Rappels.

 $supp(f) = \overline{\{x \in \Omega \mid f(x) \neq 0\}}^{\Omega}$ où $f: \Omega \subseteq \mathbb{R}^d \to \mathbb{C}$ continue, Ω ouvert.

 $supp_{ess}(f) = \Omega \setminus \{\omega \in \Omega \mid \exists V \in V_{\omega} \ f_{|V} = 0 \ p. p. \} \text{ où } f : \Omega \subseteq \mathbb{R}^d \to \mathbb{C} \text{ mesurable, } \Omega \text{ ouvert.}$

F(U, F) est l'ensemble des fonctions d'un ouvert U d'un Revn E, vers un Revn F.

B(U, F) est l'ensemble des fonctions bornées d'un ouvert U d'un Revn E, vers un Revn F.

Pour $k \in [0, \infty]$, $C^k(U, F)$ est l'espace des fonctions C^k d'un ouvert U d'un Revn E, vers un Revn F.

Pour $k \in [0, \infty]$, $C_K^k \subset C^k$ est l'espace des fonctions $f \in C^k$ a support un compact (de R^d) fixé $K \subseteq U$,

Pour $k \in [0, \infty]$, $C_c^k \subset C^k$ est l'espace des fonctions $f \in C^k$ a support un compact (de R^d) $\subseteq U$

Pour $k \in [0, \infty]$, $C_c^k = \bigcup_{K \text{ compact} \subset \Omega} C_K^k = \bigcup_{n \geq 0} C_{K_n}^k$

Pour $k \in [0, \infty]$, $C_{\to 0}^k$ est l'ensemble des $f \in C^k$ telles que $f(u) \to_{|u| \to \infty} 0$

 $\mathbf{C_0}(\mathbb{Z})$ est l'ensemble des $(u_n)_n \in \mathbb{C}^{\mathbb{Z}}$ telles que $u_n \to_{|n| \to \infty} 0$

$$L^p(\Omega, F) = \left\{ f : \Omega \subseteq E \to F \mid f \text{ mesurable et } ||f||_{L^p} = \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}} < \infty \right\} \text{ où } p \in [1, \infty[$$

On note L^0 l'ensemble des fonctions mesurables.

On note \mathbf{L}_{c}^{0} l'ensemble des fonctions mesurables à support essentiel compact.

Par exemple $C_c^{\infty} = C^{\infty} \cap \mathcal{L}_c^0$

 $C_c^k \subseteq L^p$ ($C_c^k \to L^p$: $f \mapsto [f]$ injective) mais attention C^k n'est pas inclus dans L^p en général.

 \mathbf{L}_{loc} est l'espace des fonctions mesurables localement intégrables (sur tout compact $K\subseteq U$)

 $\|\boldsymbol{f}\|_{\infty}=\inf\left\{m\in\overline{R}\ \big|\ \{f>m\}\ \lambda\text{-negligeable}\ \}=\inf_{N\subseteq R,\lambda(N)=0}\|f\|_{u,R\setminus N}\ .\ \text{On a toujours}\ \|f\|_{\infty}\leq \|f\|_{u,R\setminus N}$

 L^{∞} est l'ensemble des fonctions mesurables essentiellement bornées $||f||_{\infty} < \infty$ (quotienté par le noyau de la semi-norme ∞).

Dans le cas de la mesure de comptage sur l'espace discret de tribu P(X), on note $\mathbf{l}^p(X)$

Par exemple $l^{\infty}(\mathbb{Z}) = \{(u_n)_n \in \mathbb{C}^{\mathbb{Z}} \text{ bornée}\}.$

Normes et distances.

Lemme. Tout ouvert $U \subseteq R^d$ admet une suite de compacts $(K_n)_{n \in N}$ telle que $K_n \subset Int(K_{n+1})$ et $U = \bigcup_{n \geq 0} K_n = \bigcup_{n \geq 1} Int(K_n)$ telle que tout compact $K \subset U$ est inclus dans un K_{n_0} . Pour $k \in N$,

$$\begin{split} \|f\|_{\mathcal{C}^{k},p,K} &= \sum_{|\alpha| \leq k} \|\partial^{\alpha} f\|_{u,K} \ (p=1), \left(\sum_{|\alpha| \leq k} \|\partial^{\alpha} f\|_{u,K}^{p}\right)^{\frac{1}{p}} \left(p \in [1,\infty)\right), \max_{|\alpha| \leq k} \|\partial^{\alpha} f\|_{u,K} \ (p=\infty) \\ \|f\|_{\mathcal{C}^{k},p} &= \|f\|_{\mathcal{C}^{k},p,U}, \ \|f\|_{\mathcal{C}^{k}} &= \|f\|_{\mathcal{C}^{k},1} \end{split}$$

Pour $k \in N$, $\| \ \|_{C^{k},p}$ est une norme sur C^{k} et même sur C^{l} pour $l \in [\![k,\infty]\!]$

Pour $k \in N$, $\| \ \|_{C^k,p,K}$ est une norme sur C^k_K et même sur C^l_K pour $l \in [\![k,\infty]\!]$

$$d_{\mathcal{C}^{\infty},p,K}(f,g) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{\|g-f\|_{C^{n},p,K}}{1 + \|g-f\|_{C^{n},p,K}}$$

$$d_{\mathbf{C}^{\infty},p}(f,g) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{\|g - f\|_{C^{n},p,K_{n}}}{1 + \|g - f\|_{C^{n},p,K_{n}}}$$

Propriétés de densité et complétude.

Pour $k \in N$, $(C^k, ||f||_{C^k, n})$ est complet. Pour $k \in N$, $(C_K^k, ||f||_{C^k, n, K})$ est complet.

 C_c^k est dense dans $(C^k, \| \|_{C^k})$

 C_c^0 est dense dans $(L^p, \| \|_{L^p})$, pour $p \in [1, \infty)$

En particulier $\mathcal{C}^p_c \supset \mathcal{C}^0_c$ est dense dans $(L^p, \| \ \|_{L^p})$ pour $p \in [1, \infty)$

```
La complétion de (C_c^0, \| \ \|_{L^\infty}) est l'espace C_{\to 0}^0 (C_{\to 0}^0(R), \| \ \|_{L^\infty}) est un sous-espace fermé complet de (L^\infty(R), \| \ \|_{L^\infty}). En particulier (C_0(\mathbb{Z}), \| \ \|_u) est un sous-espace fermé complet de (I^\infty(\mathbb{Z}), \| \ \|_u). (C^\infty, d_{C^\infty, p}) est complet. (C_K^\infty, d_{C^\infty, p}) est complet comme sev ferme de (C^\infty, d_{C^\infty, p}). (C_c^\infty, d_{C^\infty, p}) n'est pas complet. (C_c^\infty, d_{C^\infty, p}) n'est pas complet. (C_c^\infty, d_{C^\infty, p}) n'est dense dans (L^p, \| \ \|_{L^p}), pour p \in [1, \infty) (C_c^\infty) est dense dans (C_c^k, \| \ \|_{C^k}), pour (L^p, \| \ \|_{L^p}) pour (L^p, \| \ \|_{L^p}) est complet. (L^\infty, \| \ \|_{L^\infty}) est complet.
```

Analyse de Fourier.

$$\begin{aligned} &\mathbf{Tore}.\,\mathbb{T} = \frac{\mathbb{R}}{2\pi\mathbb{Z}} \\ &\mathbf{C}^k(\mathbb{T}) = \{f\colon \mathbb{R} \to \mathbb{C} \mid f \; C^k \; \text{et} \; 2\pi \; \text{p\'eriodique} \} \; \text{où} \; k \in \llbracket 0,\infty \rrbracket \\ &\left(C^k(\mathbb{T}), \parallel \; \parallel_{\infty}\right) \; \text{est} \; \text{un} \; \text{Banach car sev} \; \text{ferm\'e} \; \text{de} \left(C^0_b(\mathbb{R},\mathbb{C}), \parallel \; \parallel_{\infty}\right) \; \forall k \in \llbracket 0,\infty \rrbracket \\ &\left\|f\right\|_{L^p(\mathbb{T})} = \left(\frac{1}{2\pi}\int_{-\pi}^{\pi} |f|^p\right)^{\frac{1}{p}} \leq \infty \; \text{où} \; f\colon \mathbb{R} \to \mathbb{C} \; \text{mesurable, et} \; p \in \llbracket 1,\infty \llbracket \\ &L^p(\mathbb{T}) = \{f\colon \mathbb{R} \to \mathbb{C} \mid f \; \text{mesurable, } 2\pi \; \text{p\'eriodique, et} \; \|f\|_{L^p(\mathbb{T})} < \infty \} \; \text{où} \; p \in \llbracket 1,\infty \llbracket \\ &L^0(\mathbb{T}) = \{f\colon \mathbb{R} \to \mathbb{C} \mid f \; \text{mesurable, } 2\pi \; \text{p\'eriodique} \} \\ &\int_{\mathbb{T}} f = \int_{-\pi}^{\pi} f \; \text{où} \; f \in L^1(\mathbb{T}). \\ &L^p(\mathbb{T}) \subseteq L^p(K,\mathbb{C}) \; \; \forall K \; \text{compact} \subseteq \mathbb{R} \; \; \forall p \geq 1 \\ &\int_{\mathbb{T}} f = \int_a^{a+2\pi} f \; \; \; \forall f \in L^1(\mathbb{T}) \; \forall a \in \mathbb{R}. \\ &C^\infty(T) \subset \cdots \subset C^{k+1}(T) \subset C^k(T) \subset \cdots \subset C^0(T) \subset \cdots \subset \cdots \subset L^q(T) \subset \cdots \subset L^p(T) \subset \cdots \subset L^1(T) \\ &\text{Attention ce n'est pas du tout vrai dans} \; \mathbb{R}. \; L^1(\mathbb{R}) \not\subseteq L^2(\mathbb{R}), L^2(\mathbb{R}) \not\subseteq L^1(\mathbb{R}), \; C^0(\mathbb{R}) \not\subseteq L^1(\mathbb{R}) \\ &\mathbf{P\'eriodis\'ee.} \; \exists \; |\tilde{f}\colon \mathbb{R} \to \mathbb{C} \; \forall k \in \mathbb{Z} \; \forall t \in]-\pi + 2k\pi, \pi + 2k\pi] \; \tilde{f}(t) = f(t-2k\pi) \; \text{où} \; f \colon]-\pi, \pi] \to \mathbb{C} \\ &e_n\colon \mathbb{R} \to \mathbb{C}\colon x \mapsto e^{inx} \; \text{où} \; n \in \mathbb{Z}. \end{aligned}$$

Un polynôme trigonométrique est une application $\mathbb{R} \to \mathbb{C} : x \mapsto P(e^{ix})$ où $P \in \mathbb{R}[X]$ càd une application de la forme $\mathbb{R} \to \mathbb{C} : x \mapsto \sum_{k=-N}^N a_k \, e^{ikx}$.

Pour un polynôme trigonométrique $P: \mathbb{R} \to \mathbb{C}: x \mapsto \sum_{k=-N}^N a_k \, e^{ikx}$, on a $a_k = \frac{1}{2\pi} \int_{\mathbb{T}} P(t) e^{-ikt} dt \ \ \forall k$.

Le $n \in \mathbb{Z}$ ième coefficient de Fourier de $f \in L^1(\mathbb{T})$ est $\widehat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t) e^{-int} dt$.

 $S_N(f): \mathbb{R} \to \mathbb{C}: x \mapsto \sum_{n=-N}^N \hat{f}(n) e^{inx}$ où $N \in \mathbb{N}$ et $f \in L^1(\mathbb{T})$

 $S_N(f) = \sum_{n=-N}^N \hat{f}(n) e_n$ est un polynôme trigonométrique $\forall N \in \mathbb{N} \ \forall f \in L^1(\mathbb{T})$

La série de Fourier de f correspond à la série $\sum_{n\in\mathbb{Z}}\hat{f}(n)e_n$ càd à la suite $\left(S_N(f)\right)_{N\in\mathbb{N}}$ où $f\in L^1(\mathbb{T})$

Question centrale : Quand est-ce que f est limite de sa série de Fourier ?

 $f \in L^1(\mathbb{T})$ est développable en série de Fourier ssi sa série de Fourier converge simplement vers elle. Un coefficient de Fourier d'une fonction $L^1(\mathbb{T})$ est toujours dans $l^\infty(\mathbb{Z})$, et même dans $C_0(\mathbb{Z}) \subseteq l^\infty(\mathbb{Z})$. $(C_0(\mathbb{Z}), \| \ \|_u)$ est un sous-espace fermé donc complet de $(l^\infty(\mathbb{Z}), \| \ \|_u)$

Lemme de Lebesgue. $\forall f \in L^1(\mathbb{T}) \ \hat{f} \in C_0(\mathbb{Z})$

 $L^1(\mathbb{T}) \to \mathcal{C}_0(\mathbb{Z}) : f \mapsto \hat{f} \text{ est linéaire continue car } \left\| \hat{f} \right\|_u \leq \| f \|_{L^1(\mathbb{T})} \text{ mais n'est pas surjective}.$

Convolution périodique. Pour presque tout $x \in \mathbb{R}$ $f * g(x) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)g(x-t)dt$ où $f,g \in L^1(\mathbb{T})$

Le produit de convolution est une application continue, et bilinéaire.

 $(L^1(\mathbb{T}), \| \|_{L^1(\mathbb{T})}, \star)$ forme une algèbre de Banach.

La convolée $f \star g$ peut s'interpréter comme moyenner f, avec une pondération donnée par g.

La convolée d'une fonction L^1 par une C^k est au moins C^k .

La convolée d'une fonction L^1 par une fonction L^p est L^p .

Les espaces $L^p(\mathbb{T})$ $(p \in [1, \infty])$ et les $C^k(\mathbb{T})$, $(k \in N)$ sont des sous-algèbres de Banach de $L^1(\mathbb{T})$

$$f * g \in L^1(\mathbb{T}) \text{ et } \| f * g \|_{L^1(\mathbb{T})} \leq \| f \|_{L^1(\mathbb{T})} \| g \|_{L^1(\mathbb{T})} \ \, \forall f,g \in L^1(\mathbb{T})$$

$$\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n) \quad \forall n \in \mathbb{Z} \ \forall f, g \in L^1(\mathbb{T})$$

$$\left(L^1(\mathbb{T}), \| \ \|_{L^1(\mathbb{T})}, \star\right) \to \left(C_0(\mathbb{Z}), \| \ \|_{u}, \cdot\right) : f \mapsto \left(\hat{f}(n)\right)_{n \in \mathbb{Z}} \text{ est un morphisme de } \mathbb{R} \text{ algèbres}.$$

$$e_n * f = \hat{f}(n)e_n \quad \forall n \in \mathbb{Z} \ \forall f \in L^1(\mathbb{T}).$$

$$P*f=\sum_{k=-N}^N a_k \hat{f}(k)e_k \quad \forall N\in\mathbb{Z} \ \forall f\in L^1(\mathbb{T}) \ \mathrm{et} \ \ \forall P=\sum_{k=-N}^N a_k e_k \ \mathrm{polynôme} \ \mathrm{trigonom\acute{e}trique}.$$

La convolée d'une fonction $L^1(\mathbb{T})$ par un polynome trigonometrique est un polynôme trigonométrique.

Convolée et équations différentielles. La convolée est un outil efficace pour résoudre les équations différentielles linéaires à coefficients constants de la forme P(D)y = f, d'inconnue y avec $P \in C[X]$ et D operateur de dérivation, et f périodique raisonnablement régulière. En général il y a une unique solution périodique de la forme $y = K \star f$ avec K fonction périodique calculable par les données. L'existence de la convolution peut être établie par le th de Fubini. Une interprétation physique plus éclairante permet de construire la convolution, d'abord à partir des C^0 puis par approximation UC.

Opérations coefficients de Fourier

$$\begin{split} \widehat{\alpha f + g} &= \alpha \widehat{f} + \widehat{g} \ \, \forall \alpha \in \mathbb{C} \, \forall f, g \in L^1(\mathbb{T}) \\ \widehat{\tau_{\beta} f}(n) &= e^{-in\beta} \widehat{f}(n) \ \, \forall n \in \mathbb{Z} \, \forall \beta \in \mathbb{R} \ \, \text{où} \, \, \tau_{\beta} f : x \mapsto f(x - \beta) \ \, \text{et} \, f \in L^1(\mathbb{T}). \end{split}$$

Dérivation coefficients de Fourier

$$\widehat{f}'(n) = in\widehat{f}(n) \quad \forall n \in \mathbb{Z} \text{ et donc } \widehat{f}(n) =_{|n| \to \infty} o\left(\frac{1}{|n|}\right) \text{ où } f \in \mathcal{C}^1(\mathbb{T}). \text{ (entraine tjs } f, f' \in L^1(\mathbb{T}))$$

$$\widehat{f^{(k)}}(n) = (in)^k \widehat{f}(n) \quad \forall n \in \mathbb{Z} \ \forall k \geq 1 \ \text{donc} \ \widehat{f}(n) =_{|n| \to \infty} o\left(\frac{1}{|n|^k}\right) \ \text{où} \ f \in C^{k-1}(\mathbb{T}) \cap C^k_m(\mathbb{T}).$$

En particulier
$$\forall f \in \mathcal{C}^k(T) \ \hat{f}(n) =_{|n| \to \infty} o\left(\frac{1}{|n|^k}\right)$$

Intuitivement, plus f est régulière, plus \hat{f} tend vite vers 0 à l'infini.

Cette propriété est centrale et explique l'intérêt et le succès des séries de Fourier, transformer une dérivée en une multiplication simplifie l'étude d'équations différentielles.

Noyau de Dirichlet. $D_N = \sum_{k=-N}^N e_k$ où $N \in \mathbb{N}$.

$$D_N(x) = \frac{\sin\left(\left(N + \frac{1}{2}\right)x\right)}{\sin\left(\frac{x}{2}\right)} \ \ \forall N \in \mathbb{N} \ \ \forall x \in \mathbb{R} \ \ \text{tel que } x \neq 0 \ [2\pi].$$

$$S_N(f) = D_N * f \quad \forall N \in \mathbb{N} \ \forall f \in L^1(\mathbb{T})$$

Les $(D_N)_N$ ne constituent pas une approximation de l'unité.

Une suite de fonctions f_n de $L^1(\mathbb{T})$ est une **approximation de l'unité périodique** si

1. La suite des normes $L^1(\mathbb{T})$ des fonctions est bornée. $\sup_{n\in \mathbb{N}}\|f_n\|_{L^1(\mathbb{T})}<\infty$

2. Chaque fonction est $L^1(\mathbb{T})$ d'intégrale normalisée 1. $\forall n \in \mathbb{N}$ $f_n \star 1 = \frac{1}{2\pi} \int_{-\infty}^{\infty} f_n(t) dt = 1$

3.
$$\forall \delta \in]0, \pi[\int_{T \setminus \overline{[-\delta,\delta]}} |f_n(t)| d\mu_T(t) \rightarrow_{n \to \infty} 0$$

$$\boldsymbol{\sigma}_N(f) = \tfrac{1}{N+1} \sum_{n=0}^N S_n(f) \text{ où } N \in \mathbb{N} \text{ et } f \in L^1(\mathbb{T}) \qquad \boldsymbol{K}_N = \tfrac{1}{N+1} \sum_{n=0}^N D_n \text{ où } N \in \mathbb{N}.$$

$$\sigma_N(f) = K_N * f \quad \forall N \in \mathbb{N} \ \forall f \in L^1(\mathbb{T})$$

$$K_N = \textstyle \sum_{n=-N}^N \left(1 - \frac{|n|}{N}\right) e_n \ \text{ et } \ \sigma_N(f) = \textstyle \sum_{n=-N}^N \left(1 - \frac{|n|}{N}\right) \hat{f}(n) e_n \quad \forall N \in \mathbb{N} \ \forall f \in L^1(\mathbb{T}).$$

Théorème de Fejér. $(K_N)_{N\geq 0}$ est une approximation de l'unité périodique.

 $(K_N)_{N\geq 0}$ est à valeurs réelles positives.

Corollaires de Fejér. (désigné parfois comme le théorème de Fejér).

$$\sigma_N(f) = K_N * f \rightarrow_{N \to \infty}^{\| \cdot \|_u} f \quad \forall f \in C^0(\mathbb{T})$$

$$\sigma_N(f) = K_N * f \to_{N \to \infty}^{\|\cdot\|_{L^p(\mathbb{T})}} f \quad \forall f \in L^p(\mathbb{T})$$

 $\|\sigma_N(f)\|_p \leq \|f\|_p \ \, \forall N \in \mathbb{N} \, \forall f \in L^p(\mathbb{T}) \, \forall p \in [1,\infty].$

Conséquences.

est injective car $\forall f \in L^1(\mathbb{T})$ $\hat{f} = 0 \Rightarrow \forall N \sigma_N(f) = 0 \Rightarrow f = 0$ presque partout.

Weierstrass trigonométrique. L'ensemble $Vect_{n\in\mathbb{Z}}(e_n)$ des polynômes trigo est dense dans $(C^0(\mathbb{T}), \| \|_{\infty})$ et dans $(L^p(\mathbb{T}), \| \|_{L^p(\mathbb{T})})$ où $p \geq 1$. (car $\sigma_N(f)$ est un polynôme trigo $\forall N$).

Cesàro.
$$\forall (u_n)_n \in \mathbb{C}^{\mathbb{N}} \quad u_n \to l \in \mathbb{C} \Rightarrow \frac{1}{n} \sum_{k=1}^n u_k \to_{n \to \infty} l$$

 $\forall f \in C^0(\mathbb{T}), \operatorname{Si}\left(S_N(f)\right)_{N \geq 0} \operatorname{converge} \operatorname{dans} C^0(\mathbb{T}), \operatorname{elle} \operatorname{a} \operatorname{même} \operatorname{limite} \operatorname{que} \sigma_N(f) \operatorname{càd} S_N(f) \to_{N \to \infty}^{\|\cdot\|_{\infty}} f$ $\forall f \in L^p(\mathbb{T}), \operatorname{Si}\left(S_N(f)\right)_{N \geq 0} \operatorname{converge} \operatorname{dans} L^p(\mathbb{T}), \operatorname{elle} \operatorname{a} \operatorname{même} \operatorname{limite} \operatorname{que} \sigma_N(f) \operatorname{càd} S_N(f) \to_{N \to \infty}^{\|\cdot\|_{L^p}} f$

Convergence ponctuelle.

$$\sigma_N(f)(x_0) \to_{N \to \infty} \frac{1}{2} \left(f(x_0^+) + f(x_0^-) \right) \ \forall x_0 \in \mathbb{R} \ \forall f \in C_m^0(\mathbb{T})$$

Test de Dini. $\forall f \in C_m^0(\mathbb{T}) \ \forall x_0 \in \mathbb{R} \ \forall s \in \mathbb{C} \ t \mapsto \frac{f(x_0+t)+f(x_0-t)-2s}{t} \text{ intégrable sur }]0,\pi] \text{ alors } S_N(f)(x_0) \to_{N\to\infty} s.$

Si $f: \mathbb{T} \to \mathbb{C}$ est lipschitzienne, alors f est d.s.f. (à vérifier)

Dirichlet.
$$\forall f \in C_m^1(\mathbb{T})$$
 $S_N(f)(x_0) \to_{N \to \infty} \frac{1}{2} (f(x_0^+) + f(x_0^-)) \quad \forall x_0 \in \mathbb{R}$

$$\forall f \in C_m^1(\mathbb{T}) \ S_N(f)(x_0) \to_{N \to \infty} f(x_0) \ \forall x_0 \text{ tel que } f \text{ est continue en } x_0.$$

$$\forall f \in C^0(\mathbb{T}) \cap C_m^1(\mathbb{T}) \ f \text{ est d.s.f.}$$

On peut généraliser Dirichlet en supposant seulement $f \in L^1_{loc}(\mathbb{T})$ et x_0 tel que $f(x_0^+)$ existe, $f(x_0^-)$

existe et
$$\exists \alpha > 0$$
 $\int_0^{\alpha} \frac{|f(x_0+t)-f(x_0^+)|}{t} dt < \infty$ et $\int_0^{\alpha} \frac{|f(x_0-t)-f(x_0^+)|}{t} dt < \infty$.

Carleson 1966, Hunt 1968 (difficile). P.p.t. $x \in \mathbb{R}$ $S_N(f)(x) \to_{N \to \infty} f(x) \quad \forall f \in L^p(\mathbb{T}), p \in]1, \infty[$ Kolmogorov 1926. $\exists f \in L^1(\mathbb{T}) \ \forall x \in \mathbb{R}$ $S_N(f)(x)$ diverge quand $N \to \infty$.

Convergence normale. (CVN entraine toujours CVU qui entraine toujours CS (d.s.f.))

$$\hat{f} \in l^1(\mathbb{Z}) \Leftrightarrow \sum_{n \in \mathbb{Z}} |\hat{f}(n)| < \infty \Leftrightarrow \sum_{n \in \mathbb{Z}} \left\| \hat{f}(n) e_n \right\|_u < \infty \Leftrightarrow \text{La s.d.f. de } f \sum_{n \in \mathbb{Z}} \hat{f}(n) e_n \text{ CVN sur } \mathbb{T}$$

Si
$$f \in C^2(\mathbb{T})$$
 alors $\hat{f} \in l^1(\mathbb{Z})$. Car $\hat{f}(n) =_{|n| \to \infty} o\left(\frac{1}{n^2}\right)$

$$\mathrm{Si}\, f \in \mathcal{C}^0(\mathbb{T}) \cap \mathcal{C}^1_m(\mathbb{T}) \text{ alors } \hat{f} \in l^1(\mathbb{Z}). \text{ } \mathrm{Car}\, \sum_{n=-\infty}^\infty \left|\hat{f}(n)\right| \leq \left|\hat{f}(0)\right| + \sqrt{\sum_{|n|\geq 1} \frac{1}{n^2}} \sqrt{\sum_{|n|\geq 1} \left|\hat{f}'(n)\right|} \text{ } \left(\mathrm{ICS}\, \mathrm{car}\, \sum_{n=-\infty}^\infty \left|\hat{f}(n)\right| + \sqrt{\sum_{|n|\geq 1} \frac{1}{n^2}} \sqrt{\sum_{|n|\geq 1} \left|\hat{f}'(n)\right|} \right) = 0$$

 $\widehat{f}' \in l^2 \operatorname{car} f' \in L^2 \text{ (voir cadre } L^2\text{))}$

 $\forall f \in C^0(\mathbb{T}) \text{ telle que } \hat{f} \in l^1(\mathbb{Z}) \text{ la s.d.f. de } f \text{ CVN donc CVU vers } f. \quad S_N(f) \to_{N \to \infty}^{\|\cdot\|_u} f.$

Version prépa. $\forall f \in C^0(\mathbb{T}) \cap C^1_m(\mathbb{T})$ la s.d.f. de f CVN donc CVU vers f. $S_N(f) \to_{N \to \infty}^{\|\cdot\|_U} f$.

Séries de Fourier, cadre $L^2(\mathbb{T})$

On peut munir $L^2(\mathbb{T})$ d'un produit scalaire complexe $(f|g)_{L^2(\mathbb{T})} = \frac{1}{2\pi} \int_{\mathbb{T}} f\overline{g} \, dont \, \| \, \|_{L^2(\mathbb{T})} \, dérive.$

 $\left(L^2(\mathbb{T}),(.\,|.\,)_{L^2(\mathbb{T})}\right)$ est un espace de Hilbert. $\forall n\in\mathbb{Z}\ (f|e_n)=\hat{f}(n)$

 $(e_n)_{n\in\mathbb{Z}}$ est orthonormée dans $L^2(\mathbb{T})$, $(.|.)_{L^2(\mathbb{T})}$ donc libre, donc base algébrique de $Vect(e_n)_{n\in\mathbb{Z}}$.

Pour $f \in L^2(\mathbb{T})$ $S_N(f) = \sum_{n=-N}^N (f|e_n)e_n$ est le projecteur orthogonal de f sur $P_N = Vect(e_n)_{|n| \le N}$ $S_N(f)$ est le polynôme trigonométrique de degré N le plus proche de f pour $\|\cdot\|_{L^2(\mathbb{T})}$ càd :

 $\forall N \ \forall Q \in P_N \ \|f - S_N(f)\|_{L^2(\mathbb{T})} \le \|f - Q\|_{L^2(\mathbb{T})} \ (\text{car} \ \|f - Q\|^2 = \|f - S_N(f)\|^2 + \|S_N(f) - Q\|^2)$

Parseval. Convergence $L^2(\mathbb{T})$. $\forall f \in L^2(\mathbb{T})$ $S_N(f) \to_{N \to \infty}^{\|\cdot\|_{L^2(\mathbb{T})}} f$ (en particulier pour $f \in C^0(\mathbb{T})$ (prépa))

 $\hat{}: L^2(\mathbb{T}) \to l^2(\mathbb{Z}): f \mapsto \hat{f}$ est une isométrie surjective (donc bijective car il y a toujours injectivité).

 $f \in L^2(\mathbb{T}) \Leftrightarrow \hat{f} \in l^2(\mathbb{Z}) \quad \forall f \in L^1(\mathbb{T})$

 $\operatorname{donc} f \in L^2(\mathbb{T}) \Leftrightarrow f \in L^1(\mathbb{T}) \text{ et } \hat{f} \in l^2(\mathbb{Z}) \quad \text{ puisque } L^2(\mathbb{T}) \subseteq L^1(\mathbb{T}).$

Egalité de Parseval. $\forall f \in L^2(\mathbb{T}) \quad \left\| \hat{f} \right\|_{L^2(\mathbb{T})} = \left\| f \right\|_{L^2(\mathbb{T})} \quad \text{càd } \sum_{n=-\infty}^{\infty} \left| \hat{f}(n) \right|^2 = \frac{1}{2\pi} \int_{\mathbb{T}} |f|^2 df$

Inégalité de Bessel. $\forall f \in L^2(\mathbb{T}) \quad \|S_N(f)\|_{l^2(\mathbb{Z})} \leq \|f\|_{L^2(\mathbb{T})}$

 $\forall (c_n)_n \in l^2(\mathbb{Z}) \ \exists ! \, f \in L^2(\mathbb{T}) \ \forall n \in \mathbb{Z} \ c_n = \hat{f}(n).$

Remarque : le th de Parseval marche aussi pour $f \in C_m^0(\mathbb{T})$ où $(f|g) = \frac{1}{2\pi} \int_{\mathbb{T}} f\overline{g}$ est un semi p.s.

Parseval permet de montrer $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

 $\forall n \in \mathbb{N}^* \ \left| \hat{f}(n) \right|^2 + \left| \hat{f}(-n) \right|^2 = \frac{1}{2} (|a_n(f)|^2 + |b_n(f)|^2) \ \ \text{et} \ \left| \hat{f}(0) \right|^2 = \frac{1}{4} |a_0(f)|^2 \ \ \forall f \in L^1(\mathbb{T})$

 $\operatorname{Donc} {\textstyle \sum_{n=-\infty}^{\infty}} \left| \hat{f}(n) \right|^2 = \frac{1}{4} |a_0(f)|^2 + \frac{1}{2} {\textstyle \sum_{n=-\infty}^{\infty}} (|a_n(f)|^2 + |b_n(f)|^2) \quad \forall f \in L^1(\mathbb{T})$

On peut munir $l^2(\mathbb{Z})$ d'un produit scalaire complexe $(\boldsymbol{u}|\boldsymbol{v})_{l^2(\mathbb{Z})} = \sum_{n=-\infty}^{\infty} u_n \overline{v_n}$ dont $\| \ \|_{l^2(\mathbb{Z})}$ dérive.

 $\left(l^2(\mathbb{Z}), (.\,|.\,)_{l^2(\mathbb{Z})}
ight)$ est un espace de Hilbert.

Parseval produit scalaire. $\forall f,g \in L^2(\mathbb{T}) \quad (f|g)_{L^2(\mathbb{T})} = \left(\hat{f} \middle| \hat{g} \right)_{l^2(\mathbb{Z})}$

Séries de Fourier et équations différentielles [Marco]

On étudie les équations différentielles de variable sur le tore $\mathbb T$ de la forme

 $(E): y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(\overline{x}) \quad \text{avec } n \ge 1, f \in L^1(\mathbb{T}), \quad a_k \in \mathbb{C} \text{ et } x \in \mathbb{R} \text{ de classe } \overline{x} \in \mathbb{T}.$ $(H): y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0$

Une **solution généralisée** de (E) est une fonction $y \in C^{n-1}(\mathbb{T})$ dont la dérivée nième $D^{n-1}Y$ est absolument continue (condition la plus faible connue dans notre contexte pour donner un sens a $y^{(n)}$), et vérifiant l'équation presque partout sur le tore. Elle est donc n fois dérivable p.p.

La solution de (E) est bien connue dans le cas homogène f=0, ou si $f\in C^0(T)$ par variation des constantes. On se pose la question pour les fonctions un peu moins régulières, si $f\in L^1(T)$.

L'ensemble des solutions généralisées de l'équation homogène (H) est exactement le sous-espace $S_0 = Vect\{e_m \mid m \in Z, \ P(im) = 0\}$ avec $P = X^n + a_1X^{n-1} + \dots + a_n$ donc de dim $\leq n$ et $\subseteq \mathcal{P}(T)$

Si $\forall m \in Z \ P(im) \neq 0$, cad si $S_0 = \{0\}$ alors l'équation $y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f$ admet une unique solution de la forme $E \star f$ avec E une fonction $L^1(T)$ indépendante de f. (Marche pour tout f). De plus cette fonction E est caractérisée par $\forall m \in Z \ \hat{E}(m) = \frac{1}{P(im)}$

Pour resoudre P(D)y = f on écrit $\forall m \in Z \ P(im)\hat{y}(m) = \hat{f}(m)$, on vérifie $\forall m \in Z \ P(im) \neq 0$ alors $S_N(E \star f) = \sum_{|m| \leq N} \frac{\hat{f}(m)}{P(im)} e_m$ converge uniformement et la solution généralisée est y = 0

 $\sum_{m=-\infty}^{\infty} \frac{\hat{f}(m)}{P(im)} e_m = E \star f$ et appartient a $C^0(T)$ car les sommes partielles aussi car finies et CV uniforme.

Transformation de Fourier dans le cadre $L^1(\mathbb{R})=L^1(\mathbb{R},\mathbb{C})$.

La transformée de Fourier de f est $\hat{f}: \mathbb{R} \to \mathbb{C}: \omega \mapsto \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-i\omega t} dt$ où $f \in L^1(\mathbb{R})$.

 $\hat{f} \in C^0_{\to 0}(\mathbb{R})$, càd f est continue et tend vers 0 en $\pm \infty$.

 $C^0_{\to 0}(\mathbb{R})$ est un sous-espace fermé donc complet de $(C^0_b(\mathbb{R}), \| \|_u)$.

Donc bien remarquer que $f \in L^1(\mathbb{R}) \Rightarrow \hat{f} \in C^0(\mathbb{R})$

 $\textbf{\textit{F}} \colon (L^1(\mathbb{R}), \| \quad \|_1) \to (C^0_{\to 0}(\mathbb{R}), \| \quad \|_u) \colon f \mapsto \hat{f} \text{ est bien définie linéaire continue car } \left\| \hat{f} \right\|_u \leq \frac{1}{\sqrt{2\pi}} \| f \|_1$

Remarque : Deux représentant d'une même classe $f \in L_1(\mathbb{R})$ ont bien même image $\hat{f} \in C^0_{\to 0}(\mathbb{R})$.

Inversion. Si $f \in L^1(\mathbb{R})$ et $\hat{f} \in L^1(\mathbb{R})$ alors $\forall x \in \mathbb{R}$ $\hat{f}(x) = FF(f)(x) = f(-x)$.

Transformée inverse $F^{-1}: L^1(\mathbb{R}) \to C^0_{\to 0}(\mathbb{R}): g \mapsto F^{-1}(g) = \left(t \mapsto \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{i\omega t} dt\right)$.

$$\forall f \in L^1(\mathbb{R}) \quad F(f) \in L^1(\mathbb{R}) \Rightarrow F^{-1}F(f) = f$$

$$\forall f \in L^1(\mathbb{R}) \quad F^{-1}(f) \in L^1(\mathbb{R}) \Rightarrow FF^{-1}(f) = f$$

F est un opérateur injectif mais pas bijectif vers $\mathcal{C}^0_{\to 0}(\mathbb{R})$. Attention à la notation F^{-1} .

Im(F) n'est pas un espace simple, $L^1(\mathbb{R})$ n'est pas stable par F.

La gaussienne $x\mapsto e^{-\frac{x^2}{2}}$ a pour transformée de Fourier elle-même.

Opérations.

En notant
$$\tau_{\alpha} f: x \mapsto f(x - \alpha)$$
 $e_{\alpha}: x \mapsto e^{i\alpha x}$ et $\mu_{\lambda} f: x \mapsto f(\lambda x)$.

$$\widehat{\tau_{\alpha}f} = e_{-\alpha} \cdot \widehat{f} \quad \forall \alpha \in \mathbb{R} \ \, \forall f \in L^1(\mathbb{R}). \, \, \, \text{Autrement dit} \, F \circ \tau_{\alpha} = E_{-\alpha} \circ F$$

$$\widehat{e_\alpha \cdot f} = \tau_\alpha \widehat{f} \quad \forall \alpha \in \mathbb{R} \quad \forall f \in L^1(\mathbb{R}). \text{ Autrement dit } \tau_\alpha \circ F = F \circ E_\alpha$$

$$\widehat{\mu_{\lambda}f} = \frac{1}{\lambda}\mu_{\frac{1}{\lambda}}\widehat{f} \quad \forall \lambda \in]0, \infty[\forall f \in L^1(\mathbb{R}). \text{ Autrement dit } F \circ \mu_{\lambda} = \frac{1}{\lambda}\mu_{\frac{1}{\lambda}} \circ F$$

$$\mu_{\lambda}\widehat{f} = \frac{1}{\lambda}\widehat{\mu_{\overline{\lambda}}^{1}f} \quad \ \forall \lambda \in]0, \infty[\ \forall f \in L^{1}(\mathbb{R}). \ \text{Autrement dit} \ \mu_{\lambda} \circ F = \frac{1}{\lambda}F \circ \mu_{\overline{\lambda}}$$

 $\forall f,g \in L^1(\mathbb{R}) \ f*g \in L^1(\mathbb{R}) \ \text{et} \ \widehat{f*g} = \sqrt{2\pi} \ \hat{f} \ \hat{g}$. La T.F. transforme les convolutions en produits. $f \text{ paire } \Rightarrow \hat{f} \text{ paire } \ \forall f \in L^1(\mathbb{R}).$

f réelle et paire $\Rightarrow \hat{f}$ réelle et paire $\ \forall f \in L^1(\mathbb{R})$

Dérivation.

$$\begin{split} \widehat{f'}(\omega) &= i\omega \widehat{f}(\omega) \quad \forall \omega \in \mathbb{R} \text{ et donc } \widehat{f}(\omega) =_{|\omega| \to \infty} o\left(\frac{1}{|\omega|}\right) \quad \text{pour } f \in \mathcal{C}^1(\mathbb{R}) \text{ } \underline{\text{telle que } f, f' \in L^1(\mathbb{R})}. \\ \widehat{f'} &= i \cdot id \cdot \widehat{f} \quad \text{pour } f \in \mathcal{C}^1(\mathbb{R}) \text{ } \underline{\text{telle que } f, f' \in L^1(\mathbb{R})}. \end{split}$$

$$\hat{f}' = -i \cdot \widehat{\imath d \cdot f}$$
 pour $f \in L^1(\mathbb{R})$ telle que $id \cdot f \in L^1(\mathbb{R})$. (entraine que $\hat{f} \in C^1(\mathbb{R})$)

 $\widehat{f^{(k)}} = (i \cdot id)^k \cdot \widehat{f} \quad \text{pour } f \in \mathcal{C}^p(\mathbb{R}) \text{ telle que } f, f', \dots, f^{(p)} \in L^1(\mathbb{R}). \text{ (attention } id^k(\omega) = \omega^k)$ $\widehat{f^{(k)}} = (-i)^k \cdot i\widehat{d^k \cdot f} \quad \text{pour } f \in L^1(\mathbb{R}) \text{ telle que } id^p \cdot f \in L^1(\mathbb{R}). \text{ (entraine } \forall k \ id^k \cdot f \in L^1, \ f \in \mathcal{C}^k)$ En notant $\mathbf{D} : f \mapsto f' \quad \text{et } \mathbf{M} : f \mapsto id \cdot f.$ Les propriétés de dérivations se réécrivent symboliquement : $F \circ D = iM \circ F \quad \text{et } D \circ F = -iF \circ M \quad \text{moyennant leur hypothèses}.$

Intuitivement, plus f est régulière, plus \hat{f} tend vite vers 0 à l'infini.

Intuitivement, plus \hat{f} est régulière, plus f tend vite vers 0 à l'infini. (par inversion)

Par exemple
$$\hat{f}(\omega) =_{|\omega| \to \infty} o\left(\frac{1}{|\omega|^2}\right) \Rightarrow \hat{f} \in L^1(\mathbb{R}) \Rightarrow f \in C^0(\mathbb{R}).$$

Par exemple
$$\hat{f}(\omega) =_{|\omega| \to \infty} o\left(\frac{1}{|\omega|^{k+2}}\right) \Rightarrow f \in C^k(\mathbb{R}).$$

Par exemple $f \in L^1_c(\mathbb{R}) \Rightarrow \hat{f}$ est analytique sur \mathbb{R} .

Utilisations Transformation de Fourier

On part d'un problème (P) (disons une équation fonctionnelle) dont l'inconnue est une fonction $f\colon \mathbb{R} \to \mathbb{C}$, que l'on cherche dans un espace fonctionnel qu'on note X. On fait opérer la tranformation de Fourier sur le problème (P), et on obtient un autre problème (\hat{P}) dont l'inconnue est $\hat{f} \in \hat{X} = \{\hat{g}\colon g \in X\}$.

On utilise à cette étape les opérations de la transformation de Fourier F pour voir le comportement de F vis-à-vis des opérations qui interviennent dans (P). On espère bien sûr que ce nouveau problème est plus simple à résoudre que le précédent, et on le résout quand cela est possible.

 \widehat{X} difficile à identifier en général mais n'empêche pas de résoudre (\widehat{P}) , mais il faut alors vérifier si les solutions obtenues correspondent à des solutions de (P).

En général on peut résoudre (\hat{P}) dans un espace plus gros que \hat{X} donc il se peut que la solution trouvée de (\hat{P}) ne soit pas dans \hat{X} . De ce fait on utilise rarement les équivalences.

Exemple: il n'existe pas d'élément neutre pour la convolution.

Généralisation de la transformation de Fourier à \mathbb{R}^d .

La transformée de Fourier de
$$f$$
 est $\hat{f} : \mathbb{R}^d \to \mathbb{C} : \vec{\omega} \mapsto \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} f(\vec{t}) e^{-i(\vec{\omega}|\vec{t})} d\vec{t}$ où $f \in L^1(\mathbb{R}^d)$.

Les opérations sur F se généralisent à ce cadre...

Transformation de Fourier dans le cadre $L^2(\mathbb{R})$.

Lemme. Pour $f \in L^1(\mathbb{R})$ telle que $\hat{f} \in L^1(\mathbb{R})$ alors $f, \hat{f} \in L^2(\mathbb{R})$ et $\|\hat{f}\|_2 = \|f\|_2$

Si on suppose juste $f \in L^1(\mathbb{R})$ alors $f \in L^2(\mathbb{R})$ n'est ni garanti ni équivalent à $\hat{f} \in L^2(\mathbb{R})$. Exemple ? **Plancherel.** $\exists ! \tilde{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ tel que 1)2)3)4).

- 1) \tilde{F} est linéaire.
- 2) \tilde{F} est un prolongement de la restriction de F à $L^1(\mathbb{R})\cap L^2(\mathbb{R})$ càd $\tilde{F}_{|L^1(\mathbb{R})\cap L^2(\mathbb{R})}=F_{|L^1(\mathbb{R})\cap L^2(\mathbb{R})}$
- 3) \tilde{F} est une isométrie càd $\forall f, g \in L^2(\mathbb{R})$ $(f|g) = \int_{\mathbb{R}} f\overline{g} = \int_{\mathbb{R}} \tilde{F}(f) \cdot \overline{\tilde{F}(g)} = (\tilde{F}(f)|\tilde{F}(g)).$
- 4) \tilde{F} est surjective. (donc bijective)

$$\left\| \tilde{F}(f) \right\|_2 = \left\| f \right\|_2 \quad \forall f \in L^2(\mathbb{R})$$

$$\tilde{F} \circ \tilde{F}(f)(x) = f(-x) \ \ \forall x \in \mathbb{R} \ \ \forall f \in L^2(\mathbb{R}).$$

 $\exists \tilde{F}^{-1} \colon L^2(\mathbb{R}) \to L^2(\mathbb{R}) \text{ lin\'eaire isom\'etrique\'egal\`a} \, F^{-1} \text{ sur } L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \text{ et } \tilde{F}^{-1} \circ \tilde{F} = \tilde{F} \circ \tilde{F}^{-1} = id$

En pratique comme souvent pour des prolongements on écrit souvent juste F au lieu de \tilde{F} .

Et on note encore $\hat{f} = \tilde{F}(f)$ quand f est dans $L^1(\mathbb{R})$ ou dans $L^2(\mathbb{R})$.

Pour \tilde{F} , $f \in L^2(\mathbb{R}) \Leftrightarrow \hat{f} \in L^2(\mathbb{R})$ sans avoir besoins des conditions du lemme.

Attention si $f \in L^2(\mathbb{R}) \setminus L^1(\mathbb{R})$ \hat{f} est défini mais <u>on ne peut pas écrire</u> $\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t) e^{-i\omega t} dt$

Si on veut faire des calculs sur \hat{f} on doit dans ce cas raisonner par densité pour $(f_n)_n \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ qui converge vers f en norme $L^2(\mathbb{R})$ puis voir si les formules passent à la limite. On prend svt

$$\begin{split} f_n &= f 1_{[-n,n]} \text{, alors } f_n \to_{n \to \infty}^{\| \ \|_{L^2(\mathbb{R})}} f \text{. } \exists \phi \text{ extraction telle que } \left(f_{\phi(n)} \right) \text{CS vers } f \text{, donc par TCD on peut } \\ \text{\'ecrire que } \hat{f}(\omega) &= \lim_{n \to \infty} \frac{1}{\sqrt{2\pi}} \int_{-\phi(n)}^{\phi(n)} f(t) e^{-i\omega t} dt \text{ pour presque tout } \omega \in \mathbb{R}. \end{split}$$

Condition suffisante pour inverser. Si $f \in C^1(\mathbb{R}) \cap L^1(\mathbb{R})$ et $f' \in L^2(\mathbb{R})$ alors $\hat{f} \in L^1(\mathbb{R})$.

Certaines propriétés du cadre $L^1(\mathbb{R})$ sont valables dans le cadre $L^2(\mathbb{R})$

Certaines propriétés du cadre $L^1(\mathbb{R})$ ne sont plus valables dans le cadre $L^2(\mathbb{R})$: par exemple on a pas toujours $\hat{f} \in C^0_{\to 0}(\mathbb{R})$ car $F: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ est bijective et $L^2(\mathbb{R}) \neq C^0_{\to 0}(\mathbb{R})$.

Espaces de Sobolev.

$$\|f\|_{H^{s}(\mathbb{R})} = \sqrt{\int_{\mathbb{R}} (1+|\omega|^{2}) \big| \hat{f}(\omega) \big|^{2} d\omega} \leq \infty \text{ où } s \in \mathbb{R}_{+} \text{ et } f \in L^{2}(\mathbb{R}).$$

L'espace de Sobolev d'ordre s est $H^s(\mathbb{R})=\left\{f\in L^2(\mathbb{R})\mid \|f\|_{H^s(\mathbb{R})}<\infty\right\}$ où $s\in\mathbb{R}_+$

$$(f|g)_{H^s(\mathbb{R})} = \int_{\mathbb{R}} (1+|\omega|^2) \hat{f}(\omega) \overline{\hat{g}(\omega)} d\omega$$
 pour $f, g \in H^s(\mathbb{R})$

 $\left(H^s(\mathbb{R}),(\quad |\quad)_{H^s(\mathbb{R})}\right)$ est un espace de Hilbert et $\|\quad \|_{H^s(\mathbb{R})}$ dérive de $(\quad |\quad)_{H^s(\mathbb{R})}.$

Les $(H^s(\mathbb{R}))_{s\in\mathbb{R}^+}$ sont une famille décroissante d'espaces.

$$\forall 0 \le s \le s' \quad \mathcal{C}_c^{\infty}(\mathbb{R}) \subseteq H^{s'}(\mathbb{R}) \subseteq H^s(\mathbb{R}) \subseteq H^0(\mathbb{R}) = L^2(\mathbb{R})$$

$$\forall s>\tfrac{1}{2}\ \exists \mathcal{C}_s>0\ \forall f\in H^s(\mathbb{R})\ \text{alors}\ \hat{f}\in L^1(\mathbb{R}), f\in C^0_{\to 0}(\mathbb{R})\ \text{et}\ \|f\|_{\infty}\leq C_s\|f\|_{H^s(\mathbb{R})}$$

On peut montrer au sens des distributions que $H^k(\mathbb{R})=\left\{f\in L^2(\mathbb{R})|\ f'\in L^2(\mathbb{R}),\dots,f^{(k)}\in L^2(\mathbb{R})\right\}$ où $k\in\mathbb{N}.$

Transformation de Fourier dans le cadre espace de Schwarz $S(\mathbb{R})$.

La transformée de Fourier d'une fonction même \mathcal{C}^∞ n'est pas nécessairement partout dérivable.

Une fonction $f\colon \mathbb{R} o \mathbb{C}$ est à décroissance rapide

ssi
$$f \in C^{\infty}$$
 et $\forall k, n \in \mathbb{N}$ $\mathbb{R} \to \mathbb{C}$: $x \mapsto x^k f^{(n)}(x)$ est bornée.

ssi
$$f \in C^{\infty}$$
 et $\forall k, n \in \mathbb{N} \ \exists M_{k,n} > 0 \ \forall x \in \mathbb{R} \ |x|^k |f^{(n)}(x)| \leq M_{k,n}$

ssi
$$f \in C^{\infty}$$
 et $\forall k, n \in \mathbb{N}$ $f^{(n)}(x) =_{|x| \to \infty} O\left(\frac{1}{x^k}\right)$

On posera $N_{k,n}(f) \coloneqq \sup_{x \in \mathbb{R}} |x|^k |f^{(n)}(x)| \le \infty \text{ pour } k, n \in \mathbb{N}$

On note $S(\mathbb{R})$ l'ensemble des fonctions à décroissance rapide.

$$S(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) \mid \forall k, n \in \mathbb{N} \ N_{k,n}(f) < \infty \}$$

L'étude de $S(\mathbb{R})$ permet de mieux comprendre le lien entre série de Fourier et transformée de Fourier. $N_{k,n}(f)$ est une semi norme sur $S(\mathbb{R})$ $\forall k,n \in \mathbb{N}$

$$\forall f_1, f_2 \in S(\mathbb{R})$$
 $d(f_1, f_2) = \sum_{k,p \in \mathbb{N}^2} \frac{1}{2k+p} \min \left(1, N_{k,p}(f_1 - f_2)\right)$ définit une distance sur $S(\mathbb{R})$.

$$\forall f \in S(\mathbb{R}) \ \forall (f_n)_{n \in \mathbb{N}} \in S(\mathbb{R})^{\mathbb{N}} \quad f_n \to_{n \to \infty}^d f \text{ ssi } \forall k, p \in \mathbb{N} \ N_{k,p}(f_n - f) \to_{n \to \infty} 0$$

 $(S(\mathbb{R}),d)$ est complet.

 $C_c^{\infty}(\mathbb{R}) \subseteq S(\mathbb{R}) \subseteq L^p(\mathbb{R}) \ \ \forall p \in [1, \infty[. \ \mathsf{Donc} \ S(\mathbb{R}) \ \mathsf{est} \ \mathsf{dense} \ \mathsf{dans} \ L^p(\mathbb{R}).$

 $S(\mathbb{R})$ est stable par dérivation et par multiplication par un polynôme complexe.

$$x \mapsto e^{-\frac{x^2}{2}} \in S(\mathbb{R}) \setminus C_c^{\infty}(\mathbb{R}).$$

 $S(\mathbb{R})$ est stable par la transformation de Fourier F.

 $F: S(\mathbb{R}) \to S(\mathbb{R})$ est bijective d'inverse F^{-1} . F est un isomorphisme

 $F: (S(\mathbb{R}), d) \to (S(\mathbb{R}), d)$ est continue, et son inverse aussi.

Transformation de Fourier dans le cadre mesures finies (dont les mesures de proba).

Soit μ une mesure réelle borélienne (définie sur $B(\mathbb{R})$) finie (càd $\mu(\mathbb{R}) < \infty$)

On note $M_f^+(\mathbb{R})$ l'ensemble des mesures réelles boréliennes positives finies.

La transformée de Fourier de la mesure borélienne finie $\mu \in M_f^+(\mathbb{R})$ est $\widehat{\mu}: \mathbb{R} \to \mathbb{C}: t \mapsto \int_{\mathbb{R}} e^{itx} d\mu(x)$ $\widehat{\mu} \in C_b^0(\mathbb{R})$ et $\|\widehat{\mu}\|_{\infty} \leq \mu(\mathbb{R})$

La transformation de Fourier est $F: M_f^+(\mathbb{R}) \to C_b^0(\mathbb{R}): \mu \mapsto \hat{\mu}$

Elle n'est pas à proprement parler linéaire car les mesures sont supposées positives.

Attention car on a changé la convention, il n'y a plus le facteur $\frac{1}{\sqrt{2\pi}}$ devant, et le signe dans l'exponentielle est positif.

Si μ admet une densité f par rapport à Lebesgue càd $\mu=fd\lambda$, alors $\hat{\mu}(t)=\sqrt{2\pi}\hat{f}(-t)$ La fonction caractéristique d'une v.a.r. X sur un espace probabilisé n'est autre que la transformée de Fourier de sa loi P_X . $E\left(e^{itx}\right)=\varphi_X(t)=\widehat{P_X}(t)=\int_{\mathbb{R}}e^{itx}dP_X(x) \quad \forall t\in\mathbb{R}$. (Par le th de transfert) cf poly analyse