

STATISTICS FOR DATA SCIENCE HYPOTHESIS and INFERENCE

Dr. Deepa NairDepartment of Science and Humanities

UNIT-4 HYPOTHESIS and **INFERENCE**

Session-9

Chi-squared Test

Dr. Deepa Nair

Department of Science and Humanities

Chi-squared Test

Tender for collecting toll for a newly opened bridge

			Wedn esday			Saturd ay	Sun day
No	170	20	90	130	200	170	220

Day	Mon day	Tues day	Wedn esday	Thur sday	Frid ay	Saturd ay	Sun day
No	190	50	100	130	200	150	200

Chi-squared Test

For example:

- A gambler wants to test a die to see whether it deviates from fairness.
- Let p_i be the probability that the number i comes up. The null hypothesis will state that the die is fair.
- The null hypothesis is $H_0: p_1 = p_{01}, p_2 = p_{02}, \dots p_6 = p_{06} = 1/6.$

Chi-squared Test

- A generalization of the Bernoulli trial is the multinomial trial
- Which is an experiment that can result in any one of k outcomes, where $k \geq 2$.
- The probabilities of the k outcomes are denoted p_1, \ldots, p_k .
- In this section, we generalize the tests for a Bernoulli probability to multinomial trials.
- The null hypothesis has the form

$$H_0: p_1 = p_{01}, p_2 = p_{02}, \dots p_k = p_{0k}.$$

Chi-squared Test

PES UNIVERSITY ONLINE

- The gambler rolls the die 600 times and The results obtained are called the observed values.
- To test the null hypothesis, we construct a second column, labeled "Expected." This column contains the expected values.
- The expected value for a given outcome is the mean number of trials that would result in that outcome if H_0 were true.

Chi-squared Test

• Therefore we will construct a test statistic that measures the closeness of the observed to the expected values.

Chi-squared Test

- The statistic is called the chi-square statistic. To define it, let k be the number of outcomes (k=6 in the die example),
- Let O_i and E_i be the observed and expected numbers of trials, respectively, that result in outcome i.
- The chi-square statistic is

$$\chi 2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$

Chi-squared Test

PES UNIVERSITY ONLINE

- When the expected values are all sufficiently large, a good approximation is available.
- It is called the chi-square distribution with k-1 degrees of freedom, denoted $\chi 2_{k-1}$
- A table for the chi-square distribution is available

Chi-squared Test

Example:

The gambler rolls the die 600 times and The results obtained are as shown in the table:

Chi-squared Test

PES UNIVERSITY ONLINE

Example:

Consider the following table

Catogory	Observed	Expected
1	115	100
2	97	100
3	91	100
4	101	100
5	110	100
6	86	100
Tot	600	600

Chi-squared Test

$$\chi 2 = \frac{(115 - 100)^2}{100} + \cdots \frac{(86 - 100)^2}{100}$$

$$= 2.25 + \cdots + 1.96$$

$$= 6.12$$

The upper 10% point is 9.236. We conclude that P > 0.10. There is no evidence to suggest that the die is not fair.

Dr. Deepa Nair

Department of Science and Humanities

deepanair@pes.edu