

Recap

- Regular expressions match patterns to text
- 2. Precision/Recall
- 3. Text Normalization
 - 1. Tokenization
 - 2. Lemmatization
 - 3. Stemming
 - 4. Text Cleaning
 - 5.

Pattern	Expansion	Example
\w	[0-9a-zA-Z_]	<u>A</u> dverb
\W	[^\w]	Hi <u>l</u>
\d	[0-9]	<u>0</u> 07 Bond
\ D	[^0-9]	<u>C</u> risp
\ s	[\r\t\n\f]	Good_news
\\$	[^\s]	G ood news

Tophat Exercise

- Write your favorite regex =)
- Attendance

Learning Goals (Week 3)

- 1. Describe edit distance and its uses
- 2. Apply edit distance algorithm
- 3. Describe text analysis process
- 4. Develop a simple sentiment analyzer
- 5. Describe data annotation

- Given two strings a and b, how similar are they?
 - How many edit steps between a and b?
- Why do we need this?
 - Spellchecking one of the steps of text normalization
 - Bioinformatics DNA similarity with A, C, G and T letters used for representation
 - Speech Recognition

- Various algorithms but in this lecture we will talk about Levenshtein distance.
- Three operations:
 - Insertion
 - Deletion
 - Substitution
- Minimum count of operations between two strings

Two strings and their alignment

d: deletion

s: substitution

i: insertion

- If each operation has a cost of 1, distance is 5.
- If substitution is 2 units of cost, distance is 8.

Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• An alignment:

Given two sequences, align each letter to a letter or gap

Speech Recognition

Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was shot
H Spokesman said the senior adviser was shot dead
S I D
```

• Distance between the real speech and the detected speech shows the performance of the speech recognition system.

How to calculate min edit distance?

- We need to search for a path between the two strings using the operators.
- Initial state: the word we are transforming
- Operators: insert, delete, substitute
- Goal state: the word we are trying to reach
- Path cost: the number of edits (goal is minimizing this)

Defining the edit distance problem

- For two strings X→Y
 - X of length n
 - Y of length m
- We define D(i,j)
 - the edit distance between X[1..i] and Y[1..j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - The edit distance between X and Y is thus D(n,m)

Brute Force Approach

- Solving from the ith character of the X and jth character of Y assume we know D(i, j)
- If they are the same solve the problem for D(i+1,j+1)
- If not,
 - Apply deletion solve the problem for D(i+1,j)
 - Apply insertion solve the problem for D(i,j+1)
 - Apply substitution solve the problem for D(i+1, j+1)
- Recursively solve the problem for every step

Brute Force Approach

- Algorithmic Complexity?
 - O(3^n)
- At worst 3 options at every step.
- Lots of sub-problems solved multiple times.
- Let's say,
 - we make $s \rightarrow solve D(i+1, j+1)$
 - we make i-d \rightarrow solve D(i+1, j+1)
- We do not need to compute it again.

Memoization Method

- Keep a cache for already computed solutions
- If we make $s \rightarrow solve D(i+1, j+1)$
- Keep the solution in a cache
- When we come across D(i+1,j+1) again, we know the solution.
- More space needed O(n^2)
- Compute all paths and take the minimum

Tabulation Method

- Most optimized method
- Uses dynamic programming
- Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Dynamic Programming

- Solving problems by combining solutions to subproblems
 - Break the main problem into sub-problems
 - Solve the sub-problems optimally
 - Use these solutions to solve the main problem
- Will come up in interview questions
- Not really easy to design once designed well, easy to solve

Tabulation Method

Initialization

```
D(i,0) = i

D(0,j) = j
```

Recurrence Relation:

```
For each i = 1...M

For each j = 1...N

D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases}
D(i,j-1) + \begin{cases} 1; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}
```

Termination:

```
D(N,M) is distance
```

N	9									
0	8									
I	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
I	1							_		
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

N	9									
0	8									
I	7									
				(D(i	-1,j) +	1				
Т	6		D(i,j)=	min \(\frac{1}{2} D(i)	. , j−1) +	1 (! 6 37/! \	/ 37 / - \		
N	5				1,]-1)	+ {1; 1	if X(<u>i</u>) =	≠ Y(j) = Y(j)		
Е	4									
Т	3									
N	2									
I	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

The Edit Distance Table
$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases}$$
 $\begin{cases} 1; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}$

N	9	8								
0	8	7								
I	7	6								
Т	6	5								
N	5	4								
Е	4	3								
Т	3	3								
N	2	2								
I	1	1								
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

The Edit Distance Table
$$D(i,j) = \min$$

$$\begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases}$$

$$\begin{cases} 1; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$

N	9	8	8	8	8	8	8	7	6	5
0	8	7	7	7	7	7	7	6	5	6
Ι	7	6	6	6	6	6	6	5	6	7
Т	6	5	5	5	5	5	5	6	7	8
N	5	4	4	4	4	5	6	7	7	7
Е	4	3	4	3	4	5	6	6	7	8
Т	3	3	3	3	4	5	5	6	7	8
N	2	2	2	3	4	5	6	7	7	7
I	1	1	2	3	4	5	6	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

- We know the minimum edit distance
- How about the path?
- How do we know where to use i/d/s?
- Keep four information in each cell backtrack from the minimum value

Cost of getting here from left neighbor (insert)	The minimum of three possible movements
Cost of getting here from lower left neighbor (copy or substitute)	Cost of getting here from lower neighbor (delete)

Distance from Crab → Ruby

В		4								
		4								
Α		3								
		3								
R		2								
		2								
С		1	2	1						
		1	1	2						
#		0	1	1	2	2	თ	თ	4	4
	#		R		U		В		Υ	

В		4								
		4								
Α		თ								
		3								
R		2								
		2								
С		1	2	1						
		1	1	2						
#		0	1	1	2	2	3	3	4	4
	#		R		U		В		Υ	

В		4								
		4								
Α		3								
		3								
R		2								
		2								
С		1	2	1	2	2				
		1	1	2	2	3				
#		0	1	1	2	2	3	3	4	4
	#		R		U		В		Υ	

В		4								
		4								
Α		3								
		3								
R		2								
		2								
С		1	2	1	2	2	ო	3		
		1	1	2	2	3	3	4		
#		0	1	1	2	2	3	3	4	4
	#		R		U		В		Υ	

В		4								
		4								
Α		3								
		3								
R		2								
		2								
С		1	2	1	2	2	თ	3	4	4
		1	1	2	2	ന	3	4	4	5
#		0	1	1	2	2	3	3	4	4
	#		R		U		В		Υ	

Fill up the rest of the table

В		4								
		4								
Α		3								
		3								
R		2								
		2								
С		1	2	1	2	2	3	3	4	4
		1	1	2	2	3	3	4	4	5
#		0	1	1	2	2	3	3	4	4
	#		R		J		В		Υ	

В		4	5	3	4	3	4	2	3	3
		4	4	3	3	3	2	4	4	5
Α		3	4	2	3	2	3	3	4	4
		3	3	2	2	3	3	4	4	5
R		2	3	1	2	2	3	3	4	4
		2	1	2	2	3	3	4	4	5
С		1	2	1	2	2	3	3	4	4
		1	1	2	2	3	3	4	4	5
#		0	1	1	2	2	3	3	4	4
	#		R		U		В		Υ	

В		4	5	3	4	3	4	2	34	3
		4	4	3	3	3	2	4	4	5
Α		3	4	2	3	2	3	3	4	4
		3	3	2	12	3	3	4	4	5
R		2	3	7	2	2	3	3	4	4
		2	1	2	2	3	3	4	4	5
С		1	2	1	2	2	3	3	4	4
		4	1	2	2	3	3	4	4	5
#		0	1	1	2	2	3	3	4	4
	#		R		U		В		Υ	

Now we know how we arrived at 3 distance

В		4	5	3	4	3	4	2	34	3
		4	4	3	3	3	2	4	4	5
Α		3	4	2	3	2	3	3	4	4
		3	3	2	2	3	3	4	4	5
R		2	3	1	2	2	3	3	4	4
		2	1	2	2	3	3	4	4	5
С		1	2	1	2	2	3	3	4	4
		•	1	2	2	3	3	4	4	5
#		0	1	1	2	2	3	3	4	4
	#		R		U		В		Υ	

Now we know how we arrived at 3 distance

cost	operation	input	output	
1	insert	*	Υ	
0	сору	В	В	
1	substitute	Α	U	
0	сору	R	R	
1	delete	С	*	

- The costs were unit substituting s → o is same with s→d
- However, using qwerty keyboards the latter is more probable
- Using Nokia 3310, x

 y is more probable than a keyboard

- Distance between two strings in terms of the number of edits needed to reach from one to another
- Spellchecking
- Bioinformatics
- Speech analysis
- Machine translation
- ...

Text Analysis Pipeline

- First week, we showed some examples analyzing corpora statistically
- We use NLP to analyze and classify texts for given tasks
- Steps of analysis:
 - Dataset selection and exploration (Week 1)
 - Text Pre-processing (Week 1-2)
 - Feature Extraction (Week 4-5)
 - Classification (Week 5)
 - Evaluation (Week 5)
- How to train and evaluate using annotations and labels (Week 3)

Sentiment Analysis Example

- Predict whether an opinion expressed in a text is positive or negative
 - Movie Reviews
 - Product Reviews
 - Opinions about political figures

A lot of decisions for the development

- What is the input data? sentence-level, full review, meta-data (star ratings)
- Possible outputs positive, negative, or number of stars?
- Decision algorithm summing sentiment scores, supervised learning with labels,
- Evaluation method

Decisions

- Full-text only data
- + or output
- Dictionary-based sentiment score calculation
- Accuracy # correct / # total

Sentiment Lexicons

- Lexicon: (a list of) all the words used in a particular language or subject, or a dictionary (Cambridge Dictionary)
- Sentiment Lexicons list of positive and negative words

Positive:			Negative:		
absolutely adorable accepted acclaimed accomplish achieve action active admire adventure affirm	beaming beautiful believe beneficial bliss bountiful bounty brave bravo brilliant bubbly	calm celebrated certain champ champion charming cheery choice classic classical clean	abysmal adverse alarming angry annoy anxious apathy appalling atrocious awful	bad banal barbed belligerent bemoan beneath boring broken	callous can't clumsy coarse cold collapse confused contradictory contrary corrosive corrupt

From http://www.enchantedlearning.com/wordlist/

Sentiment Prediction

- Simple: # positive # negative
- Some words might be stronger in sentiment than others
 - Extremely Fairly
 - Great Good
 - Disgusting Unpleasant
- Weighted scores might be needed

Simple counting disadvantages

- Sarcasm! not easy to determine whether positive words used positively
- Negation not great?
- The text might not reflect the opinion of the author but others
- Movie reviews explaining the character but not the opinion
- Instead of counting tokens, labels could be used for training the data

Annotation

- Gold standard labels given to data
 - To train and evaluate the performance of classifiers,
 ML systems
- Movie_reviews positive, negative
- Sarcasm detection sarcastic, not sarcastic
- News labels health, sports, entertainment, ...

Play Annotator - Sarcasm

sarcasm: the use of remarks that clearly mean the opposite of what they say, made in order to hurt someone's feelings or to criticize something in a humorous way. – Cambridge Dictionary

Given following sentences, annotate each either sarcastic or notsarcastic.

- Really, Sherlock? No! You are clever.
- I'm glad we're having a rehearsal dinner. I rarely practice my meals before I eat.
- You look really nice today!
- I am glad I had my coffee for today.
- I like chocolates.

Annotators

- Gold == Perfect
- People can label incorrectly
- Some labels might be subjective or ambiguous sarcasm, hate speech, etc.
- People bring their biases

Annotation Guidelines

- Follow a guideline to have reliable annotations
- Guideline created iteratively documenting steps
- Common understanding by the annotators and people who use these annotated dataset
- Penn Treebank POS Guidelines 3 pages on adjectives vs verbs

It is human to err

- Even with perfect guidelines there could be incorrect labels
- Hitting wrong button
- Not reading fully
- Getting distracted by other things
- Cases that were not covered in guidelines

How can we measure the quality of annotations?

Inter-Annotator Agreement

- Have multiple people label the same data
- Compare the labels percentage of agreement
- Ideally, 100% of the labels would be agreed by all
- Not commonly the case
- Different tasks have different thresholds for acceptable agreement rates

Inter-Annotator Agreement

- If the agreement is low, reinspection on the data and iteration on the guideline is required.
- The human agreement rate is used as a benchmark for the algorithm performance on the task

Where to find annotators?

- Small datasets annotated by a few people
- What about large datasets?
- Not feasible to annotate by the same people
- Crowdsourcing!

Crowdsourcing

- Using the wisdom of the crowd
- Amazon Mechanical Turk, Prolific Academic, etc. to recruit people
- Easier to find people to annotate but also might need more training to ensure quality

Crowdsourcing

- 5+ annotators for each data
- Test data with known labels reject people who consistently fail them
- Might be really expensive to achieve quality labels

Next Steps on Analysis

- Once we have our data and labels
 - Extract features from the data
 - Train systems with given labels
 - Test systems on the unseen data
- When we do not have labels, unsupervised learning could be used – more on this later
- Language models and feature extraction next weeks
- Classification week 5

Learning Goals (Week 3)- revisited

- 1. Describe edit distance and its uses
- 2. Apply edit distance algorithm
- 3. Describe text analysis process
- 4. Develop a simple sentiment analyzer
- 5. Describe data annotation

Following lectures

Language Models

Further resources

- Jurasky & Martin, Chapter 2
- Peter Norvig's Spellchecker https://norvig.com/spell-correct.html
- https://www.yourdictionary.com/articles/examplessarcasm-meaning-types