Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II Tutorial Sheet 2

- 1. Test the diagonalizability of the following linear operators
 - (i) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined as Tf = f'.
 - (ii) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ defined as (Tf)(x) = f'(x) + f''(x).
 - (iii) $T: \mathbb{R}^3 \to \mathbb{R}^3$, defined as T(x, y, z) = (4x + y, 2x + 3y + 2z, x + 4z)
 - (iv) $T: \mathbb{C}^2(\mathbb{C}) \to \mathbb{C}^2(\mathbb{C})$ defined as T(w,z) = (w+iz,z+iw).
- 2. Let λ be an eigenvalue of a linear operator T on V, then show that λ^k is an eigenvalue of T^k . Can we generalize the above result, i.e., if λ is an eigenvalue of T and μ is an eigenvalue for S, then $\lambda\mu$ is an eigenvalue for TS?
- 3. Find out the eigenvalues of the matrix $A = \begin{bmatrix} -2 & 10 & -6 \\ 5 & -18 & 15 \\ 3 & -10 & 9 \end{bmatrix}$ without finding roots of characteristic polynomial.
- 4. Show that a diagonalizable linear transformation on a finite dimensional vector space having only one eigenvalue is a scalar multiple of identity operator.
- 5. Let trace of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be α and λ be one of the eigenvalues of T. If the eigenspace corresponding to the eigenvalue $\lambda \in \mathbb{R}$ of T is 2- dimensional. Then find all the choices of eigenvalues of T. Is T diagonalizable for your choices of eigenvalues?
- 6. Let n be a positive integer. Find A^n for the following matrix $A = \begin{bmatrix} -2 & -4 & 2 \\ -2 & 1 & 2 \\ 4 & 2 & 5 \end{bmatrix}$
- 7. Check if the matrices $A \in M_{n \times n}(\mathbb{R})$ given below are diagonalizable. Also find an invertible matrix Q and diagonal matrix D such that $A = QDQ^{-1}$.

(i)
$$\begin{bmatrix} 2 & -2 & 2 \\ 0 & 1 & 1 \\ -4 & 8 & 3 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} -3 & 1 & -3 \\ 20 & 3 & 10 \\ 2 & -2 & 4 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 (iv)
$$\begin{bmatrix} -1 & -1 & -2 \\ 8 & -11 & -8 \\ -10 & 11 & 7 \end{bmatrix}$$

8. As an application of magonalizability: Find a general solution of the following system of differential equations x' = x + y, y' = 4x + y, where x = x(r) and y = y(r) are real valued functions of $r \in \mathbb{R}$.