Problema 1: Reloj de tiempo real

Se propone trabajar con el reloj en tiempo real con el que está equipada la NDS, para mostrar la fecha/hora actual por pantalla y activar una alarma cuando se llegue a un tiempo especificado.

Los valores de tiempo se definen con un vector de 6 números (bytes), con el siguiente contenido:

Posición	Campo	Rangos
0	Año	número del 0 al 99 (de 2000 a 2099)
1	Mes	número del 1 al 12 (de enero a diciembre)
2	Día	número del 1 al 31 (según el mes)
3	Hora	número del 0 al 23 (en modo 24 horas)
4	Minuto	número del 0 al 59
5	Segundo	número del 0 al 59

Se dispone de las siguientes rutinas, ya implementadas:

Rutina	Descripción
inicializaciones()	Realiza inicializaciones del hardware
tareas_independientes()	Tareas que no dependen de la alarma (ej. captación del movimiento del usuario)
swiWaitForVBlank()	Espera retroceso vertical
mostrar_tiempo(char *tiempo)	escribe en pantalla el tiempo que se pasa por parámetro
detectar_alarma(char *t, char *a)	si el tiempo t coinciden con el tiempo de alarma a, se activa un proceso de alarma, la ejecución del cual es (aprox.) de 50 milisegundos

Además, hay que realizar la captura del tiempo real por interrupciones. Como el reloj en tiempo real NO genera interrupciones, habrá que utilizar las interrupciones del *timer* 0.

Se dispone de una rutina ya implementada, de nombre inicializar_timer0(), que programa la interrupción IRQ_TIMER0 con una frecuencia ligeramente superior a 1 Hz (para evitar perder segundos).

TD 1 ' / 1'	1 1	,	, •	•	1 1	. 1	1
También dispoi	nemos de las	siguientes	rutinas para	comunicarnos	con el relo	oi de tiempo re	eal:

Rutina	Descripción		
iniciar_RTC()	Activa el <i>chip select</i> del reloj en tiempo real		
enviar_RTC(byte comando)	Envía un comando al reloj en tiempo real; concretamente hay que enviar el valor 0x26		
<pre>byte recibir_RTC()</pre>	Recibe un byte de datos del reloj en tiempo real; de enviar el comando 0x26 se recibirán on consecutivos con la siguiente información:		
	Month Register: Day Register: Day of Week Register: Hour Register:	BCD 00h99h BCD 01h12h BCD 01h31h 00h06h BCD 00h23h BCD 00h59h BCD 00h59h	
parar_RTC()	Desactiva el <i>chip select</i> del reloj en tiempo real		

El protocolo de comunicación es el siguiente:

- iniciar RTC
- enviar comando
- recibir, transformar y almacenar los bytes necesarios
- parar RTC

El total de tiempo para realizar esta comunicación supera los 500 microsegundos, por lo tanto, no se aconseja realizarla dentro de una RSI.

Todo el protocolo de comunicación se encapsulará dentro de una rutina de nombre capturar_tiempo (char *tiempo), la cual guardará la información del tiempo real dentro del vector que se pasa por parámetro (por referencia).

En el contexto del problema, la codificación BCD (Binary Coded Decimal) son números decimales de 2 dígitos codificados dentro de un único byte, en el cual se guardan las unidades en los 4 bits de menos peso y las decenas en los 4 bits de más peso. Por ejemplo, el número en BCD 0x39 (0011 1001) representa 3 decenas y 9 unidades, o sea, el valor decimal 39.

Se pide:

Programa principal en C, RSI del timer 0 y rutina capturar tiempo () en ensamblador.