1. จงเขียนฟังก์ชัน sumNonZero() ซึ่งเป็นฟังก์ชันสำหรับหาผลรวมของชุดตัวเลขที่ติดกัน โดยที่ตัวเลข ทั้งหมดในช่วงนั้นไม่ได้มีค่าเท่ากับ 0 โดยฟังก์ชัน sumNonZero() มี Function Prototype ดังนี้

```
int sumNonZero(int *d,int **s,int **e)
```

- d เป็น Parameter ที่ใช้เป็นอินพุตระบุตำแหน่งเริ่มต้นของการค้นหาช่วงของชุดตัวเลขที่ไม่ใช่ 0 ที่ติดกัน
- s เป็น Parameter ที่ใช้ในการเก็บผลลัพธ์ซึ่งเป็นตำแหน่งเริ่มต้นของชุดตัวเลขที่พบ (ตัวเลขแรกที่ไม่ใช่ 0 ที่อยู่หลังจาก d)
- e เป็น Parameter ที่ใช้ในการเก็บผลลัพธ์ซึ่งเป็นตำแหน่งสุดท้ายของชุดตัวเลขที่พบ (ตัวเลขที่ไม่ใช่ 0 ตัว สุดท้ายที่ติดกันหลังจาก s)
- ฟังก์ชัน sumNonZero()จะ return ผลรวมของตัวเลขที่ไม่ใช่ 0 ที่ติดกันทั้งหมด ช่วงแรกที่พบ (ผลบวกตัวเลขตั้งแต่ตำแหน่ง s ถึง e)

Source Code (ให้เติมส่วนของ Function sumNonZero ในหน้าถัดไปให้ทำงานได้สอดคล้องกับผลลัพธ์และการ เรียกใช้ใน main)

```
#include<iostream>
using namespace std:
int sumNonZero(int *,int **,int **);
int main(){
       int A[] = \{0,0,0,0,0,1,3,2,1,1,0,0,0,1,6,9,0,0,0,1,1,0,0\};
       int sum;
       int *start, *end;
       sum = sumNonZero(A, &start, &end);
       cout << "sum = " << sum << "\n";
       cout << "start = " << start << "\n" ;
       cout << "end = " << end << "\n";
cout << "length = " << end-start+1 << "\n";
       sum = sumNonZero(end+1,&start,&end);
       cout << "sum = " << sum << "\n";
       cout << "start = " << start << "\n" ;
       cout << "end = " << end << "\n";
       cout << "length = " << end-start+1 << "\n";</pre>
       cout <<"----\n";
       sum = sumNonZero(end+1, &start, &end);
       cout << "sum = " << sum << "\n";
       cout << "start = " << start << "\n" ;</pre>
       cout << "end = " << end << "\n";
       cout << "length = " << end-start+1 << "\n";</pre>
       cout <<"----
```

```
int sumNonZero(int *d,int **s,int **e) {
//Write definition of sumNonZero() here
}
```

ตัวอย่างผลลัพธ์ที่ต้องการ

2. ให้นักศึกษาลองไปศึกษาวิธีการเรียงลำดับแบบ Quicksort ซึ่งสามารถสรุปเป็น Pseudo Code ได้ดังนี้

Psuedo Code ของ Quicksort Algorithm (https://en.wikipedia.org/wiki/Quicksort)

```
algorithm quicksort(A, lo, hi) is
   if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort (A, p + 1, hi)
algorithm partition(A, lo, hi) is
    pivot := A[hi]
    i := lo
                    // place for swapping
    for j := lo to hi - 1 do
        if A[j] \leq pivot then
            swap A[i] with A[j]
            i := i + 1
    swap A[i] with A[hi]
    return i
//Sorting the entire array is accomplished by quicksort (A, 1, length (A)).
```

โดยเราสามารถเขียน Source Code ภาษา C++ ที่สอดคล้องกับ Source Code ด้านบนได้ดังนี้ จงเติมส่วนที่ขาด หายไปให้สมบูรณ์ แล้วลองทดสอบนำไป Run ดู

Source Code

```
#include<iostream>
using namespace std;
template <typename T>
void quicksort(T *,T *);
template <typename T>
T * partition(T *,T *);
template <typename T>
void swap(T *,T *);
int main(){
     int data[10] = \{7,2,4,5,6,7,0,1,9,3\};
     int *p1 = &data[0];
     int *p2 = \&data[9];
     quicksort( (A) );
     for (int *i = p1; i \le p2; i++) {
          cout << *i << " ";
     return 0;
}
```

```
template <typename T>
void quicksort(T *lo,T *hi){
      (B) = partition(lo,hi);
    if(p-1 > lo) quicksort(lo, p-1);
    if(hi > p+1) quicksort(p+1,hi);
template <typename T>
T * partition(T *lo,T *hi){
    T pivot = \frac{\text{(C)}}{\text{(D)}} = lo;
    swap(i,j);
              (G) ;
    swap(i,hi);
    return i;
template <typename T>
void swap(T *x,T *y){
    T temp = *x;
    *x = *y;
    *y = temp;
```

ผลลัพธ์ที่ต้องการ

0 1 2 3 4 5 6 7 7 9

3. [Challenge Problem] จงเขียนโปรแกรมเพื่อสร้าง Array 2 มิติ โดยรับอินพุตจำนวนแถว N และ จำนวน หลัก M จากผู้ใช้ โดยเลขใน Array 2 มิติ นั้น เป็นเลขลำดับในการอ่านข้อมูล 2 มิติ แบบ Zig-zag Scan ซึ่งมี รูปแบบลำดับในการอ่านข้อมูลดังแสดงในรูปด้านล่าง

ตัวอย่างการรับอินพุตและผลลัพธ์ที่ต้องการ (ตัวเลขที่ขีดเส้นใต้ คือ อินพุตจากผู้ใช้)

N, M = 66							
Reading sequ	uence is:						
1	2	6	7	15	16		
3	5	8	14	17	26		
4	9	13	18	25	27		
10	12	19	24	28	33		
11	20	23	29	32	34		
21	22	30	31	35	36		

N, M = $\frac{4}{8}$ Reading seque	ence is:						
1	2	6	7	14	15	22	23
3	5	8	13	16	21	24	29
4	9	12	17	20	25	28	30
10	11	18	19	26	27	31	32

N, M = 12 5						
Reading seque	ence is:					
1	2	6	7	15		
3	5	8	14	16		
4	9	13	17	25		
10	12	18	24	26		
11	19	23	27	35		
20	22	28	34	36		
21	29	33	37	45		
30	32	38	44	46		
31	39	43	47	54		
40	42	48	53	55		
41	49	52	56	59		
50	51	57	58	60		

4. [Challenge Problem] จงเขียนโปรแกรมเพื่อหาจำนวนของกลุ่มดาว โดยสมมุติให้ดาวแต่ละดวงมีเลข ประจำตัวของมันซึ่งเป็นเลขจำนวนเต็มบวก ซึ่งอาจจะเป็นตัวเลขที่ขาดๆ หายๆ ไม่ได้เรียงต่อกัน โดยผู้ใช้จะ อินพุตการเชื่อมต่อโดยใส่หมายเลขของดาวคู่ใดๆ ที่มีสายสัมพันธ์เชื่อมต่อกัน โดยดาวที่เป็นกลุ่มดาวเดียวกัน นั้นหมายถึงดาวที่มีสายสัมพันธ์เชื่อมโยงไปถึงกันกัน เช่น จากตัวอย่างด้านล่างนี้ ประกอบด้วยดวงดาว 10 ดวง ที่มีหมายเลข 1,2,3,4,5,7,8,9,10,11 (จะเห็นได้ว่าตัวเลขไม่ต่อเนือง คือ ไม่มีหมายเลข 6) ฝังขวามือด้านขวามือ เป็นอินพุตที่ผู้ใช้กรอกสายสัมพันธ์ที่มีระหว่างดาวคู่ใด ๆ เมื่อผู้ใช้อินพุตสายสัมพันธ์ครบแล้ว สามารถออกจาก โปรแกรมได้โดยการกรอกเลขใดเลขหนึ่งที่มากกว่าหรือเท่ากับ 0 โดยอินพุตในตัวอย่างนี้สามารถเขียนเป็นรูปได้ ดังแสดงในรูปซ้ายมือ ซึ่งจะเห็นได้ว่าอินพุตนี้ประกอบด้วยดวงดาว 2 กลุ่มแยกกันอยู่ ระบบก็จะตอบ

#Constellation = 2 ออกมา


```
Input link [1]: 1 2
Input link [2]: 2 3
Input link [3]: 4 2
Input link [4]: 5 2
Input link [5]: 8 9
Input link [6]: 7 8
Input link [7]: 10 9
Input link [8]: 10 11
Input link [9]: 0 0
```

ตัวอย่างการรับอินพุตและผลลัพธ์ที่ต้องการ (ตัวเลขที่ขีดเส้นใต้ คือ อินพุตจากผู้ใช้)

```
Input link [1]: 1 2
Input link [2]: 5 6
Input link [3]: 10 20
Input link [4]: 15 10
Input link [5]: 1 15
Input link [6]: 7 6
Input link [7]: 18 19
Input link [8]: 19 25
Input link [9]: 25 26
Input link [10]: 26 27
Input link [11]: 0 0
#Constellation = 3
```

```
Input link [1]: 8 8  
Input link [2]: 7 8  
Input link [3]: 5 7  
Input link [4]: 6 1  
Input link [5]: 1 6  
Input link [6]: 9 10  
Input link [7]: 4 11  
Input link [8]: -1 -69  
#Constellation = 4
```