Prawdziwość każdego stwierdzenia zaznacz znakiem \boxplus , a jego fałszywość znakiem \boxminus . Brak odpowiedzi potraktujemy tak samo, jak błędną odpowiedź.

- 1. Jeśli $A = \{2, 10, 8, 4, 6\}$ i $B = \{3, 4, 6, 9, 10\}$, to spośród równości
 - (1) $A \cup B = \{2, 3, 4, 5, 6, 8, 9, 10\},\$
 - (2) $A \cap B = \{4, 6, 10\},\$
 - (3) $A B = \{2, 8, 6\}$

prawdziwe są: (a) tylko (1) i (2) \square ; (b) tylko (2) \square ; (c) tylko (3) \square ; (d) tylko (2) i (3) \square .

- 2. Dane są podzbiory A, B i C zbioru X, gdzie C = A B. Wtedy: (a) $C \subseteq A$ \square ; (b) $C \subseteq B$ \square ; (c) $C \cap B = \emptyset$ \square ; (d) $A \cap C \cap B' = \emptyset$ \square ; (e) $A \cap B' \cap C = C$ \square .
- 3. Dane są zbiory $A = \{(x,y) \in R^2 : x^2 + y^2 = 17\}$ i $B = \{(x,y) \in R^2 : x + y = 5\}$. Wtedy zbiorem $A \cap B$ jest: (a) $\{4\} \square$; (b) $\{1,4\} \square$; (c) $\{(1,4)\} \square$; (d) $\{(4,1)\} \square$; (e) $\{(1,4),(4,1)\} \square$.
- 4. Zdanie $(p\vee \sim q\vee r)\wedge (\sim p\vee q\vee r)\wedge (p\vee \sim q\vee \sim r)$ jest fałszywe, gdy:
 - (a) p jest fałszywe, q fałszywe i r fałszywe \square ;
 - (b) p jest prawdziwe, q fałszywe i r fałszywe
 - (c) p jest prawdziwe, q prawdziwe i r fałszywe \square ;
 - (c) p jest prawdziwe, q prawdziwe i r prawdziwe
- 5. Zaciemniona część diagramu Venna reprezentuje zbiór:
 - $(a) (A' \cap B') \cup (B' \cap C') \cup (C' \cap A') \quad \boxed;$
 - (b) $A' \cup B' \cup C'$;
 - (c) $A' \cap B' \cap C'$
 - $(d) (A \cap B') \cup (\overline{B \cap C'}) \cup (C \cap A') \sqsubseteq;$
 - (e) $(A' \cap C') \cup (B' \cap C')$

6. Spośród tablice wartości logicznych

	p	q	$p \Rightarrow (q \Rightarrow p)$
	1	1	1
(1)	1	0	1
	0	1	1
	0	0	1

	p	q	$(p \Rightarrow (p \land q)) \lor ((p \land q) \Rightarrow p)$
	1	1	1
(2)	1	0	1
(2)	0	1	1
	0	0	1

	p	q	$(p \Rightarrow q) \Rightarrow (q \Rightarrow p)$
	1	1	1
i (3)	1	0	1
i (3)	0	1	1
	0	0	1

prawdziwe są: (a) (1), (2) i (3) \square ; (b) tylko (2) \square ; (c) tylko (1) i (2) \square ; (d) tylko (1) i (3) \square .

