Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick CVPR 2020

Cheng Jiang, EECS 598-012 Unsupervised Visual Learning February 8, 2021

Background

Unsupervised representation learning is successful in natural language processing (NLP), but lags behind for visual learning

	Tokenized Dictionaries	Signal Space
Language Tasks	Word → Representation	Discrete
Visual Learning	Image Samples → Representation	Continuous, High-dimensional

Contrastive Learning in NLP

Devlin et al. NAACL 2019 (BERT) Image credit: He et al. CVPR 2020 (MoCo)

Contrastive Learning as Dictionary Look-up

Hypothesis: we want dictionaries that are large and consistent

Notation: Queries, Keys, and Encoders

InfoNCE Loss

Momentum Contrast Key Design Choices

- Maintain the dictionary as a queue of data samples
- Query encoder updated using momentum moving averages

 Use instance discrimination (different views of the same image) as pretext task

Compare to Existing Mechanisms

Experimentation & Evaluation

Evaluation Strategies:

- Linear classification: linear classifier trained with frozen pre-trained weights
- Features fine-tuning: all layers are fine-tuned end to end

Dataset used:

- ImageNet
 1.25M in 1000 classes
 Well balanced
- Instagram
 940M in 1500 hashtags
 Uncurated and unbalanced

Experiment Details

- ResNet as backbone, SGD optimizer
- Feature normalized using L2-Norm
- Random crop, color jittering, horizontal flip, grayscale conversion
- Shuffling batch normalization

Linear Classification Results

Ablation: Contrastive Loss Mechanisms

Ablation: Momentum

momentum m	0	0.9	0.99	0.999	0.9999
accuracy (%)	fail	55.2	57.8	59.0	58.9

Transferring Features: PASCAL VOC Object Detection

	AP_{50}				AP	AP_7	5		
pre-train	RelPos, by [14]	Multi-task [14]	Jigsaw, by [26]	LocalAgg [66]	MoCo		MoCo	Multi-task [14]	MoCo
super. IN-1M	74.2	74.2	70.5	74.6	74.4		42.4	44.3	42.7
unsup. IN-1M	66.8 (-7.4)	70.5 (-3.7)	61.4 (-9.1)	69.1 (-5.5)	74.9 (+ 0.5)		46.6 (+ 4.2)	43.9 (-0.4)	50.1 (+7.4)
unsup. IN-14M	-	-	69.2(-1.3)	-	75.2 (+ 0.8)		46.9 (+ 4.5)	- '	50.2 (+7.5)
unsup. YFCC-100M	-	-	66.6 (-3.9)	-	74.7 (+0.3)		45.9 (+ 3.5)	-	49.0 (+6.3)
unsup. IG-1B	-	-	-	-	75.6 (+1.2)		47.6 (+ 5.2)	-	51.7 (+ 9.0)

Ablation: Backbones

pre-train	AP_{50}	AP	AP ₇₅
random init.	64.4	37.9	38.6
super. IN-1M	81.4	54.0	59.1
MoCo IN-1M	81.1 (-0.3)	54.6 (+ 0.6)	59.9 (+ 0.8)
MoCo IG-1B	81.6 (+0.2)	55.5 (+1.5)	61.2 (+ 2.1)

(a) Faster R-CNN, R50-dilated-C5

pre-train	AP ₅₀	AP	AP ₇₅
random init.	60.2	33.8	33.1
super. IN-1M	81.3	53.5	58.8
MoCo IN-1M	81.5 (+0.2)	55.9 (+ 2.4)	62.6 (+3.8)
MoCo IG-1B	82.2 (+0.9)	57.2 (+ 3.7)	63.7 (+4.9)

(b) Faster R-CNN, R50-C4

Ablation: Contrastive Loss Mechanisms

	R50-dilated-C5			R50-C4		
pre-train	AP ₅₀	AP	AP ₇₅	AP ₅₀	AP	AP ₇₅
end-to-end	79.2	52.0	56.6	80.4	54.6	60.3
memory bank	79.8	52.9	57.9	80.6	54.9	60.6
MoCo	81.1	54.6	59.9	81.5	55.9	62.6

Transferring Features: COCO Object Detection & Segmentation

pre-train	AP^{bb}	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	AP ^{mk}	$\mathrm{AP^{mk}_{50}}$	AP ^{mk}
random init.	31.0	49.5	33.2	28.5	46.8	30.4
super. IN-1M	38.9	59.6	42.7	35.4	56.5	38.1
MoCo IN-1M	38.5 (-0.4)	58.9 (-0.7)	42.0(-0.7)	35.1 (-0.3)	55.9 (-0.6)	37.7 (-0.4)
MoCo IG-1B	38.9 (0.0)	59.4(-0.2)	42.3(-0.4)	35.4 (0.0)	56.5 (0.0)	37.9(-0.2)

(a) Mask R-CNN, R50- FPN ,	$\mathbf{I} \times$	< schedule
-----------------------------------	---------------------	------------

pre-train	AP^{bb}	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	AP^{mk}	$\mathrm{AP^{mk}_{50}}$	AP_{75}^{mk}
random init.	26.4	44.0	27.8	29.3	46.9	30.8
super. IN-1M	38.2	58.2	41.2	33.3	54.7	35.2
MoCo IN-1M	38.5 (+0.3)	58.3 (+0.1)	41.6 (+0.4)	33.6 (+0.3)	54.8 (+0.1)	35.6 (+0.4)
MoCo IG-1B	39.1 (+0.9)	58.7 (+0.5)	42.2 (+1.0)	34.1 (+0.8)	55.4 (+0.7)	36.4 (+1.2)

(c) Mask R-CNN, R50-C4, 1× schedule

	AP^{bb}	$\mathrm{AP_{50}^{bb}}$	AP ₇₅	AP^{mk}	AP_{50}^{mk}	AP ^{mk}
Ī	36.7	56.7	40.0	33.7	53.8	35.9
	40.6	61.3	44.4	36.8	58.1	39.5
1	40.8 (+0.2)	61.6 (+0.3)	44.7 (+0.3)	36.9 (+0.1)	58.4 (+0.3)	39.7 (+0.2)
	41.1 (+0.5)	61.8 (+0.5)	45.1 (+0.7)	37.4 (+0.6)	59.1 (+1.0)	40.2 (+0.7)

(b) Mask R-CNN, R50-FPN, 2× schedule

AP^{bb}	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	AP^{mk}	$\mathrm{AP^{mk}_{50}}$	AP ^{mk} ₇₅
35.6	54.6	38.2	31.4	51.5	33.5
40.0	59.9	43.1	34.7	56.5	36.9
40.7 (+0.7)	60.5 (+0.6)	44.1 (+1.0)	35.4 (+0.7)	57.3 (+0.8)	37.6 (+ 0.7)
41.1 (+1.1)	60.7 (+0.8)	44.8 (+1.7)	35.6 (+ 0.9)	57.4 (+0.9)	38.1 (+1.2)

(d) Mask R-CNN, R50-C4, 2× schedule

Discussion

Pros:

- Proposed model is simple and intuitive
- Good experimental results, closing the gap between unsupervised learning and supervised learning
- Reduced memory usage compare to existing methods

Cons:

Still rely on a set of hand-crafted transformations

Next Up

Bootstrap your own latent: A new approach to self-supervised Learning

References

- He K, Fan H, Wu Y, Xie S, Girshick R. Momentum contrast for unsupervised visual representation learning. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020 (pp. 9729-9738).
- Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 2018 Oct 11.