Foundations for Natural Language Processing Lecture 14 Syntax and Parsing

Ivan Titov

(with slides from Ivan Titov, Alex Lascarides, Sharon Goldwater, Mark Steedman, and Marco Kuhlmann)

Plan

- Finish with tagging: Unsupervised Estimation with HMMs (EM for HMMs)
- Start with Syntax and Parsing

Recap: Hidden Markov Models

We will consider the part-of-speech (POS) tagging example

John	carried	a	tin	can	•
NNP	VBD	DT	NN	NN	•

- A "generative" model, i.e.:
 - Model: Introduce a parameterized model of how both words and tags are generated $P(\mathbf{x}, \mathbf{y} | \theta)$
 - Learning: use a labeled training set to estimate the most likely parameters of the model $\hat{\theta}$
 - **Decoding:** $\hat{\mathbf{y}} = \arg \max_{\mathbf{y}} P(\mathbf{x}, \mathbf{y} | \theta)$

Recap: Viterbi

a_{ij}	STOP	NN	VB	JJ	RB
START	0	0.5	0.25	0.25	0
NN	0.25	0.25	0.5	0	0
VB	0.25	0.25	0	0.25	0.25
IJ	0	0.75	0	0.25	0
RB	0.5	0.25	0	0.25	0

b_{ik}	time	flies	fast			
NN	0.1	0.01	0.01		•••	
VB	0.01	0.1	0.01			
JJ	0	0	0.1			
RB	0	0	0.1	•••	•••	•••

Initialization:
$$\begin{aligned} v_i^1 &= a_{START,i} b_{i,x^1}, \quad i=1,\ldots,N;\\ v_j^t &= \left(\max_i v_i^{t-1} a_{ij}\right) b_{j,x^t}, \ j=1,\ldots,N, \ t=2,\ldots,|x|\\ v_{STOP}^{|\mathbf{x}|+1} &= \max_i v_i^{|\mathbf{x}|} a_{i,STOP} \end{aligned}$$
 Final:

	time ₁	flies ₂	fast ₃	-
NN	0.05	1.25E-4	6.25E-6	-
VB	0.0025	0.0025	6.25E-7	-
JJ	0	0	6.25E-5	-
RB	0	0	6.25E-5 x 0.5	-
STOP	-	-	-	6.25E-5 x 0.5

Recap: computing the likelihood

From the probability theory we know

$$P(x|\theta) = \sum_{y} P(x, y|\theta)$$

- But there are an exponential number of sequences y
- Again, by computing and storing partial results, we can solve efficiently.

Recap: Forward algorithm (~ a modification of Viterbi)

Initialization:
$$v_j^1 = a_{START,j}b_{j,x^1}, \quad j=1,\dots,N;$$
 Recomputation:
$$v_j^t = \Big(\sum_i v_i^{t-1}a_{ij}\Big)b_{j,x^t}, \quad j=1,\dots,N, \quad t=2,\dots,|x|$$
 Final:
$$v_{STOP}^{|\mathbf{x}|+1} = \sum_i v_i^{|\mathbf{x}|}a_{i,STOP}$$

Recap: EM for Naïve Bayes

		Bayes	your	model	cash	Viagra	class	orderz	spam?
labeled data	lab doc I	0	I	3	0	0	2	0	-
	lab doc 2	0	2	0	4	0	0	0	+
	lab doc 3	0	2	2	0	0	3	0	-
	lab doc 4	0	3	2	I	3	0	1	+
	lab doc 5	0	1	0	2	0	0	1	+
eq		2 × 0.53	2 x0.53	0	0	0	0	0	+ (.53)
unlabeled data	unl doc 2	2 × 0.47	2 × 0.47	0	0	0	0	0	- (.47)

$$\hat{P}(\text{your}|+) = (6 + 2 \times 0.53 + \alpha)/(20 + 4 \times 0.53 + \alpha * F)$$

$$\hat{P}(\text{your}|-) = (3 + 2 \times 0.47 + \alpha)/(13 + 3 \times 0.47 + \alpha * F)$$

$$\hat{P}(\text{Bayes}|+) = (2 \times 0.53 + \alpha)/(20 + 4 \times 0.53 + \alpha * F)$$

$$\hat{P}(\text{Bayes}|-) = (2 \times 0.47 + \alpha)/(13 + 4 \times 0.47 + \alpha * F)$$

$$\hat{P}(\text{spam}) = \frac{3 + 0.53}{5 + 1}$$

This is just for one data point

EM for Semi-supervised Learning

- I. Train NB on labeled data alone
- → 2. Make soft prediction on on unlabelled data ("E-step")
- 3. Recompute NB parameters using the soft counts

HMM and Unsupervised Estimation

- N − the number tags, M − vocabulary size
- Parameters (to be estimated from the training set):
 - Transition probabilities $a_{ji} = P(y^t = i | y^{t-1} = j)$, A [N x N] matrix
 - ullet Emission probabilities $b_{ik}=P(x^t=k|y^t=i)$, B [N x M] matrix
- Training corpus:
 - $x^{(1)}$ = (In, an, Oct., 19, review, of, ...)
 - $x^{(2)}=$ (Ms., Haag, plays, Elianti,.)
 - **...**
 - $x^{(L)}$ = (The, company, said,...)

Estimation is trickier: no examples labelled with the right 'answers': all we see are outputs, state sequence is hidden.

Circularity

- If we know the state sequence, we can find the best parameters
 - ▶ E.g., use MLE / normalized counts
- If we know parameters, we can find the best state sequence
 - Use Viterbi
- But we do not know them either

Does not fit the self-training algorithm, but can we make EM work in this setting?

Expectation-maximization (EM)

- As in spelling correction, we can use EM to bootstrap, iteratively updating the parameters and hidden variables.
 - ▶ Initialize parameters, A⁽⁰⁾ and B⁽⁰⁾
 - At each iteration k:
 - ▶ E-step: Compute expected counts using $A^{(k-1)}$ and $B^{(k-1)}$
 - M-step: set $A^{(k-1)}$ and $B^{(k-1)}$ using MLE on the expected counts
- ▶ Repeat until doesn't converge (a stopping criteria).

Expected counts??

- Counting transitions from $(y^{t-1} = i, y^t = j)$:
- Real counts:
 - ▶ count I each time we see $(y^{t-1}=i, y^t=j)$ in true tag sequence.
- Expected counts:
 - With current A and B, compute probs of all possible tag sequences.
 - If sequence **y** has probability p, count p for each $(y^{t-1}=i, y^t=j)$ in **y**.
 - Add up these fractional counts across all possible sequences

Example

Notionally, we compute expected counts as follows:

Possi	ble ta	ıg sequ	ence Probability of the sequence
N	N	N	p_1
N	V	N	p_2
N	N	V	p ₃
aa	bb	CC	- Sequence of observations (words)
$C_T(N,$	N) =		

Example

Notionally, we compute expected counts as follows:

Possible tag sequence Probability of the sequence

aa bb cc - Sequence of observations (words)

$$C_T(N, N) = 2 p_1 + p_3$$

Forward-Backward algorithm

- As usual, avoid enumerating all possible sequences.
- Forward-Backward (Baum-Welch) algorithm computes expected counts (using forward probabilities and backward probabilities)

$$P(y^{t-1} = i, y^t = j|x)$$

▶ EM idea is much more general: can use for many latent variable models.

EM

EM is guaranteed to find a local maximum of the likelihood.

- Not guaranteed to find global maximum.
- Practical issues: initialization, random restarts, early stopping.
 Fact is, it doesn't work well for learning POS taggers!

Summary for HMM / Tagging

- HMM : a generative model of sentences using hidden state sequences
- Dynamic programming algorithms to compute
 - Best tag sequence given words (Viterbi algorithm)
 - Likelihood (forward algorithm)
 - Best parameters from unannotated corpus (forward-backward, an instance of EM)

You can read details of forwardbackward in the text-book, not required for the exam (but Viterbi and Forward are)

Syntax

- Basics of Syntax, Context-Free Grammars
- Classes of Syntactic Parsing Algorithms
- Start with the CKY algorithm

Modelling word behaviour

- We've seen various ways to model word behaviour.
 - Bag-of-words models: ignore word order entirely
 - N-gram models: capture a fixed-length history to predict word sequences.
 - ▶ HMMs: also capture fixed-length history, using latent variables.
- Useful for various tasks, but a really accurate model of language needs more than a fixed-length history!

Long-range dependencies

The form of one word often depends on (agrees with) another, even when arbitrarily long material intervenes.

```
Sam/Dogs sleeps/sleep soundly
Sam, who is my cousin, sleeps soundly
Dogs often stay at my house and sleep soundly
Sam, the man with red hair who is my cousin, sleeps soundly
```

We want models that can capture these dependencies.

Phrasal categories

- We may also want to capture substitutability at the phrasal level.
 - POS categories indicate which words are substitutable. For example, substituting adjectives:

I saw a red cat
I saw a former cat
I saw a billowy cat

Phrasal categories indicate which phrases are substitutable. For example, substituting **noun phrase**:

Dogs sleep soundly
My next-door neighbours sleep soundly
Green ideas sleep soundly

This is one example of "constituency test"

Example constituency tests: coordination

- Only constituents (of the same type) can be coordinated using conjunction words like and, or, and but
- Pass the test:

Her friends from Peru went to the show.

Mary and her friends from Peru went to the show.

Should I go through the tunnel?
Should I go through the tunnel and over the bridge?

Fail the test

We peeled the potatoes.

*We peeled the and washed the potatoes.

Example constituency tests: clefting

- Only a constituent can appear in the frame "_____ is/are who/what/where/when/why/how ..."
- Pass the test:

They put the boxes in the basement. In the basement *is where* they put the boxes.

Fail the test

They put the boxes in the basement.

*Put the boxes is what they did in the basement.

Theories of syntax

- A theory of syntax should explain which sentences are well-formed (grammatical) and which are not.
 - Note that well-formed is distinct from meaningful.
 - Famous example from Chomsky:
 - Colorless green ideas sleep furiously
- ▶ However we'll see shortly that the reason we care about syntax is mainly for interpreting meaning.

Theories of syntax

- We'll look at two theories of syntax:
 - Constituency (aka phrase) structures: next two classes
 - Dependency structures: during the last lecture on parsing
- These can be viewed as different models of language behaviour. As with other models, we will look at
 - What each model can capture, and what it cannot.
 - Algorithms that provide syntactic analyses for sentences using these models (i.e., syntactic parser).

Constituent trees

Internal nodes correspond to phrases

S – a sentence

NP (Noun Phrase): My dog, a sandwich, lakes, ...

VP (Verb Phrase): ate a sausage, barked, ...

PP (Prepositional phrases): with a friend, in a car, ...

Nodes immediately above words are PoS tags

PN – pronoun

D – determiner

V – verb

N – noun

P – preposition

Context-Free Grammar

ullet Context-free grammar is a tuple of 4 elements $G=(V,\Sigma,R,S)$

ightharpoonup V - the set of non-terminals

In our case: phrase categories (VP, NP, ..) and PoS tags (N, V, .. – aka preterminals)

 \triangleright \sum - the set of terminals

Words

Proof R is the set of rules of the form $X \to Y_1, Y_2, \ldots, Y_n$, where $n \ge 0$, $X \in V, \ Y_i \in V \cup \Sigma$

lacksquare S is a dedicated start symbol

$$S \rightarrow NP \ VP$$
 $NP \rightarrow D \ N$
 $NP \rightarrow PN$
 $NP \rightarrow NP \ PP$
 $PP \rightarrow P \ NP$
 $N \rightarrow girl$
 $N \rightarrow telescope$
 $V \rightarrow saw$
 $V \rightarrow eat$
 $V \rightarrow eat$

An example grammar

```
V = \{S, VP, NP, PP, N, V, PN, P\}
  \Sigma = \{girl, telescope, sandwich, I, saw, ate, with, in, a, the\}
  S = \{S\}
                                    Inner rules
  R:
  S \rightarrow NP \ VP (NP A girl) (VP ate a sandwich)
       VP \rightarrow V
  VP \rightarrow V \ NP (V ate) (NP a sandwich)
VP \rightarrow VP PP
                    (VP saw a girl) (PP with a telescope)
NP \rightarrow NP PP (NP a girl) (PP with a sandwich)
                    (D a) (N sandwich)
   NP \rightarrow D N
     NP \rightarrow PN
  PP \rightarrow P NP (P with) (NP with a sandwich)
```

Preterminal rules

 $N \rightarrow qirl$ $N \rightarrow telescope$ $N \rightarrow sandwich$ $PN \rightarrow I$ $V \rightarrow saw$ $V \rightarrow ate$ $P \rightarrow with$ $P \rightarrow in$ $D \rightarrow a$ $D \rightarrow the$

S

$$S
ightarrow NP \ VP$$
 $N
ightarrow girl$ $N
ightarrow telescope$ $VP
ightarrow V$ $N
ightarrow sandwich$ $VP
ightarrow VP \ PP$ $PN
ightarrow I$ $V
ightarrow saw$ $V
ightarro$

CFGs

$S \to NP \ VP$	$N \to girl$
	$N \rightarrow telescope$
VP o V	$N \rightarrow sandwich$
$VP \rightarrow V NP$ $VP \rightarrow VP PP$	PN o I
V 1	$V \to saw$
$NP \rightarrow NP PP$	$V \rightarrow ate$
$NP \rightarrow D N$	$P \rightarrow with$
$NP \to PN$	$P \rightarrow in$
	$D \to a$
$PP \rightarrow P \ NP$	$D \to the$

CFG defines both:

- a set of strings (a language)
- structures used to represent sentences (constituent trees)

Structural ambiguity

Some sentences have more than one parse: structural ambiguity.

▶ Here, the structural ambiguity is caused by PoS ambiguity in several of the words. (Both are types of syntactic ambiguity.)

Structural ambiguity

- Some sentences have structural ambiguity even without part-of-speech ambiguity. This is called attachment ambiguity.
 - Depends on where different phrases attach in the tree.
 - Different attachments have different meanings:

I saw a girl with a telescope She ate the pizza on the floor Good boys and girls get presents from Santa

Next slide shows trees for the first example: prepositional phrase (PP) attachment ambiguity.

Prepositional Phrase (PP-) Attachment Ambiguity

Prepositional phrase attachment ambiguity

Copyright @ Ron Leishman * http://ToonClips.com/300

Why context-free?

Why context-free?

Why context-free?

Matters if we want to generate language (e.g., language modeling) but is this relevant to parsing?

Key problems

- Recognition problem: does the sentence belong to the language defined by CFG?
 - That is: is there a derivation which yields the sentence?
- Parsing problem: what is a (most plausible) derivation (tree) corresponding the sentence?

Parsing problem encompasses the recognition problem

Today

- Basics of Syntax and Context-Free Grammars
- Classes of Syntactic Parsing Algorithms
- Start with the CKY algorithm

Parsing algorithms

- Goal: compute the structure(s) for an input string given a grammar.
 - (we may want to use the structure to interpret meaning)
 - As usual, ambiguity is a huge problem.
- For correctness: need to find the right structure to get the right meaning.
- For efficiency: searching all possible structures can be very slow
 - want to use parsing for large-scale language tasks

Parsing is hard

A typical tree from a standard dataset (Penn treebank WSJ)

Canadian Utilities had 1988 revenue of \$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.

Parser properties

All parsers have two fundamental properties:

- Directionality: the sequence in which the structures are constructed.
 - Top-down: start with root category (S), choose expansions, build down to words.
 - Bottom-up: build subtrees over words, build up to S.
 - Mixed strategies also possible (e.g., left corner parsers)
- Search strategy: the order in which the search space of possible analyses is explored.

Parser properties

All parsers have two fundamental properties:

- Directionality: the sequence in which the structures are constructed.
 - Top-down: start with root category (S), choose expansions, build down to words.
 - Bottom-up: build subtrees over words, build up to S.
 - Mixed strategies also possible (e.g., left corner parsers)
- Search strategy: the order in which the search space of possible analyses is explored.

Search space for a top-down parser

- Start with S node.
- Choose one of many possible expansions.
- Each of which has children with many possible expansions...

etc

Search strategies

All parsers have two fundamental properties:

- Depth-first search: explore one branch of the search space at a time, as far as possible. If this branch is a dead-end, parser needs to backtrack.
- Breadth-first search: expand all possible branches in parallel (or simulated parallel). Requires storing many incomplete parses in memory at once.
- Best-first search: score each partial parse and pursue the highest-scoring options first.

We will now consider a bottom-up parser which uses dynamic programming to explore the space

Summary

- Basics of Syntax and Context-Free Grammars
- Classes of Syntactic Parsing Algorithms

Next time:

- CKY algorithm
- Probabilistic parsing with PCFGs
- PCFG parsing beyond treebank grammars