Học Máy

(Machine Learning)

Thân Quang Khoát

khoattq@soict.hust.edu.vn

Viện Công nghệ thông tin và Truyền thông Trường Đại học Bách Khoa Hà Nội Năm 2015

Nội dung môn học:

- Giới thiệu chung
- Các phương pháp học có giám sát
 - Hồi quy tuyến tính (Linear regression)
- Đánh giá hiệu năng hệ thống học máy
- Các phương pháp học không giám sát

Hồi quy tuyến tính: Giới thiệu

- Bài toán hồi quy: cần học một hàm y = f(x) từ một tập học cho trước $\mathbf{D} = \{(x_1, y_1), ..., (x_M, y_M)\},$ trong đó $y_i \approx f(x_i) \in R, x_i = (x_{i1}, ..., x_{in})^T \in R^n$. (nét đậm ký hiệu véctơ)
- Mô hình hồi quy tuyến tính: nếu hàm y = f(x) được giả thuyết là hàm tuyến tính.

$$f(\mathbf{x}) = w_0 + w_1 x_1 + \dots + w_n x_n$$

- □ Các $w_i \in R$ là hệ số của hàm hồi quy.
- Học một hàm hồi quy tuyến tính thì tương đương với việc học véctơ trọng số $\mathbf{w} = (w_0, w_1, ..., w_n)^T$.

Hồi quy tuyến tính: Ví dụ

Hàm tuyến tính f(x) nào phù hợp?

0.13	-0.91
1.02	-0.17
3.17	1.61
-2.76	-3.31
1.44	0.18
5.28	3.36
-1.74	-2.46
7.93	5.56

Ví dụ: f(x) = -1.02 + 0.83x

Phán đoán tương lai

- Đối với mỗi quan sát $\mathbf{x} = (x_1, x_2, ..., x_n)^T$, trong đó $x_i \in R$
 - Giá trị đầu ra mong muốn $c_x \in R$ (Không biết trước đối với các quan sát trong tương lai)
 - Giá trị phán đoán (bởi hệ thống)

$$y_{\chi} = w_0 + w_1 x_1 + \dots + w_n x_n$$

- ightarrowTa thường mong muốn y_x xấp xỉ tốt c_x
- Phán đoán cho quan sát tương lai $\mathbf{z} = (z_1, z_2, ..., z_n)^T$
 - Cần dự đoán giá trị đầu ra, bằng cách áp dụng hàm mục tiêu đã học được f:

$$f(\mathbf{z}) = w_0 + w_1 z_1 + \dots + w_n z_n$$

Học hàm hồi quy

- Mục tiêu học: học một hàm hàm f* sao cho khả năng phán đoán trong tương lai là tốt nhất.
 - \Box Tức là sai số c_z $f^*(z)$ là nhỏ nhất cho các quan sát tương lai z.
 - Khả năng tổng quát hóa (generalization) là tốt nhất.
- Vấn đề: Có vô hạn hàm tuyến tính!!
 - Làm sao để học? Quy tắc nào?

- Dùng một tiêu chuẩn để đánh giá.
 - Tiêu chuẩn thường dùng là hàm lỗi (generalization error, loss function, ...)

Hàm đánh giá lỗi

- Định nghĩa hàm lỗi E
 - Lỗi của hệ thống đối với mỗi quan sát $x = (x_1, x_2, ..., x_n)^T$: $r(\mathbf{x}) = [c_x f^*(\mathbf{x})]^2 = (c_x w_0 w_1 x_1 \cdots w_n x_n)^2$
 - Lỗi của hệ thống đối với toàn bộ không gian của x:

$$E = E_{x}[r(x)] = E_{x}[(c_{x} - f^{*}(x))^{2}]$$

Mục tiêu học là tìm hàm f^* mà E là nhỏ nhất.

$$f^* = \arg\min_{f \in \mathbf{H}} E_{\mathbf{x}}[r(\mathbf{x})]$$

- Trong đó H là không gian của hàm f.
- Tuy nhiên, trong quá trình học ta không thể làm việc được với bài toán này.

Hàm lỗi thực nghiệm

- Ta chỉ quan sát được một tập $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_M, \mathbf{y}_M)\}$. Cần học hàm f từ đó.
- Lỗi thực nghiệm (empirical loss; residual sum of squares)
 - ullet Là một xấp xỉ của $E_x[r(x)]$ trên tập học $oldsymbol{D}$
 - Định nghĩa:

$$RSS(f) = \sum_{i=1}^{M} (y_i - f(\mathbf{x}_i))^2 = \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$

Nhiều phương pháp học thường gắn với RSS.

Bình phương tối thiểu

Cho trước D, ta đi tìm hàm f mà có RSS nhỏ nhất.

$$f^* = \arg\min_{f \in \mathbf{H}} RSS(f)$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - w_0 - w_1 x_{i1} - \dots - w_n x_{in})^2$$
 (1)

- Đây được gọi là bình phương tối thiểu (least squares).
- Tìm nghiệm w^* bằng cách lấy đạo hàm của RSS và giải phương trình RSS' = 0. Thu được:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Trong đó \boldsymbol{A} là ma trận dữ liệu cỡ $M \times (n+1)$ mà hàng thứ i là $(1, x_{i1}, ..., x_{in}); \boldsymbol{B}^{-1}$ là ma trận nghịch đảo; $\boldsymbol{y} = (y_1, ..., y_M)^T$.
- \Box Chú ý: giả thuyết A^TA tồn tại nghịch đảo.

Bình phương tối thiểu: thuật toán

- Input: $\mathbf{D} = \{(x_1, y_1), ..., (x_M, y_M)\}$
- Output: w*
- Học w* bằng cách tính:

$$\mathbf{w}^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

- Trong đó A là ma trận dữ liệu cỡ $M \times (n+1)$ mà hàng thứ i là một véctơ $A_i = (1, x_{i1}, ..., x_{in}), B^{-1}$ là ma trận nghịch đảo, $y = (y_1, ..., y_M)^T$.
- \Box Chú ý: giả thuyết A^TA tồn tại nghịch đảo.
- Phán đoán cho quan sát mới x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

Bình phương tối thiểu: ví dụ

Kết quả học bằng bình phương tối thiểu

0.13	-1
1.02	-0.17
3	1.61
-2.5	-2
1.44	0.1
5	3.36
-1.74	-2.46
7.5	5.56

Bình phương tối thiểu: nhược điểm

- Nếu A^TA không tồn tại nghịch đảo thì không học được.
 - Nếu các thuộc tính (cột của A) có phụ thuộc lẫn nhau.
- Độ phức tạp tính toán lớn do phải tính ma trận nghịch đảo.
 - \rightarrow Không làm việc được nếu số chiều n lớn.
- Khả năng overfitting cao vì việc học hàm f chỉ quan tâm tối thiểu lỗi đối với tập học đang có.

Ridge regression (1)

• Cho trước $D = \{(x_1, y_1), ..., (x_M, y_M)\}$, ta đi giải bài toán:

$$f^* = \arg\min_{f \in \mathbf{H}} RSS(f) + \lambda \|\mathbf{w}\|_2^2$$

$$\Leftrightarrow \mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{M} (y_i - \mathbf{A}_i \mathbf{w})^2 + \lambda \sum_{j=0}^{n} w_j^2$$
(2)

- □ Trong đó $\lambda > 0$ là một hằng số phạt.
- $\Box A_i = (1, x_{i1}, ..., x_{in})$ tương ứng với quan sát x_i
- Đại lượng chuẩn tắc (phạt) $\lambda \|\mathbf{w}\|_2^2$:
 - f Có vai trò hạn chế độ lớn của $m w^*$ (hạn chế không gian hàm f).
 - flue Đánh đổi chất lượng của hàm f đối với tập học $m{D}$, để có khả năng phán đoán tốt hơn với quan sát tương lai.

Ridge regression (2)

Tìm nghiệm w^* bằng cách lấy đạo hàm của RSS và giải phương trình RSS' = 0. Thu được:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

- Trong đó \boldsymbol{A} là ma trận dữ liệu cỡ $M \times (n+1)$ mà hàng thứ i là $(1, x_{i1}, ..., x_{in}); \boldsymbol{y} = (y_1, ..., y_M)^T; \boldsymbol{I}_{n+1}$ là ma trận đơn vị cỡ n+1.
- So sánh với phương pháp bình phương tối thiểu:
 - Tránh được trường hợp ma trận dữ liệu suy biến. Hồi quy Ridge luôn làm việc được.
 - Khả năng overfitting thường ít hơn.
 - Lỗi trên tập học có thể nhiều hơn.
- Chú ý: chất lượng của phương pháp phụ thuộc rất nhiều vào sự lựa chọn của tham số λ.

Ridge regression: thuật toán

- Input: $\mathbf{D} = \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_M, \mathbf{y}_M)\}$, hằng số $\lambda > 0$
- Output: w*
- Học w* bằng cách tính:

$$\boldsymbol{w}^* = (\boldsymbol{A}^T \boldsymbol{A} + \lambda \boldsymbol{I}_{n+1})^{-1} \boldsymbol{A}^T \boldsymbol{y}$$

Phán đoán cho quan sát mới x:

$$y_x = w_0^* + w_1^* x_1 + \dots + w_n^* x_n$$

Ridge regression: ví du

 Xét tập dữ liệu Prostate gồm 67 quan sát dùng để học, và 31 quan sát dùng để kiểm thử. Dữ liệu gồm 8 thuộc tính.

	Least	
W	squares	Ridge
0	2.465	2.452
lcavol	0.680	0.420
lweight	0.263	0.238
age	-0.141	-0.152
lbph	0.210	0.002
svi	0.305	0.094
lcp	-0.288	-0.051
gleason	-0.021	0.232
pgg45	0.267	-0.056
Test RSS	0.521	0.492

Ridge regression: anh hưởng của λ

• Vector $\mathbf{w}^* = (w_0, S1, S2, S3, S4, S5, S6, AGE, SEX, BMI, BP)$ thay đổi khi hệ số phạt λ thay đổi.

Câu hỏi ôn tập

- Viết chi tiết từng bước giải để tìm nghiệm cho bài toán (1) và (2).
- Tìm nghiệm của bài toán (2) khi loại bỏ w₀ ra khỏi đại lượng phạt.