

Wyższa Szkoła Oficerska Sił Powietrznych Katedra Nauk Ogólnokształcących

Sprawozdanie

z ćwiczenia przeprowadzonego w zintegrowanym laboratorium fizyki, mechaniki i termodynamiki.

Temat ćwiczenia: Doświadczalne określenie ładunku jednostkowego e/m elektronu

Słuchacz: Igor Buhaj, Łukasz Kusek, Patryk Łudzik

Grupa: C9D

Cwiczenie zaliczono:									
•••••	•								

1 Opis ćwiczenia

Obserwacje poruszających się jonów w polu magnetycznym wykazały działanie siły prostopadłej do wektora indukcji magnetycznej \overline{B} pola oraz wektora prędkości \overline{v} poruszających się jonów. Zależność tej siły opisuje równanie siły Lorentza

$$\overline{F}_L = q \cdot \overline{v} \times \overline{B} \tag{1}$$

Jeśli cząstka o ładunku q porusza się prostopadle do wektora indukcji magnetycznej B, to siła Lorentza można zapisać liczbowo

$$F_L = q v B \tag{2}$$

i spełnia rolę siły dośrodkowej, którą opisuje zależność

$$F_d = \frac{m \, v^2}{r} \tag{3}$$

 stad

$$q v B = \frac{m v^2}{r} \tag{4}$$

i ostatecznie mamy zależność

$$\frac{q}{m} = \frac{v}{r B} \tag{5}$$

Obserwacje wykazały również, że na umieszczoną w polu elektrycznym o natężeniu \overline{E} cząstkę posiadającą ładunek elektryczny q działa siła równoległa do wektora \overline{E} opisana wzorem

$$\overline{F}_e = q \, \overline{E} \tag{6}$$

W polu tym przyspieszane cząstki uzyskują energię kinetyczną

$$E_k = q U (7)$$

Wykorzystamy to do wyznaczenia doświadczalnego stosunku ładunku elementarnego elektronów do ich masy, czyli

$$\frac{e}{m}$$
 (8)

Przyspieszane elektrony emitowane przez katodę uzyskują energię kinetyczną

$$\frac{mv^2}{2} = e U \tag{9}$$

a więc prędkość

$$v = \sqrt{\frac{2 e U}{m}} \tag{10}$$

Stąd po podstawieniu do [8] otrzymujemy zależność

$$\frac{e}{m} = \frac{2U}{r^2 B^2} \tag{11}$$

Korzystamy z zależności indukcji pola od natężenia prądu w cewkach Helmholtza

$$B = \left(\frac{4}{5}\right)^{\frac{3}{2}} \mu_0 \, n \, \frac{I}{R} \tag{12}$$

gdzie

- $\bullet~R$ promień cewki
- \bullet n liczba zwojów cewki

•
$$\mu_0 = 1,257 \cdot 10^{-6} \frac{Vs}{Am}$$

Po podstawieniu otrzymujemy zależność

$$\frac{e}{m}(U,I,r) = 2\left(\frac{5}{4}\right)^3 \left(\frac{R}{\mu_0 n}\right)^2 \frac{U}{r^2 I^2}$$
 (13)

Wprowadźmy stałą

$$k = 2 \left(\frac{5}{4}\right)^3 \left(\frac{R}{\mu_0 n}\right)^2 \tag{14}$$

i po obliczeniu

$$k = 0,521216364 \cdot 10^7 \frac{A^2 m^2}{V} \frac{m^2}{V s^2}$$
 (15)

Otrzymujemy zatem równanie [13] w postaci

$$\frac{e}{m}(U,I,r) = k \frac{U}{r^2 I^2} \tag{16}$$

Przeprowadźmy rachunek jednostek [8]

$$\left[\frac{e}{m}\right] = \frac{C}{kq}$$

a teraz wyliczając z [16]

$$\left[\frac{e}{m}\right] = \frac{A^2 m^2}{V} \frac{m^2}{V s^2} \frac{V}{m^2 A^2} = \frac{m^2}{V s^2} = \frac{C m^2}{C V s^2} = \frac{C m^2}{J s^2} = \frac{C}{\frac{J s^2}{m^2}} = \frac{C}{kg}$$

2 Tabela odczytów i pomiarów

U(V)	r = 0,02m		r = 0,03m		r = 0,04m		r = 0,05m	
	I(A)	e/m	I(A)	e/m	I(A)	e/m	I(A)	e/m
100	2,52	2,0519	1,66	2,1016	1,22	2, 1887	0,97	2,2158
120	2,72	2,1135	1,81	2,1213	1,35	2,1449	1,07	2,1852
140	3,02	2,0002	1,96	2,1105	1,46	2,1395	1, 16	2,1692
160	3,23	1,9984	2,11	2,0813	1,56	2,1418	1,24	2,1695
180	3,42	2,0053	2,24	2,0776	1,65	2,1538	1,32	2,1538

3 Opracowanie pomiarów i wyniki. Ocena błędów

Średnia wartość zmierzonego $\frac{e}{m}$

$$\frac{e}{m_{\, \mathrm{sir}}} = 2,1162\cdot 10^{11} \frac{C}{kg}$$

Błąd średni kwadratowy obliczony ze wzoru

$$\delta_{\frac{e}{m}} = \sqrt{\frac{\sum_{i=1}^{n} \left(\Delta_{\frac{e}{m}}\right)^{2}}{n(n-1)}}$$

wynosi

$$\delta_{\frac{e}{m}} = 142 \cdot 10^{11} \frac{C}{kq}$$

Błąd względny wynosi

$$\varepsilon_{\frac{e}{m}}=0,6735\%$$

Wartość obliczona za pomocą metody najmniejszych kwadratów (bez uwzględnienia $(140;0.02),\,(160;0.02),\,(180;0.02))$ wynosi

$$\frac{e}{m_{kw}} = 2,1010 \cdot 10^{11} \frac{C}{kg}$$

z błędem

$$\delta_{\frac{e}{m}} = 86 \cdot 10^{11} \frac{C}{kq}$$

Błąd względny wynosi

$$\varepsilon_{\frac{e}{m}} = 0,4089\%$$

Wykres funkcji [1]

$$I^2\left(\frac{U}{r^2}\right) = k \; \frac{1}{\frac{e}{m}} \; \frac{U}{r^2}$$

Wykres funkcji [2]

$$I(r) = \sqrt{\frac{k\,U}{\frac{e}{m}}}\,\frac{1}{r}$$

4 Wnioski i spostrzeżenia

Najdokładniej oszacowana przez nas wartość $\frac{e}{m}$ wynosi

$$\frac{e}{m} = 2,1010 \cdot 10^{11} \frac{C}{kg}$$

Z wartości tablicowych dla masy elektronu m i jego ładunku e

$$m = 9,10938 \cdot 10^{-31} kg$$

$$e = 1,602176487 \cdot 10^{-19}C$$

Rysunek 1: Wykres $I^2\left(\frac{U}{r^2}\right)=k~\frac{1}{\frac{e}{m}}~\frac{U}{r^2}$

Rysunek 2: Wykres $I(r) = \sqrt{\frac{k\,U}{\frac{e}{m}}}\,\frac{1}{r}$

obliczamy $\frac{e}{m},$ które wynosi

$$\frac{e}{m} = 1,7588 \cdot 10^{11} \frac{C}{kg}$$

Względny błąd naszego doświadczenia i wartości tablicowej wynosi

$$\varepsilon=19\%$$

Wartość otrzymana w wyniku przeprowadzonego doświadczenia różnią się od wartości tablicowej. Prawdopodobnie nie jest to spowodowane małą dokładnością pomiaru, gdyż błąd mieści się w granicach 1%, ale dodatkowych czynników zewnętrznych mających wpływ na odczyty, które nie zostały uwzględnione przy pomiarach.