Challenge of VIN

2025. 10. 17.

Table of Contents

т		4
1.	Introduction · · · · · · · · · · · · ·	1
Π.	Problem Scenario and Step-by-Step Solution Path	2
Ш.	Flag Conditions · · · · · · · · · · · ·	3

Challenge of VIN

- Introduction
- □ VIN data extraction through CAN Bus communication analysis
 - Objective
 - Participants can extract Vehicle Identification Number (VIN)
 by connecting to remote CAN Bus interface and communicating with ECU simulator.
 - Components
 - Remote CAN interface connection info (IP, Port)

$lap{II}$

Problem Scenario and Step-by-Step Solution Path

Remote CAN Bus Connection

- O Participants connect to provided server
 - Server IP and Port will be provided
 - -- Use netcat for connection
 - Verify connection by monitoring CAN traffic

□ VIN Data Request and Extraction

- O Participants send VIN request using OBD-II protocol
 - Send Service 09 PID 02 request: 7DF#020902
 - Receive first frame with total data length
 - Identify multi-frame response structure
- O Handle multi-frame communication
 - Send Flow Control frame: 7DF#30000000000000
 - Collect consecutive frames in sequence
 - Assemble fragmented data packets correctly
- O Decode VIN data
 - Convert hex bytes to ASCII characters
 - Extract complete 17-character VIN string

Ⅲ Flag Conditions

$\hfill\Box$ FLAG Acquisition

 \bigcirc The extracted VIN itself is the flag