#### EE247 Lecture 14

- D/A converters continued:
  - Resistor string DACs (continued)
  - -Serial charge redistribution DACs
  - Charge scaling DACs
  - -R-2R type DACs
  - -Current based DACs
  - -Static performance of D/As
    - · Component matching
    - · Systematic & random errors
  - Practical aspects of current-switched DACs
  - Segmented current-switched DACs

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 1

## R-String DAC

- · Advantages:
  - Takes full advantage of availability of almost perfect switches in MOS technologies
  - Simple, fast for <8-10bits
  - Inherently monotonic
  - Compatible with purely digital technologies
- · Disadvantages:
  - 2<sup>B</sup> resistors & ~2x2<sup>B</sup> switches for B bits → High element count & large area for B >10bits
  - High settling time for high resolution DACs:

 $\tau_{\rm max} \sim 0.25 \times 2^{\rm B} \, {\rm RC}$ 

 $V_{ref}$   $d_0$   $d_0$   $d_1$   $d_1$   $d_2$   $d_2$   $d_2$ 

M. Pelgrom, "A 10-b 50-MHz CMOS D/A Converter with 75-W Buffer," JSSC, Dec. 1990, pp. 1347

EECS 247- Lecture 14

Data Converters: DAC Design

# R-String DAC Including Interpolation

Resistor string DAC + Resistor string interpolator increases resolution w/o drastic increase in complexity e.g. 10bit DAC $\rightarrow$  (5bit +5bit $\rightarrow$  2x2<sup>5</sup>=2<sup>6</sup> # of Rs) instead of direct 10bit $\rightarrow$ 2<sup>10</sup>

#### Considerations:

- ☐ Main R-string loaded by the interpolation string resistors
- □ Large R values for interpolating string → less loading but lower speed
- ☐ Can use buffers

ref

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 3

# R-String DAC Including Interpolation

Use buffers to prevent loading of the main ladder

#### Issues:

- → Buffer DC offset
- → Effect of buffer bandwidth limitations on overall speed



EECS 247- Lecture 14

Data Converters: DAC Design

# Charge Based: Serial Charge Redistribution DAC Simplified Operation



Nominally C<sub>1</sub>=C<sub>2</sub>

• Operation based on redistribution of charge associated with C1 & C2 to perform accurate division by factor of 2

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 5

# Charge Based: Serial Charge Redistribution DAC Simplified Operation: Conversion Sequence



$$Q_{C_{i}}^{TI} = V_{REF} \times C_{I} \quad \& \qquad Q_{C_{i}}^{TI} = 0$$

$$Q_{C_{i}}^{TI} + Q_{C_{2}}^{TI} = Q_{C_{i}}^{T2} + Q_{C_{2}}^{T2} = (C_{I} + C_{2})V_{o}$$

$$Q_{C_{i}}^{TI} + Q_{C_{2}}^{TI} = V_{REF} \times C_{I}$$

$$V_{REF} \times C_{I} = (C_{I} + C_{2})V_{o}$$



$$Q_{C_1}^{TI} + Q_{C_2}^{TI} = Q_{C_1}^{T2} + Q_{C_2}^{T2} = (C_1 + C_2)V_O$$

$$V_{REF} \times C_1 = (C_1 + C_2)V_O$$

$$V_{O} = V_{REF} \times \frac{C_{1}}{C_{1} + C_{2}}$$

$$Since C_{1} = C_{2} \rightarrow V_{O} = \frac{V_{REF}}{2}$$

EECS 247- Lecture 14

Data Converters: DAC Design

# Serial Charge Redistribution DAC Simplified Operation (Cont'd)





- Conversion sequence:
  - -Next cycle
    - If S3 closed  $V_{C1}$ =0 then when S1 closes  $V_{C1}$  =  $V_{C2}$  =  $V_{REF}/4$
    - If S2 closed  $V_{C1}$ = $V_{REF}$  then when S1 closes  $V_{C1}$ = $V_{C2}$ = $V_{REF}$ /2+ $V_{REF}$ /4

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 7

## Serial Charge Redistribution DAC

- Conversion sequence:
  - –Discharge C1 & C2→ S3& S4 closed
  - -For each bit in succession beginning with LSB, b<sub>1</sub>:
    - S1 open- if b<sub>i</sub>=1 C1 precharge to V<sub>REF</sub> if b<sub>i</sub>=0 discharged to GND
    - S2 & S3 & S4 open- S1 closed- Charge sharing C1 & C2
      - → ½ of precharge on C1 +½ of charge previously stored on C2→ C2



$$V_o(1) = \frac{b_N}{2} V_{REF}$$

$$V_{o}(2) = \frac{1}{2} \left( b_{N-1} + \frac{b_{N}}{2} \right) V_{REF}$$



EECS 247- Lecture 14

Data Converters: DAC Design

# Serial Charge Redistribution DAC Example: Input Code 101



- Example input code 101 $\rightarrow$  output (4/8 +0/8 +1/8 )V<sub>REF</sub> =5/8 V<sub>REF</sub>
- · Very small area
- For an N-bit DAC, N redistribution cycles for one full analog output generation → quite slow

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 9

# Parallel Charge Scaling DAC

• DAC operation based on capacitive voltage division



→ Make Cx & Cy function of incoming DAC digital word

EECS 247- Lecture 14

Data Converters: DAC Design

# Parallel Charge Scaling DAC



- E.g. "Binary weighted"
- B+1 capacitors & switches (Cs built of unit elements
   → 2<sup>B</sup> units of C)

 $V_{out} = \frac{\sum_{i=0}^{B-l} b_i \, 2^i \, C}{2^B \, C} V_{ref}$ 

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 11

# Charge Scaling DAC Example: 4Bit DAC- Input Code 1011





$$V_{out} = \frac{2^{0}C + 2^{1}C + 2^{3}C}{2^{4}C}V_{ref} = \frac{11}{16}V_{ref}$$

EECS 247- Lecture 14

Data Converters: DAC Design

# **Charge Scaling DAC**



- Sensitive to parasitic capacitor @ output

  - If  $C_p$  constant → gain error If  $C_p$  voltage dependant → DAC nonlinearity
- Large area of caps for high DAC resolution (10bit DAC ratio 1:512)
- · Monotonicity depends on element matching (more later)

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 13

#### Parasitic Insensitive Charge Scaling DAC



$$V_{out} = -\frac{\sum\limits_{\sum}^{B-I}b_iz^iC}{C_I}V_{ref} \ , \quad C_I = 2^BC \ \rightarrow V_{out} = -\frac{\sum\limits_{\sum}^{B-I}b_iz^i}{2^B}V_{ref}$$

- · Opamp helps eliminate the parasitic capacitor effect by producing virtual ground at the sensitive node since  $C_P$  has zero volts at start & end
  - Issue: opamp offset & speed

EECS 247- Lecture 14

Data Converters: DAC Design

#### Charge Scaling DAC Incorporating Offset Compensation



- · During reset phase:
  - Opamp disconnected from capacitor array via switch S3
  - Opamp connected in unity-gain configuration (S1)  $C_I$  Bottom plate connected to ground (S2)  $V_{out} \sim -V_{os} \rightarrow V_{CI} = -V_{os}$
- · This effectively compensates for offset during normal phase

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 15

# **Charge Scaling DAC** Utilizing Split Array 8/7C

$$C_{series} = \frac{\sum all \, LSB \, array \, C}{\sum all \, MSB \, array \, C}$$

- Split array→ reduce the total area of the capacitors required for high resolution DACs
  - E.g. 10bit regular binary array requires 1024 unit Cs while split array (5&5) needs 64 unit Cs
  - Issue: Sensitive to parasitic capacitor

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 16

Vout

## **Charge Scaling DAC**

#### Advantages:

- Low power dissipation → capacitor array does not dissipate DC power
- Output is sample and held → no need for additional S/H
- INL function of capacitor ratio
- Possible to trim or calibrate for improved INL
- Offset cancellation almost for free

#### · Disadvantages:

- Process needs to include good capacitive material → not compatible with standard digital process
- Requires large capacitor ratios
- Not inherently monotonic (more later)

EECS 247- Lecture 14

Data Converters: DAC Design



## Current Based DACs R-2R Ladder Type

- R-2R DAC basics:
  - Simple R network divides both voltage & current by 2



Increase # of bits by replicating circuit

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 19

## R-2R Ladder DAC



Emitter-follower added to convert to high output impedance current sources

EECS 247- Lecture 14

Data Converters: DAC Design

# R-2R Ladder DAC How Does it Work?

Consider a simple 3bit R-2R DAC:



EECS 247- Lecture 14

Data Converters: DAC Design





#### Simple 3bit DAC-

2- Consolidate next two stages:



EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 23

# R-2R Ladder DAC How Does it Work?

Consider a simple 3bit R-2R DAC:



In most cases need to convert output current to voltage

Ref: B. Razavi, "Data Conversion System Design", IEEE Press, 1995, page 84-87

EECS 247- Lecture 14

Data Converters: DAC Design

## R-2R Ladder DAC



Trans-resistance amplifier added to:

- Convert current to voltage
- Generate virtual ground @ current summing node so that output impedance of current sources do not cause error
- Issue: error due to opamp offset

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 25

# R-2R Ladder DAC Opamp Offset Issue

$$V_{os}^{out} = V_{os}^{in} \left( 1 + \frac{R}{R_{Total}} \right)$$

If 
$$R_{Total} = large$$
,  
 $\rightarrow V_{os}^{out} \approx V_{os}^{in}$ 

$$\begin{split} If \ R_{Total} = not \ large \\ \rightarrow V_{os}^{out} = V_{os}^{in} \left( l + \frac{R}{R_{Total}} \right) \end{split}$$

Problem:

Since  $R_{Total}$  is code dependant  $\rightarrow V_{OS}^{out}$  would be code dependant

 $\rightarrow$  Gives rise to INL & DNL



EECS 247- Lecture 14

Data Converters: DAC Design

# R-2R Ladder Summary

- Advantages:
  - Resistor ratios only x2
  - Does not require precision capacitors
- · Disadvantages:
  - Total device emitter area  $\rightarrow A_E^{unit} x \ 2^B$ 
    - → Not practical for high resolution DACs
  - INL/DNL error due to amplifier offset

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 27

# Current based DAC Unit Element Current Source DAC



- "Unit elements" or thermometer
- 2B-1 current sources & switches
- · Suited for both MOS and BJT technologies
- Monotonicity does not depend on element matching and is guaranteed
- Output resistance of current source → gain error
  - Cascode type current sources higher output resistance → less gain error

EECS 247- Lecture 14

Data Converters: DAC Design

# Current Source DAC Unit Element



- Output resistance of current source → gain error problem
  - → Use transresistance amplifier
    - Current source output held @ virtual ground
    - Error due to current source output resistance eliminated
    - New issues: offset & speed of the amplifier

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 29

# Current Source DAC Binary Weighted



- · "Binary weighted"
- B current sources & switches (2<sup>B</sup>-1 unit current sources but less # of switches)
- Monotonicity depends on element matching →not guaranteed

EECS 247- Lecture 14

Data Converters: DAC Design

#### Static DAC Errors -INL / DNL

Static DAC errors mainly due to component mismatch

- Systematic errors
  - Contact resistance
  - · Edge effects in capacitor arrays
  - Process gradients
  - Finite current source output resistance
- Random variations
  - · Lithography etc...
  - Often Gaussian distribution (central limit theorem)

\*Ref: C. Conroy et al, "Statistical Design Techniques for D/A Converters," JSSC Aug. 1989, pp. 1118-28.

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 31

# Current Source DAC DNL/INL Due to Element Mismatch



- · Simplified example:
  - 3-bit DAC
  - Assume only two of the current sources mismatched (# 4 & #5)

EECS 247- Lecture 14

Data Converters: DAC Design

# Current Source DAC DNL/INL Due to Element Mismatch



EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 33

#### Component Mismatch Probability Distribution Function

- Component parameters → Random variables
- · Each component is the product of many fabrication steps
- · Most fabrication steps includes random variations
- →Overall component variations product of several random variables
- → Assuming each of these variables have a uniform pdf distribution:
- → Joint pdf of a random variable affected by two uniformly distributed variables → convolution of the two uniform pdfs......



EECS 247- Lecture 14

Data Converters: DAC Design

# Gaussian Distribution



$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where:  $\mu$  is the expected value and standard deviation:  $\sigma = \sqrt{E(X^2) - \mu^2}$  $\sigma^2 \rightarrow variance$ 

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 35

# Yield

In most cases we are interested in finding the percentage of components (e.g. R) falling within certain bounds:

$$P(-X \le x \le +X) =$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-X}^{+X} e^{-\frac{x^2}{2}} dx$$

$$= exf\left(\frac{X}{2\pi}\right)$$



EECS 247- Lecture 14

Data Converters: DAC Design

## Yield

| Χ/σ    | $P(-X \le x \le X) [\%]$ | Χ/σ    | P(-X ≤ x ≤ X) [%] |
|--------|--------------------------|--------|-------------------|
| 0.2000 | 15.8519                  | 2.2000 | 97.2193           |
| 0.4000 | 31.0843                  | 2.4000 | 98.3605           |
| 0.6000 | 45.1494                  | 2.6000 | 99.0678           |
| 0.8000 | 57.6289                  | 2.8000 | 99.4890           |
| 1.0000 | 68.2689                  | 3.0000 | 99.7300           |
| 1.2000 | 76.9861                  | 3.2000 | 99.8626           |
| 1.4000 | 83.8487                  | 3.4000 | 99.9326           |
| 1.6000 | 89.0401                  | 3.6000 | 99.9682           |
| 1.8000 | 92.8139                  | 3.8000 | 99.9855           |
| 2.0000 | 95.4500                  | 4.0000 | 99.9937           |

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 37

# Example

- Measurements show that the offset voltage of a batch of operational amplifiers follows a Gaussian distribution with  $\sigma$  = 2mV and  $\mu$  = 0.
- Find the fraction of opamps with  $|V_{os}| < 6mV$ :
  - $X/\sigma = 3 \rightarrow 99.73 \%$  yield
- Fraction of opamps with  $|V_{os}| < 400 \mu V$ :
  - $X/\sigma = 0.2 \rightarrow 15.85 \%$  yield

EECS 247- Lecture 14

Data Converters: DAC Design

## **Component Mismatch**

Example: Resistors layouted out side-by-side



After fabrication large # of devices measured & graphed → typically if sample size large shape is Gaussian



E.g. Let us assume in this example 1000 Rs measured & 68.5% fall within +-4OHM or +-0.4% of average  $\rightarrow$  1 $\sigma$  for resistors  $\rightarrow$  0.4%

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 39

# **Component Mismatch**

Example: Two resistors layouted out side-by-side



$$R = \frac{R_I + R_I}{2}$$

 $dR = R_I - R_2$ 



For typical technologies & geometries  $1\sigma$  for resistors  $\rightarrow 0.02$  to 5%

$$\sigma_{\frac{dR}{R}}^2 \propto \frac{1}{Area}$$

In the case of resistors  $\sigma$  is a function of area

EECS 247- Lecture 14

Data Converters: DAC Design

## **DNL Unit Element DAC**

E.g. Resistor string DAC: Assumption: No systematic error- only random error

$$\Delta = R_{median} I_{ref} \quad where \quad R_{median} = \frac{\sum_{o}^{2^{B}-I} R_{i}}{2^{B}}$$

$$\Delta = R.I. \quad c$$

$$DNL_i = \frac{\Delta_i - \Delta_{median}}{\Delta_{median}}$$

$$= \frac{R_i - R_{median}}{R_{median}} = \frac{dR}{R_{median}} \approx \frac{dR}{R_i}$$

$$\sigma_{DNL} = \sigma_{\frac{dR_i}{R}}$$



EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 41

 $\Delta_i = R_i I_{ref}$ 

## **DNL Unit Element DAC**

E.g. Resistor string DAC:

$$\sigma_{DNL} = \sigma_{\underline{dR_i}}$$

Example:

If  $\sigma_{dR/R}$  = 0.4%, what DNL spec goes into the DAC datasheet so that 99.9% of all converters meet the spec?

# Yield

| Χ/σ    | $P(-X \le x \le X) [\%]$ | X/σ    | $P(-X \le x \le X) [\%]$ |
|--------|--------------------------|--------|--------------------------|
| 0.2000 | 15.8519                  | 2.2000 | 97.2193                  |
| 0.4000 | 31.0843                  | 2.4000 | 98.3605                  |
| 0.6000 | 45.1494                  | 2.6000 | 99.0678                  |
| 0.8000 | 57.6289                  | 2.8000 | 99.4890                  |
| 1.0000 | 68.2689                  | 3.0000 | 99.7300                  |
| 1.2000 | 76.9861                  | 3.2000 | 99.8626                  |
| 1.4000 | 83.8487                  | 3.4000 | 99.9326                  |
| 1.6000 | 89.0401                  | 3.6000 | 99.9682                  |
| 1.8000 | 92.8139                  | 3.8000 | 99.9855                  |
| 2.0000 | 95.4500                  | 4.0000 | 99.9937                  |

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 43

# **DNL Unit Element DAC**

E.g. Resistor string DAC:

$$\sigma_{DNL} = \sigma_{\underline{dR_i}}$$

Example:

If  $\sigma_{\mathit{dR/R}}$  = 0.4%, what DNL spec goes into the datasheet so that 99.9% of all converters meet the spec?

Answer:

From table: for 99.9%

 $\rightarrow$  X/ $\sigma$  = 3.3

 $\sigma_{\rm DNL} = \sigma_{dR/R} = 0.4\%$  3.3  $\sigma_{\rm DNL} = 3.3 \times 0.4\% = 1.3\%$ 

→DNL= +/- 0.013 LSB

EECS 247- Lecture 14

Data Converters: DAC Design

## **DAC INL Analysis**



|         | Ideal | Variance                       |
|---------|-------|--------------------------------|
| A=n+E   | n     | $n.\sigma_{\varepsilon}^2$     |
| B=N-n-E | N-n   | $(N-n).\sigma_{\varepsilon}^2$ |

$$E = A - n \quad r = n/N \quad N = A + B$$

$$= A - r(A + B)$$

$$= (1 - r). \quad A - r.B$$

$$\Rightarrow Variance \ of E:$$

$$\mathbf{\sigma}_{\mathsf{E}}^2 = (1 - r)^2 . \mathbf{\sigma}_{\mathsf{A}}^2 + r^2 . \mathbf{\sigma}_{\mathsf{B}}^2$$

$$= N.r. (1 - r). \mathbf{\sigma}_{\mathsf{E}}^2 = n. (1 - n/N). \mathbf{\sigma}_{\mathsf{E}}^2$$

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 45

## **DAC INL**

$$\sigma_E^2 = n \left( 1 - \frac{n}{N} \right) \times \sigma_{\varepsilon}^2$$

$$To find max. variance: \frac{d\sigma_E^2}{dn} = 0$$

$$\rightarrow n = N/2 \rightarrow \sigma_E^2 = \frac{N}{4} \times \sigma_{\varepsilon}^2$$
• Error is maximum at mid-scale (N/2):



0.5

$$\sigma_{INL} = \frac{1}{2} \sqrt{2^B - 1} \ \sigma_{\varepsilon}$$
with  $N = 2^B - 1$ 

- n/N • INL depends on both DAC resolution & element matching  $\sigma_{\!arepsilon}$
- While  $\sigma_{\!\!DN\!L}$  =  $\sigma_{\!\!arepsilon}$  is to first order independent of DAC resolution and is only a function of element matching

Ref: Kuboki et al, TCAS, 6/1982

EECS 247- Lecture 14

Data Converters: DAC Design

#### **Untrimmed DAC INL**

#### Example:

Assume the following requirement for a DAC:

$$\sigma_{INL} = 0.1 LSB$$

Find maximum resolution for:

$$\sigma_{\varepsilon} = 1\%$$

$$\sigma_{\varepsilon} = 0.5\%$$

$$\sigma_{\varepsilon} = 0.2\%$$

$$\sigma_{\varepsilon} = 0.1\%$$

$$\sigma_{INL} \cong \frac{1}{2} \sqrt{2^B - 1} \ \sigma_{\varepsilon}$$

$$B \cong 2 + 2\log_2 \left[ \frac{\sigma_{INL}}{\sigma_{\varepsilon}} \right]$$

$$\sigma_{\varepsilon} = 1\% \rightarrow B_{max} = 8.6bits$$

$$\sigma_{\varepsilon} = 0.5\% \rightarrow B_{max} = 10.6 bits$$

$$\sigma_{\varepsilon} = 0.2\% \rightarrow B_{max} = 13.3bits$$

$$\sigma_{\varepsilon} = 0.1\% \rightarrow B_{max} = 15.3bits$$

EECS 247- Lecture 14

Data Converters: DAC Design



## INL & DNL for Binary Weighted DAC

- INL same as for unit element DAC
- DNL depends on transition
   -Example:

0 to 1 
$$\rightarrow \sigma_{DNL}^2 = \sigma_{(dUI)}^2$$
  
1 to 2  $\rightarrow \sigma_{DNL}^2 = 3\sigma_{(dUI)}^2$ 



• Consider MSB transition: 0111 ... → 1000 ...

EECS 247- Lecture 14

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 49

© 2008 H.K. Page 50

# DAC DNL Example: 4bit DAC Analog Output [I\_{ref}] I\_0 on, I\_0 off, I\_2 off, I\_1 off $I_8$ $I_4$ $I_2$ $I_1$ $I_2$ $I_3$ $I_4$ $I_5$ $I_8$ $I_8$ $I_4$ $I_7$ $I_8$ $I_$

Data Converters: DAC Design

## Binary Weighted DAC DNL



Worst-case transition occurs at mid-scale:

$$\sigma_{DNL}^{2} = \underbrace{\left(2^{B-I} - I\right)\sigma_{\varepsilon}^{2}}_{0111...} + \underbrace{\left(2^{B-I}\right)\sigma_{\varepsilon}^{2}}_{1000...}$$

$$\cong 2^{B}\sigma_{\varepsilon}^{2}$$

$$\sigma_{DNL_{max}} = 2^{B/2}\sigma_{\varepsilon}$$

$$\sigma_{INL_{max}} \cong \frac{1}{2}\sqrt{2^{B} - I}\sigma_{\varepsilon} \cong \frac{1}{2}\sigma_{DNL_{max}}$$

- Example:
  - B = 12,  $\sigma_{\varepsilon}$  = 1%
  - $\rightarrow \sigma_{\rm DNL}$  = 0.64 LSB
  - $\rightarrow \sigma_{\text{INL}} = 0.32 \text{ LSB}$

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 51

### MOS Current Source Variations Due to Device Matching Effects

$$\begin{split} I_{d} = & \frac{I_{d1} + I_{d2}}{2} \\ & \frac{dI_{d}}{I_{d}} = & \frac{I_{d1} - I_{d2}}{I_{d}} \\ & \frac{dI_{d}}{I_{d}} = & \frac{dW_{/L}}{W_{/L}} + \frac{2 \times dV_{th}}{V_{GS} - V_{th}} \end{split}$$



- · Current matching depends on:
  - Device W/L ratio matching
    - → Larger device area less mismatch effect
  - Current mismatch due to threshold voltage variations:
    - → Larger gate-overdrive less threshold voltage mismatch effect

EECS 247- Lecture 14

Data Converters: DAC Design

## Current-Switched DACs in CMOS

$$\frac{dI_d}{I_d} = \frac{d\frac{W_L}{V_L}}{W_L} + \frac{dV_{th}}{V_{GS} - V_{th}}$$



· Advantages:

Example: 8bit Binary Weighted

Can be very fast

Reasonable area for resolution < 9-10bits

· Disadvantages:

Accuracy depends on device  $\mathit{W/L} \, \, \& \, \mathit{V}_{\mathit{th}} \,$  matching

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 53

## Unit Element versus Binary Weighted DAC

#### **Unit Element DAC**

Binary Weighted DAC

$$\sigma_{DNL}$$
 =  $\sigma_{\mathcal{E}}$ 

$$\sigma_{DNL} \cong 2^{\frac{B}{2}} \sigma_{\varepsilon} = 2\sigma_{INL}$$

$$\sigma_{INL} \cong 2^{B/2-1} \sigma_{\varepsilon}$$

$$\sigma_{INL} \cong 2^{B/2-1} \sigma_{\epsilon}$$

Number of switched elements:

$$S=2^B$$

$$S = B$$

Key point: Significant difference in performance and complexity!

EECS 247- Lecture 14

Data Converters: DAC Design

# Unit Element versus Binary Weighted DAC Example: B=10

#### **Unit Element DAC**

#### **Binary Weighted DAC**

$$\sigma_{DNL} = \sigma_{\varepsilon}$$

$$\sigma_{DNL} \cong 2^{\frac{B}{2}} \sigma_{\varepsilon} = 32 \sigma_{\varepsilon}$$

$$\sigma_{INL} \cong 2^{\frac{B}{2}-1}\sigma_{\varepsilon} = 16\sigma_{\varepsilon}$$

$$\sigma_{INL} \cong 2^{\frac{B}{2}-1} \sigma_{\varepsilon} = 16 \sigma_{\varepsilon}$$

Number of switched elements:

$$S = 2^B = 1024$$

$$S = B = 10$$

Significant difference in performance and complexity!

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 55

# "Another" Random Run ...



Now (by chance) worst DNL is mid-scale.

Statistical result!

EECS 247- Lecture 14

Data Converters: DAC Design





# DAC INL/DNL Summary

- DAC choice of architecture has significant impact on DNL
- INL is independent of DAC architecture and requires element matching commensurate with overall DAC precision
- Results assume uncorrelated random element variations
- Systematic errors and correlations are usually also important and may affect final DAC performance

Ref. Kuboki, S.; Kato, K.; Miyakawa, N.; Matsubara, K. Nonlinearity analysis of resistor string A/D converters. IEEE Transactions on Circuits and Systems, vol.CAS-29, (no.6), June 1982. p.383-9.

EECS 247- Lecture 14

Data Converters: DAC Design

© 2008 H.K. Page 59

## Segmented DAC

 Objective: Compromise between unit element and binary weighted DAC



- Approach:
   B<sub>1</sub> MSB bits → unit elements
   B<sub>2</sub> LSB bits → binary weighted
- · INL: unaffected same as either architecture
- DNL: Worst case occurs when LSB DAC turns off and one more MSB DAC element turns on → Same as binary weighted DAC with (B<sub>2</sub>+1) # of bits
- Number of switched elements: (2<sup>B1</sup>-1) + B<sub>2</sub>

EECS 247- Lecture 14

Data Converters: DAC Design

# Comparison

Example:

Cample:
$$B = 12, \quad B_1 = 5, \quad B_2 = 7$$

$$MSB \qquad B_2 = 6$$

$$MSB \qquad B_2 = 6$$

$$MSB \qquad CSB \qquad S = 2^{B/2 - 1} \sigma_{\varepsilon}$$

$$S = 2^{B1} - 1 + B_2$$

Assuming:  $\sigma_\epsilon = 1\%$ 

| DAC Archit            | ecture<br>(B1+B2) | $\sigma_{INL[LSB]}$ | $\sigma_{\text{DNL[LSB]}}$ | # of switched elements |
|-----------------------|-------------------|---------------------|----------------------------|------------------------|
| Unit element          | (12+0)            | 0.32                | 0.01                       | 4095                   |
| Segmented             | (6+6)             | 0.32                | 0.113                      | 63+6=69                |
| Segmented             | (5+7)             | 0.32                | 0.16                       | <i>31+7=38</i>         |
| Binary weighted(0+12) |                   | 0.32                | 0.64                       | 12                     |

EECS 247- Lecture 14

Data Converters: DAC Design