NÁSKOK DÍKY ZNALOSTEM

PROFINIT

NDBI047
Aplikace bigdatových technologií v data science

Úvodní cvičení

Jan Hučín 22. 2. 2019

Osnova cvičení

- Důležité odkazy
- 2. Co je potřeba umět
- 3. Úvod do Hadoopu pro lidi
- 4. Cvičný cluster, přihlášení
- 5. První kroky na clusteru

Důležité odkazy

Materiály k výuce

https://github.com/profinit/MFF-BDT

Dokumentace ke cvičnému clusteru

- https://wiki.metacentrum.cz/wiki/Hadoop
- https://www.metacentrum.cz/cs/Sluzby/Hadoop/

Přihlášení na cluster

- žádost podat na <u>www.metacentrum.cz/cs/hadoop</u>, skupina UK:MFF:NDBI047
- ssh na hador.ics.muni.cz

Co je potřeba umět (a mít)

- Linux práce v příkazové řádce, základní příkazy, práva
- SQL SELECT s agregací, JOIN, INSERT, CREATE
- > Python definice funkce, typ list, řetězce, for, if-else
- regulární výrazy základy, jednoduché substituce
- > čím víc umíte, tím víc si předmět užijete
- přístup na internet
- klient pro SSH (např. Putty)
- webový prohlížeč

Úvod do Hadoopu pro lidi

Big data neznamená Hadoop

Apache Hadoop

- Systém (Framework) pro distribuované ukládání a distribuované zpracování velkých datových souborů
-) Východiska:
 - některé datové soubory jsou opravdu velké
 - mnoho slabších strojů udělá dohromady víc než jeden výkonný
 - horizontálně škálovatelný systém má mnoho výhod
 - stroje se občas rozbijí

Apache Hadoop

- Systém (Framework) pro distribuované ukládání a distribuované zpracování velkých datových souborů
- Jak se to řeší:
 - některé datové soubory jsou opravdu velké
 - → rozdělení dat mezi několik strojů
 - → preference sekvenčního čtení
 - mnoho slabších strojů udělá dohromady víc než jeden výkonný
 - → rozdělení práce mezi několik strojů, paralelizace
 - → data zpracovat tam, kde jsou uložena
 - horizontálně škálovatelný systém má mnoho výhod
 - → rozumné přidělování zdrojů
 - → přidání nebo odebrání stroje
 - stroje se občas rozbijí
 - → replikace souborů (defaultně 3 kopie)
- Úzké hrdlo přesuny dat po síti

Hadoop a cluster

- cluster skupina nodů s přidělenými rolemi
- node "stroj", pracovní jednotka s vlastním OS

Hadoop – komponenty

- správa úložiště HDFS (Hadoop Distributed File System)
- resource manager YARN
- SQL databáze Hive, Impala
- noSQL databáze HBase
- výpočty MapReduce, Spark
- scheduling Oozie
- streaming Storm
- export/import Sqoop
- > atd.

Distribuce – řešení závislosti

HDFS

Hadoop distributed file system sdílený všemi nody v clusteru

HDFS

- Optimalizovaný pro
 - velké soubory
 - sekvenční čtení
 - paralelní zpracování
- Špatný pro
 - spoustu malých souborů
 - náhodný přístup
 - nízkolatenční přístup

YARN

- Yet Another Resource Negotiator
- > Plánovač a alokátor zdrojů
 - paměť
 - CPU
 - počet vláken
 - síť...
- Většinou transparentní nevyžaduje zásah uživatele
- Požadavky na zdroje ale může uživatel upřesnit (Spark)
- Ne všechny aplikace YARN využívají

Hive a Impala

- > Emulace SQL světa na Hadoopu nad HDFS:
 - adresáře ~ databáze
 - podadresáře ~ tabulky
 - HiveQL jako dialekt SQL
- > Hive má pomalý start, jednoduché dotazy trvají dlouho

MapReduce

- Paradigma pro paralelní zpracování
- Cyklus MR:
 - načti data
 - transformuj data do párů (klíč, hodnota) fáze map
 - shromáždi páry se stejným klíčem fáze shuffle
 - proveď výpočet (agregaci) odděleně pro každý klíč fáze reduce
 - výsledek zapiš
- Pomalé, ale účinné
- Využíval např. Hive

Spark

- Framework pro paralelní zpracování in-memory
- > Podobný princip jako MapReduce, ale mezivýsledky drží v paměti
- Rychlý, ale závislý na dostatku zdrojů
- Oblíbený → mnoho nadstaveb:
 - Spark SQL
 - Spark Streaming
 - Spark ML
 - GraphX

Cluster a první kroky

HDFS

Hadoop distributed file system sdílený všemi nody v clusteru

HDFS příkazy

hdfs dfs -akce parametry

Akce

- > ls → výpis adresáře
- mkdir → vytvoření adresáře
- > cp → kopírování v rámci HDFS
- mv → přesun v rámci HDFS
- rm → mazání souboru nebo adresáře

Domovský adresář na HDFS

/user/login

Adresář nelze změnit – neexistuje příkaz –cd!

HDFS příkazy

hdfs dfs -akce parametry

Akce

- > put → kopírování z lokálního FS na HDFS
- yet → kopírování z HDFS na lokální FS
- > cat → výpis obsahu souboru
- > chmod → změna přístupových práv

Příklady

```
hdfs dfs -mkdir work
hdfs dfs -put data/*.csv work
```

Samostatná práce

viz zadání cvičení 01_CLUSTER_BASICS github.com/profinit/MFF-BDT

Díky za pozornost

PROFINIT NÁSKOK DÍKY ZNALOSTEM

Profinit EU, s.r.o. Tychonova 2, 160 00 Praha 6

