

Statistical Inference — Lab 5

Date of issue: January, 10 th 2019	Due Date: January, 24 th 2019, 6:00 pm
Family Name:	
First Name:	
Student ID:	

Condition adjustment and linearization

Part 1: As sketched in the figure below, the line AD is divided into three, approximately equal segments. Measurements of various distances over the line AD are also given in the table below:

Distanz	in [m]
d_1	$100.04 + \frac{k}{1000}$
d_2	100.01
d_3	99.98
d_4	200.0
d_5	200.02
d_6	$299.96 + \frac{k}{1000}$

where the variable parametre k corresponds to the last two digits of your student ID number.

- a) Determine the linear system of observation equations (that is, the equations for the A-Model) and the linear system of condition equations (that is, the equations for the B-Model). Check the orthogonality of the design matrix A of the A-model and the condition matrix B of the B-model.
- b) Compute for both A- and B-model
 - the least-squares solutions for the lengths s_1 , s_2 and s_3 ,
 - the adjusted observation vector and
 - the adjusted inconsistencies.
- c) Comment on the differences or absence of differences in the obtained results.

Part 2: In the year 1619, Johannes Kepler published his 3rd law of planetary motion in *Harmonices mundi* (The Harmony of the World):

The ratio of the square of a planet's orbital period T to the cube of its semi-major axis a is constant for all orbits.

E.g. for Earth and Mars it holds

$$\frac{T_{\text{Earth}}^2}{a_{\text{Earth}}^3} = \frac{T_{\text{Mars}}^2}{a_{\text{Mars}}^3}.$$

The following measurements for the above mentioned quantities are given:

orbital period T	semi-major axis a
365.256 d 686.971 d	149.5980 · 10 ⁶ km 227.9392 · 10 ⁶ km

Task: Apply the B-model adjustment to the above formulation of Kepler's 3rd law. In particular describe the linearisation and the method (code) used to solve the equation.