

Comunicación de Datos y Redes

Laboratorio: Karen Kiefer Hernández Facultad de Ciencias Empresariales Mkiefer@ubiobio.cl

Es el método tradicional de división de redes, en donde todas las subredes tienen la misma máscara, es decir, la misma cantidad de hosts posibles.

- Uso de mascaras de igual longitud en todas las subredes
- Poco escalable
- Uso de direcciones IP no optimizado
- Poca flexibilidad para el correcto diseño IP

Principios de división FLSM en subredes

- El router A posee dos interfaces para interconectar dos subredes
- Dado el bloque de direcciones
 192.168.1.0/24

192.168.1.0(/24)

• IP:11000000.10101000.0000001.0000000

• M:1111111111111111111111111100000000

Para dividir el bloque IP en subredes es necesario representar los números decimales en su equivalente Binario

192.168.1.0 /24

- ►IP:11000000.10101000.0000001.00000000
- M:1111111111111111111111111100000000

La **porción de red** es la cantidad de **bits que son comunes a todos los host de la red**. En los cálculos de subredes la **porción de red NUNCA se modifica.**

192.168.1.0 /24

Porción de Red

IP:11000000.10101000.00000001.00000000

M:1111111.11111111.111111.00000000

Tenemos 8 bit en la porción de host. Así que podemos calcular rápidamente la cantidad de dirección IP disponibles que tenemos para asignar en la red con la formula:

H= cantidad de bits en la porción de host

HOST

Para el bloque de direcciones 192.168.1.0 /24, contamos con 8 bits de host (H=8)

Entonces:

Cantidad de host= 2^H -2

Cantidad de host= 2⁸ -2

Cantidad de host = 256-2

Cantidad de host = 254

Bloque 192.168.1.0/24

256 Direcciones en total (254 Asignables a host)

•••

```
11000000.10101000.00000001.00000100 = 192.168.1.252

11000000.10101000.00000001.111111111 = 192.168.1.253

11000000.10101000.00000001.11111111 = 192.168.1.254

11000000.10101000.00000001.11111111 = 192.168.1.255
```


Resumen de lo que tenemos hasta ahora:

- Tenemos un bloque IP 192.168.1.0 /24 con **254 Direcciones IP asignables a host**, del cual nos piden crear 2 subredes.
- Ahora debemos dividir esa cantidad de direcciones en partes iguales para poder cumplir con la condición de crear subredes. Para esto solo podemos utilizar los 8 bit de la porción de host.

Partimos de la máscara /24 y nos **desplazamos bit a bit hacia la derecha** ocupando la porción de host. A veces se refieren a esto como **"pedir prestado"** bit de host.

Si nos corremos 1 bit, creamos un nueva porción denominada "Porción de Subred"

Ahora nuestra porción de host original se redujo a 7 bit.

- Al desplazarnos de la posición 24 a 25
 - ¿Cuántas subredes nuevas hemos creado?
 - ¿Cuántas direcciones IP para host hay en cada red?

Cantidad de Subredes $\mathbf{2}^{s}$

Donde "s" es la cantidad de bits en la porción de subred

$$2^1=2$$

Cantidad de Host por Subred **2^H -2**

Donde "H" es la cantidad de bits en la **porción de host**

$$2^7$$
 -2= 126

El resultado de dividir en estas subredes

11000000.10101000.00000001.00000000 =

ID de Red:192.168.1.0

Máscara: 255.255.255.128 (/25)

1era Subred

11000000.10101000.00000001.10000000 =

ID de Red :192.168.1.128

Máscara: 255.255.255.128 (/25)

2da Subred

Gráficamente:

Rango IP de la subred Nº0

Rango IP de la subred Nº1

Esquema de direccionamiento

Subred	Dirección de red	Rango de host	Dirección de broadcast
0	192.168.1.0/25	192.168.1.1 - 192.168.1.126	192.168.1.127
1	192.168.1.128/25	192.168.1.129 - 192.168.1.254	192.168.1.255

Ejercicio:

- El router A interconecta 3 subredes
- Dado el bloque de direcciones **192.168.1.0/24**
 - 1) Defina la cantidad de IPs para Host utilizables para este bloque.
 - 2) Defina las subredes y las direcciones IPs de cada subred.
 - 3) Genere el esquema de direccionamiento.

Préstamo de bits para las subredes

•	192.168.1.0 (/24)	Address:	11000000.10101000.00000001.00000000
	255.255.255.0	Mask:	11111111
0	192.168.1.0 (/26)	Address:	11000000.10101000.00000001.00000000
	255.255.255.192	Mask:	11111111
1	192.168.1.64 (/26)	Address:	11000000.10101000.00000001.01000000
	255.255.255.192	Mask:	11111111
2	192.168.1.128 (/26)	Address:	11000000.10101000.00000001.10000000
	255.255.255.192	Mask:	11111111
3	192.168.1.192 (/26)	Address:	11000000.10101000.00000001.11
	255.255.255.192	Mask:	1111111.11111111

Calculo IPs Host bloque:

Cantidad de host= 2^8 -2

Cantidad de host = 256-2

Cantidad de host = **254 IPs**

Calculo subredes:

• 2^2 = 4 Subredes

Calculo IPs Host por SR:

Cantidad de host= 2⁶ -2

Cantidad de host = **62 IPs**

Esquema de direccionamiento:

Subred	Dirección de red	Rango de host	Dirección de broadcas
0	192.168.1.0/26	192.168.1.1 - 192.168.1.62	192.168.1.63
1	192.168.1.64/26	192.168.1.65 - 192.168.1.126	192.168.1.127
2	192.168.1.128/26	192.168.1.129 - 192.168.1.190	192.168.1.191
3	192.168.1.192/26	192.168.1.193 - 192.168.1.254	192.168.1.255

Ejercicio:

- Necesitamos interconectar 6 redes
- Dado el bloque de direcciones 192.168.1.0/24
 - 1) Defina la cantidad de IPs para Host utilizables para este bloque.
 - 2) Defina las subredes y las direcciones IPs de cada subred
 - 3) Genere el esquema de direccionamiento

Solución:

```
192.168.1.0 (/24)
                      Address:
                                11000000.10101000.00000001.00000000
255.255.255.0
                      Mask:
                                11111111.11111111.11111111.00000000
192.168.1.0 (/27)
                      Address:
                                11000000.10101000.00000001.00000000
255.255.255.224
                      Mask:
                                11111111.11111111.11111111.11100000
192.168.1.32 (/27)
                      Address:
                                11000000.10101000.00000001.00100000
                                11111111.11111111.11111111.11100000
255.255.255.224
                      Mask:
                      Address:
192.168.1.64 (/27)
                                11000000.10101000.00000001.<mark>010</mark>00000
255.255.255.224
                      Mask:
                                11111111.11111111.11111111.11100000
                                11000000.10101000.00000001.<mark>011</mark>00000
192.168.1.96 (/27)
                      Address:
255.255.255.224
                      Mask:
                                11111111.11111111.11111111.11100000
192.168.1.128 (/27)
                                11000000.10101000.00000001.10000000
                      Address:
255.255.255.224
                      Mask:
                                11111111.11111111.11111111.11100000
                      Address:
                                11000000.10101000.00000001.10100000
192.168.1.160 (/27)
255.255.255.224
                      Mask:
                                11111111.11111111.11111111.11100000
192.168.1.192 (/27)
                      Address:
                                11000000.10101000.00000001.11000000
255.255.255.224
                                11111111.11111111.11111111.11100000
                      Mask:
192.168.1.224 (/27)
                                11000000.10101000.00000001.11100000
                      Address:
255.255.255.224
                      Mask:
```

Calculo IPs Host bloque:

Cantidad de host= 2^8 -2

Cantidad de host = 256-2

Cantidad de host = **254 IPs Host**

Calculo subredes

• 2^3 = 8 Subredes

Calculo IPs Host por SR:

Cantidad de host= 2^5 -2

Cantidad de host = **30 IPs**

Esquema de direccionamiento:

Subred	Dirección de red	Rango de host	Dirección de broadcast
0	192.168.1.0/27	192.168.1.1 - 192.168.1.30	192.168.1.31
1	192.168.1.32/27	192.168.1.33 - 192.168.1.62	192.168.1.63
2	192.168.1.64/27	192.168.1.65 - 192.168.1.94	192.168.1.95
3	192.168.1.96/27	192.168.1.97 - 192.168.1.126	192.168.1.127
4	192.168.1.128/27	192.168.1.129 - 192.168.1.158	192.168.1.159
5	192.168.1.160/27	192.168.1.161 - 192.168.1.190	192.168.1.191
6	192.168.1.192/27	192.168.1.193 - 192.168.1.222	192.168.1.223
7	192.168.1.224/27	192.168.1.225 - 192.168.1.254	192.168.1.255

VLSM es una técnica que permite dividir una red en subredes de diferentes tamaños, asignando máscaras de subred según la necesidad de host en cada subred.

- Uso de máscaras de diferentes longitudes en las subredes
- Utiliza mejor el espacio de direcciones IP, evitando desperdicio.
- Uso de direcciones IP optimizado.
- Flexibilidad Se adapta a redes con diferentes tamaños de subredes.
- Es escalable, **Facilita el crecimiento de la red** de forma ordenada y eficiente.

Usando el diagrama y la información en él, cree un esquema de subred **utilizando VLSM**. La compañía le asigno la dirección **IP 192.168.16.0 de clase C**.

Para resolver el enunciado utilizaremos 6 pasos:

1)Identificar cuantas subredes tenemos y su tamaño (Cantidad de IPs)

2)Una vez identificada las subredes y sus tamaños debemos ordenarlas de mayor a menor.

Nombre Subred	Tamaño (Cant. IPs Válidas)
Concepción	120 IPs
Los Ángeles	60 IPs
Chillán	20 IPs
CCP-Chillán	2 IPs
CCP-LA	2 IPs

- 3) Identificar la máscara actual y determinar cuantos bits de host están disponibles para la operación.
- 4) Determinar los bits necesarios para cada subred dependiendo de la cantidad de hosts pedidos.
- 5) Obtener la nueva máscara para subred

La máscara original es Clase C o 255.255.255.0 (/24) por lo tanto tenemos 8 bit de Host disponibles para la operación

Subred	Hosts necesarios	Hosts + 2 (red/broadcast)	Bit de Host necesarios	Host Reales encontrados (Host/red/broadcast)	Nueva Máscara
Concepción	120	122	7	128 IPs	/25
Los Ángeles	60	62	6	64 IPs	/26
Chillán	20	22	5	32 IPs	/27
CCP-Chillán	2	4	2	4 IPs	/30
CCP-LA	2	4	2	4 IPs	/30

6) Asignar direcciones desde 192.168.16.0 /24

Subred	IP de Red	Máscara	Rango de Hosts	Broadcast
Concepción	192.168.16.0	/25 (255.255.255.128)	192.168.16.1 – 192.168.16.126	192.168.16.127
Los Ángeles	192.168.16.128	/26 (255.255.255.224)	192.168.16.129 – 192.168.16.190	192.168.16.191
Chillán	192.168.16.192	/27 (255.255.255.248)	192.168.16.193 – 192.168.16.222	192.168.16. 223
CCP-Chillán	192.168.16.224	/30 (255.255.255.252)	192.168.16.225 – 192.168.16.226	192.168.16. 227
CCP-LA	192.168.16.228	/30 (255.255.255.252)	192.168.16.229 – 192.168.16.230	192.168.16.231

192.168.16.0/25 120 Hosts 192.168.16.224/30 192.168.16.228/30 Conception Los Angeles Chillan 20 Hosts 60 Hosts 192.168.16.128/26 192.168.16.192/27

