Universidade do Minho

2º Teste de

Lógica EI

Lic. Eng. Informática

15 de Junho de 2012

Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

- 1. (a) Construa derivações em DNP que provem que:
 - (i) $(p_0 \land \neg p_1) \rightarrow \neg (p_0 \rightarrow p_1)$ é um teorema;
 - (ii) $p_0 \to p_3, \neg p_3 \lor p_1 \vdash p_0 \to (p_3 \land p_1).$
 - (b) Seja Γ um conjunto de fórmulas do Cálculo Proposicional. Prove que, se $\Gamma \vDash p_0 \to p_3$, então $\Gamma, \neg p_3 \lor p_1 \vdash p_0 \to (p_3 \land p_1)$. [Sugestão: use (a)(ii)]
- 2. Considere o tipo de linguagem $L = (\{0, q, +\}, \{P, =\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(q) = 1$, $\mathcal{N}(+) = 2$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(=) = 2$.
 - (a) Das seguintes palavras sobre \mathcal{A}_L , apresente árvores de formação das que pertencem a \mathcal{T}_L ou \mathcal{F}_L , e indique (sem justificar) quais as que não pertencem a nenhum desses conjuntos.
 - (i) $(\forall_{x_1}(\mathsf{q}(x_1) \to \mathsf{P}(x_1)))$

- (ii) $+(q(+(0,q(x_0)),x_3))$
- (iii) $(\exists_{x_0}((\forall_{x_1} P(x_1)) \lor = (x_0, q(x_1))))$
- (iv) $+(=(0,q(x_0)),q(x_1))$
- (b) Indique, justificando, o conjunto das variáveis substituíveis pelo L-termo $(q(x_1) + x_3) + 0$ na L-fórmula $P(x_2) \leftrightarrow \exists_{x_1} ((x_5 = x_1 + q(x_2 + 0)) \land \forall_{x_0} (P(x_1 + x_0) = x_3)).$
- (c) Defina por recursão estrutural a função $f: \mathcal{T}_L \longrightarrow \mathbb{N}_0$ que a cada L-termo t faz corresponder o número de ocorrências do símbolo 0 em t.
- 3. Sejam L o tipo de linguagem da pergunta anterior e $E=(\mathbb{Q},\overline{})$ a L-estrutura tal que $\overline{0}$ é o número $zero, \overline{q}(n)=n^2$ para cada $n\in\mathbb{Q}, \overline{+}$ é a função de adição em $\mathbb{Q}, \overline{P}=\mathbb{Q}^+$ (ou seja, \overline{P} é o predicado "é positivo"), e \equiv é a relação de igualdade em \mathbb{Q} .
 - (a) Seja a a atribuição em E tal que, para todo o $i \in \mathbb{N}_0$, $a(x_i) = i 3$. Calcule:
 - (i) $(q(0+x_0)+x_3)[a]$
 - (ii) $(P(x_5) \wedge \exists_{x_3} (q(x_3) = 0 + x_5)) [a]$
 - (b) Seja φ a L-fórmula $\mathsf{P}(\mathsf{q}(x_1)) \to \neg \forall_{x_2} (0 = \mathsf{q}(x_2))$. Prove que:
 - (i) φ é válida em E;
 - (ii) φ não é universalmente válida.
 - (c) Indique, justificando, uma L-fórmula ψ tal que $\psi[a']_{E'}=0$ para toda a atribuição a' numa qualquer L-estrutura E'.
 - (d) Para cada uma das seguintes afirmações, indique (sem justificar) uma L-fórmula que a represente:
 - (i) Existe um número cujo quadrado é positivo;
 - (ii) O quadrado da soma de quaisquer dois números é não nulo.
- 4. (a) Sejam L um tipo de linguagem, $\varphi, \psi \in \mathcal{F}_L$ e x uma variável. Mostre que:
 - (i) $\forall_x \varphi \lor \forall_x \psi \vDash \forall_x (\varphi \lor \psi)$;
 - (ii) $\neg \forall_x (\varphi \to \psi) \Leftrightarrow \exists_x (\varphi \land \neg \psi)$. [Sugestão: exiba uma série de equivalências lógicas.]
 - (b) Indique, justificando, um tipo de linguagem L, uma L-fórmula φ e duas variáveis x e y tais que $\not\vDash \forall_x \exists_y \varphi \to \exists_y \forall_x \varphi$.

Cotações	1.	2.	3.	4.
	3+1	1,5+1+1,5	2,5+2+1,5+1,5	3+1,5