The Optimal Sequence of Prices and Auctions

Hanzhe Zhang

Michigan State University

May 2019

Auction Costs and Dynamic Buyer Arrival

- ▶ In theory, Myerson (1981) shows a second price auction with carefully chosen reserve price is optimal (expected profit maximizing).
- ▶ In practice,
 - 1. Costs: auctions are usually more costly and complicated than simple prices
 - ▶ More time needed to organize, higher display cost, more attention required from both buyers and sellers, sophistication of buyers, buyers' distaste for auctions.
 - 2. Dynamics: Buyers arrive over time.

This Paper

- ▶ Takes auction costs to sellers and buyers as given and looks at the optimal sequence of mechanism choices between prices and auctions when buyers arrive over time.
- Main result: For a wide range of auction costs and under various settings,
 - \blacktriangleright Prices-then-auctions mechanism sequence is optimal.
 - ► Any other mechanism sequence, e.g. auctions-prices, although feasible, is never optimal.
- ► Implication: The prices-then-auctions mechanism sequence resembles eBay's buy-it-now.

Related Literature

- 1. First to explicitly model intermingled choices between auctions and prices when buyers arrive over time
 - ► Wang (1993, AER), Dilme and Li (2014, REStud), Board and Skrzypacz (2016, JPE)

- 2. Provides a new justification of the use of buy-it-now option
 - ▶ Budish and Takeyama (2001, EL), Mathews (2004, JE), Anwar and Zheng (2015, GEB)

Basic Setup

- ► A monopolist of an indivisible good
- ▶ Lives for $T \in \{1, 2, \dots, \infty\}$ periods
- ▶ Discounts each period by $\delta \in [0, 1]$
- ▶ In each period the seller chooses between
 - a reserve price auction A_r with cost c
 - ightharpoonup a posted price P_p without cost
- ▶ In each period n buyers with independent private values $v \sim F$ are in the market
 - F satisfies monotone hazard rate (1-F)/f
 - ▶ Buyers are short-lived

Static Optimal Prices and Revenues - Graph

Static Optimal Mechanism

Proposition 1

Suppose T = 1. Let r^* and p^* be the unique solutions to

$$\alpha(r^*) \equiv r^* - \frac{1 - F(r^*)}{(F(r^*))'} = \rho(p^*) \equiv p^* - \frac{1 - F^n(p^*)}{(F^n(p^*))'} = 0.$$

and

$$c^* = R(A_{r^*}) - R(P_{p^*}) = \int_{r^*}^1 \alpha(v)dF^n(v) - \int_{p^*}^1 \rho(v)dF^n(v).$$

The seller's optimal mechanism is A_{r^*} if $c < c^*$, and is P_{p^*} if $c > c^*$. A cost c^* seller is indifferent between A_{r^*} and P_{p^*} .

Two-Period's Optimal Prices and Revenues - Graph

Benefit-Cost Analysis

- ▶ One benefit of an auction
 - ▶ Revenue advantage in the current period
 - smaller in earlier periods
- ► Two costs of an auction
 - ► Auction cost
 - constant
 - ► Endogenous opportunity cost: retention value of the good
 - bigger in earlier periods
 - ▶ a higher chance of selling from an auction than from a posted price because the optimal reserve price r_t^* is smaller than the optimal posted price p_t^*
- ► Conclusion: better off running an auction later than earlier.

A Two-Period Example

▶ Two periods: T = 2

▶ No discounting: $\delta = 1$

▶ Two buyers in each period: n = 2

 \blacktriangleright Each buyer has uniform distribution: F(v) = v

Optimal Two-Period Mechanism Sequence

Optimal Prices

Finite-Horizon Optimal Mechanism Sequence

▶ Period T: cutoff cost c_T^* ,

$$c_T^* = R(A_{r_T^*}) - R(P_{p_T^*}) = \int_0^1 x d[F^n(\alpha^{-1}(x)) - F^n(\rho^{-1}(x))].$$

▶ Period t < T: cutoff cost c_t^*

$$c_t^* = \int_{\delta \pi_{t+1}^*(c_t^*)}^1 [x - \delta \pi_{t+1}^*(c_t^*)] d \left[F^n(\alpha^{-1}(x)) - F^n(\rho^{-1}(x)) \right].$$

Proposition 2

Suppose T is finite. Let $\alpha(r_t^*(c)) = \rho(p_t^*(c)) = \delta \pi_{t+1}^*(c)$. A cost c seller's optimal mechanism in period t is $A_{r_t^*(c)}$ if $c < c_t^*(c)$, and is $P_{p_t^*(c)}$ if $c > c_t^*(c)$.

Optimality of Prices-Then-Auctions Sequence

Proposition 3

For an intermediate level of auction cost, the seller posts prices until some period and runs auctions afterwards.

Proposition 4

(Corollary of Proposition 3) A mechanism sequence with auctions before prices is never optimal. (An Alternative Proof useful for Propositions 5 and 6)

Extensions with Short-Lived Buyers

- 1. Seller has a stochastic sale deadline.
- 2. Seller becomes increasingly impatient.
- 3. Seller incurs decreasing auction cost.
- 4. Buyers arrive stochastically.
- 5. Buyers have outside options.
- 6. Buyers incur bidding costs.
- 7. Separate auctions and prices markets.
- 8. Procurement contracts.
- 9. Sequentially selling multiple objects.

Long-Lived Myopic Buyers

Proposition 5

Suppose there are two periods. When buyers are long-lived and forward-looking, the auction-price sequence is never optimal. (Proof)

Long-Lived Forward-Looking Buyers

Proposition 6

Suppose there are two periods. When buyers are long-lived and forward-looking, the auction-price sequence is never optimal. (Proof)

Seller's Infinite-Horizon Problem

- ► The problem is stationary.
- ► The optimal mechanism is a constant price or auctions with constant reserve price.
- \blacktriangleright A comparative statics result: as the seller becomes more patient (δ increases), an auction's revenue advantage decreases.
 - ► Intuition: If infinitely patient, just post a price arbitrarily close to 1.
 - ▶ Implication: As the market becomes thicker (as eBay expands), more people will post price (Einav et al., 2013).

Summary

▶ A monopolist sells an item with prices and auctions in a dynamic environment with buyers arriving over time.

▶ Optimal finite-period mechanism sequence: prices then auctions, resembling a buy-it-now.

Thanks!

Proof of Proposition 4

- ▶ Suffices to show an auction-price combination is never optimal.
- ▶ Proof by contradiction.
- ▶ Suppose $(A_{r_1}, P_{p_2}, \mathbf{m})$ is optimal.
- ▶ If $r_1 > p_2$: It cannot dominate both $(A_{r_1}, A_{p_2}, \mathbf{m})$ and $(P_{r_1}, P_{p_2}, \mathbf{m})$.
 - ▶ If it dominates both, $R(A_{r_1}) R(P_{r_1}) \le c \le R(A_{p_2}) R(P_{p_2})$.
- ▶ If $r_1 \leq p_2$: It cannot dominate both $(P_{p_2}, P_{p_2}, \mathbf{m})$ and $(A_{r_1}, A_{r_2}, \mathbf{m})$ where $r_2 = \alpha^{-1}(\delta \pi(\mathbf{m}))$.
- ► QED.

Proof Sketch of Proposition 5

- ▶ Proof by contradiction.
- ▶ Suppose (A_{r_1}, P_{p_2}) is optimal.
- ▶ If $r_1 > p_2$: It cannot dominate both (A_{r_1}, A_{p_2}) and (P_{r_1}, P_{p_2}) .
- ▶ If $r_1 \leq p_2$: It cannot dominate both (P_{p_2}, P_{p_2}) and (A_{r_1}, A_{r_2}) where $r_2 = \alpha^{-1}(\delta \pi(\mathbf{m}))$, as in the proof of Proposition 4.
- ► QED.

Proof Sketch of Proposition 6

- ▶ Proof by contradiction.
- ▶ Suppose (A_{r_1}, P_{p_2}) is optimal.
- ▶ If $r_1 > p_2$: It cannot dominate both (A_{r_1}, A_{r_2}) and (P_{p_1}, P_{p_2}) where in all three mechanisms value \tilde{v} buyer is indifferent between buying in the current period and in the second period.
- ▶ If $r_1 \le p_2$: The proof follows the proof of Proposition 5.
- ► QED.

References I

- **Anwar, Sajid and Mingli Zheng**, "Posted Price Selling and Online Auctions," *Games and Economic Behavior*, 2015, 90, 81–92.
- Budish, Eric B. and Lisa N. Takeyama, "Buy Prices in Online Auctions: Irrationality on the Internet?," *Economics Letters*, 2001, 72 (3), 325–333.
- Chawla, Shuchi, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan, "Multi-parameter Mechanism Design and Sequential Posted Pricing," in "Proceedings of the Forty-second ACM Symposium on Theory of Computing" STOC '10 ACM New York, NY, USA 2010, pp. 311–320.
- Dilme, Francesc and Fei Li, "Revenue Management Without Commitment: Dynamic Pricing and Periodic Fire Sales," November 2012. Mimeo.

References II

- Einav, Liran, Chiara Farronato, Jonathan Levin, and Neel Sundaresan, "Sales Mechanisms in Online Markets: What Happened to Internet Auctions?," May 2013. NBER Working Paper 19021.
- Hartline, Jason, "Approximation in Mechanism Design,"

 American Economic Review: Papers & Proceedings, 2012, 102
 (3), 330–336.
- Mathews, Timothy, "The Impact of Discounting on an Auction with a Buyout Option: a Theoretical Analysis Motivated by eBay's Buy-It-Now Feature," *Journal of Economics*, 2004, 81 (1), 25–52.
- Myerson, Roger, "Optimal Auction Design," Mathematics of Operations Research, 1981, 6 (1), 58–73.
- Wang, Ruqu, "Auctions versus Posted-Price Selling," American Economic Review, 1993, 83 (4), 838–851.

References III

Yan, Qiqi, "Mechanism Design via Correlation Gap," in "Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms" SODA '11 SIAM 2011, pp. 710–719.