Miejsce na naklejkę z kodem

(Wpisi	ıje	zdaj	ący j	przed
rozpo	CZ	ęcier	n pra	acy)
_				•
KOD 2	ZD	AJ	\mathbf{AC}	EGO

MMA-R2D1P-021

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

Arkusz II

Czas pracy 150 minut

Instrukcja dla zdającego

- 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny brak należy zgłosić przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi należy zapisać czytelnie w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. Proszę pisać tylko w kolorze niebieskim lub czarnym; nie pisać ołówkiem.
- 4. W rozwiązaniach zadań trzeba przedstawić tok rozumowania prowadzący do ostatecznego wyniku.
- 5. Nie wolno używać korektora.
- 6. Błędne zapisy trzeba wyraźnie przekreślić.
- 7. Brudnopis nie będzie oceniany.
- 8. Obok każdego zadania podana jest maksymalna liczba punktów, którą można uzyskać za jego poprawne rozwiązanie.
- 9. Podczas egzaminu można korzystać z tablic matematycznych, cyrkla i linijki oraz kalkulatora. Nie można korzystać z kalkulatora graficznego.
- 10. Do ostatniej kartki arkusza dołączona jest **karta odpowiedzi**, którą **wypełnia egzaminator**.

Za rozwiązanie wszystkich zadań można otrzymać łącznie 60 punktów

Życzymy powodzenia!

(Wpisuje zdający przed rozpoczęciem pracy)										

PESEL ZDAJĄCEGO

ARKUSZ II

STYCZEŃ ROK 2003

Zadanie	11.	(4	pkt)
			p ,	٠.

Wyznacz najmniejszą i największą wartość funkcji $f: R \to R$, określonej wzorem: $f(x) = (x-1) \cdot (5-x)$, w przedziale $\langle 0; 7 \rangle$.

Odpowiedź:

Zadanie 12. (4 pkt)

Dane jest równanie postaci $a^2 \cdot x - 1 = x + a$, w którym niewiadomą jest x. Zbadaj liczbę rozwiązań tego równania, w zależności od parametru a.

Zadanie 13. *(4 pkt)*

Wyznacz te wartości parametrów a oraz b, przy których funkcja $g: R \to R$, określona

wzorem
$$g(x) = \begin{cases} \frac{x^2 + a}{x - 2} & dla \ x \neq 2 \\ b & dla \ x = 2 \end{cases}$$
 jest ciągła w punkcie $x = 2$.

Odpowiedź:

Zadanie 14. *(5 pkt)*

Suma n początkowych, kolejnych wyrazów ciągu (a_n) , jest obliczana według wzoru $S_n = n^2 + 3n$, $(n \in N^+)$. Wyznacz a_n . Wykaż, że ciąg (a_n) jest ciągiem arytmetycznym.

Odpowiedź:

Dziesiąty wyraz pewnego ciągu geometrycznego równa się 10. Oblicz iloczyn dziewiętnastu początkowych, kolejnych wyrazów tego ciągu.

Zadanie 16. (4 pkt)

Rzucamy pięć razy symetryczną kostką sześcienną. Oblicz prawdopodobieństwo zdarzenia, polegającego na tym, że "jedynka" wypadnie co najmniej cztery razy.

Zad	lanie	17	(5	nkt)
Lau	anic	1/•	(J	$\rho \kappa \iota \jmath$

W układzie współrzędnych są dane punkty: $A(-9,-2)$ oraz $B(4,2)$. Wyznacz współrzędne
punktu C , leżącego na osi OY , tak że kąt ACB jest kątem prostym.
Odpowiedź:

Zadanie 18. *(4 pkt)*

Wybierz dwie dowolne przekątne sześcianu i oblicz cosinus kąta między nimi. Sporządź odpowiedni rysunek i zaznacz na nim kąt, którego cosinus obliczasz.

Zadanie 19. *(5 pkt)*

Trapez równoramienny, o o	bwodzie równym	20 cm,	jest opisany	na okręgu.	Wiedząc, że
przekątna trapezu ma długoś		pole tego	trapezu.		

Zadanie 20. (10 pkt)

Funkcja h jest określona wzorem $h(x) = \log_2(x^2 - 4) - \log_2(x - 5)$. Wyznacz wszystkie wartości parametru k, dla których równanie $h(x) - \log_2 k = 0$ ma dwa różne pierwiastki.

Umnowheaz:			
Oupowicuz.	 	 	

Zadanie 21. (10 pkt)

Na kuli o promieniu R=4 cm opisujemy stożki o promieniu r i wysokości H. Spośród wszystkich takich stożków wyznacz ten, który ma najmniejszą objętość. Oblicz tę objętość. Oblicz promień i wysokość znalezionego stożka.

BRUDNOPIS