Chapter 2: Association Rules & Sequential Patterns

Instructor: Dr. Mehmet S. Aktas

Acknowledgement: Thanks to Dr. Bing Liu for teaching materials.

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary

Association rule mining

- Proposed by Agrawal et al in 1993.
- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- No good algorithm for numeric data.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

Bread \rightarrow Milk [sup = 5%, conf = 100%]

The model: data

- $I = \{i_1, i_2, ..., i_m\}$: a set of *items*.
- Transaction t
 - \Box t a set of items, and $t \subseteq I$.
- Transaction Database T: a set of transactions $T = \{t_1, t_2, ..., t_n\}$.

Transaction data: supermarket data

Market basket transactions:

```
t1: {bread, cheese, milk}
t2: {apple, eggs, salt, yogurt}
...
tn: {biscuit, eggs, milk}
```

Concepts:

- An item: an item/article in a basket
- !: the set of all items sold in the store
- A transaction: items purchased in a basket; it may have TID (transaction ID)
- A transactional dataset: A set of transactions

Transaction data: a set of documents

A text document data set. Each document is treated as a "bag" of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

The model: rules

- A transaction t contains X, a set of items (itemset) in I, if $X \subseteq t$.
- An association rule is an implication of the form:

 $X \rightarrow Y$, where X, $Y \subset I$, and $X \cap Y = \emptyset$

- An itemset is a set of items.
 - □ E.g., X = {milk, bread, cereal} is an itemset.
- A k-itemset is an itemset with k items.
 - □ E.g., {milk, bread, cereal} is a 3-itemset

Rule strength measures

■ Support: The rule holds with support sup in T (the transaction data set) if sup% of transactions contain $X \cup Y$.

- □ $sup = Pr(X \cup Y)$.
- Confidence: The rule holds in T with confidence conf if conf% of tranactions that contain X also contain Y.
 - $\Box conf = Pr(Y \mid X)$
- An association rule is a pattern that states when X occurs, Y occurs with certain probability.

Support and Confidence

- Support count: The support count of an itemset X, denoted by X.count, in a data set T is the number of transactions in T that contain X. Assume T has n transactions.
- Then,

$$support = \frac{(X \cup Y).count}{n}$$

$$confidence = \frac{(X \cup Y).count}{X.count}$$

Goal and key features

Goal: Find all rules that satisfy the userspecified minimum support (minsup) and minimum confidence (minconf).

Key Features

- Completeness: find all rules.
- No target item(s) on the right-hand-side

An Example:

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

- Itemset $X = \{x_1, ..., x_k\}$
- Find all the rules X → Y with minimum support and confidence
 - □ support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y
 - •Let $sup_{min} = 50\%$, $conf_{min} = 50\%$
 - Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3}
 - Association rules:
 - $\bullet A \to D \ (60\%, 100\%)$
 - $D \to A (60\%, 75\%)$

Another example

- Transaction data
- Assume:

```
minsup = 30%
minconf = 80%
```

- t1: Beef, Chicken, Milk
- t2: Beef, Cheese
- t3: Cheese, Boots
- t4: Beef, Chicken, Cheese
- t5: Beef, Chicken, Clothes, Cheese, Milk
- t6: Chicken, Clothes, Milk
- t7: Chicken, Milk, Clothes

An example frequent itemset.

{Chicken, Clothes, Milk} [sup = 3/7]

Association rules from the itemset:

Clothes \rightarrow Milk, Chicken [sup = 3/7, conf = 3/3]

.. ..

Clothes, Chicken \rightarrow Milk, [sup = 3/7, conf = 3/3]

Transaction data representation

- A simplistic view of shopping baskets,
- Some important information not considered.
 E.g,
 - the quantity of each item purchased and
 - the price paid.

Many mining algorithms

- There are a large number of them!!
- They use different strategies and data structures.
- Their resulting sets of rules are all the same.
 - Given a transaction data set T, and a minimum support and a minimum confident, the set of association rules existing in T is uniquely determined.
- Any algorithm should find the same set of rules although their computational efficiencies and memory requirements may be different.
- We study only one: the Apriori Algorithm

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary

The Apriori algorithm

- The best known algorithm
- Two steps:
 - Find all itemsets that have minimum support (frequent itemsets, also called large itemsets).
 - Use frequent itemsets to generate rules.
- E.g., a frequent itemset
 {Chicken, Clothes, Milk} [sup = 3/7]
 and one rule from the frequent itemset
 Clothes → Milk, Chicken [sup = 3/7, conf = 3/3]

Step 1: Mining all frequent itemsets

- A frequent itemset is an itemset whose support is ≥ minsup.
- Key idea: The apriori property (downward closure property): any subsets of a frequent itemset are also frequent itemsets

The Algorithm

- Iterative algo. (also called level-wise search): Find all 1-item frequent itemsets; then all 2-item frequent itemsets, and so on.
 - □ In each iteration *k*, only consider itemsets that contain some *k*-1 frequent itemset.
- Find frequent itemsets of size 1: F₁
- From k=2
 - C_k = candidates of size k: those itemsets of size k that could be frequent, given F_{k-1}
 - \neg F_k = those itemsets that are actually frequent, F_k $\subseteq C_k$ (need to scan the database once).

Dataset T Example – minsup=0.5 Finding frequent itemsets

TID	Items
T100	1, 3, 4
T200	2, 3, 5
T300	1, 2, 3, 5
T400	2, 5

itemset:count

- 1. scan T \rightarrow C₁: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3

 - \rightarrow F₁: {1}:2, {2}:3, {3}:3,

 - \rightarrow C₂: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}
- 2. scan T \rightarrow C₂: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2
 - \rightarrow F₂:

- **{1,3}**:2, **{2,3}**:2, **{2,5}:**3, **{3,5}**:2

{5}:3

- \rightarrow C₃: {2, 3,5}
- 3. scan T \rightarrow C₃: {2, 3, 5}:2 \rightarrow F₃: {2, 3, 5}

Details: the algorithm

```
Algorithm Apriori(7)
```

```
C_1 \leftarrow \text{init-pass}(T);
    F_1 \leftarrow \{f \mid f \in C_1, f.count/n \geq minsup\}; // n: no. of transactions in T
   for (k = 2; F_{k-1} \neq \emptyset; k++) do
           C_k \leftarrow \text{candidate-gen}(F_{k-1});
           for each transaction t \in T do
              for each candidate c \in C_k do
                      if c is contained in tthen
                        c.count++;
              end
          end
          F_{k} \leftarrow \{c \in C_{k} \mid c.count/n \geq minsup\}
    end
return F \leftarrow \bigcup_{k} F_{k};
```

Apriori candidate generation

- The candidate-gen function takes F_{k-1} and returns a superset (called the candidates) of the set of all frequent k-itemsets. It has two steps
 - \Box *join* step: Generate all possible candidate itemsets C_k of length k
 - \neg prune step: Remove those candidates in C_k that cannot be frequent.

Candidate-gen function

```
Function candidate-gen(F_{k-1})
    C_{k} \leftarrow \emptyset;
    forall f_1, f_2 \in F_{k-1}
            with f_1 = \{i_1, \ldots, i_{k-2}, i_{k-1}\}
            and f_2 = \{i_1, \ldots, i_{k-2}, i'_{k-1}\}
            and i_{k-1} < i'_{k-1} do
        c \leftarrow \{i_1, \ldots, i_{k-1}, i'_{k-1}\};
                                                             // join f_1 and f_2
        C_{k} \leftarrow C_{k} \cup \{c\};
        for each (k-1)-subset s of c do
            if (s \notin F_{k-1}) then
                delete c from C_k;
                                                             // prune
        end
    end
    return C_k;
```

An example

• $F_3 = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{1, 3, 5\}, \{2, 3, 4\}\}$

After join

 $C_4 = \{\{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 3, 4, 5\}\}$

After pruning:

□ $C_4 = \{\{1, 2, 3, 4\}\}$ because $\{2, 3, 5\}$ and $\{1, 4, 5\}$ are not in F_3 ($\{1, 2, 3, 5\}$ and $\{1, 3, 4, 5\}$ are removed)

Step 2: Generating rules from frequent itemsets

- Frequent itemsets ≠ association rules
- One more step is needed to generate association rules
- For each frequent itemset X,
 For each proper nonempty subset A of X,
 - Let B = X A
 - \square A \rightarrow B is an association rule if
 - Confidence(A → B) ≥ minconf,
 support(A → B) = support(A∪B) = support(X)
 confidence(A → B) = support(A ∪ B) / support(A)

Generating rules: an example

- Suppose {2,3,4} is frequent, with sup=50%
 - Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with sup=50%, 50%, 75%, 75%, 75%, 75% respectively
 - These generate these association rules:
 - $= 2,3 \rightarrow 4,$ confidence=100%
 - $= 2,4 \rightarrow 3,$ confidence=100%
 - \blacksquare 3,4 \rightarrow 2, confidence=67%
 - $= 2 \rightarrow 3.4$, confidence=67%
 - $= 3 \rightarrow 2.4$, confidence=67%
 - $= 4 \rightarrow 2,3$, confidence=67%
 - All rules have support = 50%

Generating rules: summary

- To recap, in order to obtain A → B, we need to have support(A ∪ B) and support(A)
- All the required information for confidence computation has already been recorded in itemset generation. No need to see the data T any more.
- This step is not as time-consuming as frequent itemsets generation.

On Apriori Algorithm

Seems to be very expensive

- Level-wise search
- K = the size of the largest itemset
- It makes at most K passes over data
- In practice, K is bounded (10).
- The algorithm is very fast.
- Scale up to large data sets.

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary

Different data formats for mining

 The data can be in transaction form or table form

Transaction form: a, b a, c, d, e a, d, f

Table form: Attr1 Attr2 Attr3 a, b, d

b, c, e

 Table data need to be converted to transaction form for association mining

From a table to a set of transactions

Table form:

Attr1 Attr2 Attr3

a, b, d

b, c, e

⇒ Transaction form:

(Attr1, a), (Attr2, b), (Attr3, d)

(Attr1, b), (Attr2, c), (Attr3, e)

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary

Mining class association rules (CAR)

- Normal association rule mining does not have any target.
- It finds all possible rules that exist in data, i.e., any item can appear as a consequent or a condition of a rule.
- However, in some applications, the user is interested in some targets.
 - E.g, the user has a set of text documents from some known topics. He/she wants to find out what words are associated or correlated with each topic.

Problem definition

- Let T be a transaction data set consisting of n transactions.
- Each transaction is also labeled with a class Y.
- Let I be the set of all items in T, Y be the set of all class labels and $I \cap Y = \emptyset$.
- A class association rule (CAR) is an implication of the form
 - $X \rightarrow y$, where $X \subseteq I$, and $y \in Y$.
- The definitions of support and confidence are the same as those for normal association rules.

An example

A text document data set

doc 1:Student, Teach, School: Educationdoc 2:Student, School: Educationdoc 3:Teach, School, City, Game: Educationdoc 4:Baseball, Basketball: Sportdoc 5:Basketball, Player, Spectator: Sport

doc 6: Baseball, Coach, Game, Team : Sport

doc 7: Basketball, Team, City, Game: Sport

Let minsup = 20% and minconf = 60%. The following are two examples of class association rules:

Student, School \rightarrow Education [sup= 2/7, conf = 2/2]

game \rightarrow Sport [sup= 3/7, conf = 2/3]

Mining algorithm

- Unlike normal association rules, CARs can be mined directly in one step.
- The key operation is to find all ruleitems that have support above minsup. A ruleitem is of the form:

(condset, y)

where **condset** is a set of items from I (*i.e., condset* $\subseteq I$), and $y \in Y$ is a class label.

- Each ruleitem basically represents a rule: condset → y,
- The Apriori algorithm can be modified to generate CARs

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary

Sequential pattern mining

- Association rule mining does not consider the order of transactions.
- In many applications such orderings are significant. E.g.,
 - in market basket analysis, it is interesting to know whether people buy some items in sequence,
 - e.g., buying bed first and then bed sheets some time later.
 - In Web usage mining, it is useful to find navigational patterns of users in a Web site from sequences of page visits of users

Basic concepts

- Let $I = \{i_1, i_2, ..., i_m\}$ be a set of items.
- Itemset/element: A non-empty set of items $X \subseteq I$.
- **Sequence:** An ordered list of itemsets. We denote a sequence s by $\langle a_1 a_2 ... a_r \rangle$, where a_i is an itemset, which is also called an **element** of s.
- An element (or an itemset) of a sequence is denoted by $\{x_1, x_2, ..., x_k\}$, where $x_i \in I$ is an item.
- We assume without loss of generality that items in an element of a sequence are in lexicographic order.

Basic concepts (contd)

- Size: The size of a sequence is the number of elements (or itemsets) in the sequence.
- Length: The length of a sequence is the number of items in the sequence.
 - A sequence of length k is called k-sequence.
- A sequence $s_1 = \langle a_1 a_2 ... a_r \rangle$ is a **subsequence** of another sequence $s_2 = \langle b_1 b_2 ... b_v \rangle$, or s_2 is a **supersequence** of s_1 , if there exist integers $1 \le j_1 < j_2 < ... < j_{r-1} < j_r \le v$ such that $a_1 \subseteq b_{j1}$, $a_2 \subseteq b_{j2}$, ..., $a_r \subseteq b_{jr}$. We also say that s_2 **contains** s_1 .

An example

- Let $I = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- Sequence ({3}{4, 5}{8}) is contained in (or is a subsequence of) ({6} {3, 7}{9}{4, 5, 8}{3, 8})
 - because {3} ⊆ {3, 7}, {4, 5} ⊆ {4, 5, 8}, and {8} ⊆ {3, 8}.
 - □ The size of the sequence ⟨{3}{4, 5}{8}⟩ is 3, and the length of the sequence is 4.

Objective

- Given a set S of input data sequences (or sequence database), the problem of mining sequential patterns is to find all the sequences that have a user-specified minimum support.
- Each such sequence is called a frequent sequence, or a sequential pattern.
- The support for a sequence is the fraction of total data sequences in S that contains this sequence.

Example

Table 1. A set of transactions sorted by customer ID and transaction time

Customer ID	Transaction Time	Transaction (items bought)
1	July 20, 2005	30
1	July 25, 2005	90
2	July 9, 2005	10, 20
2	July 14, 2005	30
2	July 20, 2005	40, 60, 70
3	July 25, 2005	30, 50, 70
4	July 25, 2005	30
4	July 29, 2005	40, 70
4	August 2, 2005	90
5	July 12, 2005	90

Example (cond)

Table 2. Data sequences produced from the transaction database in Table 1.

Customer ID	Data Sequence
1	({30} {90})
2	({10, 20} {30} {40, 60, 70})
3	({30, 50, 70})
4	({30} {40, 70} {90})
5	⟨{90}⟩

Table 3. The final output sequential patterns

	Sequential Patterns with Support ≥ 25%
1-sequences	\(\{30\}\), \(\{40\}\), \(\{70\}\), \(\{90\}\)
2-sequences	({30} {40}), ({30} {70}), ({30} {90}), ({40, 70})
3-sequences	({30} {40, 70})

GSP mining algorithm

Very similar to the Apriori algorithm

```
Algorithm GSP(S)
                                                            // the first pass over S
   C_1 \leftarrow \text{init-pass}(S);
   F_1 \leftarrow \{\langle \{f\} \rangle | f \in C_1, f.\text{count}/n \ge minsup\}; // n \text{ is the number of sequences in } S
     for (k = 2; F_{k-1} \neq \emptyset; k++) do
                                                            // subsequent passes over S
        C_k \leftarrow \text{candidate-gen-SPM}(F_{k-1});
        for each data sequence s \in S do
                                                           // scan the data once
6
             for each candidate c \in C_k do
                 if c is contained in s then
8
                                                            // increment the support count
                    c.count++;
9
            end
10
        end
        F_k \leftarrow \{c \in C_k \mid c.count/n \ge minsup\}
12 end
     return \bigcup_k F_k;
```

Fig. 12. The GSP Algorithm for generating sequential patterns

Road map

- Basic concepts of Association Rules
- Apriori algorithm
- Different data formats for mining
- Mining class association rules
- Sequential pattern mining
- Summary

Summary

- Association rule mining has been extensively studied in the data mining community.
- So is sequential pattern mining
- There are many efficient algorithms and model variations.
- Other related work includes
 - Multi-level or generalized rule mining
 - Constrained rule mining
 - Incremental rule mining
 - Maximal frequent itemset mining
 - Closed itemset mining
 - Rule interestingness and visualization
 - Parallel algorithms
 - **-** ...