Lab 3: Ripple Carry Adder and 1 Bit Full Adder

Shishir Suvarna UBIT: shishirs

Person Number: 50290573

Objective:

- To understand the working and design of 1 Bit Full Adder and Ripple Carry Adder
- To implement their schematic and layout versions using Cadence
- Prepare a report to summarize the results of the lab activity

1 Bit Full Adder:

Schematic View:

Schematic View Simulation:

Layout View:

Extracted View:

Extracted View Simulation:

LVS Match between Schematic and Extracted Views:

Truth Table:

	ln	puts	Outputs				
Α	В	C _{in}	Cout	Sum			
0	0	0	0	0			
0	0	1	0	1			
0	1	0	0	1			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	1	0			
1	1	0	1	0			
1	1	1	1	1			

Ripple Carry Adder:

Schematic View:

Schematic View Simulation:

Layout View:

Extracted View:

Extracted View Simulation:

LVS Match between Schematic and Extracted Views:

Truth Table:

Aı	A2	A3	A4	B4	В3	B2	Bı	S4	S ₃	S ₂	Sı	carry
О	o	О	О	О	О	О	О	О	О	0	О	0
o	1	o	o	0	1	o	o	1	o	o	o	o
1	o	О	o	1	О	О	o	О	o	o	o	1
1	o	1	o	1	o	1	o	o	1	0	О	1
1	1	О	o	1	1	o	О	1	o	0	o	1
1	1	1	o	1	1	1	o	1	1	0	o	1
1	1	1	1	1	1	1	1	1	1	1	0	1

Working of circuit:

- An adder is a digital circuit that performs addition of numbers that is widely used in computer processors
- 1 Bit Full Adder takes in three numbers A, B and a Carry (Cin) and outputs two binary numbers, a Sum and a Carry Value
- It is constructed using a combination of various logic gates including XOR, AND and OR gates
- A Full adder is usually a cascade of adders
- A Ripple Carry Adder on the other hand is a combination of 1 Bit Full Adders in sequence
- Each Full Adder gets an input of Cin from the Cout of the previous Adder
- It is known as a "Ripple Carry Adder" as Carry from each Adder ripples forward to next adder
- Cin of first Adder is connected to Ground while the Cout of the last Adder represents the final Carry value

Inference and Conclusion:

- The working of 1 Bit Full Adder circuits was learnt using circuit design techniques
- The working of Ripple Carry Adder circuits was learnt using circuit design techniques
- We learnt how to combine Full Adders to assemble a Ripple Carry Adder
- The schematic and Layout versions of the gates were implemented in the form of circuits in Cadence
- The correctness of the circuit design was verified using simulation tools and output was recorded

•	LVS (Layout vs Schematic) check was performed to check if both versions of a gate matched