

Web-Based Learning

Craig A. Knoblock University of Southern California

Joint work with

J. L. Ambite, K. Lerman, A. Plangprasopchok, and T. Russ, USC
C. Gazen and S. Minton, Fetch Technologies
M. Carman, University of Lugano

Introduction

Problem

- Web sources and services are designed for people, not machines
- Limited or no description of the information provided by these sources
- This makes it hard, if not impossible to find, retrieve and integrate the vast amount of structured data available
 - Weather sources, geocoders, stock information, currency converters, online stores, etc.

Approach

- Start with an some initial knowledge of a domain
 - Sources and semantic descriptions of those sources
- Automatically
 - Discover related sources
 - Learn the syntactic structure of the sources
 - Build semantic models of the source
 - Validate the correctness of the results

Seed Source

Automatically Discover and Model a Source in the Same Domain

Approach

Outline

- Discovering sources using social annotations
- Discovering the structure of sources
- Learning semantic types of the source data
- Learning semantic models of the sources
- Experimental Results
- Discussion

Outline

- Discovering sources using social annotations
- Discovering the structure of sources
- Learning semantic types of the source data
- Learning semantic models of the sources
- Experimental Results
- Discussion

Learning Concepts from Social Annotation (Tags)

By sparky2000

By A lion Rohrs

Animal

Car

Goal

Grouping semantically related tags and content

A stochastic process of tag generation

PLSA (Hofmann99); LDA (Blei03+)

Exploiting Social Annotations for Resource Discovery

• Simplified resource discovery task: "given a seed source, find other most <u>similar sources</u>"

Outline

- Discovering sources using social annotations
- Discovering the structure of sources
- Learning semantic types of the source data
- Learning semantic models of the sources
- Experimental Results
- Discussion

Discovering Web Structure

Goal:

- Model Web sources that generate pages dynamically in response to a query
 - Find the relational data underlying a semi-structured web site
- Generate a page template that can be used to extract data on new pages
- Approach
 - Site extraction
 - Exploit the common structure within a web site
 - Take advantage of multiple structures
 - HTML structure, page layout, links, data formats, etc.

Overview

Sample Experts

- Page Templates
 - Similar pages contain common sequences of substrings

- HTML Structure
 - List rows are represented as repeating HTML structures

Extracting Data

Pages

Hypotheses

- group_member (FRIDAY, SATURDAY)
- group_member (Sunny, Rainy)
- same_html_context (65, 60)
- vertically_aligned (Sun, Rain)
- two_digit_number (65, 52, 60, 48)
- ...

Clusters

FRIDAY	65 52
SATURDAY	60 48
F	Rainy • Fetch

Extracted Data

FRIDAY	Sun	Sunny	65	52
SATURDAY	Rain	Rainy	60	48

Outline

- Discovering sources using social annotations
- Discovering the structure of sources
- Learning semantic types of the source data
- Learning semantic models of the sources
- Experimental Results
- Discussion

Learning Patterns to Recognize Semantic Types

- Domain-independent token-level language to represent the structure of data as patterns
 - Token is a string or a general type
 - 90202 is a specific token
 - 5DIGIT number is a general type
 - Pattern is a sequence of tokens
 - E.g., Phone numbers

Sample values	<u>Patterns</u>
310 448-8714	
310 448-8775	[310 448 – 4DIGIT]
212 555-1212	[3DIGIT 3DIGIT – 4DIGIT]

- Efficiently learn patterns from examples of semantic types
- Score the match between a type (patterns) and data

Weather Data Types

Sample values

- PR-TempF
 88 F
 57°F
 82 F ...
- PR-Visibility
 8.0 miles
 10.0 miles
 4.0 miles
 7.00 mi
 10.00 mi
- PR-Zip 07036 97459 02102

Patterns

- PR-TempF
 [88, F]
 [2DIGIT, F]
 [2DIGIT, °, F]
- PR-Visibility

 [10, ., 0, miles]
 [10, ., 00, mi]
 [10, ., 00, mi, .]
 [1DIGIT, ., 00, mi]
 [1DIGIT, ., 0, miles]
- PR-Zip [5DIGIT]

Labeled Columns of Target Source Unisys

Column	4	18	25	15	87
Туре	PR-Zip	PR-TempF	PR- Humidity	PR-Sky	PR-Sky
Score	0.333	0.68	1.0	0.325	0.375
Values	20502	45F	40%	Partly Cloudy	Sunny
	32399	63F	23%	Sunny	Partly Cloudy
	33040	73F	73%	Sunny	Rainy
	90292	66F	59%	Partly Cloudy	Sunny
	36130	62F	24%	Sunny	Partly Cloudy

Outline

- Discovering sources using social annotations
- Discovering the structure of sources
- Learning semantic types of the source data
- Learning semantic models of the sources
- Experimental Results
- Discussion


```
source1($zip, lat, long):-
centroid(zip, lat, long).
```

```
source2($lat1, $long1, $lat2, $long2, dist):-
greatCircleDist(lat1, long1, lat2, long2, dist).
```

```
source3($dist1, dist2):-
convertKm2Mi(dist1, dist2).
```


source1(\$zip, lat, long) :centroid(zip, lat, long).

source2(\$lat1, \$long1, \$lat2, \$long2, dist) :greatCircleDist(lat1, long1, lat2, long2, dist).

source3(\$dist1, dist2):convertKm2Mi(dist1, dist2).

source4(\$startZip, \$endZip, separation)

source1(\$zip, lat, long):centroid(zip, lat, long).

source2(\$lat1, \$long1, \$lat2, \$long2, dist) :greatCircleDist(lat1, long1, lat2, long2, dist).

source3(\$dist1, dist2):convertKm2Mi(dist1, dist2).

Step 1: classify input & output semantic types

source4(\$startZip, \$endZip, separation)

source1(\$zip, lat, long) :centroid(zip, lat, long).

source2(\$lat1, \$long1, \$lat2, \$long2, dist) :greatCircleDist(lat1, long1, lat2, long2, dist).

source3(\$dist1, dist2):convertKm2Mi(dist1, dist2).

Step 1: classify input & output semantic types

source1(\$zip, lat, long) :centroid(zip, lat, long).

source2(\$lat1, \$long1, \$lat2, \$long2, dist) :greatCircleDist(lat1, long1, lat2, long2, dist).

source3(\$dist1, dist2):convertKm2Mi(dist1, dist2).

Step 1: classify input & output semantic types

Generating Plausible Definition

source1(\$zip, lat, long):centroid(zip, lat, long).

source2(\$lat1, \$long1, \$lat2, \$long2, dist) :greatCircleDist(lat1, long1, lat2, long2, dist).

source3(\$dist1, dist2):convertKm2Mi(dist1, dist2).

- Step 1: classify input & output semantic types
- Step 2: generate plausible definitions

source4(\$zip1, \$zip2, dist)

Generating Plausible Definition


```
source1($zip, lat, long) :-
    centroid(zip, lat, long).
source2($lat1, $long1, $lat2, $long2, dist) :-
    greatCircleDist(lat1, long1, lat2, long2, dist).
source3($dist1, dist2) :-
    convertKm2Mi(dist1, dist2).
```

- Step 1: classify input & output semantic types
- Step 2: generate plausible definitions

```
source4($zip1, $zip2, dist):-
source1(zip1, lat1, long1),
source1(zip2, lat2, long2),
source2(lat1, long1, lat2, long2, dist2),
source3(dist2, dist).
```

source4(\$zip1, \$zip2, dist)

Generating Plausible Definition


```
source1($zip, lat, long) :-
   centroid(zip, lat, long).

source2($lat1, $long1, $lat2, $long2, dist) :-
   greatCircleDist(lat1, long1, lat2, long2, dist).

source3($dist1, dist2) :-
   convertKm2Mi(dist1, dist2).
```

- Step 1: classify input & output semantic types
- Step 2: generate plausible definitions

```
source4($zip1, $zip2, dist):-
source1(zip1, lat1, long1),
source1(zip2, lat2, long2),
source2(lat1, long1, lat2, long2, dist2),
source3(dist2, dist).
```

```
source4($zip1, $zip2, dist):-
centroid(zip1, lat1, long1),
centroid(zip2, lat2, long2),
greatCircleDist(lat1, long1, lat2, long2, dist2),
convertKm2Mi(dist1, dist2).
```


Invoke and Compare the Definition

- Step 1: classify input & output semantic types
- Step 2: generate plausible definitions
- Step 3: invoke service& compare output

```
source4($zip1, $zip2, dist):-
source1(zip1, lat1, long1),
source1(zip2, lat2, long2),
source2(lat1, long1, lat2, long2, dist2),
source3(dist2, dist).
```

```
source4($zip1, $zip2, dist):-
  centroid(zip1, lat1, long1),
  centroid(zip2, lat2, long2),
  greatCircleDist(lat1, long1, lat2, long2,dist2),
  convertKm2Mi(dist1, dist2).
```

	match	
Г		
Ļ		

\$zip1	\$zip2	dist (actual)	dist (predicted)
80210	90266	842.37	843.65
60601	15201	410.31	410.83
10005	35555	899.50	899.21

Source Modeling for Weather

- Given a set of known sources and their descriptions
 - wunderground(\$Z,CS,T,F0,S0,Hu0,WS0,WD0,P0,V0):weather(0,Z,CS,D,T,F0,__,_,S0,Hu0,P0,WS0,WD0,V0)
 - convertC2F(C,F) :- centigrade2farenheit(C,F)
- Learn a description of a new source in terms of the known sources
 - unisys(\$Z,CS,T,F0,C0,S0,Hu0,WS0,WD0,P0,V0):wunderground(Z,CS,T,F0,S0,Hu0,WS0,WD0,P0,V0), convertC2F(C0,F0)

Outline

- Discovering sources using social annotations
- Discovering the structure of sources
- Learning semantic types of the source data
- Learning semantic models of the sources
- Experimental Results
- Discussion

Experimental Evaluation

- Experiments in 3 domains
 - Geospatial
 - Geocoder that maps street addresses into lat/long coordinates
 - Weather
 - Produces current and forecasted weather
 - Flight Status
 - Current status for a given airline and flight
- Evaluation:
 - 1) Can we correctly learn a model for those sources that perform the same task
 - 2) What is the precision and recall of the attributes in the model

Candidate Sources after Each Step

Evaluation of the Models

	Recall	Precision	F-measure
geospatial	86	100	92
weather	29	64	39
flight	35	69	46

Outline

- Discovering sources using social annotations
- Discovering the structure of sources
- Learning semantic types of the source data
- Learning semantic models of the sources
- Experimental Results
- Discussion

Related Work

- ILA & Category Translation (Perkowitz & Etzioni 1995)
 - Learn functions describing operations on internet
- iMAP (Dhamanka et. al. 2004)
 - Discovers complex (many-to-1) mappings between DB schemas
- Metadata-based classification of data types used by Web services and HTML forms (Hess & Kushmerick, 2003)
 - Naïve Bayes classifier
- Woogle: Metadata-based clustering of data and operations used by Web services (Dong et al, 2004)
 - Groups similar types together: Zipcode, City, State

Discussion

- Integrated a diverse set of learning and reasoning techniques
 - Discover new sources
 - Discover the template for a source
 - Find the semantic types of source data
 - Learn a definition of what a source does
- Provides an end-to-end completely automatic approach to discover and build models of sources

