

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 February 2002 (21.02.2002)

PCT

(10) International Publication Number
WO 02/14482 A2

- (51) International Patent Classification⁷: C12N 9/00
- (21) International Application Number: PCT/GB01/03642
- (22) International Filing Date: 14 August 2001 (14.08.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
0019986.9 14 August 2000 (14.08.2000) GB
- (71) Applicant (*for all designated States except US*): BIOTICA TECHNOLOGY LIMITED [GB/GB]; 181A Huntingdon Road, Cambridge, Cambridgeshire CB3 0DJ (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): PETKOVIC, Hrvoje [SI/GB]; 89 Argyle Street, Cambridge, Cambridgeshire CB1 3LS (GB). KENDREW, Steven, Gary [GB/GB]; 6 Cowper Road, Cambridge, Cambridgeshire CB1 3SN (GB). LEADLAY, Peter, Francis [GB/GB]; 6 Westberry Court, Pinehurst, Grange Road, Cambridge, Cambridgeshire CB3 9BG (GB).
- (74) Agents: STUART, Ian et al.; Mewburn Ellis, York House, 23 Kingsway, London, Greater London WC2B 6HP (GB).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

[Continued on next page]

(54) Title: POLYKETIDES AND THEIR SYNTHESIS

WO 02/14482 A2

(57) Abstract: Biosyntheses of compounds whereof at least portions are polyketides produced by means of polyketide synthase (PKS) enzyme complexes are carried out after specific alterations have been made within the acyltransferase (AT) domains of the PKSs. Particular motifs in or near the substrate binding pocket are disclosed, such that alterations therein affect substrate specificity.

(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— *without international search report and to be republished upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Polyketides and Their SynthesisTechnical Field

The present invention relates to processes and materials (including enzyme systems, nucleic acids, vectors and cultures) which can be used to influence the selection of acylthioester units for the synthesis of polyketides, and to the resulting polyketides, which may be novel. It is particularly concerned with macrolides, polyethers or polyenes and their preparation making use of recombinant synthesis.

In preferred types of embodiment, polyketide biosynthetic genes or portions of them, which may be derived from different polyketide biosynthetic gene clusters, are manipulated to allow the production of specific polyketides, such as 12-, 14- and 16-membered macrolides, of predicted structure. The invention is particularly concerned with the modification of an Acyl CoA:ACP transferase (AT) function, generally by modifying genetic material encoding it in order to prepare polyketides with a predetermined ketide unit, e.g. incorporating (a) a malonate extender unit; or (b) a methylmalonate extender unit; or (c) an ethylmalonate extender unit; or (d) a further type of extender unit; or (e) an acetate and/or malonate starter unit; or (f) a

propionate and/or methylmalonate starter unit; or (g) a butyrate and/or ethylmalonate starter unit; or (h) a further type of starter unit. Of course the invention can be used to influence more than one ketide unit of a polyketide. The method enables one to minimise alteration to the protein structure of the polyketide synthase.

Polyketides are a large and structurally diverse class of natural products that includes many compounds possessing antibiotic or other pharmacological properties, such as erythromycin, tetracyclines, rapamycin, avermectin, monensin, epothilone and FK506. In particular, polyketides are abundantly produced by *Streptomyces* and related actinomycete bacteria. They are synthesised by the repeated stepwise condensation of acylthioesters in a manner analogous to that of fatty acid biosynthesis. The structural diversity found among natural polyketides arises in part from the selection of (usually) acetate (malonyl-CoA) or propionate (methylmalonyl-CoA) as "starter" or "extender" units (although one of a variety of other types of unit may occasionally be selected); as well as from the differing degree of processing of the β -keto group formed after each condensation. Examples of processing steps include reduction to β -hydroxyacyl-, reduction followed by

dehydration to 2-enoyl-, and complete reduction to the saturated acylthioester. The stereochemical outcome of these processing steps is also specified for each cycle of chain extension. Methylation at the α -carbon or β -hydroxy is also sometimes observed.

The biosynthesis of polyketides is performed by a group of chain-forming enzymes known as polyketide synthases. Two broad classes of polyketide synthase (PKS) have been described in actinomycetes. One class, named Type I PKSs, represented by the PKSs for the macrolides erythromycin, oleandomycin, avermectin, and rapamycin and by the PKS for the polyether monensin, consists of a different set or "module" of enzymes for each cycle of polyketide chain extension. For an example see Figure 1 (Cortés, J. et al. Nature (1990) 348:176-178; Donadio, S. et al. Science (1991) 2523:675-679; Swan, D.G. et al. Mol. Gen. Genet. (1994) 242:358-362; MacNeil, D. J. et al. Gene (1992) 115:119-125; Schwecke, T. et al. Proc. Natl. Acad. Sci. USA (1995) 92:7839-7843; also Patent application WO98/01546). The genes encoding numerous Type I PKSs have been sequenced and these sequences disclosed in publicly available DNA and protein sequence databases including Genbank, Swissprot and EMBL. For example, the sequences are available for the PKSs

governing the synthesis of erythromycin (Cortes, J. et al. *Nature* (1990) 348:176-178); accession number X62569, Donadio, S. et al. *Science* (1991) 252:675-679; accession number M63677); rapamycin (Schwecke, T. et al. *Proc. 5 Natl. Acad. Sci.* (1995) 92:7839-7843; accession number X86780); rifamycin (August, P. et al. *Chem. Biol.* (1998) 5:69-79; accession number AF040570) and tylisin (Eli Lilly, accession number U78289), among many others.

The term "polyketide synthase" (PKS) as used herein
10 refers to a complex of enzyme activities responsible for the biosynthesis of polyketides. These enzyme activities include β -ketoacyl ACP synthase (KS), acyltransferase (AT), acyl carrier protein (ACP), β -ketoreductase (KR), dehydratase (DH), enoylreductase (ER) and thioesterase
15 (TE) but are not limited to these activities. Each of these activities lies on a separate protein or polypeptide fragment responsible for this activity. Such a fragment is termed a "domain". The terms "motif" or "signature sequence" used herein refer to a small stretch
20 of amino acids (usually less than 10 amino acids) within a domain responsible (at least in part) for one aspect of the catalytic function, for example, choice of substrate.
The term "extension module" as used herein refers to the set of contiguous domains, from a β -ketoacyl-ACP synthase

("KS") domain to the next acyl carrier protein ("ACP") domain, which accomplishes one cycle of polyketide chain extension; this may or may not include domains responsible for the reductive processing of the 5 polyketide chain. The term "loading module" is used to refer to any group of contiguous domains that accomplishes the loading of the starter unit onto the PKS and thus renders it available to the KS domain of a specific extension module.

10

Background Art

Several approaches to altering the nature of the polyketide product of a PKS by genetic engineering have been proposed: see particularly WO 93/13663 and WO 15 98/01571. The length of polyketide formed has been altered, in the case of erythromycin biosynthesis, by specific relocation using genetic engineering of the enzymatic domain of the erythromycin-producing PKS that contains the chain-releasing thioesterase/cyclase 20 activity (Cortés, J. et al. Science (1995) 268:1487-1489; Kao, C.M. et al. J. Am. Chem. Soc. (1995) 117:9105-9106).

In-frame deletion of the DNA encoding part of the ketoreductase domain in module 5 of the erythromycin-producing PKS (also known as 6-deoxyerythronolide B 25 synthase, DEBS) has been shown to lead to the formation

of erythromycin analogues 5,6-dideoxy-3- α -mycarosyl-5-oxoerythronolide B, 5,6-dideoxy-5-oxoerythronolide B and 5,6-dideoxy, 6 β -epoxy-5-oxoerythronolide B (Donadio, S. et al. *Science* (1991) 252:675-679). Likewise, alteration 5 of active site residues in the enoylreductase domain of module 4 in DEBS, by genetic engineering of the corresponding PKS-encoding DNA and its introduction into *Saccharopolyspora erythraea*, led to the production of 6,7-anhydroerythromycin C (Donadio, S. et al. *Proc Natl. Acad. Sci. USA* (1993) 90:7119-7123).

Patent application WO 00/01827 describes further methods of manipulating a PKS to change the oxidation state of the β -carbon. Substituting the reductive domain of module 2 of the erythromycin-producing PKS with 15 domains derived from rapamycin PKS modules 10 and 13 led to the formation of C10-C11 olefin-erythromycin A and C10-C11 dihydroerythromycin A respectively.

The second class of PKS, named Type II PKSs, is represented by the synthases for aromatic compounds. 20 Type II PKSs contain only a single set of enzymatic activities for chain extension and these are re-used as appropriate in successive cycles (Bibb, M. J. et al. *EMBO J.* (1989) 8:2727-2736; Sherman, D. H. et al. *EMBO J.* (1989) 8:2717-2725; Fernandez-Moreno, M.A. et al. *J.*

Biol. Chem. (1992) 267:19278-19290). The "extender" units for the Type II PKSs are usually acetate (malonyl-CoA) units, and the presence of specific cyclases dictates the preferred pathway for cyclisation of the completed chain into an aromatic product (Hutchinson, C. R. and Fujii, I. Annu. Rev. Microbiol. (1995) 49:201-238). Hybrid polyketides have been obtained by the introduction of cloned Type II PKS gene-containing DNA into another strain containing a different Type II PKS gene cluster, for example by introduction of DNA derived from the gene cluster for actinorhodin, a blue-pigmented polyketide from *Streptomyces coelicolor*, into an anthraquinone polyketide-producing strain of *Streptomyces galileus* (Bartel, P. L. et al. J. Bacteriol. (1990) 172:4816-4826). Occasionally, unusual starter units are incorporated by Type II PKS, particularly in the biosynthesis of oxytetracycline, frenolicin and daunorubicin and in these cases a separate AT is used to transfer the starter unit to the PKS.

Fungal PKSs such as the 6-methylsalicylic acid or lovastatin PKS typically consist of a single multi-domain polypeptide which include most of the activities required for the synthesis of the polyketide portion of these molecules (Hutchinson C.R. and Fujii I. Annu. Rev. Microbiol. (1995) 49:201-238). Type II Fungal PKSs are

also known.

A number of mixed systems comprising polyketide synthase and nonribosomal peptide synthase modules have been identified including the epothilone and bleomycin biosynthetic clusters.

Although large numbers of therapeutically important polyketides have been identified, there remains a need to obtain novel polyketides that have enhanced properties or possess completely novel bioactivity. The complex polyketides produced by Type I PKSs are particularly valuable, in that they include compounds with known utility as anthelmintics, insecticides, anticancer, immunosuppressants, antifungal or antibacterial agents. Because of their structural complexity, such novel polyketides are not readily obtainable by total chemical synthesis, or by chemical modifications of known polyketides. Particular changes that are desired are changes to the carbon skeleton by altering the nature of the starter and/or extender unit(s) incorporated, changes to the oxidation level of the β -keto carbon and therefore the pattern of oxygen substituents by altering the series of reductive steps that occur after chain extension and changes to the post PKS "tailoring" steps which generally comprise hydroxylation, methylation or glycosylation of the polyketide molecule.

There is also a need to develop reliable and specific ways of deploying individual modules in practice so that all, or a large fraction, of hybrid PKS genes that are constructed, are viable and produce the desired 5 polyketide product. Various strategies have been described to produce these hybrid PKSs particularly utilising recombinant DNA technology and *de novo* biosynthesis. There is a particular need to develop methods of manipulating these PKS in a manner that 10 minimises the alteration to the PKS protein structure. Existing methods of achieving these manipulations sometimes produce hybrid PKS multienzymes which give the desired product at only 1% or less of the rate that the unmodified PKS produces product.

15 WO 93/13663 and WO 98/01571 describe novel methods of engineering PKSs. A well-established method of altering the nature of the extender unit used at any position in the polyketide molecule, particularly malonyl-, methylmalonyl- or ethylmalonyl-CoA is by domain 20 substitution. For example, WO98/01546 and US patent 6,063,561 disclose methods of accomplishing this modification to form modified erythromycins. Novel polyketide molecules, in this case particularly novel erythromycins, are produced by the replacement of an 25 entire AT domain-encoding DNA fragment on the

Saccharopolyspora erythraea chromosome with an equivalent heterologous AT domain-encoding fragment from another PKS cluster. It is well known to those skilled in the art that selection of the exact DNA/protein splice sites into which to insert the heterologous domain requires detailed analysis of the corresponding DNA and protein sequences.

Different researchers choose to use splice sites at conserved, semi-conserved or non-conserved regions of the protein, or at sites either within or at the boundaries of the AT domains. A further drawback of this technique is that it is hard to predict whether a particular heterologous domain will work in any given context. A domain that works successfully in one module may not work at all in an adjoining module or may produce polyketides at a vastly reduced yield. Oliynyk, M. et al. (Chem. Biol. (1996) 3:833-839) and Ruan et al. (J. Bact. (1997) 179:6416-6425) have published studies that exchange a methylmalonyl-CoA specific AT domain for malonyl-CoA specific AT domains in modules of the erythromycin PKS. Products were observed only for changes in modules 1 and 2, with module 2 at a vastly lowered yield. Stassi et al. (Proc. Natl. Acad. Sci. (1998) 95:7305-9) exchange the methylmalonyl-CoA specific AT of module 4 of the erythromycin PKS for an ethylmalonyl-CoA specific AT and

again product yield was low even after the addition of the crotonyl-CoA reductase gene thought to increase the supply of the required ethylmalonyl-CoA precursor. A possible reason for the limiting yields is the structural or mechanistic non-compatibility of a heterologous AT domain with the adjoining KS and ACP domains with which it must interact properly for efficient polyketide chain synthesis. Consequently, it is often necessary to try multiple domain swaps to achieve a novel polyketide-producing strain that displays adequate efficiency - a process made particularly arduous when these changes must be made by gene replacement on the chromosome through a two step double integration process. The introduction of splice sites at the DNA level is time consuming and technically challenging, requiring careful analysis to ensure the PKS protein coding reading frame is not disrupted. The introduction of restriction enzyme sites often requires changes at the amino acid level which lead to further PKS protein structure disruption and consequent loss of catalytic efficiency.

A method that could utilise the numerous techniques available for site directed mutagenesis to influence the AT substrate specificity with minimal disruption to the protein tertiary structure would be a valuable addition to the current techniques.

Changes to an active site have been shown to alter substrate specificity in other systems. For example, in an early study, Scrutton et al. (Nature (1990) 343:38-43) used site directed mutagenesis to switch the coenzyme 5 substrate specificity of a glutathione reductase. Identifying and changing a 'fingerprint' structural motif in the NADP⁺ binding domain they could convert the enzyme into one displaying a marked preference for NAD⁺. The techniques of directed evolution have been used to 10 improve/change enzyme catalytic function. Of many examples in the literature, Zhang et al. (PNAS (1997) 94:4504-4509) illustrate the conversion of a galactosidase to a fucosidase by these techniques. The resulting protein bears 6 mutations, of which 3 lie in, 15 or in close proximity to the active site.

Minor but directed changes to a PKS domain can make significant changes to its catalytic function. Patent application WO 00/00500 teaches that an extender ketosynthase domain is converted to a decarboxylating 20 (and hence loading) ketosynthase domain by site directed mutagenesis at the active site. US Patent numbers 6,004,787 and 6,066,721 and Jacobsen et al. Science (1997) 277:367-369 describe the deletion of residues in the KS1 active site to inactivate this activity to allow 25 the production of novel polyketides by feeding of

synthetic precursors to the modified PKS.

Several studies have attempted to correlate the primary amino acid sequence of the AT to determine amino acids directly involved with the recognition of the appropriate substrate, and particularly the nature of the substrate side chain (i.e. the malonyl portion of the acyl-CoA thioester). Studies by Haydock et al. (FEBS Lett. (1995) 374:246-248) correlated the substrate specificity of malonyl- or methylmalonyl-CoA specific AT with a motif 11 amino acids upstream of the known active site. Comparisons between this motif and the protein structure of a known acyltransferase from *E. coli* fatty acid synthase allowed the authors to assess the proximity of the motif residues to the active site (and hence its ability to select the substrate). The authors acknowledged that "this divergent region thus identified lies near the acyltransferase active site though not close enough to make direct contact with the substrate".

Other studies (Katz, L. Chem Rev. (1997) 97:2557-2575, Tang, L. et al., Gene (1998) 216:255-265) have correlated additional residues with a specific extender unit using these residues as a tool to predict the AT substrate specificity from a protein sequence derived from polyketide gene cluster sequencing projects. It has

remained unclear which residues have mechanistic importance. In only one case have regions within the PKS AT domain been exchanged in an attempt to swap AT specificity; patent application WO 00/01838 and Lau et al. *Biochemistry* (1999) 38:1643-51) implicated a 'hypervariable region' at the C-terminus of the AT domain in the selection of extender unit. These workers interchanged this 25-30 amino acid stretch and showed that this change was sufficient to alter the substrate specificity of the AT, concluding "*a short (23-35 amino acid) C-terminal segment present in all AT domains is the principal determinant of their substrate specificity.*

Interestingly its length and amino acid sequence vary considerably among the known AT domains. We therefore suggest that the choice of extender units by the PKS modules is influenced by a "hypervariable region", which could be manipulated via combinatorial mutagenesis to generate novel AT domains possessing relaxed or altered substrate specificity". Surprisingly, our structure molecular modelling studies indicate this region lies at a surface accessible region away from the active site and hence is unlikely to directly interact with (and hence directly select) the malonyl portion or the substrate

used. The effect on substrate specificity is therefore likely to be imprecise and due to more indirect effects via, for example, disruption of tertiary structure.

5 Disclosure of Invention

According to a first aspect of the present invention there is provided a method of synthesising a compound whereof at least a portion is the product of a polyketide synthase (PKS) enzyme complex or is derived from such a 10 product, said PKS enzyme complex including at least one acyltransferase (AT) domain. The method includes a step of providing said PKS enzyme complex in which said AT domain has been altered to change selectively a minor proportion of amino acid residues. The altered 15 residue(s) may comprise one or more motifs which are present in the active site pocket of the AT domain and which influence the substrate specificity of the AT domain, the alteration affecting the substrate specificity; and/or one or more residues of a motif which 20 influences the substrate specificity of the AT domain and which comprises a four-residue sequence corresponding to the YASH motif of the AT domain of the first module of DEBS, the alteration affecting the substrate specificity.

Synthesis is then effected by means of said PKS enzyme 25 complex to produce a compound or mixture of compounds

different from what could have been produced by means of a PKS enzyme in which said AT domain had not been altered.

The PKS enzyme complex may be at least part of a 5 modular type I PKS enzyme complex, or it may be derived from a type II PKS system, a fungal PKS system or a hybrid system comprising PKS and nonribosomal peptide synthase modules.

The present invention teaches that by altering a few 10 amino acid residues in the AT domain and particularly residues close to the AT active site comprising one or more residues of a short signature "motif" within the AT domain it is possible to influence the acylthioester selected by that AT domain. Novel polyketides can be 15 made by a modified PKS on which the signature motif on one or more modules is altered, e.g. being replaced with one associated with a different specificity for malonyl substrate. Furthermore, the invention provides a method of reducing the proportion of mixed polyketide products 20 that are occasionally found in natural systems due to non-specific incorporation of the incorrect extender units. Conversely, the invention provides a method of giving a mixed population of polyketide products thus increasing the diversity of polyketides produced by a 25 PKS.

The invention allows the preparation of a modified PKS by substitution of an existing amino acid residue motif in the AT that specifies incorporation of one of the common extender acylthioesters with another motif 5 found in another AT specifying an alternative acylthioester. This alters the substrate specificity of the polyketide synthase when it is expressed in a polyketide-producing organism.

The DNA sequences have been disclosed for numerous 10 Type I PKS gene clusters. Comprehensive sequence analysis of AT domains derived from Type I PKS modules responsible for the formation of macrolides, particularly erythromycin, rapamycin, avermectin, rifamycin, FK506, epothilone, tylosin, and niddamycin, ionophore 15 polyethers, particularly monensin, and polyenes, particularly nystatin, allowed us to identify amino acids that are characteristic of AT domains.

Figure 2 shows the sequence comparison of these AT domains. This sequence comparison has been generated in 20 a generally conventional way, employing a computer using a procedure that creates a multiple sequence alignment from a group of related sequences. We used a program called PileUp (Wisconsin Package, Genetics Computer Group (GCG), Madison, WI, USA), which creates a multiple 25 sequence alignment using simplification of the

progressive alignment method of Feng and Doolittle (Journal of Molecular Evolution 25; 351-360 (1987)). The method used is similar to the method described by Higgins and Sharp (CABIOS 5; 151-153 (1989)). The program 5 executes a series of progressive, pairwise alignments that allows a large number of sequences to be compared together to form a final alignment throughout all the sequences. Gaps can be inserted throughout individual sequences to allow alignment of regions of strong 10 similarity. This is often required as strongly conserved regions are often separated by more variable regions, both in terms of numbers of amino acids and type of amino acids. Different programs use different mathematical algorithms to make these comparisons, resulting in 15 alignments that differ in minor ways. However, it can be expected that regions of strong homology would still align whatever alignment program is utilised. The particular motifs that are discussed are marked.

These motifs include the conserved GQG motif that is 20 close to the start of the domain, the GHS motif that contains the active site serine that covalently binds the acyl chain prior to transfer to the ACP, and a LPTY motif that is close to the end of the domain. Other residues common to all ATs including an arginine, believed to 25 stabilise the carboxylate group of the acylthioester.

Further detailed sequence analysis allowed us to identify amino acid residues that differed between ATs responsible for the incorporation of malonyl-, methylmalonyl- and ethylmalonyl-CoA. Some of these amino acids or motifs had been previously identified during the sequence analysis of the clusters as previously discussed. While these motifs could predict whether a malonyl-/methylmalonyl-CoA might be used they generally fail to show a difference between methylmalonyl- vs ethylmalonyl-CoA or the other larger extender unit commonly used. We viewed this as an important requirement for identification of the most important and key residues involved in substrate recognition and consequently residues most suitable for alteration. Closer analysis identified a string of four residues (location identified clearly in Figure 2) of which two residues are virtually invariant throughout all ATs, and two residues differ consistently depending on the extender unit. Particularly, in the vast majority of ATs responsible for recognition of malonyl-CoA the sequence of residues HAFH was identified. In the majority of ATs responsible for recognition of methylmalonyl-CoA the equivalent segment was substituted by residues YASH. In ATs responsible for ethylmalonyl-CoA or other similar sized CoA unit incorporation the overall motif was different, less

conserved but generally displayed the sequence XAGH
(where X is most frequently but not limited to F, T, V or H). We typically use the terms HAFH, YASH and TAGH to describe these motifs with respect to malonyl-CoA,
5 methylmalonyl-CoA and ethylmalonyl/further CoA specificity but use these terms herein to allow substitutions in the motif, particularly at residue 1 as described. Potential substitutions and the exact location of the motif will be clear to those skilled in
10 the art by inspection of Figure 2 or similar sequence analysis.

There are three possible methods to locate the position of the motif within an AT sequence that does not appear in Figure 2. It is likely a combination of the
15 methods will be used.

- I) By simple visual inspection and comparison of the sequence to identify the motifs HAFH, YASH or TAGH. Since substitutions of residue one are often encountered a useful procedure is to
20 look for an alanine (A) separated by one amino acid (usually F, S or G) from a histidine (H).
- II) By counting amino acids from the active site serine. The start of the motif is typically (but should not be limited to) between 90 and

100 amino acids downstream of the GHS active site motif.

III) By computer generated multiple alignment that allows the new sequence to be directly compared
5 to the sequences and motifs we have annotated in Figure 2 or to other ATs.

It is preferable to use the third method as this allows the motif to be identified unequivocally when there are substitutions within the motif. This is
10 particularly necessary in some of the more unusual types of AT in which one of the residues can be substituted by proline (P). The third method will also identify the motif when the number of residues between the motif and the AT active site serine differs significantly from the
15 norm. The third method will also better identify the motif when the same or similar string of amino acids occurs elsewhere in the domain.

A particular feature of these motif residues is the relationship of the size of the third residue compared to
20 the substrate selected. Hence, when malonyl-CoA is required the third residue is large (phenylalanine), when methylmalonyl-CoA is required this residue is intermediate (serine), and when ethylmalonyl-CoA is required this residue is small (glycine). The inverse
25 relationship between substrate side chain size and this

third residue is particularly noteworthy. Interestingly, this relationship applies also when considering the incorporation of the more unusual extender units such as methoxymalonyl-CoA, required for some cycles of chain extension during production of for example FK506 (HAGH).

Currently, only a single example of an AT responsible for the incorporation of a five carbon-CoA unit has been disclosed. In this case the AT displays a different motif at this point, CPTH, in which only the histidine is conserved. The incorporation of a proline residue in the motif may be indicative of an AT specifying a larger substrate. Proline is also found in the motif in ATs that incorporate the larger unusual starter acids as seen in the case of avermectin and soraphen. Residues in and around this area, but lying in the active site of the AT domain define the specificity of the domain towards the substrate chosen.

Motifs that represent hybrids of motifs for malonyl- and methylmalonyl-CoA or methylmalonyl- and ethylmalonyl-CoA were identified. Particularly, epothilone module 3-expected HAFH or YASH (malonyl-CoA or methylmalonyl-CoA specific), found HASH or monensin module 5-expected TAGH (ethylmalonyl-CoA specific), found VAGH. Significantly, in both these cases the products of the PKS are a mixture due to the incorporation of 2 different extender units by

the module containing the hybrid motif, causing formation of monensins A and B and epothilones A and B. However, it is known that substrate supply is a significant determinant of the proportion of monensins A and B formed
5 (Liu, H. and Reynolds, K.A (1999) J. Bact. 181:6806-
6813).

Many of the previously-proposed "predictive" motifs are unlikely to be the principal determinant of substrate specificity because they are not located in the active site pocket. A particular requirement of any motif that can serve to distinguish between substrates is that it lies close to the active site and preferably within the substrate binding pocket. In this analysis we consider the substrate binding pocket to be the part of the pocket
10 that binds/recognises the malonyl portion of the acylthioester rather than necessarily the coenzyme A portion. In all probability some of the similarities previously identified by sequence analysis are due to evolutionary conservation rather than a mechanistic
15 requirement. In contrast the residues we have identified lie in or close to the substrate binding pocket. To assess the exact location of the motif in space we compared the protein sequence of ATs derived from Type I PKS with that of *E. coli* fatty acid malonyl-CoA:ACP
20 acyltransferase, for which there is a high resolution X-
25

ray crystal structure (Serre, L. et al., J. Biol. Chem. (1995) 270:12961-12964). While overall level of sequence similarity between these proteins is low, key residues (and particularly those with mechanistic importance) are conserved and the overall spatial arrangement of amino acids is expected to be conserved. Many groups have used this structure as a model AT and it is well known in the art that conservation of structure can be greater than the level of sequence conservation. Structural analysis showed that the identified motif would lie within the active site pocket opposite the active site serine and the arginine thought to be involved in binding the substrate carboxylate and close enough to the acyltransferase site to interact with the bound substrate side chain. The invariant histidine found in the motif is thought be part of a catalytic triad with the active site serine as is typically found in serine hydrolases (Serre et al, *Supra*). Figure 3 shows the position of the motif loop and important active site residues in the model AT structure.

Broadly the invention concerns modifying an AT domain by changing the four-residue sequence or motif responsible for selecting a substrate so that its specificity is altered. We may also change a small number of other residues close to the active site.

Generally the total number of residues changed is less than 5% of the residues of the AT.

The motif is the four-residue sequence corresponding to the YASH motif found at about residues 334-337 of the 5 AT domain of the first module of DEBS, numbering as shown in Fig. 2. It lies in the active site pocket. It typically starts 80-110, more particularly 90-100, amino acids downstream of the GHS active site motif.

In a preferred embodiment of this invention 10 polyketides of desired structure are produced by the replacement of an existing AT motif on a PKS with an alternative one responsible for selection of an alternative extender or starter unit, or responsible for an altered degree of selectivity (in most cases, 15 increased selectivity). This may be carried out in one or more of the modules encoding a PKS cluster. One type of embodiment is a PKS including two adjoining domains, which are "naturally" adjoining or otherwise coupled domains, wherein the first of them is an AT domain where 20 the four-residue motif has been altered to change its specificity, the AT domain acting to transfer a substrate to the second domain.

In one class of embodiments, this invention provides 25 a PKS multienzyme or part thereof, or nucleic acid (generally DNA) encoding it, said multienzyme or part

comprising a loading module and a plurality of extension modules for the generation of a polyketide, preferably selected from, macrolides, polyethers, or polyenes, wherein the loading or extension modules or at least one thereof contain a modified AT domain adapted to load and transfer an optionally substituted malonyl-CoA residue to (preferably) the ACP. The AT domain is preferably modified to alter its substrate specificity. This AT domain may differ from one naturally found in this position in the module only by the modification of a few amino acids lying in the active site. This modification comprises the exchange of all or part of a motif particularly but not limited to HAFH with YASH or TAGH or vice versa. Optionally, alterations to amino acids outside this sequence, but preferably lying close to the AT active site, are made.

A second class of embodiments provides a method of synthesising polyketides having a desired extension unit at any point around the polyketide molecule by providing a PKS multienzyme incorporating one or more modified AT domains and particularly but not limited to an AT domain possessing the motif HAFH or YASH or TAGH where these motifs replace the existing natural motif. Optionally, alterations to amino acids outside this sequence, but preferably lying close to the AT active site, are made.

A third class of embodiments provides a method of synthesising polyketides having a desired starter unit by providing a PKS multienzyme incorporating a modified AT domain in the loading module and particularly (but not limited to) an AT domain possessing the motif HAFH or YASH or TAGH or a motif incorporating a proline residue where these motifs replace the existing natural motif.

Optionally, alterations to amino acids outside this sequence, but preferably lying close to the AT active site, are made. Preferentially, this AT will follow a KSQ domain but other loading systems are known in the art (e.g. AT-ACP). Patent application WO 00/00500 describes some of the known loading systems. The modification of the loading module can be combined with similar modifications in other extension units.

A further class of embodiments provides a method of synthesising polyketides free of natural co-produced analogues and having a desired extender or loading unit by replacing an existing hybrid or alternative protein motif with the sequences HAFH, YASH or TAGH. It is particularly useful to make this alteration in the epothilone or monensin PKS gene cluster.

In still further aspects this invention provides a method of synthesising a mixed population of polyketides by providing a PKS multienzyme incorporating an AT with a

altered or hybrid motif, particularly, but not limited to HASH or VAGH. One particular utility of this method, though not limited to this utility, is the production of combinatorial libraries of compounds.

5 In a further aspect the PKS containing a modified AT domain may be spliced to a hybrid PKS produced for example as in WO 98/01546 and WO 98/01571 or WO 00/01827 or WO 00/00500. It is particularly useful to link such a modified PKS to gene assemblies that produce novel
10 derivatives of natural polyketides, for example 14-membered macrolides.

Each of these aspects and classes of embodiment may involve providing nucleic acid encoding the polyketide synthase multienzyme and introducing it into a organism
15 where it can be expressed. Suitable plasmids and host cells are described below. The polyketide synthase so produced or portions thereof may be isolated from the host cells by routine methods, though it is usually preferable not to do so. The host cells may also be
20 capable of producing the required acylthioester, eg. by producing ethylmalonyl CoA for example. It may be advantageous to remove the PKS from a strain with a particularly strong supply of an undesired acylthioester or express the altered PKS in a strain specifically
25 chosen to have a strong supply of a particular

acylthioester, or alternatively to develop media or growth conditions to enhance expression of the desired product. Conversely, such techniques could be used to promote formation of mixtures of products if so desired.

5 It may also be beneficial to supply chemical precursors to the desired acylthioesters in the media e.g. supply diethylethylmalonate or cyclobutane carboxylic acid etc. The host cells may also be capable of modifying the initial PKS products, e.g. by carrying out all or some of
10 the biosynthetic modifications normal in the production of erythromycin (as shown in figure 4) and for other polyketides. Use may be made of mutant organisms such that some or all of the normal pathways are blocked, e.g. to produce products without one or more "natural" hydroxy groups or methyl groups or sugar groups.
15

The invention should not be limited to the exact motifs described. We have described some of the known variations within the motif, particularly at residue 1 as can be determined by inspection of Figure 2 or by
20 inspection of similar sequence data. However other modifications can be envisaged; substitution of, for example, the phenylalanine in the malonyl-CoA motif by the similar sized tyrosine may still display the same selectivity. Similarly substitution of the small residue
25 glycine found in the motif responsible for ethylmalonyl-

CoA/other extender incorporation by for example but not limited to alanine. It is well known to those skilled in the art that these and other similar conservative substitutions frequently maintain the same selectivity.

5 Similarly the serine residue found in the motif for incorporation of methylmalonyl-CoA could be substituted by a residue intermediate in size and/or displaying a similar charge distribution.

The invention should not be limited to changes only
10 in this motif. Alterations to other residues around the AT domain may also be required to increase the level of specificity or catalytic efficiency, i.e. to increase the proportion or amounts of the desired products. These residues are preferentially close to the substrate
15 binding pocket. The requirement for these additional alterations will depend on the particular context or change desired. Particular residues to alter can be readily identified by inspection of Figure 2 or other similar sequence analysis data or alternatively by
20 analysis of the structural model.

Residues that may be altered in addition to the motif can be divided into two classes. Some of these residues may have been previously identified in the motifs used to predict the specificity of a motif (ie.
25 Haydock et al. (FEBS Lett. (1995) 374:246-248). These

residues are preferentially close to the substrate-binding pocket. These residues should not be limited to the particular examples described.

I) The first class of potential residues to change includes residues close to the motif on the polypeptide chain. A particular example is the residue immediately after the 4 residue motif described in the present invention. In malonyl-CoA specific ATs this residue is generally serine (S), i.e. the protein sequence at this point is generally HAFHS, whereas in methylmalonyl-CoA specific ATs this residue can be S but can also be T, G, or C for example. Thus to change a methylmalonyl-CoA specific AT to a malonyl-CoA specific AT by changing the signature motif it may be beneficial also to ensure that the residue immediately after the motif is an S. Since this residue is close to the motif on the polypeptide chain it lies close to the substrate binding pocket.

II) The second class includes residues that are close to the motif or active site in space. These residues are best identified by reference to the model AT structure described previously or another AT structure that may be subsequently derived. It is known to those skilled in the art that it is possible to thread related protein sequences into an existing structure by using structure molecular modelling or related techniques.

Alternatively, an acylthioester may be modelled into the active site. These are the preferred methods, but often simple inspection of the existing structure using the highly conserved motifs as a reference point gives a reasonable approximation.

A particular example of a residue close in space to the motif that might be changed is the residue immediately after the GHS active site motif. In methylmalonyl-CoA specific ATs this residue is generally glutamine (Q), i.e. the protein sequence at this point is GHSQ, whereas in malonyl-CoA specific ATs this residue is often V, I or L for example. Thus to change a malonyl-CoA specific AT to a methylmalonyl-CoA specific AT by changing the signature motif it may be beneficial also to ensure that the residue immediately after the GHS motif is a Q. Since this residue is close to the active site serine it lies within the substrate-binding pocket.

A further example of a residue close in space that might be altered is the residue lying three residues downstream of the GQG motif. In methylmalonyl-CoA specific ATs this residue is generally tryptophan (W), i.e. the protein sequence at this point is GQGXXW, whereas in malonyl-CoA specific ATs this residue is often R, H or T for example. Thus to change a malonyl-CoA specific AT to a methylmalonyl-CoA specific AT by

changing the signature motif it may be beneficial also to ensure that this particular residue after the GQG motif is a W. Analysis of the model AT structure shows that the GQG motif lies close to the active site pocket and 5 consequently so does this tryptophan.

A further example of a residue close in space that might be altered is the residue 4 residues downstream from the conserved arginine referred to above, which is believed to stabilise the carboxylate group of the 10 acylthioester substrate. In malonyl-CoA specific ATs this residue downstream of the R is generally methionine (M), i.e. the protein sequence at this point is RXXXMQ. In methylmalonyl-CoA specific ATs this residue is generally I or L, and in ethylmalonyl-CoA specific ATs it 15 is often W. Thus, for example, to change a methylmalonyl-CoA specific AT to a malonyl-CoA specific AT by changing the signature motif it may be beneficial also to ensure that this particular residue is a methionine. Analysis of the model AT structure shows 20 that this residue lies close to the active site pocket.

In further aspects the present invention provides vectors, such as plasmids or phages (preferably plasmids), including nucleic acids as defined in the above aspects and host cells particularly 25 *Saccharopolyspora* or *Streptomyces* species transformed

with such nucleic acids or constructs. It will be readily apparent to those skilled in the art that there are multiple molecular biological methods for achieving the desired alterations to the AT domain, particularly at 5 the nucleic acid level, e.g. techniques of site directed mutagenesis or directed evolution. Suitable plasmid vectors and genetically engineered cells suitable for expression of PKS genes with modules incorporating an altered AT domain can readily be designed or selected by 10 those skilled in the art. They include those described in WO 98/01546 as being suitable for expression of hybrid PKS genes of Type I. Examples of effective hosts are *Saccharopolyspora erythraea*, *Streptomyces coelicolor*, *Streptomyces avermitilis*, *Streptomyces griseofuscus*, 15 *Streptomyces cinnamonensis*, *Streptomyces fradiae*, *Streptomyces longisporoflavus*, *Streptomyces hygroscopicus*, *Micromonospora griseorubida*, *Streptomyces lasaliensis*, *Streptomyces venezuelae*, *Streptomyces antibioticus*, *Streptomyces lividans*, *Streptomyces rimosus*, *Streptomyces albus*, *Amycolatopsis mediterranei*, 20 and *Streptomyces tsukubaensis*. These include hosts in which SCP2*-derived plasmids are known to replicate autonomously, such as for example *S. coelicolor*, *S.*

avermitilis and *S. griseofuscus*; and other hosts such as *Saccharopolyspora erythraea* in which SCP2*-derived plasmids become integrated into the chromosome through homologous recombination between sequences on the plasmid 5 insert and on the chromosome; and all such vectors which are integratively transformed by suicide plasmid vectors.

A plasmid with an int sequence will integrate into a specific attachment site on the host's chromosome.

It is apparent to those skilled in the art that the 10 overall sequence similarity between nucleic acids encoding comparable AT domains from Type I PKSs is sufficiently high and the domain organisation of different Type I PKSs so consistent between different polyketide-producing organisms, that the processes for 15 obtaining novel hybrid polyketides described will be generally applicable to all natural modular Type I PKSs or their derivatives.

The present invention will now be illustrated, but is not intended to be limited, by means of some examples.

20 Amino acids have been defined throughout by their standard one letter codes as follows. A-alanine, R-arginine, N-asparagine, D-aspartic acid, C-cysteine, Q-glutamine, E-glutamic acid, G-glycine, H-histidine, I-isoleucine, L-leucine, K-lysine, M-methionine, F-

phenylalanine, P-proline, S-serine, T-threonine, W-tryptophan, Y-tyrosine and V-valine.

Brief Description of Drawings

5 Figure 1 is a diagram showing the functioning of 6-deoxyerythronolide B synthase (DEBS), a modular PKS producing 6-deoxyerythronolide B, a precursor of erythromycin A.

Figure 2 gives the amino acid sequence comparison of
10 the AT domains of representative Type I PKS gene clusters. The motifs GQG, GHS and LPTY are marked at the base of the figure along with the arginine and the motif defined in the invention as defining specificity. The abbreviations used at the side to define the PKS used
15 are: ave: avermectin, debs: erythromycin, epo: epothilone, sor: soraphen, fkb: FK506, rap: rapamycin, tyl: tylosin, mon: monensin, nid: niddamycin, nys: nystatin, rif: rifamycin. The numbers represent the module number. The letter a at the end of the
20 designation indicates malonyl-CoA specific AT, the letter p indicates methylmalonyl-CoA specific AT, and the letter b indicates ethylmalonyl-CoA specific AT. Further types of AT with unusual or ill-defined AT specificity are indicated with letter x. Due to the numbers of sequences
25 considered, in the pileup each section of 50 amino acids

spreads over two pages. The sequences of the monensin ATs are unpublished. They are set out in PCT/GB00/02072.

Figure 3 shows a three-dimensional representation of the active site of the *E. coli* acyltransferase. The 5 spatial arrangement of the motifs described in the text are shown by arrows and the atoms shown in bold.

Figure 4 shows the enzymatic steps that convert 6-deoxyerythronolide B into erythromycin A in *Saccharopolyspora erythraea*.

10 Figure 5 shows the DNA sequence from the monensin PKS encoding the loading AT used in Example 8.

Modes for Carrying Out the Invention

15 Example 1

Construction of plasmid pHp41

Plasmid pHp41 is a pCJR24-based plasmid containing the DEBS1 PKS gene comprising a loading module, the first and second extension modules of DEBS and the chain 20 terminating thioesterase. The motif YASH of the AT domain of first module has been altered to HAFH. Plasmid pHp41 was constructed by several intermediate plasmids as follows. Plasmid pD1AT2 (Oliynyk, M. et al. Chem. Biol. (1996) 3:833-839) was digested with *Nde*I and *Xba*I. A 25 ~11kbp fragment was isolated by gel electrophoresis and

the DNA purified from the gel. This fragment was ligated into pCJR24 (Rowe, C.J. et al. Gene (1998) 216:215-223) that had been linearised by digestion with *Nde*I and *Xba*I and treated with alkaline phosphatase. The ligation mixture was used to transform electrocompetent *E. coli* DH10B cells and individual clones checked for the desired plasmid pCJR26. Plasmid pCJR26 was identified by restriction pattern. pCJR26 was transformed into *E. coli* strain ET12567 (McNeil, D.J. et al. Gene (1992) 111:61-68) and an individual colony grown overnight to isolate demethylated DNA. This DNA was linearised using *Msc*I and *Avr*II and the ~13kb fragment (Fragment A) isolated by gel electrophoresis and purification from the gel.

A DNA segment of the eryAI gene (start nucleotide 45368, end nucleotide 34734) from *S. erythraea* extending from nucleotide 42104 to nucleotide 41542 was amplified by PCR using the following oligonucleotide primers; 5'-TTTTTTGGCCAGGGTTGGCAGTGGGCGGGCA-3' and 5'-TTTTTACGGCCAGCCGCTTGGCGCGAT-3'. The DNA from a plasmid designated pCJR65 derived from pCJR24 and DEBS1TE was used as a template. The design of the primers introduced a *Msc*I site at nucleotide 42105 and the second primed across a *Bst*XI site at position 41546. The 574bp PCR

product was treated with T4 polynucleotide kinase and ligated to plasmid pUC18 that had been linearised by digestion with *Sma*I and then treated with alkaline phosphatase. The ligation mixture was used to transform 5 electrocompetent *E. coli* DH10B and individual clones checked for the presence of the desired plasmid pHp39. Plasmid pHp39 was identified by restriction pattern and sequence analysis. Demethylated DNA was produced by transforming *E. coli* strain ET12567 with plasmid DNA. 10 The resulting DNA was linearised by digestion with *Msc*I and *Bst*XI and the resulting 552bp fragment (Fragment B) isolated by gel electrophoresis and purified from the gel. A DNA segment of the eryAI gene from *S. erythraea* extending from nucleotide 41557 to nucleotide 41120 was 15 amplified by PCR using the following oligonucleotide primers; 5'-CGGTGCCTAGGTGCACCGACTCCCAGTCC-3' 5'-TTTTCCAAGCGGCTGGCCGTGGACCACGCGTTCCACTCCTCGCACGTCGAGACGAT-3'. DNA from plasmid pCJR65 was used as a template. The design of the primers introduced an *Avr*II site at 20 nucleotide 41125 and the second primed across a *Bst*XI site at nucleotide 41557 and mutated the amino acid sequence YASH to HAFH (encoded by nucleotides 41537-41526). The 442bp PCR product was treated with T4 polynucleotide kinase and ligated to plasmid pUC18 that

had been linearised by digestion with *Sma*I and then treated with alkaline phosphatase. The ligation mixture was used to transform electrocompetent *E. coli* DH10B and individual clones checked for the presence of the 5 desired plasmid pHp40. Plasmid pHp40 was identified by restriction pattern and sequence analysis. Plasmid pHp40 was linearised by digestion with restriction enzymes *Avr*II and *Bst*XI, and a 427bp fragment (Fragment C) isolated by gel electrophoresis and purified from the 10 gel. Fragments A, B, and C were ligated together and the resulting ligation mixture used to transform electrocompetent *E. coli* DH10B. Individual clones were checked for the presence of an insert derived from DEBS1. The resulting plasmid was designated pHp41. Sequence 15 analysis was used to confirm the clone contained the correct motif HAFH.

Example 2

Construction of *S. erythraea* NRRL2338 JC2/pHP41 and 20 production of triketides

S. erythraea NRRL2338 JC2 contains a deletion of the eryAI, eryAII and eryAIII apart from the TE (Rowe, C.J. et al. Gene 216, 215-223). Plasmid pHp41 was used to transform *S. erythraea* NRRL2338 JC2 protoplasts using the

TE as a homology region. Thiostrepton resistant colonies were selected on R2T20 agar containing 40 µg/ml thiostrepton. *S. erythraea* NRRL2338 JC2 (pHP41) was plated onto SM3 agar (see patent application WO 00/01827) containing 40 µg/ml thiostrepton and allowed to grow for 11 days at 30°C. Approximately 1cm² of the agar was homogenised and extracted with a mixture of 1.2ml ethyl acetate and 20 µl formic acid. The solvent was decanted and removed by evaporation and the residue dissolved in methanol and analysed by GC/MS. The major products were identified by comparison with authentic standards (Oliynyk, M. et al. Chem. Biol. (1996) 3:833-839) as triketide lactones (2S,3R,5R)-2-methyl-3,5-dihydroxy-n-hexanoic δ-lactone (AAP, i.e. Acetate, Acetate, Propionate incorporation), (2S,3R,5R)-2-methyl-3,5-dihydroxy-n-heptanoic δ-lactone (PAP), (2R,3S,4S,5R) 2,4-dimethyl-3,5-dihydroxy-n-heptanoic δ-lactone (PPP) and (2R,3S,4S,5R) 2,4-dimethyl-3,5-dihydroxy-n-hexanoic δ-lactone (APP). These products were identified as their ammonium adducts corresponding to exact mass 144, 158, 172 and 158. Four products were produced because in this strain, and under the conditions of the experiment the loading module loads both acetate and propionate and the modified AT loads malonyl-CoA and methylmalonyl-CoA.

Only three triketide lactone peaks could be observed in the GC/MS spectra under standard conditions, this was due to the co-elution of the equivalent mass APP and PAP compounds. An isocratic gradient was used to verify this peak was comprised of two components. In further sets of experiments *S. erythraea* JC2 (pHP41) was used to inoculate 5ml TSB containing 5 µg/ml thiostrepton. After three days growth 1.5ml of this culture was used to inoculate 25ml SM3 media containing 5 µg/ml thiostrepton in a 250ml flask. The flask was incubated at 30 °C, 250rpm for 6 days. At this time the supernatant was adjusted to pH3.0 with formic acid and extracted twice with an equal volume of ethyl acetate. The solvent was removed by evaporation and the residue analysed by GC/MS.

In each experiment we could identify the 4 products AAP, PAP, PPP and APP but the absolute ratios and quantities were variable, presumably depending on exact media and growth conditions within each flask (figure 6).

20 Example 3

Construction of *S. erythraea* NRRL2338 (pHP41) and its use to produce 12-desmethyl erythromycin B.

Plasmid pHP41 was used to transform *S. erythraea* NRRL2338 protoplasts. Thiostrepton resistant colonies

were selected on R2T20 agar containing 40 µg/ml thiostrepton. Several clones were tested for the presence of pHP41 integrated into the chromosome by Southern blot hybridisation of their genomic DNA with DIG 5 labelled vector DNA. A clone with a correctly integrated copy of pHP41 was identified in this way. *S. erythraea* NRRL2338 (pHP41) was used to inoculate 5ml TSB containing 5 µg/ml thiostrepton. After three days growth 1.5ml of this culture was used to inoculate 25ml EryP media (see patent application WO 00/00500) containing 5 µg/ml thiostrepton in a 250ml flask. The flask was incubated at 30 °C, 250rpm for 6 days. At this time the supernatant was adjusted to pH9.0 with ammonia and extracted twice with an equal volume of ethyl acetate. The solvent was removed by evaporation and the residue analysed by HPLC/MS. A peak of molecular mass m/z (M+H)=704 was observed required for C-12 desmethyl erythromycin B in addition to a peak corresponding to erythromycin A (M+H)=734. Other peaks corresponding to partially processed erythromycin intermediates could be identified.

Example 4

Construction of plasmid pHP048

Plasmid pHP048 is a pCJR24-based plasmid containing the 25 DEBS1 PKS gene comprising a loading module, the first and

second extension modules of DEBS1 and the chain terminating thioesterase. The motif YASH of the AT domain of first module has been altered to HASH. Plasmid pHp048 was constructed by several intermediate plasmids
5 as follows.

A DNA segment of the eryAI gene from *S. erythraea* extending from nucleotide 41557 to nucleotide 41120 was amplified by PCR using the following oligonucleotide primers; 5'-CGGTGCCTAGGTGCACCGACTCCCAGTCC-3' and 5'-
10 TTTTCCAAGCGGCTGGCCGTGGACCACCGTCACTCCTCGCACGTCGAGACGAT-3'. The DNA from plasmid pCJR65 was used as template.
The design of the primers introduced a AvrII site at nucleotide 41125 and the second extended to a BstXI site at nucleotide 41557, also mutated the amino acid sequence
15 YASH (encoded by nucleotides 41537-41526) to HASH. The 442bp PCR product was treated with T4 polynucleotide kinase and ligated to plasmid pUC18 that had been linearised by digestion with SmaI and then treated with alkaline phosphatase. The ligation mixture was used to
20 transform electrocompetent *E. coli* DH10B and individual clones checked for the presence of the desired plasmid pHp022. Plasmid pHp022 was identified by restriction pattern and sequence analysis. Plasmid pHp022 was linearised by digestion with restriction enzymes AvrII

and *Bst*XI, and the fragment (Fragment D) isolated by gel electrophoresis and purified from the gel. Fragment D was ligated with Fragments A and B described previously and the resulting ligation mixture used to transform 5 electrocompetent *E. coli* DH10B. Individual clones were checked for the presence of an insert derived from DEBS1. The resulting plasmid was designated pHp048. Sequence analysis was used to confirm the clone contained the correct motif HASH.

10

Example 5Construction of *S. erythraea* NRRL2338 JC2 (pHP048)and its use to produce triketides

S. erythraea NRRL2338 JC2 contains a deletion of the 15 *ery*AI, *ery*AI and *ery*AI apart from the TE (Rowe, C.J. et al. Gene 216, 215-223). Plasmid pHp048 was used to transform *S. erythraea* NRRL2338 JC2 protoplasts using the TE as a homology region. Thiostrepton resistant colonies were selected on R2T20 agar containing 40 μ g/ml thiostrepton. *S. erythraea* JC2 (pHP048) was used to 20 inoculate 5ml TSB containing 5 μ g/ml thiostrepton. After three days growth 1.5ml of this culture was used to inoculate 25ml SM3 media containing 5 μ g/ml thiostrepton in a 250ml flask. The flask was incubated at 30 °C,

250rpm for 6 days. At this time the supernatant was adjusted to pH3.0 with formic acid and extracted twice with an equal volume of ethyl acetate. The solvent was removed by evaporation and the residue analysed by GC/MS.

5 A mixture of products were identified as their ammonium adducts corresponding to the AAP, PAP, APP and PPP triketide lactones as described in example 2. In this example, under the media/growth conditions described the PKS with the HASH change is more catalytically active
10 than the HAFH change (example 2) as judged by total amounts of triketide lactone produced, however in this case the modified PKS appears to display lower selectivity towards acetate as judged by the ratio of AAP to PPP triketide lactone.

15

Example 6

Construction of plasmid pHp47

Plasmid pHp47 is a pCJR24-based plasmid containing
20 the DEBS1 PKS gene comprising a loading module, the first and second extension modules of DEBS1 and the chain terminating thioesterase. The motif YASH of the AT domain of first module has been altered to VAGH. Plasmid pHp47 was constructed by several intermediate plasmids as
25 follows.

A DNA segment of the eryAI gene from *S. erythraea* extending from nucleotide 41557 to nucleotide 41120 was amplified by PCR using the following oligonucleotide primers; 5'-CGGTGCCTAGGTGCACCGACTCCCAGTCC-3' and 5'-
5 TTTTCCAAGCGGCTGGCCGTGGACGTGCGGGGCACTCCTCGCACGTCGAGACGAT
-3'. The DNA from plasmid pCJR65 was used as a template.

The design of the primers introduced a AvrII site at nucleotide 41125 and the second extended to a BstXI site at nucleotide 41557, also mutated the amino acid sequence 10 YASH (encoded by nucleotides 41537-41526) to VAGH. The 442bp PCR product was treated with T4 polynucleotide kinase and ligated to plasmid pUC18 that had been linearised by digestion with SmaI and then treated with alkaline phosphatase. The ligation mixture was used to 15 transform electrocompetent *E. coli* DH10B and individual clones checked for the presence of the desired plasmid pHp46. Plasmid pHp46 was identified by restriction pattern and sequence analysis. Plasmid pHp46 was linearised by digestion with restriction enzymes AvrII 20 and BstXI, and the fragment (Fragment E) isolated by gel electrophoresis and purified from the gel. Fragment E was ligated with Fragments A and B described previously and the resulting ligation mixture used to transform electrocompetent *E. coli* DH10B. Individual clones were

checked for the presence of an insert derived from DEBS1.

The resulting plasmid was designated pHp47. Sequence analysis was used to confirm the clone contained the correct motif VAGH.

5

Example 7

Construction of plasmid pLS007

Plasmid pLS007 contains the crotonyl-CoA reductase (CCR) gene from *S. cinnamonensis* that is believed to 10 influence the level of ethylmalonyl-CoA within the cell.

Plasmid pSG142 (Gaisser et al. Mol. Microbiol. (2000) 36 391-401) places genes under the control of the actI promoter and can be used to integrate either in the right hand side of the erythromycin gene cluster or in the act 15 promoter region of a previously transformed actinomycete.

Two oligonucleotide primers; 5'-
GGCAAACATATGAAGGAAATCCTGGACGCG-3' and 5'-
TCCGC GGATCCTCAGTGC GTTCAGATCAGTGC-3' were used to amplify
the *S. cinnamonensis* CCR gene using genomic DNA as
20 template. The design of the primers incorporated NdeI
and BamHI restriction sites to facilitate cloning. The
1.4kb PCR product was isolated by gel electrophoresis and
purified from the gel and ligated with pSG142 that had
been digested with NdeI and BglII. The resulting

ligation mixture was used to transform electrocompetent *E. coli* DH10B cells. Plasmid pLS003 was identified by restriction analysis and sequencing to ensure errors were not introduced during amplification. A discrepancy with 5 the published sequence was identified. However, further analysis by comparison with other published CCR protein sequences indicated pLS003 was correct. Plasmid pLS003 was digested with *Nde*I and *Xba*I and the resulting 4.5kb fragment (fragment F) isolated by gel electrophoresis and 10 purified from the gel. This fragment was ligated to pLSB2 a derivative of pKC1132 containing the actI/actII promoter region behind an *Nde*I site. Plasmid pLSB2 was digested with *Nde*I and *Xba*I and the resulting ~4kb fragment (Fragment G) purified by gel electrophoresis and 15 purified from the gel. Fragments F and G were ligated together and the resulting ligation mixture was used to transform electrocompetent *E. coli* DH10B cells. Plasmid pLS007 was identified by restriction analysis.

20 Example 8Construction of *S. erythraea* NRRL2338 JC2(pHP47/pLS007) and its use to produce triketides

S. erythraea NRRL2338 JC2 contains a deletion of the eryAI, eryAII and eryAIII apart from the TE (Rowe, C.J.

et al. Gene 216, 215-223). Plasmid pHP47 was used to transform *S. erythraea* NRRL2338 JC2 protoplasts using the TE as a homology region. Thiostrepton resistant colonies were selected on R2T20 agar containing 40 µg/ml thiostrepton. PLS007 was used to transform protoplasts of *S. erythraea* NRRL2338 JC2 (pHP47), thiostrepton and apramycin resistant clones were selected on R2T20 agar containing 40 µg/ml thiostrepton and 50 µg/ml apramycin plus 10mM magnesium chloride and the resistance markers verified by plating on tapwater media containing the same antibiotics. *S. erythraea* NRRL2338 JC2 (pHP47/pLS007) was used to inoculate 5ml TSB containing 5 µg/ml thiostrepton and 50 µg/ml apramycin. After three days growth 1.5ml of this culture was used to inoculate 25ml SM3 media containing 5 µg/ml thiostrepton and 50 µg/ml apramycin in a 250ml flask. The flask was incubated at 30°C, 250rpm for 6 days. At this time the supernatant was adjusted to pH3.0 with formic acid and extracted twice with an equal volume of ethyl acetate. The solvent was removed by evaporation and the residue analysed by GC/MS. In this experiment amounts of triketide product were lower but a mixture of products could be identified as their ammonium adducts corresponding to exact masses 158 172 and 186.

Example 9Construction of *S. erythraea* NRRL2338 (pHP47) and its use to produce erythromycins.

Plasmid pHp47 was used to transform *S. erythraea* NRRL2338 protoplasts. Thiomodulon resistant colonies were selected on R2T20 agar containing 40 µg/ml thiomodulon. *S. erythraea* NRRL2338 (pHP47) was used to inoculate 5ml TSB containing 5 µg/ml thiomodulon. After three days growth 1.5ml of this culture was used to inoculate 25ml EryP media containing 5 µg/ml thiomodulon in a 250ml flask. The flask was incubated at 30°C, 250rpm for 6 days. At this time the supernatant was adjusted to pH9.0 with ammonia and extracted twice with an equal volume of ethyl acetate. The solvent was removed by evaporation and the residue analysed by HPLC/MS. Peaks of mass m/z (M+H)=734 corresponding to erythromycin A were observed.

Example 10Construction of plasmid pSGK051

Plasmid pSGK051 is a pPFL43 based plasmid (WO 00/00500). The motif HAFH of the AT domain of the loading domain has been altered to YASH. Plasmid pSGK051 was constructed by several intermediate plasmids as

follows.

Plasmid pPFL43 was linearised by digestion with restriction enzymes *Nco*I and *Not*I and a 858bp fragment (Fragment Q) isolated by gel electrophoresis and purified 5 from the gel.

A DNA segment of the monensin loading domain from nucleotide 16360-17366 (see figure 5 and PCT/GB00/02072) was amplified by PCR using the following oligonucleotide primers; 5'-

10 GGGGACGGCGGCCAAGGCCACCATGAAAGGTCAAGCTACGCCTCCACTCCCCGC
ACATGGACCCCAT-3' and 5'-GGCTAGCGGGTCCTCGTCCGTGCCGAGGTCA-
3'. The design of the primers amplified across a *Not*I site at nucleotide 16367 and changed the amino acid sequence HAFH to YASH at nucleotides 16398-16409, the 15 second introduced a *Nhe*I site equivalent to that in pPFL43. The DNA from plasmid pPFL43 was used as a template. The 1006bp PCR product was treated with T4 polynucleotide kinase and ligated to plasmid pUC18 that had been linearised by digestion with *Sma*I and treated 20 with alkaline phosphatase. The ligation mixture was used to transform electrocompetent *E. coli* DH10B and individual clones checked for the presence of the desired plasmid pCSAT9. Plasmid pCSAT9 was identified by restriction pattern and sequence analysis. Plasmid

pCSAT9 was linearised by digestion with restriction enzymes *NotI* and *NheI* and a 995bp fragment (Fragment R) isolated by gel electrophoresis and purified from the gel. Plasmid pPFL43 was digested with *NcoI* and *NheI* to 5 remove a 1.8kb fragment and the larger fragment (Fragment S) isolated by gel electrophoresis and purified from the gel. Fragments Q, R and S were ligated together and the resulting ligation mixture used to transform electrocompetent *E. coli* DH10B. Individual clones were 10 checked for the desired plasmid pSGK051. The resulting plasmid was analysed by restriction digest and sequenced to confirm the presence of the correct motif YASH.

Example 11

15 Construction of *S. erythraea* NRRL2338 JC2/pSGK051

and production of triketides

Plasmid pSGK051 was used to transform *S. erythraea* NRRL2338 JC2 protoplasts using the TE as a homology region. Thiomodulon resistant colonies were selected on 20 R2T20 agar containing 40 µg/ml thiostrepton. *S. erythraea* NRRL2338 JC2 (pSGK051) was plated onto R2T20 agar containing 40 µg/ml thiostrepton and allowed to grow for 11 days at 30°C. Approximately 1cm² of the agar was homogenised and extracted with a mixture of 1.2ml ethyl

acetate and 20 µl formic acid. The solvent was decanted and removed by evaporation and the residue dissolved in methanol and analysed by GC/MS. The major products were identified by comparison with authentic standards as
5 triketide lactones (2S,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxy-n-heptanoic δ-lactone and (2S,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxy-n-hexanoic δ-lactone.

Example 12

10 Construction of *S. erythraea* NRRL2338 (pSGK051) and its use to produce erythromycins.

Plasmid pSGK051 was used to transform *S. erythraea* NRRL2338 protoplasts. Thiostrepton resistant colonies were selected on R2T20 agar containing 40 µg/ml thiostrepton. *S. erythraea* NRRL2338 (pSGK051) was plated onto R2T20 agar containing 40 µg/ml thiostrepton and allowed to grow for 10 days at 30°C. Approximately 2cm² of the agar was homogenised and extracted with a mixture of 1.2ml ethyl acetate and 20 µl dilute ammonia. The solvent decanted and was removed by evaporation and the residue analysed by HPLC/MS. Peaks of mass m/z (M+H)=734 and 720 could be observed alongside likely products of incomplete processing. Comparison to authentic standards proved the compounds produced were erythromycin A and 13-

methyl erythromycin A.

CLAIMS:

1. A method of synthesising a compound whereof at least a portion is the product of a polyketide synthase (PKS) enzyme complex or is derived from such a product, said PKS enzyme complex including at least one acyltransferase (AT) domain; said method comprising the steps of (i) providing said PKS enzyme complex in which said AT domain has been altered to change selectively a minor proportion of amino acid residues, the altered residue(s) comprising one or more residues of one or more motifs which are present in the active site pocket of the AT domain and which influence the substrate specificity of the AT domain, the alteration affecting the substrate specificity; and (ii) effecting synthesis by means of said PKS enzyme complex to produce a compound or mixture of compounds different from what could have been produced by means of a PKS enzyme in which said AT domain had not been altered.
- 20 2. A method according to claim 1 wherein said motif comprises a four-residue sequence corresponding to the YASH motif of the AT domain of the first module of DEBS.
- 25 3. A method of synthesising a compound whereof at least a portion is the product of a polyketide synthase

(PKS) enzyme complex or is derived from such a product, said PKS enzyme complex including at least one acyltransferase (AT) domain; said method comprising the steps of (i) providing said PKS enzyme complex in which 5 said AT domain has been altered to change selectively a minor proportion of amino acid residues, the altered residue(s) comprising one or more residues of a motif which influences the substrate specificity of the AT domain and which comprises a four-residue sequence 10 corresponding to the YASH motif of the AT domain of the first module of DEBS, the alteration affecting the substrate specificity; and (ii) effecting synthesis by means of said PKS enzyme complex to produce a compound or mixture of compounds different from what could have been 15 produced by means of a PKS enzyme in which said AT domain had not been altered.

4. A method according to claims 1, 2 or 3 wherein said motif was located by a) determining the sequence of the AT domain and b) performing sequence alignment with a 20 plurality of sequences of other AT domains.

5. A method according to any preceding claim wherein the PKS enzyme complex is at least part of a modular type I PKS enzyme complex.

6. A method according to any preceding claim wherein said alteration of the AT domain affects less than 5% of the residues.

7. A method according to any preceding claim 5 wherein said alteration alters a motif selected from XAFH, XASH, and XAGH and/or creates such a motif.

8. A method according to claim 7 wherein the motif is XAGH and X is selected from F, T, V and H.

9. A method according to claim 7 wherein the motif 10 is XAFH and X is H.

10. A method according to claim 7 wherein the motif is XASH and X is selected from Y, H, W and V.

11. A method according to any of claims 1-10 wherein said alteration produces or alters a motif 15 containing proline.

12. A method according to any preceding claim wherein in addition to the alteration to one or more residues of said motif(s), one or more additional residues in or adjacent the substrate binding pocket have 20 been altered.

13. A method according to claim 12 wherein said additional altered residue(s) comprise one or more of a) the residue immediately downstream of the motif, b) the residue three residues downstream from the GQG motif, c) 25 the residue immediately downstream of the GHS motif, and

d) the residue four residues downstream of the conserved arginine residue.

14. A method according to any preceding claim wherein the alteration produces a motif specific for malonyl-CoA and the motif is followed by S which was produced by alteration if not already present.

5 15. A method according to any of claims 1-13 wherein the alteration produces a motif specific for methylmalonyl-CoA and the motif is followed by S, G, C or T which was produced by alteration if not already present.

10 16. A method according to any of claims 1-13 wherein the alteration produces a motif specific for methylmalonyl-CoA, and the residue following the GHS motif in the active site is Q which was produced by alteration if not already present.

15 17. A method according to any of claims 1-13 wherein the alteration produces a motif specific for malonyl-CoA, and the residue following the GHS motif in the active site is V, I or L which was produced by alteration if not already present.

20 18. A method according to any of claims 1-13 wherein the alteration produces a motif specific for methylmalonyl-CoA, and the residue 3 residues downstream

60

of the GQG motif is W which was produced by alteration if not already present.

19. A method according to any of claims 1-13 wherein the alteration produces a motif specific for 5 malonyl-CoA, and the residue 3 residues downstream of the GQG motif is R, H or T which was produced by alteration if not already present.

20. A method according to any of claims 1-13 wherein the alteration produces a motif specific for 10 malonyl-CoA and the residue 4 residues downstream of the conserved R as found as residue 252 in the first module of DEBS is M which was produced by alteration if not already present.

21. A method according to any of claims 1-13 15 wherein the alteration produces a motif specific for methylmalonyl-CoA and the residue 4 residues downstream of the conserved R as found as residue 252 in the first module of DEBS is I or L which was produced by alteration if not already present.

20 22. A method according to any of claims 1-13
wherein the alteration produces a motif specific for ethylmalonyl-CoA and the residue 4 residues downstream of the conserved R as found as residue 252 in the first module of DEBS is W which was produced by alteration if 25 not already present.

23. A method according to any preceding claim wherein the AT domain has an active site with a GHS motif, and said motif which is altered starts 80-110 residues downstream of said GHS motif.

5 24. A method according to any preceding claim wherein said step (i) of providing said PKS enzyme complex comprises providing a nucleic acid sequence encoding said complex and effecting expression thereof.

25. A method according to claim 24 wherein
10 expression is effected in an organism capable of producing polyketides.

26. A method according to claim 24 or claim 25 wherein said nucleic acid sequence has been subjected to site directed mutagenesis so that it encodes said altered
15 AT domain.

27. A method according to claim 24, 25 or 26 wherein the AT domain prior to alteration is naturally expressed in a first organism and the altered AT is expressed in a second organism which is better able than
20 the first organism to supply a substrate for which the alteration has increased specificity and/or which is less well able than the first organism to supply a substrate for which the alteration has reduced specificity.

28. A method according to any preceding claim
25 wherein said PKS includes said AT domain and a second

domain which is naturally coupled thereto prior to the alteration thereof to receive a substrate transferred to it by the AT; and the alteration causes the AT to act to transfer a different substrate to the second domain.

5 29. A method according to any preceding claim wherein said PKS includes said AT domain and its natural cognate ACP domain which, prior to the alteration, is adapted to receive a substrate transferred to it by the AT; and the alteration causes the AT to act to transfer a
10 10 different substrate to said cognate ACP domain.

30. A method according to any preceding claim wherein said PKS including the altered AT domain is spliced to a hybrid PKS.

31. A polyketide compound or derivative thereof or
15 15 compound whereof a portion is a polyketide or derivative thereof, which compound is obtainable by a method according to any preceding claim wherein the compound differs from a compound resulting from synthesis effected by means of said PKS enzyme complex without the
20 20 alteration of said AT domain.

32. Nucleic acid encoding a PKS enzyme complex including an altered AT domain as defined in any of claims 1-30.

33. A vector including a nucleic acid according to
25 25 claim 32.

34. A host organism containing nucleic acid according to claim 32 and able to express the PKS enzyme complex.

35. A host organism according to claim 34 which is
5 adapted to synthesise a compound whereof at least a portion is a polyketide resulting from the action of the PKS enzyme complex.

36. A method of synthesising a polyketide synthase (PKS) enzyme complex, said PKS enzyme complex including
10 at least one acyltransferase (AT) domain; said method comprising altering said AT domain to change selectively a minor proportion of amino acid residues, the altered residue(s) comprising one or more residues of one or more motifs which are present in the active site pocket of the
15 AT domain and which influence the substrate specificity of the AT domain, the alteration affecting the substrate specificity.

37. A method according to claim 36 wherein said motif comprises a four-residue sequence corresponding to
20 the YASH motif of the AT domain of the first module of DEBS.

38. A method of synthesising a polyketide synthase (PKS) enzyme complex, said PKS enzyme complex including
at least one acyltransferase (AT) domain; said method
25 comprising altering said AT domain to change selectively

64

a minor proportion of amino acid residues, the altered residue(s) comprising one or more residues of a motif which influences the substrate specificity of the AT domain and which comprises a four-residue sequence
5 corresponding to the YASH motif of the AT domain of the first module of DEBS, the alteration affecting the substrate specificity.

39. A PKS enzyme complex as produced by the method of claims 36, 37 or 38.

2/26

1		50
atave00x	~~~~~	~~~~~
atdebs00p	~~~~~	~~~~~
atepo06p	~~~~~	~~~~~
atepo07p	~~~~~	~~~~~
atepo01p	~~~~~	~~~~~
atepo05p	~~~~~	~~~~~
atsora1x	~~~~~	~~~~~
atfkb01p	~~~~~	~~~~~
atfkb09p	~~~~~	~~~~~
atrap03p	~~~~~	~~~~~
atrap06p	~~~~~	~~~~~
atrap04p	~~~~~	~~~~~ PLVI
atrap13p	~~~~~	A EEAQPVETPV VASDVLPLVI
atrap01p	~~~~~	~~~~~
atrap07p	~~~~~	~~~~~ PV VASELVPLVI
atrap10p	~~~~~	~~~~~
atfkb04x	~~~~~	~~~~~
atty104p	~~~~~ VV	REAAAGRLAEV VEAGGVGLAD VAVTMAGRSR
atty106p	~~~~~	GRLAEV VEAGGVGLAD VAVTMAGRSR
atty101p	~~~~~	~~~~~ MAGRSR
atty102p	~~~~~	~~~~~
atty100p	~~~~~	~~~~~ D VAVTMADRSR
atnid05b	~~~~~	~~~~~
atty105b	~~~~~	~~~~~ AAL REQSTRLLND
atnid06x	~~~~~	~~~~~
atdebs01p	~~~~~	~~~~~
atmon02p	~~~~~	~~~~~
atmon10p	~~~~~	~~~~~
atmon04p	~~~~~	~~~~~
atmon07p	~~~~~	~~~~~
atmon11p	~~~~~	~~~~~
atmon12p	~~~~~	~~~~~
atmon05b	~~~~~	~~~~~
atmon01p	~~~~~	~~~~~
atdebs02p	~~~~~	~~~~~
atdebs06p	~~~~~	~~~~~
atave01p	~~~~~	~~~~~
atave07p	~~~~~	~~~~~
atave06p	~~~~~	~~~~~
atave09p	~~~~~	~~~~~
atnys01p	~~~~~	~~~~~
atnys11p	~~~~~	~~~~~
atrif05p	~~~~~	~~~~~
atrif07p	~~~~~	~~~~~
atrif08p	~~~~~	~~~~~
atrif10p	~~~~~	~~~~~
atrif03p	~~~~~	~~~~~
atrif06p	~~~~~	~~~~~
atrif04p	~~~~~	~~~~~
atrif01p	~~~~~	~~~~~
atnys02p	~~~~~	~~~~~
atfkb02p	~~~~~	~~~~~
atave11p	~~~~~	~~~~~
atdebs03p	~~~~~	~~~~~
atnid04p	~~~~~	~~~~~
atdebs05p	~~~~~	~~~~~
atdebs04p	~~~~~	~~~~~

Fig 2a

3/26

atave02a LFAFQVALHR LLTDGYHITP HYYAGHSLGE ITAAHLAGIL TLTDATTLIT
 atave05a LFAFQVALHR LLTDGYHITP HYYAGHSLGE ITAAHLAGIL TLTDATTLIT
 atave04a LFAFQVALHR LLTDGYHITP HYYAGHSLGE ITAAHLAGIL TLTDATTLIT
 atave08a LFAFQVALHR LLTDGYHITP HYYAGHSLGE ITAAHLAGIL TLTDATTLIT
 atave03a LFAFQVALHR LLTDGYHITP HYYAGHSLGE ITAAHLAGIL TLTDATTLIT
 atrap02a LFALQVALFG LL.ESWGVRP DAVVGHSGVE LAAGYVSGLW SLEDACTLVS
 atrap11a LFALQVALFG LL.ESWGVRP DAVIGHSGVE LAAAYVSGVW SLEDACTLVS
 atrap08a LFALQVALFG LL.ESWGVRP DAVVGHSGVE LAAGYVSGLW SLEDACTLVS
 atrap12a LFAMQVALFG LL.ESWGVRP DAVIGHSGVE LAAAYVSGVW SLEDACTLVS
 atrap05a LFALQVALFG LL.ESWGVRP DAVVGHSGVE LAAGYVSGLW SLEDACTLVS
 atrap09a LFALQVALFG LL.ESWGVRP DAVIGHSGVE LAAAYVSGLW SLEDACTLVS
 atfbk03a VFALQVALSA QL.DAWGVRP DVLVGHSGVE LAAAYVAGVW SLDDATELVS
 atfbk07x HFAHQIALTA LL.RSWGITP HAVIGHSLGE ISAACAAAGVL SIGDASALLA
 atfbk08x LFAHQAAFTA LL.RSDITP HAVIGHSLGE ITAAAYAAGIL SLDDACTLIT
 atnid01a LFALQTALYR TL.TARGTQA HLVLGHSGVE ITAAHIAGVL DLPAARLIT
 atnid03a LFALQTALYR TL.TARGTQA HLVLGHSGVE ITAAHIAGVL DLPAARLIT
 atnid02a LFALQTALYR TL.TAHGTQA HLVLGHSGVE ITAAHIAGVL DLPAARLIT
 atnid00a LFALQTALYR TL.TARGTQA HLVLGHSGVE ITAAHIAGVL DLPAARLIT
 atfbk10a LFTLEVALLR LL.EHWGVRP DVVVGHSGVE VTAAYAAGVL TLADATTLIV
 atrap14a IFAMEAALFG LL.EDWGVRP DFVAGHSIGE ATAAYASGML SLENVTTLIV
 atmon06a LFALQVGLAR LW.ESVGVRP DVVLGHSGVE IAAAHVAGVF DLADACRVVG
 atmon08a LFALQVGLAR LW.ESVGVRP DVVLGHSGVE IAAAHVAGVF DLADACRVVG
 atmon09a LFALQVGLAR LW.ESVGVRP DVVLGHSGVE IAAAHVAGVF DLADACRVVG
 atepo02a LFAVEYALTA LW.RSWGVEP ELLVGHSGVE LVAACVAGVF SLEDGVRLVA
 atepo03x LFTFEYALTA LW.RSWGVEP ELVAGHSAGE LVAACVAGVF SLEDGVRLVA
 atepo08a LFALEYALAA LF.RSWGVEP ELVAGHSIGE LVAACVAGVF SLEDAVRLVV
 atepo00a LFTFEYALAA LW.RSWGVEP ELVAGHSIGE LVAACVAGVF SLEDAVFLVA
 atepo04a LFALEYALAA LW.RSWGVEP HVLLGHSGVE LVAACVAGVF SLEDAVRLVA
 atnid07a LFAVETALFR LF.ESWGLMP DVLLGHSGGG LAAAYAAGVF SSADAVRLVA
 atty107a LFAVEVALHR LL.EHWGMRP DLLLGHSGVE LAAAHVAGVL DLDDACALVA
 atsor02a LFALEVALFQ LL.QSFGLKP ALLLGHSGVE LVAACVAGVL SLQDACTLVA
 atsorb1a LFALEVALFE LL.QSFGLKP ALLLGHSGVE LVAACVAGVL SLQDACTLVA
 atnys09a LFAVEVALYR LI.ESFGVRP DHLAGHSGVE IVAAHLAGVL SLADAATLVA
 atnys12a LFAVEVALFR LL.TSWGLTP DYLAGHSGVE LAAAHVAGVL SLDDACTLVA
 atnys16a LFAVEVALFR LV.ASWGVGP EFVAGHSGVE IAAAHVAGVF SLVDACRLVV
 atnys17a LFAVEVALFR LV.ASWGVGP EFVAGHSGVE IAAAHVAGVF SLVDACRLVV
 atnys03a LFAVEVALYR LV.ASLGVTP DFVGGHSIGE LAAAHVAGVL SLEDACTLVA
 atnys15a LFAVEVALYR LI.ESWGVAP DFVAGHSIGE IAAAHVAGVF SLEDACTLVA
 atnys07a LFAIEVALFR LV.ESWGVRP DFVAGHSIGE IAAAHVAGVF SLEDACTLVA
 atnys08a LFAVEVALFR LV.ERWGVRP DFVAGHSIGE IAAAHVAGVF SLEDACTLVA
 atnys05a LFAVEVALFR LV.ESWGVRP DFVAGHSIGE IAAAHVVGVF SLEDACTLVA
 atnys06a LFAIEVALFR LV.ESWGVRP DFVAGHSIGE IAAAHVVGVF SLEDACTLVA
 atnys04a LFAIEVALFR LL.EAWGITP DFVAGHSIGE IAAAHVAGVL SLGDACRLVV
 atnys14a LFAVEVALYR LI.ESWGVRP DFVAGHSGVE LAAAHVAGVL SLDDACRLVA
 atnys00a LFAVEVALHR LV.ASLGVTP DFVGGHSVGVE IAAAHVAGVL SLEDACTLVA
 atnys10a LFAVEVALFR LV.ESWGVRP DFVAGHSIGE IAAAHVAGVL TLEDACRLVA
 atnys18a LFAVEVALYR LL.ASWGIRP DHVTGHSGVE ITAAHVAGVL TLADACTLVA
 atnys13a LFAVEVALFR LA.ESWRLTP DFVAGHSIGE IAAAHVAGVF SLEDACTLVA
 atave10a LFAFEVALFR LL.ETWGLTP DVVLGHSGVE LAAAHVAGML CLADAVLUV
 atrif02a LFAVETALFR LF.ESWGVRP GLLAGHSGVE LAAAHVAGVL DLADAGELVA
 atmon03a LFALEVALYR QV.TSFGIAP SHLTGHSGVE IAAAHVAGVF SLADACTLVA
 atave12a LFAVQVALFR HL.ERLGVRP DFVAGHSIGE LAAAHVAGVL PLAAACRLVA
 atrif09a LFAVESALFR LA.ESWGVRP DVVLGHSGVE ITAAAYAAGVF SLPDAARIVA
 atmon00a LFAIETSLYR LA.ASFGLKP DYVLGHSGVE IAAAHVAGVL SLPDASALVA
 atty103a LFALQTALFR LA.EHHGLRA EALCGHSGVE IAAAHAAGVL TLPDAARLVA

GHS

Fig2j

4/26

251		300
atave00x	LWSQAQTT.L AGTGALVSVA ATPDELLPRI APWTEDN.PA RLAVAAVNGP	
atdebs00p	LWSREMIP.L VNGDMAAVA LSADEIEPRI ARWDDD.... .VVLAVNGP	
atepo06p	RRSRLL.RRI SGQGEMALVE LSLEEAEAAL RGHEG RLSVAVSNSP	
atepo07p	RRSRLL.RRI SGQGEMALVE LSLEEAEAAL RGHEG RLSVAVSNSP	
atepo01p	RRSRLL.RRI SGQGEMAVTE LSLAEAEAAL RGYED RVSVAVSNSP	
atepo05p	RRSLLL.RRI SGQGEMAVVE LSLAEAEAAL LGYED RLSVAVSNSP	
atsora1x	AYGRII.RKL RGKGGMGLVA LSWEDAGKEL TGYEG RLFRAIEHSA	
atfkb01p	LRSQAIARL AGRGAMASIA VPASAVE... TVE GVWIAARNGP	
atfkb09p	LRSQTIAAHL AGRGAMASIA LPATAVE... TVE GVVVAARNGP	
atrap03p	LRSQAIARGL AGRGAMASVA LPAQDVE... LVD GAWIAAHNGP	
atrap06p	LRSEAIARGL AGRGAMASVA LPAQDVE... LVD GAWIAAHNGP	
atrap04p	LRSQAIARGL AGRAAMASVA LPAHEIE... LVD GAWIAAHNGP	
atrap13p	LRSQAIARGL AGRGAMASVA LPAQDVE... LVD GAWIAAHNGP	
atrap01p	LRSQVIARGL AGRGAMASVA LPAQDVE... LVD GAWVAARNGP	
atrap07p	LRSQAIARGL AGRGAMASVA LPAHEIE... LVD GAWIAAHNGP	
atrap10p	LRSQAIARGL AGRGAMASVA LPAQDVE... LVD GAWIAAHNGP	
atfkb04x	LRSALLVREL AGRGAMGSIA FAA..AA... RID GVVVAGRNGT	
atty104p	LRAGLIGRYL AGRGAMAAVP LPAGEVEAGL AKWPG.... .VEVAAVNGP	
atty106p	LRAGLIGRYL AGRGAMAAVP LPAGEVEAGL AKWPG.... .VEVAAVNGP	
atty101p	LRAGLIGRYL AGRGAMAAVP LPAGEVEAGL AKWPG.... .VEVAAVNGP	
atty102p	LRAGLIGRYL AGRGAMAAVP LPAGEVEAGL AKWPG.... .VQVAAVNGP	
atty100p	LRAGLIGRYL AGRGAMAAVP LPAGEVEAGL AKWPG.... .VEVAAVNGP	
atnid05b	LRSRAWLG.L AGKGGMVAVP MPAEELRPLL VTWGD RLAVAAVNSP	
atty105b	LRSRAWLT.L AGKGGMAAVS LPEARLRERI ERFGQ RLSVAAVNSP	
atnid06x	GRSRLWGR.L AGNGGMLAVM APAERIRELL EPWRQ RISVAAVNGP	
atdebs01p	LRSRVIAT.M PGNKGMSIA APAGEVRARI GD RVEIAAVNGP	
atmon02p	VRSDAL.RQL QGHGDMASLS TGAEQAAELI GDRPG.... .VVVAAVNGP	
atmon10p	VRSDAL.RRL QGHGDMASLS TGAEQAAELI GDRPG.... .VVVAAVNGP	
atmon04p	VRSDAL.RQL QHGDMASLG TGAEQAAELI GDRPG.... .VVVAAVNGP	
atmon07p	VRSDAL.RQL MGQGDMASLG ASSEQAAELI GDRPG.... .VCIAAVNGP	
atmon11p	VRSDAL.RQL QGHGDMASLS TGAEQAAELI GDRPG.... .VVVAAVNGP	
atmon12p	VRSDAL.RQL MGQGDMASLG AGSEQVAELI GDRPG.... .VCVAAVNGP	
atmon05b	VRSVLL.RQL SGRGGMASLG MGQEQAADLI DGHPG.... .VVVAAVNGP	
atmon01p	LRSRAL.RQL SGGGAMASLG VGQEQAELV EGHPG.... .VGIAAVNGP	
atdebs02p	RRSRAV.RAV AGRGSMLSVR GGRSDVEKLL ADDS... WTG RLEVAAVNGP	
atdebs06p	LRAKAL.RAL AGKGGMVSLA APGERARALI A..P...WED RISVAAVNSP	
atave01p	LRSRALAA.V RGRGGMASVP LPAQEVQLI GERWAG RLWVAAVNGP	
atave07p	LRSRALAA.V RGRGGMASVP LPAQEVQLI GERWAG RLWVAAVNGP	
atave06p	LRSRALAA.V RGRGAMASLP LPAQDVQQLI SERWEG QLWVAALNGP	
atave09p	LRSQALAA.V RGRGAMVSLP LPAQDVQQLI SERWEG QLWVAALNGP	
atnys01p	LRSQAIGRAL AGRGGMMSVA LSVDVLEPRL VE.... FEG RVSVAAVNGP	
atnys11p	LRSQAIGRAL AGRGGMMSVA LSVDVLEPRL VE.... FEG RVSVAAVNGP	
atrif05p	LRSQAIAAEL SGRGGMASIQ LSHDEVAARL AP.... WAG RVEIAAVNGP	
atrif07p	LRSQAIARL SGRGGMASVA LSEDEANARL GL.... WDG RIEVAAVNGP	
atrif08p	LRSQAIAAKL AGRGGMASVA LSEEDAVARL RH.... WAD RVEVAAVNSP	
atrif10p	LRSQAIAAKL SGRGGMASVA LGEADVVSRL AD GVEVAAVNGP	
atrif03p	LRSQAIAGEL AGRGGMASVA LSEEDAVARL TP.... WAN RVEVAAVNSP	
atrif06p	LRSQAIATRL AGRGGMASVA LSEEDATAWL AP.... WAD RVQVAAVNSP	
atrif04p	LRSQAIAAASL AGRGGMASVA LSEEDATARL EP.... WAG RVEVAAVNGP	
atrif01p	LRSQAIAAEL SGRGGMASVA LGEDDVVSRL VD GVEVAAVNGP	
atnys02p	LRSQALP.QL SGRGGMMSVS APVERVTALL AP.... WOE ALSVAAVNGP	
atfkb02p	LRSRLVATER AGHGGMVSVP PADFDAAA.. WAG RLEVAAVNGP	
atave11p	LRSQALA.AL AGQGAMASVG LPVEKLEPRL A.... TWGD RLVIAAVNGA	
atdebs03p	GRSRLM.RSL SGEggMAAA LGEAAVRERL RPWQ.... D RLSVAAVNGP	
atnid04p	LRSQIAREL AGRGSMASVA LAAADVESRL AGAEAGGGVR DVEIAAVNGP	
atdebs05p	VRSRVL.RRL GGQGGMASFG LGTEQAAERI GRFAG ALSIASVNGP	
atdebs04p	LRSQVL.REL DDQGGMVSVG ASRDELETNL A.... RWDG RVAVAAVNGP	

Fig 2k

5/26

atave02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atave05a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atave04a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atave08a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atave03a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap11a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap08a	~~~~~	~~~~~	~~~~~	PPTQPADNA	VIERAPEWLP
atrap12a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap05a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap09a	~~~~~	~~~~~	D	DVRPADAPVV	ASVMASELVP
atfkb03a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atfkb07x	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atfkb08x	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnid01a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnid03a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnid02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnid00a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atfkb10a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap14a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atmon06a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atmon08a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atmon09a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atepo02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atepo03x	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atepo08a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atepo00a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atepo04a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnid07a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atty107a	~~~~~	~~~~~	~~~~~	LR	DHLSRTPGAR
atsor02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atsorb1a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys09a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys12a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys16a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys17a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys03a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys15a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys07a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys08a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys05a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys06a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys04a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys14a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys00a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys10a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys18a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys13a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atave10a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrif02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atmon03a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atave12a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrif09a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atmon00a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atty103a	SVPAGEPPAA	GRPEDTGGAW	TVSGRGPAAL	RAQAARLYDA	LTGTGTGTGQ

Fig 2b

6/26

51

100

atave00x	~~~~~	~~~~~	~~~~~	~~~~~	VQR MDGGEPRPA
atdebs00p	~~~~~	~~~~~	~~~~~	~~~~~	~~VADGRPH
atopo06p	~~~~~	~~~~~	~~~~~	~~~~~	~~AAAQGHTP
atopo07p	~~~~~	~~~~~	~~~~~	~~~~~	~SSREALRGA LSAAAQGHTP
atopo01p	~~~~~	~~~~~	~~~~~	~~~~~	REG LDAAARGQTP
atopo05p	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~P
atsoral1x	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atfkb01p	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atfkb09p	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap03p	SAKTQPALTE HEDRLRAYLA ASPGADTRAV ASTLAVTRSV FEHRAVLLGD				
atrap06p	~~TQPALTE HEDRLRAYLA ASPGVDTTRAV ASTLAVTRSV FEHRAVLLGD				
atrap04p	SAKTQPALTE HEDRLRAYLA ASPGADTRAV ASTLAVTRSV FEHRAVLLGD				
atrap13p	SAKTQPALTE HEDRLRAYLA ASPGADIRAV ASTLAVTRSV FEHRAVLLGD				
atrap01p	~~~~~	~~~~~	~~~~~	~~LAVTRSL	FEHRAVLLGD
atrap07p	SAKTLPALTE HEDRLRAYLA ASPGADMRAV GSTLALTRSV FEHRAVLLGH				
atrap10p	~~~~~	~~~~~	~~~~~	~AV	ASTLAVTRSV FEHRAVLLGD
atfkb04x	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atty104p	FGYRAVVLAR GEAEELAGRRL ALAGGDPDAG VVTGAVVD..				
atty106p	FGYRAVVLAR GEAEELAGRRL ALAGGDPDAG VVTGAVVD..				
atty101p	FGYRAVVLAR GEAEELAGRRL ALAGGDPDAG VVTGAVVD..				
atty102p	~~~~~ RLR ALAGGDPDAG VVTGAVVD..				
atty100p	FGYRAVVLAR GEAEELAGRRL ALAGGDPDAG VVTGAVLDGG VVVGAAAPGGA				
atnid05b	~~~~~ LLSTR ARFPERRAAVV GESMTELAEA LDAVAEGGPH				
atty105b	LLEHPDEHPA DVGYTLITGR AHFGHRAAVI GESREELLDA LKALAEGREH				
atnid06x	~~~~~	~~~~~	~~~~~	~~~~~	~RSVAEERPE
atdebs01p	~~~~~	~~~~~	~~~~~	~~~~~	~~GLATGNAD
atmon02p	~~~~~	~~~~~	~~~~~	~~~~~	~GALAAGEAS
atmon10p	~~~~~	~~~~~	~~~~~	~~~~~	LGALAAGEAS
atmon04p	~~~~~	~~~~~	~~~~~	~~~~~	~~LAAGETP
atmon07p	~~~~~	~~~~~	~~~~~	~~~~~	~ALAAGEES
atmon11p	~~~~~	~~~~~	~~~~~	~~~~~	~ALAAGEAS
atmon12p	~~~~~	~~~~~	~~~~~	~~~~~	~~LAAGEPS
atmon05b	~~~~~	~~~~~	~~~~~	~~~~~	~SIAAGEAS
atmon01p	~~~~~	~~~~~	~~~~~	~~~~~	~EALAAGDAS
atdebs02p	~~~~~	~~~~~	~~~~~	~~~~~	~~ADGAVV
atdebs06p	~~~~~	~~~~~	~~~~~	~~~~~	~RAVAEGVAA
atave01p	~~~~~	~~~~~	~~~~~	G	LGALAAGEPD
atave07p	~~~~~	~~~~~	~~~~~	G	LGALAAGEPD
atave06p	~~~~~	~~~~~	~~~~~	QA	LTALAAGEPH
atave09p	~~~~~	~~~~~	~~~~~	~~~~~	LTALAAGEPH
atnys01p	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys11p	~~~~~	~~~~~	~~~~~	~~~~~	~~AVATDG
atrif05p	~~~~~	~~~~~	~~~~~	~~~~~	~TAIARGESA
atrif07p	~~~~~	~~~~~	~~~~~	G	LGALARGEAA
atrif08p	~~~~~	~~~~~	~~~~~	~~~~~	AG LAALARGESA
atrif10p	~~~~~	~~~~~	~~~~~	ADSAEEARAG	LGALARGEDA
atrif03p	~~~~~	~~~~~	~~~~~	~~~~~	QDG LQALARGENA
atrif06p	~~~~~	~~~~~	~~~~~	SREEAVTN	LEALARGEDP
atrif04p	~~~~~	~~~~~	~~~~~	~~~~~	~RALARGESA
atrif01p	~~~~~	~~~~~	~~~~~	~~~~~	V VVAGSREEAV
atnys02p	~~~~~	~~~~~	AVVV	GERREDFLRG	LAALSTGAST
atfkb02p	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~GEEV
atave11p	~~~~~	~~~~~	~~~~~	~~~~~	LHA LDALAEAPT
atdebs03p	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~AATA
atnid04p	~~~~~ SLADS AGIGHGLAVG RAALPHRAVL LGDGAAPLDA				LAALASGEVS
atdebs05p	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~ADRRIA
atdebs04p	~~~~~	~~~~~	~~~~~	~~~~~	~~ALAEGRPS

Fig 2c

7/26

atave02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atave05a	~~~~~	~~~~~	~~~~~	~~~~~	QALQAL AAGEPHPAVI
atave04a	~~~~~	~~~~~	~~~~~	~~~~~	QALQAL AAGEPHPAVI
atave08a	~~~~~	~~~~~	~~~~~	~~~~~	QALQAL AAGEPHPAVI
atave03a	~~~~~	~~~~~	~~~~~	~~~~~	QALQAL AAGEPHPAVI
atrap02a	~~~~~	~~~~~	~~~~~	DT	RAVASTLAMT RSVFEYRAVL
atrap11a	~~~~~	~~~~~	~~~~~	~	AVASTLAMT RSMFEHRGVL
atrap08a	MVISARTQSA	LTEHEGLRLRA	YLAASPGVDM	RAVASTLAIT	RSVFEHRAVL
atrap12a	~~~~~	LTEHEGLRLRA	YLAASPGVDM	RAVASTLAMT	RSVFEHRAVL
atrap05a	~~~~~	~~~~~	~~~~~	~~	ASTLAVT RSVFEHRAVL
atrap09a	LVISAKTQSA	LAEYEGLRLRA	YLAASPGVDM	RAVASTLAMT	RSVFEHRAVI
atfkb03a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atfkb07x	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atfkb08x	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnid01a	~~~~~	~~~~~	KHRA	VITGRTRTEL	HTKLHTLDI
atnid03a	~~~~~	TQA	DPQDIAHALA	TTRTHFKHRA	VITGRTRTEL
atnid02a	~~~~~	~~~~~	HALA	TTCTHFKHRA	VITGRTRTEL
atnid00a	~~~~~	~~~~~	~~~~~	~~~~~	SSALAALAAG
atfkb10a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atrap14a	~~~~~	~~~~~	~~~~~	DFLRA	LSKLADGAPW
atmon06a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atmon08a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atmon09a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atepo02a	~~~~~	~~~~~	~~~~~	~~~~~	AALSAVAQGQ
atepo03x	~~~~~	~~~~~	A	VAVTSREGLL	AALSAVAQGQ
atepo08a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atepo00a	~~~~~	~~~~~	~~~~~	SREGLR	AALAAAQGQ
atepo04a	~~~~~	~~~~~	~~~~~	~~~~~	LR GALDAAAQQK
atnid07a	~~~~~	~~~~~	A	AAHDALLAVA	DGRPSDAVVT
atty107a	PRDIAFSLAA	TRAAFDHRAV	LIGSDGAELA	AALDAL...A	EGRDGPAVVR
atsor02a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atsorb1a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atnys09a	~~~~~	~~~~~	~~~~~	~~~~~	AD DPAAAPAWIT
atnys12a	~~~~~	~~~~~	~~~~~	~~~~~	S DGRDPGLVQ
atnys16a	~~~~~	~~~~~	~~~~~	~~~~~	~PD.LPEVAR
atnys17a	~~~~~	~~~~~	~~~~~	~~~~~	APDGITAAAR
atnys03a	~~~~~	~~GYALADGR	ATFEHRAVLL	PDGTela..H	
atnys15a	~~~~~	~~~~~	~~~~~	~~~~~	PDAHE.G..H
atnys07a	~~~~~	~~~~~	~~~~~	~~~~~	IAA DEA.DAAAAT
atnys08a	~~~~~	~~~~~	~~	ALAALAS	GVA.DPAVVS
atnys05a	~~~~~	~~~~~	~~~~~	AVRALTALAA	ADA.DLSAVV
atnys06a	~~~~~	~~~~~	~~~~~	ATRALSLAT	TAASDPSALT
atnys04a	~~~~~	HR	AVVLGTDRAE	ALRALTALAA	GE.TDPAALT
atnys14a	~~~~~	~~~~~	~~~~~	DG LRTGLTAVAE	GTTAPHTAEH
atnys00a	~~~~~	~~~~~	~~~~~	~~~~~	~ADAVEHAR
atnys10a	~~~~~	~~VVAQDRDQ	LIASLGALAA	DRDPDAVEG	
atnys18a	~~~~~	~~~~~	~~~~~	~~~~~	EGGAVTEVAR
atnys13a	~~~~~	~~~~~	~~~~~	~~LLA	GPDGVREAAR
atave10a	~~~~~	~~~~~	~~LHALDALA	GGRPVPGVVE	
atrif02a	~~~~~	~~~~~	R AVVILASDRAQ	LCADLAAFGS	
atmon03a	~~~~~	~~~~~	~~~~~	~~A	LAAGRAHPAL
atavel2a	~~~~~	~~~~~	~~QALDALA	EGRSADGLIE	
atrif09a	~~~~~	~~GRALLGDR	AVVAGTDED	AVAGLRALAR	
atmon00a	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
atty103a	GAGQGAGPGT	AEVAGALAH	RTAFRHRAVV	LGGNRAELLA	LAEG

Fig 2d

8/26

101

150

atave00x AGEVLGVADE ADGG..VVFV FPGQGPQWPG MGRELLDASD VFRESVRACE
 atdebs00p ASVVVRGVA.R PSAP..VVFV FPGQGAQWAG MAGELLGESR VFAAAMDACA
 atepo06p PGAVRGRASG GSAP.KVVFV FPGQGSQWVG MGRKLMAEEP VFRAALEGCD
 atepo07p PGAVRGRASG GSAP.KVVFV FPGQGSQWVG MGRKLMAEEP VFRAALEGCD
 atepo01p PGAVRGRCS PGNP.KVVFV FPGQGSQWVG MGRQLLAEPP VFHAALSACD
 atepo05p PAAARGHAST GSAP.KVVFV FPGQGSQWLG MGQKLLSEEP VFRDALSACD
 atsora1x ~~~~~ ~~~~~~VVFV FAGQGAQWFG MGRALLQREP VFRTTIEQCS
 atfkb01p ~~~~SAVAGV AVEGARTVVFV FPGQGSQWVG MGRELMGASE VFAARMRECA
 atfkb09p ~~~~~~VVFV FPGQGSQWVG MGRELMGCSE VFAARMRECA
 atrap03p D..TV..TGT AVSDPRVVFV FPGQGWQWLG MGSALRDSSV VFAERMAECA
 atrap06p D..TV..TGT AVSDPRVVFV FPGQGWQWLG MGSALRDSSI VFAERMAECA
 atrap04p D..AV..TGT AVTDPRVVFV FPGQGWQWLG MGSALRDSSV VFAERMAECA
 atrap13p D..TV..TGT AVTDPRIVEV FPGQGWQWLG MGSALRDSSV VFAERMAECA
 atrap01p D..SVTGTGT AVSDPRVVFV FPGQGWQWLG MGSALRTSSM VFAERMAECA
 atrap07p DTVTVTGTGT AVSNPRVVFV FPGQGWQWLG MGSALRGSSV VFAERMAECA
 atrap10p ETV....TGT AVSDPRIVEV FPGQGWQWLG MGSALRDSSV VFAERMAECA
 atfkb04x ~~~~~VVTGT ALTAPRTVVFV FPGQGSQWLG MGRELMAES P VFAARMRQCA
 atty104pPET GSGGGGVVLV FPGQGTQWVG MGAGLLGSSE VFAASMRECA
 atty106pPET GSGGGGVVLV FPGQGTQWVG MGAGLLGSSE VFAASMRECA
 atty101pPET GSGGGGVVLV FPGQGTQWVG MGAGLLGSSE VFAASMRECA
 atty102pPET GSGGGGVVLV FPGQGTQWVG MGAGLLGSSE VFAASMRECA
 atty100p GAAGGAGAAAG GAGGGGVVLV FPGQGTQWVG MGAGLLGSSE VFAASMRECA
 atnid05b ..PLAATGT. AGTADRVVFV FPGQGSQWAG MAEGLLERSG AFRSAADSCD
 atty105b HTVVRGDGT. AHPDRRVVFV FPGQGSQWPS MARDLLDRAP AFRETAKACD
 atnid06x PDVVL..GE. AGSDRAPAFV FPGQGAQWAG LGARLLADSP VFRARAEACA
 atdebs01p GAAV...GT. SRAQQRAVFV FPGQGWQWAG MAVDLLDTSP VFAAALRECA
 atmon02p AGVVAG.VAG DVGP GP.VLV FPGQGAQWVG MGAQLLDESA VFAARIAECE
 atmon10p AGVVAG.VAG DVGP GP.VLV FPGQGSQWVG MGAQLLDESP VFAARIAECE
 atmon04p TDVVS G.AAA SSGAGP.VLV FPGQGSQWVG MGAQLLDESP VFAARIAECE
 atmon07p ADVVAG.VAG DVGP GP.VLV FPGQGSQWVG MGAQLLDESP VFAARIAECE
 atmon11p ADVVAG.VAG DVGP GP.VLV FPGQGSQWVG MGAQLLDESP VFAARIAECE
 atmon12p PDVVEGAVQG ASGAGP.VLV FPGQGSQWVG MGAQLLDESP VFAARIAECE
 atmon05b PDVVS GAV.G PTGP GP.VMV FPGQGGQWVG MGARLLDESP VFAARIAECE
 atmon01p PDVVC G.VAG DVGP GP.VLV FPGQGSQWVG MGAQLLGE SA VFAARI DACE
 atdebs02p PGVVTGSASDGGSVFV FPGQGAQWEG MARELL.PVP VFAESIAECD
 atdebs06p PGATTGTASAGGVVFV FPGQGAQWEG MARGLL.SVP VFAESIAECD
 atave01p RRVTTGHAPG GDRGG.VVFV FPGQGGQWAG MGVRLLASSP VFARRMQACE
 atave07p RRVTTGHAPG GDRGG.VVFV FPGQGGQWAG MGVRLLASSP VFARRMQACE
 atave06p PHITTGHTRG GDRGG.VVFV FPGQGGQWAG MGLTLLTSSP VFAEHIDACE
 atave09p PHITTGHTRG SDRGG.VVFV FPGQGGQWAG MGLTLLTSSP VFAEHIDACE
 atnys01p ~~~~~~L. ADVEGRTVFV FPGQGSQWVG MGAQLLDESA VFAERIAECA
 atnys11p PSPVVARGV. ADVEGRTVFV FPGQGSQWVG MGSQLLDESA VFAERIAECA
 atrif05p SGLVTGT... AGMPGKTVWV FPGQGTQWAG MGRELLEASP VFAERIEECA
 atrif07p PGVVTGT... AGKPGKVVWV FPGQGTQWVG MGRELLEASP VFAERIKECA
 atrif08p ADVVTGTVA A SGVPGKLWV FPGQGSQWVG MGRELLEASP VFAARIAECA
 atrif10p PGLVRGRVPA SGLPGKLWV FPGQGTQWVG MGRELLEESP VFAERIAECA
 atrif03p PGVVTGT... AGKPGKVVWV FPGQGSQWMG MGRDLLDSSP VFAARIKECA
 atrif06p AAVVTGR... AGSPGKLWV FPGQGSQWIG MGRELLEASP VFAERVAECA
 atrif04p PGLLSGR..G SGVPGKVVWV FPGQGTQWAG MGRELDSSE VFAARIAECE
 atrif01p TGLRALNTAG SGTPGKVVWV FPGQGTQWAG MGRELLAES P VFAERIAECA
 atnys02p AGLVSG..IA GPDPEGAVFV FPGQGSQWWG MGRELLATSE VFRTAIDDCA
 atfkb02p PGVVRGTADV TDT..RAVFV FPGQGSQWDG MGAELLATEP VFARRLGECA
 atave11p AGVVQGVAGP AA.DGKIAML FGGQGTHWEG MAQELLGSSP VFAQQMSDCA
 atdebs03p DAVVEGV.TE VD.GRNVVFL FPGQGSQWAG MGAELLSSSP VFAGKIRACD
 atnid04p PDVVTG..SA AD.VRRVAFV FPGQGAQWAG MGAELLDSSP VFAAELARCE
 atdebs05p DRTATGQ.GP NS.PRRVAMV FPGQGAQWQG MARDLLRESQ VFADSIRDCE
 atdebs04p ADAVAPVTSA ...PRKPVLV FPGQGAQWVG MARDLLESSE VFAESMSRCA

Fig 2e

9/26

atave02a HSSAPGGTGT GEAAGKTAIFI CSGQGTQRPG MAHGLYHTHP VFAAALNDIC
 atave05a HSSAPGGTGT GEAAGKTAIFI CSGQGTQRPG MAHGLYHTHP VFAAALNDIC
 atave04a HSSAPGGTGT GEAAGKTAIFI CSGQGTQRPG MAHGLYHTHP VFAAALNDIC
 atave08a HSSAPGGTGT GEAAGKTAIFI CSGQGTQRPG MAHGLYHTHP VFAAALNDIC
 atave03a HSSAPGGTGT GEAAGKTAIFI CSGQGTQRPG MAHGLYHTHP VFAAALNDIC
 atrap02a IGDDTVTG.T AATDPRVVVFV FPGQGSQRAG MGEELAAAFP VFARIHQQW
 atrap11a LGDGTVSG.T AVSDPRVVVFV FPGQGSQRAG MGEELAAAFP VFARIHQQW
 atrap08a LGDDTVTG.T AATDPRVVVFV FPGQGSQRAG MGEELAAAFP VFARIHQQW
 atrap12a LGDDTVTG.T AVSDPRAVFV FPGQGSQRAG MGEELAAAFP VFARIHQQW
 atrap05a LGDDTVTG.T TVSDPRVVVFV FPGQGSQRAG MGEELAAAFP VFARIHQQW
 atrap09a VGDDTVSG.T AATDPRVVVFV FPGQGSQRAG MGAELAAAFP VFARIHQQW
 atfkb03a IGTDLITG.T AEPDRRLVWL FSGQGSQRPG MGDELAAAYD VFARTRRDVL
 atfkb07x LGDTLITADP NAGSGPVVFV YSGQSTLHPH TGHLAAATYS VFADAWGEVL
 atfkb08x ~~~~~IGAPP ADQADELVFV YSGQGTQHPA MGEQLAAAFP VFADAWHDAL
 atnid01a Q.....GT AHPHPRLTILL FTGQGAQHRC MGQELYATDP HFAAALDEV
 atnid03a Q.....GT AHPHPRLTILL FTGQGAQHPG MGQELYTTDP HFAAALDEV
 atnid02a Q.....GT AHPHPRLTILL FTGQGAQHPG MGQELYTTDP HFAAALDEIC
 atnid00a QTPRGVRIGS TDADGRLALL FTGQGAQHPG MGQELYTTDP HFAAALDEV
 atfkb10a ~~EAPESSA EPPRSARRFL FDGQGAQRVG MGRELHGRFP VFAAAWDEVS
 atrap14a PGLTTATATA KARRVA..FL FDGQGTQRLG MGKELYDSYP AFARAWDTVS
 atmon06a ALVGPACSQ A RVGGDDVVWL FSGQGSQVLG MGAGLYERFP VFAAFDEV
 atmon08a AVTRSREDGV AASG.AVWL FSGQGSQVLG MGAGLYERFP VFAAFDEV
 atmon09a AVTRSREAAA VAASGDVVWL FSGQGSQVLG MGAGLYERFP VFAAFDEV
 atepo02a TPAGAARCIA SSSRGKLAFL FTGQGAQTPG MGRGLCAAWP AFREAFDRCV
 atepo03x TPPGAARCIA SSSRGKLAFL FTGQGAQTPG MGRGLCAAWP AFREAFDRCV
 atepo08a TPAGAARGRA ASSPGKLAFL FAGQGAQVPG MGRGLWEAWP AFRETDFRCV
 atepo00a TSPGAVRSTA DSSRGKLAFL FTGQGAQTLG MGRGLYDVWS AFREAFDLCV
 atepo04a TPQGAVRGKA VSSRGKLAFL FTGQGAQMPC MGRGLYETWP AFREAFDRCV
 atnid07a GIAR..... RGRDVAFL FSGQGAQRAG AGRELYASFP VFAQALDEVA
 atty107a GVRD..... RDGRM AFL FTGQGSQRAG MAHDLHAAHT FFASALDEVT
 atsor02a ~~~~~ ~~~~~ AVL FTGQGSQRPT MGRALYDAFP VFRDALDTVA
 atsorb1a ~~~~~ ~~~~~ AIL FTGQGSQRPT MGRALYDAFP VFRGALAAA
 atnys09a GTT.R..... AETRLAVL FTGQGAQRLG AGRELAARFP AFATALDAAL
 atnys12a GTA..... GRGRTAFL FTGQGSQRPG MGRELHDRYP VFADALDEV
 atnys16a GAA.TPH.... RT... AFL FSGQGAQRSG MGRELHAAFP VFAAFDEV
 atnys17a AEA.RER.... ST... AFL FSGQGAQRSG MGRELHAAFP VFAAFDEV
 atnys03a GTA.GEG.... PC... AVL FSGQGSQRPG MGRELHARFP VFAAFDEIT
 atnys15a .AA.GRT.... RC... AAL FSGQGAQRLG MGRELHARFP VFARALDTAV
 atnys07a GRV.GAG.... RH... AVL FSGQGAQRLG MGRELAYERFP VFAEALDV
 atnys08a DAV.STG.... GS... AVL FTGQGAQRLG MGRELAYERFP VFAEALDV
 atnys05a GDT.RTG.... RH... AVL FSGQGSQRLG MGRELAYERFP VFAEALDVAI
 atnys06a GTV.TMG.... RC... AVL FSGQGSQRLG MGRELAYERFP VFAEALDV
 atnys04a GTV.RTG.... RT... AFL FSGQGSQRLG MGRVLYERFP AFAEALDTVL
 atnys14a HLQ.GTG.... KR... AVL FSGQGSQRLG MGRELHERHP VFAEAFDSVL
 atnys00a GAA.HQR.... RT... AVL FSGQGSQRPG MGRELAAARFP VFADALDDAL
 atnys10a EAA.GRG.... RT... AVL FTGQGSQRAA MGRELHEVQP EFAAFDAVC
 atnys18a GAV.PTG.... DRGGLAVL FSGQGSQRPG MGRELHARYP VFAAFDETV
 atnys13a AAA.PRT.... P.GRTAFL FSGQGAQHAL MGHDLYQRFP VYADALDTVL
 atave10a GRT.TSG.... ELAVL FAGQGTQRAG MGRELYEAYP VFAQAIDEIC
 atrif02a GVTGTGTP.... VDGKLAVL FTGQGSQWAG MGRELAEFP VFRDAFEAAC
 atmon03a TRAAGPA.... RNGGTAFL FTGQGSQRPG MGRQLYDTFD VFAESLDETC
 atave12a GSVGPRGGHS GRRRGKTAML FAGQGTQRVG MGRQLYAAHP AYADALDQVL
 atrif09a GDRAPGVLTG SAKHGKVYYV FPGQGSQRLG MGRELAYERFP VFATAFDEAC
 atmon00a AETASIVRGE AYTEGRTAFL FSGQGAQRLG MGRELAYERFP VFADALDEAF
 atty103a PGPRVVTGTA PATERRTAFL FSGQGSQRAG SRGGLYRRHP VFARALDEV

GQG

Fig 2f

10/26

	151	200
atave00x	AAFAPYVDWS VEQVLRDSPD A.....	PG LDRVDVVQPT
atdebs00p	RAFEPVTDWT LAQVL.DSPE Q.....	S. RRVEVVQPA
atepo06p	RAIEAEAGWS LLGEL.... SA.....	DEAASQ LGRIDVVQPV
atepo07p	RAIEAEAGWS LLGEL.... SA.....	DEAASQ LGRIDVVQPV
atepo01p	RAIQAEAGWS LLael.... AA.....	DEGSSQ LERIDVVQPV
atepo05p	RAIQAEAGWS LLael.... AA.....	DETTSQ LGRIDVVQPA
atsoralx	SFIQQNLGWS LLDEL.... MT.....	DRESSR LDEIDVSLPA
atfkb01p	AVLEPHTGWD LLDVL....	GEAVV VDRVEVLQPA
atfkb09p	AVLEPYTGWD LLDVL....	GEAVV AERVEVLQPA
atrap03p	AALSEFVDWD L.TVL....	DDPAV VDRVDVVQPA
atrap06p	PALREFVDWD LFTVL....	DDPAV VDRVDVVQPA
atrap04p	AALSEFVDWD LFavl....	DDPAV VDRVDVVQPA
atrap13p	AALREFVDWD LFTVL....	DDPAV VDRVDVVQPA
atrap01p	AALSEFVDWD LFavl....	DDPAV VARVDVVQPA
atrap07p	AALSEFVDWD LFavl....	DDPAV VDRVDVVQPA
atrap10p	AALSEFVDWD LFavl....	DDPAV VDRVDVVQPA
atfkb04x	DALAEHTGRD LIAML....	DDPAV KSRVDVVHPV
atty104p	RALSVHVGWD LLEVSG...	GAG LERVDVVQPV
atty106p	RALSVHVGWD LLEVSG...	GAG LERVDVVQPV
atty101p	RALSVHVEWD LLEVSG...	GAG LERVDVVQPV
atty102p	RALSVHVEWD LLEVSG...	GAG LERVDVVQPV
atty100p	RALSVHVGWD LLEVSG...	GAG LERVDVVQPV
atnid05b	AALRPYLGWS VLSVLRGEPD	APS LDRVDVVQPV
atty105b	AALSVHLDWS VLDVLQEKP	APP LSRVDVVQPV
atnid06x	RALEPHLDWS VLDVLAGAPG	TPP IDRADVQPV
atdebs01p	DALEPHLDFE VIPFLRAEAA RRE	QDAALS TERVDVVQPV
atmon02p	RALSAHVDWS LSAVLRG..D	GSE LSRVEVVQPV
atmon10p	RALSAYVDWS LSAVLRG..D	GSE LSRVEVVQPV
atmon04p	QALSAYVDWS LSDVLRG..D	GSE LSRVEVVQPV
atmon07p	QALSAYVDWS LSAVLRG..D	GSE LSRVEVVQPV
atmon11p	QALSAHVDWS LSDVLRG..D	GSE LSRVEVVQPV
atmon12p	RALSAHVDWS LSAVLRG..D	GSE LSRVEVVQPV
atmon05b	QALSAYVDWS LTDVLRG..D	GSE LARIDVVQPV
atmon01p	QALSPYVDWS LTEVLRG..D	GRE LSRVDVVQPV
atdebs02p	AVLSEVAGFS VSEVLEPRPD	APS LERVDVVQPV
atdebs06p	AVLSEVAGFS ASEVLEQRPD	APS LERVDVVQPV
atave01p	EALAPWVDWS VVDILRRDAG	DAV WERADVQPV
atave07p	EALAPWVDWS VVDILRRDAG	DAV WERADVQPV
atave06p	KALTPWPWS LTDILHRDPD	DPA WQQADVVQPV
atave09p	KALTPWPWS LTDILHRDPD	DPA WQQADVVQPV
atnys01p	AALAEFTDWS LVDVLRGVVG	APS LERVDVVQPA
atnys11p	AALAEFTDWS LVDVLRGVVG	APS LERVDVVQPA
atrif05p	AALQPWIDWS LLDVLRG..E	GE LDRVDVLQPA
atrif07p	AALDQWTDWS LLDVLRG..D	GD LDSVEVLQPA
atrif08p	AALEPWIDWS LLDVLRG..E	GD LDRVDVVQPA
atrif10p	AALEPWIGWS LFDVLRG..D	GD LDRVDVLQPA
atrif03p	AALEQWTDWS LLDVLRG..D	ADL LDRVDVVQPA
atrif06p	AALEPWIDWS LLDVLRG..E	SDI LDRVDVVQPA
átrif04p	TALGRWVDWS LTDVLRG..E	ADL LDRVDVVQPA
atrif01p	AALAPWIDWS LVDVLRG..E	GD LGRVDVLQPA
atnys02p	TALAPYVDWS LHDVLAGEGD	PAL LERVDVVQPA
atfkb02p	EALAPYTGWD LLDVIARRPG	APE LDRVDVVQPA
atave11p	QALEPYLDWS LLDVLRGAPD	APP LQRVDVVQPV
atdebs03p	ESMAPMQDWK VSDVLRQAPG	APG LDRVDVVQPV
atnid04p	AALEPFVDWS LTDVLRGAPG	APG LDRVDVVQPV
atdebs05p	RALAPHVDWS LTDLL...SG	ARP LDRVDVVQPA
atdebs04p	EALSPHTDWK LLDVVRGDGG	PDP HERVDVLQPV

Fig 2g

11/26

atave02a	THLDPHLDHP LLPLLTQ..N DNDN.....	EDAAAL LQQTRYAQPA
atave05a	THLDPHLDHP LLPLLTQNDN DNDN.....	EDAAAL LQQTPYAQPA
atave04a	THLDPHLDHP LLPLLTQDPN TQDT.....	TTLEEAAAL LQQTPYAQPA
atave08a	THLDPHLDHP LLPLLTQDPN TQDT.....	TTLEEAAAL LQQTPYAQPA
atave03a	THLDPHLDHP LLPLLTQDPN TQDT.....	TTLEEAAAL LQQTRYAQPA
atrap02a	DLLDVP.DLD	VNETGYAQPA
atrap11a	DLLDVP.DLD	VNETGYAQPA
atrap08a	DLLDVP.DLE	VNETGYAQPA
atrap12a	DLLDVP.DLE	VNETGYAQPA
atrap05a	GLLDVP.DLE	VNETGYAQPA
atrap09a	DLIDVP.DLE	VNETGYAQPA
atfkb03a	DALQVPAGLD	VHDTGYAQPA
atfkb07x	GHLN..ADQG	P.....AT
atfkb08x	RRLD...DPD	PHDPTRSQHT
atnid01a	EELQR.....C GTQNLREVMF TPD...QPD	LDRTEYTQPA
atnid03a	EELQR.....C GTQNLREVMF TPD...QPD	LDRTEYTQPA
atnid02a	EELQR.....C GTQNLREVMF TPD...QPD	LDRTEYTQPA
atnid00a	EELQR.....C GTQNLREVMF TPD...QPD	LDRTEYTQPA
atfkb10a	DAFGKHLE..HSPTDVFH GEHGD...L	AHDTLYAQVG
atrap14a	AGFDKHL..HSLTDVCF GEGGSTTAGL	VDDTLYAQAG
atmon06a	GLLEGPL...GV EAGGLREVVF RGPR....ER	LDHTVWAQAG
atmon08a	GLLEGPL...GV EAGGLREVVF RGPR....ER	LDHTMWAQAG
atmon09a	GLLEGEL...GV GSGLREVVF WGPR....ER	LDHTVWAQAG
atepo02a	ALFDRELDRPLREVMW AEAGSAESLL	LDQTAFTQPA
atepo03x	ALFDRELDRPLREVMW AEPGSAESLL	LDQTAFTQPA
atepo08a	TLFDRRELHQ..LCEVMW AEPGSSRSSL	LDQTAFTQPA
atepo00a	RLFNQELDRPLREVMW AEPASVDAAL	LDQTAFTQPA
atepo04a	ALFDREIDQPLREVMW AAPGLAQAAR	LDQTAYAQPA
atnid07a	GGFDAHLERPLLQVMF AEPGTADAAL	LDRTAYAQPA
atty107a	DRLDPLLGRPLGALLD ARPGSPEAAL	LDRTEYTQPA
atsor02a	AHLDRDLDRPLRDVLF APDGSEQAAR	LDQTAFTQPA
atsorb1a	AHLDRDLDRPLRDVLF APDGSEQAAR	LDQTAFTQPA
atnys09a	DAFTPHELDRPLREVIW ...GTDAAL	LDRTAYAQPA
atnys12a	ARLDDGPDRPLREVLF AAPDSAEAAAL	LDRTGYAQPA
atnys16a	AVLDAELGSDAD GGVSLREVMW GGG....SEL	LDRTRFTQPA
atnys17a	AVLDAELATGSG GGVSLREVMW GGG....SEL	LDRTRFTQPA
atnys03a	ALLDTHLDRPLREVVW GTD....ADL	LNDTGWAQPA
atnys15a	DLLDAELGGTLREVIW GTD....DAP	LNETGFTQPA
atnys07a	DHLDAALPAQAG ...LREVMW GDD....AEL	LNETGWTQPA
atnys08a	DHLDAALPAQAG ...LREVMW GDD....VEL	LNETGWTQPA
atnys05a	DHLDAALPAQAS ...LREVMW GDD....VEL	LDETGWTQPA
atnys06a	DHLDAALPAQAG ...LREVMW GDD....VEL	LNETGWTQPA
atnys04a	TALDAELGHPLRDIIW GED....AQL	VDRTGYTQPA
atnys14a	ARLDDRRLDTPLRDVVV GTD....EEA	LHATGNTQPA
atnys00a	RALDRHLDGPVREVMW GTD....AAL	LDRTGWTQPA
atnys10a	AVFDPLLDRPLREVVF AEDGSDEAAAL	LDETGWTQPA
atnys18a	ALLDARL...GTSLRDIVW DQDRTR....	LDTRHQTQPA
atnys13a	AQFDTVLDVPLRAALF AAPGTPEAAL	LDQTGFTQPA
atave10a	AEADTARTDPGA PG..LRDVLF APQDSPEGRL	IETGFAQPA
atrif02a	EAVDTHL...RERPLREVVFDDSAL	LDQTMYTQGA
atmon03a	ARLDPLLEQPLKPVLF APADTAQAAV	LHGTGMTQAA
atave12a	AELDGHLDQPLR PLIHASDL..ADVADAADV	LDRTRYAQPA
atrif09a	EQLDVCL..AGR AGHRVRDVVL GE.VPAETGL	LNQTVFTQAG
atmon00a	AALDVHLDRP LREIVLGETD SGGNVSGENV IGEGADHQAL	LDQTAYTQPA
atty103a	AALEPHLHRPLRDLMF AEPGSPEAEP	LDRTEFTQPA

Fig 2h

12/26

201

250

atave00x	LFAVMISLAA	L.WRSQGVEP CAVLGHSLGE	IAAAHVSGGL SLADAARVVT
atdebs00p	LFQAVQTSLAA	L.WRSFGVTP DAVVGHSIGE	IAAAHVCGAA GAADAARAAA
atepo06p	LFAMEVALSA	L.WRSWGVEP EAVVGHSMGE	VAAAHVAGAL SLEDAVAIIC
atepo07p	LFAMEVALSA	L.WRSWGVEP EAVVGHSMGE	VAAAHVAGAL SLEDAVAIIC
atepo01p	LFALAVAFAA	L.WRSWGVP DVVIGHSMGE	VAAAHVAGAL SLEDAVAIIC
atepo05p	LFIAIEVALSA	L.WRSWGVEP DAVVGHSIGE	VAAAHVAGAL SLEDAVAIIC
atsora1x	IISIEIALAA	Q.WRAWGVEP AFVVGHSTGE	IAAAHVAGVL SIEDAMRTIC
atfkbo1p	SWAVAVSLAA	L.WQAHGVVP DAVVGHSQGE	IAAACVAGAL SLEDAARVVA
atfkbo9p	SWAVAVSLAA	L.WQAHGVSP DAVIGHSQGE	IAAACVAGAL SLEDAARIWA
atrap03p	SWAVMVSLAA	V.WQAAGVRP DAVIGHSQGE	IAAACVAGAV SLRDAIRVT
atrap06p	SWRMMVSLAA	V.WQAAGVRP DAVIGHSQGE	IAAACVAGAV SLRDAIRVT
atrap04p	SWAVMVSLAA	V.WQAAGVRP DAVIGHSQGE	IAAACVAGAV SLRDAIRVT
atrap13p	SWAMMVSLAA	V.WQAAGVRP DAVIGHSQGE	IAAACVAGAV SLRDAIRVT
atrap01p	SWAVMVSLAA	V.WQAAGVRP DAVVGHSQGE	IAAACVAGAV SLRDAARVVT
atrap07p	SWAVMVSLAA	V.WQADGVRP DAVIGHSQGE	IAAACVAGAV SLRDAARSVT
atrap10p	SWAVMVSLAA	V.WQAAGVRP DAVIGHSQGE	IAAACVAGAV SMRDAIRVT
atfkbo4x	CWAVMVSLAA	V.WEAAGVRP DAVVGHSQGE	IAAACVAGAI SLEDGARLVA
atty104p	TWAVMVSLAR	Y.WQAMGVDV AAVVGHSQGE	IAAATVAGAL SLEDAAVVA
atty106p	TWAVMVSLAR	Y.WQAMGVDV AAVVGHSQGE	IAAATVAGAL SLEDAAVVA
atty101p	TWAVMVSLAR	Y.WQAMGVDV AAVVGHSQGE	IAAATVAGAL SLEDAAVVA
atty102p	TWAVMVSLAR	Y.WQAMGVDV AAVVGHSQGE	IAAATVAGAL SLEDAAVVA
atty100p	TWAVMVSLAR	Y.WQAMGVDV AAVVGHSQGE	IAAATVAGAL SLEDAAVVA
atnid05b	LFTMMVSLAA	V.WRALGVEP AAVVGHSQGE	IAAAHVAGAL SLDDSARIVA
atty105b	LFTMMVSLAA	C.WRDLGVHP AAVVGHSQGE	IAAACVAGAL SLEDAARIWA
atnid06x	LFTTMVSLAA	L.WEAHGVRP AAVVGHSQGE	VAAACVAGAL SLDDAALVIA
atdebs01p	MFAVMVSLAS	M.WRAHGVEP AAVIGHSQGE	IAAACVAGAL SLDDAARVVA
atmon02p	LWAVMVSLAA	V.WADYGVTP AAVIGHSQGE	MAAACVAGAL SLEDAARIWA
atmon10p	LWAVMVSLAA	V.WADYGVTP AAVIGHSQGE	MAAACVAGAL SLEDAARIWA
atmon04p	LWAVMVSLAA	V.WADYGVTP AAVVGHSQGE	MAAACVAGAL SLEDAARIWA
atmon07p	LWAVMVSLAA	V.WADYGVTP AAVIGHSQGE	MAAACVAGAL SLEDAARVVA
atmon11p	LWAVMVSLAA	V.WADYGITP AAVIGHSQGE	MAAACVAGAL SLEDAARIWA
atmon12p	LWAVMVSLAS	V.WADYGITP AAVIGHSQGE	MAAACVAGAL SLEDAARIWA
atmon05b	LWAVMVALAA	V.WADQGIEP AAVVGHSQGE	IAAACVVGAI SLDEAARIWA
atmon01p	LWAVMVSLAA	V.WADHGVTB AAVVGHSQGE	IAAVVAGAL TLEDGAKIVA
atdebs02p	LFAVMVSLAR	L.WRACGAVP SAVIGHSQGE	IAAAVVAGAL SLEDGMRVVA
atdebs06p	LFSVMVSLAR	L.WGACGVSP SAVIGHSQGE	IAAAVVAGVL SLEDGVRVVA
atave01p	LFSVMVSLAA	L.WRSYGIEP DAVLGHHSQGE	IAAAHVCGAL SLKDAAKTVA
atave07p	LFSVMVSLAA	L.WRSYGIEP DAVLGHHSQGE	IAAAHVCGAL SLKDAAKTVA
atave06p	LFSIMVSLAA	L.WRSYGIEP DAVLGHHSQGE	IAAAHICGAL SLKDAAKTVA
atave09p	LFSIMVSLAA	L.WRSYGIEP DAVLGHHSQGE	IAAAHICGAL SLKDAAKTVA
atnys01p	SFAVMVSLAA	L.WGSRGVLP DAVVGHSQGE	IAAAVSGAL SLRDGARVVA
atnys11p	SFAVMVSLAA	L.WRSRGVLP DAVVGHSQGE	IAAAVSGAL SLRDGARVVA
atrif05p	CFAVMVGLAA	V.WASGVVVP DAVLGHHSQGE	IAAACVSGAL SLEDAAKVVA
atrif07p	CFAVMVGLAA	V.WESAGVRP DAVVGHSQGE	IAAACVSGAL TLDDAAKVVA
atrif08p	CFAVMVGLAA	V.WSSGVVVP DAVLGHHSQGE	IAAACVSGAL SLQDAAKVVA
atrif10p	CFAVMVGLAA	V.WSSAGVVP DAVLGHHSQGE	IAAACVSGAL SLEDAAKVVA
atrif03p	SFAMMVGLAA	V.WTSLGVTP DAVLGHHSQGE	IAAACVSGAL SLDDAAKVVA
atrif06p	SFAMMVGLAA	V.WQSVGVTP DAVVGHSQGE	IAAACVSGAL SLQDAAKVVA
atrif04p	SFAVMVGLAA	V.WASLGVEP EAVVGHSQGE	IAAACVSGAL SLEDAAKVVA
atrif01p	CFAVMVGLAA	V.WESVGVRP DAVVGHSQGE	IAAACVSGAL SLEDAAKVVA
atnys02p	LFAMMVGLSA	L.WRSHGVVP AAVVGHSQGE	IAAACVAGAL SLADAARVVA
atfkb02p	SFAMMVALAE	L.WRAHGVP AAVVGHSQGE	VAAACVAGVL TLDDAAKVVA
atave11p	LFAVMVSLAA	L.WRSYGVHP DAVAGHSQGE	IAAAYVAGAL SLDDAARVTA
atdebs03p	LFAVMVSLAE	L.WRSYGVTP AAVVGHSQGE	IAAAHVAGAL TLEDAAKLVV
atnid04p	TFAVVVALAA	M.WRWLGVEP AAVVGHSQGE	IAAAHVAGVL SLEDAARVVA
atdebs05p	LFAVMVSLAA	L.WRSHGVEP AAVVGHSQGE	IAAAHVAGAL TLEDAAKLVA
atdebs04p	LFSIMVSLAE	L.WRAHGVTB AAVVGHSQGE	IAAAHVAGAL SLEAAAKVVA

Fig 2i

13/26

atave02a	QRATLMQTMP	P..GTM TTLH	TTPHHIT..H	HLTAHE...N	DLAIAAINTP
atave05a	QRATLMQTMP	P..GTM TTLH	TTPHHIT..H	HLTAHE...N	DLAIAAINTP
atave04a	QRATLMQTMP	P..GTM TTLH	TTPHHIT..H	HLTAHE...N	DLAIAAINTP
atave08a	QRATLMQTMP	P..GTM TTLH	TTPHHIT..H	HITAHE...N	DLAIAAINTP
atave03a	QRATLMQTMP	P..GTM TTLH	TTPHHIT..H	HLTAHE...N	DLAIAAINTP
atrap02a	ARARLMQALP	AG.GVMAAVP	VSEDEARAVL	G.....E	GVEIAAVNGP
atrap11a	ARARLMQALP	AG.GVMVAVP	VSEDEARAVL	G.....E	GVEIAAVNGP
atrap08a	ARARLMQALP	AG.GVMVAVP	VSEDEARAVL	G.....E	GVEIAAVNGP
atrap12a	ARARLMQALP	AG.GVMVAVP	VSEDEARAVL	G.....E	GVEIAAVNGP
atrap05a	ARARLMQALP	PG.GVMVAVP	VSEDEARAVL	G.....E	GVEIAAVNGP
atrap09a	ARARLMQALP	AG.GVMVAVP	VSEDEARAVL	G.....E	GVEIAAVNGP
atfk03a	ARARLMQALP	PG.GAMAAVS	ASERDALPLL	C.....E	GVEIAAVNGP
atfk07x	ARSRLMDEL P	TG.GAMVTVL	TSEENRALR	R.....P	GVEIAAVNGP
atfk08x	TRARLMHTLP	PP.GAMVTVL	TSEEEARQAL	R.....P	GVEIAAVFGP
atnid01a	ARAHL MGQLP	HG.GAMLSVQ	AAEHLDQLAHT...H	GVEIAAVNGP
atnid03a	ARAHL MGQLP	HG.GAMLSVQ	AAEHLDQLAHT...H	GVEIAAVNGP
atnid02a	ARAHL MGQLP	HD.GAMLSVQ	AAEHLDQLAHT...H	GVEIAAVNGP
atnid00a	ARAHVMGQLP	HG.GAMLSVQ	AAEHLDQLAHT...H	GVEIAAVNGP
atfk010a	ARGRALRALP	P..GAMTAVE	GSPAEGV..A	FTD.....	.LDIAAVNGP
atrap14a	ARGRALRTTP	P..GAMVALR	AGEEEVR..E	FLSRTG...A	ALDLAAVN SP
atmon06a	ARARLMGGLP	EG.GAMCAVQ	ATPAELAA..	..DVDG...S	AVSVA AVNTP
atmon08a	ARARLMGGLP	EG.GAMCAVQ	ATPAELAA..	..DVDD...S	GVSVA AVNTP
atmon09a	ARARLMGGLP	EG.GAMCAVQ	ATPAELAA..	..DVDG...S	SVSVA AVNTP
atepo02a	ARGRLMQGLS	AG.GAMVSLG	APEAEVA..A	AVAPHA...A	SVSIAAVNGP
atepo03x	ARGRLMQGLS	AG.GAMVSLG	APEAEVA..A	AVAPHA...A	SVSIAAVNGP
atepo08a	ARGRLMQALP	AG.GAMVSIA	APEADVA..A	AVAPHA...A	LVSIAAVNGP
atepo00a	ARGRLMQALP	AG.GAMVSIE	APEADVA..A	AVAPHA...A	SVSIAAVNAP
atepo04a	ARGRLMQALP	AG.GAMVAIA	ASEAEVA..A	SVAPHA...A	TVSIAAVNGP
atnid07a	ARGRLMQRLP	EG.GAMVA VR	ATEQEVAELE	WIAGGR....	AV.VAAFNGP
atty107a	ARGRLMQRLP	PG.GAMVSR	AGEDEVRAL:	.LAGRE...D	AVCVAA VNGP
atsor02a	ARAKLMQALP	QG.GAMVTLR	ASEEEVRDL.	.LQPYD...G	RASLAALNGP
atsorb1a	ARAKLMQALP	QG.GAMVTLQ	ASEQEARDL.	.LQAAE...G	RVSLAA VNGH
atnys09a	ARGRLMQALP	DG.GAMIAVQ	ASEADVAPL.	.LAGHE...D	QVAIAAVNGP
atnys12a	ARGRLMQALP	EG.GAMVALE	AAEDEVLPL.	.LEGLT...D	RVSVA AVN GP
atnys16a	ARASLMDALP	VG.GVMVA VE	AAEAEVVPL.	.L...V...D	GVAIAAVNGP
atnys17a	ARASLMDALP	VG.GVMVA VE	AAEAEVVPL.	.L...V...D	GVAIAAVNGP
atnys03a	ARARLMQALP	RG.GAMLAIR	ATEDEVTPH.	.L...T...D	DVSIAAVNGP
atnys15a	ARAGLMQALP	RG.GAMVA VE	ATEDEVSPL.	.L...T...D	GVAIAAINGP
atnys07a	ARATLMQALP	AG.GAMIAVQ	ATEDEVTPH.	.L...T...D	DVAIAAINGP
atnys08a	ARATLMQALP	TG.GAMIAVQ	ATEDEVTPH.	.L...T...D	EVAIAAVNGP
atnys05a	ARATLMQALP	TG.GAMIAIQ	AAEDEVTQH.	.L...T...D	DVSIAAVNGP
atnys06a	ARATLMQALP	AG.GAMIAVQ	ATEDEVIPH.	.L...T...D	EVAIAAVNGP
atnys04a	ARAVL M QSLP	EG.GAMIAVQ	ATEDEVLPL.	.L...T...D	DVSIAAVN SP
atnys14a	ARAALMQR LP	AG.GAMIAVE	ATEDEVTPL.	.L...T...D	GVSLAA VNGP
atnys00a	ARATLMQALP	AG.GAMA AL E	ATEDEVAPL.	.L...G...A	HLALA AVNGP
atnys10a	ARATLMQALP	TG.GAMIAIQ	ATEDEIAAH.	.L...D...D	TVAIAAVNGP
atnys18a	ARATAMSEL P	PG.GAMVALE	ATEDEVRPL.	.L...T...D	DLAIAAVNAP
atnys13a	ARASLMQQLP	RD.GAMVALE	ATEDEVAPL.	.L...T...D	GVALAA VNGP
atave10a	ARGRLMQGLP	SG.GAMVAIE	ASEDEILPL.	.PDEYA...S	RVAHAA VNGP
atrif02a	ARGRLMQALP	AG.GAMVA VQ	ATEDEVAPL.	.LDGT.....	VCVA AVNGP
atmon03a	ARGRLMQALP	AG.GAMLAVQ	AAEDDV LPL.	.LAGQE...E	RLSLAA VNGP
atave12a	ARGRLMEQLA	PG.GAMVA VR	ASEAEAR..Q	ALDGRE...A	RVSVA AVN GP
atrif09a	ARGRLMQALA	PG.GAMVA VA	ASEAEVAELL	G.....D	GVELAA VNGP
atmon00a	TRGR LMQAVR	AP.GAMA AWQ	ATADEAA..E	OLAGHE...R	HVTVA AVN GP
atty103a	ARGRLMQALP	AG.GAMA AL R	ATAEEIAPL.	.LERRA...G	ELALA AVNGP

*

Arginine

Fig 21

14/26

	301	350
atave00x	RSTVVSGARE AVADLVADLT AAQVRTRMIP . VDVPAHSPL MYAIEERVV.	Load AT
atdebs00p	RSVLLTGSPE PVARRVQELS AEGVRAQVIN . VSMAAHSAQ VDDIAEGMR.	Load AT
atopo06p	RSTVLAGEPA ALSEVLAALT AKGVFWRQV. KVDVASHSPQ VDPLREEL.I	
atopo07p	RSTVLAGEPA ALSEVLAALT AKGVFWRQV. KVDVASHSPQ VDPLREEL.I	
atopo01p	RSTVLSGEPA AIGEVLISSLN AKGVFCRRV. KVDVASHSPQ VDPLREDL.L	
atopo05p	RSTVLAGEPA ALAEVLAGILA AKGVFCRRV. KVDVASHSPQ IDPLRDEL.L	
atsora1x	DSTVLAGEPD ALDALLQALE RKNVFCRRV. AMDVAPHCPQ VDCLRDEL.F	Benzoate-CoA
atfkb01p	ESTVVAGDPA AVERVILARYE AEGVRVRRI. AVDYASHTPH VEAIEAQL.A	
atfkb09p	ESTVVAGDPS AVERVILARYE AEGVRVRRI. AVDYASHTPH VEAIQUEQL.A	
atrap03p	ASTVIAGTPE AVDHVLTAAHE ARGVRVRRI. TVDYASHTPH VELIRDEL.L	
atrap06p	ASTVIAGTPE AVDHVLTAAHE ARGVRVRRI. TVDYASHTPH VELIRDEL.L	
atrap04p	ASTVIAGTPE AVDHVLTAAHE ARGVRVRRI. TVDYASHTPH VELIRDEL.L	
atrap13p	ASTVIAGTPE AVDHVLTAAHE AQGVRVRRI. TVDYASHTPH VELIRDEL.L	
atrap01p	ASTVVAGAPE AVDRVILAVHE ARGVRVRRI. AVDYASHTPH VELIRDEL.L	
atrap07p	ASTVVAGAPE AVDRVILAVHE ARGVRVRRI. AVDYASHTPH VELIRDEL.L	
atrap10p	ASTVIAGTPE AVDHVLTALR QRGAGAAD.. HVDYASHTPH VELIRDEL.L	
atfkb04x	ATTIVSGRPD AVETLIADYE ARGVWVTRL. VVDCPTHTPF VDPLYDEL.Q	C5 unit
atty104p	ASTVVSGDRR AVAGYVAVCQ AEGVQARLIP . VDYASHSRH VEDLKGELE.	
atty106p	ASTVVSGDRR AVAGYVAVCQ AEGVQARLIP . VDYASHSRH VEDLKGELE.	
atty101p	ASTVVSGDRR AVAGYVAVCQ AEGVQARLIP . VDYASHSRH VEDLKGELE.	
atty102p	ASTVVSGDRR AVAGYVAVCQ AEGVQARLIP . VDYASHSRH VEDLKGELE.	
atty100p	ASTVVSGDRR AVAGYVAVCQ AEGVQARLIP . VDYASHSRH VEDLKGELE.	
atnid05b	GSCAVAGDPE ALAELVALLT GEGVHARPIP GVDTAGHSPQ VDALRAHL.L	Etmalonyl-CoA
atty105b	GTAAVAGDVD ALRELLAELT AEGIRAKPIP GVDTAGHSAQ VDGLKEHL.F	Etmalonyl-CoA
atnid06x	ASVTVSGDAL ALEEFGARLS AEGVLRWPLP GVDFAGHSPQ VEEFRAEL.L	MeOmalonylCoA
atdebs01p	RSVVVAGDSD ELDRLVASCT TECIRAKRL. AVDYASHSSH VETIRDALHA	
atmon02p	SSTVISGPPE HVAAVVADAЕ ARGLRARVID . VGYASHGPQ IDQLHDLL.T	
atmon10p	SSTVISGPPE HVAAVVADAЕ ARGLRARVID . VGYASHGPQ IDQLHDLL.T	
atmon04p	SSTVISGPPE HVAAVVAEAE ARGLRARVID . VGYASHGPQ IDQLHDLL.T	
atmon07p	SSTVISGPPE HVAAVVADAЕ ERGLRARVID . VGYASHGPQ IDQLHDLL.T	
atmon11p	SSTVISGPPE HVAAVVADAЕ AQGLRARVID . VRYASHGPQ IDQLHDLL.T	
atmon12p	SSTVISGPPE HVAAVVADAЕ ARGLRARVID . VGYASHGPQ IDQLHDLL.T	
atmon05b	SSTVISGPPE GIAAVVADAQ ERGLRARAVA . SDVAGHGPQ LDAILDQL.T	Et/mal-CoA
atmon01p	SSTVISGPPE QVAAVVADAЕ ARELRGRVID . VDYASHSPQ VDAITDEL.T	
atdebs02p	DAVVVAGDAQ AAREFLEYCE GVGIRARAIP . VDYASHTAH VEPVRDEL.V	
atdebs06p	SSVVVSGDPE ALAELVARCE DEGVRAKTLP . VDYASHSRH VEEIRETI.L	
atave01p	RSTAVSGDAE AVDEVLAYCA GTGVRARRIP . VDYASHCPH VQPLREEL.L	
atave07p	RSTAVSGDAE AVDEVLAYCA GTGVRARRIP . VDYASHCPH VQPLREEL.L	
atave06p	HSTTVSGDTK AVDEVLAHCT DTGLRAKRI.P . VDYASHCPH VQPLHDEL.L	
atave09p	HSTTVSGDTT AVEELLTHCA DTGLRAKRI.P . VDYASHCPH VQPLHDEL.L	
atnys01p	RSVVVAGEPE ALDALHARLT ADDIRARRIA . VDYASHSHQ VEDLHEEL.L	
atnys11p	RSVVVAGEPE ALDALHARLT ADDIRARRIA . VDYASHSHQ VEDLHEEL.L	
atrif05p	ASVVIAGDAE ALTEAVEVLG G.....RRVA . VDYASHTRH VEDIQDTL.A	
atrif07p	ASVVIAGDAQ ALDEALEVLA GDGVRVRQVA . VDYASHTRH VEDIRDTL.A	
atrif08p	SSVVIAGDAE ALDQALEALT GQDIRVRRVA . VDYASHTRH VEDIQEPL.A	
atrif10p	ASVVIAGDAQ ALDETLEALS GAGIRRARRVA . VDYASHTRH VEDIEDTL.A	
atrif03p	SSVVIAGDAQ ALDEALEALA GDGVRVRRVA . VDYASHTRH VEAIAETL.A	
atrif06p	ASVVIAGEAQ ALDEVVDALS GQEVVRRVA . VDYGSHTNQ VEAIEDLL.A	
atrif04p	TSVVIAGDAE ALDEALDALD DQGVRIRRVA . VDYASHTRH VEAARDAL.A	
atrif01p	SSVVIAGDAH ALDATLEILS GEGIRRARRVA . VDYASHTRH VEDIRDTL.A	
atnys02p	SSVVVSGDTD ALDALHTACQ EQGVRARKVS . VDYASHGRH VEAVRDEL.A	
atfkb02p	ASIVVAGAAD AVEELLAATPHARRIA . VDYASHTAH VESIRGAL.L	
atave11p	RSAVVSGEPE AVDALVEELS HEDVPARRLM . VDWASHSPQ VEAIQGRL.L	
atdebs03p	RSVVVSGEPG ALRAFSEDCA AEGIRVRDID . VDYASHSPQ IERVREEL.L	
atnid04p	ETTVVCGAPG AVDSLILGVLQ GEGVRVRRID . VDYASHSRH VEGIRDEL.A	
atdebs05p	RSVVVAGESG PLDELIAECE AEGITARRIP . VDYASHSPQ VESLREEL.L	
atdebs04p	GTSVVAGPTA ELDEFFAEAE AREMKPRRIA . VRYASHSPE VARIEDRL.A	

Fig 2m

15/26

atave02a	TSLVISGTPH	TVQHITTLQ	QQGIKTKTL.	PTNHAFHSPH	TNPILNQLH.
atave05a	TSLVISGTPH	TVQHITTLQ	QQGIKTKTL.	PTNHAFHSPH	TNPILNQLH.
atave04a	TSLVISGTPH	TVQHITTLQ	QQGIKTKTL.	PTKNAFHSPH	TNPILNQLH.
atave08a	TSLVISGTPH	TVQHITTLQ	QQGIKTKTL.	PTNHAFHSPH	TNPILNQLH.
atave03a	TSLVISGTPH	TVQHITTLQ	QQGIKTKTL.	PTNHAFHSPH	TNPILNQLH.
atrap02a	SSVVLSGDEA	AVLQAAEGLGKWTRL.	PTSHAFHSAR	MEPMLEEFR.
atrap11a	SSVVLSGDEA	AVLQAAEGLGKWTRL.	ATSHAFHSAR	MEPMLEEFR.
atrap08a	SSVVLSGDEA	AVLQAAEGLGKWTRL.	ATSHAFHSAR	MEPMLEEFR.
atrap12a	SSVVLSGDEA	AVLQAAEGLGKWTRL.	ATSHAFHSAR	MEPMLEEFR.
atrap05a	SSVVLSGDET	AVLQAAAALGKSTR.	ATSHAFHSAR	MEPMLEEFR.
atrap09a	SSVVLSGDEA	AVLQAAEGLGKWTRL.	ATSHAFHSAR	MEPMLEEFR.
atfk03a	ASIVLSGDED	AVLDVAARLGRFTRL.	RTSHAFHSAR	MEPMLDEFR.
atfk07x	Hsvvlgddeg	PVLDVAQQLGIHRL.	PTRHAGHSAR	MDPLVAPLL. MeOmalonyl-CoA
atfk08x	Hsvvlgded	AVLDVAQR LGIHRL.	PAPHAGHSAH	MEPVAAELL. MeOmalonyl-CoA
atnid01a	THCVLSPRT	ALEETAQQLH	QQGIRHTWL.	KVSHAFHSAL	MDPMLGAFR.
atnid03a	THCVLSPRT	ALEETAQHLR	EQNVRHTWL.	KVSHAFHSAL	MDPMLGAFR.
atnid02a	THCVLSPRT	ALEETAQHLR	EQNVRHTWL.	KVSHAFHSAL	MDPMLGAFR.
atnid00a	THCVLSPRT	ALEETAQHLR	EQNVRHTWL.	KVSHAFHSAL	MDPMLGAFR.
atfk010a	SAVVLTGAPD	DVAAFEREWA	AAGRRAKRL.	DVGHAFHSRH	VDGALDDFR.
atrap14a	EAVVVSGEPE	PVADFEAAWT	ASGREARKL.	KVRHAFHSRH	VEAVLDEFR.
atmon06a	DSTVISGPSD	EVDRAGVWR	ERGRKT KAL.	SVSHAFHSAL	MEPMLAEFT.
atmon08a	DSTVISGPSG	EVDRAGVWR	ERGRKT KAL.	SVSHAFHSAL	MEPMLAEFT.
atmon09a	DSTVISGPSG	EVDRAGVWR	ERGRKT KAL.	SVSHAFHSAL	MEPMLGEFT.
atepo02a	EQVVIAGVEQ	AVQAI AAGFA	ARGARTKRL.	HVSHAFHSPL	MEPMLEEFFG.
atepo03x	EQVVIAGVEQ	AVQAI AAGFA	ARGARTKRL.	HVSHAFHSPL	MEPMLEEFFG. Mal/mmal
atepo08a	EQVVIAGAEK	FVQQIAAAFA	ARGARTKPL.	HVSHAFHSPL	MDPMLEAFR.
atepo00a	DQVVIAGAGQ	PVHAI AAAAMA	ARGARTKAL.	HVSHAFHSPL	MAPMLEAFG.
atepo04a	DAVVIAGAEV	QLALGATFA	ARGIRT KRL.	AVSHAFHSPL	MDPMLEDFQ.
atnid07a	DSLVLSGDEQ	AVVSAAGELA	ARGRRTKRL.	SVSHAFHSPL	MDAMLADFR.
atty107a	RSVVISGAEE	AVAEAAAQLA	GRGRRT RRL.	RVAHAFHSPL	MDGMLAGFR.
atsor02a	LSTVVAGDED	AVVEIARQAE	ALGRKTTR L.	RVSHAFHSPL	MDGMLDDFR.
atsorb1a	LSTVVAGDED	AVLKIARQVE	ALGRKATRL.	RVSHAFHSPL	MDGMLDDFR.
atnys09a	SAVVLSGAEA	TVTALAEQLA	ADGRKTRRL.	RVSHAFHSPL	MEPMLDAFR.
atnys12a	RSVVVAGVEE	DVLLIADLFA	ADGRRTKRL.	RVSHAFHSPL	MDAMLDDFA.
atnys16a	VSVVVGVEA	AVGQVVDQLV	ERGRRV RRL.	AVSHAFHSPL	MDPMLDAFR.
atnys17a	VSVVVGVEA	AVGQVVDQLV	ERGRRV RRL.	AVSHAFHSPL	MDPMLDAFR.
atnys03a	TSVVVAGTEE	AVAAI GARFT	AQDRKTTR L.	RVSHAFHSPL	MDPMLAEFR.
atnys15a	TSLVVSGDET	ATLAVAARLA	EQGRRTTR L.	RVSHAFHSPL	MDPMLAEFR.
atnys07a	NALV VSGVED	AAVEIGARFA	AEGRRTTTR L.	HVSHAFHSPL	MDPMLAEFR.
atnys08a	TSVVVAGEE	ATQTVAQHFA	DQGRRTTAL.	RVSHAFHSPL	MDPMLAEFR.
atnys05a	TSVVVSGAES	AARTVADRLA	ENGRKTTR L.	RVSHAFHSPL	MDPMLAEFR.
atnys06a	TSVVVAGEE	ATQTVAQHFA	DQGRRTTAL.	RVSHAFHSPL	M..MLAEFR.
atnys04a	TSVVVSGYEN	ATLAVARHFA	DQGRRTTR L.	RVSHAFHSPL	MAPMLDDFR.
atnys14a	TAVVLSGAGD	AVTALGQALA	ERGHRTTR L.	RVSHAFHSPL	MDPMLADFR.
atnys00a	TAVVVAGAED	AVRQLTARFA	DRGRRTSRL.	AVSHAFHSPL	MEPMLDAFR.
atnys10a	QSVVI SGDEE	AAETIAATFA	ERGRKT KRL.	RVSHAFHSPL	MDGMLDAFR.
atnys18a	RSVVVAGAED	AALAVRRHF D	DLGRRTTR L.	PVSHAFHSPL	MDPMLDAFR.
atnys13a	RSVVVAGAED	AVRAVADRLA	ADGRRT RRL.	TVSHAFHSPL	MDPMLTDFA.
atave10a	RSIVLSGDED	AVLDLAQQWA	ARGRRTR RL.	RTSHAFHSPL	MDAMLGDFR.
atrif02a	DSVVLSGTEA	AVLAVADEL A	GRGRKTTR RL.	AVSHAFHSPL	MEPMLDDFR.
atmon03a	TAVVVSGEAA	AVGEVEKALR	GRGLKT KRL.	NVSHAFHSPL	IEPMLDDFR.
atave12a	ASVVFSGAED	EVGNMADWFA	ERGRRVKRL.	RTGHAFHSPL	MDPMLEEFQ.
atrif09a	SAVVLSGDAD	AVVAAAARMR	ERGHKTKQL.	KVSHAFHSAR	MAPMLAEFA.
atmon00a	DSVVVSGDRA	TVDELTAAWR	GRGRKAHH L.	KVSHAFHSPL	MDPILDELR.
atty103a	SSVVVSGDEA	AVLELLEQWR	AEGREARR L.	AVSHAFHSPL	MDGMLTQFD.

**** HAFH/YASH/TAGH motif

Fig 2n

16/26

	351	400
atave00x	SGLLPITPRP SRIPFHSSVT G.....GRL.	.DTRELDAAY WYRNMSSTVR
atdebs00p	SALAWFAPGG SEVPFYASLT G.....GAV.	.DTRELVADY WRRSFRLPVR
atepo06p	AALGAIRPRA AAVPMRSTVT G.....GVI.	.AGPELGASY WADNLRQPVR
atepo07p	AALGAIRPRA AAVPMRSTVT G.....GVI.	.AGPELGASY WADNLRQPVR
atepo01p	AALGGLRPGA AAVPMRSTVT G.....AMV.	.AGPELGANY WMNNLRQPVR
atepo05p	AALGELEPRQ ATVSMRSTVT S.....TIM.	.AGPELVASY WADNVRQPVR
atsora1x	DALREVRPNK AQIPIVSEVT G.....TAL.	.DGERFDASH WVRNFGDPAL
atfkb01p	DALEGITSST PSVPWWSTVD S.....GWV.	.TEPFGDAY WYRNLRQPVA
atfkb09p	DVLGDITSSA PSVPWWSTVD G.....GWV.	.TEPAGDDY WYRNLRQPVA
atrap03p	DITSDSSSQA PLVPWLSTVD G.....SWV.	.DSPLDGEY WYRNLREPVG
atrap06p	DITSDSSSQA PVVPWLSTVD G.....SWV.	.DSPLDVEY WYRNLREPVG
atrap04p	GITAGIGSQP PVVPWLSTVD G.....SWV.	.DSPLDGEY WYRNLREPVG
atrap13p	DITSDSSSQT PLVPWLSTVD G.....TWV.	.DSPLDGEY WYRNLREPVG
atrap01p	GVIAGVDSRA PVVPWLSTVD G.....TWV.	.EGPLDAEY WYRNLREPVG
atrap07p	DITAGIGSQA PVVPWLSTVD G.....TWV.	.EGPLDVEY WYRNLREPVG
atrap10p	DITSDSSSQD PLVPWLSTVD G.....TWV.	.DSPLDGEY WYRNLREPVG
atfkb04x	RIVAATTSSRA PEIPWFSTAD E.....RWI.	.DAPLDDEY WFRNMRNPVG
atty104p	RVLSGIRPRS PRVPVCSTVA G.....E..Q	PGEPVFDAGY WFRNLRNRVE
atty106p	RVLSGIRPRS PRVPVCSTVA G.....E..Q	PGEPVFDAGY WFRNLRNRVE
atty101p	RVLSGIRPRS PRVPVCSTVA G.....E..Q	PGEPVFDAGY WFRNLRNRVE
atty102p	RVLSGIRPRS PRVPVCSTVA G.....E..Q	PGEPVFDAGY WFRNLRNRVE
atty100p	RVLSGIRPRS PRVPVCSTVA G.....E..Q	PGEPVFDAGY WFRNLRNRVE
atnid05b	EVLAPVAPRP ADIPFYSTVT G.....GLL.	.DGTELDATY WYRNMRPVE
atty105b	EVLAPVSPRS SDIPFYSTVT G.....APL.	.DTERLDAGY WYRNMRPVE
atnid06x	DLLSGVRPAP SRIPFFSTVT A.....GPC.	.GGDQLDGAY WYRNTREPVE
atdebs01p	ELGEDFHPLP GFVFFFSTVT G.....RWT.	.QPDELDAGY WYRNLRRTVR
atmon02p	ERLADIRPTN TDVAFYSTVT A.....ERL.	TDTTALDTDY WVTNLRQPVR
atmon10p	ERLADIRPAN TDVAFYSTVT A.....ERL.	TDTTALDTDY WVTNLRQPVR
atmon04p	EGLADIRPAN TDVAFYSTVT A.....ERL.	TDTTALDTDY WVTNLRQPVR
atmon07p	DRLADIRPAT TDVAFYSTVT A.....ERL.	TDTTALDTDY WVTNLRQPVR
atmon11p	DRLADIQPTT TDVAFYSTVT A.....ERL.	DDTTALDTAY WVTNLRQPVR
atmon12p	ERLADIRPTT TDVAFYSTVT A.....ERL.	DDTTALDTDY WVTNLRQPVR
atmon05b	EGLAGIRPAA TDVAFYSTVT A.....GHL.	TDTTELDATY WVRNVRRTVR
atmon01p	HTLSGVRPTT APVAFYSAVT G.....TRI.	.DTAGLDTDY WVTNLRRPVR
atdebs02p	QALAGITPRR AEVPFFSTLT G.....D..F	LDGTELDAGY WYRNLRHPVE
atdebs06p	ADLDGISARR AAIPLYSTLH G.....E..R	RD...MGPRY WYDNLRSQVR
atave01p	ELLGDISPQP SGVPFFSTVE G.....TW	LDTTTLDAAY WYRNLHQPV
atave07p	ELLGDISPQP SGVPFFSTVE G.....TW	LDTTTLDAAY WYRNLHQPV
atave06p	HLLGDITPQP STVPFFSTVE G.....TW	LDTTTLDAAY WYRNLHQPV
atave09p	HLLGDITPQP STMPFFSTVV G.....HLWV	Y.TTTLDAAY WYRNLHQPV
atnys01p	EVLAELAPRT SEVPFFSTVT G.....DWL.	.DTARMDAGY WFRNLGRGRVR
atnys11p	EVLAELAPRT SEVPFFSTVT G.....DWL.	.DTARMDAGY WFRNLGRGRVR
atrif05p	ETLAGIDAQA PVVPFYSTVA G.....EWI.	TDAGVVDGGY WYRNLRNQVG
atrif07p	ETLAGITAQA PDVPFRSTVT G.....GWV.	RDADVLDGGY WYRNLRNQVR
atrif08p	EALAGIEAHA PTLPFFSTLT G.....DWI.	REAGVVDGGY WYRNLRNQVG
atrif10p	EALAGIDARA PLVPFLSTLT G.....EWI.	RDEGVVDGGY WYRNLRGRVR
atrif03p	KTLAGIDARV PAIPFYSTVL G.....TWI.	EQA.VVDAGY WYRNLRQQVR
atrif06p	ETLAGIEAQA PKVPFYSTLI G.....DWI.	RDAGIVDGGY WYRNLRNQVG
atrif04p	EMLGGIRAQA PEVPFYSTVT G.....GWV.	EDAGVLDGGY WYRNLRQQVR
atrif01p	ETLAGISAQA PAVPFYSTVT S.....EWV.	RDAGVLDGGY WYRNLRNQVR
atnys02p	RVLAPVDPRA PEVPFYSTVT G.....DRV.	DDAA.FDGAY WYTNLRQTVR
atfkb02p	DALADLTPGA PEIPFFSTVD E.....AWL.	DRPA..DAAY WYDNVRCPVR
atave11p	ELLAPIRART GDVPFYSTVT G.....ERI.	.DGTELDADY WYRNLRQVVR
atdebs03p	ETTGDIAPRP ARVTFHSTVE S.....RSM.	.DGTELDARY WYRNLRETVR
atnid04p	AVLAGLRPRA GRVPFYSTVE A.....EPL.	.DGTALDAGY WYRNLRQRVR
atdebs05p	TELAGISPVS ADVALYSTTT G.....QPI.	.DTATMDTAY WYANLREQVR
atdebs04p	AELGTITAVR GSVPLHSTVT G.....EVI.	.DTSAMDASY WYRNLRPVL

Fig 20

17/26

atave02a	QHTQTLTYHP PHTPLITANT	PPDQLLTPHY WTQQARNTVD
atave05a	QHTQTLTYHP PHTPLITANT	PPDQLLTPHY WTQQARNTVD
atave04a	QHTQTLTYHP PHTPLITANT	PPDQLLTPHY WTQQARNTVD
atave08a	QHTQTLTYHP PHTPLITANT	PPDQLLTPHY WTQQARNTVD
atave03a	QHTQTLTYHP PHTPLITANT	PPDQLLTPHY WTQQARNTVD
atrap02a	AVAEGLTYRT PQVA..... MA	AGDQVMTAEY WVRQVRDTVR
atrap11a	AVAEGLTYRT PQVS..... MA	VGDQVTTAEY WVRQVRDTVR
atrap08a	AVAEGLTYRT PQVS..... MA	AGDQLTTAEY WVRQVRDTVR
atrap12a	AVAEGLTYRT PQVS..... MA	VGDQVTTAEY WVRQVRDTVR
atrap05a	TVAERLTYQT PRLA..... MA	AGDRVTTAEY WVRQVRDTVR
atrap09a	AVAQGLTYHA PGVV..... MA	AGDRVMTAEY WVRQVRDTVR
atfkb03a	DVAERLTYHE PKLP..... MA	AGADCATPEY WVRQVRDTVR
atfkb07x	EAASGLTYHQ PHT..... A	IPEDPTTAAY WARQVRDQVR
atfkb08x	ATTRELRYDR PHT..... A	IPNDPTTAEY WAEQVRNPVL
atnid01a	DTLNLTNYQP PTIPLISNLT GQIADPNHL CTPDY WIDHARHTVR
atnid03a	DTLNLTNYQP PTIPLISNLT GQIADPNHL CTPDY WIDHARHTVR
atnid02a	DTLNLTNYQP PTIPLISNLT GQIADPNHL CTPDY WIDHARHTVR
atnid00a	DTLNLTNYQP PTIPLISNLT GQIADPNHL CTPDY WIDHARHTVR
atfkb10a	GVLESLAFGA ARLPVVSTTT GRDAAGD.LA TPEH WLRHARRPVL
atrap14a	TALESLKFR A PALPVVSTVT GRLIDQDEMG TPEY WLRQVRPVR
atmon06a	EAIRGVKF RQ PSIPLMSNVS GERA.....	GEEITDPEY WARHVRNAVL
atmon08a	EAIREVKFTR PKVSLISNVS GLEA.....	GEEIASPEY WARHVRQTVL
atmon09a	EAIRGVKF RQ PSIPLMSNVS GERA.....	GEEITSPEY WARHVRQTVL
atepo02a	RVAASVTYRR PSVSLVSNLS GKVV.T.DEL. SAPGY WVRHVREAVR
atepo03x	RVAASVTYRR PSVSLVSNLS GKVA.DEL. SAPGY WVRHVREAVR
atepo08a	RVTESVTYRR PSIALVSNLS GKPCT.DEV. SAPGY WVRHAREAVR
atepo00a	RVAESVSYRR PSIVLVSNLS GKACT.DEV. SSPGY WVRHAREVVR
atepo04a	RVAATIAYRA PDRPVVS NVT GHVAG.PEI ATPEY WVRHVRSAVR
atnid07a	AVAESVTYRT PRLPIVSEVT GRPAAPSEL MDPGY WTRQIREPVR
atty107a	EVAAGLRYRE PELTVVSTVT GRPARPGEL TGPDY WVAQVREPVR
atsor02a	RVAQSLTYHP ARIPIISNVT GARATDHEL ASPDY WVRHVRHTVR
atsorb1a	RVAQGLTFHP ARIPIISNVT GARATDQEL ASPET WVRHVRDTVR
atnys09a	AVVEDLTLQP PLLPVVS NLT GKPATVAQL TSADY WVDHVRHavr
atnys12a	AVARGLTYHP PTIPFVSNVS GGLATAEQV RTPDY WVGHVRAAVR
atnys16a	AVAEGLYHQ PRIPVVS NVT GEVAAAEL CAADY WVRHVRATVR
atnys17a	AVAEGLYHQ PRIPVVS NVT GEVAAAEL CAADY WVRHVRATVR
atnys03a	AVAAGLTYHE PRIPVLSNLT GTVAAVADL CSADY WVRHVREAVR
atnys15a	AVAEGLSYGE PQIPVVS NLT GAVADGTLL GTADY WVRHVREAVR
atnys07a	VVAEGLSYAA PSIPVVS NLT GQVATADEL CSAEY WVRHVREAVR
atnys08a	AVAEGLSYAT PSIPVVS NLT GWLATADEL CSAEY WVRHVREAVR
atnys05a	AVAEGLSYAT PTIPVVS NLT GRLATADDL CSAEY WARHVRREAVR
atnys06a	AVAEGLSYAT PTIPVVS NLT GQVATADEL CSAEY WVRHVREAVR
atnys04a	AVVESLTFTA PTTPVVS NLT GELAPAEAL CSADY WVRHVREAVR
atnys14a	TVAEGLEYHP PRIPVVS NLT GDVADAADL CSADY WVRHVRGTVR
atnys00a	DVVSRLTFHQ PSIPLVSNLT GELA.GSEI TSAEY WVRHVRDTVR
atnys10a	IVAEGLTYRA PRIPLVSDLT GRRADDAEV CTAEY WVRHVREAVR
atnys18a	TALAPLTFAE PEIPVVS NLT GLPATAEL ATPHY WVCHVRQAVR
atnys13a	RVAEGLTYHE PRIPVSTILL GAPAGA.EL RTPDY WVRHVREAVR
atave10a	RAAEQVTFS A PRIPVVS NVT GAPLPAETM CTPDY WVEHARSTVR
atrif02a	AVAERLTYRA GSLPVVSTLT GELAA...L DSPDY WVGQVRNAVR
atmon03a	EVARGLTFHA PTIPVVS NLT GRLADAELM ADAEY WVRHVRPVR
atave12a	QVAASLTYS E PAIPMVSTLT GDIVAAGEL SDPEY WVRQVRRTVR
atrif09a	AELAGVTWRE PEIPVVS NVT GRFAEPGEL TEPGY WAEHVRPVR
atmon00a	AVAAGLTFHE PVI P VVS NVT GELVTATATG SGAGQADPEY WARHAREPVR	
atty103a	RVARTLTFAP PTIPLVSTLT GTPVTEETL CTADH WVRQAREPVR

Fig 2p

18/26

	401	450
atave00x	FEPAAARLLLQ QGP.KTFVEM SPHPVLTMGL QELAPDLG..	DTTG
atdebs00p	FDEAIRSALE VGP.GTFVEA SPHPVLAAL QQTL..	DAEG
atepo06p	FAAAAQALLE GGP.ALFIEM SPHPILVPPL DEIQTA..	AE
atepo07p	FAAAAQALLE GGP.ALFIEM SPHPILVPPL DEIQTA..	AE
atepo01p	FAEVVQAQLQ GGH.GLFVEM SPHPILTTSV EEMRRA..	AQ
atepo05p	FAEAVQSLME DGH.GLFVEM SPHPILTTSV EEIRRA..	TK
atsora1x	FSTAIDHLLQ EGF.DIFLEL TPHPLALPAI ESNLRR..	SG
atfkb01p	MDTAVSELDG ... SLFIEC SAHPVLLPAL DQ..
atfkb09p	MDTAIGELDG ... SLFIEC SAHPVLLPAL DQ..
atrap03p	FHPAVGQLQA QGD.TVFVEV SASPVLLQAM DD..
atrap06p	FHPAVGQLQA EGD.TVFVEV SASPVLLQAM DD..
atrap04p	FHPAVSQLQA QGD.AVFVEV SASPVLLQAM DD..
atrap13p	FHPAVSQLQA QGD.TVFVEV SASPVLLQAM DD..
atrap01p	FEPAAAGQLQA QGD.TVFVEV SASPVLLQAM DD..
atrap07p	FDSAVGQLRA EGD.TVFVEV SASPVLLQAM DD..
atrap10p	FHPAVSQLQA QGD.TVFVEV SASPVLMQAM DD..
atfkb04x	FAAAVAAARE PGD.TVFIEV SAHPVLLPAI NG..
atty104p	FSAVVGGILE EGH.RRFIEV SAHPVLVHAI EQT...A..	EAAD
atty106p	FSAVVGGILE EGH.RRFIEV SAHPVLVHAI EQT...A..	EAAD
atty101p	FSAVVGGILE EGH.RRFIEV SAHPVLVHAI EQT...A..	EAAD
atty102p	FSAVVGGILE QGH.RRFIEV SAHPVLVHAI EQT...A..	EAAD
atty100p	FSAVVGGILE EGH.RRFIEV SAHPVLVHAI EQT...A..	EAAD
atnid05b	FERATRALIA DGH.DVFLET SPHPMLAVAL EQT...V..	TDAG
atty105b	FEKAVRALIA DGY.DLFLEC NPHPMLAMSL DET...L..	TDSG
atnid06x	FDATVRALLR AGH.HTFIEV GPHPLLNAAI DEI...A..	ADEG
atdebs01p	FADAVRALAE QGY.RTFLEV SAHPILTAII EEI...G..	DGSG
atmon02p	FADTIEALLA DGY.RLFIEA SAHPVLGLGM EETIEQ..	AD
atmon10p	FADTIEALLA DGY.RLFIEA SAHPVLGLGM EETIEQ..	AD
atmon04p	FADTIEALLA DGY.RLFIEA SAHPVLGLGM EETIEQ..	AD
atmon07p	FADTIDALLA DGY.RLFIEA SAHPVLGLGM EETIEQ..	AD
atmon11p	FADTIEALLA DGY.RLFIEA SPHPVNLGI QETIEQQA..	GAA
atmon12p	FADTIEALLA DGY.RLFIEA SPHPVNLGM EETIER..	AD
atmon05b	FADTIDALLA DGY.RLFIEV SPHPVNLAL EGLIER..	AA
atmon01p	FADAVTALLA DGH.RVFIEA SSHPVLTGL QETFEE..	AG
atdebs02p	FHSAVQALTD QGY.ATFIEV SPHPVLASSV QETL..	DDAE
atdebs06p	FDEAVSAQSP DGH.ATFVEM SPHPVLTAAC QE..	IA
atave01p	FSDAVQALAD DGH.RVFVEV SPHPTLVPAI EDTTEDTA..	ED..
atave07p	FSDAVQALAD DGH.RVFVEV SPHPTLVPAI EDTTEDTA..	ED..
atave06p	FSHAIQTLTD DGH.RAFIEI SPHPTLVPAI EDTTENTT..	EN..
atave09p	FSHAIQTLTD DGH.RPFIEI SPHPTLVPAI EDTTENTT..	EN..
atnys01p	FADAVADILLA AEY.RAFVEV SSHPVLTMAV LD...LI..	EEAG
atnys11p	FADAVADILLA AEY.RAFVEV SSHPVLSMAV QE...AI..	DEAG
atrif05p	FGPAVAELIE QGH.GVFVEV SAHPVLVQPI SE...LT..	D..
atrif07p	FGPAVAELLE QGH.GVFVEV SAHPVLVQPI SE...LT..	D..
atrif08p	FGPAVAELLG LGH.RVFVEV SAHPVLVQAI SA...IA..	DD..
atrif10p	FGPAVEALLA QGH.GVFVEL SAHPVLVQPI TE...LT..	DE..
atrif03p	FGPSVADLAG LGH.TVFVEI SAHPVLVQPL SE...IS..	DD..
atrif06p	FGPAVAELVR QGH.GVFVEV SAHPVLVQPL SE...LS..	DD..
atrif04p	FGPAVAELIE QGH.RVFVEV SAHPVLVQPI NE...LV..	DD..
atrif01p	FGAAATALLE QGH.TVFVEV SAHPVTVQPL SE...LT..	GD..
atnys02p	MEEATRALLA AGH.RVFIEV SPHPVLAAPi QETQEAVA..	EATG
atfkb02p	FGAAAARLAE LGH.RVFVEA SPHPVLTTAL ADTLAG..	H
atave11p	FRDATQALVR AGH.TVFIEA CHPAVAVGV QETLDE.M..	GD
atdebs03p	FADAVTRLAE SGY.DAFIEV SPHPVVVQAV EEAVEE.A..	DGAE
atnid04p	FESALRAMLA DGV.DAFVEC SPHPVLTVPV RQTLED.A..	GA.
atdebs05p	FQDATRQLAE AGF.DAFVEV SPHPVLTVG1 EATLDS.A..	LPAD
atdebs04p	FEQAVRGLVE QGF.DTFVEV SPHPVLLMAV EET...A..	EHAG

Fig 2q

19/26

atave02a	YATTTQTLHQ HG.VTTYIEL GPDNTLTTLT HHNLNPNTPTT TLTLTHPHHH
atave05a	YATTTQTLHQ HG.VTTYIEL GPDNTLTTLT HHNLNPNTPTT TLTLTHPHHH
atave04a	YATTTQTLHQ HG.VTTYIEL GPDNTLTTLT HHNLNPNTPTT TLTLTHPHHH
atave08a	IATTTQTLHQ HG.VTTYIEL GPDNTLTTLT HHNLNPNTPTT TLTLTHPHHH
atave03a	YATTTQTLHQ HG.VTTYIEL GPDNTLTTLT HDNLPNTPTT TLTLTHPHHH
atrap02a	FGEQVASFED A....VFVEL GADRSLARLV DG.....
atrap11a	FGEQVASYED A....VFVEL GADRSLARLV DG.....
atrap08a	FGEQVASYED A....VFVEL GADRSLARLV DG.....
atrap12a	FGEQVASYED A....VFVEL GADRSLARLV DG.....
atrap05a	FGEQVASYED A....VFIEL GADRSLARLV DG.....
atrap09a	FGEQVASYED A....VFVEL GADRSLARLV DG.....
atfk03a	FAEQVAAYDG A....ALLEI GPDRLNLARLV DG.....
atfk07x	FQAHAERYPG A....TFLEI GPNQDLSPVV DG.....
atfk08x	FHAHTQRYPD A....VFVEI GPGQDLSPLV DG.....
atnid01a	FADAVQTAHD QR.TTTLLEI GAHPQLTLL HHTLDNP..
atnid03a	FADAVQTAHH QG.TTTLLEI GPHPTLTTLL HHTLDNP..
atnid02a	FADAVQTAHD QR.TTTLLEI GPHPTLTTLL HHTLDNP..
atnid00a	FADAVQTAHH QG.TTTLLEI GPHPTLTTLL HHTLDNP..
atfk010a	YADAVRELAD LG.VNMFVAV GPSGALASAA SENTGGSAGT YH.....
atrap14a	FQDAVRELAE QG.VGTFVEV GPSGALASAG VECLGGDA.S FH.....
atmon06a	FQPAIAQVAD S..AGVFVEL GPAPVLTTAA QHTLDE.SD. .SQES.....
atmon08a	FQPGIAQVAS T..AGVFVEL GPGPVLTTAA QHTLDDVTDR HGPEP.....
atmon09a	FQPGVAQVAA E..ARAFVEL GPGPVLTAAA QHTLDHITEP EGPEP.....
atepo02a	FADGVKALHE AG.AGTFVEV GPKPTLLGLL PACLPEAEP.
atepo03x	FADGVKALHE AG.AGTFVEV GPKPTLLGLL PACLPEAEP.
atepo08a	FADGVKALHA AG.AGLFVEV GPKPTLLGLV PACLPDARP.
atepo00a	FADGVKALHA AG.AGTFVEV GPKSTLLGLV PACMPDARP.
atepo04a	FGDGAKALHA AG.AATFVEV GPKVLLGLL PACLGEADA.
atnid07a	FAAAVRAARA AG.AATFVEL GDPAVLSGMA RECAAG... DTGT
atty107a	FADAVRTAHR LG.ARFILET GPDGVLCGMA EECLED... DTVA
atsor02a	FLDGVRALHA EG.ARVFLEL GPHAVLSALA QDALGQ... D.EGTS
atsorb1a	FLDGVRTLHA EG.ARAFLEL GPHPVLSALA QDALGH... D.EGPS
atnys09a	FADGIDWLA. RDGTTAFILEL GPDGVLSAMA QDCLDA... A.DAD.
atnys12a	FADGIDWLAT QGDVHTFEL GPDGVLSAMA RESLTD... P.SRT.
atnys16a	FADGVRTLAE RG.ATAFILEI GPDGVLSALA RGVL... P.AEA.
atnys17a	FADGVRTLAE RG.ATAFILEI GPDGVLSALA AACL.F... D.TDA.
atnys03a	FADGVTALTD RG.VTTLVEL GPDGVLSAMA QESL... P.DGA.
atnys15a	FADGIRALTD AG.VGAFLEL GPDGTIAALA QOSA... P.D.A.
atnys07a	FADGVTALEA EG.VRTFLEL GPDGVLAAMA GASL... T.ESS.
atnys08a	FADGITTLEA EG.VRTFLEL GPDGILSALA QQSL... A.GEA.
atnys05a	FADGVSTLEN EG.VTTFLEL GPDGVLSAMA QQSL... T.GDA.
atnys06a	FADGVTALEA EG.VRTFLEL GPDGVLAAMA RETV... A.DDT.
atnys04a	FADGIRTLAD RG.VTTFVEL GDPGVLSAMA QESA... P.EGA.
atnys14a	FADGVRTMAD RG.VHLFLEL GDPAVLSAMA RQCA... P.D.A.
atnys00a	FADGITALAK AG.ADVFILEL GPGGVLSAMA RDTL.G... P.DST.
atnys10a	FADCVRTLRD AG.ATTFILEL GSDGLLTAMA EDTL.G... D.DHD.
atnys18a	FGDGVRALAD RG.VRTFLEL GPDGVLSALV RENL... P.EPG.
atnys13a	FADGVRALHD AG.AGTFVEI GPDGVLTALT QQTLDT... V.EAGA
atave10a	FADGISWLQE QG.VTTCLEI GPDGTL SALA QDSLSA... P....
atrif02a	FSDAVTALGA QG.ASTFILEL GPGGALAAMA LGTLGG... P.EQSC
atmon03a	FHDGLRALSE QGVVR.YLEL GPDGVLATMV QDGLPA... P.AEGE
atave12a	FGDAISRLHT DG.VRTFMEL GPDGTL SALA EECLEATADS HPADD.DTGT
atrif09a	FAEGVAAATE SGG.SLFVEL GPAALTAALV EET.....
atmon00a	FLSGVRLCE RG.VTTFVEL GPDAPLSAMA RDCFPAPADP SRPRP....
atty103a	FLDAMRTLRA DG.IDTFVEL GPDGVLSAMA RDCADDRPDG DTTGAGDGET

Fig 2r

20/26

451

500

atave00x	TADTVIMGTL RRGQGTLDHF LTSLAQLRGH GE..TSATTV LSARLTALSP
atdebs00p	SSAAVV.PTL QRGQGGMRRF LLAAAQAFTG GV..AVDWTA AYDDVGA.EP
atopo06p	QGGAAV.GSL RRGQDERATL LEALGTLWAS G..YPVSWAR LFPAGG....
atopo07p	QGGAAV.GSL RRGQDERATL LEALGTLWAS G..YPVSWAR LFPAGG....
atopo01p	RAGAAV.GSL RRGQDERPAM LEALGTLWAQ G..YPVPWGR LFPAGG....
atopo05p	REGVAV.GSL RRGQDERLSM LEALGALWVH G..QAVGWER LFSAGGAGL.
atsora1x	RRGVVL.PSL RRNEDERGVM LD LGVLYVR G..APVRWDN VYPA...AF.
atfkb01p	.E.RTV.ASL RTDDGGWDRF LAALAQAWTQ GA..DVDWTT LIEPA....
atfkb09p	.E.RTV.ASL RTDDGGWDRF LTALAQAWTQ GA..DVDWTT LIAPA....
atrap03p	.DVVT.V.ATL RRDDGDATRM LTALAQAYVH GV..TVDWPA ILG.T....
atrap06p	.DVVT.V.ATL RRDDGDATRM LTALAQAYVH GV..TVDWPA ILG.T....
atrap04p	.DVVT.V.ATL RRDDGDATRM LTALAQAYVH GV..TVDWPA ILG.T....
atrap13p	.DVVT.V.ATL RRDDGDATRM LTALAQAYVH GV..TVDWPA ILG.T....
atrap01p	.DVVT.V.ATL RRDDGDATRM LTALAQAYVE GV..TVDWPA VLG.T....
atrap07p	.DVVT.V.ATL RRDDGDATRM LTALAQAFVE GV..TVDWPA ILG.T....
atrap10p	.DVVT.V.ATL RRDDGDATRM LTALAQAYVH GV..TVDWRA VLGDV....
atfkb04x	...TTV.GTL RR.GGGADRV LDSLAKAHTV GV..AVDWST VVAATGAADD
atty104p	RSVHAT.GTL RRQDDSPHRL LTSTAEAWAH G..ATLTW..
atty106p	RSVHAT.GTL RRQDDSPHRL LTSTAEAWAH G..ATLTW..
atty101p	RSVHAT.GTL RRQDDSPHRL LTSTAEAWAH G..ATLTW..
atty102p	RSVHAT.GTL RRQDDSPHRL LTSTAEAWAH G..ATLTW..
atty100p	RSVHAT.GTL RRQDDSPHRL LTSTAEAWAH G..ATLTW..
atnid05b	TDAAVL.GTL RRRHGGPRAL ALAVCRAFAH GVE..VDPEA VF....
atty105b	GHGTVM.HTL RRQKGSAKDF GMALCLAYVN GLE..IDGEA LF....
atnid06x	VAATAL.HTL QRGAGGLDRV RNAVGAAFAH GVR..VDWNA LF....
atdebs01p	ADLSAI.HSL RRGDGSLADF GEALSRAFAA GVA..VDWES VH....
atmon02p	MPATVV.PTL RRDHGDTTQL TRAAAHAFTA G..ADVDWRR WF....
atmon10p	IPATVV.PTL RRDHGDTTQL TRAAAHAFTA G..APVDWRR WF....
atmon04p	IPATVV.PTL RRDHGDTTQL TRAAAHAFTA G..ADVDWRR WF....
atmon07p	IPATVV.PTL RRDHGDTTQL TRAAAHAFTA G..ATVDWRR WF....
atmon11p	GTAVTI.PTL RRDHGDTTQL TRAAAHAFTA G..APVDWRR WF....
atmon12p	MPATVV.PTL RRDHGDAAQI TRAAAQAFA G..AEVDWTG WF....
atmon05b	VPATVV.PTL RRDHGDTTQL ARAAAHAFAA G..ADVDWRR WF....
atmon01p	VDAVT.V. PTL RREDGGRARL ARSLAQAFGA G..CAVRWEN WF....
atdebs02p	SDAAVL.GTL ERDAGDADRF LTALADAHTR GVA..VDWEA VL....
atdebs06p	ADAVAI.GSL HRDTAE.EHL IAEALARAHVH GVA..VDWRN VF....
atave01p	..VTAI.GSL RRGNDTRRF LTALAHHTT GIGTPPTWHH HY....
atave07p	..VTAI.GSL RRGNDTRRF LTALAHHTT GIGTPPTWHH HY....
atave06p	..ITAT.GSL RRGNDTHRF LTALAHHTT GIGTPPTWHH HY....
atave09p	..ITAT.GSL RRGNDTHRF LTALAHHTT GIRTPTTWHH HY....
atnys01p	VTAVAT.GTL RRDQGGAGRF LLSAAEVFVR GV..DVDWAG AF....
atnys11p	VPAVAA.GTL RRDQGGTDRF LLSAAEVFVR GV..DVDWAG LF....
atrif05p	..AVVT.GTL RRDDGGVRL LTSMAELFVR GV..PVDWAT MA....
atrif07p	..AVVT.GTL RRDDGGLRRL LTSMAELFVR GV..RVDWAT LV....
atrif08p	TDAVVT.GSL RREEGGLRRL LTSMAELFVR GV..DVDWAT MV....
atrif10p	TAAVVT.GSL RRDDGGLRRL LTSMAELFVR GV..EVDWTS LV....
atrif03p	..AVVT.GSL RRDDGGLRRL LASAAELYVR GV..AVDWTA AV....
atrif06p	..AVVT.GSL RREDGGLRRL LTSMAELYVQ GV..PLDWTA VL....
atrif04p	TEAVVT.GTL RREDGGLRRL LASAAELFVR GV..TVDWSG VL....
atrif01p	...AI.GTL RREDGGLRRL LASMGELFVR GI..DVDWTA MV....
atnys02p	GSAVVL.GSL RRDEGGPRRF LTSLAEATH GA..PVDWTT TF....
atfkb02p	PNTAVT.GTL RRGDGARRF TRSLAELWVR GV..PVSW..
atave11p	LDSLVV.GSL RRGEGLRRF LMSVAELFVG GV..AVEWSG VF....
atdebs03p	.DAVVA.GSL HRDGGDLSAF LRSMATAHVS GV..DIRWDV AL....
atnid04p	.GAVAV.GSL RRDDGGLRRF LTSAAEAQVA GV..PVDWAA LC....
atdebs05p	AGACVV.GTL RRDRGGLADF HTALGEAYAQ GV..EVDWSP AF....
atdebs04p	AEVTCV.PTL RREQSGPHEF LRNLLRAHVH GVGADL....

Fig 2s

21/26

atave02a PQTH..... LLTNL AK..... TT T.. TWHPHY
 atave05a PQTH..... LLTNL AK..... TT T.. TWHPHY
 atave04a PQTH..... LLTNL AK..... TT T.. TWHPHY
 atave08a PQTH..... LLTNL AK..... TT T.. TWHPHY
 atave03a PQTH..... LLTNL AK..... TT T.. TWHPHY
 atrap02a IAML HGD.HE.... AQAAVGAL AHLYVNG.VS V.. EW.SAVL
 atrap11a VAML HGD.HE.... AQAAVGAL AHLYVNG.VS V.. EW.SAVL
 atrap08a VAML HGD.HE.... AQAAVSAL AHLYVNG.VT V.. DW.PALL
 atrap12a VAML HGD.HE.... IQAAIGAL AHLYVNG.VT V.. DW.PALL
 atrap05a VAML HTD.HE.... AQAAISAL AHLYVNG.VT V.. DW.TALL
 atrap09a VAML HGD.HE.... TQAAIGAL AHLYVNG.VT V.. DW.TALL
 atfb03a IPVL HGE.DE.... ARSAMTAL ARLHTGG.VA V.. DW.PEVI
 atfb07x IPTQ TGTPEE.... VQALHTAL ARLHTRG.GV V.. DW.PTVL
 atfb08x IALQ NGTADE.... VHALHTAL ARLFTRG.AT L.. DW.SRIL
 atnid01a TTIPTL HREHPEPETL TTAL.... AT ..LHTTGHTT T.....
 atnid03a TTIPTL HREHPEPETL TTAL.... AT ..LHTTGHTT T.....
 atnid02a TTIPTL HREHPEPETL TTAL.... AT ..LHTTGHTT T.....
 atnid00a TTIPTL HRERPEPETL TQAI.... AA VGVRTDGIDW A.....
 atfb10a AVL RARTGEES.. AALTAV AELHAHG.AP V.. DL.AAVL
 atrap14a AVL RPRSPEDV.. CLMTAI AELHAGG.TA I.. DW.AKVL
 atmon06a VLVASL AGERPEES.. AFVEAM ARLHTAG.VA V.. DW.SVLF
 atmon08a VLVSSL AGERPEES.. AFVEAM ARLHTAG.VA V.. DW.SVLF
 atmon09a VVTASL HPDRPDDV.. AFAHAM ADLHVAG.IS V.. DW.SAYF
 atepo02a TLLASL RAGREEA.. AGVLEAL GRLWAAGGS. V.. SW.PGVF
 atepo03x TLLASL RAGREEA.. AGVLEAL GRLWAAGGS. V.. SW.PGVF
 atepo08a VLLPAS RAGRDEA.. ASALEAL GGFVVVGGS. V.. TW.SGVF
 atepo00a ALLASS RAGRDEP.. ATVLEAL GGLWAVGGL. V.. SW.AGLF
 atepo04a VLPSL RADRSEC.. EVVLAAL GAWYAWGGA. L.. DW.KGVF
 atnid07a AFAAAALRRGR PEC... ATVLPA AATAFVQG.AH V.. DW.AAPY
 atty107a LLPAlHKPGT APHGPA... PGALRAA AAAYGRG.AR V.. DW.AGMH
 atsor02a PCAFL.. PTL RKGRDDA... EAFTAAL GALHAAG.LT P.. DW.SAFF
 atsorb1a PCAFL.. PTL RKGRDDA... EAFTAAL GALHAAG.LT P.. DW.NAFF
 atnys09a AVTL.. PAL RAGRPEE... HTLTTAL AGLHVHG.AT L.. DW.TGCF
 atnys12a AL.L.. PTL RGDRPEE... PALVTAV AAAAHAG.AR V.. DW.SGYF
 atnys16a L.VT.. PTL RKDRDEE... SALLAGL ARLHVAG.VT V.. DW.SAAL
 atnys17a E.VV.. PAL RKGRPEE... HTALTAA AQLHVAG.VD I.. DW.TAVL
 atnys03a A.AV.. PLL RKDRPEE... LSAVTGL ARAHVRG.VT V.. RW.AGLF
 atnys15a V.SV.. PVL RKDRDEE... PAAVAAL ARLHTAG.VP V.. DW.TAFY
 atnys07a L.AV.. PLL RKDRPEE... PAALAAL AQLHIAG.AR V.. DW.PVLF
 atnys08a V.TV.. PVL RKDRGEE... STALTAR AHLHTRG.LI E.. DW.QDFF
 atnys05a A.TV.. PAL RKDRDEE... TSALTAL AHLHTAG.LR V.. DW.AAFF
 atnys06a V.TV.. PVL RRNMPEE... RTLLTAL GRLHTTG.TP I.. DW.AALL
 atnys04a G.TI.. PLL RRDPRPEE... QAVLAAL CHLQVLG.VE A.. DW.SATF
 atnys14a V.VV.. PAL RNRDED... ETLVGAV ARLHVHG.AG P.. RW.DAYF
 atnys00a TDVV.. PAL SKGRPEE... TAFAGAL GRLHTLG.VP V.. DW.PAFY
 atnys10a AELV.. PML RAGRAEE... LAAATAL ARLQVRG.VD V.. DW.AAYL
 atnys18a LVAV.. PVL RKERPEE... TTVLAAL GTLWAHG.AD V.. DW.DAVF
 atnys13a PAVVV.. PLQ RRDRAFD... LALLEGL ATLHTHG.TG P.. SW.PAYF
 atave10a ARAI.. PAL RPDQPEA... RSVMTAL AELFVAG.TA V.. EW.AGVF
 atrif02a ... V.. ATL RKNGAEV... PDVLTA AELHVRG.VG V.. DW.TTVL
 atmon03a EPEPVVAAAL RSKHDEG... RTLLGAV AALHTDG.QP A.. DL.TALF
 atave12a PQENLLIPLL RPDSPPEP... GTLLTGL ARLHTHGAAA V.. NW.PAAL
 atrif09a AEVTCVAAL RDDRPEV... TALITAV AELFVRG.VA V.. DW.PALL
 atmon00a AAIATC RRGRDEV... ATFLRSL AQAYVRG.AD V.. DF.TRAY
 atty103a PDPLLTPLL RRSVPETGDA EHPGGFERAL ATAYAHGV.. PLRL

Fig 2t

22/26

501	550
atave00x	TQQQSLLLVL VRAHTMAVLN DDGN~~~~~ ~~~~~ ~~~~~
atdebs00p	GSLPE.FAPA EEEDEPAESG VDWNAPPVHL RER~~~~~ ~~~~~
atepo06p RRVPLPTYPW QHERCWIEVE PDARR~~~~~ ~~~~~
atepo07p RRVPLPTYPW QHERYWIEDS VHGSKPSLRL RQLRNGATDH
atepo01p RRVPLPTYPW QRERYWIEAP AKSAAGDRRG VRAGGHPLL
atepo05p RRVPLPTYPW QRERYWVDAP TGGAAGGSRF AHAGSHPLL~
atsora1x ESMPLPSTAG ~~~~~ ~~~~~ ~~~~~
atfkb01p P.H RVLDLPTYPF DHKRYWLQPA PVT~~~~~ ~~~~~
atfkb09p P.D RL禄LPTYPF DHKRYWIEAT GAADLTALGL TDTAHP~~~
atrap03p TTT RVLDLPTYAF QHQRYWVE.. .GVDRSAAG. ...GHPLLGV
atrap06p ATT RVLDLPTYAF QHQRYWLR.. .SVDRAAAD. ...GHPLIGT
atrap04p TTA RVLDLPTYAF QHQRYWVK.. .SVDRAAAD. ...GHPLLGA
atrap13p TTT RVLDLPTYAF QHQRYWLK.. .SVDRAAAD. ...GHPLIGT
atrap01p TAA RVLDLPTYAF QHQRYWLK.. .GVDRAAAD. ...GHPLIGT
atrap07p ATT RVPDLPTYAF QHQRFWAE.. .GADRSVAG. ...GHPLLGV
atrap10p PAT RVLDLPTYAF QHQRYWAEAG RSADVSAAGL DAVGHPLLGA
atfkb04x	AASVTAHDTG TAHDLPYAF HHERYWIEPA TGTDASGLGL D~~~~~
atty104p	... DPALPPG HL禄LPTYPF NHHHYWLDTT PTPA.TTTQ SPTDAQNPAD
atty106p	... DPALPPG HL禄LPTYPF NHHHYWLDTT PTPA.TTTQ SPTDAWR...
atty101p	... DPALPPG HL禄LPTYPF NHHHYWLDTT PTPA.TTTQ SPTDAWR...
atty102p	... DPALPPG HL禄LPTYPF NHHHYWAVTS PAVVG.DAA.AGR...
atty100p	... DPALPPG HL禄LPTYPF NHHHYWLDTI DGGGGDDATQ EKESGPLTRE
atnid05b	.G.... PGA RPVELPTYPF QRERYWCCHP. GVRGGDPASL GMDGADHPLL
atty105b	.G.... PDS RRVNPPTYPF QRERYWYHPT SGRRGDITAA GVAEAEHPLL
atnid06x	EG.... TGA RRVPLPSYAF HRDRFWLPTA AARRPATSSS ~~~~~
atdebs01p	LG.... TGA RRVPLPTYPF QRERVWLEPK PVARRSTEVD EV~~~~~
atmon02p PADPAP RTIDLPTYAF QRRRYWLADT VKRDSGWDP A GS~~~~~
atmon10p PADPTP RTVDLPTYAF QHQHYWLERS ASASGAVSGE QSA~~~~~
atmon04p PADPTP RTVDLPTYAF QHQHYWLEEP SGLTGDAADL GMVA~~~~~
atmon07p PADPTP RTIDLPTYAF QRYSYWL.. P VDGVDVRSA GLRRVE~~~
atmon11p PADPTP RTVDLPTYAF QHKHYWVEPP AAVAAVGGGH DPVEA~~~
atmon12p PAVPLP RVVDLPTYAF QRERFWLEGR RGLAGDPAGL GL~~~~~
atmon05b PADPAP RTVDLPTYAF QRQDFWPAPA GGRSGDPAGL GLAASGHP~~
atmon01p PATGT. STVELPTYAF QRRRYWLLEAP TG.TQDAAGL GL~~~~~
atdebs02p GRA GLVDLPGYPF QGKRFWLLPD RTTPRDEL.D GWF~~~~~
atdebs06p PAA PPVALPNYPF EPQRYWLAPE VS...DQLAD SRYRVD~~~
atave01p	THHHHTPHPH THLDLPTYPF QHQHYWLESS QPGAGSGSG~ ~~~~~
atave07p	THHHHTPHNH .HLDLPTYPF QRQHYWLD.A PTGAGDV~~ ~~~~~
atave06p	TQTHPHPNPH THLDLPTYPF QHQHYWLQPP TTTTDLTTG LPTHHPL~~
atave09p	TQTHPHPHNH .HLDLPTYPF QHQHYWLQ~ ~~~~~ ~~~~~
atnys01p	E.... GTGA ARVDLPTYAF QRERYW.NTR TAADRTPADA PMDAEFWA~~
atnys11p	E.... GTGA SRIDLPTYAF QHEHLW.AVP PAPEAVAAAD PDDAAFWTAV
atrif05p PPA .RVELPTYAF DHQHFW..LS PPAVA.DAPA LGLAGADHPL
atrif07p PPA .RVDLPTYAF DHQHFW..LR PAAQA.DAVS LGQAAAEHPL
atrif08p PPA .RVDLPTYAF DHQHYW..LR YVETATDAA~ ~~~~~
atrif10p PPA .RADLPTYAF DHEHYW..LR AADTASDAVS LGLAGADHPL
atrif03p PAA GWVDLPTYAF DRRHFW..LH EAETAEEAEG M~~~~~
atrif06p PRT GRVDLPKYAF DHRHYW..LR PAESATDAAS LGQGAADHPL
atrif04p PPS RRVELPTYAF DHQHYW..LQ MGGSATDAV~ ~~~~~
atrif01p PAA GWVDLPTYAF EHRHYW..LE PAEPASAGDP LLGT~~~
atnys02p	A.... RSAY QPVDLPTYPF QRQDFWPEAR PATPAAGADA SD~~~~~
atfkb02p	P.... FGEL RGVLPLPTYPF RRDRYWVDAE PAGTSGHP~~ ~~~~~
atave11p	GSVGRGVAGG CGVELPTYAF ERERFWLDVE GAPRGSGVSG QW~~~~~
atdebs03p PGA APFALPTYPF QRKRYWLQPA APAAASDELA YRV~~~~~
atnid04p PRA GWVDLPTYAF QRERYWVAPA EPGPAAGAGS AAATGPAAA~
atdebs05p ADA RPVELPVYPF QRQRYWLPIP TGGRARDED DWR~~~~~
atdebs04p	... RPAVAGG RPAELPTYPF EHQRFWPRPH RPADVSALGV R~~~~~

Fig 2u

23/26

atave02a THHDNQPHTH THLDLPTYPF QHHHYWLE.. STQPGAGNV~ ~~~~~
 atave05a THHHNQPHTH THLDLPTYPF QHHHYWLELP SAQTSPGQRR SRRSAPD~~~
 atave04a THHHNQPHTH THLDLPTYPF QHQHYWLE.. STQPGAGSGS GSGSGRAG~~~
 atave08a THHHNQPHTH THLDLPTYPF QHHHYWLE.. STQPGAGNVS AA~~~~~
 atave03a THHHNQPHTH THLDLPTYPF QHHHYWLQ.. .PPGKPSDP SP~~~~~
 atrap02a GDVPVTRV.. .LDLPTYAF QHQRYWLE.. GTDRATAG. .GHPPLLGS
 atrap11a GDVPVTRV.. .LDLPTYAF QHQRYWLE.. GTDRATAG. .GHPPLLGS
 atrap08a GDAPATRV.. .LDLPTYAF QHQRYWLE.. GTDRMAAG. .GHPLLGE
 atrap12a GDAPATRV.. .LDLPTYAF QHQRYWLE.. GTDRATAG. .GHPPLLGS
 atrap05a GDAPATRV.. .LDLPTYAF QHQRYWLE.. GADRAAAG. .GHPLLGP
 atrap09a GDVPVTRV.. .LDLPTYAF QQQRWAEVG RSADVSGAGL DAVGHPLLGA
 atfb03a GAAP.TDL.. .PHLPTYPF ERTRYWLGSR AAGDA~~~~~ ~~~~~
 atfb07x .GSDRAPV.. .ALPTYPF QHKDYWLRT AQVDVTGAGQ EKVAHPLL~~~
 atfb08x GGASRHDP.. .DVPSYAF QRQRYWIE.S APPATADSG.HPVLGT
 atnid01a ..LHTTSPQT HHLDLPTYPF QRDRYWM.EP VRVAQVSGQP GADRLRYRVV
 atnid03a ..LHTTSPQS HHLDLPTYPF QRDRYWM.AV PPRAAVGDLA ~~~~~
 atnid02a ..PHPISHIPA QRVSLPAYPF QRAYWM..P NSAAHIGRSD AEAATRLGLA
 atnid00a ..VLCGASRP RRVELPTYAF QRRTHWAPGL TPNHAPADRP AAEPORAMAV
 atfb10a A.....GG RPVDLVPVYPF QHRSYWLAPA VGGGSPTAVP D~~~~~
 atrap14a S.....GG RAVDLVPVYPF QHOSYWLAPA ..APDATAVA PVVEEEGGEY
 atmon06a AGDRVPGL.. .VELPTYAF QRERFWLSG. RSGGGDAATL GLVAAG~~~
 atmon08a AGDRVPGL.. .VELPTYAF QRERFWLSG. RSGGGDAATL GLVAAGHPL~
 atmon09a PDDPAPRT.. .VDLPTYAF QGRFRWLADI AAPEAVSSTD GEEA~~~~~
 atepo02aPTAG RRVPLPTYPW QRQRYWIEAP AE~~~~~ ~~~~~
 atepo03xPTAG RRVPLPTYPW QRQRYWPDI PDSRR.HAAA DPTQGWFY~~~
 atepo08aPSGG RRVPLPTYPW QRERYWIEAP VDREA.DGTG ~~~~~
 atepo00aPSGG RRVPLPTYPW QRERYWIDTK ADDAA.RGDR RAPGAGHDEV
 atepo04aPDGA RRVALPMYWP QRERHWMDLT PRSAA.PAGI AGRWPLAGVG
 atnid07a ...EG..AGA RRVPLPTYPF QHTRYWL~~~ ~~~~~ ~~~~~
 atty107a A..DGPEGPA RRVELPVHAF RHRRYWLAPG RAA~~~~~ ~~~~~
 atsor02a A....PFAP R~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~
 atsorb1a A....PFAP CKVPLPTYTF ~~~~~ ~~~~~ ~~~~~ ~~~~~ ~~~~~
 atnys09a AGT.....GA RRTDLPTYAF QRQRYWPKAL QSGTA.DLRS VGLGAA~~~
 atnys12a ADH.....GA RRTTLPTYAF QRERYWPDTT AATSA.HTPG SALDAEFW~~~
 atnys16a TGT.....GA RGTDLPTYAF QRERYWPE.. LAAEP.AG.. GGADAADA~~~
 atnys17a AGT.....GG RRIALPTYAF QRERYWPS.. LAAQA.PGDA GG~~~~~
 atnys03a DGT.....GA RRADLPTYPF QHQRFWPT.. AAR.A.AQDV TAAGLGAADH
 atnys15a AGT.....GA HRTDLPTYAF QYERYWPK.. ATY.R.PADA TGL~~~~~
 atnys07a AGV.....GA GRVELPTYAF QRGWFWPV.. GRGVV.GGDV ~~~~~
 atnys08a AGV.....GA GRVELPTYAF QRGWFWPV.. GRGVV.GGDV GAVGLGSAGH
 atnys05a AGS.....GA TRVDLPTYAF QHATYWPT.. GTLPT..AHA AAVGL~~~~~
 atnys06a APT.....GA RPVDLPTYAF QHRFWPS.. GPRDT..ADA AAVGIAGASH
 atnys04a RGL.....DP VRVDLPTYAF QHRFWPA.. ARPAR.PDDV RAAGLGAA~~~
 atnys14a AGR.....GA QWLDLPTYPF QRGRFWPE.. SLPGA.ASAA PAAGQPA~~~
 atnys00a AGT.....GA RRVELPTYAF QHVRHWPT.. PPRPN.GAGP GALGHPLLGS
 atnys10a AGT.....GA RRTDLPTYAF QHAYYWPO.. LPTPA.AALA AAPADQQLW
 atnys18a AGT..RTPQA DPVELPTYAF QRARYWPTLG ARHGD.PADL G~~~~~
 atnys13a EAT.....GG HRTDLPTYAF QRERYWPELG APVAT.APQD PAAW~~~~~
 atavel0a EGTAREVGDG CGVELPTYAF ERERFWLDVE EGSAG.GSGV SGMWGGPLWE
 atrif02aDEPATA VGTVLPTYAF QHQRFWVDVD ET~~~~~ ~~~~~
 atmon03aPADA GQVPLPTYRF QRQRYWRVAP DAAAP.ARAA GLQ~~~~~
 atavel12a PERDR....A RHLDLPTYAF DHHRYWVDTA AGHPG.DLSA AGLGT~~~~~
 atrif09a PPVTGF....VLDLKYAF DQQHYWLQPA AQATD.AASL GQV~~~~~
 atmon00a GAT.....AT RRFPLPTYPF QRERHWPAAG VVGQQ.PETP ELP~~~~~
 atty103a APAPDAASLA VAAELPTYAF QRTHYWLDA AAPAALPAGL DDAGHPLLSA

LPTY motif

Fig2v

24/26

Fig3

Erythromycin D

Erythromycin C

Erythromycin A

Fig 4

26/26

၅၁