Министерство науки и высшего образования Федеральное государтсвенное бюджетное образовательное учреждение высшего образования

Югорский государственный университет

Отчет о лабораторной работе \mathbb{N}^2 по дисциплине «Методы оптимизации»

Выполнил	
Студент группы	1162б Панчишин И. Р
«»	_ панчишин и. г _ 2019 г.
Принял	
Доцент ИЦЭ	
	_ Самарин В. А.
«»	_ 2019 г.

Цель

Изучить прямые методы минимизации.

Задачи

- 1. Реализовать следующие три метода минимизации: дихотомии, золотого сечения и Фибоначчи.
- 2. Изучить зависимость числа вычислений функции (скорости работы) от заданной точности.

Ход работы

Реализовал требуемые методы на языке программирования Octave (свободная реализация Matlab). Исходный код, представленный ниже, позволяет определить минимум функции (унимодальной), визуализировать изменение отрезка поиска на каждой итерации, а также построить зависимость скорости поиска от заданной точности.

```
addpath(../code);
   set(0, defaultaxesfontsize, 14);
   set(0, defaulttextfontsize, 14);
   % исходные данные
   f = 0(X) X.^4 + exp(-X)
   X = -1:0.01:1;
   [a b] = deal(-0.5, 1)
10
   e = 0.1
11
   % минимум
13
   [targetxm, targetym] = fminbnd(f, a, b)
14
15
16
   % работа алгоритмов
17
   Fm = {@dichotomy, @gold, @fib};
18
   Name = {Дихотомии, Золотого сечения, Фибоначчи};
20
   for i = 1:length(Fm)
21
        subplot(1, 3, i);
22
23
        plot(X, f(X), Color, b);
24
       xlabel(x);
25
       ylabel(y);
26
       hold on;
27
28
        plot(targetxm, targetym, bo, LineWidth, 3);
29
30
        [xm, ym, n, Approx] = Fm{i}(f, a, b, e)
32
        title([Name{i}, , n = , num2str(n)]);
33
        segment = plot([Approx(1, 1) Approx(1, 2)], [0 0], Color, r, LineWidth, 3);
        for j = 1:length(Approx) - 1
36
            st = Approx(j, :);
37
            en = Approx(j+1, :);
            if st(1) != en(1)
```

```
shinkseg(st(1), en(1), segment, 1);
40
41
             end
             if st(2) != en(2)
42
                 shinkseg(st(2), en(2), segment, 1);
43
44
             end
        end
45
46
        plot(xm, ym, ro, LineWidth, 3);
47
    end
48
    % зависимость от точности
50
   figure;
51
   hold on;
52
53
   E = linspace(0.0001, 0.5, 20);
54
   for i = 1:length(Fm)
55
        N = [];
56
        for e = E
57
             [xm ym n] = Fm{i}(f, a, b, e);
58
            N = [N n];
59
        end
        plot(E, N);
61
   end
62
63
   legend(Name);
   xlabel(Погрешность);
65
   ylabel(Вычислений);
66
67
   pause
69
    % метод дихотомии
1
    % f - функция одной переменной
    \mbox{\it %} a, b - точки, определяющие отрезок поиска минимума
   % е - характеристика точности (чем меньше, тем точнее)
   % Xm - точка минимума
   % ут - минимум
   \% n - кол-во вычислений целевой функции (f)
    % Арргох - история приближения
10
11
   function [xm, ym, n, Approx] = dichotomy(f, a, b, e)
12
        Approx = [a, b];
13
        d = e; %rand() * 2 * e;
14
        n = 0;
15
16
        while (b - a) / 2 > e
17
             [x1 \ x2] = deal((a + b - d) / 2, (a + b + d) / 2);
18
19
            n = n + 2;
20
            if (f(x2) > f(x1))
21
                 b = x2;
22
            else
23
                 a = x1;
24
             end
^{25}
26
             Approx = [Approx; [a, b]];
27
        end
28
```

```
xm = (a + b) / 2;
30
31
        ym = f(xm); ++n;
    end
32
    % метод Фибоначчи
    % см. dichotomy.m для описания аргументов
3
    function [xm, ym, n, Approx] = fib(f, a, b, e)
        Approx = [a, b];
        minfib = (b - a) / e;
8
        k = 1;
10
        while minfib > fibonacci(k)
            ++k;
11
        end
12
        right = @(a, b, k) a + fibonacci(k-1) / fibonacci(k) * len(a, b);
14
        left = @(a, b, k) a + fibonacci(k-2) / fibonacci(k) * len(a, b);
15
16
        [x1 x2] = deal(left(a, b, k), right(a, b, k));
        [y1 \ y2] = deal(f(x1), f(x2));
18
        n = 2;
19
20
        while k > 2
21
            ++n;
22
            if (y2 > y1)
23
                b = x2;
                 [x2 y2] = deal(x1, y1);
25
                x1 = left(a, b, k);
26
                y1 = f(x1);
27
            else
28
29
                 a = x1;
                 [x1 y1] = deal(x2, y2);
30
                x2 = right(a, b, k);
31
                y2 = f(x2);
            end
33
34
            Approx = [Approx; [a, b]];
35
36
37
            --k;
        end
38
39
        xm = (a + b) / 2;
40
        ym = f(xm); ++n;
41
    end
42
43
```

45

46

47

48

49

50 51

52

53

54

```
% метод золотого сечения
   % см. dichotomy.m для описания аргументов
   function [xm, ym, n, Approx] = gold(f, a, b, e)
5
        Approx = [a, b];
6
        g = (sqrt(5) - 1) / 2;
8
        right = Q(a, b) a + g * len(a, b);
9
        left = @(a, b) a + (1 - g) * len(a, b);
10
11
        [x1 x2] = deal(left(a, b), right(a, b));
12
        [y1 \ y2] = deal(f(x1), f(x2));
13
        n = 2;
14
15
        % точность для произвольной итерации
16
        %initLen = b - a;
17
        %1/2 * g^n * initLen
18
19
        while (b - a) / 2 > e
20
21
            ++n;
            if (y2 > y1)
22
                b = x2;
23
                [x2 y2] = deal(x1, y1);
                x1 = left(a, b);
25
                y1 = f(x1);
26
            else
27
                a = x1;
                [x1 y1] = deal(x2, y2);
29
                x2 = right(a, b);
30
                y2 = f(x2);
31
            end
33
            Approx = [Approx; [a, b]];
34
        end
35
        xm = (a + b) / 2;
37
        ym = f(xm); ++n;
38
    end
39
    % длина отрезка
   function res = len(a, b)
3
        res = b - a;
4
   end
    % анимация изменения отрезка
1
2
   function shinkseg(st, en, line, timeout)
3
        X = get(line, XData);
5
        for d = st : len(st, en) / 30 : en
6
            if (st > en)
                X(2) = d;
                set(line, XData, X);
9
            else
10
                X(1) = d;
11
12
                set(line, XData, X);
```

Найденный каждым методом минимум отмечен красной точкой на Рис. 1. Синей точкой отмечен минимум, найденный при помощи встроенной функции *fminbnd*. Минимумы не совпадают, так как заданная точность не достаточно велика. Отрезок, выделенный красным, является конечным отрезком поиска минимума.

Рис. 1: Минимум функции

Зависимость числа вычислений от точности представлена на Рис. 2. Наблюдается экспоненциальный рост количества вычислений с увеличением точности.

Вывод

Реализовал прямые методы минимизации: дихотомии, золотого сечения и Фибоначчи. Сравнил их работу. Метод золотого сечения показал себя лучше остальных рассмотренных методов, однако его преимущество становится ощутимым только при большой точности, если точность небольшая, то подойдет любой метод.

Рис. 2: Зависимость скорости от точности