MATEMÁTICA DISCRETA

Ano Letivo 2021/22 (Versão: 12 de Junho de 2022)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

CAPÍTULO V ELEMENTOS DE TEORIA DOS GRAFOS

PARTE III

ÁRVORES E FLORESTAS

ÍNDICE

1. Árvores e florestas

2. Árvores abrangentes de custo mínimo

Definição

Um grafo simples G diz-se uma floresta se G não contém ciclos a . Uma floresta conexa designa-se por árvore.

 ${\it a}$ Equivalentemente: não contém circuitos.

Definição

Um grafo simples *G* diz-se uma floresta se *G* não contém ciclos. Uma floresta conexa designa-se por árvore.

Nota

Uma floresta é um grafo simples cujas componentes conexas são árvore.

Mais intuitiva: Uma floresta é uma coleção de árvores.

Definição

Um grafo simples G diz-se uma floresta se G não contém ciclos. Uma floresta conexa designa-se por árvore.

Nota

Uma floresta é um grafo simples cujas componentes conexas são árvore.

Exemplo (Árvore)

Definição

Um grafo simples *G* diz-se uma floresta se *G* não contém ciclos. Uma floresta conexa designa-se por árvore.

Nota

Uma floresta é um grafo simples cujas componentes conexas são árvore.

Exemplo (Árvore)

Acrescentando a aresta a, o grafo já não é uma árvore.

Caraterização de árvores e árvores abrangentes

Teorema

Para um grafo G com pelo menos um vértice, as seguintes afirmações são equivalentes.

(i) G é uma árvore.

Caraterização de árvores e árvores abrangentes

Teorema

Para um grafo G com pelo menos um vértice, as seguintes afirmações são equivalentes.

- (i) G é uma árvore.
- (ii) Entre cada par de vértices em G existe um único caminho.

Nota: Em particular, G é simples.

Caraterização de árvores e árvores abrangentes

Teorema

Para um grafo G com pelo menos um vértice, as seguintes afirmações são equivalentes.

- (i) G é uma árvore.
- (ii) Entre cada par de vértices em G existe um único caminho.
- (iii) G é «minimamente conexo»; ou seja, G é conexo e cada aresta é uma ponte.

Teorema

Para um grafo G com pelo menos um vértice, as seguintes afirmações são equivalentes.

- (i) G é uma árvore.
- (ii) Entre cada par de vértices em G existe um único caminho.
- (iii) G é «minimamente conexo»; ou seja, G é conexo e cada aresta é uma ponte.
- (iv) G é «maximamente acíclico», ou seja, G não contém ciclos, mas acrescentando uma aresta obtém-se um ciclo.

Teorema

Para um grafo G com pelo menos um vértice, as seguintes afirmações são equivalentes.

- (i) G é uma árvore.
- (iii) G é «minimamente conexo»; ou seja, G é conexo e cada aresta é uma ponte.
- (iv) G é «maximamente acíclico», ou seja, G não contém ciclos, mas acrescentando uma aresta obtém-se um ciclo.

Teorema

Para um grafo G com pelo menos um vértice, as seguintes afirmações são equivalentes.

- (i) G é uma árvore.
- (iii) G é «minimamente conexo»; ou seja, G é conexo e cada aresta é uma ponte.
- (iv) G é «maximamente acíclico», ou seja, G não contém ciclos, mas acrescentando uma aresta obtém-se um ciclo.

Definição

Seja G um grafo. Um subgrafo abrangente T de G diz-se árvore abrangente de G quando T é uma árvore.

Teorema

Para um grafo G com pelo menos um vértice, as seguintes afirmações são equivalentes.

- (i) G é uma árvore.
- (iii) G é «minimamente conexo»; ou seja, G é conexo e cada aresta é uma ponte.
- (iv) G é «maximamente acíclico», ou seja, G não contém ciclos, mas acrescentando uma aresta obtém-se um ciclo.

Definição

Seja *G* um grafo. Um subgrafo abrangente *T* de *G* diz-se árvore abrangente de *G* quando *T* é uma árvore.

Corolário

Cada grafo finito conexo admite uma árvore abrangente. (Por exemplo, podemos escolher um subgrafo «maximamente acíclico».)

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Demonstração.

(Ver exercício 26 da folha 5.)

Considere, por exemplo, os vértices extremos do caminho mais comprido do grafo.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

PROPRIEDADES DE ÁRVORES

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Demonstração.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

 $\mbox{\it Uma \'arvore com } n \geq \mbox{\it 1 v\'ertices tem precisamente } n-\mbox{\it 1 arestas}.$

Demonstração.

Indução sobre o número n de vértices da árvore T.

• *n* = 1: Claro!!

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Demonstração.

- *n* = 1: Claro!!
- Seja $n \ge 2$ e suponha que a afirmação é verdadeira para todas as árvores com menos do que n vértices.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Demonstração.

- *n* = 1: Claro!!
- Seja n ≥ 2 e suponha que a afirmação é verdadeira para todas as árvores com menos do que n vértices. Seja v uma folha de T.
 Portanto, T – v é uma árvore;

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Demonstração.

- *n* = 1: Claro!!
- Seja $n \ge 2$ e suponha que a afirmação é verdadeira para todas as árvores com menos do que n vértices. Seja v uma folha de T. Portanto, T-v é uma árvore; por hipótese da indução, T-v tem n-2 arestas.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Demonstração.

- n = 1: Claro!!
- Seja $n \ge 2$ e suponha que a afirmação é verdadeira para todas as árvores com menos do que n vértices. Seja v uma folha de T. Portanto, T-v é uma árvore; por hipótese da indução, T-v tem n-2 arestas. Logo, T tem n-1 arestas.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

 $\label{eq:local_local_problem} \mbox{Uma \'arvore com } n \geq 1 \mbox{ v\'ertices tem precisamente } n-1 \mbox{ arestas.}$

Teorema

Um grafo G conexo com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Teorema

Um grafo G conexo com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Demonstração.

Suponha que G tem n-1 arestas

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Teorema

Um grafo G conexo com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Demonstração.

Suponha que G tem n-1 arestas e seja T uma árvore abrangente de G.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Teorema

Um grafo G conexo com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Demonstração.

Suponha que G tem n-1 arestas e seja T uma árvore abrangente de G. Logo, T tem n-1 arestas,

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Teorema

Um grafo G conexo com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Demonstração.

Suponha que G tem n-1 arestas e seja T uma árvore abrangente de G.

Logo, T tem n-1 arestas, portanto G=T é uma árvore.

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Teorema

Um grafo G conexo com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Teorema

Um grafo G sem ciclos com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

PROPRIEDADES DE ÁRVORES

Lema

Cada árvore finita com pelo menos dois vértices tem pelo menos dois vértices de grau 1 (chamado folhas).

Lema

Uma árvore com $n \ge 1$ vértices tem precisamente n-1 arestas.

Teorema

Um grafo G conexo com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Teorema

Um grafo G sem ciclos com $n \ge 1$ vértices é uma árvore se e só se G tem n-1 arestas.

Demonstração.

TPC (já não há espaço ... mas ver seguinte teorema).

UMA CARATERIZAÇÃO DE FLORESTAS

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Uma caraterização de florestas

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Nota

Se G é uma árvore, obtemos a fórmula já conhecida:

$$\epsilon(G) = \nu(G) - 1.$$

Portanto, num grafo conexo temos

$$\epsilon(G) \ge \epsilon(\text{uma árvore abrangente}) = \nu(G) - 1.$$

UMA CARATERIZAÇÃO DE FLORESTAS

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Demonstração.

Uma caraterização de florestas

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Demonstração.

Suponhamos que G é uma floresta e sejam G_1, \ldots, G_k as componentes conexas de G.

UMA CARATERIZAÇÃO DE FLORESTAS

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(G) = \nu(G) - \mathsf{cc}(G).$$

Demonstração.

Suponhamos que G é uma floresta e sejam G_1,\ldots,G_k as componentes conexas de G. Logo, cc(G)=k e

$$\epsilon(G) = \epsilon(G_1) + \cdots + \epsilon(G_k)$$
 e $\nu(G) = \nu(G_1) + \cdots + \nu(G_k)$.

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Demonstração.

Suponhamos que G é uma floresta e sejam G_1,\ldots,G_k as componentes conexas de G. Logo, cc(G)=k e

$$\epsilon(G) = \epsilon(G_1) + \dots + \epsilon(G_k) \quad \text{e} \quad \nu(G) = \nu(G_1) + \dots + \nu(G_k).$$

Para cada $i=1,2,\ldots,k$, $\epsilon(G_i)=\nu(G_i)-1$ (o lema anterior para árvores),

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Demonstração.

Suponhamos que G é uma floresta e sejam G_1,\ldots,G_k as componentes conexas de G. Logo, $\mathrm{cc}(G)=k$ e

$$\epsilon(G) = \epsilon(G_1) + \dots + \epsilon(G_k) \quad \text{e} \quad \nu(G) = \nu(G_1) + \dots + \nu(G_k).$$

Para cada $i=1,2,\ldots,k$, $\epsilon(G_i)=\nu(G_i)-1$ (o lema anterior para árvores), portanto,

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{k}.$$

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Demonstração.

Suponha agora que $\epsilon(G) - \nu(G) + \mathrm{cc}(G) = 0$ e sejam G_1, \ldots, G_k as componentes conexas de G.

UMA CARATERIZAÇÃO DE FLORESTAS

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Demonstração.

Suponha agora que $\epsilon(G) - \nu(G) + \mathrm{cc}(G) = 0$ e sejam G_1, \ldots, G_k as componentes conexas de G. Logo,

$$O = \underbrace{\left(\epsilon(G_1) - \nu(G_1) + 1\right)}_{\geq 0} + \cdots + \underbrace{\left(\epsilon(G_k) - \nu(G_k) + 1\right)}_{\geq 0};$$

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(\mathsf{G}) = \nu(\mathsf{G}) - \mathsf{cc}(\mathsf{G}).$$

Demonstração.

Suponha agora que $\epsilon(G) - \nu(G) + \mathrm{cc}(G) = 0$ e sejam G_1, \ldots, G_k as componentes conexas de G. Logo,

$$O = \underbrace{\left(\epsilon(G_1) - \nu(G_1) + 1\right)}_{\geq 0} + \cdots + \underbrace{\left(\epsilon(G_k) - \nu(G_k) + 1\right)}_{\geq 0};$$

ou seja, $\epsilon(G_i) - \nu(G_i) + 1 = 0$, para cada $i = 1, \dots, k$.

Ш

Teorema

Um grafo finito G é uma floresta se e só se

$$\epsilon(G) = \nu(G) - \mathsf{cc}(G).$$

Demonstração.

Suponha agora que $\epsilon(G) - \nu(G) + \mathrm{cc}(G) = 0$ e sejam G_1, \ldots, G_k as componentes conexas de G. Logo,

$$O = \underbrace{(\epsilon(G_1) - \nu(G_1) + 1)}_{\geq 0} + \cdots + \underbrace{(\epsilon(G_k) - \nu(G_k) + 1)}_{\geq 0};$$

ou seja, $\epsilon(G_i) - \nu(G_i) + 1 = 0$, para cada $i = 1, \ldots, k$. Pelo teorema anterior (sobre árvores), cada componente conexa é uma árvore. Portanto, G é uma floresta.

O NÚMERO DE ÁRVORES ABRANGENTES

Definição

Para um grafo finito G, $\tau(G)$ denota o número de árvores abrangentes de G.

O número de árvores abrangentes

Definição

Para um grafo finito G, $\tau(G)$ denota o número de árvores abrangentes de G.

Alguns casos particulares

•
$$\tau(G) = o \iff G \text{ \'e desconexo}.$$

O número de árvores abrangentes

Definição

Para um grafo finito G, $\tau(G)$ denota o número de árvores abrangentes de G.

Alguns casos particulares

- $\tau(G) = o \iff G \text{ \'e desconexo}.$
- $\tau(G) = 1 \iff G \text{ \'e uma \'arvore}.$

O NÚMERO DE ÁRVORES ABRANGENTES

Definição

Para um grafo finito G, $\tau(G)$ denota o número de árvores abrangentes de G.

Alguns casos particulares

- $\tau(G) = 0 \iff G \text{ \'e desconexo}.$
- $\tau(G) = 1 \iff G \text{ \'e uma \'arvore}.$
- Se G é um ciclo com k arestas, então $\tau(G) = k$

As árvores abrangentes de G são da forma G - a.

O número de árvores abrangentes

Definição

Para um grafo finito G, $\tau(G)$ denota o número de árvores abrangentes de G.

Alguns casos particulares

- $\tau(G) = 0 \iff G \text{ \'e desconexo}.$
- $\tau(G) = 1 \iff G \text{ \'e uma \'arvore.}$
- Se G é um ciclo com k arestas, então au(G)=k
- Se $G = \bigcirc$ (k arestas paralelas), então $\tau(G) = k$.

As árvores abrangentes de G são precisamente as arestas de G.

O NÚMERO DE ÁRVORES ABRANGENTES

Definição

Para um grafo finito G, $\tau(G)$ denota o número de árvores abrangentes de G.

Alguns casos particulares

- $\tau(G) = 0 \iff G \text{ \'e desconexo}.$
- $\tau(G) = 1 \iff G \text{ \'e uma \'arvore}.$
- Se G é um ciclo com k arestas, então $\tau(G) = k$
- Se $G = \bigcap$ (k arestas paralelas), então $\tau(G) = k$.
- Se G = dois subgrafos G_1 e G_2 unidos por uma ponte ou por um único vértice em comum, então $\tau(G) = \tau(G_1) \cdot \tau(G_2)$.

O NÚMERO DE ÁRVORES ABRANGENTES

Definição

Para um grafo finito G, $\tau(G)$ denota o número de árvores abrangentes de G.

Alguns casos particulares

- $\tau(G) = 0 \iff G \text{ \'e desconexo}.$
- $\tau(G) = 1 \iff G \text{ \'e uma \'arvore.}$
- Se G é um ciclo com k arestas, então $\tau(G) = k$
- Se $G = \bigcirc$ (k arestas paralelas), então $\tau(G) = k$.
- Se G = dois subgrafos G_1 e G_2 unidos por uma ponte ou por um único vértice em comum, então $\tau(G) = \tau(G_1) \cdot \tau(G_2)$.

De facto, as árvores abrangentes de G correspondem aos pares (T_1, T_2) onde T_1 é uma árvore abrangente de G_1 e T_2 é uma árvore abrangente de G_2 .

«REDUZIR» GRAFOS

Fusão de extremos de uma aresta

Seja $G = (V, E, \psi)$ um grafo e seja $a \in E$ com $\psi(a) = \{x, y\}$. Denotamos por G//a o grafo obtido a partir de G por fusão de x e y.

Exemplo

«REDUZIR» GRAFOS

Fusão de extremos de uma aresta

Seja $G=(V,E,\psi)$ um grafo e seja $a\in E$ com $\psi(a)=\{x,y\}$. Denotamos por G//a o grafo obtido a partir de G por fusão de x e y. Mais concretamente, $G//a=(V',E',\psi')$ onde

$$V' = V \setminus \{x,y\} \cup \{v_a\}, \quad E' = E \setminus \{a\}$$

e $\psi(e)=\psi'(e)$ para toda a aresta $e\in E$ com $\psi(e)\cap\{x,y\}=\varnothing$, em todos os outros casos $\psi'(e)$ é dado por $\psi(e)$ com v_a em lugar de x respetivamente y.

Exemplo

PROPRIEDADES

Nota

Seja G um grafo finito e seja a uma aresta de G. Por definição,

$$\epsilon(G//a) = \epsilon(G) - 1.$$

PROPRIEDADES

Nota

Seja G um grafo finito e seja a uma aresta de G. Por definição,

$$\epsilon(G//a) = \epsilon(G) - 1.$$

Teorema

Seja G um grafo finito e sejam a, b arestas distintas de G. Então,

$$(G//a) - b = (G - b)//a,$$

ou seja, a operação de fusão de extremos de arestas comuta com a operação de eliminação de arestas.

Teorema

Seja G um grafo finito e conexo seja a \in E(G) uma aresta de G que não é um lacete. Então,

$$\tau(G) = \tau(G-a) + \tau(G//a).$$

Teorema

Seja G um grafo finito e conexo seja a \in E(G) uma aresta de G que não é um lacete. Então,

$$\tau(G) = \tau(G - a) + \tau(G//a).$$

Demonstração.

Temos

$$au(G) = |as \text{ árvores sem } a\}| + |\{as \text{ árvores com } a\}|$$

Teorema

Seja G um grafo finito e conexo seja a \in E(G) uma aresta de G que não é um lacete. Então,

$$\tau(G) = \tau(G - a) + \tau(G//a).$$

Demonstração.

Temos

$$au(G) = |as \text{ árvores sem } a\}| + |\{as \text{ árvores com } a\}|$$
$$= \tau(G - a)$$

Teorema

Seja G um grafo finito e conexo seja a \in E(G) uma aresta de G que não é um lacete. Então,

$$\tau(G) = \tau(G - a) + \tau(G//a).$$

Demonstração.

Temos

$$\tau(G) = |as \text{ árvores sem } a\}| + |\{as \text{ árvores com } a\}|$$

= $\tau(G - a) + \tau(G//a)$.

Teorema

Seja G um grafo finito e conexo seja a \in E(G) uma aresta de G que não é um lacete. Então,

$$\tau(G) = \tau(G - a) + \tau(G//a).$$

Demonstração.

Temos

$$au(G) = |as \text{ árvores sem } a\}| + |\{as \text{ árvores com } a\}|$$

= $au(G-a) + au(G//a)$.

Nota

• Se a em um lacete em G, então $\tau(G) = \tau(G - a)$.

Teorema

Seja G um grafo finito e conexo seja a \in E(G) uma aresta de G que não é um lacete. Então,

$$\tau(G) = \tau(G - a) + \tau(G//a).$$

Demonstração.

Temos

$$\tau(G) = |as \text{ árvores sem } a\}| + |\{as \text{ árvores com } a\}|$$

= $\tau(G - a) + \tau(G//a)$.

Nota

- Se a em um lacete em G, então $\tau(G) = \tau(G a)$.
- Para $\frac{a}{V_0}$ em G com $d(V_1) = 1$: $\tau(G) = \tau(G V_1)$.

Exemplos

Exemplos

$$\tau \left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \tau \left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

$$= \tau \left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

Exemplos

$$\tau\left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

$$= \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

$$= 4 + 8 = 12.$$

Exemplos

Exemplos

Exemplos

$$\tau$$
 $=$ τ $+$

Exemplos

Exemplos

Exemplos

$$\tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}{c} \\ \\ \end{array}\right)$$

Exemplos

$$\tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

Exemplos

$$\tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

Exemplos

$$\tau \left(\begin{array}{c} \\ \\ \\ \end{array} \right) = \tau \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + \tau \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + \tau \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

$$= \tau \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + \tau \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + \tau \left(\begin{array}{c} \\ \\ \\ \end{array} \right)$$

Exemplos

$$\tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}$$

Exemplos

$$\tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = \tau\left(\begin{array}{c} \\ \\ \\ \end{array}\right) + \tau\left(\begin{array}$$

Exemplos

Exemplos

Exemplos

CONTAR ÁRVORES

Teorema (Fórmula de Cayley)

Para cada $n \ge 1$, o número de árvores com n vértices (etiquetadas) é n^{n-2} .

Referência

CAYLEY, ARTHUR (1889). «A theorem on trees». Em: The Quarterly Journal of Mathematics 23, pp. 376–378.

Arthur Cayley (1821 – 1895), matemático britânico.

CONTAR ÁRVORES

Teorema (Fórmula de Cayley)

Para cada $n \ge 1$, o número de árvores com n vértices (etiquetadas) é n^{n-2} .

Referência

CAYLEY, ARTHUR (1889). «A theorem on trees». Em: The Quarterly Journal of Mathematics 23, pp. 376–378.

Arthur Cayley (1821 – 1895), matemático britânico.

Corolário

Para cada $n \ge 1$, $\tau(K_n) = n^{n-2}$.

SOBRE A PROVA

Existem 1001 provas...

Provalmente a primeira:

BORCHARDT, CARL WILHELM (1861). «Über eine Interpolationsformel für eine Art symmetrischer Functionen und über deren Anwendung». Em: Math. Abh. der Akademie der Wissenschaften zu Berlin (1–20).

SOBRE A PROVA

Existem 1001 provas...

- · Provalmente a primeira:
 - BORCHARDT, CARL WILHELM (1861). «Über eine Interpolationsformel für eine Art symmetrischer Functionen und über deren Anwendung». Em: Math. Abh. der Akademie der Wissenschaften zu Berlin (1–20).
- Mais recente (utilizando séries formais):
 - JOYAL, ANDRÉ (1981). «Une théorie combinatoire des séries formelles». Em: Advances in Mathematics 42.(1), pp. 1–82.

Mais acessível:

LASTARIA, FEDERICO G. (2000). «An invitation to combinatorial species». URL:

http://math.unipa.it/~grim/ELastaria221-230.PDF.

SOBRE A PROVA

Existem 1001 provas...

- · Provalmente a primeira:
 - BORCHARDT, CARL WILHELM (1861). «Über eine Interpolationsformel für eine Art symmetrischer Functionen und über deren Anwendung». Em: Math. Abh. der Akademie der Wissenschaften zu Berlin (1–20).
- Mais recente (utilizando séries formais):
 - JOYAL, ANDRÉ (1981). «Une théorie combinatoire des séries formelles». Em: Advances in Mathematics 42.(1), pp. 1–82.

Mais acessível:

- LASTARIA, FEDERICO G. (2000). «An invitation to combinatorial species». URL:
 - http://math.unipa.it/~grim/ELastaria221-230.PDF.
- Utilizando os códigos de Prüfer (já a seguir ...).

Objetivo

Sejam $n \ge 2$ e V um conjunto de n elementos (tipicamente $V = \{1, 2, ..., n\}$). Estabilizemos uma bijeção entre

o conjunto de todas as árvores
$$T = (V, E)$$

е

o conjunto de todas as sequências (a_1,a_2,\ldots,a_{n-2}) de comprimento $n-2\ com\ a_i\in V.$

Prüfer, Heinz (1918). «Neuer Beweis eines Satzes über Permutationen». Em: Archiv der Mathematik und Physik 27, pp. 742–744.

Objetivo

Sejam $n \ge 2$ e V um conjunto de n elementos (tipicamente $V = \{1, 2, ..., n\}$). Estabilizemos uma bijeção entre

o conjunto de todas as árvores
$$T = (V, E)$$

е

o conjunto de todas as sequências
$$(a_1,a_2,\ldots,a_{n-2})$$
 de comprimento $n-2$ com $a_i\in V$.

A sequência $(a_1, a_2, \dots, a_{n-2})$ associada à árvore T diz-se código de Prüfer de T.

Prüfer, Heinz (1918). «Neuer Beweis eines Satzes über Permutationen». Em: Archiv der Mathematik und Physik 27, pp. 742–744.

Objetivo

Sejam $n \ge 2$ e V um conjunto de n elementos (tipicamente $V = \{1, 2, ..., n\}$). Estabilizemos uma bijeção entre

o conjunto de todas as árvores
$$T = (V, E)$$

е

o conjunto de todas as sequências
$$(a_1,a_2,\ldots,a_{n-2})$$
 de comprimento $n-2$ com $a_i\in V$.

A sequência $(a_1, a_2, \dots, a_{n-2})$ associada à árvore T diz-se código de Prüfer de T.

Consequentemente, o número de árvores T = (V, E) é n^{n-2} .

Prüfer, Heinz (1918). «Neuer Beweis eines Satzes über Permutationen». Em: Archiv der Mathematik und Physik 27, pp. 742–744.

A codificação de Prüfer

Sejam $n \ge 2$ e V um conjunto de n elementos. Definimos a função

$$C_P \colon \{\text{árvores } T = (V, E)\} \longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$$

de seguinte maneira.

A codificação de Prüfer

Sejam $n \ge 2$ e V um conjunto de n elementos. Definimos a função

$$C_P \colon \{\text{árvores } T = (V, E)\} \longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$$

A codificação de Prüfer

Sejam $n \ge 2$ e V um conjunto de n elementos. Definimos a função

$$C_P \colon \{\text{árvores } T = (V, E)\} \longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$$

de seguinte maneira. Em primeiro lugar, escolhemos uma ordem total em V, e depois aplicamos o seguinte algoritmo:

1. T = a árvore em consideração, i = 1.

A codificação de Prüfer

Sejam $n \ge 2$ e V um conjunto de n elementos. Definimos a função

$$C_P \colon \{\text{\'arvores } T = (V, E)\} \longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$$

- 1. T = a árvore em consideração, i = 1.
- 2. Se T tem dois (ou menos) vértices, **PARAR**.

A codificação de Prüfer

Sejam $n \ge 2$ e V um conjunto de n elementos. Definimos a função

$$C_P \colon \{\text{árvores } T = (V, E)\} \longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$$

- 1. T = a árvore em consideração, i = 1.
- 2. Se T tem dois (ou menos) vértices, PARAR.
- 3. procurar o menor vértice v com grau 1 (uma folha).

A codificação de Prüfer

Sejam $n \ge 2$ e V um conjunto de n elementos. Definimos a função

$$C_P$$
: { \acute{a} rvores $T = (V, E)$ } $\longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$

- 1. T = a árvore em consideração, i = 1.
- 2. Se T tem dois (ou menos) vértices, PARAR.
- 3. procurar o menor vértice v com grau 1 (uma folha).
- 4. $a_i = o$ único vizinho de v.

A codificação de Prüfer

Sejam $n \ge 2$ e V um conjunto de n elementos. Definimos a função

$$C_P$$
: { \acute{a} rvores $T = (V, E)$ } $\longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$

- 1. T = a árvore em consideração, i = 1.
- 2. Se T tem dois (ou menos) vértices, PARAR.
- 3. procurar o menor vértice v com grau 1 (uma folha).
- 4. $a_i = o$ único vizinho de v.
- 5. T = T v (o que ainda é uma árvore!!) e i = i + 1.

A codificação de Prüfer

Sejam $n \geq 2$ e V um conjunto de n elementos. Definimos a função

$$C_P$$
: {árvores $T = (V, E)$ } $\longrightarrow \{(a_1, \dots, a_{n-2}) \mid a_i \in V\}$

- 1. T = a árvore em consideração, i = 1.
- 2. Se T tem dois (ou menos) vértices, PARAR.
- 3. procurar o menor vértice v com grau 1 (uma folha).
- 4. $a_i = o$ único vizinho de v.
- 5. T = T v (o que ainda é uma árvore!!) e i = i + 1.
- 6. Voltar para 2.

O código de Prüfer de T: P = (

Exemplo

A árvore T:

O código de Prüfer de T: P = (3,).

Exemplo

A árvore T:

O código de Prüfer de T: P = (3, 4,).

Exemplo

A árvore T:

O código de Prüfer de T: P = (3, 4, 3).

Exemplo

A árvore T:

O código de Prüfer de T: P = (3, 4, 3).

Nota

Cada vértice v aparece d(v) - 1 vezes em (a_1, \ldots, a_{n-2}) .

A decodificação de Prüfer

Sejam $n \geq 2$ e V um conjunto de n elementos totalmente ordenado. Definimos a função

$$D_P \colon \{(a_1, \dots, a_{n-2}) \mid a_i \in V\} \longrightarrow \{\text{árvores } T = (V, E)\}$$

de seguinte maneira:

Os códigos de Prüfer

A decodificação de Prüfer

Sejam $n \geq \mathbf{2}$ e V um conjunto de n elementos totalmente ordenado. Definimos a função

$$D_P \colon \{(a_1, \dots, a_{n-2}) \mid a_i \in V\} \longrightarrow \{\text{árvores } T = (V, E)\}$$

- (o) (Desenhar os *n* vértices no papel/quadro/areia/....)
- (1) P = a sequência (a_1, \ldots, a_{n-2}) dada, L = a lista ordenada dos vértices.

A decodificação de Prüfer

Sejam $n \geq \mathbf{2}$ e V um conjunto de n elementos totalmente ordenado. Definimos a função

$$D_P \colon \{(a_1, \dots, a_{n-2}) \mid a_i \in V\} \longrightarrow \{\text{árvores } T = (V, E)\}$$

- (o) (Desenhar os *n* vértices no papel/quadro/areia/....)
- (1) P = a sequência (a_1, \ldots, a_{n-2}) dada, L = a lista ordenada dos vértices.
- (2) Se *L* tem comprimento dois (e portanto *P* tem comprimento zero), então ligar os dois vértices correspondentes e **PARAR**.

Os códigos de Prüfer

A decodificação de Prüfer

Sejam $n \geq \mathbf{2}$ e V um conjunto de n elementos totalmente ordenado. Definimos a função

$$D_P \colon \{(a_1, \ldots, a_{n-2}) \mid a_i \in V\} \longrightarrow \{\text{árvores } T = (V, E)\}$$

- (o) (Desenhar os *n* vértices no papel/quadro/areia/....)
- (1) P = a sequência (a_1, \ldots, a_{n-2}) dada, L = a lista ordenada dos vértices.
- (2) Se *L* tem comprimento dois (e portanto *P* tem comprimento zero), então ligar os dois vértices correspondentes e **PARAR**.
- (3) Considerar o menor elemento em *L* que não pertence a *P*, e o primeiro elemento de *P*. Ligar as dois vértices correspondentes e remover estes elementos das respetivas listas.

Os códigos de Prüfer

A decodificação de Prüfer

Sejam $n \geq \mathbf{2}$ e V um conjunto de n elementos totalmente ordenado. Definimos a função

$$D_P: \{(a_1,\ldots,a_{n-2}) \mid a_i \in V\} \longrightarrow \{\text{árvores } T = (V,E)\}$$

- (o) (Desenhar os *n* vértices no papel/quadro/areia/....)
- (1) P= a sequência (a_1,\ldots,a_{n-2}) dada, L= a lista ordenada dos vértices.
- (2) Se *L* tem comprimento dois (e portanto *P* tem comprimento zero), então ligar os dois vértices correspondentes e **PARAR**.
- (3) Considerar o menor elemento em *L* que não pertence a *P*, e o primeiro elemento de *P*. Ligar as dois vértices correspondentes e remover estes elementos das respetivas listas.
- (4) Voltar para 2.

Exemplo

Consideramos P = (3,4,3) e L = (1,2,3,4,5).

Consideramos P = (3, 4, 3) e L = (1, 2, 3, 4, 5).

Consideramos P = (3, 4, 3) e L = (1, 2, 3, 4, 5).

Exemplo

Consideramos P = (3, 4, 3) e L = (1, 2, 3, 4, 5).

Para comparar

Exemplo

Consideramos P = (3, 4, 3) e L = (1, 2, 3, 4, 5).

Teorema

Verificam-se as igualdades

$$D_P \circ C_P = \mathrm{id} \quad e \quad C_p \circ D_P = \mathrm{id}$$
,

 $logo D_P = C_P^{-1}$

Exemplo

Consideramos P = (3, 4, 3) e L = (1, 2, 3, 4, 5).

Teorema

Verificam-se as igualdades

$$D_P \circ C_P = \mathrm{id}$$
 e $C_p \circ D_P = \mathrm{id}$,

logo $D_P = C_P^{-1}$ e por isso C_P e D_p são funções bijetivas.

O contexto

Consideremos grafos finitos $\mathbf{G}=(\mathbf{V},\mathbf{E},\psi)$ com uma função

$$W \colon E \longrightarrow [0, \infty]$$

de «custos nas arestas».

O contexto

Consideremos grafos finitos $\mathbf{G} = (\mathbf{V}, \mathbf{E}, \psi)$ com uma função

$$W \colon E \longrightarrow [0, \infty]$$

de «custos nas arestas». Dada um subgrafo H de G (com o conjunto de arestas $E' \subseteq E$), definimos o «custo de H» como

$$\sum_{e\in E'}W(e).$$

O contexto

Consideremos grafos finitos $\mathbf{G} = (\mathbf{V}, \mathbf{E}, \psi)$ com uma função

$$W \colon E \longrightarrow [0, \infty]$$

de «custos nas arestas». Dada um subgrafo H de G (com o conjunto de arestas $E' \subseteq E$), definimos o «custo de H» como

$$\sum_{e \in F'} W(e).$$

O objetivo

Para um grafo conexo finito $G = (V, E, \psi)$ com $W \colon E \longrightarrow [0, \infty]$, encontrar uma árvore abrangente de custo mínimo.

O contexto

Consideremos grafos finitos $G = (V, E, \psi)$ com uma função

$$W \colon E \longrightarrow [0, \infty]$$

de «custos nas arestas». Dada um subgrafo H de G (com o conjunto de arestas $E' \subseteq E$), definimos o «custo de H» como

$$\sum_{e \in \mathsf{F}'} W(e).$$

O objetivo

Para um grafo conexo finito $G = (V, E, \psi)$ com $W \colon E \longrightarrow [0, \infty]$, encontrar uma árvore abrangente de custo mínimo.

Convenção: A partir de agora todos os grafos são finitos.

Dois algoritmos

- O algoritmo de Kruskal.
 - KRUSKAL, JOSEPH B. (1956). «On the shortest spanning subtree of a graph and the traveling salesman problem». Em: *Proceedings of the American Mathematical Society* 7.(1), pp. 48–50.
- O algoritmo de Prim.
 - PRIM, ROBERT C. (1957). «Shortest connection networks and some generalization». Em: Bell System Technical Journal **36**.(6), pp. 1389–1401.

Joseph Bernard Kruskal (1928 – 2010) matemático, estatístico, informático e psicometrista estadunidense, e Robert Clay Prim (1921) matemático e informático estadunidense.

Dois algoritmos

Ver também:

- BORŮVKA, OTAKAR (1926). «O jistém problému minimálním [About a minimal problem]». Em: Práce Moravské Přírodovědecké Společnosti 3.(3), pp. 37–58.
- JARNÍK, VOJTĚCH (1930). «O jistém problému minimálním [About a minimal problem]». Em: *Práce Moravské Přírodovědecké Společnosti* **6.**(4), pp. 57–63.
- MAREŠ, MARTIN (2008). «The saga of minimum spanning trees.». Em: Computer Science Review 2.(3), pp. 165–221.

Alguma notação

Sejam $G = (V, E, \psi)$ um grafo conexo com $W \colon E \longrightarrow [0, \infty]$ e $E' \subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo.

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [\mathsf{o},\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

Exemplo

Com $E' = \{12\}$,

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [\mathsf{o},\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

Exemplo

Com $E' = \{12\}$, a aresta 24 é segura para E'

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

Exemplo

Com $E' = \{12\}$, a aresta 24 é segura para E' mas a aresta 23 não é segura para E'.

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

Descrição do algoritmo

1. $E' = \emptyset$.

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

- 1. $E' = \emptyset$.
- 2. **Enquanto** T = (V, E') não é uma árvore abrangente de G:

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

- 1. $E' = \emptyset$.
- 2. **Enquanto** T = (V, E') não é uma árvore abrangente de G:
 - Encontre uma «aresta $a \in E \setminus E'$ segura para E'».

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

- 1. $E' = \emptyset$.
- 2. **Enquanto** T = (V, E') não é uma árvore abrangente de G:
 - Encontre uma «aresta $a \in E \setminus E'$ segura para E'».
 - $E' = E' \cup \{a\}.$

Alguma notação

Sejam $G = (V, E, \psi)$ um grafo conexo com $W \colon E \longrightarrow [0, \infty]$ e $E' \subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a \in E$ diz-se «segura para E'» quando $E' \cup \{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

- 1. $E' = \emptyset$.
- 2. **Enquanto** T = (V, E') não é uma árvore abrangente de G:
 - Encontre uma «aresta $a \in E \setminus E'$ segura para E'».
 - $E' = E' \cup \{a\}$.
 - Saltar para o início de 2.

Alguma notação

Sejam $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$ e $E'\subseteq E$ um conjunto de arestas que faz parte de uma árvore abrangente de G de custo mínimo. Uma aresta $a\in E$ diz-se «segura para E'» quando $E'\cup\{a\}$ faz parte de uma árvore abrangente de G de custo mínimo.

- 1. $E' = \emptyset$.
- 2. **Enquanto** T = (V, E') não é uma árvore abrangente de G:
 - Encontre uma «aresta $a \in E \setminus E'$ segura para E'».
 - $E' = E' \cup \{a\}$.
 - Saltar para o início de 2.
- 3. Devolver a árvore abrangente (V, E') de G de custo mínimo.

Mais notação (apenas para o próximo teorema)

Mais notação (apenas para o próximo teorema)

Seja $G = (V, E, \psi)$ um grafo conexo com $W \colon E \longrightarrow [0, \infty].$

• Um corte de G é uma partição $\{S, V \setminus S\}$ de V.

Mais notação (apenas para o próximo teorema)

- Um corte de G é uma partição $\{S, V \setminus S\}$ de V.
- Uma aresta a ∈ E «ultrapassa o corte» quando um extremo pertence ao S e o outro ao V \ S.

Mais notação (apenas para o próximo teorema)

- Um corte de G é uma partição $\{S, V \setminus S\}$ de V.
- Uma aresta $a \in E$ «ultrapassa o corte» quando um extremo pertence ao S e o outro ao $V \setminus S$.
- Um corte $\{S, V \setminus S\}$ «respeita» um conjunto $E' \subseteq E$ de arestas quando nenhuma aresta de E' «ultrapassa o corte».

Mais notação (apenas para o próximo teorema)

- Um corte de G é uma partição $\{S, V \setminus S\}$ de V.
- Uma aresta a ∈ E «ultrapassa o corte» quando um extremo pertence ao S e o outro ao V \ S.
- Um corte $\{S, V \setminus S\}$ «respeita» um conjunto $E' \subseteq E$ de arestas quando nenhuma aresta de E' «ultrapassa o corte».
- Finalmente, a ∈ E é uma aresta «leve ultrapassando o corte»
 quando a ultrapassa o corte e tem custo mínimo entre todas as
 arestas que ultrapassam o corte.

Mais notação (apenas para o próximo teorema)

Seja $G = (V, E, \psi)$ um grafo conexo com $W: E \longrightarrow [0, \infty]$.

- Um corte de G é uma partição $\{S, V \setminus S\}$ de V.
- Uma aresta a ∈ E «ultrapassa o corte» quando um extremo pertence ao S e o outro ao V \ S.
- Um corte $\{S, V \setminus S\}$ «respeita» um conjunto $E' \subseteq E$ de arestas quando nenhuma aresta de E' «ultrapassa o corte».
- Finalmente, a ∈ E é uma aresta «leve ultrapassando o corte»
 quando a ultrapassa o corte e tem custo mínimo entre todas as
 arestas que ultrapassam o corte.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'.

Mais notação (apenas para o próximo teorema)

Seja $G = (V, E, \psi)$ um grafo conexo com $W: E \longrightarrow [0, \infty]$.

- Um corte de G é uma partição $\{S, V \setminus S\}$ de V.
- Uma aresta a ∈ E «ultrapassa o corte» quando um extremo pertence ao S e o outro ao V \ S.
- Um corte $\{S, V \setminus S\}$ «respeita» um conjunto $E' \subseteq E$ de arestas quando nenhuma aresta de E' «ultrapassa o corte».
- Finalmente, a ∈ E é uma aresta «leve ultrapassando o corte» quando a ultrapassa o corte e tem custo mínimo entre todas as arestas que ultrapassam o corte.

Teorema

Seja $G = (V, E, \psi)$ um grafo conexo com $W \colon E \longrightarrow [0, \infty]$. Suponha que $E' \subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S, V \setminus S\}$ um corte de V que respeita E'. Se $G \in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Teorema

Seja $G = (V, E, \psi)$ um grafo conexo com $W : E \longrightarrow [0, \infty]$. Suponha que $E' \subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S, V \setminus S\}$ um corte de V que respeita E'. Se $a \in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a)=uv$.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a)=uv$. Se a pertence à T, então «ganhamos».

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a)=uv$. Suponha que a não pertence à T.

Objetivo: Obter uma árvore abrangente T' de G de custo mínimo que inclui $E' \cup \{a\}$.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a) = uv$. Suponha que a não pertence à T.

Juntando a ao caminho entre u e v em T é um ciclo.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a) = uv$. Suponha que a não pertence à T.

Juntando a ao caminho entre u e v em T é um ciclo. Como a aresta a «ultrapassa o corte $\{S, V \setminus S\}$ », uma aresta do caminho entre u e v em T também «ultrapassa o corte $\{S, V \setminus S\}$ »; digamos b com $\psi(b) = xy$.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a) = uv$. Suponha que a não pertence à T.

Juntando a ao caminho entre u e v em T é um ciclo. Como a aresta a «ultrapassa o corte $\{S,V\setminus S\}$ », uma aresta do caminho entre u e v em T também «ultrapassa o corte $\{S,V\setminus S\}$ »; digamos b com $\psi(b)=xy$. Temos que $b\notin E'$ porque o corte respeita E'. Portanto, T'=T-b+a é uma árvore abrangente de G que inclui $E'\cup\{a\}$.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a) = uv$. Suponha que a não pertence à T.

Juntando a ao caminho entre u e v em T é um ciclo. Como a aresta a «ultrapassa o corte $\{S,V\setminus S\}$ », uma aresta do caminho entre u e v em T também «ultrapassa o corte $\{S,V\setminus S\}$ »; digamos b com $\psi(b)=xy$. Temos que $b\notin E'$ porque o corte respeita E'. Portanto, T'=T-b+a é uma árvore abrangente de G que inclui $E'\cup\{a\}$.

Falta provar que T - a' + a é de custo mínimo.

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a) = uv$. Suponha que a não pertence à T.

Como a é uma aresta «leve ultrapassando o corte» e b também «ultrapassa o corte», $W(a) \leq W(b)$. Portanto,

$$W(T') = W(T) - W(b) + W(a) \leq W(T);$$

Teorema

Seja $G=(V,E,\psi)$ um grafo conexo com $W\colon E\longrightarrow [0,\infty]$. Suponha que $E'\subseteq E$ faz parte de uma árvore abrangente de G de custo mínimo e seja $\{S,V\setminus S\}$ um corte de V que respeita E'. Se $a\in E$ é «leve ultrapassando o corte»; então, a é «segura para E'».

Demonstração.

Seja T uma árvore abrangente de G de custo mínimo que inclui E' e $\psi(a)=uv$. Suponha que a não pertence à T.

Como a é uma aresta «leve ultrapassando o corte» e b também «ultrapassa o corte», $W(a) \leq W(b)$. Portanto,

$$W(T') = W(T) - W(b) + W(a) \leq W(T);$$

mas, como T é de custo mínimo, W(T) = W(T').

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W: E \longrightarrow [o, \infty]$.

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W: E \longrightarrow [0, \infty]$.

1. Ordenar as arestas (a_1, \ldots, a_m) de G por ordem não decrescente do seu custo; ou seja,

$$W(a_1) \leq W(a_2) \leq \cdots \leq W(a_m).$$

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W: E \longrightarrow [0, \infty]$.

1. Ordenar as arestas (a_1, \ldots, a_m) de G por ordem não decrescente do seu custo; ou seja,

$$W(a_1) \leq W(a_2) \leq \cdots \leq W(a_m).$$

2. $E' = \emptyset$, i = 1.

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W : E \longrightarrow [0, \infty]$.

1. Ordenar as arestas (a_1, \ldots, a_m) de G por ordem não decrescente do seu custo; ou seja,

$$W(a_1) \leq W(a_2) \leq \cdots \leq W(a_m).$$

- 2. $E' = \emptyset$, i = 1.
- 3. **Enquanto** T = (V, E') não é conexa:

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W: E \longrightarrow [0, \infty]$.

1. Ordenar as arestas (a_1, \ldots, a_m) de G por ordem não decrescente do seu custo; ou seja,

$$W(a_1) \leq W(a_2) \leq \cdots \leq W(a_m).$$

- 2. $E' = \emptyset$, i = 1.
- 3. **Enquanto** T = (V, E') não é conexa:
 - Se $(V, E' \cup \{a_i\})$ não tem ciclos, então $E' = E' \cup \{a_i\}$.

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W \colon E \longrightarrow [0, \infty]$.

1. Ordenar as arestas (a_1, \ldots, a_m) de G por ordem não decrescente do seu custo; ou seja,

$$W(a_1) \leq W(a_2) \leq \cdots \leq W(a_m).$$

- 2. $E' = \emptyset$, i = 1.
- 3. **Enquanto** T = (V, E') não é conexa:
 - **Se** $(V, E' \cup \{a_i\})$ não tem ciclos, **então** $E' = E' \cup \{a_i\}$.
 - i = i + 1.
 - Saltar para o início de 3.
- 4. Devolver a árvore abrangente (V, E') de G de custo mínimo.

Exemplo

Ordenar as arestas:

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W : E \longrightarrow [0, \infty]$.

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W: E \longrightarrow [0, \infty]$.

1. Escolher um vértice $u \in V$.

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W : E \longrightarrow [0, \infty]$.

- 1. Escolher um vértice $u \in V$.
- 2. $V' = \{u\} \ e \ E' = \emptyset$.

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W : E \longrightarrow [0, \infty]$.

- 1. Escolher um vértice $u \in V$.
- 2. $V' = \{u\} \ e \ E' = \emptyset$.
- 3. **Enquanto** $V' \subsetneq V$:

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W: E \longrightarrow [0, \infty]$.

- 1. Escolher um vértice $u \in V$.
- 2. $V' = \{u\} \ e \ E' = \emptyset$.
- 3. **Enquanto** $V' \subsetneq V$:
 - Entre todas as arestas $e \in E$ com

$$\psi(e) = vw, \quad v \in V', \quad w \notin V',$$

determinar uma aresta de menor custo: $e^* \operatorname{com} \psi(e^*) = v^* w^*$, $v^* \in V'$ e $w^* \notin V'$.

Descrição do algoritmo

Consideramos um grafo conexo $G = (V, E, \psi)$ e $W: E \longrightarrow [0, \infty]$.

- 1. Escolher um vértice $u \in V$.
- 2. $V' = \{u\} \ e \ E' = \emptyset$.
- 3. **Enquanto** $V' \subsetneq V$:
 - Entre todas as arestas $e \in E$ com

$$\psi(e) = vw, \quad v \in V', \quad w \notin V',$$

determinar uma aresta de menor custo: $e^* \operatorname{com} \psi(e^*) = v^* w^*$, $v^* \in V'$ e $w^* \notin V'$.

- $V' = V' \cup \{w^*\}, E' = E' \cup \{e^*\}.$
- Saltar para o início de 3.
- 4. Devolver a árvore abrangente (V, E') de G de custo mínimo.

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Escolhemos o vértice d.

 $\label{eq:Grafos} \mbox{Grafos em $M\superskip} X = \mbox{tikz:} \\ \mbox{http://www.texample.net/tikz/examples/prims-algorithm/}$