Measurability of Convex Sets

UBCO Struggling PhD

September 1, 2023

Abstract

What is Lebesgue measurable sets in \mathbb{R}^n ? How to show that convex sets are measurable in \mathbb{R}^n ? We answer these two questions in this report.

1 Introduction, Preliminaries

We list two theorems in [2, UC Davis notes], which is useful for establishing Lebesgue Measurable sets, how to prove sets are Lebesgue measurable, and the fact that open sets in \mathbb{R}^n are alwas measurable. To start, take it for granted for the definitions and properties of outer measure μ^* for \mathbb{R}^n , $n \in \mathbb{N}$.

Definition 1 (Lebesgue Measurable Sets). $A \subseteq \mathbb{R}^n$ is Lebesgue Measurable if $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^C)$ for all subsets $E \subseteq \mathbb{R}^n$.

We may refer to Lebesgue measurable sets simply as measurable sets in the coming parts of the report.

Remark 1.0.1. There are many equivalent defintions. This is the Caratheodory Criterion for Lebesgue Measurable sets[2, definition 2.8]. They form a σ -algebra.

Next, rectangles (or boxes in \mathbb{R}^n) are measurable in \mathbb{R}^n , see [2, proposition 2.11], so are their finite or countably infinite unions. Finite union of boxes are called elementary sets according to Tao[4, 1.1.1]. Limits of elementary sets produces Jordan measurable sets. Open sets in \mathbb{R}^n is the union of countable many rectangles [1, theorem 1.4][2, proposition 2.20], therefore open sets are measurable by the fact that open sets are countable unions of rectangles.

The Lebesgue measure of open sets are their outer measure [2, definition 2.10]. Next, sets that have an outer measure of zero is also a measurable sets in \mathbb{R}^n . We prove this here. It's a neat proof using the properties of outer measure and the Charatheodory criterion.

Theorem 1 (Zero outer Measure sets Are Lebesgue Measurable). Let $A \subseteq \mathbb{R}^n$, If $\mu^*(E) = 0$ then the set E is a measurable sets.

Proof. Outer measure preserve partial order of \subseteq then $\mu^*(A \cap E) \le \mu^*(E) = 0$. Also observe that

$$A \cap E^{C} \subseteq A \implies m^{*}(A) \ge m^{*}(A \cap E^{C})$$
$$\implies m^{*}(A) \ge 0 + m^{*}(A \cap E^{C})$$
$$\iff m^{*}(A) \ge m^{*}(A \cap E) + m^{*}(A \cap E^{C}).$$

The \leq direction is already asserted by the sub-additivity of outer measure, combing it with the above results we have equality and hence, the Caratheodory condition. Therefore, sets with a zero outer measure are Lebesgue Measurable.

To show that a set is Lebesgue Measurable, we make use of the measurability of an open sets. We list [2, theorem 2.24] here without prove.

Theorem 2 (Equivalent Characterizations of Lebesgue Measurability using Open Sets). A subset $A \subseteq \mathbb{R}^b$ is Lebesgue measurable if and only if for every $\epsilon > 0$ thre is an open set $G \supset A$ such that

$$\mu^*(G \setminus A) < \epsilon$$
.

Finally, we state a theorem for the measure of sets after its linear transform.

Theorem 3 (Measure over Linear Transform). Let $\mathbb{E} \subseteq$ be Lebesgue measurable, let $T : \mathbb{R}^d \mapsto \mathbb{R}^d$ be a linear mapping then the set T(E) is Lebesgue measurable with measure $m(T(E)) = |\det(T)| m(E)$.

We skip the proof because it's requiring completing a lot of other proofs in the exercise of Tao's Book. We given an over view in what I think it's the right approach in proving the theorem. Using Tao's Introduction to measure theory[4], the full proof would require completing exercise 1.1.10, to show that a Unit Euclidean ball is Jordan Measurable. Then use the hint for exercise 1.1.11 to show that if $E \subseteq \mathbb{R}^n$ is an elementary set, then T(E) where $T: \mathbb{R}^d \to \mathbb{R}^d$ is a measurable set with measure $|\det(T)|m(E)$. Then use the this result to complete exercise 1.2.21 to show that for Lebesgue measurable sets and a mapping $T: \mathbb{R}^d \to \mathbb{R}^d$, we have $m(T(E)) = |\det(T)|m(E)$.

2 Convex Sets in \mathbb{R}^n

Before we start, we define relative interior/boundary, affine span of a set.

Definition 2 (The Affine Span of a Set). Let $Q \subseteq \mathbb{R}$, then the affine span of the set Q denoted as aff(Q) is the intersection of all affine space containing Q.

To demonstrate the construction of $\operatorname{aff}(Q)$, let $x_0 \in Q$, then the line $\{x\} + \operatorname{span}(x_1)$ for any $x_1 \neq x_0 \in Q$ will be an affine subspace that Q contains. Then choose $x_2 \in Q, x_2 \not\in \{x_0\} + \operatorname{span}(x_1)$, then choose $x_3 \in Q, x_3 \not\in \{x_0\} + \operatorname{span}(x_1, x_2)$, repeat the process until the whole set $Q \subseteq \{x_0\} + \operatorname{span}(x_1, \dots, x_k)$, then $\operatorname{aff}(Q) = \{x_0\} + \operatorname{span}(x_1, \dots, x_k)$. In finite dimension, the process terminates with $k \leq n$.

Lemma 2.0.1 (Accessibility Lemma). Let $C \subseteq \mathbb{R}^n$ be convex, then for all $x_1 \in C^{\circ}$, $x_0 \in \overline{C}$, the point $x_{\lambda} = \lambda x_1 + (1 - \lambda)x_0$ for all $\lambda \in (0, 1]$ will be in C° .

This is theorem 6.1, proved in Rockafellar's convex book[3]. Additionally one can define the relative boundary to be: $\operatorname{ribd}(C) = \overline{C} \setminus \operatorname{ri}(C)$.

Theorem 4 (Convex Sets are Measurable in Finite Euclidean Space). $C \subseteq \mathbb{R}^n$ is a measurable sets when C is convex.

Comming subsection attempts to prove the theorem. The following proof of the theorem came from my own investigation of the math stack exchange discussion.

2.1 Convex Sets Are Measurable

We had all the ingredients, we now summarize the idea of the proof. Firstly, the relative interior of a set is always measurable.

Proposition 2.1 (Relative Interior of Convex is Measurable). Let $C \subseteq \mathbb{R}^n$ be convex then its relative interior is measurable.

Proof. WLOG choose $\mathbf{0} \in C$, this can be done by translating any non-empty convex set by $C - \{x_0\}$ with $x_0 \in C$. If C empty, then this is trivial and it has zero measure. Next, using affine span we have $C - \{\mathbf{0}\} \subseteq \operatorname{span}(x_1, \dots, x_m)$, with $m \leq n$. Then we pack the vector into columns of a matrix $A = [x_1 \cdots x_m]$. Then we have the equality $\operatorname{ri}(C) = A(A^T A)^{-1} A^T \operatorname{ri}(C)$. Using theorem 3, we have

$$\mu(\text{ri}(C)) = |\text{det}(A^{\dagger})|\mu(\text{ri}(C)), \text{ where: } A^{\dagger} = A(A^{T}A)^{-1}A^{T}.$$

Observe that if $|\det(A^T)| = 0$, then it's trivial and the set has zero measure, (We note that in Tao's measure theory[4, prolouge], they construct on the augmented real has $0 * (+\infty) = 0$) else, $\operatorname{aff}(Q) = \mathbb{R}^n$ in which case we have $C^{\circ} = \operatorname{ri}C$ (Direct from the definition of relative interior.), hence the relative interior would be an open set, hence $\mu(\operatorname{ri}(C)) = \mu(C^{\circ})$ and an open set is measurable.

Using this, we can state and prove that every convex sets in \mathbb{R}^n is measurable.

Proposition 2.2 (Convex Sets are Measurable). Let $C \subseteq \mathbb{R}^n$ be convex, then C is a Lebesgue Measurable set.

Proof. WLOG let $\mathbf{0} \in \mathrm{ri}(C)$, let $x_1 \in \overline{C}$ by accessibility lemma, let $x_{\lambda} := \mathbf{0} + (1 - \lambda)x_1$ then for all $\lambda \in (0, 1]$, $x_{\lambda} \in \mathrm{ri}(C)$. So $x_1 \in (1 - \lambda)^{-1}\mathrm{ri}(C)$. x_1 arbitrary then $\overline{C} \subseteq (1 - \lambda)^{-1}\mathrm{ri}(C)$, $\forall \lambda \in (0, 1]$. From the definition of relative boundary:

$$\operatorname{ribd}(C) = \overline{C} \setminus \operatorname{ri}(C)$$

$$\Longrightarrow \operatorname{ribd}(C) \subseteq (1 - \lambda)^{-1} \operatorname{ri}(C) \setminus \operatorname{ri}(C)$$

$$\mu \circ \operatorname{ribd}(C) \le \mu((1 - \lambda)^{-1} \operatorname{ri}(C)) - \mu \circ \operatorname{ri}(C)$$

$$= (1 - \lambda)^{-n} \mu \circ \operatorname{ri}(C) - \mu \circ \operatorname{ri}(C)$$

$$= \mu \circ \operatorname{ri}(C) \lim_{\lambda \searrow 0} ((1 - \lambda)^{-n} - 1)$$

$$= 0$$

Zero outer measure set is Lebesgue Measurable by theorem 1, therefore $\mathrm{ribd}(C)$ is measurable. Since a convex set is the disjoin union of its relative boundary, and relative interior, we have $C = \mathrm{ri}(C) \sqcup \mathrm{ribd}(C)$, the measure of two disjoint measurable sets is still a measurable set.

References

[1] Rami Shakarchi Elias M. Stein. Real Analysis III: Measure Theory Integrations and Hilbert Space. PRINCETON UNIVERSITY PRESS, 2007. http://assets.press.princeton.edu/chapters/s8008.pdf.

- [2] John K. Hunter. Measure theory, April 2011. https://www.math.ucdavis.edu/~hunter/measure_theory/measure_notes.pdf.
- [3] Tyrell R. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics, 1970.
- [4] Terence Tao. An Introduction to Measure Theory. AMS, 2010. https://www.stat.rice.edu/~dobelman/courses/texts/qualify/Measure.Theory.Tao.pdf.