SOLUTIONS - SUNIT TRIAL - 1996 - JRAHS (1)

a) (1) $\frac{\partial_{04} c_{4} h_{1}}{\partial_{4} h_{2}} \left(\frac{1}{1} h_{1} h_{2} h_{3} h_{3} h_{4} h_{2} h_{3} h_{4} h_{4} h_{3} h_{4} h_{3} h_{4} h_{$

(i) $\int_{1}^{2} \frac{x^{2}+1}{x^{2}} dx$ = $\int_{1}^{2} (x_{1} + \frac{1}{x}) dx$ = $\int_{1}^{2} (x_{1} + \frac{1}{$

2 c) $V = T \int_{1}^{2} \frac{1}{4+x^{2}} dx$ [1] $I'(446) = \frac{8c_{44}}{J^{4}c_{44}} = \frac{70}{10634} = \frac{5}{754}$ 2 c) $V = T \int_{1}^{2} \frac{1}{4+x^{2}} dx$ [1] $I'(446) = \frac{8c_{44}}{J^{4}c_{44}} = \frac{70}{10634} = \frac{5}{754}$ $= \frac{1}{2} \left[\frac{1}{48n^{-1}} + \frac{1}{48n^{-1}$

Question 3.

a) (i) $\omega s \times -v \tilde{s} \sin \gamma = A \omega (u + \omega)$ A Herenizely

b) $\omega s \times -v \tilde{s} \sin \gamma = A \omega (u + \omega)$ A mix $\omega s = A \omega (u +$

 $|a_{1}| = \frac{2 \cdot A}{4a_{1}a_{2}} \qquad () \quad T_{k+1} = \frac{50}{6} \cdot (\frac{2x}{x})^{3-k} \cdot (\frac{-\frac{1}{4x}}{x^{3}})^{\frac{1}{4x}}$ $|a_{1}| = \frac{50}{4} \cdot (\frac{2x}{x})^{3-k} \times \frac{2x}{x^{3}} \cdot (\frac{-\frac{1}{4x}}{x^{3}})^{\frac{1}{4x}}$ $|a_{1}| = \frac{4}{3} \cdot (\frac{2x}{x})^{3-k} \times \frac{2x}{x^{3}} \cdot (\frac{-\frac{1}{4x}}{x^{3}})^{\frac{1}{4x}}$ $|a_{2}| = \frac{4}{3} \cdot (\frac{2x}{x})^{2} \cdot (\frac{1}{4x})^{\frac{1}{4x}}$ $|a_{3}| = \frac{2}{3} \cdot (\frac{2x}{x})^{2} \cdot (\frac{1}{4x})^{\frac{1}{4x}}$ $|a_{3}| = \frac{2}{3} \cdot (\frac{2x}{x})^{\frac{1}{4x}} \cdot (\frac{2x}{x})^{\frac{1}{4x}}$ $|a_{3}| = \frac{2}{3} \cdot (\frac{2x}{x})^{\frac{1}{4x}} \cdot (\frac{2x}{x})^{\frac{1}{4x}} \cdot (\frac{2x}{x})^{\frac{1}{4x}}$ $|a_{3}| = \frac{2}{3} \cdot (\frac{2x}{x})^{\frac{1}{4x}} \cdot (\frac{2x}{x})^{\frac{1}{$

 $u_{sc}(x_{1}+\frac{\pi}{2})=1$ $u_{sc}(x_{1}+\frac{\pi}{2})=\frac{\pi}{2}$ $u_{sc}(x_{1}+\frac{\pi}{2})=\frac{\pi}{2}$

= 12/34 m/s.

= 13.99 m/s)

K = 0.20273

(iii) N= 5000 + 10000 e. No. 12. N = 46335 (rearch number)

की की कि

20000 = 5000 + 10000 e 15000 = 2k

ln 1.5 = 2k 1 = 12 = 12

.: By Chain Rule:

hit 4: 12

(ii) When to 0, No 15000 !

(a) (j) $N = 5000 + 4e^{kt}$ (2) (b) $\frac{dN}{dt} = R \cdot (N - 5000)$

Question 4

25+9=12 (34 = r

> N= 5000 + Ae H. 15000 = 5000 + Ae

رمحل

1 N= 5000+ 10000 e

10000 = A

When 4= 2, N= 20 000;

When t=0: x=0, y= 1 = 6, x=0, y=0, y=-20

(i) Find t if
$$y = 0$$
.
 $0 = -104^2 + 3.6$
 $104^{2} = 3.6$
 $1^{2} = 0.36$
 $1^{2} = 0.6$. The take is 0.6 seconds

(iii) when t = 0.6,
$$x = 6x0.6 = 3.6 m$$

 $4 - 3.6 = 0.4$
 $4 - 3.6 = 0.4$

١				: }	!	į
,				ŀ	1	
					!	
	:	İ		:	!	1
		:	[[:		1
	<	1	182 - 81	- 8		4
	3	4	1	18x-8	00	
	210 m	x (7 = 4)	42-54 + 24		18x	1
	ا آ	7 + 2	12-25	(66 - 2m)	\(\frac{1}{16} = 3\)	!
	Let Area of Trapezium) 	7) 7 =	1 2	(7E = EE)	
	¥ *	₩.	H	14	J' i	!
	¥ .					
					1	

For Max Area, dA = D.

(33-x) = $(15x-21)$ = $(18x-81)$ = (-1)	= (8x - 5) + (8x - 8) = (8x - 8)	<u> </u>	
dA = (33-4).	= (18 × - 81) =	= ((6x - 81) =	= 378-270L

اد	-3.7	/	אין ל
1	•		70.
12	9.4		et aft ve
<u></u>	4	\ ₹	2
¥ 94		:	
-			
is a Mony			
1 x 21 H 15 x			

Os this is a continuous freehen, then 2 : 14 is the obsolve maximum

;	4	٠,
Ţ	\	
\blacktriangledown		. `
	1	
l	,	
Ļ		
	*	
-	٠,٧	
	-	
	4	
•	_ ;	
:	3	
	5	-
Ċ	6	>
r		
	الد الد	
	•	
	Ş.	
	Trapezium with preadust area is	•
	٣,	
	4	
	'n	
	٠ ٢	
	Jakens was of	