SWIFT *real-time* data flow

data collection in bursts of 512 s at 720 s intervals duty cycle configurable from 1 to 5 bursts per hour Met Airmar optional or AQH or AQD Vaisala **GPS and IMU** Camera (Microstrain or SBG Ellipse) or Signature 3D sonic serial 4 Hz NMEA serial serial serial serial serial or 1 Hz SDI-12 4 Hz or 1 Hz binary 25 Hz binary 0.25 Hz jpg 1 Hz ASCII 1 Hz ASCII 1 Hz ASCII or 10 Hz ASCII or 8 Hz binary

raw files onboard SWIFT (Sutron Xpert SD card, directories by com port)

Dissipation rate profile (AQH)

current profile (AQD) or dissipation + currents (Sig) wave spectra directional coefs bulk parameters mean value mean value mean value std deviation std deviation

mean value std deviation or inertial dissipation

n/a

nertial dissipation (3D sonic only)

processed files onboard SWIFT (Sutron Xpert SD card, directories by com port)

first burst of each hour only:
combine processed results to single binary telemetry file for Iridium SBD transmission

jpg from camera included once per day, at 2100 UTC only

Database of received telemetry on shore-side server

Download zip archives of hourly files: http://faculty.uw.edu/jmt3rd/SWIFTdata/DynamicDataLinks.html
Live map: http://swiftserver.apl.uw.edu/map

Matlab script compileSWIFT_SBDservertelemetry.m which loops thru all the SBD files in the downloaded archive (as the working directory) and reads individual binary files using the function readSWIFT_SBD.m then plots the whole dataset using the function plotSWIFT.m

Matlab structure of telemetry data and plots (local machine)

SWIFT post-processing data flow

raw files onboard SWIFT (Sutron Xpert SD card, directories by com port)

Dissipation rate profile (AQH)

or

current profile (AQD)

or

directional coefs
bulk parameters

dissipation + currents (Sig)

mean value
mean value mean value mean value std deviation
std deviation std deviation std deviation
inertial dissipation
(3D sonic only)

processed files onboard SWIFT (Sutron Xpert SD card, directories by com port)

Matlab script concatSWIFT_offloadedSDcard.m which builds telemetry SBD files for all bursts (not just first each hour, as was done onboard), and then calls compileSWIFT_SBDservertelemetry.m to loop thru all the SBD files and reads the binary files using the function readSWIFT_SBD.m then finally plots the whole dataset using the function plotSWIFT.m

Matlab structure of all processed data and plots (local machine)

reprocess_IMU.m or reprocess_SBG.m, which calls readSWIFTv3_IMU.m and rawdisplacements.m and XYZwaves.m

raw wave displacements improved wave spectra (no slope bias)

time lapse video

 $reprocess_AQH.m \ \ which \ calls \ readSWIFTv3_AQH.m, \ dissipation.m \ and \ structure function.m \ reprocess_AQD.m, \ which \ calls \ readSWIFTv3_AQD.m$

improved and phase-resolved dissipation rate profiles (AQH) directional profiles (AQD)

Notes: all Matlab functions in 'SWIFTcodes' Dropbox folder contact jthomson@apl.uw.edu for access submit revisions to 'beta' subfolder, archive in 'old' folder .prj files and 'codegen' subfolder are C++ conversions (used onboard)

Other codes (separate from data flow):

Raw (burst) file naming convention is *SWIFTXX_ZZZ_ddMonYear_HH_BN.dat* where *XX* is the buoy serial number, *ZZZ* is the sensor, *ddMonYear* is the date, *HH* is the hour (UTC), and *BN* is the burst number within that hour (1 to 5).

SWIFT data structure fields in Matlab (results by burst):

SWIFT.uplooking.tkedissipationrate: vertical profiles of turbulent dissipation rate in W/kg (= m^2 / s^3)

SWIFT.uplooking.z: depth bins, in meters, for the tke dissipation rate profiles. wave-following reference frame

SWIFT.downlooking.velocityprofile: vertical profiles of horizontal velocity magnitude, in m/s, relative to the float (not corrected for drift)

SWIFT.downlooking.z: depth bins, in meters, for the velocity profiles

SWIFT.winddirT: true wind direction FROM, in degrees CW relative to North

SWIFT.winddirTstddev: standard deviation of true wind direction, in degrees

SWIFT.windspd: wind speed, in m/s, at 1 m height above the wave-following surface

SWIFT.windspdstddev: standard deviation, in m/s, of wind speed

SWIFT.time: UTC timestamp in MATLAB datenum format (serial days since 0 Jan 0000)

SWIFT.date: human readable date as day, month, year

SWIFT.airtemp: air temperature, in deg C, at 1 m height above the wave-following surface

SWIFT.airtempstddev: standard deviation of air temperature, in deg C

SWIFT.sigwaveheight: significant wave height, in meters

SWIFT.peakwaveperiod: peak of period orbital velocity spectra (note convention is usually wave height spectrum)

SWIFT.peakwavedirT: true wave direction FROM, in degrees CW relative to North

SWIFT.wavespectra.energy: wave energy spectral density, in m^2/Hz, as a function of frequency

SWIFT.wavespectra.freg: spectral frequencies, in Hz

SWIFT.wavespectra.a1: normalized spectral directional moments

SWIFT.wavespectra.b1: normalized spectral directional moment

SWIFT.wavespectra.a2: normalized spectral directional moment

SWIFT.wavespectra.b2: normalized spectral directional moment

SWIFT.lat: latitude in decimal degrees

SWIFT.lon: longitude in decimal degrees

SWIFT.watertemp: water temperature, in deg C, at 0.5 m below the surface

SWIFT.salinity: water salinity, in PSU, at 0.5 m below the surface

SWIFT.puck: three color channels of a WetLabs puck flourometer

SWIFT.driftdirT: drift direction TOWARDS, in degrees True (equivalent to "course over ground")

SWIFT.dirftspd: drift speed in m/s (equivalent to "speed over ground")