Priority Queues – Binary Heaps

Outline

- Binary Heaps
 - Order
 - Structure
 - Insertion
 - Deletion
- Building Heaps
 - Floyd's method
- Heap Sort

Recall Queues

• FIFO: First-In, First-Out

Some contexts where this seems right?

 Some contexts where some things should be allowed to skip ahead in the line?

Queues that Allow Line Jumping

- Queue: First-In, First-Out (FIFO)
- Need a new ADT
- Operations: Insert an Item,
 Remove the "Best" Item

Applications of the Priority Queue

- Select print jobs in order of decreasing length
- Forward packets on routers in order of urgency
- Select most frequent symbols for compression
- Sort numbers, picking minimum first

Anything greedy

Priority Queue ADT

 In a Priority Queue, we always remove the item with the highest priority.

- "Highest Priority" is application-dependent, for example:
 - Item with minimum key value.
 - Items with maximum key value.

Potential Implementations

	insert	deleteMin		
Unsorted list (Array)	O(1)	O(n)		
Unsorted list (Linked-List)	O(1)	O(n)		
Sorted list (Array)	O(n)	O(1)*		
Sorted list (Linked-List)	O(n)	O(1)		

Can we do better?

Heaps provide...

- Insert: O(log n) worst case, O(1) on average
- DeleteMin: O(log n) worst and average.

Binary Heap Properties

- 1. Structure Property
- 2. Ordering Property

Tree Review

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):

More Tree Terminology

depth(B):

height(G):

degree(B):

branching factor(**T**):

Heap **Structure** Property

A binary heap is a <u>complete</u> binary tree.

<u>Complete binary tree</u> – binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.

Examples:

SIT Internal

Representing Complete Binary Trees in an Array

From node i:

left child: right child: parent:

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Representing Complete Binary Trees in an Array

From node i:

left child: 2*i

right child: 2*i+1

parent: i/2

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	Ι	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Why use an array?

- 1. Space: No pointers. The arrays are packed.
- 2. *2, /2, + are faster operations than dereferencing a pointer. (Faster operations) but also, better locality.
- 3. Finding the last node in the tree/array takes O(1) time.

Heap **Order** Property

Heap order property: For every non-root node X, the value in the parent of X is less than (or equal to) the value in X. (MinHeap)

Heap Operations

- findMin:
- insert(val): bubble up.
- deleteMin: sink down.

Heap - findMin

Top/root of the tree

Heap - findMin

- Top/root of the tree
- arr[1]
- O(1)

Heap - Insert(val)

Basic Idea: Append to end (maintaining structure) and bubble up to maintain heap order

- 1. Put val at "next" leaf position
- Bubble up by repeatedly exchanging node until no longer needed

insert(val)

```
void insert(Object o) {
  assert(!isFull());
  size++;
  newPos =
     bubbleUp(size,o);
  Heap[newPos] = o;
}
```

runtime: O(logN) worst case constant: on average

Heap – Example

Insert 15

Heap – Example

Insert 90

No swaps needed

Heap – Example

Insert 7

Insert Code (optimized)

bubble up an EMPTY space, and then do a swap (reduces the # of swaps).

runtime: O(logN) worst case constant: on average

Basic Idea:

- 1. Remove root (that is always the min!)
- 2. Put "last" leaf node at root
- 3. Find smallest child of node
- 4. Swap node with its smallest child if needed.
- 5. Repeat steps 3 & 4 until no swaps needed.

DeleteMin Code

```
Object deleteMin() {
  assert(!isEmpty());
  returnVal = Heap[1];
  size--;
  newPos =
    sinkDown(1,
        Heap[size+1]);
  Heap[newPos] =
    Heap[size + 1];
  return returnVal;
}
```

runtime: O(logN)

Delete 10

Delete 10

Delete 10

DeleteMin Code (Optimized)

```
Object deleteMin() {
  assert(!isEmpty());
  returnVal = Heap[1];
  size--;
  newPos =
    sinkDown(1,
        Heap[size+1]);
  Heap[newPos] =
    Heap[size + 1];
  return returnVal;
runtime: O(logN)
```

```
int sinkDown(int hole,
                    Object val) {
while (2*hole <= size) {</pre>
    left = 2*hole;
    right = left + 1;
    if (right ≤ size &&
        Heap[right] < Heap[left])</pre>
      target = right;
    else
      target = left;
    if (Heap[target] < val) {</pre>
      Heap[hole] = Heap[target];
      hole = target;
    else
      break;
  return hole;
                                  33
```

Heap – Update a key

Basic Idea: Given a ptr to value, change its "key" and bubble up/sink down to maintain heap

order

```
void update(T *pval,int priority) {
  auto old_priority = pval->priority;
  pval->priority = priority;
  if(priority<old_priority)
    bubbleup(pval);
  else
    sinkdown(pval);
}</pre>
```

Create a heap

Insert 12, 5, 11, 3, 10

Building a Heap

 Adding the items one at a time is O(n log n) in the worst case

Can we do it in O(n)?

Working on Heaps

- What are the two properties of a heap?
 - Structure Property
 - Order Property

- How do we work on heaps?
 - Fix the structure
 - Fix the order

Buildheap: Floyd's method

Basic Idea: Construct a complete binary tree, sink down nodes from halfway, all the way to the root.

```
private void buildHeap() {
  for ( int i = currentSize/2; i > 0; i-- )
     sinkDown( i );
}
```

BuildHeap: Floyd's Method bottom up

12 5 11 3 10 6 9 4 8 1 7 2

Add elements arbitrarily to form a complete tree. Pretend it's a heap and fix the heap-order property!

Question:

which nodes MIGHT be out of order in any heap?

BuildHeap: Floyd's Method bottom up

12 5 11 3 10 6 9 4 8 1 7 2

Add elements arbitrarily to form a complete tree. Pretend it's a heap and fix the heap-order property!

Finally...

Floyd's method: Time complexity

How many sink down operations?

$$T(n) = \frac{n}{2} * 1 + \frac{n}{4} * 2 + \frac{n}{8} * 3 + \dots \log(n)$$

$$= n \left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots e^{\log(n)}\right)$$

$$= n \left(\sum_{i=1}^{\log(n)} \frac{i}{2^i}\right)$$

$$= n * 2$$

$$= 0 (n)$$

Facts about Heaps

Observations:

- Finding a child/parent index is a multiply/divide by two
- Operations jump widely through the heap
- Each bubble/sink step looks at only two new nodes
- Inserts are at least as common as deleteMins

Realities:

- Division/multiplication by powers of two are equally fast
- Looking at only two new pieces of data: bad for cache!
- With huge data sets, disk accesses dominate

Heapsort

HeapSort

- Can we find a way to avoid duplicating the data and still take advantage of the heapifying operation?
- HeapSort takes advantage of the fact that our heaps are implemented using arrays.
- Two step algorithm:
 - 1. Construct a heap within the passed array.
 - 2. While heap is not empty (size != 1)
 - a. "extract" the largest item
 - b. Heapify the remaining heap.

Sorting with a Priority Queue

```
void heapSort(int a[], int size){
   Heap<int> heap(size);
   for(int i = 0; i < size; ++i)
     heap.insert(a[i]);
   for(int i = size-1; i >= 0; --i)
     a[i] = heap.pop();
}
```

- What is the complexity of this sorting method?
- What is the disadvantage of it?
 - How much space is required to sort a []?

72 3 27 4 5 6 9 12 8 10 1

10 3 6 4 5 7 9 12 8 2 1

103 310 6 4 5 7 9 12 8 2 1

103 3104 6 410 5 7 9 12 8 2 1

Replace 3 and 10

Heap Sort: Complexity

For each operation: log (n)

Sorting n elements: O(nlogn)

Space: O(n)