TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH

BÀI TẬP MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

HOMEWORK #01: ĐÁNH GIÁ THUẬT TOÁN DÙNG KỸ THUẬT TOÁN SƠ CẤP

GV hướng dẫn: Huỳnh Thị Thanh Thương (viết sai tên trừ điểm) Nhóm thực hiện:

- 1. Đoàn Thanh Tùng 21521646
- 2. Đàm thành Nam 21522354
- 3. Lê Phan Hiển 21520839
- 4. Lê Khai Trí 21521565

TP.HCM, ngày 5 tháng 10 năm 2023

Bài 1:

a.
$$1+3+5+7+...+999$$

Ta nhận thấy đây là tổng n số hạng đầu của cấp số cộng với: a1 = 1; d = 2

$$\Rightarrow$$
 n = $\frac{999-1}{2}$ + 1 = 500

$$\Rightarrow$$
 Tổng 500 phần tử đầu tiên: S500 = $\frac{500(1+999)}{2}$ = 250 000

b.
$$2 + 4 + 8 + 16 + ... + 1024$$

Ta nhận thấy đây là tổng n số hạng đầu của cấp số nhân với: a1 = 2; r = 2

$$\Rightarrow$$
 S500 = $\frac{a(1-r^{10})}{1-r}$ = $\frac{2(1-2^{10})}{1-2}$ = 2046

c.
$$\sum_{i=3}^{n+1} 1$$

$$=\sum_{i=1}^{n+1} 1 - \sum_{i=1}^{2} 1 = n + 1 - 2 = n - 1$$

d.
$$\sum_{i=3}^{n+1} i$$

=
$$\sum_{i=1}^{n+1} i - \sum_{i=1}^{2} i = \frac{(n+1)(n+2)}{2} - 3C\frac{(n+1)^2}{2} - 3$$

e.
$$\sum_{i=0}^{n-1} i(i+1)$$

$$= 0 + \sum_{i=1}^{n-1} i(i+1) = \sum_{i=1}^{n-1} i^2 + \sum_{i=1}^{n-1} i \approx \frac{(n-1)^3}{3} + \frac{(n-1)^2}{2}$$

f.
$$\sum_{j=1}^{n} 3^{j+1}$$

= $3 \sum_{j=1}^{n} 3^{j} \approx 3^{\frac{n^{j+1}}{j+1}}$

g.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij$$

= $\sum_{i=1}^{n} i \sum_{j=1}^{n} j \approx (\frac{n^2}{2})^2 \approx (\frac{n^4}{4})$

h.
$$\sum_{i=1}^{n} \frac{1}{i(i+1)}$$
$$= \sum_{i=1}^{n} \left(\frac{1}{i} - \frac{1}{i+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \dots + \frac{1}{n} - \frac{1}{n+1} = \frac{n}{n+1}$$

i.
$$\sum_{j \in \{2,3,5\}} (j^2 + j)$$
$$= (2^2 + 2) + (3^2 + 3) + (5^2 + 5) = 48$$

a.
$$\sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{100} (i+j)$$

$$= 101 \sum_{i=1}^{m} \sum_{j=0}^{n} (i+j) = 101 \sum_{i=1}^{m} [(n+1)i + 0 + \sum_{j=1}^{n} j]$$

$$\approx 101[(n+1)\frac{1}{2}m^2 + \sum_{i=1}^{m} \frac{1}{2}n^2]$$

$$\approx [(n+1)\frac{101}{2}m^2 + \frac{101}{2}mn^2]$$

```
Bài 2:

s = 0;

i = 1;

while (i \le n) do

j = 1;

while (j \le i^2) do

s = s + 1;

j = j + 1;

end do;

i = i + 1;
```

Giải

Gọi αi là số lần lặp của while trong (xét độc lập while ngoài)

$$\Rightarrow \begin{cases} so \ s\acute{a}nh: \alpha i + 1 \\ g\acute{a}n: 2\alpha i \end{cases}$$

$$\Rightarrow \begin{cases} G(n) = 2 + 2n + \sum_{i=1}^{n} 2\alpha i \\ SS(n) = n + 1 + \sum_{i=1}^{n} (\alpha i + 1) \end{cases}$$

Tính αi:

end do;

$$\alpha i$$
 = số con j chạy từ 1 đến i2 = i2

⇒
$$G(n) = 2 + 2n + \sum_{i=1}^{n} 2\alpha i \approx 2(1 + n + \frac{n^2}{3})$$

$$\Rightarrow SS(n) = n + 1 + \sum_{i=1}^{n} (\alpha i + 1) \approx 2n + 1 + \frac{n^2}{3}$$

Bài 3:

Gọi α_i là số lần lặp của while trong (xét độc lập với while ngoài)

$$\mathsf{G}(\mathsf{n}) = 2 + 2\mathsf{n} + \sum_{i=1}^n 2\alpha_i$$

SS(n) = n + 1 +
$$\sum_{i=1}^{n} (\alpha_i + 1)$$

Tính α_i : số con j với j chạy từ n – i^2 tới i^2

$$\alpha_i = i^2 - (n - i^2) + 1 = 2i^2 - n + 1$$

Vòng lặp trong chỉ thực hiện khi j $<=i^2$

$$\approx n - i^2 <= i^2$$

$$\approx 2i^2 >= n$$

$$\approx i > = \sqrt{(n/2)}$$

$$\Rightarrow \alpha_{i} = \begin{cases} 2i^{2} - n + 1 & khi \ i \ge \sqrt{(n/2)} \\ 0 & khi \ i < \sqrt{(n/2)} \end{cases}$$

Kết luân:

$$\begin{split} & \operatorname{G}(\mathsf{n}) = 2 + 2\mathsf{n} + 2\sum_{i=1}^{n} \alpha_{i} \\ & = 2 + 2\mathsf{n} + 2\sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (2i^{2} - n + 1) \\ & = 2 + 2\mathsf{n} + 2\sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (2i^{2}) + 2\sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (-n) + 2\sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (1) \\ & = 2 + 2\mathsf{n} + 4(\sum_{i=1}^{n} (i^{2}) - \sum_{i=1}^{\left\lceil\sqrt{(n/2)}\right\rceil} (i^{2})) - 2\mathsf{n} \sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (1) + 2\sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (1) \\ & = 2 + 2\mathsf{n} + 4(\mathsf{n}^{3}/3 - \left\lfloor\sqrt{(n/2)}\right\rfloor^{3}/3) - 2\mathsf{n} \left(\mathsf{n} - \left\lceil\sqrt{(n/2)}\right\rceil + 1\right) + 2(\mathsf{n} - \left\lceil\sqrt{(n/2)}\right\rceil + 1) \\ & \operatorname{SS}(\mathsf{n}) = \mathsf{n} + 1 + \sum_{i=1}^{n} (\alpha_{i} + 1) \\ & = 2\mathsf{n} + 1 + \sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (2i^{2} - n + 1) \\ & = 2\mathsf{n} + 1 + \sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (2i^{2}) + \sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (-n) + \sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (1) \\ & = 2\mathsf{n} + 1 + 2(\sum_{i=1}^{n} (i^{2}) - \sum_{i=1}^{\left\lceil\sqrt{(n/2)}\right\rceil} (i^{2})) - \mathsf{n} \sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (1) + \sum_{i=\left\lceil\sqrt{(n/2)}\right\rceil}^{n} (1) \\ & = 2\mathsf{n} + 1 + 2(\mathsf{n}^{3}/3 - \left\lfloor\sqrt{(n/2)}\right\rfloor^{3}/3) - \mathsf{n} \left(\mathsf{n} - \left\lceil\sqrt{(n/2)}\right\rceil + 1\right) + (\mathsf{n} - \left\lceil\sqrt{(n/2)}\right\rceil + 1) \end{split}$$

Bài 4:

Gọi α_i là số lần lặp của while trong (xét độc lập với while ngoài)

```
G(n) = 2 + 4n + \sum_{i=1}^{n} 2 \alpha_{i}
SS(n) = n + 1 + \sum_{i=1}^{n} (\alpha_{i} + 1)
Tìm \alpha_{i:} số con j với j chạy từ 1 -> I, biến tăng 2
j có thể là {1; 2; 4; 8; ....; 2^{k} <= i}
j có dạng 2^{k}
\alpha_{i} là số phần tử của tập hợp
\approx {1; 2; 4; ....; 2^{k} <= i}
\approx Số con k thỏa điều kiện 1 <= 2^{k} <= i
```

≈
$$\log_2 1 <= k <= \log_2 i$$

⇒ Số con k thỏa điều kiện

 $\alpha_i = \lfloor \log_2 i \rfloor + 1$

Kết luận:

$$\begin{aligned} \mathsf{G}(\mathsf{n}) &= 2 + 4\mathsf{n} + 2 \sum_{i=1}^n (\lfloor \log_2 i \rfloor \ + \ 1) \\ &= 2 + 6\mathsf{n} + 2 \lfloor n \log_2 n \rfloor \\ \\ \mathsf{SS}(\mathsf{n}) &= \mathsf{n} + 1 + \sum_{i=1}^n (\alpha_i \ + \ 1) \\ &= \mathsf{n} + 1 + \sum_{i=1}^n (\lfloor \log_2 i \rfloor \ + \ 1) + \sum_{i=1}^n 1 \\ &= 3\mathsf{n} + 1 + \lfloor n \log_2 n \rfloor \end{aligned}$$

Bài 5:

```
sum = 0; i = 1;
while (i \leq n)
{
    j = n - i;
    while (j \leq 2* i)
    {
        sum = sum + i*j;
        j = j + 2;
}
k = i;
while (k > 0)
{
        sum = sum + 1;
        k = k / 2;
}
i = i + 1;
}
```

Gọi α_i là số lần lặp của while trong thứ nhất (xét độc lập với while ngoài)

Gọi ß_i là số lần lặp của while trong thứ hai (xét độc lập với while ngoài)

$$\begin{aligned} &\mathsf{G}(\mathsf{n}) = 2 + 3\mathsf{n} + \sum_{i=1}^{n} 2\alpha_i + \sum_{i=1}^{n} 2\beta_i \\ &\mathsf{SS}(\mathsf{n}) = \mathsf{n} + 1 + \sum_{i=1}^{n} (\alpha_i + 1) + \sum_{i=1}^{n} (\beta_i + 1) \end{aligned}$$

Tính α_i : số con j với j chạy từ n – i -> 2i

Vòng lặp chỉ thực hiện khi n − i <= 2i

$$\Rightarrow \alpha_{i} = \begin{cases} 3i - n + 1 & khi \ i \ge \frac{n}{3} \\ 0 & khi \ i < \frac{n}{3} \end{cases}$$

Tính ß_i: số con k với k chạy từ i -> 0, bước giảm tỉ lệ ½

K có thể là

{i; i/2; i/4;; i/
$$(2^m) > 0$$
}

K có dạng i/(2^m)

ß_i: số phần tử của tập hợp

{i;
$$i/2$$
; $i/2^2$;; $i/2^m > 0$ }

≈ Số con m thỏa mãn điều kiện $0 < i/2^m <= i$

$$\approx 1 <= i/2^m <= i$$

$$\approx \log_2 1 \le \log_2 2^m \le \log_2 i$$

$$\approx 0 \le k \le \log_2 i$$

⇒ Số con k thỏa điều kiện:

$$\beta_i = \lfloor \log_2 i \rfloor + 1$$

Kết luận:

G(n) = 2 + 3n +
$$2\sum_{i=\left[\frac{n}{3}\right]}^{n} [3i - n + 1] + 2\sum_{i=1}^{n} [\lfloor \log_2 i \rfloor + 1]$$

= 2 + 3n +
$$2\sum_{i=\left[\frac{n}{2}\right]}^{n} 3i + 2\sum_{i=\left[\frac{n}{2}\right]}^{n} -n + 2\sum_{i=\left[\frac{n}{2}\right]}^{n} 1 + 2\lfloor n\log_{2}i \rfloor + 2n$$

= 2 + 5n + 6(
$$\sum_{i=1}^{n} i - \sum_{i=1}^{\left\lfloor \frac{n}{3} \right\rfloor} i$$
) - 2n (n - $\left\lfloor \frac{n}{3} \right\rfloor$ + 1) + 2(n - $\left\lfloor \frac{n}{3} \right\rfloor$ + 1) + 2[nlog₂ i]

= 2 + 5n + 6(n²/2 - (
$$\left|\frac{n}{3}\right|$$
)²/2) - 2n (n - $\left[\frac{n}{3}\right]$ + 1) + 2 (n - $\left[\frac{n}{3}\right]$ + 1) + 2[nlog₂ i]

$$SS(n) = n + 1 + \sum_{i=1}^{n} (\alpha_i + 1) + \sum_{i=1}^{n} (\beta_i + 1)$$

$$= 3n + 1 + \sum_{i=1}^{n} (3i - n + 1) + \sum_{i=1}^{n} (\lfloor \log_2 i \rfloor + 1)$$

=
$$4n + 1 + 3\sum_{i=\left[\frac{n}{2}\right]}^{n} i - \sum_{i=\left[\frac{n}{2}\right]}^{n} n + \sum_{i=\left[\frac{n}{2}\right]}^{n} 1 + \sum_{i=1}^{n} \lfloor \log_{2} i \rfloor$$

$$= 4n + 1 + 3\left(\sum_{i=1}^{n} i - \sum_{i=1}^{\left\lfloor \frac{n}{3} \right\rfloor} i\right) - n\left(n - \left\lfloor \frac{n}{2} \right\rfloor + 1\right) + \left(n - \left\lfloor \frac{n}{2} \right\rfloor + 1\right) + \lfloor n \log_2 i \rfloor$$

=
$$4n + 1 + 3(n^2/2 - (\left\lfloor \frac{n}{3} \right\rfloor)^2/2)) - n(n - \left\lfloor \frac{n}{3} \right\rfloor + 1) + (n - \left\lfloor \frac{n}{3} \right\rfloor + 1) + \lfloor n \log_2 i \rfloor$$

Bài 6:

```
i = 1; count =0;
while ( i ≤ 4n)
{
    x=(n-i)(i-3n) ;
    y=i-2n;
    j=1;
    while (j ≤ x )
    {
        count = count - 2;
        j = j + 2;
    }
    if (x>0)
        if (y>0)
        count = count +1;
    i = i + 1;
}
```

Gọi α_i là số lần lặp của while trong thứ nhất (xét độc lập với while ngoài)

α_i: số con j với j chạy từ 1 tới x, bước nhảy tăng 2

whilie trong chỉ thực hiện khi j <= x

$$\begin{array}{c} \approx 1 <= x \\ \approx x > 0 \\ \Rightarrow \alpha_i = \begin{cases} \frac{(n-i)(I-3n)}{2} & \mbox{\it khi} \ x > 0 \\ 0 & \mbox{\it khi} \ x \leq 0 \end{cases}$$

Bảng xét dấu:

i	1	r	า	2n		3n	4n
x = (n - i) (i - 3n)		- (0 +		+	0	-
y = i – 2n		-	-	0	+		+

```
Câu lệnh y > 0 chỉ được thực hiện khi x > 0
\approx n < i < 3n
\approx n + 1 \le i \le 3n - 1
    \Rightarrow Số lần thực hiện câu lệnh \approx (3n - 1) - (n - 1) + 1
Số lần thực hiện count = số lần \begin{cases} x > 0 \\ v > 0 \end{cases}
\approx 2n < i < 3n
\approx 2n + 1 \le i \le 3n - 1
    \Rightarrow Số lần thực hiện = (3n - 1)(2n + 1) + 1 = n - 1
G(n) = 2 + 12n + \sum_{i=1}^{4n} 2\alpha i + n - 1 + 4n
= 17n + 1 + 2\sum_{i=1}^{4n} \alpha i = 17n + 1 + \sum_{i=1}^{4n} x
= 17n + 1 + \sum_{i=1}^{4n} (n-i)(i-3n)
= 17n + 1 + \sum_{i=n}^{3n} (n-i)(i-3n)
= 17n + 1 + \sum_{i=n}^{3n} (-i^2 + 4ni - 3n^2)
= 17n + 1 - \sum_{i=n}^{3n} i^2 + \sum_{i=n}^{3n} 4ni + \sum_{i=n}^{3n} 3n^2
= 17n + 1 - (\sum_{i=1}^{3n} i^2 - \sum_{i=1}^{n} i^2) + 4n (\sum_{i=1}^{3n} i - \sum_{i=1}^{n} i) + 3n^2(2n + 1)
= 17n + 1 - ((3n)^3/3 - n^3/3) + 4n((3n)^2/2 - n^2/2) + 3n^2(2n + 1)
SS(n) = 4n + 1 + \sum_{i=1}^{4n} (\alpha_i + 1) + 4n + 2n - 1
= 14n + \sum_{i=1}^{4n} \alpha_i
```

Bài 7

$$y = i - 2n;$$

 $y = 1;$
 $while (j \le x)$
{
 $if (i \ge 2y)$
 $count = count - 2;$ //1g
 $j = j + 1;$ //1g
}
 $i = i + 1$ //1g

Gọi α_i là số lần lặp của vòng while trong (độc lập với while ngoài).

Ta có α_i là số con j mà j chạy từ $1 \rightarrow x$ với bước tăng là 1. Vì vậy,

$$\alpha_i = x = (n-i)(i-3n)$$

Điều kiện lặp của vòng while trong: $j \le x \Leftrightarrow x \ge 1$. Từ đó, ta xác định được:

$$\alpha_i = \begin{cases} 0, & i \le n \text{ hoặc } i \ge 3n\\ (n-i)(i-3n), & n+1 \le i \le 3n \end{cases}$$

Ta có bảng xét dấu:

i	-∞	n	2n	3n	+∞
x = (n-i)(i-3n)	_	0	+ +	0	
y = i - 2n	_	_	0	+	+

Điều kiện để count = count - 2 được thực hiện là

$$i \geq 2y \iff i \geq 2(i-2n) \iff i \leq 4n.$$

Vì vậy, phép gán này luôn thực hiện khi while trong lặp

Ta có:

$$G(n) = 2 + 4 \times 4n + \sum_{i=1}^{4n} 2\alpha_i = 2 + 16n + \sum_{i=n+1}^{3n-1} (n-i)(i-3n)$$

$$SS(n) = 4n + 1 + \sum_{i=1}^{4n} (\alpha_i + 1) + 4 \sum_{i=1}^{4n} (\alpha_i) = 8n + 1 + 2 \sum_{i=n+1}^{3n-1} (n-i)(3i-n)$$

Bài 8

```
i = 1; count = 0;
                                                              //g=2
while (i \le 3n)
                                                             //ss=3n+1, g=3
      x = 2 \times n - i:
      y = i - n;
      y = 1;
      while (j \le x)
             if(j \ge n)
                   count = count - 1;
                                                           //g=1
             j = j + 1;
                                                           //g=1
      }
      if(y > 0)
             if(x > 0)
                    count = count + 1
                                                               //g = 1
      i = i + 1
                                                              //g = 1
}
```

Gọi α_i là số lần lặp của vòng while trong (độc lập với while ngoài).

Ta có α_i là số con j mà j chạy từ $1 \rightarrow x$ với bước tăng là 1. Vì vậy,

$$\alpha_i = x = 2n - i$$

Điều kiện lặp của vòng while trong: $j \le x \Leftrightarrow x \ge 1$. Từ đó, ta xác định được:

$$\alpha_i = \begin{cases} 0, & i > 2n - 1 \\ 2n - i, & i \le 2n - 1 \end{cases}$$

Ta có bảng xét dấu:

i	n	2n	+∞
x = 2n - i	+ +	0	_
y = i - n	- 0	+	+

Gọi β_i là số lần câu lệnh if $j \ge n$ thỏa mãn. Ta có, $j \le x = 2n - i$ khi $i \le 2n - 1$.

Vậy $\beta_i = số con j$ trong khoảng từ n tới 2n - i = n - i + 1 khi $2n - i \ge n \iff i \le n$,

Vậy số lần count = count + 1 được thực hiện được tương đương với $\beta_i = n - i + 1$ khi $i \le n = \sum_{i=1}^n n - i + 1$

Từ bảng xét dấu ta có:

$$x > 0 \Leftrightarrow 1 \le i \le 2n - 1$$

 $y > 0 \Leftrightarrow n + 1 < i < 3n$

Để thỏa mãn đồng thời x>0 và $y>0 \Leftrightarrow n+1 \leq i \leq 2n-1$. Vậy nên số phép gán i=i+1 sẽ là n-1 phép gán

Ta có:

$$G(n) = 2 + 4 \times 3n + \sum_{i=1}^{3n} \beta_i + \sum_{i=1}^{3n} \alpha_i + (n-1)$$

$$= 1 + 13n + \sum_{i=1}^{n} (n - i + 1) + \sum_{i=1}^{2n-1} 2n - i$$

$$SS(n) = 3n + 1 + \sum_{i=1}^{3n} (\alpha_i + 1) + \sum_{i=1}^{3n} (\alpha_i) + 3n + [3n - (n+1) + 1]$$

$$= 8n + 1 + 2\sum_{i=1}^{3n} 1 + 2\sum_{i=1}^{2n-1} 2n - i$$

Bài 9.

Gọi α_i là số lần so sánh của while trong (Xét độc lập với while ngoài)

Ta có:

$$G(n) = 2 + 2n + \sum_{i=1}^{n} 3\alpha_i + n$$

$$SS(n) = n + 1 + \sum_{i=1}^{n} (\alpha_i + 1)$$

Lúc ban đầu j = 1, k = 1

Lần chạy 1:
$$k = 1 + 2 = 3$$
; $j = 1 + 3 = 4$

Lần chạy 2:
$$k = 3 + 2 = 5$$
; $j = 4 + 5 = 9$

Lần chạy 3:
$$k = 5 + 2 = 7$$
; $j = 9 + 7 = 16$

Lần chạy 4:
$$k = 7 + 2 = 9$$
; $j = 16 + 9 = 25$

•••

Khi chạy tới con k cuối cùng thì $k_{cuối} = 1 + 2\alpha_i$

Khi đó thì con j_{cuối} =
$$1 + 3 + 5 + 7 + ... + (1 + 2\alpha_i)$$

=
$$(\alpha_i + 1)^2$$
 (Công thức ở câu 1, với n = 1 + $2\alpha_i$)

Ta có j thuộc trong tập {1, 4, 9, 16, ..., $(k+1)^2 + ... + (\alpha_i + 1)^2$ <= i}

Khi đó α_i chính là số con k thỏa mãn

Ta có:
$$0 \le k \le \alpha_i$$

Lại có
$$(\alpha_i + 1)^2 <= i$$

$$\Leftrightarrow$$
 1 <= $(\alpha_i + 1)$ <= \sqrt{i}

$$\Leftrightarrow$$
 0 <= α_i <= \sqrt{i} - 1

$$\Rightarrow$$
 0 <= k <= α_i <= \sqrt{i} - 1

$$\Rightarrow \Leftrightarrow 0 \le k \le \sqrt{i} - 1$$

$$\Rightarrow$$
 Có $(\sqrt{i}-1-0+1)=\sqrt{i}$ con k thỏa mãn hay $\alpha_i=\sqrt{i}$

Khi đó:

G(n) = 2 + 2n +
$$\sum_{i=1}^{n} 3\alpha_i$$
 + n
= 2 + 3n + 3 $\sum_{i=1}^{n} \alpha_i$
= 2 + 3n + 3 $\sum_{i=1}^{n} \sqrt{i}$

Ta có
$$\sum_{i=1}^n \sqrt{i} = \sum_{i=1}^n i^{1/2} \approx \frac{1}{\frac{1}{2}+1} * n^{\frac{1}{2}} = 2/3 * n^{3/2}$$

$$G(n) = 2 + 3n + 3 * (2/3 * n^{3/2}) = 2 + 3n + 2n^{3/2}$$

SS(n) = n + 1 +
$$\sum_{i=1}^{n} (\alpha_i + 1)$$

$$= n + 1 + \sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} 1$$

$$= 2n + 1 + \sum_{i=1}^{n} \sqrt{i}$$

$$= 2n + 1 + \frac{2}{3} n^{3/2}$$

Bài 10.

```
sum = 0; i=1; idx=-1;
                                                          3 g
while (i<=n)
                                                          n + 1 ss
                                                          n g
           while(j<=n)
                                                          n + 1 ss
                     if((i==j) && (i+j==n+1))
                                                          \alpha_i ss
                                                         \beta_i g
                               idx=i;
                     sum=sum+a[i][j];
                                                          2ng
                                                          n g
                                                          1 ss
if(idx !=-1)
       sum=sum-a[idx][idx];
                                                         γg
```

Gọi α_i là số lần so sánh của biểu thức if ((I == j) && (i + j == n + 1)) trong while trong β_i là số phép gán của biểu thức if ((I == j) && (i + j == n + 1)) trong while trong γ là số phép gán của biểu thức sum = sum – a[idx][idx];

Ta có:

G(n) =
$$3 + n + \sum_{i=1}^{n} (2n + \beta_i) + n + \gamma$$

= $3 + 2n + \sum_{i=1}^{n} (2n + \beta_i) + \gamma$

SS(n) = n + 1 +
$$\sum_{i=1}^{n} (\alpha_i + n + 1) + 1$$

Xét biểu thức if ((I == j) && (i + j == n + 1)) có tối đa 2n so sánh

Khi chạy 2 while lồng nhau:

- + Có n trường hợp i == j
- + Có n trường hợp i + j == n + 1
- + Cả 2 biểu thức đều đúng khi (I == j) trùng với (I + j == n + 1)

$$\Leftrightarrow \begin{cases} i == j \\ i+j == n+1 \end{cases}$$

$$\Leftrightarrow$$
 i = (n + 1) / 2

$$\Leftrightarrow i = \begin{cases} 0 \text{ n\'eu } n \text{ l\'e} \\ 1 \text{ n\'eu } n \text{ ch\'an} \end{cases}$$

Vì phép toán idx == I chỉ được thực hiện khi cả 2 biểu thức đúng

$$\Rightarrow \sum_{i=1}^{n} \beta_i = \begin{cases} 0 \text{ n\'eu } n \text{ l\'e} \\ 1 \text{ n\'eu } n \text{ ch\~a\~n} \end{cases} = n \% 2$$

Ta lại có biểu thức sum = sum – a[idx][idx] được thực hiện khi biểu thức if ((I == j) && (i + j == n + 1)) đúng $\Leftrightarrow \gamma = n \% 2$

Ta có:

G(n) =
$$3 + 2n + \sum_{i=1}^{n} (2n + \beta_i) + \gamma$$

= $3 + 2n + \sum_{i=1}^{n} 2n + \sum_{i=1}^{n} \beta_i + \gamma$
= $2n^2 + 2n + 3 + 2(n \% 2)$

Ta có 1 lần while trong thực hiện thì biểu thức I == j thực hiện n lần

 \Rightarrow n lần while trong thực hiện thì biểu thức I == j thực hiện n^2 lần

Biểu thức (i + j == n + 1) được thực hiện khi biểu thức (i == j) đúng \Leftrightarrow n lần biểu thức (i + j == n + 1) được thực hiện

$$\Rightarrow SS(n) = n + 1 + \sum_{i=1}^{n} (\alpha_i + n + 1) + 1$$

$$= n + 1 + \sum_{i=1}^{n} n + 1 + \sum_{i=1}^{n} \alpha_i + 1$$

$$= n^2 + 2n + 2 + \sum_{i=1}^{n} \alpha_i$$

$$= n^2 + 2n + 2 + (n^2 + n)$$

Bài 11:

Gọi α_i là số lần chạy của while trong (xét độc lập với while ngoài)

 α_i : số con j với j chạy từ 1 tới $S_i = \left| S_{i-1} + \frac{1}{i} \right|$

$$S_{i} = [S_{i-1} + 1/i] = \left[\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{i}\right] \approx \ln i + \gamma, \gamma \approx 0.5722$$

$$\alpha_{i}: [S_{i}] - 1 + 1 = [\ln i + \gamma]$$

$$G(n) = 3 + 2n + n + \sum_{i=1}^{n} 2\alpha_{i}$$

$$= 3 + 3n + \sum_{i=1}^{n} 2\alpha_{i}$$

$$= 3 + 3n + 2\sum_{i=1}^{n} [\ln i + \gamma]$$

$$= 3 + 3n + 2\sum_{i=1}^{n} \gamma + 2\sum_{i=1}^{n} \ln i$$

$$Ta có \sum_{i=1}^{n} \ln i = \ln(n!)$$

$$\Rightarrow G(n) = 3 + 3n + 2n \gamma + 2\ln(n!)$$

$$SS(n) = n + 1 + \sum_{i=1}^{n} (\alpha_{i} + 1)$$

$$= 2n + 1 + \sum_{i=1}^{n} [\ln i + \gamma]$$

$$= 2n + 1 + n + n + \ln(n!)$$

N	1	2	3	4	5	6	7	8	9
G(n) ≈ 4.1544n + 3 + n * ln (n !)	7.15	12.7	20.84	32.33	47.7	67.4	91.76	121.1	155, 6
G(n) kết quả khi chạy chương trình	7.15	12, 69	17	24	31	38	45	52	59
SS(n) ≈ 2.5722n + 1 + In (n !)	3.57	6.84	10.51	14.47	18.65	23.01	27.53	32.18	36.95
SS(n) kết quả khi chạy chương trình	3	5	7	10	13	16	19	22	25

10	11	12	13	14	15	16	17	18	19	20
195.59	241.22	292.7	350.2	413.83	483.8	560.22	643.21	732.9	829.39	932.8
66	75	84	93	102	111	120	129	138	147	156
41.83	46.80	51.85	56.99	62.2	67.48	72.83	78.23	83.7	89.21	94.78
28	32	36	40	44	47	52	56	60	64	68

Bài 12: Số thứ tự nhóm =

```
i = 1; res = 0;
while (i \le n) do
j = 1;
while (j \le i) do
res = res + i*j;
j = j + 1;
end do;
i = i + s\^{o} th\'{u} t\'{u} c\~{u} a nh\'{o}m;
end do;
```

Gọi α_i là số lần lặp của while trong (xét độc lập với while ngoài)

 α_i : số con j với j chạy từ 1 -> i, bước nhảy = 1

$$\alpha_i = i + 1 - 1 = i$$

k: số lần lặp của while ngoài

Ta có số lần lặp của while ngoài là $k = \left\lfloor \frac{n-1}{11} \right\rfloor + 1$

$$G(n) = 2 + k + \sum_{i=1,i+1}^{n} 2\alpha_i + k$$

= 2 + 2k + 2
$$\sum_{i=1,i+=11}^{n} \alpha_i$$

= 2 + 2k +
$$2\sum_{i=1,i+=11}^{n} i$$

Ta có
$$\sum_{i=1}^{n} \frac{1}{i+1} \alpha_i = 1 + 12 + 23 + ... + n$$

$$= \left(\frac{n+1}{2}\right) \cdot \left(\frac{n-1}{11} + 1\right) = \frac{(n+1)(n+10)}{22}$$

$$\Rightarrow G(n) = 4 + 2\left[\frac{n-1}{11}\right] + 2\frac{(n+1)(n+10)}{22}$$

$$SS(n) = k + 1 + \sum_{i=1,i+11}^{n} (\alpha_i + 1), k = \left[\frac{n-1}{11}\right] + 1$$

$$= k + 1 + \sum_{i=1,i+11}^{n} \alpha_i + \sum_{i=1,i+11}^{n} 1$$

$$= k + 1 + \frac{(n+1)(n+10)}{22} + \frac{n-1}{11} + 1$$

$$= 2\left(\frac{n-1}{11} + 1\right) + \frac{(n+1)(n+10)}{22}$$

N	1	2	3	4	5	6	7	8	9
G(n) ≈ 2(x -									
1)/11 + 4 +	6	7	8	10	12	14	16	18	21
2(x+1)(x+10)/11									
G(n) kết quả khi									
chạy chương	5	5	5	5	5	5	5	5	5
trình									
SS(n) ≈ 2(x -									
1)/11 + 2 +	3	3	4	5	6	7	8	9	10
2(x+1)(x+10)/11									
SS(n) kết quả khi									
chạy chương	3	3	3	3	3	3	3	3	3
trình									

10	11	12	13	14	15	16	17	18	19	20
24	26	32	35	38	42	46	50	54	58	63
5	5	30	30	30	30	30	30	30	30	30
12	13	17	18	20	22	24	26	28	30	32
3	3	16	16	16	16	16	16	16	16	16

Ta có thể thấy đối với trường hợp n rất nhỏ thì sai số sẽ rất lớn, giá trị chỉ thay đổi khi đi qua giá trị chia hết cho 11.

Đối với giá trị n rất lớn thì sai số sẽ giảm đi rất nhiều.

100	500	1000	2000	5000	10000
1032	23322	92094	366003	2278640	9102732

1022	22910	90365	362910	2273637	9101822
525	11706	46137	183182	1139774	4552275
516	11478	45228	181546	1137046	4551366

Bài 13:

Gọi α_i là số lần thực hiện của while ngoài (xét độc lập với while trong)

 α_i : số con i với i chạy từ n tới 0, bước nhảy i/2

i có thể là
$$\{n; \frac{n}{2}; \frac{n}{4}; \dots; \frac{n}{2^k} > 0\}$$

$$\Rightarrow \alpha_i = số con k thỏa mãn $0 < \frac{n}{2^k} <= n$

$$\approx 1 <= \frac{n}{2^k} <= n$$$$

$$\approx 2^k <= n <= n*2^k$$

$$\approx 1 <= 2^k <= n$$

$$\approx 0 <= k <= \log_2 n$$

$$\approx \alpha_i = \lfloor \log_2 n \rfloor + 1$$

$$G(n) = 2 + 2\alpha_i + \sum_{i=n, i=i/2}^{i>0} 2i$$

$$= \sum_{i=n, i=i/2}^{i>0} i = n + \frac{n}{2} + \frac{n}{4} + \dots + \frac{n}{2^k} > 0$$

$$= Cấp số nhân với số hạng đầu là n và công bội là ½
$$n(\left(\frac{1}{2}\right)^k - 1)$$$$

$$= \frac{n\left(\left(\frac{1}{2}\right)^{k} - 1\right)}{\frac{1}{2} - 1} = -2n\left(\left(\frac{1}{2}\right)^{\lfloor \log_{2} n \rfloor + 1} - 1\right)$$

$$\Rightarrow G(n) = 2 + 2(\lfloor \log_{2} n \rfloor + 1) - 4n\left(\left(\frac{1}{2}\right)^{\lfloor \log_{2} n \rfloor + 1} - 1\right)$$

$$SS(n) = \alpha_{i} + 1 + \sum_{i=n, i=i/2}^{i>0} (i+1)$$

$$= \lfloor \log_{2} n \rfloor + 1 + 1 + \sum_{i=n, i=i/2}^{i>0} i + \sum_{i=n, i=i/2}^{i>0} 1$$

$$= \lfloor \log_{2} n \rfloor + 2 - 2n\left(\left(\frac{1}{2}\right)^{\lfloor \log_{2} n \rfloor + 1} - 1\right) + \lfloor \log_{2} n \rfloor + 1$$

$$= 2\lfloor \log_{2} n \rfloor + 3 - 2n\left(\left(\frac{1}{2}\right)^{\lfloor \log_{2} n \rfloor + 1} - 1\right)$$

N	1	2	3	4	5	6	7	8	9
G(n) $\approx 2 +$ $2(\lfloor \log_2 n \rfloor + 1) -$ $4n \left(\left(\frac{1}{2} \right)^{\lfloor \log_2 n \rfloor + 1} - 1 \right)$	6	12	17	22	26.64	31	35	40	44
G(n) kết quả khi chạy chương trình	4	8	10	16	18	22	24	32	34
$SS(n) \approx 2\lfloor \log_2 n \rfloor + 3 - 2n$ $\left(\left(\frac{1}{2} \right)^{\lfloor \log_2 n \rfloor + 1} - 1 \right)$	4	5	6	9	11	13	15	18	20
SS(n) kết quả khi chạy chương trình	2	4	5	8	9	11	12	16	17

10	11	12	13	14	15	16	17	18	19	20
48	52	57	61	65	69	74	78	82	86	90
38	40	46	48	52	54	64	66	70	72	78
22	24	26	28	30	33	35	37	39	41	43
19	20	23	24	26	27	32	33	35	36	39

Ta có thể thấy đối với trường hợp n rất nhỏ thì sai số sẽ rất lớn

Đối với giá trị n rất lớn thì sai số sẽ giảm đi rất nhiều.

100	500	1000	2000	5000	10000
415	2019	4021	8023	20026	40028
396	1990	3990	7990	19992	39992
205	1007	2008	4009	10011	20012
198	995	1995	3995	9996	19960