בשאלות 1,2 סמן לכל אחת מהטענות הבאות רק את הסעיפים הנכונים בטבלה בסוף העמוד

בשאלות הנ"ל יתכן ויש כמה טענות נכונות או אין בכלל טענות נכונות או כל הטענות נכונות.

שאלה 1:

- $\{x,y\}\cap ig(B\oplus Aig)
 eq \varnothing$ אז $y\in A$ וכן $x\in B$ אם (3%) א.
 - $x \in B$ אז $\{x,y\} \cap (B \oplus A) \neq \emptyset$ ב. (3%) ב.
 - $x \in B$ אז $x \notin A$ וכן $\{x, y\} \in P(B \oplus A)$ אם (3%) ...
 - $|P(B \oplus A)| > |P(B)|$, אז $(B \oplus A) \neq \emptyset$ אם (3%) ד.

:2 שאלה

 $R = egin{pmatrix} 1 & 1 & 3 & 3 & 2 \ 2 & 1 & 1 & 2 & 1 \end{pmatrix} :$ המוגדר מעל A באופן הבא . $A = \{1,2,3\}$ תהינה $A = \{1,2,3\}$

:2.1 שאלה

- $|I_A \setminus R| = 2$ (3%) .x
 - ב. R (3%) סימטרית.
- R (3%) אנטיסימטרית.
 - ד. R (3%) טרנזיטיבית

 $(a,b)\in T\Leftrightarrow a
eq 1:$ בצורה הבאה מעל A מעל מעל (גדיר רלציה בשאלה, נגדיר בשאלה בשאלה) בהמשך לנתוני ההתחלה בשאלה.

$$|T| = 6$$
 (3%) .N

- $T \cup R = A \times A$ (3%) ...
- רלצית שקילות $R \oplus T$ (3%) .:
- ד. $R \oplus T$ (3%) ד.

ב לא נכונה כי (1,3) לא נמצא באיחוד.

. ג לא נכונה כי (1,2) נמצא בהפרש הסימטרי אבל (2,1) לא, לכן לא סימטרי ולא שקילות.

. ד לא נכונה כי (1,2),(2,3) נמצאים בהפרש הסימטרי אבל (1,3) לא, לכן לא טרנזיזיבי ולא סדר

שאלה 3:

 $[A \oplus C] \cup [B \setminus C] \subseteq (A \oplus B) \cup C$: הוכח או הפרך את הטענה (14%)

אם הטענה נכונה, הוכח אותה ע"י שימוש במושג השייכות של איברים (לא ע"י אלגברה של קבוצות ולא בדיאגראמות ון). אם הטענה לא נכונה, הבא דוגמא נגדית.

: מהשלושה מהשלושה יתכן אחד מהשלושה $x\in [A\oplus C]\cup [B\setminus C]$ תשובה: יהי

- $x\in\mathcal{C}$ ואז ימין [x
 otin A $x\in B$ $x\in C$] או $x\in A$ x
 otin B x
 otin C ואז ימין $x\in A$ ואז ימין $x\in A$ $x\in C$ ואז ימין.
 - $x \in \mathcal{C}$ ואז ימין ואז $[x \notin A \quad x \in B \quad x \notin C]$ כלומר כלומר $x \notin (A \oplus C) \quad x \in (B \setminus C)$.2
 - $x \notin \mathcal{C}$ ואז $x \in A$ ואז $x \in A$ ואז $x \in A \oplus C$ ואז $x \in A \oplus C$ ואז $x \in A \oplus C$.3

 $ig[A\oplus Cig] \cup ig[B\setminus Cig] = \{1,2\}
ot\subset A\oplus Big) \cup C = \{2\}$, לכן לכן א הדית: $A=B=\{1\}$ בנה דוגמא נגדית: $A=B=\{1\}$

:4 שאלה

סמן לכל אחת מהטענות הבאות רק את הסעיפים הנכונים בטבלה בסוף השאלה

- א. (5%) בכתה 12 כסאות ממוספרים במספרים במספרים 10 במספרים במספרים במספרים במספרים 2 כסאות חדשים הממוספרים במספרים 13-22. לאחר ההחלפה בוחרים 4 כסאות מתוך הכסאות שבכתה ועוד 2 כסאות מאלו שהוצאו, ומעבירים אותם לכתה אחרת. מספר ההרכבים השונים של כסאות שיועברו יהיה C(22,6)
 - .8320 הינו $\left(\sqrt[4]{2} + \sqrt[3]{2} + 2\right)^{10}$ ב. האיבר הרציונלי בפיתוח של

השבר: איבר ראיונלי בפיתוח של $\left(\sqrt[4]{2}+\sqrt[3]{2}+2\right)^8$ יווצר אם החזקה של האיבר הראשון תהיה כפולה של 4, והחזקה של האיבר השני תהיה כפולה של 3. וזה קורה בארבעה מקרים:

- 2 האיבר הנוצר 256, מספר הדרכים בהן האיבר נוצר 1. החזקה של 2 היא
- בהן האיבר הנוצר 32, מספר הדרכים בהן האיבר האיבר הנוצר 32, מספר הדרכים בהן האיבר בהן האיבר .2

$$.\binom{8}{4} = \frac{8!}{4!4!} = 70$$
נוצר

.3 החזקה של $\sqrt[3]{2}$ היא 3, החזקה של 2 היא 5. האיבר הנוצר – 64, מספר הדרכים בהן האיבר

$$\binom{8}{3} = \frac{8!}{3!5!} = 56$$
נוצר

4. החזקה של $3\sqrt{2}$ היא 3, החזקה של $4\sqrt{2}$ היא 4, החזקה של $3\sqrt{2}$ היא 1. האיבר הנוצר $3\sqrt{2}$ מספר

$$\binom{8}{3}\binom{5}{4} = 280$$
 הדרכים בהן האיבר נוצר

1.256 + 70.32 + 56.64 + 280.8 = 8320 בסה"כ האיבר הרציונלי יהיה

$$\sum_{i=0}^{352} 2^i \binom{353}{i} = 3^{353} - 2^{353}$$
 (5%) ...

ד. (5%) מספר השלמים החיוביים הקטנים וזרים ל-132 שווה לרבע ממספר השלמים החיוביים הקטנים וזרים ל-660.

:5 שאלה

: המקיימים $x_1+x_2+x_3+x_4=27$ - המשוואה - של הפתרונות בשלמים של המשוואה הפתרונות מספר הפתרונות (7%) א. $[2.5 \cdot i \leq x_i \quad , i=1,2,3,4]$

$$4 = D(4,1)$$
: תשובה

 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 57$ - מצא את מספר הפתרונות בשלמים אי שליליים של המשוואה - (7%) מצא את מספר הפתרונות בשלמים אי שליליים המשוואה - (7%)

תשובה:

נגדיר 2 קבוצות:

.
$$\sum_{i=2}^{4} x_i = 30$$
 קבוצת כל הפתרונות בהם - A_1

.
$$\sum_{i=5}^6 x_i = 18$$
 קבוצת כל הפתרונות בהם - A_2

$$|A_1| = D(3,27)D(3,30)$$

$$|A_2| = D(4,39)D(2,18)$$

$$|A_1 \cap A_2| = D(3,30)D(2,18)$$

בנוסף, |U| = D(6,57) ובסחייכ רצוננו ב-

$$|\overline{A}_1 \cap \overline{A}_2| = |U| - S_1 + S_2 = D(6.57) - D(3.27)D(3.30) - D(4.39)D(2.18) + D(3.30)D(2.18)$$

שאלה 6:

א. (8%) הנח כי לרשותנו קרשים באורך 6 מטר וברוחב וגובה קבועים. את הקרשים צובעים בשלושה צבעים א. (8%) הנח כי לרשותנו קרשים באורך 6 מטר וברוחב וגובה קבועים מחלקים לשלושה חלקים זהים (באורך 2 מטר כל אחד), וכל קרש צהוב מחלקים לשני חלקים זהים (באורך 3 מטר כל אחד). תהי f(n) פונקציה המקבלת את מספר הדרכים השונות ליצור שורת קרשים באורך n. בנה יחס רקורסיה לחישוב f(n) ומצא תנאי התחלה.

תשובה: f(n)=f(n-2)+f(n-3)+f(n-6) בכל מצב מסתכלים על הקרש האחרון שהושם, ואז נשאר f(1)=0 f(2)=1 f(3)=1 f(4)=1 f(5)=1 f(6)=3 : לסדר את יתרת האורך עד n. תנאי התחלה יהיו: f(n)=f(n-1)+6 f(n-2), f(0)=14, f(1)=22 ב. (8%) פתור יחס רקורסיבי: $\alpha_1=3$ $\alpha_2=-2$, נקבל $\alpha_1=3$ $\alpha_2=-2$ מכאן נקבל $\alpha_1=3$ $\alpha_2=-2$, נקבל $\alpha_1=3$ $\alpha_2=-3$, ומתנאי ההתחלה נקבל $\alpha_1=3$ $\alpha_2=3$ $\alpha_2=3$ $\alpha_1=3$ $\alpha_2=3$ $\alpha_1=3$ $\alpha_2=3$ $\alpha_2=3$ $\alpha_1=3$ $\alpha_1=3$ $\alpha_2=3$ $\alpha_1=3$ $\alpha_1=3$ $\alpha_1=3$ $\alpha_1=3$ $\alpha_2=3$ $\alpha_1=3$ $\alpha_$