



### CONCEPTOS GENERALES ANGIOTO

TM PHD© CRISTIAN CABRERA G.

UNIVERSIDAD SAN SEBASTIAN

CHILE









# QUE ES MEJOR PARA EL DIAGNOSTICO?

## ANGIOGRAFÍA CONVENCIONAL:

- ELEVADO NUMERO DE PROYECCIONES Y DE MC.
- PUNCIÓN ARTERIAL. REPOSO
   ABSOLUTO. HOSPITALIZACIÓN
   NECESARIA. OBSERVACIÓN CONTINUA
- ELEVADO NUMERO DE COMPLICACIONES
- SUPERPOSICIÓN ESTRUCTURAS
- NO MUESTRA ANORMALIDADES EN PARED DE VASOS

#### • ANGIOTC:

- ADQUISICIÓN VOLUMEN DE DATOS,
   CON MÍNIMA CANTIDAD DE MC.
- PUNCIÓN VENOSA PERIFÉRICA
- RIESGOS MÍNIMOS
- SUPERPOSICIÓN DE ESTRUCTURAS SON ELIMINADAS EN POST PROCESO
- PERMITE EVALUAR PARED DE LOS VASOS, TROMBOS Y DIMENSIONES REALES DE LOS MISMOS.





# QUE NOS PERMITE EVALUAR LA ANGIOTC?

Modificación de diámetro

Reduccion area

Vision vascular panoramica

Disminucion lumen vascular

**Evaluacion ateromatosis** 

RG 2015; 25:1141-1157

Hideki Ota MD, et al

Departament of Radiology; Ishinomaki Red Cros Mospital, Japan.







## ESQUEMA SCORE RIESGO NIC

| • FACTORES RIESGO        | SCORE    |
|--------------------------|----------|
| HIPOTENSION              | 5        |
| TIPO MC                  | 5        |
| CARDIOP CONG.            | 5        |
| > 75 AÑOS                | 4        |
| ANEMIA                   | 3        |
| DIABETES                 | 3        |
| CREAT. SERICA> 1.5 MG/DL | 4        |
| VOLUMEN MC               | 2 /50ML. |
|                          |          |

| Score | NIC Dialisis | 1 |
|-------|--------------|---|
| < 5   | 7.5% 0.04 %  |   |
| 6-10  | 14% 0.12 %   |   |
| 11-16 | 26.1% 1.09%  |   |
| > 16  | 57.3% 12.6%  |   |

Mehran et al.JACC 2004;44,1393-1399



### DOSIS MÁXIMA MC

• PARA PACIENTES CON VALORES DE CREATININA > 1,8 MG/DL

5 ml/kg/Cr

Cigarroa . AmJMed 1989



#### PROTOCOLO STANFORD

Para pacientes con valores de Clearance de Creatinina < 60 ml/min/1.73m2

Volumen máximo: eGFR \* 2 (para 75 kg)

Ajustado a peso corporal: eGFR \* 2 \* PC/75

Baja concentracion MC (300 mg I/ml)











# USO DE MEDIO DE CONTRASTE IV. EN ANGIOCT

Lograr realce homogoneo de las estructuras a estudiar. Tasa de inyeccion de medio de contraste en el menor tiempo posible.

Utilizacion de menor volumen de contraste Disminuir Artefactos de "endurecimiento del haz" producidos por el medio de contraste.



### **REALCE HOMOGENEO**







●AUTOMATICA: BASADA EN EL PRINCIPIO DE CRECIMIENTO MAYOR,EN EL CUAL SE UBICA UNA REFERENCIA Y DESDE ESE PUNTO O ROI COMIENZA LA EXPANSION BASADO EN UMBRALES DE DENSIDAD (UH.)





# COMO DETERMINAMOS NIVEL DE OPACIFICACION ADECUADO?



### Paciente:

- Órgano a estudiar
- Diagnostico especifico
- Gasto Cardiaco
- Acceso vascular
- Edad y Sexo

# Inyección de contraste

- Concentración y volumen de contraste
- Flujo Inyección
- Duración Inyección
- Uso de Flush Salino

## Parámetros de Exploración

- Delay de Inyección
- Duración de Exploración







#### **BOLUS TRACKING**

Herramienta de medicion Automatica de tiempos de transito vascular.

Basado en opacificacion vascular en UH.

Medicion en tiempo real de UH versus Tiempo en region de interes.

Inicio Automatico o Manual de exploracion volumetrica, según caracteristicas equipos TC.

Posiblidad de cuantificar graficamente y/o visualmente los tiempos de transito en tiempo real.







#### **BOLUS TIMING-BOLUS TEST**

Inyeccion de prueba de MC para determinar tiempo de transito optimo. Volumen de prueba 10 a 20 ml, según caracteristicas pacientes.

Flujo de inyeccion igual que para angiotc.

Util en estudios gatillados.



### COMPARACION DE TAMAÑO PACIENTE Y GASTO CARDIACO





# FLUJO Y VOLUMEN EN RELACION A GASTO CARDIACO Y PESO















### VENTAJAS USO DE INYECTORA DUAL

Permite la inyeccion controlada en cuanto a flujo y volumen de una solucion salina.

Lavado de medio de contraste residual en via de acceso.

Aumenta la cantidad de medio de contraste disponible en una adquisicion.

Empuja el bolo de contraste en forma mas homogenea aumentando el realce en la zona de interes.

Reduce artefacto propio del medio de contraste.

Mejora realce en organo de interes.

Disminuye riesgo de NIC.

Disminuye riesgo de extravasacion de medio de contraste.













# Efecto Opacificacion Vascular





## VISUALIZACIÓN VASCULAR?





#### VENTANA ANGIOGRAFICA





#### PROTOCOLO DE ESTUDIO

Scout View

Fase sin contraste iv

Fase arterial Precoz

Fase Tardia





#### FASES VASCULARES

Fase sin contraste CT

**Calcificaciones** 

Hemorragias

Dilatación vascular

Grasa en placas de ateromas







#### FASES VASCULARES

**Fase Arterial Precoz** 

15-20seg o BT

Demarcación Vascular

**Detección AAA** 

**Detección Disección** 







#### **FASES VASCULARES**

Fase Tardía

3-6 min

Realce Lesiones Fibroticas

Realce Filtración





### QUE OCURRE ACÁ? COMO RESOLVERLO?





## AFECTACIÓN EN VR









#### ESTUDIO ENDOPROTESIS AORTA ABDOMINAL

Pre y post procedimiento

Análisis de parámetros vasculares pre procedimiento

Evaluación Permeabilidad y filtracion



#### PLANIFICACIÓN PRE EVAR









### **ENDOLEAKS**





