Sprawozdanie 4 - Algorytmy Optymalizacji Dyskretnej

Michał Kallas

14 stycznia 2025

1 Zadanie 1

1.1 Opis zadania

Zadanie polega na napisaniu programu do obliczania maksymalnego przepływu w skierowanym grafie o strukturze hiperkostki H_k za pomocą algorytmu Edmondsa-Karpa. Należy przeprowadzić eksperymenty sprawdzające działanie algorytmu dla różnych rozmiarów hiperkostki.

1.2 Opis grafu

Rozważany w tym zadaniu graf to hiperkostka H_k . Jest to graf skierowany o 2^k wierzchołkach. Wierzchołki hiperkostki odpowiadają k-bitowym ciągom binarnym, a krawędzie łączą wierzchołki różniące się na dokładnie jednej pozycji bitowej. Pojemności krawędzi są losowane niezależnie z rozkładem jednostajnym ze zbioru $\{1,\ldots,2^l\}$, gdzie $l=\max\{H(e(i)),Z(e(i)),H(e(j)),Z(e(j))\}$. H(x) to waga Hamminga, czyli ilość jedynek w ciągu bitowym x, a Z(x) to ilość zer w x. Dla ciągu długości k H(X) oraz Z(x) przyjmują wartości ze zbioru $\{0,1,\ldots,k\}$.

1.3 Opis algorytmu

Do obliczenia maksymalnego przepływu zastosowano algorytm Edmondsa-Karpa, będący implementacją metody Forda-Fulkersona. Graf, na którym będzie pracował algorytm, to graf residualny, czyli taki, który dla każdej krawędzi posiada dodatkową krawędź w kierunku przeciwnym do kierunku przepływu(aby móc odrzucać niewłaściwe ścieżki powiększające). Każda krawędź ma pewną nieujemną pojemność oraz wartość przepływu, która początkowo wynosi zero. Algorytm działa w następujący sposób:

- 1. Inicjalizuj wartość maksymalnego przepływu na 0.
- 2. Wykorzystaj BFS do znalezienia najkrótszej ścieżki z wierzchołka źródłowego s do ujścia t.
- 3. Jeśli taka ścieżka nie istnieje, zakończ algorytm.
- 4. Wylicz maksymalny przepływ dla tej ścieżki, czyli minimum z aktualnej pojemności krawędzi (pojemność krawędzi krytycznej) na tej ścieżce c_{min} .
- 5. Zaktualizuj przepływ wzdłuż tej ścieżki o c_{min} , zwiększając przepływy na krawędziach w kierunku przepływu i zmiejszając przepływy w przeciwnym kierunku.

- 6. Zaktualizuj wartość maksymalnego przepływu o c_{min} .
- 7. Powtarzaj kroki 1-6.

Złożoność algorytmu Edmondsa-Karpa wynosi $O(|V||E|^2)$, dlatego że koszt BFSa to O(|E|) na iterację, a wybierając najkrótsze ścieżki powiększające, musimy wykonać O(|V||E|) powiększeń przepłwu.

Algorytm zaimplementowałem w języku C++.

1.4 Opis eksperymentu

Eksperyment polegał na sprawdzeniu zachowania algorytmu Edmondsa-Karpa dla hiperkostek H_k , $k \in \{1, 2, ..., 16\}$. Zostały sprawdzone 3 kryteria:

- Średni czas działania algorytmu
- Średni wyliczony maksymalny przepływ
- Średnia wyliczona ilość ścieżek powiększających

Dla każdego k eksperyment był przeprowadzony na 100 losowych hiperkostkach.

1.5 Wyniki eksperymentu

Rysunek 1: Uśredniony czas wykonania algorytmu Edmondsa-Karpa w sekundach.

Rysunek 2: Średni wyliczony maksymalny przepływ przez algorytm Edmondsa-Karpa.

Rysunek 3: Średnia ilość wyliczonych ścieżek powiększających przez algorytm Edmondsa-Karpa.

1.6 Wyniki eksperymentu

Na wykresie prezentującym średnie czasy widać, że algorytm Edmondsa-Karpa dobrze radzi sobie dla mniejszych hiperkostek, ale dla $k \ge 14$ czas zaczyna gwałtownie rosnąć. Taki stan rzeczy jest

spodowany tym, że wielkości hieperkostek rosną wykładniczo, jako że ich ilość wierzchołków to 2^k , a ilość krawędzi $2^{k-1} \cdot k$. Złożoność algorytmu wynosi $O(|V||E|^2)$, a więc jest ona w tym przypadku wykładniczo zależna od k. Widać, że średnia wartość maksymalnego przepływu i ilość wyliczonych ścieżek powiększających także zależą wykładniczo od k.

Możemy wnioskować, że algorytm Edmondsa-Karpa będzie odpowiedni do liczenia przepływów w mniejszych hiperkostkach. Dla większych H_k jest on za wolny ze względu na złożoność wykładniczą.

2 Zadanie 2

2.1 Opis zadania

Zadanie polega na napisaniu programu do wyliczenia wielkości skojarzenia o największym rozmiarze dla grafu dwudzielnego. Tutaj także należy eksperymentalnie sprawdzić działanie programu.

2.2 Opis grafu

Rozważany w tym zadaniu graf to nieskierowany dwudzielny graf losowy, mający dwa rozłączne podzbiory wierzchołków V_1 , V_2 , każdy o mocy 2^k , gdzie $k \in \mathbb{N}$. Każdy z wierzchołków tego grafu ma stopień wynoszący i, gdzie $i \in \mathbb{N}$.

2.3 Przekształcenie problemu

Do rozwiązania problemu wyliczenia wielkości skojarzenia o największym rozmiarze możemy ponownie skorzystać z algorytmu Edmondsa-Karpa. Jednak, aby tego dokonać, musimy w pierwszej kolejności przekształcić problem do problemu wyznaczenia maksymalnego przepływu.

Aby przekształcić problem, musimy zamienić nasz nieskierowany graf dwudzielny w graf skierowany, łączący wierzchołki z V_1 do V_2 krawędziami o pojemności 1. Potrzebne są nam także źródło s oraz ujście t. Wierzchołek s połączymy z każdym wierzchołkiem ze zbioru V_1 , a każdy wierzchołek ze zbioru V_2 połączymy z wierzchołkiem t. Pojemności tych krawędzi także będą wynosiły 1. Takie przekształcenie wygląda następująco:

2.4 Opis eksperymentu

Eksperyment polegał na sprawdzeniu średniego czasu wykonania programu oraz średniej wielkości maksymalnego skojarzenia dla $k \in \{3, ..., 10\}$ oraz $i \in \{1, ..., k\}$. Dla każdego k należało wygenerować wykres wielkości maksymalnego skojarzenia w zależności od i, a dla każdego i wykres czasu działania programu w zależności od k. Dla każdej pary (k, i) eksperyment był przeprowadzony na 1000 losowych grafów.

2.5 Wyniki eksperymentu

Rysunek 4: Uśredniony czas wykonania algorytmu Edmondsa-Karpa w sekundach dla problemu wyliczenia wielkości skojarzenia o największym rozmiarze.

Rysunek 5: Średnia wielkość maksymalnego skojarzenia wyliczona przez algorytmu Edmondsa-Karpa.

2.6 Obserwacje i wnioski

Możemy zauważyć, że czas wykonania programu rośnie wykładniczo wraz ze wzrostem k, a i także wpływa na jego wzrost. Złożoność algorytmu Edmondsa-Karpa, wynosząca $O(|V||E|^2)$, ponownie tłumaczy nam skąd wziął się taki stan rzeczy. W rozważanym grafie ilość wierzchołków to $2^{k+1}+2$, a ilość krawędzi to $(i+2)\cdot 2^k$.

Dla rozważanego grafu średnia wielkość maksymalnego skojarzenia jest duża dla każdych rozważanych danych - wszędzie już dla i=1 jest ponad połową maksymalnej wartości. Zbiega do 2^k , czyli największego możliwego skojarzenia do uzyskania (bo w każdym zbiorze grafu dwudzielnego jest 2^k wierzchołków). Dla k=i te wartości w każdym przypadku są praktycznie równe.

3 Zadanie 3

3.1 Opis zadania

W tym zadaniu należy ponownie rozwiązać problemy maksymalnego przepływu oraz maksymalnego skojarzenia dla takich samych grafów, ale tym razem należy to zrobić poprzez wygenerowanie modeli programowania liniowego i skorzystanie z solvera glpk do ich rozwiązania.

3.2 Opis modelu

Program generujący pliki z modelami programowania liniowego napisałem w C++. Pliki wynikowe są napisane w Julii. Do pisania modeli wykorzystałem biblioteki JuMP i GLPK.

W generowanym pliku z modelem jest tworzona macierz rozmiaru $n \times n$ reprezentująca dany graf. Zmienną decyzyjną służącą do przechowywania przepływów jest $f_{ij} \ge 0$. W f_{ij} przechowywany jest przepływ z wierzchołka i do wierzchołka j.

Zostały zastosowane następujące ograniczenia:

• Przepływy musza być nie większe od pojemności:

$$f_{ij} \leqslant u_{ij}$$

• Przepływy muszą być zbalansowane:

$$\sum_{j=1}^{n} f_{i,j} = \sum_{j=1}^{n} f_{j,i} \quad \forall i \in \{2, \dots, n-1\}$$

Celem była maksymalizacja przepływów:

$$\max \sum_{j=1}^{n} f_{1,j}$$

3.3 Obserwacje i wnioski

Solver zwraca takie same wartości maksymalnych przepływów i skojarzeń, jak algorytm Edmondsa-Karpa. Jednakże dochodzi do tych wyników w inny sposób - wartości poszczególnych przepływów i skojrzeń różnią się od tych wyliczonych przez algorytm Edmondsa-Karpa. Niestety solver czasami nie jest w stanie wyznaczyć rozwiązania ze względu na zbyt mało dostępnej pamięci.

Jeśli chodzi o prędkość działania, to tutaj solver wypada fatalnie. Jest o rzędy wartości wolniejszy. Przykładowo dla hiperkostki H_7 , Edmonds-Karp poradził sobie z problemem w 6ms, podczas gdy solverowi zajęło to prawie 4 sekundy.

Okazuje się, że algorytm Edmondsa-Karpa jest znacznie lepszym rozwiązaniem problemów przedstawionych na tej liście niż programowanie liniowe. Pomimo wykładniczych czasów działania wciąż jest nieporównywalnie szybszy. Co więcej, nie ma problemów z pamięcią.