Chapitre

Vecteurs de l'espace

4. Opérations sur les vecteurs

4.1 Produit scalaire

Théorème 1.1 : Définition du produit scalaire

$$\overrightarrow{A} \cdot \overrightarrow{B} = x_1 x_2 + y_1 y_2 + z_1 z_2$$
$$= ||\overrightarrow{A}|| \times ||\overrightarrow{B}|| \times \cos(\widehat{\overrightarrow{A}}, \overrightarrow{B})$$

4.1. Produit vectoriel

Théorème 1.2 : Définition

Le produit vaut
$$\overrightarrow{u} \wedge \overrightarrow{v} = \begin{pmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_x v_z \\ u_x v_y - u_y v_x \end{pmatrix}$$

π Théorème 1.3 : Norme

La norme de $\overrightarrow{u} \wedge \overrightarrow{v}$ vaut $||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times |\widehat{\sin(\overrightarrow{u},\overrightarrow{v})}|$. Cependant, on peut aussi la calculer avec la méthode classique en connaissant les composantes $(\sqrt{x^2+y^2+z^2})$.

4. Rotation d'une base orthonormée

On considère le schéma suivant :

Alors, on peut exprimer les vecteurs $\overrightarrow{e_x}$ et $\overrightarrow{e_y}$ dans la base $\overrightarrow{e_x'}$ et $\overrightarrow{e_y'}$:

$$\overrightarrow{e_x} = \cos(\alpha)\overrightarrow{e_x'} - \sin(\alpha)\overrightarrow{e_y'} \qquad \overrightarrow{e_y'} = \sin(\alpha)\overrightarrow{e_x'} + \cos(\alpha)\overrightarrow{e_y'}$$

De la même façon, on peut exprimer les vecteurs $\overrightarrow{e_x}$ et $\overrightarrow{e_y}$ dans la base $\overrightarrow{e_x}$ et $\overrightarrow{e_y}$:

$$\overrightarrow{e_x'} = \cos(\alpha)\overrightarrow{e_x} + \sin(\alpha)\overrightarrow{e_y} \qquad \overrightarrow{e_y'} = -\sin(\alpha)\overrightarrow{e_x} + \cos(\alpha)\overrightarrow{e_y}$$

On veut maintenant exprimer les composantes de M dans le repère R' en fonction des composantes de M dans R en projetant x' et y' dans le repère R (projections rouges) :

$$x' = \cos(\alpha)x + \sin(\alpha)y$$
 $y' = -\sin(\alpha)x + \cos(\alpha)y$

4. Méthode

4.3. Déterminer un vecteur directeur de même direction qu'un autre vecteur

On veut déterminer le vecteur unitaire \overrightarrow{u} , de même direction que \overrightarrow{AB} . Pour trouver \overrightarrow{u} , il faut diviser les composante de \overrightarrow{AB} par $||\overrightarrow{AB}||$:

$$\overrightarrow{u} = \frac{\overrightarrow{AB}}{||\overrightarrow{AB}||}$$

4.3. Utiliser le projeté orthogonal avec le produit scalaire

Soit \overrightarrow{AH} , le projeté orthogonal de \overrightarrow{AC} sur \overrightarrow{AB} .

Alors:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \cos(\alpha)$$

$$= \frac{\cos(\alpha)}{\cos(\alpha)} ||\overrightarrow{AB}|| ||\overrightarrow{AC}|| \cos(\alpha)$$

$$= \frac{||\overrightarrow{AH}||}{\cos(\alpha)} ||\overrightarrow{AB}|| \cos(\alpha)$$

$$= ||\overrightarrow{AH}|| \times ||\overrightarrow{AB}||$$

4.3. Exprimer 2 vecteurs de même direction l'un en fonction de l'autre

Soit \overrightarrow{AC} et \overrightarrow{AB} deux vecteurs. On cherche x dans $\overrightarrow{AC}=x\overrightarrow{AB}$ Donc $x=\frac{||\overrightarrow{AC}||}{||\overrightarrow{AB}||}.$

4.3. Déterminer la valeur de l'angle entre 2 vecteurs avec le produit vectoriel

En connaissant les coordonnées des 2 vecteurs u et v, on peut trouver leur produit vectoriel, ici noté \overrightarrow{w} .

On peut calculer la norme avec la formule $\sqrt{x^2 + y^2 + z^2}$

Le sinus de l'angle recherché vaut alors :

$$\frac{||\overrightarrow{w}||}{||\overrightarrow{u}|| \times ||\overrightarrow{v}||}$$

En faisant le rapport, on trouve le sinus de l'angle, puis en appliquant \sin^{-1} au rapport, l'angle, noté α . Cependant, la valeur de α peut aussi être : $\pi - \alpha, -\alpha, \alpha - \pi$.

4.4 Formules trigonométriques

4.4. Équivalences

- $\cdot \cos(-a) = \cos(a)$
- $\cos(\pi a) = -\cos(a)$
- $\cdot \cos(\frac{\pi}{2} a) = \sin(a)$
- $\cdot \sin(-a) = -\sin(a)$
- $\cdot \sin(\pi a) = \sin(a)$
- $\cdot \sin(\frac{\pi}{2} a) = \cos(a)$

4.4. Sommes

- cos(a + b) = cos(a)cos(b) sin(a)sin(b)
- $\cdot \cos(a b) = \cos(a)\cos(b) + \sin(a)\sin(b)$
- $\cdot \cos(2a) = \cos^2(a) \sin^2(a) = 2\cos(a) 1 = 1 2\sin(a)$
- $\cdot \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$
- $\cdot \sin(a-b) = \sin(a)\cos(b) \cos(a)\sin(b)$
- $\cdot \sin(2a) = 2\sin(a)\cos(a)$

4.4. Binéarisation

- $\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b) + \cos(a-b))$
- $\cdot \sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) \cos(a+b))$
- $\cdot \sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$