РГПУ им. А.И. Герцена

К работе допуще	ны
Работа выполнен	a
Отчёт сдан	
Отчет по лабораторной работе	. №1
«Тонкие линзы»	
Работу выполни	ли: Воложанин Владисав
	Факультет ИИТиТО
	Группа ИВТ 2-1

- **1. Цель работы**: изучение методов определения фокусных расстояний собирающей и рассеивающей линз.
- 2. Основные результаты
 - 1) Задание 1:

Предположим радиус сферы равен 20см. Подставим в формулу:

$$(n_{\pi}-1)\left(\frac{1}{R_1}+\frac{1}{-R_2}\right)=\frac{1}{f}$$

 $n_{\scriptscriptstyle \rm I\hspace{-.1em}I}=1.5;\,|R_1|=|R_2|=20$ см . Подставляем:

$$(1.5-1)(\frac{1}{20} + \frac{1}{-(-20)}) = 0.05 \text{ cm}^{-1}$$

$$f = 0.05^{-1} = 20$$
cm

2) Задание 2:

No	<i>ƒ</i> (cм)
1	11.3
2	10.9
3	11.5
<i>f</i> cp	11.2

Расчеты погрешностей:

$$\Delta f_1 = 11.3 - 11.2 = 0.1$$
 cm

$$\Delta f_2 = 11.2 - 10.9 = 0.3 \text{ cm}$$

$$\Delta f_3 = 11.5 - 11.2 = 0.3$$
 cm

$$\Delta f_{cp} = \frac{0.1 + 0.3 + 0.3}{3} = 0.23 \text{ cm}$$

$$f = 11.2 \pm 0.23$$
 cm

$$E_f = \frac{0.23}{11.2} * 100 \% = 2.1\%$$

3) Задание 3:

№	L	X_1	X_2	X	f
1	60	14	43	29	11.5
2	70	13	55	42	11.2
3	80	12	64	52	11.5
$f_{\sf cp}$	-	-	-	-	11.4

Расчеты погрешностей:

$$\Delta f_1 = 0.1 \text{ cm}$$

$$\Delta f_2 = 0.2 \text{ cm}$$

$$\Delta f_3 = 0.15 \text{ cm}$$

$$\Delta f_{\text{cp}} = \frac{0.1 + 0.2 + 0.15}{3} = 0.15 \text{ cm}$$

$$f$$
= 11.4 ± 0.15 cm

$$E_f = \frac{0.15}{11.4} * 100 \% = 1.3\%$$

4) Задание 4:

Результаты измерений:

No	d	D	L	f
1	3.3	7.8	22.5	16.50
2	3.3	9.2	30.5	17.05
3	3.3	4.7	8.2	19.32
$f_{\sf CP}$		-	-	17.62

Расчеты погрешностей:
$$\Delta f = \frac{L(d\Delta D + \Delta dD) + d\Delta L(D-d)}{(D-d)^2}$$

$$\Delta D = \Delta d = \Delta L = \frac{1}{2} \operatorname{Cp}$$

$$\Delta f_1 = 0.7$$
 cm

$$\Delta f_2 = 0.6 \text{ cm}$$

$$\Delta f_3 = 1.8$$
. cm

$$\Delta f_{\text{cp}} = \frac{0.7 + 0.6 + 1.8}{3} = 1.0 \text{ cm}$$

$$f = 17.62 \pm 1.0 \text{ cm}$$

$$E_f = \frac{1}{17.62} * 100 \% = 5.7\%$$

3. Вывод

Входе лабораторной работы были на практике применены методы определения фокусных расстояний, собирающей и рассеивающей линз. Проведены измерения для определения этих расстояний, посчитаны погрешности измерений:

I.
$$f = 0.05^{-1} = 20$$
cm

II.
$$f = 11.2 \pm 0.23$$
 cm, $E_f = 2.1\%$

III.
$$f = 11.4 \pm 0.15$$
 cm, $E_f = 1.3\%$

IV.
$$f = 17.62 \pm 1.0$$
 cm, $E_f = 5.7\%$