Sinais e Sistemas Electrónicos

Capítulo 6: Amplificadores operacionais

(parte 1)

Sinais e Sistemas Electrónicos - 2023/2024

Sumário

- Amplificador operacional: fundamentos;
- Modelo equivalente simplificado;
- Realimentação: configuração inversora;
- Calculo o ganho;
- Modelo ideal do OpAmp;
- Noção de curto-circuito virtual na entrada;
- Configuração não-inversora;
- Limites do modelo ideal.

Fundamentos e modelo simplificado

E. Martins, DETI Universidade de Aveiro

6.1-3

Sinais e Sistemas Electrónicos - 2023/2024

Amplificador Operacional ou OpAmp

Amplificador – Porque transforma (amplifica) um sinal eléctrico (tensão) de pequeno valor, numa réplica de maior valor.

Amplificador Operacional ou OpAmp

Operacional – Porque é usado em circuitos que realizam *operações* matemáticas (soma, multiplicação, derivação, etc.) em um ou mais sinais eléctricos.

E. Martins, DETI Universidade de Aveiro

6.1-5

Sinais e Sistemas Electrónicos - 2023/2024

Como se apresenta fisicamente?

K2-W (1953) primeiro OpAmp modular (alimentado a 600V)

μΑ709 (1965) Segundo OpAmp monolítico da história. Primeiro a gozar de

grande sucesso comercial.

6.1-6

Como se apresenta fisicamente?

OpAmps modernos

E. Martins, DETI Universidade de Aveiro

6.1-7

Sinais e Sistemas Electrónicos - 2023/2024

Simbolo e terminais

Sinais de entrada e saída

- O OpAmp amplifica a tensão v_d aplicada entre as duas entradas (+) e (-);
- A tensão de saída, v_{out} , é medida em relação ao ponto comum das duas tensões de alimentação o nó de referência.

E. Martins, DETI Universidade de Aveiro

6.1-9

Sinais e Sistemas Electrónicos - 2023/2024

Ganho do OpAmp

- Para simplificar, é costume omitir-se as ligações de alimentação;
- ullet V_d é a chamada tensão diferencial de entrada do OpAmp:

$$v_d = v_2 - v_1$$

Característica entrada/saída do OpAmp

E. Martins, DETI Universidade de Aveiro

6.1-11

Sinais e Sistemas Electrónicos - 2023/2024

Entradas inversora e não-inversora

- Entrada inversora: marcada com (-) \Rightarrow Porque a tensão v_1 aparece na equação de v_{out} com o sinal (-): se v_1 aumentar v_{out} diminui;
- Entrada não inversora: marcada com (+) \Rightarrow Porque a tensão v_2 aparece na equação de v_{out} com o sinal (+): se v_2 aumentar v_{out} aumenta.

Modelo equivalente do OpAmp

• R_{in} – resistência de entrada;

• R_0 – resistência de saída;

• A – ganho em tensão.

NOTA: Modelo só é válido se o OpAmp estiver a funcionar na região linear!

E. Martins, DETI Universidade de Aveiro

6.1-13

Sinais e Sistemas Electrónicos - 2023/2024

OpAmp – valores típicos

A – ganho em tensão, R_{in} – resistência de entrada; R_{θ} – resistência de saída.

Part Number	μ Α741	LM324	LF411	AD549K
Description	General purpose	Low-power quad	Low-offset, low- drift JFET input	Ultralow input bias current
Open loop gain A	$2 \times 10^5 \text{ V/V}$	10 ⁵ V/V	$2 \times 10^5 \text{ V/V}$	10 ⁶ V/V
Input resistance	$2 M\Omega$	*	1 ΤΩ	10 ΤΩ
Output resistance	75 Ω	*	~1 Ω	~15 Ω

Modelo simplificado do OpAmp

- Em geral R_{in} é muito elevado e R_0 é muito pequeno comparado com os valores das resistências usadas nos circuitos;
- Pelo que, na prática, adopta-se um modelo mais simples para o OpAmp:

E. Martins, DETI Universidade de Aveiro

6.1-15

Sinais e Sistemas Electrónicos - 2023/2024

Realimentação

OpAmp e feedback

- Mas por que razão são os OpAmps fabricados com ganhos tão elevado?
 - R: Para serem usados em circuitos com realimentação (feedback) negativa?
- Com realimentação negativa os circuitos resultantes não têm um ganho tão elevado, mas passam a gozar de vários benefícios:
 - > Ganho depende apenas de componentes exteriores ao OpAmp;
 - ➤ Melhor linearidade (menor distorção);
 - ➤ Maior largura de banda;
 - Melhores características de resistência de entrada e saída.

E. Martins, DETI Universidade de Aveiro

6.1-17

Sinais e Sistemas Electrónicos - 2023/2024

Configuração inversora

Configuração inversora do OpAmp

- Utiliza duas resistências numa configuração de realimentação negativa (ou feedback negativo);
- A configuração chama-se inversora porque quando a tensão de entrada, v_i, aumenta a tensão de saída, v_{out}, diminui.

E. Martins, DETI Universidade de Aveiro

6.1-19

Sinais e Sistemas Electrónicos - 2023/2024

Configuração inversora do OpAmp

Configuração inversora do OpAmp

Queremos obter o ganho do circuito, ou seja, uma relação matemática entre v_{out} $e v_i$.

- Loop de entrada (a verde): $-v_i + R_1 i_1 v_d = 0$
- Loop de saída (a vermelho): $v_d + R_2 i_2 + v_{out} = 0$

E. Martins, DETI Universidade de Aveiro

6.1-21

Sinais e Sistemas Electrónicos - 2023/2024

Configuração inversora do OpAmp

Sabemos que

$$i_{in}=0 \implies i_2=i_1$$

$$v_{out} = Av_d$$

Substituindo nas equações anteriores:

$$\begin{cases} -v_{i} + R_{1}i_{1} - \frac{v_{out}}{A} = 0\\ \frac{v_{out}}{A} + R_{2}i_{1} + v_{out} = 0 \end{cases}$$

$$\begin{cases} -v_i + R_1 i_1 - \frac{v_{out}}{A} = 0 \\ \frac{v_{out}}{A} + R_2 i_1 + v_{out} = 0 \end{cases}$$
• Eliminando i_I , obtemos:
$$v_{out} = -\frac{R_2}{R_1} \frac{1}{1 + \left(\frac{R_2}{R_1} + 1\right) \frac{1}{A}} v_i$$

Configuração inversora do OpAmp

• À razão v_{out} / v_i chamamos ganho em malha fechada, ou apenas ganho do circuito.

$$G = -\frac{R_2}{R_1} \frac{1}{1 + \left(\frac{R_2}{R_1} + 1\right) \frac{1}{A}}$$

• Para os valores tipicamente muito elevados de *A* a equação do ganho reduz-se a

$$G = -\frac{R_2}{R_1}$$

E. Martins, DETI Universidade de Aveiro

6.1-23

Sinais e Sistemas Electrónicos - 2023/2024

Configuração inversora do OpAmp

- Este é um resultado notável dos circuitos com feedback negativo em geral, e dos OpAmps em particular:
 - O Ganho depende apenas do valor de resistências exteriores ao OpAmp;
 - O valor do ganho em tensão do OpAmp, A, não é relevante desde que seja suficientemente elevado;
- O sinal (–) no ganho indica que há inversão da entrada para a saída.

Configuração inversora - exemplo

$$G = -\frac{R_f}{R_1} = -\frac{47}{4.7} = -10$$

$$v_{out} = -50 \sin 3t \ mV$$

E. Martins, DETI Universidade de Aveiro

6.1-25

Sinais e Sistemas Electrónicos - 2023/2024

Região linear da configuração inversora

- Para que o OpAmp opere na região linear, o valor de v_i tem de se situar entre v_{min} e v_{max}.
- Substituindo $v_{out} = -\frac{R_2}{R_1}v_i$

em
$$V_{EE} < v_{out} < V_{CC}$$

obtém-se:

$$-\frac{R_1}{R_2}V_{CC} < v_i < -\frac{R_1}{R_2}V_{EE}$$

 v_{ex} v_{min} v_{max} v_{i} v_{out} v_{out}

• Assumiu-se aqui que os limites de v_{out} são as tensões de alimentação, o que nem sempre é o caso.

Modelo ideal do OpAmp

E. Martins, DETI Universidade de Aveiro

6.1-27

Sinais e Sistemas Electrónicos - 2023/2024

OpAmp ideal

• A análise de circuitos com OpAmps é muito mais simples se considerarmos o ganho em tensão do OpAmp infinito: $A = \infty$. Adicionando este pressuposto ao modelo simplificado do OpAmp, obtemos:

Modelo do OpAmp ideal

- $R_{in} = \infty$;
- Correntes nas entradas (+) e (-) do OpAmp são nulas;
- $R_0 = 0$;
- \bullet $A = \infty$

Curto-circuito virtual no OpAmp

- Como v_{out} é uma tensão de valor compreendido entre as tensões de alimentação do OpAmp (e.g. -15 e +15V) e A é muito elevado, então v_d é forçosamente quase nulo:
 - ⇒ Podemos então admitir que existe um curto-circuito (*virtual*) entre as entradas (-) e (+) do OpAmp.
- Este curto-circuito virtual só existe se o amplificador estiver a funcionar na região linear (se não estiver saturado, ver pg. 6.1-11).

E. Martins, DETI Universidade de Aveiro

6.1 - 29

Sinais e Sistemas Electrónicos - 2023/2024

Análise da configuração inversora usando o modelo do OpAmp ideal

- A análise deste circuito torna-se muito fácil se tivermos em mente que:
 - 1) A tensão diferencial de entrada, v_d é nula \Rightarrow a corrente i_1 depende apenas de v_i ;
 - 2) A corrente de entrada, i_{in} é zero \Rightarrow a corrente em R_1 é igual à corrente em R_2 . $v_i \qquad \qquad v_{d} \approx 0$ $v_{d} \approx 0$

Análise da configuração inversora usando o modelo do OpAmp ideal

• As equações dos loops de entrada e de saída são agora:

$$-v_i + R_1 i_1 - 0 = 0$$
$$0 + R_2 i_1 + v_{out} = 0$$

• De onde se tira

$$\frac{v_{out}}{v_i} = -\frac{R_2}{R_1}$$

• Usando o modelo do OpAmp ideal conseguimos portanto chegar ao mesmo resultado de uma forma mais simples.

E. Martins, DETI Universidade de Aveiro

6.1-31

Sinais e Sistemas Electrónicos - 2023/2024

Configuração não inversora

Configuração não-inversora do OpAmp

- Utiliza também duas resistências numa configuração de realimentação negativa;
- ... mas aqui o ganho G é positivo, razão porque a configuração se chama de não-inversora quando a tensão de entrada, v_i , aumenta, a tensão de saída, v_{out} , também aumenta.

E. Martins, DETI Universidade de Aveiro

6.1-33

Sinais e Sistemas Electrónicos - 2023/2024

Análise da configuração não-inversora

- É feita de forma idêntica à da configuração inversora:
 - 1) A tensão diferencial de entrada, v_d é nula \Rightarrow a corrente i_1 depende apenas de v_i ;
 - 2) A corrente de entrada, i_{in} é zero \Rightarrow a corrente em R_1 é igual à corrente em R_2 .

Análise da configuração não-inversora

• As equações dos loops de entrada e de saída são agora:

$$-R_{1}i_{1} + v_{i} = 0$$
$$-v_{i} - R_{2}i_{1} + v_{out} = 0$$

Eliminando i₁ nas equações obtemos

$$G \equiv \frac{v_{out}}{v_i} = 1 + \frac{R_2}{R_1}$$

E. Martins, DETI Universidade de Aveiro

6.1-35

Sinais e Sistemas Electrónicos - 2023/2024

Conclusão: configurações inversora e não-inversora

Inversora:
$$\frac{v_{out}}{v_i} = -\frac{R_2}{R_1}$$

Não-inversora:
$$\frac{v_{out}}{v_i} = 1 + \frac{R_2}{R_1}$$

Limite das aproximações obtidas com o modelo do OpAmp ideal

• Voltando à expressão precisa do ganho da configuração inversora:

$$G = -\frac{R_2}{R_1} \frac{1}{1 + \left(\frac{1}{A} \frac{R_2}{R_1} + \frac{1}{A}\right)}$$

- •...constatamos que as aproximações anteriores para o ganho são válidas se:
 - $\Rightarrow A$ for muito grande;
 - \Rightarrow e $R_2/R_1 << A$.
- Ou seja, perdem a validade para ganhos em malha fechada, G, com valores da ordem de A.

6.1-37