

Let [Alb] be the augmented matrix for a consistent mixin mon-homogenous system in which rank (A) = r. • [Alb] has a general solution of the form \$\frac{1}{2} = \tilde{p} + \tilde{x}_{1} \tilde{h}_{1} \tilde{x}_{2} \tilde{x}_{2} \tilde{h}_{1} \tilde{x}_{2} \tilde{x}_{2} \tilde{h}_{1} \tilde{x}_{2} \tilde{x}_{2} \tilde{h}_{1} \tilde{x}_{2} \tilde{x}_	System in which rank (A) = r. [Alb] has a general solution of the form \[\frac{1}{2} = \hat{p} + \times_{5}h_{1} \cdots \times_{5}h_{2} \cdots \cdots \times_{6}h_{1} \cdots \times_{5}h_{2} \cdots \cdots \times_{6}h_{1} \cdots \times_{5}h_{2} \cdots \cdots \times_{6}h_{1} \cdots_{6}h_{1}	+++	Summary
System in which rank (A) = r. (A16) has a general solution of the form \(\times = \bar{p} + \times \frac{1}{2} \hat{h}_1 \times \times \frac{1}{2} \hat{h}_1 \hat{h}_1 \times \frac{1}{2} \hat{h}_1 \ha	System in which rank (A) = r. [Alb] has a general solution of the form \[\frac{1}{2} = \hat{p} + \times_{5}h_{1} \cdots \times_{5}h_{2} \cdots \cdots \times_{6}h_{1} \cdots \times_{5}h_{2} \cdots \cdots \times_{6}h_{1} \cdots \times_{5}h_{2} \cdots \cdots \times_{6}h_{1} \cdots_{6}h_{1}	11.	
* [Alb] has a general solution of the form \[\frac{1}{2} = \hat{p} + \frac{1}{2} \hat{h}_1 \times \frac{1}{2} \hat{h}_2	* [Alb] has a general solution of the Garm \[\frac{1}{2} = \hat{p} + \times \frac{1}{2} \hat{n} \times \times \frac{1}{2} \hat{n} \times \times \frac{1}{2} \hat{n} \times \times \frac{1}{2} \hat{n} \times \times \frac{1}{2} \hat{n} \hat{n}	Let	[A16] be the augmented inatrix for a consistent mxn non-homogenous
where the free variables x ₅ range over all possible values. • Column \$\bar{p}\$ is a particular solution of the non-homogenous system • The expression x ₆ \(\bar{n}_1 + \cdots + \cdots \bar{p}_n + \cdots + \cdots + \cdots \bar{p}_n + \cdots	where the free variables X ₅ range aver all possible values. **Column \$\bar{p}\$ is a particular solution of the non-homogenous system **The expression X ₅ \bar{n}\$, \$\frac{n}{n}\$, \$\frac{n}{n}\$ is the general solution of the associated homogenous system **Column \$\bar{p}\$ as well as the columns \$\bar{n}\$; are independent of the row-exhelin form to which [A16] is reduced. **Chart associated homogenous system for if and only if any of the following is true: **The system contains a unique solution if and only if any of the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the associated homogenous system possesses only the trivial solution (X; = Xz = × n = 0) **The associated homogenous system possesses only the trivial solution (X; = Xz = × n = 0) **The interchange rows i and j Type II interchange rows i and j Type II multiply row i by a x 0 Type II multiply row i by a x 0 Type II add a times row i to row j The value of det(B) is as follows: **det(B) = det(A) for Type II operations	Syste	m in which rank CAI - 1.
where the free variables x ₅ range over all possible values. • Column \$\bar{p}\$ is a particular solution of the non-homogenous system • The expression x ₆ \(\bar{n}_1 + \cdots + \cdots \bar{p}_n + \cdots + \cdots + \cdots \bar{p}_n + \cdots	where the free variables X ₅ range aver all possible values. **Column \$\bar{p}\$ is a particular solution of the non-homogenous system **The expression X ₅ \bar{n}\$, \$\frac{n}{n}\$, \$\frac{n}{n}\$ is the general solution of the associated homogenous system **Column \$\bar{p}\$ as well as the columns \$\bar{n}\$; are independent of the row-exhelin form to which [A16] is reduced. **Chart associated homogenous system for if and only if any of the following is true: **The system contains a unique solution if and only if any of the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the following is true: **The system contains a unique solution if and only if the associated homogenous system possesses only the trivial solution (X; = Xz = × n = 0) **The associated homogenous system possesses only the trivial solution (X; = Xz = × n = 0) **The interchange rows i and j Type II interchange rows i and j Type II multiply row i by a x 0 Type II multiply row i by a x 0 Type II add a times row i to row j The value of det(B) is as follows: **det(B) = det(A) for Type II operations		· [Alb] has a general solution of the form
where the free variables x_s range over all possible values. • Column \vec{p} is a particular solution of the non-homogenous system • The expression $x_s \vec{h}_s + \cdots + x_{g_1} - \vec{h}_{1} - \cdots$ is the general solution of the associated homogenous system $[A \vec{d}]$. • Column \vec{p} as well as the columns \vec{h}_s are independent of the row-echelon form to which $[A \vec{b}]$ is reduced. • The system contains a unique solution if and only if any of the following is true: * Tank $[A] = n = t$ of anknowns * Tank $[A] = n = t$ of anknowns * there are no free variables * the associated homogenous system possesses only the trivial solution $(x_1 = x_2 = \cdots = x_n = 0)$ * The system matrix obtained from $[A] = [A] = [A] = [A] = [A]$ Let $[A] = [A] = [A] = [A] = [A] = [A]$ Type $[A] = [A] = [A] = [A] = [A] = [A]$ Type $[A] = [A] = [A] = [A] = [A]$ Type $[A] = [A] = [A] = [A] = [A]$ The value of $[A] = [A] = [A] = [A] = [A]$ • det $[A] = [A] = [A] = [A]$ Note: det $[A] = [A] = [A] = [A]$ This implies that column operations can be applied to a matrix while calculating its determinant with the	where the free variables xs range over all possible values. • Column \$\bar{p}\$ is a particular solution of the non-homogenous system • The expression xs \$\bar{n}\$, \$\bar{t}\$, \$\bar{t}\$ \therefore \text{xg} \text{n}\$ \text{n}\$ is the general solution of the associated homogenous system [A \bar{d}\$]. • Column \$\bar{p}\$ as well as the columns \$\bar{h}\$; are independent of the row-echelon form to which [A \bar{t}\$] is reduced. • The system contains a unique solution if and only if any of the following is true: * Tank (A) = n = \$\pi\$ of anknowns * Tank (A) = n = \$\pi\$ of anknowns * there are no free variables * the associated homogenous system possesses only the trivial solution (x, = \bar{x}_2 = \bar{\therefore} \text{xn} = \bar{\there} \there		
where the free variables x_s range over all possible values. • Column \vec{p} is a particular solution of the non-homogenous system • The expression $x_s \vec{h}_s + \cdots + x_{g_1} - \vec{h}_{1} - \cdots$ is the general solution of the associated homogenous system $[A \vec{d}]$. • Column \vec{p} as well as the columns \vec{h}_s are independent of the row-echelon form to which $[A \vec{b}]$ is reduced. • The system contains a unique solution if and only if any of the following is true: * Tank $[A] = n = t$ of anknowns * Tank $[A] = n = t$ of anknowns * there are no free variables * the associated homogenous system possesses only the trivial solution $(x_1 = x_2 = \cdots = x_n = 0)$ * The system matrix obtained from $[A] = [A] = [A] = [A] = [A]$ Let $[A] = [A] = [A] = [A] = [A] = [A]$ Type $[A] = [A] = [A] = [A] = [A] = [A]$ Type $[A] = [A] = [A] = [A] = [A]$ Type $[A] = [A] = [A] = [A] = [A]$ The value of $[A] = [A] = [A] = [A] = [A]$ • det $[A] = [A] = [A] = [A]$ Note: det $[A] = [A] = [A] = [A]$ This implies that column operations can be applied to a matrix while calculating its determinant with the	where the free variables xs range over all possible values. • Column \$\bar{p}\$ is a particular solution of the non-homogenous system • The expression xs \$\bar{n}\$, \$\bar{t}\$, \$\bar{t}\$ \therefore \text{xg} \text{n}\$ \text{n}\$ is the general solution of the associated homogenous system [A \bar{d}\$]. • Column \$\bar{p}\$ as well as the columns \$\bar{h}\$; are independent of the row-echelon form to which [A \bar{t}\$] is reduced. • The system contains a unique solution if and only if any of the following is true: * Tank (A) = n = \$\pi\$ of anknowns * Tank (A) = n = \$\pi\$ of anknowns * there are no free variables * the associated homogenous system possesses only the trivial solution (x, = \bar{x}_2 = \bar{\therefore} \text{xn} = \bar{\there} \there		x = p + x, h, + x, h, + + x, h,
• Column \$\overline{p}\$ is a particular solution of the non-homogenous system • The expression \$\tilde{x}_{1}\$, \$\tau\$, \$\tau	• Column \$\overline{p}\$ is a particular solution of the non-homogenous system • The expression \$\tilde{x}_{1}^{\overline{n}}\$, \$\tau^{\overline{n}}\$ \tau^{\overline{n}}\$, \$\tau^{\overline{n}}\$, \$\tau^{\ove		
The expression $x_s i_1 + \cdots + x_g i_n i_n r$ is the general solution of the associated homogenous system [AIJ]. • Column \vec{p} as well as the columns i_1 are independent of the row-echelon form to which [AIG] is reduced. • The system contains a unique solution if and only if any of the fillowing is true: ** Fank (A) = n = n of anknowns ** there are no free variables * the associated homogenous system passesses only the trivial solution ($x_1 = x_2 = \cdots + x_n = 0$) ** **He associated homogenous system passesses only the trivial solution ($x_1 = x_2 = \cdots + x_n = 0$) ** ** **Tow operations on determinants ** **Effect3* Let B be the matrix obtained from Ankn by one of the three elementary row eperations: Type I' interchange rows i and j Type II' multiply row i by $x_1 x_1 x_2 x_2 x_3 x_4 x_4 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5$	The expression $x_s i_1 + \cdots + x_g i_n i_n r$ is the general solution of the associated homogenous system. [AIJ]. • Column \vec{p} as well as the columns i_1 are independent of the row-echelon form to which [AIL] is reduced. • The system contains a unique solution if and only if any of the following is true: ** rank (A) = n = n of anknowns ** there are no free variables ** the associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The system contains a unique solution if and only if Any of the following is true: ** rank (A) = n = n to anknowns ** there are no free variables ** the associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The matrix obtained from Anum by one of the three elementary row operations: Type II interchange rows i and j Type II multiply row i by x x 0 Type III add a times row i to row j The value of det(B) is as follows: • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations		where the free variables x5 range over all possible values.
The expression $x_s i_1 + \cdots + x_g i_n i_n r$ is the general solution of the associated homogenous system [AIJ]. • Column \vec{p} as well as the columns i_1 are independent of the row-echelon form to which [AIG] is reduced. • The system contains a unique solution if and only if any of the fillowing is true: ** Fank (A) = n = n of anknowns ** there are no free variables * the associated homogenous system passesses only the trivial solution ($x_1 = x_2 = \cdots + x_n = 0$) ** **He associated homogenous system passesses only the trivial solution ($x_1 = x_2 = \cdots + x_n = 0$) ** ** **Tow operations on determinants ** **Effect3* Let B be the matrix obtained from Ankn by one of the three elementary row eperations: Type I' interchange rows i and j Type II' multiply row i by $x_1 x_1 x_2 x_2 x_3 x_4 x_4 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5 x_5$	The expression $x_s i_1 + \cdots + x_g i_n i_n r$ is the general solution of the associated homogenous system. [AIJ]. • Column \vec{p} as well as the columns i_1 are independent of the row-echelon form to which [AIL] is reduced. • The system contains a unique solution if and only if any of the following is true: ** rank (A) = n = n of anknowns ** there are no free variables ** the associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The system contains a unique solution if and only if Any of the following is true: ** rank (A) = n = n to anknowns ** there are no free variables ** the associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The associated homogenous system passesses only the trivial solution (x ₁ = x ₂ = ··· × n = 0) ** The matrix obtained from Anum by one of the three elementary row operations: Type II interchange rows i and j Type II multiply row i by x x 0 Type III add a times row i to row j The value of det(B) is as follows: • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations • det (B) = det(A) for Type II operations		
· Column \$\bar{p}\$ as well as the columns \$h_i\$ are independent of the row-echelon form to which [Alb] is reduced. · The system contains a unique solution if and only if any of the following is true: * Tank (A) = n = \$\frac{1}{2}\$ of anknowns * there are no free variables * the associated homogenous system passesses only the trivial solution (x, = x2 = × n = 0) ** The matrix obtained from Anxn by one of the three elementary row operations: Type II interchange rows i and j Type II multiply row i by x \$\frac{1}{2}\$ O Type III add a times row i to row j The value of det(B) is as follows: • det(B) = -det(A) for Type II operations • det(B) = det(A) for Type III operations	· Column \$\bar{p}\$ as well as the columns \$\bar{h}_i\$ are independent of the row-echelon form to which [Alb] is reduced. • The system contains a unique solution if and only if any of the following is true: * Tank (A) = n = st of unknowns * there are no free variables * the associated homogenous system passesses anly the trivial solution (x ₁ = k ₂ = \cdots \cdot \		Column p is a particular solution of the non-homogenous system
* Column \$\bar{p}\$ as well as the columns \$h_i\$ are independent of the row-echelon form to which [Alb] is reduced. * The system contains a unique solution if and only if any of the following is true: * Tank (A) = n = \$\frac{1}{2}\$ of unknowns * there are no free variables * the associated homogenous system passesses only the trivial solution (x, = \kappa_2 = \times n = 0) ** The approximation of the three elementary row operations on determinants Effects Let B be the matrix obtained from Anxn by one of the three elementary row operations: Type II interchange rows i and j Type III multiply row i by \$\kappa = 0\$ Type III add a times row i to row j The value of det(B) is as follows: * det(B) = -det(A) for Type II operations * det(B) = det(A) for Type III operations	* Column \$\bar{p}\$ as well as the columns \$\bar{h}_i\$ are independent of the row-echelon form to which [Alb] is reduced. * The system contains a unique solution if and only if any of the following is true: * Tank (A) = n = n of ankinowns * there are no free variables * the associated homogenous system passesses only the trivial solution (x, = \kappa_2 = \cdots = \cdots = \cdots = \cdots Effects Let B be the matrix obtained from Ann by one of the three elementary row eperations: Type II interchange rows i and j Type III multiply row i by \(\pi \) \(\		. The expression of the transfer to the general solution
• Column \$\bar{p}\$ as well as the columns \$\bar{h}_i\$ are independent of the row-echelon form to which [Alb] is reduced. • The system contains a unique solution if and only if any of the fillowing is true: ** Fank (A) = n = \$\frac{1}{2}\$ of anknowns ** there are no free variables ** the associated homogenous system passesses only ** the trivial solution (\$\x_1 = \x_2 = \cdots = \cdotx = \cdots = \cdots) Effects Let \$B\$ be the matrix obtained from \$A_{nxn}\$ by one of the three elementary row experations: Type \$I\$ interchange rows \$i\$ and \$j\$ Type \$I\$ insultiply row \$i\$ by \$a \times 0\$ Type \$II\$ add at times row \$i\$ to row \$j\$ The value of \$\det(B)\$ is as follows: • \$\det(B) = -\det(A)\$ for Type \$I\$ operations • \$\det(B) = \det(A)\$ for Type \$II\$ operations	· Column \$\bar{p}\$ as well as the columns \$\lambda_i\$ are independent of the row-echelon form to which [Alb] is reduced. • The system contains a unique solution if and only if any of the fillowing is true: ** Fank (A) = n = st of unknowns ** there are no free variables ** the associated homogenous system passesses only ** the trivial solution (x, = \kappa_2 = \cdots - \cdots n = 0) **Effects Let B be the matrix obtained from Anx by one of the three elementary row experitors: Type II interchange rows i and j Type III multiply row i by x x 0 Type III add a times row i to row j The value of det(B) is as follows: ** det(B) = det(A) for Type II operations ** det(B) = det(A) for Type III operations		of the essected towards a system [AI 0]
The system contains a unique solution if and only if Any of the Gillowing is true: ** Tank (A) = n = # of unknowns ** there are no free variables ** the associated homogenous system possesses only the trivial solution (x, = xz = xn = 0) ** The trivial	The system contains a unique solution if and only if any of the Gillowing is true: * Tank (A) = n = # of anknowns * there are no free variables * the associated homogenous system possesses only the trivial solution (x, = x2 = × n = 0) ** The perations on determinants Effects Let B be the matrix obtained from Anxn by one of the three elementary row eperations: Type I interchange rows i and j Type II' add a times row i to row j The value of det(B) is as follows: i det(B) = -det(A) for Type II operations o det(B) = det(A) for Type II operations odet(B) = det(A) for Type III operations		of the sandare morningenesis spanish Lines
The system contains a unique solution if and only if Any of the Gillowing is true: ** Tank (A) = n = # of unknowns ** there are no free variables ** the associated homogenous system possesses any the trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The unit is a solution of the three elementary row operations: Type I interchange rows i and j Type II multiply row i by x x 0 Type III add a times row i to row j The value of det(B) is as follows: i det (B) = det(A) for Type II operations o det (B) = det(A) for Type II operations o det (B) = det(A) for Type II operations Note: det (AT) = det(A) This implies that colourn operations can be applied to a matrix while calculating its determinant with the	The system contains a unique solution if and only if Any of the Gillowing is true: ** Tank (A) = n = # of anknowns ** there are no free variables ** the associated homogenous system possesses anly the trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) ** The unit matrix obtained from Anxn by one of the three elementary row eperations: Type I interchange rows i and j Type II interchange rows i and j Type II interchange rows i by x x 0 Type III add a times row i to row j The value of det(B) is as follows: ** det(B) = -det(A) for Type II aperations ** det(B) = det(A) for Type II aperations		· Column o as well as the columns h; are independent of
The system contains a unique solution if and only if Any of the Gillowing is true: ** Tank (A) = n = tt of unknowns ** there are no free variables ** the associated homogenous system possesses any the trivial solution (x, = kz = × n = 0) ** the matrix obtained from Anx by one of the three elementary row operations: Type I interchange rows i and j Type II' multiply row i by x x 0 Type III' add a times row i to row j The value of det(B) is as follows: i det (B) = det(A) for Type II operations o det (B) = det(A) for Type II operations o det (B) = det(A) for Type II operations Note: det (AT) = det(A) This implies that colours operations can be applied to a matrix while calculating its determinant with the	The system contains a unique solution if and only if Any of the Gillowing is true: ** Tank (A) = n = # of anknowns ** there are no free variables ** the associated homogenous system possesses anly the trivial solution (x, = xz = × n = 0) ** The trivial solution (x, = xz = × n = 0) **Effects Let B be the matrix obtained from Anxn by one of the three elementary row operations: Type I interchange rows i and j Type II' multiply row i by x # 0 Type III' add a times row i to row j The value of det(B) is as follows: i det (B) = -det (A) for Type II operations o det (B) = det(A) for Type II operations o det (B) = det(A) for Type II operations Note: det (AT) = det(A) This implies that colymn operations can be applied to a matrix while calculating its determinant with the		the row-echelon form to which [Alb] is reduced.
any of the following is true: ** Tank (A) = n = # of unknowns ** there are no free variables ** the associated homogenous system passesses andy the trivial solution (x, = xz =	Any of the following is true: * Tank (A) = n = # of anknowns * there are no free variables * the associated homogenous system passesses only the trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution of the three elementary row operations: ** The trivial solution of the three elementary row operations is and j ** Type II interchange rows i and j ** Type II interchange rows i by x x 0 ** Type II interchange rows i by x x 0 ** Type III add a times row i to row j The value of det(B) is as follows: ** det(B) = det(A) for Type I operations ** det(B) = det(A) for Type II operations ** det(B) = det(A) for Type III operations ** det(B) = det(A) for Type III operations ** Dete: det(AT) = det(A) ** This implies that column operations can be applied to a matrix while calculating its determinant with the		
any of the following is true: ** Tank (A) = n = # of unknowns ** there are no free variables ** the associated homogenous system passesses andy the trivial solution (x, = xz =	Any of the following is true: * Tank (A) = n = # of anknowns * there are no free variables * the associated homogenous system passesses only the trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution (x, = xz = xn = 0) ** The trivial solution of the three elementary row operations: ** The trivial solution of the three elementary row operations is and j ** Type II interchange rows i and j ** Type II interchange rows i by x x 0 ** Type II interchange rows i by x x 0 ** Type III add a times row i to row j The value of det(B) is as follows: ** det(B) = det(A) for Type I operations ** det(B) = det(A) for Type II operations ** det(B) = det(A) for Type III operations ** det(B) = det(A) for Type III operations ** Dete: det(AT) = det(A) ** This implies that column operations can be applied to a matrix while calculating its determinant with the		. The system contains a unique solution if and only if
# there are no free variables # the associated homogenous system possesses only the trivial solution (x, = K2 = > xn = 0) ###################################	# there are no free variables # the associated homogenous system possesses only the trivial solution (x, = x2 = = xn = 0) ###################################		any of the following is true
the associated homogenous system possesses only the trivial solution (x, = xz = > xn = 0) ###################################	the associated homogenous system possesses anly the trivial solution (x, = x2 = > xn = 0) Effects Let B be the matrix obtained from Anxn by one of the three elementary row operations: Type I interchange rows i and j Type II multiply row i by a x0 Type III add a times row i to row j The value of det(B) is as follows: det(B) = det(A) for Type II operations det(B) = det(A) for Type II operations det(B) = det(A) for Type II operations det(B) = det(A) for Type II operations det(B) = det(A) for Type II operations det(B) = det(A) for Type III operations		
the trivial solution (x, = x ₂ = > x _n = 0) It S	the trivial solution (x, = xz = xn = 0) It Solution Solution Solution Solution		
Let B be the matrix obtained from Anxin by one of the three elementary row operations: Type I interchange rows i and j Type II multiply row i by a * 0 Type III add a times row i to row j The value of det (B) is as follows: det (B) = det (A) for Type I operations odet (B) = a det (A) for Type II operations odet (B) = det (A) for Type II operations tet (B) = det (A) for Type II operations odet (B) = det (A) for Type II operations odet (B) = det (A) for Type III operations this implies that column operations can be applied to a matrix while calculating its determinant with the	Effects Let B be the matrix obtained from Anna by one of the three elementary row operations: Type I : interchange rows i and j Type II: multiply row i by & *O Type III: add a times row i to row j The value of det(B) is as follows: . det(B) = det(A) for Type I operations . det(B) = det(A) for Type II operations . det(B) = det(A) for Type II operations . det(B) = det(A) for Type III operations . det(B) = d		
Type II: multiply row i by a #0 Type III: add a times row i to row j The value of det(B) is as follows: det(B) = -det(A) for Type I operations det(B) = a det(A) for Type II operations det(B) = det(A) for Type III operations det(B) = det(A) for Type III operations Note: det(AT) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Type II: multiply row i by a #0 Type III: add a times row i to row j The value of det(B) is as follows: det(B) = -det(A) for Type I operations det(B) = a det(A) for Type II operations det(B) = det(A) for Type III operations det(B) = det(A) for Type III operations Note: det(AT) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	1 1 1	Wests of row operations on determinants Effects
Type II: multiply row i by a #0 Type III: add a times row i to row j The value of det(B) is as follows: det(B) = -det(A) for Type I operations det(B) = a det(A) for Type II operations det(B) = det(A) for Type III operations det(B) = det(A) for Type III operations Note: det(AT) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Type II: multiply row i by a #0 Type III: add a times row i to row j The value of det(B) is as follows: det(B) = -det(A) for Type I operations det(B) = a det(A) for Type II operations det(B) = det(A) for Type III operations det(B) = det(A) for Type III operations Note: det(AT) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Let	B be the matrix obtained from Anxn by one of the three
Type III: add a times row i to row j The value of det (B) is as follows: det (B) = -det (A) for Type I operations det (B) = a det (A) for Type II operations det (B) = det (A) for Type III operations det (B) = det (A) for Type III operations Note: det (AT) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Type III: add a times row i to row j The value of det (B) is as follows: det (B) = -det (A) for Type I operations det (B) = oldet (A) for Type II operations det (B) = det (A) for Type III operations det (B) = det (A) for Type III operations Note: det (AT) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Let	B be the matrix obtained from Anxin by one of the three pentary row eperations:
· det (B) = -det (A) for Type I operations · det (B) = 0 det (A) for Type II operations · det (B) = det (A) for Type III operations Note: det (A ^T) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	· det (B) = -det (A) for Type I operations · det (B) = 0 det (A) for Type II operations · det (B) = det (A) for Type III operations Note: det (AT) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Let	B be the matrix obtained from Anxn by one of the three pentary row operations: Type I's interchange rows i and j
· det (B) = -det (A) for Type I operations · det (B) = 0 det (A) for Type II operations · det (B) = det (A) for Type III operations Note: det (A ^T) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	· det (B) = -det (A) for Type I operations · det (B) = 0 det (A) for Type II operations · det (B) = det (A) for Type III operations Note: det (AT) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Let	B be the matrix obtained from Ann by one of the three sentary row operations: Type I: interchange rows i and j Type II: multiply row i by a #0
o det (B) = 0 det (A) for Type II operations o det (B) = det(A) for Type III operations Note: det (A ^T) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	o det (B) = 0 det (A) for Type II operations o det (B) = det(A) for Type III operations Note: det (A ^T) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	let elcn	B be the matrix obtained from Anxi by one of the three ventary row eperations: Type I: interchange rows i and j Type II: multiply row i by a *O Type III: add a times row i to row j
o det (B) = 0 det (A) for Type II operations o det (B) = det(A) for Type III operations Note: det (A ^T) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	o det (B) = 0 det (A) for Type II operations o det (B) = det(A) for Type III operations Note: det (A ^T) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Let elen	B be the matrix obtained from Anxi by one of the three ventary row eperations: Type I: interchange rows i and j Type II: multiply row i by a *O Type III: add a times row i to row j
Note: det (AT) = det(A) Note: det (AT) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	· det (B) = det(A) for Type III operations Note: det (A ^T) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Let elen	B be the matrix obtained from Anxn by one of the three ventary row sperations: Type I: interchange rows i and j Type II: multiply row i by a x O Type III: add a times row i to row j value of det(B) is as follows:
Note: det (AT) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	Note: det (AT) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the	let elen	B be the matrix obtained from Anxn by one of the three pentary row exercitors: Type I: interchange rows i and j Type II: multiply row i by a *O Type III: add a times row i to row j value of det (B) is as follows: det (B) = -det (A) for Type I operations
This implies that <u>column operations</u> can be applied to a matrix while calculating its determinant with the	This implies that <u>column operations</u> can be applied to a matrix while calculating its determinant with the	Let elen	B be the matrix obtained from Anxi by one of the three sentary row exerctions: Type I interchange rows i and j Type II multiply row i by a *O Type III' add a times row i to row j value of det(B) is as follows: det(B) = -det(A) for Type II operations det(B) = a det(A) for Type II operations
a matrix while calculating its determinant with the	a matrix while calculating its determinant with the	Let elan The	B be the matrix obtained from Anxin by one of the three mentary row exercitors: Type I' interchange rows i and j Type II' multiply row i by a *O Type III' add a times row i to row j value of det(B) is as follows: det(B) = -det(A) for Type II operations det(B) = a det(A) for Type II operations det(B) = det(A) for Type II operations det(B) = det(A) for Type II operations
a matrix while calculating its determinant with the	a matrix while calculating its determinant with the	Let elan	B be the matrix obtained from Anxin by one of the three mentary row exercitors: Type I' interchange rows i and j Type II' multiply row i by a *O Type III' add a times row i to row j value of det(B) is as follows: det(B) = -det(A) for Type II operations det(B) = a det(A) for Type II operations det(B) = det(A) for Type II operations det(B) = det(A) for Type II operations
same consequences as now operations 8	Same consequences as now operations 8	Let elan The	B be the matrix obtained from Ann by one of the three pentary row operations: Type I interchange rows i and j Type II multiply row i by a to Type III' add a times row i to row j value of det (B) is as follows: det (B) = -det (A) for Type II operations det (B) = det(A) for Type II operations
		Let elan The	B be the matrix obtained from Anxin by one of the three mentary row operations: Type I's interchange rows i and j Type II's multiply row i by & *O Type III's add at times row i to row j value of det(B) is as follows: det(B) = det(A) for Type II operations edet(B) = det(A) for Type II operations edet(B) = det(A) for Type II operations edet(B) = det(A) for Type III operations edet(B) = det(A) for Type III operations
		Let elan	B be the matrix obtained from Anen by one of the three sentary row operations: Type I interchange rows i and j Type II multiply row i by a * 0 Type III: add a times row i to row j value of det (B) is as follows: det (B) = det (A) for Type I operations det (B) = det(A) for Type II operations det (B) = det(A) for Type III operations det (B) = det(A) for Type III operations that (B) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the
		Let elan	B be the matrix obtained from Anen by one of the three sentary row operations: Type I interchange rows i and j Type II multiply row i by a * 0 Type III: add a times row i to row j value of det (B) is as follows: det (B) = det (A) for Type I operations det (B) = det(A) for Type II operations det (B) = det(A) for Type III operations det (B) = det(A) for Type III operations that (B) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the
		Let elan The	B be the matrix obtained from Anen by one of the three sentary row operations: Type I interchange rows i and j Type II multiply row i by a * 0 Type III: add a times row i to row j value of det (B) is as follows: det (B) = det (A) for Type I operations det (B) = det(A) for Type II operations det (B) = det(A) for Type III operations det (B) = det(A) for Type III operations that (B) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the
		Let elan	B be the matrix obtained from Anen by one of the three sentary row operations: Type I interchange rows i and j Type II multiply row i by a * 0 Type III: add a times row i to row j value of det (B) is as follows: det (B) = det (A) for Type I operations det (B) = det(A) for Type II operations det (B) = det(A) for Type III operations det (B) = det(A) for Type III operations that (B) = det(A) This implies that column operations can be applied to a matrix while calculating its determinant with the
		Let elan	B be the matrix obtained from Anen by one of the three sentary row operations: Type I interchange rows i and j Type II multiply row i by a * 0 Type III: add a times row i to row j value of det (B) is as follows: det (B) = det (A) for Type I operations det (B) = det (A) for Type II operations det (B) = det (A) for Type III operations det (B) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the
		Let elan	B be the matrix obtained from Anen by one of the three sentary row operations: Type I interchange rows i and j Type II multiply row i by a * 0 Type III: add a times row i to row j value of det (B) is as follows: det (B) = det (A) for Type I operations det (B) = det (A) for Type II operations det (B) = det (A) for Type III operations det (B) = det (A) This implies that column operations can be applied to a matrix while calculating its determinant with the

- · Anna is invertible if and only if det(A) = 0
- . Amoun does not have an inverse if and only if dot(A) = 0

Product Rules

- · det (AB) = det (A) det(B)
 - * a priori, det (A") = det(A)
- $\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det (A) \det (D)$ if A and D are square

Block Determinants

If A and D are square matrices, then

$$det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{cases} det(A) det(D - CA^{-1}B) & when A^{-1} exists \\ det(D) det(A - BD^{-1}C) & when D^{-1} exists \end{cases}$$

The matrices D-CA'B and A-BD'C are called the Schur complements of A and D, respectively.

Rank - One Update

For u, v both n = 1 matrices (i.e. column vectors)

Cramor's Rule

In a nonsingular system Anax = b. the it unknown is

$$X_i = \frac{\det(A_i)}{\det(A)}$$

That is, A: is identical to A except in the it's column, which has been replaced with b.

```
1 Line p: (1,0,0) + 2(1,1,1).
              Find points on p which are equiplistant from planes

\[ \sum_{\text{2}} \times \text{1} \times \text{2} = -1 \quad \text{and} \quad \text{TT:} \quad \text{7} \text{7} \text{7} \text{7} \text{7} \text{7} \text{7} \text{8} \quad \text{5} \quad \text{7} \quad \tex
            Solution: A point on line p (call the point t) is of the
                              form t (1.2, 1, 1).
                              Want: d(+, Z) = d(+, T1). Know: n= (1,1,-1), d= -1
                                                                                                                                                                     n = (1,-1,1), d = -5
                 Using formula of distance between
                        a point and a plane:
           d(t,Z) = \frac{|\vec{n}_z \cdot t - d_z|}{|\vec{n}_z|} = \frac{|\vec{n}_{\pi} \cdot t - d_{\pi}|}{|\vec{n}_{\pi}|} = d(t,\pi)
                                   11+2+2-2+1 = [1+2-2+2-5]
                                            12+21 = 12-41
                        Because of absolute value, we must consider two cases:
                                             1 x+2 = x-4
                                             3 x+2 = - (x-4)
                                          But in case 1, subtracting & from each side yields 2=-4, a contradiction 4
                        So, the only possibility is carse @
                                                  7+2 = - (2-4) = -2 +4
                                             2\lambda = 2 \Rightarrow [\lambda=1]
                   Then, point we are looking for is [t(2,1,1)] "
```


