Let $\sigma = (i, i_2 \cdot i_m) \in S_n$ be a cycle, where $m \leq n$, so we have $i_j \mapsto i_{j+1} \mod f$ for each $1 \leq j \leq m$. Now let $T = (t, t_2 \cdot t_k) \in S_n$ be another cycle.

Note that $\omega \log$ we can assume Υ is a <u>single</u> cycle; if $\tau = \alpha \beta$ is the product of 2 disjoint cycles $\alpha, \beta \in S_n$, then $\tau' = \beta' \alpha'$ and so $\tau' \circ \tau = \beta' \alpha' \circ \alpha \beta := \beta' \circ \beta$, where σ' will inductively be a single cycle. Since if $\sigma' = (s_1, s_2 \cdots s_m)$ then $\alpha' \circ \alpha = (\alpha(s_1), \alpha(s_2) \cdots \alpha(s_m))$.

So consider what happens to a fixed T(ij):

2) <u>Claim 1</u>:

Let $T_{ij} = (i \ j) \in S_n$, so for $1 \le i, j \le n$ we have $i \xrightarrow{T_{ij}} j$ and $T_{ij}^2 = id$, and let $A = \{T_{ij} \mid 1 \le i, j \le n\}$.

Then $S_n = \langle A \rangle$.

$$\nabla = (1 \ 2)$$

$$\gamma = (1 \ 2 \ 3 \cdots n)$$

Then $\langle A \rangle \subseteq \langle \sigma, \gamma \rangle$.

Note that if these are true, then

$$S_n = \langle A \rangle \subseteq \langle \sigma, \tau \rangle \subseteq S_n$$
 $\Longrightarrow \langle \sigma, \tau \rangle = S_n$

Claim 2 $S_{\text{ince } \sigma, \tau \in S_n}$

What we want under products to show

Proof of claim 1. Note that $\langle A \rangle \subseteq S_n$ since S_n is closed under products, so it suffices to show $S_n \subseteq \langle A \rangle$.

Let $\sigma \in S_n$. Since any element of S_n is a product of disjoint cycles, who we can assume σ is a single cycle. So write $\sigma = (S_1 S_2 \cdot \cdot \cdot S_m)$ where $S_n \subseteq S_n \subseteq S_n$ where

 $1 \le m \le n$; we want to show $\sigma = TTT_{ij}$ for some collection of T_{ij} . To this end, we have

$$(S_1 S_2)(S_1 S_3) \cdots (S_1 S_m) = (S_1 S_2 \cdots S_m)$$

$$T_{S_1S_2} T_{S_1S_3} T_{S_1S_m}$$

where we just note that $S_i = i$ for some i and each S_k for $2 \le k \le m$ is some j. So each (S_i, S_k) is some (i, j), which is T_{ij} . So every cycle is a product of some collection of T_{ij} as desired.

Proof of claim 2.

Let $T_{ij} = (i \ j) \in (A)$; we want to write this in terms of σ and τ . By part (I), we have

and thus inductively,

$$\gamma^{k+1} := T^k \sigma \gamma^{-k} = (k+1 \mod n, k+2 \mod n) \in \langle \sigma, \gamma \rangle$$

In particular,

$$\gamma' = \gamma' \circ \gamma'' = (i, i+1) \in \langle \sigma, \gamma \rangle$$

and so

Since G is finite and abelian, we know G factors as $G\cong TTZ_{\text{pai}}, \text{ where the pare not necessarily distinct and each }\alpha_i\geq 1.$

If every p_i is distinct, then we would have $i \neq j \Rightarrow \gcd(p_i^{\alpha_i}, p_j^{\alpha_j})=1$, and so $\prod_{k} \mathbb{Z}_{p_k^{\alpha_k}} \cong \mathbb{Z}_{\mathbb{T}_{p_k^{\alpha_k}}} \cong \mathbb{Z}_{\#_G}$, which would be cyclic. So for some i,j we must have $p_i = p_j$, and so $G \cong \mathbb{Z}_{p_k^{\alpha_i}} \times \mathbb{Z}_$

and so $H := \mathbb{Z}_{p^{\alpha_1}} \times \mathbb{Z}_{p^{\alpha_2}} \leq G$ is a subgroup.

But then, by Cauchy's theorem $\mathbb{Z}_{p'}$ contains a subgroup of order p, say $H_1 \subseteq \mathbb{Z}_{p'}$, and similarly there is an $H_2 \subseteq \mathbb{Z}_{p'}^2$. But groups of prime order are order, and so $H_1 \cong \mathbb{Z}_p \cong H_2$.

Since $H_1 \times H_2 \subseteq H := \mathbb{Z}_{p^a} \times \mathbb{Z}_{p^2} \subseteq TT \mathbb{Z}_{p^k} \cong G$, we have $H_1 \times H_2 \subseteq G$ where $H_1 \times H_2 \cong \mathbb{Z}_p \times \mathbb{Z}_p$ as desired.

4) Order
$$64 = 2^6$$
, and $p(6) = 11$, so

Order
$$96 = 2^5 \cdot 3^{\prime}$$
, and $p(5)p(1) = 7 \cdot 1 = 7$

(Partition of 5, Partition of 3) Distinct abelian group

$$(5,1) \longrightarrow \mathbb{Z}_{32} \times \mathbb{Z}_{3}$$

$$(4+1,1) \longrightarrow \mathbb{Z}_{16} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$$

$$(3+2,1) \longrightarrow \mathbb{Z}_{8} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3}$$

$$(3+1+1,1) \longrightarrow \mathbb{Z}_{8} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$$

$$(2+2+1,1) \longrightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$$

$$(2+1+1+1,1) \longrightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$$

$$(1+1+1+1+1,1) \longrightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{3}$$

5) Claim: The map
$$(e: G/A \times A \rightarrow A)$$
 $(gA \land a)$ is a well-defined group action.

1) Identity: $e \land x = x$. Let $a \in A$, then

 $eA \land a = eae' = a \in A$.

2) Composition: Let $g,h \in G \land A$, then

 $gA \land (hA \land a) = gA \land (hah^{-1})$ where $A \triangleq G \Rightarrow gAg^{-1} = A$ and $h \in G, a \in A \Rightarrow hah^{-1} \in A$.

 $= g(hah^{-1})g^{-1}$
 $= (gh)a(h^{-1}g^{-1})$
 $= (gh)a(gh)^{-1}$
 eA since $gh \in G$ and $A \triangleq G$.

=
$$(gA \cdot hA) \rightarrow a$$
 (Binary operation on cosets)
= $ghA \rightarrow a$.

3) Well-defined. Suppose
$$gA=hA$$

Then hig $A=A$, so hg' $\in A$. But then

EA since hg, gh EA Since A is abelian 6) If Z(G)=G, then G is abelian and we are done.

Suppose G/Z(G) is cyclic. Then $G/Z(G) = \langle t Z(G) \rangle$ for some $t \in G \cap Z(G)^c$. Now let $g,h \in G \cap Z(G)^c$; we want to show gh=hg. Let $\pi:G \twoheadrightarrow G/Z(G)$ be the canonical projection, so $\pi(g) = gZ(G)$ and $\pi(h) = hZ(G)$.

Since G/Z(G) is generated by $\pm Z(G)$, there exist some j, K such that

$$gZ(G) = t^{1}Z(G) \quad \text{and} \quad hZ(G) = t^{k}Z(G)$$
so
$$t^{j}gZ(G) \in Z(G) \quad \text{and} \quad t^{k}hZ(G) \in Z(G)$$

 But then

$$gh = c_1 t^j c_2 t^k$$

$$= c_1 c_2 t^j t^k \qquad Since c_2 \in Z(G)$$

$$= c_1 c_2 t^k t^j \qquad exponents commute$$

$$= c_2 t^k c_1 t^j \qquad Since c_1 \in Z(G)$$

$$= h g. \square$$

Let H &G with #H=pk, where #G=pm for some $n \ge K$. By Sylow I, there exists a $P \in Syl(p,G)$ where $\#P = p^n$ and $H \leq P$. Letting $P' \in Syl(p, G)$ be arbitrary, by Sylow 2, $\exists g \in G$ such that g P g' = P'. Then, $H \leq P \Rightarrow H = gHg' \leq gPg' = P', so H \leq P'$ By Sylow 3, Since H=6 $\cdot n_p = 1 \mod p \Rightarrow n_p \in \{1, p+1, 2p+1, \dots\}$ $\cdot n_{p}|_{q}$ $\Rightarrow n_{p} \in \{1, q, \}$ (since q is prime) Since I(q <p <p+1, this forces np=1.

So there is a unique $P \in Syl(p,G)$, where $P \triangleq G$ and $[G:P] - |G/p| = |G|/|P| = |P^q|/p^r = q$.