

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

BSH108

N-channel enhancement mode field-effect transistor

Rev. 02 — 25 October 2000 Product s

Product specification

Description

N-channel enhancement mode field-effect transistor in a plastic package using TrenchMOS™¹ technology.

Product availability:

BSH108 in SOT23.

2. **Features**

- TrenchMOS[™] technology
- Very fast switching
- Logic level compatible
- Subminiature surface mount package.

Applications

- Battery management
- High speed switch
- Low power DC to DC converter.

Pinning information

Table 1: Pinning - SOT23, simplified outline and symbol

Pin	Description	Simplified outline	Symbol
1	gate (g)	3	
2	source (s)		d
3	drain (d)	12 Top view	g MBB076 S

TrenchMOS is a trademark of Royal Philips Electronics.

N-channel enhancement mode field-effect transistor

5. Quick reference data

Table 2: Quick reference data

Symbol	Parameter	Conditions	Тур	Max	Unit
V_{DS}	drain-source voltage (DC)	T _j = 25 to 150 °C	_	30	V
I_D	drain current (DC)	$T_{sp} = 25 ^{\circ}C; V_{GS} = 5 V$	_	1.9	Α
P _{tot}	total power dissipation	$T_{sp} = 25 ^{\circ}C$	_	0.83	W
Tj	junction temperature		_	150	°C
R_{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 1 \text{ A}$	77	120	mΩ
		V _{GS} = 5 V; I _D = 1 A	102	140	mΩ

6. Limiting values

Table 3: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage (DC)	T _j = 25 to 150 °C	_	30	V
V_{DGR}	drain-gate voltage (DC)	T_j = 25 to 150 °C; R_{GS} = 20 k Ω	-	30	V
V_{GS}	gate-source voltage (DC)		_	±20	V
I_D	drain current (DC)	T_{sp} = 25 °C; V_{GS} = 5 V; Figure 2 and 3	_	1.9	Α
		$T_{sp} = 100 ^{\circ}\text{C}; V_{GS} = 5 ^{\circ}\text{V}; \text{Figure 2}$	_	1.2	Α
I_{DM}	peak drain current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \mu s$; Figure 3	_	7.5	Α
P _{tot}	total power dissipation	T _{sp} = 25 °C; Figure 1	_	0.83	W
T _{stg}	storage temperature		-65	+150	°C
Tj	operating junction temperature		-65	+150	°C
Source-	drain diode				
Is	source (diode forward) current (DC)	T _{sp} = 25 °C	_	0.83	Α
I _{SM}	peak source (diode forward) current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \ \mu s$	_	3.3	Α
	· · · · · · · · · · · · · · · · · · ·				

N-channel enhancement mode field-effect transistor

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 1. Normalized total power dissipation as a function of solder point temperature.

$$V_{\text{GS}} \ge 5 \text{ V}$$

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized continuous drain current as a function of solder point temperature.

 $T_{sp} = 25 \,^{\circ}\text{C}$; I_{DM} is single pulse.

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage.

BSH108 Philips Semiconductors

N-channel enhancement mode field-effect transistor

Thermal characteristics

Table 4: Thermal characteristics

Symbol	Parameter	Conditions	Value	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point	mounted on a metal clad substrate; Figure 4	150	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	mounted on a printed circuit board; minimum footprint	350	K/W

7.1 Transient thermal impedance

N-channel enhancement mode field-effect transistor

8. Characteristics

Table 5: Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static ch	naracteristics					
$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = 10 \mu A; V_{GS} = 0 V$				
		T _j = 25 °C	30	40	_	V
		$T_j = -55 ^{\circ}\text{C}$	27	_	_	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; Figure 9				
		T _j = 25 °C	1	1.5	2	V
		T _j = 150 °C	0.5	_	_	V
		$T_j = -55 ^{\circ}\text{C}$	_	_	3.2	V
I _{DSS}	drain-source leakage current	V _{DS} = 24 V; V _{GS} = 0 V				
		T _j = 25 °C	_	0.01	1.0	μΑ
		T _j = 150 °C	_	_	10	μΑ
I _{GSS}	gate-source leakage current	$V_{GS} = \pm 10 \text{ V}; V_{DS} = 0 \text{ V}$	_	10	100	nΑ
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 1 \text{ A}; Figure 7 and 8$				
		T _j = 25 °C	_	77	120	mΩ
		V _{GS} = 5 V; I _D = 1 A; Figure 7 and 8				
		T _j = 25 °C	_	102	140	mΩ
		T _j = 150 °C	_	170	240	$m\Omega$
Dynamic	c characteristics					
g _{fs}	forward transconductance	V _{DS} = 10 V; I _D = 1 A; Figure 11	2	4.5	_	S
Q _{g(tot)}	total gate charge	_{DD} = 15 V; V _{GS} = 10 V; I _D = 5 A; Figure 14	_	6.4	10	nC
Q _{gs}	gate-source charge		_	0.5	_	nC
Q _{gd}	gate-drain (Miller) charge		_	1.3	_	nC
C _{iss}	input capacitance	V _{GS} = 0 V; V _{DS} = 10 V; f = 1 MHz; Figure 12	_	190	_	pF
Coss	output capacitance		_	70	_	pF
C _{rss}	reverse transfer capacitance		_	50	_	pF
t _{d(on)}	turn-on delay time	V_{DD} = 10 V; R_L = 10 Ω ; V_{GS} = 10 V; R_G = 6 Ω	_	3	_	ns
t _r	rise time		_	8	_	ns
t _{d(off)}	turn-off delay time		_	15	_	ns
t _f	fall time		_	26	_	ns
Source-	drain diode					
V_{SD}	source-drain (diode forward) voltage	I _S = 0.83 A; V _{GS} = 0 V; Figure 13	_	8.0	1.2	V
t _{rr}	reverse recovery time	$I_S = 1 \text{ A}$; $dI_S/dt = -100 \text{ A/}\mu\text{s}$; $V_{GS} = 0 \text{ V}$;	_	25	_	ns
Qr	recovered charge	$V_{DS} = 25 \text{ V}$	_	20	_	nC

N-channel enhancement mode field-effect transistor

Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values.

 $T_j = 25$ °C and 150 °C; $V_{DS} > I_D \times R_{DSon}$

Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values.

 $T_j = 25$ °C

Fig 7. Drain-source on-state resistance as a function of drain current; typical values.

 $a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$

Fig 8. Normalized drain-source on-state resistance factor as a function of junction temperature.

N-channel enhancement mode field-effect transistor

 $I_D = 1 \text{ mA}; V_{DS} = V_{GS}$

Fig 9. Gate-source threshold voltage as a function of junction temperature.

 $T_i = 25 \,^{\circ}\text{C}$ and 150 $^{\circ}\text{C}$; $V_{DS} > I_D \times R_{DSon}$

Fig 11. Forward transconductance as a function of drain current; typical values.

I_D (A)

 $T_{j} = 25 \,^{\circ}C; \, V_{DS} = 5 \,^{\circ}V$

Fig 10. Sub-threshold drain current as a function of gate-source voltage.

 $V_{GS} = 0 V$; f = 1 MHz

Fig 12. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values.

N-channel enhancement mode field-effect transistor

 T_j = 25 °C and 150 °C; V_{GS} = 0 V

Fig 13. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values.

 $I_D = 0.5 \text{ A}; V_{DD} = 15 \text{ V}; T_i = 25 ^{\circ}\text{C}$

Fig 14. Gate-source voltage as a function of gate charge; typical values.

N-channel enhancement mode field-effect transistor

9. Package outline

Plastic surface mounted package; 3 leads

SOT23

Fig 15. SOT23.

9397 750 07652

97-02-28

99-09-13

7 🗇

TO-236AB

SOT23

N-channel enhancement mode field-effect transistor

10. Revision history

Table 6: Revision history

Rev	Date	CPCN	Description
02	20001025	-	Product specification; second version; supersedes Rev.01 of 20000906.
			Correction to diode I _S ; see Table 3 "Limiting values"
01	20000906	-	Product specification.

N-channel enhancement mode field-effect transistor

11. Data sheet status

Datasheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

12. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

13. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

N-channel enhancement mode field-effect transistor

Philips Semiconductors - a worldwide company

Argentina: see South America

Australia: Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 **Austria:** Tel. +43 160 101, Fax. +43 160 101 1210 **Belarus:** Tel. +375 17 220 0733, Fax. +375 17 220 0773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Tel. +359 268 9211, Fax. +359 268 9102

Canada: Tel. +1 800 234 7381

China/Hong Kong: Tel. +852 2 319 7888, Fax. +852 2 319 7700

Colombia: see South America **Czech Republic:** see Austria

Denmark: Tel. +45 3 288 2636, Fax. +45 3 157 0044 **Finland:** Tel. +358 961 5800, Fax. +358 96 158 0920 **France:** Tel. +33 14 099 6161, Fax. +33 14 099 6427 **Germany:** Tel. +49 40 23 5360, Fax. +49 402 353 6300

Hungary: see Austria

India: Tel. +91 22 493 8541, Fax. +91 22 493 8722

Indonesia: see Singapore

Ireland: Tel. +353 17 64 0000, Fax. +353 17 64 0200 Israel: Tel. +972 36 45 0444, Fax. +972 36 49 1007 Italy: Tel. +39 039 203 6838, Fax +39 039 203 6800 Japan: Tel. +81 33 740 5130, Fax. +81 3 3740 5057 Korea: Tel. +82 27 09 1412, Fax. +82 27 09 1415 Malaysia: Tel. +60 37 50 5214, Fax. +60 37 57 4880

Mexico: Tel. +9-5 800 234 7381

Middle East: see Italy

For all other countries apply to: Philips Semiconductors,

Marketing Communications,

Building BE, P.O. Box 218, 5600 MD EINDHOVEN,

The Netherlands, Fax. +31 40 272 4825

Netherlands: Tel. +31 40 278 2785, Fax. +31 40 278 8399 New Zealand: Tel. +64 98 49 4160, Fax. +64 98 49 7811 Norway: Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Tel. +63 28 16 6380, Fax. +63 28 17 3474 Poland: Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain **Romania:** see Italy

Russia: Tel. +7 095 755 6918, Fax. +7 095 755 6919 **Singapore:** Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria **Slovenia:** see Italy

South Africa: Tel. +27 11 471 5401, Fax. +27 11 471 5398 **South America:** Tel. +55 11 821 2333, Fax. +55 11 829 1849

Spain: Tel. +34 33 01 6312, Fax. +34 33 01 4107 **Sweden:** Tel. +46 86 32 2000, Fax. +46 86 32 2745 **Switzerland:** Tel. +41 14 88 2686, Fax. +41 14 81 7730 **Taiwan:** Tel. +886 22 134 2451, Fax. +886 22 134 2874 **Thailand:** Tel. +66 23 61 7910, Fax. +66 23 98 3447 **Turkey:** Tel. +90 216 522 1500, Fax. +90 216 522 1813 **Ukraine:** Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Tel. +44 208 730 5000, Fax. +44 208 754 8421

12 of 13

United States: Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore

Yugoslavia: Tel. +381 11 3341 299, Fax. +381 11 3342 553

Internet: http://www.semiconductors.philips.com

(SCA70)

N-channel enhancement mode field-effect transistor

Contents

1	Description
2	Features
3	Applications
4	Pinning information
5	Quick reference data
6	Limiting values
7	Thermal characteristics
7.1	Transient thermal impedance
8	Characteristics
9	Package outline
10	Revision history
11	Data sheet status 1
12	Definitions
13	Disclaimers 1

© Philips Electronics N.V. 2000.

Printed in The Netherlands

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 25 October 2000 Document order number: 9397 750 07652

