

Emmaüsinstituut Sint-Gerolflaan 20 9880 Aalter

	Dhr. Van Avermaet J.
Leerkrachten:	

Titel:

Verslag: Nullastproef, Kortsluitproef en Belastingsproef
Kooirotor

Vak:	REMP Elektriciteit
Klas:	6EM6
Naam &	Anthony Tacquet
Klasnummer:	9
Schooljaar:	2020-2021
Begin- en einddatum:	3/03/21 - 10/03/21

De vaardigheden: /10pt

Het verslag: /10pt

Het totaal: /20pt

	Leerling	Leerkracht
Bestekmapje en voorblad		
Controle van het schema of opstellingstekening		
Metingen of waarnemingen		
Grafieken		
Besluiten		
Beoordeling van je eigen werk op 10pt.	7/10	

Kooirotor: nullastproef

Doel van de proef

De nullastproef wordt uitgevoerd ter bepaling van de parallelelementen van het equivalent schema ($\mathbf{R}_{\mathbf{F}_{\mathbf{a}}}$ en $\mathbf{X}_{\mathbf{b}}$).

Uitvoering van de proef

De stator wordt in ster geschakeld en gevoed met een regelbare spanning. Het toerental van de motor verschilt van het synchrone toerental, vermits hij "belast" wordt door de eigen mechanische verliezen. Bij verschillende waarden van de spanning meet men stroom, spanning en ingaand vermogen. In tegenstelling tot de nullastproef bij transformatoren, is het noodzakelijk gebruik te maken van stroomtransformatoren. De relatieve nullaststroom is bij een inductiemachine immers aanzienlijk groter wegens de aanwezigheid van de luchtspleet.

Men kan onderscheid maken tussen een theoretische en een praktische nullastproef:

Praktische nullastproef: zoals hierboven beschreven

<u>Theoretische nullastproef</u>: De inductiemachine wordt op synchroon toerental aangedreven, waardoor de mechanische verliezen gedekt worden door de aandrijfmotor. Het gemeten nullastvermogen bestaat dan uitsluitend uit statorjouleen ijzerverliezen. De ervaring leert echter dat deze theoretische nullastproef moeilijk is uit te voeren, omdat een kleine afwijking van het synchrone toerental reeds een grote relatieve variatie van het opgenomen vermogen tot gevolg heeft.

▶ Uitvoering van de proef

Eerst moet je een inductiemachine selecteren door op de inductiemachine te klikken.
 Daarna selekteer je de volt-, ampère- en vermogenmeter en de stroomtransformatoren.

2. De tweede stap bestaat uit het opstarten van de inductiemachine. De opstartsekwentie wordt gestart wanneer men op de knop Opstarten klikt. Eerst wordt er spanning aangelegd op de motor. De rotorweerstanden worden een bepaalde waarde gegeven zodat het grootste koppel bij stilstand ligt. Het werkingspunt verplaatst zich naar P₁. Na deze aanloopfase gaat men de rotorweerstanden kortsluiten. Hierbij verplaatst het werkingspunt zich naar P₂.

▶ Het schema van de proef

Kooirotor = Kooirotr 2

Transformator = ST 15A/25A/50A - 5A (15A -> 5A)

Ampèremeter = Volt Tech Voltmeter = Volt Tech Wattmeter = Volt Tech

De resultaten van de proef

%	U ₁ [V]	U ₃ [V]	U ₀ [V]	I ₁ [A]	I ₃ [A]	I ₀ [A]	P ₁ [W]	P ₃ [W]	P ₀ [W]	cos	
100	380	380	380	30	30	30	1236	-426	810	.041	•
97.4	370	370	370	30	30	30	1191	-384	807	.042	
94.7	360	360	360	30	30	30	1146	-345	801	.043	
92.1	350	350	350	30	30	30	1104	-309	795	.044	
89.5	340	340	340	30	30	30	1062	-270	792	.045	
86.8	330	330	330	30	30	30	1020	-237	783	.046	
84.2	320	320	320	30	30	30	981	-201	780	.047	
81.6	310	310	310	30	30	30	942	-168	774	.048	
78.9	300	300	300	30	30	30	903	-135	768	.049	
											1
											1
											1
											1
											-

Berekeningen

Het ingaand vermogen (nullastvermogen $\mathbf{P_0}$) bestaat volledig uit de optredende verliezen:

- statorjouleverliezen
- ijzerverliezen
- mechanische verliezen

Het **jouleverlies** in de stator kan berekend worden, indien de effectieve weerstand van de statorwikkeling gekend is. Hiervoor kan men benaderend de gemeten gelijkstroomweerstand nemen.

Men neemt aan dat de <u>mechanische verliezen</u> een constante waarde hebben omdat het toerental quasi constant is.

Men neemt ook aan dat de <u>ijzerverliezen</u> evenredig zijn met het kwadraat van de spanning **E** over de parallelelementen uit het equivalent schema.

▶ Typisch verloop van de ijzer- en mechanische verliezen in functie van E²

De afwijking van het lineaire verloop in de buurt van hogere spanningen is te wijten aan het optreden van supplementaire verliezen. Door verlenging van het lineaire gedeelte van de curve naar **|E| = 0**, vindt men de mechanische verliezen.

▶ Berekening van de parallelelementen R_{Fe} en X_h

De parallelelementen \mathbf{R}_{Fe} en \mathbf{X}_{h} worden bepaald uit de nullastproef bij nominale spanning. Rekening houdend met de veronderstellingen kan de parallelweerstand berekend worden:

$$R_{Fe} = \frac{3E^2}{P_{Fe}}$$

waarbij P_{Fe} kan afgelezen worden door het lineaire gedeelte van de grafiek te verlengen en de waarde van P_0 - 3 R_1 I_1^2 overeenkomstig de nominale spanning U_N te verminderen met de mechanische verliezen.

De berekening van ${\bf E}$ kan vereenvoudigd worden, daar de nullaststroom sterk naijlend is op de spanning $\underline{{\bf U}}_1$, zodat:

$$\underline{I}_1 \cong -\mathbf{j} \, \mathbf{I}_1$$
 als $\underline{\mathbf{U}}_1 = \mathbf{U}_1$.

en:

$$\underline{\underline{E}} = \underline{\underline{U}}_1 - (\underline{R}_1 + j \underline{X}_{\sigma 1}) \, \underline{I}_1 = \underline{U}_1 - \underline{X}_{\sigma 1} \, \underline{I}_1 + j \, \underline{R}_1 \, \underline{I}_1$$

of:

$$|E| = \sqrt{(U_1 - X_{c1} I_1)^2 + (R_1 I_1)^2}$$

Grafiek

► Berekenen van R_{Fe} en X_h
De berekening van de parallel-elementen R_{Fe} en X_h gebeurt aan de hand van een nullastproef, uitgevoerd met nominale spanning. De meting gebeurt zonder belasting en met nominaal toerental (s = 0)

Berekeningen

Als men de geringe slip verwaarloost, bekomt men het equivalent schema voor de nullastproef: (1): Aantal juiste getallen na de komma (hier 1 getal na de komma moet correct zijn)

Kooirotor: Kortsluitproef

Doel van de proef

Het doel van de kortsluitproef is de bepaling van de serie-elementen van het equivalent schema. Het opgenomen vermogen komt in eerste instantie overeen met de jouleverliezen in de stator en rotor. De spanning is immers zo laag dat ijzerverliezen te verwaarlozen zijn.

Uitvoering van de proef

- → De rotor van de inductiemachine wordt geblokkeerd.
- → Bovendien moet men bij de inductiemotor met sleepringen de rotorwikkelingen kortsluiten.

De stator wordt in ster geschakeld en gevoed met een regelbare spanning.

1. Eerst moet je een inductiemachine selecteren door op de inductiemachine te klikken. Daarna selekteer je de volt-, ampère- en vermogenmeter en de beide stroomtransformatoren.

Laat de spanning variëren.

Men moet er ook voor zorgen dat men minstens 1 meetwaarde heeft waarbij de stroom ongeveer nominaal wordt.

Deze meetwaarde zal verder gebruikt worden voor het berekenen van de serie-elementen. Het is dus van belang dat men een meting heeft waarbij de stroom bijna nominaal wordt. (dit wil zeggen binnen een halve procent van de nominale waarde)

Het schema van de proef

▶ De resultaten van de proef

%	I ₁ [A]	I ₃ [A]	I _k [A]	U ₁ [V]	U ₃ [V]	U _k [V]	P ₁ [W]	P ₃ [W]	P _k [W]	cos	
104,8	23,9	23,9	23,9	120	120	120	2150	-565	1585	,319	•
103,9	23,7	23,7	23,7	119	119	119	2115	-555	1560	,319	
103,1	23,5	23,5	23,5	118	118	118	2080	-545	1535	,32	
102,2	23,3	23,3	23,3	117	117	117	2045	-535	1510	,32	
101,3	23,1	23,1	23,1	116	116	116	2010	-525	1485	,32	
100,4	22,9	22,9	22,9	115	115	115	1975	-515	1460	,32	
99,6	22,7	22,7	22,7	114	114	114	1940	-510	1430	,319	
98,7	22,5	22,5	22,5	113	113	113	1910	-500	1410	,32	
97,8	22,3	22,3	22,3	112	112	112	1875	-492,5	1382,5	,32	
96,9	22,1	22,1	22,1	111	111	111	1840	-484	1356	,319	
96,1	21,9	21,9	21,9	110	110	110	1810	-475	1335	,32	
95,2	21,7	21,7	21,7	109	109	109	1775	-466,5	1308,5	,319	
94,3	21,5	21,5	21,5	108	108	108	1745	-458	1287	,32	
93,4	21,3	21,3	21,3	107	107	107	1710	-449,5	1260,5	,319	
92,5	21,1	21,1	21,1	106	106	106	1680	-441	1239	,32	
91,7	20,9	20,9	20,9	105	105	105	1645	-433	1212	,319	
											-

Berekeningen

Het doel van de kortsluitproef is de bepaling van de serie-elementen van het equivalent schema. Het opgenomen vermogen komt in eerste instantie overeen met de jouleverliezen in de stator en rotor. De spanning is immers zo laag dat ijzerverliezen te verwaarlozen zijn.

▶ Berekenen van R_k en X_k

Uit de gemeten waarden bij nominale stroom berekent men $\mathbf{R_k}$ en $\mathbf{X_k}$.

Bepalen van de kortsluitimpedantie

De figuur op vorige pagina kan men nog vereenvoudigen waarna men onderstaande figuur bekomt.

Uit dit laatste schema kan men $\mathbf{R_k}$ en $\mathbf{X_k}$ van het equivalent schema bepalen.

$$R_{k} = \begin{bmatrix} 0.925 & \Omega \\ Z_{k} = \begin{bmatrix} 2.907 & \Omega \\ 2.756 & \Omega \end{bmatrix}$$

Nauwkeurigheid: 3 getallen na de komma

▶ Bepalen van de kortsluitimpedantie

Na de kortsluitproef moet het mogelijk zijn om onderstaand schema verder aan te vullen. Alle waarden moeten uitgedrukt worden in ohm.

Het equivalent schema

Nauwkeurigheid: 5 getallen na de komma.

Om de weerstandswaarden te berekenen, heb je de waarde van de DC-weerstanden nodig. Deze bedragen **0.72** Ω en **9.42** Ω respectievelijk voor de stator en de rotor. Men moet de formules uit het formularium toepassen. Namelijk:

$$\begin{aligned} R_k &= R_1 + R_2' \\ X_k &= X_{\sigma 1} + X_{\sigma 2}' \end{aligned} \qquad \qquad \frac{R_1}{R_2'} = \frac{R_{1dc}}{R_{2dc}}, \qquad \frac{X_{\sigma 1}}{X_{\sigma 2}'} = \frac{R_{1dc}}{R_{2dc}}, \qquad \text{En we veronderstellen:} \\ R_{2dc}' &= R_{2dc} \end{aligned}$$

Kooirotor: Belastingsproef

Doel van de proef

Bij deze proef wordt de motor belast met een belasting. Behalve spanning, stroom en ingaand vermogen worden het geleverd koppel en het toerental gemeten. Hieruit kan het mechanisch asvermogen berekend worden en het rendement van de motor.

Uitvoering van de proef

De stator wordt in ster geschakeld en gevoed met een regelbare spanning. Het toerental van de motor verschilt van het synchrone toerental, vermits hij "belast" wordt. Bij verschillende waarden van de belasting op de motor meet men stroom, spanning, ingaand vermogen, koppel en toerental.

De belastingsregeling dient om de proef bij verschillende waarden van de belasting te kunnen uitvoeren. Deze wordt gevariëerd van vollast (100%) tot nullast (0%) van de nominale waarde.

Het schema van de proef

De resultaten van de proef

%	I ₁ [A]	I ₃ [A]	I _k [A]	U ₁ [V]	U ₃ [V]	U _k [V]	P ₁ [W]	P ₃ [W]	P _k [W]	T [Nm]	n [tr/min]	P _m [W]	η [%]	
138,6	31,6	31,6	31,6	390	390	390	12300	6250	18550	117,16	1227,1	15055,5	81,2	•
131,1	29,9	29,9	29,9	390	390	390	11600	6050	17650	111,79	1239,4	14509	82,2	
123,7	28,2	28,2	28,2	390	390	390	11000	5830	16830	106,25	1251,4	13923,4	82,7	
116,2	26,5	26,5	26,5	390	390	390	10300	5580	15880	100,56	1263	13300,2	83,8	
109,2	24,9	24,9	24,9	390	390	390	9650	5300	14950	94,73	1274,3	12641,1	84,6	
101,8	23,2	23,2	23,2	390	390	390	9000	5000	14000	88,76	1285,4	11947,4	85,3	
94,5	21,55	21,55	21,55	390	390	390	8350	4695	13045	82,66	1296,3	11220,2	86	
87,3	19,9	19,9	19,9	390	390	390	7750	4355	12105	76,43	1306,9	10460,4	86,4	
80	18,25	18,25	18,25	390	390	390	7100	3990	11090	70,08	1317,4	9668,7	87,2	
72,8	16,6	16,6	16,6	390	390	390	6450	3610	10060	63,62	1327,8	8845,9	87,9	
65,8	15	15	15	390	390	390	5800	3205	9005	57,04	1338,1	7992,4	88,8	
58,7	13,38	13,38	13,38	390	390	390	5190	2781	7971	50,35	1348,3	7108,6	89,2	
51,6	11,76	11,76	11,76	390	390	390	4590	2334	6924	43,55	1358,4	6194,7	89,5	
44,6	10,17	10,17	10,17	390	390	390	3960	1869	5829	36,64	1368,5	5250,7	90,1	1
37,9	8,64	8,64	8,64	390	390	390	3360	1383	4743	29,62	1378,6	4276,7	90,2	
31,6	7,2	7,2	7,2	390	390	390	2754	876	3630	22,5	1388,7	3272,5	90,2	
25,9	5,91	5,91	5,91	390	390	390	2154	345	2499	15,28	1398,8	2237,7	89,5	
21,6	4,92	4,92	4,92	390	390	390	1560	-202,5	1357,5	7,94	1409	1171,8	86,3	-

Grafiek

Berekeningen

$$R_{1} = \frac{P_{A}CX}{R_{1}CC'} = \frac{C_{1}72\Omega}{9_{1}42\Omega} = 0, C_{7}CC$$

$$R_{1} = \frac{P_{1}^{2}}{R_{1}CC'} = \frac{C_{1}72\Omega}{9_{1}42\Omega} = 0, C_{7}CC$$

$$R_{1} = \frac{P_{1}^{2}}{R_{2}^{2}} = \frac{P_{1}^{2}}{9_{1}^{2}} = \frac{P_{1}^{2}}{R_{1}^{2}} =$$

```
millost proe
Co, ape Co, lin = 380V = 219, 393 V 2219, 4
Po, of = Polyn = SIOW = 270 W
1 Eo, apl = 1 (2194-0,203.201+(0,072.20) => 1 (Ceny-Xa, Ing/+(1,2)) 6
                                                                        6
COS &= PE, 99 = 38,4W : 0,0068
sinf = sin(60'(0,00()) = 1
IB, q'= Io, q. colo = 36A · 0,006 = 0,18 A
If , of = To, oq . Min 6'= 30A . 1 = 30A
RE'= E0, eq = 213,26V = 1184,8 Q
X8' = EO, 49, 213,200 - 7,1 a
hertslee tyreef
(11, eq = cil lip = 114 - 400 V 65,82 V
Il, eq = Illy = 1/4/2000 22,7A

Pl, eq = Pl, ly = 1/6/20 = 00000 w 476,66. w

Rl = Pleq = 476,66 w = 0,925.2
 21 - Whom - be 664 - 2, 907 so

12 - 12 - 12 - 12 - 12,76 - 12,007/2 - (0,925)2 = 2,756 x
```

Equivalent schema

Equivalent schema van de inductiemachine

Kooirotor: Gebruikte toestellen

- Kooirotor:
- Kooirotormachines, gebruikt bij de laboratoria

Naam: Kooirotor 2

Specificaties:

Nominale spanning: 380 V Y
Nominale stroom: 22.8 A Y
Nominaal vermogen: 11000 VA
Nominaal toerental: 1430 Tr/min

Poolpaartal: 2

Gelijkstroomweerstanden:

Weerstand van de stator:

 0.072Ω

Opmerkingen:

Geen opmerkingen.

- Stroommeter:

Opmerkingen:

Geen opmerkingen.

- Spanningmeter:

- <u>Stroomtransformator:</u>

- <u>Besluiten</u>
- Bij de kortsluitproef is de spanning veel lager. Als we dit vergelijken met de nullastproef. Dit komt omdat de stator geblokkeerd wordt en de stroom in de wikkelingen te groot wordt als je de spanning niet daalt. De stroom die je meet moet ongeveer de waarde zijn die je motor aankan zoals bij mij was dit 22.8 A.
- Als de belasting bij de belastingsproef daalt dan zal het rendement beter worden en de stroom lager.
- De motor krijgt te veel stroom als de motor hoger dan 85% belast wordt.
- <u>Bronnen</u>
- Ku Leuven
- Wikipedia
- Maxwell