

A33

内存配置说明

文档履历

版本号	日期	制/修订人	制/修订记录
V1.0	2014-07-30		初始版本
V2.0	2014-09-02		增加 CMA 配置说明,修改 ION 预留大小说明.
			AndroidL 初始版本.
			1. 删除 drop_cache,lowmemorykiller 说明
V3.0	2014-12-12		2. 修改 cma 预留方式
			3. 增加配置文件 config_mem.ini 说明
			4. 增加 hwui 配置说明

目 录

А3	3		. 1
内	存配置	说明	.1
1.	概试		. 2
	,,,,		
		编写目的	
		适用范围	
	1. 3.	相关人员	. 2
2.	术语、	缩略语及概念	.3
	2. 1.	预留内存	. 3
		vmalloc ⊠	
	2. 3.	ION	.3
	2, 4,	zram	3
		CMA	
3.	KERNE	L 相关配置	.4
		通用内核配置	
		3. 1. 1. zram 配置	
		3. 1. 2. CMA 配置	
		ION 预留内存大小的设置	
		3. 2. 1. 512M 方案	
		3. 2. 2. 1G 方案	
		vmalloc 区大小	
		3, 3, 1, 512M 方案	
		3. 3. 2. 1G 方案	
		ID 相关配置	
4.	ANDRO	ID 相天配直	.9
	4. 1.	内存配置文件	9
	4. 2.	zram disksize	9
		4. 2. 1. 512M 方案	.9
		4. 2. 2. 1G 方案	9
	4. 3.	dalvik heap 参数	.9
		4, 3, 1, 512M 方案	.9
		4. 3. 2. 1G 方案1	0
		4. 3. 3. 2G 方案1	0
	4. 4.	hwui 参数1	0

1. 概述

1.1. 编写目的

介绍平板方案内存配置说明相关知识, 供方案定制和开发人员参考。

1.2. 适用范围

适用于 A33 平台;

1.3. 相关人员

2. 术语、缩略语及概念

2.1. 预留内存

linux 标准函数不能分配超过 4M 的连续物理内存, 而硬件模块有时需要大于 4M 的连续物理内存. 预留内存就是为了解决这个问题.

2.2. vmalloc 区

指 linux 内核虚拟地址空间中, 0xFF000000 之前的一段区间, 大小不能超过 976M; 这段区间用于物理内存的动态映射, io 虚拟地址, vamlloc 函数等. 与它相对应的是低端内存区, 即线性映射区;

2.3. ION

android 引入的内存管理框架,在 kernel 实现,主要用于应用层访问连续物理内存

2.4. zram

即压缩内存机制. 在系统内存紧张时, 将不活动内存进行压缩, 并回写到一块压缩内存区域, 以提高内存利用率.

2.5. CMA

连续内存分配器, Continuous Memory Allocator, 从 linux-3.5 引入.

CMA 实现了预留内存的充分利用. 通过 CMA, 预留内存的空闲部分可以被其他模块利用, 通过 alloc_page 申请, 从而避免了浪费.

3. kernel 相关配置

3.1. 通用内核配置

3.1.1. zram 配置

- (1) CONFIG SWAP:
 - 1 在 linux 3.4 目录下,输入 make ARCH=arm menuconfig
 - 2 按照以下选项依次选择:

General setup ---> Support for paging of anonymous memory (swap)

(2) CONFIG ZRAM

ZRAM 设置方法:

- 1 在 linux 3.4 目录下,输入 make ARCH=arm menuconfig
- 2 按照以下选项依次选择:

Device Drivers ---> Staging drivers

- ---> Compressed RAM block device support
- ---> Memory allocator for compressed pages

```
🗗 liugang@Exdroid4: ~/workspace/a83/lichee/linux-3.4
.config - Linux/arm 3.4.39 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus
   Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
   <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
   for Search. Legend: [*] built-in [ ] excluded <M> module < >
       Frontier Tranzport and Alphatrack support
           Line6 USB support --->
          VIA Technologies VT6656 support
           Industrial I/O support --->
          Compressed RAM block device support
           Compressed RAM block device debug support
           Memory allocator for compressed pages
           Silicon Motion SM7XX Frame Buffer Support
           USB ENE SM card reader support
           Beceem BCS200/BCS220-3 and BCSM250 wimax support
                  (Select>
                          < Exit >
                                   < Help >
```

3.1.2. CMA 配置

(1) Device Drivers ---> Generic Driver Options ---> Contiguous Memory Allocator

- 注: 上述"Size in Mega Bytes"的配置不起作用, 保持默认即可.
- (2) "Maximum PAGE_SIZE order of alignment for contiguous buffers" 描述 CMA 分配内存时, 起始地址的对齐大小. 这里为 4, 表示每次分配时, 起始地址按 2^4 个 PAGE_SIZE (即 64K) 对齐.

保持默认即可, 无须修改.

```
🗗 liugang@Exdroid4: ~/workspace/a33/lichee/linux-3.4
.config - Linux/arm 3.4.39 Kernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus
   Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes,
   <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </>
   for Search. Legend: [*] built-in [ ] excluded <M> module < >
   [ ] Driver Core verbose debug messages
       [ ] Managed device resources verbose debug messages
       [*] Contiguous Memory Allocator
           CMA debug messages (DEVELOPMENT)
           *** Default contiguous memory area size: ***
       (96) Size in Mega Bytes
           Selected region size (Use mega bytes value only)
           Maximum PAGE SIZE order of alignment for contiguous buffers
           Maximum count of the CMA device-private areas
       [*] Synchronization framework
                  (Select>
                           < Exit >
                                     < Help >
```

(3) "Maximum count of the CMA device-private areas"

描述最多支持的设备私有 CMA 空间的个数. 目前我们用的是系统 CMA 区间, 没有用到设备私有区间, 因此该配置项无用.

3.2. ION 预留内存大小的设置

ION 预留多少合适? 需根据实际需要来定, 不同方案不一样, 估值依据如下:

- 1. 几个主要模块的内存消耗: GPU, VE, CAMERA, DISPLAY;
- 2. 规格场景的内存消耗: mirecast, 3D 游戏, CTS/GMS;

预留大小如何确定? 一般分两步:

- 1. 根据规格, 估算主要场景下, GPU/VE/CAMERA 等各模块消耗的内存, 计算出总和 total;
- 2. 采用试凑法,将预留大小设为 total,测试主要场景下,是否有 ION 申请失败的打印. 若有申请失败情况,则逐渐加大预留量,比如每次增加 16M,直到所有场景压力测试通过为止.
- 3. 内核配置了CONFIG_CMA时, 预留内存会 (比不使用CMA) 适当加大, 以降低ION分配失败的概率.

ION 预留内存大小在 lichee/tools/pack/chips/sun8iw5p1/configs/default/env.cfg 中设置, 比如:

ion_cma_list="120m,176m",ion_carveout_list="96m,150m"

- (1) 若选择 CONFIG_CMA, 则 ion_cma_list 才有效; 否则 ion_carveout_list 才有效
- (2) 不同内存方案的 ION 预留内存大小,由几组逗号隔开的数值表示. 最多三组,分别对应512M,1G,2G 方案.

比如 ion_cma_list="120m,176m": 表示内核选择 CONFIG_CMA 的前提下,512M, 1G 方案的预留内存大小分别为 120m, 176m; 若有 2G 方案预留内存大小为 200m,则可以这样写: ion_cma_list="120m,176m,200m"

3.2.1. 512M 方案

以下面的配置为例:

ion cma list="120m,176m",ion carveout list="96m,150m"

当内核未配置 CONFIG_CMA 时, ION 预留大小为 96 MBytes. 当内核配置了 CONFIG_CMA 时, ION 预留大小为 120MBytes.

3.2.2. 1G 方案

以下面的配置为例:

ion cma list="120m,176m",ion carveout list="96m,150m"

当内核未配置 CONFIG_CMA 时, ION 预留大小为 150MBytes. 当内核配置了 CONFIG CMA 时, ION 预留大小为 176MBytes.

3.3. vmalloc 区大小

3.3.1. 512M 方案

512M 方案下, vmalloc 区默认大小为 496M, 从 0xD00000000 到 0xFF0000000;

512M 方案使用默认配置即可, 无须改动.

3.3.2. 1G方案

1G 及以上方案中, vmalloc 区默认大小为 248M, 从 0xEF800000 到 0xFF000000;

在某些预留内存消耗大的场景下,比如 miracast/3D 游戏/GMS/CTS, 默认 248M 可能不能满足需求,因此建议将 vmalloc 区增大到 384M.

方法是在命令行增加"vmalloc=384m",至少有以下两种方式,推荐用方式一:

1. 在方案 env.cfg 文件中, 增加"vmalloc=384m"信息:

 $lichee \verb|\tools| pack \verb|\chips| sun 8 iw 5p 1 \verb|\configs| default \verb|\env.cfg|:$

setargs_nand=setenv bootargs console=\${console} root=\${nand_root} vmalloc=384M init=\${init} loglevel=\${loglevel} partitions=\${partitions} setargs_mmc=setenv bootargs console=\${console} root=\${mmc_root} vmalloc=384M init=\${init} loglevel=\${loglevel} partitions=\${partitions}

上述 sun8iw5p1 对应 A33.

2. 在方案中增加"vmalloc=384m":

android\device\softwinner\astar-y3\BoardConfig.mk:

BOARD_KERNEL_CMDLINE += vmalloc=384M

将上述 astar-y3 替换为实际方案目录.

4. android 相关配置

4.1. 内存配置文件

android 内存配置在文件: android\device\softwinner\astar-h7\configs\config_mem.ini 中.

这个文件格式类似于 windows 平台的 ini 文件. 包含 mainkey (主键), subkey (子键) "#"开头的行,为注释行,不起作用;

dalvik configurations
[dalvik_512m]
dalvik.vm.heapsize=128m
dalvik.vm.heapstartsize=5m
dalvik.vm.heapgrowthlimit=48m
dalvik.vm.heaptargetutilization=0.75
dalvik.vm.heapminfree=512k
dalvik.vm.heapmaxfree=2m

4.2. zram disksize

4.2.1. 512M 方案

目前默认大小为 320M.

文件: android\device\softwinner\astar-h7\fstab.sun8i /dev/block/zram0 none swap defaults zramsize=335544320

4.2.2. 1G 方案

目前默认大小为 320M.

文件: android\device\softwinner\astar-h7\fstab.sun8i /dev/block/zram0 none swap defaults zramsize=335544320

4.3. dalvik heap 参数

dalvik heap 参数会限制进程分配的内存大小,在总内存很多时,值越大则应用响应越快;但在总内存较少时,必须限制该值,以免应用占用过多内存,导致内核运行紧张.

4.3.1. 512M 方案

文件: android\device\softwinner\astar-h7\configs\config_mem.ini

[dalvik_512m]
dalvik.vm.heapsize=128m
dalvik.vm.heapstartsize=5m
dalvik.vm.heapgrowthlimit=48m

```
dalvik.vm.heaptargetutilization=0.75
dalvik.vm.heapminfree=512k
dalvik.vm.heapmaxfree=2m
```

4.3.2. 1G 方案

文件: android\device\softwinner\astar-h7\configs\config mem.ini

```
[dalvik_1024m]
dalvik.vm.heapsize=128m
dalvik.vm.heapstartsize=5m
dalvik.vm.heapgrowthlimit=48m
dalvik.vm.heaptargetutilization=0.75
dalvik.vm.heapminfree=512k
dalvik.vm.heapmaxfree=2m
```

4.3.3. 2G 方案

文件: android\device\softwinner\astar-h7\configs\config_mem.ini

```
[dalvik_2048m]
# dalvik.vm.heapsize=384m (#开头表示注释行,不起作用.即使用系统默认配置)
# dalvik.vm.heapstartsize=8m
# dalvik.vm.heapgrowthlimit=64m
# dalvik.vm.heaptargetutilization=0.75
# dalvik.vm.heapminfree=512k
# dalvik.vm.heapmaxfree=8m
```

4.4. hwui 参数

[hwui_800], [hwui_1024], [hwui_1280], [hwui_1920], [hwui_2048], [hwui_2560]. 数字表示 lcd 分辨率的长边像素. 比如 1280*800, 1280*720 的屏, 其对应 hwui 参数是[hwui_1280].

```
[hwui_1024]

[hwui_1280] (默认设置是针对 1280*800, 所以大部分采用默认设置)

#ro.hwui.texture_cache_size=24 (texture cache, MB, 至少 5 倍于 width * height * 32bit)

#ro.hwui.ro.hwui.r_buffer_cache_size=2 (renderbuffer cache, MB, 至少 2 倍于 width * height * 8bit)

#ro.hwui.path_cache_size=10 (path cache, MB, 至少 1 倍于 width * height * 32bit)

#ro.hwui.drop_shadow_cache_size=2 (text drop shadow cache, MB, 至少 2 倍于 width * height * 8bit)

#ro.hwui.text_small_cache_width=1024 (pixels)

#ro.hwui.text_small_cache_height=512 (pixels)

#ro.hwui.text_large_cache_width=2048 (pixels)

#ro.hwui.text_large_cache_height=512 (pixels)

#ro.hwui.gradient_cache_size=0.5 (gradient cache, MB)

#ro.hwui.vertex_cache_size=1 (tessellation cache, MB)
```

```
#ro.hwui.patch_cache_size=128 (KB)
#ro.hwui.texture_cache_flushrate=0.6 (flush 后保留的 texture cache 的比例)
#ro.hwui.disable_scissor_opt=false
[hwui_1920]

[hwui_2048]
```

更详细的参数介绍可参考: https://source.android.com/devices/tech/debug/tuning.html

