

รายงาน เรื่อง Heart attack Risk Dataset

จัดทำโดย

นายชัยพร พูลสวัสดิ์ 6530200096 นายภควัต จิตรพรทรัพย์ 6530200321 นายรัตนพงศ์ ม่วงกระโทก 6530200410 นายวัชรากร รัศมีดิษฐ์ 6530200444

หลักสูตรวิทยาศาสตร์บัณฑิต สาขาวิทยาการคอมพิวเตอร์
คณะวิทยาศาสตร์ ศรีราชา
ภาคปลาย ปีการศึกษา 2567

2 Class

ดาวโหลด Library ที่จำเป็น

```
import pandas as pd import numpy as np import seaborn as rs inport matplotilis, pyplot as pt import matplotilis, pyplot as pt from skleam, model_selection import train_test_split, GridSearchCV from skleam, metrics import accuracy_score, classification_report from skleam, metrics import accuracy_score, classification_report from skleam, nearly bayes import CaussianNB from skleam, illenar_model import LogisticRepresion from skleam, illenar_model import LogisticRepresion from skleam, illenar_model_classifier from skleam, illenar_model_classifier from imbleam.over_sampling import SMOTE, ADASYN from skleam, metrics import confusion_matrix from imbleam_under_sampling import RandomUnderSampler from imbleam_under_sampling import RandomUnderSampler from imbleam_unpipeline import Rpeline
```

ดาวโหลด Dataset Heart attack risk และตัดความเสี่ยงระดับ Moderate ออก เพื่อจำแนกแค่ 2 คลาส และแสดงตัวอย่าง

# โพละนักมุล df = pd.read_csv("content/heart_attack_risk_dataset.csv") # กรองน้อมูล: ตัดความเต็มงระดับ Moderate ออก df = dff[df"+eart_Attack_Risk"] != "Moderate"] print(df" +eart_Attack_Risk"].value_counts()) df.head(5)													
Low High Nam	250 100 e: cou	072 int, dtype:											
	Age	Gender	Smoking	Alcohol_Consumption	Physical_Activity_Level	ВМІ	Diabetes	Hypertension	Cholesterol_Level	Resting_BP	Heart_Rate	Family_History	Stress_Level (
0	69	Female	Smoking 1	Alcohol_Consumption	Physical_Activity_Level Moderate		Diabetes 1	Hypertension 0		Resting_BP	Heart_Rate	Family_History	
						34.61			152.1	-			
0	69	Female	1		Moderate	34.61 35.32	1	0	152.1 272.3	171	85	0	Moderate
2	69 89	Female Male	1 0		Moderate Moderate	34.61 35.32 18.23	1	0	152.1 272.3 237.7	171 123	85 127	0	Moderate Low Low

สร้างคอลัมน์ BMI_Category และ Age_Categoty ที่แปลงค่าในคอลัมน์ BMI และ Age ให้เป็น String และหลังจากนั้น Encode ให้เป็น Int ตามลำดับ ลบคอลัมน์ BMI และ AGE แทนค่าในคอลัมน์ Heart_attack_risk ให้เป็น Binary และจัดการ MissingValues โดย คอลัมน์ที่เป็น Numerical จะแทนด้วยค่าเฉลี่ย และคอลัมนท์ที่เป็น Categorical จะแทนด้วย mode

```
| Feature Engineering | label_ence = LabelEncoder() |
| for oli in dfselect_dypes(include=['object']).columns:
| if ool != "Heart_Attack_Risk": = "Laisavin Label Encoding shivin Heart_Attack_Risk |
| df[col] = label_enc.fit_transform(df[col]) |
| df["BMI_Categony"] = pd.cut.fdf"age"], bins=[0, 30, 50, 100], labels=["Underweight", "Normal", "Overweight", "Normal",
```

e e	1	ีย	
ตวอ	٤I٦	งๆโก	ามล
,,,,	· .	, , ,	, 03 0

	Gender	Smoking	Alcohol_Consumption	Physical_Activity_Level	Diabetes	Hypertension	Cholesterol_Level	Resting_BP	Heart_Rate	Family_History	Stress_Level	Chest_Pain_1
0	0	1	0	2	1	0	152.1	171	85	0	2	
2	1	0	1	2	0	0	272.3	123	127	0	1	
3	1	0	1	2	1	0	237.7	144	125	0	1	
5	1	0	1	2	0	0	271.2	141	119	0	1	
6	1	1	0	1	0	0	164.8	154	67	0	1	

แยก Feature และ Target โดยทำ **One-Hot Encoding**: สำหรับคอลัมน์ categorical ที่เหลือ Gender, Chest_Pain_Type, Thalassemia, ECG_Results หลังจากนั้นจึงแบ่งข้อมูลไว้สำหรับ Test และ Train

```
# uun Features uas Target
target, col = "Heart, Attack, Risk"

X = df.drop(columns=[target, col])
X = pd.get, dummies(X, columns=["Gender", "Chest_Pain_Type", "Thalassemia", "ECG_Results"])
y = df[target_col]
# uulsribayauuuu Stratified Split
X, train, X, test, y, train, y, test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
# \( \text{his Feature Scaling} \)
scaler = StandardScaler()
X, train = scaler.fit_transform(X_train)
X, test = scaler.fit_transform(X_test)
```

ปรับสเกล Features ให้มีค่าเฉลี่ยเป็น 0 และส่วนเบี่ยงเบนมาตรฐานเป็น 1 และจึง ปรับสมดุลข้อมูลเนื่องจาก Class Low มีจำนวน 20,019และ Class High มีจำนวน 8057 โดยใช้วิธี เพิ่มจำนวน Class High 50% และลดจำนวน Class Low 80% จากนั้นจึงสร้าง pipeline ให้ทำตามขั้นตอน

```
# ฟา Feature Scaling
scaler = StandardScaler()
X_train = scalerfit_transform(X_train)
X_train = scalerfit_transform(X_train)
X_test = scalertransform(X_test)

over = SMOTE(sampling_strategy=0.5, random_state=42) # เพิ่มคลาส "1" ให้เป็น 50% ของคลาส "0"
under = RandomUnderSampling_strategy=0.6, random_state=42) # ลดคลาส "0" ให้เป็น 80% ของคลาส
# สร้าง Pipeline
steps = [("over", over), ("under", under")
pipeline = Pipeline(steps=steps)
# ปรับสมอุลข่อมูล
X_train_res y_train_res = pipeline.fit_resample(X_train, y_train)
```

ตัวอย่างข้อมูลหลังจากปรับสมดุลแล้ว

```
Before resampling: Heart_Attack_Risk
0 20019
1 8057
Name: count, dtype: int64
After resampling: Heart_Attack_Risk
0 12511
1 10009
Name: count, dtype: int64
```

จากนั้นจึงสร้างและฝึกโมเดลโดยใช้ Naïve Bayes , Logistic Regression, Random Forest , XGBoost และการประเมินผลใช้ Accuracy , Classification Report (Precision, Recall, F1-Score) , Confusion Matrix

```
models = {
    "Nalve Bayes": GaussianNB(),
    "Logistic Regression": LogisticRegression(max_iter=1000, random_state=42),
    "Random Forest": Random forestClassifler(n_estimators=200, max_depth=10, class_weight="balanced", random_state=42),
    "XGBoost": XGBClassifler(scale_pos_weight=len(y_train[y_train == 0]) / len(y_train[y_train == 1]), n_estimators=200, max_depth=5, random_state=42),
    "results = {}
    for name, model in models.items():
        model.fit(X_train_res, y_train_res)
        y_pred = model.predict(Y_test)
        acc = accuracy_score(y_test, y_pred)
        print("\n + \name) Accuracy: (acci..4f)")
        print("\n + \name) Accuracy: (acci..4f)")
        print("\name) acci...
        print("\name) acci...
        ac
```

ตัวอย่าง Naïve Bayes

```
* Naive Bayes Accuracy: 0.6588 precision recall f1-score support

0 0.71 0.88 0.79 5005
1 0.27 0.11 0.15 2015

accuracy 0.66 7020 macro avg 0.49 0.49 0.47 7020 weighted avg 0.58 0.66 0.60 7020

Confusion Matrix for Naive Bayes: [14410 595] [1800 215]
```

ตัวอย่าง Logistic Regression

```
    Logistic Regression Accuracy: 0.7103 precision recall f1-score support

    0 0.71 0.99 0.83 5005
    1 0.21 0.00 0.01 2015
    accuracy 0.71 7020 macro avg 0.46 0.50 0.42 7020 weighted avg 0.57 0.71 0.59 7020

Confusion Matrix for Logistic Regression: [[4979 26] [2008 7]]
```

ตัวอย่าง Random Forest

```
    Random Forest Accuracy: 0.6345 precision recall f1-score support

    0 0.71 0.82 0.76 5005 1 0.28 0.17 0.21 2015

    accuracy 0.63 7020 macro avg 0.49 0.50 0.49 7020 weighted avg 0.59 0.63 0.60 7020

Confusion Matrix for Random Forest: [[4114 891] [1675 340]]
```

ตัวอย่าง XGBoost

```
    ** XGBoost Accuracy: 0.4181 precision recall f1-score support
    ** 0 0.72 0.30 0.43 5005 1 0.29 0.70 0.41 2015
    ** accuracy 0.42 7020 macro avg 0.50 0.50 0.42 7020 weighted avg 0.59 0.42 0.42 7020

Confusion Matrix for XGBoost: [[1515 3490] 595 1420]]
```

เปรียบเทียบ Accuracy แต่ละโมเดลโดยใช้กราฟแท่ง

```
plt.figure(figsize=(8, 5))
sns.barplot(x=list(results.keys()), y=list(results.values()), palette="viridis")
plt.tite("Comparison of Model Accuracies")
plt.ylabe("Accuracy Score")
plt.show()
```

ตัวอย่างกราฟ

