

◆ 占种 被 大 学 经济与管理学院

School of Management and Economics of UESTC

计量经济学

Econometrics

任课老师: 李亚静

电子科大经管学院

包占科 被大学 经济与管理学院

School of Management and Economics of UESTC

第七讲异方差性(教材第10章)

主要内容

- ❖ 异方差的概念
- ❖纯异方差与非纯异方差
- ❖ 异方差的后果
- ❖ 异方差的检验
- ❖ 异方差的补救措施
- ❖ 异方差的案例

回顾: OLS的基本假设

假设1:回归模型是线性的,模型设定无误且含有误差项

假设2: 误差项总体均值为零 $E(\varepsilon_i)=0$

假设3: 所有解释变量与误差项都不相关 $Cov(X_i, \epsilon_i)=0$

假设4:误差项观测值互不相关(<u>无序列相关性</u>) $Cov(\varepsilon_i, \varepsilon_i)=0$

假设5: 误差项具有同方差(不存在异方差性) $Var(\varepsilon_i)=\sigma^2$

假设6: 任何一个解释变量都不是其他解释变量的完全线性函数(不存在完全多重共线性)

实例:储蓄—收入问题

异方差的概念

❖对于模型:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i \quad (i = 1, 2, ..., N)$$

> 经典假定

$$E[\varepsilon\varepsilon'] = \sigma^2 I \Longrightarrow \operatorname{var}(\varepsilon_i) = \sigma^2$$

> 异方差

外生变量,也可能 是X,称为比例因子

8

$$\operatorname{var}(\varepsilon_i) = \sigma_i^2 = \sigma^2 Z_i^2 \quad (i = 1, 2, ..., N)$$

- ❖非纯异方差
 - > 由设定偏误导致,如遗漏变量
 - ▶P195: 函数形式设置不当一般不会导致非纯异方差
 - > 思考题: 非纯异方差如何补救?

异方差的类型

❖纯异方差

- >横截面数据:被解释变量的取值差异较大
- > 时间序列数据: 学习效应、数据采集技术的变化
- > 异常值

异方差的后果

- ❖ 在纯异方差的情形下
 - ▶ OLS估计量仍是无偏的

- >OLS估计量不再是有效的(即最小方差估计量)
- ►标准误的OLS估计量是有偏的,且偏差<u>通常</u>是负的, 意味着OLS通常会高估了参数的t值,导致原本不显著 的变量可能变得显著

 \triangleright 只要假定条件Cov(X,u)=0 依然成立,回归系数仍具有无偏性。

$$E(\hat{\beta}) = E[(X'X)^{-1}X'Y] = E[(X'X)^{-1}X'(X\beta + u)].$$

$$= \boldsymbol{\beta} + (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{E}(\boldsymbol{u}) = \boldsymbol{\beta}$$

 \rightarrow 以一元线性回归模型为例 $Y_t = \beta_0 + \beta_1 X_t + u_t$

$$E(\hat{\beta}_{1}) = E(\frac{\sum (x_{t} - \bar{x})(y_{t} - \bar{y})}{\sum (x_{t} - \bar{x})^{2}}) = E(\frac{\sum (x_{t} - \bar{x})[\beta_{1}(x_{t} - \bar{x}) + u_{t}]}{\sum (x_{t} - \bar{x})^{2}}) = \beta_{1} + \frac{\sum (x_{t} - \bar{x})E(u_{t})}{\sum (x_{t} - \bar{x})^{2}} = \beta_{1}$$

异方差的后果

- ❖在纯异方差的情形下
 - > OLS估计量仍是无偏的
 - >OLS估计量不再是有效的(即最小方差估计量)

$$\operatorname{var}[\hat{\beta}] = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']$$

$$= E[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}]$$

$$= (X'X)^{-1}X'E[\varepsilon\varepsilon']X(X'X)^{-1} \neq \sigma^{2}(X'X)^{-1}$$

- ❖在纯异方差的情形下
 - > OLS估计量仍是无偏的
 - ➤ OLS估计量不再是有效的(即最小方差估计量)
 - ►标准误的OLS估计量是有偏的,且偏差通常是负的, 意味着OLS通常会高估了参数的t值,导致原本不显著 的变量可能变得显著

若存在异方差,OLS估计的假设检验不可靠

- ❖检验思路:检验异方差,也就是检验随机误差项的方差与比例因子Z(或解释变量X)之间的相关性及其"形式"
- ❖因随机误差项方差的样本对应物是OLS的残差平 方,因此所有的检验方法都基于残差平方

残差平方很重要!

异方差的检验

- ❖ 图解法
- ❖帕克检验(Park)
- ❖ 怀特检验 (White)
- **....**

异方差的检验

❖图解法(非正式方法)

异方差的检验

❖ 异方差的形式:

$$\operatorname{var}(\varepsilon_i) = \sigma_i^2 = \sigma^2 Z_i^2 \quad (i = 1, 2, ..., N)$$

- ❖帕克检验(归属于BP检验一类)
 - \rightarrow 采用OLS获取回归方程的残差 e_i ;
 - >估计方程:

判断是否显著?

$$\ln(e_i^2) = \alpha_0 + \alpha_1 \ln(Z_i) + u_i$$

帕克检验的前提是知道比例因子Z

异方差的检验

- ❖BP检验:通过检验残差平方是否被可能的比例 系数解释的一种检验误差项的方法。
- ❖步骤:
- (1) 采用OLS获取回归方程的残差 e_i ;
 - (2) 估计方程:

$$e_i^2 = \alpha_0 + \alpha_1 X_{1i} + \alpha_2 X_{2i}$$
+*ui*

即异方差性来源于各解释变量。

假设不存在异方差 \Leftrightarrow $H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$

BP检验

(3): 在无异方差的原假设下有

$$n \cdot R^2 \sim \chi^2(df), df = k - 1$$
(辅助回归斜率系数个数)

*nR*² 统计量,其直观含义是若存在异方差,则辅助回归模型总体上一定显著。

(4): 若计算的 nR²超过选定显著性水平的临界值,则拒绝同方差假设。

怀特(White)检验

- ❖ Halbert L. White, Jr., 世界 著名计量经济学家,麻省理 工学院博士,普林斯顿大学 学士,加州大学圣地亚哥分 校经济学特聘教授
- ❖ White教授最大的成就之一 是自 1980年至今被全世界 学者广泛引用的White标准 差和White检验

怀特检验

❖基本思想: 异方差来源于解释变量及其高次方

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + \mathcal{E}_{i}$$

步骤1:假设同方差,OLS估计获得残差

怀特检验

步骤2:作辅助回归并得到拟合优度R2

$$e_i^2 = \alpha_0 + \alpha_1 X_{1i} + \alpha_2 X_{2i} + \alpha_3 X_{1i}^2 + \alpha_4 X_{2i}^2 + \alpha_5 X_{1i} X_{2i} + u_i$$

即异方差性来源于各解释变量及其高次方

假设不存在异方差 $\Leftrightarrow H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$

怀特检验

步骤3: 在无异方差的原假设下有

 $n \cdot R^2 \sim \chi^2(df), df = k - 1$ (辅助回归斜率系数个数)

*nR*² 怀特统计量,其直观含义是若存在异方差,则辅助回归模型总体上一定显著。

步骤4: 若计算的 nR²超过选定显著性水平的临界值,则拒绝同方差假设。

例子:现收集了60所大学的图书馆藏书量(VOL)、师生人数(TOT)、学生高考平均成绩(SAT)的数据(Table 10-2)。

	VOL	тот	SAT
1 2 3 4 5 6 7 8 9	VOL 11.50000 200.0000 70.00000 100.0000 70.00000 125.0000 2200.000 400.0000 110.0000	TOT 108.0000 3834.000 1013.000 3152.000 47633.00 555.0000 1481.000 35351.00 10204.00 1263.000	850.0000 954.0000 874.0000 941.0000 1185.000 874.0000 902.0000 1048.000 960.0000
10 11 12 13 14 15 16 17 18 19 20 21	110.0000 6000.000 58.40000 212.0000 400.0000 1888.000 486.0000 439.0000 1900.000 155.0000 6.900000 180.0000	1263.000 52830.00 912.0000 1731.000 1629.000 25371.00 2928.000 3879.000 25612.00 4663.000 317.0000 10241.00 397.0000	930.0000 1142.000 800.0000 1060.000 1150.000 1170.000 1100.000 1080.000 1026.000 873.0000 1097.000

考虑如下模型:

$$VOL_i = \beta_0 + \beta_1 TOT_i + \beta_2 SAT_i + \varepsilon_i$$

OLS回归结果

Sample: 1 60

Included observations: 60

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-1704.477	826.7445	-2.061673	0.0438
TOT	0.087353	0.006788	12.86875	0.0000
SAT	1.690030	0.836557	2.020220	0.0481
R-squared	0.805249	Mean dependent var		904.2283
Adjusted R-squared	0.798415	S.D. dependent var		1551.554

EViews演示: 图解法(以人数为比例因子)

EViews演示:帕克检验(以人数为比例因子)

EViews演示: 怀特检验

EViews演示: 怀特检验

原假设HO: 无异方差

无交叉项

显著存在异方差

Heteroskedasticity Test: White

F-statistic	70.79204	Prob. F(2,57)	0.0000
Obs*R-squared	42.77808	Prob. Chi-Square(2)	0.0000
Scaled explained SS	197.2056	Prob. Chi-Square(2)	0.0000

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares Date: 05/11/14 Time: 10:20

Sample: 1 60

Included observations: 60

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TOT^2 SAT^2	12829.73 0.001557 -0.047661	469661.0 0.000138 0.450220	0.027317 11.27725 -0.105861	0.9783 0.0000 0.9161
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.712968 0.702897 809951.7 3.74E+13 -899.8813 70.79204 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		461015.2 1485954. 30.09604 30.20076 30.13700 1.875205

EViews演示: 怀特检验

显著存在异方差

有交叉项

Heteroskedasticity Test: \	White		
F-statistic Obs*R-squared		Prob. F(5,54) Prob. Chi-Square(5)	0.0000
Scaled explained SS	201.9854	Prob. Chi-Square(5)	0.0000

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares Date: 05/11/14 Time: 10:14

Sample: 1 60

Included observations: 60

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TOT^2 TOT*SAT TOT SAT^2 SAT	2620944. 0.002330 -0.037558 -4.301749 3.093628 -5590.722	7115639. 0.000471 0.115529 119.7968 6.919443 14091.13	0.368336 4.946507 -0.325092 -0.035909 0.447092 -0.396755	0.7141 0.0000 0.7464 0.9715 0.6566 0.6931
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.730249 0.705272 806708.0 3.51E+13 -898.0185 29.23686 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	461015.2 1485954. 30.13395 30.34338 30.21587 1.795119

异方差的补救措施

- ❖非纯异方差
 - > 正确的模型设定
- ❖纯异方差
 - >广义最小二乘法:加权最小二乘
 - ▶修正异方差的标准误: White方法
 - > 重新定义新变量

$$\operatorname{var}(\varepsilon_i) = \sigma_i^2 = \sigma^2 Z_i^2 \quad (i = 1, 2, ..., N)$$

$$\Omega = E[\varepsilon \varepsilon'] = \sigma^2 \begin{pmatrix} Z_1^2 & 0 \\ & \dots \\ 0 & Z_N^2 \end{pmatrix}$$

权矩阵

权矩阵
$$P = \begin{pmatrix} 1/Z_1 & 0 \\ & \dots \\ 0 & 1/Z_N \end{pmatrix}$$

$$PY = \begin{bmatrix} y_1/Z_1 \\ y_2/Z_2 \\ \dots \\ y_N/Z_N \end{bmatrix}$$

$$PY = \begin{vmatrix} y_1/Z_1 \\ y_2/Z_2 \\ \dots \\ y_N/Z_N \end{vmatrix}$$

变换后的方程:

$$Y_i / Z_i = \beta_0 / Z_i + \beta_1 X_{1i} / Z_i + \beta_2 X_{2i} / Z_i + u_i$$

加权最小二乘法(Weighted Least square, WLS)

广义最小二乘法

$$\hat{\beta}_* = (X_*'X_*)^{-1} X_*'Y_*$$

$$= (X'P'PX)^{-1} X'P'PY$$

$$= (X'\Omega^{-1}X)^{-1} X'\Omega^{-1}Y$$

$$Y_* = PY \quad X_* = PX \quad P = C\Lambda^{-1/2}$$

只要知道了矩阵 Ω ,就可以得到矩阵P

- ightharpoonup使用WLS的前提是知道比例因子Z及其与误差项方差之间的关系,即权重向量P
- ❖ 知道了权重向量,可以直接使用EViews来实现

输入权 重序列 的名称

White调整方法

❖ 怀特调整法

$$\operatorname{var}[\hat{\beta}] = E[(\hat{\beta} - \beta)(\hat{\beta} - \beta)']$$

$$= E[(X'X)^{-1}X'\varepsilon\varepsilon'X(X'X)^{-1}]$$

$$= (X'X)^{-1}X'E[\varepsilon\varepsilon']X(X'X)^{-1}$$

$$= (X'X)^{-1}X'\sigma^{2}\Omega X(X'X)^{-1}$$
怀特 (1980) 证明

 $S_0 = \sum_i e_i^2 x_i x_i^2$ 是 $X'\sigma^2 \Omega X$ 的一致估计量。

White调整方法

- ❖ 怀特方法
 - > 只修正标准误而不会改变系数的估计值
 - >在大样本估计中,效果更好
 - > 绝大多数学术论文采用此种方法

EViews 演示: 怀特调整法

例子:现收集了60所大学的图书馆藏书量(VOL)、师生人数(TOT)、学生高考平均成绩(SAT)的数据(Table 10-2)。

$$VOL_{i} = \beta_{0} + \beta_{1}TOT_{i} + \beta_{2}SAT_{i} + \varepsilon_{i}$$

Sample: 1 60

Included observations: 60

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
Dependent Variable: VOL Method: Least Squares	C TOT SAT	-1704.477 0.087353 1.690030		-2.061673 12.86875 2.020220	
Date: 05/11/14 Time: 10:33 Sample: 1 60 Included observations: 60	R-squared Adjusted R-squared	0.805249 0.798415	Mean depend S.D. depende		904.2283 1551.554

White heteroskedasticity-consistent standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TOT SAT	-1704.477 0.087353 1.690030	644.6116 0.018201 0.709869	-2.644192 4.799271 2.380764	0.0106 0.0000 0.0206
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic) Prob(Wald F-statistic)	0.805249 0.798415 696.6198 27660914 -476.3719 117.8403 0.000000	Mean depender S.D. depender Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watsor Wald F-statisti	nt var erion on i criter. n stat	904.2283 1551.554 15.97906 16.08378 16.02002 1.850222 29.95881

重新定义新变量

- ❖将某些变量,特别是被解释变量取对数
- ❖根据经济理论,对某些变量进行"规模"调整

$$VOL_{i} = \beta_{0} + \beta_{1}TOT_{i} + \beta_{2}SAT_{i} + \varepsilon_{i}$$
 (1)

$$VOL_{i} / TOT_{i} = \alpha_{0} + \alpha_{1}SAT_{i} + \varepsilon_{i}$$
 (2)

$$VOL_i / TOT_i = \beta_0 / TOT_i + \beta_1 + \beta_2 SAT_i / TOT_i + u_i (WLS)$$

处理异方差的一个例子

- ❖ 美国能源部门试图基于各地过去的汽油消耗量和人口 变动情况及其他因素,给各地区、各州甚至各零售点 直接分配汽油
 - ►被解释变量:各州的汽油消耗量(PCON)
 - ▶可能的解释变量:各州注册的机动车数量(REG)、 人口数量(POP)、汽油价格(PRICE)

 $PCON_i = \beta_0 + \beta_1 REG_i + \beta_2 PRICE_i + \varepsilon_i$

数据(Table 10-1)

	PCON	REG	POP	PRICE
1	580.0000	4545.000	4548.000	2.110000
2	284.0000	673.0000	663.0000	2.130000
3	537.0000	3972.000	5953.000	2.230000
4	377.0000	1940.000	2776.000	2.100000
5	3837.000	32487.00	36154.00	2.470000
6	463.0000	1808.000	4663.000	2.190000
7	463.0000	3059.000	3501.000	2.170000
8	148.0000	737.0000	842.0000	2.070000
9	1940.000	15691.00	17768.00	2.210000
10	1058.000	8063.000	9133.000	2.090000
11	270.0000	948.0000	1273.000	2.470000
12	139.0000	1374.000	1429.000	2.140000
13	1313.000	9458.000	12765.00	2.220000
14	901.0000	4955.000	6266.000	2.190000
15	393.0000	3398.000	2966.000	2.130000
16	434.0000	2368.000	2748.000	2.170000
17	664.0000	3428.000	4173.000	2.140000
18	1610.000	3819.000	4507.000	2.100000
19	262.0000	1075.000	1318.000	2.160000
20	561.0000	4322.000	5590.000	2.150000
21	734.0000	5420.000	6433.000	2.080000

回归结果

$$PCON_i = \beta_0 + \beta_1 REG_i + \beta_2 PRICE_i + \varepsilon_i$$

Sample: 1 50

Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	4101.288	1609.684	2.547884	0.0142
REG	0.158060	0.012748	12.39874	0.0000
PRICE	-1885.111	750.9133	-2.510425	0.0156
R-squared	0.767937	Mean depend		780.9800
Adjusted R-squared	0.758062	S.D. depende		952.8063

是否存在异方差? 怎样检验?

异方差检验

原假设H0: 不存在异方差

Sample: 1 50

Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	3.657071	2.808082	1.302338	0.1990
LOG(REG)	0.727053	0.347789	2.090501	0.0419
R-squared	0.083448	Mean dependent var		9.485096
Adjusted R-squared	0.064353	S.D. dependent var		2.459122

存在异方差

Heteroskedasticity Test: White				
F-statistic	49.74821	Prob. F(5,44)	0.0000	
Obs*R-squared	42.48483	Prob. Chi-Square(5)	0.0000	
Scaled explained SS	437.8632	Prob. Chi-Square(5)	0.0000	

怎样补救?

❖补救措施1: 怀特调整

Sample: 150

Included observations: 50

White heteroskedasticity-consistent standard errors & covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	4101.288	2867.963	1.430035	0.1593
REG	0.158060	0.032583	4.850943	0.0000
PRICE	-1885.111	1360.050	-1.386060	0.1723
R-squared	0.767937	Mean dependent var		780.9800
Adjusted R-squared	0.758062	S.D. dependent var		952.8063

怎样补救?

❖补救措施2:变换方程形式(双对数)

 $\ln PCON_i = \beta_0 + \beta_1 \ln REG_i + \beta_2 \ln PRICE_i + \varepsilon_i$

Sample: 1 50

Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C LOG(REG) LOG(PRICE)	-0.323200 0.901782 -0.893531	0.841429 0.044352 1.030378	-0.384109 20.33226 -0.867187	0.7026 0.0000 0.3902	
R-squared 0.898148 Adjusted R-squared 0.893814 是否仍存在异方差?					

怎样补救?

❖补救措施3: 重新定义变 哪种补救措施更好?

 $PCON_i / POP_i = \beta_0 + \beta_1 REG_i / POP_i + \beta_2 PRICE_i + \varepsilon_i$

Sample: 1 50

Included observations: 50

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C REG/POP PRICE	0.229722 0.149028 -0.096508	0.222893 0.059176 0.096028	1.030636 2.518383 -1.004998	0.3080 0.0153 0.3200
R-squared Adjusted R-squared	0.154441 0.118460	是否仍	存在异方	方差?

怎样选择补救措施?

- ❖如果是非纯异方差,那选用正确的模型设定
- ❖如果是纯异方差:
 - > 建议首先考虑采用重新定义变量的方式
 - >大样本情况: White调整
 - >若能找到明确的比例因子(权重),则采用WLS

本讲小结

- ❖ 异方差的后果是什么?
- ❖检验异方差的方法有哪些?
- ❖怎样补救异方差?

作业

❖ 第九章作业P200: 习题2、4、6