

Projekt ze statystycznej analizy danych – ludzie bezrobotni uprzednio pracujący w latach 2014 i 2024

Stechnij Damian

Opiekun pracy: dr Mariusz Startek

Rzeszów, 2024

Spis treści

1.	Wpr	owadzenie	3
2.	Wcz	ytanie danych	4
3.	Wyz	naczenie parametrów	7
	3.1.	Średnia	7
	3.2.	Wariancja	7
	3.3.	Odchylenie standardowe	7
	3.4.	Współczynnik zmienności	8
	3.5.	Kwartyle, mediana, minimum, maksimum	8
	3.6.	Dominanta	9
	3.7.	Rozstęp	9
	3.8.	Skośność	10
	3.9.	Kurtoza	10
	3.10	Zestawienie wyników	11
4.	Gra	ficzna prezentacja danych	12
	4.1.	Wykres pudełkowy	12
	4.2.	Histogram	13
	4.3.	Wykres dystrybuanty	14
	4.4.	Wykres kwantyl-kwantyl	15
5.	Hipo	otezy statystyczne	16
	5.1.	Hipoteza dotycząca rozkładu bezrobotnych	16
	5.2.	Hipoteza dotycząca mediany liczby bezrobotnych	17
6.	Użyt	e biblioteki i polecenia	18
	6.1.	Do wczytania danych	18
	6.2.	Do obliczeń parametrów	18
	6.3.	Do wykresów	18
	6.4.	Do hipotez	19
7	Wni	oski	20

1. Wprowadzenie

Projekt dotyczy statystycznej analizy danych ludzi bezrobotnych, którzy uprzednio pracowali. Dane zostały pobrane ze strony https://bdl.stat.gov.pl. Zawierają one lata od 2011 do 2024 z podziałem na miesiące oraz próbki ilości bezrobotnych pochodzą z wszystkich powiatów w Polsce. Wybrano te dane, aby przeprowadzić analizę różnicy w próbkach pomiędzy rokiem 2014 a 2024 w miesiącu styczeń. W projekcie wyznaczono parametry opisowe, przedstawiono graficznie zebrane dane oraz zbadano hipotezy statystyczne.

2. Wczytanie danych

Wczytywany plik jest w formacie .xlsx, więc do zaimportowania użyto biblioteki "readxl" i skorzystano z funkcji **read_excel**.

```
5 install.packages("readxl")
6 library(readxl)
7 dane ← read_excel('BEZROBOTNI_REJESTROWANI.xlsx', 2, col_names = F)
8 View(dane)

Zrzut ekranu 2.1 Wczytanie danych
```

Po wczytaniu danych otrzymujemy taką tabele z ilością osób bezrobotnych wcześniej pracujących z poszczególnych powiatów od 2011 do 2024.

(Filter Cols: « < 1 - 50 >	»							Q,		
•	1 ‡	2	3	4 ‡	5 [‡]	6 [‡]	7 [‡]	8 [‡]	9 [‡]	10 ‡	11 ‡	12
1	Kod	Naz wa	styczeń	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	NA	NA	uprzednio pracujący - ogółem	NA	NA	NA	NA	NA	NA	NA	NA	NA
3	NA	NA	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
4	NA	NA	[osoba]	[osoba]	[osoba]	[osoba]	[osoba]	[osoba]	[osoba]	[osoba]	[osoba]	[oso
5	0201000	Po wiat bolesła wiecki	4090	3574	4157	3721	2720	2259	1811	1382	1285	1294
6	0202000	Po wiat dzierżonio wski	7009	6121	6461	6106	4756	3464	2949	2202	1833	1588
7	0203000	Po wiat głogo wski	3970	3890	4379	4060	3742	3269	2778	2543	2484	1930
8	0204000	Po wiat góro wski	2859	2758	3037	2963	2476	2301	1908	1628	1558	1440
9	0205000	Po wiat ja worski	3897	3855	4218	3923	3118	2765	2520	2130	1916	1697
10	0206000	Powiat karkonoski	3967	3772	3743	3492	2866	2299	2027	1685	1620	1517
11	0207000	Po wiat kamiennogórski	3246	3226	3372	3092	2210	1682	1509	1026	873	865
12	0208000	Po wiat kłodzki	12407	12371	13755	13546	11270	9358	7590	5810	5577	5210
13	0209000	Powiat legnicki	2900	3143	3381	3344	2793	2445	2221	2005	1807	1635
14	0210000	Po wiat lubański	4186	3911	3973	3699	2850	2259	1845	1395	1140	1074
15	0211000	Po wiat lubiński	3216	3230	3556	3552	2905	2342	2110	1796	1731	1432
16	0212000	Po wiat I wó wecki	3139	3050	3337	3244	2700	2358	2086	1559	1473	1332
17	0213000	Powiat milicki	2037	2039	2220	2242	1816	1497	1234	937	875	836
18	0214000	Po wiat oleśnicki	5349	5084	5471	5318	4078	3403	2848	2207	1951	1954
19	0215000	Po wiat oła wski	2997	3031	3604	3367	2708	2466	2286	1889	1910	1509

Zrzut ekranu 2.2 Tabela danych po wczytaniu

Postanowiono zebrać dane tylko ze stycznia, więc obcięto dane z pozostałych miesięcy oraz z pola z wartościami NA.

```
11 library(dplyr)
12 dane \leftarrow dane %>% slice(-c(2,4))
13
14 # Tworzenie tabeli tylko ze stycznia
15
16
   dane_styczen ← dane[,2:16]
17
18 h1 ← c(as.character(dane_styczen[1,1]),
19
           as.character(dane_styczen[2,2:length(dane_styczen[2,])]))
20 h1
21 dane_styczen ← dane_styczen %>% slice(-c(1:2))
22 colnames(dane_styczen) ← h1
23
24 View(dane_styczen)
```

Zrzut ekranu 2.3 Obcięcie danych tylko do stycznia

Po obcięciu danych wybrano tylko lata 2014 i 2024, by porównać 10 lat odstępu i zamieniono na typ liczbowy.

```
# Chcemy tylko 2014 i 2024

27

28 gen_dane ← dane_styczen[c(1, 5, 15)]

29

30 # Zamiana na typ liczbowy

31

32 (typeof(gen_dane$`2014`))

33 gen_dane$`2014` ← as.numeric(gen_dane$`2014`)

34 gen_dane$`2024` ← as.numeric(gen_dane$`2024`)

35

36 View(gen_dane)
```

Zrzut ekranu 2.4 Wybranie tylko lat 2014 i 2024

Gotowe dane po obróbce wyglądają następująco:

•	Nazwa ‡	2014 [‡]	2024 [‡]
1	Po wiat bolesła wiecki	3721	916
2	Po wiat dzierżonio wski	6106	1703
3	Po wiat głogo wski	4060	1666
4	Po wiat góro wski	2963	1195
5	Po wiat ja worski	3923	1526
6	Powiat karkonoski	3492	1547
7	Powiat kamiennogórski	3092	768
8	Po wiat kłodzki	13546	5012
9	Po wiat legnicki	3344	1509
10	Po wiat lubański	3699	919
11	Po wiat lubiński	3552	1252
12	Po wiat I wó wecki	3244	882
13	Po wiat milicki	2242	768
14	Po wiat oleśnicki	5318	2107
15	Po wiat oła wski	3367	1380
16	Po wiat polko wicki	2905	1336
17	Po wiat strzeliński	2534	1351
18	Po wiat średz ki	2241	950
19	Po wiat świdnicki	8070	3447
	Borner Control		3407

Zrzut ekranu 2.5 Dane po obróbce

Przekształcono również dane pod wykresy, gdzie kolumny to Rok i Bezrobotni, aby później było łatwiej zaimplementować.

```
#install.packages("reshape2")
library(reshape2)
gen_dane_long 
melt(gen_dane, variable.name = 'Rok', value.name = 'Bezrobotni')
View(gen_dane_long)
```

Zrzut ekranu 2.6 Przekształcenie danych pod wykresy

•	Naz wa	Rok ‡	Bezrobotni 🗘
1	Po wiat bolesła wiecki	2014	3721
2	Po wiat dzierżonio wski	2014	6106
3	Po wiat głogo wski	2014	4060
4	Po wiat góro wski	2014	2963
5	Po wiat ja worski	2014	3923
6	Powiat karkonoski	2014	3492
7	Powiat kamiennogórski	2014	3092
8	Po wiat kłodzki	2014	13546
9	Powiat legnicki	2014	3344
10	Po wiat lubański	2014	3699
11	Po wiat lubiński	2014	3552
12	Po wiat I wó wecki	2014	3244
13	Po wiat milicki	2014	2242
14	Po wiat oleśnicki	2014	5318
15	Po wiat oła wski	2014	3367
16	Po wiat polko wicki	2014	2905
17	Po wiat strzeliński	2014	2534
18	Po wiat średzki	2014	2241
19	Po wiat świdnicki	2014	8070
20	Po wiat trzebnicki	2014	3709
21	Powiat wałbrzyski	2014	3995
22	Po wiat woło wski	2014	3264
23	Po wiat wrocła wski	2014	2844

Zrzut ekranu 2.7 Tabele po przekształceniu pod wykresy

3. Wyznaczenie parametrów

3.1. Średnia

Obliczono średnią arytmetyczną z obu lat. Służy ona do określania wartości centralnej zbioru danych.

```
> (srednia_2014 ← mean(gen_dane$`2014`))
[1] 4892.547
> (srednia_2024 ← mean(gen_dane$`2024`))
[1] 1933.742
```

Zrzut ekranu 3.1 Obliczenie średniej

Średnia na przestrzeni lat zmieniła się ponad dwukrotnie, co oznacza, że o wiele mniej ludzi traci swoją pracę lub rzadziej zmieniają. Może też oznaczać, że liczby te się ujednolicają.

3.2. Wariancja

Następnie obliczono wariancję, która jest miarą rozproszenia danych wokół średniej wartości, dla obu kolumn. Wyniki mogą wysokie z powodu dużego rozrzutu wartości w danych.

```
> (war_2014 ← var(gen_dane$`2014`))
[1] 16064535
> (war_2024 ← var(gen_dane$`2024`))
[1] 2260744
```

Zrzut ekranu 3.2 Obliczenie wariancji

3.3. Odchylenie standardowe

Odchylenie standardowe określa, ile wartość danej cechy odchyla się od obliczonej średniej arytmetycznej. W tym przypadku jej wartość jest bardzo zbliżone do samej średniej. Może to oznaczać, że wartości mogą wahać się nawet 2-krotnie od średniej.

```
> (odchylenie_2014 ← sd(gen_dane$`2014`))
[1] 4008.059
> (odchylenie_2024 ← sd(gen_dane$`2024`))
[1] 1503.577
```

Zrzut ekranu 3.3 Obliczenie odchylenia standardowego

3.4. Współczynnik zmienności

Poniżej są wyniki dla współczynnika zmienności, czyli dyspersji, dla obu lat. Dla 2014 wynosi blisko 82% a dla 2024 - 77,75%, co można zinterpretować jako znaczną dyspersję.

```
> (wspol_zm_2014 ← (odchylenie_2014 / srednia_2014) * 100)
[1] 81.92172
> (wspol_zm_2024 ← (odchylenie_2024 / srednia_2024) * 100)
[1] 77.75479
```

Zrzut ekranu 3.4 Obliczenie współczynnika zmienności

3.5. Kwartyle, mediana, minimum, maksimum

Kwartyle dzielą zbiory na ćwiartki. Przykładowo pierwszy kwartyl oznacza, że 25% danych jest mniejszych niż Q1, a pozostałych 75% jest większych niż Q1. Mediana jest drugim kwartylem i dzieli badany zbiór na połowy.

```
> (kwantyl1_2014 \leftarrow quantile(gen_dane$`2014`, probs = 0.25))
25%
2963
> (mediana_2014 \leftarrow median(gen_dane$`2014`))
[1] 4003
> (kwantyl3_2014 \leftarrow quantile(gen_dane$`2014`, probs = 0.75))
75%
5710.5
> (kwantyl1_2024 \leftarrow quantile(gen_dane$`2024`, probs = 0.25))
25%
1179.75
> (mediana_2024 \leftarrow median(gen_dane$`2024`))
[1] 1611
> (kwantyl3_2024 \leftarrow quantile(gen_dane$`2024`, probs = 0.75))
75%
2279.25
```

Zrzut ekranu 3.5 Obliczenie kwantyli

Poniżej znaleziono również wartości maksymalne jak i minimalne:

```
> # Wartość minimalna dla każdej kolumny
> (min_values ← sapply(gen_dane[, c("2014", "2024")], min))
2014 2024
830 306
> # Wartość maksymalna dla każdej kolumny
> (max_values ← sapply(gen_dane[, c("2014", "2024")], max))
2014 2024
49190 16961
```

Zrzut ekranu 3.6 Znalezienie wartości maksymalnej i minimalnej

3.6. Dominanta

Dominanta to wartość, którą wyznacza się poprzez znalezienie najczęściej występującej liczby w zbiorze danych.

```
> (dominanta_2014 ← as.numeric(names(which.max(table(gen_dane$`2014`))))
[1] 2963
> (dominanta_2024 ← as.numeric(names(which.max(table(gen_dane$`2024`)))))
[1] 768
```

Zrzut ekranu 3.7 Obliczenie dominanty

Przedstawione wartości są całkiem niskie, więc może to oznaczać, że w wielu powiatach mało ludzi traci pracę, a na przestrzeni ostatnich 10 lat zmieniło się to niemal 4-krotnie.

3.7. Rozstęp

Rozstęp to miara odległości jaką dzieli pomiędzy wartością maksymalną a minimalną obranej cechy statystycznej.

```
> (rozstep_2014 ← max_values[1] - min_values[1])
2014
48360
> (rozstep_2024 ← max_values[2]- min_values[2])
2024
16655
```

Zrzut ekranu 3.8 Obliczenie rozstępu

W roku 2014 jest znacząco wyższy niż w 2024, co może oznaczać, że w o wielu mniej miejscach ludzie są bezrobotni i jest ich mniej.

3.8. Skośność

Skośność to miara asymetrii rozkładu zmiennej. Bada jak rozkład jest zbliżony do rozkładu normalnego. By móc użyć polecenia **skewness** użyto biblioteki "e1071".

```
> (skosnosc_2014 ← round(skewness(gen_dane$`2014`), 3))
[1] 5.843
> (skosnosc_2024 ← round(skewness(gen_dane$`2024`), 3))
[1] 4.877
```

Zrzut ekranu 3.9 Obliczenie skośności

Dodatnie wyniki informują, że prawie ramię rozkładu jest wydłużone i wyniki poniżej średniej są przeważające w badanej próbce. Większa wartość w 2014 mówi o tym, że ramię jest bardziej wysunięte, niż 10 lat później.

3.9. Kurtoza

Kurtoza jest miarą występowania wartości odstających. Podobnie jak skośność wskazuje jak bardzo rozkład jest zbliżony do rozkładu normalnego. Im bliżej wartości 0, tym bardziej analizowany rozkład jest zbliżony do normalnego.

```
> (kurtoza_2014 ← kurtosis(gen_dane$`2014`))
[1] 52.44169
> (kurtoza_2014 ← kurtosis(gen_dane$`2024`))
[1] 38.12006
```

Zrzut ekranu 3.10 Wyniki dla kurtozy

Obliczona kurtoza jest większa od zera co wskazuje na leptokurtyczność oraz znacząco odbiega co sugeruje, że dane zasadniczo różnią się od rozkładu normalnego. Tak wysokie wyniki wskazują na bardzo spiczasty szczyt oraz dłuższe i cieńsze ogony w porównaniu do rozkładu normalnego. Oznacza to, że jest większe prawdopodobieństwo wystąpienia wartości odstających.

3.10. Zestawienie wyników

Poniżej zestawiono obliczone wartości parametrów w tabeli:

Rok	2014	2024
Średnia	4892,547	1933,742
Wariancja	16064535	2260744
Odchylenie standardowe	4008,059	1503,577
Współczynnik zmienności	81,922 %	77,755 %
Kwartyl 1. rzedu	2963	1179,75
mediana	4003	1611
Kwartyl 3. rzędu	5710,5	2279,25
Minimum	830	306
Maksymum	49190	16961
Dominanta	2963	768
Rozstęp	48360	16655
Skośność	5,843	4,877
Kurtoza	52,44169	38,12006

Tabela 3.1 Wartości parametrów

4. Graficzna prezentacja danych

4.1. Wykres pudełkowy

Na wykresie pudełkowy można przedstawić wiele informacji takie jak mediana, kwartyle, wartość minimum i maximum, przez co jest często używany.

```
114
    ## Wykres pudełkowy
115
116
   #install.packages("reshape2")
    library(reshape2)
117
    gen_dane_long ← melt(gen_dane, variable.name = 'Rok', value.name = 'Bezrobotni')
118
119
    View(gen_dane_long)
120
    ggplot(gen_dane_long, aes(x = Rok, y = Bezrobotni, fill = Rok)) +
121
122
      geom_boxplot() +
123
       labs(title = "Wykres pudełkowy ilości osób bezrobotnych"
124
           y = "Ilość osób bezrobotnych uprzednio pracujących") +
125
      theme_minimal()
```

Zrzut ekranu 4.1 Kod tworzenia wykresu pudełkowego

Na wykresach są bardzo duże wartości odstające. Tam, gdzie jest dolna ściana pudełka to jest to pierwszy kwartyl, a górna to trzeci kwartyl. Pozioma linia w środku pudełka to mediana. Wąsy to linie poza pudełkiem i ich końce mogą oznaczać od dołu wartość minimalna i od góry wartość maksymalną. W tym wypadku w górnej części wykresu są wartości odstające.

Rysunek 4-1 Wykres pudełkowy

4.2. Histogram

Histogram to wykres przedstawiający rozkładu empirycznego cechy. Jest podobny do wykresu słupkowego. Wysokość słupków, to ile elementów znajduje się w przedziale a szerokość słupków to przedział, w którym mieszczą się elementy.

```
## Histogram

129

130 ggplot(gen_dane, aes(x='2014')) +

131 geom_histogram( binwidth=1000,

132 color="darkblue", fill="lightblue") +

133 labs(title="Histogram osób bezrobotnych(przedział 1000 osób)",

134 x="Ilość osób", y="Ilość powiatów")
```

Zrzut ekranu 4.2 Kod tworzenia histogramu

W kodzie ustawiono przedział, czyli szerokość słupka, na 1000. Poniżej znajduje się histogram.

Histogram osób bezrobotnych

Rysunek 4-2 Histogram

4.3. Wykres dystrybuanty

Wykres dystrybuanty przedstawia rozkład prawdopodobieństwa występowania określonych wartości.

```
135 ## Wykres dystrybuanty
136
    ggplot(gen_dane_long, aes(x = Bezrobotni, color = Rok)) +
137
138
      stat_ecdf(size = 1) +
      labs(title = "Wykres dystrybuanty",
139
            x = "Ilość ludzi bezrobotnych",
140
141
            y = "Dystrybuanta",
142
            color = "Rok") +
143
      theme_minimal() +
      theme(legend.position = "right")
144
```

Zrzut ekranu 4.3 Kod tworzenia wykresu dystrybuanty

Rysunek 4-3 Wykres dystrybuanty

4.4. Wykres kwantyl-kwantyl

Wykres kwantyl-kwantyl można użyć do porównania danych z jakimś teoretycznym rozkładem. Służy do przedstawienia porównania kwantyli dwóch prób danych. W tym przypadku użyto do porównania obu prób danych i wizualizacji podobieństwa ich rozkładów co pozwala na ich ocenę.

```
## Wykres kwantyl - kwantyl

148

149
qqplot(gen_dane$`2014`, gen_dane$`2024`,

150
    main = "Wykres kwantyl-kwantyl dla 2014 vs 2024",

151    xlab = "kwantyle roku 2014", ylab = "kwantyle roku 2024")

152

153  # Dodanie linii referencyjnej

154 abline(0, 1, col = "red")
```

Zrzut ekranu 4.4 Kod tworzenia wykresu kwantyl-kwantyl

Wykres kwantyl-kwantyl dla 2014 vs 2024

Rysunek 4-4 Wykres kwantyl-kwantyl

Czerwona linia to linia referencyjna o równaniu y=x. Służy jako odniesienie do porównania rozkładów, pokazuje, gdzie leżałyby punkty, jeśli oba rozkłady były identyczne.

Na powyższym wykresie punkty leżą poniżej tej linii, co wskazuje, że wartości z roku 2024 są z reguły mniejsze niż te z roku 2014 dla odpowiadających kwantyli.

5. Hipotezy statystyczne

5.1. Hipoteza dotycząca rozkładu bezrobotnych

Drugą, poddaną testowi, zostaje hipoteza dotyczy tego czy dane posiadają rozkład normalny. Został do tego wykorzystany test Shapiro-Wilka.

H0: Dane pochodzą z rozkładu normalnego.

H1: Dane nie pochodzą z rozkładu normalnego.

Zrzut ekranu 5.1 Test Shapiro-Wilka

Wartość p wynosi 4.525356e-10 co znaczy ze jest bardzo bliskie 0 i jest znacznie mniejsze niż poziom istotności 0.05. Na tej podstawie odrzucamy hipotezę zerową i przyjmujemy hipotezę alternatywną, która przyjmuje, że dane nie pochodzą z rozkładu normalnego.

5.2. Hipoteza dotycząca mediany liczby bezrobotnych

Do sprawdzenia hipotezy użyto nieparametrycznego testu Wilcoxona, który sprawdza, czy różnica pomiędzy medianami w dwóch próbach jest taka sama. Nasze dane są zależne, ponieważ zostały wykonane w tych samych powiatach, tyle że w odstępie czasowym 10 lat.

H0: Mediana ludzi bezrobotnych w powiatach nie różni się istotnie po 10 latach.

$$m_0 = m_1$$
 Wzór 1

H1: Mediana ludzi bezrobotnych w powiatach różni się istotnie po 10 latach.

$$m_0 \neq m_1$$
 Wzór 2

```
> wilc ← wilcox.test(gen_dane$`2014`, gen_dane$`2024`,
+ paired = TRUE)
> print(wilc)
```

Wilcoxon signed rank test with continuity correction

```
data: gen_dane$`2014` and gen_dane$`2024`
V = 72390, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0</pre>
```

> wilc\$p.value
[1] 5.08303e-64

Zrzut ekranu 5.2 Test Wilcoxona

Wartość p jest bardzo bliska zeru i jest mniejsza niż poziom istotności 0,05. Na tej podstawie odrzucamy hipotezę zerową i możemy uznać hipotezę alternatywną za prawdziwą.

6. Użyte biblioteki i polecenia

6.1. Do wczytania danych

Do wczytania danych użyto biblioteki "readxl", dzięki której łatwiej wyciągnąć dane z Excela do R. Przy pomocy polecenia **read_excel()** można odcztać pliki o rozszerzeniu .xls, .xlsx.

Przy obróbce danych wykorzystano bibliotekę "dplyr", by skorzystać z operatora %>%, by łatwiej było odcinać niepotrzebne kolumny i wiersze.

As.numeric() – zamienia dane na typ liczbowy

6.2. Do obliczeń parametrów

```
mean() – oblicza średnią arytmetyczną
var() – oblicza wariancję
sd() – oblicza odchylenie standardowe
quantile() – oblicza kwantyle, dzięki probs określa, jak mają zostać podzielone dane
mediane() – znajduje medianę
sapply(dane, min/max) – znajduje wartości minimalne lub maksymalne
skewness() – oblicza skośność, pochodzi z biblioteki "e1071"
kurtosis() – oblicza kurtozę, również z biblioteki "e1071"
```

6.3. Do wykresów

Dzięki which.max() znaleziono dominantę.

Użyto bibliotekę "reshape2", by przy pomocy polecenia melt() móc przekształcić dane, dzięki czemu łatwiej można było zaimplementować je do wykresów.

Aby utworzyć wykresy wykorzystano bibliotekę "ggplot2".

```
ggplot(data = df, mapping = aes(x, y, other aesthetics) - inicjuje obiekt wykres,
aes() - określa co jest jako x i co jako y
geom_boxplot() - tworzy wykres pudełkowy
geom_histogram() - nakłada warstwę z histogramem
```

stat_ecdf() - tworzy wykres dystrybuanty
labs() - tworzy etykiety do legend
theme_minimal() - ustawia minimalny styl wykresu

6.4. Do hipotez

wilcox.test() - wykonuje test Wilcoxona, parametr paired = TRUE dla danych sparowanych
shapiro.test() - wykonuje test Shapiro-Wilka, by zbadać, czy dane mają rozkład normalny

7. Wnioski

Analizując dane o bezrobotnych, którzy uprzednio pracowali po odstępie 10 lat, pomiędzy rokiem 2014 a 2024 w miesiącu styczeń, można wyciągnąć pewne wnioski.

Rynek pracy się zmienił na tyle, by o wiele mniej ludzi traci pracę lub o wiele chętniej zostają w swojej pracy. Po wszelkich parametrach było widać, że te dane są znacząco mniejsze, bo nawet ponad dwukrotnie. Średnie po takim odstępie czasu znacząco się różniły.

Po graficznym przedstawieniu danych poprzez histogram czy wykres pudełkowy można zaobserwować asymetrie lewostronną, która na przestrzeni lat jeszcze bardziej się zmieniła. Można również stwierdzić, że rozrzut danych się istotnie zmniejszył. Analiza ta pomaga w dostrzeżeniu zmian na polskim rynku pracy.