DSE 203

DAY 3: "MATCHING" – A FUNDAMENTAL CONSTRUCT

The Problem

Table X

	Name	Phone	City	State			
X_1	Dave Smith	(608) 395 9462	Madison	WI			
X ₂	Joe Wilson	(408) 123 4265	San Jose	CA			
X ₃	Dan Smith	(608) 256 1212	Middleton	WI			
	(a)						

Table Y

	Name	Phone	City	State
У 1	David D. Smith	395 9426	Madison	WI
y ₂	Daniel W. Smith	256 1212	Madison	WI

Matches				
(x_1, y_1) (x_3, y_2)				

(b)

(c)

Other variations

- Tables X and Y have different schemas we will see this
- Match tuples within a single table X finding near-duplicates
- The data is not relational, but XML or RDF cross model matches

What is "Matching"?

- A *match* is a *correspondence* or *association* between individual structures in different data sources
 - Value matching
 - Tuple matching
 - Schema matching
- The goal of matching is to find correspondences and not to "clean"/rectify

Problem Description

- Given two sets of strings X and Y
 - Find all pairs $x \in X$ and $y \in Y$ that refer to the same real-world entity
 - We refer to (x,y) as a match
 - Example

Set X	Set Y	Matches
x ₁ = Dave Smith x ₂ = Joe Wilson	y ₁ = David D. Smith y ₂ = Daniel W. Smith	(x_1, y_1) (x_3, y_2)
$x_3 = Dan Smith$	y ₂ - Daniel W. Sillicii	(A ₃ , y ₂)
(a)	(b)	(c)

• Two major challenges: accuracy & scalability

Accuracy Challenges

- Matching strings often appear quite differently
 - Typing and OCR errors: David Smith vs. Davod Smith
 - Different formatting conventions: 10/8 vs. Oct 8
 - Custom abbreviation, shortening, or omission: Daniel Walker Herbert Smith vs. Dan W. Smith
 - Different names, nick names: William Smith vs. Bill Smith
 - Shuffling parts of strings: Dept. of Computer Science, UW-Madison vs. Computer Science Dept., UW-Madison

Accuracy Challenges

- Solution:
 - Use a similarity measure $s(x,y) \in [0,1]$
 - The higher s(x,y), the more likely that x and y match
 - Declare x and y matched if $s(x,y) \ge t$
 - Distance measure/cost measure have also been used
 - Same concept
 - But smaller values → higher similarities

Scalability Challenges

- Applying s(x,y) to all pairs is impractical
 - Quadratic in size of data
- Solution: apply s(x,y) to only most promising pairs, using a method FindCands
 - For each string x ∈ X
 use method FindCands to find a candidate set Z ⊆ Y
 for each string y ∈ Z
 if s(x,y) ≥ t then return (x,y) as a matched pair
 - We discuss ways to implement FindCands later

Outline

- Problem description
- Similarity measures
 - Sequence-based: edit distance, Needleman-Wunch, affine gap, Smith-Waterman, Jaro, Jaro-Winkler
 - Set-based: Jaccard, TF/IDF
 - Hybrid: soft TF/IDF
- Scaling up string matching
 - Inverted index, size filtering, prefix filtering, position filtering, bound filtering

Edit Distance

- Also known as Levenshtein distance
- d(x,y) computes minimal cost of transforming x into y, using a sequence of operators, each with cost 1
 - Delete a character
 - Insert a character
 - Substitute a character with another
- Example: x = David Smiths, y = Davidd Simth, d(x,y) = 4, using following sequence
 - Inserting a character d (after David)
 - Substituting m by i
 - Substituting i by m
 - Deleting the last character of x, which is s

Edit Distance

- Models common editing mistakes
 - Inserting an extra character, swapping two characters, etc.
 - So smaller edit distance → higher similarity
- Can be converted into a similarity measure
 - s(x,y) = 1 d(x,y) / [max(length(x), length(y))]
 - Example
 - s(David Smiths, Davidd Simth) = 1 4 / max(12, 12) = 0.67

Computing Edit Distance using Dynamic Programming

- Define $x = \mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_n$, $y = \mathbf{y}_1 \mathbf{y}_2 \cdots \mathbf{y}_m$
 - d(i,j) = edit distance between $\mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_i$ and $\mathbf{y}_1 \mathbf{y}_2 \cdots \mathbf{y}_j$, the i-th and j-th prefixes of x and y
- Recurrence equations

$$d(i,j) = min \begin{cases} d(i-1,j-1) & \text{if } x_i = y_j \text{ // copy} \\ d(i-1,j-1) + 1 & \text{if } x_i <> y_j \text{ // substitute} \\ d(i-1,j) + 1 & \text{// delete } x_i \\ d(i,j-1) + 1 & \text{// insert } y_j \end{cases}$$

$$d(i,j) = min \begin{cases} d(i-1,j-1) + c(x_i,y_j) & // \text{ copy or substitute} \\ d(i-1,j) + 1 & // \text{ delete } x_i \\ d(i,j-1) + 1 & // \text{ insert } y_j \end{cases}$$

$$c(x_i, y_j) = 0$$
 if $x_i = y_j$,
1 otherwise

Example

■ x = dva, y = dave

		y0	y1	y2	у3	y4
			d	a	V	e
x0		0	1	2	3	4
x 1	d	1	` 0←	- 1		
x2	V	2				
х3	a	3				

$$x = d - v a$$

 $| \ | \ | \ |$
 $y = d a v e$

substitute a with e insert a (after d)

• Cost of dynamic programming is O(|x||y|)

Needleman-Wunch Measure

- Generalizes Levenshtein edit distance
- Basic idea
 - defines notion of alignment between x and y
 - assigns score to alignment
 - return the alignment with highest score
- Alignment: set of correspondences between characters of x and y, allowing for gaps

Scoring an Alignment

- Use a score matrix and a gap penalty
- Example

	d	v	a	e
d	2	-1	-1	-1
v	-1	2	-1	-1
a	-1	-1	2	-1
e	-1	-1	-1	2

$$c_g = 1 \qquad \begin{array}{c} d - - v a \\ | & | | \\ d e e v e \end{array}$$

- alignment score = sum of scores of all correspondences sum of penalties of all mismatches and gaps
 - e.g., for the above alignment, it is 2 (for d-d) + 2 (for v-v) -1 (for a-e) -2 (for gap) = 1
 - This is the alignment with the highest score, it is returned as the Needleman-Wunch score for dva and deeve.

Needleman-Wunch Generalizes Levenshtein in Three Ways

- Computes similarity scores instead of distance values
- Generalizes edit costs into a score matrix
 - allowing for more fine-grained score modeling
 - e.g., score(o,o) > score(a,o)
- Generalizes insertion and deletion into gaps, and generalizes their costs from 1 to $\boldsymbol{c}_{\rm g}$

Computing Needleman-Wunch Score with Dynamic Programming

$$s(i,j) = \max \begin{cases} s(i-1,j-1) + c(xi,yj) \\ s(i-1,j) - c_g \\ s(i,j-1) - c_g \end{cases}$$

$$s(0,j) = -jc_g$$

$$s(i,0) = -ic_g$$

		d	e	e	v	e
	0 💌	-1	-2	-3	-4	-5
d	-1	2 ←	-1 ←	- o 🔪	-1	-2
v	-2	1	1	0	2	1
a	-3	0	0	0	1	1

The Affine Gap Measure: Motivation

- An extension of Needleman-Wunch that handles longer gap more gracefully
- E.g., "David Smith" vs. "David R. Smith"
 - Needleman-Wunch well suited here
 - opens gap of length 2 right after "David"

- Needlement-Wunch not well suited here, gap cost is too high
- If each char corrspondence has score 2, $\mathbf{c}_g = 1$, then the above has score 6*2 10 = 2

The Affine Gap Measure: Solution

- In practice, gaps tend to be longer than 1 character
- Assigning same penalty to each character unfairly punishes long gaps
- Solution: define cost of opening a gap vs. cost of continuing the gap
 - cost (gap of length k) = \mathbf{c}_{o} + (k-1) \mathbf{c}_{r}
 - \mathbf{c}_{o} = cost of opening gap
 - $\mathbf{c}_{r} = \cos t \text{ of continuing gap, } \mathbf{c}_{o} > \mathbf{c}_{r}$
- E.g., "David Smith" vs. "David Richardson Smith"
 - $\mathbf{c}_0 = 1$, $\mathbf{c}_r = 0.5$, alignment cost = 6*2 1 9*0.5 = 6.5

Computing Affine Gap Score using Dynamic Programming

$$s(i,j) = max \{M(i,j), I_x(i,j), I_y(i,j)\}$$

$$M(i,j) = \max \begin{cases} M(i-1,j-1) + c(x_i,y_j) \\ I_x(i-1,j-1) + c(x_i,y_j) \\ I_y(i-1,j-1) + c(x_i,y_j) \end{cases}$$

$$I_{x}(i,j) = \max \begin{cases} M(i-1,j) - c_{o} \\ I_{x}(i-1,j) - c_{r} \end{cases}$$

$$I_{y}(i,j) = \max \begin{cases} M(i,j-1) - c_{o} \\ I_{y}(i,j-1) - c_{r} \end{cases}$$

- M(i,j)
 - Best score between x₁...x_i and y₁...y_j given that x_i is aligned with y_j
- $I_x(i,j)$
 - Best score given that x_i is aligned with a gap
- $I_y(i,j)$
 - Best score given that y_j is aligned with a gap
- Assumption: insertion not directly followed by deletion
- The book shows how these equations are derived

The Smith-Waterman Measure: Motivation

- Previous measures consider global alignments
 - attempt to match all characters of x with all characters of y
- Not well suited for some cases
 - e.g., "Prof. John R. Smith, Univ of Wisconsin" and "John R. Smith, Professor"
 - similarity score here would be quite low
- Better idea: find two substrings of x and y that are most similar
 - e.g., find "John R. Smith" in the above case → local alignment

The Smith-Waterman Measure

- Find the best local alignment between x and y, and return its score as the score between x and y
- Makes two key changes to Needleman-Wunch
 - allows the match to restart at any position in the strings (no longer limited to just the first position)
 - if global match dips below o, then ignore prefix and restart the match
 - after computing matrix using recurrence equation, retracing the arrows from the largest value in matrix, rather than from lower-right corner
 - this effectively ignores suffixes if the match they produce is not optimal
 - retracing ends when we meet a cell with value o → start of alignment

Computing Smith-Waterman Score using Dynamic Programming

$$s(i,j) = \max \begin{cases} 0 \\ s(i-1,j-1) + c(xi,yj) \\ s(i-1,j) - c_g \\ s(i,j-1) - c_g \end{cases}$$

s(0,j)	=	0
s(i,0)	=	0

		d	a	v	e
	0	0	0	0	0
a	0	0	2	1	0
v	0	0	1	4	3
d	0	2	1	3	3

Example 2

CGTGAATTCAT (sequence#1)
GACTTAC (sequence #2)

Match score = 5 Mismatch score = -3 Gap penalty score = -4


```
M_{1,1} = Maximum [M_{0,0} + S_{1,1}, M_{1,0} + W, M_{0,1} + W, 0]
= Maximum [0(-3), 0 + (-4), 0 + (-4), 0]
= Maximum [-3, -4, -4, 0]
= 0
```


GAATT-C

The Jaro Measure

- Mainly for comparing short strings, e.g., first/last names
- To compute jaro(x,y)
 - find common characters x_i and y_j such that $x_i = y_j$ and $|i-j| \le \min\{|x|, |y|\}/2$
 - intuitively, common characters are identical and positionally "close to each other"
 - if the i-th common character of x does not match the i-th common character of y, then we have a transposition
 - return jaro(x,y) = 1 / 3[c/|x| + c/|y| + (c t/2)/c], where c is the number of common characters, and t is the number of transpositions

The Jaro Measure: Examples

- x = jon, y = john
 - c = 3 because the common characters are j, o, and n
 - t = 0
 - jaro(x,y) = 1 / 3(3/3 + 3/4 + 3/3) = 0.917
 - contrast this to 0.75, the sim score of x and y using edit distance
- x = jon, y = ojhn
 - common char sequence in x is jon
 - common char sequence in y is ojn
 - t = 2
 - jaro(x,y) = 0.81

The Jaro-Winkler Measure

- Captures cases where x and y have a low Jaro score, but share a prefix → still likely to match
- Computed as
 - jaro-winkler(x,y) = (1 -PL*PW)*jaro(x,y) + PL*PW
 - PL = length of the longest common prefix
 - PW is a weight given to the prefix

Given the strings $oldsymbol{s_1}$ MARTHA and $oldsymbol{s_2}$ MARHTA we find:

•
$$m = 6$$

•
$$|s_1| = 6$$

•
$$|s_2| = 6$$

ullet There are mismatched characters T/H and H/T leading to $t=rac{2}{2}=1$

We find a Jaro score of:

$$d_j = rac{1}{3} \left(rac{6}{6} + rac{6}{6} + rac{6-1}{6}
ight) = 0.944$$

To find the Jaro-Winkler score using the standard weight p=0.1 , we continue to find:

$$\ell = 3$$

Thus:

$$d_w = 0.944 + (3 * 0.1(1 - 0.944)) = 0.961$$

The Jaccard Measure

- $J(x,y) = |\mathbf{B}_x \, \mathbf{A} \, \mathbf{B}_y| / |\mathbf{B}_x \, [\mathbf{B}_y|]$
- E.g., x = dave, y = dav
 - $\mathbf{B}_{x} = \{ \text{#d, da, av, ve, e#} \}, \mathbf{B}_{y} = \{ \text{#d, da, av, v#} \}$
 - J(x,y) = 3/6
- Very commonly used in practice

The TF/IDF Measure: Motivation

- uses the TF/IDF notion commonly used in IR
 - two strings are similar if they share distinguishing terms
 - e.g., x = Apple Corporation, CA
 y = IBM Corporation, CA
 z = Apple Corp
 - s(x,y) > s(x,z) using edit distance or Jaccard measure, so x is matched with y \rightarrow incorrect
 - TF/IDF measure can recognize that Apple is a distinguishing term, whereas Corporation and CA are far more common → correctly match x with z

Term Frequencies and Inverse Document Frequencies

- Assume x and y are taken from a collection of strings
- Each string is coverted into a bag of terms called a document
- Define term frequency tf(t,d) = number of times term t appears in document d
- Define inverse document frequency $idf(t) = N / N_d$, number of documents in collection devided by number of documents that contain t
 - note: in practice, idf(t) is often defined as $log(N / N_d)$, here we will use the above simple formula to define idf(t)

Example

$$x = aab$$
 \implies $B_x = \{a, a, b\}$
 $y = ac$ \implies $B_y = \{a, c\}$
 $z = a$ \implies $B_z = \{a\}$

tf(a, x) = 2 idf(a) =
$$3/3 = 1$$

tf(b, x) = 1 idf(b) = $3/1 = 3$
... idf(c) = $3/1 = 3$
tf(c, z) = 0

Feature Vectors

- Each document d is converted into a feature vector **v**_d
- \mathbf{v}_d has a feature $\mathbf{v}_d(\mathbf{t})$ for each term t
 - value of $v_d(t)$ is a function of TF and IDF scores
 - here we assume $v_d(t) = tf(t,d) * idf(t)$

$$x = aab$$
 \implies $B_x = \{a, a, b\}$
 $y = ac$ \implies $B_y = \{a, c\}$
 $z = a$ \implies $B_z = \{a\}$

tf(a, x) = 2	idf(a) = 3/3 = 1
tf(b, x) = 1	idf(b) = 3/1 = 3
	idf(c) = 3/1 = 3
tf(c, z) = 0	

	a	b	с
v _x	2	3	0
$\mathbf{v_y}$	1	0	3
v _z	1	0	0

TF/IDF Similarity Score

- Let p and q be two strings, and T be the set of all terms in the collection
- Feature vectors v_p and v_q are vectors in the |T|-dimensional space wher each dimension corresponds to a term
- TF/IDF score of p and q is the cosine of the angle between \mathbf{v}_{p} and \mathbf{v}_{q}
 - $s(p,q) = \sum_{t \in T} v_p(t) * v_q(t) / [\sqrt{\sum_{t \in T} v_p(t)^2} * \sqrt{\sum_{t \in T} v_q(t)^2}]$

TF/IDF Similarity Score

- Score is high if strings share many frequent terms
 - terms with high TF scores
- Unless these terms are common in other strings
 - i.e., they have low IDF scores
- Dampening TF and IDF as commonly done in practice
 - use v_d(t) = log(tf(t,d) + 1) * log(idf(t)) instead of v_d(t) = tf(t,d) * idf(t)
- Normalizing feature vectors

•
$$v_d(t) = v_d(t) / \sqrt{\sum_{\{t \in T\}} v_d(t)^2}$$

Example: Document Vector

3 documents

dı: "new york times" d2: "new york post"

d3: "los angeles times"

Inverse document frequency

TERM DO	OC-FREQ	<u>UENCY</u> <u>IDF</u>
angeles	1	$\log_2(3/1) = 1.584$
los	1	$\log_2(3/1) = 1.584$
new	2	$\log_2(3/2) = 0.584$
post	1	$\log_2(3/1) = 1.584$
times	2	$\log_2(3/2) = 0.584$
york	2	$\log_2(3/2) = 0.584$

Example: The tf-idf matrix

TERM DOC-FREQUENCY IDF						
angeles	S	$\log_2(3/1) = 1.584$				
los	1	$\log_2(3/1) = 1.584$				
new	2	$\log_2(3/2) = 0.584$				
post	1	$\log_2(3/1) = 1.584$				
times	2	$\log_2(3/2) = 0.584$				
vork	7 .	$\log_2(3/2) = 0.584$				

	angele s	los	new	post	times	york
dı	O	О	1	0	1	1
d2	O	О	1	1	O	1
d3	1	1	О	О	1	О

TERM DO	OC-FREQ	<u>UENCY</u> <u>IDF</u>
angeles		$\log_2(3/1) = 1.584$
los	1	$\log_2(3/1) = 1.584$
new	2	$\log_2(3/2) = 0.584$
post	1	$\log_2(3/1) = 1.584$
times	2	$\log_2(3/2) = 0.584$
york	2	$\log_2(3/2) = 0.584$

	angele s	los	new	post	times	york	Length
dı	О	O	0.584	O	0.584	0.584	1.011
d2	О	0	0.584	1.584	0	0.584	1.786
d3	1.584	1.584	0	0	0.584	0	2.316

Length of $d_1 = \text{sqrt}(0.584^2 + 0.584^2 + 0.584^2) = 1.011$

Searching in Vector Space query q: new new york

- Max frequency of a term ("new") = 2
- Create the query vector

Similarity Function

- Many possible functions
- Cosine distance

$$similarity = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

$$|A| \cos \theta$$

$$cos (d1,q) = (0.584*0.584+0.584*0.292) / (1.011*0.652) = 0.776$$

 $cos (d2,q) = (0.584*0.584) / (1.786*0.652) = 0.292$
 $cos (d3,q) = (0.584*0.292) / (2.316*0.652) = 0.112$

Documents can now be sorted according to this score

Query Term Weighting

- Every query term may optionally be associated with a weighting term
 - Q= York times² post⁵
 - wt(York) = 1/(1+5+2)=1/8 = 0.125
 - wt(times) = 2/8 = 0.25
 - wt(post) = 5/8 = 0.625
 - Multiply the query vector with these weights
 - "new york post" ranks first

The Soft TF/IDF Measure

- Similar to generalized Jaccard measure, except that it uses TF/IDF measure as the "higher-level" sim measure
 - e.g., "Apple Corporation, CA", "IBM Corporation, CA", and "Aple Corp",
 - Apple misspelt in the last string
- Step 1: compute close(x,y,k): set of all terms $t \in \mathbf{B}_x$ that have at least one close term $u \in \mathbf{B}_y$, i.e., $s'(t,u) \ge k$
 - s' is a basic sim measure (e.g., Jaro-Winkler), k prespecified
- Step 2: compute s(x,y) as in traditional TF/IDF score, but weighing each TF/IDF component using s'
 - $s(x,y) = \sum_{t \in close(x,y,k)} v_x(t) * v_y(u^*) * s'(t,u^*)$
 - $u^* \in B_y$ maximizes $s'(t,u) \forall u \in B_y$

An Example

Scalability Challenges

- Applying s(x,y) to all pairs is impractical
 - Quadratic in size of data
- Solution: apply s(x,y) to only most promising pairs, using a method FindCands
 - For each string x ∈ X
 use method FindCands to find a candidate set Z ⊂ Y
 for each string y ∈ Z
 if s(x,y) ≥ t then return (x,y) as a matched pair
 - This is often called a blocking solution
 - Set Z is often called the umbrella set of x
- We now discuss ways to implement FindCands
 - using Jaccard measure

Inverted Index over Strings

- Converts each string y∈ Y into a document, builds an inverted index over these documents
- Given term t, use the index to quickly find documents of Y that contain t

Example

Set X

1: {lake, mendota}

2: {lake, monona, area}

3: {lake, mendota, monona, dane}

Set Y

4: {lake, monona, university}

5: {monona, research, area}

6: {lake, mendota, monona, area}

(a)

Terms in Y	ID Lists
area	5
lake	4, 6
mendota	6
monona	4, 5, 6
research	5
university	4

(b)

Limitations

- The inverted list of some terms (e.g., stop words) can be very long → costly to build and manipulate such lists
- Requires enumerating all pairs of strings that share at least one term. This set can still be very large in practice.

Size Filtering

- Retrieves only strings in Y whose sizes make them match candidates
 - given a string $x \in X$, infer a constraint on the size of strings in Y that can possibly match x
 - uses a B-tree index to retrieve only strings that satisfy size constraints
- E.g., for Jaccard measure $J(x,y) = |x \cap y| / |x \cup y|$
 - assume two strings x and y match if $J(x,y) \ge t$
 - can show that given a string $x \in X$, only strings y such that $|x|/t \ge |y| \ge |x|^*t$ can possibly match x
 - |x| is the number of tokens in x

Example

Set X

1: {lake, mendota}

2: {lake, monona, area}

3: {lake, mendota, monona, dane}

Set Y

4: {lake, monona, university}

5: {monona, research, area}

6: {lake, mendota, monona, area}

(a)

Terms in Y	ID Lists
area	5
lake	4, 6
mendota	6
monona	4, 5, 6
research	5
university	4

(b)

- Consider $x = \{lake, mendota\}$. Suppose t = 0.8
- If $y \in Y$ matches x, we must have
 - $2/0.8 = 2.5 \ge |y| \ge 2^* \text{ o.8} = 1.6$
 - no string in Set Y satisfies this constraint → no match

Prefix Filtering

- Key idea: if two sets share many terms → large subsets of them also share terms
- Consider overlap measure $O(x,y) = |x \cap y|$
 - if $|x \cap y|$, $k \rightarrow$ any subset $x' \subset x$ of size at least |x| (k-1) must overlap y
- To exploit this idea to find pairs (x,y) such that $O(x,y) \ge k$
 - given x, construct subset x' of size |x| (k-1)
 - use an inverted index to find all y that overlap x'

Example

	Set X	
	1: {lake, mendota} 2: {lake, monona, area}	
	3: {lake, mendota, monona, dane}	
x: {lake, monona, area}	Set Y	
y: {lake, mendota, monona, area}	4: {lake, monona, university} 5: {monona, research, area} 6: {lake, mendota, monona, area} 7: {dane, area, mendota}	
(a)	(b)	

Terms in Y	ID Lists	
area	5, 6, 7	
lake	4,6	
mendota	6, 7	
monona	4, 5, 6	
research	5	
university	4	
dane	7	

(c)

- Consider matching using $O(x,y) \ge 2$
- $\mathbf{x}_1 = \{\text{lake, mendota}\}, \text{ let } \mathbf{x}_1' = \{\text{lake}\}$
- Use inverted index to find $\{y_4, y_6\}$ which contain at least one token in $\mathbf{x_1}'$

Selecting the Subset Intelligently

- Recall that we select a subset x' of x and check its overlap with the entire set y
- We can do better by selecting a particular subset x' and checking its overlap with only a particular subset y' of y
- How?
 - impose an ordering O over the universe of all possible terms
 - e.g., in increasing frequency
 - reorder the terms in each $x \in X$ and $y \in Y$ according to O
 - refer to subset x' that contains the first n terms of x as the prefix of size n of x

Selecting the Subset Intelligently

- How? (continued)
 - We can prove that if $|x \cap y| \ge k$, then x' and y' must overlap, where x' is the prefix of size |x| (k-1) of x and y' is the prefix of size |y| (k-1) of y
 - Algorithm
 - reorder terms in each $x \in X$ and $y \in Y$ in increasing order of their frequencies
 - for each $y \in Y$, create y', the prefix of size |y| (k 1) of y
 - build an inverted index over all prefixes y'
 - for each $x \in X$, create x, the prefix of size |x| (k 1) of x, then use above index to find all y such that x overlaps with y

Example

Reordered Set X 1: {mendota, lake} 2: {area, monona, lake} 3: {dane, mendota, monona, lake} university < research Reordered Set Y < dane < area < mendota < monona < lake 4: {university, monona, lake} 5: {research, area, monona} 6: {area, mendota, monona, lake} 7: {dane, area, mendota} (c) (a) (b)

■ $x = \{mendota, lake\} \rightarrow x' = \{mendota\}$

Example

Terms in Y	ID Lists
area	5, 6, 7
mendota	6
monona	4, 6
research	5
university	4
dane	7

Terms in Y	ID Lists	
area	5, 6, 7	
lake	4, 6	
mendota	6, 7	
monona	4, 5, 6	
research	5	
university	4	
dane	7	

(a)

(b)

For Jaccard measure

Position Filtering

- Further limits the set of candidate matches by deriving an upper bound on the size of overlap between x and y
- e.g., x = {dane, area, mendota, monona, lake}y = {research, dane, mendota, monona, lake}
- Suppose we consider $J(x, y) \ge 0.8$
 - in prefix filtering we consider $x' = \{dane, area\}$ and $y' = \{research, dane\}$
- If x'' is the rest of x after x' (similarly y'')
 - $O(x, y) \le |x' \cap y'| + \min(|x''|, |y''|)$
 - In this case O(x,y) = 4.44

Tuple Matching

- Problem definition
- Rule-based matching
- Learning- based matching
- Matching by clustering
- Probabilistic approaches to matching
- Collective matching
- Scaling up data matching

Rule-based Matching

- The developer writes rules that specify when two tuples match
 - typically after examining many matching and non-matching tuple pairs, using a development set of tuple pairs
 - rules are then tested and refined, using the same development set or a test set
- Many types of rules exist
 - linearly weighted combination of individual similarity scores
 - logistic regression combination
 - more complex rules

Linearly Weighted Combination Rules

- Compute the sim score between tuples x and y as a linearly weighted combination of individual sim scores
 - $sim(x,y) = \sum_{i=1}^{n} \alpha_i * sim_i(x,y)$
 - n is number of attributes in each table
 - $s_i(x,y)$ is a sim score between the i-th attributes of x and y
 - $\alpha_i \in [0,1]$ is a pre-specified weight that indicates the important of the i-th attribute to sim(x,y), such that $\sum_{i=1}^n \alpha_i = 1$
- We declare x and y matched if $sim(x,y) \ge \beta$ for a prespecified β , and not matched otherwise
 - in another variation: declare x and y matched if $sim(x,y) \ge \beta$, not matched if $sim(x,v) < \gamma$, and subject to human review

Example

Table X

	Name	Phone	City	State
X_1	Dave Smith	(608) 395 9462	Madison	WI
X_2	Joe Wilson	(408) 123 4265	San Jose	CA
X ₃	Dan Smith	(608) 256 1212	Middleton	WI

(a)

Table Y

	Name	Phone	City	State
y ₁	David D. Smith	395 9426	Madison	WI
y ₂	Daniel W. Smith	256 1212	Madison	WI

(b)

(x₁, y₁)

(c)

- $sim(x,y) = 0.3s_{name}(x,y) + 0.3s_{phone}(x,y) + 0.1s_{city}(x,y) + 0.3s_{state}(x,y)$
 - $\mathbf{s}_{name}(\mathbf{x},\mathbf{y})$: based on Jaro-Winkler
 - **s**_{phone}(**x**,**y**): based on edit distance between x's phone (after removing area code) and y's phone
 - $\mathbf{s}_{\text{city}}(\mathbf{x},\mathbf{y})$: based on edit distance
 - $s_{\text{state}}(x,y)$: based on exact match; yes \rightarrow 1, no \rightarrow 0

Pros and Cons

- Pros
 - conceptually simple, easy to implement
 - can learn weights α_i from training data
- Cons
 - an increase δ in the value of any \mathbf{s}_i will cause a linear increase $\alpha_i * \delta$ in the value of s
 - in certain scenarios this is not desirable,
 - after a certain threshold, an increase in **s**_i should count less (i.e., "diminishing returns" should kick in)
 - e.g., if $\mathbf{s}_{name}(\mathbf{x},\mathbf{y})$ is already 0.95 then the two names already very closely match
 - so any increase in $s_{name}(x,y)$ should contribute only minimally

Logistic Regression Rules

- address the diminishing-returns problem
- $sim(x,y) = 1 / (1 + e^{-z})$, where $z = \sum_{i=1}^{n} \alpha_i * sim_i(x,y)$
 - here \alpha_i are not constrained to be in [0,1] and sum to 1
 - so z goes from $-\infty$ to $+\infty$, in which case sim(x,y) gradually increases, but minimally so after z has exceeded a certain value
 - ensuring diminishing returns

Logistic Regression Rules

- Are also very useful in situations where
 - there are many "signals" (e.g., 10-20) that can contribute to whether two tuples match
 - we don't need all of these signals to "fire" in order to conclude that the tuples match
 - as long as a reasonable number of them fire, we have sufficient confidence
- Logistic regression is a natural fit for such cases
- Hence is quite popular as a first matching method to try

More Complex Rules

- Appropriate when we want to encode more complex matching knowledge
 - e.g., two persons match if names match approximately and either phones match exactly or addresses match exactly
 - 1. If $\mathbf{s}_{name}(\mathbf{x},\mathbf{y}) < 0.8$ then return "not matched"
 - 2. Otherwise if $e_{phone}(x,y)$ = true then return "matched"
 - 3. Otherwise if $\mathbf{e}_{city}(\mathbf{x},\mathbf{y}) = \text{true}$ and $\mathbf{e}_{state}(\mathbf{x},\mathbf{y}) = \text{true}$ then return "matched"
 - 4. Otherwise return "not matched"

Pros and Cons of Rule-Based Approaches

• Pros

- easy to start, conceptually relatively easy to understand, implement, debug
- typically run fast
- can encode complex matching knowledge

• Cons

- can be labor intensive, it takes a lot of time to write good rules
- can be difficult to set appropriate weights
- in certain cases it is not even clear how to write rules
- learning-based approaches address these issues

Learning-based Matching

- Here we consider supervised learning
 - learn a matching model M from training data, then apply M to match new tuple pairs
 - will consider unsupervised learning later
- Learning a matching model M (the training phase)
 - start with training data: $T = \{(x_1, y_1, I_1), ..., (x_n, y_n, I_n)\}$, where each (x_i, y_i) is a tuple pair and I_i is a label: "yes" if x_i matches y_i and "no" otherwise
 - define a set of features f_1 , ..., f_m , each quantifying one aspect of the domain judged possibly relevant to matching the tuples

Learning-based Matching

- Learning a matching model M (continued)
 - convert each training example (x_i, y_i, I_i) in T to a pair $(\langle f_1(x_i, y_i), ..., f_m(x_i, y_i) \rangle, c_i)$
 - $\mathbf{v}_i = \langle \mathbf{f_1}(\mathbf{x}_i, \mathbf{y}_i), ..., \mathbf{f_m}(\mathbf{x}_i, \mathbf{y}_i) \rangle$ is a feature vector that encodes $(\mathbf{x}_i, \mathbf{y}_i)$ in terms of the features
 - **c**_i is an appropriately transformed version of label l_i (e.g., yes/no or 1/o, depending on what matching model we want to learn)
 - thus T is transformed into T' = $\{(\mathbf{v_1, c_1}), ..., (\mathbf{v_n, c_n})\}$
 - apply a learning algorithm (e.g. decision trees, SVMs) to T' to learn a matching model M

Learning-based Matching

- Applying model M to match new tuple pairs
 - given pair (x,y), transform it into a feature vector
 - $V = \langle f_1(x,y), ..., f_m(x,y) \rangle$
 - apply M to v to predict whether x matches y

Example: Learning a Linearly Weighted Rule

<a₁ = (Mike Williams, (425) 247 4893, Seattle, WA), b₁ = (M. Williams, 247 4893, Redmond, WA), yes> <a₂ = (Richard Pike, (414) 256 1257, Milwaukee, WI), b₂ = (R. Pike, 256 1237, Milwaukee, WI), yes> <a₃ = (Jane McCain, (206) 111 4215, Renton, WA), b₃ = (J. M. McCain, 112 5200, Renton, WA), no>

match names match phones match cities match states check area code against city

$$v_1 = \langle [s_1(a_1,b_1), s_2(a_1,b_1), s_3(a_1,b_1), s_4(a_1,b_1), s_5(a_1,b_1), s_6(a_1,b_1)], 1 \rangle$$

 $v_2 = \langle [s_1(a_2,b_2), s_2(a_2,b_2), s_3(a_2,b_2), s_4(a_2,b_2), s_5(a_2,b_2), s_6(a_2,b_2)], 1 \rangle$
 $v_3 = \langle [s_1(a_3,b_3), s_2(a_3,b_3), s_3(a_3,b_3), s_4(a_3,b_3), s_5(a_3,b_3), s_6(a_3,b_3)], 0 \rangle$

- **s**₁ and **s**₂ use Jaro-Winkler and edit distance
- **s**₃ uses edit distance (ignoring area code of a)
- **s**₄ and **s**₅ return 1 if exact match, o otherwise
- **s**₆ encodes a heuristic constraint

Example:

Learning a Linearly Weighted Rule

- Goal: learn rule $s(a,b) = \sum_{i=1}^{6} \alpha_i s_i(a,b)$
- Perform a least-squares linear regression on training data

$$v_1 = \langle [s_1(a_1,b_1), s_2(a_1,b_1), s_3(a_1,b_1), s_4(a_1,b_1), s_5(a_1,b_1), s_6(a_1,b_1)], 1 \rangle$$

$$v_2 = \langle [s_1(a_2,b_2), s_2(a_2,b_2), s_3(a_2,b_2), s_4(a_2,b_2), s_5(a_2,b_2), s_6(a_2,b_2)], 1 \rangle$$

$$v_3 = \langle [s_1(a_3,b_3), s_2(a_3,b_3), s_3(a_3,b_3), s_4(a_3,b_3), s_5(a_3,b_3), s_6(a_3,b_3)], 0 \rangle$$

to find weights $\alpha_{\rm i}$ that minimizes the squared error

$$\sum_{i=1}^{3} (c_i - \sum_{j=1}^{6} \alpha_j s_j(v_i))^2$$

A is the label associated with v

Example: Learning a Decision Tree

Now the labels are yes/no, not 1/o

The Pros and Cons of Learning-based Approach

- Pros compared to rule-based approaches
 - in rule-based approaches must manually decide if a particular feature is useful → labor intensive and limit the number of features we can consider
 - learning-based ones can automatically examine a large number of features
 - learning-based approaches can construct very complex "rules"
- Cons
 - still require training examples, in many cases a large number of them, which can be hard to obtain
 - clustering addresses this problem

Matching by Clustering

- Many common clustering techniques have been used
 - agglomerative hierarchical clustering (AHC), k-means, graph-theoretic, ...
 - here we focus on AHC, a simple yet very commonly used one

• AHC

- partitions a given set of tuples D into a set of clusters
 - all tuples in a cluster refer to the same real-world entity, tuples in different clusters refer to different entities
- begins by putting each tuple in D into a single cluster
- iteratively merges the two most similar clusters
- stops when a desired number of clusters has been reached, or until the similarity between two closest clusters falls below a pre-specified threshold

Example

Iteration 1:
$$(x_1 x_2) x_3 x_4 x_5 x_6$$

•
$$sim(x,y) = 0.3s_{name}(x,y) + 0.3s_{phone}(x,y) + 0.1s_{city}(x,y) + 0.3s_{state}(x,y)$$

Computing a Similarity Score between Two Clusters

- Let c and d be two clusters
- Single link: $s(c,d) = \min_{x_{i} \in c, y_{j} \in d} sim(x_{i}, y_{j})$
- Complete link: $s(c,d) = \max_{x_i \in c, y_j \in d} sim(x_i, y_j)$
- Average link: $s(c,d) = \left[\sum_{x_i \in c, y_j \in d} sim(x_i, y_j)\right] /$ [# of (x_i, y_j) pairs]
- Canonical tuple
 - create a canonical tuple that represents each cluster
 - sim between c and d is the sim between their canonical tuples
 - canonical tuple is created from attribute values of the tuples
 - e.g., "Mike Williams" and "M. J. Williams" → "Mike J. Williams"
 - (425) 247 4893 and 247 4893 → (425) 247 4893

Key Ideas underlying the Clustering Approach

- View matching tuples as the problem of constructing entities (i.e., clusters)
- The process is iterative
 - leverage what we have known so far to build "better" entities
- In each iteration merge all matching tuples within a cluster to build an "entity profile", then use it to match other tuples → merging then exploiting the merged information to help matching
- These same ideas appear in subsequent approaches that we will cover

Collective Matching

- Matching approaches discussed so far make independent matching decisions
 - decide whether a and b match independently of whether any two other tuples c and d match
- Matching decisions hower are often correlated
 - exploiting such correlations can improve matching accuracy

An Example

W. Wang, C. Chen, A. Ansari, A mouse immunity modelW. Wang, A. Ansari, Evaluating immunity modelsL. Li, C. Chen, W. Wang, Measuring protein-bound fluxetineW. J. Wang, A. Ansari, Autoimmunity in biliary cirrhosis

	First initial	Middle inititial	Last name
a ₁	W		Wang
a ₂	С		Chen
a ₉	W	J	Wang
a ₁₀	A		Ansari

- Goal: match authors of the four papers listed above
- Solution
 - extract their names to create the table above
 - apply current approaches to match tuples in table
- This fails to exploit co-author relationships in the data

An Example (cont.)

W. Wang, C. Chen, A. Ansari, A mouse immunity model W. Wang, A. Ansari, Evaluating immunity models L. Li, C. Chen, W. Wang, Measuring protein-bound fluxetine W. J. Wang, A. Ansari, Autoimmunity in biliary cirrhosis

- nodes = authors, hyperedges connect co-authors
- Suppose we have matched a₃ and a₅
 - then intuitively \mathbf{a}_1 and \mathbf{a}_4 should be more likely to match
 - they share the same name and same co-author relationship to the same author

An Example (cont.)

• First solution:

- add coAuthors attribute to the tuples
 - e.g., tuple a_1 has coAuthors = {C. Chen, A. Ansari}
 - tuple a_4 has coAuthors = {A. Ansari}
- apply current methods, use say Jaccard measure for coAuthors

An Example (cont.)

- suppose a_3 : A. Ansari and a_5 : A. Ansari share same name but do not match
- we would match them, and incorrectly boost score of **a**₁ and **a**₄
- How to fix this?
 - match \mathbf{a}_3 and \mathbf{a}_5 , then use that info to help match \mathbf{a}_1 and \mathbf{a}_4 ; do the opposite
 - so should match tuples collectively, all at once and iteratively

Collective Matching using Clustering

- Many collective matching approaches exist
 - clustering-based, probabilistic, etc.
- Clustering-based method
- Assume input is graph
 - nodes = tuples to be matched
 - edges = relationships among tuples

Collective Matching using Clustering

- To match, perform agglomerative hierarchical clustering
 - but modify sim measure to consider correlations among tuples
- Let A and B be two clusters of nodes, define
 - $sim(A,B) = \alpha^* sim_{attributes}(A,B) + (1-\alpha)^* sim_{neighbors}(A,B)$
 - α is pre-defined weight
 - **sim**_{attributes}(**A,B**) uses only attributes of A and B, examples of such scores are single link, complete link, average link, etc.
- sim_{neighbors}(A,B) considers correlations

An Example of sim_{neighbors}(A,B)

- Assume a single relationship R on the graph edges
 - can generalize to the case of multiple relationships
- Let N(A) be the bags of the cluster IDs of all nodes that are in relationship R with some node in A
 - e.g., cluster A has two nodes a and a', a is in relationship R with node b with cluster ID 3, and a' is in relationship R with node b' with cluster ID 3 and another node b" with cluster ID 5
 - \rightarrow N(A) = {3, 3, 5}
- Define $sim_{neighbors}(A,B) = Jaccard(N(A),N(B)) = |N(A) \cap N(B)| / |N(A) \cup N(B)|$

An Example of sim_{neighbors}(A,B)

- Recall that earlier we also define a Jaccard measure as
 - JaccardSim_{coAuthors}(a,b) =
 |coAuthors(a) ∩ coAuthors(b)| / |coAuthors(a) ∪ coAuthors(b)|
- Contrast that to
 - $sim_{neighbors}(A,B) =$ $Jaccard(N(A),N(B)) = |N(A) \cap N(B)| / |N(A) \cup N(B)|$
- In the former, we assume two co-authors match if their "strings" match
- In the latter, two co-authors match only if they have the same cluster ID

An Example to Illustrate the Working of Agglomerative Hierarchical Clustering

- Two goals: minimize # of tuple pairs to be matched and minimize time it takes to match each pair
- For the first goal:
 - hashing
 - sorting
 - indexing
 - canopies
 - using representatives
 - combining the techniques
- Hashing
 - hash tuples into buckets, match only tuples within each bucket
 - e.g., hash house listings by zipcode, then match within each zip

Sorting

- use a key to sort tuples, then scan the sorted list and match each tuple with only the previous (w-1) tuples, where w is a pre-specified window size
- key should be strongly "discriminative": brings together tuples that are likely to match, and pushes apart tuples that are not
 - example keys: soc sec, student ID, last name, soundex value of last name
- employs a stronger heuristic than hashing: also requires that tuples likely to match be within a window of size w
 - but is often faster than hashing because it would match fewer pairs

Indexing

- index tuples such that given any tuple a, can use the index to quickly locate a relatively small set of tuples that are likely to match a
 - e.g., inverted index on names

Canopies

- use a computationally cheap sim measure to quickly group tuples into overlapping clusters called canopines (or umbrella sets)
- use a different (far more expensive) sim measure to match tuples within each canopy
- e.g., use TF/IDF to create canopies

Using representatives

- applied during the matching process
- assigns tuples that have been matched into groups such that those within a group match and those across groups do not
- create a representative for each group by selecting a tuple in the group or by merging tuples in the group
- when considering a new tuple, only match it with the representatives

Combining the techniques

• e.g., hash houses into buckets using zip codes, then sort houses within each bucket using street names, then match them using a sliding window

- For the second goal of minimizing time it takes to match each pair
 - no well-established technique as yet
 - tailor depending on the application and the matching approach
 - e.g., if using a simple rule-based approach that matches individual attributes then combines their scores using weights
 - can use short circuiting: stop the computation of the sim score if it is already so high that the tuple pair will match even if the remaining attributes do not match