Assessment Schedule - 2005

Scholarship Chemistry (93102)

A nine point marking scale (0-8) was used to assess Questions 1(b), 1(c), 2(a), 3(a)(ii), 3(b), 4(a)(i), 4(a)(ii), 5(b), 6(a), and 6(b). A seven point marking scale (0-6) was used to assess Questions 1(a), 3(a)(i), 4(b), and 5(a).

Evidence Statement

Question	Evidence	4 marks	6 marks	8 marks	
1(a)	 CH₃OH Strongest intermolecular forces. Only molecules which can hydrogen bond (to each other). H bonds possible because (very electronegative) O bonded to H causing large σ+ on H (which is attracted to lone pair ēs on O of neighbouring atoms). CH₃Br and CH₃Cl Cl is more electronegative than Br so CH₃Cl is more polar than CH₃Br so permanent dipoles are stronger. CH₃Br molecule is larger than CH₃Cl so has more ēs so more polarisable, and temporary dipole attractions between molecules will be stronger. CH₃Br has stronger overall forces of attraction between its molecules than CH₃Cl (since boiling point is higher), so temporary dipoles have greater influence on boiling point than permanent dipoles. 		Correctly compares and discusses all THREE intermolecul ar forces.		
1(b)	[Cl] $\frac{3.65}{35.5} = 0.103 \text{ mol L}^{-1}$ $n(\text{AgNO}_3) = \frac{5 \times 10^{-3}}{170} = 2.94 \times 10^{-5}$ $[\text{AgCl}] = \frac{2.94 \times 10^{-5}}{9} = 3.27 \times 10^{-6} \text{ mol L}^{-1}$ 9 $n(\text{Pb}(\text{NO}_3)_2) = \frac{5 \times 10^{-3}}{331} = 1.52 \times 10^{-5}$ $\frac{331}{331}$ $[\text{Pb}(\text{NO}_3)_2] = \frac{1.52 \times 10^{-5}}{1.52 \times 10^{-5}} = 1.68 \times 10^{-6} \text{ mol L}^{-1}$ 9 For AgCl: $K_s = 1.6 \times 10^{-10}$ $Q_s = [\text{Ag}^+][\text{Cl}^-]$ $= 3.27 \times 10^{-6} \times 0.103$ $= 3.37 \times 10^{-7} > K_s(1.6 \times 10^{-10})$ so precipitation will occur For PbCl₂: $K_s = 2.4 \times 10^{-4}$ $Q_s = [\text{Pb}^{2+}][\text{Cl}^-]^2$ $= 1.68 \times 10^{-6} \times (0.103)^2$ $= 1.78 \times 10^{-8} < K_s (2.4 \times 10^{-4})$ so no precipitation ie Pb ²⁺ stays in blood stream, AgCl is precipitated out.	Correct procedure and valid conclusion based on calculation. OR Correct conclusion, but two errors in calculation OR error plus lack of detail / coherence in answer.	Correct conclusion but one error in calculation. OR Calculation correct but conclusion inconclusive.	Correct answer and conclusion with coherent explanation.	
1(b)	$K_{\rm s} = [{\rm Pb}^{2+}] [{\rm Cl}^{-}]^2 = 12.4 \times 10^{-4}$	$4 \times 9 = 1.40 \times 10^{-8}$ is solubility so only a $4 \times 9 = 0.2043$ mol	small amount di		

Scholarship Chemistry (93102) 2005 — page 2 of 9

Question	Evidence	4 marks	6 marks	8 marks
	0.103^{2} Amount added = 1.52×10^{-5} = 1.68×10^{-6} mol L ⁻¹ (3.5 × 10 ⁻⁴) i.e. Pb ²⁺ stays in blood stream, AgCl is precipitated out.	g L ⁻¹) < solubilit	ty so all dissolve	S.

Question	Evidence	4 marks	6 marks	8 marks
1(c)	• need 4 bonded electron clouds, arranged tetrahedrally to minimise repulsion (no lone pairs) • 4 valence e on central atom (32 e in total) • atom from group 4, eg CF4 F: F: See-saw • need 5 e clouds with one non-bonded e pair, • 6 valence e on central atom (34 e in total) • atom from group 6 • 5 e pairs on central atom so 5 e clouds take a trigonal bipyramid arrangement. Only 4 bond e pairs. Lone pair will be in equatorial position to minimise repulsion hence seesaw arrangement. • eg SF4 Square planar • need 6 e pairs on central atom (36e in total) • atom from Group 18 • 6 e clouds arranged octahedrally. Two non-bonding pairs will take positions above and below the plane leaving a square planar arrangement. • eg XeF4 F: F: F: COnly SF4 is non-polar because the other two molecules are symmetrical about the central atom so the dipoles caused by the polar Z-F bond will cancel.	Any TWO of THREE molecules correctly identified reasons for shapes related to electron distribution (discussion may lack coherence or some accuracy) reference to VSEPR polarity correctly identified with reasons a link to the no. of valence e or the group in the periodic table.	TWO molecules correctly identified AND any TWO of • reasons for shapes related to electron distribution (discussion may lack coherence or some accuracy) • reference to VSEPR • polarity of molecules correctly identified with reasons • a link to the no. of valence e or the group in the periodic table.	A logical coherent explanation which includes: THREE correct molecules Reference to VSEPR A link to the no. of valence e or the group in the periodic table Polarity of molecules correctly identified with reasons.

Question	Evidence	4 marks	6 marks	8 marks	
2(a)	$K_{\rm a} = [\underline{{\rm base}}][H_3O^+] [H_3O^+] = \underline{K_{\rm a}} [{\rm acid}] [{\rm base}]$ At pH = 7.4 $[H_3O^+] = 10^{-7.4} = 4 \times 10^{-8}$ For H ₂ CO ₃ /HCO ₃ ⁻ [$\underline{{\rm base}}] = \underline{K_{\rm a}} [\underline{{\rm HCO_3}}] = \underline{4.2 \times 10^{-7}} = 10.5$ [$\underline{{\rm acid}}] [H_3O^+] [H_2CO_3] 4 \times 10^{-8}$ • 10.5 times more HCO ₃ ⁻ than H ₂ CO ₃ • more base available so buffer better at resisting acid. For HCO ₃ ⁻ /CO ₃ ² - [$\underline{{\rm CO_3}}] = \underline{4.8 \times 10^{-11}} = 1.2 \times 10^{-3}$ [$\underline{{\rm HCO_3}}] 4 \times 10^{-8}$ • very little CO ₃ ² - present compared to HCO ₃ ⁻ • limited buffering action. First acid-base conjugate pair is more important because both acid and conjugate base are present in significant amounts. OR pH = p k_a + log [$\underline{{\rm base}}$] [acid] For H ₂ CO ₃ /HCO ₃ ⁻ 7.4 = 6.38 + log [$\underline{{\rm HCO_3}}$] = 1.00 [$\underline{{\rm H2CO_3}}$] [log [$\underline{{\rm HCO_3}}$] = 1.02 so [$\underline{{\rm H2CO_3}}$] = 10.5 [$\underline{{\rm H2CO_3}}$] For HCO ₃ ⁻ /CO ₃ ² - 7.4 = 10.32 + log [$\underline{{\rm CO_3}}$ ² -1 [$\underline{{\rm HCO_3}}$] [log [$\underline{{\rm CO_3}}$ ² -1 = -2.92 so [$\underline{{\rm CO_3}}$ ² -1 [$\underline{{\rm HCO_3}}$ -1] = 1.2 × 10 ⁻³ [$\underline{{\rm HCO_3}}$ -1 [$\underline{{\rm HCO_3}}$ -1] = 1.2 × 10 ⁻³	Correct procedure for calculation of [acid] / [base] ratio AND attempt at discussion.	Calculations are correct and are linked to choice of buffer present OR better resistance to acid.	Answer shows understandin g of buffer systems and correctly links calculations to choice of buffer present AND better resistance to acid.	
2(b)	Possible individual acid reactions: 1. Pt + 2H ⁺ \rightarrow Pt ²⁺ + H ₂ $E_{\text{rxn}} = E_{red} - E_{ox} = 0.00 - 1.18$ V < 0 so not spontaneous 2. 3Pt + 2NO ₃ ⁻ + 8H ⁺ \rightarrow 3Pt ²⁺ + 2NO + 6H ₂ O $E_{\text{rxn}} = E_{red} - E_{ox} = 0.96 - 1.18$ V < 0 so not spontaneous 3. Pt + 4Cl + 2H ⁺ \rightarrow H ₂ + PtCl ₄ ²⁻ $E_{\text{rxn}} = E_{red} - E_{ox} = 0.00 - 0.76$ V < 0 so not spontaneous With aqua regia 4. 2NO ₃ ⁻ + 3Pt + 12Cl ⁻ + 8H ⁺ \rightarrow 3PtCl ₄ ²⁻ + 2NO + 4H ₂ O $E_{\text{rxn}} = E_{red} - E_{ox} = 0.96 - 0.76$ V > 0 so reaction goes Possible to further react to: 5. 2NO ₃ ⁻ + 3PtCl ₄ ²⁻ + 6Cl ⁻ + 8H ⁺ \rightarrow 3PtCl ₆ ²⁻ + 2NO + 4H ₂ O $E_{\text{rxn}} = E_{red} - E_{ox} = 0.96 - 0.68$ V > 0 so reaction goes So acidic solution of nitrate ions and chloride ions will oxidise platinum metal to Pt(IV). Reaction product is PtCl ₆ ²⁻ .	Correct procedure for calculation or discussion but some errors or inadequate discussion. At least THREE equations / reactions are used / discussed.	Discussion includes TWO equations out of 1, 2 and 3, AND eqn. 4, correctly linked to observations.		

Question	Evidence	4 marks	6 marks	8 marks
3(a) (i)	$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$ $n(MnO_4^-) = 0.0200 \times 0.0289 = 5.78 \times 10^{-4}$ $n(Fe^{3+}) = 5 \times 5.78 \times 10^{-4} = 2.89 \times 10^{-3}$ $n(hac) = \frac{1}{69.5} \times 0.1 = 1.44 \times 10^{-3}$ $n(Fe^{3+}) : n(hac) = 2.89 \times 10^{-3} : 1.44 \times 10^{-3} = 2:1$	Correct method with one error (eg 5:1 because miss dilution).	Correct mole ratio obtained from data.	
3(a) (ii) 3(b)	Oxidation Number (N) in hydroxylammonium chloride (hac) is -1 . Oxidation Number increases by 2 ($2e^-$ transferred) so product is N_2O $Fe^{3+} + e^- \rightarrow Fe^{2+}$ $2^+NH_3OHCI^- \rightarrow N_2O^- + H_2O^- + 6H^+ + 4e^- + 2CI^-$ $4Fe^{3+} + 2^+NH_3OHCI^- \rightarrow 4Fe^{2+} + N_2O^- + H_2O^- + 6H^+ + 2CI^-$	Relates change in oxidation number to ratio and identity of product (ox. nos may be incorrect). OR Balanced equation written but no link to data.	Correctly identifies change in oxidation numbers AND writes a balanced equation (error may be introduced by wrong ox. nos).	Correct equation based on 3 (a) calculation.

Question		Evidence	4 marks	6 marks	8 marks	
4(a) (i)	n(acid) unused = 3	6.2 $40 \times 0.03074 = 2.89 \times 10^{-3} \text{ mol}$ $5.78 \times 10^{-3} \times 100 = 5.77 \times 10^{-1} \text{ mol}$ $10 - 5.77 \times 10^{-1} = 0.423 \text{ mol}$	Correct yield. OR Correct method for calculation of <i>K</i> and % yield.	Correct method for calculation of K and $\%$ yield.		
	$n(alcohol)$ equm = $K = \underbrace{[ester][water]}_{[acid][alcohol]}$	ol) = n(ester) = n(H ₂ O) = 0.500 - 0.423 = 0.077 = $\frac{0.423^2}{0.577 \times 0.077}$ = 4.03 (3.95) 0.5 × 100 = 84.4%	OR Correct discussion for (ii).			
4(a) (ii)	(equilibrium shifts So [acid] is less, [both less (yield is OR Let n(ester) = x $K = \frac{x^2}{(0.5 - x)^2} = 4$	so less ester and water formed is to the left) so less alcohol used up. alcohol] is greater, [ester] and [water] lower since less ester formed). 4.03 $x = 0.33$ and % yield = 66% ble because more than starting conc.)				
4(b)	Action Reason		Discussion correct for FOUR out of six correct discussion	Discussion correct for FIVE out of six		
	Dry flask Conc H ₂ SO ₄	Water is a product of reaction so a wet flask will push equilibrium to the left and reduce the yield. Acts as a catalyst for the reaction so speeds up the rate at which equilibrium is achieved. OR Removes water from equilibrium so encourages more product.	with at least TWO links to yield OR purity.	correct with at least THREE links made which show an understanding of BOTH increase yield AND increase in purity.		
	Reflux	Allows heating to speed up the reaction without the loss of gaseous reactants products so yield maximized.				
	Distil	Separates ester from some impurities.				
	Sodium carbonate	Increases purity by removing excess acid.				
	CaCl ₂	Increases purity by removing any excess water.				
	(Distil)	(As above)				

Question	Evidence	4 marks	6 marks	8 marks	
5(a)	CH_3 $H_3C - CH_2 - CH - CH_2OH$ $A = 2 \text{ methyl butan-1-ol}$ $B = 3 \text{ methyl butan-1-ol}$ CH_3 $H_3C - CH_2 - C - CH_3$ OH $C = 2 \text{ methyl butan-2-ol}$ $D = 3 \text{ methyl butan-2-ol}$ CH_3 $H_3C - CH_2 - CH_3$ OH $C = 2 \text{ methyl butan-2-ol}$ $D = 3 \text{ methyl butan-2-ol}$ CH_3 $H_3C - C - CH_2OH$ CH_3 $CH_$	One error permissible from the following: • 1 structure missing • 3 straight chains included • 1 repeat • 1 extra structure	ALL five structures correct with no repeats and no incorrect structures included.		
5(b)	 Treat with Cr₂O₇²⁻/H⁺. No colour change then C (2 methyl butan-2-ol) – 3° alcohol so not oxidized. Isolate products. Test with NaHCO₃(aq). Product of reaction with D (3 methyl butan-2-ol) – 2° alcohol will be a ketone not carboxylic acid so no CO₂ evolved (nor reaction). React original sample with SOCl₂ followed by KOH(alc). Test product with Br₂. If no decolourisation then must be E (dimethyl propanol) (because no H on 3°), and SOCl₂ will form haloalkane with E. For A and B (3 methyl butan-1-ol) elimination to alkene will occur with KOH(alc) but not possible with E. To distinguish A and B – A (2 methyl butan-1-ol) can be identified because of stereocentre. OR Treat with Cr₂O₇²⁻/H⁺. No colour change then C (2 methyl butan-1-ol) –3° alocohol so not oxidized. Isolate products of oxidation. Test with NaHCO₃(aq). Product of reaction with D (3 methyl butan-1-ol) –2° alcohol will be a ketone not carboxylic acid so no CO₂ evolved (nor reaction), React original sample with SOCl₂ followed by KOH (alc). Test product with Br₂. If no decolourisation then must be E (dimethyl propanol) (because no H to eliminate on 3°C) SOCl₂ will form haloalkane. For A and B (3 methyl butan-2-ol) elimination to alkene will occur with KOH (alc) but not possible with E. To distinguish A and B – A (2 methyl butan-1-ol) can be identified because of stereocentre. 	THREE out of five actions correct with TWO adequate explanations.	FOUR out of five actions correct with adequate explanations. OR FIVE out of five but no links.	FIVE correct identifications with reasons.	

Question	Evidence			4 marks	6 marks	8 marks	
6 (a)	HCl with NaOH →	NaCl + H ₂ O			Basic shape (graph points)	'V' shape with	Correct shape with
		Concentration (relative)	Condu- (relativ		linked to most species in	appropriate slopes,	relevant discussion
	Initial	1.00 H ₃ O ⁺ , 1.00 Cl ⁻	5 1	= 6 (6)	solutions.	linked to accurate	for before and after
	½ way to equiv	0.333 H ₃ O ⁺ 0.333 Na ⁺ 0.667 Cl-	1.67 0.333 0.667	= 2.7 (4)	(At least THREE points.)	OR OR	equivalence. NOTE: If dilution not
	Equivalence	0.5 Na ⁺ 0.5 Cl ⁻	0.5 0.5	= 1 (2)		Discussion which includes	considered then a
	2 × equivalence	0.67 Na ⁺ 0.33 Cl ⁻ 0.33 OH ⁻	0.67 0.33 1.00	= 2 (6)		reference to species and relative	symmetrical V will result. Max marks for this is 6.
	Initial conductivity Cl (combined relat H ₃ O ⁺ reacts to beco High conductivity i and concentration re drops. After the equions are present, Na increases at a slower point because the ice	is high because ion ive conductivity = 6 me H ₂ O and Na ⁺ ad on replaced with a leduced by dilution. vivalence point when the and OH ⁻ ions are ser rate than the decree	s present a 6). As reac Ided to the ow conduct Hence cor re only Cl' added. Co ease before	tion proceeds solution. etivity ion aductivity and Na ⁺ nductivity e equivalence		conductance.	
6(b)	Starts close to 0 bec Equivalence point t the same relative co- equivalence point g conductivity only a	he same as for HCl onductivity (CH ₃ CO raph is the same as	as species O same a for (a) sind	present have s Cl ⁻). After	Graph and reasoning correct either before or after equivalence	One error in graph or reasoning, either before or after	Explanation and correct graph, before and after equivalence
	conductivities of the	ph indicates difference two titrations.	nce in the		point OR Graph correct but insufficient or incorrect reasons.	equivalence point.	point.

Judgement Statement

An aggregate mark of 94 from six questions was used in Chemistry. In 2005, candidates who achieved 69 marks or better were awarded outstanding scholarship and candidates who achieved 46-68 marks were awarded scholarship.