Weak Induction Template

- 1. Define P(n). State that your proof is by induction on n.
- 2. Base Case: Show P(b) i.e. show the base case
- 3. Inductive Hypothesis: Suppose P(k) for an arbitrary $k \geq b$.
- 4. Inductive Step: Show P(k + 1) (i.e. get $P(k) \rightarrow P(k + 1)$)
- 5. Conclude by saying P(n) is true for all $n \ge b$ by the principle of induction.

Strong Induction Template (with multiple base cases)

- 1. Define P(n). State that your proof is by induction on n.
- 2. Base Cases: Show $P(b_{min})$, $P(b_{min+1})$... $P(b_{max})$ i.e. show the base cases
- 3. Inductive Hypothesis: Suppose $P(b_{min}) \wedge P(b_{min} + 1) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq b_{max}$. (The smallest value of k assumes **all** bases cases, but nothing else)
- 4. Inductive Step: Show P(k+1) (i.e. get $[P(b_{min} \land \cdots \land P(k))] \rightarrow P(k+1)$)
- 5. Conclude by saying P(n) is true for all $n \ge b_{min}$ by the principle of induction.

Structural Induction Template

- 1. Define P() Show that P(x) holds for all $x \in S$. State your proof is by structural induction.
- 2. Base Case: Show P(x) for all base cases x in S.
- 3. Inductive Hypothesis: Suppose P(x) for all x listed as in S in the recursive rules.
- 4. Inductive Step: Show P() holds for the "new element" given.
- You will need a separate step for every rule.
- 5. Therefore P(x) holds for all $x \in S$ by the principle of induction.