UDS-119

VSCC30x

Unit Data Sheet

PART NUMBER/ MNEMONIC	NAME	STATUS
VSCC301	84VT/12STS Software Programmable Cross-Connect Plug-in Unit	MD. Replaced by 3AL 00262 AB
VSCC302	84VT/12STS Software Programmable Cross-Connect Plug-in Unit	Active

FEATURES AND APPLICATION NOTES

- The VSCC30x is capable of providing the following:
 - Connection of low speed interfaces to high speed (OC3 or OC12 or OC48) interfaces.
 - Connection of high speed interfaces to high speed interfaces.
 - VT grooming on three selected STS1 low speed interfaces and three selected STS1s in each line group.
 - Cross-connection between low speed interfaces.
 - Cross-connection at VT1.5, STS1, and STS3C rates.
 - Ring configuration functionality.
- Software controlled (provisioned by NEP).
- The VSCC301 is functionally identical to the VSCC302. The VSCC302 incorporates some manufacturing improvements which are software-dependent (requires 05.00 or later system software).
- Online diagnostics of functionality during normal operation; supports external processor requests for internal diagnostics and equipment status reporting.
- Controls the A/B switchover function for the VSCC30x units.
- Supports remote inventory function.
- Front mounted LED indicators: green indicates active (traffic carrying) equipment state, and red indicates a failed equipment status.

DESCRIPTION

The VSCC30x plug-in unit provides a variable (i.e., software provisionable) cross-connect capability for the 1603 SM when operating in OC3 or OC12 or OC48 rates. The VSCC30x can be used to replace permanently provisioned, fixed path cross-connect (VSCC20x) plug-in units or the OC3 variable cross-connect (VSCC101) plug-in units. If OC3 or OC12 or OC48 path

switched ring configurations are required, the 1603 SM must be equipped with the VSCC30x or VSCC501 plug-in unit.

Figure 1 is a functional block diagram of this unit. The primary circuitry consists of a microprocessor control circuitry, program and local memory circuitry, peripheral interfaces, and the VT cross-connect matrix circuitry. The VSCC30x communicates directly with the system NEP through a dedicated link. The software controlled provisioning is downloaded from the NEP and the provisioning data is stored on the centralized database circuitry of the COA.

Figure 1. VSCC30x, 3AL 00262 Ax, Functional Block Diagram

There are 36 possible STS1 interfaces supported by the VSCC30x plug-in unit: 12 from the Line Group #1 interface, 12 from the Line Group #2 interface, and 12 from the drop groups. Each of these interfaces has redundant sides, A and B (for a total of 72 possible interfaces). The VSCC30x plug-in unit can provide either the cross-connect of Virtual Tributaries (VTs) or the cross-connect of the STS1 signals between the high speed (OC3 or OC12 or OC48) interfaces and the low speed drop groups.

NOTE: The VSCC30x can support one line group being equipped with OC3 HIF units and the other line group being equipped with OC12 HIF units. Such a configuration is used for OC12 Tapered Route or Mixed Rate Rings (refer to 1603 SM General System Description section for more details).

The VSCC30x plug-in unit provides two Light Emitting Diode (LED) devices to indicate status conditions. A green LED indicates the unit is currently active (carrying traffic) and a red LED indicates a failed state. The VSCC30x plug-in unit provides online diagnostics of its functionality during normal operation, and a remote processor can request internal diagnostics and status reporting.

Figure 2 shows the signal routing (across backplane interconnections) made from one STS1 source (A and B sides) to one STS1 destination. For the VSCCA to be active, the A facility interfaces must select the A inputs. The NEP software handles the selection and coordinates the selection of the active cross-connect plug-in unit.

Figure 2. Example of VSCC30x Signal Routing Interconnections

Figure 3 shows the VSCC301 plug-in unit.

Figure 3. VSCC301 Plug-in Unit