C2 Without Diagram Hard Answers P3

1		(i)	EITHER:	State a correct expression for $ z $ or $ z ^2$, e.g. $(1 + \cos 2\theta)^2 + (\sin 2\theta)^2$	B1	
				Use double angle formulae throughout or Pythagoras	M1	
				Obtain given answer 2cos θ correctly	A1	
				State a correct expression for tangent of argument, e.g. $(\sin 2\theta / (1 + \cos 2\theta))$		
				Use double angle formulae to express it in terms of $\cos \theta$ and $\sin \theta$	M1	
				Obtain θ and state that the argument is θ	A1	
			OR:	Use double angle formulae to express z in terms of $\cos \theta$ and $\sin \theta$	M1	
				Obtain a correct expression, e.g. $1 + \cos^2 \theta - \sin^2 \theta + 2i \sin \theta \cos \theta$	A1	
				Convert the expression to polar form	M1	
				Obtain $2\cos\theta(\cos\theta + i\sin\theta)$	A1	
				State that the modulus is $2 \cos \theta$	A1	F.63
				State that the argument is θ	A 1	[6]
		(ii)		for z and multiply numerator and denominator by the conjugate of z , or) (1	
			equivalent		M1 A1	
				rrect real denominator in any form and obtain real part equal to $\frac{1}{2}$	A1	[2]
			identify at	id obtain rear part equal to $\frac{1}{2}$	AI	[3]
				© UCLES 2010	9709/3	2/M/J/10
2	(a)	(i)	EITHER:	Multiply numerator and denominator by $a - 2i$, or equivalent Obtain final answer $\frac{5a}{a^2 + 4} - \frac{10i}{a^2 + 4}$, or equivalent	M1 A1	
			OR:	Obtain two equations in x and y , solve for x or for y	M1	
				Obtain final answer $x = \frac{5a}{a^2 + 4}$ and $y = \frac{10}{a^2 + 4}$, or equivalent	A1	[2]
		(ii)	Either state	$e \arg(u) = -\frac{3}{4}\pi$, or express u^* in terms of a (f.t. on u)	В1√	
				t method to form an equation in a, e.g. $5a = -10$	M1	
			Obtain $a =$	-2 correctly	A1	[3]
	(b)	Sho	w the circle	presenting 2 + 2i in relatively correct position in an Argand diagram with centre at the origin and radius 2	B1 B1	
		Sno		pendicular bisector of the line segment from the origin to the point		
		rone	acontina 2 1	- 2;	$\mathbf{R}1\sqrt{}$	
			esenting 2 + de the corre		B1√ R1	[4]
		Sha	de the corre	ct region	B1√ B1	[4]
		Shac [SR	de the corre			

- 3 (i) Use the quadratic formula, completing the square, or the substitution z = x + iy to find a root and use $i^2 = -1$ M1

 Obtain final answers $-\sqrt{3} \pm i$, or equivalent A1 [2]
 - (ii) State that the modulus of both roots is 2 B1 $\sqrt{}$ State that the argument of $-\sqrt{3} + i$ is 150° or $\frac{5}{6}\pi$ (2.62) radians

State that the argument of $-\sqrt{3}$ - i is -150° (or 210°) or $-\frac{5}{6}\pi$ (-2.62) radians or

$$\frac{7}{6}\pi$$
 (3.67) radians B1 $\sqrt{3}$

(iii) Carry out an attempt to find the sixth power of a root

Verify that one of the roots satisfies $z^6 = -64$ Verify that the other root satisfies the equation

A1 [3]

© UCLES 2011 9709/33/M/J/11

- 4 (i) EITHER: Multiply numerator and denominator by 1 + 3i, or equivalent

 Simplify numerator to -5 + 5i, or denominator to 10, or equivalent

 Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent

 OR: Obtain two equations in x and y, and solve for x or for yObtain $x = -\frac{1}{2}$ or $y = \frac{1}{2}$, or equivalent

 Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent

 A1

 Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent

 A1

 A1

 A1

 A1
 - (ii) Show B and C in relatively correct positions in an Argand diagram

 Show u in a relatively correct position

 B1

 [2]
 - (iii) Substitute exact arguments in the LHS $arg(1+2i) arg(1-3i) = arg \ u$, or equivalent

 Obtain and use $arg \ u = \frac{3}{4} \pi$ Obtain the given result correctly

 A1 [3]

© UCLES 2012 9709/32/M/J/12

7	(a)	EITHER:	Substitute and expand $(-1 + \sqrt{5} i)^3$ completely	M1	
			Use $i^2 = -1$ correctly at least once	M1	
			Obtain $a = -12$	A1	
			State that the other complex root is $-1 - \sqrt{5}$ i	B1	
		OR1:	State that the other complex root is $-1 - \sqrt{5}$ i	B1	
			State the quadratic factor $z^2 + 2z + 6$	B1	
			Divide the cubic by a 3-term quadratic, equate remainder to zero and solve for		
			a or, using a 3-term quadratic, factorise the cubic and determine a	M1	
			Obtain $a = -12$	A1	
		OR2:	State that the other complex root is $-1 - \sqrt{5}i$	B1	
			State or show the third root is 2	B1	
			Use a valid method to determine a Obtain $a = -12$	M1 A1	
		OR3:	Substitute and use De Moivre to cube $\sqrt{6}$ cis(114.1°), or equivalent	M1	
		OHO.	Find the real and imaginary parts of the expression	M1	
			Obtain $a = -12$	A1	
			State that the other complex root is $-1 - \sqrt{5i}$	B1	4
(b	(b)	EITHER:	Substitute $w = \cos 2\theta + i \sin 2\theta$ in the given expression	B1	
			Use double angle formulae throughout	M1	
			Express numerator and denominator in terms of $\cos \theta$ and $\sin \theta$ only	A1	
			Obtain given answer correctly	A1	
		OR:	Substitute $w = e^{2i\theta}$ in the given expression	B1	
			Divide numerator and denominator by $e^{i\theta}$, or equivalent	M1	
			Express numerator and denominator in terms of $\cos \theta$ and $\sin \theta$ only	A1	
			Obtain the given answer correctly	A1	4

© UCLES 2014 9709/32/M/J/14

© UCLES 2014

M1

A₁

9709/33/O/N/14

[4]

8

9

State $\arg wz = \arg w + \arg z$

Confirm given result $\tan^{-1} \frac{3}{5} + \tan^{-1} \frac{1}{4} = \frac{1}{4} \pi$ legitimately

Question	Answer	Marks	Guidance
10(i)	State or imply $r = 2$	BI	Accept √4
	State or imply $\theta = \frac{1}{6}\pi$	В1	
	Use a correct method for finding the modulus or the argument of u^4	MI	Allow correct answers from correct u with minimal working shown
	Obtain modulus 16	A1	
	Obtain argument $\frac{2}{3}\pi$	Al	Accept 16e 3
		5	
10(ii)	Substitute u and carry out a correct method for finding u ³	MI	$(u^3 = 8i)$ Follow their u^3 if found in part (i)
	Verify u is a root of the given equation	A1	
	State that the other root is $\sqrt{3} - i$	B1	
	Alternative method		
	State that the other root is $\sqrt{3}-i$	B1	
	Form quadratic factor and divide cubic by quadratic	M1	$(z-\sqrt{3}-i)(z-\sqrt{3}+i)(=z^2-2\sqrt{3}z+4)$
	Verify that remainder is zero and hence that u is a root of the given equation	Al	
		3	

FUDLISHED

Question	Answer	Marks	Guidance
10(iii)	Show the point representing u in a relatively correct position	BI	
	Show a circle with centre u and radius 2	B1	FT on the point representing u. Condone near miss of origin
	Show the line $y = 2$	В1	$y = 2$ $\bullet w$ Re
	Shade the correct region	B1	
	Show that the line and circle intersect on $x = 0$	Bi	Condone near miss
		5	

© UCLES 2019 9709/31/M/J/19