. of valve... 2 214 3 314 4 414 5 6 inche Rise of valve... .0583 .0523 .0507 .0492 .0478 .0462 .0446 .0430 inch.

The lift decreases with increase of steam-pressure; thus for a 4-inch valve: Abs. pressure, lbs. 45 Gauge-press., lbs. 30 85 65 105 115 135 155 175 195 215 16Õ 200 50 70 90 100 120 140 180 Gauge-press., lbs.. 

The effective area of opening Mr. Brown takes at 70% of the rise multiplied by the circumference.

An approximate formula corresponding to Mr. Brown's figures for diameters between 21/2 and 6 in. and gauge-pressures between 70 and 200 lbs. is

Lift =  $(.0603 - 0031d) \times \frac{110}{\text{abs. pressure}}$ , in which d = diam. of valve in in.

If we combine this formula with the formulæ

Flow in lbs. per hour = area of opening in sq. in  $\times$  51.43 $\times$  abs. pressure, and Area = diameter of valve  $\times$  lift  $\times$  2.23, we obtain the following, which the author suggests as probably a more correct formula for the discharging capacity of the ordinary lever safety-valve than either of those above given.

Flow in lbs. per hour =  $d(.0603 - .0031d) \times 115 \times 2.23 \times 51.43 = d(.795 - 41d)$ .

From which we obtain:

2 216 1426 1733 Diameter, inches .... 1100 2016 2282 Flow, lbs. per hour.. 754 2524 2950 3294 3556 Horse-power ..... 76 25 37 47 58 67 84 98 110 119

the horse-power being taken as an evaporation of 30 lbs. of water per hour. If we solve the example, above given, of the boiler evaporating 3600 lbs. of water per hour by this table, we find it requires one 7-inch valve, or a 214-and a 3-inch valve combined. The 7-inch valve has an area of 38.5 sq. in., and the two smaller valves taken together have an area of only 12 sq. in.; another evidence of the absurdity of considering the area of disk as the factor which determined the capacity of the valve

It is customary in practice not to use safety-valves of greater diameter than 4 in. If a greater diameter is called for by the rule that is adopted, then two or more valves are used instead of one.

Spring-loaded Safety-valves.—Instead of weights, springs are sometimes employed to hold down safety-valves. The calculations are similar to those for lever safety-valves, the tension of the spring corresponding to a given rise being first found by experiment (see Springs, page 347).

The rules of the U. S. Supervisors allow an area of 1 sq. in. of the valve

to 3 sq. ft. of grate, in the case of spring-loaded valves, except in water-tube, coil, or sectional boilers, in which 1 sq. in. to 6 sq. ft. of grate is allowed.

Spring-loaded safety-valves are usually of the reactionary or "pop" type, in which the escape of the steam is opposed by a lip above the valve-seat, against which the escaping steam reacts, causing the valve to lift higher than the ordinary valve.

A. G. Brown gives the following for the rise, effective area, and quantity of steam discharged per hour by valves of the "pop" or Richardson type. The effective is taken at only 50% of the actual area due to the rise, on account of the obstruction which the lip of the valve offers to the escape of steam. Dia value, in 1 | 11/6 | 2 | 21/6 | 3 | 31/6 | 4 | 41/6 | 5

Lift, inches. Area, sq. in.	.125 .196	. 150 . 354		.200 .785		.250 1.875		.800 2.121	.325 2.553	.375 8.535
Gauge-pres.,	Steam discharged per hour, lbs.									
30 lbs.	474	856	1330	1897	2563	3325	4178	5128	6178	8578
50	669	1209	1878	2680	3620	4695	5901	7242	8718	12070
70	861	1556	2417	3450	4660	6144	7596	9324	11220	
90	1050	1897	2947	4207	5680	7370	9260	11365	13685	18945
100	1144	2065	3208	4580	6185	8322	10080	12375	14895	20625
120	1332	2405	3736	5332	7202	9342	11735	14410	17340	24015
140	1516	2738	4254	6070	8200	10635	13365	16405	19745	27340
160	1696	3064	4760	6794	9175	11900	14955	18355	22095	30595
180	1883	3400	5283	7540	10180	13250	16595	20370	24520	33950
200	2062	3724	5786	8258	11150	14465	18175	22310	26855	37185

If we take 30 lbs. of steam per hour, at 100 lbs. gauge-pressure = 1 H.P. we have from the above table:

Diameter, inches... 1 11/2 2 21/2 3 31/2 4 41/2 5 6 Horse-power...... 38 69 107 153 206 277 336 412 496 687

A safety-valve should be capable of discharging a much greater quantity of steam than that corresponding to the rated horse-power of a boiler, since a boiler having ample grate surface and strong draught may generate more than double the quantity of steam its rating calls for.

The Consolidated Safety-valve Co.'s circular gives the following rated capacity of its nickel-seat "pop" safety-valves:

11/2 31/ 11/4 2 21/2 Size, in 35 60 75 10 Boiler | from H.P. to 10 15 30 50 75 100 125 150 175 200

The figures in the lower line from 2 inch to 5 inch inclusive, correspond to the formula H.P. = 50(diameter -1 inch).

## THE INJECTOR. Equation of the Injector.

Let 8 be the number of pounds of steam used;

W the number of pounds of water lifted and forced into the boiler: h the height in feet of a column of water, equivalent to the absolute pressure in the boiler;

he the height in feet the water is lifted to the injector;

t, the temperature of the water before it enters the injector;
t, the temperature of the water after leaving the injector;
H the total heat above 32° F. in one pound of steam in the boiler, in

heat-units;
L the lost work in friction and the equivalent lost work due to radia-

tion and lost heat;
778 the mechanical equivalent of heat.

Then

$$S[H - (t_2 - 82^{\circ})] = W(t_2 - t_1) + \frac{(W + S)h + Wh_0 + L}{778}$$

An equivalent formula, neglecting  $Wh_0 + L$  as small, is

$$S = \left[ W(t_2 - t_1) + \frac{W + S}{d} \cdot p \cdot \frac{144}{178} \right] \frac{1}{H - (t_2 - 82^\circ)},$$
or 
$$S = \frac{W((t_2 - t_1)d + .1851p)}{H - (t_2 - 82^\circ)d - .1851p},$$

in which d =weight of 1 cu. ft. of water at temperature  $t_2$ ; p =absolute

pressure of steam, lbs. per sq. in.
The rule for finding the proper sectional area for the narrowest part of
the nozzles is given as follows by Rankine, S. E. p. 477:

Area in square inches = cubic feet per hour gross feed-water.

800 1 pressure in atmospheres

An important condition which must be fulfilled in order that the injector will work is that the supply of water must be sufficient to condense the steam. As the temperature of the supply or feed-water is higher, the

amount of water required for condensing purposes will be greater.

The table below gives the calculated value of the maximum ratio of water to the steam, and the values obtained on actual trial, also the highest admissible temperature of the feed-water as shown by theory and the highest actually found by trial with several injectors.

		RATIO WATER STEAM.				MAXIMUM TEMPERATURE OF FEED-WATER.						
Gauge- pres-		A ct	nel T	Expe-	Gauge- pres-	Theor	etical.	Exp	eri'ta	l Re	sults.	
· per	Calculated from Theory.		rime		sure, pounds per sq. in.	. 90	emp. charge 212°.					
sq. in.	Theory.	н.	P.	M.	sq. in.	Temp dischar 180°.	Temp dischar 212°.	Н.	Р.	M.	S.	
10	36.5	30.9	_		10			<u> </u>			132°	
10 20 80	25.6			21.5	20	1120	173°	135°	120°	180°	184	
80	20.9			19.0	30	132	162				184	
40	17.87			15.86		126	156	140	113	125	132	
50	16.2			13.3	50	120	150		1::::	:::	181	
60	14.7		11.2		60	114	143	::::	115	128	180	
70	13.7			12.9	70	109	139	141*		123	130	
80	12.9	11.4	11.2	• • • • •	80	105	134	141*	118	122	131	
90	12.1	,	•••	i	90	99	129		•••	• • • •	182*	
100	11.5	••••		•	100	95	125		• • • •		132*	
	1	1		[	120	87	117		•••		134*	
	'		i	!	150	77	107				121*	

^{*} Temperature of delivery above 212°. Waste-valve closed.

H, Hancock inspirator; P, Park injector; M, Metropolitan injector; S, Sellers 1876 injector.

Efficiency of the Injector.—Experiments at Cornell University, described by Prof. R. C. Carpenter, in Cassier's Magazine, Feb. 1892, show that the injector, when considered merely as a pump, has an exceedingly low efficiency, the duty ranging from 161,000 to 2,752,000 under different circumstances of steam and delivery pressure. Small direct-acting pumps, such as are used for feeding boliers, show a duty of from 4 to 8 million lbs, and the best pumping-engines from 100 to 140 million. When used for feeding water into a boiler, however, the injector has a thermal efficiency of 100%, less the trifling loss due to radiation, since all the heat rejected reases into the water which is carried into the boiler. jected passes into the water which is carried into the boiler.

The loss of work in the injector due to friction reappears as heat which is carried into the boiler, and the heat which is converted into useful work in

Although the injector thus has a perfect efficiency as a boiler-feeder, it is nevertheless not the most economical means for feeding a boiler, since it can draw only cold or moderately warm water, while a pump can feed water which has been heated by exhaust steam which would otherwise be wasted.

Performance of Injectors.—In Am. Mach., April 13, 1893, are a number of letters from different manufacturers of injectors in reply to the question: "What is the best performance of the injector in raising or lifting

water to any height?" Some of the replies are tabulated below.

W. Sellers & Co.—25.51 lbs. water delivered to boiler per lb. of steam; tem-

perature of water, 64°; steam pressure, 65 lbs.

Schaeffer & Budenberg-1 gal. water delivered to boile for 0.4 to 0.8 lb. steam.

Injector will lift by suction water of

186° to 188° 122° to 180° 140° F. 118° to 107° 60 to 90 lbs. 90 to 120 lbs. 120 to 150 lbs. If boiler pressure is. 30 to 60 lbs. If the water is not over 80° F., the injector will force against a pressure 75

lbs, higher than that of the steam.

Hancock Inspirator Co				
Lift in feet	22	22	22	11
Boiler pressure, absolute, lbs	75.8	54.1	95.5	75. <b>4</b>
Temperature of suction	84.9	85.4°	47.8°	58.2°
Temperature of delivery		117.4°	173.7°	131.1
Water fed per lb. of steam, lbs	11.02	13.67	8.18	13.8

The theory of the injector is discussed in Wood's, Peabody's, and Rontgen's treatises on Thermodynamics. See also "Theory and Practice of the Injector," by Strickland L. Kueass, New York, 1895.

Boiler-feeding Pumps.—Since the direct-acting pump, commonly used for feeding boilers, has a very low efficiency, or less than one tenth that of a good engine, it is generally better to use a pump driven by belt from the main engine or driving shaft. The mechanical work needed to feed a boiler may be estimated as follows: It the combination of boiler and engine in the belt of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of a boiler may be estimated as follows: If the combination of boiler and enjerie is such that half a cubic foot, say 32 lbs. of water, is needed per horsepower, and the boiler-pressure is 100 lbs. per sq. in., then the work of feeding the quantity of water is 100 lbs.  $\times$  144 sq. in.  $\times$  ½ ft.-lbs. per hour = 120 ft.-lbs. per min. = 120/33,000 = .0036 H.P., or less than 4/10 of 1½ of the power exerted by the engine. If a direct-acting pump, which discharges its exhaust steam into the atmosphere, is used for feeding, and it has only 1/10 the efficiency of the main engine, then the steam used by the pump will be equal to nearly 45 of that generated by the boiler.

equal to nearly 4% of that generated by the boiler.

The following table by Prof. D. S. Jacobus gives the relative efficiency of steam and power pumps and injector, with and without heater, as used upon a boiler with 80 lbs. gauge-pressure, the pump having a duty of 10,000,000 ft.-lbs. per 100 lbs. of coal when no heater is used; the injector

heating the water from 60° to 150° F.

Direct-acting pump feeding water at 60°, without a heater	
Injector feeding water through a heater in which it is heated from 150° to 200°	.938
Direct-acting pump feeding water through a heater, in which it is heated from 60° to 200°	.879
in which it is heated from 60° to 200°	.868

# FRED-WATER HEATERS. Percentage of Saving for Each Degree of Increase in Temperature of Feed-water Heated by Waste Steam.

Initial Temp.	Pressure of Steam in Boiler, lbs. per sq. in. above Atmosphere.											
of Feed.	0	20	40	60	80	100	120	140	160	180	200	Temp.
32°	.0872	.0861	.0855	.0851	.0847	.0844	.0841	.0889	.0837	.0835	.0883	32
40	.0878	.0867						.0845			.0839	40
50	.0886							.0852			.0846	50
60	.0894									.0855	.0858	60
70	.0902							.0867		.0862		70
. 80		.0898						.0874		.0870	.0868	80
90	.0919	.0907	.0900					.0888		.0877	.0875	90
100	.0927			.0903							.0883	100
110	.0936	.09:28						.0898	.0695	.0893	.0891	110
120	.0945	.0932								.0901	.0899	120
189	.0954	.0941	.0934	.0928	.0924	.09:20	.0917	.0914	.0912	.0909	.0907	180
140										.0918		140
150								.0931			.0924	150
160	.0982			.0955							.0933	160
170	.0992							.0949	.0946	.0944	.0941	170
180	.1002							.0958		.0953	.0951	180
190	.1012	.0998				.0974				.0962	0960	
200	.1022	.1008	.0999					.0977	.0974	.0972	.0969	200
210								.0987		.0981	.0979	210
220	ļ	.1029						.0997		.0991	.0989	220
230	ļ	.1039								.1001	.0999	
240	l	.1050	.1041	.1034	.1029	.1024	.1020	.1017	.1014	.1011	.1009	
250	1	. 1062	1.1052	.1045	. 1040	1025	1031	1027	. 1025	.1022	. 1019	250

An approximate rule for the conditions of ordinary practice is a saving of 1% is made by each increase of 11° in the temperature of the feed-water. This corresponds to .0909% per degree.

The calculation of saving is made as follows: Boiler-pressure, 100 lbs. gauge; total heat in steam above  $32^{\circ} = 1185$  B.T.U. Feed-water, original temperature  $60^{\circ}$ , final temperature  $209^{\circ}$  F. Increase in heat-units, 150. Heat-units above  $32^{\circ}$  in feed-water of original temperature =28. Heat-units in steam above that in cold feed-water, 1185 - 28 = 1157. Saving by the feed-water heater = 150/1157 = 12.90%. The same result is obtained by the use of the table. Increase in temperature  $150^{\circ}$  × tabular figure .0661 = H; total heat of 1 lb. of steam at the boiler-pressure = H; total heat of 1 lb. of feed-water before entering the heater  $= h_1$ , and after passing through the heater  $= h_2$ ; then the saving made by the heater is  $\frac{h_2 - h_1}{H - h_1}$ .

Strains Caused by Cold Feed-water.—A calculation is made in The Locomotive of March, 1888, of the possible strains caused in the section of the shell of a boiler by cooling it by the injection of cold feed-water. Assuming the plate to be cooled 200° F., and the coefficient of expansion of steel to be .0000067 per degree, a strip 10 in. long would contract .013 in., if were free to contract. To resist this contraction, assuming that the strip is firmly held at the ends and that the modulus of elasticity is 29,000,000, would require a force of 37,700 lbs. per sq. in. Of course this amount of strain cannot actually take place, since the strip is not firmly held at the ends, but is allowed to contract to some extent by the elasticity of the surrounding metal. But, says The Locomotive, we may feel pretty confident that in the case considered a longitudinal strain of somewhere in the neighborhood of 8000 or 10,000 lbs. per sq. in. may be produced by the feed-water striking directly upon the plates; and this, in addition to the normal strain produced by the steam-pressure, is quite enough to tax the girth-seams beyond their elastic limit, if the feed-pipe discharges anywhere near them. Hence it is not surprising that the girth-seams develop leaks and cracks in 99 cases out of every 100 in which the feed discharges directly upon the fire-sheets.

#### STEAM SEPARATORS.

If moist steam flowing at a high velocity in a pipe has its direction suddenly changed, the particles of water are by their momentum projected in their original direction against the bend in the pipe or wall of the chamber In which the change of direction takes place. By making proper provision for drawing off the water thus separated the steam may be dried to a greater or less extent.

For long steam-pipes a large drum should be provided near the engine

For long steam-pipes a large drum should be provided near the engine for trapping the water condensed in the pipe. A drum 3 feet diameter, 15 feet high, has given good results in separating the water of condensation of a steam-pipe 10 inches diameter and 800 feet long.

Efficiency of Steam Separators, Prof. R. C. Carpenter, in 1891, made a series of tests of six steam separators, furnishing them with steam statistical different sources of professions and testing the much steam. containing different percentages of moisture, and testing the quality of steam before entering and after passing the separator. A condensed table of the principal results is given below.

of tor.	Test with	Steam of ab Moisture.	out 10% of	Tests with Varying Moisture.					
Make of Separator.	Quality of Steam before.	Quality of Steam after.	Efficiency per cent.	Quality of Stram before.	Quality of Steam after.	Av'ge Effi- ciency.			
В	87.0%	98.8%	90.8	66.1 to 97.5%		87.6			
A	90.1	98.0	80.0	51.9 " 98	97.9 " 99.1	76.4			
D	89.6	95.8	59.6	72.2 " 96.1	95.5 " 98.2	71.7			
С	90.6	93.7	33.0	67.1 " 96.8	93.7 " 98.4	63.4			
Č E	88.4	90.2	15.5	68.6 " 98.1	79.3 " 98.5	86.9			
F	88.9	92.1	28.8	70.4 " 97.7	84.1 " 97.9	28.4			

Conclusions from the tests were: 1. That no relation existed between the volume of the several separators and their efficiency.

2. No marked decrease in pressure was shown by any of the separators,

the most being 1.7 lbs. in E.

3. Although changed direction, reduced velocity, and perhaps centrifugal force are necessary for good separation, still some means must be provided to lead the water out of the current of the steam.

The high efficiency obtained from B and A was largely due to this feature. In B the interior surfaces are corrugated and thus catch the water thrown

out of the steam and readily lead it to the bottom.

In A. as soon as the water falls or is precipitated from the steam, it comes in contact with the perforated diaphragm through which it runs into the space below, where it is not subjected to the action of the steam.

In D, the next in efficiency, this is accomplished by means of a >shaped

diaphragin which throws the water back into the corners out of the current

of steam.

### DETERMINATION OF THE MOISTURE IN STRAM-STEAM CALORIMETERS.

In all boiler tests it is important to ascertain the quality of the steam, i.e., 1st, whether the steam is "saturated" or contains the quantity of heat due to the pressure according to standard experiments; 2d, whether the quantity of heat is deficient, so that the steam is wet; and 3d, whether the heat is in excess and the steam superheated. The best method of ascertaining the quality of the steam is undoubtedly that employed by a committee which tested the boilers at the American Institute Exhibition of 1871-2, of which Prof. Thurston was chairman, i.e., condensing all the water evaporated by the boiler by means of a surface condenser, weighing the condensing water, and taking its temperature as it enters and as it leaves the condenser; but this plan cannot always be adopted.

A substitute for this method is the barrel calorimeter, which with careful A substitute for his memora is the parter calorimeter, when careful operation and fairly accurate instruments may generally be relied on to give results within two per cent of accuracy (that is, a sample of steam which gives the apparent result of 2% of moisture may contain anywhere be tween 0 and 4%). This calorimeter is described as follows: A sample of the steam is taken by inserting a perforated \(\frac{1}{2}\)-linch pipe into and through the main pipe near the boiler, and led by a hose, thoroughly felted, to a harrel, holding preferably 400 lbs. of water, which is set upon a platform scale and

.___

provided with a cock or valve for allowing the water to flow to waste, and with a small propeller for stirring the water.

To operate the calorimeter the barrel is filled with water, the weight and

To operate the calorimeter the carrel is fined with water, the weight and temperature ascertained, steam blown through the hose outside the barrel until the pipe is thoroughly warmed, when the hose is suddenly thrust into the water, and the propeller operated until the temperature of the water increased to the desired point, say about 110° usually. The hose is then withdrawn quickly, the temperature noted, and the weight again taken.

An error of 1/10 of a pound in weighing the condensed steam, or an error

of 1/2 degree in the temperature, will cause an error of over 1/2 in the calculated percentage of moisture. See Trans. A. S. M. E., vi. 298.

When all the steam generated is not condensed, the method of making the connection for the purpose of taking out a sample is of the utmost importance. Unless great care be exercised, the results will frequently show that the steam is superheated when the boiler has no superheating surface.

The samples should be taken from the main steam-pipe, but not from the bottom, as this would take all the water draining to that point.

The calculation of the percentage of moisture is made as below:

$$Q = \frac{1}{H-T} \left[ \frac{W}{w} (h_1 - h) - (T-h_1) \right].$$

Q = quality of the steam, dry saturated steam being unity. H = total heat of 1 lb. of steam at the observed pressure.

" water at the temperature of steam of the observed pressure.

.. .. " condensing water, original. h =.. .. ..

final.

= weight of condensing water, corrected for water-equivalent of the apparatus.

w = weight of the steam condensed.

Percentage of moisture = 1 - Q.

If Q is greater than unity, the steam is superheated, and the degrees of superheating = 2.0833 (H-T) (Q-1).

Coll Calorimeters.—Instead of the open barrel in which the steam

is condensed, a coil acting as a surface-condenser may be used, which is placed in the barrel, the water in coil and barrel being weighed separately For description of an apparatus of this kind designed by the author, which he has found to give results with a probable error not exceeding 1/2 per cent of moisture, see Trans. A. S. M. E., vi. 294. This calorimeter may be used continuously, if desired, instead of intermittently. In this case a continuous flow of condensing water into and out of the barrel must be established, and the temperature of inflow and outflow and of the condensed steam read at short intervals of time.

Throttling Calorimeter.—For percentages of moisture not exceeding 3 per cent the throttling calorimeter is most useful and convenient and remarkably accurate. In this instrument the steam which reaches in a 14-inch pipe is throttled by an orifice 1/16 inch diameter, opening into a chamber which has an outlet to the atmosphere. The steam in this chamber which has an outlet to the atmosphere. ber has its pressure reduced nearly or quite to the pressure of the atmosphere, but the total heat in the steam before throttling causes the steam in the chamber to be superheated more or less according to whether the steam before throttling was dry or contained moisture. The only observations required are those of the temperature and pressure of the steam on each side of the orifice.

The author's formula for reducing the observations of the throttling

calorimeter is as follows (Experiments on Throttling Calorimeters, Am. Mach., Aug. 4, 1892): 
$$w = 100 \times \frac{H - h - K(T - t)}{L}$$
, in which  $w = \text{percent-}$ 

age of moisture in the steam; H = total heat, and L = latent heat of steamin the main pipe; h = total heat due the pressure in the discharge side of the calorimeter, = 1146 6 at atmospheric pressure: K = specific heat of superheated steam; T = temperature of the throttled and superheated steam in the calorimeter; t = temperature due the pressure in the calorimeter, = 212° at atmospheric pressure.

Taking K at 0.48 and the pressure in the discharge side of the calorimeter as atmospheric pressure, the formula becomes

$$w = 100 \times \frac{H - 1146.6 - 0.48(T - 212^{\circ})}{L}$$

From this formula the following table is calculated:

MOISTURE IN STEAM-DETERMINATIONS BY THROTTLING CALORIMETER.

Super.				• • • • • • • • • • • • • • • • • • • •	Ga	uge-p	ressu	res.				
P ting	5	10	20	30	40	50	60	70	75	80	85	90
Degree hee $T$				Per	Cent (	of Mo	isture	in St	eam.			
0° 10° 20° 30° 40° 50° 60° 70°	0.51 0.01	0.90	1.54 1.02 .51 .00	2.06 1.54 1.02 .50	2.50 1.97 1.45 .92 .39	2.90 2.36 1.83 1.30 .77 .24	8.24 2.71 2.17 1.64 1.10 .57	8.56 8.02 2.48 1.94 1.40 .87	3.71 3.17 2.63 2.09 1.55 1.01	3.86 3.82 2.77 2.23 1.69 1.15 .60	8.99 8.45 2.90 2.85 1.80 1.26 .72 .17	4.13 8.58 3.03 2.49 1.94 1.40 .85
p.deg	.0503	.0507	.0515	.0521	.0526	.0531	.0535	. 0539	.0541	.0542	.0544	.0546
Degree of Superheating $T-212^{\circ}$ .	100	110	120	130	140	uge-p	160	170	180	190	200	250
				Per	Cent	of Mo	isture	in S	team.			
0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 110°	4.89 3.84 3.29 2.74 2.19 1.64 1.09 .55 .00	2.42 1.87	4.85 4.29 3.74 3.18 2.63 2.08 1.52 .97 .42	5.08 4.52 3.96 3.41 2.85 2.29 1.74 1.18 .63 .07	5 29 4.78 4.17 3.61 3.05 2.49 1.93 1.38 .82 .26	5.49 4.93 4.37 3.80 3.24 2.68 2.12 1.56 1.00	5.68 5.12 4.56 8.99 8.48 2.87 2.80 1.74 1.18 .61	5.87 5.80 4.74 4.17 8.61 8.04 2.48 1.91 1.34 .78	6.05 5.48 4.91 4.34 8.78 8.21 2.64 2.07 1.50 .94	6.22 5.65 5.08 4.51 3.94 8.87 2.28 1.66 1.09 .52	6.39 5.82 5.25 4.67 4.10 8.58 2.36 1.81 1.24 .67	7.16 6.58 6.00 5.41 4.83 4.25 8.67 8.09 2.51 1.98 1.84
if.p.deg	.0549	.0551	.0554	.0556	.0559	.0561	.0564	.0566	.0568	.0570	.0572	.0581

Separating Calorimeters.-For percentages of moisture beyond the range of the throttling calorimeter the separating calorimeter is used.

the range of the throttling calorimeter the separating calorimeter is used, which is simply a steam separator on a small scale. An improved form of this calorimeter is described by Prof. Carpenter in *Power*, Feb. 1893. For fuller information on various kinds of calorimeters, see papers by Prof. Peabody, Prof. Carpenter, and Mr. Barrus in Trans. A. S. M. E., vols. x, xi, xii, 1889 to 1891; Appendix to Report of Com. on Boiler Tests, A. S. M. E., vol. vi, 1884; Circular of Schaeffer & Budenberg, N. Y., Calorimeters, Throttling and Separating," 1894.

Identification of Dry Steam by Appearance of a Jet.—
Prof. Denton (Trans. A. S. M. E., vol. x.) found that jets of steam show units kable change of appearance to the eye when steam varies less than 14

mistakable change of appearance to the eye when steam varies less than 1% from the condition of saturation either in the direction of wetness or superheating.

If a jet of steam flow from a boiler into the atmosphere under circumstances such that very little loss of heat occurs through radiation, etc., and the jet be transparent close to the orifice, or be even a grayish-white color, the steam may be assumed to be so nearly dry that no portable condensing calorimeter will be capable of measuring the amount of water in the steam. If the jet be strongly white, the amount of water may be roughly judged up to about 2%, but beyond this a calorimeter only can determine the exact amount of moisture.

A common brass pet-cock may be used as an orifice, but it should, if possible, be set into the steam-drum of the boiler and never be placed further away from the latter than 4 feet, and then only when the intermediate reser-

voir or pipe is well covered.

Usual Amount of Moisture in Steam Escaping from a Boiler.—In the common forms of horizontal tubular land boilers and water-tube boilers with ample horizontal drums, and supplied with water free from substances likely to cause foaming, the moisture in the steam does not generally exceed 2% unless the boiler is overdriven or the waterlevel is carried too high.

#### CHIMNEYS.

Chimney Draught Theory.—The commonly accepted theory of chimney draught, based on Peclet's and Rankine's hypotheses (see Rankine, S. E.), is discussed by Prof. De Volson Wood in Trans. A. S. M. E., vol. xi. Peciet represented the law of draught by the formula

$$h = \frac{u^2}{2a} \left( 1 + G + \frac{f!}{m} \right),$$

in which h is the "head," defined as such a height of hot gases as, if added to the column of gases in the chimney, would produce the same pressure at the furnace as a column of outside air, of the

same area of base, and a height equal to that of the chimney; us the required velocity of gases in the chimney; G a constant to represent the resistance to the passage of air through the coal;

I the length of the flues and chimney;

m the mean hydraulic depth or the area of a cross-section divi-

ded by the perimeter;
f a constant depending upon the nature of the surfaces over which
the gases pass, whether smooth, or sooty and rough.

Rankine's formula (Steam Engine, p. 288), derived by giving certain values to the constants (so-called) in Peclet's formula, is

$$h = \frac{\frac{\tau_0}{\tau_2} (0.0807)}{\frac{\tau_0}{\tau_1} (0.084)} H - H = (0.96 \frac{\tau_1}{\tau_2} - 1) H;$$

in which H = the height of the chimney in feet;

 $\tau_0 = 493^{\circ}$  F., absolute (temperature of melting ice);  $\tau_1 =$  absolute temperature of the gases in the chimney;  $\tau_2 =$  absolute temperature of the external air.

Prof. Wood derives from this a still more complex formula which gives the height of chimney required for burning a given quantity of coal per second, and from it he calculates the following table, showing the height of chimney required to burn respectively 24, 20, and 16 lbs. of coal per square foot of grate per hour, for the several temperatures of the chimney gases given.

	Chimne	y Gas.	Coal per sq. ft. of grate per hour, lb					
Outside Air.	τ,	Temp.	24	20	16			
•	Absolute. Fahr.		Height H, feet.					
520° absolute or 59° F.	700 800 1000 1100 1200	239 339 539 639 739	250.9 172.4 149.1 148.8 152.0	157.6 115.8 100.0 98.9 100.9	67.8 55.7 48.7 48.2 49.1			
	1400 1600 2000	939 1189 1539	159.9 168.8 206.5	105.7 111.0 132.2	51.2 53.5 63.0			

Rankine's formula gives a maximum draught when  $r=21/12r_2$ , or 622° F., when the outside temperature is 60°. Prof. Wood says: "This result is not a fixed value, but departures from theory in practice do not affect the result largely. There is, then, in a properly constructed chimney, properly working, a temperature giving a maximum draught, * and that temperature is not far from the value given by Rankine, although in special cases it may be 50° or 75° mero or less. or 75° more or less.

All attempts to base a practical formula for chimneys upon the theoretical formula of Peclet and Rankine have failed on account of the impos-

ical formula of reciet and garkine have tailed on account of the impossibility of assigning correct values to the so-called "constants" G and f. (See Trans. A. S. M. E., xi. 984.)

Force or Intensity of Draught,—The force of the draught is equal to the difference between the weight of the column of hot gases inside of the chimney and the weight of a column of the external air of the same height. It is measured by a draught-gauge, usually a U-tube partly filled with water, one leg connected by a pipe to the interior of the flue, and the other open to the external air.

If D is the density of the air outside, d the density of the hot gas inside, in lbs. per cubic foot, h the height of the chimney in feet, and .192 the factor for converting pressure in lbs. per sq. ft. into inches of water column, then the formula for the force of draught expressed in inches of water is,

$$F = .192h(D - d).$$

The density varies with the absolute temperature (see Rankine).

$$d = \frac{\tau_0}{\tau_1} 0.084$$
;  $D = 0.0807 \frac{\tau_0}{\tau_0}$ 

where  $\tau_0$  is the absolute temperature at 32° F., = 493.,  $\tau_1$  the absolute temperature of the chimney gases and  $\tau_0$  that of the external air. Substituting these values the formula for force of draught becomes

$$F = .192h \left( \frac{39.79}{\tau_2} - \frac{41.41}{\tau_1} \right) = h \left( \frac{7.64}{\tau_2} - \frac{7.95}{\tau_1} \right).$$

To find the maximum intensity of draught for any given chimney, the heated column being 600° F., and the external air 60°, multiply the height above grate in feet by .0073, and the product is the draught in inches of water.

Height of Water Column Due to Unbalanced Pressure in Chimney 100 Feet High. (The Locomotive, 1884.)

							(+				
Temp. in the Chimney.	Ten	perati	ure of	the Ex	ternal	Air—	Barom	eter, 1	4.7 lbs.	per so	Į. in.
Ten	00	10°	20°	30°	40°	50°	60°	70°	80°	90°	100∘
									<u> </u>		
200	.458	.419	.384	.353	.821	.292	.263	.234	.209	.182	.157
220	.488	.453	.419	.388	.355	.326	.298	.269	.244	.217	.192
240	.520	.488	.451	.421	.388	.359	.330	.301	.276	.250	.225
260	.555	.528	.484	.453	.420	.392	.363	.334	.309	.282	.257
280	.584	.549	.515	.482	.451	422	.394	.365	.340	.313	.288
800	.611	.576	.541	.511	.478	.449	.420	.392	.367	.340	.315
320	.637	.603	.568	.538	.505	.476	.447	.419	.394	.367	.342
340	.662	.638	.593	.563	.530	.501	.472	.443	.419	.892	.367
360	.687	.653	.618	.588	.555	.526	.497	.468	.444	.417	.892
880	.710	.676	.641	.611	578	.549	.520	.492	.467	.440	.415
400	.732	.697	.662	.632	.598	.570	.541	.513	.488	.461	.436
420	.753	.718	.684	.653	.620	.591	.563	.534	.509	.482	.457
440	.774	.739	.705	.674	.641	.612	.584	.555	.530	.503	.478
460	.793	.758	.724	.694	.660	.632	.603	.574	.549	.522	.497
480	.810	.776	.741	.710	.678	.649	.620	.591	.566	.540	.515
500	829	.791	.760	.730	.697	.669	.639	.610	.586	.559	. 534

^{*} Much confusion to students of the theory of chimneys has resulted from *Much confusion to students of the theory of chimneys has resulted from their understanding the words maximum draught to mean maximum intensity or pressure of draught, as measured by a draught-gauge. It here means maximum quantity or weight of gases passed up the chimney. The maximum intensity is found only with maximum temperature, but after the temperature reaches about 622° F. the density of the gas decreases more rapidly than its velocity increases, so that the weight is a maximum about 622° F., as shown by Rankine.—W. K.

For any other height of chimney than 100 ft. the height of water column is found by simple proportion, the height of water column being directly proportioned to the height of chimney.

The calculations have been made for a chimney 100 ft. high, with various

temperatures outside and inside of the flue, and on the supposition that the temperature of the chimney is uniform from top to bottom. This is the basis on which all calculations respecting the draught-power of chimneys have been made by Rankine and other writers, but it is very far from the truth in most cases. The difference will be shown by comparing the reading of the draught-gauge with the table given. In one case a chimney 122 ft. high showed a temperature at the base of \$20°, and at the top of 250°.

Box. in his "Treatise on Heat," gives the following table:

DRAUGHT POWERS OF CHIMNEYS, ETC., WITH THE INTERNAL AIR AT 552°, AND THE EXTERNAL AIR AT 62°, AND WITH THE DAMPER NEARLY CLOSED.

ey in	ght n ins. ter.	Theoretica in feet pe		ey in	ght n ing. ter.	Theoretica in feet per	
Heigh Chimp fee	Drau Power	Cold Air Entering.	Hot Air at Exit.	Heigh Chimm fee	Drau Power	Cold Air Entering:	Hot Air at Exit.
10	.073	17.8	35.6	80	.585	50.6	101.2
20	.146	25.3	50.6	90	.657	53.7	107.4
30	.219	31.0	62.0	100	.730	56,5	113.0
40	.292	35.7	71.4	120	.876	62.0	124.0
50	.365	40.0	80.0	150	1.095	69.3	138.6
60	.438	43.8	87.6	175	1.277	74.3	149.6
70	.511	47.3	94.6	200	1.460	80.0	160.0

Rate of Combustion Due to Height of Chimney.— Trowbridge's "Heat and Heat Engines" gives the following table showing the heights of chimney for producing certain rates of combustion per sq. ft. of section of the chimney. It may be approximately true for anthracite in moderate and large sizes, but greater heights than are given in the table are needed to secure the given rates of combustion with small sizes of anthracite, and for bituminous coal smaller heights will suffice if the coal is reasonably free from ash-5% or less.

Heights in feet.	Lbs. of Coal Burned per Hour per Sq. Ft. of Section of Chimney.	Lbs. of Coal Burned per Sq. Ft. of Grate, the Ratio of Grate to Sec- tion of Chimney be- ing 8 to 1.	Heights in feet.	Lbs. of Coal Burned per Hour per Sq. Ft. of Section of Chimney.	Lbs. of Coal Burned per Sq. Ft. of Grate, the Ratio of Grate to Sec- tion of Chimney be- ing 8 to 1.
20	60	7.5	70	126	15.8
25 80 85	68	8.5	75 80 85	181	16.4
30	76	9.5	80	135	16.9
85	84	10.5	85	139	17.4
40	93	11.6	90	144	18.0
40 45	99	12.4	95	148	18.5
50	105	18.1	100	152	19 0
55	111	13.8	105	156	19.5
<b>6</b> Q	116	14.5	110	160	20 0
65	121	15.1			

Thurston's rule for rate of combustion effected by a given height of chimney (Trans. A. S. M. E., xi. 991) is: Subtract 1 from twice the square root of the height, and the result is the rate of combustion in pounds per square foot of grate per hour, for anthracite. Or rate =  $2\sqrt{h} - 1$ , in which h is the height in feet. This rule gives the following:

100 110 200 h = 5060 70 80 90 125 150 175  $2\sqrt{h} - 1 = 18.14$  14.49 15.73 16.89 17.97 19 19.97 21.36 23.49 25.45 27.28 The results agree closely with Trowbridge's table given above. In practice the high rates of combustion for high chimneys given by the formula are not generally obtained, for the reason that with high chimneys there are usually long horizontal flues, serving many boilers, and the friction and the interference of currents from the several boilers are apt to cause the intensity of draught in the branch flues leading to each boiler to be much less than that at the base of the chimney. The draught of each boiler is also usually restricted by a damper and by bends in the gas passages. In a battery of several boilers connected to a chimney 150 ft. high, the author found a draught of 42-inch water-column at the boiler nearest the chimney, and only 1/4 inch at the boiler farthest away. The first boiler was wasting fuel from too high temperature of the chimney-gases, 900°, having too large a grate-surface for the draught, and the last boiler was working below its rated capacity and with poor economy, on account of insufficient draught. The effect of changing the length of the flue leading into a chimney 60 ft.

high and 2 ft. 9 in. square is given in the following table, from Box on

п	eц	· L	•	•

Length of Flue in feet.	Horse-power.	Length of Flue in feet.	Horse-power.
50	107.6	800	56.1
100	100.0	1.000	51.4
200	85.3	1.500	43.3
400	70.8	2,000	38.2
600	62.5	3,000	81.7

The temperature of the gases in this chimney was assumed to be 552° F.,

and that of the atmosphere 62°.

High Chimneys not Necessary.—Chimneys above 150 ft. in height are very costly, and their increased cost is rarely justified by increased efficiency. In recent practice it has become somewhat common to build two or more smaller chimneys instead of one large one. A notable example is the Speckels Sugar Refinery in Philadelphia, where five separate chimneys are used for one boiler plant of 7500 H.P. The five chimneys are said to have cost several thousand dollars less than a single chimney of their combined capacity would have cost. Very tall chimneys have been characterized by one writer as "monuments to the folly of their builders."

Heights of Chimney required for Different Fuels.-The minimum height necessary varies with the fuel, wood requiring the least, then good bituminous coal, and fine sizes of anthracite the greatest. It also varies with the character of the boiler—the smaller and more circuitous the gas-passages the higher the stack required; also with the number of boilers, a single boiler requiring less height than several that discharge into a horizontal flue. No general rule can be given.

#### SIZE OF CHIMNEYS.

The formula given below, and the table calculated therefrom for chimneys up to 96 in. diameter and 200 ft. high, were first published by the author in 1884 (Trans. A. S. M. E. vi, 81). They have met with much approval since that date by engineers who have used them, and have been frequently published in boiler-makers' catalogues and elsewhere. The table is now extended to cover chimneys up to 12 ft. diameter and 300 ft. high. The sizes corresponding to the given commercial horse-powers are believed to be ample for all cases in which the draught areas through the boiler-flues and connections are sufficient, say not less than 20% greater than the area of the chimney, and in which the draught between the boilers and chimney is not checked by long horizontal passages and right-angled bends.

Note that the figures in the table correspond to a coal consumption of 5 lbs. of coal per horse-power per hour. This liberal allowance is made to cover the contingencies of poor coal being used, and of the boilers being driven beyond their rated capacity. In large plants, with economical boilers and engines, good fuel and other favorable conditions, which will reduce the maximum rate of coal consumption at any one time to less than 5 lbs. per H. P. per bour, the figures in the table may be multiplied by the ratio of 5 to the maximum expected coal consumption per H. P. per hour. Thus, with conditions which make the maximum coal consumption only 2.5 lbs. per hour, the chimney 300 ft. high × 12 ft, diameter should be sufficient for 6155  $\times$  2 = 12,310 horse-power. The formula is based on the following data:

Size of Chimneys for Steam-bollers.

r hour.)
2
burned
8
÷
8
- š
12
٠.
H
-
(Assuming
A) VH.
<b>ब्</b>
\$
ö
4
ङ्क
e,
11
H.P
Н,
Formula

	A constant	Square Chimney. Side of Square	$\sqrt{E} + 4$ inches.	2000	5888	8333	3382	8858	101 117 1188
5		300 ft.				, <u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</u>	3006	2518 2664 3018 3393	3797 4223 5144 6155
5 lbs. of coal burned per hour.)		250 ft.					1566	2116 2423 2750 3088	3466 3865 4696 5618
rned p		285 ft.					1863 1786 1786	2008 2008 2008 2009 2009	328 3657 5331 5331
coal bu		200 ft.		,			981 1181 1400 1637	1893 2167 2459 2771	3448 5088 5088
lbs. of		176 ft.	Boiler.			296 748	918 1106 1310 1531	1770 2300 2500 2593	3858 3858 4701
P. :: 5	ılmney.	150 ft.	Commercial Horse-power of Boller.			555 551 561 561	849 1023 1212 1418	1630 1876 2130 2390	2086 2086 2037 4352
ıg 1 H.	Height of Chimney.	126 ft.	Ногве-р		25.22	88888 88888	25.0 1107 1294	1496 1718 1944 9090	
(Assuming 1 H. P. =	Heig	110 ft.	mercial		250 191 280	25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	728 870 1088 1214		
		100 ft.	Com		119 149 182 219	25 2 4 2 5 2 2 4 2 5	<b>3</b> 88		
$3.38(A-0.6 \sqrt{A}) \sqrt{H}$		-80 Ft.		88	1113 173 208	830 830 830 830 830			
0.6 1		80 ft.		######################################	758 56 88 88 88	22.22			
<u>%</u> 		70 ft.			5223	216			
स इ ॥		90 Et		2288	14158				
		50 ft.		25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<b>a</b> 8				
Formula, H.P.	ę.	Area.		.97 1.47 2.08 2.78	8.4.7.6. 8.4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	7.76 10.44 13.51 16.98	20.83 25.08 24.76	40.19 46.01 52.23 58.83	65.83 73.22 89.18 106.72
		Area A. sq. ft.		3.14 3.14 3.98	8.30 20.00 30.00	9.68 13.57 15.90 19.64	28.27 28.27 38.18	50.27 56.75 63.62	70.88 78.54 95.03 113.10
		Diami		2222 2223	8888	3448	28 28 28 28	36.25 % 108.25 %	11 132 132 141

For pounds of coal burned per hour for any given size of chimney, multiply the figures in the table by 5.

1. The draught power of the chimney varies as the square root of the

height.
2. The retarding of the ascending gases by friction may be considered as equivalent to a diminution of the area of the chimney, or to a lining of the chimney by a layer of gas which has no velocity. The thickness of this counterest as chimnest to a diminustion of the area of the chimney, or to a lining of the chimney by a layer of gas which has no velocity. The thickness of this lining is assumed to be 2 inches for all chimneys, or the diminution of area equal to the perimeter  $\times$  2 inches (neglecting the overlapping of the corners of the lining). Let D= diameter in feet, A= area, and E= effective area in square feet.

For square chimneys, 
$$E \doteq D^2 - \frac{8D}{12} = A - \frac{2}{3} \sqrt{A}$$
.

For round chimeys, 
$$E = \frac{\pi}{4} \left( D^2 - \frac{8D}{12} \right) = A - 0.591 \sqrt{A}$$
.

For simplifying calculations, the coefficient of  $\sqrt{A}$  may be taken as 0.6 for both square and round chimneys, and the formula becomes

$$E = A - 0.6 \sqrt{A}.$$

3. The power varies directly as this effective area E.

4. A chimney should be proportioned so as to be capable of giving sufficient draught to cause the boiler to develop much more than its rated power, in case of emergencies, or to cause the combustion of 5 lbs. of fuel per rated

horse-power of boiler per hour.

5. The power of the chimney varying directly as the effective area, E, and as the square root of the height, H, the formula for horse-power of boiler for a given size of chimney will take the form H.P. =  $CE\sqrt{H}$ , in which C is a constant, the average value of which, obtained by plotting the results obtained from numerous examples in practice, the author finds to be 3.83.

The formula for horse-power then is

H.P. = 
$$3.33E\sqrt{H}$$
, or H.P. =  $3.33(A - .6\sqrt{A})\sqrt{H}$ .

If the horse-power of boiler is given, to find the size of chimney, the height being assumed,

$$E = \frac{0.3 \text{ H. P.}}{4/\overline{H}}$$
; =  $A - 0.6 \sqrt{A}$ .

For round chimneys, diameter of chimney = diam. of E + 4".

For square chimneys, side of chimney =  $\sqrt{E} + 4''$ .

If effective area E is taken in square feet, the diameter in inches is d =13.54  $\sqrt{E} + 4''$ , and the side of a square chimney in inches is  $s = 12 \sqrt{E} + 4''$ . If horse-power is given and area assumed, the height  $H = \left(\frac{0.3 \, \text{H. P.}}{P}\right)$ 

In proportioning chimneys the height is generally first assumed, with due consideration to the heights of surrounding buildings or hills near to the proposed chimney, the length of horizontal flues, the character of coal to be used, etc., and then the diameter required for the assumed height and horse-power is calculated by the formula or taken from the table.

horse-power is calculated by the formula or taken from the table.

The Protection of Tall Chimney-shafts from Lightning.

—C. Molyneux and J. M. Wood (Industries, March 28, 1890) recommend for tall chimneys the use of a coronal or heavy band at the top of the chimney, with copper points 1 ft. in height at intervals of 2 ft. throughout the circumference. The points should be gilded to prevent oxidation. The most approved form of conductor is a copper tape about 34 in. by 36 in. thick, weighing 6 ozz. per ft. If iron is used it should weigh not less than 234 bs. per ft. There must be no insulation, and the copper tape should be fastened to the chimney with holdfasts of the same material, to prevent voltaic action. An allowance for expansion and contraction should be made, say 1 in. in 40 ft. Slight bends in the tape not too abrupt, answer the purpose. For an earth terminal a plate of metal at least 3 ft. sq. and 1/16 in. thick should be buried as deep as possible in a damp spot. The plate should be of should be buried as deep as possible in a damp spot. The plate should be of the same metal as the conductor, to which it should be soldered. The best earth terminal is water, and when a deep well or other large body of water is at hand, the conductor should be carried down into it. Right-angled bends in the conductor should be avoided. No bend in it should be over 30°,

Some Tall Brick Chimneys.

		G Outside Diameter		side	Capacity by the Author's Formula.		
	Height.	Internal	Base.	Top.	н. Р.	Pounds Coal per hour.	
1. Hallsbrückner Hütte, Sax.	460	15.7′	88′	16′	13,221	66,105	
2. Townsend's, Glasgow 3. Tennant's, Glasgow	454 485	18' 6''	32 40		9,795	48,975	
4. Dobson & Barlow, Bolton, Eng	86714	18' 2"	83′10′′		8,245	41,225	
5. Fall River Iron Co., Boston	350	11	80	21	5,558	27,790	
6. Clark Thread Co., Newark,				- 4	- 40-	00.100	
N. J	835	11 12	28' 6''	14	5,435 5,980	27,175 29,900	
8. Washington Mills, Law-		12	1		2,800	28,800	
rence, Mass	250	10			8,839	19,195	
9. Amoskeag Mills, Manches-		1	1 1		0,000	10,100	
ter, N. H	250	10			3,839	19,195	
10. Narragansett E. L. Co.,		l					
Providence, R. I	238	14	1	Ī	7,515	87,575	
11. Lower Pacific Mills, Law-		١ .	1			11.00	
rence, Mass	214	8	1		2,248	11,240	
12. Passaic Print Works, Passaic, N. J.	200		l	İ	2,771	18,855	
13. Edison Sta, B'klyn, Two e'ch		50" × 120"	1	each		7,705	
10. Edison Sta,D kly II, I woe Cil	1 1.00	100 X 140	<u>'</u>	Caci	1,041	1 1,100	

Notes on the Above Chimneys.—1. This chimney is situated near Freiberg, on the right bank of the Mulde, at an elevation of 219 feet above that of the foundry works, so that its total height above the sea will be 711½ feet. The works are situated on the bank of the river, and the furnacegases are conveyed across the river to the chimney on a bridge, through a pipe 3227 feet in length. It is built throughout of brick, and will cost about \$40.000.—Mfr. and Bidr. \$40,000.—Mfr. and Bldr.

2. Owing to the fact that it was struck by lightning, and somewhat damaged, as a precautionary measure a copper extension subsequently was

added to it, making its entire height 488 feet.

1, 2, 3, and 4 were built of these great heights to remove deleterious gases from the neighborhood, as well as for draught for boilers.

gases from the neighborhood, as well as for draught for bollers.

5. The structure rests on a solid granite foundation, 55 × 30 feet, and
16 feet deep. In its construction there were used 1,700.000 bricks, 2000 tons
of stone, 2000 barrels of mortar, 1000 loads of sand, 1000 barrels of Portland
cement, and the estimated cost is \$40,000. It is arranged for two flees, 9
feet 6 inches by 6 feet, connecting with 40 bollers, which are to be run in
connection with four triple-expansion engines of 1350 horse-power each.

8. It has a uniform better of 20% inches to appear 10 feet.

connection with four triple-expansion engines of 1350 horse-power each.

6. It has a uniform batter of 2.85 inches to every 10 feet. Designed for 21 boilers of 200 H. P. each. It is surmounted by a cast-iron coping which weighs six tons, and is composed of thirty-two sections, which are bolted together by inside flanges, so as to present a smooth exterior. The foundation is in concrete, composed of crushed limestone 6 parts, sand 3 parts, and Portland cement 1 part. It is 40 feet square and 5 feet deep. Two qualities of brick were used; the outer portions were of the first quality North River, and the tacking up was of good quality New Jersey brick. Every twenty feet in vertical measurement an iron ring, 4 inches wide and 34 to 14 inch thick, placed edgewise, was built into the walls about 8 inches from the outer circle. As the chimney starts from the base it is double. The outer wall is 5 feet 2 inches in thickness, and inside of this is a second wall 20 inches thick and spaced off about 20 inches from main wall. From the interior surface of the main wall eight 20 inches from main wall. From the interior surface of the main wall eight buttresses are carried, nearly touching this inner or main flue wall in order to keep it in line should it tend to sag. The interior wall, starting with the thickness described, is gradually reduced until a height of about 90 feet is reached, when it is diminished to 8 inches. At 165 feet it ceases.

and the rest of the chimney is without lining. The total weight of the chimney and foundation is 5000 tons. It was completed in September, 1888.

7. Connected to 12 boilers, with 1200 square feet of grate-surface. Draught-Degauge 1 9/16 inches.

8. Connected to 8 boilers, 6'8" diameter × 18 feet. Grate-surface 448 square feet.

9. Connected to 64 Manning vertical boilers, total grate surface 1810 sq. ft.

Designed to burn 18,000 lbs. anthractic per hour.

10. Designed for 12,000 H.P. of engines; (compound condensing).

11. Grate-surface 434 square feet; H.P. of boilers (Galloway) about 2500.

18. Eight boilers (water-tube) each 450 H.P.; 12 engines, each 300 H.P. Plant

designed for 86,000 incandescent lights. For the first 60 feet the exterior wall is 28 inches thick, then 24 inches for 20 feet, 20 inches for 30 feet, and 12 inches for 20 feet, and 12 inches for 20 feet. The interior wall is 9 inches thick of fire-brick for 50 feet, and then 8 inches thick of red brick for the next 30 feet. Illustrated in Iron Age, January 2, 1890.

A number of the above chimneys are illustrated in *Power*, Dec., 1890. Chimney at Knoxville, Tenn., illustrated in *Eng'g News*, Nov. 2, 1893. 6 feet diameter, 120 feet high, double wall:

Exterior wall, height 20 feet, 30 feet, 30 feet, 40 feet; thickness 2114 in., 17 in., 13 in., 814 in.; Interior wall, height 35 ft., 35 ft., 29 ft., 21 ft.; thickness 1314 in., 814 in., 4 in., 0.

Exterior diameter, 15' 6" at bottom; batter, 7/16 inch in 12 inches from bottom to 8 feet from top. Interior diameter of inside wall, 6 feet uniform to top of interior wall. Space between walls, 16 inches at bottom, diminshing to 0 at top of interior wall. The interior wall is of red brick except a lining

of 4 inches of fire-brick for 20 feet from bottom.

Stability of Chimneys,—Chimneys must be designed to resist the maximum force of the wind in the locality in which they are built, (see Weak Chimneys, below). A general rule for diameter of base, of brick chimneys, approved by many years of practice in England and the United States, is to make the diameter of the base one tenth of the height. If the chimney is square or rectangular, make the diameter of the inscribed circle of the base one tenth of the height. The "batter" or taper of a chimney should be from 1/16 to ¼ inch to the foot on each side. The brickwork should be one brick (8 or 9 inches) thick for the first 25 feet from the top, increasing 1/4 brick (4 or 41/4 inches) for each 25 feet from the top downwards. If the inside diameter exceed 5 feet, the top length should be 11/4 bricks; and if under 8 feet, it may be 11/4 brick for ten feet.

(From The Locomotive, 1884 and 1886.) For chimneys of four feet in diameter.

eter and one hundred feet high, and upwards, the best form is circular with a straight batter on the outside. A circular chimney of this size, in addition to being cheaper than any other form, is lighter, stronger, and looks much

better and more shapely.

Chimneys of any considerable height are not built up of uniform thickness from top to bottom, nor with a uniformly varying thickness of wall, but the

wall, heaviest of course at the base, is reduced by a series of steps.

Where practicable the load on a chimney foundation should not exceed two tons per square foot in compact sand, gravel, or loam. Where a solid rockbottom is available for foundation, the load may be greatly increased. If the rock is sloping, all unsound portions should be removed, and the face dressed to a series of horizontal steps, so that there shall be no tendency to

slide after the structure is finished

All boiler-chimneys of any considerable size should consist of an outer stack of sufficient strength to give stability to the structure, and an inner stack or core independent of the outer one. This core is by many engineers extended up to a height of but 50 or 60 feet from the base of the chimney. but the better practice is to run it up the whole height of the chimney; it may be stopped off, say, a couple feet below the top, and the outer shell contracted to the area of the core, but the better way is to run it up to about 8 or 12 inches of the top and not contract the outer shell. But under no circumstances should the core at its upper end be built into or connected with the outer stack. This has been done in several instances by bricklayers, and the result has been the expansion of the inner core which lifted the top of the outer stack squarely up and crecked the brickwork.

For a height of 100 feet we would make the outer shell in three steps, the

first 20 feet high, 16 inches thick, the second 30 feet high, 12 inches thick, the

third 50 feet high and 8 inches thick. These are the minimum thicknesses admissible for chimneys of this height, and the batter should be not less than 1 in 36 to give stability. The core should also be built in three steps each of which may be about one third the height of the chinney, the lowest 12 inches, the middle 8 inches, and the upper step 4 inches thick. This will insure a good sound core. The top of a chinney may be protected by a cast-iron cap; or perhaps a cheaper and equally good plan is to lay the ornamental part in some good cement, and plaster the top with the same material.

Weak Chimneys.—James B. Francis, in a report to the Lawrence Mfg. Co. in 1878 (Eng. g. News, Aug. 28, 1880), gives some calculations conmig. Co. in 1878 thing y reces, Aug. 20, 1000), gives some calculations corring the probable effects of wind on that company's chimney as then constructed. Its outer shell is octagonal. The inner shell is cylindrical, with an air-space between it and the outer shell; the two shells not being bonded together, except at the openings at the base, but with projections in the brickwork, at intervals of about 20 ft. in height, to afford lateral support by contact of the two shells. The principal dimensions of the chimney are as follows :

Height above the surface of the ground...... Diameter of the inscribed circle of the octagon near the ground. 15 " Diameter of the inscribed circle of the octagon near the top... 10 ft. 1½ in. Thickness of the outer shell near the base, 6 bricks, or...... 22½ in. Thickness of the outer shell near the top, 3 bricks, or...... 11½ "

Thickness of the outer shell near the top, 3 bricks, or....... 11½ " 

One tenth of the height for the diameter of the base is the rule commonly adopted. The diameter of the inscribed circle of the base of the Lawrence Manufacturing Company's chimney being 15 ft., it is evidently much less than is usual in a chimney of that height.

Soon after the chimney was built, and before the mortar had hardened, it was found that the top had swayed over about 29 in. toward the east. was evidently due to a strong westerly wind which occurred at that time. It was soon brought back to the perpendicular by sawing into some of the

joints, and other means

The stability of the chimney to resist the force of the wind depends mainly on the weight of its outer shell, and the width of its base. The cohesion of the mortar may add considerably to its strength; but it is too uncertain to be relied upon. The inner shell will add a little to the stability, but it may be cracked by the heat, and its beneficial effect, if any, is too uncertain to

be taken into account.

The effect of the joint action of the vertical pressure due to the weight of the chimney, and the horizontal pressure due to the force of the wind is to shift the centre of pressure at the base of the chimney, from the axis toward one side, the extent of the shifting depending on the relative magnitude of the two forces. If the centre of pressure it brought too near the side of the chimney, it will crush the brickwork on that side, and the chimney will fall. A line drawn through the centre of pressure, perpendicular to the direction of the wind, must leave an area of brickwork between it and the side of the chimney, sufficient to support half the weight of the chimney; the other half of the weight being supported by the brickwork on the windward side of the line.

Different experimenters on the strength of brickwork give very different results. Kirkaldy found the weights which caused several kinds of bricks, laid in hydraulic lime mortar and in Roman and Portland cements, to fail laid in hydraulic lime mortar and in Roman and Portland cements, to fall alightly, to vary from 19 to 60 tons (of 2000 lbs.) per sq. ft. If we take in this case 25 tons per sq. ft., as the weight that would cause it to begin to fail, we shall not err greatly. To support half the weight of the outer shell of the chimney, or 322 tons, at this rate, requires an area of 12.88 sq. ft. fo f brickwork. From these data and the drawings of the chimney, Mr. Francis calculates that the area of 12.88 sq. ft. is contained in a portion of the chimney extending 2.428 ft. from one of its octagonal sides, and that the limit to which the centre of pressure may be shifted is therefore 5.072 ft. from the axis. If shifted beyond this, he says, on the assumption of the strength of the brickwork, it will crush and the chimney will fall.

Calculating that the wind-pressure can affect only the upper 141 ft. of the

Calculating that the wind-pressure can affect only the upper 141 ft. of the chimney, the lower 70 ft. being protected by buildings, he calculates that a wind-pressure of 44.02 lbs. per sq. ft. would blow the chimney down.

Rankine, in a paper printed in the transactions of the Institution of Engi-

neers, in Scotland, for 1867-68, says: "It had previously been ascertained by observation of the success and failure of actual chimneys, and especially of those which respectively stood and fell during the violent storms of 1856, that, in order that a round chimney may be sufficiently stable, its weight should be such that 2 pressure of wind, of about 55 lbs. per sq. ft. of a plane surface, directly facing the wind, or 271/2 lbs. per sq. ft. of the plane projection of a cylindrical surface. . . shall not cause the resultant pressure at any bed-joint to deviate from the axis of the chimney by more than one quarter of the outside diameter at that joint,"

According to Rankine's rule, the Lawrence Mfg. Co.'s chimney is adapted to a maximum pressure of wind on a plane acting on the whole height of 18.80 lbs. per sq.  $t_t$ , or of a pressure of 21.70 lbs. per sq.  $t_t$  acting on the uppermost 141 ft. of the chimney.

Steel Chimneys are largely coming into use, especially for tall chimneys of iron-works, from 150 to 300 feet in height. The advantages claimed are: greater strength and safety; smaller space required; smaller cost, by 30 to 50 per cent, as compared with brick chimneys; avoidance of infiltraneys. They are usually made cylindrical in shape, with a wide curved flare for 10 to 25 feet at the bottom. A heavy cast-iron base-plate is provided, to which the chimney is riveted, and the plate is secured to a massive founda-tion by holding-down bolts. No guys are used. F. W. Gordon, of the Phila. Engineering Works, gives the following method of calculating their resistance to wind pressure (*Power*, Oct. 1893): In tests by Sir William Fairbairn we find four experiments to determine

the strength of thin hollow tubes. In the table will be found their elements. with their breaking strain. These tubes were placed upon hollow blocks. and the weights suspended at the centre from a block fitted to the inside of

the tube.

	Clear Span, ft. in.	Thick- ness Iron, in.	Outside Diame- ter, in.	Sectional Area, in.	Breaking Weight, lbs.	Breaking W't, lbs., by Clarke's Formula, Constant 1.2.
I.	17	.037	12	1.3901	2,704	2,627
II.	15 71%	.118	12.4	4.3669	11,440	9,184
III.	23 5	.0631	17.68	3.487	6,400	7,302
IV.	23 5	.119	18.18	- 6.74	14,240	13,910

Edwin Clarke has formulated a rule from experiments conducted by him during his investigations into the use of iron and steel for hollow tube bridges, which is as follows:

 $\frac{\text{Center break-}}{\log \log d, \text{in tons.}} \bigg\} = \frac{\text{Area of material in sq.in.} \times \text{Mean depth in in.} \times \text{Constant}}{\text{Clear snan in fact}}$ 

When the constant used is 1.2, the calculation for the tubes experimented upon by Mr. Fairbairn are given in the last column of the table. D. K. Clark's "Rules, Tables, and Data," page 513, gives a rule for hollow tubes as follows:  $W = 3.14D^{2}TS + L$ . W = b breaking weight in pounds in centre: D = extreme diameter in inches; T = thickness in inches; L = length be-

Taking S, the strength of a square inch of a riveted joint, at 35,000 lbs. per. sq. in., this rule figures as follows for the different examples experimented upon by Mr. Fairbairn: 1, 2870; II. 10,190; III. 7700; IV, 15,320.

This shows a close approximation to the breaking weight obtained by experiments and that derived from Edwin Clarke's and D. K. Clark's rules.

We therefore assume that this system of calculation is practically correct, and that it is eminently safe when a large factor of safety is provided, and and that it is eminently safe when a large factor of safety is provided, and from the fact that a chimney may be standing for many years without receiving anything like the strain taken as the basis of the calculation, viz. fifty pounds per square foot. Wind pressure at fifty pounds per square foot may be assumed to be travelling in a horizontal direction, and be of the same velocity from the top to the bottom of the stack. This is the extreme assumption. If, however, the chimney is round, its effective area would be only half of its diameter plane. We assume that the entire force may be concentrated in the centre of the height of the section of the chimney synder consideration. under consideration.

Taking as an example a 125-foot iron chimney at Poughkeepsie, N. Y., the average diameter of which is 90 inches, the effective surface in square feet average disinteer of which is 30 inches, the effective surface in square resulting upon which the force of the wind may play will therefore be  $74 \pm 100$  times 125 divided by 2, which multiplied by 50 gives a total wind force of 23,487 pounds. The resistance of the chimney to breaking across the top of the foundation would be  $3.14 \times 168^{3}$  (that is, diameter of base)  $\times$  .25  $\times$  35,000 + (750  $\times$  4) = 228,426, or 10.6 times the entire force of the wind. We multiply the half height above the joint in inches, 750, by 4, because the chimney is considered a fixed beam with a load suspended on one end. In calculating this strength half way up we have a beam of the same character. It is a fits strength half way up, we have a beam of the same character. It is a fixed beam at a line half way up the chimney, where it is 90 inches in diameter and .187 inch thick. Taking the diametrical section above this line, and the force as concentrated in the centre of it, or half way up from the point under consideration, its breaking strength is:  $3.14 \times 90^2 \times .187 \times 35,000 + (381 \times 4) = 109,220$ ; and the force of the wind to tear it apart through its cross-section,  $74 \times 624 \times 50 + 2 = 11,852$ , or a little more than one tenth of the strength of the stack.

The Babcock & Wilcox Co.'s book "Steam" illustrates a steel chimney

The Badcock & Wheex Co.'s book "Steam" linestrates a steel chilmpet at the works of the Maryland Steel Co., Sparrow's Point, Md. It is 225 ft. in height above the base, with internal brick lining 13' 9" uniform inside diameter. The shell is 25 ft. diam. at the base, tapering in a curve to 17 ft. 25 ft. above the base, thence tapering almost imperceptibly to 14' 8" at the top. The upper 40 feet is of 34-inch plates, the next four sections of 40 ft. each are respectively 9/32, 5/16, 11/32, and 34 inch.

### Sizes of Foundations for Steel Chimneys.

(Selected from circular of Phila, Engineering Works.)

# HALF-LINED CHIMNEYS.

Diameter, clear, feet	8	4	5	6	7	9	11
Height, feet		100	150	150	150	150	150
Least diameter foundation	15'9''	16'4''	20'4'	21'10"	22'7''	<b>28</b> ′8′′	24'8''
Least depth foundation	6′	6′	9′	8′	9′	10′	10′
Height, feet		125	200	200	250	275	300
Least diameter foundation		18'5"	23'8''	25′	29/8"	83'6''	86'
Least depth foundation	• • • •	7′	10'	10′	12′	12′	14'

#### Weight of Sheet-iron Smoke-stacks per Foot.

(Porter Mfg. Co.)

Diam., inches.	Thick- ness W. G.		Diam., inches.	Thick- ness W. G.	Weight per ft.	Diam. inches.	Thick- ness W. G.	Weight per ft.
10	No. 16	7.20	26	No. 16	17.50	20	No. 14	18.88
12 14	::	8.66 9.58	28 30	44	18.75 20.00	22 24	"	20.00 21.66
16 20	66	11.68 13.75	10 12	No. 14	9.40 11.11	26 28	46	28.83 25.00
22 24	"	15.00 16.25	14 16	"	13.69 15.00	80	**	26.66

### Sheet-iron Chimneys. (Columbus Machine Co.)

Diameter Chimney, inches.		Thick- ness Iron, B. W. G.			Diameter Chimney, inches.		Thick- ness Iron, B. W. G	Weight, lbs.	
10	20	No.	16	160	30	40	No. 15	960	
15	20		16	240	32	40	<b>" 15</b>	1.020	
20	20	**	16	320	84	40	" 14	1,170	
22	20	**	16	350	86	40	" 14	1,240	
24	40		16	760	88	40	" 12	1,800	
26	40	a	16	826	4Õ	40	" 12	1,890	
28	40	"	15	900	<b>.</b> ~	-	-~	1,000	

### THE STEAM-ENGINE.

Expansion of Steam. Isothermal and Adiabatic.—According to Mariotte's law, the volume of a perfect gas, the temperature being

kept constant, varies inversely as its pressure, or  $p \propto \frac{1}{v}$ ; pv = a constant.

The curve constructed from this formula is called the isothermal curve, or curve of equal temperatures, and is a common or rectangular hyperbola. The relation of the pressure and volume of saturated steam, as deduced from Regnault's experiments, and as given in Steam tables, is approximately, according to Rankine (S. E., p. 403), for pressures not exceeding 120  $\frac{1}{v_{11}^{1}}$ , or  $p \propto v^{-\frac{11}{15}}$ , or  $p v - \frac{17}{15} = p v - \frac{1.0025}{10025} = a$  constant. Zeuner has

found that the exponent 1.0646 gives a closer approximation.

When steam expands in a closed cylinder, as in an engine, according to Rankine (S. E., p. 885), the approximate law of the expansion is  $p \propto -$ 

 $p \propto v^{-\frac{10}{5}}$ , or  $pv^{-\frac{1.111}{5}} = a$  constant. The curve constructed from this for-

mula is called the adiabatic curve, or curve of no transmission of heat.

Peabody (Therm., p. 112) says: "It is probable that this equation was obtained by comparing the expansion lines on a large number of indicatordiagrams. . . . There does not appear to be any good reason for using an exponential equation in this connection, . . and the action of a lagged steam-engine cylinder is far from being adiabatic. . . For general purposes the hyperbola is the best curve for comparison with the expansion curve of an indicator-card. . . " Wolff and Denton, Trans. A. S. M. E., ii. 175, say: "From a number of cards examined from a variety of steam-engines in current use, we find that the actual expansion line varies between the 10/9 adiabatic curve and the Mariotte curve."

Prof. Thurston (A. S. M. E, ii. 203), says he doubts if the exponent ever becomes the same in any two engines, or even in the same engines at dif-

ferent times of the day and under varying conditions of the day.

Expansion of Steam according to Mariotte's Law and to the Adiabatic Law. (Trans. A. S. M. E., ii. 156.)—Mariotte's law:  $pv = p_1v_1$ ; values calculated from formula  $\frac{P_m}{p_1} = \frac{1}{R}(1 + \text{hyp log } R)$ , in which  $R=v_2+v_1$ ,  $p_1=$  absolute initial pressure,  $P_m=$  absolute mean pressure,  $v_1=$  initial volume of steam incylinder at pressure  $p_1, v_2=$  final volume of steam at final pressure. Adiabatic law:  $pv^{\frac{N}{2}}=p_1v_1^{\frac{N}{2}}$ ; values calculated from formula  $\frac{P_m}{r}=r_0P_1$ ,  $r_1=r_2$ from formula  $\frac{1}{p_1}$ = 10R - 1 - 9R - 9.

Ratio of Expan-	to I	of Mean nitial ssure.	Ratio of Expan-	to I	of Mean nitial ssure.	Ratio of Expan-	Ratio of Mean to Initial Pressure.	
sion R.	Mar.	Adiab.	sion R.	Mar.	Adiab.	sion R.	Mar.	Adiab.
1.00	1.000	1.000	3.7	.624	.600	6.	.465	.438
1.25	.978	.976	3.8	.614	.590	6.25	.458	.425
1.50	.987	.931	8.9	.605	.580	6.5	.442	.418
1.75	.891	.881	4.	.597	.571	6.75	.481	.403
2.	.847	.834	4.1	.588	.562	7.	.421	.393
2.2	.813	.798	4.2	.580	.554	7.25	.411	.383
2.4	.781	.765	4.8	.572	.546	7.5	.402	.874
2.5	.766	.748	4.4	.564	.538	7.75	.398	.865
2.6	.752	.733	4.5	.556	.530	8.	.885	.357
2.8	.725	.704	4.6	.549	.523	8.25	.377	.349
3.	.700	.678	4.7	.542	.516	8.5	.869	.342
8.1	.688	.666	4.8	.535	.509	8.75	.362	.335
8.2	.676	.654	4.9	.528	.502	9.	.855	. 328
8.3	.665	.642	5.05	.522	.495	9.25	.849	.321
8.4	.654	.630	5 2	.506	.479	9.5	.842	.315
8.5	.644	.620	5.5	.492	.464	9.75	.886	.309
3.6	.634	.610	5.75	.478	. 450	10.	.830	.808

Mean Pressure of Expanded Steam.—For calculations of engines it is generally assumed that steam expands according to Mariotte's law, the curve of the expansion line being a hyperbola. The mean pressure, measured above vacuum, is then obtained from the formula

$$P_{\mathbf{m}} = p_1 \frac{1 + \operatorname{hyp} \log R}{R},$$

in which  $P_{\mathbf{w}}$  is the absolute mean pressure,  $p_1$  the absolute initial pressure taken as uniform up to the point of cut-off, and R the ratio of expansion. If l = length of stroke to the cut-off, L = total stroke,

$$P_{m} = \frac{p_{1}l + p_{1}l \operatorname{hyp} \log \frac{L}{l}}{L}; \text{ and if } R = \frac{L}{l}, P_{m} = p_{1} \frac{1 + \operatorname{hyp} \log R}{R}.$$

Mean and Terminal Abso lute Pressures.—Mariotte's Law.—The values in the following table are based on Mariotte's law, except those in the last column, which give the mean pressure of superheated steam, which, according to Rankine, expands in a cylinder according to the law  $p \propto v^{-\frac{1}{16}}$ . These latter values are calculated from the formula  $= \frac{17 - 16R - 18}{R}$   $R^{-\frac{1}{18}}$  may be found by extracting the square root  $P_{
m our}^1$  times. From the mean absolute pressures given deduct the mean back

pressure (absolute) to obtain the mean effective pressure.

Rate of Expan- sion.	Cut- off.	Ratio of Mean to Initial Pressure.	Ratio of Mean to Terminal Pressure.	Ratio of Terminal to Mean Pressure.	Ratio of Initial to Mean Pressure.	Ratio of Mean to Initial Dry Steam.
80	0.033	0.1467	4.40	0.227	6.82	0.186
28	0.036	0.1547	4.83	0.231	6.46	0.100
26	0.038	0.1638	4.26	0.285	6.11	
24	0.042	0.1741	4.18	0.239	5.75	
22	0.045	0.1860	4.09	0.244	5.88	
20	0.050	0.1998	4.00	0.250	5.00	0.186
18	0.055	0.2161	8.89	0.256	4.68	0.200
16	0.062	0.2858	8.77	0.265	4.24	
15	0.066	0.2472	8.71	0.269	4.05	
14	0.071	0.2599	3.64	0.275	8.85	
18.88	0.075	0.2690	3.59	0.279	8.72	0.254
18	0.077	0.2742	8.56	0.280	8.65	
12	0.083	0.2904	3.48	0.287	8.44	
11	0.091	0.3089	8.40	0.294	3.24	1
10	0.100	0.3308	3.30	0.303	8.08	0.814
9	0.111	0.3552	8.20	0.812	2.81	
8	0.125	0.3849	8.08	0.321	2.60	0.870
7	0.148	0.4210	2.95	0.339	2.37	
6.66	0.150	0.4347	2.90	0.345	2.50	0.417
6.00	0.166	0.4653	2.79	0.360	2.15	
5.71	0.175	0.4807	2.74	0.364	2.08	
5.00	0.200	0.5218	2.61	0.888	1.92	0.506
4.44	0.225	0.5608	2.50	0.400	1.78	
4.00	0.250	0.5965	2.39	0.419	1.68	0.582
3.63	0.275	0.6308	2.29	0.487	1.58	
8.88	0.300	0.6615	2.20	0.454	1.51	0.648
3.00	0.333	0.6995	2.10	0.476	1.48	
2.86	0.350	0.7171	2.05	0.488	1.89	0.707
2.66	0.375	0.7440	1.98	0.505	1.34	
2.50	0.400	0.7664	1.91	0.523	1.81	0.756
2.22	0.450	0.8095	1.80	0.556	1.24	0.800
2.00	0.500 0.550	0.8465 0.8786	1.69	0.591 0.626	1.18	0.840
1.82 1.66	0.550	0.9066	1.60 1.51	0.662	1.14 1.10	8.874 0.900
1.60	0.625	0.9000	1.51	0.680	1.09	0.900
1.54	0.650	0.9187	1.43	0.699	1.07	0.926
1.48	0.675	0.9292	1.39	0.099	1.06	0.920
1.90	0.015	. 0.0100	1.00	. 0.110	1.00	1

Calculation of Mean Effective Pressure, Clearance and Compression Considered.—In the above tables no account is taken



above tables no account is taken of clearance, which in actual steam-engines modifies the ratio of expansion and the mean pressure; nor of compression and back-pressure, which diminish the mean effective pressure. In the following calculation these elements are considered.

L= length of stroke, l= length before cut-off, x= length of compression part of stroke, c= clearance,  $p_1=$  initial pressure,  $p_b=$  back pressure,  $p_c=$  pressure of clearance steam at end of compression. All pressures are absolute, that is, measured from a perfect vacuum.

Area of ABCD = 
$$p_1(l+c)\left(1+\text{hyp}\log\frac{L+c}{l+c}\right)$$
;  

$$B = p_b(L-x);$$

$$C = pcc\left(1+\text{hyp}\log\frac{x+c}{c}\right) = p_b(x+c)\left(1+\text{hyp}\log\frac{x+c}{c}\right);$$

$$D = (p_1-p_c)c = p_1c-p_b(x+c).$$
Area of A = ABCD - (B + C + D)
$$= p_1(l+c)\left(1+\text{hyp}\log\frac{L+c}{l+c}\right)$$

$$-\left[p_b(L-x) + p_b(x+c)\left(1+\text{hyp}\log\frac{x+c}{c}\right) + p_1c - p_b(x+c)\right]$$

$$= p_1(l+c)\left(1+\text{hyp}\log\frac{L+c}{l+c}\right)$$

$$-p_b\left[(L-x) + (x+c)\text{hyp}\log\frac{x+c}{c}\right] - p_1c.$$

EXAMPLE.—Let 
$$L=1$$
,  $l=0.25$ ,  $x=0.25$ ,  $c=0.1$ ,  $p_1=60$  lbs.,  $p_b=2$  lbs.

Area  $A=60(.25+.1)\Big(1+\text{hyp log }\frac{1.1}{.85}\Big)$ 

$$-2\Big[(1-.25)+.35 \text{ hyp log }\frac{.85}{.1}\Big]-60\times.1$$

$$=21(1+1.145)-2[.75+35\times1.253]-6$$

$$=45.045-2.377-6=36.668=\text{mean effective pressure.}$$

The actual indicator-diagram generally shows a mean pressure considerably less than that due to the initial pressure and the rate of expansion. The causes of loss of pressure are: 1. Friction in the stop-valves and steampipes. 2. Friction or wire-drawing of the steam during admission and cutoff, due chiefly to defective valve gear and contracted steam-passages. 3. Liquefaction during expansion. 4. Exhausting before the engine has completed its stroke. 5. Compression due to early closure of exhaust. 6. Friction in the exhaust-ports, passages, and pipes.

6. Friction in the exhaust-ports, passages, and pipes.

Re-evaporation during expansion of the steam condensed during admission, and valve-leakage after cut-off, tend to elevate the expansion line of the diagram and increase the mean pressure.

If the theoretical mean pressure be calculated from the initial pressure and the rate of expansion on the supposition that the expansion curve fol-

lows Mariotte's law, pv=a constant, and the necessary corrections are made for clearance and compression, the expected mean pressure in practice may be found by multiplying the calculated results by the factor in the following table, according to Seaton.

Particulars of Engine.	Factor.
Expansive engine, special valve-gear, or with a separate cut-off valve, cylinder jacketed	0.94
Expansive engine having large ports, etc., and good or- dinary valves, cylinders jacketed	0.9 to 0.92
Expansive engines with the ordinary valves and gear as in general practice, and unjacketed.  Compound engines, with expansion valve to h.p. cylin-	0.8 to 0.85
der; cylinders jacketed, and with large ports, etc Compound engines, with ordinary slide-valves, cylinders	0.9 to 0.92
jacketed, and good ports, etc	0.8 to 0.85
service, with early cut-off in both cylinders, without jackets and expansion-valves  Fast-running engines of the type and design usually fitted	0.7 to 0.8
in war-ships	0.6 to 0.8

If no correction be made for clearance and compression, and the engine is in accordance with general modern practice, the theoretical mean pressure may be multiplied by 0.96, and the product by the proper factor in the table, to obtain the expected mean pressure.

# Given the Initial Pressure and the Average Pressure, to Find the Ratio of Expansion and the Period of Admiscion.

P = initial absolute pressure in lbs. per sq. in.; p = average total pressure during stroke in lbs. per sq. in.; L = length of stroke in inches; l = period of admission measured from beginning of stroke; c = clearance in inches;

$$R = \text{actual ratio of expansion} = \frac{L+c}{l+c}. \qquad (1)$$

$$p = \frac{P(1+\text{hyp log }R)}{r}.$$

To find average pressure p, taking account of clearance.

$$p = \frac{P(l+c) + P(l+c) \text{ hyp log } R - Pc}{L}, \quad \dots \quad (2)$$

whence

$$pL + Pc = P(l+c)(1 + \text{hyp log } R)$$
;

hyp log 
$$R = \frac{pL + Pc}{Pl + Pc} - 1 = \frac{\frac{p}{P}L + c}{l + c} - 1$$
. . . . . (8)

Given p and P, to find R and l (by trial and error).—There being two unknown quantities R and l, assume one of them, viz., the period of admission l, substitute it in equation (3) and solve for R. Substitute this value of R in the formula (1), or  $l=\frac{L+c}{R}-c$ , obtained from formula (1), and find l. If

the result is greated than the assumed value of l, then the assumed value of

the period of admission is too long; if less, the assumed value is too short. Assume a new value of l, substitute it in formula (3) as before, and continue by this method of trial and error till the required values of R and l are obtained.

**EXAMPLE.** P = 70, p = 42.78, L = 60', c = 3', to find l. Assume l = 21 in

hyp log 
$$R = \frac{\frac{p}{P}L + c}{l + c} - 1 = \frac{\frac{42.78}{70} \times 60 + 3}{21 + 8} - 1 = 1.653 - 1 = .653;$$

hyp log R = .653, whence R = 1.92,

$$l = \frac{L+c}{R} - c \pm \frac{63}{192} - 3 \pm 29.8,$$

which is greater than the assumed value, 21 inches.

Now assume l = 15 inches:

hyp log 
$$R = \frac{\frac{42.78}{70} \times 60 + 3}{15 + 3} - 1 = 1.204$$
, whence  $R = 3.5$ ;

$$l = \frac{L+c}{R} - c = \frac{63}{3.5} - 3 = 18 - 3 = 15$$
 inches, the value assumed.

Therefore R=3.5, and l=15 inches.

Period of Admission Required for a Given Actual Ratio of Expansion:

In percentage of stroke, 
$$l=\frac{100+\text{p.ct. clearance}}{R}$$
 — p. ct. clearance. . (5)

Terminal pressure 
$$=\frac{P(l+c)}{L+c}=\frac{P}{R}$$
. . . . . . . . . . . . . . . . (6)

Pressure at any other Point of the Expansion.—Let  $L_1 = \text{length of stroke}$ up to the given point.

#### WORK OF STEAM IN A SINGLE CYLINDER.

To facilitate calculations of steam expanded in cylinders the table on the next page is abridged from Clark on the Steam-engine. The actual ratios of expansion, column 1, range from 1.0 to 8.0, for which the hyperbolic logarithms are given in column 2. The 3d column contains the periods of admission relative to the actual ratios of expansion, as percentages of the stroke, calculated by formula (5) above. The 4th column gives the values of the mean pressures relative to the initial pressures, the latter being taken as 1, calculated by formula (2). In the calculation of columns 3 and 4, clearance is taken into account, and its amount is assumed at 7% of the stroke. The final pressures, in the 5th column, are such as would be arrived at by the continued expansion of the whole of the steam to the end of the stroke, the initial pressure being equal to 1. They are the reciprocals of the ratios of expansion, column 1. The 6th column contains the relative total performances of equal weights of steam worked with the several actual ratios of expansion; the total performance when steam is admitted for the whole of the stroke, without expansion, being equal to 1. They are obtained by dividing the figures in column 4 by those in column 5.

The pressures have been calculated on the supposition that the pressure of steam, during its admission into the cylinder, is uniform up to the point of cuttling off, and that the expansion is continued regularly to the end of the stroke. The relative performances have been calculated without any allowance for the effect of compressive action.

The calculations have been made for periods of admission ranging from 10% or the whole of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of the stroke of To facilitate calculations of steam expanded in cylinders the table on the

ance for the effect of compressive action. The calculations have been made for periods of admission ranging from 10%, or the whole of the stroke, to 6.4%, or 1/16 of the stroke. And though, nominally, the expansion is 16 times in the last instance, it is actually only 8 times, as given in the first column. The great difference between the nominal and the actual ratios of expansion is caused by the clearance, which is equal to 7% of the stroke, and causes the nominal volume of steam admitted, namely, 6.4%, to be augmented to 6.4 + 7 = 18.4% of the stroke, or, say, double, for expansion. When the steam is cut off at 1/5, the actual expansion is only 6 times; when cut off at 1/5, the expansion is 4 times; when cut off at  $\frac{1}{5}\%$  the expansion to twice the initial volume, the steam is cut off at  $\frac{46}{5}\%$  of the stroke, not at half-stroke. not at half-stroke.

# Expansive Working of Steam—Actual Batios of Expansion, with the Relative Periods of Admission, Pressures, and Performance.

Steam-pressure 100 lbs. absolute. Clearance atjeach end of the cylinder 7% of the stroke.

(SINGLE CYLINDER.)

(SINGLE CYLINDER.)										
1	2	3	4	5	6	7	8	9		
Actual Ratio of Ex- pansion, or No. of Volumes to which the Initial Volume is Expanded.	Hyperbolic Logarithm of Actual Ratio of Expansion.	Period of Admission or Cut-off, 7% Clearance.	Average Total Press- ure. Initial Pressure = 1.	Total Final Press- ure. Initial Pressure = 1.	Ratio of Total Performance of Equal Weights of Stram. (Col. 4 + Col 5.)	Actual Work done by 1 lb. of 100 lbs. Steam. Ftlbs.	Quantity of Steam Consumed per H.P. of Actual Work done per hour	Net Capacity of Cyl- inder per ib. of 100 ibs. Steam ad- mitted in 1 stroke, Cubie feet.		
1 1.1 1.18 1.28 1.3 1.39 1.45 1.6 1.6 1.75 1.88 2.28 2.4 2.65 2.9 8.3 3.35 3.6 3.8	.0000 .0063 .1698 .2070 .2024 .8298 .8716 .4817 .4700 .5595 .6314 .3931 .8241 .8755 .9745 1.168 1.209 1.209	100 90.3 83.3 80 75.8 70.8 66.5 59.9 54.1 50.3 33.3 29.9 26.4 25 22.7 21.2 19.7	1.000 .996 .966 .969 .953 .942 .925 .913 .883 .860 .786 .726 .692 .637 .608	1.000 .909 .847 .813 .769 .719 .690 .649 .625 .571 .582 .5 .439 .417 .377 .345 .318 .298	1.000 1.096 1.106 1.206 1.206 1.325 1.325 1.451 1.546 1.616 1.672 1.783 1.783 2.008 2.083 2.192 2.983 2.192 2.2840	58,273 63,850 67,836 70,246 73,513 77,242 78,555 83,055 85,125 90,115 94,900 97,432 104,466 107,050 112,236 121,386 124,086 127,450 180,538	34.0 31.0 29.2 28.9 25.6 24.9 25.6 23.8 23.8 22.0 20.3 19.0 18.5 17.7 16.9 16.3 16.0 18.5	4.05 4.45 4.78 4.98 5.26 5.87 6.23 6.47 7.08 7.61 8.09 9.23 9.71 10.72 11.74 12.95 13.56 14.57 15.38		
4.5.8 25.8.9 5.5.5.5.5.6 6.7.7.8	1.485 1.504 1.509 1.609 1.649 1.705 1.775 1.825 1.841 1.887 1.946 1.988 2.028 2.028	18.5 16.8 15.3 14.4 13.6 12.5 11.4 11.1 10.3 9.2 8.8 7.7 7.1 6.7	.569 .551 .526 .503 .488 .476 .457 .438 .432 .419 .413 .398 .369 .369 .348 .348	.278 .260 .238 .222 .200 .198 .172 .169 .161 .159 .152 .137 .132 .125	2.315 2.370 2.418 2.440 2.466 2.511 2.547 2.556 2.585 2.585 2.585 2.619 2.664 2.693 2.711 2.736	134,900 138,130 140,180 142,180 148,720 146,825 148,340 150,630 151,870 152,595 155,200 156,960 157,975 158,414 159,488	14.7 14.94 14.05 18.99 13.78 13.53 13.34 13.29 13.14 13.08 12.75 12.61 12.53 12.50 11.88	17.00 18.21 19.48 20.28 21.04 22.25 28.47 25.09 25.49 26.71 28.33 29.54 80.76 81.57 32.38		

Assumptions of the Table.—That the initial pressure is uniform; that the expansion is complete to the end of the stroke; that the pressure in expansion varies inversely as the volume; that there is no back-pressure of exhaust or of compression, and that clearance is 7% of the stroke at each end of the cylinder. No allowance has been made for loss of steam by cylinder-condensation or leakage.

 Volume of 1 lb. of steam of 100 lbs. pressure per sq. in., or 14,400 lbs. per sq, ft.
 4.33 cu. ft.

 Product of initial pressure and volume
 62,352 ft.-lbs.

Though a uniform clearance of 7% at each end of the stroke has been assumed as an average proportion for the purpose of compiling the table, the clearance of cylinders with ordinary slides varies considerably—say from 5% to 10%. (With Corliss engines it is sometimes as low as 2%.) With the clearance, 7%, that has been assumed, the table gives approximate results of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract o suits sufficient for most practical purposes, and more trustworthy than results deduced by calculations based on simple tables of hyperbolic logarithms, where clearance is neglected.

Weight of steam of 100 lbs. total initial pressure admitted for one stroke, per cubic foot of net capacity of the cylinder, in decimals of a pound = reciprocal of figures in column 9.

Total actual work done by steam of 100 lbs. total initial pressure in one stroke per cubic foot of net capacity of cylinder, in foot-pounds = figures

in column 7 + figures in column 9.

RULE 1: To find the net capacity of cylinder for a given weight of steam admitted for one stroke, and a given actual ratio of expansion. (Column 9 of table.)-Multiply the volume of 1 lb. of steam of the given pressure by the given weight in pounds, and by the actual ratio of expansion. Multiply the product by 100, and divide by 100 plus the percentage of clearance. The quotient is the net capacity of the cylinder.

Rule 2: To find the net capacity of cylinder for the performance of a

given amount of total actual work in one stroke, with a given initial pressure and actual ratio of expansion. Divide the given work by the total actual work done by 1 lb. of steam of the same pressure, and with the same actual ratio of expansion; the quotient is the weight of steam necessary to do the given work, for which the net capacity is found by Rule 1 preceding.

Note.—1. Conversely, the weight of steam admitted per cubic foot of net capacity for one stroke is the reciprocal of the cylinder-capacity per pound

of steam, as obtained by Rule 1.

2. The total actual work done per cubic foot of net capacity for one stroke is the reciprocal of the cylinder-capacity per foot-pound of work done, as obtained by Rule 2.

3. The total actual work done per square inch of piston per foot of the stroke is 1/144th part of the work done per cubic foot.

4. The resistance of back pressure of exhaust and of compression are to

be added to the net work required to be done, to find the total actual work. APPENDIX TO ABOVE TABLE—MULTIPLIERS FOR NET CYLINDER-CAPACITY, AND

TOTAL ACTUAL WORK DONE. (For steam of other pressures than 100 lbs. per square inch.)

	Multi	pliers.		Multipliers.		
Total Pressures per square inch.	For Col. 7. Total Work by 1 lb. of Steam.	For Col. 9. Capacity of Cylinder.	Total Pressures per square inch.	For Col. 7. Total Work by 1 lb. of Steam.	For Col. 9. Capacity of Cylinder.	
lbs.			lbs.			
65	.975	1.50	100	1,000	1.00	
70	.981	1.40	110	1.009	.917	
75	.986	1.31	120	1.011	.843	
80	.988	1.24	130	1.015	.781	
85	.991	1.17	140	1.022	.730	
90	.995	1.11	150	1.025	.683	
95	.998	1.05	160	1.031	.644	

The figures in the second column of this table are derived by multiplying the total pressure per square foot of any given steam by the volume in cubic feet of 1 lb. of such steam, and dividing the product by 62.552, which is the product in foot-pounds for steam of 100 lbs. pressure. The quotient

is the multiplier for the given pressure.

The figures in the third column are the quotients of the figures in the second column divided by the ratio of the pressure of the given steam to 100

Measures for Comparing the Duty of Engines.—Capacity is measured in horse-powers, expressed by the initials, H.P.: 1 H.P. = 88,000 ft.-lbs. per minute, = 550 ft.-lbs. per second, = 1,980,000 ft.-lbs. per hour.

1 ft.-lb. = a pressure of 1 lb. exerted through a space of 1 ft. Economy is measured, 1, in pounds of coal per horse-power per hour; 2, in pounds of steam per horse-power per hour. The second of these measures is the more accurate and scientific, since the engine uses steam and not coal, and it is

independent of the economy of the boiler.

In gas engine tests the common measure is the number of cubic feet of gas (measured at atmospheric pressure) per horse-power, but as all gas is not of the same quality, it is necessary for comparison of tests to give the analysis of the gas. When the gas for one engine is made in one gas-producer, then the number of pounds of coal used in the producer per hour per horse-power of the engine is the proper measure of economy.

Economy, or duty of an engine, is also measured in the number of footpounds of work done per pound of fuel. As 1 horse-power is equal to 1,980,000 ft.-lbs. of work in an hour, a duty of 1 lb. of coal per H.P. per hour would be equal to 1,980,000 ft.-lbs. per lb. of fuel; 2 lbs. per H.P. per hour equals 990,000 ft.-lbs. per lb. of fuel, etc.

The duty of pumping-engines is commonly expressed by the number of foot-pounds of work done per 100 lbs. of coal.

When the duty of a numping-engine is thus given the equals along the pumping-engine is the given the equals along the pumping-engine is the given the equals along the pumping-engine is the given the equals along the pumping-engine is the given the equals along the pumping-engine is the given the equals along the pumping-engine is the given the engine of the engine is the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine of the engine o

When the duty of a pumping engine is thus given, the equivalent number of pounds of fuel consumed per horse-power per hour is found by dividing 198 by the number of millions of foot-pounds of duty. Thus a pumping-engine giving a duty of 99 millions is equivalent to 198/99 = 2 lbs. of fuel per horse-power per hour.

Efficiency Measured in Thermal Units per Minute.— Some writers express the efficiency of an engine in terms of the number of thermal units used by the engine per minute for each indicated horse-power,

instead of by the number of pounds of steam used per hour.

The heat chargeable to an engine per pound of steam is the difference between the total heat in a pound of steam at the boiler-pressure and that in a pound of the feed-water entering the boiler. In the case of condensing engines, suppose we have a temperature in the hot-well of 101° F., corresponding to a vacuum of 28 in. of mercury, or an absolute pressure of 1 lb, per sq. in. above a perfect vacuum: we may feed the water into the boller at that temperature. In the case of a non-condensing-engine, by using a portion of the exhaust steam in a good feed-water heater, at a pressure a trifle above the atmosphere (due to the resistance of the exhaust passages through the heater), we may obtain feed-water at 212°. One pound of stream used by the engine then would be equivalent to thermal units as follows:

Pressure of steam by gauge:

100 125 150 175 200

Total heat in steam above 82°:

1172.8 1179.6 1185.0 1189.5 1193.5 1197.0 1200.2

Subtracting 69.1 and 180.9 heat-units, respectively, the heat above 82° in feed water of 101° and 212° F., we have-

Heat given by boiler:

Feed at 101°.... 1103.7 1110.5 1120.4 1124.4 1127.9 1115.y 1181.1 Feed at 2120 .... 991.9 998.7 1004.1 1008.6 1012.6 1016.1 1019.8

Thermal units per minute used by an engine for each pound of steam used per indicated horse-power per hour: Feed at 101°..... 18.40 18.51

18.60 18.67 18.80 13.74 18.85 Feed at 2120..... 16.74 16.81 16.88 16.94 16.53 16.65 16.99

EXAMPLES.—A triple-expansion engine, condensing, with steam at 175 lbs., gauge and vacuum 28 in., uses 18 lbs. of water per I.H.P. per hour, and a

high-speed non-condensing engine, with steam at 100 lbs, gauge, uses 30 lbs. How many thermal units per minute does each consume?

Ans.—13 × 18.80 = 244.4, and 30 × 16.74 = 502.2 thermal units per minute. A perfect engine converting ail the heat-energy of the steam into work would require 33,000 ft.-lbs. + 778 = 42.4164 thermal units per minute per indicated horse-power. This figure, 42.4164, therefore, divided by the number of thermal units per minute per I.H.P. consumed by an engine, gives its efficiency as compared with an ideally perfect engine. In the examples above, 42.4164 divided by 244.4 and by 502.2 gives 17.85% and 8.45% efficiency, respectively.

Total Work Done by One Pound of Steam Expanded in a Single Cylinder. (Column 7 of table.—If I pound of water be converted into steam of atmospheric pressure = 2116.8 lbs. per sq. ft., it occupies a volume equal to 26.36 cu. ft. The work done is equal to 2116.8 lbs.

 $\times$  26.36 ft. = 55.788 ft. · lbs. The heat equivalent of this work is (55.788 + 778 =) 71.7 units. This is the work of 1 lb. of steam of one atmosphere acting on a piston without expansion.

The gross work thus done on a piston by 1 lb. of steam generated at total pressures varying from 15 lbs. to 100 lbs. per sq. in. varies in round numbers from 56,000 to 62,000 ft.-lbs., equivalent to from 72 to 80 units of heat.

This work of 1 lb. of steam without expansion is reduced by clearance

according to the proportion it bears to the net capacity of the cylinder. If the clearance be 7% of the stroke, the work of a given weight of steam without expansion, admitted for the whole of the stroke, is reduced in the ratio of 107 to 100.

Having determined by this ratio the quantity of work of 1 lb. of steam with-

Having determined by this ratio the quantity of work of 1 lb. of steam without expansion, as reduced by clearance, the work of the same weight of steam for various ratios of expansion may be found by multiplying it by the relative performance of equal weights of steam, given in the 6th column of the table. Quantity of Steam Consumed per Horse-power of Total Work per Hour. (Column 8 of table.)—The measure of a horse-power is the performance of 33,000 ft.-lbs. per minute, or 1,880,000 ft.-lbs. per hour. This work, divided by the work of 1 lb. of steam, gives the weight of steam required per horse-power per hour. For example, the total actual work done in the cylinder by 1 lb. of 100 lbs. steam, without expansion and with 7% of clearance, is 58,273 ft.-lbs.; and 1,880,000 = 34 lbs. of steam, is the weight 58,273 of steam consumed for the total work done in the cylinder per horse-power per hour. For any shorter period of admission with expansion the weight of steam per horse-power is less, as the total work of 1 lb. of steam is more, and may be found by dividing 1,980,000 ft.-lbs. by the respective total work done; or by dividing 34 lbs. by the ratio of performance, column 6 in the

table. Real Ratios of Expansion with Clearances from 0 to 74.

	mat	IUB U	LEAL	41191	он м	TOTAL A	LEGAL	ance	B IFU	UL V	10	77.
Per Cent Clear'ce.	Points of Cut-off.											
Per	.10	.125	.20	.25	.30	. 333	.375	.40	.50	.60	.625	.70
.0 .01 .0125 .0150 .0175	10 9.111 9 8.826 8.659	8 7.481 7.363 7.25 7.133	5 4.809 4.764 4.720 4.677	4 3.884 3.875 3.830 3.803	3.333 3.258 3.24 3.222 3.204	3 2.944 2.930 2.916 2.902	2.612	2.5 2.463 2.454 2.445 2.436	2 1.983 1.975 1 970 1.966	1.65 1.65	1.59 1.59 1.58	1.42 1.42
.02 .0225 .0250 .0275	8.5 8.346 8.2 8.088	6.833	4.635 4.595 4.555 4.516		3.187 3.170 3.153 3.137	2.889 2.876 2.863 2.850	2.574 2.562	2.420	1.956 1.952	1.64 1.64	1.58 1.58	1.41
.03 .0325 .0350 .0375	7.938 7.792 7.666 7.545		4.417 4.440 4.404 4.484	3.631		2.812	2.524	2.395 2.387 2.379 2.871	1.943 1.988 1.984 1.980	1.63	1.57	1.41
.04 .0425 .0450 .0475		6.229 6.147	4.333 4.298 4.256 4.232	3.58 3.564 3.542 3.521		2.776 2.764	2.497 2.488	2.368 2.855 2.348 2.340	1.921	1.62	1.56 1.56	1.40
.05 .0525 .0550 .0575	7 6.901 6.806 6.714		4.130		2.971	2.719	2.461 2.458	2.825 2.318	1.904 1.900	1.61	1.55 1.55	1.40
.06 .0625 .0650 .0675	6,625 6,538 6,454 6,373	5.666	4.047	3 407 3.380	2.931 2.917		2.428 2.420	2 297 2 290	1.888	1.60	1.55 1.54 1.84 1.54	1.39
.07	6.294	5.482	3.963	3.342	2.892	2.655	2.404	2.276	1.877	1.60	1.54	1.39

Relative Raciency of 1 lb. of Steam with and without Clearance; back pressure and compression not considered.

Mean total pressure = 
$$p = \frac{P(l+c) + P(l+c) \text{ hyp. log. } R - Pc}{L}$$
.  
Let  $P = 1$ ;  $L = 100$ ;  $l = 25$ ;  $c = 7$ .  

$$p = \frac{32 + 32 \text{ hyp. log. } \frac{107}{32} = 7}{100} = \frac{32 + 32 \times 1.209 - 7}{100} = .687.$$

If the clearance be added to the stroke, so that clearance becomes zero, the same quantity of steam being used, admission l being then =l+c=22, and stroke L+c=107.

$$p_1 = \frac{32 + 32 \text{ hyp. log.} \frac{107}{82} - 0}{107} = \frac{32 + 32 \times 1.200}{107} = .707.$$

That is, if the clearance be reduced to 0, the amount of the clearance 7 being added to both the admission and the stroke, the same quantity of steam will do more work than when the clearance is 7 in the ratio 707: 637, or 114 more.

or 11% more.

Back Pressure Considered.—If back pressure = .10 of P, this amount has to be subtracted from p and p, giving p = .537,  $p_1 = .607$ , the work of a given quantity of steam used without clearance being greater than when clearance is 7 per cent in the ratio of 607:587, or 18% more.

Effect of Compression.—By early closure of the exhaust, so that a portion of the exhaust-steam is compressed into the clearance-space, much of the loss due to clearance may be avoided. If expansion is continued down to the back pressure, if the back pressure is uniform throughout the exhaust-stroke, and if compression begins at such point that the exhaust-steam remaining in the cylinder is compressed to the initial pressure at the end of the back stroke, then the work of compression of the exhaust-steam equals the work done during expansion by the clearance-steam. The clearance-space being filled by the exhaust-steam thus compressed, no new steam is required to fill the clearance-space for the next forward stroke, and the work and efficiency of the steam used in the cylinder are just the same as if there were no clearance and no compression. When, however, there is a drop in pressure from the final pressure of the expansion, or the terminal pressure, to the exhaust or back pressure (the usual case), the work of compression to the initial pressure is greater than the work done by the expansion of the clearance-steam, so that a loss of efficiency results. In this case a greater efficiency can be attained by inclosing for compression a less quantity of steam than that needed to fill the clearance-space with steam of the initial pressure. (See Clark, S. E., p. 399, et seq.; also F. H. Ball, Trans. A. S. M. E., xiv. 1067.) It is shown by Clark that a somewhat greater efficiency is thus attained whether or not the pressure of the steam be carried down by expansion to the back exhaust-pressure. As a result of calculations to determine the most efficient periods of compression for various percentages of back pressure, and for various periods of admission, he gives the table on the next page:

the table on the next page:

Olearance in Low- and High-speed Engines. (Harris Tabor, Am. Mach., April 17, 1891.)—The construction of the high-speed engine is such, with its relatively short stroke, that the clearance must be much larger than in the releasing-valve type. The short-stroke engine is, of necessity, an engine with large clearance, which is aggravated when a variable compression is a feature. Conversely, the releasing-valve gear is, from necessity, an engine of slow rotative speed, where great power is obtainable from long stroke, and small clearance is a feature in its construction. In one case the clearance will vary from \$% to 12% of the piston-displacement, and in the other from 2% to 3%. In the case of an engine with a clearance equalling 10% of the piston-displacement the waste room becomes enormous when considered in connection with an early cut-off. The system of compounding reduces the waste due to clearance in proportion as the steam is expanded to a lower pressure. The farther expansion is carried through a train of cylinders the greater will be the reduction of waste due to clearance. This is shown from the fact that the high-speed engine, expanding

steam much less than the Corliss, will show a greater gain when changed from simple to compound than its rival under similar conditions.

COMPRESSION OF STEAM IN THE CYLINDER.

Best Periods of Compression: Clearance 7 per cent.

Cut-off in	Total Back Pressure, in percentages of the total initial pressure										
ercent- ages of the	23/6	5	10	15	20	25	30	35			
Stroke.	Periods of Compression, in parts of the stroke.										
10%	65%	57%	44%	32%	I		[				
15	58	52	40	29	23% 22			<b></b>			
20	52	47		27	22						
25 30 35 40	47	42 89	37 34 32 29 27	26	21 20	17%					
30	42	89	32	26 25 23 21	20	16	14%	12%			
85	39	85	29	23	19	15	13	11			
40	36	85 82	27	21	19 18	14	18	ii			
45	88	80	25	20	17	14	13 12	10			
50	80	27	25 23	18	16	18	12	10			
55	27	24	21	17	15	13	ii				
60	24	22	19	15	14	12	11	ğ			
65	24 22	80 27 24 22 20	17	15	14	12	10	Ř			
70 I	19	17	16	14	14	12	iŏ	š			
75	17	16	14	13	12	iĩ	9	9 9 8 8 8			

Notes to Table .- 1. For periods of admission, or percentages of back pressure, other than those given, the periods of compression may be readily found by interpolation.

2. For any other clearance, the values of the tabulated periods of compression are to be altered in the ratio of 7 to the given percentage of clearance.

Cylinder-condensation may have considerable effect upon the best point of compression, but it has not yet (1893) been determined by experiment. (Trans. A. S. M. E., xiv. 1078.)

Cylinder-condensation.—Rankine, S. E., p. 421, says: Conduction of heat to and from the metal of the cylinder, or to and from liquid water contained in the cylinder, has the effect of lowering the pressure at the be-ginning and raising it at the end of the stroke, the lowering effect being on the whole greater than the raising effect. In some experiments the quantity of steam wasted through alternate liquefaction and evaporation in the cylinder has been found to be greater than the quantity which performed the work.

Percentage of Loss by Cylinder-condensation, taken at Cut-off. (From circular of the Ashcroft Mfg. Co. on the Tabor Indicator, 1889.)

age of mpleted t-off.		of Feed-wate he Indicator	er accounted diagram.	Percent. of Feed-water Consumption due to Cylinder-condensat'n.				
Percenta Stroke con at Cut-	Simple Engines.	Compound Engines, h.p. cyl.	Triple-ex- pansion Engines, h.p. cyl.	Simple Engines.	Compound Engines, h.p. cyl.	Triple-ex- pansion Engines, h.p. cyl.		
5	58			42				
10	66	74		34 29	26			
15	71	76	78	29	24	22 20		
20 30	74	78	80	26	22	20		
80	78	82	84	22	18	16		
40	82	85	87	18	15	18		
50	86	88	90	14	12	iŏ		

Theoretical Compared with Actual Water-consumption, Single-cylinder Automatic Cut-off Engines, (From the catalogue of the Buckeye Engine Co.)—The following table has been prepared on the basis of the pressures that result in practice with a constant boiler-pressure of 80 lbs. and different points of cut-off, with Buckeye engines and others with similar clearance. Fractions are omitted, except in the percentage column, as the degree of accuracy their use would seem to imply is not attained or aimed at.

Cut-off Part	Mean	Total	Indicated Rate, lbs. Water,	Assumed.			
of Stroke.	Effective Pressure.	Terminal Pressure.	per I.H.P.	Act'l Rate.	Per ct. Loss.		
.10 .15 .20 .25 .30	18	11	20	32	58		
. 15	27	15	19	27	41		
.20	85	20	19	25	81.5		
.25	42	25	20	25	25		
.30	85 42 48	25 80	90	24	21.8		
.35	58	35	21	25	19		
.40	57	35 38	22	26	16.7		
.45	61	43	23	27	15		
.40 .45 .50	64	48	24	27	18.6		

It will be seen that while the best indicated economy is when the cut-off is about at .15 or .20 of the stroke, giving about 30 lbs. M.E.P., and a terminal 3 or 4 lbs. above atmosphere, when we come to add the percentages due to a constant amount of unindicated loss, as per sixth column, the most economical point of cut-off is found to be about .30 of the stroke, giving 48 lbs. M.E.P. and 30 lbs. terminal pressure. This showing agrees substantially with modern experience under automatic cut-off regulation.

**Experiments on Cylinder-condensation.**—Experiments by Major Thos. English (Eng'y, Oct. 7, 1887, p. 386) with an engine  $10 \times 14$  in., jacketed in the sides but not on the ends, indicate that the net initial condensation (or excess of condensation over re-evaporation) by the clearance surface varies directly as the initial density of the steam, and inversely as the square root of the number of revolutions per unit of time. The mean results gave for the net initial condensation by clearance-space per sq. ft. of

surface at one rev. per second 6.06 thermal units in the engine when run non-condensing and 5.75 units when condensing.

G. R. Bodmer (Eng'g, March 4, 1892, p. 299) says: Within the ordinary limits of expansion desirable in one cylinder the expansion ratio has practically no influence on the amount of condensation per stroke, which for simple engines can be expressed by the following formula for the weight of water condensed [per minute, probably; the original does not state]:

S(T-t) $L^{\frac{2}{4}\sqrt{N^2}}$ , where T denotes the mean admission temperature, t the

mean exhaust temperature, S clearance-surface (square feet), N the number of revolutions per second, L latent heat of steam at the mean admission temperature, and C a constant for any given type of engine.

Mr. Bodmer found from experimental data that for high-pressure non-

jacketed engines C= about 0.11, for condensing non-jacketed engines 0.085 to 0.11, for condensing jacketed engines 0.085 to 0.053. The figures for jacketed engines apply to those jacketed in the usual way, and not at the ends. C varies for different engines of the same class, but is practically con-

stant for any given engine. For simple high-pressure non-jacketed engines it was found to range from 0.1 to 0.112.

Applying Mr. Bodmer's formula to the case of a Corliss non-jacketed noncondensing engine, 4-ft. stroke, 24 in. diam., 60 revs. per min., initial pressure 90 lbs. gauge, exhaust pressure 2 lbs., we have  $T - t = 112^\circ$ , N = 1, L = 880, S = 7 sq. ft.; and, taking C = .112 and W =lbs. water condensed

per minute,  $W = \frac{.112 \times 112 \times 7}{1.112 \times 1000} = .09$  lb. per minute, or 5.4 lbs. per hour. If

per minute,  $W = \frac{1}{1 \times 880} = 0.00$  io. per minute, or 5.4 ios. per nour. It the steam used per I.H.P. per hour according to the diagram is 20 lbs., the actual water consumption is 25.4 lbs., corresponding to a cylinder condensation of 27%.

#### INDÍCATOR-DIAGRAM OF A SINGLE-CYLINDER ENGINE.

**Definitions.**—The Atmospheric Line, AB, is a line drawn by the pencil of the indicator when the connections with the engine are closed and both sides of the piston are open to the atmosphere.



Fig. 138.

The Vacuum Line, OX, is a reference line usually drawn about 14 7/10 pounds by scale below the atmospheric line.

The Clearance Line, OY, is a reference line drawn at a distance from the

end of the diagram equal to the same per cent of its length as the clearance and waste room is of the piston-displacement.

The Line of Boiler-pressure. JK, is drawn parallel to the atmospheric line, and at a distance from it by scale equal to the boiler-pressure shown by the gauge.

The Admission Line, CD, shows the rise of pressure due to the admission of steam to the cylinder by opening the steam-valve.

The Steam Line, DE, is drawn when the steam-valve is open and steam is being admitted to the cylinder.

The Point of Cut. off. E. is the point where the admission of steam is stopped by the closing of the valve. It is often difficult to determine the exact point at which the cut-off takes place. It is usually located where the outline of the diagram changes its curvature from convex to concave.

The Expansion Curve, EF, shows the fall in pressure as the steam in the

cylinder expands doing work.

The Point of Release, F, shows when the exhaust-valve opens.

The Exhaust Line, FG, represents the change in pressure that takes place when the exhaust-valve opens. The Back-pressure Line, GH, shows the pressure against which the piston

acts during its return stroke.

The Point of Exhaust Closure, H, is the point where the exhaust-valve closes. It cannot be located definitely, as the change in pressure is at first due to the gradual closing of the valve.

The Compression Curve, HC, shows the rise in pressure due to the compression of the steam remaining in the cylinder after the exhaust-valve has

closed.

The Mean Height of the Diagram equals its area divided by its length.

The Mean Effective Pressure is the mean net pressure urging the piston

The Mean Effective Pressure is the mean bet pressure urging the piston forward = the mean height x the scale of the indicator-spring.

To find the Mean Effective Pressure from the Diagram.—Divide the length, LB, into a number, say 10, equal parts, setting off half a part at L, half a part at B, and nine other parts between; erect ordinates perpendicular to the atmospheric line at the points of division of LB, cutting the diagram; add together the lengths of these ordinates intercepted between the upper and lower lines of the diagram and divide by their number. This

gives the mean height, which multiplied by the scale of the indicator-spring gives the M.E.P. Or find the area by a planimeter, or other mean (see Mensuration, p. 55), and divide by the length *LB* to obtain the mean height.

The Initial Pressure is the pressure acting on the piston at the beginning

of the stroke.

The Terminal Pressure is the pressure above the line of perfect vacuum that would exist at the end of the stroke if the steam had not been released earlier. It is found by continuing the expansion-curve to the end of the

#### INDICATED HORSE-POWER OF ENGINES, SINGLE-CYLINDER.

Indicated Horse-power I.H.P. = 
$$\frac{PLan}{33,000}$$
,

in which P= mean effective pressure in lbs. per sq. in.; L= length of stroke in feet; a= area of piston in square inches. For accuracy, one half of the sectional area of the piston-rod must be subtracted from the area of the piston if the rod passes through one head, or the whole area of the rod if it passes through both heads; n = No. of single strokes per min.  $= 2 \times No.$  of revolutions.

L.H.P. = 
$$\frac{PaS}{33,000}$$
, in which  $S = piston$  speed in feet per minute.

$${\rm LH.P.} = \frac{PLd^2n}{42,017} = \frac{Pd^2S}{42,017} = .0000238 PLd^2n = .0000238 Pd^2S,$$

in which d= diam, of cyl. in inches. (The figures 238 are exact, since 7854 + 33 = 23.8 exactly.) If product of piston-speed  $\times$  mean effective pressure = 42.017, then the horse-power would equal the square of the diameter in inches.

Handy Bule for Estimating the Horse-power of a Single-cylinder Engine.—Square the diameter and divide by 2. This is correct whenever the product of the mean effective pressure and the piston-speed = ½ of 42,017, or, say, 21,000, viz., when M.E.P. = 30 and S = 700; when M.E.P. = 35 and S = 600; when M.E.P. = 38,2 and S = 550; and when M.E.P. = 42 and S = 500. These conditions correspond to those of ordinary

practice with both Corliss engines and shaft-governor high-speed engines.

Given Horse-power, Mean Effective Pressure, and
Piston-speed, to find Size of Cylinder.—

Area = 
$$\frac{38,000 \times I.H.P.}{PLn}$$
. Diameter =  $205\sqrt{\frac{I.H.P.}{PS}}$ . (Exact.)

Brake Horse-power is the actual horse-power of the engine as measured at the fly-wheel by a friction-brake or dynamometer. It is the indicated horse-power minus the friction of the engine.

Table for Boughly Approximating the Horse-power of a Compound Engine from the Diameter of its Low-pressure Cylinder.—The indicated horse-power of an engine being Psd² in which D  $\frac{1}{42.017}$ , in which P = mean effective pressure per sq. in., s = piston-speed in

15. per min., and d = diam. of cylinder in inches; if s = 600 ft. per min., which is approximately the speed of modern stationary engines, and P = 35 lbs., which is an approximately average figure for the M.E.P. of single-cylinder engines, and of compound engines referred to the low-pressure cylinder, then I.H.  $P = \frac{1}{2}d^{2}$ ; hence the rough-and-ready rule for horse-power given above: Square the diameter in inches and divide by 2. This applies to compound. For most economical loading, the M.E.P. referred to the low-pressure cylinder of compound engines is usually not greater than that of simple engines; for the greater economy is obtained by a greater number of expansions of steam of higher pressures, and the greater the number of expansions for a given initial pressure the lower the mean effective pressure. The following table gives an proxyimately the figures of mean total and effect. The following table gives approximately the figures of mean total and effective pressures for the different types of engines, together with the factor by which the square of the diameter is to be multiplied to obtain the horsepower at most economical loading, for a piston-speed of 600 ft. per minute.

Type of Engine.	Initial Absolute Steam- pressure.	Number of Expansions.	Terminal Absolute Press. Ibs.	Ratio Mean Total to Initial	Mean Total Pressure, lbs.	Total Back Pressure, Mean, lbs.	Mean Effective Presure, los.	Piston- speed, ft. per min.	Horse. power = diam.9 ×
			Non-c	ondensi	ng.				
Single Cylinder. Compound Triple Quadruple	100 120 160 200	5. 7.5 10. 12.5	20 16 16 16 16	.522 .402 .330 .282	52.2 48.2 52.8 56.4	15.5 15.5 15.5 15.5	36.7 32.7 37.3 40.9	600	.524 .467 .533 .584
		(	Conde	nsing E	gines.				
Single Cylinder. Compound Triple Quadruple	120 160	10. 15. 20. 25.	10 8 8 8	.330 .247 .200 .169	33.0 29.6 32.0 33.8	2 2 2 2	31.0 27.6 30.0 81.8	600	.443 .390 .429 .454

the last column by the ratio of the piston-speed to 600 ft.

Nominal Horse-power .- The term "nominal horse-power" originated in the time of Watt, and was used to express approximately the power of an engine as calculated from its diameter, estimating the mean pressure in the cylinder at 7 lbs, above the atmosphere. It has long been obsolete in America, and is nearly obsolete in England.

Horse-power Constant of a given Engine for a Fixed **Speed** = product of its area of piston in square inches, length of stroke in feet, and number of single strokes per minute divided by 33,000, or 38.000

= C. The product of the mean effective pressure as found by the diagram and this constant is the indicated horse-power.

Horse-power Constant of a given Engine for Varying Speeds = product of its area of piston and length of stroke divided by 33,000. This multiplied by the mean effective pressure and by the number

of single strokes per minute is the indicated horse-power.

Horse-power Constant of any Engine of a given Diameter of Cylinder, whatever the length of stroke = area of piston + 33,000 = square of the diameter of piston in inches × .0000238. A table of constants derived from this formula is given below.

The constant multiplied by the piston-speed in feet per minute and by

the M.E.P. gives the I.H.P.

Errors of Indicators.—The most common error is that of the spring. which may vary from its normal rating; the error may be determined by proper testing apparatus and allowed for. But after making this correction, even with the best work, the results are liable to variable errors which may amount to 2 or 3 per cent. See Barrus, Trans. A. S. M. E., v. 310; Denton. A. S. M. E., xi. 329; David Smith, U. S. N., Proc. Eng'g Congress, 1893. Marine Division.

Indicator "Rigs." or Reducing-motions; Interpretation of Diagrams for

Errors of Steam-distribution, etc. For these see circulars of manufacturers of Indicators; also works on the Indicator.

Table of Engine Constants for Use in Figuring Horsepower.—"Horse-power constant" for cylinders from 1 meh to 60 inches in the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constant of the constan diameter, advancing by 8ths, for one foot of piston-speed per minute and one pound of M.E.P. Find the diameter of the cylinder in the column at the side. If the diameter contains no fraction the constant will be found in the column headed Even Inches. If the diameter is not in even inches, follow the line horizontally to the column corresponding to the required fraction.

The constants multiplied by the piston-speed and by the M.E.P. give the horse-power.

Diameter of Cylinder.	Even Inches.	+ 1/8 or .125.	+ 1/4 or .25.	+ % or .875.	+ 1/2 or .5.	+ 5% or .625.	+ 3/4 or .75.	+ % or .875.
	<u>'</u>							
1 2 3 4 5 6 7 8 9 10	.0000288	.0000301	.0000372 .0001205	.0000450 .0001342	.0000535 .0001487	.0000628	.0000729	.0000837
8		.0002324	.0001203		.0002915	.0003127	.0003347	.0003574
4	.0003808	.0004050	.0004299	.0004554	.0004819	.0005091	.0005370	.0005656
5	.0005950	.0006251	.0006560	.0006876	.0007199 .0010055	.0007530 .0010445	.0007869 .0010844	.0008215
9	.0011662	.0012082	.0012510	.0012944	.0010033	.0013837	.0010634	.0011249
8	.0015232	.0015711	0016198	.0016693	.0017195	.0017705	.0018222	.0018746
9	.0019276		.0020363 .0025004	.0020916	.0021479	.0022048	.0022625	.0028209
10	.0023800 .0028798	.0024398	.0030121	.0025618 .0030794	.0026239	.0026867 .0082163	.0032859	.0028147
12	.0034272	.0034990	.0035714	.0036447	.0037187	.0087934	.0038690	.0039452
12 18	.0040222	.0010999	.0041783	.0042576	.0043375	.0044182	.0044997	.0045819
14	.0046648 .0053550	.0047484 .0054446	.0048328	.0049181	.0050039	.0050906 .0058105	.0051780	.0052661
14 15 16	.0060928	.0061884	.0062847	.0063817	.0064795	.0065780	.0066774	.0067774
17	.0068782	.0069797	.0070819	.0071850	.0072887	.0073932	.0074985	.0076044
18	.0077112	.0078187	.0079268	.0080360	.0081452	.0082560	.0083672	.0084791
19	.0085918	.0087052	.0088198	.0089343	.0090499 .0100019	.0091663	.0092835 .0102474	.0094013 .0103712
21	.0104958		.0107472	.0108739	0110015	0111299	.0112589	.0113886
22	.0115192	.0116505	.0117825	.0119152	.0120487	.0121830	.0123179	.0124537
17 189 20 21 22 23 24 25 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	.0125902 .0137088	.0127274	.0128654	.0130040	.0131435	.0132837	.0134247	.0135664
24 25	.0148750	.0150241	.0139959 .0151789	.0153246	.0142859 .0154759	.0156280	.0145789	.0147266
26	.0160688	.0162439	.0163997	.0165563	.0167135	.0108710	.0170304	.0171899
27	.0173502'	.0175112	.0176729	.0178355	.0179988	.0181627	.0188275	.0184929
28	.0186592 .0200158	.0188262	.0189939 .0203624	.0191624	.0193316 .0207119	.0195015 .0208879	.0196722 .0210645	.0198436
30	0-21/4-2000	(P)15000	.0217785	.0219588	US 156(U	.0223218	.0225044	.0212418
31 32	.0228718	.0230566	.0232422	.0234285	.0236155	.0238033	.0239919	.0241812
32	.0243712	.0245619	.0247535	.0249457	.0251387	.0253325	.0255269	.0257222
33 34	.0259182 .0275128	.0261149	.0263124	.0265106	.0267095 .0283279	.0269092 .0285356	.0271097	.0273109
85	.0291550	.0293636	0295729	.0297831	.0299939	0302056	.0304179	.0306309
36	.0308448	.0310594		.0314908	.0317075	.0319251	.0321434	.0323624
36 37 38 39 40	.0325822	,0328027 ,0345937	.0330239	.0332460	.0334687		.0339165	.0341415
30	.0343672 .0361998		.0366654	.0368993	.0352775	.0355070 .0373694	.0357372	.0359681 .0378424
40	.0880800	.0383184	.0383575	.0387973	.0390379	.0392793	.0395214	.0397642
41 42	.0400078	.0402521	.0404972		.0409895	.0412868		
42 48	.0419832	.0422935 .0442624	.0424845	.0427362	.0429887 .0450355	.0432420	. 0434959 . 0455547	.0437507 .0458154
44	.0460768		.0466019	.0468655	.0471299	.0473951	.0476609	.0479276
45	.0481950	.0484631	.0487320	.0490016	.0492719	.0495430	.0498149	.0500875
46	.0503608		.0509097	.0511853		.0517386	.0520164	.0522949
47 48	.0525742	.0551212	.0531349 .0554079	.0534165 .0556953	.0536988 .0559835	.0562725	.0565622	.0545499 .0568526
49	.0571438		.0577284	.0580218	.0583159	.0586109	.0589065	.0592029
50	.0595000	.0597979	.0600965	.0603959	.0606959		.0612984	.0616007
51	.0619038 .0643552		.0625122	.0628175 .0652867	.0632235 .0655987	.0634304	.0637879 .0662250	.0640462 .0665392
58	.0668542	.0671699	.0674861	.0678036	.0681215	.0681402	.0687597	.0690799
52 58 54	.0694008	.0697225	.0700449	.0703681	.0705293	.0710166	.0713419	0716681
55 56 57 58 59	.0719950		.0726510	.0729801	.0733099	.0736406	.0739719	.0748089
56 57	.0746368 .0773262	.0749704	.075 <b>3</b> 047 .0780060	.0756398 .0783476	.075 <b>9</b> 755 .0786887	.0790312	.0766494	.0769874
58	.0800682	.0804087	.0807549		.0814495	.0817980	.0821472	.0824971
59	.0828478	.0831992	.0835514	.0839043	0842579	0846123	.0849675	.0853234
60	.0856800	.0860374	.0863955	.0867543	.0871139	.0874743	.0878354	.0881978

# Horse-power per Pound Mean Effective Pressure. Area in sq. in. × piston-speed Formula, 33,000

Diam. of Speed of Piston in feet per minute. Cylinder, inches. 100 240 300 400 450 500 550 600 650 750 . 19 .228 .038 091 .114 .152 .171 .209 .247 285 41/6 .048 .192 .216 288 . 360 .115 .144 .24 .264 .812 .06 .144 .18 . 24 .27 .80 .88 .86 .89 .450 516 .216 .288 .36 .482 .468 .540 .072 .178 .324 .396 .086 .205 .256 .342 .385 .428 6 .518 .555 .471 .641 61/6 .568 .102 .245 .307 .409 .464 .512 .614 .698 .800 .466 .279 .524 .116 .348 .583 .641 .699 .756 .874 .184 .321 .401 .584 .602 .669 .785 .802 .869 1.002 .365 .456 .685 .152 .608 .912 .989 .761 .837 1.12 814 .172 .688 .418 .516 .774 .86 .946 1.032 1.118 1.290 .963 .770 .859 .192 .46≥ .577 .866 1.059 1.154 1.251 1.444 .215 .644 .966 1.074 .515 1.895 1.181 1.288 1.610 1.785 .714 .952 1.309 1.428 10 .238 .571 1.071 1.547 .288 .864 1.152 1.296 11 1.44 1.708 2.01 1.584 1.728 .691 1.872 2.160 .342 12 .820 1.025 1.366 1.540 1.880 2.050 2.222 2.564 .402 1.206 1.809 13 .964 1.608 2.211 2.412 2.618 8.015 .466 1.398 14 1.864 2.097 2.831 2.797 1.119 2.564 8.029 8.495 .535 1.606 2.409 2.741 2.677 15 1.285 2.131 2.945 8.212 8.479 4.004 .609 2.436 2.739 1.827 8.045 8.424 16 1.461 8.849 8.654 8.958 4.567 4.108 4.450 4.624 5.009 5.154 5.588 3.081 17 .685 1.643 2.054 8.766 5.135 3.854 4.289 4.295 4.724 4.759 5.284 5.247 5.771 5.759 6.834 6.294 6.928 18 1.849 .771 2.312 3.083 8.468 5.780 .859 3.436 19 2.061 2.577 3.865 6.442 .952 2.855 3.807 4.285 20 2.292 5.781 6.186 7.138 2.518 2.764 8.021 21 4.197 1.049 3.148 4.722 6.296 6.820 7.869 22 4.607 5.183 1.152 3.455 6.911 7.486 8.638 23 1.259 3.776 5.035 5.664 7.552 8.181 9.44 3.289 5.482 24 1.370 4.111 6.167 6.853 7.588 8.223 8.908 10.279 25 1.487 5.948 3.569 4.461 6.692 7.486 8.179 8.923 9.566 11.053 6.435 7.239 8.044 8.248 9.652 10.456 12.065 6.932 7.799 8.666 9.532 10.399 11.265 12.998 7.462 8.395 9.328 10.261 11.193 12.125 13.991 26 1.609 1.783 8.861 4.826 27 5.199 4.159 | 12.998 | 10.01 | 11.193 | 12.125 | 13.998 | 13.01 | 13.01 | 12.012 | 13.013 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.015 | 15.0 28 1.865 4.477 29 2.002 4.805 30 2.142 5.141 31 2.288 5.486 82 2.436 5.846 33 2.590 6.216 6.59 2.746 34 85 2.914 6.993 3.084 36 7.401 3.253 87 7.819 3.436 38 8.246 39 3.620 8.648 40 3.808 9.139 4.002 41 9.604 12.506 10.008 18.009 20.00 12.594 16.792 18.901 20.99 13.20 17.6 19.8 22.00 13.818 18.424 20.727 23.03 14.454 19.272 21.681 24.09 15.128 20.144 22.662 25.18 4.198 42 10.065 231.069 25.188 27.267 31.485 24.2 26.4 28.6 38.00 25.838 27.636 29.939 34.545 26.399 25.906 31.317 36.135 27.698 30.216 32.754 37.770 28.908 31.31.52 35.638 41.115 31.427 34.264 37.141 42.855 32.755 37.757 38.757 34.045 37.08 40.205 44.685 34.357 38.757 38.675 34.685 34.357 38.675 38.675 34.685 38.758 36.758 36.758 46.685 38.758 36.758 36.758 46.685 38.758 36.758 36.758 46.685 38.758 36.758 36.758 46.858 38.758 36.758 36.758 46.858 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 36.758 43 4.40 10.56 4.606 44 11 046 45 4.818 11.563 5.043 46 12.086 15.768 21.024 23.652 26.28 16.446 21.928 24.669 27.41 5.25612.614 48 5.482 12.846 17.142 22.856 25.713 28.57 17.85 23.8 26.775 29.75 18.54 24.76 27.855 30.95 19.296 25.728 28.944 32.16 5.714 5.950 49 12.913 14.28 50 51 6,180 14.832 34. 045 37. 08 40. 205 46. 425 35. 876 38. 592 41. 806 48. 240 36. 762 40. 104 43. 446 50. 130 38. 17 41. 64 45. 11 52. 05 95. 596 43. 188 46. 757 53. 965 41. 041 44. 772 48. 503 55. 943 44. 041 44. 772 48. 503 55. 965 44. 033 48. 036 52. 039 60. 045 45. 562 48. 704 53. 846 68. 13 6.432 52 15.437 20.052 26.736 30.078 33.42 20.82 27.76 31.23 84.7 21.594 28.792 32.391 85 99 53 6.684 16.041 54 6.940 16.656 7.198 55 17.27556 7.462 7.732 17.909 22.386 29.848 33.579 37.31 23.196 30.928 34.794 38.66 24.018 32.024 36.027 40.03 24.852 33.136 37.278.41.42 57 18.557 8.006 58 19.214 19.902 59 8.284 8.566 20.558 25.698 34.264 38.547 42.83 47.113 51.396 55.679 64.245

To draw the Clearance-line on the Indicator-diagram, the actual clearance not being known.—The clearance-line may be obtained approximately by drawing a straight line, cbad, across the compression curve, first having drawn OX parallel to the atmospheric line and 14.7 lbs. below. Measure from a the distance ad, equal to cb, and draw YO perpendicular to OX through d; then will TB divided by AT be the percentage of



Fig. 139.

clearance. The clearance may also be found from the expansion-line by constructing a rectangle efhg, and drawing a diagonal gf to intersect the line XO. This will give the point O, and by erecting a perpendicular to XOwe obtain a clearance-line OY.

Both these methods for finding the clearance require that the expansion and compression curves be hyperbolas. Prof. Carpenter (*Power*, Sept. 1893) says that with good diagrams the methods are usually very accurate,

laws) says that with good diagrams the methods are usually very accurate, and give results which check substantially.

The Buckeye Engine Co., however, say that, as the results obtained are seldom correct, being sometimes too little, but more frequently too much, and as the indications from the two curves seldom agree, the operation has little practical value, though when a clearly defined and apparently undistorted compression curve exists of sufficient extent to admit of the applications of the second of the supplications of the supplications of the second of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supplications of the supp tion of the process, it may be relied on to give much more correct results than the expansion curve.

To draw the Hyperbolic Curve on the Indicator-diagram.—Select any point I in the actual curve, and from this point draw a line perpendicular to the line JB, meeting the latter in the point J. The line  $\begin{bmatrix} 3 & 2 & 1 & M & B \\ 1 & 3 & 2 & 1 & M & B \end{bmatrix}$ 

JB may be the line of boiler-pressure, but this is not material; it may be drawn at any convenient height near the top of diagram and parallel to the atmospheric line. From J draw a diagonal to K, the latter point being the intersection of the vacuum and clearance lines; from I draw IL parallel with the atmospheric line. From L, the point of intersection of the diagonal JK and the horizontal



Fig. 140.

of the diagonal JA and the norzontal Fig. 140. line IL, draw the vertical line LM. The point M is the theoretical point of cut-off, and LM the cut-off line. Fix upon any number of points 1, 2, 3, etc., on the line JB, and from these points draw diagonals to K. From the intersection of these diagonals with LM draw horizontal lines, and from 1, 2, 3, etc., vertical lines. Where these lines are trill be redict in the hypothelia course. meet will be points in the hyperbolic curve.

Pendulum Indicator Big. - Power (Feb. 1893) gives a graphical representation of the errors in indicator-diagrams, caused by the use of in-

correct form of the pendulum rigging. It is shown that the "brumbo" pulley on the pendulum, to which the cord is attached, does not generally give as good a reduction as a simple pin

C E attachment. When the end of the pendulum is



slotted, working in a pin on the crosshead, the slotted, working in a pin on the crosshead, the error is apt to be considerable at both ends of the card. With a vertical slot in a plate fixed to the crosshead, and a pin on the pendulum working in this slot, the reduction is perfect, when the cord is attached to a pin on the pendulum, a slight error being introduced if the brumbo pulley is used. With the connection between the pendulum and the crosshead made by means of a horizontal link the reduction is

between the pendulum and the crosshead made by means of a horizontal link, the reduction is nearly perfect, if the construction is such that the connecting link vibrates equally above and below the horizontal, and the cord is attached by a pin. If the link is horizontal at mid-stroke a serious error is introduced, which is magnified if a brumbo pulley also is used. The adjoining figures show the two forms recommended.

Theoretical Water-consumption calculated from the [Power, Sept. 1893]: p = mean effective pressure, l = length of stroke in feet, a = area of piston in square inches, a + 144 = area in square feet, c = percentage of clearance to the stroke, b = percentage of stroke at point where water rate is to be computed. n = number of strokes per minute, 60n = number per hour, w = weight of a cubic foot of steam having a pressure as shown by the diagram corresponding to that at the point where sure as shown by the diagram corresponding to that at the point where water rate is required, w' = that corresponding to pressure at end of compression.

Number of cubic feet per stroke =  $l\left(\frac{b+c}{100}\right)\frac{a}{144}$ .

Corresponding weight of steam per stroke in lbs.  $= l\left(\frac{b+c}{100}\right)\frac{a}{144}w$ .

Volume of clearance =  $\frac{100}{14,400}$ 

Weight of steam in clearance =  $\frac{lcaw'}{14.400}$ .

Total weight of steam  $= \frac{60nla}{14,400} [(b+c)w - cw'].$ 

The indicated horse-power is  $p \ l \ a \ n + 33,000$ . Hence the steam-consumption per indicated horse-power is

$$= \frac{\frac{60nla}{14,400} \left[ (b+c)w - cw' \right]}{\frac{p \ l \ a \ n}{33,000}} = \frac{187.50}{p} \left[ (b+c)w - cw' \right].$$

Changing the formula to a rule, we have: To find the water rate from the indicator diagram at any point in the stroke.

RULE.—To the percentage of the entire stroke which has been completed by the piston at the point under consideration add the percentage of clearance. Multiply this result by the weight of a cubic foot of steam, having a pressure of that at the required point. Subtract from this the product of percentage of clearance multiplied by weight of a cubic foot of steam having a pressure equal to that at the end of the compression. Multiply this result by 137.50 divided by the mean effective pressure.

Note.—This method only applies to points in the expansion curve or between cut-off and release.

tween cut-off and release.

^{*} For compound or triple-expansion engines read: divided by the equivalent mean effective pressure, on the supposition that all work is done in one vlinder.

The beneficial effect of compression in reducing the water-consumption of an engine is clearly shown by the formula. If the compression is carried to such a point that it produces a pressure equal to that at the point under consideration, the weight of steam per cubic foot is equal, and w=w'. In this case the effect of clearance entirely disappears, and the formula becomes  $\frac{137.5}{(bw)}$ .

In case of no compression, w' becomes zero, and the water-rate =

$$\frac{137}{p} \frac{5}{2} [(b+c)w].$$

Prof. Denton (Trans. A. S. M. E., xiv. 1868) gives the following table of theoretical water-consumption for a perfect Mariotte expansion with steam at 150 lbs. above atmosphere, and 2 lbs. absolute back pressure :

Ratio of Expansion, r.	M.E.P., lbs. per sq. in.	Lbs. of Water per hour per horse-power, W.
10	52.4	9.68
15	88.7	8.74
90	80.9	8.20 .
25	25.9	7.84
<b>30</b>	22.2	7.68
<b>35</b>	19.5	7.45

The difference between the theoretical water-consumption found by the formula and the actual consumption as found by test represents "water not accounted for by the indicator," due to cylinder condensation, leakage through ports, radiation, etc.

Leakage of Steam. - Leakage of steam, except in rare instances, has so little effect upon the lines of the diagram that it can scarcely be detected. The only satisfactory way to determine the tightness of an engine is to take it when not in motion, apply a full boiler-pressure to the valve, placed in a closed position, and to the piston as well, which is blocked for the purpose at some point away from the end of the stroke, and see by the eye whether leakage occurs. The indicator-cocks provide means for bringing into view steam which leaks through the steam-valves, and in most cases that which leaks by the piston, and an opening made in the exhaust-pipe or observations at the atmospheric escape-pipe, are generally sufficient to determine the fact with regard to the exhaust-valves.

The steam accounted for by the indicator should be computed for both the cut-off and the release points of the diagram. If the expansion-line departs much from the hyperbolic curve a very different result is shown at one point from that shown at the other. In such cases the extent of the loss occasioned by cylinder condensation and leakage is indicated in a much more truthful manner at the cut-off than at the release. (Tabor Indicator

Circular.)

#### COMPOUND ENGINES.

Compound, Triple- and Quadruple-expansion Engines.

A compound engine is one having two or more cylinders, and in which the steam after doing work in the first or high-pressure cylinder completes

its expansion in the other cylinder or cylinders.

The term "compound" is commonly restricted, however, to engines in which the expansion takes place in two stages only—high and low pressure, the terms triple expansion and quadruple expansion engines being used when the expansion takes place respectively in three and four stages. The number of cylinders may be greater than the number of stages of expansion, for constructive reasons; thus in the compound or two-stage expansion engine the low-pressure stage may be effected in two cylinders so as to obtain the advantages of nearly equal sizes of cylinders and of three cranks at angles of 120°. In triple expansion engines there are frequently two low-pressure cylinders, one of them being placed tandem with the high-pressure, and the other with the intermediate cylinder, as in mill engines with two cranks at 90°. In the triple-expansion engines of the steamers Campania and Lucania, with three cranks at 120°, there are five cylinders, two high, one intermediate, and two low, the high-pressure cylinders being tandem with the low.

Advantages of Compounding.—The advantages secured by dividing the expansion into two or more stages are twofold: 1. Reduction of waster of steam by cylinder-condensation, clearance, and leakage; 2. Dividing the pressures on the cranks, shafts, etc., in large engines so as to avoid excessive pressures and consequent friction. The diminished loss by cylinder-condensation is effected by decreasing the range of temperature of the metal surfaces of the cylinders, or the difference of temperature of the steam at admission and exhaust. When high-pressure steam is admitted into a single-cylinder engine a large portion is condensed by the comparatively cold metal surfaces; at the end of the stroke and during the exhaust the water is re-evaporated, but the steam so formed escapes into the atmosphere or into the condenser, doing no work; while if it is taken into a second cylinder, as in a compound engine, it does work. The steam lost in the first cylinder by leakage and clearance also does work in the second cylinder. Also, if there is a second cylinder, the temperature of the steam exhausted from the first cylinder is higher than if there is only one cylinder, and the metal surfaces therefore are not cooled to the same degree. The difference in temperatures and in pressures corresponding to the work of steam of 150 lbs. gauge-pressure expanded 20 times, in one, two, and three cylinders is shown in the following table, by W. H. Weightman, Am. Mach., July 28, 1892:

. ""	Single Cyl- inder. Compound Cylinders.			Triple-expansion Cylinders.			
Diameter of cylinders, in	60	33	61	28	46	61	
Area ratios	l	1	3.416	1	2.70	4.746	
Expansions	20	5	4	2.714	2.714	2.714	
Initial steam - pressures-		-	_				
absolute-pounds	165	165	88	165	60.8	22.4	
Mean pressures, pounds	82.96	86.11	19.68	121.44	44.75	16.49	
Mean effective pressures,							
pounds	28.96	58.11	15.68	60.64	22.35	12.49	
Steam temperatures into							
cylinders	366°	866°	2590.9	366°	298°.5	234°.1	
Steam temperatures out of							
the cylinders	184°.2	2590.9	1840.2	298°.5	284°.1	184°.2	
Difference in temperatures		106.1	175.7	72.5	59.4	49.9	
Horse-power developed	800	399	408	269	268	264	
Speed of piston	322	290	290	238	288	238	
Total initial pressures on		1					
pistons, pounds	455,218	112,900	84,752	64,169	68,817	53,773	

"Woolf?" and Beceiver Types of Compound Engines.—
The compound steam-engine, consisting of two cylinders, is reducible to two
forms, 1, in which the steam from the h.p. cylinder is exhausted direct into
the l.p. cylinder, as in the Woolf engine; and 2, in which the steam from the
h.p. cylinder is exhausted into an intermediate reservoir, whence the steam
is supplied to, and expanded in, the l.p. cylinder, as in the "receiverengine."

If the steam be cut off in the first cylinder before the end of the stroke, the total ratio of expansion is the product of the ratio of expansion in the first cylinder, into the ratio of the volume of the second to that of the first cylinder; that is, the product of the two ratios of expansion.

Thus, let the areas of the first and second cylinders be as 1 to 314, the strokes being equal, and let the steam be cut off in the first at 314 stroke; then

Total or combined expansion, the product of the two ratios... 1 to 7

Woolf Engine, without Clearance—Ideal Diagrams.— The diagrams of pressure of an ideal Woolf engine are shown in Fig. 142, as they would be described by the indicator, according to the arrows. In these diagrams pg is the atmospheric line, mn the vacuum line, cd the admission line, dg the hyperbolic curve of expansion in the first cylinder, and gh the con-

ecutive expansion-line of back pressure for the return-stroke of the first piston, and of positive pressure for the steam-stroke of the second piston. At the point A. at the end of the stroke of the second piston, the steam is exhausted into the condenser, and the pressure falls to the

level of perfect vacuum, mn.

The diagram of the second cylinder, below gh, is characterized by the absence of any specific period of admission; the whole of the steam-line gh being expansional, generated by the expansion of the initial body of steam contained in the first cylinder into the second. When the return-stroke is completed, the whole of the steam transferred from the first is shut into the second cylinder. The final pressure and volume of the steam in the second cylinder are the



INDICATOR-DIAGRAMS.

same as if the whole of the initial steam had been admitted at once into the second cylinder, and then expanded to the end of the stroke in the manner of a single-cylinder engine.

The net work of the steam is also the same, according to both distributions.

Receiver-engine, without Clearance—Ideal Diagrams.— In the ideal receiver engine the pistons of the two cylinders are connected to cranks at right angles to each other on the same shaft. The receiver takes the steam exhausted from the first cylinder and supplies it to the second, in which the steam is cut off and then expanded to the end of the stroke. On the assumption that the initial pressure in the second cylinder is equal to the final pressure in the first, and of course equal to the pressure in the receiver, the volume cut off in the second cylinder must be equal to the volume of the first cylinder, for the second cylinder must admit as much steam at each stroke as is discharged from the first cylinder.

In Fig. 143 od is the line of admission and hg the exhaust-line for the first



Fig. 148.—Receiver-engine, Ideal FIG. 144.—RECEIVER ENGINE. IDEAL INDICATOR-DIAGRAMS. DIAGRAMS REDUCED AND COMBINED.

cylinder; and dg is the expansion-curve and pq the atmospheric line. the region below the exhaust-line of the first cylinder, between it and the line of perfect vacuum, ol, the diagram of the second cylinder is formed; hi, the second line of admission, coincides with the exhaust-line hg of the first cylinder, showing in the ideal diagram no intermediate fall of pressure, and ik is the expansion-curve. The arrows indicate the order in which the diagrams are formed.

In the action of the receiver-engine, the expansive working of the steam, though clearly divided into two consecutive stages, is, as in the Woolf engine, essentially continuous from the point of cut-off in the first cylinder to the end of the stroke of the second cylinder, where it is delivered to the condenser; and the first and second diagrams may be placed together at

combined to form a continuous diagram. For this purpose take the second diagram as the basis of the combined diagram, namely, hiklo, Fig. 144. The period of admission, hi, is one third of the stroke, and as the ratios of the cylinders are as 1 to 3, hi is also the proportional length of the first diagram as applied to the second. Produce oh upwards, and set off oc equal to the total height of the first diagram above the vacuum-line; and, upon the shortened base hi, and the height hc, complete the first diagram with the steam-line cd, and the expansion-line di.

It is shown by Clark (S. E., p. 432, et seq.) in a series of arithmetical calculations, that the receiver-engine is an elastic system of compound engine, in which considerable latitude is afforded for adapting the pressure in the receiver to the demands of the second cylinder, without considerably diminishing the effective work of the engine. In the Woolf engine, on the contrary, it is of much importance that the intermediate volume of space between the first and second cylinders, which is the cause of an intermediate fall of pressure, should be reduced to the lowest practicable amount. Supposing that there is no loss of steam in passing through the engine.

Supposing that there is no loss of steam in passing through the engine, by cooling and condensation, it is obvious that whatever steam passes through the first cylinder must also find its way through the second cylinder. By varying, therefore, in the receiver-engine, the period of admission in the second cylinder, and thus also the volume of steam admitted for each stroke, the steam will be measured into it at a higher pressure and of a less bulk, or at a lower pressure and of a greater bulk; the pressure and density naturally adjusting themselves to the volume that the steam from the receiver is permitted to occupy in the second cylinder. With a sufficiently restricted admission, the pressure in the receiver may be maintained at the pressure of the steam as exhausted from the first cylinder. On the contrary, with a wider admission, the pressure in the receiver may fall or "drop" to three fourths or even one half of the pressure of the exhaust-steam from the first cylinder.

(For a more complete discussion of the action of steam in the Woolf and receiver engines, see Clark on the Steam-engine.)

Combined Diagrams of Compound Engines.—The only way of making a correct combined diagram from the indicator-diagrams of the saveral cylinders in a compound engine is to set off all the diagrams on the same horizontal scale of volumes, adding the clearances to the cylinder ca-



Fig. 145.

pacities proper. When this is attended to, the successive diagrams fall exactly into their right places relatively to one another, and would compare properly with any theoretical expansion-curve. (Prof. A. B. W. Kennedy, Proc. Inst. M. E., Oct. 1886.)

This method of combining diagrams is commonly adopted, but there are objections to its accuracy, since the whole quantity of steam consumed in the first cylinder at the end of the stroke is not carried forward to the second, but a part of it is retained in the first cylinder for compression. For a method of combining diagrams in which compression is taken account of, see discussions by Thomas Mudd and others, in Proc. Inst. M. E., Feb., 1887, p. 48. The usual method of combining diagrams is also criticised by Frank H. Ball as inaccurate and misleading (Am. Mach., April 12, 1894; Trans. A. S. M. E., xiv. 1405, and xv. 408).

Figure 145 shows a combined diagram of a quadruple-expansion engine, drawn according to the usual method, that is, the diagrams are first reduced in length to relative scales that correspond with the relative piston-displacement of the three cylinders. Then the diagrams are placed at such distances from the clearance-line of the proposed combined diagram as to correctly

represent the clearance in each cylinder.

# Calculated Expansions and Pressures in Two-cylinder Compound Engines. (James Tribe, Am. Mach., Sept. & Oct. 1891.)

TWO-CYLINDER COMPOUND NON-CONDENSING. Back pressure 14 lb. above atmosphere.

Initial gauge			<del></del>		<del></del>		<del></del>		
Initial gauge- pressure	100	110	120	130	140	150	160	170	175
Initial absolute	1		1			l	(		1
pressure		125	135	145	155	165	173	185	190
Total expansion.		7.84	8.41	9	9.61	10.24	10.89	11.56	11.9
Expansions in									
each cylinder		2.8	2.9	8	3.10	8.2	3.8	3.4	3.45
Hyp. log. plus 1.	1.998					2.168			
	84.8	90.5	96	101.4	106.5		116.8	1:0.9	123.2
pressures   Low		33.8	83.1				85.2	8 6	35.7
Back   High.		44.6	46.5	48.3				51.4	55
pressures   Low	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
Mean High.	42.3	45.9	49.5	53.1	56.5	60	68.3	66.5	68.2
ETTOCHIAG J I'VE	15.8	16.8	17.6	18.2	18.8	19.3	19.7	20 1	20.2
Ratio-c v l i n d e r	ł			ł	1	l			
areas	2.67	2.73	2.81	2.91	8	3.11	3.21	3.31	3.37

#### TWO-CYLINDER COMPOUND CONDENSING.

Back pressure, 6.5 lbs. above vacuum .

Initial gauge-pressures	90	100	110	120	130	140	150
Initial absolute pressures	105	115	125	135	145	155	165
Probable per cent of loss	2.6	2.9	3.8	3.6	3.8	4.0	4.3
	15.7	17	18.5	20	21.5	22.7	24.2
Exps. in each cylinder	3.96	4.13	4.3	4.47	4.64	4.77	4.92
Hyp. log. plus 1	2.376					2.562	2.593
	62.9		71.4			83.2	87
pressures   Low			15.9				17.05
Mean back   High	26.5	27.8	29		31.4	32.4	33.5
pressures   Low	4.8	4.3	4.3	4.3	4.8	4.3	4.3
Mean High	36.4	39.5	42.4	45.2	47.9	50.8	58.5
	10.95					12.45	12.75
pressures (			1				
		27.8	29.0		31.4	32.4	38.5
pressures   Low	6.4	6.45	6.45	6.5	6.55	6.55	6.6
Initial pressure in l. p. cyl	25.3						32.4
Ratio of cylinder areas	3.32	3.51	3.66	3.8	3 92	4.08	4.19

The probable percentage of loss, line 3, is thus explained: There is always a loss of heat due to condensation, and which increases with the pressure of a loss of neat due to concensation, and which increases with the pressure of steam. The exact percentage cannot be predetermined, as it depends largely upon the quality of the non-conducting covering used on the cylinder, receiver, and pipes, etc. but will probably be about as shown.

Proportions of Cylinders in Compound Engines.—Authorities differ as to the proportions by volume of the high and low pressure

cylinders v and V. Thus Grashof gives  $V + v = 0.85 \sqrt{r}$ ; Krabak, 0.90  $\sqrt{r}$ ;

Werner,  $\sqrt{r}$ ; and Rankine,  $\sqrt{r^2}$ , r being the ratio of expansion. Busler makes the ratio dependent on the boiler-pressure thus:

(See Seaton's Manual, p. 95, etc., for analytical method; Sennett, p. 496, etc.; Clark's Steam-engine, p. 445, etc.; Clark, Rules, Tables, Data, p. 849, etc.) Mr. J. McFarlane Gray states that he finds the mean effective pressure in the compound engine reduced to the low-pressure cylinder to be approximately the square root of 6 times the boiler-pressure.

Approximate Horse-power of a Modern Compound Marine-engine. (Seaton.)—The following rule will give approximately the horse-power developed by a compound engine made in accordance with

modern marine practice. Estimated H.P. = 
$$\frac{D^2 \times \sqrt{p} \times R \times S}{8500}$$

D = diameter of l.p. cylinder; p = boiler-pressure by gauge;

R = revs. per min.; S = stroke of piston in feet.

Ratio of Cylinder Capacity in Compound Marine Engines. (Seaton.)—The low-pressure cylinder is the measure of the power grames. (Seaton.)—The low-pressure cylinder is the ineasure of the power of a compound engine, for so long as the initial steam-pressure and rate of expansion are the same, it signifies very little, so far as total power only is concerned, whether the ratio between the low and high-pressure cylinders is 3 or 4; but as the power developed should be nearly equally divided between the two cylinders, in order to get a good and steady working engine there is a present of discretization. there is a necessity for exercising a considerable amount of discretion in fixing on the ratio.

In choosing a particular ratio the objects are to divide the power evenly and to avoid as much as possible "drop" and high initial strain.

If increased economy is to be obtained by increased boiler pressures, the rate of expansion should vary with the initial pressure, so that the pressure at which the steam enters the condenser should remain constant. In this case, with the ratio of cylinders constant, the cut-off in the high-pressure cylinder will vary inversely as the initial pressure.

Let R be the ratio of the cylinders; r, the rate of expansion;  $p_1$  the initial pressure: then cut-off in high-pressure cylinder = R + r; r varies with  $p_1$ ,

pressure: then cut-off in high-pressure cylinder = R + r; r varies with  $p_1$ , so that the terminal pressure  $p_1$  is constant, and consequently  $r = p_1 + p_2$ ; therefore, cut-off in high-pressure cylinder  $= R \times p_2 + p_1$ . **Ratios of Cylinders as Found in Marine Practice.**—The rate of expansion may be taken at one tenth of the boller-pressure (or about one twelfth the absolute pressure), to work economically at full speed. Therefore, when the diameter of the low-pressure cylinder does not exceed 100 inches, and the boiler-pressure 70 lbs., the ratio of the low-pressure to the high-pressure cylinder should be 3.5; for a boiler-pressure of 30 lbs., 3.75; for 90 lbs., 4.0; for 100 lbs., 4.5. If these proportions are adhered to, there will be no need of an expansion-valve to either cylinder. If, however, to avoid "drop," the ratio be reduced, an expansion-valve should be fitted to the high-pressure cylinder. the high pressure cylinder.

Where economy of steam is not of first importance, but rather a large power, the ratio of cylinder capacities may with advantage be decreased,

so that with a boiler-pressure of 100 lbs. it may be 3.75 to 4.

In tandem engines there is no necessity to divide the work equally. The ratio is generally 4, but when the steam-pressure exceeds 90 lbs. absolute 4.5 is better, and for 100 lbs. 5.0.

When the power requires that the l. p. cylinder shall be more than 100 in.

diameter, it should be divided in two cylinders. In this case the ratio of the combined capacity of the two l. p. cylinders to that of the h. p. may be 8.0 for 85 lbs. absolute, 3.4 for 95 lbs., 3.7 for 105 lbs., and 4.0 for 115 lbs.

Receiver Space in Compound Engines should be from 1 to

1.5 times the capacity of the high pressure cylinder, when the cranks are at an angle of from 90° to 120°. When the cranks are at 180° or nearly this, the space may be very much reduced. In the case of triple-compound engines, with cranks at 120°, and the intermediate cylinder leading the highpressure, a very small receiver will do. The pressure in the receiver should never exceed half the boiler-pressure. (Seaton.)

# Formula for Calculating the Expansion and the Work of Steam in Compound Engines.

(Condensed from Clark on the "Steam-engine.")

a = area of the first cylinder in square inches;
a' = area of the second cylinder in square inches;
r = ratio of the capacity of the second cylinder to that of the first;
L = length of stroke in feet, supposed to be the same for both cylinders;
l = period of admission to the first cylinder in feet, excluding clearance;
l = period of admission to the first cylinder in feet, excluding clearance;

t = period of admission to the inst cylinders in reet, excluding clearance; c = clearance at each end of the cylinders, in parts of the stroke, in feet; L' = length of the stroke plus the clearance, in feet; l' = period of admission plus the clearance, in feet; l' = length of a given part of the stroke of the second cylinder, in feet; l' = total initial pressure in the first cylinder, in lbs. per square inch, supposed to be varieties.posed to be uniform during admission; P' = total pressure at the end of the given part of the stroke s; p = average total pressure for the whole stroke; R = nominal ratio of expansion in the first cylinder, or L + 1;

R' = actual ratio of expansion in the first cylinder, or L' + l'; R'' = actual combined ratio of expansion, in the first and second cylinders

together;

n = ratio of the final pressure in the first cylinder to any intermediate fall of pressure between the first and second cylinders;

N = ratio of the volume of the intermediate space in the Woolf engine, reckened up to, and including the clearance of, the second piston, to the capacity of the first cylinder plus its clearance. The value of N is correctly expressed by the actual ratio of the volumes as stated, on the assumption that the intermediate space is a vacuum when it receives the exhaust-steam from the first cylinder. In point of fact, there is a residuum of unexhausted steam in the intermediate space, at low pressure, and the value of N is thereby prac-

tically reduced below the ratio here stated.  $N = \frac{n}{n-1} - 1$ .

w = whole net work in one stroke, in foot-pounds.

Ratio of expansion in the second cylinder:

In the Woolf engine, 
$$\frac{\left(r\frac{L}{L'}\right) + N}{1 + N}$$
;

In the receiver engine, 
$$\frac{(n-1)r}{n}$$
.

Total actual ratio of expansion = product of the ratios of the three consecutive expansions, in the first cylinder, in the intermediate space, and in the second cylinder,

In the Woolf engine, 
$$R'\left(r\frac{L}{L'}+N\right)$$
;

In the receiver-engine, 
$$r\frac{L'}{l'}$$
, or  $rR'$ .

Combined ratio of expansion behind the pistons =  $\frac{n-1}{r}rR' = R''$ .

Work done in the two cylinders for one stroke, with a given cut-off and a given combined actual ratio of expansion:

Woolf engine, 
$$w = \alpha P[l'(1 + \text{hyp log } R'') - c];$$

Receiver engine, 
$$w = aP \left[ l'(1 + \text{hyp log } R'') - c \left( 1 + \frac{r-1}{R'} \right) \right]$$
,

when there is no intermediate fall of pressure.

When there is an intermediate fall, when the pressure falls to 34, 36, 16 of the final pressure in the ist cylinder, the reduction of work is 0.2%, 1.0%, 4.6% of that when there is no fall,

Total work in the two cylinders of a receiver-engine, for one stroke for any intermediate fall of pressure,

$$w = aP\left[l'\left(\frac{n+1}{n} + \text{hyp log } R''\right) - c\left(1 + \frac{(n-1)(r-1)}{nR'}\right)\right].$$

Example.—Let a=1 sq. in., P=63 lbs., l'=2.42 ft., n=4, R''=5.969, c=.42 ft., r=3, R'=2.658;

$$w = 1 \times 68 \left[ 2.42(5/4 \text{ hyp log 5.969}) - .42 \left( 1 + \frac{3 \times 2}{4 \times 2.658} \right) \right] = 421.55 \text{ ft.-lbs.}$$

Calculation of Diameters of Cylinders of a compound condensing engine of 2000 H.P. at a speed of 700 feet per minute, with 100 lbs. boiler-pressure.

100 lbs. gauge-pressure = 115 absolute, less drop of 5 lbs. between boiler and cylinder = 110 lbs. initial absolute pressure. Assuming terminal pressure in l. p. cylinder = 6 lbs., and taking the expansion in each cylinder to vary as the square root of the total expansion, we have:

Total expansion of steam in both cylinders = 110 + 6 = 18.83.

Expansion in each cylinder =  $4\sqrt{18.33}$  = 4.28.

Point of cut-off in each cylinder, per cent of stroke,  $\frac{100}{4.98} = 23.36$ .

1 + hyp log of expansion in each cylinder = 1 + hyp log 4.28 = 2.454

Terminal and back pressure of h. p. cyl, and initial of l. p. cyl.,  $\frac{110}{4 \text{ od}}$ 25,70 lbs.

Average absolute pressure in h. p. cylinder,  $25.7 \times 2.454 =$  "effective" in "cylinder,  $25.7 \times 2.454 =$  63.07 - 25.70 =63.07 lbs. in " 68.07 - 25.70 = 87.87in l. p. "  $6 \times 2.454 = 14.72$ in "cyl. assum'g 3 lbs. back pres. = 11.72 87.87 14.72 .. absolute effective

Assuming half the work, or 1000 H.P., to be done in the low-pressure cylinder.

Area of l. p. cyl. = 
$$\frac{33000 \times \text{H.P.}}{\text{piston-speed x ev. effective pressure}}$$
$$= \frac{33000 \times 1000}{700 \times 11.72} = 4023 \text{ sq. in.} = 71.6 \text{ in. diam.}$$

Area of h. p. cyl. =  $4023 \times \frac{11.72}{37.37} = \frac{33000 \times 1000}{700 \times 37.37} = 1262 \text{ sq. in.} = 40.1 \text{ in. diam.}$ 

Ratios of cylinder areas =  $\frac{11.72}{87.37}$  = 1 to 3.189.

In this calculation no account is taken of clearance, nor of drop between cylinders, nor of area of piston-rod. It also assumes that the diagrams in both cylinders are the full theoretical diagrams, with hyperbolic expansion curves, with no allowence for rounding of the corners.

Calculation of Diameters of Cylinders of a 500 H.P. Compound Non-con-

densing Engine.—Assuming initial pressure 170 lbs. above atmosphere, back pressure 15.5 lbs., absolute piston-speed 600 feet per minute.

Total Expansions =185 + 15.5 = 11.9. =  $\sqrt{11.9}$  = 8.45; hyp log = 1.238. = 185 + 3.45 = 58.6 lbs. = 53.6 × (1 + 1.238) = 120.0. Expansions in each cylinder Terminal pressure h. p. cyl. Mean total pressure, " Back pressure h. p. cyl. = terminal pressure 53.6 lbs. Mean effective pressure = 120 - 53.6 = 66.4 lbs. = 53.6 + 8.45 = 15.5lbs. Terminal pressure l. p. cyl. Mean total pressure " Mean total pressure  h  =  $15.5 \times 2.238 = 34.7$  lbs, Mean effective pressure l. p. cyl. = 34.7 - 15.5 = 19.2 lbs.  $=\frac{19.2}{66.4}=1 \text{ to } 3.46.$ Ratio of areas of cylinders Area of l. p. cyl. =

 $33000 \times H.P.$  $\frac{83000 \times 250}{600 \times 19.2}$  = 716 sq. in. = 30.2" diam. piston-speed × M.E.P.

Area of h. p. cyl., 716 + 8.46 = 207 sq. in. = 16.2 in, diameter,

#### TRIPLE-EXPANSION ENGINES.

Proportions of Cylinders.-H. H. Suplee, Mechanics, Nov. 1887, gives the following method of proportioning cylinders of triple-expansion engines:

As in the case of compound engines the diameter of the low-pressure As in the case of compound engines the diameter of the low-pressure cylinder is first determined, being made large enough to furnish the entire power required at the mean pressure due to the initial pressure and expansion ratio given; and then this cylinder is only given pressure enough to perform one third of the work, and the other cylinders are proportioned so as to divide the other two thirds between them.

Let us suppose that an initial pressure of 150 lbs. is used and that 900 H.P. is to be developed at a piston-speed of 800 ft. per min., and that an expansion ratio of 16 is to be reached with an absolute back pressure of 2 lbs.

The theoretical M.E.P. with an absolute initial pressure of 150 × 14.7 = 164.7 lbs. initial at 16 expansions is

164.7 lbs. initial at 16 expansions is

$$\frac{P(1 + \text{hyp log 16})}{16} = 164.7 \times \frac{8.7726}{16} = 88.83,$$

less 2 lbs. back pressure, = 38.83 - 2 = 36.83.

In practice only about 0.7 of this pressure is actually attained, so that  $36.83 \times 0.7 = 25.781$  lbs. is the M.E.P. upon which the engine is to be proportioned.

To obtain 900 H.P. we must have  $33,000 \times 900 = 29,700,000$  foot-pounds, and this divided by the mean pressure (25.78) and by the speed in feet (800) will give

$$\frac{33000 \times 900}{800 \times 25.78} = 1440$$
 sq. in.

for the area of the l. p. cylinder, which is about equivalent to 48 in. diam Now as one third of the work is to be done in the l. p. cylinder, the M.E.P.

in it will be 25.78 + 3 = 8.59 lbs.

The cut-off in the high-pressure cylinder is generally arranged to cut off at 0.6 of the stroke, and so the ratio of the h. p. to the l. p. cylinder is equal to  $16 \times 0.6 = 9.6$ , and the h. p. cylinder will be 1440 + 6 = 150 sq. in. area, or about 14 in. diameter, and the M.E.P. in the h. p. cylinder is equal to  $9.6 \times 8.59 = 82.46$  lbs.

If the intermediate cylinder is made a mean size between the other two, its size would be determined by dividing the area of the l. p. cylinder by the square root of the ratio between the low and the high; but in practice this is found to give a result too large to equalize the stresses, so that instead the area of the l. p. cylinder is found by dividing the area of the l. p. piston by 1.1 times the square root of the ratio of l. p. to h. p. cylinder, which in this case is  $1440 + (1.1 \sqrt{9.6}) = 422.5$  sq. in., or a little more than 23 in. diam. To put the above into the form of rules, we have

Area h. p. cyl. = 
$$\frac{\text{Area of low-pressure piston}}{\text{Cut-off in h. p. cyl.} \times \text{rate of expansion.}}$$
Area intermediate cyl. = 
$$\frac{\text{Area of low-pressure piston}}{1.1 \times \sqrt{\text{ratio of l. p. to h. p. cyl.}}}$$

The choice of expansion ratio is governed by the initial pressure, and is generally chosen so that the terminal pressure in the l. p. cylinder shall be about 10 lbs. absolute

Annular Ring Method. Jay M. Whitham, Trans. A. S. M. E., x. 577, gives the following method of ascertaining the diameter of pistons of

triple expansion engines:

Lay down a theoretical indicator-diagram of a simple engine for the par-Lay down a theoretical indicator diagram of a simple engine for the particular expansion desired. By trial find (with the polar planimeter or otherwise) the position of horizontal lines, parallel to the back pressure line, such that the three areas into which they divide the diagram, representing low, intermediate, and high pressure diagrams, marked respectively A, B, and C, are equal.

Find the mean ordinate of each area; that of "C" will be the mean unbalanced pressure on the small piston; that of "B" will be the mean unbalanced pressure on the area remaining after subtracting the area of the small piston from that of the intermediate; and that of the area "A" will denote the mean unbalanced pressure on a square inch of the annular ring of the large piston obtained by subtracting the intermediate from the large piston We thus see that the mean ordinates of the two lower cards act on annular riogs.

Let H = area of small piston in square inches:

 $\dot{S}$  = piston-speed in feet per minute; (I.H.P.) = indicated horse-power of engine.

Then for equal work in each cylinder we have:

Area of small piston = 
$$H = 33,000 \times \frac{\text{I.H.P.}}{3} + (ph \times S)$$
; . . . . (1)

Area of annular ring of 
$$\{ = 33,000 \times \frac{\text{I.H.P.}}{3} + (p_i \times S); \}$$

Area of intermediate piston 
$$= I = H + 33,000 \times \frac{I.H.P.}{3} + (p_i \times S); \quad . \quad (2)$$

Area of annular ring of large piston = 
$$33,000 \times \frac{\text{I.H.P.}}{3} + (p \times 8)$$
;

Area of large piston = 
$$L = I + 33,000 \times \frac{I.H.P.}{3} + (p_l \times S);$$
 . (5)

This method is illustrated by the following example: Given I.H.P. = 3000, piston-speed S=900 ft, per min., ratio of expansion 10, initial steam-pressure at cylinder 127 lbs. absolute, and back-pressure in large cylinder 4 lbs. absolute. Find cylinder diameters for equal work in each.

The mean ordinate of "C" is found to be 
$$ph = 37.414$$
 lbs. per sq. in.
""" "B"" ""  $p_i = 15.783$ " ""
""  $p_i = 11.780$ " ""

Then by (1), (2), and (8) we have:

$$H = 33,000 \times \frac{3000}{3} + 37.414 \times 900 = 980 \text{ sq. in., diam. } 85\%'';$$

$$I = $80 + 33,000 \times \frac{3000}{3} + 15.782 \times 900 = 3303 \text{ sq. in., diam. } 65'';$$

$$L = 3308 + 33,000 \times \frac{3000}{3} + 11.730 \times 900 = 6432$$
 sq. in., diam. 9014

Mr. Whitham recommends the following cylinder ratios when the pistonspeed is from 750 to 1000 ft. per min., the terminal pressure in the large cylinder being about 10 lbs. absolute.

CYLINDER RATIOS RECOMMENDED FOR TRIPLE-EXPANSION ENGINES.

Boiler-pressure (Gauge).	Small.	Intermediate.	Large.
180	1 1	2.25	5.00
140		2.40	5.85
150	1	2.55	6.90
160		2.70	7.25
	ı <b>wards</b> —quadruple-c	xpansion engine to	

He gives the following ratios from examination of a number of actual

engines:				
No. of Engines	Steam-boiler		Cylinder Ratios.	
Averaged.	Pressure.	h. p.	int.	l. p.
9	130	1	2.10	4.88
8	135	1	2.07	5.00
11	140	1	2.40	5.84
2	145	ī	2.35	5.28
28	150	ī	2.54	6.90
27	160	í	2.66	7.24

A Common Rule for Proportioning the Cylinders of multiple expansion engines is: for two-cylinder compound engines, the cylinder ratio is the square root of the number of expansions, and for triple-expansion engines the ratios of the high to the intermediate and of the intermediate to the low are each equal to the cube root of the number of expansions, the ratio of the high to the low being the product of the two ratios, that is, the square of the cube root of the number of expansions. Applying this rule to the pressures above given, assuming a terminal pressure (absolute) of 10 lbs. and 8 lbs. respectively, we have, for triple-expansion engines:

Boiler-	Termin <b>a</b> l	Pressure, 10 lbs.	Terminal Pressure, 8 lbs.			
pressure	No. of Ex-	Cylinder Ratios,	No. of Expansions.	Cylinder Ratios,		
(Absolute).	pansions.	areas.		areas.		
130	13	1 to 2.85 to 5.53	1614	1 to 2.53 to 6.42		
140	14	1 to 2.41 to 5.81	1714	1 to 2.60 to 6.74		
150	15	1 to 2.47 to 6.08	1894	1 to 2.66 to 7.06		
160	16	1 to 2.52 to 6.35	20	1 to 2.71 to 7.87		

The ratio of the diameters is the square root of the ratios of the areas, and the ratio of the diameters of the first and third cylinders is the same as the

ratio of the areas of first and second.

Seaton, in his Marine Engineering, says: When the pressure of steam employed exceeds 115 lbs, absolute, it is advisable to employ three cylinders, through each of which the steam expands in turn. The ratio of the lowpressure to high-pressure cylinder in this system should be 5, when the steam-pressure is 125 lbs. absolute; when 135 lbs. absolute, 5.4; when 145 lbs. absolute, 5.8; when 155 lbs. absolute, 6.2; when 165 lbs. absolute, 6.6. The ratio of low-pressure to intermediate cylinder should be about one half that between low-pressure and high-pressure, as given above. That is, if the ratio of l. p. to h. p. is 6, that of l. p. to int. should be about 3, and conse-quently that of int. to h. p. about 2. In practice the ratio of int. to h. p. is nearly 2.25, so that the diameter of the int. cylinder is 1.5 that of the h.p. The introduction of the triple-compound engine has admitted of ships being propelled at higher rates of speed than formerly obtained without exceeding the consumption of fuel of similar ships fitted with ordinary compound engines; in such cases the higher power to obtain the speed has been developed by decreasing the rate of expansion, the low-pressure cylinder being only 6 times the capacity of the high-pressure, with a working pressure of 170 lbs. absolute. It is now a very general practice to make the diameter of the low pressure cylinder equal to the sum of the diameters of the h. p. and int. cylinders; heuce,

> Diameter of int. cylinder = 1.5 diameter of h. p. cylinder; Diameter of l. p. cylinder = 2.5 diameter of h. p. cylinder.

In this case the ratio of l. p. to h. p. is 6.25; the ratio of int. to h. p. is 2.25;

and ratio of l. p. to int. is 2.78.

Ratios of Cylinders for Different Classes of Engines.
(Proc. Inst. M. E., Feb. 1887, p. 36.)—As to the best ratios for the cylinders in a triple engine there seems to be great difference of opinion. Considerable latitude, however, is due to the requirements of the case, inasmuch as it would not be expected that the same ratio would be suitable for an economical land engine where the space occupied and the weight were of minor importance, as in a war-ship, where the conditions were reversed. In the land engine, for example, a theoretical terminal pressure of about 7 lbs. above absolute vacuum would probably be aimed at, which would give a ratio of capacity of high pressure to low pressure of 1 to 8½ or 1 to 9; whilst in a war-ship a terminal pressure would be required of 12 to 13 lbs. which would need a ratio of capacity of 1 to 5; yet in both these instances the cylinders were correctly proportioned and suitable to the requirements of the case. It is correctly unwise, therefore, to introduce any hard-andfast rule.

Types of Three-stage Expansion Engines.—1. Three cranks at 120 deg. 2. Two cranks with 1st and 2d cylinders tandem. 3. Two cranks with 1st and 3d cylinders tandem. The most common type is the first, with cylinders arranged in the sequence high, intermediate, low.

Sequence of Cranks.—Mr. Wyllie (Proc. Inst. M. E., 1887) favors the sequence high, low, intermediate, while Mr. Mudd favors high, intermediate. low. The former sequence, high, low, intermediate, gave an approximately horizontal exhaust-line, and thus minimizes the range of temperature and the initial load; the latter sequence, high, intermediate, low, increased the range and also the load.

Mr. Morrison, in discussing the question of sequence of cranks, presented a diagram showing that with the cranks arranged in the sequence high, low, intermediate, the mean compression into the receiver was 1914 per cent of the stroke; with the sequence high, intermediate, low, it was 57 per cent. In the former case the compression was just what was required to keep

In the former case the compression was just what was required to keep the receiver pressure practically uniform; in the latter case the compression caused a variation in the receiver-pressure to the extent sometimes of

Welocity of Steam through Passages in Compound Engines. (Proc. Inst. M. E., Feb. 1887.)—In the SS. Para, taking the area of the cylinder multiplied by the piston-speed in feet per second and dividing by the area of the port the velocity of the initial steam through the high-pressure cylinder port would be about 100 feet per second; the exhaust would be about 90. In the intermediate cylinder the initial steam had a velocity of about 180, and the exhaust of 120. In the low-pressure cylinder the initial steam entered through the port with a velocity of 250, and in the exhaust-port the velocity was about 140 feet per second.

# QUADRUPLE-EXPANSION ENGINES.

H. H. Suplee (Trans. A. S. M. E., x. 583) states that a study of 14 different quadruple-expansion engines, nearly all intended to be operated at a pressure of 180 lbs. per sq. in., gave average cylinder ratios of 1 to 2, to 3.78, to 7.70, or nearly in the proportions 1, 2, 4, 8.

If we take the ratio of areas of any two adjoining cylinders as the fourth root of the number of expansions, the ratio of the 1st to the 4th will be the cube of the fourth root. On this basis the ratios of areas for different pressures and rates of expansion will be as follows:

Gauge- pressures.	Absolute Pressures.	Terminal Pressures.	Ratio of Expansion.	Ratios of Areas of Cylinders.
160	175	{ 12 10 8 12	14.6 17.5 21.9	1:1.95:8.81: 7.43 1:2.05:4.18: 8.55 1:2.16:4.68:10.12
180	195	10 8	16.2 19.5 24.4	1:2.01:4.02:8.07 1:2.10:4.42:9.28 1:2.22:4.94:10.98
200	215	12 10 8	17.9 21.5 26.9	1:2.06:4.23: 8.70 1:2.15:4.64: 9.98 1:2.28:5.19:11.81
220	235	12 10 8	19.6 28.5 29.4	1:2.10:4.43: 9.31 1:2.20:4.85:10.67 1:2.88:5.42:12.62

Seaton says: When the pressure of steam employed exceeds 190 lbs. absolute, four cylinders should be employed, with the steam expanding through each successively; and the ratio of 1. p. to h. p. should be at least 7.5, and if economy of fuel is of prime consideration it should be 8; then the ratio of first intermediate to h. p. should be 1.8. that of second intermediate to first interm. 2, and that of 1. p. to second int. 2.2.

In a paper read before the North East Coast Institution of Engineers and Shipbuilders, 1890, William Russell Cummins advocates the use of a four-cylinder engine with four cranks as being more suitable for high speeds than the three-cylinder three-crank engine. The cylinder ratios, he claims should be designed so as to obtain equal initial loads in each cylinder. The ratios determined for the triple engine are 1, 2.04, 6.54, and for the quadruple 1, 2.08, 4.46, 10.47. He advocates long stroke, high piston-speed, 100 revolutions per minute, and 250 lbs. boiler-pressure, unjacketed cylinders, and separate steam and exhaust valves.

# Diameters of Cylinders of Recent Triple-expansion Engines, Chiefly Marine.

Compiled from several sources, 1890-1893.

Diam. in inches: H = high pressure, I = intermediate, L = low pressure.

H	I	L	H	I	L	H	I	L	Н	I	L
3 43/4 5 6.5	5 7.5	8 18	16 161⁄4	25.6 237/8	41 38.5 31	22	36	{ 40 { 40	36 38	58 61.5	94 100
5 6.5	8 10.5 9	12 16.5	16.5 17	24.5 27	{ 81	23 23.5 24	38 38 37	61 60 56	28   28   39 40	56 61	86 97
7.1	11.8 12	18.9 19	17 17	26.5 28	42 45	25 26	40 42	64 69	40	59 67	88 106
8 9	11.5°	16 22.5	18 18	27 29	40 48	25 25 26 28 28 28 28 28 28 28	42.5 44	70 72 70	40 41	66 66 67	100
9.8 10	16	25.6 25 24	17 18 18 18 18.7 1854 19.7	26.5 28 27 29 305. 29.5 23.6 29.6	\$1 44 42 45 40 48 51 43.3 85.4 47.8	2996 29.5 30	44 48 48	3335	41% 42 43	59	101 1065/4 92 92 110 1061/4 113 (85.7
11 11	18 18 18 17.5	25 30	19.7 20	29.6 30	47.8 45	32 82	46 51	70 82	48 43%	66 68 67	110 10614
11.5 11.5	18 17.5 19.2	12.5 18.9 19 16 22.5 25.6 25 24 25 26 25 30 26.5 30.7 33.5	20 20	82.5	\$6 52 48 51 49.2	82 82 83 83.9	54 58 55.1	82 82 88 84.6	45 32.5 ( 32.5 (	71 68	113   85.7   85.7
13 14	22 22.4	33.5 36	20 21 21 21.7	33 32 36 83.5	48 51	84 84 84.5	54 50	85 90	47	75·	81.5 81.5
10 11 11 11.5 11.5 12 13 14 14.5	24 24 24.5	39 39 38	21.7 21.9 22	83.5 34 34	49.2 57 51	84.5 84.5	51 57	85 92	37 } 37 }	79	) 98   98

Where the figures are bracketed there are two cylinders of a kind. Two 28''= one 39.6'', two 31''= one 43.8'', two 32.5''= one 46.0'', two 36''= one 59.9'', two 37''= one 59.9'', two 40''= one 56.6'', two 91.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''= one 11.5''=

The Progress in Steam-engines between 1876 and 1893 is shown in the following comparison of the Corliss engine at the Centennial Exhibition in 1876 and the Allis-Corliss quadruple-expansion engine at the Chicago Exhibition.

	1893.	1876.
Engine	{ Quadruple- } } expansion. {	Simple
Cylinders, number	4	2
" diameter	24, 40, 60, 70 in.	40 in.
" stroke	72 in.	120 in.
Fly-wheel, diameter	30 ft.	30 ft.
" width of face	76 in.	24 in.
" weight	136.000 lbs.	125,440 lbs.
Revolutions per minute	60	36
Capacity, economical	2000 H.P.	1400 H.P.
" maximum	3000 H.P.	2500 H.P.
Total weight	650,000 lbs.	1,360,588 lbs.

The crank-shaft body or wheel-seat of the Allis engine has a diameter of 21 inches, journals 19 inches, and crank bearings 18 inches, with a total length of 18 feet. The crank-disks are of cast iron and are 8 feet in diameter. The crank-pins are 9 inches in diameter by 9 inches long.

eter. The crank-pins are 9 inches in diameter by 9 inches long.

A Double-tandem Triple-expansion Engine, built by Watts, Campbell & Co., Newark, N. J., is described in An. Mach., April 26, 1894. It is two three-cylinder tandem engines coupled to one shaft, cranks at 90°, cylinders 21, 32 and 48 by 60 in. stroke, 65 revolutions per minute, rated H. p. 2000; fly-wheel 28 feet diameter, 12 ft. face, weight 174,000 lbs; main shaft 22 in. diameter at the swell; main journals 19 × 38 in.; crank-pins 9½ × 10 in.; distance between centre lines of two engines 24 ft. 1½ in.; Corliser valves, with separate eccentrics for the exhaust-valves of the 1.p. cylinder.

Principal Engines in the Power, Plant at the World's Columbian Exposition, 1893.

Size of Steam- pipe.  Size of Ex- haust-pipe.  Weight of En- gine, ibs.	10 22 25 25 25 25 25 25 25 25 25 25 25 25
Revolutions per Minute.	2.5
Driv. Pulley. Diameter in. Face, in.	200
I.H.P. Maxi- mum Load.	888888888888888888888888888888888888888
I.H.P. Maxi- mum Econ- omy.	20000000000000000000000000000000000000
Cylinders, ins. Diameters and Stroke.	18, 20, 70 x 70 18, 20, 20 x 70 18, 20, 20 x 80 18, 20, 20 x 80 18, 20, 20 x 80 18, 20, 20 x 80 18, 20, 20 x 80 18, 20, 20 x 80 18, 20, 20 x 80 18, 20, 20 x 18 18, 20, 20 x 18 19, 20, 20 x 18 19, 20, 20 x 18 19, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 10, 20, 20 x 18 11, 20, 20 x 18 12, 20 x 18 13, 20 x 18 14, 20 x 18 16, 20 x 18 17, 20 x 18 18, 20 x 18 18, 20 x 18 19, 20 x 18 19, 20 x 18 10, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20 x 18 11, 20
Horizontal or Vertical.	ң::::, Þ; ң;;;;;;; Þ,ң;;;;; Þ,
Type of Engine.	Quad. exp. condensing.
Name of Engine and where Built.	E. P. Allis Co., Milwaukee.  Budinda, Scringer, Chemer, Chemer, Chemer, N. Westringnouse, Littaourg, P.,  Allis Littaourg, P.,  Allis Littaourg, P.,  Allis Littaourg, P.,  Matertown, Watertown, N. Y.  Ball & Wood Elizabeth, J. J.  N. Y. Safety Steam-Power Co.  Schickau, Germany, P. P.,  Phemix Iron Works Co., Meadville, Pa.,  A. L. Idle & Son, Springfield, Ill.  Allis Williams, Prediction, Milliams, Milliams, Phemistry, Milliams, Phemistry, Phemistry, Milliams, Phemistry, Phemistry, Milliams, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistry, Phemistr

# ECONOMIC PREFORMANCE OF STEAM-ENGINES. Economy of Expansive Working under Various Condi-tions, Single Cylinder.

# (Abridged from Clark on the Steam Engine.)

1. SINGLE CYLINDERS WITH SUPERHEATED STEAM, NONCONDENSING.—Inside cylinder locomotive, cylinders and steam-pipes enveloped by the hot gases in the smoke-box. Net boiler pressure 100 lbs.; net maximum pressure 100 lbs.; ure in cylinders 80 lbs. per sq. in.

2. SINGLE CYLINDERS WITH SUPERHEATED STEAM, CONDENSING.—The best results obtained by Hirn, with a cylinder 23% × 67 in. and steam superheated 150° F., expansion ratio 38% to 4%, total maximum pressure in cylinder 63 to 69 lbs. were 15.63 and 15.69 lbs. of water per I.H.P. per hour.

3. SINGLE CYLINDERS OF SMALL SIZE, 8 or 9 IN. DIAM., JACKETED, NON-CONDENSING.—The best results are obtained at a cut-off of 20 per cent, with

75 lbs. maximum pressure in the cylinder; about 25 lbs. of water per I.H.P.

4. SINGLE CYLINDERS, NOT STEAM-JACKETED, CONDENSING. -- Best results.

Engine.	Cylinder, Diam. and Stroke.	Cut-off.	Actual Expan- sion Ratio.	Total Maxi- mum Pressure in Cylin- der per sq. in.	Water as Steam per I.H.P. per hour.
Corliss and Wheelock Hirn, No. 6 Mair, M Bache Dexter Dallas Gallatin	ins.	per cent.	ratio.	lbs.	lbs.
	18 × 48	12.5	6.95	104.4	19.58
	2834 × 67	16.8	5.84	61.5	19.93
	82 × 66	24.6	3.84	54.5	26.46
	25 × 24	15.5	5.32	87.7	26.25
	26 × 36	18.8	4.46	80.4	23.86
	36 × 30	13.8	5.07	46.9	26.69
	30.1 × 30	15.0	4.94	81.7	21.89

#### SAME ENGINES. AVERAGE RESULTS.

Long Stroke.	Inches.	Cut-off, Per cent.	Lbs.	Lbs.
Corliss and Wheelock	18 × 48 2834 × 67	12.5 16.3	104.4 61.5	19.58 19.93
Short Stroke.				Ì
Bache	25 × 24	15.5	87.7	26.25
Dexter, Nos. 20, 21, 22, 23	26 × 36	{ 18.3 to 33.3 } { average 25 }	79.0	24.05
Dallas, Nos. 27, 28, 29	36 × 30	18.8 to 26.4 i	46.8	26.86
Gallatin, Nos, 24, 25, 22, 1	30.1 × 30	/ 10 8 A- 10 P )	78.2	23.50

Feed-water Consumption of Different Types of Engines.
The following tables are taken from the circular of the Tabor Indicator (Ashcroft Mfg. Co., 1889). In the first of the two columns under Feed-water required, in the tables for simple engines, the figures are obtained by computation from nearly perfect indicator diagrams, with allowance for cylinder condensation according to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table on page 752, but without allowance to the table of table on page 752, but without allowance to the table of table on page 752, but without allowance t ance for leakage, with back-pressure in the non-condensing table taken at 16 lbs. above zero, and in the condensing table at 3 lbs. above zero. The compression curve is supposed to be hyperbolic, and commences at 0.91 of the return-stroke, with a clearance of 3% of the piston-displacement.

Table No. 2 gives the feed-water consumption for jacketed compound-con-

densing engines of the best class. The water condensed in the jackets is included in the quantities given. The ratio of areas of the two cylinders are as 1 to 4 for 120 lbs. pressure; the clearance of each cylinder is 3%; and the cut-off in the two cylinders occurs at the same point of stroke. The initial pressure in the l. p. cylinder is 1 lb. per sq. in. below the back-pressure of the h. p. cylinder. The average back pressure of the whole stroke in the l. p. cylinder is 4.5 lbs. for 10% cut-off; 4.75 lbs. for 20% cut-off; and 5 lbs. for 30% cut-off. The steam accounted for by the indicator at cut-off in the b. p. cylinder (allowing a small amount for leakage) is .74 at 10% cut-off, .78 at 20%, and .82 at 30% cut-off. The loss by condensation between the cylinders is such that the steam accounted for at cut-off in the l. p. cylinder, expressed in proportion of that shown at release in the h. p. cylinder, is .85 at 10% cut-off, and .89 at 30% cut-off in the l. p. cylinder, is .85 at 10% cut-off, and .89 at 30% cut-off. The data upon which table No. 3 is calculated are not given, but the feedwater consumption is somewhat lower than has yet been reached (1894), the lowest steam consumption of a triple-exp. engine yet recorded being 11.7 lbs.

lowest steam consumption of a triple-exp. engine yet recorded being 11.7 lbs.

TABLE No. 1.

FEED-WATER CONSUMPTION, SIMPLE ENGINES. CONDENSING ENGINES. Non-condensing Engines.

	Atmos-	Pressure,	quired p	ater Re-		Atmos	Pressure,	Feed-wa quired p per F	ater Re- er I.H.P. Iour.
Per Cent Cut-off.	Initial Pressure above Atmosphere, 1bs.	Mean Effective Prilbs.	Corresponding to Diagrams with no Leakage, lbs.	Corresponding to Actual Results Attained in Practice, assuming Slight Leakage.	Per Cent Cut-off.	Initial Pressure above Atmos phere, lbs.	Mean Effective Prilbs.	Corresponding to Diagrams with no Leak-age, lbs.	Corresponding to Act- ual Results Attained in Practice, assum- ing Slight Leakage.
10 {	60 70 80 90 100	8.70 12.89 16.07 19.76 23.45	37.26 30.99 27.61 25.43 23.90	40.95 83.68 29.88 27.43 25.73	5{	60 70 80 90 100	14.42 16.96 19.50 22.04 24.58	18.22 17.96 17.76 17.57 17.41	20.00 19.69 19.47 19.27 19.07
20 {	60 70 80 90 100	21.12 26.57 32.02 87.47 42.92	27.55 25.44 21.04 23.00 22.25	29.43 27.04 25.68 24.57 28.77	10 {	60 70 80 90 100	22.34 26.08 29.72 33.41 37.10	17.68 17.47 17.80 17.15 17.02	19.84 19.09 18.89 18.70 18.56
30 {	60 70 30 90 100	30.47 37.21 48.97 50.73 57.49	27.24 25.76 24.71 23.91 23.27	29.10 27.43 26.29 25.38 24.68	15 {	60 70 80 90 100	29.00 38.65 38.28 42.92 47.56	17.93 17.75 17.60 17.45 17.82	19.51 19.27 19.09 18.91 18.74
40"	60 70 80 90 100	37.75 45.50 53.25 61.01 68.76	27.92 26.66 25.76 25.03 24.47	29.63 28.18 27.17 26.35 25.73	20 {	60 70 80 90 100	34.73 40.18 45.63 51.08 56.53	18.58 18.40 18.27 18.14 18.02	20.09 19.85 19.69 19.51 19.36
50 {	60 70 80 90 100	48.42 51.94 60.44 68.96 77.48	28, 94 27,79 26,99 26,83 25,78	80.66 29.81 28.88 27.62 26.99	30 {	60 70 80 90 100	44.06 50.81 57.57 64.82 71.08	20.19 20.04 19.91 19.78 19.67	21.64 21.41 21.25 21.06 20.98
					<b>40</b> {	60 70 80 90 100	51.35 59.10 66.85 74.60 82.36	21.63 21.49 21.86 21.24 21.18	22.96 22.74 22.56 22.41 22.24

TABLE No. 2,
FRED-WATER CONSUMPTION FOR COMPOUND CONDENSING ENGINES.

Cut-off.	Initial Pres Atmos	sure above phere.		ctive Press- phere.	Feed-water Required
per cent.	H.P. Cyl.,	L.P. Cyl.,	H.P. Cyl.,	L.P. Cyl.,	per I.H.P. per
	lbs.	lbs.	lbs.	lbs.	Hour, Lbs.
10	80	4.0	11.67	2.65	16.92
	100	7 8	15.83	3.87	15.00
	120	11.0	18.54	5.23	13.86
20 {	80	4.3	26.73	5.48	14.60
	100	8.1	33.13	7.56	13.67
	120	12.1	39.29	9.74	13.09
<b>30</b>	80	4.6	37.61	7.48	14.99
	100	8.5	46.41	10.10	14.21
	120	11.7	56.00	12.26	13.87

TABLE No. 3,
FEED-WATER CONSUMPTION FOR TRIPLE-EXPANSION CONDENSING ENGINES.

Cut-off,		Pressure mospher		Mean Ef	Feed-water Required		
per cent.	H.P. Cyl., lbs.	I. Cyl., lbs.	L.P. Cyl., lbs.	H.P. Cyl., lbs.	I. Cyl., lbs.	L.P. Cyl., lbs.	per I.H.P. per Hour, lbs.
30 {	120	87.8	1.8	38.5	17.1	6.5	12.05
	140	48.8	2.8	46.5	18.6	7.1	11.4
	160	49.3	3.8	55.0	20.0	8.0	10.75
40 {	120	38.8	2.8	51.5	22.8	8.6	11.65
	140	45.8	3.9	59.5	23.7	9.1	11.4
	160	51.3	5.3	70.0	25.5	10.0	10.85
50 {	120	39.8	8.7	60.5	26.7	10.1	12.2
	140	46.8	4.8	70.5	28.0	10.8	11.6
	160	52.8	6.3	82.5	<b>8</b> 0.0	11.8	11.15

Most Economical Point of Cut-off in Steam-engines. (See paper by Wolff and Denton, Trans. A. S. M. E., vol. ii. p. 147-281; also, Ratio of Expansion at Maximum Efficiency, R. H. Thurston, vol. ii. p. 182.)—The problem of the best ratio of expansion is not one of economy of consumption of fuel and economy of cost of boiler alone. The question of interest on cost of engine, depreciation of value of engine, repairs of engine, etc., enters as well; for as we increase the rate of expansion, and thus, within certain limits fixed by the back-pressure and condensation of steam, decrease the amount of fuel required and cost of boiler per unit of work we have to increase the dimensions of the cylinder and the size of the engine, to attain the required power. We thus increase the cost of the engine, etc., as we increase the rate of expansion, while at the same time we decrease the fuel consumption, the cost of boiler, etc. So that there is in every engine some point of cut-off, determinable by calculation and graphical construction, which will secure the greatest efficiency for a given expenditure of money, taking into consideration the cost of fuel, wages of engineer and firemen, interest on cost, depreciation of value, repairs to and insurance of boiler and engine, and oil, waste, etc., used for engine. In case of freight-carrying vessels, the value of the room occupied by fuel should be considered in estimating the cost of fuel.

Sizes and Calculated Performances of Vertical Highspeed Englues.—The following tables are taken from a circular of the Field Engineering Co., New York, describing the engines made by the Lake Erie Engineering Works, Buffalo, N. Y. The engines are fair representatives of the type now coming largely into use for driving dynamos directly without belts. The tables were calculated by E. F. Williams, designer of the engines. They are here somewhat abridged to save space:

# Simple Engines-Non-condensing.

of Cyl-	r, inches.  e, inches.  per Min-		H.P. when Cutting off at 1/5 stroke.			Cu	P. witting	off	Cu	P. wi	off	Dimensions of Wheels.		Steam-pipe, in.	st-pipe.
Diam. c inder,	Stroke,	Revs.	70 lbs.	80 lbs.	90 lbs.	70 lbs.	80 lbs.	90 1bs,	70 lbs.	80 lbs.	90 lbs.	Ft.	In.	Steam	Exhau
71/2 81/2 10/2 10/2 13/2 16 18 22 241/2 27	10 12 14 16 18 20 24 28 32 34	870 818 277 246 222 181 158 138 120 112	20 27 41 53 66 95 119 179 221 269	80 115 144 216 267	30 39 60 77 96 138 173 261 322 392	26 34 52 67 84 120 151 227 281 342	31 41 62 81 100 144 181 272 336 409	93 116 166 208 313 386	41 63 82 102	48 74 96 120 172 215 324	85 111 138 198 248 873 460	416 5 296 5'9" 616 316 6'8" 9 4 716 11 4 8'4" 15 416 10 19 5 11'8" 28 6 13'4" 34 7			3 3 4 4 4 4 4 5 6 7 8 9
Ratio	Mean eff. press.lb. Ratio of expans'n.			24 29 35 5		30,5	36,5 4	42	37	43.5	50	N o nomi	nal.	po'	wer
(abc Cyl.co Steam	Terminal pressure (about)lbs. Cyl.condensat'n, steam per I.H.P. per hourlbs		17.9 26	.26	22.3 26 27.4	22.4 24 31.2	25 24 29.0	27.6 24 27.9	29.8 21 32	33.3 21 31.4	21	100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 100 to 10	is a	ress	lbs.

# Compound Engines — Non-condensing — High - pressure Cylinder and Receiver Jacketed.

	Diam		inches.	. ber	H.P.when cutting off at ¼ Stroke in h.p. Cylinder.						off	at 1	n cu 6 Str Cylin	oke		
	lind		Stroke, inc	Revolutions Minute.		yl. tio, : 1.		yl. tio, : 1.	Ra	yl. tio, : 1.	Ra	yl. tio. : 1		yl. tio, : 1.	Ra	yl. tio, : 1.
H.P.	H.P.	L.P.	Str	Rev	80 lbs.	90 lbs.	130 lbs.	150 lbs.	80 lbs.	90 lbs.	130 lbs.	150 1bs.	80 lbs.	90 lbs.	130 lbs.	150 lbs.
20	1812 2012 2212 2812	38 43	10 12 14 16 18 20 24 28 32 31 42 48	370 318 277 246 222 185 158 120 112 93 80	7 9 14 18 26 32 43 57 74 94 138 180	37 53	19 24 36 47 68 84 112 151 194 249 365 477	82 40 60 78 112 139 186 249 321 412 603 789	29 43 57 81 100 135 180 282 297	39 58 76 109 135 181 242 812 400 587	45 67 87 125 154 206 277 357	59 87 114 164 202 271 363 468 601 880	56 83 109 156 192 258 346 446 572 838	70 104 136 195 241 823 483 558 715	81 121 158 226 279 374 502 647 829 1215	
Mea	n eff	ec. p	ress	lbs					10.4			21	20	25	29	36
		expa				1/6		31/4		04_		334_		34	9	
Ter. Loss	pres fro	s. (at in e	out xpai	, % ) .lbs. iding	14 7.3		16 7.9	9			18 10.5	18 12		10 15.5	11 14.6	11 17.8
be	low a	atıno	sph	ere, % r.lbs	34 55	15 42	17 47	8 29	5 83.3	0 27.7	0 28.7	0 25.4	0 30	0 26.2	0 21	20

The original table contains figures of horse-power, etc., for 110 and 120 lbs., cylinder ratio of 4 to 1; and 140 lbs., ratio 4½ to 1.

# CALCULATED PERFORMANCES OF STEAM-ENGINES. 779

# Compound-engines-Condensing-Steam-jacketed.

	Diam		inches.	s ber	off	whe at 1 p. (	Str	oke	off	at 1	neut Str Ylin	oke	off	H.P.whencut off at 1/4 Str in h.p. Cylin			
	nche		Stroke, inc	Revolutions	Ra	yl. tio, : 1.	Ra	yl. tio,	Ra	yl. tio, : 1.	Ra	yl. tio,	Ra	Cyl. Ratio, 3½: 1.		Cyl. Ratio, 4:1.	
H.P.	H.P.	L.P.	Str	Rev	80 lbs.	110 lbs.	115 lbs.	125 lbs.	80 lbs.	110 lbs.	115 lbs.	125 1bs.	80 lbs.	110 lbs.	115 lbs.	125 lbs.	
6 6½ 8½ 9½ 11 12½ 14 17 19 21 26 30	9 1016 12 1816 1816 2016 2016 2016 2016	1316 1616 19 2216 25 2816 3316 38 43	10 12 14 16 18 20 24 28 32 34 42 48	870 818 977 246 922 185 158 138 120 112 93 80	44 56 83 109 156 192 258 346 446 572 838 1096	602 772 1131	100 131 187 231 310 415 585 686 1006	484 624 801 1174	136 195 241 323 433 558 715 1048	714 915 1341	87 129 169 242 298 400 536 691 887	327 439 588 758 972 1425	90 133 174 250 308 413 554 714 915 1841	123 183 239 343 423 568 761 981 1258 1844	179 234 385 414 555 744 959 1230 1801	134 200 261 374 462 619 830 1070 1878 2012	
Mea	n eff	ec. p	ress	lbs.	20	27	24	28	25	32	31	34	32	44	43	48	
				on		16		34		0	_	14		34	-	14	
Cyl. St. 1	con per I.	densa H.P.	p. h	r.lbs.	17.3	18 16.6	20 16.6	20 15.2	15 17.0		18 16.3	18 15.8	17.5	12	14 16.8	16.0	

The original table contains figures for 95 lbs., cylinder ratio  $3\frac{1}{2}$  to 1; and 120 lbs., ratio 4 to 1.

# Triple-expansion Engines, Non-condensing.—Receiver only Jacketed.

Diameter Cylinders, inches.  Brooke, inches.  H. P. I. P. L. P. Wenter, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer, Manuer					when ( off at cent of in First	power Cutting 42 per Stroke t Cylin- er.	when ( off at cent of in First	power Cutting 50 per Stroke t Cylin- er.	Horse-power when Cutting off at 67 per cent of Stroke in First Cylin- der.		
H. P.	I. P.	L. P.	Stroke	Rev M	180 lbs.	200 lbs.	180 lbs.	200 lbs.	180 lbs.	200 lbs	
43/4	71/6	12	10	370	55	64	70	84	95	108	
512	816	1316	12	818	70	81	90	106	120	137	
612	1012	1612	14	277	104	191	133	158	179	204	
712	12	19	16	246	136	158	174	. 207	234	267	
9	1416	221/6	18	222	195	226	250	296	835	882	
10	16	25	30	185	241	279	308	366	414	471	
111/6	18	2814	24	158	823	374	418	490	555	632	
13	22	3312	28	138	433	502	554	657	744	848	
15	241/6	38	33	120		647	714	847	959	1098	
17	27	48	34	112		829	915	1089	1230	1401	
20	88	52	42	93		1215	1841	1592	1801	2053	
231/4	38	60	48	80	1870	1589	1754	2082	2356	2685	
Mean	<b>eff</b> ecti	ve pre	88.,	lbs.	25	29	32	38	48	49	
	expar						1:		10		
	p. I.H				20.76 2.59	19.36 2.39	19.25 2.40	17.00 2.12	17.89 2.23	17.20 2.15	

Triple-expansion Engines-Condensing-Steam-Jacketed.

Cy	amei linde iche	rs,	, inches.	volutions per finute.	Horse-power when Cut- ting off at ½ Stroke in First Cylin- der.		wh ting Sta Firs	en C	ut- at ½ in	when Cut-			when Cut-			
H.P.	I.P.	L.P.	Stroke,	Revolution Minute.	120 lbs.		160 lbs.		140 lbs.		120 lbs.	140 lbs.	160 lbs.	120 lbs.		160 lbs.
43/4	71/2	12	10	870		42			58			72	84	81	97	110
51/6	816	1314	12	818 277		53			67	76		92	107	104		140
616 716	101 <u>6</u> 12	1612 19	14 16	246		79 103			100 131	112 147		137	159	154		208
9 2	1416		18	222		148			187	211	141 203	180 257	208	201	239 343	272 390
10	16	25	20	185		183				260	250	317		856		481
111/2		2816	24	158		245				348	335	426		477	568	645
13	22	3316	28	138		329				467	450	571	663	640		865
15	2416	38	32	120	357			446	535	602	580	736	854	825		1115
17	27	43	34	112		543	629	572	686	772	714	944	1095	1058	1258	
20	33	52	42	93		796			1006			1383			1844	
231/2	38	60	48	80	877	1041	1206	1096	1316	1480	1424	1808	2099	2028	2411	2740
Mea	n eff	ec. p	ress.	,lbs.	16	19	22	20	24	27	26	33	38.3	37	44	50
No.	of ex	rpans	sions	3		26.8			20.1			13.4			8.9	
Per	cent	cyl.	cond	lens.	19	19	19	16	16	16	12	12	12	8	8	8
St. p	. I.H	[. <b>Ř</b> . p	. hr.	lbs.	14.7										14.9	
Coal	at8	lb. e	vap.	lbs.	1.8	1.73	1.66	1.78	1.74	1.65	1.78	1.70	1.62	1.96	1.86	1.77

Type of Engine to be used where Exhaust-steam is needed for Heating.—In many factories more or less of the steam exhausted from the engines is utilized for boiling, drying, heating, etc. Where all the exhaust-steam is so used the question of economical use of steam in the engine itself is eliminated, and the high-pressure simple engine is entirely suitable. Where only part of the exhaust-steam is used, and the quantity so used varies at different times, the question of adopting a simple. a condensing, or a compound engine becomes more complex. This problem is treated by C. T. Main in Trans. A. S. M. E., vol. x. p. 48. He shows that the ratios of the volumes of the cylinders in compound engines should vary according to the amount of exhaust-steam that can be used for heating. A case is given in which three different pressures of steam are required or could be used, as in a worsted dye-house: the high or boiler pressure for the engine, an intermediate pressure for crabbing, and low-pressure for boiling, drying, etc. If it did not make too much complication of parts in the engine, the boiler-pressure might be used in the high-pressure cylinder, exhausting into a receiver from which steam could be taken for running small engines and crabbing, the steam remaining in the receiver passing into the intermediate cylinder and expanded there to from 5 to 10 lbs. above the atmosphere and exhausted into a second receiver. From this receiver is drawn the low-pressure steam needed for drying, boiling, warming mills, etc., the steam remaining in receiver passing into the condensing cylinder.

Comparison of the Economy of Compound and Single-cylinder Corliss Condensing Engines, each expanding about Sixteen Times. (D. S. Jacobus, Trans. A. S. M. E., xii. 948.)

The engines used in obtaining comparative results are located at Stations I. and II. of the Pawtucket Water Co.

The tests show that the compound engine is about 30% more economical The tests snow that the compound eight is about 305 more economical than the single-cylinder engine. The dimensions of the two engines are as follows: Single  $20'' \times 48''$ ; compound 15'' and  $30\frac{1}{5}('' \times 30'')$ . The steam used per horse-power per hour was: single 20.35 lbs., compound 13.73 lbs. Both of the engines are steam-jacketed, practically on the barrels only, with steam at full boiler-pressure, viz. single 106.3 lbs., compound 127.5 lbs.

The steam-pressure in the case of the compound engine is 127 lbs., or 21 lbs. higher than for the single engine. If the steam-pressure be raised this amount in the case of the single engine, and the indicator-cards be increased accordingly, the consumption for the single-cylinder engine would be 19.97

lbs. per hour per horse-power.
Two-cylinder vs. The Two-cylinder vs. Three-cylinder Compound Engine.— A Wheelock triple-expansion engine, built for the Merrick Thread Co., Holyoke, Mass., is constructed so that the intermediate cylinder may be cut out of the circuit and the high-pressure and low-pressure cylinders run as a two-cylinder compound, using the same conditions of initial steam-pressure and load. The diameters of the cylinders are 12, 16, and 24\frac{1}{2} inches, the stroke of the first two being 36 in. and that of the low-pressure cylinder 48 in. The results of a test reported by S. M. Green and G. I. Rockwood, Trans. A. S. M. E., vol. xiii. 647, are as follows: In los, of dry steam used per I. H. P. are bour 12, and 2112 in configuration of the control of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration of the configuration per hour, 12 and 2413 in. cylinders only used, two tests 13.06 and 12.76 lbs., average 12.91. All three cylinders used, two tests 12.67 and 12.90 lbs., average 12.79. The difference is only 1%, and would indicate that more than two cylinders are unnecessary in a compound engine, but it is pointed out by Prof. Jacobus, that the conditions of the test were especially favorable for the two-cylinder engine, and not relatively so favorable for the three cylinders. The steam pressure was 142 lbs. and the number of expansions about 25. (See also discussion on the Rockwood type of engine, Trans. A. S. M. E., vol. xvi.)

Effect of Water contained in Steam on the Efficiency of the Steam-engine. (From a lecture by Walter C. Kerr, before the Franklin Institute, 1891.) -Standard writers make little mention of the effect of entrained moisture on the expansive properties of steam, but by common

or entrained moisture on the expansive properties of steam, out by common consent rather than any demonstration they seem to agree that moisture produces an ill effect simply to the percentage amount of its presence. That is, 5% moisture will increase the water rate of an engine 5%. Experiments reported in 1893 by R. C. Carpenter and L. S. Marks, Trans. A. S. M. E., xv., in which water in varying quantity was introduced into the steam-pipe, causing the quality of the steam to range from 99% to 58% dry. showed that throughout the range of qualities used the consumption of dry steam per indicated horse-power per hour remains practically constant, and

indicated that the water was an inert quantity, doing neither good nor harm. It appears that the extra work done by the heat of the entrained water during expansion is sensibly equal to the extra negative work which it does during exhaust and compression, that the heat carried in by the entrained water performs no useful function, and that a fair measure of the economy

of an eggine is the consumption of dry and saturated steam.

Relative Commercial Recommy of Best Modern Types of
Compound and Triple-expansion Engines. (J. E. Denton,
American Machinist, Dec. 17, 1891.)—The following table and deductions show the relative commercial economy of the compound and triple type for the best stationary practice in steam plants of 500 indicated horse-power. The table is based on the tests of Prof. Schröter, of Munich, of engine built at Augsburg, and those of Geo. H. Barrus on the best plants of America, and of detailed estimates of cost obtained from several first-class builders.

Trip motion, or Corliss engines of the twin-compound-receiver con-	H.P., by measurement.	13.6	14.0
densing type, expanding 16 times. Boiler pressure 120 lbs.	Lbs. coal per hour per H.P., assuming 8.5 lbs. actual evaporation.	1.60	1.65
Trip motion, or Corliss engines of the triple-expansion four-cylin-	Lbs. water per hour per H.P., by measurement.	12.56	12.80
der-receiver condensing type, ex- panding 22 times. Boiler pressure, 150 lbs.	Lbs. coal per hour per H.P., assuming 8.5 lbs. actual evaporation.	1.48	1.50

The figures in the first column represent the best recorded performance (1891), and those in the second column the probable reliable performance.

Increased cost of triple-expansion plant per horse-power, including boilers, chimney, heaters, foundations, piping and erection..... \$4.50

The following table shows the total annual cost of operation, with coal at \$4.00 per ton, the plant running 300 days in the year, for 10 hours and for 24 hours per day:

Hours running per day	10	24
Expense for coal. Compound plant	Per H.P. \$9.90	Per H.P. \$28.50
Expense for coal. Compount plant	9.00	25.92
Expense for coal. Triple plant	0.90	2.60
Annual interest at 5% on \$4.50	\$0.28	\$0.23
Annual depreciation at 5% on \$4.50 Annual extra cost of oil, 1 gallon per 24-hour	0.23	0.23
day, at \$0 50, or 15% of extra fuel cost	0.15	0.36
24 hours	0.06	0.14
	\$0.67	\$0.96
Annual saving per H.P	\$0.23	\$1.64

The saving between the compound and triple types is much less than that involved in the step from the single-expansion condensing to the compound engine. The increased cost per horse-power of the triple plant over the compound is due almost entirely to the extra cost of the triple engine and its foundations, the boilers costing the same or slightly more, owing to their extra strength. In the case of the single versus the compound, however, about one third of the increased cost of the compound engine is offset by the less cost of the latter's boilers.

Taking the total cost of the plants at \$38.50, \$36.50 and \$41 per horsepower respectively, the figures in the table imply that the total annual sav-

ing is as follows for coal at \$4 per ton:

1. A compound 500 horse-power plant costs \$18,250, and saves about \$1630 for 10 hours' service, and \$4885 for 24 hours' service, per year over a single plant costing \$16,750. That is, the compound saves its extra cost in 10-hour service in about one year, or in 24-hour service in four months.

2. A triple 500 horse-power plant costs \$20,500, and saves about \$114 per year in 10-hour service, or \$826 in 24-hour service, over a compound plant, thereby saving its extra cost in 10-hour service in about 1934 years, or in 24-

hour service in about 23/4 years,
Triple - expansion Pumping-engine at Milwaukee-Highest Economy on Record, 1893. (See paper on "Maximum Contemporary Economy of the Steam-engine," by R. H. Thurston, Trans. A. S. M. E., xv. 318.)—Cylinders 28, 48 and 74 in. by 60 in. stroke; ratios of volumes 1 to 3 to 7; total number of expansions 19.55; clearances, h.p. 1.4%; int. 1.5%; l. p. 0.77%; volume of receivers: 1st, 101.3 cu. ft.; 2d, 181 cu. ft.; steam-pressure gauge during test, average 121.5 lbs.; vacuum 18.84 lbs. absolute; revolutions 20.3 per minute; indicated horse-power, h.p. 175.4, int. 195.6, l. p. 228.9; total, 573.9; total friction, horse-power 52.91 = 9.22%; dry steam per I.H.P. per hour 11.678; B.T.U. per I.H.P. per min 217.6; duty in foot-pounds per 100 lbs. of coal, 143,806,000; per million B.T.U., 137,656,000.

Steam per I.H.P. per hour, from diagram, at cut-off	9.35	9.12	8.37
" " release	10.1	10.0	8.92
Steam accounted for by indicator at cut-off, per cent		85.0	78.2
" " release, " "	94.0	93.2	83.2
Per cent of total steam used by inchate	0 95		

Highest Economy of the Two-cylinder Compound Pumping-engines.—Repeated tests of the Pawtucket Corliss engine, 15 and 30% by 30 in. stroke, gave a water consumption of 18.69 to 14.16 lbs.; per I.H.P. per hour. Steam-pressure 123 lbs.; revolutions per min. 48 lbs.; expansions about 16. Cylinders jacketed. The lowest water rate was with jackets in use; both jackets supplied with steam of boiler pressure. average saving due to jackets was only about 21/2 per cent. (Trans. A. S. M. E., xi. 328 and 1038; xiii. 176.)

This record was beaten in 1894 by a Leavitt pumping-engine at Louisville, Ky. (Trans. A. S. M. E. xvi) Cylinders 27.21 and 54.13 in. diam. by 10 ft stroke; revolutions per min. 18.57; piston speed 371.5 ft.; expansions 20.4; steam-pressure, gauge, 140 lbs. Cylinders and receiver jacketed. Steam used per I.H.P. per hour, 12.228 lbs. Duty per million B.T.U. = 138,126,000 ft.-lbs.

Test of a Triple-expansion Pumping-engine with and without Jackets, at laketon, Ind., by Prof. J. E., Denton (Trans. A. S. M. E., xiv. 1340).—Cylinders 24, 34 and 54 in. by 36 in. stroke; 28 revs. per nin.; H.P. developed about 320; bolier-pressure 150 lbs. Tests made on eight different days with different sets of conditions in jackets. At 150 lbs. boilerpressure, and about 20 expansions, with any pressure above 43 lbs. in all of the jackets and reheaters, or with no pressure in the high jacket, the performance was as follows: With 2.5% of moisture in the steam entering the engine, the jackets used 16% of the total feed-water. About 20% of the latter was condensed during admission to the high cylinder and about 13.85 lbs. of feed-water was consumed per hour per indicated horse-power. With no jackets or reheaters in action the feed-water consumption was 14.99 lbs., or s.3% more than with jackets and reheaters. The consumption of lubricating oil was two thirds of a gallon of machine oil and one and three quarter gallons of cylinder oil per 24 hours. The friction of the engine in eight tests on different days varied from 5.1% to 8.7%.

If we regard the measurements of indicated horse-power and water as liable to an error of one per cent, which is probably a minimum allowance for the most careful determinations, the steam economy is the same for the

following conditions:

(a) Any pressure from 43 to 131 in the intermediate and low jackets and receivers.

(b) Any pressure from 0 to 151 in the jacket of high cylinder.
(c) Any cut-off from 21% to 23% in high cylinder, from 89% to 43% in intermediate cylinder, from 40% to 53% in low cylinder.

# Water Consumption of Three Types of Sulzer Engines.

(B. Donkin, Jr., Eng'g, Jan. 15, 1892, p. 77.)

SUMMARY AND AVERAGES OF TWENTY-ONE PUBLISHED EXPERIMENTS OF THE SULZER TYPE OF STEAM-ENGINE. ALL HORIZONTAL CONDENSING AND STEAM-JACKETED. From 1872 to 1891.

Type of Engine.	Steam-pressure above Atmos- phere.	Piston-speed.	Indicated Horse-power.	Steam Consumption, pounds per I.H.P. per hour, includingSteampipe water and Jacket Water.	I.H.P. per hour, exclud'g Steam-	arks,
Single {    Cyl. {    Com. }    pound. {    Triple }	lbs. 72 to 95 84 to 104 104 to 156	ft. per min 272 to 438 384 to 689 444 to 607	157 to 400 133 to 524 198 to 615	Mean 19.4 § 13.35 to 16.0 Mean 14.44	lbs. 17.9 to 19.2 Mean 18.95 18.4 to 15.5 Mean 14.8 11.7 to 12.7 Mean 12.18	5 exp. 1872-78 10 exp. 1888-91 6 exp. 1888-89

Triple-expansion Corliss engine at Narragausett E. L. Co., Providence, R. I., built by E. P. Allis Co. Cylinder 14, 25 and 33 in. by 48 in. stroke tested at 99 revs. per min.; 125 lbs. steam-pressure; steam per I.H.P. per hour 12, 94 lbs.; H.P. 516. A full account of this engine, with records of tests is given by J. T. Henthorn, in Trans. A. S. M. E., xii. 643.

Buckeye-cross compound engine, tested at Chicago Exposition, by Geo. H. Barrus (Eng'g Record. Feb. 17, 1894). Cylinder 14 and 28 by 24 in. stroke; ing and one non-condensing..... 277 16.07 15.71 17.22 16.07 23.24 Steam per horse-power per hour.....

Relative Economy of Compound Non-condensing Engines under Variable Loads.—F. M. Rites, in a paper on the Steam Distribution in a Form of Single-acting Engine (Trans. A. S. M. E. xiii. 537), discusses an engine designed to meet the following problem: Given an

extreme range of conditions as to load or steam-pressure, either or both, to fluctuate together or apart, violently or with easy gradations, to construct an engine whose economical performance should be as good as though the engine were specially designed for a momentary condition—the adjustment to be complete and automatic. In the ordinary non-condensing compound engine with light loads the high-pressure cylinder is frequently forced to supply all the power and in addition drag along with it the low-pressure piston, whose cylinder indicates negative work. Mr. Rites shows the peculiar value of a receiver of predetermined volume which acts as a clearance chamber for compression in the high-pressure cylinder. The Westinghouse compound single acting engine is designed upon this principle. The following results of tests of one of these engines rated at 175 H.P. for most economical load are given:

WATER RATES UNDER VARYING LOADS, LBS. PER H.P. PER HOUR.

Horse-power	210	170	140	115		80	50
Non-condensing 2	22.6	21.9	22.2	22.2	22.4	24.6	28.8
Condensing 1	8.4	18.1	18 2	18.2	18.3	18.3	5U T

Efficiency of Non-condensing Compound Engines. (W. Lee Church, Am. Mach., Nov. 19, 1891.)—The compound engine, non-condensing, at its best performance will exhaust from the low-pressure cylinder at a pressure 2 to 6 pounds above atmosphere. Such an engine will be limited in its economy to a very short range of power, for the reason that its valve-motion will not permit of any great increase beyond its rated power, and any material decrease below its rated power at once brings the expansion curve in the low-pressure cylinder below atmosphere. In other words, decrease of load tells upon the compound engine somewhat sooner, and much more severely, than upon the non-compound engine. The loss commences the moment the expansion line crosses a line parallel to the atmospheric line, and at a distance above it representing the mean effective pressure necessary to carry the frictional load of the engine. When expansion falls to this point the low-pressure cylinder, becomes an air-pump over more or less of its stroke, the power to drive which must come from the high-pressure cylinder alone. Under the light loads common in many industries the low-pressure cylinder is thus a positive resistance for the greater portion of its stroke. A careful study of this problem revealed the functions of a fixed intermediate clearance, always in communication with the high-pressure cylinder, and having a volume bearing the same ratio to that of the high-pressure cylinder that the high-pressure cylinder shears to the low-pressure. Diagrams were laid out on this principle and justified until the best theoretical results were obtained. The designs were then laid down on these lines, and the subsequent performance of the engines, of which some 600 have been built, have fully confirmed the judgment of the designers.

The effect of this constant clearance is to supply sufficient steam to the low-pressure cylinder under light loads to hold its expansion curve up to atmosphere, and at the same time leave a sufficient clearance volume in the high-pressure cylinder to permit of governing the engine on its compression

under light loads.

Economy of Engines under Varying Loads. (From Prof. W. C. Unwin's lecture before the Society of Arts, London, 1892.)—The general result of numerous trials with large engines was that with a consumption of 1½ pounds of coal per indicated horse-power for a condensing engine, and 1½ pounds for a non-condensing engine, figures which correspond to about 1½ pounds to 2½ pounds of coal per effective horse-power. It was much more difficult to ascertain the consumption of coal in ordinary every-day work, but such facts as were known showed it was more than on trial.

In electric-lighting stations the engines work under a very fluctuating load, and the results are far more unfavorable. An excellent Willans noncondensing engine, which on full-load trials worked with under 2 pounds per effective horse-power hour, in the ordinary daily working of the station used 7½ pounds per effective horse-power hour in 1886, which was reduced to 4.3 pounds in 1890 and 3.8 pounds in 1891. Probably in very few cases were the engines at electric-light stations working under a consumption of 4½ pounds per effective horse-power hour. In the case of small isolated motors working with a fluctuating load, still more extravagant results were obtained.

### ENGINES IN ELECTRIC CENTRAL STATIONS.

Year	1886.	1890,	1892.
Coal used per hour per effective H.P	8.4	5.6	4.9
" " " indicated "	6.5	4.35	3.8

At electric-lighting stations the load factor, viz., the ratio of the average load to the maximum, is extremely small, and the engines worked under very unfavorable conditions, which largely accounted for the excessive fuel consumption at these stations.

In steam-engines the fuel consumption has generally been reckoned on the indicated horse-power. At full-power trials this was satisfactory enough, as the internal friction is then usually a small fraction of the total.

Experiment has, however, shown that the internal friction is nearly constant, and hence, when the engine is lightly loaded, its mechanical efficiency is greatly reduced. At full load small engines have a mechanical efficiency of 0.8 to 0.85, and large engines might reach at least 0.9, but if the internal friction remained constant this efficiency would be much reduced at low powers. Thus, if an engine working at 100 indicated horse power had an efficiency of 0.85, then when the indicated horse-power fell to 50 the effective horse-power would be 35 horse-power and the efficiency out 0.75. Similarly, at 25 horse-power the effective horse-power would be 10 and the efficiency

Experiments on a Corliss engine at Creusot gave the following results: 0.75 0.5<del>0</del> 0.74 0.25 0.125 0.82 0.79 0.63 0.48Non condensing, " 0.86 0.83 0.78 0.67 0.52

At light loads the economy of gas and liquid fuel engines fell off even more rapidly than in steam-engines. The engine friction was large and nearly constant, and in some cases the combustion was also less perfect at light loads. At the Dresden Central Station the gas-engines were kept working at nearly their full power by the use of storage-batteries. The results of some experiments are given below: Brake load, per Petroleum Eng. Petroleum Eng

			I do ordani mag.,
cent of full	of Gas per Brake	Lbs.of Oil per	Lbs. of Oil per
Power.	H.P. per hour.	B.H.P. per hr.	B.H.P. per hr.
100	22.2	0.96	0.89
75	23.8	1.11	0.99
59	28.0	1.44	1.20
20	40.8	2.38	1.82
1916	66.8	4.25	8.07

Steam Consumption of Engines of Various Sizes.—W. C. Unwin (Cassier's Magazine, 1894) gives a table showing results of 49 tests of engines of different types. In non-condensing simple engines, the steam consumption ranged from 55 lbs. per hour in a 5-horse-power engine to 22 lbs. in a 134-H.P. Harris-Corliss engine. In non-condensing compound engines, the only type tested was the Willans, which ranged from 27 lbs. in a 10 H.P. slow-speed engine, 122 ft. per minute, with steam-pressure of 84 lbs. to 19.2 lbs. in a 40-H.P. engine, 401 ft. per minute, with steam-pressure of 85 lbs. A Willans triple-expansion non-condensing engine, 39 H.P. 172 lbs. to 19.2 lbs. in a 40-H.P. engine, 401 ft. per minute, with steam-pressure 165 lbs. A Willans triple-expansion non-condensing engine, 39 H.P., 172 lbs. pressure, and 400 ft. piston speed per minute, gave a consumption of 18.5 lbs. In condensing engines, nine tests of simple engines gave results ranging only from 18.4 to 22 lbs., and, leaving out a beam pumping-engine running at slow speed (240 ft. per minute) and low steam-pressure (45 lbs.), the range is only from 18.4 to 19.8 lbs. In compound-condensing engines over 100 H.P., in 13 tests the range is from 13.9 to 20 lbs. In three triple-expansion engines the figures are 11.7, 12.2, and 12.45 lbs., the lowest being a Sulzer engine of 360 H.P. In marine compound engines, the Fusivama and Culchester tested H.P. In marine compound engines, the Fusiyama and Colchester, tested by Prof. Kennedy, gave steam consumption of 21.2 and 21.7 lbs.; and the Meteor and Tartar triple-expansion engines gave 15.0 and 19.8 lbs.

Taking the most favorable results which can be regarded as not excep-

tional, it appears that in test trials, with constant and full load, the expen-

diture of steam and coal is about as follows: Per Indicated Horse- Per Effective Horse-

Kind of Engine.	powe	r Hour.	power Hour.		
Mild of Imagine.	Coal,	Steam, lbs.	Coal, lbs.	Steam,	
Non-condensing		16.5	2.00	18.0	
Condensing	1.50	13.5	1.75	15.8	

These may be regarded as minimum values, rarely surpassed by the most efficient machinery, and only reached with very good machinery in the favorable conditions of a test trial.

Small Engines and Engines with Fluctuating Loads are usually very wasteful of fuel. The following figures, illustrating their low economy, are given by Prof. Unwin, Cassier's Magazine, 1894.

COAL CONSUMPTION PER INDICATED HORSE-POWER IN SMALL ENGINES. In Workshops in Birmingham, Eng.

Probable I.H.P. at full load		45	60	45	75	60	60
Average I.H.P. during observation.	2.96	7.87	8.2	8.6	23.64	19.08	20.08
Coal per I.H.P. per hour dur-	96 A	91 95	99 81	18 13	11 68	0 59	8 50

It is largely to replace such engines as the above that power will be distributed from central stations.

# Steam Consumption in Small Engines.

Tests at Royal Agricultural Society's show at Plymouth, Eng. Engineering, June 27, 1890.

Rated H.P.	Com- pound or Simple,	Diam. of Cylinders.		Stroke, ins.	Max. Steam- pressure.	Per Brake H.P., per hour.		Water per lb., Coal.
5 3 2	simple compound simple	<u> </u>	6	10 6 714	75 110 75		78.1 lbs.	6.1 lb. 8.72** 7.64 **

Steam-consumption of Engines at Various Speeds. (Profs. Denton and Jacobus, Trans. A. S. M. E., x. 722)— $17 \times 30$  in. engine, non-condensing, fixed cut-off, Meyer valve.

# STEAM-CONSUMPTION, LBS. PER I.H.P. PER HOUR.

Figures taken from plotted diagram of results.

Revs. per min	8	12	16	20	24	32	40	48	56	72	88
cut off, lbs	39	35	32	30	29.3	29	28.7	28.5	28.3	23	27.7
1/4 " "	39	34	31	29.5	29	28.4	28	27.5	27.1	26.3	25.6
1/2 " "	89	36	34	33	32	30.8	29.8	29.2	28.8	28.7	

STEAM-CONSUMPTION OF SAME ENGINE; FIXED SPEED, 60 REVS. PER MIN.

Varying cut-off compared with throttling-engine for same horse-power and boiler-pressures:

Cut-off, fraction of stroke 0.1 0.15 0.2 0.25 0.8 0.4 0.5 0.6 0.7 0.8 Boiler-pressure, 90 lbs... 27 27.2 27.8 28.5 29 27.5 27 34.2 32.2 31.5 31.4 31.6 82.2 34.1 36.5 39 39

Throttling-engine, % Cut-off, for Corresponding Horse-powers. 87 88.8 81.5 29.8 .... ... ... ... Boiler-pressure, 90 lbs... 42 60 lbs... 49 46.8 44.6 41 ........ 50.1

Some of the principal conclusions from this series of tests are as follows: 1. There is a distinct gain in economy of steam as the speed increases for 1/4, 1/4, and 1/4 cut-off at 90 lbs. pressure. The loss in economy for about 1/4 cut-off is at the rate of 1/12 lb. of water per H.P. for each decrease of a revolution per minute from 80 to 26 revolutions, and at the rate of 1/4 lb. of water below 26 revolutions. Also, at all speeds the 1/4 cut-off is more economical than either the 16 or 16 cut-off.

2. At 90 lbs. boiler-pressure and above 1/2 cut-off, to produce a given H.P. requires about 20% less steam than to cut off at 1/2 stroke and regulate by the throttle.

3. For the same conditions with 60 lbs. boiler-pressure, to obtain, by rottling, the same mean effective pressure at 1/2 cut-off that is obtained by cutting off about 1/4, requires about 30% more steam than for the latter condition.

High Piston-speed in Engines. (Proc. Inst. M. E., July, 1883, p. 321).—The torpedo boat is an excellent example of the advance towards high speeds, and shows what can be accomplished by studying lightness and strength in combination. In running at 22½ knots an hour, an engine with cylinders of 16 in. stroke will make 480 revolutions per minute, which gives 1280 ft. per minute for piston-speed; and it is remarked that engines running at that high rate work much more smoothly than at lower speeds, and that the difficulty of lubrication diminishes as the speed increases.

A High-speed Corliss Engine.—A Corliss engine, 20 × 42 in., has been running a wire-rod mill at the Trenton Iron Co.'s works since 1877, at 160 revolutions or 1120 ft. piston-speed per minute (Trans. A. S. M. E., ii. 72). A piston-speed of 1200 ft. per min. has been realized in locomotive

practice

The Limitation of Engine-speed. (Chas. T. Porter, in a paper on the Limitation of Engine-speed, Trans. A. S. M. E., xiv. 806.)—The practical limitation to high rotative speed in stationary reciprocating steam-engines is not found in the danger of heating or of excessive wear, nor, as engines is not found in the danger of heating or of excessive wear, nor, as is generally believed, in the centrifugal force of the fly-wheel, nor in the tendency to knock in the centres, nor in vibration. He gives two objections to very high speeds: First, that "engines ought not to be run as fast as they can be;" second, the large amount of waste room in the port, which is required for proper steam distribution. In the important respect of economy of steam, the high-speed engine has thus far proved a failure. Large gain was looked for from high speed, because the loss by condensation on a given surface would be divided into a greater weight of steam, but this expectation has not been realized. For this unsatisfactory result we have to lay the blame chiefly on the excessive amount of waste room. The have to lay the blame chiefly on the excessive amount of waste room. The ordinary method of expressing the amount of waste room in the percentage added by it to the total piston displacement, is a misleading one. It should be expressed as the percentage which it adds to the length of steam admission. For example, if the steam is cut off at 1/5 of the stroke, 8% added by the waste room to the total piston displacement means 40% added to the volume of steam admitted. Engines of four, five and six feet stroke may properly be run at from 700 to 800 ft. of piston travel per minute, but for ordinary sizes, says Mr. Porter, 600 ft. per minute should be the limit.

**Influence of the Steam-jacket,—Tests of numerous engines with and without steam-jackets show an exceeding diversity of results, ranging all the way from the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of

all the way from 30% saving down to zero, or even in some cases showing an actual loss. The opinions of engineers at this date (1894) is also as diverse as the results, but there is a tendency towards a general belief that the jacket is not as valuable an appendage to an engine as was formerly supposed. An extensive resume of facts and opinions on the steam-jacket is given by Prof. Thurston, in Trans. A. S. M. E., xiv. 462. See also Trans. A. S. M. E., xiv. 873 and 1340; xiii. 176; xii. 426 and 1340; and Jour. F. I., April, 1891, p. 276.

The following are a few statements selected from these papers.

The results of tests reported by the research committee on steam-jackets appointed by the British Institution of Mechanical Engineers in 1886, indi-

cate an increased efficiency due to the use of the steam jacket of from 1% to over 30%, according to varying circumstances.

Sennett asserts that "it has been abundantly proved that steam-jackets are not only advisable but absolutely necessary, in order that high rates of expansion may be efficiently carried out and the greatest possible economy of heat attained."

Isherwood finds the gain by its use, under the conditions of ordinary practice, as a general average, to be about 20% on small and 8% or 9% on large engines, varying through intermediate values with intermediate sizes, it being understood that the jacket has an effective circulation, and that

both heads and sides are jacketed.

Professor Unwin considers that "in all cases and on all cylinders the jacket is useful; provided, of course, ordinary, not superheated, steam is used; but the advantages may diminish to an amount not worth the interest on extra cost."

Professor Cotterill says: Experience shows that a steam-jacket is advantageous, but the amount to be gained will vary according to circumstances. In many cases it may be that the advantage is small. Great caution is necessary in drawing conclusions from any special set of experiments on the influence of jacketing,

Mr. E. D. Leavitt has expressed the opinion that, in his practice, steam-jackets produce an increase of efficiency of from 15% to 20%. In the Pawtucket pumping-engine, 15 and 30½ × 30 in., 50 revs. per min., steam-pressure 125 lbs. gauge, cut-off ½ in h.p. and ½ in l.p. cylinder, the barrels only jacketed, the saving by the jackets was from 1% to 4%. The superintendent of the Holly Mfg. Co. (compound pumping-engines) says: "In regard to the benefits derived from steam-jackets on our steam-cylinder. cylinders, I am somewhat of a skeptic. From data taken on our own engines and tests made I am yet to be convinced that there is any practical value in the steam-jacket." . . . "You might practically say that there is no difference.

Professor Schröter from his work on the triple-expansion engines at Augs burg, and from the results of his tests of the jacket efficiency on a small burg, and from the results of his tests of the jacket emiciency on a small engine of the Sulzer type in his own laboratory, concludes: (1) The value of the jacket may vary within very wide limits, or even become negative. (2) The shorter the cut-off the greater the gain by the use of a jacket. (3) The use of higher pressure in the jacket than in the cylinder produces an advantage. The greater this difference the better. (4) The high-pressure cylinder may be left unjacketed without great loss, but the others should always be jacketed.

The test of the Laketon triple-expansion pumping-engine showed a gain of 8.3% by the use of the jackets, but Prof. Denton points out (Trans. A. S. M. E.. xiv. 1412) that all but 1.9% of the gain was ascribable to the greater

M. E., xiv. 1412) that all but 1.9% of the gain was ascribable to the greater

range of expansion used with the jackets.

Test of a Compound Condensing Engine with and without Jackets at different Loads. (R. C. Carpenter, Trans. A. S. M. E., xiv. 428.)—Cylinders 9 and 16 in.×14 in. stroke; 112 lbs. boiler-pressure; rated capacity 100 H. P.; 265 revs. per min. Vacuum, 23 in. From the results of several tests curves are plotted, from which the following principal figures are taken.

This table gives a clue to the great variation in the apparent saving due to the steam-jacket as reported by different experimenters. With this particular engine it appears that when running at its most economical rate of 100 H.P., without jackets, very little saving is made by use of the jackets. When running light the jacket makes a considerable saving, but when overloaded it is a detriment.

At the load which corresponds to the most economical rate, with no steam in jackets, or 100 H.P., the use of the jacket makes a saving of only 15; but at a load of 60 H.P. the saving by use of the jacket is about 11%, and the shape of the curve indicates that the relative advantage of the jacket would

be still greater at lighter loads than 60 H.P.

Counterbalancing Engines.—Prof. Unwin gives the formula for counterbalancing vertical engines:

in which  $W_1$  denotes the weight of the balance weight and p the radius to its centre of gravity,  $W_2$  the weight of the crank-pin and half the weight of the connecting-rod, and r the length of the crank. For horizontal engines:

$$W_1 = \frac{2}{2}(W_2 + W_0)^{\frac{r}{p}}$$
 to  $\frac{3}{2}(W_2 + W_0)^{\frac{r}{p}}$ , . . . . (2)

in which  $W_0$  denotes the weight of the piston, piston-rod, cross-head, and the other half of the weight of the connecting rod,

The American Machinist, commenting on these formulæ, says: For horizontal engines formula (2) is often used; formula (1) will give a counterbalance too light for vertical engines. We should use formula (2) for computing the counterbalance for both horizontal and vertical engines, eventure locometries in which the counterbalance should be hearlier. excepting locomotives, in which the counterbalance should be heavier.

Preventing Vibrations of Engines.-Many suggestions have been made for remedying the vibration and noise attendant on the working of the big engines which are employed to run dynamos. A plan which has given great satisfaction is to build hair-felt into the foundations of the engine. An electric company has had a 90 horse-power engine removed from its foundations, which were then taken up to the depth of 4 feet. A layer of felt 5 inches thick was then placed on the foundations and run up 2 feet on all sides, and on the top of this the brickwork was built up. -Safety Valve.

Steam-engine Foundations Embedded in Air.—In the sugarrefinery of Claus Spreckels, at Philadelphia, Pa., the engines are distributed practically all over the buildings, a large proportion of them being on upper floors. Some are bolted to iron beams or girders, and are consequently innocent of all foundation. Some of these engines ran noiselessly and satisfactorily, while others produced more or less vibration and rattle. To correct the latter the engineers suspended foundations from the bottoms of the engines, so that, in looking at them from the lower floors, they were literally

hanging in the air.-Iron Age, Mar. 13, 1890.

Cost of Coal for Steam-power.—The following table shows the amount and the cost of coal per day and per year for various horse-powers, from 1 to 1000, based on the assumption of 4 lbs. of coal being used per hour per horse power. It is useful, among other things, in estimating the saving that may be made in fuel by substituting more economical boilers and engines for those already in use. Thus with coal at \$3.00 per ton, a saving of \$9000 per year in fuel may be made by replacing a steam plant of 1000 H.P., requiring 4 lbs. of coal per hour per horse-power, with one requiring only 2 lbs.

	per H	I.P. per	mption hour; lays in a	10 hou	IFH &	\$1.	.50.	\$5	L00.	\$2	3.00.	\$4.	00.
Horse-power.	Lbs.	Long	Tons.		ort ns.		er Ton.		er t Ton.		er t Ton.		er t Ton.
Horse	Per	Per	Per	Per	Per		t in lars.		st in lars.		st in llars.		st in lars.
	Day.	Day.	Year.	Day.	Year	Per Day.	Per Year	Per Day.	Per Year.	Per Day.	Per Year.	Per Day.	Per Year
1 10 25 50 75 100 150 250 250 350 400	40 400 1,000 2,000 3,000 4,000 6,000 10,000 12,000 14,000 16,000	1.3393 1.7857 2.6785 3.5714 4.4642 5.3571 6.2500 7.1428	1,607.13 1,874.98 2,112.84	.02 .20 .50 1.00 1.50 2.00 3.00 4.00 5.00 7.00 8.00	150 300 450 600 900 1,200 1,500 1,800 2,100 2,400	1.50 2.25 3.00 4.50 6.00 7.50 9.00 10.50 12.00	1,350 1,800 2,250 2,700 3,150 3,600	16.00	3,600 4,200 4,800	.06 .60 3.00 4.50 6.00 9.00 12.00 15.00 21.00 24.00	1,350 1,800 2,700 3,600 4,500 5,400 6,200 7,200	.08 .80 2.00 6.00 8.00 19.00 16.00 20.00 24.00 28.00	8,400 9,600
450 500 600 700 800 900 1,000	18,000 20,000 24,000 28,000 32,000 36,000	8,0356 8,9285 10,7142 12,4999 14,2856 16,0713	2,410,69 2,678,55 3,214,26 3,749,97 4,285,68 4,821,39 5,357,10	9.00 10.00 12.00 14.00 16.00 18.00 20.00	2,700 3,000 3,690 4,200 4,800 5,400	13.50 15.00 18.00 21.00 24.00 27.00	4,050 4,500 5,400 6,300 7,200 8,100	18 00 20.00 24.00 28.00 32.00 36.00	5,400 6,000 7,200 8,400 9,600	27.00 30.00 36.00 42.00 48.00 54.00	8,100 9,000 10,800 11,600 12,400 14,200	40,00 48,00 56,00 64,00 72,00	10,800 12,000 14,400 16,800 19,200 21,600 24,000

Storing Steam Heat .- There is no satisfactory method for equalizing the load on the engines and boilers in electric-light stations. Storage-batteries have been used, but they are expensive in first cost, repairs, and attention. Mr. Halpin, of London, proposes to store heat during the day in specially constructed reservoirs. As the water in the boilers is raised to 250 lbs. pressure, it is conducted to cylindrical reservoirs resembling English horizontal boilers, and stored there for use when wanted. In this way a comparatively small boiler plant can be used for heating the water to 250 lbs. pressure all through the twenty-four hours of the day, and the stored water may be drawn on at any time, according to the magnitude of the demand. The attann-engines are to be worked by the steam generated by the release of pressure from this water, and the valves are to be arranged in such a way that the steam shall work at 130 lbs, pressure. A reservoir 6 ft. in diametriana 30 ft long, containing \$6.00 lbs of heated water at 250 lbs, pressurewould supply \$250 lbs of steam at 30 lbs pressure. As the steam consumption of a condensing electric light engine is about 16 lbs, per horse-power hour, such a reservoir would supply 250 effective horse-power hours. In 1838 in France, this method of storing steam was used on a transmax of the reservoir excitaning 40 gallons of water at 220 lie-pressure. The reservoir was charged with steam from a stationary boiler at once that transmay

Chas of Section of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th

		ompo <b>und</b> Signe,	Condensing Engine.	Non-con- densing Engine
1 2	Cost engine and piping, complete	\$25.00 5.00	\$20.00 7.50	\$17.50 7.50
n a.	Engine foundations		5.50 	4.50 29.50
h H	Dequentiation, seem found cost frequents to the control of the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cost to the cos	0.50 2.00 0.45	1.32 0.66 1.65 0.871 0.138	1.18 0.59 1.415 0.332 0.125
34	Trial of them & & 7, & &	5.015	4.139	<b>3</b> ,708
) 1 12 18	Casi hadeds food pullips, else		18.33 4.17 7.30	16.00 5,00 8.00
10 17 18 18 20 20 20	Tryancuman, as you holad cool frequency, the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the	0 918 ,867 ,818 ,307	1.240 1.240 1.240	129,00 1,410 580 1,620 2,143 0,1
1		1		

be deducted from the cost of the total amount of steam generated, in order to arrive at the cost properly chargeable to power. The figures in lines 29 and 30 are based on an assumption made by Mr. Main of losses of heat amounting to 25% between the toiler and the exhaust-pipe, an allowance which is probably too large.

### ROTARY STEAM-ENGINES.

Steam Turbines.—The steam turbine is a small turbine wheel which runs with steam as the ordinary turbine does with water. (For description of the Parsons and the Dow steam turbines see Modern Mechanism, p. 298, etc.) The Parsons turbine is a series of parallel-flow turbines mounted side by side on a shaft; the Dow turbine is a series of radial outward-flow turbines, placed like a series of concentric rings in a single plane, a stationary guide-ring being between each pair of movable rings. The speeds of the steam turbines enormously exceed those of any form of engine with reciprocating piston, or even of the so-called rotary engines. The three- and four-cylinder engines of the Brotherhood type, in which the several cylinders are usually grouped radially about a common crank and shaft, often exceed 1000 revolutions per minute, and have been driven, experimentally, above 2000; but the steam turbine of Parsons makes 10,000 and even 20,000 revolutions, and the Dow turbine is reputed to have attained 25,000. (See Trans. A. S. M. E., vol. x. p. 680, and xii. p. 888; Trans. Assoc. of Eng'g Societies, vol. viii. p. 583; Eng'g, Jan. 13, 1888, and Jan. 8, 1892; Eng'g News, Feb. 27, 1892.) A Dow turbine, exhibited in 1889, weighed 68 ibs., and developed 10 H.P., with a consumption of 47 ibs. of steam per H.P. per hour, the steam pressure being 70 lbs. The Dow turbine is used to spin the fly-wheel of the Howell torpedo. The dimensions of the wheel are 13.8 in. diam., 6.5 in width, radius of gyration 5.57 in. The energy stored in it at 10,000 revs. per min. is 500,000 ft.-lbs.

The De Laual Steam Turbine, shown at the Chicago exhibition, 1898, is a reaction wheel somewhat similar to the Pelton water-wheel. The

The De Laval Steam Turbine, shown at the Chicago exhibition 1898, is a reaction wheel somewhat similar to the Pelton water-wheel. The steam jet is directed by a nozzle against the plane of the turbine at quite a small angle and tangentially against the circumference of the medium periphery of the blades. The angle of the blades is the same at the side of admission and discharge. The width of the blade is constant along the

entire thickness of the turbine.

The steam is expanded to the pressure of the surroundings before arriving at the blades. This expansion takes place in the nozzle, and is caused simply by making its sides diverging. As the steam passes through this channel its specific volume is increased in a greater proportion than the cross section of the channel, and for this reason its velocity is increased, and also its momentum, till the end of the expansion at the last sectional area of the nozzle. The greater the expansion in the nozzle the greater its velocity at this point. A pressure of 75 lbs, and expansion to an absolute pressure of one atmosphere give a final velocity of about 2625 ft. per second.

Expansion is carried further in this steam turbine than in ordinary steamengines. This is on account of the steam expanding completely during its

work to the pressure of the surroundings.

For obtaining the greatest possible effect the admission to the blades must be free from blows and the velocity of discharge as low as possible. These conditions would require in the steam turbine an enormous velocity of periphery—as high as 1800 to 1650 ft. per second. The centrifugal force, nevertheless, puts a limit to the use of very high velocities. In the 5 horse power turbine the velocity of periphery is 574 ft. per second, and the number of revolutions 30,000 per minute.

However carefully the turbine may be manufactured it is impossible, on account of unevenness of the material, to get its centre of gravity to correspond exactly to its geometrical axie of revolution; and however small this difference may be, it becomes very noticeable at such high velocities. De Laval has succeeded in solving the problem by providing the turbine with a flexible shaft. This yielding shaft allows the turbine at the high rate of speed to adjust itself and revolve around its true centre of gravity, the centre line of the shaft meanwhile describing a surface of revolution.

speed to adjust itself and revolve around its true centre of gravity, the centre line of the shaft meanwhile describing a surface of revolution.

In the gearing-box the speed is reduced from 30,000 revolutions to 3000 by means of a driver on the turbine shafts, which sets in motion a cogwheel of 10 times its own diameter. These gearings are provided with spiral cogs placed at an angle of about 45°. The shaft of the larger cog-wheel, running at a speed of 3000 revolutions, is provided at its outer end with a

pulley for the further transmission of the power.

Rotary Steam-engines, other than steam turbines; have been invented by the thousands, but not one has attained a commercial success. The possible advantages, such as saving of space, to be gained by a rotary engine are overbalanced by its waste of steam.

The Tower Spherical Engine, one of the most recent forms of rotary engine, is described in Proc. lust. M. E., 1885, also in Modern

Mechanism, p. 296.

### DIMENSIONS OF PARTS OF ENGINES.

The treatment of this subject by the leading authorities on the steam-engine is very unsatisfactory, being a confused mass of rules and formule based partly upon theory and partly upon practice. The practice of builders shows an exceeding diversity of opinion as to correct dimensions. The treatment given below is chiefly the result of a study of the works of Rankine Seaton, Unwin, Thurston, Marks, and Whitham, and is largely a condensation of a series of articles by the author published in the American Marchiust, in 1894, with many alterations and much additional matter. In order to make a comparison of many of the formulæ they have been applied to the assumed cases of six engines of different sizes and in some cases. to the assumed cases of six engines of different sizes, and in some cases this comparison has led to the construction of new formulæ.

Cylinder. (Whitham.)—Length of bore = stroke + breadth of piston-ring - 1/8 to 1/8 in; length between heads = stroke + thickness of piston + sum of clearances at both ends; thickness of piston = breadth of ring + thickness of flange on one side to carry the ring = + thickness of follower-

plate.

Clearance of Piston. (Seaton.)—The clearance allowed varies with the size of the engine from ½ to ¾ in. for roughness of castings and 1/16 to ¼ in. for each working joint. Naval and other very fast-running engines have a larger allowance. In a vertical direct-acting engine the parts which wear so as to bring the piston nearer the bottom are three, viz., the shaft journals, the crank-pin brasses, and piston-rod gndgeon-brasses.

Thickness of Cylinder. (Thurston.)—For engines of the older types and under moderate steam-pressures, some builders have for many years restricted the stress to about 2550 lbs. per sq. in.

is a common proportion; t, D, and b being thickness, diam., and a constant added quantity varying from 0 to  $\frac{1}{2}$  in., all in inches;  $p_1$  is the initial unbalanced steam-pressure per sq. in. In this expression b is made larger for horizontal than for vertical cylinders, as, for example, in large engines 0.5 in the one case and 0.2 in the other, the one requiring re-boring more than the other. The constant a is from 0.0004 to 0.0005; the first value for vertical cylinders are constant a in the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of the other of cal cylinders, or short strokes; the second for horizontal engines, or for long strokes.

Thickness of Cylinder and its Connections for Marine Engines. (Seaton).—D =the diam. of the cylinder in inches; p =load on the safety-valves in lbs. per sq. in.; f, a constant multiplier = thickness of barrel + .25 in.

Thickness of metal of cylinder barrel or liner, not to be less than  $p \times D$  + 

Thickness of liner when of steel  $p \times D + 6000 + 0.5$ metal of steam-ports =  $0.6 \times f$ . "valve-box sides =  $0.65 \times f$ . ..

^{*} When made of exceedingly good material, at least twice melted, the kness may be 0.8 of that given by the above rules.

Thickness of r	netal of v	alve-bo:	x covers	= 0.7	' × f	:		•
44	" c	vlinder	bottom	= 1.1	- x ₹	if sin	gle thic	ckness.
44	**	••	**	= 0.6	5 × 1	if do	uble	"
44	44	44	covers					"
46	66	44	44	= 0.6	X 1	if do	üble	"
64	cylinder	flange		= 1.4				
46	0, 2	cover-f	lange	= 1.8				
46	44	valve-b		= 1.0	$\times f$			
44	46	door-fl	ange	= 0.9	$\times$ 7			
**			er ports					
44	46	46	• • • •	= 1.0	$\times f$	when	there is	s a false-face.
44	66	false-fa	ace	= 0.8			cast ir	
44	44	66		= 0.6	XI	wher	steel o	or bronze.

Whitham gives the following from different authorities:

Whitham recommends (6) where provision is made for the reboring, and where ample strength and rigidity are secured, for horizontal or vertical cylinders of large or small diameter; (9) for large cylinders using steam under 100 lbs. gauge-pressure, and

$$t=0.003D \sqrt{p}$$
 for small cylinders. . . . . . (12) Marks gives  $t=0.00028pD$  . . . . . . . . . . (13)

This is a smaller value than is given by the other formulæ quoted; but Marks says that it is not advisable to make a stoam-cylinder less than 0.75 in. thick under any circumstances.

The following table gives the calculated thickness of cylinders of engines of 10, 30, and 50 in. diam., assuming p the maximum unbalanced pressure on the piston = 100 lbs. per sq. in. As the same engines will be used for calculation of other dimensions, other particulars concerning them are here given for reference.

### DIMENSIONS, ETC., OF ENGINES.

Engine No	1 and 2.	3 and 4.	5 and 6.
Indicated horse-power I.H.P. Diam. of cyl., in D Stroke, feet L Revs. per min r Piston speed, ft. per min S Area of piston, sq. in a Mean effective pressure M.E.P. Max. total unbalanced press P Max total per sq. in p	10 1 2 250 125 500 78.54 42 7854	450 30 2145 130 65 650 706 .86 32 .3 70 .686 100	1250 50 4 8 90 45 700 1963.5 30 196,850 100

THICKNESS OF CYLINDER BY FORMULA.	1 and 2.	8 and 4.	5 and 6.
(1) $.0004pD + 0.5$ , short stroke	.90	1.70	2.50
(1) $.0005pD + 0.5$ , long stroke	1.00 .33	2.00 .99	3.00 1 67
(2) $.00033pD$ (3) $.0002pD + 0.6$	.80	1.40	1.60
(5) $.0001pD + .15 \sqrt{D}$	.57	1.12	1.56
(6) .03 \(\sqrt{Dp}\)		1.64	2.12
(7) $\frac{(D+2.5)}{1900} p$		1.71	2.76
(8) $.00033pD + 0.8$	1.18	1.79	2.45
(9) $.0004pD + 0.5$	.90	1.70	2.50
(10) $.0004pD + \frac{1}{12}$ (vertical)	.53 .63	1.83 1.68	2.18 2.63
(12) .0000pD + 78 (HOLIZOHOM)	.30(?)	1.50	2.00
(12) $.003D \sqrt{p}$ (small engines) (13) $.00028pD$	.28(?)	.84(?)	1.40(?)
Average of first eleven	.76	1.48	2.26
The average corresponds nearly convenient approximation is $t=\frac{1}{2}$	0.0004Dp + 0.3i	$a t = .00037D_1$ in., which give	o + 0.4 in. A
Diameters 10 Thicknesses,70	20 30 1.10 1.50	40 50 1.90 2.30	60 in. 2.70 in.
Cylinder-heads.—Thurston thickness, at the edges and in the cylinder. An excess of not less the middle. Where made, as is usual mediate radiating, connecting riagainst shearing is probably an experienced builders, by Professo	flanges, exceed an 25% is usual in large enging its or webs, apple. An example Thurston, ga	ding somewhal It may be es, of two disthat section mination of the	at that of the thinner in the sks with inter- which is safe he designs of
$t=rac{1}{30}$ D being the diameter of that circl	$\frac{Dp}{000} + \frac{1}{4}$ inch,	thickness is i	(i)
Thurston also gives $t = .$	$005D\sqrt{p}+0.9$	5	(2)
Marks gives $t=0$	.003 $D\sqrt{p}$ .	<b></b>	(3)
He also says a good practical rule to make the thickness of the cylin applying this factor to his formu- have	ma for thickne	ess of walls, o	.00020pD, we
t	= .00035pD.	· · · · ·	(4)
Whitham quotes from Seaton,			
$t = \frac{pD + 500}{2000}$ , which i	s equal to .000	5pD + .25 inc	<b>h</b> (5)
Seaton's formula for cylinder be	ottoms, quoted	l above, is	
t = 1.1f, in which $f = .0002pL$	+ .85 inch, o	r t = .00022pI	0 + .93. . (6)
Applying the above formulæ to ter, with maximum unbalanced	the engines of	? 10. 30. and 50	inches diame-
have			
Cylinder diameter,	-		<u> </u>
(1) $t = .00033Dp + $ (2) $t = .005D \sqrt{p} + $	.25 = .58	1.25 1.	
(2) $t = .005D \sqrt{p} +$	.25 = .75	1.75 2.	
(3) $t = .003 D \sqrt{p}$	= .30	.90 1.	50
(3) $t = .003D \sqrt{p}$ (4) $t = .00035Dp$ (5) $t = .0005Dp +$ (6) $t = .00022Dp +$	= .35 $= .75$	1.05 1. 5 1.75 2.	75
(6) $t = .00022Dp +$	.93 = 1.18	1.59 2.	03
• •			

1.38

2.10

The average is expressed by the formula t = .00036Dp + .31 inch. Meyer's "Modern Locomotive Construction," p. 24, gives for locomotive cylinder-heads for pressures up to 120 lbs.:

16 to 18 14 to 15 11 to 18 For diameters, in...... 19 to 22 9 to 10 Thickness, in... 114

Taking the pressure at 120 lbs. per sq. in., the thicknesses  $1\frac{1}{4}$  in. and  $\frac{3}{4}$  in. for cylinders 22 and 10 in. diam., respectively, correspond to the formula t=.00085Dp+.38 inch.

web-stiffened Cylinder-covers.—Seaton objects to webs for stiffening cast-iron cylinder-covers as a source of danger. The strain on the web is one of tension, and if there should be a nick or defect in the outer edge of the web the sudden application of strain is apt to start a crack. He recommends that high-pressure cylinders over 24 in. and lowcrack. He recommends that high-pressure cylinders over 24 in. and lowpressure cylinders over 40 in. diam. should have their covers cast hollow,
with two thicknesses of metal. The depth of the cover at the middle should
be about ½ the diam. of the piston for pressures of 80 lbs. and upwards,
and that of the low-pressure cylinder-cover of a compound engine equal to
that of the high-pressure cylinder. Another rule is to make the depth at
the middle not less than 1.3 times the diameter of the piston-rod. In the
British Navy the cylinder-covers are made of steel castings, ¾ to 1½ in.
thick, generally cast without webs, stiffness being obtained by their form,
which is often a series of corrupations.

which is often a series of corrugations.

Cylinder-head Holts.—Diameter of bolt-circle for cylinder-head = diameter of cylinder +2 × thickness of cylinder +2 × diameter of bolts.

The bolts should not be more than 6 inches apart (Whitham).

5000c area of a single bolt, p = boiler-pressure in lbs. per sq. in.; 5000 lbs. is taken

as the safe strain per sq. in. on the nominal area of the bolt.

Seaton says: Cylinder-cover studs and bolts, when made of steel, should be of such a size that the strain in them does not exceed 5000 lbs. per sq. in. When of less than % inch diameter it should not exceed 4500 lbs. per sq. in. When of iron the strain should be 20% less.

Thurston says: Cylinder flanges are made a little thicker than the cylinder, and usually of equal thickness with the flanges of the heads. Cylinderbolts should be so closely spaced as not to allow springing of the flanges and leakage, say, 4 to 5 times the thickness of the flanges. Their diameter should be proportioned for a maximum stress of not over 4000 to 5000 lbs.

per square inch.

If D =diameter of cylinder, p =maximum steam-pressure, b =number of bolts, s =size or diameter of each bolt, and 5000 lbs, he allowed per sq. in. of nominal area of the bolt,  $.7854D^2p = 8927bs^3$ ; whence  $bs^3 = .0002D^3p$ ;

$$b = .0002 \frac{D^2 p}{s^2}$$
;  $s = .01414 \sqrt{\frac{p}{b}}$ . For the three engines we have:

Diameter of cylinder, inches		80	50
Diameter of bolt-circle, approx		35	57.5
Circumference of circle, approx	40.8	110	180
Minimum No. of bolts, circ. + 6	7	18	30
Diam. of bolts, $s = .01414D$ . $\frac{p}{b}$	¾ in.	1.00	1.29

The diameter of bolt for the 10 inch cylinder is 0.54 in. by the formula, but ¾ inch is as small as should be taken, on account of possible overstrain by the wrench in screwing up the nut.

The Pitton. Details of Construction of Ordinary Pistons. (Seaton.)—Let D be the diameter of the piston in inches, p the effective of the piston in inches.

tive pressure per square inch on it, x a constant multiplier, found as follows:

$$x = \frac{D}{50} \times \sqrt{p} + 1.$$

```
The thickness of front of piston near the boss = 0.2 \times x rim = 0.17 \times x.
                                         44
                        back
                                                                     = 0.18 \times x
           "
                                                                    = 0.8
                        boss around the rod
                                                                              \times x.
           "
                        flange inside packing-ring
                                                                     = 0.28 \times x
           46
                                 at edge
                                                                     = 0.25 \times x
                        packing-ring
junk-ring at edge
           "
                                                                     = 0.15 \times x.
                                                                     \approx 0.23 \times x.
                                      inside packing-ring = 0.21 \times x.
at bolt-holes = 0.35 \times x.
and piston edge = 0.25 \times x.
           "
                        metal around piston edge
                                                                     = 0.68 \times x.
The breadth of packing-ring
      depth of piston at centre
                                                                     = 1.4 \times x
      lap of just-ring on the piston 0.45 \times x. space between piston body and packing-ring 0.3 \times x. diameter of junk-ring bolts 0.1 \times x + 0.25 in.
  ..
      diameter of junk-ring bolts
  • •
                                                                     = 10 diameters.
  66
      number of webs in the piston
                                                                     = (D + 20) + 12.
                                                                     = 0.18 \times x.
      thickness
```

Marks gives the approximate rule: Thickness of piston-head =  $\sqrt{ld}$ , in which l = length of stroke, and d = diameter of cylinder in inches. Whitham says in a horizontal engine the rings support the piston, or at least a part of it, under ordinary conditions. The pressure due to the weight of the piston upon an area equal to 0.7 the diameter of the cylinder > breadth of ring-face should never exceed 200 lbs. per sq. in. He also gives a formula much used in this country: Breadth of ring-face = 0.15  $\times$  diameter of cylinder.

# Thickness of piston-head.

Marks, $\sqrt{lD}$ ; long stroke	3.81	5.48	7.00
	3.94	6.51	8.32
	4.80	9.80	15.40
	1.89	4.41	6.93
Whitham, breadth of ring = $.15D$	1.50	4.50	7.50

Diameter of Piston Packing-rings. — These are generally turned, before they are cut, about ½ inch diameter larger than the cylinder, for cylinders up to 20 inches diameter, and then enough is cut out of the ring to spring them to the diameter of the cylinder. For larger cylinders the rings are turned proportionately larger. Seaton recommends an excess of 1% of the diameter of the cylinder.

O'1% of the diameter of the cylinder.

Oross-section of the Bings.—The thickness is commonly made 1,30th of the diam, of cyl. + ½ inch, and the width = thickness + ½ inch. For an eccentric ring the mean thickness may be the same as for a ring of uniform thickness, and the minimum thickness = ¾ the maximum.

For an eccentric ring the mean thickness may be in each as for a ring of uniform thickness, and the minimum thickness = 36 the maximum. A circular issued by J. H. Dunbar, manufacturer of packing-rings. Youngstown, O., says: Unless otherwise ordered, the thickness of rings will be made equal to .03 × their diameter. This thickness has been found to be satisfactory in practice. It admits of the ring being made about 3/16" to the foot larger than the cylinder, and has, when new, a tension of about two pounds per inch of circumference, which is ample to prevent leakage if the surface of the ring and cylinder are smooth.

two pounds per inch of circumrerence, which is ample to prevent leakage if the surface of the ring and cylinder are smooth. As regards the width of rings, authorities "scatter" from very narrow to very wide, the latter being fully ten times the former. For instance, Unwingives W=d.014  $\pm$ .08. Whitham's formula is W=d.15. In both formulæ W is the width of the ring in inches, and d the diameter of the cylinder in inches. Unwin's formula makes the width of a  $20^{\circ}$  ring  $W=20\times.014$   $\pm$ .08  $\pm$ .36", while Whitham's is  $20\times.15=3$ " for the same diameter of ring. There is much less difference in the practice of engine-builders in this respect, but there is still room for a standard width of ring. It is believed that for cylinders over 16" diameter  $\frac{3}{2}$ " is a popular and practical width, and  $\frac{1}{2}$ " for cylinders of that size and under.

respect, but there is sun from for a standard with or fing. It is beneved that for cylinders over 16" diameter ¾" is a popular and practical width, and ¼" for cylinders of that size and under.

Fit of Piston-rod into Piston. (Seaton.)—The most convenient and reliable practice is to turn the piston-rod end with a shoulder of 1/16 inch for small engines, and ¼ inch for large ones, make the taper 3 in. to

the foot until the section of the rod is three fourths of that of the body, then turn the remaining part parallel; the rod should then fit into the piston so as to leave 1/4 inch between it and the shoulder for large pistons, and 1/16 in. for small. The shoulder prevents the rod from splitting the piston, and allows of the rod being turned true after long wear without encroaching on

The piston is secured to the rod by a nut, and the size of the rod should be such that the strain on the section at the bottom of the thread does not exceed 5500 lbs. per sq. in. for iron, 7000 lbs. for steel. The depth of this nut need not exceed the diameter which would be found by allowing these strains. The nut should be locked to prevent its working loose.

Diameter of Piston-rods.—Unwin gives

$$d^{\prime\prime}=bD\sqrt{p}, \quad \ldots \qquad (1$$

in which D is the cylinder diameter in inches, p is the maximum unbalanced pressure in lies per sq. in., and the constant b=0.0167 for iron, and b=0.0144 for steel. Thurston, from an examination of a considerable number of rods in use, gives

$$d'' = \sqrt[4]{\frac{D^2 p L^2}{a} + \frac{D}{80}}$$
, nearly, . . . . . . . (2)

(L in feet, D and d in inches), in which a = 10,000 and upward in the various (L) in reet, D and a in inches), in which a=10,000 and upward in the various types of engines, the marine screw engines or ordinary fast engines on shore giving the lowest values, while "low-speed engines" being less liable to accident from shock give a=15,000, often.

Connections of the piston-rod to the piston and to the crosshead should have a factor of safety of at least 8 or 10. Marks gives

$$d'' = 0.0179D \sqrt{p}$$
, for iron; for steel  $d'' = 0.0105D \sqrt{p}$ ; . . (8)

and 
$$d'' = 0.03901 \sqrt[4]{D^2 l^2 p}$$
, for iron; for steel  $d'' = 0.03525 \sqrt[4]{D^2 l^2 p}$ , (4)

in which l is the length of stroke, all dimensions in inches. Deduce the diameter of piston-rod by (3), and if this diameter is less than 1/12l, then use (4).

• Seaton gives: Diameter of piston-rod = 
$$\frac{\text{Diameter of cylinder}}{F} \sqrt{p}$$
.

The following are the values of F:

Naval engines, direc	t-acting		F = 60
" " retur	n connucting-rod	l. 2 rods	F = 80
Mercantile ordinary	stroke, direct-acti	ng	F = 50
" long	**		
" very long			F = 45
" medium	stroke, oscillating		F = 45

Nors.-Long and very long, as compared with the stroke usual for the power of engine or size of cylinder.

In considering an expansive engine p, the effective pressure should be taken as the absolute working pressure, or 15 lbs. above that to which the boiler safety-valve is loaded; for a compound engine the value of p for the high-pressure piston should be taken as the absolute pressure, less 15 lbs., or the same as the load on the safety-valve; for the medium-pressure the load may be taken as that due to half the absolute boiler-pressure; and for the low-pressure cylinder the pressure to which the escape-valve is loaded + 15 lbs., or the maximum absolute pressure, which can be got in the reserver or about 25 lbs. It is an advantage to make all the rods of a conceiver, or about 25 lbs. It is an advantage to make all the rods of a compound engine alike, and this is now the rule.

Applying the above formulæ to the engines of 10, 30, and 50 in. diameter, both short and long stroke, we have:

#### Diameter of Piston-rods.

Diameter of Cylinder, inches	10		. 30		50	
Stroke, inches	12	24	30	60	48	96
Unwin, iron, .0167D $\sqrt{p}$	1.67	1.67	5.01	5.01	8.35	8.35
Unwin, steel, .0144 $D\sqrt{p}$	1.44	1.44	4.32	4.32	7.20	7.20
Thurston $\sqrt[4]{\frac{\overline{D^2pL^2}}{10,000}} + \frac{D}{80}$ (L in feet).	1.18		8.12	· ·•••	5.10	
Thurston, same with $a = 15,000$		1.40		3.88		6.35
Marks, iron, .0179 $D\sqrt{p}$	1.79		5.87	5.87	8.95	8.95
Marks, iron, .03901 $\sqrt[4]{D^2 l^2 p}$	1.35	1.91	3.70	5.13	6.04	8.54
Marks, steel, .0105 $D\sqrt{p}$	(1.05)		(3.15)		(5.25)	
Marks, steel, .03525 $\sqrt[4]{D^2l^2p}$	1.22	1.73	3.34	4.72	5.46	7.72
Seaton, naval engines, $\frac{D}{60} \sqrt{p}$	1.67		5.01		8.35	
Seaton, land engine, $\frac{D}{45} \sqrt{p} \dots$		2.22		6.67	<b> </b>	11.11
Average of four for iron	1.49	1.82	4.30	5.26	7.11	8.74

The figures in brackets opposite Marks' third formula would be rejected since they are less than  $\frac{1}{2}$  of the stroke, and the figures derived by his fourth formula would be taken instead. The figure 1.79 opposite his first

formula would be rejected for the engine of 24-inch stroke.

An empirical formula which gives results approximating the above aver-

ages is  $d'' = .013 \sqrt[4]{Dlp}$ . The calculated results from this formula, for the six engines, are, respec-

tively, 1.42, 1.88, 3.90, 5.61, 6.37, 9.01.

Piston-rod Guides.-The thrust on the guide, when the connectingrod is at its maximum angle with the line of the piston-rod, is found from the formula: Thrust = total load on piston  $\times$  tangent of maximum angle of connecting rod =  $p \tan \theta$ . This angle is the angle whose tangent = half stroke of piston + length of connecting-rod.

Ratio of length of connecting-rod to stroke	2	21/6	8
Maximum angle of connecting-rod with line of piston-rod	140 90/	110 19/	9° 36′
Tangent of the angle	.25	.20 T	.1667
Secant of the angle	1.0308	1.0 <b>19</b> 8	1.0138

Seaton says: The area of the guide-block or slipper surface on which the thrust is taken should in no case be less than will admit of a pressure of 400 lbs. on the square inch; and for good working those surfaces which take the thrust when going ahead should be sufficiently large to prevent the maximum pressure exceeding 100 lbs. per sq. in. When the surfaces are kept well lubricated this allowance may be exceeded,

Thurston says: The rubbing surfaces of guides are so proportioned that if V be their relative velocity in feet per minute, and p be the intensity of pressure on the guide in lbs. per sq. in, pV < 60,000 and pV > 40,000. The lower is the safer limit; but for marine and stationary engines it is

allowable to take p = 60,000 + V. According to Rankine, for locomotives,

 $p = \frac{1}{V + 20}$ , where p is the pressure in lbs. per sq. in, and V the velocity of rubbing in feet per minute. This includes the sum of all pressures forcing the two rubbing surfaces together.

Some British builders of portable engines restrict the pressure between the guides and cross-heads to less than 40, sometimes 35 lbs. per square inch. For a mean velocity of 600 feet per minute, Prof. Thurston's formulas give, p < 100, p > 66.7; Rankine's gives p = 72.2 lbs. per sq. in. Whitham gives.

$$A = \text{area of alides in square inches} = \frac{P}{p_0 \sqrt{n^2 - 1}} = \frac{.7854d^2p_1}{p_0 \sqrt{n^2 - 1}}$$

in which P = total unbalanced pressure,  $p_1 = \text{pressure}$  per square inch on piston, d = diameter of cylinder,  $p_0 = \text{pressure}$  allowable per square inch on slides, and n = length of connecting-rod + length of crank. This is equivalent to the formula,  $A = P \tan \theta + p_0$ . For n = 5,  $p_1 = 100$  and  $p_0 = 80$ ,  $A = .9094d^2$ . For the three engines 10, 30 and 50 in. diam., this would give for area of slides, A = 20, 180 and 500 sq. in., respectively. Whitham says: The normal pressure on the slide may be as high as 500 lbs. per sq. in, but this is when there is good lubrication and freedom from dust. Stationary and marine engines are usually designed to carry 100 lbs. per sq. in but this is when there is good lubrication and freedom from dust. Stationary and marine engines are usually designed to carry 100 lbs. per sq. in., and the area in this case is reduced from 50% to 60% by grooves. In locomotive engines the pressure ranges from 40 to 50 lbs. per sq. in. of slide, on account of the inaccessibility of the slide, dirt, cinder, etc.

There is perfect agreement among the authorities as to the formula for area of the slides,  $A = P \tan \theta + p_{\theta}$ ; but the value given to  $p_{\theta}$ , the allowable pressure per square inch, ranges all the way from 35 lbs. to 500 lbs.

The Connecting-rod. Ratio of length of connecting-rod to length of stroke.—Experience has led generally to the ratio of 2 or 2½ to 1, the latter giving a long and easy-working rod, the former a rather short, but

latter giving a long and easy-working rod, the former a rather short, but yet a manageable one (Thurston). Whitham gives the ratio of from 2 to 414, and Marks from 2 to 4.

and marks from 2004. Dimensions of the Connecting-rod.—The calculation of the diameter of a connecting-rod on a theoretical basis, considering it as a strut subject to both compressive and bending stresses, and also to stress due to its nertia, in high-speed engines, is quite complicated. See Whitham, Steam-engine Design, p. 217; Thurston, Manual of S. E., p. 100. Empirical formulas are as follows: For circular rods, largest at the middle, D = diam. of cylinder, l = length of connecting-rod in inches, p = maximum steam-pressure per sq. in.

- (1) Whitham, diam. at middle, d" = 0.0272 √ Di √p.
   (2) Whitham, diam. at necks, d" = 1.0 to 1.1 × diam. of piston-rod.
- (3) Sennett, diam. at middle,  $d'' = \frac{D}{88} \sqrt{p}$ .
- (4) Sennett, diam. at necks,  $d'' = \frac{D}{co} \sqrt{p}$ .
- (5) Marks, diam.,  $d'' = 0.0179D \sqrt{p}$ , if diam. is greater than 1/24 length.
- (6) Marks, diam.,  $d'' = 0.02758 \sqrt{Dl} \sqrt{p}$  if diam. found by (5) is less than 1/24 length.
- (7) Thurston, diam. at middle,  $d'' = a \sqrt{DL} \sqrt{p} + C$ , D in inches, L in feet, a = 0.15 and  $C = \frac{1}{2}$  inch for fast engines, a = 0.08 and  $C = \frac{3}{2}$  inch for moderate speed.

(8) Seaton says: The rod may be considered as a strut free at both ends, and, calculating its diameter accordingly,

diameter at middle = 
$$\frac{\sqrt{R(1+4ar^2)}}{48.5}$$
,

where R= the total load on piston P multiplied by the secant of the maximum angle of obliquity of the connecting-rod. For wrought iron and mild steel a is taken at 1/3000. The following are

the values of r in practice:

Naval engines—Direct-acting

"Return conne r = 9 to 11; r = 10 to 13, old; r = 8 to 9, modern; r = 11.5 to 13.Return connecting-rod " Trunk Mercantile " Direct acting, ordinary r = 12. "long stroke r = 13 to 16.

(9) The following empirical formula is given by Seaton as agreeing closely with good modern practice:

Diameter of connecting-rod at middle =  $\sqrt{lK} + 4$ , l = length of rod in inches, and K = 0.03 Veffective load on piston in pounds.

The diam, at the ends may be 0.875 of the diam, at the middle, Seaton's empirical formula when translated into terms of D and p is the

seaton's empirical formula when translated into terms of D and p is the same as the second one by Marks, viz.,  $d'' = 0.02758 \sqrt{Dl} \sqrt{p}$ . Whitham's

(1) is also practically the same.

(10) Taking Seaton's more complex formula, with length of connecting-rod =  $2.5 \times$  length of stroke, and r=12 and 16, respectively, it reduces to: Diam. at middle = .02294  $\sqrt{P}$  and .02411  $\sqrt{P}$  for short and long stroke engines, respectively.

Applying the above formulas to the engines of our list, we have

# Diameter of Connecting-rods.

Diameter of Cylinder, inches	10		80		- 50	
Stroke, inches	12	24 60	30 75	60 150	48 120	96 240
(3) $d'' = \frac{D}{55} \sqrt{p} = .0182D \sqrt{p}$	1.82	1.82	5.46	5.46	9.09	9.09
(5) $d'' = .0179D \sqrt{p}$	1.79		5.87		8.95	<b> </b>
(6) $d'' = .02758 \sqrt[4]{Dl \sqrt{p}}$		2.14		5.85	<b> </b>	9.51
(7) $d'' = 0.15 \sqrt{DL \sqrt{\tilde{p}}} + \frac{1}{16} \dots$	2.87		7.00	<b> </b>	11.11	
(7) $d'' = 0.08 \sqrt[4]{DL} \sqrt{p} + \frac{9}{4}$		2.54		5.65	<b> </b>	8.75
$(9) \ d^{\prime\prime} = .08 \ \sqrt{\overline{P}}$	2.67	2.67	7.97	7.97	13.29	13.29
(10) $d'' = .02294 \sqrt{P}$ ; .02411 $\sqrt{P}$	2.03	2.14	6.09	6.41	10.16	10.68
Average	2.24	2.26	6.38	6.27	10.52	10.26

Formulæ 5 and 6 (Marks), and also formula 10 (Seaton), give the larger diameters for the long-stroke engine; formulæ 7 give the larger diameters for the short-stroke engines. The average figures show but little difference in diameter between long- and short-stroke engines; this is what might be expected, for while the connecting-rod, considered simply as a column, would require an increase of diameter for an increase of length, the load remaining the same, yet in an engine generally the shorter the connecting-rod the greater the number of revolutions, and consequently the greater the strains due to inertia. The influences tending to increase the diameter therefore tend to balance each other, and to render the diameter to some extent independent of the length. The average figures correspond nearly to the simple formula  $d'' = .021D \ \sqrt{p}$ . The diameters of rod for the three diameters of engine by this formula are, respectively, 2.10, 6.30, and 10.50 in. Since the total pressure on the piston  $P = .7854D^2p$ , the formula is equivalent to  $d' = .0237 \ \sqrt{P}$ .

Connecting-rod Ends.—For a connecting-rod end of the marine type, where the end is secured with two bolts, each bolt should be proportioned for a safe tensile strength equal to two thirds the maximum pull or

thrust in the connecting-rod.

The cap is to be proportioned as a beam loaded with the maximum pull of the connecting rod, and supported at both ends. The calculation should be made for rigidity as well as strength, allowing a maximum deflection of 1/100 inch. For a strap-and-key connecting rod end the strap is designed for tensile strength, considering that two thirds of the pull on the connecting-rod may come on one arm. At the point where the metal is slotted for the key and gib, the straps must be thickened to make the cross-section equal to that of the remainder of the strap. Between the end of the strap and the slot the strap is liable to fail in double shear, and sufficient metal must be provided at the end to prevent such failure.

to that of the straps must be inchested to make the cross-section equal to that of the remainder of the strap. Between the end of the strap and the slot the strap is liable to fall in double shear, and sufficient metal must be provided at the end to prevent such failure.

The breadth of the key is generally one fourth of the width of the strap, and the length, parallel to the strap, should be such that the cross-section will have a shearing strength equal to the tensile strength of the section of the strap. The taper of the key is generally about \$6 inch to the foot.

Tapered Connecting-rods.—In modern high-speed engines it is customary to make the connecting-rods of rectangular instead of circular section, the sides being parallel, and the depth increasing regularly from the crosshead end to the crank-pin end. According to Grashof, the bending action on the rod due to its inertia is greatest at 6/10 the length from the crosshead end, and, according to this theory, that is the point at which the section should be greatest, although in practice the section is made greatest at the crank-pin end.

Professor Thurston furnishes the author with the following rule for tapered

connecting rod of rectangular section: Take the section as computed by the

formula  $d''=0.1\sqrt{DL\ Vp}+3/4$  for a circular section, and for a rod 4/8 the actual length, placing the computed section at 2/3 the length from the small end, and carrying the taper straight through this fixed section to the large end. This brings the computed section at the surge point and makes it heavier than the rod for which a tapered form is not required. Taking the above formula, multiplying L by 4/8, and changing it to l in

inches, it becomes  $d=1/30 \ V D \ V p + 3/4"$ . Taking a rectangular section of the same area as the round section whose diameter is d, and making the depth of the section h = t wice the thickness t, we have .7854 $d^3 = ht = 2t^3$ ,

whence  $t=.627d=.0209 \sqrt{Dl \sqrt{p}}+.47^{\circ\prime}$ , which is the formula for the thickness or distance between the parallel sides of the rod. Making the depth at the crosshead end = 1.5t, and at 2/3 the length = 2t, the equivalent depth at the crank end is 2.25t. Applying the formula to the short-stroke engines of our examples, we have

Diameter of cylinder, inches	12 <b>8</b> 0	80 80 75	59 48 120
Thickness, $t = .0209 \sqrt{Dl \sqrt{p}} + .47 =$ Depth at crosshead end, $1.5t =$ Depth at crank end, $2\frac{1}{4}t$	2.42	8.60 5.41 8.11	5.59 8.39 12.58

The thicknesses t, found by the formula  $t = .0209 \sqrt{Dl} \sqrt{p} + .47$ , agree

closely with the more simple formula  $t = .01D \ V_P + .60^\circ$ , the thicknesses calculated by this formula being respectively 1.6, 3.6, and 5.6 inches. **The Crank-pin.**—A crank-pin should be designed (1) to avoid heating, (2) for strength, (3) for rigidity. The heating of a crank-pin depends on the pressure on its rubbing-surface, and on the coefficient of friction, which latter varies greatly according to the effectiveness of the lubrication. It also depends upon the facility with which the heat produced may be carried away: thus it appears that locomotive crank-pins may be prevented to some degree from overheating by the cooling action of the air through which they need at high speed pass at a high speed.

Marks gives 
$$l = .0000247 fpND^2 = 1.038 f \frac{(I.H.P.)}{L}$$
. . . . . . (1)

in which l= length of crank-pin journal in inches, f= coefficient of friction, which may be taken at .03 to .05 for perfect lubrication, and .08 to .10 for imperfect; p= mean pressure in the cylinder in pounds per square inch; D= diameter of cylinder in inches; N= number of single strokes per minute; I.H.P. = indicated horse-power; L= length of stroke in feet. These formulæ are independent of the diameter of the pin, and Marks states as a general law, within reasonable limits as to pressure and speed of rubbing, the longer a bearing is made, for a given pressure and number of revolutions, the cooler it will work; and its diameter has no effect upon its heating. Both of the above formulæ are deduced empirically from dimensions of crank-pins of existing marine engines. Marks says that about one-fourth the length required for crank-pins of propeller engines will serve for the pins of side-wheel engines, and one tenth for locomotive engines, making the

formula for locomotive crank-pins  $l=.0000247/pND^2$ , or if p=150, f=.06, and N=600,  $l=.013D^2$ . Whitham recommends for pressure per square inch of projected area, for naval engines 500 pounds, for merchant engines 400 pounds, for paddle-wheel engines 800 to 900 pounds.

bearings are used.

Thurston also says: The size of crank-pins required to prevent heating of the journals may be determined with a fair degree of precision by either of the formulæ given below:

$$l = \frac{P(V+20)}{44,800a}$$
 (Rankine, 1865); . . . . . . . (4)

$$l = \frac{PV}{60,000d}$$
 (Thurston, 1862); . . . . . . . . (5)

$$l = \frac{PN}{350,000}$$
 (Van Buren, 1866). . . . . . . . . (6)

The first two formulæ give what are considered by their authors fair working proportions, and the last gives minimum length for iron pins. (V =

ing proportions, and the last gives minimum length for fron pins. (V = velocity of rubbing-surface in feet per minute.)

Formula (1) was obtained by observing locomotive practice in which great liability exists of annoyance by dust, and great risk occurs from inaccessibility while running, and (2) by observation of crank-pins of naval screwengines. The first formula is therefore not well suited for marine practice. Steel can usually be worked at nearly double the pressure admissible with

since the length of the crank-pin will be directly as the power expended upon it and inversely as the pressure, we may take it as

in which a is a constant, and L the stroke of piston, in feet. The values of the constant, as obtained by Mr. Skeel, are about as follows: a=0.04 where water can be constantly used; a=0.045 where water is not generally used; a = 0.05 where water is seldom used; a = 0.06 where water is never needed. Unwin gives

$$l = a \frac{\text{I.H.P.}}{r}, \dots$$
 (8)

in which r = crank radius in inches, a = 0.3 to a = 0.4 for iron and for marine engines, and a = 0.066 to a = 0.1 for the case of the best steel and for locomotive work, where it is often necessary to shorten up outside pins as much as possible.

J. B. Stanwood (Eng'g, June 12, 1891), in a table of dimensions of parts of American Corliss engines from 10 to 30 inches diameter of cylinder, gives sizes of crank-pins which approximate closely to the formula

$$l = .275D'' + .5 \text{ in.}; d = .25D'' \dots$$
 (9)

By calculating lengths of iron crank-pins for the engines 10, 80, and 50 inches by calculating lengths of iron crain-plans for the engines 10, 60, and 30 inches diameter, long and short stroke, by the several formulæ above given, it is found that there is a great difference in the results, so that one formula in certain cases gives a length three times as great as another. Nos. (4), (5), and (6) give lengths much greater than the others. Marks (1), Whitham (2), Thurston (7), l = .06 I.H.P. + L, and Unwin (8), l = 0.4 I.H.P. + r, give results which agree more alcosed. sults which agree more closely.

The calculated lengths of iron crank pins for the several cases by formulæ (1), (2), (7), and (8) are as follows:

#### Length of Crank-pins.

	1			1		
Diameter of cylinderD	10	10	80	80	50	50
Stroke (ft.)	1	2	216	5	4	8
Revolutions per minute $R$	250	125	130	65	90	45
Horse-powerI.H.P.	50	50	450	450	1.250	1.250
Maximum pressurelbs.	7,854	7.854	70,686			
Mean pressure per cent of max	42	42	82.3	32.3	30	30
Mean pressureP.	3,299		22,832			
Length of crank-pin.	0,200	0,200	22,002	EE,000	30,000	30, 800
(1) Whitham, $l = .9075 \times .05 \text{ I.H.P.} + L.$		1.09	8.17	4 00	14.18	7.09
(2) Marks, $l = 1.038 \times .05 \text{ I.H.P.} + L.$		1.30	9.84		16.22	
(7) Thurston, $l = .06 \text{ I.H.P.} + L$		1,50	10.80	5.40	18.75	9.38
(8) Unwin, $l = .4 \text{ I.H.P.} + r$	3.33	1.67	12.0	6.0	20.83	10.42
(8) " $l = .8 \text{ LH.P.} + r$	2.50	1.25	9.0	4.5	15.62	
(0)						
Average	2.72	1.36	9.86	4.98	17.12	8.56
(8) Unwin, best steel, $l = .1 \frac{I.H.P.}{r}$	.83	.42	8.0	1.5	5.21	2.61
(3) Thurston, steel, $l = \frac{PR}{600,000} \cdots$	1.87	.69	4.95	2.47	8.84	4.42

The calculated lengths for the long-stroke engines are too low to prevent excessive pressures. See "Pressures on the Crank-pins," below.

The Strength of the Crank-pin is determined substantially as is that of the crank. In overhung cranks the load is usually assumed as carried at its extremity, and, equating its moment with that of the resistance of the pin.

$$\frac{1}{2}Pl = 1/82twd^3$$
, and  $d = \sqrt[3]{\frac{5.1\overline{Pl}}{t}}$ ,

in which d = diameter of pin in inches, P = maximum load on the piston, t = the maximum allowable stress on a square inch of the metal. For iron it may be taken at 9000 bs. For steel the diameters found by this formula may be reduced 10%. (Thurston.)

Unwin gives the same formula in another form, viz.:

$$d = \sqrt[2]{\frac{5.1}{t}} \sqrt[3]{Pl} = \sqrt{\frac{5.1}{t}} \sqrt{\frac{l}{l}} \sqrt{\frac{l}{l}}$$

the last form to be used when the ratio of length to diameter is assumed. For wrought iron, t = 6000 to 9000 lbs. per sq. in.,

$$\sqrt[3]{\frac{5.1}{t}} = .0947 \text{ to } .0827; \qquad \sqrt{\frac{5.1}{t}} = .0291 \text{ to } .0238.$$

For steel, t = 9000 to 13,000 lbs. per sq. in.,

$$\sqrt[3]{\frac{5.1}{t}} = .0827 \text{ to .0723}; \qquad \sqrt{\frac{5.1}{t}} = .0238 \text{ to .0194}.$$

Whitham gives 
$$d = 0.0827 \sqrt[3]{Pl} = 2.1058 \sqrt[3]{\frac{l \times 1.H.P.}{LR}}$$
 for strength, and

 $d=0.405\sqrt[4]{P^n}$  for rigidity, and recommends that the diameter be calculated by both formulæ, and the largest result taken. The first is the same as Unwin's formula, with t taken at 9000 lbs. per sq. in. The second is based upon an erreneous assumption.

Marks, calculating the diameter for rigidity, gives

$$d = 0.066 \sqrt[4]{pl^3D^2} = 0.945 \sqrt[4]{\frac{(H.P.)l^3}{LN}};$$

 $p = \max_{i=1}^{n} \min_{j=1}^{n} \sum_{i=1}^{n} \max_{j=1}^{n} \min_{j=1}^{n} \sum_{i=1}^{n} \min_{j=1}^{n} \sum_{i=1}^{n} \min_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \min_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \min_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$ 

a crank-pin, as the coudition of rigidity gives a great excess of strength. Marks's formula is based upon the assumption that the whole load may be concentrated at the outer end, and cause a deflection of .01 inch at that

point.

It is serviceable, he says, for steel and for wrought iron alike.
Using the average lengths of the crank-pins already found, we have the
following for our six engines:

### Diameter of Crank-pins.

Diameter of cylinder						
Unwin, $d = \sqrt[3]{\frac{5.1Pl}{t}}$						
Marks, $d = .066 \sqrt[4]{pl^3D^2}$	1.89	.85	6.44	3.78	12.41	7.39

Pressures on the Crank-pins.—If we take the mean pressure upon the crank-pin = mean pressure on piston, neglecting the effect of the varying angle of the connecting-rod, we have the following, using the average lengths already found, and the diameters according to Unwin and Marks:

Engine No	1	2	3	4	5	6
Diameter of cylinder, inches	10	10 2	30 21/6	80 5	50	50
Projected area of pin, Unwin	6.28 3.78	236 1.16	72.4 63.5	28.7 18.6	212.8 212.5	84.2
Pressure per square inch, Unwin Marks	580 873	1,398 2,845	815 360	796 1,228	277 277	700 930

The results show that the application of the formulæ for length and diameter of crank-pins give quite low pressures per square inch of projected area for the short-stroke high-speed engines of the larger sizes, but too high pressures for all the other engines. It is therefore evident that after calculating the dimensions of a crank-pin according to the formulæ given that the results should be modified, if necessary, to bring the pressure per square inch down to a reasonable figure.

In order to bring the pressures down to 500 pounds per square inch, we divide the mean pressures by 500 to obtain the projected area, or product of length by diameter. Making l=1.5d for engines Nos. 1, 2, 4 and 6, the revised table for the six engines is as follows:

Crosshead-pin or Wrist-pin.—Whitham says the bearing surface for the wrist-pin is found by the formula for crank-pin design. Seaton says the diameter at the middle must, of course, be sufficient to withstand the bending action, and generally from this cause ample surface is provided for good working; but in any case the area, calculated by multiplying the diameter of the journal by its length, should be such that the pressure does not exceed 1200 lbs. per sq. in., taking the maximum load on the piston as the total pressure on it.

For small engines with the gudgeon shrunk into the jaws of the connect-

ing-rod, and working in brasses fitted into a recess in the piston-rod end and secured by a wrought-iron cap and two bolts, Seaton gives:

Diameter of gudgeon =  $1.25 \times \text{diam}$ . of piston-rod, Length of gudgeon =  $1.4 \times \text{diam.}$  of piston-rod.

If the pressure on the section, as calculated by multiplying length by diameter, exceeds 1200 lbs. per sq. in., this length should be increased.

J. B. Stanwood, in his "Ready Reference" book, gives for length of crosshead-pin 0.25 to 0.3 diam. of piston, and diam. = 0.18 to 0.2 diam, of piston. Since he gives for diam. of piston. and diam. = 0.17 diam. of piston, his dimensions for diameter and length of crosshead-pin are about 1.25 and 1.8 diam. of piston-rod respectively. Taking the maximum allowable pressure at 1200 lbs. per sq. in. and making the length of the crosshead-pin = 4/3 of its diameter, we have  $d=\sqrt{P}+40$ ,  $l=\sqrt{P}+30$ , in which  $P=\max$ imum total load on piston in lbs.,  $d=\dim$ , and  $l=\operatorname{length}$  of pin in inches. For the engines of our example we have:

Diameter of piston, inches	10	30	50
Maximum load on piston, lbs		70,686	196,350
Diameter of crosshead-pin, inches	2.22	6.65	11.08
Length of crosshead-pin, inches	2.96	8.86	14.77
Stanwood's rule gives diameter, inches	1.8 to 2	5.4 to 6	9.0 to 10
Stanwood's rule gives length, inches	2.5 to 8	7.5 to 9	12.5 to 15
Stanwood's largest dimensions give pressure			
per sq. in., lbs	1309	1329	1309

Which pressures are greater than the maximum allowed by Seaton.

The Crank-arm.—The crank-arm is to be treated as a lever, so that if a is the thickness in direction parallel to the shaft-axis and b its breadth at a section x inches from the crank-pin centre, then, bending moment Mat that section = Px, P being the thrust of the connecting-rod, and f the safe strain per square inch,

$$Px = \frac{fab^2}{6}$$
 and  $\frac{a \times b^2}{6} = \frac{T}{f}$ , or  $a = \frac{6T}{b^2 \times f}$ ;  $b = \sqrt{\frac{6T}{fa}}$ .

If a crank-arm were constructed so that b varied as  $\sqrt{x}$  (as given by the above rule) it would be of such a curved form as to be inconvenient to manufacture, and consequently it is customary in practice to find the maximum value of b and draw tangent lines to the curve at the points; these lines are generally, for the same reason, tangential to the boss of the crankarm at the shaft.

The shearing strain is the same throughout the crank-arm; and, consequently, is large compared with the bending strain close to the crank-pin; and so it is not sufficient to provide there only for bending strains. The section at this point should be such that, in addition to what is given by the calculation from the bending moment, there is an extra square inch for every 8000 lbs. of thrust on the connecting-rod (Seaton).

The length of the boss h into which the shaft is fitted is from 0.75 to 1.0 of the diameter of the shaft D, and its thickness e must be calculated from the twisting strain PL. (L = length of crank.) For different values of length of boss k, the following values of thickness

of boss e are given by Seaton:

When 
$$h = D$$
, then  $e = 0.35 D$ ; if steel, 0.3.  $h = 0.9 D$ , then  $e = 0.38 D$ , if steel, 0.32.  $h = 0.8 D$ , then  $e = 0.40 D$ , if steel, 0.33.  $h = 0.7 D$ , then  $e = 0.41 D$ , if steel, 0.34.

The crank-eye or boss into which the pin is fitted should bear the same relation to the pin that the boss does to the shaft.

The diameter of the shaft-end onto which the crank is fitted should be

1.1 × diameter of shaft.

Thurston says: The empirical proportions adopted by builders will commonly be found to fall well within the calculated safe margin. These proportions are, from the practice of successful designers, about as follows:

For the wrought-iron crank, the hub is 1.75 to 1.8 times the least diameter of that part of the shaft carrying full load; the eye is 2.0 to 2.25 the diameter of the inserted portion of the pin, and their depths are, for the hub, 1.0 to 1.2 the diameter of shaft, and for the eye, 1.25 to 1.5 the diameter of pin. The web is made 0.7 to 0.75 the width of adjacent hub or eye, and is given a

depth of 0.5 to 0.6 that of adjacent hub or eye.

For the cast-iron crank the hub and eye are a little larger, ranging in diameter respectively from 1.8 to 2 and from 2 to 2.2 times the diameters of

shaft and pin. The flanges are made at either end of nearly the full depth of hub or eye. Cast-iron has, however, fallen very generally into disuse. The crank shaft is usually enlarged at the seat of the crank to about 1.1 its diameter at the journal. The size should be nicely adjusted to allow for the shrinkage or forcing on of the crank. A difference of diameter of one fifth of 1% will usually suffice; and a common rule of practice gives an allowance of but one half of this, or .001.

The formulæ given by different writers for crank-arms practically agree. since they all consider the crank as a beam loaded at one end and fixed at the other. The relation of breadth to thickness may vary according to the taste of the designer. Calculated dimensions for our six engines are as fol lows:

#### Dimensions of Crank-arms.

	l	l				
Diam. of cylinder, ins	10	10	30	30	50	50
Stroke S, ins	12	24	80	60	48	96
Max. pressure on pin $P$ ,						
(approx.) lbs	7854	7854	70,686	70,686	196,350	196,350
Diam. crank-pin $d$	2.10	2.10	7.84	5.58	12.40	8.87
³/I.H.P.	l)					
Diam.shaft, $a\sqrt{\frac{1.11.1}{R}}D$	2 74	3.46	7.70	9.70	12.55	15.82
	{ ~ · · · ·	0.20		0.10	10.00	10.04
(a = 4.69, 5.09  and  5.22) Length of boss, $.8D$	2.19	2.77	6.16	7.76	10.04	12.65
Thickness of boss, .4D	1.10	1.39	8.08	8.88	5.02	6.32
Diam. of boss, 1.8D		6.23	13.86	17.46	22.59	28.47
Length crank-pineye, .8d	1.76	1.76	5.87	4.48	9.92	7.10
Thickness of crank-pin	1	1	0.01	2.10	0.04	1.10
eye, .4d	.88	.88	2.94	2.23	4.46	8.55
Max. mom. Tat distance			~	~.~	2.10	0.50
$\frac{16S - 16D}{100}$ from centre		j				
of pin, inch-lbs		80,661	788,149	1,848,439	8,479,822	7,871,671
Thickness of crank-arm		00,002	,	1,010,100	0,210,000	,,012,012
$a = .75D \dots$	2.05	2.60	5.78	7.28	9.41	11.87
Greatest breadth,			0			
· ——	ł		'			
$b = \sqrt{\frac{6T}{9000a}}$	3.48	4.55	9.54	18.0	15.7	21.0
0 = 1/ 9000a	3.40	4.00	9.02	15.0	15.1	21.0
Min.mom. To at distance	]	l				
d from centre of pin= $Pd$	16,493	16, 493	528,835	894,428	2,434,740	1,741,625
Least breadth,	,	,	,000		,,	-,,
	İ	1		1	İ	ł
$b_1 = \sqrt{\frac{6T_0}{9000a}}$	2.32	2.06	7.81	6.01	18.13	9.89
v₁ — 1 9000a	7.00	~.00	1.01	1 5.01	1 20.20	2.09

The Shaft.-Twisting Resistance.-From the general formula for torsion, we have:  $T = \frac{\pi}{16} d^3S = .19635d^3S$ , whence  $d = \sqrt[3]{\frac{5.17}{S}}$ , in which

T= torsional moment in inch-pounds, d= diameter in inches, and S= the shearing resistance of the material in pounds per square inch. If a constant force P were applied to the crank-pin tangentially to its path, the work done per minute would be

$$P \times L \times \frac{2\pi}{19} \times R = 33,000 \times I.H.P.$$

in which L= length of crank in inches, and R= revs. per min., and the mean twisting moment  $T=\frac{\text{I.H.P.}}{R} \times 63,025$ . Therefore

$$d = \sqrt[3]{\frac{\overline{5.1T}}{S}} = \sqrt[3]{\frac{321,427I.H.P.}{RS}}$$

This may take the form

$$d = \sqrt[3]{\frac{\text{I.H.P.}}{R} \times F}$$
, or  $d = a \sqrt[3]{\frac{\text{I.H.P.}}{R}}$ ,

in which F and a are factors that depend on the strength of the material and on the factor of safety. Taking S at 45,000 pounds per square inch for wrought iron, and at 60,000 for steel, we have, for simple twisting by a uniform tangential force,

Unwin, taking for safe working strength of wrought iron 9000 lbs., steel 13.500 lbs., and cast iron 4500 lbs., gives a=3.294 for wrought iron, 2.877 for steel, and 4.15 for cast iron. Thurston, for crank-axles of wrought iron, gives a=4.15 or more.

Seaton says: For wrought iron, f, the safe strain per square inch, should not exceed 9000 lbs., and when the shafts are more than 10 inches diameter, 8000 lbs. Steel, when made from the ingot and of good materials, will admit of a stress of 12,000 lbs. for small shafts, and 10,000 lbs. for those above 10 inches diameter.

The difference in the allowance between large and small shafts is to compensate for the defective material observable in the heart of large shafting, owing to the hammering failing to affect it.

The formula 
$$d = a \sqrt[3]{\frac{\text{I.H.P.}}{R}}$$
 assumes the tangential force to be uniform

and that it is the only acting force. For engines, in which the tangential force varies with the angle between the crank and the connecting-rod, and with the variation in steam-pressure in the cylinder, and also is influenced by the inertia of the reciprocating parts, and in which also the shaft may be subjected to bending as well as torsion, the factor a must be increased, to provide for the maximum tangential force and for bending.

Seaton gives the following table showing the relation between the maximum and mean twisting moments of engines working under various conditions, the momentum of the moving parts being neglected, which is allowable:

Dec	scription of	Engine.	Steam Cut-off at	Max. Twist Divided by Mean Twist. Mome't	Cube Root of the Ratio.
Single-crank	expansive		0.2	2.625	1.88
	- "		. 0.4	2.125	1.29
44	"		.i 0.6	1.885	1.22
4.6	6.		. 0.8	1.698	1.20
Two_cylinder	r avnanciva	cranks at 90°		1.616	1.17
1 WO-Cymnuc	· capansive	44	Δ 0	1.415	1.12
4		"			
44	14			1.298	1.09
••		•••		1.256	1.08
•	44	"	0.6	1.270	1.08
66	44	**	. 0.7	1.329	1.10
66	44		.l ŏ.s	1.357	i.ii
Three-cylind	er compour	d, cranks 120°	h.p. 0.5, l.p. 0.66	1.40	1.12
**	••	l. p. cranks	66 PG	1.26	1.08
opposite on	e ar other, a	nd h.p. midway	1	1.20	1.00

Seaton also gives the following rules for ordinary practice for ordinary two-cylinder marine engines;

Diameter of the tunnel-shafts = 
$$\sqrt[3]{\frac{\overline{I.H.P.XF}}{R.XF}}$$
 or  $\alpha^{\frac{3}{2}}/\frac{\overline{I.H.P.X}}{R}$ .

Compound engines, cranks at right angles:

Boiler pressure 70 lbs., rate of expansion 6 to 7, F=70, a=4.12. Boiler pressure 80 lbs., rate of expansion 7 to 8, F=72, a=4.16. Boiler pressure 90 lbs., rate of expansion 8 to 9, F=75, a=4.22.

Triple compound, three cranks at 120 degrees:

Boiler pressure 150 lbs., rate of expansion 10 to 12, F=62, a=3. 96. Boiler pressure 160 lbs., rate of expansion 11 to 13, F=67, a=4. 6. Boiler pressure 170 lbs., rate of expansion 12 to 15, F=67, a=4.06.

Expansive engines, cranks at right angles, and the rate of expansion 5, boiler-pressure 60 lbs., F = 90, a = 4.48.

Single-crank compound engines, pressure 80 lbs., F = 96,  $\alpha = 4.58$ .

For the engines we are considering it will be a very liberal allowance for ratio of maximum to mean twisting moment if we take it as equal to the ratio of the maximum to the mean pressure on the piston. The factor a, then, in the formula for diameter of the shaft will be multiplied by the cube

root of this ratio, or 
$$\sqrt[3]{\frac{100}{42}} = 1.34$$
,  $\sqrt[3]{\frac{100}{32.3}} = 1.45$ , and  $\sqrt[3]{\frac{100}{30}} = 1.49$  for the

10, 30, and 50-in. engines, respectively. Taking a=3.5, which corresponds to a shearing strength of 60,000 and a factor of safety of 8 for steel, or to 45,000 and a factor of 6 for iron, we have for the new coefficient  $a_1$  in the

formula  $d_1 = a_1 \sqrt[3]{\frac{\overline{1.H.P.}}{R}}$ , the values 4.69, 5.08, and 5.22, from which we

obtain the diameters of shafts of the six engines as follows:

These diameters are calculated for twisting only. When the shaft is also

subjected to bending strain the calculation must be modified as below: **Resistance to Bending**.—The strength of a circular-section shaft to resist bending is one half of that to resist twisting. If B is the bending moment in inch-lbs., and d the diameter of the shaft in inches,

$$B = \frac{\pi d^3}{32} \times f; \text{ and } d = \sqrt[3]{\frac{B}{f} \times 10.2};$$

f is the safe strain per square inch of the material of which the shaft is composed, and its value may be taken as given above for twisting (Seaton).

Equivalent Twisting Moment.—When a shaft is subject to both twisting and bending simultaneously, the combined strain on any section of it may be measured by calculating what is called the equivalent

twisting moment; that is, the two strains are so combined as to be treated as a twisting strain only of the same magnitude and the size of shaft calculated accordingly. Rankine gave the following solution of the combined action of the two strains.

If T = the twisting moment, and B = the bending moment on a section of a shaft, then the equivalent twisting moment  $T_1 = B + \sqrt{B^2 + T^2}$ .

Seaton says: Crank shafts are subject always to twisting bending, and shearing strains; the latter are so small compared with the former that they are usually neglected directly, but allowed for indirectly by means of the factor f.

The two principal strains vary throughout the revolution, and the maximum equivalent twisting moment can only be obtained accurately by a series of calculations of bending and twisting moments taken at fixed inter-

vals, and from them constructing a curve of strains. Considering the engines of our examples to have overhung cranks, the maximum bending moment resulting from the thrust of the connecting rod on the crank-pin will take place when the engine is passing its centres neglecting the effect of the inertia of the reciprocating parts), and it will be the product of the total pressure on the piston by the distance between two parallel lines passing through the centres of the crank-pin and of the shaft bearing, at right angles to their axes; which distance is equal to \( \frac{1}{2} \) length of crank-pin bearing + length of hub + \( \frac{1}{2} \) length of shaft-bearing + any clearance that may be allowed between the crank and the two bearings. For our six engines we may take this distance as equal to \( \frac{1}{2} \) length of crank-pin + thickness of crank-arm + 1.5 \times the diameter of the shaft as already found by the calculation for twisting. The calculation of diameter is then as below:

Engine No.	1	2	3	4	5	6
Diam. of cyl., in	10	10	30	30	50	50
Horse-power	50	50	450	450	1250	1250
Revs. per min	250	125	130	65	90	45
Max.press. on pis, $P$	7.854	7.854	70.686	70,686	196,350	196,350
Leverage,* Lin	6.82	7.94	22.20	26.00	36.80	42.25
Bd. mo. $PL = B$ inlb	49,637	62,361	1,569,222	1,887,836	7,225,680	8,295,788
Twist. mom. T	47,124	94,248	1,060,290	2,120,580	4,712,400	9,424,800
Equiv.Twist. mom.		1			' '	
$T_1 = B + \sqrt{B^2 + T^2}$						
(approx.)	118,000	175,000	3,463,000	4,647,000	15,840,000	20.850,000

^{*}Leverage = distance between centres of crank-pin and shaft bearing = 16l + 2.25d.

Having already found the diameters, on the assumption that the shafts were subjected to a twisting moment T only, we may find the diameter for resisting combined bending and twisting by multiplying the diameters already found by the cube roots of the ratio  $T_1 + T$ , or

Giving corrected diameters  $d_1 = \dots 3.84$  1.27 1.46 1.34 1.64 1.36 1.39 20.58 21.52

By plotting these results, using the diameters of the cylinders for abscissas and diameters of the shafts for ordinates, we find that for the long-stroke engines the results lie almost in a straight line expressed by the formula, diameter of shaft =  $.43 \times$  diameter of cylinder; for the short-stroke engines the line is slightly curved, but does not diverge far from a straight line whose equation is, diameter of shaft = .4 diameter of cylinder. Using these two formulas, the diameters of the shafts will be 4.0, 4.3, 12.0, 12.9, 20.0, 21.5.

whose equation is, diameter of shaft = .4 diameter of cylinder. Using these two formulas, the diameters of the shafts will be 4.0, 4.3, 12.0, 12.9, 20.0, 21.5.

J. B. Stanwood, in Engineering, June 12, 1891, gives dimensions of shafts of Corliss engines in American practice for cylinders 10 to 30 in diameter. The diameter range from 4 15/16 to 1415/16, following precisely the equation, diameters of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the fi

diameter of shaft =  $\frac{1}{16}$  diameter of cylinder -  $\frac{1}{16}$  inch.

Fly-wheel Shaits.—Thus far we have considered the shaft as resisting the force of torsion and the bending moment produced by the pressure on the crank-pin. In the case of fly-wheel engines the shaft on the opposite side of the bearing from the crank-pin has to be designed with reference to the bending moment caused by the weight of the fly-wheel, the weight of the shaft itself, and the strain of the belt. For engines in which there is an outboard bearing, the weight of fly-wheel and shaft being supported by two bearings, the point of the shaft at which the bending moment is a maximum may be taken as the point midway between the two bearings or at the middle of the fly-wheel hub, and the amount of the moment is the product of the weight supported by one of the bearings into the distance from the centre of that bearing to the middle point of the shaft. The shaft is thus to be treated as a beam supported at the ends and loaded in the middle. In the case of an overhung fly-wheel, the shaft having only one bearing, the point of maximum moment should be taken as the middle of the bearing, and its amount is very nearly the product of half the weight of the fly-wheel and the shaft into the distance from the middle of its hub from the middle of the bearing. The bending moment should be calculated and combined with the twisting moment as above shown, to obtain the equivalent twisting moment, and the diameter necessary at the point of maximum moment calculated therefrom.

In the case of our six engines we assume that the weights of the flywheels, together with the shaft, are double the weight of fly-wheel rim obtained from the formula  $W = 785,400 \frac{\text{LH.P.}}{R^3 D^2}$  (given under Fly-wheels);

that the shaft is supported by an outboard bearing, the distance between the two bearings being 2½, 5, and 10 feet for the 10-in., 30-in., and 50-in. engines, respectively. The diameters of the fly-wheels are taken such that their rim velocity will be a little less than 6000 feet per minute.

Engine No	1	2	8	4	5	6
Diam. of cyl., inches	10	10	30	80	50	50
Diam. of fly-wheel, ft	7.5	15	14.5	29	21	42
Revs. per min	250	125	130	65	90	45
Half wt.fly-wh'l and shaft,lb.	<b>268</b>	536	5,968	11,986	26,470	52,940
Lever arm for max.mom.,in.		15	30	90	60	60
Max. bending moment, inlb.	4020	8040	179,040	358,080	1,588,200	3,176,400

As these are very much less than the bending moments calculated from the pressures on the crank-pin, the diameters already found are sufficient for the diameter of the shaft at the fiy-wheel hub.

In the case of engines with heavy band fly-wheels and with long fly-wheel shafts it is of the utmost importance to calculate the diameter of the shaft with reference to the bending moment due to the weight of the fly-wheel and the shaft.

B. H. Coffey (Power, October, 1892) gives the formula for combined bending and twisting resistance,  $T_1=.196d^2S$ , in which  $T_1=B+\sqrt{B^2+T^2}$ ; T being the maximum, not the mean twisting moment; and finds empirical working values for .196S as below. He says: Four points should be considered in determining this value: First, the nature of the material; second the manner of applying the loads, with shock or otherwise: third, the ratio of the bending moment to the torsional moment—the bending moment in a revolving shaft produces reversed strains in the material, which tend to rupture it; fourth, the size of the section. Inch for inch, large sections are weaker than small ones. He puts the dividing line between large and small sections at 10 in. diameter, and gives the following safe values of  $S \times .196$  for steel, wrought iron, and cast iron, for these conditions.

Value of  $S \times .196$ .

Ratio.	Heavy Shafts with Shock.			Light shafts with Shock. Heavy Shafts No-Shock.			Light Shafts No Shock.		
B to T.	Steel.	Wro't Iron.	Cast Iron.	Steel.	Wro't Iron.	Cast Iron.	Steel.	Wro't Iron.	
3 to 10 or less 8 to 5 or less 1 to 1 or less B greater than T	1045 941 855 784	880 785 715 <b>6</b> 55	440 898 858 828	1566 1410 1281 1176	1320 1179 1074 984	660 589 537 492	2090 1882 1710 1568	1760 1570 1480 1810	880 785 715 655

Mr. Coffey gives as an example of improper dimensions the fly-wheel shaft of a 1500 H.P. engine at Williamntic, Conn., which broke while the eagine was running at 495 H.P. The shaft was 17 ft. 5 in long between centres of bearings, 18 in. diam. for 8 ft. in the middle, and 15 in. diam. for the remainder, including the bearings. It broke at the base of the fillet connecting the two large diameters, or 55½ in. from the centre of the bearing. He calculates the mean torsional moment to be 446,63 inch-pounds, and the maximum at twice the mean; and the total weight on one bearing at 87,530 lbs., which, multiplied by 56½ in., gives 4,945,445 in.-lbs. bending moment at the fillet. Applying the formula  $T_1 = B + \sqrt{B^2 + T^2}$ , gives for equivalent twisting moment 9,971,045 in.-lbs. Substituting this value in the formula  $T_1 = .196$ ,  $Sd^3$  gives for S the shearing strain 15,070 lbs. per sq. in., or if the metal had a shearing strength of 45,000 lbs., a factor of safety of only 3 Mr. Coffey considers that 600 lbs. is all that should be allowed for S under these circumstances. This would give d=20.8 in. If we take from Mr. Coffey's table a value of 1.96S=1100, we obtain  $d^3=9000$  nearly, or d=20.8 in. in. instead of 15 in., the actual diameter.

Length of Shaft-bearings.—There is as great a difference of opinion among writers, and as great a variation in practice concerning length of journal-bearings, as there is concerning crank-pins. The length of a

journal being determined from considerations of its heating, the observations concerning heating of crank-pins apply also to shaft-bearings, and the formulæ for length of crank-pins to avoid heating may also be used, using for the total load upon the bearing the resultant of all the pressures brought upon it, by the pressure on the crank, by the weight of the fly-wheel, and by the pull of the belt. After determining this pressure, however, we must resort to empirical values for the so-called constants of the formulæ, really variables, which depend on the power of the bearing to carry away heat, and upon the quantity of heat generated, which latter depends on the pressure, on the number of square feet of rubbing surface passed over in a minute, and upon the coefficient of friction. This coefficient is an exceedingly variable quantity, ranging from .01 or less with perfectly polished journals, having end-play, and lubricated by a pad or oil-bath, to .10 or more with ordinary oil-cup lubrication.

For shafts resisting torsion only. Marks gives for length of bearing l

For shafts resisting torsion only, Marks gives for length of bearing  $l=0000247fpND^3$ , in which f is the coefficient of friction, p the mean pressure in pounds per square inch on the piston. Note number of single strokes per minute, and D the diameter of the piston. For shafts under the combined stress due to pressure on the crank-pin, weight of fly-wheel, etc., he gives the following: Let Q = reaction at bearing due to weight, S = stress due steam pressure on piston, and  $R_1$  = the resultant force; for horizontal engines,

 $R_1 = \sqrt{Q^2 + S^2}$ , for vertical engines  $R_1 = Q + S$ , when the pressure on the crank is in the same direction as the pressure of the shaft on its bearings, crank is in the same direction as the pressure of the shaft on its bearings, and  $R_1 = Q - S$  when the steam pressure tends to lift the shaft from its bearings. Using empirical values for the work of friction per square inch of projected area, taken from dimensions of crank-pins in marine vessels, he finds the formula for length of shaft-journals l = .0000325/R, N, and recommends that to cover the defects of workmanship, neglect of oiling and the introduction of dust, f be taken at .16 or even greater. He says that 500 lbs. per sq. in, of projected area may be allowed for steel or wroughtiron shafts in brass bearings with good results if a less pressure is not attainable without inconvenience. Marks says that the use of empirical rules that ont take account of the number of turns zer minute has resulted in heardo not take account of the number of turns per minute has resulted in bearings much too long for slow-speed engines and too short for high-speed engines.
Whitham gives the same formula, with the coefficient .00002575.

Thurston says that the maximum allowable mean intensity of pressure may be, for all cases, computed by his formula for journals, l =

by Rankine's,  $l = \frac{P(V + 20)}{44,800d}$ , in which P is the mean total pressure in pounds,

V the velocity of rubbing surface in feet per minute, and d the diameter of the shaft in inches. It must be borne in mind, he says, that the friction work on the main bearing next the crank is the sum of that due the action of the piston on the pin, and that due that portion of the weight of wheel and shaft and of pull of the belt which is carried there. The outboard bearing carries practically only the latter two parts of the total. The crank-shaft journals will be made longer on one side, and perhaps shorter on the other, than that of the crank-pin, in proportion to the work falling upon each, i.e., to their respective products of mean total pressure, speed of rubbing surfaces, and coefficients of friction.

Unwin says: Journals running at 150 revolutions per minute are often only one diameter long. Fan shafts running 150 revolutions per minute have journals six or eight diameters long. The ordinary empirical mode of proportioning the length of journals is to make the length proportional to the diameter, and to make the ratio of length to diameter increase with the

speed. For wrought-iron journals:

Revs. per min. = 50 100 150 200 250 500 1000 
$$\frac{l}{d} = .004R + 1$$
.  
Length + diam. = 1.2 1.4 1.6 1.8 2.0 3.0 5.0.

Cast-iron journals may have l + d = 9/10, and steel journals  $l + d = 1\frac{1}{4}$ , of the above values.

Unwin gives the following, calculated from the formula  $l = \frac{0.4 \text{ H.P.}}{r}$ , in which r is the crank radius in inches, and H.P. the horse-power transmitted to the crank-pin.

THEORETICAL JOURNAL LENGTH IN INCHES.

Load on Journal	Revolutions of Journal per minute.									
in pounds.	50	100	200	800	500	1000				
1,000	.2	.4 .8	.8 1.6	1.2	2.	4. 8.				
2,000 4,000	.4 .8	1.6	3.2	4.8	4. 8.	16.				
5,000	1.0	2.	4.	6.	10.	20.				
10,000	2.	4.	4. 8.	12.	20.	40.				
15,000	8.	6.	12.	18.	30.					
20,000	4.	8.	16.	24.	40.					
80,000	6. I	12.	24.	36.						
40,000	8.	16.	32.							
50,000	10.	20.	40.			• • • • •				

Applying these different formluæ to our six engines, we have:

Engine No	1	2	8	4	5	6
Diam. cyl	250	10 50 125 3,299 536	30 450 130 23,185 5,968	80 450 65 23,185 11,936		45 58,905
$\sqrt[4]{Q^2 + S^2} = R_1$ . Diam. of shaft journal	8,310 3.84	3,835 4.39	23,924 11.35	,		
Marks, $l = .0000325 f R_1 N (f = .10)$ Whitham, $l = .0000515 f R_1 R (f = 10)$ .	5.38 4.27	2.71 2.15	20.87 16.53			
Thurston, $l = \frac{PV}{60,000\bar{d}}$		1.82	14.00	l	1	
Rankine, $l = \frac{P(V+20)}{44,800d}$	5.22	2.78	21.70	10.85	85.16	22.47
Unwin, $l = (.004R + 1)d$	7.68	6.59	17.25	16.36	27.99	25.39
Unwin, $l = \frac{0.4 \text{ H.P.}}{r}$	8.33	1.60	12.00	6.00	20.83	10.4
Average	4.92	2.99	17.05	10.00	29.54	19.2

If we divide the mean resultant pressure on the bearing by the projected area, that is, by the product of the diameter and length of the journal, using the greatest and smallest length out of the seven lengths for each journal given above, we obtain the pressure per square inch upon the bearing, as follows:

Engine No	1	2	8	4	5	6
Pressure per sq. in., shortest journal. Longest journal. Average journal Journal of length = diam	112 175	455 115 254 178	176 97 124	386 128 202 155	151 83 106	353 145 191 175

Many of the formulæ give for the long-stroke engines a length of journal as than the diameter, but such short journals are rarely used in practice. last line in the above table has been calculated on the supposition that

the journals of the long-stroke engines are made of a length equal to the

In the dimensions of Corliss engines given by J. B. Stanwood (Eng., June 12, 1891), the lengths of the journals for engines of diam. of cyl. 10 to 20 in, are the same as the diam. of the cylinder, and a little more than twice the diam. of the journal. For engines above 20 in. diam. of cyl. the ratio of length to diam. is decreased so that an engine of 30 in. diam. has a journal 26 in. long, its diameter being 1448 in. These lengths of journal are greater than those given by any of the formulæ above quoted.

There thus appears to be a hopeless confusion in the various formulæ for length of shaft journals, but this is no more than is to be expected from the variation in the coefficient of friction, and in the heat-conducting power of journals in actual use, the coefficient varying from .10 (or even .16 as given by Marks) down to .01, according to the condition of the bearing surfaces

and the efficiency of lubrication. Thurston's formula,  $l=\frac{r}{60,000d}$ , reduces to the form l=.00004363PR, in which P= mean total load on journal, and R= revolutions per minute. This is of the same form as Marks' and Whitham's formulæ, in which, if f the coefficient of friction be taken at .10, the coefficients of PR are, respectively, .000065 and .00000515. Taking the mean of these three formulæ, we have l=.0000053PR, if f=.10 or l=.000053PR for any other value of f. The author believes this to be as safe a formula as any for length of journals, with the limitation that if the riggs a result of length of journal less than the diameter, then the length should be made equal to the diameter. Whenever with f=.10 it gives a length which is inconvenient or impossible of construction on account of limited space, then provision should be made to reduce the value of the coefficient of friction below .10 by means of forced lubrication, end play, etc., and to carry away the heat, as by water-cooled journal-boxes. The value of P should be taken as the resultant of the mean pressure on the crank, and the load brought on the bearing by the weight of the shaft, fiy-wheel, etc., as calculated by the formula already given, vlz.,  $R_1 = \sqrt{Q^2} + S^2$  for horizontal engines, and  $R_1 = Q + S$  for vertical engines.

For our six engines the formula l = .0000053PR gives, with the limitation for the long-stroke engines that the length shall not be less than the diameter, the following:

Engine No... 1 3 5 6 30.80 21.52 Length of journal..... 4.39 4.89 16.48 12.99 Pressure per square inch on journal.. 196 173 128 102

Crank shafts with Centre-crank and Double-crank Arms.—In centre-crank engines, one of the crank-arms, and its adjoining journal, called the after journal, usually transmit the power of the engine to the work to be done, and the journal resists both twisting and bending moments, while the other journal is subjected to bending moment only. For the after crank-journal the diameter should be calculated the same as for an overhung crank, using the formula for combined bending and twisting moment,  $T_1 = B + VB^2 + T^2$ , in which  $T_1$  is the equivalent twisting moment, B the bending moment, and T the twisting moment. This value

of  $T_1$  is to be used in the formula diameter =  $\sqrt[3]{\frac{5.1T}{S}}$ . The bending mo-

ment is taken as the maximum load on piston multiplied by one fourth of the length of the crank-shaft between middle points of the two journal bearings, if the centre crank is midway between the bearings, or by one half the distance measured parallel to the shaft from the middle of the crank-pin to the middle of the after bearing. This supposes the crank-haft to be a beam loaded at its middle and supported at the ends, but Whitham would make the bending moment only one half of this, considering the shaft to be a beam secured or fixed at the ends, with a point of contraflexure one fourth of the length from the end. The first supposition is the safer, but since the bending moment will in any case be much less than the twisting moment, the resulting diameter will be but little greater than if Whitham's supposition is used. For the forward journal, which is sub-

jected to bending moment only, diameter of shaft =  $\sqrt[3]{\frac{10.2B}{S}}$ , in which B

is the maximum bending moment and S the safe shearing strength of the metal per square inch.

For our six engines, assuming them to be centre-crank engines, and considering the crank-shaft to be a beam supported at the ends and loaded in the middle, and assuming lengths between centres of shaft bearings as given below, we have:

Engine No	1	2	8	4	5	6
Length of shaft, assumed, inches, L	20 7,854	24 7,854	48 70,686	60 70,686	76 196,350	96 196,350
Max. bending moment, $B = \frac{1}{4}PL$ , inch-lbs Twisting moment, $T$ Equiv. twisting moment,	39,270 47,124	94,248	1,060,290	2,120,580	3,729,750 4,712,400	9,424,800
$B + \sqrt{B^2 + T^2}$ Diameter of after journal, $d = \sqrt[3]{\frac{5.1T_1}{8000}}$	3.98	4.60		13.00	9,740,000 18.25	15,240,000 21.20
Diam. of forward journal, $d_1 = \sqrt[3]{\frac{10.2\overline{B}}{8000}} \dots$	3.68	3.99	10.28	11.16	16.82	18.18

The lengths of the journals would be calculated in the same manner as in the case of overhung cranks, by the formula l=.000053/PR, in which P is the resultant of the mean pressure due to pressure of steam on the piston and the load of the fly-wheel, shaft, etc., on each of the two bearings. Unless the pressures are equally divided between the two bearings. Unless the pressures are equally divided between the two bearings, the calculated lengths of the two will be different; but it is usually customary to make them both of the same length, and in no case to make the length less than the diameter. The diameters also are usually made alike for the two journals, using the largest diameter found by calculation.

The crank-pin for a centre crank should be of the same length as for an overhung crank, since the length is determined from considerations of heating, and not of strength. The diameter also will usually be the same, since it is made great enough to make the pressure per square inch on the projected area (product of length by diameter) small enough to allow of free lubrication, and the diameter so calculated will be greater than is re-

quired for strength.

Crank-shaft with Two Cranks coupled at  $90^{\circ}$ .— If the whole power of the engine is transmitted through the after journal of the after roank-shaft, the greatest twisting moment is equal to 1.414 times the maximum twisting moment due to the pressure on one of the crank-pins. If T = 1 the maximum twisting moment produced by the steam-pressure on one of the pistons, then  $T_1$  the maximum twisting moment on the after part of the crank-shaft, and on the line-shaft, produced when each crank makes an angle of  $45^{\circ}$  with the centre line of the engine, is 1.414T. Substituting this value in the formula for diameter to resist simple torsion, viz., d = 1

$$\sqrt[3]{\frac{5.1T}{S}}$$
, we have  $d = \sqrt[3]{\frac{5.1 \times 1.414T}{S}}$ , or  $d = 1.932 \sqrt[3]{\frac{T}{S}}$ , in which T is

the maximum twisting moment produced by one of the pistons, d= diameter in inches, and S= safe working shearing strength of the material. For the forward journal of the after crank, and the after journal of the forward crank, the torsional moment is that due to the pressure of steam on the forward joiston only, and for the forward journal of the forward crank, if none of the power of the engine is transmitted through it, the torsional moment is zero, and its diameter is to be calculated for bending moment only.

For Combined Torsion and Flexure.—Let  $B_1$  = bending moment on either journal of the forward crank due to maximum pressure on

forward piston,  $B_2$  = bending moment on either journal of the after crank due to maximum pressure on after piston,  $T_1 = \max \text{imum twisting moment}$  on after journal of forward crank, and  $T_2 = \max \text{imum twisting moment}$  on

after journal of after crank due to pressure on the after piston. Then equivalent twisting moment on after journal of forward crank  $= B_1$ 

 $+\sqrt{B_1^2+T_1^2}$ .

On forward journal of after crank =  $B_1 + \sqrt{B_2^2 + T_1^2}$ .

On after journal of after crank =  $B_2 + \sqrt{B_2^2 + (T_1 + T_2)^2}$ .

These values of equivalent twisting moment are to be used in the formula

for diameter of journals  $d = \sqrt[3]{\frac{5.1T}{8}}$ . For the forward journal of the

forward crank-shaft  $d = \sqrt[3]{\frac{10.2B_1}{S}}$ .

It is customary to make the two journals of the forward crank of one diameter, viz., that calculated for the after journal.

For a Three-cylinder Engine with cranks at 120°, the greatest For a Three-cylinder Engine with cranks at 120°, the greatest twisting moment on the after part of the shaft, if the maximum pressures on the three pistons are equal, is equal to twice the maximum pressure on any one piston, and it takes place when two of the cranks make angles of 30° with the centre line, the third crank being at right angles to it. (For demonstration, see Whitham's "Steam-engine Design," p. 252.) For combined torsion and flexure the same method as above given for two crank engines is adopted for the first two cranks; and for the third, or after crank, if all the power of the three cylinders is transmitted through it, we have the equivalent twisting moment on the forward journal =  $B_3 + \sqrt{B_3^2 + (T_1 + T_2)^2}$ , and on the after journal =  $B_0 + \sqrt{B_0^2 + (T_1 + T_2 + T_3)^2}$ ,  $B_0$  and  $T_0$  being respectively the bending and twisting moments due to the pressure on the third piston.

Crank - shafts for Triple-expansion Marine Engines, according to an article in *The Engineer*, April 25, 1890, should be made larger than the formulæ would call for, in order to provide for the stresses

larger than the formulæ would call for, in order to provide for the stresses due to the racing of the propeller in a sea-way, which can scarcely be calculated. A kind of unwritten law has sprung up for fixing the size of a crank-shaft, according to which the diameter of the shaft is made about 0.45D, where D is the diameter of the high-pressure cylinder. This is for solid shafts. When the speeds are high, as in war-ships, and the stroke short, the formula becomes 0.4D, even for hollow shafts.

The Valve-stem or Valve-rod.—The valve-rod should be designed to move the valve under the most unfavorable conditions, which are when the stem acts by thrusting, as a long column, when the valve is unbalanced (a balanced valve may become unbalanced by the joint leaking) and when it is imperfectly lubricated. The load on the valve is the product of the area into the greatest unbalanced pressure upon it per square inch, and the cointo the greatest unbalanced pressure upon it per square inch, and the coefficient of friction may be as high as 20%. The product of this coefficient and the load is the force necessary to move the valve, which equals the naximum thrust on the valve-rod. From this force the diameter of the valve-rod may be calculated by Hodgkinson's formula for columns. An

empirical formula given by Seaton is: Diam. of rod =  $d = \sqrt{\frac{lbp}{F}}$ , in which

l = length and b = breadth of valve, in inches; p = maximum absolute t = sength and b = breath of valve, in inches; b = maximum absolute pressure on the valve in ibs. per sq in., and Fa coefficient whose values are, for iron: long rod 10,000, short 12,000; for steel: long rod 12,000, short 14,500. Whitham gives the short empirical rule: Diam. of valve-rod = 1/30 diam. of cyl. = ½ diam. of piston-rod.

Size of Slot-link. (Seaton.)—Let D be the diam. of the valve-rod

$$D = \sqrt{\frac{lbp}{12,000}};$$

then Diameter of block-pin when overhung = D, secured at both ends =  $0.75 \times D$ . eccentric-rod pins  $= 0.7 \times D.$ suspension-rod pins =  $0.55 \times D$ . "" pin when overhung =  $0.75 \times D$ .

= 0.8 to  $0.9 \times D$ . = 1.8 to  $1.6 \times D$ . =  $0.7 \times D$ . Breadth of link Length of block Thickness of bars of link at middle

If a single suspension rod of round section, its diameter =  $0.7 \times D$ . If two suspension rods of round section, their diameter =  $0.55 \times D$ .

Size of Double-bar Links.—When the distance between centres of eccentric pins = 6 to 8 times throw of eccentrics (throw = eccentricity = half-travel of valve at full gear) D as before:

Depth of bars = 1.25  $\times$  D +  $\frac{34}{2}$  in. Thickness of bars = 0.5  $\times$  D +  $\frac{14}{2}$  in. Length of sliding-block = 2.5 to  $\frac{3}{2} \times$  D. Diameter of eccentric-rod pins = 0.8  $\times$  D +  $\frac{14}{2}$  in. "centre of sliding-block = 1.8  $\times$  D. Depth of bars Thickness of bars Length of sliding-block

When the distance between eccentric-rod pins = 5 to 51/4 times throw of eccentrics:

Depth of bars Thickness of bars Length of sliding-block =  $1.25 \times D + 16$  in. =  $0.5 \times D + 14$  in. =  $2.5 \times 0.3 \times D$ . Diameter of eccentric-rod pins =  $0.75 \times D$ .

Diameter of eccentric bolts (top end) at bottom of thread = 0.42  $\times$  D when of iron, and 0.88  $\times$  D when of steel.

The Eccentric.—Diam of eccentric-sheave =  $2.4 \times$  throw of eccentric +  $1.2 \times$  diam of shaft. D as before

#### TRICKNESS OF ECCENTRIC-STRAP.

When of bronze or malleable cast iron:

Thickness of eccentric-strap at the middle..... =  $0.4 \times D + 0.6$  inch.

When of wrought iron or cast steel:

Thickness of eccentric-strap at the middle ...... =  $0.4 \times D + 0.5$  inch. ... =  $0.27 \times D + 0.4$  inch.

The Eccentric-rod.—The diameter of the eccentric-rod in the body and at the eccentric end may be calculated in the same way as that of the connecting-rod, the length being taken from centre of strap to centre of pin. Diameter at the link end = 0.8D + 0.2 inch.

This is for wrought iron; no reduction in size should be made for steel.

Eccentric-rods are often made of rectangular section.

Reversing-gear should be so designed as to have more than sufficient strength to withstand the strain of both the valves and their gear at the same time under the most unfavorable circumstances; it will then have the

Assuming the work done in reversing the link-motion, W, to be only that due to overcoming the friction of the valves themselves through their whole travel, then, if T be the travel of valves in inches; for a compound engine

$$W = \frac{T}{12} \left( \frac{l \times b \times p}{5} \right) + \frac{T}{12} \left( \frac{l^1 \times b^1 \times p^1}{5} \right);$$

 $l^1$ ,  $b^1$  and  $p^1$  being length, breadth and maximum steam-pressure on valve of the second cylinder; and for an expansive engine

$$W = 2 \times \frac{T}{12} \left( \frac{l \times b \times p}{5} \right); \text{ or } \frac{T}{30} (l \times b \times p).$$

To provide for the friction of link-motion, eccentrics and other gear, and for abnormal conditions of the same, take the work at one and a half times the above amount.

To find the strain at any part of the gear having motion when reversing. divide the work so found by the space moved through by that part in feet; the quotient is the strain in pounds; and the size may be found from the

ordinary rules of construction for any of the parts of the gear. (Seaton.)

Engine-frames or Bed-plates.—No definite rules for the design of engine-frames or issec-plates.—No definite rules for the design of engine-frames have been given by authors of works on the steam engine. The proportions are left to the designer who uses "rule of thumb," or copies from existing engines. F. A. Halsey (Am. Mach., Feb. 14, 1895) has made a comparison of proportions of the frames of horizontal Corliss engines of several builders. The method of comparison is to compute from the measurements the number of square inches in the smallest cross-section of the frame, that is, immediately behind the pillow-block, also to compute the total maximum pressure upon the piston, and to divide the latter quantity by the former. The result gives the number of pounds pressure upon the piston allowed for each square inch of metal in the frame. He finds that the number of pounds per square inch of smallest section of frame ranges from 217 for a 10 × 36 in. engine up to 575 for a 28 × 48 inch. A 80 × 60 inch engine shows 80 lbs., and a 32 inch engine which has been running for many years shows 667 lbs. Generally the strains increase with the size of the engine, and more cross-section of metal is allowed with relatively long strokes than with short ones.

From the above Mr. Halsey formulates the general rule that in engines of moderate speed, and having strokes up to one and one-half times the diameter of the cylinder, the load per square inch of smallest section should be for a 10-inch engine 300 pounds, which figure should be increased for larger bores up to 500 pounds for a 30-inch cylinder of same relative stroke. For high speeds or for longer strokes the load per square inch

should be reduced.

#### FLY-WHEELS.

The function of a fly-wheel is to store up and to restore the periodical fluctuations of energy given to or taken from an engine or machine, and thus to keep approximately constant the velocity of rotation. Rankine calls the quantity  $\frac{-}{2E_9}$  $\Delta E$ - the coefficient of fluctuation of speed or of unsteadiness, in which  $E_0$  is the mean actual energy, and  $\Delta E$  the excess of energy received or of work performed, above the mean, during a given interval. The ratio of the periodical excess or deficiency of energy  $\Delta E$  to the whole energy exerted in one period or revolution General Morin found to be from 1/6, to  $\frac{1}{4}$  for single-cylinder engines using expansion; the shorter the cut-off the higher the value. For a pair of engines with cranks coupled at 90° the value of the ratio is about 14, and for three engines with cranks at 120°, 1/12 of its value for single cylinder engines. For tools working at intervals, such as punching, slotting and plate-cutting machines, coining presses, etc.,  $\Delta E$  is nearly equal to the whole work performed at each operation.

A fly-wheel reduces the coefficient  $\frac{\Delta E}{2E_0}$  to a certain fixed amount, being about 1/82 for ordinary machinery, and 1/50 or 1/60 for machinery for fine purposes.

If m be the reciprocal of the intended value of the coefficient of fluctuation of speed,  $\Delta E$  the fluctuation or energy, I the moment of inertia of the fly-wheel alone, and  $a_0$  its mean angular velocity,  $I = \frac{mg\Delta E}{c}$ . As the rim of a fly-wheel is usually heavy in comparison with the arms, I may be taken to equal  $Wr^2$ , in which W = weight of rim in pounds, and r the radius of the wheel; then  $W = \frac{mg\Delta E}{a_0^2 r^2} = \frac{mg\Delta E}{v^2}$ , if v be the velocity of the rim in feet per second. The usual mean radius of the fly-wheel in steam-engines is from three to five times the length of the crank. The ordinary values of the product mg, the unit of time being the second, lie between 1000 and 2000 feet. (Abridged from Rankine, S E., p. 62.)

Thurston gives for engines with automatic valve-gear W = 250,000 $\frac{\Delta D_p}{R^2D^2}$ , in which A= area of piston in square inches, S= stroke in feet, p=mean steam pressure in lbs. per sq. in., R = revolutions per minute, D = outside diameter of wheel in feet. Thurston also gives for ordinary forms of

non-condensing engine with a ratio of expansion between 8 and 5, W = $\frac{a_{AB}}{R^2D^2}$ , in which a ranges from 10,000,000 to 15,000,000, averaging 12.000.000 For gas-engines, in which the charge is fired with every revolution, the American Machinist gives this latter formula, with a doubled, or 24,000,000. Presumably, if the charge is fired every other revolution, a should be again doubled.

Rankine ("Useful Rules and Tables," p. 247) gives  $W = 475,000 \frac{ASp}{VD^2R^2}$ , in

which V is the variation of speed per cent. of the mean speed. Thurston's first rule above given corresponds with this if we take V at 1.9 per cent. Hartnell (Proc. Inst., M. E. 1882, 427) says: The value of V, or the variation permissible in portable engines, should not exceed 3 per cent. with an ordinary load, and 4 per cent when heavily loaded. In fixed engines, for ordinary purposes, V = 2% to 3 per cent. For good governing or special purposes, such as cotton-spinning, the variation should not exceed 1% to 2 per cent. per cent.

F. M. Rites (Trans. A. S. M. E., xiv. 100) develops a new formula for weight of rim, viz.,  $W = \frac{C \times \text{I.H.P.}}{R^2 D^2}$ , and weight of rim per horse-power  $= \frac{C}{R^2 D^2}$ , in which C varies from 10,000,000,000 to 20,000,000,000; also using the latter value of C, he obtains for the energy of the fly-wheel  $\frac{Mv^2}{2} = \frac{W}{64.4} \frac{8.14^2 D^2 R^2}{3600} =$  $\frac{C \times \text{H.P.} (8.14)^3 D^2 R^2}{R^3 D^2 \times 64.4 \times 8600} = \frac{850,000 \text{ H.P.}}{R}.$  Fly-wheel energy per H.P. =

The limit of variation of speed with such a weight of wheel from excess of

power per fraction of revolution is less than 0.028. The value of the constant C given by Mr. Rites was derived from practice of the Westinghouse single-acting engines used for electric-lighting. For double-acting engines in ordinary service a value of C = 5,000,000,000 would probably be ample.

From these formulæ it appears that the weight of the fly-wheel for a given horse-power should vary inversely with the cube of the revolutions and the

square of the diameter.

J. B. Stanwood (Eng'g, June 12, 1891) says: Whenever 480 feet is the lowest piston-speed probable for an engine of a certain size, the fly-wheel weight for that speed approximates closely to the formula

$$W = 700,000 \frac{d^2s}{D^2R^2}.$$

W = weight in pounds, d = diameter of cylinder in inches, s = stroke in inches, D = diameter of wheel in feet, R = revolutions per minute, corre-

inches, D = chameter or wheel in feet, K = revolutions per minute, corresponding to 480 feet piston-speed.

In a Ready Reference Book published by Mr. Stanwood, Cincinnati, 1892, he gives the same formula with coefficients as follows: For slide-valve engines, ordinary duty, 350,000; same, electric-lighting, 700,000; for automatic high-speed engines, 1000,000; for Corliss engines, ordinary duty 700,000, electric-lighting 1,000,000.

Thurston's formula above given,  $W = \frac{aAS}{R^2D^2}$ , with a = 12,000,000, when reduced to terms of d and s in inches, becomes  $W = 785,400 \frac{d^2s}{R^2D^2}$ .

If we reduce it to terms of horse-power, we have I.H.P. =  $\frac{42.007 \text{ is}}{38.000}$ **2ASPR** in which P = mean effective pressure. Taking this at 40 lbs., we obtain  $W = 5,000,000,000,\frac{\text{I.H.P.}}{R^3D^3}$ . If mean effective pressure = 30 lbs., then W =6,666,000,000 I.H.P. R³D²

Emil Theiss (Am. Mach., Sept. 7 and 14, 1898) gives the following values or d, the coefficient of steadiness, which is the reciprocal of what Rankine calls the coefficient of fluctuation:

Mr. Theiss's formula for weight of fiy-wheel in pounds is  $W=i \times \frac{d \times I.H.P.}{V^2 \times n}$ , where d is the coefficient of steadiness, V the mean velocity of the flywhrel rim in feet per second, n the number of revolutions per minute, i=a coefficient obtained by graphical solution, the values of which for different conditions are given in the following table. In the lines under "cutoff," p means "compression to initial pressure," and O "no compression":

VALUES OF i. SINGLE-CYLINDER NON-CONDENSING ENGINES.

9 - i ii 2 - i ii	Cut-of	<b>r</b> , 1/6.	Cut-o	n, 14.	Cut-o	at, 34.	Cut-c	ff, 3 <u>4</u> .
Pistos speed, per m	Comp.	o	Comp.	o	Comp.	0	Comp.	o
200	272,690	218,580	242.010	209,170	220,760	201,920	193,340	182,840
400	240,810			179,460				167,860
600	194,670			136,460	165,210	146,610		. <b></b>
800	158,200	108,690	162,070	135,260		. <b></b>		

#### SINGLE-CYLINDER CONDENSING ENGINES.

n t	Cut-o	n, 1/6.	Cut-o	ff, 1/6.	Cut-c	ff, 14.	Cut-o	AT, 1/6.	Cut-o	ff, 1/6.
Piston speed, 1 per mi	Comp.	o	Comp.	o	Comp.	o	Comp.	o	Comp.	0
							189,600			
			174,000				174,630	151,680		

#### TWO-CYLINDER ENGINES, CRANES AT 90°.

nin.	Cut-o	ñ, 1/6.	Cut-o	a, 1/4.	Cut-o	ff, 1⁄8.	Cut-o	ff, 1/4.
Pisto speed per m	$\mathop{\mathrm{Comp.}}_{p}$	o	Comp.	o	Comp.	О	Comp.	О
200 400 600 800	71,980 70,160 70,040 70,040	Mean 60,140	59,420 57,000 57,480 60,140	Mean 54,340	49,272 49,150 49,220	Mean 50,000	87,920 35,500	) Mean   36,950

#### THREE-CYLINDER ENGINES, CRANKS AT 120°.

d, ft.	Cut-o	ff, 1/6.	Cut-c	ff, ¼.	Cut-o	<b>ff</b> , <u>1/6</u> .	Cut-c	ff, 1⁄2.
Pist speed	Comp.	o	Comp.	o	Comp.	o	Comp.	o
200 800	83,810 80,190	82,240 81,570	33,810 35,140	35,500 33,810	34,540 <b>36</b> ,470	33,450 32,850	35,260 33,810	32,370 32,370

As a mean value of i for these engines we may use \$3.810.

Centrifugal Force in Fly-wheels.—Let W = weight of rim in pounds; R = mean radius of rim in feet; r = revolutions per minute, g =32.16;  $v = \text{velocity of rim in feet per second} = 2\pi Rr + 60$ .

 $\frac{rr\,v^2}{gR} = \frac{4W\pi^2Rr^2}{}$ Centrifugal force of whole rim  $= F = \frac{Wv^2}{2}$  $= .000841 W R_{2}^{2}$ 

The resultant, acting at right angles to a diameter of half of this force, tends to disrupt one half of the wheel from the other half, and is resisted by the section of the rim at each end of the diameter. The resultant of half the

radial forces taken at right angles to the diameter is  $1 + \frac{1}{2}\pi = \frac{1}{2}$ of the sum

of these forces; hence the total force F is to be divided by  $2 \times 2 \times 1.5708$ = 6.2832 to obtain the tensile strain on the cross-section of the rim, or, total strain on the cross-section =  $S = .00005427WRr^2$ . The weight  $W_1$  of a rim of cast iron 1 inch square in section is  $2\pi R \times 8.125 = 19.685R$  pounds. whence strain per square inch of sectional area of  $rim = S_1 = .0010656R^{2}$ ,  $r^2 = .0002664D^2r^2 = .0000270V^2$ , in which D = diameter of wheel in feet, and Vis velocity of rim in feet per minute.  $S_1 = .0972v^2$ , if v is taken in feet per second.

For wrought iron...  $S_1 = .0011866R^2r^2 = .0002842D^2r^2 = .0000288V^2$ . For steel ...  $S_1 = .0011593R^2r^2 = .0002901D^2r^2 = .0000294V^2$ . For wood...  $S_1 = .0000888R^2r^2 = .0000222D^2r^2 = .0000222V^2$ 

The specific gravity of the wood being taken at 0.6 = 37.5 lbs. per cu. ft., or 1/12 the weight of cast iron.

Example.—Required the strain per square inch in the rim of a cast-iron wheel 80 ft. diameter, 60 revolutions per minute.

Answer.  $15^2 \times 60^2 \times .0010656 = 868.1$  lbs.

Required the strain per square inch in a cast-iron wheel-rim running a mile a minute. Answer.  $.000027 \times 5280^2 = 752.7$  lbs.

In cast-iron fly-wheel rims, on account of their thickness, there is difficulty in securing soundness, and a tensile strength of 10,000 lbs. per sq. in. is as much as can be assumed with safety. Using a factor of safety of 10 gives maximum allowable strain in the rim of 1000 lbs. per sq. in., which corresponds to a rim velocity of 6085 ft. per minute.

For any given material, as cast iron, the strength to resist centrifugal force

depends only on the velocity of the rim, and not upon its bulk or weight. Chas. E. Emery (Cass. Mag., 1892) says: By calculation half the strength of the arms is available to strengthen the rim, or a trifle more if the figwheel centres are relatively large. The arms, however, are subject to transverse strains, from belts and from changes of speed, and there is, moreover, no certainty that the arms and rim will be adjusted so as to pull exactly procedured in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr no certainty that the arms and rim will be adjusted so as to pun exactly together in resisting disruption, so the plan of considering the rim by itself and making it strong enough to resist disruption by centrifugal force within safe limits, as is assumed in the calculations above, is the safer way.

It does not appear that fly-wheels of customary construction should be unsafe at the comparatively low speeds now in common use if proper materials are used in construction. The cause of rupture of fly-wheels that

have failed is usually either the "running away" of the engine, such as may be caused by the breaking or slackness of a governor-belt, or incorrect design or defective materials of the fly-wheel.

Chas. T. Porter (Trans. A. S. M. E., xiv. 808) states that no case of the bursting of a fly-wheel with a solid rim in a high-speed engine is known. He attributes the bursting of wheels built in segments to insufficient strength of the flanges and bolts by which the segments are held together. (See also Thurston, "Manual of the Steam-engine." Part II, page 413, etc.)

Arms of Fly-wheels and Pulleys. — Professor Torrey (Am. Mach., July 30, 1891) gives the following formula for arms of elliptical cross-section of cast-iron wheels:

W =load in pounds acting on one arm; S =strain on belt in pounds per inch of width, taken at 56 for single and 112 for double belts: v = width of belt in inches; n = number of arms; L = length of arm in feet; b = breadth of arm at hub; d = depth of arm at hub, both in inches:

 $b = \frac{772}{20d^3}$ . The breadth of the arm is its least dimension = minor axis of the ellipse, and the depth the major axis. This formula is based on a factor of safety of 10

In using the formula, first assume some depth for the arm, and calculate the required breadth to go with it. If it gives too round an arm, assume the breadth a little greater, and repeat the calculation. A second trial will

almost always give a good section.

The size of the arms at the hub having been calculated, they may be somewhat reduced at the rim end. The actual amount cannot be calculated, as there are too many unknown quantities. However, the depth and breadth can be reduced about one third at the rim without danger, and this

will give a well-shaped arm.

Pulleys are often cast in halves, and bolted together. When this is done the greatest care should be taken to provide sufficient metal in the bolts. This is apt to be the very weakest point in such pulleys. The combined area of the bolts at each joint should be about 28/100 the cross-section of the pulley at that point. (Torrey.)

 $d = 0.6337 \sqrt{\frac{2}{n}}$  for single belts; Unwin gives  $d = 0.798 \sqrt{\frac{BD}{n}}$  for double belts;

D being the diameter of the pulley, and B the breadth of the rim, both in inches. These formulæ are based on an elliptical section of arm in which b = 0.4d or d = 2.5b on a width of belt = 4/5 the width of the pulley rim, a maximum driving force transmitted by the belt of 55 ibs, per inch of width for a single belt and 112 ibs, for a double belt, and a safe working stress of cast iron of 2250 ibs, per square inch.

If in Torrey's formula we make b=0.4d, it reduces to

$$b = \sqrt[3]{\frac{\overline{WL}}{187.5}}; \quad d = \sqrt[3]{\frac{\overline{WL}}{12}}.$$

Example.—Given a pulley 10 feet diameter; 8 arms, each 4 feet long; face, 36 inches wide; belt, 30 inches: required the breath and depth of the arm at the hub. According to Unwin,

$$d = 0.6387 \sqrt[4]{\frac{BD}{n}} = 0.638 \sqrt[4]{\frac{36 \times 120}{8}} = 5.16 \text{ for single belt, } b = 2.66;$$

$$d = 0.798 \sqrt[4]{\frac{BD}{n}} = 0.798 \sqrt[4]{\frac{36 \times 120}{8}} = 6.50 \text{ for double belt, } b = 2.60.$$

According to Torrey, if we take the formula  $b = \frac{WL}{80d^2}$  and assume d = 5and 6.5 inches, respectively, for single and double belts, we obtain b=1.08 and 1.33, respectively, or practically only one half of the breadth according to Unwin, and, since transverse strength is proportional to breadth, an arm

only one half as strong.

Torrey's formula is said to be based on a factor of safety of 10, but this factor can be only apparent and not real, since the assumption that the strain on each area is equal to the strain on the belt divided by the number of arms, is, to say the least, inaccurate. It would be more nearly correct to say that the strain of the belt is divided among half the number of arms. Unwin makes the same assumption in developing his formula, but says it is only in a rough sense true, and that a large factor of safety must be allowed. He therefore takes the low figure of 2250 lbs. per square inch for the safe working strength of cast iron. Unwin says that his equations agree well with practice.

**Diameters of Fly-wheels for Various Speeds.**—If 6000 feet per minute be the maximum velocity of rim allowable, then  $6000 = \pi RD$ , in which R = revolutions per minute, and D = diameter of wheel in feet, whence  $D = \frac{6000}{\pi R} = \frac{1910}{R}$ .

whence 
$$D = \frac{6000}{R} = \frac{1910}{R}$$
.

MAXIMUM DIAMETER OF FLY-WHEEL ALLOWABLE FOR DIFFERENT NUMBERS OF REVOLUTIONS.

Revolutions	Assuming Maxi 5000 feet p	mum Speed of er minute.	Assuming Maximum Speed of 6000 feet per minute.		
per minute.	Circum. ft.	Diam. ft.	Circum. ft.	Diam. ft.	
40	125	89.8	150.	47.7	
50	100	81.8	120.	38.2	
60	83.3	<b>26.5</b>	100.	31.8	
70	71.4	22.7	85.72	27.3	
80	62.5	19.9	75.00	23.9	
90	55.5	17.7	66.66	21.2	
100	50.	15.9	60.00	19.1	
120	41.67	13.3	50.00	15.9	
140	85.71	11.4	42.86	13.6	
160	81.25	9.9	87.5	11.9	
180	27.77	8.8	33.33	10.6	
200	25.00	8.0	80.00	9.6	
220	22.73	7.2	27.27	8.7	
240	20.83	6.6	25.00	8.0	
260	19.28	6.1	23.08	7.3	
280	17.86	5.7	21.48	6.8	
300	16.66	5.8	20.00	6.4	
350	14.29	4.5	17.14	5.5	
400	12.5	4.0	15.00	4.8	
450	11.11	8.5	13.38	4.2	
500	10.00	8.2	12.00	າ 8.8	

Strains in the Bims of Fly-band Wheels Produced by Centrifugal Force. (James B. Stanwood, Trans. A. S. M. E., xiv. 251.)

—Mr. Stanwood mentions one case of a fly-band wheel where the periphery velocity on a 17' 9" wheel is over 7500 ft. per minute.

In band saw-mills the blade of the saw is operated successfully over wheels 8 and 9 ft. in diameter, at a periphery velocity of 2000 to 10,000 ft. per minute. These wheels are of cast iron throughout, of heavy thickness, with a large number of arms.

In shingle-machines and chipping-machines where cast-iron disks from 2 to 5 ft. in diameter are employed, with knives inserted radially, the speed is frequently 10,000 to 11,000 ft. per minute at the periphery.

If the rim of a fly-wheel alone be considered, the tensile strain in pounds

If the rim of a fly-wheel alone be considered, the tensile strain in pounds per square inch of the rim section is  $T = \frac{V^2}{10}$  nearly, in which V = velocity

in feet per second; but this strain is modified by the resistance of the arms, which prevent the uniform circumferential expansion of the rim, and induce a bending as well as a tensile strain. Mr. Stanwood discusses the strains in band-wheels due to transverse bending of a section of the rim between a pair of arms.

When the arms are few in number, and of large cross-section, the ring will be strained transversely to a greater degree than with a greater number of lighter arms. To illustrate the necessary rim thicknesses for various rim velocities, pulley diameters, number of arms, etc., the following table is given, based upon the formula

$$t = \frac{.475d}{N^2 \left(\frac{F}{V^2} - \frac{1}{10}\right)},$$

in which t= thickness of rim in inches, d= diameter of pulley in inches, N= number of arms, V= velocity of rim in feet per second, and F= the greatest strain in pounds per square inch to which any fibre is subjected. The value of F is taken at 6000 lbs. per sq. in.

Diameter of Pulley in inches.	Velocity of Rim in feet per second.	Velocity of Rim in feet per minute.	No. of Arms.	Thickness in inches.
24 24	50 88	8,000 5,290	6	2/10 15/32
48 108	88 184	5,280 5,280 11,040	6 16	15/16
108	184	11.040	86	1 12

Thickness of Rims in Solid Wheels.

If the limit of rim velocity for all wheels be assumed to be 88 ft. per second, equal to 1 mile per minute,  $F = 6000 \, \text{lbs}$ , the formula becomes

$$t = \frac{.475d}{.67N^2} = 0.7 \frac{d}{N^2}$$

When wheels are made in halves or in sections, the bending strain may be such as to make f greater than that given above. Thus, when the joint comes half way between the arms, the bending action is similar to a beam supported simply at the ends, uniformly loaded, and t is 50% greater. Then the formula becomes

$$t=\frac{.719d}{N^2\left(\frac{F}{V^2}-\frac{1}{10}\right)}.$$

or for a fixed maximum rim velocity of 88 ft. per second and F = 6000 lbs.,  $t = \frac{1.05.7}{}$  $\frac{1}{N^2}$ . In segmental wheels it is preferable to have the joints opposite Wheels in halves, if very thin rims are to be employed, should the arms. have double arms along the line of separation,

Attention should be given to the proportions of large receiving and tightening pulleys. The thickness of rim for a 48-in, wheel (shown in table) with a rim velocity of 88 ft. per second, is 15/16 in. Many wrecks have been caused by the failure of receiving or tightening pulleys whose rims have been too thin. Fly-wheels calculated for a given coefficient of steadiness are frequently lighter than the minimum safe weight. This is true especially of large wheels. A rough guide to the minimum weight of wheels can be deduced from our formulæ. The arms, hub, lugs, etc., usually form from one quarter to one third the entire weight of the wheel. If b represents the fact of a wheel in inches, the weight of the rim (considered as a simple annular ring) will be w=.82dtb lbs. If the limit of speed is 88 ft. per second, then for solid wheels  $t=0.7d+N^2$ . For sectional wheels (joint between arms)  $t=1.05d+N^3$ . Weight of rim for solid wheels,  $w=.57d^3b+N^3$  in pounds. Weight of rim in sectional wheels with joints between arms,  $w=.86d^3b+N^3$  in pounds. Total weight of wheel: for solid wheel,  $w=.76d^3b+N^3$  to  $.86d^3b+N^3$  in pounds. For segmental wheels with joint between arms,  $W=1.05d^3b+N^3$  in pounds. For segmental wheels with joint between arms,  $W=1.05d^3b+N^3$  in pounds. (This subject is further discussed by Mr. Stanwood, in vol. xv., and by Prof. Gaetano Lanza, in vol. xvi., Trans. A. S. M. E.)

A Wooden Him Fly-wheels, built in 1891 for a pair of Corliss engines at the Amoskeag Mfg. Co.'s mill, Manchester, N. H., is described by C. H. Manning in Trans. A. S. M. E., xiii. 618. It is 30 ft. diam. and 108 in. face. The rim is 12 inches thick, and is built up of 44 courses of ash plank, 2, 3, and 4 inches thick, reduced about  $\frac{1}{2}$  inch in dressing, set edgewise, so as to break joints, and glued and bolted together. There are two hubs and two sets of arms, 12 in each, all of cast iron. The weights are as follows: of a wheel in inches, the weight of the rim (considered as a simple annular

sets of arms, 12 in each, all of cast iron. The weights are as follows:

Weight (calculated) of ash rim	31.855	lbs.
" of 24 arms (foundry 45,020)	40.349	44
" " 2 hubs ( " 35,030)	31.394	- 66
Counter-weights in 6 arms	664	**
Total, excluding bolts and screws	104,262+	**

The wheel was tested at 76 revs. per min., being a surface speed of nearly 7200 feet per minute.

Mr. Manning discusses the relative safety of cast iron and of wooden wheels as follows: As for safety, the speeds being the same in both cases, the hoop tension in the rim per unit of cross-section would be directly as the weight per cubic unit; and its capacity to stand the strain directly as as the weight per cubic this, and its capacity to stain the straint directly at the tensile strength per square unit; therefore the tensile strengths divided by the weights will give relative values of different materials. Cast iron weighing 450 lbs. per cubic foot and with a tensile strength of 1,440,000 lbs. weighing 400 los. per cuoic root and with a tensile strength of 1, 40,000 by per square foot would give a value of 1, 40,000 0-450=3200, whilst ash, of which the rim was made, weghing 34 lbs. per cubic foot, and with 1,152,000 lbs. tensile strength per square foot, gives a result 1,152,000+34=33,882 and 33,882+3200=10.58, or the wood-rimmed pulley is ten times safer than the cast-iron when the castings are good. This would allow the wood-

rimmed pulley to increase its speed to  $\sqrt{10.58} = 3.25$  times that of a sound cast-iron one with equal safety.

Wooden Fly-wheel of the Willimantic Linen Co. (Illustrated in Power, March, 1893.)—Rim 28 ft. diam., 110 in, face. The rim is carried upon three sets of arms, one under the centre of each belt, with 12

arms in each set.

The material of the rim is ordinary whitewood, % in. in thickness, cut into segments not exceeding 4 feet in length, and either 5 or 8 inches in width. These were assembled by building a complete circle 18 inches in width, first with the 8 inch inside and the 5-inch outside, and then beside it another circle. cle with the widths reversed, so as to break joints. Each piece as it was added was brushed over with glue and nailed with three-inch wire nails to the pieces already in position. The nails pass through three and into the fourth thickness. At the end of each arm four 14-inch bolts secure the rim, the ends being covered by wooden plugs glued and driven into the face

of the wheel.

Wire-wound Fly-wheels for Extreme. Speeds. (Eng'g News, August 2, 1890.)—The power required to produce the Mannesmann tubes is very large, varying from 2000 to 10,000 H.P., according to the dimensions of the tube. Since this power is only needed for a short time (it takes only 30 to 45 seconds to convert a bar 10 to 12 ft. long and 4 in. in diameter into a tube), and then some time elapses before the next bar is ready, an engine of 1200 H.P. provided with a large fig-wheel for storing the energy will supply power enough for one set of rolls. These fly-wheels are so large and run at such great speeds that the ordinary method of constructing them cannot be followed. A wheel at the Mannesmann Works, made in Komotau, Hungary, followed. A wheel at the mannesmann works, made in konnotan, rangary, in the usual manner, broke at a tangential velocity of 125 ft. per second. The fly-wheels designed to hold at more than double this speed consist of a cast-iron hub to which two steel disks, 20 ft. in diameter, are bolted; around the circumference of the wheel thus formed 70 tons of No. 5 wire are wound under a tension of 50 lbs. In the Mannesmann Works at Landore, Wales, such a wheel makes 240 revolutions a minute, corresponding to a tangential velocity of 15,080 ft. or 2.85 miles per minute.

#### THE SLIDE-VALVE.

**Definitions.**—Travel = total distance moved by the valve.

Throw of the Eccentric = eccentricity of the eccentric = distance from the centre of the shaft to the centre of the eccentric disk = 1/4 the travel of the valve. (Some writers use the term "throw" to mean the whole travel of the valve.)

Lap of the valve, also called outside lap or steam-lap = distance the outer

or steam edge of the valve extends beyond or laps over the steam edge of the port when the valve is in its central position.

Inside lap, or exhaust-lap = distance the inner or exhaust edge of the valve extends beyond or laps over the exhaust edge of the port when the valve is its central position. The inside lap is sometimes made zero, or even negative, in which latter case the distance between the edge of the valve and the edge of the port is sometimes called exhaust clearance, or inside clearance.

Lead of the valve = the distance the steam-port is opened when the engine

is on its centre and the piston is at the beginning of the stroke.

Lead-angle = the angle between the position of the crank when the valve begins to be opened and its position when the piston is at the beginning of

The valve is said to have lead when the steam-port opens before the piston

r

begins its stroke. If the piston begins its stroke before the admission of steam begins the valve is said to have negative lead, and its amount is the lan of the edge of the valve over the edge of the port at the instant when the piston stroke begins.

Lap-angle = the angle through which the eccentric must be rotated to cause the steam edge to travel from its central position the distance of the

lap.

Angular advance of the eccentric = lap-angle + lead angle.

Linear advance = lap + lea.

Linear advance = lap + lea!. Effect of Lap, Lead, etc., upon the Steam Distribution.—Given valve-travel 3½ in., lap ¾ in., lead 1/16 in., exhaust-lap ½ in., required crank position for admission, cut-off, release and compression, and greatest port-opening. (Halsey on Slide-valve Gears.) Draw a circle of diameter fh = travel of valve. From O the centre set off Ou = lap and ab = lead, erect perpendiculars Oe, ac, bd; then ec is the lap-angle and ec the lead-angle, measured as arcs. Set off fg = cd, the lead-angle, then Og is the position of the crank for steam admission. Set off 2ec + cd from h to f; then Of is the crank-angle for cut-off, and fk + fh is the fraction of stroke completed at cut-off. Set off Of = exhaust-lap and draw Im; em is the exhaust-lap angle. Set off fp = ec + cd - em, and Op is the position of crank to rempression, fo + fh is the fraction of stroke completed at release. Set off fp = ec + cd - em, and Op is the position of crank Iq + hf is the fraction of the return stroke completed when compression begins; Oh, the throw of the eccentric, minus Oa the lap, equals ah the maximum port-opening. maximum port-opening.

If a valve has neither lap nor lead, the line joining the centre of the eccen-



Fra. 146.

tric disk and the centre of the shaft being at right angles to the line of the crank, the engine would follow full stroke, admission of steam beginning at the beginning of the stroke and ending at the end of the stroke.

Adding lap to the valve enables us to cut off steam before the end of the stroke; the eccentric being advanced on the shaft an amount equal to the lap-angle enables steam to be admitted at the beginning of the stroke, as before lap was added, and advancing it a further amount equal to the lead angle causes steam to be admitted before the beginning of the stroke.

Having given lap to the valve, and having advanced the eccentric on the shaft from its central position at right angles to the crank, through the angular advance = lap-angle and lead-angle, the four events, admission, cut-off, release or exhaust-opening, and compression or exhaust-closure, take place as follows: Admission, when the crank lacks the lead-angle of having reached the centre; cut-off, when the crank lacks two lap-angles and one lead-angle of having reached the centre. During the admission of steam the crank turns through a semicircle less twice the lap-angle. The greatest port-opening is equal to half the travel of the valve less the lap. Therefore for a given port-opening the travel of the valve must be increased if the lap is increased. When exhaust-lap is added to the valve it delays the opening of the exhaust and hastens its closing by an angle of rotation equal to the exhaust lap angle, which is the angle through which the eccentric rotates from its middle position while the exhaust edge of the valve uncovers its lap. Release then takes place when the crank lacks one lap-angle and one lead-angle minus one exhaust-lap angle of having reached the centre, and compression when the crank lacks lap-angle + lead-angle + exhaust-lap angle of having reached the centre.

The above discussion of the relative position of the crank, piston, and valve for the different points of the stroke is accurate only with a connect-

ing-rod of infinite length.

For actual connecting-rods the angular position of the rod causes a distortion of the position of the valve, causing the events to take place too late in the forward stroke and too early in the return. The correction of this distortion may be accomplished to some extent by setting the valve so as to give equal lead on both forward and return stroke, and by altering the exhaust-lap on one end so as to equalize the release and compression. F. A. Halsey, in his Slide-valve Gears, describes a method of equalizing the cut-off without at the same time affecting the equality of the lead. In designing slide-valves the effect of angularity of the connecting-rod should

be studied on the drawing-board, and preferably by the use of a model.

Sweet's Valve-diagram.—To find outside and inside lap of valve for different cut-offs and compressions (see Fig. 147): Draw a circle whose



Fig. 147.—Sweet's Valve-diagram.

diameter equals travel of valve. Draw diameter BA and continue to A1,

diameter equals travel of valve. Draw diameter BA and continue to A, so that the length  $AA^1$  bears the same ratio to XA as the length of connecting-rod does to length of engine-crank. Draw small circle E with a diameter equal to lead. Lay off AC so that ratio of AC to AB = cut-off in parts of the stroke. Erect perpendicular CD. Draw DL tangent to E; draw XS perpendicular to DL; XS is then outside lap of valve. To find release and compression: If there is no inside lap, draw FE through X parallel to DL. F and E will be position of crank for release and compression. If there is an inside lap, draw a circle about X, in which radius XY equals inside lap. Draw HG tangent to this circle and parallel to DL; then H and G are crank position for release and compression. Draw HN and MG, then AN is piston position at release and AM piston position at compression, AB being considered stroke of engine.

To make compression alike on each stroke it is necessary to increase the inside lap on crank end of valve, and to decrease by the same amount the inside lap on back end of valve. To determine this amount, through M with a radius  $MM^1 = AA^1$ , draw are MP, from P draw PT perpendicular to AB, then TM is the amount to be added to inside lap on crank end, and to be deducted from inside lap on back end of valve, inside lap being XY.

For the Bilgram Valve Diagram, see Halsey on Slide-valve Gears.

The Zeuner Valve-diagram is given in most of the works on the

steam-engine, and in treatises on valve-gears, as Zeuner's, Peabody's, and



Fig. 148.-Zeuner's Valve-diagram.

Spangler's. The following is condensed from Holmes on the Steam-engine: Describe a circle, with radius OA equal to the half travel of the valve. From O measure off OB equal to the outside lap, and BC equal to the lead. When the crank-pin occupies the dead centre A, the valve has already moved to the right of its central position by the space OB + BC. From C erect the perpendicular CE and join OE. Then will OE be the position occupied by the line joining the centre of the eccentric with the centre of the crank-shaft at the commencement of the stroke. On the line OE as diameter describe the circle OCE; then any chords, as Oe, OE, Oe', will represent the spaces travelled by the valve from its central position when the crank-pin occupies respectively the positions opposite to D, E, and F. Before the port is opened at all the valve must have moved from its central position by an amount equal to the lap OB. Hence, to obtain the space by which the port is opened, subtract from each of the arcs Oe, OE, etc., a length equal to OB. This is represented graphically by describing from centre O a circle with radius equal to the lap OB; then the spaces F, F, etc., intercepted between the circumferences of the lap-circle F and the

valve-circle OCE, will give the extent to which the steam-port is opened.

At the point k, at which the choil Ok is common to both valve and lap circles, it is evident that the valve has moved to the right by the amount of the lap, and is consequently just on the point of opening the steam-port. Hence the steam is admitted before the commencement of the stroke, when the crank occupies the position OH, and while the portion HA of the revo

lution still remains to be accomplished. When the crank-pin reaches the position A, that is to say, at the commencement of the stroke, the port is position A, that is we say, as the commencement of the stock, the port is already opened by the space OC - OB = BC, called the lead. From this point forward till the crank occupies the position OE the port continues to open, but when the crank is at OE the valve has reached the furthest limit of its travel to the right, and then commences to return, till when in the position OF the edge of the valve just covers the steam-port, as is shown by the chord Oe', being again common to both lap and valve circles. Hence when the crank occupies the position OF the cut-off takes place and the steam commences to expand, and continues to do so till the exhaust opens.

For the return stroke the steam port opens again at H' and closes at F'. There remains the exhaust to be considered. When the line joining the centres of the eccentric and crank-shaft occupies the position opposite to OG at right angles to the line of dead centres, the crank is in the line OP at right angles to OE; and as OP does not intersect either valve-circle the right angles to OE; and as OP does not intersect either valve-circle the valve occupies its central position, and consequently closes the port by the amount of the inside lap. The crank must therefore move through such an angular distance that its line of direction OQ must intercept a chord on the valve-circle OK equal in length to the inside lap before the port can be opened to the exhaust. This point is ascertained precisely in the same manner as for the outside lap, namely, by drawing a circle from centre O, with a radius equal to the inside lap; this is the small inner circle in the figure. Where this circle intersects the two valve-circles we get four points which show the positions of the crank when the exhaust opens and closes during each revolution. Thus at O the valve comes the exhaust on the side during each revolution. Thus at Q the valve opens the exhaust on the side of the piston which we have been considering, while at R the exhaust closes and compression commences and continues till the fresh steam is readmitted at *H*.

Thus the diagram enables us to ascertain the exact position of the crank Thus the diagram enacies us to ascertain the exact position of the crains when each critical operation of the valve takes place. Making a resume of these operations of one side of the piston, we have: Steam admitted before the commencement of the stroke at H. At the dead centre A the valve is already opened by the amount BC. At E the port is fully opened, and valve has reached one end of its travel. At F steam is cut off, consequently admission lasted from H to F. At P valve occupies central position, and ports are closed both to steam and exhaust. At Q exhaust opened, consequently expansion lasted from F to Q. At K exhaust opened to maximum extent, and valve reached the end of its travel to the left. At R exhaust closed, and compression begins and continues till the fresh steam is admitted

PROBLEM.—The simplest problem which occurs is the following: Given the length of throw, the angle of advance of the eccentric, and the laps of the valve, find the angles of the crank at which the steam is admitted and one valve, nno the angles of the crank at which the steam is admitted and cut off and the exhaust opened and closed. Draw the line  $\partial E$ , representing the half-travel of the valve or the throw of the eccentric at the given angle of advance with the perpendicular  $\partial G$ . Produce  $\partial E$  to K. On  $\partial E$  and  $\partial K$  as diameters describe the two valve-circles. With centre and radii equal to the given laps describe the outside and inside lap-circles. Then the intersection of these circles with the two valve-circles give points through which the lines  $\partial H$ ,  $\partial F$ ,  $\partial Q$ , and  $\partial R$  can be drawn. These lines give the required positions of the crank.

Numerous other problems will be found in Holmes on the Steam-engine. including problems in valve-setting and the application of the Zeuner diagram to link motion and to the Meyer valve-gear.

Port Opening.—The area of port opening should be such that the velocity of the steam in passing through it should not exceed 6000 ft. per min. The ratio of port area to piston area will then vary with the piston-speed as follows:

For speed of piston, } 100 200 300 400 500 600 700 800 900 1000 ft. per min. Port area = piston ( .017 .038 .05 .067 .088 .1 .107 .138 .15 .167 area X

For a velocity of 6000 ft. per min.,

Port area =  $\frac{\text{sq. of diam. of cyl.} \times \text{piston speed}}{}$ 7639

The length of the port opening may be equal to or something less than the diameter of the cylinder, and the width = area of port opening + its length. The bridge between steam and exhaust ports should be wide enough to prevent a leak of steam into the exhaust due to overtravel of the valve.

Auchincloss gives: Width of exhaust port = width of steam port + 16 travel of valve - width of bridge.

Load. (From Peabody's Valve-gears.)—The lead, or the amount that the valve is open when the engine is on a dead point, varies, with the type and size of the engine. from a very small amount, or even nothing, up to % and size of the engine, from a very small amount, or even nothing, up to \$4 of an inch or more. Stationary-engines running at slow speed may have from 1/84 to 1/16 inch lead. The effect of compression is to fill the waste space at the end of the cylinder with steam; consequently, engines having much compression need less lead. Locomotive-engines having the valves controlled by the ordinary form of Stephenson link-motion may have a small lead when running slowly and with a long cut-off, but when at speed with a short cut-off the lead is at least ½ inch; and locomotives that have valve-gear which gives constant lead commonly have ½ inch lead. The lead angle the crank makes with the line of dead points at admission. It may vary from 0 to 8°.

Inside Lead.—Weisbach (vol. ii. p. 296) says: Experiment shows that the earlier opening of the exhaust ports is especially of advantage, and in the best engines the lead of the valve upon the side of the exhaust, or the inside lead; is 1/25 to 1/15; i.e., the slide-valve at the lowest or highest posi-

inside lead; is 1/25 to 1/15; i.e., the slide-valve at the lowest or highest posiwhole throw of the slide-valve. The outside lead of the slide-valve or the lead on the steam side, on the other hand, is much smaller, and is often only 1/100 of the whole throw of the slide-valve.

Effect of Changing Outside Lap, Inside Lap, Travel and Angular Advance. (Thurston.)

	Admission	Expension	Exhaust	Compression		
Incr. O.T.	is later, ceases sooner	occurs earlier, continues longer	is unchanged	begins at same point		
Incr.	unchanged	begins as before, continues longer	occurs later, ceases earlier	begins sooner, continues longer		
Incr.	begins sooner, continues longer	begins later, ceases sooner	begins later, ceases later	begins later, ends sooner		
Incr.	begins earlier, period unaltered	begins sooner,	begins earlier, per. unchanged	begins earlier, p.r. the same		

Zeuner gives the following relations (Weisbach-Dubois, vol. ii. p. 307):

If S =travel of valve, p =maximum port opening;

L = steam-lap, l = exhaust-lap;

 $R = \text{ratio of steam-lap to half travel} = \frac{L}{.5S}, L = \frac{R}{2} \times S;$ 

 $r = \text{ratio of exhaust lap to half travel} = \frac{l}{.53}, \quad l = \frac{r}{2} \times S;$ 

$$S = 2p + 2L = 2p + 2R + S; S = \frac{2p}{1 - R}.$$

If  $\alpha=$  angle HOF between positions of crank at admission and at cut-off, and  $\beta=$  angle QOR between positions of crank at release and at compression, then  $R=\frac{1}{2}\frac{\sin{(180^{\circ}-\alpha)}}{\sin{\frac{1}{2}}\frac{\alpha}{\alpha}}; \ r=\frac{1}{2}\frac{\sin{(180^{\circ}-\beta)}}{\sin{\frac{1}{2}}\frac{\beta}{\alpha}}.$ 

Hatlo of Lap and of Port-opening to Valve-travel.—The table on page 831, giving the ratio of lap to travel of valve and ratio of travel to port opening, is abridged from one given by Buel in Weisbach-Dubois, vol. ii. It is calculated from the above formulæ. Intermediate values may be found by the formulæ, or with sufficient accuracy by interpolation from the figures in the table. By the table on page 830 the crank-angle may be found, that is, the angle between its position when the engine is on the centre and its position at cut-off, release, or compression, when these are known in fractions of the stroke. To illustrate the use of the tables the following example is given by Buel: width of port = 2.2 in.; width of port opening = width of port + 0.3 in.; over overtravel = 2.5 in.; length of connecting-rod = 2½ times stroke; cut-off, .75 of stroke; release, .35 of stroke; lead-angle, 10°. From the first table we find crank-angle = 114.6·

add lead-angle, making 121.6.° From the second table, for angle between admission and cut-off, 125°, we have ratio of travel to port-opening = 3.72, or for 124.6° = 3.74, which, multiplied by port-opening 2.5, gives 9.45 in travel. The ratio of lap to travel, by the table, is .2324, or 9.45  $\times$  .2324 = 2.2 in lap. For exhaust-lap we have, for release at .95, crank-angle = 151.3; add lead-angle 10° = 161.3°. From the second table, by interpolation, ratio of lap to travel = .0811, and .0811  $\times$  9.45 = 0.77 in., the exhaust-lap.

```
Lap-angle = \frac{1}{2} (180° - lead-angle - crank-angle at cut-off);

= \frac{1}{2} (180° - 10 - 114.6) = 27.7°.

Angular advance = lap-angle × lead-angle = 27.7 + 10 = 37.7°.

Exhaust lap-angle = crank-angle at release + lap-angle + lead-angle - 180°;

= 151.3 + 27.7 + 10 - 180° = 9°.

Crank-angle at compression measured on return stroke = 180° - lap-angle - lead-angle - exhaust lap-angle; on return stroke = 180° - 27.7 - 10 - 9 = 133.3°; corresponding, by table, to a piston position of .81 of the return stroke; or Crank-angle at compression = 180° - (angle at release - angle at cut-off) + lead-angle; = 180 - (151.8 - 114.6) + 10 = 133.3°.
```

The positions determined above for cut-off and release are for the forward stroke of the piston. On the return stroke the cut-off will take place at the same angle, 114.6°, corresponding by table to 66.6% of the return stroke, instead of 75%. By a slight adjustment of the angular advance and the length of the eccentric rod the cut-off can be equalized. The width of the bridge should be at least 2.5 + 0.25 - 2.2 = 0.55 in.

Crank Angles for Connecting-rods of Different Length.

FORWARD AND RETURN STROKES.

				OKW		ND IU		DIM	/LBG.				
of nent.		Ra	tio of	Leng	th of	Conne	ecting	-rod t	o Ler	gth c	f Stro	ke.	
Fraction of Stroke from ommencement	-	2	2	16	;	3	8)	16		4	į	5	Inf
Fraction of Stroke from Commencement.	For.	Ret.	For.	Ret.	For.	Ret.	For.	Ret.	For.	Ret.	For.	Ret.	For or Ret
.01	10.3	13.2	10.5	12.8	10.6	12.6		12.4	10.8	12.3		12.1	11.
.02	14.6 17.9	18.7 22.9	14.9 18.2		15.1 18.5	17.8 21.8		17.5 21.5	15.3 18.8	17.4 21.3		17.1 21.0	16. 19.
.04	20.7	26.5			21.4				21.8	24.6	22.0	24.8	23
.05	23.2	29.6			24.0	28.2			24.4	27.5	24.7	27.2	25.
.10	33.1	41.9	33.8	40.8	34.3	40.1	34.6	39.6	34.9	39.2	35.2	38.7	36
.15	41	51.5	41.9	50.2	42.4	49.3		48.7	48.2	48.3		47.7	45
.20	48	59.6	48.9	58.2		57.3		56.6				55.5	53.
.25	54.3			65.4	56.1	64.4				63 3	57.6		60.
.30	60.3					71.0	62.8					69.1	66.
.35	66.1	79 8				77.3	68.8					75.3	
.40	71.7	85.8						82.6				81.3	
.45	77.2				79.6			88.4		87.9		87.1	
.50	82.8	97.2 102.8		95.7 101.4		94.8 100.4	85.9 91.6		86.4 92.1	93.6 99.3		92.9 98.6	90. 95
.55 .60		108.3		107.0				105.5		105.0			101
.65	100 9	112 0	101 7	119 7	109 7	111 0	103 4	111 9	108 0	110 8	104 7	110 1	107
.70	106.5	119.7	108 0	118 5	109 0	117 8	109.7	117.2	110 2	116 7	104.7 110.9	116 1	113
.75	113.1	125 7	114.6	124 6	115.6	123.9	116.3	123.4	116.7	128.0	117.4	122 4	120
.80	120.4		121.8	181.1	122.7	130.4	123.4	129.9	123.8	129.6	124.5	1:29.1	
.85	128.5	139	129.8	138.1	130.7	137.6	181.3	187.1	131.7	136.8	182.8	136.4	134.
.90												144.8	
. 95												155.3	
.96	153.5	159.8	154.8	158.9	154.8	158.6	155.1	158.4	155.4	158.2	155.7	158.0	156
.97	157.1	162.1	157.8	161.8	158.2	161.5	158.5	161.3	158.7	161.2	159.0	161.0	160
.98	161.3	165.4	161.9	165.1	162.2	164.9	162.5	164.8	162.6	164.7	162.9	164.5	163.
.99												169.1	
1.00	1180	180	180	180	180	180	180	180	180	180	180	180	180

**Helative Motions of Cross-head and Crank.**—If L= length of connecting-rod, R= length of crank,  $\theta=$  angle of crank with centre line of engine, D= displacement of cross-head from the beginning of its stroke,

$$D = R(1 - \cos \theta) = L - \sqrt{L^2 - R^2 \sin^2 \theta}.$$

## Lap and Travel of Valve.

Angle between Positions of Crank at Points of Admission and Cut-off, or Release and Compression.	Ratio of Lap to Travel of Valve.	Ratio of Travel of Valve to Width of Port-open- ing.	Angle between Positions of Crank at Points of Admission and Cut-off, or Release and Compression.	Ratio of Lap to Travel of Valve.	Ratio of Travel of Valve to Width of Port-open- ing.	Angle between Positions of Crank at Points of Admission and Cut-off, or Release and Com- pression.	Ratio of Lap to Travel of Valve.	Ratio of Travel of Valve to Width of Port-open- ing.
30° 35 40 45 50 55 60 65 70 75 80	.4880 .4769 .4699 .4619 .4532 .4435 .4330 .4217 .4096 .8967 .3850	58.70 48.22 83.17 26.27 21.84 17.70 14.98 12.77 11.06 9.68 8.55	85° 90 95 100 105 110 115 120 125	.8686 .8536 .3378 .3214 .3044 .2868 .2687 .2500 .2309 .2118	7.61 6.83 6.17 5.60 5.11 4.69 4.32 4.00 3.72 3.46	185° 140 145 150 155 160 165 170 175 180	.1913 .1710 .1504 .1294 .1082 .0668 .0653 .0436 .0218 .0000	3.24 3.04 2.86 2.70 2.55 2.42 2.30 2.19 2.09 2.00

# PERIODS OF ADMISSION, OR CUT-OFF, FOR VARIOUS LAPS AND TRAVELS OF SLIDE-VALVES.

The two following tables are from Clark on the Steam-engine. In the first table are given the periods of admission corresponding to travels of valve of from 12 in. to 2 in., and laps of from 2 in. to 36 in., with 14 in. and 16 in. of lead. With greater leads than those tabulated, the steam would be cut off earlier than as shown in the table.

The influence of a lead of 5/16 in. for travels of from 1% in. to 6 in., and laps of from ½ in. to 1½ in., as calculated for in the second table, is exhibited by comparison of the periods of admission in the table, for the same lap and travel. The greater lead shortens the period of admission, and increases the range for expansive working.

Periods of Admission, or Points of Cut-off, for Given Travels and Laps of Slide-valves.

rvel lve.	Lead.	Perio	ods of			r Point of Valv			for th	e follo	wing
Tra	ង	2	13/4	11/6	13/4	1	%	3/4	%	1/6	3%
in. 12 10 8 6	in.	* 88 82 72	90 87 78	×33 89 84	% 95 92 88	96 95 92	97 96 94	98 97 95	96 96 96	% 99 98 98	% 99 98
51/4 5 41/2	STATES AND SECTION OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS	50 43 82 14	62 56 47 35 17	71 68 61 51	79 77 72 66 57	86 85 82 78 72	89 86 86 88 78	91 91 89 87 83	94 94 92 90 88	96 96 95 94 92	97 97 96 95
31/6 3 21/6 2	STAN STAN			20	44 23	63 50 27	71 61 48	79 71 57 <b>3</b> 8	84 79 70 52	90 86 80 70	94 91 88 81

# Periods of Admission, or Points of Cut-off, for given Travels and Laps of Slide-valves.

Constant lead, 5/16.

Travel.	Lap.									
Inches.	1/6	%	34	3/6	1	11/6	11/4	13%	11/2	
15%	19									
134	39				<b></b>					
178	47	17				<b></b> .	· • • • • •	l	l	
2	55	84	<b></b> .	l		<b></b> .		l <b>.</b>		
216	61	42	14	1	l <b></b>		l			
21/4	65	50	80	1	l	1				
282	68	55	38	18					1	
216	71	59	45	27						
262	74	63	49	86	12					
284	76	67	56	48	26				١	
272	78 ′	70	59	36 43 47	82	111 T		1	1	
8′°	ŘŇ	78	63	50	88	23	1	····		
31/6	ŘĬ	74	85	55	44	30	10			
812	89	78	I AS	50	48	94		l		
982	80 81 83 84	70	1 27	55 59 62	44 48 51	84 40	22 29 34 38 42	9		
672	85	1 60	1 %	84	58	45	94	80	• • • •	
662	86	1 24	1 75	88	57	49	90	80		
379	97	01	10	1 60	60	52	90	20	9	
374	87 87	04	1 40	64 66 68 70 72 76 79	80	02	32	20 26 32 36	19	
978	66	1 82	1 40	1 70	63	55 58	46	30	25	
4.	88 89	1 54	79	1 72	66	98	49	40	29	
414	99	80	81	1 70	70 78.	68	56	47	37	
414 494 5 516	90 92	76 78 80 81 82 83 84 86 87 89	80 88 45 49 56 59 62 65 68 71 76 78 83 83 87	1 79	78-	67	61	54	45	
494	92	89	85	81 88	76 78 82 85	70 73 78 82	65 67	58 62 68 74	51	
5	93	90	87	88	78	78	67	62	56	
51/6	94	92 93	89 91	86 88	82	J 78	78 78	68	63	
6	95	I 93	i 91	188	85	182	178	74	69	

Diagram for Port-opening, Cut-off, and Lap.—The diagram on the opposite page was published in *Power*, Aug., 1883. It shows at a glance the relations existing between the outside lap, steam port-opening, and cut-off in slide valve engines.

In order to use the diagram to find the lap, having given the cut-off and maximum port-opening, follow the ordinate representing the latter, taken on the horizontal scale, until it meets the oblique line representing the given cut-off. Then read off this height on the vertical lap scale. Thus, with a port-opening of 1½ inch and a cut-off of .50, the intersection of the two lines occurs on the horizontal 3. The required lap is therefore 3 in.

If the cut off and lap are given, follow the horizontal representing the latter until it meets the oblique line representing the cut-off. Then vertically below this read the corresponding port-opening on the horizontal scale.

If the lap and port-opening are given, the resulting cut-off may be ascertained by finding the point of intersection of the ordinate representing the port-opening with the horizontal representing the lap. The oblique line passing through the point of intersection will give the cut-off.

If it is desired to take lead into account, multiply the lead in inches by the numbers in the following table corresponding to the cut-off, and deduct the result from the lan as obtained from the discrement.

result from the lap as obtained from the diagram:

Cut-off.	Multiplier.	Cut-off.	Multiplier
.20	4.717	.60	1.358
.25	3.731	.625	1.288
.80	8,048	.65	1.222
.33	2.717	.70	1.108
.375	2.381	.75	1.000
.40	2.171	.80	0.904
.45	1.930	.85	0.815
.30	1.706	.875	0.772
.55	1.515	.90	0.781



Fig. 149,

Piston-valve.—The piston-valve is a modified form of the slide valve The lap, lead, etc., are calculated in the same manner as for the common slide-valve. The diameter of valve and amount of port-opening are calculated on the basis that the most contracted portion of the steam-passage between the valve and the cylinder should have an area such that the velocity of steam through it will not exceed 6000 ft. per minute. The area of the opening around the circumference of the valve should be about doubthe area of the steam-passage, since that portion of the opening that is opnosite from the steam-passage is of little effect.

the area of the steam-passage, since that portion of the opening that is opposite from the steam-passage is of little effect.

Setting the Valves of an Engine.—The principles discusse above are applicable not only to the designing of valves, but also to adjustment of valves that have been improperly set; but the final adjustment of the eccentric and of the length of the rod depend upon the amount of low motion, temperature, etc., and can be effected only after trial. After the valve has been set as accurately as possible when cold, the lead and lap for the forward and return strokes being equalized, indicator diagrams should be taken and the length of the eccentric-rod adjusted, if necessary, to cor

rect slight irregularities.

To Put an Engine on its Centre.—Place the engine in a position where the piston will have nearly completed its outward stroke, as opposite some point on the cross-head, such as a corner, make a mark upon the guide. Against the rim of the pulley or crank-disk place a pointer and mark a line with it on the pulley. Then turn the engine over the centre unthe cross-head is again in the same position on its inward stroke. This will bring the crank as much below the centre as it was above it before. With the pointer in the same position as before make a second mark on the pulleyrim. Divide the distance between the marks in two and mark the middle point. Turn the engine until the pointer is opposite this middle point, and it will then be on its centre. To avoid the error that may arise from the looseness of crank-pin and wrist-pin bearings, the engine should be turned a little above the centre and then be brought up to it, so that the crank pin will press against the same brass that it does when the first two marks are made.

Link-motion.—Link-motions, of which the Stephenson link is the most commonly used, are designed for two purposes: first, for reversing the motion of the engine, and second, for varying the point of cut-off by varying the travel of the valve. The Stephenson link-motion is a combination two eccentrics, called the forward and back eccentric, with a link connecting the extremeties of the eccentic-rods; so that by varying the position of the link the valve-rod may be put in direct connection with either eccentric or may be given a movement controlled in part by one and in part by the other eccentric. When the link is moved by the reversing lever into a position such that the block to which the valve-rod is attached is at either ent of the link, the valve receives its maximum travel, and when the link is in mid-grar the travel is the least and cut-off takes place early in the stroke. In the ordinary shifting-link with open rods, that is, not crossed, the lead

In the ordinary shifting-link with open rods, that is, not crossed, the lead of the valve increases as the link is moved from full to mid-gear, that is, as the period of steam admission is shortened. The variation of lead is equalized for the front and back strokes by curving the link to the radius of the eccentric-rods concavely to the axles. With crossed eccentric-rods the lead decreases as the link is moved from full to mid-gear. In a valve-motion with stationary link the lead is constant. (For illustration see Clark's Steamengine, vol. ii. p. 22.)

The linear advance of each eccentric is equal to that of the valve in full gear, that is, to lap + lead of the valve, when the eccentric-rods are attached to the link in such position as to cause the half-travel of the valve to equal

the eccentricity of the eccentric.

The angle between the two eccentric radii, that is, between lines drawn from the centre of the eccentric disks to the centre of the shaft equals 15°

less twice the angular advance.

Buel, in Appleton's Cyclopedia of Mechanics, vol. ii. p. 316, discusses the Stephenson link as follows: "The Stephenson link does not give a perfectly correct distribution of steam; the lead varies for different points of cut-sff. The period of admission and the beginning of exhaust are not alike for both ends of the cylinder, and the forward motion varies from the backward.

"The correctness of the distribution of steam by Stephenson's link-motion depends upon conditions which, as much as the circumstances will permit ought to be fulfilled, namely: 1. The link should be curved in the arc of a circle whose radius is equal to the length of the eccentric-rod. 2. The

eccentric-rods ought to be long; the longer they are in proportion to the eccentricity the more symmetrical will the travel of the valve be on both sides of the centre of motion. 3. The link ought to be short. Each of its sides of the centre of motion. 3. The link ought to be short. Each of its points describes a curve in a vertical plane, whose ordinates grow larger the farther the considered point is from the centre of the link; and as the horizontal motion only is transmitted to the valve, vertical oscillation will cause irregularities. 4. The link-hanger ought to be long. The longer it is the nearer will be the arc in which the link swings to a straight line, and thus the less its vertical oscillation. If the link is suspended in its centre, the curves that are described by points equidistant on both sides from the centre are not alike, and hence results the variation between the forward and back-ward gear. If the link is suspended at its lower and its lower half will have are not alike, and nence results the variation between the forward and obserward gear. If the link is suspended at its lower end, its lower half will have less vertical oscillation and the upper half more. 5. The centre from which the link-hanger swings changes its position as the link is lowered or raised, and also causes irregularities. To reduce them to the smallest amount the arm of the lifting-shaft should be made as long as the eccentric-rod, and the centre of the lifting-shaft should be placed at the height corresponding to the central position of the centre on which the link-hanger swings."

All these conditions can never be fulfilled in practice, and the variations

All these conditions can never be ruifilled in practice, and the variations in the lead and the period of admission can be somewhat regulated in an artificial way, but for one gear only. This is accomplished by giving different lead to the two eccentrics, which difference will be smaller the longer the eccentric-rods are and the shorter the link, and by suspending 'he link not exactly on its centre line but at a certain distance from it, giving what is called "the offset."

For application of the Zeuner diagram to link-motion, see Holmes on the Steam-engine, p. 290. See also Clark's Railway Machinery (1855), Clark's Steam-engine and Zeuner's and Auchincloss's Treatises on Slide-valve

The following rules are given by the American Machinist for laying out a link for an upright slide-valve engine. By the term radius of link is meant the radius of the link-arc ab, Fig. 150, drawn through the centre of the slot;



this radius is generally made equal to the distance from the centre of shaft to centre of the link-block pin P when the latter stands midway of its travel. The distance between the centres of the eccentric-rod pins e1 e2 should not be less than 21/2 times, and, when space will permit, three times the throw of the eccentric. By the throw we mean twice the eccentricity of the eccentric. The slot link is generally suspended from the end next to the forward eccentric at a point in the link-arc prolonged. This will give comparatively a small amount of slip to the link-block when the link is in forward gear: but this slip will be increased when the link is in backward gear. This increase

of slip is, however, considered of little importance, because marine engines. as a rule, work but very little in the backward gear. When it is necessary that the motion shall be as efficient in backward gear as in forward gear, then the link should be suspended from a point midway between the two eccentric-rod pins; in marine engine practice this point is generally located on the link-arc; for equal cut-offs it is better to move the point of suspension a small amount towards the eccentrics.

For obtaining the dimensions of the link in inches: Let L denote the length of the valve, B the breadth, p the absolute steam-pressure per sq. in., and R a factor of computation used as below: then  $R = .01 \text{ V} L \times B \times v$ .

Breadth of the link	=	$R \times 1.6$
Thickness T of the bar	= .	$R \times .8$
Length of sliding-block	=	$R \times 2.5$
Diameter of eccentric-rod pins	= (	$R \times 70 + 14$
Diameter of suspension-rod pin	= $($	$R \times .6) + 12$
Diameter of suspension-rod pin when overhung	= (,	$R \times .8) + 12$
Diameter of block-pin when overhung Diameter of block-pin when secured at both ends	= `	$R+\frac{1}{4}$
Diameter of block-pin when secured at both ends	= 0	$R \times (.8) + 14$

The length of the link, that is, the distance from a to b, measured on a straight line joining the ends of the link-arc in the slot, should be such as to allow the centre of the link-block pin P to be placed in a line with the eccentric-rod pins, leaving sufficient room for the slip of the block. Another type of link frequently used in marine engines is the double-bar link, and this type is again divided into two classes: one class embraces those links which have the eccentric-rod ends as well as the valve-spindle end between the bars, as shown at B (with these links the travel of the valve is less than the throw of the eccentric); the other class embraces those links, shown at C, for which the eccentric-rods are made with fork-ends, so as to connect to studs on the outside of the bars, allowing the block to slide to the end of the link, so that the centres of the eccentric-rod ends and the block-pin are in line when in full gear, making the travel of the valve equal to the throw of the eccentric. The dimensions of these links when the distance between the eccentric-rod pins is 21/4 to 23/4 times the throw of eccentrics can be found as follows:

Depth of bars	$= (R \times 1.25) + 16"$
Depth of bars	$=(R \times .5) + \frac{1}{2}$ "
Diameter of centre of sliding-block	$= R \times 1.3$

When the distance between the eccentric-rod pins is equal to 3 or 4 times the throw of the eccentrics, then

Depth of bars	=	$(R \times$	1.25) + 34"
Thickness of bars	=	$(R \times$	.5) + 14"

All the other dimensions may be found by the first table. These are em-All the other difficults may have to be slightly changed to suit given conditions. In marine engines the eccentric-rod ends for all classes of link have adjustable brasses. In locomotives the slot-link is usually employed, and in these the pin-holes have case-hardened busiles driven into the pin-holes have case-hardened busiles driven into the pin-holes have case-hardened busiles driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardened busiless driven into the pin-holes have case-hardene holes, and have no adjustable brasses in the ends of the eccentric-rods. The link in B is generally suspended by one of the eccentric-rod pins; and the link in C is suspended by one of the pins in the end of the link, or by one of the eccentric-rod pins.

Other Forms of Valve-Gear, as the Joy, Marshall, Hackworth. Bremme, Walschaert, Coriiss, etc., are described in Clark's Steam-engine vol. ii. The design of the Reynolds-Corliss valve-gear is discussed by A. H. Eldridge in *Power*, Sep. 1893. See also Henthorn on the Corliss engine. Rules for laying down the centre lines of the Joy valve-gear are given in American Machinist, Nov. 13, 1890. For Joy's "Fluid-pressure Reversing-valve," see Eng'g, May 25, 1894.

#### GOVERNORS.

Pendulum or Fly-ball Governor.—The inclination of the arms of a revolving pendulum to a vertical axis is such that the height of the point of suspension h above the horizontal plane in which the centre of avity of the balls revolve (assuming the weight of the rods to be small compared with the weight of the balls) bears to the radius r of the circle described by the centres of the balls the ratio

$$\frac{h}{r} = \frac{\text{weight}}{\text{centrifugal force}} = \frac{w}{\frac{wv^2}{gr}} = \frac{gr}{v^2},$$

which ratio is independent of the weight of the balls, v being the velocity

of the centres of the balls in feet per second.

If T = number of revolutions of the balls in 1 second,  $v = 2\pi rT = \alpha r$ , in which a = the angular velocity, or  $2\pi T$ , and

$$h = \frac{gr^2}{r^2} = \frac{g}{4\pi^2T^2}$$
, or  $h = \frac{0.8146}{T^2}$  feet  $= \frac{9.775}{T^2}$  inches,

g being taken at 32.16. If N = number of revs. per minute,  $h = \frac{85190}{N^2}$ inches

For revolutions per minute..... 40 45 50 60 75 21.99 17.38 14.08 9.775 6.256 The height in inches will be .....

Number of turns per minute required to cause the arms to take a given angle with the vertical axis: Let l = length of the arm in inches from the centre of suspension to the centre of gyration, and a the required angle;

$$N = \sqrt{\frac{35190}{l \cos a}} = 187.6 \sqrt{\frac{1}{l \cos a}} = 187.5 \sqrt{\frac{1}{h}}.$$

The simple governor is not isochronus; that is, it does not revolve at a uniform speed in all positions, the speed changing as the angle of the arms changes. To remedy this defect loaded governors, such as Porter's, are used. From the balls of a common governor whose collective weight is a let there be hung by a pair of links of lengths equal to the pendulum arms a load B capable of sliding on the spindle, having its centre of gravity in the axis of rotation. Then the centrifugal force is that due to A alone, and the effect of gravity is that due to A + 2B; consequently the altitude for a given speed is increased in the ratio (A + 2B) : A, as compared with that of a simple revolving pendulum, and a given absolute variation in altitude produces a smaller proportionate variation in speed than in the common governor. (Rankine, S. E., p. 551.)

For the weighted governor let l = the length of the arm from the point of suspension to the centre of gravity of the ball, and let the length of the suspending-link,  $l_1 = the$  length of the point of attachment of the link; G = the weight of one ball, Q = half the weight of the sliding weight, h = the height of the governor from the point of snspension to the plane of revolution of the balls, a = the angular velocity  $= 2\pi T$ , T being the number of revolutions per

second; then 
$$a = \sqrt{\frac{32.16}{h}} \left(1 + \frac{2l_1}{l} \frac{Q}{G}\right)$$
;  $h = \frac{32.16}{a^2} \left(1 \times \frac{2l_1}{l} \frac{Q}{G}\right)^2$  in feet, or

 $h = \frac{35190}{N^2} \left(1 + \frac{2l_1}{l} \frac{Q}{Q}\right)^2$  in inches, N being the number of revolutions per

For various forms of governor see App. Cycl. Mech., vol. ii. 61, and Clark's

For various forms of governor see App. Cycl. Mech., vol. ii. 61, and Clark's Steam-engine, vol. ii. p. 65.

To Change the Speed of an Engine Having a Fly-ball Governor.—A slight difference in the speed of a governor changes the position of its weights from that required for full load to that required for no load. It is evident therefore that, whatever the speed of the engine, the normal speed of the governor must be that for which the governor was designed; i.e., the speed of the governor must be kept the same. To change the speed of the engine the problem is to so adjust the pulleys which drive the governor that the engine at its new speed shall drive it just as fast as it was driven at its original speed. In order to increase the engine-speed we must decrease the pulley upon the shaft of the engine, i.e., the driver, or increase that on the governor, i.e., the driven, in the proportion that the speed of the engine is to be increased. engine is to be increased.

Fly-wheel or Shaft Governors.—At the Centennial Exhibition in 1876 there were shown a few steam-engines in which the governors were contained in the fly-wheel or band-wheel, the fly-balls or weights revolving around the shaft in a vertical plane with the wheel and shifting the eccentrics so as automatically to vary the travel of the valve and the point of current. This form of governor has since come into extensive use, especially for high-speed engines. In its usual form two weights are carried on arms the ends of which are nivoted to two noints on the nullay near its circums. ends of which are pivoted to two points on the pulley near its circumference, 180° apart. Links connect these arms to the eccentric. The eccentric is not rigidly keyed to the shaft but is free to nove transversely across it for a certain distance, having an oblong hole which allows of this movement. Centrifugal force causes the weights to fly towards the circumference of the wheel and to pull the eccentric test excitations. of this movement. Centrifugal force causes the weights to fly towards the circumference of the wheel and to pull the eccentric into a position of minimum eccentricity. This force is resisted by a spring attached to each arm which tends to pull the weights towards the shaft and shift the eccentric to the position of maximum eccentricity. The travel of the valve is thus varied, so that it tends to cut off earlier in the stroke as the engine increases its speed. Many modifications of this general form are in use. For discussions of this form of governor see Hartnell, Proc. Inst. M. E., 1882, p. 408; Trans. A. S. M. E., ix. 300; xi. 1081; xiv. 92; xv. 929; Modern Mechanism. p. 399; Whitham's Constructive Steam Engineering; J. Begtrup, An. Mach.. Oct. 19 and Dec. 14, 1893, Jan. 18 and March 1, 1894.

Calculation of Springs for Shaft-governors. (Wilson Hartnell, Proc. Inst. M. E., Aug. 1882.)—The springs for shaft-governors may be conveniently calculated as follows, dimensions being in inches:

Let W = weight of the balls or weights, in pounds;

 $r_1$  and  $r_2$  = the maximum and minimum radial distances of the centre of the balls or of the centre of gravity of the weights;

 $l_1$  and  $l_2$  = the leverages, i.e., the perpendicular distances from the centre of the weight pin to a line in the direction of the centrifugal force, drawn through the centre of gravity of the weights or balls at radii  $r_1$  and  $r_2$ ;

 $m_1$  and  $m_2$  = the corresponding leverages of the springs;  $C_1$  and  $C_2$  = the centrifugal forces, for 100 revolutions per minute, at

 $C_1$  and  $C_2$  — the corresponding pressures on the spring;  $P_1$  and  $P_2$  — the corresponding pressures on the spring; (It is convenient to calculate these and note them down for reference.)  $C_2$  and  $C_4$  — maximum and minimum centrifugal forces; S — mean speed (revolutions per minute);

 $S_1$  and  $S_2$  = the maximum and minimum number of revolutions per

 $S_1$  and  $S_2$  — to make minute;  $P_3$  and  $P_4$  — the pressures on the spring at the limiting number of revolutions  $(S_1$  and  $S_2$ );  $P_4 - P_3 = D$  — the difference of the maximum and minimum pressures on the springs; V — the percentage of variation from the mean speed, or the sensitive-

t =the travel of the spring;

u =the initial pressure on the spring:

v = the stiffness in pounds per inch; w =the maximum pressure = u + t.

The mean speed and sensitiveness desired are supposed to be given. Then

$$\begin{split} S_1 &= S - \frac{SV}{100}; & S_2 &= S + \frac{SV}{100}; \\ C_1 &= 0.28 \times r_1 \times W; & C_2 &= 0.28 \times r_2 \times W; \\ P_1 &= C_1 \times \frac{l_1}{m_1}; & P_2 &= C_2 \times \frac{l_2}{m_2}; \\ P_3 &= P_1 \times \left(\frac{S_1}{100}\right)^3; & P_4 &= P_2 \times \left(\frac{S_2}{100}\right)^2; \\ v &= \frac{D}{t}, \ u &= \frac{P_3}{n}, \ w &= \frac{P_4}{n}. \end{split}$$

It is usual to give the spring-maker the values of  $P_4$  and of v or v. To ensure proper space being provided, the dimensions of the spring should be

calculated by the formulæ for strength and extension of springs, and the least length of the spring as compressed be determined.

The governor-power = 
$$\frac{P_3 + P_4}{2} \times \frac{t}{18}$$
.

With a straight centripetal line, the governor-power

$$=\frac{C_3+C_4}{2}\times\left(\frac{r_2-r_1}{12}\right).$$

For a preliminary determination of the governor-power it may be taken as equal to this in all cases, although it is evident that with a curved centripetal line it will be slightly less. The difference D must be constant for the same spring, however great or little its initial compression. Let the spring be screwed up until its minimum pressure is  $P_s$ . Then to find the speed  $P_0 = P_0 + D$ ,

$$S_b = 100 \sqrt{\frac{P_b}{P_1}}; \qquad \mathcal{B}_b = 100 \sqrt{\frac{P_b}{P_2}}.$$

The speed at which the governor would be isochronous would be

$$100\sqrt{\frac{D}{P_3-P_1}}.$$

Suppose the pressure on the spring with a speed of 100 revolutions, at the maximum and minimum radli, was 200 lbs. and 100 lbs., respectively, then the pressure of the spring to suit a variation from 95 to 105 revolutions will be  $100 \times \left(\frac{95}{100}\right)^2 = 90.2$  and  $200 \times \left(\frac{105}{100}\right)^2 = 220.5$ . That is, the increase of resistance from the minimum to the maximum radius must be 220 - 90 =180 lbs.

The extreme speeds due to such a spring, screwed up to different pressures, are shown in the following table:

Revolutions per minute, balls shut	64 130 194 98	81 180 211 102	90 180 220	100 130 230	130 251	144 130 274 117
Variation, per cent of mean speed	10	6	5	8	ĩ	-i

The speed at which the governor would become isochronous is 114.

Any spring will give the right variation at some speed; hence in experimenting with a governor the correct spring may be found from any wrong one by a very simple calculation. Thus, if a governor with a spring whose stiffness is 50 lbs. per iuch acts best when the engine runs at 95, 90 being its proper speed, then  $50 \times \left(\frac{90}{95}\right)^2 = 45$  lbs. is the stiffness of spring required.

To determine the speed at which the governor acts best, the springs may be screwed up until it begins to 'hunt' and then slackened until the governor is as sensitive as is compatible with steadiness.

#### CONDENSERS, AIR-PUMPS CIRCULATING-PUMPS, ETC.

The Jet Condenser. (Chiefly abridged from Seaton's Marine Engineering.)—The jet condenser is now uncommon, being generally supplanted by the surface condenser. With the jet condenser a vacuum of 24 in was considered fairly good, and 25 in. as much as was possible with most condensers; the temperature corresponding to 24 in. vacuum, or 3 lbs. pressure absolute, is 140°. In practice the temperature in the hot-well varies from 110° to 120°, and occasionally as much as 180° is maintained. To find the quantity of injection-water per pound of steam to be condensed: Let  $T_1$  = temperature of steam at the exhaust pressure;  $T_0$  = temperature of the coolingwater;  $T_2$  = temperature of the water after condensation, or of the hot-well; Q = pounds of the cooling-water per lb. of steam condensed; then

$$Q=\frac{1114^{\circ}+0.8(T_1-T_2)}{T_2-T_0}.$$

 $Q=\frac{1114^{\circ}+0.8(T_1-T_2)}{T_2-T_0}.$  Another formula is:  $Q=\frac{WH}{R}$ , in which W is the weight of steam con-

densed, H the units of heat given up by 1 lb. of steam in condensing, and R the rise in temperature of the cooling-water.

This is applicable both to jet and to surface condensers. The allowance made for the injection-water of engines working in the temperate zone is usually 27 to 30 times the weight of steam, and for the tropics 30 to 35 times; is unified at the original to the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics and the steam of the tropics are the steam of the tropics and the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the steam of the times is sufficient for ships which are occasionally in the tropics, and this is what was usual to allow for general traders.

Area of injection orifice = weight of injection-water in lbs. per min. + 650

to 780.

A rough rule sometimes used is: Allow one fifteenth of a square inch for

every cubic foot of water condensed per hour.

Another rule: Area of injection orifice = area of piston + 250.

The volume of the jet condenser is from one fourth to one half of that of

the cylinder. It need not be more than one third, except for very quickrunning engines. Ejector Condensers.—For ejector or injector condensers (Bulkley's. Schutte's, etc.) the calculations for quantity of condensing-water is the same

as for jet condensers.

as for jet condensers.

The Surface Condenser-Cooling Surface,—Peclet found that with cooling water of an initial temperature of 68° to 77°, one sq. ft. of copper plate condensed 21.5 lbs. of steam per hour, while Joule states that 100 lbs. per hour can be condensed. In practice, with the compound engine, brass condenser-tubes, 18 B.W.G thick, 18 lbs. of steam per sq. ft. per hour, with the cooling-water at an initial temperature of too, is considered very fair work when the temperature of the feed water is to be maintained at 120°. It has been found that the surface in the condenser may be half the heating surface of the belief and under some circumstances considerably beat the surface of the boiler, and under some circumstances considerably less than this. In general practice the following holds good when the temperature of sea-water is about 60°:

Terminal pres., lbs., abs.... Sq. ft. per I H.P.... 2.50 2 25 1.80 1.60 1.50

For ships whose station is in the tropics the allowance should be increased by 20%, and for ships which occasionally visit the tropics 10% increase will give satisfactory results. If a ship is constantly employed in cold climates

10% less suffices Whitham (Steam-engine Design, p. 288, also Trans. A. S. M. E., ix. 431)

Whitham (Steam-engine Design, p. 283, also Trans. A. S. M. E., ix. 431) gives the following:  $S = \frac{WL}{ck(T_1 - t)}$ , in which S = condensing-surface in sq. ft.;  $T_1 =$  temperature Fahr. of steam of the pressure indicated by the vacuum-gauge; t = mean temperature of the circulating water, or the arithmetical mean of the initial and final temperatures; L = latent heat of saturated steam at temperature  $T_1$ ; k = perfect conductivity of 1 sq. ft. of the metal used for the condensing-surface for a range of 1° F. for 557 B.T. Upon the proper for phase according to Islamwood's experimentally. per hour for brass, according to Isherwood's experiments); c= fraction denoting the efficiency of the condensing surface; W= pounds of steam condensed per hour. From experiments by Loring and Emery, on U.S.S. Dallas, c is found to be 0.323, and ck=180; and the equation becomes

$$S=\frac{WL}{180(T_1-t)}.$$

Whitham recommends this formula for designing engines having independent circulating pumps. When the pump is worked by the main engine the value of S should be increased about 10%.

Taking  $T_1$  at 135° F., and L=1020, corresponding to 25 in. vacuum, and t=1020 W 17 Wfor summer temperatures at 75°, we have:  $S = \frac{1020 W}{180(195 - 75)} = \frac{17W}{180}$ .

Condenser Tubes are generally made of solid-drawn brass tubes, and tested both by hydraulic pressure and steam. They are usually made of a uposition of 68% of best selected copper and 32% of best Silesian spelter.

The Admiralty, however, always specify the tubes to be made of 70% of best selected copper and to have 1% of tin in the composition, and test the tubes

to a pressure of 300 lbs. per sq. in. (Seaton.)

The diameter of the condenser tubes varies from 1/4 inch in small condenser. sers, when they are very short, to 1 inch in very large condensers and long tubes. In the mercantile marine the tubes are, as a rule, ¾ inch diameter externally, and 18 B.W.G. thick (0.049 inch); and 16 B.W.G. (0.045), under some exceptional circumstances. In the British Navy the tubes are also, as a rule, ¾ inch diameter, and 18 to 19 B.W.G. thick, tinned on both sides; when the condenser is made of brass the Admiralty do not require the tubes to be tinned. Some of the smaller engines have tubes % inch diameter, and 19 B.W.G. thick. The smaller the tubes, the larger is the surface which can be got in a certain space.

In the merchant service the almost universal practice is to circulate the

water through the tubes.

Whitham says the velocity of flow through the tubes should not be less

than 400 nor more than 700 ft. per min.

than 400 nor more than 700 ft. per min.

Tube-plates are usually made of brass. Rolled-brass tube-plates should be from 1.1 to 1.5 times the diameter of tubes in thickness, depending on the method of packing. When the packings go completely through the plates the latter, but when only partly through the former, is sufficient. Hence, for 34-inch tubes the plates are usually 74 to 1 inch thick with glands and tape-packings, and 1 to 1½ inch thick with wooden ferrules.

The tube-plates should be secured to their seatings by brass studs and nuts, or brass screw-bolts; in fact there must be no wrought iron of any kind inside a condenser. When the tube-plates are of large area it is advisable to stay them by brass-rods, to prevent them from collapsing.

Spacing of Tubes, etc.—The holes for ferrules, glands, or indiarubber are usually ½ inch larger in diameter than the tubes; but when absolutely necessary the wood ferrules may be only 3/32 inch thick. The pitch of tubes when packed with wood ferrules is usually ¼ inch more than the diameter of the ferrule-hole. For example, the tubes are generally arranged zigzag, and the number which may be fitted into a

generally arranged zigzag, and the number which may be fitted into a square foot of plate is as follows:

Pitch of Tubes.	No. in a sq. ft.	Pitch of Tubes.	No. in a sq. ft.	Pitch of Tubes.	No. in a. sq. ft.
1"	172	1 5/32"	128	1¼"	110
1 1/16"	150	1 3/16"	121	1 9/82"	106
116"	137	1 7/32"	116	1 5/16"	99

Quantity of Cooling Water.—The quantity depends chiefly upon its initial temperature, which in Atlantic practice may vary from 40° in the winter of temperate zone to 80° in subtropical seas. To raise the temperature to 100° in the condenser will require three times as many thermal units in the former case as in the latter, and therefore only one third as much cooling-water will be required in the former case as in the latter.

$$T_1$$
 = temperature of steam entering the condenser;  
 $T_0$  = "circulating-water entering the condenser;  
 $T_2$  = "leaving the condenser;  
 $T_3$  = "water condensed from the steam;

$$Q=$$
 quantity of circulating water in lbs.  $=\frac{1114+0.8(T_1-T_5)}{T_2-T_0}$ .

It is usual to provide pumping power sufficient to supply 40 times the weight of steam for general traders, and as much as 50 times for ships stationed in subtropical seas, when the engines are compound. If the circulating-pump is double-acting, its capacity may be 1/58 in the former and 1/42 in the latter case of the capacity of the low-pressure cylinder.

Air-pump.-The air-pump in all condensers abstracts the water condensed and the air originally contained in the water when it entered the boiler. In the case of jet-condensers it also pumps out the water of condensation and the air which it contained. The size of the pump is calculated from these conditions, making allowance for efficiency of the pump.

Ordinary sea-water contains, mechanically mixed with it, 1/20 of its volume of air when under the atmospheric pressure. Suppose the pressure in the condenser to be 2 lbs. and the atmospheric pressure 15 lbs., neglecting the effect of temperature, the air on entering the condenser will be expanded to 15/2 times its original volume; so that a cubic foot of sea-water, when it has entered the condenser, is represented by 19/20 of a cubic foot of water and 15/40 of a cubic foot of air.

Let q be the volume of water condensed per minute, and Q the volume of sea water required to condense it; and let T, be the temperature of the condenser, and  $T_1$  that of the sea-water.

Then 19/20 (q+Q) will be the volume of water to be pumped from the condenser per minute,

and 
$$\frac{15}{40}(q+Q) \times \frac{T_3 + 461^{\circ}}{T_1 + 461^{\circ}}$$
 the quantity of air.

If the temperature of the condenser be taken at 120°, and that of seawater at  $60^{\circ}$ , the quantity of air will then be .418(q+Q), so that the total volume to be abstracted will be

$$.95(q+Q) + .418(q+Q) = 1.368(q+Q).$$

If the average quantity of injection-water be taken at 26 times that condensed, q+Q will equal 27q. Therefore, volume to be pumped from the condenser per minute = 37q, nearly. In surface condensation allowance must be made for the water occasion.

ally admitted to the boilers to make up for waste, and the air contained in it, also for slight leak in the joints and glands, so that the air-pump is made

about half as large as for jet-condensation.

The efficiency of a single-acting air-pump is generally taken at 0.5, and that of a double-acting pump at 0.35. When the temperatur of the sea is  $60^{\circ}$ , and that of the (jet) condenser is  $120^{\circ}$ , Q being the volume of the cooling water and q the volume of the condensed water in cubic feet, and n the number of strokes per minute,

The volume of the single-acting pump =  $2.74\left(\frac{Q+q}{r}\right)$ .

The volume of the double-acting pump =  $4(\frac{Q+q}{q})$ .

The following table gives the ratio of capacity of cylinder or cylinders to that of the air-pump; in the case of the compound engine, the low-pressure cylinder capacity only is taken.

Description	of Punip.	Description of Engine.			Ratio.
Single-acting	" · · · · · · · · · · · · · · · · · · ·	Jet "Surface "Jet "	compound expansion	11/2 to 2 8 to 5 8 to 5 11/2 to 2 11/2 to 2 8 to 5 8 to 5	6 to 8 8 to 10 10 to 12 12 to 15 15 to 18 10 to 13 13 to 16 16 to 19 19 to 24 24 to 28

The Area through Valve-seats and past the valves should not be less than will admit the full quantity of water for condensation at a velocity not exceeding 400 ft. per minute. In practice the area is generally in excess of this.

Area through foot-valves  $= D^2 \times S + 1000$  square inches. Area through head-valves  $= D^2 \times S + 800$  square inches.

Diameter of discharge-pipe =  $D \times \sqrt{S} + 35$  inches. D = diam. of air-pump in inches, S = its speed in ft. per min.

James Tribe (Am. Mach., Oct. 8, 1891) gives the following rule for air-

pumps used with jet-condensers: Volume of single-acting air-pump driven by main engine = volume of low pressure cylinder in cubic feet, multiplied by 3.5 and divided by the number of cubic feet contained in one pound of exhaust-steam of the given density. For a double-acting air-pump the same rule will apply, but the volume of steam for each stroke of the pump will be but one half. Should the pump be driven independently of the engine, then the relative speed must be considered. Volume of jet-condenser = volume of air-pump  $\times$  4. Area of injection valve = vol. of air-pump in cubic inches  $\pm$  520.

Circulating-pump.—Let Q be the quantity of cooling water in cubic fert, n the number of strokes per minute, and S the length of stroke in feet.

Capacity of circulating-pump = Q + n cubic feet.

Diameter " = 
$$13.55\sqrt{\frac{Q}{n \times S}}$$
 inches.

The following table gives the ratio of capacity of steam-cylinder or cylinders to that of the circulating pump:

Description of Pump. Single-acting.		Description of Engine.	Ratio.
		Expansive 11/2 to 2 times.	13 to 16
"		3 to 5 "	20 to 25
**	**	Compound.	25 to 30
Double	"	Expansive 11/2 to 2 times.	25 to 30
	66	" 8 to 5 "	86 to 46
44	**	Compound.	46 to 56

The crear area through the valve-seats and past the valves should be such that the mean velocity of flow does not exceed 450 feet per minute. The flow through the pipes should not exceed 500 ft. per min. in small pipes and flow in large pipes.

flow in large pipes. For Centrifugal Circulating-pumps, the velocity of flow in the inlet and outlet pipes should not exceed 400 ft. per min. The diameter of the fan-wheel is from 24 to 8 times the diam. of the pipe, and the speed at its periphery 450 to 500 ft. per min. If W = quantity of water per minute, in American gallons, d = diameter of pipes in inches, R = revolutions of wheel per min.,

$$d = \sqrt{\frac{W}{16.44}}$$
; diam. of fan-wheel = not less than  $\frac{1700}{R}$ . Breadth of blade at

tip =  $\frac{W}{36d}$ . Diam. of cylinder for driving the fan = about 2.8  $\sqrt{\text{diam. of pipe}}$ ,

and its stroke = 0.28 × diam, of fan. **Feed-pumps for Marine Engines.**—With surface-condensing engines the amount of water to be fed by the pump is the amount condensed from the main engine plus what may be needed to supply auxiliary engines and to supply leakage and waste. Since an accident may happen to the surface-condenser, requiring the use of jet-condensation, the pumps of engines fitted with surface-condensers must be sufficiently large to do duty under such circumstances. With jet-condensers and boilers using salt water the dense salt water in the boiler must be blown off at intervals to keep the density so low that deposits of salt will not be formed. Sea-water contains about 1/32 of its weight of solid matter in solution. The boiler of a surface-condensing engine may be worked with safety when the quantity of salt is four times that in sea-water. If Q = net quantity of feed-water required in a given time to make up for what is used as steam, n = number of times the saltness of the water in the boiler is to that of sea-water, then the gross feed-

water  $=\frac{n}{n-1}Q$ . In order to be capable of filling the boiler rapidly each feed-pump is made of a capacity equal to twice the gross feed-water. Two feed-pumps should be supplied, so that one may be kept in reserve to be used while the other is out of repair. If Q be the quantity of net feed-water in cubic feet, l the length of stroke of feed-pump in feet, and n the number of strokes per minute,

Diameter of each feed-pump plunger in inches = 
$$\sqrt{\frac{550 \times Q}{n \times l}}$$
.

If W be the net feed-water in pounds.

Diameter of each feed-pump plunger in inches =  $4\sqrt{\frac{8.9^{\circ} \times W}{n}}$ 

An Evaporative Surface Condenser built at the Virginia Agricultural College is described by James H. Fitts (Trans. A. S. M. E., xiv. & So. It consists of two rectangular end chambers connected by a series of hori-Through the spaces between the surface of the water in each pan and the top of one of the end-chambers is an inlet for steam, and a horizontal distop of one of the end-chambers is an inlet for steam, and a horizontal diaphragm about midway causes the steam to traverse the upper half of the tubes and back through the lower. An outlet at the bottom leads to the airpump. The condenser, exclusive of connection to the exhaust fan, occupies a floor space of 5' 4½" × 1' 9¾", and 4' 1½" high. There are 27 rows of tubes, 8 in some and 7 in others; 210 tubes in all. The tubes are of brass. O. 20 B. W G., ¾" external diameter and 4' 9½" in length. The cooling surface (internal) is 176.5 sq. ft. There are 27 cooling pans, each 4' 9½" × 1' 9¾", and 1 7/16" deep. These pans have galvanized iron bottoms which slide into horizontal grooves ¾" wide and ¾" deep, planed into the tube-sheets. The total evaporating surface is 234.8 sq. ft. Water is fed to every third pan through small cocks, and overflow-pipes feed the rest. A wood casing connects one side with a 30" Buffalo Forge Co.'s disk-wheel. This wheel is belted to a 3" × 4" vertical engine. The air-pump is 5¾" diameter with a 6" stroke, is vertical and single-acting.

6" stroke, is vertical and single-acting.

The action of this condenser is as follows: The passage of air over the water surfaces removes the vapor as it rises and thus hastens evaporation. The heat necessary to produce evaporation is obtained from the steam in the tubes, causing the steam to condense. It was designed to condense 800 hes steam per hour and give a vacuum of 22 in., with a terminal pressure in the

cylinder of 20 lbs. absolute.

Results of tests show that the cooling-water required is practically equal in amount to the steam used by the engine. And since consumption of steam is reduced by the application of a condenser, its use will actually reduce the total quantity of water required. From a curve showing the rate of evaporation per square foot of surface in still air, and also one showing the rate when a current of air of about 2300 ft. per min. velocity is passed over its surface, the following approximate figures are taken:

Temp.		on, lbs. per	Temp.	Evaporation, lbs. 1		
F.		er hour.	F.	sq. ft. per hour.		
Ι.	Still Air.	Current.	1.	Still Air.	Current.	
100°	0.2	1.1	140°	0.8	5.0	
110	0.25		150	1.1	6.7	
120	0.4	2.5	160	1.5	9.5	
130	0.6	3.5	170	2.0		

The Continuous Use of Condensing-water is described in a

series of articles in *Power*, Aug.—Dec., 1892. It finds its application in situations where water for condensing purposes is expensive or difficult to obtain. In San Francisco J. C. H. Stut cools the water after it has left the hot well by means of a system of pans upon the roof. These pans are shallow troughs of galvanized iron arranged in tiers. on a slight incline, so that the water flows back and forth for 1500 o. 2000 ft., cooling by evaporation and registion as it flows. The pans are about 5 ft. in width and the water as it. water hows ack and order for how 5. tool 12. cooling by exporation and radiation as it flows. The pans are about 5 ft. in width, and the water as it flows has a depth of about half an inch, the temperature being reduced from about 140° to 90°. The water from the hot-well is pumped up to the highest point of the cooling system and allowed to flow as above described. Given arging finally into the main tank or reservoir, whence it again flows to the condenser as required. As the water in the reservoir lowers from evaporation, an auxiliary feed from the city mains to the condenser is operated, thereby keeping the amount of water in circulation practically constant. An accumulation of oil from the engines, with dust from the surrounding streets, makes a cleaning necessary about once in six weeks or two months. It is found by comparative trials, running condensing and non condensing, that

about 50% less water is taken from the city mains when the whole apparatus is in use than when the engine is run non-condensing. 22 to 28 in. of vacuum are maintained. A better vacuum is obtained on a warm day with a brisk

breeze blowing than on a cold day with but a slight movement of the air.

In another plant the water from the hot-well is sprayed from a number of fountains, and also from a pipe extending around its border, into a large pond, the exposure cooling it sufficiently for the obtaining of a good vacuum

by its continuous use.

In the system patented by Messrs See, of Lille, France, the water is discharged from a pipe laid in the form of a rectangle and elevated above a pond through a series of special nozzles, by which it is projected into a fine pond through a series of special nozzles, by which it is projected into a nne spray. On coming into contact with the air in this state of extreme division the water is cooled 40° to 50°, with a loss by evaporation of only one tenth of its mass, and produces an excellent vacuum. A 3000-H.P. cooler upon this system has been erected at Lannoy, one of 2500 H.P. at Madrid, and one of 1200 H.P. at Liege, as well as others at Roubaix and Tourcoing. The

system could be used upon a roof if ground space were limited.

In an arrangement adopted by the Worthington Pump Co. for supplying water to condensers attached to vacuum pans, the injection-water is taken from a tank, and after having passed through the condenser is discharged in a heated condition to the top of a cooling tower, where it is scattered by means of distributing-pipes. The water falling from top to bottom of the tower is lowered in temperature by the cooling effect of the atmosphere and the absorption of heat caused by a portion of the water being vaporized, and is led to the tank to be again started on its circuit.

is led to the tank to be again started on its circuit.

In the evaporative condenser of T. Ledward & Co. of Brockley, London, the water trickles over the pipes of the large condenser or radiator, and by evaporation carries away the heat necessary to be abstracted to condense the steam inside. The condensing pipes are fitted with corrugations mounted with circular ribs, whereby the radiating or cooling surface is largely increased. The pipes, which are cast in sections about 76 in. long by 3½ in. bore, have a cooling surface of 26 sq. ft., which is found sufficient under favorable conditions to permit of the condensation of 20 to 30 lbs. of steam per hour when producing a vacuum of 18 lbs. per sq. in, In a condenser of this type at Rixdorf, near Berlin, a vacuum ranging from 24 to 26 in. of mercury was constantly maintained during the hottest weather of August. The initial temperature of the cooling-water used in the apparatus under notice ranged from 80° to 85° F., and the temperature in the sun. to which the condenser was exposed, varied each day from 100° to 115° F. During the experiments it was found that it was possible to run one engine under a load of 100 horse-power and maintain the full vacuum without the use of any cooling water at all on the pipes, radiation afforded by the pipes alone sufficing to condense the steam for this power.

In Klein's condensing water-cooler, the hot water coming from the condenser enters at the top of a wooden structure about twenty feet in height, and is conveyed into a series of parallel narrow metal tanks. The water overflowing from these tanks is spread as a thin film over a series of wooden partitions suspended vertically about 3½ inches apart within the tower. The upper set of partitions, corresponding to the number of metal tanks, reaches half-way down the tower. From there down to the well is suspended a second set of partitions placed at right angles to the first set. This impedes the rapidity of the downflow of the water, and also thoroughly mixes the water, thus affording a better cooling. A fan-blower at the base of the tower drives a strong current of air with a velocity of about twenty feet per second against the thin film of water running down over the partitions. It is estimated that for an effectual cooling two thousand times more air than water must be forced through the apparatus. With such a velocity the air absorbs about two per cent of aqueous vapor. The action of the strong air current is twofold: first, it absorbs heat from the hot water by being itself warmed by radiation; and, secondly, it increases the evapora-tion, which process absorbs a great amount of heat. These two cooling effects are different during the different seasons of the year. During the winter months the direct cooling effect of the cold air is greater, while during summer the heat absorption by evaporation is the more important Taking all the year round, the effect remains very much the same. The evaporation is never so great that the deficiency of water would not be supplied by the additional amount of water resulting from the condensed steam, while in very cold winter months it may be necessary to occasionally rid the cistern of surplus water. It was found that the vacuum obtained by

this continual use of the same condensing-water varied during the year between 27.5 and 28.7 inches. The great saving of space is evident from the fact that only the five-hundredth part of the floor-space is required is f cooling tanks or ponds were used. For a 100-horse-power engine the floor-space required is about four square yards by a height of twenty fred floor-space required is about four square yards by a neight of twenty teek. For one horse-power 3.6 square yards cooling-surface is necessary. The vertical suspension of the partitions is very essential. With a ventilator inches in diameter and a tower 6 by 7 feet and 20 feet high, 10,500 gallons of water per hour were cooled from 104° F, to 68° F. The following record was made at Mannheim, Germany: Vacuum in condenser, 28.1 inches; ten perature of condensing water entering at top of tower, 104° to 106° F. temperature of water leaving the cooler, 66.2° to 71.6° F. The engine was of the Suizer compound type, of 120 horse-power. The amount of powenecessary for the arrangement amounts to about three per cent of the total horse-power of the engine for the ventilator, and from one and one half to three per cent for the lifting of the water to the top of the cooler, the total

being four and one half to six per cent.

A novel form of condenser has been used with considerable success is Germany and other parts of the Continent. The exhaust-steam from the engine passes through a series of brass pipes immersed in water, to who it gives up its heat. Between each section of tubes a number of galvaniz disks are caused to rotate. These disks are cooled by a current of disks are caused to rotate. These disks are cooled by a fan and pass down into the water, cooling it by abstracing the heat given out by the exhaust-steam and carrying it up where it driven off by the alr-current. The disks serve also to agitate the water are thus aid it in abstracting the heat from the steam. With 85 per certacular the temperature of the cooling water was about 130° F., and a serve and the steam of the cooling water was been the account the temperature of the cooling water was about 130° F., and a serve and account the temperature of the cooling water was about 130° F., and a serve and account the temperature of the cooling water was about 130° F., and a serve and account the temperature of the cooling water was about 130° F., and a serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water and the serve water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water water w consumption of water for condensing is guaranteed to be less than a pound for each pound of steam condensed. For an engine 40 in × 50 in., 70 revolutions per minute, 90 lbs. pressure, there is about 1150 sq. ft. of condensingsurface. Another condenser, 1600 sq. ft. of condensing-surface, is used for three engines, 32 in. × 48 in., 27 in. × 40 in., and 30 in. × 40 in., respectively

-The Steamship.

The Increase of Power that may be obtained by adding a condenser giving a vacuum of 26 inches of mercury to a non-condensing engine may be approximated by considering it to be equivalent to a net gain of 12 pounds mean effective pressure per square inch of piston area. If A =area of piston

in square inches, S = piston-speed in ft. per minute, then  $\frac{12AS}{33,000} = \frac{AS}{2750} = \text{H.P}$ made available by the vacuum. If the vacuum = 13.2 lbs. per sq. in. = 27.9

The saving of steam for a given horse-power will be represented approximately by the shortening of the cut-off when the engine is run with the condenser. Clearance should be included in the calculation. To the mean effective pressure non-condensing, with a given actual cut-off, clearance considered, add 3 lbs. to obtain the approximate mean total pressure, condensing. From tables of expansion of steam find what actual cut-off will give this mean total pressure. The difference between this and the original actual cut-off, divided by the latter and by 100, will give the percentage of saving

The following diagram (from catalogue of H. R. Worthington) shows the percentage of power that may be gained by attaching a condenser to a noncondensing engine, assuming that the vacuum is 12 lbs. per sq. in. The mean effective pressures are those of a non-condensing engine exhausting at atmospheric pressure, clearance and compression not considered.

The left-hand vertical column of figures are the initial steam-pressures

(above the atmosphere), and the upper horizontal column the several points of cut-off that represent the point of the stroke at which the steam is shut off and admission ceases; directly under this column is a similar one of the mean effective pressures. To determine the mean effective pressure produced by 90 pounds steam, cut-off at one quarter, find 90 in the initialpressure column, and follow the line to the right until it intersects the oblique line that corresponds to the ¼ cut off. Now read the mean effective pressure from the figures directly above, which in this case is 49 pounds. by glancing down and reading on the lower scale the figure that corresponds with this point of intersection the percentage of gain in power will be sent to be between 25 and 30 per cent of the power of the engine when running non-condensing.



F1G. 151.

Evaporators and Distillers are used with marine engines for the purpose of providing fresh water for the boilers or for drinking purposes.

Weir's Evaporator consists of a small horizontal boiler, contrived so as to be easily taken to pieces and cleaned. The water in it is evaporated by the steam from the main boilers passing through a set of tubes placed in its bottom. The steam generated in this boiler is admitted to the low-pressure valve-box, so that there is no loss of energy, and the water condensed in it is returned to the main boilers.

In Weir's Feed-heater the feed-water before entering the boiler is heated up very nearly to boiling-point by means of the waste water and steam from the low-pressure valve-box of a compound engine.

### GAS, PETROLEUM, AND HOT-AIR ENGINES.

Gas-engines.—For theory of the gas-engine, see paper by Dugald Clerk, Proc. Inst. C. E. 1882, vol. lxix.; and Van Nostrand's Science Series, No. 62. See also Wood's Thermodynamics. For construction of gas-engines, see Robinson's Gas and Petroleum Engines; articles by Albert Spies in Cassier's Magazine, 1893; also Appleton's Cyc. of Mechanics, and Modern Mechanism

In the ordinary type of single-cylinder gas-engine (for example the Otto) known as a four-cycle engine one ignition of gas takes place in one end of the cylinder every two revolutions of the fly-wheel, or every two double strokes. The following sequence of operations takes place during four consecutive strokes: (a) inspiration during an entire stroke; (b) compression during the second (return) stroke; (c) ignition at the dead-point, and expansion during the third stroke; (d) expulsion of the burnt gas during the fourth (return) stroke. Beau de Rochas in 1862 laid down the law that there ar

four conditions necessary to realize the best results from the elastic force of gas: (1) The cylinders should have the greatest capacity with the smallest circumferential surface; (2) the speed should be as high as possible; (3) the cut-off should be as early as possible; (4) the initial pressure should be as high as possible. In modern engines it is customary for ignition to take place, not at the dead point, as proposed by Beau de Rochas, but somewhat later, when the piston has already made part of its forward stroke. At first sight it might be supposed that this would entail a loss of power, but experisignt it might be supposed that his wound entain a toss of power, but experience shows that though the area of the diagram is diminished, the power registered by the friction-brake is greater. Starting is also made easier by this method of working. (The Simplex Engine, Proc. Inst. M. E. 1889.) In the Otto engine the mixture of gas and air is compressed to about 3 atmospheres. When explosion takes place the temperature suddenly rises to somewhere about 2900° F. (Robinson.)

The two great sources of waste in gas-engines are: 1. The high temperature of the rejected products of combustion; 2. Loss of heat through the cylinder walls to the water-jacket. As the temperature of the water-jacket is increased the efficiency of the engine becomes higher.

is increased the efficiency of the engine becomes higher.

With ordinary coal-gas the consumption may be taken at 20 cu. ft. per hour per I.H.P., or 24 cu. ft. per brake H.P. The consumption will vary with the quality of the gas. When burning Dowson producer-gas the consumption of anthracite (Welsh) coal is about 1.3 lbs. per I.H.P. per hour for ordinary working. With large twin engines, 100 H.P., the consumption is reduced to about 1.1 lb. The mechanical efficiency or B.H.P. + I.H.P. in ordinary engines is about 5%; the friction loss is less in larger engines.

Efficiency of the Gas-engine. (Thurston on Heat as a Form of

Energy.)

E	<b>Iea</b> t	transferred into useful work		17%
	"	" to the jackef-water	52	
٠	"	lost in the exhaust-gas	16	
	"	" by conduction and radiation	15	
			_	83≰

This represents fairly the distribution of heat in the best forms of gasengine. The consumption of gas in the best engines ranges from a minimum of 18 to 20 cu. ft. per I.H.P. per hour to a maximum exceeding in the smaller engines 25 cu. ft. or 30 cu. ft. In small engines the consumption per

brake horse-power is one third greater than these figures.

The report of a test of a 170-H.P. Crossley (Otto) gas-engine in England, 1892, using producer-gas, shows a consumption of but .85 lb. of coal per H.P. hour, or an absolute combined efficiency of 21.3% for the engine and producer. The efficiency of the engine alone is in the neighborhood of 25%

The Taylor gas-producer is used in connection with the Otto gas-engine at the works of Schleicher, Schumm & Co., of Philadelphia. The only loss is due to radiation through the walls of the producer and a small amount of heat to radiation through the waits of the producer and a small amount of near carried off in the water from the scrubber. Experiments on a 100-H.P. engine show a consumption of 97/100 lb. of carbon per I.H.P. per hour. This result is superior to any ever obtained on a steam-engine. (Iron Age, 1893.)—
Tests of the Simplex Gas-engine. (Proc. Inst. M. E. 1889.)—
Cylinder 776 × 1534 in., speed 160 revs. per min. Trials were made with town gas of a heating value of 607 heat-units per cubic foot, and with Dowson case right in CO. of shout 150 heat units per cubic foot.

gas, rich in CO, of about 150 heat-units per cubic foot.

	Town Gas.			D	OWSOIL GE	18.
	1.	2.	8.	1.	2.	3.
Effective H.P	6.70	8.67	9.28	7.12	3. <b>6</b> 1	5.26
Gas per H.P. per hour, cu. ft				88.08	114.85	97.88
Water per H.P. per hour, lbs.		44.4	48.8	58.3		
Temp. water entering, F		51°	-51°	48°		
" " effluent	135°	144°	1720	144°		

The gas volume is reduced to 32° F and 30 in barometer. A 50-H.P. engine working 35 to 40 effective H.P. with Dowson generator consumed 51 bs. English anthracite per hour, equal to 1.48 to 1.3 bs. per effective H.P. A 16-H.P. engine working 12 H.P. used 19.4 cu. ft. of gas per effective H.P. A 320-H.P. Gas-engine.—The flour-mills of M. Leblauc, at Pantin, France, have been provided with a 320-horse-power fuel-gas engine of the Simplex type. With coal-gas the machine gives 450 horse-power. There is no cylinder, 34.8 in. diam.; the piston-stroke is 40 in.; and the speed 100 revs.

per min. Special arrangements have been devised in order to keep the different parts of the machine at appropriate temperatures. The coal used is 0.812 in. per indicated or 1.03 lb. per brake horse-power. The water used is 834 gallons per brake horse-power per hour.

Test of an Otto Gas-engine. (Jour. F. I., Feb. 1890, p. 115.)—Engine 7 H.P. nominal; working capacity of cylinder .2594 cu. ft.; clearance

space .1:96 cu. ft.

Temperature of gas supplied. 62.2 " " exhaust 774.8	Heat-units. Per cent of Heat received.
" entering water 50.4	Transferred into work 22.84
" " exit water 89.2	Taken by jacket-water 49.94
Pressure of gas, in. of water 8.06	" " exhaust 27.22
Revolution per min., av'ge 161.6 Explosions missed per min.,	Composition of the gas:
average 6.8	By Volume. By Weight.
Mean effective pressure, lbs. per sq. in	CO2     0.50%     1.923%       C2H4     4.32     10.520       O     1.00     2.797       CO     5.38     15.419       CH4     27.18     38.042       H     51.57     9.021       N     9.06     22.273
cu. ft	14 8.00 22,213
	99.96 99.995

Temperatures and Pressures developed in a Gas-engine. (Clerk on the Gas-engine.)—Mixtures of air and Oldham coal-gas. Temperature before explosion, 17° C.

Mi	kture.	above Atmos 810n		Theoretical Temp. of Explo-
Gas.	∆ir.	lbs. per sq. in.	from observed Pressure.	sion if all Heat were evolved.
i vol.	14 vols.	40.	806° C.	1786° C.
1 "	18 "	51.5	1038	1912
ī "	12 "	60.	1202	2058
ī ·	ii "	61.	1220	2228
ī "	ğ "	78.	1557	2670
ī "	7 "	87.	1738	8884
ī "	6 "	90.	1792	8808
ī ''	5 "	91.	1812	
ī "	4 "	80.	1595	

Test of the Clerk Gas-engine. (Proc. Inst. C. E. 1882, vol. lxix.)—Cylinder 6 × 12 in., 150 revs. per min.; mean available pressure 70.1 lbs., 9 I.H.P.; maximum pressure, 220 lbs. per sq. in. above atmosphere; pressure before ignition, 41 lbs. above atm.; temperature before compression 60° F., after compression, 318° F.; temperature after ignition calculated from pressure, 2300° F.; gas required per I.H.P. per hour, 22 cu. ft.

Combustion of the Gas in the Otto Engine.—John Imray, in discussion of Mr. Clerk's paper on Theory of the Gas-engine, says: The change which Mr. Otto introduced, and which rendered the engine a success, was that, instead of hurning in the cylinder an explosive mixture of gas and

change which Mr. Otto introduced, and which rendered the engine a success, was that, instead of burning in the cylinder an explosive mixture of gas and air, he burned it in company with, and arranged in a certain way in respect of, a large volume of incombustible gas which was heated by it, and which diminished the speed of combustion. W. R. Bousfield, in the same discussion, says: In the Otto engine the charge varied from a charge which was an explosive mixture at the point of ignition to a charge which was merely an inert fluid near the piston. When ignition took place there was n explosion close to the point of ignition that was gradually communicated throughout, the mass of the cylinder. As the ignition got farther away from the out the mass of the cylinder. As the ignition got farther away from the primary point of ignition the rate of transmission became slower, and if the engine were not worked too fast the ignition should gradually catch up to the piston during its travel, all the combustible gas being thus consumed. This theory of slow combustion is, however, disputed by Mr. Clerk, who holds that the whole quantity of combustible gas is ignited in an instant.

**Use of Carburetted Air in Gas-engines.**—Air passed ovegasoline or volatile petroleum spirit of low sp. gr., 0.65 to 0.70, liberates some of the gasoline, and the air thus saturated with vapor is equal in heating or lighting power to ordinary coal-gas. It may therefore be used as a fuel for gas-engines. Since the vapor is given off at ordinary temperatures gasoline is very explosive and dangerous, and should be kept in an underground tank out of doors. A defect in the use of carburetted air for gasengines is that the more volatile products are given off first, leaving an oily residue which is often useless. Some of the substances in the oil that are taken up by the air are apt to form troublesome deposits and incrustations when burned in the engine cylinder.

The Otto Gasoline-engine. (Eng'g News, May 4, 1893.)—It is claimed that where but a small gasoline-engine is used and the gasoline bought at retail the liquid fuel will be on a par with a steam-engine using 6 lbs. of coal per horse-power per hour, and coal at \$3.50 per ton, and will besides save all the handling of the solid fuel and ashes, as well as the attendance for the boilers. As very few small steam-engines consume less than 6 lbs. of coal per hour, this is an exceptional showing for economy. At 8 cts. per gallon for gasoline and 1/10 gal. required per H.P. per hour, the

cost per H.P. per hour will be 0.8 cent.

The Priestman Petroleum-engine. (Jour. Frank. Inst., Feb. 1883)—The following is a description of the operation of the engine: Any ordinary high-test (usually 150 test) oil is forced under air-pressure to an atomizer, where the oil is met by a current of air and broken up into atoms and sprayed into a mixer, where it is mixed with the proper proportion supplementary air and sufficiently heated by the exhaust from the cylinder passing around this chamber. The mixture is then drawn by suction into the cylinder, where it is compressed by the piston and ignited by an electric spark, a governor controlling the supply of oil and air proportionately to the work performed. The burnt products are discharged through an exhaust-valve which is actuated by a cam. Part of the air supports the combustion of the oil, and the heat generated by the combustion of the combustion of the tremains and the products resulting from the explosion, and thus develops its power from air that it takes in while running. In other words, the engine exerts its power by inhaling air, heating that air, and expelling the products of combustion when done with. In the largest engines only the 1/250 part of a pint of oil is used at any one time, and in the smallest sizes the fuel is prepared in correct quantities varying from 1/7000 of a pint upward, according to whether the engine is running on light or full duty. The cycle of operations is the same as that of the Otto gasengine.

Trials of a 5-H.P. Priestman Petroleum-engine. (Prof. W. C. Unwin, Proc. Inst. C. E. 1892.)—Cylinder, 8½ × 12 in., making normally 200 revs. per min. Two oils were used, Russian and American. The more

important results were given in the following table:

	Trial V. Full Power.	Trial I. Full Power.	Trial IV. Full Power.	Trial II. Half Power.	Trial III. Light.
Oil used	Day- light.	Russo- lene.	Russo- lene.	Russo- lene.	Russo- lene.
Brake H.P	7.722	6.765	6.882	3.62	
I.H.P	9.369 0.824	7,408 0.91	8.332 0.876	4.70 0.769	0.889
Oil used per brake H.P.		0.91	0.010	0.109	
hour, lb	0.842	0.946	0.988	1.381	
hour, lb	0.694	0.864	0.816	1.063	5.734
Lb. of air per lb. of oil	33.4	31.7	43.2	21.7	10.1
Mean explosion pressure, lbs. per sq. in	151.4	134.3	128.5	48.5	9.6
Mean compression pres- sure, lbs. per sq. in	35.0	27.6	26.0	14.8	6.0
Mean terminal pressure, lbs. per sq in	35.4	23.7	25.5	15.6	

To compare the fuel consumption with that of a steam-engine, 1 lb. of might be taken as equivalent to 1¼ lbs. of coal. Then the consumption

in the oil-engine was equivalent, in Trials I., IV., and V., to 1.18 lbs., 1.23 lbs., and 1.02 lbs. of coal per brake horse-power per hour. From Trial IV. the following values of the expenditure of heat were obtained:

•	Per cent.
Useful work at brakeEngine friction	18.31 2.81
Heat shown on indicator-diagram	16.12 47.54 26.72 9.61
Total	99.99

Naphtha-engines are in use to some extent in small yachts and launches. The naphtha is vaporized in a boiler, and the vapor is used expansively in the engine-cylinder, as steam is used; it is then condensed and returned to the boiler. A portion of the naphtha vapor is used for fuel under the boiler. According to the circular of the builders, the Gas Engine and Power Co. of New York, a 2-H.P. engine requires from 3 to 4 quarts of naphtha per hour, and a 4-H.P. engine from 4 to 6 quarts. The chief advantages of the naphtha-engine and boiler for launches are the saving of weight and the quickness of operation. A 2-H.P. engine weighs 200 lbs., a 4-H.P. 300 lbs. It takes only about two minutes to get under headway, (Modern

Mechanism, p. 270.)

Hot-air (or Caloric) Engines.—Hot-air engines are used to some extent, but their bulk is enormous compared with their effective power. For extent, but their bulk is enormous compared with their effective power. For an account of the largest hot-air engine ever built (a total failure) see Church's Life of Ericsson. For theoretical investigaton, see Rankine's Steam-engine and Rontgen's Thermodynamics. For description of constructions, see Appleton's Cyc. of Mechanics and Modern Mechanism, and Babcock on Substitutes for Steam, Trans. A. S. M. E., vii., p. 698.

Test of a Hot-air Engine (Robinson).—A vertical double-cylinder (Caloric Engine Co.'s) 12 nominal H.P. engine gave 20.19 I.H.P. in the working cylinder and 11.38 I.H.P. in the pump, leaving 8.81 net I.H.P.; while the effective brake H.P. was 5.9 giving a mechanical efficiency of 6%. Con.

effective brake H.P. was 5.9, giving a mechanical efficiency of 675. Consumption of coke, 3.7 lbs. per brake H.P. per hour. Mean pressure on pistons 15.37 lbs. per square inch, and in pumps 15.9 lbs., the area of working cylinders being twice that of the pumps. The lot air supplied was about 1160° F, and that rejected at end of stroke about 880° F.

The b is result of Stirling's hert-engine was 2.7 lbs. per brake H.P. per hour. Bailey's hot-air engine, 2 H.P. nominal, gave 4.2 I.H.P., 2.6 B.H.P.; mechanical efficiency 62%; estimated temperature at highest pressure 1500re F., and at atmospheric pressure 700°F. Highest pressure, 14 lbs. per square inch above atmosphere. Consumption of fuel, 7 lbs. per hour per brake

H.P., and of cooling water, 30 lbs.

#### LOCOMOTIVES.

Efficiency of Locomotives and Resistance of Trains. (George R. Henderson, Proc. Engrs. Club of Phila. 1886.)—The efficiency of locomotives can be divided into two principal parts: the first depending upon the size of the cylinders and wheels, the valve-gear, boiler and steampassages, of which the tractive power is a function; and the second upon the speed, grade, curvature, and friction, which combine to produce the resistance.

The tractive power may be determined as follows:

Let P = tractive power;

p = average effective pressure in cylinder; S = stroke of piston;

d = diameter of cylinders; D = diameter of driving-wheels. Then

$$P = \frac{4\pi d^2 pS}{4\pi D} = \frac{d^2 pS}{D}.$$

The average effective pressure can be obtained from an indicator-diagram, or by calculation, when the initial pressure and ratio of expansion are known, together with the other properties of the valve-motion. The subjoined table from "Auchincloss" gives the proportion of mean effective pressure to boiler-pressure above atmosphere for various proportions of cut-off.

Stroke, Cut off at—	M.E.P. (Boiler- pres. = 1).	Stroke, Cut off at—	(M.E.P. Boiler- pres. = 1).	Stroke, Cut off at—	M.E.P. (Boiler- pres. = 1).
.1 .125 = 1/4 .15 .175 .2 .25 = 1/4	.15 .2 .24 .28 .32 .4	.333 = ½ .375 = ¾ .4 .45 5 = ½ .55	.5 = ½ .55 .57 .62 .67 .72	.625 = 56 .666 = 78 .7 .75 = 34 .875 = 76	.79 .82 .85 .89 .93

These values were deduced from experiments with an English locomotive by Mr. Gooch. As diagrams vary so much from different causes, this table will only fairly represent practical cases. It is evident that the cut-off must be such that the boiler will be capable of supplying sufficient steam at the given speed.

In the following calculations it is assumed that the adhesion of the engine is at least equal to the tractive power, which is generally the case—if the engine be well designed-except when starting, or running at a very low rate of speed, with a small expansive ratio. When running faster, economy, and also the size of the boiler, necessitate a higher ratio of expansion, thus reducing the tractive power below the adhesion. If the adhesion be less than the tractive power, substitute it for the latter in the following formulæ.

The resistances can be computed in the following manner, first consider-

ing the train:
There is a resistance due to friction of the journals, pressure of wind, etc.. which increases with the speed. Most of the experiments made with a view of determining the resistance of trains have been with European rolling stock and on European railways. The few trials that have been made here seem to prove that with American systems this resistance is less.

The following table gives the resistance at different speeds, assumed for

50 55 60

American practice :

Speed in miles per hour: <u>20</u> 35 25 30 10

Resistance in pounds per ton of 2240 lbs.: 8.6 4.8 5.8 10.2 12.1 14.3 16.8 19.2 v = 3.1

Coefficient of resistance in terms of load :  $l = .0015 \cdot .0017 \cdot .0020 \cdot .0024 \cdot .0029 \cdot .0085 \cdot .0043 \cdot .0051 \cdot .0060 \cdot .0071 \cdot .0084 \cdot .0096$ 

$$l = .0015 \left(1 + \frac{8^2}{650}\right).$$

The resistance due to curvature is about .5 lb. per ton per degree of curvature, or the coefficient = .00025c, where c = the curvature in degrees. The effect of grades may be determined by the theory of the inclined plane.

Consider a load L on a grade of m feet per mile. The component of the weight Lacting in the line of traction, or parallel to the track, is

$$L \sin \theta = \frac{Lm}{5280} = .00019 Lm.$$

To combine these coefficients in one equation representing the resistance of the train:

Let L = weight of train, exclusive of engine, in pounds;

R =resistance of train, in pounds. s, c, and m, as above. Then

$$R = L \left[ .0015 \left( 1 + \frac{s^2}{650} \right) + .00025c \pm .00019m \right],$$

the  $\pm$  sign meaning that this coefficient is positive for ascending and negative for descending grades.

To find a grade upon which a train would descend by itself, take the last coefficient minus and make R = U, whence

$$m = 7.9 \left(1 + \frac{s^2}{650}\right) + 1.3c.$$

As locomotives usually have a long rigid wheel-base, the coefficient for curvature had better be doubled. The resistance due to the friction of the working parts will be considered as being proportional to the tractive power, so that the effective tractive power will be represented by uP, the resistance being (1-u)P.

Combining all these values, there results the equation between the tractive power and the weight of the train and engine:

$$uP - W(.0005c \pm .00019m) = Ll + .00025c \pm .00019m$$

W being weight of engine and tender, and u being probably about .8. Transforming, we have

$$L = \frac{uF - W(.0005c \pm .00019m)}{l + .00025c \pm .00019m},$$

and

$$P = \frac{L(l + .00025c \pm .00019m) + W(.0005c \pm .00019m)}{2}.$$

These deductions, says Mr. Henderson, agree well with railroad practice. The figures given above for resistances are very much less than those given by the old formulæ (which were certainly wrong), but even Mr. Henderson's figures for high speed are too high, according to a diagram given by D. L. Barnes in Eng'g Mng., June, 1894, from which the following figures are derived:

Eng'g News, March 8, 1894, gives a formula which for high speeds gives figures for resistance between those of Mr. Barnes and Mr. Henderson. See tests reported in Eng'g News of June 9, 1892. The formula is, resistance in pounds per ton =  $\frac{1}{4}$  velocity in miles per hour +2. This gives for

For tables showing that the resistance varies with the area exposed to the resistance and friction of the air per ton of load, see Dashiell, Trans. A. S. M. E. vol. viii p. 371

M. E., vol. xiii. p. 371.

Inertia and Besistances of Ballroad Trains at Increasing Speeds.—A series of tables and diagrams is given in R. R. Gaz., Oct. 31, 1830, to show the resistances due to inertia in starting trains and accelerating their speeds.

The mechanical principles and formulæ from which these data were calculated are as follows:

S = speed in miles per hour to be acquired at the end of a mile.

S+2= average speed in miles per hour during the first mile run.

V = velocity in feet per second at the end of a mile; then V + 2 = average velocity in feet per second during the first mile run.

5280 + V/2 = time in seconds required to run first mile = 10560 + V.  $V + (10560 + V) = V^2 + 10560 = .0000947V^2$  = Constant gain in velocity or

 $V+(10560+V)=V^2+10560=.0000947V^2=$  Constant gain in velocity or acceleration in feet per second necessary to the acquirement of a velocity V at the end of a nulle.

g= acceleration due to the force of gravity, i.e., 32.2 feet per second. The forces required to accelerate a given mass in a given time to different velocities are in proportion to those velocities. The weight of a body is the measure of the force which accelerates it in the case of gravity, and as are considering 1 lb, or the unit of weight, as the mass to be accelerated, we have  $g: (\mathcal{V}^2 + 10560): :1$  is to the force required to accelerate 1 lb. to the velocity  $\mathcal{V}$  at the end of a mile run, or, what is the same, to accelerate it at the rate of  $\mathcal{V}^2 + 10560$  feet per second.

From this the pull on the drawbar—it is the same as the force just mentioned, and is properly termed the inertia—in pounds per pound of train weight is  $V^2 + (10600 \times 32.2)$ , which equals .0000224  $V^2$ .

This last formula also gives the grade in per cent which will give a resist ance equal to the inertia due to acceleration.

The grade in feet per mile is .00000294 $V^2 \times 5280 = .01558V^2$ . The resistance offered in pounds per ton is 2000 times as much as per pound, or '.00588 V2.

When the adhesion of locomotive drivers is 600 lbs. per ton of weight thereon—this is about the maximum—then the tons on drivers necessary to overcome the inertia of each ton of total train load are .00588  $V^2 + 600 =$ .0000098 V2. In this determination of resistances no account has been taken

of the rotative energy of the wheels.

Efficiency of the Mechanism of a Locomotive. — Druitt Halpin (Proc. Inst. M. E., January, 1889.) writes as follows, concerning the tractive efficiency of locomotives; With simple two-cylinder engines, having four wheels coupled, experiments have been made by the late locomotive superintendent of the Eastern Railway of France, M. Regray, with the bast annuality and the result arrived at greatest possible care and with the best apparatus, and the result arrived at was that out of 100 I.H.P in the cylinders 43 H.P. only was available on the draw-bar. The loss of 57% was rather a high price to pay for the efficiency of the engine. How much of that loss was due to coupling-rods no one could yet say; but a considerable amount of it must be due to the rods, because it was that he was a proposed to the rods, because it was the large proposed to the rods, because it was the large proposed to the rods, because it was the large proposed to the rods, because it was the large proposed to the rods. could yet say; but a considerable amount of it must be due to the rock, because it was known that large engines with a single pair of driving-wheels not coupled were doing their work more economically, while advanced locomotive engineers who had not yet gone in for compounding were at any rare going back to the single pair of driving-wheels. Moreover, that astonishing loss of 5% had been confirmed independently on the Pennsylvania Railroad, trials made with an engine having 1814 × 24 in. cylinders and 6 ft. 6 in wheels four-coupled; by taking indicator diagrams up to 65 miles an hour, which were professed to be taken correctly, the power on the draw-bar was found to be only 42% of that in the cylinders, or only 1% less than in the French experiments.

The Size of Locomotive Cylinders is usually taken to be such that the engine will just overcome the adhesion of its wheels to the rails under favorable circumstances.

The adhesion of the wheel is about one third the weight when the rail is

clean and sanded, but is usually assumed at 0.25. (Thurston.) A committee of the American Association of Master Mechanics, after studying the performance reports of the best engines, proposes the following formula for weight on driving-wheels:  $W = \frac{0.85Cd^3PS}{1}$  in which the in which the

mean pressure in the cylinder is taken at 0.85 of the boiler-pressure at starting, C is a numerical coefficient of adhesion, d the diameter of cylinder in inches, D that of the drivers in inches, P the pressure in the boiler in pounds per square inch. S the stroke of piston in inches. C is taken as  $0 \lesssim 10^{-2}$  for passenger engines, 0.24 for freight, and 0.22 for "switching" engines.

The common builder's rule for determining the size of cylinders for the locomotive is the following, in which we accept Mr. Forney's assumption that the steam-pressure at the engine may be taken as nine tenths that in the boiler: The tractive force is, approximately,  $F = \frac{0.9p_1 \times A \times 4S}{C}$  where

C is the circumference of tires of driving-wheels, S = the stroke in inches,  $p_1$  = the initial unbalanced steam-pressure in the cylinder in pounds per square inch, and A = the area of one cylinder in square inches. If B = diameter of driving wheel and d= diameter of cylinder,  $F=\frac{0.9p_1\times d^2s}{D}$ 

Taking the adhesion at one fourth the weight W,

$$F = 0.25W = \frac{0.9p_1 \times A \times 4S}{C} = \frac{0.9p_1d^2S}{D};$$

whence the area of each piston is

$$A = \frac{0.25CW}{0.9 \times 4 \times p_1 S}; \quad \mathring{d} = \sqrt{\frac{0.25DW}{0.9p_1 S}}.$$

The above formulæ give the maximum tractive force; for the mean tractive force substitute for  $p_1$  in the formulæ the mean effective pressure.

Von Borries's rule for the diameter of the low-pressure cylinder of a compound locomotive is  $d^2 = \frac{2ZD}{2}$ ph'

where d = diameter of l.p. cylinder in inches; D = diameter of driving-wheel in inches;

p = mean effective pressure per sq. in., after deducting internal machine friction

h = stroke of piston in inches;

Z = tractive force required, usually 0.14 to 0.16 of the adhesion.

The value of p depends on the relative volume of the two cylinders, and from indicator experiments may be taken as follows:

p in percentage of Boiler-pressure. Ratio of Cylinder p for Boiler-press Class of Engine. Volumes. ure of 176 lbs. 1:2 or 1:2.05 Large-tender eng's 1:2 or 1:2.2 71 Tank-engines.....

The Size of Locomotive Boilers. (Forney's Catechism of the Locomotive.)—They should be proportioned to the amount of adhesive weight and to the speed at which the locomotive is intended to work. Thus a locomotive with a great deal of weight on the driving-wheels could pull a heavier load, would have a greater cylinder capacity than one with little adhesive weight, would consume more steam, and therefore should have a larger boiler.

The weight and dimensions of locomotive boilers are in nearly all cases determined by the limits of weight and space to which they are necessarily confined. It may be stated generally that within these limits a locomotive boiler cannot be made too large. In other words, boilers for locomotives should always be made as large as is possible under the conditions that de-termine the weight and dimensions of the locomotives.

Wootten's Locomotive. (Clark's Steam-engine; see also Jour, Frank. Inst. 1891, and Modern Mechanism, p. 485.)-J. E. Wootten designed and constructed a locomotive boiler for the combustion of anthracite and lignite, though specially for the utilization as fuel of the waste produced in the mining and preparation of anthracite. The special feature of the engine is the fire-box, which is made of great length and breadth, extending clear over the wheels, giving a grate-area of from 64 to 85 sq. ft. The draught diffused over these large areas is so gentle as not to lift the fine particles of the fuel. A number of express-engines having this type of boiler are engaged on the fast trains between Philadelphia and Jersey City. The fire-box she is 8 ft. 8 in. wide and 10 ft. 5 in. long; the fire-box is 8 8 yd, ft., making 76 sq. ft. of grate-area. The grate is composed of bars and water tubes altermately. The regular types of cast-iron shaking grates are also used. The height of the fire-box is only ? ft. 5 in. above the grate. The grate is terminated by a bridge of fire-brick, beyond which a combustion-chamber, 27 in. long, a bridge of fire-brick, beyond which a combustion-chamber, 27 in, long, leads to the flue-tubes, about 184 in number, 134 in, diam. The cylinders are 21 in, diam., with a stroke of \$2 inches. The driving wheels, four-coupled, are 5 ft. 8 in, diam. The engine weighs 44 tons, of which 29 tons are on driving wheels. The heating-surface of the fire-box is 135 sq. ft., that of the flue-tubes is 383 sq. ft.; together, 1117 sq. ft., or 14.7 times the grate-area. Hauling 15 passenger-cars, weighing with passengers 360 tons, at an average speed of 42 miles per hour. over ruling gradients of 1 in 89, the engine consumes 62 lbs. of fuel per mile, or 34½ lbs. per sq. ft. of grate per hour.

Qualities Essential for a Free-steaming Locomotive. (From a paper by A. E. Mitchell, read before the N. Y. Railroad Club; Eng'g News, Jan. 24, 1891.)—Square feet of boiler-heating surface for bituminous coal should not be less than 4 times the square of the diameter in inches of a cylinder 1 inch larger than the cylinder to be used. One tenth

inches of a cylinder 1 inch larger than the cylinder to be used. One tenth of this should be in the fire-box. On anthracite locomotives more heatingsurface is required in the fire-box, on account of the larger grate-area required, but the heating surface of the flues should not be materially

decrease 1.

Grate-surface, Smoke-stacks, and Exhaust-nozzles for Locomotives. (Am. Mach., Jan. 8, 1891.)—For grate-surface for anthracite coal: Multiply the displacement in cubic feet of one piston during a stroke by 8.5; the product will be the area of the grate in square feet.

For bluminous coal: Multiply the displacement in feet of one piston during a stroke by 614; the product will be the grate area in square feet for engines with cylinders 12 in. in diameter and upwards. For engines with smaller cylinders the ratio of grate-area to piston-displacement should be 7½

to 1, or even more, if the design of the engine will admit this proportion.

The grate-areas in the following table have been found by the foregoing rules, and agree very closely with the average practice:

Smoke-stacks.—The internal area of the smallest cross-section of the stack

should be 1/17 of the area of the grate in soft-coal-burning engines.

A. E. Mitchell, Supt. of Motive Power of the N. Y. L. E. & W. R. R., says that recent practice varies from this rule. Some roads use the same size of stack, 13½ in. diam. at throat, for all engines up to 20 in. diam. of cylinder.

The area of the orifices in the exhaust-nozzles depends on the quantity and quality of the coal burnt, size of cylinder, construction of stack, and the condition of the outer atmosphere. It is therefore impossible to give rules for computing the exact diameter of the orifices. All that can be done is to sive a rule by which an approximate diameter can be found. The exact give a rule by which an approximate diameter can be found. The exact diameter can only be found by trial. Our experience leads us to believe that the area of each orifice in a double exhaust-nozzle should be equal to 1,400 part of the grate-surface, and for single nozzles 1,200 of the grate-surface. These ratios have been used in finding the diameters of the nozzles given in the following table. The same sizes are often used for either hard or soft coal-burners.

Size of	Grate-area for Anthra-	Grate-area for Bitumin-	Diameter	Double Nozzles.	Single Nozzles.
Cylinders, in inches.	cite Coal, in sq. in.	ous Coal, in sq. in,	of Stacks, in inches.	Diam. of Orifices, in inches.	Diam. of Orifices, in inches.
$ \begin{array}{c} 12 \times 20 \\ 13 \times 20 \\ 14 \times 20 \\ 15 \times 22 \end{array} $	1591	1217	916	2	2 18/16
	1873	1482	1016	21/6	3
	2179	1666	1114	2 5/16	81/4
	2742	2097	1216	2 9/16	8 11/16
16 × 24	3415	2611	14	27/6	4 1/16
17 × 24	3856	2948	15	3 1/16	4 5/16
18 × 24	4821	3304	1584	81/4	456
19 × 24	4810	3678	1614	3 7/16	4 18/16
20 × 24	5837	4081	1714	35/6	5 1/16

Exhaust-nozzles in Locomotive Boilers.—A committee of the Am. Ry. Master Mechanics' Assn. in 1890 reported that they had, after two years of experiment and research, come to the conclusion that, owing to the great diversity in the relative proportions of cylinders and boilers together with the difference in the quality of fuel, any rule which does not recognize each and all of these factors would be worthless.

The committee was unable to devise any plan to determine the size of the exhaust-nozzle in proportion to any other part of the engine or boiler, and believes that the best practice is for each user of locomotives to adopt a nozzle that will make steam freely and fill the other desired conditions, best determined by an intelligent use of the indicator and a check on the fuel account. The conditions desirable are: That it must create draught enough on the fire to make steam, and at the same time impose the least possible amount of work on the pistons in the shape of back pressure. It should be large enough to produce a nearly uniform blast without lifting or tearing

Fire-brick Arches in Locomotive Fire-boxes.—A committee of the Am. Ry. Master Mechanics' Assn. in 1890 reported strongly in favor of the use of brick arches in locomotive fire-boxes. They say: It is favor of the use of brick arches in locomotive fire-boxes. They say: It is the unanimous opinion of all who use bituminous coal and brick arch, that it is most efficient in consuming the various gases composing black smoke, and by impeding and delaying their passage through the tubes, and mingling and subjecting them to the heat of the furnace, greatly lessens the volume ejected, and intensifies combustion, and does not in the least check but rather augments draught, with the consequent saving of fuel and increased steaming capacity that might be expected from such results. This in particular when used in connection with extension front.

Size, Weight, Tractive Power, etc., of Different Sizes of Locomotives. (J. G. A. Meyer, Modern Locomotive Construction, Am.

Mach., Aug. 8, 1885.)—The tractive power should not be more or less than the adhesion. In column 3 of each table the adhesion is given, and since the adhesion and tractive power are expressed by the same number of pounds, adhesion and tractive power are expressed by the same number of pounds, these figures are obtained by finding the tractive power of each engine, for this purpose always using the small diameter of driving-wheels given in column 2. The weight on drivers is shown in column 4, which is obtained by multiplying the adhesion by 5 for all classes of engines. Column 5 gives the weights on the trucks, and these are based upon observations. Thus, the weight on the truck for an eight-wheeled engine is about one half of that placed on the drivers.

For Mogul engines we multiply the total weight on drivers by the decimal

2, and the product will be the weight on the truck.

For ten-wheeled engines the total weight on the drivers, multiplied by the decimal 32, will be equal to the weight on the truck.

And lastly, for consolidation engines, the total weight on drivers multiplied by the decimal .16, will determine the weight on the truck.

In column 6 the total weight of each engine is given, which is obtained by adding the weight on the drivers to the weight on the truck. Dividing the adhesion given in column 1 by 714 will give the number of tons of 2000 lbs. that the engine is capable of hauling on a straight and level track, column 7. The weight of engines given in these tables will be found to agree generally with the actual weights of locomotives recently built, although it must not be expected that these weights will agree in every case with the actual weights, because the different builders do not build the engines alike.

The actual weight on trucks for eight wheeled or ten wheeled engines will not differ much from those given in the tables, because these weights depend greatly on the difference between the total and rigid wheel-base, and these are not often changed by the different builders. The proportion between the rigid and total wheel-base is generally the same.

The rule for finding the tractive power is:

Diameter of wheel in feet.

E	IGHT-	WHEE	LED I	ocon	OTIV	ES.	TEN-WHEELED ENGINES.									
Cylinders—Dia- meter, Stroke.	Diameter of Driving- wheels.	Adhesion,	Weight on Drivers.	Weight on Truck.	Total Weight.	Hauling Capacity on Level Truck in tons of 2000 lbs., includ- ing Tender.	Cylinders-Diameter, Stroke,	Diameter of Driving- wheels.	Adhesion.	Weight on Drivers	Weight on Truck.	Total Weight, with Water and Fuel,	Hauling Capacity on Level Track in tons of 2000 lbs., includ- ing Tender.			
1	2	8	4	5	6	7	1	5	8	4	5	6	7			
in. 10×90 11×02 19×02 13×03 14×04 15×24 16×24 17×94 18×24	in. 45-51 45-51 48-54 49-57 55-61 55-66 58-66 60-66 61-66	1bs. 4000 5321 5940 6828 7697 8836 9533 10401 11479	1bs. 20000 26620 29700 34140 38485 44180 47665 52020 57360	158. 10000 13310 14850 17070 19242 22090 23832 26010 28680	1bs. 30000 39930 44550 51210 57797 66270 71497 78030 80040	792 910 1026 1178 1271 1387	in. 12×18 13×18 14×20 15×22 16×24 17×24 18×24 19×24	51-50	Ibs. 5981 6677 8205 9900 11590 12240 13722 14410	61200	15840 18432	1bs. 39477 44070 54150 65340 76033 80784 90566 95304	797 890 1093 1320 1536 1632 1829 1925			
		Mogu	UL EN	GINE	3.		•	Consc	LIDA	TION	Engi	nes.				
' in. 11×16 12×18 13×18 14×20 15×22 16×24 17×24 18×24	in. 35-40 36-41 37-42 39-43 42-47 45-51 49-54 51-56 54-60	lbs. 4978 6480 7399 9046 10607 12288 12739 13722 14440	1bs. 24891 32400 36997 45230 53035 61440 63697 68611 72200	1bs. 4978 6480 7399 9046 10607 12288 12739 13722: 14440	1bs. 29869 38880 44396 54276 63642 73738 76436 82333 86640	663 864 986 1206 1414 16:8 1698 1829 1925	in. 14×16 15×18 20×24 22×24	in. 36-38 36-38 48-50 50-52	10125 18000	Ibs. 39200 50625 90000 104544	lbs. 6272 8100 14400 16727	lbs. 45472 58725 104400 121271	1350 2400			

#### Leading American Types of Locomotive for Freight and Passenger Service.

1. The eight-wheel or "American" passenger type, having four couple: driving wheels and a four-wheeled truck in front.

2. The "ten-wheel" type, for mixed traffic, having six coupled drivers at:

2. The "Ven-wheel trype, for mixed traine, naving six coupled driving one wheels and a pony or two-wheel truck in front.

3. The "Mogul" freight type, having six coupled driving wheels and a pony or two-wheel truck in front.

4. The "Consolidation" type, for heavy freight service, having eight coupled driving wheels and a pony truck in front.

Besides these there is a great variety of types for special conditions of service, as four-wheel and six-wheel switching-engines, without trucks; the Forney type used on elevated railroads, with four coupled wheels under the engine and a four-wheeled rear truck carrying the water-tank and further than the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the locomotives for local and suburban service with four coupled driving-wheels, with a two-wheel truck front and rear, or a two-wheel truck front and a four-wheel truck rear, etc. "Decapod" engines for heavy freight service have ten coupled driving-wheels and a two-wheel truck in front.

#### Steam-distribution for High-speed Locomotives.

(C. H. Quereau, Eng'g News, March 8, 1894.)

Balanced Valves.—Mr. Philip Wallis, in 1886, when Engineer of Tests for the C., B. & Q. R. R., reported that while 6 H.P. was required to work unbalanced valves at 40 miles per hour, for the balanced valves 2.2 H.P. only was necessary.

Effect of Speed on Average Cylinder-pressure.—Assume that a locomotive has a train in motion, the reverse lever is placed in the running notch, and the track is level; by what is the maximum speed limited? The resistance of the train and the load increase, and the power of the locomotive decreases with increasing speed till the resistance and power are equal, when the speed becomes uniform. The power of the engine depends on the average pressure in the cylinders. Even though the cut-off and boilerpressure remain the same, this pressure decreases as the speed increases: because of the higher piston-speed and more rapid valve-travel the steam has a shorter time in which to enter the cylinders at the higher speed. The following table, from indicator-cards taken from a locomotive at varying speeds, shows the decrease of average pressure with increasing speed:

Miles per hour		51 248	51 248	53 258	54 263	57 277	60 292	66 3:1
Average pressure per sq. in.: Actual	51.5						37.3	36 3

The "average pressure calculated" was figured on the assumption that the mean effective pressure would decrease in the same ratio that the speed increased. The main difference lies in the higher steam-line at the lower speeds, and consequent higher expansion-line, showing that more steam entered the cylinder. The back pressure and compression-lines agree quite closely for all the cards, though they are slightly better for the slower speeds. That the difference is not greater may safely be attributed to the large exhaust-ports, passages, and exhaust tip, which is 5 in. diameter. These are matters of great importance for high speeds.

Boiler-pressure.—The increase of train resistance with increased speed is not as the squere of the velocity of is commonly supposed. It is more likely

not as the square of the velocity, as is commonly supposed. It is more likely that it increases as the speed after about 20 miles an hour is reached. suming that the latter is true, and that an average of 30 lbs. per square inch is the greatest that can be realized in the cylinders of a given engine at + miles an hour, and that this pressure furnishes just sufficient power to keep the train at this speed, it follows that, to increase the speed to 50 miles, the mean effective pressure must be increased in the same proportion. To increase the capacity for speed of any locomotive its power must be increased. and at least by as much as the speed is to be increased. One way to accomplish this is to increase the boiler-pressure. That this is generally realized. is shown by the increase in boiler-pressure in the last ten years. For twenty-three single-expansion locomotives described in the railway journals theyear the steam-pressures are as follows: 3, 160 lbs.; 4, 165 lbs.; 2, 170 lbs.; 13, 180 lbs.; 1, 190 lbs.

Valve-travel. - An increased average cylinder-pressure may also be obtained by increasing the valve-travel without raising the boiler-pressure and better results will be obtained by increasing both. The longer travel gives a higher steam-pressure in the cylinders, a later exhaust-opening, later exhaust-closure, and a larger exhaust-opening—all necessary for high speeds and economy. I believe that a 20-in. port and 64-jen. (or even 7-in.) travel could be successfully used for high-speed engines, and that frequently by so doing the cylinders could be economically reduced and the counter-

by so doing the cylinders could be economically reduced and the counter-balance lightened. Or, better still, the diameter of the drivers increased, securing lighter counterbalance and better steam-distribution. Size of Drivers.—Economy will increase with increasing diameter of drivers, provided the work at average speed does not necessitate a cut-off longer than one fourth the stroke. The piston-speed of a locomotive with 62-in. drivers at 55 miles per hour is the same as that of one with 68-in. drivers at 61 miles per hour.

drivers at 61 miles per hour.

Steam-ports.—The length of steam-ports ranges from 15 in. to 23 in., and has considerable influence on the power, speed, and economy of the locomotive. In cards from similar engines the steam-line of the card from the engine with 23-in, ports is considerably nearer boiler-pressure than that of the card from the engine with 1714-in, ports. That the higher steam-line is due to the greater length of steam-port there is little room for doubt. The 23-in. port produced 53! H.P. in an 1814 in. cylinder at a cost of 23.5 lbs. of indicated water per I.H.P. per hour. The 1714 in. port, 424 H.P., at the rate of 22.9 lbs. of water, in a 19-in. cylinder.

Allen Valves .- There is considerable difference of opinion as to the advan-

tage of the Allen ported-valve (See Eng. News, July 6, 1893.)

Speed of Railway Trains.—In 1834 the average speed of trains on the Liverpool and Manchester Railway was twenty miles an hour; in 1838 it was twenty-five miles an hour. But by 1840 there were engines on the Great Western Railway capable of running fifty miles an hour with a train, and eighty miles an hour without. A speed of 86 miles per hour was made in England with the T. W. Worsdell compound locomotive. The total weight of the engine, tender, and train was 695,000 lbs.; indicator-cards were taken showing 1088.6 H.P. on the level. At a speed of 75 miles per hour on a level, and the same train, the indicator-cards showed 1040 H.P. developed. (Trans. A. S. M. E., vol. xiii., 363.)

The limitation to the increase of speed of heavy locomotives seems at present to be the difficulty of counterbalancing the reciprocating parts. The unbalanced vertical component of the reciprocating parts causes the pressure of the driver on the rail to vary with every revolution. Whenever the speed is high, it is of considerable magnitude, and its change in direction is so rapid that the resulting effect upon the rail is not inappropriately called a "hammer blow." Heavy rails have been kinked, and bridges have been shaken to their fall under the action of heavily balanced drivers revolving at high speeds. The means by which the evil is to be overcome has not yet been made clear. See paper by W. F. M. Goss. Trans. A. S. M. E., vol. xvi. Englae No. 999 of the New York Central Railroad ran a mile in 32 seconds,

equal to 112 miles per hour, May 11, 1893.

Speed in miles  $= \frac{\text{circum. of driving-wheels in in. } \times \text{no. of rev. per min. } \times 60}{\text{co. sec.}}$ per hour 63,360

= diam, of driving-wheels in in. x no. of rev. per min. x .003 (approximate, giving result 8/10 of 1 per cent too great).

#### DIMENSIONS OF SOME LARGE AMERICAN LOCOMOTIVES, 1893.

The four locomotives described below were exhibited at the Chicago Exposition in 1893. The dimensions are from Engineering News, June, 1893. The first, or Decapod engine, has ten-coupled driving-wheels. It is one of the heaviest and most powerful engines ever built for freight service. The Philadelphia & Reading engine is a new type for passenger service, with fourcoupled drivers. The Rhode Island engine has six drivers, with a 4-wheel leading truck and a 2-wheel trailing truck. These three engines have all compound cylinders. The fourth is a simple engine, of the standard American 8-wheel type, 4 driving-wheels, and a 4-wheel truck in front. This engine holds the world's record for speed (1893) for short distances, having run a mile in 32 seconds.

	Baldwin.	Baldwin.	DL - 4 - 7-1	N. Y. C. &
	N. Y., L. E.	Phila.	Rhode Isl.	N. Y. C. & H. R. R.
	<u>&amp;</u>	&	Locomoti'e Works.	Empire
	W. R. R.	Read. R. R	Heavy	State
	Decapod	Express		Express,
	Freight.	Passenger.	Express.	No. 999.
Running-gear:				Ì
Driving wheels, diam	4 ft. 2 in.	6 ft. 6 in.	6 ft. 6 in. 2 " 9 "	7 ft. 2 in. 3 " 4 "
Truck " "	2 " 6 "	4 " 0 "	2 9	3 " 4 "
Journals, driving-axles "truck-" tender-"	9 × 10 in.	816 × 12 in.	8 × 894 in.	9 × 1216in.
truck	5 ×10 " 41/4×9 "	612×10 "	516 × 10 "	634 × 10 "
Wheel-base:	479 x 9	416×8"	41/4×8 "	41/8×8 "
	18 ft. 10 in.	6 ft. 10 in.	19 ## A in	Q #4 # # in
Driving Total engine	97 44 9 44	23 " 4 "	13 ft. 6 in. 29 " 914 " 15 " 0 "	8 ft. 6 in. 23 " 11 "
" tender	16 " 8"	18 " 0"	15 " 0" "	15 ft 914 "
" engine and tender	53 " 4 "	47 " 3 "	50 " 634 "	15 ft. 214 " 47 " 818 "
Wt. in working-order:	-		· · · · · · · · · · · · · · · · · · ·	078
On drivers	170,000 lbs.	82,700 lbs.	88,500 lbs.	84,000 lbs.
On truck-wheels	29,500 ''	47,000 "	54.500 "	40,000 "
Engine, total	192,500 ''	129.700 "	143.000 "	124,000 "
Tender "	117,500 "	80,573 "	75,000 "	80,000 "
Engine and tender, loaded	810,000 "	210,273 ''	218,000 "	204,000 "
Cylinders:	10 00 .	1		
b.p. (2)	16 × 28 in.	18 × 24 in.	one 21 × 26	19 × 24 in.
l.p. (2).	27×28 " 7 ft. 5 "	22 × 24 "	one 81 × 26	
Distance centre to centre.	4 in.	7 ft. 416 in.	7 ft. 1 in.	6 ft. 5 in.
Piston-rod, diam Connecting rod, length	9' 8 7/16"	81/6 in. 8 ft. 01/6 in.	83/6 in.	3% in.
			114 v 90 and	8 ft. 11% in.
Steam-ports	281/6×2 in.	24 × 11/2 in.	116 × 25	13√6 × 18 in.
Exhaust-ports	281/6×8 "	24 × 41/6 "	10 ft. 31% in. 11% × 20 and 11% × 25 8 × 20 in.	294 × 18 "
Exhaust-ports Slide-valves, out. lap, h.p.	% in.	% in.	1¼ in.	1 in,
" out. lap, l.p	96"	% in.	1 in.	
" in, lap, n.p		(пев.) жыл.		1/10 in.
" in. lap. l.p	1	None		
" " max. travel . " " lead, h.p " " lead, l.p	6 in.	5 in.	6¼ in. 8/82 "	51/2 in.
" lead, h.p	1/16 in.	16 '' 36 ''	8/82 "	
The illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent and illent	5/16 "	98		
Boiler—Type Diam. of barrel inside	Straight	Straight	Wagon top	Wagon top
Thickness of barrel-plates	6 ft. 21% in.	4 ft. 8¼ in. 56 in.	5 ft. 2 in. % in.	4 ft. 9 in.
Height from rail to centre		78 111.	78	9/16 in.
line	8 ft. 0 in.		8 ft. 11 in.	7 ft. 1116 in.
Length of smoke-box	5 " 776"		8 ft. 11 in. 6 " 1 "	4 44 87 14.
Working steam-pressure	180 lbs.	180 lbs.	200 lbs.	190 lbs.
Working steam-pressure.  Firebox—type	Wootten	Wootten	Radial stav	Buchanan
Length inside	10′ 11 9/16′′	9 ft. 6 in. 8 " 016 " 3 " 234 "	10 ft. 0 in.	9 ft. 6% in. 8 " 4% " 6 " 114 "
Width "Depth at front	8 ft. 21/8 in.	8 " 01/8 "	9 956 "	8 4% "
Thickness of side mines	4 6	3 294 "	0 " 1054 "	0 114 "
Thickness of side plates	5/16 in.	5/16 in.		5/16 in.
" 'back plate	5/16 "	5/16 " 5/16 "	96 " 96 " 16 "	5/16 " 12 " 30.7 sq. ft.
Thickness of crown-sheet.	16 "	3/10	78 "	79
Grate-area	89 6 so ft	76.8 sq. ft.	28 sq. ft.	30 7 so #
Grate-area	pitch.414 in.	10.0 54. 10.	4 in.	4 in.
Aubesiron	354	324	272	268
Pitch	23/4 in.	2 1/16 in.	25/4 in.	
Pitch Diam., outside	2 "	116 in.	2 "	2 in.
Length betw'n tube-plates	11 ft. 11 in.	10 ft. 0 in.	12 ft. 85% in.	12 ft. 0 in.
Heating-surface :				
Tubes, exterior	2,208.8 ft.	1,262 sq. ft.		1,697 sq. ft. 288 " "
Miscellaneous:	284.3 "	178 " "	· · · · · · · · · · · · · · · · · · ·	283 " "
Exhaust-nozzle, diam	5 in.	R1∠ :		9177
Smokestack, smal'st diam.	1 ft. 6 "	5½ in. 1 ft. 6 in.	1 ft. 3 in.	31/4 in.
" height from			1	1 ft. 84 in.
rail to top	15 " 616 "	14 ft. 0% in	15 " 2 "	14 " 10 "
	-/2	20. 074 111.		4.4 10

-
0
ã
- 2
- 5-
-
-
~
1
- 4
_
•
_
(D. I. Barnes
_
_
-
~
-
_
-
-
-
•
~
_
_
2
-
9
٠,
Locomotives.
-2
-
e
_
-
•
2
-
_
-4
•
-
of American
•
=
=
0
ŭ
- 00
mensions
Œ
=
=

	Ratio of Cyl- inder-power to Weight, Avail- able for Ad- hesion.	0.461	0.0 1.0 1.0 1.0 1.0	0.804	0.887	200	. 385	0.895	9	88	0.476	0.542	0.423	0.417	0.554	2.42	500	0.00	0.482	0.472	0.588		0.660	0.675	0.512
	Diam.of Tubes.	C.S	2 2	33	<b>S</b> R :	>	GS	<b>65</b> (	24		5 01	01	1,7	•											× 2.
	Tubea, It. and in.	0	3	3	0	>	Ģ	•	N (	> <	, e	0	•	: ;	ť	7	417	2	. 0	9	13%	0	0	ا ص	<b>%</b>
93.)	Length of	=	==	2	23	7	22	=:	2 9	2 =	:=	7	2	::	2	2:	4.5	2 2	2	13	22	2	23	2	18
C. E., 1893.)	Steam-press- ure per sq. in. Atmospheric, lbs.	38	85	3	8	5	38	<b>2</b>	38	35	8	3	179	2	3	2	35	35	8	38	175	<b>8</b>	25	3	2.08 180
Trans. A. S.	Tube Heating- surface, sq. ft.	801	1846.8	1883.4	1672.2	180	1670.7	1426.8	000	1038.0			1961.7	88	:		1888	3	909	2212.6	:	1768.8	808	:	
s, Tran	Firebox Heat- ing-surface, eq. it.	135	88	147	144.8	:=	147.7	148.7		5.5			88.	8	:	:	25	12		189.7	-	141.8	28.5	<u>:</u>	
L. Barnes,	Area of Grate, sq. it.	15.5	8 8	18	88	2.6	, 50 (20)	8. 8	38	8 8	88	8	æ	: ::	:	88	200	9	000	2.5	Ŗ	88	80 i	ا ا	28.2 26.1
e.	Total Weight on Driving- wheels, los.	7,000	13,900	108,800	000		8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	86,500			86.00	100,000	83,000	000	200	110,650	96	113,400	101,500	96,000	116,550	99,500	173,700	135,000	107,300
otives.	Total Weight of Engine, los.	9	25.50 20.50 20.50 20.50	Ē	œί	Ŕ	. 92	129,880	٠.	Ç q	e e	92	Ġ.	ĸ.	99	φ.,	⊃α	žψ		Ġ.	Q,	go.	9	O 7	128.500
can Locomotives.	Size of Cylinders, Inches.	16 × 24	19 × 92 × 94 × 95 × 95 × 95 × 95 × 95 × 95 × 95	18½×24	15×84	19×24	19×24	1814×24	20×24	20 8 mg 22 × 22 pm 26 v 26 v 26 v 26 v 26 v 26 v 26 v 26	18 and 22 × 24	14 and 24 × 24	13 and 22 × 24	20 and 29 × 24	21 and 31 × 26	19×88	× 20 × 20 × 20 × 20 × 20 × 20 × 20 × 20	91 × 98	80 × 30	19×24	13 and 21 × 26	30 and 28 × 26	16 and 27 × 28	14 and 24 × 28	20 and 20 × 26   12
American	Diam. of Driv- ing-wheels, in.	3	æ 2	98	<u>ب</u>	272	<u>چ</u> چ	88	8:	4.5	90	25	χ. 20	3	20	20.	2 2	32	38	7	20%	25	23	288	567
of A	No. of Front Truck-wheels.	4	4 4	-	4.	4 4	7	4.	4 -	4 4	4	4	0,5	O	₹:	34 0	> <	r 34	4	4	01	4	<b>O</b>	<b>38</b> .	4 03
	No. of Drivers.	4	4 6	9	4.	4.4	4	4:	90	0 %	4	. 6	4	9	9	30 9	3 4	000	9	00	00	9	2	20 .	4.0
sior	Passenger or Freight Engine	P.	::	:	::	: :	:	\$ :	: :	: :	:	:	:	: :	: 1	E; 3	: 3	:	;	;	;	: :	: :	: :	: :
Dimensions	Name of Railroad.	C. M. & St. P.	C. R. R. of N. J.	C. C. & St. L.	Penn. R. R.	N. Y. C. & H. K.	N. Y. C. & H. B.	C, C, C & St. L.	N. Y., L. E. & W	Ponn P P	R. R. of N. J.	Penn. R. R.	Philadelphia & Reading	C., B. & Q.	C., M. & St. P.	W. N. Y. & Pa.	5. C. S. S. C. C. C. C. C. C. C. C. C. C. C. C. C.		3	D. & I. R	W. N. Y. & Pa	So. Pacific	N. Y., L. E. & W.	Cornwall & Lebanon	Illinois Central

of further improvement in pressure and in fuel and water economy. (b) It has lessened the amount of water (dead weight) to be hauled, so that (c) the tender and its load are materially reduced in weight. (d) It has increased the possibilities of speed far beyond 60 miles per hour, without unduly the possibilities of speed far beyond 60 miles per hour, without unduly straining the motion, frames, axles, or axle-boxes of the engine. (e) It has increased the haulage-power at full speed, or, in other words, has increased the continuous H.P. developed, per given weight of engine and boiler. (f) In some classes has increased the starting-power. (g) It has materially lessened the slide-valve friction per H.P. developed. (h) It has equalized or distributed the turning force on the crank-pin, over a longer portion of its path which, of course, tends to lengthen the repair life of the engine. (i) In the two-cylinder type it has decreased the oil consumption, and has even done so in the Woolf four-cylinder engine. (j) Its smoother and steadier draught on the fire is favorable to the combustion of all kinds of soft coal; and the sparks thrown being smaller and less in number, it lessens the risk to property from destruction by fire. (k) These advantages and economies are spatis shrown being smaller and tess in manners, are the common erry from destruction by fire. (k) These advantages and economies are gained without having to improve the man handling the engine, less being left to his discretion (or careless indifference) than in the simple engine. Valve-motion, of every locomotive type, can be used in its best working and most effective position. (m) A wider elasticity in locomotive design is permitted; as, if desired, side-rods can be dispensed with, or articulated engines of 100 tons weight, with independent trucks, used for sharp curves on mountain service, as suggested by Mallet and Brunner.
Of 27 compound locomotives in use on the Phila. and Reading Railroad (in

1892), 12 are in use on heavy mountain grades, and are designed to be the equivalent of  $22 \times 24$  in. simple consolidations; 10 are in somewhat lighter service and correspond to  $20 \times 24$  in. consolidations; 5 are in fast passenger

service. The monthly coal record shows:

Class of Engine.	No.	Gain in Fuel Economy.
Mountain locomotives	. 12	25% to 30%
Heavy freight service	10	12% to 17%
Fast passenger	. 5	9% to 11%

(Report of Com. A. R. M. M. Assn. 1892.) For a description of the various types of compound locomotive, with discussion of their relative merits, see paper by A. Von Borries, of Germany, The Development of the Compound Locomotive, Trans. A. S. M. E. 1893, vol. xiv., p. 1172.

Counterbalancing Locomotives.—The following rules, adopted by different locomotive builders, are quoted in a paper by Prof. Lanz (Trans. A. S. M. E., x. 302):

A. "For the main drivers, place opposite the crank-pin a weight equals one held the waight of the head and the competing and his one held the

one half the weight of the back end of the connecting-rod plus one half the weight of the front end of the connecting-rod, piston, piston-rod, and crosshead. For balancing the coupled wheels, place a weight opposite the crank-pin equal to one half the parallel rod plus one half of the weights of the front end of the main-rod, piston, piston-rod, and cross-head. The centres of gravity of the above weights must be at the same distance from the

axles as the crank-pin."

B. The rule given by D. K. Clark: "Find the separate revolving weights of crank-pin boss, coupling-rods, and connecting-rods for each wheel, also the reciprocating weight of the piston and appendages, and one half the connecting-rod, divide the reciprocating weight equally between each wheel connecting-rod, divide the reciprocating weight equally between each wheel: the and add the part so allotted to the revolving weight on each wheel: the sums thus obtained are the weights to be placed opposite the crank-pin, and at the same distance from the axis. To find the counterweight to be used when the distance of its centre of gravity is known, multiply the above weight by the length of the crank in inches and divide by the given distance." This rule differs from the preceding in that the same weight is placed in each wheel.

C. "
$$W = \frac{S \times \left(w - \frac{w}{f}\right)}{G}$$
, in which  $S =$ one half the stroke,  $G =$ distance

from centre of wheel to centre of gravity in counterbalance, w = weight at crank-pin to be balanced, W = weight in counterbalance, f = coefficient of friction so called, = 5 in ordinary practice. The reciprocating weight is found by adding together the weights of the piston, piston-rod, cross-head, and one half of the main rod. The revolving weight for the main wheel is "ound by adding together the weights of the crank-pin hub, crank-pin, one

half of the main rod, and one half of each parallel-rod connecting to this wheel; to this add the reciprocating weight divided by the number of wheels. The revolving weight for the remainder of the wheels is found in the same manner as for the main wheel, except one half of the main rod is not added. The weight of the crank pin hub and the counterbalance does not include the weight of the spokes, but of the metal inclosing them. This calculation is based for one cylinder and its corresponding wheels."

D. "Ascertain as nearly as possible the weights of crank-pin, additional weight of wheel boss for the same, add side rod, and main connections, piston-rod and head, with cross-head on one side: the sum of these multi-plied by the distance in inches of the centre of the crank-pin from the centre of the wheel, and divided by the distance from the centre of the wheel to the common centre of gravity of the counterweights, is taken for the total counterweight for that side of the locomotive which is to be divided among

the wheels on that side."

E. "Balance the wheels of the locomotive with a weight equal to the weights of crank-pin, crank-pin hub, main and parallel rods, brasses, etc.,

weights of crank-pin, crank-pin nuo, main and parallel rods, brasses, etc., plus two thirds of the weight of the reciprocating parts (cross-head, piston and rod and packing)."

F. "Balance the weights of the revolving parts which are attached to each wheel with exactness, and divide equally two thirds of the weights of the reciprocating parts between all the wheels. One half of the main rod is computed as reciprocating, and the other as revolving weight."

See also a wieles on Counterbalancing I compositions in P. A. Trag Journ

See also articles on Counterbalancing Locomotives, in R. R. & Eng. Jour., March and April, 1890, and a paper by W. F. M. Goss, in Trans. A. S. M. E.,

vol xvi.

Maximum Safe Load for Steel Tires on Steel Bails. (A. S. M. E., vii., p. 786.)—Mr. Chanute's experiments led to the deduction that 12,000 lbs. should be the limit of load for any one driving wheel. Mr. Angus Sinclair objects to Mr. Chanute's figure of 12,000 lbs., and says that a locomotive tire which has a light load on it is more injurious to the rail than one which has a heavy load. In English practice 8 and 10 tons are safely used. Mr. Oberlin Smith has used steel castings for cam-rollers 4 in. diam. and 8 in. face, which stood well under loads of from 10,000 to 20,000 Mr. C. Shaler Smith proposed a formula for the rolls of a pivot-bridge which may be reduced to the form: Load =  $1760 \times \text{face} \times \sqrt{\text{diam.}}$ , all in lbs. and inches.

See dimensions of some large American locomotives on pages 860 and 861. On the "Decapod" the load on each driving-wheel is 17,000 lbs., and on

" No. 999," 21,000 lbs.

Narrow-gauge Railways in Manufacturing Works.— A tramway of 18 inches gauge, several miles in length, is in the works of the Lanca-hire and Yorkshire Railway. Curves of 18 feet radius are used. The locomotives used have the following dimensions (Proc. Inst. M. E., July, 1888): The cylinders were 5 in diameter with 6 in stroke, and 2 ft. 314 in. centre to centre. The wheels were 1814 in. diameter, the wheel-base 2 ft. 9 in.; the frame 7 ft. 414 in. long, and the extreme width of the engine 8 feet. The boiler, of steel, 2 ft. 3 in. outside diameter and 2 ft. long between tube plates, containing 55 tubes of 1% in. outside diameter; the fire-box, of iron and cylindrical, 2 ft. 3 in. long and 17 in. inside diameter. The hrestor, or iron and cylindrical, 2 ft. 3 in. long and 17 in. inside diameter. The heating-surface 10 42 sq. ft. in the fire-box and 36.12 in the tubes, total 46.54 sq. ft.; the grate-area, 1.78 sq. ft.; capacity of tank, 26½ gallons; working-pressure 170 lbs. per sq. in.; tractive power, say, 1412 lbs., or 9.22 lbs. per lb. of effective pre-sure per sq. in. on the piston. Weight, when empty, 2.80 tons; when full and in working order, 3.19 tons.

For description of a system of narrow-gauge railways for manufactories, see circular of the C. W. Hunt Co., New York.

Light Locomotives.—For dimensions of light ocomotives used for.

mining, etc., and for much valuable information concerning them, see catalogue of H K. Porter & Co., Pittsburgh.

Potroleum-burning Locomotives. (From Clark's Steam-engine.)—The combustion of petroleum refuse in locomotives has been success fully practised by Mr. Thos. Urquhart, on the Grazi and Tsaritsin Railway, Southeast Russia. Since November, 1884, the whole stock of 148 locomotives under his superintendence has been fired with petroleum refuse. The oil is injected from a nozzle through a tubular opening in the back of the fire-box, by means of a jet of steam, with an induced current of air.

A brickwork cavity or "regenerative or accumulative combustion-cham-

ber" is formed in the fire-box, into which the combined current breaks as

spray against the rugged brickwork slope. In this arrangement the brick work is maintained at a white heat, and combustion is complete and smoke less. The form, mass, and dimensions of the brickwork are the most in portant elements in such a combination.

Compressed air was tried instead of steam for injection, but no appreciable reduction in consumption of fuel was noticed.

The heating-power of petroleum refuse is given as 19,833 heat-units equivalent to the evaporation of 20.53 lbs. of water from and at 212° F., or t 17.1 lbs. at 81/4 atmospheres, or 125 bs. per sq. in., effective pressure. The highest evaporative duty was 14 bs., of water under 81/4 atmospheres per 11 of the fuel, or nearly 82% efficiency.

There is no probability of any extensive use of petroleum as fuel for locmotives in the United States, on account of the unlimited supply of coal an

the comparatively limited supply of petroleum. **Fireless Locomotive.**—The principle of the France locomotive: that it depends for the supply of steam on its spontaneous generation fr: a body of heated water in a reservoir. As steam is generated and draw off the pressure falls; but by providing a sufficiently large volume of watchested to a high temperature, at a pressure correspondingly high, a marging supplying pressure may be secured, and means may thus be provided to supplying the required quantity of steam for the trip.

The fireless locomotive designed for the service of the Metropolitan Rail way of Paris has a cylindrical reservoir having segmental ends, about 5? 7 in. in diameter, 2614 ft. in length, with a capacity of about 620 cubic feet Four fifths of the capacity is occupied by water, which is heated by the s of a powerful jet of steam supplied from stationary boilers. The water heated until equilibrium is established between the boilers and the rese The temperature is raised to about 390° F., corresponding to 225 in The steam from the reservoir is passed through a reducing per sq. in. valve, by which the steam is reduced to the required pressure. It is the passed through a tubular superheater situated within the receiver at the upper part, and thence through the ordinary regulator to the cylinder. The exhaust-steam is expanded to a low pressure, in order to obviate noise In certain cases the exhaust-steam is condensed in closely of escape. vessels, which are only in part filled with water. In the upper free space a pipe is placed, into which the steam is exhausted. Within this pipe another pipe is fixed, perforated, from which cold water is projected into the surrounding steam, so as to effect the condensation as completely as may be The heated water falls on an inclined plane, and flows off without mixing with the cold water. The condensing water is circulated by means of a

centrifugal pump driven by a small three-cylinder engine.

In working off the steam from a pressure of 225 lbs. to 67 lbs., 530 cubic feet of water at 390° F. jis sufficient for the traction of the trains, for working the circulating pump for the condensers, for the brakes, and for electic lighting of the train. At the stations the locomotive takes from 2200 to 30 lbs. of steam—nearly the same as the weight of steam consumed during the run between two consecutive charging stations. There is 210 cubic feet a condensing water. Taking the initial temperature at 60° F., the temperature of the condensity of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of th

ture rises to about 180° F. after the longest runs underground.

The locomotive has ten wheels, on a base 24 ft. long, of which six at coupled, 41/4 ft. in diameter. The extreme wheels are on radial axles.

cylinders are 2314 in. in diameter, with a stroke of 2314 in.

The engine weighs, in working order, 58 tons, of which 36 tons are on the coupled wheels. The speed varies from 15 miles to 25 miles per hour.

trains weigh about 140 tons.

Compressed-air Locomotives.—For an account of the Mekars system of compressed-air locomotives see page 509, ante.

#### SHAFTING.

(See also Torsional Strength; also Shapts of Steam-engines.)

For diameters of shafts to resist torsional strains only, Molesworth gives  $d=\sqrt[3]{rac{Pl}{K}}$ , in which d= diameter in inches, P= twisting force in pounds applied at the end of a lever-arm whose length is l in inches, K = a coeffi-

cient whose values are, for cast iron 1500, wrought iron 1700, cast steel 3200, gun-bronze 460, brass 425, copper 380, tin 220, lead 170. The value given for cast steel probably applies only to high-carbon steel. Thurston gives:

H.P. = horse-power transmitted, d = diameter of shaft in inches, R = revolutions per minute.

J. B. Francis gives for turned-iron shafting 
$$d = \sqrt[3]{\frac{100 \text{ H.P.}}{R}}$$

Jones and Laughlins give the same formulæ as Prof. Thurston, with the following exceptions: For line shafting, hangers 8 ft. apart:

cold-rolled iron, H.P. = 
$$\frac{d^3R}{50}$$
,  $d = \sqrt[3]{\frac{50 \text{ H.P.}}{R}}$ .

For simply transmitting power and short counters:

turned iron, H.P. = 
$$\frac{d^3R}{50}$$
,  $d = \sqrt[3]{\frac{50 \text{ H.P.}}{R}}$ ;

cold-rolled iron, H.P. = 
$$\frac{d^3R}{30}$$
,  $d = \sqrt[3]{\frac{30 \text{ H.P.}}{R}}$ .

They also give the following notes: Receiving and transmitting pulleys should always be placed as close to bearings as possible; and it is good practice to frame short "headers" between the main tie-beams of a mill so as tice to rame anort "meaders" between the main the beams of a mill so at the support the main receivers, carried by the head shafts, with a bearing close to each side as is contemplated in the formulæ. But if it is preferred, or necessary, for the shaft to span the full width of the "bay" without in termediate bearings, or for the pulley to be placed away from the bearings towards or at the middle of the bay, the size of the shaft must be largely increased to secure the stiffness necessary to support the load without undue deflection. Shafts may not deflect more than 1/80 of an inch to each foot of clear length with safety.

To find the diameter of shaft necessary to carry safely the main pulley at the centre of a bay: Multiply the fourth power of the diameter obtained by above formulæ by the length of the "bay," and divide this product by the distance from centre to centre of the bearings when the shaft is supported as required by the formula. The fourth root of this quotient will be the diameter required.

The following table, computed by this rule, is practically correct and safe.

off given the For- lee for d Shafts.	Diame	ter of Sh Bay, w	aft nece hich is f	ssary to rom Cen	carry th	e Load entre of	at the Ce Bearings	entre of
Shr by Heg	21% ft.	3 <b>f</b> t.	314 ft.	4 ft.	5 ft.	6 ft.	8 ft.	10 ft.
in.	in.	in. 21/4	in. 28%	in. 21/6	in. 25%	in. 234	in. 276	in.
21.6 3 31.6	8	31/6 31/6	314 354 356	394 394	31/4 4	834 414	416 416	35 ₆ 41 ₄ 43 ₄
41/6 5 51/6		4	41%	45/8 51/8	476 538	51/6 55/6	5% 5% 6	5% 5% 619
5½ 6				5½ 6	534 636	6 656	716	678

As the strain upon a shaft from a load upon it is proportional to the product of the parts of the shaft multiplied into each other, therefore, should the load be applied near one end of the span or bay instead of at the centre, multiply the fourth power of the diameter of the shaft required to carry the load at the centre of the span or bay by the product of the two parts of the shaft when the load is near one end, and divide this product of the two parts of the shaft when the load is carried at the centre. The fourth root of this quotient will be the diameter required.

The shaft in a line which carries a receiving-nulley or which carries a

The shaft in a line which carries a receiving-pulley, or which carries a transmitting-pulley to drive another line, should always be considered a head shaft, and should be of the size given by the rules for shafts carrying main pulleys or garge

main pulleys or gears.

Deflection of Shafting. (Pencoyd Iron Works.)—As the deflection of steel and iron is practically allke under similar conditions of dimensionand loads, and as shafting is usually determined by its transverse stiffnest rather than its ultimate strength, nearly the same dimensions should be used for steel as for iron.

used for steel as for iron. For continuous line-shafting it is considered good practice to limit the deflection to a maximum of 1/100 of an inch per foot of length. The weix of bare shafting in pounds =  $2.6d^2L = W$ , or when as fully loaded will pulleys as is customary in practice, and allowing 40 lbs. per inch of width for the vertical pull of the belts, experience shows the load in pounds to be about  $13d^2L = W$ . Taking the modulus of transverse elasticity at 26,000, we lbs., we derive from authoritative formulæ the following:

$$L = \sqrt[3]{873d^2}$$
,  $d = \sqrt{\frac{L^3}{873}}$ , for bare shafting;

$$L = \sqrt[3]{175d^2}$$
,  $d = \sqrt{\frac{L^3}{175}}$ , for shafting carrying pulleys, etc.;

L being the maximum distance in feet between bearings for continuous shafting subjected to bending stress alone, d = diam, in inches.

The torsional stress is inversely proportional to the velocity of rotation, while the bending stress will not be reduced in the same ratio. It is therefore impossible to write a formula covering the whole problem and sufficiently the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress of the stress

Ciently simple for practical application, but the following rules are correct within the range of velocities usual in practice.

For continuous shafting so proportioned as to deflect not more than 1/100 of an inch per foot of length, allowance being made for the weakening effect of key-seats.

$$d = \sqrt[3]{\frac{50 \text{ H.P.}}{R}}, \ L = \sqrt[3]{720d^3}, \text{ for bare shafts;}$$
 
$$d = \sqrt[3]{\frac{70 \text{ H.P.}}{R}}, \ L = \sqrt[3]{140d^3}, \text{ for shafts carrying pulleys, etc.}$$

d= diam. in inches, L= length in feet, R= revs. per min. The following table (by J. B. Francis) gives the greatest admissible distances between the bearings of continuous shafts subject to no transverse strain except from their own weight, as would be the case were the power given off from the shaft equal on all sides, and at an equal distance from the hanger-bearings.

	Distance bet Bearings, i		Distance bei Bearings, i		
Diam. of Shaft, in inches.	Shafts, 15.46	Shafts. 15.89	Diam.of Shaft, in inches.	Shafts. 22.30	Shafts. 22.92
8 4 5	17.70 19.48 20.99	18.19 20.02 21.57	8 9	28.48 24.55 25.58	24.13 25.23 26.24

These conditions, however, do not usually obtain in the transmission of power by belts and pulleys, and the varying circumstances of each case render it impracticable to give any rule which would be of value for univer-

For example, the theoretical requirements would demand that the bearings be nearer together on those sections of shafting where most power is delivered from the shaft, while considerations as to the location and desired contiguity of the driven machines may render it impracticable to separate the driving-pulleys by the intervention of a hanger at the theoretically required location. (Joshua Rose.)

## Horse-power Transmitted by Turned Iron Shafting at Different Speeds.

AS PRIME MOVER OR HEAD SHAFT CARRYING MAIN DRIVING-PULLEY OR GEAR, WELL SUPPORTED BY BEARINGS. Formula: H.P. =  $d^3R + 125$ .

جنہ خ	Number of Revolutions per Minute.											
Diam. of Shaft.	60	80	100	125	150	175	200	225	250	275	300	
Ins.	H.P.	H.P.	H.P.	H.P. 5.4	H.P. 6.4	H.P. 7.5	H.P. 8.6	H.P. 9.7	H.P. 10.7	H.P. 11.8	H.P. 12.9	
134 2	2.6 3.8 5.4	3.4 5.1 7.8	6.4	8 10	9.6 12				16 16 20	17.6 22	12.9 19.2 24	
214 214 234 234 3	7.5 10	10 13	12.5 16		18 24	22 28	25 32	28 36	31 40	34 44	37 48	
314	18 16	17 22	20 27	25 84	80 40	35 47	40 54	45 61	50 67	55 74	60 81	
31/4 31/4 33/4	20 25	27 33	84 42	42 52	51 68	59 73	68 84	76 94	85 105	93 115	102 126	
441/2	30 48	41 58	51 72	90	76 108	89 126	102 144	115 162	127 180	140 198	158 216	
5 5⅓≨	60 80	80 106	100 133	125 166	150 199	175 283	200 266	225 299	250 338	275 366	300 400	

As Second Movers or Line-shafting, Bearings 8 ft. apart. Formula: H.P. =  $d^3R + 90$ .

Diam. of Shaft.	Number of Revolutions per Minute.										
	100	125	150	175	200	225	250	275	300	325	350
Ins.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	<b>H</b> .P.
13/4	6	7.4	8.9	10.4	11.9	18.4	14.9	16.4	17.9	19.4	30.9
134 138	7.8	9.1	10.9	12.7	14.5	16.3	18.2	20	21.8	28.6	25.4
2′	8.9	11.1	13.3	15.5	17.7	20	22.2	24.4	26.6	28.8	31
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10.6	13.2	15.9	18.5	21.2	23.8	26.5	29.1	31.8	34.4	37
21/4	12.6	15.8	19	22	25	28	31	35	38	41	44
296	15	18	22	26	29	33	37	41	44	48	52
216	17	21	26	30	84	39	48	47	52	56	60
284	28	29	84	40	46	52	58	64	69	75	81
8'*	30	37	45	52	60	67	75	82	90	97	105
31/4	38	47	57	66	76	85	95	104	114	123	133
312	47	59	71	88	95	107	119	131	143	155	167
31/4 31/4 33/4	58	73	88	102	117	132	146	162	176	190	205
4	71	89	107	125	142	160	178	196	213	231	249

For Simply Transmitting Power. Formula: H.P. =  $d^3R + 50$ .

Diam. of Shaft.	Number of Revolutions per Minute.											
	100	125	150	175	200	233	267	300	333	367	400	
Ins.	H.P. 6.7	H.P. 8.4	H.P. 10.1	H.P.	H.P.	H.P.	H.P. 17.9	H.P. 20.8	H.P. 22.5	H.P.	H.P.	
156	8.6	10.7	12.8		17.1	15.7 20	22.8	25.8	28.6	24.8 81.5	27.6 34.3	
11/2 15/8 15/4 19/4 19/8	10.7 18.2	13.4 16.5	16 19.7	18.7 23	21.5 26.4	25 31	28 35	32 39	36 44	89 48	43 52	
2	16 19	20 24	24 29	28 33	32 38	-37	42 51	48 57	53 63	58	64 76	
214	22	28	84	39	45	44 52	60	68	75	70 83	90	
286 216	27 31	33 39	40 47	47 54	53 62	62 73	70 83	79 93	88 104	96 114	105 125	
21/6 21/4 29/8 21/6 23/4 3	41 54	52 67	62 81	78 94	83 108	97 126	111 144	125 162	139 180	158 198	167	
31/4	68	86	103	120	187	160	182	205	228	250	216 273	
81/2	85	107	128	150	171	200	228	257	285	818	342	

# Horse-power Transmitted by Cold-rolled Iron Shafting at Different Speeds.

AS PRIME MOVER OR HEAD SHAFT CARRYING MAIN DRIVING-PULLEY OF GEAR, WELL SUPPORTED BY BEARINGS. FORmula:  $H.P. = d^3R + 75$ .

Diam. of Shaft.	Number of Revolutions per Minute.										
	60	80	100	125	150	175	200	225	250	275	3,16
Ins.	H.P. 2.7	H.P. 8.6	H.P. 4.5	H.P. 5.6	H.P. 6.7	H.P. 7.9	H.P. 9.0	H.P. 10	H.P. 11	H.P. 12	H.P.
116 194 2	4.3 6.4	5.6 8.5	7.1 10.7	8.9 18	10.6 16	12.4 19	14.2 21		18 26	19 29	13 21 32
21/4 21/2	9	12 17	15 21	19 26	28 31	26 36	80 41	34 47	38 52	42 57	46
21/4 21/2 23/4 3	16 21	22 29	27 86	35 45	41 54	48 63	55 72	62 81	70 90	76 98	82 106
31/4 31/4 33/4	27 34	36 45	45 57	57 71	68 86	80 100	91 114	108 129	114 142	126 157	136
4	42 51	56 69	70 85	87 106	105 128	123 149	140 170	158 192	174 212	198 944	210 256
41/6	78	97	121	151	182	212	243	278	302	388	364

### AS SECOND MOVERS OR LINE-SHAFTING. BEARINGS 8 FT. APART.

Formula: H.P. =  $d^3R + 50$ .

e t		Number of Revolutions per Minute.										
Diam. of Shaft.	100	125	150	175	200	225	250	275	300	325	350	
Ins.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	
11/6 15/6	6.7 8.6	8.4 10.7	10.1 12.8	11.8 15	17.1	19.8	16.8 21.5	18.5 23.6	20.2 25.7	21.9 28.9	28.6 81	
11/6 15/6 13/4 12/6 2	10.7 13.2	13.4 16.5	16 19.7	18.7 23	26.4	29.6	26.8 32.9	29.5 36.2	32.1 39.5	34.8 42.8	39 46	
216	16 19	20 24	24 29	28 33	82 88	36 43	40 48	44 52	48 57	52 62	56 67	
21/4	22 27	28 88	84 40	89 47	45 53	50 60	56 67	61 73	68 80	74 86	80 94	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	81 41	88 89 52	47 62	54 78	62 83	69 93	78 104	86 114	98 125	101 185	109 145	
3 314	54 68	67 86	81 108	94 120	108 187	121 154	134 172	148 188	162 205	175 222	189 240	
312	85	107	128	150	171	192	214	235	257	278	300	

FOR SIMPLY TRANSMITTING POWER AND SHORT COUNTERS.

Formula: H.P. =  $d^3R + 80$ .

E. E			N	Number of Revolutions per Minute.											
Diam. of Shaft.	100	125	150	175	200	238	267	800	888	367	400				
Ins.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.	H.P.				
11/4	6.5	8.1	9.7	11.3	13	15.2	17.4	19.5	21.7	23.9	26				
196	8.5	10.7	12.8	15	17	19.8	22.7	25.5	28.4	81	34				
116	11.2	14	16.8	19.6	22.5	26	80	88	37	41	45				
168	14.2	17.7	21.2	24.8	28.4	33	38	42	47	52	57				
184	18	22	27	81	35	41	47	53	59	65	71				
134 134 134 134 134 134	22	27	83	38	44	51	58	65	72	79	87				
9	26	33	40	46	53	62	71	80	88	97	106				
216	32	40	47	55	63	78	84	95	105	116	127				
212	88	47	57	66	76	89	101	114	127	139	152				
982	44	55	66	77	88	103	118	133	148	163	178				
212	52	65	78	91	104	121	138	155	172	190	207				
21/6 21/4 23/6 21/4 23/4	69	84	99	113	188	161	184	207	231	254	277				
8 8	90	112	185	157	180	210	240	270	800	830	360				

Speed of Shafting.—Machine shops	120 to 180
Wood-working	
Cotton and woollen mills	900 4 400

There are in some factories lines 1000 ft. long, the power being applied at the middle.

**Hollow Shafts.**—Let d be the diameter of a solid shaft, and  $d_1d_2$  the external and internal diameters of a hollow shaft of the same material. Then the shafts will be of equal torsional strength when  $d^2 = \frac{d_1^4 - d_2^4}{d_1^4 + d_2^4}$ 

A 10-inch hollow shaft with internal diameter of 4 inches will weigh 165 less than a solid 10-inch shaft, but its strength will be only 2.56% less. If the hole were increased to 5 inches diameter the weight would be 25% less than that

were increased to a increase district the weight would be 20% less than that of the solid shaft, and the strength 4.2% less.

Table for Laying Out Shafting.—The table on the opposite page (from the Slevens Indicator, April, 1892) is used by Wm. Sellers & Co. to facilitate the laying out of shafting.

The wood-cuts at the head of this table show the position of the hangers

and position of couplings, either for the case of extension in both directions from a central head-shaft or extension in one direction from that head-shaft



### PULLEYS.

**Proportions of Pulleys.** (See also Fly-wheels, pages 820 to 823.)—Let n= number of arms, D= diameter of pulley. S= thickness of belt, t= thickness of rim at edge, T= thickness in middle, B= width of rim,  $\beta=$ width of belt, h = breadth of arm at hub,  $h_1 =$  breadth of arm at rim, e =thickness of arm at hub  $e_1$  = thickness of arm at rim, c = amount of crowning; dimensions in inches.

The number of arms is really arbitrary, and may be altered if necessary. (Unwin.)

Pulleys with two or three sets of arms may be considered as two or three separate pulleys combined in one, except that the proportions of the arms should be 0.8 or 0.7 time that of single-arm pulleys. (Reuleaux.)

Example.—Dimensions of a pulley 60" diam., 16" face, for double belt 1/2"

thick.

The following proportions are given in an article in the Amer. Machinist, authority not stated:

 $h = .0625D + .5 \text{ in.}, h_1 = .04D + 8125 \text{ in.}, e = .025D + .2 \text{ in.}, e_1 = .016D + .2 \text{ in.}$ . 125 in.

These give for the above example: h = 4.25 in.,  $h_1 = 2.71$  in., e = 1.7 in., = 1.09 in. The section of the arms in all cases is taken as elliptical.

 $e_1=1.09$  in. The section of the arms in all cases is taken as elliptical. The following solution for breadth of arm is proposed by the author: Assume a belt pull of 45 lbs. per inch of width of a single belt, that the whole strain is taken in equal proportions on one half of the arms, and that the arm is a beam loaded at one end and fixed at the other. We have the

formula for a beam of elliptical section  $fP = .0982 \frac{Rbd^2}{}$ , in which P =the

load, R = the modulus of rupture of the cast iron, b = breadth, d = depth, and l = length of the beam, and f = factor of safety. Assume a modulus of rupture of 36,000 lbs., a factor of safety of 10, and an additional allowance for safety in taking  $l = \frac{1}{12}$  the diameter of the pulley instead of  $\frac{1}{12}$ less the radius of the hub.

Take d=h, the breadth of the arm at the hub, and  $b=\epsilon=0.4h$ , the thickness. We then have  $fP=10\times\frac{45B}{n+2}=\frac{3535\times0.4h^3}{16D}$ , whence

which is practically the same as the value

reached by Unwin from a different set of assumptions.

Convexity of Pulleys.—Authorities differ. Morin gives a rise equal to 1/10 of the face; Molesworth, 1/24; others from ½ to 1/96. Scott A. Smith says the crown should not be over ½ inch for a 24-inch face. Pulleys for shifting belts should be "straight," that is, without crowning.

### CONE OR STEP PULLEYS.

To find the diameters for the several steps of a pair of cone-pulleys:

1. **Crossed Belts.**—Let D and d be the diameters of two pulleys connected by a crossed belt, L = the distance between their centres, and  $\beta$  = the angle either half of the belt makes with a line joining the centres of the

pulleys: then total length of belt =  $(D+d)\frac{\pi}{2} + (D+d)\frac{\pi\beta}{180} + 2L \cos \beta$ .

$$\beta=$$
 angle whose sine is  $\frac{D+d}{2L}$ .  $\cos\beta=\sqrt{L^2-\left(\frac{D+d}{2}\right)}$ . The length of

the belt is constant when D+d is constant; that is, in a rair of step-pulleys the belt tension will be uniform when the sum of the diameters of each opposite pair of steps is constant. Crossed belts are seldom used for cone-pulleys, on account of the friction between the rubbing parts of the

To design a pair of tapering speed-cones, so that the belt may fit equally tight in all positions: When the belt is crossed, use a pair of equal

and similar conest tapering opposite ways.

2. **Open Belts.**—When the belt is uncrossed, use a pair of equal and similar conoids tapering opposite ways, and bulging in the middle, according to the following formula: Let L denote the distance between the axes of the conoids; R the radius of the larger end of each; r the radius of the smaller end; then the radius in the middle, r₀, is found as follows:

$$r_0 = \frac{R+r}{2} + \frac{(R-r)^2}{6.28L}$$
. (Rankine.)

If  $D_0$  = the diameter of equal steps of a pair of cone-pulleys, D and d = the diameters of unequal opposite steps, and L = distance between the axes,  $D_0 = \frac{D+d}{2} + \frac{(D-d)^2}{12.566L}$ . If a series of differences of radii of the steps, R-r, be assumed, then for each pair of steps  $\frac{R+r}{2} = r_0 - \frac{(R-r)^2}{6.28L}$ , and the radii of each may be computed from their half sum and half difference, as follows:

$$R = \frac{R+r}{2} + \frac{R-r}{2}; \quad r = \frac{R+r}{2} - \frac{R-r}{2}.$$

A. J. Frith (Trans. A. S. M. E., x. 298) shows the following application of Rankine's method: If we had a set of cones to design, the extreme diameters of which, including thickness of belt, were 40" and 10", and the ratio desired 4, 3, 2, and 1, we would make a table as follows, L being 100":

Trial Sum of Ratio		Trial Dia	ameters.	Values of $(D-d)^2$	Amount to be	Corrected Values.		
D+d.	Itatio.	D	. <b>d</b>	12.56L.	Added.	D	d	
50 50	4 8	40 37.5	10 12.5	.7165 .4975	.0000 .2190	40 87.2190	10 12.2190	
50 50	2 1	83.338 25	16.666 25	.2212	.4953 .7165	33.8286 25.71 <b>65</b>	17.8296 25.7165	

The above formulæ are approximate, and they do not give satisfactory The above formulæ are approximate, and they do not give satisfactory results when the difference of diameters of opposite steps is large and when the axes of the pulleys are near together, giving a large belt-angle. The following more accurate solution of the problem is given by C. A. Smith (Trans. A. S. M. E., x. 269) (Fig 152):

Lay off the centre distance C or EF, and draw the circles  $D_1$  and  $d_1$  equal to the first pair of pulleys. which are always previously determined by known conditions. Draw HI tangent to the circles  $D_1$  and  $d_1$ . From E, midway between E and F, erect the perpendicular BG, making the length

BG=.314C. With G as a centre, draw a circle tangent to HI. Generally this circle will be outside of the beit-line, as in the cut, but when C is short and the first pulleys  $D_1$  and  $d_1$  are large, it will fall on the inside of the belt-line. The belt-line of any other pair of pulleys must be tangent to the circle G; hence any line, as JK or LM, drawn tangent to the circle G, will give



the diameters  $D_2$ ,  $d_2$  or  $D_3$ ,  $d_3$  of the pulleys drawn tangent to these lines from the centres E and F.

The above method is to be used when the belt-angle A does not exceed 18°. When it is between 18° and 30° a slight modification is made. In that case, in addition to the point G, locate another point m on the line BG. 298 C above B. Draw a tangent line to the circle G, making an angle of 18° to the line of centres EF, and from the point m draw an arc tangent to this tangent line. All belt-lines with angles greater than 18° are tangent to this arc. The following is the summary of Mr. Smith's mathematical method:

A = angle in degrees between the centre line and the belt of any pair of

pulleys; a = 314 for belt-angles less than 18°, and .298 for angles between 18° and 30°;

and  $3D^{\circ}$ ;  $B^{\circ} =$  an angle depending on the velocity ratio; C = the centre distance of the two pulleys; D. d = diameters of the larger and smaller of the pair of pulleys;  $E^{\circ} =$  an angle depending on  $B^{\circ}$ ; L = the length of the belt when drawn tight around the pulleys; r = D + d, or the velocity ratio (larger divided by smaller).

(1) Sin 
$$A = \frac{D-d}{2C}$$
; (2)  $\tan B^{\circ} = \frac{2a(r-1)}{r+1}$ ;  
(3) Sin  $E^{\circ} = \sin B^{\circ} \left(\cos A - \frac{D+d}{4\pi C}\right)$ ;

(4)  $A = B^{\circ} - E^{\circ}$  when sin  $E^{\circ}$  is positive;  $= B^{\circ} + E^{\circ}$  when sin  $E^{\circ}$  is negative;

(5) 
$$d = \frac{2C \sin A}{r-1}$$
; = .3183(L - 2C) when  $A = 0$  and  $r = 1$ ;

(7) 
$$L = 2C \cos A + .01745d[180 + (r-1)(90 + A)].$$

Equation (1) is used only once for any pair of cones to obtain the constant cos A, by the aid of tables of sines and cosines, for use in equation (3).

### BELTING.

**Theory of Belts and Bands.**—A pulley is driven by a belt by means of the friction between the surfaces in contact. Let  $T_1$  be the tension on the driving side of the belt,  $T_2$  the tension on the loose side; then  $S_1 = T_1$  $T_0$ , is the total friction between the band and the pulley, which is equal to the tractive or driving force. Let f = the coefficient of friction,  $\theta$  the ratio of the length of the arc of contact to the length of the radius, a = the argle of the arc of contact in degrees, e = the base of the Naperian logarithms = 2.71828, m = the modulus of the common logarithms = 0.484295. The following formulæ are derived by calculus (Rankine's Mach'y & Millwork, p. 351; Carpenter's Exper. Eng'g, p. 178):

$$\begin{split} &\frac{T_1}{T_2} = e^{f\theta}; \ T_3 = \frac{T_1}{e^{f\theta}}; \ T_1 - T_3 = T_1 - \frac{T_1}{e^{f\theta}} = T_1(1 - e^{-f\theta}). \\ &T_1 - T_2 = T_1(1 - e^{-f\theta}) = T_1(1 - 10^{-f\theta m}) = T_1(1 - 10^{-.00758fa}); \\ &\frac{T_1}{T_2} = 10^{.00758fa}; \ T_1 = T_2 \times 10^{.00758fa}; \ T_3 = \frac{T_1}{10^{.00758fa}}. \end{split}$$

If the arc of contact between the band and the pulley expressed in turns and fractions of a turn = n,  $\theta = 2\pi n$ ;  $e^{f\theta} = 10^{2.7886/n}$ ; that is,  $e^{f\theta}$  is the natural number corresponding to the common logarithm 2.7388/n. The value of the coefficient of friction f depends on the state and material

The value of the coefficient of friction f depends on the state and material of the rubbing surfaces. For leather belts on iron pulleys, Morin found f=.56 when dry, .86 when wet. .28 when greasy, and .15 when oily. In calculating the proper mean tension for a belt, the smallest value, f=.15, is to be taken if there is a probability of the belt becoming wet with oil. The experiments of Henry R. Towne and Robert Briggs, however (Jour. Frank Inst., 1868), show that such a state of lubrication is not of ordinary occur rence; and that in designing machinery we may in most cases safely take f=0.42. Reuleaux takes f=0.25. The following table shows the values of the coefficient 2.7288f, by which n is multiplied in the last equation, corresponding to different values of f; also the corresponding values of various ratios among the forces, when the arc of contact is half a circumference:

In ordinary practice it is usual to assume  $T_2 = 2S$ ;  $T_1 = 2S$ ;  $T_1 + T_2 + 2S = 1.5$ . This corresponds to f = 0.22 nearly.

For a wire rope on cast iron f may be taken as 0.15 nearly; and if the groove of the pulley is bottomed with gutta percha, 0.25. (Rankine.)

Centrifugal Tension of Belts.—When a belt or band runs at a

high velocity, centrifugal force produces a tension in addition to that existing when the belt is at rest or moving at a low velocity. This centrifugal tension diminishes the effective driving force.

Rankine says: If an endless band, of any figure whatsoever, runs at a given speed, the centrifugal force produces a uniform tension at each crossection of the band, equal to the weight of a piece of the band whose length is twice the height from which a heavy body must fall, in order to acquire the velocity of the band. (See Cooper on Belting, p. 101.)

If  $T_c = \text{centrifugal tension}$ ;

V =velocity in feet per second;

g = acceleration due to gravity = 32.2; W = weight of a piece of the belt 1 ft. long and 1 sq. in. sectional area.

Leather weighing 56 lbs. per cubic foot gives W = 56 + 144 = .388.

$$T_0 = \frac{WV^2}{a} = \frac{.388V^2}{.32.2} = .012V^2$$

Belting Practice. Handy Formulæ for Belting. — Since in the practical application of the above formulæ the value of the coefficient of friction must be assumed, its actual value varying within wide limits (15% to 135%), and since the values of T, and T, also are fixed arbitrarily, it is customary in practice to substitute for these theoretical formulæ more simple empirical formulæ and rules, some of which are given below.

Let d = diam. of pulley in inches;  $\pi d = \text{circumference}$ ; V = velocity of belt in ft. per second; v = vel. in ft. per minute; a = angle of the arc of contact; L = length of arc of contact in feet  $= \pi dn + (12 \times 880)$ ; F = tractive force per square inch of sectional area of belt; T = tractive force per square inch of sectional area.

w = width in inches; t = thickness; S = tractive force per inch of width = F + t;

rpm. = revs. per minute; rps. = revs. per second = rpm. + 60.

$$V = \frac{\pi d}{12} \times \text{rps.} = \frac{\pi d}{12} \times \frac{\text{rpm.}}{60} = .004363d \times \text{rpm.} = \frac{d \times \text{rpm.}}{229.2};$$

$$v = \frac{\pi d}{12} \times \text{rpm.}; = .2618d \times \text{rpm.}$$

Horse-power, H.P. = 
$$\frac{Svv}{32000} = \frac{SVw}{550} = \frac{Svd \times rpm.}{126050} = .000007983Svd \times rpm.$$

If F = working tension per square inch = 275 lbs., and t = 7/82 inch, S =60 lbs. nearly, then

H.P. 
$$=\frac{vw}{550} = .109 Vw = .000476 wd \times \text{rpm.} = \frac{wd \times \text{rpm.}}{2101}$$
. (1)

If F = 180 lbs. per square inch, and t = 1/6 inch, S = 80 lbs., then

$$_{*}$$
 H.P. =  $\frac{vw}{1100}$  = .055  $Vw$  = .000238 $wd$  × rpm. =  $\frac{vvd$  × rpm. 4202. . . (2)

If the working strain is 60 lbs. per inch of width, a belt 1 inch wide travelling 550 ft. per minute will transmit 1 horse-power. If the working strain is 30 lbs. per inch of width, a belt 1 inch wide, travelling 1100 ft. per minute, will transmit 1 horse-power. Numerous rules are given by different writers on belting which vary between these extremes. A rule commonly used is: 1 inch wide travelling 1000 ft. per min. = I.H.P.

H.P. = 
$$\frac{vw}{1000}$$
 = .06  $Vw$  = .000262 $wd$  × rpm. =  $\frac{wd \times \text{rpm}}{3820}$ . . . (3)

This corresponds to a working strain of 33 lbs. per inch of width.

Many writers give as safe practice for single belts in good condition a working tension of 45 lbs. per inch of width. This gives

H.P. = 
$$\frac{wv}{733}$$
 = .0818 $Vw$  = .000357 $wd \times \text{rpm.}$  =  $\frac{vd \times \text{rpm.}}{2800}$  . (4)

For double belts of average thickness, some writers say that the transmitting efficiency is to that of single belts as 10 to 7, which would give

H.P. of double belts = 
$$\frac{wv}{518}$$
 = .1169  $Vw$  = .00051 $wd \times \text{rpm.}$  =  $\frac{vd \times \text{rpm.}}{1960}$ . (5)

Other authorities, however, make the transmitting-power of double belts twice that of single belts, on the assumption that the thickness of a doublebelt is twice that of a single belt.

Rules for horse-power of belts are sometimes based on the number of square feet of surface of the belt which pass over the pulley in a minute. Sq. ft. per min. = 100 + 12. The above formulæ translated into this form give:

- For S=60 lbs. per inch wide; H.P. = 46 sq. ft. per minute. " S=30 " " H.P. = 92 " " " H.P. = 83 " " " H.P. = 83 " " " H.P. = 81 " " " H.P. = 61 " " " S=45 " " H.P. = 43 " " (doub
- " (double belt)

The above formulæ are all based on the supposition that the arc of contact is 180°. For other arcs, the transmitting power is approximately performed to the ratio of the degrees of arc to 180°. Some rules base the horse-power on the length of the arc of contact affect. Since  $L = \frac{\pi da}{12 \times 360}$  and H.P.  $= \frac{Srw}{33000} = \frac{Sw}{33000} \times \frac{\pi d}{12} \times \text{rpm.} \times \frac{a}{180}$ .

obtain by substitution H.P. =  $\frac{1500}{16500} \times L \times \text{rpm.}$ , and the five formulæ the take the following form for the several values of S:

$$H.P = \frac{wL \times rpm.}{275} (1); \frac{wL \times rpm.}{550} (2); \frac{wL \times rpm.}{500} (3); \frac{wL \times rpm.}{367} (4);$$

H.P. (double belt) = 
$$\frac{wL \times \text{rpm.}}{257}$$
 (5).

None of the handy formulæ take into consideration the centrifugal tession of belts at high velocities. When the velocity is over \$000 ft. per nituate the effect of this tension becomes appreciable, and it should be take account of as in Mr. Nagle's formula, which is given below.

# Horse-power of a Leather Belt One Inch wide. (NAGLE.)

Formula: H.P. = 
$$CVtw(8 - .012V^2) + 550$$
.

For 
$$f = 40$$
,  $a = 180^{\circ}$ ,  $C = .715$ ,  $w = 1$ .

	LACED BELTS, $S = 275$ .  Fig. 7  Thickness in inches = $t$ .									RIVE	TED I	BELTS	S =	400.	
ty in		Phie	kness	s in i	nche	s =	t.	ty in r sec.		Th	ickne	ss in	inche	s = t.	
Velocity ft. per se		1/6 .167	3/16	7/32	1/4 250	5/16	1/3	Velocity ft. per 8	7/32		5/16			7/16 .437	MON'Y
10 15 20 25 90 35 40 45 50 65 70 75 80 85 90	.75 1.00 1.23 1.47 1.69 1.90 2.00 2.27 2.44 2.58 2.71 2.81 2.89 2.97	.88 1.17 1.43 1.72 1.97 2.23 2.45 2.65 2.84 3.01 3.16 3.27 3.37 3.43 3.43	1.00 1.32 1.61 1.93 2.22 2.49 2.75 2.98 3.19 3.38 3.55 3.68 3.79 3.86 3.90	.73 1.16 1.54 1.88 2.25 2.59 2.90 3.91 3.48 8,72 8,95 4.14 4.29 4.43 4.50 4.55 4.55	1.32 1.75 2.16 2.58 2.96 3.92 3.67 3.98 4.26 4.51 4.74 4.91 5.55 5.20	1.66 2.19 2.69 3.22 3.70 4.15 4.58 4.97 5.32 5.64 5.92 6.14 6.31 6.44 6.50	1.77 2.34 2.86 3.44 4.89 5.30 5.69 6.02 6.54 6.73 6.86 6.93	20 25 30 35 40 45 50 55 60 65 70 75 80 85	2.24 2.79 3.31 3.82 4.33 4.85 5.26 5.68 6.09 6.45 7.09 7.36 7.58	7.37 7.75 8.11 8.41 8.66 8.85	3.91 3.98 4.74 5.46 6.19 6.86 7.51 8.70 9.22 9.69 10.13 10.51 10.51	3.42 4.25 5.05 5.83 6.60 7.32 8.02 8.66 9.28 9.88 10.33 10.84 11.21 11.55 11.90	\$.85 4.78 5.67 6.56 7.42 8.43 9.74 10.43 11.06 11.62 12.16 12.16 13.00 13.27		5 13 6 7 8 7 8 8 9 9 10 10 10 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 15 10 11 11 15 10 11 11 11 11 11 11 11 11 11 11 11 11

In the above table the angle of subtension,  $\alpha$ , is taken at 180°.

A. F. Nagle's Formula (Trans. A. S. M. E., vol. ii., 1881, p. 91. Tables published in 1882.)

H.P. = 
$$CVtw(\frac{S-0.012V^2}{550})$$
;

 $C = 1 - 10^{-.00758fa};$ 

a =degrees of belt conta :t; f = coefficient of friction;

w = width in inches;

t =thickness in inches; square inch.

V = velocity in feet per second;  $S = T_1 - T_2 = \text{stress upon belt per}$ 

## WIDTH OF BELT FOR A GIVEN HORSE-POWER. 879

Taking S at 275 lbs. per sq. in. for laced belts and 400 lbs. per sq in. for apped and riveted belts, the formula becomes

H.P. =  $CVtw(.50 - .0000218V^2)$  for laced belts; H.P. =  $CVtw(.727 - .0000218V^2)$  for riveted belts.

VALUES OF  $C = 1 - 10^{-.00758fa}$ . (NAGLE.)

= coeffi- cient of friction.		Degrees of contact $= a$ .										
fric	90°	1000	1100	120°	180°	140°	150°	1 <b>60</b> °	170°	180*	200°	
.15 .20 .25 .30	.210 .270 .825 .876 .423	.280 .295 .854 .408 .457	.250 .319 .581 .438 .489	.270 .842 .407 .467	.288 .364 .482 .494 .548	.807 .886 .457 .520	.825 .408 .480 .544	.842 .428 .503 .567	.859 .448 .594 .590 .646	.876 .467 .544 .610	.408 .508 .589 .649	
.40 .45 .55 .60	.467 .507 .578 .610	.502 .544 .617 .649 .825	.586 .579 .652 .684 .853	.567 .610 .684 .715	.597 .640 .718 .744 .897	.624 .667 .789 .769	.649 .692 .768 .792 .927	.678 .715 .785 .813 .987	. 695 .787 .805 .882 .947	.715 .757 .822 .848	.758 .792 .858 .877 .969	

The following table gives a comparison of the formulæ already given for the case of a belt one inch wide, with arc of contact 180°.

# Horse-power of a Belt One Inch wide, Are of Contact 180°. Comparison of Different Formulæ.

ity in r sec.	ocity in p. min.	t. of min.		Form. 2 H.P. =		Form. 4 H.P. =	Form. 5 dbl.belt H.P. =		s Form.
Velocity ft. per se	Veloc ft. p.	Sq. f Belt p	<u>wv</u> .	1100	1000	738	100 513	Laced.	Riveted
10	600	50	1.09	.55	.60	.82	1.17	.73	1.14
20	1200	100	2.18	1.09	1.20	1.64	2.84	1.54	2.24
30	1800	150	8.27	1.64	1.80	2.46	8.51	2.25	8.81
40	2400	200	4.36	2.18	2.40	8.27	4.68	2.90	4.88
50	8000	250	5.45	2.78	8.00	4.09	5.85	8.48	5.26
60	3600	300	6.55	3.27	8.60	4.91	7.02	3.95	6.09
70	4200	350	7.63	8.82	4.20	5.78	8.19	4.29	6.78
80	4800	400	8.78	4.36	4.80	6.55	9.36	4.50	7.36
90	5400	450	9.82	4.91	5.40	7.87	10.53	4.55	7.74
100	6000	500	10.91	5,45	6.00	8.18	11.70	4.41	7.96
110	6600	550	1		1	l		4.05	7.97
120	7200	600		l <u>.</u>	l	J	[ <b>.</b>	3.49	7.75

Width of Belt for a Given Horse-power.—The width of belt required for any given horse-power may be obtained by transposing the formulæ for horse-power so as to give the value of w. Thus:

From formula (1), 
$$w = \frac{550 \text{ H.P.}}{v} = \frac{9.17 \text{ H.P.}}{V} = \frac{2101 \text{ H.P.}}{d \times \text{rpm.}} = \frac{275 \text{ H.P.}}{L \times \text{rpm.}}$$

From formula (2),  $w = \frac{1100 \text{ H.P.}}{v} = \frac{18.33 \text{ H.P.}}{V} = \frac{4202 \text{ H.P.}}{d \times \text{rpm.}} = \frac{580 \text{ H.P.}}{L \times \text{rpm.}}$ 

From formula (3),  $w = \frac{1000 \text{ H.P.}}{v} = \frac{16.67 \text{ H.P.}}{V} = \frac{3820 \text{ H.P.}}{d \times \text{rpm.}} = \frac{500 \text{ H.P.}}{L \times \text{rpm.}}$ 

From formula (4),  $w = \frac{733 \text{ H.P.}}{v} = \frac{12.22 \text{ H.P.}}{V} = \frac{2800 \text{ H.P.}}{d \times \text{rpm.}} = \frac{360 \text{ H.P.}}{L \times \text{rpm.}}$ 

From formula (5),  $w = \frac{613 \text{ H.P.}}{v} = \frac{8.56 \text{ H.P.}}{V} = \frac{1960 \text{ H.P.}}{d \times \text{rpm.}} = \frac{237 \text{ H.P.}}{L \times \text{rpm.}}$ 

* For double belts.

Many authorities use formula (1) for double belts and formula (2) or (3) for single belts.

To obtain the width by Nagle's formula,  $w = \frac{1}{CVt(S - .012V^2)}$ or divide the given horse-power by the figure in the table corresponding to the given thickness of belt and velocity in feet per second.

The formula to be used in any particular case is largely a matter of judgment. A single belt proportioned according to formula 1. if tightly stretched, and if the surface is in good condition, will transmit the horse power calculated by the formula, but one so proportioned is objectionable, first, because it requires so great an initial tension that it is apt to stretch, slip, and require frequent restretching and relacing; and second. stretch, sip, and require frequent restretching and relating; and second because this tension will cause an undue pressure on the pulley-shaft, and therefore an undue loss of power by friction. To avoid these difficulties formula (2), (3), or (4.) or Mr. Nagle's table, should be used; the latter especially in cases in which the velocity exceeds 4000 ft. per min.

Taylor's Rules for Belting. -F. W. Taylor (Trans. A. S. M. E.

xv. 204) describes a nine years experiment on belting in a machine-shop giving results of tests of 42 belts running night and day. Some of these belts were run on cone pulleys and others on shifting or fast-and-loose, pulleys. The average net working load on the shifting belts was only 4/10 of

that of the cone belts.

The shifting belts varied in dimensions from 39 ft. 7 in. long, 3.5 in. wide. .25 in. thick, to 51 ft. 5 in. long, 6.5 in. wide, .37 in. thick. The cone belts varied in dimensions from 24 ft. 7 in. long, 2 in. wide, .25 in. thick, to 31 ft. 10 in. long, 4 in. wide, .87 in. thick.

Belt-clamps were used having spring balances between the two pairs of clamps, so that the exact tension to which the belt was subjected was accurately weighed when the belt was first put on, and each time it was

tightened.

The tension under which each belt was spliced was carefully figured so as to place it under an initial strain-while the belt was at rest immediately after tightening-of 71 lbs, per inch of width of double belts. This is equivalent, in the case of

> Oak tanned and fulled belts, to 192 lbs. per sq. in. section; Oak tanned, not fulled belts, to 229 " to 253 " .. .. 66 Semi-raw-hide belts, to 284 " Raw-hide belts.

From the nine years' experiment Mr. Taylor draws a number of conclusions, some of which are given in an abridged form below.

In using belting so as to obtain the greatest economy and the most satisfactory results, the following rules should be observed:

	Oak Tanned and Fulled Leather Belts.	Other Types of Leather Belts and 6- to 7-ply Rubber Belts.
A double belt, having an arc of contact of 180°, will give an effective pull on the face of a pulley per inch of width of belt of Or, a different form of same rule: The number of sq. ft. of double Belt passing	85 lbs.	<b>30</b> lbs.
around a pulley per minute required to transmit one horse power is	80 sq. ft.	90 sq. ft.
per minute required to transmit one horse- power is	950 ft.	1100 ft.
Or: A double belt 6 in. wide, running 4000 to 5000 ft. per min., will transmit	30 H.P.	25 H.P.

The terms "initial tension," "effective pull," etc., are thus explained in Mr. Taylor: When pulleys upon which belts are tightened are at rest, both strands of the belt (the upper and lower) are under the same stress per in of width. By "tension," initial tension," or "tension while at rest," we mean the stress per in. of width, or sq. in. of section, to which one of the strands of the belt is tightened, when at rest. After the belts are in motion and transmitting power, the stress on the slack side, or strand, of the belt becomes less, while that on the tight side—or the side which does the pulling—becomes greater than when the belt was at rest. By the term "tetal load" we mean the total stress per in. of width, or sq. in. of section, on the tight side of belt while in motion.

The difference between the stress on the tight side of the belt and its slack side, while in motion, represents the effective force or pull which is transmitted from one pulley to another. By the terms "working load," "net working load," or "effective pull," we mean the difference in the tension of the tight and slack sides of the belt per in. of width, or sq. in. section, while in motion, or the net effective force that is transmitted from one pul-

ley to another per in. of width or sq. in. of section.

The discovery of Messrs. Lewis and Bancroft (Trans. A. S. M. E., vii, 749) that the "sum of the tension on both sides of the belt does not remain constant," upsets all previous theoretical belting formulæ.

The belt speed for maximum economy should be from 4000 to 4500 ft. per

minute.

The best distance from centre to centre of shafts is from 20 to 25 ft.

Idler pulleys work most satisfactorily when located on the slack side of

the belt about one quarter way from the driving-pulley.

Belts are more durable and work more satisfactorily made narrow and

thick, rather than wide and thin.

It is safe and advisable to use: a double belt on a pulley 12 in. diameter or larger; a triple belt on a pulley 20 in. diameter or larger; a quadruple belt

on a pulley 30 in. diameter or larger.

As belts increase in width they should also be made thicker.

The ends of the belt should be fastene: together by splicing and cementing, instead of lacing, wring, or using hooks or clamps of any kind.

A V-splice should be used on triple and quadruple belts and when idlers are used. Stepped splice, coated with rubber and vulcanized in place, is best for rubber belts.

For double belting the rule works well of making the splice for all belts up to 10 in. wide, 10 in. long; from 10 in. to 18 in. wide the splice should be the same width as the belt, 18 in. being the greatest length of splice required. for double belting.

Belts should be cleaned and greased every five to six months.

Double leather belts will last well when repeatedly tightened under a strain (when at rest) of 71 lbs. per in. of width, or 240 lbs. per sq. in. section. They will not maintain this tension for any length of time, however.

Belt-clamps having spring-balances between the two pairs of clamps should be used for weighing the tension of the belt accurately each time it

is tightened.

The stretch, durability, cost of maintenance, etc., of belts proportioned (A) according to the ordinary rules of a total load of 111 lbs. per inch of width corresponding to an effective pull of 65 lbs. per inch of width, and (g) according to a more economical rule of a total load of 54 lbs., corresponding to an effective pull of 26 lbs. per inch of width, are found to be as follows:

When it is impracticable to accurately weigh the tension of a belt in tight-ening it, it is safe to shorten a double belt one half inch for every 10 ft. of

length for (A) and one inch for every 10 ft. for (B), if it requires tightening.

Double leather belts, when treated with great care and run night and day
at moderate speed, should last for 7 years (A); 18 years (B).

The cost of all labor and materials used in the maintenance and repairs of

double belts, added to the cost of renewals as they give out, through a term of years, will amount on an average per year to 87% of the original cost of the belts (A); 14% or less (B).

In figuring the total expense of belting, and the manufacturing cost

chargeable to this account, by far the largest item is the time lost on the

machines while belts are being relaced and repaired.

The total stretch of leather belting exceeds 6% of the original length.

The stretch during the first six months of the life of belts is 36% of their

entire stretch (A); 15% (B).

A double belt will stretch 47/100 of 1% of its length before requiring to be tightened (A); 81/100 of 1% (B).

The most important consideration in making up tables and rules for the use and care of belting is how to secure the minimum of interruptions to manufacture from this source.

The average double belt (A), when running night and day in a machine shop, will cause at least 26 interruptions to manufacture during its life, or 5 interruptions per year, but with (B) interruptions to manufacture will not average oftener for each belt than one in sixteen months.

The oak-tanned and fulled belts showed themselves to be superior in all respects except the coefficient of friction to either the oak-tanned not fulled,

the semi-raw-hide, or raw-hide with tanned face.

Belts of any width can be successfully shifted backward and forward on tight and loose pulleys. Belts running between 5000 and 6000 ft. per min. and driving 300 H.P. are now being daily shifted on tight and loose pulleys. to throw lines of shafting in and out of use.

The best form of belt-shifter for wide belts is a pair of rollers twice the width of belt, either of which can be pressed onto the flat surface of the belt on its slack side close to the driven pulley, the axis of the roller making an angle of 75° with the centre line of the belt.

Bemarks on Mr. Taylor's Bules. (Trans. A. S. M. E., xv., 242)

—The most notable feature in Mr. Taylor's paper is the great difference between his rules for proper proportioning of belts and those given by earlier writers. A very commonly used rule is, one horse-power may be transmitted by a single belt 1 in. wide running x ft. per min., substituting for x various values, according to the ideas of different engineers, ranging usually from 550 to 1100.

The practical mechanic of the old school is apt to swear by the figure 600 as being thoroughly reliable, while the modern engineer is more apt to use the figure 1000. Mr. Taylor, however, instead of using a figure from 550 to 1100 for a single belt, uses 950 to 1100 for double belts. If we assume that a double belt is twice as strong, or will carry twice as much power, as a single belt, then he uses a figure at least twice as large as that used in modern practice, and would make the cost of belting for a given shop twice as large as if the belting were proportioned according to the most liberal of the customary rules.

This great difference is to some extent explained by the fact that the problem which Mr. Taylor undertakes to solve is quite a different one from problem which has a your undertakes to save is quite a unlevel to one from that which is solved by the ordinary rules with their variations. The problem of the latter generally is, "How wide a belt must be used, or how narrow a belt may be used, to transmit a given horse-power?" Mr. Taylor problem is: "How wide a belt must be used so that a given horse-power may be transmitted with the minimum cost for belt repairs, the longest life to the belt, and the smallest loss and inconvenience from stopping the

machine while the belt is being tightened or repaired?"

The difference between the old practical mechanic's rule of a 1-in.-wide single belt, 600 ft. per min., transmits one horse-power, and the rule commonly used by engineers, in which 1000 is substituted for 600, is due to the belief of the engineers, not that a horse-power could not be transmitted by the belt proportioned by the older rule, but that such a proportion involved undue strain from overlightening to prevent slipping, which strain entailed too much journal friction, necessitated frequent tightening, and decreased the length of the life of the belt.

Mr. Taylor's rule substituting 1100 ft. per min. and doubling the belt is a further step, and a long one, in the same direction. Whether it will be taken in any case by engineers will depend upon whether they appreciate the extent of the losses due to slippage of belts slackened by use under overstrain. and the loss of time in tightening and repairing belts, to such a degree as to induce them to allow the first cost of the belts to be doubled in order to

avoid these losses.

It should be noted that Mr. Taylor's experiments were made on rather narrow belts, used for transmitting power from shafting to machinery, and his conclusions may not be applicable to heavy and wide belts, such as engine fly-wheel belts.

#### MISCELLANEOUS NOTES ON BELTING.

Formulæ are useful for proportioning belts and pulleys, but they furnish no means of estimating how much power a particular belt may be transmitting at any given time, any more than the size of the engine is a measure of the load it is actually drawing, or the known strength of a horse is measure of the load on the wagon. The only reliable means of determining the power actually transmitted is some form of dynamometer. (See Trans. M. E., vol. xii. p. 707.)

If we increase the thickness, the power transmitted ought to increase in proportion; and for double belts we should have half the width required for a single belt under the same conditions. With large pulleys and moderate a sugge belt under the same conditions. With large pulleys and moderate velocities of belt it is probable that this holds good. With small pulleys, however, when a double belt is used, there is not such perfect contact between the pulley-face and the belt, due to the rigidity of the latter, and more work is necessary to bend the belt-fibres than when a thinner and more pliable belt is used. The centrifugal force tending to throw the belt from the pulley also increases with the thickness, and for these reasons the midth of a double belt remedit a few parts. width of a double belt required to transmit a given horse-power when used with small pulleys is generally assumed not less than seven tenths the width of a single belt to transmit the same power. (Flather on "Dynamometers and Measurement of Power.")

F. W. Taylor, however, finds that great pliability is objectionable, and favors thick belts even for small pulleys. The power consumed in bending the belt around the pulley he considers inappreciable. According to Rankine's formula for centrifugal tension, this tension is proportional to the sectional area of the belt, and hence it does not increase with increase of thickness when the width is decreased in the same proportion, the sectional

area remaining constant.
Scott A. Smith (Trans. A. S. M. E., x. 765) says: The best belts are made from all oak-tanned leather, and curried with the use of cod oil and tallow. all to be of superior quality. Such belts have continued in use thirty to forty years when used as simple driving belts, driving a proper amount of power, and having had suitable care. The flesh side should not be run to the pulley-face, for the reason that the wear from contact with the pulley should come on the grain side, as that surface of the belt is much weaker in its tensile strength than the flesh side; also as the grain is hard it is more enduring for the wear of attrition; further, if the grain is actually worn off, then the belt may not suffer in its integrity from a ready tendency of the hard grain side to crack.

The most intimate contact of a belt with a pulley comes, first, in the smoothness of a pulley-face, including freedom from ridges and hollows left by turning-tools; second, in the smoothness of the surface and evenness in the texture or body of a belt; third, in having the crown of the driving and re ceiving pulleys exactly alike, -as nearly so as is practicable in a commercial sense; fourth, in having the crown of pulleys not over 36" for a 24" face, that is to say, that the pulley is not to be over 34" larger in diameter in its centre; fifth, in having the crown other than two planes meeting at the centre: sixth, the use of any material on or in a belt, in addition to those necessarily used in the currying process, to keep them pliable or increase their tractive quality, should wholly depend upon the exigencies arising in the use of belts: non-use is safer than over-use; seventh, with reference to the lacing of belts, it seems to be a good practice to cut the ends to a convex shape by using a former, so that there may be a nearly uniform stress on the lacing through the centre as compared with the edges. For a belt 10" wide, the centre of each end should recede 1/10".

centre of each end should recede 1/10".

Lacing of Belts.—In punching a belt for lacing, use an oval punch, the longer diameter of the punch being parallel with the sides of the belt. Punch two rows of holes in each end, placed zigzag. In a 3-in, belt there should be four holes in each end—two in each row. In a 6-inch belt, seven holes—four in the row nearest the end. A 10-inch belt should have nine holes. The edge of the holes should not come nearer than ¾ of an inch from the sides, nor ¾ of an inch from the ends of the belt. The second row should be at least 1¾ inches from the end. On wide belts these distances should be even a little greater.

be even a little greater.

Begin to lace in the centre of the belt and take care to keep the ends exactly in line, and to lace both sides with equal tightness. should not be crossed on the side of the belt that runs next the pulley. In

taking up belts, observe the same rules as putting on new ones.

Setting a Belt on Quarter-twist.—A belt must run squarely on to the pulley. To connect with a belt two horizontal shafts at right angles with each other, say an engine-shaft near the floor with a line attached to the ceiling, will require a quarter-turn. First, ascertain the central point on the face of each pulley at the extremity of the horizontal diameter where the belt will leave the pulley, and then set that point on the driver pulley plumb over the corresponding point on the driver. This will cause the belt to run squarely on to each pulley, and it will leave at an angle greater or less, according to the size of the pulleys and their distance from each other

In quarter-twist belts, in order that the belt may remain on the pulleys, the central plane on each pulley must pass through the point of delivery of the other pulley. This arrangement does not admit of reversed motion.

To find the Length of Belt required for two given Pulleys.—When the length cannot be measured directly by a tape-line, the following approximate rule may be used: Add the diameter of the two pulleys together, divide the sum by 2, and multiply the quotient by 34, and add the product to twice the distance between the centres of the shafts.

(See accurate formula below.)

To find the Angle of the Arc of Contact of a Belt.—Divide the difference between the radii of the two pulleys in inches by the distance between their centres, also in inches, and in a table of natural sines find the angle most nearly corresponding with the quotient. Multiply this angle by 2, and add the product to 180° for the angle of contact with the larger pulley, or subtract it from 180° for the smaller pulley.

Or, let R = radius of larger pulley, r = radius of smaller; L = distance between centres of the pulleys;

a =angle whose sine is (R - r) + L.

Arc of contact with smaller pulley =  $180^{\circ} - 2a$ ;

" " larger pulley =  $180^{\circ} + 2a$ .

To find the Length of Belt in Contact with the Pulley.—
For the larger pulley, multiply the angle a, found as above, by .0349, to the product add 8.1416, and multiply the sum by the radius of the pulley. Or length of belt in contact with the pulley

= radius 
$$\times (\pi + .0849a)$$
 = radius  $\times \pi \left(1 + \frac{a}{90}\right)$ .

For the smaller pulley, length = radius  $\times (\pi - .0349a)$  = radius  $\times \pi \left(1 - \frac{a}{90}\right)$ 

The above rules refer to Open Belts. The accurate formula for length of an open belt is,

Length = 
$$\pi R \left(1 + \frac{a}{90}\right) + \pi r \left(1 - \frac{a}{90}\right) + 2L \cos a$$

$$= R(\pi + .0349a) + r(\pi - .0349a) + 2L\cos a,$$

in which R = radius of larger pulley, r = radius of smaller pulley, L = distance between centres of pulleys, and a = angle whose sine is

$$(R-r) + L; \cos a = \sqrt{L^2 - (R-r)^2}.$$

For Crossed Belts the formula is

Length of belt = 
$$\pi R \left(1 + \frac{\beta}{90}\right) + \pi r \left(1 + \frac{\beta}{90}\right) + 2L \cos \beta$$
,  
=  $(R + r) \times (\pi + .0349\beta) + 2L \cos \beta$ ,

in which  $\beta =$  angle whose sine is (R+r) + L;  $\cos \beta = \sqrt{L^2 - (R+r)^2}$ .

To find the Length of Belt when Closely Bolled.—The sum of the diameter of the roll, and of the eye in inches, × the number of turns made by the belt and by .1309, = length of the belt in feet

To find the Approximate Weight of Belts — Multiply the length of belt, in feet, by the width in inches, and divide the product by 13 for single, and 8 for double belt.

Belations of the Size and Speeds of Driving and Driven Pulleys.—The driving pulley is called the driver, D, and the driven pulley the driven, d. If the number of teeth in gears is used instead of diameter, in these calculations, number of teeth must be substituted wherever diameter occurs. R = revs. per min. of driver.

$$D = dr + R$$
:

Diam. of driver = diam. of driven  $\times$  revs. of driven + revs. of driver.

$$d = DR + r$$
;

Diam. of driven = diam. of driver  $\times$  revs. of driver + revs. of driven.

$$R = dr + D$$
:

Revs. of driver = revs. of driven  $\times$  diam. of driven + diam. of driver.

### r = DR + d;

Revs. of driven = revs. of driver  $\times$  diam. of driver + diam. of driven.

Evils of Tight Belts. (Jones and Laughlins.)—Clamps with powerful

Evils of Tight Belts. (Jones and Laughlins.)—Clamps with powerful screws are often used to put on belts with extreme tightness, and with most injurious strain upon the leather. They should be very judiciously used for horizontal belts, which should be allowed sufficient slackness to move with a loose undulating vibration on the returning side, as a test that they have no more strain imposed than is necessary simply to transmit the power.

On this subject a New England cotton-mill engineer of large experience, says: I believe that three quarters of the trouble experienced in broken pulleys, hot boxes, etc., can be traced to the fault of tight belts. The enormous and useless pressure thus put upon pulleys must in time break them, if they are made in any reasonable proportions, besides wearing out the whole outfit, and causing heating and consequent destruction of the bearings. Below are some figures showing the power it takes in average modern mills with are some figures showing the power it takes in average modern mills with first-class shafting, to drive the shafting alone:

	Whale	Shaftin	g Alone.		Whala	Shafting Alone.		
Mill, No. Whole Load, H.P.		Per cent of whole.	Mill, No.	Whole Load, H.P.	Horse- power.	Per cent of whole.		
1 2 3 4	199 472 486 677	51 111.5 134 190	25.6 23.6 27.5 28.1	5 6 7 8	759 235 670 677	172.6 84.8 262.9 182	22.7 36.1 89.2 26.8	

These may be taken as a fair showing of the power that is required in many of our best mills to drive shafting. It is unreasonable to think that all that power is consumed by a legitimate amount of friction of bearings and belts. I know of no cause for such a loss of power but tight belts. These, when there are hundreds or thousands in a mill, easily multiply the friction

on the bearings, and would account for the figures.

Sag of Helts.—In the location of shafts that are to be connected with each other by belts, care should be taken to secure a proper distance one from the other. This distance should be such as to allow of a gentle sag to the belt when in motion.

A general rule may be stated thus: Where narrow belts are to be run over small pulleys 15 feet is a good average, the belt having a sag of 1½ to 2 inches.

small pulleys to feet is a good average, the celt naving a sag of 1% to 2 inches. For larger belts, working on larger pulleys, a distance of 20 to 25 feet does well, with a sag of 2½ to 4 inches.

For main belts working on very large pulleys, the distance should be 25 to 30 feet, the belts working well with a sag of 4 to 5 inches.

If too great a distance is attempted the belt will have an unsteady flapping action which will determ beth belt belt and machiner.

motion, which will destroy both the belt and machinery.

Arrangement of Belts and Pulleys.—If possible to avoid it, connected shafts should never be placed one directly over the other, as in such case the belt must be kept very tight to do the work. For this purpose belts should be carefully selected of well-stretched leather.

It is desirable that the angle of the belt with the floor should not exceed 45°. It is also desirable to locate the shafting and machinery so that belts should run off from each shaft in opposite directions, as this arrangement will relieve the bearings from the friction that would result when the belts all pull one way on the shaft.

In arranging the belts leading from the main line of shafting to the counters, those pulling in an opposite direction should be placed as near each other as practicable, while those pulling in the same direction should be separated. This can often be accomplished by changing the relative positions of the property of the frighten of the property of the frighten of the property of the frighten of the property of the frighten of the property of the frighten of the property of the property of the frighten of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of tions of the pulleys on the counters. By this procedure much of the friction

on the journals may be avoided.

If possible, machinery should be so placed that the direction of the belt motion shall be from the top of the driving to the top of the driven pulley, when the sag will increase the arc of contact.

The pulley should be a little wider than the belt required for the work.

886 BELTING.

The motion of driving should run with and not against the laps of the belts. Tightening or guide pulleys should be applied to the slack side of belts and

Jones & Laughlius, in their Useful Information, say: The diameter of the pulleys should be as large as can be admitted, provided they will not pro-

duce a speed of more than 8750 feet of belt motion per minute.

They also say: It is better to gear a mill with small pulleys and run them at a high velocity, than with large pulleys and to run them slower. A mill thus geared costs less and has a much neater appearance than with large heavy pulleys.

M. Arthur Achard (Proc. Inst. M. E., Jan. 1881, p. 62) says: When the belt is wide a partial vacuum is formed between the belt and the pulley at a high velocity. The pressure is then greater than that computed from the tensions in the belt, and the resistance to slipping is greater. This has the

advantage of permitting a greater power to be transmitted by a given belt, and of diminishing the strain on the shafting.

On the other hand, some writers claim that the belt entraps air between itself and the pulley, which tends to diminish the friction, and reduce the tractive force. On this theory some manufacturers perforate the belt with numerous holes to let the air escape.

Care of Belts.-Leather belts should be well protected against water

and even loose steam and other moisture

Belts of coarse, loose leather will do better service in dry warm places; for wet or moist situations the finest and firmest leather should be used. Hoyt & Co.)

Do not allow oil to drip upon the belts. It destroys the life of the leather.

Leather belting cannot safely stand above 110° of heat.

Strength of Belting.—The ultimate tensile strength of belting does not generally enter as a factor in calculations of power transmission.

The strength of the solid leather in belts is from 2000 to 5000 lbs. per square

inch; at the lacings, even if well put together, only about 1000 to 1500. If riveted, the joint should have half the strength of the solid belt. The working strain on the driving side is generally taken at not over one third of the strength of the lacing, or from one eighth to one sixteenth of the strength of the solid belt. Dr. Hartig found that the tension in practice varied from 30 to 532 lbs. per square inch, averaging 278 lbs.

Adhesion Independent of Diameter. (Schultz Belting Co.)-The adhesion of the belt to the pulley is the same—the arc or number of degrees of contact, aggregate tension or weight being the same—without reference to width of belt or diameter of pulley.
 A belt will slip just as readily on a pulley four feet in diameter as it will

on a pulley two feet in diameter, provided the conditions of the faces of the pulleys, the arc of contact, the tension, and the number of feet the belt travels per minute are the same in both cases.

8. A belt of a given width, and making any given number of feet per minute, will transmit as much power running any given himber of feet in diameter as it will on pulleys four feet in diameter, provided the arc of contact tension, and conditions of pulley faces are the same in both cases.

4. To obtain a greater amount of power from belts the pulleys may be covered with leather; this will allow the belts to run very slack and give 2%

more durability.

Endless Belts.—If the belts are to be endless, they should be put on and drawn together by "belt clamps" made for the purpose. If the belt is made endless at the belt factory, it should never be run on to the pulleys, lest the irregular strain spring the belt. Lift out one shaft, place the belt on the

pulleys, and force the shaft back into place.

Belt Data.—A fly-wheel at the Amoskeag Mfg. Co., Manchester, N. H., 80 feet diameter, 110 inches face, running 61 revolutions per minute, carried two heavy double-leather belts 40 inches wide each, and one 24 inches wide. The engine indicated 1950 H.P., of which probably 1850 H.P. was transmitted by the belts. The belts were considered to be heavily loaded, but not overtaxed.

 $\frac{30 \times 3.14 \times 104 \times 61}{30 \times 3.14 \times 104 \times 61} = 323$  feet per minute for 1 H.P. per inch of width.

Samuel Webber (Am. Mach., Feb. 22, 1894) reports a case of a belt 30 inches wide, % inch thick, running for six years at a velocity of \$900 feet per minute, on to a pulley 5 feet diameter, and transmitting 556 H.P. This gives a velocity of 210 feet per minute for 1 H.P. per inch of width. By Mr. Nagie's table of riveted belts this belt would be designed for 332 H.P. By Mr. Taylor's rule it would be used to transmit only 123 H.P.

The above may be taken as examples of what a belt may be made to do, but they shou d not be used as precedents in designing. It is not stated how much power was lost by the journal friction due to over-tightening of these belts.

Belt Dressings.-We advise, when the belt is pliable, and only dry and husky, the application of blood-warm tallow. This applied, and dried in by heat of fire or sun, will tend to keep the leather in good working condition. The oil of the tallow passes into the tallow of the leather, serving to soften it, and the stearine is left on the outside, to fill the pores and leave a smooth surface. The addition of resin to the tallow for belts, if used in wet or damp surface. The addition of resin to the tanow for beins, it used in wet of damp places, will be of service and help preserve their strength. Belts which have become hard and dry should have an application of neat's-foot or liver oil, mixed with a small quantity of resin. This prevents the oil from injuring the belt and helps to preserve it. There should not be so much resin as to leave the belt sticky. (J. B. Hoyt & Company.)

Belts should not be soaked in water before oiling, and penetrating oils about the soldow he used awart consciously when a helt gets very dry

should but seldom be used, except occasionally when a belt gets very dry and husky from neglect. It may then be moistened a little, andhave neat's-foot oil applied. Frequent applications of such oils to a new belt render the leather soft and flabby, thus causing it to stretch, and making it liable to run out of line. A composition of tallow and oil, with a little resin or bees-

wax, is better to use. Prepared castor-oil dressing is good, and may be applied with a brush or rag while the belt is running. (Alexander Bros.) Coment for Cloth or Leather. (Molesworth.)—16 parts guttapercha, 4 india-rubber, 2 pitch, 1 shellac, 2 linseed-oil, cut small, melted together and well mixed.

**Eubber Belting.**—The advantages claimed for rubber belting are perfect uniformity in width and thickness; it will endure a great degree of heat and cold without injury; it is also specially adapted for use in damp or wet places, or where exposed to the action of steam; it is very durable, and has great tensile strength, and when adjusted for service it has the most per-fect hold on the pulleys, hence is less liable to slip than leather. Never use animal oil or grease on rubber belts, as it will greatly injure and

soon destroy them.

Rubber belts will be improved, and their durability increased, by putting Rubber beits will be improved, and their durability increased, by putting on with a painter's brush, and letting it dry, a composition made of equal parts of red lead, black lead. French yellow, and litharge, mixed with boiled linseed-oil and japan enough to make it dry quickly. The effect of this will be to produce a finely polished surface. If, from dust or other cause, the beit should slip, it should be lightly moistened on the side next the pulley with beited lineard all.

with boiled linseed-oil. (From circulars of manufacturers.)

# GEARING.

### TOOTHED-WHEEL GEARING.

Pitch, Pitch-circle, etc.—If two cylinders with parallel axes are pressed together and one of them is rotated on its axis, it will drive the other by means of the friction between the surfaces. The cylinders may be considered as a pair of spur-wheels with an infinite number of very small teeth. If actual teeth are formed upon the cylinders, making alternate elevations and depressions in the cylindrical surfaces, the distance between the saxes remaining the same, we have a pair of gear-wheels which will drive one other by pressure upon the faces of the teeth, if the teeth are properly shaped. In making the teeth the cylindrical surface may entirely disappear, but the position it occupied may still be considered as a cylindrical surface, which is called the "pitch-surface," and its trace on the end of the wheel, or on a plane cutting the wheel at right angles to its axis, is called the "pitch-circle" or "pitch-line." The diameter of this circle is called the pitch-diameter, and the distance from the face of one tooth to the corresponding face of the next tooth on the same wheel, measured on a re of the pitch-circle, is called the "pitch of the tooth," or the circular pitch. If two wheels having teeth of the same pitch are geared together so that their pitch-circles touch, it is a property of the pitch-circles that their diam-eters are proportional to the number of teeth in the wheels, and vice vers

thus, if one wheel is twice the diameter (measured on the pitch-circle) of the other, it has twice as many teeth. If the teeth are properly shaped the linear velocity of the two wheels are equal, and the angular velocities, or speeds of rotation, are inversely proportional to the number of teeth and to the diameter. Thus the wheel that has twice as many teeth as the other will revolve just half as many times in a minute.

The "pitch," or distance measured on an arc of the pitch-circle from the face of one tooth to the face of the next, consists of two parts—the "thickness" of the tooth and the "space" between it and the next tooth. The space is larger than the thickness by a small amount called the "backlash," which is allowed for imperfections of workmanship. In finely cut gears the backlash may be almost nothing.



The length of a tooth in the direction of the radius of the wheel is called the "depth," and this is divided into two parts: First, the "addendum," the height of the tooth above the pitch-line; second, the "dedendum," the depth below the pitch line, which is an amount equal to the addendum of the mating gear. The depth of the space is usually given a little "clearance" to allow for inaccuracies of workmanship, especially in cast gears.

Referring to Fig. 153, pl, pl are the pitch-lines, al the addendum-line, rl the root-line or dedendum-line, cl the clearance-line, and b the back-

lash. The addendum and dedendum are usually made equal to each other.

No. of teeth

3.1416

Diametral pitch =  $\frac{100.01 \text{ Geeth}}{\text{diam.} \times 8.1416} = \frac{3.1416}{\text{No. of teeth}} = \frac{3.1416}{\text{diametral pitch}}$ ;

Some writers use the term diametral pitch to mean  $\frac{\text{Circular pitch}}{\text{No. of teeth}} = \frac{\text{circular pitch}}{3.1416}$ , but the first definition is the more common and the more convenient. A wheel of 12 in. diam. at the pitch-circle, with 48 teeth is 48/12 = 4 diametral pitch, or simply 4 pitch. The circular pitch of the same wheel is  $\frac{12 \times 3.1416}{48} = .7854$ , or  $\frac{3.1416}{4} = .7854$  in.

Relation of Diametral to Circular Pitch.

						1	
Diame- tral Pitch.	Circular Pitch.	Diame- tral Pitch.	Circular Pitch.	Circular Pitch.	Diame- tral Pitch.	Circular Pitch.	Diame- tral Pitch.
111/2	3.142 in. 2.094	12	.286 in. .262	3 21/2 2	1.047 1.257	15/16 7/6 13/16	3.851 3.590
2 214 214 294 3	1.571 1.896 1.257	14 16 18	.224 .196 .175	176 184	1.571 1.676 1.795	11/16	3.867 4.189 4.570
29/4 8 31/6	1.142 1.047 .898	20 22 24	.157 .143 .131	196 116 1 7/16	1.933 2.094 2.185	9/16 1/2	5.027 5.585 6.283
4 5 6	.785 .628 .524	26 28 30	.121 .112 .105	13% 1 5/16 11/4	2.285 2.894 2.513	7/16 3/6 5/16	7.181 8.378 10.053
7 8 9	.449 .898 .849	32 36 40	.098 .087 .079	1 3/16 11/6 1 1/16	2.646 2.793 2.957	3/16 3/6	12.566 16.755 25.133
10	.814	48	.065	i '/'	8.142	1/16	50.266

Since circular pitch =  $\frac{\text{diam.} \times 3.1416}{\text{No. of teeth}}$ , diam. =  $\frac{\text{circ. pitch} \times \text{No. of teeth}}{3.1416}$ 

⁻hich always brings out the diameter as a number with an inconvenient

fraction if the pitch is in even inches or simple fractions of an inch. By the diametral-pitch system this inconvenience is avoided. The diameter may be in even inches or convenient fractions, and the number of teeth is usually an even multiple of the number of inches in the diameter.

Diameter of Pitch-line of Wheels from 10 to 100 Teeth of 1 in, Circular Pitch.

No.	Diam.,	No.	Diam.,	No	Diam.,	No.	Diam.,	No.	Diam.,	No.	Diam.,
Teeth.	in.	Teeth.	in.	Teeth.	in.	Teeth.	in.	Teeth.	in.	Teeth.	in.
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	3.183 3.501 3.820 4.188 4.456 4.475 5.093 5.411 5.730 6.048 6.366 6.665 7.003 7.321 7.632	26 27 28 29 30 31 32 33 34 35 36 37 38 39	8.276 8.594 8.918 9.231 9.549 9.968 10.186 10.828 11.141 11.459 11.777 12.096 12.414 12.782	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	18.051 18.369 18.687 14.006 14.824 14.642 14.961 15.279 15.597 15.597 15.915 16.234 16.870 17.189 17.507	56 57 58 59 60 61 62 63 64 65 66 67 68	17.825 18.144 18.462 18.781 19.099 19.417 19.785 20.054 20.372 20.690 21.008 21.327 21.645 21.963 22.282	71 72 73 74 75 76 77 78 80 81 82 83 84 85	22.600 22.918 22.296 23.555 23.873 24.192 24.510 24.828 25.146 25.465 25.783 26.101 26.738 27.056	86 87 88 89 90 91 93 93 94 95 95 95 95 95 95 95 95 95 95 95 95 95	27.875 27.698 28.011 28.839 28.648 28.966 29.285 29.921 80.239 80.558 30.558 30.558 31.194 31.512 31.831

For diameter of wheels of any other pitch than 1 in., multiply the figures in the table by the pitch. Given the diameter and the pitch, to find the number of teeth. Divide the diameter by the pitch, look in the table under diameter for the figure nearest to the quotient, and the number of teeth will be found opposite.

Proportions of Teeth. Circular Pitch = 1.

	1.	2.	3.	4.	5.	6.
Depth of tooth above pitch-line	.35	.30	.37	.33	.80	.30
" " below pitch-line	.40	.40	.43		.40	.35
Working depth of tooth	.70	.60	.73	.66	• • •	
Total depth of tooth		.70	.80	.75	.70	.65
Clearance at root	.05	.10	.07		• • •	•
Thickness of tooth	.45	.45	.47	.45	.475	.485
Width of space	.54	.55	.58	.55	.525	.515
Backlash	.10	.09	.07	.10	.05	.03
Thickness of rim			.47	.45	.70	. 65
	7.	8.		9.	1	0.*
Depth of tooth above pitch-line	.25 to .8	3 .30		.318	-	1+ <i>P</i>
" " below pitch-line	.85 to .4	2   .35+.	08''	. 369		7+P
Working depth of tooth Total depth of tooth				.637		2+ <i>P</i>
Total depth of tooth	.6 to .7	5   65+.	08"	.687		7+P
Clearance at root			.0	4 to .05		+P
Thickness of tooth	.48 to .4	85 . 48 – .	.4	8 to .5	1.51	+P to $+P$
Width of space	.52 to .5	15 .52+.	03" .	2 to .5	1.57	+Pto
Backlash						0.6 + F

^{*} In terms of diametral pitch.

AUTHORITIES.—1. Sir Wm. Fairbairn. 2, 3. Clark, R. T. D.; "used by engineers in good practice." 4. Molesworth. 5, 6. Coleman Sellers: 5 for cast, 6 for cut wheels. 7, 8. Unwin. 9, 10. Leading American manufacturers of cut gears.

The Chordal Pitch (erroneously called "true pitch" by some authors) is the length of a straight line or chord drawn from centre to centre of two adjacent teeth. The term is now but little used.

Chordal pitch = diam. of pitch-circle  $\times$  sine of  $\frac{100}{\text{No. of teeth}}$ Chordal pitch of a wheel of 10 in. pitch diameter and 10 teeth.  $10 \times \sin 18^\circ = 3.09^\circ$  in. Circular pitch of same wheel = 3.1416. Chordal pitch is used with chain or sprocket wheels, to conform to the pitch of the chain.

# Formulæ for Determining the Dimensions of Small Gears. (Brown & Sharpe Mfg. Co.)

P = diametral pitch, or the number of teeth to one inch of diameter of pitch-circle:

$D'={ m diameter}$ of pitch circle $D={ m whole}$ diameter $N={ m number}$ of teeth $V={ m velocity}$	Larger Wheel.	These wheels
$d'={ m diameter}$ of pitch-circle	Smaller Wheel	together.

a =distance between the centres of the two wheels:

b = number of teeth in both wheels;

t =thickness of tooth or cutter on pitch-circle;

s = addendum;

D'' = working depth of tooth;

f = amount added to depth of tooth for rounding the corners and for clearance; D''+f= whole depth of tooth;  $\pi=3.1416$ .

P' =circular pitch, or the distance from the centre of one tooth to the centre of the next measured on the pitch-circle.

Formulæ for a single wheel:

$$P = \frac{N+2}{D}; \quad D' = \frac{D \times N}{N+2}; \quad D'' = \frac{2}{P} = 2s; \quad s = \frac{1}{P} = \frac{P'}{\pi} = .3183P';$$

$$P = \frac{N}{D}; \qquad D' = \frac{N}{P}; \qquad N = PD'; \\ N = PD - 2; \quad s = \frac{D'}{N} = \frac{D}{N+2};$$

$$P = \frac{\pi}{P}; \qquad D = \frac{N+2}{P}; \qquad f = \frac{t}{10}; \qquad s + f = \frac{1}{P} \left(1 + \frac{\pi}{20}\right) = .3685P.$$

$$P = \frac{\pi}{P}; \qquad D = D' + \frac{2}{P}; \qquad t = \frac{1.57}{P} = \frac{1}{2}P'.$$

Formulæ for a pair of wheels:

$$b = 2aP; \qquad n = \frac{PD'V}{v} \qquad D = \frac{2a(N+2)}{b};$$

$$N = \frac{nv}{V}; \qquad v = \frac{PD'V}{n}; \qquad d = \frac{2a(n+2)}{b};$$

$$n = \frac{NV}{v}; \qquad v = \frac{NV}{n}; \qquad a = \frac{b}{2P};$$

$$N = \frac{bv}{v+V}; \qquad V = \frac{nv}{N}; \qquad a = \frac{D'+d'}{2};$$

$$n = \frac{bV}{v+V}; \qquad D' = \frac{2aV}{v+V}; \qquad d' = \frac{2aV}{v+V}.$$

The following proportions of gear wheels are recommended by Prof. Coleman Sellers. (Stevens Indicator, April, 1892.)

		]	Inside of I	itch-line.	Width o	f Space.
Diametral Pitch.	Circular Pitch.	Outside of Pitch-line. $P \times .8$	For Cast or Cut Beveis or for Cast Spurs.	For Cut Spurs. P × .35	For Cast Spurs or Bevels. P × .525	For Cut Bevels or Spurs. P × .51
	34	.075	.100	.088	.181	.128
12	.2618	.079	.105	.098	. 187	.134
10	.81416	.094	.126	.11	.165	.16
_	.8927	.118	.150	. 181 . 187	.197	.191
8 7	.4477	.110	179	. 157	. 206 . 235	.2
7		.15	.20	.175	.263	.228 .255
6	.5:286	.157	209	.188	.275	267
0	9/16	. 169	.225	.197	.295	287
	5/10	.188	.25	.219	.328	.819
5	.62832	.188	.25 .251	.22	.33	82
•	3/4	.225	.8	.263	.394	.383
4	.7854	.236	.314	.275	.412	.401
	76	.263	.35	.307	.459	.446
	1	.8	.4	.35	.525	.51
8	1.0472	.314	.419	.364	.55	.534
	11/6 1.1424	.888 .848	.45	. 394 . 40	.591	.574
29/4	1.1424	.375	.457	.438	.6	.583 .638
214	114	.877	.508	.44	.656 .66	.641
272	186	.418	.55	.481	.722	.701
	iZ	.45	1 .6	.525	.788	.765
2	1.5708	471	.628	.55	.825	.801
-	134	.525	.7	.618	.919	.893
	2	.6.	1 .8	.7	1.05	1.02
134	2.0944	.628	.838	.783	1.1	1.068
	21/4	.675	9	.788	1.181	1.148
	214	.75	1.0	.875	1.313	1.275
	27/4	.825	1.1	.968	1.444	1.408
	3.1416	.9	1.2	1.05 1.1	1.575	1.53
1		.942	1.257	1.138	1.649 1.706	1.602
	814	1.05	1.4	1.225	1.888	1 657 1.785
	978	j 1.00	1 4.7	1.660	1.000	1.100

Thickness of rim below root = depth of tooth.

Width of Teeth.—The width of the faces of teeth is generally made from 2 to 3 times the circular pitch = from 6.28 to 9.42 divided by the diametral pitch. There is no standard rule for width.

The following sizes are given in a stock list of cut gears in "Grant's Gears:"

Diametral pitch.... 8 4 6 8 12 16 Face, inches.... ... 3 and 4 21/4 and 2 11/4 and 11/4 3/4 and 1 1/4 and 5/4 The Walker Mfg. Co. give:

Circular pitch, in .. 12 16 20

Rules for Calculating the Speed of Gears and Pulleys.— The relations of the size and speed of driving and driven gear wheels are the same as those of belt pulleys. In calculating for gears, multiply or divide by the diameter of the pitch-circle or by the number of teeth, as may be required. In calculating for pulleys, multiply or divide by their diameter in inches.

If D = diam. of driving wheel, d = diam. of driven, R = revolutions per

minute of driver, r = revs, per min. of driven. R = rd + D; r = RD + d; D = dr + R; d = DR + r. If N = number of teeth of driver and n = number of teeth of driven, N = nr + R; n = NR + r, R = rn + N; r = RN + n.

To find the number of revolutions of the last wheel at the end of a train of spur-wheels, all of which are in a line and mesh into one another, when the revolutions of the first wheel and the number of teeth or the diameter of the first and last are given: Multiply the revolutions of the first wheel by its number of teeth or its diameter, and divide the product by the number of teeth or the diameter of the last wheel.

To find the number of teeth in each wheel for a train of spur-wheels, each to have a given velocity: Multiply the number of revolutions of the driving-wheel by its number of teeth, and divide the product by the number

of revolutions each wheel is to make

To find the number of revolutions of the last wheel in a train of wheels and pinions, when the revolutions of the first or driver, and the diameter, the teeth, or the circumference of all the drivers and pinions are given: Multiply the diameter, the circumference, or the number of teeth of all the driving wheels together, and this continued product by the number of revo-lutions of the first wheel, and divide this product by the continued product of the diameter, the circumference, or the number of teeth of all the driven wheels, and the quotient will be the number of revolutions of the last wheel.

Example. -1. A train of wheels consists of four wheels each 12 in. diameter of pitch-circle, and three pinions 4, 4, and 3 in. diameter. The large wheels are the drivers, and the first makes 36 revs. per min. Required the speed

of the last wheel.

$$\frac{36 \times 12 \times 12 \times 12}{4 \times 4 \times 3} = 1296 \text{ rpm.}$$

2. What is the speed of the first large wheel if the pinions are the drivers. the 8-in. pinion being the first driver and making 86 revs. per min.?

$$\frac{36 \times 3 \times 4 \times 4}{12 \times 12 \times 12} = 1 \text{ rpm. } Ans.$$

Milling Cutters for Interchangeable Gears.—The Pratt & Whitney Co. make a series of cutters for cutting eplcycloidal teeth. The number of cutters to cut from a pinion of 12 teeth to a rack is 24 for each pitch coarser than 10. The Brown & Sharpe Mfg. Co. make a similar series, and also a series for involute teeth, in which eight cutters are made for each pitch, as follows:

No	1.	2.	8.	4.	5.	6.	7.	8.
Will cut from	135	55	35	26	21	17	14	12
to	Rack	134	54	84	25	20	16	13

#### FORMS OF THE TERTH.

In order that the teeth of wheels and pinions may run together smoothly and with a constant relative velocity, it is necessary that their working faces shall be formed of certain curves called odontoids. The essential property of these curves is that when two teeth are in contact the common normal to the tooth curves at their point of contact must pass through the pitch-point, or point of contact of the two pitch circles. Two such curves are in common use—the cyloid and the involute.

The Cycloidal Tooth. - In Fig. 154 let PL and pl be the pitch-circles of two gear-wheels; GC and gc are two equal generating-circles, whose radii should be taken as not greater than one half of the radius of the smaller pitch-circle. If the circle gc be rolled to the left on the larger pitch-circle HL, the point O will describe an epicycloid, orfgh. If the other generating-circle GO be rolled to the right on PL, the point O will describe a hypocratic describes the circle and the property which the terror to the form the approximation of the property which the terror to the form the approximation of the property which the terror to the form the approximation of the property which the terror to the form the approximation of the property which the terror to the form the approximation of the property which the terror to the form the approximation of the property which the terror to the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximation of the property approximatio cloid oabca. These two curves, which are tangent at 0, form the two parts of a tooth curve for a gear whose pitch-circle is PL. The upper part oh is called the face and the lower part od is called the flank, If the same circles

called the face and the lower part of is called the flank. If the same circles be rolled on the other pitch-circle pl, they will describe the curve for a tooth of the gear pl, which will work properly with the tooth on PL. The cycloidal curves may be drawn without actually rolling the generating-circle, as follows: On the line PL, from O, step off and mark equal distances, as 1,2,3,4,etc. From 1,2,3,etc., draw radial lines toward the centre PL, and from 6, 7, 8, etc., draw radial lines from the same centre, but beyond PL. With the radius of the generating-circle, and with centres successively placed on these radial lines, draw arcs of circles tangent to PL at  * 2, 3, 6, 7, 8, etc. With the dividers set to one of the equal divisions, as  $O_1$ .

step off 1a and 6e; step off two such divisions on the circle from 2 to b, and from 7 to f; three such divisions from 3 to c, and from 8 to g; and so on, thus locating the several points abcdH and efgk, and through these points draw the tooth curves.

The curves for the mating tooth on the other wheel may be found in like manner by drawing arcs of the generating-circle tangent at equidistant

points on the pitch-circle pl.

The tooth curve of the face oh is limited by the addendum-line r or  $r_1$ ,



Fig. 154.

and that of the flank oH by the root curve R or  $R_1$ . R and r represent the root and addendum curves for a large number of small teeth, and  $R_1r$  the like curves for a small number of large teeth. The form or appearance of the tooth therefore varies according to the number of teeth, while the pitch-

circle and the generating-circle may remain the same.

In the cycloidal system, in order that a set of wheels of different diameters but equal pitches shall all correctly work together, it is necessary that the generating circle used for the teeth of all the wheels shall be the same and it should have a diameter not greater than half the diameter of the pitchline of the smallest wheel of the s.t. The customary standard size of the generating-circle of the cycloidal system is one having a diameter equal to the radius of the pitch-circle of a wheel having 12 teeth. (Some gear-makers adopt 15 teeth.) This circle gives a radial flank to the tech of a wheel having 12 teeth. A pinion of 10 or even a smaller number of teeth can be made, but in that case the flanks will be undercut, and the tooth will not be as strong as a tooth with radial flanks. It in any case the describing circle be half the size of the pitch-circle, the flanks will be radial; if it be less, they will spread out toward the root of the tooth, giving a stronger form; but if greater, the flanks will curve in toward each other, whereby the teeth become weaker and difficult to make.

In some cases cycloidal teeth for a pair of gears are made with the generating-circle of each gear, having a radius equal to half the radius of its pitchcircle. In this case each of the gears will have radial flanks. This method makes a smooth working gear, but a disadvantage is that the wheels are not interchangeable with other wheels of the same pitch but different num-

bers of teeth.

The rack in the cycloidal system is equivalent to a wheel with an infinite number of teeth. The pitch is equal to the circular pitch of the mating gear. Both faces and flanks are cycloids formed by rolling the generating-circle of the mating gear-wheel on each side of the straight pitch-line of the rack.



F1G. 155.

Another method of drawing the cycloida, curves is shown in Fig. 155. It known as the method of tangent arcs. The generating-circles, as before are drawn with equal radii, the length of the radius being less than half the radius of pl, the smaller pitch-circle. Equal divisions 1, 2, 3, 4, etc., are marked off on the pitch-circles and divisions of the same length stepped off on one of the generating-circles, as aabc, etc. From the points 1, 2, 3, 4, 5 on the line po, with radii successively equal to the chord distances aa, ab, ac, ab, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac, ac

If the generating-circle had a radius just one half of the radius of pl, the hypocycloid F would be a straight line, and the flank of the tooth would

have been radial.

The Involute Tooth.—In drawing the involute tooth curve, the angle of obliquity or the angle which a common tangent to the teeth, when they are in contact at the pitch-point, makes with a line joining the centres of the wheels, is first arbitrarily determined. It is customary to take it at  $15^{\circ}$ . The pitch-lines pl and PL being drawn in contact at O, the line of obliquity AB is drawn through O normal to a common tangent to the tooth curves, at the given angle of obliquity to a common tangent to the pitch-circles. In

the cut the angle is  $20^{\circ}$ . From the centres of the pitch-circles draw circles c and d tangent to the line AB. These circles are called base-lines or base-circles, from which the involutes F and K are drawn. By laying off convenient distances 0, 1, 2, 3, which should each be less than 1/10 of the diameter of the base-circle, small arcs can be drawn with successively increasing radii, which will form the involute. The involute extends from the points F



Fig. 156.

and K down to their respective base-circles, where a tangent to the involute becomes a radius of the circle, and the remainders of the tooth curves,

as G and H, are radial straight lines.

In the involute system the customary standard form of tooth is one having an angle of obliquity of 15° (Brown and Sharpe use 14½°), an addendum of about one third the circular pitch, and a clearance of about one eighth of the addendum. In this system the smallest gear of a set has 12 teeth, this being the smallest number of teeth that will gear together when rnade with this angle of obliquity. In gears with less than 30 teeth the points of the teeth must be slightly rounded over to avoid interference (Se Grant's Teeth of Gears). All involute teeth of the same pitch and with the same angle of obliquity work smoothly together. The rack to gear with an involute-toothed wheel has straight faces on its teeth, which make an angle with the middle line of the tooth equal to the angle of obliquity, or in the standard form the faces are inclined at an angle of 30° with each other.

To draw the teeth of a rack which is to gear with an involute wheel (Fig. 157).—Let AB be the pitch-line of the rack and AI = II'=the pitch. Through



Fig. 157.

the pitch-point I draw EF at the given angle of obliquity. Draw AE and I'F perpendicular to EF. Through E and F draw lines EGG' and FH parallel to the pitch-line. EGG' will be the addendum-line and HF the flank-line. From I draw IK perpendicular to AB equal to the greatest addendum in the set of wheels of the given pitch and obliquity plus an allowance for clearance equal to  $\frac{1}{2}$  of the addendum. Through K, parallel to AB, draw the clearance-line. The fronts of the teeth are planes perpendicular to EF, and the backs are planes inclined at the same angle to AB in the contrary direction. The outer half of the working face AE may be slightly curved, MF. Grant makes it a circular arc drawn from a centre on the pitch-line

with a radius = 2.1 inches divided by the diametral pitch, or .67 in,  $\times c$ : cular pitch.

To Draw an Angle of 15° without using a Protractor.—From C, on the



line AC, with radius AC, draw an arc AB, and from A, wru the same radius, cut the arc at B. Bisect the arc BA by drawing small arcs at D from A and Sas centres, with the same radiu. as centres, with the same rann-which must be greater than on-half of AB. Join DC, cutting E: at E. The angle ECA is 30°. B-sect the arc AE in like manner and the angle FCA will be 15°. A property of involute-toothe: wheels is that the distance between

the axes of a pair of gears may be altered to a considerable extension. The backlash is therefore variable at will, and may be ai-

justed by moving the wheels farther from or nearer to each other, and may thus be adjusted so as to be no greater than is necessary to prevent jam ming of the teeth.

The relative merits of cycloidal and involute-shaped teeth are still a subject of dispute, but there is an increasing tendency to adopt the involute

Clark (R. T. D., p. 734) says: Involute teeth have the disadvantage of being too much inclined to the radial line, by which an undue pressure is exerted on the bearings.

Unwin (Elements of Machine Design, 8th ed., p. 265) says: The obliquity of action is ordinarily alleged as a serious objection to involute wheels. Its importance has perhaps been overrated.

George B. Grant (Am. Mach., Dec. 26, 1885) says:

1. The work done by the friction of an involute tooth is always less than

1. He work for any possible epicycloidal tooth.
2. With respect to work done by friction, a change of the base from a gear of 12 teeth to one of 15 teeth makes an improvement for the epicycloid of less than one half of one per cent.

3. For the 12-tooth system the involute has an advantage of 1 1/5 per

cent, and for the 15-tooth system an advantage of 34 per cent.

4. That a maximum improvement of about one per cent can be accomplished by the adoption of any possible non-interchangeable radial flank tooth in preference to the 12-tooth interchangeable system.

5. That for gears of very few teeth the involute has a decided advantage.
6. That the common opinion among millwrights and the mechanical public in general in favor of the epicycloid is a prejudice that is founded on long-continued custom, and not on an intimate knowledge of the properties of that curve.

Wilfred Lewis (Proc. Engrs. Club of Phila., vol. x., 1893) says a strong reaction in favor of the involute system is in progress, and he believes that an involute tooth of 2216° obliquity will finally supplant all other forms.

Approximation by Circular Arcs.—Having found the form of

the actual tooth-curve on the drawing-board, circular arcs may be found by trial which will give approximations to the true curves, and these may be



used in completing the drawing and the pattern of the gear-wheels. root of the curve is connected to the clearance by a fillet, which should be as large aspossible to give increased strength to the tooth, provided it is not

large enough to cause interference.

Molesworth gives the following method of construction by circular arcs: From the radial line at the edge of the tooth on the pitch-line, lay off the line HK at an angle of 75° with the radial line; on this line will be the cen-The mass at an angle of 10° with the radial line; on this line will be the centres of the root AB and the point EF. The lines struck from these centres are shown in thick lines. Circles drawn through centres thus found will give the lines in which the remaining centres will be. The radius DA for striking the root AB is = pitch + the thickness of the tooth. The radius CE for striking the point of the tooth EF = the pitch.

George B. Grant says: It is sometimes attempted to construct the curve by some handy method or empirical rule, but such methods are generally

Stepped Gears. -Two gears of the same pitch and diameter mounted side by side on the same shaft will act as a single gear. If one gear is keyed on the shaft so that the teeth of the two wheels are not in line, but the teeth of one wheel slightly in advance of the other, the two gears form a stepped gear. If mated with a similar stepped gear on a parallel shaft the number of teeth in contact will be twice as great as in an ordinary gear, which will increase the strength of the gear and its smoothness of action.

Twisted Teeth.—If a great number of very thin gears were placed together, one slightly in advance of the other, they would still act as a

stepped gear. Continuing the subdivision until the thickness of each separate gear is infinitesimal, the faces of the teeth instead of being in steps take the form of a spiral or twisted surface, and we have a twisted gear. The twist may take any shape, and if it is in one direction for half the width of the gear and in the opposite direction for the other half, we have what is known as the herring-bone or double helical tooth. obliquity of the twisted tooth if twisted in one direction causes an end thrust on the shaft, but if the herringbone twist is used, the opposite obliquities neutralize each other. This form of tooth is much used in heavy rolling mill practice, where great strength and resistance to shocks are necessary. They are frequently made of steel castings (Fig. 160). The angle of the tooth with a



steel castings (rig. 100). The agine of the tooth with a line parallel to the axis of the gear is usually 30°.

Spiral Gears.—If a twisted gear has a uniform twist it becomes a spiral gear. The line in which the pitch-surface intersects the face of the tooth is part of a helix drawn on the pitch-surface. A spiral wheel may be made with only one helical tooth wrapped around the cylinder several times, in which it becomes a screw or worm. If it has two or three teeth so wrapped, it is a double- or triple-threaded screw or worm. A spiral-gear meshing into a rack is used to drive the table of some forms of planingmachine.

Worm-gearing.—When the axes of two spiral gears are at right angles, and a wheel of one, two, or three threads works with a larger wheel of many threads, it becomes a worm-gear, or endless screw, the smaller



Fig. 161.

wheel or driver being called the worm, and the larger, or driven wheel, the worm-wheel. With this arrangement a high velocity ratio may be obtained with a single pair of wheels. For a one-threaded wheel the velocity ratio is the number of teeth in the worm-wheel. The worm and wheel are commonly so constructed that the worm will drive the wheel, but the wheel will not drive the worm.

To find the diameter of a worm-wheel at the throat, number of teeth an putch of the worm being given: Add 2 to the number of teeth, multiply tuesum by 0.3188, and by the pitch of the worm in inches.

To find the number of teeth, diameter at throat and pitch of worm being given: Divide 3.1416 times the diameter by the pitch, and subtract 2 from the quotient.

In Fig. 161 ab is the diam. of the pitch-circle, cd is the diam. at the throat Example – Pitch of worm  $\frac{1}{4}$  in., number of teeth 70, required the diam at the throat.  $(70 + 2) \times .3188 \times .25 = 5.73$  in.

Teeth of Bevel-wheels. (Rankine's Machinery and Millwork. The teeth of a bevel-wheel have acting surfaces of the conical kind, get erated by the motion of a line traversing the apex of the conical pitch surface, while a point in it is carried round the traces of the teeth upon spherical surface described about that apex.

The operations of drawing the traces of the teeth of bevel-wheels exactly whether by involutes or by rolling curves, are in every respect analogous those for drawing the traces of the teeth of spur-wheels; except that in the case of bevel-wheels all those operations are to be performed on the surfacof a sphere described about the aper, instead of on a plane, substitution poles for centres and great circles for straight lines.

In consideration of the practical difficulty, especially in the case of large

wheels, of obtaining an accurate spherical surface, and of drawing upon when obtained, the following approximate method, proposed originally by Tredgold, is generally used:

Let O, Fig. 162, be the common apex of the pitch-cones, OBI, OB'I of a pair of bevel-wheels; OC, OC', the axes of those cones; OI their line of corrections. Perpendicular to OI draw tact.



AIA', cutting the axes in A, A make the outer rims of the patternand of the wheels portions of the cones ABI, A'B'I, of which the nar row zones occupied by the teeth wi poses to a spherical surface describabout O. As the cones ABI, Ab. cut the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones at right angles in the pitch-cones the outer pitch-circles IB, IB', they may be called the normal cones. find the traces of the teeth upon the normal cones, draw on a flat surface circular arcs, ID, ID', with the rad AI, A'I; those arcs will be the developments of arcs of the pitch circles IB, IB' when the conical st

faces ABI, A'B'I are spread out flat. Describe the traces of teeth for to developed arcs as for a pair of spur-wheels, then wrap the developed ar . on the normal cones, so as to make them coincide with the pitch circles and trace the teeth on the conical surfaces.

For formulæ and instructions for designing bevel-gears, and for much other valuable information on the subject of gearing, see "Practical Treatise of Gearing," and "Formulas in Gearing," published by Brown & Sharpe Mf. Co.; and "Teeth of Gears," by George B. Grant, Lexington, Mass. The student may also consult Rankine's Machinery and Millwork, Reuleaux Constructor, and Unwin's Elements of Machine Design. See also article

Gearing, by C. W. MacCord in App. Cyc. Mech., vol. ii.

Annular and Differential Gearing. (S. W. Balch., Am. Mark
Aug. 24, 1893.)—In internal gears the sum of the diameters of the describes circles for faces and flanks should not exceed the difference in the past diameters of the pinion and its internal gear. The sum may be equal to the difference or it may be less; if it is equal, the faces of the teeth of each wheel will drive the faces as well as the flanks of the teeth of the other wheel. The teeth will therefore make contact with each other at two points at the same time.

Cycloidal tooth-curves for interchangeable gears are formed with describing circles of about % the pitch diameter of the smallest gear of the series To admit two such circles between the pitch-circles of the pinion and internagear the number of teeth in the internal gear should exceed the number in the pinion by 12 or more, if the teeth are of the customary proportions and curvature used in interchangeable gearing.

Very often a less difference is desirable, and the teeth may be modified in

several ways to make this possible.

First. The tooth curves resulting from smaller describing circles may be employed. These will give teeth which are more rounding and narrower at their tops, and therefore not as desirable as the regular forms.

Second. The tips of the teeth may be rounded until they clear.

cut-and-try method which aims at modifying the teeth to such outlines as

smaller describing circles would give.

Third. One of the describing circles may be omitted and one only used which may be equal to the difference between the pitch-circles. This will permit the meshing of gears differing by six teeth. It will usually prove inexpedient to put wheels in inside gears that differ by much less than 12 teeth.

If a regular diametral pitch and standard tooth forms are determined on, the diameter to which the internal gear-blank is to be bored is calculated by subtracting 2 from the number of teeth, and dividing the remainder by the

diametral pitch.

The tooth outlines are the match of a spur-gear of the same number of teeth and diametral pitch, so that the spur-gear will fit the internal gear as a punch fits its die, except that the teeth of each should fail to bottom in the tooth spaces of the other by the customary clearance of one tenth the thickness of the tooth.

Internal gearing is particularly valuable when employed in differential action. This is a mechanical movement in which one of the wheels is mounted on a crank so that its centre can move in a circle about the centre of the other wheel. Means are added to the device which restrain the wheel on the crank from turning over and confine it to the revolution of the crank.

The ratio of the number of teeth in the revolving wheel compared with the difference between the two will represent the ratio between the revolving wheel and the crank-shaft by which the other is carried. The advantage in accomplishing the change of speed with such an arrangement, as compared with ordinary spur-gearing, lies in the almost entire absence of friction and consequent wear of the teeth.

But for the limitation that the difference between the wheels must not be too small, the possible ratio of speed might be increased almost indefinitely, and one pair of differential gears made to do the service of a whole train of wheels. If the problem is properly worked out with bevel-gears this limitation may be completely set aside, and external and internal bevel-gears, differing by but a single tooth if need be, made to mesh perfectly with each other.

Differential bevel-gears have been used with advantage in mowing-machines. A description of their construction and operation is given by Mr.

Balch in the article from which the above extracts are taken.

#### EFFICIENCY OF GEARING.

An extensive series of experiments on the efficiency of gearing, chiefly worm and spiral gearing, is described by Wilfred Lewis in Trans. A. S. M. E., vii. 273. The average results are shown in a diagram, from which the following approximate average figures are taken :

EFFICIENCY OF SPUR. SPIRAL, AND WORM GEARING.

Gearing.	Pitch.	Velocity at Pitch line in feet per min.						
doming.		3	10	40	100	200		
Spur pinion	45° 80 20 15 10 7	.90 .81 .75 .67 .61 .51 .48	.985 .87 .815 .75 .70 .615 .53	.97 .93 .89 .845 .805 .74 .72 .60	.98 .955 .98 .90 .87 .82 .765 .70	.985 .965 .945 .92 .90 .86 .815		

The experiments showed the advantage of spur-gearing over all other kinds in both durability and efficiency. The variation from the mean resultance by the variation became much greater and very irregular as soon as cutting occurred by the variation became much greater and very irregular as soon as cutting began. The loss of power varies with the speed, the pressure, the temperature, and the condition of the surfaces. The excessive friction of worm and spiral gearing is largely due to thee nd thrust on the collars of the shaft This may be considerably reduced by roller-bearings for the collars.

When two worms with opposite spirals run in two spiral worm-gears that also work with each other, and the pressure on one gear is opposite that ethe other, there is no thrust on the shaft. Even with light loads a worm will begin to heat and cut if run at too high a speed, the limit for safe work high being a velocity of the rubbing surfaces of 200 to 300 ft. per minute, the former being preferable where the gearing has to work continuously. The wheel teeth will keep cool, as they form part of a casting having a largadiating surface; but the worm itself is so small that its heat is dissipated slowly. Whenever the heat generated increases faster than it can be conducted and radiated away, the cutting of the worm may be expected to begin. A low efficiency for a worm-gear means more than the loss of power since the power which is lost reappears as heat and may cause the rapid destruction of the worm.

Unwin (Elements of Machine Design, p. 294) says: The efficiency is greater the less the radius of the worm. Generally the radius of the worm = 1.5% at times the pitch of the thread of the worm or the circular pitch of the worm-wheel. For a one-threaded worm the efficiency is only 2/5 to \(\frac{1}{2}\), for a two-threaded worm, 4/7 to 2/5; for a three-threaded worm, 3/2 to \(\frac{1}{2}\) since so much work is wasted in friction it is not surprising that the wear is excessive. The following table gives the calculated efficiencies of worm wheels of 1, 2, 3, and 4 threads and ratios of radius of worm to pitch of teeth of from 1 to 6, assuming a coefficient of friction of 6.15:

No. of			Radi	us of W	orm + l	Pit <b>ch</b> .			
Threads.	1	11/4	11/6	13/4	2	21/6	3	4	6
1 2	.50 .67 .75	.44 .62 .70	.40 .57 .67	.86 .53 .63	.88 .50 .60	.28 .44 .55	.25 .40 .50 .57	.20 .33 .43	.14 .55
4	.80	.76	.78	.70	.67	.62	.57	.50	

### STRENGTH OF GEAR-TEETH.

The strength of gear-teeth and the horse-power that may be transmitted by them depend upon so many variable and uncertain factors that it is insurprising that the formulas and rules given by different writers show a wide variation. In 1879 John H. Cooper (Jour, Frank, Inst., July, 1876 found that there were then in existence about 48 well-established rules for horse-power and working strength, differing from each other in extremeases about 500%. In 1886 Prof. Wim. Harkness (Proc. A. A. A. S. 1886 From an examination of the bibliography of the subject, beginning in 1786 found that according to the constants and formulas used by various authorshere were differences of 15 to 1 in the power which could be transmitted by a given pair of geared wheels. The various elements which enter in the constitution of a formula to represent the working strength of a toothwheel are the following: 1. The strength of the metal, usually cast from, whi is an extremely variable quantity. 2. The shape of the tooth, and espicially the relation of its thickness at the root or point of least strength to the pitch and to the length. 3. The point at which the load is taken to be applied, assumed by some authors to be at the pitch-line, by others at the corner. 4. The consideration of whether the total load is at any time extreme end, along the whole face, and by still others at a single outer corner. 4. The consideration of whether the total load is at any time extered by a single tooth or whether it is divided between two teeth. 5. The influence of velocity in causing a tendency to break the teeth by shock. The factor of safety assumed to cover all the uncertainties of the other elements of the problem.

Prof. Harkness, as a result of his investigation, found that all the formulæ on the subject might be expressed in one of three forms, viz.:

Horse-power = 
$$CVpf$$
, or  $CVp^3$ , or  $CVp^3f$ ;

in which C is a coefficient, V = velocity of pitch-line in feet per second, p = pitch in inches, and f = face of tooth in inches.

From an examination of precedents he proposed the following formula for cast-iron wheels:

$$H.P. = \frac{0.910Vpf}{\sqrt{1+0.65}V}.$$

He found that the teeth of chronometer and watch movements were subject to stresses four times as great as those which any engineer would dare

to use in like proportion upon cast-iron wheels of large size.

It appears that all of the earlier rules for the strength of teeth neglected the consideration of the variations in their form; the breaking strength, as said by Mr. Cooper, being based upon the thickness of the teeth at the pitchline or circle, as if the thickness at the root of the tooth were the same in all cases as it is at the pitch-line.

1893) seems to have been the first to use the form of the tooth in the construction of a working formula and table. He assumes that in well-constructed machinery the load can be more properly taken as well distributed across the tooth than as concentrated in one corner, but that it cannot be safely taken as concentrated at a maximum distance from the root less than the extreme end of the tooth. He assumes that the whole load is taken upon one tooth, and considers the tooth as a beam loaded at one end, and from a series of drawings of teeth of the involute, cycloidal, and radia flank systems, determines the point of weakest cross-section of each, and the ratio of the thickness at that section to the pitch. He thereby obtains the general formula,

$$W = spfy;$$

in which W is the load transmitted by the teeth, in pounds; s is the safe working stress of the material, taken at 8000 lbs. for cast iron, when the working speed is 100 ft. or less per minute;  $p=\operatorname{pitch}_i f=\operatorname{face}_i$  in inches; y=a factor depending on the form of the tooth, whose value for different cases is given in the following table:

	Factor	for Streng	th, y.		Factor for Strength, y.			
No. of Teeth.	Involute 20° Obliquity.	Involute 15° and Cycloidal	Radial Flanks.	No. of Teeth.	Involute 20° Obliquity.	Involute 15° and Cycloidal	Radial Flanks.	
12	.078	.067	.052	27	.111	.100	.064	
18	.083	.070	.053	30	.114	102	.065	
14	.088	.072	.054	34	.118	.104	.066	
15	.092	.075	.055	<b>8</b> 8	.122	.107	.067	
16	.094	.077	.056	48	126	.110	.068	
17	.096	.080	.057	50	780	.112	.069	
18	.098	.083	.058	60	184	.114	.070	
19	.100	.087	.059	75	.138	.116	.071	
20	.102	.090	.060	100	.142	.118	.072	
21	.104	.092	.061	150	146	.120	.073	
28	.106	.094	.062	800	.150	122	.074	
25	.108	.097	.063	Rack.	.154	.124	.075	

SAFE WORKING STRESS, s, FOR DIFFERENT SPEEDS.

Speed of Teeth in ft. per minute.	100 or less.	200	300	600	900	1200	1800	2400
Cast iron					3000 7500	2400 6000	2000 5000	1700 4300

The values of s in the above table are given by Mr. Lewis tentatively, in the absence of sufficient data upon which to base more definite values, but



the absence of sufficient data upon which to base more definite values, but they have been found to give satisfactory results in practice.

Mr. Lewis gives the following example to illustrate the use of the tables: Let it be required to find the working strength of a 12-toothed pinion of inch pitch,  $2\frac{1}{2}$  inch face, driving a wheel of 80 teeth at 100 feet or less perminute, and let the teeth be of the 20-degree involution. In the formula W = spfy we have for a cast-inor pinion s = 8000, pf = 25, and y = .078; and multiplying the values together, we have W = 1560 pounds. For the wheel we have y = .134 and W = 2890 pounds. The cast-iron pinion is, therefore, the measure of strength but if a steel pinion be substituted we have y = 20.000 and W = 3900 pounds, in which combination the wheel is the weaker, and it therefore becomes the measure of strength.

measure of strength.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

Fig. 168.

$$W = spfy \frac{D^3 - d^3}{3D^2(D - d)}$$
; or, more simply,  $W = spfy \frac{d}{D}$ ,

which gives almost identical results when d is not less than  $\frac{3}{16} D$ , as is the case in good practice.

In Am. Mach., June 22, 1893, Mr. Lewis gives the following formulæ for the working strength of the three systems of gearing, which agree very closely with those obtained by use of the table:

For involute, 20° obliquity, 
$$W = spf\left(.154 - \frac{.912}{n}\right)$$
;

For involute 15°, and cycloidal, 
$$W = spf\left(.194 - \frac{.684}{n}\right)$$
;

For radial flank system, 
$$W = spf\left(.075 - \frac{.276}{n}\right)$$
;

in which the factor within the parenthesis corresponds to y in the general formula. For the horse-power transmitted, Mr. Lewis's general formula

W = spfy,  $= \frac{33,000 \text{ H.P.}}{v}$ , may take the form H.P.  $= \frac{spfyv}{33,000}$ , in which v =velocity in feet per minute; or since  $v=d\pi \times \text{rpm.} + 12 = .2618d \times \text{rpm.}$ , in which d= diameter in inches and rpm. = revolutions per minute,

H.P. = 
$$\frac{Wv}{33,000} = \frac{spfy \times d \times rpm.}{126,050} = .000007933dspfy \times rpm.$$

It must be borne in mind, however, that fit the case of machines which consume power intermittently, such as punching and shearing machines, the gearing should be designed with reference to the maximum load W. which can be brought upon the teeth at any time, and not upon the average horse-power transmitted

Comparison of the Harkness and Lewis Formulas.— Take an average case in which the safe working strength of the material. s = 6000, v = 200 ft. per min., and y = 100, the value in Mr. Lewis table for an involute tooth of 15° obliquity, or a cycloidal tooth, the number of teeth in the wheel being 27.

H.P. = 
$$\frac{spf/v}{33,000} = \frac{6000pfv \times .100}{38,000} = \frac{pfv}{55} = 1.091pfV$$

if V is taken in feet per second. Prof. Harkness gives H.P.=  $\frac{0.910Vpf}{V1+0.65V}$ . If the V in the denominator **De taken at 200 + 60 = 81/6** feet per second,  $\sqrt{1 + 0.65V} = \sqrt{3.167} = 1.78$ , and H.P. =  $\frac{.910}{1.78}Vpf = .571pfV$ , or about 52% of the result given by Mr. Lewis's formula. This is probably as close an agreement as can be expected, since Prof. Harkness derived his formula from an investigation of ancient preceformula. dents and rule-of-thumb practice, largely with common cast gears, while Mr. Lewis's formula was derived from considerations of modern practice

with machine moulded and cut gears.

Mr. Lewis takes into consideration the reduction in working strength of a tooth due to increase in velocity by the figures in his table of the values of the safe working stress s for different speeds. Prof. Harkness gives expression to the same reduction by means of the denominator of his formula,  $\sqrt{1+0.65V}$ . The decrease in strength as computed by this formula is somewhat less than that given in Mr. Lewis's table, and as the figures given in the table are not based on accurate data, a mean between the values given by the formula and the table is probably as near to the true values as may be obtained from our present knowledge. The following table gives the values for different speeds according to Mr. Lewis's table and Prof. Hark-

ness's formula, taking for a basis a working stress s, for cast-iron 8000, and for steel 20,000 lbs. at speeds of 100 ft. per minute and less:

v = speed of teeth, ft. per min. $V =  "ft. per sec.$	100 13%	200 31/8	300 5	600 10	900 15	1200 20	1800 30	2400 40
Safe stress s, cast-iron, Lewis Relative do s + 8000	8000	6000	4800 .6	4000	3000 .875		2000 .25	1700 .2125
Relative val. c + .693		.811	.700	.526	.489	.885	.318	.277
$s_1 = 8000 \times (c + .698)$ Mean of s and $s_1$ , cast-iron = $s_2$ . for steel = $s_3$ .	8000	6200	5200	4100	3300	2700	2300	2000
Safe stress for steel, Lewis	20000	15000	12000	10000	7500			

Comparing the two formulæ for the case of s = 8000, corresponding to a speed of 100 ft. per min., we have

**Harkness:** H.P. =  $1 + \sqrt{1 + 0.65V} \times .910Vpf = .695 \times .91 \times 1\% pf = 1.051pf'$ H.P. =  $\frac{spfyv}{33,000} = \frac{spfyV}{550} = \frac{8000 \times 136pfy}{550} = 24.24pfy$ , Lewis:

in which y varies according to the shape and number of the teeth.

For radial-flank gear with 12 teeth y = .052; 24.24pfy = 1.260pf; For  $20^{\circ}$  involute, 19 teeth, or  $15^{\circ}$  inv., 27 teeth y = .100; 24.24pfy = 2.424pf; For  $15^{\circ}$  involute, 300 teeth y = .150; 24.24pfy = 3.636pf.

Thus the weakest-shaped tooth, according to Mr. Lewis, will transmit 20 per cent more horse-power than is given by Prof. Harkness's formula, in which the shape of the tooth is not considered, and the average-shaped tooth, according to Mr. Lewis, will transmit more than double the horse-power given by Prof. Harkness's formula.

Comparison of Other Formulæ.-Mr. Cooper, in summing up comparison of Utner Formulae.—Mr. Cooper, in summing up his examination, selected an old English rule, which Mr. Lewis considers as a passably correct expression of good general averages, viz.: X = 200ppf, X = breaking load of tooth in pounds, p = pitch, f = face. If a factor of safety of 10 be taken, this would give for safe working load W = 200pf. George B. Grant, in his Teeth of Gaars, page 33. takes the breaking load at 3500pf, and, with a factor of safety of 10, gives W = 350pf.

Nystrom's Pocket-Book, 20th ed., 1891, says: "The strength and durability of cast-iron teeth require that they shall transmit a force of 80 lbs, per linch of pitch and per inch breadth of face." This is equivalent to W = 80pf, or

only 40% of that given by the English rule.

F. A. Halsey (Clark's Pocket Book) gives a table calculated from the formula

H.P. =  $pfd \times rpm$ . + 850.

Jones & Laughlins give H.P. =  $pfd \times rpm$ , + 550.

These formulæ transformed give W = 128pf and W = 218pf, respectively

Unwin, on the assumption that the load acts on the corners of the teeth, derives a formula  $p=K \sqrt{W}$ , in which K is a coefficient derived from existing wheels, its values being: for slowly moving gearing not subject to much vibration or shock K=04; in ordinary mill-gearing, running at greater speed and subject to considerable vibration, K=.06; and in wheels subjected to excessive vibration and shock, and in mortise gearing, K=.06. Reduced to the form W=Cpf, assuming that f=2p, these values of K give W=262pf, 200pf, and 139pf, respectively.

Unwin also gives the following formula, based on the assumption that the

pressure is distributed along the edge of the tooth:  $p = K_{14} / \frac{p}{s} \sqrt{W}$ ,

where  $K_1$  = about .0707 for iron wheels and .0848 for mortise wheels when the breadth of face is not less than twice the pitch. For the case of f = 2p and the given values of  $K_1$  this reduces to W = 200pf and W = 139pf, respectively.

Box, in his Treatise on Mill Gearing, gives H.P. =  $\frac{12p^2f\sqrt{dn}}{1000}$ , in which n = number of revolutions per minute. This formula differs from the more modern formulæ in making the H.P. vary as  $p^2f$ , instead of as pf, and in this respect it is no doubt incorrect.

Making the H.P. vary as  $\sqrt{dn}$  or as  $\sqrt{v}$ , instead of directly as v, makes the velocity a factor of the working strength as in the Harkness and Lewis formulæ, the relative strength varying as  $\frac{\sqrt{v}}{v}$ , or as  $\frac{1}{\sqrt{v}}$ , which for different velocities is as follows:

Speed of teeth in ft. per min., v = 100 200 300 600 900 1200 Relative strength = 1 .707 .574 .408 .333 .289 1800 2400 .204

Showing a somewhat more rapid reduction than is given by Mr. Lewis. For the purpose of comparing different formulæ they may in general be reduced to either of the following forms:

$$H.P. = Cpfv$$
,  $H.P. = C_1pfd \times rpm$ .,  $W = cpf$ ,

in which  $p=\operatorname{pitch}, f=\operatorname{face}, d=\operatorname{diameter},$  all in inches;  $v=\operatorname{velocity}$  in feet per minute, rpm. revolutions per minute, and C,  $C_1$  and c coefficients. The formulae for transformation are as follows:

H.P. = 
$$\frac{Wv}{33000} = \frac{W \times d \times \text{rpm.}}{126,050}$$
;

$$W = \frac{38,000 \text{ H.P.}}{v} = \frac{128,050 \text{ H.P.}}{d \times \text{rpm.}} = 33,000 Cpf \; ; \; pf = \frac{\text{H.P.}}{Cv} = \frac{\text{H.P.}}{C_1 d \times \text{rpm.}} = \frac{W}{c}.$$

$$C_1 = .2618C; \quad c = 38,000C; \quad C = 3.82C_1 \; , \\ = \frac{c}{33,000}; \quad c = 126,050C_1.$$

In the Lewis formula C varies with the form of the tooth and with the speed, and is equal to sy+33,000, in which y and s are the values taken from the table, and c=sy.

In the Harkness formula C varies with the speed and is equal to  $\sqrt{1+0.65}$  F (V being in feet per second), = -

 $\sqrt{1 + .011v}$ .

In the Box formula C varies with the pitch and also with the velocity.

and equals  $\frac{12p \sqrt{d} \times \text{rpm.}}{1000v} = .02345 \frac{p}{\sqrt{v}}$ .  $c = 38,000C = 774 \frac{p}{\sqrt{v}}$ . For v = 100 ft. per min. C = 77.4p; for v = 600 ft. per minute c = 31.6p. In the other formulæ considered C,  $C_1$ , and c are constants. Reducing the several formulæ to the form W = cpf, we have the following;

COMPARISON OF DIFFERENT FORMULÆ FOR STRENGTH OF GEAR-TEETH.

Safe working pressure per inch pitch and per inch of face, or value of c in formula W = cpf:

	v = 100  ft.	v = 600  ft.
	per min.	per min.
Lewis: Weak form of tooth, radial flank, 12 teeth	c = 416	208
Medium tooth, inv. 15°, or cycloid, 27 teeth.	c = 800	400
Strong form of tooth, or cycloid, 800 teeth		600
Harkness: Average tooth	. c = 847	184
Box: Tooth of 1 inch pitch	c = 77.4	81.6
" " 8 inches pitch	c = 232	95

Various, in which c is independent of form and speed: Old English rule, c=200; Grant, c=350; Nystrom, c=80; Halsey, c=128; Jones & Laughlins, c=218; Unwin, c=262, 200, or 139, according to speed, shock,

and vibration

The value given by Nystrom and those given by Box for teeth of small pitch are so much smaller than those given by the other authorities that they may be rejected as having an entirely unnecessary surplus of strength. The values given by Mr. Lewis seem to rest on the most logical basis, the form of values given by Mr. Lewis seem to rest on the most optical basis, the form of the teeth as well as the velocity being considered; and since they are said to have proven satisfactory in an extended machine practice, they may be considered reliable for gears that are so well made that the pressure bears along the face of the teeth instead of upon the corners. For rough ordinary work the old English rule W=200pf is probably as good as any, except that the figure 200 may be too high for weak forms of tooth and for high speeds.

The formula W = 200pf is equivalent to H.P.  $= \frac{pfd \times rpm}{630} = \frac{pfv}{165}$ , or

 $H.P. = .0015873pfd \times rpm. = .006063pfv.$ 

Maximum Speed of Gearing.—A. Towler, Eng'g, April 19, 1889, p. 888, gives the maximum speeds at which it was possible under favorable conditions to run toothed gearing safely as follows:

				• • • • • • • • • • • • • • • • • • • •	Ft.	per min.
Ordinary	cast-	-iron	wheels	• • • • • • • • • • • • • • • • • • • •		1800
Helical	**	**	**			2400
Mortise	• 6	**	**			2400
Ordinary	cast	steel	wheels		. <b></b> .	2600
Helical	**	**	**		. <b></b>	3000
Special c	ast-ii	on m	achine	cut wheels		3000

Prof. Coleman Sellers (Stevens Indicator, April, 1892) recommends that gearing be not run over 1200 ft. per minute, to avoid great noise. The Walker Mfg. Co., Cleveland, O., say that 2200 ft. per min. for iron gears and 3000 ft. for wood and iron (mortise gears) are excessive, and should be avoided if possible. The Corliss engine at the Philadelphia Exhibition (1876) had a fly-wheel 30 ft. in diameter running 35 rpm. geared into a pinion 12 ft. diam. The speed of the pitch-line was 3300 ft. per min.

A Heavy Machine-cut Spur-gear was made in 1891 by the Walker Mfg. Co., Cleveland, O., for a diamond mine in South Africa, with dimensions as follows: Number of teeth, 192; pitch diameter, 30' 6.66''; face, 30''; pitch, 6'': bore, 27''; diameter of hub, 9' 2''; weight of hub, 15 tons; and total weight of gear, 56% tons. The rim was made in 12 segments, the joints of the segments being fastened with two bolts each. The spokes were bolted to the middle of the middle of the segments and to the hub with four bolts in each end.

to the middle of the segments and to the hub with four bolts in each end.

Frictional Gearing.—In frictional gearing the wheels are toothless, and one wheel drives the other by means of the friction between the two and one wheel drives the other by means of the inction between the two surfaces which are pressed together. They may be used where the power to be transmitted is not very great; when the speed is so high that toothed wheels would be noisy; when the shafts require to be frequently put into and out of gear or to have their relative direction of motion reversed; or when it is desired to change the velocity-ratio while the machinery is in mo-tion, as in the case of disk friction-wheels for changing the feed in machine tools.

Let P = the normal pressure in pounds at the line of contact by which two wheels are pressed together. T = tangential resistance of the driven wheel at the line of contact, f = the coefficient of friction, V = the velocity of the pitch-surface in feet per second, and H.P. = horse-power; then T may be equal to or less than fP; H.P. = TV + 550. The value of f for

metal on metal may be taken at .15 to .20; for wood on metal, .25 to .30; and for wood on compressed paper, 20. The tangential driving force T may be as high as 80 lbs. per inch width of face of the driving surface, but this is accompanied by great pressure and friction on the journal-bearings.

companied by great pressure and friction on the journal-bearings. In frictional grooved gearing circumferential wedge-shaped grooves are cut in the faces of two wheels in contact. If P = the force pressing the wheels together, and N = the normal pressure on all the grooves, P = N (sin  $a + f \cos a$ ), in which 2a = the inclination of the sides of the grooves, and the maximum tangential available force T = fN. The inclination of the sides of the grooves to a plane at right angles to the axis is usually 30°.

Frictional Grooved Gearing.—A set of friction-gears for transmitting 150 H.P. is on a steam-dredge described in Proc. Inst. M. E., July, 1883. Two grooved pinions of 54 in. diam., with 9 grooves of 13¢ in. pitch and angle of 40° cut on their face, are geared into two wheels of 12714 in diam. similarly grooved. The wheels can be thrown in and out of gear by levers operating eccentric bushes on the large wheel shaft. The circumferential speed of the wheels is about 500 ft. per min. Allowing for engine-friction. speed of the wheels is about 500 ft. per min. Allowing for engine-friction, if half the power is transmitted through each set of gears the tangential force at the rims is about 3960 lbs. requiring, if the angle is 40° and the coefficient of friction 0 18, a pressure of 7524 lbs. between the wheels and pinion to prevent slipping.

The wear of the wheels proving excessive, the gears were replaced by spurgear wheels and brake-wheels with steel brake-bands, which arrangement has proven more durable than the grooved wheels. Mr. Daniel Adamson states that if the frictional wheels had been run at a higher speed the results would have been better, and says they should run at least 30 ft. per second.

### HOISTING.

Approximate Weight and Strength of Cordage. (Boston and Lockport Block Co.)—See also pages 339 to 345.

Size in Circum- ference.		Weight of 100 ft. Manila, in lbs.	Strength of Manila Rope, in lbs.	Size in Circum- ference.	Size in Diam- eter.	Weight of 100 ft. Manila, in lbs.	Strength of Manila Rope, in lbs.
inch. 2 2/4 2/4 2/9 384 31/4 33/4 4 4/4 4/4	inch. 56 34 13/16 78 1 1 1/16 11/8 11/8 15/16 18/8 11/8	13 16 20 24 28 33 38 45 51 58 65	4,000 5,000 6,250 7,500 9,000 10,500 12,250 14,000 16,000 18,062 20,250	inch. 43/4 5 51/6 61/6 7 71/4 8 81/6 9	inch. 1 9/16 15/6 13/4 2 21/6 21/4 22/4 25/6 25/6 3	72 80 97 113 153 153 184 211 236 262	22,500 25,000 30,250 36,000 42,250 49,000 56,250 64,000 72,250 81,000

### Working Strength of Blocks. (B. & L. Block Co.)

Regular Mortise blocks Single and Wide Mortise and Extra Heavy Double, or Two Double Iron-Single and Double, or Two Double, strapped Blocks, will hoist about-Iron-strapped Blocks, will hoist about-

inch.	lbs.	inch.	lbs.
5	250	8	2,000
6	850	10	6,000
7	600	12	12,000
8	1,200	14	24,000
9	2,000	16	36,000
10	4,000	18	50,000
12	10,000	20	90,000
14	16,000		

Where a double and triple block are used together, a certain extra proportioned amount of weight can be safely holsted, as larger hooks are used.

## Comparative Efficiency in Chain-blocks both in Hoisting and Lowering.

(Tests by Prof. R. H. Thurston, Hoisting, March, 1892.)

			Hoisti 2000 ll		Work of Lowering.  Load of 2000 lbs., lowered 7 ft. in each case								
	on.	cy,			Exclus	Inclusive of Time.							
Number of Block.	Waste by Friction per cent.	Actual Efficiency per cent.	Relative Effi- ciency.	Velocity-ratio.	Pull on Hand Chain, lbs.	Length of Hand Chain, feet.	Work performed, ftlbs.	Relative Force expended by Operator.	Time in Min.	Relative Efficiency.			
1 2 3 4 5 6 7 8	20.50 68.00 69.00 71.20 73.96 75.66 77.00 81.03	81.00 28.80 26.04 24.84 23.00	.40 .39 .36 .33 .31	32,50 62,44 30 00 28,00 48,00 53,00 44,80 61,00	14.00 92.30 92.60 73.30 56.60 55.00	227. 436. 196. 168. 17.5 370. 310. 426.	1,816 6,104 18,090 15,556 1,282 20,942 17,050 20,000	1.00 3.33 10.00 8.60 0.71 11.60 9.40	1.50 2.50 2.80 1.80 2.75	1.000 .186 .050 .035 .380 .036 .029			

No. 1 was Weston's triplex block; No. 3, Weston's differential; No. 4, Weston's imported. The others were from different makers, whose names are not given. All the blocks were of one-ton capacity.

Proportions of Hooks.—The following formulæ are given by Henry R. Towne, in his Treatise on Cranes, as a result of an extensive experimental and mathematical investi-

gation. They apply to hooks of capacities from 250 lbs. to 20,000 lbs. Each size of hook is made from some commercial size of round iron. The basis in each case is, therefore, the size of iron of which the hook is to be made, indicated by A in the diagram. The dimension Dis arbitrarily assumed. The other dimensions, as given by the formulæ, are those which, while preserving a proper bearing-face on the interior of the hook for the ropes or chains which may be passed through it, give the greatest re-sistance to spreading and to ultimate rupture, which the amount of material in the original bar admits of. The symbol A is used to indicate the nominal capacity of the hook in tons of 2000 lbs. The formulæ which determine the lines of the other parts of the hooks of the several sizes are as follows, the measurements being all expressed in inches:

$$D = .5 \Delta + 1.25$$
  $G = .75D$ .  
 $E = .64 \Delta + 1.60$   $O = .868 \Delta + .66$   
 $F = .88 \Delta + .85$   $Q = .64 \Delta + 1.60$ 



Fig. 164.

$$H = 1.08A$$
  $L = 1.05A$   
 $I = 1.83A$   $M = .50A$   
 $J = 1.20A$   $N = .85B - .16$   
 $K = 1.13A$   $U = .866A$ 

The dimensions A are necessarily based upon the ordinary merchant sizes of round iron. The sizes which it has been found best to select are the following:

Capacity of hook: 11/6 16 1/4 1/8 1 10 tons. Dimension A: 56 11/16 34 1 1/16 11/4 136 134 2 21/4 216 27/6 8¼ in.

Experiment has shown that hooks made according to the above formula will give way first by opening of the jaw, which, however, will not occur except with a load much in excess of the nominal capacity of the hook. This yielding of the hook when overloaded becomes a source of safety, as it constitutes a signal of danger which cannot easily be overlooked, and which must proceed to a considerable length before rupture will occur and the load be dropped.

## POWER OF HOISTING-ENGINES.

Horse-power required to raise a Load at a Speed. – H.P. =  $\frac{\text{Gross weight in lbs}}{\text{Constant}}$  × speed in ft. per min. To this add 38,000

25% to 50% for friction, contingencies, etc. The gross weight includes the weight of cage, rope, etc. In a shaft with two cages balancing each other

use the net load + weight of one rope, instead of the gross weight.

To find the load which a given pair of engines will start.—Let A = area of cylinder in square inches, or total area of both cylinders, if there are two: P= mean effective pressure in cylinder in lbs. per sq. in.; S= stroke of cylinder in inches; C= circumference of hoisting-drum in inches; L= load lifted by hoisting-rope in lbs.; F = friction, expressed as a diminution of

the load. Then  $L = \frac{AP2S}{2} - F$ .

An example in Coll'y Engr., July, 1891, is a pair of hoisting-engines  $24'' \times 40''$ , drum 12 ft. diam., average steam-pre-sure in cylinder = 59.5 lbs.; A = 994.8; P = 59.5; S = 40; C = 452.4. Theoretical load, not allowing for friction, AP2S + C = 9889 lbs. The actual load that could just be lifted on trial was 798 lbs., making friction loss F = 1601 lbs., or 20 + per cent of the actual load lifted, or 16% of the theoretical load.

The above rule takes no account of the resistance due to inertia of the load, but for all ordinary cases in which the acceleration of speed of the cage is moderate, it is covered by the allowance for friction, etc. The resistance due to inertia is equal to the force required to give the load the velocity acquired in a given time, or, as shown in Mechanics, equal to the

product of the mass by the acceleration, or  $R = \frac{WV}{-}$  $\frac{1}{gT}$ , in which R = resistance in lbs. due to inertia; W = weight of load in lbs.; V = maximum velocity in feet per second; T = time in seconds taken to acquire the velocity V;

g=32.16.

Effect of Slack Rope upon Strain in Hoisting.—A series of tests with a dynamometer are published by the Trenton Iron Co., which show that a dangerous extra strain may be caused by a few inches of slack rope. In one case the cage and full tubs weighed 11,300 bs.; the strain when

rope In one case the cage and full tubs weighed 11,300 lbs.; the strain when the load was lifted gently was 11,525 lbs.; with 3 in. of slack chain it was 19,025 lbs, with 6 in. slack 25,750 lbs., and with 9 in. slack 27,950 lbs.

Limit of Depth for Hoisting.—Taking the weight of a cast-steel hoisting-rope of 1½ inches diameter at 2 lbs. per running foot, and its breaking strength at 84,000 lbs., it should, theoretically, sustain itself until 42,000 feet long before breaking from its own weight. But taking the usual factor of safety of 7, then the safe working length of such a rope would be only 6000 feet. If a weight of 3 tons is now hung to the rope, which is equivalent to that of a cage of moderate capacity with its loaded cars, the maximum langth at which such a rope could be used. with the factor of safety of 7 is length at which such a rope could be used, with the factor of safety of 7, is 3000 feet, or

$$2x + 6000 = \frac{84,000}{7}$$
;  $\therefore x = 8000 \text{ feet.}$ 

This limit may be greatly increased by using special steel rope of higher

This limit may be greatly increased by using special steel rope of higher strength, by using a smaller factor of safety, and by using taper ropes. (See paper by H. A. Wheeler, Trans. A. I. M. E., xix. 107.)

Large Holsting Becords.—At a colliery in North Derbyshire during the first week in June, 1890, 6309 tons were raised from a depth of 509 yards, the time of winding being from 7 a.m. to 8.30 p.m.

At two other Derbyshire pits, 170 and 140 yards in depth, the speed of winding and changing has been brought to such perfection that tubs are awn and changed three times in one minute. (Proc. Inst. M. E., 1890.)

At the Nottingham Colliery near Wilkesbarre, Pa., in Oct. 1891, 70,152 tons were shipped in 24.15 days, the average hoist per day being 1318 mine cars. The depth of hoist was 470 feet, and all coal came from one opening. The engines were fast motion, 22 × 48 inches, conical drums 4 feet 1 inch long. 7 feet diameter at small end and 9 feet at large end. (Eng g Nevs, Nov. 1891, Pneumatic Hoisting, (H.A. Wheeler, Trans. A. I. M. E., xix. 107.)—A pneumatic hoist was installed in 1876 at Epinac, France, consisting of two

A permatic noise was instined in 160 at Epinac, rance, consisting of two continuous air-tight iron cylinders extending from the bottom to the top of the shaft. Within the cylinder moved a piston from which was hung the cage. It was operated by exhausting the air from above the piston, the clower side being open to the atmosphere. Its use was discontinued on account of the failure of the mine. Mr. Wheeler gives a description of the system, but criticises it as not being equal on the whole to hoisting by steel ropes.

Preumatic hoisting-cylinders using compressed air have been used at blast-furnaces, the weighted piston counterbalancing the weight of the cage, and the two being connected by a wire rope passing over a pulley-sheave above the top of the cylinder. In the more modern furnaces steam-engine

hoists are generally used.

Counterbalancing of Winding-engines. (H. W. Hughes, Columbia Coll. Qly.)—Engines running unbalanced are subject to enormous variations in the load; for let W= weight of cage and empty tubs, say 6370 lbs.; c= weight of coal, say 4480 lbs.; r= weight of holsting rope, say 6000 lbs.; r'= weight of counterbalance rope hanging down pit, say 6000 lbs. The weight to be lifted will be:

If weight of rope is unbalanced. If weight of rope is balanced.

$$W+c+r-W$$
 or 10,480 lbs.  $W+c+r-(W+r')$ , middle of lift:

At beginning of lift: 
$$W+c+r-W$$
 or 10,480 lbs.  $W+c+r-(W+r')$ , At middle of lift:  $W+c+\frac{r}{2}-\left(W+\frac{r}{2}\right)$  or 4480 lbs.  $W+c+\frac{r}{2}+\frac{r'}{2}-\left(W+\frac{r}{2}+\frac{r'}{2}\right)$ , At end of lift:  $W+c-(W+r)$  or minus 1520 lbs.  $W+c+r'-(W+r)$ ,

shown by a formula given by Mr. Robert Wilson, which is based on the fact that the greatest work a winding engine has to do is to get a given mass into a certain velocity uniformly accelerated from rest, and to raise a load the distance passed over during the time this velocity is being obtained.

Let W = the weight to be set in motion: one cage, coal, number of empty tubs on cage, one winding rope from pit head-gear to bottom, and one rope from banking level to bottom.

v = greatest velocity attained, uniformly accelerated from rest;

g = gravity = 32.2;

t = time in seconds during which v is obtained:

L = unbalanced load on engine;

R = ratio of diameter of drum and crank circles;

P = average pressure of steam in cylinders;

N = number of cylinders;

S= space passed over by crank pin during time t;  $C=\frac{3}{2}$ , constant to reduce angular space passed through by crank, to

the distance passed through by the piston during the time t; A = area of one cylinder, without margin for friction. To this an addition for friction, etc., of engine is to be made, varying from 10 to 30% of A.

1st. Where load is balanced.

$$A = \frac{\left\{ \left( \frac{Wv^2}{2gt} \right) + \left( L\frac{vt}{2} \right) \right\} R}{PNSC.}$$

2d. Where load is unbalanced:

The formula is the same, with the addition of another term to allow for the variation in the lengths of the ascending and descending ropes. In this ca.se

 $h_1$  = reduced length of rope in t attached to ascending cage;  $h_2$  = increased length of rope in t attached to descending cage; w = weight of rope per foot in pounds. Then

$$A = \frac{\left[\left(\frac{Wv^2}{2gt}\right) + \left\{\left(\frac{vt}{L^{\frac{2}{2}}}\right) - \frac{h_1w + h_2w}{2}\right\}\right]R}{PNSC}$$

Applying the above formula when designing new engines, Mr. Wilson found that 30 inches diameter of cylinders would produce equal results, when balanced, to those of the 36-inch cylinder in use, the latter being unbalanced.

Counterbalancing may be employed in the following methods:

(a) Tapering Rope.—At the initial stage the tapering rope enables us to wind from greater depths than is possible with ropes of uniform section. The thickness of such a rope at any point should only be such as to safely bear the load on it at that point.

With tapering ropes we obtain a smaller difference between the initial and final load, but the difference is still considerable, and for perfect equalization of the load we must rely on some other resource. The theory of taper ropes is to obtain a rope of uniform strength, thinner at the cage end where the weight is least, and thicker at the drum end where it is greatest.

(b) The Counterpoise System consists of a heavy chain working up and down a staple pit, the motion being obtained by means of a special small drum placed on the same axis as the winding drum. It is so arranged that the chain hangs in full length down the staple pit at the commencement of the winding; in the centre of the run the whole of the chain rests on the bottom of the pit, and, finally, at the end of the winding the counterpoise has been rewound upon the small drum, and is in the same condition as it was at the commencement.

(c) Loaded-wagon System.—A plan, formerly much employed, was to have a loaded wagon running on a short incline in place of this heavy chain: the rope actuating this wagon being connected in the same manner as the above to a subsidiary drum. The incline was constructed steep at the commencement, the inclination gradually decreasing to nothing. At the beginning of a wind the wagon was at the top of the incline, and during a portion of the run gradually passed down it till, at the neet of cages, no pull was exerted on the engine—the wagon by this time being at the bottom. In the latter part of the wind the resistance was all against the engine, owing this having to pull the wagon up the incline, and this resistance increased from nothing at the meet of cages to its greatest quantity at the conclusion of the lift.

(d) The Endless-rope System is preferable to all others, if there is sufficient sump room and the shaft is free from tubes, cross timbers, and other impediments. It consists in placing beneath the cages a tail rope, similar in diameter to the winding rope, and, after conveying this down the pit, it is

attached beneath the other cage.

(e) Fat Ropes Coiling on Reels—This means of winding allows of a certain equalization, for the radius of the coil of lascending rope continues increase, while that of the descending one continues to diminish. Consequently, as the resistance decreases in the ascending load the leverage increases, and as the power increases in the other, the leverage diminishes The variation in the leverage is a constant quantity, and is equal to the thickness of the rope where it is wound on the drum.

By the above means a remarkable uniformity in the load may be obtained, the only objection being the use of flat ropes, which weigh heavier

and only last about two thirds the time of round ones.

(f) Conical Drums.—Results analogous to the preceding may be obtained by using round ropes coiling on conical drums, which may either be smooth, with the successive coils lying side by side, or they may be provided with a spiral groove. The objection to these forms is, that perfect equalization is not obtained with the conical drums unless the sides are very steep, and outsequently there is great risk of the rope slipping; to obviate this, scroll drums were proposed. They are, however, very expensive, and the lateral displacement of the winding rope from the centre line of pulley becomes very great, owing to their necessary large width.

very great, owing to their necessary large width.

(g) The Koepe System of Winding.—An iron pulley with a single circular roove takes the place of the ordinary drum. The winding rope passom one cage, over its head-goar pulley, round the drum, and, after passom one cage, over its head-goar pulley, round the drum, and, after passom one cage, over its head-goar pulley, round the drum, and, after passomer.

ing over the other head-gear pulley, is connected with the second cage. The winding rope thus encircles about half the periphery of the drum in the same manner as a driving-belt on an ordinary pulley. There is a balance rope beneath the cages, passing round a pulley in the sump; the arrangement may be likewed to an endless rope, the two cages being simply points of attachment.

### BELT-CONVEYORS.

Grain-elevators. — American Grain-elevators are described in a paper by E. Lee Heidenreich, read at the International Engineering Congress at Chicago (Trans. A. S. C. E. 1893). See also Trans. A. S. M. E. vii, 660. EBands for carrying Grain. — Flexible-rubber bands are exten-

sively used for carrying grain in and around elevators and warehouses. article on the grain storage warehouses of the Alexandria Dock, Liverpool (Proc. Inst. M. E., July, 1891), describes the performance of these bands, aggregating three miles in length. A band 18½ inches wide, 1270 feet long, running 9 to 10 feet per second has a carrying capacity of 50 tons per hour. See also paper on Belts as Grain Conveyors, by T. W. Hugo, Trans. A. S. M. E. vi, 400.

Carrying-bands or Belts are used for the purpose both of sorting coal and of removing impurities. These carrying-bands may be said to be confined to two descriptions, namely, the wire belt, which consists of an encliess length of woven wire; and the steel-plate belt, which consists of two or three endless chains, carrying steel plates varying in width from 6 inches to 14 inches. (Proc. Inst. M. E., July, 1890.)

### CRANES.

Classification of Cranes. (Henry R. Towne, Trans. A. S. M. E., iv. 288. Revised in *Hoisting*, published by The Yale & Towne Mfg. Co.)

A. Hoist is a machine for raising and lowering weights. A Crane is a

hoist with the added capacity of moving the load in a horizontal or lateral direction.

Cranes are divided into two classes, as to their motions, viz., Rotary and Rectilinear, and into four groups, as to their source of motive power, viz.;

Hand —When operated by manual power.

Power.—When driven by power derived from line shafting.

Steam, Electric. Hydraulic, or Pneumatic.—When driven by an engine or motor attached to the crane, and operated by steam, electricity, water, or air transmitted to the crane from a fixed source of supply.

Locomotive.—When the crane is provided with its own boiler or other generator of power, and is self-propelling; usually being capable of both rotary and rectilinear motions.

Rotary and Rectilinear Cranes are thus subdivided:

## ROTARY CRANES.

(1) Swing-cranes.—Having rotation, but no trolley motion.

(2) Jib-cranes.—Having rotation, and a trolley travelling on the jib.

(3) Column-cranes.-Identical with the jib-cranes, but rotating around a fixed column (which usually supports a floor above).

(4) Pillar-cranes.—Having rotation only; the pillar or column being sup-

ported entirely from the foundation.
(5) Pillar Jib-cranes.—Identical with the last, except in having a jib and trolley motion.

(6) Derrick-cranes.-Identical with jib-cranes, except that the head of the mast is held in position by guy-rods, instead of by attachment to a roof or ceiling.

(7) Walking-cranes.—Consisting of a pillar or jib-crane mounted on wheels

and arranged to travel longitudinally upon one or more rails.

(8) Locomotive-crosses.—Consisting of a pillar crane mounted on a truck, and provided with a steam-engine capable of propelling and rotating the crane, and of hoisting and lowering the load.

### RECTILINEAR CRANES.

(9) Bridge-cranes.—Having a fixed bridge spanning an opening, and a trolley moving across the bridge.
(10) Transcranes.—Consisting of a truck, or short bridge, travelling lon-

gitudinally on overhead rails, and without trolley motion.

(11) Travelling-cranes.—Consisting of a bridge moving longitudinally or overhead tracks, and a trolley moving transversely on the bridge.

(12) Gantties.—Consisting of an overhead bridge, carried at each end by a trestle travelling on longitudinal tracks on the ground, and having a trolley

moving transversely on the bridge.

(13) Rotary Bridge-cranes.—Combining rotary and rectilinear movements and consisting of a bridge pivoted at one end to a central pier or post, and supported at the other end on a circular track; provided with a trolley moving transversely on the bridge.

For descriptions of these several forms of cranes see Towne's "Treatise

on Cranes."

Stresses in Cranes.—See Stresses in Framed Structures, p. 440, ante.

Position of the Inclined Brace in a Jib-crane.—The most economical arrangement is that in which the inclined brace intersects the jib at a distance from the mast equal to four fifths the effective radius of

the crane. (Hoisting.)

A Large Travelling-crane, designed and built by the Morgan Engineering Co., Alliance, O., for the 12-inch-gun shop at the Washington Navy Yard, is described in American Machinist, June 12, 1890. Capacity, 150 net tons; distance between centres of inside rails, 59 ft. 6 in.; maximum cross travel, 44 ft. 2 in.; effective lift, 40 ft.; four speeds for main hoist, 1, 2, 4, and 8 ft. per min.; loads for these speeds, 150, 75, 374, and 18% tons respectively; traversing speeds of trolley on bridge, 25 and 50 ft. per minute: speeds of bridge on main track, 30 and 60 ft. per minute. Square shafts are employed for driving

A 150-ton Pillar-crane was erected in 1893 on Finnieston Quay, Glasgow. The jib is formed of two steel tubes, each 39 in. diam. and 90 ft. long. The radius of sweep for heavy lifts is 65 ft. The jib and its load are counterbalanced by a balance-box weighted with 100 tons of iron and steel punchings. In a test a 130-ton load was lifted at the rate of 4 ft. per minute, and a complete revolution made with this load in 5 minutes. Eng'g News,

July 20, 1893.

July 20, 1893.

Compressed-air Travelling-cranes, —Compressed-air overhead travelling-cranes have been built by the Lane & Bodley Co., of Cincinnati. They are of 20 tons nominal capacity, each about 50 ft. span and 400 ft. length of travel, and are of the triple-motor type, a pair of simple reversing-engines being used for each of the necessary operations, the pair of engines for the bridge and the pair for the trolley travel being each 5-inch bore by 7-inch control to the pair for hosting is 2-inch bore by 2-inch stroke. stroke, while the pair for hoisting is 7-inch bore by 9-inch stroke. furnished by a compressor having steam and air cylinders each 10-in. diam. and 12-in. stroke, which with a boiler-pressure of about 80 pounds gives an air-pressure when required of somewhat over 100 pounds. The air-compressor is allowed to run continuously without a governor, the speed being regulated by the resistance of the air in a receiver. From a pipe extending from the receiver along one of the supporting trusses communication is continuously maintained with an auxiliary receiver on each traveller by means of a oneinch hose, the object of the auxiliary receiver being to provide a supply of air near the engines for immediate demands and independent of the hose connection, which may thus be of small dimension. Some of the advantages said to be possessed by this type of crane are: simplicity; absence of all moving parts, excepting those required for a particular motion when that motion is in use; no danger from fire, leakage, electric shocks, or freezing; ease of repair; variable speeds and reversal without gearing; almost entire absence of noise; and moderate cost.

Quay-cranes.—An illustrated description of several varieties of stationary and travelling cranes, with results of experiments, is given in a paper on Quay-cranes in the Port of Hamburg by Chas. Nehls, Trans. A. S. C. E., Chicago Meeting, 1893.

Hydraulic Cranes, Accumulators, etc.—See Hydraulic Pressure Transmission, page 616, ante.

Electric Oranes.—Travelling-cranes driven by electric motors have largely supplanted cranes driven by square shafts or flying-ropes. Each of the three motions, viz., longitudinal, traversing and hoisting, is usually accomplished by a separate motor carried upon the crane.

# WIRE-ROPE HAULAGE.

Methods for transporting coal and other products by means of wire rope, though varying from each other in detail, may be grouped in five classes:

1. The Self-acting or Gravity Inclined Plane.

II. The Simple Engine-plane.

III. The Tail-rope System. V. The Endless-rope System. V. The Cable Tramway.

The following brief description of these systems is abridged from a pamphlet on Wire-rope Haulage, by Wm. Hildenbrand, C.E., published by John A. Roebling's Sons Co., Trenton, N. J.

1. The Self-acting Inclined Plane.—The motive power for the self-acting inclined plane is gravity; consequently this mode of transporting coal finds application only in places where the coal is conveyed from a bigher to a lower point and where the roles has sufficient grade for the higher to a lower point and where the plane has sufficient grade for the

loaded descending cars to raise the empty cars to an upper level.

At the head of the plane there is a drum, which is generally constructed of wood, having a diameter of seven to ten feet. It is placed high enough to allow men and cars to pass under it. Loaded cars coming from the pit

to allow men and cars to pass under it. Loaded cars coming from the pit are either singly or in sets of two or three switched on the track of the plane, and their speed in descending is regulated by a brake on the drum. Supporting rollers, to prevent the rope dragging on the ground, are generally of wood, 5 to 6 inches in diameter and 18 to 24 inches long, with 34-to 36-inch iron axies. The distance between the rollers varies from 15 to 30 feet, steeper planes requiring less rollers than those with easy grades. Considering only the reduction of friction and what is best for the preserved in the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the contract of the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greatest than the greate tion of rope, a general rule may be given to use rollers of the greatest possible diameter, and to place them as close as economy will permit.

The smallest angle of inclination at which a plane can be made self-acting will be when the motive and resisting forces balance each other. The motive forces are the weights of the loaded car and of the descending rope. The resisting forces consist of the weight of the empty car and ascending rope, of the rolling and axle friction of the cars, and of the axle friction of the supporting rollers. The friction of the drum, stiffness of rope, and resistance of air may be neglected. A general rule cannot be given, because a change in the length of the plane or in the weight of the cars changes the proportion of the forces; also, because the coefficient of friction, depending on the condition of the road, construction of the cars, etc., is a very uncertain factor.

For working a plane with a 16-inch steel rope and lowering from one to four pit cars weighing empty 1400 lbs. and loaded 4000 lbs., the rise in 100 feet necessary to make the plane self-acting will be from about 5 to 10 feet, decreasing as the number of cars increase, and increasing as the length of plane increases.

A gravity inclined plane should be slightly concave, steeper at the top than at the bottom. The maximum deflection of the curve should be at an inclination of 45 degrees, and diminish for smaller as well as for steeper

inclinations.

II. The Simple Engine-plane.—The name "Engine-plane" is given to a plane on which a load is raised or lowered by means of a single wire rope and stationary steam-engine. It is a cheap and simple method of conveying coal underground, and therefore is applied wherever circumstances permit it.

Under ordinary conditions such as prevail in the Pennsylvania mine region, a train of twenty-five to thirty loaded cars will descend, with reasonable velocity, a straight plane 5000 feet long on a grade of 134 feet in 100, while it would appear that 234 feet in 100 is necessary for the same number of empty cars. For roads longer than 5000 feet, or when containing sharp curves, the grade should be correspondingly larger.

HIL. The Tail-rope System.—Of all methods for conveying coal methods for conveying coal methods for conveying coal methods.

underground by wire rope, the tail-rope system has found the most applica-tion. It can be applied under almost any condition. The road may be straight or curved, level or undulating, in one continuous line or with side branches. In general principle a tail-rope plane is the same as an engine-plane worked in both directions with two ropes. One rope, called the "main rope," serves for drawing the set of full cars outward; the other, called the "tail-rope," is necessary to take back the empty set, which on a level or undulating road cannot return by gravity. The two drums may be located at the opposite ends of the road and driven by separate engines, but more frequently they are on the same shaft at one end of the plane. In the first case each rope would require the length of the plane, but in the second case the tail rope must be twice as long, being led from the drum around a sheave at the other end of the plane and back again to its startingpoint. When the main rope draws a set of full cars out, the tail-rope drum runs loose on the shaft, and the rope, being attached to the rear car unwinds itself steadily. Going in, the reverse takes place. Each drum is provided with a brake to check the speed of the train on a down grade and prevent its overrunning the forward rope. As a rule, the tail rope is strained less than the main rope, but in cases of heavy grades dipping outward it is possible that the strain in the former may become as large, or even larger, than in the latter, and in the selection of the sizes reference should be had to this circumstance.

IV. The Endless-rope System.—The principal features of this

system are as follows:

The rope, as the name indicates, is endless.

2. Motion is given to the rope by a single wheel or drum, and friction is obtained either by a grip-wheel or by passing the rope several times around

the wheel.
3. The rope must be kept constantly tight, the tension to be produced by artificial means. It is done in placing either the return-wheel or an extra tension wheel on a carriage and connecting it with a weight hanging over a pulley, or attaching it to a fixed post by a screw which occasionally can be

4. The cars are attached to the rope by a grip or clutch, which can take hold at any place and let go again, starting and stopping the train at will,

without stopping the engine or the motion of the rope.

5. On a single-track road the rope works forward and backward, but on a double track it is possible to run it always in the same direction, the full

cars going on one track and the empty cars on the other.

This method of conveying coal, as a rule, has not found as general an introduction as the tail-rope system, probably because its efficacy is not so apparent and the opposing difficulties require greater mechanical skill and more complicated appliances. Its advantages are, first, that it requires one third less rope than the tail-rope system. This advantage, however, is partially counterbalanced by the circumstance that the extra tension in the rope requires a heavier size to move the same load than when a main and tail rope are used. The second and principal advantage is that it is possible to start and stop trains at will without signalling to the engineer. On the other hand, it is more difficult to work curves with the endless system, and still more so to work different branches, and the constant stretch of the rope under tension or its elongation under changes of temperature frequently causes the rope to slip on the wheel, in spite of every attention,

causing delay in the transportation and injury to the rope.

V. Wire-rope Tramways.—The methods of conveying products on a suspended rope tramway find especial application in places where a mine is located on one side of a river or deep ravine and the loading station on the other. A wire rope suspended between the two stations forms the track on which material in properly constructed "carriages" or "buggies" is transported. It saves the construction of a bridge or trestlework, and is practical for a distance of 2000 feet without an intermediate support.

There are two distinct classes of rope tramways:

1. The rope is stationary, forming the track on which a bucket holding the material moves forward and backward, pulled by a smaller endies wire rope.

2. The rope is movable, forming itself an endless line, which serves at

2. The rope is movable, forming used an entiress line, which serves at the same time as supporting track and as pulling rope.

Of these two the first method has found more general application, and is especially adapted for long spans, steep inclinations, and heavy loads. The second method is used for long distances, divided into short spans, and is only applicable for light loads which are to be delivered at regular intervals.

only applicable for light loads which are to be delivered at regular intervals. For detailed descriptions of the several systems of wire-rope transportation, see circulars of John A. Roebling's Sons Co., The Trenton Iron Co., and other wire-rope manufacturers. See also paper on Two-rope Haulage Systems, by R. Van A. Norris, Trans. A. S. M. E., xii. 626.

In the Bleichert System of wire-rope transways, in which the track rope is detailed by the control of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the provider of the

stationary, loads of 1000 pounds each and upward are carried. While the average spans on a level are from 150 to 200 feet, in crossing rivers, ravines, etc., spans up to 1500 feet are frequently adopted. In a tramway on this system at Granite, Montana, the total length of the line is 9750 feet, with a fall of 125 feet. The descending loads, amounting to a constant weight of about 11 tons, develop over 14 horse-power, which is sufficient to haul the ampty buckets as well as about 50 tons of supplies per day up the line, and

also to run the ore crusher and elevator. It is capable of delivering 250 tons of material in 10 hours.

## SUSPENSION CABLEWAYS OR CABLE HOISTS. (Trenton Iron Co.)

In quarrying, rock-cutting, stripping, piling, dam-building, and many other operations where it is necessary to hoist and convey large individual loads economically, it frequently happens that the application of a system of derricks is impracticable, by reason of the limited area of their efficiency and the room which they occupy.

To meet such conditions cable hoists are adapted, as they can be efficiently operated in clear spans up to 1500 feet, and in lifting individual loads up to 15 tons. Two types are made—one in which the hoisting and conveying are done by separate running ropes, and the other applicable only to inclines, in which the carriage descends by gravity, and but one running rope is required. The moving of the carriage in the former is effected by means of an endless rope, and these are commonly known as "endless rope" cablehoists to distinguish them from the latter, which are termed "inclined" cable-hoists.

The general arrangement of the endless-rope cable-hoists consists of a main cable passing over towers. A frames or masts, as may be most convenient, and anchored firmly to the ground at each end, the requisite tension in the cable being maintained by a turnbuckle at one anchorage.

Upon this cable travels the carriage, which is moved back and forth over the line by means of the endless rope. The hoisting is done by a separate rope, both ropes being operated by an engine specially designed for the purpose, which may be located at either end of the line, and is constructed in such a way that the hoisting-rope is colled up or paid out automatically as the carriage is moved in and out. Loads may be picked up or discharged at any point along the line. Where sufficient inclination can be obtained in the main cable for the carriage to descend by gravity, and the loading and automatically appears to the sufficient property of the carriage of the carriage is one gap at fixed points the endless type gap be discensed with unloading is done at fixed points, the endless rope can be dispensed with. The carriage, which is similar in construction to the carriage used in the endless-rope cableways, is arrested in its descent by a stop-block, which may be clamped to the main cable at any desired point, the speed of the descending carriage being under control of a brake on the engine-drum.

Stress in Hoisting-ropes on Inclined Planes.

			(Tre	nton Iroi	1 Co.)			
Rise per 100 ft. horizontal.	Angle of inclination.	Stress in lbs. per ton of 2000 lbs.	Rise per 100 ft. horizontal.	Angle of inclination.	Stress in lbs. per ton of 2000 lbs.	Rise per 100 ft. horizoutal.	Angle of inclination.	Stress in lbs. per ton of 2000 lbs.
ft. 5 10 15 20 25 30 35 40 45 50	2° 52′ 5° 43′ 8° 32′ 11° 10′ 14° 03′ 16° 42′ 19° 18′ 21° 49′ 24° 14′ 26° 34′	140 240 336 432 527 613 700 782 860 933	ft. 555 60 65 70 75 80 85 90 95	28° 49′ 30° 58′ 38° 02′ 35° 00′ 36° 53′ 38° 40′ 40° 22′ 42° 00′ 43° 32′ 45° 00′	1008 1067 1128 1185 1288 1287 1332 1375 1415	ft. 110 120 130 140 150 160 170 180 190 200	47° 44′ 50° 12′ 52° 26′ 54° 28′ 56° 19′ 58° 00′ 59° 83′ 60° 57′ 62° 15′ 63° 27′	1516 1573 1020 1663 1699 1730 1758 1782 1804 1822

The above table is based on an allowance of 40 lbs, per ton for rolling friction, but an additional allowance must be made for stress due to the weight of the rope proportional to the length of the plane. A factor of safety of 5 to 7 should be taken.

In hoisting the slack-rope should be taken up gently before beginning the lift, otherwise a severe extra strain will be brought on the rope.

The best rope for inclined planes is composed of six strands of seven wires each, laid about a hempen centre. The wires are much coarser than those of the 114-wire rope of the same diameter, and for this reason the 42-wire rope is better adapted to withstand the rough usage and surface wear encountered upon inclined planes.

A Double-suspension Cableway, carrying loads of 26 tons, erected ne

Williamsport, Pa., by the Trenton Iron Co., is described by E. G. Spilsbury in Trans. A. I. M. E. xx. 766. The span is 733 feet, crossing the Susquehanna River. Two steel cables, each 2 in, diam., are used. On these cables runs a carriage supported on four wheels and noved by an endless cable 1 inch in diam. The load consists of a cage carrying a railroad-car loaded with lumber, the latter weighing about 12 tons. The power is furnished by a 50-H.P. engine, and the trip across the river is made in about three minutes.

l le

engine, and the trip across the river is made in about three minutes. A hoisting cableway on the endless-rope system, erected by the Lidgerwood Mfg. Co., at the Austin Dam, Texas, had a single span 1350 ft. in length, with main cable 2½ in. diam., and hoisting-rope 1½ in. diam. Loads of 7 to 8 tons were handled at a speed of 600 to 800 ft. per minute.

Tension required to Prevent Slipping of Wire on Brum. (Trenton Iron Co.)—The amount of artificial tension to be applied in an endless rope to prevent slipping on the driving-drum depends on the character of the drum, the condition of the rope and number of laps which it makes. If Tand S represent respectively the tensions in the taut and slack lines of the rope; W, the necessary weight to be applied to the tail-sheave; R, the resistance of the cars and rope, allowing for friction; n, the number of half-laps of the rope on the driving-drum; and f, the coefficient of friction, the following relations must exist to prevent slipping:

$$T=Se^{fn\pi}, \quad W=T+S, \quad ext{and} \quad R=T-S;$$
 from which we obtain  $W=rac{e^{fn\pi}+1}{e^{fn\pi}-1}R,$ 

in which e = 2.71828, the base of the Naperian system of logarithms. The following are some of the values of f:

	Dry.	Wet.	Greasy.
Rope on a grooved iron drum	.120	.085	.070
Rope on wood-filled sheaves	235	.170	.140
Rope on rubber and leather filling	.495	.400	.205

The values of the coefficient  $\frac{e^{fn\pi}+1}{e^{fn\pi}-1}$ , corresponding to the above values

of f, for one up to six half-laps of the rope on the driving-drum or sheaves, are as follows:

,	72	= Number	of Half-l	aps on Dri	ving-whe	el.
,	1	2	3	4	5	6
.070	9.130	4.623	3.141	2,418	1.999	1.729
.085	7.536	3.833	2.629	2.047	1.714	1.505
.120	5.845	2.777	1.953	1.570	1.358	1.232
.140	4.628	2.418	1.729	1.416	1.249	1.154
.170	3.833	2.047	1.505	1.268	1.149	1.085
.205	3.212	1.762	1.338	1.165	1.083	1.043
.235	2.831	1.592	1.245	1.110	1.051	1.024
.400	1.795	1.176	1.047	1.018	1.004	1.001
.495	1.538	1.093	1.019	1.004	1.001	

The importance of keeping the rope dry is evident from these figures. When the rope is at rest the tension is distributed equally on the two lines

When the rope is at rest the tension is distributed equally on the two lines of the rope, but when running there will be a difference in the tensions of the taut and slack lines equal to the resistance, and the values of T and S may be readily computed from the foregoing formulæ.

Taper Ropes of Uniform Tensile Strength.—Prof. A. S. Herschel in The Engineer, April, 1880, p. 267, gives an elaborate mathematical investigation of the problem of making a taper hoisting-rope of uniform tensile strength at every point in its length. Mr. Charles D. West, commenting on Prof. Herschef's paper, gives a similar solution, and derives therefrom the following formula, based on a breaking strain of 80,000 lbs. per sq. in. of the rope, core included, with a factor of safety of 10:

$$F = 3680[\log G - \log g]; \log G = \frac{F}{3680} + \log g;$$

^{&#}x27; which F = length in fathoms, and G and g the girth in inches at any two ons F fathoms apart.

EXAMPLE.—Let it be required to find the dimensions of a steel-wire rope to

draw 6720 lbs.—cage, trams, and coal—from a depth of 400 fathoms.

Area of section at lower end = 6720 + 8000 = .84 sq. in.; therefore girth = 31/4 in, at bottom.

$$Log G = 400 + 3680 + log 8.25 = .10869 + .51188 = .62057;$$

therefore G=4.174, or, say, 4 8/16 in. girth at top. The equations show that the true form of rope is not a regular taper or trupcated cone, but follows a logarithmic curve, the girth rapidly increasing towards the upper end.

# Relative Effect of Various-sized Sheaves or Drums on the Life of Wire Ropes.

(Thos. E. Hughes, Coll'y Eng., April, 1898.) CAST-STEEL ROPES FOR INCLINES.

Made of 6 strands, of 7 wires each, laid around a hemp core.

Diam. of Rope in	Diame	ters of She ages	eaves or D of life for				ent-
inches.	100%.	90%.	80%.	75≴.	60≴.	50%.	25%.
136 136 114 114 116	16 14 12 10 8.5	14 12 10 8.5 7.75	12 10 8 7.75 6.75	11 8.5 7.25 7	9 7 6.5 6	7 6 5.5 5	4.75 4.5 4.25 4 8.75
36 34 56 14	7.75 7 6 5	7 6.25 5.25 4.5	6.25 5.5 4.5 4	5.75 5 4 8.5	4.25 4.25 8.25 2.75	3.75 3.5 3 2.25	3.25 2.75 2.5 1.75

The use of iron ropes for inclines has been generally abandoned, steel ropes being more satisfactory and economical.

CAST-STEEL HOISTING-ROPES.

Made of 6 strands, of 19 wires each, laid around a hemp core.

Diam. of Rope in	Diame	Diameters of Sheaves or Drums in feet, showing percentages of life for various diameters.											
inches.	100≴.	90≴.	80%.	75%.	60≴.	50%.	25≴.						
136	14	12	10	8.5	7	6	4.5						
192	12	10	8	7	6	5.25	4 25						
11/2	10	8.5	7.5	6.75	5.5	5	4						
11/6	9	7.5	6.5	6	5	4.5	3.75						
1	8	7	6	5.5	4.5	4	3.50						
76	7.5	6.75	5.75	5	4.25	8.5	3						
\$2	5.5	4.5	. 4	8.75	3.25	18	2.25						
<b>52</b>	4.5	4	8.75	3.25	3	2.5	2						
1,6	4	3	8	2.75	2.25	2	1.5						
92 I	8			2	l	1.5	l						

# WIRE-ROPE TRANSMISSION.

The following data and formulæ are taken from a paper by Wm. Hewitt, of the Trepton Iron Co., 1890. (See also circulars of John A. Roebling's Sons Co., Trenton, N. J.; "Transmission of Power by Wire Ropes," by A. W. Stahl, Van Noatrand's Science Series No. 28; and Reuleaux's Constructor.)

The Section of Wire Hope best suited, under ordinary conditions, for the transmission of power is composed of 6 strands of 7 wires each, laid together about a hempen centre. Ropes of 12 and 19 wires to the strand are also used. They are more flexible, and may be applied with advantage under conditions which do not allow the use of large transmission wheels, but admit of high speed. They are not as well adapted to stand surface wear, however, on account of the smaller size of the wires.

The Driving-wheels (Fig. 165) are usually of cast iron, and are made as light as possible consistent with the requisite strength. Various



Fig. 16c.

materials have been used for filling the bottom of the groove, such as tarred oakum, juteyarn, hard wood, India-rubber and leather. The filling which gives the best satisfaction, however, consists of segments of leather and blocks of India-rubber, soaked in tar and packed alternately in the groove, and then turned to a true surface.

In long spans, intermediate supporting wheels are frequently used, and it is usually sufficient to support only the slack or following side of the rope; but whatever the distance that the power is transmitted, the driving side of the rope will require a less number of supports than the slack side. The sheaves supporting the driving side, however, should in all cases be of equal diameter with the driving-wheels. With the slack side smaller wheels.

may be used, but their diameter should not be less than one half that of the driving-sheaves.

The system of carrying sheaves may generally be replaced to advantage by that of intermediate stations. The rope thus, instead of running the whole length of the transmission, runs only from one station to the other; and it is advisable to make the stations equidistant, so that a rope may be kept on hand, ready spliced, to put on the wheels of any span, should its rope give out. This method is to be preferred where there is sometimes a jerking motion to the rope, as it prevents sudden movements of this kind from being transmitted over the entire line.

Gross horse-power transmitted =  $N_0 = .0003702D^2v\left(k - \frac{ED}{18R}\right)$ , in which D = diameter of rope in inches (= 9 times diameter of single wire); v =

D = diameter of rope in inches (= v times diameter of engage wire), v = velocity of rope in feet per second; k = safe stress per square inch on wires = for iron 25,700 lbs.; E = modulus of elasticity = 28,500,000 for iron; R = radius of driving-wheels in inches. The term  $\frac{ED}{18R}$  = the stress per square

inch due to bending of wires around sheaves.

Loss due to centrifugal force =  $N_1 = .0000424 D^2 v^2$ ;

Loss due to journal friction of driving wheels =  $N_9$  = .0000045 (1650  $N_0$  + wv); "intermediate-wheels = .0000045 (W + w)v;

in which W = total weight of rope; w = weight of wheel and axle. Net horse-power transmitted,

$$N=N_0-N_1-N_2=D^2v\left[..0003675\left(k-\frac{ED}{18R}\right)-.0000424v\right]-.0000045wv.$$

For a maximum value of N the diameter of the wheels should be approximately from 185 to 192 times the diameter of the rope, and for the latter ratio of diameters an approximate formula for the actual horse-power transmitted is N=3 0148 $D^3V$ , in which V= number of revolutions of wheels per minute.

The proper deflections when the rope is at rest are obtained from the formula Deflection = .00005765 span², and are as follows:

It has been found in practice that when the deflection of the rope at rest is less than 3 inches the transmission cannot be effected with satisfaction, and shafting or belting is to be preferred. This deflection corresponds to a span of about 54 feet. It is customary to make the under side of the rope the driving side. The maximum limit of span is determined by the maximum deflection that may be given to the upper side of the rope when in motion. Assuming that the clearance between the upper and lower sides to the rope should not be less than two feet, and that the wheels are at least to feet in diameter, we have a maximum deflection of the upper side of 8 feet, which corresponds to a span of about 370 feet.

Much greater spans than this are practicable, in cases where the contour the ground is such that the upper side of the rope may be made the

ciriver, as in crossing gullies or valleys, and there is nothing to interfere with obtaining the proper deflections. Some very long transmissions of power have been effected in this way without an intervening support. There is one at Lockport, N. Y., for instance, with a clear span of about 1700 feet.

In a later circular of the Trenton Iron Co. (1892) the above figures are somewhat modified, giving lower values for the power transmitted by a given

rope, as follows:
The proper ratio between the diameters of rope and sheaves is that which will permit the maximum working tension to be obtained without overstraining the wires in bending. For rope of 7-wire strands this ratio is about 1:150; for rope of 12-wire strands, 1:115; and for rope of 19-wire strands, 1:90; which gives the following minimum diameter of sheaves, in inches, corresponding to maximum efficiency.

Diam. rope, in inches.	14	5/16	%	7/16	₩	9/16	%	11/16	34	<b>%</b>	1	11/6
7-wire strands 12 " " 19 " "	37	47 36	56 43 84	66 50 39	75 57 45	84 65 51	94 72 56	103 78 62	112 86 68	101	115 90	101

Assuming the sheaves are of equal diameter, and not smaller than consistent with maximum efficiency as determined by the preceding table, the actual horse-power transmitted approximately equals 8.1 times the square of the diameter of the rope in inches multiplied by the velocity in feet per second.

From this rule we deduce the following:

Horse-power of Wire-rope Transmission.

Velocity, in feet ( per second.	20	80	, 40	50	60	70	80
Diam. Rope, in inches.		F	lorse-po	wer Tra	nsmitted	1.	
1/4 5/16 8/8	4 6 9	6 9 13	8 12 17	10 15 22	12 18 26	14 21 31	16 24 85
8/8 7/16 1/2 9/16	12 16 20	18 23 29	24 81 89	30 39 49	36 47 59	42 54 69	62 78
5/8 11/16 8/4 7/8	24 29 85	36 44 52	48 59 70	61 73 87	73 88 105	85 103 122	97 117 140
7/8	48 62	71 98	95 124	119 155	142 186	166 217	190 248

The proper deflection to give the rope in order to secure the necessary tension is

 $h = .0000695S^2$ .

h = the deflection with the rope at rest, and S = the span, both in feet.

Durability of Wire Ropes. - At the Risdon Iron Works, San Francisco, a steel wire rope 24 inches in circumference running over 10-foot sheaves at 5000 ft. per minute has transmitted 40 H.P. for six years without renewing the rope. At the wire-mills a steel wire rope 2% in. in circumference running over 8-foot sheaves has been running steadily for a period of three years at a velocity of 4500 ft. per minute, transmitting 80 H.P.

In Inclined Transmissions, when the angle of inclination is

great, the proper deflections cannot be readily determined, and the rope becomes more sensitive to the ordinary variations in the deflections, so that comes more sensative to the ordinary variations in the denections, so that tightening sheaves must be resorted to for producing the requisite tension, as in the case of very short spans. When the horizontal distance between the two wheels is less than 60 ft., or when the angle of inclination exceeds 30 to 45 degrees, it will be found desirable to use tightening sheaves. Tightening pulleys should be placed on the slack side of the rope.

The Wire-rope Catenary. (From an article on Wire-rope Transmission, by M. Arthur Achard, Proc. Inst. M. E., Jan. 1881.) -The wires have to bear two distinct molecular strains: First, the tension S

resulting from the maximum tension T necessary to transmit the motion, whose value in pounds per square inch is  $S = \frac{1}{1/4\pi d^2i}$ , d being the diameter of the wires and i their number; second, the strain produced by flexure upon the pulley, which is approximately  $Z = E \frac{d}{2R}$ , R being the radius of the pulley and E the modulus of elasticity of the metal. The approximate values allowed in practice for iron-wire ropes are S=14,220 lbs. per square inch, and Z = 11,880 lbs. per square inch. S + Z should not exceed say 11

tons (24,640 lbs.) per square inch.

The curve in which the rope hangs is a catenary; and it is upon the form of the particular catenary in which it hangs, whether more or less deep, as well as upon its lineal weight, that the tension to which it is subjected depends. By fixing the weight of the rope and its length, the forms which its two spans assume in common, when at rest, is determined, and consequently their common tension; which latter must be such as to produce in running the two unequal tensions, T and t, necessary for the transmission of the power. The driving force = T - t.

Moreover, the tension in either span is not the same throughout its whole length; it is a minimum at the lowest point of the curve and goes on increasing towards the two extremities. The calculation of the tension at the lowest point is very complicated if based upon the true form of the catenary; but by substituting a parabola for the catenary, which is allowable in almost all cases, the calculation becomes simple. If the two pulleys are on the same level, the lowest point is midway between them, and the tension at this point is  $S_0 = \frac{pl^2}{r}$  $\frac{F'}{8h}$ , p being the lineal weight, or pounds per foot, of the

rope, l its horizontal projection, which is approximately equal to the distance between the centres of the pulleys, and h the deflection in the middle. The catenary possesses the remarkable mechanical property that the difference between the tensions at any two points is equal to the weight of a length of

rope corresponding to the difference in level between the two points. tensions therefore at the two ends will be  $S_1 = S_0 + ph = \frac{pl^2}{2h} + ph$ .  $\frac{1}{8h} + ph.$ 

substituting for  $S_1$  in the above equation the required values of T and t, and solving it with relation to h, the deflections  $h_1$  and  $h_2$  of the driving and trailing spans will be obtained. The deflection  $h_0$ , common to the two spans at rest, is given by the equation  $h_0 = \sqrt{1/2h_1^2 + 1/2h_2^2}$ . If w = the sectional area of the iron portion of the rope, and S the unit strain which the maximum

area of the iron portion of the rope, and S was since S tension T produces on it, we have  $wS = T = \frac{p!^2}{8h_1} + ph_1$ . Taking the sectional

area w of the rope in square inches, and its weight p in pounds per foot run, the ratio w+p differs little from a mean value of 0.24. The safe limit of working tension usually assigned for iron-wire ropes is S=14,220 lbs. per square inch. Hence  $ws + p = 0.24 \times 14,220 = 3410$ ; and we have the approx-

imate equation  $\frac{r}{8h_1} + h_1 = 3410$ , which is useful as giving a relation between

the length l and deflection  $h_1$  for the driving-span of a rope. In the case of leather, w + p = 2.53 approximately, and it is impossible to give S a higher value than about 355 lbs. per square inch; the relation obtained would be

 $-+h_1=900$ , which with equal deflections would give much shorter spans.  $8h_1$ If the working tension S were reduced to the American limit of 185 lbs. per square inch for leather belts, the above figure 900 would be reduced to 470,

which would further shorten the span one half.

It is therefore owing to the great strength which iron-wire ropes possess in proportion to their weight that they admit of long spans, with a smaller number of supports, and consequently smaller loss of power by friction. They may therefore be expected to yield a high efficiency. The experiments of M. Ziegler on the transmission of power at Oberusel give for the mean efficiency of a single relay = 96.2 per cent. The efficiency of transmission by relays, including m intermediate stations, is approximately obtained by

raising the efficiency of a single relay to the power of

It often happens that the two pulleys of a single relay are at different lavels, in which case neither span of the rope has the same tension at its two extremities; the tension at the upper end of each exceeds that at the lower by the quantity pH. H being the difference in level between the two extremities, or, which is approximately the same, between the centres of the two pulleys. It is evidently the tension of the driving-span at its lower end which must be regulated so as to obtain the proper driving tension T for the transmission; so that there is a certain excess of tension at the upper pulley. Large diameter of pulleys tends to preserve the ropes, makes the effect of stiffness insignificant, and diminishes the effect of friction on the bearings.

Another formula for the tension at the ends of a catenary (assuming it to be a parabola) is  $S_1 = \frac{W}{2h} \sqrt{(\frac{1}{2}h^2)^2 + (\frac{2h}{2}h^2)^2}$ , in which S = the tension in ibs;

W = weight of the rope in lbs.; l = span, and h = deflection, in feet. Diameter and Weight of Pulleys for Wire Rope, Ordinary:

 Diameter, ft.
 18
 14.9
 12.4
 7.0

 Single groove, lbs.
 6282
 5180
 2425
 798

 Double groove, lbs.
 8267
 6968
 4078
 1164

Table of Transmission of Power by Wire Ropes.
(J. A. Roebling's Sons Co., 1886.)

Diameter of Wheel in feet.	Number of Revo- lutions.	Trade No. of Rope.	Diameter of Rope.	Horse- power.	Diameter of Wheel in feet.	Number of Revo- lutions.	Trade No. of Rope.	Diameter of Rope.	Horse- power.
8 8 3 4 4	80 100 120 140 80 100	23 23 23 23 23 23	% % % % % %	8 81/4 4 41/4 4 5	7 8 8 8 8	140 80 100 120 140 80	20 119 119 129 120 120 120 120 120 120 120 120 120 120	9/16 26 26 26 26 26 26 26 26 27 28	35 26 38 39 45 47 48 60 60 73 82 84 63 64 63 102 112 119
4	120	23	76 76 76	6	9	100	19 20 19 20	9/16 5%	58 60 69
5 5	80	22	7/16 7/16	9	9	140	19 20 19 19	9/16 5/ ₆ 5/ ₆ 11/16	78 82 84 64
5	120	22 23	7/16 7/16	13 15	10 10 10	100 120	18 19 18 19	\$ 11/16 \$ 11/16 \$ 11/16	68 80 85 96
6	80	21	34	14 17	10 10 12	140	18 19 18 18	<b>5</b> % 11/16	102 1112 1119 1 93
6	120	21	14 14	20	12	100	118 117	11/16 34	93 99 116 124 140
6 7 7	140 80 100	21 20 20	9/16 9/16	23 20 25	12 12 14	120 120 80	18 17 16 8 7 8 7	} 11/16 ¾ % } 1 1½	140 149 173 141 148 176 185
7	120	20	9/16	30	14	100	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 11%	176 185

Long-distance Transmissions. (From Circular of the Trenton Iron Co., 1892.)—In very long transmissions of power the conditions do not always admit of obtaining the proper tensions required in the ordinary system, or "flying transmission of power," as it is termed. In other words, to obtain the proper conditions, it would necessitate numerous and expensive intermediate stations. In case, for instance, it is desired to utilize the power of a turbine to drive a factory, say a mile away, the best method is to employ a larger rope than would ordinarily be used, running it at a moderate

speed. The rope may be in one continuous length, supported, at intervals of about 100 ft., on sheaves of comparatively small diameter, since the greater rigidity of these ropes preserves them from undue bending strains. Where sharp angles occur in the line, however, sheaves must be used of a size corresponding to the safe limit of tension due to bending. The rope is run under a high working tension, far in excess of what in the ordinary system would cause the rope to slip on the sheaves. The working tension may be four or five times as creat as the tension in the sleak morting. may be four or five times as great as the tension in the slack portion of the rope, and in order to prevent slipping, the rope is wrapped several times about grooved drums, or a series of sheaves at each end of the line. To provide for the slack due to the stretch of the rope, one of the sheaves is placed on a slide worked by long-threaded bolts, or, better still, on a carriage provided with counterweights, which runs back and forth on a track. The latter preserves a uniform tension in the slack portion of the rope, which is very important.

Wire-rope tramways are practically transmissions of power of this kind, in which the load, however, instead of being concentrated at one terminal, is distributed uniformly over the entire line. Cable railways are also transmissions of this class. The amount of horse-power transmitted is given by

the formula

$$N = [4.755D^9 - .000006(W + g + g_2)]v;$$

in which D = diameter of the rope in inches; v = velocity in ft. per second;W = weight of the rope; g = weight of the terminal sheaves and axles, and $g_2$  = weight of the intermediate sheaves and axles.

# ROPE-DRIVING.

The transmission of power by cotton or manila ropes promises to become a formidable competitor with gearing and leather beiting for use where the amount of power is large, or the distance between the power and the work amount of power is large, or the distance occurred in power is large, or the distance occurred in power is comparatively great. The following is condensed from a paper by Charles W. Hunt, Trans. A. S. M. E., vol. xii. p. 230:

But few accurate data are available, on account of the long period re-

outred in each experiment, a rope lasting from three to six years. In many of the early applications so great a strain was put upon the rope that the wear was rapid, and success only came when the work required of the rope was greatly reduced. The strain upon the rope has been decreased until it is approximately known what it should be to secure reasonable durability. Installations which have been successful, as well as those in which the wear of the rope was destructive, indicate that 200 lbs. on a rope one inch in diameter is a safe and economical working strain. When the strain is materially increased, the wear is rapid.

In the following equations

C =circumference of rope in inches; g = gravity: H = horse-power; D =sag of the rope in inches; F = centrifugal force in pounds; L = distance between pulleys in ft.P =pounds per foot of rope; w =working R =force in pounds doing useful work; w = working strain in pounds: S = strain in pounds on the rope at the pulley; T = tension in pounds of driving side of the rope; t = tension in pounds on slack side of the rope;v = velocity of the rope in feet per second;

W = ultimate breaking strain in pounds.  $W = 720C^{9}$ :  $P = .32C^{2}$ :  $w = 20C^2$ .

This makes the normal working strain equal to 1/36 of the breaking strength, and about 1/25 of the strength at the splice. The actual strains are ordinarily much greater, owing to the vibrations in running, as well as from imperfectly adjusted tension mechanism.

For this investigation we assume that the strain on the driving side of a rope is equal to 200 lbs. on a rope one inch in diameter, and an equivalent strain for other sizes, and that the rope is in motion at various velocities of

from 10 to 140 ft, per second.

The centrifugal force of the rope in running over the pulley will reduce

the amount of force available for the transmission of power. The centrifu-

gal force  $F = Fv^2 + g$ .
At a speed of about 80 ft. per second, the centrifugal force increases faster than the power from increased velocity of the rope, and at about 140 ft. per second equals the assumed allowable tension of the rope. Computing this force at various speeds and then subtracting it from the assumed maximum tension, we have the force available for the transmission of power. The whole of this force cannot be used, because a certain amount of tension on the slack side of the rope is needed to give adhesion to the pulley. What tension should be given to the rope for this purpose is uncertain, as there are no experiments which give accurate data. It is known from considerable are no experiments which give accurate data. It is known from considerable experience that when the rope runs in a groove whose sides are inclined toward each other at an angle of  $45^{\circ}$  there is sufficient adhesion when the ratio of the tensions T+t=2.

For the present purpose, T can be divided into three parts: 1. Tension doing useful work; 2. Tension from centrifugal force; 3. Tension to balance

the strain for adhesion.

The tension t can be divided into two parts: 1. Tension for adhesion; 2. Tension from centrifugal force.

It is evident, however, that the tension required to do a given work should

not be materially exceeded during the life of the rope.

There are two methods of putting ropes on the pulleys; one in which the ropes are single and spliced on, being made very taut at first, and less so as the rope lengthens, stretching until it slips, when it is respliced. The other method is to wind a single rope over the pulley as many turns as needed to obtain the necessary horse power and put a tension pulley to give the necessary adiesion and also take up the wear. The tension t required to transmit the normal horse-power for the ordinary speeds and sizes of rope is computed by formula (1), below. The total tension T on the driving side of the rope is assumed to be the same at all speeds. The centrifugal force, as well as an amount could to the tension for adhesion on the slack side of the rope. rope is assumed to be the same at an species. The centrifugal force, as well as an amount equal to the tension for adhesion on the slack side of the rope, must be taken from the total tension T to ascertain the amount of force available for the transmission of power. It is assumed that the tension on the slack side necessary for giving adhesion is equal to one half the force doing useful work on the driving side

of the rope; hence the force for useful work is  $R = \frac{2(T-F)}{3}$ ; and the tension on the slack side to give the required adhesion is  $\frac{1}{2}(T-F)$ . Hence

$$t = \frac{(T - F)}{3} + F.$$
 (1)

The sum of the tensions T and t is not the same at different speeds, as the equation (1) indicates.

As F varies as the square of the velocity, there is, with an increasing speed of the rope, a decreasing useful force, and an increasing total tension, on the slack side.
 With these assumptions of allowable strains the horse-power will be

Transmission ropes are usually from 1 to 134 inches in diameter. A computation of the horse-power for four sizes at various speeds and under

putation of the horse-power for four sizes at various speeds and under ordinary conditions, based on a maximum strain equivalent to 200 lbs. for a rope one inch in diameter, is given in Fig. 186. The horse-power of other sizes is readily obtained from these. The maximum power is transmitted, under the assumed conditions, at a speed of about 80 feet per second. The wear of the rope is both internal and external; the internal is caused by the movement of the fibres on each other, under pressure in bending over the sheaves, and the external is caused by the slipping and the wedging in the grooves of the pulley. Both of these causes of wear are, within the limits of ordinary practice, assumed to be directly proportional to the speed. Hence, if we assume the coefficient of the wear to be k, the wear speed. Hence, if we assume the coefficient of the wear to be k, the wear will be kv, in which the wear increases directly as the velocity, but the horse-power that can be transmitted, as equation (2) shows, will not vary at the same rate.

The rope is supposed to have the strain T constant at all speeds on the driving side, and in direct proportion to the area of the cross-section; hence

the catenary of the driving side is not affected by the speed or by the diameter of the rope.

The deflection of the rope between the pulleys on the slack side varies with each change of the load or change of the speed, as the tension equation (1) indicates.

The deflection of the rope is computed for the assumed value of T and t



Fig. 166.

by the parabolic formula  $S = \frac{PL^3}{8D} + PD$ , S being the assumed strain T on the driving side, and t, calculated by equation (1), on the slack side. The tension t varies with the speed.

Horse-power of Transmission Rope at Various Speeds. Computed from formula (2), given above.

n. of	Speed of the Rope in feet per minute.											llest o, of eys ches
Diam. Rop	1500	2000	2500	3000	3500	4000	4500	5000	6000	7000	8000	Sme Diam Pull in In
1888428	1.45	3.2	2.3 3.6	2.7	8 4.6	3.2 5.0	8.4 5.3	8.4 5.3	3.1 4.9	2.2 3.4	0	20 24 30
1	8.8 4.5 5.8	4.3 5.9 7.7	5.2 7.0 9.2	5.8 8.2 10.7	6.7 9.1 11.9	7.2 9.8 12.8	7.7 10.8 13.6	7.7 10.7 13.7	7.1 9.8 12.5	4.9 6.9 8.8	0	86 42
11/4 11/4 13/4 2	9.2 13.1	12.1 17.4	14.8 20.7	16.8 23.1	18.6 26.8	20.0 28.8	21.2 80.6	21.4 80.8	19.5 28.2 87.4	13.8 19.8	0	54 60
2 2	18 23.2	23.7 30.8	28.2 36.8	82.8 42.8	86.4 47.6	39.2 51.2	41.5 54.4	41.8 54 8	50	27.6 85.2	0	72 84

The following notes are from the circular of the C. W. Hunt Co., New

____

For a temporary installation, when the rope is not to be long in use, it might be advisable to increase the work to double that given in the table.

For convenience in estimating the necessary clearance on the driving and on the slack sides, we insert a table showing the sag of the rope at different speeds when transmitting the horse-power given in the preceding table. When at rest the sag is not the same as when running, being greater on the driving and less on the slack sides of the rope. The sag of the driving side when transmitting the normal horse-power is the same no matter what size of rope is used or what the speed driven at, because the assumption is that the strain on the rope shall be the same at all speeds when transmitting the

assumed horse-power, but on the slack side the strains, and consequently the sag, vary with the speed of the rope and also with the horse-power. The table gives the sag for three speeds. If the actual sag is less than given in the table, the rope is strained more than the work requires.

This table is only approximate, and is exact only when the rope is running at its normal speed, transmitting its full load and strained to the assumed armount. All of these conditions are varying in actual work, and the table

must be used as a guide only.

Sag of the Rope between Pulleys. Distance Driving Side. Slack Side of Rope. between Pulleys 80 ft. per sec. 60 ft. per sec. 40 ft. per sec. in feet. All Speeds. 0 feet 4 inches 0 feet 7 inches Ofeet 9 inches 0 feet 11 inches έõ Ò 10 5 1 1 11 ** " " .. " " " ٠. 80 1 2 1 10 8 5 " " " .. .. .. ** 2 .. 100 2 0 8 5 5 " 66 .. .. " .. * .. 2 5 8 8 7 4 120 11 6 8 " " 7 " 2 .. 8 " ġ " 10 46 ** .. ** .. " " 160 9 8

The size of the pulleys has an important effect on the wear of the rope the larger the sheaves, the less the fibres of the rope slide on each other, and consequently there is less internal wear of the rope. The pulleys should not

be less than forty times the diameter of the rope. The pinleys known has be less than forty times the diameter of the rope for economical wear, and as much larger as it is possible to make them. This rule applies also to the idle and tension pulleys as well as to the main driving-pulley.

The angle of the sides of the grooves in which the rope runs varies, with different engineers, from 45° to 60°. It is very important that the sides of these grooves should be carefully polished, as the fibres of the rope rubbing on the metal as it comes from the lathe tools will gradually break fibre by the rope a short life. It is also necessary to carefully avoid

on the metal as it comes from the lattice both will gradually oreas into office, fibre, and so give the rope a short life. It is also necessary to carefully avoid all sand or blow holes, as they will cut the rope out with surprising rapidity. Much depends also upon the arrangement of the rope on the pulleys, especially where a tension weight is used. Experience shows that the increased wear on the rope from bending the rope first in one direction and then in the other is similar to that of wire rope. At mines where two cages are used, one being hoisted and one lowered by the same engine doing the same work, the wire ropes, cut from the same coil, are usually arranged so that one rope is bent continuously in one direction and the other rope is bent first in one direction and then in the other, in winding on the drum of the engine. The rope having the opposite bends wears much more rapidly than the other, lasting about three quarters as long as its mate. This difference in wear shows in manila rope, both in transmission of power and in coal-hoisting. The pulleys should be arranged, as far as possible, to bend the

rope in one direction.

The wear of the rope is independent of the distance apart of the shafts, since the wear takes place only on the pulleys; hence in transmitting power any distance within the limits of rope driving, the life of the rope will be the same whether the distance is small or great, but the first cost will be in

proportion to the distance.

TENSION ON THE SLACK PART OF THE ROPE.

Speed of Rope, in feet	Diame	eter of	the R	ope an	d Pour	nds Ten	sion on	the Slac	k Rop
per second.	1/6	5/6	34	3/8	1	11/4	11/6	13/4	2
20	10	27	40	54	71	110	162	216	283
30	14	29	42	56	74	115	170	226	296
40	15	31	45.	60	79	123	181	240	815
50	16	33	49	65	85	132	195	259	839
60	18	36	53	71	93	145	214	285	878
70	19	39	59	78	101	158	236	810	406
80	21	43	64	85	111	173	255	340	445
90	24	48	70	93	122	190	279	372	487

For large amounts of power it is common to use a number of ropes lying side by side in grooves, each spliced separately. For lighter drives some engineers use one rope wrapped as many times around the pulleys as is necessary to get the horse-power required, with a tension pulley to take up the slack as the rope wears when first put in use. The weight put upon this tension pulley should be carefully adjusted, as the overstraining of the rope from this cause is one of the most common errors in rope driving. We therefore give a table showing the proper strain on the rope for the various sizes, from which the tension weight to transmit the horse-power in the tables is easily deduced. This strain can be still further reduced if the horse-power transmitted is usually less than the nominal work which the rope was proportioned to do, or if the angle of groove in the pulleys is acute.

DIAMETER OF PULLEYS AND WEIGHT OF ROPE.

Smallest Diameter of Pulleys, in inches.	Length of Rope to allow for Splicing, in feet.	Approximate Weight, in lbs. per foot of rope.
20	6	.12 .18
30 36	7 8	.24
42 54	9 10	.49 .60
72	12 13	.88 1.10
	20 24 30 36 42 54 60	24 6 30 7 36 8 42 9 54 10 60 12 72 13

With a given velocity of the driving-rope, the weight of rope required for transmitting a given horse-power is the same, no matter what size rope is adopted. The smaller rope will require more parts, but the weight will be the same.

Miscellaneous Notes on Rope-driving.—W. H. Both communicates to the Amer. Machinist the following data from English practice with cotton ropes. The calculated figures are based on a total allowable tension on a 1%-inch rope of 600 lbs., and an initial tension of 1/10 the total allowed stress, which corresponds fairly with practice.

Diameter of rope	11/4"	186"	116"	156'' .844	184"	176"	2"
Weight per foot, lbs	<b>.</b> 5	.6	.72	.844	184'' .98	136" 1.125	1.3
Centrifugal tension = $V^2$ divided by		58	44	88	88	28	25
" for $V = 80$ ft. per sec., lbs.	100	121	145	170	198	228	256
Total tension allowable	300	360	480	500	600	675	780
Initial tension	80	86	48	50	60	67	78
Net working tension at 80 ft. velocity	170	203	242	280	347	380	446
Horse-power per rope " "	24	28	34	41	49	54	63

The most usual practice in Lancashire is summed up roughly in the following figures: 134-inch cotton ropes at 5000 ft. per minute velocity = 50 H.P. per rope. The most common sizes of rope now used are 134 and 156 in. The maximum horse-power for a given rope is obtained at about 80 68 feet per second. Above that speed the power is reduced by centrifugal tension. At a speed of 2500 ft. per minute four ropes will do about the same work as three at 5000 ft. per min.

Cotton ropes do not require much lubrication in the sense that it is re-

Cotton ropes do not require much lubrication in the sense that it is required by ropes made of the rough fibre of manila hemp. Merely a slight surface dressing is all that is required. For small ropes common in spinning machinery, from ½ to ¾ inch diameter, it is the custom to prevent the fluffing of the ropes on the surface by a light application of a mixture of black-lead and molasses,—but only enough should be used to lay the fibres,—but upon one of the pulleys in a series of light days.

put upon one of the pulleys in a series of light dabs.

Reuleaux's Constructor gives as the "specific capacity" of hemp rope in actual practice, that is, the horse-power transmitted per square inch of cross-section for each foot of linear velocity per minute, 004 to 002, the cross-section being taken as that due to the full outside diameter of the rope. For a 1½-in. rope, with a cross-section of 2.405 q. in., at a velocity of 5000 ft. per min., this gives a horse-power of from 24 to 48, as against 41.8 by Mr. Hunt's table and 49 by Mr. Booth's.

Reuleaux gives formulæ for calculating sources of loss in hemp-rope transmission due to (1) journal friction, (2) stiffness of ropes, and (3) creep of ropes. The constants in these formulæ are, however, uncertain from lack of experimental data. He calculates an average case giving loss of power due to journal friction = 4%, to stiffness 7.8%, and to creep 5%, or 16.8%

in all, and says this is not to be considered higher than the actual loss.

T. Spencer Miller (Eng'g News, Dec. 6, 1890) says: In England hemp and manila ropes have been largely superseded by ropes of cotton; and I am satisfied that one reason for this is that dry manila ropes wear out too fast, while lubricated ropes give too low a coefficient of friction. The angle of 45° for the groove has been in use for 33 years, having been first introduced by Jas. Combe in Belfast, Ireland; but if we are to use tallow-laid or other lubricated ropes, we should certainly use a sharper angle in the groove, especially in the American system, which employs a continuous rope with

many wraps.

Mr. Hunt's formula, Tension of driving side of rope + tension of slack side of rope = 2, implies a coefficient of friction of only .10. But I have found one authority giving obtained a coefficient of friction of .26, and have found one authority giving obtained a coefficient of friction of .25, and have found one authority group .28. Relieaux advises for single-line transmission 30° angle of groove. Ramsbottom, an English engineer, and Yale & Towne use a 30° groove in transmission-wheels of travelling-cranes, and I hope to see the best American practice use 30° or 35° as a standard groove angle. The work done in pulling out a greasy manila rope from a 30° groove is not worth consideration, although we hear a great deal about the loss of power on this account. I am strongly in favor of using the continuous-rope system, and also of a single ropes than are propounded in Mr Hunt's near

I am strongly in tavor of using the continuous-rope system, and also of using smaller ropes than are recommended in Mr. Hunt's paper.

The most perfect small transmission I have ever seen (about 20 H.P.) employs 5/16-in. manila rope on wheels 30 in. in diameter, using a tension carriage. Rather than use large ropes I think it wiser to replace small ones oftener, for by so doing a great gain may be made in efficiency, thus saving

fuel.

A large majority of failures in the continuous-rope plan have occurred where the driving and driven sheaves were of widely different diameters, as for example, driving dynamos, or driving a line-shaft from an engine flywheel. As ordinarily installed the ropes will not pull alike, and by calculation or by experiment we may find one rope pulling twice or three times as

much as the others on the sheave.

An installation designed by the writer employs an engine-driving sheave about three times the diameter of the driven sheave. To equalize the pull on the different ropes the grooves of the large driving sheaves were made with an angle of 30° and those of the small sheaves with an angle of 45°. This change of groove angle has entirely remedied the unequal pulling com-

It has been observed that in sheaves of the same diameter, by the use of a proper tension weight, the ropes may all pull alike; while, where the sheaves are of unequal dismeter, the pull is unequal. The only difference of conditions in the two cases lies in the different arc of contact of the rope on the two sheaves, which leads to a greater frictional hold of the rope on the large sheave. To equalize the frictional hold on the two sheaves we may sharpen

Sheave. To equalize the interioral non on the two sheaves we may smal pen the angle of the small sheave or increase the angle of the large sheave.

The Walker Mfg. Co. adopts a curved form of groove instead of one with straight sides inclined to each other at 45°. The curves are concave to the rope. The rope rests on the sides of the groove in driving and driven pulleys. In idler pulleys the rope rests on the bottom of the groove, which is semicircular. The Walker Mfg. Co. also uses a "differential" drum for heavy according in which the grooves are contained each in a semigrate ring. rope drives, in which the grooves are contained each in a separate ring which is free to slide on the turned surface of the drum in case one rope

pulls more than another.

A heavy rope-drive on the separate, or English, rope system is described and illustrated in *Power*, April, 1892. It is in use at the India Mill at Darwen, England. This mill was originally driven by gears, but did not prove successful, and rope-driving was resorted to. The 85.000 spindles and preparation are driven by a 2000 horse-power tandem compound engine, with cylinders and 79 inch steplay running at 18 revolutions. 23 and 44 inches in diameter and 72-inch stroke, running at 54 revolutions per minute. The fly-wheel is 30 feet in diameter, weighs 65 tons, and is arranged with 30 grooves for 1½-inch ropes. These ropes lead off to receiving-pulleys upon the several floors, so that each floor receives its power direct from the fly-wheel. The speed of the ropes is 5009 feet per minute, and five 7-foot receivers are used, the number of ropes upon each being proportioned

to the amount of power required upon the several floors. Lambeth cotton ropes are used.

# FRICTION AND LUBRICATION.

Friction is defined by Rankine as that force which acts between two bodies at their surface of contact so as to resist their sliding on each other,

and which depends on the force with which the bodies are pressed together.

Coefficient of Friction.—The ratio of the force required to slide a body along a horizontal plane surface to the weight of the body is called the coefficient of friction. It is equivalent to the tangent of the angle of repose. which is the angle of inclination to the horizontal of an inclined plane on which the body will just overcome its tendency to slide. The angle is usually

denoted by  $\theta$ , and the coefficient by f.  $f = \tan \theta$ .

Friction of Rest and of Motion.—The force required to start a body sliding is called the friction of rest, and the force required to continue its sliding after having started is called the friction of motion.

Rolling Friction is the force required to roll a cylindrical or spherical body on a plane or on a curved surface. It depends on the nature of the surfaces and on the force with which they are pressed together, but is essentially different from ordinary, or sliding, friction.

Friction of Solids.—Rennie's experiments (1829) on friction of solids,

usually unlubricated and dry, led to the following conclusions:

1. The laws of sliding friction differ with the character of the bodies rubbing together.

2. The friction of fibrous material is increased by increased extent of

surface and by time of contact, and is diminished by pressure and speed.

3. With wood, metal, and stones, within the limit of abrasion, friction varies only with the pressure, and is independent of the extent of surface, time of contact and velocity.

4. The limit of abrasion is determined by the hardness of the softer of the

two rubbing parts.
5. Friction is greatest with soft and least with hard materials.
6. The friction of lubricated surfaces is determined by the nature of the lubricant rather than by that of the solids themselves.

### Friction of Rest. (Rennie.)

Pressure,	Values of f.						
lbs. per square inch.	Wrought iron on Wrought Iron.	Wrought on Cast Iron.	Steel on Cast Iron.	Brass on Cast Iron.			
187	.25	.28	.80	.23			
224	.27	.29	.83	.23 .22 .21 .21 .23			
836	.81	.83	.35	.21			
448 560	.38	.37	.35	.21			
560	.41	37	.36	.28			
672	Abraded	.38	.40	.28			
784	1 "	Abraded	Abraded	.23			

Law of Unlubricated Friction.—A. M. Wellington, Eng'g News April 7, 1888, states that the most important and the best determined of all

the laws of unlubricated friction may be thus expressed:

The coefficient of unlubricated friction decreases materially with velocity. is very much greater at minute velocities of 0 +, falls very rapidly with minute increases of such velocities, and continues to fall much less rapidly with higher velocities up to a certain varying point, following closely the laws which obtain with lubricated friction.

Friction of Steel Tires Sliding on Steel Rails. (Westinghouse & Galton.)

Speed, miles per hour	10	15	25	88	45	50
Coefficient of friction	0.110	.087	.080	.051	.047	.040
Adhesion, lbs. per ton (2240 lbs.)	246	195	179	128	114	90

Rolling Friction is a consequence of the irregularities of form and the roughness of surface of bodies rolling one over the other. Its laws are not yet definitely established in consequence of the uncertainty which exists in experiment as to how much of the resistance is due to roughness of surface, how much to original and permanent irregularity of form, and how much to distortion under the load. (Thurston.)

Coefficients of Bolling Friction.—If R = resistance applied at the circumference of the wheel, W = total weight, r = radius of the wheel,

and f = a coefficient, R = fW + r. f is very variable. Coulomb gives .06 for wood, .005 for metal, where W is in pounds and r in feet. Tredgold made the value of f for iron on iron .002.

For wagons on soft soil Morin found f = .065, and on hard smooth roads

A Committee of the Society of Arts (Clark, R. T. D.) reported a loaded omnibus to exhibit a resistance on various loads as below:

Pavement	Speed per hour.	Coefficient.	Resistance.
Granite	2.87 miles.	.007	17.41 per ton.
Asphalt		.0121	27.14 "
Wood		.0185	41.60 "
Macadam, gravelled	8.45 "	.0199	44.48 "
" granite, new	<b>3.</b> 51 "	.0451	101.09 "

Thurston gives the value of f for ordinary railroads, .003, well-laid railroad track, .002; best possible railroad track, .001.

The few experiments that have been made upon the coefficients of rolling

friction, apart from axle friction, are too incomplete to serve as a basis for

practical rules. (Trautwine).

Laws of Fluid Friction.—For all fluids, whether liquid or gaseous, the resistance is (1) independent of the pressure between the masses in contact; (2) directly proportional to the area of rubbing-surface; (8) proportional to the square of the relative velocity at moderate and high speeds, and to the velocity nearly at low speeds; (4) independent of the nature of the surfaces of the solid against which the stream may flow, but dependent to some extent upon their degree of roughness; (5) proportional to the den-

sity of the fluid, and related in some way to its viscosity. (Thurston.) The Friction of Lubricated Surfaces approximates to that of solid friction as the journal is run dry, and to that of fluid friction as it is flooded with oil.

Angles of Repose and Coefficients of Friction of Building Materials. (From Rankine's Applied Mechanics.)

	θ.	$f = \tan \theta$ .	$\frac{1}{\tan \theta}$ .
Dry masonry and brickwork	31° to 35°	.6 to .7	1.67 to 1.4
Masonry and brickwork with			ĺ
damp mortar	361∕ <b>≨°</b>	.74	1.35
Timber on stone	22°	about .4	2.5
Iron on stone	35° to 1636°	.7 to .3	1.43 to 3.3
Timber on timber	2616° to 1116°	.5 to .2	2 to 5
" metals	31° to 111⁄4°	.6 to .2	1.67 to 5
Metals on metals	14° to 816°	.25 to .15	4 to 6.67
Masonry on dry clay	270	.51	1.96
" moist clay	181⁄4°	.83	8.
Earth on earth dry sand, clay,	14° to 45°	.25 to 1.0	4 to 1
and mixed earth	21° to 37°	.38 to .75	2.63 to 1.33
Earth on earth, damp clay	45°	1.0	1
Earth on earth, damp clay	17°	.81	3.23
"""shingle and	•	1	
gravel	89° to 48°	.81	1.23 to 0.9

Friction of Motion.—The following is a table of the angle of repose  $\theta$ , the coefficient of friction  $f = \tan \theta$ , and its reciprocal, 1 + f, for the materials of mechanism-condensed from the tables of General Morin (1831), and other sources, as given by Rankine:

No.	Surfaces.	θ.	f.	1+f.
1	Wood on wood, dry	14° to 261⁄6°	.25 to .5	4 to 2
2	" " soaped	111/6° to 2°	.2 to .04	5 to 25
8	Metals on oak, dry	2612° to 31°	5 to 6	2 to 1.67
4	" " wet	1816° to 14°	.24 to .26	4.17 to 3.85
8 4 5	" " " воару	11 <u>146</u> °	.2	5
6	" " elm, dry	1116° to 14°	.2 to .25	5 to 4
~	Hemp on oak, dry	280	.53	1.89
8	" wet	18160	.38	8
9	Leather on oak	15° to 1946°	.27 to .38	8.7 to 2.86
10	" " metals, dry	2916	.56	1.79
11	" " wet	208	.36	2.78
12		13°	.23	4.85
13			.15	
	Ony	81%		6.67
14	Metals on metals, dry	816° to 11°	15 to .2	6.67 to 5
15	wet,	1616°	8	3.83
16	Smooth surfaces, occa-			
	sionally greased	4° to 416°	.07 to .08	14.8 to 12.5
17	Smooth surfaces, con-		1	l
	tinuously greased	8°	.05	20
18			1	1
	results	1% to 2°	.03 to .036	<b></b>
19	Bronze or lignum vitæ,	-/4	1	
	constantly wet	30 9	.05 ?	

## Coefficients of Friction of Journals. (Morin.)

		· Lubrication.			
Material.	Unguent.	Intermittent.	Continuous.		
Cast iron on cast iron	Oil, lard tallow. Unctuous and wet.	.07 to .08	.03 to .054		
Cast iron on bronze	Oil, lard, tallow. Unctuous and wet.	.07 to .08	.03 to .054		
Cast iron on lignum vitæ.	Oil, lard.		.09		
Wrought iron on cast iron { "bronze }	Oil, lard, tallow.	.07 to .08	.03 to .054		
Iron on lignum vitæ	Oil, lard. Unctuous.	.11 .19			
Bronze on bronze $\dots$ {	Olive-oil. Lard.	.10 .09			

Prof. Thurston says concerning the above figures that much better results are probably obtained in good practice with ordinary machinery. Those here given are so greatly modified by variations of speed, pressure, and temperature, that they cannot be taken as correct for general purposes.

Average Coefficients of Friction. Journal of cast iron in bronze bearing; velocity 720 feet per minute; temperature 70° F.; intermittent feed through an oil-hole. (Thurston on Friction and Lost Work.)

0.11		Pressi	ıres.	po	unds	per	8q	uare	incl	h.
Oils.	8		16		32		48			
Sperm, lard, neat's-foot,etc. Olive. cotton-seed, rape, etc. Cod and menhaden Mineral lubricating-oils	.160	. 283 . 278	.107	"	.245 .167	.101 .097	**	.168	.079 081	" .131 " .122

With fine steel journals running in bronze bearings and continuous lubrication, coefficients far below those above given are obtained. Thus with sperm-oil the coefficient with 50 lbs. per square inch pressure was .0034; with 300 lbs., .0057,

For very low pressures, as in spindles, the coefficients are much higher. Thus Mr. Woodbury found, at a temperature of 100° and a velocity of 600 feet per minute,

> Pressures, lbs. per sq. in..... Coefficient ......... 22 .18

These high coefficients, however, and the great decrease in the coefficient at increased pressures are limited as a practical matter only to the smaller pressures which exist especially in spinning machinery, where the pressure is so light and the film of oil so thick that the viscosity of the oil is an import-

ant part of the total frictional resistance.

Experiments on Friction of a Journal Lubricated by an Oll-bath (reported by the Committee on Friction, Proc. Inst. M. E., Nov. 1883) show that the absolute friction, that is, the absolute tangential force per square inch of bearing, required to resist the tendency of the brass to go round with the journal, is nearly a constant under all loads, within or dinary working limits. Most certainly it does not increase in direct propor-tion to the load, as it should be according to the ordinary theory of solid friction. The results of these experiments seem to show that the friction of a perfectly lubricated journal follows the laws of liquid friction much more closely than those of solid friction. They show that under these circumstances the friction is nearly independent of the pressure per square inch, and that it increases with the velocity, though at a rate not nearly so rapid as the square of the velocity.

The experiments on friction at different temperatures indicate a great diminution in the friction as the temperature rises. Thus in the case of lard-oil, taking a speed of 450 revolutions per minute, the coefficient of friction at a temperature of 120° is only one third of what it was at a tempera-

ture of 60.

The journal was of steel, 4 inches diameter and 6 inches long, and a gunmetal brass, embracing somewhat less than half the circumference of the jeurnal, rested on its upeer side, on which the load was applied. When the bottom of the journal was immersed in oil, and the oil therefore carried under the brass by rotation of the journal, the greatest load carried with

under the brass by rotation of the journal, the greatest load carried what rape-oil was 573 lbs. per square inch, and with mineral oil 625 lbs.

In experiments with ordinary lubrication, the oil being fed in at the centre of the top of the brass, and a distributing groove being cut in the brass parallel to the axis of the journal, the bearing would not run cool with only 100 lbs. per square inch, the oil being pressed out from the bearing-surface and through the oil-hole, instead of being carried in by it. On introducing the oil at the sides through two parallel grooves, the lubrication appeared to be satisfactory, but the bearing seized with 380 lbs. per square inch.

When the oil was introduced through two oil-holes, one near each end of the brass and each connected with a curved groove, the brass refused to

the brass, and each connected with a curved groove, the brass refused to take its oil or run cool, and seized with a load of only 200 lbs. per square

in**ch**.

With an oil-pad under the journal feeding rape-oil, the bearing fairly carried 551 lbs. Mr. Tower's conclusion from these experiments is that the friction depends on the quantity and uniformity of distribution of the oil, and may be anything between the oil-bath results and seizing, according to the perfection or imperfection of the lubrication. The lubrication may be very small, giving a coefficient of 1/100; but it appeared as though it could not be diminished and the friction increased much beyond this point without imminent risk of heating and seizing. The oil-bath probably represents the most perfect lubrication possible, and the limit beyond which friction cannot be reduced by lubrication; and the experiments show that with speeds from 100 to 200 feet, are minute, by represents proportioning the bestime. of from 100 to 200 feet per minute, by properly proportioning the bearing-surface to the load, it is possible to reduce the coefficient of friction to as low as 1/1000. A coefficient of 1/1500 is easily attainable, and probably is frequently attained, in ordinary engine-bearings in which the direction of the force is rapidly alternating and the oil given an opportunity to get between the surfaces, while the duration of the force in one direction is not sufficient to allow time for the oil film to be squeezed out.

Observations on the behavior of the apparatus gave reason to believe that with perfect lubrication the speed of minimum friction was from 100 to 150 feet per minute, and that this speed of minimum friction tends to be higher with an increase of load, and also with less perfect lubrication. By the speed of minimum friction is meant that speed in approaching which from rest the friction diminishes, and above which the friction increases.

Coefficients of Friction of Journal with Oil-bath.—Abstract of results of Tower's experiments on friction (Proc. Inst. M. E., Nov. 1883). Journal, 4 in. diam., 6 in. long; temperature, 90° F.

Lubricant in Bath.	Nomina	l Load,	in po	unds	per s	quare	inch.
Daoriodas in Davis,	625	520	415	310	205	153	100
	-	Coeff	icient	s of F	rictio	n.	•
Lard-oil: 157 ft. per min		.0009	.0012	.0014	.0020	.0027	.0042
Mineral grease:	.001	.0014	.0016	.0022	.0034	.0038	.0076
471 "	.002	.0022 seiz'd	l	1	1	.0083	
471 " "	(573 lb.)		.0021	.0019	.0027	0087	.0064
157 ft. per min		.001 .0015	.0016	.0016	.0014 .0024	.002	.007
157 ft. per min		.0012 .0018			.0021 .0035		.004 .007
Rape-oilfed by syphon lubricator: 157 ft. per min					.0098		.0125 .0152
Rape-oil, pad under journal: 157 ft. per min				.0099	.0105		.0099
814 " "	l	1		.0099	.0078		.018

Comparative friction of different lubricants under same circumstances, temperature 90°, oil-bath:

Sperm-oil	100 per cent.	Lard	135 per cent.
Rape-oil	106 "	Olive-oil	185 "
Mineral oil	129 "	Mineral grease	217 "

Coefficients of Friction of Motion and of Rest of a Journal.—A cast-iron journal in steel boxes, tested by Prof. Thurston at a speed of rubbing of 150 feet per minute, with lard and with sperm oil, gave the following:

Pressures per sq. in., lbs 50 Coeff., with sperm	100 .008 .0137	250 .005 .0085	500 .004 .0053	750 .0048 .0066	1000 .009 .0125
The coefficients at starting were:					
With sperm	.135	.14	.15	.185	.18

The coefficient at a speed of 150 feet per minute decreases with increase of pressure until 500 lbs. per sq. in. is reached; above this it increases. The coefficient at rest or at starting increases with the pressure throughout the range of the tests.

Value of Anti-friction Metals. (Denton.)—The various white metals available for lining brasses do not afford coefficients of friction lower than can be obtained with bare brass, but they are less liable to "overheating," because of the superiority of such material over bronze in ability to permit of abrasion or crushing, without excessive increase of friction.

Thurston (Friction and Lost Work) says that gun-bronze, Babbitt, and other soft white alloys have substantially the same friction; in other works, the friction is determined by the nature of the unguent and not by that of the rubbing-surfaces, when the latter are in good order. The soft metals run at higher temperatures than the bronze. This, however, does not necessarily indicate a serious defect, but simply deficient conductivity. The value of the white alloys for bearings lies mainly in their ready reduction to a smooth surface after any local or general injury by alteration of either surface or form.

Cast-iron for Bearings. (Joshua Rose.)—Cast iron appears to be an exception to the general rule, that the harder the metal the greater the resistance to wear, because cast iron is softer in its texture and easier to cut with steel tools than steel or wrought iron, but in some situations it far more durable than hardened steel; thus when surrounded by steam it will wear better than will any other metal. Thus, for instance, experience has demonstrated that piston-rings of cast iron will wear smoother, better, and equally as long as those of steel, and longer than those of either wrought iron or brass, whether the cylinder in which it works be composed of brass, steel, wrought iron, or cast iron; the latter being the more noteworthy, since two surfaces of the same metal do not, as a rule, wear or work well together. So also slide-valves of brass are not found to wear so long or so smoothly as those of cast iron, let the metal of which the seating is composed be whatever it may; while, on the other hand, a cast iron slidevalve will wear longer of itself and cause less wear to its seat, if the latter is of cast iron, than if of steel, wrought iron, or brass.

Friction of Metals under Steam-pressure.—The friction of

brass upon iron under steam-pressure is double that of iron upon iron.
(G. H. Babcock, Trans. A. S. M. E., i. 151.)

Morin's 66 Laws of Friction. 99—1. The friction between two bodies is directly proportioned to the pressure; i.e., the coefficient is constant for ali pressures.

2. The coefficient and amount of friction, pressure being the same, is in-

dependent of the areas in contact.

3 The coefficient of friction is independent of velocity, although static friction (friction of rest) is greater than the friction of motion.

Eng g News, April 7, 1888, comments on these "laws" as follows: From 1831 till about 1876 there was no attempt worth speaking of to enlarge our knowledge of the laws of friction, which during all that period was assumed to be complete, although it was really worse than nothing, since it was for the most part wholly false. In the year first mentioned Morin began a series of experiments which extended over two or three years, and which resulted in the enunciation of these three "fundamental laws of friction,"

no one of which is even approximately true.

For fifty years these laws were accepted as axiomatic, and were quoted as such without question in every scientific work published during that whole period. Now that they are so thoroughly discredited it has been attempted to explain away their defects on the ground that they cover only a very limited range of pressures, areas, velocities, etc., and that Morin himself only announced them as true within the range of his conditions. It is now clearly established that there are no limits or conditions within which any one of them even approximates to exactitude, and that there are many conditions under which they lead to the wildest kind of error, while many of the constants were as inaccurate as the laws. For example, in Morin's "Table of Coefficients of Moving Friction of Smooth Plane Surfaces, perfectly lubricated, which may be found in hundreds of text-books now in use the coefficient of wrought iron on brass is given as 075 to .103, which would make the rolling friction of railway trains 15 to 20 lbs. per ton instead of the 8 to 6 lbs. which it actually is.

General Morin, in a letter to the Secretary of the Institution of Mechanical Engineers, dated March 15, 1879, writes as follows concerning his experiments on friction made more than forty years before: "The results furnished by my experiments as to the relations between pressure, surface, and speed on the one hand, and sliding friction on the other, have always been regarded by myself, not as mathematical laws, but as close approximations to the truth, within the limits of the data of the experiment; themselves. The same holds.

in my opinion, for many other laws of practical mechanics, such as those of rolling resistance, fluid resistance, etc.

Prof. J. E. Denton (Stevens Indicator, July, 1890) says: It has been generally assumed that friction between lubricated surfaces follows the simple law that the amount of the friction is some fixed fraction of the pressure between the surfaces, such fraction being independent of the intensity of the pressure per square inch and the velocity of rubbing, between certain limits of practice, and that the fixed fraction referred to is represented by the coof plactice, and that the fixed properties to is represented by the experiments of friction given by the experiments of Morin or obtained from experimental data which represent conditions of practical lubrication, such as those given in Webber's Manual of Power.

By the experiments of Thurston, Woodbury, Tower, etc., however, it appears that the friction between lubricated metallic surfaces, such as ma-

chine bearings, is not directly proportional to the pressure, is not independent of the speed, and that the coefficients of Morin and Webber are about

tenfold too great for modern journals.

Prof. Denton offers an explanation of this apparent contradiction of authorities by showing, with laboratory testing machine data, that Moriu's laws hold for bearings lubricated by a restricted feed of lubricant. such as is afforded by the oil cups common to machinery; whereas the modern ex-periments have been made with a surplus feed or superabundance of lubricant, such as is provided only in railroad-car journals, and a few special cases of practice.

That the low coefficients of friction obtained under the latter conditions are realized in the case of car journals, is proved by the fact that the tem perature of car-boxes remains at 100° at high velocities; and experiment shows that this temperature is consistent only with a coefficient of friction of a fraction of one per cent. Deductions from experiments on train resistance also indicate the same low degree of friction. But these low co-efficients do not account for the internal friction of steam-engines as well as do the coefficients of Morin and Webber. efficients of Morin and Webber.

In American Machinist, Oct. 23, 1890, Prof. Denton says: Morin's measure ment of friction of lubricated journals did not extend to light pressures. They apply only to the conditions of general shafting and engine work.

He clearly understood that there was a frictional resistance. due solely to the viscosity of the oil, and that therefore, for very light pressures, the laws

which he enunciated did not prevail.

He applied his dynamometers to ordinary shaft-journals without special preparation of the rubbing-surfaces, and without resorting to artificial methods of supplying the oil.

Later experimenters have with few exceptions devoted themselves exclusively to the measurement of resistance practically due to viscosity alone. They have eliminated the resistance to which Morin confined his measurements, namely, the friction due to such contact of the rubbing-surfaces as prevail with a very thin film of lubricant between comparatively rough surfaces.

Prof. Denton also says (Trans. A. S. M. E., x. 518): "I do not believe there is a particle of proof in any investigation of friction ever made, that Morin's laws do not hold for ordinary practical oil-cups or restricted rates of feed."

Laws of Friction of well-lubricated Journals.—John Goodman (Trans. Inst. C. E. 1886, Eng'y News, Apr. 7 and 14, 1888), reviewing the results obtained from the testing-machines of Thurston, Tower, and Stroudley, arrives at the following laws:

## LAWS OF FRICTION: WELL-LUBRICATED SURFACES. (Oil-bath.)

1. The coefficient of friction with the surfaces efficiently lubricated is from 1/6 to 1/10 that for dry or scantily lubricated surfaces.

2. The coefficient of friction for moderate pressures and speeds varies ap-

2. The coefficient of riction for moderate pressures and speeds varies approximately inversely as the normal pressure; the frictional resistance varies as the area in contact, the normal pressure remaining constant.

3. At very low journal speeds the coefficient of friction is abnormally high; but as the speed of sliding increases from about 10 to 100 ft. per min. the friction diminishes, and again rises when that speed is exceeded, varying the property of the present of the property of the speed. approximately as the square root of the speed.

4. The coefficient of friction varies approximately inversely as the temper-

ature, within certain limits, namely, just before abrasion takes place.

The evidence upon which these laws are based is taken from various modern experiments. That relating to Law 1 is derived from the "First Report on Friction Experiments," by Mr. Beauchamp Tower.

Method of Lubrication.	Coefficient of Friction.	Comparative Friction.
Oil-bathSiphon lubricator Pad under journal	.0098	1.00 7.06 6.48

With a load of 298 lbs. per sq. in. and a journal speed of 814 ft. per min. Mr. Tower found the coefficient of friction to be .0016 with an oil-bath, and .0097, or six times as much, with a pad. The very low coefficients obtained by Mr. Tower will be accounted for by Law 2, as he found that the frictional resistance per square inch under varying loads is nearly constant, as below:

Load in lbs. per sq. in.... 529 468 Frictional resist. per sq. in. .416 .514 363 205 415 310 258 153 100 .498 .472 .464 .438 .43 .458 .45

The frictional resistance per square inch is the product of the coefficient of friction into the load per square inch on horizontal sections of the brass. Hence, if this product be a constant, the one factor must vary inversely as the other, or a high load will give a low coefficient, and vice versa.

For ordinary lubrication, the coefficient is more constant under varying

loads; the frictional resistance then varies directly as the load, as shown by Mr. Tower in Table VIII of his report (Proc. Inst. M. E. 1888).

With respect to Law 3, A. M. Wellington (Trans. A. S. C. E. 1884), in experiments on journals revolving at very low velocities, found that the friction was then very great, and nearly constant under varying conditions of the lubrication, load, and temperature. But as the speed increased the friction fell slowly and regularly, and again returned to the original amount when the velocity was reduced to the same rate. This is shown in the following table:

Speed, feet per minute: 0+ 2.16 8.88 4 8.82 21.42 85.87 Coefficient of friction:

.094 .055 .047 .035 .030 .070 .069 .040 .026 . 118

53.01

89.28

106.02

It was also found by Prof. Kimball that when the journal velocity was increased from 6 to 110 ft. per minute, the friction was reduced 70%; in another case the friction was reduced 67% when the velocity was increased from 1 to 100 ft. per minute; but after that point was reached the coefficient varied approximately with the square root of the velocity.

The following results were obtained by Mr. Tower:

Feet per minute	209	262	814	366	419	471	Nominal Load per sq. in.
Coeff. of friction	.0010	.0012	.0013	.0014	.0015	.0017	520 lbs.
	.0013	.0014	.0015	.0017	.0018	.002	468 ''
	.0014	.0015	.0017	.0019	.0021	.0024	415 ''

The variation of friction with temperature is approximately in the inverse ratio. Law 4. Take, for example, Mr. Tower's results, at 262 ft. per minute:

Temp. F.	110°	100°	90°	80°	70°	60°
Observed Calculated	.0044	.0051 .00518	.006	.0078	.0092	.0119 .01252

This law does not hold good for pad or siphon lubrication, as then the coefficient of friction diminishes more rapidly for given increments of tem-perature, but on a gradually decreasing scale, until the normal temperature has been reached; this normal temperature increases directly as the load per sq in. This is shown in the following table taken from Mr. Stroudley's experiments with a pad of rape oil:

Temp. F	105°	110°	115°	120°	125°	130°	1 <b>3</b> 5°	140°	145°
Coefficient Decrease of coeff	.022	.0180 .0040	.0160	.0140 0020	.0125 .0015	.0115 .0010	.0110	.0106	.0102

In the Galton-Westinghouse experiments it was found that with velocities below 100 ft. per min., and with low pressures, the frictional resistance varied directly as the normal pressure; but when a velocity of 100 ft. per min. was exceeded, the coefficient of friction greatly diminished; from the same experiments Prof. Kennedy found that the coefficient of friction for high pressures was sensibly less than for low.

Allowable Pressures on Bearing-surfaces. (Proc. Inst. M. E., May, 1888.)-The Committee on Friction experimented with a steel ring of

rectangular section, pressed between two cast-iron disks, the annular bearing-surfaces of which were covered with gun-metal, and were 12 in. inside diameter and 14 in. outside. The two disks were rotated together, and the steel ring was prevented from rotating by means of a lever, the holding force of which was measured. When oiled through grooves cut in each face of the ring and tested at from 50 to 130 revs. per min., it was found that a pressure of 75 lbs. per sq. in. of bearing-surface was as much as it would bear safely at the highest speed without seizing, although it carried 90 lbs. per sq. in. at the lowest speed. The coefficient of friction is also much higher than for a cylindrical bearing, and the friction follows the law of the friction of solids much more nearly than that of liquids. This is doubtless that the much learn and the friction problem to the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the first of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of the form of th due to the much less perfect lubrication applicable to this form of bearing compared with a cylindrical one. The coefficient of friction appears to be about the same with the same load at all speeds, or, in other words, to be independent of the speed; but it seems to diminish somewhat as the load is increased, and may be stated approximately as 1/20 at 15 lbs. per sq. in., diminishing to 1/30 at 75 lbs. per sq. in. The high coefficients of friction are explained by the difficulty of lubricat-

ing a collar-bearing. It is similar to the slide-block of an engine, which can carry only about one tenth the load per sq. in. that can be carried by the

crank-pins.

In experiments on cylindrical journals it has been shown that when a cylindrical journal was lubricated from the side on which the pressure bore. 100 lbs, per sq. in. was the limit of pressure that it would carry; but when it came to be lubricated on the lower side and was allowed to drag the oil in with it, 600 lbs. per sq. in. was reached with impunity; and if the 600 lbs. per sq. in., which was reckoned upon the full diameter of the bearing, came to be reckoned on the sixth part of the circle that was taking the greater proportion of the load, it followed that the pressure upon that part of the circle

amounted to about 1200 lbs. per sq. in.

In connection with these experiments Mr. Wicksteed states that in drilling-machines the pressure on the collars is frequently as high as 336 lbs. per sq. in., but the speed of rubbing in this case is lower than it was in any of the experiments of the Research Committee. In machines working very slowly and intermittently, as in testing-machines, very much higher pres-

sures are admissible.

Mr. Adamson mentions the case of a heavy upright shaft carried upon a small footstep-bearing, where a weight of at least 20 tons was carried on a shaft of 5 in. diameter, or, say, 20 sq. in. area, giving a pressure of 1 ton per sq. in. The speed was 190 to 200 revs. per min. It was necessary to force the oil under the bearing by means of a pump. For heavy horizontal shafts, such as a fly wheel shaft, carrying 100 tons on two journals, his practice for getting oil into the bearings was to flatten the journal along one side throughout its whole length to the extent of about an eighth of an inch in width for each inch in diameter up to 8 in. diameter; above that size rather less flat in proportion to the diameter. At first sight it appeared alarming to get a continuous flat place coming round in every revolution of a heavily loaded shaft; yet it carried the oil effectually into the hearing, which ran much better in consequence than a truly cylindrical journal without a flat side.

In thrust-bearings on torpedo-boats Mr. Thornycroft allows a pressure of

never more than 50 lbs. per sq. in.

Prof. Thurston (Friction and Lost Work, p. 240) says 7000 to 9000 lbs pressure per square inch is reached on the slow-working and rarely-moved pivots of swing bridges.

Mr. Tower says (Proc. Inst. M. E., Jan. 1884): In eccentric-pins of punching and shearing-machines very high pressures are sometimes used without seizing. In addition to the alternation in the direction, the pressure is applied for only a very short space of time in these machines, so that the of has no time to be squeezed out.

In the discussion on Mr. Tower's paper (Proc. Inst. M. E. 1885) it was stated that it is well known from practical experience that with a constant load on an ordinary journal it is difficult and almost impossible to have more than 200 lbs. per square inch, otherwise the bearing would get hot and the oil go out of it; but when the motion was reciprocating, so that the load was alternately relieved from the journal, as with crank-pins and similar jour nals, much higher loads might be applied than even 700 or 800 lbs. per square inch.

Mr. Goodman (Proc. Inst. C. E. 1886) found that the total frictional resistance is materially reduced by diminishing the width of the brass.

The lubrication is most efficient in reducing the friction when the brass subtends an angle of from 120° to 60°. The film is probably at its best be-

tween the angles 80° and 110°.

In the case of a brass of a railway axle-bearing where an oil-groove is cut along its crown and an oil-hole is drilled through the top of the brass into it, the wear is invariably on the off side, which is probably due to the oil escaping as soon as it reaches the crown of the brass, and so leaving the off side

almost dry, where the wear consequently ensues.
In railway axles the brass wears always on the forward side. The same observation has been made in marine engine journals, which always wear in exactly the reverse way to what they might be expected. Mr. Stroudley thinks this peculiarity is due to a film of lubricant being drawn in from the under side of the journal to the aft part of the brass, which effectually lubricates and prevents wear on that side; and that when the lubricant reaches the forward side of the brass it is so attenuated down to a wedge shape that

there is insufficient inbrication, and greater wear consequently follows.

Prof. J. E. Denton (Am. Mach., Oct. 30, 1890) says: Regarding the pressure to which oil is subjected in railroad car service, it is probably more severe than in any other class of practice. Car brasses, when used bare, are so imperfectly fitted to the journal, that during the early stages of their use the area of bearing may be but about one square inch. In this case the pressure per square inch is upwards of 6000 lbs. But at the slowest speeds of freight service the wear of a brass is so rapid that, within about thirty minutes the area is either increased to about three inches, and is thereby able to relieve the oil so that the latter can successfully prevent overheating of the journal, or else overheating takes place with any oil, and measures of relief must be taken which eliminate the question of differences of lubricating power among the different lubricants available.

A brass which has been run about fifty miles under 5000 lbs. load may have extended the area of bearing-surface to about three square inches. The pressure is then about 1700 lbs. per square inch. It may be assumed that this is an average minimum area for car-service where no violent and unmanageable overheating has occurred during the use of a brass for a short time. This area will very slowly increase with any lubricant.

C. J. Field (Power, Feb. 1893) says: One of the most vital points of an engine for electrical service is that of main bearings. They should have a surface velocity of not exceeding 850 feet per minute, with a mean bearingpressure per square inch of projected area of journal of not more than 80 lbs. This is considerably within the safe limit of cool performance and easy operation. If the bearings are designed in this way, it would admit the use of grease on all the main wearing-surface, which in a large type of engines

for this class of work we think advisable.

Oli-pressure in a Bearing.—Mr. Beauchamp Tower (Proc. Inst. M. E. Jan. 1885) made experiments with a brass bearing 4 inches diameter by 6 inches long, to determine the pressure of the oil between the brass and the journal. The bearing was half immersed in oil, and had a total load of \$008 lbs. upon it. The journal rotated 150 revolutions per minute. The pressure of the oil was determined by drilling small holes in the bearing at different points and connecting them by tubes to a Bourdon gauge. different points and connecting them by tubes to a Bourdon gauge. It was found that the pressure varied from 310 to 625 lbs. per square inch, the greatest pressure being a little to the "off" "side of the centre line of the top of the bearing, in the direction of motion of the journal. The sum of the upward force exerted by these pressures for the whole lubricated area was nearly equal to the total pressure on the bearing. The speed was reduced from 150 to 20 revolutions, but the oil-pressure remained the same, showing that the breas way as a propheter of them to the lower product as at the that the brass was as completely oil borne at the lower speed as at the bigher. The following was the observed friction at the lower speed:

Nominal load, lbs. per square inch... Coefficient of friction ..... 448 888 211 .00182 .00168 .00247 .0044

The nominal load per square inch is the total load divided by the product of the diameter and length of the journal. At the same low speed of 20 revolutions per minute it was increased to 676 lbs. per square inch without any signs of heating or seizing.

Friction of Car-journal Brasses. (J. E. Denton, Trans. A. S. M. E, xii. 405.)—A new brass dressed with an emery-wheel, loaded with 5000 lbs... may have an actual bearing-surface on the journal, as shown by the polis'

of a portion of the surface, of only 1 square inch. With this pressure of 5000 lbs. per square inch, the coefficient of friction may be 6%, and the brass may be overheated, scarred and cut but, on the contrary, it may wear down evenly to a smooth bearing, giving a highly polished area of contact of 3 square inches, or more, inside of two hours of running, gradually decreasing the pressure per square inch of contact, and a coefficient of friction of less than 0.5%. A reciprocating motion in the direction of the axis is of importance in reducing the friction. With such polished surfaces any oil will lubricate, and the coefficient of friction then depends on the viscosity of the oil. With a pressure of 1000 lbs per square inch, revolutions from 170 to 820 per minute, and temperatures of 75° to 118° F. with both sperm and parraffine oils, a coefficient of as low as 0.11% has been obtained, the oil being fed continuously by a pad.

by a pad.

Experiments on Overheating of Bearings.—Hot Boxes.

(Denton.)—Tests with car brasses loaded from 1100 to 4500 lbs. per square inch gave 7 cases of overheating out of 8? trials. The tests show bow purely a matter of chance is the overheating, as a brass which ran hot at 5000 lbs. load on one day would run cool on a later date at the same or higher presented. sure. The explanation of this apparently arbitrary difference of behavior is that the accidental variations of the smoothness of the surfaces, almost inthat the accidental variations of the smoothness of the surfaces, almost infinitesimal in their magnitude, cause variations of friction which are always tending to produce overheating, and it is solely a matter of chance when these tendencies preponderate over the lubricating influence of the oil. There is no appreciable advantage shown by sperm-oil, when there is no tendency to overheat—that is, parafine can lubricate under the highest presume which could be greater when the surface are within the collection. sures which occur, as well as sperm, when the surfaces are within the conditions affording the minimum coefficients of friction.

Sperm and other oils of high heat-resisting qualities, like vegetable oil and petroleum cylinder stocks, only differ from the more volatile lubricants, like paraffine, in their ability to reduce the chances of the continual acci-

dental infinitesimal abrasion producing overheating.

The effect of emery or other gritty substance in reducing overheating of a bearing is thus explained:

The effect of the emery upon the surfaces of the bearings is to cover the latter with a series of parallel grooves, and apparently after such grooves are made the presence of the emery does not practically increase the friction over the amount of the latter when pure oil only is between the surfaces. The infinite number of grooves constitute a very perfect means of insuring a uniform oil supply at every point of the bearings. As long as grooves is the journal match with those in the brasses the friction appears to amount to only about 10% to 15% of the pressure. But if a smooth journal is placed between a set of brasses which are grooved, and pressure be applied, the journal crushes the grooves and becomes brazed or coated with brass, and then the coefficient of friction becomes upward of 40%. If then emery is applied, the friction is made very much less by its presence, because the grooves are made to match each other, and a uniform oil supply prevails at every point of the bearings, whereas before the application of the emery many spots of the latter receive no oil between them. The effect of the emery upon the surfaces of the bearings is to cover the

## Moment of Friction and Work of Friction of Slidingsurfaces, etc.

	Moment of Fric- tion, inch-lbs.	Energy lost by Friction in ftlbs. per min.
Flat surfaces	16fWd 16fWr	fWS .2618fWdn .1745fWrn
Collar-bearing		$.1745 fWn \frac{r_2^2 - r_1^2}{r_2^2 - r_1^2}$
Conical pivot	% fWr cosec a % fWr sec a	.1745f Wrn cosec a .1745f Wrn sec a
Truncated-cone pivot	$\frac{3}{8}fW\frac{r_2^3-r_1^3}{r_2\sin a}$	$.1745 f W \frac{r_3^3 - r_1^3}{r_3 \sin a}$
Hemispherical pivotractrix, or Schiele's "anti-	fWr	.2618fWr
riction " pivot	fWr	.2618fWr.

In the above f = coefficient of friction; W = weight on journal or pivot in pounds;

r = radius, d = diameter, in inches; S = space in feet through which sliding takes place;  $r_2 = \text{outer radius}, r_1 = \text{inner radius};$  n = number of revolutions per minute;

a = the half-angle of the cone, i.e., the angle of the slope with the axis.

To obtain the horse-power, divide the quantities in the last column by 33,000. Horse-power absorbed by friction of a shaft  $= \frac{fWdn}{dt}$ 

The formula for energy lost by shafts and journals is approximately true for loosely fitted bearings. Prof. Thurston shows that the correct formula varies according to the character of fit of the bearing; thus for loosely fitted journals, if U = the energy lost,

$$U = \frac{2f\pi r}{\sqrt{1+f^2}} Wn \text{ inch-pounds} = \frac{.2618fWdn}{\sqrt{1+f^2}} \text{ foot-lbs.}$$

For perfectly fitted journals  $U=2.54f\pi rWn$  inch-lbs. = .3325fWdn, ft.-lbs. For a bearing in which the journal is so grasped as to give a uniform pressure throughout,  $U=f\pi^2rWn$  inch-lbs. = .4112fWdn, ft.-lbs. Resistance of railway trains and wagons due to friction of trains.

Pull on draw-bar = 
$$\frac{f \times 2240}{R}$$
 pounds per gross ton,

in which R is the ratio of the radius of the wheel to the radius of journal, A cylindrical journal, perfectly fitted into a bearing, and carrying a total load, distributes the pressure due to this load unequally on the bearing, the maximum pressure being at the extremity of the vertical radius, while at the extremities of the horizontal diameter the pressure is zero. At any point of the bearing-surface at the extremity of a radius which makes an angle  $\theta$  with the vertical radius the normal pressure is proportional to  $\cos \theta$ . If p = normal pressure on a unit of surface, <math>w = total load on a unit of length of the journal, and r = radius of journal,

$$w\cos\theta = 1.57rp, \quad p = \frac{w\cos\theta}{1.57r}.$$

### PIVOT-BEARINGS.

The Schiele Curve. - W. H. Harrison, in a letter to the Am. Machin-The Schiele Curve.—W. H. Harrison, in a letter to the Am. Machinest, 1891, says the Schiele curve is not as good a form for a bearing as the segment of a sphere. He says: A mill-stone weighing a ton frequently bears its whole weight upon the flat end of a hard-steel pivot 1½" diameter, or one square inch area of bearing; but to carry a weight of 3000 lbs. he advises an end bearing about 4 inches diameter, made in the form of a segment of a sphere about ½ inch in height. The die or fixed bearing should be dished to fit the pivot. This form gives a chance for the bearing to adjust itself, which it does not have when made flat, or when made with the Schiele curve. If a side bearing is necessary it can be arranged farther up the shaft. The pivot and die should be of steel, hardened; cross-gutters should be in the shaft. made in the shaft.

The advantage claimed for the Schiele bearing is that the pressure is uniformly distributed over its surface, and that it therefore wears uniformly. Wilfred Lewis (Am. Mach., April 19, 1894) says that its merits as a thrust-bearing have been vastly overestimated; that the term "anti-friction" applied to it is a misnomer, since its friction is greater than that of a flat step or collar of the same diameter. He advises that flat thrust-bearings should always be annular in form, having an inside diameter one half of the external diameter

Friction of a Flat Pivot-bearing.—The Research Committee on Friction (Proc. Inst. M. E. 1891) experimented on a step-bearing, flatended, 3 in. diam., the oil being forced into the bearing through a hole ints centre and distributed through two radial grooves, insuring thorough lubrication. The step was of steel and the bearing of manganese-bronze,

At revolutions per min The coefficient of friction varied	. 50	128	194	290	353
	.0181	.0053	.0051	.0044	.0053
	and .0221	.0113	.0102	.0178	.0167

With a white-metal bearing at 128 revolutions the coefficient of friction was a little larger than with the manganese-bronze. At the higher speeds was as little larger than with the manganese-bronze. At the higher speeds the coefficient of friction was less, owing to the more perfect lubrication, as shown by the more rapid circulation of the oil. At 128 revolutions the bronze bearing heated and seized on one occasion with a load of 260 pounds and on another occasion with 300 pounds per square inch. The white-metal bearing under similar conditions heated and seized with a load of 240 pounds per square inch. The steel footstep on manganese-bronze was afterwards tried, lubricating with three and with four radial grooves; but the friction was from one and a half times to twice as great as with only the two process. (See also Allowshile Pressures maps 238)

grooves. (See also Allowable Pressures, page 936.)

Mercury-bath Plyot.—A nearly frictionless step-bearing may be obtained by floating the bearing with its superincumbent weight upon mercury. Such an apparatus is used in the lighthouses of La Heve, Havre. It

this described in Eng g, July 14, 1893, p. 41:

The optical apparatus, weighing about 1 ton, rests on a circular cast-iron table. which is supported by a vertical shaft of wrought iron 2.36 in.

This is kept in position at the top by a bronze ring and outer iron support. and at the bottom in the same way, while it rotates on a removable steel pivot resting in a steel socket, which is fitted to the base of the support. To the vertical shaft there is rigidly fixed a floating cast-iron ring 17.1 in. diam eter and 11.8 in. in depth, which is plunged into and rotates in a mercury bath contained in a fixed outer drum or tank, the clearance between the vertical surfaces of the drum and ring being only 0.2 in., so as to reduce as much as possible the volume of mercury (about 220 lbs.), while the horizontal clearance at the bottom is 0.4 in.

# BALL-BEARINGS, FRICTION ROLLERS, ETC.

A. H. Tyler (Eng'g, Oct. 20, 1898, p. 483), after experiments and comparison with experiments of others arrives at the following conclusions: That each ball must have two points of contact only.

The balls and race must be of glass hardness, and of absolute truth.

The balls should be of the largest possible diameter which the space at disposal will admit of.

Any one ball should be capable of carrying the total load upon the bearing.

Two rows of balls are always sufficient.

A ball-bearing requires no oil, and has no tendency to heat unless overloaded.

Until the crushing strength of the balls is being neared, the frictional re-

sistance is proportional to the load.

The frictional resistance is inversely proportional to the diameter of the balls, but in what exact proportion Mr. Tyler is unable to say. Probably it varies with the square.

The resistance is independent of the number of balls and of the speed.

No rubbing action will take place between the balls, and devices to guard

against it are unnecessary, and usually injurious.

The above will show that the ball-bearing is most suitable for high speeds and light loads. On the spindles of wood-carving machines some make as much as 30,000 revolutions per minute. They run perfectly cool, and never have any oil upon them. For heavy loads the balls should not be less than two thirds the diameter of the shaft, and are better if made equal to it.

Ball-bearings have not been found satisfactory for thrust-blocks, for the reason apparently that the tables crowd together. Better results have been obtained from coned rollers. A combined system of rollers and balls

is described in Eng'o, Oct. 6, 1893, p. 429.

Friction-rollers. — If a journal instead of revolving on ordinary hearings be supported on friction-rollers the force required to make the journal revolve will be reduced in nearly the same proportion that the diameter of the axles of the rollers is less than the diameter of the rollers themselves. In experiments by A. M. Wellington with a journal 3½ in. diam. supported on rollers 8 in. diam., whose axles were 1¾ in. diam., the friction in starting from rest was ¼ the friction of an ordinary 3½-in. bearing, but at a car reed of 10 miles per hour it was ½ that of the ordinary bearing. The ratute diam. of the axle to diam, of roller was 1¾:8, or as 1 to 4.6.

Bearings for Very High Rotative Speeds. (Proc. Inst. M. E., Oct. 1888, p. 482)—In the Parsons steam-turbine, which has a speed of as high as 18,000 eev. per min., as it is impossible to secure absolute accuracy of balance, the bearings are of special construction so as to allow of a certain very small amount of lateral freedom. For this purpose the bearing is surrounded by two sets of steel washers 1/16 inch thick and of different diamreturns, the larger fitting close in the casing and about 1/32 inch clear of the bearing, and the smaller fitting close on the bearing and about 1/32 inch clear of the clear of the casing. These are arranged alternately, and are pressed together by a spiral spring. Consequently any lateral movement of the bearing causes them to slide mutually against one another, and by their friction to check or damp any vibrations that may be set up in the spindle. The tendency of the spindle is then to rotate about its axis of mass, or principal axis as it is called; and the bearings are thereby relieved from excessive pressure, and the machine from undue vibration. The finding of the centre of gyration, or rather allowing the turbine itself to find its own centre of gyration, is a well-known device in other branches of mechanics: as in the instance of the centrifugal hydro-extractor, where a mass very much out of balance is allowed to find its own centre of gyration; the faster it ran the more steadily did it revolve and the less was the vibration. Another illustration is to be found in the spindles of spinning machinery, which run at about 10,000 or 11,000 revolutions per minute: they are made of hardened and tempered steel, and although of very small dimensions, the outside diameter of the largest portion or driving whorl being perhaps not what might be called a hard-and-fast bearing. They are therefore run with some elastic substance surrounding the bearing, such as steel springs, hemp, or cork. Any elastic substance is sufficient to absorb the vibration, and permit of absolutely steady running.

## FRICTION OF STEAM-ENGINES.

**Distribution of the Friction of Engines.**—Prof. Thurston in h's "Friction and Lost Work," gives the following:

	1.	2.	3.
Main bearings	47.0	35.4	85.0
Piston and rod	32.9	25.0	21.0
Crank-pin	6.8	5.1)	18.0
Cross-head and wrist-pin	5.4	4.1 (	18.0
Valve and rod	2.5	26.4	22.0
Eccentric strap	5.3	4.0 ₹	22.0
Link and eccentric			9.01
Total			
	100.0	100.0	100.0

No. 1, Straight-line,  $6'' \times 12''$ , balanced valve; No. 2, Straight-line,  $6'' \times 12''$ , unbalanced valve; No. 3,  $7'' \times 10''$ , Lansing traction locomotive valve-gear. Prof. Thurston's tests on a number of different styles of engines indicate

that the friction of any engine is practically constant under all loads. (Trans. A. S. M. E., viii. 86; ix. 74)

In a Straight-line engine, 8" × 14", I.H.P. from 7.41 to 57.54, the friction H. P. varied irregularly between 1.97 and 4.02, the variation being independent of the load. With 50 H.P. on the brake the I.H.P. was only 52.6, the friction being 1.96 H.P. on the brake the I.H.P. was only 52.6, the friction being only 2.6 H.P., or about 5%.

In a compound condensing-engine, tested from 0 to 102.6 brake H.P., gave I.H.P. from 14.92 to 117.8 H.P., the friction H.P. varying only from 14.92 to 17.42. At the maximum load the friction was 15.2 H.P., or 12.9%.
The friction increases with increase of the boiler-pressure from 30 to 70 lbs., and then becomes constant. The friction generally increases with in-

lbs., and then becomes constant. The friction generally increases with increase of speed, but there are exceptions to this rule.

Prof. Denton (Stevens Indicator, July, 1890), comparing the calculated friction of a number of engines with the friction as determined by measurement, finds that in one case, a 75-ton ammonia ice-machine, the friction of the compressor, 17½ H.P., is accounted for by a coefficient of friction of 7½ on all the external bearings, allowing 6% of the entire friction of the machine for the friction of pistons, stuffing-boxes, and valves. In the case of the Pawtucket pumping-engine, estimating the friction of the external bearings with a coefficient of friction of 6% and that of the pistons, valves, and stuffing-boxes as in the case of the ice-machine, we have the total friction distributed as follows: distributed as follows:

•	Horse- power.	Per cent of Whole.
Crank-pins and effect of piston-thrust on main shaft.  Weight of fly-wheel and main shaft	0.71 1.95	11.4 82.4
Steam-valves	0.07	3.7 1.2
PistonsStuffing-boxes, six altogether	. 0.72	7.2 11.8
Air-pump		32.8
Total friction of engine with load  Total friction per cent of indicated power		100.0

The friction of this engine, though very low in proportion to the indicated power, is satisfactorily accounted for by Morin's law used with a coefficient of friction of 5%. In both cases the main items of friction are those due to the weight of the fly-wheel and main shaft and to the piston-thrust on crank-pins and main-shaft bearings. In the ice-machine the latter items are the larger owing to the extra crank pin to work the pumps, while in the Pawtucket engine the former preponderates, as the crank-thrusts are partly absorbed by the pump-pistons, and only the surplus effect acts on the crank-shaft.

Prof. Denton describes in Trans. A. S. M. E., x. 392, an apparatus by which he measured the friction of a piston packing-ring. When the parts of the piston were thoroughly devoid of lubricant, the coefficient of friction was found to be about 7%; with an oil-feed of one drop in two minutes the coefficient was about 5%; with an oil-feed of one drop in two minutes the rates of feed gave unsatisfactory lubrication, the piston groaning at the ends of the stroke when run slowly, and the flow of oil left upon the surfaces was found by analysis to contain about 5% of Iron. A feed of two drops per minute reduced the coefficient of friction to about 1% and gave practically perfect lubrication, the oil retaining its natural color and purity.

### LUBRICATION.

Measurement of the Durability of Lubricants. (J. E. Denton, Trans. A. S. M. E., xi. 1013.)—Practical differences of unrability of lubricants depend not on any differences of inherent ability to resist being "worn out" by rubbing, but upon the rate at which they flow through and away from the bearing-surfaces. The conditions which control this flow are so delicate in their influence that all attempts thus far made to measure durability of lubricants may be said to have failed to make distinctions of lubricating value having any practical significance. In some kinds of service the limit to the consumption of oil depends upon the extent to which dust or other refuse becomes mixed with it, as in raliroad-car lubrication and in the case of agricultural machinery. The economy of one oil over another, so far as the quality used is concerned—that is, so far as durability is concerned—simply proportional to the rate at which it can insinuate itself into and flow out of minute orifices or cracks. Oils will differ in their ability to do this, first, in proportion to their viscosity, and, second, in proportion to the capillary properties which they may possess by virtue of the particular ingredients used in their composition. Where the thickness of film between rubing-surfaces must be so great that large amounts of oil pass through bearings in a given time, and the surroundings are such as to permit oil to be fed at high temperatures or applied by a method not requiring a perfect fuldity, it is probable that the least amount of oil will be used when the viscosity is as great as in the petroleum cylinder stocks. When, however, the oil must flow freely at ordinary temperatures and the feed of oil is restricted, as in the case of crank-pin bearings, it is not practicable to feed such heavy oils in a satisfactory manner. Oils of less viscosity or of a fluidity approximating to larrioi must then be used.

**Relative Value of Lubricants.** (J. E. Denton, Am. Much., Oct. 30, 180.)—The three elements which determine the value of a inbricant are the cost due to consumption of lubricants, the cost spent for coal to overcome the frictional resistance caused by use of the lubricant, and the cost due to the metallic wear on the journal and the brasses. In cotton-mills the cost of the power is alone to be considered; in rolling-mills and marine engines the cost of the quantity of lubricant used is the only important factor; Lui 'n railroads not only do both these elements enter the problem as tangible

factors, but the cost of the wearing away of the metallic parts enters in ad-

dition, and furthermore, the latter is the greatest element of cost in the case.

The Qualifications of a Good Lubricant, as laid down by W. H. Bailey, in Proc Inst. C. E., vol. xlv., p. 872, are: 1. Sufficient body to keep the surfaces free from contact under maximum pressure. 2. The presented possible fluidity consistent with the foregoing condition. 3. The greatest possible fluidity consistent with the foregoing condition. lowest possible coefficient of friction, which in bath lubrication would be for thrid friction approximately. 4. The greatest capacity for storing and carrying away heat. 5. A high temperature of decomposition. 6. Power to resist oxidation or the action of the atmosphere. 7. Freedom from corrosive action on the metals upon which used.

# Best Lubricants for Different Purposes. (Thurston.)

Low temperatures, as in rock-drills Light mineral lubricating-oils. driven by compressed air: Graphite, soapstone, and other solid Very great pressures, slow speed... lubricants. The above, and lard, tallow, and other Heavy pressures, with slow speed... greases. Sperm-oil, castor-oil, and heavy min-Heavy pressures and high speed .... eral oils. Sperm, refined petroleum, olive, rape, Light pressures and high speed..... cotton-seed. Lard-oil, tallow-oil, heavy mineral oils, Ordinary machinery .... and the heavier vegetable oils. Heavy mineral oils, lard, tallow. Steam-cylinders..... Watches and other delicate mecha- Clarifled sperm, neat's-foot, porpoise, olive, and light mineral lubricating nism:

For mixture with mineral oils, sperm is best: lard is much used: olive and

cotton-seed are good.

Amount of Oil needed to Bun an Engine.—The Vacuum Oil Co. in 1892, in response to an inquiry as to cost of oil to run a 1000-H.P. Co. in 1892, in response to an inquiry as to cost of oil to run a 1000-H.P. Corliss engine, wrote: The cost of running two engines of equal size of the same make is not always the same. Therefore while we could furnish figures showing what it is costing some of our customers having Corliss engines of 1000 H.P., we could only give a general idea, which in itself might be considerably out of the way as to the probable cost of cylinderand engine-oils per year for a particular engine. Such an engine ought to run readily on less than 8 drops of 600 W oil per minute. It 8000 drops are figured to the quart, and 8 drops used per minute, it would take about two and one half barrels (52.5 gallons) of 600 W cylinder-oil, at 65 cents per callon, or about 285 for cylinder-oil per year, running 6 days a week and 10 gallon, or about \$85 for cylinder-oil per year, running 6 days a week and 10 hours a day. Engine-oil would be even more difficult to guess at what the cost would be, because it would depend upon the number of cups required on the engine, which varies somewhat according to the style of the engine. It would doubtless be safe, however, to calculate at the outside that not more than twice as much engine-oil would be required as of cylinder-oil.

The Vacuum Oil Co. in 1892 published the following results of practice

with "600 W" cylinder-oil:

Corliss compound engine, 20 and 33 × 48; 83 revs. per min.; 1 drop of oil per min. to 1 drop in two minutes. 20, 33, and  $46 \times 48$ ; 1 drop every 2 minutes, 20 and  $36 \times 36$ ; 143 revs. per min.; 2 drops of oil triple exp. Porter-Allen per min., reduced afterwards to 1 drop per min.  $15 \times 25 \times 16$ ; 240 revs. per min.; 1 drop every 4 Ball minutes.

Results of tests on ocean-steamers communicated to the author by Prof. Denton in 1892 gave: for 1200-H.P. marine engine, 5 to 6 English gallons (6 to 7.2 U. S. gals.) of engine-oil per 24 hours for external lubrication; and for a 1500-H.P. marine engine, triple expansion, running 75 revs. per min., 6 to 7 English gals, per 24 hours. The cylinder-oil consumption is exceedingly variable.-from 1 to 4 gals. per day on different engines, including cylinderoil used to awab the piston-rods.

Quantity of Oil used on a Locomotive Crank-pin,—Prof. Denton, Trans. A. S. M. E., xi. 1020, says: A very economical case of practical solutions of the consumer about six

cubic inches of oil in a thousand miles of service. This is equivalent to a consumption of one milligram to seventy square inches of surface rubbed

The Examination of Lubricating-oils. (Prof. Thos. B. Stillman, Stevens Indicator, July, 1890.)—The generally accepted conditions of a good lubricant are as follows:
1. "Body" enough to prevent the surfaces, to which it is applied, from

coming in contact with each other. (Viscosity.)

2. Freedom from corrosive acid, either of mineral or animal origin.

3. As fluid as possible consistent with "body."

4. A minimum coefficient of friction.

5. High "flash" and burning points.

high "nash" and ourning points.
 freedom from all materials liable to produce oxidation or "gumming."
The examinations to be made to verify the above are both chemical and
mechanical, and are usually arranged in the following order:

 Identification of the oil, whether a simple mineral oil, or animal oil, or
a mixture.
 Density.
 Viscosity.
 Flash-point.
 Burning-point.
 Acidity.
 Code ficient of friction.
 Cold test.
 Detailed directions for making all of the above tests are given in Prof.

Stillman's article.

Weights of Oil per Gallon.—The following are approximately the weights per gallon of different kinds of oil (Penn. R. R. Specifications):
Lard-oil, tallow-oil, neat's-foot oil, bone-oil, colza-oil, mustard-seed oil, rape-seed oil, paraffine-oil, 500° fire-test oil, engine-oil, and cylinder lubricant,

734 pounds per gallon.
Well-oil and passenger-car oil, 7.4 pounds per gallon; navy sperm-oil, 7.2 pounds per gallon; signal-oil, 7.1 pounds per gallon; 300° burning-oil, 6.9 pounds per gallon; and 150° burning-oil, 6.6 pounds per gallon.

Penna. B. R. Specifications for Petroleum Products.

1889.—Five different grades of petroleum products will be used.

The materials desired under this specification are the products of the distillation and refining of petroleum unnixed with any other substances.

150° Fire-test Oil.—This grade of oil will not be accepted if sample (1) is not "water-white" in color; (2) flashes below 130° Fahrenheit; (3) burns below 151° Fahrenheit; (4) is cloudy or shipment has cloudy barrels when received, from the presence of glue or suspended matter; (5) becomes opaque or shows cloud when the sample has been 10 minutes at a temperature of 0° Fahrenheit.

The flashing and burning points are determined by heating the oil in an open vessel, not less than 12° per minute, and applying the test flame every 7°, beginning at 123° Fahrenheit. The cold test may be conveniently made by having an ounce of the oil, in a four-ounce sample bottle, with a thermometer suspended in the oil, and exposing this to a freezing mixture of ice and salt. It is advisable to stir with the thermometer while the oil is cooling. The oil must remain transparent in the freezing mixture ten minutes after it has cooled to zero.

minutes after it has cooled to zero.

300° Fire-test Oi. —This grade of oil will not be accepted if sample (1) is not "water white" in color; (2) flashes below 249° Fahrenheit; (3) burns below 289° Fahrenheit; (4) is cloudy or shipment has cloudy barrels when received, from the presence of glue or suspended matter; (5) becomes opaque or shows cloud when the sample has been 10 minutes at a temper-

ature of 32° Fahrenheit.

The flashing and burning points are determined the same as for 150° fire-test oil, except that the oil is heated 15° per minute, test-flame being applied first at 212° Fahrenheit. The cold test is made the same as above, except that ice and water are used.

Parafine-oil.—This grade of oil will not be accepted if the sample (1) is other than pale-lemon color; (2) flashes below 249° Fahrenheit; (3) shows viscosity less than 40 seconds or more than 65 seconds when tested as described under "Well Oil" at 100° Fahrenheit throughout the year; (4) has gravity at 60° Fahrenheit, below 24° Baumé, or above 29° Baumé; (5) from October 1st to May 1st has a cold test above 10° Fahrenheit.

The deplot rate to determine the same are for \$000° flast test oil.

The flashing-point is determined same as for 300° fire test oil. The cold test is determined as follows: A couple of ounces of oil is put in a four-ounce sample bottle, and a thermometer placed in it. The oil is then frozen, a freezing mixture of ice and salt being used if necessary. When the oil has become hard, the bottle is removed from the freezing mixture and the frozen oil allowed to soften, being stirred and thoroughly mixed at the same 'me by means of the thermometer, until the mass will run from one end of the bottle to the other. The reading of the thermometer when this is the case is regarded as the cold test of the oil.

Well Oil.—This grade of oil will not be accepted if the sample (1) flashes, Well Oil.—In grade of on will not be accepted it the sample (1) manner from May 1st to October 1st, below 249° Fahrenheit, of from October 1st to May 1st below 200° Fahrenheit; (2) has a gravity, at 60° Fahrenheit, below 28° Baumé, or above 30°; (3) from October 1st to May 1st has a cold teat above 10° Fahrenheit; (4) shows any precipitation in 10 minutes when 5 cubic centimeters are mixed with 95 cubic centimeters of 88° gasoline; (5) shows a viscosity less than 55 seconds, or more than 100 seconds, when tested as described below. From October 1st to May 1st the test must be made at 100° Fahrenheit, and from May 1st to October 1st at 110° Fahrenheit.

For summer oil the flashing-point is determined the same as for paraffineoil; and for winter oil the same, except that the test-flame is applied first at 198º Fahrenheit. The cold test is made the same as for paraffine-oil.

The precipitation test is to exclude tarry and suspended matter. It is easiest made by putting 5 cubic centimetres of the oil in a 100-cubic-centimetre graduate, then filling to the mark with gasoline, and thoroughly

sbaking.

The viscosity test is made as follows: A 100-cubic-centimetre pipette of the long bulb form is regraduated to hold just 100 cubic centimetres to the bottom of the bulb. The size of the aperture at the bottom is then made such that 100 cubic centimetres of water at 100° Fahrenheit will run out the pipette down to the bottom of the bulb in 84 seconds. Pipettes with bulbs varying from 1% inches to 1¼ inches in diameter outside, and about 4½ inches long give almost exactly the same results, provided the aperture at the bottom is the proper size. The pipette being obtained, the oil sample is heated to the required temperature, care being taken to have it uniformly heated, and then is drawn up into the pipette to the proper mark. The time occupied by the oil in running out, down to the bottom of the bulb, gives the test figures.

500° Fire-test Oil.—This grade of oil will not be accepted if sample (1) flashes below 445° Fahrenheit; (2) shows precipitation with gasoline when

tested as described for well-oil.

The flashing-point is determined the same as for well-oil, except that the test flame is applied first at 488° Fahrenheit.

#### SOLID LUBRICANTS.

Graphite in a condition of powder and used as a solid lubricant, so called, to distinguish it from a liquid lubricant, has been found to do well

where the latter has failed.

Rennie, in 1829, says: "Graphite lessened friction in all cases where it was used." General Morin, at a later date, concluded from experiments that it could be used with advantage under heavy pressures; and Prof. Thurston found it well adapted for use under both light and heavy pressures when mixed with certain oils. It is especially valuable to prevent abrasion and cutting under heavy loads and at low velocities.

Soapstone, also called tale and steatite, in the form of powder and mixed with oil or fat, is sometimes used as a lubricant. Graphite or soapstone, mixed with soap, is used on surfaces of wood working against either

iron or wood.

Fibre-graphite.—A new self-lubricating bearing known as fibre-graphite is described by John H. Cooper in Trans. A. S. M. E., xiii. 374, as the invention of P. H. Holmes, of Gardiner, Me. This bearing material is composed of selected natural graphite, which has been finely divided and freed from foreign and gritty matter, to which is added wood-fibre or other growth mixed in water in various proportions, according to the purpose to be served, and then solidified by pressure in specially prepared moulds; after removal from which the bearings are first thoroughly dried, then satuarter removal from which the bearings are nest thoroughly dried, then saturated with a drying oil, and finally subjected to a current of hot, dry air for the purpose of oxidizing the oil, and hardening the mass. When finished, they may be "machined" to size or shape with the same facility and means employed on metals.

Metaline is a solid compound, usually containing graphite, made in the form of small cylinders which are fitted permanently into holes drilled in the surface of the bearing. The bearing thus fitted runs without any other

lubrication.

#### THE FOUNDRY.

#### CUPOLA PRACTICE.

The following notes, with the accompanying table, are taken from an article by Simpson Bolland in American Machinist, June 30, 1892. The table The table shows heights, depth of bottom, quantity of fuel on bed, proportion of fuel and iron in charges, diameter of main blast-pipes, number of tuyeres, blast-pressure, sizes of blowers and power of engines, and melting capacity per

hour, of cupolas from 24 inches to 84 inches in diameter.

Capacity of Cupola.—The accompanying table will be of service in determining the capacity of cupola needed for the production of a given quantity

of iron in a specified time.

First, ascertain the amount of iron which is likely to be needed at each cast, and the length of time which can be devoted profitably to its disposal; and supposing that two hours is all that can be spared for that purpose, and that ten tons is the amount which must be melted, find in the column, Melting Capacity per hour in Pounds, the nearest figure to five tons per hour, which is found to be 10,760 pounds per hour, opposite to which in the column Diameter of Cupolas, Inside Lining, will be found 48 inches; this will be the size of cupola required to furnish ten tons of molten iron in two hours,

Or suppose that the heats were likely to average 6 tons, with an occasional increase up to ten, then it might not be thought wise to incur the extra expense consequent on working a 48-inch cupola, in which case, by following the directions given, it will be found that a 40-inch cupola would answer the purpose for 6 tons, but would require an additional hour's time for melting

whenever the 10-ton heat came along.

The quotations in the table are not supposed to be all that can be melted in the hour by some of the very best cupolas, but are simply the amounts which a common cupola under ordinary circumstances may be expected to melt in the time specified.

Height of Cupola.-By height of cupols is meant the distance from the

base to the bottom side of the charging hole.

Depth of Bottom of Cupola.—Depth of bottom is the distance from the sand-bed, after it has been formed at the bottom of the cupola, up to the under side of the tuyeres.

All the amounts for fuel are based upon a bottom of 10 inches deep, and any departure from this depth must be met by a corresponding change in the quantity of fuel used on the bed; more in proportion as the depth is increased, and less when it is made shallower.

Amount of Fuel Required on the Bed.—The column "Amount of Fuel required on Bed, in Pounds" is based on the supposition that the cupola is a straight one all through, and that the bottom is 10 inches deep. If the bottom be more, as in those of the Colliau type, then additional fuel will be needed.

The amounts being given in pounds, answer for both coal and coke, for should coal be used, it would reach about 15 inches above the tuyeres; the same weight of coke would bring it up to about 22 inches above the tuyeres.

which is a reliable amount to stock with.

First Charge of Iron.—The amounts given in this column of the table are safe figures to work upon in every instance, yet it will always be in order, after proving the ability of the bed to carry the load quoted, to make a slow and gradual increase of the load until it is fully demonstrated just how much

burden the bed will carry.

Succeeding Charges of Fuel and Iron.—In the columns relating to succeeding charges of fuel and iron, it will be seen that the highest proportions are ing charges of fuel and from it will be seen that the argument favored, for the simple reason that successful melting with any greater respection of iron to fuel is not the rule, but, rather, the exception. Whenever we see that iron has been melted in prime condition in the proportion of 12 pounds of iron to one of fuel, we may reasonably expect that the talent,

material, and cupola have all been up to the highest degree of excellence.

Diameter of Main Blast-pipe.—The table gives the diameters of main blast-pipes for all cupolas from 24 to 84 inches diameter. The sizes given mosité each cupola are of sufficient area for all lengths up to 100 feet.

# Cupola Practice.

# -TO Blower. ~~~~<del>~~~~~~~~~</del> H.P. gine to drive Sturievant H.P. of En-Stintevant. 88888884447776666744888888888888888 to sail T H.P. of Engine to drive 55555884888545827588888434525688484 ber minute Revolutions Blower Sixes of Root Sizat-press. @@@CCC@@@Z44444444@@@@@@@ Number and Dimensions of flat Tuyeres equivalent to the 6-inch round ones. required for eachCup'la. è Tuyeres inchesdiana. in length. Inches. Blast - pipe when notex-ceed'g looft, Diam. Main Succeeding charges from, 88.60 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0886 1.0 Succeeding charges de Fuel. First charge of fron. leg T to 1'mA of man and beringer and bed Тауегев, ot charging Feet. 000777887888888844444444666666666666 Heightof.Ca-mora from bot'm plate pola inside Ining.

Tuyeres for Cupola.—Two columns are devoted to the number and sizes of tuyeres requisite for the successful working of each cupola; one gives the number of pipes 6 inches diameter, and the other gives the number and dimensions of rectangular tuyeres which are their equivalent in area.

From these two columns any other arrangement or disposition of tuyeres may be made, which shall answer in their totality to the areas given in the

table.

When cupolas exceed 60 inches in diameter, the increase in diameter should begin somewhere above the tuyeres. This method is necessary in all common cupolas above 60 inches, because it is not possible to force the blast to the middle of the stock, effectively, at any greater diameter.

On no consideration must the tuyere area be reduced; thus, an 84-inch

cupola must have tuyere area equal to 31 pipes 6 inches diameter, or 16 flat

tuyeres 16 inches by 181/2 inches.

If it is found that the given number of flat tuyeres exceed in circumference that of the diminished part of the cupola, they can be shortened, allowing the decreased length to be added to the depth, or they may be built in on end; by so doing, we arrive at a modified form of the Blakeney cupola.

Another important point in this connection is to arrange the tuyeres in such a manner as will concentrate the fire at the melting-point into the smallest possible compass, so that the metal in fusion will have less space

to traverse while exposed to the oxidizing influence of the blast.

To accomplish this, recourse has been had to the placing of additional rows of tuyeres in some instances—the "Stewart rapid cupola" having three rows, and the "Colliau cupola furnace" having two rows, of tuyeres.

Blast-pressure.—Experiments show that about 30,000 cubic feet of air are

consumed in melting a ton of iron, which would weigh about 2400 pounds, or more than both iron and fuel. When the proper quantity of air is supplied, the combustion of the fuel is perfect, and carbonic-acid gas is the result. When the supply of air is insufficient, the combustion is imperfect, and carbonic-oxide gas is the result. The amount of heat evolved in these two cases is as 15 to 41/2 showing a loss of over two thirds of the heat by imperfect combustion.

It is not always true that we obtain the most rapid melting when we are forcing into the cupola the largest quantity of air. Some time is required to elevate the temperature of the air supplied to the point that it will enter into combustion. If more air than this is supplied, it rapidly absorbs heat, reduces the temperature, and retards combustion, and the fire in the cupola may be extinguished with too much blast.

Slag in Cupolas.—A certain amount of slag is necessary to protect the molten iron which has fallen to the bottom from the action of the blast; if

it was not there, the iron would suffer from decarbonization.

When slag from any cause forms in too great abundance, it should be led away by inserting a hole a little below the tuyeres, through which it will find its way as the iron rises in the bottom.

In the event of clean iron and fuel, slag seldom forms to any appreciable extent in small heats; this renders any preparation for its withdrawal unnecessary, but when the cupola is to be taxed to its utmost capacity it is then incumbent on the melter to flux the charges all through the heat, carrying it away in the manner directed.

The best flux for this purpose is the chips from a white marble yard. About 6 pounds to the ton of iron will give good results when all is clean.

When fuel is bad, or iron is dirty, or both together, it becomes imperative that the slag be kept running all the time.

Fuel for Cupolas.—The best fuel for melting iron is coke, because it requires less blast, makes hotter iron, and melts faster than coal. When coal must be used, care should be exercised in its selection. All anthracites which are bright, black, hard, and free from slate, will melt iron admirably. All anthracites The size of the coal used affects the melting to an appreciable extent, and, for the best results, small cupolas should be charged with the size called "egg," a still larger grade for medium-sized cupolas, and what is called "lump" will answer for all large cupolas, when care is taken to pack it carefully on the charges

Charging a Cupola.—Chas. A. Smith (Am. Mach., Feb. 12, 1891) gives the following: A 28-in. cupola should have from 300 to 400 pounds of coke on bottom bed; a 36-in. cupola, 700 to 800 pounds; a 48-in. cupola, 1500 lbs.; and a 60-in. cupola should have one ton of fuel on bottom bed. To every pound of fuel on the bed, three, and sometimes four pounds of metal can be "ded with safety, if the cupola has proper blast; in after-charges, to every pound of fuel add 8 to 10 pounds of metal; any well-constructed cupola will

stand ten.

F. P. Wolcott (Am. Mach., Mar. 5, 1891) gives the following as the practice of the Colwell Iron-works, Carteret, N. J.: "We melt daily from twenty to forty tons of iron, with an average of 11.2 pounds of iron to one of fuel. In a 36-in. cupola seven to nine pounds is good melting, but in a cupola that lines up 48 to 60 inches, anything less than nine pounds shows a defect in arrangement of tuyeres or strength of blast, or in charging up."
"The Moulder's Text-book," by Thos. D. West, gives forty-six reports in

tabular form of cupola practice in thirty States, reaching from Maine to

Cupola Charges in Stove-foundries. (Iron Age, April 14, 1892.) No two cupolas are charged exactly the same. The amount of fuel on the bed or between the charges differs, while varying amounts of iron are used in the charges. Below will be found charging-lists from some of the prominent stove-foundries in the country :

10s.   1.500   First charge of iron 5.000   All other charges of iron 1,000   First and second charges	Four next charges of coke, each	lbs. 150 120
of coke, each 200	Nineteen next charges of coke, each	100

Thus for a melt of 18 tons there would be 5120 lbs. of coke used, giving a ratio of 7 to 1. Increase the amount of iron melted to 24 tons, and a ratio of 8 pounds of iron to 1 of coal is obtained.

B - Bed of fuel, coke	fuel	180 100
-----------------------	------	------------

For an 18-ton melt 5060 lbs. of coke would be necessary, giving a ratio of 7.1 lbs. of iron to 1 pound of coke.

C—Bed of fuel, coke 1,60 First charge of iron 4,00 First and second charges	All other charges of iron 2,000
of coke 20	

In a melt of 18 tons 4100 lbs, of coke would be used, or a ratio of 8.5 to 1.

lbs.
charges of coke, each 200
other charges of iron 2,900

In a melt of 18 tons, 3900 lbs, of fuel would be used, giving a ratio of 9.4 pounds of iron to 1 of coke. Very high, indeed, for stove-plate.

	lbs.		lbs.
E-Bed of fuel, coal 1	1,900	All other charges of iron, each	2,000
First charge of iron 5	5,000	All other charges of coal, each	175
First charge of coal	200	•	

In a melt of 18 tons 4700 lbs, of coal would be used, giving a ratio of 7.7

lbs. of iron to 1 lb. of coal.

These are sufficient to demonstrate the varying practices existing among different stove foundries. In all these places the iron was proper for stove-

plate purposes, and apparently there was little or no difference in the kind of work in the sand at the different foundries. **Results of Increased Briving.** (Eric City Iron-works, 1891.)—May—Dec. 1890: 60-in. cupola, 100 tons clean castings a week, melting 8 tons may—rec. 1000. Will. cupois, 100 tons clean castings a week, melting 8 tons per hour; iron per pound of fuel, 7½ lbs.; per cent weight of good castings to iron charged, 75%. Jan.—May, 1891: Increased rate of melting to 11½ tons per hour; iron per lb. fuel, 9½; per cent weight of good castings, 75; one week, 13½ tons per hour, 10.3 lbs. iron per lb. fuel; per cent weight of good castings, 75.3. The increase was made by putting in an additional row of tuyeres and using stronger blast, 14 ounces. Coke was used as fuel. (W. O. Webber, Thoras & S. M. F. ii 1045). Trans. A. S. M. E. xii, 1045.)

# Buffalo Steel Pressure-blowers. Speeds and Capacities as applied to Cupolas.

Sq. in, Blast,	No. of Blower.	Diameter inside of Cupola, in.	Pressure in oz.	Speed—No. of Revolutions per minute.	Melting Capacity in pounds, per hour.	Cubic Feet of Air required per minute.	Horse-power re- quired.	Pressure in oz.	Speed—No. of Revolutions. per minute.	Melting Capacity in Pounds, per hour.	Cubic Feet of Air required per minute.	Horse-power required.
4	4	20	8	4793	1545	412	1.0	9	5095	1647	438	1.3
6	5	25	8	3911	2321	619	1.2	10	4509	2600		2.9
35	6	30	8	3456	3098	825	2.05	10	3974	3671	926	3.1
11	7	35	8	3092	4218	1125	3.1	10	8476		1274	4.25
14	.8	40	8	2702	5425	1444	3.9	10	3034	6082	1622	5.50
18	.9	45	10	2617	7818	2085	7.1	12	2916	8598	2293	9.36
26	10	55	10	2139	11295	3012	10.2	12	2353	12378	3301	12.
46	11	73	12	1639	21978	5861	23.9	14	1777	23838	6357	80.3
68	12	-88	12	1639	82395	8636	35.2	14	1777	35190	9384	43.7

In the table are given two different speeds and pressures for each size of blower, and the quantity of iron that may be malted, per hour, with each. In all cases it is recommended to use the lowest pressure of blast that will do the work. Run up to the speed given for that pressure, and regulate quantity of air by the blast-gate. The tuyere area should be at least one ninth of the area of cupola in square inches, with not less than four tuyeres at equal distances around cupola, so as to equalize the blast throughout. Variations in temperature affect the working of cupolas materially, hot weather requiring increase in volume of air.

(For tables of the Sturtevant blower see pages 519 and 520.)

Loss in Melting Iron in Cupolas.—G. O. Vair, Am. Mach., March 5, 1891, gives a record of a 45-in. Colliau cupola as follows:

#### Ratio of fuel to iron. 1 to 7.42.

Good castings New scrap Millings	3,005	••
Loss of metal	1,481	"
Amount meltedLoss of metal, 5.69%. Ratio of loss, 1 to	26,000 17.55.	lbs.

Use of Softeners in Foundry Practice. (W. Graham, Iron Age, June 27, 1889.)—In the foundry the problem is to have the right proportions of combined and graphitic carbon in the resulting casting; this is done by getting the proper proportion of silicon. The variations in the proportions of silicon afford a reliable and inexpensive means of producing a cast iron of any required mechanical character which is possible with the material employed. In this way, by mixing suitable irons in the right proportions, a required grade of casting can be made more cheaply than by using irons in which the necessary proportions are already found.

If a strong machine casting were required, it would be necessary to keep the phosphorus, sulphur, and manganese within certain limits. Professor Turner found that cast iron which possessed the maximum of the desired qualities contained, graphite, 2.59%; silicon, 1.42%; phosphorus, 0.39%; sulphur, 0.06%; manganese, 0.58%.

A strong casting could not be made if there was much increase in the amount of phosphorus, sulphur, or manganese. Irons of the above percentamount of phosphorus, sulphur, or manganesse. Irons of the above percentages of phosphorus, sulphur, and manganess would be most suitable for this purpose, but they could be of different grades, having different percentages of silicon, combined and graphitic carbon. Thus hard irons, mottled and white irons, and even steel scrap, all containing low percentages of silicon and high percentages of combined carbon, could be employed if an iron having a large amount of silicon were mixed with them in sufficient amount. This would bring the silicon to the proper proportion and would cause the ombined carbon to be forced into the graphitic state, and the resulting

casting would be soft. High-silicon irons used in this way are called "soft-eners."

The following are typical analyses of softeners:

	Fer	ro-silicor	ı.	Softene	rs, Am	Scotch Irons, No. 1.		
	Foreign.	Ame	rican.	Well- ston.	Globe	Belle- fonte.	Eg- linton	Colt- ness.
Silicon Combined C Graphitic C. Manganese Phosphorus	10.55 9.80 1.84 0.69 0.52 1.11 3.86 1.93 0.04 0.21 0.03 0.04	0.06 1.52 0.76 0.48	10.34 0.07 1.92 0.52 0.45 Trace	6.67 2.57 0.50 Trace	5.89 0.80 2.85 1.00 1.10 0.02	8 to 6 0.25 8. 0.58 0.35 0.08	2.15 0.21 8.76 2.80 0.62 0.03	2.59 1.70 0.85 0.01

(For other analyses, see pages 371 to 373.)

Ferro-silicons contain a low percentage of total carbon and a high percentage of combined carbon. Carbon is the most important constituent of cast iron, and there should be about 3.4% total carbon present. By adding ferro-silicon which contains only 2% of carbon the amount of carbon in the resulting mixture is lessened.

Mr. Keep found that more silicon is lost during the remelting of pig of over 10% silicon than in remelting pig iron of lower percentages of silicon. He also points out the possible disadvantage of using ferro-silicons containing as high a percentage of combined carbon as 0.70% to overcome the bad effects of combined carbon in other irons.

The Scotch irons generally contain much more phosphorus than is desired in irous to be employed in making the strongest castings. It is a mistake to mix with strong low-phosphorus irons an iron that would increase the amount of phosphorus for the sake of adding softening qualities, when soft-

ness can be produced by mixing from of the same low phosphorus.

(For further discussion of the influence of silicon see page 365.)

Shrinkage of Castings.—The allowance necessary for shrinkage varies for different kinds of metal, and the different conditions under which they are cast. For eastings where the thickness runs about one inch, cast under ordinary conditions, the following allowance can be made:

For	cast-iron,	<b>3</b> 6	inch	per	foot.	For	zinc,	5/16	inch	per	foot.
4.	cast-iron, brass,	8/16	• •		44	**	tin,	1/12	"	- 44	**
44	steel.	1/4	**	**	**	44	aluminum,	8/16		44	"
4.6	steel, mal. iron,	12	66		**	4.6	Britannia,			**	66

Thicker castings, under the same conditions, will shrink less, and thinner ones more, than this standard. The quality of the material and the manner of moulding and cooling will also make a difference.

Numerous experiments by W. J. Keep (see Trans. A. S. M. E., vol. xvi.) showed that the shrinkage of cast iron of a given section decreases as the

Numerous experiments by w.J. Keep (see Trans. A. S. M. E., vol. xvi.) showed that the shrinkage of east iron of a given section decreases as the percentage of silicon increases, while for a given percentage of silicon the shrinkage decreases as the section is increased. Mr. Keep gives the following table showing the approximate relation of shrinkage to size and percentage of silicon:

	Sectional Area of Casting.									
Percentage of Silicon.	1∕4″ □	1" 0	1" × 2"	2′′ 🛭	8″ 🛭	4" 0				
	Shrinkage in Decimals of an inch per foot of Length.									
1.	.188 •	.158	.146	.130	.118	.102				
1.5	.171	.145	.183	.117	.098	.087				
2.	.159	.133	.121	.104	.085	.074				
2.5	.147	.121	.108	.092	.078	.060				
8.	.135	.108	.095	.077	.059	.045				
8.5	.123	.095	.082	.065	.046	032				

Mr. Keep also gives the following "approximate key for regulating fourdry mixtures" so as to produce a shrinkage of 1/6 in. per ft. in castings of different sections:

Size of casting	3.25	1 2.75 .135	2 2,25 .145	8 1.75 .155	4 in. sq. 1.25 per cent. .165 in. per ft.
Surinkage of a 1/2-in, test-bar.	.135	.135	.140	.100	.105 in. per it.

# Weight of Castings determined from Weight of Pattern. (Rose's Pattern-maker's Assistant.)

	Will weigh when cast in						
A Pattern weighing One Pound, made of—	Cast Iron.	Žinc.	Copper.	Yellow Brass.	Gun- metal.		
Mahogany—Nassau Honduras Spanish Pine, red	12.5	lbs. 10.4 12.7 8.2 12.1	lbs. 12.8 15.3 10.1 14.9	lbs. 12.2 14.6 9.7 14.2	lbs. 12.5 15. 9.9 14.6		
" white yellow	16.7 14.1	16.1 13.6	19.8 16.7	19.0 16.0	19.5 16.5		

Moulding Sand. (From a paper on "The Mechanical Treatment of Moulding Sand." by Waiter Bagshaw, Proc. Inst. M. E. 1891.)—The chemical composition of sand will affect the nature of the casting, no matter what treatment it undergoes. Stated generally, good sand is composed of 94 parts silica, 5 parts alumina, and traces of magnesia and oxide of iron. Sand containing much of the metallic oxides, and especially lime, is to be avoided. Geographical position is the chief factor governing the selection of sand: and whether weak or strong, its deficiencies are made up for by the skill of the moulder. For this reason the same sand is often used for both he avy and light castings, the proportion of coal varying according to the nature of the casting. A common mixture of facing-sand consists of six parts by weight of old sand, four of new sand, and one of coal-dust. Floor-sand requires only half the above proportions of new sand and coal-dust to renew it. German founders adopt one part by measure of new sand to two of old sand; to which is added coal-dust in the proportion of one tenth of the bulk for large castings, and one twentieth for small castings. A few founders mixtreet-sweepings with the coal in order to get porosity when the metal in the mould is likely to be a long time before setting. Plumbago is effective in must not be dusted on in such quantities as to close the pores and prevent free exit of the gases. Powdered French chalk, soapstone, and other substances are sometimes used for facing the mould; but next to plumbago, oak charcoal takes the best place, notwithstanding its liability to float occasionally and give a rough casting.

For the treatment of sand in the moulding-shop the most primitive method is that of hand-riddling and treading. Here the materials are roughly proportioned by volume, and riddled over an iron plate in a flat heap, where the mixture is trodden into a cake by stamping with the feet; it is turned over with the shovel, and the process repeated. Tough sand can be obtained in this manner, its toughness being usually tested by squeezing a handful into a ball and then breaking it; but the process is slow and tedious. Other things being equal, the chief characteristics of a good moulding-sand are toughness and porosity, qualities that depend on the manner of mixing as well as on uniform ramming.

toughness and porosity, qualities that depend on the manner of mixing as well as on uniform ramming.

Toughness of Sand.—In order to test the relative toughness, sand mixed in various ways was pressed under a uniform load into bars I in. so, and about 12 in. long, and each bar was made to project further and further over the edge of a table until its end broke off by its own weight. Old sand from the shop floor had very irregular cohesion, breaking at all lengths of projections from ½ in. to 1½ in. New sand in its natural state held together until an overhang of 2% in. was reached. A mixture of old sand, new sand, and coal-dust

Showing as a mean of the tests only slight differences between the last three methods, but in favor of machine-work. In many instances the fractures were so uneven that minute measurements were not taken.

Dimensions of Foundry Ladles.—The following table gives the dimens ons, inside the lining, of ladles from 25 lbs. to 16 tons capacity. All the ladles are supposed to have straight sides. (Am. Mach., Aug. 4, 1892.)

Capacity.	Diam.	Depth.	Capacity.	Diam.	Depth.	
16 tons	in. 54 52 49 46 48 89 84 81 27 2414	in. 56 53 50 48 44 40 85 82 28	34 ton	in. 20 17 1314 1112 109 8 7 614 514	in. 20 17 1814 1114 111 1014 814 714 614	

# THE MACHINE-SHOP.

#### SPEED OF CUTTING-TOOLS IN LATHES. MILLING MACHINES, ETC.

Relation of diameter of rotating tool or piece, number of revolutions. and cutting speed: Let d = diam of rotating piece in inches, n = No. of revs. per min.;

S =speed of circumference in feet per minute;

$$S = \frac{\pi dn}{12} = .2618dn \; ; \quad n = \frac{S}{.2618d} = \frac{3.82S}{d}; \quad d = \frac{3.82S}{n}.$$

Approximate rule: No. of revs. per min. =  $4 \times$  speed in ft. per min. + diam. in inches.

Speed of Cut-for Lathes and Planers. (Prof. Coleman Sellers. Stevens' Indicator, April, 1892.)-Brass may be turned at high speed like

Bronze.—A speed of 18 feet per minute can be used with the soft alloys say 8 to 1, while for hard mixtures a slow speed is required—say 6 feet per minute.

Wrought Iron can be turned at 40 feet per minute, but planing-machines that are used for both cast and forged iron are operated at 18 feet per minuta.

Machinery Steel.—Ordinary, 14 feet per minute: car-axles, etc., 9 feet per minute.

Wheel Tires.—6 feet per minute; the tool stands well, but many prefer to run faster, say 8 to 10 feet, and grind the tool more frequently.

Lathes.—The speeds obtainable by means of the cone-pulley and the back

gearing are in geometrical progression from the slowest to the fastest. In a well-proportioned machine the speeds hold the same relation through all the steps. Many lathes have the same speed on the slowest of the cone and the fastest of the back gear speeds.

The Speed of Counter-shaft of the lathe is determined by an assumption of a slow speed with the back gear, say 6 feet per minute, on the largest

diameter that the lathe will swing.

EXAMPLE.—A 30-inch lathe will swing 30 inches =, say, 90 inches circumference = 7° 6"; the lowest triple gear should give a speed of 5 or 6 per minute.

In turning or planing, if the cutting-speed exceed 80 ft. per minute, so much heat will be produced that the temper will be drawn from the tool. The speed of cutting is also governed by the thickness of the shaving, and by the hardness and tenacity of the metal which is being cut; for instance, in cutting mild steel, with a traverse of 36 in. per revolution or stroke, and with a shaving about 36 in. thick, the speed of cutting must be reduced to about 8 ft. per minute. A good average cutting-speed for wrought or cast

iron is 90 ft. per minute, whether for the lathe, planing, shaping, or slotting machine. (Proc. Inst. M. E., April, 1883, p. 248.)

Table of Cutting-speeds.

	•			Fe	et per	minut	e.				
Diameter, inches.	5	10	15	20	25	30	35	40	45	50	
		Revolutions per minute.									
14 35 36 37 11 13 11 13 21 21 21 21 21 23 34	76.4	152.8	229.2	805 6	382.0		534.8	611.2	687.6	764.	
?9	50.9	101.9	152.8	203.7	254.6	305.6	856.5	407.4	458.3	509.	
29	38.2 30.6	76.4 61.1	114.6 91.7	152.8 122.2	191.0 152.8	229.2 188.4	267.4 213.9	305.6 244.5	343 8	382.	
<b>2</b> 9	25.5	50.9	76.4	101.8	127.3	152.8	178.2	203.7	275.0 229.1	305.	
<b>32</b>	21.5	43.7	65.5	87.3	109.1	130.9	152.8	174.6	196.4	254. 218.	
78	19.1	38.2	57.3	76.4	95.5	114.6	133.7	152.8	171.9	191	
114	17.0	84.0	50.9	67.9	84.9	101.8	118.8	125.0	152.8	169.	
179	15.3	30.6	45.8	61.1	76.4	91.7	106.9	135.8 122.2	137.5	152	
182	18.9	27.8	41.7	55.6	69.5	88.3	97.2	111 1	125.0	138.	
179	12.7	25.5	38.2	50.9	68.6	76.4	89.1	111.1 101.8	114.5	127.	
152	10.9	21.8	32.7	43.7	54.6	65.5	76.4	87.3	98.2	109.	
674	9.6	19.1	00.1	38.2	47.8	57.3	66.9	76.4	86.0	95.	
214	8.5	17.0	28.7 25.5	34.0	42.5	50.9	59.4	67.9	76.4	95. 84.	
212	7.6	15.3	99.0	30.6	38.2	45.8	58.5	61.1	68.8	76.	
987	6.9	13.9	22 9 20.8	27.8	34.7	41.7	48.6	55.6	62.5	69.	
874	6.4	12.7	19.1	25.5	31.8	38.2	44.6	50.9	57.8	63.	
814	5.5	10.9	16.4	21.8	27.3	32.7	38.2	48 7	49.1	54.	
31/6 4	4.8	9.6	14.3	19.1	23.9	28.7	83.4	43.7 88 2	43.0	47.	
41/6 5 51/6 6	4.2	8.5	12.7	17.0	21.2	25.5	29.7	84.0	38.2	42.	
5'2	4.2 3.8	7.6	11.5	15 3	10.1	22.9	26.7	30.6	34.4	38.	
516	3.5	6.9	10.4	15.3 13.9	19.1 17.4	20.8	24.3	27.8	31.2	34.	
6 2	3.2	6.4	9.5	12.7	15.9	19.1	22.3	25.5	28.6	31.	
7	2.7	5.5	8.2	10.9	13.6	16.4	19.1	21.8	24.6	27.	
7 8 9	2.4	4.8	7.2	9.6	11.9	14.3	16.7	19.1	21.5	23	
ğ	2.1	4.2	6.4	8.5	10.6	12.7	14 8	17.0	19.1	21.	
10 11	1.9	4.2 3.8	5.7	7.6	9.6	11.5	18.8	15.3	19.1 17.2	19.	
ĩi	1.7	3.5	5.2	6.9	8.7	10.4	12.2	18.9	15.6	17.	
12	1.6	3.2	4.8	6.4	8.0	9.5	18.8 12.2 11.1	12.7	14.3	15.	
12 13	1.5	3.2 2.9	4.4	5.9	7.8	8.8	10.3	11.8	13.3	14.	
14	1.4	2.7	4.1	5.5	6.8	8.2	9.5	10.9	12.3	13.	
15	1.3	2.5	3.8	5.1	6.4	7.6	8.9	10.9 10.2	12.3 11.5	12.	
16	1.2	2.4	3.6	4.8	6.0	7.2	8.4	9.5	10.7	11.	
18	1.1	2.1	3.2	4.2 3.8	5.8	6.4	7.4	8.5	9.5	10.	
20	1.0	1.9	2.9	3.8	4.8	5.7	6.7	7.6	8.6	9.	
22	.9	1.7	2.6	8.5	4.8	5.2 4.8	6.1	6.9	7.8	8.	
24	.8	1.6	2.4	3.2	4.0	4.8	5.6	6.4	7.2	8.	
26	.7	1.5	2.2	2.9	8.7	4.4	5.1	5.9	6.6	7.	
28 30	.9 .8 .7 .7	1.4	2.0	2.7	3.4	4.1	4.8	5.5	6.1	6.	
30	.6	1.3	1.9	2.5	8.2	3.8	4.5	5.1	5 7	6.	
36	.5	1.1	1.6	2.1	2.7	8.2	8.7	4.2	4.8	5.	
42	.5 .4	.9 .8	1.4	1.8	2.3	2.7	3.2	3.6	4.1	4.	
48	.4	.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.6	
54	.4	.7	1.1	1.4	1.8	2.1	2.5	2.8	8.2	3.	
60	.8	.6	1.0	1.3	1.6	1.9	2.2	2.5	2.9	3.:	

Speed of Cutting with Turret Lathes.—Jones & Lamson Machine Co. give the following cutting-speeds for use with their flat turret lathe:

	Ft. per	minute.
(	Tool steel and taper on tubing	10
Threading 4	Machinery.	15
	Very soft steel	20
	Cut which reduces the stock to 1/2 of its original diam	20
Turning	Cut which reduces the stock to 28 of its original diam.	20
machinery	Cut which reduces the stock to 34 of its original diam	25
steel	Cut which reduces the stock to ¾ of its original diam Cut which reduces the stock to ¾ of its original diam	30 to 35
	Cut which reduces the stock to 15/16 of its original diam	40 00 15
"urning ver	y soft machinery steel, light cut and cool work	50 to 60

Forms of Metal-cutting Tools,-"Hutte," the German Engineers' Pocket-book, gives the following cutting-angles for using least power: Top Rake. Angle of Cutting-edge.

Wrought iron	30	51°
Cast iron	40	510
Rennze	40	AA°

The American Machinist comments on these figures as follows: We are not able to give the best nor even the generally used angles for tools, because these vary so much to suit different circumstances, such as degree of hardness of the metal being cut, quality of steel of which the tool is made, depth of cut, kind of finish desired, etc. The angles that cut with the least expenditure of power are easily determined by a few experiments, but the best angles must be determined by good judgment, guided by experience. In nearly all cases, however, we think the best practical angles are greater than those given.

For illustrations and descriptions of various forms of cutting-tools, see articles on Lathe Tools in App. Cyc. App. Mech., vol. ii., and in Modern

Mechanism.

Cold Chisels.—Angle of cutting-faces (Joshua Rose): For cast steel, about 65 degrees; for gun-metal or brass, about 50 degrees; for copper and

soft metals, about 30 to 35 degrees.

Rule for Gearing Lathes for Screw-cutting. (Garvin Machine Co.)-Read from the lathe index the number of threads per inch cut by equal gears, and multiply it by any number that will give for a product a rear on the index; put this gear upon the stud, then multiply the number of threads per inch to be cut by the same number, and put the resulting gear upon the screw.

Example.—To cut 11½ threads per inch. We find on the index that 48 into 48 cuts 6 threads per inch, then  $6\times4=24$ , gear on stud, and  $11\%\times4=46$ , grear on screw. Any multiplier may be used so long as the products include gears that belong with the lathe. For instance, instead of 4 as a multiplier we may use 6. Thus,  $6\times6=36$ , gear upon stud, and  $11\%\times6=69$ , gear

upon screw.

Rules for Calculating Simple and Compound Gearing where there is no Index. (Am Mach.)—If the lathe is simple geared, and the stud runs at the same speed as the spindle, select some gear for the acrew, and multiply its number of teeth by the number of threads per inch in the lead-screw, and divide this result by the number of threads per inch to be cut. This will give the number of teeth in the gear for the stud. If this result is a fractional number, or a number which is not among stud. It this result is a fractional number, of a lands, the gear for the screw. Or, select the gear for the stud first, then multiply its number of teeth by the number of threads per inch to be cut, and divide by the number of threads per inch on the lead-screw. This will give the number of teeth for the gear on the screw. If the lathe is compound, select at random all the driving gears, multiply the numbers of their teeth together, and this product by the number of threads to be cut. Then select at random all the driven gears except one; multiply the numbers of their teeth together, and this product by the number of threads per inch in the lead-screw. Now divide the first result by the second, to obtain the number of teeth in the remaining driven gear. Or, select at random all the driven gears. Multiply the numbers of their teeth together, and this product by the number of threads per inch in the leadscrew. Then select at random all the driving gears except one. Multiply the numbers of their teeth together, and this result by the number of threads per inch of the screw to be cut. Divide the first result by the last, to obtain the number of teeth in the remaining driver. When the gears on the compounding stud are fast together, and cannot be changed, then the driven one has usually twice as many teeth as the other, or driver, in which case in the calculations consider the lead-screw to have twice as many threads per inch as it actually nas, and then ignore the compounding entirely. Some lathes are so constructed that the stud on which the first driver is placed revolves only half as fast as the spindle. This can be ignored in the calculations by doubling the number of threads of the lead-screw. If both the last conditions are present ignore them in the calculations by multiplying the number of threads per inch in the lead-screw by four. If the thread to be cut is a fractional one, or if the pitch of the lead-screw is fractional, or if both are fractional, then reduce the fractions to a common denominator, and use the numerators of these fractions as if they equalled the pitch of the screw

to be cut, and of the lead screw, respectively. Then use that part of the rule given above which applies to the lathe in question. For instance, suppose it is desired to cut a thread of 25/82-inch pitch, and the lead-screw has 4 threads per inch. Then the pitch of the lead-screw will be ½ inch, which is equal to 8/32 inch. We now have two fraction, 25/32 and 8/32, and the two screws will be in the proportion of 25 to 8, and the the gears can be figured by the above rule, assuming the number of threads to be cut to be 8 per inch. and those on the lead-screw to be 25 per inch. But this latter number may be further modified by conditions named above, such as a reduced speed of the stud, or fixed compound gears. In the instance given, if the lead-screw had been 2½ threads per inch, then its pitch being 4/10 inch, we have the fractions 4/10 and 25/32, which, reduced to a common denominator, are 64/160 and 125/160, and the gears will be the same as if the lead-screw had 125

threads per inch, and the screw to be cut 64 threads per inch.
On this subject consult also "Formulas in Gearing," published by Brown & Sharpe Mfg. Co., and Jamieson's Applied Mechanics.

Change-gears for Scrow-cutting Lathes.—There is a lack of uniformity among lathe-builders as to the change-gears provided for screw-cutting. W. R. Macdonald, in Am. Mach., April 7, 1892, proposes the following series, by which 33 whole threads (not fractional) may be cut by changes of only nine gears:

Screw.		Epindle.								W	ole '	Thre	ads.
20	20	80	40	50	60	70	110	120	180				
20 80	18	8	6 9	4 4/5 7 1/5	4 6	3 3/7 5 1/7	2 2/11 3 8/11	2 8	1 11/18 2 10/18	2	11 12	22 24	44
40 50	24 30	16 20	12 15	9 3/5	8 10	6 6/7 8 4/7	4 4/11 5 5/11	5	3 9/13 4 8/13	4 5	18 14	26 28 30 33	52 66
60 70 110	36 42	24 28 44	18 21 33	14 2/5 16 4/5 26 2/5	14 22	10 2/7	6 6/11 7 7/11	6 7 11	5 7/13 6 6/13 10 2/18	6 7 8	15 16 18	30 33	72 78
190 180	66 72 78	48 52	86 39	26 2/5 28 4/5 81 1/5	24	20 4/7 22 3/7	18 1/11 14 2/11		10 2/18 11 1/18	9 10	20 21	36 39 42	

Ten gears are sufficient to cut all the usual threads, with the exception of perhaps 1114, the standard pipe-thread; in ordinary practice any fractional thread between 11 and 12 will be near enough for the customary short pipethread; if not, the addition of a single gear will give it.

In this table the pitch of the lead-screw is 12, and it may be objected to as too fine for the purpose. This may be rectified by making the real pitch 6 or any other desirable pitch, and establishing the proper ratio between the

lathe spindle and the gear-stud.

Metric Screw-threads may be cut on lathes with inch-divided lead-

ing-screws, by the use of a change-wheel with 127 teeth; for 1:7 millimetres equal 5 inches (127 × .03987 = 4.99999 in.).

Rule for Setting the Taper in a Lathe. (Am. Mach.)—No rule can be given which will produce exact results, owing to the fact that the centres enter the work an indefinite distance. If it were not for this circumstance the following would be an exact rule, and it is an approximation as it is. To find the distance to set the centre over: Divide the difference in the diameters of the large and small end of the taper by 2, and multiply this quotient by the ratio which the total length of the shaft bears to the length of the tapered portion. Example: Suppose a shaft three feet long is to have a taper turned on the end one foot long, the large end of the taper being two

 $\frac{2-1}{2} \times \frac{8}{1} = 1 \% \text{ inches.}$ inches and the small end one inch diameter.

Electric Drilling-machines-Speed of Drilling Holes in Steel Plates. (Proc. Inst. M. E., Aug. 1887, p. 329.)—In drilling holes in the shell of the S.S. "Albania," after a very small amount of practice the men working the machines drilled the %-inch holes in the shell with great rapidity, doing the work at the rate of one hole every 69 seconds, inclusive of the time occupied in altering the position of the machines by means of differential pulley-blocks, which were not conveniently arranged as slings for this purpose. Repeated trials of these drilling-machines have also shown that, when using electrical energy in both holding-on magnets and motor amounting to about ¾ H.P., they have drilled holes of 1 inch diameter through 1¼ inch thickness of solid wrought iron, or through 1½ inch of mild steel in two plates of 13/16 inch each, taking exactly 1% ininutes for each hole.

Speed of Twist-drills.—The cutting-speeds and rates of feed recommended by the Morse Twist-drill and Machine Company are given in the following table.

Revolutions per minute for drills 1/16 in. to 2 in. diam., as usually applied:

Diameter of Drills.	Speed for Steel.	Speed for Iron.	Speed for Brass.	Diameter of Drills.	Speed for Steel.	Speed for Iron.	Speed for Brass.
inch.		l	i	inch.			
1/16	940	1280	1560	1 1/16	54	75	95
3/8	460	660	785	11/6	52	70	90
3/16	316	420	540	1 3/16	49	66	85
• /	230	850	400	11/4	46	62	80
5/16	190	260	320	1 5/i6	44	60	75
36	150	220	260	156	42	58	72
3% 7/16	130	185	280	1 7/16	40 39 37	56	69
34	115	160	200	11/6	39	54	66
9/16	100	140	180	1 9/16	87	51	63
56 11/16	95	130	160	15%	36	49 47	60
11/16	85	115	145	1 11/16	84	47	58
34	75	105	130	13/4	88	45	56
13/16	70	100	120	1 18/16	32	43	54
₹6	65	90	115	1%	81	41	52
76 15/16	62	85	110	1 15/16	80	40	51
1	58	80	100	2	29	39	49

To drill one inch in soft cast iron will usually require: For 14-in. drill, 125 revolutions; for 14-in. drill, 120 revolutions; for 34-in. drill, 100 revolutions; for 1-in. drill, 95 revolutions.

The rates of feed for twist drills are thus given by the same company:

				~,		P	, .
Diameter of drill	1/16	14	36	1/8	3/4	1	11/6
Revs. per inch depth of hole.	125	125	120 to	140	1 inch	feed p	er min.

#### MILLING-CUTTERS.

George Addy, (Proc. Inst. M. E., Oct. 1890, p. 587), gives the following: **Analyses of Steel.**—The following are analyses of milling-cutter blanks, made from best quality crucible cast steel and from self-hardening "Ivanhoe" steel:

C	rucible Cast Steel, per cent.	Ivanhoe Steel, per cent.
Carbon		1.67
Silicon		0.252
Phosphorus		0.051
Manganese	. 0.36	2.557
Sulphur	0.02	0.01
Tungsten		4.65
Tungsten	98.29	90.81
	100.000	100.000

The first analysis is of a cutter 14 in. diam., 1 in. wide, which gave very good service at a cutting-speed of 80 ft. per min. Large milling-cutters are sometimes built up, the cutting-edges only being of tool steel. A cutter 22 in. diam. by 51/4 in. wide has been made in this way, the teeth being clamped between two cast-iron flanges. Mr. Addy recommends for this form of tooth one with a cutting-angle of 70°, the face of the tooth being set 10° back of a radial line on the cutter, the clearance angle being thus 10°. At the Clarence Iron-works, Leeds, the face of the tooth is set 10° back of the radial line for cutting wrought iron and 20° for steel.

Pitch of Teeth.-For obtaining a suitable pitch of teeth for millingcutters of various diameters there exists no standard rule, the pitch being usually decided in an arbitrary manner, according to individual taste.

For estimating the pitch of teeth in a cutter of any diameter from 4 in. to 15 in., Mr. Addy has worked out the following rule, which he has found capable of giving good results in practice:

Pitch in inches =  $\sqrt{\text{diam. in inches} \times 8} \times 0.0625 = .177 \sqrt{\text{diam.}}$ 

3.14d + p

Number of Teeth in Mills or Cutters. (Joshua Rose.)—The teeth of cutters must obviously be spaced wide enough apart to admit of the emerywheel grinding one tooth without touching the next one, and the front faces of the teeth are always made in the plane of a line radiating from the axis of the cutter. In cutters up to 3 in. in diam. It is good practice to provide 8 teeth per in. of diam., while in cutters above that diameter the spacing may be coarser, as follows:

Diameter of cutter, 6 in.; number of teeth in cutter, 40

**Speed of Cutters.**—The cutting speed for milling was originally fixed very low; but experience has shown that with the improvements now in use it may with advantage be considerably increased, especially with cutters of large diameter. The following are recommended as safe speeds for cutters of 6 in. and upwards, provided there is not any great depth of material to cut away:

Should it be desired to remove any large quantity of material, the same cutting-speeds are still recommended, but with a finer feed. A simple rule for cutting-speed is: Number of revolutions per minute which the cutter spindle should make when working on cast iron = 240, divided by the diam-

eter of the cutter in inches.

Speed of Milling-cutters, (Proc. Inst. M. E., April, 1888, p. 248.)—The cutting-speed which can be employed in milling is much greater than that which can be used in any of the ordinary operations of turning in the lathe, or of planing, shaping, or slotting. A milling-cutter with a plentiful supply of oil, or soap and water, can be run at from 80 to 100 ft. per min., when cutting wrought iron. The same metal can only be turned in a lathe, with a tool-holder having a good cutter, at the rate of 30 ft. per min., or at about one third the speed of milling. A milling-cutter will cut cast steel at the rate of 25 to 30 ft. per min.

The following extracts are taken from an article on speed and feed of milling-cutters in Eng'g, Oct. 22, 1891: Milling-cutters are successfully employed on cast iron at a speed of 250 ft. per min.; on wrought iron at from 80 ft. to 100 ft. per min. The latter materials need a copious supply of good lubricant, such as oil or soapy water. These rates of sneed are not approached by other tools. The usual cutting-speeds on the lattle, planing, shaping, and slotting machines rarely exceed about one third of those given above, and frequently average about a fifth, the time lost in back strokes not

being reckoned.

The feed in the direction of outting is said by one writer to vary, in ordinary work, from 40 to 70 revs. of a 4-in. cutter per in. of feed. It must always to an extent depend on the character of the work done, but the above gives shavings of extreme thinness. For example, the circumference of a 4-in. cutter being, say, 12½ in., and having, say, 60 teeth, the advance corresponding to the passage of one cutting-tooth over the surface, in the coarser of the above-named feed-motions, is  $1/40 \times 1/60 = 1/2400$  in.: the finer feed gives an advance for each tooth of only  $1/70 \times 1/60 = 1/2400$  in. Such fine feeds as these are used only for light finishing cuts, and the same authority recommends, also for fini-hing, a cutter about 9 in. in circumference, or nearly 3 in. in diameter, which should be run at about 60 revs. per min. to cut tough wrought steel, 120 for ordinary cast iron, about 80 for wrought

fron, and from 140 to 160 for the various qualtities of gun-metal and brass. With cutters smaller or larger the rates of revolution are increased or diminished to accord with the following table, which gives these rates of cutting-speeds and shows the lineal speed of the cutting-edge:

Steel. Wrought Iron. Cast Iron. Gun-metal. Brass. Feet per minute... 120

These speeds are intended for very light finishing cuts, and they must be

reduced to about one half for heavy cutting.

The following results have been found to be the highest that could be attained in ordinary workshop routine, having due consideration to economy and the time taken to change and grind the cutters when they become dull: Wrought iron—36 ft. to 40 ft. per min.; depth of cut. 1 in.; feed, \( \frac{5}{2} \) in. per min. Soft mild steel—About 30 ft. per min.; depth of cut, \( \frac{1}{2} \) in.; feed, \( \frac{5}{2} \) in. per min. Tough gun-metal—80 ft. per min.; depth of cut, \( \frac{1}{2} \) in.; feed, \( \frac{3}{2} \) in. per min. Cast-iron gear-wheels—23\( \frac{1}{2} \) ft. per min.; depth of cut, \( \frac{1}{2} \) in.; feed, \( \frac{1}{2} \) in. per min. Gun-metal joints, \( \frac{1}{2} \) in.; feed, \( \frac{1}{2} \) in.; feed, \( \frac{1}{2} \) in. per min. Gun-metal joints, \( \frac{1}{2} \) in.; feed, \( \frac{1}{2} \) in. per min. Steel-bars—21 ft. per min.; depth of cut, \( \frac{1}{2} \) in.; feed, \( \frac{1}{2} \) in. per min. Steel-bars—21 ft. per min.; depth of cut, \( \frac{1}{2} \) 22 in.; feed, \( \frac{1}{2} \) in. per min. A stepped milling-cutter, \( 4 \) in. in diam. and 12 in. wide, tested under two conditions of speed in the same machine, gave the following results: The cutter in both instances was worked up to its maximum speed before it gave tained in ordinary workshop routine, having due consideration to economy

cutter in both instances was worked up to its maximum speed before it gave way, the object being to ascertain definitely the relative amount of work done by a high speed and a light feed, as compared with a low speed and a heavy cut. The machine was used single-geared and double-geared, and in

both cases the width of cut was 1016 in.

Single-gear, 42 ft. per min.; 5/16 in. depth of cut; feed, 1.8 in. per min. =
4.16 cu. in. per min. Double-gear, 19 ft. per min.; 36 in. depth of cut; feed,

% in. per min. = 2.40 cu. in, per min.

56 in. per min. = 2.40 cu. in, per min. **Extreme Results with Milling-machines.** — Horace L. Arnold (Am. Mach., Dec. 28, 1893) gives the following results in flat-surface milling, obtained in a Pratt & Whitney milling-machine: The mills for the flat cut were 5' diam., 12 teeth, 40 to 50 revs. and 4%' feed per min. One single cut was run over this piece at a feed of 9' per min., but the mills showed plainly at the end that this rate was greater than they could endure. At 50 revs. for these mills the figures are as follows, with 4%' feed: Surface speed, 64 ft., nearly; feed per tooth, 0.0612'': cuts per inch, 123. And with 9'' feed per min.: Surface speed, 64 ft. per min.; feed per tooth, 0.015''; cuts per inch, 66%

At a feed of 476" per min, the mills stood up well in this job of cast-iron surfacing, while with a 9" feed they required grinding after surfacing one piece; in other words, it did not damage the mill-teeth to do this job with 123 cuts per in. of surface finished, but they would not endure 66% cuts per inch. In this cast-iron milling the surface speed of the mills does not seem to be the factor of mill destruction: it is the increase of feed per tooth that prohibits increased production of fluished surface. This is precisely the reverse of the action of single pointed lathe and planer tools in general: with such tools there is a surface-speed limit which cannot be economically exceeded for dry cuts, and so long as this surface-speed limit is not reached, the cut per tooth or feed can be made anything up to the limit of the driv-

ing power of the lathe or planer, or to the safe strain on the work itself, which can in many cases be easily broken by a too great feed.

In wrought metal extreme figures were obtained in one experiment made in cutting keyways 5/16" wide by ½" deep in a bank of 8 shafts 1½" diam, at once, on a Pratt & Whitney No. 8 column milling-machine. The 8 mills were successfully operated with 45 ft. surface speed and 19½ in, per min. feed; the cutters were 5" (dam., with 28 teeth, giving the following figures, in steel: Surface speed, 45 ft. per min.; feed per tooth, 0.02024"; cuts per inch, 50, nearly. Fed with the revolution of mill. Flooded with oil, that is, a large stream of oil running constantly over each mill. Face of tooth radial. The resulting keyway was described as having a heavy wave or cutter-mark in the bottom, and it was said to have shown no signs of being heavy work on the cutters or on the machine. As a result of the experiment it was decided for economical steady work to run at 17 revs., with a feed of 4" per min., flooded cut, work fed with mill revolution, giving the following figures: Surface speed, 221/4 ft. per min.; feed per tooth, 0.0084"; cuts per inch, 119,

An experiment in milling a wrought-iron connecting-rod of a locomotive on a Pratt & Whitney double head milling-machine is described in the Iron Age, Aug. 27. 1891. The amount of metal removed at one cut measured 3½ in. wide by 1 3/16 in. deep in the groove, and across the top ½ in. deep by 4½ in. wide. This represented a section of nearly 4½ sq. in. This was done at the rate of 1½ in. per min. Nearly 8 cu. in. of metal were cut up into chips every minute. The surface left by the cutter was very perfect. The cutter moved in a direction contrary to that of ordinary practice; that is, it cut down from the upper surface instead of up from the bottom.

down from the upper surface instead of up from the bottom.

Milling '6' with '9' or 'against'? the Feed.—Tests made with the Brown & Sharpe No. 5 milling-machine (described by H. L. Arnold, in Am. Mach., Oct. 18, 1894) to determine the relative advantage of running the milling-cutter with or against the feed—"with the feed" meaning that the teeth of the cutter strike on the top surface or "scale" of cast-iron work in process of being milled, and "against the feed" meaning that the teeth begin to cut in the clean, newly cut surface of the work and cut upwards toward the scale—showed a decided advantage in favor of running the cutter against the feed. The result is directly opposite to that obtained in tests of a Pratt & Whitney machine, by experts of the P. & W. Co.

In the tests with the Brown & Sharpe machine the cutters used were 6

In the tests with the Brown & Sharpe machine the cutters used were 6 inches face by 4½ and 3 inches diameter respectively, 15 teeth in each mill. 4? revolutions per minute in each case, or nearly 50 feet per minute surface speed for the 4½-inch and 33 feet per minute for the 3-inch mill. The revolution marks were 6 to the inch, giving a feed of 7 inches per minute, and a cut per tooth of .011". When the machine was forced to the limit of its driving the depth of cut was 11/32 inch when the cutter ran in the "old" way, or against the feed, and only ½ inch when it ran in the "new" way, or with the feed. The endurance of the milling-cutters was much greater when they were run in the "old" way.

Spiral Milling-cutters.—There is no rule for finding the angle of the spiral; from 10° to 15° is usually considered sufficient; if much greater the end thrust on the spindle will be increased to an extent not desirable for some machines.

Milling-cutters with Inserted Teeth.—When it is required to use milling-cutters of a greater diameter than about 8 in., it is preferable to insert the teeth in a disk or head, so as to avoid the expense of making solid cutters and the difficulty of hardening them, not merely because of the risk of breakage in hardening them, but also on account of the difficulty in obtaining a uniform degree of hardenses or temper.

in obtaining a uniform degree of hardness or temper.

Milling = machine versus Planer. — For comparative data of work done by each see paper by J. J. Grant, Trans. A. S. M. E., ix. 259. He says: The advantages of the milling machine over the planer are many, among which are the following: Exact duplication of work; rapidity of production — the cutting being continuous; cost of production, as several machines can be operated by one workman, and he not a skilled mechanic; and cost of tools for producing a given amount of work.

#### POWER REQUIRED FOR MACHINE TOOLS.

Besistance Overcome in Cutting Metal. (Trans. A. S. M. E., viii. 308.)—Some experiments made at the works of William Sellers & Co. showed that the resistance in cutting steel in a lathe would vary from 180,000 to 700,000 pounds per square inch of section removed, while for cast iron the resistance is about one third as much. The power required to remove a given amount of metal depends on the shape of the cut and on the shape and the sharpness of the tool used. If the cut is nearly square in section, the power required is a minimum; if wide and thin, a maximum. The dulness of a tool affects but little the power required for a heavy cut.

Heavy Work on a Planer.—Wm. Sellers & Co. write as follows to the American Machinist: The 120" planer table is geared to run 18 ft. per

Heavy Work on a Planer.—Win Sellers & Co write as follows to the American Machinist. The 120" planer table is geared to run 18 ft. per minute under cut, and 72 feet per minute on the return, which is equivalent, without allowance for time lost in reversing, to continuous cut of 14.4 feet per minute. Assuming the work to be 22 feet long, we may take 14 feet as the continuous cutting speed per minute, the .8 of a foot being much more than sufficient to cover time loss in reversing and feeding. The machine carries four tools. At ½" feed per tool, the surface planed per hour would be 35 square feet. The section of metal cut at ¾" depth would be .75" . 120" × 4 = .375 square inch, which would require approximately 30,000 lbs.

pressure to remove it. The weight of metal removed per hour would be  $4\times12\times.375\times.25\times60=1082.8$  lbs. Our earlier form of  $86^{\prime\prime}$  planer has ermoved with one tool on  $34^{\prime\prime}$  cut on work 200 lbs. of metal per hour, and the 120 $^{\prime\prime}$  machine has more than five times its capacity. The total pulling

ower of the planer is 45,000 ibs.

Hiorse-power Required to Run Lathes. (J. J. Flather, Am. Mach., April 23, 1811.)—The power required to do useful work varies with he depth and breadth of chip, with the shape of tool, and with the nature and density of metal operated upon; and the power required to run a ma-

in id density of metal operated upon; and the power required to run a machine empty is often a variable quantity.

For instance, when the machine is new, and the working parts have not secome worn or fitted to each other as they will be after running a few months, the power required will be greater than will be the case after running parts have become better fitted.

Another cause of variation of the power absorbed is the driving-belt; a light belt will increase the friction, hence to obtain the greatest efficiency of a machine we should use wide belts, and run them just tight enough to prevent slip. The belts should also be soft and pliable, otherwise power is consumed in heading them to the curvature of the nulleys. consumed in bending them to the curvature of the pulleys.

A third cause is the variation of journal-friction, due to slacking up or lightening the cap screws, and also the end-thrust bearing screw.

Hartig's investigations show that it requires less total power to turn off a

riven weight of metal in a given time than it does to plane off the same amount; and also that the power is less for large than for small diameters. The following table gives the actual horse-power required to drive a lathermpty at varying numbers of revolutions of main spindle.

#### HORSE-POWER FOR SMALL LATHES.

	ck Gears.	With Ba	ack Gears.	Without B
Remarks.	H.P. required to drive empty.	Revs. of Spindle per min.	H.P. required to drive empty.	Revs. of Spindle per min.
20" Fitchburg lathe.	.126	14.6	.145	182.72
	.141	24.33	.197	219.08
	.274	88.42	.310	365.00
Smallla the (1314"), Chemnitz. Germany. New machine.	.182	4.84	.159	47.4
	.187	12.8	.259	125.0
	.230	19.2	.339	188
17½" lathe do. New machine.	. 157	6.61	.206	54.6
	. 206	14.8	.339	122
	. 249	22.1	.455	183
26" lathe do.	.035	2.81	.086	18.8
	.063	6.72	.210	54.6
	.087	10.8	.326	82.2

If H.P. = horse-power necessary to drive lathe empty, and N = numberof revolutions per minute, then the equation for average small lathes is

For the power necessary to drive the lathes empty when the back gears re in, an average equation for lathes under 20" swing is

$$H.P._0 = 0.10 + 0.006N.$$

The larger lathes vary so much in construction and detail that no general nle can be obtained which will give, even approximately, the power re-paired to run them, and although the average formula shows that at least 095 horse-power is needed to start the small lathes, there are many Ameran lathes under 20" swing working on a consumption of less than .05 orse-power,

lathes.

The amount of power required to remove metal in a machine is determinable within more accurate limits.

able within more accurate limits. Referring to Dr. Hartig's researches, H.P.₁ = CW, where C is a constant, and W the weight of chips removed per hour.

Average values of C are .030 for cast-iron, .032 for wrought-iron, .047 for

steel.

The size of lathe, and, therefore, the diameter of work, has no apparent effect on the cutting power. If the lathe be heavy, the cut can be increased, and consequently the weight of chips increased, but the value of C appears to be about the same for a given metal through several varying sizes of

Horse-power required to bemove Cast Iron in a 20-inch Lathe.
(J. J. Hobart.)

Descriptive No.	Number of Trials.	Tool used.	Average Cutting- speed in feet per minute.	Depth of Cut in inches.	Average Breadth of Cut in inches.	Average H.P. required to remove	Average pounds Metal turned off per hour.	Value of Constant
1 2 8 4	22 15 17 2	Side tool	37.90 30.50 42.61 26.29	.125 .125 .125	.015 .015 .015	.842 .218 .352	18.30 10.70 14.95	.0:5 .0:0 .0:3
5 6 7	1 1	Square - faced tool	25.82 25.27 25.64	.015 .048 .125	.125 .048 .015	.255 .200 .246	9.06 10.89 8.99	.028

The above table shows that an average of .26 horse-power is required to turn off 10 pounds of east-iron per hour, from which we obtain the average value of the constant C = .024.

value of the constant C=.024. Most of the cuts were taken so that the metal would be reduced  $\frac{1}{14}$  in diameter; with a broad surface cut and a coarse feed, as in No. 5, the power required per pound of chips removed in a given time was a maximum; the least power per unit of weight removed being required when the chip was square, as in No. 6.

Horse-power required to remove Metal in a 29-inch Lathe. (R. H. Smith.)

Number of Experiments.	Metal.	Cutting-speed. ft, per min.	Depth of Cut, in.	Average Breadth of Cut, in.	Avereage H.P. required to remove Metal.	Average pounds Metal removed per hour.	Value of C.
4 4 2 4 4 2	Cast iron Cast iron Cast iron Wrought iron Wrought iron Wrought iron	12.7 11.1 12.85 9.6 9.1 7.9	.05 .135 .04 .03 .06	.046 .046 .038 .046 .046	.105 .217 .098 .059 .188 .186	5.49 12.96 3.66 2.49 4.72 9.56	.019 .017 .027 .023 .029 .019
2 4 4 4	Wrought iron Steel Steel Steel	9.85 6.00 5.8 5.1	.045 .02 .04 .06	.038 .046 .046 .046	.092 .048 .085 .108	2.99 1.08 2.00 2.64	.031 .042 .012 .040

The small values of C, .017 and .019, obtained for cast iron are probably due to two reasons: the iron was soft and of fine quality, known as pulley metal, requiring less power to cut; and, as Prof. Smith remarks, a lower Cutting-speed also takes less horse-power.

Hardness of metals and forms of tools vary, otherwise the amount of chips turned out per hour per horse-power would be practically constant, the

higher cutting-speeds decreasing but slightly the visible work done.

Taking into account these variations, the weight of metal removed per hour, multiplied by a certain constant, is equal to the power necessary to do the work.

This constant, according to the above tests, is as follows:

	Cast Iron.	wrought fron.	Steel
Hartig	030	.032	.047
Smith	023	.028	.042
Hobart	024		
Average	026	.080	.044

The power necessary to run the lathe empty will vary from about .05 to .3 H.P., which should be ascertained and added to the useful horse-power, to obtain the total power expended.

Power used by Machine-tools. (R. E. Dinsmore, from the Elec-

trical World.)	
<ol> <li>Shop shafting 2 3/16" × 180 ft. at 160 revs., carrying 26 pulleys from 6" diam, to 36", and running 20 idle machine belts</li> <li>Lodge-Davis upright back-geared drill-press with table, 28" swing, drilling ¾" hole in cast iron, with a feed of 1 in. per</li> </ol>	1.32 H.P.
minute	0.78 H.P.
revs.  4. Pease planer 30" × 36", table 6 ft., planing cast iron, cut 14"	0.29 H.P.
deep, planing 6 sq. in. per minute, at 9 reversals	1.06 H.P.
deep, shaping at rate of 1.7 square inch per minute	0.37 H.P.
deep, feeding 7.92 inch per minute 7. Engine-lathe 21" swing, boring cast-iron hele 5" diam., cut 3/16	0.43 H.P.
diam., feeding 0.3" per minute	0.23 H.P.
no-piping	0.8 H.P.
22 reversals per minute.	3.2 H.P.

The table on the next page compiled from various sources, principally from Hartig's researches, by Prof. J. J. Flather (Am. Mach., April 12, 1894), may be used as a guide in estimating the power required to run a given machine; but it must be understood that these values, although determined by dynamometric measurements for the individual machines designated, are not necessarily representative, as the power required to drive a machine are not necessarily representative, as the power required to drive a machine itself is dependent largely on its particular design and construction. The character of the work to be done may also affect the power required to operate; thus a machine to be used exclusively for brass work may be speeded from 10% to 15% higher than if it were to be used for iron work of similar size, and the power required will be proportionately greater.

Where power is to be transmitted to the machines by means of shafting the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the

and countershafts, an additional amount, varying from 30% to 50% of the total power absorbed by the machines, will be necessary to overcome the friction

of the shafting.

•

Horse-power required to drive Shafting.—Samuel Webber, in his "Manual of Power" gives among numerous tables of power required to drive textile machinery, a table of results of tests of shafting. A line of 216" shafting, 32 ft. long, weighing 4098 lbs., with pulleys weighing 5381 lbs., or a total of 9429 lbs., supported on 47 bearings, 216 revolutions per minute, required 1.858 H.P. to drive it. This gives a coefficient of friction of 5.528. In seventeen tests the coefficient ranged from 8.34% to 11.4%, averaging 5.73%.

# Horse-power Required to Drive Machinery.

Trousc-hower wednited to Ditte	MACULE	inci y .
	Observe	ed Horse-power.
Name of Machine.	Total Work.	Running Light.
Small screw-cutting lathe 13½" swing, B, G. Screw-cutting lathe 17½", B, G. Screw-cutting lathe 20" (Fitchburg), B, G. Screw-cutting lathe 28", B, G.	0.41	0.18; 0.15*-0.34
Screw-cutting lathe 1716", B. G	0.867	0.207: 0.16-0.46
Screw-cutting lathe 20' (Fitchburg), B. G	0.47	0.12; 0.12 to 0.31
Screw-cutting lathe 26", B. G	0.462	0.12; 0.12 to 0.3 0.05; 0.03 to 0.3 0.187; 0.12to 0.6
Lathe, 80" face plate, will swing 108", T. G Large facing lathe, will swing 68", T. G	0.53	0.187; 0.12to0.60
Large facing lathe, will swing 68", T. G	0.91	[0.37; 0.39 to 0.6]
Wheel lathe 60" swing Small shaper (stroke 4", traverse 11") Small shaper, Richards (9½" × 22")	0.16	0.23 to 3.40 0.086 to 0.26
Small shaper Richards (914" $\vee$ 92")	0.10	0.07; 0.07 to 0.12
		0.21; 0.01 to 0.4
Large shaper, Richards (29" × 91"). Crank planer (capacity 23" × 27" × 281½" stroke). Planer (capacity 86" × 36" × 11 feet). Large planer (capacity 76" × 76" × 57 feet	1.14	0.26; 0.15 to 0.73
Crank planer (capacity $23'' \times 27'' \times 2816''$ stroke)	0.24	0.12; 0.12 to 0.40
Planer (capacity $36'' \times 36'' \times 11$ feet)	0 84	0.27
Large planer (capacity $76'' \times 76'' \times 57$ feet	1.47	0.60
Small drill press	0.62	0.39
Upright sict drilling mach. (Will drill 21/2" dlam.) Medium drill proce	0.41	0.15; 0.15 to 0.43
Medium drill pressLarge drill press	1.24	0.62 0.62
Radial drill 6 feet swing		0.44; 0.1*-0.44*
Radia) drill 814 feet swing	0.67	0.80; 0.12*-0.8-
Radial drill press Slotter (8" stroke) Slotter (94" stroke)	1.08	0.46
Slotter (8" stroke)	0.28	0.09; 0.05 to v.5
Slotter (91%" stroke)	0.44	0.22; 0.15 to 0.65
Slotter (15" stroke)	0.95	0.57; 0.48 to 0 91
Slotter (15" stroke). Universal milling mach (Brown & Sharpe No. 1) Milling machine (13" cutter-head, 12 cutters).	0.28	0.01; 0.003-0.13
Small head traversing milling machine (cutter-head	0.66	0.26; 0.26 to 0.55
11" diameter, 16 cutters)		0.10
Gear cutter will cut 20" diameter	0.28	0.11
Horizontal boring machine for iron, 2216" swing	1	0.12; 0.10-0.12*;
	1.52	0.10 to 0.25*
Large plate shears—knives 28" long . 8" stroke	7 19	0.67
Large punch press, over-reach 28", 3" stroke, 116"	1	1 0.0.
stock can be punched	4.41	1.00
Large punch press, over reach 28", 3" stroke, 1\%" stock can be punched. Small punch and shear comb'd, 7\%" knives, 1\%" str	0.79	0.16
		0.61
Circular saw or not not not not not not not not not not	2.70	.54
Wood planer 1356" (rotary knives, 2 nor 1 2 vert	4.24	3.35
Wood planer 24' (rotary knives)	8.03 4.63	1 42 1.25
Wood planer 28" (rotary knives)	5.00	0.741-0.175
Wood planer 28" (Daniel's pattern)	3.20	1.45
Wood planer and matcher (capacity 1416 × 484")	6.91	4.18
Circular saw for wood (23" diameter of saw)	8.23	0.70
Wood planer and matcher (capacity 1416 × 434") Circular saw for wood (23" diameter of saw) Circular saw for wood (35" diameter of saw)	5.64	1.16
Band saw for wood (34" band wheel)	0.96	0.19
Wood-mortising and boring machine	0.49	0.84
Hor'l wood-boring and mortising machine, drill 4" diam., mortise 81/4 deep × 111/4" long		1 677. 0 054. 0 0
Tenon and mortising machine	8.68 2.11	1.67; 0.65 to 9.6
Tenon and mortising machine.	2.78	1.42 0.61
Tenon and mortising machine Tenon and mortising machine Tenon and mortising machine	2.25	2.17
Edge-molder and shaper. (Vertical spindle)	2.00	1.30
Wood-molding mach. (cap. $7\frac{1}{2} \times 2\frac{1}{2}$ ). Hor. spindle	2.45	2.00
Edge-molder and shaper. (Vertical spindle)		
		0.32
Grindstone for stock, 42"×12". Vel. 1680 ft. per min. Emery wheel 11½" diameter × ½". Saw grinder.		0.94
animoly who is 172 unameter X 1/2 , Saw 2110der.	0.56	0.40

^{*} With back gears. † Without back gears. ‡ For surface cutters. \$ With side cutters. B. G., back-geared. T. G., triple-geared.

Horse-power consumed in Machine-shops.—How much prover is required to drive ordinary machine-tools? and how many men can be employed per horse-power? are questions which it is impossible to answer by any fixed rule. The power varies greatly according to the conditions in each shop. The following table given by J. J. Flather in his work on Dynamometers gives an idea of the variation in several large works. The percentage of the total power required to drive the shafting varies from 15 to 80, and the number of men employed per total H.P. varies from 0.62 to 6.04.

# Horse-power; Friction; Men Employed.

		H	orse-	powe	er.		Total	Effec-
Name of Firm.	Kind of Work.	Total.	Required to drive Shafting.	Required to drive Machinery.	Per cent to drive Shafting.	Number of Men.	No. of Men per To H.P.	No. of Men per El tive H.P.
Lane & Bodley J. A. Fay & Co Union Iron Works Frontier Iron & Brass W'ks Taylor Mfg. Co. Baldwin Loco, Works	E. & W. W. W. W. E., M. M. M. E., etc. E.	58 100 400 25 95 2500	15 95 8 2000	85 305 17 500	15 23 32 80	300 1600 150 230	2.27 3.00 4.00 6.00 2.42 1.64	3.53 5.24 8.82 8.20
W. Sellers & Co. (one de- partment)	H. M. M. T.	102 180 120 230	75	61 105	40 41	432 725	2.93 2.40 6.04 3.91	4.87 4.11
Yale & Towne Co Ferracute Machine Co T. B. Wood's Sons	C, & L. P. & D. P. & S.	135 35 12	67 11	68 24	49 31	700 90	5.11 2.57 2.50	10.25 3.75
Bridgeport Forge Co Singer Mfg. Co Howe Mfg. Co Worcester Mach. Screw Co	H. F. S. M.	150 1300 350 40	75	75	50	1500	.86 2.69 4.28 2.00	1.73
Hartford " " Nicholson File Co	F.	400 350	100	300	25	250	0.62	0.83
Averages	*******	346.4			38.6%	818.3	2.96	5.13

Abbreviations: E., engine; W.W., wood working machinery; M. M., mining machinery; M. E., marine engines; L., locomotives; H. M., heavy machinery; M. T., machine tools; C. & L., cranes and locks; P. & D., presses and dies; P. & B., pulleys and shafting; H. F., heavy forgings; S. M., sewingmachines; M. S., machine-screws: F., files.

J. T. Henthorn states (Trans. A. S. M. E., vi. 462) that in print-mills which he examined the friction of the shafting and engine was in 7 cases below 20% and in 35 cases between 20% and 30%, in 11 cases from 30% to 35% and in 2 cases above 35%, the average being 25.9%. Mr. Barrus in eight cotton-mills found the range to be between 18% and 25.7%, the average being 22%. Mr. Flather believes that for shops using heavy machinery the percentage of power required to drive the shafting will average from 40% to 50% of the total power expended. This presupposes that under the head of shafting are included elevators, fans, and blowers. included elevators, fans, and blowers.

#### ABRASIVE PROCESSES.

Abrasive cutting is performed by means of stones, sand, emery, glass, corundum, carborundum, crocus, rouge, chilled globules of iron, and in some cases by soft, friable iron alone. (See paper by John Richards, read before the Technical Society of the Pacific Coast, Am. Mach., Aug. 20, 1891, and Eng. & M. Jour., July 25 and Aug. 15, 1891.)

The *4 Cold Saw."?—For sawing any section of fron while cold the cold saw is sometimes used. This consists simply of a plain soft steel or iron disk without teeth, about 42 inches diameter and 3/16 inch thick. The velocity of the circumference is about 15,000 feet per minute. One of these saws will saw through an ordinary steel rail cold in about one minute. In this saw the steel or iron is ground off by the friction of the disk, and is not cut as with the teeth of an ordinary saw. It has generally been found morprofitable, however, to saw iron with disks or band-saws fitted with cutting-teeth, which run at moderate speeds, and cut the metal as do the teeth of a milling-cutter.

Recse's Fusing-disk.—Reese's fusing-disk is an application of the cold saw to cutting iron or steel in the form of bars, tubes, cylinders, etc.. in which the piece to be cut is made to revolve at a slower rate of speed than the saw. By this means only a small surface of the bar to be cut is presented at a time to the circumference of the saw. The saw is about the same size as the cold saw above described, and is rotated at a velocity of about 25,000 feet per minute. The heat generated by the friction of this saw against the small surface of the bar rotated against it is so great that the particles of iron or steel in the bar are actually fused, and the "sawdust" welds as it falls into a solid mass. This disk will cut either cast iron, wrought iron, or steel. It will cut a bar of steel 1% inch diameter in one minute, including the time of setting it in the machine, the bar being rotated about 200 turns per minute.

Cutting Stone with Wire.—A plan of cutting stone by means of a means of a means of a stone ord has been tried in Europe. While retaining sand as the cutting agent, M. Paulin Gay, of Marsellies, has succeeded in applying it by mechanical means, and as continuously as formerly the sand-blast and band-saw, with both of which appliances his system—that of the "helicoidal wire cord "—has considerable analogy. An engine puts in motion a continuous wire cord (varying from five to seven thirty-seconds of an inch in diameter, according to the work), composed of three mild-steel wires twisted at a certain pitch, that is found to give the best results in practice, at a speed of from 15 to 17 feet per second.

The Sand-blast.—In the sand-blast, invented by B. F. Tilghman, of Philadelphia, and first exhibited at the American Institute Fair, New York, in 1871, common sand, powdered quartz, emery, or any sharp cutting material is blown by a jet of air or steam on glass, metal, or other comparatively brittle substance, by which means the latter is cut, drilled, or engraved. To protect those portions of the surface which it is desired shall not be abraded it is only necessary to cover them with a soft or tough material, such as lead, rubber, leather, paper, wax, or rubber-paint. (See description in App. Cyc. Mech.; also U. S. report of Vienna Exhibition, 1873, vol. iii. 316.

A "jet of sand" impelled by steam of moderate pressure, or even by the

A "jet of sand" impelled by steam of moderate pressure, or even by the blast of an ordinary fan, depolishes glass in a few seconds; wood is cut quite rapidly; and metals are given the so-called "frosted" surface with great rapidity. With a jet issuing from under 300 pounds pressure, a hole was cut through a piece of corundrum 1½ inches thick in 25 minutes.

The sand-blast has been applied to the cleaning of metal castings and sheet metal, the graining of zinc plates for lithographic purposes, the frosting of silverware, the cutting of figures on stone and glass, and the cutting of devices on monuments or tombstones, the recutting of files, etc. The time required to sharpen a worn-out 14-inch bastard file is about four minutes. About one pint of sand, passed through a No. 120 sieve, and four horse-power of 60-lb, steam are required for the operation. For cleaning castings compressed air at from 8 to 10 pounds pressure per square inch is employed. Chilled-iron globules instead of quartz or flint-sand are used with good results, both as to speed of working and cost of material, when the operation can be carried on under proper conditions. With the expenditure of 2 horse-power in compressing air, 2 square feet of ordinary scale on the surface of steel and iron plates can be removed per minute. The surface thus prepared is ready for tinning, galvanizing, plating, bronzing, painting, etc. By continuing the operation the hard skin on the surface of castings, which is so destructive to the cutting edges of milling and other tools, can be removed. Small castings are placed in a sort of slowly rotating barrel, open at one or both ends, through which the blast is directed downward against them as they tumble over and over. No portion of the surface escapes the action of the sand. Plain cored work, such as valve-bodies, can be cleaned perfectly both inside and out. 100 lbs. of castings can be cleaned in from 10 to 15 minutes with a blast created by 2 horse-

power. The same weight of small forgings and stampings can be scaled in from 20 to 30 minutes.—Iron Age, March 8, 1894.

#### EMRRY-WHEELS AND GRINDSTONES.

The Selection of Emery-wheels.—A pamphlet entitled "Emery-wheels, their Selection and Use," published by the Brown & Sharpe Mfg. Co., after calling attention to the fact that too much should not be expected of one wheel, and commenting upon the importance of selecting the proper

wheel for the work to be done, says:

Wheels are numbered from coarse to fine; that is, a wheel made of No.
60 emery is coarser than one made of No. 100. Within certain limits, and other things being equal, a coarse wheel is less liable to change the temperature of the work and less liable to glaze than a fine wheel. As a rule, the harder the stock the coarser the wheel required to produce a given finish. For example, coarser wheels are required to produce a given surface upon hardened steel than upon soft steel, while finer wheels are required to produce this surface upon brass or copper than upon either hardened or soft steel.

Wheels are graded from soft to hard, and the grade is denoted by the letters of the alphabet. A denoting the softest grade. A wheel is soft or hard chiefly on account of the amount and character of the material combined in its manufacture with emery or corundum. But other characteristics being equal, a wheel that is composed of fine emery is more compact and harder than one made of coarser emery. For instance, a wheel of No. 100 emery, grade B, will be harder than one of No. 60 emery, same grade.

The softness of a wheel is generally its most important characteristic. A

soft wheel is less apt to cause a change of temperature in the work, or to become glazed, than a harder one. It is best for grinding hardened steel, cast-iron, brass, copper, and rubber, while a harder or more compact wheel is better for grinding soft steel and wrought iron. As a rule, other things being equal, the harder the stock the softer the wheel required to produce a given finish.

Generally speaking, a wheel should be softer as the surface in contact with the work is increased. For example, a wheel 1/16-inch face should be can often be made somewhat more effective by turning off a part of its cutting surface; but it should be clearly understood that while this will sometimes prevent a hard wheel from heating or chattering the work, such a wheel will not prove as economical as one of the full width and proper grade, for it should be borne in mind that the grade should always bear the proper relation to the width. (See the nemobilet referred to for other in proper relation to the width. (See the pamphlet referred to for other information. See also lecture by T. Dunkin Paret, Pres't of The Tanite Co., on Emery-wheels, Jour. Frank. Inst., March, 1890.)

Speed of Emery-wheels.—The following speeds are recommended by different makers:

- 8	Rev	olutions	per min	ute.	of 168.	Rev	olutions	per min	ute.
Diameter of W beel, inches	Waltham E. W. Co.	The Tanite Co.	Grant Corundum Wheel Co.	Norton E. W. Co	Diameter of Wheel, inches	Waltham E. W. Co.	The Tanite Co.	Grant Corundum Wheel Co.	Norton E. W. Co.
1 11/6	19,000 12,500	14,400		12,000	10 12	1,950 1,600	2,160 1,800	2,200 1,800	2,200 1,850
216	9,500 7,600	10,800 8,640		10,000 8,500	14 16	1,400 1,200	1,570 1,350	1,600 1,400	1,600 1,400
3	6,400 4,800	7,200 5,400	7,400 5,400	7,400 5,450	18 20	1,050	1,222	1,250 1,100	1,250 1,100
4 5 6	3,800	4,320	4,400	4,400	22	875	1,000	1,000	1,000
7	3,200 2,700	3,600 3,080	3,600 8,200	3,600 3,150	24 26	800 750	917	925 600	925 825
8	2,400 2,150	2,700 2,400	2,700 2,400	2,750 2,450	30 36	675 550	733 611	500 400	785 550

[&]quot;We advise the regular speed of 5500 feet per minute." (Detroit Emerywheel Co.)

Experience has demonstrated that there is no advantage in running

solid emery-wheels at a higher rate than 5500 feet per minute peripheral speed." (Springfield E. W. Mfg. Co.)
"Although there is no exactly defined limit at which a wheel must be run to render it effective, experience has demonstrated that, taking into account safety, durability, and liability to heat, 5500 feet per minute at the periphery gives the best results. All first-class wheels have the number of revolutions necessary to give this rate marked on their labels, and a column of figures in the price-list gives a corresponding rate. Above this speed all wheels are unsafe. If run much below it they wear away rapidly in proportion to what they accomplish." (Northampton E. W. Co.)

Grades of Emery.—The numbers representing the grades of emery run from 8 to 120, and the degree of smoothness of surface they leave may be compared to that left by files as follows:

be compared to that left by files as follows:

8	and	1 10	represent	the	cut	of	a wood rasp.
16	"	20		+6	66	**	a coarse rough file.
24	**	80	44	66	66	44	an ordinary rough file.
86	"	40	44	**	"	**	a bastard file.
24 86 46	**	60	64	**	66	**	a second-cut file.
70		80	46	**	44	"	a smooth "
90	"	100	44	66	44	"	a superfine "
120	Fa	nd F	F "	"	46		a dead-smooth file.

## Speed of Polishing-wheels.

Wood covered	with leather, about		7000 ft. per minute
. " , "	" a hair brush, about		2500 revs. for largest
66 66	116" to 8" diam., hair 1" to 114" long,	ab.	4500 " " smallest
Walrus-hide w	heels, about		8000 ft. per minute
	to 8 in. diameter, about		7000 " - " "

Safe Speeds for Grindstones and Emery-wheels.-G. D. Hiscox (Iron Age, April 7, 1892), by an application of the formula for centrif-ugal force in fly-wheels (see Fly-wheels), obtains the figures for strains in grindstones and emery-wheels which are given in the tables below. His formulæ are:

a grindstone =  $(.7071D \times N)^2 \times .0000795$ an emery-wheel =  $(.7071D \times N)^2 \times .00010226$ Stress per sq. in. of section of a grindstone

D = diameter in feet, N = revolutions per minute.

He takes the weight of sandstone at .078 lb, per cubic inch, and that of an emery-wheel at 0.1 lb, per cubic inch; Ohio stone weighs about. 081 lb, and Huron stone about .089 lb, per cubic inch. The Ohio stone will bear a speed at the periphery of 2500 to 3000 ft. per min., which latter should never be exceeded. The Huron stone can be trusted up to 4000 ft., when properly clamped between flanges and not excessively wedged in setting. Apart from the speed of grindstones as a cause of bursting, probably the majority of accidents have really been caused by wedging them on the shaft and overwedging to true them. The holes being square, the excessive driving of wedges to true the stones starts cracks in the corners that eventually rur out until the centrifugal strain becomes greater than the tenacity of the remaining solid stone. Hence the necessity of great caution in the use of wedges, as well as the holding of large quick-running stones between large flanges and leather washers.

Strains in Grindstones. LIMIT OF VELOCITY AND APPROXIMATE ACTUAL STRAIN PER SQUARE INCE OF SECTIONAL AREA FOR GRINDSTONES OF MEDIUM TENSILE STRENGTH.

Diam-	Revolutions per minute.								
eter.	100	150	200	250	300	850	400		
feet. 2 21/2 3 31/2 4	lbs. 1.58 2.47 3.57 4.86 6.35 8.04	lbs. 8.57 5.57 8.04 10.93 14.30 18.08	lbs. 6.35 9.88 14.28 19.44 27.37 32.16	lbs. 9.93 15.49 22.34 30.38	lbs. 14.30 22.29 32.16	lbs. 18.36 28.64	lbs. 25.42 39.75		
41/6 5 6 7	9.93 14.30 19.44	22.34 32.17		times th	ne str <b>ai</b> n	reaking s for size in each c	opposite		

The figures at the bottom of columns designate the limit of velocity (in revolutions per minute), at the head of the columns for stones of the diameter in the first column opposite the designating figure.

A general rule of safety for any size grindstone that has a compact and

strong grain is to limit the peripheral velocity to 47 feet per second.

There is a large variation in the listed speeds of emery-wheels by different makers—4000 as a minimum and 5600 maximum feet per minute, while others claim a maximum speed of 10,000 feet per minute as the safe speed of their best emery-wheels. Rim wheels and iron centre wheels are specialties that require the maker's guarantee and assignment of speed.

#### Strains in Emery-wheels.

ACTUAL STRAIN PER SQUARE INCH OF SECTION IN EMERY-WHEELS AT THE

. g		Revolutions per minute.									
Diam., inches.	600	800	1000	1200	1400	1600	1800	2000	2200	2400	2600
4 6 8								22.67 51.18		73.62	
10			22.67 35.47		69.51	90.81	114.94	141.90		180.62	153.30
12 14	18.40 24.80		68.70	99.21	134.65	175.60				Revs	ner
16 18	82.57 41.41		115.03 141.22	165.65	1				Diam		in.
20 22	50.98 61.81 73.62	109.41	171.23						in.	2800	3000
22 24 26 30	86.36 115.04						:: :.		4	44.43 100.21	
36	165.64			1	l	1	1	l		177.80	

Joshua Rose (Modern Machine-shop Practice) says: The average speed of grindstones in workshops may be given as follows:

Circumferential Speed of Stone.

For grinding machinists' tools, about ..... 900 feet per minute.
" " carpenters' " " ..... 600 " " "

The speeds of stones for file-grinding, and other similar rapid grinding is thus given in the "Grinders' List." Diam. ft...... 8 .74 7 614 6 514 5 414 4 814 3 Revs. per min. 135 144 154 166 180 196 216 240 270 308 360

The following table, from the Mechanical World, is for the diameter of stones and the number of revolutions they should run per minute (not to be exceeded), with the diameter of change of shift-pulleys required, varying each shift or change 2½ inches, 2½ inches, or 2 inches in diameter for each reduction of 6 inches in the diameter of the stone.

Diameter	Revolutions	Shift	of Pulleys, in inc	ches.
of Stone.	per minute.	21/6	21/4	2
ft. in. 8 0 7 6 7 0 6 8 6 5 6 5 0 4 6 4 0 8 0	135 144 154 166 180 196 216 240 270 308 860	40 87½ 35 32½ 32½ 32½ 25 22½ 30 17½ 15	36 3334 3114 2914 27 2434 2214 2014 18 1554 1315	32 30 38 28 26 24 22 20 18 16 14
1	2	3	4	5

Columns 3, 4, and 5 are given to show that if we start an 8-foot stone with, say, a countershaft pulley driving a 40-inch pulley on the grindstone spindle, and the stone makes the right number (135) of revolutions per minute, the reduction in the diameter of the pulley on the grinding-stone spindle, when the stone has been reduced 6 inches in diameter, will require to be also reduced 2½ inches in diameter, or to shift from 40 inches to 37½ inches, and so on similarly for columns 4 and 5. Any other suitable dimensions of pulley may be used for the stone when eight feet in diameter, but the number of inches in each shift named, in order to be correct, will have to be proportional to the numbers of revolutions the stone should run, as given in column 2 of the table.

# Varieties of Grindstones.

(Joshua Rose.)

#### FOR GRINDING MACHINISTS' TOOLS.

Name of Stone.	Kind of Grit.	Texture of Stone.	Color of Stone.
Nova Scotia,  Bay Chaleur (New Brunswick), Liverpool or Melling.	Medium to finest	All kinds, from hardest to softest Soft and sharp Soft, with sharp grit	Blue or yellowish gray Uniformly light blue Reddish;

# FOR WOOD-WORKING TOOLS.

Wickersley Liverpool or Melling.	Medium to fine Medium to fine	Very soft Soft, with sharp grit	Grayish yellow Reddish
Bay Chaleur (New ( Brunswick), Huron, Michigan	Medium to finest Fine	Soft and sharp Soft and sharp	Uniform light blue Uniform light blue

# FOR GRINDING BROAD SURFACES, AS SAWS OR IRON PLATES.

Newcastle	Coarse to med'm	The hard ones	Vellow
T	Coarso to Inca III	Illo Lian a circo	Constitution to the
independence	Coarse	Hara to medium	Grayish white
NewcastleIndependence Massillon	Coarse	Hard to medium	Grayish white Yellowish white

#### TAP DRILLS.

# Taps for Machine-screws. (The Pratt & Whitney Co.)

Approx. Diameter, fractions of an inch.	Wire Gauge.	No. of Threads to inch.	Approx. Diameter, fractions of an inch.	Wire Gauge.	No. of Threads to inch.
	No. 1	60, 72		No. 18	20, 24
	2	48, 56, 64	<del>1</del> /4	14	16, 18, 20, 22, 24
	8	40, 48, 56		15	18, 20, 24
7/64	4	32, 36, 40	17/64 9/32	16	16, 18, 20, 22
·	5	30, 32, 36, 40	9/32	18	16, 18, 20
9/64	6	80, 32, 36, 40		19	16, 18, 20
	7	24, 30, 32	5/16	20	16, 18, 20
5/32	8	24, 80, 32, 36, 40		22	16, 18
·	9	24, 28, 30, 32	₹%	24	14, 16, 18
3/16	10	20, 22, 24, 30, 32		26	16
	11	22, 24		19 20 22 24 26 28 80	16
7/32	12	20, 22, 24	1	80	16

The Morse Twist Drill and Machine Co. gives the following table showing the different sizes of drills that should be used when a full thread is to be appead in a hole. The sizes given are practically correct.

Tap Drills. (The Morse Twist Drill and Machine Co.)

1/4         16         18         20         50/22         11/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16         15/16	Diam. of Tap.	No. Threads to inch.	Drill for V Thread.	Drill for U. S. S. Thread.	Diam. No of Tap.	No. Threads to inch.	Drill for V Thread.	Drill for U. S. S. Thread.
16   18   20   7/32   15/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64   18/64	×	18	5/82 5/32		2%	80	ł	15/16
1   1   1   1   1   1   1   1   1   1	88/6 6	200	8/16 13/64	:	15/38	000	•	:
14   16   18   14   17   17   17   17   17   17   17	6/16	200	10/21 22/2		1 3/16	30 0 5- 1		:: :::
14   16   18   19/04   21/04   11/02   11/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16   17/16	20/20	9 2	2,5 2,6	8/6 :	\$ 2.2	0	_	11/16
14   16   22   64   1/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   11/32   1	13/32	10	19/64 21/64		1 9/38	::		
14   15   15   15   15   15   15   15	1/16	91	21/64 11/82	11/38	1 5/16	:	•	:
12   14   18   18   18   18   18   18   18	15/32	9	25/83 26/83		111/88	:	-	
12   14   15   15   15   15   15   15   15	X	2	\$ \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \fra	13/32	200	:	•	10/88
12 14 15/82 31/64 15/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82 16/82	17/38	2 7	13/32 25/09		1 18/32	:	-	•
10 11 12 15/20 17/20 17/20 17/20 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/70 11/	10/80	17	15/89 81/84	07/	1 1 1 1 2 2	:		•
10 11 12 1/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 12 17/7 1	2	=	15/88	*	1 1 2	: :		• •
11   12   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19/16   19	21/82	=	1,782		1 17/32	::		•
10 11 12 19/82 95, 95 95 19 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19/82 19	11/16		9/16	:::::::::::::::::::::::::::::::::::::::	1 9/16	:		:
10 11 12 19/22 978 778 78 11/10 15 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 19/10 1	3/3		19/82		119/83	:		٠,
10 21/38 11/16 5 54 11/38 14/38 11/38 14/38 11/38 14/38 11/38 14/38 11/38 14/38 11/38 14/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/38 11/3	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	•		E	6.5 6.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	0 10		•
10 11/16 28/28 28/28 18/28 5 5/2 18/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/28 11/	13/16	•	3		11/16	7		
9 10 47/64 85/82 28/82 115/82 5 115/83 114/8 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82 116/82	27/32		:		1 23/38	200		:
9 49/74 44 113/16 5 17/16 113/16 5 116/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 119/33 11	20	_	33 33	88/83	7	:		174
9 51/04 9 51/04 8 13/16 1 25/08 8 55/04 8 55/04 1 10/16 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 11/18 1 1	88/88 88		*	:	2 /Q	:		:
8 13/104 17/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 1	15/16	: :	:	<u>.</u>	1 13/16	:		:
8 58/46 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 117/32 1	23/23 23/23	:	51/64		7/82			•
8 55/64 19/16 19/16 19/16 19/16 8 55/64 19/16 19/16 19/16 8 55/64 19/16 19/16 19/16 19/16 8 55/64 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/16 19/1	=	:	•		22	5, 5	•	_
8 55/64 119/32 119/32 119/32 119/32 119/32 119/32 119/32	1 1/82	: œ	Ī		1 29/82	\$2 s	-	•
8 57/64     196   196   196	1 1/16	: œ	•	:::	1 15/16	4% 50		:::::::::::::::::::::::::::::::::::::::
	1 3/32	:	57/64	: : : : : : : : : : : : : : : : : : : :	1 31/32	2% 0	•	

# TAPER BOLTS, PINS, REAMERS, ETC.

Taper Bolts for Locomotives,—Bolt-threads, American standard, except stay-bolts and boiler-studs, V threads, 12 per inch; valves, cocks, and plugs, V threads, 14 per inch, and ½-inch taper per 1 inch. Standard bolt taper 1/16 inch per foot.

Taper Reamers.—The Pratt & Whitney Co. makes standard taper reamers for locomotive work taper 1/16 inch per foot from ½ inch diam.; 7 in. length of flute to 1½ inch diam.; 16 in. length of flute, diameters advancing by 16ths. P. & W. Co.'s standard taper pln reamers taper ½ in. per foot, are made in 14 sizes of diameters, 0.135 to 1.009 in.; length of flute 15/16 in. to 12 in.

DIMENSIONS OF THE PRATT & WHITNEY COMPANY'S REAMERS FOR MORSE STANDARD-TAPER SOCKET.

No.	Diameter Small End, inches.	Diameter Large End, inches.	Gauge Diam.,la'ge end, inches	L'ngth,	Length Flute, inches.	Total L'ngth.	Taper per foot, inches.
1	0.374	0.525	0.481	21/8 21/2 3 5/16	3	51/4	0.605
2	0.574	0.749	0.699	216	81/4	614	0.600
8	0.788	0.982	0.950	35/16	4	712	0.605
4	1.027	1.283	1.232	4	5	892	0.615
5	1.484	1.796	1.746	5	6	10	0.625
6	2.117	2,566	2.500	71/4	81/6	1216	0.684

Standard Steel Taper-pins.-The following sizes are made by the Pratt & Whitney Co.:

Number:	1	2	3	4	5	6	7	8	9	10	
Diameter	large e	nd:									
.156	.172	.198	.219	.250	. 289	.841	.409	.492	.591	.706	
Approxim	ate fra	ctions	al size	s:							
5/32	11/64	3/16	7/32	1/4	19/64	11/32	13/32	1∕2	19/32	23/32	
Lengths for	rom										
3/4	3/4 11/4	34	34	3/4	3/4 21/4	34	. 1	11/1 41/2	114 514	11/6	
To* 1	11/4	11/6	134	2	21/4	31/4	33/4	41/6	51/4	6	
Diameter	small e	nd of	stand	ard te	per-re						
. 125	.146	. 162	. 183	.208	.240	.279	.331	. 398	.482	.581	

Standard Steel Mandrels. (The Pratt & Whitney Co.)—These mandrels are made of tool-steel, hardened, and ground true on their centres. The ends are of a form best adapted to resist injury likely to be caused by driving. They are slightly taper. Sizes, 1/4 in. diameter by 378 in, long to 3 in, diam, by 14% in, long, diameters advancing by 16ths.

#### PUNCHES AND DIES, PRESSES, ETC.

Clearance between Punch and Die. - For computing the amount Clearance between Funca and Die.—For computing the amount of clearance that a die should have, or, in other words, the difference in size between die and punch, the general rule is to make the diameter of die-hole equal to the diameter of the punch, plus 2/10 the thickness of the plate. Or,  $D=d \times 2t$ , in which D= diameter of die-hole, d= diameter of punch, and t= thickness of plate. For very thick plates some mechanics prefer to make the die-hole a little smaller than called for by the above rule. For ordinary boiler-work the die is made from 1/10 to 3/10 of the thickness of the plate larger than the diameter of the punch; and some boiler-makers advocate making the punch fit the die accurately. For punching nuts, the nunch fits in the die. (Am. Machinish.) punch fits in the die. (Am. Machinist.)

punch fits in the die. (An. macrimist.)

Kennedy's Spiral Punch. (The Pratt & Whitney Co.)—B. Martell.

Chief Surveyor of Lloyd's Register, reported tests of Kennedy's spiral punches in which a %-inch spiral punch penetrated a %-inch plate at a presure of 22 to 25 tons, while a flat punch required 33 to 35 tons. Steel boiler-plates punched with a flat punch gave an average tensile strength of 38,373

^{*} Taken 1/2" from extreme end, each size overlaps smaller one about 1/2". Taper 1/4" to the foot. † Lengths vary by 1/4" each size.

lbs, per square inch, and an elongation in two inches across the hole of 5.2%, while plates punched with a spiral punch gave 63,929 lbs., and 10.6% elongation.

The spiral shear form is not recommended for punches for use in metal of a thickness greater than the diameter of the punch. This form is of greatest benefit when the thickness of metal worked is less than two thirds the

diameter of punch.

Size of Blanks used in the Drawing-press. Oberlin Smith (Jour. Frank. Inst., Nov. 1886) gives three methods of finding the size of blanks. The first is a tentative method, and consists simply in a series of experiments with various blanks, until the proper one is found. This is for use mainly in complicated cases, and when the cutting portions of the die and punch can be finally sized after the other work is done. The second method is by weighing the sample piece, and then, knowing the weight of the sheet metal per square inch, computing the diameter of a piece having the required area to equal the sample in weight. The third method is by computation, and the formula is  $x = \sqrt{d^2 + 4dh}$  for sharp-cornered cup, where x = diameter of blank, d = diameter of cup, h = height of cup. round-cornered cup where the corner is small, say radius of corner less than 14 height of cup, the formula is  $x = (\sqrt[4]{d^2 + 4dh}) - r$ , about; r being the radius of the corner. This is based upon the assumption that the thickness

of the metal is not to be altered by the drawing operation.

Pressure attainable by the Use of the Drop-press. (R. H. Thurston, Trans. A. S. M. E., v. 58.)—A set of copper cylinders was prepared. of pure Lake Superior copper; they were subjected to the action of presses of different weights and of different heights of fall. Companion specimens of copper were compressed to exactly the same amount, and measures were obtained of the loads producing compression, and of the amount of work obtained of the loads producing compression, and or the amount of done in producing the compression by the drop. Comparing one with the other it was found that the work done with the hammer was 90% of the work which should have been done with perfect efficiency. That is to say, 90% of which should have been done with perfect efficiency. That is to say, 90% of the work done in the testing machine was equal to that due the weight of the drop falling the given distance.

Formula: Mean pressure in pounds =  $\frac{\text{Weight of drop} \times \text{fall} \times \text{efficiency}}{\text{Mean pressure in pounds}}$ 

For pressures per square inch, divide by the mean area opposed to crush-

ing action during the operation.

Flow of Metals. (David Townsend, Jour. Frank. Inst., March, 1878.) In punching holes 7/16 inch diameter through iron blocks 134 inches thick, it was found that the core punched out was only 1 1/16 inch thick, and its volume was only about 32% of the volume of the hole. Therefore, 68% of the metal displaced by punching the hole flowed into the block itself, increasing its dimensions.

# FORCING AND SHRINKING FITS.

Foreing Fits of Pins and Axles by Hydraulic Pressure.

—A 4-inch axle is turned .015 inch diameter larger than the hole into which it is to be fitted. They are pressed on by a pressure of 30 to 35 tons. (Lec-

ture by Coleman Sellers, 1872.)

For forcing the crank-pin into a locomotive driving wheel, when the pinhole is perfectly true and smooth, the pin should be pressed in with a pressure of 6 tons for every inch of diameter of the wheel fit. When the hole is not perfectly true, which may be the result of shrinking the tire on the wheel centre after the hole for the crank-pin has been bored, or if the hole is not perfectly smooth, the pressure may have to be increased to 9 tons for every inch of diameter of the wheel-fit. (Am. Machinist.)

Shrinkage Fits.—In 1886 the American Railway Master Mechanics' Association recommended the following shrinkage allowances for tires of

standard locomotives. The tires are uniformly heated by gas-flames, slipped over the cast-iron centres, and allowed to cool. The centres are turned to a diameter equal to the inside diameter of the tire plus the shrinkage allow-

ance:

Diameter of tire, in ... 38 Shrinkage allowance, in... .040 .047 .053 .060 .066 .070

This shrinkage allowance is approximately 1/80 inch per foot, or 1/960. A common allowance is 1/1000. Taking the modulus of elasticity of steel at

30,000,000, the strain caused by shrinkage would be 30,000 lbs. per square inch, which is well within the elastic limit of machinery steel.

# SCREWS, SCREW-THREADS, ETC.*

Efficiency of a Screw.—Let a = angle of the thread, that is, the angle whose tangent is the pitch of the screw divided by the circumference of a circle whose diameter is the mean of the diameters at the top and bottom of the thread. Then for a square thread

Efficiency = 
$$\frac{1 - f \tan a}{1 + f \cot a}$$

in which f is the coefficient of friction. (For demonstration, see Cotterill and Slade, Applied Mechanics, p. 146.) Since  $\cot n = 1 + \tan$ , we may substitute for  $\cot a$  the reciprocal of the tangent, or if  $p = \operatorname{pitch}$ , and  $c = \operatorname{mean}$  circular transfer of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of the tangent of tangent of tangent of the tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of tangent of t cumference of the screw,

Efficiency = 
$$\frac{1 - f\frac{p}{c}}{1 + f\frac{c}{p}}$$

EXAMPLE.—Efficiency of square-threaded screws of 1/4 in. pitch.

Diameter at bottom of thread, in 1	2	8	4
" " top " " " 136	216	31,€	436
Mean circumference " " 3.927	7.069	10.21	18.35
Cotangent $a = c + p = 7.854$	14.14	20.42	<b>26</b> .70
Tangent $a = p + c = .1273$	.0661	.0490	.0-75
Efficiency if $f = .10 = 55.8\%$	41.2%	32.7 <b>%</b>	27.25
" " f = .15 = 45%	81.7%	24.4%	19.91

The efficiency thus increases with the steepness of the pitch.

The above formulæ and examples are for square-threaded screws, and consider the friction of the screw-thread only, and not the friction of the collar or step by which end thrust is resisted, and not the friction of the collar or step by which end thrust is resisted, and which further reduces the efficiency. The efficiency is also further reduced by giving an inclination to the side of the thread, as in the V-threaded screw. For discussion of this subject, see paper by Wilfred Lewis, Jour. Frank. Inst. 1880; also Trans. A. S. M. E., vol. xii. 784.

Efficiency of Screw-bolts.—Mr. Lewis gives the following approximate formula for ordinary screw-bolts (V threads, with collars): p = pitch of screw, d = outside diameter of screw, F = force applied at circumference to lift a unit of weight, E = efficiency of screw. For an average case, in which the coefficient of friction may be assumed at .15,

$$F = \frac{p+d}{3d}, \qquad E = \frac{p}{p+d}$$

For bolts of the dimensions given above, ½ in. pitch, and outside diameters 1½, 2½, 8½, and 4½ in., the efficiencies according to this formula would be, respectively, 25, 167, 125, and 10.

James McBride (Trans. A. S. M. E., xii. 781) describes an experiment with an ordinary 2-in. screw-bolt, with a V thread, 4½ threads per inch, raising a weight of 7500 lbs., the force being applied by turning the nut. Of the power applied 89, 8% was absorbed by friction of the nut on its supporting washer and of the threads of the bolt in the nut. The nut was not faced, and had the flat side to the washer.

washer and of the threats of the both in the late. The har was how later, and had the flat side to the washer.

Prof. Ball in his "Experimental Mechanics" says: "Experiments showed in two cases respectively about % and % of the power was lost."

Trautwine says: "In practice the friction of the screw (which under heavy loads becomes very great) make the theoretical calculations of but little value."

Weisbach says: "The efficiency is from 19% to 30%."

Weisbach says: The thistery is recovered by the Merican Machinist describes an experiment with a differential screy-punch, consisting of an outer screw 2 in. diam., 3 threads per in., and an inner screw 136 in. diam., 314 threads per inch. The pitch of the outer screw

975 KEYS.

being  $\frac{1}{2}$  in. and that of the inner screw  $\frac{2}{7}$  in., the punch would advance in one revolution  $\frac{1}{2}$  -  $\frac{2}{7}$  =  $\frac{1}{21}$  in. Experiments were made to determine the force required to punch an  $\frac{11}{16}$  in, hole in iron  $\frac{1}{2}$  in, thick, the termine the force required to punch an 11/10-11. Note in 17011  $\frac{1}{2}$  in, thick, the force being applied at the end of a lever arm of 4734 in. The leverage would be 4734  $\times$  2 $\pi$   $\times$  21 = 6300. The mean force applied at the end of the lever was 95 lbs., and the force at the punch, if there was no friction, would be 6300  $\times$  95 = 598,500 lbs. The force required to punch the iron, assuming a shearing resistance of 50,000 lbs. per sq. in., would be 50,000  $\times$  11/16  $\times$   $\pi$   $\times$  14 = 27,000 lbs., and the efficiency of the punch would be 27,000 + 598,500 = 1/4 = 27,000 lbs., and the efficiency of the punch would be 27,000 + 598,500 = only 4.5%. With the larger screw only used as a punch the mean force at the end of the lever was only 82 lbs. The leverage in this case was 47% × 2∞ × 3 = 900, the total force referred to the punch, including friction, 900 × 82 = 73,800, and the efficiency 27,000 + 73,800 = 36.7%. The screws were of tool-steel, well fitted, and lubricated with lard-oil and plumbago.

Powell's New Screwthread. — A. M. Powell (4m. Mach., Jan. 24, 1895) has designed a new screw-thread to replace the square form of thread, giving the advantages of greater ease in making fits, and provision for "take up" in case of wear. The dimensions are the same as those of square thread eagency with the expendion that the sides of the thread instead of

thread screws, with the exception that the sides of the thread, instead of being perpendicular to the axis of the screw, are inclined 14½° to such perpendicular; that is, the two sides of a thread are inclined 29° to each other. The formulæ for dimensions of the thread are the following: Depth of thread = ½ + pitch; width of top of thread = width of space at bottom = .3707 + pitch; thickness at root of thread = width of space at top = .6293 + pitch. The term pitch is the number of threads to the inch.

#### PROPORTIONING PARTS OF MACHINES IN A SERIES OF SIZES.

(Stevens Indicator, April, 1892.)

The following method was used by Coleman Sellers while at William Sellers & Co.'s to get the proportions of the parts of machines, based upon the size obtained in building a large machine and a small one to any series of machines. This formula is used in getting up the proportion-book and arranging the set of proportious from which any machine can be constructed of intermediate size between the largest and smallest of the series.

Rule to Establish Construction Formulæ.—Take difference between the nominal sizes of the largest and the smallest machines that have been designed of the same construction. Take also the difference behave been designed of the same construction. Take also the difference between the sizes of similar parts on the largest and smallest machines selected. Divide the latter by the former, and the result obtained will be a "factor," which, multiplied by the nominal capacity of the intermediate machine, and increased or diminished by a constant "increment," will give the size of the part required. To find the "increment:" Multiply the normal capacity of some known size by the factor obtained, and subtract the result from the size of the part belonging to the machine of nominal caracter allegated. pacity selected.

EXAMPLE.—Suppose the size of a part of a 72-in, machine is 3 in., and the corresponding part of a 42-in, machine is 1%, or 1.875 in: then 72-42=30, and 3 in. -1% in. =1% in. =1.125. 1.125+30=0.375= the "factor" and  $0.375\times42=1.575$ . Then 1.875-1.575=3=4 the "increment" to be added. Let D= nominal capacity; then the formula will read: x=

 $D \times .0375 + .3$ .  $Proof: 42 \times .0375 + .3 = 1.875$ , or 1% the size of one of the selected parts. Some prefer the formula: aD + c = x, in which D = nominal capacity in inches or in pounds, c is a constant increment, a is the factor, and x = the part to be found.

#### KEYS.

Sizes of Keys for Mill-gearing. (Trans. A. S. M. E., xiii, 229.)—E. G. Parkhurst's rule: Width of key = ½ diam. of shaft, depth = 1/9 diam. of shaft; taper ½ in. to the foot.

Custom in Michigan saw-mills: Keys of square section, side = ½ diam. of

shaft, or as nearly as may be in even sixteenths of an inch.

J. T. Hawkins's rule: Width = ½ diam. of hole; depth of side abutment in shaft = 16 diam. of hole.

W. S. Huson's rule: ½-inch key for 1 to 1¼ in. shafts, 5/16 key for 1¼ to 1¼ in. shafts, ¾ in. key for 1¼ to 1¾ in. shafts, and so on. Taper ½ in. to the foot. Total thickness at large end of splice, 4/5 width of key.

Unwin (Elements of Machine Design) gives: Width =  $\frac{1}{2}d + \frac{1}{2}6$  in. Thickness =  $\frac{1}{2}d + \frac{1}{2}6$  in, in which d = diam, of shaft in inches. When wheels or pulleys transmitting only a small amount of power are keyed on large shafts, he says, these dimensions are excessive. In that case, if H.P. = horse-power transmitted by the wheel or pulley, N = revs, per min, P = force acting at the circumference, in ibs., and R = radius of pulley in inches, take

$$d = \sqrt[3]{\frac{100 \text{ H.P.}}{N}} \text{ or } \sqrt[3]{\frac{PR}{630}}$$

Prof. Coleman Sellers (Stevens Indicator, April, 1892) gives the following: The size of keys, both for shafting and for machine tools, are the proportions adopted by William Sellers & Co., and rigidly adhered to during a period of nearly forty years. Their practice in making keys and fitting them is, that the keys shall always bind tight sidewise, but not top and bottom: that is, not necessarily touch either at the bottom of the key-seat in the shaft or touch the top of the slot cut in the gear-wheel that is fastened to the shaft; but in practice keys used in this manner depend upon the fit of the wheel upon the shaft being a forcing fit, or a fit that is so tight as to require screw-pressure to put the wheel in place upon the shaft.

# Size of Keys for Shafting.

Diameter of Shaft, in.	Size of Key, in.
114 1 7/16 1 11/16	5/16× 3/6
1 15/16 2 8/16	7/16 × 1/2
2 1/16 2 15/16 2 3/16 3 7/16	9/10 × 98
114 1 7/16 1 11/16 1 15/16 2 8/16 2 7/16 2 11/16 2 15/16 3 3/16 3 7/16 2 11/16 4 17/16 4 15/16	18/16× 12
5 7/16 5 15/16 6 7/16	15/16×1
6 15/16 7 7/16 7 15/16 8 7/16 8 15/	16 1 1/16×11/6

Length of key-seat for coupling =  $1\frac{1}{2}$  × nominal diameter of shaft.

#### Size of Keys for Machine Tools.

Diam. of Shaft, in.	Size of Key, in. sq.			haft, in.	Size of Key, sq. in.
15/16 and under	1/6	4	to 5	7/16	13/16
1 to 1 8/16	8/16	. 51/4	to 6	15/16	15/16
114 to 1 7/16	1/4	7~	to 8	15/16	1 1/16
112 to 1 11/16	5/16	9	to 10	15/16	1 3/16
13% to 2 8/16	7/16	11	to 12	15/16	1 5/16
214 to 2 11/16	9/16	13	to 14	15/16	1 7/16
24 to 8 15/16	11/16	į.			

John Richards, in an article in Cassier's Magazine, writes as follows: There are two kinds or system of keys, both proper and necessary, but widely different in nature. 1. The common fastening key, usually made in width one fourth of the shaft's diameter, and the depth five eighths to one third the width. These keys are tapered and fit on all sides, or, as it is commonly described, "bear all over." They perform the double function in most cases of driving or transmitting and fastening the keyed-on member against movement endwise on the shaft. Such keys, when properly made, drive as a strut, diagonally from corner to corner.

The other kind or class of keys are not tapered and fit on their sides only, a slight clearance being left on the back to insure against wedge action or radial strain. These keys drive by shearing strain.

For fixed work where there is no sliding movement such keys are comnonly made of square section, the sides only being planed, so the depth is more than the width by so much as is cut away in finishing or fitting.

For sliding bearings, as in the case of drilling machine spindles, the depth should be increased, and in cases where there is heavy strain there should be two keys or feathers instead of one.

The following tables are taken from proportions adopted in practical use. Flat keys, as in the first table, are employed for fixed work when the parts are to be held not only against torsional strain, but also against movement endwise; and in case of heavy strain the strut principle being the strongest and most secure against movement when there is strain each way, as in the case of engine cranks and first movers generally. The objections

to the system for general use are, straining the work out of truth, the care and expense required in fitting, and destroying the evidence of good or bail fitting of the keyed joint. When a wheel or other part is fastened with a tapering key of this kind there is no means of knowing whether the work is well fitted or not. For this reason such keys are not employed by machine tool-makers, and in the case of accurate work of any kind, indeed, cannot be, because of the wedging strain, and also the difficulty of inspecting completed work.

#### I. DIMENSIONS OF FLAT KEYS, IN INCHES.

# II. Dimensions of Square Keys, in Inches.

# III. DIMENSIONS OF SLIDING FRATHER-KEYS, IN INCHES.

Diam. of shaft Breadth of keys Depth of keys	11/4 1/4 9/8	11/6 1/4 9/8	134 5/16 7/16	2 5/16 7/16	21/4 3/6 1/6	21.4 3.5 3.6 3.6	3 14 5%	31.6 9/16 34	4 9/16 34	414
----------------------------------------------------	--------------------	--------------------	---------------------	-------------------	--------------------	---------------------------	---------------	--------------------	-----------------	-----

P. Pryibil furnishes the following table of dimensions to the Am. Machinist. He says: On special heavy work and very short hubs we put in two keys in one shaft 90° apart. With special long hubs, where we cannot use keys with noses, the keys should be thicker than the standard.

Diameter of Shafts,	Width, Thick-	Diameter of Shafts,		Thick-
inches.	inches. ness, in.	inches.		ness, in.
34 to 1 1/16	3/16 3/16	3 7/16 to 3 11/16	7/8	56
114 to 1 5/16	5/16 14	3 15/16 to 4 8/16	1	11/16
1 7/16 to 1 11/16	3/4 5/16	4 7/16 to 4 11/16	11/8	54
1 15/16 to 2 3/16	1/3 3/6	47/6 to 53/6	11/4	15/16
2 7/16 to 2 11/16	1/4 1/4	57/6 to 63/6	11/4	1
2 15/16 to 3 3/16	3/4 9/16	67/6 to 78/6	15/4	11/8

Keys longer than 10 inches, say 14 to 16", 1/16" thicker; keys longer than 10 inches, say 18 to 20",  $\frac{1}{2}$ 6" thicker; and so on. Special short hubs to have two keys.

For description of the Woodruff system of keying, see circular of the Pratt & Whitney Co.; also Modern Mechanism, page 455.

#### HOLDING-POWER OF KEYS AND SET-SCREWS.

Tests of the Holding-power of Set-screws in Pulleys. (G. Lanza, Trans. A. S. M. E., x. 230.)—These tests were made by using a pulley fastened to the shaft by two set-screws with the shaft keyed to the holders; then the load required at the rim of the pulley to cause it to slip was determined, and this being multiplied by the number 6.037 (obtained by adding to the radius of the pulley one-half the diameter of the wire rope, and dividing the sum by twice the radius of the shaft, since there were two set-screws in action at a time) gives the holding-power of the set-screws. The set-screws used were of wrought-iron, % of an inch in diameter, and ten threads to the inch; the shaft used was of steel and rather hard, the set-screws making but little impression upon it. They were set up with a force of 75 lbs. at the end of a ten-inch monkey-wrench. The set-screws used were of four kinds, marked respectively A, B, C, and D. The results were as follows:

A, ends perfectly flat, 9/16-in. diameter, B, radius of rounded ends about 1/2 inch,	1412 to 2294 lbs.; average 2064.
B. radius of rounded ends about 16 inch.	2747 " 8079 " " 2912.
	1902 ' 8079 " " 2573.
D ends cun-shaped and case-hardened	1962 " 2958 " " 2470.

REMARKS -A. The set-screws were not entirely normal to the shaft; hence they bore less in the earlier trials, before they had become flattened by

B. The ends of these set-screws, after the first two trials, were found to be flattened, the flattened area having a diameter of about 1/4 inch.

C. The ends were found, after the first two trials, to be flattened, as in B. D. The first test held well because the edges were sharp, then the holding-power fell off till they had become flattened in a manner similar to B, when the holding-power increased again.

Tests of the Holding-power of Keys. (Lanza.)—The load was applied as in the tests of set-screws, the shaft being firmly keyed to the holders. The load required at the rim of the pulley to shear the keys was determined, and this, multiplied by a suitable constant, determined in a similar way to that used in the case of set-screws, gives us the shearing strength per square inch of the keys.

The keys tested were of eight kinds, denoted, respectively, by the letters A, B, C, D, E, F, G and H, and the results were as follows: A, B, D and F. each 4 tests; E, 3 tests; C, G, and H, each 2 tests.

A, Norway iron, $2'' \times \frac{1}{4}'' \times 15/32''$ , B, refined iron, $2'' \times \frac{1}{4}'' \times 15/32''$ , C, tool steel, $1'' \times \frac{1}{4}'' \times 15/32''$ ,	40,184 to 47,760 lbs.; 36,482 " 39,254; 91,344 & 100,056.	average, 42,726. 38,059.
D, machinery steel, 2" × 14" × 15/32", E, Norway iron, 11/8" × 3/8" × 7/16",	64,630 to 70,186; 86,850 " 37,222;	" 66,875. " 37,036.
F, cast-iron, $2'' \times \frac{1}{4}'' \times \frac{15}{3}\frac{32''}{5}$ , G, cast-iron, $1\frac{1}{6}'' \times \frac{3}{6}'' \times \frac{7}{16}''$ , H, cast-iron, $1'' \times \frac{1}{4}'' \times \frac{7}{16}''$ ,	30,278 ' 36,944; 37,222 & 38,700. 29,814 & 38,978.	** 83,034

In A and B some crushing took place before shearing. In E, the keys being only 7/16 in. deep, tipped slightly in the key-way. In H, in the first test, there was a defect in the key-way of the pulley.

#### DYNAMOMETERS.

Dynamometers are instruments used for measuring power. They are of several classes, as: 1. Traction dynamometers, used for determining the power required to pull a car or other vehicle, or a plough or harrow. 2. Brake or absorption dynamometers, in which the power of a rotating shaft or wheel is absorbed or converted into heat by the friction of a brake: and, 3. Transmission dynamometers, in which the power in a rotating shaft is measured during its transmission through a belt or other connection to another shaft, without being absorbed.

Traction Dynamometers generally contain two principal parts:

(1) A spring or series of springs, through which the pull is exerted, the extension of the spring measuring the amount of the pulling force; and (2) a paper-covered drum, rotated either at a uniform speed by clockwork, or at a speed proportional to the speed of the traction, through gearing, on which the extension of the spring is registered by a pencil. From the average height of the diagram drawn by the pencil above the zero-line the average pulling force in pounds is obtained, and this multiplied by the distance traversed in feet, gives the work done, in foot-pounds. The product divided by the time in minutes and by 83,000 gives the horse-power.

The Prony brake is the typical form of absorption dynamometer. (See Fig. 167, from Flather on Dynamometers and the Measurement of Power.)

Primarily this consists of a lever connected to a revolving shaft or pulley in such a manner that the friction induced between the surfaces in contact will tend to rotate the arm in the direction in which the shaft revolves. This rotation is counterbalanced by weights P, hung in the scale-pan at the end of the lever. In order to measure the power for a given number of revolutions of pulley, we add weights to the scale-pan and screw up on bolts bb. until the friction induced balances the weights and the lever is maintained in its horizontal position while the revolutions of shaft per minute remain constant.

For small powers the beam is generally omitted—the friction being measured by weighting a band or strap thrown over the pulley. Ropes or cords are often used for the same purpose.

Instead of hanging weights in a scale-pan, as in Fig. 167, the friction may be

weighed on a platform-scale; in this case, the direction of rotation being the same, the lever-arm will be on the opposite side of the shaft.

In a modification of this brake, the brake wheel is keyed to the shaft, and its rim is provided with inner flanges which form an annular trough for the retention of water to keep the pulley from heating. A small stream of water constantly discharges into the trough and revolves with the pulley-the centrifugal force of the



Fig. 167.

particles of water overcoming the action of gravity; a waste-pipe with its end flattened is so placed in the trough that it acts as a scoop, and removes all surplus water. The brake consists of a flexible strap to which are fitted blocks of wood forming the rubbing surface; the ends of the strap are connected by an adjustable bolt-clamp, by means of which any desired tension may be obtained.

The horse-power or work of the shaft is determined from the following:

Let W =work of shaft, equals power absorbed, per minute;

P =unbalanced pressure or weight in pounds, acting on lever-arm at distance L:

L = length of lever-arm in feet from centre of shaft;

V = velocity of a point in feet per minute at distance L, if arm were allowed to rotate at the speed of the shaft:

N = number of revolutions per minute;

H.P. = borse-power.

Then will  $W = PV = 2\pi LNP$ .

Since H.P. = PV + 33,000, we have H.P. =  $2\pi LNP + 33,000$ . If  $L = \frac{33}{2\pi}$ , we obtain H.P. =  $\frac{NP}{1000}$ . 33 + 2 $\pi$  is practically 5 ft. 3 in., a value often used in practice for the length of arm.

If the rubbing-surface be too small, the resulting friction will show great irregularity-probably on account of insufficient lubrication-the jaws being allowed to seize the pulley, thus producing shocks and sudden vibrations of the lever-arm.

Soft woods, such as bass, plane-tree, beech, poplar, or maple are all to be preferred to the harder woods for brake-blocks. The rubbing surface should

be well lubricated with a heavy grease.

The Alden Absorption-dynamometer. (G. I. Alden, Trans. A. S. M. E., vol. xi. 958; also xii, 700 and xiii. 429.)—This dynamometer is a friction-brake, which is capable in quite moderate sizes of absorbing large powers with unusual steadiness and complete regulation. A smooth cast-iron disk is keyed on the rotating shaft. This is enclosed in a cast-iron shell, formed of two disks and a ring at their circumference, which is free to revolve on the shaft. To the interior of each of the sides of the shell is fitted a copper plate, enclosing between itself and the side a water-tight space. Water under pressure from the city pipes is admitted into each of these spaces, forcing the copper plate against the central disk. The chamber enclosing the disk is filled with oil. To the outer shell is fixed a weighted arm, which resists the tendency of the shell to rotate with the shaft, caused by the friction of the plates against the central disk. Four brakes of this type, 56 in. diam., were used in testing the experimental locomotive at Purdue University (Trans. A. S. M. E., xiii. 429). Each was designed for a maximum moment of 10,500 foot-pounds with a water-pressure of 40 lbs. per sq. in.

The area in effective contact with the copper plates on either side is represented by an annular surface having its outer radius equal to 28 inches, and its inner radius equal to 10 inches. The apparent coefficient of friction

between the plates and the disk was 31/6%.

W. W. Beaumont (Proc. Inst. C. E. 1889) has deduced a formula by means of which the relative capacity of brakes can be compared, judging from the amount of horse-power ascertained by their use.

If W = width of rubbing-surface on brake-wheel in inches; V = vel. of point on circum. of wheel in feet per minute; K = coefficient; then

K = WV + H.P.

Capacity of Friction-brakes .- Prof. Flather obtains the values of K given in the last column of the subjoined table :

Horse-power.	R. P. M. Brake- pulley.		Diameter, al	Length of Arm.	Design of Brake.	Value of K.
21	150	7	5	88"	Royal Ag. Soc., compensating	785
19	148.5	7	5	33.38"	McLaren, compensating	858
20	146	7	5	32.19"	" water-cooled and comp	802
40	180	10.5	5	32′′	Garrett. " "	741
38	150	10.5	5	82"		749
150	150	10	9		Schoenheyder, water-cooled	282
24	142	12	6	38.81"	Balk	1385
180	100	24	5	126.1"	Gately & Kletsch, water-cooled	209
475	76.2	24	7	191"	Webber, water-cooled	84.7
125 } 250 }	290 ( 250 (	24	4	63"	Westinghouse, water-cooled	465
40 ( 125 )	322 ( 290 (	13	4	2734''	" "	847

The above calculations for eleven brakes give values of K varying from 84 7 to 1385 for actual horse-powers tested, the average being K=655. Instead of assuming an average coefficient, Prof. Flather proposes the

Water-cooled brake, non-compensating, K = 400; W = 400 H.P. + V. Water-cooled brake, compensating, K = 750; W = 750 H.P. + V. Non-cooling brake, with or without compensating device, K = 900; W = 900 H.P. + V.

Transmission Dynamometers are of various forms, as the Transmission Bynamometers are of various forms, as the Batchelder dynamometer, in which the power is transmitted through a "train-arm" of bevel gearing, with its modifications, as the one described by the author in Trans. A. I. M. E., viii. 177, and the one described by the author in Trans. A. S. M. E., x. 514: belt dynamometers, as the Tatham; the Van Winkle dynamometer, in which the power is transmitted from a revolving shaft to another in line with it, the two almost touching, through the medium of coiled springs fastened to arms or disks keyed to the shafts; the Brackett and the Webb cradle dynamometers, used for measuring the power required to run dynamo-alcord machines. measuring the power required to run dynamo-electric machines. Descriptions of the four last named are given in Flather on Dynamometers.

Much information on various forms of dynamometers will be found in Trans. A. S. M. E., vol. vii. to xv., inclusive, indexed under Dynamometers.

## ICE-MAKING OR REFRIGERATING MACHINES.

References.-An elaborate discussion of the thermodynamic theory of the action of the various fluids used in the production of cold was published by M. Ledoux in the Annales des Mines, and translated in Van Nostrand's Maguzine in 1879. This work, revised and additions made in the light of recent experience by Professors Denton, Jacobus, and Riesenberger, was reprinted in 1892. (Van Nostrand's Science Series, No. 46.) The work is largely mathematical, but it also contains much information of immediate practical value, matical, but it also contains much information of immediate practical value, from which some of the matter given below is taken. Other references are Wood's Thermodynamics, Chap. V., and numerous papers by Professors Wood, Denton. Jacobus, and Linde in Trans. A. S. M. E., vols. x. to xiv.; Johnson's Cyclopædia, article on Refrigerating-machines; also Eng'a, June 18, July 2 and 9, 1896; April 1, 1887; June 15, 1888; July 31, Aug. 28, 1899; Sept. 11 and Dec. 4, 1891; May 6 and July 8, 1892. For properties of Ammonia and Sulphur Dioxide, see papers by Professors Wood and Jacobus, Trans. A. S. M. E., vols. x. and xii.

For illustrated articles describing refrigerating-machines, see Am. Mach., May 29 and June 25, 1890, and Mfrs. Record, Oct. 7, 1892; also catalogues of builders, as Frick & Co., Waynesboro, Pa.; De La Vergne Refrigerating-machine Co., New York; and others.

Operations of a Refrigerating-machine.—Apparatus designed for refrigerating is based upon the following series of operations:

Compress a gas or vapor by means of some external force, then relieve it

Compress a gas or vapor by means of some external force, then relieve it of its heat so as to diminish its volume; next, cause this compressed gas or vapor to expand so as to produce mechanical work, and thus lower its temperature. The absorption of heat at this stage by the gas, in resuming its original condition, constitutes the refrigerating effect of the apparatus.

A refrigerating-machine is a heat-engine reversed.

From this similarity between heat-motors and freezing-machines it results that all the equations deduced from the mechanical theory of heat to determine the performance of the first, apply equally to the second.

The efficiency depends upon the difference between the extremes of tem-

The useful effect of a refrigerating-machine depends upon the ratio between the heat-units eliminated and the work expended in compressing and expanding.

This result is independent of the nature of the body employed.

Unlike the heat-motors, the freezing-machine possesses the greatest efficiency when the range of temperature is small, and when the final temperature is elevated.

If the temperatures are the same, there is no theoretical advantage in em-

ploying a gas rather than a vapor in order to produce cold.

The choice of the intermediate body would be determined by practical considerations based on the physical characteristics of the body, such as the greater or less facility for manipulating it, the extreme pressures required for the best effects, etc.

Air offers the double advantage that it is everywhere obtainable, and that we can vary at will the higher pressures, independent of the temperature of the refrigerant. But to produce a given useful effect the apparatus must be of larger dimensions than that required by liquefiable vapors.

The maximum pressure is determined by the temperature of the con-

denser and the nature of the volatile liquid: this pressure is often very high. When a change of volume of a saturated vapor is made under constant pressure, the temperature remains constant. The addition or subtraction of heat, which produces the change of volume, is represented by an increase or a diminution of the quantity of liquid mixed with the vapor.

On the other hand, when vapors, even if saturated, are no longer in contact with their liquids, and receive an addition of heat either through com-pression by a mechanical force, or from some external source of heat, they comport themselves nearly in the same way as permanent gases, and be-

come superheated.

It results from this property, that refrigerating-machines using a liquestable gas will afford results differing according to the method of working,

and depending upon the state of the gas, whether it remains constantly sat-

urated, or is superheated during a part of the cycle of working.

The temperature of the condenser is determined by local conditions. The interior will exceed by 9° to 18° the temperature of the water furnished to the exterior. This latter will vary from about 52° F., the temperature of water from considerable depth below the surface, to about 95° F., the temperature of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface of perature of surface-water in hot climates. The volatile liquid employed in the machine ought not at this temperature to have a tension above that which can be readily managed by the apparatus.

On the other hand, if the tension of the gas at the minimum temperature is too low, it becomes necessary to give to the compression-cylinder large dimensions, in order that the weight of vapor compressed by a single stroke of the piston shall be sufficient to produce a notably useful effect.

These two conditions, to which may be added others, such as those depending upon the greater or less facility of obtaining the liquid, upon the dangers incurred in its use, either from its inflammability or unhealthfulness, and finally upon its action upon the metals, limit the choice to a small number of substances.

The gases or vapors generally available are: sulphuric ether, sulphurous oxide, ammonia, methylic ether, and carbonic acid.

The following table, derived from Regnault, shows the tensions of the vapors of these substances at different temperatures between — 22° and + 1040

# Pressures and Boiling-points of Liquids available for Use in Refrigerating-machines.

Temp. of Ebullition.	Ten	sion of Vap	or, in lbs. pe	er sq. in., s	bove Zero	•
Deg. Fahr.	Sul- phuric Ether.	Sulphur Dioxide.	Ammonia.	Methylic Ether.	Carbonic Acid.	Pictet Fluid.
- 40 - 31 - 22 - 13 - 4 - 5 14 23 32 41 50 - 59 68 77	1.30 1.70 2.19 2.79 3.55 4.45 5.54 6.84 8.38 10.19 12.31	5.56 7.23 9.27 11.76 14.75 18.81 22.48 33.26 39.93 47.62 56.39	.10. 22 13. 28 16. 95 21. 51 27. 04 33. 67 41. 58 50. 91 61. 85 74. 55 89. 21 105. 99 125. 08 146. 64 170. 83	11.15 13.85 17.06 20.84 25.27 30.41 86.34 43.13 50.84 69.35 80.28	251.6 292.9 340.1 893.4 453.4 594.8 676.9 864.9 971.1	13.5 16.2 19.3 22.9 26.9 31.2 36.2 41.7 48.1 55.6 64.J
95 104	14.76 17.59	77.64 90.32	197.83 227.76		1207.9 1338.2	73.2 82.9

The table shows that the use of ether does not readily lead to the production of low temperatures, because its pressure becomes then very freble.

Ammonia, on the contrary, is well adapted to the production of low tem-

peratures.

Methylic ether yields low temperatures without attaining too great pressures at the temperature of the condenser. Sulphur dioxide readily affords temperatures of -14 to -5, while its pressure is only 3 to 4 atmospheres at the ordinary temperature of the condenser. These latter substances then lend themselves conveniently for the production of cold by means of mechanical force.

The "Pictet fluid" is a mixture of 97% sulphur dioxide and 3% carbonic acid. At atmospheric pressure it affords a temperature 14° lower than

sulphur dioxide.

Carbonic acid is as yet (1895) in use but to a limited extent, but the relatively greater compactness of compressor that it requires, and its inoffensive character, are leading to its recommendation for service on shipboard, where economy of space is important.

Certain ammonia plants are operated with a surplus of liquid present during compression, so that superheating is prevented. This practice is known as the "cold system" of compression.

Nothing definite is known regarding the application of methylic ether or of the petroleum product chymogene in practical refrigerating service. The inflammability of the latter and the cumbrousness of the compressor required are objections to its use.

""" Ice-melting Effect," —It is agreed that the term "ice-melting

effect" means the cold produced in an insulated bath of brine, on the assumption that each 142.2 B.T.U.* represents one pound of ice, this being the latent heat of fusion of ice, or the heat required to melt a pound of ice at

32° to water at the same temperature.

The performance of a machine, expressed in pounds or tons of "ice-melting capacity," does not mean that the refrigerating-machine would make the same amount of actual ice, but that the cold produced is equivalent to the effect of the melting of ice at 82° to water of the same temperature.

In making artificial ice the water frozen is generally about 70° F, when sub-

mitted to the refrigerating effect of a machine; second, the ice is chilled from 12º to 30º below its freezing point; third, there is a dissipation of cold, from the exposure of the brine tauk and the manipulation of the ice-cans: therefore the weight of actual ice made, multiplied by its latent heat of tusion, 142.2 thermal units, represents only about three fourths of the cold produced 142.2 thermal units, represents only about three fourish of the conditions of the conditions of the brine by the refrigerating fluid per I.H.P. of the engine driving the compressing-pumps. Again, there is considerable fuel consumed to operate the brine-circulating pump, the condensing-water and feed-pumps, and to reboil, or purify, the condensed steam from which the ice is frozen. This fuel, together with that wasted in leakage and drip water, amounts to about one half that required to drive the main steam-engine. Hence the pounds of actual ice manufactured from distilled water is just about half the equivalent of the refrigerating effect produced in the brine per indicated horsepower of the steam-cylinders.

When ice is made directly from natural water by means of the "plate

system," about half of the fuel, used with distilled water, is saved by avoid-

ing the reboiling, and using steam expansively in a compound engine.

Ether-machines, used in India, are said to have produced about 6

lbs. of actual ice per pound of fuel consumed.

The ether machine is obsolete, because the density of the vapor of ether, at the necessary working-pressure, requires that the compressing-cylinder shall be about 6 times larger than for sulphur dioxide, and 17 times larger than for ammonia.

Air-machines require about 1.2 times greater capacity of compressing cylinder, and are, as a whole, more cumbersome than ether machines, but they remain in use on ship-board. In using air the expansion must take place in a cylinder doing work, instead of through a simple expansion-cock which is used with vapor machines. The work done in the expansion-cylinder is utilized in assisting the compressor.

Ammonia Compression-machines, -- "Cold" vs. "Dry "Systems of Compression.—In the "cold" system or "humid" system some of the ammonia entering the compression cylinder is liquid, so that the heat developed in the cylinder is absorbed by the liquid and the temperature of the ammonia thereby confined to the boiling-point due to the condenser-pres-

sure. No jacket is therefore required about the cylinder.
In the "dry" or "hot" system all ammonia entering the compressor is gaseous, and the temperature becomes by compression several hundred degrees greater than the boiling-point due to the condenser-pressure. A waterjacket is therefore necessary to permit the cylinder to be properly lubri-

cated.

Belative Performance of Ammonia Compression- and Absorption-machines, assuming no Water to be Entrained with the Ammoula-gas in the Condenser. (Denton and Jacobus, Trans. A. S. M. E., xiii.)—It is assumed in the calculation for both machines that 1 lb. of coal imparts 10,000 B.T.U. to the boiler. The

^{*}The latent heat of fusion of ice is 144 thermal units (Phil. Mag., 1871, xII., 182); but it is customary to use 142. (Prof. Wood, Trans. A. S. M. E., xi. 834.)

condensed steam from the generator of the absorption-machine is assumed to be returned to the boiler at the temperature of the steam entering the generator. The engine of the compression-machine is assumed to exhaust through a feed-water heater that heats the feed-water to 212° F. The engine is assumed to consume 2614 lbs. of water per hour per horse-power. The figures for the compression-machine include the effect of friction, which is taken at 15% of the net work of compression.

Cond	enser.	Refri	gerat- coils.	표.	Pot		f Ice-melti r lb. of Co		or of
	per	1 1 1				Abso mac	generator e, B.T.U. sulated.		
Temp, in degrees Fahr.	Absolute pressure, lbs. sq. in.	Temp. in degrees Fahr.	Absolute pressure, lbs. sq. in.	Temp. of Absorber, degrees	Using 8 lbs. of coal per hour per I.H.P.	Using 1.6 lbs. of coal per hour per I.H.P.	Absorption-machine in which the ammonia circulating-pump exhausts into the generator.	In which the amur- circ, pump exhausts into the atmosphere through a heater, yielding 312° temp. to the feed-water.	Heat furnished to gene absorption-machine, B. lb. of ammonia circulat
61.2 59.0 59.0 59.0 86.0 86.0 86.0 86.0 104.0	106.0 170.8 170.8 170.8 170.8 227.7	5 -22 5 5	83.7 83.7 16.9 83.7 16.9 16.9 83.7 16.9	61.2 59.0 130.0 59.0 86.0 130.0 86.0 130.0 104.0	25.0 16.5 16.5 19.6	71.4 74.6 74.6 43.9 46.9 46.9 30.8 30.8 36.8 25.3	38.1 38.3 39.8 36.3 35.4 36.2 33.3 34.1 31.4	83.5 33.9 85.1 81.5 98.6 29.2 26.5 27.0 25.1 23.4	969 967 931 1000 988 966 1025 1002 1002

The Ammonia Absorption-machine comprises a generator which contains a concentrated solution of ammonia in water; this generator is heated either directly by a fire, or indirectly by pipes leading from a steam-boiler. The condenser communicates with the upper part of the generator is a steam-boiler. erator by a tube; it is cooled externally by a current of cold water. cooler or brine-tank is so constructed as to utilize the cold produced; the upper part of it is in communication with the lower part of the condenser.

An absorption-chamber is filled with a weak solution of ammonia; a tube

puts this chamber in communication with the cooling-tank.

The absorption-chamber communicates with the boiler by two tubes; one leads from the bottom of the generator to the top of the chamber, the other leads from the bottom of the chamber to the top of the generator. Upon the latter is mounted a pump, to force the liquid from the absorption-chamber, where the pressure is maintained at about one atmosphere, into the gen

erator, where the pressure is from 8 to 12 atmospheres.

To work the apparatus the ammonia solution in the generator is first heated. This releases the gas from the solution, and the pressure rises. When it reaches the tension of the saturated gas at the temperature of the condenser there is a liquefaction of the gas, and also of a small amount of steam. By means of a cock the flow of the liquefied gas into the refrigerating-coils contained in the cooler is regulated. It is here vaporized by absorbing the heat from the substance placed there to be cooled. As fast as it is vaporized it is absorbed by the weak solution in the absorbing-chamber.

Under the influence of the heat in the boiler the solution is unequally sat-

urated, the stronger solution being uppermost.

The weaker portion is conveyed by the pipe entering the top of the absorbing-chamber, the flow being regulated by a cock, while the pump sends an equal quantity of strong solution from the chamber back to the boiler.

^{* 5%} of water entrained in the ammonia will lower the economy of the absorption-machine about 15% to 20% below the figures given in the table.

The working of the apparatus depends upon the adjustment and regula-tion of the flow of the gas and liquid; by these means the pressure is varied, and consequently the temperature in the cooler may be controlled.

The working is similar to that of compression-machines. The absorptionchamber fills the office of aspirator, and the generator plays the part of

compressor.

The mechanical force producing exhaustion is here replaced by the affinity of water for ammonia gas; and the mechanical force required for compression is replaced by the heat which severs this affinity and sets the gas at liberty.

liberty.

(For discussion of the efficiency of the absorption system, see Ledoux's work; paper by Prof. Linde, and discussion on the same by Prof. Jacobus, Trans. A. S. M. E., xiv. 1416, 1436; and papers by Denton and Jacobus, Trans. A. S. M. E. x. 792; xiii. 507.

Sulphur-Dioxide Machines.—Results of theoretical calculations are given in a table by Ledoux showing an ice-melting capacity per hour per horse-power ranging from 134 to 63 lbs., and per pound of coal ranging from 44.7 to 21.1 lbs., as the temperature corresponding to the pressure of the vapor in the condenser rises from 50° to 104° F. The theoretical results do not represent the actual. It is necessary to take into account the loss occasioned by the pipes, the waste spaces in the cylinder. loss count the loss occasioned by the pipes, the waste spaces in the cylinder, loss of time in opening of the valves, the leakage around the piston and valves, the reheating by the external air, and finally, when the ice is being made, the quantity of the ice metted in removing the blocks from their moulds. Manufacturers estimate that practically the sulphur-dioxide apparatus using water at 55° or 60° F. produces 56 lbs. of ice, or about 10,000 heat-units, per hour per horse-power, measured on the driving-shaft, which is about 55 of the theoretical useful effect. In the commercial manufacture of ice about 7 lbs. are produced per pound of coal. This includes the fuel used for reboilling the water, which, together with that wasted by the pumps and lost oy radiation, amounts to a considerable portion of that used by the engine.

Prof. Denton says concerning Ledoux's theoretical results: The figures given are higher than those obtained in practice, because the effect of superheating of the gas during admission to the cylinder is not considered. This superheating may cause an increase of work of about 25%. There are other losses due to superheating the gas at the brine-tank, and in the pipe leading from the brine-tank to the compressor, so that in actual practice a sulphur-dioxide machine, working under the conditions of an absolute pressure in the condenser of 56 lbs. per sq. in. and the corresponding temperature of 77° F., will give about 22 lbs. of ice-melting capacity per pound of coal, which is about 60% of the theoretical amount neglecting friction, or 70% including friction. The following tests, selected from those made by Prof. Schröter on a Pictet ice-machine having a compression-cylinder 11.3 in. bore and 24.4 in. stroke, show the relation between the theoretical and

actual ice-melting capacity.

	correspo	egrees Fahr. onding to of vapor.	Ice-melting capacity per pound of coal, assuming 3 lbs. per hour per H.P.					
No. of Test.	Condenser.	Suction.	Theoretical friction included.*	Actual.	Per cent loss due to cylinder super- heating, or differ- ence between cols. 4 and 5.			
11	77.8	28.5	41.3	32.1	19.9			
12	76.2	14.4	31.2	24.1	22.8			
13	75.2	-2.5	23.0	17.5	23.9			
14	80.6	-15.9	16.6	10 1	89.2			

The **Refrigerating Coils** of a Pictet ice-machine described by Ledoux had 79 sq. ft. of surface for each 100,000 theoretic negative heat-units produced per hour. The temperature corresponding to the pressure of the dioxide in the coils is 104° F., and that of the bath (calcium chloride solution) in which they were immersed is 19 4°.

^{*} Friction taken at figure observed in the test, which ranged from 23% to 26% of the work of the steam-cylinder,

The perfection of ammonia apparatus now renders it so convenient and reliable that no practical advantage results from the Ammonta Compression-machines.—Ammonia gas possesses the advantage of affording about three times the useful effect of sulphur dioxide for the same volume described by the piston. lower pressures afforded by sulphur dioxide.

FERFORMANCE OF AMMONIA COMPRESSION-MACHINES. The results of the calculations for ammonia are given in the table below:

Pressure in condenser, Gas superheated during compression as in ordinary practice. Temperature of condenser, 64.4° Fahr. 117.44 lbs per sq. in. (Ledoux.)

		•			
	Per T city, of Te	Condensing - water. of Ice-melting Capa suming 30° F. Range perature.	Gals.	1290 1810 1410	dioride.
10. 10 -9i	per 108. H.P. IA fil	Ice-melting Capacity of Coal, assuming Coal per hour per Steam-cylinder. Wi	Lbs.	89.6 85.6 21.6	Ann animhm
1 9 -8i(	d di	Ice - melting Capacii Cubic Foot of Pist placement,	Tons.	.000244 .000221 .000115	804040
mance in	Thermal Juits.	Per hour per Horse- power. With Friction.		16,900 15,170 9,230	though though
Performance	British 7	Per ftlb. of Work with Friction.		.00786	And the constant and the
ent.	of Compres- sion.	With Friction, or Indicated Steam.	Ftlbs.	8130 8190 6990	. Tours
Displacen	Work of sic	Mithout Frietion.	Ftlbs.	7070 7120 6080	
of Piston	tive De-	Mumber of Nega sinU lamradT & veloped.	B.T.U.	69.41 62.77 32.58	Links at the action
Per Cubic Foot of Piston Displacement.	3.8	Gondenser.	B.T.U.	78.56 71.98 40.45	
Per	-wo	Weight of Gas C	Lbs.	.1329 .1206 .0639	out of the out
pu	A 3.8 8	Temperature of Ga.	Deg. F.	158.9 170.1 241.8	monnibe for a
-07	4 ni	erusaera Pressure + trigerating-coils.	Lbs. per sq. in.	87.76 88.67 16.95	
.to	q BV 1	Temperature Corr o a pressure of the course Britanegina di	Deg. F.	9.66 5.00 -22.00	The theoretical

In the case of ammonia the action of the cylinder-walls in superheating the entering vapor has been determined experimentally by Prof. Deuton, and the amount found to agree with that indented by theory. In these experiments the ammonia circulated in a Facto, refrigerenting machine was measured directly by means of a special meter, so that in addition to determining the effect of I DE LIBOTELICA I L'EBULLS TOT ATTITIONNE ATE MIGNET GRAN TOE ACTUAL, TOT THE BAINE FEABOUR UNAU DEFIT BUATEU LOI BUIDIUM superheating, the latent heats can be calculated at the suction and condenser pressure.

A SIMPLE COOK TO 83.67 LES. ABSOLUTE PRESSURE CORRESPONDING TEMPERATURE OF 6° F. Economy of Ammonia Compression-machines at Various Condenser Temperatures. (LEDOUX.) CORRESPONDING TEMPERATURE OF 5° FT. OR .12061 LB. OF AMMONIA EXPANDED THROUGH 8Q. IN., AND TAKEN INTO THE COMPRESSOR AT THIS PRESSURE AND THE REFRIGERATING EFFCT OF 1 CU. PER

Per Minute per Ton of Ice-melting Ca-pacity in M hours. ING EFFECT OF 1 CU. FT. OR. 106386 LIBS. OF AMMONIA EXPANDED THROUGH A SIMPLE COCK TO 16.85 LIBS. ABSOLUTE PRESSURE SQ. IN.. AND TAKEN INTO THE COMPRESSOR AT THIS PRESSURE AND THE CORRESPONDING TEMPERATURE OF - 22° F. Condensing-water. Gals. ing Capacity. Per Ton of Ice-meltof Temp. Gals. Displacement, as-suming 30° Range Per cu. ft. of Piston 000100 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 000200 000223 .000211 .000215 Tons. Displacement. Per cu. ft. of Piston Ice-melting Capacity. Pound Coal. With Friction. 25.2888 17.18 15.18 15.18 Per tion. Without Frie-**** 80 × -0 - 0 Hour H.P. Ľbs. With Friction. 000000 ě 25.88.28 25.08.39 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 25.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26.08.89 26. Lbg. .noi3 Without Fric-Refrigerating Effect in Heat Units. including Priction. Per Hour per H.P., Per ft.-lb. of Work Expended, includ-ing Friction. (10) 00719 00719 00475 00428 (10) (00504 (00396 (00355 (00821 (00821 .00619 .00546 00458 Friction. 00455 00408 00369 00335 .00827 00580 00510 Expended, without Per ft.-lb. of Work ork of Compression, with Friction, or Indicated Steam-power. 7.00 0 1 3 8 5.00 0 1 3 8 5.00 0 0 0 0 0 0 Ft.-lbs 85.58 82.28 82.28 82.28 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 84.00 Mork Ft.-lbs 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 without Friction. Compression, 10 fect to Heat Expended. 6.25.44.48 6.25.44.68 7.65.88 €&%%≂%% Ratio of Refrigerating E(-4.00,00,00,00 88.25.28.28.27.72 74.28.28.25.72 88.88.88 88.88.88 89.69.93 77.48.65 REFRIGERATING EFFECT OF 1 CU. B.T.U. Heat Units. Kuect Reirigerating 258457 825858 Condenser, B.T.U Heat Carried away from 255.3 255.1 255.3 255.3 255.3 -01000000 Compression. Temperature at End of Lbs.per 125.1 146.6 170.8 197.8 denser, 388 \$22.5 Absolute Pressure in Con-Deg. F. 5882882 Temp. Due to Press. Vapor in Condenser. දු සියි දැසි සිදු The following is a comparison of the theoretical ice-melting capacity of an ammonia compression machine with that obtained in some of Prof. Schröter's tests on a Linde machine having a compression-cylinder 9 9-in. bore and 16.5 in. stroke, and also in tests by Prof. Denton on a machine having two single-acting compression cylinders 12 in. × 30 in.:

No.	Temp. in l	Degrees F.	Ice-melting Capacity per lb. of Coal,					
	Correspo	onding to	assuming 3 lbs per hour per					
	Pressure	of Vapor.	Horse-power.					
of Test.	Condenser.	Suction.	Theoretical, Friction * in- cluded.	Actual.	Per Cent of Loss Due to Cylinder Superheating.			
Schröter 8 4 4	1 72.8 26.6		50.4	40.6	19.4			
	2 70.5 14.3		87.6	30.0	20.2			
	3 69.2 0.5		29.4	22.0	25.2			
	4 68.5 —11.8		22.8	16.1	29.4			
Denton	84.2	15.0	27.4	24.2	11.7			
25	82.7	- 8.2	21.6	17.5	19.0			
25	84.6	-10.8	18.8	14.5	22.9			

Refrigerating Machines using Vapor of Water. (Ledoux.)—In these machines, sometimes called vacuum machines, water, at ordinary temperatures, is injected into, or placed in connection with, a chamber in which a strong vacuum is maintained. A portion of the water vaporizes, the heat to cause the vaporization being supplied from the water not vaporized, so that the latter is chilled or frozen to ice. If brine is used instead of pure water, its temperature may be reduced below the freezing-point of water. The water vapor is compressed from, say, a pressure of one tenth of a pound per square inch to one and one half pounds, and discharged into a condenser. It is then condensed and removed by means of an ordinary a condenser. The principle of action of such a machine is the same as that of volatile-vapor machines.

of volatile-vapor macmines.

A theoretical calculation for ice-making, assuming a lower temperature of 32° F., a pressure in the condenser of 1½ lbs. per square inch, and a coal consumption of 3 lbs. per I.H.P. per hour, gives an ice-melting effect of 34.5 lbs. per pound of coal, neglecting friction. Ammonia for ice-making conditions gives 40.9 lbs. The volume of the compressing cylinder is about 150 times the theoretical volume for an ammonia machine for these conditions.

Relative Efficiency of a Refrigerating Machine.—The efficiency of a refrigerating machine is sometimes expressed as the quotient of the quantity of heat received by the ammonia from the brine, that is, the quantity of useful work done, divided by the heat equivalent of the mechanical work done in the compressor. Thus in column 1 of the table of performance of the 75-ton machine (page 598) the heat given by the brine to the ammonia per minute is 14,776 B.T.U. The horse-power of the ammonia cylinder is 65.7, and its heat equivalent = 65.7 × 33,000 + 778 = 2786 B.T.U. Then 14,776 + 2786 = 5.304, efficiency. The apparent paradox that the efficiency is greater than unity, which is impossible in any machine, is thus explained. The working fluid, as ammonia, receives heat from the brine and rejects heat into the condenser. (If the compressor is jacketed, a portion is rejected into the jacket-water.) The heat rejected into the condenser is greater than that received from the brine; the difference (plus or minus a small difference radiated to or from the atmosphere) is heat received by the ammonia from the compressor. The work to be done by the compressor is not the mechanical equivalent of the refrigeration of the brine, but only that necessary to supply the difference between the heat rejected by the ammonia into the condenser and that received from the brine. If cooling water colder than the brine were available, the brine might transfer its heat directly into the conjug water, and there would be no need of ammonia or of a compressor; but

^{*} Friction taken at figures observed in the tests, which range from 14% to 20% of the work of the steam-cylinder.

since such cold water is not available, the brine rejects its heat into the colder ammonia, and then the compressor is required to heat the ammonia to such a temperature that it may reject heat into the cooling water.

The efficiency of a refrigerating plant referred to the amount of fuel consumed is

The ice-melting capacity is expressed as follows:

The analogy between a heat-engine and a fefrigerating-machine is as follows: A steam-engine receives heat from the boiler, converts a part of it into mechanical work in the cylinder, and throws away the difference into the condenser. The ammonia in a compression refrigerating machine receives heat from the brine-tank or cold-room, receives an additional amount of heat from the mechanical work done in the compression-cylinder, and throws away the sum into the condenser. The efficiency of the steam-engine — work done + heat received from boiler. The efficiency of the refrigerating-machine = heat received from the brine-tank or cold-room + heat required to produce the work in the compression-cylinder. In the ammonia



DIAGRAM OF AMMONIA COMPRESSION MACHINE.



DIAGRAM OF AMMONIA ABSORPTION MACHINE.

absorption-apparatus, the ammonia receives heat from the brine-tank and additional heat from the boller or generator, and rejects the sum into the condenser and into the cooling water supplied to the absorber. The efficiency = heat received from the brine + heat received from the boiler.

## TEST-TRIALS OF REFRIGERATING-WACHINES.

(G. Linde, Trans. A. S. M. E., xiv. 1414.)

The purpose of the test is to determine the ratio of consumption and production, so that there will have to be measured both the refrigerative effect and the heat (or mechanical work) consumed, also the cooling water. The refrigerative effect is the product of the number of heat-units (Q) abstracted (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the product of the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) and (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of heat-units (Q) are the number of hea

from the body to be cooled, and the quotient  $\frac{T_0 - T}{T}$ ; in which  $T_0 = \text{absolute temperature at which heat is transmitted to the cooling water, and <math>T = \text{absolute temperature at which heat is taken from the body to be cooled.}$ 

The determination of the quantity of cold will be possible with the proper exactness only when the machine is employed during the test to refrigerate a liquid; and if the cold be found from the quantity of liquid circulated per unit of time, from its range of refrigeration, and from its specific heat. Sufficient exactness cannot be obtained by the refrigeration of a current of circulating air, nor from the manufacture of a certain quantity of ice, nor from a calculation of the fluid circulating within the machine (for instance, the quantity of ammonia circulated by the compressor). Thus the refrigeration of brine will generally form the basis for tests making any pretension to accuracy. The degree of refrigeration should not be greater than necessary for allowing the range of temperature to be measured with the necessary exactness; a range of temperature of from 5° to 6° Fahr. will suffice

sary exactness; a range of temperature of from 5 to 6° Fahr. will suffice.

The condenser measurements for cooling water and its temperatures will be possible with sufficient accuracy only with submerged condensers.

The measurement of the quantity of brine circulated, and of the cooling water, is usually effected by water-meters inserted into the conduits. If the necessary precautions are observed, this method is admissible. For quite precise tests, however, the use of two accurately gauged tanks must be advised, which are alternately filled and emptied.

To measure the temperatures of brine and cooling water at the entrance and exit of refrigerator and condenser respectively, the employment of specially constructed and frequently standardized thermometers is indispensable; no less important is the precaution of using at each spot simultaneously two thermometers, and of changing the position of one such thermometer series from inlet to outlet (and vice versa) after the expiration of one half of the test, in order that possible errors may be compensated. It is important to determine the specific heat of the brine used in each

It is important to determine the specific heat of the brine used in each instance for its corresponding temperature range, as small differences in the composition and the concentration may cause considerable variations.

As regards the measurement of consumption, the programme will not have any special rules in cases where only the measurement of steam and cooling water is undertaken, as will be mainly the case for trials of absorption-machines. For compression-machines the steam consumption depends both on the quality of the steam-engine and on that of the refrigerating-machine, while it is evidently desirable to know the consumption of the former separately from that of the latter. As a rule steam-engine and compressor are coupled directly together, thus rendering a direct measurement of the power absorbed by the refrigerating-machine impossible, and it will have to suffice ascertain the indicated work both of steam-engine and compressor. By further measuring the work for the engine running empty, and by comparing the differences in power between steam-engine and compressor resulting for wide variations of condenser-pressures, the effective consumption of work Le for the refrigerating-machine can be found very closely. In general, it will suffice to use the indicated work found in the steam-cylinder, especially as from this observation the expenditure of heat can be directly determined. Ordinarily the use of the indicated work in the compressor cylinder, for purposes of comparison, should be avoided; firstly, because there are usually certain accessory apparatus to be driven (agitators, etc.), belonging to the refrigerating-machine proper; and secondly, because the external friction would be excluded.

Heat Balance.—We possess an important aid for checking the corectness of the results found in each trial by forming the balance in each case for the heat received and rejected. Only such tests should be regarded as correct beyond doubt which show a sufficient conformity in the heat balance. It is true that in certain instances it may not be easy to account fully for the transmission of heat between the several parts of the machine and its environment by radiation and convection, but generally

(particularly for compression machines) it will be possible to obtain for the heat received and rejected a balance exhibiting small discrepancies only. Report of Test.—Reports intended to be used for comparison with the figures found for other machines will therefore have to embrace at least the following observations: Refrigerator. Gynaptror;
Quantity of brine circulated per hour.
Brine temperature at inlet to refrigerator
Brine temperature at outlet of refrigerator
\$\$Becific gravity of brine (at 61° Fahr.)\$
Specific heat of brine Condenser: Temperature of gases entering the condenser.... ABSORPTION-MACHINE. COMPRESSION-MACHINE. Still: Compressor: Steam consumed per hour..... Abs. pressure of heating steam. Temperature of condensed Temperature of gases at exit... steam at outlet .. Steam-engine : Heat imparted to still.....Q'eFeed-water per hour...... Temperature of feed-water.... Absorber : Quantity of cooling water per Absolute steam-pressure before steam-engine..... hour..... Temperature at inlet ..... Indicated work of steam-engine Temperature at outlet..... Heat removed ..... Condensing water per hour.... Pump for Ammonia Liquor: Temperature of da..... Indicated work of steam-engine Total sum of losses by radiation Steam-consumption for pump.. and convection...  $\pm Q_3$ Thermal equivalent for work of Heat Balance:

 $Qe + Q'e = Q_1 + Q_2 \pm Q_3.$ For the calculation of efficiency and for comparison of various tests, the actual efficiencies must be compared with the theoretical maximum of efficiency  $\left(\frac{v}{AL}\right)$  max. =  $\frac{1}{T_c - T}$  corresponding to the temperature range.

and convection  $\dots \pm Q_3$ 

Heat Balance:

 $Q_0 + AL_0 = Q_1 \pm Q_3.$ 

Temperature Range. - As temperatures (T and To) at which the heat is abstracted in the refrigerator and imparted to the condenser, it is correct to select the temperature of the brine leaving the refrigerator and that of the cooling water leaving the condenser, because it is in principle impossible to keep the refrigerator pressure higher than would correspond to the lowest brine temperature, or to reduce the condenser pressure below that corresponding to the outlet temperature of the cooling water.

Prof. Linde shows that the maximum theoretical efficiency of a compression-machine may be expressed by the formula

$$\frac{Q}{AL} = \frac{T}{Tc - T},$$

in which Q = quantity of heat abstracted (cold produced); AL = thermal equivalent of the mechanical work expended; L =the mechanical work, and A = 1 + 778; T = absolute temperature of heat abstraction (refrigerator);

rejection (condenser).

If u = ratio between the heat equivalent of the mechanical work AL, and the quantity of heat Q' which must be imparted to the motor to produce the work  $L_1$  then

$$\frac{AL}{O'} = u$$
, and  $\frac{Q'}{O} = \frac{Tc - T}{uT}$ .

It follows that the expenditure of heat Q necessary for the production of the quantity of cold Q in a compression machine will be the smaller, the smaller the difference of temperature  $T_0-T$ .

Metering the Ammonia. For a complete test of an ammonia refrigerating-machine it is advisable to measure the quantity of ammonia reculated, as was done in the test of the 75-ton machine described by Prof. Denton. (Trans. A. S. M. E., xii. 326.)

#### PROPERTIES OF SULPHUR DIOXIDE AND AMMONIA GAS.

# Ledoux's Table for Saturated Sulphur-dioxide Gas.

Heat-units expressed in B.T.U. per pound of sulphur dioxide.

Temperature of Ebullition in deg. F.	Absolute Pressure in Ibs. per sq. in. $P+144$	Total Heat reckoned from 32° F.	Heat of Liquid reckoned from 32° F.	Latent Heat of Evaporation	Heat Equiva- lent of Exter- nal Work.	Internal La- tent Heat.	Increase of Volume during Evaporation.	Density of Va- por or Weight of 1 cu. ft.
Deg. F.	Lbs.	B.T.U.	B.T.U.	B.T.U.	B.T.U.	B.T.U.	Cu. ft.	Lbs.
-22	5.56	157.43	-19.56	176.99	18.59	168.39	18.17	.076
-13	7.23	158.64	-16.30	174.95	13.83	161.12	10.27	.097
4 5	9.27	159.84	18.05	172.89	14.05	158.84	8.12	. 123
5	11.76	161.08	- 9.79	170.82	14.26	156.56	6.50	. 158
14	14.74	162.20	- 6.58	168.73	14.46	154.27	5.25	. 190
23	18.31	163.36	- 8.27	166,68	14.66	151.97	4.29	.232
32	22.58	164.51	0.00	164.51	14.84	149.68	8.54	.282
41	27.48	165.65	8.27	162.38	15.01	147.37	2.98	.840
50	33.25	166.78	6.55	160.28	15.17	145.06	2.45	.407
59	89.93	167.90	9.83	158.07	15.32	142.75	2.07	.483
68	47.61	168.99	18.11	155.89	15.46	140.43	1.75	.570
77	56.39	170.09	16.39	153.70	15.59	138.11	1.49	.669
86	66.86	171.17	19.69	151.49	15.71	135.78	1.27	.780
95	77.64	172.24	22.98	149.26	15.82	188.45	1.09	.906
104	90.31	173.30	26.28	147.02	15.91	181.11	.91	1.046

Density of Liquid Ammonia. (D'Andreff, Trans. A. S. M. E., x. 041.)

At temperature C..... - 10 0 20 23 F.... +1482 .6492 .6429 .6364 Density..... .6160

These may be expressed very nearly by

 $\delta = 0.6364 - 0.0014t^{\circ}$  Centigrade;  $\delta = 0.6502 - 0.000777T^{\circ}$  Fahr,

Latent Heat of Evaporation of Ammonia. (Wood, Trans. A. S. M. E., x. 641.)

 $he = 555.5 - 0.618T - 0.000219T^2$  (in B.T.U., Fahr. deg.); Ledoux found  $he = 583.83 - 0.5499T - 0.0001178T^3$ .

For experimental values at different temperatures determined by Prof. Denton, see Trans. A. S. M. E., xii. 356. For calculated values, see vol. x. 646.

Density of Ammonia Gas.—Theoretical, 0.5894; experimental, 0.586. Regnault (Trans. A. S. M. E., x. 633).

Specific Heat of Liquid Ammonia, (Wood, Trans. A. S. M. E., x. 645)—The specific heat is nearly constant at different temperatures, and about equal to that of water, or unity. From 0° to 100° F., it is

$$c = 1.096 - .0012T$$
, nearly,

In a later paper by Prof. Wood (Trans. A. S. M. E., xii. 136) he gives a higher value, viz., c = 1.12136 + 0.000438T.

Dr. Von Strombeck, in 1890, found from the mean of eight experiments, at temperature about  $80^\circ$  F., c=1.22876,—about 6% greater than that calculated from this formula.

In Prof. Wood's Thermodynamics (edition of 1894) in addition to the above figures he gives the mean of six determinations by Ludeking and Starr, 0.886. This, says Prof. Wood, leaves the correct result in doubt, and one may consider it as unity until determined by further experiments.

# Properties of the Saturated Vapor of Ammonia.

(Wood's Thermodynamics.)

Tempe	rature.		sure, olute.	Heat of Vaporiza-	Volume of Vapor	Volume of Liquid	Weight of a cu.
Degs. F.	Abso- lute, F.	Lbs.per sq. ft.	Lbs.per sq. in.	tion, ther- mal units.	per lb., cu. ft.	per lb., cu. ft.	ft. of Vapor, lbs.
- 40	420.66	1540.7	10.69	579.67	24.372	.0234	.0410
<b>– 35</b>	425.66	1778.6	12.81	576.69	21.319	.0236	.0468
- 30	480.66	2085.8	14.13	573.69	18.697	.0237	.0585
25	435.66	2329.5	16.17	570.68	16.445	.0238	.0608
_ 20	440.66	2657.5	18.45	567.67	14.507	.0240	.0689
- 15	445.66	8022.5	20.99	564.64	12.884	.0242	.0779
- 10	450.66	8428.0		561.61	11.884	.0243	.0878
- 5	455.66	3877.2	26.93	558.56	10.125	.0244	.0988
0	460.66	4378.5	30.37	555.50	9.027	.0246	.1108
+ 5	465.66	4920.5	84.17	552.43	8.069	.0247	.1239
+ 10 + 15 + 20 + 25 + 30 + 35	470.66	5522.2	38.34	549.35	7.229	.0249	. 1383
+ 15	475.66	6182.4	42.93	546.26	6.492	.0250	. 1544
—i 20	480.66	6905.3	47.95	543.15	5.842	.0252	.1712
∔ 25	485.66	7695.2	53.43	540.03	5.269	.0258	.1898
→ 30	490.66	8556.6	59.41	536.92	4.763	.0254	.2100
<b>∔</b> 35	495.66	9493.9	65.93	533.78	4.818	.0256	.2319
+ 40	500.66	10512	73.00	530.63	3.914	.0257	. 2555
+ 40 + 45 + 50	505.66	11616	80.66	527.47	3.559	.0259	.2809
+ 50	510.66	12811	88.96	524.80	8.242	.0261	. 3085
+ 55 + 60 + 65	515.66	14102	97.93	521.12	2.958	.0268	. 3381
+ 60	520.66	15494	107.60	517.93	2.704	.0265	.3698
+ 65	525.66	16993	118.03	514.78	2.476	.0266	.4039
+ 70	530.66	18605	129.21	511.52	2.271	.0268	.4403
+ 75 + 80	585.66	20336	141.25	508.29	2.087	.0270	.4793
+ 80	540.66	22192	154.11	505.05	1.920	.0272	.5208
+ 85 + 90	545.66	24178	167.86	501.81	1.770	.0273	. 5650
+ 90	550.66 555.66	26300 28565	182.8 198.37	498.11	1.632 1.510	.0274	.6128
+ 95 + 100	560.66	3098C	215.14	495.29 492.01	1.398	.0277	.6628
100	565.66	38550	232.98	488.72	1.296	.0281	.7158
+ 105 + 110	570.66	36284	251.97	485.42	1.203	.0283	.7716 .8312
1115	575.66	39188	272.14	482.41	1.119	.0285	.8937
I 120	580.66	42267	293.49	478.79	1.045	.0287	.9569
125	585.66	45528	316.16	475.45	0.970	.0289	1.0309
130	590.68	48978	340.42	472.11	0.905	.0291	1.1049
+ 135	595.66	52626	365.16	468.75	0.845	.0293	1.1834
I 140	600.66	56483	892 22	465.39	0.791	.0295	1.2642
+ 145	605.66	60550	430.49	462.01	0.741	.0297	1.3495
+ 150	610.66	64833	450.20	458.62	0.695	.0299	1.4388
+ 155	615.66	69341	481.54	455.22	0.652	.0302	1.5337
+ 160	620.66	74086	514.40	451.81	0.613	.0304	1.6843
+ 165	625.66	79071	549.04	448.39	0.577	.0306	1.7333
T 100	. 040.00	19011	010.02	770.00	0.011 1	.0000	1.1000

Specific Heat of Ammonia Vapor at the Saturation Point. (Wood, Trans. A. S. M., E., x. 644).—For the range of temperatures ordinarily used in engineering practice, the specific heat of saturated ammonia is negative, and the saturated vapor will condense with adiabatic expansion, and the liquid will evaporate with the compression of the vapor, and when all is vaporized will superheat.

Regnault (Rel. des. Exp., ii. 162) gives for specific heat of ammonia-gas 0.50836. (Wood, Trans. A. S. M. E., xii. 133,)

Properties of Brine used to absorb Befrigerating Effect ef Ammonia. (J. E. Denton, Trans. A. S. M. E., x. 793.)—A solution of Liverpool salt in well-water having a specific gravity of 1.17, or a weight per cubic foot of 73 lbs., will not sensibly thicken or congeal at 0° Fahrender. heit. (It is reported that brine of 1.17 gravity, made with American salt, begins to congeal at about 24° Fahr.)

The mean specific heat between 39° and 16° Fahr. was found by Denton to be 0.805. Brine of the same specific gravity has a specific heat of 0.805 at 65° Fahr., according to Naumann.

Naumann's values are as follows (Lehr- und Handbuch der Thermochemie, 1882):

.805 * .868 .895 .931 .978 1.170 1.103 1.072 1.044 1.023 1.012 * Interpolated.

Chloride-of-calcium solution has been used instead of brine. According to Naumann, a solution of 1.0255 sp. gr. has a specific heat of .957. A solution of 1.163 sp. gr. in the test reported in Eng'g, July 22, 1887, gave a specific heat of .827.

#### ACTUAL PERFORMANCES OF ICE-MAKING MACHINES.

The table given on page 996 is abridged from Denton, Jacobus, and Riesenberger's translation of Ledoux on Ice-making Machines. The following shows the class and size of the machines tested, referred to by letters in the table, with the names of the authorities:

Class of Machines.	Authority.	Dimensions sion-cylinde	of Compres- or in inches.
<u> </u>		Bore.	Stroke.
A. Ammonia cold-compression. B. Pictet fluid dry-compression C. Bell-Coleman air	"	9.9 11.3 28.0	16.5 24.4 23.8
D. Closed cycle air	) Renwick & Jacobus.	10.	18.0
E. Ammonia dry-compression. F. Ammonia absorption	Denton.	12.0	30.0

Performance of a 75-ton Ammonia Compression-machine. (J. E. Denton, Trans. A. S. M. E., xii, 826.)—The machine had two single-acting compression cylinders 12" × 30", and one Corlies steam cylinder, double-acting, 18" × 36". It was rated by the manufacturers as a 50-ton machine, but it showed 75 tons of ice-refrigerating effect per 24 hours described the test. during the test

The most probable figures of performance in eight trials are as follows:

of Trial.	Ammo Pressu ibs. at Atmosp	ove here.	Ten	rine ipera- ires, rees F.	acity Tons frigerating fect per 24	siency lbs. of a per lb. of al at 3 lbs. oal per hour r H.P.	er-consump- on, gals. of ater permin. r ton of Ca- city.	o of Actual eights of nmonia cir-	o of Capac-
No.	Con- densing	Suc- tion.	Inlet.	Outlet.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E 2008	D A King	Rati W An cu	Ratio Itle
1	151	28	36.76	28.86	70.3	22.60	0.80	10	1.0
8	161	27.5	36.36	28.45	70.1	22.27	1.09	1.0	1.0
7	147	18.0	14.29	2.29	42.0	16.27	0.88	1.70	1.66
4	152	8.2	6.27	2.08	36.48	14.10	1.1	1.93	1.92
6	105	7.6	6.40	-2.22	37.20	17.00	2.00	1.91	1.88
2	185	15.7	4.62	8.22	27.2	13.20	1.25	2.59	2 57

The principal results in four tests are given in the table on page 998. The fuel economy under different conditions of operation is shown in the following table;

-886	é	Pour	ads of	Ice-me Engit	B.T.U. per lb. of Steam with Engines—						
Condensing Press ure, 1bs.	pressure be.		Non-con- densing.		Non-com- pound Con- densing.		ound on- sing.	condens- ing.	ısing.	ound neing.	
Conden	Suction-p	Suction  Per 1b. Coal. Per 1b. Ream.		Per lb. Coel.	Per lb. Coal. Per lb. Steam.		Per lb. Coal. Per lb. Steam.		Condensing.	Compound	
150 150 105 105	28 7 28	24 14 34.5 22	2.90 1.69 4.16 2.6	30 17.5 43 27.5	3.61 2.11 5.18 3.31	37.5 21.5 54 34.5	4.51 2.58 6.50 4.16	398 240 591 376	513 300 725 470	640 866 923 591	

The non-condensing engine is assumed to require 25 lbs. of steam per horse-power per hour, the non-compound condensing 20 lbs., and the comdensing 16 lbs., and the boiler efficiency is assumed at 8.3 lbs. of water per lb. coal under working conditions. The following conclusions were derived from the investigation :

1. The capacity of the machine is proportional, almost entirely, to the weight of ammonia circulated. This weight depends on the suction-pressure and the displacement of the compressor-pumps. The practical suction-pressures range from 7 lbs. above the atmosphere, with which a temperature of 0° F. can be produced, to 28 lbs. above the atmosphere, with which the temperature of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compressor of the compress which the temperatures of refrigeration are confined to about 25° F. At the lower pressure only about one half as much weight of ammonia can be circulated as at the upper pressure, the proportion being about in accordance with the ratios of the absolute pressures, 22 and 42 lbs, respectively. For each cubic foot of piston-displacement per minute a capacity of about one sixth of a ton of "refrigerating effect" per 24 hours can be produced at the lower pressure, and of about one third of a ton at the upper pressure. No other elements practically affect the capacity of a machine, provided the cooling-surface in the brine-tank or other space to be cooled is equal to about 36 sq. ft. per ton of capacity at 28 lbs. back pressure. For example, a difference of 100% in the rate of circulation of brine, while producing a proportional difference in the range of temperature of the latter, made no practical

tional difference in the range of temperature of the latter, made no practical difference in capacity.

The brine-tank was  $10!_4 \times 13 \times 19\%$  ft., and contained 8000 lineal feet of 1-in. pipe as cooling-surface. The condensing-tank was  $12 \times 10 \times 10$  ft., and contained 5000 lineal feet of 1-in. pipe as cooling-surface.

2. The economy in coal-consumption depends mainly upon both the suction-pressures and condensing-pressure. Maximum economy, with a given type of engine, where water must be bought at average city prices, is obtained at 28 lbs. suction-pressure and about 150 lbs. condensing-pressure. Under these conditions for a power-optaming steam-agging consuming coal Under these conditions, for a non-condensing steam-engine, consuming coal at the rate of 3 lbs. per hour per LH.P. of steam-cylinders, 24 lbs. of ice-refrigerating effect are obtained per lb. of coal consumed. For the same condensing pressure, and with 7 lbs. suction-pressure, which affords temperatures of 0° F., the possible economy falls to about 14 lbs. of "refrigerating effect" per lb. of coal consumed. The condensing-pressure is determined by the amount of condensing-water supplied to liquely the amount in the condenser. If the latter is about 1 gallon per minute per ton of refrigerating condenser. If the latter is about 1 gallon per minute per ton or refrigerating effect per 24 hours, a condensing-pressure of 150 lbs. results, if the initial temperature of the water is about 56° F. Twenty-five per cent less water causes the condensing-pressure to increase to 190 lbs. The work of compression is thereby increased about 20%, and the resulting "economy" is reduced to about 18 lbs. of "ice effect" per lb, of coal at 28 lbs. suction-pressure and 11.5 at 7 lbs. If, on the other hand, the supply of water is made 3 gallons per minute, the condensing-pressure may be confined to about 105 lbs. The work of compression is thereby reduced about 25%, and a proportional increase of economy results. Minor alterations of economy depend on the initial temperature of the condensing-water and variations of latent heat, but these are confined within about 5% of the gross result, the main element of control being the work of compression, as affected by the back pressure and condensing-pressure, or both. If the steam engine supplying the motive power may use a condenser to secure a vacuum, an increase of economy of 25% is available over the above figures, making the lbs of "ice effect"

coal for 150 lbs. condensing-pressure and 28 lbs. suction-pressure 30.0, and for 7 lbs. suction-pressure, 17.5. It is, however, impracticable to use a condenser in cities where water is bought. The latter must be practically free of cost to be available for this purpose. In this case it may be assumed that water will also be available for condensing the ammonia to obtain as low a condensing-pressure as about 100 lbs., and the economy of the refrigerating-machine becomes, for 28 lbs. back-pressure, 43.0 lbs. of "ice effect" per lb. of coal, or for 7 lbs. back-pressure, 27.5 lbs. of ice effect per lb. of coal. If a compound condensing-engine can be used with a stearn-consumption per hour per horse-power of 16 lbs. of water, the economy of the refrigerating-machine may be 25% higher than the figures last named, making for 28 lbs. back pressure a refrigerating effect of 54.0 lbs. per lb. of coal. ing for 28 lbs. back pressure a refrigerating effect of 54.0 lbs. per lb. of coal, and for 7 lbs. back pressure a refrigerating effect of 34.0 lbs. per lb. of coal

	Absolute Press-	square inch.	Temperature	to Pressure, in degrees Fahr.	Temperature of	grees Fahr.	minute.	Horse-power of Steam-cylinder.	er cent of Indicated Power of Steam-cylinder lost in Friction.	Capacity, in tons per	Coal. Actual.	Difference between theoretical loc- melting Capacity, no Cylinder Heating or Friction, and actual. Per cent.;	Per cent of Theo- unt with Friction.	Effective Pressure, in 1bs.
: : p   Machine.	Condenser.	Suction.	Condenser.	Suction.	Inlet.	Outlet.	Revolutions per minute.	Horse-power of	Per cent of Indicated Steam-cylinder lost	lee-melting Capi	Ice-melting Capacity in pounds per pound of Coal. Actual.4	Difference between the melting Capacity. Heating or Friction Per cent.;	Heat losses, Percent retical Amount with	Mean Effective Pre-
A. 1 2 2 3 4 5 6 6 7 8 9 9 10 B 112 134 15 16 17 18 19 20 22 24 24 25 26 7 8 27 8	135 181 128 200 136 131 117 130 57 56 61 55 59 61 61 61 61 61 61 62 176 162 176 162 176	55 42 30 22 42 460 45 44 460 21 15 10 7 15 22 16 6 15 48 28 28 44 40	72 70 69 68 95 72 71 68 64 70 77 75 81 104 80 79 75 81 82 65* 81* 85 83 87 87	27 14 -12 14 30 18 -9 13 31 28 14 16 -16 -16 -16 -16 -17 -55** -40** 15 -3 14 16 -17 -17 -17 -17 -17 -17 -17 -17	43 44 45 0 43 44 43 6 0 43 44 43 8 6 6 14 6 36 14 6 36 14 6 36 14 6 6 14 6 6 14 6 6 6 14 6 6 6 14 6 6 6 14 6 6 6 6	- 6 23 37 23 - 6 37 23 - 5 28 2 28	45.04 45.24 45.11 44.77 557.06 56.8 57.35 57.35 557.8 83.42 93.44 83.42 93.44 557.7 93.44 83.42 93.44 83.42 83.42 84.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42 85.42	27.2 21 6 20.5 15.9 12.4 19.9 9.9 83.2 38.1 85.0 72.6	19.5 10.7 12.1 18.0 5 14.8 22.9 22.9 9 24.0 0 12.8 21.1 12.8 21.1 12.8 22.1 14.7 24.3 22.7 18.6 6 18.6 18.6 18.6 18.6 18.6 18.6 18	9.0 16.5 29.8 21.6 9.9 20.0 19.5 25.6 17.9 11.6 5.7 15.7 28.1 19.3 6.8	19.07 46.29 33.23 33.23 17.55 38.77 45.01 33.07 24.11 17.47 10.14 16.05 36.19 26.24 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93 38.04 11.93	30.8 33.5 42.9 36.0 28.5 31.3 41.1 35.2 39.9 41.3 44.3 44.5 36.5 33.4 44.5 36.5 37.4 47.5 37.4 47.5 37.4 47.5 37.4 47.5 37.4 47.8 37.8 47.8 37.8 37.8 37.8 37.8 37.8 37.8 37.8 3	19.12.22.21.15.99 9 9 3 3 5 8 5 8 5 8 7 7 7 6 6 5 7 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8	54.4 55.4 55.5 56.4 55.5 56.4 55.5 56.4 55.5 56.4 55.5 56.4 55.5 56.4 55.5 56.5 56

^{*} Temperature of air at entrance and exit of expansion-cylinder.

[†] On a basis of 3 lbs. of coal per hour per H.P. of steam-cylinder of compression-machine and an evaporation of 11.1 lbs. of water per pound of combustible from and at 212° F. in tife absorption-machine.

t Per cent of theoretical with no friction. Loss due to heating during aspiration of gas in the compression-cylinder and to radiation and superheating at brine-tank,

Actual, including resistance due to inlet and exit valves.

In class A, a German machine, the ice-melting capacity ranges from 46.29 to 16.14 lbs. of ice per pound of coal, according as the suction pressure varies from about 45 to 8 lbs. above the atmosphere, this pressure being the condition which mainly controls the economy of compression-machines. These results are equivalent to realizing from 72% to 5% of theoretically perfect performances. The higher per cents appear to occur with the higher suction-pressures, indicating a greater loss from cylinder-heating (a phenomenon the reverse of cylinder condensation in steam-engines), as the range of the temperature of the gas in the compression-cylinder is greater.

In E. an American compression-machine, operating on the "dry system," the percentage of theoretical effect realized ranges from 69.5% to 62.6%. The friction losses are higher for the American machine. The latter's higher

efficiency may be attributed, therefore, to more perfect displacement.

The largest "ice-melting capacity" in the American machine is 24.16 lbs.
This corresponds to the highest suction-pressures used in American practice for such refrigeration as is required in beer-storage cellars using the directexpansion system. The conditions most nearly corresponding to American brewery practice in the German tests are those in line 5, which give an "icemelting capacity" of 19.07 lbs.

For the manufacture of artificial ice, the conditions of practice are those of lines 3 and 4, and lines 25 and 26. In the former the condensing pressure used requires more expense for cooling water than is common in American practice. The ice-melting capacity is therefore greater in the German machine, being 22.08 and 16.14 lbs. against 17.55 and 14.52 for the American

chile, being 2... and 10.17 tos. against 11.20 apparatus.

Class B. Sulphur Dioxide or Pictet Machines.—No records are available for determination of the "ice-meiting capacity" of machines using pure sulphur dioxide. This fluid is in use in American machines, but in Europe it has given way to the "Pictet fluid," a mixture of about 97% of sulphur dioxide and 8% of carbonic acid. The presence of the carbonic acid affords the substantial when the thank obtained with pure sula temperature about 14 Fahr. degrees lower than is obtained with pure sulphur dioxide at atmospheric pressure. The latent heat of this mixture has never been determined, but is assumed to be equal to that of pure sulphur dioxide.

For brewery refrigerating conditions, line 17, we have 26.24 lbs, "ice-melting capacity," and for ice-making conditions, line 18, the "ice-melting capacity" is 17.47 lbs. These figures are practically as economical as those for ammonia, the per cent of theoretical effect realized ranging from 65.4 to 57.8. At extremely low temperatures, -15° Fahr., lines 14 and 18, the per cent realized is a low as 40°.

18, the per cent realized is as low as 42.5.

Cylinder-heating.—In compression-machines employing volatile vapors the principal cause of the difference between the theoretical and the practical result is the heating of the ammonia, by the warm cylinder walls, during its entrance into the compressor, thereby expanding it, so that to compress a pound of ammonia a greater number of revolutions must be made by the compressing-pumps than corresponds to the density of the ammonia gas as it issues from the brine-tank.

Tosts of Ammonia Absorption-machine used in storage-ware-houses under approaches to the New York and Brooklyn Bridge. (Eng'g, July 22, 1887.)—The circulated fluid consisted of a solution of chloride of calcium of 1.163 sp. gr. Its specific heat was found to be .857.

The efficiency of the apparatus for 24 hours was found by taking the product of the cubic feet of brine circulating through the pipes by the average difference in temperature in the ingritue and cutching apparatus.

age difference in temperature in the ingoing and outgoing currents, as observed at frequent intervals by the specific heat of the brine (827) and its weight per cubic foot (73.48). The final product, applying all allowances for corrections from various causes, amounted to 6,218,816 heat-units as the amount abstracted in 24 hours, equal to the melting of 43,565 lbs. of ice in the same time.

The theoretical heating-power of the coal used in 24 hours was 27,000,000 heat-units; hence the efficiency of the apparatus was 23%. This is equivalent to an ice-melting effect of 16.1 lbs. per lb. of coal having a heating value of

10,000 B.T.U. per lb.

A test of a 38-ton absorption-machine in New Haven, Conn., by Prof. Denton (Trans. A. S. M. E., x. 792), gave an ice-melting effect of 20.1 lbs. per lb. of coal on a basis of boller economy equivalent to 3 lbs. of steam per I,H.P. in a good non-condensing steam-engine. The ammonia was worked between 138 and 23 lbs. pressure above the atmosphere.

# Performance of a 75-ton Refrigerating-machine.

	72 0	Z	To St	~ ·
	and Ibs.	or o	and ro, sack	and Iba.
	celty 88	City SZee	Σ _α μι	500
	. જું	5 00 a	تو ° تو	한 등 등
	faximum Capaci Economy at ? Back Pressure.	2 5	조등은	8 - 5
	88	K 72 K	E -	e 4 2
	252	G 8 4 5	9 2 5 9	C P E
	E 60	5 5 A	E - 5	불등교
	EEX	. E & B &	8 8 8 8	BEX
	i i i i i i i i i i i i i i i i i i i	TATE	FOTP	* 5 g
	Mea	Maximum Capacit Economy at Z Brine, and 8 Back Pressure.	S HHH	Maximum Capacity Economy at 27.1 Back Pressure.
				_
Av. high ammonia press, above atmos	151 lbs.	152 lbs.	147 lbs.	161 lbs
Av. back ammonia press. above atmos	28 ''	8.2 "	13 "	27.5
Av. temperature brine inlet	36.76°	6.270	14.29°	
Av. temperature brine outlet	28.86		2.290	28.459
Av. range of temperature	7.9° 2281	4.24° 2173	12.00° 943	7,91° 9374
Av. temp. condensing-water at inlet	44.65°	56.650	46.90	54.00°
Av. temp. condensing-water at inter	83.66°	85.4°	85.46°	82.86°
Av. range of temperature	89.01°	28.75°	38.56°	28.80°
Lbs. water circulated p. min. thro' cond'ser	442	815	257	601.5
Lbs. water per min. through jackets	25	44	40	14
Range of temp rature in jackets	24.0°	16.20	16.40	29.1°
Lbs. ammonia circulated per min	*28.17	14.68	16.67	28.32
Probable temperature of liquid ammonia,	*** 90	*68°	*********	C0 C0
entrance to brine-tank	*71.8° +14°	- 8°	*63.7° - 5°	76.7°
Temp. of amm. corresp. to av. back press. Av. temperature of gas leaving brine-tanks	34.2°	14.70	3 00	29.20
Temperature of gas entering compressor.	*39°	250	10.180	340
Av. temperature of gas leaving compressor	2180	2630	2390	2210
Av. temp. of gas entering condenser	200°	2180	209°	1680
Av. temp. of gas entering condenser Temperature due to condensing pressure	84.5°	81.0°	82.5°	88.0°
Heat given ammonia:				
By brine, B T.U. per miniute By compressor, B.T.U. per minute	14776	7186	8824	14647
By compressor, B.T.U. per minute	2786	2320	2518	3020
By atmosphere, B.T.U. per minute, Total heat rec. by amm., B.T.U. per min.	140 17702	147 2658	167 11409	141 17708
Heat taken from ammonia:	11100	2000	11400	11100
By condenser, B.T.U per min	17242	9056	9910	17359
By jackets, B.T.U. per min	608	712	656	406
By atmosphere, B.T.U. per min	182	338	250	252
Total heat rej. by amm., B.T U. per min	18032	10106	10816	18017
Dif. of heat rec'd and rej., B.T.U. per min.	330	458	407	309
% work of compression removed by jackets.	22% 58.09	31≴ 57.7	26%	13%
Av. revolutions per min	32.5	27.17	57.88 27.83	58.89 32.97
Mean eff. press. ammcyl., lbs. per sq. in	65.9	58.8	59.86	70.54
Av. H.P. steam-cylinder	85.00	71.7	78.6	88.63
Av. H.P. ammonia-cylinder	65.7	54.7	59.37	71.20
Friction in per cent of steam H P	23.0	24.0	20.0	19.67
Total cooling water, gallons per min. per				
ton per 24 hours	0.75	1.185	0.797	0.990
Tons ice-melting capacity per 24 hours Lbs. ice-refrigerating eff. per lb. coal at 3	74.8	36.43	44.64	74.56
lbs ner H P ner hour	24.1	14.1	17.27	00 117
lbs. per H.P. per hour	44.I	14.1	11.21	28.37
				<b>60</b> 100
at \$4 per ton	\$0.166	80.283	350.231	
at \$4 per ton	\$0.166	\$0.283	\$0.231	\$0.170
at \$4 per ton  Cost water per ton of ice-refrigerating effect at \$1 per 1000 cu. ft.  Total cost of 1 ton of ice-refrigerating eff	\$0.166 \$0.128 \$0.294	\$0.283 \$0.200 \$0.483	\$0.231 \$0.186	\$0.170

Figures marked thus (*) are obtained by calculation; all other figures are obtained from experimental data; temperatures are in Fahrenheit degrees.

## Ammonia Compression-machine,

ACTUAL RESULTS OBTAINED AT THE MUNICH TESTS.

(Prof. Linde, Trans. A. S. M. E., xīv. 1419.)

No. of Test	1	2	3	4	5
Temp. of refrig-   Inlet, deg. F erated brine   Outlet, t deg. F	48.194 37.054	28.314 22.885		0.279 5.879	
Specific heat of brine	0.861	0.851		0.837	
Cold produced, B.T.U. per hour Quant. of cooling water per h., c. ft.	342,909	263,950 260.83	172,776	121,474 139.99	220,284
I.H.P. in steam-engine cylinder (Le). Cold pro-) Per I.H.P. in compcyl.	15.80 24.813	16.47 18,471	12,770	14.24 10,140	21.61 11,151
duced per Per I H.P. in steam-cyl. h., B.T.U. Per lb. of steam	21.703 1,100.8	16,026 785.6	11,307 564.9		10,194 512.12

Means for Applying the Cold. (M. C. Bannister, Liverpool Eng'g Soc'y, 1890.)—The most useful means for applying the cold to various uses is a saturated solution of brine or chloride of magnesium, which remains liquid at 5° Fahr. The brine is first cooled by being circulated in contact with the refrigerator-tubes, and then distributed through colls of pipes, arranged either in the substances requiring a reduction of temperature, or in the cold stores or rooms prepared for them; the air coming in contact with the cold tubes is immediately chilled, and the moisture in the air deposited on the pipes. It then falls, making room for warmer air, and so circulates until the whole room is at the temperature of the brine in the pipes.

pipes.
In a recent arrangement for refrigerating made by the Linde British Refrigeration Co., the cold brine is circulated through a shallow trough, in which revolve a number of shafts, each geared together, and driven by mechanical means. On the shafts are fixed a number of wrought-iron disks, partly immersed in the brine, which cool them down to the brine temperature as they revolve; over these disks a rapid circulation of air is passed by a fan, being cooled by contact with the plates; then it is led into the chambers requiring refrigeration, from which it is again drawn by the same fan; thus all moisture and impurities are removed from the chambers, and deposited in the brine, producing the most perfect antiseptic atmosphere yet invented for cold storing; while the maximum efficiency of the brine temperature was always available, the brine being periodically concentrated by suitable arrangements.

Air has also been used as the circulating medium. The ammonia-pipes refrigerate the air in a cooling-chamber, and large wooden conduits are used to convey it to and return it from the rooms to be cooled. An advantage of this system is that by it a room may be refrigerated more quickly than by brine-coils. The returning air deposits its moisture in the form of snow on the ammonia-pipes, which is removed by mechanical brushes.

#### ARTIFICIAL ICE-MANUFACTURE.

Under summer conditions, with condensing water at 70°, artificial ice-machines use ammonia at about 190 lbs. above the atmosphere condenser-

pressure, and 15 lbs. suction-pressure.

In a compression type of machine the useful circulation of ammonia, allowing for the effect of cylinder-heating, is about 13 lbs. per hour per indicated horse-power of the steam cylinder. This weight of ammonia produces about 32 lbs. of ice at 15° from water at 70°. If the ice is made from distilled water, as in the "can system," the amount of the latter supplied by the boilers is about 33% greater than the weight of ice obtained. This excess represents steam escaping to the atmosphere, from the re-boiler and steam-condenser, to purify the distilled water, or free it from air; also, the loss through leaks and drips, and loss by melting of the ice in extracting it from the cans. The total steam consumed per horse-power is, therefore, about 32 × 1.33 = 43.0 lbs. About 7.0 lbs. of this covers the steam-consumption of the steam-engines driving the brine circulating-pumps, the several

## 1000 ICE-MAKING OR REFRIGERATING MACHINES.

cold-water pumps, and leakage, drips, etc. Consequently, the main steamengine must consume 36 lbs. of steam per hour per I.H.P., or else live steam must be condensed to supply the required amount of distilled water. There is, therefore, nothing to be gained by using steam at high rates of expansion in the steam-engines, in making artificial ice from distilled water. If the cooling water for the ammonia-coils and steam-condenser is not too hard for use in the boilers, it may enter the latter at about 175° F., by restricting the quantity to 1½ gallons per minute per ton of ice. With good coal 8½ lbs. of feed-water may then be evaporated, on the average, per lb. of coal.

The ice made per pound of coal will then be  $32 + \frac{45.0}{8.5} = 6.0$  lbs. This cor-

responds with the results of average practice.

If ice is manufactured by the "plate system," no distilled water is used for freezing. Hence the water evaporated by the boilers may be reduced to the amount which will drive the steam-motors, and the latter may use steam expansively to any extent consistent with the power required to compress the ammonia, operate the feed and filter pumps, and the hoisting machinery. The latter may require about 15% of the power needed for compressing the ammonia.

ammonia.

If a compound condensing steam-engine is used for driving the compressors, the steam per indicated steam horse-power, or per 32 lbs. of net ice, may be 14 lbs. per hour. The other motors at 50 lbs. of steam per horse-power will use 7.5 lbs. per hour, making the total consumption per steam horse-power of the compressor 21.5 lbs. Taking the evaporation at 8 lbs., the feed-water temperature being limited to about 110°, the coal per horse-power is 2.7 lbs. per hour. The net ice per lb. of coal is then about 32 + 2.7 = 11.8 lbs. The best results with "plate-system" plants, using a compound steam-engine, have thus far afforded about 10½ lbs. of ice per lb. of coal. In the "plate system" the ice gradually forms, in from 9 to 14 days, to a thickness of about 14 inches, on hollow plates 10 × 14 feet in area, in which the coaling fluid circulates.

the cooling fluid circulates.

In the "can system" the water is frozen in blocks weighing about 300 lbs. each, and the freezing is completed in from 50 to 60 hours. The freezing tank area occupied by the "plate system" is, therefore, about four times, and the cubic contents about twelve times, as much as is required in the "can system."

The investment for the "plate" is about one third greater than for the "can" system. In the latter system ice is being drawn throughout the #4 hours, and the hoisting is done by hand tackle. In the "plate system" the entire daily product is drawn. cut, and stored in a few hours, the hoisting being performed by power. The distribution of cost is as follows for the two systems, taking the cost for the "can" or distilled-water system as 100, which represents an actual cost of about \$1.25 per net ton:

	Can System.	Plate System.
Hoisting and storing ice	14.2	2.8
Engineers, firemen, and coal-passer	15.0	18.9
Coal at \$3.50 per gross ton	42.2	20.0
Water pumped directly from a natural source	ı	
at 5 cts. per 1000 cubic feet	1.8	2.6
Interest and depreciation at 10%	24.6	32.7
Repairs	2.7	8.4
•		
	100.00	75.4

A compound condensing engine is assumed to be used by the "plate system.

Test of the New York Hygeia Ice-making Plant .- (By Messrs. Hupfel, Griswold, and Mackenzie: Stevens Indicator, Jan. 1894.) The final results of the tests were as follows:

Net ice made per pound of coal, in pounds	7.12
Pounds of net ice per hour per horse-power	87.8
Net ice manufactured per day (12 hours) in tons	97
Av. pressure of ammonia-gas at condenser, lbs. per sq. in. ab. atmos.	135.2
Average back pressure of ammgas, lbs. per sq. in. above atmos	15.8
Average temperature of brine in freezing tanks, degrees F	19.7
Total number of cans filled per week	4389
Ratio of cooling-surface of coils in brine-tank to can-surface	7 to 10

Ratio of brine in tanks to water in cans	1 to 1.2
Ratio of circulating water at condensers to distilled water	
Pounds of water evaporated at boilers per pound of coal	8.085
Total horse-power developed by compressor-engines	444
Percentage of ice lost in removing from cans	2.2

#### APPROXIMATE DIVISION OF STEAM IN PER CENTS OF TOTAL AMOUNT.

Compressor-engines	60.1
Live steam admitted directly to condensers	19.7
Steam for pumps, agitator, and elevator engines	7.6
Live steam for reboiling distilled water	6.5
Steam for blowers furnishing draught at boilers	5.6
Sprinklers for removing ice from cans	0.5

The precautions taken to insure the purity of the ice are thus described: The water which finally leaves the condenser is the accumulation of the exhausts from the various pumps and engines, together with an amount of live steam injected into it directly from the bollers. This last quantity is used to make up any defict in the amount of water necessary to supply the ice-cans. This water on leaving the condensers is violently reboiled, and afterwards cooled by running through a coil surface-cooler. It then passes through an oil-separator, after which it runs through three charcoal-filters and deodorizers, placed in series and containing 28 feet of charcoal. It next passes into the supply-tank in which there is an electrical attachment for detecting salt. Nitrate-of-silver tests are also made for salt daily. From this tank it is fed to the ice-cans, which are carefully covered so that the water cannot possibly receive any impurities.

## MARINE ENGINEERING.

Rules for Measuring Dimensions and Obtaining Tonnage of Vessels. (Record of American & Foreign Shipping. American Shipmasters' Assn., N. Y. 1890.)—The dimensions to be measured as follows:

I Length L.—From the fore side of stem to the after side of stern-post measured at middle line on the upper deck of all vessels, except those having a continuous hurricane-deck extending right fore and aft, in which the length is to be measured on the range of deck immediately below the hurricane-deck.

Vessels having clipper heads, raking forward, or receding stems, or raking stern-posts, the length to be the distance of the fore side of stem from aft-side of stern-post at the deep-load water-line measured at middle line. (The inner or propeller-post to be taken as stern-post in screw-steamers.

II. Breadth, B.—To be measured over the widest frame at its widest part;

in other words, the moulded breadth.

III. Depth, D.—To be measured at the dead-flat frame and at middle line of vessel. It shall be the distance from the top of floor-plate to the upper deck-beam in all versels except those having a continuous hurricane-deck, extending right fore and aft, and not intended for the American coasting trade, in which the depth is to be the distance from top of floor-plate to midway between top of hurricane deck-beam and the top of deck-beam of the deck immediately below hurricane-deck.

In vessels fitted with a continuous hurricane deck, extending right fore and aft. and intended for the American coasting trade, the depth is to be the distance from top of floor-plate to top of deck-beam of deck immedi-

ately below hurricane-deck.

**Rule for Obtaining Tonnage.**—Multiply together the length, breadth, and depth, and their product by .75; divide the last product by 100; the quotient will be the tonnage.  $\frac{L \times B \times D \times .75}{100} = \text{tonnage}.$ 

The U.S. Custom-house Tonnage Law, May 6, 1864, provides that "the register tonnage of a vessel shall be her entire internal cubic capacity in tons of 100 cubic feet each." This measurement includes all the space between upper decks, however many there may be. Explicit directions for making the measurements are given in the law.

The Displacement of a Vessel (measured in tons of 2240 lbs.) is the weight of the volume of water which it displaces. For sea-water it is equal to the volume of the vessel beneath the water-line, in cubic feet, divided by 35, which figure is the number of cubic feet of sea-water at 60° F. in a ton of 2340 lbs. For fresh water the divisor is 35.33. The U. S. register tonnage will equal the displacement when the entire internal cubic

capacity bears to the displacement the ratio of 100 to 35.

The displacement or gross tonnage is sometimes approximately estimated as follows: Let L denote the length in feet of the boat, B its extreme

as follows: Let L denote the length in feet of the boat, B its extreme breadth in feet, and D the mean draught in feet; the product of these three dimensions will give the volume of a parallelopipedon in cubic feet. Putting V for this volume, we have  $V = L \times B \times D$ . The volume of displacement may then be expressed as a percentage of the volume V, known as the "block coefficient." This percentage varies for different classes of ships. In racing yachts with very deep keels it varies from 2t to 3t; in modern merchantumen from 5t to 7t; for ordinary small boats probably 5t0 will give a fair estimate. The volume of displacement in cubic feet divided by 3t5 gives the displacement in tons. Coefficient of Fineness.—A term used to express the relation be-

Coefficient of Fineness.—A term used to express the relation between the displacement of a ship and the volume of a rectangular prism or box whose lineal dimensions are the length, breadth, and draught of the

 $D \times 35$ Coefficient of fineness =  $\frac{D \times 30}{L \times B \times W}$ ; D being the displacement in tous of 35 cubic feet of sea-water to the ton, L the length between perpendiculars, B the extreme breadth of beam, and W the mean draught of water, all in feet.

Coefficient of Water-lines. - An expression of the relation of the displacement to the volume of the prism whose section equals the midship section of the ship, and length equal to the length of the ship.

 $D \times 85$ Coefficient of water-lines =  $\frac{1}{\text{area of immersed water section}} \times L$ **Seaton** gives the following values:

•	Coefficient of Fineness.	Coefficient of Water-lines
Finely-shaped ships	0.61	0.63 0.67
11 knots	0.65	0.72 0.76 0.83

Resistance of Ships.—The resistance of a ship passing through water may vary from a number of causes, as speed, form of body, displace water may vary from a number of causes, as speed, form of body, displacement, midship dimensions, character of wetted surface, fineness of lines etc. The resistance of the water is twofold: 1st. That due to the displacement of the water at the bow and its replacement at the stern, with it consequent formation of waves. 2d. The friction between the wetted surface of the ship and the water, known as skin resistance. A common speed to the ship and the water, known as skin resistance. proximate formula for resistance of vessels is

Resistance = speed² ×  $\sqrt[3]{\text{displacement}^2}$  × a constant, or  $R = S^2D^3 \times C$ 

If D =displacement in pounds, S =speed in feet per minute, R =resistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresistresist ance in foot-pounds per minute,  $R = CS^2D^{\frac{3}{2}}$ . The work done in overcoming the resistance through a distance equal to S is  $R \times S = CS^{\bullet}D^{\bullet}$ ; and if E is the efficiency of the propeller and machinery combined, the indicated CS3 D3

horse-power I.H.P. =  $\frac{5000}{E \times 33,000}$ 

If S = speed in knots, D = displacement in tons, and C a constant which includes all the constants for form of vessel, efficiency of mechanism, etc.,

 $I.H.P. = \frac{S^3 D^{\frac{3}{3}}}{}$ 

The wetted surface varies as the cube root of the square of the displace ment; thus, let L be the length of edge of a cube just immersed, whose displacement is D and wetted surface W. Then D = D or  $L = \sqrt[3]{D}$ , and  $W = 5 \times L^2 = 5 \times (\sqrt[3]{D})^2$ . That is, W varies as  $D^2$ .

## Another approximate formula is

L.H.P. 
$$=\frac{\text{area of immersed midship section} \times S^3}{K}$$

The usefulness of these two formulæ depends upon the accuracy of the so-called "constants" C and K, which vary with the size and form of the ship, and probably also with the speed. Seaton gives the following, which may be taken roughly as the values of C and K under the conditions expressed:

General Description of Ship.				Value of $C$ .	Value of K.
Ships over 400		ly shaped	15 to 17	240	620
800			[10 11	190	500
	••		10 10	240	650
••	**	**	11 " 13	260	700
Ships over 300	feet long, fair	ly shaped	11 " 13	240	650
• • •	"	· · · · · · · · · · · · · · · · · · ·	9 " 11	260	700
Ships over 250	feet long, fine	ly shaped	18 " 15	200	580
• • • •	14	••	11 " 18	240	660
46	44	44	9 " 11	260	700
Ships over 250	feet long, fair	ly shaned	11 " 18	220	620
Daipo 4. 01 100	16	- J	9 " 11	250	680
Ships over 200	feet long fine	ly shaned	11 " 12	2220	600
Ompo 6. 0. 40	Tool, Ton B, Italia	.,	9 " ii	240	640
Ships over 200	feet long fair	ly shaned	9 " 11	220	620
		ely shaped		200	550
Stribe ander w	w rece tong, in	icij sumpeu	10 " 11	210	580
44	44		9 " 10	280	620
Ob 4 4 04	N 44 1 #-		9 10		
Ships under 2	iu reet iong, ra	irly shaped	9 " 10	200	600

## Coefficient of Performance of Vessels. -- The quotient

gives a quotient of performance which represents the comparative cost of propulsion in coal expended. Sixteen vessels with three-stage expansion-engines in 1890 gave an average coefficient of 14,810, the range being from 12,150 to 16,700.

In 1831 seventeen vessels with two-stage expansion-engines gave an average coefficient of 11,710. In 1881 the length of the vessels tested ranged from 260 to 230, and in 1890 from 295 to 400. The speed in knots divided by the square root of the length in feet in 1881 averaged 0 539; and in 1890, 0.579; ranging from 0.520 to 0.641. (Proc. Inst. M. E., July, 1891, p. 329.)

Defects of the Common Formula for Resistance.—Modern

Defects of the Common Formula for Resistance.—Modern experiments throw doubt upon the truth of the statement that the resistance varies as the square of the speed. (See Robt. Mansel's letters in Engineering, 1891; also his paper on The Mechanical Theory of Steamship Propulsion, read before Section G of the Engineering Congress, Chicago, 1893.)

Seaton says: In small steamers the chief resistance is the skin resistance.

Seaton says: In small steamers the chief resistance is the skin resistance. In very fine steamers at high speeds the amount of power required seems excessive when compared with that of ordinary steamers at ordinary speeds. In torpedo-launches at certain high speeds the resistance increases at a lower rate than the square of the speed.

In ordinary sea-going and river steamers the reverse seems to be the case. **Exankine's Formula** for total resistance of vessels of the "waveline" type is:

$$R = ALBV^{2}(1+4\sin^{2}\theta+\sin^{4}\theta),$$

in which equation  $\theta$  is the mean angle of greatest obliquity of the streamlines, A is a constant multiplier, B the mean wetted girth of the surface exposed to friction, L the length in feet, and V the speed in knots. The power demanded to impel a ship is thus the product of a constant to be determined by experiment, the area of the wetted surface, the cube of the speed, and the

quantity in the parenthesis, which is known as the "coefficient of augmentation." The last term of the coefficient may be neglected in calculating the resistance of ships as too small to be practically important. In applying the formula, the mean of the squares of the sines of the angles of maximum obliquity of the water-lines is to be taken for sin's 0, and the rule will then read thus:

To obtain the resistance of a ship of good form, in pounds, multiply the length in feet by the mean immersed girth and by the coefficient of augmentation, and then take the product of this "augmented surface," as Rankine termed it, by the square of the speed in knots, and by the proper constant

coefficient selected from the following:

For clean painted vessels, iron hulls...... A = .01For clean coppered vessels..... A = .009 to .008For moderately rough iron vessels......... A = .011 +

The net, or effective, horse-power demanded will be quite closely obtained by multiplying the resistance calculated, as above, by the speed in knots and dividing by 326. The gross, or indicated, power is obtained by multiplying the last quantity by the reciprocal of the efficiency of the machinery and propeller, which usually should be about 0.6. Rankine uses as a divisor in this case 200 to 260.

The form of the vessel, even when designed by skilful and experienced naval architects, will often vary to such an extent as to cause the above constant coefficients to vary somewhat; and the range of variation with good forms is found to be from 0.8 to 1.5 the figures given.

For well-shaped iron vessels, an approximate formula for the horse-power required is H.P. =  $\frac{SV^3}{20.000}$ , in which S is the "augmented surface." The ex-

pression  $\frac{\sim}{\mathrm{H.P.}}$  has been called by Rankine the coefficient of propulsion. In the Hudson River steamer "Mary Powell," according to Thurston, this coefficient was as high as 23,500.

 $D^{\frac{2}{3}}V^{\frac{3}{3}}$  $\frac{D^{3}V}{H.P.}$  has been called the locomotive performance. (See The expression -Rankine's Treatise on Shipbuilding, 1864; Thurston's Manual of the Steamengine, part ii. p. 16; also paper by F. T. Bowles, U.S.N., Proc. U. S. Naval Institute, 1883.)

Rankine's method for calculating the resistance is said by Seaton to give more accurate and reliable results than those obtained by the older rules, but it is criticised as being difficult and inconvenient of application.

Dr. Kirk's Method.—This method is generally used on the Clyde. The general idea proposed by Dr. Kirk is to reduce all ships to so definite and simple a form that they may be easily compared; and the magnitude of certain features of this form shall determine the suitability of the ship for

The form consists of a middle body, which is a rectangular parallelopiped. and fore body and after body, prisms having isosceles triangles for bases, as shown in Fig. 168.



This is called a block model, and is such that its length is equal to that of the ship, the depth is equal to the mean draught, the capacity equal to the displacement volume, and its area of section equal to the area of im-

ranersed midship section. The dimensions of the block model may be obtained as follows:

Let 
$$AG = HB$$
 = length of fore- or after-body =  $F$ ;  
 $GH = \text{length of middle body} = M$ ;  
 $KL = \text{mean draught} = H$ ;  
 $EK = \frac{\text{area of immersed midship section}}{KL} = B$ .

Volume of block =  $(F + M) \times B \times H$ ;

Midship section =  $B \times H$ ; Displacement in tons = volume in cubic ft. + 35.

$$AH = AG + GH = F + M = displacement \times 35 + (B \times H)$$

The wetted surface of the block is nearly equal to that of the ship of the same length, beam and draught; usually 25 to 5% greater. In exceedingly fine hollow-line ships it may be 8% greater.

Area of bottom of block = 
$$(F + M) \times B$$
;  
Area of sides =  $2M \times H$ .

Area of sides of ends = 
$$4\sqrt{F^2 + \left(\frac{B}{2}\right)^2} \times H$$
;

Tangent of half angle of entrance =  $\frac{\frac{1}{2}B}{E} = \frac{B}{2E}$ .

From this, by a table of natural tangents, the angle of entrance may be obtained:

> Angle of Entrance Fore-body in of the Block Model. parts of length.

18° to 15° Ocean-going steamers, 14 knots and upward. .8 to .36 12 to 14 knots..... 21 to 18 30 to 22 .26 to .3 cargo steamers, 10 to 12 knots... .22 to .26

E. R. Mumford's Method of Calculating Wetted Surfaces is given in a paper by Archibald Denny, Eng'g, Sept. 21, 1894. The following is his formula, which gives closely accurate results for medium draughts, beams, and finenesses:

$$S = (L \times D \times 1.7) + (L \times B \times C),$$

in which S = wetted surface in square feet;

L = length between perpendiculars in feet;

D =middle draught in feet:

B = beam in feet;

C = block coefficient.

The formula may also be expressed in the form S = L(1.7D + BC). In the case of twin-screw ships having projecting shaft-casings, or in the case of a ship having a deep keel or bilge keels, an addition must be made for such projections. The formula gives results which are in general much more accurate than those obtained by Kirk's method. It underestimates the surface when the beam, draught, or block coefficients are excessive; but the error is small except in the case of abnormal forms, such as stern-wheel steamers having very excessive beams (nearly one fourth the length), and also very full block coefficients. The formula gives a surface about 6% too small for such forms.

To Find the Indicated Horse-power from the Wetted Surface. (Seaton.)—In ordinary cases the horse-power per 100 feet of wetted surface may be found by assuming that the rate for a speed of 10 knots is 5, and that the quantity varies as the cube of the speed. For example: To find the number of I.H.P. necessary to drive a ship at a speed of 15 most bening wetted skip of block model of 18 We can be seen.

knots, having a wetted skin of block model of 16,200 square feet:

The rate per 100 feet =  $(15/10)^3 \times 5 = 16.875$ . Then I.H.P. required =  $16.875 \times 162 = 2734$ .

When the ship is exceptionally well-proportioned, the bottom quite clean, and the efficiency of the machinery high, as low a rate as 4 I.H.P. per 100

feet of wetted skin of block model may be allowed

The gross indicated horse-power includes the power necessary to overcome the friction and other resistance of the engine itself and the shafting. and also the power lost in the propellor. In other words, I.H.P. is no measure of the resistance of the ship, and can only be relied on as a means of deciding the size of engines for speed, so long as the efficiency of the engine and propellor is known definitely, or so long as similar engines and propellers are employed in ships to be compared. The former is difficult to obtain, and it is nearly impossible in practice to know how much of the power shown in the cylinders is employed usefully in overcoming the resistance of the ship. The following example is given to show the variation in the efficiency of propellers:

	Knots.		
H.M.S. "Amazon," with a 4-bladed screw, gave	12.064	with	1940
H.M.S. "Amazon," with a 2-bladed screw, increased pitch,			
and less revolutions per minute	12.396	44	1663
H.M.S. "Iris," with a 4-bladed screw	16.577	4.	7503
H.M.S. "Iris," with 2-bladed screw, increased pitch, less			

Vessels. (Horse-power for 10 knots = 1.)—The horse-power is taken usually to vary as the cube of the speed, but in different vessels and at different speeds it may vary from the 2.8 power to the 3.5 power, depending upor the lines of the vessel and upon the efficiency of the engines, the propeller, etc.

Speed, knots.	4	6.	8	10	12	14	16	18	20	22	24	26	28	30
HP & S2.8 S2.9 S3.1	.0769	.227	.524 .512	1.	1.697 1.728	2.653 2.741	3.908 4.096	5.499 5.832	7. <b>464</b> 8.	9.841 10.65	12.67 18.82	15.97 17.58	17.87 19.80 21.95 24.33	24.19 27.
S3 · 2 S3 · 3 S3 · 4 S3 · 5	.0583 .0486 .0444	.195 .185 .176	.490 .479 .468	1. 1. 1.	1.792 1.825 1.859	2.985 3.036 3.139	4.500 4.716 4.943	6.559 6.957 7.878	9.189 9.849 10.56	12.47 13.49 14.60	16.47 17.98 19.62	21.28 23.41 25.76	24.53 26.97 29.90 33.14 36.78	88.63 87.54 41.90

EXAMPLE IN Use of the Table.—A certain vessel makes 14 knots speed with 587 1.H.P. and 16 knots with 900 I.H.P. What I.H.P. will be required at 18 knots, the rate of increase of horse-power with increase of speed remaining constant? The first step is to find the rate of increase, thus: 14x : 16x :: 587 : 900.

```
x \log 16 - x \log 14 = \log 900 - \log 587;
x(0.204120 - 0.146128) = 2.954243 - 2.768638
```

whence x (the exponent of S in formula H.P.  $\propto S^{2}$ ) = 32. From the table, for  $S^{3\cdot 2}$  and 16 knots, the I H.P. is 4.5 times the I.H.P. at 10 knots,  $\therefore$  H.P. at 10 knots = 900 + 4.5 = 200.

From the table, for S³⁻² and 18 knots, the I.H.P. is 6.559 times the I.H.P. at 10 knots: ... H.P. at 18 knots =  $2.0 \times 6.559 = 1312$  H.P.

Besistance per Horse-power for Different Speeds. (One horse-power = 83.000 lbs. resistance overcome through 1 ft. in 1 min.)—The resistances per horse-power for various speeds are as follows: For a speed of 1 knot, or 6000 feet per hour =  $101\frac{1}{2}$  ft. per min.,  $33,000 + 101\frac{1}{2}$  = 325.658 lbs. per horse-power; and for any other speed 325.658 lbs. divided by the speed in knots; or for

```
16 knots 20.35 lbs.
1 knot 325.66 lbs.
                       6 knots 54.28 lbs.
                                            11 knots 29.61 lbs.
                       7
                                46.52
2 knots 162.83
                                            12
                                                      27.14
                                                                  17
                                                                            19.16
                 "
                           "
                                       ..
                                                 44
                                                             44
                                                                        "
3
         108.55
                       8
                                40.71
                                            13
                                                      25.05
                                                                  18
                                                                            18.09
    ..
                 "
                           "
                                       . 6
                                                 "
          81.41
                       ã
                               36.18
                                                                        ..
                                            14
                                                      23.26
                                                                   19
                                                                             17.14
                                                                                    ••
    "
                 "
                           "
                                       "
                                                 "
5
          65.13
                     10
                               82.57
                                            15
                                                             44
                                                                  20
                                                                            16.28
```

## Results of Trials of Steam-vessels of Various Sizes, (From Seaton's Marine Engineering.)

	S.S. "Torpedo."	P.B. "John Penn."	S.S. "Africa."	P.S. "Mary Powell"	S.S. "Harrar."	R.M.P.S.
Length, perpendiculars Breadth, extreme Mean draught water Displacement (tons) Area Immersed mid, section	90' 0'' 10' 6'' 2' 6'' 29.73 24? 903	171' 9'' 18' 9'' 6' 914''' 280 99 3793	130' 0'' 21' 0'' 8' 10'' 370 148 3754	286' 0" 34' 8" 6' 0" 800 200 8222	280' 0'' 29' 0'' 18' 6'' 1500 340 10,075	827' 0'' 85' 0'' 18' 0'' 1900 886 15,782
Wetted skin	45' 0'	72' 00"	42' 6''	148′ 0′′	79' 6'	129′ 0′′
Angle of entrance.	12° 40′	11° 30′	23° 50′	13° 21′	17° 0′	11° 26′
Displacement × 35  Length × Imm, mid area	0.481	0.576	0.608	0.489	0.671	0.605
Speed (knots) Indicated horse-power. I.H.P. per 100 ft. wetted skin I.H.P. per 100 ft. wetted skin, re-	22 01 460 50.9	15.8 798 21.04	10.74 371 9.88	17.20 1490 18.12	10.04 503 5.00	17.8 4751 30.00
duced to 10 knots	4.78	5.87	7.97	8.56	4.90	5.82
$\frac{D^{\frac{3}{8}} \times S^{2}}{\text{I.H.P.}}$	223	192	172.8	293.7	266	182
$\frac{\text{Immersed mid area} \times S^3}{\text{I.H.P.}}$	556?	445	495	683	690	399
	<del></del>	<del></del>				
	H.M.S.	H M.S.	H.M.S.	S.S.	H.M.S.	R.M.S.S.
Length, perpendiculars. Breadth, extreme. Mean draught water Displacement (tons). Area Imm. mid. section.	H.M.S. Active.	300' 0'' 46' 0'' 18' 2'' 3290 700	800' 0'' 46' 0'' 18' 2'' 3.90 700 18,168			<u>ين ين</u>
Length, perpendiculars. Breadth, extreme. Mean draught water. Displacement (tons). Area Imm. mid. section.  Wetted skin. Length, fore-body.	270' 0'' 42' 0'' 18' 10'' 9057 682 16,008	300' 0'' 46' 0'' 18' 2'' 8290 700 18,168 135' 6''	800' 0'' 46' 0'' 18' 2'' 8:90 700	870' 0'' 41' 0'' 18' 11'' 4635 656 22,683	892 O' 892 O' 21' 4' 5767 738	8500 926 Britannic.
Length, perpendiculars. Breadth, extreme. Mean draught water. Displacement (tons). Area Imm. mid. section. Wetted skin. Length, fore-body. Angle of entrance.	9 Action 16,008	300′ 0′′ 46′ 0′′ 18′ 2′′ 3290 700 18,168	800' 0'' 46' 0'' 18' 2'' 8:90 700 18,168	370' 0'' 41' 0'' 18' 11'' 4635 656 22,683	S92 0' 892 0' 89 0' 21' 4' 5767 738 26,235	S'S'W'H 450' 0'' 45' 2'' 23' 7'' 8500 926 32,578
Length, perpendiculars. Breadth, extreme. Mean draught water. Displacement (tons). Area Imm. mid. section. Wetted skin. Length, fore-body. Angle of entrance. Displacement × 85	270' 0'' 42' 0'' 18' 10'' 9057 682 16,008	300' 0'' 46' 0'' 18' 2'' 8290 700 18,168 135' 6''	800' 0'' 46' 0'' 18' 2'' 8 90 700 18,168 135' 6''	870' 0'' 41' 0'' 18' 11'' 4635 656 22,683	892 0" 39 0" 21' 4" 5767 738 26,235	8500 926 32,578 129' 0''
Length, perpendiculars. Breadth, extreme. Mean draught water. Displacement (tons). Area Imm. mid. section.  Wetted skin. Length, fore-body. Angle of entrance. Displacement × 85 Length × Imm. mid area Speed (knots). Indicated horse-power. I H.P. per 100 ft. wetted skin, re-	270' 0'' 42' 0'' 18' 10'' 9057 682 16,008 101' 0' 18° 44' 0.629 14.966 4015 25.08	300' 0'' 46' 0'' 18' 2'' 3290 700 18,168 135' 6'' 16° 16' 0.548 18.578 7714 42.46	300° 0° 46′ 0° 46′ 0° 18′ 2° 3 ±90 700 18,168 135′ 6′ 0.548 15.746 3958 21.78	370° 0° 41° 0° 18° 11° 4635 655 22,683 123° 0° 16° 4° 0.668 13.80 2500 11.04	392 0" 399 0" 399 0" 5767 788 26,235 118' 0" 0.698 12.054 1758 6.7	Signature (Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of
Length, perpendiculars.  Breadth, extreme  Mean draught water. Displacement (tons) Area Imm. mid. section  Wetted skin  Length, fore-body  Angle of entrance  Displacement × 85  Length × Imm. mid area  Speed (knots).  Indicated horse-power  I H.P. per 100 ft. wetted skin. reduced to 10 knots.	270' 0'' 42' 0'' 18' 10'' 3057 682 16,008 101' 0' 18° 44' 0.629 14.986 4015 25.08	300′ 0″ 46′ 0″ 18′ 2″ 3290 700 18,168 135′ 6″ 16° 16′ 0.548 18.578 7714	800' 0" 46' 0" 18' 2" 3.90 700 18,168 135' 6" 16° 16' 0.548 15.746 3958	370° 0° 41° 0° 41° 0° 41° 0° 41° 0° 4° 128′ 0° 16° 4° 0.668	392 0" 399 0" 21' 4" 5767 738 26,285 118' 0" 0.698 12.054 1758	Sign with the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat
Length, perpendiculars  Breadth, extreme  Mean draught water.  Displacement (fons).  Area Imm. mid. section.  State of entrance.  Displacement × 85  Length × Imm. mid area  Speed (knots)  Indicated horse-power  I H.P. per 100 ft. wetted skin.  LH.P. per 100 ft. wetted skin, reduced to 10 knots.  D\$ × S\$  1.H.P.	270' 0'' 42' 0'' 18' 10'' 9057 682 16,008 101' 0' 18° 44' 0.629 14.966 4015 25.08	300' 0'' 46' 0'' 18' 2'' 3290 700 18,168 135' 6'' 16° 16' 0.548 18.578 7714 42.46	300° 0° 46′ 0° 46′ 0° 18′ 2° 3 ±90 700 18,168 135′ 6′ 0.548 15.746 3958 21.78	370° 0° 41° 0° 18° 11° 4635 655 22,683 123° 0° 16° 4° 0.668 13.80 2500 11.04	392 0" 399 0" 399 0" 5767 788 26,235 118' 0" 0.698 12.054 1758 6.7	Signature (Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of
Length, perpendiculars. Breadth, extreme. Mean draught water. Displacement (tons). Area Imm. mid. section.  Wetted skin. Length, fore-body. Angle of entrance. Displacement × 85 Length × Imm. mid area Speed (knots). Indicated horse-power. I H.P. per 100 ft. wetted skin. I.H.P. per 100 ft. wetted skin, reduced to 10 knots.  D\(^3 \times 8^3)	270' 0'' 42' 0'' 18' 10'' 3057 682 16,008 101' 0' 18° 44' 0.629 14.966 4015 25.08 7.49	300' 0'' 46' 0'' 18' 2'' 3290 700 18,168 135' 6'' 16° 16' 0.548 18.573 7714 42.46 6.634	300' 0'' 46' 0'' 18' 2'' 3:90 700 18,168 135' 6'' 16° 16' 0.548 15.746 3958 21.78 5.58	370' 0'' 41' 0'' 18' 11'' 4635 656 22,683 123' 0'' 16° 4' 0.668 13.80 2500 11.04 4.20	892 0" 892 0" 892 0" 5767 738 5767 738 118' 0" 16° 30' 0.698 12.054 1758 6.7 3.88	50 07 07 07 45 27 77 8500 925 82,578 129 07 17 16 4900 15 .04 4.42

## Results of Progressive Speed Trials in Typical Vessels. (Eng'g, April 15, 1892, p. 463.)

"Terpsichore," 2d-cl. Cruiser "Blenhelm," 1st-cl. Cruiser Torpedo-boa Torpedo-gunboat, Ç, shooter" "Medu "Eds 525 135 230 265 300 360 375 Length (in feet)...... Breadth " 14 27 63 41 43 60 ნგ 5' 1" 8' 3'' 16' 2" 23' 9" 25' 9' 21′ 3″ Draught (mean) on trial... 16' 6" 11550 Displacement (tons)..... 108 735 2800 3880 7390 9100 800 I.H.P.—10 knots.. 110 450 700 1000 1500 2000 1100 260 2100 2400 8000 4000 4600 14 .. 6000 18 870 2500 6400 7500 9000 10000 .. " 20 1130 3500 10000 9000 11000 12500 14500 Speed Ratio of speed* 10 Ratio of H.P. =2.744 2.36 7.91 14  $\bar{2}.44$ 8 3 3 2.67 2.3 = " 7.5 5.56 9.14 7.5 18 5.832 = 20 .. 10.27 7.78 11.25 8.42 7.25 8. 14.14 11 = Admiralty coeff. 200 181 284 279 380 590 255 10 knots.  $\underline{D^{\frac{1}{2}}} \times S^{\frac{1}{2}}$ 14 232 203 259 255 347 295 298 304 " 282 297 18 147 190 181 217 I.H.P. 20 .. 195 156 186 159 281

The figures for I.H.P. are "round." The "Medusa's" figures for 20 knots

The figures for Life. are round. The medusa's "figures for 20 knots are from trial on Stokes Bay, and show the retarding effect of shallow water. The figures for the other ships for 20 knots are estimated for deep water. More accurate methods than those above given for estimating the horse-power required for any proposed ship are: I. Estimations calculated from the results of trials of "similar" vessels driven at "corresponding" speeds; "similar" vessels being those that have the same ratio of length to threadth and to draught and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups and the same coefficient of groups are the groups and groups are the groups and groups are the groups and groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are the groups are breadth and to draught, and the same coefficient of fineness, and "corresponding" speeds those which are proportional to the square roots of the lengths of the respective vessels. Froude found that the resistances of such vessels varied almost exactly as wetted surface × (speed)².

2. The method employed by the British Admiralty and by some Clyde shipbuilders, viz., ascertaining the resistance of a model of the vessel, 12 to 20 ft. long, in a tank, and calculating the power from the results obtained.

Speed on Canals.—A great loss of speed occurs when a steam-vessel passes from open water into a more or less restricted channel. The average speed of vessels in the Suez Canal in 1882 was only 5½ statute miles per hour. (Eng'g. Feb. 15, 1884, p. 189.)

Estimated Displacement, Horse-power, etc.—The table on the next page, calculated by the author, will be found convenient for making proving the extinctor.

ing approximate estimates. The figures in 7th column are calculated by the formula H.P. =  $S^3D^{\frac{3}{3}} + c$ . in which c=200 for vessels under 200 ft. long when C=.65, and 210 when C=.55; c=200 for vessels 200 to 400 ft. long when C=.75, 220 when C = .65, 240 when C = .55; c = 230 for vessels over 400 ft. long when C = .75, 250 when C = .65, 260 when C = .55.

The figures in the 8th column are based on 5 H.P. per 100 sq. ft. of wetted surface.

The diameters of screw in the 9th column are from formula D =3.31  $\sqrt{I.H.P.}$ , and in the 10th column from formula  $D = 2.71 \sqrt[3]{I.H.P.}$ 

To find the diameter of screw for any other speed than 10 knots, revolu-tions being 100 per minute, multiply the diameter given in the table by the 5th root of the cube of the given speed + 10. For any other revolutions per

minute than 100, divide by the revolutions and multiply by 100.

To find the approximate horse-power for any other speed than 10 knots, multiply the horse-power given in the table by the cube of the ratio of the

given speed to 10, or by the relative figure from table on p. 1006.

Ratimated Displacement, Horse-power, etc., of Steamvessels of Various Sizes.

				A CBBC	15 01 4 41	tous or	200.		
	احتدا	ـ ئـ ا	Ŧ	Displace	1		d Horse-		Screw for 10
₽	급	돈이	문송이	nient.	Wetted Surface	power at			eed and 100
Length.	Breadth,	Contract	F. C.	TRD X C	Wetted Surface L(1.7D + BC) sq. ft,	Calc.	Calc. from		r minute.
3-	44	1 5 5	8 2 8	35	sq. ft.	from Dis-	Wetted	If Pitch =	If Pitch =
_		4-	0 -	tons.		placem't.	Surface.	Diam.	1.4 Diam.
	8	1.5	.55	.85	48	4.8	9.4	4.4	8.6
12							2.4	4.4	
16 ₹	8	1.5	.55	1.18	64	5.2	8.2	4.6	8.8
	4	2	. <b>6</b> 5	2.38	96	8.9	4.8	5.1	4.2
20 {	8	1.5	.55	1.41	80	6.0	4.0	4.7	8.9
201	14	2	. 65	2.97	120	10.3	6.0	5.8	4.8
	8.5	1.5	.55	1.98	104	7.5	5.2	5	4.1
24 {	4.5	2	.65	4.01	152	12.6	7.6	5.5	4.5
- 5	4	2	.58	8.77	168	11.5	8.4	5.4	4.4
30 ₹	5	2.5	.65	6.96	224	18.2	11.2	5.9	
(			.00						4.8
40₹	4.5	2	.55	5.66	235	15.1	11.8	5.7	4.7
- T	6	2.5	.65	11.1	326	24.9	16.3	6.3	5.2
50 3	6	8	.55	14.1	420	27.8	21.0	6.4	5.4
30 7	8 1	3.5	.65	26	558	43.9	27.9	7.1	5.8
i	IS 1	8.5	.55	26.4	621	42.2	81.1	7.0	5.7
60 {	10	4	.65	44.6	798	62.9	89.9	7.6	6.2
i	10	4	.55	44	861	59.4	48.1	7.5	6.1
70 ₹	12	4.5	.65	70.2	1082	85.1	54.1	8.1	6.6
	12		.55	40.2	1140	79.2			
- 80 ₹		4.5		67.9			57.0	7.9	6.5
~ ₁	14	5	.65	104.0	1408	111	70 4	8.5	7.0
90∮	18	5	.55	91.9	1408	97	70.4	8.3	6.8
80 7	116	6	.65	160	1854	147	92.7	9	7.8
ì	118	5	.55 .65	109	1565	104	78.3	8.4	6.9
100₹	15	5.5	65	158	1910 ·	148	95.5	8.9	7.8
100)	17	6	.75	219	2295	202	115	9.6	7.8
• •	14	5.5	.55	145	2046	131	102	8.8	7.2
\			.65	214			124		
190 ₹	16	6			2472	179		9.4	7.6
(	18	6.5	.75	801	2946	250	147	10	8.8
1	16	6	.55	211	2660	169	183	9.2	7.4
140 ₹	18	6.5	.65	306	3185	227	159	9.8	8.0
}	20	7	.75	420	8766	312	188	10.5	8.5
	17	6.5	.55	278	8264	203	168	9.6	7.8
100)	19	7	.65	395	8880	269	194	10.1	8.3
160 ⊰	21		.75	540	4560	368	228		
•	21	7.5						10.8	8.8
(	20	7	.55	396	4122	257	206	10.1	8.2
180⊀	25	7.5	.65 .75	552	4869	337	248	10.6	8.7
· · · · · ·	24	8	.75	741	5688	455	284	11.8	9.2
	22	7	.55	484	4800	257	240	10.1	8.2
200-₹	25	8	.65	748	5970	378	299	10.8	8.8
~~ )	28	9	.75	1080	7260	526	363	11.6	9.5
	28	8	.55	880	7250	383	863	10.9	8.9
~~ )	82	10	.65	1486	9450	592	478	11.9	9.7
250 {	36		.75	2314	11850	875	598	12.8	
•	90	12				213		12.0	10.5
(	32	10	.55	1509	10380	548	519	11.7	9.6
300 ⊰	36	12	.65	2407	18140	806	657	12.6	10.4
- 1	40	14	.75	3600	17140	1175	857	13.6	11.1
i		12	.55	2508	14455	769	728	12.5	10.2
250 ⊰	42	14	.65	3822	17885	1111	894	18.5	11.0
	46	16	.75	5520	21595	1562	1080	14.4	11.8
	44	14	.55	3872	19200	1028	960	13.3	10.8
400₹	48	16	.65	5705	23360	1451	1168	14.2	11.6
400 j	52		.75	8028	27840	2006	1392		
Ţ		18						15.2	12.4
- (	50	16	.55	5657	24515	1221	1226	13.7	11.2
450⊀	54	18	.65	8128	29565	1616	1478	14.5	11.9
- 1	58	20	.75	11157	34875	2171	1744	15.4	12.6
ì	52	18	.55	7854	29600	1454	1480	14.2	11.6
500 ₹	56	20	.65	10400	35200	1966	1760	15.1	12.4
<b>-</b> ₩}	60	22	.75	14143	41200	2543	2060	15.9	13.0
1		20		9680	36245	1747	1812		
1	56		.55					14.7	12.0
550 {	60	22	.65	13483	42785	2266	2137	15.5	12.7
- (	64	24	.75	18103	49665	2998	2483	16.4	18.4
(	60	22	.55	12446	42900	2065	2145	15.2	12.5
600 ₹	64	24	.65	17115	50220	2656	2511	15.4	18.1
		26	.75	22731	58020	8489	2901	16.9	13.8
								·	

#### THE SCREW-PROPELLER.

The "pitch" of a propeller is the distance which any point in a blade, describing a helix, will travel in the direction of the axis during one revoluuesci long a near, win travel in the direction of the axis during one revolution, the point being assumed to move around the axis. The pitch of a propeller with a uniform pitch is equal to the distance a propeller will advance during one revolution, provided there is no slip. In a case of this kind, the term "pitch" is analogous to the term "pitch of the thread" of an ordinary single-threaded screw.

an ordinary single-threaded screw. R = number of revolutions per second.Let P = pitch of screw in feet, R = number of revolutions per second.  $V = \text{velocity of stream from the propeller} = P \times R, v = \text{velocity of the ship in feet per second, } V - v = \text{slip, } A = \text{area in square feet of section of stream from the screw, approximately the area of a circle of the same diameter, } A \times V = \text{volume of water projected astern from the ship in cubic feet per second.}$ Taking the weight of a cubic foot of sea-water at 64 bes., and the form of the form of the same of according to the same of a court of the same of a second of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same force of gravity at 32, we have from the common formula for force of acceleration, viz.:  $F = M \frac{v_1}{t} = \frac{W}{g} \frac{v_1}{t}$ , or  $F = \frac{W}{g} v_1$ , when t = 1 second,  $v_1$  being

the acceleration.

Thrust of screw in pounds = 
$$\frac{64AV}{82}(V-v) = 2AV(V-v)$$
.

Rankine (Rules, Tables, and Data, p. 275) gives the following: To calculate the thrust of a propelling instrument (jet, paddle, or screw) in pounds, multiply together the transverse sectional area, in square feet, of the stream driven astern by the propeller; the speed of the stream relatively to the snip in knots; the real slip, or part of that speed which is impressed on that stream by the propeller, also in knots; and the constant 5.66 for sea-water, or 5.5 for fresh water. If S =speed of the screw in knots, s = speed of ship in knots, A = area of the stream in square feet (of sea-water),

Thrust in pounds = 
$$A \times S(S - s) \times 5.66$$
.

The real slip is the velocity (relative to water at rest) of the water projected sternward; the apparent slip is the difference between the speed of the ship and the speed of the screw; i.e., the product of the pitch of the screw by the number of revolutions.

This apparent slip is sometimes negative, due to the working of the screw in disturbed water which has a forward velocity, following the ship. Negative apparent slip is an indication that the propeller is not suited to the

The apparent slip should generally be about 8% to 10% at full speed in wellformed vessels with moderately fine lines; in bluff cargo boats it rarely exceeds 5%.

The effective area of a screw is the sectional area of the stream of water laid hold of by the propeller, and is generally, if not always, greater than the actual area, in a ratio which in good ordinary examples is 1.2 or thereabouts, and is sometimes as high as 1.4; a fact probably due to the stiffness of the water, which communicates motion laterally amongst its particles.

(Rankine's Shipbuilding, p. 89.)
Prof. D. S. Jacobus, Trans. A. S. M. E., xi. 1028, found the ratio of the effective to the actual disk area of the screws of different vessels to be as follows:

Size of Screw.—Seaton says: The size of a screw depends on so many things that it is very difficult to lay down any rule for guidance, and much must always be left to the experience of the designer, to allow for all the circumstances of each particular case. The following ralles are given for ordinary cases. (Seaton and Rounthwaite's Pocket-book):

101838  $P = \text{pitch of propeller in feet} = \frac{1010005}{R(100 - x)}$ , in which S = speed in knots. R = revolutions per minute, and x = percentage of apparent slip For a slip of 10%, pitch =  $\frac{112.6S}{D}$ .

$$D = \text{diameter of propeller} = K \sqrt{\frac{\overline{1.\text{H.P.}}}{(\frac{P \times R}{100})^3}}, K \text{ being a coefficient given}$$

in the table below. If 
$$K=20,\,D=20000\,\sqrt{\frac{\mathrm{I.H.P.}}{(P\times R)^2}}$$

Total developed area of blades =  $C_4 \sqrt{\frac{I.H.P.}{P}}$ , in which C is a coefficient

to be taken from the table.

Another formula for pitch, given in Seaton's Marine Engineering, is  $P=rac{C}{R}\sqrt[4]{rac{1}{D^8}}$ , in which C=757 for ordinary vessels, and 660 for slowspeed cargo vessels with full lines.

Thickness of blade at root =  $\sqrt{\frac{d^3}{nb}} \times k$ , in which d = diameter of tail-

shaft in inches, n = number of blades, b = breadth of blade in inches where Small in inches, n= number of bisdes, o= oreagth of bisde in inches where it joins the boss, measured parallel to the shaft-axis; k=4 for cast iron, 1.5 for cast steel, 2 for gun-metal, 1.5 for high-class bronze.

Thickness of bisde at tip: Cast iron  $\partial AD + A$  in.; cast steel  $\partial BD + A$  in.; gun-metal  $\partial BD + A$  in.; high-class bronze  $\partial AD + A$  in., where D= diameter of propeller in feet.

Propeller Coefficients.

z ropener ( ocurciones,							
Description of Vessel.	Approximate Speed in knots.	Number of Screws.	Number of Blades per Screw.	Values of K.	Values of C.	Usual Material of Blades.	
Bluff cargo boats	8-10	One	4	17 -17 5	19 -17.5		
Cargo, moderate lines	10-13	**	4	18 -19	17 -15.5	** **	
Pass, and mail, fine lines.	18-17	**	4	19.5-20.5	15 -13	C. I. or S.	
4. 46 66 66 66	13-17	Twin	4	20.5-21-5	14.5-12.5		
" " very fine.		One	4	21 -22	12.5-11	G. M. or B	
	17-22	Twin	3	22 -23	10.5- 9		
Naval vessels, " "	16-22	- ;;,		21 -22.5	11.5-10.5	** ** **	
11227 251 1 025015,	16-22	44	3	22 -23.5		** ** **	
Torpedo-boats, " "	20-26	One	3	25	7- 6	B. or F. S.	

C. I., cast iron; G. M., gun-metal; B., bronze; S., steel; F. S., forged steel. From the formulæ  $D=20000\sqrt{\frac{\text{I.H.P.}}{(P\times R)^3}}$  and  $P=\frac{737}{R}\sqrt[4]{\frac{\text{I.H.P.}}{D^2}}$ , if P=D

and R = 100, we obtain  $D = \sqrt[8]{400 \times \text{I.H.P.}} = 3.81 \sqrt[8]{\text{I.H.P.}}$ 

If P=1.4D and R=100, then  $D=\sqrt{145.8 \times I.H.P.}=2.71\sqrt{I.H.P.}$ From these two formulæ the figures for diameter of screw in the table on page 1009 have been calculated. They may be used as rough approximations to the correct diameter of screw for any given horse-power, for a speed of

to the correct diameter of screw for any given horse-power, for a speed of 10 knots and 100 revolutions per minute.

For any other number of revolutions per minute multiply the figures in the table by 100 and divide by the given number of revolutions. For any other speed than 10 knots, since the L.H.P. varies approximately as the cube of the speed, and the diameter of the screw as the 5th root of the I.H.P., multiply the diameter given for 10 knots by the 5th root of the cube of one tenth of the given speed. Or, multiply by the following factors:

For speed of knots: 14 15 16 **= .577** ,660 .786 .807 .875 .939 1.059 1.116 1.170 1.224 1.275 1.327

Speed: 17 18 19 20 21 22 23 24 25 26 27 28 
$$\sqrt[8]{(S+10)^3}$$

= 1.375 1.428 1.470 1.515 1.561 1.605 1.648 1.691 1.788 1.774 1.815 1.855

For more accurate determinations of diameter and pitch of screw. formulæ and coefficients given by Seaton, quoted above, should be used. **Rifletency of the Propeller.**—According to Rankine, if the slip of the water be s, its weight W, the resistance R, and the speed of the ship v,

$$R = \frac{Ws}{a}$$
;  $Rv = \frac{Wsv}{a}$ .

This impelling action must, to secure maximum efficiency of propeller, be effected by an instrument which takes hold of the fluid without shock or disturbance of the surrounding mass, and, by a steady acceleration, gives it the required flual velocity of discharge. The velocity of the propeller overcoming the resistance R would then be

$$\frac{v+(v+s)}{2}=v+\frac{s}{2};$$

and the work performed would be

$$R\left(v+\frac{s}{2}\right)=\frac{Wvs}{a}+\frac{Ws^2}{2a},$$

the first of the last two terms being useful, the second the minimum lost work; the latter being the wasted energy of the water thrown backward. The efficiency is

$$E=v+\left(v+\frac{s}{2}\right);$$

and this is the limit attainable with a perfect propelling instrument, which limit is approached the more nearly as the conditions above prescribed are the more nearly fulfilled. The efficiency of the propelling instrument is probably rarely much above 0.60, and never above 0.80.

In designing the screw-propeller, as was shown by Dr. Froude, the best angle for the surface is that of 45° with the plane of the disk; but as all states of the blade cannot be given the same angle it should where propells.

parts of the blade cannot be given the same angle, it should, where practicable, be so proportioned that the "pitch-angle at the centre of effort should be made 45°. The maximum possible efficiency is then, according to Froude, 77%.

In order that the water should be taken on without shock and discharged with maximum backward velocity, the screw must have an axially increas-

ing pitch.
The true screw is by far the more usual form of propeller, in all steamers, both merchant and naval. (Thurston, Manual of the Steam-engine, part ii., p. 176.)

The combined efficiency of screw, shaft, engine, etc., is generelly taken at 50%. In some cases it may reach 60% or 65%. Rankine takes the effective H.P. to equal the I.H.P. + 1.63.

Pitch-ratio and Slip for Screws of Standard Form.

Pitch-ratio.	Real Slip of Screw.	Pitch-ratio.	Real Slip of Screw.
.8	15.55	1.7	21.3
.9 1.0	16.22 16.88	1.8 1.9	21.8 22.4 22.9 23.5
1.1	17.55	2.0 2.1	22.9
1.2 1.3	18.2 18.8	2.1 2.2	23.5 24.0
1.4	19.5	2.3	24.5
1.5 1.6	20.1 20.7	2.4 2.5	95.0 25.4

Results of Recent Researches on the efficiency of screw-propellers are summarized by S. W. Barusby, in a paper read before section G of the Engineering Congress, Chicago, 1893. He states that the following general principles have been established:

(a) There is a definite amount of real slip at which, and at which only, maximum efficiency can be obtained with a screw of any given type, and this amount varies with the pitch-ratio. The slip-ratio proper to a given ratio of pitch to diameter has been discovered and tabulated for a screw of a standard type, as below (see table on page 1012):

(b) Screws of large pitch-ratio, besides being less efficient in themselves, add to the resistance of the hull by an amount bearing some proportion to their distance from it, and to the amount of rotation left in the race.

 (c) The best pitch-ratio lies probably between 1.1 and 1.5.
 (d) The fuller the lines of the vessel, the less the pitch-ratio should be. (e) Coarse-pitched screws should be placed further from the stern than fine-pitched ones.

(f) Apparent negative slip is a natural result of abnormal proportions of propellers.

(g) Three blades are to be preferred for high-speed vessels, but when the diameter is unduly restricted, four or even more may be advantageously employed.

 $(\hat{h})$  An efficient form of blade is an ellipse having a minor axis equal to

four tenths the major axis.

(i) The pitch of wide-bladed screws should increase from forward to aft, but a uniform pitch gives satisfactory results when the blades are narrow, and the amount of the pitch variation should be a function of the width of the blade.

(j) A considerable inclination of screw shaft produces vibration, and with right-handed twin-screws turning outwards, if the shafts are inclined at all, it should be upwards and outwards from the propellers.

For results of experiments with screw-propellers, see F. C. Marshall, Proc. Inst. M. E. 1881; R. E. Froude, Trans. Institution of Naval Architects, 1886; A. Calvert, Trans. Institution of Naval Architects 1887; and S. W. Bar-

naby, Proc. Inst. Civil Eng'rs 1890, vol. cii.

One of the most important results deduced from experiments on model screws is that they appear to have practically equal efficiencies throughout a wide range both in pitch-ratio and in surface-ratio; so that great latitude is left to the designer in regard to the form of the propeller. Another important feature is that, although these experiments are not a direct guide to the selection of the most efficient propeller for a particular ship, they supply the means of analyzing the performances of screws fitted to vessels, and of thus indirectly determining what are likely to be the best dimensions of screw for a vessel of a class whose results are known. Thus a great advance has been made on the old method of trial upon the ship itself, which was the origin of almost every conceivable erroneous view respecting the screw-propeller. (Proc. Inst. M. E., July, 1891.)

## THE PADDLE-WHEEL.

Paddle-wheels with Radial Floats. (Seaton's Marine Engineering.)—The effective diameter of a radial wheel is usually taken from the centres of opposite floats; but it is difficult to say what is absolutely that diameter, as much depends on the form of float, the amount of dip, and the waves set in motion by the wheel. The slip of a radial wheel is from 15 to 80 per cent, depending on the size of float.

Area of one float = 
$$\frac{I.H.P.}{D} \times C.$$

D is the effective diameter in feet, and C is a multiplier, varying from 0.25 in tugs to 0.175 in fast-running light steamers.

0.25 in tugs to 0.175 in tast-running light steamers.

The breadth of the float is usually about ½ its length, and its thickness about ½ its breadth. The number of floats varies directly with the diameter, and there should be one float for every foot of diameter. (For a discussion of the action of the radial wheel, see Thurston, Manual of the Steam-engine, part ii., p. 182.)

Feathering Paddle — wheels. (Seaton.)—The diameter of a feathering-wheel is found as follows: The amount of slip varies from 12 to 20 new cant although when the floats are small or the resistance great it.

20 per cent, although when the floats are small or the resistance great it

is as high as 25 per cent; a well-designed wheel on a well-formed ship should not exceed 15 per cent under ordinary circumstances. If K is the speed of the ship in knots, S the percentage of slip, and R the

revolutions per minute,

Diameter of wheel at centres = 
$$\frac{K(100 + S)}{8.14 \times R}$$
.

The diameter, however, must be such as will suit the structure of the ship, so that a modification may be necessary on this account, and the revolutions altered to suit it.

The diameter will also depend on the amount of "dip" or immersion of

float.

When a ship is working always in smooth water the immersion of the top edge should not exceed 1/2 the breadth of the float; and for general service at sea an immension of 1/2 the breadth of the float is sufficient. If the ship the immersion when light need not be more than is intended to carry cargo, the immersion when light need not be more than 2 or 8 inches, and should not be more than the breadth of float when at the deepest draught; indeed, the efficiency of the wheel falls off rapidly with the immersion of the wheel.

Area of one float = 
$$\frac{I.H.P.}{D} \times C$$
.

 ${\it C}$  is a multiplier, varying from 0.3 to 0.85;  ${\it D}$  is the diameter of the wheel to the float centres, in feet.

The number of floats  $=\frac{1}{2}(D+2)$ . The breadth of the float  $=0.35 \times$  the length. The thickness of floats =1/12 the breadth. Diameter of gudgeons = thickness of float. Seaton and Rounthwaite's Pocket-book gives:

Number of floats = 
$$\frac{60}{\sqrt{R}}$$
,

where R is number of revolutions per minute.

Area of one float (in square feet) = 
$$\frac{\text{I.H.P.} \times 83000 \times K}{N \times (D \times R)^3}$$
,

where N = number of floats in one wheel.

For vessels plying always in smooth water K = 1200. For sea-going steamers K = 1400. For tugs and such craft as require to stop and start frequently in a tide-way K = 1600. It will be quite accurate enough if the last four figures of the cube  $(D \times R)^2$  be taken as ciphers.

For illustrated description of the feathering paddle-wheel see Seaton's Marine Engineering, or Seaton and Rounthwaite's Pocket-book. The diameter of a feathering-wheel is about one half that of a radial wheel for equal efficiency. (Thurston.)

Efficiency of Paddle-wheels. - Computations by Prof. Thurston of the efficiency of propulsion by paddle-wheels give for light river steamers with ratio of velocity of the vessel, v, to velocity of the paddle-float at centre of pressure, V, or  $\frac{v}{V}$ , =  $\frac{3}{4}$  with a dip = 3/20 radius of the wheel, and a slip of 25 per cent, an efficiency of .714; and for ocean steamers with the same slip and ratio of  $\frac{v}{r}$ , and a dip =  $\frac{1}{2}$  radius, an efficiency of .685.

#### JET-PROPULSION.

Numerous experiments have been made in driving a vessel by the reaction of a jet of water pumped through an orifice in the stern, but they have all resulted in commercial failure. Two jet-propulsion steamers, the "Waterwitch," 1100 tons, and the "Squirt," a small torped-boat, were built by the British Government. The former was tried in 1867, and gave an efficiency of apparatus of only 18 per cent. The latter gave a speci of 12 knots, as against 17 knots attained by a sister-ahip having a screw and equal steam-power. The mathematical theory of the efficiency of the jet was discussed by Rankine in The Engineer, Jan. 11, 1867, and he showed that the greater the quantity of water operated on by a jet-nromeller, the screen the greater the quantity of water operated on by a jet-propeller, the greater

is the efficiency. In defiance both of the theory and of the results of earlier experiments, and also of the opinions of many naval engineers, more than \$20,000 were spent in 1888-90 in New York upon two experimental boats, the ''Prima Vista'' and the ''Evolution,'' in which the jet was made of very small size, in the latter case only %-inch diameter, and with a pressure of 2500 lbs. per square inch. As had been predicted, the vessel was a total failure. (See article by the author in *Mechanics*, March, 1891.)

The theory of the jet-propeller is similar to that of the screw-propeller. If A = the area of the jet in square feet, V its velocity with reference to the orifice, in feet per second, v = the velocity of the ship in reference to the earth, then the thrust of the jet (see Screw-propeller, ante) is 2AV(V-v). The work done on the vessel is 2AV(V-v)v, and the work wasted on the rearward projection of the jet is  $\frac{1}{2} \times 2AV(V-v)^2$ . The efficiency is  $\frac{2AV(V-v)v}{2}$ . The averaged projection of the jet is  $\frac{1}{2} \times 2AV(V-v)^2$ .

 $\frac{2AV(V-v)v}{2.4V(V-v)v+AV(V-v)^3} = \frac{2v}{V+v}.$  This expression equals unity when V=v, that is, when the velocity of the jet with reference to the earth, or V-v, = 0; but then the thrust of the propeller is also 0. The greater the value of V as compared with v, the less the efficiency. For V=20v, as was proposed in the "Evolution," the efficiency of the jet would be less than 10 per cent, and this would be further reduced by the friction of the pumping received and of the water to price

mechanism and of the water in pipes.

The whole theory of propulsion may be summed up in Rankine's words:

"That propeller is the best, other things being equal, which drives astern the largest body of water at the lowest velocity."

It is practically impossible to devise any system of hydraulic or jet propulsion which can compare favorably, under these conditions, with the screw

or the paddle-wheel.

Beaction of a Jet .- If a jet of water issues horizontally from a vessel, the reaction on the side of the vessel opposite the orifice is equal to the weight of a column of water the section of which is the area of the orifice, and the beight is twice the head.

The propelling force in piet-propulsion is the reaction of the stream issuing from the orifice, and it is the same whether the jet is discharged under water, in the open air, or against a solid wall. For proof, see account of trials by C. J. Everett, Jr., given by Prof. J. Burkitt Webb, Trans. A. Ş. M. E., xii. 904.

### RECENT PRACTICE IN MARINE ENGINES.

(From a paper by A. Blechynden on Marine Engineering during the past Decade, Proc. Inst. M. E., July, 1891.)

Since 1881 the three-stage-expansion engine has become the rule, and the boller-pressure has been increased to 160 lbs. and even as high as 200 lbs, per square inch. Four-stage-expansion engines of various forms have also been adopted.

Forced Draught has become the rule in all vessels for naval service, and is comparatively common in both passenger and cargo vessels. By this means it is possible considerably to augment the power obtained from a given boiler; and so long as it is kept within certain limits it need result in no injury to the boiler, but when pushed too far the increase is sometimes

purchased at considerable cost.

In regard to the economy of forced draught, an examination of the appended table (page 1018) will show that while the mean consumption of coal in those steamers working under natural draught is 1.578 lbs. per indicated horse-power per hour, it is only 1.336 lbs. in those fitted with forced draught. This is equivalent to an economy of 15%. Part of this economy, however, may be due to the other heat-saving appliances with which the latter steamers are fitted.

Boilers. -As a material for boilers, iron is now a thing of the past, though it seems probable that it will continue yet awhile to be the material for tubes. Steel plates can be procured at 132 square feet superficial area and 114 inches thick. For purely boiler work a punching-machine has be-

come obsolete in marine-engine work.

The increased pressures of steam have also caused attention to be directed to the furnace, and have led to the adoption of various artifices in the shape of corrugated, ribbed, and spiral flues, with the object of giving increased states to dispose without abnormally increasing the thickness of the plate. A thick furnace-plate is viewed by many engineers with great suspicion; and the advisers of the Board of Trade have fixed the limit of thickness for furnace-plates at \( \frac{1}{2} \) finch; but whether this limitation will stand in the light of prolonged experience remains to be seen. It is a fact generally accepted that the conditions of the surfaces of a plate are far greater factors in its resistance to the transmission of heat than either the material or the thickness. With a plate free from lamination, thickness being a mere secondary element, it would appear that a furnace-plate might be increased from 1/4 inch to 3/4 inch thickness without increasing its resist-ance more than 1/4/2. So convinced have some engineers become of the soundness of this view that they have adopted flues 3/4 inch thick.

Piston-valves.—Since higher steam pressures have become common, piston-valves have become the rule for the high-pressure cylinder, and are not unusual for the intermediate. When well designed they have the great advantage of being almost free from friction, so far as the valve itself is concerned. In the earlier piston-valves it was customary to fit spring rings, which were a frequent source of trouble and absorbed a large amount of rough in friction, but it means tractical these become usual tage amount. of power in friction; but in recent practice it has become usual to fit spring-

less adjustable sleeves.

For low-pressure cylinders piston-valves are not in favor; if fitted with spring rings their friction is about as great as and occasionally greater than that of a well-balanced slide-valve; while if fitted with springless rings there is always some leakage, which is irrecoverable. But the large port-clearances inseparable from the use of piston-valves are most objectionable; and with triple engines this is especially so, because with the customary late cut-off it becomes difficult to compress sufficiently for insuring economy and smoothness of working when in "full gear," without some special device.

Steam-pipes.—The failures of copper steam-pipes on large vessels have drawn serious attention both to the material and the modes of construction of the pipes. As the brazed joint is liable to be imperfect, it is proposed to substitute solid drawn tubes, but as these are not made of large sizes two or more tubes may be needed to take the place of one brazed tube. Reinforcing the ordinary brazed tubes by serving them with steel or copper wire, or by hooping them at intervals with steel or iron bands, has been tried and found to answer perfectly.

Auxiliary Supply of Fresh Water-Evaporators.-To make up the losses of water due to escape of steam from safety-valves, leakage at glands, joints, etc., either a reserve supply of fresh water is carried in tanks, or the supplementary feed is distilled from sea-water by special apparatus provided for the purpose. In practice the distillation is effected by passing steam, say from the first receiver, through a nest of tubes inside a still or evaporator, of which the steam-space is connected either with the second receiver or with the condenser. The temperature of the steam inside the tubes being higher than that of the steam either in the second receiver or in the condenser, the result is that the water inside the still is evaporated, and passes with the rest of the steam into the condenser, where it is condensed and serves to make up the loss. This plan localizes the trouble of the deposit, and frees it from its dangerous character, because an evaporator cannot become overheated like a boiler, even though it be neglected until it salts up solid; and if the same precautions are taken in working the evaporator which used to be adopted with low-pressure boilers when they were feel with pale waters propriets roughle abould result. fed with salt water, no serious trouble should result.

Weir's Feed-water Heater.—The principle of a method of heating feed-water introduced by Mr. James Weir and widely adopted in the marine service is founded on the fact that, if the feed-water as it is drawn from the hot well be raised in temperature by the heat of a portion of steam introduced into it from one of the steam-receivers, the decrease of the coal necessary to generate steam from the water of the higher temperature bears necessary to generate steam from the water of the higher temperature bears a greater ratio to the coal required without feed-heating than the power which would be developed in the cylinder by that portion of steam would bear to the whole power developed when passing all the steam through all the oylinders. Suppose a triple-expansion engine were working under the following conditions without feed-heating; boiler-pressure 150 lbs.; I.H.P. in high-pressure cylinder 398, in intermediate and low-pressure cylinders together 790, total 1188. The temperature of hot-well 100° F. Then with feed-heating the same engine might work as follows: the feed might be heated to heat and the percentage of steam from the first precipier required to heat 220° F., and the percentage of steam from the first receiver required to heat it would be 10.9%; the I.H.P. in the h.p. cylinder would be as before 398, and in the three cylinders it would be 1103, or 98% of the power developed without

feed-heating. Meanwhile the heat to be added to each pound of the feed-water at 220° F. for converting it into steam would be 1005 units against 1125 units with feed at 100° F., equivalent to an expenditure of only 89.4% of the heat required without feed-heating. Hence the expenditure of heat in relation to power would be 89.4 + 93.0 = 96.4%, equivalent to a heat economy of 3.6%. If the steam for heating can be taken from the low-pressure receiver, the economy is about doubled.

Passenger Steamers fitted with Twin Screws.

Vessels.	th be- n Per- iculars.		Cylinders, tw in all.	o sets	ure I. ir	ated e-power
	Length tween pendic	Beam.	Diameters.	Stro.	Boiler- pressi per sq	Indica
	Feet	Feet	Inches	In.	Lbs.	I.H.P.
City of New York	525	681/4	45, 71, 118	60	150	I.H.P. 20,000 18,000 11,500 10,125 10,000 11,656
Majestic ( Teutonic (	565	58	43, 68, 110	60	180	18,000
Normannia	500 4681⁄2	5714 5514	40, 67, 106 41, 66, 101	66 66	160 160	
Empress of India ) " " Japan }	440	51	82, 51, 82	54	160	10,125
OrelScot	415 460	48 541/6	84, 54, 85 841/2, 571/4, 92	51 60	160 170	

Comparative Results of Working of Marine Engines, 1872, 1881, and 1891.

Boilers, Engines, and Coal.	1872.	1881.	1891.
Boiler-pressure, lbs. per sq. in		77.4 8.917 59.76 467 1.828	158.5 8.275 68.75 529 1 522

Weight of Three-stage-expansion Engines in Nine Steamers in Helation to Indicated Horse-power and to Cylinder-capacity.

er.		eight chine		Rela	tive We	ight of	Machin	ery.		
No. of Steamer.	Engine- room.	Boiler- room.	Per Indicated Hors power.				e-room su. ft. linder- acity. r-room 0 sq. ft. sating-		Type of Machinery.	
No. 0	Eng	Bo	Τ̈́	Engine- room.	Boiler- room.	Total	Engin per c of Cy	Boiler per 10 of He surf		
1 2 8 5 6	tons. 681 638 134 38.8 719 75.2	695	1414	lbs. 226 259 207 170 167 141	lbs. 220 251 198 203 162 202	lbs. 446 510 405 373 329 343	tons. 1.30 1.46 1.23 1.29 1.41 1.37	tons. 3.75 4.10 3.23 3.30 3.44 8.37	Mercantile	
7 8	44 73.5	61 109	105 182.5	77 78	108 116	185 194	1.21 1.11	2.72	Naval horizontal do.	
9	262	429	691	62.5	102	165	0.82	2.70 }	Naval vertica!	

		les.	Tamesi		Ħ		mm				İ
rnden.)		rnt .q.	Onal but Der I.H Der hor	1.896 1.896	1.506	25.5	520	95.50	348.8 84.8 84.8 84.8 84.8 84.8 84.8 84.8	1.242 1.242 1.338 1.234 1.666	1.592 1.673 1.336
(A. Blechynden.)		7, Of 1967	Coal bu per sq. f grate j bour	12.145 13.05 13.05	12.25	2823	12.7.23 5.8.83	22.28	31.13 32.13 38.13 38.13	25.25.25.25.25.25.25.25.25.25.25.25.25.2	17.06 13.92 28.15
	rials.	.ps T .ejs	eq .H.I. Tg lo .fl	1.H.P. 7.03 7.03 7.08	****	388	587.88	3838	6.00 2.00 2.11 2.00 2.11 2.00 2.11 3.00 3.00 4.00 4.00 4.00 4.00 4.00 4.00	27.00 21.48 21.56 16.88 17.10	11.88 80.93
teame	Results of Trials	ng.	Per lb. of Coal per hour.	5,000,000 5,000,000 5,000,000 5,000,000 5,000,000	84 25	8228			125.2 28.28	# <b>#</b> ##################################	485
ght S	Res	Heating- surface.	194 4.H.I	\$4446 \$1288	2000 2000 2000 2000	2000	225	40.00 4.00 4.00 4.00 4.00 4.00 4.00 4.0	**************************************	1.73 2.25 2.25 2.25 2.25 2.25	8.275 8.580 8.418
Twenty-eight Steamers.		pə	taolbaI .q.H	1. H. P. 4296 4402 3687 3888	858 888	200	128 188 188 188 188 188 188 188 188 188	1720	250 250 250 250 250 250 250	250 250 250 250 250 250 250 250 250 250	
Twe		,nin.	Piston-si Ft. per	ft. 627 636 631	\$25 £	322	<b>1828</b>	525 527 527	<b>3</b> 882	222222	of all twenty-eight " natural draught " forced draught.
es in			Revolut per minut	52.2 57.3 57.3	22.2.	5823	8588	2 <b>38</b> 8	2223	** <b>\$</b> \$\$\$	all twenty-eigh natural draugh forced draugh
Engines in			Stean Dressu	55555 55555	283	333	3333	2888	8888	3 <u>88</u> 888	fall twe
lon E	Botlers.		7 <u>179-9</u> 71 1891 A	8q. ft. 626 540 540	ន្តន	222	142 <b>8</b>	2532	1225	<b>348</b> 458	Average
pans		-28u	iltes H osfræ	8q. ft. 17,640 17,640 15,107 15,107	8, 6, 8, 8, 18, 8, 8, 18, 8, 8, 18, 18, 18, 18, 18, 18, 18, 18, 18, 1	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	. 8. 8. 6. 8. 8. 6. 6. 8. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	4.4.8. 8.7.9.	1445 1485	8 3 3 3 1 5 5 8 3 3 3 1 5 5	4
ge-ex	eller.		ымы	∓ <u>8888</u> 8	181		282	2000 2000 2000	3358 5000	22222	
90-sta	Propeller	.161	Diame	2888.F. F 55			2222	2887	55.42 5000	-	
.Chr	Con- denser	-ıng	Cooling face.	24.11.588 11.588 11.000 11.000	%,1,908,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	18.48 18.53 18.53	4 % 61 % 4 8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2000 2000 2000 2000 2000 2000 2000 200	8,2,2,8, 9,2,700 8,7,100 8,7,100		
90 9		.6.	Strok	ins.	<b>328</b>	2228	82226	3232	8282	82282	
Particulars of Three-stage-expansion	Cylinders.		Diameter.	ins. 66 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10	<b>8</b> 33	844	1824	<b>*</b>	8883 7	######################################	
	-	•		N 0. − 04 00 4	<b>66</b>	**2:		2222	2822	822828	

REMARKE,-D, forced draught; II, feed-beater.

# Dimensions, Indicated Horse - power, and Cylinder - capacity of Three-stage - expansion Engines in Nine Steamers.

er of mer.	rie or Screws.		Cyli	nde	rs.	olutions minute.	sure sq. in.	Indicated orse-power.	Inder- acity.	Heating-sur- face.		
Number Steam	Single Twin Scr	Dia	met	ers.	Stroke	2	Boller pres	Indi	Cylind	Total.	Per I.H.P.	
	Single	40	ins. 66	100	ins.	revs. 61.5	lbs. 160	I.H.P. 6751	cu.ft.	sq. ft. 17,640	sq. ft. 2.62	
	Single	20	61	97	66	67.8		5525	486	15,107	2.78	
2	٠.	40 39 23	38	61	42	83	160	1450	109	8.978	2.78	
4	"	17	2614			90	150	510	30	1,403	2.75	
<b>4</b> 5	Twin	32	54	82		88	160	9625	508	20,198	2.10	
6	****	15	24	38		113	150	1194	55	8,200	2.68	
7	Single	20	30	45		191	145	1:265	36.8		1.76	
Ř	Twin	1814	220	43		182.5		2105	66.2		1.87	
6 7 8 9	1 7,12	331	49	74		145	150	9400	319	15,882	1.62	

### CONSTRUCTION OF BUILDINGS.*

(Extract from the Building Laws of the City of New York, 1898.)

Walls of Warehouses, Stores, Factories, and Stables.—
25 feet or less in width between walls, not less than 12 in. to height of 40 ft.;
11 49 to 60 ft. in height, not less than 16 in. to 40 ft., and 12 in. thence to top;
60 to 80 " " 20 " 20 ft.; 20 in. to 60 ft., and 16 in.

to top; 85 to 100 ft. in height, not less than 28 in. to 25 ft.; 24 in. to 50 ft.; 20 in

to 75 ft., and 16 in. to top;

Over 100 ft. in height, each additional 25 ft. in height, or part thereof, next above the curb, shall be increased 4 inches in thickness, the upper 100 feet remaining the same as specified for a wall of that weight.

If wais are over 25 feet apart, the bearing-walls shall be 4 inches thicker than above specified for every 12% feet or fraction thereof that said walls are more than 25 feet apart.

Strength of Floors, Roofs, and Supports.

Floors calculated to bear

safely per sq. ft., in addition to their own weight.

Floors of dwelling, tenement, apartment-house or notel, not	
less than	70 lbs.
Floors of office-building, not less than	100 ''
" public-assembly building, not less than	120 "
" store, factory, warehouse, etc., not less than	150 "
Profe of all hulidings not less than	50 ''

Every floor shall be of sufficient strength to bear safely the weight to be imposed thereon, in addition to the weight of the materials of which the thoor is composed.

Columns and Posts.—The strength of all columns and posts shall be computed according to Gordon's formulæ, and the crushing weights in pounds, to the square inch of section, for the following-named materials, shall be taken as the coefficients in said formulæ, namely: Cast iron, 80,000;

*The limitations of space forbid any extended treatment of this subject. Much valuable information upon it will be found in Trautwine's Civil Engineer's Pocket-book, and in Kidder's Architect's and Builder's Pocket-book. The latter in its preface mentions the following works of reference: "Notes on Building Construction," 3 vols., Rivingtons, publishers, Boston; "Builder Superintendence," by T. M. Clark (J. R. Osgood & Co., Boston.); "The American House Carpenter," by R. G. Haifield; "Graphical Analysis of Roof-trusses," by Prof. C. E. Greene; "The Fire Protection of Mills," by C. J. H. Woodbury; "House Drainage and Water Service," by James C. Bayles; "The Builder's Guide and Estimator's Price-book," and "Plastering Mortars and Cements," by Fred. T. Hodgson; "Foundations and Concrete Works," and "Art of Building," by E. Dobson, Weale's Series, London.

wrought or rolled iron, 40,000; rolled steel, 48,000; white pine and spruce, 3500; pitch or Georgia pine, 5000; American oak, 6000. The breaking strangth of wooden beams and girders shall be computed according to the formulæ in which the constants for transverse strains for central load shall be as follows, namely: Hemlock, 400; white pine, 450; spruce, 450; pitch or Georgia pine, 550; American oak, 550; and for wooden beams and girders carrying a uniformly distributed load the constants will be doubled. The factors of safety shall be as one to four for all beams, girders, and other pieces subject to a transverse strain; as one to four for all posts, columns, and other vertical supports when of wrought iron or rolled steel; as one to five for other materials, subject to a compressive strain; as one to six for tierods, tie-beams, and other pieces subject to a tensile strain. Good, solid, natural earth shall be deemed to safely sustain a load of four tons to the superficial foot, or as otherwise determined by the superintendent of buildings, and the width of footing-courses shall be at least sufficient to meet this requirement. In computing the width of walls, a cubic foot of brickwork shall be deemed to weigh 115 lbs. Sandstone, white marble, granite, and other kinds of building-stone shall deemed to weigh 160 lbs. per cubic foot. The safe-bearing load to apply to good brickwork shall be taken at 8 tons per superficial foot when good lime mortar is used, 1134 tons per superficial foot when good lime and cement mortar mixed is used, and 15 tons per superficial foot when good cement mortar is used.

Fire-proof Buildings—Iron and Steel Columns.—All castiron, wrought-iron, or rolled-steel columns shall be made true and smooth at both ends, and shall rest on iron or steel bed-plates, and have iron or steel cap-plates, which shall also be made true. All iron or steel trimmerbeams, headers, and tail-beams shall be suitably framed and connected together, and the iron girders, columns, beams, trusses, and all other ironwork of all floors and roofs shall be strapped, bolted, anchored, and connected to gether, and to the walls, in a strong and substantial manner. Where beams are framed into headers, the angle-irons, which are bolted to the tail-beams, shall have at least two bolts for all beams over 7 inches in depth, and three bolts for all beams 12 inches and over in depth, and these bolts shall not be less than 34 inch in diameter. Each one of such angles or knees, when bolted to girders, shall have the same number of bolts as stated for the other leg. The angle-iron in no case shall be less in thickness than the header or trimmer to which it is bolted, and the width of angle in no case shall be less than one third the depth of beam, excepting that no angle-knee shall be less than 2½ inches wide, nor required to be more than 6 inches wide. All wroughtiron or rolled-steel beams 8 inches deep and under shall have bearings equal to their depth, if resting on a wall; 9 to 12 inch beams shall have a bearing of 10 inches, and all beams more than 12 inches in depth shall have bearings of not less than 12 inches if resting on a wall. Where beams rest on iron supports, and are properly tied to the same, no greater bearings shall be required than one third of the depth of the beams. Iron or steel floor-beams shall be a stranged as to spacing and length of the materials used in the construction of the said floors, shall not cause a deflection of the said beams of more than 1/30 of an inch per linear foot of span; and they shall be tied together at intervals of not more than eight times the depth of the beam.

Under the ends of all iron or steel beams, where they rest on the walls, a stone or cast iron template shall be built into the walls. Said template shall be 8 inches wide in 12 inch walls, and in all walls of greater thickness said template shall be 12 inches wide; and such templates, if of stone, shall not be in any case less than 21/2 inches in thickness, and no template shall be less

than 12 inches long.

No cast-iron post or column shall be used in any building of a less average thickness of shaft than three quarters of an inch, nor shall it have an unsupported length of more than twenty times its least lateral dimensions or diameter. No wrought-iron or rolled-steel column shall have an unsupported length of more than thirty times its least lateral dimension or diameter, nor shall its metal be less than one fourth of an inch in thickness.

Lintels, Bearings and Supports.—All iron or steel lintels shall have bearings proportionate to the weight to be imposed thereon, but no nave bearings proportionate to the weight to be imposed thereon, but as lintel used to span any opening more than 10 feet in width shall have a bearing less than 12 inches at each end, if resting on a wall; but if resting on az iron post, such lintel shall have a bearing of at least 6 inches at each end, by the thickness of the wall to be supported

Strains on Girdors and Rivets.—Rolled iron or steel beam girk

ders, or riveted iron or steel plate girders used as lintels or as girders, ders, or riveted iron or steel plate girders used as lintels or as girders, carrying a wall or floor or both, shall be so proportioned that the loads which may come upon them shall not produce strains in tension or compression upon the flanges of more than 12,000 lbs, for iron, nor more than 15,000 lbs, for steel per square inch of the gross section of each of such flanges, nor a shearing strain upon the web-plate of more than 6000 lbs, per square inch of section of such web-plate, if of iron, nor more than 7000 pounds if of steel; but no web-plate, if of iron, nor more than 7000 pounds if of steel; but no web-plate shall be less than ½ inch in thickness. Rivets in plate girders shall not be less than ½ inch in diameter, and shall not be specied more than 6 inches part in any case. They shall be and shall not be spaced more than 6 inches apart in any case. They shall be so spaced that their shearing strains shall not exceed 9000 lbs. per square inch, on their diameter, multiplied by the thickness of the plates through which they pass. The riveted plate girders shall be proportioned upon the supposition that the bending or chord strains are resisted entirely by the upper and lower flanges, and that the shearing strains are resisted entirely by the web plate. No part of the web shall be estimated as flange area, nor more than one half of that portion of the angle-iron which lies against the web. The distance between the centres of gravity of the flange areas will be considered as the effective depth of the girder.

The building laws of the City of New York contain a great amount of detail in addition to the extracts above, and penalties are provided for violation. See An Act creating a Department of Buildings, etc., Chapter 275, Laws of 1892. Pamphlet copy published by Baker, Voorhies & Co., New

York.

### MAXIMUM LOAD ON FLOORS.

(Eng'g, Nov. 18, 1892. p. 644.)—Maximum load per square foot of floor surface due to the weight of a dense crowd. Considerable variation is apparent in the figures given by many authorities, as the following table shows:

Authorities.	Weight of Crowd, lbs. per sq. ft.
French practice, quoted by Trautwine and Stoney	41
Hatfield ("Transverse Strains," p. 80)	
Mr. Page, London, quoted by Trautwine	84
Maximum load on American highway bridges according	
Waddell's general specifications	100
Mr. Nash, architect of Buckingham Palace	120
Experiments by Prof. W. N. Kernot, at Melbourne	···· } 126
Experiments by Mr. B. B. Stoney ("On Stresses," p. 617)	

The highest results were obtained by crowding a number of persons previously weighed into a small room, the men being tightly packed so as to resemble such a crowd as frequently occurs on the stairways and platforms of a theatre or other public building.

### STRENGTH OF FLOORS.

(From circular of the Boston Manufacturers' Mutual Insurance Co.)

The following tables were prepared by C. J. H. Woodbury, for determining safe loads on floors. Care should be observed to select the figure giving the greatest possible amount and concentration of load as the one which may be put upon any beam or set of floor-beams; and in no case should beams be subjected to greater loads than those specified, unless a lower factor of safety is warranted under the advice of a competent engineer.

Whenever and wherever solid beams or heavy timbers are made use of in the construction of a factory or warehouse, they should not be painted, varnished or oiled, filled or encased in impervious concrete, air-proof plastering, or metal for at least three years, lest fermentation should destroy them by

what is called "dry rot."

It is, on the whole, safer to make floor-beams in two parts, with a small open space between, so that proper ventilation may be secured, even if the outside should be inadvertently painted or filled.

These tables apply to distributed loads, but the first can be used in respect to floors which may carry concentrated loads by using half the figure given in the table, since a beam will bear twice as much load when evenly distributed over its length as it would if the load was concentrated in the centre of the span.

The weight of the floor should be deducted from the figure given in the table, in order to ascertain the net load which may be placed upon any floor, The weight of spruce may be taken at 36 lbs. per cubic foot, and that of

Southern pine at 48 lbs, per cubic foot.

Table I was computed upon a working modulus of rupture of Southern pine at 2160 lbs., using a factor of safety of six. It can also be applied to ascertaining the strength of spruce beams if the figures given in the table are multiplied by 0.78; or in designing a floor to be sustained by spruce beams, multiply the required load by 1.28, and use the dimensions as given by the table of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro

by the table.

Theses tables are computed for beams one inch in width, because the strength of beams increases directly as the width when the beams are broad

enough not to cripple.

EXAMPLE.—Required the safe load per square foot of floor, which may be safely sustained by a floor on Southern pine 10 × 14 inch beams, 8 feet on centres, and 20 feet span. In Table I a 1 × 14 inch beam, 20 feet span, will sustain 118 bs. per foot of span; and for a beam 10 inches wide the load would be 1180 bs. per foot of span; or 1474 bs. per square foot of floor for Southern-pine beams. From this should be deducted the weight of the floor. which would amount to 17½ lbs. per square foot, leaving 130 lbs. per square foot as a safe load to be carried upon such a floor. If the beams are of spruce, the result of 147½ lbs. would be multiphed by 0.78, reducing the load to 115 lbs. The weight of the floor, in this histance amounting to 16 lbs. would leave the safe net load as 90 lbs. per square foot for spruce beams.

Table II applies to the design of floors whose strength must be in excess of that necessary to sustain the weight, in order to meet the conditions of

delicate or rapidly moving machinery, to the end that the vibration or dis-tortion of the floor may be reduced to the least practicable limit.

In the table the limit is that of load which would cause a bending of the beams to a curve of which the average radius would be 1250 feet.

This table is based upon a modulus of elasticity obtained from observa-tions upon the deflection of loaded storehouse floors, and is taken at 2,000,000 lbs. for Southern pine; the same table can be applied to spruce, whose modulus of elasticity is taken as 1,200,000 lbs., if six tenths of the load for Southern pine is taken as the proper load for spruce; or, in the matter of designing, the load should be increased one and two thirds times, and the dimension of timbers for this increased load as found in the table should be

used for spruce.

It can also be applied to beams and floor-timbers which are supported at each end and in the middle, remembering that the deflection of a beam supported in that manner is only four tenths that of a beam of equal span which rests at each end; that is to say, the floor-planks are two and one half times as stiff, cut two bays in length, as they would be if cut only one bay in length. When a floor plank two bays in length is evenly loaded, three sixteenths of the load on the plank is su-tained by the beam at each end of the plank, and ten sixteenths by the beam under the middle of the plank; so that for a completed floor three eighths of the load would be sustained by the beams under the joints of the plank, and five eighths of the load by the beams under the middle of the plank: this is the retson of the impor tance of breaking joints in a floor-plank every three feet in order that each beam shall receive an identical load. If it were not so, three eighths of the whole load upon the floor would be sustained by every other beam, and five eighths of the load by the corresponding afternate beams

Repeating the former example for the load on a mill floor on Southern-pine beams 10 × 14 inches, and 20 feet span, laid 8 feet on centres: In Table II a 1 × 14 inch beam should receive 61 lbs. per foot of span, or 75 lbs. per sq. ft. of floor, for Southern-pine beams. Deducting the weight of the floor. 11½ lbs. per sq. ft., leaves 57 lbs. per sq. ft. as the advisable load.

If the beams are of spruce, the result of 75 lbs. should be multiplied by 0.6, reducing the load to 45 lbs. The weight of the floor, in this instance amounting to 16 lbs., would leave the net load as 29 lbs, for spruce beams.

If the beams were two spans in length, they could, under these conditions support two and a half times as much load with a could amount of defice. Repeating the former example for the load on a mill floor on Southern-

support two and a half times as much load with an equal amount of deflection, unless such load should exceed the limit of safe load as found by Table

I, as would be the case under the conditions of this problem.

Mill Columns.—Timber posts offer more resistance to fire than iron pillars, and have generally displaced them in millwork. Experiments Experiments made on the testing-machine at the U. S. Arsenal at Watertown, Mass. show that sound timber posts of the proportions customarily used in mill-work yield by direct crushing, the strength being directly as the area at the smallest part. The columns yielded at about 4500 lbs, per square inch, confirming the general practice of allowing 600 lbs. per square inch, as a safe load. Square columns are one fourth stronger than round ones of the same diameter.

### I. Safe Distributed Loads upon Southern-pine Beams One Inch in Width.

(C. J. H. Woodbury.)

(If the load is concentrated at the centre of the span, the beams will sus in half the amount as given in the table.)

fert.						Dep	th of	l Bea	m in	incl	1 <b>08</b> .				
m, fe	2	8	4	5	6	î	8	9	10	11	12	13	14	15	16
Span,			·		Loa	d in	pour	ods Į	er fo	ot o	f Spa	ın.			
5 6 7 8 9	38 27 20	86 60 44	154 107 78	240 167 122	346 240 176	827 240	427 314	540 897	667 490	807 598	705	828			
10	15	34 27 22	60 47 38 32	94 74 60 50	135 107 86 71	184 145 118 97	240 190 154 127	240 194 161	375 296 240 198	454 859 290 240	540 427 346 286	634 501 406 335	735 581 470 389	667 540 446	759 614 508
11 12 13 14 15 16 17 18 19 20 21		•••	27	42 36 81	51 44	82 70 60 52	107 90 78	185 115 99	167 142 128	202 172 148	240 205 176	282 240 207	827 278 240	875 820 276	474 364 814
15 1 <b>6</b> 17		• • • • • • • • • • • • • • • • • • • •		27	89 84 80	52 46 41 86	68 60 53 47	86 76 67	107 94 88 74	129 118 101 90	154 185 190 107	180 158 140 125	209 184 168 145	240 211 187 167	273 240 217 190
9 20 21		••					43 88	54 49 44	66 60 54	80 78 66	96 86 78	112 101 92	180 118 107	150 135 122	170 154 139
22 23 24 25	::::			::					50 45	55 50 46	71 65 60 55	84 77 70 65	97 89 82 75	112 102 94 86	127 116 107 98

### Distributed Loads upon Southern-pine Beams sufficient to produce Standard Limit of Deflection.

(C. J. H. Woodbury.)

	Depth of Beam in inches.													ġ.									
	2	:	8	4	T	5	Ī	6	1	7	T	8	9	1	0	11	15	5	18	14	15	16	Deflection,
							L	oa	d i	in	ро	นท	ds p	er	fo	ot o	f Sp	A.I	a.				De
5 6 7 8 9	8	1	0	23	14	14		7	11	22		82			_		Γ	ī			Ī	ī	.03
5	2	ŀ	7	16		31		58	1	85	1	26			47		ı	- 1			1	1	.04
7	ļ.,	ı	5	12		23		19	ı	62		93	135		81	241		- 1			1	1	.05
8	l.,	ı	4	9	1	17	1 8	30	ı	48	1	71	101		39	185			305		1	l	.07
9	١	١		7	1	14	1 5	24	ļ.	38	1	56	80	) 1	10	146	19	10	241	301	1		.09
0	1	١		6	1	11	ĺ	9	!	30	İ	46	6:	5	89	118	15	4	195	244	300	i '	.12
1		I				9		6	1	25		88 82	54	il.	73	98			161	80.3			.14
2	1.		•		Ί.,			3	1	21	1	82	4:		63	82			136	169			.17
3	i	١	•		Т.,	•		1	1	18	1	:7	86		53	70			116	144			.204
4	1	١.,	•••		η.	•	١.	•		16		23	88		45	60		8	100	124			.28
5		١.,	• • •	•••	1	• •	١٠,	• • •	1	14	1	20	29		40	53		8	87	108			.270
6		١.,	•		1	•••	١.,	• •		**		18	25		83	46		ŏ	76	95	117		.307
7	1	١.,	•••		١.	•	١٠,	٠		•		16	Gal.		31	41	5	ŏ	68	84		126	.346
	1	١.,	•	•••	1	• •	١.,	•••	٠.	٠.		10	22 20		27	37	4	2	60	75			
8	1	١.	•	• • • •		••	١٠.	••		• •	٠.	•••	18			-01	4			68		112	.388
9		١.	•		٠ ا	• •	ŀ··	• •	٠٠	• •	٠٠	٠١	16		25	33			54				.488
0	1	١	•••		! .	• •	· ·	• •	١.	•	٠.	٠٠!	•••		22	30	3	9	49	61		91	.480
1	1	ŀ	• •		٠.	٠.	١.,		١.		٠.	٠٠I		1 3	<b>2</b> 0 j	27	8	9	44	55		83	. 529
:2	1		· • ·		· [ · •				١.	٠.	٠.	•			••	24	8	2	40	50		75	.580
3	1.	١.,	• •		١.		١.		١.	• •	١.	٠٠	. <b>.</b>			22	2	9	37	46		69	.634
4	1	١.			1 .		١.		١.,		٠.	.		١			2		34	42		63	.691
25	١.	١.		١	Ι.		ı		١		١.	.		١.	. 1		5	5	31	39	48	58	.750

### ELECTRICAL ENGINEERING.

### STANDARDS OF MEASUREMENT.

C.G.S. (Centimetre, Gramme, Second) or "Absolute" System of Physical Measurements:

Unit of space or distance = 1 centimetre, cm.; = 1 gramme, gm.; Unit of mass

= 1 second, s.; Unit of time

Unit of velocity = space + time = 1 second, 8; Unit of velocity = space + time = 1 centimetre in 1 second; Unit of acceleration = change of 1 unit of velocity in 1 second; Acceleration due to gravity, at Paris, = 981 centimetres in 1 second; Unit of force = 1 dyne =  $\frac{.002046}{981}$  lb. = .000002247 lb.

A dyne is that force which, acting on a mass of one gramme during one second, will give it a velocity of one centimetre per second. The weight  $\epsilon$  one gramme in latitude  $40^{\circ}$  to  $45^{\circ}$  is about 990 dynes, at the equator 973 dynes, and at the poles nearly 984 dynes. Taking the value of g, the acceleration due to gravity, in British measures at 32.185 feet per second at Paris, and the metre = 39.37 inches, we have

 $1 \text{ gramme} = 32.185 \times 12 + .3987 = 981.00 \text{ dynes}.$ 

Unit of work = 1 erg = 1 dyne-centimetre = .00000007373 foot-pound; Unit of power = 1 watt = 10 million ergs per second, = .7378 foot-pound per second, =  $\frac{.7378}{550} = \frac{1}{746}$  of 1 horse-power = .00134 H.P.

C.G.S. Unit of magnetism = the quantity which attracts or repels an equal quantity at a centimetre's distance with the force of 1 dyne.

C.G.S. Unit of electrical current = the current which, flowing through a length of 1 centimetre of wire, acts with a force of 1 dyne upon a unit of magnetism distant 1 centimetre from every point of the wire. The ampere, the commercial unit of current, is one tenth of the C.G.S. unit.

The Practical Units used in Electrical Calculations are:

Ampere, the unit of current strength, or rate of flow, represented by C.

Volt, the unit of electro-motive force, electrical pressure, or difference of potential represented by E.

potential, represented by E.

Ohm, the unit of resistance, represented by R. Coulomb (or ampere-second), the unit of quantity, Q. Ampere-hour = 3600 coulombs, Q'. Watt (ampere-volt, or volt-ampere), the unit of power, P.

Matt (ampere-voit, or voit-ampere), the unit of power, P.
Joule (voit-coulomb), the unit of energy or work, W.
Farad, the unit of capacity, represented by K.
Henry, the unit of induction.
Using letters to represent the units, the relations between them may be expressed by the following formulæ, in which t represents one second and Tone hour:

$$C=rac{E}{R}, \quad Q=Ct, \quad Q'=CT, \quad K=rac{Q}{E}, \quad W=QE, \quad P=CE.$$

As these relations contain no coefficient other than unity, the letters may represent any quantities given in terms of those units. For example, if E represents the number of voits electro-motive force, and R the number of ohms resistance in a circuit, then their ratio E+R will give the number of amperes current strength in that circuit.

The above six formulæ can be combined by substitution or elimination.

so as to give the relations between any of the quantities. The most important of these are the following:

$$Q = \frac{E}{R}t, \quad K = \frac{C}{E}t, \quad W = CEt = \frac{E^2}{R}t = C^2Rt = Pt,$$

$$P = \frac{E^2}{R} = C^2R = \frac{W}{t} = \frac{QE}{t},$$

The definitions of these units as adopted at the International Electrical ugress at Chicago in 1898, and as established by Act of Congress of the nited States, July 12, 1894, are as follows:

The ohm is substantially equal to 10° (or 1,000,000,000) units of resistance the C.G.S. system, and is represented by the resistance offered to an unrying electric current by a column of mercury at 32° F., 14.4521 grammes mass, of a constant cross-sectional area, and of the length of 106.3 centietres.

The ampere is 1/10 of the unit of current of the C.G.S. system, and is the actical equivalent of the unvarying current which when passed through solution of nitrate of silver in water in accordance with standard speci-

ations deposits silver at the rate of .001118 gramme per second.

The volt is the electro-motive force that, steadily applied to a conductor use resistance is one obni, will produce a current of one ampere, and is actically equivalent to 1000/1434 (or. 6974) of the electro-motive force beeen the poles or electrodes of a Clark's cell at a temperature of 15° C... d prepared in the manner described in the standard specifications.

The coulomb is the quantity of electricity transferred by a current of one

pere in one second.

the farad is the capacity of a condenser charged to a potential of one

It by one coulomb of electricity.

The joule is equal to 10,600,000 units of work in the C.G.S. system, and is actically equivalent to the energy expended in one second by an ampere

The watt is equal to 10,000,000 units of power in the C.G.S. system, and is actically equivalent to the work done at the rate of one joule per second. The henry is the induction in a circuit when the electro-motive force iniced in this circuit is one volt, while the inducing current varies at the rate

one ampere per second.

The ohm, volt, etc., as above defined, are called the "international" ohm, it, etc., to distinguish them from the "legal" ohm, B.A. unit, etc.

The value of the ohm, determined by a committee of the British Associanin 1863, called the B.A. unit, was the resistance of a certain piece of pper wire preserved in London. The so-called "legal" ohm, as adopted the International Congress of Electricians in Paris in 1884, was a correcin of the B.A. unit, and was defined as the resistance of a column of ercury 1 square millimetre in section and 106 centimetres long, at a temrature of 32° F.

```
legal ohm
                         = 1.0112 B.A. units, 1 B.A. unit = 0.9889 legal ohm;
= 1.0186 " " 1 " " = 0.9866 int. ohm;
international ohm = 1.0136 "
                                                             = 0.9866 \text{ int. ohm};
                        = 1.0023 \text{ legal ohm}, 1 \text{ legal ohm} = 0.9977
```

### DERIVED UNITS.

```
= 1 million ohms;
1 megohm
1 microhm = 1 millionth of an ohm;
1 milliampere = 1/1000 of an ampere;
1 micro-farad = 1 millionth of a farad.
```

### RELATIONS OF VARIOUS UNITS.

```
mpere.....
                              = 1 coulomb per second;
'olt-ampere.....
                              = 1 watt = 1 volt-coulomb per second;
                             = .7373 foot-pound per second,
= .0009477 heat-units per second (Fahr.),
                              = 1/746 of one horse-power:
                              = .7373 foot-pound,
                              = work done by one watt in one second,
                              = .0009477 heat-unit;
3ritish thermal unit ... ...
                              = 1055.2 joules;
                              = 737.3 foot-pound per second,
                              = .9477 heat-units per second,
= 1000/746 or 1.8405 horse-powers;
tilowatt, or 1000 watts.....
Kilowatt-hours,
                              = 1.3405 horse-power hours,
10 voit-ampere hours,
                              = 2.654.200 foot-pounds.
British Board of Trade unit, = 3416 heat-units
orse-power. ) = 746 watts = 746 volt-amperes.
                            t = 33,000 foot-pounds per minute.
```

The ohm, ampere, and volt are defined in terms of one another as follows: im, the resistance of a conductor through which a current of one ampere il pass when the electro-motive force is one volt. Ampere, the quantity

# Equivalent Values of Electrical and Mechanical Units.

Unit.	Unit.   Equivalent Value in Other Units.	Unit.	Equivalent Value in Other Units.	Unit.	Equivalent Value in Other Units.
K. W. Hour =	1,000 watt hours. 2,654,200 ftlbs. 3,600,000 joules. 3,412 hear-units. 367,000 kilogram metres. 367,000 kilogram netres. with perfect efficiency. 5,53 lbs. water evap. from	H.P. =	746 watts. 746 K. W. 33.00 ft.,lbs. per minute. 550 ft.,lbs. per second. 2,546 heat-units per hour. 707 heat-units per minute. 175 lbs. carbon oxidized per hour.	1 Heat- unit ==	1.055 watt seconds. 778 ftibs. 107.6 ftibs. 107.6 ft.ibgram metres000283 H.P. hour000088 H.P. hour. dized01036 lbs. water evap. from and at 312° F.
	and at 212° F. 22.15 lbs. of water raised from 62° to 212° F.		2.64 lbs. water evap. per hour from and at 212° F.	1 Heat-unit per Sq. Ft.	.122 watts per square in. .0176 K. W. per sq. ft. .0286 H. P. ner sq. ft.
	1,980,000 ftlbs. 2,545 heat-units. 273,740 k.g. m.	Joule=	.00000278 K. W. hour. .102 k. g. m. .0009477 heat-units. .7373 ft -lb.	1 Kilogram Metre =	7.233 ftlbs. .0000365 H.P. hour. .0000272 K.W. hour. .0093 heat-units.
Hour =	with perfect efficiency. 2.64 bbs. water evaporated from and at 212° F. 17.0 bs. water raised from 62° F. to 212° F.	1 Ftlb. =	1.386 foules. -1383 k. g. m. -00000077 K. W. hours. -001385 heat-units. -000006 H.P. hour.	1 lb. Carbon Oxidized with per-	14,544 beat-units. 1.11 lb. Anth'cite coal ox. 2.5 lbs. dry wood oxidized. 2.1 cu. ft. illuminating-gas. 4.36 K. W. hours.
	1,000 watts. 1.34 horse-power. 2,634,200 ftlbs. per hour. 44,340 ft. lbs.	1 2	1 joule per second00134 H.P. 8 412 hear units per hour.	fect Effi- ciency =	11,315,000 ftlbs. 11,315,000 ftlbs. 15 lbs. of water evap. from and at 212° F.
Kilo-	3,412 heat-units per hour		. 0035 lbs. water evap. per hr. 44.24 ftlbs. per minute.	4 1b. Wodon	. 283 K. W. hour. 879 H.P. hour,
Watt =	275 lb. carbon oxidized per second. 275 lb. carbon oxidized per hour. 3.53 lbs. water evap per hour from and at 252 lbs.	1 Watt per sq in. =	8.19 heat-units per sq. ft. per minutte. 6871 ftlbs. per sq. ft. per minutte.	Fvapor'ed from and at 212° F. =	108,900 k. g. m. 1,019,000 joules, 751,800 ftlbs,

f current which will flow through a resistance of one ohm when the electro-portive force is one volt. Volt, the electro-motive force required to cause a

irrent of one ampere to flow through a resistance of one ohm.

Units of the Magnetic Circuit.—(See Electro-magneta, page 1088.) For Methods of making Electrical Measurements, Test-ng, etc., see Munroe & Jamieson's Pocket-Book of Electrical Rules, ables, and Data; S. P. Thompson's Dynamo-Electric Machinery; and works a Electrical Engineering.

Rauivalent Electrical and Mechanical Units.-H. Ward conard published in The Electrical Engineer. Feb. 25, 1895, a table of useil equivalents of electrical and mechanical units, from which the table on

age 1026 is taken, with some modifications.

### NALOGIES BETWEEN THE FLOW OF WATER AND BLECTRICITY.

Water.

lead, difference of level, in feet. ifference of pressure per sq. in., in

esistance of pipes, apertures, etc., increases with length of pipe, with contractions, roughness, etc.; de-creases with increase of sectional area. The law of increase and decrease is expressed by complex formulæ. See Flow of Water.

tate of flow, as cubic ft. per second, gallons per minute, etc., or volume divided by the time. In the mining regions sometimes expressed in "miners' inches."

mantity, usually measured in cubic feet or gallons, but is also equiva-lent to rate of flow x time, as cubic feet per second for so many hours.

Vork, or energy, measured in footpounds; product of weight of falling water into height of fall; in pumping, product of quantity in cubic feet into the pressure in lbs. per square foot against which the water is pumped.

'ower, rate of work. Horse-power,ft.lbs. of work done in 1 min. + 38,000. n falling water, pounds falling in one second + 550. In water flowing in pipes, rate of flow in cubic feet er second × pressure resisting the flow in lbs. per sq. ft. + 550.

ELECTRICITY. Volts; electro-motive force; difference of potential or of pressure; E. or E.M.F.

Ohms, resistance, R. The resistance increases directly as the length of the conductor or wire and inversely as its sectional area,  $R \propto l + s$ . It varies with the nature or quality of the conductor.

Conductivity is the reciprocal of spe-

cific resistance.

Amperes; current; current strength; intensity of current; rate of flow; 1 ampere = 1 coulomb per second.

Amperes = 
$$\frac{\text{volts}}{\text{ohms}}$$
;  $C = \frac{E}{R}$ ;  $E = CR$ .

Coulomb, unit of quantity,  $Q_1 = rate$ of flow x time, as ampere-seconds. 1 ampere-hour = 3600 coulombs.

Joule, volt-coulomb, W, the unit of work, = product of quantity by the electro-motive force = volt-amperesecond. 1 joule = .7878 foot-pound.

If C (amperes) = rate of flow, and E (volts) = difference of pressure between two points in a circuit, energy expended = CEt, =  $C^2Rt$ , since E = CR.

Watt, unit of power, P, = volts × amperes, = current or rate of flow × difference of potential.

1 watt = .7878 foot-pound per second

= 1/746 of a horse-power.

Analogy between the Ampere and the Miner's Inch.

O'Connor Sloane.)—The miner's inch is defined as the quantity of water between the Ampere and the Miner's Inch. hich will flow through an aperture an inch square in a board two inches ick, under a head of water of six inches. Here, as in the case of the amre, we have no reference to any abstract quantity, such as gallons or sunds. There is no reference to time. It is simply a rate of flow. We my consider the head of water, six inches, as the representative of electri-al pressure; i.e., one volt. The aperture restricting the flow of water may assumed to represent the resistance of one ohm; the flow through a restance of one ohm under the pressure of one volt is one ampere; the flow rough the resistance of a one-inch hole two inches long under the pressure six inches to the upper edge of the opening is one miner's inch.

The miner's inch-second is the correct analogue of the ampere-second; the edenotes a specific quantity of water, 0.194 gallon; the other a specific

antity of electricity, a coulomb.

### ELECTRICAL RESISTANCE.

Laws of Electrical Resistance. - The resistance, R, of any cor ductor varies directly as its length, I, and inversely as its sectional area, :

EXAMPLE.—If one foot of copper wire .01 in. diameter has a resistance c 10323 ohm, what will be the resistance of a mile of wire. 3 in. diam. at the same temperature? The sectional areas being proportional to the square of the diameters, the ratio of the areas is .3°: .01° = 900 to 1. The length are as 5280 to 1. The resistances being directly as the lengths and inversel as the sectional areas, the resistance of the second wire is .10323 × 5280 -900 = .6056 ohm.

Conductance, c, is the inverse of resistance.  $R = \frac{l}{sc}$ ,  $c = \frac{l}{sR}$ . If c and c represent the conductances, and R and  $R_2$  the respective resistance of two substances of the same length and section, then  $c: c_2::R_2:R$ . **Equivalent Conductors.**—With two conductors of length  $l, l_1$ , or

conductances  $c_1$ ,  $c_2$ , and sectional areas  $s_1$ , we have the same resistance

and one may be substituted for the other when  $\frac{1}{c_3} = \frac{l_1}{c_1 s_1}$ . The specific resistance, also called resistivity, a, of a material of unit length and section is its resistance as compared with the resistance of a standard conductor, such as pure copper. Conductivity, or specific conductance, is the reciprocal of resistivity.

$$R=\frac{l}{sc}, R=\frac{al}{s}.$$

If two wires have lengths  $l, l_1$ , areas  $s, s_1$ , and specific resistances  $a, a_1$ , then

actual resistances are 
$$R = \frac{al}{s}$$
,  $R_1 = \frac{a_1 l_1}{s_1}$ , and  $\frac{R}{R_1} = \frac{als_1}{a_1 l_1 s}$ .

Electrical Conductivity of Different Metals and Alloys —Lazare Weiler presented to the Société Internationale des Électriciens de results of his experiments upon the relative electrical conductivity of certain metals and alloys, as here appended:

1.	Pure silver	100	17. Phosphor tin	17.3
	Pure copper		18. Alloy of gold and silver	
	Refined and crystallized		(50%)	16.1
	copper	99.9	19. Swedish iron	16
	Telegraphic silicious bronze	98	20. Pure Banca tin	15.
5.	Alloy of copper and silver		21. Antimonial copper	12.
	(50%)	86.65	22. Aluminum bronze (10%)	12.
6.	Pure gold	78	23. Siemens steel	12,
	Silicide of copper, 4% Si	75	24. Pure platinum	104
	Silicide of copper, 12% Si	54.7	25. Copper with 10% of nickel	:0:
	Pure aluminum	54.2	26. Cadmium amalgam (15%).	10.
	Tin with 12% of sodium	46.9	27. Dronier mercurial bronze	10.
	Telephonic silicious bronze	35	28. Arsenical copper (10%)	9. 8.
	Copper with 10% of lead	30	29. Pure lead	ð.
	Pure zinc	29.9	30. Bronze with 20% of tin	~
14.	Telephonic phosphor -	00	31. Pure nickel	g. 6.
	bronze	29	32. Phosphor-bronze, 10% tin	21
	Silicious brass, 25% zinc	26.49	33. Phosphor-copper, 9% phos	3.
10.	Brass with 35% of zinc	21.5	84. Antimony	~

The above comparative resistances may be reduced to ohms on the hat a wire of soft copper one milimetre in diameter at a temperature of C. has a resistance of .02029 international ohms per metre; or a wire. inch diam, has a resistance of 9.59 international ohms per foot.

### Belative ('onductivities of Different Metals at 0° and 100° C. (Matthiessen.)

	Condu	ctivities.		Conductivities.			
Metals.	At 0° C. " 32° F.	At 100° C. " 212° F.	Metals.	At 0° C. " 32° F.	At 100° C. " 212° F.		
Silver, hard Copper, hard Gold, hard Zinc, pressed Cadmium Platinum, soft Iron, soft	100 99.95 77.96 29.02 23.72 18.00 16.80	71.56 70.27 55.90 20.67 16.77	Tin Lead Arsenic Antimony Mercury, pure. Bismuth	12.36 8.32 4.76 4.62 1.60 1.245	8.67 5.86 3.33 8.26 0.878		

### Conductors and Insulators in Order of their Value.

Conductors.	Insulators	(Non-conductors).
All metals	Dry Air	Ebonite
Well-burned charcoal	Shellac	Gutta-percha
Plumbago	Paraffin	India-rubber
Acid solutions	Amber	Silk
Saline solutions	Resins	Dry Paper
Metallic ores	Sulphur	Parchment
Animal fluids	Wax	Dry Leather
Living vegetable substances	Jet	Porcelain
Moist earth	Glass	Oils
Water	Mica	

According to Culley, the resistance of distilled water is 6754 million times

as great as that of copper.

as great as that of copper. **Resistance Varies with Temperature.**—For every degree Centigrade the resistance of copper increases about 0.4%, or for every degree F. 0.222%. Thus a piece of copper wire having a resistance of 10 ohms at 32° would have a resistance of 11.11 ohms at 82° F. The following table shows the amount of resistance of a few substances.

used for various electrical purposes by which 1 ohm is increased by a rise of temperature 1° F., or 1° C.

Material.	Rise of R. of 1	Ohm when Heated-
material.	1° F.	1° C.
Platinoid	00013	.00021
Platinum-silver		.00031
German silver (see below	w)00024	.00044
Gold, silver		.00065
Cast iron	00044	.00080
Copper		.00400

Annealing.—The degree of hardness or softness of a metal or alloy affects its resistance. Resistance is lessened by annealing. Matthiessen gives the following relative conductivities for copper and silver, the comparison being made with pure silver at 100° C.:

Metals.	Temp. C.	Hard.	Annealed.
Copper	11°	95.31	97.83
Silver	14.6°	95.36	108.33

Dr. Siemens compared the conductivities of copper, silver, and brass with pure mercury at 0° C., with the following results:

Metal.	Hard.	Annealed.
Copper	52,207	55.253
Silver	56,252	64.360
Brass		18.502

Edward Weston (Proc. Electrical Congress 1893, p. 179) says that the resistance of German silver depends on its composition. Mathiessen gives it as nearly 13 times that of copper. with a temperature coefficient of .0004433 per degree C. Weston, however, has found copper-nickel-zinc alloys (Germasilver) which had a resistance of nearly 28 times that of copper, and a temperature coefficient of about one half that given by Matthiessen. Kennelly and Fessenden (Proc. Elec. Cong., p. 186) find that copper has a uniform temperature coefficient of 0.40% per degree C., between the limits of 20° and 250° C.

Standard of Resistance of Copper Wire. (Trans. A. I. E. E.. Sept. and Nov. 1890.)—Matthiessen's standard is: A hard-drawn copper wire 1 metre long, weighing 1 gramme has a resistance of 0.1469 B.A. unit a 0 °C. (1 B.A. unit = 0.9889 legal ohm = 0.9866 international ohm.) Resistance ance of hard copper = 1.0226 times that of soft copper. Relative conductive power (Matthiessen): silver, 100; hard or unannealed copper, 99.95; soft annealed copper, 102.21. Conductivity of copper at other temperatures that

$$Ct = C_0(1 - .00387t + .000009009t^2).$$

 $Ct = C_0(1 - .00387t + .000009009t^2).$  The resistance is the reciprocal of the conductivity, and is

$$Rt = R_0(1 + .00387t + .00000597t^2).$$

A committee of the Am. Inst. Electrical Engineers recommend the following as the most correct form of the Matthiessen standard, taking 8.89 as the sp. gr. of pure copper :

A soft copper wire 1 metre long and 1 mm. diam. has an electrical resistance of .0205 B.A. unit at 0° C. From this the resistance of a soft copper wire 1 foot long and .001 in. diam. (mil-foot) is found to be 9.720 B.A. units at 0° C.

Standard Resistance at 0° C.	B.A. Units.	Legal Ohms	Ohms.
Metre-millimetre, soft copper  Cubic centimetre ""  Mil-foot ""	000001616	.02084 .000001598 9.612	.02029 .000001559 9.590
1 mil-foot. of soft copper at 10°.22 C.	or 50°.4 F	10	9.977
" " " " " " " 15°.5 " " 15°.5 " " " " " " 28°.9 " "	' 59°.9 F	10.20 10.58	10.175 10.505

For tables of the resistance of copper wire, see pages 218 to 220, also

Taking Matthiessen's standard of pure copper as 100%, some refined meta-has exhibited an electrical conductivity equivalent to 103%. Matthiessen found that impurities in copper sufficient to decrease in density from 8,94 to 8,90 produced a marked increase of electrical resistance.

### ELECTRIC CURRENTS.

Ohm's Law.—This law expresses the relation between the three fundamental units of resistance, electrical pressure, and current. It is:

$$\text{Current} = \frac{\text{electrical pressure}}{\text{resistance}}; \quad C = \frac{E}{R}; \quad \text{whence} \quad E = CR, \text{ and } \quad R = \frac{E}{C}$$

In terms of the units of the three quantities,

Amperes = 
$$\frac{\text{volts}}{\text{ohms}}$$
; volts = amperes × ohms; ohms =  $\frac{\text{volts}}{\text{amperes}}$ 

Examples: Simple Circuits.—1. If the source has an effective electrical pressure of 100 volts, and the resistance is two ohms, what is the current?

$$C = \frac{E}{R} = \frac{100}{2} = 50 \text{ amperes.}$$

2. What pressure will give a current of 50 amperes through a resistance of 2 ohms?  $E = CR = 50 \times 2 = 100$  volts.

3. What resistance is required to obtain a current of 50 amperes when the

pressure is 100 volts?  $R = \frac{E}{C} = \frac{100}{50} = 2$  ohms.

The following examples are from R. E. Day's "Electric Light Arithmetic."

1. The internal resistance of a certain Brush dynamo-machine is 10.9 ohms of the arternal resistance of the arternal resistance. and the external resistance is 73 ohms; the electro-motive force of the machine being 839 volts. Find the strength of the current flowing in the circuit

$$E = 839$$
;  $R = 73 + 10.9 = 83.9$  ohms;  $C = E + R = 839 + 83.9 = 10$  amperes.

2. Three arc lamps in series have a resistance of 9.86 ohms, while the resistance of the leading wires is 1.1 ohm, and that of the dynamo is 2.8 ohms. Find what must be the electro-motive force of the machine when the strength of the current produced is 14.8 amperes.

$$R = 2.8 + 9.36 + 1.1 = 18.26$$
 ohms;  $C = 14.8$  amperes;  $E = C \times R = 13.26 \times 14.8 = 196.3$  volts.

3. Calculate from the following data the average resistance of each of 1) Calculate from the following data the average resistance of each of three arc lamps arranged in series. The electro-motive force of the machine is 244 volts and its resistance is 3.7 ohms, while that of the leading wires is 2 hms, and the strength of current through each lamp is 21 amperes.

.hms, and the strength of current through each lamp is 21 amperes. If x represent the average resistance in ohms of each lamp, then the total resistance of the circuit is R = 8x + 2 + 3.7. But by Ohm's law R = E + C,  $\therefore 3x + 5.7 = 244/21 = 11.61$  ohms, whence r = 1.97 ohms, nearly.

4. Three Maxim incandescent lamps were placed in series. The average resistance, when hot, of each lamp was 39.3 ohms, and that of the dynamo and leading wires 11.2 ohms. What electro-motive force was required to maintain a current of 1.2 amperes through this circuit?

In this case we have

$$R = 8 \times 39.3 + 11.2 = 129.1$$
 ohms, and  $C = 1.2$  ampere;

and therefore, by Ohm's law,

$$E = C \times R = 1.2 \times 129.1 = 154.9$$
 volts.

5. The resistance of the arc of a certain Brush lamp was 8.8 ohms when a current of 10 amperes was flowing through it. What was the electro-motive force between the two terminals?

$$E = C \times R = 10 \times 3.8 = 38$$
 volts.

6. Twenty-five exactly similar galvanic cells, each of which had an average internal resistance of 15 ohms, were joined up in series to one incandescent lamp of 70 ohms resistance, and produced a current of 0.112 amperes. What would be the strength of current produced by a series of 30 such cells through 2 lamps, each of 30 ohms resistance?

The data of the first part of the problem enable us to determine the average electro-motive force of each cell of the battery. Let this be represented by E: then we have

sented by E; then we have

$$25E = C \times R = .112 \times (25 \times 15 + 70) = .112 \times 445;$$

$$\therefore E = \frac{.112 \times 445}{25} = 2 \text{ volts, nearly.}$$

Then from the data in the second part of the problem, we have, by Ohm's law,

$$C = \frac{30 \times 2}{30 \times 15 + 2 \times 30} = \frac{60}{510} = 0.118$$
 ampere.

**Divided Circuits.**—If the circuit has two paths, the total current in both divides itself inversely as the resistances.

If R and  $R_1$  are the resistances of the two branches, and C and  $C_1$  the currents,  $C \times R = C_1 \times R_1$ , and  $\frac{C}{C_1} = \frac{R_1}{R}$ , whence

$$C = \frac{C_1 R_1}{R}; \quad C_1 = \frac{CR}{R}; \quad R = \frac{C_1 R_1}{C}; \quad R_1 = \frac{CR}{C}.$$

In the case of the double circuit, one circuit is said to be in shunt to the

other, or the circuits are in multiple are or in parallel.

Conductors in Series.—If conductors are arranged one after the other they are said to be in series, and the total resistance is the sum of their several resistances,  $R = R_1 + R_2 + R_3$ .

Internal Resistances,—In a simple circuit we have two resistances,

that of the circuit R and that of the internal parts of the source, called in-

ternal resistance, r. The formula of Ohm's law when the internal resistance is considered is  $C = \frac{m}{R+r}$ .

**Total or Joint Besistance of Two Branches.**—Let C be the total current, and  $C_1$ ,  $C_2$  the currents in branches whose resistances respectively. ively are  $R_1$ ,  $R_2$ . Then  $C=C_1+C_2$ ;  $C=\frac{E}{R}$ ;  $C_1=\frac{E}{R_1}$ ;  $C_2=\frac{E}{R_2}$ ; or, if E=1,  $C=\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}$ , whence  $R=\frac{R_1R_2}{R_1+R_2}$ , which is the joint resistance of  $R_1$  and  $R_2$ .

 $R_1$  and  $R_2$ . Similarly, the joint resistances of three branches have resistances respectively.  $R_1R_2R_3$ 

ively of  $R_1$ ,  $R_2$ ,  $R_3$ , is  $R = \frac{R_1R_2R_3}{R_1R_2 + R_1R_3 + R_2R_3}$ . When the branch resistances are equal, the formula becomes

$$\frac{R_1^n}{R_1^{n-1}\times n}=\frac{R_1}{n},$$

where  $R_1$  = the resistance of one branch, and n = the number of branches **Kirchhoff's Laws.**—1. The sum of the currents in all the wires which meet in a point is nothing.

2. The sum of all the products of the currents and resistances in all the branches forming a closed circuit is equal to the sum of all the electrical pressures in the same circuit.

When  $E=E_1+E_2+E_3$ , etc., and  $C=C_1+C_2+C_3$ , etc., and R is the total resistance of  $R_1R_2R_3$ , etc., then

$$E_1 + E_2 + E_3$$
, etc. =  $C_1R_1 + C_2R_2 + C_3R_3$ , etc.

**Power of the Circuit.**—The power, or rate of work, in watts = current in amperes  $\times$  resistance in ohms =  $C \times E$ . Since C = E + E. watts =  $\frac{E^2}{R}$  = electro-motive force² + resistance.

EXAMPLE.—What H.P. is required to supply 100 lamps of 40 ohms resistance each, requiring an electro-motive force of 60 volts?

The number of volt-amperes for each lamp is  $\frac{E^2}{R} = \frac{60^2}{40}$ , 1 volt-ampere =

.00134 H.P.; therefore  $\frac{60^2}{40} \times 100 \times .00134 = 12$  H.P. (electrical) very nearly.

If the loss in the dynamo is 20 per cent, then 12 H.P. is 80 per cent of the actual H.P. required; which therefore is  $\frac{12}{.80} = 15$  H.P.

Heat Generated by a Current, Joule's law shows that the head developed in a conductor is directly proportional, 1st, to its resistance; 34 to the square of the current strength; and 3d, to the time during which the current flows, or  $H = C^2Rt$ . Since C = E + R,

$$C^{2}Rt = \frac{E}{R}CRt = ECt = E\frac{E}{R}t = \frac{E^{2}t}{R}$$

Or, heat =  $current^2 \times resistance \times time$ 

= electro-motive force × current × time = electro-motive force² × time + resistance.

 $Q = \text{quantity of electricity flowing} = Ct = \frac{E}{R}t.$ 

H = EQ; or heat = electro-motive force  $\times$  quantity.

The electro-motive force here is that causing the flow, or the difference in

The electro-monve force here is that causing the now, or the dimerence potential between the ends of the conductor.

The electrical unit of heat, or "joule" =  $10^7$  ergs = heat generated in one second by a current of 1 ampere flowing through a resistance of one ohm = 239 gramme of water raised  $1^\circ$  C.  $H = C^2Rt \times .239$  gramme calories =  $C^2Rt \times .0009478$  British thermal units.

In electric lighting the energy of the current is converted into heat in the lamps. The resistance of the lamp is made great so that the required control of heat part he developed which is the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the required that the quantity of heat may be developed, while in the wire leading to and from the lamp the resistance is made as small as is commercially practicable, so that as little energy as possible may be wasted in heating the wire. The transformations of energy from the fuel burned in the boiler to the electric light are the following:

Heat energy is transformed into mechanical energy by means of the boiler

and engine.

Mechanical energy is transformed into electrical energy in the dynamo.

Electrical energy is transformed into heat in the electric light.

The heat generated in a conductor is the equivalent of the energy causing the flow. Thus, rate of expenditure of energy in watts = electro-motive force in volts  $\times$  current in amperes = EC, and the energy in joules = watts  $\times$  time in seconds = ECt. Heat =  $C^2Rt = ECt$ .

Heating of Conductors. (From Kapp's Electrical Transmission of Energy.)—It becomes a matter of great importance to determine beforehand what rise in temperature is to be expected in each given case, and if that rise should be found to be greater than appears safe, provision must be made to increase the rate at which heat is carried off. This can generally be done by increasing the superficial area of the conductor. Say we have one circular conductor of 1 square inch area, and find that with 1000 amperes flowing it would become too hot. Now by splitting up this conductor into 10 separate wires each one tenth of a square inch cross-sectional area, we have not altered the total amount of energy transformed into heat, but we have increased the surface exposed to the cooling action of the surrounding air in the ratio of 1:  $\sqrt{10}$ , and therefore the ten thin wires can dissipate more than three times the heat, as compared with the single thick wire.

Heating of Wires of Subaqueous and Aerial Cables (insulated with Gutta-percha). (Prof. Forbes.)

> Diameter of cable + Diameter of conductor = 4. Temperature of air  $= 20^{\circ}$  C.  $= 68^{\circ}$  F. t =excess of temperature of conductor over air.

	er in centi- and mils.		Cu	rrent in am	peres.	
Cm.	Mils.	t = 1° C. = 1.8° F.	t = 9° C. = 16.2° F.	t = 25° C. = 45° F.	t = 49° C. = 92.2° F.	$t = 81^{\circ} \text{ C.}$ = 145.8° F.
.1	40	3.7	11.0	17.8	24.0	29.5
.1 .2 .3 .4 .5 .6 .7 .8	80	9.1	27.0	43.8	59.0	72.5
.8	120	15.0	44.4	72.1	97.8	119
.4	160	21.2	62.5	102	137	168
.5	200	27.4	81.0	181	177	218
.6	240	33.7	100	164	219	268
.7	280	40.1	119	192	259	819
.8	310	46.4	137	223	801	369
.9	850	52.9	157	253	342	420
1.0	390	59.3	175	285	884	472
2.0	780	124	867	595	803	988
3.0	1180	189	559	908	1225	1503
4.0	1570	254	753	1221	1646	2021
5.0	1970	319	945	1584	2068	/ 2523
6.0	2360	385	1138	1846	2491	3058
7.0	2760	450	1330	2158	2846	3575
8.0	8150	514	1525	2472	3335	4094
9.0	3540	580	1716	2785	3755	4611
10.0	3940	645	1909	8097	4178	5130

Prof. Forbes states that an insulated wire carries a greater current without overheating than a bare wire if the diameter be not too great. Assuming the diameter of the cable to be twice the diam. of the conductor, a greater current can be carried in insulated wires than in bare wires up to 1.9 inch diam. of conductor. If diam. of cable = 4 times diam. of conductor, this is the case up to 1.1 inch diam. of conductor.

· Copper-wire Table.—The table on pages 1034 and 1035 is abridged from one computed by the Committee on Units and Standards of the Ameri-

can Institute of Electrical Engineers (Trans. Oct. 1893).

Weights, Lengths, and Resistances of Cool. Warm

1	Gauges.	Diam-	Area,	<b>&gt;</b>	Weight.	Length	gth.		Resistance.	nce.	
A. W. G. B. & B.	B. W. G. Stubbs'.	eter, inches.	Circular mils.	Lbs. per Foot.	Lbs. per Ohm, at 20° C., 68° F.	Feet per Lb.	Ft. per Ohm, at 20°C68°F.	Ohms per Lb. at 20° C., 68° F.	O. per ft., at 204 C., 686 F.	O. per ft., at 50° C., 122° F.	0. per ft., at
0000	0000	0.460	211,600	0.6406	13,090	1.561	20,440	0.00007639	0.00004893	0.00005467	0.00006658
ş	8	0.425	180,600	0.5468	9,538	1.829	17,450	0.0001048	0.00005732	0.00006404	0-00007097
3	8	98	144,400	0.4371	5,833	1.906	16,210	0.0001215	0.00006170	0.000000000	0.00007690
8	•	0.3648	183,100	0.4088	5,177	8.488	12,450	0.0001981	0.00007780	0.00006692	0.00009633
0	•	0.3249	105.500	0.0488	796	200	31.18	0.0002560	0.00006957	0.0001001	0.0001109
, ,	-	0.3000	000,06	0.8784	2,368	3.671	8,692	0.0004223	0.0001150	0.0001285	0.0001424
<b>-</b>	6	288	83,080	0.00	8,048	3.947	8,088	0.0004888	0.0001237	0.0001382	0.0001632
	. 00	0.2500	67,080	0.2031	1,316	6.925	6.479	0.0007601	0.0001543	0.0001724	0.0001911
61	_	0.2576	66,370	0.2009	1,88	4.977	017	0.0007765	0.0001560	0.0001743	0.000193E
•	•	38	58,690	0.1593	0.018	6.838	5,477	0.001066	0.0001828	0.0002042	0.000000
	20	0.2500	48,400	0.1465	6.789	6.826	4.675	0.001460	0.0002139	0.0002390	0.0002840
•	•	0.5043	41,740	0.1264	7.00	7.914	4,031	0.001963	0.0002480	0.0002771	1/900000
-0	•	0.1819	33,100	0.1008	3.5	980	107	0.002014	0.0002013	0.0002807	0.0003111
	<b>-</b>	0.1800	32,400	0.09808	300.0	10.80	3,129	0.003868	0.0008196	0.0003570	0.0003067
4		0.1660	27,230	0.000	216.7	12.13	629,0	0.004615	0.0003803	0.0004249	0.0004709
•	•	0.1480	21,960	0.06630	140.8	12.0	2,116	0 007129	0.6004727	0.0005281	0.0005858
~	;	0.1443	90,830	0.06302	186.7	15.87	2,011	0.007893	0.0004973	0.0005556	0.0006158
•	3	1285	16,510	2000	8.8	38.40	1,73	0.01061	0.0006786	0.0006442	0.00071140
•	==	0.1200	14,400	0.04369	29.06	3	1,391	0.01650	0.0007190	0.0008033	0.000803
•	9	41.0	13,090	0.0000	87.03	83.5	1,265	0.01995	0.0007908	0.0004835	0.0009791
9	:	0.0	10,380	0.03143	21.55	27.91 21.82	1,14/	0.05173	0.0000078	0.000134	0.001975
;	13	0.0050	9,085	0.08732	28. 28.	38.8	871.7	0.04199	0.001147	0.001282	0.001490
=	7	0.09074	86. 88.	0.02493	25.5	1.05	296.3	0.05045	0.001257	0.001406	0.001557
32	:	0.000	963	0.01977	19.00	2.5	200.8	0.01207	0.001586	0.001073	0.001301
1	22	0.07200	6,184	0.01569	7.867	63.73	200.1	0.1873	0.001997	0.002281	0.002473
22	;	0.0796	6,178	0.01568	7.840	63.70	200.1	0.1276	0.001999	0.002231	0.002476
7	2	0.06000	9.1.4	0.01279	6.219	78.19	208.1	0.1916	0.002451	0.002738	0.003084
9	=	0.0580	198	0.01018	8.308	8	324.9	0.3083	0.003078	0.003439	0 003811
•		Constants of		CHANNE	3.101	-	0.450		0000	0 41001.50	50000

		1	Mark III and The Company	:					Donald	:	!
Gau	Gauges.	Diom	Area	<b>=</b>	Weight.	Iven	Length.		Registratice		1
A. W. G. B. & S.	B. W. G. Stubbe'.	eter, inches.	Circular mils.	Lbs. per Foot.	Lbs. per Ohm, at 30° C., 68° F.	Feet per Lb.	Ft. per Ohm, at20°C.,68°F.	Ohms per Lb. at 30° C., 68° F.	Ohms per ft. at 30° C., 68° F.	Ohms per ft. Ohms per ft. at 80°C.	Ohms per ff. at 80° С., 176° Б.
11	9	0.04586	2,048	0.006200	1.236	161.3	197.8	0.8163	0.005055	0.005648	0.006869
18	•	0.0400	1,684	0.004917	0.7713	203.4	126.9	1.296	0.006374	0.007122	0.007803
2	8	0.0000	1,288	0.008899	0.4851	200.5	136.4		0.008038	0.008380	0.000068
	32	0.03200	1,084	0.003100	0.3066	388.6	8	00 .00 m	0.01011	0.01130	0.01258
85		0.08196	1,022	0.0080092	0.3061	388.4 407 a	28.66	8.878	0.01014	0.01180	0.01255
:	Ħ	0.08800	784.0	0.008873	0.1797	421.4	75.78	5.565	0.01381	0.01476	0.01636
83	8	0.0228	642.4	0.001945	0.1307	514.2	88	8.287	0.0161-8	0.01801	0 01996
#	}	0.02257	2009	0.001542	0.07589	7.879	12:04	13.18	0.02038	0.08271	0.00016
ā	*	0.0250	25	0.001465	0.06849	682.6	5.3	8:5	0.02139	0.02300	0.09649
**	25	0.0200	0.00	0.001223	0.04678	927.9	3.5	8.8	0.05565	0.02863	0.08473
	8	0.0180	324.0	0.0009808	0.03069	1,090	83.58	26.	0.03196	0.08670	0.08967
æ	ş	0.01790	330.4	0.0000699	0.03002	1,081	8.5	85.58	0.08231	0.00610	10070
86	Ř	20.0	200.0	0.0007459	0.01910	200	2.2	02:TA	0.000	0.04519	9000
35		0.0142	201.5	0.0006100	0.01187	1,639	9.61	35	0.06138	0.06740	0.06362
	88	0.0140	196.0	0.0005933	0.01123	1,685	8.8	30.00	0.06283	0.06902	0.06541
8	3	0.0136	159.0	0.0000116	0.006350	0.50	20.52	20.00	0.06127	0.0845	0.07586
}	8	0.0120	144.0	0.0004359	0.006062	76X	18.51	165.0	0.02	0.0000	0.08003
88		0.01126	126.7	0.0008836	0.004696	2,607	18.84	213.0	0.06170	0.09128	0.1012
8	8	0.0100	9.0	0.0008042	0.00200	200	9.70	200	0.1650	0.1151	0.1276
3	8	0.0000	81.0	0.0002452	0.001918	8,078	7.883	561.3	0.1278	0.1428	0.1583
<b>5</b>	8	0.008928	2.5	0.0002413	0.001857	4,145	7.00	7.5	0 1299	0 1461	0.1608
83	3	0.007950	8.3	0.0001913	0.001168	5,227	90.190	200	0.1638	0.180	0.8088
æ	7	0.007080	50.13	0.0001517	0.0007346	6,591	4.841	1,261	0.2066	0.2306	0.2568
ð	8	0.000	30.00	0.0001903	0.000,019	20,000	38	1,60	0 2113	1000	978870
8		0.005615	31.58	0.00009543	0.0002905	10,480	30.0	34.5	288	0.360	0.4067
88	æ	0.0050	25.0	0.00007568	0.0001827	13,210	2.414	5,473	0.4148	0.4027	0.5129
õ	8	0.00	3.9	0.00004843	0.00007484	20.650	1.810	18,960	27	200	
88	3	0.003965	15.72	0.00004759	0.00007210	21,010	1.519	13,870	0.6585	7987	0.8154
83		0.003531	12.47	0.00003774	0.00004545	28,500	1 204	00,5	0.8304	1126.0	1.088
:						-	2000	200,000		2.1.5	1.600

Welffiles, Louis sain and

The data from which the foregoing table has been computed are as follows: Matthlessen's standard resistivity, Matthlessen's temperature coefficients specific gravity of copper = 8.89. Resistance in terms of the international ohm.

Matthlessen's standard 1 metre-gramme of hard-drawn copper = 0.146 B. A. U. @ 0° C. Ratio of resistivity hard to soft copper 1.0226. Matthlessen's standard 1 metre-gramme of soft-drawn copper = 0.1433 B. A. U. @ 0° C. One B. A. U. = 0.9666 international ohm.

Matthlessen's standard 1 metre-gramme of soft-drawn copper = 0.1433

international ohm @ 0° C.
Temperature coefficients of resistance for 20° C., 50° C., and 80° C., 1.079%

1.20625, and 1.33681 respectively. 1 foot = 0.3048028 metre, 1 pound = 453.59256 grammes.

Heating of Colls.—To calculate the heating of a coil, given the cool

ing surface and its resistance. (Forbes.)

Let  $\rho$  = the resistance of a coil in ohms at the permissible temperature (the resistance (cold) must be increased by 1/5 of its value to give  $\rho$ : S = the surface exposed to the air measured in square centimetres

(1 square cm. = .155 square inch; 1 sq. in. = 6.45 square cm.);

t =the rise in temperature, centigrade scale;

C = the current in amperes.  $.24C^2\rho =$  heat generated = et8.

where e is McFarlane's constant, varying from .0002 to .0003. The latter value may be taken. If 50° C. be the permissible rise in temperature,

$$C = \sqrt{\frac{.0008 \times 50 \times 8}{.24 \times \rho}} = .25 \sqrt{\frac{8}{\rho}}.$$

EXAMPLE.—The resistance of the field-magnets of a dynamo is 1.5 obms cold, and the surface exposed to the air is 1 square metre; find the current to heat it not more than 50° C.

Here 
$$S = 10,000$$
;  $\rho = 1.8$  ohms; and  $C = .25 \sqrt{\frac{\overline{10,000}}{1.8}} = 33.5$  amperes.

For the heating of coils of field-magnets Mr. C. Hering gives 1 watt of energy dissipated for every 223 square inches of cooling-surface for each degree F. of difference between the temperature of the coil and the sur-

rounding air. W = CE = 1/233TS = 0.004476TS, in which W = watts lost in coil, T = 0.00476TSdegrees Fahr., and S = square inches.

 $C=rac{200}{223E}$  is the greatest current which can be used in the magnet coils of a shunt machine having a certain pressure in order that they do not hea above a certain temperature. Thus for a rise of temperature of 50° F. above

the surrounding air,  $C = \frac{50S}{223E} = .224 \frac{S}{E}$ . Substituting for E its equivalent CR, we get

$$C = \sqrt{.224 \frac{S}{R}}.$$

If 80° F. is the maximum difference of temperature.

$$C = \frac{80S}{223E} = .36\frac{S}{E} = .60\sqrt{\frac{S}{R}}.$$

The formula can be used for series machines when C is known, for writing

$$C^2R = 1/223TS$$
, we get  $R = \frac{TS}{223C^2}$ .

With a permissible rise of 50° F. or 80° F., we have respectively,

$$R = \frac{.224S}{C^2}$$
; and  $R = .36\frac{S}{C^2}$ .

The surface area of the coil in square inches may be found from

$$S = \frac{223W}{T} = \frac{223CE}{T} = \frac{223C^3R}{T}.$$

For a rise of temperature of 50° F. or 80° F., respectively, the surface will be

$$S = \frac{223W}{50} = 4.46W$$
; and  $S = \frac{223W}{80} = 2.8W$ .

**Fusion of Wires.**—W. H. Preece gives a formula for the current required to fuse wires of different metals, viz.:  $C = ad^3$  in which d is the drameter in inches and a a coefficient whose value for different metals is as follows: Copper 10244; aluminum 7585; platinum 5172; German silver 5230; platinoid 4750; iron 3148; tin, 1642; lead, 1379; alloy of 2 lead and 1 tin, 1318.

## Diameters of Various Wires which will be Fused by a given Current,

Formula,  $d = \left(\frac{C}{a}\right)^{\frac{3}{2}}$ ; a = 1642 for tin = 1879 for lead = 10244 for copper = 3148 for iron.

Current,	Tin.	Wire.	Lead	Wire.	Coppe	r Wire.	Iron	Wire.
in amperes.	Diam. inches.	Approx. 8.W. G.	Diam. inches.	Approx. S.W. G.	Diam. inches.	Approx. 8.W. G.	Diam. inches.	Approx. 8.W. G.
1	.0072	36	.0081	35	.0021	47	.0047	40
2	.0113	31	.0128	80	.0084	43	.0074	36
2 8	.0149	28	.0168	27	.0044	41	.0097	83
4	.0181	26	.0203	25	.0058	89	.0117	81
5	.0210	25	.0236	28	.0062	38	.0186	29
10	.0834	21	.0375	20	.0098	33	.0216	24
15	.0437	19	.0491	18	.0129	30	.0283	22
20	.0529	17	.0595	17	.0156	28	.0343	20.5
25	.0614	16	.0690	15	.0181	26	.0398	19
30	.0694	15	.0779	14	.0205	25	.0450	18.5
85	.0769	14.5	.0864	18.5	.0227	24	.0498	18
40	.0840	13.5	.0944	18	.0248	23	.0545	17
45	.0909	13	. 1021	12	.0268	22	.0589	16.5
50	.0975	12.5	.1095	11.5	.0288	22	.0632	16
60	.1101	11	.1237	10	.0325	21	.0714	15
70	.1220	10	.1371	9.5	.0360	20	.0791	14
80	.1334	9.5	.1499	8.5	.0394	19	.0864	13.5
90	.1443	9	. 1621	8 7	.0426	18.5	.0935	13
100	.1548	8.5	.1789	7	.0457	18	.1003	12
120	.1748	7	.1964	6	.0516	17.5	.1133	11
140	. 1937	6	.2176	5	.0572	17	.1255	10
160	.2118	5	.2379	4 3 2	.0625	16	.1372	9.5
180	.2291	4	. 2573	3	.0676	16	.1484	9
200	.2457	8.5	.2760	2	.0725	15	.1592	8
250	.2851	1.5	.3203	0	.0841	13.5	.1848	6.5
<b>S00</b>	. 3220	0	.3617	00.5	.0950	12.5	. 2086	5

# Current in Amperes Required to Fuse Wires According to the Formula $C=ad^{\frac{1}{2}}$

No. S.W. G.	Diameter, inches.	$d^{\frac{3}{2}}$ .	$\begin{array}{c} \text{Tin.} \\ \alpha = 1642. \end{array}$	Lead $a = 1379$ .	Copper $a = 10244$	$\begin{array}{c} \text{Iron.} \\ a = 3148. \end{array}$
14	.080	.022627	37.15	81.20	231.8	71.22
16 18	.064	.016191 .010516	26.58 17.27	22.32 14.50	165.8 107.7	50.96 83.10
20	.036	.006831	11.22	9.419	69.97	21.50
22	.028	.004685	7.692	6.461	48.00	14.75
24 26	.022	.003263 .002415	5.357 3.965	4.499 3.330	33.43 24.74	10.27 7.602
28	.0148	.001801	2.956	2.483	18.44	5.667
30 32	.0124 .0108	.001381 .001122	2.267 1.843	1.904 1.548	14.15	4.847 8.583

### REPORTED TRANSMISSION.

Cross-section of Wire Required for a Given Current.-Constant Current (Series) System.—The cross-sectional area of coppe necessary in any circuit for a given constant current depends on the differ euce between the pressure at the generating station and the maximum pressure required by all the apparatus on the circuit, and on the total length of the circuit. The following formulæ are given in "Practical Electrica Engineering:"

If V = pressure in volts at generators; v = sum of all the pressures (in volts) required by apparatus supplies.in the circuit;
n = total length (going and return) of circuit in miles;

C = current in amperes;

r = resistance of 1 mile of copper-conductor of 1 square inch sections area in ohms;

a = required cross-sectional area of copper in square inches.—

$$\alpha = \frac{nrC}{V - v}.$$

If we take the temperature of the conductor when the current has been flowing for some time through it, as 80° F.,

$$r = 0.0455$$
 ohm, and  $a = \frac{0.0455mC}{V - v}$ .

It generally happens, however, that we are not tied down to a particular value of V, as the pressure at the generators can be varied by a few volts suit requirements. In this case it is usual to fix upon a current density and determine the cross-sectional area of copper in accordance with it.

If D =current density in amperes per square inch determined upon,

$$a=\frac{C}{D}.$$

The current density is frequently taken at 1000 amperes to the square inch but should in general be determined by economical considerations for

allowable Current Density in Insulated Cables. — Experiments of insulated cables in casing gave the results shown below, but they need confirmation or correction of the current densities permissible in different size of insulated cables run underground. C and D are the current in ampere and the current density in amperes per square inch, respectively, which will raise the temperature of the conductor by the number of degrees Fabi indicated by the suffix.

No. Strands.	S.W.G.* of each Wire.	Area of Strand in square inches.	C18	$D_{18}$	$C_{f 5 0}$	D ₅₀
7	20	0.0072	18	2,500	28	3.901
7	14	0.0357	59	1,400	95	2,700
19	14	0.0975	126	1,300	205	2.10
37	14	0.191	210	1,100	839	1.800

Constant Pressure (Parallel System).-To determine the loss # pressure in a feeder of given size in the case of two-wire parallel distributi

Let  $\alpha = \text{cross-sectional}$  area of copper of one conductor of the feeder  $\square$ square inches;

n = length of feeder (going and return) in miles;

C =current in amperes;

V-v= loss of pressure in feeder in volts:

r = resistance of 1 mile of copper conductor of 1 square inch settional area in ohms.

$$V-v=\frac{nrC}{a}$$
.

^{*} Standard (British) Wire-gauge.

If the temperature of the conductor with this current flowing in it is assumed to be 80° F..

$$r = 0.0455$$
 ohm, and  $V - v = \frac{0.0455nC}{a}$ 

Three-wire Feeder.—In the case of a three-wire feeder, let  $p_1q_1$  and  $p_2q_2$  represent the two outer conductors, and let p'q' represent the middle conductor,  $p_1, p', p_2$  being at the feeding-point and  $q_1, q', q_2$  at the generating station, and let

a= cross-sectional area of each of the outer conductors in square inches; a'= cross-sectional area of middle conductor;

a' = cross-sectional area of middle conductor; n = length in miles of each conductor of feeder;  $V_1 = \text{pressure between } p_1 \text{ and } p' \text{ in volts at generating station;}$   $V_2 = \text{pressure between } q_1 \text{ and } q' \text{ in volts at generating station;}$   $v_1 = \text{pressure between } q' \text{ and } q' \text{ in volts at feeding-point;}$   $v_2 = \text{pressure between } q' \text{ and } q_2 \text{ in volts at feeding-point;}$   $C_1 = \text{current in } p_1 q_1 \text{ in amperes;}$   $C_2 = \text{current in } p_2 q_2 \text{ in amperes;}$   $v_2 = \text{resistance of 1 mile of copper conductor of 1 square inch sectional area in ohrea.}$ area in ohms.

Then

$$V_1 - v_1 = nr \left\{ \frac{C_1}{a} + \frac{C_1 - C_2}{a'} \right\}; \qquad V_2 - v_2 = nr \left\{ \frac{C_2}{a} - \frac{C_1 - C_2}{a'} \right\}.$$

It will be noticed that if  $v_1=v_2$ , and if  $C_1$  is greater than  $C_2$ ,  $V_1$  is greater than  $V_2$  by twice the loss of pressure in the middle wire; this result shows that the regulators must be in circuit with the two outer conductors. It is usual to make  $\alpha'$  half  $\alpha$ ; then, if the greatest want of balance between

the toads of the two sections of the three-wire system is mo per cent of the maximum load of the more heavily loaded section, and if  $C_1$  is the maximum current in either of the outer conductors of the feeder under consideration,

 $C_2$  will not be less than  $C_1\left(1-\frac{m}{100}\right)$ , and consequently  $C_1-C_2$  will not be

greater than  $\frac{mC_1}{100}$ .

We have then

$$V_1 - v_1 = \frac{nrC_1}{a} \times \frac{200 + m}{200}; \quad V_2 - v_2 = \frac{nrC_1}{a} \times \frac{200 - m}{200};$$

so that if  $v_1$  and  $v_2$  are each equal to V—the pressure required to be maintained constant at the feeding-point—we can calculate  $V_1$  and  $V_2$  for given values of n, a, and  $C_1$ , employing the value of m, which we estimate should he the maximum it can have.

These last expressions show that the difference in the pressures required at the station across the two sections of a three-wire feeder increases with the current carried by the feeder; hence the regulators on each of the cute conductors should be equivalent to a variable resistance having at least nrm ohms as a maximum.

It is usual to make the area of the middle conductor one half of that of each of the outer conductors, but this is not invariably the case.

**Short-circuiting.**—From the law  $C = \frac{E}{R}$  it is seen that with any pressure E the current C will become very great if R is made very small. In short-circuiting the resistance becomes small and the current therefore great. Hence the dangers of short-circuiting a current.

**Economy of Electric Transmission.** (R. G. Blaine, Eng'g, June 5, 1891.)—Sir W. Thomson's rule for the most economical section of conductor

^{*} The value to be assigned to m may vary from 10 to 25, according to the case exercised in connecting customers to one section or the other, or both, and according to the local conditions. At a certain station supplying current on the three-wire low-pressure system to about 25,000 8-c.p. lamps, we were informed that m had never exceeded 7 or 8.

is that for which the "annual interest on capital outlay is equal to the annual cost of energy wasted," and its practical outcome is that the area of the copper conductor should be such that its resistance per mile =  $\frac{n}{c}$ 

(C being the current in amperes).

Tables have been compiled by Professor Forbes and others in accordance with modifications of Sir W. Thomson's rule. For a given entering horsepower the question is merely one as to what current density, or how many control of the property of the product of the property of the product of the property of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product of the product amperes per square inch of conductor, should be employed. Sir W. Thomson's rule gives about 393 amperes per square inch, and Professor Forbes's tables—for a medium cost of one electrical horse-power per hour—give a current density of about 390 amperes per square inch as most economical. When a given horse-power is to be delivered at a given distance, the case-

is somewhat different, and Professors Ayrton and Perry (Electrician, March 1886) have shown that in that case both the current and resistance are variables, and that their most economical values may be found from the following formulæ:

$$C = \frac{w}{P}(1 + \sin \phi), \quad \text{and} \quad r = \frac{P^2}{nw} \frac{\sin \phi}{(1 + \sin \phi)^2},$$

in which C = the proper current in amperes; r = resistance in ohms per mile which should be given to the conductor; P = pressure at entrance in volts; n = number of miles of conductor; w = power delivered in watts:  $\phi$  = such an angle that  $\tan \phi = nt + P$ , t being a constant depending on the price of copper, the cost of one electrical horse-power, interest, etc.: if the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of t

may be taken as about 17.
In this case the current density should not remain constant, but should diminish as the length increases, being in all cases less than that calculated by Sir W. Thomson's rule.

EXAMPLE.—If the current for an electric railway is sent in at 200 volts, 100 horse-power being delivered, find the waste of power in heating the conductor, the distance being 5 miles and there being a return conductor. Here n = 10, t = 17, P = 200;  $\tan \phi = 170 + 200 = .85$ ,  $\phi = 40^{\circ}$  22′,  $\sin \phi = 170 + 200 = .85$ ,  $\phi = 40^{\circ}$  22′,  $\sin \phi = 170 + 200 = .85$ ,  $\phi = 40^{\circ}$  22′,  $\sin \phi = 170 + 200 = .85$ ,  $\phi = 40^{\circ}$  22′,  $\sin \phi = 170 + 200 = .85$ ,  $\phi = 40^{\circ}$  22′,  $\sin \phi = 100 = .85$ 

Hence most economical resistance

$$r = \frac{200^2}{10 \times 74600} \times \frac{.6477}{1.6477^2} = .01279$$
 ohm per mile,

or .1279 ohm in its total length.

The most economical current,  $C = \frac{74600}{200} \times 1.6477 = 614.58$  amperes, and W, the power wasted in heat,  $=\frac{C^2R}{746}=\frac{614.58^2\times.1279}{746}=64.75$  horse-power.

The following tables show the power wasted as heat in the conductor.

Horse-power Wasted in Transmitting Power Electrically to a Given DISTANCE, THE ENTERING POWER BEING FIXED. PRESSURE AT ENTRANCE, 200 VOLTS. CURRENT DENSITY, 380 AMPERES PER SQUARE INCH.

Horse-power sent in.*	Horse-power Wasted, the Distance to which the Power is Transmitted being one Mile (there being a Return Conductor).	Horse-power Wasted. Distance Five Miles.
10	1.663	8.818
20	8.827	16 636
40	6.654	88.27
50	8.318	41.59
80	13.808	66.54
100	16.636	83.18
200	38.272	166.86

^{*} That is, horse-power at the generator terminals.

PRESSURE AT ENTRANCE, 2000 VOLTS.	PRESSURE	AT	ENTRANCE.	2000	VOLTS.
-----------------------------------	----------	----	-----------	------	--------

Horse- power sent in.	Horse-power Wasted. Distance One Mile (there being a Return Conductor).	Horse- power Wasted. Dis- tance Five Miles.	Horse- power Wasted. Distance Ten Miles.	Horse-power Wasted. Distance Twenty Miles.
100	1.663	8.318	16.636	83.27
200	3.327	16.636	33.272	66.54
400	6.654	33.272	66.54	133.08
500	8.318	41.59	83.18	166.36
800	13.808	66.54	138.08	266.17
1000	16.636	83.18	166.36	382.72
2000	83.272	166.36	832.72	665.44

It will be seen from these numbers that when the current density is fixed the power wasted is proportional to the entering horse-power and the length of the conductor, and is inversely proportional to the potential. For a copper conductor the rule may be simply stated as

$$W = 16.6858 \frac{E}{P} \times l,$$

E being the horse-power and P the pressure at entrance, and l the length of the conductor in miles.

HORSE-POWER WASTED IN ELECTRIC TRANSMISSION TO A GIVEN DISTANCE, THE POWER TO BE DELIVERED AT THE DISTANT END BEING FIXED. PRESURE AT ENTRANCE, 200 VOLTS. CURRENT AND RESISTANCE CALCULATED BY AYRTON AND PERRY'S RULES.

Horse-power Delivered,	Horse-power Wasted, the Distance to which the Power is Transmitted being One Mile (there being a Return Conductor).	Horse-power Wasted. Distance Five Miles.	Horse-power Wasted. Distance Ten Miles.	
10	1.676	6.476	8.620	
20	8.352	12.952	17.24	
40	6.704	25.904	84.48	
50	1 8.88	82.38	48.10	
80	13.408	51.808	68.96	
100	16.76	64.86	86.20	
200	83.52	129.52	172.4	

PRESSURE AT ENTRANCE, 2000 VOLTS.

Horse-power Delivered.	Horse-power Wasted. Distance One Mile.	Horse-power Wasted, Distance Five Miles.	Horse-power Wasted. Distance Ten Miles.
100	1.716	8.484	16.763
200	3.432	16.968	33.526
400	6.864	33.988	67.052
500	8.58	42.42	83.815
800	- 18.728	67.87	134.104
1000	17.16	84.84	167 63
2000	34.32	169.68	335.26

If H = horse-power sent in, w = power delivered in watts, C = current in amperes, r = resistance in ohms per mile, P = pressure at entrance in volts, and n = number of miles of conductor,

$$(w+C^2r)+746=H; w=746H-C^2r;$$

and the formulæ for best current and resistance become

$$C = \frac{746H - C^2r}{P}(1 + \sin \phi); \quad r = \frac{P^2}{n(746H - C^2r)} \times \frac{\sin \phi}{1 + \sin \phi}.$$

Energy wasted as heat in watts per mile =  $C^2 r = \frac{746 H \sin \phi}{n + \sin \phi}$ 

Horse-power wasted per mile =  $W_1 = \frac{H \sin \phi}{n + \sin \phi}$ .

 $(\phi = \text{angle whose tangent} = nt + P$ , and the value of t corresponding to a current density of 380 amperes per sq. in. is 16.636.)

### TABLE OF ELECTRICAL HORSE-POWERS.

Formula:  $\frac{\text{Volts} \times \text{Amperes}}{746} = \text{H.P.}$ , or 1 volt-ampere = .0013405 H.F.

Read amperes at top and volts at side, or vice versa.

	Volts or Amperes.												
or Colts.	1	10	20	30	40	50	69	70	80	90	100	110	1:0
1	.00134	.0134	.0268	.0402	.0536	.0570	.0804	.0938	.1072 .2145	.1206 .2413	.1341 .9681	.1475	. 160
2	.00268	.0268	.0536	.0804	.1072 .1609	.1341	.1609 .2413	.1877 .2815	.3217	.3619	.4022	. <b>29</b> 49 . <b>4</b> 424	. 521 .482
4	.00536	.0536	.1072	.1609	.2145	.2681	.3217	.3753	4290	.4896	.5362	.5898	613
5	.00670	.0670	.1341	.2011	.2681	.3351	.4022	.4692	.5362	.6032	.6703	.7373	.804
6	00804	.0804	.1609	.2413	.3217	.4022	.4826	.5630	.6434	.7239	.8043	. 8847	.965
7	.00938	.0938 .1072	.1877	.2815 .3217	.3753 .4290	.4692 5362	.5630	.6568 .7507	.7507 .8579	.8445 .9652	.9384 1.072	1.032	1.12
8	.01206	.1206	.2413	.3619	.4826	.6032	.6434 .7239	.7507	.9652	1.086	1.206	1 180 1.327	1.44
10		.1341	.2681	.4022	.5362	.6703	.8043	.9383	1.072	1.206	1.341	1.475	1.605
11	.01475	.1475	.2949	.4424	.5898	.7373	.8847	1.032	1.180	1.327	1.475	1.622	1.769
12	.01609	.1609	.3217	.4826	.6434	.8043	.9652	1.126	1.287	1.448	1.609	1.769	1.93
13		.1743	.3485	.5228 .5630	. <b>69</b> 70 .7507	.8713	1.046	1.220	1.394 1.501	1.568 1.689	1.743 1.877	1.917	2 09
14 15	.01877	.1877	.3753 .4022	.6032	.8043	.9384 1.005	1.126 1.206	1.314 1.408	1.609	1.810	2,011	2.064 2.212	2.41
16		.2145	.4290	.6434	.8579	1.072	1.287	1.501	1.716	1.930	2.145	2.359	2.574
17		2279	4558	.6837	,9115	1.139	1.367	1.595	1.823	2.051	2.279	2.507	2.73
18	.02413	.2413	.4826	.7239	.9652	1.206	1.448	1.689	1.930	2.172	2.413	2.654	2.85
19		.2547	.5094	.7641	1.019	1.273	1.528	1.783 1.877	2.037	2.292	2.547 2.681	2.801	3.0
20		.2681	.5362	.8043	1.072	1.340	1.609		2.145	2.413		2.949	3.21
21 22		.2815	.5630 .5898	.8445 .8847	1.126 1.180	1.408 1.475	1.689 1.769	1.971 2.064	2.252 2.359	2.533 2.654	2.815 2.949	3.097	3.53
23		.3083	.6166	9249	1.233	1.542	1.850	2.158	2.467	2.775	3.063	3.391	3.70
24	.03217	.3217	6434	9652	1.287	1.609	1.930	2.252	2.574	2.895	3.217	3 539	3.86
25	.03351	.3351	.6703	1.005	1.341	1.676	2.011	2.346	2.681	3.016	3,351	3.686	4.0.
26		.3485	.6971	1.046	1.394	1.743	2.091	2.440	2.788	3.137	3.485	3.834	4.18
27		.3619	.7239	1.086	1.448	1.810 1.877	2.172 2.252	2.534	2.895 3.003	3.257 3.378	3.619 3.753	3.981	4.34
28 29		.3753 .3887	.7507 .7775	1.126 1.166	1.501 1.555	1.944	2.202	2.627 2.721	3.003	3.499	3.753	4.129	4.66
ŝ		4022	.8043	1.206	1,609	2.011	2.413	2.815	3.217	3.619	4.022	4.424	4.89
31		.4156	.8311	1.247	1.662	2.078	2.493	2,909	3.324	3.740	4.156	4.571	4.96
32	.04290	4290	.8579	1.287	1.716 1.769	2.145	2.574	3.003	3 432	3.861	4.290	4.719	5.14
33			.8847	1.327	1.769	2.212	2.654	3.097	3.539	3.986	4.424	4.866	5.3
34 35			.9115 .9384	1.367 1.408	1.823 1.877	2.279	2.735 2.815	3.190 3.284	3.646 3.753	4.102	4.558	5.013 5.161	5.63
36		1 .	.9652	1.448	1.930	2.413	2.895	3.378	3.861	4.343	4.826	5.308	5.79
37			.9920	1.488	1.984	2.480	2.976	3.472	3.968	4.464	4.960	5.456	5 9
38	.05094	.5094	1.019	1.528	1.984 2.038	2.547	3.056	3.566	4.075	4.585 4.705	5.094	5.603	6 11
39		.5228	1.046	1.568	2.091	2.614	3.137	3.660	4.182	4.705	5.228		6.5
40		1	1.072	1.609	2.145	2 681	3.217	3.753	4.290	4.826	5.362	5.898	6.43
4:			1.099	1.649	2.198	2.748	3.298 3.378	3.847	4.397	4.946 5.067	5.496 5.630	6.046	6.5
4			1.126 1.153	1.689 1.729	2.252 2.306	2.815 2.882	3.458	3.941 4.035	4,611	5.187	5.764	6.193	6 91
4	4 .05898	.5898	1.180	1.769	2.359	2.949	3.539	4.129	4,719	5.308	5.898	6.488	7.16
4			1.206	1.810	2.413	3.016	3.619	4,223	4.826	5.439	6.032	6.635	7.23
4			1.233	1.850	2.467	3.083	3.700	4.316	4.933	5.550	6.166	6.783	7.40
4	7 .06300 8 .06434	.6300 .6434	1.260 1.287	1.890 1.930	2.520 2.574	3.150	3.780	4.410	5.040	5.670	6.300	6.930	7.6
4		.6568	1.314	1.930	2.574	3.217 3.284	3.861 3.941	4.504 4.598	5.148 5.255	5.791 5.912	6.434	7.078	7.7
	0 .06703		1.341	2.011	2.681	3.351	4.022	4.692	5,362	6.032	6.703	7.373	8.0

### TABLE OF ELECTRICAL HORSE-POWERS-(Continued.)

eres olts.					,	Volts o	r Amp	eres.					
Amperes or Volts.	1	10	20	30	40	50	60	70	80	90	100	110	120
55 60 65	.0737 ³ .0804 ³ .0871 ³	.7373 .8043 .8713	1.609	2.212 2.413 2.614	2.949 3.217 3.485	4.022	4.826	5.630	5.898 6.434 6.970	6.635 7.239 7.842	8.043	8.110 8.847 9.584	8.847 9.652 10.46
70 75	.09384 .10054	.9384 1.005	1.877 2.011	2.815 3.016	3.753 4.021	4.692 5.027	5.630 6.032	6.568 7.037	7.507 8.043	8.445 9.048	9.384 10.05	10.32 11.06	11.26 12.06
80 85 90, 95,	.10724 .11394 .12065 .12735	1.072 1.139 1.206 1.273 1.341	2.413 2.547	3.217 3.418 3.619 3.820 4.022	4.290 4.558 4,826 5.094 5,362	5.362 5.697 6.032 6.367 6.703	6.836 7.239 7.641	7.976 8.445 8.914	9.115 9.652 10.18	9.652 10.26 10.86 11.46 12.06	10.72 11.39 12.06 12.73 13.41	11.80 12.53 13.27 14.01 14.75	12.87 13.67 14.48 15.28 16.09
200 300 400 500 600	.26810 .40215 .53620	2.681 4.022 5.362 6.703	5.362 8.043 10.72 13.41	8.043 12.06 16.09 20.11	10.72 16.09 21.45 26.81 32.17	13.41 20.11 26.81 33.51	16.09 24.13 32.17 40.22	18.77 28.15 37.53 46.92	21.45 32.17 42.90 53.62	24.13 36.19 48.26 60.32 72.39	26.81 40.22 53.62 67.03	29.49 44.24 58.98 73.73	32.17 48.26 64.34 80.43
700 800 900 1,000	.93835 1.0724 1.2065 1.3405		18.77 21.45 24.13 26.81	24.13 28.15 32.17 36.19 40.22	37.53 42.90 48.26 53.62	40.22 46.92 53.62 60.32 67.03	48.26 56.30 64.34 72.39 80.43	56.30 65.68 75.07 84.45 93.84	75.07 85.79 96.52 107.2	84.45 96.52 108.6 120.6	93.84 107.2 120.6 134.1	103.2 118.0 132.7 147.5	112.6 128.7 144.8 160.9
2,090 3,000 4,000 5,000 6,000 7,000	2.6810 4.0215 5.3620 6.7025 8.0430 9.3835	40.22 53.62 67.03 80.43	160.9	120.6 160.9 201.1 241.3	107.2 160.9 214.5 268.1 321.7 375.3	134.1 201.1 268.1 335.1 402.2 469.2	241.3 321.7	281.5 375.3 469.2 563.0 656.8	214.5 321.7 429.0 536.2 643.4 750.7	241.3 361.9 482.6 603.2 723.9 844.5	268.1 402.2 536.2 670.3 804.3	294.9 442.4 589.8 737.3 884.7	321.7 482.6 643.4 804.3 965.2
8.000	10.724 12.065	107.2 120.6	214.5 241.3	321.7 361.9	429.0	536.2 603.2 670.3	643.4 723.9 804.3	750.7 844.5	857.9 965.2	965.2 1086 1206	938.4 1072 1206 1341	1180 1327 1475	1287 1448 1609

Wire Table.—The wire table on the following page (from a circular of the Westinghouse El. & Mfg. Co.) shows at a glance the size of wire necessary for the transmission of any given current over a known distance with a given amount of drop, for 100-volt and 500-volt circuits, with varying losses. The formula by which this table has been calculated is

$$\frac{D\times 1000}{C\times 2L}=R,$$

in which D equals the volts drop in electro-motive force, C the current, L the distance from the dynamo to the point of distribution, and R the line resistance in ohms per thousand feet.

ance in ohms per thousand feet.

Example 1.—Required the size of wire necessary to carry a current of 60

amperes a distance of 650 feet with a loss of 5% at 100 volts.

Referring to the table, under 60 amperes, we find the given distance, 650 feet. In the same horizontal line and under 5% drop at 100 volts, we find No. 000 wire, which is the size required.

Example 2.—What size will be required for 10 amperes 2000 feet, with a

drop of 10% at 500 volts.

Under 10 amperes find 1930—the nearest figure to 2000—and in the same horizontal line under 10% at 500 volts find No. 11, the size required.

Wiring Formulæ for Incandescent Lighting. (W. D. Waver, Elec. World, Oct. 15, 1892.)—A formula for calculating wiring tables is

$$A = \frac{2150W}{aE^2}LN$$
, or,  $A = \frac{2150LC}{aE}$ ,

where A = section in circular mils; W = watt rating of lamps; E = voltage; L = distance to centre of distribution, in feet; N = number of lamps; a = percentage of drop; C = current in amperes.

a = percentage of drop; C = current in amperes. Example.—Volts, 50; amperes, 100; feet to centre of distribution, 100; drop, 2%.

$$\frac{2150 \times 100 \times 100}{2 \times 50} = 215,000 \text{ circular mils,}$$

or about 0000 B. & S. gauge.

# Wire Table for 100 and 500 Volt Circuits.

							<b>411</b> 1.		•	
			<b>§</b>	38222	1:2888		red /ire.			
			<b>S</b>	25128 125128	25243	res.	rulat Se W	25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	824282	2822c-
			ş	25.25.25	52 <b>2</b> 23	Th pe	Insulated House Wire			
			£2	25 55 E	1822	in				
			25	25 25 35 15 19 25 35	228183	Safe Current in Amperes.	Bare Overhead.	8 2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	### # # # # # # # # # # # # # # # # #	<b>2288</b> 2
			25 25 25	25.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	88 88 54 54	Ç	6			
			8	25,335	3238C±	Safe	نو	0000-00	R 4110 40 F- 00	-2215
			175	54282	140 110 288 288 288		Size.	8880~**		
			32	282588	\$ 55 55 E	3	2388			
á	i		125	25.55 ± 25.05	25 12 12 12 12 12 12 12 12 12 12 12 12 12	13	2 2 2 2 2			
utio		Γ	8	85888	05 193 193 193 193 193 193 193 193 193 193	6	¥233			-
Amperes to Centre of Distribution.			8	Distances in Feet.  Distances in Feet.  300 3999 3919 9919 1910 1950 1950 1960 1960 1960 1960 1960 1960 1960 196	352258	_	3633			
Ę			8	1239 1239 610 610 610	52525	121	¥ 8 8 3			
ţ.			2	26.000000000000000000000000000000000000	346 276 278 173	138	25.5	-		
5		Γ	8	Distances in Feet 60,1630 1400 1220 11 60,1330 1110 980 1 40,1050 880 770 880 820 700 610 1 70 650 560 490 4	256 256 256 256 256 256 256 256 256 256	191	358 <b>2</b>	23388		
es	}	Γ	23	D 9851 560 517	248 807 807 807	193	3825	23882		
94.0	n Der		3	9180 1735 1770 1770 870	823428	\$15	185	22328		
Ā			9	950 1530 970	555 505 888 898	241	8888	28888		
			53	2810 2540 11400 1110	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	976	174	25228	22722	
			30	3870 3610 4090 1610 1290	855 511 565 565 565		160	101	22222	
			52	3920 3115 2470 1560 1550	174 174 174 115 488	386	2283	121 26 26 48 48	22223	
			8	3910 3910 3910 3980 1930	1650 1855 767 608		307		48823	100
			20	3400 3400 3400 3173	0551 0552 0553 0550 0550		2833	168 183 185 84 84	84882	
			91	7000 6100 5600 1900 1 100 3900 3500 3050 2500 2450	1940 1585 1286 1880 1890	600	2888	189 150 118 75	84888	2220
		-	71	7000 5600 3500 2800	240 1378 1378 1095 867		8 <b>3 5 8</b>		84342	2275,
			12	5240 5240	2033 1608 1278 1013		25 <del>2</del> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		58432	28555
		-	2	2800 7800 6200 3900 3900	2440 1930 1530 1216	88	3828	8558 1258 1268 1268 1268 1268 1268 1268 1268 126	85848	82575
	12.8		Ĺ	w∞-∞∞	22227	91	2222	. 8		
Per cent Drop at 500 Volts.	10 12.	olts.	_	90-410-00-00	e 5 1 5 5	=:	2222	28		
8	2	00 V	_	G - 22 - 40	စင္က အ အ ဝ	=:	2245			
at	67	Per cent Drop at 100 Volts.	2	Sharpe Gauge 0000 2 5 000 000 2 6 000 0 4 7 0 1 5 8	61 to 41 to 40		**2=		2228	
Drol		Drop	œ	8 000 000 000 000	11 65 00 41 TO	•	~∞•0		813818	
sent	-	sent	2	Brown &	80400	4,		62222	4557 <b>5</b>	28
Per		Per (	4	Bro 0000	880-1%	en -	*10*01*	86213	2222	228
	-1		02		888	0	4000	200700	22227	29745

The horse-power and efficiency of a motor being given, the size of the conlucting wire in circular mils can be found from the following formula:

$$A = \frac{160,400,000 \times \text{H.P.} \times L}{aE^2 \times \text{efficiency}}$$

EXAMPLE.—Horse-power, 10; volts, 500; drop, 8%; feed to distributing point, 600; efficiency of motor, 75%.

$$A = \frac{160,400,000 \times 10 \times 600}{3 \times 500 \times 500 \times 75} = 17,109$$
 circular mils, or about No. 8 B. & S.

# Cost of Copper for Long-distance Transmission. (Westinghouse El. & Mfg. Co.)

COST OF COPPER REQUIRED FOR THE DELIVERY OF ONE MECHANICAL HORSE-POWER AT MOTOR SHAFT WITH 1000, 2000, 3000, 4000, 5000, AND 10,000 VOLTS AT MOTOR TREMINALS, OR AT TERMINALS OF LOWERING TRANSFORMERS.

Loss of energy in conductors (drop), equals 20%.

Distances equal one to twenty miles.

Motor efficiency equals 90%.

Length of conductor per mile of single distance, 11,000 feet, to allow for

cost of copper equals 16 cents per pound.

Miles.	1000 ₹.	2000 ▼.	3000 v.	4000 v.	5000 ▼.	10,000 v
1	\$2.08	\$0.52	\$0.23	\$0.18	\$0.08	\$0.02
2 1	8.33	2.08	0.98	0.52	0.33	0.08
3	18.70	4.68	2.08	1.17	0.75	0.19
4	33.30	8.32	3.70	2.08	1.88	0.83
5	52.05	18.00	5.78	8.25	2.08	0.52
6	74.90	18.70	8.32	4.68	8.00	0.75
7	102.00	25.50	11.80	6.37	4.08	1.02
2 3 4 5 6 7 8 9	133.25	83.30	14.80	8.32	5.33	1.33
9	168.60	42.20	18.70	10.50	6.74	1.69
10	208.19	52.05	28.14	- 18.01	8.33	2.08
11	251.90	68.00	28 00	15.75	10.08	2.52
12	299.80	75.00	33.80	18.70	12.00	3.00
13	352.00	88.00	89.00	22.00	14.08	8.52
14	408 00	102.00	45.30	25.50	16.32	4.08
15	468.00	117.00	52.00	29.25	18.72	4.68
16	538.00	133.00	59.00	83.30	21.32	5.33
17	600.00	150.00	67.00	87.60	24.00	6.00
18	675.00	169.00	75.00	42.20	27.00	6.75
19	750.00	188.00	83.50	47.00	30.00	7.50
20	833.00	208.00	92.60	52.00	83.32	8.33

A Graphical Method of calculating leads for wiring for electric lighting is described by Carl Hering in Trans. A. I. E. E., 1891. He furnishes a chart containing three sets of diagonal straight-line diagrams so connected that the examples under the general formula for wiring may be solved without calculation by simply locating three points in succession on the chart.

The general principle upon which the chart is based is that for any formula containing three variable quantities, one of which is the product or the quotient of the other two, the "curves" representing their relative values may always be represented by a series of straight diagonal lines drawn through the centre or zero point. Such a set of lines will therefore enable one to make any calculations graphically for that formula. For instance, horse-power = volts × amperes; the constant 746 does not concern us at present. A series of diagonal lines properly spaced will therefore give directly either the horse-power, the volts, or the amperes, when the other two are given.

One scale is vertical, the other horizontal, and the diagonal lines (or the hyperbolas) each represent one unit (or a number of units) of the third scale. To make the "curves" straight lines the diagonals must be made

COST OF COPPER REQUIRED TO DELIVER ONE MECHANICAL HORSE-POWER AT MOTOR-SHAFT WITE VARYING PERCENTAGES OF LOSS IN CONDUCTORS, UPON THE ASSUMPTION THAT THE POTENTIAL AT MOTOR TERMINALS IS IN EACE CASE 3000 VOLTS.

Distances equal one to twenty miles.

Motor efficiency equals 90%.

Length of conductor per mile of single distance, 11,000 feet, to allow for sag.

Cost of copper equals 16 cents per pound.

Miles.	10%	15%	20%	25%	30%
1	\$0.52	\$0.33	\$0.23	\$0.17	\$0.13
2	2.08	1.31	0.98	0.69	0.54
3	4.68 8.82	2.95 5.25	2.08 3.70	1.55 2.77	1.21
- E	18.00	8.20	5.78	4.83	2.15 8.37
1 2 3 4 5 6	18.70	11.75	8.32	6.28	4.85
7	25.50	16.00	11.30	8.45	6.60
8	83.30	21.00	14.80	11.00	8.60
9	42.20	26.60	18.75	14.00	10.90
10	52.05	32.78	23.14	17.81	13.50
11	63.00	39.75	28.00	21.00	16.30
12 13	75.00 88.00	47.20 55.30	33.30 39.00	24.90 29.20	19.40 22.80
14	102.00	64.20	45.30	83.90	26.40
15	117.00	73.75	52.00	<b>38</b> .90	30.30
16	133.00	83.80	59.00	44.80	84.50
17	150.00	94.75	67.00	50.00	39.00
18	169.00	106.00	75.00	56.20	43.80
19	188.00	118.00	83.50	62.50	48.70
20	208.00	131.00	92.60	69.25	54.00

to represent one of the two quantities which is equal to the quotient of the other two, and not the one which is equal to the product of the other two because the curves would then be hyperbolas. In the example given the diagonals must represent volts or amperes, but not horse-powers. The constants in such formulæ affect only the positions of the diagonals; although they increase considerably the work of arithmetically calculating the results they do not affect in the least the graphical calculations after the diagrams are once drawn.

The general formula for wiring is:

 $Cross-section = \frac{current \ for \ one \ lamp \times No, \ of \ lamps \times distance \times constant}{loss \ in \ volts}.$ 

containing six quantities only, one of which is always constant, being equal to twice the mil-foot resistance of copper, if the cross-section is in circular mils. Calculations involving three of these five quantities may readily be made graphically by means of a single set of diagonal lines.

In Mr. Hering's method the formula is split up into three smaller ones, each of which contains no more than three variable quantities. Each formula can then be calculated separately by a simple diagram, as described, thus permitting the whole formula to be calculated graphically.

To do this, let the first diagram perform the calculation.

$$x = \frac{\text{current for one lamp}}{\text{loss in volts}},$$

in which x is a mere auxiliary quantity. Let a second similar diagram perform the next calculation,

 $y = x \times \text{number of lamps};$ 

and a third diagram the final calculation,

cross-section =  $y \times$  distance,

The constant may be combined with any one of these, it is immaterial which one. This triple calculation may at first seem to complicate matters on account of the new quantities, x and y. These, however, are easily eliminated by the simple device of placing the three diagrams together, side by side, in such a position that the two x scales coincide, and similarly the two y scales. By doing this one has merely to pass directly from one set of diagonals to the next to perform the successive steps of the calculation, without being concerned about the intermediate auxiliary quantities. These intermediate quautities correspond, and are equal to the successive products or quotients which are obtained in the successive arithmetical multiplications and divisions of these five quantities in the formula, which cannot, of course, be eliminated in making the calculations arithmetically.

Weight of Copper required for Long-distance Transmission.—W. F. C. Hasson (Trans. Tech. Socy. of the Pacific Coast, vol. x, No. 4) gives the following formula:

$$W = \frac{D^2}{K^2}$$
 H.P.  $\frac{(100 - L)}{L}$  266.5,

where W is the weight of copper wire in pounds; D, the distance in miles; E, the E.M.F. at the motor in hundreds of volts; H.P., the horse-power

delivered to the motor; L. the per cent of line loss.

Thus, to transmit 200 horse-power ten miles with 10 per cent loss, and have 3000 volts at the motor, we have

$$W = \frac{10 \times 10}{30 \times 30} \times 200 \times \frac{(100 - 10)}{10} \times 266.5 = 53,800 \text{ lbs.}$$

Efficiency of Long-distance Transmission. (F. R. Hart, Power, Feb. 1892.)—The mechanical efficiency of a system is the ratio of the power delivered to the dynamo-electric machines at one end of the line to the power delivered by the electric motors at the distant end. The com-mercial efficiency of a dynamo or motor varies with its load. The maximum efficiency of good machines should not be under 90% and is seldom above 92%. Under the most favorable conditions, then, we must expect a loss of say 9% in the dynamo and 9% in the motor. The loss in transmission, due to fall in electrical pressure or "drop" in the line, is governed by the size of fall in electrical pressure or "drop" in the line, is governed by the size of the wires, the other conditions remaining the same. For a long-distance transmission plant this will vary from 5% upwards. With a loss of 5% in the line, the total efficiency of transmission will be slightly under 75%. With a loss of 10% in the line, the efficiency would be slightly under 75%. We may call 80% the practical limit of the efficiency with the apparatus of to-day. The methods for long-distance power transmission by electricity may be divided into three general classes: (1) Those using continuous current; (2) those using alternating current; and (3) regenerating or "motor-dynamo" systems. The subdivisions of each of these general classes are tabulated as follows: rollows:

i		Low voltage		One machine. Machines in parallel.
Continuous current	2-wire	High voltage	{	One machine. Machines in parallel. Machines in series.
	3-wire		{	2 machines in series. Machines in multiple series.
	Multiple-w	ire		Machines in series.
Aiternating	Alternating	g single phase	{	Without conversions. With conversions.
current	•	g multiphase	{	Without conversions. With conversions.
Regenerating systems	Alternating tinuous Continuou			converter; alternating consystem.

The relative advantages of these systems vary with each particular transmission problem, but in a general way may be tabulated as below.

	83	rstem.	Advantages.	Disadvantages.
_	2 mino L	ow voltage.	Safety, simplicity.	Expense for copper.
lous.	2-wire High volta		Economy, simplicity.	Danger, difficulty of building machines.
Continuous	Multiple-wire.  Single phase.  Multiphase.		Low voltage on machines and saving in copper.	Not saving enough in copper for long dis-
ပ			Low voltage at machines and saving in copper.	A
			Economy of copper.	Cannot start under load. Low efficiency.
Alternating.			Multiphase.  Economy of copper, synchronous speed unnecessary; applicable to very long distances.  Economy of copper, synchronous speed unnecessary; applicable to very long distances.  "standard."	
Alt			High-voltage transmis- sion. Low-voltage de- livery.	Expensive. Low efficiency.

There are many factors which govern the selection of a system. For each problem considered there will be found certain fixed and certain unfixed conditions. In general the fixed factors are; (1) capacity of source of power; (2) cost of power at source; (3) cost of power by other means at point of delivery; (4) danger considerations at motors; (5) operation conditions (6) construction conditions (length of line, character of country, etc.). The partly fixed conditions are: (7) power which must be delivered, i.e., the efficiency of the system; (8) size and number of delivery units. The variable conditions are: (9) initial voltage; (10) pounds of copper on line; (11) original cost of all apparatus and construction; (12) expenses, operating (fixed charges, interest, depreciation, taxes, insurance, etc.); (13) liability of trouble and stoppages; (14) danger at station and on line; (15) convenience in operating, making changes, extensions, etc. Assuming that the cost of dynamos, motors, etc., will be approximately the same whatever the initial pressure, the great variation in the cost of wire at different pressures is shown by Mr. Hart in the following figures, giving the weights of copper required for transmitting 100 horse-power 5 miles:

Voltage.	Drop 10 per cent. 16,800 lbs.	Drop 20 per cent.
2,000	16,800 lbs.	8,400 lbs.
8,000	7,400 ''	8,700 "
10.000	′6•20      ′′	'810 "

Efficiency of a Combined Engine and Dynamo.—A compound double-crank Wilans engine mounted on a single base with a dynamo of the Edison-Hopkinson type was tested in 1890, with results as follows: The low-pressure cylinder is 14 in. diam., 16 in. stroke; steampressure 120 lbs. It is coupled to a dynamo constructed for an output of 475 amperes at 110 volts when driven at 430 revolutions per minute. The armature is of the bar construction, is plain shunt-wound, and is fitted with a commutator of hard-drawn copper with mica insulation. Four brushes are carried on each rocker-arm.

Resistance of magnets	16. ohms 0.0055 "
I.H.P E.H.P	83.3
Total efficiency Consumption of water per I.H.P. hour Consumption of water per E.H.P. hour	86.7 per cent

The engine and dynamo were worked above their full normal output, which fact would tend to slightly increase the efficiency.
The electrical losses were: Loss in magnet coils, 756 watts, equal to 1.45;

loss in armature coil, 1386 watts, equal to 2.6%; so that the electrical efficiency

of the machine due to ohmic resistance alone was 96%. The remainder of he losses, a little over 8 horse-power, is due to friction of engine and

he losses, a little over 8 horse-power, is due to friction of engine and in the like.

Electrical Efficiency of a Generator and Motor.—A twelvenile transmission of power at Bodie, Cal. is described by T. H. Leggett Trans. A. I. M. E. 1894). A single-phase alternating current is used. The generator is a Westinghouse 120 K. W. constant-potential 12-pole machine, ential machine of 130 horse-power. It is brought up to speed by a 10-H.P. Is-ala starting motor. Tests of the electrical efficiency of the generator and motor gave the following results:

### TEST ON GENERATOR.

	Amperes	Volts.	Watts.
Self-excited field	15.8 18.2	60 78	948 1419.6
C ² R, loss in armature, 1.001 onms.  Coal loss in machine		8414	664.72 3092.32 68280

### Apparent electrical efficiency of generator, 95.559%.

### TEST ON MOTOR.

	Amperes	Volts.	Watts.
Self-excited field	52	62.4	<b>3</b> 244.8
C ² R, loss in armature			560.0 3804.08
Load		3110	62200

### Apparent electrical efficiency of motor, 93.883%.

Efficiency of an Electrical Pumping-plant. (Eng. & M. Jourr., Feb. 7, 1891.)—A pumping-plant at a mine at Normanton, England,

was tested, with results given below:
A bove ground there is a pair of 2004 × 48-in, engines running at 20 revs. per min., driving two series dynamos giving 690 volts and 59 amperes. The current from each dynamo is carried into the mine by an insulated cable about 3000 feet long. There they are connected to two 50-h, p. motors which operate a pair of differential ram-pumps, with rams 6 in, and 44 in, diam, and 24 in, stroke. The total head against which the pumps operate is 890 feet. Connected to the same dynamos there is also a set of gearing for driving a hauling plant on a continuous-rope system, and a set of three-throw ram-pumps with 6-inch rams and 12-inch stroke can also be thrown into gear. The connections are so made that either motor can operate any or all three of the sets of machinery just described. Indicator-diagrams gave the following results:

Friction of engine	6.9 H.P.	9.4%
Belt and dynamo friction	4.8 "	6.5%
Leads and motor	6.7 "	9.4%
Motor belt, gearing and pumps empty	10.2 "	14.0%
Load of 117 gallons through 890 feet	81.5 "	43.1%
Water friction in pumps and rising main	12.9 "	17.6%

73.0 H.P. 100.0%

At the time when these data were obtained the total efficiency of the plant was 43.1%, but in a later test it rose to 47%.

**Heferences on Power Distribution.**—Kapp, Electric Transmission of Energy; Badt, Electric Transmission Handbook; Martin and Wetzler, The Electric Motor and its Applications; Hospitalier, Polyphased Electric Currents.

### ELECTRIC BAILWAYS.

Space will not admit of a proper treatment of this subject in this work. Consult Crosby and Bell, The Electric Railway in Theory and Practice, price \$2.50; Fairchild, Street Railways, price \$4.00; Merrill, Reference Book of Tables and Formulæ for Street Railway Engineers, price \$1.00.  Test of a Street Railway Plant.—A test of a small electric-railway plant is reported by Jesse M. Smith in Trans. A. S. M. E., vol. xv. The following are some of the results obtained:
Friction of engine, air-pump, and boiler feed-pump; main belt off 9.22 I.H.P.
Friction of engine, air and feed pumps, and dynamo, brushes off. 11.34 I.H.P.
Friction of dynamo and belt
Power consumed by engine, air and feed pumps and dynamo,
with brushes on and main circuit open
Power required to charge fields of dynamo 3.00 I.H.P.
Rated capacity of engine and dynamoeach 150 I.H.P.
Power developed by engine min. 21.27; max. 141.4; mean, 70.1 I.H.P.
Volts developed by dynamo range, 480 to 520; average, 501 volts
Amperes developed by dynamomax, 200; min. 4.7; average, 67 amperes
Average watts delivered by dynamo
Average electrical horse-power delivered by dynamo 45 E.H.P.
Average I.H.P. del'd to pulley of dynamo, estimating friction of
armature shaft to be the same as friction of belt 59.8 L.H.P.
Average commercial efficiency of dynamo45 + 59.8 = 75.25% Average number of cars in use during test 2.89 cars.
Average number of cars in use during test
Number of single trips of cars
Average number of passengers on cars per single trip 15.2
Weight of cars

1.52 I H.P. Average horse-power developed in engine per car ........... 24.25 I.H.P. 

Proportioning Boiler, Engine, and Generator for Power-stations. — Wm. Lee Church (Street Railway Journal, 1892) gives a diagram showing the abrupt variations in the current required for an electric railway with variable grades. For this case, in which the maximum current for a minute or two at a time is 175 amperes, ranging from that to zero, and averaging about 50 amperes, he advises that the nominal capacity of the generator be 100 amperes. The reason of this is found in the fact that an electric generator can stand an overload, or even an excessive overload, provided it does not have to stand it long. The question is simply one of heat. The overload here was seen to continue for only about one minute, during which time the generator could carry it with ease with no perceptible rise of temperature to injure the insulation. Had this load been continuous for an hour or so, as would occur in an electric-lighting station, a much higher relative generating capacity would be required, approximating the maximum load.

An engine has no such capacity for excessive overload as a generator. In other words, the element of time does not enter into the engine problem, but it becomes a question of how much the engine can actually lift by main strength without taking the governor to an extreme which shall slow down the speed. In general terms, the engine should not be called to perform, even for a short time, more than 20%, or possibly 25%, above its rating.

The engine capacity, therefore, would have a nominal rating greater than that of the generator, say about 25% greater.

The capacity of the engine should be determined without reference to ordensation. This is for the obvious reason that a condenser may become condensation. This is for the obvious reason that a condenser may become choked, or disabled, or leaky, and the vacuum may be poor, or lost entirely under sudden fluctuations.

The boiler has to deal only with the average of the total load. In this narticular electric railways exactly resemble rolling - mills, saw - mills, and kindred industries, where the load is spasmodic, with variations lasting but a few seconds, or at most but a few minutes. The stored heat in the water of a boiler is enormous in quantity, and responds instantly to a release of pressure. That is to say, the boiler is an immense reservoir of power, and provided the drain upon it is not continued too long, it will stand exactions far beyond its nominal capacity, and without any effect

whatever upon the firing.

The actual size of the boiler will depend upon the type of engine. With The actual size of the boiler will depend upon the type of engine. With the compound engine described by Mr. Church, running non-condensing, an allowance of 30 pounds of water actually evaporated per I.H.P. per hour will give a margin for all contingencies. The engine duty under an average uniform load is a very different thing from the duty under a variable load represented by the average. Under the uniform load, 23 pounds of water would be the actual engine performance, and the boiler could be proportioned with reference to this figure. Under the violent fluctuations of railway service, the average duty of the engine will rise to about 28 pounds, and if the maximum average load is taken, and the boiler proportioned for 30 pounds, there will be a sufficient margin. Other compound engines not possessing the feature which secures uniformity of duty will range up to at possessing the feature which secures uniformity of duty will range up to at least 45 pounds under light loads, and often to 60 pounds, and represent an average duty not better than 35 to 40 pounds. The same is true of every form of non-compounded engine, whether high speed or low speed, both of which show a-tremendous falling back of fuel duty under variable load.

## ELECTRIC LIGHTING.

Quantity of Energy required to produce Light.—According to Mr. Preece, the quantity of energy, measured in watts, required to produce light equivalent to one candle-power, measured by the light given out by the standard candle, is as follows for different light-giving substances:

Tallow	124	watts	Coal gas	68	watts.
Wax	94	**	Cannel gas	48	**
Spermaceti	86	**	Incandescent lamp	15	44
Mineral oils	80	**	Arc lamp	8	"
Vegetable oils	57	**	-		

And the relative costs of production are about 1 for the arc lamp; 6 for the incandescent lamp; 5 for the mineral-oil lamp; 10 for the gas-light; 67 for the

spermaceti candle.

Life of Incandescent Lamps. (Eng'g, Sept. 1, 1893, p. 282.)—From experiments made by Messis. Siemens and Halske, Berlin, it appears that the average life of incandescent lamps at different expenditure of watts per candle-power is as follows:

Watts per candle-power	1.5	2	2.5	8	8.5
Life of lamp, hours	45	200	450	1000	1000

Life and Efficiency Tests of Lamps. (P. G. Gossler, Elec. World, Sept. 17, 1892.)—Lamps burning at a voltage above that for which they are rated give a much greater illuminating power than 16 candles, but at the same time their life is very considerably shortened. It has been observed that lamps received from the factory do not average the same candlepower and efficiency for different involces; that is, lamps which are received in one involce are usually quite uniform throughout that lot, but they vary considerably from lamps made at other times.

The following figures show the different illuminating-powers of a 16.c.p., 50-volt, 52-watt lamp, for various voltages from 25 to 80 volts:

V	olts:										
25	34.8	40	48	50	52.5	55.6	59.5	62	68.2	72.5	80
A	mperes	s:									
.561	.774	.898	.968	1.055	1.097	1.161	1.226	1.29	1.419	1.484	1.58
C	andles:										
.4	2.47	5.1	12.6	15.8	20.5	28.4	39.3	50.7	74.5	103.2	141
	Vatts:										
14.03	26.94	35.92	46.81	52.75	57.57	64.55	72.92	79.98	96.78	107.5	126.4
V	Vatts pe	er c.p.:									
35.1	10.81	7.04	3.68	3.34	2.81	2.30	1.96	1.58	1.30	1.04	.90

Street-lighting. (H. Robiuson, M I.C.E., Eng'g News, Sept. 12, 18° For street-lighting the arc-lamp is the most economical. The sme

size of arc-lamp at present manufactured requires a current of about 5 size of arc-lamp at present manufactured requires a current of about a superes; but for steadiness and efficiency it is desirable to use not less than 6 amperes. The caudle-power of arc-lamps varies considerably, according to the angle at which it is measured. The greatest intensity with continuous-current lamps is found at an angle of about 40° below the horizontal line. The following table gives the approximate candle-power at various angles. The height of the lamps should be arranged so as to give an angle of not less than 7° to the most distant point it is intended to serve.

# Lighting-power of Arc-lamps.

Current	Candle-power.								
	Horizontal	At Angle	At Angle of 10°.	At Angle of 20°.	Maximum at Angle of 40°.				
6	92	175	207	322	460				
8	156	800	350	546	780				
10	220	420	495	770	1100				

The following data enable the coefficient of minimum lighting-power in streets to be determined:

Let P = candle-power of lamps;

L = maximum distance from lamp in feet;

H = height of lamp in feet;

X = a coefficient.

The light falling on the unit area of pavement varies inversely as the square of the distance from the lamp, and is directly proportional to the angle at which it falls. This angle is nearly proportional to the height of the lamp divided by the distance. Therefore

$$X = \frac{P}{L^2} \times \frac{H}{L}$$
 or  $X = \frac{PH}{L^3}$ .

The usual standard of gas-lighting is represented by the amount of light falling on the unit area of pavement 50 feet away from a 12-c.p. gas-lamp 9 feet high, which gives a coefficient as follows:

$$X = \frac{12 \times 9}{50^3} = 0.000864.$$

The minimum standard represents the amount of light on a unit area 50

feet away from a 24-c.p. lamp, 9 ft. high, and gives the coefficient .001728. Adopting the first of the above coefficients Mr. Robinson calculates that the before-mentioned sizes of arc-lights will give the same standard of light at the heights and distances stated in Table A. Table B gives the corresponding distances, assuming the minimum standard to be adopted.

TABLE A.						TAB	LE B.		
Hgt. of Lamps.	20 ft. 25 ft. 30 ft. 35 ft.		Height	20 ft. 25 ft. 3		30 ft.	35 ft		
Current in Amperes.	Max. distances served from lamp, in ft.			Amperes.		distar	ices se Lamp.	rved	
6 8 10	160 185 205	175 202 225	190 220 243	202 235 260	6 8 10	130 150 170	144 165 190	155 180 205	166 193 220

The distances the lamps are apart would, of course, be double the distances mentioned in Tables A and B. One arc-lamp will take the place of from 3 to 6 gas-lamps, according to the locality, arrangement, and standard of light adopted. A scheme of arc-lighting, based on the substitution of one arc-light on the average for 3½ to 4 gas-lamps, would double the minimum standard of light, while the average standard would be increased 10 or 12 times.

Candle-power of the Arc-light. (Elihu Thomson, El. World. Feb. 28, 1891.)—With the long arc the maximum intensity of the light is from 40° to 60° downward from the horizontal. The spherical candle-power is only a fraction of the rated c.p., which is generally taken at the maximum obtainable in the best direction. For this reason the term 2000 c.p. has little

significance as indicating the illuminating-power of an arc. It is now generally taken to mean an arc with 10 amperes and not less than 45 volts between the carbons, or a 450-watt arc. The quality of the carbons will determine whether the 450 watts are expended in obtaining the most light or not, or whether that light will have a maximum intensity at one angle or another within certain limits. The larger the current passing in an arc, the less is its resistance. Well-developed arcs with 4 amperes will have about 11 ohms, with 10 amperes 4.5 ohms, and with 100 amperes .45 ohm.

It is not unusual to run from 50 to 60 lights in a series, each demanding from 45 to 50 volts, or a total of, say, 3000 volts. In going beyond this the

difficulties of insulation are greatly increased.

Exeference Books on Electric Lighting.—Noll, How to Wire Buildings, \$1.00; Hedges, Continental Electric-light Central Stations, \$6.00; Fleming, Alternating Current Transformers in Theory and Practice, 2 vols., \$8.00; Atkinson, Elements of Electric Lighting, \$1.50; Algave and Boulard, Electric Light: its History, Production, and Application, \$5.00.

### ELECTRIC WELDING.

The apparatus most generally used consists of an alternating current dynamo, feeding a comparatively high-potential current to the primary coil of an induction coil or transformer, the secondary of which is made so large in section and so short in length as to supply to the work currents not exceeding two or three volts, and of very large volume or rate of flow. The welding clampa are attached to the secondary terminals. Other forms of apparatus, such as dynamos constructed to yield alternating currents direct from the armature to the welding-clamps, are used to a limited extent.

The conductivity for heat of the metal to be welded has a decided influence on the heating, and in welding iron its comparatively low heat conduction assists the work materially. (See papers by Sir F. Bramwell, Proc. Inst. C. E., part iv., vol. cii, p. 1; and Elihu Thomson, Trans. A. I. M. E., xix.

877.) Fred. P. Royce, Iron Age, Nov. 28, 1892, gives the following figures showing the amount of power required to weld axles and tires:

#### AXLE-WELDING.

	econds.
1-inch round axle requires 25 H.P. for	45
1-inch square axle requires 30 H.P. for	48
11/4-inch round axle requires 35 H.P. for	60
114-inch square axle requires 40 H.P. for	
2-inch round axle requires 75 H.P. for	95
2-inch square axle requires 90 H.P. for	100

The slightly increased time and power required for welding the square exte is not only due to the extra metal in it, but in part to the care which it is best to use to secure a perfect alignment.

## TIRE-WELDING.

	Seconds.
$1 \times 3/16$ -inch tire requires 11 H.P. for	
11/4 × %-inch tire requires 28 H.P. for	25
116 × \$6-inch tire requires 20 H.P. for	80
114 × %-inch tire requires 20 H:P. for 114 × %-inch tire requires 23 H,P, for	40
2 × 16-inch tire requires 29 H.P. for	55
2 × ¾-inch tire requires 42 H.P. for	62

The time above given for welding is of course that required for the actual application of the current only, and does not include that consumed by placing the axles or tires in the machine, the removal of the upset and other finishing processes. From the data thus submitted, the cost of welding can be readily figured for any locality where the price of fuel and cost of labor are known.

In almost all cases the cost of the fuel used under the boilers for producing power for electric welding is practically the same as the cost of fuel used in forges for the same amount of work, taking into consideration the

difference in price of fuel used in either case.

Prof. A. B. W. Kennedy found that 2½-inch iron tubes ½ inch lick were welded in 61 seconds, the net horse-power required at this speed being 23.4 (say 33 indicated horse-power) per square inch of section. Brass tubing

quired 21.2 net horse-power. About 60 total indicated horse-power would be required for the welding of angle irons  $8\times 3\times 36$  inch in from two to three minutes. Copper requires about 80 horse-power per square inch of section, and an inch bar can be welded in 25 seconds. It takes about 90 seconds to weld a steel bar 2 inches in diameter.

### ELECTRIC HEATERS.

Wherever a comparatively small amount of heat is desired to be automatically and uniformly maintained, and started or stopped on the instant without waste, there is the province of the electric heater.

The elementary form of heater is some form of resistance, such as coils of thin wire introduced into an electric circuit and surrounded with a substance, which will permit the conduction and radiation of heat, and at the same time serve to electrically insulate the resistance.

This resistance should be proportional to the electro-motive force of the current used and to the equation of Joule's law:

$$H=C^2Rt\times 0.24,$$

where C is the current in amperes; R, the resistance in ohms; t, the time in

seconds; and h, the heat in gram-centigrade units.

Since the resistance of metals increases as their temperature increases, a thin wire heated by current passing through it will resist more, and grow hotter and hotter until its rate of loss of heat by conduction and radiation equals the rate at which heat is supplied by the current. In a short wire, before heat enough can be dispelled for commercial purposes, fusion will begin; and in electric heaters it is necessary to use either long lengths of thin wire, or carbon, which alone of all conductors resists fusion. In the majority of heaters, coils of thin wire are used, separately embedded in

some substance of poor electrical but good thermal conductivity.

The Consolidated Car-heating Co.'s electric heater consists of a galvanized iron wire wound in a spiral groove upon a porcelain insulator. Each heater is 30% in. long, 8% in. high, and 6% in. wide. Upon it is wound 625 ft. of wire. The weight of the whole is 231/4 lbs.

Each heater is designed to absorb two amperes of a 500-volt current. Six heaters are the complement for an ordinary electric car. For ordinary weather the heaters may be combined by the switch in different ways, so that five different intensities of heating-surface are possible, besides the position in which no heat is generated, the current being turned entirely off. For heating an ordinary electric car the Cousolidated Co. states that from 2 to 12 amperes on a 500-volt circuit is sufficient. With the outside temperature at 20° to 30°, about 6 amperes will suffice. With zero or lower

temperature, the full 12 amperes is required to heat a car effectively.

Compare these figures with the experience in steam-heating of railwaycars, as follows:

1 B.T.U. = 0.29084 watt-hours.

6 amperes on a 500-volt circuit = 3000 watts.

A current consumption of 6 amperes will generate 3000 + 0.29084 = 10.315

B.T.U. per hour.

In steam-car heating, a passenger coach usually requires from 60 lbs. of steam in freezing weather to 100 lbs. in zero weather per hour. Supposing the steam to enter the pipes at 20 lbs. pressure, and to be discharged at 20 F., each pound of steam will give up 983 B.T.U. to the car. Then the equivalent of the thermal units delivered by the electrical-heating system in pounds of steam, is  $10.315 + 983 = 10\frac{1}{2}$ , nearly.

Thus the Consolidated Co.'s estimates for electric-heating provide the equivalent of 1014 lbs. of steam per car per hour in freezing weather and 2: lbs. in zero weather.

Suppose that by the use of good coal, careful firing, well designed boilers. and triple-expansion engines we are able in daily practice to generate 1 H.P. delivered at the fly-wheel with an expenditure of 2½ lbs. of coal per-

We have then to convert this energy into electricity, transmit it by wire to the heater, and convert it into heat by passing it through a resistance-coil. We may set the combined efficiency of the dynamo and line circuit at 8° and will suppose that all the electricity is converted into heat in the resistance-coils of the radiator. Then 1 brake H.P. at the engine = 0.85 electrical H.P. at the resistance-coil = 1,683,000 ft.-lbs, energy per hour = 2180 heat mults. But since it required 214 be of coal to develor 1 brake H.P. is fall. units. But since it required 21/2 lbs. of coal to develop 1 brake H.P., it fol

lows that the heat given out at the radiator per pound of coal burned in the boiler furnace will be 2180+816=872 H.U. An ordinary steam-heating system utilizes 9622 H.U. per ib. of coal for heating; hence the efficiency of the electric system is to the efficiency of the steam-heating system as 872to 9652, or about 1 to 11. (Eng'g News, Aug. 9, '90; Mar. 30, '92; May 15, '93.)

#### ELECTRICAL ACCUMULATORS OR STORAGE-RATTERIES.

Storage-batteries may be divided into two classes; viz., those in which the active material is formed from the substance of the element itself, either active material is formed from the substance of the element itself, either by direct chemical or electro-chemical action, and those in which the chemical formation is accelerated by the application of some easily reducible salt of lead. Elements of the former type are usually called Planté, and those of the latter "Faure," or "pasted."

Faraday when electrolyzing a solution of acetate of lead found that per-

oxide of lead was produced at the positive and metallic lead at the negative pole. The surfaces of the elements in a newly and fully charged Planté cell

pole. The surfaces of the elements in a newly and fully charged Planté cell consists of nearly pure peroxide of lead, PbQ, and spongy metallic lead, Pb, respectively on the positive and negative plates.

During the discharge, or if the cell be allowed to remain at rest, the sulphuric acid (H₂SO₄) in the solution enters into combination with the peroxide and spongy lead, and partially converts it into sulphate. The acid being continually abstracted from the electrolyte as the discharge proceeds, the density of the solution becomes less. In the charging operation this action is reversed, as the reducible sulphates of lead which have been formed are apparently decomposed, the acid being reinstated in the liquid and therefore causing an increase in its density.

The difference of potential developed by lead and lead peroxide immersed

The difference of potential developed by lead and lead peroxide immersed

in dilute 1₂SO₄ is, as nearly as may be, two volts.

A lead-peroxide plate gradually loses its electrical energy by local action, the rate of such loss varying according to the circumstances of its preparation and the condition of the cell. Various forms of both Planté and Faure

tion and the condition of the cell. Various forms of both Planté and Faure batteries are illustrated in "Practical Electrical Engineering." In the Faure or pasted cells lead plates are coated with minium or litharge made into a paste with acidulated water. When dry these plates are placed in a bath of dilute H₂SO₄ and subjected to the action of the current, by which the oxide on the positive plate is converted into peroxide of lead and that on the negative plate reduced to fluely divided or porous lead.

Gladstone and Tribe found that the initial electro-motive force of the Faure cell averaged 2.25 volts, but after being allowed to rest some little time it was reduced to about 2.0 volts. The following tables show the size and capacity of two types of Faure cells, known as the E. P. S. cells. (English.)

"E. P. S." Storage-cells, L Type.

	ription of Cell.	te e	Workin	g Rate.		Approximate External Dimensions.				Cell
No. of Plates.	Material of Box.	Weight Electroly	Charge	Dis- charge.	Capacity Ampere hou	Length.	Width.	Height.	Height over all.	Weight of C complete w
		lbs.	Amper.	Amper.		in,	in.	in.	in.	lbs.
7 {	Wood	18	10 to 13	1 to 13	130	514	1314		2016	74
- !	Glass	25	10 10	1 10	130	519	111/2	133%	1584	68
- 11 ₹	Wood	25	10 44	1 22	220	11%	1314	1814	2016	107
(	Glass	35	10 44	1 22	220	8	111/6	133/6	1534	101
15 ₹	Wood		40 00	I OU	330	916	1316	181/4	2016	143
!	Glass	47	(A)	1 30	330	998	1134	133%	1594	128
23 ∤	Wood	53	OO 410	1 40	500	14%	131/2	1814	2016	228
~ 1	Glass	67	90 90	1 " 46	500	1434	1134	1334	1576	211
81 -	Wood	70	50 '' 60	1 " 60	660	1914	$13\frac{1}{4}$	1814	2016	286
°¹ }	Glass	88	50 " 60	1 " 60	660	1814	12	1334	15%	265

# "E. P. S." Cells, T Type.

Description of Cell.		of te	Working Rate		y. urs.	Approx. External Dimensions.				ith H
No. of Plates.	Material of Box.	Weight Electroly	Charge	Dis- charge.	Capacit Ampere bo	Length.	Width.	Height.	Height over all	Weight of C complete w
11 { 15 { 19 }	Wood (no lid) " (with lid) Ebonite (no lid) Wood (no lid) " (with lid) Ebonite (no lid) Wood (no lid) " (with lid) " (with lid)	lbs. 10 10 10 14 14 14 18 18	16 to 20 16 " 20 16 " 20 24 " 28 24 " 28 24 " 28 30 " 35 30 " 35	1 " 20 1 " 20 1 " 80 1 " 80 1 " 80 1 " 40	66 66	in. 67/8 67/8 67/8 6 83/4 87/8 8 11	in. 854 834 734 854 876 876	in. 1156 1138 11 1156 1138 11 1158 1138	in. 1316 1336 1234 1316 1336 1234 1316 1336	1bs. 37 38 30 52 53 42 65 66
23	Ebonite (no lid) Wood (no lid) " (with lid). Ebonite	18 22 22 22 22	30 " 35 38 " 42 38 " 52 38 " 42	1 " 60	120 145 145 145	101/6 131/4 131/4 121/4	734 878 878 734	1158 1158 1138	1234 1334 1334 1234	54 79 80 66

For a very full description of various forms of storage-batteries, see "Practical Electrical Engineering," part xii. For theory of the battery and practice with the Julien battery, see paper on Electrical Accumulators by P. G. Salom, Trans. A. I. M. E., xviii. 348.

**Use of Storage-batteries in Power and Light Stations.** (from Age, Nov. 2, 1893.)—The storage-batteries in the Edison station, in Fifty-third Street, New York, relieve the other stations at the hours of heavy load, by delivering into the mains a certain amount of current that would load, by delivering into the mains a certain amount of current that would otherwise have to come, and at greater loss or "drop," from one or another of the stations connecting with the network of mains. Hence the load may be varied more or less arbitrarily at these stations according to the proportional desired the stations according to the proportional desired the stations according to the proportional desired the stations according to the proportional desired the stations according to the proportional desired the stations according to the proportion of the station according to the proportion of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of the station of t tion of load that the larger stations are desired or able to carry.

The battery consists of 140 cells each of about 1000 ampere-hour capacity, weighing some 750 lbs., and of about 48 inches in length, 21 inches in width, and 15 inches in depth. The battery has a normal discharge rate of about 200 amperes, but can be discharged, if necessary, at 500 amperes.

A test made when the station was running only 12 hours per day, from noon to midnight, showed that the battery furnished about 23.2% of the total noon to indignt, showed that the obtuery turnished about 20.2201 the total energy delivered to the mains. The maximum rate of discharge attained by the battery was about 270 amperes. Thus, in this case, we have an example of a battery which is used for the purpose: 1. Of giving a load the station machinery that would otherwise be idle. 2. Utilizing the store energy to increase the rate of output of the station at the time of heavy

load, which would otherwise necessitate greater dynamo capacity.

The Working Current, or Energy Efficiency, of a storage cell is the ratio between the value of the current or energy expended in the charging operation, and that obtained when the cell is discharged at any

specified rate.

In a lead storage cell, if the surface and quantity of active material be accurately proportioned, and if the discharge be commenced immediately after the termination of the charge, then a current efficiency of as much a 98% may be obtained, provided the rate of discharge is low and well regu lated. In practice it is found that low rates of discharge are not economica and as the current efficiency always decreases as the discharge rate in creases, it is found that the normal current efficiency seldom exceeds 90. and averages about 85%.

As the normal discharging electro-motive force of a lead secondary er" never exceeds 2 volts, and as an electro-motive force of from 2.4 to 2.5 volts is required at its poles to overcome both its opposing electro-motive forand its internal resistance, there is an initial loss of 20% between the energy

required to charge it and that given out during its discharge.

As the normal discharging potential is continually being reduced as the rate of discharge increases, it follows that an energy efficiency of 80% can

ever be realized. As a matter of fact, a maximum of 75% and a mean of is the usual energy efficiency of lead-sulphuric-acid storage-cells.

#### ELECTRO-CHEMICAL EQUIVALENTS.

Elements.	Valency.*	Atomic Weight.†	Cbemical Equivalent.	Electro-chemical Equivalent (mil- ligrammes per coulomb).	Coulombs per gramme.	Grammes per ampere hour.
ELECTRO-POSITIVE.						
lydrogen. otassium odium duminum lagnesium. iold iilver. opper (cupric) (cuprous). fercury (mercuric) (mercurous). in (stannic). (stannic). (ferric). (ferrous). iickel iine	H1 K1 N81 A12 A23 A23 A21 HK1 HK1 HK1 HK1 Sn2 Fe2 Nig ZPb	1.00 39.04 22.99 27.3 23.94 196.2 107.6 63.00 63.00 199.8 117.8 117.8 55.9 58.6 64.4	1.00 39.04 22.99 9.1 11.97 65.4 107.65.4 107.63 31.5 63.00 99.9 199.8 29.45 58.9 12.94 27.95 29.3 32.45	.010384 .40539 .23873 .09449 .12480 .67911 1.11800 .32709 .2.07470 .30581 .61162 .19856 .29035 .30425 .30596 .107160	96293 .00 2467 .50 4188 .90 1058 .30 804 .03 1473 .50 894 .41 3058 .60 1525 .30 963 .99 481 .99 2270 .00 1635 .00 5166 .4 3445 .50 3286 .80 2967 .10 933 .26	0.08788 1.45950 0.85942 8.40180 4.47470 2.44480 1.17700 8.75450 7.46900 1.10090 2.20180 0.69681 1.09480 1.21890 1.21890 8.85780
ELECTRO-NEGATIVE.	_					
hlorine odine. Sromine.	O ₂ Cl ₁ I ₁ Br ₁ N ₃	15.96 35.87 126.58 79.75 14.01	7.98 35.37 126.58 79.75 4.67	.08286 .36728 1.31390 .82812 .04849		

^{*} Valency is the atom-fixing or atom-replacing power of an element compared with hydrogen, whose valency is unity.

† A tomic weight is the weight of one atom of each element compared with

lydrogen, whose atomic weight is unity.

‡ Becquerel's extension of Faraday's law showed that the electro-chemical quivalent of an element is proportional to its chemical equivalent. The atter is equal to its combining weight, and not to atomic weight + valency, is defined by Thompson, Hospitalier, and others who have copied their ables. For example, the ferric salt is an exception to Thompson's rule, as re sesqui-salts in general.

#### ELECTROLYSIS.

The separation of a chemical compound into its constituents by means of a electric current. Faraday gave the nomenclature relating to electroly-is. He called the compound to be decomposed the Electrolyte, and the prosess Electrolysis. The plates or poles of the battery he called Electrodes. The plate where the greatest pressure exists he called the Anode, and the ther pole the ('athode. The products of decomposition he called Ions. Lord Rayleigh found that a current of one ampere will deposit 0.017253

rain, or 0.001118 gramme, of silver per second on one of the plates of a silver voltameter, the liquid employed being a solution of silver nitrate conaining from 15s to 20s of the salt.

The weight of hydrogen similarly set free by a current of one ampere is

.00001038 gramme per second.

Knowing the amount of hydrogen thus set free, and the chemical equivalents of the constituents of other substances, we can calculate what weight of their elements will be set free or deposited in a given time by a given current.

Thus the current that liberates 1 gramme of hydrogen will liberate grammes of oxygen, or 107.7 grammes of silver, the numbers 8 and 10%. being the chemical equivalents for oxygen and silver respectively.

To find the weight of metal deposited by a given current in a given time, find the weight of hydrogen liberated by the given current in the given time, and multiply by the chemical equivalent of the metal.

Thus: Weight of silver deposited in 10 seconds by a current of 10 amperes weight of bydrogen liberated per seconds when the property of the seconds of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of

= weight of hydrogen liberated per second  $\times$  number seconds  $\times$  current strength  $\times$  107.7 = .00001038  $\times$  10  $\times$  10  $\times$  107.7 = .11178 gramme. Weight of copper deposited in 1 hour by a current of 10 amperes =

 $00001038 \times 3600 \times 10 \times 31.5 = 11.77$  grammes.

Since 1 ampere per second liberates .00001038 gramme of hydrogen, strength of current in amperes

weight in grammes of H. liberated per second .00001038

weight of element liberated per second =  $\frac{}{.00001038 \times \text{chemical equivalent of element}}$ 

The table on page 1057 (from "Practical Electrical Engineering") is calculated upon Lord Rayleigh's determination of the electro-chemical equivalents and Roscoe's atomic weights.

## ELECTRO-MAGNETS.

# Units of Electro-magnetic Measurements.

C.G.S. unit of force = 1 dyne = 1.01936 milligrammes in localities in which the acceleration due to gravity is 981 centimetres, or 32.185 feet, per second C.C.S. unit of energy = 1 erg = energy required to evercome the resistance of 1 dyne at a speed of 1 centimetre per second. 1 watt =  $10^7$  ergs.

Unit magnetism = that amount of magnetic matter which, if concentrated in a point, will repel an equal amount of magnetic matter concentrated it

another point one centimetre distant with the force of one dyne.

Unit strength of field = that flow of magnetic lines which will exert unit mechanical force upon unit pole, or a density of 1 line per square centi-

The following definitions of practical units of the magnetic circuit argiven in Houston and Kennelly's "Electrical Engineering Leaflets." Gibert, the unit of magneto-motive force; such a M.M.F. as would

produced by  $\frac{10}{4\pi}$  or 0.7958 ampere-turn.

If an air-core solenoid or hollow anchor-ring were wound with 100 turn of insulated wire carrying a current of 5 amperes, the M.M.F. exerted well-be 500 ampere-turns = 628.5 gilberts. Weber, the unit of magnetic flux; the flux due to unit M.M.F. when th

reluctance is one oersted.

Gauss, the unit of magnetic flux-density, or one weber per normal square centimetre.

The flux-density of the earth's magnetic field in the neighborhood. New York is about 0.6 gauss, directed downwards at an inclination of about

Oersted, the unit of magnetic reluctance; the reluctance of a cubic centi metre of an air pump vacuum.

Reluctance is that quantity in a magnetic circuit which limits the flut under a given M.M.F. It corresponds to the resistance in the electric cr cuit.

The reluctivity of any medium is its specific reluctance, and in the C.6: system is the reluctance offered by a cubic centimetre of the body between opposed parallel faces. The reluctivity of nearly all substances, other the magnetic metals, is sensibly that of vacuum, is equal to unity, and independent of the flux density

Permeability is the reciprocal of magnetic reluctivity.

The fundamental equation of the magnetic circuit is

Webers = 
$$\frac{\text{gilberts}}{\text{oersteds}}$$
;

or, magnetic flux = magneto-motive force + magnetic reluctance. From this equation we have

Gilberts = webers  $\times$  oersteds; oersteds = gilberts + webers.

There are therefore two ways of increasing the magnetic flux: 1. by increasing the M.M.F.; 2. by decreasing the reluctance.

Lines and Loops of Force.—In discussing magnetic and electrical phenomena it is conventionally assumed that the attractions and repulsions as shown by the action of a magnet or of a conductor upon iron filings are due to "lines of force" surrounding the magnet or conductor. The "number of lines" indicates the magnitude of the forces acting. As the iron filings arrange themselves in concentric circles, we may assume that the forces may be represented by close curves or "loops of force." The following assumptions are made concerning the loops of force in a conductive circuit:

1. That the lines or loops of force in the conductor are parallel to the axis

of the conductor.

2. That the loops of force external to the conductor are proportional in number to the current in the conductor, that is, a definite current generates a definite number of loops of force. These may be stated as the strength of field in proportion to the current.

3. That the radii of the loops of force are at right angles to the axis of

the conductor.

The magnetic force proceeding from a point is equal at all points on the surface of an imaginary sphere described by a given radius about that point. A sphere of radius 1 cm. has a surface of  $4\pi$  square centimetres. If F= total field strength, expressed as the number of lines of force emanating from a pole containing M units of magnetic matter,

$$F=4\pi M; \quad M=F+4\pi.$$

Magnetic moment of a magnet = product of strength of pole M and its length, or distance between its poles L. Magnetic moment =  $\frac{LE}{4\pi}$ .

If B = number of lines flowing through each square centimetre of crosssection of a bar-magnet, or the "specific induction," and A = cross-section,

Magnetic moment = 
$$\frac{LAB}{4\pi}$$
.

If the bar-magnet be suspended in a magnetic field whose induction is H, and so placed that the lines of the field are all horizontal and at right angles to the axis of the bar, the north pole will be pulled forward, that is, in the direction in which the lines flow, and the south pole will be pulled in the opposite direction, the two forces producing a torsional moment or torque,

Torque = 
$$MLH = LABH + 4\pi$$
, in dyne-centimetres.

Magnetic attraction or repulsion emanating from a point varies inversely as the square of the distance from that point. The law of inverse squares, however, is not true when the magnetism proceeds from a surface of appreciable extent, and the distances are small, as in dynamo-electric machines. (For an analogy see "Radiation of Heat," page 467.)

Strength of an Electro-magnet.—In an electric magnet made by

coiling a current-carrying conductor around a core of soft iron, the space in which the loops of force have influence is called the magnetic field, and in which the loops of roce have induced is called the magnetic field, and the number of loops of magnetic force surrounding the magnet. Under this assumption, if we take a given current passing through a given number of conductor-turns, the number of magnetic loops will depend upon the resistance of the magnetic circuit, just as the current with a given pressure in the conductive circuit depends upon the resistance of the circuit.

The following laws express the most important principles concerning

electro-magnets:

(1) The magnetic intensity (strength) of an electro-magnet is nearly proportional to the strength of the magnetizing current, provided the core is not saturated.

(2) The magnetic strength is proportional to the number of turns of wire in the magnetizing coil; that is, to the number of ampere turns.

(3) The magnetic strength is independent of the thickness or material of

the conducting wires.

These laws may be embraced in the more general statement that the strength of an electro-magnet, the size of the magnet being the same,  $\kappa$ 

proportional to the number of its ampere turns.

proportional to the number of its ampere turns. Force in the Gap between Two Poles of a Magnet. If P = force exerted by one of the poles upon a unit pole in the gap, and m = density of lines in the field (that is, that there are m absolute or C.G. S. mirron each square centimetre of the polar surface of the magnet), the polar surface being large relative to the breadth of the gap, P = 2mn. The toforce exerted upon the unit pole by both north and south poles of the magnet is 2P = 4mn, in dynes = B, or the induction in lines of force persquare centimetre. If S = number of square centimetres in each polar surface, SB = total flow of force, or field strength = F, Sm = total postrength = M, spread over each of the polar surfaces. We then have F = 4mM, as before; that is, the total field is 4m times the total pole strength. Total attractive force between the two opposing poles of a magnet, when  $SB^2$ 

the distance apart is small,  $=\frac{SB^2}{8\pi}$ , in dynes.

This formula may be used to determine the lifting-power of an electromagnet, thus:

A bent magnet provided with a keeper is 8 cm. square on each pole, and the induction B=20,000 lines per square centimetre. The attractive force of each limb on the keeper in dynes =  $\frac{9 \times 20000^3}{8 \times 3.14}$ , or in kilogrammes for

 $9\times400\times10^6$ both limbs,  $\frac{25.12 \times 981000}{25.12 \times 981000}$  $\times$  2 = 292 kilogrammes.

The Magnetic Circuit.—In the conductive circuit we have  $C = \frac{L}{v}$ 

 $Current = \frac{electro-motive}{electro-motive}$  force volts

In the magnetic circuit we have Number of lines, or loops, of force, or magnetism

Current × conductor turns
Resistance of magnetic circuit = Ampere turns
Resistance of magnetic circuit

Or, in the new notation, webers =  $\frac{\text{gilberts}}{\text{oersteds}}$ .

Let N = No, of lines of force, Rm = total magnetic resistance, At = 1ampere turns, then  $N = \frac{At}{R}$ .

The magnetic pressure due to the ampere turns =  $\frac{4}{10}\pi TC = 1.257$ . where T = turns and C = amperes, whence  $N = \frac{.4\pi TC}{Rm} = \frac{1.257TC}{Rm}$ 

If Rm = total magnetic resistance, and Ra, RA, RF the magnetic resistance ances of the air-spaces, the armature, and the field-magnets, respectively

$$R_{m} = R_{a} + R_{A} + R_{F}$$
; and  $N = \frac{.4\pi TC}{R_{a} + R_{A} + R_{F}}$ 

Determining the Polarity of Electro-magnets.—If a wis wound around a magnet in a right-handed helix, the end at which current flows into the helix is the south pole. If a wire is wound around content nows into the near is one south pole. It a wire is wound around round ordinary wood screw, and the current flows around the helix in the distinction from the head of the screw to the point, the head of the screw is south pole. If a magnet is held so that the south pole is opposite the eye the observer, the wire being wound as a right-handed helix around it. current flows in a right-handed direction, with the hands of a clock.

#### DYNAMO-ELECTRIC MACHINES.

There are four classes of dynamo-electric machines, viz.:

1. The dynamo, in which mechanical energy of rotation is converted into the energy of a direct current.
2. The alternator, in which mechanical energy of rotation is converted into

the energy of an alternating current.

3. The motor, in which the energy of a direct current is converted into mechanical energy of rotation.

The alternate-current motor, in which the energy of one or more alter-

nating currents is converted into mechanical energy of rotation.

For a steady direct current the product of the potential difference and the current strength is a true measure of the energy given off. With alternating currents the product of voltage into current strength is greater than the true energy, since the conductor has the property of reacting upon itself, called "self-induction."

Kinds of Dynamo-electric Machines as regards Man-

ner of Winding. (Houston's Electrical Dictionary.)

1. Dynamo-electric Machine.—A machine for the conversion of mechanical energy into electrical energy by means of magneto-electric induction.

2. Compound-wound Dynamo.—The field-magnets are excited by more

- than one circuit of coils or by more than a single electric source.

  3. Closed-coil Dynamo.—The armature-coils are grouped in sections communicating with successive bars of a collector, so as to be connected communicating with successive bars of a collector, so as to be connected communicating with successive bars of a collector, so as to be connected communicating with successive bars of a collector, so as to be connected communicating with successive bars of a collector, so as to be connected communicating with successive bars of a collector, so as to be connected communication. tinuously together in a closed circuit.
- 4. Open-coil Dynamo.—The armature-coils, though connected to the successive bars of the commutator, are not connected continuously in a closed
- 5. Separate-coil Dynamo.-The field-magnets are excited by means of coils on the armature separate and distinct from those which furnish current to the external circuit.
- 6. Separately-excited Dynamo.—The field-magnet coils have no connection with the armature-coils, but receive their current from a separate machine or source.

7. Series-wound Dynamo.-The field-current and the external circuit are connected in series with the armature circuit, so that the entire armature

current must pass through the field-coils.

Since in a series wound dynamo the armature-coils, the field, and the external-series circuit are in series, any increase in the resistance of the external circuit will decrease the electro-motive force from the decrease in the magnetizing currents. A decrease in the resistance of the external circuit will, in a like manner, increase the electro-motive force from the increase in the magnetizing current. The use of a regulator avoids these changes in the electro-motive force.

8. Series and Separately-excited Compound-wound Dynamo.—There are two separate circuits in the field-magnet cores, one of which is connected in series with the field-magnets and the external circuit, and the other with

some source by which it is separately excited.

9. Shunt-wound Dynamo.—The field-magnet coils are placed in a shunt to the armature circuit, so that only a portion of the circuit generated passes through the field magnet coils, but all the difference of potential of the armature acts at the terminals of the field-circuit.

In a shunt-dynamo machine an increase in the resistance of the external circuit increases the electro-motive force, and a decrease in the resistance of the external circuit decreases the electro-motive force. This is just the

reverse of the series-wound dynamo.

In a shunt-wound dynamo a continuous balancing of the current occurs. The current dividing at the brushes between the field and the external circuit in the inverse proportion to the resistance of these circuits, if the resistance of the external circuit becomes greater, a proportionately greater current passes through the field-magnets, and so causes the electro-motive force to become greater. If, on the contrary, the resistance of the external circuit decreases, less current passes through the field, and the electromotive force is proportionately decreased.

10. Series- and Shunt-wound Compound-wound Dynamo.—The field-mag-

nets are wound with two separate coils, one of which is in series with the armature and the external circuit, and the other in shunt with the armature. This is usually called a compound-wound machine.

11. Shunt and Separately-excited Compound-wound Dynamo.—The fi

is excited both by means of a shunt to the armature circuit and by a cur-

rent produced by a separate source.

Current Generated by a Dynamo-electric Machine.—Unit current in the C.G.S. system is that current which, flowing in a thin wire forming a circle of one centimetre radius, acts upon a unit pole placed in the centre with a force of 2π dynes. One tenth of this unit is the unit of

the centre with a force of  $2\pi$  dynes. One tenth of this unit is the unit of current used in practice, called the ampere.

A wire through which a current passes has, when placed in a magnetic field, a tendency to move perpendicular to itself and at right angles to the lines of the field. The force producing this tendency is P=LB dynes, in which  $l= \operatorname{length}$  of the wire,  $c= \operatorname{the}$  current in C.G.S. units, and B the instance is the field in history approximate constitution. duction in the field in lines per square centimetre.

If the current C is taken in amperes,  $P = lCB10^{-1}$ .

If  $P_k$  is taken in kilogrammes,

$$P_{k} = \frac{lCB}{9810000} = 10.1937 lCB 10^{-8}$$
 kilogrammes.

EXAMPLE.—The mean strength of field, B, of a dynamo is 5000 C.G.S. lines; a current of 100 amperes flows through a wire; the force acts upon 10 centi-

metres of the wire =  $10.1937 \times 10 \times 100 \times 5000 \times 10^{-8} = .5097$  kilogrammes. In the "English" or Kapp's system of measurement a total flow of 6000 C.G.S. lines is taken to equal one English line. Calling  $B_E$  the induction in English, or Kapp's, lines per square inch, and B the induction in C.G.S. lines per square centimetre,  $B_E=B+980.04$ ; and taking l'' in inches and  $P_P$  in

pounds,  $P_p = 531 Cl'' B_E 10^{-6}$  pounds.

**Torque of an Armature.**  $-P_p$  in the last formula, = the force tending to move one wire of length l', which carries a current of C amperes through the field whose induction is  $B_E$  English lines per square inch. The current through a drum-armature splits at the commutator into two branches each half going through half of the wires or bars. The force exerted upon one of the wires under the influence of a pole-piece =  $\frac{1}{12}P_{\rm P}$ . If t=1 the number of wires under the pole-pieces, then the total force =  $\frac{1}{12}P_{\rm P}$ . If t=1 radius of the armature to the centre of the conductors, expressed in feet, then the torque =  $\frac{1}{2}P_{p}tr$ , =  $\frac{1}{2}\times 531 \times Cl''B_{E}\times 10^{-6}\times tr$  foot-pounds of moment, or pounds acting at a radius of 1 foot.

Example.—Let the length l of an armature = 20 in., the radius = 6 in. or .5 ft., number of conductors = 120, of which t = 80 are under the influence of the two pole-pieces at one time, the average induction or magnetic flux through the armature-field  $B_E = 5$  English lines per square inch, and the current passing through the armature = 400 amperes; then

Torque =  $\frac{1}{2} \times 531 \times 400 \times 20 \times 5 \times 80 \times .5 \times 10^{-6} = 424.8$ .

The work done in one revolution = torque  $\times$  circumference of a circle of 1 foot radius =  $424.8 \times 6.28 = 2670$  foot-pounds. Let the revolutions per minute = 500, then the horse-power

$$=\frac{2670\times500}{33000}=40.5$$
 H.P.

**Electro-motive Force of the Armature Circuit.**—From the horse-power, calculated as above, together with the amperes, we can obtain the E.M.F., for  $CE = \text{H.P.} \times 746$ , whence E.M.F. or  $E = \text{H.P.} \times 746 + C$ .

If H.P., as above, = 40.5, and 
$$C = 400$$
,  $E = \frac{40.5 \times 746}{400} = 75.5$  volts.

The E.M.F. may also be calculated more directly by the following formulæ given by Gisbert Kapp:

C = Total current through armature; c, current through single armature conductor;

 $e_a = E.M.F.$  in armsture in volts:

 $\tau =$  Number of active conductors counted all around armature;

p =Number of pairs of poles (p = 1 in a two-pole machine);

n =Speed in revolutions per minute; F =Total induction in C.G.S. lines;

Z = Total induction in English lines.

$$\mathbf{Torque} \left\{ \begin{array}{l} \text{Kilogramme-metres} = 1.615 Fr C \, 10^{-10} \\ \text{Foot-pounds} \dots = 7.05 Zr C \, 10^{-6} \\ \text{Kilogramme-metres} = 3.23 Frep \, 10^{-10} \\ \text{Foot-pounds} \dots = 14.10 Zr cp \, 10^{-6} \end{array} \right\} \quad \begin{array}{l} \text{for two-pole machines.} \\ \text{for multipolar machines.} \end{array}$$

**EXAMPLE.**— $\tau=120$ , n=500, length of armature l=20 in., diameter d=12 in., cross-section =  $20\times12=240$  sq. in., induction per sq. in.  $B_E=5$  lines per sq. in., total induction  $Z=240\times5=1200$ ; then

$$E = Z_7 n_{10} - 6 = 1200 \times 120 \times 500 \times 10 - 6 = 72$$
 volts.

A formula for horse-power given by Kapp is

940:

H.P. = 
$$1/746 \ ZNtn10 - {}^{6}Ca$$
  
=  $1/746 \ 2abmNtn10 - {}^{6}Ca$ .

 $C_0$  = current in amperes, n = revs. per min., 2ab = sectional area of armature-core, m = average density of lines per sq. in. of armature-core, Nt = total number of external wires counted all around the circumference, t = number of wires corresponding to one plate in the commutator, N = number of plates, Z = 2abm = total number of English lines of, force.

Kapp says that experience has shown that the density of lines m in the core cannot exceed a certain limit, which is reached when the core is saturated with magnetism. This value is reached when m = 30. A fair average value in modern dynamos and notors is m = 20, and the area ab must be taken as that actually filled by iron, and not the gross area of the core. 2b English lines per sq. in. = 18,600 C.6.8. lines per square centimetre. Sittle of the core is necessarily in the magnetization further than B = 17,000 C.G.S. lines per square centimetre. centimetre.

Thompson gives as a rough average for the magnetic field in the gap-space of a dynamo or motor 6300 lines per sq. cm., or 40,000 lines per sq. in., and the drag per inch of conductor .00354 lb. for each ampere of current carried.

Payada expresse dress per conductor _ H.P. × 33,000 in which C is the

Pounds average drag per conductor =  $\frac{11.1. \times 33,000}{\text{ft, per min.} \times C}$ , in which C is the number of conductors around the armature.

Strength of the Magnetic Field.—Kapp gives for the total number of lines of force (Kapp's lines = C.G.S. lines + 6000) in the magnetic cir- $Z = \frac{\Delta}{Ra + RA + RF}$ , in which Z = number of magnetic lines, X = the

exciting pressure due to the ampere turns =  $.4\pi TC$ , Ra, RA, and RF, = respectively the resistances of the air-spaces, the armature, and the field-mag-Kapp gives the following empirical values of Ra, RA, and RF, for dynamos and motors made of well-annealed wrought iron, with a permeability of  $\mu =$ 

$$Ra = 1440 \frac{28}{\lambda b}; \quad RA = \frac{l}{ab}; \quad RF = 2 \frac{L}{AB};$$

in which  $\delta=$  distance across the span between armature-core and polar surface, b= breadth of armature measured parallel to axis,  $\lambda=$  length of arc embraced by polar surface, so that  $\lambda b=$  the polar area out of which magnetic lines issue, a= radial depth of armature-core, so that ab= section of armature-core (space actually occupied by iron only being reckoned, AB= area of field-magnet core, l= length of magnetic circuit within armature, L= length of magnetic circuit in field magnet; all dimensions in tempor or source inches inches or square inches.

For cast-iron magnets, 
$$Z = \frac{0.8X}{1800\frac{2\delta}{\lambda b} + \frac{l}{ab} + \frac{3L}{4R}}$$
.

For double horse-shoe magnets of wrought iron,

These formulæ apply only to cases in which the intensity of magnetization is not too great—say up to 10 Kapp's lines per square inch.

Silvanus P. Thompson gives the following method of calculating the strength of the field, or the magnetic flux, MF, or the whole number of magnetic lines flowing in the circuit in C.G.S. lines:

The magnetic resistance of any magnetic conductor is proportional directly to its length and inversely to its cross-section and its permeability.

Magnetic resistance =  $\frac{L}{S\mu}$ , in which L = length of the magnetic circuitpassing through any piece of iron, S= section of the magnetic circuit passing through any piece of iron,  $\mu=$  permeability of that piece of iron.

In a dynamo-machine in which the resistances are three, viz.: 1. The field-magnet cores; 2. The armature-core; 3. The gaps or air-spaces between them,-

let Lm, Sm, µm refer to the field-magnet part of the circuit; Las, Sas, was refer to the air-space part of the circuit; La. Sa. µa refer to the armature part of the circuit;

the lengths across each of the air-spaces being Las, and the exposed area of polar surface at either pole being Sas.

Total magnetic resistance =  $\frac{L_m}{\dot{S}_{m\mu m}} + \frac{L_{as}}{S_{as\mu as}} + \frac{L_a}{S_{asa}}$ 

Magnetic flux, or total number of magnetic lines, =

$$MF = \frac{1.257 TwC}{\frac{Lm}{Sm\mu m} + \frac{Las}{Sas\mu as} + \frac{La}{Sa\mu a}}.$$

Tw = turns of wires, or number of turns in the spiral;

C = current in amperes passing through spiral.

Application to Designing of Dynamos. (S. P. Thompson.)—
Suppose in designing a dynamo it has been decided what will be a convenient speed, how many conductors shall be wound upon the armature, and what quantity of magnetic lines there must be in the field, it then becomes necessary to calculate the sizes of the iron parts and the quantity of excitation to be provided for by the field-magnet coils. It being known what MF is to be, the problem is to design the machine so as to get the required value. Experience shows that in every type of dynamo there is magnetic leakage; also, that it is not wise to push the saturation of the armature-core to more than 16,000 lines to the square centimetre at the most highly saturated part, and that the induction in the field-magnet ought to be not greater than this, even allowing for leakage. Leakage may amount to 1/4 of the whole: hence, if the magnet-cores are made of same quality of iron as the armature-cores, their cross-section ought to be at least 5/4 as great as that of the armature-core at its narrowest point. If the field-magnets

as that of the armature—core as the harrowest point. It will be a set of cast from the section ought to be at least twice as great.

Now,  $B_a$  (the induction in the armature-core) =  $M_a + S_a$  (or magnetic flux through armature + cross-sectional area of the armature; hence, if this is fixed at 16,000 lines per centimetre of cross-section, we at once get Sa=Ma+Ba. This fixes the cross-section of the armature-core. (Example: If Ma + Ba. This fixes the cross-section of the armature-core. (Example, if Ma = 4,000,000 of lines, then there must be a cross-section equal to 250 uare centimetres for  $\frac{4,000,000}{18,000} = 250$ .)

16,000

Magnetic Length of Armature Circuit.—The size of wires on the armature is fixed by the number of amperes which it must carry without risk. Remembering that only half the current (in ring or drum armatures) passes through any one coil, and as the number is supposed to have been fixed be-forehand, this practically settles the quantity of copper that must be put on the armature, and experience dictates that the core should be made so large that the thickness of the external winding does not exceed 1/6 of the radial depth of the iron core. This settles the size of the armature-core, from which an estimate of La, the average length of path of the magnetic lines in the core, can be made.

Length and Section or Surface Area of Air-space.—Experience further dictates the requisite clearance, and the advantage of making the pole-

pieces subtend an arc (in two-pole machines) of at least 135° each, so as to gain a large polar area. This settles Las and Sas.

Length of Field-magnet Iron Cores, etc.—As shown above, the minimum value of Sm is settled by leakage and materials; Lm therefore remains to be decided. It is clear that the magnet-cores must be long enough to allow of the requisite negative coils but should not be become be decided. It is clear that the magnet-cores must be long enough to allow of the requisite magnetizing coils, but should not be longer. As a rule, they are made so stout, especially in the yoke part, that they do not add much to the magnetic resistance of the circuit, then a little extra length assumed in the calculation does not matter much. It now only remains to calculate the number of ampere-turns of excitation for which it will be needful to provide.

It will now be more convenient to rewrite the formula of the magnetic

circuit as follows:

$$A \times T_{mw} = Ma \frac{\left\{ \lambda \frac{L_m}{Sm\mu_m} + 2 \frac{L_{as}}{Sas.\mu as} + \frac{L_a}{Sa.\mu a} \right\}}{1.257};$$

where A = amperes of current passing through the field-magnet coils; Tmw = total turns of the magnet wire;  $\lambda = \text{leakage coefficient (say 5/4)}.$ 

Or,

$$4 \times Tmw = Ma \frac{\lambda Rm + Ras + Ra}{1.257}$$

Or, as before,

$$Ma = 1.257 \frac{A \times Tmw}{\lambda Rm + Ra + Ra'}$$

where Rm, Ras, Ra stand for the magnetic resistance of magnets, air-

space, and armature, respectively.

But we cannot use this formula yet, because the values of  $\mu$  in it depend on the degree of saturation of the iron in the various parts. These have to be found from the Hopkinson tables, given below; and, indeed, it is preferable first to rearrange the formula once more, by dividing it into its separate members, ascertaining separately the ampere-turns requisite to force the required number of magnetic lines through the separate parts, and then add them together.

- 1. Ampere-turns required for magnet-cores =  $\lambda \frac{Ma}{S_{mn}} \times \frac{Lm}{u_{mn}} + 1.257$ .
- $= \frac{Ma}{Sas} \times 2\frac{Las}{uas} + 1.257.$ 2. Ampere-turns required for air-spaces
- 3. Ampere-turns required for armature-core =  $\frac{Ma}{Sh} \times \frac{La}{aa} \div 1.257$ .

Now  $\lambda \frac{Ma}{Sm}$  is the value of B in the magnet-cores, and reference to the table of permeability will show what the corresdonding value of  $\mu m$  must be. Similarly,  $\frac{Ma}{Sa}$  will afford a clue to  $\mu a$ . When the total number of ampereturns to be allowed for is thus ascertained, the size and length of wire will be determined by the permissible rise of temperature, and the mode of exciting the field-inagnets, whether in series, or as a shunt machine, or with a compound-winding. **Permeability.** - Materials differ in regard to the resistance they offer to the passage of lines of force; thus iron is more permeable than air. The permeability of a substance is expressed by a coefficient  $\mu_*$  which denotes its relation to the permeability of air, which is taken as 1. If H= number of magnetic lines per square centimetre which will pass through an air-space between the poles of a magnet, and B the number of lines which will pass through a certain piece of iron in that space, then  $\mu=B+H$ . The permeability varies with the quality of the iron, and the degree of saturation, reaching a practical limit for soft wrought iron when B= about 18,000 C.G.S. lines per square centimeters. and for cast iron when B = about 10,000 C.G.S. lines per square centimetre.

The following values are given by Thompson as calculated from Hopkin-

son's experiments:

Annea	aled Wrough	it Iron.	Gray Cast Iron.			
В	H	μ	В	H	μ	
5,000	2	2,500	4,000	5	800	
9,000	4	2,250	5,000	10	500	
10,000	5	2,000	6,000	21.5	279	
11,000	6.5	1.692	7,000	42 80	133	
12,000	8.5	1,412	l 8.000 l	80	100	
18,000	12	1,412 1,088	9,000	127	71	
14,000	17	828	10,000	188	53	
15,000	28.5	526	11,000	292	37	
16,000	52	308	,			
17,000	105	161				
18,000	200	90	l			
19,000	350	54	1			

Permissible Amperage and Permissible Depth of Winding for Magnets with Cotton-covered Wire. (Walter S. Dix, El. Enginer; Dec. 21, 1892.)—The tables on pp. 1668, 1069, abridged from those of Mr. Dix, are calculated from the formula

$$C = \sqrt{\frac{\frac{12 \times W}{\omega_{mf} \times T \times L}}{}},$$

where C = current; W = emissivity in watts per square inch;  $\omega_m f = \text{ohms per mil-foot}$ ;

M = circular mils;

T = turns per linear inch;

L =number of layers in depth.

The emissivity is taken at .4 watt per sq. in. for stationary magnets for a rise of temperature of 35° C. (83° F.). For armatures, according to Esson's experiments, it is approximately correct to say that .9 watt per sq. in. will be dissipated for a rise of 35° C.

The insulation allowed is .00° inch on No. 0 to No. 11 B. & S.; .005 inch on No. 12 to No. 24; and .0045 inch on No. 25 to No. 31 single; twice these values for insulation of double-covered wires. Fifteen per cent is allowed for insulation of the wires.

for imbedding of the wires.

The standard of resistance employed is 9.612 ohms per mil-foot at 0°. The running temperature of tables is taken at  $25^{\circ} + 35^{\circ} = 60^{\circ}$  C. The column giving the depth for one layer is the diameter over insulation.

## Formulæ of Efficiency of Dynamos.

(S. P. Thompson in "Munro and Jamieson's Pocket-Book.")

Total Electrical Energy (per second) of any dynamo (expressed in watts is the product of the whole E.M.F. generated by armature-coils into the whole current which passes through the armature.

Useful Electrical Energy (per second), or useful output of the machine, is the product of the useful part of the E.M.F. (i.e., that part which is available at the terminels of the machine) into the useful part of the current e., that part of the current which flows from the terminals into the exter-.l circuit).

Economic Coefficient or "electrical efficiency" of a dynamo is the ratio

of the useful energy to the total energy.

Commercial Efficiency of a dynamo is the ratio of the useful energy or output to the power actually absorbed by the machine in being driven.

Let  $E_a$  = total E.M.F. generated in armature;  $E_c$  = useful E.M.F. available at terminals;

Ca = total current generated in armature;

Cs = current sent round shunt-coils;

Ce = useful current supplied to external circuit;

Ra = resistance of armature-coils;

 $R_m = \text{resistance of magnet-coils in main circuit (series):}$ 

 $R_8$  = resistance of magnet-coils in shunt;  $R_e = \text{resistance of external circuit (lamps, mains, etc.)}$ :

Wa = Watts lost in armature;

Wm = Watts lost in magnet-coils;

Vi = lost volts;

 $T_e$  = total electrical energy (per second):

 $U_e$  = useful electrical output;

c = economic coefficient;

p = commercial efficiency (percentage).

as great as Ra and preferably 1000 to 1200 times as great.

When only one circuit (series machine)  $C_e = C_a$ .

In shunt machines  $C_s$  should not be more than 5% of  $C_e$ . Also,  $C_a = C_e + C_s$ .

In all dynamos,  $R_s$  ought to be less than 1/40 as great as the working

value of Re.

In series (and compound) machines,  $R_m$  should be not greater than  $R_a$ , and preferably only % as great. In shunt (and compound) machines, Rs should be not less than 300 times

	Series Machine.	Shunt Machine.	Compound Machine (Short Shunt).
$W_a$	$C_a^2R_a$	$C_a^2 R_a$	$C_a^2 R_a$
$W_m$	$C_a^2 R_m$	$C_s^2R_s = E_e^2 + R_s$	$C_a^2R_m+C_s^2R_a$
$v_l$	$C_a R_a$	$C_a R_a$	$C_a R_a + C_e R_m$
$T_e$	$E_a C_a = C_a^2 (R_a + R_m + R_e)$	$E_a C_a = C_a^2 \left( R_a + \frac{R_s R_e}{R_s + R_e} \right)$	$E_{a}C_{a} = C_{a}^{2} \left( R_{a} + \frac{R_{s}(R_{m} + R_{e})}{R_{s} + R_{m} + R_{e}} \right)$
$v_e$	$E_e C_a = C_a^2 R_e$	$E_e C_e = C_e^2 R_e$	$E_e C_e = C_e^2 R_e$
c	$E = R_e$	$\frac{C_e^2 R_e}{C_e^2 R_e + C_a^2 R_a + C_s^2 R_s} *$	$C_e^2 R_e$
	$E_a$ $R_a + R_m + R_e$	$C_e^2 R_e + C_a^2 R_a + C_s^2 R_s$	$C_e^2 R_e + C_a^2 R_a + C_s^2 R_s + C_e^2 R_m$
p	$\begin{array}{c} 100 \times E_e C_e + \\ \text{(H.P.} \times 746) \end{array}$	100×E _e C _e + (H.P.×746)	$100 \times E_e C_e + (H.P. \times 746)$
	is converted into	is a mean proportional between $R_s$ and $R_s$ .	In well-constructed compound machines the difference between "short shunt" and "long shunt" is very slight, as $R_m$ is so small.

of Winding for Magnets with Single Cotton-Wire. Permissible Amperage and Permissible Depth covered

төрср Depth. 9 2202018088881127888887128888897588897 ·dmv ************** Depth .qmA Depth. 2 .qm▲ Depth 2 dwy Layers. Depth Debty 8348882388855441 Depth. Depth. 2 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 355.1. 35 Depth 502254444888888888454464 Depth. ·dmA linear Turns per foot. Cov'd per Bare. Ľbs. 60 deg. C. Teq smf() Is tool Circular Mils. Diam.Bare, inches. 1019 095 096 083 0808 072 064 0641 0650 0463 0252 0252 0253 0253 0253 0253 0253 Gauge. 99 돲 B.& S.

<b>៩</b> ន់នៃខ2ខង់ន
15 88 88 88 88 88 88 88 88 88 88 88 88 88
**************************************
28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
28888251 2011
25.5.2.5.2.5.2.5.2.5.2.5.2.5.2.5.2.5.2.
22.22.22.22.22.22.22.22.22.22.22.22.22.
580 353 353 353 353 353 353
25. 19. 19. 15. 15. 18. 18. 18. 18. 18.
25.25.28.28.28.28
178 145 183 183 183 183 183 183 183 183 183 183
515 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
888888
99.00 00 00 00 00 00 00 00 00 00 00 00 00
845 845 8118 8146
062 062 047 043 040
157 975 975 975 9828 902 100 100 100 100 100 100 100 100 100 1
<b>-</b>
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
1.420 1.193 1.014 737 737 .631
0251 0224 0224 0187 0158 0158
7886238
##28####
8445888
00140 00110 000652 000552 000439
· · · · · · · · · · · · · · · · · · ·
.00122 .000971 .000771 .000608 .000482 .000385
.0298 .0377 .0475 .0600 .0755
404 3350 2554 201 159.8 100.5
.0201 .0179 .0159 .0142 .0126 .0103
**********

Permissible Amperage and Permissible Depth of Winding for Magnets with Double Cotton-covered Wire.

Ga	Gauge.	<u>.</u>		Ohms	Lbs. p	Lbs. per foot.					בֿ	ayers.			
		Bare,	Jar-	per			Turns				2	_	10	ক	8
B. & S.	Bir.	inches.	Mils.	60°C	Bare.	Cover'd	linear inch.	Amp.	Depth.	Amp.	Depth.	Amp.	Depth.	Amp.	Depth.
	1				İ	1							.		
	25 Q	26.6 26.0 26.0 26.0 26.0 26.0 26.0 26.0	80656	.0001495	45		88.8	8.78	868	5.3	¥.	8 8 8 8	83 :	21.9	٠. ا
3	•	9576	10010		3.5		8	8.9	613	200	1.722	. 9		200	8.5
:	4	38	N6.644	2000			88	0.1	0102	- 00	1.210	0.0	3.6	0.0	55
00		8000	52634	0000	150		7.7	. K	2676	9 50	900	3 3	5 C	10.0	. 4
	ص	83	48400	000:348	146		22.2	67.50	234	200	048	8	20.00	120	10.
4		.2043	41748	000589	126	159	82.4	9	51.53	56.9	96	18	8	18.5	2
	9	808.	41209	.000592	33	}	19.4	59.8	212	26.7	476	18.9	1.05	18.4	8
מי	_	. 1819	83102	000365	8	22	5.10	20.8	196	25.7	8	16.1	.33	11.4	3.44
_	۲.	.18	82400	.0002725	6260		5.16	20.0	18	8	178	15.8	1.71	11.2	3.40
,	00	.165	27225	.000143	.0885		5.59	44.1	179	19.7	Š	13.9	288	88.	3.14
9	,	.162	26351	.000459	670.	.0942	5.68	42.9	.176	19.1	791	13.6	1.55	9.61	3.09
		.148	51904	.000551	.0663		6.17	87.6	.162	16.8	787	11.9	1.43	8.41	25
		.1448	20817	.0005795	87.90	9620.	88	38.2	.1583	16.1	.712	11.5	1.40	8.10	2.78
•	10	2	17956	.000672	.0544		8.78	35.5	.148	14.5	88	10.8	1.81	7.27	2.59
20		1285	16510	.000731	.050	.0617	7.08	90.0	.1425	13.6	35	9.70	1.26	6.84	2.50
(	=	27.	14400	.000838	.0436		7.46	27.73	138	12.3	809	8.78	1.18	8.9	25.85
		.1144	13094	.000922	.0393	.0505	7.79	2.2	1284	11.5	573	8.14	1.13	5.75	% %

Alternating Currents, Multiphase Currents, Transformers, etc.—The proper discussion of these subjects would take more space than can be afforded in this work. Consult S. P. Thompson's "Dynamo-Electric Machinery," Bedell and Crehore on "Alternating Currents." Fleming on "Alternating Currents," and Kapp on "Dynamos, Alternators and Transformers.

The Electric Motor.—The electric motor is the same machine as the dynamo, but with the nature of its operation reversed. In the dynamo mechanical energy, such as from a belt, is converted into electric current: in the motor the current entering the machine is converted into mechanical energy, which may be taken off by a belt. The difference in the action of the machine as a dynamo and as a motor is thus explained by Prof. F. B. Crocker, (Cassier's Mag., March, 1895):

In the case of the dynamo there exists only one E.M.F., whereas in the

motor there must always be two.

One kilowatt dynamo, C = E + R; 10 amperes = 100 volts + 10 ohms.

One kilowatt motor, 
$$C = \frac{E - e}{R_1}$$
; 10 amperes =  $\frac{100 \text{ volts} - 90 \text{ volts}}{1 \text{ ohm}}$ .

C is the current; E, the direct E.M.F.; e, the counter E.M.F.; R, the total resistance of the circuit; R₁, the resistance of the armature. The current and direct E.M.F. are the same in the two cases, but the resistance is only one tenth as much in the case of the motor, the difference being replaced by the counter E.M.F., which acts like resistance to reduce the current. In the case of the motor the counter E.M.F. represents the amount of the electrical energy converted into mechanical energy. The so-called electrical efficiency or conversion factor = counter E.M.F. + direct E.M.F. The actual or commercial efficiency is somewhat less than this, owing to fric-

tion, Foucault currents, and hysteresis.

For full discussions of the theory and practice of electric motors see S. Thompson's "Dynamo-Electric Machinery," Kapp's "Electric Transmission of Energy," Martin and Wetzler's "The Electric Motor and its Applications," Cox's "Continuous Current Dynamos and Motors," and Crocker and Wheeler's "Practical Management of Dynamos and Motors."

# LIST OF AUTHORITIES QUOTED IN THIS BOOK.

When a name is quoted but once or a few times only, the page or pages are given. The names of leading writers of text-books, who are quoted frequently, have the word "various" affixed in place of the page-number. The list is somewhat incomplete both as to names and page numbers.

Abel, F. A., 642
Abendroth & Root Mfg. Co., 197, 198
American Screw Co., 209
Achard, Arthur, 886, 919
Addy, George, 957
Addyston Pipe and Steel Co., 187, 188
Alden, G. I., 979
Alexander, J. S., 629
Allen, Kenneth, 295
Allen, Leicester, 582
Andrews. Thomas, 384
Ansonia Brass and Copper Co., 327
Arnold, Horace L., 959
Asheroft Mfg. Co., 752, 775
Atkinson, J. J., 532
Ayrton and Perry, 1040
Babcock, G. H., 524, 933
Babcock, G. Willoy, Co., 538, 638

Babcock, G. H., 524, 933
Babcock & Wilcox Co., 538, 636
Baermann, P. H., 188
Bagshaw, Walter, 952
Bailey, W. H., 943
Baker, Sir Benjamin, 239, 247, 402
Balch, S. W., 898
Baldwin, Wm. J., 541
Ball, Frank H., 751
Barlow, W. H., 384
Barlow, Prof., 288
Barnaby, S. W., 1013
Barnes, D. L., 631, 861, 868
Barrus, Geo. H., 636
Barrus, Geo. H., 636
Bauer, Chas. A., 207 Barrus, Geo. H., 636
Bauer, Chas. A., 207
Bauschinger, Prof., 239
Bazis, M., 563, 587
Beardslee, L. A.. 238, 377
Beaumont, W. W., 979
Becuel, L. A., 644
Begtrup, J., 348
Bennett, P. D., 354
Bernard, M. & E., 880
Birkinbina John, 605 Beruard, M. & E., 830 Birkinbine, John, 605 Bjorling, P., 676 Blaine, R. G., 616, 1089 Blauvelt, W. H., 639, 649 Blechynden, A., 1015 Bodmer, G. R., 753 Bolland, Simpson, 946 Booth, Wm. H., 926 Box, Thomas, 475 Briggs, Robert, 194, 478, 539, 672 British Board of Trade, 264, 266, 700 Brown, A. G., 723, 724 Brown, E. H., 388 Brown & Sharpe Mfg. Co., 219, 890 Browne, Ross E., 597 Brush, Chas. B., 566 Buckle, W., 511

Buel, Richard H., 606, 834 Buffalo Forge Co., 519, 529 Builders' Iron Foundry, 874 Burr, Wm. A., 565 Burr, Wm. H., 247, 259, 290, 381

Calvert, F. Crace, 886 Calvert & Johnson, 469 Calvert & Johnson, 469
Campbell, H. H., 398, 459, 650
Campredon, Louis, 403
Carnegie Steel Co., 177, 272, 277, 391
Carpenter, R. C., 454, 615, 718, etc.
Chadwick Lead Works, 201, 615
Chamberlain, P. M., 474
Chance, H. M., 631
Chandler, Chas. F., 552
Chapman Valve Mfg. Co., 193
Chauvenet, S. H., 370
Chase, Chas. P., 312
Chevandier, Eugene, 640 Chevandier, Eugene, 640 Chevandier, Eugene, 640
Christie, James, 894
Church, Irving P., 415
Church, Wm. Lee, 784, 1050
Clapp, Geo. H., 897, 408, 551
Clark, Daniel Kinnear, various
Clarke, Edwin, 740
Claudel, 455
Clay, F. W., 291
Clerk, Dugald, 847
Cloud, John W., 351
Codman, J. E., 198
Coffey, B. H., 810
Coffin, Freeman C., 292 Coffin, Freeman C., 292 Coggswell, W. B., 554 Cole, Romaine C., 329 Coleman, J. J., 470 Cooper, John H., 876, 900
Cooper, Theodore, 262, 263, 359
Cotterill and Slade, 432, 974
Cowles, Eugene H., 329, 331
Cox., A. J., 290
Cox., E. T., 629
Cox., William, 575
Coye, Eckley B. 689 Coxe, Eckley B., 632 Craddock, Thomas, 478 Cramp, E. S., 405 Crimp, Santo, 564 Crocker, F. B., 1070 Cummins, Wm. Russell, 772

Daelen, R. M., 617 Dagger, John H. J., 829 Daniel, Wm., 492 D'Arcy, 563 Davenport, R. W., 620 Day, R. E., 1680 Dean, F. W., 605, 689 Decœur, P., 600
DeMeritens, A., 386
Denton, James E., 780, 761, 781, 932
Dinsmore, R. E., 963
Dix, Walter S., 208, 1066
Dodge Manufacturing Co., 344
Donald, J. T., 235
Donkin, B., Jr., 491, 783
Dudley, Chas. B., 327, 333
Dudley, Chas. B., 327, 333
Dudley, W. D., 167
Dulong, M., 458, 476
Dunbar, J. H., 796
Durand, Prof., 56
Dwelshauvers-Dery, 662

Egleston, Thomas, 225, 641 Emery, Chas. E., 603, 613, 820 Engelhardt, F. E., 463 Ellis and Howland, 577 English, Thos., 753 Ericsson, John, 286 Eytelwein, 564

Fairbain, Sir Wm., 240, 264, 308, 354
Fairbay, W., 531, 533
Falkenau, A., 509
Fanning, J. T., 564, 579
Favre and Silbermann, 621
Felton, C. E., 646
Fernow, B. E., 646
Field, C. J., 30, 937
Fitts, James H., 844
Flather, J. J., 961, 964
Flynn, P. J., 463, 559
Foley, Nelson, 700
Forbes, Prof., 1033
Forney, M. N., 855
Forsyth, Wm., 630
Foster, R. J., 651
Francis, J. B., 586, 739, 867
Frazer, Persifor, 624
Freeman, J. R., 581, 584
Frith, A. J., 874
Fulton, John, 687

Ganguillet & Kutter, 565
Gantt, H. L., 406
Garrison, F. L., 326, 331, 409
Garvin Machine Co., 955
Gause, F. T., 501
Gay, Paulin, 966
Gill, J. P., 657
Gilmore, E. P., 241
Glaisher, 483
Glasgow, A. G., 654
Goodman, John, 934
Gordon, F. W., 689, 740
Gordon, 247
Goss, W. F. M., 868
Gossler, P. G., 1051
Graff, Frederick, 385
Graham, W., 950
Grant, J. J., 960
Grant, J. J., 960
Grashof, Dr., 224
Gray, J. McFarlane, 661
Gray, J. McFarlane, 661
Gray, J. M., 958

Greig and Eyth, 368 Grosseteste, W., 715 Gruner, L., 623

Hadfield, R. A., 391, 409
Halpin, Druitt, 789, 854
Halsey, Fred'k A., 490, 817
Harkness, Wm., 900
Harrison, W. H., 939
Hart, F. R., 1047
Hartig, J., 961
Hartman, John M., 364
Hartmell, Wilson, 348, 818, 838
Hasson, W. F. C., 1047
Hawksley, T., 485, 513, 564
Hazen, H. Allen, 494
Henderson, G. R., 347, 851
Henthorn, J. T., 965 Henthorn, J. T., 965 Hering, Carl, 1045 Herschel, Clemens, 588 Hewitt, G. C., 630 Hewitt, Wm., 917 Hildenbrand, Wm., 918 Hill, John W., 17 Hiscox, G. D., 968 Hoadley, John C., 451, 688 Hobart, J. J., 962 Hodgkinson, 246 Holley, Alexander L., 377 Holley, Alexander L., 377 Honey, F. R., 47, 52 Hoopes & Townsend, 210 Hoopes & Townsend, 210
Houston, Edwin J., 1061
Houston & Kennelly, 1058
Howard, James E., 242, 382, 385
Howden, James, 714
Howe, Henry M., 402, 407, 451, 516
Howe, Malverd A., 170, 312
Holson, John G., 405
Hughes, D. E., 336
Hughes, H. W., 309
Hughes, Thos. E., 917
Humphreys, Alex. C., 652
Hunsicker, Millard, 397
Hunt, Alfred E., 225, 317, 392, 553
Hunt, Chas. W., 340, 922
Huston, Charles, 383 Huston, Charles, 383 Hutton, Dr., 64 Huyghens, 58

Ingersoll-Sergeant Drill Co., 508 Isherwood, Benj. F., 472

Jacobus, D. S., 511, 689, 726, 780 Johnson, J. B., 309, 314 Johnson, W. B., 475 Johnson, W. R., 290 Jones, Horace K., 387 Jones & Lamson Machine Co., 954 Jones & Laughlins, 867, 885

Kapp, Gisbert, 1033 Keep, W. J., 955, 951 Kennedy, A. B. W., 355, 525, 764 Kernot, Prof. 494 Kerr, Walter C., 781 Kiersted, W., 292 Kimball, J. P., 499, 692, 687 Kinealy, J. H., 587 Kirk, A. C., 705 Kirk, Dr., 1004 Kirkaldy, David, 296 Kopp, H. G. C., 472 Kuichling, E., 578 Kutter, 559

Landreth, O. H., 712
Langley, J. W., 409, 410, 412
Lanza, Gaetano, 310, 359, 864, 977
La Rue, Benj. F., 248
Leavitt, E. D., 788
Le Chatelier, M., 452
Le Conte, J., 565
Ledoux, M., 981
Leggett, T. H., 1049
Leonard, H. Ward, 1026
Leonard, S. H., 686
Lewis, Fred. H., 186, 189, 397
Lewis, I. N., 488
Lewis, Wilfred, 352, 362, 378, 899
Linde, G., 869
Linde, G., 869
Linde, G., 869
Linde, G., 869
Linde, G., 869
Linde, G., 869
Linde, G., 869
Linde, G., 869
Linde, G., 869
Linde, G., 865
Lloyd's Register, 264, 266, 700
Lose, H. V., 306
Lovet, T. D., 356
Lyne, Lewis F., 718

McBride, James, 974
MacCord, C. W., 898
Macdonald, W. R., 956
Macgovern, E. E., 545
Mackay, W. M., 542, 544
Mahler, M., 683
Main, Chas. T., 590, 780, 790
Mannesmann, L., 332
Manning, Chas. H., 675, 823
Marks, Wm. D., 793, 811
Master Car Builders' Assoc., 376
Mattes, W. F., 389
Mayer, Alfred M., 468
Mehrtens, G. G., 395, 405
Meier, E. D., 688
Meissner, C. A., 370
Melville, Geo. W., 674
Mendenhall, T. C., 23
Merriman, Mansfeld, 241, 360, 282
Metcalf, William, 240, 412
Meyer, J. G. A., 795, 856
Meystre, F. J., 472
Miller, Metcalf & Parkin, 412
Miller, Metcalf & Parkin, 412
Miller, T. Spencer, 344, 927
Mitchell, A. E., 855, 856
Molyneux and Wood, 736
Moore, Gideon E., 653
Morin, 435, 390, 393
Morin, 435, 390, 393
Morrion, Geo. S., 381, 393
Morriel, T. T., 4077
Morris, Tasker & Co., 196, 196
Murgue, Daniel, 521

Nagle, A. F., 292, 606, 878 Napier, 474, 669 Nason Mfg. Co., 4°8, 542 National Pipe Bending Co., 198 Nau, J. B., 867, 409
Newberry, J. S., 624
Newcomb, Simon, 482
New Jersey Steel & Iron Co., 258, 310
Newton, Sir Isaac, 475
Nichol, B. C., 473
Nichols, 285
Norris, R. Van A, 521
Norwalk Iron Works Co., 488, 504
Nystrom, John W., 265

Ordway, Prof., 469

Paret, T. Dunkin, 967
Parker, W., 354
Parsons, H. de B., 361
Passburg, Emil, 466
Pattinson, John, 629
Peclet, M., 471, 478, 731
Pelton Water Wheel Co., 191, 574, 585
Penne, W. D., 294
Pencoyd Iron Works, 179, 232, 868
Pennell, Arthur, 555
Pennsylvania R. R. Co., 307, 276, 399
Philladelphia Engineering Works, 526
Phillbrick, P. H., 446
Phillips, W. B., 629
Phenix Iron Co., 181, 257
Pierce, C. S., 424
Pierce, H. M., 641
Pittsburg Testing Laboratory, 243
Platt, John, 617
Pocock, F. A., 505
Porter, Chas. T., 662, 787, 820
Potter, E. C., 646
Pottsville Iron & Steel Co., 250
Poulllet, 455
Pourcel, Alexandre, 404
Poupardin, M., 687
Powell, A. M., 975
Pratt & Whitney Co., 892, 972
Price, C. S., 638
Prony, 564
Pryibil, P., 977

Quereau, C. H., 853, 862

Ramsey, Erskine, 638
Rand Drill Co., 490, 505
Rand Jiph & Clowes, 198
Rankine, W. J. M., various
Ransome, Ernest L., 241
Raymond, R. W., 631, 650
Reese, Jacob, 966
Regnault, M., various
Reichhelm, E. P., 651
Rennie, John, 928
Reuleaux, various
Richards, Frank, 488, 491, 500
Richards, Frank, 488, 491, 500
Richards, John, 955, 976
Richards, Windsor, 404
Riedler, Prof., 507
Rites, F. M., 783, 818
Roberts-Austen, Prof., 451
Robinson, H., 1051
Robinson, H., 1051
Robinson, S. W., 583
Rockwood, G. J., 781
John A. Roebling's Sons' Co., 214, 921

Roelker, C. R., 265 Roney, W. R., 711 Roots, P. H. & F. M., 526 Rose, Joshua, 414, 869, 970 Rothwell, R. P., 637 Rowland, Prof., 456 Royce, Fred. P., 1053 Rudiger, E. A., 671 Ruggles, W. B., Jr., 361 Russell, S. Bent, 567 Rust and Coolidge, 290

Sadler, S. P., 689 Saint Venant, 282 Salom, P. G., 406, 1056 Sandberg, C. P., 384 Saunders, J. L., 544 Saunders, W. L., 505 Scheffler, F. A., 681 Schröter, Prof., 788 Schutte, L., & Co., 527 Seaton, various Seaton, various Sellers, Coleman, 890, 953, 975 Sellers, Wm., 204 Sharpless, S. P., 311, 639 Shelton, F. H., 653 Shock, W. H., 307 Simpson, 56 Simpson, 36 Sinclair, Angrus, 863 Sloane, T. O'Connor, 1027 Smeaton, Wm., 498 Smith, Chas. A., 537, 874 Smith, C. Shaler, 255, 865 Smith, Jesse M., 1050 Smith, Jesse M., 1050 Smith, Jesse M., 1050 Smith, Jesse M., 1000 Smith, J. Bucknall, 225, 308 Smith, Oberlin, 865, 973 Smith, R. H., 962 Smith, Scott A., 874 Snell, Henry I., 514 Stahl, Albert W., 559 Stand, J. E., 409 Stead, J. E., 409 Stearns, Albert, 465 Stein and Schwarz, 416 Stein and Schwarz, 416 Stein and Schwarz, 416
Stephens, B. F., 292
Stillman, Thos. B., 944
Stockalper, E., 493
Stromeyer, C. E., 396
Struthers, Joseph, 451
Sturttevant, B. F., Co., 487, 578
Stut, J. C. H., 844
Styffe, Knut, 383
Suplee, H. H., 769, 772
Suter, Geo. A., 524
Sweet, John E., 826

Tabor, Harris, 751
Tatham & Bros., 201
Taylor, Fred. W., 880
Taylor, W. J., 646
Theiss, Emil, 818
Thomas, J. W., 389
Thompson, Silvanus P., 1064, 1066
Thomson, Elibu, 1052
Thomson, Sir Wm., 461, 1039
Thurston, R. H., various
Tilchman, B. F., 966
`\delta kins, C. R., 336

Torrance, H. C., 401
Torrey, Joseph, 582, 820
Tower, Beauchamp, 931, 934
Towne, Henry R., 876, 907, 911
Townsend, David, 973
Trautwine, J. C., 59, 118, 311, 482
Trautwine, J. C., Jr., 255
Trenton Iron Co., 216, 226, 230, 915
Tribe, James, 755
Trotz, E., 483
Trowbridge, John, 467
Trowbridge, John, 467
Trowbridge, W. P., 478, 518, 783
Tuit, J. E., 616
Tweddell, R. H., 619
Tyler, A. H., 940

Uchatius, Gen'l, 321 Unwin, W. Cawthorne, various Urquhart, Thos., 645 U. S. Testing Board, 308

Vacuum Oil Co., 948 Vair, G. O., 950 Violette, M., 640, 642 Vladomiroff, L., 316

Wade, Major, 321, 374
Walles, J. W., 404
Walker Mfg. Co., 905
Wallis, Philip, 858
Warren Foundry & Mach. Co., 189
Weaver, W. D., 1043
Webber, Samuel, 591, 963
Webber, W. O., 608
Webster, W. R., 389
Weldeman & Franz, 469
Weightman, W. H., 762
Weisbach, Dr. Julius, various
Wellington, A. M., 290, 928, 935
West, Chas. D., 916
West, Chas. D., 916
West, Chas. D., 916
West, Chas. El. & Mfg. Co., 1043
Weston, Edward, 1029
Whitham, Jay M., 472, 769, 792, 840
Whitney, A. J., 389
Willett, J. R., 538, 540
Whitney, A. J., 389
Willett, J. R., 538, 540
Williamson, Prof., 58
Wilson, Robert, 284
Wheeler, H. A., 908
White, Chas. F., 714
White, Maunsel, 408
Wohler, 288, 240
Wolcott, F. P., 949
Wolff, Alfred R, 494, 517, 528, 538
Wood, De Volson, various.
Wood, H. A., 9
Wood, M. P., 386, 389
Woodbury, C. J. H., 537, 931
Worten, J. E., 855
Wright, C. E. Alder, 331
Wright, A. W., 239

Yarrow, A. F., 710 Yarrow & Co., 307 Yates, J. A., 287

Zahner, Robert, 499 Zeuner, 827

# INDEX.

Abbreviations, 1 Abrasive processes, 965 Abscissas, 69 Absolute zero, 461 Absorption refrigerating machines, 984 Accelerated motion, 427 Acceleration, 423 work of, 430 Accumulators, electric, 1055 Air, 481-527 and vapor, weights of, 484 compressed, 499 density and pressure, 481 -pumps, 839 -thermometer, 454 Algebra, 83 Algebraical signs, 1 Alligation, 10 Alloys, 319–388 aluminum, 328 aluminum-silicon-iron, 330 antimony, 336 bismuth, 332 caution as to strength, 329 copper-nickel, 326 copper-tin, 319 copper-tin-zinc, 822 copper-zinc, 321, 325 copper-zinc-iron, 326 for bearings, 338 fusible, 333 manganese-copper, 331 steels, 407 Alternating currents, 1070 Altitude by barometer, 483 Aluminum, 166 alloys of, 319–338 brass, 329 bronze, 328 bronze wire, 225 hardened, 330 properties and uses, 317 steel, 409 wire, 225 Ammonia ice-machines, 983 vapor, properties of, 993 Amperage permissible in magnets,

of coals (see Coal) of fire-clay, 284 of magnesite, 233 of steel (see Steel) of water, 558 Analytical geometry, 69 Anemometer, 491 Angle-bars, sizes and weights, 179 weight and strength, 279 Angles, plotting without protract-or, 52 problems in, 37-38 Angular velocity, 425 Animal power, 433 Annealing, effect on conductivity, 1029 non-oxidizing, process of, 387 of steel, 394 tool-steel, 413 Annuities, 15-17 Annular gearing, 898 Anti-friction metals, 932 Anthracite, analyses of 624 gas, 647 space occupied by, 625 value of sizes of, 632 Antimony, 166 alloys, 336 Apothecaries' measure and weight. 18, 19 Arc lamps, lighting power of, 1052 Arches, tie-rods for, 281 Area of circles, 103, 108 Arithmetic. 2 Arithmetical progression, 11 Armature circuit, E. M. F. of, 1062 Asbestos, 235 Asymptotes of hyperbola, 71 Atmosphere, moisture in, 483 Avoirdupois weight, 19 Axles, steel, specifications for, 401 strength of, 299 Babbitt metals, 336 Bagasse as fuel, 643 Balance, to weigh on an incorrect, 19

Analyses of alloys (see Alloys)

of asbestos, 233

Ball bearings, 940

Bands and belts, theory of, 876 Bands for carrying grain, 911 Barometric readings, 482 Barrels (see Casks), 64 No. of in tanks, 126 Bazin's experiments on weirs, 587 Formula, flow of water, 563 Beams and channels, Trenton, 278 Beams, flexure of, 267 of uniform strength, 271 safe load on pine, 1028 safe loads, 269 strength of, 268 Bearing metal alloys, 338 Bearing-metals, anti-friction, 982 Bearings, ball, 940 for high-speeds, 941 pivot, 989 Bed-plates of engines, 817 Belt cement, 887 conveyors, 911 dressings, 887 Belting, 876-887 strength of, 302 Belts, open and crossed, 874, 884 Bends and curves, effect of on flow of water, 578 Bends, valves, etc., resistance of Bessemerized cast iron, 375 Bessemer steel, 391 Bevel wheels, 898 Binomials, Theorem, 38, 35 Birmingham Gauge, 28 Bismuth, 166 alloys, 332 Blast-furnace boilers, 689 Blocks or pulleys, 438 strength of, 906 Blowers and fans, 511-526 experiments with, 514 for cupolas, 950 positive rotary, 526 steam-jet, 526 Blowing engines, 526 Blue heat, effect on steel, 395 Board measure, 20 Boiling-point of water, 550 Boiling points, 455 Bolts and nuts, 209, 211 Bolts, holding power of, 290 strength of, 292 Boiler compounds, 717 explosions, 720 Boilers, for steam-heating, 538 Boiler furnaces, height of, 711 heads, 706 heads, strength of, 284-286 Boiler scale, 552 ship and tank plates, 399 the steam, 677-741 tubes, 196 tubes, holding power of, 307 Boilers, locomotive, 855 Brass alloys, 325 composition of rolled, 203 sheet and bar, 203 tubing, 198 Rracs wire and plates, 202

Brick, fire, sizes of, 233-235 Brick, strength of, 802, 312 Bricks, absorption of water by, 812 Bricks, magnesia, 235 Brickwork, weight of, 169 Bridge members, working strain, 262 proportioning materials in, 381 trusses, 443 Brine, specific gravity, etc., 464, 994 Bronze (see Alloys), 819 Bronzes, ancient, 323 ( Building construction, 1019 materials, sizes and weights, 170-184 Buoyancy, 550 Burr truss, 443 Cables, electric, insulated, 1033 wire, 222, 228 Cable-ways, suspension, 915 Cadmium, 167 Calculus, Differential, 72 Caloric engines, 851 Calorimeters, steam, 728 Calorimetric tests of coal, 636 Cam, the, 438 Canals, speed of vessels on, 1008 Canvas, strength of, 302 Carbon, burned out of steel, 402 effect of on strength of steel, 389 Car-heating by steam, 588 Casks, 64 Castings, steel, 405 weight of, from pattern, 952 iron, analyses of, 373 Cast iron, 865-375 and steel mixtures, 875 bad, 375 malleable, 875 specifications, 374 specific gravity, 874 strength of, 869, 874 Catenary, construction of, 51 the wire rope, 919 Cement, weight of, 170 for belts 887 mortar, strength of, 318 Centigrade and Fahrenheit table, 449 Centre of gravity, 418 of gyration, 420 of oscillation, 421 of percussion, 421 Centrifugal fans, 511 force, 423 force in fly-wheels, 820 tension of belts, 876 Cera-perduta process, alloys for, 826 Chain-blocks, 907 cables, 308, 340 Chains, crane, 232 weight and strength, 307, 389 Channel beams, sizes and weight, 178, 180 Channels, steel, strength of, 275 Charcoal, 640 making results, 642 pig iron, 365, 374 weight of, 170

Chemical elements, 168 Chimneys, 781-741 brick, 787 for ventilation, 588 stability of, 788 size of, 784 steel, 740 sneet iron, 741 table of sizes of, 735 Chords of circles, 57 Chrome steel, 409 Circle, equation of, 70 measures of, 57-58 Circles, problems, 29-40 tables of, 103, 108 Circular arc, length of, 58 arcs, tables of, 114, 115 functions in calculus, 78 measure, 20 ring, 59 Circulating pump, 839 Circumference of circles, 103, 108, 113 Cisterns, cylindrical, 121, 126 Clearance in steam-engines, 752, 792 Coals, analyses of, 624-681 calorimetric tests, 636 evaporative power of, 636 heating value of, 634 relative value of, 638 Coal gas, illuminating, 651 hoisting, 348 products of distillation of, 639 washing, 688 weathering of, 637 Coefficient of elasticity, 237 Coefficients of friction, 928-932 Coiled pipes, 198 Coils, heating of, 1036 Coke, 687 Coking, experiments in, 687 Coke manufacture, by products, 639 Cold drawing steel, 305 Cold, effect of on iron and steel, 883 Cold rolling, effect of, 398 Columns, built, 256 cast iron, weight of 185 iron tests of, 305 strength of, 246-250 Combined stresses, 282 Combination, 10 Combustion, heat of, 456, 621 gases of, 622 theory of, 620 Composition of forces, 415 Compressed air, 499 cranes, 912 motors, 507 transmission, 488 Compressed steel, 410 Compression in steam-engines, 751 Compression unit strains, 380 Compressive strength, 244 Compressive strength of iron bars, Compressors, air, 503 Compound engines, 761-768 diameter of cylinder, 768 economy of, 780

Compound engines, work of steam in, 767 Compound interest, 14 Compound numbers, 5 Compound units of weight and measure, 27 Condenser, evaporative surface, 844 Condensers, 839-846 Condensing water, continuous use of, 844 Conduction of heat, 468 Conductivity, electrical, 1028 Conductors, electrical, 1029 Cone, measures of, 61 pulleys, 874 Conic sections, 71 Conoid, parabolic, 63 Connecting rods, 799 tapered, 801 Conservation of energy, 432 Construction of buildings, 1019 Convection of heat, 468 Conveyors, belt, 911 Co-ordinate axes, 69 Copper, 167 at high temperatures, strength of, 309 balls, hollow, 289 round bolt, 203 strength of, 300 tubing, 200 wire and plates, 202 wire tables of, 218-220 Copper wire, resistance of hot and cold, 1034, 1035 cost of for long - distance transmission, 1045 Cordage, 341, 344, 906 Cork, properties of, 316 Corrosion of iron, 385 Corrosion of steam-boilers, 716, 719 Corrosive agents in atmosphere, 386 Corrugated iron, 181 Corrugated furnaces, 266, 709 Cosecant of an angle, 65 Cosine of an angle, 65 Cosines, tables of, 159 Cost of coal for steam power, 789 of steam-power, 790 Cotangent of an angle, 65 Counterbalancing engines, 788 locomotives, 86 of winding engines, 909, Couples, 418 Coverings for steam-pipes, 469 Cox's formula for loss of head, 575 Cranes, classification of, 911 compressed air, 912 stress in, 440 Crank angles, 830 arms, 805, 806 pins, 801–804 Crucible steel, 410 Crushing strength of masonry materials, 312 Cubature of volumes of revolution. Cube root, 8 Cubes and cube roots, table of, 86

Cubic measure, 18
Cupolas, blast-pipes for, 519
blowers for, 519
practice, 946
Current motors, 589
Currents, electric, 1090
Cutting stome with wire, 966
Cycloidal teeth of gears, 592
Cycloid, construction of, 50
differential equation of, 79
Cylinders and pipes, contents of, 120, 121
condensation, 752, 753
engine, dimensions of, 792
hollow, resistance of, 264
hollow, strength of, 287-289
measures of, 61
Cylindrical ring, 62

Dangerous steam-boilers, 720 Dam, stability of a. 417 D'Arcy's formula, flow of water, 563 Decimals, 8 Decimal equivalents of fractions, 3, 4 Decimals, squares and cubes of, 101 Deck-beams, sizes and weights, 177 Delta metal, 326 Delta-metal wire, 2**25** Denominate numbers, 5 Deoxidized bronze, 327 Derricks, stresses in, 441 Diametral pitch, 888 Differential calculus, 72 gearing, 898 pulley, 489 screw, 439 screw, efficiency of, 974 windlass, 489 Discount and interest, 13 Draught of chimneys, 731 Drawing-presses, blanks for, 973 Drilling holes, speed of, 956 machines, electric, 956 Drop-press, pressure of, 973 Drums for hoisting ropes, 917 Drying and evaporation, 462 Drying in vacuum, 466 Dry measure, 18 Ductility of metals, 169 Dust explosions, 642 Dust-fuel, 642 Durability of iron, 385 Durand's rule, 56 Duty trials of pumping-engines, 609 Dynamo and engine, efficiency of, electric machines, 1061 Dynamos, designing of, 1064

Earths, weight of, 170
Earth-filling, weight of, 170
Eccentric loading of columns, 255
Eccentrics, steam engine, 816
Economizers, fuel, 715
Edison or circular mil wire gauge, 30-31

efficiency of, 1066

Dynamometers, 978-980

Effort, definition of, 429 Elastic limit, 236 elevation of, 238 Elasticity, modulus of, 237, 314 Elastic resilience, 270 Electric accumulators, 1055 generator, efficiency of, 1048 heating, 1054 lighting, 1051 motor, 1070 pumping plant, 1049 railways, 1050 transmission, 1038 transmission, economy of, 1039 welding, 1058 Electrical engineering, 1024 horse-powers, table of, 1042 resistance, 1028 standards of measurement, 1024 units, 1024 Electric conductivity of steel, 403 Electricity, analogy with flow of water, 1025 heating by, 546 Electro-chemical equivalents, 1057 magnetic measurements, 1058 magnets, 1058 magnets, polarity of, 1060 Electrolysis, 1057 Elements, chemical, 163 Elements of machines, 485 Ellipse, construction of, 45 equation of, 70 measures of, 59 Ellipsoid, 68 Elongation, measure of, 248 Emery, grades of, 968 wheels, 967-969 Endless screw, 440 Energy, conservation of, 482 of recoil of guns, 481 or stored work, 429 sources of, 482 Engine-frames or bed-plates, 817 Engines, blowing, 526 gas, 847 gasoline, 850 hoisting, 908 hot-air, 851 marine, sizes of steam-pipes, 674 naptha, 851 petroleum, 850 steam, 742-847 Epicycloid, 50 Equalization of pipes, 492 Equation of payments, 14 Equations, algebraic, 34 Equilibrium of forces, 418 Equivalent orifice, 533 Erosion by flow of water, 565 Evaporating by exhaust-steam, 465 Evaporation and drying, 462 by the multiple system, 465 from reservoirs, 463 latent heat of, 461 table of factors of, 695 Evaporators, fresh-water, 1016 Evolution, 7 Eye-bars, tests of, 304, 893

Exhaust steam for heating, 780 Exhausters, steam-jet, 526 Expansion by heat, 459 of iron and steel, 385 of steam, 742 of steam, real ratios of, 750 of wood, 311 Explosive energy of steam-boilers, 720 Exponents, theory of, 36 Exponential functions, in calculus, 78 Factor of safety, 314 in steam boilers, 700 Factors of evaporation, tables, 695 Fahrenheit and centigrade table, 450 Failures of steel, 403 Falling bodies, 423-426 Fans and blowers, 511-526 Feed-pumps, 843 water, cold, strains caused by, 727 water, heater, Weir's, 1016 water, heaters, 727 water, purifying, 554 Fibre-graphite, 945 Fifth roots and fifth powers, 102 Fink roof-truss, 446 Fire brick, sizes of, 233-235 clay, analysis of 284 engines, capacities of, 580 Fireless locomotive, 866 Fireproof buildings, 1020 Fire streams, 580 Fire temperature of, 622 Flagging, transverse strength of, 313 Flanges, pipe, 192, 193, 676 Flat plates in steam-boilers, 701, 713 plates, strength of, 283 Flexure of beams, 267 Flooring material, weight of, 281 Floors, strength of, 1019, 1021 Flowing water, horse-power of, 589 Flow of air in pipes, 485 of air through orifices, 484 of compressed air, 489, 493 of gas in pipes, 657 of metals, 973 of steam in pipes, 669 of water from orifices, 555, 584 of water in house service-pipes. of water over weirs, 586 Flues, collapse of, 265 corrugated. U.S. rules, 709 (see also Tubes and Boilers.) Fly-wheels, 817-824 arms of, 820 wire-wound, 824 wooden, 823 Flyun's formula, flow of water, 562 Foot, decimals of, in fractions of inch, 112 pound, unit of work, 428 Forced draught in marine practice, 1015 Force of a blow, 480 of acceleration, 427 unit of, 415 Forces, composition of, 415

Forces, equilibrium of, 418 parallel, 417 parallelogram of, 416 parallelopipedon of, 416 polygon of, 416 resolution of, 415 Forcing and shrinking fits, 973 Forging, hydraulic, 618, 620 tool steel, 418 Foundry, the, 946-956 Fractions, 2 Francis's formula for weirs, 586 Freezing of water, 550 French measures and weights, 21-26 Friction and lubrication, 928-945 brakes, 980 of air in passages, 531 of steam-engines, 941 rollers, 940 work of, 938 Frictional heads, flow of water, 577 Fuel, 622-651 economizers, 715 gas, 646 pressed, 633 theory of combustion of, 620 weight of, 170 Fuels, classification of, 623, 624 Furnace, downward draught, 635, 712 kinds of, for different coals, 635 formulæ, 702 Furnaces, corrugated, 266 for boilers, 711 gas-fuel, 651 use of steam in, 650 Fusible alloys, 383 plugs for boilers, 710 Fusibility of metals, 169 Fusing disk, Reese's, 966 Fusion of wires by electric currents, temperatures, 455 7, value of, 424 Gallons and cubic feet, table, 122 Galvanized wire rope, 228 Gas-engines, 847 fired steam-boilers, 714 flow of in pipes, 657 fuel, 646 illuminating, 651 illuminating, fuel value of, 656 Gases, properties of, 479 waste, use under boilers, 689, 690 Gasoline-engines, 850 Gas-pipe sizes and weights, 188 Gas producers 649, 650 Gauges, wire and sheet metal, 26-31 Gearing, efficiency of, 899 frictional, 905 of lathes, 955 speed of, 905 toothed-wheel, 439, 887-906 Gear-teeth, strength of, 900-905 Geometrical problems, 37 progression, 11 propositions, 53 German silver, 326, 832

Hose, friction losses in, 580

German silver, strength of, 800 Girders for boilers, 708 Glass, skylight, 184 strength of, 308 Gold, 167 Gordon's formuls, 247 Governors, 886 Grain, weight of, 170 Granite, strength of, 312 Grate and heating surface of a boil-Graphite as a lubricant, 945 paint, 389 Gravity acceleration due to, 424 centre of, 418 specific, 163 Greatest common measure, 2 Greenhouse heating by hot water, heating by steam, 542 Green's fuel economizers, 715 Grindstones, 968, 970 Gyration, centre and radius of, 420, 421 radius of, 247 Hawley down-draught furnace, 712 Heads of boilers, 706 Heat, 448-478 boiling-points, 455 conduction of, 468 convection of, 469 expansion by, 459 generated by electric currents, 1082 latent, 461 latent, of evaporation, 462 latent, of fusion, 461 melting-points, 455 of combustion. radiation of, 467 specific, 45? storing of, 789 unit, 455, 660 Heaters, feed-water, 727 Heating a building to 70° F., 545 and ventilation, 528-546 blower system of, 545 by electricity, 546 by exhaust-steam, 780 by hot water, 542 of large buildings, 584 surface of boilers, 678 Helix, 60 Hodgkinson's formula, 246 Hoisting, 906-916 coal, 343 engines, power of, 908 pneumatic, 909 rope, 340 Hooks, hoisting, 907 Horse-gin, 434 work of a, 484 Horse-power, 429 constants, 757, 758 of flowing water, 589 of steam-boilers, 677, 679 of steam-engines, 755 power-hours, 429

Hot-air engines, 851 water heating, 542 Howe truss, 445 Humidity in atmosphere, 483 Hydraulic apparatus, 616 engine, 619 Hydraulies, flow of water, 555–588 forging, 618 grade-line, 578 power, 617 pressure transmission, 616 ram, 614 Hydrometer, 165 Hygrometer, dry and wet bulb. Hyperbola, equation of, 71 construction of, 49 Hyperbolic logarithms, 156 curve in indicator diagrams, 759 Hypocycloid, 50 I-beams, sizes and weights, 177 properties of, 274 spacing of, 273, 280 Ice and snow, 550 Ice-making machines, 981-1001 manufacture, 999 Illuminating gas, 651 Impact of bodies, 431 Incandescent lamps, 1051 Inches and fractions, decimals of a foot, 112 Inclined plane, 487
planes, hauling on, 913, 915
planes, motion on, 428
Incrustation and scale, 551, 716 India rubber, tests of, 816 Indicated horse-power, 755 Indicator diagrams, 754, 759 rigs, 759 Indirect heating surface, 537 Inertia, 415 moment of, 247, 419 of railroad trains, 858 Injectors, 725 Inspection of steam boilers, 720 Insulators, electrical, 1029 Integral calculus, 79 Integrals, integration, 78-74 Intensifier, the Aiken, 619 Interest and discount, 18 Involute gear-teeth, 892 construction of, 52 Involution, 6 Iridium, 167 Iron, 167 bars, sizes of, 170 bars, weight of, 171 corrosion of, 385 durability of, 385 and steel, classification of, 862 and steel, cold rolling of, 393 and steel, expansion of, 385 and steel, strength of, 296-300 and steel, strength at high temperature, 882 and steel, strength at low temperature, 383

Irregular figure, area of, 55 Isothermal expansion, 742

Japanese alloys, 326 Jet propulsion of vessels, 1014 Jets, vertical water. 579 Joints, riveted, 354-363 Joule's equivalent. 456 Journal bearings, 810-815 friction, 981 Journals, engine, 810-815

Kerosene for scale in boilers, 718 Keys and set-screws, 977 for mill-gearing, 975 holding power of, 977 Kinetic energy, 429 King-post truss, 442 Kirkaldy's tests of materials, 296 Knot, or nautical mile, 17 Knots in ropes, 344 Kutter's formula, 559

Lacing of belts, 888 Ladles, foundry, sizes of, 958 Latent heat, 461 heat of evaporation, 461 heat of fusion, 459-461 Lathe-gearing, 955 tools, speed of, 958 Lap and lead of a valve, 829-888 Lead, 167 pipe, 200 Leakage of steam in engines, 761 Least common multiple, 2 Leather, strength of, 302 Leveling by barometer, 482 Levers, 435 Lime, weight of, 170 Limestone, strength of, 313 Limit gauges for screw-threads, 205 Lines of force, 1059 Links, engine, 816 Link-motion, 884 Liquation of alloys, 323 Liquid measure, 18 Liquids, weight and sp. gr., 164 Locomotives, 851–866 dimensions of, 860 tests of, 863 Logarithmic curve, 71 sines, etc., 162 Logarithms, hyperbolic, 156 differential of, 77 of numbers, 127-155 Logs, lumber, etc., weight, 232 Loop, the steam, 676

Machines, elemints of, 435
Machine-shop, the, 953-978
: shop practice, 953
shops, power used in, 965
screws, 208, 209
tools, power required for, 960-965
tools, proportioning sizes of, 975

Loss of head in pipes, 573

Lubricants, 942 Lubrication, 942 Lumber, weight of \$22

Maclaurin's theorem, 76 Magnesia bricks, 235 Magnesium, 168 Magnetic balance, 396 circuit, 10**6**0 circuit, units of, 1058 field, strength of, 1063 Magnets, winding of, 1068 Malleability of metals, 169 Malleable castings, rules for, 876 cast iron, 375 Mandrels, sizes of, 972 Manganese, 168 bronze, 331 influence of on cast iron, 368 influence of on steel, 389 plating of iron, 387 steel, 407 Mannesmann tubes, 296 Manometer, air, 481 Man-power, 433 Manure as fuel, 643 Man-wheel, 434 Marble, strength of, 302 Marine engineering, 1001-1018 engine, horse-power of, 766 engine practice, 1015 engine, ratio of cylinders, 766, 778 Masonry materials, strength of, 312 materials, weight and sp. gr., 166 Materials, 163-23 strength of, 236-412 Maxima and minima, 76 Measures and weights, 17 Mechanical equivalent of heat, 456 powers (see Elements of Machines), 435 stokers, 711 Mechanics, 415-447 Mekarski compressed air tramway, Melting points of substances, 455 Memphis bridge, strains on steel. 381 Mensuration, 54 Mercury, 168 bath pivot, 940 Merriman's formula for columns, 260 Metaline, 945 Metals, properties of the, 166 weight and sp. gr., 164 Metric conversion, tables, 22–26 measures and weights, 21-22 Meters, water, 579 Mil, circular, 18, 29 Milling cutters, 957 cutters for gears, 892 machines, results with, 959 Mill power, 589 Miner's inch, 18 inch measurement, 585 Mine-ventilating fans, 521 ventilation, 531 Modulus of elasticity, 237, 314 Moisture in steam, 728 Molesworth's fo. mula, flow of water, 562 Moment of force, 416

Moment of inertia, 247, 419 statical, 417 Momentum, 428 Morin's laws of friction, 933 Mortar, strength of, 313 Motor, electric, 1070 Motors, compressed air, 507 Moulding sand, 952 Moving strut, 436 Mules, power of, 435 Multiphase currents, 1070 Mushet steel, 409

Nails, 213, 215 screws, etc., holding power, 289–291 Naphtha-engines, 851 Napier's rule for flow of steam, 669 Natural gas, 649 Newton's laws of motion, 415 Nickel steel, 406 Nozzles, measurement of water by. 584 Nuts and bolts, 209, 211

Ohm's law, 1030
Oil needed for engines, 943
Oils and coal as fuel, 646.
lubricating, 944
Open-hearth steel, 391
Ores, weight of, 170
Oscillation, centre of, 421
Oxen, power of, 435
Ordinates, 69

π, value of, 57 Packing-rings, engines, 796 Paddle-wheels, 1013 Painting wood and iron structures, 388 Paint, qualities of, 389 Parabola, construction of, 48 equation of, 71 Parabolic conoid, 63 Parallel forces, 417 Parallelogram, 54 of forces, 416 Parentheses, 38 Partial payments, 15 Peat or turf, 643 Pelton-wheel table, 598 water-wheel, 597 Pendulum, 422 conical, 423 Percussion, centre of, 421 Permutation, 10 Perpetual motion, 432 Petroleum, 645 as fuel, 645, 646 burning locomotive, 865 distillates of, 645 engines, 850 products, specifications, 944 Phosphor-bronze, 327 bronze wire, 225 Phosphorus, influence of on cast iron, 367 influence of on steel, 389 Piezometer, the, 582 ig iron, analysis of, 371

Pig iron, chemistry of, 370 grading of, 365 influence of silicon, etc., 365. tests of, 369 Pillars, strength of, 246 Pitot tube gauge, 583 Pipe, lead, 200, 201 riveted, 197 sheet-iron hydraulic, 191 spiral riveted, 197 Pipes, air-bound, 579 and cylinders, contents of, 120, 121 cast-iron, thickness of, 188, 190 cast-iron, weight of, 185, 186 coiled, 198 effect of bends in, 488 flow of air in, 48 flow of gas in, 657 flow of steam in, 669 flow of water in, 557 loss of head in, 578 steam, for steam-heating, 540 steam, sizes for engines, 673 water, riveted, 295 water, wrought-iron and steel, 295 wrought-iron, 194 Piston-rods, 796-798 valves, 834 Pistons, steam-engine, 795 Pitch, diametral, 888 of gears, 887 of rivets, 357-359 of screw propellers, 1012 Pivot bearings, 989 Plane surfaces, mensuration, 54 Plane, inclined (see Inclined Plane) Plate iron, weight of, 175 steel, classification, 399 Plates, brass and copper, 202 square feet in, 123 strength of for boilers, 705 Platinum, 168 wire, 22 Pneumatic hoisting, 909 postal transmission, 509 Polyedrons, 62 Polygon of forces, 416 Polygons, construction of 42 table of, 55 tables of angles of, 44 Population of the United States, 12 Potential energy, 429 Powell's screw-thread, 975 Power, animal, 433 of a fall of water, 588 rate of work, 429 of ocean waves, 599 Power stations, electric, 1050 Powers of numbers, 7, 33 Pratt truss, 443 Pressed fuel, 63% Presses, punches, etc., 972 Prism, measures of, 70 Prismoid, 61 rectangular, 61 Prismoidal formula, 62 Problems, geometrical, 37-52 in circles, 39, 40 in lines and angles, 87, 38

Problems in polygons, 42 in triangles, 41 Producer, gas, 649 Progression, arithmetical, and geo-metrical, 11 Prony brake, 979 Proportion, 5 Pulley, differential, 439 Pulleys, 873-875 arms of, 820 or blocks, 438 Pulsometer, 612 Pumps, 601-614 air, 841 air-lift, 614 boiler-feed, 605, 726 capacity of, 601 centrifugal, 606, 609 circulating, 842 efficiency of, 603, 608 horse-power of, 601 piston speed of, 605 sizes of, 603 speed of water through, 602 steam cylinders of, 602 suction of, 602 vacuum, 612 valves of, 605, 606 Pumping-engine, tests of, 788 Pumping engines, duty trials, 609 leakage test, 611 Punched plates, strength of, 354 Punches and dies, 972 Punching and drilling steel, 895 steel, effect of, 394 Purifying feed-water, 554 Pyramid, 60 Pyrometers, 451-453 Pyrometry, 448-454

Quadratic equations, 35 Quadrature of surfaces of revolution, 75 Quadruple-expansion engines, 772 Quantitative measurement of heat, 455 Quarter-twist belts, 883 Queen-post truss, 442

Radiating surface, rules for, 536 Radiation of heat, 467 Radius of gyration, 247, 420, 421 Railroad trains, resistance of, 851 Rail-steel, specifications, 401 Rails, maximum safe load on, 865 steel, strength of, 298 Railways, narrow-gauge, 865 Railway trains, speed of, 859 Ram, hydraulic, 614 Ratio and proportion, 5 Reamers, taper, 972 Recalescence of steel, 402 Receiver-space in engines, 766 Reciprocals of numbers, 80 use of, 85 Red lead as a preservative, 889 Refrigerating machines, 981-1001 Registers and air-ducts, 589

Resilience, 238 elastic, 270 Resistance, electrical, 1028 of copper wire, 1030 of ships, 1002 of trains, 851 to repeated stresses, 238 Resolution of forces, 415 Rhombus and Rhomboid, 54 Riveted joints, 299, 308, 354, 362 Riveting-machines, hydraulic, 618 of steam-boilers, 700 of steel plates, 394 pressures, 362 Rivets, diameter of, 360 sizes, etc., 211 Rivet-steel, 401 Roads, resistance of carriages on, 435 Rock-drills, air required by, 506 Roof-coverings, weight of, 184 trusses, 446 Roofing materials, 181, 184 Rope-driving, 922-927 wire-, 226-231 Ropes, 301, 338, 906 splicing 841, 845 Rotary blowers, 526 steam-engines, 791 Rotation, accelerated, 430 Rubber-belting, 887 Rule of three, 6 Rustless coatings for iron, 386 Safety, factors of, 721 Salinometer, strength of brines, 464 Salt, solubility of, 464 weight of, 170 Sand-blast, 966 moulding, 952 Sawdust as fuel, 648 Sawing metal, 966 Scale and incrustation, 551 in steam-boilers, 716 Schiele's anti-friction curve, 50 Schiele pivot-bearing, 989 Screw-bolts, efficiency of, 974 differential, 439 endless, 440 the, 437 thread, Powell's, 975 threads, 204, 208 thread, metric, 956 propeller, 1010 Screws and screw-threads, 974 holding power of, 290 machine, 208, 209 Secant of an angle, 65 Sectors and segments, 59 Sediment in steam-boilers, 717 Segments of a circle, table, 116 Segregation in steel ingots, 404 Separators, steam, 728 Set-screws, holding-power of, 977
Sewers, grade of, 566
Shoft beginner 210 Shaft-bearings, 810 governor, 838

Regnault's experiments on steam,

Spherical zone, 62 Spheroid, 68

Shafting, 867-872 Shafts, engine, 806-809 fly-wheel, 809 propeller, strength of, 815 Shapes of test-specimens, 248 Shearing, effect of, on steel, 394 strength of iron, 306 strength of woods, 312 resistance of rivets, 363 unit strains, 380 Shear poles, stresses in, 442 Sheet-iron and steel, weight of, 174 Shells, spherical, strength of, 236 Shingles, sizes and weight, 188 Shipping measure, 19 Ships, resistance of, 1002 Shocks, resistance to, 240, 241 Shot, lead, 204 Shrinkage of castings, 951 Shrinking-fits, 978 Signs of trigonometrical functions, arithmetical, 1 Silicon-bronze wires, 225, 328 Silicon, influence of ou cast-iron, 865 influence of on steel, 889 Silver, 168 Simpson's rule, 56 Sine of an angle, 65 Sines, cosines, etc., table of, 159 etc., logarithmic, 162 Sinking-funds, 17 Siphon, the, 581 Slate, sizes and weights, 188 Slide-valve, 824-835 Smoke-prevention, 712 Snow and ice, 550 Scapstone as a lubricant, 945 Softeners, use of in foundry, 950 Softening hard water, 555 Solders, 338 Solid bodies, mensuration of, 60 of revolution, 62 measure, 18 Specifications for axles, steel, 400 for car-axles, 401 for cast iron, 874 for crank pin steel, 400 for oils, 944 for plate steel, 899, 400 for rail steel, 401 for rivets, 401 for spring steel, 400 for steel, 397 for steel castings, 406 for steel rods, 400 Specific gravity, 168 gravity of alloys, 820, 823 gravity of cast iron, 874 gravity of steel, 403, 411 heat, 457 heat of air, 484 Speed of cutting tools, 953, 954 of vessels, 1006 Sphere, measures of, 61 Spherical polygon, volume of, 61 shells, strength of, 286 steam-engine, 792 triangle, area of, 61

Spheres, table of, 118 weights of, 169 Spikes, sizes and weights, 212, 213 Spindle, surface and volume, 63 Spiral, construction of, 50 gears, 897 measures of, 60 Splicing of ropes, 841 wire ropes, 845 Spring steel, specifications, 400 strength of, 299 Springs for governors, 838 formula for, 347, 353 tables of, 349, 853 Square measure, 18 root, 8 Squares and cubes of decimals, 101 and square roots, table of, 86 Surface condenser, 840, 844 Sugar manufacture, 643 solutions, concentration of, 465 Sulphate of lime, solubility, 464 Sulphur dioxide refrigerating machines, 985 influence of on cast iron, 367 influence of on steel, 389 Suspension cable-ways, 915 Stability, 417 Stand-pipes, design of, 292-294 Statical moment, 417 Stay-bolt iron, 379 Stay-bolts for boilers, 710 Stayed surfaces, strength of, 286 Stays for boilers, 703 Steam, 659-676 boiler, water tube, 688, 689 boilers, 677-740 boilers, air space in grate, 681 boilers, allowable pressures, 706 boilers, economy of, 68 boilers, efficiency of, 683 boilers, explosive energy of, 720 boilers, factor of safety, 700 boilers, forced draught, 714 boilers, flues and passages, 680 boilers, gas-fired, 714 boilers, grate surface of, 678, 680 boilers, heating air supply to, 687 boilers, heating surface of, 678 boilers, horse-power of, 677 boilers, hydraulic test of, 700 boilers, incrustation and scale, 716 boilers, materials for, 700 boilers, measure of duty of, 678 hoilers, performance of, 681 boilers, Philadelphia inspection boilers, F rule, 708 boilers, proportions of, 678 boilers, rules for construction of, 700 boilers, safe working pressure, 707 boilers, strength of, 700 boilers, tests of, 685 boilers, tests, rules for, 690–695 boilers, tests with different coals, 688 boilers, tubulous, 686

١

Steam boilers, using waste gases, boilers, use of zinc in, 720 domes on boilers, 711 dry, identification of, 730 engine constants, 757 engine cylinders, 792-795 engine, spherical, 792 engines, 742-847 engines at Columbian exhibition, engines, calculation of mean effective pressure, 744 engines, counterbalancing, 788 engines, dimensions of parts of, 792-817 engines, efficiency of, 749 engines, feed-water consumption of, 753, 760, 775 engines, friction of, 941 engines, marine, 1015 engines, measures of duty, 748 engines, most economical point of cut-off, 777 engines, performance of, 775-789 engines, putting on center, 884 engines, relative economy of, 780 engines, rotary, 791 engines, triple expansion, 769 expansive working of, 747 flow of, 668 flow of in pipes, 669 heating, 536-540 jet-blowers, 527 loop, 676 loss of pressure in pipes, 671 mean pressures, 743 moisture in, 728 pipe coverings, 469 pipes, copper, 674 pipes, loss from uncovered, 676 pipes, marine, 1016 pipes, overhead, 537 pipes, size of for engines, 673 pipes, valves in, 675 pipes, wire-wound, 675 superheated, 661 supply mains, 539 table of properties of, 659 temperature, pressure, etc., 659turbines, 791 vessels, dimensions, horse-power, etc., 1009 vessels, trials of, 1007 water in, effect of on economy of engines, 781 work of in a single cylinder, 746, 749 Steel, 889-414 aluminum, 409 analyses and properties of, 889 annealing, 413 Bessemer, 390-392 castings, 405 chronie, 409 compressed, 410 crucible, 410 effect of hammering, 412

Steel, effect of heat on, 412 effect of nicking, 402 electric conductivity of, 403 failures of, 408 hardening of soft, 393 manganese, 407 mushet. 409 open-hearth, 391, 392 segregation in, 404 specific gravity of, 408, 411 specifications for, 397 strength of, 389 tempering 412, 414 treatment of, 394 tungsten, 409 use in structures, 405 variation in strength of, 398 working stresses for, 264 Stone, strength of, 302, 312 Stoker, under-feed, 712 Stokers, mechanical, 711 Storage batteries, 1055 Storing steam-heat, 789 Strains in structural iron, 379 Straw as fuel, 643 Stream, horse-power of a, 589 Streams, measurement of, 584 Strength of boiler-heads, 285 of bolts, 292 of columns, 246, 250-261 compressive, 244 of flat plates, 283 of glass, 308 of materials, 236 of materials, Kirkaldy's tests, 296 of stayed surfaces, 286 of structural shapes, 272 of timber, 310 of unstayed surfaces, 284 torsional, 281 transverse, 266 tensile, 242 Stress and strain, 286 due to temperature, 283 Stresses, combined, 282 effect of, 236 in framed structures, 440 Structural iron, strains in, 379 shapes, elements of, 249 shapes, properties of, 272 shapes, sizes and weights, 177 steel, treatment of, 394 Structures, framed, 440 Struts, strength of, 246 Surface condensers, 840 Sugar concentration, 465 manufacture, 643

Tail-rope system of haulage, 913
Tan-bark as fuel, 643
Tangent of an angle, 65
Tangents, sines, etc., table of, 159
Tanks, cylindrical, 121, 126
rectangular, gallons in, 125
Tannate of soda for boiler-scale, 718
Tap-drills, 970, 971
Taper-bolts, pins, reamers, 972
in lathes, 956
Tapered wire ropes, 916

Taylor's rules for belting, 880 Taylor's theorem, 76 Tee-bars, 280 Tees, Pencoyd, sizes and weights, 180 Teeth of gears, forms of, 892 Telegraph-wire, 217 Temperature, effect on tenacity, stresses in iron, etc., 283 Temperatures in furnaces, 451 judged by color, 454 Tempering steel, 414 Tenacity of metals, 169 of metals at different temperatures, 382 Tensile strength, 242 strength, increase by twisting, 241 Terra-cotta, 181 Test pieces, comparison of small and large, 393 Testing materials, precautions in, 248 Thermal unit, British, 455 Thermodynamics, 478 Thermometers, 448 Three-wire currents, 1039 Tie-rods for brick arches, 281 Tiles, sizes and weights, 181 Timber measure, 20, 21 strength of, 810 Time, measure of, 20 Tin, 168 roofing, 181, 182 Tires, steel, strength of, 298 Tobin bronze, 327 Toggle-joint, 436
Tool-steel, heating, 412
Tonnage of vessels, 19, 1001
Torque of an armature, 1062 Torsional strength, 281 Tower spherical engine, 792 Tractive power of locomotives, 857 Tractrix, or Schiele's curve, 50 Trains, resistance of, 851, 853 Tramways, wire-rope, 914 Transformers, 1070 Transmission by hydraulic pressure, 617-620 by wire rope, 917-922 electric, 1038 electric, efficiency of, 1047 of heat, 471-478 of power by ropes, 922-927 Transporting power of water, 565 Transverse strength, 266 Trapezium, 54 Trapezoid, 54 Trapezoidal rule, 55 Treatment of steel, 394 Triangle, mensuration of, 54 Triangles, problems in, 41 solution of, 68 Trigonometrical functions, 65-67 functions, table, 159 Trigonometry, plane, 65 Triple effect, multiple system, 468 expansion engine, 769 Troy weight, 19

king post, 442 queen post, 442 Pratt or Whipple, 443 Trusses, roof, 446 Tungsten-aluminum alloys, 332 sterl, 409 Tubes for steam-boilers, 704, 709 Mannesmann, 296 or flues, collapse of, 265 weights of, 169 wrought-iron, 196 Tubing, brass, 198 Turbines, steam, 791 Turbine-wheels, 591 wheels, tests of, 596 Turf or peat, 643 Turnbuckles, sizes, 211 Twin screw vessels, 1017 Twist-drills, sizes and speeds, 957 Type-metal, 336 Unit of heat, 455 Unstayed surfaces, strength of, 284 Upsetting of steel, 394 Vacuum pumps, 612 Valve-diagrams, 825 motions, 825 rods, 815 Valves, engine-setting, 834 in steam-pipes, 675 of pumps, 605, 606 Vapors, properties of, 480 used in refrigerating-machines, Velocities, parallelogram of, 426 Velocity, angular, 425 Ventilating-ducts, discharge of, 530 fans, 517-525 Ventilation and heating, 528-546 blower system of, 546 by a steam-jet, 526 of large buildings, 534 Ventilators for mines, 521 Venturi meter, 583 Versed sine of an arc, 66 Vibrations of engines, preventing, 789 Vis-viva, 428 Warehouse floors, 1019 Warren girder, 445 Washers, sizes of, 219 Water, 547-554 analyses of, 558 compressibility of, 551 erosion by flowing, 565 expansion of, 547 flow in channels, 564 flow of, 555-588 flow of, experiments, 566 flow of, in pipes, tables, 558, 559, 567-570 zas, 648, 652 impurities of, 551 power, 588 power, value of, 590 pressure engine, 619 pressure of, 549

Truss, Howe and Warren, 445

Water, softening of hard, 555 specific heat of, 550 transporting power of, 565 weight of, 547 wheel, the Pelton, 597 Waves, power of ocean, 599 Weathering of coal, 637 Wedge, the, 437 volume of a, 61 Weights and measures, 17 of air and vapor, 484 Weight of bars, rods, plates, etc., 169 of brick-work, 169 of brass and copper, 197-203 of bolts and nuts, 209-211 of cast-iron pipes and columns, 185-193 of cement, 170 of flat rolled iron, 172 of fuel, 170 of iron bars, 171 of iron and steel sheets, 174 of ores, earths, etc., 170 of plate iron, 175 of roofing materials, 181-184 of steel blooms, 176 of structural shapes, 177-180 of tin plates, 182 of wrought-iron pipe, 194-197 of various materials, 169 Weir table, 587 Weirs, flow of water over, 586 Welding, electric, 1053 of steel, 394, 396 Welds, strength of, 800 Wheel and axle, 439 Whipple truss, 443 White-metal alloys, 336 Whitworth compressed steel, 410 Wiborgh air-pyrometer 458 Wind, 493 Winding engines, 909 of magnets, 1068 Windlass, 439 differential, 439 Windmills, 495 Wind pressures, 493 Wire cables, 222 copper and brass, 202 copper tables of, 218-220 gauges, 28-31 insulated, 221

Wire, iron and steel, 217 iron, size, strength, etc., 216 rope, 226, 231 rope haulage, 912 ropes, durability of, 919 ropes, splicing, 345 ropes, strength of, 301 ropes, tapered, 916 rope transmission, 917-922 rope tramways, 914 strength of, 201, 303 telegraph, 217 wound fly wheels, 824 Wiring formula for incandescent lighting, 1043 Wires, current required to fuse, 1037 Wire-table, for 100 and 500 volts, 1044 table, hot and cold wires, 1034,1035 Wohler's experiments, 238 Wood as fuel, 639 composition of 640 expansion of, 311 heating value of, 689 strength of, 802, 306, 810, 312 weight of, 164, 232 Wooden fly-wheels, 823 Woodstone or xylolith,316 Woolf type of compound engine, 762 Wootten's locomotive, 855 Work, energy, power, 428 of acceleration, 430 of men aud animals, 433 unit of, 428 Worm-gear, 440 gearing, 897 Wrought iron, 377–879 iron, chemistry of, 377 iron, specifications, 378 Xylolith or woodstone, 816 Yield point, 237 Z bars, properties of, 276 sizes and weights, 178 Zinc, 168 tubing, 200

use of, in steam-boilers, 720 Zeuner valve diagram, 827

Zero absolute, 461

. . . .





This book should be returned to the Library on or before the last date stamped below.

A fine of five cents a day is incurred by retaining it beyond the specified time.

Please return promptly.

BUENOV 5 1928

Eng 348.95.5
The mechanical engineer's pocket-bo
Cabot Science 001502937

3 2044 091 983 791