Lecture 1 - probability worksheet

August 24, 2022

- [1]: import matplotlib.pyplot as plt #import plotting library %matplotlib inline
- [2]: from numpy.random import randint #import random number function from numpy import sqrt #import square root function
- [3]: side = 20 #number of sides on the die
- [4]: num = 4 # number of samples

This code calculates the theoretical expectation value and uncertainty of dice rolls and simulates several sets of rolls and the experimental statistics.

0.1 Theoretical Values

The theoretical expectation values are

$$\langle v \rangle = \sum_{j=\text{outcomes}} v_j P_j,$$

where v_j are the possible outcome value and P_j are the probabilities of those values occurring. Similarly, the theoretical expectation value of v^2 is

$$\langle v^2 \rangle = \sum_{j=\text{outcomes}} v_j^2 P_j,$$

The theoretical uncertainty of a single measurement is defined by

$$(\Delta v)^2 = \langle v^2 \rangle - \langle v \rangle^2.$$

In our case, if the number of sides on the die is n, the values are

$$j = 1, 2, ..., n.$$

$$v_j = j = 1, 2, ..., n.$$

$$P_j = 1/n$$
 for all j

0.2 Experimental values

The experimental values are found using the usual statistical formulas for a set of N measurements v_k . (Note that v_k are not the possible values, but the actual die roll results.)

$$\langle v \rangle \approx \frac{1}{N} \sum_{k=1}^{N} v_k,$$

$$\langle v^2 \rangle \approx \frac{1}{N} \sum_{k=1}^N v_k^2,$$

The experimental variance is then given by

$$(\Delta v)^2 = \langle v^2 \rangle - \langle v \rangle^2.$$

and the uncertainty is the square root of this:

$$\Delta v = \sqrt{\langle v^2 \rangle - \langle v \rangle^2}.$$

We can also calculate the uncertainty of the mean of the measurements, also called the "mean standard error":

m.s.e. =
$$\sqrt{\frac{(\Delta v)^2}{N-1}} = \frac{\Delta v}{\sqrt{N-1}}$$
.

```
[17]: def makesamples(side, num):
          '''Generate num samples of rolling a die with side number of sides.
          Outputs experimental samples, expectation value, variance, and uncertainty.
          samples = randint(low=1, high=side+1, size=num)
          total = 0; totalsq = 0 # initialize variables to hold the sums
          for i in samples:
              total = total + i/num # for calculating <v>
              totalsq = totalsq + i**2/num # for calculating <v**2>
          expectation value = total
          variance = totalsq - total**2
          uncertainty = sqrt(variance)
          print(f"""
      For {num:d} samples of a {side:d}-sided die, the data are {samples}.
      The experimental expectation value is {expectation_value:.3f},
      the variance is {variance:.3f}, and the uncertainty is {uncertainty:.3f}.""")
          #calculate standard error (uncertainty of e.v.)
          error = uncertainty/sqrt(num)
          print("The standard error is {:.3f}.".format(error))
          return total, variance, uncertainty, error
```

[18]: ev4, var4, unc4, err4 = makesamples(side,num=4) # run the experiment 4 times

```
For 4 samples of a 20-sided die, the data are [11 3 3 10].
     The experimental expectation value is 6.750,
     the variance is 14.188, and the uncertainty is 3.767.
     The standard error is 1.883.
[19]: ev8, var8, unc8, err8 = makesamples(side, num=8) # run the experiment 8 times
     For 8 samples of a 20-sided die, the data are [10 19 14 9 14 18 4 6].
     The experimental expectation value is 11.750,
     the variance is 25.688, and the uncertainty is 5.068.
     The standard error is 1.792.
[20]: ev16, var16, unc16, err16 = makesamples(side, num=16) # run the experiment 16_{\square}
       \hookrightarrow times
     For 16 samples of a 20-sided die, the data are \begin{bmatrix} 15 & 7 & 2 & 20 & 16 & 10 & 7 & 2 & 4 & 17 & 15 \end{bmatrix}
     The experimental expectation value is 9.250,
     the variance is 35.312, and the uncertainty is 5.942.
     The standard error is 1.486.
[21]: #Calculate the theoretical values
      total = 0; totalsq = 0;
      for i in range(1,side+1):
          total = total + i/side
          totalsq = totalsq + i*i/side
      ThEv = total
      ThVar = totalsq-total**2
      ThUnc = sqrt(ThVar)
      print(f"Theoretical expectation value = {ThEv:.3f}")
      print(f"Theoretical variance = {ThVar:.3f}")
      print(f"Theoretical uncertainty = {ThUnc:.3f}")
     Theoretical expectation value = 10.500
     Theoretical variance = 33.250
     Theoretical uncertainty = 5.766
[22]: #plot estimated e.v. with standard error as a function of the number of samples,
      #for the data generated above
      #set up some arrays to hold the data
      x = [4,8,16]
      y = [ev4, ev8, ev16]
      dy = [err4, err8, err16]
      plt.errorbar(x,y,dy,ls='None',marker='o')
      plt.plot([1,20],[ThEv, ThEv],'r')
```

```
# Make some labels:
plt.title("Measured expectation value")
plt.xlabel("Number of samples")
plt.ylabel("Expectation value")
plt.legend(('Theory','Data'))
plt.axis([0,20,1,side])
plt.show()
```


[]: