UNIVERSITY COLLEGE LONDON

Candidate No		
Seat No		

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE

COMP3004

ASSESSMENT

COMP3004C

PATTERN

MODULE NAME

Computational Complexity

DATE

04 May 2017

TIME

10:00 am

TIME ALLOWED :

2 hours 30 mins

This paper is suitable for candidates who attended classes for this module in the following academic year(s):

2015/16, 2016/17

<u>Under no circumstances</u> are the attached papers to be removed from the examination by the candidate.

Computational Complexity, COMP3004, 2016-17

Answer BOTH of the TWO questions.

Marks for each part of each question are indicated in square brackets.

Calculators are NOT permitted.

- Q1. Preliminaries: Let $\mathbb{N} = \{0, 1, 2, 3, ...\}$ denote the natural numbers. Let LA(M) denote the language a TM M semidecides.
 - a. Let $L \subseteq \{a, b\}^*$ be the infinite language

$$L = \{ab, aaab, aaaaaab, aaaaaaaab, aaaaaaaab, \ldots\}$$

Design a TM that decides L (draw a state-transition diagram); and describe in detail how your TM functions.

[10 marks]

b. Define $f: \mathbb{N} \to \{0, 1\}$ as follows

$$f(x) := \begin{cases} 0 & x \text{ is even} \\ 1 & x \text{ is odd} \end{cases}$$

Design a URM that computes f (give the program); and describe in detail how your URM functions.

[10 marks]

- c. Let $\Sigma = \{0, 1\}$ and define $S = \{L : L \text{ is a finite language over } \Sigma\}$. Which of the two possibilities holds?
 - 1. S is countable
 - 2. S is not countable.

Give a detailed argument which justifies your answer.

[10 marks]

[Question 1 cont. over page]

d.	. Recall that the set of all languages S_Σ with the alphabet $\Sigma:=\{0,1\}$ is an uncou	
	able set. Let $C_1, C_2, U \subseteq S_{\Sigma}$, where the sets of languages C_1 and C_2 are countable	
	and U is uncountable. The complement of a set C is denoted $\bar{C}:=\{L\in$	
	' }.	
	1. Is the cardinality of $C_1 \cup C_2$,	
	(a) Countable.	
	(b) Uncountable.	
	(c) Dependent on choice of C_1 and C_2 .	
	Give a proof (or detailed explanation) which justifies your answer.	[2 marks]
	2. Is the cardinality of \bar{C}_1 ,	
	(a) Countable.	
	(b) Uncountable.	
	(c) Dependent on choice of C_1 .	
	Give a proof (or detailed explanation) which justifies your answer.	[2 marks]
	3. Is the cardinality of \bar{U} ,	
	(a) Countable.	
	(b) Uncountable.	
	(c) Dependent on choice of U .	
	Give a proof (or detailed explanation) which justifies your answer.	[3 marks]
	4. Is the cardinality of $\bar{C}_1 \cap U$,	
	(a) Countable.	
	(b) Uncountable.	
	(c) Dependent on choice of C_1 and U .	
	Give a proof (or detailed explanation) which justifies your answer.	
		[3 marks]

COMP3004 2 CONTINUED

[Question 1 cont. on next page]

[Question 1 cont.]

e. Let L_{*1*} denote the language that only contains strings with a "1" in them. Hence $0010110 \in L_{*1*}$ but $00 \notin L_{*1*}$.

Given the decision problem,

"Given a TM M does the language that it semidecides contain a string with a '1' in it?"

Consider the corresponding language L, which is

$$L = \{ \operatorname{code}(M) : \operatorname{LA}(M) \cap L_{*1*} \neq \emptyset \}$$

Indicate one of three possibilities

- 1. L is recursive.
- 2. L is recursively enumerable but not recursive.
- 3. L is not recursively enumerable.

Give a proof which justifies your answer.

[10 marks]

- Q2. a. Define the following complexity classes
 - i. NP-complete
 - ii. co-NP.
 - iii. NEXPTIME

[12 marks]

Consider the following decision problem, the All-but-one Circuit Problem (ABCP). An instance is an undirected graph G = (V, E). (V, E) is a yes instance of ABCP if V can be enumerated as $v_0, v_1, v_2, \ldots, v_{k-1}$ in such a way that $(v_1, v_2, \ldots, v_{k-1})$ is a circuit, i.e. for each i with $1 \le i < k-1$ we have $(v_i, v_{i+1}) \in E$ and $(v_{k-1}, v_1) \in E$, otherwise (V, E) is a no instance.

b. For each of the following graphs, state whether it is a yes or a no instance of ABCP.

c. Prove that ABCP is in NP.

[12 marks]

d. Prove that ABCP is **NP-complete**. You may assume that the *Hamiltonian Circuit Problem* (HCP) is **NP-complete**.

[15 marks]