TD 7 : RSA

Christina Boura

Exercice 1 Théorème des restes chinois

Bob a des poules dans sa maison de campagne. S'il divise le nombre de ses poules par 5, il reste 4 poules. S'il le divise par 8, il en reste 6 et s'il le divise par 9, il en reste 8. Quel est le plus petit nombre de poules que Bob peut avoir? (Utiliser le théorème des restes chinois).

Exercice 2 RSA

Alice et Bob souhaitent utiliser le cryptosystème RSA pour communiquer. Alice choisit p=5 et q=7 comme nombres premiers. Elle choisit e=7 comme exposant public.

- 1. Montrer que e = 7 est un exposant public valide.
- 2. Trouver l'exposant privé correspondant d.
- 3. Chiffrer m=4.
- 4. Déchiffrer c = 33.

Exercice 3 RSA - Connaître $\phi(n)$ c'est connaître p et q

On suppose que n est un entier naturel non nul dont la décomposition en facteurs premiers est n = pq.

- 1. Montrer explicitement comment obtenir p et q lorsque l'on connaît n et $\phi(n)$.
- 2. Si n = 17063 et $\phi(n) = 16800$, calculer p et q.

Exercice 4 RSA - Module commun

On suppose qu'Alice et Bob possèdent des clés publiques RSA avec le même module n, mais avec deux exposants e_A et e_B différents.

- 1. Montrer qu'Alice peut déchiffrer les messages destinés à Bob.
- 2. Supposons maintenant que $pgcd(e_A, e_B) = 1$. Montrer qu'Oscar peut déchiffrer des messages qui sont envoyés à la fois à Alice et à Bob.

Exercice 5 RSA - $Petit\ exposant\ commun$

Supposons qu'Alice veut envoyer le même message m à trois personnes B_1 , B_2 et B_3 , en utilisant le cryptosystème RSA. Chacune de ces personnes B_i utilise un module RSA n_i différent mais tous utilisent le même exposant public e=3. En supposant que leurs modules RSA sont premiers entre eux et que $m^3 < n_1 \cdot n_2 \cdot n_3$, expliquer comment Oscar peut retrouver le message en observant les trois chiffrés qu'Alice aurait produit.

Exercice 6 RSA- Accélérer le déchiffrement

Le but de cet exercice est de montrer comment on peut accélérer le déchiffrement du système RSA en utilisant le théorème des restes chinois. Soit n=pq le module RSA et soit d l'exposant privé. Si $c=m^d$ mod n on note

$$c_p \equiv c \mod p$$
 $c_q \equiv c \mod q$.

et

$$\begin{array}{rcl} d_p & \equiv & d \mod p - 1 \\ d_q & \equiv & d \mod q - 1. \end{array}$$

Cette méthode consiste en deux étapes :

1. Calculer

$$\begin{array}{rcl} m_p & \equiv & c_p^{d_p} \mod p \\ \\ m_q & \equiv & c_q^{d_q} \mod q, \end{array}$$

2. Résoudre le système en utilisant le théorème des restes chinois.

$$m \equiv m_p \mod p$$

 $m \equiv m_q \mod q$.

— En utilisant cette méthode, déchiffrer le message c=15 pour $n=143=11\cdot 13$ et $d\equiv 103$ mod 120.

Exercice 7 RSA en réseau

Nous souhaitons mettre en place un cryptosystème RSA pour un réseau de n utilisateurs.

- 1. Combien de nombres premiers doit-on générer?
- 2. On veut réduire ce nombre en générant un plus petit ensemble de nombres premiers et faire des combinaisons de deux nombres premiers de cet ensemble : Pour chaque utilisateur on choisit un nouveau couple de nombres premiers afin de constituer sa clé. Montrer comment un utilisateur peut éventuellement factoriser le module d'un autre utilisateur.
- 3. Montrer comment quelqu'un peut factoriser tous les modules pour lesquels au moins un facteur premier a été utilisé pour former au moins un autre module.