

UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CURSO DE ENGENHARIA DE COMPUTAÇÃO

Proposta de projeto integrador final da disciplina

Cléber Werlang Cristian Augusto Wülfing

Trabalho integrador da disciplina ELC1048 – Projeto de Sistemas Embarcados

SUMÁRIO

1.	APRESENTAÇÃO3	,
2.	LISTA DE MATERIAIS5)
3.	CRONOGRAMA DE DESENVOLVIMENTO5	;

1. APRESENTAÇÃO

Ao longo do processo de aprendizagem sobre metodologias de testes, escalonamento e concorrência de tarefas e exclusividade de recursos na disciplina ELC1048 — Projeto de Sistemas Embarcados, percebeu-se a importância em orquestrar corretamente o sistema de modo a garantir que os recursos fossem utilizados no momento correto, gerando com isso informações confiáveis dentro do espaço de tempo esperado. Neste quesito, não basta apenas possuir as tarefas executando; elas precisam também respeitar condições e lógicas que tornarão o conjunto como um todo robusto.

Desta forma, com o objetivo de aplicar os conceitos até aqui adquiridos em um projeto integrador final da disciplina, é proposta a implementação da simulação de um sistema responsável pelo monitoramento do consumo energético de motores elétricos presentes na planta de uma indústria fictícia.

Figura 1 – Diagrama de funcionamento do projeto.

A proposta visa registrar constantemente as cargas elétricas em tempo real utilizando sensores de corrente elétrica aplicados aos motores, de modo a operar em um sistema nós-servidor. Possuindo os dados obtidos a partir da leitura constante, telemetrias periódicas são enviadas ao servidor presente na rede, o qual é responsável pelo armazenamento das informações. Simultaneamente, o nó analisa as informações do leitor e decide manter o motor operando, interromper o funcionamento por um período, dentre outras opções.

Em relação às tarefas concorrentes de cada nó/cliente, há a leitura periódica do sensor e consequente armazenamento exclusivo interno, o envio periódico da telemetria para o servidor, e por fim a tarefa responsável por analisar as informações e executar as ações no motor em questão.

Quanto às tarefas concorrentes do servidor, as telemetrias recebidas estarão atreladas à interrupção do evento de comunicação LoRa e posteriormente armazenadas de forma exclusiva no cartão MicroSD.

2. LISTA DE MATERIAIS

Para a viabilidade de realização física do projeto (utilizando componentes eletrônicos), serão necessários os itens descritos na tabela apresentada abaixo.

#	Componente	Quantidade
1	HELTEC ESP32 LoRa 915MHz v2	2
2	Sensor de corrente YHDC SCT013-020	1
3	Resistor 10kΩ	2
4	Capacitor 100µF	1
5	Placa Protoboard	1
6	Fios elétricos	-
7	Relé (ou LED para teste)	1
8	Cartão MicroSD	1
9	Módulo cartão MicroSD	1
10	Computador/Notebook	1

Tabela 1 – Lista de componentes para o projeto.

3. CRONOGRAMA DE DESENVOLVIMENTO

Data	Atividade
05/08	Definição e validação do escopo inicial do projeto
10/08	Testes utilizando ESP32 e FreeRTOS
12/08	Testes de temporização e mutex entre tarefas
17/08	Implementação das tarefas no client
19/08	Implementação da comunicação com servidor e
13/00	armazenamento de dados no cartão MicroSD
24/08	Elaboração de relatório e apresentação
26/10	Apresentação final do trabalho

Tabela 2 – Cronograma de desenvolvimento do projeto.

Repositório GitHub: https://github.com/CristianAugusto/ELC1048_FinalProject