Deep Learning

Deep learning

Representation learning with a hierarchy of concepts

Those concepts are represented by layers in a neural network model

Types of Deep Learning Tools

Convolutional Neural Networks

Autoencoders

Recurrent Neural Networks (e.g. LSTMs)

Generative Adversarial Networks (GANs)

Azimov Institute: http://www.asimovinstitute.org/neural-network-zoo/

Convolutional Neural Networks

AlexNet

Input

11x11 conv, 96

5x5 conv, 256

max pool

3x3 conv, 384

max pool

3x3 conv, 384

3x3 conv, 256

max pool

FC 4096

FC 4096

FC 1000

softmax

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

Convolutional Neural Networks

Image from the Mathworks

x						Weig	ghts: v	<i>v</i>	_	Outp	ut: x *	< W
2	5	1	4	2		1	1	1				
2	ω	2	0	0	*	O	O	О	=			
5	5	9	8	1		-1	-1	-1				
3	4	2	3	1								
1	9	8	7	2								•
3	5	5	5	6								
	2 2 5 3	 2 5 2 3 5 5 3 4 1 9 	2 5 1 2 3 2 5 5 9 3 4 2 1 9 8	2 5 1 4 2 3 2 0 5 5 9 8 3 4 2 3 1 9 8 7	2 5 1 4 2 2 3 2 0 0 5 5 9 8 1 3 4 2 3 1 1 9 8 7 2	2 5 1 4 2 2 3 2 0 0 ** 5 5 9 8 1 3 4 2 3 1 1 9 8 7 2	2 5 1 4 2 2 3 2 0 0 5 5 9 8 1 3 4 2 3 1 1 9 8 7 2	2 5 1 4 2 2 3 2 0 0 ** 0 0 5 5 9 8 1 -1 -1 -1 3 4 2 3 1 1 9 8 7 2	2 5 1 4 2 2 3 2 0 0 0 0 5 5 9 8 1 -1 -1 -1 -1 3 4 2 3 1 1 9 8 7 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Data: x						
1	2	5	1	4	2	
0	2	3	2	0	0	
4	5	5	9	8	1	
6	3	4	2	3	1	
0	1	9	8	7	2	
2	3	5	5	5	6	

Weights: w					
1	1	1			
0	0	0			

0.0

Output: x * w

Computing 1.1 + 1.2 + 1.5one output value:

$$+ 0.2 + 0.3$$

$(-1)\cdot 4 + (-1)\cdot 5 + (-1)\cdot 5$

Data:	x				
1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

	Weights: w					
	1	1	1			
	О	Ο	O			
İ	,	J				

Output: x * w				
-6				

Computing one output value:

Computing
$$1 \cdot 1 + 1 \cdot 2 + 1 \cdot 5$$

$$0.0 + 0.2 + 0.3 +$$

$$(-1)\cdot 4 + (-1)\cdot 5 + (-1)\cdot 5 = -6$$

Data:	X

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

۷e	ig	hts:	W
----	----	------	---

1	1	1
O	О	Ο
-1	-1	-1

0.2

Output: X * w

-6	-11	

Computing 1.2 + 1.5 + 1.1one output value:

+ 0.3

$$(-1)\cdot 5 + (-1)\cdot 5 + (-1)\cdot 9 = -1$$

Data: X	D	a	ta	:	X
---------	---	---	----	---	---

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

\setminus	e'e	ig	h	ts	:	W
		\sim				

1	1	1
Ο	О	Ο
-1	-1	-1

Output: X * w

-6	-11	-12	

Computing 1.5 + 1.1 + 1.4one output value:

$$+ 1.1$$

$$0.3 + 0.2 + 0.0 +$$

$$(-1)\cdot 5 + (-1)\cdot 9 + (-1)\cdot 8 = -12$$

Data: X	D	a [·]	ta		X
---------	---	----------------	----	--	---

1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

۱/		ia	h	to		W
V	\Box	ıy	1 1	ιS	•	VV

1	1	1
О	О	O
-1	1	-1

0.2

Output: X * w

-6	-11	-12	-11

Computing $1 \cdot 1 + 1 \cdot 4 + 1 \cdot 2$ one output value:

+ 0.0

12

$$(-1)\cdot 9 + (-1)\cdot 8 + (-1)\cdot 1 = -1$$

Data:	X

Data. 71							
1	2	5	1	4	2		
0	2	3	2	0	0		
4	5	5	9	8	1		
6	3	4	2	3	1		
0	1	9	8	7	2		
2	3	5	5	5	6		

Weights: w

1	1	1
О	О	O
-1	-1	-1

Output: X * w

-6	-11	-12	-11
-7			

Computing 1.0 + 1.2 + 1.3one output value:

$$+ 1.2$$

13

$$0.4 + 0.5 + 0.5$$

$$(-1)\cdot 6 + (-1)\cdot 3 + (-1)\cdot 4 = -7$$

Data:	X				
1	2	5	1	4	2
0	2	3	2	0	0
4	5	5	9	8	1
6	3	4	2	3	1
0	1	9	8	7	2
2	3	5	5	5	6

6 x 6

Weights: w 1 1

1	1	1
О	О	0
-1	-1	-1

*

3 x 3

Output: X * w

-6	-11	-12	-11
-7	-2	-2	-4
4	1	-2	1
3	-4	-6	-10

What features do layers respond to?

Olah et al, 2017: https://distill.pub/2017/feature-visualization/

Features

Dataset Examples show us what neurons respond to in practice

Animal faces—or snouts? *mixed4a, Unit 240*

Clouds—or fluffiness? mixed4a, Unit 453

Buildings—or sky? *mixed4a, Unit 492*

Olah et al, 2017: https://distill.pub/2017/feature-visualization/

Resources on Visualization of Features

Feature visualization: https://distill.pub/2017/feature-visualization/

Building blocks of interpretability: https://distill.pub/2018/building-blocks/

Activation Activation Atlases: https://distill.pub/2019/activation-atlas/

Convolution Layer

activation map

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Parameters = (5*5*3)*6 = 450

(5*5*6)*10 = 1,500

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

1 x 1 Convolution Explained

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Max Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

From Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Fully Connected Layer

AlexNet

Input

11x11 conv, 96

5x5 conv, 256

max pool

3x3 conv, 384

max pool

3x3 conv, 384

3x3 conv, 256

max pool

FC 4096

FC 4096

FC 1000

softmax

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in neural information processing systems. 2012.

AlexNet (2012)

11x11 conv, 96 5x5 conv. 256 max pool 3x3 conv, 384 max pool 3x3 conv, 384 3x3 conv, 256 max pool FC 4096 FC 4096 FC 1000

softmax

Input

Fewer layers,

Key Input or output layer Convolutional Layer

Note: an

activation

function is

applied to

each layer

the output of

Fully Connected Layer

max pooling layer

VGG16 (2014)

Input 3x3 conv, 64 3x3 conv. 64

max pool

3x3 conv, 128

3x3 conv, 128

max pool

3x3 conv, 256

3x3 conv, 256 3x3 conv, 256

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

FC 4096

FC 4096

FC 1000

softmax

VGG19 (2014)

Input

3x3 conv, 64 3x3 conv. 64

max pool

3x3 conv, 128

3x3 conv, 128

max pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256 3x3 conv, 256

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv. 512

3x3 conv, 512

max pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

max pool

FC 4096

FC 4096 FC 1000

softmax

larger filters

CNN Architectures

Adapted from Fei-Fei Li, Justin Johnson, and Serena Young. CS231n, 2018

Object

is classified

Kyle Bradbury

Deep Learning

Lecture 15

Image

Scene classification

AlexNet VGG GoogLeNet ResNet

Inception DenseNet SqueezeNet EfficientNet

Object detection

Faster/Fast/R-CNN Mask R-CNN YOLO Single Shot Detector (SSD) RetinaNet

Object type & probability

Building 0.7 Building 0.8 Building 0.9 Building 0.4 Car 0.85 Building 0.6

Image segmentation

U-Net (2015) SegNet (2016) DeepLab (2017) FCN (2016)

Confidence or probability 0.6 Residential Commercial 0.2 **Forest** 0.1 0.075 **Desert Body of water** 0.025 Each image (scene) is classified

Building 0.7 Road **Plant** 0.06 Water 0.04 Each pixel is classified

Deep Learning

Lecture 15

27

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Fei-Fei Li et al. 2010 (link)

Competition at:

Conference on Computer Vision and Pattern Recognition (CVPR)

Deep Learning Lecture 15 28

Deep Learning Models Compared

Models compared for ImageNet Many of these models are available through Keras (<u>link</u>)

A. Canziani, E. Culurciello and A. Paszke, "Evaluation of neural network architectures for embedded systems," *2017 IEEE International Symposium on Circuits and Systems (ISCAS)*, Baltimore, MD, 2017, pp. 1-4.

Deep learning frameworks

Tensorflow (link)

Framework for implementing graphical models, such as neural networks

Keras (link)

Wrapper for Tensorflow to make coding easier: higher level and excellent API

PyTorch (link)

Framework for implementing graphical models, such as neural networks

KERAS DEMO

Autoencoders Bottleneck

Image from: https://www.jeremyjordan.me/autoencoders/

Recurrent Neural Networks

x = inputs

o = outputs

h = hidden layers

U,V,W = model weights

Image from https://en.wikipedia.org/wiki/Recurrent_neural_network

Generative Adversarial Networks

Image from: https://skymind.ai/wiki/generative-adversarial-network-gan

Supervised Learning Techniques

- Linear Regression
- K-Nearest Neighbors
 - Perceptron
 - Logistic Regression
 - Linear Discriminant Analysis
 - Quadratic Discriminant Analysis
 - Naïve Bayes
- Support Vector Machines
- Decision Trees and Random Forests
- Ensemble methods (bagging, boosting, stacking)
- Neural Networks

Appropriate for:

Classification

Regression

Can be used with many machine learning techniques