Package 'GPAbin'

June 14, 2025

Title Unifying Multiple Biplot Visualisations into a Single Display

Version 1.0.6

Description Aligning multiple visualisations by utilising generalised orthogonal Procrustes analysis (GPA) before combining coordinates into a single biplot display as described in Nienkemper-Swanepoel, le Roux and Lubbe (2023)<doi:10.1080/03610918.2021.1914089>. This is mainly suitable to combine visualisations constructed from multiple imputations, however, it can be generalised to combine variations of visualisations from the same datasets (i.e. resamples).

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2
Depends R (>= 4.1.0)
Imports ca, jomo, mi, mice, missMDA, mitools, stringr
Suggests testthat, knitr
Config/Needs/website rmarkdown
BugReports https://github.com/jnienk/GPAbin/issues
NeedsCompilation no
Author Johané Nienkemper-Swanepoel [aut, cre, cph] (ORCID: https://orcid.org/0000-0001-6086-8272)
Maintainer Johané Nienkemper-Swanepoel <nienkemperj@sun.ac.za></nienkemperj@sun.ac.za>
Repository CRAN
Date/Publication 2025-06-14 08:40:02 UTC

Contents

biplFig	2
CLPpred	3
compdat	3
DRT	4
evalMeas	5
GPA	5

2 biplFig

```
      GPAbin
      6

      implist
      7

      impute
      7

      missdat
      8

      missmi
      8

      OPA
      9

      print.missmi
      10
```

Index 11

biplFig Biplot function

Description

Creates a multiple correspondence analysis (MCA) biplot

Usage

```
biplFig(
  missbp,
  Z.col = "#61223b",
  CLP.col = "#b79962",
  Z.pch = 19,
  CLP.pch = 15,
  Z.cex = 1.5,
  CLP.cex = 1.7,
  title = ""
)
```

Arguments

missbp	An object of class missbp obtained from preceding function missmi()
Z.col	Colour of sample coordinates
CLP.col	Colour of category level point coordinates
Z.pch	Plotting character of sample coordinates
CLP.pch	Plotting character of category level point coordinates
Z.cex	Size of plotting character for sample points
CLP.cex	Size of plotting character for category level point points
title	Title of the plot

Value

A biplot.

CLPpred 3

Examples

```
data(implist)
missbp <- missmi(implist)|> DRT() |> GPAbin() |> biplFig()
```

CLPpred

Category level prediction

Description

Predicts category levels from an MCA based biplot using the distances between coordinates

Usage

```
CLPpred(CLPs = CLPs, Zs = Zs, p = p, n = n, lvls = lvls, datIN = datIN)
```

Arguments

CLPs	Category level point coordinates
Zs	Sample coordinates
p	Number of variables
n	Number of samples
lvls	Names of category levels
datIN	Input data from which CLPs and Zs are obtained

Value

predCL Final predicted categorical data set

compdat

Complete data example

Description

Simulated data example

Format

A data frame with 1000 rows and 5 columns.

DRT

Details

V1 Variable 1

V1 Variable 2

V1 Variable 3

V1 Variable 4

V1 Variable 5

Source

Simulated data from a uniform distribution that is categorised into levels.

DRT

Dimension reduction

Description

Multiple correspondence analysis is performed on the multiple imputed datasets

Usage

```
DRT(missbp, method = c("MCA"))
```

Arguments

misspp	An object of class missph obtained from preceding function missmi()
method	Select a dimension reduction technique. In the current version MCA is available.

Value

CLP List of category level point coordinates

lvls List of category level namesm Number of multiple imputations

Examples

```
data(implist)
missbp <- missmi(implist) |> DRT()
```

evalMeas 5

evalMeas	Evaluation measures when complete data is available	

Description

Calculates measures of comparison based on distances between two configurations

Usage

```
evalMeas(missbp, compdat = NULL, dim = c("All", "2D"))
```

Arguments

missbp An object of class missbp obtained from preceding function missmi().

compdat Complete data matrix representing the input data of missmi()

dim Compare the configurations in 2D or the maximum available ("All") dimensions,

default is 2D.

Value

eval Returns a data table with five evaluation measures: Procrustes Statistic (PS),

Similarity Proportion (SP), Response Profile Recovery (RPR), Absolute Mean

Bias (AMB), Root Mean Squared Bias (RMSB)

Examples

```
data(compdat)
data(implist)
missbp <- missmi(implist) |> DRT() |> GPAbin() |> evalMeas(compdat=compdat, dim="2D")
```

GPA

Generalised Orthogonal Procrustes Analysis

Description

This function contains the OPA function to compare two configurations and the GPA function for multiple configuration comparisons

Usage

```
GPA(Xk, G.target = NULL, iter = 500, eps = 0.001)
```

GPAbin

Arguments

Xk	list containing the testee configurations which is updated on #each iteration
G.target	Target configuration. If not specified the centroid configuration will be used as the target
iter	Number of iterations allowed before convergence
eps	Threshold value for convergence of the alogrithm
Value	
Xk.F	List containing the updated testee configurations
sk.F	Vector containing the final scaling factors

Gmat Final target configuration

sum. sq Final minimised sum of squared distance

GPAbin Function to unify coordinates of multiple configurations

List containing the final rotation matrices

Description

Qk.F

Combines multiple configurations from dimension reduction solutions applied to multiple imputed data sets

Usage

```
GPAbin(missbp, G.target = NULL)
```

Arguments

missbp	An object of class missmi obtained from preceding function missmi()
G.target	Target configuration. If not specified the centroid configuration will be used as
	the target.

Value

Z.GPA.list List containing the sample coordinates for each MI after 0	ĴΡΑ
CLP. GPA. list List containing the CLPs for each MI after GPA	
G. target Target configuration	
Z. GPAbin Sample coordinates for the GPAbin biplot	
CLP. GPAbin CLPs for the GPAbin biplot	

Examples

```
data(implist)
missbp <- missmi(implist) |> DRT() |> GPAbin()
```

implist 7

implist

List of multiple imputed data sets

Description

Five multiple imputations of missdat

Format

List containing five multiple imputations of missdat. Each list item a data frame with 1000 rows and 5 columns.

Details

V1 Variable 1

V1 Variable 2

V1 Variable 3

V1 Variable 4

V1 Variable 5

Source

simulated example data imputed with mice::mice(missdat, m=5, method="polyreg", maxit=10, remove.collinear=FALSE, printFlag = FALSE)

impute

Multiple imputation

Description

Choose between four available multiple imputation strategies in R.

Usage

```
impute(missbp, imp.method = c("MIMCA", "jomo", "DPMPM", "mice"), m = 5)
```

Arguments

missbp An object of class missmi obtained from preceding function missmi().

imp.method Select one of four imputation methods: MIMCA, jomo, DPMPM, mice

Mumber of multiple imputations

Value

dataimp List of imputed data

8 missmi

Examples

```
data(missdat)
missbp <- missmi(missdat) |> impute(imp.method="DPMPM", m=5)
```

missdat

Missing data example

Description

compdat containing approximately 35% simulated missing values according to a missing at random (MAR) missing data mechanism

Format

A data frame with 1000 rows and 5 columns.

Details

- V1 Variable 1
- V1 Variable 2
- V1 Variable 3
- V1 Variable 4
- V1 Variable 5

Source

Simulated data from a uniform distribution that is categorised into levels.

missmi

First step before constructing unified biplots

Description

This function produces a list of elements to be used when producing a GPAbin biplot.

Usage

```
missmi(data)
```

Arguments

data

input data frame or list

OPA 9

Value

X The processed data

imputations Number of multiple imputations applied

n The number of samples
p The number of variables
miss_pct Percentage of missing values

Examples

```
data(missdat)
missbp <- missmi(missdat)
data(implist)
missbp <- missmi(implist)</pre>
```

OPA

Orthogonal Procrustes Analysis

Description

This function performs Orthogonal Procrustes Analysis on centred data

Usage

```
OPA(missbp, compdat, centring = TRUE, dim = "2D")
```

Arguments

missbp An object of class missmi obtained from preceding function missmi()

compdat Complete data set, only available for simulated data examples.

centring Logical argument to apply centering, default is TRUE.

dim Number of dimensions to use in final solutions (2D or All available dimensions.)

Value

ProcStat Procrustes Statistic

compZ Sample coordinates representing the complete data set

compCLP Category level point coordinates representing the complete data set

complvls Category levels

compdat Complete data set, only available for simulated data examples

10 print.missmi

print.missmi

Generic print function for objects of class missmi

Description

This function is used to print output when the missmi biplot object is created.

Usage

```
## S3 method for class 'missmi'
print(x, ...)
```

Arguments

x an object of class missmi.

... additional arguments.

Value

This function will not produce a return value, it is called for side effects.

Examples

```
data(missdat)
missbp <- missmi(missdat)
data(implist)
missbp <- missmi(implist)
print(missbp)</pre>
```

Index

```
\ast datasets
      compdat, 3
      implist, 7
     missdat, 8
biplFig, 2
CLPpred, 3
compdat, 3
DRT, 4
evalMeas, 5
GPA, 5
GPAbin, 6
{\tt implist}, \textcolor{red}{7}
impute, 7
{\tt missdat}, {\tt 8}
\mathsf{missmi}, \textcolor{red}{8}
OPA, 9
print.missmi, 10
```