HW3a (Transformers) Recitation

November 4, 2022 10-417/617 Intermediate Deep Learning

Agenda

- 1. HW3a Overview
- 2. Written portion
 - We won't really go through this in detail, but we will provide a few tips, reminders, things to watch out for
- 3. Transformer architecture
- 4. Decoding (beam search)
- 5. Evaluation (BLEU score)
- 6. Programming portion

HW3a Overview

- Released: Wednesday (November 2, 2022)
- Due: Monday (November 14, 2022)
- 80 points for 417; 100 points for 617
- Written (30+10 points):
 - 2 questions for all (15 points each)
 - 1 questions for 617 only (10 points)
- Programming (50+10 points):
 - Auto-grader (24 + 6 points)
 - Experiments / analysis (26 + 4 points)
- Start early!

Written portion

Q1: Vanishing/Exploding Gradients in RNNs

Main ideas/tools: derivatives, chain rule

Q2: Deriving PyTorch's GELU

- Part 1 → change of variables (integration)
- Part 4 → make sure you remove all terms with higher order than 3 at the very first step

Written portion

Q3: Gradients in RBMs

- Part 2: beta(v) and gamma(v, h) are functions for you to define. Make sure you define these correctly
- Part 3: Theta is just a general variable. Apply chain rule
- Part 4: Use result from part 3 (and fill in theta accordingly)

Language Modeling

A language model is a **probability distribution over a set words**, usually represented by a neural network

Note the special [SOS] and [EOS] tokens here. These are used to represent the starts and ends of sentences. In the assignment, they are index 0 and 1 in our vocabulary.

Applications of Language Modeling

Since we can predict the probability of the next work, we can use language models in open-ended generation tasks and seq2seq tasks:

- Text generation (e.g. essay generation, story generation, etc.)
- Summarization
- Machine translation

In this HW, we will be working on the task of French-to-English translation

Language Modelling with RNNs

- Seq2seq translation example
- Model generates words sequentially

 One main downside is that the effect of the earlier words gets diminished over time (all the input information is encoded into just one single vector)

Attention in RNNs

- Attention is a key way to address this issue
 - Take the pairwise dot products between the current vector and each input vector to get attention weights
 - Multiple the attention weights by each input vector and add to get the final context vector

 Using attention, each output is able to take into consideration each input word

Attention in RNNs

A good resource/tutorial for attention can be found here:

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seg2seg-models-with-attention/

Transformers

 Transformers are also language models, but they don't use any recurrent structure unlike RNNs or LSTMs

- Rather, they introduce the idea of self-attention
- "Attention is All You Need" [1]

Encoder + Decoder Architecture

Similar to RNNs, transformers follow an encoder-decoder structure with stacked layers/blocks.

- Each input pays attention to each other input (hence "self"-attention)
- In addition to the input vector (embedding), each input also has a corresponding query, key, and value vector
- How to get the attention weights:
 - Similar to RNN take a dot product
 - Dot product of query vector of current word with key vector of each of the other input words
 - Scale and softmax to get final weights
- How to get final output:
 - Weighted sum of value vectors (using attention weights)

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$$

In matrix form:

We can plot the (self-)attention weights similar to how we previously plotted attention weights for RNNs

In practice, rather than directly calling $\operatorname{Attention}(Q,K,V)$. We instead call $\operatorname{Attention}(QW_i^Q,KW_i^K,VW_i^V)$ where the Ws are parameter (weight) matrices (basically a linear layer)

- This allows us to have multiple "heads" for attention

Multi-Headed Attention

Z_i is the result of a single attention head i

 $\operatorname{Attention}(QW_i^Q,KW_i^K,VW_i^V)$

Then we concatenate Z1, Z2, ... Zk and multiply by a final weight vector to get the final Z

Multi-Headed Attention

Different attention heads can pay attention to different parts of the input

Decoding Masking

In the decoder, the self-attention layer is only allowed to attend to earlier positions in the output sequence. This is done by masking future positions

In practice, a "mask" is a binary matrix (0s and 1s), where the 0s represent the positions to "mask out"

Positional Encoding

- As the name suggests, we need a way to encode the position of the tokens
 - Introduce a "position matrix" to add to the input matrix
 - This "position matrix" is determined as follows:

$$\mathbf{P}_{(pos,2i)} = \sin\left(\frac{pos}{10000^{2i/d}}\right) \quad \mathbf{P}_{(pos,2i+1)} = \cos\left(\frac{pos}{10000^{2i/d}}\right)$$

- The final input is the sum of the position matrix and the input matrix

Positional Encoding

$$\mathbf{P}_{(\text{pos},2i)} = \sin\left(\frac{\text{pos}}{10000^{2i/d}}\right) \quad \mathbf{P}_{(\text{pos},2i+1)} = \cos\left(\frac{\text{pos}}{10000^{2i/d}}\right)$$

Here, pos is the index of the word in the sentence, d is the number of dimensions (i.e. embedding size), and 2i (or 2i+1) is the index along the d axis.

Putting it all together

Decoding: Greedy

- Once the model is trained, how do we generate results?
 - Recall that a language model is a probability distribution over words.
 - We can simply take argmax at each step!

Downside of greedy decoding:

This may not necessarily lead to the most probable sequence. In this example, "The red fox" is actually more probably (0.36) than "The cat is" (0.30).

Decoding: Greedy

How do we capture the sentence with the highest probability?

We will need to search the entire tree. This can get computationally expensive (intractable) since each node will introduce V new children (where V=vocabulary size).

Can we introduce some kind of compromise?

Downside of greedy decoding:

This may not necessarily lead to the most probable sequence. In this example, "The red fox" is actually more probably (0.36) than "The cat is" (0.30).

Decoding: Beam Search

- Instead of keeping only the top candidate at each step, we keep the top k
 candidates at each step
 - k is called the "beam width" or "beam size"

Decoding: Beam Search

- Instead of keeping only the top candidate at each step, we keep the top k candidates at each step
 - k is called the "beam width" or "beam size"
 - k=1 is equivalent to greedy
- What happens when we reach the end-of-sentence [EOS] token?
 - Save that sequence as a possible "final candidate".
 - Reduce your beam size by one only consider the top (k-1) candidates starting from now

Decoding: Beam Search

- Instead of keeping only the top candidate at each step, we keep the top k candidates at each step
 - k is called the "beam width" or "beam size"
 - k=1 is equivalent to greedy
- What happens when we reach the end-of-sentence [EOS] token?
 - Save that sequence as a possible "final candidate".
 - Reduce your beam size by one only consider the top (k-1) candidates starting from now
- How do we select the final answer?
 - Consider all beams from the final timestep AND all "final candidates" from the [EOS] step
 - Select the sentence with the highest probability
 - In practice, we add log-likelihood probabilities instead of multiplying probabilities (i.e. compute log(p1)+log(p2)+log(p3) instead of p1p2p3.)

Evaluation (BLEU Score)

- This is used to evaluate the quality of our translations
- Score between 0 and 1
- Based on n-gram matching
- An n-gram is a contiguous sequence of words of size n
- e.g. "The dog is a happy dog"
 - 1-grams: { [The], [dog], [is], [a], [happy], [dog] }
 - 2-grams: { [The, dog], [dog, is], [is, a], [a, happy], [happy, dog] }
 - 3-grams: { [The, dog, is], [dog, is, a], [is, a, happy], [a, happy, dog] }

We will build up towards this formula:

$$P_n(y, \hat{y}) \triangleq \frac{\sum_{x \in \{\text{unique n-grams in } \hat{y}\}} \min(C(\hat{y}, x), C(y, x))}{|\hat{y}| - n + 1}$$

- Let's consider 1-grams for now.
- Target sentence: y = { [The], [dog], [is], [a], [happy], [dog] }
- Predicted sentence: y_hat = { [The], [cat], [is], [a], [very], [happy], [cat] }
- Initial attempt (wrong): Calculate number of n-gram overlaps between prediction and target

```
- "The" = 1

- "cat" = 0

- "is" = 1

- "a" = 1

- "very" = 0

- "happy" = 1

- "cat" = 0
```

Why is this not a good idea?

- Total = sum(counts) / total_ngrams_in_y_hat = 4/7

- Let's consider 1-grams for now.
- Target sentence: y = { [The], [dog], [is], [a], [happy], [dog] }
- Predicted sentence: y_hat = { [happy], [happy], [happy], [happy], [happy], [happy] }
- **Initial attempt (wrong)**: Calculate number of n-gram overlaps between prediction and target

```
- "happy" = 1
```

- "happy" = 1
- "happy" = 1
- "happy" = 1
- "happy" = 1

We need to find a way to deal with repeated words.

- Total = sum(counts) / total ngrams in y hat = 5/5

BLEU Score: Clipped Precision

- Previously:

For each n-gram in the predicted sentence (y_hat), count the number of times it appears in the target sentence (y). Take the sum of these counts and divide by total_ngrams_in_y_hat

With clipped precision:

For each unique n-gram in the predicted sentence (y_hat), count the min(number of times it appears in y, number of times it appears in y_hat). Take the sum of these counts and divide by total_ngrams_in_y_hat

BLEU Score: Clipped Precision

$$P_n(y, \hat{y}) \triangleq \frac{\sum_{x \in \{\text{unique n-grams in } \hat{y}\}} \min(C(\hat{y}, x), C(y, x))}{|\hat{y}| - n + 1}$$

With clipped precision:

For each unique n-gram in the predicted sentence (y_hat), count the min(number of times it appears in y, number of times it appears in y_hat). Take the sum of these counts and divide by total_ngrams_in_y_hat

- Let's consider 1-grams for now.
- Target sentence: y = { [The], [dog], [is], [a], [happy], [dog] }
- Predicted sentence: y_hat = { [happy], [happy], [happy], [happy], [happy], [happy], [happy], [happy]
- With clipped precision:
 - "happy" = min(1, 5) = 1
- Total = sum(counts) / total ngrams in y hat = 1/5

Are we done? Is this good enough?

- Let's consider 1-grams for now.
- Target sentence: y = { [The], [dog], [is], [a], [happy], [dog] }
- Predicted sentence: y_hat = { [happy], [happy], [happy], [happy], [happy], [happy], [happy], [happy]
- With clipped precision:
 - "happy" = min(1, 5) = 1
- Total = sum(counts) / total_ngrams_in_y_hat = 1/5

- Predicted sentence: y_hat = { [happy] }
- With clipped precision:
 - "happy" = min(1, 1) = 1
- Total = sum(counts) / total_ngrams_in_y_hat = 1/1

How do we deal with short predictions?

BLEU Score: Brevity Penalty

- We introduce a **brevity penalty**
- If prediction is shorter than the target:

```
penalty = exp( 1 - (len_target / len_prediction) )
```

- Otherwise, no penalty:

```
penalty = 1
```

We multiply this penalty with our BLEU score

- Let's consider 1-grams for now.
- Target sentence: y = { [The], [dog], [is], [a], [happy], [dog] }
- Predicted sentence: y_hat = { [happy] }
- With clipped precision and brevity penalty:
 - "happy" = min(1, 1) = 1
- Total = [sum(counts) / total_ngrams_in_y_hat] * brevity_penalty

```
= (1/1) * exp(1 - 6/1) = 1 * exp(-5) = 0.0067
```

BLEU Score: Final Calculation

- Previously, we were only considering 1-grams.
- Repeat this same process for 2-grams, 3-grams, ... until k-grams.
- This gives scores P1, P2, ... Pk
- The final BLEU score is the **geometric mean** of (P1, P2, ... Pk)

BLEU Score: Worked Example

- Target sentence: {"the", "fat", "cat", "ate", "the", "fat", "rat"}
- Predicted sentence: {"the", "fat", "cat", "ate" "the", "cat"}
- Suppose k=3. We use "c()" here to denote the clipped precision
- P1: c(["the"])=min(2,2), c(["fat"])=min(2,1), c(["cat"])=min(1,2), c(["ate"])=min(1,1)
- P1 = (2+1+1+1) / total_num_1_grams_in_pred = 5/6
- P2: c(["the fat"])=1, c(["fat cat"])=1, c(["cat ate"])=1, c(["ate the"])=1, c(["the cat"])=0
- P2 = (1+1+1+1+0) / total_num_2_grams_in_pred = 4/5
- P3: c(["the fat cat"])=1, c(["fat cat ate"])=1, c(["cat ate the"])=1, c(["ate the cat"])=0
- P3 = (1+1+1+0) / total_num_3_grams_in_pred = **3/4**
- Final score = geometric_mean(5/6, 4/5, 3/4) * brevity_penalty

$$= (3/6)^{(1/3)} * exp(1 - 7/6) = 0.672$$

Programming Portion: Auto-grader

- 1. Positional Encoding
- 2. Self-attention Layer
- 3. Lookahead Mask
- 4. Beam Search Prediction
- 5. BLEU Score (617 only)

Programming Portion: Experiments

- 1. (autograder)
- 2. Plotting train and test loss
 - This should be relatively straightforward (similar to previous assignments)
 - Provided function: train()
 - Make sure to save your models, as you will be loading/using them in the next questions
- 3. Decoding (beam search)
 - Task: Generate translations for a few sentences and report the generations
 - Provided function: decode_sentence()
- 4. Visualizing Attention
 - Provided function: visualize_attention()
 - How to generate attention matrix: output of Transformer.forward

Programming Portion: Experiments

- 5. Beam Search
 - Task: Investigate the effect of different beam sizes
- 6. BLEU Score (617 only)
 - Generate output first
 - Then take BLEU_Score(output_prediction, ground_truth_target)