Suites et récurrences

\Diamond

Suites géométriques

1. Une suite (u_n) est géométrique de raison q et de premier terme u_0 vérifie :

$$\forall n \in \mathbb{N}, \ u_{n+1} = q \times u_n$$

 $\forall n \in \mathbb{N}, \ u_n = u_0 \times q^n$

Pour montrer qu'une suite est géométrique, on partira de l'expression de u_{n+1} et on essaiera d'y faire apparaître le terme u_n multiplié une valeur indépendante de n qui sera la raison.

2. Pour $q \ne 1$, la somme des termes consécutifs d'une suite géométrique s'écrit, pour n > p:

$$u_p + u_{p+1} + ... + u_n = u_p \times \frac{1 - q^{n-p+1}}{1 - q}$$

- **3.** On peut déterminer le comportement à l'infini de la suite géoémtrique (q^n) :
 - \implies convergente vers 0 si -1 < q < 1.
 - \implies divergente vers $+\infty$ si q > 1.
 - \implies convergente vers 1 si q = 1.
 - sans limite dans les autres cas.

Suites arithmétiques

1. Une suite (u_n) est arithmétique de raison r et de premier terme u_0 vérifie :

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n + r$$

$$\forall n \in \mathbb{N}, \ u_n = u_0 + nr$$

Pour montrer qu'une suite est arithmétique, on montrera que la différence $u_{n+1} - u_n$ est toujours égale à la même valeur, la raison, peu importe la valeur de n.

2. La somme des termes consécutifs d'une suite arithmétique s'écrit, pour n > p:

$$u_p + u_{p+1} + ... + u_n = \frac{(n-p+1)(u_p + u_n)}{2}$$

Monotonie d'une suite

Pour montrer qu'une suite (u_n) est monotone, on va étudier la différence $u_{n+1} - u_n$ pour $n \in \mathbb{N}$:

- \implies si $u_{n+1} u_n \ge 0 \quad \forall n \in \mathbb{N} : (u_n)$ est croissante.
- \implies si $u_{n+1} u_n \le 0 \quad \forall n \in \mathbb{N} : (u_n)$ est décroissante.

Exemples d'étude de suite du type $u_{n+1} = f(u_n)$

1. On étudie la suite :

$$\begin{cases} u_{n+1} = u_n - u_n \ln(u_n) \\ u_0 = 0.5 \end{cases}$$

a. Déterminer f telle que $u_{n+1} = f(u_n)$. On remplace tous les u_n par des x et on obtient :

$$f(x) = x - x \ln(x)$$

b. Montrer que f est croissante sur [0.5;1].

La fonction f est dérivable pour x > 0 et on a :

$$f'(x) = -\ln(x)$$

Pour $0.5 \le x \le 1$, on sait que $\ln(x) \le 0$, donc $f'(x) \ge 0$ pour $0.5 \le x \le 1$: f est donc croissante pour $x \in [0.5, 1]$.

c. Montrer par récurrence que $\forall n \in \mathbb{N}, \ 0.5 \le u_n \le u_{n+1} \le 1$.

Initialisation:

On a $u_1 = f(u_0) = u_0 - u_0 \ln(u_0)$ donc $u_1 - u_0 = -u_0 \ln(u_0)$.

Or $\ln(u_0) \le 0$ car $u_0 \le 1$ donc $-u_0 \ln(u_0) \ge 0$: par conséquent, $u_1 \ge u_0$ et l'initialisation est alors établie.

Hérédité:

On suppose que la propriété est vraie pour un certain rang $n \ge 0$:

$$0.5 \le u_n \le u_{n+1} \le 1$$
: c'est l'hypothèse de récurrence

On regarder si la propriété est vraie au rang n+1. On part de l'hypothèse de récurrence :

$$0.5 \le u_n \le u_{n+1} \le 1$$

 $\Rightarrow f(0.5) \le f(u_n) \le f(u_{n+1}) \le f(1)$ par croissance de f
 $\Rightarrow u_1 \le f(u_n) \le f(u_{n+1}) \le f(1)$ or $u_1 \ge u_0 = 0.5$
 $\Rightarrow 0.5 \le u_{n+1} \le u_{n+2} \le 1$

L'hérédité est alors établie.

Pour tout $n \in \mathbb{N}$, $0.5 \le u_n \le u_{n+1} \le 1$.

d. Montrer que la suite (u_n) est convergente.

La suite (u_n) est croissante et majorée par 1 donc, d'après le théorème de convergence monotone, u_n converge.

e. Déterminer sa limite l.

La limite *l* de la suite vérifie :

$$l = f(l) \Leftrightarrow l = l - l \ln(l) \Leftrightarrow l \ln(l) = 0 \Leftrightarrow l = 0 \text{ ou } l = 1$$

Comme (u_n) est décroissante, alors l < 0.5 < 1 donc l = 0.

2. On étudie la suite :

$$\begin{cases} u_{n+1} = 0.9u_n + 100 \\ u_0 = 2000 \end{cases}$$

a. Montrer par récurrence que $\forall n \in \mathbb{N}$, $1000 < u_{n+1} \le u_n$.

Initialisation:

On a $u_1 = 0.9 \times 2000 + 100 = 1800 + 100 = 1900$ donc $1000 < u_1 < u_0$: l'initialisation est établie.

Hérédité : On suppose que la propriété est vraie pour un certain rang $n \ge 0$:

$$1000 < u_{n+1} \le u_n$$
 c'est l'hypothèse de récurrence

On va regarder si la propriété est vraie au rang n + 1.

On part de l'hypothèse de récurrence :

$$1000 < u_{n+1} \le u_n$$

$$\Rightarrow 0.9 \times 1000 < 0.9 \times u_{n+1} \le 0.9 u_n$$

$$\Rightarrow 900 + 100 < 0.9 \times u_{n+1} + 100 \le 0.9 u_n + 100$$

$$\Rightarrow 1000 < u_{n+2} \le u_{n+1}$$

L'hérédite est alors établie.

Par conséquent, $\forall n \in \mathbb{N}$, $1000 < u_{n+1} \le u_n$.

- **b.** La suite (u_n) est-elle convergente? La suite (u_n) est décroissante et minorée donc, d'après le théorème de convergence monotone, elle converge.
- **c.** On considère la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 1000$.
 - i. Montrer que la suite (v_n) est géométrique de raison 0.9. Pour $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} - 1000$$

$$= 0.9u_n + 100 - 1000$$

$$= 0.9u_n - 900$$

$$= 0.9(u_n - 1000)$$

$$= 0.9v_n$$

La suite est donc géométrique de raison 0.9.

ii. En déduire que, pour tout entier naturel n, $u_n = 1000(1 + 0.9^n)$. Comme la suite est géométrique de raison 0.9 et de premier terme $v_0 = u_0 - 1000 = 1000$, alors :

$$\forall n \in \mathbb{N}, \ v_n = 1000 \times 0.9^n$$

 $\Leftrightarrow \forall n \in \mathbb{N}, \ u_n - 1000 = 1000 \times 0.9^n$
 $\Leftrightarrow \forall n \in \mathbb{N}, \ u_n = 1000 + 1000 \times 0.9^n = 1000(1 + 0.9^n)$

iii. Déterminer la limite de la suite (u_n) .

Comme la raison de 0.9 est dans] – 1;1[alors la suite 0.9^n converge vers 0 donc, par somme et produit de limites, on en déduit que la suite u_n est 1000.