ESc201, Lecture 21: BJT Amplifier (Small signal Model & frequency response) $V_{CC} = 12 \text{ V}$ R_2 R_C $C_2 \rightarrow \infty$ $30~k\Omega$ $4.3 \text{ k}\Omega$ $1~k\Omega$ $100 \text{ k}\Omega$ R_1 R_E $10~k\Omega$ $1.5 \text{ k}\Omega$ R_I 0 $1\ k\Omega$ R_C $R_B = R_1 || R_2$ $4.3 \, k\Omega$ $100~k\Omega$ $7.5\,k\Omega$

ESc201, Lecture 21: BJT Amplifier (Small signal Model)

C-E Amplifier Voltage Gain with R_E: Example

Problem: Calculate voltage gain, Given data:

$$\begin{split} &\beta_F = &100, \, V_A = \infty, \, Q\text{-point is (1.45mA, 3.41V)}, \, R_1 = &10 \, \mathrm{k}\Omega, \, R_2 = &30 \mathrm{k}\Omega, \, R_3 = &100 \mathrm{k}\Omega, \, R_C = \, 4.3 \mathrm{k}\Omega, \\ &R_i = &1 \mathrm{k}\Omega, \, R_E = \, 1.5 \mathrm{k}\Omega, \, V_T = &25 \mathrm{mV}. \end{split}$$

Assumptions: Transistor is in active region, $\beta_0 = \beta_F$.

Signals are low enough to be considered small signals.

Analysis:
$$g_m = 40I_C = 40(1.45 \text{mA}) = 58.0 \text{mS}$$
 $R_B = R_1 \| R_2 = 7.5 \text{ k} \Omega$

$$R_L = R_C \| R_3 = 4.123 k\Omega$$
 $A_v = -g_m R_L \left| \frac{R_B \| r_{\pi}}{R_i + (R_B \| r_{\pi})} \right| = -130 = 42.3 dB$

Absolutely no change in the voltage gain as long as $C_{\rm E}$ is a short at the frequency of interest

$$v_{i} \le (0.005 \text{V}) \left[\frac{R_{i} + (R_{B} \| r_{\pi})}{(R_{B} \| r_{\pi})} \right] = 8.57 \text{mV}$$

But if C_E is removed then calculate to check that the new $A_{v_{new}} = A_{v_{old}}/(1+g_mR_E)$

For further reference check: Sedra & Smith, Microelectronic Circuits, Oxford publishers.

ESc201, Lecture 21: BJT Amplifier (Small signal Model frequency response)

At LOW frequencies $C_{\mu\pi}$ and $C_{\mu C}$ may be considered to be open and the at mid band of frequencies R_E is also shorted by C_E . And load is only resistive.

$$A_{v}(s) = \frac{V_{o}(s)}{V_{i}(s)} = A_{mid}F_{L}(s) \qquad A_{mid} = -g_{m}R_{L}\frac{R_{B}\|r_{\pi}}{R_{i} + R_{B}\|r_{\pi}}$$
 The three zero locations are: response can be calculated to be:
$$\frac{s \times (s + (1/C_{E}R_{E})) \times s}{\left(s + \frac{1}{C_{1}(R_{i} + R_{B}\|r_{\pi})}\right)\left(s + \frac{1}{C_{E}\left[(1/g_{m})\|R_{E}\right]}\right)\left(s + \frac{1}{C_{2}(R_{C} + R_{3})}\right)} = \frac{s = 0, \quad 0, \text{ and } -1/(R_{E}C_{E}).}{s + \frac{1}{C_{2}(R_{C} + R_{3})}}$$

$$\omega_L \cong \sum_{i=1}^{n} \frac{1}{R_{i_{Short}} C_i}, \quad R_{i_s} \text{ is the resistance seen by } C_i \qquad \left(s + (1/C_E R_E)\right) \text{ zero is far away from when other capacitances are shorted.}$$

$$\text{The three pole locations are:} \quad s = -\frac{1}{C_1(R_i + R_B \| r_\pi)}, \quad -\frac{1}{C_E \left[(1/g_m) \| R_E\right]}, \quad -\frac{1}{C_2(R_C + R_3)}$$

The three pole locations are:
$$s = -\frac{1}{C_1(R_i + R_B \| r_{\pi})}, -\frac{1}{C_E[(1/g_m) \| R_E]}, -\frac{1}{C_2(R_C + R_3)}$$

Each independent capacitor in the circuit contributes one pole and one zero. Series capacitors C₁ and C₂ contribute the two zeros at s = 0 (dc), blocking propagation of dc signals through the amplifier. Third zero due to parallel combination of C_E and R_E occurs at frequency where signal current propagation through BJT is blocked (becomes the dominant zero). C_E is usually the largest capacitor (~ few μF) and R_E is the smallest (< 0.5k Ω). C_1 & $C_2 \sim 0.5\text{-}1\mu\text{F}$. $R_i < 1k\Omega$, $R_B \sim 10\text{s of }k\Omega$, $r_{\pi} \sim 1\text{-}5$ $k\Omega$. Note $1/g_m = r_e \sim 10s$ of Ω .

ESc201, Lecture 21: BJT Amplifier (Small signal Model frequency response)

At HIGH frequencies C_1 , C_2 and C_E may be considered to be shorted and the load is only resistive. Then it is easy to show that the only detrimental capacitance is $C_{in} = C_{\pi} + C_{\mu\pi}$ and $C_{\mu C} \approx C_{\mu}$. But C_{μ} being small, will not provide the upper cut-off.

$$A_{v}(s) = \frac{V_{o}(s)}{V_{i}(s)} = A_{mid}F_{H}(s) \qquad F_{H}(s) = \frac{1}{\left(1 + sC_{in}(R_{i} + R_{B}||r_{\pi})\right)} \qquad C_{in} = C_{\pi} + C_{\mu}(1 + g_{m}R_{L})$$

$$\omega_{H} \approx \frac{1}{R_{i}||R_{B}\left(\frac{C_{\pi}}{1 + g_{m}R_{E}}\left(1 + \frac{R_{E}}{R_{i}||R_{B}}\right) + C_{\mu}\left(1 + \frac{g_{m}R_{L}}{1 + g_{m}R_{E}} + \frac{R_{L}}{R_{i}||R_{B}}\right)\right)} \approx \sum_{i=1}^{m} \frac{1}{R_{iOpen}C_{i}}$$

 $R_{i_{\mathrm{Open}}}$ is the resistance seen by C_{i} when other capacitances are opened.

In general for n-poles and n-zeros

$$\omega_{L} \cong \sqrt{\sum_{i=1}^{n} \omega_{p_{n}}^{2} - 2\sum_{i=1}^{n} \omega_{z_{n}}^{2}}$$

If dominant poles do not exist one need to do the full calculaion.

ESc201, Lecture 21: BJT Logic Circuits (ECL) Emitter Coupled Logic

- V_{Min}

Ideal current source

- 1. Bipolar switch circuits
- 2. Emitter-coupled logic (ECL)
- 3. Behavior of the bipolar transistor as a saturated switch
- $\begin{cases} R_E \\ \end{cases} \begin{cases} R_L \\ \end{cases} 4. \quad \text{Transistor-transistor logic}$ (TTL)
 - 5. Schottky clamping techniques for preventing saturation
 - 6. Operation of the transistor in the inverse-active region
 - 7. Voltage reference design
 - 8. BiCMOS logic circuits

$$V_{\text{Min}} = \frac{R_{L}}{R_{L} + R_{E}} \left(-V_{EE} \right)$$

The emitter follower (CC-BJT) is called such since the voltage at the emitter follows the votlage at the base, but at an offset which can be seen in the ideal Voltage Transfer Characteristic.

ESc201, Lecture 21: BJT Logic Circuits (Saturating Bipolar Inverter)

 $\circ V_{CC} = +5 \text{ V}$

- One of the most basic circuits for BJT logic gates is the saturating bipolar inverter
- The resistor pull the output high when v_i is low, and the output goes to v_{CE} when v_i is high

Schottky Diode

The resistor pull the output high when
$$v_i$$
 is low, and the output goes to v_{CE} when v_i is high

$$\beta_F = 20, \ \beta_R = 0.1, \ V_{CE} \text{ sat1} = 0.4 \text{V}, \ V_{CE} \text{ sat2} = 0.2 \text{V}, \ V_T = 26 \text{mV}$$

$$V_{IL} \cong 0.7 \text{-} V_{CE} \text{ sat2} = 0.66 \text{V}, \ V_{OH} \cong V_H \text{-} V_T \cong V_H = 5 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = V_{CE} \text{ sat2} = 0.2 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = 0.6 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = 0.6 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = 0.6 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = 0.6 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = 0.6 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V_L = 0.6 \text{V}$$

$$V_{IH} \cong V_{BE2} = 0.8 \text{V}, \ V_{OL} \cong V$$

