

# Knowledge Representation and Reasoning Argumentation Dynamics

Jean-Guy Mailly

M1 Computer Science



#### Outline

- Argumentation Dynamics
  - Extension Enforcement
  - Dynamic Computation

#### Motivation

- "Natural" argumentation is inherently dynamic: in a debate, new arguments and attacks are added step by step
- Two kinds of approaches:
  - Strategic: knowing the current state of the debate, and some target (set of) argument(s), can I do some actions that guarantee that my target becomes accepted?
  - Computational: knowing the current state of the debate, and the next action (e.g. addition of argument and attacks), can I efficiently compute the new extensions without re-computing everything?

#### Extension Enforcement

Defined by [Baumann and Brewka 2010]

#### Strict Enforcement

$$\left.\begin{array}{c}
F = \langle A, R \rangle \\
E \subseteq A
\end{array}\right\} \quad \Longrightarrow \quad F' = \langle A', R' \rangle$$

such that E is an extension of F' for a given semantics

#### Non-Strict Enforcement

$$\left. \begin{array}{c} F = \langle A, R \rangle \\ E \subseteq A \end{array} \right\} \quad \Longrightarrow \quad F' = \langle A', R' \rangle$$

such that E is included in an extension of F' for a given semantics

• There may be constraints on how to choose F'

#### Definition

Given  $F=\langle A,R\rangle,F'=\langle A',R'\rangle,$  F' is a **normal expansion** of F iff  $A\subset A'$  and  $R'\cap(A\times A)=R$ 

#### Definition

Given 
$$F = \langle A, R \rangle$$
,  $F' = \langle A', R' \rangle$ ,  $F'$  is a **normal expansion** of  $F$  iff  $A \subset A'$  and  $R' \cap (A \times A) = R$ 

 Intuitively, a normal expansion is a new AF which adds new arguments and attacks, but does not change the attacks between former arguments

#### Definition

Given  $F = \langle A, R \rangle$ ,  $F' = \langle A', R' \rangle$ , F' is a **normal expansion** of F iff  $A \subset A'$  and  $R' \cap (A \times A) = R$ 

- Intuitively, a normal expansion is a new AF which adds new arguments and attacks, but does not change the attacks between former arguments
- Specific cases of normal expansion:

#### Definition

Given  $F = \langle A, R \rangle$ ,  $F' = \langle A', R' \rangle$ , F' is a **normal expansion** of F iff  $A \subset A'$  and  $R' \cap (A \times A) = R$ 

- Intuitively, a normal expansion is a new AF which adds new arguments and attacks, but does not change the attacks between former arguments
- Specific cases of normal expansion:
   weak expansion adds only weak arguments, i.e. arguments which don't attack
   the former arguments

#### Definition

Given  $F = \langle A, R \rangle$ ,  $F' = \langle A', R' \rangle$ , F' is a **normal expansion** of F iff  $A \subset A'$  and  $R' \cap (A \times A) = R$ 

- Intuitively, a normal expansion is a new AF which adds new arguments and attacks, but does not change the attacks between former arguments
- Specific cases of normal expansion:
   weak expansion adds only weak arguments, i.e. arguments which don't attack the former arguments

strong expansion adds only strong arguments, *i.e.* arguments which are not attacked by the former arguments

# Example: Normal, Weak, Strong Expansions



#### Enforcement Based on Expansions

Defined by [Baumann and Brewka 2010]

#### Strict Normal (resp. Weak, Strong) Enforcement

$$\left. \begin{array}{c} F = \langle A, R \rangle \\ E \subseteq A \end{array} \right\} \quad \Longrightarrow \quad F' = \langle A', R' \rangle \text{ such that}$$

- E is an extension of F'
- ullet F' is a normal (resp. weak, strong) expansion of F

#### Non-Strict Normal (resp. Weak, Strong) Enforcement

$$\left. \begin{array}{c} F = \langle A, R \rangle \\ E \subseteq A \end{array} \right\} \quad \Longrightarrow \quad F' = \langle A', R' \rangle \text{ such that}$$

- E is included in an extension of F'
- F' is a normal (resp. weak, strong) expansion of F

### Example of Strong Enforcement

• Using  $\sigma = st$ , how to enforce  $E = \{a_2, a_3\}$  in F?



### Example of Strong Enforcement

• Using  $\sigma = st$ , how to enforce  $E = \{a_2, a_3\}$  in F?





### Example of Strong Enforcement

• Using  $\sigma = st$ , how to enforce  $E = \{a_2, a_3\}$  in F?



• Non-strict enforcement is always possible with strong expansion, but it may not be the case for strict enforcement



### Argument-Fixed and General Enforcement

#### Defined in [Coste-Marquis et al 2015]

- Argument-fixed enforcement: perform a strict or non-strict enforcement without modifying the set of arguments (modifying attacks is possible)
- General enforcement: perform a strict or non-strict enforcement by any possible means (adding arguments, modifying attacks)

# Example: Argument-Fixed Enforcement

• Using  $\sigma = st$ , how to enforce  $E = \{a_2, a_3\}$  in F?





# Example: Argument-Fixed Enforcement

• Using  $\sigma = st$ , how to enforce  $E = \{a_2, a_3\}$  in F?





# Example: Argument-Fixed Enforcement

• Using  $\sigma = st$ , how to enforce  $E = \{a_2, a_3\}$  in F?





• Strict enforcement is always possible with argument-fixed/general enforcement

### Minimal Change [Baumman 2012]

 Minimal enforcement: F' must be as close as possible from F, closeness is measured with Hamming distance

$$d_H(F,F') = |(R \setminus R') \cup (R' \setminus R)|$$



# Semantic Change [Doutre and Mailly 2017]

#### Idea:

- For performing the enforcement, we have the choice between several semantics
- Choose the semantics that allows to enforce the extension with minimal change of the graph





- Current semantics:  $\sigma = st$ ,  $st(F) = \{\{a_1, a_4, a_6\}\}$
- Goal: enforcing  $E = \{a_1, a_3\}$
- Without semantic change: the graph has to be modified
- With semantic change: switch semantics from st to pr, since  $E \in pr(F) = \{\{a_1, a_3\}, \{a_1, a_4, a_6\}\}$ . No change of the graph at all



## Computation

- Efficient approaches for computing the result of (minimal) enforcement, based on optimization problems related to SAT
  - pseudo-Boolean constraints [Coste-Marquis et al 2015]
  - MaxSAT [Wallner et al 2017]



#### References



R. Baumann and G. Brewka, Expanding Argumentation Frameworks: Enforcing and Monotonicity Results. COMMA'10, pp. 75-86, 2010.



S. Coste-Marquis, S. Konieczny, J.-G. Mailly and P. Marquis, *Extension Enforcement in Abstract Argumentation as an Optimization Problem.* IJCAI'15, pp 2876-2882, 2015.



R. Baumann, What Does it Take to Enforce an Argument? Minimal Change in abstract Argumentation. ECAl'12, pp 127-132, 2012.



S. Doutre and J.-G. Mailly, Semantic Change and Extension Enforcement in Abstract Argumentation. SUM'17, 2017.



J. P. Wallner, A. Niskanen and M. Järvisalo, *Complexity Results and Algorithms for Extension Enforcement in Abstract Argumentation*. J. Artif. Intell. Res. 60: 1-40, 2017.

- When the AF is updated, detect which part of it is impacted by the update
- Re-compute only the extensions for this part, and combine it with the "old" extension of the rest
- Example: the extension of this AF is  $\{a_1, a_3\}$



- When the AF is updated, detect which part of it is impacted by the update
- Re-compute only the extensions for this part, and combine it with the "old" extension of the rest
- Example: the extension of this AF is  $\{a_1, a_3\}$





- · When the AF is updated, detect which part of it is impacted by the update
- Re-compute only the extensions for this part, and combine it with the "old" extension of the rest
- Example: the extension of this AF is  $\{a_1, a_3\}$



- Update: new argument a4 attacks a1
- Arguments a<sub>2</sub> and a<sub>3</sub> are not impacted by the new arguments: compute only the status of arguments for a<sub>1</sub> and a<sub>4</sub>, and combine it with the fact that a<sub>3</sub> is accepted, and a<sub>2</sub> rejected



- · When the AF is updated, detect which part of it is impacted by the update
- Re-compute only the extensions for this part, and combine it with the "old" extension of the rest
- Example: the extension of this AF is  $\{a_1, a_3\}$



- Update: new argument a4 attacks a1
- Arguments a<sub>2</sub> and a<sub>3</sub> are not impacted by the new arguments: compute only the status of arguments for a<sub>1</sub> and a<sub>4</sub>, and combine it with the fact that a<sub>3</sub> is accepted, and a<sub>2</sub> rejected