Adjoint intro and demo

(Hear the word adjoint. Think gradient.)

Classical spring-mass-damper model

Discrete observation data $(y_{obs}(t_i))$ and model configuration y(t=0) y(t) y

Known

Conservation law (e.g. momentum $my'' = \sum_i F_i$):

$$m(t)\frac{d^2}{dt^2}y + c(t)\frac{d}{dt}y + k(t)y = 0$$

Find

$$ec{p} = [m(t_i), c(t_i), k(t_i)]^{\mathrm{T}}$$
 which minimizes $\mathcal{J} = \int [y(t) - y_{obs}(t)]^2 dt$

Variation of governing equations and cost

Noting the governing equation and cost function,

$$\mathcal{M}(y, \vec{p}) \equiv m(t) \frac{d^2}{dt^2} y + c(t) \frac{d}{dt} y + k(t) = 0$$
$$\mathcal{J} = \int_{t=0}^{T} [y - y_{obs.}]^2 dt,$$

take their variation (chain rule differention)

take their variation (chain rule differention)
$$\delta \mathcal{M}(y,\vec{p}) = \frac{\partial \mathcal{M}}{\partial y} \delta y + \frac{\partial \mathcal{M}}{\partial \vec{p}} \delta \vec{p} = 0$$

$$\delta \mathcal{M}(y, \vec{p}) = rac{\partial \mathcal{M}}{\partial y} \delta y + rac{\partial \mathcal{M}}{\partial y} \delta y$$

$$\delta \mathcal{J} = rac{\partial \mathcal{J}}{\partial y} \delta y + rac{\partial \mathcal{J}}{\partial ec{p}} \delta ec{p}$$

Multiply $\delta \mathcal{M}$ by Lagrange multiplier y^{\dagger} and subtract from $\delta \mathcal{J}$

 $\delta \mathcal{J} = \left| \frac{\partial \mathcal{J}}{\partial u} - y^{\dagger} \frac{\partial \mathcal{M}}{\partial u} \right| \delta y + \left| \frac{\partial \mathcal{J}}{\partial \vec{v}} - y^{\dagger} \frac{\partial \mathcal{M}}{\partial \vec{v}} \right| \delta \vec{p}$

(1)

(2)

Variation of governing equations and cost

Appears to have made things more complicated

$$\delta \mathcal{J} = \left[\frac{\partial \mathcal{J}}{\partial y} - y^{\dagger} \frac{\partial \mathcal{M}}{\partial y} \right] \delta y + \left[\frac{\partial \mathcal{J}}{\partial \vec{p}} - y^{\dagger} \frac{\partial \mathcal{M}}{\partial \vec{p}} \right] \delta \vec{p};$$

however, we can choose y^{\dagger} to eliminate $[\ldots] \, \delta y$ by setting

$$\left[\frac{\partial \mathcal{J}}{\partial y} - y^{\dagger} \frac{\partial \mathcal{M}}{\partial y}\right] \delta y = 0$$

Leaving the gradient we seek

$$\frac{\delta \mathcal{J}}{\delta \vec{p}} = \left[\frac{\partial \mathcal{J}}{\partial \vec{p}} - y^{\dagger} \frac{\partial \mathcal{M}}{\partial \vec{p}} \right] \delta \vec{p};$$

Find the adjoint system via integration by parts of the original ode . . .

Adjoint derivation: Integration by parts

ie mass ter

$$\int_{t=0}^{T} y^{\dagger} m(t) \frac{d^2}{dt^2} \delta y \, dt = y^{\dagger} m(t) \frac{d\delta y}{dt} \Big|_{t=0}^{T} - \int_{t=0}^{T} \frac{d\delta y}{dt} \frac{d}{dt} \left[y^{\dagger} m(t) \right] dt \quad (3)$$

$$\int_{t=0}^{T} y^{\dagger} m(t) \frac{d^{2}}{dt^{2}} \delta y \, dt = y^{\dagger} m(t) \frac{d\delta y}{dt} \Big|_{t=0}^{T}$$
$$- \delta y \frac{d}{dt} \left[y^{\dagger} m(t) \right] \Big|_{t=0}^{T}$$
$$+ \int_{t=0}^{T} \delta y \frac{d^{2}}{dt^{2}} \left[y^{\dagger} m(t) \right] dt$$

The dissipation term

$$\int_{t=0}^T y^\dagger c(t) \frac{d}{dt} \delta y \, dt = y^\dagger c(t) \delta y \bigg|_{t=0}^T - \int_{t=0}^T \delta y \frac{d}{dt} \left[c(t) y^\dagger \right] dt$$

(4)

Adjoint derivation: Integration by parts

The spring term

$$\int_{t=0}^{T} y^{\dagger} k(t) \delta y \, dt. \tag{6}$$

Since we do not consider δy at t=0 and we choose $y^\dagger=0$ and $\frac{d}{dt}y^\dagger=0$ at t=T, boundary terms are zero, leaving

$$\mathcal{L}^{\dagger} y^{\dagger} \equiv m(t) \frac{d^2}{dt^2} y^{\dagger} + \left\{ 2 \frac{dm(t)}{dt} - c(t) \right\} \frac{d}{dt} y^{\dagger}$$
$$+ \left\{ \frac{d^2 m(t)}{dt^2} - \frac{dc(t)}{dt} + k(t) \right\} y^{\dagger} = 2[y(t) - y_{\text{obs}}].$$

which is solved with same methods as the forward using final conditions $y^{\dagger}(T) = \frac{d}{dt}y^{\dagger} = 0$.

Summary of forward and adjoint systems

Adjoint system
$$\mathcal{M}(y,\vec{p}) \equiv m(t)\frac{d^2}{dt^2} + c(t)\frac{d}{dt} + k(t) = 0$$

$$y(0) = 3.3, v(0) = 1.0$$

$$\mathcal{L}^\dagger y^\dagger = m(t)\frac{d^2}{dt^2}y^\dagger + \left\{2\frac{dm(t)}{dt} - c(t)\right\}\frac{d}{dt}y^\dagger$$

$$+ \left\{\frac{d^2m(t)}{dt^2} - \frac{dc(t)}{dt} + k(t)\right\}y^\dagger$$

$$1 \text{ Iteratively reduce } \mathcal{J}$$
 Adjoint derivation for 2^{nd} order
$$m_i = m_{i-1} - \lambda \left(-y^\dagger \frac{d^2}{dt^2}y\right)$$
 And some constant coefficient ODE in

non-constant coefficient ODE in [Greenberg. Applications of Green's Functions in Science and Engineering. 1971. pg. 6-7.]

 $c_i = c_{i-1} - \lambda \left(-y^{\dagger} \frac{d}{dt} y \right)$

Is the derivation correct?

- Gradient converges with α in parameter space
- ▶ Not yet convinced? Let us optimize . . .

Automatically reduce data mismatch

▶ Start (i = 0) with guess $\vec{p_o} = [1, 1, 1]$; let computer do the work

▶ With a naive optimizer, relative error in observation falls below $\mathcal{J}_i/\mathcal{J}_o < 10^{-4}$

What do the optimal $\left[k(t),m(t),c(t)\right]$ look like?

► In reality, we do not know what created the observation data

 However, we can reveal what was used to actually generate it

Results suggest a different local minimum attained!

0 kobe

What do the optimal $\left[k(t),m(t),c(t)\right]$ look like?

► In reality, we do not know what created the observation data

 However, we can reveal what was used to actually generate it

Results suggest a different local minimum attained!

Summary of adjoint introduction

- ► Hear the word *adjoint*. Think *gradient*
- ▶ Cost is independent of $size(\vec{p})$
- ► Gradients give a route to optimize, assimilate data, and inform parameter sensitivity
- Matlab code and slides for this portion available at: https://github.com/buchta1/adjointExample-kmc.git [O(300) lines of code (includes plotting)]
- ▶ 3D, high-order finite-difference compressible Navier–Stokes solver with discrete-exact adjoint capability [O(30k)] lines of code]

This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE–AC05–000R22725.

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-000R22725

