2.6

삽입 정렬

개요

자료를 정렬하는 또 다른 알고리즘 중 하나인데, 자료를 여러 번 비교하거나 교환할 필요가 없는 방법이 있습니다. <mark>삽입정렬</mark>은 자료가 정렬된 부분과 정렬되지 않은 부분으로 나누어집니다. **정렬되지 않은 부분의 자료가 정렬된 부분의 자리로 삽입되는 형태의 정렬 방법**입니다.

핵심개념

- * 삽입 정렬
- * 배열

실행

for each unsorted element, n, in the array

determine where in the sorted portion of the array to insert \boldsymbol{n}

shift sorted elements rightwards as necessary to make room for \boldsymbol{n}

insert n into sorted portion of the list

▲ 〈코드 1〉

삽입 정렬은 배열을 **정렬된 부분과 정렬되지 않은 부분**, 두 개의 부분으로 나누면서 동작합니다. 만약 5, 1, 6, 2, 4, 3 이라는 값을 삽입정렬을 이용하여 정렬해주어야한다면 〈코드 1〉과 같이 의사코드를 작성할 수 있습니다.

- ① 프로그램이 실행되었을 때, array라는 배열의 첫 번째 자리(5)는 이미 정렬된 부분이라고 간주합니다.
- ② 정렬되지 않은 부분의 맨 앞 자리인 1은 5보다 작기 때문에 5는 오른쪽으로 이동하고 1이 첫 번째 자리로 옵니다.
- ③ 다음으로 정렬되지 않은 부분의 6을 살펴봅니다.
- ④ 6은 5보다 크기 때문에 이동할 필요가 없습니다.
- ⑤ 같은 방식으로 계속 실행하면 전체 값이 모두 정렬됩니다.

정렬된 배열

삽입 정렬은 특정 실행 단계에서, 어떤 원소가 정렬된 배열 내에 자리를 찾았다고 해서 그것이 최종적인 제자리라는 보장은 없습니다. 다음 단계가 진행되면서 다른 자료에 의해 위치가 바뀔 수 있기 때문입니다. 따라서 삽입 정렬은 자료의 양이 적을 때 성능이 우수하며 자료 대부분이 이미 정렬이 되어있는 경우 효율적입니다. 삽입정렬은 이미 정렬된 자료에 새로운 자료를 삽입해야 하는 경우가 발생하면, 정렬된 자료들이 자리를 이동해야 하므로 안정성이 낮습니다.