Esercizi

1 - Campi e Spazi Vettoriali

Legenda:

😀 : Un gioco da ragazzo, dopo aver riletto gli appunti del corso

😕 : Ci devo pensare un po', ma posso arrivarci

🤯 : Non ci dormirò stanotte

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^2 \qquad (a,b) + (c,d) := (a+c,b+d)$$

$$\star: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \qquad (a,b) \star (c,d) := (ac,bd).$$

Mostrare che $(\mathbb{R}^2, +, \star)$ non è un campo, identificando almeno una proprietà di campo che non è soddisfatta dalle operazioni + e \star .

Esercizio 2. Consideriamo \mathbb{R}^2 con le operazioni di addizione e moltiplicazioni definite nel modo seguente:

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}^2 \qquad (a,b) + (c,d) := (a+c,b+d)$$

$$\triangle: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 \quad (a,b) \triangle (c,d) := (ac - bd, ad + bc).$$

Mostrare che $(\mathbb{R}^2,+,\triangle)$ è un campo. In particolare determinare l'elemento neutro rispetto a +, l'elemento neutro rispetto a \triangle , l'opposto di $(a,b) \in \mathbb{R}^2$ rispetto a + e l'inverso di $(a,b) \in \mathbb{R}^2 \setminus \{$ elemento neutro di + $\}$ rispetto a \triangle .

Esercizio 3. Si consieri l'insieme $\mathbb{F}_3 := \{0, 1, 2\}$. Si definiscano due operazioni binarie interne

$$+: \mathbb{F}_3 \times \mathbb{F}_3 \rightarrow \mathbb{F}_3$$

$$\cdot: \mathbb{F}_3 \times \mathbb{F}_3 \rightarrow \mathbb{F}_3$$

in modo tale che $(\mathbb{F}_3, +, \cdot)$ sia un campo.

Esercizio 4. Consideriamo su $\mathbb{R}^+ := \{x \in \mathbb{R} : x > 0\}$ le operazioni seguenti:

$$\forall a, b \in \mathbb{R}^+, a + b := ab$$
 $\forall \lambda \in \mathbb{R}, a \in \mathbb{R}^+, \lambda \cdot a := a^{\lambda}$

Si noti che l'operazione + non è altro che la moltiplicazione usuale di numeri reali. Mostrare che $(\mathbb{R}^+,+,\cdot)$ è uno spazio vettoriale reale.

Esercizio 5. Sia V l'insieme delle funzioni continue $f: \mathbb{R} \to \mathbb{R}$. Consideriamo le operazioni $+ e \cdot su V$ definite nel modo seguente:

$$\forall \ f,g \in V, \quad f+g: \quad \mathbb{R} \quad \rightarrow \quad \quad \mathbb{R} \\ \quad x \quad \mapsto \quad f(x)+g(x)$$

$$\forall \ \lambda \in \mathbb{R}, \ f \in V, \quad \lambda \cdot f: \quad \mathbb{R} \quad \rightarrow \quad \mathbb{R}$$
$$x \quad \mapsto \quad \lambda f(x)$$

Mostrare che $(V,+,\cdot)$ è uno spazio vettoriale reale procedendo per i seguenti step:

- (1) Mostrare che il risultato di $+ e \cdot$ appartiene a V.
- (2) Mostrare che + e · verificano le 8 proprietà di spazio vettoriale. Durante la discussione sottolineare i punti in cui si utilizzano le proprietà di \mathbb{R} come campo.
- \bigcirc Esercizio 6. Sia V uno spazio vettoriale su K.
 - (a) Siano $\lambda \in K$ e $v \in V$ tali che $\lambda \cdot v = \underline{0}$. Dimostrare che $\lambda = 0$ o v = 0.
 - (b) Siano $\lambda, \mu \in K$ e $v \in V$, $v \neq \underline{0}$, tali che $\lambda \cdot v = \mu \cdot v$. Dimostrare che $\lambda = \mu$.