HEAT SINK SUBSTRATE FOR SEMICONDUCTOR DEVICE AND ITS MANUFACTURE

Patent number:

JP6310620

Publication date:

. 1994-11-04

Inventor:

OMACHI MASAHIRO; FUKUI AKIRA; MATSUMURA JUNZO

Applicant:

SUMITOMO ELECTRIC INDUSTRIES

Classification:

- international:

H01L23/14

- european:

Application number: JP19930123600 19930427
Priority number(s): JP19930123600 19930427

Abstract of JP6310620

PURPOSE:To provide a reliable heat sink substrate for a semiconductor device at a low cost wherein thermal expansion coefficient can be matched to various package materials for a semiconductor element such as Si, GaAs and aluminum, for the defects such as voids and cracks to be eliminated. CONSTITUTION:An Mo-Co infiltrated or baked alloy of Cu content from 5 to 30weight% manufactured by inflation or baking method is plastic-worked, whose work ratio 5-30%, so that, while the heat conductivity is kept the same, the thermal expansion coefficient is reduced.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-310620

(43)公開日 平成6年(1994)11月4日

(51)Int.Cl.⁵

識別記号

庁内整理番号

FΙ

技術表示箇所

H01L 23/14

8719-4M

H01L 23/14

M

審査請求 未請求 請求項の数7 FD (全 6 頁)

(21)出願番号	特願平5-123600	(71)出願人 000002130
		住友電気工業株式会社
(22)出願日	平成5年(1993)4月27日	大阪府大阪市中央区北浜四丁目 5番33号
		(72)発明者 大町 正弘
		兵庫県伊丹市昆陽北一丁目1番1号 住力
		電気工業株式会社伊丹製作所内
		(72)発明者 福井 彰
		兵庫県伊丹市昆陽北一丁目1番1号 住力
		電気工業株式会社伊丹製作所内
		(72)発明者 松村 順三
		兵庫県伊丹市昆陽北一丁目1番1号 住地
		電気工業株式会社伊丹製作所内
		(74)代理人 弁理士 中村 勝成 (外1名)

(54) 【発明の名称 】 半導体装置用放熱基板及びその製造方法

(57)【要約】

【目的】 半導体素子のSiやGaAs並びにアルミナ 等の各種パッケージ材料と熱膨張係数を整合させること ができ、空孔や亀裂等の欠陥をなくした信頼性の高い半 導体装置用放熱基板を低コストで提供する。

【構成】 溶浸法又は焼結法により製造したCu含有量 5~30重量%のMo-Cu溶浸又は焼結合金に加工率 5~30%の塑性加工を施すことにより、熱伝導率を同じに維持したまま、熱膨張係数を低減させた半導体装置用放熱基板。

10

【特許請求の範囲】

【請求項1】 塑性加工を施したCu含有量5~30重 量%のMo-Cu溶浸又は焼結合金からなる半導体装置 用放熱基板。

【請求項2】 Cu含有量が10~20重量%であると とを特徴とする、請求項1に記載の半導体装置用放熱基 板。

【請求項3】 空孔が存在せず、密度比がほぼ100% であることを特徴とする、請求項1又は2に記載の半導 体装置用放熱基板。

【請求項4】 塑性加工を施していないCu含有量が同 一のMo-Cu溶浸又は焼結合金からなる放熱基板に比 べ、熱伝導率が同一で、熱膨張係数が0.5×10-6/ ℃以上低減されていることを特徴とする、請求項1ない し3のいずれかに記載の半導体装置用放熱基板。

【請求項5】 溶浸法又は焼結法によりCu含有量5~ 30重量%のMo-Cu溶浸又は焼結合金を製造し、得 られたMo-Cu溶浸又は焼結合金に加工率5~30% の塑性加工を施すことを特徴とする半導体装置用放熱基 板の製造方法。

【請求項6】 Cu含有量を10~20重量%とするこ とを特徴とする、請求項5に記載の半導体装置用放熱基 板の製造方法。

【請求項7】 塑性加工法が冷間一軸加圧法又は冷間圧 延法であることを特徴とする、請求項5又は6に記載の 半導体装置用放熱基板の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置に用いられ る放熱基板、特にMo-Cu系合金からなる半導体装置 30 用放熱基板、及びその製造方法に関する。

[0002]

【従来の技術】半導体装置用放熱基板には、搭載した半 導体素子から発生される熱を効率良く放熱するため高い 熱伝導度を有することと共に、熱応力を極力小さくする ため半導体素子や各種パッケージ材料と熱膨張係数が近 似していること、即ち熱膨張係数が整合していること、 パッケージの気密性維持や接合部の劣化防止等の信頼性 を確保し且つ所望の放熱性等を確実にするため、空孔や 性に優れることが要求される。

【0003】一方、従来より一般的に使用されている半 導体装置用放熱基板としては、金属材料のCu、W又は Mo、溶浸法により製造される溶浸合金又は焼結法によ り製造される焼結合金でW-Си系又はМο-Си系の 溶浸又は焼結合金、及びクラッド材のCu/Mo/Cu 等がある。しかしながら、これらの材料も上記の全ての 要求を満たすものは少なく、それぞれが長所と短所を有 することから、特定の半導体素子やパッケージとの組み 合わせ等に限って使用している現状である。

【0004】例えば、Cuは熱伝導率が390W/mK と高く且つ経済性にも優れるが、熱膨張係数が16.5 ×10~~/℃と非常に大きいため、半導体素子のSiの 熱膨張係数4.2×10~~/℃及びGaAsの熱膨張係 数6.7×10-°/℃、主なるパッケージ材料であるア ルミナ (A 1, O₃) の熱膨張係数6~9×10⁻⁵/℃と 大きく相違し、この欠点のため小型のLSI、IC、バ ワートランジスタの内で特に製造時にロウ付け接合等の 髙温での熱処理のないものに限って使用されている。

【0005】又、WとMoについては、熱膨張係数がそ れぞれ4.3×10⁻⁶/℃及び4.9×10⁻⁶/℃とSi の熱膨張係数に近似しているものの、通常最も広範に利 用されているパッケージ材料であるアルミナとの熱膨張 係数の差が大きく、この整合性の欠如のためアルミナの バッケージでは補助的な部分にしか使用されていない現 状である。

【0006】Cu/Mo/Cu等のクラッド材では、そ の熱膨張係数を主なパッケージ材料であるアルミナに整 合させるためには、Mo等の基材層の厚さをかなり薄く 20 する必要があるが、クラッド後の厚みのバラツキを抑え て均一化することが技術的に難しいため、基材層が薄く なるほど熱膨張係数や熱伝導率の均一性に欠け、信頼性 が乏しくなるという問題がある。

【0007】W-Cu溶浸又は焼結合金及びMo-Cu 溶浸又は焼結合金は、特公平2-31863号公報に示 されるごとく、W又はMoの多孔質焼結体中にCuを溶 浸させる溶浸法か、W又はMo粉末とCu粉末を混合し て焼結する焼結法により製造され、Cu含有量を変える ととによって熱伝導率を変化させ、且つまた熱膨張係数 を半導体素子やパッケージ材料の熱膨張係数に整合させ ることが可能である。例えば、Cu含有量を少なくすれ ば熱膨張係数が低下し、数重量%のCu含有量でアルミ ナと熱膨張係数の整合を得ることができる。

【0008】しかし、W-Cu溶浸又は焼結合金及びM o-Cu溶浸又は焼結合金は、W又はMoの含有量が多 くなるほど原料コストがかさむうえ、溶浸法によるW− Cu又はMo-Cu溶浸合金の場合は、余剰のCuが表 面に付着するため全面切削加工してこれを除去するが、 この切削加工により面粗さが粗くなるのでその後ラップ 亀裂等の欠陥が存在しないこと、及び低コスト即ち経済 40 加工を行う必要があり、このため後加工工程が長くなっ てコスト高になる欠点がある。又、W又はMoの含有量 を多くするほど比重が大きくなり、特に₩-Cu溶浸又 は焼結合金では比重の大きさが半導体装置の軽量化の点 で障害となっている。

> 【0009】更に、W-Cu溶浸又は焼結合金及びMo -Cu溶浸又は焼結合金は、W又はMoの含有量が多く なるにつれて空孔等の欠陥が生じやすく、特に焼結法に よる場合には溶浸法のようにWやMoの骨格が形成され ないので、W又はMoの含有量を増やすほどCu部に微 50 小な空孔等の欠陥が生じ易くなる欠点がある。空孔等の

10

欠陥が存在する放熱基板は、メッキを施した場合に欠陥 部分にメッキの膨れ、染み、ムラ等が発生し、又パッケ ージとの接合部が欠陥により劣化して気密性や耐熱衝撃 性が損なわれるため、信頼性を要求される半導体装置用 放熱基板としては殆ど使用されていない現状である。

[0010]

【発明が解決しようとする課題】本発明は、かかる従来 の事情に鑑み、半導体素子のSiやGaAs並びに各種 パッケージ材料、特にアルミナと熱膨張係数を整合させ ることができ、空孔や亀裂等の欠陥をなくした信頼性の 高いMo-Cu溶浸又は焼結合金からなる半導体装置用 放熱基板を、低コストで提供することを目的とする。

【課題を解決するための手段】上記目的を達成するた め、本発明が提供する半導体装置用放熱基板は、塑性加 工を施したCu含有量5~30重量%のMo-Cu溶浸 又は焼結合金からなることを特徴とする。

【0012】又、本発明の半導体装置用放熱基板の製造 方法は、Cu含有量5~30重量%のMo-Cu合金を 溶浸法又は焼結法により製造し、得られたMo-Cu溶 20 浸又は焼結合金に加工率5~30%の塑性加工を施すこ とを特徴とする。

[0013]

【作用】溶浸法又は焼結法によるMo-Cu合金は放熱 基板材料として既に知られているが、本発明者等はこの Mo-Cu溶浸又は焼結合金に塑性加工を施すことによ って、塑性加工前と同じ熱伝導率を維持しながら、塑性 加工前よりも熱膨張係数が大幅に低下することを見いだ した。例えば、Mo-Cu溶浸合金を加工率10%で塑 性加工した場合、塑性加工前後の熱膨張係数(800 °C)はCu含有量によって図1に示すごとく変化する。 この理由は現時点では明らかでないが、塑性加工によっ て合金の複合化構造が一層ミクロに微細化されるためと 考えられる。

【0014】この図1から判るように、加工率10%の 塑性加工を加えることによって得られる本発明のMo-Cu溶浸又は焼結合金の熱膨張係数は、塑性加工を施し ていないCu含有量が同一の従来のMo-Cu溶浸又は 焼結合金に比べ、熱膨張係数が約1.0×10⁻゚/℃低 滅される。しかも、各Cu含有量毎に図1の括弧中に付 40 記した通り、Mo-Cu溶浸又は焼結合金の熱伝導率は 塑性加工の前後で変わらない。又、図1中に点線で示し た熱膨張係数7.0~8.0×10⁻⁶/℃の範囲は、バッ ケージ材料として汎用されているアルミナとの組み合わ せで許容できるMo-Cu溶浸又は焼結合金の熱膨張係 数の範囲である。

【0015】従って、熱膨張係数をアルミナと整合させ るため例えば7.5×10-°/℃に定める場合、従来の Mo-Cu溶浸又は焼結合金(塑性加工なし)では95 も120W/mKと低くなるが、本発明のMo-Cu溶 浸又は焼結合金によれば85重量%の少ないMo含有量 で良く、しかもCu含有量の増加によって低コストで且 つ熱伝導率も約160W/mK程度に増加した放熱基板 を得ることが出来る。

【0016】との様に、本発明の塑性加工を施したMo -Cu溶浸又は焼結合金からなる放熱基板は、塑性加工 を施していないCu含有量が同一のMo-Cu溶浸又は 焼結合金からなる放熱基板に比べ、熱伝導率が同一であ りながら、熱膨張係数を低減することが出来る。又、塑 性加工を施していない熱膨張係数が同一のMo-Cu溶 浸又は焼結合金からなる放熱基板に比べれば、Cu含有 **量及び熱伝導率を増加させることができ、より低コスト** の放熱基板を提供することが可能となる。

【0017】又、本発明の放熱基板では、Mo含有量の 低減によりMo-Cu溶浸又は焼結合金の比重が小さく なり、特に同程度の熱膨張係数のW-Cu溶浸又は焼結 合金の放熱基板に比べ比重が約60%小さくなるので、 半導体装置の軽量化にも適している。

【0018】本発明においては、Mo-Cu溶浸又は焼 結合金の熱膨張係数はCu含有量と塑性加工の加工率に より精密に調整することができ、且つ熱膨張係数の低減 の程度は塑性加工の加工率に依存する。この加工率が5 %未満では熱膨張係数の低減は僅かであるが、熱膨張係 数を塑性加工前に比べて有意差のある0.5×10-6/ ℃以上低減させるためには5%以上の加工率が必要であ る。しかし、加工率が30%を越えると塑性加工の巾方 向端に割れが生じ易くなるので、5~30%の加工率が 好ましい。

30 【0019】又、本発明に係わるMo-Cu溶浸又は焼 結合金のCu含有量は、放熱基板としてMo基板に比べ て利用価値のある5重量%以上であり、且つ熱膨張係数 の点で放熱基板として通常利用できる範囲を考慮して3 0重量%以下とする。特に、パッケージ材料として最も 広く使用されているアルミナと組み合わせる場合には、 熱膨張係数の整合を得るため、Cu含有量を10~20 重量%とすることが好ましい。

【0020】尚、本発明に係わるMo-Cu溶浸は、合 金のCu含有量と塑性加工の加工率により定まる熱膨張 係数に応じ、放熱基板として各種の半導体素子又はパッ ケージ材料等と組み合わせて利用出来る。例えばCu含 有量が5重量%の合金は図1から判るように加工率10 %で約6.5×10⁻⁶/℃の熱膨張係数となり、GaA s 半導体素子を支障なく搭載し得る。又、絶縁材フォル ステライトは熱膨張係数が10.6×10-5/℃である から、Cu含有量30重量%で加工率10%のMo-C u溶浸又は焼結合金の熱膨張係数と良く一致している。 【0021】次に、本発明の放熱基板の製造方法につい て説明する。本発明方法は、公知の溶浸法又は焼結法に 重量%のMo含有量が必要で、必然的に高価で熱伝導率 50 よりMo-Cu合金を製造し、この合金に塑性加工を施 5

してMo-Cu溶浸又は焼結合金からなる放熱基板とするものである。

【0022】Mo-Cu溶浸又は焼結合金の製造方法として、まず溶浸法ではMo粉末を加圧成形し、との成形体を非酸化性雰囲気中で所定の空孔を有するように焼結し、得られた多孔質焼結体に溶融させたCuを含浸させる。具体的には、平均粒径1~40μmのMo粉末を加圧成形した後、1300~1600℃の非酸化性雰囲気中で焼結して空孔率を調節した多孔質焼結体を製造し、これにCuを含浸させることによりMo-Cu溶浸合金 10が得られる。

【0023】Mo粉末の平均粒径が1μm未満では粉末コストが高くなり、逆に40μmを越える粗粒ではMo粒子が焼結時の粒成長により更に粗大化し、熱伝導率のバラツキが大きくなるから好ましくない。尚、Mo粉末は粗粒と微粒を適度に混ぜて使用すると、成形性並びに焼結性が改善され好ましい。焼結雰囲気については非酸化性雰囲気であれば良いが、中でも水素雰囲気又は真空雰囲気が好ましい。しかし、焼結温度については、1300℃未満では充分な強度を持ったMo骨格が形成されず、1600℃を越えると焼結が進行し過ぎるため一部に独立空孔が生じ、所望のCu含有量が得られないので、1300~1600℃とする必要がある。

【0024】焼結法においては、Mo粉末とCu粉末を混合して加圧成形し、成形体を非酸化性雰囲気中で焼結する。具体的には、平均粒径1~40μmのMo粉末とCu粉末を混合し、加圧成形した後、1300~1600℃の非酸化性雰囲気中で焼結することによって、焼結と同時にCuがMo粒子の間に充填されてMo-Cu焼結合金が得られる。尚、焼結法における原料粉末、焼結雰囲気及び焼結温度の考え方は、溶浸法と同様である。

【0025】本発明方法においては、上記溶浸法又は焼結法のいずれかにより製造したMo-Cu溶浸又は焼結合金を更に塑性加工するのであるが、溶浸法と焼結法のいずれによるか、及び塑性加工の方法並びにその加工率の選定については、放熱基板としての用途及び生産形態等に応じて適宜選ぶことが出来る。又、塑性加工法については、熱間又は温間で塑性加工すれば少ない荷重でより高い加工率を達成することが可能であるが、Cuの酸化防止あるいは設備の保守等を考慮すると冷間での塑性加工が望ましく、特に冷間一軸加圧法又は冷間圧延法が好ましい。尚、塑性加工の加工率は前記の通り5~30%が好ましい。

【0026】従来の溶浸法で製造する放熱基板では、Mo-Cu溶浸合金の表面に付着した余剰のCuを全面切削加工で除去し、更に切削加工により粗くなった表面をラップ加工する必要があったため、後加工工程が長くな*

*って放熱基板がコスト高になっていた。これに対し本発明方法によれば、塑性加工を行うためラップ加工を省略又は大幅に軽減することができ、Mo含有量の低減と相俟って、放熱基板のコストを大幅に低減することが出来る。

【0027】更に、従来のMo-Cu溶浸又は焼結合金ではMo含有量が多くなるにつれて空孔等の欠陥が多発していたが、本発明方法では塑性加工を行うので、空孔等の欠陥を無くし、合金の密度比をほぼ100%にするとかできる。その結果、放熱基板にメッキを施した場合に欠陥に起因するメッキの膨れ、染み、ムラ等の発生がなくなり、又バッケージとの接合部が欠陥により劣化することがなく、バッケージの気密性や耐熱衝撃性を保持できるため、高い信頼性を要求される用途にも半導体装置用放熱基板として使用できる。

[0028]

【実施例】平均粒径3.0μmのMo粉末を2ton/cm²の圧力で型押成形し、寸法が100mm×50mm×3mmの成形体を作製し、水素ガス雰囲気中において1300~1600℃で焼結し、Moの多孔質焼結体を製造した。その後、この多孔質焼結体を水素ガス雰囲気中で1100~1400℃に加熱し、溶融したCuを多孔質焼結体の空孔内に含浸させて、表1に示す溶浸法による各Mo-Cu溶浸合金を得た。

【0029】一方、平均粒径3.0μmのMo粉末と平均粒径2.0μmのCu粉末とを混合し、2ton/cm²の圧力で型押成形して上記と同一寸法の成形体を作製し、水素ガス雰囲気中において1300~1600℃で焼結することによって、表1に示す焼結法による各M30 o-Cu焼結合金を製造した。

【0030】かくして得られた溶浸法と焼結法の各Mo-Cu溶浸又は焼結合金を、表面の余剰Cuや汚れを除去するために表面粗研削し、寸法を80mm×40mm×2mmに加工した。その後、各Mo-Cu溶浸又は焼結合金から試料片を切り出して、それぞれ塑性加工前の熱伝導率及び熱膨張係数を測定した結果を表1に示した。

【0031】その後、各Mo-Cu溶浸又は焼結合金について、表1に示すように冷間圧延法又は冷間一軸加圧 40 法により加工率3~35%の塑性加工をそれぞれ施した。塑性加工後の各Mo-Cu溶浸又は焼結合金から試料片を切り出し、それぞれ塑性加工後の熱伝導率及び熱膨張係数を測定した結果を表1に併せて示した。尚、熱伝導率は塑性加工の前後で変化が無かった。

[0032]

【表1】

 Cu量
 合金 熱伝導率
 冷間塑性
 加工率
 熱膨張係数(×10° / ° °)

 試料
 (wt%)
 製法
 (w/mk)
 加工方法
 (%)
 塑性加工前
 塑性加工後

 1
 5
 溶浸
 120
 圧延ロール
 10
 7.5
 6.5

	7						8
2	10	"	140	"	10	8.0	7.0
3	20	"	180	"	10	9.1	8.0
4	25	"	190	"	10	10.0	8.9
5	30	"	200	"	10	12.1	11.0
6	5	焼結	110	"	10	7.4	6.5
7	10	"	130	"	10	7.9	7.0
8	20	"	170	"	10	9.1	8.2
9	25	"	180	"	10	10.5	9.0
10	30	"	190	一軸加圧	10	13.0	11.0
11	10	溶浸	140	"	10	8.0	7.0
12	10	焼結	130	圧延ロール	10	7.9	7.0
13	10	溶浸	140	"	25	8.0	6.8
14	10	"	140	"	5	8.0	7.2
15	10	焼結	130	"	25	7.9	6.8
16	10	"	130	"	5	7.9	7.2
17*	10	溶浸	140	"	3	8.0	7.9
18*	10	"	140	"	35(割れ)	8.0	6.5

(注)表中の*を付した試料は比較例である。

【0033】表1の結果から判るように、塑性加工における加工率が3%の試料17では熱膨張係数の低減が極 20めて少なく、加工率が35%の試料18は熱膨張係数が低減されるものの塑性加工後に巾方向端部に割れが生じ、放熱基板として品質が不適当であった。一方、加工率が10%及び25%の本発明の各試料1~16では、合金製造法が溶浸法又は焼結法のいずれであっても、更に塑性加工の方法いかんに拘らず、塑性加工によって高い熱伝導率を維持しながら熱膨張係数が0.7×10-6/℃以上低減されている。

[0035]

【発明の効果】本発明によれば、半導体素子のSiやGaAs並びに各種パッケージ材料、特にアルミナと熱膨 張係数を簡単且つ精密に整合させることができ、空孔や 亀裂等の欠陥が無く信頼性の高いMo-Cu溶浸又は焼 結合金からなる半導体装置用放熱基板を、低コストで提供することが出来る。

【図面の簡単な説明】

【図1】溶浸法によるMo-Cu溶浸合金を加工率10%で塑性加工した時の塑性加工前後の熱膨張係数(800℃)と、Cu含有量との関係を示すグラフである。各Cu含有量毎に括弧中に付記した値は当該合金の熱伝導率である。

【図2】焼結法によるCu含有量10重量%のMo-Cu溶浸合金の塑性加工前における金属組織の電子顕微写真(400倍)である。

【図3】焼結法によるCu含有量10重量%のMo-Cu溶浸合金の塑性加工後における金属組織の電子顕微写真(400倍)である。

【図2】

【図3】

