Mathematical Definitions

Ofir Shukron

1 P-values

Given a rejection region Γ in the form of $[c, \infty)$, for the null hypothesis H_0 , the p-value of an observed statistics T = t is defined as

$$p - value(t) = min_{\{\Gamma; t \in \Gamma\}} \{ Pr(T \in \Gamma | H_0 \quad true) \}$$

See definition in [3].

2 Type I and Type II errors

A type I and type II errors might occur in statistical hypothesis testing when hypothesizing about the observed null hypothesis. Type I error is accepting the alternative (or rejecting the null) when the null is correct, while type II is accepting the null when the alternative is correct.

3 Quadratic Forms

From Mathai [2](Chapters 1 and 4). For a $p \times 1$ random vector X with mean value $E(X) = \mu$ and $Cov(X) = E[(X - E(X))(X - E(X))'] = \Sigma > 0$, we set

 $Y=\Sigma^{-0.5}X\Rightarrow E(Y)=\Sigma^{-0.5}\mu$ and $Cov(Y)=\Sigma^{-0.5}Cov(X)\Sigma^{-0.5}=I$ $Z=(Y-\Sigma^{-0.5}\mu)\Rightarrow E(Z)=0$ and Cov(Z)=I We can express the quadratic form Q(X)=X'AX with the centralize variable Z and a symmetric positive definite matrix A as

$$Q(X) = X'AX = Y'\Sigma^{0.5}A\Sigma^{0.5}Y = (Z + \Sigma^{-0.5}\mu)'\Sigma^{0.5}A\Sigma^{0.5}(Z + \Sigma^{-0.5}\mu)$$
(1)

As an example, if we set $\mu=0,\ A=I,\ Cov(X)=\Sigma=\sigma I$ and get $Q(X)=X'X,\ Y=\frac{X}{\sqrt{\sigma}},\ Z=(\frac{X}{\sqrt{\sigma}}-0),$ then

$$Q(X) = X'X = \left(\frac{X}{\sqrt{\sigma}}\right)'(\sigma I)\left(\frac{X}{\sqrt{\sigma}}\right) = XX' \tag{2}$$

which is the normal form.

If P is a $p \times p$ orthogonal matrix which diagonalize $\Sigma^{0.5}A\Sigma^{0.5}$, that is

$$P'\Sigma^{0.5}A\Sigma^{0.5}P = diag(\lambda_1, \lambda_2, ..., \lambda_p)$$

with P'P = I, and λ_i are the eigenvalues of $\Sigma^{0.5}A\Sigma^{0.5}$. Then if U = P'Z, we have

$$Z = PU,$$
 $E(U) = 0$ $Cov(U) = I$

Then we can express the quadratic form of X by

$$Q(X) = (U+b)'diag(\lambda_1, \lambda_2, ..., \lambda_p)(U+b)$$
(3)

with $b = (P'\Sigma^{-0.5}\mu)'$

4 Spline interpolation

This section is mainly taken from [1]. The Newton from of the interpolation polynomial is defined using the divided differences as:

$$p_n(x) = \sum_{i=1}^n (x - \tau_1) \cdot \cdot \cdot (x - \tau_n) [\tau_1, \tau_2, ... \tau_n] g$$

where τ_i are the nodes of the function g to be interpolated, in which the polynomial $p_n(x)$ of order n agrees with it i.e $p_n(\tau_i) = g(\tau_i) \quad \forall i = 1..n$

References

- [1] Carl De Boor. A practical guide to splines. *Mathematics of Computation*, 1978.
- [2] Arakaparampil M Mathai and Serge B Provost. Quadratic forms in random variables: theory and applications. M. Dekker New York, 1992.
- [3] John D Storey. A direct approach to false discovery rates. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 64(3):479–498, 2002.