PRINTABLE VERSION

Quiz 11

You scored 90 out of 100

Question 1

Your answer is CORRECT.

The congruence equation " $-41 \equiv -105 \mod 16$ " means

a)
$$\bigcirc -41|(16-(-105))$$

b)
$$\bigcirc (-105)|(-41-16)$$

c)
$$\bigcirc (-41 - (-105))|16$$

Question 2

Your answer is CORRECT.

The integers 93 and 38 are congruent mod n for which value of n?

a)
$$\bigcirc n = 93$$

b) \bigcirc There are no values of n for which these two integers are congruent (except n=1).

c)
$$0 n = 38$$

d)
$$\bigcirc n = 6$$

Question 3

Your answer is CORRECT.

Consider the following proposition:

Proposition. If $a \equiv b \mod n$, then $a^2 \equiv b^2 \mod n$.

If you were writing a direct proof of this proposition, which of the following statements could be used as your last line?

1 of 4

- a) O Therefore remainders exist.
- **b)** O Therefore n is a multiple of $a^2 b^2$.
- c) \bigcirc Therefore b^2 is a multiple of $a^2 n$.
- d) \bigcirc Therefore a^2 is a multiple of $n b^2$.
- e) Therefore $a^2 b^2$ is a multiple of n.

Question 4

Your answer is CORRECT.

Is the following statement true or false?

 $\exists x, y, a, b \in \mathbb{Z}, n \in \mathbb{N}^*, (x \equiv a \mod n \land y \equiv b \mod n) \Rightarrow xy \not\equiv ab \mod n.$

(Note: for this problem N^* refers to the positive natural numbers

$$N^* = N - \{0\} = \{1, 2, 3, ...\}$$

- a) This statement is false.
- **b)** O This statement is true.

Question 5

Your answer is CORRECT.

A (direct) proof for a Proposition is presented below. Read through the proof and then determine which Proposition was proven.

Undefined control sequence \square

- a) Technically no proposition was proven true since there is an algebraic mistake in Line (3).
- **b)** O If you add up six consecutive integers, then the result is equivalent to 1 mod 6.
- c) \bigcirc If $x \in \mathbb{Z}$ then $\sum_{i=0}^{5} x + i \not\equiv 0 \mod 6$.
- d) The sum of 6 consecutive integers is never congruent to 0 mod 6.

Ouestion 6

Your answer is CORRECT.

2 of 4 03/22/2023, 22:56

Use the Euclidean Algorithm to find a solution to the congruence equation $-18x \equiv 1 \mod 49$ (if a solution exists).

- a) x = 19 is a solution.
- **b)** $\bigcirc x = -49/18$ is a solution.
- c) $\bigcirc x = -1/18$ is a solution.
- d) \bigcirc There are no solutions because $gcd(-18, 49) \neq 1$.
- e) $\bigcirc x = 49$ is a solution.

Question 7

Your answer is INCORRECT.

Of the options provided below, determine the one that best completes this sentence: "The modular equation $35x \equiv -27 \mod 24$ "

- a) has multiple solutions.
- **b)** Ohas exactly one solution.
- c) has no solutions.

Question 8

Your answer is CORRECT.

Which steps should one take when solving a congruence equation $ax \equiv b \mod n$? A helpful summary is presented below, only one step is missing:

Steps for solving $ax \equiv b \mod n$.

Step 1.

Step 2. If gcd(a, n) | b, then proceed to step 3, otherwise there are no solutions.

Step 3. Use work from Step 1 to calculate one solution $x_0 \in \mathbb{Z}$.

Step 4. Add $\frac{n}{\gcd(a,n)}$ to x_0 to create other solutions.

Of the following options, which could be used for the missing Step 1?

- a) \bigcirc Step 1. Multiply both sides by 1/a.
- **b)** \bigcirc Step 1. Divide n by b.

- c) \odot Step 1. Use the Euclidean Algorithm to compute gcd(a, n).
- d) \bigcirc Step 1. Use the Euclidean Algorithm to compute gcd(b, n).
- e) \bigcirc Step 1. Use the Euclidean Algorithm to compute gcd(b, n).

Question 9

Your answer is CORRECT.

Find a solution to the congruence equation $17x \equiv -15 \mod 5$.

- a) x = 25 is a solution.
- **b)** $\bigcirc x = 5/17$ is a solution.
- c) $\bigcirc x = 6$ is a soltuion.
- d) $\bigcirc x = 15/17$ is a solution.
- e) $\bigcirc x = 14$ is a solution.

Question 10

Your answer is CORRECT.

Find a solution to the congruence equation $-18x \equiv 5 \mod 23$.

- a) $\bigcirc x = 71$ is a solution.
- **b)** $\bigcirc x = 0$ is a solution.
- d) $\bigcirc x = 69$ is a solution.
- e) O There are no solutions.