Sei $f(x) = x^2$. Wir beweisen, dass f an jeder Stelle $x \in \mathbb{R}$ stetig ist. Vorbereitende Schritte:

1. Definition von δ :

$$\delta = \min\left(\frac{\epsilon}{2|x|+1}, 1\right)$$

Diese Wahl von δ stellt sicher, dass $\delta > 0$ und $\delta \leq 1$.

2. Positivität von δ :

$$0 < \delta$$

Da $\epsilon > 0$ und 2|x| + 1 > 0, folgt $0 < \frac{\epsilon}{2|x|+1}$. Somit ist $\delta > 0$.

3. Obere Schranke von δ :

$$\delta < 1$$

Dies folgt direkt aus der Definition von δ .

4. Weitere obere Schranke von δ :

$$\delta \leq \frac{\epsilon}{2|x|+1}$$

Auch dies folgt direkt aus der Definition von δ .

5. Beziehung zwischen |y| und |x|:

$$|y| < |x| + \delta$$

Da $|y|=|x+(y-x)|\leq |x|+|y-x|$ und $|y-x|<\delta,$ folgt $|y|<|x|+\delta.$

6. Beziehung zwischen |x+y| und |x|+|y|:

$$|x+y| \le |x| + |y|$$

Dies ist eine Anwendung der Dreiecksungleichung.

7. Nichtnegativität von |x-y|:

$$0 \le |x - y|$$

Da |x-y| der Betrag einer reellen Zahl ist, ist er nicht negativ.

8. Obere Schranke von |x-y|:

$$|x - y| \le \delta$$

Da $|y - x| < \delta$, folgt $|x - y| = |y - x| < \delta$.

9. Beziehung zwischen |x| + |y| und $|x| + (|x| + \delta)$:

$$|x| + |y| < |x| + (|x| + \delta)$$

Da $|y| < |x| + \delta$, folgt $|x| + |y| < |x| + (|x| + \delta)$.

10. Beziehung zwischen $2|x| + \delta$ und 2|x| + 1:

$$2|x| + \delta \le 2|x| + 1$$

Da $\delta \le 1$, folgt $2|x| + \delta \le 2|x| + 1$.

Beweis:

Sei $\epsilon > 0$ gegeben. Wir wählen δ als $\delta = \min\left(\frac{\epsilon}{2|x|+1}, 1\right)$. Nach den obigen vorbereitenden Schritten wissen wir, dass $0 < \delta$. Sei $|y - x| < \delta$. Wir müssen zeigen, dass $|y^2 - x^2| < \epsilon$.

$$\begin{aligned} |y^2-x^2| &= |(y+x)(y-x)| & \text{(Ringregel)} \\ &= |y+x|\cdot|y-x| & \text{(Absorptions regel)} \\ &\leq (|x|+|y|)\cdot|y-x| & \text{(Anwendung von Schritt 6)} \\ &\leq (|x|+(|x|+\delta))\cdot\delta & \text{(Anwendung von Schritt 5 und 8)} \\ &= (2|x|+\delta)\cdot\delta & \text{(Anwendung von Schritt 10)} \\ &\leq (2|x|+1)\cdot\delta & \text{(Anwendung von Schritt 10)} \\ &\leq (2|x|+1)\cdot\frac{\epsilon}{2|x|+1} & \text{(Anwendung von Schritt 4)} \\ &= \epsilon & \text{(Feldregel)} \end{aligned}$$

Daraus folgt, dass $|y^2 - x^2| < \epsilon$.