

DOCUMENTATION OF DECISION-AIDING SOFTWARE:

DECISION SYSTEM SPECIFICATION

DECISIONS AND DESIGNS INC.

Linda B. Allardyce Dorothy M. Amey Phillip H. Feuerwerger Roy M. Gulick

November 1979

No0014-79-C-0069

ADVANCED (REP. DECISION TEC

CYBERNETICS TECHNOLOGY OFFICE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Office of Naval Research • Engineering Psychology Programs

82 11 26 200

FILE COPY

DOCUMENTATION OF DECISION-AIDING SOFTWARE: DECISION SYSTEM SPECIFICATION

by

Linda B. Allardyce, Dorothy M. Amey, Phillip H. Feuerwerger, and Roy M. Gulick

Sponsored by

Defense Advanced Research Projects Agency ARPA Order 3469

November 1979

DECISIONS and DESIGNS, INC.

Suite 600, 8400 Westpark Drive P.O.Box 907 McLean, Virginia 22101 (703) 821-2828

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

CONTENTS

			Page
FIGU	RES		iii
1.0	INTR	RODUCTION	1
	1.1	Purpose of the System Specification	1
	1.2	References	1
	1.3	1'erms	2
		1.3.1 DECISION 1.3.2 HIPO	2 2
2.0	DESI	GN DETAILS	3
	2.1	Background	3
	2.2	General Operating Procedures	3
	2.3	System Logical Flow	3
	2.4	HIPO Documentation	6

FIGURES

Figure		Page
2-1	LEGEND OF HIPO SYMBOLS	5
2-2	DECISION SYSTEM STRUCTURE CHART	7
2-3	DECISION STRUCTURE SUBSYSTEM VISUAL TABLE OF CONTENTS	8
2-4	DECISION RUN SUBSYSTEM VISUAL TABLE OF CONTENTS	9

DECISION SYSTEM SPECIFICATION

1.0 INTRODUCTION

1.1 Purpose of the System Specification

The DECISION System Specification is a technical document written for software development personnel. Together with the DECISION Functional Description, it guides the software development effort by identifying the functional requirements and by providing structured logic diagrams that depict the flow, control, and processing of information within the system.

The System Specification is generic and is intended to guide and facilitate the preparation of the language-specific program documentation and coding that are necessary to implement and operate DECISION at an installation.

1.2 References

- 1.2.1 IBM, <u>HIPO--A Design Aid and Documentation Tech-nique</u>. Technical Publication GC20-1851-0.
 White Plains, New York: IBM, October 1974.
- 1.2.2 Allardyce, Linda B.; Amey, Dorothy M.; Feuerwerger, Phillip H.; Gulick, Roy M. <u>Documentation of Decision-Aiding Software: DECISION Functional Description</u>. McLean, Virginia: Decisions and Designs, Inc., November 1979.

1.2.3 Allardyce, Linda B.; Amey, Dorothy M.; Feuerwerger, Phillip H.; Gulick, Roy M. <u>Documentation of Decision-Aiding Software: DECISION Users Manual.</u>
McLean, Virginia: Decisions and Designs, Inc., November 1979.

1.3 Terms

- 1.3.1 <u>DECISION</u> DECISION is an abbreviation for Decision Tree Models, reflecting the system's major area of applicability.
- 1.3.2 <u>HIPO</u> The Specification uses the standard Hierarchy plus Input-Process-Output (HIPO) diagramming technique to depict the structural design and logical flow of the system. A legend explaining the HIPO diagramming symbols is included. Reference 1.2.1 provides a complete description of the HIPO documentation technique.

2.0 DESIGN DETAILS

2.1 Background

Systems development personnel should refer to the DECISION Functional Description, reference 1.2.2, in conjunction with the documentation contained in this Specification. The Functional Description details the decision tree model implemented by DECISION and discusses the specific functions that the software performs. In addition, systems development personnel may wish to refer to the DECISION Users Manual, reference 1.2.3.

2.2 General Operating Procedures

DECISION is a menu-driven system. That is, the system is designed to interact with the user by presenting a sequential hierarchy of menus and asking the user to respond by selecting one option from the current menu. If the user does not select one of the menu options, the system displays the previous menu. In this manner, the user moves up and down the hierarchy, as desired. Whenever data entry is required as a result of option selection, the system specifically requests the data and specifies the format.

The system is also designed to anticipate and be generally forgiving of procedural errors by the user.

2.3 System Logical Flow

DECISION is a hierarchically structured, modular system. The system structure and logical flow lends itself to presentation in the form of HIPO diagrams, which are contained in this document.

The main purpose of the HIPO diagrams is to provide, in a pictorial manner, the complete set of modular elements necessary to the operation of DECISION including all input, output, and internal functional processing. This is done by displaying input items to the process step which uses them, defining the process, and showing the resulting output of the process step.

The documentation diagrams are designed and drawn in a hierarchical fashion from the main calling routines to the detail-level operation/calculation routines. Extended written descriptions are given below a HIPO diagram whenever it is deemed necessary.

A complete explanation of the symbolic notation used in the HIPO diagrams is given in reference 1.2.1. An abbreviated legend for the symbols used in this specification is given in Figure 2-1. Note that:

- a. External subroutines appear partly in the process block and partly out. Internal subroutines are shown within the process block.
- b. Overview diagrams show general inputs and outputs only, whereas detail/subroutine-level diagrams show specific input/output tables and/or displays.
- c. Rectangular boxes inside the input/output block areas are generally used to denote single data items. Two or more boxes are grouped to show that several data items are input/output.
- d. Rectangular boxes inside the process block indicate repetitive subprocesses.

Figure 2-1
LEGEND OF HIPO SYMBOLS

The HIPO diagrams appear in the next section, which completes the System Specification.

2.4 HIPO Documentation

The HIPO diagram identification numbers and figure numbers used in this section stand alone; i.e., they start with 1.0, increase hierarchically, and are independent of the numbering scheme used to this point in this document.

The DECISION system comprises two subsystems: STRUC-TURE, which builds and refines the decision tree model, and RUN, which produces various results based on the model and its data. Figure 2-2 is the system structure chart. Figures 2-3 and 2-4 are the subsystem charts and represent the overall program logic flows in visual tables of contents. The Visual Tables of Contents show the hierarchical structure, the functional description labels, and the diagram (chart) identifiers of the functions implemented by the DECISION subsystems.

Figure 2-2
DECISION SYSTEM STRUCTURE CHART

٠

-

DECISION STRUCTURE SUBSYSTEM VISUAL TABLE OF CONTENTS

Figure 2-4

DECISION RUN SUBSYSTEM VISUAL TABLE OF CONTENTS

Extended Description

The list of program procedures is displayed so that the user may select the next process to be performed. The list is displayed in menu format which allows the association of position numbers with different options in the list.

- 1. The user is prompted for a choice of operations. The chosen procedure is invoked via one of steps 2-9. If the user responds with blank or null input, then step 10 is executed.
- 2. The existence of RUN/STRUCTURE models on tape (storage) is determined and a selected model is read.
- 3. The structure (or model) currently defined by the program variables may be changed at this point

- 4. A new structure may be entered via user interaction or nodes may be added to an existing structure.
- This step causes the completion of the model structure by setting up variables which interface with the RUN program, This step should always be performed before step 6.
- The currently defined model structure may be stored via this step.
- 7. A branch or subtree may be defined and later added to a structure in procedure 4.

- 8. Groups of nodes may be deleted from the currently defined structure.
- 9. A printout of the structure as it is currently defined is obtained.
- 10. The program ends here: a restart option will cause step 1 to be executed again. When a session is terminated, all branch structures or subtrees defined are deleted.

The user may have many tape files on which formatted models are stored.
 In this step, the user is prompted for a response indicating the desired tape is mounted and online.
 The names of the models existing on the mounted tape are displayed in list or MENU format so that the user may select a model for loading.

4. The user is prompted for a model selection: the response may be the list item number or the model name. The requested model is stored in the same tape file as its position relative to the other model names in the displayed list.

Extended Description

- 2. The library file of model names is available on each formatted data tape. The file is usually stored and retrieved as a character array and resides on the same device with model data and structure variables. A system OPEN command is needed to ensure that the data file is online and accessible for reading. An input buffer is needed and provides the link between stored information and program addressable information.
- 3. The library model names are retrieved from storage. The character array used for holding these model names, LIBNAMES, is of a form which facilitates display; thus, the names may all be of equal character length.

4. A system CLOSE command is issued to free the data file for later use.

Extended Description

- 3. A list of variable Names or identifiers is kept so that load and store routines will always process the variables in the same sequence order.
- 4. The Model variables retrieved from storage are used in all other program functions (see Diagram 1.0). The variables which must be loaded are the following: OUTLINE TABLELABELS OF NODESSCORESPROBABILITIES

CUMULATIVE PROBABILITIES

- NODE TYPES
 NODE INDEPENDENT PROBABILITY TAGS
 DATA LEVEL MASK
 AGGREGATE NODE INDICES
 SUCCESSOR TABLE
 LABELS OF CRITERIA
- - CRITERIA WEIGHTS
- 1. The OUTLINE TABLE contains an element for each node in the model, sorted in increasing numerical sequence order. The value is an encoded representation of the node outline number supplied for a node when the model structure is created.

STAILCE	Sabyaba	
Diagram ID: 2.2 Description Load in the Variables	the Variables	Page: 2 of 3
	PROCESS	OUTPUT
Extended Description		

5. For each element in the node outline table, there is an associated element in the CUMULATIVE PROBABILITIES vector. The vector will contain the normalized values of all nodes with respect to the entire model when all PROBABILITIES have been entered.

2. The NODE LABELS contain descriptions (one per node in the same order as the outline table) of nodes that are supplied when the model structure is created.

 SCORES is a numeric array which contains a set of values for each node of the structure. Each set of values consists of one number per criterion defined in the model. 4. PROBABILITIES are contained in a numeric vector with a value assigned to each node in the model structure. The elements must appear in the same order as the associated outline numbers. When a model structure is created, the vector is null

6. The NODE TYPES are indicators of the type of calculation that is to be used in assessing final SCORES and PROBABILITIES.

7. The independent probability tags indicate groups of events that occur more than once in the tree and the probabilities of which can be assessed all at once. The number and order of elements is the same as that for OUTLINE elements.

System (Program STRUCTURE		Name LOADVARS			
Diagram ID: 2.2 De	Description Load in the Variables	the Variables			Page: 3 of 3
INPUT		PROCESS			OUTPUT
·					
Extended Description 8. The DATA LEVEL MASK indicates which nodes are at the data level (bottom level) versus the nodes that are aggregate or non-bottom-level nodes.	es which nodes are	at the data level (bottom	12. The CRITERIA WEIGHT criteria when the decision tree	TS contain the weige is solved. The nur	12. The CRITERIA WEIGHTS contain the weights that are to be applied to the criteria when the decision tree is solved. The number of elements is equal to the

12. The CRITERIA WEIGHTS contain the weights that are to be applied to the criteria when the decision tree is solved. The number of elements is equal to the number of criteria plus one for the total.

11. The CRITERIA LABELS contain the user-specified character descriptions of the criteria that are being evaluated. 10. The SUCCESSOR TABLE is an array which contains, for each aggregate node, the set of indices of nodes which contribute to a node.

9. The AGGREGATE NODE INDICES contain the sequence numbers of elements in the model variables which correspond to only the aggregate nodes. An Aggretate node is a node which has one or more subsequent nodes contributing to it.

This procedure will allow the deletion or renaming of nodes within an existing structure and operates on a single node at a time. If a group or subtrae of nodes is to be deleted, the user should select the "Prune a section" procedure described in diagram 8.0.

^{1.} The user is prompted for a node identifier. This identifier corresponds to the manner in which the node was named when it was placed in the structure. The outline number is a shortened form of the node's identification. An associated index number is determined which is relative to the node outline and structure tables.

[.] The node structure variables are reorganized so that associated nodes are always manned together after the structure has been adjust.

Extended Description

5. The existing outline table is searched for a matching encoded outline number. It is the index into this table of the matching outline number which is returned to the calling routine in step 6.

Extended Description

- 1. The user is prompted for all node identification information the node outline number, the node label, type and probability tag. (See diagram 2.2 for a description of these items.)
- 2. A null entry or blank response from the user indicates that the node is to be deleted from the current structure.
- 3. Replace the outline number, the node label, type and tag in the appropriate arrays with the new ones.

A special character, such as an asterisk (*) or pound sign (#), should be used to designate that a group or subtree is being specified. The special character would be the first in the input line of the user's response.

3. The outline number — numerically encoded to a sufficiently large number, the label, type and tag are returned as separate variables.

a node "type" and tag indicators. (The node type and probability tag indicators are optional input with default type = W for probability node and tag = blank.) The three variables are usually entered with commas or some other punctuation separating each one from the other.

hierarchical relationship to other nodes in the structure, a label or descriptive name,

2. Proper node identification consists of an outline sequence number which has a

1. The user is required to input the identifying information for a particular node in

either an existing structure or one that is currently being defined.

If a branch or subtree is being specified, the appropriate node labels, outline numbers and types are obtained from the branch structure tables. A group of encoded outline numbers, a group of labels and the group types are all returned to the calling routine. The new outline numbers have been encoded again to agree with the node after which the branch or subtree is being placed in hierarchical fashion.

Extended Description

1. The relative indices or locations in the numerically encoded set of outline numbers in increasing value are determined. These indices constitute the sort sequence and will be used to rearrange the structure variables.

Extended Description

- 1. Request a "yes" or "no" response directly from the user to determine whether a new structure is to be entered or nodes are to be added to an existing structure.
- b. If a new structure is entered, all currently defined variables of the old structure are deleted.
- 2. An explanation of the sorting function is given in diagram 3.3 of the STRUCTURE System Specifications.

2.3. Additions to previously initialized or existing variables are accomplished by extending the arrays such that the corresponding orders of associated labels, scores, types, tags, weights and decoded outline numbers are the same.

Extended Description

- Initialization is caused by establishing null or blank vectors for the specified variables.
- 2. Labels for the criteria to be evaluated are obtained from later storage and for the determination of the length of any set of SCORES.
- 4. The user is prompted for input which will be used to define a hierarchical tree structure described by outline numbers, labels, tags and types of nodes within the structure.

4. The successor table provides a set of contributing node indices for each aggregate node in the same order as aggregate node appearance in the outline.

3. The data level mask indicates which nodes in the model are at the data level and which nodes are aggregate nodes. The aggregate node indices are indices into the node outline of nodes which are not at the data level. The LEVELS variable shows how far away a particular node is from the lowest level.

2. A rough estimate of the amount of time required to perform the developing operation may be displayed. The estimate is derived from the number of nodes in the model.

The number of nodes is equal to the number of entries in the outline array.

Extended Description

 For each node in the model outline, an element is placed in a vector to indicate that node is a data level node or that it is an aggregate node having other contributing nodes.

The indicator may be 0 for data level and 1 for the aggregate level or vice versa.

2. The data level mask indicator setting for each node in the outline is used to determine the aggregate node indices – indices into the node outline.

3. The farthest element or data level node from the topmost node is determined. The topmost node is assigned the number of levels between it and the data level farthest away (the depth of the path with the most sub-level tree branches). All other nodes are assigned a value equal to the top-level's minus its distance (number of levels) from the top.

3. Since the number of elements in any set of contributing nodes may be less than the predefined limit, the number of columns (or characters) in the table may be diminished.

2.b. If the nodes' associated data mask element indicates an aggregate node, then the contributing nodes are all the nodes which follow in sequential order that have an associated LEVELS number that is less than the selected nodes LEVELS numbers, provided these nodes occur before any node with equal or higher LEVELS number.

1. The maximum size table is prescribed by the number of aggregate nodes and the predefined limit to the number of contributing nodes on any single level.

2. This procedure steps through the data mask variable in sequential order: the contributing nodes of the topmost aggregate node will be added to the successor

table first.

28

Extended Description

- 1. The computer program prompts for an indication that the desired storage file/device has been selected and placed online. Any response from the keyboard causes processing to resume.
- 4. The existing file structure and the amount of available space on the data tape are checked along with the user specification to determine where the model variables are to be stored.

6. The library name list is updated to include the new file. The new model name's position in the LIBNAMES array must be the same relative position to other models stored on the device.

1. The file location Y is used to determine an exact storage position on the selected device.

3. The list of variable names is identical to the list of names used to Load a Model (see diagram 2.2)

The user is allowed to create separate branch or subtree structures which may be added to the model structure under the "create a structure" process option.

Extended Description

Step 2 processing ensures that for each subsequent level of a multilevel branch structure the outline number, types and labels are all added in the correct numerical sequence to the outline, types, tags and label entries at the previous level. (This is done for every branch node defined at the previous level.)

The routine should be executed whenever a group of nodes is to be deleted from an existing node structure. The grouped nodes are all hierarchically placed below a certain aggregate node; hence, a user specification of an aggregate node in step 1 will cause that node and all its subsequent nodes to be deleted.

2. The decoded outline identifier number is formatted for output. The output should be equivalent to the user's original input during the creation of the structure.

System/Program: STRUCTURE Diagram ID: 10.0 Description	Description General Routines	Page: of
INPUT	PROCESS	OUTPUT

Extended Description Generalized routines are directly invoked by functional procedures and return to the calling programs.

Extended Description

- 1. The title is passed to this routine so that the display will remain in context with the processing function. For example, a title may be 'DISPLAY RESULTS.'
- The selections that describe what is optimal are passed as input and are displayed in a list or cookbook MENU format along with item sequence numbers.

Prompt the user for the item sequence number of the choice selection.
 Check the validity of the user input.

Extended Description

This routine will not be required if system error checking routines interface with the standard keyboard display input.

3. The model variables are all loaded into the current work area at this time, or whenever the user wishes to load a new model. Consequently, this documentation assumes that these variables are "global" and always available for input to procedures, reference, or modification by subroutines.

NIG	N. G.	
	Description Entrance to Run Program	Puge 2 of 2
NPUT	PROCESS	OUTPUT
Pg. 1	4	
e's'	b. Work sheet.	
	c . Edit probabilities.	
	d . Edit criteria weights. 5.0	
	e . Load model.	
	f. Save model.	
	g . Enter new values.	
	h . Print results.	
	i . Terminate program.	
		Exit

previously processed node. For example, if the previously processed

c. This generates a node outline number one level higher than the

number were 3.2.5 and the input '6)' (where the right parenthesis is the

scan operator) the new node outline number would be 3.2.5.6.

previously processed node. For example, if the previously processed

b. This generates a node outline number one level deeper than the

For instance, if the requested node number is 1.4.2.2.6, the next higher level would be 1.4.2.2, the next higher would be 1.4.2, and the fourth (or highest) calculated level would be 1.4.

Ť

V

Extended Description

- 1. Performing this operation converts a group of arbitrary values to a group of values that add up to 100. The values all maintain the same relativity.
- 2. Performing this operation twice allows the case where the original values are all zero. The final result is a group of equal numbers that add up to 100.

Ó

v

Ť

77

Position of model names within list indicates where models are stored on tape.

- 4. The PROBABILITIES contain the relative importance assigned to each node in the model. The elements are in the same order as OUTLINE.
- 5. The CUM, PROBABILITIES contain the percentage of the importance of the enture model at each node level.

2. The NODE LABELS contain an element for each node (in the same order as OUTLINE) consisting of the description of each node supplied when the model is

entered

3. SCORES is a numeric matrix containing the values assigned to each criteria plus an extra element for the total score for each node of the model. (The node dimension is in the same order as OUTLINE.)

in numerical order. The value is an encoded representation of the node outline number supplied for each node when the model is entered. (See STRUCTURE.)

1. The OUTLINE Table contains an element for each node in the model, sorted

- The NODE TYPES contain an indication of the type of calculation to be used in assessing SCORES and WEIGHTS.
- 7. The DATA LEVEL MASK indicates which nodes are at the data level (bottom level) vs. the nodes that are aggregate nodes.

PROCE	System/Program RUN	Name LOAD	
OUTPU	agram ID 6.2	Description Load Model Variables	2 of -
	UT	PROCESS	OUTPUT

- 11. The CRITERIA WEIGHTS contain the weights to be applied to each criterion when the decision tree is solved. The number of elements is equal to the number of criteria plus one for the total.
- 12. The INDEPENDENT PROBABILITY TAGS indicate groups of events that occur more than once in the tree and whose probabilities can be assessed all at once. The number and order of elements is the same as that for OUTLINE.

9. The SUCCESSOR TABLE is a matrix containing the indices of the nodes that contribute to the aggregate nodes. There is a row for each aggregate node.

8. The AGGREGATE NODE INDICES contain the indices into the model variables that relate to just the aggregate nodes (all nodes that have one or more nodes contributing to them).

10

()

Generalized routines are directly invoked by functional procedures and return to the calling programs.

Ü

