Computer-Aided VLSI System Design Homework 5 Report

Due Tuesday, Dec. 6, 14:00

Student ID: d10943012 Student Name: 梁峻瑋

APR Results

1. Fill in the blanks below.

Design Stage	Description	Value	
P&R	Number of DRC violations (ex: 0)	0	
	(Verify -> Verify Geometry)	U	
	Number of LVS violations (ex: 0)	0	
	(Verify -> Verify Connectivity)		
	Die Area (um²)	365902.11	
	Core Area (um²)	197577.36	
Post-layout	Clock David for Doct layout Simulation (av. 10mg)	20ns	
Simulation	Clock Period for Post-layout Simulation (ex. 10ns)		
	Yes		
(If n			

Questions and Discussion

1. Attach the snapshot of CCOpt Clock Tree Debugger result, and show the routing result in the layout (10%).

2. Attach the snapshot of DRC and LVS checking after routing. (5%)

*** Starting Verify DRC (MEM: 1311.3) *** VERIFY DRC Starting Verification VERIFY DRC Initializing VERIFY DRC Deleting Existing Violations VERIFY DRC Creating Sub-Areas VERIFY DRC Using new threading VERIFY DRC Sub-Area: {0.000 0.000 204.000 201.280} 1 of 9 VERIFY DRC Sub-Area : 1 complete 0 Viols. VERIFY DRC Sub-Area: {204.000 0.000 408.000 201.280} 2 of 9 VERIFY DRC Sub-Area : 2 complete 0 Viols. VERIFY DRC Sub-Area: {408,000 0,000 606,280 201,280} 3 of 9 VERIFY DRC Sub-Area : 3 complete 0 Viols. VERIFY DRC Sub-Area: {0.000 201.280 204.000 402.560} 4 of 9 VERIFY DRC Sub-Area: 4 complete 0 Viols. VERIFY DRC Sub-Area: {204,000 201,280 408,000 402,560} 5 of 9 VERIFY DRC Sub-Area : 5 complete 0 Viols. VERIFY DRC Sub-Area: {408,000 201,280 606,280 402,560} 6 of 9 VERIFY DRC Sub-Area : 6 complete 0 Viols. VERIFY DRC Sub-Area: {0.000 402,560 204,000 603,520} 7 of 9 VERIFY DRC Sub-Area : 7 complete 0 Viols. VERIFY DRC Sub-Area: {204,000 402,560 408,000 603,520} 8 of 9 VERIFY DRC Sub-Area : 8 complete 0 Viols. VERIFY DRC Sub-Area: {408,000 402,560 606,280 603,520} 9 of 9 VERIFY DRC Sub-Area : 9 complete 0 Viols. Verification Complete: 0 Viols. *** End Verify DRC (CPU: 0:00:00.7 ELAPSED TIME: 1.00 MEM: 0.0M) *** ****** Start: VERIFY CONNECTIVITY ****** Start Time: Sat Dec 3 14:08:30 2022 Design Name: core Database Units: 2000 Design Boundary: (0.0000, 0.0000) (606.2800, 603.5200) Error Limit = 1000; Warning Limit = 50 Check all nets Begin Summary Found no problems or warnings. End Summary End Time: Sat Dec 3 14:08:30 2022 Time Elapsed: 0:00:00.0 ****** End: VERIFY CONNECTIVITY ****** Verification Complete : O Viols. O Wrngs. (CPU Time: 0:00:00.2 MEM: 0.000M)

timeDesign Summary Setup views included: av_func_mode_max | | all | reg2reg | in2reg | reg2out | in2out | default Setup mode WNS (ns): | 6.162 | 10.648 | 6.162 | 6.662 | N/A 1 0.000 TNS (ns): | 0.000 | 0.000 | 0.000 | 0.000 | N/A 1 0,000 Violating Paths:| N/A All Paths: I 709 | 369 I 324 I N/A 16 0 -Real DRVs | | Nr nets(terms) | Worst Vio | Nr nets(terms) | -0.027 2 (2) 2(2)max_cap 1 (1) 0 (0) 1 (1) 0 (0) max_tran -0,127 max_fanout 0 0 (0) 0 (0) 0 max_length Density: 73.433% timeDesign Summary Hold views included: av_func_mode_max Hold mode | all | reg2reg | in2reg | reg2out | in2out | default 1 WNS (ns): | 0.468 | 0.468 | 9.821 | 10.876 | N/A | 0.000 TNS (ns): | 0.000 | 0.000 | 0.000 | 0.000 | N/A | 0,000 Violating Paths:| 0 0 | 0 1 0 1 N/A 0 1 All Paths: | 709 | 369 | 324 | 16 | N/A

Density: 73,433%

4. Show the critical path after post-route optimization. What is the path type? (5%) (The slack of the critical path should match the smallest slack in the timing report)

```
Path 1: MET Recovery Check with Pin z_reg_2__7_/CK
            z_reg_2__7_/RN (^) checked with leading edge of 'i_clk'
Endpoint:
                           (^) triggered by leading edge of 'i_clk'
Beginpoint: i_rst_n
Path Groups: {in2reg}
Analysis View: av_func_mode_max
                                0.523
Other End Arrival Time
                                0.259

    Recovery

                                20,000
+ Phase Shift
+ CPPR Adjustment
                                0.000
= Required Time
                               20,263
- Arrival Time
                               14,102
= Slack Time
                                6,162
     Clock Rise Edge
                                           0.000
     + Input Delay
                                          10,000
     + Network Insertion Delay
                                           0.500
     = Beginpoint Arrival Time
                                          10.500
```

I Instance	l Arc	Cell	ا آ	Time	Required Time
FE_OFC17_i_rst_n FE_OFC0_i_rst_n FE_OFC0_i_rst_n FE_OFC1_i_rst_n FE_OFC2_i_rst_n FE_OFC3_i_rst_n FE_OFC4_i_rst_n z_reg_27_	i_rst_n ^ A ^ -> Y ^ RN ^	BUFX4 CLKBUFX6 BUFX4 BUFX4 BUFX4 CLKBUFX6 DFFRX1	0,435 0,435 0,584 0,621 0,631 0,635 0,680	10,500	16,662 17,097 17,681 18,303 18,934 19,568

5. Attach the snapshot of GDS stream out messages. (10%)

```
Trim Metal 0
```

######Streamout is finished!

```
Merging with GDS libraries
Scanning GDS file library/gds/tsmc13gfsg_fram.gds to register cell name ......
Scanning GDS file library/gds/tpz013g3_v1.1.gds to register cell name ......
Merging GDS file library/gds/tsmc13gfsg_fram.gds ......
        ****** Merge file: library/gds/tsmc13gfsg_fram.gds has version number: 5
        ****** Merge file: library/gds/tsmc13gfsg_fram.gds has units: 1000 per m
icron.
        ***** unit scaling factor = 1 *****
Merging GDS file library/gds/tpz013g3_v1.1.gds ......
        ****** Merge file: library/gds/tpz013g3_v1.1.gds has version number: 5.
        ****** Merge file: library/gds/tpz013g3_v1.1.gds has units: 1000 per mic
ron.
        ****** unit scaling factor = 1 ******
**WARN: (IMPOGDS-217): Master cell: sram_512x8 not found in merged file(s) and
will therefore not be included in the resulting streamOut file. Verify the file
names specified with the -merge option are correct and that they contain a defin
ition of this cell.
**WARN: (IMPOGDS-218): Number of master cells not found after merging: 1
```

6. Attach the snapshot of the final area result. (5%)

7. Attach the snapshot of your final layout **after adding core filler**. (Remember to switch to **Physical view** and make Pin Shapes visible) (10%)

8. What is your strategy for floorplanning (especially for placing the SRAMs)? What is the reason behind it? (10%)

Answer:

I have 4x 512x8-sram in my design. Considering the large area of each sram, I use the B*-tree algorithm to distribute the srams to the four corners. This will help a lot with routing issues such as density or connectivity.

However, in the end I only used three corners and reserved one for the power plan area. Additional sram can also be allocated via B*-tree algorithm.