Отчет

Кафедра суперкомпьютеров и квантовой информатики факультета ВМК МГУ имени М.В. Ломоносова Кафедральный практикум 3 курс

Задание №3 Параллельная программа на OpenMP+MPI, которая реализует однокубитное квантовое преобразование Адамара с шумами.

Жердев И.П. 323 группа

Схема параллельного алгоритма и хранения распределенных данных

1. Чтение данных из файла каждым из процессов:

Данные распределяются по процессам равно без остатка в естественном порядке (ordered).

Число процессов 2/m

2. Вычисление части выходного вектора на данном процессе:

По формуле для однокубитного преобразования.

Если требуются данные из части вектора, которая недоступна на данном процессе, происходит межпроцессный обмен (send recv)

Локальные вычисления на каждом процессе распараллелены с ОМР.

3. Выходной вектор выводится в файл:

Аналогично чтению.

Замеры времени работы на Bluegene HPC

Количество кубитов — 28

Точность е = 0.01

Количество вычислитель ных узлов	Количество ядер используемых в узле	Время работы программы (сек)	Ускорение
16	1	30,764215	1
	2	17,637573	1,7442430997
	4	11,075619	2,7776519759
32	1	15,71953	1,9570696452
	2	9,181529	3,3506635986
	4	5,915609	5,2005152808
64	1	8,206907	3,748576047
	2	4,951889	6,2126220923
	4	3,323409	9,2568248446
128	1	4,455869	6,9042009538
	2	2,833516	10,857258261
	4	2,024185	15,198321794
256	1	2,40456	12,7941141
	2	1,596655	19,267916363
	4	1,194315	25,75887852

Отчет

Значение потерь точности при точности Е = 0,01

Количество вычислительных узлов – 128

Точность е = 0.01

Количество кубитов – 24

Среднее значение потерь точности – 0,002496

Распределение:

Количество кубитов – 25

Среднее значение потерь точности – 0,002530

Распределение:

Количество кубитов – 26 Среднее значение потерь точности – 0,002575 Распределение:

Среднее значение потерь точности – 0,002778 Распределение:

Количество кубитов – 28 Среднее значение потерь точности – 0,003007 Распределение:

Среднее значение потерь точности при точности Е = 0,01							
Кубитов	24	25	26	27	28		
Ср.зн.п.точн.	0,002496	0,002530551724	0,0025752414	0,0027784138	0,0030076897		

Отчет Значение потерь точности при различных значениях точности Число кубитов – 26

Выводы

Использование технологий OMP+MPI позволило добиться ускорения программы. Зашумление приводит к потерям точности. Увеличение числа кубитов в векторе состояния приводит к росту потерь точности в связи с ростом числа операций.