Øving 2, løsningsskisse. Elektrisk felt, fluks, Gauss' lov.

Oppgave 1. Elektrisk dipol.

Totalt E-felt i punktet P er gitt ved E_1 fra +q og E_2 fra -q. Størrelsen på E_1 og E_2 er den samme, men E_1 er i retning fra +q og E_2 i retning mot -q. y-komponentene vil kansellere hverandre, og for x-komponenten får vi:

$$\vec{E} = (E_{1x} + E_{2x}) \hat{\mathbf{i}} = 2E_{1x} \hat{\mathbf{i}}$$
, hvor
 $E_{1x} = E_1 \cos \theta = k \cdot \frac{q}{r^2} \cos \theta$.

Fra figuren har vi at $\cos \theta = \frac{L/2}{r}$, som gir

$$\vec{E} = 2 \cdot k \cdot \frac{q}{r^2} \frac{L}{2r} \ \hat{\mathbf{i}} = k \cdot \frac{qL}{r^3} \ \hat{\mathbf{i}} = \underline{-k \cdot \frac{\vec{p}}{r^3}},$$

der vi har brukt at den elektriske dipol (som peker fra negativ til positiv ladning) er gitt ved $\vec{p} = q\vec{L} = qL(-\hat{\mathbf{i}})$.

Merk at det elektriske feltet synker med r som $1/r^3$. Dette er rett for alle punkter (i alle retninger) langt unna en dipol, der det altså er $1/r^2$ for en punktladning. Se eksempler 21-8 og 21-14 i Young & Freedman 13th Ed.

Retningen på feltet er i motsatt retning av dipolmomentet. Dette gjelder kun i denne midtlinja. Husk at feltlinjene fra en dipol ser ut som vist til høyre. Vi har studert kun \vec{E} på midtlinja.

Oppgave 2. Ladet stav.

a) Med "linjeladning" (dvs. ladning per lengdeenhet) λ må ladningene dq og Q på henholdsvis en liten lengde dx og på hele staven bli

$$dq = \lambda \, dx \qquad Q = \lambda L$$

b) Elektrisk felt i pkt. P i avstand r fra lengdeelement dx i posisjon x (som vist i figuren):

$$d\vec{E} = k \lambda \frac{dx}{r^2} \hat{r}$$

der som vanlig $k=1/4\pi\varepsilon_0$. Fra figuren ser vi at denne vektoren har komponentene

$$dE_x = -dE \sin \theta = -\frac{k \lambda dx}{r^2} \sin \theta$$
 $dE_y = dE \cos \theta = \frac{k \lambda dx}{r^2} \cos \theta$

Her har vi valgt x=0 når $\theta=0$, og fortegnet stemmer med oppgaveteksten, dvs $\theta>0$ når x>0. Vi bruker tipset i oppgaven og uttrykker dx og $1/r^2$ ved vinkelen θ :

$$x = R \tan \theta \quad \Rightarrow \quad dx = \frac{R d\theta}{\cos^2 \theta}$$

$$r = \frac{R}{\cos \theta} \quad \Rightarrow \quad \frac{1}{r^2} = \frac{\cos^2 \theta}{R^2}$$

$$\Rightarrow \frac{dx}{r^2} = \frac{d\theta}{R}$$

De søkte komponentene E_x og E_y av feltet \vec{E} i punktet P fra hele staven får vi ved å integrere d E_x og d E_y :

$$E_x = \int_{\text{stayon}} dE_x = -\frac{k \lambda}{R} \int_{\theta_2}^{\theta_1} \sin \theta d\theta = \frac{k \lambda}{R} \Big|_{\theta_2}^{\theta_1} \cos \theta = \frac{\lambda}{4\pi \varepsilon_0 R} (\cos \theta_1 - \cos \theta_2)$$

$$E_y = \int_{\text{stayon}} dE_y = \frac{k \lambda}{R} \int_{\theta_2}^{\theta_1} \cos \theta d\theta = \frac{k \lambda}{R} \Big|_{\theta_2}^{\theta_1} \sin \theta = \frac{\lambda}{4\pi \varepsilon_0 R} \left(\sin \theta_1 - \sin \theta_2 \right).$$

KOMMENTAR: Her kunne en ha vært "uheldige" og startet med sammenhengen $x = r \sin \theta$, som gir d $x = r \cos \theta \, d\theta + \sin \theta \, dr$, ettersom både θ og r varierer med x. Men det går bra likevel: Vi har $\cos \theta = R/r$, dvs $r = R/\cos \theta$, og dermed

$$dr = -R \frac{1}{\cos^2 \theta} (-\sin \theta) d\theta$$

slik at

$$\frac{dx}{r^2} = \frac{r \cos \theta \, d\theta + \sin \theta \, dr}{r^2}$$

$$= \frac{\cos \theta \, d\theta \cdot \cos \theta}{R} + \frac{\sin \theta \cdot R \sin \theta \, d\theta}{R^2}$$

$$= \frac{d\theta}{R} \left(\cos^2 \theta + \sin^2 \theta\right) = \frac{d\theta}{R}$$

c) Med P like langt fra stavens to ender er $\theta_1 = -\theta_2$ og følgelig $\cos \theta_1 - \cos \theta_2 = 0$ og $\sin \theta_1 - \sin \theta_2 = 2 \sin \theta_1 = L/\sqrt{R^2 + L^2/4}$. Dermed:

og

$$E = E_y = \frac{\lambda L}{4\pi\varepsilon_0 R\sqrt{R^2 + L^2/4}}.$$

Langt unna staven, dv
s $R\gg L$: Vi kan nå erstatte kvadratroten med R, idet vi kan neglisjer
e $L^2/4$ i forhold til R^2 . Vi får da:
 $\lambda L \qquad Q$

 $E \simeq \frac{\lambda L}{4\pi\varepsilon_0 R^2} = \frac{Q}{4\pi\varepsilon_0 R^2}$

Dette er det samme som feltet fra en punktladning Q i avstand R. Ikke uventet: Langt unna ser staven essensielt ut som en punktladning med total ladning $Q = \lambda L$.

d) En uendelig lang stav oppnår vi ved å la $\theta_2 \to -\pi/2$ og $\theta_1 \to \pi/2$. Da blir igjen $E_x = 0$ og følgelig

$$E = E_y = \frac{\lambda}{2\pi\varepsilon_0 R}.$$

Med andre ord: Feltet fra en uendelig lang linjeladning faller av omvendt proporsjonal med R.

Oppgave 3. Feltlinjer.

a) i) Feltlinjer rundt to like store positive punktladninger:

"Nærbilde". Like mange feltlinjer ut fra hver ladning +q siden de er like. Her valgt 18 feltlinjer fra hver, og feltlinjene går ut til uendelig.

Riktig langt unna ser vi de to ladningene som én punktladning +2q. Her valgt kun 8 feltlinjer totalt, og de går til uendelig.

a) ii) Feltlinjer rundt punktladninger -2q og $q\colon$

"Nærbilde". Like mange feltlinjer ut per positiv ladning q som inn per negativ ladning -q, derfor dobbelt så mange inn mot -2q som ut fra q. De "resterende" må komme fra uendelig. Det er en feil i figuren: det mangler en horisontal feltlinje ut fra +q mot høyre og til uendelig! Det skal da bli 8 linjer ut fra q og 16 linjer inn til -2q.

Riktig langt unna ser vi essensielt en punktladning -2q+q=-q, dvs. feltlinjene går radielt inn mot ladningen:

 $_{\mathrm{b)}\ \mathrm{i)}}\ \mathrm{stav},$ plan normalt på, nært $\ \mathrm{stav},$ plan normalt på, langt unna

b) ii) stav, plan inneholder staven, nært

stav, plan inneholder staven, langt unna

Kommentar til oppgave 3: Skissene vist er bare *kvalitative*, ikke *kvantitative*. Legg spesielt merke til at langt unna ser alt ut som en punktladning. På nært hold kan en som regel benytte symmetribetraktninger kombinert med det en vet om feltet i umiddelbar nærhet av eventuelle punktladninger til å tegne opp et temmelig korrekt bilde av feltlinjene.

Oppgave 4. Fluks. Gauss' lov

Den lukkede flata S har sideflater med areal $A_i=a^2$, der i=x,y,z. Retningen på d \vec{A} er normalt på sideflata som figuren viser. Når vi beregner fluksen vil sideflater hvor $\vec{E} \perp d\vec{A}$ ikke gi noe bidrag (prikkproduktet er null).

i)
$$\vec{E} = E_x \,\hat{\mathbf{i}} = C \,\hat{\mathbf{i}} = \text{konstant medfører at}$$

$$\Phi_E = \oint \vec{E} \cdot \mathrm{d}A = \underbrace{C \cdot a^2}_{\text{flate } x = \ a} + \underbrace{(-C \cdot a^2)}_{\text{flate } x = \ 0} + \underbrace{0 + 0 + 0 + 0}_{\text{andre flater: } \vec{E} \perp \mathrm{d}\vec{A}} = \underline{0} \,.$$

Altså bidrar bare 2 av de 6 flatene, og siden E-feltet er uavhengig av x, blir fluks inn lik fluks ut og total fluks blir lik null. Ladning innefor S blir da ifølge Gauss' lov:

$$Q = \epsilon_0 \Phi_E = 0 \, .$$

$$\Phi_E = \oint \vec{E} \cdot dA = \underbrace{Ca \cdot a^2}_{\text{flate } x = a} + \underbrace{C \cdot 0 \cdot a^2}_{\text{flate } x = 0} + \underbrace{0 + 0 + 0 + 0}_{\text{andre flater: } \vec{E} \perp d\vec{A}} = \underline{Ca^3}$$
$$Q = \epsilon_0 \Phi_E = \epsilon_0 Ca^3 \, .$$

iii)
$$\vec{E} = E_x \hat{\mathbf{i}} = C \cdot x^2 \hat{\mathbf{i}}$$
 gir videre

og

$$\Phi_E = \oint \vec{E} \cdot dA = \underbrace{Ca^2 \cdot a^2}_{\text{flate } x = a} + \underbrace{C \cdot 0 \cdot a^2}_{\text{flate } x = 0} + \underbrace{0 + 0 + 0 + 0}_{\text{andre flater: } \vec{E} \perp d\vec{A}} = \underbrace{Ca^4}_{\text{og}} \quad \text{og} \quad \underline{Q = \epsilon_0 Ca^4}_{\text{og}}.$$

iv)
$$\vec{E} = E_x \hat{\mathbf{i}} + Ey \hat{\mathbf{j}} = C \cdot y \hat{\mathbf{i}} + C \cdot x \hat{\mathbf{j}}$$
.

Når E_x ikke er avhengig av x vil fluks ut ved flata x = a være lik fluks inn ved flata x = 0, slik at netto fluks blir 0. Tilsvarende argument gjelder for fluks i y-retning og i z-retning er det ingen felt slik at fluks i denne retning er null. Totalt: $\Phi_E = 0$. Om man vil, uttrykt matematisk oppdelt på hver koordinatretning:

$$\Phi_{E,x} = \int_{y=0}^a \int_{z=0}^a Cy \,\mathrm{d}y \,\mathrm{d}z - \int_{y=0}^a \int_{z=0}^a Cy \,\mathrm{d}y \,\mathrm{d}z = C\frac{a}{2} \,a^2 - C\frac{a}{2} \,a^2 = \underline{0} \quad \text{, likedan } \underline{\Phi}_{E,y} = \underline{0} \ \Rightarrow \quad \underline{Q=0} \,.$$

Alternativ måte å finne Q på er å bruke Gauss' lov på differensialform: $\rho(x,y,z) = \epsilon_0 \operatorname{div} \vec{E}(x,y,z)$. Altså beregne divergensen til \vec{E} og så integrere ρ over kuben. Dette gir mindre arbeid:

i)
$$\rho = \epsilon_0 \operatorname{div} \vec{E} = \epsilon_0 \frac{\partial E_x}{\partial x} = 0 \quad \Rightarrow \underline{Q} = \rho V = 0 \cdot a^3 = 0$$

ii)
$$\rho = \epsilon_0 \operatorname{div} \vec{E} = \epsilon_0 \frac{\partial E_x}{\partial x} = \epsilon_0 C \quad \Rightarrow \ Q = \rho \ a^3 = \underline{\epsilon_0} \ C a^3$$
.

iii)
$$\rho = \epsilon_0 \operatorname{div} \vec{E} = \epsilon_0 \frac{\partial E_x}{\partial x} = \epsilon_0 2Cx \quad \Rightarrow \quad Q = \int_0^a \rho dV = \epsilon_0 2C \int_0^a x \, dx \, a^2 = \epsilon_0 C(a^2 - 0^2) a^2 = \underline{\epsilon_0} Ca^4$$

iv)
$$\rho = \epsilon_0 \operatorname{div} \vec{E} = \epsilon_0 \left(\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} \right) = 0 \quad \Rightarrow \quad Q = \rho V = 0 \cdot a^3 = 0.$$

Merk at når rommet er divergensfritt i \vec{E} er det også ladningsfritt.