STTH5L06

Turbo 2 ultrafast high voltage rectifier

Datasheet - production data

Description

The device is developed using ST's Turbo 2 600 V technology. It is well-suited as a boost diode, especially for use in continuous mode power factor corrections and hard switching conditions.

This device is also intended for use as a free wheeling diode in power supplies and other power switching applications.

Table 1: Device summary

Symbol Value		
I _{F(AV)}	5 A	
V_{RRM}	600 V	
I _R (max)	125 μΑ / 150 μΑ	
T _j (max)	175 °C	
V _F (typ)	0.85 V	
t _{rr} (typ)	65 ns	

Features

- Ultrafast switching
- Low reverse recovery current
- Reduces switching losses
- Low thermal resistance
- Insulated package: TO-220FPAC
 - Insulation voltage: 2000 V_{RMS} sine
- ECOPACK®2 compliant component for

DPAK on demand

Characteristics STTH5L06

1 Characteristics

Table 2: Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol		Parameter				
V _{RRM}	Repetitive peak reverse voltage			600	V	
I _{F(RMS)}	Forward rms current TO-220AC TO-220FPAC DO-201AD		20	A		
			DPAK	10		
		TO-220AC, DPAK	T _C = 150 °C			
I _{F(AV)}	Average forward current δ = 0.5, square wave	DO-201AD	T _I = 50 °C	5	Α	
	o o.o, oquare wave	TO-220FPAC				
I _{FRM}	Repetitive peak forward current	t _P = 5 μs, F = 5 kHz squa	$t_P = 5 \mu s$, $F = 5 kHz square$		Α	
	Surge non repetitive		TO-220AC TO-220FPAC	90		
IFSM	forward current	t _p = 10 ms sinusoidal	DO-201AD	110	Α	
				60		
T _{stg}	T _{stg} Storage temperature range			-65 to +175	°C	
Tj	Maximum operating junction	on temperature		175	°C	

Table 3: Thermal parameter

Symbol	Pa	Max. value	Unit	
Б	lunction to coop	TO-220AC / DPAK	3.5	°C // //
Kth(j-c)	R _{th(j-c)} Junction to case	TO-220FPAC	6	°C/W
R _{th(j-l)}	Junction to lead	1 10 mm DO 201AD	20	°C // //
R _{th(j-a)}	Junction to ambient	L = 10 mm, DO-201AD	75	°C/W

STTH5L06 Characteristics

Table 4: Static electrical characteristics

Symbol	Parameter	Test conditions			Min.	Тур.	Max.	Unit
		T _j = 25 °C	V _R = 600 V		-		5	
I _R ⁽¹⁾	Reverse leakage current	T _j = 150 °C	V _R = 600 V	TO-220AC TO-220FPAC DPAK	-	10	125	μΑ
				DO-201AD	-	25	150	
V _F ⁽²⁾	Forward	T _j = 25 °C	I- 5 A		-		1.30	V
VF(=)	voltage drop	T _j = 150 °C	I _F = 5 A		-	0.85	1.05	V

Notes:

 $^{(1)}$ Pulse test: t_p = 5 ms, δ < 2%

To evaluate the conduction losses, use the following equation:

 $P = 0.89 \text{ x } I_{F(AV)} + 0.033 \text{ x } I_{F^2(RMS)}$

Table 5: Dynamic electrical characteristics

Symbol	Parameter	Test	Test conditions		Тур.	Max.	Unit
t _{rr}	Reverse recovery time	T _j = 25 °C	$I_F = 1 A$ $V_R = 30 V$ $dI_F/dt = -50 A/\mu s$	-	65	95	ns
t _{fr}	Forward recovery time	T _j = 25 °C	I _F = 5 A V _{FR} = 1.1 x V _F max dI _F /dt = 100 A/µs	-		150	ns
V _{FP}	Forward recovery voltage		I _F = 5 A dI _F /dt = 100 A/μs	-		7	V

 $^{^{(2)}\}text{Pulse}$ test: t_p = 380 $\mu\text{s},\,\delta$ < 2%

Characteristics STTH5L06

1.1 Characteristics (curves)

Figure 1: Conduction losses versus average

Figure 2: Forward voltage drop versus forward current

IF(A)

100.0

T₁ = 150 °C
((ypical values))

1.0

1.0

1.0

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Figure 3: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AC, DPAK)

Figure 4: Relative variation of thermal impedance junction to case versus pulse duration (TO-220FPAC)

Zth(j-c) / Rth(j-c)
1.0

Figure 5: Relative variation of thermal impedance junction to ambient versus pulse duration (DO-201AD)

Figure 6: Peak reverse recovery current versus dlr/dt (typical values)

STTH5L06 Characteristics

Figure 7: Reverse recovery time versus dlr/dt (typical values) 1000 V_R = 400 V ⁻ T_j = 125 °C ⁻ 900 800 700 600 500 400 300 200 100 0 10 20 70 80 90 100 $dI_F/dt(A/\mu s)$

Figure 8: Reverse recovery charges versus dl_F/dt (typical values) $Q_{rr}(nC)$ 500 V_R = 400 V I_F = 2 x I_{F(AV)} 450 T_i = 125 °C 400 $I_F = I_{F(AV)}$ 350 le = 0.5 x le 300 250 200 150 100 50 0 10 20 100 30 40 90 dl_F/dt(A/µs)

Figure 9: Softness factor versus dl_F/dt (typical values) Sfactor 2.4 I_F = I_{F(AV)} V_R = 400 V 2.2 T_j = 125°C 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 10 20 30 50 60 70 80 90 100 $dI_F/dt(A/\mu s)$

Characteristics STTH5L06

Figure 14: Thermal resistance junction to ambient

STTH5L06 Package information

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Cooling method: by conduction (C)
- Epoxy meets UL 94,V0
- Recommended torque value: 0.55 N·m (for TO-220FPAC / TO-220AC)
- Maximum torque value: 0.7 N·m (for TO-220FPAC / TO-220AC)

2.1 TO-220AC package information

H2

M

L5

L1

L5

L4

F

M

M

E

Figure 16: TO-220AC package outline

Table 6: TO-220AC package mechanical data

	Dimensions					
Ref.	Millim	neters	Inches			
	Min.	Max.	Min.	Max.		
А	4.40	4.60	0.173	0.181		
С	1.23	1.32	0.048	0.051		
D	2.40	2.72	0.094	0.107		
Е	0.49	0.70	0.019	0.027		
F	0.61	0.88	0.024	0.034		
F1	1.14	1.70	0.044	0.066		
G	4.95	5.15	0.194	0.202		
H2	10.00	10.40	0.393	0.409		
L2	16.40	typ.	0.645 typ.			
L4	13.00	14.00	0.511	0.551		
L5	2.65	2.95	0.104	0.116		
L6	15.25	15.75	0.600	0.620		
L7	6.20	6.60	0.244	0.259		
L9	3.50	3.93	0.137	0.154		
М	2.6	typ.	0.102	2 typ.		
ØI	3.75	3.85	0.147	0.151		

STTH5L06 Package information

2.2 TO-220FPAC package information

Figure 17: TO-220FPAC package outline

Package information STTH5L06

Table 7: TO-220FPAC package mechanical data

	Dimensions					
Ref.	Millim	neters	Inches			
	Min.	Min. Max.		Max.		
А	4.40	4.60	0.173	0.181		
В	2.50	2.70	0.098	0.106		
D	2.50	2.75	0.098	0.108		
E	0.45	0.70	0.018	0.027		
F	0.75	1.00	0.030	0.039		
F1	1.15	1.70	0.045	0.067		
G	4.95	5.20	0.195	0.205		
G1	2.40	2.70	0.094	0.106		
Н	10.00	10.40	0.393	0.409		
L2	16.00) typ.	0.630	O typ.		
L3	28.60	30.60	0.126	1.205		
L4	9.80	10.60	0.386	0.417		
L6	15.90	16.40	0.626	0.646		
L7	9.00	9.30	0.354	0.366		
Dia.	3.00	3.20	0.118	0.126		

STTH5L06 Package information

2.3 DO-201AD package information

Figure 18: DO-201AD package outline

Table 8: DO-201AD package mechanical data

		Dimensions			
Ref.	Millim	eters	Inc	ches	
	Min.	Max.	Min.	Max.	
А		9.50		0.374	
В	25.40		1.000		
ØC		5.30		0.209	
ØD		1.30		0.051	
E		1.25		0.049	

Package information STTH5L06

DPAK package information 2.4

Figure 19: DPAK package outline

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

Table 9: DPAK package mechanical data

	Table 9: DPAN package mechanical data							
		Dimensions						
Ref.	Milli	Millimeters		hes				
	Min.	Max.	Min.	Max.				
А	2.18	2.40	0.085	0.094				
A1	0.90	1.10	0.035	0.043				
A2	0.03	0.23	0.001	0.009				
b	0.64	0.90	0.025	0.035				
b4	4.95	5.46	0.194	0.215				
С	0.46	0.61	0.018	0.024				
c2	0.46	0.60	0.018	0.023				
D	5.97	6.22	0.235	0.244				
D1	4.95	5.60	0.194	0.220				
Е	6.35	6.73	0.250	0.265				
E1	4.32	5.50	0.170	0.216				
е	2.2	86 typ.	0.09	O typ.				
e1	4.40	4.70	0.173	0.185				
Н	9.35	10.40	0.368	0.409				
L	1.0	1.78	0.039	0.070				
L2		1.27		0.050				
L4	0.60	1.02	0.023	0.040				
V2	-8°	+8°	-8°	+8°				

Figure 20: DPAK recommended footprint (dimensions in mm)

Ordering information STTH5L06

3 Ordering information

Table 10: Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STTH5L06	STTH5L06	DO-201AD	1 10 ~	600	Ammopack
STTH5L06RL	STTH5L06	DO-201AD	1.12 g	1900	Tape and reel
STTH5L06D	STTH5L06D	TO-220AC	1.9 g	50	Tube
STTH5L06B-TR	STTH5 L06B	DPAK	0.32 g	2500	Tape and reel
STTH5L06FP	STTH5L06FP	TO-220FPAC	1.9 g	50	Tube

4 Revision history

Table 11: Document revision history

Date	Revision	Changes
16-Nov-2001	1	First issue.
31-Mar-2007	2	Merged with TO-220AC, TO-220FPAC and DPAK version.
26-Nov-2014	3	Updated DPAK and reformatted to current standard.
05-Dec-2014	4	Updated Features.
17-May-2017	5	Updated DPAK package information and reformatted to current standard.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

