

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie

WYDZIAŁ ZARZĄDZANIA

Przetwarzanie i Analiza Danych w Pythonie

Autor: Wiktoria Szczypka Tytuł ćwiczenia: Sprawozdanie Z eksperymentów symulacyjnych

1. Cel ćwiczenia:

Tematem tego ćwiczenia są eksperymenty symulacyjne. Jego celem jest stworzenie modeli i wybranie najlepszego dla wygenerwoanych danych z zaburzeniami.

2. Propozycja rozwiązania zadania:

Do rozwiązania powyższego zadania zostanie wykorzystana biblioteka numpy w celu generacji danych. Z wygenerowanych danych zostanie losowo wybrane 30 danych, a następnie w celu dopasowania dla nich odpowiednich modeli zostanie użyta biblioteka sklearn. Powstałe modele zostaną porównane przy pomocy błędów MAE, MSE, RMSE oraz współczynnika determinacji R². Do wizualizacji otrzymanych wyników posłuży biblioteka matplotlib.

3. Opis przebiegu ćwiczenia:

- 3.1. Wygenerowanie danych z zaburzeniami.
- 3.2. Stworzenie i weryfikacja trzech modeli.
- 3.3. Wybór najlepszego z modeli.

4. Przeprowadzenie badania:

4.1. Generacja danych

W celu niezmienności wyników ziarno generatora zostało ustawione na 19. X został wygenerowany jako 200 danych z rozkładu jednostajnego od 0 do 20, następnie zostały one posortowane. Zdefiniowano również funkcję, która przyjmuje dwa parametry x oraz n (długość x). Funkcja ta przypisuje każdemu x zdefiniowaną wartość. Do zaburzenia tych danych użyto funkcji cosinus, modelu hiperbolicznego oraz wielomianów, a także rozkładów: jednostajnego, normalnego, F oraz chikwadrat.

Poniżej przedstawiono wygenerowane dane:

4.2. Wybranie losowo 30 danych

Za pomocą funckcji RandomState oraz shuffle wybrano 30 losowych danych, dla których tworzone będą modele.

```
rng = np.random.RandomState(0)
rng.shuffle(x)
x_wybr = np.sort(x[:30])
y_wybr = f(x_wybr, len(x_wybr))
x=np.sort(x)
```

Poniżej wybrane dane:

Można zauważyć, iż dane zostały wybrane losowo i dość dobrze obrazują rzeczywiste pomiary.

4.3. Stworzenie i weryfikacja modeli

Pierwszy przedstawiany model to regresja liniowa. Został stworzony przy pomocji funkcji LinearRegression.

```
X = x[:, np.newaxis]
X_wybr = x_wybr[:, np.newaxis]
reg = linear_model.LinearRegression()
reg.fit(X_wybr,y_wybr)
y_pred1 =reg.predict(X_wybr)
```

Poniżej dopasowana do wybranych danych linia regresji.

Poniżej przedstawione obliczenia w celu przedstawienia współczynników, błędów oraz współczynnika determinacji.

```
# Wspolczynniki
print("Wspolczynniki:\n", reg.coef_, reg.intercept_)
# Bledy
print("MAE: %.2f" % mean_absolute_error(y_wybr,y_pred1))
print("MSE: %.2f" % mean_squared_error(y_wybr,y_pred1))
print("RMSE: %.2f" %np.sqrt(mean_squared_error(y_wybr,y_pred1)))
# R^2
print("Wspolczynnik determinacji: %.2f" % r2_score(y_wybr, y_pred1))
Wspolczynniki:
  [3924.18554556] -9785.304891654443
MAE: 5908.24
MSE: 64048417.82
RMSE: 8003.03
Wspolczynnik determinacji: 0.90
```

Na pierwszy rzut oka prosta y = -9785.3 + 3924.19x dobrze opisuje wybrane dane. Współczynnik determinacji, który wynosi 0.9 potwierdza to - wskazuje, iż model dobrze opisuje zmienność danych.

Drugim stworzonym modelem będzie dopasowany wielomian 3 stopnia. Został on stworzony za pomocą funkcji Pipeline oraz PolynomialFeatures.

Poniżej wizualizacja.

Można przypuszczać, iż model ten w lepszym stopniu wyjaśnia dane lepiej jest do nich dopasowany niż prosta regresji liniowej. Poniżej przedstawione obliczenia w celu przedstawienia współczynników, błędów oraz współczynnika determinacji.

```
print("Wspołczynniki:", model.named_steps['mlinear'].coef_)
# Bledy
print("MAE: %.2f" % mean_absolute_error(y_wybr,y_pred2))
print("MSE: %.2f" % mean_squared_error(y_wybr,y_pred2))
print("RMSE: %.2f" %np.sqrt(mean_squared_error(y_wybr,y_pred2)))
# R^2
print("Wspolczynnik determinacji: %.2f" % r2_score(y_wybr, y_pred2))

Wspołczynniki: [ 0. -1433.30752031 486.29669981 -11.93576434]
MAE: 3842.81
MSE: 48238052.17
RMSE: 6945.36
Wspolczynnik determinacji: 0.93
```

Można teraz z pewnością stwierdzić, iż model y = $-1433.31x + 486.3x^2 - 11.94x^3$ w lepszym stopniu wyjaśnia dane. Zarówno wartości błędów są mniejsze jak i współczynnik determinacji wynosi teraz, aż 0.93.

Stworzony zostanie teraz trzeci model, również będzie to wielomian, lecz stopnia 4. Został on stworzony analogicznie do poprzedniego.

Poniżej wizualizacja.

Na pierwszy rzut oka można stwierdzić, iż różnica między tym, a poprzednim modelem jest niewielka, lecz można się spodziewać, że będzie on lepszy. Poniżej przedstawione obliczenia w celu przedstawienia współczynników, błędów oraz współczynnika determinacji.

Model y = $2921.96x - 555.43x^2 - 73.6x^3 - 2.25x^4$ jest nieco lepszy od poprzedniego – błędy są mniejsze, współczynnik determinacji nie zmienił się.

Poniżej przedstawione wszystkie modele wraz z wybranymi danymi.

Poniżej również wszystkie modele z wybranymi danymi oraz ze wszystkimi pomiarami.

4.4. Wnioski

Można jednoznacznie stwierdzić, iż modele wielomianowe okazały się być lepsze od regresji liniowej. Błędy w kolejnych dwóch modelach okazały się być mniejsze, a współczynnik determinacji większy.

Warto się jednak zastanowić czy konieczne jest tworzenie modelu opartego na wielomianie 4 stopnia, który jest bardziej skomplikowanym modelem niż ten 3 stopnia skoro błędy okazały się być niewiele mniejsze, a R² pozostało bez zmian. Jak widać na wykresie wielomiany te są bardzo podobne i prawie nakładają się. Jako najlepszy model wybieram, więc ten mniej skomplikowany – wielomian 3 stopnia.