Entropy measures for two variables

- Joint Entropy
- Conditional Entropy
- Mutual Information

Motivation:

- -relation between two variable
- model a channel

Plan

- Models with two variable
- Joint distribution
- Entropy measures
 - Joint entropy, conditional entropy, mutual information, relative entropy
- Min-entropy
- From data to distribution

Modeling a channel

- A channel is specified by,
- an input alphabet
- an output alphabet
- a transition function
 - probabilistic

Example

An erasure channel:

- X={0, 1} is the input set
- Y= {0,1, ?} is output set

- Bob receives the string S = ?10?1
- How much information has passed through the channel?

Example

An encryption system.

Messages: X

Key space

• Encryption: $y = f_k(x)$

• Decryption $x=f_k^{-1}(y)$

 How much information does eavesdropper receive after seeing the ciphertext?

Joint Distributions: (refresher)

Sample set is $XY : \{ (x,y): x \text{ in } X, y \text{ in } Y \}$

$$p(X = a, Y = b)$$

p(X,Y) is called the joint distribution.

Example: How is the weather today?

- X: {0, 1} 1 means "it rains", 0 means it does not
- Y: {0, 1} 1 means "gets cold", 0 means it does not
- We are given: p(X=0, Y=0) = 1/3p(X=0, Y=1) = 1/6p(X=1,Y=0)=1/12 p(X=1,Y=1) = 5/12

P(XY)	Y=0	Y=1
X=0	1/3	1/6
X=1	5/12	1/12

- Probability that it rains:
- p(X=1) = p(X=1,Y=0) + p(X=1,Y=1) = 1/12 + 5/12 = 1/2• p(X=0) = 1/2
- Probability that it gets cold:
- p(Y=1) = p(X=0, Y=1) + p(X=1, Y=1) = 7/12• p(Y=0) = 5/12

Joint Distributions: (refresher)

Sample set is $XY : \{ (x,y): x \text{ in } X, y \text{ in } Y \}$

$$p(X = a, Y = b)$$

p(X,Y) is called the joint distribution.

Marginal distributions p(X) and p(Y) can be obtained:

$$p(X = a) = \sum_{i} p(X = a, Y = i)$$

$$p(Y = b) = \sum_{i} p(X = i, Y = b)$$

Joint distribution

- (1, red)
- (2,blue)
- (3,blue)
- (4,blue)
- (5,red)

(6,red	d)	2	
	1	2	5
	(6,red	(6,red)	(6,red) 2

Red	Blue
1/6	0
0	1/12
0	1/12
0	1/6
1/6	0
1/3	0
	1/6 0 0 0 0 1/6

Joint distribution

•
$$p(1,red)$$

= 1/6

•
$$p(1)=$$
 =1/6

- p(red) = 2/3
- p(blue) = 1/3
- p(even, red)=

	Red	Blue
1	1/6	0
2	0	1/12
3	0	1/12
4	0	1/6
5	1/6	0
6	1/3	0

Conditional probability (refresher)

- Given:
- 1.A probability space
- 2.two events A and B,
- p(A|B) is the conditional probability of A when B has happened.

- The law (axiom) of conditional probability:
- p(A|B) = p(AB) / p(B)
- p(AB) = p(B)p(A|B) = p(A)p(B|A)

Independent events (refresher)

B is independent of A if,
 p(B|A)=p(B)

- That is p(AB) = p(A)p(B|A)=p(A)p(B)
- This means A is independent of B also.
 p(A|B)=p(A)

Example: outcome of two rolls of the die

Example

- X: {0, 1} 1 means "it rains", 0 means it does not
 Y: {0, 1} 1 means "gets cold", 0 means it does not
- We are given: $p(X=0, Y=0) = 1/3 \\ p(X=0, Y=1) = 1/6 \\ p(X=1, Y=0) = 1/12 \\ p(X=1, Y=1) = 5/12$
- Find probability of (cold, given that it rains)

•
$$p(Y=1|X=1) = \frac{p(X=1,Y=1)}{p(X=1)} = \frac{5/12}{1/2} = \frac{5}{6}$$

- Find probability of (cold, given that it does not rain)
- $p(Y=1|X=0) = \frac{p(X=0,Y=1)}{n(X=0)} = \frac{1/6}{1/2} = \frac{1}{3}$