

Finite-temperature simulations with stoMPS

May, 2024

Journal Club - Third Season

Franco Lisandrini (AG Kollath)

Presenting results from: arXiv:2312.04420 Jianxin Gao, Yuan Gao, Qiaoyi Li, and Wei Li

We focus on...

Finite temperature

Necessary to compare with experiments

Many methods in general

• QMC, FTLM (ED), Series expansion, etc...

We focus on...

Finite temperature

Necessary to compare with experiments

Many methods in general

• QMC, FTLM (ED), Series expansion, etc...

Tensor networks?

MPS + imaginary time evolution

Purification and Sampling (METTS and stoMPS)

Methods in this talk

Purification

Density matrix as an MPS

METTS (Minimally Entangled Typical Thermal States)

Well stablished sampling method

Stocasthic MPS (stoMPS)

New sampling method

Purification

$$\langle A \rangle_{\beta} = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H} A \right) = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H/2} A e^{-\beta H/2} \right)$$

Verstraete et al., PRL 93, 207204 (2004) Barthel et al., PRB 79, 245101 (2009) Purification Mixed Pure factor $\langle A \rangle_{\beta} = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H} A \right) = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H/2} A e^{-\beta H/2} \right)$ Operator $e^{-\beta H}$ $e^{-eta H/2}$ $\langle A \rangle_{\beta} =$ A $e^{-eta H/2}$ Tr

Verstraete et al., PRL 93, 207204 (2004) Barthel et al., PRB 79, 245101 (2009) Purification Mixed Pure factor $\langle A \rangle_{\beta} = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H} A \right) = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H/2} A e^{-\beta H/2} \right)$ MPS Operator $e^{-\beta H/2}$ $|\psi\left(\beta\right)\rangle\rangle=$ $e^{-\beta H}$ $e^{-eta H/2}$ $\langle A \rangle_{\beta} =$ A $e^{-eta H/2}$ Tr

Verstraete et al., PRL 93, 207204 (2004) Barthel et al., PRB 79, 245101 (2009) Purification Mixed Pure factor $\langle A \rangle_{\beta} = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H} A \right) = \frac{1}{Z_{\beta}} \operatorname{Tr} \left(e^{-\beta H/2} A e^{-\beta H/2} \right)$ MPS Operator $e^{-\beta H/2}$ $e^{-\beta H}$ $|\psi\left(\beta\right)\rangle\rangle=$ $\langle\langle\psi\left(\beta\right)|$ $e^{-eta H/2}$ $\langle A \rangle_{\beta} =$ $\langle A \rangle_{\beta} =$ A $e^{-eta H/2}$ $|\psi\left(\beta\right)\rangle\rangle$ Tr

Sampling methods

$$\langle A \rangle_{\beta} = \frac{1}{Z_{\beta}} \sum_{i} \langle i | e^{-\beta H/2} A e^{-\beta H/2} | i \rangle$$

Pure state sampling

$$\langle A \rangle_{\beta} = \sum_{i} \frac{P_{i}(\beta)}{Z_{\beta}} \langle \psi_{i}(\beta) | A | \psi_{i}(\beta) \rangle$$

$$|\psi_i(\beta)\rangle = \frac{1}{P_i(\beta)^{1/2}} e^{-\beta H/2} |i\rangle$$

Sampling methods

$$\langle A \rangle_{\beta} = \frac{1}{Z_{\beta}} \sum_{i} \langle i | e^{-\beta H/2} A e^{-\beta H/2} | i \rangle$$

$$\beta \rightarrow 0$$
: $\langle A \rangle_{\beta=0} = \frac{1}{N_s} \sum_i \langle i | A | i \rangle$

$$\beta \longrightarrow \infty$$
: $\langle A \rangle_{\beta=\infty} = \frac{1}{N_s} \sum_i \langle GS | A | GS \rangle$

Pure state sampling

$$\langle A \rangle_{\beta} = \sum_{i} \frac{P_i(\beta)}{Z_{\beta}} \langle \psi_i(\beta) | A | \psi_i(\beta) \rangle$$

$$|\psi_i(\beta)\rangle = \frac{1}{P_i(\beta)^{1/2}} e^{-\beta H/2} |i\rangle$$

How to sample?

METTS, a Markovian random walk

$$\langle A \rangle_{\beta} = \sum_{i} \frac{P_{i}(\beta)}{Z_{\beta}} \langle \psi_{i}(\beta) | A | \psi_{i}(\beta) \rangle \qquad |\psi_{i}(\beta)\rangle = \frac{1}{P_{i}(\beta)^{1/2}} e^{-\beta H/2} |i\rangle$$

- 1) init random PS
- 2) time evolve until β
- 3) collapse to PS'(β) go to (2)

METTS, a Markovian random walk

$$\langle A \rangle_{\beta} = \sum_{i} \frac{P_{i}(\beta)}{Z_{\beta}} \langle \psi_{i}(\beta) | A | \psi_{i}(\beta) \rangle \qquad |\psi_{i}(\beta)\rangle = \frac{1}{P_{i}(\beta)^{1/2}} e^{-\beta H/2} |i\rangle$$

- 1) init random PS
- 2) time evolve until β
- 3) collapse to PS'(β) go to (2)

- Ensures the correct sampling distribution
- PS → Minimally entangled states
- Good results at low temperatures and ladders (Wietek et al., PRX 11, 031007 (2021))

stoMPS is not a Markov chain

Product state (D=1)

- ullet $|s_i
 angle=|\!\uparrow
 angle$ or $|\!\downarrow
 angle$ (Z₂)
- $\bullet |s_i\rangle = \cos\theta |\uparrow\rangle + \sin\theta |\downarrow\rangle$

Sampling an MPS with bond dim D

stoMPS is not a Markov chain

Sampling an MPS with bond dim D

Product state (D=1)

- ullet $|s_i
 angle=|\!\uparrow
 angle$ or $|\!\downarrow
 angle$ (Z₂)
- $\bullet |s_i\rangle = \cos\theta |\uparrow\rangle + \sin\theta |\downarrow\rangle$

MPS (D>1)

 $T_{\alpha,\beta}^m \sim \mathcal{N}(0,1)$

stoMPS coincides with ED

stoMPS coincides with ED

stoMPS outperforms METTS

stoMPS outperforms METTS

stoMPS outperforms METTS

stoMPS takes independent trajectories

stoMPS

One run for all βs!

METTS

- One run for each β!
- 2) time evolve until β
- 3) collapse to PS'(β) go to (2)

Example:

large- β ferromagnetic case \rightarrow sample around ferro No information about small β !

Cannot reuse small β data, one calculation per β !

stoMPS works for ladders

Conclusions

Interesting new sampling method

Comparable with METTS

Better in some situations?

Independent trajectories

Good for thermodynamic integration

Conclusions

Interesting new sampling method

Comparable with METTS

Better in some situations?

Independent trajectories

Good for thermodynamic integration

Performance?

5 times faster?

Improvements

EXTRA: METTS observables

L=16 U=8t ty=1.4t n=0.94 k_BT=0.08t