THE DEPTH OF ULTRAPRODUCTS OF BOOLEAN ALGEBRAS

SAHARON SHELAH

The Hebrew University of Jerusalem Einstein Institute of Mathematics Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel

Department of Mathematics Hill Center-Busch Campus Rutgers, The State University of New Jersey 110 Frelinghuysen Road Piscataway, NJ 08854-8019 USA

ABSTRACT. We show in ZFC, that the depth of ultraproducts of Boolean Algebras may be bigger than the ultraproduct of the depth of those Boolean Algebras.

I would like to thank Alice Leonhardt for the beautiful typing.

This research was supported by the United States-Israel Binational Science Foundation. Publication 853.

§0 Introduction

Monk has looked systematically at cardinal invariants of Boolean Algebras. In particular, he has looked at the relations between inv $(\prod \mathbf{B}_i/D)$ and $\prod \text{inv}(\mathbf{B}_i)/D$,

i.e., the invariant of the ultraproducts of a sequence of Boolean Algebras vis the ultraproducts of the sequence of the invariants of those Boolean Algebras for various cardinal invariants inv of Boolean Algebras. That is: is it always true that $\operatorname{inv}(\prod_{i<\kappa} \mathbf{B}_i/D) \leq \operatorname{inv}(\prod_{i<\kappa} \mathbf{B}_i/D)$? is it consistently always true? Is it always true that $\prod_i \operatorname{inv}(\mathbf{B}_i)/D \leq \operatorname{inv}(\Pi \mathbf{B}_i/D)$? is it consistently always true? See more on

this in Monk [Mo96]. Roslanowski Shelah [RoSh 534] deals with specific inv and with more on kinds of cardinal invariants and their relationship with ultraproducts. Monk [Mo90a], [Mo96], in his list of open problems raises the question for the central cardinal invariants, most of them have been solved by now; see Magidor Shelah [MgSh 433], Peterson [Pe97], Shelah [Sh 345], [Sh 462], [Sh 479], [Sh 589, §4], [Sh 620], [Sh 641], [Sh 703], Shelah and Spinas [ShSi 677].

We here solve problem 12 of [Mo96], pg.287 in ZFC constructing an example. This example works for the length too. As in several earlier cases we use pcf theory to resolve the question near singular cardinals, see [Sh:g].

§1 On Problem 12,p.287 of [Mo96],Monk 1996 book

1.1 Claim. 1) Assume

- (a) $\mu = \mu^{\kappa} > 2^{\kappa}$
- (b) μ singular, $cf(\mu) = \theta$.

<u>Then</u> there are Boolean Algebras B_i for $i < \kappa$ such that

- (α) Depth(\mathbf{B}_i) $\leq \mu$ for $i < \kappa$, hence
- $(\alpha)'$ for any ultrafilter D on $\kappa, \mu = \prod_{i < \kappa} Depth(\mathbf{B}_i)/D$
- (β) for any uniform ultrafilter D on κ , the Boolean Algebra $\prod_{i<\kappa} B_i/D$ has depth $\geq \mu^+$.
- 2) We can replace in $(\alpha) + (\beta)$, μ by μ_1 if $\mu_1 < \operatorname{pp}(\mu)$ except in very rare cases, in particular it suffices to assume that $\operatorname{pp}_{J_{\operatorname{cf}(\mu)}^{\operatorname{bd}}}(\mu) > \mu_1$ or it suffices then $\lambda = \operatorname{tcf}(\prod a, <_J)$, J an ideal of $\mathfrak{a}, \emptyset = \bigcap_{i < \kappa} \mathfrak{b}_i$, $\mathfrak{b}_i \in J$ decreasing with empty intersections $\theta \in \mathfrak{a} \Rightarrow \operatorname{max} \operatorname{pcf}(\mathfrak{a} \cap \theta) < \lambda$.

Proof of 1.1. This is a special case of 1.3.

1.2 Remark. Clearly for any given κ there are many such μ 's, e.g., \beth_{κ^+} .

1.3 Claim. Assume

- (a) J is an ideal on \mathfrak{a} , $\sup(\mathfrak{a}) = \mu$, μ singular and $\mu = \lim_{J}(\mathfrak{a})$; that is $(\forall \mu_1 < \mu)[\mathfrak{a} \cap \mu_1 \in J)$ and $\theta \in \mathfrak{a} \Rightarrow \max \operatorname{pcf}(\mathfrak{a} \cap \beta) < \mu$
- (b) $\lambda = \operatorname{tcf}(\prod \mathfrak{a}, \leq_J)$ as witnessed by $\langle f_\alpha : \alpha < \lambda \rangle$
- (c) $\mathfrak{b}_i \in J^+$ for $i < \kappa, \mathfrak{b}_i$ decreasing with i and $\emptyset = \cap \{\mathfrak{b}_i : i < \kappa\}$
- (d) D is a uniform ultrafilter on κ .

<u>Then</u> for some sequence $\langle \mathbf{B}_i : i < \kappa \rangle$ of Boolean Algebras we have:

- (a) Depth⁺ $(\prod_{i < \kappa} \mathbf{B}_i/D) > \lambda$ (if $\lambda = \mu^+$ this means Depth $(\prod_{i < \kappa} \mathbf{B}_i/D) \ge \lambda$)
- (β) Depth⁺(\mathbf{B}_i) $\leq λ$ (if $λ = μ^+$ this means Depth(\mathbf{B}_i/D) $\leq μ$).

Proof. We can find $\langle f_{\alpha} : \alpha < \lambda \rangle$ which is $<_J$ -increasing cofinal in $(\pi \mathfrak{a}, <_J)$ and satisfies $\theta \in \mathfrak{a} \Rightarrow |\{f_{\alpha} \upharpoonright (\mathfrak{a} \cap \theta) : \alpha < \lambda\}| < \theta$ (see [Sh:g, II,3.5,pg.65]). We define a function $\theta : [\lambda]^2 \to \kappa$ by: for $\alpha \neq \beta < \lambda$ we let $\theta\{\alpha, \beta\} = \text{Min}\{\theta \in \mathfrak{a} : f_{\alpha}(\theta) \neq f_{\beta}(\theta)\}$ and we define a two place relation $<_i$ on λ by: $\alpha <_i \beta$ iff $\theta\{\alpha, \beta\} \in \mathfrak{a} \setminus \mathfrak{b}_i$ & $f_{\alpha}(\theta\{\alpha, \beta\}) < f_{\beta}(\theta\{\alpha, \beta\})$. Now

 $\circledast_1 \leq_i$ is a partial order of λ . [Why? Assume $\alpha <_i \beta <_i \gamma$.

Now

Case 1: $\alpha = \beta \vee \beta = \gamma$: trivial.

Case 2: $\theta\{\alpha,\beta\} < \theta\{\beta,\gamma\}$ so

$$\theta\{\alpha,\gamma\} = \theta\{\alpha,\beta\},\,$$

$$(f_{\alpha}(\theta\{\alpha,\beta\}), f_{\beta}(\theta\{\alpha,\beta\})) = (f_{\alpha}(\theta\{\alpha,\gamma\}), f_{\beta}(\theta\{\alpha,\gamma\}))$$
$$= (f_{\alpha}(\theta\{\alpha,\gamma\}), f_{\gamma}(\theta\{\alpha,\gamma\}))$$

and we are done.

Case 3: $\theta\{\alpha, \beta\} > \theta\{\beta, \gamma\}$). Similarly.

Case 4: $\theta(\alpha, \beta) = \theta(\beta, \gamma)$. Call it θ . So $f_{\alpha} \upharpoonright \theta = f_{\beta} \upharpoonright \theta = f_{\gamma} \upharpoonright \theta$ and $f_{\alpha}(\theta) < f_{\beta}(\theta) < f_{\gamma}(\theta)$, hence $\theta\{\alpha, \gamma\} = \theta$ and $f_{\alpha} <_i f_{\gamma}$ as required. So \circledast_1 holds.] Let $\mathbf{B}_i = BA[(\lambda, <_i)]$ where for a partial order (I, \leq_I) , $BA[(I, \leq_I)]$ is the Boolean Algebra generated by $\{x_t : t < I\}$ freely except that

 $\circledast_2 \ x_s \leq x_t \text{ when } s \leq_I x_t.$

Now

 \circledast_3 in $\mathbf{B} = \prod_{i < \kappa} \mathbf{B}_i / D$, there is an increasing sequence of length λ .

[Why? Let $a_{\alpha} = \langle x_{\alpha} : \alpha < \kappa \rangle / D$, now if $\alpha < \beta$ then $\theta \{\alpha, \beta\} \notin \mathfrak{b}_i \Rightarrow B_i \models$ " $x_{\alpha} < x_{\beta}$ " and $\alpha < \beta \Rightarrow \{i < \kappa : \theta(\theta, \beta) \notin \mathfrak{b}_i\} \in D$ as D is a uniform ultrafilter on κ and the sequence $\langle \mathfrak{b}_i : i < \kappa \rangle$ decreases with intersection \emptyset we are done easily. Together $\alpha < \beta \Rightarrow B \models a_{\alpha} < a_{\beta}$; so $\langle a_{\alpha}; \alpha < \lambda \rangle$ is as required so \circledast_3 holds.]

So it is enough to prove (as done in the rest of the proof).

$$\circledast_4$$
 Depth⁺(\mathbf{B}_i) $\leq \lambda$.

Toward contradiction, assume $\langle a_{\alpha} : \alpha < \lambda \rangle$ is an $\langle a_i : \alpha < \lambda \rangle$ is an $\langle a_i : \alpha < \alpha \rangle$ bers of \mathbf{B}_i . Let $a_{\alpha} = \sigma_{\alpha}(x_{\gamma(\alpha,0)}, \dots, x_{(\alpha,n_{\alpha}-1)})$ where σ_{α} is a Boolean term and

$$\gamma(\alpha,0) < \gamma(\alpha,1) < \ldots < \gamma(\alpha,n_{\alpha}-1) < \lambda.$$

Without loss of generality $\sigma_{\alpha} = \sigma_*$ so $n_{\alpha} = n_*$ and $\theta\{\gamma(\alpha, \ell_1), \gamma(\alpha, \ell_2)\}$ is the same for all $\alpha < \lambda$, say is θ_{ℓ_1, ℓ_2} . Now without loss of generality for some $\theta_* \in \mathfrak{a}$ satisfying $\ell_1 < \ell_2 < n_* \Rightarrow \theta_{\ell_1, \ell_2} < \theta_*$ we have $\ell < n_* \& \alpha < \beta < \lambda \Rightarrow f_{\gamma(\alpha, \ell)} \upharpoonright (\mathfrak{a} \cap \theta_*) = f_{\gamma(\beta, \ell)} \upharpoonright (\mathfrak{a} \cap \theta_*)$.

[Why? Recall that $\theta \in \mathfrak{a} \Rightarrow \theta > |\{f_{\alpha} \upharpoonright \theta : \alpha < \lambda\}| \text{ and } \theta \in \mathfrak{a} \Rightarrow \theta < \lambda = \text{cf}(\lambda).]$ Also without loss of generality for some $m_* < n_*, \ell < m_* \Rightarrow \gamma(\alpha, \ell) = \gamma_*(\ell)$ and $\alpha < \beta \Rightarrow \gamma(\alpha, n_* - 1) < \gamma(\beta, m_*)$. By [Sh:g, II,4.10A,4.10B,pg.76,77] as $\mathfrak{b}_i \in J^+$ we can find $\theta^* \in \mathfrak{b}_i \backslash \theta_*$ and $\alpha < \beta$ such that

$$\boxtimes_{\alpha,\beta}^{\theta} \theta^* = \theta\{\gamma(\alpha,\ell_1),\gamma(\beta,\ell_2)\}$$
 whenever $\ell_1 \neq \ell_2 \in \{m_*,\ldots,n_*-1\}$.

Now let $I = \{\gamma(\alpha,\ell), \gamma(\beta,\ell) : \ell < n_*\}$. Now we know that $BA[(I, \leq_i \upharpoonright I)]$ is a Boolean subalgebra of B_i hence $BA[(I, \leq_i \upharpoonright I)] \models \text{``}\sigma_*(\dots, x_{\gamma(\alpha,\ell)}, \dots) < \sigma_*(\dots, x_{\gamma(\beta,\ell)}, \dots)$ ''. But every automorphism π of $(I, \leq_i \upharpoonright I)$ induces an automorphism $\hat{\pi}$ of $BA[(I, \leq_i \upharpoonright I)]$, but the permutation π interchanging $\gamma(\alpha, \ell)$ with $\gamma(\beta, \ell)$ is an automorphism of $(I, \leq_i \upharpoonright I)$ so $BA[(I, \leq_i \upharpoonright I)] \models \text{``}\hat{\pi}(\sigma_x(\dots, x_{\gamma(\alpha,\ell)}, \dots) < \hat{\pi}(\sigma_*(\dots, x_{\gamma(\beta,\ell)}, \dots))$ '' but this gives a contradiction.

1.4 Claim. In 1.3 we can add

$$(\alpha)''$$
 Length⁺(\mathbf{B}_i) $\leq \lambda$ for $i < \kappa$.

Proof. The same proof works, only concerning \circledast_4 , it is now

$$\circledast_i \operatorname{Length}(\mathbf{B}_i) \leq \lambda.$$

The proof is the same but we do not know that $\mathrm{BA}[(I,\leq_i\upharpoonright I)]\models \text{``}\sigma_*(\dots,x_{\gamma(\alpha,\ell)},\dots)_{\ell< n_*}<\sigma_*(\dots,x_{\gamma(\beta,\ell)},\dots)_{\ell< n_*}\text{''}$ but only know that $\mathrm{BA}[(I,\leq_i\upharpoonright I)]\models \text{''}\text{the elements }\sigma_*(\dots,x_{\gamma(\alpha,\ell)},\dots)_{\ell< n_*}$ and $\sigma_*(\dots,x_{\gamma(\beta,\ell)},\dots)_{\ell< n_*}$ are comparable. $\Box_{1.4}$

REFERENCES.

- [MgSh 433] Menachem Magidor and Saharon Shelah. Length of Boolean algebras and ultraproducts. *Mathematica Japonica*, **48**(2):301–307, 1998. math.LO/9805145.
- [Mo90a] J. Donald Monk. Cardinal Invariants of Boolean Algebras. Lectures in Mathematics. ETH Zurich, Birkhauser Verlag, Basel Boston Berlin, 1990.
- [Mo96] J. Donald Monk. Cardinal Invariants of Boolean Algebras, volume 142 of Progress in Mathematics. Birkhäuser Verlag, Basel–Boston–Berlin, 1996.
- [Pe97] Douglas Peterson. Cardinal functions on ultraproducts of Boolean algebras. *Journal of Symbolic Logic*, **62**:43–59, 1997.
- [RoSh 534] Andrzej Rosłanowski and Saharon Shelah. Cardinal invariants of ultrapoducts of Boolean algebras. Fundamenta Mathematicae, **155**:101–151, 1998. math.LO/9703218.
- [Sh 345] Saharon Shelah. Products of regular cardinals and cardinal invariants of products of Boolean algebras. *Israel Journal of Mathematics*, **70**:129–187, 1990.
- [Sh:g] Saharon Shelah. Cardinal Arithmetic, volume 29 of Oxford Logic Guides. Oxford University Press, 1994.
- [Sh 479] Saharon Shelah. On Monk's questions. Fundamenta Mathematicae, 151:1–19, 1996. math.LO/9601218.
- [Sh 462] Saharon Shelah. σ -entangled linear orders and narrowness of products of Boolean algebras. Fundamenta Mathematicae, **153**:199–275, 1997. math.LO/9609216.
- [Sh 620] Saharon Shelah. Special Subsets of $^{cf(\mu)}\mu$, Boolean Algebras and Maharam measure Algebras. Topology and its Applications, **99**:135–235, 1999. 8th Prague Topological Symposium on General Topology and its Relations to Modern Analysis and Algebra, Part II (1996). math.LO/9804156.
- [Sh 589] Saharon Shelah. Applications of PCF theory. *Journal of Symbolic Logic*, **65**:1624–1674, 2000.
- [Sh 641] Saharon Shelah. Constructing Boolean algebras for cardinal invariants. Algebra Universalis, 45:353–373, 2001. math.LO/9712286.

- [Sh 703] Saharon Shelah. On ultraproducts of Boolean Algebras and irr. Archive for Mathematical Logic, 42:569–581, 2003. math.LO/0012171.
- [ShSi 677] Saharon Shelah and Otmar Spinas. On incomparability and related cardinal functions on ultraproducts of Boolean algebras. *Mathematica Japonica*, **52**:345–358, 2000. math.LO/9903116.