Crowdsourced Data Management Survey

Group 13
The University of Melbourne

Overview

- 1. Introduction
 - a. Our Team
 - b. Our Project Goal
 - c. Our Project Timeline
- 2. Approach
 - a. Taxonomy
 - b. Literature Review
 - i. Application & Platforms
 - ii. Techniques
- 3. Conclusion
 - a. Discussion
 - b. Future Directions

Team & Project Goal

Project Goal:

- Compose a survey to help the general public understand Crowdsourced Data Management.
- Illustrate the survey results through presentation.

Communication & Research Tools

Manage weekly meetings & tasks

Manage report and reference

Project Timeline

Approx.10 hours per week

Literature Review

General literature review to understand the 'big picture'

Building Taxonomy

More specific literature review under classified topics

Storytelling Strategy Development

Learn how to write storytelling surveys through literature review and academic workshops

Assign Work

Grace: Architecture of CDM; John: Application of CDM; Shirley & Chris: Techniques of CDM

Survey Composing

Use zotero and overleaf to compose academic survey. Peer review for each other's work.

Presentation Preparation

Preparing slides and rehearse.

What is Crowdsourced Data Management? (Ellis, 2004; Howe, 2006)

Platform (Chittilappilly et al., 2016)

General-purpose platform

- Amazon Mechanical Turk

Specialised platform

- Kaggle
- Lego Ideas

General-purpose Platform

Amazon Mechanical Turk

- Requester
- Worker
- Developer

Cost Control

- Multiple assignments
- Iterative Learning
- _

Latency Control

- Monetary Rewards

General-purpose Platform

amazon mechanical turk

Microtasks in AMT

- Data Labelling
- Data Cleaning
- Data integration

Image Labelling

Survey

What is your favorite color for a bird?

example: pink

Check this box if you like birds

On a scale of 1-10, how much do you like birds?

0

Specialised Platform

kaggle

Kaggle

- Sponsors
- Workers

Cost Control

- Multiple assignments
- Latency Control
 - Monetary Rewards

Quality Control

- Data quality may be influenced by several factors
- Various approaches have been proposed to guarantee high quality results
 - Enhancing data quality
 - Selection of workers
 - ❖ Aggregating outputs of different workers
 - * Assigning suitable tasks to high quality workers

Produce more accurate and

Overview ➤ Team & Project ➤ Introduction ➤ Taxonomy ➤ Applications & Platforms ➤ Generalised ➤ Special ➤

Cons

Pros

Quality

Control

	Confusion Matrix	Capture more information	Not applicable in all situationsBiases in ground truth.
	Golden Task	Simplify the process of assessing worker quality.	 Higher cost from hiring experts Difficulty in deciding sufficient number of golden tasks If the answer is leaked, or many requesters use the same golden task, the mechanism will fail
	Qualification Task	Improves confidence of result's quality from reliable workers	 Many workers are unwilling to answer "extra" tasks for free. Poses potential risk that spammers could carefully label these golden tasks to increase their reputation.

Techniques	Pros	Cons
Multiple assignment	No need to know or infer worker's reliability.Easy to implement.	 Not efficient: workers didn't get potentially acquainted tasks.
Iterative Learning	 Worker's reliability estimated based on comparing with other's answers. 	Increasing cost.High computational cost.
Dual Task Assigner	 Leveraged resource usage. Worker's reliability can be estimated from their previous performance. 	 Difficult to infer worker's reliability when there's no enough historical data.
Real-time Task Assigner Collaborative Task Assignment	Leveraged resource usage.Reduced cost on multiple assignments.	Only near-optimal results can be achieved.
	Flexible with dynamic task assignments.Worker's reliability is known.	
	 More flexible task assignment with worker's domain knowledge. 	
Task Assignment with AI Planning	 Can be applied in Knowledge-Intensive and collaborative crowdsourcing settings. Application is narrow in real context, as most times worker's skill set is unknown. Leveraged task standardisation process 	Did not perform optimisation under consider
	• Enabled testing of task allocation strategies with different scenario variables	budget.

Cost Control

- Keeping costs under control without compromising the quality of the results
- Techniques:
 - Fix the number of workers per task based on the requester budget
 - Reduce the number of tasks performed by workers
 - Task Pruning
 - Task Selection
 - Sampling
 - Answer Deduction

Comparison

Cost Control	Pros	Cons
Fixing number of workers	Easy to implement	Wasted expenses
Task Pruning	Significantly saves labour costs while maintaining high quality	 Cost cannot be reduced on a per-task level Limited to certain types of tasks
Task Selection	Sufficiently reduce the number of tasks	Sacrifice some qualityIntroduce some delay
Answer Deduction and Sampling	Avoid crowds doing a lot of unnecessary work	Introduce human errorSampling fail under certain situation

Latency Control

- If the requester has a time limit, controlling latency is important
- Several strategies to address this issue:
 - Adjusting price
 - Latency modelling
 - * Reducing Recruitment Time

Comparison:

- ❖ Increasing task price will greatly increase the cost
- ❖ Dynamic budget allocation may cause confused or dissatisfied among workers
- * Latency modelling provides more objective decisions but
- The retainer model can efficiently reduce latency, but may introduce low quality results and more costs

Incentive

- Monetary incentives
 - Financial Benefits
 - Straightforward & Easy Implementation
- Non-monetary incentives
 - Individual Development
 - Public Good
 - Reputation
 - **❖** Gamification

Comparison

Incentive types	Pros	Cons
Monetary	 Straightforward way to motivate individuals to participate. Compensation for contributions Can attract a consistent and steady involvement of participants. Better accuracy and speed compared to voluntary work 	 Pay rate should be carefully considered to match time and effort required. Overpaying or underpaying can lead to issues. Participants may attempt the project multiple times, leading to poor data quality. Not feasible for project starters with no or low budget
Non-Monetary	 Cost-effective Increase motivation. Provide better data quality. Can offer opportunities for personal skill development. Can contribute to public good. Enhance an individual's reputation 	 Fewer people may be willing to participate. Not applicable for all workers More time and effort required for task design. Different people value different types of incentive

Discussion & Future Direction

- Uncertainty
- Bias
- Ethical issue

Reference

Chittilappilly, A. I., Chen, L., & Amer-Yahia, S. (2016). A Survey of General-Purpose Crowdsourcing Techniques. *IEEE Transactions on Knowledge and Data Engineering*, *28*(9), 2246–2266. https://doi.org/10.1109/TKDE.2016.2555805

Ellis, S. (2014). A History of Collaboration, a Future in Crowdsourcing: Positive Impacts of Cooperation on British Librarianship. *Libri*, *64*(1), 1–10. https://doi.org/10.1515/libri-2014-0001

Jeff, H. (2006, June). The Rise of Crowdsourcing. 14.06. https://www.wired.com/2006/06/crowds/