Определения по матану, семестр 4

27 февраля 2018 г.

Содержание

1	Свойство, выполняющееся почти везде	2
2	Сходимость почти везде	2
3	Сходимость по мере	2
4	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	2
5	Интеграл ступенчатой функции	2
6	Интеграл неотрицательной измеримой функции	3
7	Суммируемая функция	3
8	Интеграл суммируемой функции	3
9	Произведение мер	4

1 Свойство, выполняющееся почти везде

 (X,\mathbb{A},μ) - пространство с мерой, и $\omega(x)$ – утверждение, зависящее от точки x. $E:=\{x:\omega(x)$ — ложно $\}$ и $\mu E=0$. Тогда говорят, что $\omega(x)$ верно при почти всех (п.в.) x.

2 Сходимость почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $f_n, f: X \to \overline{\mathbb{R}}$. Говорим, что $f_n \to f(x)$ почти везде, если $\{x: f_n(x) \not\to f(x)\}$ измеримо и имеет меру 0.

3 Сходимость по мере

 (X,a,μ) - пространство с мерой, $\mu\cdot X<+\infty$ $f_n,f:X\to \overline{R}$ - п.в. конечны Говорят, что f_n сходится к f по мере μ (при $n\to+\infty$) (обозначается $f_n\stackrel{\mu}{\Rightarrow} f$) если $\forall \epsilon>0$ $\mu(X(|f_n-f|>\epsilon))\stackrel{n\to+\infty}{\to} 0$

4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

 (X,a,μ) - пространство с мерой $f_n,f:X\to R$ - п.в. конечны, измеримы $f_n\to f$. Тогда эта сходимость "почти равномерная"

5 Интеграл ступенчатой функции

< $\mathbb{X},$ $\mathbb{A},$ $\mu>$ - пространство с мерой $f=\sum\limits_{k=1}^n(\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве $\mathbb X$ назовём

$$\int_{\mathbb{X}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

6 Интеграл неотрицательной измеримой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве ${\bf X}$ назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sup(\int\limits_{\mathbb{X}} g)$$

, где $0\leqslant g\leqslant f, g$ —ступенчатая

7 Суммируемая функция

< $X, A, \mu >$ - пространство с мерой f—измерима, $\int\limits_{X} f^+$ или $\int\limits_{X} f^-$ конечен (хотя бы один из них). Тогда интегралом f на X назовём

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{+}$$

Тогда если конечен $\int\limits_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

8 Интеграл суммируемой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f- измерима, $E\in {\bf A}$ Тогда интегралом f на множестве E назовём

$$\int_{\mathbb{E}} f d\mu := \int_{\mathbb{X}} f \cdot \chi(E) d\mu$$

f суммируемая на E,если $\int\limits_{\mathbb{X}}f^{+}\chi(E)$ и $\int\limits_{\mathbb{X}}f^{-}\chi(E)$ конечны

9 Произведение мер

 $< \mathbb{X}, \alpha, \mu >, < \mathbb{Y}, \beta, \nu >$ - пространства с мерой μ, ν - σ -конечные меры $\alpha \times \beta = \{A \times B \subset \mathbb{X} \times \mathbb{Y} : A \in \alpha, B \in \beta\}$ $m_0 : \alpha \times \beta \to \overline{R}$ $m_0(A \times B) = \mu A \cdot \nu B$

m - называется произведением мер μ и ν , если m - мера, которая ялвяется Лебеговским продолжением m_0 с полукольца $\alpha \times \beta$ на некоторую σ -алгебру $\alpha \otimes \beta$. $m = \mu \times \nu$ - обозначение $< \mathbb{X} \times \mathbb{Y}, \alpha \otimes \beta, \mu \times \nu >$ - произведение пространств с мерой