

پروژه تحلیل دادههای فضایی

گردآورندگان: سارا معصومی - نرگس متقی - محمدعلی قمرانی - دنیا مهدی

استاد راهنما: دكتر محسن محمدزاده

خرداد ۱۴۰۲

فهرست

صفحه	عنوان
٢	چکیده
٣	مقدمه
۴	جدول داده ها
۵	تحليل اكتشافى
14	برازش مدل واريوگرام
18	پیشگویی فضایی
١٧	پيوست
۲۷	منابع

چکیده

در این مقاله قصد داریم مطالعاتی را بر روی میانگین دمای برخی از شهرهای ایران انجام دهیم. برای این منظور مجموعه داده شامل موقعیتهای جغرافیایی ۷۷ شهر مجموعه داده شامل موقعیتهای جغرافیایی ۷۷ شهر مختلف از ایران میباشد که این موقعیتها بر اساس طول و عرض جغرافیایی مشخص شدهاند. این مجموعه داده علاوه بر موقعیت جغرافیایی شامل اطلاعات ثبت شدهای از میانگین دمای این شهرها در تاریخ ۱۴۰۲/۰۴/۰۹ میباشد.

با توجه به این که داده های ما از لحاظ موقعیت مکانی به یکدیگر وابسته هستند نمی توان از روش های مرسوم آمار کلاسیک برای بررسی آنها استفاده کرد چرا که در آمار کلاسیک برقراری فرض استقلال مشاهدات، ضروری است. بنابراین برای اهداف مختلف از جمله پیشگویی، از روشهای نوین آماری مانند روشهای تحلیل دادههای فضایی بهره می بریم.

لازم به ذکر است برای اجرای روشهای مذکور بر روی دادههای خود از نرم افزار R کمک میگیریم، همچنین کدهای اجرا شده در بخش پیوست مقاله قرار خواهند گرفت.

مقدمه

آشنایی با تحلیل فضایی

در بررسیهای محیطی اغلب با دادههایی مواجه میشویم که مستقل نیستند و به نوعی وابستگی آنها ناشی از موقعیت و مکان قرار گرفتن دادهها در فضای مورد بررسی یا زمان مشاهده آنها است. تحلیل این گونه مشاهدات که دادههای فضایی نامیده میشوند، از روشهای معمول آمار ممکن نیست و لازم است به نحوی ساختار همبستگی دادهها در تحلیل آماری دادهها منظور شود. روشهای آمار فضایی به دلیل استفاده از همبستگی فضایی بین داده ها که عموماً توسط تابع تغییرنگار مدل بندی می شود از دقت بالایی نسبت به سایر روشهای دیگر برخوردار است.

آمار فضایی به عنوان شاخهای نوین از علم آمار که به روشهایی برای تعیین ساختار همبستگی و تحلیل دادههای فضایی و دادههای فضایی-زمانی میپردازد، در نظر گرفته میشود.

یکی از موضوعات مهم در تحلیل داده های فضایی، پیشگویی مقدار نامعلوم یک میدان تصادفی با موقعیتهای مشخص بر اساس بردار مشاهدات است.که به آن روش پیشگویی کریگیدن میگویند. در روش های کریگیدن واریانس پیش بینی در هر نقطه نیز ارائه میشودکه این یکی از ویژگیهای منحصر به فرد روش کریگیدن است. اگر میدان تصافی مورد نظر گاوسی با ساختار میانگین و کوواریانس پارامتری باشد. پیشگویی بهینه و میانگین مجذور خطای آن قابل محاسبه است. اما در عمل با موارد زیادی مواجه می شویم که مشاهدات از مدل گاوسی تبعیت نمی کنند. در اینگونه موارد اگر تبدیلی غیر خطی از میدان تصادفی، گاوسی باشد پیشگویی فضایی امکانپذیر می گردد. اما اگر تبدیل نامعلوم باشد، میتوان آن را متعلق به یک خانواده از تبدیلات پارامتری دانست. در اینصورت پیشگویی فضایی علاوه بر پارامترهای مدل به پارامتر تبدیل نیز وابسته خواهد شد و معمولا برآوردهای حداکثر درست نمایی آنها تعیین و در پیشگوی بهینه جایگذاری می شود. اما این کار موجب تردید در بهینگی پیشگویی حاصل خواهد شد. از طرف دیگر، معمولا تعیین میانگین مجذور خطای این پیشگو یا حتی ارائه تقریب مناسبی برای آن بسیار دشوار یا نشدنی است. لذا برای فائق آمدن بر این مسئله، رهیافت بیزی اتخاذ میگردد و با فرض آنکه پارامترهای مدل و تبدیل، متغیرهایی تصادفی هستند پیشگوی بهینه و میانگین مجذور آن تعیین می شوند.

جدول داده ها

میانگین دما (۲۰)	طول lon	at عرض	تاريخ ثبت	نام شهر	میانگین دما (<u>°</u> C)	طول lon	at عرض	تاريخ ثبت	نام شهر
27.9	47.90995026	39.64579391	1402/04/09	پارس آباد	26.7	46.41641617	33.57505417	1402/04/09	ايلام
24.5	44.49243546	39.2921524	1402/04/09	ماكو	27.5	48.34891129	33.45696259	1402/04/09	خرم آباد
26.4	44.95465469	38.52029419	1402/04/09	خوي	23.7	49.69316864	33.40154648	1402/04/09	اليگودرز
22.9	47.07098389	38.47453308	1402/04/09	اهر	34.1	51.43208313	33.98339462	1402/04/09	كاشان
25.7	46.28915024	38.0792923	1402/04/09	تبريز	37.5	55.08384323	33.77181625	1402/04/09	خور
18.7	48.29428482	38.24974442	1402/04/09	اردبیل	39.4	56.93533325	33.57518768	1402/04/09	طبس
21.5	47.53533173	37.94099808	1402/04/09	سراب	33.2	58.17238617	34.01807785	1402/04/09	فردوس
23.2	45.05765152	37.53953934	1402/04/09	ارومیه	35.1	48.41930008	32.37889481	1402/04/09	دزفول
26.6	46.23360443	37.38603592	1402/04/09	مراغه	21.9	50.85820389	32.31618118	1402/04/09	شهركرد
29.9	47.71635056	37.4207077	1402/04/09	ميانه	33.2	51.6590538	32.57763672	1402/04/09	اصفهان
27.6	49.46269989	37.46670532	1402/04/09	بندرانزلي	30.7	59.21954727	32.85693359	1402/04/09	بيرجند
25.6	49.59040833	37.28414536	1402/04/09	رشت	38.6	48.67127228	31.24201393	1402/04/09	اهواز
28.0	55.96172714	37.90470886	1402/04/09	مراوه تپه	36.6	49.28633881	31.96466255	1402/04/09	مسجدسليمان
27.2	48.75468063	33.89829254	1402/04/09	بروجرد	26.9	52.65011597	31.14298248	1402/04/09	آباده
26.1	52.21732712	33.52765656	1402/04/09	مهاباد	35.5	54.34774017	31.88352203	1402/04/09	يزد
21.1	46.27292252	36.24411774	1402/04/09	سقز	33.8	60.03780746	31.54078674	1402/04/09	نهبندان
22.6	48.49299622	36.67955399	1402/04/09	زنجان	39.5	61.49380875	31.00886726	1402/04/09	زابل
26.3	50.00196838	36.28174591	1402/04/09	قزوين	37.4	48.28005219	30.35600853	1402/04/09	آبادان
26.2	50.66233444	36.91598892	1402/04/09	رامسر	37.5	49.71224976	30.7556076	1402/04/09	امیدیه
25.7	51.4998436	36.64708328	1402/04/09	نوشهر	31.4	50.7936301	30.3659761	1402/04/09	گچساران
26.4	52.64933777	36.69893646	1402/04/09	بابلسر	24.6	51.58242416	30.65676308	1402/04/09	ياسوج
25.1	52.7830627	36.4532673	1402/04/09	قراخيل	30.1	57.06418228	30.28140259	1402/04/09	كرمان
26.4	54.42879868	36.84519958	1402/04/09	گرگان	33.5	50.31930542	29.23805237	1402/04/09	خارك
29.5	54.9724617	36.41208649	1402/04/09	شاهرود	31.3	52.5291214	29.55689049	1402/04/09	شيراز
26.1	58.51087189	37.1023674	1402/04/09	قوچان	33.2	55.67490768	29.43761635	1402/04/09	سيرجان
34.0	61.14860153	36.54865646	1402/04/09	سرخس	27.5	56.59699249	29.23217583	1402/04/09	بافت
34.9	57.68231964	36.20921326	1402/04/09	سبزوار	38.9	58.34861755	29.06779861	1402/04/09	بم
30.5	59.57567215	36.31043243	1402/04/09	مشهد	31.1	60.85205078	29.48213577	1402/04/09	زاهدان
24.3	47.00640869	35.24031448	1402/04/09	سنندج	32.1	50.83766937	28.92142677	1402/04/09	بوشهر
32.4	51.34975815	35.70290756	1402/04/09	تهران	30.4	53.6376915	28.91972542	1402/04/09	فسا
33.7	53.38192749	35.57711411	1402/04/09	سمنان	32.6	51.93501282	27.83905983	1402/04/09	بندردير
31.0	59.21302032	35.27845764	1402/04/09	تربت حیدریه	35.0	56.29146576	27.19265175	1402/04/09	بندرعباس
32.8	58.45988083	35.2427597	1402/04/09	كاشمر	36.4	57.69707489	27.92245483	1402/04/09	كهنوج
29.1	47.09714127	34.31409454	1402/04/09	كرمانشاه	34.5	62.33307266	27.36134338	1402/04/09	سراوان
23.1	48.52614594	34.7918129	1402/04/09	همدان	38.9	60.67512894	27.20416451	1402/04/09	ايرانشهر
27.4	49.7220993	34.09344864	1402/04/09	اراك	32.4	53.97384644	26.53342438	1402/04/09	کیش
32.0	57.80063248	25.65699577	1402/04/09	بندرجاسك	33.1	54.88892365	26.54753304	1402/04/09	بندرلنگه
31.8	٦٠,٦٤٧٧٠١٢٦	25.29451942	1402/04/09	چاہ بھار	33.5	54.88892365	26.54753304	1402/04/09	سيري
					33.3	55.02985382	25.88346291	1402/04/09	ابوموسي

تحليل اكتشافي

۱. پس از فراخوانی دادهها در نرم افزار، اولین قدم بررسی اجمالی متغیر مورد مطالعه میباشد. که جدولی از خلاصه های آماری آن را مشاهده و بررسی میکنیم:

خلاصه آماری میانگین دمای شهرها

عنوان	مقادير
کمترین دمای ثبت شده	١٨.٧
چارک اول	75.4
میانه	۳۰.۵
چارک سوم	۳۳.۵
میانگین	٣٠.٠٩
بیشترین دمای ثبت شده	۳۹.۵

همانطور که در جدول فوق میبینیم سردترین نقطه از میان این شهرها، اردبیل با دمای ۱۸.۷ درجهی سلسیوس و گرمترین نقطه، شهر زابل با دمای ۳۹.۵ درجه سلسیوس است. متوسط دمای تمام شهرها تقریبا ۳۰ درجه سلسیوس میباشد همچنین ۵۰٪ شهرها در ۹ تیرماه ۱۴۰۲ دمای کمتر از ۳۰.۵ و ۵۰٪ آن ها دمایی بالاتر از مقدار مذکور را تجربه کرده اند.

به منظور اینکه پراکندگی دادههای خود را در سطح کشور به طور شهودی ببینیم نمودار زیر را رسم میکنیم:

همانطور که در نمودار صفحه قبل مشاهده می کنیم در جهت شمال ، شمال غرب و غرب اطلاعات بیشتری نسبت به شرق ، مرکز و جنوب شرقی داریم. میتوانیم برای درک بهتر و مقایسه دما در جهات مختلف مقدار دما را نیز برای هر نقطه بر روی نمودار نمایش دهیم.

با توجه به نمودار فوق دمای شهرهای شمالی ، غربی و شمال غربی به دلیل وجود رشته کوههای البرز و زاگرس، پایینتر از دمای شهرهای جنوبی ،شرقی و جنوب شرقی است.

۲. بررسی توزیع متغیر مورد مطالعه

به منظور بررسی توزیع یک متغیر، دو راهبرد شهودی و آزمون فرض وجود دارد که نتایج حاصل از آزمون فرض نسبت به رسم نمودار قابل استنادتر است. بنابراین میتوانیم از آزمون شاپیروویلک و رسم نمودار هیستوگرام برای بررسی فرض نرمال بودن توزیع متغیر میانگین دمای شهرها استفاده کنیم:

أزمون شاپيروويلک

٠.٩٧٧٣۶	مقدار آماره آزمون
۰.۱۸۵۳	P-value

با توجه به میزان p-value برای آزمون شاپیروولیک و رسم نمودار هیستوگرام، فرض صفر آزمون یعنی فرض نرمال بودن توزیع رد میشود.در نتیجه دادههای میانگین دمای شهرها از توزیع نرمال نمیباشد، بنابراین میدان تصادفی ما گاووسی نیست.

بررسی مانایی در میانگین

برای بررسی وجود یا عدم وجود روند در داده ها لازم است مقادیر میدان تصادفی را یک بار در مقابل طول جغرافیایی و یک بار در مقابل عرض جغرافیایی رسم کنیم اگر هیچ الگوی خاصی در پراکندگی داده ها مشاهده نشود یعنی میدان تصادفی مانا است در غیز این صورت فرض مانایی رد شده و لازم است داده های خود را روند زدایی کنیم.

رسم نمودار:

مقادیر میدان تصادفی در مقابل طول جغرافیایی

مقادیر میدان تصادفی در مقابل عرض جغرافیایی

با توجه به نمودارهای رسم شده در فوق برای بررسی مانایی میتوان نتیجه گرفت، داده ها هم در برابر افزایش طول و هم در برابر افزایش عرض، دارای روند هستند. اما در جهت طول جغرافیایی دارای روند صعودی است یعنی هرچه از سمت غرب کشور به سمت شرق کشور حرکت کنیم میانگین دمای هوا بیشتر میشود و در جهت عرض جغرافیایی دارای روند نزولی می باشد یعنی هر چه از سمت جنوب کشور به سمت شمال کشور حرکت کنیم از میانگین دمای هوا کاسته خواهد شد.

با توجه به نتایج حاصل، لازم است دادههای خود را روند زدایی کنیم. به کمک رگرسیون خطی مقدار ضریب هر متغیر را محاسبه میکنیم سپس با بدست اوردن اختلاف مقادیر مشاهده شده از مقادیر پیشگویی شده ، خطاها را محاسبه میکنیم این خطا ها در برابر هیچ کدام از متغیر های عرض و طول روندی داشته باشند.

ضرایب رگرسیونی

28.12	عرض از مبداء
0.36	ضریب lat
-0.52	ضریب lon

حال میتوانیم مقادیر باقی مانده ها را به کمک نرم افزار R حساب کنیم و یکبار دیگر در برابر عرض و طول جغرافیایی آنها را رسم کنیم همچنین نمودار هیستوگرام را برای بررسی توزیع آنها رسم میکنیم:

داده های روند زدوده در برابر طول

داده های روند زدوده در برابر عرض

Histogram of resid(data.lm)

همانطور که در نمودار های فوق میبینیم داده ها ما روند زدوده شده اند زیرا نه در برابر طول و نه در برابر عرض دارای روند نیستند و بدون الگو پراکنده شده اند همچنین توزیع آنها شبیه به توزیع نرمال شده است.

بررسی مانایی در تغییرنگار

برای این کار لازم است نمودار H-پراکنش را برای لگ های مختلف رسم کنیم و اگر نقاط رسم شده نسبت به نیم ساز متقارن باشند یعنی میدان تصادفی مانای در تغییر نگار است.

نمودار H-پراکنش فوق نسبت به خط نیم ساز تقریبا متقارن است بنابراین میدان تصادفی ما مانای در تغییر نگار میباشد.

۳. بررسی همسانگردی

برای بررسی همسانگردی لازم است تغییر نگار تجربی را در چهار جهت 0, 45,90,135 درجه بر روی نمودار رسم شود اگر تغییر نگار ها در تمام جهات تقریبا بر هم منطبق شده باشند همسانگردی برقرار است

❖ علارغم تلاشهای گروه ما برای بررسی همسانگردی، کدهای مربوط به این بخش با خطای نامعلوم مواجه میشدند.

۴. بررسی فضایی بودن داده ها

برای بررسی فرض فضایی بودن داده های میانگین دمای شهد ها میتوانیم از آزمون موران استفاده کنیم نتایج این آزمون برای متیغر ذکر شده به شرح زیر میباشد:

آزمون موران

• .• ۴ \ γ P-value

با توجه به مقدار p-value برای آزمون موران که برابر ۲۰۰۱ ۱۰۰۴۱۷ است و از ۲۰۰۵ کمتر است فرض استقلال دادهها رد میشوند بنابراین داده های ما به یکدیگر وابسته هستند.

بررسی داده های پرت

در تحلیل فضایی دو نوع داده ی پرت وجود دارد نوع اول: دادههایی که بدون درنظر گرفتن موقعیت آنها، فقط براساس مقدار مشاهده شده غیرمعمول هستند، که با استفاده از نمودار جعبهای به طور شهودی آنها راشناسایی میکنیم و نوع دوم دادههایی که مقدار آنها در مقایسه با مشاهدات مجاور غیرمعمول هستند. با استفاده از نمودار Hپراکنش می توان این نوع دادهها راشناسایی کرد.

با توجه به نمودار جعبه ای رسم شده در صفحه قبل میتوان نتیجه گرفت مشاهده ی پرت از نوع اول در مجموعه داده ها وجود ندارد. و از طرق نمودار H-پراکنش با توجه به اینکه در گوشه های نمودار چند مشاهده وجود دارد میتوان نتیجه گرفت داده های پرت از نوع دوم در مجموعه داده ی ما وجود دارد.

برازش مدل واريوگرام

بابرآورد تغییر نگار می توانیم درک بهتری از ساختار همبستگی فضایی دادهها در آمارفضایی بدست آوریم. و برای محاسبه تغییرنگار از فرمول ذیل استفاده می کنیم

$$2\gamma(s_1, s_2) = Var(Z(s_1) - Z(s_2))$$

هرچقدر میزان تغییرنگار کوچکتر باشد ، نشانگر وابستگی زیاد و بزرگ بودن آن ، نشانگر وابستگی کم میدان تصادفی است و اگر تغییرنگار برای تمام مقادیر h تقریبا ثابت باشد ، دادهها همبستگی فضایی ندارند یا همبستگی فضایی آن ها بسیار ضعیف است . و برعکس، به طور کلی می توان گفت کهشیب نمودار تغییرنگار بیانگر همبستگی فضایی دادههاست .

برآورد نیمتغییرنگار تجربی کلاسیک و نیرومند:

در شکل زیر نمودار نیم تغییرنگار کلاسیک برای دادههای مورد مطالعهی ما رسم کرده ایم.

نمودار نیم تغییرنگار تجربی کلاسیک

برازش مدل برای نمودار نیم تغییرنگار

باتوجه به نمودار نیم تغییر نگار تجربی که رسم کردیم مدل نمایی را به عنوان یک مدل تغییرنگار مناسب انتخاب کرده ایم و آن را بروی داده ها برازش داده ایم که نمودار آن را در شکل ذیل مشاهده می کنید:

پیشگویی فضایی

با در نظر گرفتن شرط میدان تصادفی گاوسی پیش گو فضایی بهینه ترکیب خطی از سایر مشاهدات است که باتوجه به وضعیت مانایی (میانگین میدان تصادفی) کریگیدن ، عادی را برای پیشگویی دما در شهرهای دیگر انتخاب کرده ایم.

در بخش تحلیل اکتشافی مشاهده کردیم که میدان تصادفی دارای روند میباشد و با استفاده از مدل رگرسیونی به برآورد این روند پرداختیم و دادهها را روند زدوده کردیم. داده های روند زدوده به طور شهودی مانای در میانگین است و در سطح ۰۱. نرمال میباشد لذا برای پیشگویی از کریگیدن عادی استفاده میکنیم.

کریگیدن عادی

میدان تصادفی $\delta(s)=\mu+\delta(s)$ را در نظر بگیریم که درآن $\mu\in R$ نامعلوم و $Z(s)=\mu+\delta(s)$ یک میدان تصادفی مانای ذاتی با میانگین صفرباشد. هدف پیش گویی فضایی Z(s)=1 براساس مشاهدات $Z=(Z(s_1),\dots Z(s_n))$ است.

پیش گویی نقاط جدید

واريانس	مقدار پیش بینی شده	نقاط	شهر
2.39	1.7٧	(29.238, 50.319)	خارک
2.38	-0.4٩	(34.204, 47.759)	هفت چشمه
2.5	0.84	(32.779, 58.885)	خوسف
2.4	0.28	(35.693, 52.047)	دماوند

پیوست

```
R طول#

lon <- c()

#عرض |

lat <- c()

المه#

temp <- c()

إلم المه المؤتدينا فريم |

print(is.data.frame(data))

print(nrow(data))
```

> print(is.data.frame(data))

> print (ncol (data))

> print(nrow(data))

[1] TRUE

[1] 3

[1] 77

در این بخش کدهای اجرا شده در نرم افزار R به همراه خروجی های آن قرار دارند.

۲. محاسبه ی خلاصه ی آماری

summary(data\$z)

```
> summary(data$z)
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.70 26.30 30.50 30.09 33.50 39.50
```

۳. رسم نمودار پراکندگی موقعیت ها و نمایش دمای هر موقعیت بر روی نمودار

plot(lon,lat,type="n")
text(lon,lat,temp,offset = 0.5, cex = 0.7)
plot(lon,lat)

۴. آزمون شاپیروویلک

shapiro.test(temp)

```
> shapiro.test(temp)

Shapiro-Wilk normality test

data: temp
W = 0.97736, p-value = 0.1853
```

۵. رسم نمودار هیستوگرام

hist(temp)

plot(lon,temp)

plot(lat,temp)


```
۷. آزمون موران
```

```
install.packages("ape")
```

library(ape)

محاسبه ى وزن ها و سپس ازمون موران

data.dists <- as.matrix(dist(cbind(data\$x , data\$y)))</pre>

data.dists.bin <- (data.dists > 0 & data.dists <= .75)

Moran.I(data\$z, data.dists.bin)

```
> Moran.I(data$z,

$observed

[1] 0.5150879

$expected

[1] -0.01315789

$sd

[1] 0.25947

$p.value

[1] 0.04176395
```

٨. رسم نمودار جعبه اي

boxplot(temp, data = data,ylab = "temp", main = "boxplot of temperature")

boxplot of temperature

data.lm <- Im(temp ~ Ion + Iat, data = data)
summary(data.lm)
resid(data.lm)
plot(resid(data.lm),Ion)
plot(resid(data.lm),Iat)</pre>

```
lm(formula = temp ~ lon + lat, data = data)
Residuals:
                  1Q Median
                                        3Q
     Min
-7.9424 -2.3006 -0.6126 2.2342 8.9979
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
28.1207 8.4264 3.337 0.001326 **
lon
                   0.3687
                                  0.1053
                                              3.502 0.000787 ***
                                  0.1280 -4.116 9.9e-05 ***
lat
                  -0.5270
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.842 on 74 degrees of freedom
Multiple R-squared: 0.4241, Adjusted R-squared: 0.4085
F-statistic: 27.24 on 2 and 74 DF, p-value: 1.361e-09
```


par(mfrow=c(2,2))
install.packages("gstat")
install.packages("sp")
library(gstat)
library(sp)
coordinates(data) <- c("x", "y")
hscat(z ~ 1, data=data, breaks=c(0,50,100,150,1000))</pre>

lagged scatterplots

library(sp)

library(geoR)

library(gstat)

تبدیل دادهها به دیتا فریم #

latitude <- c(data_trend_removed\$latitude)</pre>

longitude <- c(data_trend_removed\$longitude)</pre>

Trend_Removed <- c(data_trend_removed\$Trend_Removed)</pre>

data <- data.frame(latitude, longitude, Trend_Removed)

تعریف مختصات مکانی برای دیتا فریم #

coordinates(data) <- ~longitude + latitude

محاسبه واريوگرام #

var.data <- variogram(Trend_Removed ~ longitude + latitude, data = data)</pre>

نمایش واریوگرام #

plot(var.data, Ity = 1, main = "Classic")


```
۱۲. انتخاب مدل تغییرنگار نمایی و برازش آن بروی داده ها:
```

library(gstat)
var1 <- variogram(Trend_Removed ~ longitude + latitude, data = data)
v.fit1 = fit.variogram(var1, vgm(50, "Exp", 2, 50))
plot(var1, v.fit1)</pre>

۱۳. کریگیدن عادی

#Kriging

library(gstat)

library(sp)

library(rgl)

library(geoR)

library(gstat)

Load data

#data <- read.csv("/content/output.csv", encoding = "utf-8")</pre>

```
# Extract values
z_data <- data_trend_removed$Trend_Removed
# Create coordinates and values arrays
coords <- as.data.frame(data_trend_removed[, c("latitude", "longitude")])</pre>
values <- as.numeric(data_trend_removed$Trend_Removed)</pre>
# Load data
excel_file <- "/content/Data-new.xls"
# Read data
newdata <- read excel(excel file)
# Calculate distance matrix
dist_matrix <- as.matrix(dist(coords, method = "euclidean"))</pre>
max_dist <- max(dist_matrix)</pre>
H=dist(data_trend_removed)
L=max(H)
va2<-variog(G2,max.dist=L,estimator.type="classic")
m2 <- vgm(15.18, "Exp", 45.18, 1.9)
or.kriging.2 <- krige(id="z_data", formula=z_data~1, data=data_trend_removed,
             newdata=newdata[,2:3], model = m2 ,locations=~latitude+longitude)
Un.kriging.2 <- krige(id="z.co", formula=z.co~x+y, data=a2,
           newdata=grd2, model = m2, locations=~x+y)
or.kriging.2
```

	latitude	longitude	z_data.pred	z_data.var
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	29.23805	50.31931	1.7653992	2.391520
2	34.20406	47.75966	-0.4824001	2.389223
3	32.77917	58.88586	0.8450770	2.515840
4	35.69395	52.04722	0.2803187	2.414864

منابع

- [آمار فضایی-د.محسنمحمدزاده] (۱ https://pub.modares.ac.ir/book treasure.php?mod=viewbook&book id=29&slc lang=fa&si d=1
- http://www.meteomanz.com/index?l=1 [منبع داده] (۲
- ال [تاریخچه آمار فضایی] (۳ https://fa.wikipedia.org/wiki/%D8%AA%D8%AD%D9%84%DB%8C%D9%84 %D9%81%D8%B 6%D8%A7%DB%8C%DB%8C