Recommender Systems 1팀 하계 컨퍼런스 중간 발표

2022.07.26 김병준 김정우 김찬호 박정현

목차

- 1. 팀원 소개
- 2. 주제 설명
- 3. 진행 상황
- 4. 향후 계획

1. 팀원 소개

김병준 | 컴퓨터공학

김정우 | 경영학

김찬호 | 응용통계학

박정현 | 응용통계학

2. 주제 설명

차애캐 & 애니메이션 추천

"차애캐 추천과 그에 따른 애니메이션 추천"

'최애캐'의 외모와 성격 등 다양한 요소를 종합적으로 분석해 '차애캐'를 추천하는 방법론

이어서 차애캐가 등장하는 애니메이션 소개 후 해당 애니메이션과 유사한 애니메이션 추천

금발 청소년 성급함 :

3. 진행 상황

데이터 전처리

- 1. character data에 MAL_ID(MyAnimelist_ID)추가
 - animation data와 character data를 연결시킬 수 있는 index필요
 - => 데이터 크롤링을 통해 character data에 해당 캐릭터가 출연하는 animation의 MAL_ID추가
- * character data

데이터 전처리

2. 불필요한 columns drop

* character data

* animation data

모델링

1. character data를 이용한 차애캐 추천(contents-based filtering)

description 제외한 나머지 정보를 가지고 모델링

VS

description만을 사용하여 모델링

character data를 이용한 차애캐 추천 결과

Naruto UZUMAKI

description 제외

description만 사용

5

character data를 이용한 차애캐 추천 결과

Monkey D. Luffy

description 제외

description만 사용

character data를 이용한 차애캐 추천 결과

Ash's Pikachu

description 제외

description만 사용

character data를 이용한 차애캐 추천 문제점

동일한 애니메이션 속의 캐릭터를 위주로 추천하는 문제 발생

- (1) 아마 검색자가 이미 그 캐릭터들을 잘 알고 있을 것임
- (2) 같은 애니메이션에 나왔다고 해서 비슷한 캐릭터라는 보장 어려움

character data를 이용한 차애캐 추천 문제점 - 예상 원인 및 해결 방안

* 예상 원인

description 제외

Tag의 데이터 비중이 높음

=> 같은 애니메이션에 등장하는 캐릭터일수록 tag의 단어가 같을 확률 높음

description만 사용

Description에 대한 텍스트 마이닝시, tf-idf를 이용하는데 단어의 빈도를 우선으로 삼음

=> 같은 애니메이션 캐릭터의 description이면 해당 애니메이션에서만 사용되는 고유명사를 공유

* 해결 방안

- (1) 외모, 성격 등 다양한 요소를 종합적으로 고려
- (2) 어떤 element에 어느 정도 weight를 줄 지 반복적으로 실험하면서 결과를 비교

모델링

2. animation data를 이용한 애니메이션 추천(contents-based filtering)

모든 정보를 가지고 모델링

VS

Genre만을 사용하여 모델링

animation data를 이용한 애니메이션 추천 결과

모두 포함

ani_re	c_genre(anime_data, cosine_similar_full_df, 'Naruto	')		
	Name	MAL ID		
4352	Medaka Box	11761		
131	Shaman King	154		
8010	Boruto: Naruto Next Generations	34566		
3212	Dragon Ball Z: Atsumare! Gokuu World	6714		
203	Rekka no Honoo 23			
5518	Dragon Ball Kai (2014)	22777		
8268	Boruto: Jump Festa 2016 Special	35072		
1274	Katekyo Hitman Reborn! 160			
1366	Naruto: Shippuuden			
1178	D.Gray-man			
3035	Dragon Ball Kai			
233	Bleach			
584	Dragon Ball Z 8			
128	Ueki no Housoku 479			
1329	Duel Masters 1685			
11700	Shaman King (2021)	42205		
324	Dragon Ball GT: Gokuu Gaiden! Yuuki no Akashi	987		
5457	Dragon Ball Super	30694		
762	Dragon Ball Z Movie 11: Super Senshi Gekiha!!	904		
189	Dragon Ball	223		

조금 더 다채로운 결과

Genre만 사용

```
ani_rec_genre(anime_data, cosine_similar_df, 'Naruto')
                                                         MAL ID
                                                   Name
4611
             Naruto: Shippuuden Movie 6 - Road to Ninja
                                                          13667
      Boruto: Naruto the Movie - Naruto ga Hokage ni...
5509
                 Dragon Ball Z: Summer Vacation Special
                                                          22695
203
                                         Rekka no Honoo
                                                            238
3212
                   Dragon Ball Z: Atsumare! Gokuu World
                                                           6714
8268
                        Boruto: Jump Festa 2016 Special
                                                          35072
5518
                                 Dragon Ball Kai (2014)
                                                          22777
      Naruto Soyokazeden Movie: Naruto to Mashin to ...
                                                          10659
      Naruto: Takigakure no Shitou - Ore ga Eiyuu Da...
                                                            594
      Naruto: Honoo no Chuunin Shiken! Naruto vs. Ko...
1366
                                     Naruto: Shippuuden
                                                           1735
3035
                                        Dragon Ball Kai
                                                           6033
3114
      Naruto: Shippuuden Movie 3 - Hi no Ishi wo Tsu...
                                                           6325
684
                                          Dragon Ball Z
                                                            813
                                                          25389
5806
                Dragon Ball Z Movie 15: Fukkatsu no "F"
6069
                               Boruto: Naruto the Movie
                                                          28755
            Naruto: Shippuuden Movie 4 - The Lost Tower
      Dragon Ball GT: Gokuu Gaiden! Yuuki no Akashi ...
                                                            987
                                      Dragon Ball Super
                                                         30694
      Dragon Ball Z Movie 11: Super Senshi Gekiha!! ...
                                                            904
```

유사한 결과 얻음

animation data를 이용한 애니메이션 추천 - 예상 원인 및 해결 방안

데이터의 각 종류를 하나의 새로운 속성으로 변경하여 유사도행렬을 만들 때, 장르가 가지는 영향력이 너무 클 것으로 생각됨

* 예상 원인

장르는 총 42개로 많은 종류의 데이터를 가지는 반면 나머지 데이터는 종류가 많지 않음

* 해결 방안

단순히 0,1 원핫인코딩 형식이 아니라 가중치를 변경해가며 유사도행렬을 만든다면 더 좋은 결과를 얻을 수 있을 것으로 예상

모델링

3. animation data를 이용한 애니메이션 추천(collaborative Filtering)

"나외 성향이 비슷한 친구들은 어떤 애니메이션을 찾아볼까?"

=>많은 사용자들로부터 얻은 기호정보(taste information)에 따라 사용자들의 관심사들을 자동적으로 예측하게 해주는 방법

A Python scikit for recommender systems.

animation data를 이용한 애니메이션 추천 - 데이터셋

	user_id	anime_id	rating
0	0	430	9
1	0	1004	5
2	0	3010	7
3	0	570	7
4	0	2762	9

Surprise를 활용하여 추천시스템을 구현하고자 할 때, '사용자 - 아이템 - 평점'으로 데이터 가공 필요

animation data를 이용한 애니메이션 추천 - 전처리

```
min_anime_ratings = 5
filter animes = ratings['anime id'].value counts() >= min anime ratings
filter_animes = filter_animes[filter_animes].index.tolist()
ratings_new = ratings[ratings['anime_id'].isin(filter_animes)]
print('The original data frame shape:\#t{}'.format(ratings.shape))
print('The new data frame shape:\#t{}'.format(ratings new.shape))
The original data frame shape: (57633278, 3)
                                (57632002.3)
The new data frame shape:
min_user_ratings = 5
filter users = ratings new['user id'].value counts() >= min user ratings
filter_users = filter_users[filter_users].index.tolist()
ratings_new2 = ratings_new[ratings_new['user_id'].isin(filter_users)]
print('The original data frame shape:\tautilett\}'.format(ratings new.shape))
print('The new data frame shape:\#t{}'.format(ratings_new2.shape))
The original data frame shape: (57632002, 3)
The new data frame shape:
                                (57596151, 3)
```

● 5명 미만의 user에게 평가 를 받은 애니메이션 제거

● 5개 미만의 애니메이션을 평가한 user 제거

```
for a in range(len(ratings_new2)):
   if ratings_new2["anime_id"][a] not in list(anime["MAL_ID"][:]):
     ratings_new2.drop(index=a)
```

● anime 데이터셋에 있는 애 니메이션을 제외하고 drop

animation data를 이용한 애니메이션 추천 - 알고리즘

Algorithm predicting a random rating based on the distribution of the random_pred.NormalPredictor

training set, which is assumed to be normal.

baseline_only.BaselineOnly Algorithm predicting the baseline estimate for given user and item.

knns.KNNBasic A basic collaborative filtering algorithm.

A basic collaborative filtering algorithm, taking into account the mean ratings knns.KNNWithMeans

of each user.

A basic collaborative filtering algorithm, taking into account knns.KNNWithZScore

knns.KNNBaseline A basic collaborative filtering algorithm taking into account a baseline rating.

The famous SVD algorithm, as popularized by Simon Funk during the Netflix matrix_factorization.SVD

Prize. When baselines are not used, this is equivalent to Probabilistic Matrix

Factorization.

The SVD++ algorithm, an extension of SVD taking into account implicit matrix_factorization.SVDpp

ratings.

A collaborative filtering algorithm based on Non-negative Matrix matrix factorization.NMF

Factorization.

slope_one.SlopeOne A simple yet accurate collaborative filtering algorithm.

co clustering.CoClustering A collaborative filtering algorithm based on co-clustering.

animation data를 이용한 애니메이션 추천 - cross validation

```
benchmark = []
# 모든 알고리즘을 literate화 시켜서 반복문을 실행시킨다.
for algorithm in [SVD(), SVDpp(), SlopeOne(), NMF(), KNNBaseline(), KNNBasic(), KNNWithMeans(), KNNWithZScore(), BaselineOnly(), CoClus
# 교차검증을 수행하는 단계.
results = cross_validate(algorithm, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
# 결과 저장과 알고리즘 이름 추가.
tmp = pd.DataFrame.from_dict(results).mean(axis=0)
tmp = tmp.append(pd.Series([str(algorithm).split(' ')[0].split('.')[-1]], index=['Algorithm']))
benchmark.append(tmp)

pd.DataFrame(benchmark).set_index('Algorithm').sort_values('test_rmse')
```


animation data를 이용한 애니메이션 추천 - Grid Search

KNN 기반 알고리즘(아이템 기반 최근점 이웃 CF)의 파라미터

- k: 이웃의 크기
- name: 사용할 유사도의 종류를 나타내는 문자열. 디폴트는 'MSD'.
 - 평균제곱차이 유사도 (Mean Squared Difference Similarity)
 - 코사인 유사도 (Cosine Similarity)
 - 피어슨 유사도 (Pearson Similarity)
 - 피어슨-베이스라인 유사도 (Pearson-Baseline Similarity)
- user_based: True면 사용자 기반, False면 상품 기반.

SVD 기반 알고리즘(행렬 분해를 이용한 잠재요인 CF)의 파라미터

- n_epochs: SGD의 반복 횟수 지정
- n_factors: SVD의 잠재 요인 K의 크기 지정
- Ir_all: 학습률
- reg_all: 규제 텀 계수

animation data를 이용한 애니메이션 추천 - 추천시스템 구현

```
def recomm_anime_by_surprise(algo, user_id, unseen_animes, top_n=10):
   # 알고리즘 객체의 predict() 메서드를 평점이 없는 애니메이션에 반복 수행한 후 결과를 list 객체로 저장
   predictions = [algo.predict(str(user id), str(anime id) for anime id in unseen animes]
   # predictions list 객체는 surprise의 Predictions 객체를 원소로 가지고 있음.
   # [Prediction(uid='9', iid='1', est=3.69), Prediction(uid='9', iid='2', est=2.98),...]
   # 이를 est 값으로 정렬하기 위해서 아래의 sortkey_est 함수를 정의함.
   # sortkey est 함수는 list 객체의 sort() 함수의 키 값으로 사용되어 정렬 수행.
   def sortkev est(pred):
      return pred.est
   # sortkey est( ) 반환값의 내림 차순으로 정렬 수행하고 top n개의 최상위 값 추출.
   predictions.sort(key=sortkey_est, reverse=True)
   top predictions= predictions[:top n]
   # top n으로 추출된 애니메이션의 정보 추출. 애니메이션 아이디, 추천 예상 평점, 제목 추출
   top_anime_rating = [pred.est for pred in top_predictions]
   top_anime_names = anime[anime.MAL_ID.isin(top_anime_ids)]['title']
   top anime preds = [ (id, title, rating) for id, title, rating in zip(top anime ids, top anime names, top anime rating)]
   return top_anime_preds
unseen_animes = get_unseen_animelist(9)
top_anime_preds = recomm_anime_by_surprise(algo, 9, unseen_animes, top_n=10)
print('##### Top-10 추천 애니메이션 리스트 #####')
for top_anime in top_anime_preds:
   print(top_anime[1], ":", top_anime[2])
```

- 1. 사용할 알고리즘과 추천 대상자인 User의 id를 입력받음.
- 2. User_id에 해당하는 사용자가 이미 평점을 매긴, 즉 이미 시청한 애니메이션을 제외.
- 3. 입력된 알고리즘에 의해 사용자가 평점을 매기지 않은 애니메이션의 평점을 예측한 후,
- 4. 예측된 평점 중 가장 높은 평점을 받은 상위 N개의 애니메이션을 추천

4. 향후 계획

8월

week1

[모델링 완성]

week2

[예선 제출 마감]

week3

[본선 발표 준비 및 발표]

감사합니다