《高等微积分1》第二次作业

- 1 计算极限.
 - (1) 求极限 $\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} + \frac{2}{n^2 + 2} + \dots + \frac{n}{n^2 + n} \right)$.
 - (2) 给定实数 a, b, 求极限 $\lim_{n \to \infty} \left(\sqrt{n^2 + an + b} n \right)$.
- 2 给定正整数 k 及实数 $a_0,...,a_{k-1}$. 求极限 $\lim_{n\to\infty} \sqrt[n]{n^k + a_{k-1}n^{k-1} + ... + a_0}$.
- 3 (1) 设 $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = q < 1$. 证明: $\lim_{n\to\infty} a_n = 0$.

利用(1)的结论,求如下极限.

- (2) 给定 a > 0, 求极限 $\lim_{n \to \infty} \frac{a^n}{n!}$.
- (3) 给定 a > 1 与正整数 k, 求极限 $\lim_{n \to \infty} \frac{n^k}{a^n}$.
- (4) 给定 0 < q < e 其中 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$, 求极限 $\lim_{n \to \infty} \frac{n!}{(\frac{n}{a})^n}$.
- 4 给定正实数 a,k. 定义数列 $\{x_n\}_{n=0}^{\infty}$ 为

$$x_0 = a$$
, $x_{n+1} = \frac{1}{2}(x_n + \frac{k}{x_n})$, $\forall n = 0, 1, 2, ...$

- (1) 证明: 对正整数 n, 有 $x_n \ge \sqrt{k}$.
- (2) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 是不增的, 即有 $x_1 \geq x_2 \geq \dots$
- (3) 证明: 数列 $\{x_n\}_{n=0}^{\infty}$ 收敛.
- (4) 求极限 $\lim_{n\to\infty} x_n$.

5 给定正实数 a, b. 定义数列 $\{x_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ 为

$$x_0 = a, \quad y_0 = b,$$

$$x_{n+1} = \sqrt{x_n y_n}, \quad y_{n+1} = \frac{1}{2}(x_n + y_n), \quad \forall n = 0, 1, 2, \dots$$

- (1) 证明: 对正整数 n, 有 $y_n \ge x_n$.
- (2) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 是不减的, 数列 $\{y_n\}_{n=1}^{\infty}$ 是不增的.
- (3) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 有上界, 数列 $\{y_n\}_{n=1}^{\infty}$ 有下界.
- (4) 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 与 $\{y_n\}_{n=1}^{\infty}$ 都收敛.
- (5) 证明: $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$.
- 6 (1) 设 $\{a_n\}_{n=1}^{\infty}$ 是不减的数列, 且极限为 A. 证明: 对任何正整数 n, 有 $a_n \leq A$.
 - (2) 令 $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. 证明: 对正整数 n, 有

$$(1+\frac{1}{n})^n \le e \le (1+\frac{1}{n})^{n+1}.$$

(3) 利用 (2) 的结论, 证明: 对正整数 n, 有

$$\frac{(n+1)^n}{e^n} \le n! \le \frac{(n+1)^{n+1}}{e^n}.$$

(4) 利用(3)的结论,计算极限

$$\lim_{n\to\infty} \sqrt[n]{\frac{n!}{n^n}}.$$

MA 1/2: ils win Van = 9