29 Linear Programming

Many problems take the form of maximizing or minimizing an objective, given limited resources and competing constraints. If we can specify the objective as a linear function of certain variables, and if we can specify the constraints on resources as equalities or inequalities on those variables, then we have a *linear-programming problem*. Linear programs arise in a variety of practical applications. We begin by studying an application in electoral politics.

A political problem

Suppose that you are a politician trying to win an election. Your district has three different types of areas—urban, suburban, and rural. These areas have, respectively, 100,000, 200,000, and 50,000 registered voters. Although not all the registered voters actually go to the polls, you decide that to govern effectively, you would like at least half the registered voters in each of the three regions to vote for you. You are honorable and would never consider supporting policies in which you do not believe. You realize, however, that certain issues may be more effective in winning votes in certain places. Your primary issues are building more roads, gun control, farm subsidies, and a gasoline tax dedicated to improved public transit. According to your campaign staff's research, you can estimate how many votes you win or lose from each population segment by spending \$1,000 on advertising on each issue. This information appears in the table of Figure 29.1. In this table, each entry indicates the number of thousands of either urban, suburban, or rural voters who would be won over by spending \$1,000 on advertising in support of a particular issue. Negative entries denote votes that would be lost. Your task is to figure out the minimum amount of money that you need to spend in order to win 50,000 urban votes, 100,000 suburban votes, and 25,000 rural votes.

You could, by trial and error, devise a strategy that wins the required number of votes, but the strategy you come up with might not be the least expensive one. For example, you could devote \$20,000 of advertising to building roads, \$0 to gun control, \$4,000 to farm subsidies, and \$9,000 to a gasoline tax. In this case, you

policy	urban	suburban	rural
build roads	-2	5	3
gun control	8	2	-5
farm subsidies	0	0	10
gasoline tax	10	0	-2

Figure 29.1 The effects of policies on voters. Each entry describes the number of thousands of urban, suburban, or rural voters who could be won over by spending \$1,000 on advertising support of a policy on a particular issue. Negative entries denote votes that would be lost.

would win 20(-2)+0(8)+4(0)+9(10) = 50 thousand urban votes, 20(5)+0(2)+4(0)+9(0) = 100 thousand suburban votes, and 20(3)+0(-5)+4(10)+9(-2) = 82 thousand rural votes. You would win the exact number of votes desired in the urban and suburban areas and more than enough votes in the rural area. (In fact, in the rural area, you would receive more votes than there are voters.) In order to garner these votes, you would have paid for 20+0+4+9=33 thousand dollars of advertising.

Naturally, you may wonder whether this strategy is the best possible. That is, could you achieve your goals while spending less on advertising? Additional trial and error might help you to answer this question, but wouldn't you rather have a systematic method for answering such questions? In order to develop one, we shall formulate this question mathematically. We introduce 4 variables:

- x_1 is the number of thousands of dollars spent on advertising on building roads,
- x_2 is the number of thousands of dollars spent on advertising on gun control,
- x_3 is the number of thousands of dollars spent on advertising on farm subsidies, and
- x_4 is the number of thousands of dollars spent on advertising on a gasoline tax.

We can write the requirement that we win at least 50,000 urban votes as

$$-2x_1 + 8x_2 + 0x_3 + 10x_4 \ge 50. (29.1)$$

Similarly, we can write the requirements that we win at least 100,000 suburban votes and 25,000 rural votes as

$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100 \tag{29.2}$$

and

$$3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25. (29.3)$$

Any setting of the variables x_1, x_2, x_3, x_4 that satisfies inequalities (29.1)–(29.3) yields a strategy that wins a sufficient number of each type of vote. In order to

keep costs as small as possible, you would like to minimize the amount spent on advertising. That is, you want to minimize the expression

$$x_1 + x_2 + x_3 + x_4$$
. (29.4)

Although negative advertising often occurs in political campaigns, there is no such thing as negative-cost advertising. Consequently, we require that

$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ \text{and} \ \ x_4 \ge 0.$$
 (29.5)

Combining inequalities (29.1)–(29.3) and (29.5) with the objective of minimizing (29.4), we obtain what is known as a "linear program." We format this problem as

minimize
$$x_1 + x_2 + x_3 + x_4$$
 (29.6)

subject to

$$-2x_{1} + 8x_{2} + 0x_{3} + 10x_{4} \ge 50$$

$$5x_{1} + 2x_{2} + 0x_{3} + 0x_{4} \ge 100$$

$$3x_{1} - 5x_{2} + 10x_{3} - 2x_{4} \ge 25$$

$$(29.7)$$

$$(29.8)$$

$$5x_1 + 2x_2 + 0x_3 + 0x_4 \ge 100 (29.8)$$

$$3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25 (29.9)$$

$$x_1, x_2, x_3, x_4 \ge 0$$
 . (29.10)

The solution of this linear program yields your optimal strategy.

General linear programs

In the general linear-programming problem, we wish to optimize a linear function subject to a set of linear inequalities. Given a set of real numbers a_1, a_2, \dots, a_n and a set of variables x_1, x_2, \ldots, x_n , we define a *linear function* f on those variables by

$$f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \sum_{j=1}^n a_j x_j$$
.

If b is a real number and f is a linear function, then the equation

$$f(x_1, x_2, \dots, x_n) = b$$

is a *linear equality* and the inequalities

$$f(x_1, x_2, \dots, x_n) \le b$$

and

$$f(x_1, x_2, \ldots, x_n) \ge b$$

are *linear inequalities*. We use the general term *linear constraints* to denote either linear equalities or linear inequalities. In linear programming, we do not allow strict inequalities. Formally, a *linear-programming problem* is the problem of either minimizing or maximizing a linear function subject to a finite set of linear constraints. If we are to minimize, then we call the linear program a *minimization linear program*, and if we are to maximize, then we call the linear program a *maximization linear program*.

The remainder of this chapter covers how to formulate and solve linear programs. Although several polynomial-time algorithms for linear programming have been developed, we will not study them in this chapter. Instead, we shall study the simplex algorithm, which is the oldest linear-programming algorithm. The simplex algorithm does not run in polynomial time in the worst case, but it is fairly efficient and widely used in practice.

An overview of linear programming

In order to describe properties of and algorithms for linear programs, we find it convenient to express them in canonical forms. We shall use two forms, **standard** and **slack**, in this chapter. We will define them precisely in Section 29.1. Informally, a linear program in standard form is the maximization of a linear function subject to linear *inequalities*, whereas a linear program in slack form is the maximization of a linear function subject to linear *equalities*. We shall typically use standard form for expressing linear programs, but we find it more convenient to use slack form when we describe the details of the simplex algorithm. For now, we restrict our attention to maximizing a linear function on *n* variables subject to a set of *m* linear inequalities.

Let us first consider the following linear program with two variables:

$$maximize x_1 + x_2 (29.11)$$

subject to

$$4x_1 - x_2 \le 8 \tag{29.12}$$

$$2x_1 + x_2 \le 10 \tag{29.13}$$

$$5x_1 - 2x_2 \ge -2 \tag{29.14}$$

$$x_1, x_2 \ge 0$$
 . (29.15)

We call any setting of the variables x_1 and x_2 that satisfies all the constraints (29.12)–(29.15) a **feasible solution** to the linear program. If we graph the constraints in the (x_1, x_2) -Cartesian coordinate system, as in Figure 29.2(a), we see

Figure 29.2 (a) The linear program given in (29.12)–(29.15). Each constraint is represented by a line and a direction. The intersection of the constraints, which is the feasible region, is shaded. (b) The dotted lines show, respectively, the points for which the objective value is 0, 4, and 8. The optimal solution to the linear program is $x_1 = 2$ and $x_2 = 6$ with objective value 8.

that the set of feasible solutions (shaded in the figure) forms a convex region in the two-dimensional space. We call this convex region the *feasible region* and the function we wish to maximize the *objective function*. Conceptually, we could evaluate the objective function $x_1 + x_2$ at each point in the feasible region; we call the value of the objective function at a particular point the *objective value*. We could then identify a point that has the maximum objective value as an optimal solution. For this example (and for most linear programs), the feasible region contains an infinite number of points, and so we need to determine an efficient way to find a point that achieves the maximum objective value without explicitly evaluating the objective function at every point in the feasible region.

In two dimensions, we can optimize via a graphical procedure. The set of points for which $x_1+x_2=z$, for any z, is a line with a slope of -1. If we plot $x_1+x_2=0$, we obtain the line with slope -1 through the origin, as in Figure 29.2(b). The intersection of this line and the feasible region is the set of feasible solutions that have an objective value of 0. In this case, that intersection of the line with the feasible region is the single point (0,0). More generally, for any z, the intersection

¹An intuitive definition of a convex region is that it fulfills the requirement that for any two points in the region, all points on a line segment between them are also in the region.

of the line $x_1 + x_2 = z$ and the feasible region is the set of feasible solutions that have objective value z. Figure 29.2(b) shows the lines $x_1 + x_2 = 0$, $x_1 + x_2 = 4$, and $x_1 + x_2 = 8$. Because the feasible region in Figure 29.2 is bounded, there must be some maximum value z for which the intersection of the line $x_1 + x_2 = z$ and the feasible region is nonempty. Any point at which this occurs is an optimal solution to the linear program, which in this case is the point $x_1 = 2$ and $x_2 = 6$ with objective value 8.

It is no accident that an optimal solution to the linear program occurs at a vertex of the feasible region. The maximum value of z for which the line $x_1 + x_2 = z$ intersects the feasible region must be on the boundary of the feasible region, and thus the intersection of this line with the boundary of the feasible region is either a single vertex or a line segment. If the intersection is a single vertex, then there is just one optimal solution, and it is that vertex. If the intersection is a line segment, every point on that line segment must have the same objective value; in particular, both endpoints of the line segment are optimal solutions. Since each endpoint of a line segment is a vertex, there is an optimal solution at a vertex in this case as well.

Although we cannot easily graph linear programs with more than two variables, the same intuition holds. If we have three variables, then each constraint corresponds to a half-space in three-dimensional space. The intersection of these halfspaces forms the feasible region. The set of points for which the objective function obtains a given value z is now a plane (assuming no degenerate conditions). If all coefficients of the objective function are nonnegative, and if the origin is a feasible solution to the linear program, then as we move this plane away from the origin, in a direction normal to the objective function, we find points of increasing objective value. (If the origin is not feasible or if some coefficients in the objective function are negative, the intuitive picture becomes slightly more complicated.) As in two dimensions, because the feasible region is convex, the set of points that achieve the optimal objective value must include a vertex of the feasible region. Similarly, if we have n variables, each constraint defines a half-space in n-dimensional space. We call the feasible region formed by the intersection of these half-spaces a simplex. The objective function is now a hyperplane and, because of convexity, an optimal solution still occurs at a vertex of the simplex.

The *simplex algorithm* takes as input a linear program and returns an optimal solution. It starts at some vertex of the simplex and performs a sequence of iterations. In each iteration, it moves along an edge of the simplex from a current vertex to a neighboring vertex whose objective value is no smaller than that of the current vertex (and usually is larger.) The simplex algorithm terminates when it reaches a local maximum, which is a vertex from which all neighboring vertices have a smaller objective value. Because the feasible region is convex and the objective function is linear, this local optimum is actually a global optimum. In Section 29.4,

we shall use a concept called "duality" to show that the solution returned by the simplex algorithm is indeed optimal.

Although the geometric view gives a good intuitive view of the operations of the simplex algorithm, we shall not refer to it explicitly when developing the details of the simplex algorithm in Section 29.3. Instead, we take an algebraic view. We first write the given linear program in slack form, which is a set of linear equalities. These linear equalities express some of the variables, called "basic variables," in terms of other variables, called "nonbasic variables." We move from one vertex to another by making a basic variable become nonbasic and making a nonbasic variable become basic. We call this operation a "pivot" and, viewed algebraically, it is nothing more than rewriting the linear program in an equivalent slack form.

The two-variable example described above was particularly simple. We shall need to address several more details in this chapter. These issues include identifying linear programs that have no solutions, linear programs that have no finite optimal solution, and linear programs for which the origin is not a feasible solution.

Applications of linear programming

Linear programming has a large number of applications. Any textbook on operations research is filled with examples of linear programming, and linear programming has become a standard tool taught to students in most business schools. The election scenario is one typical example. Two more examples of linear programming are the following:

- An airline wishes to schedule its flight crews. The Federal Aviation Administration imposes many constraints, such as limiting the number of consecutive hours that each crew member can work and insisting that a particular crew work only on one model of aircraft during each month. The airline wants to schedule crews on all of its flights using as few crew members as possible.
- An oil company wants to decide where to drill for oil. Siting a drill at a particular location has an associated cost and, based on geological surveys, an expected payoff of some number of barrels of oil. The company has a limited budget for locating new drills and wants to maximize the amount of oil it expects to find, given this budget.

With linear programs, we also model and solve graph and combinatorial problems, such as those appearing in this textbook. We have already seen a special case of linear programming used to solve systems of difference constraints in Section 24.4. In Section 29.2, we shall study how to formulate several graph and network-flow problems as linear programs. In Section 35.4, we shall use linear programming as a tool to find an approximate solution to another graph problem.

Algorithms for linear programming

This chapter studies the simplex algorithm. This algorithm, when implemented carefully, often solves general linear programs quickly in practice. With some carefully contrived inputs, however, the simplex algorithm can require exponential time. The first polynomial-time algorithm for linear programming was the *ellipsoid algorithm*, which runs slowly in practice. A second class of polynomial-time algorithms are known as *interior-point methods*. In contrast to the simplex algorithm, which moves along the exterior of the feasible region and maintains a feasible solution that is a vertex of the simplex at each iteration, these algorithms move through the interior of the feasible region. The intermediate solutions, while feasible, are not necessarily vertices of the simplex, but the final solution is a vertex. For large inputs, interior-point algorithms can run as fast as, and sometimes faster than, the simplex algorithm. The chapter notes point you to more information about these algorithms.

If we add to a linear program the additional requirement that all variables take on integer values, we have an *integer linear program*. Exercise 34.5-3 asks you to show that just finding a feasible solution to this problem is NP-hard; since no polynomial-time algorithms are known for any NP-hard problems, there is no known polynomial-time algorithm for integer linear programming. In contrast, we can solve a general linear-programming problem in polynomial time.

In this chapter, if we have a linear program with variables $x = (x_1, x_2, ..., x_n)$ and wish to refer to a particular setting of the variables, we shall use the notation $\bar{x} = (\bar{x}_1, \bar{x}_2, ..., \bar{x}_n)$.

29.1 Standard and slack forms

This section describes two formats, standard form and slack form, that are useful when we specify and work with linear programs. In standard form, all the constraints are inequalities, whereas in slack form, all constraints are equalities (except for those that require the variables to be nonnegative).

Standard form

In **standard form**, we are given n real numbers c_1, c_2, \ldots, c_n ; m real numbers b_1, b_2, \ldots, b_m ; and mn real numbers a_{ij} for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$. We wish to find n real numbers x_1, x_2, \ldots, x_n that

$$\text{maximize} \qquad \sum_{j=1}^{n} c_j x_j \tag{29.16}$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \text{ for } i = 1, 2, \dots, m$$

$$x_{i} \geq 0 \text{ for } i = 1, 2, \dots, m$$
(29.17)

$$x_j \ge 0 \quad \text{for } j = 1, 2, \dots, n$$
 (29.18)

Generalizing the terminology we introduced for the two-variable linear program, we call expression (29.16) the *objective function* and the n + m inequalities in lines (29.17) and (29.18) the *constraints*. The n constraints in line (29.18) are the nonnegativity constraints. An arbitrary linear program need not have nonnegativity constraints, but standard form requires them. Sometimes we find it convenient to express a linear program in a more compact form. If we create an $m \times n$ matrix $A = (a_{ij})$, an m-vector $b = (b_i)$, an n-vector $c = (c_i)$, and an n-vector $x = (x_i)$, then we can rewrite the linear program defined in (29.16)–(29.18) as

$$maximize c^{T}x (29.19)$$

subject to

$$Ax \leq b \tag{29.20}$$

$$x \geq 0. (29.21)$$

In line (29.19), $c^{T}x$ is the inner product of two vectors. In inequality (29.20), Axis a matrix-vector product, and in inequality (29.21), $x \ge 0$ means that each entry of the vector x must be nonnegative. We see that we can specify a linear program in standard form by a tuple (A, b, c), and we shall adopt the convention that A, b, and c always have the dimensions given above.

We now introduce terminology to describe solutions to linear programs. We used some of this terminology in the earlier example of a two-variable linear program. We call a setting of the variables \bar{x} that satisfies all the constraints a **feasible solu***tion*, whereas a setting of the variables \bar{x} that fails to satisfy at least one constraint is an *infeasible solution*. We say that a solution \bar{x} has *objective value* $c^T\bar{x}$. A feasible solution \bar{x} whose objective value is maximum over all feasible solutions is an *optimal solution*, and we call its objective value $c^T \bar{x}$ the *optimal objective value*. If a linear program has no feasible solutions, we say that the linear program is infeasible; otherwise it is feasible. If a linear program has some feasible solutions but does not have a finite optimal objective value, we say that the linear program is unbounded. Exercise 29.1-9 asks you to show that a linear program can have a finite optimal objective value even if the feasible region is not bounded.

Converting linear programs into standard form

It is always possible to convert a linear program, given as minimizing or maximizing a linear function subject to linear constraints, into standard form. A linear program might not be in standard form for any of four possible reasons:

- 1. The objective function might be a minimization rather than a maximization.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be *equality constraints*, which have an equal sign rather than a less-than-or-equal-to sign.
- 4. There might be *inequality constraints*, but instead of having a less-than-or-equal-to sign, they have a greater-than-or-equal-to sign.

When converting one linear program L into another linear program L', we would like the property that an optimal solution to L' yields an optimal solution to L. To capture this idea, we say that two maximization linear programs L and L' are *equivalent* if for each feasible solution \bar{x} to L with objective value z, there is a corresponding feasible solution \bar{x}' to L' with objective value z, and for each feasible solution \bar{x}' to L' with objective value z, there is a corresponding feasible solution \bar{x} to L with objective value z. (This definition does not imply a one-to-one correspondence between feasible solutions.) A minimization linear program L and a maximization linear program L' are equivalent if for each feasible solution \bar{x} to L' with objective value z, there is a corresponding feasible solution \bar{x}' to L' with objective value z, there is a corresponding feasible solution \bar{x} to L with objective value z, there is a corresponding feasible solution \bar{x}' to L' with objective value z, there is a corresponding feasible solution \bar{x}' to L' with objective value z,

We now show how to remove, one by one, each of the possible problems in the list above. After removing each one, we shall argue that the new linear program is equivalent to the old one.

To convert a minimization linear program L into an equivalent maximization linear program L', we simply negate the coefficients in the objective function. Since L and L' have identical sets of feasible solutions and, for any feasible solution, the objective value in L is the negative of the objective value in L', these two linear programs are equivalent. For example, if we have the linear program

minimize
$$-2x_1 + 3x_2$$

subject to
$$\begin{aligned}
x_1 + x_2 &= 7 \\
x_1 - 2x_2 &\leq 4 \\
x_1 &\geq 0
\end{aligned}$$

and we negate the coefficients of the objective function, we obtain

maximize
$$2x_1 - 3x_2$$

subject to
$$x_1 + x_2 = 7$$

$$x_1 - 2x_2 \le 4$$

$$x_1 \ge 0$$
.

Next, we show how to convert a linear program in which some of the variables do not have nonnegativity constraints into one in which each variable has a nonnegativity constraint. Suppose that some variable x_j does not have a nonnegativity constraint. Then, we replace each occurrence of x_j by $x_j' - x_j''$, and add the nonnegativity constraints $x_j' \geq 0$ and $x_j'' \geq 0$. Thus, if the objective function has a term $c_j x_j$, we replace it by $c_j x_j' - c_j x_j''$, and if constraint i has a term $a_{ij} x_j$, we replace it by $a_{ij} x_j' - a_{ij} x_j''$. Any feasible solution \hat{x} to the new linear program corresponds to a feasible solution \bar{x} to the original linear program with $\bar{x}_j = \hat{x}_j' - \hat{x}_j''$ and with the same objective value. Also, any feasible solution \bar{x} to the original linear program corresponds to a feasible solution \hat{x} to the new linear program with $\hat{x}_j' = \bar{x}_j$ and $\hat{x}_j'' = 0$ if $\bar{x}_j \geq 0$, or with $\hat{x}_j'' = \bar{x}_j$ and $\hat{x}_j'' = 0$ if $\bar{x}_j < 0$. The two linear programs have the same objective value regardless of the sign of \bar{x}_j . Thus, the two linear programs are equivalent. We apply this conversion scheme to each variable that does not have a nonnegativity constraint to yield an equivalent linear program in which all variables have nonnegativity constraints.

Continuing the example, we want to ensure that each variable has a corresponding nonnegativity constraint. Variable x_1 has such a constraint, but variable x_2 does not. Therefore, we replace x_2 by two variables x_2' and x_2'' , and we modify the linear program to obtain

maximize
$$2x_1 - 3x_2' + 3x_2''$$

subject to
$$x_1 + x_2' - x_2'' = 7$$

$$x_1 - 2x_2' + 2x_2'' \leq 4$$

$$x_1, x_2', x_2'' \geq 0$$
 (29.22)

Next, we convert equality constraints into inequality constraints. Suppose that a linear program has an equality constraint $f(x_1, x_2, ..., x_n) = b$. Since x = y if and only if both $x \ge y$ and $x \le y$, we can replace this equality constraint by the pair of inequality constraints $f(x_1, x_2, ..., x_n) \le b$ and $f(x_1, x_2, ..., x_n) \ge b$. Repeating this conversion for each equality constraint yields a linear program in which all constraints are inequalities.

Finally, we can convert the greater-than-or-equal-to constraints to less-than-or-equal-to constraints by multiplying these constraints through by -1. That is, any inequality of the form

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i$$

is equivalent to

$$\sum_{j=1}^{n} -a_{ij} x_j \le -b_i .$$

Thus, by replacing each coefficient a_{ij} by $-a_{ij}$ and each value b_i by $-b_i$, we obtain an equivalent less-than-or-equal-to constraint.

Finishing our example, we replace the equality in constraint (29.22) by two inequalities, obtaining

maximize
$$2x_1 - 3x_2' + 3x_2''$$

subject to
$$\begin{aligned}
 x_1 + x_2' - x_2'' &\leq 7 \\
 x_1 + x_2' - x_2'' &\geq 7 \\
 x_1 - 2x_2' + 2x_2'' &\leq 4 \\
 x_1, x_2', x_2'' &> 0
 \end{aligned}$$
(29.23)

Finally, we negate constraint (29.23). For consistency in variable names, we rename x'_2 to x_2 and x''_2 to x_3 , obtaining the standard form

maximize
$$2x_1 - 3x_2 + 3x_3$$
 (29.24)

subject to

$$x_1 + x_2 - x_3 \le 7 (29.25)$$

$$x_1 - 2x_2 + 2x_3 \le 4 \tag{29.27}$$

$$x_1, x_2, x_3 \ge 0$$
 (29.28)

Converting linear programs into slack form

To efficiently solve a linear program with the simplex algorithm, we prefer to express it in a form in which some of the constraints are equality constraints. More precisely, we shall convert it into a form in which the nonnegativity constraints are the only inequality constraints, and the remaining constraints are equalities. Let

$$\sum_{i=1}^{n} a_{ij} x_j \le b_i \tag{29.29}$$

be an inequality constraint. We introduce a new variable s and rewrite inequality (29.29) as the two constraints

$$s = b_i - \sum_{j=1}^n a_{ij} x_j , (29.30)$$

$$s \geq 0. \tag{29.31}$$

We call s a slack variable because it measures the slack, or difference, between the left-hand and right-hand sides of equation (29.29). (We shall soon see why we find it convenient to write the constraint with only the slack variable on the left-hand side.) Because inequality (29.29) is true if and only if both equation (29.30) and inequality (29.31) are true, we can convert each inequality constraint of a linear program in this way to obtain an equivalent linear program in which the only inequality constraints are the nonnegativity constraints. When converting from standard to slack form, we shall use x_{n+i} (instead of s) to denote the slack variable associated with the ith inequality. The ith constraint is therefore

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j , \qquad (29.32)$$

along with the nonnegativity constraint $x_{n+i} \geq 0$.

By converting each constraint of a linear program in standard form, we obtain a linear program in a different form. For example, for the linear program described in (29.24)–(29.28), we introduce slack variables x_4 , x_5 , and x_6 , obtaining

maximize
$$2x_1 - 3x_2 + 3x_3$$
 (29.33)

subject to

$$x_4 = 7 - x_1 - x_2 + x_3 (29.34)$$

$$x_5 = -7 + x_1 + x_2 - x_3$$
 (29.35)

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$
 (29.36)

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$
 (29.37)

In this linear program, all the constraints except for the nonnegativity constraints are equalities, and each variable is subject to a nonnegativity constraint. We write each equality constraint with one of the variables on the left-hand side of the equality and all others on the right-hand side. Furthermore, each equation has the same set of variables on the right-hand side, and these variables are also the only ones that appear in the objective function. We call the variables on the left-hand side of the equalities *basic variables* and those on the right-hand side *nonbasic variables*.

For linear programs that satisfy these conditions, we shall sometimes omit the words "maximize" and "subject to," as well as the explicit nonnegativity constraints. We shall also use the variable z to denote the value of the objective func-

tion. We call the resulting format *slack form*. If we write the linear program given in (29.33)–(29.37) in slack form, we obtain

$$z = 2x_1 - 3x_2 + 3x_3 (29.38)$$

$$x_4 = 7 - x_1 - x_2 + x_3 (29.39)$$

$$x_5 = -7 + x_1 + x_2 - x_3 (29.40)$$

$$x_6 = 4 - x_1 + 2x_2 - 2x_3$$
 (29.41)

As with standard form, we find it convenient to have a more concise notation for describing a slack form. As we shall see in Section 29.3, the sets of basic and nonbasic variables will change as the simplex algorithm runs. We use N to denote the set of indices of the nonbasic variables and B to denote the set of indices of the basic variables. We always have that |N| = n, |B| = m, and $N \cup B = \{1, 2, ..., n + m\}$. The equations are indexed by the entries of B, and the variables on the right-hand sides are indexed by the entries of N. As in standard form, we use b_i , c_j , and a_{ij} to denote constant terms and coefficients. We also use ν to denote an optional constant term in the objective function. (We shall see a little later that including the constant term in the objective function makes it easy to determine the value of the objective function.) Thus we can concisely define a slack form by a tuple (N, B, A, b, c, ν) , denoting the slack form

$$z = v + \sum_{j \in N} c_j x_j \tag{29.42}$$

$$x_i = b_i - \sum_{j \in N} a_{ij} x_j \quad \text{for } i \in B , \qquad (29.43)$$

in which all variables x are constrained to be nonnegative. Because we subtract the sum $\sum_{j \in N} a_{ij} x_j$ in (29.43), the values a_{ij} are actually the negatives of the coefficients as they "appear" in the slack form.

For example, in the slack form

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

we have $B = \{1, 2, 4\}, N = \{3, 5, 6\},\$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix},$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix},$$

 $c = (c_3 \ c_5 \ c_6)^{\mathrm{T}} = (-1/6 \ -1/6 \ -2/3)^{\mathrm{T}}$, and v = 28. Note that the indices into A, b, and c are not necessarily sets of contiguous integers; they depend on the index sets B and N. As an example of the entries of A being the negatives of the coefficients as they appear in the slack form, observe that the equation for x_1 includes the term $x_3/6$, yet the coefficient a_{13} is actually -1/6 rather than +1/6.

Exercises

29.1-1

If we express the linear program in (29.24)–(29.28) in the compact notation of (29.19)–(29.21), what are n, m, A, b, and c?

29.1-2

Give three feasible solutions to the linear program in (29.24)–(29.28). What is the objective value of each one?

29.1-3

For the slack form in (29.38)–(29.41), what are N, B, A, b, c, and v?

29.1-4

Convert the following linear program into standard form:

minimize
$$2x_1 + 7x_2 + x_3$$

subject to $x_1 - x_3 = 7$
 $3x_1 + x_2 \ge 24$
 $x_2 \ge 0$
 $x_3 \le 0$.

29.1-5

Convert the following linear program into slack form:

What are the basic and nonbasic variables?

29.1-6

Show that the following linear program is infeasible:

29.1-7

Show that the following linear program is unbounded:

maximize
$$x_1 - x_2$$
 subject to
$$-2x_1 + x_2 \le -1$$

$$-x_1 - 2x_2 \le -2$$

$$x_1, x_2 \ge 0 \ .$$

29.1-8

Suppose that we have a general linear program with n variables and m constraints, and suppose that we convert it into standard form. Give an upper bound on the number of variables and constraints in the resulting linear program.

29.1-9

Give an example of a linear program for which the feasible region is not bounded, but the optimal objective value is finite.

29.2 Formulating problems as linear programs

Although we shall focus on the simplex algorithm in this chapter, it is also important to be able to recognize when we can formulate a problem as a linear program. Once we cast a problem as a polynomial-sized linear program, we can solve it in polynomial time by the ellipsoid algorithm or interior-point methods. Several linear-programming software packages can solve problems efficiently, so that once the problem is in the form of a linear program, such a package can solve it.

We shall look at several concrete examples of linear-programming problems. We start with two problems that we have already studied: the single-source shortest-paths problem (see Chapter 24) and the maximum-flow problem (see Chapter 26). We then describe the minimum-cost-flow problem. Although the minimum-cost-flow problem has a polynomial-time algorithm that is not based on linear programming, we won't describe the algorithm. Finally, we describe the multicommodity-flow problem, for which the only known polynomial-time algorithm is based on linear programming.

When we solved graph problems in Part VI, we used attribute notation, such as v.d and (u,v).f. Linear programs typically use subscripted variables rather than objects with attached attributes, however. Therefore, when we express variables in linear programs, we shall indicate vertices and edges through subscripts. For example, we denote the shortest-path weight for vertex v not by v.d but by d_v . Similarly, we denote the flow from vertex u to vertex v not by (u,v).f but by f_{uv} . For quantities that are given as inputs to problems, such as edge weights or capacities, we shall continue to use notations such as w(u,v) and c(u.v).

Shortest paths

We can formulate the single-source shortest-paths problem as a linear program. In this section, we shall focus on how to formulate the single-pair shortest-path problem, leaving the extension to the more general single-source shortest-paths problem as Exercise 29.2-3.

In the single-pair shortest-path problem, we are given a weighted, directed graph G=(V,E), with weight function $w:E\to\mathbb{R}$ mapping edges to real-valued weights, a source vertex s, and destination vertex t. We wish to compute the value d_t , which is the weight of a shortest path from s to t. To express this problem as a linear program, we need to determine a set of variables and constraints that define when we have a shortest path from s to t. Fortunately, the Bellman-Ford algorithm does exactly this. When the Bellman-Ford algorithm terminates, it has computed, for each vertex v, a value d_v (using subscript notation here rather than attribute notation) such that for each edge $(u,v) \in E$, we have $d_v \leq d_u + w(u,v)$.

The source vertex initially receives a value $d_s = 0$, which never changes. Thus we obtain the following linear program to compute the shortest-path weight from s to *t*:

maximize
$$d_t$$
 (29.44)

subject to

$$d_{\nu} \leq d_u + w(u, \nu)$$
 for each edge $(u, \nu) \in E$, (29.45)

$$d_s = 0.$$
 (29.46)

You might be surprised that this linear program maximizes an objective function when it is supposed to compute shortest paths. We do not want to minimize the objective function, since then setting $\bar{d}_{\nu} = 0$ for all $\nu \in V$ would yield an optimal solution to the linear program without solving the shortest-paths problem. We maximize because an optimal solution to the shortest-paths problem sets each d_{ν} to $\min_{u:(u,v)\in E} \{\bar{d}_u + w(u,v)\}$, so that \bar{d}_v is the largest value that is less than or equal to all of the values in the set $\{\bar{d}_u + w(u,v)\}\$. We want to maximize d_v for all vertices ν on a shortest path from s to t subject to these constraints on all vertices ν , and maximizing d_t achieves this goal.

This linear program has |V| variables d_{ν} , one for each vertex $\nu \in V$. It also has |E| + 1 constraints: one for each edge, plus the additional constraint that the source vertex's shortest-path weight always has the value 0.

Maximum flow

Next, we express the maximum-flow problem as a linear program. Recall that we are given a directed graph G = (V, E) in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$, and two distinguished vertices: a source s and a sink t. As defined in Section 26.1, a flow is a nonnegative real-valued function $f: V \times V \to \mathbb{R}$ that satisfies the capacity constraint and flow conservation. A maximum flow is a flow that satisfies these constraints and maximizes the flow value, which is the total flow coming out of the source minus the total flow into the source. A flow, therefore, satisfies linear constraints, and the value of a flow is a linear function. Recalling also that we assume that c(u, v) = 0 if $(u, v) \notin E$ and that there are no antiparallel edges, we can express the maximum-flow problem as a linear program:

maximize
$$\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs}$$
 (29.47)

subject to

$$f_{uv} \le c(u, v) \quad \text{for each } u, v \in V ,$$
 (29.48)

$$f_{uv} \leq c(u, v) \quad \text{for each } u, v \in V ,$$

$$\sum_{v \in V} f_{vu} = \sum_{v \in V} f_{uv} \quad \text{for each } u \in V - \{s, t\} ,$$

$$f_{uv} \geq 0 \quad \text{for each } u, v \in V .$$

$$(29.48)$$

$$(29.49)$$

$$f_{uv} \ge 0$$
 for each $u, v \in V$. (29.50)

This linear program has $|V|^2$ variables, corresponding to the flow between each pair of vertices, and it has $2|V|^2 + |V| - 2$ constraints.

It is usually more efficient to solve a smaller-sized linear program. The linear program in (29.47)–(29.50) has, for ease of notation, a flow and capacity of 0 for each pair of vertices u, v with $(u, v) \notin E$. It would be more efficient to rewrite the linear program so that it has O(V + E) constraints. Exercise 29.2-5 asks you to do so.

Minimum-cost flow

In this section, we have used linear programming to solve problems for which we already knew efficient algorithms. In fact, an efficient algorithm designed specifically for a problem, such as Dijkstra's algorithm for the single-source shortest-paths problem, or the push-relabel method for maximum flow, will often be more efficient than linear programming, both in theory and in practice.

The real power of linear programming comes from the ability to solve new problems. Recall the problem faced by the politician in the beginning of this chapter. The problem of obtaining a sufficient number of votes, while not spending too much money, is not solved by any of the algorithms that we have studied in this book, yet we can solve it by linear programming. Books abound with such real-world problems that linear programming can solve. Linear programming is also particularly useful for solving variants of problems for which we may not already know of an efficient algorithm.

Consider, for example, the following generalization of the maximum-flow problem. Suppose that, in addition to a capacity c(u, v) for each edge (u, v), we are given a real-valued cost a(u, v). As in the maximum-flow problem, we assume that c(u, v) = 0 if $(u, v) \notin E$, and that there are no antiparallel edges. If we send f_{uv} units of flow over edge (u, v), we incur a cost of $a(u, v) f_{uv}$. We are also given a flow demand d. We wish to send d units of flow from s to t while minimizing the total cost $\sum_{(u,v)\in E} a(u,v) f_{uv}$ incurred by the flow. This problem is known as the **minimum-cost-flow problem**.

Figure 29.3(a) shows an example of the minimum-cost-flow problem. We wish to send 4 units of flow from s to t while incurring the minimum total cost. Any particular legal flow, that is, a function f satisfying constraints (29.48)–(29.49), incurs a total cost of $\sum_{(u,v)\in E} a(u,v) f_{uv}$. We wish to find the particular 4-unit flow that minimizes this cost. Figure 29.3(b) shows an optimal solution, with total cost $\sum_{(u,v)\in E} a(u,v) f_{uv} = (2\cdot 2) + (5\cdot 2) + (3\cdot 1) + (7\cdot 1) + (1\cdot 3) = 27$.

There are polynomial-time algorithms specifically designed for the minimum-cost-flow problem, but they are beyond the scope of this book. We can, however, express the minimum-cost-flow problem as a linear program. The linear program looks similar to the one for the maximum-flow problem with the additional con-

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

straint that the value of the flow be exactly d units, and with the new objective function of minimizing the cost:

minimize
$$\sum_{(u,v)\in E} a(u,v) f_{uv}$$
 (29.51) subject to
$$f_{uv} \leq c(u,v) \text{ for each } u,v\in V ,$$

$$\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0 \text{ for each } u\in V-\{s,t\} ,$$

$$\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d ,$$

$$f_{uv} \geq 0 \text{ for each } u,v\in V .$$
 (29.52)

Multicommodity flow

As a final example, we consider another flow problem. Suppose that the Lucky Puck company from Section 26.1 decides to diversify its product line and ship not only hockey pucks, but also hockey sticks and hockey helmets. Each piece of equipment is manufactured in its own factory, has its own warehouse, and must be shipped, each day, from factory to warehouse. The sticks are manufactured in Vancouver and must be shipped to Saskatoon, and the helmets are manufactured in Edmonton and must be shipped to Regina. The capacity of the shipping network does not change, however, and the different items, or *commodities*, must share the same network.

This example is an instance of a **multicommodity-flow problem**. In this problem, we are again given a directed graph G = (V, E) in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$. As in the maximum-flow problem, we implicitly assume that c(u, v) = 0 for $(u, v) \notin E$, and that the graph has no antipar-

allel edges. In addition, we are given k different commodities, K_1, K_2, \ldots, K_k , where we specify commodity i by the triple $K_i = (s_i, t_i, d_i)$. Here, vertex s_i is the source of commodity i, vertex t_i is the sink of commodity i, and d_i is the demand for commodity i, which is the desired flow value for the commodity from s_i to t_i . We define a flow for commodity i, denoted by f_i , (so that f_{iuv} is the flow of commodity i from vertex i to vertex i to be a real-valued function that satisfies the flow-conservation and capacity constraints. We now define f_{iuv} , the **aggregate flow**, to be the sum of the various commodity flows, so that $f_{iuv} = \sum_{i=1}^k f_{iuv}$. The aggregate flow on edge (i, i) must be no more than the capacity of edge (i, i). We are not trying to minimize any objective function in this problem; we need only determine whether such a flow exists. Thus, we write a linear program with a "null" objective function:

minimize
$$\sum_{i=1}^k f_{iuv} \leq c(u,v) \quad \text{for each } u,v \in V \;,$$

$$\sum_{v \in V} f_{iuv} - \sum_{v \in V} f_{ivu} = 0 \qquad \text{for each } i = 1,2,\ldots,k \text{ and for each } u \in V - \{s_i,t_i\} \;,$$

$$\sum_{v \in V} f_{i,s_i,v} - \sum_{v \in V} f_{i,v,s_i} = d_i \qquad \text{for each } i = 1,2,\ldots,k \;,$$

$$f_{iuv} \geq 0 \qquad \text{for each } u,v \in V \text{ and for each } i = 1,2,\ldots,k \;.$$

The only known polynomial-time algorithm for this problem expresses it as a linear program and then solves it with a polynomial-time linear-programming algorithm.

Exercises

29.2-1

Put the single-pair shortest-path linear program from (29.44)–(29.46) into standard form.

29.2-2

Write out explicitly the linear program corresponding to finding the shortest path from node *s* to node *y* in Figure 24.2(a).

29.2-3

In the single-source shortest-paths problem, we want to find the shortest-path weights from a source vertex s to all vertices $v \in V$. Given a graph G, write a

linear program for which the solution has the property that d_{ν} is the shortest-path weight from s to ν for each vertex $\nu \in V$.

29.2-4

Write out explicitly the linear program corresponding to finding the maximum flow in Figure 26.1(a).

29.2-5

Rewrite the linear program for maximum flow (29.47)–(29.50) so that it uses only O(V+E) constraints.

29.2-6

Write a linear program that, given a bipartite graph G = (V, E), solves the maximum-bipartite-matching problem.

29.2-7

In the *minimum-cost multicommodity-flow problem*, we are given directed graph G = (V, E) in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$ and a cost a(u, v). As in the multicommodity-flow problem, we are given k different commodities, K_1, K_2, \ldots, K_k , where we specify commodity i by the triple $K_i = (s_i, t_i, d_i)$. We define the flow f_i for commodity i and the aggregate flow f_{uv} on edge (u, v) as in the multicommodity-flow problem. A feasible flow is one in which the aggregate flow on each edge (u, v) is no more than the capacity of edge (u, v). The cost of a flow is $\sum_{u,v \in V} a(u, v) f_{uv}$, and the goal is to find the feasible flow of minimum cost. Express this problem as a linear program.

29.3 The simplex algorithm

The simplex algorithm is the classical method for solving linear programs. In contrast to most of the other algorithms in this book, its running time is not polynomial in the worst case. It does yield insight into linear programs, however, and is often remarkably fast in practice.

In addition to having a geometric interpretation, described earlier in this chapter, the simplex algorithm bears some similarity to Gaussian elimination, discussed in Section 28.1. Gaussian elimination begins with a system of linear equalities whose solution is unknown. In each iteration, we rewrite this system in an equivalent form that has some additional structure. After some number of iterations, we have rewritten the system so that the solution is simple to obtain. The simplex algorithm proceeds in a similar manner, and we can view it as Gaussian elimination for inequalities.

We now describe the main idea behind an iteration of the simplex algorithm. Associated with each iteration will be a "basic solution" that we can easily obtain from the slack form of the linear program: set each nonbasic variable to 0 and compute the values of the basic variables from the equality constraints. An iteration converts one slack form into an equivalent slack form. The objective value of the associated basic feasible solution will be no less than that at the previous iteration, and usually greater. To achieve this increase in the objective value, we choose a nonbasic variable such that if we were to increase that variable's value from 0, then the objective value would increase, too. The amount by which we can increase the variable is limited by the other constraints. In particular, we raise it until some basic variable becomes 0. We then rewrite the slack form, exchanging the roles of that basic variable and the chosen nonbasic variable. Although we have used a particular setting of the variables to guide the algorithm, and we shall use it in our proofs, the algorithm does not explicitly maintain this solution. It simply rewrites the linear program until an optimal solution becomes "obvious."

An example of the simplex algorithm

We begin with an extended example. Consider the following linear program in standard form:

maximize
$$3x_1 + x_2 + 2x_3$$
 (29.53)

subject to

$$x_1 + x_2 + 3x_3 \le 30 (29.54)$$

$$2x_1 + 2x_2 + 5x_3 \le 24 \tag{29.55}$$

$$4x_1 + x_2 + 2x_3 \le 36 (29.56)$$

$$x_1, x_2, x_3 \ge 0$$
 (29.57)

In order to use the simplex algorithm, we must convert the linear program into slack form; we saw how to do so in Section 29.1. In addition to being an algebraic manipulation, slack is a useful algorithmic concept. Recalling from Section 29.1 that each variable has a corresponding nonnegativity constraint, we say that an equality constraint is *tight* for a particular setting of its nonbasic variables if they cause the constraint's basic variable to become 0. Similarly, a setting of the nonbasic variables that would make a basic variable become negative *violates* that constraint. Thus, the slack variables explicitly maintain how far each constraint is from being tight, and so they help to determine how much we can increase values of nonbasic variables without violating any constraints.

Associating the slack variables x_4 , x_5 , and x_6 with inequalities (29.54)–(29.56), respectively, and putting the linear program into slack form, we obtain

$$z = 3x_1 + x_2 + 2x_3 (29.58)$$

$$x_4 = 30 - x_1 - x_2 - 3x_3 (29.59)$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3 (29.60)$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3. (29.61)$$

The system of constraints (29.59)–(29.61) has 3 equations and 6 variables. Any setting of the variables x_1 , x_2 , and x_3 defines values for x_4 , x_5 , and x_6 ; therefore, we have an infinite number of solutions to this system of equations. A solution is feasible if all of x_1, x_2, \dots, x_6 are nonnegative, and there can be an infinite number of feasible solutions as well. The infinite number of possible solutions to a system such as this one will be useful in later proofs. We focus on the *basic solu*tion: set all the (nonbasic) variables on the right-hand side to 0 and then compute the values of the (basic) variables on the left-hand side. In this example, the basic solution is $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_6) = (0, 0, 0, 30, 24, 36)$ and it has objective value $z = (3 \cdot 0) + (1 \cdot 0) + (2 \cdot 0) = 0$. Observe that this basic solution sets $\bar{x}_i = b_i$ for each $i \in B$. An iteration of the simplex algorithm rewrites the set of equations and the objective function so as to put a different set of variables on the righthand side. Thus, a different basic solution is associated with the rewritten problem. We emphasize that the rewrite does not in any way change the underlying linearprogramming problem; the problem at one iteration has the identical set of feasible solutions as the problem at the previous iteration. The problem does, however, have a different basic solution than that of the previous iteration.

If a basic solution is also feasible, we call it a *basic feasible solution*. As we run the simplex algorithm, the basic solution is almost always a basic feasible solution. We shall see in Section 29.5, however, that for the first few iterations of the simplex algorithm, the basic solution might not be feasible.

Our goal, in each iteration, is to reformulate the linear program so that the basic solution has a greater objective value. We select a nonbasic variable x_e whose coefficient in the objective function is positive, and we increase the value of x_e as much as possible without violating any of the constraints. The variable x_e becomes basic, and some other variable x_l becomes nonbasic. The values of other basic variables and of the objective function may also change.

To continue the example, let's think about increasing the value of x_1 . As we increase x_1 , the values of x_4 , x_5 , and x_6 all decrease. Because we have a nonnegativity constraint for each variable, we cannot allow any of them to become negative. If x_1 increases above 30, then x_4 becomes negative, and x_5 and x_6 become negative when x_1 increases above 12 and 9, respectively. The third constraint (29.61) is the tightest constraint, and it limits how much we can increase x_1 . Therefore, we switch the roles of x_1 and x_6 . We solve equation (29.61) for x_1 and obtain

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4} \,. \tag{29.62}$$

To rewrite the other equations with x_6 on the right-hand side, we substitute for x_1 using equation (29.62). Doing so for equation (29.59), we obtain

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$= 30 - \left(9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}\right) - x_2 - 3x_3$$

$$= 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}.$$
(29.63)

Similarly, we combine equation (29.62) with constraint (29.60) and with objective function (29.58) to rewrite our linear program in the following form:

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4} \tag{29.64}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
 (29.65)

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4} \tag{29.66}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}. (29.67)$$

We call this operation a *pivot*. As demonstrated above, a pivot chooses a nonbasic variable x_e , called the *entering variable*, and a basic variable x_l , called the *leaving variable*, and exchanges their roles.

The linear program described in equations (29.64)–(29.67) is equivalent to the linear program described in equations (29.58)–(29.61). We perform two operations in the simplex algorithm: rewrite equations so that variables move between the left-hand side and the right-hand side, and substitute one equation into another. The first operation trivially creates an equivalent problem, and the second, by elementary linear algebra, also creates an equivalent problem. (See Exercise 29.3-3.)

To demonstrate this equivalence, observe that our original basic solution (0,0,0,30,24,36) satisfies the new equations (29.65)–(29.67) and has objective value $27 + (1/4) \cdot 0 + (1/2) \cdot 0 - (3/4) \cdot 36 = 0$. The basic solution associated with the new linear program sets the nonbasic values to 0 and is (9,0,0,21,6,0), with objective value z=27. Simple arithmetic verifies that this solution also satisfies equations (29.59)–(29.61) and, when plugged into objective function (29.58), has objective value $(3 \cdot 9) + (1 \cdot 0) + (2 \cdot 0) = 27$.

Continuing the example, we wish to find a new variable whose value we wish to increase. We do not want to increase x_6 , since as its value increases, the objective value decreases. We can attempt to increase either x_2 or x_3 ; let us choose x_3 . How far can we increase x_3 without violating any of the constraints? Constraint (29.65) limits it to 18, constraint (29.66) limits it to 42/5, and constraint (29.67) limits it to 3/2. The third constraint is again the tightest one, and therefore we rewrite the third constraint so that x_3 is on the left-hand side and x_5 is on the right-hand

side. We then substitute this new equation, $x_3 = 3/2 - 3x_2/8 - x_5/4 + x_6/8$, into equations (29.64)–(29.66) and obtain the new, but equivalent, system

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16} \tag{29.68}$$

$$x_{1} = \frac{33}{4} - \frac{x_{2}}{16} + \frac{x_{5}}{8} - \frac{5x_{6}}{16}$$

$$x_{3} = \frac{3}{2} - \frac{3x_{2}}{8} - \frac{x_{5}}{4} + \frac{x_{6}}{8}$$
(29.69)
$$(29.70)$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8} \tag{29.70}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16} . (29.71)$$

This system has the associated basic solution (33/4, 0, 3/2, 69/4, 0, 0), with objective value 111/4. Now the only way to increase the objective value is to increase x_2 . The three constraints give upper bounds of 132, 4, and ∞ , respectively. (We get an upper bound of ∞ from constraint (29.71) because, as we increase x_2 , the value of the basic variable x_4 increases also. This constraint, therefore, places no restriction on how much we can increase x_2 .) We increase x_2 to 4, and it becomes nonbasic. Then we solve equation (29.70) for x_2 and substitute in the other equations to obtain

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3} \tag{29.72}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$
(29.72)
$$(29.73)$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$
 (29.74)

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2} . (29.75)$$

At this point, all coefficients in the objective function are negative. As we shall see later in this chapter, this situation occurs only when we have rewritten the linear program so that the basic solution is an optimal solution. Thus, for this problem, the solution (8, 4, 0, 18, 0, 0), with objective value 28, is optimal. We can now return to our original linear program given in (29.53)–(29.57). The only variables in the original linear program are x_1 , x_2 , and x_3 , and so our solution is $x_1 = 8$, $x_2 = 4$, and $x_3 = 0$, with objective value $(3 \cdot 8) + (1 \cdot 4) + (2 \cdot 0) = 28$. Note that the values of the slack variables in the final solution measure how much slack remains in each inequality. Slack variable x_4 is 18, and in inequality (29.54), the left-hand side, with value 8 + 4 + 0 = 12, is 18 less than the right-hand side of 30. Slack variables x_5 and x_6 are 0 and indeed, in inequalities (29.55) and (29.56), the left-hand and right-hand sides are equal. Observe also that even though the coefficients in the original slack form are integral, the coefficients in the other linear programs are not necessarily integral, and the intermediate solutions are not necessarily integral. Furthermore, the final solution to a linear program need not be integral; it is purely coincidental that this example has an integral solution.

Pivoting

We now formalize the procedure for pivoting. The procedure PIVOT takes as input a slack form, given by the tuple (N, B, A, b, c, ν) , the index l of the leaving variable x_l , and the index e of the entering variable x_e . It returns the tuple $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{\nu})$ describing the new slack form. (Recall again that the entries of the $m \times n$ matrices A and \hat{A} are actually the negatives of the coefficients that appear in the slack form.)

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 3 \quad \hat{b}_e = b_l/a_{le}
    for each j \in N - \{e\}
 5
           \hat{a}_{ei} = a_{li}/a_{le}
    \hat{a}_{el} = 1/a_{le}
      // Compute the coefficients of the remaining constraints.
     for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
 9
           for each j \in N - \{e\}
10
                 \hat{a}_{ij} = a_{ij} - a_{ie}\hat{a}_{ej}
11
           \hat{a}_{il} = -a_{ie}\hat{a}_{el}
12
     // Compute the objective function.
14 \hat{v} = v + c_e \hat{b}_e
15 for each j \in N - \{e\}
     \hat{c}_i = c_i - c_e \hat{a}_{ei}
16
17 \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

PIVOT works as follows. Lines 3–6 compute the coefficients in the new equation for x_e by rewriting the equation that has x_l on the left-hand side to instead have x_e on the left-hand side. Lines 8–12 update the remaining equations by substituting the right-hand side of this new equation for each occurrence of x_e . Lines 14–17 do the same substitution for the objective function, and lines 19 and 20 update the

sets of nonbasic and basic variables. Line 21 returns the new slack form. As given, if $a_{le} = 0$, PIVOT would cause an error by dividing by 0, but as we shall see in the proofs of Lemmas 29.2 and 29.12, we call PIVOT only when $a_{le} \neq 0$.

We now summarize the effect that PIVOT has on the values of the variables in the basic solution.

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})$, and let \bar{x} denote the basic solution after the call. Then

- 1. $\bar{x}_i = 0$ for each $j \in \hat{N}$.
- 2. $\bar{x}_e = b_l/a_{le}$.
- 3. $\bar{x}_i = b_i a_{ie}\hat{b}_e$ for each $i \in \hat{B} \{e\}$.

Proof The first statement is true because the basic solution always sets all non-basic variables to 0. When we set each nonbasic variable to 0 in a constraint

$$x_i = \hat{b}_i - \sum_{j \in \hat{N}} \hat{a}_{ij} x_j ,$$

we have that $\bar{x}_i = \hat{b}_i$ for each $i \in \hat{B}$. Since $e \in \hat{B}$, line 3 of PIVOT gives

$$\bar{x}_e = \hat{b}_e = b_l/a_{le} \;,$$

which proves the second statement. Similarly, using line 9 for each $i \in \hat{B} - \{e\}$, we have

$$\bar{x}_i = \hat{b}_i = b_i - a_{ie}\hat{b}_e ,$$

which proves the third statement.

The formal simplex algorithm

We are now ready to formalize the simplex algorithm, which we demonstrated by example. That example was a particularly nice one, and we could have had several other issues to address:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

In Section 29.5, we shall show how to determine whether a problem is feasible, and if so, how to find a slack form in which the initial basic solution is feasible. Therefore, let us assume that we have a procedure INITIALIZE-SIMPLEX (A, b, c) that takes as input a linear program in standard form, that is, an $m \times n$ matrix $A = (a_{ij})$, an m-vector $b = (b_i)$, and an n-vector $c = (c_j)$. If the problem is infeasible, the procedure returns a message that the program is infeasible and then terminates. Otherwise, the procedure returns a slack form for which the initial basic solution is feasible.

The procedure SIMPLEX takes as input a linear program in standard form, as just described. It returns an n-vector $\bar{x} = (\bar{x}_j)$ that is an optimal solution to the linear program described in (29.19)–(29.21).

```
SIMPLEX(A, b, c)
     (N, B, A, b, c, \nu) = \text{INITIALIZE-SIMPLEX}(A, b, c)
     let \Delta be a new vector of length n
      while some index j \in N has c_i > 0
 4
           choose an index e \in N for which c_e > 0
 5
           for each index i \in B
 6
                 if a_{ie} > 0
 7
                      \Delta_i = b_i/a_{ie}
 8
                 else \Delta_i = \infty
 9
           choose an index l \in B that minimizes \Delta_i
10
           if \Delta_I == \infty
                 return "unbounded"
11
           else (N, B, A, b, c, \nu) = \text{PIVOT}(N, B, A, b, c, \nu, l, e)
12
13
      for i = 1 to n
           if i \in B
14
15
                 \bar{x}_i = b_i
16
           else \bar{x}_i = 0
17
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

The SIMPLEX procedure works as follows. In line 1, it calls the procedure INITIALIZE-SIMPLEX (A, b, c), described above, which either determines that the linear program is infeasible or returns a slack form for which the basic solution is feasible. The **while** loop of lines 3–12 forms the main part of the algorithm. If all coefficients in the objective function are negative, then the **while** loop terminates. Otherwise, line 4 selects a variable x_e , whose coefficient in the objective function is positive, as the entering variable. Although we may choose any such variable as the entering variable, we assume that we use some prespecified deterministic rule. Next, lines 5–9 check each constraint and pick the one that most severely limits the amount by which we can increase x_e without violating any of the nonnegativ-

ity constraints; the basic variable associated with this constraint is x_l . Again, we are free to choose one of several variables as the leaving variable, but we assume that we use some prespecified deterministic rule. If none of the constraints limits the amount by which the entering variable can increase, the algorithm returns "unbounded" in line 11. Otherwise, line 12 exchanges the roles of the entering and leaving variables by calling PIVOT(N, B, A, b, c, v, l, e), as described above. Lines 13–16 compute a solution $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n$ for the original linear-programming variables by setting all the nonbasic variables to 0 and each basic variable \bar{x}_i to b_i , and line 17 returns these values.

To show that SIMPLEX is correct, we first show that if SIMPLEX has an initial feasible solution and eventually terminates, then it either returns a feasible solution or determines that the linear program is unbounded. Then, we show that SIMPLEX terminates. Finally, in Section 29.4 (Theorem 29.10) we show that the solution returned is optimal.

Lemma 29.2

Given a linear program (A, b, c), suppose that the call to INITIALIZE-SIMPLEX in line 1 of SIMPLEX returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution in line 17, that solution is a feasible solution to the linear program. If SIMPLEX returns "unbounded" in line 11, the linear program is unbounded.

Proof We use the following three-part loop invariant:

At the start of each iteration of the while loop of lines 3–12,

- 1. the slack form is equivalent to the slack form returned by the call of INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$, and
- 3. the basic solution associated with the slack form is feasible.

Initialization: The equivalence of the slack forms is trivial for the first iteration. We assume, in the statement of the lemma, that the call to INITIALIZE-SIMPLEX in line 1 of SIMPLEX returns a slack form for which the basic solution is feasible. Thus, the third part of the invariant is true. Because the basic solution is feasible, each basic variable x_i is nonnegative. Furthermore, since the basic solution sets each basic variable x_i to b_i , we have that $b_i \geq 0$ for all $i \in B$. Thus, the second part of the invariant holds.

Maintenance: We shall show that each iteration of the **while** loop maintains the loop invariant, assuming that the **return** statement in line 11 does not execute. We shall handle the case in which line 11 executes when we discuss termination.

An iteration of the **while** loop exchanges the role of a basic and a nonbasic variable by calling the PIVOT procedure. By Exercise 29.3-3, the slack form is equivalent to the one from the previous iteration which, by the loop invariant, is equivalent to the initial slack form.

We now demonstrate the second part of the loop invariant. We assume that at the start of each iteration of the **while** loop, $b_i \geq 0$ for each $i \in B$, and we shall show that these inequalities remain true after the call to PIVOT in line 12. Since the only changes to the variables b_i and the set B of basic variables occur in this assignment, it suffices to show that line 12 maintains this part of the invariant. We let b_i , a_{ij} , and B refer to values before the call of PIVOT, and \hat{b}_i refer to values returned from PIVOT.

First, we observe that $\hat{b}_e \ge 0$ because $b_l \ge 0$ by the loop invariant, $a_{le} > 0$ by lines 6 and 9 of SIMPLEX, and $\hat{b}_e = b_l/a_{le}$ by line 3 of PIVOT.

For the remaining indices $i \in B - \{l\}$, we have that

$$\hat{b}_i = b_i - a_{ie}\hat{b}_e$$
 (by line 9 of PIVOT)
= $b_i - a_{ie}(b_l/a_{le})$ (by line 3 of PIVOT) . (29.76)

We have two cases to consider, depending on whether $a_{ie} > 0$ or $a_{ie} \le 0$. If $a_{ie} > 0$, then since we chose l such that

$$b_l/a_{le} \le b_i/a_{ie} \quad \text{for all } i \in B , \qquad (29.77)$$

we have

$$\hat{b}_i = b_i - a_{ie}(b_l/a_{le}) \text{ (by equation (29.76))}$$

$$\geq b_i - a_{ie}(b_i/a_{ie}) \text{ (by inequality (29.77))}$$

$$= b_i - b_i$$

$$= 0.$$

and thus $\hat{b}_i \geq 0$. If $a_{ie} \leq 0$, then because a_{le} , b_i , and b_l are all nonnegative, equation (29.76) implies that \hat{b}_i must be nonnegative, too.

We now argue that the basic solution is feasible, i.e., that all variables have non-negative values. The nonbasic variables are set to 0 and thus are nonnegative. Each basic variable x_i is defined by the equation

$$x_i = b_i - \sum_{j \in N} a_{ij} x_j .$$

The basic solution sets $\bar{x}_i = b_i$. Using the second part of the loop invariant, we conclude that each basic variable \bar{x}_i is nonnegative.

Termination: The **while** loop can terminate in one of two ways. If it terminates because of the condition in line 3, then the current basic solution is feasible and line 17 returns this solution. The other way it terminates is by returning "unbounded" in line 11. In this case, for each iteration of the **for** loop in lines 5–8, when line 6 is executed, we find that $a_{ie} \le 0$. Consider the solution \bar{x} defined as

$$\bar{x}_i = \begin{cases} \infty & \text{if } i = e ,\\ 0 & \text{if } i \in N - \{e\} ,\\ b_i - \sum_{j \in N} a_{ij} \bar{x}_j & \text{if } i \in B . \end{cases}$$

We now show that this solution is feasible, i.e., that all variables are nonnegative. The nonbasic variables other than \bar{x}_e are 0, and $\bar{x}_e = \infty > 0$; thus all nonbasic variables are nonnegative. For each basic variable \bar{x}_i , we have

$$\bar{x}_i = b_i - \sum_{j \in N} a_{ij} \bar{x}_j$$
$$= b_i - a_{ie} \bar{x}_e.$$

The loop invariant implies that $b_i \ge 0$, and we have $a_{ie} \le 0$ and $\bar{x}_e = \infty > 0$. Thus, $\bar{x}_i \ge 0$.

Now we show that the objective value for the solution \bar{x} is unbounded. From equation (29.42), the objective value is

$$z = v + \sum_{j \in N} c_j \bar{x}_j$$
$$= v + c_e \bar{x}_e.$$

Since $c_e > 0$ (by line 4 of SIMPLEX) and $\bar{x}_e = \infty$, the objective value is ∞ , and thus the linear program is unbounded.

It remains to show that SIMPLEX terminates, and when it does terminate, the solution it returns is optimal. Section 29.4 will address optimality. We now discuss termination.

Termination

In the example given in the beginning of this section, each iteration of the simplex algorithm increased the objective value associated with the basic solution. As Exercise 29.3-2 asks you to show, no iteration of SIMPLEX can decrease the objective value associated with the basic solution. Unfortunately, it is possible that an iteration leaves the objective value unchanged. This phenomenon is called *degeneracy*, and we shall now study it in greater detail.

The assignment in line 14 of PIVOT, $\hat{v} = v + c_e \hat{b}_e$, changes the objective value. Since SIMPLEX calls PIVOT only when $c_e > 0$, the only way for the objective value to remain unchanged (i.e., $\hat{v} = v$) is for \hat{b}_e to be 0. This value is assigned as $\hat{b}_e = b_l/a_{le}$ in line 3 of PIVOT. Since we always call PIVOT with $a_{le} \neq 0$, we see that for \hat{b}_e to equal 0, and hence the objective value to be unchanged, we must have $b_l = 0$.

Indeed, this situation can occur. Consider the linear program

$$z = x_1 + x_2 + x_3$$

 $x_4 = 8 - x_1 - x_2$
 $x_5 = x_2 - x_3$.

Suppose that we choose x_1 as the entering variable and x_4 as the leaving variable. After pivoting, we obtain

$$z = 8$$
 + x_3 - x_4
 $x_1 = 8$ - x_2 - x_4
 $x_5 =$ x_2 - x_3 .

At this point, our only choice is to pivot with x_3 entering and x_5 leaving. Since $b_5 = 0$, the objective value of 8 remains unchanged after pivoting:

$$z = 8 + x_2 - x_4 - x_5$$

$$x_1 = 8 - x_2 - x_4$$

$$x_3 = x_2 - x_5$$

The objective value has not changed, but our slack form has. Fortunately, if we pivot again, with x_2 entering and x_1 leaving, the objective value increases (to 16), and the simplex algorithm can continue.

Degeneracy can prevent the simplex algorithm from terminating, because it can lead to a phenomenon known as *cycling*: the slack forms at two different iterations of SIMPLEX are identical. Because of degeneracy, SIMPLEX could choose a sequence of pivot operations that leave the objective value unchanged but repeat a slack form within the sequence. Since SIMPLEX is a deterministic algorithm, if it cycles, then it will cycle through the same series of slack forms forever, never terminating.

Cycling is the only reason that SIMPLEX might not terminate. To show this fact, we must first develop some additional machinery.

At each iteration, SIMPLEX maintains A, b, c, and v in addition to the sets N and B. Although we need to explicitly maintain A, b, c, and v in order to implement the simplex algorithm efficiently, we can get by without maintaining them. In other words, the sets of basic and nonbasic variables suffice to uniquely determine the slack form. Before proving this fact, we prove a useful algebraic lemma.

Lemma 29.3

Let I be a set of indices. For each $j \in I$, let α_j and β_j be real numbers, and let x_j be a real-valued variable. Let γ be any real number. Suppose that for any settings of the x_j , we have

$$\sum_{j \in I} \alpha_j x_j = \gamma + \sum_{j \in I} \beta_j x_j . \tag{29.78}$$

Then $\alpha_j = \beta_j$ for each $j \in I$, and $\gamma = 0$.

Proof Since equation (29.78) holds for any values of the x_j , we can use particular values to draw conclusions about α , β , and γ . If we let $x_j = 0$ for each $j \in I$, we conclude that $\gamma = 0$. Now pick an arbitrary index $j \in I$, and set $x_j = 1$ and $x_k = 0$ for all $k \neq j$. Then we must have $\alpha_j = \beta_j$. Since we picked j as any index in I, we conclude that $\alpha_j = \beta_j$ for each $j \in I$.

A particular linear program has many different slack forms; recall that each slack form has the same set of feasible and optimal solutions as the original linear program. We now show that the slack form of a linear program is uniquely determined by the set of basic variables. That is, given the set of basic variables, a unique slack form (unique set of coefficients and right-hand sides) is associated with those basic variables.

Lemma 29.4

Let (A, b, c) be a linear program in standard form. Given a set B of basic variables, the associated slack form is uniquely determined.

Proof Assume for the purpose of contradiction that there are two different slack forms with the same set B of basic variables. The slack forms must also have identical sets $N = \{1, 2, ..., n + m\} - B$ of nonbasic variables. We write the first slack form as

$$z = \nu + \sum_{j \in N} c_j x_j \tag{29.79}$$

$$x_i = b_i - \sum_{j \in N} a_{ij} x_j \text{ for } i \in B, \qquad (29.80)$$

and the second as

$$z = v' + \sum_{j \in N} c'_j x_j \tag{29.81}$$

$$x_i = b'_i - \sum_{j \in N} a'_{ij} x_j \text{ for } i \in B.$$
 (29.82)

Consider the system of equations formed by subtracting each equation in line (29.82) from the corresponding equation in line (29.80). The resulting system is

$$0 = (b_i - b'_i) - \sum_{j \in N} (a_{ij} - a'_{ij}) x_j \text{ for } i \in B$$

or, equivalently,

$$\sum_{j \in N} a_{ij} x_j = (b_i - b_i') + \sum_{j \in N} a_{ij}' x_j \quad \text{for } i \in B .$$

Now, for each $i \in B$, apply Lemma 29.3 with $\alpha_j = a_{ij}$, $\beta_j = a'_{ij}$, $\gamma = b_i - b'_i$, and I = N. Since $\alpha_i = \beta_i$, we have that $a_{ij} = a'_{ij}$ for each $j \in N$, and since $\gamma = 0$, we have that $b_i = b'_i$. Thus, for the two slack forms, A and b are identical to A' and b'. Using a similar argument, Exercise 29.3-1 shows that it must also be the case that c = c' and v = v', and hence that the slack forms must be identical.

We can now show that cycling is the only possible reason that SIMPLEX might not terminate.

Lemma 29.5

If SIMPLEX fails to terminate in at most $\binom{n+m}{m}$ iterations, then it cycles.

Proof By Lemma 29.4, the set B of basic variables uniquely determines a slack form. There are n+m variables and |B|=m, and therefore, there are at most $\binom{n+m}{m}$ ways to choose B. Thus, there are only at most $\binom{n+m}{m}$ unique slack forms. Therefore, if SIMPLEX runs for more than $\binom{n+m}{m}$ iterations, it must cycle.

Cycling is theoretically possible, but extremely rare. We can prevent it by choosing the entering and leaving variables somewhat more carefully. One option is to perturb the input slightly so that it is impossible to have two solutions with the same objective value. Another option is to break ties by always choosing the variable with the smallest index, a strategy known as *Bland's rule*. We omit the proof that these strategies avoid cycling.

Lemma 29.6

If lines 4 and 9 of SIMPLEX always break ties by choosing the variable with the smallest index, then SIMPLEX must terminate.

We conclude this section with the following lemma.

Lemma 29.7

Assuming that INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that a linear program is unbounded, or it terminates with a feasible solution in at most $\binom{n+m}{m}$ iterations.

Proof Lemmas 29.2 and 29.6 show that if INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that a linear program is unbounded, or it terminates with a feasible solution. By the contrapositive of Lemma 29.5, if SIMPLEX terminates with a feasible solution, then it terminates in at most $\binom{n+m}{m}$ iterations.

Exercises

29.3-1

Complete the proof of Lemma 29.4 by showing that it must be the case that c = c' and v = v'.

29.3-2

Show that the call to PIVOT in line 12 of SIMPLEX never decreases the value of ν .

29.3-3

Prove that the slack form given to the PIVOT procedure and the slack form that the procedure returns are equivalent.

29.3-4

Suppose we convert a linear program (A, b, c) in standard form to slack form. Show that the basic solution is feasible if and only if $b_i \ge 0$ for i = 1, 2, ..., m.

29.3-5

Solve the following linear program using SIMPLEX:

maximize
$$18x_1 + 12.5x_2$$

subject to $x_1 + x_2 \le 20$
 $x_1 \le 12$
 $x_2 \le 16$
 $x_1, x_2 \ge 0$.

29.3-6

Solve the following linear program using SIMPLEX:

maximize
$$5x_1 - 3x_2$$

subject to
$$x_1 - x_2 \leq 1$$

$$2x_1 + x_2 \leq 2$$

$$x_1, x_2 \geq 0$$

29.3-7

Solve the following linear program using SIMPLEX:

29.3-8

In the proof of Lemma 29.5, we argued that there are at most $\binom{m+n}{n}$ ways to choose a set B of basic variables. Give an example of a linear program in which there are strictly fewer than $\binom{m+n}{n}$ ways to choose the set B.

29.4 Duality

We have proven that, under certain assumptions, SIMPLEX terminates. We have not yet shown that it actually finds an optimal solution to a linear program, however. In order to do so, we introduce a powerful concept called *linear-programming duality*.

Duality enables us to prove that a solution is indeed optimal. We saw an example of duality in Chapter 26 with Theorem 26.6, the max-flow min-cut theorem. Suppose that, given an instance of a maximum-flow problem, we find a flow f with value |f|. How do we know whether f is a maximum flow? By the max-flow min-cut theorem, if we can find a cut whose value is also |f|, then we have verified that f is indeed a maximum flow. This relationship provides an example of duality: given a maximization problem, we define a related minimization problem such that the two problems have the same optimal objective values.

Given a linear program in which the objective is to maximize, we shall describe how to formulate a *dual* linear program in which the objective is to minimize and

whose optimal value is identical to that of the original linear program. When referring to dual linear programs, we call the original linear program the *primal*.

Given a primal linear program in standard form, as in (29.16)–(29.18), we define the dual linear program as

$$\min \sum_{i=1}^{m} b_i y_i \tag{29.83}$$

subject to

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad \text{for } j = 1, 2, \dots, n ,$$
 (29.84)

$$y_i \ge 0 \quad \text{for } i = 1, 2, \dots, m \ .$$
 (29.85)

To form the dual, we change the maximization to a minimization, exchange the roles of coefficients on the right-hand sides and the objective function, and replace each less-than-or-equal-to by a greater-than-or-equal-to. Each of the m constraints in the primal has an associated variable y_i in the dual, and each of the n constraints in the dual has an associated variable x_i in the primal. For example, consider the linear program given in (29.53)–(29.57). The dual of this linear program is

minimize
$$30y_1 + 24y_2 + 36y_3$$
 (29.86) subject to

$$y_1 + 2y_2 + 4y_3 \ge 3$$
 (29.87)

$$y_1 + 2y_2 + y_3 \ge 1$$
 (29.88)

$$y_1 + 2y_2 + 4y_3 \ge 3$$
 (29.87)
 $y_1 + 2y_2 + y_3 \ge 1$ (29.88)
 $3y_1 + 5y_2 + 2y_3 \ge 2$ (29.89)
 $y_1, y_2, y_3 \ge 0$. (29.90)

$$y_1, y_2, y_3 \ge 0 . (29.90)$$

We shall show in Theorem 29.10 that the optimal value of the dual linear program is always equal to the optimal value of the primal linear program. Furthermore, the simplex algorithm actually implicitly solves both the primal and the dual linear programs simultaneously, thereby providing a proof of optimality.

We begin by demonstrating weak duality, which states that any feasible solution to the primal linear program has a value no greater than that of any feasible solution to the dual linear program.

Lemma 29.8 (Weak linear-programming duality)

Let \bar{x} be any feasible solution to the primal linear program in (29.16)–(29.18) and let \bar{y} be any feasible solution to the dual linear program in (29.83)–(29.85). Then, we have

$$\sum_{j=1}^n c_j \bar{x}_j \le \sum_{i=1}^m b_i \bar{y}_i .$$

Proof We have

$$\sum_{j=1}^{n} c_{j} \bar{x}_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \bar{y}_{i} \right) \bar{x}_{j} \quad \text{(by inequalities (29.84))}$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \bar{x}_{j} \right) \bar{y}_{i}$$

$$\leq \sum_{i=1}^{m} b_{i} \bar{y}_{i} \quad \text{(by inequalities (29.17))}.$$

Corollary 29.9

Let \bar{x} be a feasible solution to a primal linear program (A, b, c), and let \bar{y} be a feasible solution to the corresponding dual linear program. If

$$\sum_{j=1}^{n} c_{j} \bar{x}_{j} = \sum_{i=1}^{m} b_{i} \bar{y}_{i} ,$$

then \bar{x} and \bar{y} are optimal solutions to the primal and dual linear programs, respectively.

Proof By Lemma 29.8, the objective value of a feasible solution to the primal cannot exceed that of a feasible solution to the dual. The primal linear program is a maximization problem and the dual is a minimization problem. Thus, if feasible solutions \bar{x} and \bar{y} have the same objective value, neither can be improved.

Before proving that there always is a dual solution whose value is equal to that of an optimal primal solution, we describe how to find such a solution. When we ran the simplex algorithm on the linear program in (29.53)–(29.57), the final iteration yielded the slack form (29.72)–(29.75) with objective $z=28-x_3/6-x_5/6-2x_6/3$, $B=\{1,2,4\}$, and $N=\{3,5,6\}$. As we shall show below, the basic solution associated with the final slack form is indeed an optimal solution to the linear program; an optimal solution to linear program (29.53)–(29.57) is therefore $(\bar{x}_1,\bar{x}_2,\bar{x}_3)=(8,4,0)$, with objective value $(3\cdot8)+(1\cdot4)+(2\cdot0)=28$. As we also show below, we can read off an optimal dual solution: the negatives of the coefficients of the primal objective function are the values of the dual variables. More precisely, suppose that the last slack form of the primal is

$$z = \nu' + \sum_{j \in N} c'_j x_j$$

$$x_i = b'_i - \sum_{j \in N} a'_{ij} x_j \text{ for } i \in B.$$

Then, to produce an optimal dual solution, we set

$$\bar{y}_i = \begin{cases} -c'_{n+i} & \text{if } (n+i) \in N, \\ 0 & \text{otherwise}. \end{cases}$$
 (29.91)

Thus, an optimal solution to the dual linear program defined in (29.86)–(29.90) is $\bar{y}_1 = 0$ (since $n+1=4 \in B$), $\bar{y}_2 = -c_5' = 1/6$, and $\bar{y}_3 = -c_6' = 2/3$. Evaluating the dual objective function (29.86), we obtain an objective value of $(30 \cdot 0) + (24 \cdot (1/6)) + (36 \cdot (2/3)) = 28$, which confirms that the objective value of the primal is indeed equal to the objective value of the dual. Combining these calculations with Lemma 29.8 yields a proof that the optimal objective value of the primal linear program is 28. We now show that this approach applies in general: we can find an optimal solution to the dual and simultaneously prove that a solution to the primal is optimal.

Theorem 29.10 (Linear-programming duality)

Suppose that SIMPLEX returns values $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$ for the primal linear program (A, b, c). Let N and B denote the nonbasic and basic variables for the final slack form, let c' denote the coefficients in the final slack form, and let $\bar{y} = (\bar{y}_1, \bar{y}_2, \dots, \bar{y}_m)$ be defined by equation (29.91). Then \bar{x} is an optimal solution to the primal linear program, \bar{y} is an optimal solution to the dual linear program, and

$$\sum_{i=1}^{n} c_j \bar{x}_j = \sum_{i=1}^{m} b_i \bar{y}_i . \tag{29.92}$$

Proof By Corollary 29.9, if we can find feasible solutions \bar{x} and \bar{y} that satisfy equation (29.92), then \bar{x} and \bar{y} must be optimal primal and dual solutions. We shall now show that the solutions \bar{x} and \bar{y} described in the statement of the theorem satisfy equation (29.92).

Suppose that we run SIMPLEX on a primal linear program, as given in lines (29.16)–(29.18). The algorithm proceeds through a series of slack forms until it terminates with a final slack form with objective function

$$z = v' + \sum_{j \in N} c'_j x_j . (29.93)$$

Since SIMPLEX terminated with a solution, by the condition in line 3 we know that

$$c_i' \le 0 \quad \text{for all } j \in N \ . \tag{29.94}$$

If we define

$$c'_{j} = 0 \quad \text{for all } j \in B , \qquad (29.95)$$

we can rewrite equation (29.93) as

$$z = v' + \sum_{j \in N} c'_j x_j$$

$$= v' + \sum_{j \in N} c'_j x_j + \sum_{j \in B} c'_j x_j \text{ (because } c'_j = 0 \text{ if } j \in B)$$

$$= v' + \sum_{j=1}^{n+m} c'_j x_j \text{ (because } N \cup B = \{1, 2, \dots, n+m\}). (29.96)$$

For the basic solution \bar{x} associated with this final slack form, $\bar{x}_j = 0$ for all $j \in N$, and z = v'. Since all slack forms are equivalent, if we evaluate the original objective function on \bar{x} , we must obtain the same objective value:

$$\sum_{j=1}^{n} c_{j} \bar{x}_{j} = \nu' + \sum_{j=1}^{n+m} c'_{j} \bar{x}_{j}$$

$$= \nu' + \sum_{j \in N} c'_{j} \bar{x}_{j} + \sum_{j \in B} c'_{j} \bar{x}_{j}$$

$$= \nu' + \sum_{j \in N} (c'_{j} \cdot 0) + \sum_{j \in B} (0 \cdot \bar{x}_{j})$$

$$= \nu'$$
(29.97)
$$(29.98)$$

We shall now show that \bar{y} , defined by equation (29.91), is feasible for the dual linear program and that its objective value $\sum_{i=1}^{m} b_i \bar{y}_i$ equals $\sum_{j=1}^{n} c_j \bar{x}_j$. Equation (29.97) says that the first and last slack forms, evaluated at \bar{x} , are equal. More generally, the equivalence of all slack forms implies that for *any* set of values $x = (x_1, x_2, \dots, x_n)$, we have

$$\sum_{j=1}^{n} c_j x_j = v' + \sum_{j=1}^{n+m} c'_j x_j .$$

Therefore, for any particular set of values $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$, we have

$$\sum_{j=1}^{n} c_{j}\bar{x}_{j}$$

$$= v' + \sum_{j=1}^{n+m} c'_{j}\bar{x}_{j}$$

$$= v' + \sum_{j=1}^{n} c'_{j}\bar{x}_{j} + \sum_{j=n+1}^{n+m} c'_{j}\bar{x}_{j}$$

$$= v' + \sum_{j=1}^{n} c'_{j}\bar{x}_{j} + \sum_{i=1}^{m} c'_{n+i}\bar{x}_{n+i}$$

$$= v' + \sum_{j=1}^{n} c'_{j}\bar{x}_{j} + \sum_{i=1}^{m} (-\bar{y}_{i})\bar{x}_{n+i} \qquad \text{(by equations (29.91) and (29.95))}$$

$$= v' + \sum_{j=1}^{n} c'_{j}\bar{x}_{j} + \sum_{i=1}^{m} (-\bar{y}_{i}) \left(b_{i} - \sum_{j=1}^{n} a_{ij}\bar{x}_{j}\right) \qquad \text{(by equation (29.32))}$$

$$= v' + \sum_{j=1}^{n} c'_{j}\bar{x}_{j} - \sum_{i=1}^{m} b_{i}\bar{y}_{i} + \sum_{i=1}^{m} \sum_{j=1}^{m} (a_{ij}\bar{x}_{j})\bar{y}_{i}$$

$$= v' + \sum_{j=1}^{n} c'_{j}\bar{x}_{j} - \sum_{i=1}^{m} b_{i}\bar{y}_{i} + \sum_{j=1}^{n} \sum_{i=1}^{m} (a_{ij}\bar{y}_{i})\bar{x}_{j}$$

$$= \left(v' - \sum_{i=1}^{m} b_{i}\bar{y}_{i}\right) + \sum_{j=1}^{n} \left(c'_{j} + \sum_{i=1}^{m} a_{ij}\bar{y}_{i}\right)\bar{x}_{j},$$

so that

$$\sum_{j=1}^{n} c_j \bar{x}_j = \left(v' - \sum_{i=1}^{m} b_i \bar{y}_i \right) + \sum_{j=1}^{n} \left(c'_j + \sum_{i=1}^{m} a_{ij} \bar{y}_i \right) \bar{x}_j . \tag{29.99}$$

Applying Lemma 29.3 to equation (29.99), we obtain

$$\nu' - \sum_{i=1}^{m} b_i \, \bar{y}_i = 0 \,, \tag{29.100}$$

$$c'_j + \sum_{i=1}^m a_{ij}\bar{y}_i = c_j \text{ for } j = 1, 2, \dots, n.$$
 (29.101)

By equation (29.100), we have that $\sum_{i=1}^{m} b_i \bar{y}_i = \nu'$, and hence the objective value of the dual $\left(\sum_{i=1}^{m} b_i \bar{y}_i\right)$ is equal to that of the primal (ν') . It remains to show

that the solution \bar{y} is feasible for the dual problem. From inequalities (29.94) and equations (29.95), we have that $c_j' \leq 0$ for all j = 1, 2, ..., n + m. Hence, for any j = 1, 2, ..., n, equations (29.101) imply that

$$c_j = c'_j + \sum_{i=1}^m a_{ij} \bar{y}_i$$

$$\leq \sum_{i=1}^m a_{ij} \bar{y}_i,$$

which satisfies the constraints (29.84) of the dual. Finally, since $c'_j \leq 0$ for each $j \in N \cup B$, when we set \bar{y} according to equation (29.91), we have that each $\bar{y}_i \geq 0$, and so the nonnegativity constraints are satisfied as well.

We have shown that, given a feasible linear program, if INITIALIZE-SIMPLEX returns a feasible solution, and if SIMPLEX terminates without returning "unbounded," then the solution returned is indeed an optimal solution. We have also shown how to construct an optimal solution to the dual linear program.

Exercises

29.4-1

Formulate the dual of the linear program given in Exercise 29.3-5.

29.4-2

Suppose that we have a linear program that is not in standard form. We could produce the dual by first converting it to standard form, and then taking the dual. It would be more convenient, however, to be able to produce the dual directly. Explain how we can directly take the dual of an arbitrary linear program.

29.4-3

Write down the dual of the maximum-flow linear program, as given in lines (29.47)–(29.50) on page 860. Explain how to interpret this formulation as a minimum-cut problem.

29.4-4

Write down the dual of the minimum-cost-flow linear program, as given in lines (29.51)–(29.52) on page 862. Explain how to interpret this problem in terms of graphs and flows.

29.4-5

Show that the dual of the dual of a linear program is the primal linear program.

29.4-6

Which result from Chapter 26 can be interpreted as weak duality for the maximum-flow problem?

29.5 The initial basic feasible solution

In this section, we first describe how to test whether a linear program is feasible, and if it is, how to produce a slack form for which the basic solution is feasible. We conclude by proving the fundamental theorem of linear programming, which says that the SIMPLEX procedure always produces the correct result.

Finding an initial solution

In Section 29.3, we assumed that we had a procedure INITIALIZE-SIMPLEX that determines whether a linear program has any feasible solutions, and if it does, gives a slack form for which the basic solution is feasible. We describe this procedure here.

A linear program can be feasible, yet the initial basic solution might not be feasible. Consider, for example, the following linear program:

maximize
$$2x_1 - x_2$$
 (29.102)

subject to

$$2x_1 - x_2 \le 2 (29.103)$$

$$x_1 - 5x_2 \le -4 \tag{29.104}$$

$$x_1, x_2 \ge 0$$
 . (29.105)

If we were to convert this linear program to slack form, the basic solution would set $x_1 = 0$ and $x_2 = 0$. This solution violates constraint (29.104), and so it is not a feasible solution. Thus, INITIALIZE-SIMPLEX cannot just return the obvious slack form. In order to determine whether a linear program has any feasible solutions, we will formulate an *auxiliary linear program*. For this auxiliary linear program, we can find (with a little work) a slack form for which the basic solution is feasible. Furthermore, the solution of this auxiliary linear program determines whether the initial linear program is feasible and if so, it provides a feasible solution with which we can initialize SIMPLEX.

Lemma 29.11

Let L be a linear program in standard form, given as in (29.16)–(29.18). Let x_0 be a new variable, and let L_{aux} be the following linear program with n+1 variables:

$$maximize -x_0 (29.106)$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_j - x_0 \le b_i \quad \text{for } i = 1, 2, \dots, m ,$$
 (29.107)

$$x_i \ge 0 \quad \text{for } j = 0, 1, \dots, n$$
 (29.108)

Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof Suppose that L has a feasible solution $\bar{x} = (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$. Then the solution $\bar{x}_0 = 0$ combined with \bar{x} is a feasible solution to L_{aux} with objective value 0. Since $x_0 \geq 0$ is a constraint of L_{aux} and the objective function is to maximize $-x_0$, this solution must be optimal for L_{aux} .

Conversely, suppose that the optimal objective value of L_{aux} is 0. Then $\bar{x}_0 = 0$, and the remaining solution values of \bar{x} satisfy the constraints of L.

We now describe our strategy to find an initial basic feasible solution for a linear program L in standard form:

INITIALIZE-SIMPLEX (A, b, c)

- 1 let k be the index of the minimum b_i
- 2 if $b_k \ge 0$ // is the initial basic solution feasible?
- return $\{1, 2, \dots, n\}, \{n+1, n+2, \dots, n+m\}, A, b, c, 0\}$
- 4 form L_{aux} by adding $-x_0$ to the left-hand side of each constraint and setting the objective function to $-x_0$
- 5 let (N, B, A, b, c, v) be the resulting slack form for L_{aux}
- 6 l = n + k
- 7 // L_{aux} has n + 1 nonbasic variables and m basic variables.
- 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
- 9 // The basic solution is now feasible for L_{aux} .
- 10 iterate the **while** loop of lines 3–12 of SIMPLEX until an optimal solution to $L_{\rm aux}$ is found
- 11 **if** the optimal solution to L_{aux} sets \bar{x}_0 to 0
- 12 **if** \bar{x}_0 is basic
- perform one (degenerate) pivot to make it nonbasic
- from the final slack form of L_{aux} , remove x_0 from the constraints and restore the original objective function of L, but replace each basic variable in this objective function by the right-hand side of its associated constraint
- return the modified final slack form
- 16 **else return** "infeasible"

INITIALIZE-SIMPLEX works as follows. In lines 1–3, we implicitly test the basic solution to the initial slack form for L given by $N = \{1, 2, \dots, n\}, B = \{1, 2, \dots, n\}$ $\{n+1, n+2, \ldots, n+m\}, \bar{x}_i = b_i \text{ for all } i \in B, \text{ and } \bar{x}_i = 0 \text{ for all } j \in N.$ (Creating the slack form requires no explicit effort, as the values of A, b, and c are the same in both slack and standard forms.) If line 2 finds this basic solution to be feasible—that is, $\bar{x}_i \geq 0$ for all $i \in N \cup B$ —then line 3 returns the slack form. Otherwise, in line 4, we form the auxiliary linear program L_{aux} as in Lemma 29.11. Since the initial basic solution to L is not feasible, the initial basic solution to the slack form for L_{aux} cannot be feasible either. To find a basic feasible solution, we perform a single pivot operation. Line 6 selects l = n + k as the index of the basic variable that will be the leaving variable in the upcoming pivot operation. Since the basic variables are $x_{n+1}, x_{n+2}, \dots, x_{n+m}$, the leaving variable x_l will be the one with the most negative value. Line 8 performs that call of PIVOT, with x_0 entering and x_l leaving. We shall see shortly that the basic solution resulting from this call of PIVOT will be feasible. Now that we have a slack form for which the basic solution is feasible, we can, in line 10, repeatedly call PIVOT to fully solve the auxiliary linear program. As the test in line 11 demonstrates, if we find an optimal solution to L_{aux} with objective value 0, then in lines 12–14, we create a slack form for L for which the basic solution is feasible. To do so, we first, in lines 12–13, handle the degenerate case in which x_0 may still be basic with value $\bar{x}_0 = 0$. In this case, we perform a pivot step to remove x_0 from the basis, using any $e \in N$ such that $a_{0e} \neq 0$ as the entering variable. The new basic solution remains feasible; the degenerate pivot does not change the value of any variable. Next we delete all x_0 terms from the constraints and restore the original objective function for L. The original objective function may contain both basic and nonbasic variables. Therefore, in the objective function we replace each basic variable by the right-hand side of its associated constraint. Line 15 then returns this modified slack form. If, on the other hand, line 11 discovers that the original linear program L is infeasible, then line 16 returns this information.

We now demonstrate the operation of INITIALIZE-SIMPLEX on the linear program (29.102)–(29.105). This linear program is feasible if we can find nonnegative values for x_1 and x_2 that satisfy inequalities (29.103) and (29.104). Using Lemma 29.11, we formulate the auxiliary linear program

$$maximize -x_0 (29.109)$$

subject to

$$2x_1 - x_2 - x_0 \le 2 (29.110)$$

$$x_1 - 5x_2 - x_0 \le -4$$
 (29.111)
 $x_1, x_2, x_0 \ge 0$.

By Lemma 29.11, if the optimal objective value of this auxiliary linear program is 0, then the original linear program has a feasible solution. If the optimal objective

value of this auxiliary linear program is negative, then the original linear program does not have a feasible solution.

We write this linear program in slack form, obtaining

$$\begin{aligned}
 z &= & - x_0 \\
 x_3 &= 2 - 2x_1 + x_2 + x_0 \\
 x_4 &= -4 - x_1 + 5x_2 + x_0
 \end{aligned}$$

We are not out of the woods yet, because the basic solution, which would set $x_4 = -4$, is not feasible for this auxiliary linear program. We can, however, with one call to PIVOT, convert this slack form into one in which the basic solution is feasible. As line 8 indicates, we choose x_0 to be the entering variable. In line 6, we choose as the leaving variable x_4 , which is the basic variable whose value in the basic solution is most negative. After pivoting, we have the slack form

$$z = -4 - x_1 + 5x_2 - x_4$$

$$x_0 = 4 + x_1 - 5x_2 + x_4$$

$$x_3 = 6 - x_1 - 4x_2 + x_4$$

The associated basic solution is $(\bar{x}_0, \bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{x}_4) = (4, 0, 0, 6, 0)$, which is feasible. We now repeatedly call PIVOT until we obtain an optimal solution to L_{aux} . In this case, one call to PIVOT with x_2 entering and x_0 leaving yields

$$z = -x_0$$

$$x_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

This slack form is the final solution to the auxiliary problem. Since this solution has $x_0 = 0$, we know that our initial problem was feasible. Furthermore, since $x_0 = 0$, we can just remove it from the set of constraints. We then restore the original objective function, with appropriate substitutions made to include only nonbasic variables. In our example, we get the objective function

$$2x_1 - x_2 = 2x_1 - \left(\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}\right).$$

Setting $x_0 = 0$ and simplifying, we get the objective function

$$-\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5} ,$$

and the slack form

$$z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

$$x_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

This slack form has a feasible basic solution, and we can return it to procedure SIMPLEX.

We now formally show the correctness of INITIALIZE-SIMPLEX.

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible." Otherwise, it returns a valid slack form for which the basic solution is feasible.

Proof First suppose that the linear program L has no feasible solution. Then by Lemma 29.11, the optimal objective value of $L_{\rm aux}$, defined in (29.106)–(29.108), is nonzero, and by the nonnegativity constraint on x_0 , the optimal objective value must be negative. Furthermore, this objective value must be finite, since setting $x_i = 0$, for $i = 1, 2, \ldots, n$, and $x_0 = |\min_{i=1}^m \{b_i\}|$ is feasible, and this solution has objective value $-|\min_{i=1}^m \{b_i\}|$. Therefore, line 10 of INITIALIZE-SIMPLEX finds a solution with a nonpositive objective value. Let \bar{x} be the basic solution associated with the final slack form. We cannot have $\bar{x}_0 = 0$, because then $L_{\rm aux}$ would have objective value 0, which contradicts that the objective value is negative. Thus the test in line 11 results in line 16 returning "infeasible."

Suppose now that the linear program L does have a feasible solution. From Exercise 29.3-4, we know that if $b_i \ge 0$ for i = 1, 2, ..., m, then the basic solution associated with the initial slack form is feasible. In this case, lines 2–3 return the slack form associated with the input. (Converting the standard form to slack form is easy, since A, b, and c are the same in both.)

In the remainder of the proof, we handle the case in which the linear program is feasible but we do not return in line 3. We argue that in this case, lines 4–10 find a feasible solution to $L_{\rm aux}$ with objective value 0. First, by lines 1–2, we must have

$$b_k < 0$$
,

and

$$b_k \le b_i \quad \text{for each } i \in B \ . \tag{29.112}$$

In line 8, we perform one pivot operation in which the leaving variable x_l (recall that l = n + k, so that $b_l < 0$) is the left-hand side of the equation with minimum b_i , and the entering variable is x_0 , the extra added variable. We now show

that after this pivot, all entries of b are nonnegative, and hence the basic solution to L_{aux} is feasible. Letting \bar{x} be the basic solution after the call to PIVOT, and letting \hat{b} and \hat{B} be values returned by PIVOT, Lemma 29.1 implies that

$$\bar{x}_{i} = \begin{cases} b_{i} - a_{ie}\hat{b}_{e} & \text{if } i \in \hat{B} - \{e\}, \\ b_{l}/a_{le} & \text{if } i = e. \end{cases}$$
 (29.113)

The call to PIVOT in line 8 has e=0. If we rewrite inequalities (29.107), to include coefficients a_{i0} ,

$$\sum_{i=0}^{n} a_{ij} x_j \le b_i \quad \text{for } i = 1, 2, \dots, m ,$$
 (29.114)

then

$$a_{i0} = a_{ie} = -1$$
 for each $i \in B$. (29.115)

(Note that a_{i0} is the coefficient of x_0 as it appears in inequalities (29.114), not the negation of the coefficient, because L_{aux} is in standard rather than slack form.) Since $l \in B$, we also have that $a_{le} = -1$. Thus, $b_l/a_{le} > 0$, and so $\bar{x}_e > 0$. For the remaining basic variables, we have

$$\bar{x}_i = b_i - a_{ie}\hat{b}_e$$
 (by equation (29.113))
 $= b_i - a_{ie}(b_l/a_{le})$ (by line 3 of PIVOT)
 $= b_i - b_l$ (by equation (29.115) and $a_{le} = -1$)
 ≥ 0 (by inequality (29.112)),

which implies that each basic variable is now nonnegative. Hence the basic solution after the call to PIVOT in line 8 is feasible. We next execute line 10, which solves L_{aux} . Since we have assumed that L has a feasible solution, Lemma 29.11 implies that L_{aux} has an optimal solution with objective value 0. Since all the slack forms are equivalent, the final basic solution to L_{aux} must have $\bar{x}_0 = 0$, and after removing x_0 from the linear program, we obtain a slack form that is feasible for L. Line 15 then returns this slack form.

Fundamental theorem of linear programming

We conclude this chapter by showing that the SIMPLEX procedure works. In particular, any linear program either is infeasible, is unbounded, or has an optimal solution with a finite objective value. In each case, SIMPLEX acts appropriately.

Theorem 29.13 (Fundamental theorem of linear programming)

Any linear program L, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible." If L is unbounded, SIMPLEX returns "unbounded." Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof By Lemma 29.12, if linear program L is infeasible, then SIMPLEX returns "infeasible." Now suppose that the linear program L is feasible. By Lemma 29.12, INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible. By Lemma 29.7, therefore, SIMPLEX either returns "unbounded" or terminates with a feasible solution. If it terminates with a finite solution, then Theorem 29.10 tells us that this solution is optimal. On the other hand, if SIMPLEX returns "unbounded," Lemma 29.2 tells us the linear program L is indeed unbounded. Since SIMPLEX always terminates in one of these ways, the proof is complete.

Exercises

29.5-1

Give detailed pseudocode to implement lines 5 and 14 of INITIALIZE-SIMPLEX.

29.5-2

Show that when the main loop of SIMPLEX is run by INITIALIZE-SIMPLEX, it can never return "unbounded."

29.5-3

Suppose that we are given a linear program L in standard form, and suppose that for both L and the dual of L, the basic solutions associated with the initial slack forms are feasible. Show that the optimal objective value of L is 0.

29.5-4

Suppose that we allow strict inequalities in a linear program. Show that in this case, the fundamental theorem of linear programming does not hold.

29.5-5

Solve the following linear program using SIMPLEX:

maximize
$$x_1 + 3x_2$$

subject to $x_1 - x_2 \le 8$
 $-x_1 - x_2 \le -3$
 $-x_1 + 4x_2 \le 2$
 $x_1, x_2 \ge 0$.

29.5-6

Solve the following linear program using SIMPLEX:

29.5-7

Solve the following linear program using SIMPLEX:

maximize
$$x_1 + 3x_2$$

subject to $-x_1 + x_2 \le -1$
 $-x_1 - x_2 \le -3$
 $-x_1 + 4x_2 \le 2$
 $x_1, x_2 \ge 0$.

29.5-8

Solve the linear program given in (29.6)–(29.10).

29.5-9

Consider the following 1-variable linear program, which we call P:

maximize
$$tx$$
 subject to
$$rx \leq s$$

$$x \geq 0 ,$$

where r, s, and t are arbitrary real numbers. Let D be the dual of P.

State for which values of r, s, and t you can assert that

- 1. Both P and D have optimal solutions with finite objective values.
- 2. *P* is feasible, but *D* is infeasible.
- 3. *D* is feasible, but *P* is infeasible.
- 4. Neither *P* nor *D* is feasible.

Problems

29-1 Linear-inequality feasibility

Given a set of m linear inequalities on n variables x_1, x_2, \ldots, x_n , the **linear-inequality feasibility problem** asks whether there is a setting of the variables that simultaneously satisfies each of the inequalities.

- **a.** Show that if we have an algorithm for linear programming, we can use it to solve a linear-inequality feasibility problem. The number of variables and constraints that you use in the linear-programming problem should be polynomial in *n* and *m*.
- **b.** Show that if we have an algorithm for the linear-inequality feasibility problem, we can use it to solve a linear-programming problem. The number of variables and linear inequalities that you use in the linear-inequality feasibility problem should be polynomial in *n* and *m*, the number of variables and constraints in the linear program.

29-2 Complementary slackness

and

Complementary slackness describes a relationship between the values of primal variables and dual constraints and between the values of dual variables and primal constraints. Let \bar{x} be a feasible solution to the primal linear program given in (29.16)–(29.18), and let \bar{y} be a feasible solution to the dual linear program given in (29.83)–(29.85). Complementary slackness states that the following conditions are necessary and sufficient for \bar{x} and \bar{y} to be optimal:

$$\sum_{i=1}^{m} a_{ij} \bar{y}_i = c_j \text{ or } \bar{x}_j = 0 \text{ for } j = 1, 2, \dots, n$$

$$\sum_{i=1}^{n} a_{ij} \bar{x}_{j} = b_{i} \text{ or } \bar{y}_{i} = 0 \text{ for } i = 1, 2, \dots, m.$$

- a. Verify that complementary slackness holds for the linear program in lines (29.53)–(29.57).
- **b.** Prove that complementary slackness holds for any primal linear program and its corresponding dual.
- c. Prove that a feasible solution \bar{x} to a primal linear program given in lines (29.16)–(29.18) is optimal if and only if there exist values $\bar{y} = (\bar{y}_1, \bar{y}_2, \dots, \bar{y}_m)$ such that
 - 1. \bar{y} is a feasible solution to the dual linear program given in (29.83)–(29.85),
 - 2. $\sum_{i=1}^{m} a_{ij} \bar{y}_i = c_j$ for all j such that $\bar{x}_j > 0$, and
 - 3. $\bar{y}_i = 0$ for all i such that $\sum_{j=1}^n a_{ij}\bar{x}_j < b_i$.

29-3 Integer linear programming

An *integer linear-programming problem* is a linear-programming problem with the additional constraint that the variables *x* must take on integral values. Exercise 34.5-3 shows that just determining whether an integer linear program has a feasible solution is NP-hard, which means that there is no known polynomial-time algorithm for this problem.

- a. Show that weak duality (Lemma 29.8) holds for an integer linear program.
- **b.** Show that duality (Theorem 29.10) does not always hold for an integer linear program.
- c. Given a primal linear program in standard form, let us define P to be the optimal objective value for the primal linear program, D to be the optimal objective value for its dual, IP to be the optimal objective value for the integer version of the primal (that is, the primal with the added constraint that the variables take on integer values), and ID to be the optimal objective value for the integer version of the dual. Assuming that both the primal integer program and the dual integer program are feasible and bounded, show that

$$IP \leq P = D \leq ID$$
.

29-4 Farkas's lemma

Let A be an $m \times n$ matrix and c be an n-vector. Then Farkas's lemma states that exactly one of the systems

$$Ax \leq 0,$$

$$c^{T}x > 0$$
and
$$A^{T}y = c,$$

$$y > 0$$

is solvable, where x is an n-vector and y is an m-vector. Prove Farkas's lemma.

29-5 Minimum-cost circulation

In this problem, we consider a variant of the minimum-cost-flow problem from Section 29.2 in which we are not given a demand, a source, or a sink. Instead, we are given, as before, a flow network and edge costs a(u, v). A flow is feasible if it satisfies the capacity constraint on every edge and flow conservation at *every* vertex. The goal is to find, among all feasible flows, the one of minimum cost. We call this problem the *minimum-cost-circulation problem*.

- a. Formulate the minimum-cost-circulation problem as a linear program.
- **b.** Suppose that for all edges $(u, v) \in E$, we have a(u, v) > 0. Characterize an optimal solution to the minimum-cost-circulation problem.
- c. Formulate the maximum-flow problem as a minimum-cost-circulation problem linear program. That is given a maximum-flow problem instance G = (V, E) with source s, sink t and edge capacities c, create a minimum-cost-circulation problem by giving a (possibly different) network G' = (V', E') with edge capacities c' and edge costs a' such that you can discern a solution to the maximum-flow problem from a solution to the minimum-cost-circulation problem.
- **d.** Formulate the single-source shortest-path problem as a minimum-cost-circulation problem linear program.

Chapter notes

This chapter only begins to study the wide field of linear programming. A number of books are devoted exclusively to linear programming, including those by Chvátal [69], Gass [130], Karloff [197], Schrijver [303], and Vanderbei [344]. Many other books give a good coverage of linear programming, including those by Papadimitriou and Steiglitz [271] and Ahuja, Magnanti, and Orlin [7]. The coverage in this chapter draws on the approach taken by Chvátal.

The simplex algorithm for linear programming was invented by G. Dantzig in 1947. Shortly after, researchers discovered how to formulate a number of problems in a variety of fields as linear programs and solve them with the simplex algorithm. As a result, applications of linear programming flourished, along with several algorithms. Variants of the simplex algorithm remain the most popular methods for solving linear-programming problems. This history appears in a number of places, including the notes in [69] and [197].

The ellipsoid algorithm was the first polynomial-time algorithm for linear programming and is due to L. G. Khachian in 1979; it was based on earlier work by N. Z. Shor, D. B. Judin, and A. S. Nemirovskii. Grötschel, Lovász, and Schrijver [154] describe how to use the ellipsoid algorithm to solve a variety of problems in combinatorial optimization. To date, the ellipsoid algorithm does not appear to be competitive with the simplex algorithm in practice.

Karmarkar's paper [198] includes a description of the first interior-point algorithm. Many subsequent researchers designed interior-point algorithms. Good surveys appear in the article of Goldfarb and Todd [141] and the book by Ye [361].

Analysis of the simplex algorithm remains an active area of research. V. Klee and G. J. Minty constructed an example on which the simplex algorithm runs through $2^n - 1$ iterations. The simplex algorithm usually performs very well in practice and many researchers have tried to give theoretical justification for this empirical observation. A line of research begun by K. H. Borgwardt, and carried on by many others, shows that under certain probabilistic assumptions on the input, the simplex algorithm converges in expected polynomial time. Spielman and Teng [322] made progress in this area, introducing the "smoothed analysis of algorithms" and applying it to the simplex algorithm.

The simplex algorithm is known to run efficiently in certain special cases. Particularly noteworthy is the network-simplex algorithm, which is the simplex algorithm, specialized to network-flow problems. For certain network problems, including the shortest-paths, maximum-flow, and minimum-cost-flow problems, variants of the network-simplex algorithm run in polynomial time. See, for example, the article by Orlin [268] and the citations therein.