Conceptos fundamentales de electromagnetismo

La idea del curso es resolver las ecuaciones que describen matemáticamente el comportamiento clásico de los campos electromagnéticos, es decir las ecuaciones de Maxwell, en diversas situaciones. Luego, la conexión con la fuerza que experimentarán las partículas cargadas por la acción de dichos campos vendrá descripta por la fuerza de Lorentz.

Panorámicamente, lo dicho corresponde a trabajar con el set de ecuaciones

$$\begin{split} \boldsymbol{\nabla} \cdot \boldsymbol{D} &= 4\pi \rho_{\ell} \qquad \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 \\ \boldsymbol{\nabla} \times \boldsymbol{E} &= -\frac{1}{c} \frac{\partial \boldsymbol{B}}{\partial t} \qquad \boldsymbol{\nabla} \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{J}_{\ell} + \frac{1}{c} \frac{\partial \boldsymbol{D}}{\partial t}, \end{split}$$

las cuales permiten determinar a los campos E, D, B, H a partir de la densidad de carga ρ y de corriente J (notemos que también los campos D y B influyen en el comportamiento de H y E). Finalmente, la fuerza de Lorentz que actúa sobre una partícula de carga q que se mueve con velocidad v es

$$m{F} = q \left(m{E} + rac{1}{c} m{v} imes m{B}
ight).$$

Crudamente podemos decir que de esto trata el electromagnetismo clásico. Las ecuaciones de Maxwell son lineales, de modo que vale la superposición aunque los campos tienen en sí matemáticamente naturaleza diferente. Los campos E, D don ejemplos de vectores polares (aquellos que tienen bien definido el sentido, como la fuerza, la posición y la velocidad) mientras que B, H son

ejemplos de vectores axiales, que por el contrario tienen su sentido definido por una convención, como por ejemplo las velocidades angulares.

De acuerdo con ello, el carácter de vector axial o polar tiene consecuencias en la transformación de los mismos. Las transformaciones que se considerarán serán rotaciones, reflexiones espaciales y reflexiones temporales. Las ecuaciones de Maxwell permanecen invariantes ante estas transformaciones.

El resto del capítulo recorrerá lo que es la construcción usual del electromagnetismo; primeramente considerar situaciones estáticas, independientes del tiempo, lo cual hace que aparezcan como fenómenos independientes la electricidad y el magnetismo y luego repasar someramente algunas propiedades matemáticas útiles para el formalismo.

Si multiplico vectorialmente dos vectores polares obtengo un vector axial.

1.1 Electrostática

La ley de Coulomb establece que

$$\pmb{F}_{12} = k \ q_1 q_2 \frac{(\pmb{x}_1 - \pmb{x}_2)}{|\pmb{x}_1 - \pmb{x}_2|^3}$$

es la fuerza sobre la partícula en \boldsymbol{x}_1 debido a la partícula en \boldsymbol{x}_1 . La constante k está para ajustar las unidades. En sistema gaussiano es k=1 y adimensional. La Figura 1.1 ilustra la situación para el caso en que ambas cargas tienen igual signo; en ese caso la fuerza \boldsymbol{F}_{12} tiene la dirección del vector $\boldsymbol{x}_1-\boldsymbol{x}_2$: apunta desde la fuente hacia el punto donde se evalúa.

Figura 1.1 Fuerza sobre la carga q_1 debida a la carga q_2 .

Cuando la carga q_1 es suficientemente pequeña como para no perturbar a la carga q_2 que origina la fuerza, se puede utilizar la ley de Coulomb para definir

el campo eléctrico según

$$oldsymbol{E}_{12}(oldsymbol{x}_1) \equiv \lim_{q_1 o 0} rac{oldsymbol{F}_{12}}{q_1}.$$

Para una distribución discreta de N cargas q_i y tomando $\boldsymbol{x}_1 \equiv \boldsymbol{x}$ se tiene

$$\boldsymbol{E}(\boldsymbol{x}) = \sum_{i=1}^{N} \ q_i \frac{(\boldsymbol{x} - \boldsymbol{x}_i)}{|\boldsymbol{x} - \boldsymbol{x}_i|^3}.$$

En el límite en que las cargas están lo suficientemente próximas como para considerar que forman se tiene una distribución de carga de volumen $\rho(x)$, la expresión del campo adopta la forma de una integral

$$\boldsymbol{E}(\boldsymbol{x}) = \int_{V'} \rho(\boldsymbol{x}') \frac{(\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} \, dV'$$

donde V' es el volumen de integración. En general x es el llamdo punto campo y x' punto fuente.

1.1.1 Conservación de la carga

Aceptaremos el principio de conservación de la carga; la carga eléctrica no se genera ni se destruye. Considerando una región Ω en el espacio (cuya frontera está fija) la carga total encerrada en la misma es

$$Q(t) = \int_{\Omega} \rho(\mathbf{x}', t) \, d\Omega,$$

siendo su variación temporal

$$\frac{dQ(t)}{dt} = \int_{\Omega} \frac{\partial \rho(\mathbf{x}', t)}{\partial t} \, d\Omega,$$

donde la derivada total se transforma en una derivada parcial debido a que el volumen es fijo.

La conservación de la carga nos dice que como la carga no aparece ni desaparece mágicamente, entonces la variación de la carga contenida en Ω en cualquier instante de tiempo se debe al flujo neto de carga de la misma; es decir a la diferencia entre la que abandona la región y aquella que entra. Como ilustra esquemáticamente la Figura 1.2, la variación de carga ΔQ en un dado Δt corresponde a la diferencia entre las entrantes y las salientes.

La forma que tiene ese flujo se construye a partir del análisis ilustrado en el inserto de la figura. Allí se ve un elemento pequeño $\delta\Omega$ que linda con la frontera

Acá creo que la derivada debería ser la parcial desde el vamos. Check! de la región. Este elemento δV es lo suficientemente pequeño como para que en su interior el campo de velocidad de las cargas sea constante. La caja δV tiene un volumen que se puede expresar $\ell \delta S$ (longitud de la caja por área de la base). La longitud ℓ se elige como $\ell = v_n \delta t$, donde v_n es la componente de la velocidad normal a la superficie. Así elegido, el volumen $\delta V = v_n \delta t \delta S$ representa el volumen que pasaría a través de δS en el tiempo δt . En efecto, la partícula más lejana del borde δS que está a distancia ℓ recorrerá en δt justamente esa distancia (la velocidad v es constante para todo el elemento). Si la velocidad estuviese orientada hacia adentro, entonces tendríamos un bloque similar de carga entrante, v el razonamiento es el mismo.

La cantidad de carga δQ que atraviesa el área δS será entonces

$$\delta Q = \rho \delta V = \rho v_n \delta S \delta t = \rho \boldsymbol{v} \cdot (\hat{n} \delta S) \delta t$$

donde se ha expandido la velocidad normal. Entonces la variación de la carga en el elemento es

$$\frac{\delta Q}{\delta t} = \rho \boldsymbol{v} \cdot (\hat{n}\delta S).$$

Si el producto escalar entre la velocidad y la normal es positivo entonces esto significa que la carga abandona la superficie mientras que el caso contrario implica carga entrando en la misma. Entonces debemos ajustar la expresión anterior con un signo menos. Entonces, pasando al continuo

$$\frac{\partial Q}{\partial t} = -\int_{\partial \Omega} \boldsymbol{J} \cdot d\boldsymbol{S}$$

donde $J=\rho v$ es el vector densidad de corriente y $dS=\hat{n}dS$ es el diferencial de superficie vectorial.

Entonces, juntando las dos expresiones para la carga tenemos

$$\int_{\Omega} \frac{\partial \rho(\boldsymbol{x}',t)}{\partial t} \; d\Omega = - \int_{\partial \Omega} \; \boldsymbol{J} \cdot d\boldsymbol{S},$$

y aplicando el teorema de la divergencia en el miembro derecho

$$\int_{\Omega} \frac{\partial \rho(\boldsymbol{x}',t)}{\partial t} \, d\Omega = -\int_{\Omega} \, \boldsymbol{\nabla} \cdot \boldsymbol{J} \, d\Omega,$$

o bien

$$\int_{\Omega} \left[\frac{\partial \rho(\boldsymbol{x}',t)}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{J} \right] \, d\Omega = 0,$$

y como esto vale para cualquier volumen Ω se sigue que el corchete debe ser nulo, de modo que se tiene

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \boldsymbol{J} = 0,$$

Figura 1.2

que es la ecuación de continuidad de la carga.

Si es $\nabla \cdot J = 0$ no se acumula carga; las líneas de J no tienen principio ni fin. Los problemas de corrientes estacionarias cumplen esta condición. Esta condición en la ecuación de continuidad nos dice que la distribución de carga no varía con el tiempo.

Si fuera $\nabla \cdot J = 0$ esto significa que las líneas de J no tienen principio ni fin.Check!

1.2 Interacción magnética

Cuando se da $\nabla \cdot \boldsymbol{J} = 0$ hablamos de una corriente estacionaria (no hay acumulación de carga en ninguna parte). Las corrientes estacionarias producen efectos magnéticos dados por la ley de Biot-Savart

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{1}{c} \int_{\Gamma} \frac{Id\ell' \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3}$$

que es válida para un circuito Γ , que es una curva –lineal– que se recorre en sentido positivo (CCW). Si no puede despreciarse el espesor de un circuito, hay que considerar una integral de volumen y la expresión es

$$\boldsymbol{B}(\boldsymbol{x}) = \frac{1}{c} \int_{V'} \frac{\boldsymbol{J}(\boldsymbol{x}') \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} \, dV'.$$

Luego, la fuerza sobre un circuito lineal Γ es

$$\boldsymbol{F} = \frac{1}{c} \int_{\Gamma} I d\ell \times \boldsymbol{B},$$

mientras que para un volumen se tiene

$$\boldsymbol{F} = \frac{1}{c} \int_{V} \boldsymbol{J} \times \boldsymbol{B} \, dV.$$

La expresión del torque es

$$T = \frac{1}{c} \int_{V} \boldsymbol{x} \times (\boldsymbol{J} \times \boldsymbol{B}) \, dV.$$

La transformación entre estas integrales puede hacerse merced al siguiente razonamiento,

$$Id\ell \times \mathbf{B} = \mathbf{J} \cdot d\mathbf{S}d\ell \times \mathbf{B} = \cos(\theta)dS\mathbf{J}d\ell \times \mathbf{B} =$$
$$\mathbf{J} \times \mathbf{B}\cos(\theta)dSd\ell = \mathbf{J} \times \mathbf{B}d\mathbf{S} \cdot d\ell = \mathbf{J} \times \mathbf{B}dV$$

1.2.1 Fuerza de un circuito sobre otro

La fuerza ejercida por el campo magnético de un circuito 2 sobre otro circuito 1 puede calcularse con un poco de paciencia como sigue

$$\begin{split} F_{12} &= \frac{1}{c} \int_{\Gamma_1} I_1 d\ell_1 \times \left\{ \frac{1}{c} \int_{\Gamma_2} \frac{I_2 d\ell_2 \times (\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \right\} \\ F_{12} &= \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_1 \times \left\{ \frac{d\ell_2 \times (\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \right\}, \end{split}$$

y utilizando una identidad vectorial,

$$F_{12} = \frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} d\ell_2 \left\{ \frac{d\ell_1 \cdot (\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \right\} - \int_{\Gamma_1} \int_{\Gamma_2} \frac{(\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} \left\{ d\ell_1 \cdot d\ell_2 \right\}$$

Luego, se puede reescribir el primer término notando que

$$\frac{(\boldsymbol{x}_1 - \boldsymbol{x}_2)}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|^3} = \nabla_{\boldsymbol{x}_2} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|} = -\nabla_{\boldsymbol{x}_1} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|},\tag{2.1}$$

de manera que la primer integral resulta

$$-\int_{\Gamma_2} d\ell_2 \int_{\Gamma_1} d\ell_1 \cdot \nabla_{\boldsymbol{x}_1} \frac{1}{|\boldsymbol{x}_1 - \boldsymbol{x}_2|},$$

la cual es nula porque se está integrando un gradiente en una curva cerrada.

Entonces, se tiene

$$F_{12} = -\frac{I_1 I_2}{c^2} \int_{\Gamma_1} \int_{\Gamma_2} \frac{({\pmb x}_1 - {\pmb x}_2)}{|{\pmb x}_1 - {\pmb x}_2|^3} \left(d\ell_1 \cdot d\ell_2 \right)$$

que vale lo mismo si intercambiamos Γ_1 con Γ_2 en la integración, lo cual implica que la fuerza sobre un circuito debida a otro es igual a la fuerza sobre este último debida al primero. Esto quiere decir que vale el principio de acción y reacción en el caso de corrientes estacionarias. Si las corrientes no son estacionarias no se tendrá, en general, este resultado. Con corrientes no estacionarias se generará campo electromagnético y habrá emisión de radiación.

1.3 Teorema de Helmholtz

Nos dice que un campo vectorial está completamente determinado por su divergencia y su rotor. Por ejemplo, para un campo eléctrico se tiene

$$\boldsymbol{E} = \int_{V'} \rho \frac{\boldsymbol{x} - \boldsymbol{x}'}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dV' = -\int_{V'} \rho \nabla_{\boldsymbol{x}} \frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' = -\nabla_{\boldsymbol{x}} \int_{V'} \frac{\rho}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' = -\nabla_{\boldsymbol{$$

donde la integral que ha resultado dentro del gradiente es la integral de Poisson. Entonces,

$$\pmb{E} = -\nabla_{\pmb{x}} \phi(\pmb{x}),$$

de modo que E es un gradiente y por ello

$$\nabla \times \mathbf{E} = 0.$$

Esta última condición implica que el campo electrostático \boldsymbol{E} es conservativo, cumple $\oint_{\Gamma} \boldsymbol{E} \cdot d\ell = 0$, o lo que es lo mismo, \boldsymbol{E} es irrotacional. Hemos hecho la construcción de un potencial electrostático.

Para el curso de indicial:

$$[m{A} imes m{B}]_i = \epsilon_{ijk} A_j B_k$$

 $[m{\nabla} imes m{A}]_i = \epsilon_{ijk} \partial_j A_k$
 $\epsilon_{ijk} \epsilon_{\ell mn} = \delta_{i\ell} \delta_{im} - \delta_{im} \delta_{j\ell}$

1.4 Ley de Gauss

La idea es considerar el campo ejercido por una carga puntual q en un punto de una superficie $S \equiv \partial \Omega$, como se ilustra en la Figura 4.3.

Figura 4.3

El campo en el punto verifica

$$\boldsymbol{E}\cdot\hat{\boldsymbol{n}} = q\frac{\cos(\theta)}{r^2}$$

y teniendo en cuenta el diferencial de superifice dS

$$\mathbf{E} \cdot \hat{n}dS = q \frac{\cos(\theta)}{r^2} dS$$

donde el factor $\cos\theta dS/r^2$ es el ángulo sólido subtendido por dS desde el punto donde se halla q

Podemos escribir

$$\mathbf{E} \cdot \hat{n}dS = qd\Omega$$

donde $d\Omega$ es el diferencial de ángulo sólido. Integrando para todo el volumen

$$\int_{S\equiv\partial V} \boldsymbol{E}\cdot\hat{\boldsymbol{n}}\;dS = q\int_{S}d\Omega = \begin{cases} 0 & \text{carga exterior}\\ 4\pi & \text{carga interior} \end{cases}$$

y la integral es nula si la carga es exterior a S o 4π si es interior. En el caso de una cantidad de cargas internas se tendrá, evidentemente,

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \sum_{i} q_{i}.$$

Este hecho se conoce como La ley de Gauss y se expresa

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi Q_{n},$$

donde Q_n es la carga neta dentro de la superficie S. Al continuo pasa como

$$\int_{S} \mathbf{E} \cdot \hat{n} \ dS = 4\pi \int_{V} \rho \ dV,$$

de manera que usando el teorema de la divergencia se obtiene

$$\int_{V} \mathbf{\nabla} \cdot \mathbf{E} \ dV = \int_{V} 4\pi \rho \ dV,$$

o bien

$$\nabla \cdot \boldsymbol{E} = 4\pi \rho.$$

Lo que es vital en todo este razonamiento es el hecho de que el campo decaiga como $1/r^2$. Luego, alguna 'ley de Gauss' podrá aplicarse a cualquier campo con ese tipo de decaimiento.

Por otro lado si E es el gradiente de un potencial ϕ la divergencia del campo

$$\nabla \cdot \boldsymbol{E} = \nabla \cdot (-\nabla \phi) = -\nabla^2 \phi = 4\pi \rho$$

conduce a la ecuación de Poisson para el potencial electrostático,

$$\nabla^2 \phi = -4\pi \rho,$$

cuyo caso particular en el caso $\rho = 0$

$$\nabla^2 \phi = 0,$$

constituye la ecuación de Laplace.

Matemáticamente esto significa que la solución de la ecuación no homogénea (Poisson) es suma de una solución del homogéneo (Laplace) más una solución particular. La carga en el volumen está relacionada con la solución particular.

Por supuesto para resolver cualquiera de estas ecuaciones hace falta dar las correspondientes condiciones de contorno. Usualmente serán de dos tipos: Dirichlet (valor del potencial en la superifice) o Newmann (valor de la derivada normal del potencial sobre la superficie).

1.4.1 Gauges

Dado que $\nabla \cdot \boldsymbol{B} = 0$ entonces existe un \boldsymbol{A} tal que

$$\mathbf{\nabla} \times \mathbf{A} = \mathbf{B}$$

pero para caracterizar totalmente el ${m A}$ tengo la libertad de definir a conveniencia

$$\nabla \cdot A \equiv$$
 "el gauge".

Casos particulares importantes son el gauge de Coulomb,

$$\nabla \cdot \mathbf{A} = 0$$

de manera que como

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

se llega para el potencial electromagnético, bajo el gauge de Coulomb, a que

$$\nabla^2 \boldsymbol{A} = -\frac{4\pi}{c} \boldsymbol{J}$$

Electrostática	Magnetostática
$\pmb{F}_{12} = \frac{q_1 q_2 (\pmb{x}_1 - \pmb{x}_2)}{ \pmb{x}_1 - \pmb{x}_2 ^3}$	$dF_{12} = \frac{1}{c^2} \frac{I_1 d\ell_1 \times J_2 d\ell_2 \times (x_2 - x_1)}{ x_2 - x_1 ^3}$
$egin{aligned} oldsymbol{E} = \int_{V'} rac{ ho(oldsymbol{x}')(oldsymbol{x} - oldsymbol{x}')}{ oldsymbol{x} - oldsymbol{x}' ^3} dV' \end{aligned}$	$oldsymbol{B} = rac{1}{c} \int_{V'} rac{oldsymbol{J}(oldsymbol{x}') imes (oldsymbol{x} - oldsymbol{x}')}{ oldsymbol{x} - oldsymbol{x}' ^3} dV'$
Ley de Gauss	Ley de Ampere
$\int_{S} \boldsymbol{E} \cdot d\boldsymbol{S} = 4\pi Q_{n}$	$\int_{\Gamma} \boldsymbol{B} \cdot d\ell = \frac{4\pi}{c} I_c$
Ecuaciones electrostáticas	Ecuaciones magnetostáticas
$\nabla \cdot \boldsymbol{E} = 4\pi \rho$	$\nabla \cdot \boldsymbol{B} = 0$
$\nabla \times \boldsymbol{E} = 0$	$oldsymbol{ abla} imes oldsymbol{B} = rac{4\pi}{c}oldsymbol{J}$
$oldsymbol{E} = -oldsymbol{ abla}\phi$	$oldsymbol{B} = oldsymbol{ abla} imes oldsymbol{A}$

 Tabla 1.1
 Recetario de ecuaciones básicas para la electrostática y la magnetostática.

La operación de tomar rotor y el producto vectorial cambian el carácter de los vectores: de polares pasan a axiales y viceversa.

El laplaciano es la divergencia del gradiente, dos operaciones que no cambian el carácter de un vector. Luego, el laplaciano preserva la simetría.

La fuerza general sobre una distribución de carga es

$$\boldsymbol{F} = \int_{V'} \rho \boldsymbol{E} \, dV' + \frac{1}{c} \int_{V'} \boldsymbol{J} \times \boldsymbol{B} \, dV'.$$

Estos comentarios sobre vectores irán en el apéndice matemático vectorial.

A partir de la tabla hay mucho para mencionar. Por ejemplo, el hecho de la separación total de fenómenos, que la fuerza magnética es una diferencial (no hay cargas puntuales magnéticas), que el potencial en un caso es escalar mientras que en el otro es vectorial, etc.

1.4.2 Delta de Dirac

Una densidad de carga puntual se puede escribir mediante una delta de Dirac de acuerdo a

$$\rho(\boldsymbol{x}') = q \ \delta(\boldsymbol{x} - \boldsymbol{x}') = \begin{cases} 0 & \boldsymbol{x} \neq \boldsymbol{x}' \\ \infty & \boldsymbol{x} = \boldsymbol{x}' \end{cases}$$

siendo las dimensiones de la delta las de $1/L^3$ y cumpliéndose

$$\int_{V'} \delta(\boldsymbol{x} - \boldsymbol{x}') dV' = 1.$$

La delta de Dirac se puede aproximar con ciertas funciones matemáticas con gráficas como el siguiente

La delta de Dirac cumple las siguientes propiedades

$$\begin{split} \int f(\boldsymbol{x})\delta(\boldsymbol{x}-\boldsymbol{x}_0)dx &= f(\boldsymbol{x}_0) \\ \int f(\boldsymbol{x})\delta'(\boldsymbol{x}-\boldsymbol{x}_0)dx &= -f'(\boldsymbol{x}_0) \\ \int f(\boldsymbol{x})\delta^n(\boldsymbol{x}-\boldsymbol{x}_0)dx &= (-1)^n f^n(\boldsymbol{x}_0) \\ \delta[f(\boldsymbol{x})] &= \frac{\delta(\boldsymbol{x}-\boldsymbol{x}_0)}{|f'(\boldsymbol{x}_0)|} \qquad f(\boldsymbol{x}_0) &= 0 \end{split}$$

En coordenadas cartesianas es

$$\delta(\boldsymbol{x}-\boldsymbol{x}_0)=\delta(x-x_0)(y-u_0)(z-z_0)$$

y para curvilíneas, como el elemento diferencial y el de volumen son

$$d\mathbf{x} = h_1 dq_1 \hat{e}_1 + h_2 dq_2 \hat{e}_2 + h_3 dq_3 \hat{e}_3 \qquad dV = h_1 h_2 h_3 dq_1 dq_2 dq_3$$

se tiene

$$\delta({\pmb x}-{\pmb x}') = \frac{1}{h_1h_2h_2}\delta(q_1-q_1')\delta(q_2-q_2')\delta(q_3-q_3')$$

donde q_1,q_2 y q_3 son coordenadas curvilíneas generales y $h_1h_2h_3$ es el jacobiano de la transformación. Puntualmente para coordenadas esféricas se tiene

$$\delta(\boldsymbol{x} - \boldsymbol{x}') = \frac{1}{r^2 \sin \theta} \delta(r - r') \delta(\theta - \theta') \delta(\varphi - \varphi')$$

donde no está definido para $\theta=0$. Si $r_0=0$ entonces se tiene

$$\delta(\boldsymbol{x}) = \frac{\delta(r)}{4\pi r^2}$$

que involucra un factor de normalización.

Para un casquete esférico se tendrá $\rho(x)=\sigma\delta(r-R)$ y para una corriente circulando por un plano como ilustra la figura

se tiene ${m J}=g\delta(y)\hat{z}$. Estas deltas, al ser unidimensiona-

les tienen unidades de $1/L^{-1}$ de manera que las otras unidades serán llevadas por σ y g.

1.4.3 Vectores polares y axiales ante transformaciones

Las transformaciones propias son aquellas con determinante 1 y las impropias las que tienen determinante distinto de 1. Entonces, para un vector polar p y siendo R la matriz de la transformación y |R| su determinante, se tiene

$$p' = R p$$

mientras que para un vector axial a

$$\mathbf{a}' = |R|R \mathbf{a}.$$

Aquí se ve que ante una transformación propia ambos vectores transforman igual pero ante una impropia hay un cambio asociado al determinante.

Un vector polar sufre reflexión especular mientras que un vector axial (*pseudovector*) sufre una antireflexión especular. Ver la figura.

Para un campo escalar, como podría ser la temperatura $T(\boldsymbol{x})$ una rotación deja invariante el valor del campo

Figura 4.4 A la izquierda está el comportamiento polar mientras que a la derecha se halla el comportamiento axial.

En el caso de un campo vectorial

se ve que

$$\boldsymbol{E}'(\boldsymbol{x}') = R\boldsymbol{E}(R\boldsymbol{x}).$$

En el caso de una simetría por reflexión como la de la figura

el campo en una situación simétrica cumplirá

$$\boldsymbol{V}(\boldsymbol{x}') = R\boldsymbol{V}(\boldsymbol{x})$$

mientras que un campo escalar sería $T(\boldsymbol{x}') = T(\boldsymbol{x}).$

EJEMPLO 4.1 Ejemplo de problema simétrico (eléctrico)

Consideremos un plano infinito cargado con una densidad de carga σ , según se ve en la figura bajo estas líneas. La idea es que el campo en un punto P será

$$\pmb{E}(P) = (E_x, E_y, E_z),$$

es decir que en principio tendrá los tres componentes.

Del otro lado del plano la situación es la misma de manera que se tiene una simetría de reflexión en xz. La matriz de una reflexión es

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

y entonces se tienen las relaciones (compruébese en la figura)

$$E'_x = E_x, \qquad E'_y = -E_y, \qquad E'_z = E_z.$$
 (4.1)

Luego, otra simetría es sencillamente rotar el plano un ángulo π en torno a $\hat{z},$ y esta rotación será

poner matriz de rotación en apéndice

$$R = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

que implica

$$E'_{x} = -E_{x}, E'_{y} = -E_{y}, E'_{z} = E_{z}.$$
 (4.2)

Como ambas simetrías conllevan a la misma situación física, deben ser ciertas las relaciones (4.1) y (4.2) de modo que como $E_x=-E_x$ se debe cumplir que $E_x=0$.

Se puede hacer el mismo razonamiento para la simetría de reflexión en torno a xy puesto que dicho plano separa dos semiespacios especularmente idénticos. En este caso como P se halla sobre dicho plano basta una rotación en un ángulo de 2π , que deja el campo en el mismo sitio para obtener la relación $E_z=-E_z$ lo cual implica que ${\bf E}=E_y\hat{y}$.

EJEMPLO 4.2 Ejemplo de problema simétrico (magnético)

Consideremos un plano infinito por el cual circula una corriente cuya densidad de corriente J está mostrada en la figura bajo estas líneas. La idea es que el campo magnético B en un punto P será

$$\boldsymbol{B}(P) = (B_x, B_y, B_z),$$

es decir que en principio tendrá los tres componentes.

Dado que este campo es un pseudovector, debe reflejarse mal en el plano, como se ilustra en la figura. La reflexión en el plano xz lleva a

$$B'_{x} = -B_{x}, B'_{y} = B_{y}, B'_{z} = -B_{z}, (4.3)$$

que proviene de la matriz de reflexión R del caso anterior (es la misma porque giramos en el mismo sentido el mismo plano) a la cual se le ha multiplicado el determinante |R|=-1 de la misma puesto que el campo ${\bf B}$ es un pseudovector.

La rotación en torno a un ángulo π del plano es también una simetría, representada por la misma matriz de rotación R del ejemplo anterior por lo cual se tendrán

$$B'_x = -B_x, B'_y = -B_y, B'_z = B_z,$$
 (4.4)

de lo cual se deduce que $B_y=B_z=0$. El campo magnético sólo puede tener componente en \hat{x} , es decir que se escribirá como ${\bf B}=B_x\hat{x}$. Este hecho también puede deducirse cualitativamente utilizando la regla de la mano derecha.

EJEMPLO 4.3 Hilo cargado e hilo con corriente

Consideraremos ahora dos situaciones geométricas idénticas (un hilo infinito) pero en primer lugar el caso en que está cargado uniformemente y en segundo lugar el caso en que por el mismo circula una corriente estacionaria i.

En el caso del hilo cargado se quiere determinar las simetrías del campo E en un punto P,

El punto P es representativo de todo el cilindro. La simetría de reflexión en xy no hace que el punto cambie (P' = P) pero el campo debe reflejarse, de lo cual se tiene

$$E_x'=E_x, \qquad E_y'=E_y, \qquad E_z'=-E_z.$$

Luego, la rotación en ángulo 2π implica que $E_z=-E_z$ y por ende el componente z debe ser nulo. Por otra parte, la simetría de reflexión en yz de igual manera lleva a $E_x=-E_x$ de forma que el campo ${\pmb E}$ de un hilo cargado solo tendrá componentes en $\hat y$.

En el caso del hilo con una corriente que circula por el mismo se debe notar que ahora la corriente tiene dirección con lo cual la simetría de reflexión en xy se verifica si incorporamos un signo menos que dé cuenta del cambio en la dirección de la corriente

Entonces por una parte tenemos la reflexión que, luego del añadido del signo extra, da las igualdades

$$B_x'=B_x, \qquad B_y'=B_y, \qquad B_z'=-B_z,$$

que al combinarse con las que resultan de que los puntos son el mismo ${m P}={m P}'$ (o digamos que giramos en ángulo 2π) resultan en que $B_z=-B_z$ y por ende B_z es nulo.

La reflexión en yz no requiere el signo menos extra por el cambio de la corriente, así que da sencillamente

$$B_x' = B_x, \qquad B_y' = -B_y, \qquad B_z' = -B_z,$$

y luego la igualdad de puntos establece

$$B'_x = B_x, \qquad B'_y = B_y, \qquad B'_z = B_z,$$

de modo que, igualando ambas expresiones, tiene que ser $B_y=B_z=0$. Entonces el campo ${\pmb B}$ sólo tiene componentes en $\hat x$, es un campo anular.

Como se vió en el ejemplo anterior, una reflexión más una rotación permite eliminar componentes de campo.

Una simetría más una rotación-traslación permite eliminar dependencias.

Lo primero que debe hacerse es escribir bien la J a partir del dato de la corriente (que es el que se suele tener) mediante

$$i = \int_S m{J} \cdot dm{S}$$

En cambio, para $oldsymbol{A}$ es más fácil usar

$$B = \nabla \times A$$

y despejar de aquí la ecuación diferencial que emplear

$$\boldsymbol{A} = \frac{1}{c} \int_{V} \frac{\boldsymbol{J}}{|\boldsymbol{x} - \boldsymbol{x}'|} dV$$

1.5 El potencial vector

Por la ley de Biot y Savart, el campo \boldsymbol{B} debido a una densidad de corriente en un volumen puede obtenerse a partir de

$$\boldsymbol{B} = \frac{1}{c} \int_{V'} \frac{\boldsymbol{J}(\boldsymbol{x}') \times (\boldsymbol{x} - \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|^3} dV'.$$
 (5.1)

Utilizando la identidad de (2.1), con el gradiente respecto del punto campo, y la identidad vectorial

$$\boldsymbol{\nabla}\times(\phi\boldsymbol{F})=\phi\boldsymbol{\nabla}\times\boldsymbol{F}-\boldsymbol{F}\times\boldsymbol{\nabla}\phi$$

la expresión (5.1) para el campo magnético resulta en

$$oldsymbol{B} = oldsymbol{
abla}_x imes rac{1}{c} \int_{V'} rac{oldsymbol{J}(oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|} dV'$$

En estos ejemplos creo que es más beneficiosa la notación de la carpeta, ecuaciones 'triples'. de modo que

$$\mathbf{A} = \frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV'$$
 (5.2)

pero como el potencial vector se define a menos del gradiente de un escalar, resulta

$$A' \equiv A + \nabla \psi$$

es tan buen potencial vector como A puesto que los rotores verifican $\nabla \times A = \nabla \times A' = B$, de lo cual extraemos en conclusión que el potencial vector está definido a menos del gradiente de una función escalar.

Reacomodar estas cosas.

Cada componente de ${\pmb A}$ en el caso de que ${\pmb \nabla} \psi = 0$ puede verse como una integral de Poisson.

Ahora bien, si se toma el rotor del campo B, lo cual es tomar el rotor de A, se tiene

$$\mathbf{\nabla} \times \mathbf{B} = \mathbf{\nabla} \times \left(\frac{1}{c} \int_{V'} \frac{\mathbf{J}(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} dV' \right)$$

y usando la identidad del rotor de un rotor (ver apéndices XXX) resulta descompuesto en dos términos de acuerdo a

$$\boldsymbol{\nabla}\times\boldsymbol{B} = \boldsymbol{\nabla}\left(\boldsymbol{\nabla}\cdot\left[\frac{1}{c}\int_{V'}\frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|}dV'\right]\right) - \nabla^2\left(\frac{1}{c}\int_{V'}\frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x}-\boldsymbol{x}'|}dV'\right),$$

el gradiente de una divergencia y el laplaciano de un vector. Trabajaremos cada uno de ellos por separado.

Dado que la divergencia es con respecto a las coordenadas de x y la integración es con respecto a las coordenadas x' puede introducirse la misma bajo el signo integral y entonces

$$I_1 = \frac{1}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \boldsymbol{\nabla} \cdot \left[\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] dV' = -\frac{1}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \boldsymbol{\nabla}' \cdot \left[\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] dV'$$

donde la última igualdad se debe al cambio de las coordenadas contra las cuales se deriva. Ahora notando la siguiente expresión para la divergencia del integrando en el potencial vector,

$$oldsymbol{
abla}' \cdot \left[rac{oldsymbol{J}(oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|}
ight] = rac{oldsymbol{
abla}' \cdot oldsymbol{J}(oldsymbol{x}')}{|oldsymbol{x} - oldsymbol{x}'|} + oldsymbol{J}(oldsymbol{x}') \cdot oldsymbol{
abla}' \left[rac{1}{|oldsymbol{x} - oldsymbol{x}'|}
ight]$$

Considerando que $oldsymbol{
abla}'\cdot oldsymbol{J}(oldsymbol{x}')=0$, lo cual se verifica si la corriente es estacionaria se tiene

$$I_1 = -\frac{1}{c} \int_{V'} \mathbf{\nabla}' \cdot \left[\frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \right] dV'$$

expresión a la cual se puede aplicar el teorema de la divergencia en una superficie $S' = \partial V'$ que englobe completamente a la distribución de corrientes dada por \boldsymbol{J} (y esto siempre se puede hacer si \boldsymbol{J} está acotada) resultando en

$$I_1 = \frac{1}{c} \int_{S'} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \cdot \hat{n} dS' = 0.$$

El segundo término es

$$I_2 = \nabla^2 \left(\frac{1}{c} \int_{V'} \frac{\boldsymbol{J}(\boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} dV' \right)$$

donde el laplaciano, por la misma razón, también puede ser llevado dentro de la integral lo cual resulta en

$$I_2 = \frac{1}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \, \nabla^2 \left(\frac{1}{|\boldsymbol{x} - \boldsymbol{x}'|} \right) dV' = \frac{4\pi}{c} \int_{V'} \boldsymbol{J}(\boldsymbol{x}') \, \delta(\boldsymbol{x} - \boldsymbol{x}') dV',$$

luego de utilizar el valor del laplaciano de la diferencia entre puntos campo y fuente. La integral es nula salvo en el caso en el cual el punto \boldsymbol{x} se halle dentro de V', lo cual suponemos que es cierto obteniéndose entonces

$$I_2 = -\frac{4\pi}{c} \boldsymbol{J}(\boldsymbol{x}).$$

Juntando todos los resultados de estas excursiones, arribamos a

$$\nabla \times \boldsymbol{B} = \frac{4\pi}{c} \boldsymbol{J}(\boldsymbol{x}).$$

Integrando esta ecuación de Maxwell sobre una superficie S cuya frontera es una curva cerrada Γ se tiene

$$\int_{S} \nabla \times \boldsymbol{B} \cdot d\boldsymbol{S} = \frac{4\pi}{c} \int_{S} \boldsymbol{J}(\boldsymbol{x}) \cdot d\boldsymbol{S}$$

y por el teorema de Stokes arribamos a

$$\int_{\Gamma - \partial S} \mathbf{B} \cdot d\ell = \frac{4\pi}{c} I_{\Gamma}$$

que es la ley de Ampere. Notemos que I_Γ es la corriente concatenada por el lazo $\Gamma.$

Además, volviendo a la identidad vectorial del doble rotor,

$$\mathbf{\nabla} \times \mathbf{B} = \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{A}) = \mathbf{\nabla} (\mathbf{\nabla} \cdot \mathbf{A}) - \nabla^2 \mathbf{A} = \frac{4\pi}{c} \mathbf{J}$$

que se simplifica utilizando el gauge de Coulomb, ${f
abla}\cdot {f A}=0$, para llegar a

$$\nabla^2 \mathbf{A} = -\frac{4\pi}{c} \mathbf{J},$$

que es una ecuación de Poisson vectorial para la magnetostática.

Magnetostática y electrostáctica son gobernadas por ecuaciones de Poisson para potenciales A, ϕ y el problema entonces se reduce a resolverlas para luego hallar los campos por derivación.

1.6 Resolviendo problemas de potencial

Estaremos interesados en resolver las ecuaciones de Poisson y de Laplace en un cierto recinto. Para tener soluciones únicas necesitaremos condiciones de contorno de tipo Dirichlet o de tipo Newmann (derivada normal en el contorno).

1.6.1 Unicidad de problemas de potencial

La unicidad de la solución permite la fabricación de problemas equivalentes para otras soluciones. Si dos problemas satisfacen iguales condiciones de contorno entonces en el recinto encerrado por ese contorno tienen igual solución.

Si en un recinto R

$$\phi_1|_{cont} = \phi_2|_{cont} \tag{6.1}$$

pero se da para el interior de R que $\phi_1 \neq \phi_2$ entonces se tiene sucesivamente

$$\begin{split} U &\equiv \phi_1 - \phi_2 & \pmb{\nabla} U = \pmb{\nabla} \phi_1 - \pmb{\nabla} \phi_2 \\ & \nabla^2 U = \nabla^2 \phi_1 - \nabla^2 \phi_2 = -4\pi\rho + 4\pi\rho = 0 \\ & \pmb{\nabla} \cdot (U \pmb{\nabla} U) = U \left(\pmb{\nabla} \cdot \pmb{\nabla} U \right) + \pmb{\nabla} U \cdot \pmb{\nabla} U \\ & \int_V \pmb{\nabla} \cdot (U \pmb{\nabla} U) \, dV = \int_V U \nabla^2 U + (\nabla^2 U)^2 dV = \int_V (\nabla^2 U)^2 dV \end{split}$$

llegando al último miembro porque el potencial U cumple la ecuación de Laplace. Luego,

$$\int_{V} (\nabla^{2} U)^{2} dV = \int_{S} U \boldsymbol{\nabla} U \cdot d\boldsymbol{S} = 0$$

habiéndose pasado a la integral de superficie por el teorema de la divergencia y anulando el valor global porque U en el contorno es nula (recuérdese (6.1)). Además,

$$\left. oldsymbol{
abla} U \cdot doldsymbol{S} \longrightarrow rac{\partial U}{\partial \hat{n}} \right|_{cont}$$

luego,

$$\nabla U = 0$$
 $\nabla \phi_1 = \nabla \phi_2$

y entonces

$$\phi_1 = \phi_2$$
.

a menos, por supuesto, de una constante.

Veo la idea acá pero esto hay que hacerlo con mucho cuidado. Tal vez garabatear en papel y pasar los pasos importantes aquí. Utilizar claramente las condiciones de contorno; Dirichlet o Newmann.