Asignatura de Bases de Datos

Tema 5 <u>Algebra Relacional</u>

Pedro Pablo Alarcón Cavero

Departamento de O.E.I. Escuela Universitaria de Informática Universidad Politécnica de Madrid

Álgebra Relacional

- Introducción
 - Lenguajes de acceso en BDR
 - Ålgebra Relacional
 - Lenguaje procedimental (se indica qué y cómo obtenerlo)
 - Cálculo Relacional
 - Lenguaje no procedimental (se indica qué pero no cómo obtenerlo)
 - Dos tipos
 - Orientado a Tuplas
 - Orientado a Dominios
 - Álgebra y Cálculo Relacional son equivalentes en poder expresivo
 - Lenguajes de Usuario
 - SQL (Structured Query Language), basado en álgebra relacional
 - QBE (Query By Example), basado en cálculo relacional

2002 © P.P. Alarcón

Bases de Datos

_

Álgebra Relacional

- Definición
 - Conjunto cerrado de operaciones
 - Actúan sobre relaciones
 - Producen relaciones como resultados
 - Pueden combinarse para construir expresiones más complejas
- Operadores Básicos
 - Unión
 - Diferencia
 - Producto Cartesiano
 - Selección
 - Proyección
 - Son operacionalmente completos, permiten expresar cualquier consulta a una BDR
- Operadores Derivados
 - Intersección
 - Join
 - División
 - Asociación
- No añaden nada nuevo
 - Se forman combinando los operadores básicos
- Son útiles en determinadas consultas

2002 © P.P. Alarcón

Bases de Datos

Unión

RÈS

- La unión de dos relaciones R y S, es otra relación que contiene las tuplas que están en R, o en S, o en ambas, eliminándose las tuplas duplicadas
- R y S deben ser unión-compatible, es decir, definidas sobre el mismo conjunto de atributos

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros È Jefes

E#	Nombre	Edad
320	José	34
322	Rosa	37
•	María	25
421	Iorge	48

2002 © P.P. Alarcón

Diferencia

- R-S
 - La diferencia de dos relaciones R y S, es otra relación que contiene las tuplas que están en la relación R, pero no están en S
 - R y S deben ser unión-compatible

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
323	María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros - Jefes

E#	Nombre	Edad
322	Rosa María	37 25

Jefes - Ingenieros

E#	Nombre	Edad	
421	Jorge	48	

2002 © P.P. Alarcón Bases de Datos

Producto Cartesiano

RXS

 Define una relación que es la concatenación de cada una de las filas de la relación R con cada una de las filas de la relación S

Ingenieros

E#	Nombre	D#
320	José	D1
322	Rosa	D3

Proyectos

Proyecto	Tiempo
RX338A	21
PY254Z	32

Departamentos

D#	Descrip	
D1	Central	
D3	I+D	

Ingenieros X Proyectos

E#	Nombre	D#	Proyecto	Tiempo
320	José		RX338A	21
320	José		PY254Z	32
322	Rosa		RX338A	21
•	Rosa	D3	PY254Z	32

Ingenieros X Departamentos

E#	Nombre	D#	DD	Descrip
320	José	D1	D3	Central
320	José	D1		I+D
322	Rosa	D3		Central
•	Rosa	D3		I+D

2002 © P.P. Alarcón

Selección

- Spredicado (R)
 - Es un operador unario
 - Define una relación con los mimos atributos que R y que contiene solo aquellas filas de R que satisfacen la condición especificada (predicado)

Ingenieros

E#	Nombre	Edad
320 322	José Rosa	34 37
323	María	25

s _{edad>=35} (Ingenieros)

E#	Nombre	Edad
322	Rosa	37

s _{edad>=45} (Ingenieros)

E#	Nombre	Edad

2002 © P.P. Alarcón Bases de Da

Proyección

 $P_{\text{col1},\ldots,\text{coln}}(R)$

- Es un operador unario
- Define una relación que contiene un subconjunto vertical de R con los valores de los atributos especificados, eliminando filas duplicadas en el resultado

Ingenieros

E#	Nombre	Edad
320	José	34
322	Rosa	37
•	María	25
•	José	29

P_{Nombre,Edad} (Ingenieros)

Nombre	Edad
José	34
Rosa	37
María	25
José	29

P_{Nombre}(Ingenieros)

Nombre José Rosa María

2002 © P.P. Alarcón

Intersección

- RÇS
 - Define una relación que contiene el conjunto de todas las filas que están tanto en la relación R como en S
 - RyS deben ser unión-compatible
 - Equivalencia con operadores básicos

$$RCS = R - (R - S)$$

Ingenieros

E#	Nombre	Edad
320	José	34
322 323	Rosa María	25

Jefes

E#	Nombre	Edad
320	José	34
421	Jorge	48

Ingenieros Ç Jefes

E#	Nombre	Edad
320	José	34

2002 © P.P. Alarcón Bases de Datos

División o Cociente

- R_{s}
 - Define una relación sobre el conjunto de atributos C, incluido en la relación R, y que contiene el conjunto de valores de C, que en las tuplas de R están combinadas con cada una de las tuplas de S
 - Condiciones
 - grado(R) > grado(S)
 - conjunto atributos de S Ì conjunto de atributos de R
 - Equivalencia con operadores básicos

$$X_1 = P_C(R);$$
 $X_2 = P_C((S \times X_1) - R);$ $X = X_1 - X_2$

R1

E#	Proyecto
320	RX338A
320	PY254Z
•	RX338A
323	NC168T
•	PY254Z
•	PY254Z
324	NC168T

R2 Proyecto RX338A PY254Z

2002 © P.P. Alarcón

Join

- Unión Natural (Natural Join)
 - R⋈S ó R*S
 - El resultado es una relación con los atributos de ambas relaciones y se obtiene combinando las tuplas de ambas relaciones que tengan el mismo valor en los atributos comunes
 - Normalmente la operación de join se realiza entre los atributos comunes de dos tablas que corresponden a la clave primaria de una tabla y la clave foránea correspondiente de la otra tabla
 - Método
 - Se realiza el producto cartesiano R x S
 - Se seleccionan aquellas filas del producto cartesiano para las que los atributos comunes tengan el mismo valor
 - Se elimina del resultado una ocurrencia (columna) de cada uno de los atributos comunes
 - Equivalencia con operadores básicos

$$R \bowtie_F S = S_F(R CS)$$

2002 © P.P. Alarcón

Bases de Dato

11

Join

- Outer Join
 - Es una variante del Join en la que se intenta mantener toda la información de los operandos, incluso para aquellas filas que no participan en el Join
 - Se "rellenan con nulos" las tuplas que no tienen correspondencia en el Join
 - Tres variantes
 - Left
 - se tienen en cuenta todas las filas del primer operando
 - Right
 - se tienen en cuenta todas las filas del segundo operando
 - Full
 - se tienen en cuenta todas las filas de ambos operandos

2002 © P.P. Alarcón

Bases de Datos

12

Ejemplos

Asignaturas

CodA	NombreA	Precio
1	Program.	15000
2	Dibujo	20000
3	Inglés	18000

Notas

Nmat	CodA	Conv	Nota
0338	1	Feb 02	8
0254	2	Feb 02	5
0168	2	Feb 02	3
0338	2	Feb 02	5
0338	3	Jun 02	7
0254	1	Jun 02	6
0168	1	Jun 02	9
0168	3	Jun 02	5

Alumnos

Nmat	Nombre	Apellidos	Domicilio	Telefono
0338	Ana	Pérez Gómez	C/Julio nº 96	1112233
0254	Rosa	López López	C/ Verano s/n	1113344
0168	Juan	García García	C/ Playa nº 1	1114455

2002 © P.P. Alarcón Bases de Datos 1

Ejemplo 1

Obtener los apellidos y teléfono de los alumnos de nombre Rosa

Apellidos	Telefono
López López	1113344

Obtener las notas obtenidas en la asignatura de Inglés

Nombre	Apellidos	Nota
Ana	Pérez Gómez	7
Juan	García García	5

2002 © P.P. Alarcón

Bases de Datos

8

