概率统计基础与 AI 应用

整理: May

2025年8月21日

目录

1	概率	论基础 (Probability Theory)	3				
	1.1	概率公理(Kolmogorov 公理	3				
	1.2	条件概率与独立性	3				
	1.3	全概率公式与贝叶斯定理	3				
2	随机	随机变量与分布 (Random Variables & Distributions)					
	2.1	随机变量	4				
	2.2	期望、方差、协方差	4				
	2.3	常用分布及公式	5				
3	最大	:似然与贝叶斯估计	5				
	3.1	最大似然估计 (MLE)	5				
	3.2	贝叶斯估计 (MAP)	5				
4	概率	统计在 AI 中的应用场景	6				
5	常见	证明思路	6				
6	线性	:代数基础 (Linear Algebra Basics)	6				
	6.1	公理与定义	6				
		6.1.1 向量空间 (Vector Space)	6				
		6.1.2 矩阵 (Matrix)	7				
		6.1.3 内积与范数	7				
	6.2	线性代数在 AI 中的公式与应用	8				
	6.3	常用线性代数操作在 AI 模型中的公式	8				
	6.4	常见证明思路	9				
	6.5	总结	9				

7	微积分基础 (Calculus Fundamentals)		
	7.1	基本概念	9
	7.2	导数 (Derivatives)	9
	7.3	高阶导数与 Hessian 矩阵	10
	7.4	积分 (Integration)	10
	7.5	常用公式	11
	7.6	多重积分与卷积	11
	7.7	证明思路示例	11
	7.8	微积分在 AI 的主要应用场景	12
8	信息	论在 AI 中的作用	12
9	信息	论与生成型模型 / NLP 的联系	12
10	常见	公式总结	13
11	信息	论公理与证明思路	13

1 概率论基础 (Probability Theory)

1.1 概率公理 (Kolmogorov 公理

概率论的基础由三个公理组成:

1. 非负性:

$$P(A) \ge 0, \quad \forall A \subseteq \Omega$$

2. 规范化:

$$P(\Omega) = 1$$

3. 可列可加性 (Additivity): 对互斥事件 A_1, A_2, \ldots

$$P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i})$$

推论:

- 空事件概率为 $0: P(\emptyset) = 0$
- 对任意事件 $A: P(A^c) = 1 P(A)$

1.2 条件概率与独立性

• 条件概率:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad P(B) > 0$$

• 独立事件:

$$P(A \cap B) = P(A)P(B)$$

应用:

- 朴素贝叶斯分类器: 假设特征条件独立, 计算类别概率
- 生成模型: 独立假设用于简化联合分布

1.3 全概率公式与贝叶斯定理

• 全概率公式:

$$P(A) = \sum_{i} P(A|B_i)P(B_i)$$

• 贝叶斯定理:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

应用:

- 贝叶斯推断 (后验概率计算)
- 最大后验估计 (MAP):

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|X) = \arg\max_{\theta} P(X|\theta)P(\theta)$$

2 随机变量与分布(Random Variables & Distributions)

2.1 随机变量

• 离散:取有限或可数值,如 $X \in \{0,1\}$

• 连续: 有概率密度函数 (PDF)

$$P(a \le X \le b) = \int_a^b f_X(x) \, dx$$

2.2 期望、方差、协方差

• 期望:

$$\mathbb{E}[X] = \sum x_i P(X = x_i) \quad (离散)$$

$$\mathbb{E}[X] = \int x f_X(x) \, dx \quad (连续)$$

• 方差:

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

• 协方差:

$$\mathrm{Cov}(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

2.3 常用分布及公式

分布	PDF/PMF	期望	方差	AI 应用
伯努利	P(X = 1) = p, P(X = 0) = 1 - p	p	p(1 - p)	二分类、Dropout 模拟
二项	$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$	np	np(1-p)	样本统计
高斯	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2}$	μ	σ^2	回归、VAE、生成模型
指数	$f(x) = \lambda e^{-\lambda x}$	$1/\lambda$	$1/\lambda^2$	等待时间建模
多项	$P(X_1, \dots, X_k) = \frac{n!}{x_1! \dots x_k!} \prod p_i^{x_i}$	np_i	$np_i(1-p_i)$	语言模型、词频统计

3 最大似然与贝叶斯估计

3.1 最大似然估计 (MLE)

给定观测数据 $X = \{x_1, \dots, x_n\}$ 和参数 θ :

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \prod_{i=1}^{n} p(x_i|\theta)$$

对数似然:

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log p(x_i|\theta)$$

应用:

- 线性回归参数估计
- 逻辑回归训练

3.2 贝叶斯估计 (MAP)

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|X) = \arg\max_{\theta} P(X|\theta)P(\theta)$$

应用:

- 朴素贝叶斯
- 贝叶斯神经网络

4 概率统计在 AI 中的应用场景

场景	概率工具	公式/方法	
分类	条件概率、贝叶斯	朴素贝叶斯: $P(C X) \propto P(X C)P(C)$	
回归	高斯分布假设	$\hat{\theta} = (X^T X)^{-1} X^T y$	
生成模型	MLE, KL 散度, 高斯	VAE ELBO: $\mathbb{E}_{q(z)}[\log p(x z)] - KL(q(z) p(z))$	
强化学习	马尔可夫决策过程	$P(s_{t+1} s_t, a_t)$	
NLP/LLM	多项分布, 交叉熵	$P(w_1, \dots, w_n) = \prod_t P(w_t w_{< t})$	
不确定性	方差, 协方差, 高斯	Bayesian NN: 后验方差估计	

5 常见证明思路

- 1. MLE 推导对数似然取导 \to 令 $\frac{\partial \mathcal{L}}{\partial \theta}=0$ \to 解参数示例:线性回归的 $\theta=(X^TX)^{-1}X^Ty$
- 2. 贝叶斯公式推导从条件概率定义:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

联合概率分解:

$$P(A \cap B) = P(B|A)P(A)$$
 ⇒ 得贝叶斯定理

3. 方差公式

$$Var(X) = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

展开平方 → 分解期望 → 得公式

6 线性代数基础 (Linear Algebra Basics)

6.1 公理与定义

- 6.1.1 向量空间 (Vector Space)
 - 一个集合 V 对向量加法和标量乘法封闭, 并满足:
 - 1. 加法交换律: $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
 - 2. 加法结合律: $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
 - 3. 存在零向量: $\mathbf{v} + \mathbf{0} = \mathbf{v}$
 - 4. 存在负向量: $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$

5. 标量乘法结合律: $a(b\mathbf{v}) = (ab)\mathbf{v}$

6. 单位元: 1**v** = **v**

7. 分配律: $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$

6.1.2 矩阵 (Matrix)

- $A \in \mathbb{R}^{m \times n}$ 表示 $m \times n$ 的矩阵
- 基本运算:

$$A + B = [a_{ij} + b_{ij}]$$

$$cA = [ca_{ij}]$$

$$(AB)_{ij} = \sum_{k} A_{ik} B_{kj}$$

$$A^{T} = 转置矩阵$$

$$AA^{-1} = I \quad (若 A 可逆)$$

6.1.3 内积与范数

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i} u_{i} v_{i}$$
$$\|\mathbf{v}\|_{2} = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

6.2 线性代数在 AI 中的公式与应用

概念	公式	AI/ML 应用	
向量表示	$\mathbf{x} \in \mathbb{R}^n$	特征向量,词向量(Word Embed-	
門里衣小		dings)	
矩阵运算	Z = WX + b	神经网络前向传播	
矩阵转置	A^T	卷积核矩阵,梯度计算	
矩阵逆	A^{-1}	线性回归闭式解: θ =	
		$(X^T X)^{-1} X^T y$	
内积	$\mathbf{u} \cdot \mathbf{v}$	相似度计算(Cosine similarity)	
范数	$\ \mathbf{v}\ _2$	正则化 (L2)	
特征值/特征向	$A\mathbf{v} = \lambda \mathbf{v}$	PCA、SVD、降维	
量	$A\mathbf{v} = \lambda \mathbf{v}$	1 しれ、おりひ、 内半5性	
奇异值分解	$A = U\Sigma V^T$	低孙运加	
(SVD)		低秩近似、矩阵补全 	
正交性	$U^T U = I$	正交初始化、QR 分解	
线性方程组	Ax = b	参数求解、最小二乘	

6.3 常用线性代数操作在 AI 模型中的公式

1. 线性回归:

$$\hat{\theta} = (X^T X)^{-1} X^T y$$

2. PCA 主成分分析:

$$\max_{w} \operatorname{Var}(Xw), \quad s.t. \ \|w\|_{2} = 1$$

解为协方差矩阵 $C = X^T X$ 的特征向量。

3. 神经网络前向传播:

$$\mathbf{h}^{(l)} = f(W^{(l)}\mathbf{h}^{(l-1)} + b^{(l)})$$

4. 梯度下降中的矩阵求导:

$$\frac{\partial \mathcal{L}}{\partial W} = \frac{\partial \mathcal{L}}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial W}$$

5. SVD 低秩近似:

$$A \approx U_k \Sigma_k V_k^T$$

用于推荐系统、矩阵压缩。

6.4 常见证明思路

- 1. 逆矩阵存在性: 若 $det(A) \neq 0 \rightarrow A$ 可逆。
- 2. 特征值分解: 对对称矩阵 $A = A^T$, 特征值为实数, 特征向量正交。
- 3. PCA 最大方差问题:

$$\max_{w} w^{T} C w$$
, s.t. $||w||_{2} = 1$

拉格朗日乘子法 → 解为协方差矩阵特征向量。

4. 线性方程最小二乘:

$$\min_{x} \|Ax - b\|_2^2 \quad \Rightarrow \quad A^T A x = A^T b$$

6.5 总结

- 向量和矩阵是 AI 数据表示和计算的核心
- 特征分解和奇异值分解是降维和特征提取的基础
- 矩阵运算公式贯穿回归、神经网络、嵌入表示、推荐系统
- 线性代数证明方法多用拉格朗日法、矩阵运算规则、特征值性质

7 微积分基础 (Calculus Fundamentals)

7.1 基本概念

函数: y = f(x)

极限:

$$\lim_{x \to a} f(x) = L$$

连续性:函数在 x = a 连续当且仅当

$$\lim_{x \to a} f(x) = f(a)$$

7.2 导数 (Derivatives)

定义:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

多变量偏导:

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, x_n)}{h}$$

梯度 (Gradient):

$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right]^T$$

应用:

- 优化目标函数(线性回归、神经网络)
- 反向传播 (Deep Learning)
- 梯度下降法:

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} L(\theta)$$

7.3 高阶导数与 Hessian 矩阵

二阶导数:

$$f''(x) = \frac{d^2f}{dx^2}$$

Hessian 矩阵:

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

应用:

- 二阶优化算法 (Newton 方法)
- 凸性判断: 若 $H \succeq 0 \Rightarrow f$ 是凸函数

7.4 积分 (Integration)

定积分:

$$\int_{a}^{b} f(x) \, dx$$

不定积分:

$$F(x) = \int f(x) dx, \quad F'(x) = f(x)$$

应用:

• 概率分布函数:

$$P(a \le X \le b) = \int_a^b f_X(x) \, dx$$

• 期望:

$$\mathbb{E}[X] = \int x f_X(x) \, dx$$

• 损失函数累积(RL 或连续时间优化)

7.5 常用公式

链式法则:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

多元链式法则:

$$\frac{\partial z}{\partial x_i} = \sum_j \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i}$$

泰勒展开:

$$f(x) \approx f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots$$

应用:

- 梯度近似
- 激活函数线性化
- 优化算法推导

7.6 多重积分与卷积

二重积分:

$$\iint_{R} f(x,y) \, dx dy$$

卷积公式 (连续):

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

应用:

- CNN 中卷积核运算
- 概率密度函数卷积
- 信号处理 / LLM 特征提取

7.7 证明思路示例

1. 导数定义推导梯度下降更新公式

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} L(\theta)$$

来源:一阶泰勒展开 + 梯度负方向下降损失。

2. 链式法则在反向传播

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial W}$$

3. Hessian 判定凸性若 $H(x) \succeq 0$,则 $\forall v, v^T H v \geq 0$ 二阶泰勒展开:

$$f(x+v) \approx f(x) + \nabla f^T v + \frac{1}{2} v^T H v$$

7.8 微积分在 AI 的主要应用场景

场景	工具/公式	应用示例	
线性回归	导数、梯度	最小二乘法求参数	
逻辑回归	链式法则、梯度	Sigmoid 损失反向传播	
神经网络	偏导数、链式法则、	反向传播、二阶优化	
神红网络	Hessian		
· 优化算法	梯度、Hessian、泰勒展	GD / SGD / Newton 方法	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	开		
卷积神经网络	多重积分、卷积公式	图像特征提取	
强化学习	定积分、期望	累积奖励、策略梯度	
LLM & NLP	多变量微积分	注意力机制梯度、优化损失函数	

8 信息论在 AI 中的作用

作用	应用场景	公式 / 方法
测量不确定性	生成模型、NLP	熵 $H(X)$
衡量依赖	特征选择、嵌入	互信息 $I(X;Y)$
分布对齐	VAE, RLHF	KL 散度 $D_{KL}(P Q)$
模型训练目标	LLM、语言建模	交叉熵损失 $H(P,Q)$
模型压缩 / 信息瓶颈	表示学习	$\max I(Z;Y) - \beta I(X;Z)$

9 信息论与生成型模型 / NLP 的联系

1. 语言模型训练:

$$\mathcal{L}_{CE} = -\sum_{t} \log P_{\theta}(w_{t}|w_{< t})$$

2. 变分自编码器 (VAE):

$$ELBO = \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{KL}[q(z|x)||p(z)]$$

3. 信息瓶颈 (Information Bottleneck):

$$\max I(Z;Y) - \beta I(Z;X)$$

4. RLHF (Reinforcement Learning from Human Feedback):

$$\mathcal{L}_{RLHF} = D_{KL}(P_{\theta}||P_r) - \mathbb{E}[R]$$

10 常见公式总结

$$I(x) = -\log P(x)$$

$$H(X) = -\sum_{x} P(x) \log P(x)$$

$$H(Y|X) = -\sum_{x,y} P(x,y) \log P(y|x)$$

$$I(X;Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$D_{KL}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

$$H(P,Q) = -\sum_{x} P(x) \log Q(x)$$

11 信息论公理与证明思路

1. 非负性:

$$H(X) \ge 0$$
, $D_{KL}(P||Q) \ge 0$

证明:由 Jensen 不等式推出

2. 链式法则 (Chain Rule):

$$H(X,Y) = H(X) + H(Y|X)$$

证明思路: 联合概率分解 → 信息量期望

3. 互信息对称性:

$$I(X;Y) = I(Y;X) = H(X) - H(X|Y)$$

4. KL 与交叉熵关系:

$$D_{KL}(P||Q) = H(P,Q) - H(P)$$

证明: 代入交叉熵定义即可